ELSEVIER

Contents lists available at ScienceDirect

## Atomic Data and Nuclear Data Tables

journal homepage: www.elsevier.com/locate/adt



# Dirac-Fock photoionization parameters for HAXPES applications



M.B. Trzhaskovskaya a,\*, V.G. Yarzhemsky b,c

- <sup>a</sup> National Research Center "Kurchatov Institute" Petersburg Nuclear Physics Institute, Gatchina 188300, Russian Federation
- <sup>b</sup> Kurnakov Institute of General and Inorganic Chemistry, Moscow 119991, Russian Federation
- <sup>c</sup> Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russian Federation

### HIGHLIGHTS

- Photoionization parameters are presented in the photon energy range 1.5–10 keV.
- Theoretical data are intended for use in experimental studies by HAXPES spectroscopy.
- Relativistic calculations were performed by the Dirac–Fock method.
- Photoionization cross sections were calculated including all multipoles.
- The angular distribution parameters were obtained in the quadrupole approximation.

### ARTICLE INFO

## Article history:

Received 28 November 2016 Received in revised form 4 April 2017 Accepted 18 April 2017 Available online 22 May 2017

### Keywords:

Photoionization cross section Photoelectron angular distribution Hard X-ray photoelectron spectroscopy Dirac-Fock method

### ABSTRACT

Presented here are the photoionization cross sections and parameters of the photoelectron angular distribution for atomic subshells with binding energies lower than 1.5 keV of all elements with  $1 \le Z \le 100$  in the photon energy range 1.5–10 keV. The calculations were performed in an effort to provide handy theoretical data for experimental studies by hard X-ray photoelectron spectroscopy (HAXPES). We used the relativistic treatment of atomic photoeffect and the Dirac–Fock method with proper consideration of the electron exchange for computing the electron wave functions. The photoionization cross sections were determined including all multipoles of the radiative field while the photoelectron angular distribution parameters were obtained within the quadrupole approximation. The effect of the hole resulting in the atomic subshell after photoionization was taken into account by the use of the frozen orbital model.

© 2017 Elsevier Inc. All rights reserved.

<sup>\*</sup> Corresponding author. Fax: +7 813 713 19 63. E-mail addresses: trzhask@MT5605.spb.edu (M.B. Trzhaskovskaya), vgyar@igic.ras.ru (V.G. Yarzhemsky).

### **Contents**

| 1. | Introduction                                                                                       | 100 |
|----|----------------------------------------------------------------------------------------------------|-----|
| 2. | Basic formulas and method of calculation                                                           | 100 |
| 3. | Relation between theoretical photoionization parameters and experimental data                      | 102 |
| 4. | Conclusions                                                                                        | 103 |
|    | Acknowledgment                                                                                     | 103 |
|    | References                                                                                         |     |
|    | Explanation of Tables.                                                                             | 105 |
|    | Table 1. Subshell photoionization cross sections and photoelectron angular distribution parameters |     |

### 1. Introduction

Theoretical values of the photoionization cross sections and the photoelectron angular distribution parameters are widely used in traditional X-ray photoelectron spectroscopy. Early extensive calculations [1–3] contain only photoionization cross sections for two photon energies associated with the Al and Mg  $K_{\alpha}$ -line energies. More recent calculations include photoionization cross sections along with the dipole angular distribution parameters  $\beta$  [4,5]. Our papers [6–8] include the angular distribution parameters  $\beta$ ,  $\gamma$ , and  $\delta$  obtained within the quadrupole approximation to give an essential correction to photoelectron angular distribution. Calculations [1,2,6–9] were pioneered by academician Vadim I. Nefedov (1937–2008) who was deeply involved in the studies.

The present paper is a revision and extension of the calculations to provide theoretical data required for handling of data obtained by methods of the hard X-ray photoelectron spectroscopy (HAXPES). The HAXPES spectroscopy is a powerful technique for the investigation of bulk electron structure of functional materials [10] and their interfaces [11]. In particular, it was applied for investigation of the electron structure of magnetic semiconductors [12] and strongly correlated materials [13]. Investigations in this new energy region revealed some new effects in behavior of intensities of the main [14] and satellite photoelectron lines [15,16]. HAXPES is also intended for study of the valence-band density of the material buried layers because of the large analysis depth (see [11] and references therein). Theoretical photoionization parameters are required for the interpretation of HAXPES data [15]. Our previous calculations [6,7] were performed for the kinetic electron energies  $E_k \leq 5$  keV what is not cover modern energy region of HAXPES spectroscopy which extends to 7 keV [13] and even to 9 keV [15].

In Table 1, we present calculations in the photon energy range 1.5 keV  $\leq k \leq$  10 keV for all elements with atomic numbers  $1 \leq Z \leq$  100. The comparatively outer atomic shells with binding energies less than 1.5 keV are taken into consideration. Although the method of calculations has been described before [6,8], we will remind below basic assumptions which provide the foundation for the calculations and will give basic expressions for the sake of convenience.

The main advantage of the present calculations over previous ones lies in the fact that electron wave functions are calculated using the Dirac–Fock (DF) method where the electron exchange interaction is considered exactly between bound electrons as well as between bound and free electrons. Previous calculations [1–9] were performed with the Dirac–Slater (DS) method where the electron exchange was considered approximately. Adequate calculations of electron wave functions may be essential for outer shells and for low photoelectron energies. As in papers [6,7], the subshell photoionization cross sections were calculated including all multipoles of the radiative field while the photoelectron angular



**Fig. 1.** Notations of angles and directions:  ${\bf k}$  is the photon momentum vector;  ${\bf p}$  is the direction of the photoelectron;  $\varepsilon$  is the photon polarization vector;  $\underline{\theta}$  is the angle between vectors  ${\bf k}$  and  ${\bf p}$ ;  $\theta$  is the angle between  ${\bf p}$  and  $\varepsilon$ ; and  $\varphi$  is the angle between  ${\bf k}$  and the plane passing through  ${\bf p}$  and  $\varepsilon$ .

distribution parameters were obtained in the quadrupole approximation.

### 2. Basic formulas and method of calculation

The calculations were carried out for a free atom in the oneelectron approximation. The fully relativistic formalism was used in the photoeffect studies. The relativistic treatment leads to the following expressions for the differential cross section in the *i*th atomic subshell for unpolarized and circularly polarized radiation:

$$\frac{d\sigma_i}{d\Omega}(\underline{\theta}) = \frac{\sigma_i}{4\pi} \sum_n B_n P_n(\cos\underline{\theta}). \tag{1}$$

Here  $P_n(\cos \underline{\theta})$  is the Legendre polynomial,  $\underline{\theta}$  is the angle between the vectors of photon and photoelectron propagation. Angle designations are given in Fig. 1.

In Eq. (1), the total photoionization cross section  $\sigma_i$  for the *i*th subshell is written as

$$\sigma_{i} = \frac{4\pi^{2}\alpha}{k} \sum_{L} \sum_{\kappa} (2L+1)[Q_{LL}(\kappa)]^{2} + L[Q_{L+1L}(\kappa)]^{2} + (L+1)[Q_{L-1L}(\kappa)]^{2} - 2\sqrt{L(L+1)} Q_{L-1L}(\kappa)Q_{L+1L}(\kappa),$$
 (2)

the coefficient  $B_0 = 1$ , and coefficients  $B_n$  for  $n \ge 1$  are given by

$$B_{n} = \frac{4\pi^{2}\alpha}{k\sigma_{i}} \sum_{L_{1}L_{2}} \sum_{\kappa_{1}\kappa_{2}} \sum_{\Lambda_{1}\Lambda_{2}} (-1)^{j_{1}+j_{2}+L_{1}+L_{2}+\Lambda_{1}+\Lambda_{2}+j_{i}+1/2} e^{i(\delta_{\kappa_{1}}-\delta_{\kappa_{2}})}$$

$$\times \frac{1+(-1)^{\ell_{1}+\ell_{2}+n}}{2} \cdot \frac{1+(-1)^{\ell_{1}+\Lambda_{1}+\ell_{i}+1}}{2}$$

$$\frac{1 + (-1)^{\ell_{2} + \Lambda_{2} + \ell_{i} + 1}}{2} \cdot i^{\Lambda_{1} - \Lambda_{2}} \times [j_{1}j_{2}\Lambda_{1}\Lambda_{2}]^{\frac{1}{2}} [nL_{1}L_{2}] \begin{pmatrix} j_{1} & j_{2} & n \\ 1/2 & -1/2 & 0 \end{pmatrix} \begin{pmatrix} L_{1} & L_{2} & n \\ q & -q & 0 \end{pmatrix} \times \begin{pmatrix} \Lambda_{1} & 1 & L_{1} \\ 0 & q & -q \end{pmatrix} \begin{pmatrix} \Lambda_{2} & 1 & L_{2} \\ 0 & q & -q \end{pmatrix} \begin{bmatrix} L_{1} & L_{2} & n \\ j_{2} & j_{1} & j_{i} \end{bmatrix} \times Q_{\Lambda_{1}L_{1}}(\kappa_{1})Q_{\Lambda_{2}L_{2}}(\kappa_{2}). \tag{3}$$

All formulas are presented in relativistic units, in which the Compton wavelength  $\hbar/m_0c$  is defined as the unit of length, and the electron rest mass  $m_0c^2$  is the unit of energy. In Eqs. (2) and (3), k is the photon energy, L is the multipolarity of the radiative field,  $\kappa=(\ell-j)(2j+1)$  is the relativistic quantum number,  $\ell$  and  $\ell$  are quantum numbers of the orbital and total angular momenta of the electron,  $\ell$  is the fine-structure constant,  $(\delta_{\kappa_1}-\delta_{\kappa_2})$  is the corresponding phase shift for two final continuum states characterized by  $\kappa_1$  and  $\kappa_2$ ,  $\ell$  =  $\ell$ 1. We use the conventional notation [ $\ell$ 1] for the expression ( $\ell$ 2 $\ell$ 1). The reduced matrix element  $\ell$ 3 $\ell$ 1 has the form

$$Q_{\Lambda L}(\kappa) = (-1)^{\bar{\ell}_{\kappa} - \ell_{i}} \left[ \bar{\ell}_{\kappa} \ell_{i} j_{\kappa} j_{i} \Lambda 1 \right]^{1/2} \begin{pmatrix} \bar{\ell}_{\kappa} & \ell_{i} & \Lambda \\ 0 & 0 & 0 \end{pmatrix} \times \begin{cases} \bar{\ell}_{\kappa} & 1/2 & j_{\kappa} \\ \ell_{i} & 1/2 & j_{i} \\ \Lambda & 1 & L \end{cases} R_{1\Lambda} + (-1)^{\ell_{\kappa} - \bar{\ell}_{i}} \left[ \ell_{\kappa} \bar{\ell}_{i} j_{\kappa} j_{i} \Lambda 1 \right]^{1/2} \begin{pmatrix} \ell_{\kappa} & \bar{\ell}_{i} & \Lambda \\ 0 & 0 & 0 \end{pmatrix} \times \begin{cases} \ell_{\kappa} & 1/2 & j_{\kappa} \\ \bar{\ell}_{i} & 1/2 & j_{i} \\ \Lambda & 1 & L \end{cases} R_{2\Lambda},$$
(4)

where  $\bar{\ell}=2j-\ell$ . The radial integrals  $R_{1\varLambda}$  and  $R_{2\varLambda}$  are written as

$$R_{1A} = \int_0^\infty G_i(r) F_{\kappa}(r) j_A(kr) dr,$$

$$R_{2A} = \int_0^\infty F_i(r) G_{\kappa}(r) j_A(kr) dr.$$
(5)

Here  $j_{\Lambda}(kr)$  is the spherical Bessel function of order  $\Lambda$ , G(r) = rg(r) and F(r) = rf(r) are the large and small components of the Dirac radial electron wave function. Indices i and  $\kappa$  refer to bound and continuum states, respectively.

It was shown in paper [17] that at the moderately high photon energy, the photoelectron angular distribution is adequately described by simple expressions involving three parameters  $\beta$ ,  $\gamma$ , and  $\delta$  where  $\beta$  is the dipole parameter while  $\gamma$  and  $\delta$  are non-dipole parameters associated with the terms of the first order O(kr) where r is the radius of the ionized atomic shell. In the case of circular polarized and unpolarized photons, the relevant equation is written as

$$\frac{d\sigma_i}{d\Omega} = \frac{\sigma_i}{4\pi} \left[ 1 - \frac{\beta}{2} P_2(\cos\underline{\theta}) + \left( \frac{\gamma}{2} \sin^2\underline{\theta} + \delta \right) \cos\underline{\theta} \right],\tag{6}$$

where  $P_2(\cos \theta)$  is the second order Legendre polynomial.

For linear polarized photons, the angular distribution may be represented by the equation involving the same three parameters

$$\frac{d\sigma_i}{d\Omega} = \frac{\sigma_i}{4\pi} \left[ 1 + \beta P_2(\cos\theta) + (\delta + \gamma \cos^2\theta) \sin\theta \cos\varphi \right], \tag{7}$$

where  $\theta$  is the angle between the vector  $\mathbf{p}$  and the photon polarization direction  $\boldsymbol{\varepsilon}$ , vector  $\boldsymbol{\varepsilon}$  being coincident with the z axis;  $\boldsymbol{\varphi}$  is the angle between the vector  $\mathbf{k}$  and the plane going through the z axis and the vector  $\mathbf{p}$  (see Fig. 1). Non-dipole asymmetry of the angular distribution for the case of the partially linear polarized photons

is described by the same photoionization parameters  $\sigma_i$ ,  $\beta$ ,  $\gamma$ , and  $\delta$  [18].

Parameters  $\beta$ ,  $\gamma$ , and  $\delta$  are related with coefficients  $B_n^{(q)}$ , n=1,2,3 (Eq. (3)) obtained in the quadrupole approximation as follows:

$$\beta = -2B_2^{(q)}, \quad \gamma = -5B_3^{(q)}, \quad \delta = B_1^{(q)} + B_3^{(q)}.$$
 (8)

The coefficients  $B_n^{(q)}$  may be expressed in the explicit form:

$$\begin{split} B_{1}^{(q)} &= \sum_{\kappa_{1}\kappa_{2}} A_{1} \left\{ 3\sqrt{6} \left\{ \begin{matrix} 1 & 1 & 1 \\ j_{2} & j_{1} & j_{1} \end{matrix} \right\} \right[ \sqrt{2}Q_{01}(\kappa_{1})Q_{11}(\kappa_{2}) \\ &+ Q_{11}(\kappa_{1})Q_{21}(\kappa_{2}) \right] \\ &- 3\sqrt{2} \left\{ \begin{matrix} 1 & 2 & 1 \\ j_{2} & j_{1} & j_{1} \end{matrix} \right] \left[ Q_{01}(\kappa_{1})[\sqrt{6}Q_{12}(\kappa_{2}) - 2Q_{32}(\kappa_{2})] \\ &+ \sqrt{15}Q_{11}(\kappa_{1})Q_{22}(\kappa_{2}) - Q_{21}(\kappa_{1})[\sqrt{3}Q_{12}(\kappa_{2}) \\ &- \sqrt{2}Q_{32}(\kappa_{2})] \right] \\ &- 5 \left\{ \begin{matrix} 2 & 2 & 1 \\ j_{2} & j_{1} & j_{1} \end{matrix} \right] \left[ \sqrt{6}Q_{12}(\kappa_{1})Q_{22}(\kappa_{2}) \\ &+ 2Q_{22}(\kappa_{1})Q_{32}(\kappa_{2}) \right] \right\}, \end{split} \tag{9} \\ B_{2}^{(q)} &= \sum_{\kappa_{1}\kappa_{2}} A_{2} \left\{ \sqrt{\frac{3}{2}} \left\{ \begin{matrix} 1 & 1 & 2 \\ j_{2} & j_{1} & j_{1} \end{matrix} \right\} \left[ 2Q_{01}(\kappa_{1})[-Q_{01}(\kappa_{2}) \\ &+ \sqrt{2}Q_{21}(\kappa_{2}) \right] \\ &- 3Q_{11}(\kappa_{1})Q_{11}(\kappa_{2}) - Q_{21}(\kappa_{1})Q_{21}(\kappa_{2}) \right] \\ &- \sqrt{30} \left\{ \begin{matrix} 1 & 2 & 2 \\ j_{2} & j_{1} & j_{1} \end{matrix} \right\} \left[ \sqrt{10}Q_{01}(\kappa_{1})Q_{22}(\kappa_{2}) \\ &- Q_{11}(\kappa_{1})[3Q_{12}(\kappa_{2}) - \sqrt{6}Q_{32}(\kappa_{2})] \\ &- \sqrt{5}Q_{21}(\kappa_{1})Q_{22}(\kappa_{2}) \right] - \frac{5}{\sqrt{14}} \left\{ \begin{matrix} 1 & 2 & 2 \\ j_{2} & j_{1} & j_{1} \end{matrix} \right\} \\ &\times \left[ Q_{12}(\kappa_{1})[3Q_{12}(\kappa_{2}) - 2\sqrt{6}Q_{32}(\kappa_{2})] \\ &+ 5Q_{22}(\kappa_{1})Q_{22}(\kappa_{2}) + 2Q_{32}(\kappa_{1})Q_{32}(\kappa_{2}) \right] \right\}, \tag{10} \\ B_{3}^{(q)} &= \sum_{\kappa_{1}\kappa_{2}} A_{3} \left\{ -2\sqrt{3} \left\{ \begin{matrix} 1 & 2 & 3 \\ j_{2} & j_{1} & j_{1} \end{matrix} \right\} \left[ Q_{01}(\kappa_{1})[\sqrt{6}Q_{12}(\kappa_{2}) \\ &- Q_{32}(\kappa_{2}) \right] \\ &+ \sqrt{15}Q_{11}(\kappa_{1})Q_{22}(\kappa_{2}) - Q_{21}(\kappa_{1})[\sqrt{3}Q_{12}(\kappa_{2}) \\ &- \sqrt{2}Q_{32}(\kappa_{2}) \right] \right] \\ &+ 10\sqrt{2} \left\{ \begin{matrix} 2 & 2 & 3 \\ j_{2} & j_{1} & j_{1} \end{matrix} \right\} \left[ \sqrt{3}Q_{12}(\kappa_{1})Q_{22}(\kappa_{2}) \\ &+ \sqrt{2}Q_{22}(\kappa_{1})Q_{32}(\kappa_{2}) \right] \right\}. \tag{11} \end{aligned}$$

The factor  $A_n$  (n=1,2,3) in Eqs. (9)–(11) is written in the following form

$$A_{n} = \frac{\pi^{2}\alpha}{k\sigma_{i}} (-1)^{j_{1}+j_{2}+j_{i}-1/2} [j_{1}j_{2}n]^{1/2} \begin{pmatrix} j_{1} & j_{2} & n \\ 1/2 & -1/2 & 0 \end{pmatrix} \times \begin{cases} \sin(\delta_{\kappa_{1}} - \delta_{\kappa_{2}}) \text{ for } n = 1, 3 \\ \cos(\delta_{\kappa_{1}} - \delta_{\kappa_{2}}) \text{ for } n = 2. \end{cases}$$
(12)

Consequently, the photoionization cross section  $\sigma_i$  is computed including all multipoles L of the radiative field f according to



**Fig. 2.** Photoionization cross sections calculated by the DF (solid) and DS (dashed) methods for the  $5p_{1/2}$  subshell of Sn, Z=50 (a) and for the 7s shell of Cm, Z=96 (b).

Eq. (2) while the photoelectron angular distribution parameters are computed in the quadrupole approximation, that is, taking into account terms of the first order O(kr) according to Eqs. (8)–(12). It should be noted that the influence of the second-order terms  $O[(kr)^2]$  on photoelectron angular distribution in both cases of unpolarized and linearly polarized radiation was considered in paper [9]. It was shown that the inclusion of the second-order terms may contribute significantly, up to 20%–30%, into angular distribution of photoelectrons at high photon energies  $k \ge 10$  keV.

As opposed to calculations [1–7,9] where the electron wave functions were computed by the DS method with the approximate consideration of the electron exchange, we used here the DF method with the proper consideration of the exchange between bound electrons as well as between bound and free electrons [19,20]. The exact consideration of the exchange is essential for outer shells for which the difference between the two calculations

$$\Delta_{\sigma} = \left[ (\sigma_i^{\text{DS}} - \sigma_i^{\text{DF}}) / \sigma_i^{\text{DF}} \right] \times 100\%$$
 (13)

may be large at any photon energy. In addition, the difference  $\Delta_{\sigma}$  may be essential for inner shells in the event that the photon energy k is close to the subshell binding energy  $\varepsilon_i$  and the photoelectron energy  $E_k = k - \varepsilon_i$  turns out to be low [8].

In Fig. 2, photoionization cross sections  $\sigma_i$  obtained by the DF method (solid curves) and the DS method (dashed curves) are shown for the  $5p_{1/2}$  subshell of Sn (Z=50) (Fig. 2(a)) and for the  $7s_{1/2}$  shell of Cm (Z=96) (Fig. 2 (b)). As is seen, the difference  $\Delta_{\sigma}$  is large and slightly increases with increasing the photon energy. It reaches  $\sim$ 40% for Sn and more than 30% for Cm in the photon energy range under consideration. Consequently, photoionization cross sections  $\sigma_i^{\rm DF}$  may differ considerably from  $\sigma_i^{\rm DS}$  for outer atomic shells of interest. For inner shells, both calculations are usually close to one another.



**Fig. 3.** The non-dipole angular distribution parameter  $\gamma$  calculated by the DF method (solid) and DS method (dashed) for the  $5p_{3/2}$  subshell of Hg, Z=80.

The difference between the angular distribution parameters calculated by the DF and DS methods may be also considerable when the parameters become small in magnitude and change a sign. The parameter  $\gamma$  obtained by the two methods in the range 2 keV  $\leq k \leq$  5 keV is displayed in Fig. 3. It is seen that the DF and DS values of  $\gamma$ , even if small, differ considerably, being sometimes opposite in sign. As a rule, the difference between the DF and DS calculations for the  $\beta$  parameter is less than for  $\gamma$  and  $\delta$  in the energy range under consideration.

Experimental values of the electron binding energies involved in the calculations were taken from work [21]. The values may differ slightly from those used in [6,7]. Binding energies for all subshells under consideration are listed in Table 1. As in our previous calculations, the hole in the atomic shell from which a photoelectron has been emitted is taken into account in the framework of the frozen orbital model. It implies that the bound wave function is calculated in the self-consistent DF field of the neutral atom while the continuum wave function is calculated in the ion field which is constructed using the bound wave functions of the neutral atom. The computational accuracy of our calculations is better than 0.1%. This accuracy does not include possible uncertainties due to the physical approximations mentioned above.

# 3. Relation between theoretical photoionization parameters and experimental data

Theoretical photoionization cross sections of deep atomic shells are used in traditional X-ray photoelectron spectroscopy as reliable sensitivity factors [2]. For photoionization cross sections of molecular orbitals (MO), the additive formula was proposed [22]:

$$\sigma_{\text{MO}}(\hbar\omega) = \sum_{n,i} p_{ni} \sigma_{ni}(\hbar\omega), \tag{14}$$

where the sum runs over all n atoms in a molecule and over all i valence shells of each an atom,  $p_{ni}$  is the population of atomic orbital in MO and  $\sigma_{ni}$  is the atomic shell photoionization cross section. This approximation was shown to be reliable for the photon energy regions in the vicinity of  $k \approx 1500$  eV [23] and  $k \approx 150$  eV [24]. The approximation is also used in HAXPES energy region [12].

Photoionization of the ith atomic shell is accompanied by satellite excitation of electrons from other shells j into discrete and continuum states q. Theoretical photoionization cross sections correspond to the main line  $i^{-1}$  together with shake-up and shake-off



**Fig. 4.** The non-dipole photoelectron angular distribution parameters for inner shells of Kr versus the photon energy k. (a), the parameter  $\gamma$  for the 2s shell; (b) and (c), the combined parameter  $\gamma + 3\delta$  for the  $2p_{1/2}$  and  $2p_{3/2}$  subshells, respectively. Solid curves, present DF calculations; open circles, experiment [32].

satellites  $i^{-1}j^{-1}q$ . Photoionization cross sections of the main line and the shake-up satellite states may be represented as:

$$\sigma_i^{\nu}(\omega) = f_i^{\nu} \sigma_i(\omega) \tag{15}$$

where  $\sigma_i(\omega)$  is the photoionization cross section given in the present work and  $f_i^{\nu}$  are spectroscopic factors, which were calculated in the second order of perturbation theory in papers [25–27]. The upper index  $\nu$  denotes components of the satellite structure, which includes the main line also. Theoretical spectroscopic factors of all main photoelectron lines are close to 0.8 [28]. Experiments on solids generally, but not in detailed confirmed this theoretical result [29] (see also [30]). That is why one can use theoretical photoionization cross sections of the present work for estimation of relative photoionization cross section of different shells. On the other hand, some deviations from this universal value for the spectroscopic factors of the main lines were obtained in paper [14]. For the satellite excitations from the outer shell, one can use Eq. (15). On the other hand, when the satellite state is excited from the core shell, the photoionization cross section should be corrected for the satellite excitation energy [27].

The angular distribution of the core level photoemission usually reveals the atomic character. Some violations of this general rule were found for the d-orbital core-level excitations in strongly correlated materials [31].

To check a reliability of the DF non-dipole photoelectron distribution parameters our values were compared with the experimental data obtained for inner shells of Kr in the electron energy range  $E_k \leq 3$  keV [32]. In Fig. 4, our calculations of the parameter  $\gamma$  for the 2s shell as well as the combined non-dipole asymmetry parameter  $\gamma + 3\delta$  for the  $2p_{1/2}$  and  $2p_{3/2}$  subshells of Kr are presented along with the experimental data in the photon energy range 2 keV  $\leq k \leq 5.5$  keV. As evident from Fig. 4, our DF calculations are in good agreement with experimental data [32].

### 4. Conclusions

We present the atomic subshell photoionization cross sections along with parameters of the photoelectron angular distribution in the photon energy range 1.5 keV  $\leq k \leq$  10 keV. The theoretical data are intended for use in experimental studies by methods of HAXPES spectroscopy which is a powerful technique for the investigation of the electron structure and interface of functional materials. Calculations were performed for subshells with binding energies lower than 1.5 keV of all atoms with  $1 \leq Z \leq$  100.

Relativistic calculations were performed within the framework of the DF method with the proper consideration of the electron exchange as distinct from previous calculations using the DS method with approximate consideration of the exchange. The subshell photoionization cross sections calculated with the DF and DS methods may differ considerably for outer atomic shells we are interested in. The difference between the angular distribution parameters obtained by the two methods may be also noticeable.

The photoionization cross sections were calculated taking into account all multipoles of the radiative field. The photoelectron angular distribution parameters were obtained using the quadrupole approximation. The hole resulting in the atomic subshell after photoionization is taken into account using the frozen orbital model.

Theoretical photoionization parameters presented here are in good agreement with available experimental data and are reliable to be used in experimental HAXPES studies.

### Acknowledgment

This work was supported by the Russian Scientific Foundation, Grant No. 14-22-00281.

### References

- V.I. Nefedov, N.P. Sergushin, I.M. Band, M.B. Trzhaskovskaya, J. Electron Spectrosc. Relat. Phenom. 2 (1973) 383–403.
- [2] V.I. Nefedov, N.P. Sergushin, Yu.V. Salyn, I.M. Band, M.B. Trzhaskovskaya, Part 2. J. Electron Spectrosc. Relat. Phenom. 7 (1975) 175–185.
- [3] J.H. Scofield, J. Electron Spectrosc. Relat. Phenom. 8 (1976) 129-137.
- [4] I.M. Band, Yu.I. Kharitonov, M.B. Trzhaskovskaya, At. Data Nucl. Data Tables 23 (1979) 443–505.
- [5] J.J. Yeh, I. Lindau, At. Data Nucl. Data Tables 32 (1985) 1-155.
- [6] M.B. Trzhaskovskaya, V.I. Nefedov, V.G. Yarzhemsky, At. Data Nucl. Data Tables 77 (2001) 97–159.
- [7] M.B. Trzhaskovskaya, V.I. Nefedov, V.G. Yarzhemsky, At. Data Nucl. Data Tables 82 (2002) 257–311.
- [8] M.B. Trzhaskovskaya, V.K. Nikulin, V.I. Nefedov, V.G. Yarzhemsky, J. Phys. B: At. Mol. Opt. Phys. 34 (2001) 3221–3237.
- [9] M.B. Trzhaskovskaya, V.K. Nikulin, V.I. Nefedov, V.G. Yarzhemsky, At. Data Nucl. Data Tables 92 (2006) 245–304.
- [10] C.S. Fadley, Hard X-ray Photoelectron Spectroscopy (HAXPES), in: Springer Series in Surface Sciences, vol. 59, 2016, pp. 1–34.
- [11] R. Takabe, H. Takeuchi, W. Du, et al., J. Appl. Phys. 119 (2016) 165–304.
- [12] A.X. Gray, J. Minár, S. Ueda, P.R. Stone, Y. Yamashita, J. Fujii, J. Braun, L. Plucinski, C.M. Schneider, G. Panaccione, H. Ebert, O.D. Dubon, K. Kobayashi, C.S. Fadley, Nature Mater. 11 (2012) 957–962. http://dx.doi.org/10.1038/NMAT3450.
- [13] A. Sekiyama, J. Electron Spectrosc. Relat. Phenom. 208 (2016) 100–104.
- [14] M. Gorgoi, F. Schäfers, S. Svensson, N. Mårtensson, J. Electron Spectrosc. Relat. Phenom. 190 (2013) 153–158.
- [15] R. Püttner, G. Goldsztejn, D. Céolin, et al., Phys. Rev. Lett. 114 (2015) 093001.
- [16] G. Goldsztejn, T. Marchenko, R. Püttner, et al., Phys. Rev. Lett. 117 (2016) 133001.
- [17] J.W. Cooper, Phys. Rev. A 47 (1993) 1841-1851.
- [18] P.S. Shaw, U. Arp, S.H. Southworth, Phys. Rev. A 54 (1996) 1463–1472.
- [19] I.P. Grant, Adv. Phys. 19 (1970) 747-811.
- [20] I.M. Band, M.B. Trzhaskovskaya, C.W. Nestor Jr, P.O. Tikkanen, S. Raman, At. Data Nucl. Data Tables 81 (2002) 1–334.
- [21] T. Kibedi, T.W. Burrows, M.B. Trzhaskovskaya, P.M. Davidson, C.W. Nestor Jr., Nucl. Instrum. Methods Phys. Res. A 589 (2008) 202–229.
- [22] U. Gelius, K. Siegbahn, Faraday Discuss. Chem. Soc. 54 (1972) 257–268.
- [23] V.G. Yarzhemsky, V.I. Nefedov, M.Ya. Amusia, N.A. Cherepkov, L.V. Chernysheva, J. Electron Spectrosc. Relat. Phenom. 19 (1980) 123–154.

- [24] V.I. Nefedov, V.G. Yarzhemsky, Phys. Scr. 16 (1977) 291–295.
- [25] V.G. Yarzhemsky, G.B. Armen, F.P. Larkins, J. Phys. B: At. Mol. Opt. Phys. 26 (1993) 2785-2794.
- [26] V.G. Yarzhemsky, A.S. Kheifets, G.B. Armen, F.P. Larkins, J. Phys. B: At. Mol. Opt. Phys. 28 (1995) 2105–2112.
- [27] V.G. Yarzhemsky, M.Ya. Amusia, Phys. Rev. A 93 (2016) 063406.
  [28] V.G. Yarzhemsky, V.I. Nefedov, M.B. Trzhaskovskaya, I.M. Band, R. Szargan, J. Electron Spectrosc. Relat. Phenom. 123 (2002) 1–10.
- [29] M.P. Seah, I.S. Gilmore, Phys. Rev. B 73 (2006) 174113.
- [30] M.B. Trzhaskovskaya, V.K. Nikulin, Phys. Rev. B 75 (2007) 177104-1-3.
- [31] A. Sekiyama, Yu. Kanai, A. Tanaka, S. Imada, Optical process of linear dichroism in angle-resolved core-level photoemission re ecting the strongly correlated anisotropic orbital symmetry, 7 Nov 2016. arXiv:1611.01981v1[cond-mat.str-
- [32] M. Jung, B. Krässig, D.S. Gemmell, E.P. Kanter, T. LeBrun, S.H. Southworth, L. Young, Phys. Rev. A 54 (1996) 2127–2136.

### **Explanation of Tables**

### Table 1.

### Subshell photoionization cross sections and photoelectron angular distribution parameters



Notes: The photoionization cross sections  $\sigma_i$  are always given for completely filled subshells. To obtain  $\sigma_i$  for an open atomic subshell i, the value from the Table should be divided by  $2j_i + 1$  ( $j_i$  is the electron total momentum) and multiplied by the actual occupation number of the ith subshell. In the Table, the decimal order is presented to the right of an entry.

### Example

In the Table, the first data block gives the parameters for the  $1s_{1/2}$  shell of the hydrogen atom, whose electron configuration has one  $1s_{1/2}$  electron. The experimental binding energy is equal to 13.6 eV. At the photon energy k=1500 eV, the photoionization cross section for the completely filled 1s shell is  $\sigma_{1s}=5.866 \times 10^{-3}$  kb  $=5.866 \times 10^{-24}$  cm², the angular distribution parameters  $\beta=1.984$ ,  $\gamma=9.11-1=0.911$ , and  $\delta=1.96-8=1.96\times 10^{-8}$ . Because the hydrogen 1s shell is half-filled one, the real photoionization cross section is  $\sigma_{1s}=2.933\times 10^{-3}$  kb.

**Table 1**Subshell photoionization cross sections and photoelectron angular distribution parameters.

|                                        |                        | k (eV)           |                  |                  |                  |                  |                  |                  |                  |                  |                  |
|----------------------------------------|------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Shell                                  |                        | 1500             | 2000             | 3000             | 4000             | 5000             | 6000             | 7000             | 8000             | 9000             | 10000            |
| 1s <sub>1/2</sub>                      | σ                      | 5.866-3          | 2.223-3          | 5.619-4          | 2.110-4          | 9.839-5          | 5.270-5          | 3.108-5          | 1.966-5          | 1.311-5          | 9.123-           |
| $E_b =$                                | β                      | 1.984            | 1.979            | 1.968            | 1.958            | 1.947            | 1.937            | 1.927            | 1.917            | 1.907            | 1.896            |
| 13.6 eV                                | $\gamma \\ \delta$     | 9.11-1<br>1.96-8 | 1.05+0<br>5.98-8 | 1.28+0<br>1.17-7 | 1.48+0<br>2.30-7 | 1.65+0<br>2.14-7 | 1.80+0<br>4.26-7 | 1.94+0<br>8.87-7 | 2.07+0<br>9.82-7 | 2.18+0<br>1.41-6 | 2.30+0<br>2.21-6 |
| Z= 2, He: 1s <sub>1</sub> <sup>2</sup> |                        | 1.90-6           | J.90-0           | 1.17-7           | 2.30-7           | 2.14-7           | 4.20-7           | 0.07-7           | 9.02-7           | 1.41-0           | 2.21-0           |
| Z= 2, He: 1S <sub>1,</sub>             | /2                     | k (eV)           |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| Shell                                  |                        | 1500             | 2000             | 3000             | 4000             | 5000             | 6000             | 7000             | 8000             | 9000             | 10000            |
| 1s <sub>1/2</sub>                      | σ                      | 1.017-1          | 3.991-2          | 1.050-2          | 4.037-3          | 1.914-3          | 1.038-3          | 6.179-4          | 3.938-4          | 2.643-4          | 1.850-           |
| $E_b =$                                | β                      | 1.985            | 1.979            | 1.969            | 1.958            | 1.948            | 1.937            | 1.927            | 1.917            | 1.907            | 1.897            |
| 24.6 eV                                | γ                      | 8.90 - 1         | 1.03+0           | 1.27+0           | 1.47+0           | 1.64+0           | 1.79+0           | 1.93+0           | 2.06+0           | 2.18+0           | 2.29+0           |
|                                        | δ                      | 6.95-8           | 7.83-8           | 1.93-7           | 3.14-7           | 5.38-7           | 7.71–7           | 1.16-6           | 1.50-6           | 2.06-6           | 2.72-6           |
| Z= 3, Li: 1s <sub>1/2</sub>            | 2 2s <sub>1/2</sub>    |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| C1 11                                  |                        | k (eV)           | 2000             | 2000             | 4000             | F000             |                  | 7000             | 0000             | 0000             | 10000            |
| Shell                                  |                        | 1500             | 2000             | 3000             | 4000             | 5000             | 6000             | 7000             | 8000             | 9000             | 10000            |
| $1s_{1/2}$<br>$E_b =$                  | $\frac{\sigma}{\beta}$ | 6.613-1<br>1.986 | 2.690-1<br>1.980 | 7.391-2<br>1.970 | 2.914-2<br>1.959 | 1.406-2<br>1.949 | 7.723-3<br>1.938 | 4.640-3<br>1.928 | 2.980-3<br>1.918 | 2.014-3<br>1.908 | 1.418-<br>1.898  |
| $E_b = 54.8 \text{ eV}$                | γ                      | 8.59-1           | 1.01+0           | 1.25+0           | 1.45+0           | 1.62+0           | 1.78+0           | 1.926            | 2.05+0           | 2.17+0           | 2.28+0           |
|                                        | δ                      | 1.22-7           | 1.78-7           | 3.22-7           | 5.35-7           | 8.26-7           | 1.19-6           | 1.65-6           | 2.25-6           | 2.91-6           | 3.75-6           |
| 2s <sub>1/2</sub>                      | σ                      | 1.663-2          | 6.710-3          | 1.826-3          | 7.156-4          | 3.440-4          | 1.885-4          | 1.131-4          | 7.253-5          | 4.895-5          | 3.441-           |
| $E_b = 5.4 \text{ eV}$                 | β                      | 1.985<br>8.73-1  | 1.980<br>1.02+0  | 1.969<br>1.26+0  | 1.959<br>1.46+0  | 1.948<br>1.63+0  | 1.938<br>1.79+0  | 1.927<br>1.93+0  | 1.917<br>2.06+0  | 1.907<br>2.18+0  | 1.897<br>2.29+0  |
| J.4 C V                                | $\delta$               | 3.80-9           | 1.04-8           | 8.50-8           | 2.12-7           | 4.70-7           | 6.95-7           | 1.23-6           | 1.29-6           | 2.49-6           | 2.95-6           |
| Z= 4, Be: 1s <sub>1/</sub>             | 2s <sub>1/2</sub>      |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |
|                                        |                        | k (eV)           |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| Shell                                  |                        | 1500             | 2000             | 3000             | 4000             | 5000             | 6000             | 7000             | 8000             | 9000             | 10000            |
| $1s_{1/2}$                             | $\sigma$               | 2.310+0          | 9.667 - 1        | 2.754-1          | 1.110-1          | 5.440-2          | 3.022-2          | 1.832-2          | 1.185-2          | 8.062-3          | 5.703-           |
| $E_b = 111.9 \text{ eV}$               | β                      | 1.986            | 1.981<br>9.77-1  | 1.971<br>1.22+0  | 1.960<br>1.43+0  | 1.950            | 1.939<br>1.76+0  | 1.929<br>1.90+0  | 1.919<br>2.03+0  | 1.909<br>2.15+0  | 1.899<br>2.27+0  |
| 111.9 ev                               | $_{\delta}^{\gamma}$   | 8.26-1<br>9.85-8 | 2.02-7           | 4.16-7           | 7.05-7           | 1.60+0<br>1.05-6 | 1.53-6           | 2.13-6           | 2.84-6           | 3.65-6           | 4.55-6           |
| 2s <sub>1/2</sub>                      | σ                      | 7.882-2          | 3.292-2          | 9.335-3          | 3.753-3          | 1.834-3          | 1.017-3          | 6.157-4          | 3.979-4          | 2.704-4          | 1.911-           |
| $E_b =$                                | β                      | 1.986            | 1.981            | 1.970            | 1.959            | 1.949            | 1.938            | 1.928            | 1.918            | 1.908            | 1.898            |
| 9.3 eV                                 | $\gamma \\ \delta$     | 8.44-1 $-8.61-9$ | 9.94-1<br>1.22-8 | 1.24+0<br>9.17-8 | 1.44+0<br>2.35-7 | 1.62+0<br>4.76-7 | 1.77+0<br>8.07-7 | 1.91+0<br>1.29-6 | 2.04+0<br>1.75-6 | 2.16+0<br>2.52-6 | 2.28+0<br>3.23-6 |
| Z= 5, B: 1s <sub>1/2</sub>             |                        |                  | 1.22 0           | 3.17             | 2.55             | 1.70 7           | 0.07             | 1.25             | 1.75 0           | 2.52 0           | 3.23             |
| 2 3, 2 . 131/2                         | 2 231/2 2              | k (eV)           |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| Shell                                  |                        | 1500             | 2000             | 3000             | 4000             | 5000             | 6000             | 7000             | 8000             | 9000             | 10000            |
| 1s <sub>1/2</sub>                      | σ                      | 5.815+0          | 2.490+0          | 7.311-1          | 3.006-1          | 1.494-1          | 8.389-2          | 5.133-2          | 3.344-2          | 2.287-2          | 1.625-           |
| $E_b =$                                | β                      | 1.987            | 1.982            | 1.972            | 1.961            | 1.951            | 1.941            | 1.930            | 1.920            | 1.910            | 1.900            |
| 188.0 eV                               | γ                      | 7.90-1           | 9.44-1           | 1.19+0           | 1.40+0           | 1.58+0           | 1.74+0           | 1.88+0           | 2.01+0           | 2.14+0           | 2.25+0           |
| _                                      | δ                      | -2.76-8          | 1.44-7           | 4.63-7           | 8.48-7           | 1.28-6           | 1.85-6           | 2.49-6           | 3.26-6           | 4.21-6           | 5.34-6           |
| $2s_{1/2}$ $E_b =$                     | $\frac{\sigma}{\beta}$ | 2.366-1<br>1.987 | 1.018-1<br>1.981 | 3.003-2<br>1.971 | 1.235-2<br>1.960 | 6.139-3<br>1.950 | 3.446-3<br>1.940 | 2.107-3<br>1.929 | 1.372-3<br>1.919 | 9.381-4<br>1.909 | 6.666—<br>1.899  |
| 12.6 eV                                | γ                      | 8.15-1           | 9.64-1           | 1.21+0           | 1.42+0           | 1.60+0           | 1.75+0           | 1.90+0           | 2.03+0           | 2.15+0           | 2.26+0           |
|                                        | δ                      | -3.80-9          | 1.75-8           | 1.06-7           | 2.83-7           | 5.57-7           | 9.38-7           | 1.40-6           | 1.95-6           | 2.77-6           | 3.67-6           |
| $2p_{1/2}$                             | σ                      | 3.894-3          | 1.278-3          | 2.552-4          | 7.947-5          | 3.179-5          | 1.493-5          | 7.854-6          | 4.491-6          | 2.740-6          | 1.759-           |
| $E_b = 4.7 \text{ eV}$                 | β                      | 0.145<br>3.32-1  | 0.112<br>3.79-1  | 0.077<br>4.61-1  | 0.052<br>5.26-1  | 0.030<br>5.79-1  | 0.012<br>6.25-1  | 005 $6.67-1$     | 020 $7.04-1$     | 035<br>7.37-1    | 049<br>7.65-1    |
| 4.7 CV                                 | $\delta \gamma$        | 1.29-1           | 1.55-1           | 1.96-1           | 2.30-1           | 2.59-1           | 2.85-1           | 3.08-1           | 3.29-1           | 3.49-1           | 3.68-1           |
| Z= 6, C: 1s <sub>1/2</sub>             | 2 2s <sub>1/2</sub> 2  | $p_{1/2}^2$      |                  |                  |                  |                  |                  |                  |                  |                  |                  |
|                                        |                        | k (eV)           |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| Shell                                  |                        | 1500             | 2000             | 3000             | 4000             | 5000             | 6000             | 7000             | 8000             | 9000             | 10000            |
| $1s_{1/2}$                             | $\sigma$               | 1.203+1          | 5.248+0          | 1.580+0          | 6.609-1          | 3.327-1          | 1.886-1          | 1.163-1          | 7.627-2          | 5.245-2          | 3.746-           |
| $E_b = 284.1 \text{ eV}$               | β                      | 1.988<br>7.46-1  | 1.983<br>9.04-1  | 1.973<br>1.16+0  | 1.963<br>1.37+0  | 1.952<br>1.55+0  | 1.942<br>1.71+0  | 1.932<br>1.86+0  | 1.922<br>1.99+0  | 1.911<br>2.11+0  | 1.901<br>2.23+0  |
| ∠04.1 €V                               | $\delta$               | -2.42-7          | -3.01-8          | 3.83-7           | 8.72–7           | 1.38-6           | 2.04-6           | 2.82-6           | 3.71-6           | 4.78–6           | 6.05-6           |
| $2s_{1/2}$                             | σ                      | 5.324-1          | 2.348-1          | 7.160-2          | 3.011-2          | 1.520-2          | 8.628-3          | 5.322-3          | 3.492-3          | 2.402-3          | 1.716-           |
| $E_b =$                                | β                      | 1.987            | 1.982            | 1.972            | 1.962            | 1.951            | 1.941            | 1.930            | 1.920            | 1.910            | 1.900            |
| 18.1 eV                                | $\gamma \\ \delta$     | 7.83-1<br>2.70-8 | 9.35-1<br>4.47-8 | 1.19+0<br>1.43-7 | 1.39+0<br>3.12-7 | 1.57+0<br>6.02-7 | 1.73+0<br>9.99-7 | 1.88+0<br>1.55-6 | 2.01+0<br>2.20-6 | 2.13+0<br>3.08-6 | 2.25+0<br>4.05-6 |
| $2p_{1/2}$                             | σ                      | 1.459-2          | 4.913-3          | 1.019-3          | 3.254-4          | 1.325-4          | 6.311-5          | 3.355-5          | 1.935-5          | 1.188-5          | 7.672-           |
| -r 1/2                                 | 9                      |                  |                  |                  | 3,231 1          | 1.525            | 0.011            | 3,355 5          |                  | .,               |                  |

| tble 1 (contin<br>$E_b = 9.0 \text{ eV}$         | β<br>γ                 | 0.217<br>3.57-1         | 0.163<br>3.98-1   | 0.109<br>4.73-1  | 0.077<br>5.37-1  | 0.053<br>5.90-1  | 0.031<br>6.36-1     | 0.013<br>6.76-1  | 004<br>7.12-1    | 019<br>7.45-1    | 034<br>7.75-1    |
|--------------------------------------------------|------------------------|-------------------------|-------------------|------------------|------------------|------------------|---------------------|------------------|------------------|------------------|------------------|
| 5.0 eV                                           | δ                      | 1.22-1                  | 1.47-1            | 1.89-1           | 2.23-1           | 2.53-1           | 2.79-1              | 3.03-1           | 3.25-1           | 3.45-1           | 3.63-1           |
| = 7, N : 1s <sub>1/</sub>                        | 2 2s <sub>1/2</sub> 2  |                         |                   |                  |                  |                  |                     |                  |                  |                  |                  |
| Shell                                            |                        | k (eV)<br>1500          | 2000              | 3000             | 4000             | 5000             | 6000                | 7000             | 8000             | 9000             | 10000            |
| 1s <sub>1/2</sub>                                | σ                      | 2.185+1                 | 9.680+0           | 2.980+0          | 1.265+0          | 6.438-1          | 3.682-1             | 2.286-1          | 1.507-1          | 1.042-1          | 7.472-           |
| $E_b =$                                          | β                      | 1.990                   | 1.985             | 1.974            | 1.964            | 1.954            | 1.944               | 1.933            | 1.923            | 1.913            | 1.903            |
| 400.5 eV                                         | $\gamma \\ \delta$     | 6.90-1 $-6.23-7$        | 8.56-1<br>-3.66-7 | 1.12+0<br>1.69-7 | 1.34+0<br>6.91-7 | 1.52+0<br>1.33-6 | 1.68+0<br>2.08-6    | 1.83+0<br>2.97-6 | 1.96+0<br>4.05-6 | 2.09+0<br>5.27-6 | 2.21+0<br>6.57-6 |
| 2s <sub>1/2</sub>                                | σ                      | 1.002+0                 | 4.517-1           | 1.417-1          | 6.077-2          | 3.111-2          | 1.786-2             | 1.111-2          | 7.341-3          | 5.080-3          | 3.647-           |
| $E_b =$                                          | β                      | 1.988                   | 1.983             | 1.973            | 1.963            | 1.952            | 1.942               | 1.932            | 1.921            | 1.911            | 1.901            |
| 24.3 eV                                          | $_{\delta}^{\gamma}$   | 7.47-1<br>5.73-8        | 9.03-1<br>7.18-8  | 1.16+0<br>1.56-7 | 1.37+0<br>3.62-7 | 1.55+0<br>6.60-7 | 1.71+0<br>1.10-6    | 1.85+0<br>1.71-6 | 1.99+0<br>2.39-6 | 2.11+0<br>3.32-6 | 2.23+0<br>4.41-6 |
| $2p_{1/2}$                                       | σ                      | 4.103-2                 | 1.412-2           | 3.026-3          | 9.881-4          | 4.090-4          | 1.973-4             | 1.060-4          | 6.163-5          | 3.811-5          | 2.475-           |
| $E_b =$                                          | β                      | 0.310                   | 0.232             | 0.155            | 0.111            | 0.080            | 0.055               | 0.034            | 0.015            | 002              | 017              |
| 8.9 eV                                           | γ                      | 3.92-1                  | 4.28-1            | 4.94-1           | 5.53-1           | 6.04 - 1         | 6.49-1              | 6.90-1           | 7.25-1           | 7.57-1           | 7.87-1           |
|                                                  | δ                      | 1.13-1                  | 1.39-1            | 1.81-1           | 2.16-1           | 2.47-1           | 2.73-1              | 2.97-1           | 3.19-1           | 3.40-1           | 3.58-1           |
| $\begin{array}{l} 2p_{3/2} \\ E_b = \end{array}$ | $\frac{\sigma}{eta}$   | 8.343-2<br>0.314        | 2.867-2<br>0.237  | 6.131-3<br>0.163 | 1.998-3<br>0.123 | 8.258-4<br>0.095 | 3.977-4<br>0.073    | 2.133-4<br>0.055 | 1.239-4<br>0.040 | 7.649-5<br>0.026 | 4.961-<br>0.013  |
| 9.7 eV                                           | γ                      | 3.91-1                  | 4.27-1            | 4.93-1           | 5.51-1           | 6.01-1           | 6.45-1              | 6.84-1           | 7.19-1           | 7.50-1           | 7.78-1           |
|                                                  | δ                      | 1.13-1                  | 1.39-1            | 1.81-1           | 2.16-1           | 2.46-1           | 2.72-1              | 2.96-1           | 3.18-1           | 3.38-1           | 3.57-1           |
| Z= 8, O: 1s <sub>1/</sub>                        | 2 2s <sub>1/2</sub> 2  | $p_{1/2}^2  2p_{3/2}^2$ |                   |                  |                  |                  |                     |                  |                  |                  |                  |
|                                                  |                        | k (eV)                  |                   |                  |                  |                  |                     |                  |                  |                  |                  |
| Shell                                            |                        | 1500                    | 2000              | 3000             | 4000             | 5000             | 6000                | 7000             | 8000             | 9000             | 10000            |
| $1s_{1/2}$                                       | σ                      | 3.583+1                 | 1.615+1           | 5.078+0          | 2.186+0          | 1.124+0          | 6.478-1             | 4.047-1          | 2.684-1          | 1.863-1          | 1.342-           |
| $E_b = 532.0 \text{ eV}$                         | $\beta$ $\gamma$       | 1.991<br>6.19-1         | 1.986<br>7.99-1   | 1.976<br>1.08+0  | 1.966<br>1.30+0  | 1.955<br>1.49+0  | 1.945<br>1.65+0     | 1.935<br>1.80+0  | 1.925<br>1.94+0  | 1.915<br>2.06+0  | 1.905<br>2.18+0  |
|                                                  | δ                      | -1.16-6                 | -8.48-7           | -2.51-7          | 3.79-7           | 1.13-6           | 1.98-6              | 3.00-6           | 4.22-6           | 5.54-6           | 6.97-6           |
| $2s_{1/2}$                                       | σ                      | 1.665+0                 | 7.672-1           | 2.475-1          | 1.081-1          | 5.610-2          | 3.255-2             | 2.043-2          | 1.359-2          | 9.460-3          | 6.827-           |
| $E_b =$                                          | β                      | 1.989                   | 1.984             | 1.974            | 1.964            | 1.954            | 1.943               | 1.933            | 1.923            | 1.913            | 1.902            |
| 23.7 eV                                          | $_{\delta}^{\gamma}$   | 7.07-1<br>5.38-8        | 8.67-1<br>7.35-8  | 1.13+0<br>1.94-7 | 1.34+0<br>4.35-7 | 1.52+0<br>7.87-7 | 1.68+0<br>1.27-6    | 1.83+0<br>1.91-6 | 1.96+0<br>2.68-6 | 2.09+0<br>3.67-6 | 2.21+0<br>4.83-6 |
| $2p_{1/2}$                                       | σ                      | 9.557-2                 | 3.356-2           | 7.396-3          | 2.463-3          | 1.035-3          | 5.051-4             | 2.738-4          | 1.605-4          | 9.993-5          | 6.527-           |
| $E_b =$                                          | β                      | 0.413                   | 0.316             | 0.211            | 0.153            | 0.113            | 0.083               | 0.059            | 0.037            | 0.018            | 0.001            |
| 6.8 eV                                           | $\gamma \\ \delta$     | 4.32-1<br>1.05-1        | 4.65-1<br>1.30-1  | 5.22-1<br>1.74-1 | 5.75-1<br>2.09-1 | 6.23-1<br>2.40-1 | 6.67 - 1 $2.67 - 1$ | 7.06-1 $2.91-1$  | 7.41-1<br>3.13-1 | 7.73-1<br>3.34-1 | 8.02-1<br>3.53-1 |
| 2p <sub>3/2</sub>                                | σ                      | 1.920-1                 | 6.733-2           | 1.480-2          | 4.920-3          | 2.063-3          | 1.005-3             | 5.441-4          | 3.184-4          | 1.980-4          | 1.291-           |
| $E_b =$                                          | β                      | 0.417                   | 0.321             | 0.220            | 0.164            | 0.128            | 0.101               | 0.079            | 0.061            | 0.045            | 0.031            |
| 7.4 eV                                           | γ                      | 4.31 - 1                | 4.63 - 1          | 5.21 - 1         | 5.73 - 1         | 6.20 - 1         | 6.62 - 1            | 7.00 - 1         | 7.34 - 1         | 7.65 - 1         | 7.92 - 1         |
|                                                  | δ                      | 1.05-1                  | 1.30-1            | 1.73-1           | 2.09-1           | 2.39-1           | 2.66-1              | 2.90-1           | 3.12-1           | 3.33-1           | 3.52-1           |
| Z= 9, F: 1s <sub>1/2</sub>                       | 2 2s <sub>1/2</sub> 2  |                         |                   |                  |                  |                  |                     |                  |                  |                  |                  |
| Shell                                            |                        | k (eV)<br>1500          | 2000              | 3000             | 4000             | 5000             | 6000                | 7000             | 8000             | 9000             | 10000            |
| 1s <sub>1/2</sub>                                | σ                      | 5.476+1                 | 2.509+1           | 8.044+0          | 3.505+0          | 1.818+0          | 1.056+0             | 6.637-1          | 4.423-1          | 3.084-1          | 2.230-           |
| $E_b =$                                          | β                      | 1.993                   | 1.988             | 1.977            | 1.967            | 1.957            | 1.947               | 1.937            | 1.927            | 1.917            | 1.906            |
| 685.4 eV                                         | γ                      | 5.35 - 1                | 7.29 - 1          | 1.03+0           | 1.25+0           | 1.45+0           | 1.62+0              | 1.77+0           | 1.91+0           | 2.03+0           | 2.15+0           |
|                                                  | δ                      | -1.84-6                 | -1.49 - 6         | -8.51-7          | -8.73-8          | 7.66-7           | 1.72-6              | 2.83-6           | 4.14-6           | 5.57-6           | 7.20-6           |
| $2s_{1/2}$                                       | σ                      | 2.572+0                 | 1.207+0           | 3.985 - 1        | 1.769 - 1        | 9.286 - 2        | 5.438 - 2           | 3.438 - 2        | 2.302 - 2        | 1.611 - 2        | 1.168-           |
| $E_b = 34.0 \text{ eV}$                          | β                      | 1.990<br>6.63-1         | 1.985<br>8.27-1   | 1.975<br>1.09+0  | 1.965<br>1.30+0  | 1.955<br>1.49+0  | 1.945<br>1.65+0     | 1.934<br>1.80+0  | 1.924<br>1.94+0  | 1.914<br>2.07+0  | 1.904<br>2.18+0  |
| 34.0 ev                                          | $\gamma \over \delta$  | 6.00-9                  | 3.69-8            | 1.99-0           | 4.60-7           | 8.27-7           | 1.37-6              | 2.06-6           | 2.89-6           | 3.92-6           | 5.16-6           |
| $2p_{1/2}$                                       | σ                      | 1.965-1                 | 7.019-2           | 1.583-2          | 5.358-3          | 2.280-3          | 1.124-3             | 6.146-4          | 3.628-4          | 2.273-4          | 1.492-           |
| $E_b =$                                          | β                      | 0.523                   | 0.410             | 0.277            | 0.202            | 0.153            | 0.116               | 0.087            | 0.063            | 0.042            | 0.023            |
| 8.4 eV                                           | γ                      | 4.71-1                  | 5.03-1            | 5.56-1           | 6.04-1           | 6.48-1           | 6.89-1              | 7.26-1           | 7.60-1           | 7.91-1           | 8.20-1           |
|                                                  | δ                      | 9.63-2                  | 1.22-1            | 1.66-1           | 2.02-1           | 2.33-1           | 2.60-1              | 2.84-1           | 3.07-1           | 3.28-1           | 3.47-1           |
| 2p <sub>3/2</sub>                                | $\sigma_{\beta}$       | 3.908-1<br>0.527        | 1.394—1<br>0.415  | 3.135-2<br>0.285 | 1.059-2<br>0.213 | 4.498-3<br>0.166 | 2.214-3<br>0.133    | 1.208-3<br>0.107 | 7.121-4<br>0.086 | 4.453-4<br>0.067 | 2.919-<br>0.051  |
| $E_b = 8.7 \text{ eV}$                           | $eta \ \gamma$         | 4.70-1                  | 5.03-1            | 5.54-1           | 6.01-1           | 6.44-1           | 6.84-1              | 7.20-1           | 7.53-1           | 7.83-1           | 8.09-1           |
|                                                  | δ                      | 9.63-2                  | 1.22-1            | 1.66-1           | 2.01-1           | 2.32-1           | 2.59-1              | 2.84-1           | 3.06-1           | 3.27-1           | 3.46-1           |
| Z= 10, Ne: 1s                                    | $s_{1/2}^2 2s_{1/2}^2$ |                         |                   |                  |                  |                  |                     |                  |                  |                  |                  |
| CI II                                            |                        | k (eV)                  | 2000              | 2000             | 4000             | 5000             | 5005                | 7000             | 2002             | 0000             | 1000-            |
| Shell                                            |                        | 7.001+1                 | 2000              | 3000             | 4000             | 5000             | 6000                | 7000             | 8000             | 9000             | 10000            |
| $1s_{1/2}$ $E_b =$                               | $\frac{\sigma}{eta}$   | 7.981+1<br>1.994        | 3.715+1<br>1.989  | 1.211+1<br>1.979 | 5.332+0<br>1.969 | 2.787+0<br>1.959 | 1.628+0<br>1.949    | 1.028+0<br>1.939 | 6.883-1<br>1.928 | 4.817-1<br>1.918 | 3.493-<br>1.908  |
| ь —<br>870.1 eV                                  | Ρ                      | 4.23-1                  | 6.47-1            | 9.64-1           | 1.20+0           | 1.555            | 1.545               | 1.555            | 1.520            | 1.510            | 2.12+0           |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | δ                   | -2.61-6   | -2.39 - 6 | -1.66-6   | -8.24 - 7 | 5.67-8   | 1.05-6   | 2.41-6   | 3.64-6   | 5.29-6   | 6.96-6            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------|-----------|-----------|-----------|-----------|----------|----------|----------|----------|----------|-------------------|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                     |           |           |           |           |          |          |          |          |          | 1.864-2           |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =<br>8 5 aV   |                     |           |           |           |           |          |          |          |          |          | 1.905<br>2.16+0   |
| E <sub>j</sub> β         0.636         0.509         0.348         0.227         0.18         0.154         0.121         0.092         0.08           21 Γ eV         β         0.84-2         1.14-1         1.58-1         1.94-1         2.23-1         2.77-1         7.84-1         8.13-1           2pyα         β         0.339         0.533         0.68-2         2.07-2         8.89-3         0.44-0         1.14-1         1.05-1         1.94-1         2.23-1         2.77-1         2.30-1         3.00-1         3.04-1           21 Lev         γ         5.08-1         5.43-1         5.91-1         6.85-1         6.73-1         7.12-1         7.43-1         7.60-1         8.04-1           2 Illev         γ         5.08-1         1.57-1         1.57-1         1.93-1         2.25-1         2.52-1         2.77-1         2.89-1         3.04-1           5 Illev         5         1.18-2         1.18-2         1.18-2         1.18-2         1.18-2         1.18-2         1.18-2         1.18-2         1.18-2         1.18-2         1.18-2         1.18-2         1.18-2         1.18-2         1.18-2         1.18-2         1.18-2         1.18-2         1.18-2         1.18-2         1.18-2         1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.5 EV        |                     |           |           |           |           |          |          |          |          |          | 5.42-6            |
| Fig. = β 0.636 0.509 0.348 0.557 0.198 0.154 0.120 0.092 0.092 0.092 1.71eV y 5.588-1 5.43-1 5.84-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1 0.194-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /2            | σ                   | 3.728-1   | 1.348-1   | 3.090-2   |           |          |          |          | 7.398-4  |          | 3.072-4           |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | =             |                     |           |           |           |           |          |          |          |          |          | 0.046             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.7 eV        |                     |           |           |           |           |          |          |          |          |          | 8.41-1            |
| δ <sub>b</sub> β         0.639         0.513         0.396         0.267         0.211         0.170         0.139         0.114         0.093           21 for V         β         0.88-1         1.14-1         1.57-1         1.93-1         225-1         2.52-1         2.77-1         2.99-1         3.00-1           Zer II.Nax [Ne/S]* <sub>1</sub> KeV)           Shell         1500         2000         3000         4000         5000         6000         7000         8000         9000           15/2         σ         1.085+2         5.157+1         1.720+1         7.674+0         4.086+0         2.380+0         1.512+0         1.016+0         7.141-1           5, g         π         1.990         1.991         1.981         1.971         1.991         1.911         1.911         1.911         1.911         1.911         1.911         1.911         1.911         1.911         1.911         1.911         1.911         1.911         1.911         1.911         1.911         1.911         1.911         1.911         1.911         1.911         1.911         1.911         1.911         1.911         1.911         1.911         1.911         1.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                     |           |           |           |           |          |          |          |          |          | 3.40-1<br>5.954-4 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /2<br>=       |                     |           |           |           |           |          |          |          |          |          | 0.074             |
| Tell Nation   Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.6 eV        |                     |           |           |           |           |          |          |          |          |          | 8.30-1            |
| Shell   1500   2000   3000   4000   5000   6000   7000   8000   9000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | δ                   | 8.83-2    | 1.14-1    | 1.57-1    | 1.93-1    | 2.25-1   | 2.52-1   | 2.77-1   | 2.99-1   | 3.20-1   | 3.40-1            |
| Shell         1500         2000         3000         4000         5000         6000         7000         8000         9000           15χ2         σ         1.058+2         5.157+1         1.720+1         7.674-0         4.046+0         2.380+0         1.512+0         1.016-0         7.141-1           1072.1 e         β         1.956         1.991         1.981         1.971         1.961         1.5310         1.931         1.921           1072.1 e         β         1.921         5.46-1         8.89-1         1.1440         1.3540         1.5910         1.8940         1.8910         1.970-1           28/y2         σ         5.352+0         2.60840         8.037-1         4.131-1         2.218-1         1.321-1         8.470-2         5.737-2         4.055-2           63.2 v         γ         5.65-1         7.33-1         1.0140         1.2340         1.4240         1.5940         1.7540         1.8940         2.0140           63.2 v         γ         5.65-1         7.33-1         1.0140         1.2340         1.4240         1.5940         1.7540         1.8940         2.0140           52.1 y         3.03         3.03         3.03         3.03         3.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11, Na: [Ne]: | $3s_{1/2}^1$        |           |           |           |           |          |          |          |          |          |                   |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                     |           |           |           |           |          |          |          |          |          |                   |
| E <sub>j</sub> = g         β         1996         1991         1981         1971         1961         1951         1941         1931         1979           1072.1 eV         γ         2.21-6         -3.62-6         -3.89-0         -1.14-0         13.50         1.59-0         1.83+0         1.97-0           2.51.2 g         σ         5.35-24 g         -2.51-6         -2.51-6         -1.68-6         -6.22-7         4.76-7         1.74-6         3.28-6         4.85-6           2.51.2 g         σ         5.35-24 g         1.58         1.978         1.98         1.98         1.978         1.98         1.978         1.96         1.93-1         1.43-1         1.23-1         1.23-1         1.83-0         1.75-7         1.91-7         1.91-7         1.91-7         1.91-7         1.91-7         1.91-7         1.91-7         1.91-7         1.91-1         1.91-1         1.91-1         1.91-1         1.91-1         1.91-1         1.91-1         1.91-1         1.91-1         1.91-1         1.91-1         1.91-1         1.91-1         1.91-1         1.91-1         1.91-1         1.91-1         1.91-1         1.91-1         1.91-1         1.91-1         1.91-1         1.91-1         1.91-1         1.91-1         1.91-1         1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                     |           |           |           |           |          |          |          |          |          | 10000             |
| 1072.1   V   V   2.81   -1   5.46   -3.12   -6.251   -6.185   -0.217   -6.76   1.73   -0.185   1.87   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.185   0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                     |           |           |           |           |          |          |          |          |          | 5.196-1           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | –<br>2.1 eV   |                     |           |           |           |           |          |          |          |          |          | 1.911<br>2.09+0   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                     |           |           |           |           |          |          |          |          |          | 6.83-6            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                     |           |           |           |           |          |          |          |          |          | 2.965-2           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | =             |                     |           |           |           |           |          |          |          |          |          | 1.907             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.3 eV        |                     |           |           |           |           |          |          |          |          |          | 2.13+0<br>5.81-6  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                     |           |           |           |           |          |          |          |          |          | 6.536-4           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | /2<br>=       |                     |           |           |           |           |          |          |          |          |          | 0.072             |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                     |           |           |           |           |          |          |          |          |          | 8.68-1            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                     | 8.10 - 2  | 1.06 - 1  | 1.49 - 1  | 1.85 - 1  | 2.16 - 1 | 2.44 - 1 | 2.69 - 1 | 2.92 - 1 | 3.13 - 1 | 3.33 - 1          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                     |           |           |           |           |          |          |          |          |          | 1.264-3           |
| δ         8.09-2         1.06-1         1.48-1         1.85-1         2.16-1         2.43-1         2.68-1         2.91-1         3.12-1 $31_{1/2}$ σ         1.224-1         5.933-2         2.045-2         9.331-3         5.000-3         2.975-3         1.906-3         1.291-3         9.119-4 $E_p$ $β$ 1.992         1.987         1.977         1.967         1.957         1.49-6         1.297-0         1.89+0         2.02+0 $6$ $7.66-1$ 7.44-1         1.02+0         1.24+0         1.43+0         1.60+0         1.75+0         1.89+0         2.02+0 $7$ $7.66-1$ $7.44-1$ 1.02+0         1.24+0         1.49-6         1.59-0         1.05-0         2.02-6         3.05-6         420-6 $7$ $7.12$ $7.02$ $7.02$ $7.02$ $7.02$ $7.02$ $7.02$ $7.02$ $7.02$ $7.02$ $7.02$ $7.02$ $7.02$ $7.02$ $7.02$ $7.02$ $7.02$ $7.02$ $7.02$ $7.02$ $7.02$ $7.02$ $7.02$ $7.02$ $7.02$ $7.02$ $7.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =             |                     |           |           |           |           |          |          |          |          |          | 0.098             |
| $\frac{3s_{1/2}}{E_p} = \frac{\sigma}{\beta}$ 1,224-1 5,933-2 2,045-2 9,331-3 5,000-3 2,975-3 1,906-3 1,291-3 9,119-4 $\frac{1}{E_p} = \frac{\sigma}{\beta}$ 1,992 1,987 1,977 1,967 1,957 1,957 1,947 1,937 1,927 1,917 2,020-0 $\frac{1}{2}$ 8, $\frac{1}{2}$ 9, $\frac{1}{2}$ 8, $\frac{1}{2}$ 9, $\frac{1}{2}$ 8, $\frac{1}{2}$ 9, $\frac{1}{2}$ 8, $\frac{1}{2}$ 9, $\frac{1}{$ | 1.0 ev        |                     |           |           |           |           |          |          |          |          |          | 8.57-1<br>3.32-1  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                     |           |           |           |           |          |          |          |          |          | 6.666-4           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | =             |                     |           |           |           |           |          |          |          |          |          | 1.907             |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .7 eV         |                     |           |           |           |           |          |          |          |          |          | 2.14+0            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                     | -8.73-8   | -7.66-8   | 1.19-7    | 4.34-7    | 8.77-7   | 1.49-6   | 2.25-6   | 3.05-6   | 4.20-6   | 5.74-6            |
| Shell         500         2000         3000         4000         5000         6000         7000         8000         9000           1s <sub>1/2</sub> σ         1.419+2         6.917+1         2.359+1         1.066+1         5.665+0         3.353+0         2.141+0         1.445+0         1.019+0 $E_b = \beta$ 1.998         1.994         1.984         1.973         1.963         1.593         1.943         1.933         1.923           1305.0 eV         γ         7.77-7         4.16-1         8.06-1         1.08+0         1.29+0         1.48+0         1.65+0         1.79+0         1.99+0           2s <sub>1/2</sub> σ         7.384+0         3.667+0         1.299+0         6.023-1         3.266-1         1.961-1         1.265-1         8.613-2         6.115-2           E <sub>b</sub> = β         β         1.993         1.989         1.979         1.969         1.959         1.949         1.939         1.929         1.919           E <sub>b</sub> = β         β         1.993         1.989         1.979         1.960         1.959         1.949         1.939         1.929         1.919           E <sub>b</sub> = β         β         0.301-7         -2.14-7         7.80-9         3.60-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12, Mg: [Ne]  | ]3s <sub>1/2</sub>  |           |           |           |           |          |          |          |          |          |                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .,            |                     |           | 2000      | 2000      | 4000      | 5000     | 5000     | 7000     | 2000     | 0000     | 10000             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                     |           |           |           |           |          |          |          |          |          | 10000             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /2            |                     |           |           |           |           |          |          |          |          |          | 7.434-1<br>1.913  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                     |           |           |           |           |          |          |          |          |          | 2.05+0            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -,,           |                     |           |           |           |           |          |          |          |          |          | 6.29-6            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /2            | σ                   | 7.384+0   | 3.667+0   | 1.299+0   | 6.023 - 1 | 3.266-1  | 1.961-1  | 1.265-1  | 8.613-2  | 6.115-2  | 4.489-2           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =             | $\beta$             |           |           |           |           |          |          |          |          |          | 1.909             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.4 eV        |                     |           |           |           |           |          |          |          |          |          | 2.10+0            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                     |           |           |           |           |          |          |          |          |          | 6.26-6            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                     |           |           |           |           |          |          |          |          |          | 1.265-3<br>0.101  |
| $b$ 7.43-2         9.78-2         1.40-1         1.76-1         2.07-1         2.36-1         2.61-1         2.85-1         3.06-1 $2p_{3/2}$ σ         2.481+0         9.291-1         2.223-1         7.824-2         3.426-2         1.729-2         9.637-3         5.782-3         3.672-3 $E_b$ $β$ 0.839         0.689         0.506         0.386         0.310         0.256         0.215         0.180         0.151           51.3 eV $γ$ 5.55-1         6.05-1         6.68-1         7.09-1         7.47-1         7.80-1         8.08-1         8.34-1         8.58-1           51.3 eV $γ$ 5.55-1         6.05-1         6.68-1         7.09-1         7.47-1         7.80-1         8.08-1         8.34-1         8.58-1 $δ$ 7.42-2         9.77-2         1.40-1         1.76-1         2.07-1         2.35-1         2.61-1         2.84-1         3.06-1 $δ$ 1.993         1.988         1.979         1.969         1.959         1.949         1.938         1.928         1.918 $δ$ 7.22-7         -9.96-8         7.74-8         4.52-7         9.27-7         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | –<br>1.5 eV   |                     |           |           |           |           |          |          |          |          |          | 8.92-1            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                     | 7.43 - 2  |           |           |           |          |          |          |          |          | 3.26 - 1          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /2            | σ                   | 2.481+0   | 9.291-1   | 2.223-1   | 7.824-2   | 3.426-2  | 1.729-2  | 9.637-3  | 5.782-3  | 3.672-3  | 2.440-3           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | =             | $\beta$             |           |           |           |           |          |          |          |          |          | 0.127             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.3 eV        |                     |           |           |           |           |          |          |          |          |          | 8.80-1<br>3.25-1  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                     |           |           |           |           |          |          |          |          |          |                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                     |           |           |           |           |          |          |          |          |          | 1.668-3<br>1.908  |
| Z= 13, Al: [Ne]3 $s_{1/2}^2$ 3 $p_{1/2}^1$ $\frac{k(eV)}{1500}$ 2000 3000 4000 5000 6000 7000 8000 9000 $2s_{1/2}$ $\sigma$ 9.742+0 4.925+0 1.785+0 8.397-1 4.597-1 2.780-1 1.805-1 1.236-1 8.815-2 $E_b = \beta$ 1.994 1.990 1.981 1.971 1.961 1.951 1.941 1.931 1.921 117.7 eV $\gamma$ 4.55-1 6.31-1 9.21-1 1.15+0 1.35+0 1.52+0 1.68+0 1.82+0 1.96+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | γ                   | 5.25 - 1  | 6.99 - 1  | 9.78 - 1  | 1.21+0    | 1.40+0   | 1.57+0   | 1.72+0   | 1.86+0   | 1.99+0   | 2.11+0            |
| $\frac{k  (\text{eV})}{\text{Shell}} = \frac{k  (\text{eV})}{1500} = \frac{k  (\text{eV})}{2000} = \frac{3000}{3000} = \frac{4000}{4000} = \frac{5000}{5000} = \frac{6000}{6000} = \frac{7000}{7000} = \frac{8000}{9000} = \frac{9000}{9000}$ $\frac{2s_{1/2}}{E_b} = \frac{\beta}{\beta} = \frac{1.994}{1.994} = \frac{1.990}{1.990} = \frac{1.981}{1.981} = \frac{1.971}{1.961} = \frac{1.961}{1.951} = \frac{1.941}{1.941} = \frac{1.931}{1.921} = \frac{1.921}{117.7  \text{eV}}$ $\frac{k  (\text{eV})}{\gamma} = \frac{k  (\text{eV})}{1.500} = \frac{1.785 + 0}{1.981} = \frac{1.971}{1.961} = \frac{1.805 - 1}{1.951} = \frac{1.236 - 1}{1.931} = \frac{8.815 - 2}{1.921}$ $\frac{1.971}{117.7  \text{eV}} = \frac{1.964}{\gamma} = \frac{1.994}{1.951} = \frac{1.994}{1.991} = \frac{1.994}{1.9$                                                                                                                  | 10 A1 F-:     |                     |           | -9.96-8   | 7.74–8    | 4.52-7    | 9.27-7   | 1.59-6   | 2.44-6   | 3.40-6   | 4.55-6   | 6.13-6            |
| Shell         1500         2000         3000         4000         5000         6000         7000         8000         9000 $2s_{1/2}$ $\sigma$ 9.742+0         4.925+0         1.785+0         8.397-1         4.597-1         2.780-1         1.805-1         1.236-1         8.815-2 $E_b =$ $\beta$ 1.994         1.990         1.981         1.971         1.961         1.951         1.941         1.931         1.921           117.7 eV $\gamma$ 4.55-1         6.31-1         9.21-1         1.15+0         1.35+0         1.52+0         1.68+0         1.82+0         1.96+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13, AI: [Ne]3 | 3S <sub>1/2</sub> 3 | •         |           |           |           |          |          |          |          |          |                   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11            |                     |           | 2000      | 3000      | 4000      | 5000     | 6000     | 7000     | 8000     | 9000     | 10000             |
| $E_b = \beta$ 1.994 1.990 1.981 1.971 1.961 1.951 1.941 1.931 1.921 117.7 eV $\gamma$ 4.55-1 6.31-1 9.21-1 1.15+0 1.35+0 1.52+0 1.68+0 1.82+0 1.96+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                     |           |           |           |           |          |          |          |          |          |                   |
| 117.7 eV $\gamma$ 4.55-1 6.31-1 9.21-1 1.15+0 1.35+0 1.52+0 1.68+0 1.82+0 1.96+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                     |           |           |           |           |          |          |          |          |          | 6.497-2<br>1.911  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                     |           |           |           |           |          |          |          |          |          | 2.08+0            |
| 0 -4.80-/ -3.03-/ -1.09-/ 2.91-/ 8.50-/ 1.60-6 2.53-6 3.6/-6 4.99-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | δ                   | -4.80 - 7 | -3.63 - 7 | -1.09 - 7 | 2.91 - 7  | 8.50 - 7 | 1.60 - 6 | 2.53 - 6 | 3.67 - 6 | 4.99 - 6 | 6.53 - 6          |

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.160 0.131<br>9.00-1 9.25-1<br>2.98-1 3.17-1                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                    |
| E <sub>k</sub> = 0, 0,7 eV         β 1.994         1.990         1.980         1.970         1.950         1.940         1.930           0.7 eV         γ - 479-1         6.51-1         9.34-1         1.1740         1.38-0         1.5340         1.5340         1.5340         1.83-0           3P1/2 b, E <sub>E</sub> = β 0.909         0.75         0.559         0.438         0.350         0.283         0.283         0.283         0.283         0.283         0.283         0.283         0.283         0.283         0.283         0.283         0.283         0.283         0.283         0.283         0.283         0.283         0.283         0.283         0.283         0.283         0.283         0.283         0.283         0.283         0.284         0.284         0.284         0.284         0.284         0.284         0.284         0.284         0.284         0.284         0.284         0.284         0.284         0.284         0.284         0.284         0.284         0.284         0.284         0.284         0.284         0.284         0.284         0.284         0.284         0.284         0.284         0.284         0.284         0.284         0.284         0.284         0.284         0.284         0.284         0.284         0.284 <td>8.91-1 9.14-1<br/>2.97-1 3.17-1</td> | 8.91-1 9.14-1<br>2.97-1 3.17-1                                     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 4.697-3 3.462-3<br>1.920 1.910<br>1.96+0 2.08+0<br>4.92-6 6.48-6 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 1.082-4 7.226-5<br>0.157 0.127<br>9.00-1 9.24-1<br>2.98-1 3.18-1 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9000 10000                                                         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 1.224-1 9.051-2<br>1.922 1.913<br>1.92+0 2.04+0<br>5.24-6 6.91-6 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 5.750-3 3.858-3<br>0.201 0.167<br>9.34-1 9.55-1                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.90-1 3.11-1<br>2 1.097-2 7.349-3<br>0.222 0.191                  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.25-1 9.44-1<br>2.89-1 3.10-1                                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 8.074-3 5.972-3<br>1.922 1.912<br>1.93+0 2.05+0<br>5.17-6 6.81-6 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 2.499-4 1.677-4<br>0.195 0.163<br>9.34-1 9.55-1<br>2.90-1 3.11-1 |
| Shell         1500         2000         3000         4000         5000         6000         7000         8000 $2s_{1/2}$ $\sigma$ 1.545+1         8.069+0         3.050+0         1.474+0         8.224-1         5.048-1         3.316-1         2.292-1 $E_b$ $\beta$ 1.996         1.992         1.984         1.974         1.964         1.954         1.944         1.934           189.3 eV $\gamma$ 3.47-1         5.25-1         8.20-1         1.06+0         1.27+0         1.45+0         1.61+0         1.76+0 $\delta$ -1.15-6         -8.89-7         -4.95-7         -3.59-8         5.79-7         1.43-6         2.47-6         3.74-6 $2p_{1/2}$ $\sigma$ 4.801+0         1.892+0         4.826-1         1.770-1         7.988-2         4.128-2         2.346-2         1.432- $E_b$ $\beta$ 1.071         0.923         0.712         0.570         0.467         0.389         0.328         0.278           136.2 eV $\gamma$ 5.79-1         6.59-1         7.57-1         8.16-1         8.58-1         8.92-1         9.22-1         9.48-1 $\delta$ 5.                                                                                                                                                                                                                                                         |                                                                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9000 10000                                                         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 1.648-1 1.224-1<br>1.924 1.914<br>1.89+0 2.02+0<br>5.25-6 7.00-6 |
| $E_b = \beta$ 1.077 0.930 0.720 0.579 0.478 0.402 0.344 0.296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 9.228-3 6.214-3<br>0.237 0.202<br>9.72-1 9.94-1<br>2.81-1 3.01-1 |
| $\delta$ 5.72-2 7.73-2 1.16-1 1.50-1 1.81-1 2.09-1 2.35-1 2.58-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 1.759-2 1.182-2<br>0.258 0.225<br>9.63-1 9.83-1<br>2.80-1 3.00-1 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 1.251-2 9.288-3<br>1.924 1.914<br>1.90+0 2.02+0<br>5.39-6 7.07-6 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4 4.971-4 3.348-4<br>0.228 0.193<br>9.66-1 9.89-1<br>2.82-1 3.02-1 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 9.732-4 6.540-4<br>0.249 0.216<br>9.57-1 9.77-1<br>2.81-1 3.01-1 |

Table 1 (continued)

Z= 16, S: [Ne]  $3s_{1/2}^2 3p_{1/2}^2 3p_{3/2}^2$ 

| 2 10,5.110                                                                    | J1/2 J                                                                                                            | k (eV)                                                                      |                                                                     |                                                                     |                                                                     |                                                                     |                                                                    |                                                                    |                                                                    |                                                                    |                                                                  |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------|
| Shell                                                                         |                                                                                                                   | 1500                                                                        | 2000                                                                | 3000                                                                | 4000                                                                | 5000                                                                | 6000                                                               | 7000                                                               | 8000                                                               | 9000                                                               | 10000                                                            |
| 2s <sub>1/2</sub>                                                             | σ                                                                                                                 | 1.872+1                                                                     | 9.921+0                                                             | 3.826+0                                                             | 1.873+0                                                             | 1.055+0                                                             | 6.520-1                                                            | 4.307-1                                                            | 2.991-1                                                            | 2.160-1                                                            | 1.609-                                                           |
| $E_b =$                                                                       | β                                                                                                                 | 1.997                                                                       | 1.993                                                               | 1.985                                                               | 1.976                                                               | 1.966                                                               | 1.956                                                              | 1.946                                                              | 1.936                                                              | 1.926                                                              | 1.917                                                            |
| 229.2 eV                                                                      | γ                                                                                                                 | 2.93 - 1                                                                    | 4.69 - 1                                                            | 7.67 - 1                                                            | 1.01+0                                                              | 1.22+0                                                              | 1.40+0                                                             | 1.57+0                                                             | 1.72+0                                                             | 1.85+0                                                             | 1.98+0                                                           |
|                                                                               | δ                                                                                                                 | -1.74 - 6                                                                   | -1.31-6                                                             | -8.52 - 7                                                           | -3.82 - 7                                                           | 2.99 - 7                                                            | 1.17 - 6                                                           | 2.30 - 6                                                           | 3.66-6                                                             | 5.27 - 6                                                           | 7.11-6                                                           |
| $2p_{1/2}$                                                                    | σ                                                                                                                 | 6.778+0                                                                     | 2.715+0                                                             | 7.078-1                                                             | 2.631-1                                                             | 1.199-1                                                             | 6.242-2                                                            | 3.569-2                                                            | 2.188-2                                                            | 1.416-2                                                            | 9.571-                                                           |
| $E_b =$                                                                       | β                                                                                                                 | 1.135                                                                       | 0.994                                                               | 0.781                                                               | 0.633                                                               | 0.524                                                               | 0.441                                                              | 0.375                                                              | 0.321                                                              | 0.276                                                              | 0.237                                                            |
| 165.4 eV                                                                      | γ                                                                                                                 | 5.76 - 1                                                                    | 6.66 - 1                                                            | 7.78 - 1                                                            | 8.45 - 1                                                            | 8.91 - 1                                                            | 9.27 - 1                                                           | 9.57 - 1                                                           | 9.83-1                                                             | 1.01+0                                                             | 1.03+0                                                           |
|                                                                               | δ                                                                                                                 | 5.30-2                                                                      | 7.21-2                                                              | 1.09-1                                                              | 1.42-1                                                              | 1.73-1                                                              | 2.01-1                                                             | 2.27-1                                                             | 2.51-1                                                             | 2.73-1                                                             | 2.93-                                                            |
| $2p_{3/2}$                                                                    | $\sigma$                                                                                                          | 1.315+1                                                                     | 5.260+0                                                             | 1.368+0                                                             | 5.071 - 1                                                           | 2.305 - 1                                                           | 1.197 - 1                                                          | 6.827 - 2                                                          | 4.176 - 2                                                          | 2.697 - 2                                                          | 1.819-                                                           |
| $E_b =$                                                                       | β                                                                                                                 | 1.141                                                                       | 1.001                                                               | 0.789                                                               | 0.642                                                               | 0.535                                                               | 0.455                                                              | 0.391                                                              | 0.339                                                              | 0.296                                                              | 0.259                                                            |
| 164.2 eV                                                                      | $_{\delta}^{\gamma}$                                                                                              | 5.80-1<br>5.30-2                                                            | 6.70-1<br>7.19-2                                                    | 7.80-1<br>1.08-1                                                    | 8.46-1<br>1.42-1                                                    | 8.91-1<br>1.73-1                                                    | 9.25 - 1 $2.01 - 1$                                                | 9.53-1<br>2.26-1                                                   | 9.76-1<br>2.50-1                                                   | 9.98 - 1 $2.72 - 1$                                                | 1.02+0<br>2.92-                                                  |
|                                                                               |                                                                                                                   |                                                                             |                                                                     |                                                                     |                                                                     |                                                                     |                                                                    |                                                                    |                                                                    |                                                                    |                                                                  |
| $3s_{1/2}$                                                                    | $\sigma$                                                                                                          | 1.607+0                                                                     | 8.445-1                                                             | 3.234-1                                                             | 1.579-1                                                             | 8.883-2                                                             | 5.487-2                                                            | 3.624-2                                                            | 2.516-2                                                            | 1.816-2                                                            | 1.353-                                                           |
| $E_b = 15.8 \text{ eV}$                                                       | β                                                                                                                 | 1.996<br>3.40-1                                                             | 1.993<br>5.07-1                                                     | 1.984<br>7.94—1                                                     | 1.975<br>1.03+0                                                     | 1.965<br>1.24+0                                                     | 1.955<br>1.42+0                                                    | 1.945<br>1.58+0                                                    | 1.935<br>1.73+0                                                    | 1.925<br>1.86+0                                                    | 1.916<br>1.99+0                                                  |
| 13.6 EV                                                                       | $\frac{\gamma}{\delta}$                                                                                           | -8.31-7                                                                     | -7.86-7                                                             | -5.42-7                                                             | -7.20-8                                                             | 6.12-7                                                              | 1.50-6                                                             | 2.59-6                                                             | 3.95-6                                                             | 5.54-6                                                             | 7.38-6                                                           |
| 2 n                                                                           |                                                                                                                   | 4.069-1                                                                     | 1.657-1                                                             | 4.384-2                                                             | 1.639-2                                                             | 7.493-3                                                             | 3.907-3                                                            | 2.236-3                                                            | 1.372-3                                                            | 8.888-4                                                            | 6.009-                                                           |
| $ 3p_{1/2} \\ E_b =  $                                                        | $\frac{\sigma}{eta}$                                                                                              | 4.069—1<br>1.102                                                            | 0.963                                                               | 4.384-2<br>0.760                                                    | 0.619                                                               | 7.493-3<br>0.514                                                    | 0.433                                                              | 2.236-3<br>0.369                                                   | 0.316                                                              | 8.888-4<br>0.271                                                   | 0.232                                                            |
| с <sub>ь</sub> —<br>7.8 eV                                                    | γ                                                                                                                 | 5.74-1                                                                      | 6.61-1                                                              | 7.72—1                                                              | 8.40-1                                                              | 8.88-1                                                              | 9.24-1                                                             | 9.54-1                                                             | 9.79—1                                                             | 1.00+0                                                             | 1.02+0                                                           |
| •                                                                             | δ                                                                                                                 | 5.29-2                                                                      | 7.25-2                                                              | 1.10-1                                                              | 1.44-1                                                              | 1.75-1                                                              | 2.03-1                                                             | 2.28-1                                                             | 2.52-1                                                             | 2.74-1                                                             | 2.95-1                                                           |
| $3p_{3/2}$                                                                    | σ                                                                                                                 | 8.054-1                                                                     | 3.272-1                                                             | 8.619-2                                                             | 3.212-2                                                             | 1.463-2                                                             | 7.609-3                                                            | 4.344-3                                                            | 2.659-3                                                            | 1.718-3                                                            | 1.159-                                                           |
| $E_b =$                                                                       | β                                                                                                                 | 1.110                                                                       | 0.972                                                               | 0.769                                                               | 0.629                                                               | 0.526                                                               | 0.447                                                              | 0.385                                                              | 0.334                                                              | 0.291                                                              | 0.254                                                            |
| 8.2 eV                                                                        | γ                                                                                                                 | 5.77-1                                                                      | 6.64-1                                                              | 7.74–1                                                              | 8.40-1                                                              | 8.86-1                                                              | 9.21-1                                                             | 9.49-1                                                             | 9.72-1                                                             | 9.93-1                                                             | 1.01+0                                                           |
|                                                                               | δ                                                                                                                 | 5.25 - 2                                                                    | 7.19 - 2                                                            | 1.09 - 1                                                            | 1.43 - 1                                                            | 1.74 - 1                                                            | 2.02 - 1                                                           | 2.28 - 1                                                           | 2.51 - 1                                                           | 2.73 - 1                                                           | 2.94-                                                            |
| Z= 17, Cl: [Ne                                                                | 2]3s <sub>1/2</sub> 3                                                                                             | $p_{1/2}^2 3p_{3/2}^3$                                                      |                                                                     |                                                                     |                                                                     |                                                                     |                                                                    |                                                                    |                                                                    |                                                                    |                                                                  |
|                                                                               | - 1/2                                                                                                             | k (eV)                                                                      |                                                                     |                                                                     |                                                                     |                                                                     |                                                                    |                                                                    |                                                                    |                                                                    |                                                                  |
| Shell                                                                         |                                                                                                                   | 1500                                                                        | 2000                                                                | 3000                                                                | 4000                                                                | 5000                                                                | 6000                                                               | 7000                                                               | 8000                                                               | 9000                                                               | 10000                                                            |
| 2s <sub>1/2</sub>                                                             | σ                                                                                                                 | 2.220+1                                                                     | 1.193+1                                                             | 4.689+0                                                             | 2.325+0                                                             | 1.322+0                                                             | 8.228-1                                                            | 5.466-1                                                            | 3.813-1                                                            | 2.764-1                                                            | 2.066-                                                           |
| $E_b =$                                                                       | β                                                                                                                 | 1.998                                                                       | 1.195+1                                                             | 1.987                                                               | 1.977                                                               | 1.968                                                               | 1.958                                                              | 1.948                                                              | 1.938                                                              | 1.929                                                              | 1.919                                                            |
| 270.2 eV                                                                      | γ                                                                                                                 | 2.39-1                                                                      | 4.12-1                                                              | 7.11-1                                                              | 9.59-1                                                              | 1.17+0                                                              | 1.36+0                                                             | 1.52+0                                                             | 1.68+0                                                             | 1.81+0                                                             | 1.94+0                                                           |
|                                                                               | δ                                                                                                                 | -2.38 - 6                                                                   | -1.87 - 6                                                           | -1.35 - 6                                                           | -8.31 - 7                                                           | -5.94 - 8                                                           | 8.39-7                                                             | 1.99 - 6                                                           | 3.42 - 6                                                           | 5.12 - 6                                                           | 7.09-6                                                           |
| $2p_{1/2}$                                                                    | σ                                                                                                                 | 9.318+0                                                                     | 3.786+0                                                             | 1.006+0                                                             | 3.788-1                                                             | 1.742-1                                                             | 9.130-2                                                            | 5.249-2                                                            | 3.234-2                                                            | 2.101-2                                                            | 1.425-                                                           |
| $E_b =$                                                                       | β                                                                                                                 | 1.195                                                                       | 1.060                                                               | 0.849                                                               | 0.697                                                               | 0.582                                                               | 0.494                                                              | 0.424                                                              | 0.366                                                              | 0.317                                                              | 0.276                                                            |
| 201.6 eV                                                                      | γ                                                                                                                 | 5.70 - 1                                                                    | 6.69 - 1                                                            | 7.95 - 1                                                            | 8.71 - 1                                                            | 9.23 - 1                                                            | 9.62 - 1                                                           | 9.93 - 1                                                           | 1.02+0                                                             | 1.04+0                                                             | 1.06+0                                                           |
|                                                                               | δ                                                                                                                 | 4.92 - 2                                                                    | 6.71 - 2                                                            | 1.02 - 1                                                            | 1.35 - 1                                                            | 1.65 - 1                                                            | 1.93 - 1                                                           | 2.18 - 1                                                           | 2.42 - 1                                                           | 2.64 - 1                                                           | 2.85-1                                                           |
| $2p_{3/2}$                                                                    | $\sigma$                                                                                                          | 1.808+1                                                                     | 7.335+0                                                             | 1.944+0                                                             | 7.298 - 1                                                           | 3.347 - 1                                                           | 1.750 - 1                                                          | 1.004 - 1                                                          | 6.167 - 2                                                          | 3.998 - 2                                                          | 2.705-                                                           |
| $E_b =$                                                                       | β                                                                                                                 | 1.203                                                                       | 1.068                                                               | 0.858                                                               | 0.707                                                               | 0.594                                                               | 0.508                                                              | 0.439                                                              | 0.383                                                              | 0.337                                                              | 0.297                                                            |
| 200.0 eV                                                                      | γ                                                                                                                 | 5.75-1                                                                      | 6.74-1                                                              | 7.98-1                                                              | 8.73-1                                                              | 9.23-1                                                              | 9.60-1                                                             | 9.90-1                                                             | 1.01+0                                                             | 1.03+0                                                             | 1.05+0                                                           |
|                                                                               | δ                                                                                                                 | 4.92-2                                                                      | 6.69-2                                                              | 1.02-1                                                              | 1.34-1                                                              | 1.64-1                                                              | 1.92-1                                                             | 2.17-1                                                             | 2.41-1                                                             | 2.63-1                                                             | 2.84-                                                            |
| $3s_{1/2}$                                                                    | σ                                                                                                                 | 2.072+0                                                                     | 1.101+0                                                             | 4.294 - 1                                                           | 2.123-1                                                             | 1.205 - 1                                                           | 7.498-2                                                            | 4.980-2                                                            | 3.474-2                                                            | 2.518-2                                                            | 1.882-                                                           |
| $E_b =$                                                                       | β                                                                                                                 | 1.997                                                                       | 1.994                                                               | 1.986                                                               | 1.976                                                               | 1.967                                                               | 1.957                                                              | 1.947                                                              | 1.937                                                              | 1.927                                                              | 1.918                                                            |
| 17.5 eV                                                                       | $\frac{\gamma}{\delta}$                                                                                           | 2.97 - 1 $-1.18 - 6$                                                        | 4.60-1 $-1.14-6$                                                    | 7.45-1<br>-9.12-7                                                   | 9.86-1<br>-4.23-7                                                   | 1.19+0<br>3.14-7                                                    | 1.38+0<br>1.24-6                                                   | 1.54+0<br>2.42-6                                                   | 1.69+0<br>3.86-6                                                   | 1.83+0<br>5.55-6                                                   | 1.96+0<br>7.49-6                                                 |
|                                                                               |                                                                                                                   |                                                                             |                                                                     |                                                                     |                                                                     |                                                                     |                                                                    |                                                                    |                                                                    |                                                                    |                                                                  |
| $3p_{1/2}$                                                                    | σ                                                                                                                 | 6.130-1                                                                     | 2.546-1                                                             | 6.914-2                                                             | 2.628-2                                                             | 1.214-2                                                             | 6.385-3                                                            | 3.678-3                                                            | 2.269-3                                                            | 1.476-3                                                            | 1.002-                                                           |
| $E_b = 6.7 \text{ eV}$                                                        | β                                                                                                                 | 1.154<br>5.69-1                                                             | 1.018<br>6.63-1                                                     | 0.818<br>7.86-1                                                     | 0.675<br>8.63-1                                                     | 0.567<br>9.16-1                                                     | 0.483<br>9.56-1                                                    | 0.415<br>9.88-1                                                    | 0.358<br>1.02+0                                                    | 0.311<br>1.04+0                                                    | 0.270<br>1.06+0                                                  |
| 0.7 6                                                                         | $_{\delta}^{\gamma}$                                                                                              | 4.83-2                                                                      | 6.68-2                                                              | 1.03-1                                                              | 1.36-1                                                              | 1.66-1                                                              | 1.94-1                                                             | 2.20-1                                                             | 2.43-1                                                             | 2.65-1                                                             | 2.86-1                                                           |
|                                                                               |                                                                                                                   |                                                                             |                                                                     |                                                                     |                                                                     |                                                                     |                                                                    |                                                                    |                                                                    |                                                                    |                                                                  |
| $3p_{3/2}$ $E_b =$                                                            | $\frac{\sigma}{\beta}$                                                                                            | 1.202+0<br>1.163                                                            | 4.980-1<br>1.026                                                    | 1.346-1<br>0.826                                                    | 5.099-2<br>0.686                                                    | 2.349-2<br>0.579                                                    | 1.231-2<br>0.497                                                   | 7.075-3<br>0.430                                                   | 4.353-3<br>0.376                                                   | 2.825-3<br>0.330                                                   | 1.913-<br>0.292                                                  |
| сь —<br>6.7 eV                                                                | γ                                                                                                                 | 5.73-1                                                                      | 6.66-1                                                              | 7.88-1                                                              | 8.64-1                                                              | 9.15-1                                                              | 9.54-1                                                             | 9.84-1                                                             | 1.01+0                                                             | 1.03+0                                                             | 1.05+0                                                           |
|                                                                               | δ                                                                                                                 | 4.80-2                                                                      | 6.63-2                                                              | 1.02-1                                                              | 1.35-1                                                              | 1.66-1                                                              | 1.93-1                                                             | 2.19-1                                                             | 2.42-1                                                             | 2.64-1                                                             | 2.85                                                             |
| 7- 10 Am [N/                                                                  | e   3s <sup>2</sup> / 2 3                                                                                         | 3p <sub>1/2</sub> 3p <sub>3/2</sub>                                         |                                                                     |                                                                     |                                                                     |                                                                     |                                                                    |                                                                    |                                                                    |                                                                    |                                                                  |
| L- 10, AL. HIV                                                                | 1/2                                                                                                               | - 1/2 - 3/2                                                                 |                                                                     |                                                                     |                                                                     |                                                                     |                                                                    |                                                                    |                                                                    |                                                                    |                                                                  |
| 2- 10, AL. [IW                                                                | -                                                                                                                 | k (eV)                                                                      |                                                                     |                                                                     |                                                                     |                                                                     |                                                                    |                                                                    |                                                                    |                                                                    |                                                                  |
|                                                                               | ·                                                                                                                 | k (eV)                                                                      | 2000                                                                | 3000                                                                | 4000                                                                | 5000                                                                | 6000                                                               | 7000                                                               | 8000                                                               | 9000                                                               | 10000                                                            |
| Shell                                                                         | σ.                                                                                                                | 1500                                                                        | 2000                                                                | 3000<br>5.668+0                                                     | 4000<br>2.843+0                                                     | 5000<br>1 630+0                                                     | 6000<br>1 021+0                                                    | 7000<br>6.820—1                                                    | 8000<br>4 778 – 1                                                  | 9000<br>3.476—1                                                    | 10000                                                            |
| Shell<br>2s <sub>1/2</sub>                                                    | σ<br>β                                                                                                            | 1500<br>2.609+1                                                             | 1.418+1                                                             | 5.668+0                                                             | 2.843+0                                                             | 1.630+0                                                             | 1.021+0                                                            | 6.820-1                                                            | 4.778-1                                                            | 3.476-1                                                            | 2.606-                                                           |
| Shell<br>2s <sub>1/2</sub><br>E <sub>b</sub> =                                | β                                                                                                                 | 1500                                                                        |                                                                     |                                                                     |                                                                     | 1.630+0<br>1.970                                                    |                                                                    |                                                                    |                                                                    |                                                                    | 2.606-<br>1.921                                                  |
| Shell 2s <sub>1/2</sub> E <sub>b</sub> =                                      |                                                                                                                   | 1500<br>2.609+1<br>1.998                                                    | 1.418+1<br>1.996                                                    | 5.668+0<br>1.988                                                    | 2.843+0<br>1.979                                                    | 1.630+0                                                             | 1.021+0<br>1.960                                                   | 6.820-1<br>1.950                                                   | 4.778-1<br>1.941                                                   | 3.476-1<br>1.931                                                   | 2.606-<br>1.921<br>1.90+0                                        |
| Shell $2s_{1/2}$ $E_b = 326.0 \text{ eV}$                                     | $\beta$ $\gamma$                                                                                                  | 1500<br>2.609+1<br>1.998<br>1.84-1                                          | 1.418+1<br>1.996<br>3.55-1                                          | 5.668+0<br>1.988<br>6.54-1                                          | 2.843+0<br>1.979<br>9.04-1                                          | 1.630+0<br>1.970<br>1.12+0                                          | 1.021+0<br>1.960<br>1.31+0                                         | 6.820-1<br>1.950<br>1.48+0                                         | 4.778-1<br>1.941<br>1.63+0                                         | 3.476-1<br>1.931<br>1.77+0                                         | 2.606-<br>1.921<br>1.90+0<br>6.75-6                              |
| Shell $2s_{1/2}$ $E_b = 326.0 \text{ eV}$                                     | β<br>γ<br>δ                                                                                                       | 1500<br>2.609+1<br>1.998<br>1.84-1<br>-3.15-6                               | 1.418+1<br>1.996<br>3.55-1<br>-2.72-6                               | 5.668+0<br>1.988<br>6.54-1<br>-2.04-6                               | 2.843+0<br>1.979<br>9.04-1<br>-1.47-6                               | 1.630+0<br>1.970<br>1.12+0<br>-6.31-7                               | 1.021+0<br>1.960<br>1.31+0<br>2.95-7                               | 6.820-1<br>1.950<br>1.48+0<br>1.52-6                               | 4.778-1<br>1.941<br>1.63+0<br>3.00-6                               | 3.476-1<br>1.931<br>1.77+0<br>4.74-6                               | 2.606-<br>1.921<br>1.90+0<br>6.75-0                              |
| Shell $2s_{1/2}$ $E_b = 326.0 \text{ eV}$ $2p_{1/2}$ $E_b = 60.0 \text{ eV}$  | $\beta$ $\gamma$ $\delta$                                                                                         | 1500<br>2.609+1<br>1.998<br>1.84-1<br>-3.15-6<br>1.263+1<br>1.250<br>5.60-1 | 1.418+1<br>1.996<br>3.55-1<br>-2.72-6<br>5.184+0<br>1.117<br>6.69-1 | 5.668+0<br>1.988<br>6.54-1<br>-2.04-6<br>1.400+0<br>0.912<br>8.08-1 | 2.843+0<br>1.979<br>9.04-1<br>-1.47-6<br>5.326-1<br>0.760<br>8.94-1 | 1.630+0<br>1.970<br>1.12+0<br>-6.31-7<br>2.468-1                    | 1.021+0<br>1.960<br>1.31+0<br>2.95-7<br>1.302-1                    | 6.820-1<br>1.950<br>1.48+0<br>1.52-6<br>7.520-2<br>0.474<br>1.03+0 | 4.778-1<br>1.941<br>1.63+0<br>3.00-6<br>4.651-2<br>0.412<br>1.06+0 | 3.476-1<br>1.931<br>1.77+0<br>4.74-6<br>3.033-2<br>0.360<br>1.08+0 | 2.606-<br>1.921<br>1.90+0<br>6.75-6<br>2.063-<br>0.315<br>1.10+0 |
| Shell $2s_{1/2}$ $E_b = 326.0 \text{ eV}$ $2p_{1/2}$ $E_b = 6$                | $\beta$ $\gamma$ $\delta$ $\sigma$ $\beta$                                                                        | 1500<br>2.609+1<br>1.998<br>1.84-1<br>-3.15-6<br>1.263+1<br>1.250           | 1.418+1<br>1.996<br>3.55-1<br>-2.72-6<br>5.184+0<br>1.117           | 5.668+0<br>1.988<br>6.54-1<br>-2.04-6<br>1.400+0<br>0.912           | 2.843+0<br>1.979<br>9.04-1<br>-1.47-6<br>5.326-1<br>0.760           | 1.630+0<br>1.970<br>1.12+0<br>-6.31-7<br>2.468-1<br>0.643           | 1.021+0<br>1.960<br>1.31+0<br>2.95-7<br>1.302-1<br>0.549           | 6.820-1<br>1.950<br>1.48+0<br>1.52-6<br>7.520-2<br>0.474           | 4.778-1<br>1.941<br>1.63+0<br>3.00-6<br>4.651-2<br>0.412           | 3.476-1<br>1.931<br>1.77+0<br>4.74-6<br>3.033-2<br>0.360           | 2.606-<br>1.921<br>1.90+0<br>6.75-6<br>2.063-<br>0.315<br>1.10+0 |
| Shell $2s_{1/2}$ $E_b = 326.0 \text{ eV}$ $2p_{1/2}$ $E_b = 250.6 \text{ eV}$ | $\begin{array}{c} \beta \\ \gamma \\ \delta \end{array}$ $\begin{array}{c} \sigma \\ \beta \\ \gamma \end{array}$ | 1500<br>2.609+1<br>1.998<br>1.84-1<br>-3.15-6<br>1.263+1<br>1.250<br>5.60-1 | 1.418+1<br>1.996<br>3.55-1<br>-2.72-6<br>5.184+0<br>1.117<br>6.69-1 | 5.668+0<br>1.988<br>6.54-1<br>-2.04-6<br>1.400+0<br>0.912<br>8.08-1 | 2.843+0<br>1.979<br>9.04-1<br>-1.47-6<br>5.326-1<br>0.760<br>8.94-1 | 1.630+0<br>1.970<br>1.12+0<br>-6.31-7<br>2.468-1<br>0.643<br>9.52-1 | 1.021+0<br>1.960<br>1.31+0<br>2.95-7<br>1.302-1<br>0.549<br>9.95-1 | 6.820-1<br>1.950<br>1.48+0<br>1.52-6<br>7.520-2<br>0.474<br>1.03+0 | 4.778-1<br>1.941<br>1.63+0<br>3.00-6<br>4.651-2<br>0.412<br>1.06+0 | 3.476-1<br>1.931<br>1.77+0<br>4.74-6<br>3.033-2<br>0.360<br>1.08+0 | 2.606—<br>1.921<br>1.90+0<br>6.75—6<br>2.063—                    |

| able 1 (contin           | ued)                             |                   |                     |                      |                      |                   |                   |                  |                   |                  |                  |
|--------------------------|----------------------------------|-------------------|---------------------|----------------------|----------------------|-------------------|-------------------|------------------|-------------------|------------------|------------------|
| 248.5 eV                 | $\delta \gamma$                  | 5.65-1<br>4.55-2  | 6.75-1<br>6.18-2    | 8.13-1<br>9.53-2     | 8.97-1<br>1.27-1     | 9.54-1<br>1.56-1  | 9.95-1<br>1.83-1  | 1.03+0<br>2.09-1 | 1.05+0<br>2.32-1  | 1.07+0<br>2.54-1 | 1.09+0<br>2.75-1 |
| 3s <sub>1/2</sub>        | σ                                | 2.609+0           | 1.399+0             | 5.533-1              | 2.766-1              | 1.583-1           | 9.913-2           | 6.619-2          | 4.637-2           | 3.374-2          | 2.530-2          |
| $E_b = 29.2 \text{ eV}$  | $\beta$ $\gamma$                 | 1.997<br>2.56-1   | 1.994<br>4.16-1     | 1.987<br>6.97-1      | 1.978<br>9.38-1      | 1.969<br>1.15+0   | 1.959<br>1.33+0   | 1.949<br>1.50+0  | 1.939<br>1.65+0   | 1.930<br>1.79+0  | 1.920<br>1.92+0  |
|                          | δ                                | -1.56-6           | -1.51-6             | -1.32 - 6            | -9.21 - 7            | -1.73 - 7         | 8.03-7            | 2.04 - 6         | 3.56-6            | 5.34-6           | 7.38-6           |
| $3p_{1/2}$               | σ                                | 8.876-1           | 3.743-1             | 1.039-1              | 4.007-2              | 1.871-2           | 9.912-3           | 5.744-3          | 3.560-3           | 2.326-3          | 1.584-3          |
| $E_b = 15.9 \text{ eV}$  | $\beta$ $\gamma$                 | 1.202<br>5.64-1   | 1.069<br>6.63-1     | 0.870<br>7.97-1      | 0.728<br>8.83-1      | 0.619<br>9.42-1   | 0.532<br>9.86-1   | 0.461<br>1.02+0  | 0.401<br>1.05+0   | 0.351<br>1.07+0  | 0.307<br>1.10+0  |
| 13.5 CV                  | δ                                | 4.40-2            | 6.16-2              | 9.61-2               | 1.29-1               | 1.59-1            | 1.86-1            | 2.11-1           | 2.35-1            | 2.56-1           | 2.77-1           |
| $3p_{3/2}$               | σ                                | 1.729+0           | 7.267 - 1           | 2.008-1              | 7.715-2              | 3.590-2           | 1.896-2           | 1.096-2          | 6.774-3           | 4.414-3          | 2.999-3          |
| $E_b = 15.8 \text{ eV}$  | β                                | 1.212<br>5.68-1   | 1.078<br>6.68-1     | 0.881                | 0.740                | 0.632<br>9.43-1   | 0.546             | 0.477<br>1.02+0  | 0.419             | 0.370<br>1.07+0  | 0.329<br>1.09+0  |
| 13.6 EV                  | $\delta$                         | 4.37-2            | 6.10-2              | 8.01-1<br>9.53-2     | 8.85-1<br>1.28-1     | 1.58-1            | 9.85-1<br>1.85-1  | 2.10-1           | 1.04+0<br>2.34-1  | 2.55-1           | 2.76-1           |
| Z= 19, K : [Ar           | :]4s <sup>1</sup> <sub>1/2</sub> |                   |                     |                      |                      |                   |                   |                  |                   |                  |                  |
| a                        |                                  | k (eV)            |                     |                      | 1000                 |                   |                   | =                |                   |                  | 10000            |
| Shell                    |                                  | 1500              | 2000                | 3000                 | 4000                 | 5000              | 6000              | 7000             | 8000              | 9000             | 10000            |
| $ 2s_{1/2} \\ E_b = $    | $\frac{\sigma}{\beta}$           | 2.990+1<br>1.999  | 1.647+1<br>1.997    | 6.699+0<br>1.989     | 3.400+0<br>1.981     | 1.967+0<br>1.972  | 1.241+0<br>1.962  | 8.332-1<br>1.953 | 5.865-1<br>1.943  | 4.283-1<br>1.933 | 3.222-1<br>1.923 |
| 377.1 eV                 | γ                                | 1.34-1            | 3.03-1              | 5.99-1               | 8.51-1               | 1.07+0            | 1.26+0            | 1.43+0           | 1.58+0            | 1.73+0           | 1.86+0           |
|                          | δ                                | -4.32-6           | -3.67-6             | -2.87-6              | -2.17-6              | -1.34-6           | -3.42-7           | 9.12-7           | 2.47-6            | 4.31-6           | 6.45-6           |
| $2p_{1/2}$               | $\sigma$                         | 1.639+1<br>1.291  | 6.823+0<br>1.168    | 1.877+0<br>0.963     | 7.236-1<br>0.810     | 3.386-1<br>0.693  | 1.799-1<br>0.599  | 1.045-1<br>0.523 | 6.495 - 2 $0.460$ | 4.252-2<br>0.406 | 2.902-2<br>0.359 |
| $E_b = 296.3 \text{ eV}$ | $eta \ \gamma$                   | 5.42-1            | 6.63-1              | 0.963<br>8.15-1      | 9.09-1               | 0.693<br>9.74-1   | 1.02+0            | 1.06+0           | 1.09+0            | 1.11+0           | 0.359<br>1.14+0  |
|                          | δ                                | 4.18-2            | 5.79-2              | 8.94-2               | 1.20-1               | 1.49-1            | 1.76-1            | 2.02-1           | 2.25-1            | 2.47 - 1         | 2.68-1           |
| $2p_{3/2}$               | σ                                | 3.177+1           | 1.319+1             | 3.617+0              | 1.390+0              | 6.485-1           | 3.435-1           | 1.991-1          | 1.234-1           | 8.059-2          | 5.488-2          |
| $E_b = 293.6 \text{ eV}$ | $\beta$ $\gamma$                 | 1.301<br>5.49-1   | 1.178<br>6.69-1     | 0.974<br>8.21-1      | 0.821<br>9.14-1      | 0.705<br>9.77-1   | 0.613<br>1.02+0   | 0.539<br>1.06+0  | 0.477<br>1.09+0   | 0.425<br>1.11+0  | 0.380<br>1.13+0  |
| 203.0 01                 | δ                                | 4.17-2            | 5.77-2              | 8.88-2               | 1.19-1               | 1.48-1            | 1.75-1            | 2.01-1           | 2.24-1            | 2.46-1           | 2.67-1           |
| 3s <sub>1/2</sub>        | σ                                | 3.349+0           | 1.811+0             | 7.274-1              | 3.677-1              | 2.123-1           | 1.338-1           | 8.982-2          | 6.322-2           | 4.617-2          | 3.474-2          |
| $E_b = 33.9 \text{ eV}$  | β                                | 1.998<br>2.20-1   | 1.995<br>3.73-1     | 1.988<br>6.53-1      | 1.980<br>8.94-1      | 1.970<br>1.10+0   | 1.961<br>1.29+0   | 1.951<br>1.46+0  | 1.941<br>1.61+0   | 1.932<br>1.75+0  | 1.922<br>1.88+0  |
| 33.9 EV                  | $\delta \gamma$                  | -2.03-6           | -2.04-6             | -1.84-6              | -1.41-6              | -6.55-7           | 3.53-7            | 1.63-6           | 3.22-6            | 5.10-6           | 7.28-6           |
| 3p <sub>1/2</sub>        | σ                                | 1.337+0           | 5.738-1             | 1.632-1              | 6.397-2              | 3.022-2           | 1.615-2           | 9.425-3          | 5.875-3           | 3.856-3          | 2.637-3          |
| $E_b =$                  | β                                | 1.244             | 1.119               | 0.917                | 0.773                | 0.662             | 0.573             | 0.500            | 0.438             | 0.386            | 0.340            |
| 18.1 eV                  | $\delta$                         | 5.55-1 $4.05-2$   | 6.61-1 $5.72-2$     | 8.04-1 $8.98-2$      | 8.97 - 1 $1.21 - 1$  | 9.63-1<br>1.50-1  | 1.01+0<br>1.77-1  | 1.05+0<br>2.02-1 | 1.08+0<br>2.26-1  | 1.11+0<br>2.48-1 | 1.13+0<br>2.68-1 |
| 3p <sub>3/2</sub>        | σ                                | 2.603+0           | 1.114+0             | 3.151-1              | 1.230-1              | 5.792-2           | 3.086-2           | 1.796-2          | 1.116-2           | 7.306-3          | 4.984-3          |
| $E_b = 17.8 \text{ eV}$  | β                                | 1.254             | 1.130               | 0.929                | 0.785                | 0.675             | 0.587             | 0.515            | 0.456             | 0.405            | 0.361            |
| 17.0 EV                  | $_{\delta}^{\gamma}$             | 5.59-1<br>4.02-2  | 6.65 - 1 $5.66 - 2$ | 8.08-1 $8.89-2$      | 9.01-1<br>1.20-1     | 9.65-1<br>1.49-1  | 1.01+0<br>1.76-1  | 1.05+0<br>2.01-1 | 1.08+0<br>2.24-1  | 1.10+0<br>2.46-1 | 1.12+0<br>2.67-1 |
| 4s <sub>1/2</sub>        | σ                                | 1.262-1           | 6.800-2             | 2.718-2              | 1.371-2              | 7.902-3           | 4.977-3           | 3.339-3          | 2.349-3           | 1.715-3          | 1.290-3          |
| $E_b =$                  | β                                | 1.998             | 1.995               | 1.988                | 1.979                | 1.970             | 1.961             | 1.951            | 1.941             | 1.931            | 1.922            |
| 0.7 eV                   | $\frac{\gamma}{\delta}$          | 2.25-1<br>-1.83-6 | 3.80-1 $-1.74-6$    | 6.59-1<br>-1.71-6    | 8.99 - 1 $-1.28 - 6$ | 1.11+0<br>-6.33-7 | 1.29+0<br>2.89-7  | 1.46+0<br>1.48-6 | 1.61+0<br>3.16-6  | 1.75+0<br>5.15-6 | 1.88+0<br>6.81-6 |
| Z= 20, Ca: [A:           |                                  | 1.03 0            | 1.7 1 0             | 1.71 0               | 1.20 0               | 0.55 7            | 2.03 7            | 1.10 0           | 3.10 0            | 3.13             | 0.01 0           |
|                          | -/-                              | k (eV)            |                     |                      |                      |                   |                   |                  |                   |                  |                  |
| Shell                    |                                  | 1500              | 2000                | 3000                 | 4000                 | 5000              | 6000              | 7000             | 8000              | 9000             | 10000            |
| 2s <sub>1/2</sub>        | σ                                | 3.399+1           | 1.894+1             | 7.830+0              | 4.019+0              | 2.344+0           | 1.488+0           | 1.005+0          | 7.104-1           | 5.207-1          | 3.930-1          |
| $E_b = 437.8 \text{ eV}$ | $\beta$                          | 1.999<br>8.76-2   | 1.997<br>2.47-1     | 1.991<br>5.45-1      | 1.983<br>7.97-1      | 1.974<br>1.01+0   | 1.964<br>1.21+0   | 1.955<br>1.38+0  | 1.945<br>1.54+0   | 1.935<br>1.68+0  | 1.926<br>1.82+0  |
| 437.0 CV                 | $\delta$                         | -5.47-6           | -4.71-6             | -3.85-6              | -3.01-6              | -2.16-6           | -1.11-6           | 1.89-7           | 1.77-6            | 3.65-6           | 5.91-6           |
| 2p <sub>1/2</sub>        | σ                                | 2.099+1           | 8.832+0             | 2.470+0              | 9.637-1              | 4.549-1           | 2.433-1           | 1.422-1          | 8.873-2           | 5.831-2          | 3.993-2          |
| $E_b =$                  | β                                | 1.330             | 1.216               | 1.014                | 0.866                | 0.750             | 0.654             | 0.575            | 0.508             | 0.451            | 0.401            |
| 350.0 eV                 | $\delta$                         | 5.23-1<br>3.92-2  | 6.53-1<br>5.37-2    | 8.19-1<br>8.37-2     | 9.24-1<br>1.14-1     | 9.96-1<br>1.42-1  | 1.05+0<br>1.69-1  | 1.09+0<br>1.93-1 | 1.12+0<br>2.17-1  | 1.15+0<br>2.38-1 | 1.17+0<br>2.59-1 |
| 2p <sub>3/2</sub>        | σ                                | 4.060+1           | 1.704+1             | 4.748+0              | 1.846+0              | 8.689-1           | 4.634-1           | 2.700-1          | 1.681-1           | 1.102-1          | 7.525-2          |
| $E_b =$                  | β                                | 1.341             | 1.227               | 1.025                | 0.879                | 0.764             | 0.669             | 0.592            | 0.526             | 0.470            | 0.423            |
| 346.4 eV                 | $\delta \gamma$                  | 5.30-1<br>3.92-2  | 6.60-1 $5.34-2$     | 8.26-1 $8.31-2$      | 9.30-1<br>1.13-1     | 1.00+0<br>1.41-1  | 1.05+0<br>1.67-1  | 1.09+0<br>1.92-1 | 1.12+0<br>2.15-1  | 1.15+0<br>2.37-1 | 1.17+0<br>2.57-1 |
| 3s <sub>1/2</sub>        | σ                                | 4.202+0           | 2.290+0             | 9.314-1              | 4.754-1              | 2.766-1           | 1.755-1           | 1.184-1          | 8.369-2           | 6.135-2          | 4.630-2          |
| $E_b =$                  | β                                | 1.998             | 1.996               | 1.989                | 1.981                | 1.972             | 1.963             | 1.953            | 1.944             | 1.934            | 1.924            |
| 43.7 eV                  | $\delta \gamma$                  | 1.82-1<br>-2.61-6 | 3.33-1<br>-2.71-6   | 6.08 - 1 $-2.45 - 6$ | 8.46-1 $-2.05-6$     | 1.05+0<br>-1.30-6 | 1.24+0<br>-3.18-7 | 1.41+0<br>1.03-6 | 1.57+0<br>2.68-6  | 1.71+0<br>4.62-6 | 1.84+0<br>6.95-6 |
| 3p <sub>1/2</sub>        | σ                                | 1.908+0           | 8.306-1             | 2.415-1              | 9.613-2              | 4.592-2           | 2.475-2           | 1.454-2          | 9.109-3           | 6.004-3          | 4.122-3          |
| $E_b =$                  | β                                | 1.288             | 1.160               | 0.967                | 0.829                | 0.717             | 0.625             | 0.550            | 0.485             | 0.431            | 0.383            |
| 25.8 eV                  | γ                                | 5.45-1            | 6.55-1              | 8.09-1               | 9.11-1               | 9.82-1            | 1.04+0            | 1.08+0           | 1.11+0            | 1.14+0           | 1.16+0           |
|                          | δ                                | 3.71-2            | 5.25-2              | 8.43-2               | 1.15-1               | 1.43-1            | 1.70-1            | 1.95-1           | 2.18-1            | 2.40-1           | 2.60-1           |
|                          |                                  |                   |                     |                      |                      |                   |                   |                  |                   |                  |                  |

| ~  |   |      |   | ,        |    |   |   |   |    |   | , | ` |
|----|---|------|---|----------|----|---|---|---|----|---|---|---|
| Tа | n | le ' | ш | $\Gamma$ | 'n | n | П | n | 11 | ρ | П | 1 |

| $3p_{3/2}$ $E_b =$ 25.5 eV                       | $\sigma$ $\beta$ $\gamma$ $\delta$ | 3.713+0<br>1.299<br>5.50-1<br>3.68-2  | 1.611+0<br>1.172<br>6.61-1<br>5.19-2  | 4.658-1<br>0.980<br>8.14-1<br>8.34-2  | 1.846-1<br>0.842<br>9.15-1<br>1.14-1  | 8.787-2<br>0.730<br>9.85-1<br>1.42-1  | 4.720-2<br>0.640<br>1.04+0<br>1.69-1  | 2.764-2<br>0.566<br>1.08+0<br>1.93-1 | 1.727-2<br>0.503<br>1.11+0<br>2.17-1 | 1.135-2<br>0.450<br>1.13+0<br>2.39-1 | 7.773-3<br>0.404<br>1.15+0<br>2.59-1 |
|--------------------------------------------------|------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| $4s_{1/2}$ $E_b =$ 1.8 eV                        | σ<br>β<br>γ<br>δ                   | 2.451-1<br>1.998<br>1.90-1<br>-2.34-6 | 1.329-1<br>1.996<br>3.41-1<br>-2.28-6 | 5.373-2<br>1.989<br>6.12-1<br>-2.29-6 | 2.736-2<br>1.981<br>8.50-1<br>-1.85-6 | 1.590-2<br>1.972<br>1.06+0<br>-1.16-6 | 1.008-2<br>1.963<br>1.25+0<br>-2.48-7 | 6.795-3<br>1.953<br>1.42+0<br>9.46-7 | 4.801-3<br>1.943<br>1.57+0<br>2.68-6 | 3.518-3<br>1.934<br>1.72+0<br>4.92-6 | 2.654-3<br>1.924<br>1.85+0<br>6.22-6 |
| Z= 21, Sc: [A                                    | r]3d <sub>3/2</sub> 4              |                                       |                                       |                                       |                                       |                                       |                                       |                                      |                                      |                                      |                                      |
| Shell                                            |                                    | k (eV)<br>1500                        | 2000                                  | 3000                                  | 4000                                  | 5000                                  | 6000                                  | 7000                                 | 8000                                 | 9000                                 | 10000                                |
| 2s <sub>1/2</sub>                                | σ                                  | 3.830+1                               | 2.158+1                               | 9.054+0                               | 4.695+0                               | 2.759+0                               | 1.763+0                               | 1.196+0                              | 8.494-1                              | 6.249-1                              | 4.731-1                              |
| $E_b =$                                          | β                                  | 2.000                                 | 1.998                                 | 1.992                                 | 1.984                                 | 1.976                                 | 1.967                                 | 1.957                                | 1.948                                | 1.938                                | 1.928                                |
| 500.4 eV                                         | $\gamma \\ \delta$                 | 4.28 - 2 $-7.11 - 6$                  | 1.94-1 $-6.28-6$                      | 4.88 - 1 $-4.96 - 6$                  | 7.40-1<br>-4.16-6                     | 9.60-1<br>-3.23-6                     | 1.15+0<br>-2.14-6                     | 1.33+0<br>-7.86-7                    | 1.49+0<br>8.17-7                     | 1.64+0<br>2.77-6                     | 1.77+0<br>5.15-6                     |
| 2p <sub>1/2</sub>                                | σ                                  | 2.657+1                               | 1.129+1                               | 3.202+0                               | 1.262+0                               | 6.005-1                               | 3.232-1                               | 1.898-1                              | 1.190-1                              | 7.846-2                              | 5.390-2                              |
| $E_b =$                                          | β                                  | 1.366                                 | 1.258                                 | 1.064                                 | 0.918                                 | 0.801                                 | 0.704                                 | 0.623                                | 0.554                                | 0.494                                | 0.442                                |
| 406.7 eV                                         | γ                                  | 4.97-1                                | 6.38-1                                | 8.20 - 1                              | 9.35 - 1                              | 1.01+0                                | 1.07+0                                | 1.12+0                               | 1.15+0                               | 1.18+0                               | 1.21+0                               |
|                                                  | δ                                  | 3.65-2                                | 4.98-2                                | 7.85-2                                | 1.07-1                                | 1.35-1                                | 1.61-1                                | 1.85-1                               | 2.08-1                               | 2.30-1                               | 2.50-1                               |
| $\begin{array}{l} 2p_{3/2} \\ E_b = \end{array}$ | $\frac{\sigma}{\beta}$             | 5.139+1<br>1.378                      | 2.176+1<br>1.270                      | 6.146+0<br>1.077                      | 2.414+0<br>0.932                      | 1.145+0<br>0.815                      | 6.142-1<br>0.719                      | 3.597-1<br>0.639                     | 2.248-1<br>0.572                     | 1.479-1<br>0.514                     | 1.013-1<br>0.463                     |
| 402.2 eV                                         | γ                                  | 5.04-1                                | 6.46 - 1                              | 8.29 - 1                              | 9.43-1                                | 1.02+0                                | 1.08+0                                | 1.12+0                               | 1.15+0                               | 1.18+0                               | 1.20+0                               |
|                                                  | δ                                  | 3.65-2                                | 4.96-2                                | 7.79-2                                | 1.06-1                                | 1.34-1                                | 1.60-1                                | 1.84-1                               | 2.07-1                               | 2.28-1                               | 2.49-1                               |
| $3s_{1/2}$                                       | σ                                  | 5.000+0                               | 2.742+0                               | 1.127+0                               | 5.801-1                               | 3.399-1                               | 2.169-1                               | 1.471-1                              | 1.044-1                              | 7.678-2                              | 5.813-2                              |
| $E_b = 53.8 \text{ eV}$                          | $eta \gamma$                       | 1.999<br>1.47-1                       | 1.997<br>2.92-1                       | 1.990<br>5.63-1                       | 1.982<br>7.98-1                       | 1.974<br>1.01+0                       | 1.965<br>1.20+0                       | 1.955<br>1.37+0                      | 1.946<br>1.52+0                      | 1.936<br>1.67+0                      | 1.926<br>1.80+0                      |
|                                                  | δ                                  | -3.33-6                               | -3.43-6                               | -3.23-6                               | -2.83-6                               | -2.12-6                               | -1.11-6                               | 2.51-7                               | 1.94-6                               | 3.96-6                               | 6.36-6                               |
| $\begin{array}{c} 3p_{1/2} \\ E_b = \end{array}$ | σ                                  | 2.514+0                               | 1.108+0                               | 3.284-1                               | 1.325-1                               | 6.393-2                               | 3.472-2                               | 2.052-2                              | 1.293-2                              | 8.559-3                              | 5.896-3                              |
| $E_b = 33.8 \text{ eV}$                          | β                                  | 1.325<br>5.32-1                       | 1.201<br>6.49-1                       | 1.014<br>8.12-1                       | 0.875<br>9.21-1                       | 0.763<br>9.99-1                       | 0.671<br>1.06+0                       | 0.594<br>1.10+0                      | 0.528<br>1.14+0                      | 0.471<br>1.17+0                      | 0.422<br>1.19+0                      |
| 33.0 EV                                          | $\gamma \over \delta$              | 3.36-2                                | 4.83-2                                | 7.89-2                                | 1.08-1                                | 1.36-1                                | 1.62-1                                | 1.87-1                               | 2.10-1                               | 2.31-1                               | 2.52-1                               |
| 3p <sub>3/2</sub>                                | σ                                  | 4.871+0                               | 2.140+0                               | 6.304-1                               | 2.532-1                               | 1.217-1                               | 6.590-2                               | 3.883-2                              | 2.439-2                              | 1.610-2                              | 1.106-2                              |
| $E_b = 31.5 \text{ eV}$                          | β                                  | 1.337                                 | 1.213                                 | 1.027                                 | 0.889                                 | 0.778                                 | 0.686                                 | 0.610                                | 0.546                                | 0.491                                | 0.443                                |
| 31.5 eV                                          | $\delta \gamma$                    | 5.37-1<br>3.33-2                      | 6.55 - 1 $4.77 - 2$                   | 8.18-1<br>7.79-2                      | 9.27-1<br>1.07-1                      | 1.00+0<br>1.35-1                      | 1.06+0<br>1.61-1                      | 1.10+0<br>1.85-1                     | 1.14+0<br>2.08-1                     | 1.16+0<br>2.30-1                     | 1.19+0<br>2.50-1                     |
| 3d <sub>3/2</sub>                                | σ                                  | 1.526-1                               | 4.998-2                               | 9.699-3                               | 2.880-3                               | 1.092-3                               | 4.868-4                               | 2.434-4                              | 1.327-4                              | 7.740-5                              | 4.767-5                              |
| $E_b = 6.6 \text{ eV}$                           | β                                  | 0.663<br>5.34-1                       | 0.566<br>5.85-1                       | 0.452<br>6.62-1                       | 0.377<br>7.12-1                       | 0.317<br>7.40-1                       | 0.265<br>7.53-1                       | 0.221<br>7.57-1                      | 0.181<br>7.54-1                      | 0.148<br>7.48-1                      | 0.116<br>7.36-1                      |
| 0.0 6                                            | $\frac{\gamma}{\delta}$            | 1.34-1                                | 1.71-1                                | 2.36-1                                | 2.95-1                                | 3.47-1                                | 3.93-1                                | 4.36-1                               | 4.75—1                               | 5.11-1                               | 5.43-1                               |
| 4s <sub>1/2</sub>                                | σ                                  | 2.888-1                               | 1.575-1                               | 6.434-2                               | 3.304-2                               | 1.934-2                               | 1.233-2                               | 8.354-3                              | 5.927-3                              | 4.358-3                              | 3.298-3                              |
| $E_b = 1.7 \text{ eV}$                           | β                                  | 1.999                                 | 1.996<br>3.02-1                       | 1.990<br>5.69-1                       | 1.982<br>8.04-1                       | 1.974<br>1.01+0                       | 1.964<br>1.20+0                       | 1.955<br>1.38+0                      | 1.945<br>1.53+0                      | 1.936<br>1.68+0                      | 1.926<br>1.81+0                      |
| 1.7 eV                                           | $\gamma \\ \delta$                 | 1.56-1 $-3.02-6$                      | -3.00-6                               | -2.95-6                               | -2.62-6                               | -1.88-6                               | -9.83-7                               | 2.88-7                               | 2.00-6                               | 4.31-6                               | 5.85-6                               |
| Z= 22, Ti: [Aı                                   | r]3d <sub>3/2</sub> 4              | ls <sub>1/2</sub>                     |                                       |                                       |                                       |                                       |                                       |                                      |                                      |                                      |                                      |
|                                                  | -,                                 | k (eV)                                |                                       |                                       |                                       |                                       |                                       |                                      |                                      |                                      |                                      |
| Shell                                            |                                    | 1500                                  | 2000                                  | 3000                                  | 4000                                  | 5000                                  | 6000                                  | 7000                                 | 8000                                 | 9000                                 | 10000                                |
| 2s <sub>1/2</sub>                                | σ                                  | 4.265+1                               | 2.430+1                               | 1.035+1                               | 5.418+0                               | 3.209+0                               | 2.063+0                               | 1.406+0                              | 1.003+0                              | 7.403-1                              | 5.622-1                              |
| $E_b = 563.7 \text{ eV}$                         | β                                  | 2.000<br>4.05-3                       | 1.999<br>1.43-1                       | 1.993<br>4.31-1                       | 1.986<br>6.83-1                       | 1.978<br>9.03-1                       | 1.969<br>1.10+0                       | 1.959<br>1.28+0                      | 1.950<br>1.44+0                      | 1.940<br>1.59+0                      | 1.931<br>1.73+0                      |
| 303.7 EV                                         | $\frac{\gamma}{\delta}$            | -8.88-6                               | -7.91-6                               | -6.58-6                               | -5.60-6                               | -4.63-6                               | -3.46-6                               | -2.01-6                              | -3.55-7                              | 1.63-6                               | 4.09-6                               |
| 2p <sub>1/2</sub>                                | σ                                  | 3.291+1                               | 1.413+1                               | 4.066+0                               | 1.620+0                               | 7.767-1                               | 4.207-1                               | 2.483-1                              | 1.564-1                              | 1.035-1                              | 7.133-2                              |
| $E_b =$                                          | β                                  | 1.395                                 | 1.294                                 | 1.111                                 | 0.968                                 | 0.850                                 | 0.752                                 | 0.669                                | 0.598                                | 0.537                                | 0.483                                |
| 461.5 eV                                         | $\gamma \\ \delta$                 | 4.65-1 $3.40-2$                       | 6.18 - 1 $4.63 - 2$                   | 8.17-1<br>7.38-2                      | 9.43-1<br>1.02-1                      | 1.03+0<br>1.28-1                      | 1.09+0<br>1.54-1                      | 1.14+0<br>1.78-1                     | 1.18+0<br>2.00-1                     | 1.21+0<br>2.22-1                     | 1.24+0<br>2.42-1                     |
| $2p_{3/2}$                                       | σ                                  | 6.365+1                               | 2.722+1                               | 7.795+0                               | 3.093+0                               | 1.478+0                               | 7.980-1                               | 4.696-1                              | 2.948-1                              | 1.946-1                              | 1.338-1                              |
| $E_b =$                                          | β                                  | 1.408                                 | 1.308                                 | 1.126                                 | 0.983                                 | 0.865                                 | 0.768                                 | 0.686                                | 0.617                                | 0.557                                | 0.505                                |
| 455.5 eV                                         | γ                                  | 4.73-1                                | 6.28-1                                | 8.27-1                                | 9.52-1                                | 1.04+0                                | 1.10+0                                | 1.15+0                               | 1.18+0                               | 1.21+0                               | 1.24+0                               |
| 20                                               | δ                                  | 3.40-2                                | 4.60-2                                | 7.32-2                                | 1.01-1                                | 1.27-1                                | 1.52-1                                | 1.76-1                               | 1.98-1                               | 2.20-1                               | 7.120 2                              |
| $3s_{1/2}$<br>$E_b =$                            | $\frac{\sigma}{\beta}$             | 5.813+0<br>1.999                      | 3.208+0<br>1.997                      | 1.331+0<br>1.991                      | 6.911-1<br>1.984                      | 4.077 – 1<br>1.975                    | 2.616-1<br>1.967                      | 1.782-1<br>1.957                     | 1.270-1<br>1.948                     | 9.376-2<br>1.938                     | 7.120-2<br>1.929                     |
| 60.3 eV                                          | γ                                  | 1.13 - 1                              | 2.53 - 1                              | 5.17 - 1                              | 7.51 - 1                              | 9.60 - 1                              | 1.15+0                                | 1.32+0                               | 1.48+0                               | 1.62+0                               | 1.76+0                               |
|                                                  | δ                                  | -4.23-6                               | -4.30-6                               | -4.21-6                               | -3.77-6                               | -3.12-6                               | -2.09-6                               | -7.25-7                              | 1.02-6                               | 3.12-6                               | 5.56-6                               |
| $3p_{1/2}$                                       | $\sigma_{\beta}$                   | 3.193+0<br>1.357                      | 1.427+0                               | 4.307 – 1<br>1.058                    | 1.761-1                               | 8.587-2<br>0.807                      | 4.702-2                               | 2.797-2                              | 1.771-2<br>0.569                     | 1.178-2                              | 8.146-3                              |
| $E_b = 35.6 \text{ eV}$                          | $\beta$ $\gamma$                   | 1.357<br>5.16-1                       | 1.238<br>6.39-1                       | 1.058<br>8.12-1                       | 0.919<br>9.28-1                       | 0.807<br>1.01+0                       | 0.714<br>1.08+0                       | 0.636<br>1.12+0                      | 0.569<br>1.16+0                      | 0.511<br>1.20+0                      | 0.459<br>1.22+0                      |
|                                                  | δ                                  | 3.04-2                                | 4.46-2                                | 7.39-2                                | 1.02-1                                | 1.29-1                                | 1.55-1                                | 1.79-1                               | 2.02 - 1                             | 2.23-1                               | 2.43-1                               |
| 3p <sub>3/2</sub>                                | σ                                  | 6.149+0                               | 2.737+0                               | 8.212-1                               | 3.343-1                               | 1.623-1                               | 8.856-2                               | 5.251-2                              | 3.315-2                              | 2.198-2                              | 1.516-2                              |

| Table 1 (contin                                                                                                                                                                                                                    | ued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                |                                                                                                                                                                                   |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_b =$                                                                                                                                                                                                                            | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.252                                                                                                                                                                                                                                          | 1.072                                                                                                                                                                             | 0.934                                                                                                                                                                                                                                          | 0.822                                                                                                                                                                                                                                          | 0.730                                                                                                                                                                                                                                          | 0.653                                                                                                                                                                                                                                          | 0.587                                                                                                                                                                                                                                         | 0.531                                                                                                                                                                                                                             | 0.481                                                                                                                                                                                                                                        |
| 32.2 eV                                                                                                                                                                                                                            | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.21-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.46-1                                                                                                                                                                                                                                         | 8.19-1                                                                                                                                                                            | 9.35-1                                                                                                                                                                                                                                         | 1.02+0                                                                                                                                                                                                                                         | 1.08+0                                                                                                                                                                                                                                         | 1.13+0                                                                                                                                                                                                                                         | 1.16+0                                                                                                                                                                                                                                        | 1.19+0                                                                                                                                                                                                                            | 1.22+0                                                                                                                                                                                                                                       |
| 0.1                                                                                                                                                                                                                                | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.01-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.40-2                                                                                                                                                                                                                                         | 7.29-2                                                                                                                                                                            | 1.01-1                                                                                                                                                                                                                                         | 1.28-1                                                                                                                                                                                                                                         | 1.53-1                                                                                                                                                                                                                                         | 1.77-1                                                                                                                                                                                                                                         | 2.00-1                                                                                                                                                                                                                                        | 2.21-1                                                                                                                                                                                                                            | 2.42-1                                                                                                                                                                                                                                       |
| $3d_{3/2}$ $E_b =$                                                                                                                                                                                                                 | $\frac{\sigma}{eta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.580-1<br>0.699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.560-2<br>0.595                                                                                                                                                                                                                               | 1.698-2<br>0.475                                                                                                                                                                  | 5.131-3<br>0.398                                                                                                                                                                                                                               | 1.971-3<br>0.336                                                                                                                                                                                                                               | 8.872-4<br>0.285                                                                                                                                                                                                                               | 4.470-4<br>0.240                                                                                                                                                                                                                               | 2.452-4<br>0.200                                                                                                                                                                                                                              | 1.437—4<br>0.165                                                                                                                                                                                                                  | 8.880-5<br>0.132                                                                                                                                                                                                                             |
| 3.7 eV                                                                                                                                                                                                                             | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.46-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.99-1                                                                                                                                                                                                                                         | 6.77-1                                                                                                                                                                            | 7.30-1                                                                                                                                                                                                                                         | 7.62-1                                                                                                                                                                                                                                         | 7.80-1                                                                                                                                                                                                                                         | 7.87-1                                                                                                                                                                                                                                         | 7.87-1                                                                                                                                                                                                                                        | 7.83-1                                                                                                                                                                                                                            | 7.74-1                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                    | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.29 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.64 - 1                                                                                                                                                                                                                                       | 2.29 - 1                                                                                                                                                                          | 2.86 - 1                                                                                                                                                                                                                                       | 3.38 - 1                                                                                                                                                                                                                                       | 3.84 - 1                                                                                                                                                                                                                                       | 4.26 - 1                                                                                                                                                                                                                                       | 4.65 - 1                                                                                                                                                                                                                                      | 5.01 - 1                                                                                                                                                                                                                          | 5.34 - 1                                                                                                                                                                                                                                     |
| 4s <sub>1/2</sub>                                                                                                                                                                                                                  | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.261-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.788-1                                                                                                                                                                                                                                        | 7.369-2                                                                                                                                                                           | 3.814-2                                                                                                                                                                                                                                        | 2.247-2                                                                                                                                                                                                                                        | 1.440-2                                                                                                                                                                                                                                        | 9.807-3                                                                                                                                                                                                                                        | 6.985-3                                                                                                                                                                                                                                       | 5.154-3                                                                                                                                                                                                                           | 3.913-3                                                                                                                                                                                                                                      |
| $E_b =$                                                                                                                                                                                                                            | $\beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.997                                                                                                                                                                                                                                          | 1.991                                                                                                                                                                             | 1.984                                                                                                                                                                                                                                          | 1.975                                                                                                                                                                                                                                          | 1.966                                                                                                                                                                                                                                          | 1.957                                                                                                                                                                                                                                          | 1.948                                                                                                                                                                                                                                         | 1.938                                                                                                                                                                                                                             | 1.928                                                                                                                                                                                                                                        |
| 1.6 eV                                                                                                                                                                                                                             | $_{\delta}^{\gamma}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.23-1<br>-3.83-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.63-1<br>-3.80-6                                                                                                                                                                                                                              | 5.25-1<br>-3.79-6                                                                                                                                                                 | 7.59-1<br>-3.48-6                                                                                                                                                                                                                              | 9.68-1 $-2.78-6$                                                                                                                                                                                                                               | 1.16+0<br>-1.86-6                                                                                                                                                                                                                              | 1.33+0<br>-5.75-7                                                                                                                                                                                                                              | 1.49+0<br>1.16-6                                                                                                                                                                                                                              | 1.63+0<br>3.51-6                                                                                                                                                                                                                  | 1.77+0<br>5.19-6                                                                                                                                                                                                                             |
| Z= 23, V : [Ar                                                                                                                                                                                                                     | ]3d <sub>3/2</sub> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s <sub>1/2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                |                                                                                                                                                                                   |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | k (eV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                |                                                                                                                                                                                   |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                              |
| Shell                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2000                                                                                                                                                                                                                                           | 3000                                                                                                                                                                              | 4000                                                                                                                                                                                                                                           | 5000                                                                                                                                                                                                                                           | 6000                                                                                                                                                                                                                                           | 7000                                                                                                                                                                                                                                           | 8000                                                                                                                                                                                                                                          | 9000                                                                                                                                                                                                                              | 10000                                                                                                                                                                                                                                        |
| $2s_{1/2}$                                                                                                                                                                                                                         | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.700+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.709+1                                                                                                                                                                                                                                        | 1.170+1                                                                                                                                                                           | 6.186+0                                                                                                                                                                                                                                        | 3.690+0                                                                                                                                                                                                                                        | 2.386+0                                                                                                                                                                                                                                        | 1.635+0                                                                                                                                                                                                                                        | 1.170+0                                                                                                                                                                                                                                       | 8.671 - 1                                                                                                                                                                                                                         | 6.605 - 1                                                                                                                                                                                                                                    |
| $E_b = 628.2 \text{ eV}$                                                                                                                                                                                                           | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.999                                                                                                                                                                                                                                          | 1.995                                                                                                                                                                             | 1.988                                                                                                                                                                                                                                          | 1.979                                                                                                                                                                                                                                          | 1.971                                                                                                                                                                                                                                          | 1.962                                                                                                                                                                                                                                          | 1.952                                                                                                                                                                                                                                         | 1.943                                                                                                                                                                                                                             | 1.933                                                                                                                                                                                                                                        |
| 028.2 eV                                                                                                                                                                                                                           | $\gamma \\ \delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2.68-2 $-1.15-5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.48 - 2 $-1.01 - 5$                                                                                                                                                                                                                           | 3.73-1<br>-8.32-6                                                                                                                                                                 | 6.24-1 $-7.26-6$                                                                                                                                                                                                                               | 8.46 - 1 $-6.24 - 6$                                                                                                                                                                                                                           | 1.04+0<br>-5.04-6                                                                                                                                                                                                                              | 1.22+0<br>-3.59-6                                                                                                                                                                                                                              | 1.39+0<br>-1.88-6                                                                                                                                                                                                                             | 1.54+0<br>2.03-7                                                                                                                                                                                                                  | 1.68+0<br>2.67-6                                                                                                                                                                                                                             |
| 2p <sub>1/2</sub>                                                                                                                                                                                                                  | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.025+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.745+1                                                                                                                                                                                                                                        | 5.092+0                                                                                                                                                                           | 2.048+0                                                                                                                                                                                                                                        | 9.893-1                                                                                                                                                                                                                                        | 5.390-1                                                                                                                                                                                                                                        | 3.198-1                                                                                                                                                                                                                                        | 2.022-1                                                                                                                                                                                                                                       | 1.343-1                                                                                                                                                                                                                           | 9.286-2                                                                                                                                                                                                                                      |
| $E_b =$                                                                                                                                                                                                                            | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.326                                                                                                                                                                                                                                          | 1.156                                                                                                                                                                             | 1.015                                                                                                                                                                                                                                          | 0.896                                                                                                                                                                                                                                          | 0.798                                                                                                                                                                                                                                          | 0.714                                                                                                                                                                                                                                          | 0.642                                                                                                                                                                                                                                         | 0.579                                                                                                                                                                                                                             | 0.524                                                                                                                                                                                                                                        |
| 520.5 eV                                                                                                                                                                                                                           | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.28 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.94 - 1                                                                                                                                                                                                                                       | 8.10 - 1                                                                                                                                                                          | 9.47 - 1                                                                                                                                                                                                                                       | 1.04+0                                                                                                                                                                                                                                         | 1.11+0                                                                                                                                                                                                                                         | 1.16+0                                                                                                                                                                                                                                         | 1.21+0                                                                                                                                                                                                                                        | 1.24+0                                                                                                                                                                                                                            | 1.27+0                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                    | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.17-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.32-2                                                                                                                                                                                                                                         | 6.95-2                                                                                                                                                                            | 9.59-2                                                                                                                                                                                                                                         | 1.22-1                                                                                                                                                                                                                                         | 1.46-1                                                                                                                                                                                                                                         | 1.70-1                                                                                                                                                                                                                                         | 1.92-1                                                                                                                                                                                                                                        | 2.13-1                                                                                                                                                                                                                            | 2.33-1                                                                                                                                                                                                                                       |
| $2p_{3/2}$                                                                                                                                                                                                                         | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.788+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.361+1                                                                                                                                                                                                                                        | 9.749+0                                                                                                                                                                           | 3.904+0                                                                                                                                                                                                                                        | 1.879+0                                                                                                                                                                                                                                        | 1.020+0                                                                                                                                                                                                                                        | 6.035-1                                                                                                                                                                                                                                        | 3.805-1                                                                                                                                                                                                                                       | 2.520-1                                                                                                                                                                                                                           | 1.738-1                                                                                                                                                                                                                                      |
| $E_b = 512.9 \text{ eV}$                                                                                                                                                                                                           | $\beta$ $\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.432<br>4.36-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.342<br>6.05-1                                                                                                                                                                                                                                | 1.171<br>8.22-1                                                                                                                                                                   | 1.031<br>9.58-1                                                                                                                                                                                                                                | 0.913<br>1.05+0                                                                                                                                                                                                                                | 0.815<br>1.12+0                                                                                                                                                                                                                                | 0.732<br>1.17+0                                                                                                                                                                                                                                | 0.661<br>1.21+0                                                                                                                                                                                                                               | 0.600<br>1.24+0                                                                                                                                                                                                                   | 0.546<br>1.27+0                                                                                                                                                                                                                              |
| 312.3 CV                                                                                                                                                                                                                           | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.17-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.30-2                                                                                                                                                                                                                                         | 6.88-2                                                                                                                                                                            | 9.48-2                                                                                                                                                                                                                                         | 1.20-1                                                                                                                                                                                                                                         | 1.45-1                                                                                                                                                                                                                                         | 1.68-1                                                                                                                                                                                                                                         | 1.90-1                                                                                                                                                                                                                                        | 2.11-1                                                                                                                                                                                                                            | 2.31-1                                                                                                                                                                                                                                       |
| 3s <sub>1/2</sub>                                                                                                                                                                                                                  | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.658+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.696+0                                                                                                                                                                                                                                        | 1.548+0                                                                                                                                                                           | 8.096-1                                                                                                                                                                                                                                        | 4.807-1                                                                                                                                                                                                                                        | 3.101-1                                                                                                                                                                                                                                        | 2.122-1                                                                                                                                                                                                                                        | 1.518-1                                                                                                                                                                                                                                       | 1.125-1                                                                                                                                                                                                                           | 8.565-2                                                                                                                                                                                                                                      |
| $E_b =$                                                                                                                                                                                                                            | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.998                                                                                                                                                                                                                                          | 1.992                                                                                                                                                                             | 1.985                                                                                                                                                                                                                                          | 1.977                                                                                                                                                                                                                                          | 1.968                                                                                                                                                                                                                                          | 1.959                                                                                                                                                                                                                                          | 1.950                                                                                                                                                                                                                                         | 1.941                                                                                                                                                                                                                             | 1.931                                                                                                                                                                                                                                        |
| 66.5 eV                                                                                                                                                                                                                            | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.24-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.15-1                                                                                                                                                                                                                                         | 4.72-1                                                                                                                                                                            | 7.04-1                                                                                                                                                                                                                                         | 9.13-1                                                                                                                                                                                                                                         | 1.10+0                                                                                                                                                                                                                                         | 1.27+0                                                                                                                                                                                                                                         | 1.43+0                                                                                                                                                                                                                                        | 1.58+0                                                                                                                                                                                                                            | 1.71+0                                                                                                                                                                                                                                       |
| _                                                                                                                                                                                                                                  | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -5.33-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -5.34-6                                                                                                                                                                                                                                        | -5.32-6                                                                                                                                                                           | -4.95-6                                                                                                                                                                                                                                        | -4.31-6                                                                                                                                                                                                                                        | -3.30-6                                                                                                                                                                                                                                        | -1.91-6                                                                                                                                                                                                                                        | -1.49-7                                                                                                                                                                                                                                       | 2.00-6                                                                                                                                                                                                                            | 4.52-6                                                                                                                                                                                                                                       |
| $3p_{1/2}$<br>$E_b =$                                                                                                                                                                                                              | $\frac{\sigma}{eta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.978+0<br>1.387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.799+0<br>1.275                                                                                                                                                                                                                               | 5.525-1<br>1.099                                                                                                                                                                  | 2.288-1<br>0.961                                                                                                                                                                                                                               | 1.126-1<br>0.848                                                                                                                                                                                                                               | 6.213-2<br>0.755                                                                                                                                                                                                                               | 3.719-2<br>0.676                                                                                                                                                                                                                               | 2.367-2<br>0.608                                                                                                                                                                                                                              | 1.581-2<br>0.549                                                                                                                                                                                                                  | 1.097-2<br>0.497                                                                                                                                                                                                                             |
| 40.0 eV                                                                                                                                                                                                                            | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.97-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.28-1                                                                                                                                                                                                                                         | 8.10-1                                                                                                                                                                            | 9.33-1                                                                                                                                                                                                                                         | 1.02+0                                                                                                                                                                                                                                         | 1.09+0                                                                                                                                                                                                                                         | 1.14+0                                                                                                                                                                                                                                         | 1.19+0                                                                                                                                                                                                                                        | 1.22+0                                                                                                                                                                                                                            | 1.25+0                                                                                                                                                                                                                                       |
| 10.0 0 1                                                                                                                                                                                                                           | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.77-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.12-2                                                                                                                                                                                                                                         | 6.91-2                                                                                                                                                                            | 9.63-2                                                                                                                                                                                                                                         | 1.22-1                                                                                                                                                                                                                                         | 1.47-1                                                                                                                                                                                                                                         | 1.71-1                                                                                                                                                                                                                                         | 1.94-1                                                                                                                                                                                                                                        | 2.15-1                                                                                                                                                                                                                            | 2.35-1                                                                                                                                                                                                                                       |
| 3p <sub>3/2</sub>                                                                                                                                                                                                                  | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.603+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.424+0                                                                                                                                                                                                                                        | 1.045+0                                                                                                                                                                           | 4.304-1                                                                                                                                                                                                                                        | 2.110-1                                                                                                                                                                                                                                        | 1.160-1                                                                                                                                                                                                                                        | 6.918-2                                                                                                                                                                                                                                        | 4.390-2                                                                                                                                                                                                                                       | 2.923-2                                                                                                                                                                                                                           | 2.023-2                                                                                                                                                                                                                                      |
| $E_b =$                                                                                                                                                                                                                            | $\beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.289                                                                                                                                                                                                                                          | 1.115                                                                                                                                                                             | 0.977                                                                                                                                                                                                                                          | 0.865                                                                                                                                                                                                                                          | 0.772                                                                                                                                                                                                                                          | 0.694                                                                                                                                                                                                                                          | 0.627                                                                                                                                                                                                                                         | 0.569                                                                                                                                                                                                                             | 0.519                                                                                                                                                                                                                                        |
| 35.0 eV                                                                                                                                                                                                                            | $\gamma \\ \delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.04-1<br>2.74-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.36-1 $4.07-2$                                                                                                                                                                                                                                | 8.19-1<br>6.80-2                                                                                                                                                                  | 9.42-1<br>9.49-2                                                                                                                                                                                                                               | 1.03+0<br>1.21-1                                                                                                                                                                                                                               | 1.10+0<br>1.46-1                                                                                                                                                                                                                               | 1.15+0<br>1.69-1                                                                                                                                                                                                                               | 1.19+0<br>1.91-1                                                                                                                                                                                                                              | 1.22+0<br>2.13-1                                                                                                                                                                                                                  | 1.25+0<br>2.33-1                                                                                                                                                                                                                             |
| 3d <sub>3/2</sub>                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.046-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.357-1                                                                                                                                                                                                                                        | 2.742-2                                                                                                                                                                           | 8.413-3                                                                                                                                                                                                                                        | 3.271-3                                                                                                                                                                                                                                        | 1.486-3                                                                                                                                                                                                                                        | 7.542-4                                                                                                                                                                                                                                        | 4.161-4                                                                                                                                                                                                                                       | 2.450-4                                                                                                                                                                                                                           | 1.520-4                                                                                                                                                                                                                                      |
| $E_b =$                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                |                                                                                                                                                                                   |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                   | 0.149                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                    | $\frac{\sigma}{eta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.625                                                                                                                                                                                                                                          | 0.499                                                                                                                                                                             | 0.419                                                                                                                                                                                                                                          | 0.356                                                                                                                                                                                                                                          | 0.304                                                                                                                                                                                                                                          | 0.258                                                                                                                                                                                                                                          | 0.218                                                                                                                                                                                                                                         | 0.182                                                                                                                                                                                                                             | 0.143                                                                                                                                                                                                                                        |
| 2.2 eV                                                                                                                                                                                                                             | $\beta$ $\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.735<br>5.58-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.13 - 1                                                                                                                                                                                                                                       | 6.93 - 1                                                                                                                                                                          | 7.48 - 1                                                                                                                                                                                                                                       | 7.83 - 1                                                                                                                                                                                                                                       | 8.04 - 1                                                                                                                                                                                                                                       | 8.15 - 1                                                                                                                                                                                                                                       | 8.18 - 1                                                                                                                                                                                                                                      | 8.16 - 1                                                                                                                                                                                                                          | 8.09 - 1                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                    | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.735<br>5.58-1<br>1.23-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.13-1<br>1.58-1                                                                                                                                                                                                                               | 6.93-1<br>2.21-1                                                                                                                                                                  | 7.48-1<br>2.78-1                                                                                                                                                                                                                               | 7.83-1<br>3.29-1                                                                                                                                                                                                                               | 8.04-1<br>3.75-1                                                                                                                                                                                                                               | 8.15-1<br>4.17-1                                                                                                                                                                                                                               | 8.18-1<br>4.56-1                                                                                                                                                                                                                              | 8.16-1<br>4.92-1                                                                                                                                                                                                                  | 8.09-1<br>5.25-1                                                                                                                                                                                                                             |
| 4s <sub>1/2</sub>                                                                                                                                                                                                                  | β<br>γ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.735<br>5.58-1<br>1.23-1<br>3.603-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.13-1<br>1.58-1<br>1.986-1                                                                                                                                                                                                                    | 6.93-1<br>2.21-1<br>8.256-2                                                                                                                                                       | 7.48-1<br>2.78-1<br>4.303-2                                                                                                                                                                                                                    | 7.83-1<br>3.29-1<br>2.550-2                                                                                                                                                                                                                    | 8.04-1<br>3.75-1<br>1.643-2                                                                                                                                                                                                                    | 8.15-1<br>4.17-1<br>1.124-2                                                                                                                                                                                                                    | 8.18-1<br>4.56-1<br>8.035-3                                                                                                                                                                                                                   | 8.16-1<br>4.92-1<br>5.949-3                                                                                                                                                                                                       | 8.09-1<br>5.25-1<br>4.529-3                                                                                                                                                                                                                  |
| $4s_{1/2}$ $E_b =$                                                                                                                                                                                                                 | $\beta$ $\gamma$ $\delta$ $\sigma$ $\beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.735<br>5.58-1<br>1.23-1<br>3.603-1<br>1.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.13-1<br>1.58-1<br>1.986-1<br>1.998                                                                                                                                                                                                           | 6.93-1<br>2.21-1<br>8.256-2<br>1.992                                                                                                                                              | 7.48-1<br>2.78-1<br>4.303-2<br>1.985                                                                                                                                                                                                           | 7.83-1<br>3.29-1<br>2.550-2<br>1.977                                                                                                                                                                                                           | 8.04-1<br>3.75-1<br>1.643-2<br>1.968                                                                                                                                                                                                           | 8.15-1<br>4.17-1<br>1.124-2<br>1.959                                                                                                                                                                                                           | 8.18-1<br>4.56-1<br>8.035-3<br>1.950                                                                                                                                                                                                          | 8.16-1<br>4.92-1<br>5.949-3<br>1.940                                                                                                                                                                                              | 8.09-1<br>5.25-1<br>4.529-3<br>1.931                                                                                                                                                                                                         |
| 4s <sub>1/2</sub>                                                                                                                                                                                                                  | β<br>γ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.735<br>5.58-1<br>1.23-1<br>3.603-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.13-1<br>1.58-1<br>1.986-1                                                                                                                                                                                                                    | 6.93-1<br>2.21-1<br>8.256-2                                                                                                                                                       | 7.48-1<br>2.78-1<br>4.303-2                                                                                                                                                                                                                    | 7.83-1<br>3.29-1<br>2.550-2                                                                                                                                                                                                                    | 8.04-1<br>3.75-1<br>1.643-2                                                                                                                                                                                                                    | 8.15-1<br>4.17-1<br>1.124-2                                                                                                                                                                                                                    | 8.18-1<br>4.56-1<br>8.035-3                                                                                                                                                                                                                   | 8.16-1<br>4.92-1<br>5.949-3                                                                                                                                                                                                       | 8.09-1<br>5.25-1<br>4.529-3                                                                                                                                                                                                                  |
| $4s_{1/2}$ $E_b =$                                                                                                                                                                                                                 | $\beta$ $\gamma$ $\delta$ $\sigma$ $\beta$ $\gamma$ $\delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.735<br>5.58-1<br>1.23-1<br>3.603-1<br>1.999<br>9.19-2<br>-4.87-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.13-1<br>1.58-1<br>1.986-1<br>1.998<br>2.25-1                                                                                                                                                                                                 | 6.93-1<br>2.21-1<br>8.256-2<br>1.992<br>4.81-1                                                                                                                                    | 7.48-1<br>2.78-1<br>4.303-2<br>1.985<br>7.13-1                                                                                                                                                                                                 | 7.83-1<br>3.29-1<br>2.550-2<br>1.977<br>9.21-1                                                                                                                                                                                                 | 8.04-1<br>3.75-1<br>1.643-2<br>1.968<br>1.11+0                                                                                                                                                                                                 | 8.15-1<br>4.17-1<br>1.124-2<br>1.959<br>1.28+0                                                                                                                                                                                                 | 8.18-1<br>4.56-1<br>8.035-3<br>1.950<br>1.44+0                                                                                                                                                                                                | 8.16-1<br>4.92-1<br>5.949-3<br>1.940<br>1.59+0                                                                                                                                                                                    | 8.09-1<br>5.25-1<br>4.529-3<br>1.931<br>1.73+0                                                                                                                                                                                               |
| $4s_{1/2}$ $E_b =$ 1.7 eV                                                                                                                                                                                                          | $\beta$ $\gamma$ $\delta$ $\sigma$ $\beta$ $\gamma$ $\delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.735  5.58 - 1  1.23 - 1  3.603 - 1  1.999  9.19 - 2  -4.87 - 6  id_{5/2}^{1} 4s_{1/2}^{1}  k \text{ (eV)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.13-1<br>1.58-1<br>1.986-1<br>1.998<br>2.25-1<br>-4.80-6                                                                                                                                                                                      | 6.93-1<br>2.21-1<br>8.256-2<br>1.992<br>4.81-1<br>-4.80-6                                                                                                                         | 7.48-1<br>2.78-1<br>4.303-2<br>1.985<br>7.13-1<br>-4.52-6                                                                                                                                                                                      | 7.83-1<br>3.29-1<br>2.550-2<br>1.977<br>9.21-1<br>-3.88-6                                                                                                                                                                                      | 8.04-1<br>3.75-1<br>1.643-2<br>1.968<br>1.11+0<br>-2.95-6                                                                                                                                                                                      | 8.15-1<br>4.17-1<br>1.124-2<br>1.959<br>1.28+0<br>-1.66-6                                                                                                                                                                                      | 8.18-1<br>4.56-1<br>8.035-3<br>1.950<br>1.44+0<br>9.17-8                                                                                                                                                                                      | 8.16-1<br>4.92-1<br>5.949-3<br>1.940<br>1.59+0<br>2.47-6                                                                                                                                                                          | 8.09-1<br>5.25-1<br>4.529-3<br>1.931<br>1.73+0<br>4.29-6                                                                                                                                                                                     |
| $4s_{1/2}$ $E_b = 1.7 \text{ eV}$ <b>Z= 24, Cr: [And Shell</b>                                                                                                                                                                     | $\beta$ $\gamma$ $\delta$ $\sigma$ $\beta$ $\gamma$ $\delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.735  5.58-1  1.23-1  3.603-1  1.999  9.19-2  -4.87-6  id_{5/2}^{1} 4s_{1/2}^{1}  k \text{ (eV)}  1500$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.13-1<br>1.58-1<br>1.986-1<br>1.998<br>2.25-1<br>-4.80-6                                                                                                                                                                                      | 6.93-1<br>2.21-1<br>8.256-2<br>1.992<br>4.81-1                                                                                                                                    | 7.48-1<br>2.78-1<br>4.303-2<br>1.985<br>7.13-1                                                                                                                                                                                                 | 7.83-1<br>3.29-1<br>2.550-2<br>1.977<br>9.21-1                                                                                                                                                                                                 | 8.04-1<br>3.75-1<br>1.643-2<br>1.968<br>1.11+0<br>-2.95-6                                                                                                                                                                                      | 8.15-1<br>4.17-1<br>1.124-2<br>1.959<br>1.28+0<br>-1.66-6                                                                                                                                                                                      | 8.18-1<br>4.56-1<br>8.035-3<br>1.950<br>1.44+0                                                                                                                                                                                                | 8.16-1<br>4.92-1<br>5.949-3<br>1.940<br>1.59+0                                                                                                                                                                                    | 8.09-1<br>5.25-1<br>4.529-3<br>1.931<br>1.73+0                                                                                                                                                                                               |
| $4s_{1/2}$ $E_b = 1.7 \text{ eV}$ <b>Z= 24, Cr: [And Shell</b> $2s_{1/2}$                                                                                                                                                          | $\frac{\beta}{\delta}$ $\frac{\gamma}{\delta}$ $\frac{\beta}{\beta}$ $\frac{\gamma}{\delta}$ $\mathbf{r}]\mathbf{3d}_{3/2}^{4} 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.735 \\ 5.58 - 1 \\ 1.23 - 1$ $3.603 - 1 \\ 1.999 \\ 9.19 - 2 \\ -4.87 - 6$ $\mathbf{dd}_{5/2}^{1} \mathbf{4s}_{1/2}^{1}$ $\frac{k \text{ (eV)}}{1500}$ $5.147 + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.13-1<br>1.58-1<br>1.986-1<br>1.998<br>2.25-1<br>-4.80-6<br>2000<br>3.001+1                                                                                                                                                                   | 6.93-1<br>2.21-1<br>8.256-2<br>1.992<br>4.81-1<br>-4.80-6<br>3000<br>1.313+1                                                                                                      | 7.48-1<br>2.78-1<br>4.303-2<br>1.985<br>7.13-1<br>-4.52-6<br>4000<br>7.010+0                                                                                                                                                                   | 7.83-1<br>3.29-1<br>2.550-2<br>1.977<br>9.21-1<br>-3.88-6<br>5000<br>4.211+0                                                                                                                                                                   | 8.04-1<br>3.75-1<br>1.643-2<br>1.968<br>1.11+0<br>-2.95-6<br>6000<br>2.738+0                                                                                                                                                                   | 8.15-1<br>4.17-1<br>1.124-2<br>1.959<br>1.28+0<br>-1.66-6<br>7000<br>1.884+0                                                                                                                                                                   | 8.18-1<br>4.56-1<br>8.035-3<br>1.950<br>1.44+0<br>9.17-8                                                                                                                                                                                      | 8.16-1<br>4.92-1<br>5.949-3<br>1.940<br>1.59+0<br>2.47-6                                                                                                                                                                          | 8.09-1<br>5.25-1<br>4.529-3<br>1.931<br>1.73+0<br>4.29-6                                                                                                                                                                                     |
| $4s_{1/2}$ $E_b = 1.7 \text{ eV}$ <b>Z= 24, Cr: [And Shell</b> $2s_{1/2}$ $E_b = 1.7 \text{ eV}$                                                                                                                                   | $ \frac{\beta}{\delta} $ $ \frac{\gamma}{\delta} $ $ \frac{\beta}{\beta} $ $ \frac{\gamma}{\delta} $ $ \frac{\delta}{\delta} $ $ \frac{\mathbf{r}}{\mathbf{3d_{3/2}^4}} = \mathbf{3d_{3/2}^4} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.735<br>5.58-1<br>1.23-1<br>3.603-1<br>1.999<br>9.19-2<br>-4.87-6<br>id <sup>1</sup> <sub>5/2</sub> 4s <sup>1</sup> <sub>1/2</sub><br>k (eV)<br>1500<br>5.147+1<br>1.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.13-1<br>1.58-1<br>1.986-1<br>1.998<br>2.25-1<br>-4.80-6<br>2000<br>3.001+1<br>1.999                                                                                                                                                          | 6.93-1<br>2.21-1<br>8.256-2<br>1.992<br>4.81-1<br>-4.80-6<br>3000<br>1.313+1<br>1.996                                                                                             | 7.48-1<br>2.78-1<br>4.303-2<br>1.985<br>7.13-1<br>-4.52-6<br>4000<br>7.010+0<br>1.989                                                                                                                                                          | 7.83-1<br>3.29-1<br>2.550-2<br>1.977<br>9.21-1<br>-3.88-6<br>5000<br>4.211+0<br>1.981                                                                                                                                                          | 8.04-1<br>3.75-1<br>1.643-2<br>1.968<br>1.11+0<br>-2.95-6<br>6000<br>2.738+0<br>1.973                                                                                                                                                          | 8.15-1<br>4.17-1<br>1.124-2<br>1.959<br>1.28+0<br>-1.66-6<br>7000<br>1.884+0<br>1.964                                                                                                                                                          | 8.18-1<br>4.56-1<br>8.035-3<br>1.950<br>1.44+0<br>9.17-8<br>8000<br>1.354+0<br>1.955                                                                                                                                                          | 8.16-1<br>4.92-1<br>5.949-3<br>1.940<br>1.59+0<br>2.47-6<br>9000<br>1.006+0<br>1.945                                                                                                                                              | 8.09-1<br>5.25-1<br>4.529-3<br>1.931<br>1.73+0<br>4.29-6<br>10000<br>7.688-1<br>1.936                                                                                                                                                        |
| $4s_{1/2}$ $E_b = 1.7 \text{ eV}$ <b>Z= 24, Cr: [An Shell</b> $2s_{1/2}$                                                                                                                                                           | $\frac{\beta}{\delta}$ $\frac{\gamma}{\delta}$ $\frac{\beta}{\beta}$ $\frac{\gamma}{\delta}$ $\mathbf{r}]\mathbf{3d}_{3/2}^{4} 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.735 \\ 5.58 - 1 \\ 1.23 - 1$ $3.603 - 1 \\ 1.999 \\ 9.19 - 2 \\ -4.87 - 6$ $\mathbf{dd}_{5/2}^{1} \mathbf{4s}_{1/2}^{1}$ $\frac{k \text{ (eV)}}{1500}$ $5.147 + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.13-1<br>1.58-1<br>1.986-1<br>1.998<br>2.25-1<br>-4.80-6<br>2000<br>3.001+1<br>1.999<br>4.94-2                                                                                                                                                | 6.93-1<br>2.21-1<br>8.256-2<br>1.992<br>4.81-1<br>-4.80-6<br>3000<br>1.313+1<br>1.996<br>3.16-1                                                                                   | 7.48-1<br>2.78-1<br>4.303-2<br>1.985<br>7.13-1<br>-4.52-6<br>4000<br>7.010+0                                                                                                                                                                   | 7.83-1<br>3.29-1<br>2.550-2<br>1.977<br>9.21-1<br>-3.88-6<br>5000<br>4.211+0<br>1.981<br>7.93-1                                                                                                                                                | 8.04-1<br>3.75-1<br>1.643-2<br>1.968<br>1.11+0<br>-2.95-6<br>6000<br>2.738+0                                                                                                                                                                   | 8.15-1<br>4.17-1<br>1.124-2<br>1.959<br>1.28+0<br>-1.66-6<br>7000<br>1.884+0                                                                                                                                                                   | 8.18-1<br>4.56-1<br>8.035-3<br>1.950<br>1.44+0<br>9.17-8<br>8000<br>1.354+0<br>1.955<br>1.34+0                                                                                                                                                | 8.16-1<br>4.92-1<br>5.949-3<br>1.940<br>1.59+0<br>2.47-6<br>9000<br>1.006+0<br>1.945<br>1.49+0                                                                                                                                    | 8.09-1<br>5.25-1<br>4.529-3<br>1.931<br>1.73+0<br>4.29-6                                                                                                                                                                                     |
| $4s_{1/2}$ $E_b = 1.7 \text{ eV}$ <b>Z= 24, Cr: [And Shell</b> $2s_{1/2}$ $E_b = 694.6 \text{ eV}$                                                                                                                                 | β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>r]3d <sup>4</sup> <sub>3/2</sub> 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.735<br>5.58-1<br>1.23-1<br>3.603-1<br>1.999<br>9.19-2<br>-4.87-6<br>dd <sub>5/2</sub> 4s <sub>1/2</sub><br>k (eV)<br>1500<br>5.147+1<br>1.999<br>-4.86-2<br>-1.44-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.13-1<br>1.58-1<br>1.986-1<br>1.998<br>2.25-1<br>-4.80-6<br>2000<br>3.001+1<br>1.999<br>4.94-2<br>-1.25-5                                                                                                                                     | 3000<br>1.313+1<br>1.996<br>3.16-1<br>1.08-5                                                                                                                                      | 7.48-1<br>2.78-1<br>4.303-2<br>1.985<br>7.13-1<br>-4.52-6<br>4000<br>7.010+0<br>1.989<br>5.68-1<br>-9.29-6                                                                                                                                     | 7.83-1<br>3.29-1<br>2.550-2<br>1.977<br>9.21-1<br>-3.88-6<br>5000<br>4.211+0<br>1.981<br>7.93-1<br>-8.17-6                                                                                                                                     | 8.04-1<br>3.75-1<br>1.643-2<br>1.968<br>1.11+0<br>-2.95-6<br>6000<br>2.738+0<br>1.973<br>9.93-1<br>-6.93-6                                                                                                                                     | 8.15-1<br>4.17-1<br>1.124-2<br>1.959<br>1.28+0<br>-1.66-6<br>7000<br>1.884+0<br>1.964<br>1.17+0<br>-5.36-6                                                                                                                                     | 8.18-1<br>4.56-1<br>8.035-3<br>1.950<br>1.44+0<br>9.17-8<br>8000<br>1.354+0<br>1.955<br>1.34+0<br>-3.60-6                                                                                                                                     | 8.16-1<br>4.92-1<br>5.949-3<br>1.940<br>1.59+0<br>2.47-6<br>9000<br>1.006+0<br>1.945<br>1.49+0<br>-1.62-6                                                                                                                         | 8.09-1<br>5.25-1<br>4.529-3<br>1.931<br>1.73+0<br>4.29-6<br>10000<br>7.688-1<br>1.936<br>1.63+0<br>9.05-7                                                                                                                                    |
| $4s_{1/2}$ $E_b = 1.7 \text{ eV}$ <b>Z= 24, Cr: [And Shell</b> $2s_{1/2}$ $E_b = $                                                                                                                                                 | β γ δ σ β γ δ σ γ δ σ σ σ σ σ σ σ β γ γ σ σ σ β γ γ σ σ σ σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.735<br>5.58-1<br>1.23-1<br>3.603-1<br>1.999<br>9.19-2<br>-4.87-6<br>id <sub>5/2</sub> 4s <sub>1/2</sub><br>k (eV)<br>1500<br>5.147+1<br>1.999<br>-4.86-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.13-1<br>1.58-1<br>1.986-1<br>1.998<br>2.25-1<br>-4.80-6<br>2000<br>3.001+1<br>1.999<br>4.94-2                                                                                                                                                | 6.93-1<br>2.21-1<br>8.256-2<br>1.992<br>4.81-1<br>-4.80-6<br>3000<br>1.313+1<br>1.996<br>3.16-1                                                                                   | 7.48-1<br>2.78-1<br>4.303-2<br>1.985<br>7.13-1<br>-4.52-6<br>4000<br>7.010+0<br>1.989<br>5.68-1                                                                                                                                                | 7.83-1<br>3.29-1<br>2.550-2<br>1.977<br>9.21-1<br>-3.88-6<br>5000<br>4.211+0<br>1.981<br>7.93-1                                                                                                                                                | 8.04-1<br>3.75-1<br>1.643-2<br>1.968<br>1.11+0<br>-2.95-6<br>6000<br>2.738+0<br>1.973<br>9.93-1                                                                                                                                                | 8.15-1<br>4.17-1<br>1.124-2<br>1.959<br>1.28+0<br>-1.66-6<br>7000<br>1.884+0<br>1.964<br>1.17+0                                                                                                                                                | 8.18-1<br>4.56-1<br>8.035-3<br>1.950<br>1.44+0<br>9.17-8<br>8000<br>1.354+0<br>1.955<br>1.34+0                                                                                                                                                | 8.16-1<br>4.92-1<br>5.949-3<br>1.940<br>1.59+0<br>2.47-6<br>9000<br>1.006+0<br>1.945<br>1.49+0                                                                                                                                    | 8.09-1<br>5.25-1<br>4.529-3<br>1.931<br>1.73+0<br>4.29-6<br>10000<br>7.688-1<br>1.936<br>1.63+0                                                                                                                                              |
| $4s_{1/2}$ $E_b =$ 1.7 eV <b>Z= 24, Cr: [And Shell</b> $2s_{1/2}$ $E_b =$ 694.6 eV $2p_{1/2}$                                                                                                                                      | β γ δ σ β γ δ δ σ β γ δ δ σ β γ γ δ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ γ δ σ β γ γ γ δ σ β γ γ γ δ σ β γ γ γ δ σ β γ γ γ δ σ β γ γ γ δ σ β γ γ γ δ σ β γ γ γ δ σ β γ γ γ δ σ β γ γ γ δ σ β γ γ γ δ σ β γ γ γ δ σ β γ γ γ δ σ β γ γ γ δ σ β γ γ γ δ σ β γ γ γ δ σ γ γ γ δ σ γ γ γ δ σ γ γ γ δ σ γ γ γ δ σ γ γ γ δ σ γ γ γ γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.735<br>5.58-1<br>1.23-1<br>3.603-1<br>1.999<br>9.19-2<br>-4.87-6<br>id <sup>1</sup> <sub>5/2</sub> 4s <sup>1</sup> <sub>1/2</sub><br>k (eV)<br>1500<br>5.147+1<br>1.999<br>-4.86-2<br>-1.44-5<br>4.904+1<br>1.435<br>3.83-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.13-1<br>1.58-1<br>1.986-1<br>1.998<br>2.25-1<br>-4.80-6<br>2000<br>3.001+1<br>1.999<br>4.94-2<br>-1.25-5<br>2.145+1<br>1.359<br>5.66-1                                                                                                       | 6.93-1<br>2.21-1<br>8.256-2<br>1.992<br>4.81-1<br>-4.80-6<br>3000<br>1.313+1<br>1.996<br>3.16-1<br>-1.08-5<br>6.325+0<br>1.194<br>7.99-1                                          | 7.48-1<br>2.78-1<br>4.303-2<br>1.985<br>7.13-1<br>-4.52-6<br>4000<br>7.010+0<br>1.989<br>5.68-1<br>-9.29-6<br>2.564+0<br>1.052<br>9.46-1                                                                                                       | 7.83-1<br>3.29-1<br>2.550-2<br>1.977<br>9.21-1<br>-3.88-6<br>5000<br>4.211+0<br>1.981<br>7.93-1<br>-8.17-6<br>1.247+0<br>0.934<br>1.05+0                                                                                                       | 8.04-1<br>3.75-1<br>1.643-2<br>1.968<br>1.11+0<br>-2.95-6<br>6000<br>2.738+0<br>1.973<br>9.93-1<br>-6.93-6<br>6.830-1<br>0.835<br>1.12+0                                                                                                       | 8.15-1<br>4.17-1<br>1.124-2<br>1.959<br>1.28+0<br>-1.66-6<br>7000<br>1.884+0<br>1.964<br>1.17+0<br>-5.36-6<br>4.070-1<br>0.751<br>1.18+0                                                                                                       | 8.18-1<br>4.56-1<br>8.035-3<br>1.950<br>1.44+0<br>9.17-8<br>8000<br>1.354+0<br>1.955<br>1.34+0<br>-3.60-6<br>2.584-1<br>0.679<br>1.23+0                                                                                                       | 8.16-1<br>4.92-1<br>5.949-3<br>1.940<br>1.59+0<br>2.47-6<br>9000<br>1.006+0<br>1.945<br>1.49+0<br>-1.62-6<br>1.722-1<br>0.616<br>1.27+0                                                                                           | 8.09-1<br>5.25-1<br>4.529-3<br>1.931<br>1.73+0<br>4.29-6<br>10000<br>7.688-1<br>1.936<br>1.63+0<br>9.05-7<br>1.194-1<br>0.560<br>1.30+0                                                                                                      |
| $4s_{1/2}$ $E_b =$ 1.7 eV <b>Z= 24, Cr: [An</b> Shell $2s_{1/2}$ $E_b =$ 694.6 eV $2p_{1/2}$ $E_b =$                                                                                                                               | $ \frac{\beta}{\delta} $ $ \frac{\sigma}{\beta} $ $ \frac{\beta}{\delta} $ $ \frac{\gamma}{\delta} $ $ \frac{\sigma}{\delta} $ $ \frac{\sigma}{\delta} $ $ \frac{\sigma}{\beta} $ $ \frac{\sigma}{\delta} $ $ \frac{\sigma}{\delta} $ $ \frac{\sigma}{\delta} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.735<br>5.58-1<br>1.23-1<br>3.603-1<br>1.999<br>9.19-2<br>-4.87-6<br>id <sup>1</sup> <sub>5/2</sub> 4s <sup>1</sup> <sub>1/2</sub><br>k (eV)<br>1500<br>5.147+1<br>1.999<br>-4.86-2<br>-1.44-5<br>4.904+1<br>1.435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.13-1<br>1.58-1<br>1.986-1<br>1.998<br>2.25-1<br>-4.80-6<br>2000<br>3.001+1<br>1.999<br>4.94-2<br>-1.25-5<br>2.145+1<br>1.359<br>5.66-1<br>4.10-2                                                                                             | 3000<br>1.313+1<br>1.996<br>3.16-1<br>-1.08-5<br>6.325+0<br>1.194<br>7.99-1<br>6.46-2                                                                                             | 7.48-1<br>2.78-1<br>4.303-2<br>1.985<br>7.13-1<br>-4.52-6<br>4000<br>7.010+0<br>1.989<br>5.68-1<br>-9.29-6<br>2.564+0<br>1.052<br>9.46-1<br>8.97-2                                                                                             | 7.83-1<br>3.29-1<br>2.550-2<br>1.977<br>9.21-1<br>-3.88-6<br>5000<br>4.211+0<br>1.981<br>7.93-1<br>-8.17-6<br>1.247+0<br>0.934<br>1.05+0<br>1.15-1                                                                                             | 8.04-1<br>3.75-1<br>1.643-2<br>1.968<br>1.11+0<br>-2.95-6<br>6000<br>2.738+0<br>1.973<br>9.93-1<br>-6.93-6<br>6.830-1<br>0.835<br>1.12+0<br>1.39-1                                                                                             | 8.15-1<br>4.17-1<br>1.124-2<br>1.959<br>1.28+0<br>-1.66-6<br>7000<br>1.884+0<br>1.964<br>1.17+0<br>-5.36-6<br>4.070-1<br>0.751<br>1.18+0<br>1.62-1                                                                                             | 8.18-1<br>4.56-1<br>8.035-3<br>1.950<br>1.44+0<br>9.17-8<br>8000<br>1.354+0<br>1.955<br>1.34+0<br>-3.60-6<br>2.584-1<br>0.679<br>1.23+0<br>1.84-1                                                                                             | 8.16-1<br>4.92-1<br>5.949-3<br>1.940<br>1.59+0<br>2.47-6<br>9000<br>1.006+0<br>1.945<br>1.49+0<br>-1.62-6<br>1.722-1<br>0.616<br>1.27+0<br>2.05-1                                                                                 | 8.09-1<br>5.25-1<br>4.529-3<br>1.931<br>1.73+0<br>4.29-6<br>10000<br>7.688-1<br>1.936<br>1.63+0<br>9.05-7<br>1.194-1<br>0.560<br>1.30+0<br>2.25-1                                                                                            |
| $4s_{1/2}$ $E_b =$ 1.7 eV <b>Z= 24, Cr: [An</b> Shell $2s_{1/2}$ $E_b =$ 694.6 eV $2p_{1/2}$ $E_b =$ 583.7 eV                                                                                                                      | β γ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ σ β γ δ δ σ σ β γ δ δ σ σ σ δ δ σ σ σ δ δ σ σ σ δ δ σ σ σ δ δ σ σ σ δ δ σ σ σ δ δ σ σ σ δ δ σ σ σ δ δ σ σ σ σ δ δ σ σ σ σ δ δ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.735<br>5.58-1<br>1.23-1<br>3.603-1<br>1.999<br>9.19-2<br>-4.87-6<br>id <sup>1</sup> <sub>5/2</sub> 4s <sup>1</sup> <sub>1/2</sub><br>k (eV)<br>1500<br>5.147+1<br>1.999<br>-4.86-2<br>-1.44-5<br>4.904+1<br>1.435<br>3.83-1<br>2.94-2<br>9.483+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.13-1<br>1.58-1<br>1.986-1<br>1.998<br>2.25-1<br>-4.80-6<br>2000<br>3.001+1<br>1.999<br>4.94-2<br>-1.25-5<br>2.145+1<br>1.359<br>5.66-1<br>4.10-2<br>4.124+1                                                                                  | 3000<br>1.313+1<br>1.996<br>3.16-1<br>-1.08-5<br>6.325+0<br>1.194<br>7.99-1<br>6.46-2<br>1.208+1                                                                                  | 7.48-1<br>2.78-1<br>4.303-2<br>1.985<br>7.13-1<br>-4.52-6<br>4000<br>7.010+0<br>1.989<br>5.68-1<br>-9.29-6<br>2.564+0<br>1.052<br>9.46-1<br>8.97-2<br>4.875+0                                                                                  | 7.83-1<br>3.29-1<br>2.550-2<br>1.977<br>9.21-1<br>-3.88-6<br>5000<br>4.211+0<br>1.981<br>7.93-1<br>-8.17-6<br>1.247+0<br>0.934<br>1.05+0<br>1.15-1<br>2.362+0                                                                                  | 8.04-1<br>3.75-1<br>1.643-2<br>1.968<br>1.11+0<br>-2.95-6<br>6000<br>2.738+0<br>1.973<br>9.93-1<br>-6.93-6<br>6.830-1<br>0.835<br>1.12+0<br>1.39-1<br>1.289+0                                                                                  | 8.15-1<br>4.17-1<br>1.124-2<br>1.959<br>1.28+0<br>-1.66-6<br>7000<br>1.884+0<br>1.964<br>1.17+0<br>-5.36-6<br>4.070-1<br>0.751<br>1.18+0<br>1.62-1<br>7.657-1                                                                                  | 8.18-1<br>4.56-1<br>8.035-3<br>1.950<br>1.44+0<br>9.17-8<br>8000<br>1.354+0<br>1.955<br>1.34+0<br>-3.60-6<br>2.584-1<br>0.679<br>1.23+0<br>1.84-1<br>4.845-1                                                                                  | 8.16-1<br>4.92-1<br>5.949-3<br>1.940<br>1.59+0<br>2.47-6<br>9000<br>1.006+0<br>1.945<br>1.49+0<br>-1.62-6<br>1.722-1<br>0.616<br>1.27+0<br>2.05-1<br>3.220-1                                                                      | 8.09-1<br>5.25-1<br>4.529-3<br>1.931<br>1.73+0<br>4.29-6<br>10000<br>7.688-1<br>1.936<br>1.63+0<br>9.05-7<br>1.194-1<br>0.560<br>1.30+0<br>2.25-1<br>2.226-1                                                                                 |
| $4s_{1/2}$ $E_b =$ 1.7 eV <b>Z= 24, Cr: [And Shell</b> $2s_{1/2}$ $E_b =$ 694.6 eV $2p_{1/2}$ $E_b =$ 583.7 eV                                                                                                                     | β γ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β β γ δ δ σ β β γ δ δ σ β β β β β β β β β β β β β β β β β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.735$ $5.58-1$ $1.23-1$ $3.603-1$ $1.999$ $9.19-2$ $-4.87-6$ $161_{5/2}$ $481_{1/2}$ $1500$ $1500$ $147+1$ $1.999$ $-4.86-2$ $-1.44-5$ $4.904+1$ $1.435$ $3.83-1$ $2.94-2$ $9.483+1$ $1.451$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.13-1<br>1.58-1<br>1.986-1<br>1.998<br>2.25-1<br>-4.80-6<br>2000<br>3.001+1<br>1.999<br>4.94-2<br>-1.25-5<br>2.145+1<br>1.359<br>5.66-1<br>4.10-2<br>4.124+1<br>1.376                                                                         | 3000<br>1.313+1<br>1.98-5<br>6.325+0<br>1.194<br>7.99-1<br>6.46-2<br>1.208+1<br>1.211                                                                                             | 7.48-1<br>2.78-1<br>4.303-2<br>1.985<br>7.13-1<br>-4.52-6<br>4000<br>7.010+0<br>1.989<br>5.68-1<br>-9.29-6<br>2.564+0<br>1.052<br>9.46-1<br>8.97-2<br>4.875+0<br>1.070                                                                         | 7.83-1<br>3.29-1<br>2.550-2<br>1.977<br>9.21-1<br>-3.88-6<br>5000<br>4.211+0<br>1.981<br>7.93-1<br>-8.17-6<br>1.247+0<br>0.934<br>1.05+0<br>1.15-1<br>2.362+0<br>0.952                                                                         | 8.04-1<br>3.75-1<br>1.643-2<br>1.968<br>1.11+0<br>-2.95-6<br>6000<br>2.738+0<br>1.973<br>9.93-1<br>-6.93-6<br>6.830-1<br>0.835<br>1.12+0<br>1.39-1<br>1.289+0<br>0.854                                                                         | 8.15-1<br>4.17-1<br>1.124-2<br>1.959<br>1.28+0<br>-1.66-6<br>7000<br>1.884+0<br>1.964<br>1.17+0<br>-5.36-6<br>4.070-1<br>0.751<br>1.18+0<br>1.62-1<br>7.657-1<br>0.770                                                                         | 8.18-1<br>4.56-1<br>8.035-3<br>1.950<br>1.44+0<br>9.17-8<br>8000<br>1.354+0<br>1.955<br>1.34+0<br>-3.60-6<br>2.584-1<br>0.679<br>1.23+0<br>1.84-1<br>4.845-1<br>0.699                                                                         | 8.16-1<br>4.92-1<br>5.949-3<br>1.940<br>1.59+0<br>2.47-6<br>9000<br>1.006+0<br>1.945<br>1.49+0<br>-1.62-6<br>1.722-1<br>0.616<br>1.27+0<br>2.05-1<br>3.220-1<br>0.637                                                             | 8.09-1<br>5.25-1<br>4.529-3<br>1.931<br>1.73+0<br>4.29-6<br>10000<br>7.688-1<br>1.936<br>1.63+0<br>9.05-7<br>1.194-1<br>0.560<br>1.30+0<br>2.25-1<br>2.226-1<br>0.582                                                                        |
| $4s_{1/2}$ $E_b =$ 1.7 eV <b>Z= 24, Cr: [An</b> Shell $2s_{1/2}$ $E_b =$ 694.6 eV $2p_{1/2}$ $E_b =$ 583.7 eV                                                                                                                      | β γ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ δ β γ γ δ δ σ δ β γ γ δ δ σ δ β γ γ δ δ σ δ β γ γ δ δ σ δ δ γ γ δ δ σ δ δ δ δ δ δ δ δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.735<br>5.58-1<br>1.23-1<br>3.603-1<br>1.999<br>9.19-2<br>-4.87-6<br>id                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.13-1<br>1.58-1<br>1.986-1<br>1.998<br>2.25-1<br>-4.80-6<br>2000<br>3.001+1<br>1.999<br>4.94-2<br>-1.25-5<br>2.145+1<br>1.359<br>5.66-1<br>4.10-2<br>4.124+1<br>1.376<br>5.78-1                                                               | 3000<br>1.313+1<br>1.996<br>3.16-1<br>-1.08-5<br>6.325+0<br>1.194<br>7.99-1<br>6.46-2<br>1.208+1<br>1.211<br>8.12-1                                                               | 7.48-1<br>2.78-1<br>4.303-2<br>1.985<br>7.13-1<br>-4.52-6<br>4000<br>7.010+0<br>1.989<br>5.68-1<br>-9.29-6<br>2.564+0<br>1.052<br>9.46-1<br>8.97-2<br>4.875+0<br>1.070<br>9.59-1                                                               | 7.83-1<br>3.29-1<br>2.550-2<br>1.977<br>9.21-1<br>-3.88-6<br>5000<br>4.211+0<br>1.981<br>7.93-1<br>-8.17-6<br>1.247+0<br>0.934<br>1.05+0<br>1.15-1<br>2.362+0<br>0.952<br>1.06+0                                                               | 8.04-1<br>3.75-1<br>1.643-2<br>1.968<br>1.11+0<br>-2.95-6<br>6000<br>2.738+0<br>1.973<br>9.93-1<br>-6.93-6<br>6.830-1<br>0.835<br>1.12+0<br>1.39-1<br>1.289+0<br>0.854<br>1.14+0                                                               | 8.15-1<br>4.17-1<br>1.124-2<br>1.959<br>1.28+0<br>-1.66-6<br>7000<br>1.884+0<br>1.964<br>1.17+0<br>-5.36-6<br>4.070-1<br>0.751<br>1.18+0<br>1.62-1<br>7.657-1<br>0.770<br>1.19+0                                                               | 8.18-1<br>4.56-1<br>8.035-3<br>1.950<br>1.44+0<br>9.17-8<br>8000<br>1.354+0<br>1.955<br>1.34+0<br>-3.60-6<br>2.584-1<br>0.679<br>1.23+0<br>1.84-1<br>4.845-1<br>0.699<br>1.24+0                                                               | 8.16-1<br>4.92-1<br>5.949-3<br>1.940<br>1.59+0<br>2.47-6<br>9000<br>1.006+0<br>1.945<br>1.49+0<br>-1.62-6<br>1.722-1<br>0.616<br>1.27+0<br>2.05-1<br>3.220-1<br>0.637<br>1.27+0                                                   | 8.09-1<br>5.25-1<br>4.529-3<br>1.931<br>1.73+0<br>4.29-6<br>10000<br>7.688-1<br>1.936<br>1.63+0<br>9.05-7<br>1.194-1<br>0.560<br>1.30+0<br>2.25-1<br>2.226-1<br>0.582<br>1.30+0                                                              |
| $4s_{1/2}$<br>$E_b =$<br>1.7  eV<br><b>Z= 24, Cr: [And Shell</b><br>$2s_{1/2}$<br>$E_b =$<br>694.6  eV<br>$2p_{1/2}$<br>$E_b =$<br>583.7  eV<br>$2p_{3/2}$<br>$E_b =$<br>574.5  eV                                                 | β γ δ σ β γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ δ σ σ δ σ δ σ δ σ δ σ δ σ δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.735$ $5.58-1$ $1.23-1$ $3.603-1$ $1.999$ $9.19-2$ $-4.87-6$ $10 \frac{1}{5}$ $10 $ | 6.13-1<br>1.58-1<br>1.986-1<br>1.998<br>2.25-1<br>-4.80-6<br>2000<br>3.001+1<br>1.999<br>4.94-2<br>-1.25-5<br>2.145+1<br>1.359<br>5.66-1<br>4.10-2<br>4.124+1<br>1.376<br>5.78-1<br>4.08-2                                                     | 3000<br>1.313+1<br>1.996<br>3.16-1<br>-1.08-5<br>6.325+0<br>1.194<br>7.99-1<br>6.46-2<br>1.208+1<br>1.211<br>8.12-1<br>6.38-2                                                     | 7.48-1<br>2.78-1<br>4.303-2<br>1.985<br>7.13-1<br>-4.52-6<br>4000<br>7.010+0<br>1.989<br>5.68-1<br>-9.29-6<br>2.564+0<br>1.052<br>9.46-1<br>8.97-2<br>4.875+0<br>1.070<br>9.59-1<br>8.86-2                                                     | 7.83-1<br>3.29-1<br>2.550-2<br>1.977<br>9.21-1<br>-3.88-6<br>5000<br>4.211+0<br>1.981<br>7.93-1<br>-8.17-6<br>1.247+0<br>0.934<br>1.05+0<br>1.15-1<br>2.362+0<br>0.952<br>1.06+0<br>1.13-1                                                     | 8.04-1<br>3.75-1<br>1.643-2<br>1.968<br>1.11+0<br>-2.95-6<br>6000<br>2.738+0<br>1.973<br>9.93-1<br>-6.93-6<br>6.830-1<br>0.835<br>1.12+0<br>1.39-1<br>1.289+0<br>0.854<br>1.14+0<br>1.37-1                                                     | 8.15-1<br>4.17-1<br>1.124-2<br>1.959<br>1.28+0<br>-1.66-6<br>7000<br>1.884+0<br>1.964<br>1.17+0<br>-5.36-6<br>4.070-1<br>0.751<br>1.18+0<br>1.62-1<br>7.657-1<br>0.770<br>1.19+0<br>1.60-1                                                     | 8.18-1<br>4.56-1<br>8.035-3<br>1.950<br>1.44+0<br>9.17-8<br>8000<br>1.354+0<br>1.955<br>1.34+0<br>-3.60-6<br>2.584-1<br>0.679<br>1.23+0<br>1.84-1<br>4.845-1<br>0.699<br>1.24+0<br>1.81-1                                                     | 8.16-1<br>4.92-1<br>5.949-3<br>1.940<br>1.59+0<br>2.47-6<br>9000<br>1.006+0<br>1.945<br>1.49+0<br>-1.62-6<br>1.722-1<br>0.616<br>1.27+0<br>2.05-1<br>3.220-1<br>0.637<br>1.27+0<br>2.03-1                                         | 8.09-1<br>5.25-1<br>4.529-3<br>1.931<br>1.73+0<br>4.29-6<br>10000<br>7.688-1<br>1.936<br>1.63+0<br>9.05-7<br>1.194-1<br>0.560<br>1.30+0<br>2.25-1<br>2.226-1<br>0.582<br>1.30+0<br>2.22-1                                                    |
| $4s_{1/2}$ $E_b =$ 1.7 eV <b>Z= 24, Cr: [At</b> Shell $2s_{1/2}$ $E_b =$ 694.6 eV $2p_{1/2}$ $E_b =$ 583.7 eV $2p_{3/2}$ $E_b =$ 574.5 eV                                                                                          | β γ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ δ β γ γ δ δ σ δ β γ γ δ δ σ δ β γ γ δ δ σ δ β γ γ δ δ σ δ δ γ γ δ δ σ δ δ δ δ δ δ δ δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.735<br>5.58-1<br>1.23-1<br>3.603-1<br>1.999<br>9.19-2<br>-4.87-6<br>id                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.13-1<br>1.58-1<br>1.986-1<br>1.998<br>2.25-1<br>-4.80-6<br>2000<br>3.001+1<br>1.999<br>4.94-2<br>-1.25-5<br>2.145+1<br>1.359<br>5.66-1<br>4.10-2<br>4.124+1<br>1.376<br>5.78-1                                                               | 3000<br>1.313+1<br>1.996<br>3.16-1<br>-1.08-5<br>6.325+0<br>1.194<br>7.99-1<br>6.46-2<br>1.208+1<br>1.211<br>8.12-1                                                               | 7.48-1<br>2.78-1<br>4.303-2<br>1.985<br>7.13-1<br>-4.52-6<br>4000<br>7.010+0<br>1.989<br>5.68-1<br>-9.29-6<br>2.564+0<br>1.052<br>9.46-1<br>8.97-2<br>4.875+0<br>1.070<br>9.59-1                                                               | 7.83-1<br>3.29-1<br>2.550-2<br>1.977<br>9.21-1<br>-3.88-6<br>5000<br>4.211+0<br>1.981<br>7.93-1<br>-8.17-6<br>1.247+0<br>0.934<br>1.05+0<br>1.15-1<br>2.362+0<br>0.952<br>1.06+0                                                               | 8.04-1<br>3.75-1<br>1.643-2<br>1.968<br>1.11+0<br>-2.95-6<br>6000<br>2.738+0<br>1.973<br>9.93-1<br>-6.93-6<br>6.830-1<br>0.835<br>1.12+0<br>1.39-1<br>1.289+0<br>0.854<br>1.14+0                                                               | 8.15-1<br>4.17-1<br>1.124-2<br>1.959<br>1.28+0<br>-1.66-6<br>7000<br>1.884+0<br>1.964<br>1.17+0<br>-5.36-6<br>4.070-1<br>0.751<br>1.18+0<br>1.62-1<br>7.657-1<br>0.770<br>1.19+0                                                               | 8.18-1<br>4.56-1<br>8.035-3<br>1.950<br>1.44+0<br>9.17-8<br>8000<br>1.354+0<br>1.955<br>1.34+0<br>-3.60-6<br>2.584-1<br>0.679<br>1.23+0<br>1.84-1<br>4.845-1<br>0.699<br>1.24+0                                                               | 8.16-1<br>4.92-1<br>5.949-3<br>1.940<br>1.59+0<br>2.47-6<br>9000<br>1.006+0<br>1.945<br>1.49+0<br>-1.62-6<br>1.722-1<br>0.616<br>1.27+0<br>2.05-1<br>3.220-1<br>0.637<br>1.27+0                                                   | 8.09-1<br>5.25-1<br>4.529-3<br>1.931<br>1.73+0<br>4.29-6<br>10000<br>7.688-1<br>1.936<br>1.63+0<br>9.05-7<br>1.194-1<br>0.560<br>1.30+0<br>2.25-1<br>2.226-1<br>0.582<br>1.30+0                                                              |
| $4s_{1/2}$ $E_b = 1.7 \text{ eV}$ <b>Z= 24, Cr: [And Shell</b> $2s_{1/2}$ $E_b = 694.6 \text{ eV}$ $2p_{1/2}$ $E_b = 583.7 \text{ eV}$ $2p_{3/2}$ $E_b = 574.5 \text{ eV}$                                                         | β γ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ δ β γ γ δ δ σ δ β γ γ δ δ σ δ δ δ σ δ δ δ δ δ δ δ δ δ δ δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.735<br>5.58-1<br>1.23-1<br>3.603-1<br>1.999<br>9.19-2<br>-4.87-6<br>6d <sub>5/2</sub> 4s <sub>1/2</sub><br>k (eV)<br>1500<br>5.147+1<br>1.999<br>-4.86-2<br>-1.44-5<br>4.904+1<br>1.435<br>3.83-1<br>2.94-2<br>9.483+1<br>1.451<br>3.93-1<br>2.95-2<br>7.446+0<br>1.999<br>5.16-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.13-1<br>1.58-1<br>1.986-1<br>1.998<br>2.25-1<br>-4.80-6<br>2000<br>3.001+1<br>1.999<br>4.94-2<br>-1.25-5<br>2.145+1<br>1.359<br>5.66-1<br>4.10-2<br>4.124+1<br>1.376<br>5.78-1<br>4.08-2<br>4.155+0<br>1.998<br>1.76-1                       | 3000<br>1.313+1<br>1.996<br>3.16-1<br>-1.08-5<br>6.325+0<br>1.194<br>7.99-1<br>6.46-2<br>1.208+1<br>1.211<br>8.12-1<br>6.38-2<br>1.755+0<br>1.993<br>4.29-1                       | 7.48-1<br>2.78-1<br>4.303-2<br>1.985<br>7.13-1<br>-4.52-6<br>4000<br>7.010+0<br>1.989<br>5.68-1<br>-9.29-6<br>2.564+0<br>1.052<br>9.46-1<br>8.97-2<br>4.875+0<br>1.070<br>9.59-1<br>8.86-2<br>9.242-1<br>1.986<br>6.61-1                       | 7.83-1<br>3.29-1<br>2.550-2<br>1.977<br>9.21-1<br>-3.88-6<br>5000<br>4.211+0<br>1.981<br>7.93-1<br>-8.17-6<br>1.247+0<br>0.934<br>1.05+0<br>1.15-1<br>2.362+0<br>0.952<br>1.06+0<br>1.13-1<br>5.518-1<br>1.979<br>8.70-1                       | 8.04-1<br>3.75-1<br>1.643-2<br>1.968<br>1.11+0<br>-2.95-6<br>6000<br>2.738+0<br>1.973<br>9.93-1<br>-6.93-6<br>6.830-1<br>0.835<br>1.12+0<br>1.39-1<br>1.289+0<br>0.854<br>1.14+0<br>1.37-1<br>3.577-1<br>1.970<br>1.06+0                       | 8.15-1<br>4.17-1<br>1.124-2<br>1.959<br>1.28+0<br>-1.66-6<br>7000<br>1.884+0<br>1.964<br>1.17+0<br>-5.36-6<br>4.070-1<br>0.751<br>1.18+0<br>1.62-1<br>7.657-1<br>0.770<br>1.19+0<br>1.60-1<br>2.458-1<br>1.961<br>1.23+0                       | 8.18-1<br>4.56-1<br>8.035-3<br>1.950<br>1.44+0<br>9.17-8<br>8000<br>1.354+0<br>1.955<br>1.34+0<br>-3.60-6<br>2.584-1<br>0.679<br>1.23+0<br>1.84-1<br>4.845-1<br>0.699<br>1.24+0<br>1.81-1<br>1.765-1<br>1.952<br>1.39+0                       | 8.16-1<br>4.92-1<br>5.949-3<br>1.940<br>1.59+0<br>2.47-6<br>9000<br>1.006+0<br>1.945<br>1.49+0<br>-1.62-6<br>1.722-1<br>0.616<br>1.27+0<br>2.05-1<br>3.220-1<br>0.637<br>1.27+0<br>2.03-1<br>1.311-1<br>1.943<br>1.54+0           | 8.09-1<br>5.25-1<br>4.529-3<br>1.931<br>1.73+0<br>4.29-6<br>10000<br>7.688-1<br>1.936<br>1.63+0<br>9.05-7<br>1.194-1<br>0.560<br>1.30+0<br>2.25-1<br>2.226-1<br>0.582<br>1.30+0<br>2.22-1<br>1.001-1<br>1.933<br>1.67+0                      |
| $4s_{1/2}$ $E_b =$ $1.7 \text{ eV}$ <b>Z= 24, Cr: [And Shell</b> $2s_{1/2}$ $E_b =$ $694.6 \text{ eV}$ $2p_{1/2}$ $E_b =$ $583.7 \text{ eV}$ $2p_{3/2}$ $E_b =$ $574.5 \text{ eV}$ $3s_{1/2}$ $E_b =$ $74.1 \text{ eV}$            | $ \begin{array}{c} \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \rho \\ \gamma \\ \delta \\ \hline \sigma \\ \rho \\ \gamma \\ \delta \\ \hline \sigma \\ \rho \\ \gamma \\ \delta \\ \hline \sigma \\ \rho \\ \gamma \\ \delta \\ \delta \\ \sigma \\ \rho \\ \gamma \\ \delta \\ \delta \\ \sigma \\ \rho \\ \gamma \\ \delta \\ \delta \\ \sigma \\ \rho \\ \gamma \\ \delta \\ \delta \\ \sigma \\ \rho \\ \gamma \\ \delta \\ \delta \\ \sigma \\ \rho \\ \gamma \\ \delta \\ \delta \\ \sigma \\ \rho \\ \gamma \\ \delta \\ \delta \\ \sigma \\ \rho \\ \gamma \\ \delta \\ \delta \\ \sigma \\ \rho \\ \gamma \\ \delta \\ \delta \\ \sigma \\ \rho \\ \rho \\ \phi \\ \sigma \\ \rho \\ \rho \\ \phi \\ \sigma \\ \rho \\ \rho \\ \phi \\ \sigma \\ \rho \\ \phi \\ \phi$ | 0.735<br>5.58-1<br>1.23-1<br>3.603-1<br>1.999<br>9.19-2<br>-4.87-6<br>dd <sup>1</sup> <sub>1/2</sub> 4s <sup>1</sup> <sub>1/2</sub><br>k (eV)<br>1500<br>5.147+1<br>1.999<br>-4.86-2<br>-1.44-5<br>4.904+1<br>1.435<br>3.83-1<br>2.94-2<br>9.483+1<br>1.451<br>3.93-1<br>2.95-2<br>7.446+0<br>1.999<br>5.16-2<br>-6.64-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.13-1<br>1.58-1<br>1.986-1<br>1.998<br>2.25-1<br>-4.80-6<br>2000<br>3.001+1<br>1.999<br>4.94-2<br>-1.25-5<br>2.145+1<br>1.359<br>5.66-1<br>4.10-2<br>4.124+1<br>1.376<br>5.78-1<br>4.08-2<br>4.155+0<br>1.998<br>1.76-1<br>-6.73-6            | 3000<br>1.313+1<br>1.996<br>3.16-1<br>-1.08-5<br>6.325+0<br>1.194<br>7.99-1<br>6.46-2<br>1.208+1<br>1.211<br>8.12-1<br>6.38-2<br>1.755+0<br>1.993<br>4.29-1<br>-6.75-6            | 7.48-1<br>2.78-1<br>4.303-2<br>1.985<br>7.13-1<br>-4.52-6<br>4000<br>7.010+0<br>1.989<br>5.68-1<br>-9.29-6<br>2.564+0<br>1.052<br>9.46-1<br>8.97-2<br>4.875+0<br>1.070<br>9.59-1<br>8.86-2<br>9.242-1<br>1.986<br>6.61-1<br>-6.29-6            | 7.83-1<br>3.29-1<br>2.550-2<br>1.977<br>9.21-1<br>-3.88-6<br>5000<br>4.211+0<br>1.981<br>7.93-1<br>-8.17-6<br>1.247+0<br>0.934<br>1.05+0<br>1.15-1<br>2.362+0<br>0.952<br>1.06+0<br>1.13-1<br>5.518-1<br>1.979<br>8.70-1<br>-5.62-6            | 8.04-1<br>3.75-1<br>1.643-2<br>1.968<br>1.11+0<br>-2.95-6<br>6000<br>2.738+0<br>1.973<br>9.93-1<br>-6.93-6<br>6.830-1<br>0.835<br>1.12+0<br>1.39-1<br>1.289+0<br>0.854<br>1.14+0<br>1.37-1<br>3.577-1<br>1.970<br>1.06+0<br>-4.59-6            | 8.15-1<br>4.17-1<br>1.124-2<br>1.959<br>1.28+0<br>-1.66-6<br>7000<br>1.884+0<br>1.964<br>1.17+0<br>-5.36-6<br>4.070-1<br>0.751<br>1.18+0<br>1.62-1<br>7.657-1<br>0.770<br>1.19+0<br>1.60-1<br>2.458-1<br>1.961<br>1.23+0<br>-3.23-6            | 8.18-1<br>4.56-1<br>8.035-3<br>1.950<br>1.44+0<br>9.17-8<br>8000<br>1.354+0<br>1.955<br>1.34+0<br>-3.60-6<br>2.584-1<br>0.679<br>1.23+0<br>1.84-1<br>4.845-1<br>0.699<br>1.24+0<br>1.81-1<br>1.765-1<br>1.952<br>1.39+0<br>-1.49-6            | 8.16-1<br>4.92-1<br>5.949-3<br>1.940<br>1.59+0<br>2.47-6<br>9000<br>1.006+0<br>1.945<br>1.49+0<br>-1.62-6<br>1.722-1<br>0.616<br>1.27+0<br>2.05-1<br>3.220-1<br>0.637<br>1.27+0<br>2.03-1<br>1.311-1<br>1.943<br>1.54+0<br>6.69-7 | 8.09-1<br>5.25-1<br>4.529-3<br>1.931<br>1.73+0<br>4.29-6<br>10000<br>7.688-1<br>1.936<br>1.63+0<br>9.05-7<br>1.194-1<br>0.560<br>1.30+0<br>2.25-1<br>2.226-1<br>0.582<br>1.30+0<br>2.22-1<br>1.001-1<br>1.933<br>1.67+0<br>3.19-6            |
| $4s_{1/2}$ $E_b =$ $1.7 \text{ eV}$ <b>Z= 24, Cr: [And Shell</b> $2s_{1/2}$ $E_b =$ $694.6 \text{ eV}$ $2p_{1/2}$ $E_b =$ $583.7 \text{ eV}$ $2p_{3/2}$ $E_b =$ $574.5 \text{ eV}$ $3s_{1/2}$ $E_b =$ $74.1 \text{ eV}$ $3p_{1/2}$ | β γ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ σ β γ δ δ σ σ β γ δ δ σ σ β γ δ δ σ σ β γ δ δ σ σ β γ δ δ σ σ β γ δ δ σ σ δ β γ δ δ σ σ δ δ γ δ δ σ σ δ δ γ δ δ σ σ δ δ δ σ σ δ δ δ σ σ δ δ δ σ σ δ δ δ σ σ δ δ δ σ σ δ δ δ σ σ δ δ δ σ σ δ δ δ σ σ δ δ δ δ σ σ δ δ δ δ σ σ δ δ δ δ σ σ δ δ δ δ δ δ δ σ σ δ δ δ δ δ δ δ δ δ δ σ σ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.735 5.58-1 1.23-1 3.603-1 1.999 9.19-2 -4.87-6 6d <sub>5/2</sub> 4s <sub>1/2</sub> k (eV) 1500 5.147+1 1.999 -4.86-2 -1.44-5 4.904+1 1.435 3.83-1 2.94-2 9.483+1 1.451 3.93-1 2.95-2 7.446+0 1.999 5.16-2 -6.64-6 4.784+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.13-1<br>1.58-1<br>1.986-1<br>1.998<br>2.25-1<br>-4.80-6<br>2000<br>3.001+1<br>1.999<br>4.94-2<br>-1.25-5<br>2.145+1<br>1.359<br>5.66-1<br>4.10-2<br>4.124+1<br>1.376<br>5.78-1<br>4.08-2<br>4.155+0<br>1.998<br>1.76-1<br>-6.73-6<br>2.187+0 | 3000<br>1.313+1<br>1.996<br>3.16-1<br>-1.08-5<br>6.325+0<br>1.194<br>7.99-1<br>6.46-2<br>1.208+1<br>1.211<br>8.12-1<br>6.38-2<br>1.755+0<br>1.993<br>4.29-1<br>-6.75-6<br>6.812-1 | 7.48-1<br>2.78-1<br>4.303-2<br>1.985<br>7.13-1<br>-4.52-6<br>4000<br>7.010+0<br>1.989<br>5.68-1<br>-9.29-6<br>2.564+0<br>1.052<br>9.46-1<br>8.97-2<br>4.875+0<br>1.070<br>9.59-1<br>8.86-2<br>9.242-1<br>1.986<br>6.61-1<br>-6.29-6<br>2.851-1 | 7.83-1<br>3.29-1<br>2.550-2<br>1.977<br>9.21-1<br>-3.88-6<br>5000<br>4.211+0<br>1.981<br>7.93-1<br>-8.17-6<br>1.247+0<br>0.934<br>1.05+0<br>1.15-1<br>2.362+0<br>0.952<br>1.06+0<br>1.13-1<br>5.518-1<br>1.979<br>8.70-1<br>-5.62-6<br>1.415-1 | 8.04-1<br>3.75-1<br>1.643-2<br>1.968<br>1.11+0<br>-2.95-6<br>6000<br>2.738+0<br>1.973<br>9.93-1<br>-6.93-6<br>6.830-1<br>0.835<br>1.12+0<br>1.39-1<br>1.289+0<br>0.854<br>1.14+0<br>1.37-1<br>3.577-1<br>1.970<br>1.06+0<br>-4.59-6<br>7.862-2 | 8.15-1<br>4.17-1<br>1.124-2<br>1.959<br>1.28+0<br>-1.66-6<br>7000<br>1.884+0<br>1.964<br>1.17+0<br>-5.36-6<br>4.070-1<br>0.751<br>1.18+0<br>1.62-1<br>7.657-1<br>0.770<br>1.19+0<br>1.60-1<br>2.458-1<br>1.961<br>1.23+0<br>-3.23-6<br>4.733-2 | 8.18-1<br>4.56-1<br>8.035-3<br>1.950<br>1.44+0<br>9.17-8<br>8000<br>1.354+0<br>1.955<br>1.34+0<br>-3.60-6<br>2.584-1<br>0.679<br>1.23+0<br>1.84-1<br>4.845-1<br>0.699<br>1.24+0<br>1.81-1<br>1.765-1<br>1.952<br>1.39+0<br>-1.49-6<br>3.027-2 | 8.16-1<br>4.92-1<br>5.949-3<br>1.940<br>1.59+0<br>2.47-6<br>9000<br>1.006+0<br>1.945<br>1.49+0<br>-1.62-6<br>1.722-1<br>0.616<br>1.27+0<br>2.05-1<br>3.220-1<br>0.637<br>1.27+0<br>2.03-1<br>1.943<br>1.54+0<br>6.69-7<br>2.030-2 | 8.09-1<br>5.25-1<br>4.529-3<br>1.931<br>1.73+0<br>4.29-6<br>10000<br>7.688-1<br>1.936<br>1.63+0<br>9.05-7<br>1.194-1<br>0.560<br>1.30+0<br>2.25-1<br>2.226-1<br>0.582<br>1.30+0<br>2.22-1<br>1.001-1<br>1.933<br>1.67+0<br>3.19-6<br>1.414-2 |
| $4s_{1/2}$ $E_b =$ 1.7 eV <b>Z= 24, Cr: [And Shell</b> $2s_{1/2}$ $E_b =$ 694.6 eV $2p_{1/2}$ $E_b =$ 583.7 eV $2p_{3/2}$ $E_b =$ 574.5 eV $3s_{1/2}$ $E_b =$ 74.1 eV                                                              | $ \begin{array}{c} \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \rho \\ \gamma \\ \delta \\ \hline \sigma \\ \rho \\ \gamma \\ \delta \\ \hline \sigma \\ \rho \\ \gamma \\ \delta \\ \hline \sigma \\ \rho \\ \gamma \\ \delta \\ \delta \\ \sigma \\ \rho \\ \gamma \\ \delta \\ \delta \\ \sigma \\ \rho \\ \gamma \\ \delta \\ \delta \\ \sigma \\ \rho \\ \gamma \\ \delta \\ \delta \\ \sigma \\ \rho \\ \gamma \\ \delta \\ \delta \\ \sigma \\ \rho \\ \gamma \\ \delta \\ \delta \\ \sigma \\ \rho \\ \gamma \\ \delta \\ \delta \\ \sigma \\ \rho \\ \gamma \\ \delta \\ \delta \\ \sigma \\ \rho \\ \gamma \\ \delta \\ \delta \\ \sigma \\ \rho \\ \rho \\ \phi \\ \sigma \\ \rho \\ \rho \\ \phi \\ \sigma \\ \rho \\ \rho \\ \phi \\ \sigma \\ \rho \\ \phi \\ \phi$ | 0.735<br>5.58-1<br>1.23-1<br>3.603-1<br>1.999<br>9.19-2<br>-4.87-6<br>dd <sup>1</sup> <sub>1/2</sub> 4s <sup>1</sup> <sub>1/2</sub><br>k (eV)<br>1500<br>5.147+1<br>1.999<br>-4.86-2<br>-1.44-5<br>4.904+1<br>1.435<br>3.83-1<br>2.94-2<br>9.483+1<br>1.451<br>3.93-1<br>2.95-2<br>7.446+0<br>1.999<br>5.16-2<br>-6.64-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.13-1<br>1.58-1<br>1.986-1<br>1.998<br>2.25-1<br>-4.80-6<br>2000<br>3.001+1<br>1.999<br>4.94-2<br>-1.25-5<br>2.145+1<br>1.359<br>5.66-1<br>4.10-2<br>4.124+1<br>1.376<br>5.78-1<br>4.08-2<br>4.155+0<br>1.998<br>1.76-1<br>-6.73-6            | 3000<br>1.313+1<br>1.996<br>3.16-1<br>-1.08-5<br>6.325+0<br>1.194<br>7.99-1<br>6.46-2<br>1.208+1<br>1.211<br>8.12-1<br>6.38-2<br>1.755+0<br>1.993<br>4.29-1<br>-6.75-6            | 7.48-1<br>2.78-1<br>4.303-2<br>1.985<br>7.13-1<br>-4.52-6<br>4000<br>7.010+0<br>1.989<br>5.68-1<br>-9.29-6<br>2.564+0<br>1.052<br>9.46-1<br>8.97-2<br>4.875+0<br>1.070<br>9.59-1<br>8.86-2<br>9.242-1<br>1.986<br>6.61-1<br>-6.29-6            | 7.83-1<br>3.29-1<br>2.550-2<br>1.977<br>9.21-1<br>-3.88-6<br>5000<br>4.211+0<br>1.981<br>7.93-1<br>-8.17-6<br>1.247+0<br>0.934<br>1.05+0<br>1.15-1<br>2.362+0<br>0.952<br>1.06+0<br>1.13-1<br>5.518-1<br>1.979<br>8.70-1<br>-5.62-6            | 8.04-1<br>3.75-1<br>1.643-2<br>1.968<br>1.11+0<br>-2.95-6<br>6000<br>2.738+0<br>1.973<br>9.93-1<br>-6.93-6<br>6.830-1<br>0.835<br>1.12+0<br>1.39-1<br>1.289+0<br>0.854<br>1.14+0<br>1.37-1<br>3.577-1<br>1.970<br>1.06+0<br>-4.59-6            | 8.15-1<br>4.17-1<br>1.124-2<br>1.959<br>1.28+0<br>-1.66-6<br>7000<br>1.884+0<br>1.964<br>1.17+0<br>-5.36-6<br>4.070-1<br>0.751<br>1.18+0<br>1.62-1<br>7.657-1<br>0.770<br>1.19+0<br>1.60-1<br>2.458-1<br>1.961<br>1.23+0<br>-3.23-6            | 8.18-1<br>4.56-1<br>8.035-3<br>1.950<br>1.44+0<br>9.17-8<br>8000<br>1.354+0<br>1.955<br>1.34+0<br>-3.60-6<br>2.584-1<br>0.679<br>1.23+0<br>1.84-1<br>4.845-1<br>0.699<br>1.24+0<br>1.81-1<br>1.765-1<br>1.952<br>1.39+0<br>-1.49-6            | 8.16-1<br>4.92-1<br>5.949-3<br>1.940<br>1.59+0<br>2.47-6<br>9000<br>1.006+0<br>1.945<br>1.49+0<br>-1.62-6<br>1.722-1<br>0.616<br>1.27+0<br>2.05-1<br>3.220-1<br>0.637<br>1.27+0<br>2.03-1<br>1.311-1<br>1.943<br>1.54+0<br>6.69-7 | 8.09-1<br>5.25-1<br>4.529-3<br>1.931<br>1.73+0<br>4.29-6<br>10000<br>7.688-1<br>1.936<br>1.63+0<br>9.05-7<br>1.194-1<br>0.560<br>1.30+0<br>2.25-1<br>2.226-1<br>0.582<br>1.30+0<br>2.22-1<br>1.001-1<br>1.933<br>1.67+0<br>3.19-6            |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | able 1 (contin                                   | ,                    |                                     |           |           |           |           |           |           |           |          |                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------|-------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  | δ                    | 2.55-2                              | 3.75-2    | 6.38-2    | 9.01-2    |           | 1.40-1    | 1.63-1    | 1.85-1    | 2.06-1   | 2.26-1           |
| Section   Sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $3p_{3/2}$                                       |                      |                                     |           |           |           |           |           |           |           |          | 2.601-2<br>0.551 |
| \$\frac{\delta}{2}, \text{of} \frac{\delta}{2}, \text{of} \frac{\delta}{2}, \text{of} \frac{\delta}{2}, \text{of} \frac{\delta}{2} \de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $E_b = 39.9 \text{ eV}$                          |                      |                                     |           |           |           |           |           |           |           |          | 1.28+0           |
| =   β   0.777   0.665   0.524   0.438   0.373   0.321   0.275   0.234   0.198   0.192   0.296   0.571   1.62-1   7.62-1   7.62-1   7.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62-1   3.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                      |                                     |           |           |           |           |           |           |           |          | 2.24 - 1         |
| 28 eV   y   5,71   1   6,29   7,109   7,09   7,05   1   3,00   1   3,00   1   3,60   1   3,60   1   4,07   1   4,07   1   4,07   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00   1   5,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3d <sub>3/2</sub>                                | σ                    |                                     |           |           |           |           |           |           |           |          | 2.102-4          |
| 1.19-1   1.53-1   2.15-1   2.70-1   3.20-1   3.66-1   4.08-1   4.47-1   4.83-1   4.95-2   2.50-1   5.11-2   1.581-2   2.28-3   1.44-1   7.077-4   0.28-3   1.28-2   2.28   7.48-1   2.50-1   5.12-1   7.72-1   7.72-1   3.20-1   3.66-1   4.06-1   4.44-1   4.79-1   5.89-2   2.28   7.70-1   3.20-1   3.65-1   4.06-1   4.44-1   4.79-1   5.89-2   3.69-2   3.65-1   4.06-1   4.44-1   4.79-1   5.89-2   3.69-2   3.65-1   4.06-1   4.44-1   4.79-1   5.89-2   3.69-2   3.69-2   3.65-1   4.06-1   4.44-1   4.79-1   5.89-2   3.69-2   3.69-2   3.65-1   4.06-1   4.44-1   4.79-1   5.89-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.69-2   3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $E_b =$                                          |                      |                                     |           |           |           |           |           |           |           |          | 0.165            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.9 eV                                           |                      |                                     |           |           |           |           |           |           |           |          | 8.42-1<br>5.16-1 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3d= /2                                           |                      |                                     |           |           |           |           |           |           |           |          | 2.927-4          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $E_b =$                                          |                      |                                     |           |           |           |           |           |           |           |          | 0.210            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.2 eV                                           |                      |                                     |           |           |           |           |           |           |           |          | 8.78-1           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                      |                                     |           |           |           |           |           |           |           |          | 5.13-1           |
| 1.0 eV   y   6.13-2   1.88-1   4.40-1   6.70-1   8.77-1   1.00+0   1.23+0   1.33+0   1.54-0   1.23+0   1.33+0   1.54-0   1.23+0   1.43-6   5.45-7   2.23+0.55-1   1.23+0   1.43-6   5.45-7   2.23+0.55-1   1.23+0   1.43-6   5.45-7   2.23+0.55-1   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0   1.23+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4s <sub>1/2</sub>                                |                      |                                     |           |           |           |           |           |           |           |          | 3.815-3<br>1.933 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                      |                                     |           |           |           |           |           |           |           |          | 1.68+0           |
| Relation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                      | -6.22 - 6                           | -6.12 - 6 | -6.03 - 6 | -5.80 - 6 | -5.16 - 6 | -4.44 - 6 | -3.18 - 6 | -1.43 - 6 | 9.54 - 7 | 2.92 - 6         |
| rell   100   2000   3000   4000   5000   6000   7000   8000   9000   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z= 25, Mn: [ <i>A</i>                            | \r]3d <sub>3/2</sub> | 3d <sub>5/2</sub> 4s <sub>1/2</sub> |           |           |           |           |           |           |           |          |                  |
| $ \begin{array}{c} i_{12} \\ = \\ \beta \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                      | k (eV)                              |           |           |           |           |           |           |           |          |                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Shell                                            |                      | 1500                                | 2000      | 3000      | 4000      | 5000      | 6000      | 7000      | 8000      | 9000     | 10000            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2s <sub>1/2</sub>                                |                      |                                     |           |           |           |           |           |           |           |          | 8.859-1          |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $E_b = 760.0 \text{ eV}$                         |                      |                                     |           |           |           |           |           |           |           |          | 1.939<br>1.58+0  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 703.0 CV                                         |                      |                                     |           |           |           |           |           |           |           |          | -1.24-0          |
| $\begin{array}{c} = & \beta & 1.448 & 1.382 & 1.234 & 1.098 & 0.981 & 0.882 & 0.797 & 0.723 & 0.659 & 0.811 \\ 1.144 & y & 3.37 - 1 & 5.32 - 1 & 7.84 - 1 & 1.05 + 0 & 1.14 + 0 & 1.20 + 0 & 1.25 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.29 + 0 & 1.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $2p_{1/2}$                                       | σ                    | 5.833+1                             | 2.576+1   | 7.705+0   | 3.152+0   | 1.544+0   | 8.505-1   | 5.093-1   | 3.246-1   | 2.171-1  | 1.510-1          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $E_b =$                                          | $\beta$              |                                     |           |           | 1.098     |           |           |           |           |          | 0.602            |
| $\begin{array}{c} g_{2/2} \\ g_{1/2} \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 651.4 eV                                         |                      |                                     |           |           |           |           |           |           |           |          | 1.32+0<br>2.17-1 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2n                                               |                      |                                     |           |           |           |           |           |           |           |          | 2.807-1          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $E_b =$                                          |                      |                                     |           |           |           |           |           |           |           |          | 0.625            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 640.3 eV                                         | γ                    |                                     |           |           |           |           | 1.15+0    |           |           |          | 1.33+0           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  | δ                    |                                     |           |           |           |           |           |           |           |          | 2.14-1           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $3s_{1/2}$                                       |                      |                                     |           |           |           |           |           |           |           |          | 1.190-1          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $E_b = 83.9 \text{ eV}$                          |                      |                                     |           |           |           |           |           |           |           |          | 1.936<br>1.63+0  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                      |                                     |           |           |           |           |           |           |           |          | 1.52-6           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3p <sub>1/2</sub>                                | σ                    |                                     |           |           |           |           |           |           |           |          | 1.867-2          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $E_b =$                                          |                      |                                     |           |           |           |           |           |           |           |          | 0.568            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53.1 eV                                          |                      |                                     |           |           |           |           |           |           |           |          | 1.30+0<br>2.18-1 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3p <sub>3/2</sub>                                |                      |                                     |           |           |           |           |           |           |           |          | 3.401-2          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $E_b =$                                          |                      |                                     |           |           |           |           |           | 0.771     |           |          | 0.591            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46.4 eV                                          |                      |                                     |           |           |           |           |           |           |           |          | 1.30+0           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.4                                              |                      |                                     |           |           |           |           |           |           |           |          | 2.16-1           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $E_b =$                                          |                      |                                     |           |           |           |           |           |           |           |          | 3.807-4<br>0.181 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |                      |                                     |           |           |           |           |           |           |           |          | 8.75-1           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  | δ                    | 1.14-1                              | 1.47-1    | 2.08-1    | 2.63-1    | 3.13-1    | 3.58-1    | 3.99-1    | 4.37-1    | 4.73-1   | 5.06-1           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3d <sub>5/2</sub>                                |                      |                                     |           |           |           |           |           |           |           |          | 5.375-4          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $E_b = 2.7 \text{ eV}$                           |                      |                                     |           |           |           |           |           |           |           |          | 0.226<br>9.10-1  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.7 C V                                          |                      |                                     |           |           |           |           |           |           |           |          | 5.03-1           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4s <sub>1/2</sub>                                | σ                    |                                     |           |           |           |           |           |           |           |          | 5.827-3          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $E_b =$                                          | β                    | 2.000                               | 1.998     | 1.994     | 1.987     |           |           | 1.963     | 1.954     | 1.945    | 1.935            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.9 eV                                           |                      |                                     |           |           |           |           |           |           |           |          | 1.64+0<br>1.58-6 |
| $\frac{k  (\text{eV})}{1500} \qquad \frac{k  (\text{eV})}{1500}$ | 7= 26 Fe: [A                                     |                      |                                     | 7.00 0    | 7.55 0    | 7.10 0    | 0.00      | 3.32 0    | 1.00 0    | 2.51      | 1.00 7   | 1.50 0           |
| The left of the l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _ =0,1C.[A                                       | - J-u3/2             |                                     |           |           |           |           |           |           |           |          |                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Shell                                            |                      |                                     | 2000      | 3000      | 4000      | 5000      | 6000      | 7000      | 8000      | 9000     | 10000            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2s <sub>1/2</sub>                                | σ                    |                                     |           |           |           |           |           |           |           |          | 1.013+0          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $E_b =$                                          |                      | 1.998                               | 1.999     | 1.997     | 1.992     | 1.985     | 1.977     | 1.969     | 1.960     | 1.951    | 1.941            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 846.1 eV                                         |                      |                                     |           |           |           |           |           |           |           |          | 1.53+0           |
| $\beta=$ $\beta$ 1.454 1.404 1.267 1.135 1.019 0.921 0.836 0.762 0.697 0 21.1 eV $\gamma$ 2.85 $-1$ 4.93 $-1$ 7.64 $-1$ 9.35 $-1$ 1.06+0 1.14+0 1.21+0 1.27+0 1.31+0 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n                                                |                      |                                     |           |           |           |           |           |           |           |          | -3.80-0          |
| 21.1 eV $\gamma$ 2.85 $-1$ 4.93 $-1$ 7.64 $-1$ 9.35 $-1$ 1.06+0 1.14+0 1.21+0 1.27+0 1.31+0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{l} 2p_{1/2} \\ E_b = \end{array}$ |                      |                                     |           |           |           |           |           |           |           |          | 1.890-1<br>0.639 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 721.1 eV                                         |                      |                                     |           |           |           |           |           |           |           |          | 1.35+0           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |                      | 2.59-2                              | 3.58-2    | 5.75-2    | 8.02-2    | 1.03-1    | 1.26-1    | 1.48-1    | 1.69-1    | 1.89-1   | 2.09-1           |

| able 1 (contin                                   | ued)                                                                                                              |                                                 |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| $2p_{3/2}$                                       | σ                                                                                                                 | 1.335+2                                         | 5.907+1                              | 1.773+1                              | 7.270+0                              | 3.567+0                              | 1.968+0                              | 1.179+0                              | 7.518 - 1                            | 5.030 - 1                            | 3.497 - 1                            |
| $E_b =$                                          | β                                                                                                                 | 1.473                                           | 1.423                                | 1.287                                | 1.155                                | 1.040                                | 0.942                                | 0.858                                | 0.784                                | 0.720                                | 0.663                                |
| 708.1 eV                                         | γ                                                                                                                 | 2.94 - 1                                        | 5.06 - 1                             | 7.80 - 1                             | 9.52 - 1                             | 1.07+0                               | 1.16+0                               | 1.23+0                               | 1.28+0                               | 1.32+0                               | 1.36+0                               |
|                                                  | δ                                                                                                                 | 2.61-2                                          | 3.58-2                               | 5.68-2                               | 7.89-2                               | 1.01-1                               | 1.24-1                               | 1.45-1                               | 1.66-1                               | 1.86-1                               | 2.06-1                               |
| $3s_{1/2}$                                       | σ                                                                                                                 | 9.411+0                                         | 5.316+0                              | 2.282+0                              | 1.217+0                              | 7.342-1                              | 4.802-1                              | 3.326-1                              | 2.405-1                              | 1.797-1                              | 1.380-1                              |
| $E_b =$                                          | $\beta$                                                                                                           | 2.000                                           | 1.999                                | 1.995                                | 1.989                                | 1.982                                | 1.974                                | 1.965                                | 1.956                                | 1.947                                | 1.938                                |
| 92.9 eV                                          | γ                                                                                                                 | 1.89-3                                          | 1.07-1                               | 3.42-1                               | 5.67-1                               | 7.73-1                               | 9.61-1                               | 1.13+0                               | 1.29+0                               | 1.44+0                               | 1.58+0                               |
|                                                  | δ                                                                                                                 | -1.02-5                                         | -1.02-5                              | -1.03-5                              | -1.01-5                              | -9.41-6                              | -8.45-6                              | -7.05-6                              | -5.32-6                              | -3.11-6                              | -4.63-7                              |
| $3p_{1/2}$ $E_b =$                               | $\sigma_{\rho}$                                                                                                   | 6.920+0<br>1.466                                | 3.241+0<br>1.371                     | 1.042+0<br>1.205                     | 4.457-1<br>1.070                     | 2.250-1<br>0.960                     | 1.268-1<br>0.867                     | 7.721-2<br>0.787                     | 4.987-2<br>0.718                     | 3.372-2<br>0.657                     | 2.366-2<br>0.602                     |
| 58.1 eV                                          | $\beta$ $\gamma$                                                                                                  | 4.30-1                                          | 5.78-1                               | 7.89-1                               | 9.35-1                               | 1.04+0                               | 1.13+0                               | 1.19+0                               | 1.24+0                               | 1.29+0                               | 1.33+0                               |
| 30.1 CV                                          | δ                                                                                                                 | 2.09-2                                          | 3.20-2                               | 5.54-2                               | 7.97-2                               | 1.04-1                               | 1.27-1                               | 1.49-1                               | 1.70-1                               | 1.91-1                               | 2.10-1                               |
| $3p_{3/2}$                                       | σ                                                                                                                 | 1.316+1                                         | 6.130+0                              | 1.954+0                              | 8.308-1                              | 4.174-1                              | 2.341-1                              | 1.420-1                              | 9.139-2                              | 6.159-2                              | 4.308-2                              |
| $E_b =$                                          | $\beta$                                                                                                           | 1.483                                           | 1.389                                | 1.224                                | 1.090                                | 0.980                                | 0.887                                | 0.808                                | 0.740                                | 0.680                                | 0.626                                |
| 52.0 eV                                          | γ                                                                                                                 | 4.37 - 1                                        | 5.87 - 1                             | 8.01 - 1                             | 9.47 - 1                             | 1.05+0                               | 1.14+0                               | 1.20+0                               | 1.25+0                               | 1.29+0                               | 1.33+0                               |
|                                                  | δ                                                                                                                 | 2.09-2                                          | 3.15-2                               | 5.43-2                               | 7.81-2                               | 1.02-1                               | 1.24-1                               | 1.46-1                               | 1.68-1                               | 1.88-1                               | 2.07 - 1                             |
| $3d_{3/2}$                                       | σ                                                                                                                 | 1.214+0                                         | 4.179 - 1                            | 8.804 - 2                            | 2.798 - 2                            | 1.121 - 2                            | 5.220-3                              | 2.704 - 3                            | 1.517 - 3                            | 9.058 - 4                            | 5.686 - 4                            |
| $E_b =$                                          | $\beta$                                                                                                           | 0.848                                           | 0.730                                | 0.580                                | 0.485                                | 0.415                                | 0.359                                | 0.311                                | 0.269                                | 0.232                                | 0.197                                |
| 3.9 eV                                           | γ                                                                                                                 | 5.84-1                                          | 6.53-1                               | 7.42-1                               | 8.01-1                               | 8.42-1                               | 8.71-1                               | 8.90-1                               | 9.01-1                               | 9.06-1                               | 9.06-1                               |
|                                                  | δ                                                                                                                 | 1.09-1                                          | 1.42-1                               | 2.02-1                               | 2.56-1                               | 3.05-1                               | 3.49-1                               | 3.90-1                               | 4.28-1                               | 4.64-1                               | 4.97-1                               |
| 3d <sub>5/2</sub>                                | $\sigma_{\rho}$                                                                                                   | 1.764+0                                         | 6.047-1<br>0.728                     | 1.268-1                              | 4.014-2<br>0.497                     | 1.603-2<br>0.434                     | 7.446-3<br>0.384                     | 3.847-3<br>0.341                     | 2.154-3                              | 1.283-3                              | 8.039-4                              |
| $E_b = 3.1 \text{ eV}$                           | β                                                                                                                 | 0.842<br>5.82-1                                 | 0.728<br>6.52-1                      | 0.586<br>7.44-1                      | 0.497<br>8.06-1                      | 0.434<br>8.52-1                      | 0.384<br>8.85-1                      | 0.341<br>9.09-1                      | 0.304<br>9.25-1                      | 0.271<br>9.35-1                      | 0.241<br>9.40-1                      |
| J.1 CV                                           | $_{\delta}^{\gamma}$                                                                                              | 1.11-1                                          | 1.43-1                               | 2.03-1                               | 2.56-1                               | 3.05-1                               | 3.48-1                               | 3.89-1                               | 4.26-1                               | 4.61–1                               | 4.93-1                               |
| 4s <sub>1/2</sub>                                | σ                                                                                                                 | 4.569-1                                         | 2.560-1                              | 1.089-1                              | 5.780-2                              | 3.479-2                              | 2.272-2                              | 1.572-2                              | 1.136-2                              | 8.487-3                              | 6.515-3                              |
| $E_b =$                                          | β                                                                                                                 | 2.000                                           | 1.999                                | 1.995                                | 1.989                                | 1.981                                | 1.973                                | 1.965                                | 1.956                                | 1.947                                | 1.938                                |
| 2.1 eV                                           | γ                                                                                                                 | 1.17-2                                          | 1.20-1                               | 3.55-1                               | 5.78-1                               | 7.82-1                               | 9.69-1                               | 1.14+0                               | 1.30+0                               | 1.45+0                               | 1.59+0                               |
|                                                  | δ                                                                                                                 | -9.45 - 6                                       | -9.43 - 6                            | -9.46 - 6                            | -9.29 - 6                            | -8.77 - 6                            | -7.88 - 6                            | -6.62 - 6                            | -4.91 - 6                            | -2.50-6                              | -3.33-7                              |
| Z= 27, Co: [A                                    | r]3d <sub>3/2</sub> 3                                                                                             | 3d <sub>5/2</sub> 4s <sub>1/2</sub>             |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |
|                                                  |                                                                                                                   | k (eV)                                          |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |
| Shell                                            |                                                                                                                   | 1500                                            | 2000                                 | 3000                                 | 4000                                 | 5000                                 | 6000                                 | 7000                                 | 8000                                 | 9000                                 | 10000                                |
| 2s <sub>1/2</sub>                                | σ                                                                                                                 | 6.420+1                                         | 3.879+1                              | 1.770+1                              | 9.702+0                              | 5.945+0                              | 3.927+0                              | 2.738+0                              | 1.990+0                              | 1.493+0                              | 1.150+0                              |
| $E_b =$                                          | β                                                                                                                 | 1.996                                           | 1.999                                | 1.998                                | 1.993                                | 1.987                                | 1.979                                | 1.971                                | 1.962                                | 1.953                                | 1.944                                |
| 925.6 eV                                         | γ                                                                                                                 | -2.56-2                                         | -4.74-2                              | 1.54 - 1                             | 3.92 - 1                             | 6.16 - 1                             | 8.19 - 1                             | 1.00+0                               | 1.17+0                               | 1.33+0                               | 1.47+0                               |
|                                                  | δ                                                                                                                 | -2.66-5                                         | -2.32-5                              | -2.04-5                              | -1.86-5                              | -1.69-5                              | -1.52-5                              | -1.36-5                              | -1.16-5                              | -9.35-6                              | -6.87 - 6                            |
| $2p_{1/2}$                                       | σ                                                                                                                 | 8.089+1                                         | 3.642+1                              | 1.115+1                              | 4.638+0                              | 2.300+0                              | 1.280+0                              | 7.734-1                              | 4.966 - 1                            | 3.343-1                              | 2.339-1                              |
| $E_b =$                                          | β                                                                                                                 | 1.454                                           | 1.421                                | 1.296                                | 1.169                                | 1.056                                | 0.959                                | 0.874                                | 0.800                                | 0.734                                | 0.676                                |
| 793.6 eV                                         | $_{\delta}^{\gamma}$                                                                                              | 2.27-1<br>2.40-2                                | 4.49-1<br>3.36-2                     | 7.39-1<br>5.40-2                     | 9.24-1<br>7.55-2                     | 1.05+0<br>9.76-2                     | 1.15+0<br>1.19-1                     | 1.22+0<br>1.41-1                     | 1.28+0<br>1.62-1                     | 1.33+0<br>1.81-1                     | 1.37+0<br>2.01-1                     |
| 2n                                               | σ                                                                                                                 | 1.562+2                                         | 6.975+1                              | 2.116+1                              | 8.745+0                              | 4.316+0                              | 2.392+0                              | 1.440+0                              | 9.210-1                              | 6.180-1                              | 4.309-1                              |
| $\begin{array}{l} 2p_{3/2} \\ E_b = \end{array}$ | β                                                                                                                 | 1.474                                           | 1.442                                | 1.318                                | 1.191                                | 1.078                                | 0.981                                | 0.897                                | 0.824                                | 0.758                                | 0.701                                |
| 778.6 eV                                         | γ                                                                                                                 | 2.37-1                                          | 4.62-1                               | 7.56-1                               | 9.42-1                               | 1.07+0                               | 1.17+0                               | 1.24+0                               | 1.30+0                               | 1.34+0                               | 1.38+0                               |
|                                                  | δ                                                                                                                 | 2.44-2                                          | 3.37-2                               | 5.33-2                               | 7.42 - 2                             | 9.57 - 2                             | 1.17 - 1                             | 1.38-1                               | 1.59-1                               | 1.78 - 1                             | 1.98 - 1                             |
| 3s <sub>1/2</sub>                                | σ                                                                                                                 | 1.037+1                                         | 5.894+0                              | 2.551+0                              | 1.368+0                              | 8.296-1                              | 5.449-1                              | 3.788-1                              | 2.747-1                              | 2.059-1                              | 1.585-1                              |
| $E_b =$                                          | $\beta$                                                                                                           | 1.999                                           | 1.999                                | 1.996                                | 1.990                                | 1.983                                | 1.975                                | 1.967                                | 1.959                                | 1.950                                | 1.941                                |
| 100.7 eV                                         | γ                                                                                                                 | -1.87 - 2                                       | 7.63 - 2                             | 3.01 - 1                             | 5.22 - 1                             | 7.27 - 1                             | 9.15 - 1                             | 1.09+0                               | 1.25+0                               | 1.40+0                               | 1.54+0                               |
|                                                  | δ                                                                                                                 | -1.22-5                                         | -1.24-5                              | -1.27-5                              | -1.25-5                              | -1.18-5                              | -1.08-5                              | -9.40-6                              | -7.66-6                              | -5.48-6                              | -2.82-6                              |
| $3p_{1/2}$                                       | σ                                                                                                                 | 8.071+0                                         | 3.825+0                              | 1.248+0                              | 5.393-1                              | 2.745-1                              | 1.556-1                              | 9.530-2                              | 6.183-2                              | 4.198-2                              | 2.956-2                              |
| $E_b =$                                          | β                                                                                                                 | 1.488                                           | 1.397                                | 1.235                                | 1.103                                | 0.994                                | 0.902                                | 0.822                                | 0.753                                | 0.691                                | 0.636                                |
| 63.2 eV                                          | $_{\delta}^{\gamma}$                                                                                              | 4.03-1<br>1.90-2                                | 5.56-1                               | 7.77-1                               | 9.31-1                               | 1.04+0<br>9.79-2                     | 1.13+0<br>1.20-1                     | 1.20+0<br>1.42-1                     | 1.26+0                               | 1.31+0                               | 1.35+0<br>2.02-1                     |
| •                                                |                                                                                                                   |                                                 | 2.91-2                               | 5.14-2                               | 7.47-2                               |                                      |                                      |                                      | 1.63-1                               | 1.83-1                               |                                      |
| $3p_{3/2}$                                       | σ                                                                                                                 | 1.539+1                                         | 7.249+0                              | 2.344+0                              | 1.006+0                              | 5.094-1                              | 2.874-1                              | 1.753-1                              | 1.133-1                              | 7.664-2                              | 5.378-2                              |
| $E_b = 57.7 \text{ eV}$                          | β                                                                                                                 | 1.505<br>4.10-1                                 | 1.416<br>5.66-1                      | 1.255<br>7.90-1                      | 1.124<br>9.44-1                      | 1.016<br>1.06+0                      | 0.924<br>1.15+0                      | 0.845<br>1.21+0                      | 0.776<br>1.27+0                      | 0.715<br>1.32+0                      | 0.660<br>1.35+0                      |
| 37.7 CV                                          | $\delta$                                                                                                          | 1.90-2                                          | 2.88-2                               | 5.03-2                               | 7.31–2                               | 9.58-2                               | 1.18-1                               | 1.39-1                               | 1.60-1                               | 1.80-1                               | 1.99-1                               |
| 3d <sub>3/2</sub>                                | σ                                                                                                                 | 1.646+0                                         | 5.714-1                              | 1.219-1                              | 3.912-2                              | 1.581-2                              | 7.415-3                              | 3.865-3                              | 2.180-3                              | 1.308-3                              | 8.240-4                              |
| $E_b =$                                          | β                                                                                                                 | 0.885                                           | 0.766                                | 0.608                                | 0.507                                | 0.435                                | 0.377                                | 0.328                                | 0.286                                | 0.247                                | 0.212                                |
| 2.7 eV                                           | $_{\delta}^{\gamma}$                                                                                              | 5.87-1<br>1.06-1                                | 6.63-1<br>1.37-1                     | 7.57-1<br>1.96-1                     | 8.18-1<br>2.48-1                     | 8.61-1<br>2.97-1                     | 8.92-1<br>3.41-1                     | 9.13-1<br>3.82-1                     | 9.27-1<br>4.19-1                     | 9.34-1<br>4.55-1                     | 9.35-1<br>4.88-1                     |
|                                                  | σ                                                                                                                 | 2.399+0                                         | 8.297-1                              | 1.760-1                              | 5.624-2                              | 2.265-2                              | 1.059-2                              | 5.508-3                              | 3.099-3                              | 1.855-3                              | 1.166-3                              |
| 3d= /2                                           |                                                                                                                   | 0.878                                           | 0.762                                | 0.612                                | 0.518                                | 0.452                                | 0.400                                | 0.357                                | 0.320                                | 0.286                                | 0.256                                |
|                                                  |                                                                                                                   |                                                 | · · · · · · ·                        | J.J.2                                |                                      | 8.70-1                               | 9.05-1                               | 9.31-1                               | 9.49-1                               | 9.62-1                               | 9.69-1                               |
| $E_b =$                                          | β                                                                                                                 |                                                 | 6.61 - 1                             | 7.58 - 1                             | 8.22-1                               | 0./U-1                               |                                      |                                      |                                      |                                      | 9.09-1                               |
| $3d_{5/2}$<br>$E_b =$<br>3.3 eV                  |                                                                                                                   | 5.85-1<br>1.07-1                                | 6.61-1<br>1.39-1                     | 7.58-1<br>1.97-1                     | 8.22-1<br>2.49-1                     | 2.97-1                               | 3.40-1                               | 3.80-1                               | 4.18-1                               | 4.52 - 1                             | 4.84-1                               |
| $E_b =$ 3.3 eV                                   | β<br>γ<br>δ                                                                                                       | 5.85-1<br>1.07-1                                | 1.39-1                               | 1.97-1                               | 2.49-1                               | 2.97-1                               | 3.40-1                               | 3.80-1                               | 4.18-1                               | 4.52-1                               | 4.84-1                               |
| $E_b = 3.3 \text{ eV}$ $4s_{1/2}$                | $\beta$ $\gamma$                                                                                                  | 5.85 - 1                                        |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |
| $E_b = 3.3 \text{ eV}$                           | $\begin{array}{c} \beta \\ \gamma \\ \delta \end{array}$ $\begin{array}{c} \sigma \\ \beta \\ \gamma \end{array}$ | 5.85-1<br>1.07-1<br>4.871-1<br>1.999<br>-9.69-3 | 1.39-1<br>2.745-1<br>1.999<br>8.89-2 | 1.97-1<br>1.176-1<br>1.995<br>3.15-1 | 2.49-1<br>6.278-2<br>1.990<br>5.34-1 | 2.97-1<br>3.796-2<br>1.983<br>7.37-1 | 3.40-1<br>2.489-2<br>1.975<br>9.23-1 | 3.80-1<br>1.728-2<br>1.967<br>1.09+0 | 4.18-1<br>1.252-2<br>1.958<br>1.25+0 | 4.52-1<br>9.383-3<br>1.949<br>1.40+0 | 4.84-1<br>7.221-3<br>1.940<br>1.54+0 |
| $E_b = 3.3 \text{ eV}$ $4s_{1/2}$ $E_b =$        | $\beta$ $\gamma$ $\delta$ $\sigma$ $\beta$                                                                        | 5.85-1<br>1.07-1<br>4.871-1<br>1.999            | 1.39-1<br>2.745-1<br>1.999           | 1.97-1<br>1.176-1<br>1.995           | 2.49-1<br>6.278-2<br>1.990           | 2.97-1<br>3.796-2<br>1.983           | 3.40-1<br>2.489-2<br>1.975           | 3.80-1<br>1.728-2<br>1.967           | 4.18-1<br>1.252-2<br>1.958           | 4.52-1<br>9.383-3<br>1.949           | 4.84-1<br>7.221-3<br>1.940           |

Table 1 (continued)

Z= 28, Ni: [Ar]  $3d_{3/2}^4 3d_{5/2}^4 4s_{1/2}^2$ 

| Shell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1500                                                                                                                                                                                                                                                                                                                                                                                                               | 2000                                                                                                                                                                               | 3000                                                                                                                                                                    | 4000                                                                                                                                                                                                                                                              | 5000                                                                                                                                                                                                                                                              | 6000                                                                                                                                                                                                                                                              | 7000                                                                                                                                                                                                                                                              | 8000                                                                                                                                                                                                                                                              | 9000                                                                                                                                                                                                                                                              | 10000                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $2s_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.817+1                                                                                                                                                                                                                                                                                                                                                                                                            | 4.171+1                                                                                                                                                                            | 1.931+1                                                                                                                                                                 | 1.067+1                                                                                                                                                                                                                                                           | 6.582+0                                                                                                                                                                                                                                                           | 4.369+0                                                                                                                                                                                                                                                           | 3.059+0                                                                                                                                                                                                                                                           | 2.231+0                                                                                                                                                                                                                                                           | 1.679+0                                                                                                                                                                                                                                                           | 1.297+0                                                                                                                                                                                                                                                    |
| $E_b =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.995                                                                                                                                                                                                                                                                                                                                                                                                              | 1.998                                                                                                                                                                              | 1.999                                                                                                                                                                   | 1.995                                                                                                                                                                                                                                                             | 1.988                                                                                                                                                                                                                                                             | 1.981                                                                                                                                                                                                                                                             | 1.973                                                                                                                                                                                                                                                             | 1.965                                                                                                                                                                                                                                                             | 1.956                                                                                                                                                                                                                                                             | 1.947                                                                                                                                                                                                                                                      |
| 1008.1 eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.51-2                                                                                                                                                                                                                                                                                                                                                                                                             | -6.15 - 2                                                                                                                                                                          | 1.05 - 1                                                                                                                                                                | 3.35 - 1                                                                                                                                                                                                                                                          | 5.57 - 1                                                                                                                                                                                                                                                          | 7.61 - 1                                                                                                                                                                                                                                                          | 9.47 - 1                                                                                                                                                                                                                                                          | 1.12+0                                                                                                                                                                                                                                                            | 1.28+0                                                                                                                                                                                                                                                            | 1.42+0                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.98 - 5                                                                                                                                                                                                                                                                                                                                                                                                          | -2.72 - 5                                                                                                                                                                          | -2.46-5                                                                                                                                                                 | -2.27 - 5                                                                                                                                                                                                                                                         | -2.08 - 5                                                                                                                                                                                                                                                         | -1.90-5                                                                                                                                                                                                                                                           | -1.73 - 5                                                                                                                                                                                                                                                         | -1.52 - 5                                                                                                                                                                                                                                                         | -1.30-5                                                                                                                                                                                                                                                           | -1.03-                                                                                                                                                                                                                                                     |
| $2p_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\sigma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.410+1                                                                                                                                                                                                                                                                                                                                                                                                            | 4.278+1                                                                                                                                                                            | 1.325+1                                                                                                                                                                 | 5.550+0                                                                                                                                                                                                                                                           | 2.769+0                                                                                                                                                                                                                                                           | 1.549+0                                                                                                                                                                                                                                                           | 9.392 - 1                                                                                                                                                                                                                                                         | 6.051 - 1                                                                                                                                                                                                                                                         | 4.087 - 1                                                                                                                                                                                                                                                         | 2.866-                                                                                                                                                                                                                                                     |
| $E_b =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.446                                                                                                                                                                                                                                                                                                                                                                                                              | 1.434                                                                                                                                                                              | 1.323                                                                                                                                                                   | 1.201                                                                                                                                                                                                                                                             | 1.092                                                                                                                                                                                                                                                             | 0.996                                                                                                                                                                                                                                                             | 0.912                                                                                                                                                                                                                                                             | 0.837                                                                                                                                                                                                                                                             | 0.771                                                                                                                                                                                                                                                             | 0.712                                                                                                                                                                                                                                                      |
| 871.9 eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.62-1                                                                                                                                                                                                                                                                                                                                                                                                             | 4.00-1                                                                                                                                                                             | 7.10-1                                                                                                                                                                  | 9.09-1                                                                                                                                                                                                                                                            | 1.05+0                                                                                                                                                                                                                                                            | 1.15+0                                                                                                                                                                                                                                                            | 1.23+0                                                                                                                                                                                                                                                            | 1.30+0                                                                                                                                                                                                                                                            | 1.35+0                                                                                                                                                                                                                                                            | 1.39+0                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.19-2                                                                                                                                                                                                                                                                                                                                                                                                             | 3.15-2                                                                                                                                                                             | 5.06-2                                                                                                                                                                  | 7.12-2                                                                                                                                                                                                                                                            | 9.25-2                                                                                                                                                                                                                                                            | 1.14-1                                                                                                                                                                                                                                                            | 1.34-1                                                                                                                                                                                                                                                            | 1.55-1                                                                                                                                                                                                                                                            | 1.74-1                                                                                                                                                                                                                                                            | 1.93-1                                                                                                                                                                                                                                                     |
| $2p_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.816+2                                                                                                                                                                                                                                                                                                                                                                                                            | 8.180+1                                                                                                                                                                            | 2.508+1                                                                                                                                                                 | 1.043+1                                                                                                                                                                                                                                                           | 5.178+0                                                                                                                                                                                                                                                           | 2.883+0                                                                                                                                                                                                                                                           | 1.741+0                                                                                                                                                                                                                                                           | 1.118+0                                                                                                                                                                                                                                                           | 7.523-1                                                                                                                                                                                                                                                           | 5.258-                                                                                                                                                                                                                                                     |
| E <sub>b</sub> =<br>854.7 eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.467<br>1.72-1                                                                                                                                                                                                                                                                                                                                                                                                    | 1.456<br>4.13-1                                                                                                                                                                    | 1.346<br>7.28-1                                                                                                                                                         | 1.225<br>9.29-1                                                                                                                                                                                                                                                   | 1.116<br>1.07+0                                                                                                                                                                                                                                                   | 1.020<br>1.17+0                                                                                                                                                                                                                                                   | 0.937<br>1.25+0                                                                                                                                                                                                                                                   | 0.863<br>1.31+0                                                                                                                                                                                                                                                   | 0.797<br>1.36+0                                                                                                                                                                                                                                                   | 0.738<br>1.40+0                                                                                                                                                                                                                                            |
| 334.7 EV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $_{\delta}^{\gamma}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.24-2                                                                                                                                                                                                                                                                                                                                                                                                             | 3.17-2                                                                                                                                                                             | 5.00-2                                                                                                                                                                  | 6.99-2                                                                                                                                                                                                                                                            | 9.06-2                                                                                                                                                                                                                                                            | 1.17+0                                                                                                                                                                                                                                                            | 1.32-1                                                                                                                                                                                                                                                            | 1.52-1                                                                                                                                                                                                                                                            | 1.71-1                                                                                                                                                                                                                                                            | 1.40+0                                                                                                                                                                                                                                                     |
| $3s_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.137+1                                                                                                                                                                                                                                                                                                                                                                                                            | 6.500+0                                                                                                                                                                            | 2.835+0                                                                                                                                                                 | 1.529+0                                                                                                                                                                                                                                                           | 9.312-1                                                                                                                                                                                                                                                           | 6.139-1                                                                                                                                                                                                                                                           | 4.282-1                                                                                                                                                                                                                                                           | 3.115-1                                                                                                                                                                                                                                                           | 2.341-1                                                                                                                                                                                                                                                           | 1.806-                                                                                                                                                                                                                                                     |
| $E_b =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.999                                                                                                                                                                                                                                                                                                                                                                                                              | 1.999                                                                                                                                                                              | 1.996                                                                                                                                                                   | 1.991                                                                                                                                                                                                                                                             | 1.985                                                                                                                                                                                                                                                             | 1.977                                                                                                                                                                                                                                                             | 1.969                                                                                                                                                                                                                                                             | 1.961                                                                                                                                                                                                                                                             | 1.952                                                                                                                                                                                                                                                             | 1.943                                                                                                                                                                                                                                                      |
| 111.8 eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3.66-2                                                                                                                                                                                                                                                                                                                                                                                                            | 4.71-2                                                                                                                                                                             | 2.61-1                                                                                                                                                                  | 4.78-1                                                                                                                                                                                                                                                            | 6.81-1                                                                                                                                                                                                                                                            | 8.68-1                                                                                                                                                                                                                                                            | 1.04+0                                                                                                                                                                                                                                                            | 1.20+0                                                                                                                                                                                                                                                            | 1.35+0                                                                                                                                                                                                                                                            | 1.49+0                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.43-5                                                                                                                                                                                                                                                                                                                                                                                                            | -1.49 - 5                                                                                                                                                                          | -1.54 - 5                                                                                                                                                               | -1.52 - 5                                                                                                                                                                                                                                                         | -1.46 - 5                                                                                                                                                                                                                                                         | -1.36 - 5                                                                                                                                                                                                                                                         | -1.22 - 5                                                                                                                                                                                                                                                         | -1.04 - 5                                                                                                                                                                                                                                                         | -8.23 - 6                                                                                                                                                                                                                                                         | -5.55-                                                                                                                                                                                                                                                     |
| $3p_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.330+0                                                                                                                                                                                                                                                                                                                                                                                                            | 4.473+0                                                                                                                                                                            | 1.481+0                                                                                                                                                                 | 6.459-1                                                                                                                                                                                                                                                           | 3.312-1                                                                                                                                                                                                                                                           | 1.889-1                                                                                                                                                                                                                                                           | 1.163-1                                                                                                                                                                                                                                                           | 7.577-2                                                                                                                                                                                                                                                           | 5.163-2                                                                                                                                                                                                                                                           | 3.648-                                                                                                                                                                                                                                                     |
| $E_b =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.507                                                                                                                                                                                                                                                                                                                                                                                                              | 1.420                                                                                                                                                                              | 1.263                                                                                                                                                                   | 1.135                                                                                                                                                                                                                                                             | 1.028                                                                                                                                                                                                                                                             | 0.937                                                                                                                                                                                                                                                             | 0.857                                                                                                                                                                                                                                                             | 0.787                                                                                                                                                                                                                                                             | 0.725                                                                                                                                                                                                                                                             | 0.669                                                                                                                                                                                                                                                      |
| 71.2 eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.73 - 1                                                                                                                                                                                                                                                                                                                                                                                                           | 5.32 - 1                                                                                                                                                                           | 7.64 - 1                                                                                                                                                                | 9.25 - 1                                                                                                                                                                                                                                                          | 1.04+0                                                                                                                                                                                                                                                            | 1.14+0                                                                                                                                                                                                                                                            | 1.21+0                                                                                                                                                                                                                                                            | 1.27+0                                                                                                                                                                                                                                                            | 1.32+0                                                                                                                                                                                                                                                            | 1.37+0                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.71-2                                                                                                                                                                                                                                                                                                                                                                                                             | 2.65-2                                                                                                                                                                             | 4.76-2                                                                                                                                                                  | 7.01-2                                                                                                                                                                                                                                                            | 9.26-2                                                                                                                                                                                                                                                            | 1.14-1                                                                                                                                                                                                                                                            | 1.36-1                                                                                                                                                                                                                                                            | 1.56-1                                                                                                                                                                                                                                                            | 1.76-1                                                                                                                                                                                                                                                            | 1.95-1                                                                                                                                                                                                                                                     |
| $3p_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.790+1                                                                                                                                                                                                                                                                                                                                                                                                            | 8.520+0                                                                                                                                                                            | 2.791+0                                                                                                                                                                 | 1.208+0                                                                                                                                                                                                                                                           | 6.159-1                                                                                                                                                                                                                                                           | 3.495-1                                                                                                                                                                                                                                                           | 2.141-1                                                                                                                                                                                                                                                           | 1.389-1                                                                                                                                                                                                                                                           | 9.433-2                                                                                                                                                                                                                                                           | 6.640-2                                                                                                                                                                                                                                                    |
| $E_b =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.526                                                                                                                                                                                                                                                                                                                                                                                                              | 1.441                                                                                                                                                                              | 1.286                                                                                                                                                                   | 1.158                                                                                                                                                                                                                                                             | 1.051                                                                                                                                                                                                                                                             | 0.960                                                                                                                                                                                                                                                             | 0.881                                                                                                                                                                                                                                                             | 0.812                                                                                                                                                                                                                                                             | 0.750                                                                                                                                                                                                                                                             | 0.695                                                                                                                                                                                                                                                      |
| 69.7 eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $_{\delta}^{\gamma}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.81-1<br>1.73-2                                                                                                                                                                                                                                                                                                                                                                                                   | 5.42-1<br>2.62-2                                                                                                                                                                   | 7.77-1<br>4.66-2                                                                                                                                                        | 9.40-1<br>6.85-2                                                                                                                                                                                                                                                  | 1.06+0<br>9.04-2                                                                                                                                                                                                                                                  | 1.15+0<br>1.12-1                                                                                                                                                                                                                                                  | 1.23+0<br>1.33-1                                                                                                                                                                                                                                                  | 1.29+0<br>1.53-1                                                                                                                                                                                                                                                  | 1.33+0<br>1.72-1                                                                                                                                                                                                                                                  | 1.37+0<br>1.91-1                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                    |                                                                                                                                                                         |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                            |
| $3d_{3/2}$ $E_b =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{\sigma}{\beta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.190+0<br>0.921                                                                                                                                                                                                                                                                                                                                                                                                   | 7.669-1<br>0.800                                                                                                                                                                   | 1.654-1<br>0.635                                                                                                                                                        | 5.353-2<br>0.530                                                                                                                                                                                                                                                  | 2.179-2<br>0.454                                                                                                                                                                                                                                                  | 1.029-2<br>0.395                                                                                                                                                                                                                                                  | 5.395-3<br>0.345                                                                                                                                                                                                                                                  | 3.058-3<br>0.302                                                                                                                                                                                                                                                  | 1.842-3<br>0.263                                                                                                                                                                                                                                                  | 1.165-<br>0.228                                                                                                                                                                                                                                            |
| 3.9 eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.88-1                                                                                                                                                                                                                                                                                                                                                                                                             | 6.70-1                                                                                                                                                                             | 7.71-1                                                                                                                                                                  | 8.35-1                                                                                                                                                                                                                                                            | 8.80-1                                                                                                                                                                                                                                                            | 9.13-1                                                                                                                                                                                                                                                            | 9.36-1                                                                                                                                                                                                                                                            | 9.51-1                                                                                                                                                                                                                                                            | 9.60-1                                                                                                                                                                                                                                                            | 9.64-1                                                                                                                                                                                                                                                     |
| 5.5 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.02-1                                                                                                                                                                                                                                                                                                                                                                                                             | 1.33-1                                                                                                                                                                             | 1.89-1                                                                                                                                                                  | 2.41-1                                                                                                                                                                                                                                                            | 2.89-1                                                                                                                                                                                                                                                            | 3.32-1                                                                                                                                                                                                                                                            | 3.73-1                                                                                                                                                                                                                                                            | 4.10-1                                                                                                                                                                                                                                                            | 4.45-1                                                                                                                                                                                                                                                            | 4.78-1                                                                                                                                                                                                                                                     |
| 3d <sub>5/2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.187+0                                                                                                                                                                                                                                                                                                                                                                                                            | 1.112+0                                                                                                                                                                            | 2.387-1                                                                                                                                                                 | 7.695-2                                                                                                                                                                                                                                                           | 3.122-2                                                                                                                                                                                                                                                           | 1.470-2                                                                                                                                                                                                                                                           | 7.687-3                                                                                                                                                                                                                                                           | 4.347-3                                                                                                                                                                                                                                                           | 2.613-3                                                                                                                                                                                                                                                           | 1.649-                                                                                                                                                                                                                                                     |
| $E_b =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.912                                                                                                                                                                                                                                                                                                                                                                                                              | 0.795                                                                                                                                                                              | 0.637                                                                                                                                                                   | 0.539                                                                                                                                                                                                                                                             | 0.470                                                                                                                                                                                                                                                             | 0.417                                                                                                                                                                                                                                                             | 0.373                                                                                                                                                                                                                                                             | 0.335                                                                                                                                                                                                                                                             | 0.301                                                                                                                                                                                                                                                             | 0.270                                                                                                                                                                                                                                                      |
| $E_b = 3.3 \text{ eV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.85 - 1                                                                                                                                                                                                                                                                                                                                                                                                           | 6.68 - 1                                                                                                                                                                           | 7.71 - 1                                                                                                                                                                | 8.38 - 1                                                                                                                                                                                                                                                          | 8.88 - 1                                                                                                                                                                                                                                                          | 9.25 - 1                                                                                                                                                                                                                                                          | 9.53 - 1                                                                                                                                                                                                                                                          | 9.73 - 1                                                                                                                                                                                                                                                          | 9.87 - 1                                                                                                                                                                                                                                                          | 9.96 - 1                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.03 - 1                                                                                                                                                                                                                                                                                                                                                                                                           | 1.34 - 1                                                                                                                                                                           | 1.91 - 1                                                                                                                                                                | 2.42 - 1                                                                                                                                                                                                                                                          | 2.89 - 1                                                                                                                                                                                                                                                          | 3.32 - 1                                                                                                                                                                                                                                                          | 3.72 - 1                                                                                                                                                                                                                                                          | 4.09 - 1                                                                                                                                                                                                                                                          | 4.43 - 1                                                                                                                                                                                                                                                          | 4.75 - 1                                                                                                                                                                                                                                                   |
| 4s <sub>1/2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.162-1                                                                                                                                                                                                                                                                                                                                                                                                            | 2.926-1                                                                                                                                                                            | 1.263-1                                                                                                                                                                 | 6.778-2                                                                                                                                                                                                                                                           | 4.116-2                                                                                                                                                                                                                                                           | 2.709-2                                                                                                                                                                                                                                                           | 1.887-2                                                                                                                                                                                                                                                           | 1.371-2                                                                                                                                                                                                                                                           | 1.030-2                                                                                                                                                                                                                                                           | 7.945-                                                                                                                                                                                                                                                     |
| $E_b =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.999                                                                                                                                                                                                                                                                                                                                                                                                              | 1.999                                                                                                                                                                              | 1.996                                                                                                                                                                   | 1.991                                                                                                                                                                                                                                                             | 1.984                                                                                                                                                                                                                                                             | 1.977                                                                                                                                                                                                                                                             | 1.969                                                                                                                                                                                                                                                             | 1.960                                                                                                                                                                                                                                                             | 1.951                                                                                                                                                                                                                                                             | 1.942                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                    |                                                                                                                                                                         |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                            |
| 2.2 eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.83-2                                                                                                                                                                                                                                                                                                                                                                                                            | 6.00-2                                                                                                                                                                             | 2.76-1                                                                                                                                                                  | 4.91 - 1                                                                                                                                                                                                                                                          | 6.92 - 1                                                                                                                                                                                                                                                          | 8.77 - 1                                                                                                                                                                                                                                                          | 1.05+0                                                                                                                                                                                                                                                            | 1.21+0                                                                                                                                                                                                                                                            | 1.36+0                                                                                                                                                                                                                                                            | 1.50+0                                                                                                                                                                                                                                                     |
| 2.2 eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.34-5                                                                                                                                                                                                                                                                                                                                                                                                            | 6.00-2<br>-1.40-5                                                                                                                                                                  | 2.76-1<br>-1.44-5                                                                                                                                                       |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                            |
| 2.2 eV<br><b>Z= 29, Cu: [A</b> i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.34-5                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                    |                                                                                                                                                                         | 4.91 - 1                                                                                                                                                                                                                                                          | 6.92 - 1                                                                                                                                                                                                                                                          | 8.77 - 1                                                                                                                                                                                                                                                          | 1.05+0                                                                                                                                                                                                                                                            | 1.21+0                                                                                                                                                                                                                                                            | 1.36+0                                                                                                                                                                                                                                                            | 1.50+0                                                                                                                                                                                                                                                     |
| 2.2 eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.34-5                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                    |                                                                                                                                                                         | 4.91 - 1                                                                                                                                                                                                                                                          | 6.92 - 1                                                                                                                                                                                                                                                          | 8.77 - 1                                                                                                                                                                                                                                                          | 1.05+0                                                                                                                                                                                                                                                            | 1.21+0                                                                                                                                                                                                                                                            | 1.36+0                                                                                                                                                                                                                                                            | 1.50+0                                                                                                                                                                                                                                                     |
| 2.2 eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{r} -1.34 - 5 \\ \mathbf{3d_{5/2}^6  4s_{1/2}^1} \end{array} $                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                    |                                                                                                                                                                         | 4.91 - 1                                                                                                                                                                                                                                                          | 6.92 - 1                                                                                                                                                                                                                                                          | 8.77 - 1                                                                                                                                                                                                                                                          | 1.05+0                                                                                                                                                                                                                                                            | 1.21+0                                                                                                                                                                                                                                                            | 1.36+0                                                                                                                                                                                                                                                            | 1.50+0                                                                                                                                                                                                                                                     |
| 2.2 eV<br><b>Z= 29, Cu: [A</b> r<br>Shell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{\delta}{r]3d_{3/2}^4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \begin{array}{r} -1.34 - 5 \\ 3d_{5/2}^{6} 4s_{1/2}^{1} \\ \underline{k \text{ (eV)}} \\ 1500 \end{array} $                                                                                                                                                                                                                                                                                                      | -1.40-5<br>2000                                                                                                                                                                    | -1.44-5<br>3000                                                                                                                                                         | 4.91-1 -1.42-5                                                                                                                                                                                                                                                    | 6.92-1<br>-1.37-5<br>5000                                                                                                                                                                                                                                         | 8.77-1<br>-1.29-5                                                                                                                                                                                                                                                 | 1.05+0<br>-1.17-5                                                                                                                                                                                                                                                 | 1.21+0<br>-9.98-6<br>8000                                                                                                                                                                                                                                         | 1.36+0<br>-7.74-6                                                                                                                                                                                                                                                 | 1.50+0<br>-5.40-                                                                                                                                                                                                                                           |
| 2.2 eV  Z= 29, Cu: [An  Shell  2s <sub>1/2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{\delta}{r]3d_{3/2}^4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \begin{array}{r} -1.34-5 \\ \mathbf{3d_{5/2}^6 4s_{1/2}^1} \\ k \text{ (eV)} \end{array} $                                                                                                                                                                                                                                                                                                                       | -1.40-5                                                                                                                                                                            | -1.44-5                                                                                                                                                                 | 4.91-1<br>-1.42-5                                                                                                                                                                                                                                                 | 6.92-1<br>-1.37-5                                                                                                                                                                                                                                                 | 8.77-1<br>-1.29-5                                                                                                                                                                                                                                                 | 1.05+0<br>-1.17-5                                                                                                                                                                                                                                                 | 1.21+0<br>-9.98-6                                                                                                                                                                                                                                                 | 1.36+0<br>-7.74-6                                                                                                                                                                                                                                                 | 1.50+0<br>-5.40-                                                                                                                                                                                                                                           |
| 2.2 eV<br><b>Z= 29, Cu: [A</b> r<br>Shell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{\delta}{r]3d_{3/2}^4}$ $\frac{\sigma}{\beta}$ $\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \begin{array}{r} -1.34-5 \\ 3d_{5/2}^{6}  4s_{1/2}^{1} \\ \hline                                   $                                                                                                                                                                                                                                                                                                             | 2000<br>4.476+1<br>1.997<br>-6.29-2                                                                                                                                                | 3000<br>2.101+1<br>1.999<br>5.85-2                                                                                                                                      | 4.91-1<br>-1.42-5<br>4000<br>1.171+1<br>1.996<br>2.77-1                                                                                                                                                                                                           | 5000<br>7.259+0<br>1.990<br>4.94-1                                                                                                                                                                                                                                | 6000<br>4.841+0<br>1.983<br>6.96-1                                                                                                                                                                                                                                | 7000<br>3.403+0<br>1.975<br>8.83-1                                                                                                                                                                                                                                | 8000<br>2.489+0<br>1.967<br>1.06+0                                                                                                                                                                                                                                | 1.36+0<br>-7.74-6<br>9000<br>1.879+0<br>1.959<br>1.22+0                                                                                                                                                                                                           | 1.50+0<br>-5.40-<br>10000<br>1.455+0<br>1.950<br>1.37+0                                                                                                                                                                                                    |
| 2.2 eV  Z= 29, Cu: [And Shell  2s <sub>1/2</sub> E <sub>b</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{\delta}{r]3d_{3/2}^4}$ $\frac{\sigma}{\beta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{r} -1.34-5 \\ 3d_{5/2}^{6} 4s_{1/2}^{1} \\ \hline  k \text{ (eV)} \\ \hline  1500 \\ 7.216+1 \\ 1.992 \end{array} $                                                                                                                                                                                                                                                                                | -1.40-5<br>2000<br>4.476+1<br>1.997                                                                                                                                                | 3000<br>2.101+1<br>1.999                                                                                                                                                | 4.91-1<br>-1.42-5<br>4000<br>1.171+1<br>1.996                                                                                                                                                                                                                     | 5000<br>7.259+0<br>1.990                                                                                                                                                                                                                                          | 8.77-1<br>-1.29-5<br>6000<br>4.841+0<br>1.983                                                                                                                                                                                                                     | 7000<br>3.403+0<br>1.975                                                                                                                                                                                                                                          | 1.21+0<br>-9.98-6<br>8000<br>2.489+0<br>1.967                                                                                                                                                                                                                     | 1.36+0<br>-7.74-6<br>9000<br>1.879+0<br>1.959                                                                                                                                                                                                                     | 1.50+0<br>-5.40-<br>10000<br>1.455+0<br>1.950                                                                                                                                                                                                              |
| 2.2 eV  Z= 29, Cu: [And Shell  2s <sub>1/2</sub> E <sub>b</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{\delta}{\mathbf{r}]\mathbf{3d}_{3/2}^{4}}$ $\frac{\sigma}{\beta}$ $\frac{\gamma}{\delta}$ $\sigma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{r} -1.34-5 \\ 3d_{5/2}^{6}  4s_{1/2}^{1} \\ \underline{k  (eV)} \\ 1500 \\ 7.216+1 \\ 1.992 \\ 1.15-1 \\ -2.66-5 \\ 1.092+2 \end{array} $                                                                                                                                                                                                                                                          | 2000<br>4.476+1<br>1.997<br>-6.29-2<br>-3.04-5<br>5.008+1                                                                                                                          | 3000<br>2.101+1<br>1.999<br>5.85-2<br>-2.90-5<br>1.567+1                                                                                                                | 4.91-1<br>-1.42-5<br>4000<br>1.171+1<br>1.996<br>2.77-1<br>-2.70-5<br>6.609+0                                                                                                                                                                                     | 5000<br>7.259+0<br>1.990<br>4.94-1<br>-2.55-5<br>3.315+0                                                                                                                                                                                                          | 8.77-1<br>-1.29-5<br>6000<br>4.841+0<br>1.983<br>6.96-1<br>-2.38-5<br>1.862+0                                                                                                                                                                                     | 7000<br>3.403+0<br>1.975<br>8.83-1<br>-2.18-5<br>1.133+0                                                                                                                                                                                                          | 8000<br>2.489+0<br>1.967<br>1.06+0<br>-1.97-5<br>7.323-1                                                                                                                                                                                                          | 1.36+0<br>-7.74-6<br>9000<br>1.879+0<br>1.959<br>1.22+0<br>-1.70-5<br>4.959-1                                                                                                                                                                                     | 1.50+0<br>-5.40-<br>10000<br>1.455+0<br>1.950<br>1.37+0<br>-1.45-<br>3.486-                                                                                                                                                                                |
| 2.2 eV <b>Z= 29, Cu: [An</b> Shell $2s_{1/2}$ $E_b = 1096.1$ eV $2p_{1/2}$ $E_b = 1096.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{\delta}{\mathbf{r}]\mathbf{3d_{3/2}^4}}$ $\frac{\sigma}{\beta}$ $\frac{\gamma}{\delta}$ $\frac{\sigma}{\beta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{r} -1.34-5 \\ 3d_{5/2}^{6} 4s_{1/2}^{1} \\ \underline{k \text{ (eV)}} \\ 1500 \\ 7.216+1 \\ 1.992 \\ 1.15-1 \\ -2.66-5 \\ 1.092+2 \\ 1.427 \end{array} $                                                                                                                                                                                                                                           | 2000<br>4.476+1<br>1.997<br>-6.29-2<br>-3.04-5<br>5.008+1<br>1.443                                                                                                                 | 3000<br>2.101+1<br>1.999<br>5.85-2<br>-2.90-5<br>1.567+1<br>1.346                                                                                                       | 4.91-1<br>-1.42-5<br>4000<br>1.171+1<br>1.996<br>2.77-1<br>-2.70-5<br>6.609+0<br>1.236                                                                                                                                                                            | 5000<br>7.259+0<br>1.990<br>4.94-1<br>-2.55-5<br>3.315+0<br>1.132                                                                                                                                                                                                 | 8.77-1<br>-1.29-5<br>6000<br>4.841+0<br>1.983<br>6.96-1<br>-2.38-5<br>1.862+0<br>1.038                                                                                                                                                                            | 1.05+0<br>-1.17-5<br>7000<br>3.403+0<br>1.975<br>8.83-1<br>-2.18-5<br>1.133+0<br>0.955                                                                                                                                                                            | 8000<br>2.489+0<br>1.967<br>1.06+0<br>-1.97-5<br>7.323-1<br>0.880                                                                                                                                                                                                 | 1.36+0<br>-7.74-6<br>9000<br>1.879+0<br>1.959<br>1.22+0<br>-1.70-5<br>4.959-1<br>0.813                                                                                                                                                                            | 1.50+0<br>-5.40-<br>10000<br>1.455+0<br>1.950<br>1.37+0<br>-1.45-<br>3.486-<br>0.751                                                                                                                                                                       |
| 2.2 eV  Z= 29, Cu: [At Shell $2s_{1/2}$ $E_b = 1096.1 \text{ eV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \frac{\delta}{\mathbf{r}]\mathbf{3d_{3/2}^4}} $ $ \frac{\sigma}{\beta}$ $ \frac{\gamma}{\delta}$ $ \frac{\sigma}{\beta}$ $ \frac{\sigma}{\beta}$ $ \frac{\sigma}{\gamma}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $-1.34-5$ $3d_{5/2}^{6} 4s_{1/2}^{1}$ $k \text{ (eV)}$ $1500$ $7.216+1$ $1.992$ $1.15-1$ $-2.66-5$ $1.092+2$ $1.427$ $9.26-2$                                                                                                                                                                                                                                                                                      | 2000<br>4.476+1<br>1.997<br>-6.29-2<br>-3.04-5<br>5.008+1<br>1.443<br>3.44-1                                                                                                       | 3000<br>2.101+1<br>1.999<br>5.85-2<br>-2.90-5<br>1.567+1<br>1.346<br>6.78-1                                                                                             | 4.91-1<br>-1.42-5<br>4000<br>1.171+1<br>1.996<br>2.77-1<br>-2.70-5<br>6.609+0<br>1.236<br>8.92-1                                                                                                                                                                  | 5000<br>7.259+0<br>1.990<br>4.94-1<br>-2.55-5<br>3.315+0<br>1.132<br>1.04+0                                                                                                                                                                                       | 8.77-1<br>-1.29-5<br>6000<br>4.841+0<br>1.983<br>6.96-1<br>-2.38-5<br>1.862+0<br>1.038<br>1.15+0                                                                                                                                                                  | 7000<br>3.403+0<br>1.975<br>8.83-1<br>-2.18-5<br>1.133+0<br>0.955<br>1.24+0                                                                                                                                                                                       | 8000<br>2.489+0<br>1.967<br>1.06+0<br>-1.97-5<br>7.323-1<br>0.880<br>1.31+0                                                                                                                                                                                       | 1.36+0<br>-7.74-6<br>9000<br>1.879+0<br>1.959<br>1.22+0<br>-1.70-5<br>4.959-1<br>0.813<br>1.36+0                                                                                                                                                                  | 1.50+0<br>-5.40-<br>10000<br>1.455+0<br>1.950<br>1.37+0<br>-1.45-<br>3.486-<br>0.751<br>1.41+0                                                                                                                                                             |
| 2.2 eV <b>Z= 29, Cu: [An</b> Shell $2s_{1/2}$ $E_b = 1096.1$ eV $2p_{1/2}$ $E_b = 951.0$ eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{\sigma}{\beta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} -1.34-5 \\ \hline 3d_{5/2}^6  4s_{1/2}^1 \\ \hline k  (\text{eV}) \\ \hline 1500 \\ \hline 7.216+1 \\ 1.992 \\ 1.15-1 \\ -2.66-5 \\ \hline 1.092+2 \\ 1.427 \\ 9.26-2 \\ 1.97-2 \\ \end{array}$                                                                                                                                                                                                  | -1.40-5<br>2000<br>4.476+1<br>1.997<br>-6.29-2<br>-3.04-5<br>5.008+1<br>1.443<br>3.44-1<br>2.96-2                                                                                  | 3000<br>2.101+1<br>1.999<br>5.85-2<br>-2.90-5<br>1.567+1<br>1.346<br>6.78-1<br>4.80-2                                                                                   | 4.91-1<br>-1.42-5<br>4000<br>1.171+1<br>1.996<br>2.77-1<br>-2.70-5<br>6.609+0<br>1.236<br>8.92-1<br>6.82-2                                                                                                                                                        | 5000<br>7.259+0<br>1.990<br>4.94-1<br>-2.55-5<br>3.315+0<br>1.132<br>1.04+0<br>8.86-2                                                                                                                                                                             | 8.77-1<br>-1.29-5<br>6000<br>4.841+0<br>1.983<br>6.96-1<br>-2.38-5<br>1.862+0<br>1.038<br>1.15+0<br>1.09-1                                                                                                                                                        | 1.05+0<br>-1.17-5<br>7000<br>3.403+0<br>1.975<br>8.83-1<br>-2.18-5<br>1.133+0<br>0.955<br>1.24+0<br>1.29-1                                                                                                                                                        | 1.21+0<br>-9.98-6<br>8000<br>2.489+0<br>1.967<br>1.06+0<br>-1.97-5<br>7.323-1<br>0.880<br>1.31+0<br>1.49-1                                                                                                                                                        | 1.36+0<br>-7.74-6<br>9000<br>1.879+0<br>1.959<br>1.22+0<br>-1.70-5<br>4.959-1<br>0.813<br>1.36+0<br>1.68-1                                                                                                                                                        | 1.50+0<br>-5.40-<br>10000<br>1.455+0<br>1.950<br>1.37+0<br>-1.45-<br>3.486-<br>0.751<br>1.41+0<br>1.86-1                                                                                                                                                   |
| 2.2 eV <b>Z= 29, Cu: [An</b> Shell $2s_{1/2}$ $E_b = 1096.1$ eV $2p_{1/2}$ $E_b = 951.0$ eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{c} \delta \\ \mathbf{r}]\mathbf{3d}_{3/2}^{4} \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \sigma \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} -1.34-5 \\ \hline {\bf 3d_{5/2}^6  4s_{1/2}^1} \\ \hline {\it k  (eV)} \\ \hline 1500 \\ \hline {\it 7.216+1} \\ 1.992 \\ 1.15-1 \\ -2.66-5 \\ \hline 1.092+2 \\ 1.427 \\ 9.26-2 \\ 1.97-2 \\ \hline 2.101+2 \\ \end{array}$                                                                                                                                                                     | -1.40-5  2000  4.476+1 1.997 -6.29-2 -3.04-5  5.008+1 1.443 3.44-1 2.96-2 9.547+1                                                                                                  | 3000<br>2.101+1<br>1.999<br>5.85-2<br>-2.90-5<br>1.567+1<br>1.346<br>6.78-1<br>4.80-2<br>2.955+1                                                                        | 4.91-1<br>-1.42-5<br>4000<br>1.171+1<br>1.996<br>2.77-1<br>-2.70-5<br>6.609+0<br>1.236<br>8.92-1<br>6.82-2<br>1.238+1                                                                                                                                             | 5000<br>7.259+0<br>1.990<br>4.94-1<br>-2.55-5<br>3.315+0<br>1.132<br>1.04+0<br>8.86-2<br>6.173+0                                                                                                                                                                  | 8.77-1<br>-1.29-5<br>6000<br>4.841+0<br>1.983<br>6.96-1<br>-2.38-5<br>1.862+0<br>1.038<br>1.15+0<br>1.09-1<br>3.451+0                                                                                                                                             | 7000<br>3.403+0<br>1.975<br>8.83-1<br>-2.18-5<br>1.133+0<br>0.955<br>1.24+0<br>1.29-1<br>2.091+0                                                                                                                                                                  | 8000<br>2.489+0<br>1.967<br>1.06+0<br>-1.97-5<br>7.323-1<br>0.880<br>1.31+0<br>1.49-1<br>1.346+0                                                                                                                                                                  | 9000<br>1.879+0<br>1.959<br>1.22+0<br>-1.70-5<br>4.959-1<br>0.813<br>1.36+0<br>1.68-1<br>9.084-1                                                                                                                                                                  | 1.50+0<br>-5.40-<br>10000<br>1.455+0<br>1.37+0<br>-1.45-<br>3.486-<br>0.751<br>1.41+0<br>1.86-1<br>6.364-                                                                                                                                                  |
| 2.2 eV  Z= 29, Cu: [And Shell $2s_{1/2}$ $E_b = 1096.1$ eV $2p_{1/2}$ $E_b = 951.0$ eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \begin{array}{c} \delta \\ \mathbf{r}]\mathbf{3d}_{3/2}^{4} \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} -1.34-5 \\ \mathbf{3d_{5/2}^6  4s_{1/2}^1} \\ \hline k  (\text{eV}) \\ \hline 1500 \\ 7.216+1 \\ 1.992 \\ 1.15-1 \\ -2.66-5 \\ 1.092+2 \\ 1.427 \\ 9.26-2 \\ 1.97-2 \\ 2.101+2 \\ 1.451 \end{array}$                                                                                                                                                                                             | 2000<br>4.476+1<br>1.997<br>-6.29-2<br>-3.04-5<br>5.008+1<br>1.443<br>3.44-1<br>2.96-2<br>9.547+1<br>1.466                                                                         | 3000<br>2.101+1<br>1.999<br>5.85-2<br>-2.90-5<br>1.567+1<br>1.346<br>6.78-1<br>4.80-2<br>2.955+1<br>1.372                                                               | 4.91-1<br>-1.42-5<br>4000<br>1.171+1<br>1.996<br>2.77-1<br>-2.70-5<br>6.609+0<br>1.236<br>8.92-1<br>6.82-2<br>1.238+1<br>1.262                                                                                                                                    | 5000<br>7.259+0<br>1.990<br>4.94-1<br>-2.55-5<br>3.315+0<br>1.132<br>1.04+0<br>8.86-2<br>6.173+0<br>1.158                                                                                                                                                         | 8.77-1<br>-1.29-5<br>6000<br>4.841+0<br>1.983<br>6.96-1<br>-2.38-5<br>1.862+0<br>1.038<br>1.15+0<br>1.09-1<br>3.451+0<br>1.065                                                                                                                                    | 7000 3.403+0 1.975 8.83-1 -2.18-5 1.133+0 0.955 1.24+0 1.29-1 2.091+0 0.982                                                                                                                                                                                       | 8000<br>2.489+0<br>1.967<br>1.06+0<br>-1.97-5<br>7.323-1<br>0.880<br>1.31+0<br>1.49-1<br>1.346+0<br>0.907                                                                                                                                                         | 9000<br>1.879+0<br>1.959<br>1.22+0<br>-1.70-5<br>4.959-1<br>0.813<br>1.36+0<br>1.68-1<br>9.084-1<br>0.840                                                                                                                                                         | 1.50+0<br>-5.40-<br>10000<br>1.455+0<br>1.950<br>1.37+0<br>-1.45-<br>3.486-<br>0.751<br>1.41+0<br>1.86-1<br>6.364-<br>0.779                                                                                                                                |
| 2.2 eV <b>Z= 29, Cu: [An</b> Shell $2s_{1/2}$ $E_b = 1096.1$ eV $2p_{1/2}$ $E_b = 951.0$ eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{c} \delta \\ \mathbf{r}]\mathbf{3d}_{3/2}^{4} \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \sigma \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} -1.34-5 \\ \hline {\bf 3d_{5/2}^6  4s_{1/2}^1} \\ \hline {\it k  (eV)} \\ \hline 1500 \\ \hline {\it 7.216+1} \\ 1.992 \\ 1.15-1 \\ -2.66-5 \\ \hline 1.092+2 \\ 1.427 \\ 9.26-2 \\ 1.97-2 \\ \hline 2.101+2 \\ \end{array}$                                                                                                                                                                     | -1.40-5  2000  4.476+1 1.997 -6.29-2 -3.04-5  5.008+1 1.443 3.44-1 2.96-2 9.547+1                                                                                                  | 3000<br>2.101+1<br>1.999<br>5.85-2<br>-2.90-5<br>1.567+1<br>1.346<br>6.78-1<br>4.80-2<br>2.955+1                                                                        | 4.91-1<br>-1.42-5<br>4000<br>1.171+1<br>1.996<br>2.77-1<br>-2.70-5<br>6.609+0<br>1.236<br>8.92-1<br>6.82-2<br>1.238+1                                                                                                                                             | 5000<br>7.259+0<br>1.990<br>4.94-1<br>-2.55-5<br>3.315+0<br>1.132<br>1.04+0<br>8.86-2<br>6.173+0                                                                                                                                                                  | 8.77-1<br>-1.29-5<br>6000<br>4.841+0<br>1.983<br>6.96-1<br>-2.38-5<br>1.862+0<br>1.038<br>1.15+0<br>1.09-1<br>3.451+0                                                                                                                                             | 7000<br>3.403+0<br>1.975<br>8.83-1<br>-2.18-5<br>1.133+0<br>0.955<br>1.24+0<br>1.29-1<br>2.091+0                                                                                                                                                                  | 8000<br>2.489+0<br>1.967<br>1.06+0<br>-1.97-5<br>7.323-1<br>0.880<br>1.31+0<br>1.49-1<br>1.346+0                                                                                                                                                                  | 9000<br>1.879+0<br>1.959<br>1.22+0<br>-1.70-5<br>4.959-1<br>0.813<br>1.36+0<br>1.68-1<br>9.084-1                                                                                                                                                                  | 1.50+0<br>-5.40-<br>10000<br>1.455+0<br>1.37+0<br>-1.45-<br>3.486-<br>0.751<br>1.41+0<br>1.86-1<br>6.364-                                                                                                                                                  |
| 2.2 eV <b>Z= 29, Cu: [An</b> Shell $2s_{1/2}$ $E_b = 1096.1$ eV $2p_{1/2}$ $E_b = 951.0$ eV $2p_{3/2}$ $E_b = 931.1$ eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | δ<br>r]3d <sup>4</sup> <sub>3/2</sub> σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} -1.34-5 \\ \hline {\bf 3d_{5/2}^6  4s_{1/2}^1} \\ \hline {\it k  (eV)} \\ \hline 1500 \\ \hline {\it 7.216+1} \\ 1.992 \\ 1.15-1 \\ -2.66-5 \\ \hline 1.092+2 \\ 1.427 \\ 9.26-2 \\ 1.97-2 \\ \hline 2.101+2 \\ 1.451 \\ 1.04-1 \\ 2.03-2 \\ \end{array}$                                                                                                                                        | 2000<br>4.476+1<br>1.997<br>-6.29-2<br>-3.04-5<br>5.008+1<br>1.443<br>3.44-1<br>2.96-2<br>9.547+1<br>1.466<br>3.58-1<br>2.99-2                                                     | 3000<br>2.101+1<br>1.999<br>5.85-2<br>-2.90-5<br>1.567+1<br>1.346<br>6.78-1<br>4.80-2<br>2.955+1<br>1.372<br>6.98-1<br>4.76-2                                           | 4.91-1<br>-1.42-5<br>4000<br>1.171+1<br>1.996<br>2.77-1<br>-2.70-5<br>6.609+0<br>1.236<br>8.92-1<br>6.82-2<br>1.238+1<br>1.262<br>9.14-1<br>6.69-2                                                                                                                | 5000<br>7.259+0<br>1.990<br>4.94-1<br>-2.55-5<br>3.315+0<br>1.132<br>1.04+0<br>8.86-2<br>6.173+0<br>1.158<br>1.07+0<br>8.67-2                                                                                                                                     | 8.77-1<br>-1.29-5<br>6000<br>4.841+0<br>1.983<br>6.96-1<br>-2.38-5<br>1.862+0<br>1.038<br>1.15+0<br>1.09-1<br>3.451+0<br>1.065<br>1.18+0<br>1.07-1                                                                                                                | 7000 3.403+0 1.975 8.83-1 -2.18-5 1.133+0 0.955 1.24+0 1.29-1 2.091+0 0.982 1.26+0 1.26-1                                                                                                                                                                         | 1.21+0<br>-9.98-6<br>8000<br>2.489+0<br>1.967<br>1.06+0<br>-1.97-5<br>7.323-1<br>0.880<br>1.31+0<br>1.49-1<br>1.346+0<br>0.907<br>1.33+0<br>1.46-1                                                                                                                | 9000<br>1.879+0<br>1.959<br>1.22+0<br>-1.70-5<br>4.959-1<br>0.813<br>1.36+0<br>1.68-1<br>9.084-1<br>0.840<br>1.38+0<br>1.64-1                                                                                                                                     | 1.50+0<br>-5.40-<br>10000<br>1.455+6<br>1.950<br>1.37+0<br>-1.45-<br>0.751<br>1.41+0<br>1.86-1<br>6.364-<br>0.779<br>1.43+0<br>1.82-1                                                                                                                      |
| 2.2 eV  Z= 29, Cu: [And Shell $2s_{1/2}$ $E_b = 1096.1$ eV $2p_{1/2}$ $E_b = 951.0$ eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \begin{array}{c} \delta \\ \mathbf{r}]\mathbf{3d}_{3/2}^{4} \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \gamma \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} -1.34-5 \\ \hline {\bf 3d_{5/2}^6  4s_{1/2}^1} \\ \hline {\it k  (eV)} \\ \hline {\it 1500} \\ \hline {\it 7.216+1} \\ {\it 1.992} \\ {\it 1.15-1} \\ {\it -2.66-5} \\ \hline {\it 1.092+2} \\ {\it 1.427} \\ {\it 9.26-2} \\ {\it 1.97-2} \\ \hline {\it 2.101+2} \\ {\it 1.451} \\ {\it 1.04-1} \\ \end{array}$                                                                                | 2000<br>4.476+1<br>1.997<br>-6.29-2<br>-3.04-5<br>5.008+1<br>1.443<br>3.44-1<br>2.96-2<br>9.547+1<br>1.466<br>3.58-1                                                               | 3000<br>2.101+1<br>1.999<br>5.85-2<br>-2.90-5<br>1.567+1<br>1.346<br>6.78-1<br>4.80-2<br>2.955+1<br>1.372<br>6.98-1                                                     | 4.91-1<br>-1.42-5<br>4000<br>1.171+1<br>1.996<br>2.77-1<br>-2.70-5<br>6.609+0<br>1.236<br>8.92-1<br>6.82-2<br>1.238+1<br>1.262<br>9.14-1                                                                                                                          | 5000<br>7.259+0<br>1.990<br>4.94-1<br>-2.55-5<br>3.315+0<br>1.132<br>1.04+0<br>8.86-2<br>6.173+0<br>1.158<br>1.07+0                                                                                                                                               | 8.77-1<br>-1.29-5<br>6000<br>4.841+0<br>1.983<br>6.96-1<br>-2.38-5<br>1.862+0<br>1.038<br>1.15+0<br>1.09-1<br>3.451+0<br>1.065<br>1.18+0                                                                                                                          | 7000 3.403+0 1.975 8.83-1 -2.18-5 1.133+0 0.955 1.24+0 1.29-1 2.091+0 0.982 1.26+0                                                                                                                                                                                | 8000<br>2.489+0<br>1.967<br>1.06+0<br>-1.97-5<br>7.323-1<br>0.880<br>1.31+0<br>1.49-1<br>1.346+0<br>0.907<br>1.33+0                                                                                                                                               | 9000<br>1.879+0<br>1.959<br>1.22+0<br>-1.70-5<br>4.959-1<br>0.813<br>1.36+0<br>1.68-1<br>9.084-1<br>0.840<br>1.38+0                                                                                                                                               | 1.50+0<br>-5.40-<br>10000<br>1.455+6<br>1.950<br>1.37+0<br>-1.45-<br>0.751<br>1.41+0<br>1.86-1<br>6.364-<br>0.779<br>1.43+0<br>1.82-1                                                                                                                      |
| 2.2 eV  Z= 29, Cu: [And Shell $2s_{1/2}$ $E_b = 1096.1$ eV $2p_{1/2}$ $E_b = 951.0$ eV $2p_{3/2}$ $E_b = 931.1$ eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | δ<br>r]3d <sup>4</sup> <sub>3/2</sub> σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ σ β σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} -1.34-5 \\ \hline {\bf 3d_{5/2}^6  4s_{1/2}^1} \\ \hline {\it k  (eV)} \\ \hline 1500 \\ \hline {\it 7.216+1} \\ 1.992 \\ 1.15-1 \\ -2.66-5 \\ \hline 1.092+2 \\ 1.427 \\ 9.26-2 \\ 1.97-2 \\ \hline 2.101+2 \\ 1.451 \\ 1.04-1 \\ 2.03-2 \\ \hline 1.226+1 \\ \hline \end{array}$                                                                                                               | 2000<br>4.476+1<br>1.997<br>-6.29-2<br>-3.04-5<br>5.008+1<br>1.443<br>3.44-1<br>2.96-2<br>9.547+1<br>1.466<br>3.58-1<br>2.99-2<br>7.056+0<br>1.999<br>2.01-2                       | 3000<br>2.101+1<br>1.999<br>5.85-2<br>-2.90-5<br>1.567+1<br>1.346<br>6.78-1<br>4.80-2<br>2.955+1<br>1.372<br>6.98-1<br>4.76-2<br>3.101+0                                | 4.91-1<br>-1.42-5<br>4000<br>1.171+1<br>1.996<br>2.77-1<br>-2.70-5<br>6.609+0<br>1.236<br>8.92-1<br>6.82-2<br>1.238+1<br>1.262<br>9.14-1<br>6.69-2<br>1.680+0                                                                                                     | 5000<br>7.259+0<br>1.990<br>4.94-1<br>-2.55-5<br>3.315+0<br>1.132<br>1.04+0<br>8.86-2<br>6.173+0<br>1.158<br>1.07+0<br>8.67-2<br>1.027+0                                                                                                                          | 8.77-1<br>-1.29-5<br>6000<br>4.841+0<br>1.983<br>6.96-1<br>-2.38-5<br>1.862+0<br>1.038<br>1.15+0<br>1.09-1<br>3.451+0<br>1.065<br>1.18+0<br>1.07-1<br>6.799-1                                                                                                     | 7000 3.403+0 1.975 8.83-1 -2.18-5 1.133+0 0.955 1.24+0 1.29-1 2.091+0 0.982 1.26+0 1.26-1 4.757-1                                                                                                                                                                 | 1.21+0<br>-9.98-6<br>8000<br>2.489+0<br>1.967<br>1.06+0<br>-1.97-5<br>7.323-1<br>0.880<br>1.31+0<br>1.49-1<br>1.346+0<br>0.907<br>1.33+0<br>1.46-1<br>3.470-1                                                                                                     | 9000<br>1.879+0<br>1.959<br>1.22+0<br>-1.70-5<br>4.959-1<br>0.813<br>1.36+0<br>1.68-1<br>9.084-1<br>0.840<br>1.38+0<br>1.64-1<br>2.615-1                                                                                                                          | 1.50+0<br>-5.40-<br>10000<br>1.455+(<br>1.950<br>1.37+0<br>-1.45-<br>3.486-<br>0.751<br>1.41+0<br>1.86-1<br>0.779<br>1.43+0<br>1.82-1<br>2.023-                                                                                                            |
| 2.2 eV  Z= 29, Cu: [And Shell   $2s_{1/2}$   $E_b = 1096.1$ eV $2p_{1/2}$   $E_b = 951.0$ eV $2p_{3/2}$   $E_b = 931.1$ eV $3s_{1/2}$   $E_b = 1000.0$ eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{c} \delta \\ \mathbf{r}]\mathbf{3d}_{3/2}^{4} \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \beta \\ \\ \sigma \\ \beta \\ \beta \\ \rho \\ \delta \\ \\ \sigma \\ \beta \\ \beta \\ \rho \\ \delta \\ \sigma \\ \beta \\ \rho \\ \delta \\ \sigma \\ \beta \\ \rho \\ \delta \\ \sigma \\ \beta \\ \rho \\ \rho \\ \delta \\ \sigma \\ \beta \\ \rho \\ \delta \\ \sigma \\ \beta \\ \rho \\ \delta \\ \sigma \\ \beta \\ \rho \\ \rho \\ \delta \\ \sigma \\ \beta \\ \rho \\ \rho \\ \delta \\ \sigma \\ \beta \\ \rho \\ \rho \\ \delta \\ \sigma \\ \rho \\ \rho \\ \rho \\ \delta \\ \sigma \\ \rho \\ \rho \\ \delta \\ \sigma \\ \rho \\ \rho \\ \delta \\ \sigma \\ \rho \\ \rho \\ \rho \\ \delta \\ \sigma \\ \rho \\ \rho \\ \rho \\ \sigma \\ \rho \\ \rho \\ \rho \\ \sigma \\ \rho \\ \rho$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} -1.34-5 \\ \hline {\bf 3d_{5/2}^6  ds_{1/2}^1} \\ \hline {\it k  (eV)} \\ \hline 1500 \\ \hline {\it 7.216+1} \\ 1.992 \\ 1.15-1 \\ -2.66-5 \\ \hline 1.092+2 \\ 1.427 \\ 9.26-2 \\ 1.97-2 \\ \hline 2.101+2 \\ 1.451 \\ 1.04-1 \\ 2.03-2 \\ \hline 1.226+1 \\ 1.999 \\ \end{array}$                                                                                                             | 2000<br>4.476+1<br>1.997<br>-6.29-2<br>-3.04-5<br>5.008+1<br>1.443<br>3.44-1<br>2.96-2<br>9.547+1<br>1.466<br>3.58-1<br>2.99-2<br>7.056+0<br>1.999                                 | 3000<br>2.101+1<br>1.999<br>5.85-2<br>-2.90-5<br>1.567+1<br>1.346<br>6.78-1<br>4.80-2<br>2.955+1<br>1.372<br>6.98-1<br>4.76-2<br>3.101+0<br>1.997                       | 4.91-1<br>-1.42-5<br>4000<br>1.171+1<br>1.996<br>2.77-1<br>-2.70-5<br>6.609+0<br>1.236<br>8.92-1<br>6.82-2<br>1.238+1<br>1.262<br>9.14-1<br>6.69-2<br>1.680+0<br>1.992                                                                                            | 5000<br>7.259+0<br>1.990<br>4.94-1<br>-2.55-5<br>3.315+0<br>1.132<br>1.04+0<br>8.86-2<br>6.173+0<br>1.158<br>1.07+0<br>8.67-2<br>1.027+0<br>1.986                                                                                                                 | 8.77-1<br>-1.29-5<br>6000<br>4.841+0<br>1.983<br>6.96-1<br>-2.38-5<br>1.862+0<br>1.038<br>1.15+0<br>1.09-1<br>3.451+0<br>1.065<br>1.18+0<br>1.07-1<br>6.799-1<br>1.979                                                                                            | 7000 3.403+0 1.975 8.83-1 -2.18-5 1.133+0 0.955 1.24+0 1.29-1 2.091+0 0.982 1.26+0 1.26-1 4.757-1 1.971                                                                                                                                                           | 1.21+0<br>-9.98-6<br>8000<br>2.489+0<br>1.967<br>1.06+0<br>-1.97-5<br>7.323-1<br>0.880<br>1.31+0<br>1.49-1<br>1.346+0<br>0.907<br>1.33+0<br>1.46-1<br>3.470-1<br>1.963                                                                                            | 9000<br>1.879+0<br>1.959<br>1.22+0<br>-1.70-5<br>4.959-1<br>0.813<br>1.36+0<br>1.68-1<br>9.084-1<br>0.840<br>1.38+0<br>1.64-1<br>2.615-1<br>1.954                                                                                                                 | 1.50+0<br>-5.40-<br>10000<br>1.455+(<br>1.950<br>1.37+0<br>-1.45-<br>0.751<br>1.41+0<br>1.86-1<br>6.364-<br>0.79<br>1.43+0<br>1.82-1<br>2.023-<br>1.945<br>1.44+0                                                                                          |
| 2.2 eV  Z= 29, Cu: [And Shell $2s_{1/2}$ $E_b = 1096.1$ eV $2p_{1/2}$ $E_b = 951.0$ eV $2p_{3/2}$ $E_b = 931.1$ eV $3s_{1/2}$ $E_b = 119.8$ eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | δ<br>r]3d <sup>4</sup> <sub>3/2</sub> σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>σ<br>δ<br>σ<br>σ<br>β<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} -1.34-5 \\ \hline 3d_{5/2}^6  4s_{1/2}^1 \\ \hline k  (\text{eV}) \\ \hline 1500 \\ \hline 7.216+1 \\ 1.992 \\ 1.15-1 \\ -2.66-5 \\ \hline 1.092+2 \\ 1.427 \\ 9.26-2 \\ 1.97-2 \\ \hline 2.101+2 \\ 1.451 \\ 1.04-1 \\ 2.03-2 \\ \hline 1.226+1 \\ 1.999 \\ -5.19-2 \\ -1.64-5 \\ \hline 1.053+1 \\ \hline \end{array}$                                                                         | 2000<br>4.476+1<br>1.997<br>-6.29-2<br>-3.04-5<br>5.008+1<br>1.443<br>3.44-1<br>2.96-2<br>9.547+1<br>1.466<br>3.58-1<br>2.99-2<br>7.056+0<br>1.999<br>2.01-2<br>-1.75-5<br>5.109+0 | 3000 2.101+1 1.999 5.85-2 -2.90-5 1.567+1 1.346 6.78-1 4.80-2 2.955+1 1.372 6.98-1 4.76-2 3.101+0 1.997 2.21-1 -1.84-5 1.715+0                                          | 4.91-1<br>-1.42-5<br>4000<br>1.171+1<br>1.996<br>2.77-1<br>-2.70-5<br>6.609+0<br>1.236<br>8.92-1<br>6.82-2<br>1.238+1<br>1.262<br>9.14-1<br>6.69-2<br>1.680+0<br>1.992<br>4.30-1<br>-1.86-5<br>7.552-1                                                            | 6.92-1<br>-1.37-5<br>5000<br>7.259+0<br>1.990<br>4.94-1<br>-2.55-5<br>3.315+0<br>1.132<br>1.04+0<br>8.86-2<br>6.173+0<br>1.158<br>1.07+0<br>8.67-2<br>1.027+0<br>1.986<br>6.30-1<br>-1.81-5<br>3.899-1                                                            | 8.77-1<br>-1.29-5<br>6000<br>4.841+0<br>1.983<br>6.96-1<br>-2.38-5<br>1.862+0<br>1.038<br>1.15+0<br>1.09-1<br>3.451+0<br>1.065<br>1.18+0<br>1.07-1<br>6.799-1<br>1.979<br>8.16-1<br>-1.71-5<br>2.237-1                                                            | 1.05+0<br>-1.17-5<br>7000<br>3.403+0<br>1.975<br>8.83-1<br>-2.18-5<br>1.133+0<br>0.955<br>1.24+0<br>1.29-1<br>2.091+0<br>0.982<br>1.26+0<br>1.26-1<br>4.757-1<br>1.971<br>9.89-1<br>-1.56-5<br>1.383-1                                                            | 1.21+0<br>-9.98-6<br>8000<br>2.489+0<br>1.967<br>1.06+0<br>-1.97-5<br>7.323-1<br>0.880<br>1.31+0<br>1.49-1<br>1.346+0<br>0.907<br>1.33+0<br>1.46-1<br>3.470-1<br>1.963<br>1.15+0<br>-1.38-5<br>9.049-2                                                            | 1.36+0<br>-7.74-6<br>9000<br>1.879+0<br>1.959<br>1.22+0<br>-1.70-5<br>4.959-1<br>0.813<br>1.36+0<br>1.68-1<br>9.084-1<br>0.840<br>1.38+0<br>1.64-1<br>2.615-1<br>1.954<br>1.30+0<br>-1.15-5<br>6.188-2                                                            | 1.50+0<br>-5.40-<br>10000<br>1.455+(<br>1.950<br>1.37+0<br>-1.45-<br>0.751<br>1.41+0<br>1.86-1<br>6.364-<br>0.79<br>1.43+0<br>1.82-1<br>2.023-<br>1.945<br>1.44+0<br>-8.68-<br>4.385-                                                                      |
| 2.2 eV <b>Z= 29, Cu: [An</b> Shell $2s_{1/2}$ $E_b = 1096.1$ eV $2p_{1/2}$ $E_b = 951.0$ eV $2p_{3/2}$ $E_b = 119.8$ eV $3s_{1/2}$ $E_b = 119.8$ eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \delta \\ \hline \kappa \\ \hline r] 3d_{3/2}^4 \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \sigma \\ \rho \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \sigma \\ \rho \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \sigma \\ \rho \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \sigma \\ \sigma \\ \rho \\ \gamma \\ \delta \\ \sigma \\ \sigma$                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} -1.34-5 \\ \hline {\bf 3d_{5/2}^6  4s_{1/2}^1} \\ \hline k  (\text{eV}) \\ \hline 1500 \\ \hline 7.216+1 \\ 1.992 \\ 1.15-1 \\ -2.66-5 \\ 1.092+2 \\ 1.427 \\ 9.26-2 \\ 1.97-2 \\ \hline 2.101+2 \\ 1.451 \\ 1.04-1 \\ 2.03-2 \\ \hline 1.226+1 \\ 1.999 \\ -5.19-2 \\ -1.64-5 \\ \hline 1.053+1 \\ 1.524 \\ \hline \end{array}$                                                                 | -1.40-5  2000  4.476+1 1.997 -6.29-2 -3.04-5  5.008+1 1.443 3.44-1 2.96-2  9.547+1 1.466 3.58-1 2.99-2  7.056+0 1.999 2.01-2 -1.75-5  5.109+0 1.441                                | 3000 2.101+1 1.999 5.85-2 -2.90-5 1.567+1 1.346 6.78-1 4.80-2 2.955+1 1.372 6.98-1 4.76-2 3.101+0 1.997 2.21-1 -1.84-5 1.715+0 1.295                                    | 4.91-1<br>-1.42-5<br>4000<br>1.171+1<br>1.996<br>2.77-1<br>-2.70-5<br>6.609+0<br>1.236<br>8.92-1<br>6.82-2<br>1.238+1<br>1.262<br>9.14-1<br>6.69-2<br>1.680+0<br>1.992<br>4.30-1<br>-1.86-5<br>7.552-1<br>1.172                                                   | 6.92-1<br>-1.37-5<br>5000<br>7.259+0<br>1.990<br>4.94-1<br>-2.55-5<br>3.315+0<br>1.132<br>1.04+0<br>8.86-2<br>6.173+0<br>1.158<br>1.07+0<br>1.986<br>6.30-1<br>-1.81-5<br>3.899-1<br>1.067                                                                        | 8.77-1<br>-1.29-5<br>6000<br>4.841+0<br>1.983<br>6.96-1<br>-2.38-5<br>1.862+0<br>1.038<br>1.15+0<br>1.09-1<br>3.451+0<br>1.065<br>1.18+0<br>1.07-1<br>6.799-1<br>1.979<br>8.16-1<br>-1.71-5<br>2.237-1<br>0.977                                                   | 1.05+0<br>-1.17-5<br>7000<br>3.403+0<br>1.975<br>8.83-1<br>-2.18-5<br>1.133+0<br>0.955<br>1.24+0<br>1.29-1<br>2.091+0<br>0.982<br>1.26+0<br>1.26-1<br>4.757-1<br>1.971<br>9.89-1<br>-1.56-5<br>1.383-1<br>0.898                                                   | 1.21+0<br>-9.98-6<br>8000<br>2.489+0<br>1.967<br>1.06+0<br>-1.97-5<br>7.323-1<br>0.880<br>1.31+0<br>1.49-1<br>1.346+0<br>0.907<br>1.33+0<br>1.46-1<br>3.470-1<br>1.963<br>1.15+0<br>-1.38-5<br>9.049-2<br>0.827                                                   | 1.36+0<br>-7.74-6<br>9000<br>1.879+0<br>1.959<br>1.22+0<br>-1.70-5<br>4.959-1<br>0.813<br>1.36+0<br>1.68-1<br>9.084-1<br>0.840<br>1.38+0<br>1.64-1<br>2.615-1<br>1.954<br>1.30+0<br>-1.15-5<br>6.188-2<br>0.763                                                   | 1.50+0<br>-5.40-<br>10000<br>1.455+1<br>1.950<br>1.37+0<br>-1.45-<br>0.751<br>1.41+0<br>1.86-1<br>6.364-<br>0.779<br>1.43+0<br>1.82-1<br>2.023-<br>1.945<br>1.44+0<br>-8.68-<br>4.385-<br>0.706                                                            |
| 2.2 eV  Z= 29, Cu: [And Shell $2s_{1/2}$ $E_b = 1096.1$ eV $2p_{1/2}$ $E_b = 951.0$ eV $2p_{3/2}$ $E_b = 931.1$ eV $3s_{1/2}$ $E_b = 119.8$ eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | δ<br>r]3d <sup>4</sup> <sub>3/2</sub> σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} -1.34-5 \\ \hline {\bf 3d_{5/2}^6  4s_{1/2}^1} \\ \hline k  (\text{eV}) \\ \hline 1500 \\ \hline 7.216+1 \\ 1.992 \\ 1.15-1 \\ -2.66-5 \\ \hline 1.092+2 \\ 1.427 \\ 9.26-2 \\ 1.97-2 \\ \hline 2.101+2 \\ 1.451 \\ 1.04-1 \\ 2.03-2 \\ \hline 1.226+1 \\ 1.999 \\ -5.19-2 \\ -1.64-5 \\ \hline 1.053+1 \\ 1.524 \\ 3.42-1 \\ \hline \end{array}$                                                | 2000 4.476+1 1.997 -6.29-2 -3.04-5 5.008+1 1.443 3.44-1 2.96-2 9.547+1 1.466 3.58-1 2.99-2 7.056+0 1.999 2.01-2 -1.75-5 5.109+0 1.441 5.07-1                                       | 3000 2.101+1 1.999 5.85-2 -2.90-5 1.567+1 1.346 6.78-1 4.80-2 2.955+1 1.372 6.98-1 4.76-2 3.101+0 1.997 2.21-1 -1.84-5 1.715+0 1.295 7.49-1                             | 4.91-1<br>-1.42-5<br>4000<br>1.171+1<br>1.996<br>2.77-1<br>-2.70-5<br>6.609+0<br>1.236<br>8.92-1<br>6.82-2<br>1.238+1<br>1.262<br>9.14-1<br>6.69-2<br>1.680+0<br>1.992<br>4.30-1<br>-1.86-5<br>7.552-1<br>1.172<br>9.18-1                                         | 6.92-1<br>-1.37-5<br>5000<br>7.259+0<br>1.990<br>4.94-1<br>-2.55-5<br>3.315+0<br>1.132<br>1.04+0<br>8.86-2<br>6.173+0<br>1.158<br>1.07+0<br>8.67-2<br>1.027+0<br>1.986<br>6.30-1<br>-1.81-5<br>3.899-1<br>1.067<br>1.04+0                                         | 8.77-1<br>-1.29-5<br>6000<br>4.841+0<br>1.983<br>6.96-1<br>-2.38-5<br>1.862+0<br>1.038<br>1.15+0<br>1.09-1<br>3.451+0<br>1.065<br>1.18+0<br>1.07-1<br>6.799-1<br>1.979<br>8.16-1<br>-1.71-5<br>2.237-1<br>0.977<br>1.14+0                                         | 1.05+0<br>-1.17-5<br>7000<br>3.403+0<br>1.975<br>8.83-1<br>-2.18-5<br>1.133+0<br>0.955<br>1.24+0<br>1.29-1<br>2.091+0<br>0.982<br>1.26+0<br>1.26-1<br>4.757-1<br>1.971<br>9.89-1<br>-1.56-5<br>1.383-1<br>0.898<br>1.22+0                                         | 1.21+0<br>-9.98-6<br>8000<br>2.489+0<br>1.967<br>1.06+0<br>-1.97-5<br>7.323-1<br>0.880<br>1.31+0<br>1.49-1<br>1.346+0<br>0.907<br>1.33+0<br>1.46-1<br>3.470-1<br>1.963<br>1.15+0<br>-1.38-5<br>9.049-2<br>0.827<br>1.29+0                                         | 1.36+0<br>-7.74-6<br>9000<br>1.879+0<br>1.959<br>1.22+0<br>-1.70-5<br>4.959-1<br>0.813<br>1.36+0<br>1.68-1<br>9.084-1<br>0.840<br>1.38+0<br>1.64-1<br>2.615-1<br>1.954<br>1.30+0<br>-1.15-5<br>6.188-2<br>0.763<br>1.34+0                                         | 1.50+0<br>-5.40-<br>10000<br>1.455+(<br>1.950<br>1.37+0<br>-1.45-<br>0.751<br>1.41+0<br>1.86-1<br>6.364-<br>0.779<br>1.43+0<br>1.82-1<br>2.023-<br>1.945<br>1.44+0<br>-8.68-<br>4.385-<br>0.706<br>1.38+0                                                  |
| 2.2 eV  Z= 29, Cu: [Ar  Shell $2s_{1/2}$ $E_b = 1096.1$ eV $2p_{1/2}$ $E_b = 931.1$ eV $3s_{1/2}$ $E_b = 119.8$ eV $3p_{1/2}$ $a_{1/2}$ | δ<br>r]3d <sup>4</sup> <sub>3/2</sub> σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>δ<br>σ<br>β<br>γ<br>δ<br>δ<br>σ<br>σ<br>δ<br>δ<br>σ<br>σ<br>δ<br>δ<br>δ<br>δ<br>δ<br>δ<br>δ<br>δ<br>δ<br>δ<br>δ<br>δ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} -1.34-5 \\ \hline {\bf 3d_{5/2}^6  4s_{1/2}^1} \\ \hline k  (\text{eV}) \\ \hline 1500 \\ \hline 7.216+1 \\ 1.992 \\ 1.15-1 \\ -2.66-5 \\ \hline 1.092+2 \\ 1.427 \\ 9.26-2 \\ 1.97-2 \\ \hline 2.101+2 \\ 1.451 \\ 1.04-1 \\ 2.03-2 \\ \hline 1.226+1 \\ 1.999 \\ -5.19-2 \\ -1.64-5 \\ \hline 1.053+1 \\ 1.524 \\ 3.42-1 \\ 1.51-2 \\ \hline \end{array}$                                      | 2000 4.476+1 1.997 -6.29-2 -3.04-5 5.008+1 1.443 3.44-1 2.96-2 9.547+1 1.466 3.58-1 2.99-2 7.056+0 1.999 2.01-2 -1.75-5 5.109+0 1.441 5.07-1 2.43-2                                | 3000 2.101+1 1.999 5.85-2 -2.90-5 1.567+1 1.346 6.78-1 4.80-2 2.955+1 1.372 6.98-1 4.76-2 3.101+0 1.997 2.21-1 -1.84-5 1.715+0 1.295 7.49-1 4.49-2                      | 4.91-1<br>-1.42-5<br>4000<br>1.171+1<br>1.996<br>2.77-1<br>-2.70-5<br>6.609+0<br>1.236<br>8.92-1<br>6.82-2<br>1.238+1<br>1.262<br>9.14-1<br>6.69-2<br>1.680+0<br>1.992<br>4.30-1<br>-1.86-5<br>7.552-1<br>1.172<br>9.18-1<br>6.65-2                               | 6.92-1<br>-1.37-5<br>5000<br>7.259+0<br>1.990<br>4.94-1<br>-2.55-5<br>3.315+0<br>1.132<br>1.04+0<br>8.86-2<br>6.173+0<br>1.158<br>1.07+0<br>8.67-2<br>1.027+0<br>1.986<br>6.30-1<br>-1.81-5<br>3.899-1<br>1.067<br>1.04+0<br>8.82-2                               | 8.77-1<br>-1.29-5<br>6000<br>4.841+0<br>1.983<br>6.96-1<br>-2.38-5<br>1.862+0<br>1.038<br>1.15+0<br>1.09-1<br>3.451+0<br>1.065<br>1.18+0<br>1.07-1<br>6.799-1<br>1.979<br>8.16-1<br>-1.71-5<br>2.237-1<br>0.977<br>1.14+0<br>1.10-1                               | 1.05+0<br>-1.17-5<br>7000<br>3.403+0<br>1.975<br>8.83-1<br>-2.18-5<br>1.133+0<br>0.955<br>1.24+0<br>1.29-1<br>2.091+0<br>0.982<br>1.26+0<br>1.26-1<br>4.757-1<br>1.971<br>9.89-1<br>-1.56-5<br>1.383-1<br>0.898<br>1.22+0<br>1.30-1                               | 1.21+0<br>-9.98-6<br>8000<br>2.489+0<br>1.967<br>1.06+0<br>-1.97-5<br>7.323-1<br>0.880<br>1.31+0<br>1.49-1<br>1.346+0<br>0.907<br>1.33+0<br>1.46-1<br>3.470-1<br>1.963<br>1.15+0<br>-1.38-5<br>9.049-2<br>0.827<br>1.29+0<br>1.50-1                               | 1.36+0<br>-7.74-6<br>9000<br>1.879+0<br>1.959<br>1.22+0<br>-1.70-5<br>4.959-1<br>0.813<br>1.36+0<br>1.68-1<br>9.084-1<br>0.840<br>1.38+0<br>1.64-1<br>2.615-1<br>1.954<br>1.30+0<br>-1.15-5<br>6.188-2<br>0.763<br>1.34+0<br>1.69-1                               | 1.50+0<br>-5.40-<br>10000<br>1.455+(<br>1.950<br>1.37+0<br>-1.45-<br>0.751<br>1.41+0<br>1.86-1<br>6.364-<br>0.779<br>1.43+0<br>1.82-1<br>2.023-<br>1.945<br>1.44+0<br>-8.68-<br>0.706<br>1.38+0<br>1.88-1                                                  |
| 2.2 eV  Z= 29, Cu: [And Shell $2s_{1/2}$ $E_b = 1096.1$ eV $2p_{1/2}$ $E_b = 951.0$ eV $2p_{3/2}$ $E_b = 931.1$ eV $3s_{1/2}$ $E_b = 119.8$ eV $3p_{1/2}$ $E_b = 75.3$ eV                                                                                                                                                                                                                                                                                                                                                                                                                                                     | δ  r]3d <sup>4</sup> <sub>3/2</sub> σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  σ  β  γ  δ  σ  σ  σ  σ  σ  σ  σ  σ  σ  σ  σ  σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} -1.34-5 \\ \hline {\bf 3d_{5/2}^6  4s_{1/2}^1} \\ \hline k  (\text{eV}) \\ \hline 1500 \\ \hline 7.216+1 \\ 1.992 \\ 1.15-1 \\ -2.66-5 \\ \hline 1.092+2 \\ 1.427 \\ 9.26-2 \\ 1.97-2 \\ \hline 2.101+2 \\ 1.451 \\ 1.04-1 \\ 2.03-2 \\ \hline 1.226+1 \\ 1.999 \\ -5.19-2 \\ -1.64-5 \\ \hline 1.053+1 \\ 1.524 \\ 3.42-1 \\ 1.51-2 \\ \hline 2.028+1 \\ \hline \end{array}$                    | 2000 4.476+1 1.997 -6.29-2 -3.04-5 5.008+1 1.443 3.44-1 2.96-2 9.547+1 1.466 3.58-1 2.99-2 7.056+0 1.999 2.01-2 -1.75-5 5.109+0 1.441 5.07-1 2.43-2 9.761+0                        | 3000 2.101+1 1.999 5.85-2 -2.90-5 1.567+1 1.346 6.78-1 4.80-2 2.955+1 1.372 6.98-1 4.76-2 3.101+0 1.997 2.21-1 -1.84-5 1.715+0 1.295 7.49-1 4.49-2 3.243+0              | 4.91-1<br>-1.42-5<br>4000<br>1.171+1<br>1.996<br>2.77-1<br>-2.70-5<br>6.609+0<br>1.236<br>8.92-1<br>6.82-2<br>1.238+1<br>1.262<br>9.14-1<br>6.69-2<br>1.680+0<br>1.992<br>4.30-1<br>-1.86-5<br>7.552-1<br>1.172<br>9.18-1<br>6.65-2<br>1.417+0                    | 6.92-1<br>-1.37-5<br>5000<br>7.259+0<br>1.990<br>4.94-1<br>-2.55-5<br>3.315+0<br>1.132<br>1.04+0<br>8.86-2<br>6.173+0<br>1.158<br>1.07+0<br>8.67-2<br>1.027+0<br>1.986<br>6.30-1<br>-1.81-5<br>3.899-1<br>1.067<br>1.04+0<br>8.82-2<br>7.268-1                    | 8.77-1<br>-1.29-5<br>6000<br>4.841+0<br>1.983<br>6.96-1<br>-2.38-5<br>1.862+0<br>1.038<br>1.15+0<br>1.09-1<br>3.451+0<br>1.065<br>1.18+0<br>1.07-1<br>6.799-1<br>1.979<br>8.16-1<br>-1.71-5<br>2.237-1<br>0.977<br>1.14+0<br>1.10-1<br>4.147-1                    | 1.05+0<br>-1.17-5<br>7000<br>3.403+0<br>1.975<br>8.83-1<br>-2.18-5<br>1.133+0<br>0.955<br>1.24+0<br>1.29-1<br>2.091+0<br>0.982<br>1.26+0<br>1.26-1<br>4.757-1<br>1.971<br>9.89-1<br>-1.56-5<br>1.383-1<br>0.898<br>1.22+0<br>1.30-1<br>2.552-1                    | 1.21+0<br>-9.98-6<br>8000<br>2.489+0<br>1.967<br>1.06+0<br>-1.97-5<br>7.323-1<br>0.880<br>1.31+0<br>1.49-1<br>1.346+0<br>0.907<br>1.33+0<br>1.46-1<br>3.470-1<br>1.963<br>1.15+0<br>-1.38-5<br>9.049-2<br>0.827<br>1.29+0<br>1.50-1                               | 1.36+0<br>-7.74-6<br>9000<br>1.879+0<br>1.959<br>1.22+0<br>-1.70-5<br>4.959-1<br>0.813<br>1.36+0<br>1.68-1<br>9.084-1<br>0.840<br>1.38+0<br>1.64-1<br>2.615-1<br>1.954<br>1.30+0<br>-1.15-5<br>6.188-2<br>0.763<br>1.34+0<br>1.69-1<br>1.133-1                    | 1.50+0<br>-5.40-<br>10000<br>1.455+0<br>1.950<br>1.37+0<br>-1.45-<br>3.486-<br>0.751<br>1.41+0<br>1.86-1<br>6.364-<br>0.779<br>1.43+0<br>1.82-1<br>2.023-<br>1.945<br>1.44+0<br>-8.68-<br>4.385-<br>0.706<br>1.38+0<br>1.88-1<br>7.997-                    |
| 2.2 eV  Z= 29, Cu: [And Shell $2s_{1/2}$ $E_b = 1096.1$ eV $2p_{1/2}$ $E_b = 951.0$ eV $2p_{3/2}$ $E_b = 931.1$ eV $3s_{1/2}$ $E_b = 119.8$ eV $3p_{1/2}$ $E_b = 75.3$ eV                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \delta \\ \hline \delta \\ \hline r] 3d_{3/2}^4 \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \delta \\ \sigma \\ \rho \\ \delta \\ \sigma \\ \delta \\ \sigma \\ \delta \\ \sigma \\ \delta \\ \sigma \\ \delta \\ \delta$ | $\begin{array}{c} -1.34-5 \\ \hline {\bf 3d_{5/2}^6  4s_{1/2}^1} \\ \hline k  (\text{eV}) \\ \hline 1500 \\ \hline 7.216+1 \\ 1.992 \\ 1.15-1 \\ -2.66-5 \\ \hline 1.092+2 \\ 1.427 \\ 9.26-2 \\ 1.97-2 \\ \hline 2.101+2 \\ 1.451 \\ 1.04-1 \\ 2.03-2 \\ \hline 1.226+1 \\ 1.999 \\ -5.19-2 \\ -1.64-5 \\ \hline 1.053+1 \\ 1.524 \\ 3.42-1 \\ 1.51-2 \\ \hline 2.028+1 \\ 1.543 \\ \hline \end{array}$           | 2000 4.476+1 1.997 -6.29-2 -3.04-5 5.008+1 1.443 3.44-1 2.96-2 9.547+1 1.466 3.58-1 2.99-2 7.056+0 1.999 2.01-2 -1.75-5 5.109+0 1.441 5.07-1 2.43-2 9.761+0 1.463                  | 3000 2.101+1 1.999 5.85-2 -2.90-5 1.567+1 1.346 6.78-1 4.80-2 2.955+1 1.372 6.98-1 4.76-2 3.101+0 1.997 2.21-1 -1.84-5 1.715+0 1.295 7.49-1 4.49-2 3.243+0 1.319        | 4.91-1<br>-1.42-5<br>4000<br>1.171+1<br>1.996<br>2.77-1<br>-2.70-5<br>6.609+0<br>1.236<br>8.92-1<br>6.82-2<br>1.238+1<br>1.262<br>9.14-1<br>6.69-2<br>1.680+0<br>1.992<br>4.30-1<br>-1.86-5<br>7.552-1<br>1.172<br>9.18-1<br>6.65-2<br>1.417+0<br>1.197           | 6.92-1<br>-1.37-5<br>5000<br>7.259+0<br>1.990<br>4.94-1<br>-2.55-5<br>3.315+0<br>1.132<br>1.04+0<br>8.86-2<br>6.173+0<br>1.158<br>1.07+0<br>8.67-2<br>1.027+0<br>1.986<br>6.30-1<br>-1.81-5<br>3.899-1<br>1.067<br>1.04+0<br>8.82-2<br>7.268-1<br>1.093           | 8.77-1<br>-1.29-5<br>6000<br>4.841+0<br>1.983<br>6.96-1<br>-2.38-5<br>1.862+0<br>1.038<br>1.15+0<br>1.09-1<br>3.451+0<br>1.065<br>1.18+0<br>1.07-1<br>6.799-1<br>1.979<br>8.16-1<br>-1.71-5<br>2.237-1<br>0.977<br>1.14+0<br>1.10-1<br>4.147-1<br>1.003           | 1.05+0<br>-1.17-5<br>7000<br>3.403+0<br>1.975<br>8.83-1<br>-2.18-5<br>1.133+0<br>0.955<br>1.24+0<br>1.29-1<br>2.091+0<br>0.982<br>1.26+0<br>1.26-1<br>4.757-1<br>1.971<br>9.89-1<br>-1.56-5<br>1.383-1<br>0.898<br>1.22+0<br>1.30-1<br>2.552-1<br>0.924           | 1.21+0<br>-9.98-6<br>8000<br>2.489+0<br>1.967<br>1.06+0<br>-1.97-5<br>7.323-1<br>0.880<br>1.31+0<br>1.49-1<br>1.346+0<br>0.907<br>1.33+0<br>1.46-1<br>3.470-1<br>1.963<br>1.15+0<br>-1.38-5<br>9.049-2<br>0.827<br>1.29+0<br>1.50-1<br>1.663-1<br>0.854           | 1.36+0<br>-7.74-6<br>9000<br>1.879+0<br>1.959<br>1.22+0<br>-1.70-5<br>4.959-1<br>0.813<br>1.36+0<br>1.68-1<br>9.084-1<br>0.840<br>1.38+0<br>1.64-1<br>2.615-1<br>1.954<br>1.30+0<br>-1.15-5<br>6.188-2<br>0.763<br>1.34+0<br>1.69-1<br>1.133-1<br>0.790           | 1.50+0<br>-5.40-<br>10000<br>1.455+0<br>1.950<br>1.37+0<br>-1.45-<br>3.486-<br>0.751<br>1.41+0<br>1.86-1<br>6.364-<br>0.779<br>1.43+0<br>1.82-1<br>2.023-<br>1.945<br>1.44+0<br>-8.68-<br>4.385-<br>0.706<br>1.38+0<br>1.88-1<br>7.997-<br>0.733           |
| 2.2 eV  Z= 29, Cu: [And Shell $2s_{1/2}$ $E_b = 1096.1$ eV $2p_{1/2}$ $E_b = 951.0$ eV $2p_{3/2}$ $E_b = 931.1$ eV $3s_{1/2}$ $E_b = 119.8$ eV $3p_{1/2}$ $E_b = 75.3$ eV                                                                                                                                                                                                                                                                                                                                                                                                                                                     | δ<br>r]3d <sup>4</sup> <sub>3/2</sub> σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} -1.34-5 \\ \hline {\bf 3d_{5/2}^6  4s_{1/2}^1} \\ \hline k  (\text{eV}) \\ \hline 1500 \\ \hline 7.216+1 \\ 1.992 \\ 1.15-1 \\ -2.66-5 \\ \hline 1.092+2 \\ 1.427 \\ 9.26-2 \\ 1.97-2 \\ \hline 2.101+2 \\ 1.451 \\ 1.04-1 \\ 2.03-2 \\ \hline 1.226+1 \\ 1.999 \\ -5.19-2 \\ -1.64-5 \\ \hline 1.053+1 \\ 1.524 \\ 3.42-1 \\ 1.51-2 \\ \hline 2.028+1 \\ 1.543 \\ 3.50-1 \\ \hline \end{array}$ | 2000 4.476+1 1.997 -6.29-2 -3.04-5 5.008+1 1.443 3.44-1 2.96-2 9.547+1 1.466 3.58-1 2.99-2 7.056+0 1.999 2.01-2 -1.75-5 5.109+0 1.441 5.07-1 2.43-2 9.761+0 1.463 5.18-1           | 3000 2.101+1 1.999 5.85-2 -2.90-5 1.567+1 1.346 6.78-1 4.80-2 2.955+1 1.372 6.98-1 4.76-2 3.101+0 1.997 2.21-1 -1.84-5 1.715+0 1.295 7.49-1 4.49-2 3.243+0 1.319 7.63-1 | 4.91-1<br>-1.42-5<br>4000<br>1.171+1<br>1.996<br>2.77-1<br>-2.70-5<br>6.609+0<br>1.236<br>8.92-1<br>6.82-2<br>1.238+1<br>1.262<br>9.14-1<br>6.69-2<br>1.680+0<br>1.992<br>4.30-1<br>-1.86-5<br>7.552-1<br>1.172<br>9.18-1<br>6.65-2<br>1.417+0<br>1.197<br>9.35-1 | 6.92-1<br>-1.37-5<br>5000<br>7.259+0<br>1.990<br>4.94-1<br>-2.55-5<br>3.315+0<br>1.132<br>1.04+0<br>8.86-2<br>6.173+0<br>1.158<br>1.07+0<br>8.67-2<br>1.027+0<br>1.986<br>6.30-1<br>-1.81-5<br>3.899-1<br>1.067<br>1.04+0<br>8.82-2<br>7.268-1<br>1.093<br>1.06+0 | 8.77-1<br>-1.29-5<br>6000<br>4.841+0<br>1.983<br>6.96-1<br>-2.38-5<br>1.862+0<br>1.038<br>1.15+0<br>1.09-1<br>3.451+0<br>1.065<br>1.18+0<br>1.07-1<br>6.799-1<br>1.979<br>8.16-1<br>-1.71-5<br>2.237-1<br>0.977<br>1.14+0<br>1.10-1<br>4.147-1<br>1.003<br>1.16+0 | 1.05+0<br>-1.17-5<br>7000<br>3.403+0<br>1.975<br>8.83-1<br>-2.18-5<br>1.133+0<br>0.955<br>1.24+0<br>1.29-1<br>2.091+0<br>0.982<br>1.26+0<br>1.26-1<br>4.757-1<br>1.971<br>9.89-1<br>-1.56-5<br>1.383-1<br>0.898<br>1.22+0<br>1.30-1<br>2.552-1<br>0.924<br>1.24+0 | 1.21+0<br>-9.98-6<br>8000<br>2.489+0<br>1.967<br>1.06+0<br>-1.97-5<br>7.323-1<br>0.880<br>1.31+0<br>1.49-1<br>1.346+0<br>0.907<br>1.33+0<br>1.46-1<br>3.470-1<br>1.963<br>1.15+0<br>-1.38-5<br>9.049-2<br>0.827<br>1.29+0<br>1.50-1<br>1.663-1<br>0.854<br>1.30+0 | 1.36+0<br>-7.74-6<br>9000<br>1.879+0<br>1.959<br>1.22+0<br>-1.70-5<br>4.959-1<br>0.813<br>1.36+0<br>1.68-1<br>9.084-1<br>0.840<br>1.38+0<br>1.64-1<br>2.615-1<br>1.954<br>1.30+0<br>-1.15-5<br>6.188-2<br>0.763<br>1.34+0<br>1.69-1<br>1.133-1<br>0.790<br>1.35+0 | 1.50+0<br>-5.40-<br>10000<br>1.455+0<br>1.950<br>1.37+0<br>-1.45-<br>0.751<br>1.41+0<br>1.86-1<br>6.364-<br>0.779<br>1.43+0<br>1.82-1<br>2.023-<br>1.945<br>1.44+0<br>-8.68-<br>4.385-<br>0.706<br>1.38+0<br>1.38+0<br>1.38+0<br>1.397-<br>0.733<br>1.40+0 |
| 2.2 eV  Z= 29, Cu: [And Shell $2s_{1/2}$ $E_b = 1096.1$ eV $2p_{1/2}$ $E_b = 951.0$ eV $2p_{3/2}$ $E_b = 931.1$ eV $3s_{1/2}$ $E_b = 119.8$ eV $3p_{1/2}$ $E_b = 75.3$ eV                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \delta \\ \hline \delta \\ \hline r] 3d_{3/2}^4 \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \delta \\ \sigma \\ \rho \\ \delta \\ \sigma \\ \delta \\ \sigma \\ \delta \\ \sigma \\ \delta \\ \sigma \\ \delta \\ \delta$ | $\begin{array}{c} -1.34-5 \\ \hline {\bf 3d_{5/2}^6  4s_{1/2}^1} \\ \hline k  (\text{eV}) \\ \hline 1500 \\ \hline 7.216+1 \\ 1.992 \\ 1.15-1 \\ -2.66-5 \\ \hline 1.092+2 \\ 1.427 \\ 9.26-2 \\ 1.97-2 \\ \hline 2.101+2 \\ 1.451 \\ 1.04-1 \\ 2.03-2 \\ \hline 1.226+1 \\ 1.999 \\ -5.19-2 \\ -1.64-5 \\ \hline 1.053+1 \\ 1.524 \\ 3.42-1 \\ 1.51-2 \\ \hline 2.028+1 \\ 1.543 \\ \hline \end{array}$           | 2000 4.476+1 1.997 -6.29-2 -3.04-5 5.008+1 1.443 3.44-1 2.96-2 9.547+1 1.466 3.58-1 2.99-2 7.056+0 1.999 2.01-2 -1.75-5 5.109+0 1.441 5.07-1 2.43-2 9.761+0 1.463                  | 3000 2.101+1 1.999 5.85-2 -2.90-5 1.567+1 1.346 6.78-1 4.80-2 2.955+1 1.372 6.98-1 4.76-2 3.101+0 1.997 2.21-1 -1.84-5 1.715+0 1.295 7.49-1 4.49-2 3.243+0 1.319        | 4.91-1<br>-1.42-5<br>4000<br>1.171+1<br>1.996<br>2.77-1<br>-2.70-5<br>6.609+0<br>1.236<br>8.92-1<br>6.82-2<br>1.238+1<br>1.262<br>9.14-1<br>6.69-2<br>1.680+0<br>1.992<br>4.30-1<br>-1.86-5<br>7.552-1<br>1.172<br>9.18-1<br>6.65-2<br>1.417+0<br>1.197           | 6.92-1<br>-1.37-5<br>5000<br>7.259+0<br>1.990<br>4.94-1<br>-2.55-5<br>3.315+0<br>1.132<br>1.04+0<br>8.86-2<br>6.173+0<br>1.158<br>1.07+0<br>8.67-2<br>1.027+0<br>1.986<br>6.30-1<br>-1.81-5<br>3.899-1<br>1.067<br>1.04+0<br>8.82-2<br>7.268-1<br>1.093           | 8.77-1<br>-1.29-5<br>6000<br>4.841+0<br>1.983<br>6.96-1<br>-2.38-5<br>1.862+0<br>1.038<br>1.15+0<br>1.09-1<br>3.451+0<br>1.065<br>1.18+0<br>1.07-1<br>6.799-1<br>1.979<br>8.16-1<br>-1.71-5<br>2.237-1<br>0.977<br>1.14+0<br>1.10-1<br>4.147-1<br>1.003           | 1.05+0<br>-1.17-5<br>7000<br>3.403+0<br>1.975<br>8.83-1<br>-2.18-5<br>1.133+0<br>0.955<br>1.24+0<br>1.29-1<br>2.091+0<br>0.982<br>1.26+0<br>1.26-1<br>4.757-1<br>1.971<br>9.89-1<br>-1.56-5<br>1.383-1<br>0.898<br>1.22+0<br>1.30-1<br>2.552-1<br>0.924           | 1.21+0<br>-9.98-6<br>8000<br>2.489+0<br>1.967<br>1.06+0<br>-1.97-5<br>7.323-1<br>0.880<br>1.31+0<br>1.49-1<br>1.346+0<br>0.907<br>1.33+0<br>1.46-1<br>3.470-1<br>1.963<br>1.15+0<br>-1.38-5<br>9.049-2<br>0.827<br>1.29+0<br>1.50-1<br>1.663-1<br>0.854           | 1.36+0<br>-7.74-6<br>9000<br>1.879+0<br>1.959<br>1.22+0<br>-1.70-5<br>4.959-1<br>0.813<br>1.36+0<br>1.68-1<br>9.084-1<br>0.840<br>1.38+0<br>1.64-1<br>2.615-1<br>1.954<br>1.30+0<br>-1.15-5<br>6.188-2<br>0.763<br>1.34+0<br>1.69-1<br>1.133-1<br>0.790           | 1.50+0<br>-5.40-<br>10000<br>1.455+0<br>1.950<br>1.37+0<br>-1.45-<br>3.486-<br>0.751<br>1.41+0<br>1.86-1<br>6.364-<br>0.779<br>1.43+0<br>1.82-1<br>2.023-<br>1.945<br>1.44+0<br>-8.68-<br>4.385-<br>0.706<br>1.38+0<br>1.88-1<br>7.997-<br>0.733           |

| Table 1 (contin                                  | ued)                    |                                                      |                    |                      |                   |                      |                      |                      |                     |                   |                  |
|--------------------------------------------------|-------------------------|------------------------------------------------------|--------------------|----------------------|-------------------|----------------------|----------------------|----------------------|---------------------|-------------------|------------------|
| 1.8 eV                                           | γ<br>δ                  | 5.85-1<br>9.85-2                                     | 6.74-1<br>1.27-1   | 7.85-1<br>1.83-1     | 8.54-1<br>2.34-1  | 9.02-1<br>2.81-1     | 9.37-1<br>3.24-1     | 9.62-1<br>3.63-1     | 9.78 - 1 $4.01 - 1$ | 9.88-1<br>4.35-1  | 9.93-1<br>4.68-1 |
| 3d <sub>5/2</sub>                                | σ                       | 3.820+0                                              | 1.343+0            | 2.909-1              | 9.449-2           | 3.858-2              | 1.826-2              | 9.596-3              | 5.450-3             | 3.289-3           | 2.083-3          |
| $E_b = 1.5 \text{ eV}$                           | β                       | 0.943<br>5.83-1                                      | 0.821<br>6.72-1    | 0.663<br>7.85-1      | 0.563<br>8.57-1   | 0.492<br>9.09-1      | 0.436<br>9.48-1      | 0.390<br>9.77-1      | 0.350<br>9.99-1     | 0.315<br>1.01+0   | 0.283<br>1.02+0  |
| 1.5 ev                                           | $\gamma \\ \delta$      | 9.97-2                                               | 1.29-1             | 1.85-1               | 2.36-1            | 2.82-1               | 3.24-1               | 3.63-1               | 3.99-1              | 4.33-1            | 4.66-1           |
| 4s <sub>1/2</sub>                                | σ                       | 3.946-1                                              | 2.252-1            | 9.798-2              | 5.285-2           | 3.224-2              | 2.130-2              | 1.488-2              | 1.084-2             | 8.162-3           | 6.309-3          |
| $E_b =$                                          | β                       | 1.999                                                | 1.999              | 1.997                | 1.992             | 1.985                | 1.978                | 1.970                | 1.962               | 1.954             | 1.945            |
| 1.2 eV                                           | γ                       | -4.50-2                                              | 3.26-2             | 2.36-1               | 4.46-1            | 6.45-1               | 8.32-1               | 1.00+0               | 1.16+0              | 1.31+0            | 1.45+0           |
|                                                  | δ                       | -1.53-5                                              | -1.63-5            | -1.72-5              | -1.72-5           | -1.67-5              | -1.58-5              | -1.46-5              | -1.30-5             | -1.08-5           | -8.71-6          |
| Z= 30, Zn: [A                                    | r]3d <sub>3/2</sub>     |                                                      |                    |                      |                   |                      |                      |                      |                     |                   |                  |
| Shell                                            |                         | k (eV)<br>1500                                       | 2000               | 3000                 | 4000              | 5000                 | 6000                 | 7000                 | 8000                | 9000              | 10000            |
| 2s <sub>1/2</sub>                                | σ                       | 7.551+1                                              | 4.758+1            | 2.266+1              | 1.274+1           | 7.949+0              | 5.326+0              | 3.758+0              | 2.758+0             | 2.088+0           | 1.621+0          |
| $E_b =$                                          | β                       | 1.990                                                | 1.996              | 1.999                | 1.997             | 1.991                | 1.985                | 1.978                | 1.970               | 1.961             | 1.952            |
| 1193.6 eV                                        | $\gamma \\ \delta$      | 2.49-1 $-2.82-5$                                     | -4.64-2 $-3.48-5$  | 1.75-2<br>-3.47-5    | 2.23-1<br>-3.29-5 | 4.37 - 1 $-3.09 - 5$ | 6.39 - 1 $-2.89 - 5$ | 8.27 - 1 $-2.68 - 5$ | 1.00+0<br>-2.46-5   | 1.16+0<br>-2.21-5 | 1.31+0<br>1.945  |
|                                                  |                         | 1.245+2                                              | 5.776+1            | 1.829+1              | 7.770+0           | 3.918+0              | 2.211+0              | 1.351+0              | 8.758-1             | 5.948-1           | 4.193-1          |
| $\begin{array}{l} 2p_{1/2} \\ E_b = \end{array}$ | $\frac{\sigma}{\beta}$  | 1.245+2                                              | 1.446              | 1.829+1              | 1.261             | 1.159                | 1.068                | 0.985                | 0.911               | 0.844             | 4.193—1<br>0.784 |
| 1042.8 eV                                        | γ                       | 2.09-2                                               | 2.83-1             | 6.38 - 1             | 8.68-1            | 1.03+0               | 1.15+0               | 1.24+0               | 1.32+0              | 1.38+0            | 1.43+0           |
|                                                  | δ                       | 1.69-2                                               | 2.74-2             | 4.48-2               | 6.38-2            | 8.36-2               | 1.03-1               | 1.23-1               | 1.42-1              | 1.60-1            | 1.78-1           |
| $2p_{3/2}$                                       | $\sigma$                | 2.399+2                                              | 1.101+2            | 3.443+1              | 1.452+1           | 7.277+0              | 4.085+0              | 2.485+0              | 1.605+0             | 1.086+0           | 7.625 - 1        |
| $E_b = 1019.7 \text{ eV}$                        | β                       | 1.423<br>3.31-2                                      | 1.471<br>2.99-1    | 1.395<br>6.59-1      | 1.288<br>8.92-1   | 1.187<br>1.05+0      | 1.096<br>1.17+0      | 1.014<br>1.27+0      | 0.940<br>1.34+0     | 0.873<br>1.40+0   | 0.813<br>1.45+0  |
| 1019.7 ev                                        | $\frac{\gamma}{\delta}$ | 1.77-2                                               | 2.79-1             | 4.44-2               | 6.26-2            | 8.16-2               | 1.01-1               | 1.20-1               | 1.34-0              | 1.57-1            | 1.74-1           |
| $3s_{1/2}$                                       | σ                       | 1.341+1                                              | 7.764+0            | 3.440+0              | 1.874+0           | 1.151+0              | 7.642-1              | 5.363-1              | 3.922-1             | 2.963-1           | 2.297-1          |
| $E_b = 135.9 \text{ eV}$                         | β                       | 1.998<br>-6.24-2                                     | 1.999<br>-3.45-3   | 1.997<br>1.85-1      | 1.993<br>3.90-1   | 1.987<br>5.87-1      | 1.980<br>7.71-1      | 1.973<br>9.44-1      | 1.965<br>1.11+0     | 1.956<br>1.26+0   | 1.948<br>1.40+0  |
| 155.9 eV                                         | $\gamma \\ \delta$      | -0.24-2 $-1.90-5$                                    | -3.43-3<br>-2.08-5 | -2.21-5              | -2.22-5           | -2.17-5              | -2.08-5              | -1.93-5              | -1.75-5             | -1.53-5           | -1.26-5          |
| 3p <sub>1/2</sub>                                | σ                       | 1.210+1                                              | 5.939+0            | 2.023+0              | 8.993-1           | 4.676-1              | 2.698-1              | 1.676-1              | 1.101-1             | 7.561-2           | 5.376-2          |
| $E_b =$                                          | β                       | 1.540                                                | 1.461              | 1.317                | 1.196             | 1.093                | 1.004                | 0.925                | 0.856               | 0.793             | 0.735            |
| 88.6 eV                                          | γ                       | 3.12-1                                               | 4.78 - 1           | 7.29-1               | 9.07 - 1          | 1.04+0               | 1.14+0               | 1.23+0               | 1.29+0              | 1.35+0            | 1.40+0           |
|                                                  | δ                       | 1.37-2                                               | 2.18-2             | 4.11-2               | 6.20-2            | 8.29-2               | 1.04-1               | 1.24-1               | 1.43-1              | 1.62-1            | 1.80-1           |
| $3p_{3/2}$                                       | σ                       | 2.329+1                                              | 1.134+1<br>1.485   | 3.820+0<br>1.343     | 1.684+0<br>1.223  | 8.698-1<br>1.120     | 4.990-1<br>1.032     | 3.085-1<br>0.953     | 2.018-1<br>0.883    | 1.380-1<br>0.821  | 9.771-2          |
| $E_b = 85.6 \text{ eV}$                          | $eta \ \gamma$          | 1.560<br>3.20-1                                      | 4.89-1             | 7.45–1               | 9.25—1            | 1.120                | 1.052                | 1.24+0               | 1.31+0              | 1.37+0            | 0.764<br>1.41+0  |
|                                                  | δ                       | 1.41-2                                               | 2.18-2             | 4.03-2               | 6.04 - 2          | 8.07-2               | 1.01 - 1             | 1.20 - 1             | 1.40 - 1            | 1.58 - 1          | 1.76 - 1         |
| 3d <sub>3/2</sub>                                | σ                       | 3.676+0                                              | 1.310+0            | 2.884-1              | 9.481-2           | 3.910-2              | 1.868-2              | 9.894-3              | 5.660-3             | 3.437-3           | 2.190-3          |
| $E_b = 7.9 \text{ eV}$                           | β                       | 0.986                                                | 0.864<br>6.78-1    | 0.690                | 0.577<br>8.68-1   | 0.496                | 0.432<br>9.55-1      | 0.380<br>9.81-1      | 0.334<br>1.00+0     | 0.294<br>1.01+0   | 0.257            |
| 7.9 eV                                           | $\gamma \\ \delta$      | 5.81-1<br>9.57-2                                     | 1.24-1             | 7.96-1<br>1.77-1     | 2.27-1            | 9.18-1<br>2.73-1     | 3.16-1               | 3.56-1               | 3.92-1              | 4.27-1            | 1.02+0<br>4.60-1 |
| 3d <sub>5/2</sub>                                | σ                       | 5.350+0                                              | 1.901+0            | 4.166-1              | 1.364-1           | 5.606-2              | 2.670-2              | 1.410-2              | 8.046-3             | 4.875-3           | 3.099-3          |
| $E_b =$                                          | β                       | 0.975                                                | 0.856              | 0.689                | 0.583             | 0.509                | 0.452                | 0.405                | 0.365               | 0.330             | 0.298            |
| 8.0 eV                                           | γ                       | 5.78-1                                               | 6.75 - 1           | 7.94-1               | 8.70-1            | 9.24-1               | 9.65-1               | 9.96-1               | 1.02+0              | 1.04+0            | 1.05+0           |
|                                                  | δ                       | 9.70-2                                               | 1.25-1             | 1.79-1               | 2.29-1            | 2.75-1               | 3.17-1               | 3.56-1               | 3.92-1              | 4.25-1            | 4.58-1           |
| $4s_{1/2}$                                       | σ                       | 5.706-1<br>1.999                                     | 3.273-1<br>1.999   | 1.435-1<br>1.997     | 7.781-2<br>1.993  | 4.763-2<br>1.987     | 3.156-2<br>1.980     | 2.212-2<br>1.972     | 1.616-2<br>1.964    | 1.220-2<br>1.956  | 9.451-3<br>1.947 |
| $E_b = 1.3 \text{ eV}$                           | $eta \ \gamma$          | -5.63-2                                              | 9.86-3             | 2.02-1               | 4.06-1            | 6.02-1               | 7.85-1               | 9.56-1               | 1.11+0              | 1.26+0            | 1.40+0           |
|                                                  | δ                       | -1.79 - 5                                            | -1.95 - 5          | -2.08 - 5            | -2.09 - 5         | -2.04-5              | -1.97 - 5            | -1.86 - 5            | -1.69 - 5           | -1.48 - 5         | -1.24 - 5        |
| Z= 31, Ga: [A                                    | r]3d <sub>3/2</sub>     | 3d <sub>5/2</sub> 4s <sub>1/2</sub> 4p <sub>1/</sub> | 2                  |                      |                   |                      |                      |                      |                     |                   |                  |
| Chall                                            |                         | k (eV)                                               | 2000               | 2000                 | 4000              | F000                 | C000                 | 7000                 | 9000                | 0000              | 10000            |
| Shell                                            |                         | 1500                                                 | 2000               | 3000                 | 4000              | 5000                 | 6000                 | 7000                 | 8000                | 9000              | 10000            |
| $2s_{1/2} \\ E_b =$                              | $\frac{\sigma}{\beta}$  | 7.822+1<br>1.987                                     | 5.030+1<br>1.994   | 2.433+1<br>1.999     | 1.379+1<br>1.997  | 8.655+0<br>1.993     | 5.825+0<br>1.987     | 4.126+0<br>1.980     | 3.038+0<br>1.972    | 2.306+0<br>1.964  | 1.795+0<br>1.955 |
| ь =<br>1297.7 eV                                 | $\gamma$                | 4.43-1                                               | -1.08-2            | -1.72-2              | 1.69-1            | 3.76–1               | 5.76-1               | 7.63-1               | 9.37—1              | 1.904             | 1.955            |
|                                                  | δ                       | -2.67 - 5                                            | -3.97 - 5          | -4.13-5              | -3.94-5           | -3.72-5              | -3.53-5              | -3.33-5              | -3.11-5             | -2.85-5           | -2.58-5          |
| 2p <sub>1/2</sub>                                | σ                       | 1.407+2                                              | 6.616+1            | 2.120+1              | 9.076+0           | 4.601+0              | 2.607+0              | 1.599+0              | 1.040+0             | 7.083-1           | 5.005-1          |
| $E_b =$                                          | β                       | 1.344                                                | 1.443              | 1.388                | 1.291             | 1.194                | 1.103                | 1.021                | 0.948               | 0.880             | 0.820            |
| 1142.3 eV                                        | $_{\delta}^{\gamma}$    | -5.18-2<br>1.35-2                                    | 2.17-1<br>2.52-2   | 5.98-1<br>4.28-2     | 8.41-1 $6.08-2$   | 1.01+0<br>7.93-2     | 1.14+0<br>9.83-2     | 1.24+0<br>1.17-1     | 1.32+0<br>1.36-1    | 1.38+0<br>1.54-1  | 1.44+0<br>1.72-1 |
| 2n <sub>2 (2</sub>                               |                         | 2.715+2                                              | 1.260+2            | 3.985+1              | 1.692+1           | 8.520+0              | 4.802+0              | 2.931+0              | 1.898+0             | 1.288+0           | 9.066-1          |
| $2p_{3/2} E_b =$                                 | $\frac{\sigma}{eta}$    | 2.715+2<br>1.376                                     | 1.260+2<br>1.470   | 3.985+1<br>1.416     | 1.692+1           | 8.520+0<br>1.223     | 4.802+0<br>1.133     | 2.931+0<br>1.051     | 0.978               | 0.911             | 9.066—1<br>0.852 |
| 1115.4 eV                                        | γ                       | -3.89-2                                              | 2.33 - 1           | 6.20 - 1             | 8.66 - 1          | 1.04+0               | 1.17+0               | 1.27+0               | 1.35+0              | 1.41+0            | 1.46+0           |
|                                                  | δ                       | 1.46-2                                               | 2.59-2             | 4.26-2               | 5.95-2            | 7.74-2               | 9.56-2               | 1.14-1               | 1.32-1              | 1.50-1            | 1.67-1           |
| 3s <sub>1/2</sub>                                | σ                       | 1.464+1                                              | 8.527+0            | 3.805+0              | 2.083+0           | 1.284+0              | 8.553-1              | 6.020-1              | 4.415-1             | 3.342-1           | 2.596-1          |
| $E_b = 158.1 \text{ eV}$                         | β                       | 1.998                                                | 1.999              | 1.998                | 1.994             | 1.988                | 1.982                | 1.975                | 1.967               | 1.959             | 1.950            |
| 158.1 eV                                         | $_{\delta}^{\gamma}$    | -7.08-2 $-2.25-5$                                    | -2.43-2 $-2.42-5$  | 1.48 - 1 $-2.61 - 5$ | 3.44-1<br>-2.67-5 | 5.38 - 1 $-2.65 - 5$ | 7.21-1<br>-2.57-5    | 8.93-1<br>-2.44-5    | 1.05+0<br>-2.26-5   | 1.20+0<br>-2.04-5 | 1.34+0<br>1.78-5 |
|                                                  | U                       | 2,23-3                                               | 2,72-3             | 2.01-3               | 2.07-3            | 2.05-5               | 2.51-5               | 2,44-3               | 2,20-3              | 2,04−3            | 1.70-3           |

| Table I (continued) | Tab | le 1 ( | continued | ) |
|---------------------|-----|--------|-----------|---|
|---------------------|-----|--------|-----------|---|

| $3p_{1/2}$<br>$E_b = 106.8 \text{ eV}$                               | $egin{array}{c} \sigma \ eta \ \gamma \ \delta \end{array}$ | 1.385+1<br>1.552<br>2.83-1<br>1.23-2 | 6.882+0<br>1.481<br>4.51-1<br>2.02-2 | 2.379+0<br>1.346<br>7.09-1<br>3.83-2 | 1.067+0<br>1.228<br>8.93-1<br>5.79-2 | 5.587-1<br>1.125<br>1.03+0<br>7.79-2 | 3.241-1<br>1.036<br>1.14+0<br>9.79-2 | 2.023-1<br>0.957<br>1.23+0<br>1.18-1 | 1.335-1<br>0.887<br>1.30+0<br>1.37-1 | 9.196-2<br>0.825<br>1.36+0<br>1.55-1 | 6.559-2<br>0.769<br>1.41+0<br>1.73-1 |
|----------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| $ 3p_{3/2}  E_b =  102.9 eV $                                        | σ                                                           | 2.662+1                              | 1.312+1                              | 4.481+0                              | 1.993+0                              | 1.036+0                              | 5.973-1                              | 3.710-1                              | 2.436-1                              | 1.671-1                              | 1.187-1                              |
|                                                                      | β                                                           | 1.574                                | 1.505                                | 1.373                                | 1.256                                | 1.153                                | 1.065                                | 0.986                                | 0.917                                | 0.855                                | 0.799                                |
|                                                                      | γ                                                           | 2.91-1                               | 4.62-1                               | 7.25-1                               | 9.13-1                               | 1.05+0                               | 1.16+0                               | 1.25+0                               | 1.32+0                               | 1.38+0                               | 1.43+0                               |
|                                                                      | δ                                                           | 1.29-2                               | 2.04-2                               | 3.75-2                               | 5.63-2                               | 7.56-2                               | 9.51-2                               | 1.14-1                               | 1.33-1                               | 1.51-1                               | 1.69-1                               |
| $3d_{3/2}$ $E_b =$ 20.7 eV                                           | σ                                                           | 5.009+0                              | 1.803+0                              | 4.015-1                              | 1.330-1                              | 5.518-2                              | 2.650-2                              | 1.410-2                              | 8.103-3                              | 4.939-3                              | 3.158-3                              |
|                                                                      | β                                                           | 1.010                                | 0.893                                | 0.722                                | 0.607                                | 0.523                                | 0.456                                | 0.402                                | 0.355                                | 0.313                                | 0.275                                |
|                                                                      | γ                                                           | 5.73-1                               | 6.78-1                               | 8.08-1                               | 8.86-1                               | 9.39-1                               | 9.77-1                               | 1.00+0                               | 1.02+0                               | 1.04+0                               | 1.05+0                               |
|                                                                      | δ                                                           | 9.19-2                               | 1.19-1                               | 1.72-1                               | 2.22-1                               | 2.67-1                               | 3.09-1                               | 3.48-1                               | 3.85-1                               | 4.19-1                               | 4.51-1                               |
| $3d_{5/2}$ $E_b =$ 15.7 eV                                           | σ                                                           | 7.255+0                              | 2.608+0                              | 5.792-1                              | 1.912-1                              | 7.913-2                              | 3.790-2                              | 2.012-2                              | 1.153-2                              | 7.012-3                              | 4.473-3                              |
|                                                                      | β                                                           | 0.997                                | 0.882                                | 0.718                                | 0.611                                | 0.533                                | 0.474                                | 0.425                                | 0.384                                | 0.347                                | 0.314                                |
|                                                                      | γ                                                           | 5.70-1                               | 6.74-1                               | 8.05-1                               | 8.86-1                               | 9.42-1                               | 9.85-1                               | 1.02+0                               | 1.04+0                               | 1.06+0                               | 1.07+0                               |
|                                                                      | δ                                                           | 9.32-2                               | 1.21-1                               | 1.74-1                               | 2.24-1                               | 2.69-1                               | 3.10-1                               | 3.49-1                               | 3.84-1                               | 4.18-1                               | 4.49-1                               |
| $4s_{1/2}$ $E_b = 5.6 \text{ eV}$                                    | σ                                                           | 8.343-1                              | 4.814-1                              | 2.127-1                              | 1.158-1                              | 7.114-2                              | 4.728-2                              | 3.323-2                              | 2.434-2                              | 1.842-2                              | 1.430-2                              |
|                                                                      | β                                                           | 1.998                                | 1.999                                | 1.998                                | 1.994                                | 1.988                                | 1.981                                | 1.974                                | 1.966                                | 1.958                                | 1.949                                |
|                                                                      | γ                                                           | -6.51-2                              | -1.04-2                              | 1.68-1                               | 3.65-1                               | 5.56-1                               | 7.37-1                               | 9.06-1                               | 1.07+0                               | 1.21+0                               | 1.36+0                               |
|                                                                      | δ                                                           | -2.09-5                              | -2.33-5                              | -2.47-5                              | -2.48-5                              | -2.45-5                              | -2.39-5                              | -2.26-5                              | -2.10-5                              | -1.88-5                              | -1.61-5                              |
| $ \begin{array}{c} 4p_{1/2} \\ E_b = \\ 0.8 \text{ eV} \end{array} $ | σ                                                           | 3.670-1                              | 1.822-1                              | 6.290-2                              | 2.820-2                              | 1.476-2                              | 8.565-3                              | 5.349-3                              | 3.530-3                              | 2.432-3                              | 1.735-3                              |
|                                                                      | β                                                           | 1.555                                | 1.479                                | 1.342                                | 1.223                                | 1.121                                | 1.033                                | 0.956                                | 0.887                                | 0.825                                | 0.769                                |
|                                                                      | γ                                                           | 2.98-1                               | 4.63-1                               | 7.17-1                               | 8.99-1                               | 1.04+0                               | 1.14+0                               | 1.23+0                               | 1.30+0                               | 1.36+0                               | 1.41+0                               |
|                                                                      | δ                                                           | 1.16-2                               | 1.96-2                               | 3.79-2                               | 5.78-2                               | 7.81-2                               | 9.83-2                               | 1.18-1                               | 1.38-1                               | 1.56-1                               | 1.74-1                               |

# Z= 32, Ge: [Ar] $3d_{3/2}^4 3d_{5/2}^6 4s_{1/2}^2 4p_{1/2}^2$

|                        |                      | k (eV)            |                   |                  |                  |                   |                      |                      |                   |                   |                   |
|------------------------|----------------------|-------------------|-------------------|------------------|------------------|-------------------|----------------------|----------------------|-------------------|-------------------|-------------------|
| Shell                  |                      | 1500              | 2000              | 3000             | 4000             | 5000              | 6000                 | 7000                 | 8000              | 9000              | 10000             |
| 2s <sub>1/2</sub>      | σ                    | 7.948+1           | 5.300+1           | 2.604+1          | 1.489+1          | 9.400+0           | 6.356+0              | 4.518+0              | 3.336+0           | 2.539+0           | 1.981+0           |
| $E_b =$                | β                    | 1.983             | 1.992             | 1.999            | 1.998            | 1.994             | 1.988                | 1.982                | 1.974             | 1.966             | 1.958             |
| 1414.3 eV              | γ                    | 7.53 - 1          | 5.53 - 2          | -4.58 - 2        | 1.18 - 1         | 3.18 - 1          | 5.16 - 1             | 7.02 - 1             | 8.75 - 1          | 1.04+0            | 1.19+0            |
|                        | δ                    | -1.48 - 5         | -4.39-5           | -4.84 - 5        | -4.65 - 5        | -4.42 - 5         | -4.20-5              | -3.98 - 5            | -3.76-5           | -3.50-5           | -3.22 - 5         |
| $2p_{1/2}$             | $\sigma$             | 1.570+2           | 7.529+1           | 2.442+1          | 1.053+1          | 5.366+0           | 3.054+0              | 1.879+0              | 1.226+0           | 8.374 - 1         | 5.932 - 1         |
| $E_b =$                | β                    | 1.258             | 1.433             | 1.403            | 1.313            | 1.221             | 1.135                | 1.056                | 0.984             | 0.918             | 0.858             |
| 1247.8 eV              | γ                    | -1.21-1           | 1.48 - 1          | 5.51 - 1         | 8.11-1           | 9.94 - 1          | 1.13+0               | 1.24+0               | 1.32+0            | 1.39+0            | 1.45+0            |
|                        | δ                    | 8.80-3            | 2.30-2            | 4.03-2           | 5.77-2           | 7.58-2            | 9.42-2               | 1.13-1               | 1.31-1            | 1.48-1            | 1.66-1            |
| $2p_{3/2}$             | $\sigma$             | 3.041+2           | 1.433+2           | 4.581+1          | 1.958+1          | 9.909+0           | 5.607+0              | 3.433+0              | 2.230+0           | 1.517+0           | 1.070+0           |
| $E_b =$                | β                    | 1.300             | 1.462             | 1.433            | 1.344            | 1.253             | 1.167                | 1.089                | 1.017             | 0.951             | 0.891             |
| 1216.7 eV              | γ                    | -1.09-1           | 1.65 - 1          | 5.74 - 1         | 8.38 - 1         | 1.02+0            | 1.16+0               | 1.27+0               | 1.35+0            | 1.42+0            | 1.48+0            |
|                        | δ                    | 1.03-2            | 2.40-2            | 4.02-2           | 5.66-2           | 7.39-2            | 9.15-2               | 1.09-1               | 1.27-1            | 1.44-1            | 1.61-1            |
| $3s_{1/2}$             | $\sigma$             | 1.592+1           | 9.328+0           | 4.195+0          | 2.308+0          | 1.428+0           | 9.544 - 1            | 6.735 - 1            | 4.951 - 1         | 3.757 - 1         | 2.924 - 1         |
| $E_b =$                | β                    | 1.997             | 1.999             | 1.998            | 1.995            | 1.990             | 1.983                | 1.976                | 1.969             | 1.961             | 1.952             |
| 180.0 eV               | γ                    | -7.50-2           | -4.19 - 2         | 1.15 - 1         | 3.04 - 1         | 4.93 - 1          | 6.73 - 1             | 8.43 - 1             | 1.00+0            | 1.15+0            | 1.29+0            |
|                        | δ                    | -2.60-5           | -2.86-5           | -3.07 - 5        | -3.15 - 5        | -3.13-5           | -3.07 - 5            | -2.94-5              | -2.76-5           | -2.56-5           | -2.29-5           |
| $3p_{1/2}$             | $\sigma$             | 1.578+1           | 7.937+0           | 2.784+0          | 1.260+0          | 6.642 - 1         | 3.874 - 1            | 2.429 - 1            | 1.609 - 1         | 1.112 - 1         | 7.955 - 2         |
| $E_b =$                | β                    | 1.565             | 1.498             | 1.368            | 1.254            | 1.155             | 1.069                | 0.992                | 0.923             | 0.861             | 0.804             |
| 127.9 eV               | γ                    | 2.51 - 1          | 4.21 - 1          | 6.87 - 1         | 8.80 - 1         | 1.02+0            | 1.14+0               | 1.23+0               | 1.31+0            | 1.37+0            | 1.42+0            |
|                        | δ                    | 1.09-2            | 1.83-2            | 3.56-2           | 5.46-2           | 7.42-2            | 9.37-2               | 1.13-1               | 1.32-1            | 1.50-1            | 1.67-1            |
| $3p_{3/2}$             | $\sigma$             | 3.022+1           | 1.507+1           | 5.221+0          | 2.342+0          | 1.226+0           | 7.104 - 1            | 4.431 - 1            | 2.920 - 1         | 2.010 - 1         | 1.432 - 1         |
| $E_b =$                | β                    | 1.587             | 1.523             | 1.396            | 1.283            | 1.186             | 1.100                | 1.023                | 0.955             | 0.893             | 0.836             |
| 120.8 eV               | γ                    | 2.60-1            | 4.33-1            | 7.04-1           | 9.00-1           | 1.05+0            | 1.16+0               | 1.25+0               | 1.33+0            | 1.39+0            | 1.44+0            |
|                        | δ                    | 1.17-2            | 1.86-2            | 3.50-2           | 5.31-2           | 7.19-2            | 9.07-2               | 1.09-1               | 1.28-1            | 1.45-1            | 1.63-1            |
| $3d_{3/2}$             | $\sigma$             | 6.595+0           | 2.402+0           | 5.422 - 1        | 1.811 - 1        | 7.563 - 2         | 3.652 - 2            | 1.953 - 2            | 1.127 - 2         | 6.896 - 3         | 4.424 - 3         |
| $E_b =$                | β                    | 1.036             | 0.920             | 0.746            | 0.628            | 0.541             | 0.473                | 0.417                | 0.369             | 0.327             | 0.289             |
| 29.2 eV                | γ                    | 5.63-1            | 6.75-1            | 8.14-1           | 8.98-1           | 9.54-1            | 9.95-1               | 1.03+0               | 1.05+0            | 1.06+0            | 1.07+0            |
|                        | δ                    | 8.87-2            | 1.15-1            | 1.66-1           | 2.14-1           | 2.59 - 1          | 3.01-1               | 3.39-1               | 3.75-1            | 4.09-1            | 4.41 - 1          |
| $3d_{5/2}$             | $\sigma$             | 9.640+0           | 3.502+0           | 7.869 - 1        | 2.617 - 1        | 1.089 - 1         | 5.242 - 2            | 2.795 - 2            | 1.608 - 2         | 9.817 - 3         | 6.283 - 3         |
| $E_b =$                | β                    | 1.023             | 0.909             | 0.742            | 0.630            | 0.550             | 0.489                | 0.440                | 0.397             | 0.361             | 0.327             |
| 28.5 eV                | γ                    | 5.61-1            | 6.72-1            | 8.12-1           | 8.97-1           | 9.58-1            | 1.00+0               | 1.04+0               | 1.06+0            | 1.08+0            | 1.10+0            |
|                        | δ                    | 9.01-2            | 1.17-1            | 1.69-1           | 2.17-1           | 2.61-1            | 3.02-1               | 3.40-1               | 3.75-1            | 4.08-1            | 4.39-1            |
| $4s_{1/2}$             | σ                    | 1.106+0           | 6.412 - 1         | 2.852-1          | 1.560-1          | 9.620-2           | 6.415-2              | 4.521-2              | 3.320-2           | 2.517-2           | 1.958-2           |
| $E_b =$                | β                    | 1.998             | 1.999             | 1.998            | 1.994            | 1.989             | 1.983                | 1.976                | 1.968             | 1.960             | 1.952             |
| 9.0 eV                 | $\gamma \\ \delta$   | -7.17-2 $-2.44-5$ | -2.77-2 $-2.69-5$ | 1.35-1 $-2.92-5$ | 3.26-1 $-2.98-5$ | 5.15-1<br>-2.95-5 | 6.95 - 1 $-2.86 - 5$ | 8.65 - 1 $-2.73 - 5$ | 1.02+0<br>-2.55-5 | 1.17+0<br>-2.33-5 | 1.31+0<br>-2.06-5 |
| 1n                     |                      | 5.863-1           | 2.947-1           | 1.033-1          | 4.677-2          | 2.466-2           | 1.439-2              | 9.026-3              | 5.980-3           | 4.135-3           | 2.959-3           |
| $4p_{1/2} E_b =$       | $\frac{\sigma}{eta}$ | 5.863—1<br>1.569  | 2.947—1<br>1.495  | 1.033-1          | 4.677—2<br>1.244 | 2.466-2<br>1.145  | 1.439-2<br>1.059     | 9.026—3<br>0.982     | 5.980-3<br>0.914  | 4.135—3<br>0.851  | 2.959-3<br>0.795  |
| $E_b = 2.3 \text{ eV}$ |                      | 2.69—1            | 4.35-1            | 6.97—1           | 8.86—1           | 1.145             | 1.059                | 1.23+0               | 1.31+0            | 1.37+0            | 0.795<br>1.42+0   |
| 2.3 C V                | $\gamma \\ \delta$   | 1.01-2            | 1.73-2            | 3.47 - 1         | 5.40-2           | 7.37-2            | 9.34-2               | 1.13-1               | 1.31-1            | 1.49-1            | 1.42+0            |
|                        |                      | 1,01 2            | 1.7.5 2           | J. 17 2          | J, 10 2          | ,,,,, 2           | 3,31 2               | 1,10 1               | 1,51 1            | 1, 10 1           | 1.07              |

Table 1 (continued)

Z= 33, As: [Ar] $3d_{3/2}^4 3d_{5/2}^6 4s_{1/2}^2 4p_{1/2}^2 4p_{3/2}^1$ 

|                                                  | - 3/2                   | k (eV)                             | 2 13/2                |                      |                     |                     |                      |                  |                   |                   |                   |
|--------------------------------------------------|-------------------------|------------------------------------|-----------------------|----------------------|---------------------|---------------------|----------------------|------------------|-------------------|-------------------|-------------------|
| Shell                                            |                         | 1500                               | 2000                  | 3000                 | 4000                | 5000                | 6000                 | 7000             | 8000              | 9000              | 10000             |
| 2p <sub>1/2</sub>                                | σ                       | 1.705+2                            | 8.503+1               | 2.794+1              | 1.213+1             | 6.217+0             | 3.552+0              | 2.194+0          | 1.436+0           | 9.829-1           | 6.979-1           |
| $E_b =$                                          | β                       | 1.098                              | 1.414                 | 1.416                | 1.335               | 1.246               | 1.161                | 1.083            | 1.012             | 0.946             | 0.886             |
| 1358.6 eV                                        | γ                       | -1.67-1                            | 7.30-2                | 4.98-1               | 7.75-1              | 9.70-1              | 1.12+0               | 1.23+0           | 1.32+0            | 1.40+0            | 1.46+0            |
|                                                  | δ                       | 3.60-3                             | 2.03-2                | 3.79-2               | 5.45-2              | 7.17-2              | 8.93-2               | 1.07-1           | 1.25-1            | 1.42-1            | 1.59-1            |
| $2p_{3/2}$<br>$E_b =$                            | $\frac{\sigma}{\beta}$  | 3.345+2<br>1.169                   | 1.620+2<br>1.445      | 5.236+1<br>1.448     | 2.252+1<br>1.368    | 1.145+1<br>1.280    | 6.504+0<br>1.195     | 3.995+0<br>1.117 | 2.602+0<br>1.046  | 1.774+0<br>0.981  | 1.254+0<br>0.921  |
| 1323.1 eV                                        | γ                       | -1.64-1                            | 9.21 - 2              | 5.23 - 1             | 8.04 - 1            | 1.00+0              | 1.15+0               | 1.26+0           | 1.35+0            | 1.43+0            | 1.49+0            |
|                                                  | δ                       | 4.65-3                             | 2.17-2                | 3.81-2               | 5.36-2              | 6.98-2              | 8.66-2               | 1.04-1           | 1.21-1            | 1.37-1            | 1.54-1            |
| $3s_{1/2}$                                       | $\sigma$                | 1.726+1                            | 1.017+1               | 4.608+0              | 2.548+0             | 1.583+0             | 1.061+0              | 7.508-1          | 5.532-1           | 4.207-1           | 3.281-1           |
| $E_b = 203.5 \text{ eV}$                         | $eta \ \gamma$          | 1.997<br>-7.59-2                   | 1.998<br>-5.65-2      | 1.998<br>8.36-2      | 1.995<br>2.65-1     | 1.991<br>4.51-1     | 1.985<br>6.29-1      | 1.978<br>7.98-1  | 1.971<br>9.57-1   | 1.963<br>1.11+0   | 1.955<br>1.25+0   |
| 200.0 01                                         | δ                       | -3.05-5                            | -3.33-5               | -3.59-5              | -3.71-5             | -3.68-5             | -3.61-5              | -3.50-5          | -3.32-5           | -3.10-5           | -2.82-5           |
| 3p <sub>1/2</sub>                                | σ                       | 1.778+1                            | 9.052+0               | 3.224+0              | 1.473+0             | 7.816-1             | 4.583-1              | 2.887-1          | 1.919-1           | 1.331-1           | 9.552-2           |
| $E_b =$                                          | β                       | 1.576                              | 1.514                 | 1.388                | 1.277               | 1.179               | 1.093                | 1.016            | 0.949             | 0.887             | 0.831             |
| 146.4 eV                                         | $\gamma \\ \delta$      | 2.22-1<br>9.73-3                   | 3.91-1<br>1.66-2      | 6.63-1<br>3.28-2     | 8.62 - 1 $5.08 - 2$ | 1.01+0<br>6.96-2    | 1.13+0<br>8.84-2     | 1.23+0<br>1.07-1 | 1.31+0<br>1.25-1  | 1.38+0<br>1.43-1  | 1.43+0<br>1.60-1  |
| 3p <sub>3/2</sub>                                | σ                       | 3.414+1                            | 1.722+1               | 6.049+0              | 2.737+0             | 1.441+0             | 8.395-1              | 5.258-1          | 3.478-1           | 2.401-1           | 1.715-1           |
| $E_b =$                                          | β                       | 1.598                              | 1.540                 | 1.418                | 1.308               | 1.211               | 1.125                | 1.049            | 0.982             | 0.920             | 0.864             |
| 140.5 eV                                         | γ                       | 2.30-1                             | 4.03-1                | 6.81-1               | 8.84-1              | 1.04+0              | 1.16+0               | 1.25+0           | 1.33+0            | 1.40+0            | 1.46+0            |
|                                                  | δ                       | 1.06-2                             | 1.71-2                | 3.23-2               | 4.94-2              | 6.73-2              | 8.55-2               | 1.03-1           | 1.21-1            | 1.39-1            | 1.55-1            |
| $3d_{3/2}$<br>$E_b =$                            | $\frac{\sigma}{\beta}$  | 8.552+0<br>1.061                   | 3.150+0<br>0.948      | 7.202-1<br>0.774     | 2.424-1<br>0.652    | 1.018-1<br>0.563    | 4.943-2<br>0.493     | 2.655-2<br>0.435 | 1.538-2<br>0.385  | 9.446-3<br>0.342  | 6.080-3<br>0.303  |
| 41.7 eV                                          | γ                       | 5.52-1                             | 6.71-1                | 8.21-1               | 9.10-1              | 9.70-1              | 1.01+0               | 1.04+0           | 1.07+0            | 1.08+0            | 1.10+0            |
|                                                  | δ                       | 8.60-2                             | 1.11-1                | 1.61 - 1             | 2.08 - 1            | 2.52 - 1            | 2.93 - 1             | 3.32 - 1         | 3.67 - 1          | 4.01 - 1          | 4.32 - 1          |
| $3d_{5/2}$                                       | σ                       | 1.248+1                            | 4.584+0               | 1.043+0              | 3.496-1             | 1.463-1             | 7.078-2              | 3.790-2          | 2.189-2           | 1.341-2           | 8.609-3           |
| $E_b = 40.9 \text{ eV}$                          | $\beta$                 | 1.047<br>5.50-1                    | 0.936<br>6.68-1       | 0.768<br>8.17-1      | 0.653<br>9.09-1     | 0.570<br>9.72-1     | 0.507<br>1.02+0      | 0.455<br>1.05+0  | 0.412<br>1.08+0   | 0.374<br>1.10+0   | 0.340<br>1.12+0   |
| 40.5 CV                                          | $\frac{\gamma}{\delta}$ | 8.74-2                             | 1.13-1                | 1.64-1               | 2.11-1              | 2.55-1              | 2.95-1               | 3.33-1           | 3.68-1            | 4.01-1            | 4.31-1            |
| 4s <sub>1/2</sub>                                | σ                       | 1.386+0                            | 8.080-1               | 3.619-1              | 1.989-1             | 1.230-1             | 8.226-2              | 5.811-2          | 4.277-2           | 3.250-2           | 2.533-2           |
| $E_b =$                                          | β                       | 1.997                              | 1.999                 | 1.998                | 1.995               | 1.990               | 1.984                | 1.977            | 1.970             | 1.962             | 1.954             |
| 12.5 eV                                          | $\gamma \\ \delta$      | -7.57-2 $-2.84-5$                  | -4.26-2 $-3.12-5$     | 1.05 - 1 $-3.40 - 5$ | 2.87-1<br>-3.53-5   | 4.70-1 $-3.52-5$    | 6.47 - 1 $-3.46 - 5$ | 8.14-1 $-3.36-5$ | 9.72-1<br>-3.19-5 | 1.12+0<br>-2.98-5 | 1.26+0<br>-2.71-5 |
| $4p_{1/2}$                                       | σ                       | 8.431-1                            | 4.290-1               | 1.528-1              | 6.984-2             | 3.708-2             | 2.176-2              | 1.371-2          | 9.122-3           | 6.330-3           | 4.544-3           |
| $E_b =$                                          | β                       | 1.581                              | 1.512                 | 1.383                | 1.270               | 1.172               | 1.085                | 1.009            | 0.940             | 0.878             | 0.822             |
| 2.5 eV                                           | γ                       | 2.43-1                             | 4.08-1                | 6.73-1               | 8.69-1              | 1.02+0              | 1.13+0               | 1.23+0           | 1.31+0            | 1.37+0            | 1.43+0            |
| 4                                                | δ                       | 8.98-3                             | 1.56-2                | 3.17-2               | 4.99-2              | 6.88-2              | 8.77-2               | 1.06-1           | 1.25-1            | 1.43-1            | 1.60-1            |
| $\begin{array}{l} 4p_{3/2} \\ E_b = \end{array}$ | $\frac{\sigma}{\beta}$  | 1.632+0<br>1.604                   | 8.225-1<br>1.539      | 2.890-1<br>1.413     | 1.308-1<br>1.301    | 6.891-2<br>1.204    | 4.016-2<br>1.118     | 2.517-2<br>1.041 | 1.666-2<br>0.973  | 1.150-2<br>0.911  | 8.222-3<br>0.855  |
| 2.5 eV                                           | γ                       | 2.51-1                             | 4.19-1                | 6.91-1               | 8.90-1              | 1.04+0              | 1.16+0               | 1.26+0           | 1.33+0            | 1.40+0            | 1.45+0            |
|                                                  | δ                       | 9.79-3                             | 1.60-2                | 3.12-2               | 4.84-2              | 6.64-2              | 8.46-2               | 1.03-1           | 1.21-1            | 1.38-1            | 1.55-1            |
| Z= 34, Se: [A:                                   | r]3d <sub>3/2</sub> 3   | $3d_{5/2}^6 4s_{1/2}^2 4p_{1/2}^2$ | $_{2}$ $4p_{3/2}^{2}$ |                      |                     |                     |                      |                  |                   |                   |                   |
|                                                  |                         | k (eV)                             |                       |                      |                     |                     |                      |                  |                   |                   |                   |
| Shell                                            |                         | 1500                               | 2000                  | 3000                 | 4000                | 5000                | 6000                 | 7000             | 8000              | 9000              | 10000             |
| $2p_{1/2}$                                       | σ                       | 1.611+2                            | 9.549+1               | 3.181+1              | 1.391+1             | 7.164+0             | 4.110+0              | 2.546+0          | 1.671+0           | 1.147+0           | 8.162 - 1         |
| $E_b = 1476.2 \text{ eV}$                        | β                       | 0.628<br>-1.25-1                   | 1.381<br>-5.99-3      | 1.426<br>4.40-1      | 1.355<br>7.35-1     | 1.271<br>9.43-1     | 1.188<br>1.10+0      | 1.112<br>1.22+0  | 1.041<br>1.32+0   | 0.976<br>1.40+0   | 0.916<br>1.46+0   |
| 1470.2 ev                                        | $_{\delta}^{\gamma}$    | 1.76–2                             | -3.99-3<br>1.71-2     | 3.56-2               | 5.16-2              | 6.80-2              | 8.47-2               | 1.02-1           | 1.32+0            | 1.40+0            | 1.52-1            |
| 2p <sub>3/2</sub>                                | σ                       | 3.463+2                            | 1.821+2               | 5.956+1              | 2.577+1             | 1.316+1             | 7.503+0              | 4.622+0          | 3.019+0           | 2.063+0           | 1.461+0           |
| $E_b =$                                          | β                       | 0.866                              | 1.417                 | 1.459                | 1.390               | 1.306               | 1.224                | 1.148            | 1.077             | 1.012             | 0.953             |
| 1435.8 eV                                        | $\gamma \\ \delta$      | -1.56-1<br>4.76-3                  | 1.32-2<br>1.88-2      | 4.66-1<br>3.61-2     | 7.66-1 $5.09-2$     | 9.77 - 1 $6.63 - 2$ | 1.13+0<br>8.20-2     | 1.26+0<br>9.82-2 | 1.35+0<br>1.14-1  | 1.43+0<br>1.31-1  | 1.50+0<br>1.47-1  |
| 3s <sub>1/2</sub>                                | σ                       | 1.867+1                            | 1.106+1               | 5.047+0              | 2.805+0             | 1.748+0             | 1.175+0              | 8.337-1          | 6.156-1           | 4.691-1           | 3.665-1           |
| $E_b =$                                          | β                       | 1.996                              | 1.998                 | 1.998                | 1.996               | 1.992               | 1.175+0              | 1.980            | 1.973             | 1.965             | 1.957             |
| 231.5 eV                                         | γ                       | -7.35-2                            | -6.81 - 2             | 5.40 - 2             | 2.26 - 1            | 4.07 - 1            | 5.83 - 1             | 7.51 - 1         | 9.09 - 1          | 1.06+0            | 1.20+0            |
|                                                  | δ                       | -3.47-5                            | -3.83-5               | -4.18-5              | -4.34-5             | -4.35-5             | -4.30-5              | -4.20-5          | -4.02-5           | -3.80-5           | -3.52-5           |
| $3p_{1/2}$                                       | $\sigma_{\beta}$        | 1.992+1<br>1.585                   | 1.026+1<br>1.528      | 3.710+0<br>1.409     | 1.711+0<br>1.300    | 9.138-1<br>1.203    | 5.386-1<br>1.118     | 3.407-1<br>1.042 | 2.274-1<br>0.974  | 1.582-1<br>0.913  | 1.139-1<br>0.856  |
| $E_b = 168.2 \text{ eV}$                         | $eta \ \gamma$          | 1.585                              | 3.59—1                | 6.37-1               | 8.43-1              | 1.203               | 1.118                | 1.042            | 0.974<br>1.31+0   | 1.38+0            | 0.856<br>1.44+0   |
|                                                  | δ                       | 8.62-3                             | 1.50-2                | 3.02-2               | 4.74-2              | 6.52-2              | 8.33-2               | 1.01-1           | 1.19-1            | 1.36-1            | 1.53-1            |
| 3p <sub>3/2</sub>                                | σ                       | 3.833+1                            | 1.955+1               | 6.964+0              | 3.178+0             | 1.684+0             | 9.854-1              | 6.197-1          | 4.113-1           | 2.848-1           | 2.040-1           |
| $E_b =$                                          | β                       | 1.609                              | 1.556                 | 1.441                | 1.333               | 1.237               | 1.153                | 1.077            | 1.009             | 0.948             | 0.891             |
| 161.9 eV                                         | $_{\delta}^{\gamma}$    | 2.00-1 $9.68-3$                    | 3.72-1<br>1.56-2      | 6.56-1<br>2.99-2     | 8.66-1 $4.60-2$     | 1.03+0<br>6.30-2    | 1.15+0<br>8.03-2     | 1.25+0<br>9.76-2 | 1.34+0<br>1.15-1  | 1.41+0<br>1.32-1  | 1.47+0<br>1.48-1  |
| 3d <sub>3/2</sub>                                | σ                       | 1.091+1                            | 4.064+0               | 9.407-1              | 3.189-1             | 1.348-1             | 6.571-2              | 3.544-2          | 2.061-2           | 1.270-2           | 8.197-3           |
| $E_b =$                                          | β                       | 1.085                              | 0.977                 | 0.802                | 0.678               | 0.587               | 0.515                | 0.456            | 0.405             | 0.360             | 0.320             |
|                                                  |                         |                                    |                       |                      |                     |                     |                      |                  |                   |                   |                   |

| Table 1 (contin            | ued)                    |                                                                             |                                 |                   |                     |                   |                   |                      |                   |                   |                   |
|----------------------------|-------------------------|-----------------------------------------------------------------------------|---------------------------------|-------------------|---------------------|-------------------|-------------------|----------------------|-------------------|-------------------|-------------------|
| 57.4 eV                    | γ<br>δ                  | 5.40-1<br>8.37-2                                                            | 6.66-1<br>1.08-1                | 8.26-1<br>1.56-1  | 9.22-1<br>2.02-1    | 9.86-1<br>2.46-1  | 1.03+0<br>2.87-1  | 1.06+0<br>3.25-1     | 1.09+0<br>3.60-1  | 1.11+0<br>3.93-1  | 1.12+0<br>4.25-1  |
| 3d <sub>5/2</sub>          | σ                       | 1.589+1                                                                     | 5.903+0                         | 1.360+0           | 4.591-1             | 1.932-1           | 9.389-2           | 5.048-2              | 2.926-2           | 1.798-2           | 1.158-2           |
| $E_b = 56.4 \text{ eV}$    | $\beta$ $\gamma$        | 1.070<br>5.39-1                                                             | 0.963<br>6.63-1                 | 0.794<br>8.22-1   | 0.677<br>9.20-1     | 0.592<br>9.87-1   | 0.527<br>1.04+0   | 0.474<br>1.07+0      | 0.430<br>1.10+0   | 0.390<br>1.13+0   | 0.356<br>1.14+0   |
|                            | δ                       | 8.50-2                                                                      | 1.10-1                          | 1.59-1            | 2.05-1              | 2.49-1            | 2.89-1            | 3.26-1               | 3.61-1            | 3.94-1            | 4.24-1            |
| $4s_{1/2}$                 | σ                       | 1.681+0<br>1.997                                                            | 9.839-1<br>1.998                | 4.437-1<br>1.998  | 2.450-1<br>1.996    | 1.521-1<br>1.991  | 1.020-1<br>1.985  | 7.220-2<br>1.979     | 5.325-2<br>1.972  | 4.054-2<br>1.964  | 3.165-2<br>1.956  |
| $E_b = 16.2 \text{ eV}$    | β<br>γ                  | -7.74-2                                                                     | -5.50-2                         | 7.79–2            | 2.51-1              | 4.30-1            | 6.04–1            | 7.69–1               | 9.25-1            | 1.964             | 1.21+0            |
|                            | δ                       | -3.23-5                                                                     | -3.60-5                         | -3.94 - 5         | -4.11-5             | -4.12 - 5         | -4.06 - 5         | -3.95 - 5            | -3.79 - 5         | -3.61-5           | -3.34-5           |
| $4p_{1/2}$                 | $\sigma$                | 1.131+0<br>1.592                                                            | 5.826-1<br>1.528                | 2.107-1<br>1.404  | 9.724-2             | 5.198-2<br>1.200  | 3.066-2<br>1.116  | 1.941-2<br>1.041     | 1.296-2<br>0.973  | 9.025-3<br>0.912  | 6.498-3<br>0.856  |
| $E_b = 5.6 \text{ eV}$     | $eta \ \gamma \ \delta$ | 2.17 - 1                                                                    | 3.80 - 1                        | 6.50 - 1          | 1.295<br>8.52-1     | 1.01+0            | 1.13+0            | 1.23+0               | 1.31+0            | 1.38+0            | 1.44+0            |
| 4p <sub>3/2</sub>          | σ                       | 7.83-3<br>2.174+0                                                           | 1.40-2<br>1.108+0               | 2.93-2<br>3.949-1 | 4.68-2<br>1.804-1   | 6.52-2<br>9.563-2 | 8.37-2<br>5.602-2 | 1.02-1<br>3.525-2    | 1.20-1<br>2.341-2 | 1.37-1<br>1.622-2 | 1.54-1<br>1.163-2 |
| $E_b =$                    | β                       | 1.616                                                                       | 1.555                           | 1.436             | 1.329               | 1.234             | 1.151             | 1.076                | 1.009             | 0.947             | 0.891             |
| 5.6 eV                     | $\gamma \\ \delta$      | 2.25-1<br>8.80-3                                                            | 3.92-1<br>1.45-2                | 6.68-1 $2.88-2$   | 8.75-1<br>4.54-2    | 1.03+0<br>6.28-2  | 1.16+0<br>8.05-2  | 1.26+0<br>9.80-2     | 1.34+0<br>1.15-1  | 1.41+0<br>1.32-1  | 1.47+0<br>1.49-1  |
| 7= 35 Rr· [A               |                         | $\frac{3d_{5/2}^6 4s_{1/2}^2 4p_{1/2}^2}{3d_{5/2}^6 4s_{1/2}^2 4p_{1/2}^2}$ |                                 | 2.00-2            | 4.34-2              | 0.20-2            | 8.03-2            | 9.60-2               | 1,13-1            | 1.32-1            | 1.49-1            |
| Z- 33, BI. [A              | 1 JJu <sub>3/2</sub>    | k (eV)                                                                      | 2 <sup>4</sup> P <sub>3/2</sub> |                   |                     |                   |                   |                      |                   |                   |                   |
| Shell                      |                         | 1500                                                                        | 2000                            | 3000              | 4000                | 5000              | 6000              | 7000                 | 8000              | 9000              | 10000             |
| 3s <sub>1/2</sub>          | σ                       | 2.008+1                                                                     | 1.196+1                         | 5.499+0           | 3.071+0             | 1.921+0           | 1.295+0           | 9.210-1              | 6.817-1           | 5.204-1           | 4.074-1           |
| $E_b =$                    | β                       | 1.995                                                                       | 1.997                           | 1.998             | 1.996               | 1.993             | 1.987             | 1.981                | 1.974             | 1.967             | 1.959             |
| 256.5 eV                   | $\delta$                | -6.78-2 $-4.01-5$                                                           | -7.62-2 $-4.33-5$               | 2.74-2<br>-4.82-5 | 1.90-1<br>-5.05-5   | 3.65-1<br>-5.09-5 | 5.37-1<br>-5.07-5 | 7.02 - 1 $-4.96 - 5$ | 8.59-1<br>-4.84-5 | 1.01+0<br>-4.61-5 | 1.15+0<br>-4.35-5 |
| $3p_{1/2}$                 | σ                       | 2.213+1                                                                     | 1.154+1                         | 4.236+0           | 1.972+0             | 1.060+0           | 6.281-1           | 3.991-1              | 2.673-1           | 1.866-1           | 1.347-1           |
| $E_b = 189.3 \text{ eV}$   | β<br>γ                  | 1.594<br>1.63-1                                                             | 1.542<br>3.28-1                 | 1.429<br>6.09-1   | 1.323<br>8.22-1     | 1.228<br>9.85-1   | 1.144<br>1.11+0   | 1.070<br>1.22+0      | 1.003<br>1.31+0   | 0.941<br>1.38+0   | 0.886<br>1.44+0   |
| 103.3 € 1                  | δ                       | 7.56-3                                                                      | 1.34-2                          | 2.79-2            | 4.42-2              | 6.12-2            | 7.86-2            | 9.61-2               | 1.13-1            | 1.30-1            | 1.47-1            |
| 3p <sub>3/2</sub>          | σ                       | 4.266+1                                                                     | 2.200+1                         | 7.951+0           | 3.661+0             | 1.951+0           | 1.148+0           | 7.247-1              | 4.827-1           | 3.353-1           | 2.408-1           |
| $E_b = 181.5 \text{ eV}$   | $\beta$ $\gamma$        | 1.618<br>1.71-1                                                             | 1.570<br>3.40-1                 | 1.462<br>6.29-1   | 1.357<br>8.47-1     | 1.264<br>1.01+0   | 1.180<br>1.14+0   | 1.106<br>1.25+0      | 1.039<br>1.34+0   | 0.978<br>1.41+0   | 0.922<br>1.47+0   |
| 101.5 € 1                  | δ                       | 8.76-3                                                                      | 1.43-2                          | 2.77-2            | 4.30-2              | 5.90-2            | 7.56–2            | 9.24-2               | 1.09-1            | 1.26-1            | 1.42-1            |
| 3d <sub>3/2</sub>          | σ                       | 1.361+1                                                                     | 5.130+0                         | 1.204+0           | 4.116-1             | 1.750-1           | 8.572-2           | 4.643-2              | 2.709-2           | 1.675-2           | 1.085-2           |
| $E_b = 70.1 \text{ eV}$    | $\beta$ $\gamma$        | 1.107<br>5.27-1                                                             | 1.004<br>6.59-1                 | 0.830<br>8.29-1   | 0.704<br>9.32-1     | 0.610<br>1.00+0   | 0.537<br>1.05+0   | 0.477<br>1.08+0      | 0.425<br>1.11+0   | 0.379<br>1.13+0   | 0.338<br>1.14+0   |
|                            | δ                       | 8.14-2                                                                      | 1.05-1                          | 1.51-1            | 1.96-1              | 2.39-1            | 2.80-1            | 3.17-1               | 3.52-1            | 3.85-1            | 4.16-1            |
| $3d_{5/2}$                 | σ                       | 1.979+1<br>1.092                                                            | 7.442+0<br>0.989                | 1.738+0<br>0.819  | 5.915-1<br>0.700    | 2.504-1           | 1.223-1<br>0.547  | 6.599-2<br>0.493     | 3.839-2<br>0.447  | 2.367-2<br>0.407  | 1.529-2<br>0.372  |
| $E_b = 69.0 \text{ eV}$    | $\beta$ $\gamma$        | 5.26-1                                                                      | 6.55-1                          | 8.24-1            | 9.29-1              | 0.614<br>1.00+0   | 1.05+0            | 1.09+0               | 1.12+0            | 1.15+0            | 1.17+0            |
|                            | δ                       | 8.27-2                                                                      | 1.07-1                          | 1.54-1            | 2.00-1              | 2.42-1            | 2.82-1            | 3.19-1               | 3.54-1            | 3.86-1            | 4.17-1            |
| $4s_{1/2}$                 | σ                       | 1.997+0                                                                     | 1.173+0                         | 5.319-1           | 2.949-1             | 1.836-1           | 1.234-1           | 8.759-2              | 6.473-2           | 4.936-2           | 3.861-2           |
| $E_b = 27.3 \text{ eV}$    | β<br>γ                  | 1.996<br>-7.75-2                                                            | 1.998<br>-6.59-2                | 1.998<br>5.15-2   | 1.996<br>2.16-1     | 1.992<br>3.90-1   | 1.987<br>5.61-1   | 1.980<br>7.26-1      | 1.973<br>8.82-1   | 1.966<br>1.03+0   | 1.958<br>1.17+0   |
|                            | δ                       | -3.63-5                                                                     | -4.10-5                         | -4.55 - 5         | -4.78-5             | -4.81-5           | -4.77 - 5         | -4.65 - 5            | -4.49-5           | -4.27 - 5         | -4.01-5           |
| $4p_{1/2}$                 | σ                       | 1.444+0                                                                     | 7.526-1                         | 2.765-1           | 1.289-1             | 6.937-2           | 4.114-2           | 2.616-2              | 1.754-2           | 1.225-2           | 8.846-3           |
| $E_b = 5.2 \text{ eV}$     | $\beta$ $\gamma$        | 1.603<br>1.93-1                                                             | 1.541<br>3.53-1                 | 1.423<br>6.25-1   | 1.318<br>8.34-1     | 1.224<br>9.94-1   | 1.141<br>1.12+0   | 1.066<br>1.23+0      | 1.000<br>1.31+0   | 0.938<br>1.38+0   | 0.883<br>1.45+0   |
|                            | δ                       | 6.80-3                                                                      | 1.25-2                          | 2.69-2            | 4.38-2              | 6.15-2            | 7.94-2            | 9.72-2               | 1.15-1            | 1.32-1            | 1.48-1            |
| $4p_{3/2}$                 | σ                       | 2.759+0                                                                     | 1.422+0                         | 5.145-1           | 2.372-1             | 1.266-1           | 7.453-2           | 4.710-2              | 3.139-2           | 2.182-2           | 1.568-2           |
| $E_b = 4.6 \text{ eV}$     | $\beta$ $\gamma$        | 1.627<br>2.01-1                                                             | 1.570<br>3.65-1                 | 1.456<br>6.44-1   | 1.353<br>8.57-1     | 1.260<br>1.02+0   | 1.178<br>1.15+0   | 1.104<br>1.26+0      | 1.037<br>1.34+0   | 0.976<br>1.41+0   | 0.920<br>1.48+0   |
|                            | δ                       | 7.91-3                                                                      | 1.32-2                          | 2.66-2            | 4.24-2              | 5.92-2            | 7.63-2            | 9.34-2               | 1.10-1            | 1.27-1            | 1.43-1            |
| Z= 36, Kr: [A              | r]3d <sub>3/2</sub>     | $3d_{5/2}^6 \ 4s_{1/2}^2 \ 4p_{1/2}^2$                                      | 4p <sub>3/2</sub>               |                   |                     |                   |                   |                      |                   |                   |                   |
| Shall                      |                         | k (eV)                                                                      | 2000                            | 3000              | 4000                | 5000              | 6000              | 7000                 | 9000              | 0000              | 10000             |
| Shell<br>3s <sub>1/2</sub> | ~                       | 1500<br>2.162+1                                                             | 2000<br>1.293+1                 | 3000<br>5.986+0   | 4000<br>3.358+0     | 5000<br>2.107+0   | 6000<br>1.425+0   | 1.015+0              | 8000<br>7.528-1   | 9000<br>5.758-1   | 10000<br>4.514-1  |
| $E_b =$                    | $\frac{\sigma}{eta}$    | 1.994                                                                       | 1.293+1                         | 1.998             | 3.338+0<br>1.997    | 1.993             | 1.425+0           | 1.015+0              | 1.976             | 1.969             | 1.961             |
| 292.1 eV                   | γ<br>δ                  | -5.89-2<br>-4.51-5                                                          | -8.21-2 $-4.98-5$               | 2.23-3<br>-5.55-5 | 1.53-1<br>-5.82-5   | 3.22-1<br>-5.92-5 | 4.91-1<br>-5.93-5 | 6.54-1<br>-5.86-5    | 8.09-1<br>-5.74-5 | 9.57-1<br>-5.54-5 | 1.10+0<br>-5.29-5 |
| $3p_{1/2}$                 | σ                       | 2.463+1                                                                     | 1.298+1                         | 4.829+0           | 2.267+0             | 1.226+0           | 7.299-1           | 4.656-1              | 3.129-1           | 2.191-1           | 1.585-1           |
| $E_b =$                    | β                       | 1.601                                                                       | 1.554                           | 1.448             | 1.346               | 1.253             | 1.170             | 1.097                | 1.031             | 0.971             | 0.915             |
| 222.1 eV                   | $_{\delta}^{\gamma}$    | 1.33-1 $6.50-3$                                                             | 2.94-1<br>1.19-2                | 5.79-1<br>2.55-2  | 7.99-1<br>4.12-2    | 9.69-1<br>5.76-2  | 1.10+0<br>7.43-2  | 1.21+0<br>9.12-2     | 1.31+0<br>1.08-1  | 1.38+0<br>1.25-1  | 1.45+0<br>1.41-1  |
| 3p <sub>3/2</sub>          | σ                       | 4.765+1                                                                     | 2.481+1                         | 9.079+0           | 4.213+0             | 2.258+0           | 1.334+0           | 8.450-1              | 5.645-1           | 3.931-1           | 2.831-1           |
| $E_b =$                    | β                       | 1.626                                                                       | 1.584                           | 1.482             | 1.382               | 1.290             | 1.208             | 1.135                | 1.069             | 1.010             | 0.954             |
| 214.4 eV                   | $\gamma \\ \delta$      | 1.40-1 $7.86-3$                                                             | 3.07-1<br>1.29-2                | 5.99-1<br>2.55-2  | 8.25 - 1 $4.01 - 2$ | 9.99-1<br>5.55-2  | 1.14+0<br>7.13-2  | 1.25+0<br>8.74-2     | 1.34+0<br>1.04-1  | 1.42+0<br>1.20-1  | 1.48+0<br>1.36-1  |
|                            | U                       | ,.50 5                                                                      | 1.23 2                          | 2.33 2            | 1.01 2              | J.JJ 2            | ,.15 2            | 5.74 Z               | 1.54 1            | 1.20 1            | 1.50 - 1          |

| Ta | h | ۱۵. | 1 | ( ~ | ^* | ı f | in | ., | n | ď | ١ |
|----|---|-----|---|-----|----|-----|----|----|---|---|---|
|    |   |     |   |     |    |     |    |    |   |   |   |

| 2.1                                                                                                                     |                                                                                                                                                                 | 1.701.1                                                                                                              | C 4C0 · 0                                                                                                  | 1.524.0                                                                                                   | 5 250 4                                                                                                  | 2.252 4                                                                                                  | 1.100 1                                                                                                  | 6.000                                                                                                    | 2.525. 2                                                                                                 | 2.405. 2                                                                                        | 1 110 2                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| $3d_{3/2}$                                                                                                              | σ                                                                                                                                                               | 1.701+1                                                                                                              | 6.468+0                                                                                                    | 1.534+0                                                                                                   | 5.278 - 1                                                                                                | 2.253 - 1                                                                                                | 1.108 - 1                                                                                                | 6.022 - 2                                                                                                | 3.525 - 2                                                                                                | 2.185 - 2                                                                                       | 1.418 - 2                                                                                        |
| $E_b =$                                                                                                                 | $\beta$                                                                                                                                                         | 1.129                                                                                                                | 1.031                                                                                                      | 0.859                                                                                                     | 0.730                                                                                                    | 0.634                                                                                                    | 0.559                                                                                                    | 0.497                                                                                                    | 0.444                                                                                                    | 0.397                                                                                           | 0.355                                                                                            |
| $E_b = 95.0 \text{ eV}$                                                                                                 | γ                                                                                                                                                               | 5.12 - 1                                                                                                             | 6.50 - 1                                                                                                   | 8.32 - 1                                                                                                  | 9.41 - 1                                                                                                 | 1.01+0                                                                                                   | 1.07+0                                                                                                   | 1.11+0                                                                                                   | 1.13+0                                                                                                   | 1.15+0                                                                                          | 1.17+0                                                                                           |
|                                                                                                                         | δ                                                                                                                                                               | 7.90 - 2                                                                                                             | 1.02 - 1                                                                                                   | 1.47 - 1                                                                                                  | 1.91 - 1                                                                                                 | 2.33 - 1                                                                                                 | 2.73 - 1                                                                                                 | 3.10 - 1                                                                                                 | 3.44 - 1                                                                                                 | 3.77 - 1                                                                                        | 4.08 - 1                                                                                         |
|                                                                                                                         |                                                                                                                                                                 |                                                                                                                      |                                                                                                            |                                                                                                           |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                 |                                                                                                  |
| $3d_{5/2}$                                                                                                              | $\sigma$                                                                                                                                                        | 2.471+1                                                                                                              | 9.372+0                                                                                                    | 2.212+0                                                                                                   | 7.573 - 1                                                                                                | 3.220 - 1                                                                                                | 1.578 - 1                                                                                                | 8.545 - 2                                                                                                | 4.986 - 2                                                                                                | 3.082 - 2                                                                                       | 1.995 - 2                                                                                        |
| $E_b =$                                                                                                                 | β                                                                                                                                                               | 1.114                                                                                                                | 1.015                                                                                                      | 0.847                                                                                                     | 0.724                                                                                                    | 0.635                                                                                                    | 0.567                                                                                                    | 0.511                                                                                                    | 0.464                                                                                                    | 0.423                                                                                           | 0.387                                                                                            |
| 93.8 eV                                                                                                                 | γ                                                                                                                                                               | 5.11 - 1                                                                                                             | 6.47 - 1                                                                                                   | 8.27 - 1                                                                                                  | 9.37 - 1                                                                                                 | 1.01+0                                                                                                   | 1.07+0                                                                                                   | 1.11+0                                                                                                   | 1.14+0                                                                                                   | 1.17+0                                                                                          | 1.19+0                                                                                           |
|                                                                                                                         | δ                                                                                                                                                               | 8.03-2                                                                                                               | 1.04-1                                                                                                     | 1.50-1                                                                                                    | 1.94-1                                                                                                   | 2.36-1                                                                                                   | 2.76-1                                                                                                   | 3.12-1                                                                                                   | 3.46-1                                                                                                   | 3.78-1                                                                                          | 4.08-1                                                                                           |
|                                                                                                                         |                                                                                                                                                                 |                                                                                                                      |                                                                                                            |                                                                                                           |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                 |                                                                                                  |
| $4s_{1/2}$                                                                                                              | $\sigma$                                                                                                                                                        | 2.316+0                                                                                                              | 1.365+0                                                                                                    | 6.232 - 1                                                                                                 | 3.471 - 1                                                                                                | 2.169 - 1                                                                                                | 1.462 - 1                                                                                                | 1.040 - 1                                                                                                | 7.702 - 2                                                                                                | 5.885 - 2                                                                                       | 4.610 - 2                                                                                        |
| $E_b =$                                                                                                                 | β                                                                                                                                                               | 1.996                                                                                                                | 1.997                                                                                                      | 1.998                                                                                                     | 1.996                                                                                                    | 1.993                                                                                                    | 1.988                                                                                                    | 1.982                                                                                                    | 1.975                                                                                                    | 1.968                                                                                           | 1.960                                                                                            |
| 27.5 eV                                                                                                                 | γ                                                                                                                                                               | -7.58 - 2                                                                                                            | -7.36-2                                                                                                    | 2.87 - 2                                                                                                  | 1.83 - 1                                                                                                 | 3.52 - 1                                                                                                 | 5.20 - 1                                                                                                 | 6.82 - 1                                                                                                 | 8.37 - 1                                                                                                 | 9.84 - 1                                                                                        | 1.12+0                                                                                           |
|                                                                                                                         | δ                                                                                                                                                               | -4.13-5                                                                                                              | -4.68 - 5                                                                                                  | -5.23-5                                                                                                   | -5.56-5                                                                                                  | -5.59-5                                                                                                  | -5.60-5                                                                                                  | -5.47 - 5                                                                                                | -5.33-5                                                                                                  | -5.11-5                                                                                         | -4.84-5                                                                                          |
|                                                                                                                         |                                                                                                                                                                 |                                                                                                                      |                                                                                                            |                                                                                                           |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                 |                                                                                                  |
| $4p_{1/2}$                                                                                                              | $\sigma$                                                                                                                                                        | 1.797+0                                                                                                              | 9.456 - 1                                                                                                  | 3.523 - 1                                                                                                 | 1.657 - 1                                                                                                | 8.975 - 2                                                                                                | 5.349 - 2                                                                                                | 3.415 - 2                                                                                                | 2.297 - 2                                                                                                | 1.610 - 2                                                                                       | 1.165 - 2                                                                                        |
| $E_b =$                                                                                                                 | β                                                                                                                                                               | 1.613                                                                                                                | 1.555                                                                                                      | 1.441                                                                                                     | 1.339                                                                                                    | 1.247                                                                                                    | 1.165                                                                                                    | 1.090                                                                                                    | 1.023                                                                                                    | 0.962                                                                                           | 0.906                                                                                            |
| 14.7 eV                                                                                                                 | γ                                                                                                                                                               | 1.69 - 1                                                                                                             | 3.26 - 1                                                                                                   | 5.99 - 1                                                                                                  | 8.13 - 1                                                                                                 | 9.79 - 1                                                                                                 | 1.11+0                                                                                                   | 1.22+0                                                                                                   | 1.31+0                                                                                                   | 1.39+0                                                                                          | 1.45+0                                                                                           |
|                                                                                                                         | δ                                                                                                                                                               | 5.83-3                                                                                                               | 1.10-2                                                                                                     | 2.45-2                                                                                                    | 4.06-2                                                                                                   | 5.77-2                                                                                                   | 7.50-2                                                                                                   | 9.21-2                                                                                                   | 1.09-1                                                                                                   | 1.26-1                                                                                          | 1.42-1                                                                                           |
|                                                                                                                         | 0                                                                                                                                                               |                                                                                                                      |                                                                                                            |                                                                                                           |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                 |                                                                                                  |
| $4p_{3/2}$                                                                                                              | $\sigma$                                                                                                                                                        | 3.419+0                                                                                                              | 1.779+0                                                                                                    | 6.521 - 1                                                                                                 | 3.032 - 1                                                                                                | 1.627 - 1                                                                                                | 9.625 - 2                                                                                                | 6.104 - 2                                                                                                | 4.082 - 2                                                                                                | 2.845 - 2                                                                                       | 2.050 - 2                                                                                        |
| $E_b =$                                                                                                                 | β                                                                                                                                                               | 1.638                                                                                                                | 1.584                                                                                                      | 1.475                                                                                                     | 1.376                                                                                                    | 1.285                                                                                                    | 1.203                                                                                                    | 1.129                                                                                                    | 1.062                                                                                                    | 1.002                                                                                           | 0.946                                                                                            |
| 14.0 eV                                                                                                                 | γ                                                                                                                                                               | 1.76 - 1                                                                                                             | 3.38 - 1                                                                                                   | 6.18 - 1                                                                                                  | 8.38 - 1                                                                                                 | 1.01+0                                                                                                   | 1.14+0                                                                                                   | 1.25+0                                                                                                   | 1.34+0                                                                                                   | 1.42+0                                                                                          | 1.48+0                                                                                           |
| 1 1.0 C V                                                                                                               | δ                                                                                                                                                               | 7.09-3                                                                                                               | 1.19-2                                                                                                     | 2.44-2                                                                                                    | 3.94-2                                                                                                   | 5.55-2                                                                                                   | 7.19-2                                                                                                   | 8.83-2                                                                                                   | 1.05-1                                                                                                   | 1.20-1                                                                                          | 1.36-1                                                                                           |
|                                                                                                                         | 0                                                                                                                                                               | 7.05-5                                                                                                               | 1.13-2                                                                                                     | 2,44-2                                                                                                    | 3.34-2                                                                                                   | 3.33-2                                                                                                   | 7.13-2                                                                                                   | 0.05-2                                                                                                   | 1.05-1                                                                                                   | 1.20-1                                                                                          | 1.50-1                                                                                           |
| Z= 37, Rb: [Ki                                                                                                          | rl5s.                                                                                                                                                           |                                                                                                                      |                                                                                                            |                                                                                                           |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                 |                                                                                                  |
| 2 37, 10. [10                                                                                                           | 1001/2                                                                                                                                                          |                                                                                                                      |                                                                                                            |                                                                                                           |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                 |                                                                                                  |
|                                                                                                                         |                                                                                                                                                                 | k (eV)                                                                                                               |                                                                                                            |                                                                                                           |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                 |                                                                                                  |
| Shall                                                                                                                   |                                                                                                                                                                 | 1500                                                                                                                 | 2000                                                                                                       | 3000                                                                                                      | 4000                                                                                                     | 5000                                                                                                     | 6000                                                                                                     | 7000                                                                                                     | 8000                                                                                                     | 0000                                                                                            | 10000                                                                                            |
| Shell                                                                                                                   |                                                                                                                                                                 | 1500                                                                                                                 |                                                                                                            |                                                                                                           |                                                                                                          | 5000                                                                                                     | 6000                                                                                                     | /000                                                                                                     |                                                                                                          | 9000                                                                                            | 10000                                                                                            |
| $3s_{1/2}$                                                                                                              | $\sigma$                                                                                                                                                        | 2.307+1                                                                                                              | 1.387+1                                                                                                    | 6.465+0                                                                                                   | 3.644+0                                                                                                  | 2.295+0                                                                                                  | 1.556+0                                                                                                  | 1.112+0                                                                                                  | 8.266 - 1                                                                                                | 6.335 - 1                                                                                       | 4.976 - 1                                                                                        |
| $E_b =$                                                                                                                 | β                                                                                                                                                               | 1.993                                                                                                                | 1.996                                                                                                      | 1.998                                                                                                     | 1.997                                                                                                    | 1.994                                                                                                    | 1.990                                                                                                    | 1.984                                                                                                    | 1.978                                                                                                    | 1.971                                                                                           | 1.963                                                                                            |
| 322.1 eV                                                                                                                | γ                                                                                                                                                               | -4.91-2                                                                                                              | -8.44-2                                                                                                    | -1.87 - 2                                                                                                 | 1.20-1                                                                                                   | 2.81-1                                                                                                   | 4.44-1                                                                                                   | 6.05-1                                                                                                   | 7.59-1                                                                                                   | 9.07-1                                                                                          | 1.05+0                                                                                           |
| J22.1 CV                                                                                                                |                                                                                                                                                                 |                                                                                                                      |                                                                                                            |                                                                                                           |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                 |                                                                                                  |
|                                                                                                                         | δ                                                                                                                                                               | -5.05 - 5                                                                                                            | -5.60-5                                                                                                    | -6.37 - 5                                                                                                 | -6.75 - 5                                                                                                | -6.91-5                                                                                                  | -6.91-5                                                                                                  | -6.85 - 5                                                                                                | -6.71 - 5                                                                                                | -6.50 - 5                                                                                       | -6.24 - 5                                                                                        |
| $3p_{1/2}$                                                                                                              | $\sigma$                                                                                                                                                        | 2.694+1                                                                                                              | 1.437+1                                                                                                    | 5.427+0                                                                                                   | 2.573+0                                                                                                  | 1.402+0                                                                                                  | 8.394 - 1                                                                                                | 5.378 - 1                                                                                                | 3.628 - 1                                                                                                | 2.548 - 1                                                                                       | 1.849 - 1                                                                                        |
| $E_b =$                                                                                                                 | β                                                                                                                                                               | 1.606                                                                                                                | 1.564                                                                                                      | 1.463                                                                                                     | 1.366                                                                                                    | 1.278                                                                                                    | 1.199                                                                                                    | 1.127                                                                                                    | 1.061                                                                                                    | 1.001                                                                                           | 0.945                                                                                            |
| 247.4 eV                                                                                                                |                                                                                                                                                                 | 1.09-1                                                                                                               | 2.65-1                                                                                                     | 5.49-1                                                                                                    | 7.73-1                                                                                                   | 9.49-1                                                                                                   | 1.09+0                                                                                                   | 1.21+0                                                                                                   | 1.30+0                                                                                                   | 1.38+0                                                                                          | 1.45+0                                                                                           |
| 247.4 CV                                                                                                                | γ                                                                                                                                                               |                                                                                                                      |                                                                                                            |                                                                                                           |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                 |                                                                                                  |
|                                                                                                                         | δ                                                                                                                                                               | 5.65-3                                                                                                               | 1.07 - 2                                                                                                   | 2.30-2                                                                                                    | 3.77 - 2                                                                                                 | 5.39-2                                                                                                   | 7.06-2                                                                                                   | 8.75-2                                                                                                   | 1.04 - 1                                                                                                 | 1.20 - 1                                                                                        | 1.36 - 1                                                                                         |
| $3p_{3/2}$                                                                                                              | σ                                                                                                                                                               | 5.220+1                                                                                                              | 2.748+1                                                                                                    | 1.020+1                                                                                                   | 4.776+0                                                                                                  | 2.578+0                                                                                                  | 1.531+0                                                                                                  | 9.738-1                                                                                                  | 6.528-1                                                                                                  | 4.560-1                                                                                         | 3.292-1                                                                                          |
| $E_b =$                                                                                                                 | β                                                                                                                                                               | 1.631                                                                                                                | 1.595                                                                                                      | 1.499                                                                                                     | 1.404                                                                                                    | 1.318                                                                                                    | 1.239                                                                                                    | 1.168                                                                                                    | 1.102                                                                                                    | 1.042                                                                                           | 0.986                                                                                            |
| 220 5 -14                                                                                                               |                                                                                                                                                                 |                                                                                                                      |                                                                                                            |                                                                                                           |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                 |                                                                                                  |
| 238.5 eV                                                                                                                | γ                                                                                                                                                               | 1.17-1                                                                                                               | 2.78-1                                                                                                     | 5.69-1                                                                                                    | 8.00-1                                                                                                   | 9.81-1                                                                                                   | 1.13+0                                                                                                   | 1.24+0                                                                                                   | 1.34+0                                                                                                   | 1.42+0                                                                                          | 1.49+0                                                                                           |
|                                                                                                                         | δ                                                                                                                                                               | 7.17 - 3                                                                                                             | 1.19 - 2                                                                                                   | 2.32 - 2                                                                                                  | 3.68 - 2                                                                                                 | 5.19 - 2                                                                                                 | 6.76 - 2                                                                                                 | 8.36 - 2                                                                                                 | 9.94 - 2                                                                                                 | 1.15 - 1                                                                                        | 1.30 - 1                                                                                         |
| 3d <sub>3/2</sub>                                                                                                       | σ                                                                                                                                                               | 2.047+1                                                                                                              | 7.891+0                                                                                                    | 1.904+0                                                                                                   | 6.610-1                                                                                                  | 2.840-1                                                                                                  | 1.403-1                                                                                                  | 7.656-2                                                                                                  | 4.497-2                                                                                                  | 2.797-2                                                                                         | 1.821-2                                                                                          |
|                                                                                                                         | β                                                                                                                                                               | 1.144                                                                                                                | 1.052                                                                                                      | 0.888                                                                                                     | 0.760                                                                                                    | 0.661                                                                                                    | 0.581                                                                                                    | 0.515                                                                                                    | 0.459                                                                                                    | 0.411                                                                                           | 0.368                                                                                            |
| $E_b =$                                                                                                                 |                                                                                                                                                                 |                                                                                                                      |                                                                                                            |                                                                                                           |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                 |                                                                                                  |
| 111.8 eV                                                                                                                | γ                                                                                                                                                               | 4.95 - 1                                                                                                             | 6.38 - 1                                                                                                   | 8.31 - 1                                                                                                  | 9.49 - 1                                                                                                 | 1.03+0                                                                                                   | 1.08+0                                                                                                   | 1.12+0                                                                                                   | 1.15+0                                                                                                   | 1.17+0                                                                                          | 1.19+0                                                                                           |
|                                                                                                                         | δ                                                                                                                                                               | 7.63 - 2                                                                                                             | 9.86 - 2                                                                                                   | 1.43 - 1                                                                                                  | 1.86 - 1                                                                                                 | 2.27 - 1                                                                                                 | 2.65 - 1                                                                                                 | 3.01 - 1                                                                                                 | 3.35 - 1                                                                                                 | 3.68 - 1                                                                                        | 3.98 - 1                                                                                         |
| 3d <sub>5/2</sub>                                                                                                       | σ                                                                                                                                                               | 2.972+1                                                                                                              | 1.142+1                                                                                                    | 2.742+0                                                                                                   | 9.476-1                                                                                                  | 4.055-1                                                                                                  | 1.996-1                                                                                                  | 1.085-1                                                                                                  | 6.353-2                                                                                                  | 3.939-2                                                                                         | 2.557-2                                                                                          |
| $E_b =$                                                                                                                 | β                                                                                                                                                               | 1.128                                                                                                                | 1.035                                                                                                      | 0.874                                                                                                     | 0.752                                                                                                    | 0.660                                                                                                    | 0.587                                                                                                    | 0.528                                                                                                    | 0.478                                                                                                    | 0.435                                                                                           | 0.398                                                                                            |
|                                                                                                                         |                                                                                                                                                                 |                                                                                                                      |                                                                                                            |                                                                                                           |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                 |                                                                                                  |
| 110.3 eV                                                                                                                | γ                                                                                                                                                               | 4.95 - 1                                                                                                             | 6.36 - 1                                                                                                   | 8.25 - 1                                                                                                  | 9.45 - 1                                                                                                 | 1.03+0                                                                                                   | 1.08+0                                                                                                   | 1.13+0                                                                                                   | 1.16+0                                                                                                   | 1.19+0                                                                                          | 1.21+0                                                                                           |
|                                                                                                                         | δ                                                                                                                                                               | 7.75 - 2                                                                                                             | 1.01 - 1                                                                                                   | 1.46 - 1                                                                                                  | 1.90 - 1                                                                                                 | 2.31 - 1                                                                                                 | 2.69 - 1                                                                                                 | 3.05 - 1                                                                                                 | 3.38 - 1                                                                                                 | 3.70 - 1                                                                                        | 3.99 - 1                                                                                         |
| 1c                                                                                                                      | σ                                                                                                                                                               | 2.784+0                                                                                                              | 1.646+0                                                                                                    | 7.562-1                                                                                                   | 4.231-1                                                                                                  | 2.653-1                                                                                                  | 1.793-1                                                                                                  | 1.279-1                                                                                                  | 9.487-2                                                                                                  | 7.262-2                                                                                         | 5.699-2                                                                                          |
| $4s_{1/2}$                                                                                                              |                                                                                                                                                                 | 1.995                                                                                                                | 1.997                                                                                                      | 1.998                                                                                                     | 1.997                                                                                                    |                                                                                                          | 1.989                                                                                                    | 1.983                                                                                                    | 1.977                                                                                                    |                                                                                                 |                                                                                                  |
| $E_b =$                                                                                                                 | $\beta$                                                                                                                                                         |                                                                                                                      |                                                                                                            |                                                                                                           |                                                                                                          | 1.993                                                                                                    |                                                                                                          |                                                                                                          |                                                                                                          | 1.970                                                                                           | 1.962                                                                                            |
| 29.3 eV                                                                                                                 | γ                                                                                                                                                               | -7.29-2                                                                                                              | -7.87 - 2                                                                                                  | 8.84 - 3                                                                                                  | 1.54 - 1                                                                                                 | 3.15 - 1                                                                                                 | 4.77 - 1                                                                                                 | 6.35 - 1                                                                                                 | 7.87 - 1                                                                                                 | 9.33 - 1                                                                                        | 1.07+0                                                                                           |
|                                                                                                                         | δ                                                                                                                                                               | -4.65 - 5                                                                                                            | -5.29 - 5                                                                                                  | -6.01 - 5                                                                                                 | -6.43 - 5                                                                                                | -6.53 - 5                                                                                                | -6.58 - 5                                                                                                | -6.50 - 5                                                                                                | -6.38 - 5                                                                                                | -6.18 - 5                                                                                       | -5.93 - 5                                                                                        |
| 4p <sub>1/2</sub>                                                                                                       | σ                                                                                                                                                               | 2.357+0                                                                                                              | 1.254+0                                                                                                    | 4.743-1                                                                                                   | 2.253-1                                                                                                  | 1.230-1                                                                                                  | 7.370-2                                                                                                  | 4.728-2                                                                                                  | 3.192-2                                                                                                  | 2.245-2                                                                                         | 1.630-2                                                                                          |
|                                                                                                                         |                                                                                                                                                                 | 1.622                                                                                                                | 1.567                                                                                                      | 1.455                                                                                                     | 1.354                                                                                                    | 1.265                                                                                                    | 1.185                                                                                                    | 1.113                                                                                                    | 1.047                                                                                                    | 0.988                                                                                           | 0.933                                                                                            |
| $E_b =$                                                                                                                 | β                                                                                                                                                               |                                                                                                                      |                                                                                                            |                                                                                                           |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                 |                                                                                                  |
| 14.8 eV                                                                                                                 | γ                                                                                                                                                               | 1.49-1                                                                                                               | 3.01-1                                                                                                     | 5.74-1                                                                                                    | 7.90-1                                                                                                   | 9.61 - 1                                                                                                 | 1.10+0                                                                                                   | 1.21+0                                                                                                   | 1.30+0                                                                                                   | 1.38+0                                                                                          | 1.45+0                                                                                           |
|                                                                                                                         | δ                                                                                                                                                               | 5.14 - 3                                                                                                             | 9.82 - 3                                                                                                   | 2.22 - 2                                                                                                  | 3.71 - 2                                                                                                 | 5.32 - 2                                                                                                 | 6.98 - 2                                                                                                 | 8.65 - 2                                                                                                 | 1.03 - 1                                                                                                 | 1.20 - 1                                                                                        | 1.36 - 1                                                                                         |
|                                                                                                                         |                                                                                                                                                                 |                                                                                                                      |                                                                                                            |                                                                                                           |                                                                                                          | 2.240 1                                                                                                  | 4 000 4                                                                                                  | 0.400.0                                                                                                  | 5.693-2                                                                                                  | 3.980-2                                                                                         | 2.876-2                                                                                          |
| $4n_{2/2}$                                                                                                              | ď                                                                                                                                                               | 4517+0                                                                                                               | 2 373+0                                                                                                    | 8 820_1                                                                                                   | 4 144-1                                                                                                  | / /411— 1                                                                                                | 1 337-1                                                                                                  | 8 48 4 /                                                                                                 |                                                                                                          | J.JUU-2                                                                                         | 2.070-2                                                                                          |
| $4p_{3/2}$                                                                                                              | σ                                                                                                                                                               | 4.517+0<br>1.647                                                                                                     | 2.373+0                                                                                                    | 8.829-1                                                                                                   | 4.144-1<br>1.303                                                                                         | 2.240-1                                                                                                  | 1.332-1                                                                                                  | 8.483-2<br>1.153                                                                                         |                                                                                                          | 1 020                                                                                           | 0.072                                                                                            |
| $E_b =$                                                                                                                 | β                                                                                                                                                               | 1.647                                                                                                                | 1.597                                                                                                      | 1.491                                                                                                     | 1.393                                                                                                    | 1.304                                                                                                    | 1.225                                                                                                    | 1.153                                                                                                    | 1.088                                                                                                    | 1.029                                                                                           | 0.973                                                                                            |
|                                                                                                                         | $\beta$ $\gamma$                                                                                                                                                | 1.647<br>1.56-1                                                                                                      | 1.597<br>3.12-1                                                                                            | 1.491<br>5.94-1                                                                                           | 1.393<br>8.16-1                                                                                          | 1.304<br>9.91-1                                                                                          | 1.225<br>1.13+0                                                                                          | 1.153<br>1.25+0                                                                                          | 1.088<br>1.34+0                                                                                          | 1.42+0                                                                                          | 1.49+0                                                                                           |
| $E_b =$                                                                                                                 | β                                                                                                                                                               | 1.647                                                                                                                | 1.597                                                                                                      | 1.491                                                                                                     | 1.393                                                                                                    | 1.304                                                                                                    | 1.225                                                                                                    | 1.153                                                                                                    | 1.088                                                                                                    |                                                                                                 |                                                                                                  |
| $E_b = 14.0 \text{ eV}$                                                                                                 | $eta \ \gamma \ \delta$                                                                                                                                         | 1.647<br>1.56-1<br>6.54-3                                                                                            | 1.597<br>3.12-1<br>1.09-2                                                                                  | 1.491<br>5.94-1<br>2.24-2                                                                                 | 1.393<br>8.16-1<br>3.61-2                                                                                | 1.304<br>9.91-1<br>5.11-2                                                                                | 1.225<br>1.13+0<br>6.67-2                                                                                | 1.153<br>1.25+0<br>8.26-2                                                                                | 1.088<br>1.34+0<br>9.85-2                                                                                | 1.42+0<br>1.14-1                                                                                | 1.49+0<br>1.30-1                                                                                 |
| $E_b = 14.0 \text{ eV}$ $5s_{1/2}$                                                                                      | β<br>γ<br>δ                                                                                                                                                     | 1.647<br>1.56-1<br>6.54-3<br>1.261-1                                                                                 | 1.597<br>3.12-1<br>1.09-2<br>7.433-2                                                                       | 1.491<br>5.94-1<br>2.24-2<br>3.400-2                                                                      | 1.393<br>8.16-1<br>3.61-2<br>1.898-2                                                                     | 1.304<br>9.91-1<br>5.11-2<br>1.189-2                                                                     | 1.225<br>1.13+0<br>6.67-2<br>8.029-3                                                                     | 1.153<br>1.25+0<br>8.26-2<br>5.722-3                                                                     | 1.088<br>1.34+0<br>9.85-2<br>4.244-3                                                                     | 1.42+0<br>1.14-1<br>3.247-3                                                                     | 1.49+0<br>1.30-1<br>2.548-3                                                                      |
| $E_b = 14.0 \text{ eV}$ $5s_{1/2}$ $E_b =$                                                                              | $\beta$ $\gamma$ $\delta$ $\sigma$ $\beta$                                                                                                                      | 1.647<br>1.56-1<br>6.54-3<br>1.261-1<br>1.995                                                                        | 1.597<br>3.12-1<br>1.09-2<br>7.433-2<br>1.997                                                              | 1.491<br>5.94-1<br>2.24-2<br>3.400-2<br>1.998                                                             | 1.393<br>8.16-1<br>3.61-2<br>1.898-2<br>1.997                                                            | 1.304<br>9.91-1<br>5.11-2<br>1.189-2<br>1.993                                                            | 1.225<br>1.13+0<br>6.67-2<br>8.029-3<br>1.989                                                            | 1.153<br>1.25+0<br>8.26-2<br>5.722-3<br>1.983                                                            | 1.088<br>1.34+0<br>9.85-2<br>4.244-3<br>1.976                                                            | 1.42+0<br>1.14-1<br>3.247-3<br>1.970                                                            | 1.49+0<br>1.30-1<br>2.548-3<br>1.962                                                             |
| $E_b = 14.0 \text{ eV}$ $5s_{1/2}$                                                                                      | $\begin{array}{c} \beta \\ \gamma \\ \delta \end{array}$ $\begin{array}{c} \sigma \\ \beta \\ \gamma \end{array}$                                               | 1.647<br>1.56-1<br>6.54-3<br>1.261-1<br>1.995<br>-7.47-2                                                             | 1.597<br>3.12-1<br>1.09-2<br>7.433-2<br>1.997<br>-7.97-2                                                   | 1.491<br>5.94-1<br>2.24-2<br>3.400-2<br>1.998<br>9.60-3                                                   | 1.393<br>8.16-1<br>3.61-2<br>1.898-2<br>1.997<br>1.55-1                                                  | 1.304<br>9.91-1<br>5.11-2<br>1.189-2<br>1.993<br>3.15-1                                                  | 1.225<br>1.13+0<br>6.67-2<br>8.029-3<br>1.989<br>4.78-1                                                  | 1.153<br>1.25+0<br>8.26-2<br>5.722-3<br>1.983<br>6.38-1                                                  | 1.088<br>1.34+0<br>9.85-2<br>4.244-3<br>1.976<br>7.91-1                                                  | 1.42+0<br>1.14-1<br>3.247-3<br>1.970<br>9.38-1                                                  | 1.49+0<br>1.30-1<br>2.548-3<br>1.962<br>1.08+0                                                   |
| $E_b = 14.0 \text{ eV}$ $5s_{1/2}$ $E_b =$                                                                              | $\beta$ $\gamma$ $\delta$ $\sigma$ $\beta$                                                                                                                      | 1.647<br>1.56-1<br>6.54-3<br>1.261-1<br>1.995                                                                        | 1.597<br>3.12-1<br>1.09-2<br>7.433-2<br>1.997                                                              | 1.491<br>5.94-1<br>2.24-2<br>3.400-2<br>1.998                                                             | 1.393<br>8.16-1<br>3.61-2<br>1.898-2<br>1.997                                                            | 1.304<br>9.91-1<br>5.11-2<br>1.189-2<br>1.993                                                            | 1.225<br>1.13+0<br>6.67-2<br>8.029-3<br>1.989                                                            | 1.153<br>1.25+0<br>8.26-2<br>5.722-3<br>1.983                                                            | 1.088<br>1.34+0<br>9.85-2<br>4.244-3<br>1.976                                                            | 1.42+0<br>1.14-1<br>3.247-3<br>1.970                                                            | 1.49+0<br>1.30-1<br>2.548-3<br>1.962                                                             |
| $E_b = 14.0 \text{ eV}$ $5s_{1/2}$ $E_b = 4.0 \text{ eV}$                                                               | β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ                                                                                                                                 | 1.647<br>1.56-1<br>6.54-3<br>1.261-1<br>1.995<br>-7.47-2                                                             | 1.597<br>3.12-1<br>1.09-2<br>7.433-2<br>1.997<br>-7.97-2                                                   | 1.491<br>5.94-1<br>2.24-2<br>3.400-2<br>1.998<br>9.60-3                                                   | 1.393<br>8.16-1<br>3.61-2<br>1.898-2<br>1.997<br>1.55-1                                                  | 1.304<br>9.91-1<br>5.11-2<br>1.189-2<br>1.993<br>3.15-1                                                  | 1.225<br>1.13+0<br>6.67-2<br>8.029-3<br>1.989<br>4.78-1                                                  | 1.153<br>1.25+0<br>8.26-2<br>5.722-3<br>1.983<br>6.38-1                                                  | 1.088<br>1.34+0<br>9.85-2<br>4.244-3<br>1.976<br>7.91-1                                                  | 1.42+0<br>1.14-1<br>3.247-3<br>1.970<br>9.38-1                                                  | 1.49+0<br>1.30-1<br>2.548-3<br>1.962<br>1.08+0                                                   |
| $E_b = 14.0 \text{ eV}$ $5s_{1/2}$ $E_b =$                                                                              | β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ                                                                                                                                 | 1.647<br>1.56-1<br>6.54-3<br>1.261-1<br>1.995<br>-7.47-2                                                             | 1.597<br>3.12-1<br>1.09-2<br>7.433-2<br>1.997<br>-7.97-2                                                   | 1.491<br>5.94-1<br>2.24-2<br>3.400-2<br>1.998<br>9.60-3                                                   | 1.393<br>8.16-1<br>3.61-2<br>1.898-2<br>1.997<br>1.55-1                                                  | 1.304<br>9.91-1<br>5.11-2<br>1.189-2<br>1.993<br>3.15-1                                                  | 1.225<br>1.13+0<br>6.67-2<br>8.029-3<br>1.989<br>4.78-1                                                  | 1.153<br>1.25+0<br>8.26-2<br>5.722-3<br>1.983<br>6.38-1                                                  | 1.088<br>1.34+0<br>9.85-2<br>4.244-3<br>1.976<br>7.91-1                                                  | 1.42+0<br>1.14-1<br>3.247-3<br>1.970<br>9.38-1                                                  | 1.49+0<br>1.30-1<br>2.548-3<br>1.962<br>1.08+0                                                   |
| $E_b = 14.0 \text{ eV}$ $5s_{1/2}$ $E_b = 4.0 \text{ eV}$                                                               | β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ                                                                                                                                 | 1.647<br>1.56-1<br>6.54-3<br>1.261-1<br>1.995<br>-7.47-2<br>-4.60-5                                                  | 1.597<br>3.12-1<br>1.09-2<br>7.433-2<br>1.997<br>-7.97-2                                                   | 1.491<br>5.94-1<br>2.24-2<br>3.400-2<br>1.998<br>9.60-3                                                   | 1.393<br>8.16-1<br>3.61-2<br>1.898-2<br>1.997<br>1.55-1                                                  | 1.304<br>9.91-1<br>5.11-2<br>1.189-2<br>1.993<br>3.15-1                                                  | 1.225<br>1.13+0<br>6.67-2<br>8.029-3<br>1.989<br>4.78-1                                                  | 1.153<br>1.25+0<br>8.26-2<br>5.722-3<br>1.983<br>6.38-1                                                  | 1.088<br>1.34+0<br>9.85-2<br>4.244-3<br>1.976<br>7.91-1                                                  | 1.42+0<br>1.14-1<br>3.247-3<br>1.970<br>9.38-1                                                  | 1.49+0<br>1.30-1<br>2.548-3<br>1.962<br>1.08+0                                                   |
| $E_b = 14.0 \text{ eV}$ $5s_{1/2} = E_b = 4.0 \text{ eV}$ $Z= 38, \text{ Sr: [Kr]}$                                     | β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ                                                                                                                                 | 1.647<br>1.56-1<br>6.54-3<br>1.261-1<br>1.995<br>-7.47-2<br>-4.60-5<br>k (eV)                                        | 1.597<br>3.12-1<br>1.09-2<br>7.433-2<br>1.997<br>-7.97-2<br>-5.26-5                                        | 1.491<br>5.94-1<br>2.24-2<br>3.400-2<br>1.998<br>9.60-3<br>-6.05-5                                        | 1.393<br>8.16-1<br>3.61-2<br>1.898-2<br>1.997<br>1.55-1<br>-6.36-5                                       | 1.304<br>9.91-1<br>5.11-2<br>1.189-2<br>1.993<br>3.15-1<br>-6.47-5                                       | 1.225<br>1.13+0<br>6.67-2<br>8.029-3<br>1.989<br>4.78-1<br>-6.47-5                                       | 1.153<br>1.25+0<br>8.26-2<br>5.722-3<br>1.983<br>6.38-1<br>-6.39-5                                       | 1.088<br>1.34+0<br>9.85-2<br>4.244-3<br>1.976<br>7.91-1<br>-6.21-5                                       | 1.42+0<br>1.14-1<br>3.247-3<br>1.970<br>9.38-1<br>-6.03-5                                       | 1.49+0<br>1.30-1<br>2.548-3<br>1.962<br>1.08+0<br>-5.66-5                                        |
| $E_b = 14.0 \text{ eV}$ $5s_{1/2}$ $E_b = 4.0 \text{ eV}$                                                               | β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ                                                                                                                                 | 1.647<br>1.56-1<br>6.54-3<br>1.261-1<br>1.995<br>-7.47-2<br>-4.60-5                                                  | 1.597<br>3.12-1<br>1.09-2<br>7.433-2<br>1.997<br>-7.97-2                                                   | 1.491<br>5.94-1<br>2.24-2<br>3.400-2<br>1.998<br>9.60-3                                                   | 1.393<br>8.16-1<br>3.61-2<br>1.898-2<br>1.997<br>1.55-1                                                  | 1.304<br>9.91-1<br>5.11-2<br>1.189-2<br>1.993<br>3.15-1                                                  | 1.225<br>1.13+0<br>6.67-2<br>8.029-3<br>1.989<br>4.78-1                                                  | 1.153<br>1.25+0<br>8.26-2<br>5.722-3<br>1.983<br>6.38-1                                                  | 1.088<br>1.34+0<br>9.85-2<br>4.244-3<br>1.976<br>7.91-1                                                  | 1.42+0<br>1.14-1<br>3.247-3<br>1.970<br>9.38-1                                                  | 1.49+0<br>1.30-1<br>2.548-3<br>1.962<br>1.08+0                                                   |
| $E_b = 14.0 \text{ eV}$ $5s_{1/2}$ $E_b = 4.0 \text{ eV}$ $Z= 38, \text{ Sr: [Kr]}$ Shell                               | $ \begin{array}{c} \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ r]5s_{1/2}^2 \end{array} $                                        | 1.647<br>1.56-1<br>6.54-3<br>1.261-1<br>1.995<br>-7.47-2<br>-4.60-5<br>k (eV)<br>1500                                | 1.597<br>3.12-1<br>1.09-2<br>7.433-2<br>1.997<br>-7.97-2<br>-5.26-5                                        | 1.491<br>5.94-1<br>2.24-2<br>3.400-2<br>1.998<br>9.60-3<br>-6.05-5                                        | 1.393<br>8.16-1<br>3.61-2<br>1.898-2<br>1.997<br>1.55-1<br>-6.36-5                                       | 1.304<br>9.91-1<br>5.11-2<br>1.189-2<br>1.993<br>3.15-1<br>-6.47-5                                       | 1.225<br>1.13+0<br>6.67-2<br>8.029-3<br>1.989<br>4.78-1<br>-6.47-5                                       | 1.153<br>1.25+0<br>8.26-2<br>5.722-3<br>1.983<br>6.38-1<br>-6.39-5                                       | 1.088<br>1.34+0<br>9.85-2<br>4.244-3<br>1.976<br>7.91-1<br>-6.21-5                                       | 1.42+0<br>1.14-1<br>3.247-3<br>1.970<br>9.38-1<br>-6.03-5                                       | 1.49+0<br>1.30-1<br>2.548-3<br>1.962<br>1.08+0<br>-5.66-5                                        |
| $E_b = 14.0 \text{ eV}$ $5s_{1/2}$ $E_b = 4.0 \text{ eV}$ $Z= 38, \text{ Sr: [Kr]}$ Shell $3s_{1/2}$                    | $\frac{\beta}{\delta}$ $\frac{\gamma}{\delta}$ $\frac{\sigma}{\beta}$ $\frac{\gamma}{\delta}$ $r]5s_{1/2}^{2}$                                                  | 1.647<br>1.56-1<br>6.54-3<br>1.261-1<br>1.995<br>-7.47-2<br>-4.60-5<br>k (eV)<br>1500<br>2.458+1                     | 1.597<br>3.12-1<br>1.09-2<br>7.433-2<br>1.997<br>-7.97-2<br>-5.26-5<br>2000<br>1.485+1                     | 1.491<br>5.94-1<br>2.24-2<br>3.400-2<br>1.998<br>9.60-3<br>-6.05-5                                        | 1.393<br>8.16-1<br>3.61-2<br>1.898-2<br>1.997<br>1.55-1<br>-6.36-5<br>4000<br>3.949+0                    | 1.304<br>9.91-1<br>5.11-2<br>1.189-2<br>1.993<br>3.15-1<br>-6.47-5<br>5000<br>2.496+0                    | 1.225<br>1.13+0<br>6.67-2<br>8.029-3<br>1.989<br>4.78-1<br>-6.47-5                                       | 1.153<br>1.25+0<br>8.26-2<br>5.722-3<br>1.983<br>6.38-1<br>-6.39-5<br>7000<br>1.216+0                    | 1.088<br>1.34+0<br>9.85-2<br>4.244-3<br>1.976<br>7.91-1<br>-6.21-5                                       | 1.42+0<br>1.14-1<br>3.247-3<br>1.970<br>9.38-1<br>-6.03-5<br>9000<br>6.950-1                    | 1.49+0<br>1.30-1<br>2.548-3<br>1.962<br>1.08+0<br>-5.66-5<br>10000<br>5.468-1                    |
| $E_b = 14.0 \text{ eV}$ $5s_{1/2}$ $E_b = 4.0 \text{ eV}$ Z= 38, Sr: [Kr Shell $3s_{1/2}$ $E_b = 6$                     | $ \begin{array}{c} \beta \\ \gamma \\ \delta \\ \sigma \\ \beta \\ \gamma \\ \delta \\ r]5s_{1/2}^{2} \end{array} $                                             | 1.647<br>1.56-1<br>6.54-3<br>1.261-1<br>1.995<br>-7.47-2<br>-4.60-5<br>k (eV)<br>1500<br>2.458+1<br>1.992            | 1.597<br>3.12-1<br>1.09-2<br>7.433-2<br>1.997<br>-7.97-2<br>-5.26-5<br>2000<br>1.485+1<br>1.995            | 1.491<br>5.94-1<br>2.24-2<br>3.400-2<br>1.998<br>9.60-3<br>-6.05-5<br>3000<br>6.972+0<br>1.997            | 1.393<br>8.16-1<br>3.61-2<br>1.898-2<br>1.997<br>1.55-1<br>-6.36-5<br>4000<br>3.949+0<br>1.997           | 1.304<br>9.91-1<br>5.11-2<br>1.189-2<br>1.993<br>3.15-1<br>-6.47-5<br>5000<br>2.496+0<br>1.995           | 1.225<br>1.13+0<br>6.67-2<br>8.029-3<br>1.989<br>4.78-1<br>-6.47-5<br>6000<br>1.697+0<br>1.991           | 1.153<br>1.25+0<br>8.26-2<br>5.722-3<br>1.983<br>6.38-1<br>-6.39-5<br>7000<br>1.216+0<br>1.985           | 1.088<br>1.34+0<br>9.85-2<br>4.244-3<br>1.976<br>7.91-1<br>-6.21-5<br>8000<br>9.053-1<br>1.979           | 1.42+0<br>1.14-1<br>3.247-3<br>1.970<br>9.38-1<br>-6.03-5<br>9000<br>6.950-1<br>1.973           | 1.49+0<br>1.30-1<br>2.548-3<br>1.962<br>1.08+0<br>-5.66-5<br>10000<br>5.468-1<br>1.966           |
| $E_b = 14.0 \text{ eV}$ $5s_{1/2}$ $E_b = 4.0 \text{ eV}$ $Z= 38, \text{ Sr: [Kr]}$ Shell $3s_{1/2}$                    | $\frac{\beta}{\delta}$ $\frac{\gamma}{\delta}$ $\frac{\sigma}{\beta}$ $\frac{\gamma}{\delta}$ $r]5s_{1/2}^{2}$                                                  | 1.647<br>1.56-1<br>6.54-3<br>1.261-1<br>1.995<br>-7.47-2<br>-4.60-5<br>k (eV)<br>1500<br>2.458+1                     | 1.597<br>3.12-1<br>1.09-2<br>7.433-2<br>1.997<br>-7.97-2<br>-5.26-5<br>2000<br>1.485+1                     | 1.491<br>5.94-1<br>2.24-2<br>3.400-2<br>1.998<br>9.60-3<br>-6.05-5                                        | 1.393<br>8.16-1<br>3.61-2<br>1.898-2<br>1.997<br>1.55-1<br>-6.36-5<br>4000<br>3.949+0                    | 1.304<br>9.91-1<br>5.11-2<br>1.189-2<br>1.993<br>3.15-1<br>-6.47-5<br>5000<br>2.496+0                    | 1.225<br>1.13+0<br>6.67-2<br>8.029-3<br>1.989<br>4.78-1<br>-6.47-5                                       | 1.153<br>1.25+0<br>8.26-2<br>5.722-3<br>1.983<br>6.38-1<br>-6.39-5<br>7000<br>1.216+0                    | 1.088<br>1.34+0<br>9.85-2<br>4.244-3<br>1.976<br>7.91-1<br>-6.21-5                                       | 1.42+0<br>1.14-1<br>3.247-3<br>1.970<br>9.38-1<br>-6.03-5<br>9000<br>6.950-1                    | 1.49+0<br>1.30-1<br>2.548-3<br>1.962<br>1.08+0<br>-5.66-5<br>10000<br>5.468-1                    |
| $E_b = 14.0 \text{ eV}$ $5s_{1/2}$ $E_b = 4.0 \text{ eV}$ <b>Z= 38, Sr: [Kr</b> Shell $3s_{1/2}$ $E_b = 4.0 \text{ eV}$ | $ \begin{array}{c} \beta \\ \gamma \\ \delta \\ \sigma \\ \beta \\ \gamma \\ \delta \\ r]5s_{1/2}^{2} \end{array} $                                             | 1.647<br>1.56-1<br>6.54-3<br>1.261-1<br>1.995<br>-7.47-2<br>-4.60-5<br>k (eV)<br>1500<br>2.458+1<br>1.992            | 1.597<br>3.12-1<br>1.09-2<br>7.433-2<br>1.997<br>-7.97-2<br>-5.26-5<br>2000<br>1.485+1<br>1.995            | 1.491<br>5.94-1<br>2.24-2<br>3.400-2<br>1.998<br>9.60-3<br>-6.05-5<br>3000<br>6.972+0<br>1.997            | 1.393<br>8.16-1<br>3.61-2<br>1.898-2<br>1.997<br>1.55-1<br>-6.36-5<br>4000<br>3.949+0<br>1.997           | 1.304<br>9.91-1<br>5.11-2<br>1.189-2<br>1.993<br>3.15-1<br>-6.47-5<br>5000<br>2.496+0<br>1.995           | 1.225<br>1.13+0<br>6.67-2<br>8.029-3<br>1.989<br>4.78-1<br>-6.47-5<br>6000<br>1.697+0<br>1.991           | 1.153<br>1.25+0<br>8.26-2<br>5.722-3<br>1.983<br>6.38-1<br>-6.39-5<br>7000<br>1.216+0<br>1.985           | 1.088<br>1.34+0<br>9.85-2<br>4.244-3<br>1.976<br>7.91-1<br>-6.21-5<br>8000<br>9.053-1<br>1.979           | 1.42+0<br>1.14-1<br>3.247-3<br>1.970<br>9.38-1<br>-6.03-5<br>9000<br>6.950-1<br>1.973           | 1.49+0<br>1.30-1<br>2.548-3<br>1.962<br>1.08+0<br>-5.66-5<br>10000<br>5.468-1<br>1.966           |
| $E_b = 14.0 \text{ eV}$ $5s_{1/2}$ $E_b = 4.0 \text{ eV}$ <b>Z= 38, Sr: [Kr</b> Shell $3s_{1/2}$ $E_b = 4.0 \text{ eV}$ | $ \frac{\beta}{\delta} $ $ \frac{\gamma}{\delta} $ $ \frac{\sigma}{\beta} $ $ \frac{\gamma}{\delta} $ $ \tau]5s_{1/2}^{2} $ $ \frac{\sigma}{\beta} $ $ \gamma $ | 1.647<br>1.56-1<br>6.54-3<br>1.261-1<br>1.995<br>-7.47-2<br>-4.60-5<br>k (eV)<br>1500<br>2.458+1<br>1.992<br>-3.51-2 | 1.597<br>3.12-1<br>1.09-2<br>7.433-2<br>1.997<br>-7.97-2<br>-5.26-5<br>2000<br>1.485+1<br>1.995<br>-8.43-2 | 1.491<br>5.94-1<br>2.24-2<br>3.400-2<br>1.998<br>9.60-3<br>-6.05-5<br>3000<br>6.972+0<br>1.997<br>-3.78-2 | 1.393<br>8.16-1<br>3.61-2<br>1.898-2<br>1.997<br>1.55-1<br>-6.36-5<br>4000<br>3.949+0<br>1.997<br>8.99-2 | 1.304<br>9.91-1<br>5.11-2<br>1.189-2<br>1.993<br>3.15-1<br>-6.47-5<br>5000<br>2.496+0<br>1.995<br>2.44-1 | 1.225<br>1.13+0<br>6.67-2<br>8.029-3<br>1.989<br>4.78-1<br>-6.47-5<br>6000<br>1.697+0<br>1.991<br>4.04-1 | 1.153<br>1.25+0<br>8.26-2<br>5.722-3<br>1.983<br>6.38-1<br>-6.39-5<br>7000<br>1.216+0<br>1.985<br>5.62-1 | 1.088<br>1.34+0<br>9.85-2<br>4.244-3<br>1.976<br>7.91-1<br>-6.21-5<br>8000<br>9.053-1<br>1.979<br>7.16-1 | 1.42+0<br>1.14-1<br>3.247-3<br>1.970<br>9.38-1<br>-6.03-5<br>9000<br>6.950-1<br>1.973<br>8.63-1 | 1.49+0<br>1.30-1<br>2.548-3<br>1.962<br>1.08+0<br>-5.66-5<br>10000<br>5.468-1<br>1.966<br>1.00+0 |

| $E_b = 279.8 \text{ eV}$                                                                                                                                                                                                                                 | $eta \ \gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.611<br>8.38-2                                                                                                                                                                                                                                                                                                        | 1.574<br>2.35-1                                                                                                                                                                                                                     | 1.477<br>5.20-1                                                                                                                                                                                                                     | 1.384<br>7.49-1                                                                                                                                                                                                                                                              | 1.297<br>9.30-1                                                                                                                                                                                                                   | 1.218<br>1.08+0                                                                                                                                                                                                                   | 1.147<br>1.19+0                                                                                                                                                                                                                   | 1.081<br>1.29+0                                                                                                                                                                                                                   | 1.021<br>1.38+0                                                                                                                                                                                                                   | 0.965<br>1.45+0                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                          | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.86-3                                                                                                                                                                                                                                                                                                                 | 9.41-3                                                                                                                                                                                                                              | 2.12-2                                                                                                                                                                                                                              | 3.55-2                                                                                                                                                                                                                                                                       | 5.09-2                                                                                                                                                                                                                            | 6.67-2                                                                                                                                                                                                                            | 8.27-2                                                                                                                                                                                                                            | 9.86-2                                                                                                                                                                                                                            | 1.14-1                                                                                                                                                                                                                            | 1.30-1                                                                                                                                                                                                                                                   |
| $3p_{3/2}$                                                                                                                                                                                                                                               | $\sigma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.711+1                                                                                                                                                                                                                                                                                                                | 3.036+1                                                                                                                                                                                                                             | 1.143+1                                                                                                                                                                                                                             | 5.399+0                                                                                                                                                                                                                                                                      | 2.931+0                                                                                                                                                                                                                           | 1.749+0                                                                                                                                                                                                                           | 1.117+0                                                                                                                                                                                                                           | 7.510-1                                                                                                                                                                                                                           | 5.260-1                                                                                                                                                                                                                           | 3.806-                                                                                                                                                                                                                                                   |
| $E_b = 269.1 \text{ eV}$                                                                                                                                                                                                                                 | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.636<br>9.11-2                                                                                                                                                                                                                                                                                                        | 1.605<br>2.47-1                                                                                                                                                                                                                     | 1.515<br>5.42-1                                                                                                                                                                                                                     | 1.424<br>7.77-1                                                                                                                                                                                                                                                              | 1.339<br>9.63-1                                                                                                                                                                                                                   | 1.261<br>1.11+0                                                                                                                                                                                                                   | 1.189<br>1.23+0                                                                                                                                                                                                                   | 1.124<br>1.33+0                                                                                                                                                                                                                   | 1.064<br>1.42+0                                                                                                                                                                                                                   | 1.008<br>1.49+0                                                                                                                                                                                                                                          |
| 209.1 EV                                                                                                                                                                                                                                                 | $\frac{\gamma}{\delta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.51-3                                                                                                                                                                                                                                                                                                                 | 1.08-2                                                                                                                                                                                                                              | 2.17-2                                                                                                                                                                                                                              | 3.48-2                                                                                                                                                                                                                                                                       | 4.91-2                                                                                                                                                                                                                            | 6.39-2                                                                                                                                                                                                                            | 7.89-2                                                                                                                                                                                                                            | 9.40-2                                                                                                                                                                                                                            | 1.09-1                                                                                                                                                                                                                            | 1.24-1                                                                                                                                                                                                                                                   |
| 3d <sub>3/2</sub>                                                                                                                                                                                                                                        | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.457+1                                                                                                                                                                                                                                                                                                                | 9.576+0                                                                                                                                                                                                                             | 2.343+0                                                                                                                                                                                                                             | 8.209-1                                                                                                                                                                                                                                                                      | 3.548-1                                                                                                                                                                                                                           | 1.762-1                                                                                                                                                                                                                           | 9.647-2                                                                                                                                                                                                                           | 5.686-2                                                                                                                                                                                                                           | 3.547-2                                                                                                                                                                                                                           | 2.316-2                                                                                                                                                                                                                                                  |
| $E_b =$                                                                                                                                                                                                                                                  | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.162                                                                                                                                                                                                                                                                                                                  | 1.074                                                                                                                                                                                                                               | 0.908                                                                                                                                                                                                                               | 0.780                                                                                                                                                                                                                                                                        | 0.679                                                                                                                                                                                                                             | 0.599                                                                                                                                                                                                                             | 0.533                                                                                                                                                                                                                             | 0.477                                                                                                                                                                                                                             | 0.428                                                                                                                                                                                                                             | 0.385                                                                                                                                                                                                                                                    |
| 135.0 eV                                                                                                                                                                                                                                                 | $_{\delta}^{\gamma}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.78-1<br>7.45-2                                                                                                                                                                                                                                                                                                       | 6.25-1<br>9.51-2                                                                                                                                                                                                                    | 8.26-1<br>1.38-1                                                                                                                                                                                                                    | 9.52-1<br>1.80-1                                                                                                                                                                                                                                                             | 1.04+0<br>2.20-1                                                                                                                                                                                                                  | 1.10+0<br>2.58-1                                                                                                                                                                                                                  | 1.14+0<br>2.94-1                                                                                                                                                                                                                  | 1.17+0<br>3.28-1                                                                                                                                                                                                                  | 1.19+0<br>3.61-1                                                                                                                                                                                                                  | 1.21+0<br>3.91-1                                                                                                                                                                                                                                         |
| 3d <sub>5/2</sub>                                                                                                                                                                                                                                        | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.563+1                                                                                                                                                                                                                                                                                                                | 1.385+1                                                                                                                                                                                                                             | 3.372+0                                                                                                                                                                                                                             | 1.176+0                                                                                                                                                                                                                                                                      | 5.060-1                                                                                                                                                                                                                           | 2.502-1                                                                                                                                                                                                                           | 1.365-1                                                                                                                                                                                                                           | 8.020-2                                                                                                                                                                                                                           | 4.988-2                                                                                                                                                                                                                           | 3.247-                                                                                                                                                                                                                                                   |
| $E_b =$                                                                                                                                                                                                                                                  | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.146                                                                                                                                                                                                                                                                                                                  | 1.055                                                                                                                                                                                                                               | 0.892                                                                                                                                                                                                                               | 0.770                                                                                                                                                                                                                                                                        | 0.676                                                                                                                                                                                                                             | 0.603                                                                                                                                                                                                                             | 0.543                                                                                                                                                                                                                             | 0.494                                                                                                                                                                                                                             | 0.451                                                                                                                                                                                                                             | 0.413                                                                                                                                                                                                                                                    |
| 133.1 eV                                                                                                                                                                                                                                                 | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.79-1                                                                                                                                                                                                                                                                                                                 | 6.23-1                                                                                                                                                                                                                              | 8.21-1                                                                                                                                                                                                                              | 9.47-1                                                                                                                                                                                                                                                                       | 1.03+0                                                                                                                                                                                                                            | 1.09+0                                                                                                                                                                                                                            | 1.14+0                                                                                                                                                                                                                            | 1.18+0                                                                                                                                                                                                                            | 1.21+0                                                                                                                                                                                                                            | 1.23+0                                                                                                                                                                                                                                                   |
| Ac.                                                                                                                                                                                                                                                      | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.57-2<br>3.300+0                                                                                                                                                                                                                                                                                                      | 9.71-2<br>1.957+0                                                                                                                                                                                                                   | 1.41-1<br>9.036-1                                                                                                                                                                                                                   | 1.84-1<br>5.076-1                                                                                                                                                                                                                                                            | 2.24-1<br>3.193-1                                                                                                                                                                                                                 | 2.62-1<br>2.164-1                                                                                                                                                                                                                 | 2.98-1<br>1.546-1                                                                                                                                                                                                                 | 3.31-1<br>1.149-1                                                                                                                                                                                                                 | 3.63-1<br>8.812-2                                                                                                                                                                                                                 | 3.93-1<br>6.926-                                                                                                                                                                                                                                         |
| $4s_{1/2}  E_b =$                                                                                                                                                                                                                                        | $\frac{\sigma}{\beta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.994                                                                                                                                                                                                                                                                                                                  | 1.937+0                                                                                                                                                                                                                             | 1.998                                                                                                                                                                                                                               | 1.997                                                                                                                                                                                                                                                                        | 1.994                                                                                                                                                                                                                             | 1.990                                                                                                                                                                                                                             | 1.984                                                                                                                                                                                                                             | 1.149-1                                                                                                                                                                                                                           | 1.971                                                                                                                                                                                                                             | 1.964                                                                                                                                                                                                                                                    |
| 37.7 eV                                                                                                                                                                                                                                                  | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -6.83 - 2                                                                                                                                                                                                                                                                                                              | -8.34-2                                                                                                                                                                                                                             | -9.95 - 3                                                                                                                                                                                                                           | 1.24-1                                                                                                                                                                                                                                                                       | 2.79-1                                                                                                                                                                                                                            | 4.38-1                                                                                                                                                                                                                            | 5.94-1                                                                                                                                                                                                                            | 7.45-1                                                                                                                                                                                                                            | 8.90-1                                                                                                                                                                                                                            | 1.03+0                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                          | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -5.20-5                                                                                                                                                                                                                                                                                                                | -5.99-5                                                                                                                                                                                                                             | -6.82-5                                                                                                                                                                                                                             | -7.31-5                                                                                                                                                                                                                                                                      | -7.44-5                                                                                                                                                                                                                           | -7.52-5                                                                                                                                                                                                                           | -7.46-5                                                                                                                                                                                                                           | -7.33-5                                                                                                                                                                                                                           | -7.12-5                                                                                                                                                                                                                           | -6.86-                                                                                                                                                                                                                                                   |
| $4p_{1/2}$                                                                                                                                                                                                                                               | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.965+0                                                                                                                                                                                                                                                                                                                | 1.593+0                                                                                                                                                                                                                             | 6.113-1                                                                                                                                                                                                                             | 2.932-1                                                                                                                                                                                                                                                                      | 1.611-1                                                                                                                                                                                                                           | 9.709-2                                                                                                                                                                                                                           | 6.255-2                                                                                                                                                                                                                           | 4.239-2                                                                                                                                                                                                                           | 2.990-2                                                                                                                                                                                                                           | 2.177                                                                                                                                                                                                                                                    |
| $E_b = 20.7 \text{ eV}$                                                                                                                                                                                                                                  | $\beta$ $\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.631<br>1.29-1                                                                                                                                                                                                                                                                                                        | 1.577<br>2.77-1                                                                                                                                                                                                                     | 1.471<br>5.49-1                                                                                                                                                                                                                     | 1.376<br>7.69-1                                                                                                                                                                                                                                                              | 1.289<br>9.44-1                                                                                                                                                                                                                   | 1.210<br>1.09+0                                                                                                                                                                                                                   | 1.140<br>1.20+0                                                                                                                                                                                                                   | 1.074<br>1.30+0                                                                                                                                                                                                                   | 1.015<br>1.38+0                                                                                                                                                                                                                   | 0.960<br>1.45+0                                                                                                                                                                                                                                          |
| 20.7 CV                                                                                                                                                                                                                                                  | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.33-3                                                                                                                                                                                                                                                                                                                 | 8.65-3                                                                                                                                                                                                                              | 2.07-2                                                                                                                                                                                                                              | 3.51-2                                                                                                                                                                                                                                                                       | 5.07-2                                                                                                                                                                                                                            | 6.68-2                                                                                                                                                                                                                            | 8.30-2                                                                                                                                                                                                                            | 9.92-2                                                                                                                                                                                                                            | 1.15-1                                                                                                                                                                                                                            | 1.31-1                                                                                                                                                                                                                                                   |
| $4p_{3/2}$                                                                                                                                                                                                                                               | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.705+0                                                                                                                                                                                                                                                                                                                | 3.026+0                                                                                                                                                                                                                             | 1.141+0                                                                                                                                                                                                                             | 5.404-1                                                                                                                                                                                                                                                                      | 2.940-1                                                                                                                                                                                                                           | 1.757-1                                                                                                                                                                                                                           | 1.123-1                                                                                                                                                                                                                           | 7.565-2                                                                                                                                                                                                                           | 5.304-2                                                                                                                                                                                                                           | 3.842-                                                                                                                                                                                                                                                   |
| $E_b =$                                                                                                                                                                                                                                                  | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.656                                                                                                                                                                                                                                                                                                                  | 1.609                                                                                                                                                                                                                               | 1.509                                                                                                                                                                                                                               | 1.416                                                                                                                                                                                                                                                                        | 1.331                                                                                                                                                                                                                             | 1.253                                                                                                                                                                                                                             | 1.182                                                                                                                                                                                                                             | 1.118                                                                                                                                                                                                                             | 1.059                                                                                                                                                                                                                             | 1.004                                                                                                                                                                                                                                                    |
| 19.5 eV                                                                                                                                                                                                                                                  | $\delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.35-1<br>5.86-3                                                                                                                                                                                                                                                                                                       | 2.88-1<br>9.94-3                                                                                                                                                                                                                    | 5.70-1<br>2.10-2                                                                                                                                                                                                                    | 7.96-1<br>3.43-2                                                                                                                                                                                                                                                             | 9.76-1<br>4.87-2                                                                                                                                                                                                                  | 1.12+0<br>6.38-2                                                                                                                                                                                                                  | 1.24+0<br>7.92-2                                                                                                                                                                                                                  | 1.34+0<br>9.45-2                                                                                                                                                                                                                  | 1.42+0<br>1.10-1                                                                                                                                                                                                                  | 1.49+0<br>1.25-1                                                                                                                                                                                                                                         |
| 5s <sub>1/2</sub>                                                                                                                                                                                                                                        | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.259-1                                                                                                                                                                                                                                                                                                                | 1.334-1                                                                                                                                                                                                                             | 6.130-2                                                                                                                                                                                                                             | 3.436-2                                                                                                                                                                                                                                                                      | 2.159-2                                                                                                                                                                                                                           | 1.461-2                                                                                                                                                                                                                           | 1.043-2                                                                                                                                                                                                                           | 7.751-3                                                                                                                                                                                                                           | 5.940-3                                                                                                                                                                                                                           | 4.667-                                                                                                                                                                                                                                                   |
| $E_b =$                                                                                                                                                                                                                                                  | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.994                                                                                                                                                                                                                                                                                                                  | 1.996                                                                                                                                                                                                                               | 1.998                                                                                                                                                                                                                               | 1.997                                                                                                                                                                                                                                                                        | 1.994                                                                                                                                                                                                                             | 1.989                                                                                                                                                                                                                             | 1.984                                                                                                                                                                                                                             | 1.978                                                                                                                                                                                                                             | 1.971                                                                                                                                                                                                                             | 1.964                                                                                                                                                                                                                                                    |
| 5.0 eV                                                                                                                                                                                                                                                   | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -7.08-2                                                                                                                                                                                                                                                                                                                | -8.36-2                                                                                                                                                                                                                             | -8.58 - 3                                                                                                                                                                                                                           | 1.26 - 1                                                                                                                                                                                                                                                                     | 2.82 - 1                                                                                                                                                                                                                          | 4.42 - 1                                                                                                                                                                                                                          | 5.99 - 1                                                                                                                                                                                                                          | 7.49 - 1                                                                                                                                                                                                                          | 8.93 - 1                                                                                                                                                                                                                          | 1.03+0                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                          | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -5.14-5                                                                                                                                                                                                                                                                                                                | -5.94-5                                                                                                                                                                                                                             | -6.81-5                                                                                                                                                                                                                             | -7.22-5                                                                                                                                                                                                                                                                      | -7.38-5                                                                                                                                                                                                                           | -7.45-5                                                                                                                                                                                                                           | -7.43-5                                                                                                                                                                                                                           | -7.25-5                                                                                                                                                                                                                           | -7.18-5                                                                                                                                                                                                                           | -6.69-                                                                                                                                                                                                                                                   |
| Z= 39, Y : [Ki                                                                                                                                                                                                                                           | r]4d <sub>3/2</sub> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | k (eV)                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1500                                                                                                                                                                                                                                                                                                                   | 2000                                                                                                                                                                                                                                | 3000                                                                                                                                                                                                                                | 4000                                                                                                                                                                                                                                                                         | 5000                                                                                                                                                                                                                              | 6000                                                                                                                                                                                                                              | 7000                                                                                                                                                                                                                              | 8000                                                                                                                                                                                                                              | 9000                                                                                                                                                                                                                              | 10000                                                                                                                                                                                                                                                    |
| Shell 3s <sub>1/2</sub>                                                                                                                                                                                                                                  | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1500<br>2.613+1                                                                                                                                                                                                                                                                                                        | 1.586+1                                                                                                                                                                                                                             | 7.492+0                                                                                                                                                                                                                             | 4.263+0                                                                                                                                                                                                                                                                      | 2.704+0                                                                                                                                                                                                                           | 1.844+0                                                                                                                                                                                                                           | 1.323+0                                                                                                                                                                                                                           | 9.875-1                                                                                                                                                                                                                           | 7.594-1                                                                                                                                                                                                                           | 5.983-                                                                                                                                                                                                                                                   |
| $3s_{1/2}$ $E_b =$                                                                                                                                                                                                                                       | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1500<br>2.613+1<br>1.991                                                                                                                                                                                                                                                                                               | 1.586+1<br>1.994                                                                                                                                                                                                                    | 7.492+0<br>1.997                                                                                                                                                                                                                    | 4.263+0<br>1.997                                                                                                                                                                                                                                                             | 2.704+0<br>1.995                                                                                                                                                                                                                  | 1.844+0<br>1.991                                                                                                                                                                                                                  | 1.323+0<br>1.987                                                                                                                                                                                                                  | 9.875-1<br>1.981                                                                                                                                                                                                                  | 7.594-1<br>1.974                                                                                                                                                                                                                  | 5.983-<br>1.967                                                                                                                                                                                                                                          |
| $3s_{1/2}$ $E_b =$                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1500<br>2.613+1                                                                                                                                                                                                                                                                                                        | 1.586+1                                                                                                                                                                                                                             | 7.492+0                                                                                                                                                                                                                             | 4.263+0                                                                                                                                                                                                                                                                      | 2.704+0                                                                                                                                                                                                                           | 1.844+0                                                                                                                                                                                                                           | 1.323+0                                                                                                                                                                                                                           | 9.875-1                                                                                                                                                                                                                           | 7.594-1                                                                                                                                                                                                                           | 5.983-<br>1.967<br>9.52-1                                                                                                                                                                                                                                |
| 3s <sub>1/2</sub>                                                                                                                                                                                                                                        | $eta \ \gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1500<br>2.613+1<br>1.991<br>-1.84-2                                                                                                                                                                                                                                                                                    | 1.586+1<br>1.994<br>-8.14-2<br>-7.27-5<br>1.745+1                                                                                                                                                                                   | 7.492+0<br>1.997<br>-5.44-2<br>-8.30-5<br>6.783+0                                                                                                                                                                                   | 4.263+0<br>1.997<br>6.08-2<br>-8.82-5<br>3.276+0                                                                                                                                                                                                                             | 2.704+0<br>1.995<br>2.07-1                                                                                                                                                                                                        | 1.844+0<br>1.991<br>3.62-1<br>-9.17-5<br>1.094+0                                                                                                                                                                                  | 1.323+0<br>1.987<br>5.17-1<br>-9.15-5<br>7.065-1                                                                                                                                                                                  | 9.875-1<br>1.981<br>6.68-1<br>-9.06-5<br>4.799-1                                                                                                                                                                                  | 7.594-1<br>1.974<br>8.13-1<br>-8.90-5<br>3.391-1                                                                                                                                                                                  | 5.983—<br>1.967<br>9.52—1<br>—8.67—<br>2.473—                                                                                                                                                                                                            |
| $3s_{1/2}$<br>$E_b =$<br>393.6  eV<br>$3p_{1/2}$<br>$E_b =$                                                                                                                                                                                              | $\beta$ $\gamma$ $\delta$ $\sigma$ $\beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1500<br>2.613+1<br>1.991<br>-1.84-2<br>-6.34-5<br>3.202+1<br>1.614                                                                                                                                                                                                                                                     | 1.586+1<br>1.994<br>-8.14-2<br>-7.27-5<br>1.745+1<br>1.583                                                                                                                                                                          | 7.492+0<br>1.997<br>-5.44-2<br>-8.30-5<br>6.783+0<br>1.492                                                                                                                                                                          | 4.263+0<br>1.997<br>6.08-2<br>-8.82-5<br>3.276+0<br>1.401                                                                                                                                                                                                                    | 2.704+0<br>1.995<br>2.07-1<br>-9.08-5<br>1.809+0<br>1.317                                                                                                                                                                         | 1.844+0<br>1.991<br>3.62-1<br>-9.17-5<br>1.094+0<br>1.239                                                                                                                                                                         | 1.323+0<br>1.987<br>5.17-1<br>-9.15-5<br>7.065-1<br>1.169                                                                                                                                                                         | 9.875-1<br>1.981<br>6.68-1<br>-9.06-5<br>4.799-1<br>1.104                                                                                                                                                                         | 7.594-1<br>1.974<br>8.13-1<br>-8.90-5<br>3.391-1<br>1.045                                                                                                                                                                         | 5.983-<br>1.967<br>9.52-1<br>-8.67-<br>2.473-<br>0.990                                                                                                                                                                                                   |
| $3s_{1/2}$<br>$E_b =$<br>393.6  eV<br>$3p_{1/2}$<br>$E_b =$                                                                                                                                                                                              | β<br>γ<br>δ<br>σ<br>β<br>γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1500<br>2.613+1<br>1.991<br>-1.84-2<br>-6.34-5<br>3.202+1<br>1.614<br>6.07-2                                                                                                                                                                                                                                           | 1.586+1<br>1.994<br>-8.14-2<br>-7.27-5<br>1.745+1<br>1.583<br>2.05-1                                                                                                                                                                | 7.492+0<br>1.997<br>-5.44-2<br>-8.30-5<br>6.783+0<br>1.492<br>4.89-1                                                                                                                                                                | 4.263+0<br>1.997<br>6.08-2<br>-8.82-5<br>3.276+0<br>1.401<br>7.21-1                                                                                                                                                                                                          | 2.704+0<br>1.995<br>2.07-1<br>-9.08-5<br>1.809+0<br>1.317<br>9.07-1                                                                                                                                                               | 1.844+0<br>1.991<br>3.62-1<br>-9.17-5<br>1.094+0<br>1.239<br>1.06+0                                                                                                                                                               | 1.323+0<br>1.987<br>5.17-1<br>-9.15-5<br>7.065-1<br>1.169<br>1.18+0                                                                                                                                                               | 9.875-1<br>1.981<br>6.68-1<br>-9.06-5<br>4.799-1<br>1.104<br>1.29+0                                                                                                                                                               | 7.594-1<br>1.974<br>8.13-1<br>-8.90-5<br>3.391-1<br>1.045<br>1.37+0                                                                                                                                                               | 5.983—<br>1.967<br>9.52—1<br>—8.67—<br>2.473—<br>0.990<br>1.45+0                                                                                                                                                                                         |
| $3s_{1/2}$<br>$E_b =$<br>393.6  eV<br>$3p_{1/2}$<br>$E_b =$<br>312.4  eV                                                                                                                                                                                 | β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.613+1<br>1.991<br>-1.84-2<br>-6.34-5<br>3.202+1<br>1.614<br>6.07-2<br>4.11-3                                                                                                                                                                                                                                         | 1.586+1<br>1.994<br>-8.14-2<br>-7.27-5<br>1.745+1<br>1.583<br>2.05-1<br>8.32-3                                                                                                                                                      | 7.492+0<br>1.997<br>-5.44-2<br>-8.30-5<br>6.783+0<br>1.492<br>4.89-1<br>1.93-2                                                                                                                                                      | 4.263+0<br>1.997<br>6.08-2<br>-8.82-5<br>3.276+0<br>1.401<br>7.21-1<br>3.26-2                                                                                                                                                                                                | 2.704+0<br>1.995<br>2.07-1<br>-9.08-5<br>1.809+0<br>1.317<br>9.07-1<br>4.73-2                                                                                                                                                     | 1.844+0<br>1.991<br>3.62-1<br>-9.17-5<br>1.094+0<br>1.239<br>1.06+0<br>6.25-2                                                                                                                                                     | 1.323+0<br>1.987<br>5.17-1<br>-9.15-5<br>7.065-1<br>1.169<br>1.18+0<br>7.79-2                                                                                                                                                     | 9.875-1<br>1.981<br>6.68-1<br>-9.06-5<br>4.799-1<br>1.104<br>1.29+0<br>9.33-2                                                                                                                                                     | 7.594-1<br>1.974<br>8.13-1<br>-8.90-5<br>3.391-1<br>1.045<br>1.37+0<br>1.09-1                                                                                                                                                     | 5.983-<br>1.967<br>9.52-1<br>-8.67-<br>2.473-<br>0.990<br>1.45+0<br>1.24-1                                                                                                                                                                               |
| $3s_{1/2}$<br>$E_b =$<br>393.6  eV<br>$3p_{1/2}$<br>$E_b =$<br>312.4  eV                                                                                                                                                                                 | $\begin{array}{c} \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.613+1<br>1.991<br>-1.84-2<br>-6.34-5<br>3.202+1<br>1.614<br>6.07-2<br>4.11-3<br>6.225+1                                                                                                                                                                                                                              | 1.586+1<br>1.994<br>-8.14-2<br>-7.27-5<br>1.745+1<br>1.583<br>2.05-1<br>8.32-3<br>3.342+1                                                                                                                                           | 7.492+0<br>1.997<br>-5.44-2<br>-8.30-5<br>6.783+0<br>1.492<br>4.89-1<br>1.93-2<br>1.274+1                                                                                                                                           | 4.263+0<br>1.997<br>6.08-2<br>-8.82-5<br>3.276+0<br>1.401<br>7.21-1<br>3.26-2<br>6.070+0                                                                                                                                                                                     | 2.704+0<br>1.995<br>2.07-1<br>-9.08-5<br>1.809+0<br>1.317<br>9.07-1<br>4.73-2<br>3.316+0                                                                                                                                          | 1.844+0<br>1.991<br>3.62-1<br>-9.17-5<br>1.094+0<br>1.239<br>1.06+0<br>6.25-2<br>1.987+0                                                                                                                                          | 1.323+0<br>1.987<br>5.17-1<br>-9.15-5<br>7.065-1<br>1.169<br>1.18+0<br>7.79-2<br>1.274+0                                                                                                                                          | 9.875-1<br>1.981<br>6.68-1<br>-9.06-5<br>4.799-1<br>1.104<br>1.29+0<br>9.33-2<br>8.593-1                                                                                                                                          | 7.594-1<br>1.974<br>8.13-1<br>-8.90-5<br>3.391-1<br>1.045<br>1.37+0<br>1.09-1<br>6.035-1                                                                                                                                          | 5.983-<br>1.967<br>9.52-1<br>-8.67-<br>2.473-<br>0.990<br>1.45+0<br>1.24-1<br>4.378-                                                                                                                                                                     |
| $3s_{1/2}$<br>$E_b = 393.6 \text{ eV}$<br>$3p_{1/2}$<br>$E_b = 312.4 \text{ eV}$<br>$3p_{3/2}$<br>$E_b = 6$                                                                                                                                              | $\begin{array}{c} \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.613+1<br>1.991<br>-1.84-2<br>-6.34-5<br>3.202+1<br>1.614<br>6.07-2<br>4.11-3                                                                                                                                                                                                                                         | 1.586+1<br>1.994<br>-8.14-2<br>-7.27-5<br>1.745+1<br>1.583<br>2.05-1<br>8.32-3<br>3.342+1<br>1.614                                                                                                                                  | 7.492+0<br>1.997<br>-5.44-2<br>-8.30-5<br>6.783+0<br>1.492<br>4.89-1<br>1.93-2                                                                                                                                                      | 4.263+0<br>1.997<br>6.08-2<br>-8.82-5<br>3.276+0<br>1.401<br>7.21-1<br>3.26-2                                                                                                                                                                                                | 2.704+0<br>1.995<br>2.07-1<br>-9.08-5<br>1.809+0<br>1.317<br>9.07-1<br>4.73-2<br>3.316+0<br>1.360                                                                                                                                 | 1.844+0<br>1.991<br>3.62-1<br>-9.17-5<br>1.094+0<br>1.239<br>1.06+0<br>6.25-2                                                                                                                                                     | 1.323+0<br>1.987<br>5.17-1<br>-9.15-5<br>7.065-1<br>1.169<br>1.18+0<br>7.79-2<br>1.274+0<br>1.213                                                                                                                                 | 9.875-1<br>1.981<br>6.68-1<br>-9.06-5<br>4.799-1<br>1.104<br>1.29+0<br>9.33-2                                                                                                                                                     | 7.594-1<br>1.974<br>8.13-1<br>-8.90-5<br>3.391-1<br>1.045<br>1.37+0<br>1.09-1                                                                                                                                                     | 5.983-<br>1.967<br>9.52-1<br>-8.67-<br>2.473-<br>0.990<br>1.45+0<br>1.24-1                                                                                                                                                                               |
| $3s_{1/2}$<br>$E_b =$<br>393.6  eV<br>$3p_{1/2}$<br>$E_b =$<br>312.4  eV                                                                                                                                                                                 | $\begin{array}{c} \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.613+1<br>1.991<br>-1.84-2<br>-6.34-5<br>3.202+1<br>1.614<br>6.07-2<br>4.11-3<br>6.225+1<br>1.640<br>6.73-2<br>5.87-3                                                                                                                                                                                                 | 1.586+1<br>1.994<br>-8.14-2<br>-7.27-5<br>1.745+1<br>1.583<br>2.05-1<br>8.32-3<br>3.342+1                                                                                                                                           | 7.492+0<br>1.997<br>-5.44-2<br>-8.30-5<br>6.783+0<br>1.492<br>4.89-1<br>1.93-2<br>1.274+1<br>1.531                                                                                                                                  | 4.263+0<br>1.997<br>6.08-2<br>-8.82-5<br>3.276+0<br>1.401<br>7.21-1<br>3.26-2<br>6.070+0<br>1.443<br>7.50-1<br>3.21-2                                                                                                                                                        | 2.704+0<br>1.995<br>2.07-1<br>-9.08-5<br>1.809+0<br>1.317<br>9.07-1<br>4.73-2<br>3.316+0<br>1.360<br>9.42-1<br>4.56-2                                                                                                             | 1.844+0<br>1.991<br>3.62-1<br>-9.17-5<br>1.094+0<br>1.239<br>1.06+0<br>6.25-2<br>1.987+0<br>1.284<br>1.10+0<br>5.97-2                                                                                                             | 1.323+0<br>1.987<br>5.17-1<br>-9.15-5<br>7.065-1<br>1.169<br>1.18+0<br>7.79-2<br>1.274+0<br>1.213<br>1.22+0<br>7.42-2                                                                                                             | 9.875-1<br>1.981<br>6.68-1<br>-9.06-5<br>4.799-1<br>1.104<br>1.29+0<br>9.33-2<br>8.593-1<br>1.149                                                                                                                                 | 7.594-1<br>1.974<br>8.13-1<br>-8.90-5<br>3.391-1<br>1.045<br>1.37+0<br>1.09-1<br>6.035-1<br>1.090                                                                                                                                 | 5.983— 1.967 9.52—1 —8.67— 2.473— 0.990 1.45+0 1.24—1 4.378— 1.035 1.49+0 1.18—1                                                                                                                                                                         |
| $3s_{1/2}$<br>$E_b = 393.6 \text{ eV}$<br>$3p_{1/2}$<br>$E_b = 312.4 \text{ eV}$<br>$3p_{3/2}$<br>$E_b = 300.3 \text{ eV}$                                                                                                                               | β γ δ σ β γ δ σ β γ δ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1500<br>2.613+1<br>1.991<br>-1.84-2<br>-6.34-5<br>3.202+1<br>1.614<br>6.07-2<br>4.11-3<br>6.225+1<br>1.640<br>6.73-2<br>5.87-3<br>2.933+1                                                                                                                                                                              | 1.586+1<br>1.994<br>-8.14-2<br>-7.27-5<br>1.745+1<br>1.583<br>2.05-1<br>8.32-3<br>3.342+1<br>1.614<br>2.17-1<br>9.97-3<br>1.155+1                                                                                                   | 7.492+0<br>1.997<br>-5.44-2<br>-8.30-5<br>6.783+0<br>1.492<br>4.89-1<br>1.93-2<br>1.274+1<br>1.531<br>5.10-1<br>1.99-2<br>2.866+0                                                                                                   | 4.263+0<br>1.997<br>6.08-2<br>-8.82-5<br>3.276+0<br>1.401<br>7.21-1<br>3.26-2<br>6.070+0<br>1.443<br>7.50-1<br>3.21-2<br>1.012+0                                                                                                                                             | 2.704+0<br>1.995<br>2.07-1<br>-9.08-5<br>1.809+0<br>1.317<br>9.07-1<br>4.73-2<br>3.316+0<br>1.360<br>9.42-1<br>4.56-2<br>4.401-1                                                                                                  | 1.844+0<br>1.991<br>3.62-1<br>-9.17-5<br>1.094+0<br>1.239<br>1.06+0<br>6.25-2<br>1.987+0<br>1.284<br>1.10+0<br>5.97-2<br>2.194-1                                                                                                  | 1.323+0<br>1.987<br>5.17-1<br>-9.15-5<br>7.065-1<br>1.169<br>1.18+0<br>7.79-2<br>1.274+0<br>1.213<br>1.22+0<br>7.42-2<br>1.206-1                                                                                                  | 9.875-1<br>1.981<br>6.68-1<br>-9.06-5<br>4.799-1<br>1.104<br>1.29+0<br>9.33-2<br>8.593-1<br>1.149<br>1.33+0<br>8.87-2<br>7.130-2                                                                                                  | 7.594-1<br>1.974<br>8.13-1<br>-8.90-5<br>3.391-1<br>1.045<br>1.37+0<br>1.09-1<br>6.035-1<br>1.090<br>1.42+0<br>1.03-1<br>4.460-2                                                                                                  | 5.983—<br>1.967<br>9.52—1<br>-8.67—<br>2.473—<br>0.990<br>1.45+0<br>1.24—1<br>4.378—<br>1.035<br>1.49+0<br>1.18—1<br>2.919—                                                                                                                              |
| $3s_{1/2}$<br>$E_b = 393.6 \text{ eV}$<br>$3p_{1/2}$<br>$E_b = 312.4 \text{ eV}$<br>$3p_{3/2}$<br>$E_b = 300.3 \text{ eV}$<br>$3d_{3/2}$<br>$E_b = 3d_{3/2}$                                                                                             | β γ δ σ β γ δ δ σ β γ δ σ β β γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.613+1<br>1.991<br>-1.84-2<br>-6.34-5<br>3.202+1<br>1.614<br>6.07-2<br>4.11-3<br>6.225+1<br>1.640<br>6.73-2<br>5.87-3<br>2.933+1<br>1.177                                                                                                                                                                             | 1.586+1<br>1.994<br>-8.14-2<br>-7.27-5<br>1.745+1<br>1.583<br>2.05-1<br>8.32-3<br>3.342+1<br>1.614<br>2.17-1<br>9.97-3<br>1.155+1<br>1.094                                                                                          | 7.492+0<br>1.997<br>-5.44-2<br>-8.30-5<br>6.783+0<br>1.492<br>4.89-1<br>1.93-2<br>1.274+1<br>1.531<br>5.10-1<br>1.99-2<br>2.866+0<br>0.934                                                                                          | 4.263+0<br>1.997<br>6.08-2<br>-8.82-5<br>3.276+0<br>1.401<br>7.21-1<br>3.26-2<br>6.070+0<br>1.443<br>7.50-1<br>3.21-2<br>1.012+0<br>0.805                                                                                                                                    | 2.704+0<br>1.995<br>2.07-1<br>-9.08-5<br>1.809+0<br>1.317<br>9.07-1<br>4.73-2<br>3.316+0<br>1.360<br>9.42-1<br>4.56-2<br>4.401-1<br>0.704                                                                                         | 1.844+0<br>1.991<br>3.62-1<br>-9.17-5<br>1.094+0<br>1.239<br>1.06+0<br>6.25-2<br>1.987+0<br>1.284<br>1.10+0<br>5.97-2<br>2.194-1<br>0.623                                                                                         | 1.323+0<br>1.987<br>5.17-1<br>-9.15-5<br>7.065-1<br>1.169<br>1.18+0<br>7.79-2<br>1.274+0<br>1.213<br>1.22+0<br>7.42-2<br>1.206-1<br>0.556                                                                                         | 9.875-1<br>1.981<br>6.68-1<br>-9.06-5<br>4.799-1<br>1.104<br>1.29+0<br>9.33-2<br>8.593-1<br>1.149<br>1.33+0<br>8.87-2<br>7.130-2<br>0.498                                                                                         | 7.594-1<br>1.974<br>8.13-1<br>-8.90-5<br>3.391-1<br>1.045<br>1.37+0<br>1.09-1<br>6.035-1<br>1.090<br>1.42+0<br>1.03-1<br>4.460-2<br>0.449                                                                                         | 5.983-<br>1.967<br>9.52-1<br>-8.67-<br>2.473-<br>0.990<br>1.45+0<br>1.24-1<br>4.378-<br>1.035<br>1.49+0<br>1.18-1<br>2.919-<br>0.405                                                                                                                     |
| $3s_{1/2}$<br>$E_b = 393.6 \text{ eV}$<br>$3p_{1/2}$<br>$E_b = 312.4 \text{ eV}$<br>$3p_{3/2}$<br>$E_b = 300.3 \text{ eV}$<br>$3d_{3/2}$<br>$E_b = 3d_{3/2}$                                                                                             | β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.613+1<br>1.991<br>-1.84-2<br>-6.34-5<br>3.202+1<br>1.614<br>6.07-2<br>4.11-3<br>6.225+1<br>1.640<br>6.73-2<br>5.87-3<br>2.933+1<br>1.177<br>4.60-1                                                                                                                                                                   | 1.586+1<br>1.994<br>-8.14-2<br>-7.27-5<br>1.745+1<br>1.583<br>2.05-1<br>8.32-3<br>3.342+1<br>1.614<br>2.17-1<br>9.97-3<br>1.155+1<br>1.094<br>6.11-1                                                                                | 7.492+0<br>1.997<br>-5.44-2<br>-8.30-5<br>6.783+0<br>1.492<br>4.89-1<br>1.93-2<br>1.274+1<br>1.531<br>5.10-1<br>1.99-2<br>2.866+0<br>0.934<br>8.22-1                                                                                | 4.263+0<br>1.997<br>6.08-2<br>-8.82-5<br>3.276+0<br>1.401<br>7.21-1<br>3.26-2<br>6.070+0<br>1.443<br>7.50-1<br>3.21-2<br>1.012+0<br>0.805<br>9.56-1                                                                                                                          | 2.704+0<br>1.995<br>2.07-1<br>-9.08-5<br>1.809+0<br>1.317<br>9.07-1<br>4.73-2<br>3.316+0<br>1.360<br>9.42-1<br>4.56-2<br>4.401-1<br>0.704<br>1.05+0                                                                               | 1.844+0<br>1.991<br>3.62-1<br>-9.17-5<br>1.094+0<br>1.239<br>1.06+0<br>6.25-2<br>1.987+0<br>1.284<br>1.10+0<br>5.97-2<br>2.194-1<br>0.623<br>1.11+0                                                                               | 1.323+0<br>1.987<br>5.17-1<br>-9.15-5<br>7.065-1<br>1.169<br>1.18+0<br>7.79-2<br>1.274+0<br>1.213<br>1.22+0<br>7.42-2<br>1.206-1<br>0.556<br>1.16+0                                                                               | 9.875-1<br>1.981<br>6.68-1<br>-9.06-5<br>4.799-1<br>1.104<br>1.29+0<br>9.33-2<br>8.593-1<br>1.149<br>1.33+0<br>8.87-2<br>7.130-2<br>0.498<br>1.19+0                                                                               | 7.594-1<br>1.974<br>8.13-1<br>-8.90-5<br>3.391-1<br>1.045<br>1.37+0<br>1.09-1<br>6.035-1<br>1.090<br>1.42+0<br>1.03-1<br>4.460-2<br>0.449<br>1.22+0                                                                               | 5.983—<br>1.967<br>9.52—1<br>-8.67—<br>2.473—<br>0.990<br>1.45+0<br>1.24—1<br>4.378—<br>1.035<br>1.49+0<br>1.18—1<br>2.919—<br>0.405<br>1.24+0                                                                                                           |
| $3s_{1/2}$<br>$E_b = 393.6 \text{ eV}$<br>$3p_{1/2}$<br>$E_b = 312.4 \text{ eV}$<br>$3p_{3/2}$<br>$E_b = 300.3 \text{ eV}$<br>$3d_{3/2}$<br>$E_b = 159.6 \text{ eV}$                                                                                     | β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.613+1<br>1.991<br>-1.84-2<br>-6.34-5<br>3.202+1<br>1.614<br>6.07-2<br>4.11-3<br>6.225+1<br>1.640<br>6.73-2<br>5.87-3<br>2.933+1<br>1.177<br>4.60-1<br>7.22-2                                                                                                                                                         | 1.586+1<br>1.994<br>-8.14-2<br>-7.27-5<br>1.745+1<br>1.583<br>2.05-1<br>8.32-3<br>3.342+1<br>1.614<br>2.17-1<br>9.97-3<br>1.155+1<br>1.094<br>6.11-1<br>9.22-2                                                                      | 7.492+0<br>1.997<br>-5.44-2<br>-8.30-5<br>6.783+0<br>1.492<br>4.89-1<br>1.93-2<br>1.274+1<br>1.531<br>5.10-1<br>1.99-2<br>2.866+0<br>0.934<br>8.22-1<br>1.34-1                                                                      | 4.263+0<br>1.997<br>6.08-2<br>-8.82-5<br>3.276+0<br>1.401<br>7.21-1<br>3.26-2<br>6.070+0<br>1.443<br>7.50-1<br>3.21-2<br>1.012+0<br>0.805<br>9.56-1<br>1.75-1                                                                                                                | 2.704+0 1.995 2.07-1 -9.08-5 1.809+0 1.317 9.07-1 4.73-2 3.316+0 1.360 9.42-1 4.56-2 4.401-1 0.704 1.05+0 2.14-1                                                                                                                  | 1.844+0 1.991 3.62-1 -9.17-5 1.094+0 1.239 1.06+0 6.25-2 1.987+0 1.284 1.10+0 5.97-2 2.194-1 0.623 1.11+0 2.52-1                                                                                                                  | 1.323+0<br>1.987<br>5.17-1<br>-9.15-5<br>7.065-1<br>1.169<br>1.18+0<br>7.79-2<br>1.274+0<br>1.213<br>1.22+0<br>7.42-2<br>1.206-1<br>0.556<br>1.16+0<br>2.88-1                                                                     | 9.875-1<br>1.981<br>6.68-1<br>-9.06-5<br>4.799-1<br>1.104<br>1.29+0<br>9.33-2<br>8.593-1<br>1.149<br>1.33+0<br>8.87-2<br>7.130-2<br>0.498<br>1.19+0<br>3.21-1                                                                     | 7.594-1<br>1.974<br>8.13-1<br>-8.90-5<br>3.391-1<br>1.045<br>1.37+0<br>1.09-1<br>6.035-1<br>1.090<br>1.42+0<br>1.03-1<br>4.460-2<br>0.449<br>1.22+0<br>3.53-1                                                                     | 5.983-<br>1.967<br>9.52-1<br>-8.67-<br>2.473-<br>0.990<br>1.45+0<br>1.24-1<br>4.378-<br>1.035<br>1.49+0<br>1.18-1<br>2.919-<br>0.405<br>1.24+0<br>3.83-1                                                                                                 |
| $3s_{1/2}$<br>$E_b =$ $393.6 \text{ eV}$ $3p_{1/2}$ $E_b =$ $312.4 \text{ eV}$ $3p_{3/2}$ $E_b =$ $300.3 \text{ eV}$ $3d_{3/2}$ $E_b =$ $159.6 \text{ eV}$                                                                                               | β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.613+1<br>1.991<br>-1.84-2<br>-6.34-5<br>3.202+1<br>1.614<br>6.07-2<br>4.11-3<br>6.225+1<br>1.640<br>6.73-2<br>5.87-3<br>2.933+1<br>1.177<br>4.60-1                                                                                                                                                                   | 1.586+1<br>1.994<br>-8.14-2<br>-7.27-5<br>1.745+1<br>1.583<br>2.05-1<br>8.32-3<br>3.342+1<br>1.614<br>2.17-1<br>9.97-3<br>1.155+1<br>1.094<br>6.11-1                                                                                | 7.492+0<br>1.997<br>-5.44-2<br>-8.30-5<br>6.783+0<br>1.492<br>4.89-1<br>1.93-2<br>1.274+1<br>1.531<br>5.10-1<br>1.99-2<br>2.866+0<br>0.934<br>8.22-1                                                                                | 4.263+0<br>1.997<br>6.08-2<br>-8.82-5<br>3.276+0<br>1.401<br>7.21-1<br>3.26-2<br>6.070+0<br>1.443<br>7.50-1<br>3.21-2<br>1.012+0<br>0.805<br>9.56-1                                                                                                                          | 2.704+0<br>1.995<br>2.07-1<br>-9.08-5<br>1.809+0<br>1.317<br>9.07-1<br>4.73-2<br>3.316+0<br>1.360<br>9.42-1<br>4.56-2<br>4.401-1<br>0.704<br>1.05+0                                                                               | 1.844+0<br>1.991<br>3.62-1<br>-9.17-5<br>1.094+0<br>1.239<br>1.06+0<br>6.25-2<br>1.987+0<br>1.284<br>1.10+0<br>5.97-2<br>2.194-1<br>0.623<br>1.11+0                                                                               | 1.323+0<br>1.987<br>5.17-1<br>-9.15-5<br>7.065-1<br>1.169<br>1.18+0<br>7.79-2<br>1.274+0<br>1.213<br>1.22+0<br>7.42-2<br>1.206-1<br>0.556<br>1.16+0                                                                               | 9.875-1<br>1.981<br>6.68-1<br>-9.06-5<br>4.799-1<br>1.104<br>1.29+0<br>9.33-2<br>8.593-1<br>1.149<br>1.33+0<br>8.87-2<br>7.130-2<br>0.498<br>1.19+0                                                                               | 7.594-1<br>1.974<br>8.13-1<br>-8.90-5<br>3.391-1<br>1.045<br>1.37+0<br>1.09-1<br>6.035-1<br>1.090<br>1.42+0<br>1.03-1<br>4.460-2<br>0.449<br>1.22+0                                                                               | 5.983-<br>1.967<br>9.52-1<br>-8.67-<br>2.473-<br>0.990<br>1.45+0<br>1.24-1<br>4.378-<br>1.035<br>1.49+0<br>1.18-1<br>2.919-<br>0.405<br>1.24+0<br>3.83-1                                                                                                 |
| $3s_{1/2}$<br>$E_b = 393.6 \text{ eV}$<br>$3p_{1/2}$<br>$E_b = 312.4 \text{ eV}$<br>$3p_{3/2}$<br>$E_b = 300.3 \text{ eV}$<br>$3d_{3/2}$<br>$E_b = 159.6 \text{ eV}$<br>$3d_{5/2}$<br>$E_b = 6$                                                          | β γ δ σ β γ δ δ σ β γ δ σ β γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.613+1<br>1.991<br>-1.84-2<br>-6.34-5<br>3.202+1<br>1.614<br>6.07-2<br>4.11-3<br>6.225+1<br>1.640<br>6.73-2<br>5.87-3<br>2.933+1<br>1.177<br>4.60-1<br>7.22-2<br>4.246+1<br>1.161<br>4.61-1                                                                                                                           | 1.586+1<br>1.994<br>-8.14-2<br>-7.27-5<br>1.745+1<br>1.583<br>2.05-1<br>8.32-3<br>3.342+1<br>1.614<br>2.17-1<br>9.97-3<br>1.155+1<br>1.094<br>6.11-1<br>9.22-2<br>1.667+1<br>1.075<br>6.09-1                                        | 7.492+0 1.997 -5.44-2 -8.30-5 6.783+0 1.492 4.89-1 1.93-2 1.274+1 1.531 5.10-1 1.99-2 2.866+0 0.934 8.22-1 1.34-1 4.115+0 0.917 8.16-1                                                                                              | 4.263+0<br>1.997<br>6.08-2<br>-8.82-5<br>3.276+0<br>1.401<br>7.21-1<br>3.26-2<br>6.070+0<br>1.443<br>7.50-1<br>3.21-2<br>1.012+0<br>0.805<br>9.56-1<br>1.75-1<br>1.446+0<br>0.793<br>9.50-1                                                                                  | 2.704+0 1.995 2.07-1 -9.08-5 1.809+0 1.317 9.07-1 4.73-2 3.316+0 1.360 9.42-1 4.56-2 4.401-1 0.704 1.05+0 2.14-1 6.261-1 0.699 1.04+0                                                                                             | 1.844+0 1.991 3.62-1 -9.17-5 1.094+0 1.239 1.06+0 6.25-2 1.987+0 1.284 1.10+0 5.97-2 2.194-1 0.623 1.11+0 2.52-1 3.109-1 0.624 1.11+0                                                                                             | 1.323+0<br>1.987<br>5.17-1<br>-9.15-5<br>7.065-1<br>1.169<br>1.18+0<br>7.79-2<br>1.274+0<br>1.213<br>1.22+0<br>7.42-2<br>1.206-1<br>0.556<br>1.16+0<br>2.88-1<br>1.703-1<br>0.563<br>1.16+0                                       | 9.875-1<br>1.981<br>6.68-1<br>-9.06-5<br>4.799-1<br>1.104<br>1.29+0<br>9.33-2<br>8.593-1<br>1.149<br>1.33+0<br>8.87-2<br>7.130-2<br>0.498<br>1.19+0<br>3.21-1<br>1.003-1<br>0.512<br>1.20+0                                       | 7.594-1<br>1.974<br>8.13-1<br>-8.90-5<br>3.391-1<br>1.045<br>1.37+0<br>1.09-1<br>6.035-1<br>1.090<br>1.42+0<br>1.03-1<br>4.460-2<br>0.449<br>1.22+0<br>3.53-1<br>6.255-2<br>0.469<br>1.23+0                                       | 5.983-<br>1.967<br>9.52-1<br>-8.67-<br>2.473-<br>0.990<br>1.45+0<br>1.24-1<br>4.378-<br>1.035<br>1.49+0<br>1.18-1<br>2.919-<br>0.405<br>1.24+0<br>3.83-1<br>4.081-<br>0.430<br>1.25+0                                                                    |
| $3s_{1/2}$<br>$E_b = 393.6 \text{ eV}$<br>$3p_{1/2}$<br>$E_b = 312.4 \text{ eV}$<br>$3p_{3/2}$<br>$E_b = 300.3 \text{ eV}$<br>$3d_{3/2}$<br>$E_b = 159.6 \text{ eV}$<br>$3d_{5/2}$<br>$E_b = 157.4 \text{ eV}$                                           | β γ δ σ β γ δ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.613+1<br>1.991<br>-1.84-2<br>-6.34-5<br>3.202+1<br>1.614<br>6.07-2<br>4.11-3<br>6.225+1<br>1.640<br>6.73-2<br>5.87-3<br>2.933+1<br>1.177<br>4.60-1<br>7.22-2<br>4.246+1<br>1.161<br>4.61-1<br>7.34-2                                                                                                                 | 1.586+1<br>1.994<br>-8.14-2<br>-7.27-5<br>1.745+1<br>1.583<br>2.05-1<br>8.32-3<br>3.342+1<br>1.614<br>2.17-1<br>9.97-3<br>1.155+1<br>1.094<br>6.11-1<br>9.22-2<br>1.667+1<br>1.075<br>6.09-1<br>9.42-2                              | 7.492+0 1.997 -5.44-2 -8.30-5 6.783+0 1.492 4.89-1 1.93-2 1.274+1 1.531 5.10-1 1.99-2 2.866+0 0.934 8.22-1 1.34-1 4.115+0 0.917 8.16-1 1.37-1                                                                                       | 4.263+0<br>1.997<br>6.08-2<br>-8.82-5<br>3.276+0<br>1.401<br>7.21-1<br>3.26-2<br>6.070+0<br>1.443<br>7.50-1<br>3.21-2<br>1.012+0<br>0.805<br>9.56-1<br>1.75-1<br>1.446+0<br>0.793<br>9.50-1<br>1.79-1                                                                        | 2.704+0 1.995 2.07-1 -9.08-5 1.809+0 1.317 9.07-1 4.73-2 3.316+0 1.360 9.42-1 4.56-2 4.401-1 0.704 1.05+0 2.14-1 6.261-1 0.699 1.04+0 2.19-1                                                                                      | 1.844+0 1.991 3.62-1 -9.17-5 1.094+0 1.239 1.06+0 6.25-2 1.987+0 1.284 1.10+0 5.97-2 2.194-1 0.623 1.11+0 2.52-1 3.109-1 0.624 1.11+0 2.56-1                                                                                      | 1.323+0<br>1.987<br>5.17-1<br>-9.15-5<br>7.065-1<br>1.169<br>1.18+0<br>7.79-2<br>1.274+0<br>1.213<br>1.22+0<br>7.42-2<br>1.206-1<br>0.556<br>1.16+0<br>2.88-1<br>1.703-1<br>0.563<br>1.16+0<br>2.92-1                             | 9.875-1<br>1.981<br>6.68-1<br>-9.06-5<br>4.799-1<br>1.104<br>1.29+0<br>9.33-2<br>8.593-1<br>1.149<br>1.33+0<br>8.87-2<br>7.130-2<br>0.498<br>1.19+0<br>3.21-1<br>1.003-1<br>0.512<br>1.20+0<br>3.25-1                             | 7.594-1 1.974 8.13-1 -8.90-5 3.391-1 1.045 1.37+0 1.09-1 6.035-1 1.090 1.42+0 1.03-1 4.460-2 0.449 1.22+0 3.53-1 6.255-2 0.469 1.23+0 3.56-1                                                                                      | 5.983-<br>1.967<br>9.52-1<br>-8.67-<br>2.473-<br>0.990<br>1.45+0<br>1.24-1<br>4.378-<br>1.035<br>1.49+0<br>1.18-1<br>2.919-<br>0.405<br>1.24+0<br>3.83-1<br>4.081-<br>0.430<br>1.25+0<br>3.86-1                                                          |
| $3s_{1/2}$<br>$E_b = 393.6 \text{ eV}$<br>$3p_{1/2}$<br>$E_b = 312.4 \text{ eV}$<br>$3p_{3/2}$<br>$E_b = 300.3 \text{ eV}$<br>$3d_{3/2}$<br>$E_b = 159.6 \text{ eV}$<br>$3d_{5/2}$<br>$E_b = 157.4 \text{ eV}$                                           | β γ δ σ β γ δ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ σ β γ δ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.613+1<br>1.991<br>-1.84-2<br>-6.34-5<br>3.202+1<br>1.614<br>6.07-2<br>4.11-3<br>6.225+1<br>1.640<br>6.73-2<br>5.87-3<br>2.933+1<br>1.177<br>4.60-1<br>7.22-2<br>4.246+1<br>1.161<br>4.61-1<br>7.34-2<br>3.783+0                                                                                                      | 1.586+1<br>1.994<br>-8.14-2<br>-7.27-5<br>1.745+1<br>1.583<br>2.05-1<br>8.32-3<br>3.342+1<br>1.614<br>2.17-1<br>9.97-3<br>1.155+1<br>1.094<br>6.11-1<br>9.22-2<br>1.667+1<br>1.075<br>6.09-1<br>9.42-2<br>2.247+0                   | 7.492+0 1.997 -5.44-2 -8.30-5 6.783+0 1.492 4.89-1 1.93-2 1.274+1 1.531 5.10-1 1.99-2 2.866+0 0.934 8.22-1 1.34-1 4.115+0 0.917 8.16-1 1.37-1 1.042+0                                                                               | 4.263+0<br>1.997<br>6.08-2<br>-8.82-5<br>3.276+0<br>1.401<br>7.21-1<br>3.26-2<br>6.070+0<br>1.443<br>7.50-1<br>3.21-2<br>1.012+0<br>0.805<br>9.56-1<br>1.75-1<br>1.446+0<br>0.793<br>9.50-1<br>1.79-1<br>5.878-1                                                             | 2.704+0 1.995 2.07-1 -9.08-5 1.809+0 1.317 9.07-1 4.73-2 3.316+0 1.360 9.42-1 4.56-2 4.401-1 0.704 1.05+0 2.14-1 6.261-1 0.699 1.04+0 2.19-1 3.709-1                                                                              | 1.844+0 1.991 3.62-1 -9.17-5 1.094+0 1.239 1.06+0 6.25-2 1.987+0 1.284 1.10+0 5.97-2 2.194-1 0.623 1.11+0 2.52-1 3.109-1 0.624 1.11+0 2.56-1 2.520-1                                                                              | 1.323+0<br>1.987<br>5.17-1<br>-9.15-5<br>7.065-1<br>1.169<br>1.18+0<br>7.79-2<br>1.274+0<br>1.213<br>1.22+0<br>7.42-2<br>1.206-1<br>0.556<br>1.16+0<br>2.88-1<br>1.703-1<br>0.563<br>1.16+0<br>2.92-1<br>1.804-1                  | 9.875-1<br>1.981<br>6.68-1<br>-9.06-5<br>4.799-1<br>1.104<br>1.29+0<br>9.33-2<br>8.593-1<br>1.149<br>1.33+0<br>8.87-2<br>7.130-2<br>0.498<br>1.19+0<br>3.21-1<br>1.003-1<br>0.512<br>1.20+0<br>3.25-1<br>1.344-1                  | 7.594-1 1.974 8.13-1 -8.90-5 3.391-1 1.045 1.37+0 1.09-1 6.035-1 1.090 1.42+0 1.03-1 4.460-2 0.449 1.22+0 3.53-1 6.255-2 0.469 1.23+0 3.56-1 1.032-1                                                                              | 5.983— 1.967 9.52—1 -8.67— 2.473— 0.990 1.45+0 1.24—1 4.378— 1.035 1.49+0 1.18—1 2.919— 0.405 1.24+0 3.83—1 4.081— 0.430 1.25+0 3.86—1 8.121—                                                                                                            |
| $3s_{1/2}$<br>$E_b = 393.6 \text{ eV}$<br>$3p_{1/2}$<br>$E_b = 312.4 \text{ eV}$<br>$3p_{3/2}$<br>$E_b = 300.3 \text{ eV}$<br>$3d_{3/2}$<br>$E_b = 159.6 \text{ eV}$<br>$3d_{5/2}$<br>$E_b = 157.4 \text{ eV}$                                           | β γ δ σ β γ δ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.613+1<br>1.991<br>-1.84-2<br>-6.34-5<br>3.202+1<br>1.614<br>6.07-2<br>4.11-3<br>6.225+1<br>1.640<br>6.73-2<br>5.87-3<br>2.933+1<br>1.177<br>4.60-1<br>7.22-2<br>4.246+1<br>1.161<br>4.61-1<br>7.34-2                                                                                                                 | 1.586+1<br>1.994<br>-8.14-2<br>-7.27-5<br>1.745+1<br>1.583<br>2.05-1<br>8.32-3<br>3.342+1<br>1.614<br>2.17-1<br>9.97-3<br>1.155+1<br>1.094<br>6.11-1<br>9.22-2<br>1.667+1<br>1.075<br>6.09-1<br>9.42-2                              | 7.492+0 1.997 -5.44-2 -8.30-5 6.783+0 1.492 4.89-1 1.93-2 1.274+1 1.531 5.10-1 1.99-2 2.866+0 0.934 8.22-1 1.34-1 4.115+0 0.917 8.16-1 1.37-1                                                                                       | 4.263+0<br>1.997<br>6.08-2<br>-8.82-5<br>3.276+0<br>1.401<br>7.21-1<br>3.26-2<br>6.070+0<br>1.443<br>7.50-1<br>3.21-2<br>1.012+0<br>0.805<br>9.56-1<br>1.75-1<br>1.446+0<br>0.793<br>9.50-1<br>1.79-1                                                                        | 2.704+0 1.995 2.07-1 -9.08-5 1.809+0 1.317 9.07-1 4.73-2 3.316+0 1.360 9.42-1 4.56-2 4.401-1 0.704 1.05+0 2.14-1 6.261-1 0.699 1.04+0 2.19-1                                                                                      | 1.844+0 1.991 3.62-1 -9.17-5 1.094+0 1.239 1.06+0 6.25-2 1.987+0 1.284 1.10+0 5.97-2 2.194-1 0.623 1.11+0 2.52-1 3.109-1 0.624 1.11+0 2.56-1                                                                                      | 1.323+0<br>1.987<br>5.17-1<br>-9.15-5<br>7.065-1<br>1.169<br>1.18+0<br>7.79-2<br>1.274+0<br>1.213<br>1.22+0<br>7.42-2<br>1.206-1<br>0.556<br>1.16+0<br>2.88-1<br>1.703-1<br>0.563<br>1.16+0<br>2.92-1                             | 9.875-1<br>1.981<br>6.68-1<br>-9.06-5<br>4.799-1<br>1.104<br>1.29+0<br>9.33-2<br>8.593-1<br>1.149<br>1.33+0<br>8.87-2<br>7.130-2<br>0.498<br>1.19+0<br>3.21-1<br>1.003-1<br>0.512<br>1.20+0<br>3.25-1                             | 7.594-1 1.974 8.13-1 -8.90-5 3.391-1 1.045 1.37+0 1.09-1 6.035-1 1.090 1.42+0 1.03-1 4.460-2 0.449 1.22+0 3.53-1 6.255-2 0.469 1.23+0 3.56-1                                                                                      | 5.983— 1.967 9.52—1 -8.67— 2.473— 0.990 1.45+0 1.24—1 4.378— 1.035 1.49+0 1.18—1 2.919— 0.405 1.24+0 3.83—1 4.081— 0.430 1.25+0 3.86—1 8.121— 1.966                                                                                                      |
| $3s_{1/2}$<br>$E_b =$ $393.6 \text{ eV}$ $3p_{1/2}$ $E_b =$ $312.4 \text{ eV}$ $3p_{3/2}$ $E_b =$ $300.3 \text{ eV}$ $3d_{3/2}$ $E_b =$ $159.6 \text{ eV}$ $3d_{5/2}$ $E_b =$ $157.4 \text{ eV}$ $4s_{1/2}$ $E_b =$                                      | β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.613+1<br>1.991<br>-1.84-2<br>-6.34-5<br>3.202+1<br>1.614<br>6.07-2<br>4.11-3<br>6.225+1<br>1.640<br>6.73-2<br>5.87-3<br>2.933+1<br>1.177<br>4.60-1<br>7.22-2<br>4.246+1<br>1.161<br>4.61-1<br>7.34-2<br>3.783+0<br>1.994                                                                                             | 1.586+1<br>1.994<br>-8.14-2<br>-7.27-5<br>1.745+1<br>1.583<br>2.05-1<br>8.32-3<br>3.342+1<br>1.614<br>2.17-1<br>9.97-3<br>1.155+1<br>1.094<br>6.11-1<br>9.22-2<br>1.667+1<br>1.075<br>6.09-1<br>9.42-2<br>2.247+0<br>1.995          | 7.492+0 1.997 -5.44-2 -8.30-5 6.783+0 1.492 4.89-1 1.93-2 1.274+1 1.531 5.10-1 1.99-2 2.866+0 0.934 8.22-1 1.34-1 4.115+0 0.917 8.16-1 1.37-1 1.042+0 1.997                                                                         | 4.263+0<br>1.997<br>6.08-2<br>-8.82-5<br>3.276+0<br>1.401<br>7.21-1<br>3.26-2<br>6.070+0<br>1.443<br>7.50-1<br>3.21-2<br>1.012+0<br>0.805<br>9.56-1<br>1.75-1<br>1.446+0<br>0.793<br>9.50-1<br>1.79-1<br>5.878-1<br>1.997                                                    | 2.704+0 1.995 2.07-1 -9.08-5 1.809+0 1.317 9.07-1 4.73-2 3.316+0 1.360 9.42-1 4.56-2 4.401-1 0.704 1.05+0 2.14-1 6.261-1 0.699 1.04+0 2.19-1 3.709-1 1.994                                                                        | 1.844+0 1.991 3.62-1 -9.17-5 1.094+0 1.239 1.06+0 6.25-2 1.987+0 1.284 1.10+0 5.97-2 2.194-1 0.623 1.11+0 2.52-1 3.109-1 0.624 1.11+0 2.56-1 2.520-1 1.990                                                                        | 1.323+0 1.987 5.17-1 -9.15-5 7.065-1 1.169 1.18+0 7.79-2 1.274+0 1.213 1.22+0 7.42-2 1.206-1 0.556 1.16+0 2.88-1 1.703-1 0.563 1.16+0 2.92-1 1.804-1 1.985 5.53-1 -8.62-5                                                         | 9.875-1<br>1.981<br>6.68-1<br>-9.06-5<br>4.799-1<br>1.104<br>1.29+0<br>9.33-2<br>8.593-1<br>1.149<br>1.33+0<br>8.87-2<br>7.130-2<br>0.498<br>1.19+0<br>3.21-1<br>1.003-1<br>0.512<br>1.20+0<br>3.25-1<br>1.344-1<br>1.980         | 7.594-1 1.974 8.13-1 -8.90-5 3.391-1 1.045 1.37+0 1.09-1 6.035-1 1.090 1.42+0 1.03-1 4.460-2 0.449 1.22+0 3.53-1 6.255-2 0.469 1.23+0 3.56-1 1.032-1 1.973                                                                        | 5.983-<br>1.967<br>9.52-1<br>-8.67-<br>2.473-<br>0.990<br>1.45+0<br>1.24-1<br>4.378-<br>1.035<br>1.49+0<br>1.18-1<br>2.919-<br>0.405<br>1.24+0<br>3.83-1<br>4.081-<br>0.435<br>1.25+0<br>9.83-1<br>-8.08-                                                |
| $3s_{1/2}$ $E_b = 393.6 \text{ eV}$ $3p_{1/2}$ $E_b = 312.4 \text{ eV}$ $3p_{3/2}$ $E_b = 300.3 \text{ eV}$ $3d_{3/2}$ $E_b = 159.6 \text{ eV}$ $3d_{5/2}$ $E_b = 45.4 \text{ eV}$ $4p_{1/2}$                                                            | β γ δ σ β γ δ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.613+1<br>1.991<br>-1.84-2<br>-6.34-5<br>3.202+1<br>1.614<br>6.07-2<br>4.11-3<br>6.225+1<br>1.640<br>6.73-2<br>5.87-3<br>2.933+1<br>1.177<br>4.60-1<br>7.22-2<br>4.246+1<br>1.161<br>4.61-1<br>7.34-2<br>3.783+0<br>1.994<br>-6.29-2<br>-5.86-5<br>3.508+0                                                            | 1.586+1 1.994 -8.14-2 -7.27-5 1.745+1 1.583 2.05-1 8.32-3 3.342+1 1.614 2.17-1 9.97-3 1.155+1 1.094 6.11-1 9.22-2 1.667+1 1.075 6.09-1 9.42-2 2.247+0 1.995 -8.58-2 -6.76-5 1.901+0                                                 | 7.492+0 1.997 -5.44-2 -8.30-5 6.783+0 1.492 4.89-1 1.93-2 1.274+1 1.531 5.10-1 1.99-2 2.866+0 0.934 8.22-1 1.34-1 4.115+0 0.917 8.16-1 1.37-1 1.042+0 1.997 -2.70-2 -7.77-5 7.397-1                                                 | 4.263+0<br>1.997<br>6.08-2<br>-8.82-5<br>3.276+0<br>1.401<br>7.21-1<br>3.26-2<br>6.070+0<br>1.443<br>7.50-1<br>3.21-2<br>1.012+0<br>0.805<br>9.56-1<br>1.75-1<br>1.446+0<br>0.793<br>9.50-1<br>1.79-1<br>5.878-1<br>1.997<br>9.71-2<br>-8.36-5<br>3.582-1                    | 2.704+0 1.995 2.07-1 -9.08-5  1.809+0 1.317 9.07-1 4.73-2  3.316+0 1.360 9.42-1 4.56-2  4.401-1 0.704 1.05+0 2.14-1 6.261-1 0.699 1.04+0 2.19-1 3.709-1 1.994 2.45-1 -8.56-5 1.982-1                                              | 1.844+0 1.991 3.62-1 -9.17-5 1.094+0 1.239 1.06+0 6.25-2 1.987+0 1.284 1.10+0 5.97-2 2.194-1 0.623 1.11+0 2.52-1 3.109-1 0.624 1.11+0 2.56-1 2.520-1 1.990 4.00-1 -8.66-5 1.201-1                                                 | 1.323+0 1.987 5.17-1 -9.15-5 7.065-1 1.169 1.18+0 7.79-2 1.274+0 1.213 1.22+0 7.42-2 1.206-1 0.556 1.16+0 2.88-1 1.703-1 0.563 1.16+0 2.92-1 1.804-1 1.985 5.53-1 -8.62-5 7.767-2                                                 | 9.875-1 1.981 6.68-1 -9.06-5 4.799-1 1.104 1.29+0 9.33-2 8.593-1 1.149 1.33+0 8.87-2 7.130-2 0.498 1.19+0 3.21-1 1.003-1 0.512 1.20+0 3.25-1 1.344-1 1.980 7.02-1 -8.52-5 5.283-2                                                 | 7.594-1 1.974 8.13-1 -8.90-5 3.391-1 1.045 1.37+0 1.09-1 6.035-1 1.090 1.42+0 1.03-1 4.460-2 0.449 1.22+0 3.53-1 6.255-2 0.469 1.23+0 3.56-1 1.032-1 1.973 8.46-1 -8.31-5 3.737-2                                                 | 5.983—<br>1.967<br>9.52—1<br>-8.67—<br>2.473—<br>0.990<br>1.45+0<br>1.24—1<br>4.378—<br>1.035<br>1.49+0<br>1.18—1<br>2.919—<br>0.405<br>1.24+0<br>3.83—1<br>4.081—<br>0.430<br>1.25+0<br>3.86—1<br>8.121—<br>1.966<br>9.83—1<br>-8.08—                   |
| $3s_{1/2}$ $E_b = 393.6 \text{ eV}$ $3p_{1/2}$ $E_b = 312.4 \text{ eV}$ $3p_{3/2}$ $E_b = 300.3 \text{ eV}$ $3d_{3/2}$ $E_b = 159.6 \text{ eV}$ $4s_{1/2}$ $E_b = 45.4 \text{ eV}$                                                                       | β γ δ σ β γ δ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β σ β σ β σ β σ β σ β σ β σ β σ β σ                                                                                                                                                                                                                                                 | 1500  2.613+1 1.991 -1.84-2 -6.34-5  3.202+1 1.614 6.07-2 4.11-3  6.225+1 1.640 6.73-2 5.87-3  2.933+1 1.177 4.60-1 7.22-2  4.246+1 1.161 4.61-1 7.34-2 3.783+0 1.994 -6.29-2 -5.86-5 3.508+0 1.639                                                                                                                    | 1.586+1 1.994 -8.14-2 -7.27-5 1.745+1 1.583 2.05-1 8.32-3 3.342+1 1.614 2.17-1 9.97-3 1.155+1 1.094 6.11-1 9.22-2 1.667+1 1.075 6.09-1 9.42-2 2.247+0 1.995 -8.58-2 -6.76-5 1.901+0 1.588                                           | 7.492+0 1.997 -5.44-2 -8.30-5 6.783+0 1.492 4.89-1 1.93-2 1.274+1 1.531 5.10-1 1.99-2 2.866+0 0.934 8.22-1 1.34-1 4.115+0 0.917 8.16-1 1.37-1 1.042+0 1.997 -2.70-2 -7.77-5 7.397-1 1.486                                           | 4.263+0<br>1.997<br>6.08-2<br>-8.82-5<br>3.276+0<br>1.401<br>7.21-1<br>3.26-2<br>6.070+0<br>1.443<br>7.50-1<br>3.21-2<br>1.012+0<br>0.805<br>9.56-1<br>1.75-1<br>1.446+0<br>0.793<br>9.50-1<br>1.79-1<br>5.878-1<br>1.997<br>9.71-2<br>-8.36-5<br>3.582-1<br>1.392           | 2.704+0 1.995 2.07-1 -9.08-5 1.809+0 1.317 9.07-1 4.73-2 3.316+0 1.360 9.42-1 4.56-2 4.401-1 0.704 1.05+0 2.14-1 6.261-1 0.699 1.04+0 2.19-1 3.709-1 1.994 2.45-1 -8.56-5 1.982-1 1.307                                           | 1.844+0 1.991 3.62-1 -9.17-5 1.094+0 1.239 1.06+0 6.25-2 1.987+0 1.284 1.10+0 5.97-2 2.194-1 0.623 1.11+0 2.52-1 3.109-1 0.624 1.11+0 2.56-1 1.990 4.00-1 -8.66-5 1.201-1 1.229                                                   | 1.323+0 1.987 5.17-1 -9.15-5 7.065-1 1.169 1.18+0 7.79-2 1.274+0 1.213 1.22+0 7.42-2 1.206-1 0.556 1.16+0 2.88-1 1.703-1 0.563 1.16+0 2.92-1 1.804-1 1.985 5.53-1 -8.62-5 7.767-2 1.159                                           | 9.875-1 1.981 6.68-1 -9.06-5 4.799-1 1.104 1.29+0 9.33-2 8.593-1 1.149 1.33+0 8.87-2 7.130-2 0.498 1.19+0 3.21-1 1.003-1 0.512 1.20+0 3.25-1 1.344-1 1.980 7.02-1 -8.52-5 5.283-2 1.094                                           | 7.594-1 1.974 8.13-1 -8.90-5 3.391-1 1.045 1.37+0 1.09-1 6.035-1 1.090 1.42+0 1.03-1 4.460-2 0.449 1.22+0 3.53-1 6.255-2 0.469 1.23+0 3.56-1 1.032-1 1.973 8.46-1 -8.31-5 3.737-2 1.035                                           | 5.983—<br>1.967<br>9.52—1<br>-8.67—<br>2.473—<br>0.990<br>1.45+0<br>1.24—1<br>4.378—<br>1.035<br>1.49+0<br>1.18—1<br>0.405<br>1.24+0<br>3.83—1<br>4.081—<br>0.430<br>1.25+0<br>3.86—1<br>8.121—<br>1.966<br>9.83—1<br>-8.08—                             |
| $3s_{1/2}$ $E_b = 393.6 \text{ eV}$ $3p_{1/2}$ $E_b = 312.4 \text{ eV}$ $3p_{3/2}$ $E_b = 300.3 \text{ eV}$ $3d_{3/2}$ $E_b = 159.6 \text{ eV}$ $3d_{5/2}$ $E_b = 45.4 \text{ eV}$ $4s_{1/2}$                                                            | β γ δ σ β γ δ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.613+1<br>1.991<br>-1.84-2<br>-6.34-5<br>3.202+1<br>1.614<br>6.07-2<br>4.11-3<br>6.225+1<br>1.640<br>6.73-2<br>5.87-3<br>2.933+1<br>1.177<br>4.60-1<br>7.22-2<br>4.246+1<br>1.161<br>4.61-1<br>7.34-2<br>3.783+0<br>1.994<br>-6.29-2<br>-5.86-5<br>3.508+0                                                            | 1.586+1 1.994 -8.14-2 -7.27-5 1.745+1 1.583 2.05-1 8.32-3 3.342+1 1.614 2.17-1 9.97-3 1.155+1 1.094 6.11-1 9.22-2 1.667+1 1.075 6.09-1 9.42-2 2.247+0 1.995 -8.58-2 -6.76-5 1.901+0 1.588 2.52-1                                    | 7.492+0 1.997 -5.44-2 -8.30-5 6.783+0 1.492 4.89-1 1.93-2 1.274+1 1.531 5.10-1 1.99-2 2.866+0 0.934 8.22-1 1.34-1 4.115+0 0.917 8.16-1 1.37-1 1.042+0 1.997 -2.70-2 -7.77-5 7.397-1 1.486 5.22-1                                    | 4.263+0<br>1.997<br>6.08-2<br>-8.82-5<br>3.276+0<br>1.401<br>7.21-1<br>3.26-2<br>6.070+0<br>1.443<br>7.50-1<br>3.21-2<br>1.012+0<br>0.805<br>9.56-1<br>1.75-1<br>1.446+0<br>0.793<br>9.50-1<br>1.79-1<br>5.878-1<br>1.997<br>9.71-2<br>-8.36-5<br>3.582-1<br>1.392<br>7.45-1 | 2.704+0 1.995 2.07-1 -9.08-5 1.809+0 1.317 9.07-1 4.73-2 3.316+0 1.360 9.42-1 4.56-2 4.401-1 0.704 1.05+0 2.14-1 6.261-1 0.699 1.04+0 2.19-1 3.709-1 1.994 2.45-1 -8.56-5 1.982-1 1.307 9.24-1                                    | 1.844+0 1.991 3.62-1 -9.17-5 1.094+0 1.239 1.06+0 6.25-2 1.987+0 1.284 1.10+0 5.97-2 2.194-1 0.623 1.11+0 2.52-1 3.109-1 0.624 1.11+0 2.56-1 2.520-1 1.990 4.00-1 -8.66-5 1.201-1 1.229 1.07+0                                    | 1.323+0 1.987 5.17-1 -9.15-5 7.065-1 1.169 1.18+0 7.79-2 1.274+0 1.213 1.22+0 7.42-2 1.206-1 0.556 1.16+0 2.88-1 1.703-1 0.563 1.16+0 2.92-1 1.804-1 1.985 5.53-1 -8.62-5 7.767-2 1.159 1.19+0                                    | 9.875-1 1.981 6.68-1 -9.06-5 4.799-1 1.104 1.29+0 9.33-2 8.593-1 1.149 1.33+0 8.87-2 7.130-2 0.498 1.19+0 3.21-1 1.003-1 0.512 1.20+0 3.25-1 1.344-1 1.980 7.02-1 -8.52-5 5.283-2 1.094 1.29+0                                    | 7.594-1 1.974 8.13-1 -8.90-5 3.391-1 1.045 1.37+0 1.09-1 6.035-1 1.090 1.42+0 1.03-1 4.460-2 0.449 1.22+0 3.53-1 6.255-2 0.469 1.23+0 3.56-1 1.032-1 1.973 8.46-1 -8.31-5 3.737-2 1.035 1.38+0                                    | 5.983-1<br>1.967<br>9.52-1<br>-8.67-2<br>2.473-0.990<br>1.45+0<br>1.24-1<br>4.378-1<br>1.035<br>1.49+0<br>1.18-1<br>2.919-0.405<br>1.24+0<br>3.83-1<br>4.081-0.430<br>1.25+0<br>3.86-1<br>8.121-1<br>1.966<br>9.83-1<br>-8.08-2<br>2.729-0.981<br>1.45+0 |
| $3s_{1/2}$ $E_b = 393.6 \text{ eV}$ $3p_{1/2}$ $E_b = 312.4 \text{ eV}$ $3p_{3/2}$ $E_b = 300.3 \text{ eV}$ $3d_{3/2}$ $E_b = 159.6 \text{ eV}$ $3d_{5/2}$ $E_b = 45.4 \text{ eV}$ $4p_{1/2}$ $E_b = 25.1 \text{ eV}$                                    | β γ δ σ β γ δ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β σ β γ δ σ β γ δ σ β γ δ σ β σ β σ β σ β σ β σ β σ β σ β σ β σ                                                                                                                                                                                                                                                     | 1500  2.613+1 1.991 -1.84-2 -6.34-5  3.202+1 1.614 6.07-2 4.11-3  6.225+1 1.640 6.73-2 5.87-3  2.933+1 1.177 4.60-1 7.22-2  4.246+1 1.161 4.61-1 7.34-2 3.783+0 1.994 -6.29-2 -5.86-5  3.508+0 1.639 1.10-1                                                                                                            | 1.586+1 1.994 -8.14-2 -7.27-5 1.745+1 1.583 2.05-1 8.32-3 3.342+1 1.614 2.17-1 9.97-3 1.155+1 1.094 6.11-1 9.22-2 1.667+1 1.075 6.09-1 9.42-2 2.247+0 1.995 -8.58-2 -6.76-5 1.901+0 1.588                                           | 7.492+0 1.997 -5.44-2 -8.30-5 6.783+0 1.492 4.89-1 1.93-2 1.274+1 1.531 5.10-1 1.99-2 2.866+0 0.934 8.22-1 1.34-1 4.115+0 0.917 8.16-1 1.37-1 1.042+0 1.997 -2.70-2 -7.77-5 7.397-1 1.486                                           | 4.263+0<br>1.997<br>6.08-2<br>-8.82-5<br>3.276+0<br>1.401<br>7.21-1<br>3.26-2<br>6.070+0<br>1.443<br>7.50-1<br>3.21-2<br>1.012+0<br>0.805<br>9.56-1<br>1.75-1<br>1.446+0<br>0.793<br>9.50-1<br>1.79-1<br>5.878-1<br>1.997<br>9.71-2<br>-8.36-5<br>3.582-1<br>1.392           | 2.704+0 1.995 2.07-1 -9.08-5 1.809+0 1.317 9.07-1 4.73-2 3.316+0 1.360 9.42-1 4.56-2 4.401-1 0.704 1.05+0 2.14-1 6.261-1 0.699 1.04+0 2.19-1 3.709-1 1.994 2.45-1 -8.56-5 1.982-1 1.307                                           | 1.844+0 1.991 3.62-1 -9.17-5 1.094+0 1.239 1.06+0 6.25-2 1.987+0 1.284 1.10+0 5.97-2 2.194-1 0.623 1.11+0 2.52-1 3.109-1 0.624 1.11+0 2.56-1 1.990 4.00-1 -8.66-5 1.201-1 1.229 1.07+0 6.27-2                                     | 1.323+0 1.987 5.17-1 -9.15-5 7.065-1 1.169 1.18+0 7.79-2 1.274+0 1.213 1.22+0 7.42-2 1.206-1 0.556 1.16+0 2.88-1 1.703-1 0.563 1.16+0 2.92-1 1.804-1 1.985 5.53-1 -8.62-5 7.767-2 1.159                                           | 9.875-1 1.981 6.68-1 -9.06-5 4.799-1 1.104 1.29+0 9.33-2 8.593-1 1.149 1.33+0 8.87-2 7.130-2 0.498 1.19+0 3.21-1 1.003-1 0.512 1.20+0 3.25-1 1.344-1 1.980 7.02-1 -8.52-5 5.283-2 1.094                                           | 7.594-1 1.974 8.13-1 -8.90-5 3.391-1 1.045 1.37+0 1.09-1 6.035-1 1.090 1.42+0 1.03-1 4.460-2 0.449 1.22+0 3.53-1 6.255-2 0.469 1.23+0 3.56-1 1.032-1 1.973 8.46-1 -8.31-5 3.737-2 1.035                                           | 5.983—1.967 9.52—1 -8.67—2.473—0.990 1.45+0 1.24—1 4.378—1.035 1.49+0 1.18—1 2.919—0.405 1.24+0 3.83—1 4.081—0.430 1.25+0 3.86—1 8.121—1.966 9.83—1 -8.08—2.729—0.981 1.45+0 1.25—1                                                                      |
| $3s_{1/2}$ $E_b = 393.6 \text{ eV}$ $3p_{1/2}$ $E_b = 312.4 \text{ eV}$ $3p_{3/2}$ $E_b = 300.3 \text{ eV}$ $3d_{3/2}$ $E_b = 159.6 \text{ eV}$ $4s_{1/2}$ $E_b = 45.4 \text{ eV}$ $4p_{1/2}$ $E_b = 25.1 \text{ eV}$                                    | β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ σ β γ δ σ σ σ β γ δ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ                                                                                                                                               | 1500  2.613+1 1.991 -1.84-2 -6.34-5  3.202+1 1.614 6.07-2 4.11-3  6.225+1 1.640 6.73-2 5.87-3  2.933+1 1.177 4.60-1 7.22-2  4.246+1 1.161 4.61-1 7.34-2  3.783+0 1.994 -6.29-2 -5.86-5  3.508+0 1.639 1.10-1 3.64-3  6.828+0 1.665                                                                                     | 1.586+1 1.994 -8.14-2 -7.27-5 1.745+1 1.583 2.05-1 8.32-3 3.342+1 1.614 2.17-1 9.97-3 1.155+1 1.094 6.11-1 9.22-2 1.667+1 1.075 6.09-1 9.42-2 2.247+0 1.995 -8.58-2 -6.76-5 1.901+0 1.588 2.52-1 7.59-3 3.651+0 1.621               | 7.492+0 1.997 -5.44-2 -8.30-5 6.783+0 1.492 4.89-1 1.93-2 1.274+1 1.531 5.10-1 1.99-2 2.866+0 0.934 8.22-1 1.34-1 4.115+0 0.917 8.16-1 1.37-1 1.042+0 1.997 -2.70-2 -7.77-5 7.397-1 1.486 5.22-1 1.86-2 1.395+0 1.525               | 4.263+0 1.997 6.08-2 -8.82-5 3.276+0 1.401 7.21-1 3.26-2 6.070+0 1.443 7.50-1 3.21-2 1.012+0 0.805 9.56-1 1.75-1 1.446+0 0.793 9.50-1 1.79-1 5.878-1 1.997 9.71-2 -8.36-5 3.582-1 1.392 7.45-1 3.22-2 6.664-1 1.433                                                          | 2.704+0 1.995 2.07-1 -9.08-5 1.809+0 1.317 9.07-1 4.73-2 3.316+0 1.360 9.42-1 4.56-2 4.401-1 0.704 1.05+0 2.14-1 6.261-1 0.699 1.04+0 2.19-1 3.709-1 1.994 2.45-1 -8.56-5 1.982-1 1.307 9.24-1 4.72-2 3.649-1 1.350               | 1.844+0 1.991 3.62-1 -9.17-5 1.094+0 1.239 1.06+0 6.25-2 1.987+0 1.284 1.10+0 5.97-2 2.194-1 0.623 1.11+0 2.52-1 3.109-1 0.624 1.11+0 2.56-1 2.520-1 1.990 4.00-1 -8.66-5 1.201-1 1.229 1.07+0 6.27-2 2.191-1 1.274               | 1.323+0 1.987 5.17-1 -9.15-5 7.065-1 1.169 1.18+0 7.79-2 1.274+0 1.213 1.22+0 7.42-2 1.206-1 0.556 1.16+0 2.88-1 1.703-1 0.563 1.16+0 2.92-1 1.804-1 1.985 5.53-1 -8.62-5 7.767-2 1.159 1.19+0 7.83-2 1.407-1 1.203               | 9.875-1 1.981 6.68-1 -9.06-5 4.799-1 1.104 1.29+0 9.33-2 8.593-1 1.149 1.33+0 8.87-2 7.130-2 0.498 1.19+0 3.21-1 1.003-1 0.512 1.20+0 3.25-1 1.344-1 1.980 7.02-1 -8.52-5 5.283-2 1.094 1.29+0 9.39-2 9.504-2 1.140               | 7.594-1 1.974 8.13-1 -8.90-5 3.391-1 1.045 1.37+0 1.09-1 6.035-1 1.090 1.42+0 1.03-1 4.460-2 0.449 1.22+0 3.53-1 6.255-2 0.469 1.23+0 3.56-1 1.032-1 1.973 8.46-1 -8.31-5 3.737-2 1.035 1.38+0 1.09-1 6.683-2 1.080               | 5.983— 1.967 9.52—1 -8.67— 2.473— 0.990 1.45+0 1.24—1 4.378— 1.035 1.49+0 1.18—1 2.919— 0.405 1.24+0 3.83—1 4.081— 0.430 1.25+0 3.86—1 8.121— 1.966 9.83—1 -8.08= 2.729— 0.981 1.45+0 1.25—1 4.853—1 4.853—1                                             |
| $3s_{1/2}$ $E_b = 393.6 \text{ eV}$ $3p_{1/2}$ $E_b = 312.4 \text{ eV}$ $3p_{3/2}$ $E_b = 300.3 \text{ eV}$ $3d_{3/2}$ $E_b = 159.6 \text{ eV}$ $4s_{1/2}$ $E_b = 45.4 \text{ eV}$                                                                       | β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ σ β γ δ σ σ σ β γ δ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ | 2.613+1<br>1.991<br>-1.84-2<br>-6.34-5<br>3.202+1<br>1.614<br>6.07-2<br>4.11-3<br>6.225+1<br>1.640<br>6.73-2<br>5.87-3<br>2.933+1<br>1.177<br>4.60-1<br>7.22-2<br>4.246+1<br>1.161<br>4.61-1<br>7.34-2<br>3.783+0<br>1.994<br>-6.29-2<br>-5.86-5<br>3.508+0<br>1.639<br>1.10-1<br>3.64-3<br>6.828+0<br>1.665<br>1.16-1 | 1.586+1 1.994 -8.14-2 -7.27-5 1.745+1 1.583 2.05-1 8.32-3 3.342+1 1.614 2.17-1 9.97-3 1.155+1 1.094 6.11-1 9.22-2 1.667+1 1.075 6.09-1 9.42-2 2.247+0 1.995 -8.58-2 -6.76-5 1.901+0 1.588 2.52-1 7.59-3 3.651+0 1.621 2.64-1        | 7.492+0 1.997 -5.44-2 -8.30-5 6.783+0 1.492 4.89-1 1.93-2 1.274+1 1.531 5.10-1 1.99-2 2.866+0 0.934 8.22-1 1.34-1 4.115+0 0.917 8.16-1 1.37-1 1.042+0 1.997 -2.70-2 -7.77-5 7.397-1 1.486 5.22-1 1.395+0 1.525 5.43-1               | 4.263+0 1.997 6.08-2 -8.82-5 3.276+0 1.401 7.21-1 3.26-2 6.070+0 1.443 7.50-1 3.21-2 1.012+0 0.805 9.56-1 1.75-1 1.446+0 0.793 9.50-1 1.79-1 5.878-1 1.997 9.71-2 -8.36-5 3.582-1 1.392 7.45-1 3.22-2 6.664-1 1.433 7.73-1                                                   | 2.704+0 1.995 2.07-1 -9.08-5 1.809+0 1.317 9.07-1 4.73-2 3.316+0 1.360 9.42-1 4.56-2 4.401-1 0.704 1.05+0 2.14-1 6.261-1 0.699 1.04+0 2.19-1 3.709-1 1.994 2.45-1 -8.56-5 1.982-1 1.307 9.24-1 4.72-2 3.649-1 1.350 9.57-1        | 1.844+0 1.991 3.62-1 -9.17-5 1.094+0 1.239 1.06+0 6.25-2 1.987+0 1.284 1.10+0 5.97-2 2.194-1 0.623 1.11+0 2.52-1 3.109-1 0.624 1.11+0 2.56-1 2.520-1 1.990 4.00-1 -8.66-5 1.201-1 1.229 1.07+0 6.27-2 2.191-1 1.274 1.11+0        | 1.323+0 1.987 5.17-1 -9.15-5 7.065-1 1.169 1.18+0 7.79-2 1.274+0 1.213 1.22+0 7.42-2 1.206-1 0.556 1.16+0 2.88-1 1.703-1 0.563 1.16+0 2.92-1 1.804-1 1.985 5.53-1 -8.62-5 7.767-2 1.159 1.19+0 7.83-2 1.407-1 1.203 1.23+0        | 9.875-1 1.981 6.68-1 -9.06-5 4.799-1 1.104 1.29+0 9.33-2 8.593-1 1.149 1.33+0 8.87-2 7.130-2 0.498 1.19+0 3.21-1 1.003-1 0.512 1.20+0 3.25-1 1.344-1 1.980 7.02-1 -8.52-5 5.283-2 1.094 1.29+0 9.39-2 9.504-2 1.140 1.33+0        | 7.594-1 1.974 8.13-1 -8.90-5 3.391-1 1.045 1.37+0 1.09-1 6.035-1 1.090 1.42+0 1.03-1 4.460-2 0.449 1.22+0 3.53-1 6.255-2 0.469 1.23+0 3.56-1 1.032-1 1.973 8.46-1 -8.31-5 3.737-2 1.035 1.38+0 1.09-1 6.683-2 1.080 1.42+0        | 5.983— 1.967 9.52—1 -8.67— 2.473— 0.990 1.45+0 1.24—1 4.378— 1.035 1.49+0 1.18—1 2.919— 0.405 1.24+0 3.83—1 4.081— 0.430 1.25+0 3.86—1 8.121— 1.966 9.83—1 -8.08— 2.729— 0.981 1.45+0 1.25—1 4.853— 1.026 1.49+0                                         |
| $3s_{1/2}$ $E_b = 393.6 \text{ eV}$ $3p_{1/2}$ $E_b = 312.4 \text{ eV}$ $3p_{3/2}$ $E_b = 300.3 \text{ eV}$ $3d_{3/2}$ $E_b = 159.6 \text{ eV}$ $3d_{5/2}$ $E_b = 45.4 \text{ eV}$ $4p_{1/2}$ $E_b = 25.1 \text{ eV}$ $4p_{3/2}$ $E_b = 22.8 \text{ eV}$ | β         γ           δ         σ           β         γ           δ         σ           β         γ           δ         σ           β         γ           δ         σ           β         γ           δ         σ           β         γ           δ         σ           β         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ                                                                                                                                                                                                                                                                                                                     | 2.613+1<br>1.991<br>-1.84-2<br>-6.34-5<br>3.202+1<br>1.614<br>6.07-2<br>4.11-3<br>6.225+1<br>1.640<br>6.73-2<br>5.87-3<br>2.933+1<br>1.177<br>4.60-1<br>7.22-2<br>4.246+1<br>1.161<br>4.61-1<br>7.34-2<br>3.783+0<br>1.994<br>-6.29-2<br>-5.86-5<br>3.508+0<br>1.64-3<br>6.828+0<br>1.665<br>1.16-1<br>5.30-3          | 1.586+1 1.994 -8.14-2 -7.27-5 1.745+1 1.583 2.05-1 8.32-3 3.342+1 1.614 2.17-1 9.97-3 1.155+1 1.094 6.11-1 9.22-2 1.667+1 1.075 6.09-1 9.42-2 2.247+0 1.995 -8.58-2 -6.76-5 1.901+0 1.588 2.52-1 7.59-3 3.651+0 1.621 2.64-1 9.07-3 | 7.492+0 1.997 -5.44-2 -8.30-5 6.783+0 1.492 4.89-1 1.93-2 1.274+1 1.531 5.10-1 1.99-2 2.866+0 0.934 8.22-1 1.34-1 4.115+0 0.917 8.16-1 1.37-1 1.042+0 1.997 -2.70-2 -7.77-5 7.397-1 1.486 5.22-1 1.86-2 1.395+0 1.525 5.43-1 1.91-2 | 4.263+0 1.997 6.08-2 -8.82-5 3.276+0 1.401 7.21-1 3.26-2 6.070+0 1.443 7.50-1 3.21-2 1.012+0 0.805 9.56-1 1.75-1 1.446+0 0.793 9.50-1 1.79-1 5.878-1 1.997 9.71-2 -8.36-5 3.582-1 1.392 7.45-1 3.22-2 6.664-1 1.433 7.73-1 3.16-2                                            | 2.704+0 1.995 2.07-1 -9.08-5 1.809+0 1.317 9.07-1 4.73-2 3.316+0 1.360 9.42-1 4.56-2 4.401-1 0.704 1.05+0 2.14-1 6.261-1 0.699 1.04+0 2.19-1 3.709-1 1.994 2.45-1 -8.56-5 1.982-1 1.307 9.24-1 4.72-2 3.649-1 1.350 9.57-1 4.54-2 | 1.844+0 1.991 3.62-1 -9.17-5 1.094+0 1.239 1.06+0 6.25-2 1.987+0 1.284 1.10+0 5.97-2 2.194-1 0.623 1.11+0 2.52-1 3.109-1 0.624 1.11+0 2.56-1 2.520-1 1.990 4.00-1 -8.66-5 1.201-1 1.229 1.07+0 6.27-2 2.191-1 1.274 1.11+0 5.98-2 | 1.323+0 1.987 5.17-1 -9.15-5 7.065-1 1.169 1.18+0 7.79-2 1.274+0 1.213 1.22+0 7.42-2 1.206-1 0.556 1.16+0 2.88-1 1.703-1 0.563 1.16+0 2.92-1 1.804-1 1.985 5.53-1 -8.62-5 7.767-2 1.159 1.19+0 7.83-2 1.407-1 1.203 1.23+0 7.45-2 | 9.875-1 1.981 6.68-1 -9.06-5 4.799-1 1.104 1.29+0 9.33-2 8.593-1 1.149 1.33+0 8.87-2 7.130-2 0.498 1.19+0 3.21-1 1.003-1 0.512 1.20+0 3.25-1 1.344-1 1.980 7.02-1 -8.52-5 5.283-2 1.094 1.29+0 9.39-2 9.504-2 1.140 1.33+0 8.93-2 | 7.594-1 1.974 8.13-1 -8.90-5 3.391-1 1.045 1.37+0 1.09-1 6.035-1 1.090 1.42+0 1.03-1 4.460-2 0.449 1.22+0 3.53-1 6.255-2 0.469 1.23+0 3.56-1 1.032-1 1.973 8.46-1 -8.31-5 3.737-2 1.035 1.38+0 1.09-1 6.683-2 1.080 1.42+0 1.04-1 | 5.983— 1.967 9.52—1 —8.67— 2.473— 0.990 1.45+0 1.24—1 4.378— 1.035 1.49+0 1.18—1 2.919— 0.405 1.24+0 3.83—1 4.081— 0.430 1.25+0 3.86—1 8.121— 1.966 9.83—1 —8.08— 2.729— 0.981 1.45+0 1.25—1 4.853— 1.026 1.49+0 1.18—1                                  |
| $3s_{1/2}$ $E_b = 393.6 \text{ eV}$ $3p_{1/2}$ $E_b = 312.4 \text{ eV}$ $3p_{3/2}$ $E_b = 300.3 \text{ eV}$ $3d_{3/2}$ $E_b = 159.6 \text{ eV}$ $4s_{1/2}$ $E_b = 45.4 \text{ eV}$ $4p_{1/2}$ $E_b = 25.1 \text{ eV}$                                    | β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ σ β γ δ σ σ σ β γ δ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ | 2.613+1<br>1.991<br>-1.84-2<br>-6.34-5<br>3.202+1<br>1.614<br>6.07-2<br>4.11-3<br>6.225+1<br>1.640<br>6.73-2<br>5.87-3<br>2.933+1<br>1.177<br>4.60-1<br>7.22-2<br>4.246+1<br>1.161<br>4.61-1<br>7.34-2<br>3.783+0<br>1.994<br>-6.29-2<br>-5.86-5<br>3.508+0<br>1.639<br>1.10-1<br>3.64-3<br>6.828+0<br>1.665<br>1.16-1 | 1.586+1 1.994 -8.14-2 -7.27-5 1.745+1 1.583 2.05-1 8.32-3 3.342+1 1.614 2.17-1 9.97-3 1.155+1 1.094 6.11-1 9.22-2 1.667+1 1.075 6.09-1 9.42-2 2.247+0 1.995 -8.58-2 -6.76-5 1.901+0 1.588 2.52-1 7.59-3 3.651+0 1.621 2.64-1        | 7.492+0 1.997 -5.44-2 -8.30-5 6.783+0 1.492 4.89-1 1.93-2 1.274+1 1.531 5.10-1 1.99-2 2.866+0 0.934 8.22-1 1.34-1 4.115+0 0.917 8.16-1 1.37-1 1.042+0 1.997 -2.70-2 -7.77-5 7.397-1 1.486 5.22-1 1.395+0 1.525 5.43-1               | 4.263+0 1.997 6.08-2 -8.82-5 3.276+0 1.401 7.21-1 3.26-2 6.070+0 1.443 7.50-1 3.21-2 1.012+0 0.805 9.56-1 1.75-1 1.446+0 0.793 9.50-1 1.79-1 5.878-1 1.997 9.71-2 -8.36-5 3.582-1 1.392 7.45-1 3.22-2 6.664-1 1.433 7.73-1                                                   | 2.704+0 1.995 2.07-1 -9.08-5 1.809+0 1.317 9.07-1 4.73-2 3.316+0 1.360 9.42-1 4.56-2 4.401-1 0.704 1.05+0 2.14-1 6.261-1 0.699 1.04+0 2.19-1 3.709-1 1.994 2.45-1 -8.56-5 1.982-1 1.307 9.24-1 4.72-2 3.649-1 1.350 9.57-1        | 1.844+0 1.991 3.62-1 -9.17-5 1.094+0 1.239 1.06+0 6.25-2 1.987+0 1.284 1.10+0 5.97-2 2.194-1 0.623 1.11+0 2.52-1 3.109-1 0.624 1.11+0 2.56-1 2.520-1 1.990 4.00-1 -8.66-5 1.201-1 1.229 1.07+0 6.27-2 2.191-1 1.274 1.11+0        | 1.323+0 1.987 5.17-1 -9.15-5 7.065-1 1.169 1.18+0 7.79-2 1.274+0 1.213 1.22+0 7.42-2 1.206-1 0.556 1.16+0 2.88-1 1.703-1 0.563 1.16+0 2.92-1 1.804-1 1.985 5.53-1 -8.62-5 7.767-2 1.159 1.19+0 7.83-2 1.407-1 1.203 1.23+0        | 9.875-1 1.981 6.68-1 -9.06-5 4.799-1 1.104 1.29+0 9.33-2 8.593-1 1.149 1.33+0 8.87-2 7.130-2 0.498 1.19+0 3.21-1 1.003-1 0.512 1.20+0 3.25-1 1.344-1 1.980 7.02-1 -8.52-5 5.283-2 1.094 1.29+0 9.39-2 9.504-2 1.140 1.33+0        | 7.594-1 1.974 8.13-1 -8.90-5 3.391-1 1.045 1.37+0 1.09-1 6.035-1 1.090 1.42+0 1.03-1 4.460-2 0.449 1.22+0 3.53-1 6.255-2 0.469 1.23+0 3.56-1 1.032-1 1.973 8.46-1 -8.31-5 3.737-2 1.035 1.38+0 1.09-1 6.683-2 1.080 1.42+0        | 5.983— 1.967 9.52—1 -8.67— 2.473— 0.990 1.45+0 1.24—1 4.378— 1.035 1.49+0 1.18—1 2.919— 0.405 1.24+0 3.83—1 4.081— 0.430 1.25+0 3.86—1 8.121— 1.966 9.83—1 -8.08— 2.729— 0.981 1.45+0 1.25—1 4.853— 1.026 1.49+0                                         |

| Table 1 (contin          | ued)                    |                   |                   |                    |                      |                  |                   |                   |                  |                  |                  |
|--------------------------|-------------------------|-------------------|-------------------|--------------------|----------------------|------------------|-------------------|-------------------|------------------|------------------|------------------|
| abic 1 (contin           | δ                       | 6.84-2            | 8.96-2            | 1.33-1             | 1.75-1               | 2.15-1           | 2.52-1            | 2.88-1            | 3.21-1           | 3.53-1           | 3.83-1           |
| 5s <sub>1/2</sub>        | σ                       | 2.784-1           | 1.645-1           | 7.590-2            | 4.270-2              | 2.690-2          | 1.825-2           | 1.306-2           | 9.719-3          | 7.460-3          | 5.869-3          |
| $E_b = 6.0 \text{ eV}$   | β                       | 1.994<br>-6.55-2  | 1.995<br>-8.64-2  | 1.997<br>-2.53-2   | 1.997<br>9.98-2      | 1.994<br>2.48-1  | 1.990<br>4.02-1   | 1.985<br>5.55-1   | 1.979<br>7.03-1  | 1.973<br>8.45-1  | 1.966<br>9.81-1  |
| 0.0 6                    | $_{\delta}^{\gamma}$    | -5.78-5           | -6.69-5           | -2.33-2<br>-7.75-5 | -8.27-5              | -8.50-5          | -8.62-5           | -8.65-5           | -8.50-5          | -8.41-5          | -7.98-5          |
| Z= 40, Zr: [K            | r]4d <sub>3/2</sub> !   | 5s <sub>1/2</sub> |                   |                    |                      |                  |                   |                   |                  |                  |                  |
|                          |                         | k (eV)            |                   |                    |                      |                  |                   |                   |                  |                  |                  |
| Shell                    |                         | 1500              | 2000              | 3000               | 4000                 | 5000             | 6000              | 7000              | 8000             | 9000             | 10000            |
| 3s <sub>1/2</sub>        | σ                       | 2.770+1           | 1.689+1           | 8.025+0            | 4.586+0              | 2.919+0          | 1.995+0           | 1.436+0           | 1.073+0          | 8.267-1          | 6.524-1          |
| $E_b = 430.3 \text{ eV}$ | $\beta$ $\gamma$        | 1.990<br>7.92-4   | 1.993<br>-7.61-2  | 1.996<br>-6.85-2   | 1.997<br>3.38-2      | 1.995<br>1.71-1  | 1.992<br>3.21-1   | 1.988<br>4.72-1   | 1.982<br>6.20-1  | 1.976<br>7.63-1  | 1.969<br>9.01-1  |
| 450.5 CV                 | δ                       | -7.13-5           | -8.21-5           | -9.45 - 5          | -1.00-4              | -1.04-4          | -1.05-4           | -1.06-4           | -1.05-4          | -1.03-4          | -1.01-4          |
| $3p_{1/2}$               | σ                       | 3.462+1           | 1.907+1           | 7.518+0            | 3.665+0              | 2.037+0          | 1.238+0           | 8.029-1           | 5.472-1          | 3.878-1          | 2.836-1          |
| $E_b = 344.2 \text{ eV}$ | β                       | 1.616<br>4.02-2   | 1.590<br>1.77-1   | 1.506<br>4.58-1    | 1.418<br>6.93-1      | 1.336<br>8.83-1  | 1.261<br>1.04+0   | 1.191<br>1.17+0   | 1.128<br>1.27+0  | 1.069<br>1.37+0  | 1.015<br>1.45+0  |
| J44.2 CV                 | $\delta$                | 3.44-3            | 7.32 - 3          | 1.76-2             | 3.02-2               | 4.42-2           | 5.87-2            | 7.36-2            | 8.86-2           | 1.04-1           | 1.18-1           |
| 3p <sub>3/2</sub>        | σ                       | 6.746+1           | 3.656+1           | 1.412+1            | 6.784+0              | 3.728+0          | 2.245+0           | 1.444+0           | 9.775-1          | 6.883-1          | 5.005-1          |
| $E_b = 330.5 \text{ eV}$ | $\beta$                 | 1.642<br>4.60-2   | 1.622<br>1.89-1   | 1.546<br>4.80-1    | 1.462<br>7.23-1      | 1.381<br>9.19-1  | 1.307<br>1.08+0   | 1.238<br>1.21+0   | 1.175<br>1.32+0  | 1.117<br>1.41+0  | 1.063<br>1.49+0  |
| 550,5 CV                 | $\delta \gamma$         | 5.32-3            | 9.19-3            | 1.86-2             | 2.99-2               | 4.27-2           | 5.61-2            | 6.99-2            | 8.40-2           | 9.81-2           | 1.12-1           |
| 3d <sub>3/2</sub>        | σ                       | 3,458+1           | 1.377+1           | 3.465+0            | 1.235+0              | 5.400-1          | 2.705-1           | 1.492-1           | 8.847-2          | 5.549-2          | 3.641-2          |
| $E_b = 182.4 \text{ eV}$ | β                       | 1.190<br>4.40-1   | 1.112<br>5.96-1   | 0.957<br>8.16-1    | 0.830<br>9.58-1      | 0.728<br>1.05+0  | 0.646<br>1.12+0   | 0.578<br>1.17+0   | 0.519<br>1.21+0  | 0.468<br>1.24+0  | 0.423<br>1.26+0  |
| 102.4 EV                 | $\delta \gamma$         | 6.99-2            | 8.92-2            | 1.29-1             | 9.58 – 1<br>1.70 – 1 | 2.08-1           | 2.45-1            | 2.81-1            | 3.14–1           | 3.45-1           | 3.75-1           |
| 3d <sub>5/2</sub>        | σ                       | 4.996+1           | 1.983+1           | 4.961+0            | 1.759+0              | 7.660-1          | 3.821-1           | 2.100-1           | 1.241-1          | 7.758-2          | 5.074-2          |
| $E_b = 180.0 \text{ eV}$ | β                       | 1.174<br>4.42-1   | 1.092<br>5.95-1   | 0.938<br>8.10-1    | 0.816<br>9.51-1      | 0.720<br>1.05+0  | 0.644<br>1.12+0   | 0.583<br>1.17+0   | 0.530<br>1.21+0  | 0.486<br>1.25+0  | 0.446<br>1.27+0  |
| 160.0 EV                 | $\gamma \\ \delta$      | 7.09-2            | 9.12-2            | 1.33-1             | 1.74-1               | 2.13-1           | 2.50-1            | 2.85-1            | 3.18-1           | 3.49-1           | 3.79-1           |
| 4s <sub>1/2</sub>        | σ                       | 4.261+0           | 2.535+0           | 1.180+0            | 6.682-1              | 4.229-1          | 2.880-1           | 2.067-1           | 1.542-1          | 1.186-1          | 9.347-2          |
| $E_b = 51.3 \text{ eV}$  | β                       | 1.993             | 1.995             | 1.997<br>-4.20-2   | 1.997                | 1.995<br>2.12-1  | 1.991             | 1.986             | 1.981<br>6.58-1  | 1.975<br>8.00-1  | 1.968<br>9.36-1  |
| 31.3 eV                  | $\gamma \\ \delta$      | -5.68-2 $-6.62-5$ | -8.70-2 $-7.67-5$ | -4.20-2 $-8.80-5$  | 7.14-2 $-9.49-5$     | -9.79-5          | 3.61-1<br>-9.94-5 | 5.11-1<br>-9.93-5 | -9.88-5          | -9.68-5          | -9.49-5          |
| 4p <sub>1/2</sub>        | σ                       | 4.054+0           | 2.215+0           | 8.732-1            | 4.268-1              | 2.377-1          | 1.448-1           | 9.405-2           | 6.419-2          | 4.555-2          | 3.335-2          |
| $E_b = 29.3 \text{ eV}$  | β                       | 1.646<br>9.19-2   | 1.599<br>2.29-1   | 1.500<br>4.96-1    | 1.409<br>7.20-1      | 1.325<br>9.03-1  | 1.249<br>1.05+0   | 1.179<br>1.18+0   | 1.116<br>1.28+0  | 1.057<br>1.37+0  | 1.003<br>1.45+0  |
| 23.3 CV                  | $\delta$                | 3.03-3            | 6.65 - 3          | 1.69-2             | 2.97-2               | 4.39-2           | 5.87-2            | 7.37-2            | 8.89-2           | 1.04-1           | 1.19-1           |
| 4p <sub>3/2</sub>        | σ                       | 7.955+0           | 4.286+0           | 1.657+0            | 7.986-1              | 4.400-1          | 2.655-1           | 1.711-1           | 1.160-1          | 8.179-2          | 5.955-2          |
| $E_b = 25.7 \text{ eV}$  | $\beta$ $\gamma$        | 1.672<br>9.84-2   | 1.632<br>2.41-1   | 1.540<br>5.17-1    | 1.452<br>7.49-1      | 1.370<br>9.37-1  | 1.295<br>1.09+0   | 1.226<br>1.22+0   | 1.163<br>1.33+0  | 1.104<br>1.42+0  | 1.050<br>1.49+0  |
| 23.7 CV                  | δ                       | 4.82-3            | 8.32-3            | 1.77-2             | 2.93-2               | 4.23-2           | 5.61-2            | 7.01-2            | 8.43-2           | 9.85-2           | 1.13-1           |
| 4d <sub>3/2</sub>        | σ                       | 1.739+0           | 7.130-1           | 1.848-1            | 6.673-2              | 2.938-2          | 1.477-2           | 8.171-3           | 4.855-3          | 3.050-3          | 2.004-3          |
| $E_b = 3.0 \text{ eV}$   | $\beta$ $\gamma$        | 1.194<br>4.56-1   | 1.102<br>6.03-1   | 0.944<br>8.17-1    | 0.818<br>9.58-1      | 0.717<br>1.05+0  | 0.635<br>1.12+0   | 0.565<br>1.17+0   | 0.507<br>1.21+0  | 0.455<br>1.23+0  | 0.410<br>1.25+0  |
| 3.0 CV                   | δ                       | 6.59-2            | 8.65-2            | 1.28-1             | 1.69-1               | 2.08-1           | 2.45-1            | 2.80-1            | 3.13-1           | 3.45-1           | 3.75-1           |
| 5s <sub>1/2</sub>        | σ                       | 3.188-1           | 1.885-1           | 8.726-2            | 4.926-2              | 3.112-2          | 2.117-2           | 1.517-2           | 1.131-2          | 8.697-3          | 6.853-3          |
| $E_b = 7.0 \text{ eV}$   | $\beta$ $\gamma$        | 1.993<br>-5.99-2  | 1.995<br>-8.77-2  | 1.997<br>-4.01-2   | 1.997<br>7.43-2      | 1.995<br>2.15-1  | 1.991<br>3.64-1   | 1.986<br>5.13-1   | 1.981<br>6.58-1  | 1.974<br>7.99-1  | 1.968<br>9.34-1  |
| 7.0 € ₹                  | δ                       | -6.51-5           | -7.53-5           | -8.78-5            | -9.40-5              | -9.72-5          | -9.87-5           | -9.95-5           | -9.83-5          | -9.70-5          | -9.35-5          |
| Z= 41, Nb: [K            | (r]4d <sub>3/2</sub>    | 5s <sub>1/2</sub> |                   |                    |                      |                  |                   |                   |                  |                  |                  |
|                          |                         | k (eV)            |                   |                    |                      |                  |                   |                   |                  |                  |                  |
| Shell                    |                         | 1500              | 2000              | 3000               | 4000                 | 5000             | 6000              | 7000              | 8000             | 9000             | 10000            |
| $3s_{1/2}$               | $\sigma$                | 2.931+1           | 1.795+1           | 8.573+0            | 4.919+0              | 3.141+0          | 2.153+0<br>1.993  | 1.553+0           | 1.163+0          | 8.973-1          | 7.091-1          |
| $E_b = 468.4 \text{ eV}$ | $eta \ \gamma$          | 1.989<br>2.34-2   | 1.992<br>-6.72-2  | 1.996<br>-7.95-2   | 1.997<br>8.47-3      | 1.996<br>1.36-1  | 1.993<br>2.80—1   | 1.989<br>4.28-1   | 1.984<br>5.74-1  | 1.978<br>7.16-1  | 1.971<br>8.54-1  |
|                          | δ                       | -8.12 - 5         | -9.27 - 5         | -1.06-4            | -1.13-4              | -1.18 - 4        | -1.19 - 4         | -1.20-4           | -1.20-4          | -1.18 - 4        | -1.16-4          |
| $3p_{1/2}$               | σ                       | 3.738+1           | 2.080+1           | 8.307+0            | 4.086+0              | 2.286+0          | 1.396+0           | 9.090-1           | 6.215-1          | 4.417-1          | 3.238-1          |
| $E_b = 378.4 \text{ eV}$ | $eta \ \gamma$          | 1.617<br>2.16-2   | 1.597<br>1.49-1   | 1.520<br>4.24-1    | 1.438<br>6.63-1      | 1.358<br>8.59-1  | 1.284<br>1.02+0   | 1.215<br>1.15+0   | 1.151<br>1.26+0  | 1.092<br>1.36+0  | 1.038<br>1.44+0  |
|                          | δ                       | 2.84-3            | 6.48-3            | 1.61-2             | 2.82-2               | 4.17-2           | 5.59-2            | 7.03-2            | 8.46-2           | 9.90-2           | 1.13-1           |
| 3p <sub>3/2</sub>        | σ                       | 7.302+1           | 3.994+1           | 1.560+1            | 7.557+0              | 4.178+0          | 2.527+0           | 1.632+0           | 1.107+0          | 7.817-1          | 5.697-1          |
| $E_b = 363.0 \text{ eV}$ | $eta \ \gamma$          | 1.643<br>2.63-2   | 1.630<br>1.60-1   | 1.561<br>4.46-1    | 1.483<br>6.93-1      | 1.406<br>8.96-1  | 1.332<br>1.06+0   | 1.264<br>1.20+0   | 1.200<br>1.31+0  | 1.142<br>1.41+0  | 1.088<br>1.49+0  |
| _ 55.0 C V               | δ                       | 4.84-3            | 8.56-3            | 1.73-2             | 2.82-2               | 4.05-2           | 5.34-2            | 6.68-2            | 8.01-2           | 9.36-2           | 1.07-1           |
| 3d <sub>3/2</sub>        | σ                       | 4.074+1           | 1.637+1           | 4.171+0            | 1.498+0              | 6.589-1          | 3.313-1           | 1.834-1           | 1.091-1          | 6.858-2          | 4.509-2          |
| $E_b = 207.4 \text{ eV}$ | β                       | 1.201             | 1.130<br>5.81_1   | 0.982<br>8 10—1    | 0.855                | 0.752            | 0.666             | 0.596             | 0.536<br>1.23+0  | 0.485<br>1.26±0  | 0.439            |
| 201.4 EV                 | $\frac{\gamma}{\delta}$ | 4.21-1 $6.82-2$   | 5.81-1 $8.75-2$   | 8.10-1<br>1.27-1   | 9.59-1<br>1.65-1     | 1.06+0<br>2.03-1 | 1.13+0<br>2.39-1  | 1.19+0<br>2.73-1  | 1.23+0<br>3.06-1 | 1.26+0<br>3.37-1 | 1.28+0<br>3.67-1 |
|                          | •                       |                   | - <del>-</del>    | -                  | <u> </u>             | ,                | <u> </u>          | · •               | <del>-</del>     |                  | <u> </u>         |

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | tinued) |                   |                   |                   |                   |                   |                   |                   |                   |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.866+1<br>1.185   |         | 2.349+1<br>1.110  | 5.951+0<br>0.962  | 2.127+0<br>0.840  | 9.310-1<br>0.742  | 4.662-1<br>0.663  | 2.570-1<br>0.599  | 1.523-1<br>0.545  | 9.545-2<br>0.500  | 6.257—2<br>0.460 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.24-1             | •       | 5.81-1            | 8.04-1            | 9.52-1            | 1.05+0            | 1.13+0            | 1.18+0            | 1.23+0            | 1.26+0            | 1.29+0           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.92-2             | δ       | 8.94-2            | 1.30-1            | 1.70-1            | 2.08-1            | 2.44-1            | 2.78-1            | 3.11-1            | 3.42-1            | 3.71-1           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.690+0            |         | 2.792+0           | 1.304+0           | 7.405-1           | 4.700-1           | 3.209-1           | 2.307-1           | 1.724-1           | 1.328-1           | 1.049-           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.992<br>-4.87-2   | ,       | 1.994<br>-8.56-2  | 1.996<br>-5.49-2  | 1.997<br>4.67-2   | 1.995<br>1.79-1   | 1.992<br>3.23-1   | 1.987<br>4.69-1   | 1.982<br>6.14-1   | 1.976<br>7.54–1   | 1.970<br>8.90-1  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -7.45-5            |         | -8.57-5           | -9.88 - 5         | -1.07-4           | -1.11-4           | -1.13-4           | -1.13-4           | -1.13-4           | -1.11-4           | -1.10-           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.529+0            | σ       | 2.492+0           | 9.939-1           | 4.901-1           | 2.748-1           | 1.682-1           | 1.097-1           | 7.515-2           | 5.348-2           | 3.926-           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.653              |         | 1.609             | 1.516             | 1.428             | 1.347             | 1.272             | 1.204             | 1.140             | 1.081             | 1.027            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.44-2<br>2.50-3   | ,       | 2.05-1<br>5.85-3  | 4.67-1<br>1.53-2  | 6.93-1<br>2.75-2  | 8.81-1<br>4.12-2  | 1.04+0<br>5.56-2  | 1.16+0<br>7.03-2  | 1.27+0<br>8.50-2  | 1.37+0<br>9.95-2  | 1.44+0<br>1.14-1 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |         | 4.876+0           | 1.906+0           | 9.261-1           | 5.134-1           | 3.113-1           |                   |                   | 9.681-2           | 7.064-           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.995+0<br>1.680   |         | 1.643             | 1.557             | 1.473             | 1.394             | 3.113-1<br>1.321  | 2.014-1<br>1.253  | 1.369-1<br>1.189  | 1.131             | 1.077            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.07-2             |         | 2.16-1            | 4.88-1            | 7.23-1            | 9.17-1            | 1.08+0            | 1.21+0            | 1.32+0            | 1.41+0            | 1.49+0           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.42-3             | δ       | 7.70-3            | 1.63-2            | 2.73-2            | 3.97-2            | 5.30-2            | 6.66-2            | 8.03-2            | 9.40-2            | 1.08-1           |
| $3.2 \text{ eV}$ $\beta$ $\delta$ $6.5$ $5s_{1/2}$ $\sigma$ $2.5$ $E_b = \beta$ $1.9$ $7.0 \text{ eV}$ $\gamma$ $-1.5$ $\delta$ $-1.5$ <b>Z= 42, Mo: [Kr] <math>4d_{3/2}^4</math> <math>4d_{5/2}^1</math>  Shell <math>\frac{k(1)}{3s_{1/2}}</math> <math>\sigma</math> <math>3.1</math> <math>E_b = \beta</math> <math>1.9</math> <math>504.6 \text{ eV}</math> <math>\gamma</math> <math>4.9</math> <math>\delta</math> <math>-1.9</math> <math>\delta</math> <math>\delta</math> <math>-1.9 \text{ eV}</math> <math>\delta</math> <math>\delta</math> <math>\delta</math> <math>\delta</math> <math>\delta</math> <math>\delta</math> <math>\delta</math> <math>\delta</math> <math>\delta</math> <math>\delta</math></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.070+0            |         | 8.595-1           | 2.268-1           | 8.279-2           | 3.672-2           | 1.857-2           | 1.031-2           | 6.147-3           | 3.874-3           | 2.551-           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.212<br>4.42-1    |         | 1.124<br>5.90-1   | 0.969<br>8.11-1   | 0.844<br>9.59-1   | 0.743<br>1.06+0   | 0.659<br>1.13+0   | 0.588<br>1.19+0   | 0.528<br>1.22+0   | 0.474<br>1.25+0   | 0.428<br>1.27+0  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.42-2             |         | 8.39-2            | 1.24-1            | 1.64-1            | 2.03-1            | 2.39-1            | 2.74-1            | 3.06-1            | 3.37-1            | 3.67-1           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.893-1            | σ       | 1.711-1           | 7.943-2           | 4.500-2           | 2.852-2           | 1.944-2           | 1.396-2           | 1.043-2           | 8.027-3           | 6.333-           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.992              | ,       | 1.994             | 1.996             | 1.997             | 1.995             | 1.992             | 1.987             | 1.982             | 1.976             | 1.969            |
| Z= 42, Mo: [Kr] $4d_{3/2}^4$ $4d_{5/2}^1$ Shell $\frac{k}{15}$ $3s_{1/2}$ $\sigma$ 3.1 $E_b =$ $\beta$ 1.5 $504.6$ eV $\gamma$ 4.6 $504.6$ eV $\gamma$ 4.7 $3p_{1/2}$ $\sigma$ 4.1 $409.7$ eV $\gamma$ 6.2 $3p_{3/2}$ $\sigma$ 7.3 $E_b =$ $\beta$ 1.1 $392.3$ eV $\gamma$ 9.2 $\delta$ $\delta$ 4.2 $3d_{3/2}$ $\sigma$ 4.2 $E_b =$ $\beta$ 1.2 $303.3$ eV $\gamma$ 4.3 $\delta$ $\delta$ 6.3 $3d_{5/2}$ $\sigma$ 6.3 $4s_{1/2}$ $\sigma$ 6.3 $4s_{1/2}$ $\sigma$ 5.3 $\delta$ $\delta$ 6.3 $4p_{1/2}$ $\sigma$ 5.3 $\delta$ $\delta$ 1.3 $4p_{3/2}$ $\sigma$ 1.4 $4d_{3/2}$ $\sigma$ 2.7 $\delta$ 6.3 $\delta$ 6.3 <td>-5.29-2<br/>-7.35-5</td> <td></td> <td>-8.67-2 <math>-8.39-5</math></td> <td>-5.30-2 <math>-9.82-5</math></td> <td>5.01-2 <math>-1.06-4</math></td> <td>1.84-1<br/>-1.10-4</td> <td>3.28-1<br/>-1.12-4</td> <td>4.74-1<br/>-1.14-4</td> <td>6.16-1 <math>-1.13-4</math></td> <td>7.55-1 <math>-1.12-4</math></td> <td>8.88-1<br/>-1.09-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -5.29-2<br>-7.35-5 |         | -8.67-2 $-8.39-5$ | -5.30-2 $-9.82-5$ | 5.01-2 $-1.06-4$  | 1.84-1<br>-1.10-4 | 3.28-1<br>-1.12-4 | 4.74-1<br>-1.14-4 | 6.16-1 $-1.13-4$  | 7.55-1 $-1.12-4$  | 8.88-1<br>-1.09- |
| Shell $\frac{15}{15}$ $3s_{1/2}$ $\sigma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |         |                   | -5.62-5           | -1.00-4           | -1.10-4           | -1.12-4           | -1,14-4           | -1.13-4           | -1.12-4           | -1.03-           |
| Shell $15$ $3s_{1/2}$ $\sigma$ $3.1$ $E_b = \beta$ $1.9$ $504.6 \text{ eV}$ $\gamma$ $4.9$ $8$ $3p_{1/2}$ $\sigma$ $4.1$ $8$ $8$ $8$ $8$ $9$ $9$ $9$ $9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | k (eV)             |         |                   |                   |                   |                   |                   |                   |                   |                   |                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1500               |         | 2000              | 3000              | 4000              | 5000              | 6000              | 7000              | 8000              | 9000              | 10000            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.087+1            |         | 1.898+1           | 9.121+0           | 5.255+0           | 3.367+0           | 2.314+0           | 1.673+0           | 1.255+0           | 9.702-1           | 7.679-           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.987              |         | 1.990             | 1.995             | 1.996             | 1.996             | 1.993             | 1.990             | 1.985             | 1.979             | 1.973            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.75-2             | γ       | -5.61-2           | -8.82-2           | -1.37 - 2         | 1.05-1            | 2.41-1            | 3.85-1            | 5.28-1            | 6.69-1            | 8.05-1           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -8.86-5            |         | -1.03-4           | -1.19-4           | -1.28-4           | -1.33-4           | -1.36-4           | -1.37-4           | -1.37-4           | -1.36-4           | -1.34-           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.000+1<br>1.616   |         | 2.248+1<br>1.602  | 9.103+0<br>1.532  | 4.519+0<br>1.453  | 2.545+0<br>1.376  | 1.562+0<br>1.304  | 1.022+0<br>1.236  | 7.010-1<br>1.173  | 4.996-1<br>1.115  | 3.673-<br>1.061  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.32-3             |         | 1.22-1            | 3.92-1            | 6.32-1            | 8.31-1            | 9.97-1            | 1.13+0            | 1.25+0            | 1.35+0            | 1.43+0           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.34-3             |         | 5.61 - 3          | 1.45 - 2          | 2.59-2            | 3.89-2            | 5.27 - 2          | 6.66 - 2          | 8.06 - 2          | 9.44 - 2          | 1.08 - 1         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.837+1            |         | 4.324+1           | 1.710+1           | 8.354+0           | 4.647+0           | 2.824+0           | 1.830+0           | 1.246+0           | 8.821-1           | 6.444—           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.642<br>9.79—3    |         | 1.636<br>1.33-1   | 1.574<br>4.14-1   | 1.499<br>6.63-1   | 1.426<br>8.70-1   | 1.355<br>1.04+0   | 1.288<br>1.18+0   | 1.225<br>1.30+0   | 1.167<br>1.40+0   | 1.113<br>1.49+0  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.41-3             |         | 7.88–3            | 1.60-2            | 2.62-2            | 3.78-2            | 5.04-2            | 6.32-2            | 7.61–2            | 8.90-2            | 1.49+0           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.716+1            |         | 1.913+1           | 4.944+0           | 1.792+0           | 7.928-1           | 4.005-1           | 2.225-1           | 1.327-1           | 8.367-2           | 5.515-           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.212              |         | 1.148             | 1.005             | 0.880             | 0.776             | 0.689             | 0.617             | 0.556             | 0.503             | 0.456            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.00-1             |         | 5.64-1            | 8.01-1            | 9.58-1            | 1.07+0            | 1.14+0            | 1.20+0            | 1.24+0            | 1.27+0            | 1.30+0           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.65-2             |         | 8.50-2            | 1.23-1            | 1.61-1            | 1.97-1            | 2.32-1            | 2.66-1            | 2.99-1            | 3.30-1            | 3.59-1           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.786+1<br>1.196   |         | 2.744+1<br>1.127  | 7.048+0<br>0.983  | 2.542+0<br>0.862  | 1.119+0<br>0.763  | 5.631-1<br>0.683  | 3.116-1<br>0.617  | 1.852-1<br>0.562  | 1.163-1<br>0.516  | 7.643—:<br>0.475 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.04—1             | •       | 5.64-1            | 7.95-1            | 9.50–1            | 1.06+0            | 1.14+0            | 1.20+0            | 1.24+0            | 1.28+0            | 1.31+0           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.74-2             |         | 8.69 - 2          | 1.27 - 1          | 1.66 - 1          | 2.03 - 1          | 2.38 - 1          | 2.72 - 1          | 3.04 - 1          | 3.35 - 1          | 3.64 - 1         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.174+0            |         | 3.083+0           | 1.444+0           | 8.232-1           | 5.241-1           | 3.587-1           | 2.584-1           | 1.935-1           | 1.493-1           | 1.180-           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.991              |         | 1.993             | 1.996             | 1.996             | 1.995             | 1.992<br>2.87-1   | 1.988             | 1.983             | 1.978             | 1.971            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -4.03-2<br>-8.22-5 | ,       | -8.39-2 $-9.54-5$ | -6.60-2 $-1.11-4$ | 2.50-2 $-1.20-4$  | 1.49-1<br>-1.26-4 | -1.28-4           | 4.29-1<br>-1.29-4 | 5.71-1<br>-1.29-4 | 7.10-1 $-1.28-4$  | 8.44-1<br>-1.26- |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.134+0            |         | 2.845+0           | 1.148+0           | 5.712-1           | 3.225-1           | 1.984-1           | 1.300-1           | 8.934-2           | 6.377-2           | 4.693-           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.660              | β       | 1.618             | 1.528             | 1.443             | 1.365             | 1.292             | 1.224             | 1.162             | 1.104             | 1.050            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.86-2             | γ       | 1.82-1            | 4.39-1            | 6.66-1            | 8.57-1            | 1.02+0            | 1.15+0            | 1.26+0            | 1.36+0            | 1.44+0           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.99-3             |         | 4.98-3            | 1.37-2            | 2.51-2            | 3.82-2            | 5.22-2            | 6.64-2            | 8.07-2            | 9.49-2            | 1.09-1           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.013+1<br>1.686   |         | 5.527+0<br>1.652  | 2.183+0<br>1.571  | 1.070+0<br>1.490  | 5.967-1<br>1.414  | 3.635-1<br>1.342  | 2.361-1<br>1.276  | 1.611-1<br>1.213  | 1.142-1<br>1.155  | 8.352-<br>1.101  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.44–2             |         | 1.94-1            | 4.61-1            | 6.96-1            | 8.94-1            | 1.06+0            | 1.19+0            | 1.31+0            | 1.41+0            | 1.49+0           |
| $E_b = \beta  1.5 = 0.9 \text{ eV}$ $A_b = 0.9 \text{ eV}$ $A$ | 4.02-3             |         | 7.02-3            | 1.49-2            | 2.51-2            | 3.70-2            | 4.98-2            | 6.29-2            | 7.61-2            | 8.93-2            | 1.02-1           |
| 1.9 eV $\gamma$ 4 $\delta$ 6. $4d_{5/2}$ $\sigma$ 3 $E_b = \beta$ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.734+0            |         | 1.150+0           | 3.090-1           | 1.141-1           | 5.104-2           | 2.595-2           | 1.448-2           | 8.662-3           | 5.475-3           | 3.615-           |
| $ \begin{array}{ccc} \delta & 6. \\ 4d_{5/2} & \sigma & 3. \\ E_b = & \beta & 1. \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.227<br>1.27_1    |         | 1.142<br>5.76—1   | 0.989<br>8.02—1   | 0.866<br>9.57—1   | 0.765<br>1.07+0   | 0.680<br>1.14+0   | 0.608<br>1.20+0   | 0.546<br>1.24+0   | 0.492<br>1.27+0   | 0.444<br>1.29+0  |
| $\begin{array}{ccc} 4d_{5/2} & \sigma & 3.3 \\ E_b = & \beta & 1.3 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.27-1<br>5.17-2   |         | 5.76-1<br>8.07-2  | 8.02-1<br>1.20-1  | 9.57-1<br>1.59-1  | 1.07+0<br>1.97-1  | 1.14+0<br>2.33-1  | 1.20+0<br>2.67-1  | 1.24+0<br>2.99-1  | 3.29-1            | 3.59-1           |
| $E_b = \beta$ 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.842+0            |         | 1.609+0           | 4.292-1           | 1.576-1           | 7.012-2           | 3.549-2           | 1.972-2           | 1.175-2           | 7.401-3           | 4.871-           |
| 1.2 eV $\gamma$ 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.207              | β       | 1.119             | 0.966             | 0.848             | 0.753             | 0.675             | 0.610             | 0.553             | 0.506             | 0.463            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.29-1             | •       | 5.75-1            | 7.96-1            | 9.49-1            | 1.06+0            | 1.14+0            | 1.20+0            | 1.24+0            | 1.28+0            | 1.30+0           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.27-2             | δ       | 8.27-2            | 1.23-1            | 1.64-1<br>4.897-2 | 2.03-1<br>3.112-2 | 2.39-1<br>2.126-2 | 2.73-1            | 3.04-1            | 3.34-1<br>8.824-3 | 3.63-1           |
| $5s_{1/2} \qquad \qquad \sigma \qquad 3.$ $E_b = \qquad \qquad \beta \qquad 1.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.130-1            |         | 1.852 - 1         | 8.617 - 2         | A QU7 ')          | 2117 7            | 9 196 9           | 1.530 - 2         | 1.145 - 2         | 0 0 1/1 2         | 6.971 -          |

| Table 1 (contin          | iued)                                 |                                         |                   |                   |                     |                   |                     |                   |                   |                   |                   |
|--------------------------|---------------------------------------|-----------------------------------------|-------------------|-------------------|---------------------|-------------------|---------------------|-------------------|-------------------|-------------------|-------------------|
| 7.0 eV                   | γ<br>δ                                | -4.54-2<br>-8.13-5                      | -8.55-2 $-9.36-5$ | -6.41-2 $-1.10-4$ | 2.83-2<br>-1.19-4   | 1.54-1<br>-1.24-4 | 2.92-1<br>-1.27-4   | 4.34-1 $-1.29-4$  | 5.74-1<br>-1.29-4 | 7.10-1<br>-1.28-4 | 8.43-1 $-1.26-4$  |
| Z= 43, Tc: [K            | [r]4d <sup>4</sup> <sub>3/2</sub>     | 4d <sub>5/2</sub> 5s <sub>1/2</sub>     |                   |                   |                     |                   |                     |                   |                   |                   |                   |
|                          |                                       | k (eV)                                  |                   |                   |                     |                   |                     |                   |                   |                   |                   |
| Shell                    |                                       | 1500                                    | 2000              | 3000              | 4000                | 5000              | 6000                | 7000              | 8000              | 9000              | 10000             |
| $3s_{1/2}  E_b =$        | $\frac{\sigma}{eta}$                  | 3.241+1<br>1.986                        | 2.003+1<br>1.989  | 9.683+0<br>1.994  | 5.602+0<br>1.996    | 3.601+0<br>1.996  | 2.482+0<br>1.994    | 1.797+0<br>1.990  | 1.351+0<br>1.986  | 1.046+0<br>1.981  | 8.290-1<br>1.975  |
| 544.0 eV                 | γ                                     | 7.35 - 2                                | -4.34-2           | -9.47 - 2         | -3.36-2             | 7.56 - 2          | 2.06 - 1            | 3.44 - 1          | 4.84 - 1          | 6.21 - 1          | 7.54 - 1          |
| 2                        | δ                                     | -9.72-5                                 | -1.15-4           | -1.33-4           | -1.43-4             | -1.50-4           | -1.54-4             | -1.56-4           | -1.57-4           | -1.56-4           | -1.55-4           |
| $3p_{1/2}$ $E_b =$       | $\frac{\sigma}{eta}$                  | 4.262+1<br>1.614                        | 2.420+1<br>1.606  | 9.933+0<br>1.542  | 4.975+0<br>1.466    | 2.820+0<br>1.391  | 1.740+0<br>1.321    | 1.143+0<br>1.254  | 7.867-1<br>1.193  | 5.624-1<br>1.137  | 4.145-1<br>1.085  |
| 444.9 eV                 | γ<br>δ                                | -5.96-3 $1.93-3$                        | 9.84-2 $4.86-3$   | 3.62-1<br>1.33-2  | 6.02 - 1 $2.41 - 2$ | 8.05-1<br>3.63-2  | 9.73 - 1 $4.92 - 2$ | 1.11+0<br>6.24-2  | 1.23+0<br>7.60-2  | 1.34+0<br>8.96-2  | 1.42+0<br>1.03-1  |
| $3p_{3/2}$               | σ                                     | 8.374+1                                 | 4.663+1           | 1.866+1           | 9.192+0             | 5.143+0           | 3.140+0             | 2.043+0           | 1.395+0           | 9.904-1           | 7.252-1           |
| $E_b = 425.0 \text{ eV}$ | β<br>γ                                | 1.640<br>-4.05-3                        | 1.640<br>1.09-1   | 1.586<br>3.84-1   | 1.515<br>6.34-1     | 1.443<br>8.44-1   | 1.373<br>1.02+0     | 1.308<br>1.16+0   | 1.247<br>1.29+0   | 1.191<br>1.39+0   | 1.139<br>1.48+0   |
|                          | δ                                     | 4.05 - 3                                | 7.33-3            | 1.51-2            | 2.47 - 2            | 3.55-2            | 4.72 - 2            | 5.92-2            | 7.16-2            | 8.41-2            | 9.68 - 2          |
| $3d_{3/2}$               | σ                                     | 5.412+1                                 | 2.217+1           | 5.808+0           | 2.125+0             | 9.461-1           | 4.803-1             | 2.678-1           | 1.603-1           | 1.013-1           | 6.693-2           |
| $E_b = 256.4 \text{ eV}$ | β<br>γ                                | 1.220<br>3.78-1                         | 1.161<br>5.46-1   | 1.023<br>7.90-1   | 0.900<br>9.54-1     | 0.796<br>1.07+0   | 0.711<br>1.15+0     | 0.639<br>1.21+0   | 0.578<br>1.26+0   | 0.524<br>1.29+0   | 0.476<br>1.32+0   |
|                          | δ                                     | 6.43 - 2                                | 8.25-2            | 1.19-1            | 1.56 - 1            | 1.92 - 1          | 2.26 - 1            | 2.60 - 1          | 2.92 - 1          | 3.23-1            | 3.52 - 1          |
| 3d <sub>5/2</sub>        | σ                                     | 7.779+1<br>1.204                        | 3.175+1           | 8.267+0           | 3.008+0             | 1.333+0           | 6.740-1<br>0.702    | 3.743-1<br>0.637  | 2.231-1           | 1.406-1           | 9.255-2<br>0.492  |
| $E_b = 252.9 \text{ eV}$ | $eta \gamma$                          | 1.204<br>3.83—1                         | 1.140<br>5.47-1   | 1.000<br>7.85-1   | 0.880<br>9.45-1     | 0.782<br>1.06+0   | 0.702<br>1.14+0     | 0.637<br>1.21+0   | 0.581<br>1.26+0   | 0.534<br>1.30+0   | 0.492<br>1.33+0   |
|                          | δ                                     | 6.52-2                                  | 8.44-2            | 1.23-1            | 1.61-1              | 1.97-1            | 2.32-1              | 2.66-1            | 2.98-1            | 3.28-1            | 3.57-1            |
| $4s_{1/2}$               | $\sigma$                              | 5.741+0<br>1.990                        | 3.424+0<br>1.992  | 1.609+0<br>1.995  | 9.197-1<br>1.996    | 5.871-1<br>1.995  | 4.027-1<br>1.993    | 2.907-1<br>1.989  | 2.180-1<br>1.984  | 1.685-1<br>1.979  | 1.333-1<br>1.973  |
| $E_b = 68.8 \text{ eV}$  | $eta \ \gamma$                        | -3.18-2                                 | -8.12-2           | -7.55-2           | 5.22-3              | 1.21-1            | 2.54-1              | 3.92-1            | 5.30-1            | 6.65-1            | 7.97–1            |
|                          | δ                                     | -9.23-5                                 | -1.06-4           | -1.24-4           | -1.35-4             | -1.42-4           | -1.45-4             | -1.47 - 4         | -1.48 - 4         | -1.47 - 4         | -1.46-4           |
| $4p_{1/2}$               | $rac{\sigma}{eta}$                   | 5.829+0<br>1.666                        | 3.252+0<br>1.627  | 1.327+0<br>1.540  | 6.660-1<br>1.457    | 3.785-1<br>1.380  | 2.341-1<br>1.308    | 1.540-1<br>1.242  | 1.062-1<br>1.180  | 7.604-2<br>1.123  | 5.612-2<br>1.071  |
| $E_b = 42.8 \text{ eV}$  | γ                                     | 4.53-2                                  | 1.63-1            | 4.15-1            | 6.42-1              | 8.34-1            | 9.95-1              | 1.13+0            | 1.25+0            | 1.34+0            | 1.43+0            |
|                          | δ                                     | 1.54-3                                  | 4.30-3            | 1.25-2            | 2.33-2              | 3.57-2            | 4.88-2              | 6.24-2            | 7.59-2            | 8.97-2            | 1.03-1            |
| $4p_{3/2} E_b =$         | $\frac{\sigma}{eta}$                  | 1.149+1<br>1.692                        | 6.307+0<br>1.661  | 2.516+0<br>1.584  | 1.243+0<br>1.506    | 6.974-1<br>1.431  | 4.268-1<br>1.361    | 2.783-1<br>1.295  | 1.904-1<br>1.234  | 1.354-1<br>1.177  | 9.926-2<br>1.125  |
| 36.9 eV                  | γ                                     | 5.03 - 2                                | 1.74 - 1          | 4.37 - 1          | 6.72 - 1            | 8.72 - 1          | 1.04+0              | 1.18+0            | 1.30+0            | 1.40+0            | 1.49+0            |
|                          | δ                                     | 3.69-3                                  | 6.53-3            | 1.40-2            | 2.36-2              | 3.47-2            | 4.66-2              | 5.90-2            | 7.16-2            | 8.41-2            | 9.69-2            |
| $4d_{3/2}$ $E_b =$       | $\frac{\sigma}{eta}$                  | 3.811+0<br>1.241                        | 1.623+0<br>1.158  | 4.441-1<br>1.009  | 1.660-1<br>0.885    | 7.486-2<br>0.783  | 3.830-2<br>0.697    | 2.146-2<br>0.625  | 1.289-2<br>0.563  | 8.174-3<br>0.509  | 5.413-3<br>0.462  |
| 2.0 eV                   | γ                                     | 4.13 - 1                                | 5.64 - 1          | 7.94 - 1          | 9.54 - 1            | 1.07+0            | 1.15+0              | 1.21+0            | 1.25+0            | 1.29+0            | 1.31+0            |
| 4.1                      | δ                                     | 5.95-2                                  | 7.83-2            | 1.17-1            | 1.54-1              | 1.91-1            | 2.26-1              | 2.59-1            | 2.91-1            | 3.22-1            | 3.51-1            |
| $4d_{5/2}$ $E_b =$       | $\frac{\sigma}{eta}$                  | 5.416+0<br>1.220                        | 2.296+0<br>1.134  | 6.237-1<br>0.986  | 2.317-1<br>0.866    | 1.039-1<br>0.769  | 5.291-2<br>0.690    | 2.953-2<br>0.624  | 1.767-2<br>0.568  | 1.116-2<br>0.520  | 7.366-3<br>0.478  |
| 1.2 eV                   | γ                                     | 4.15 - 1                                | 5.63 - 1          | 7.88 - 1          | 9.46 - 1            | 1.06+0            | 1.14+0              | 1.20+0            | 1.25+0            | 1.29+0            | 1.32+0            |
| 5s <sub>1/2</sub>        | $\frac{\delta}{\sigma}$               | 6.05-2<br>4.145-1                       | 8.03-2<br>2.453-1 | 1.20-1<br>1.144-1 | 1.59-1<br>6.514-2   | 1.97-1<br>4.149-2 | 2.32-1<br>2.841-2   | 2.66-1<br>2.048-2 | 2.98-1<br>1.535-2 | 3.28-1<br>1.185-2 | 3.57-1<br>9.377-3 |
| $E_b =$                  | β                                     | 1.990                                   | 1.992             | 1.144-1           | 1.996               | 1.995             | 1.993               | 1.989             | 1.984             | 1.183-2           | 1.973             |
| 7.0 eV                   | γ                                     | -3.86-2                                 | -8.42-2           | -7.41-2           | 8.84-3              | 1.26-1            | 2.58-1              | 3.95-1            | 5.31-1            | 6.66-1            | 7.98-1            |
| Z= 44, Ru: [I            | $\frac{\delta}{\text{Cr]4d}_{3/2}^4}$ | $\frac{-9.17-5}{4d_{5/2}^3 5s_{1/2}^1}$ | -1.06-4           | -1.24-4           | -1.35-4             | -1.40-4           | -1.44-4             | -1.47-4           | -1.47-4           | -1.46-4           | -1.44-4           |
|                          |                                       | k (eV)                                  |                   |                   |                     |                   |                     |                   |                   |                   |                   |
| Shell                    |                                       | 1500                                    | 2000              | 3000              | 4000                | 5000              | 6000                | 7000              | 8000              | 9000              | 10000             |
| 3s <sub>1/2</sub>        | σ                                     | 3.404+1                                 | 2.111+1           | 1.026+1           | 5.959+0             | 3.841+0           | 2.653+0             | 1.926+0           | 1.451+0           | 1.125+0           | 8.930-1           |
| $E_b = 585.0 \text{ eV}$ | $eta \ \gamma$                        | 1.984<br>1.05-1                         | 1.988<br>-2.62-2  | 1.993<br>-9.92-2  | 1.995<br>-5.20-2    | 1.996<br>4.70-2   | 1.994<br>1.69-1     | 1.991<br>3.02-1   | 1.987<br>4.38-1   | 1.982<br>5.74-1   | 1.976<br>7.07-1   |
|                          | δ                                     | -1.03-4                                 | -1.25-4           | -1.49-4           | -1.61-4             | -1.69-4           | -1.74-4             | -1.76-4           | -1.77-4           | -1.76-4           | -1.75-4           |
| 3p <sub>1/2</sub>        | σ                                     | 4.545+1                                 | 2.605+1           | 1.082+1           | 5.466+0             | 3.118+0           | 1.934+0             | 1.275+0           | 8.808-1           | 6.314-1           | 4.664-1           |
| $E_b = 482.8 \text{ eV}$ | $\beta$ $\gamma$                      | 1.610<br>-1.61-2                        | 1.610<br>7.32-2   | 1.552<br>3.29-1   | 1.480<br>5.68-1     | 1.409<br>7.73-1   | 1.342<br>9.46-1     | 1.278<br>1.09+0   | 1.217<br>1.22+0   | 1.160<br>1.32+0   | 1.106<br>1.42+0   |
|                          | δ                                     | 1.61-3                                  | 4.08-3            | 1.17-2            | 2.16-2              | 3.32-2            | 4.61-2              | 5.95-2            | 7.29–2            | 8.61-2            | 9.92-2            |
| 3p <sub>3/2</sub>        | σ                                     | 8.966+1                                 | 5.031+1           | 2.036+1           | 1.010+1             | 5.684+0           | 3.486+0             | 2.277+0           | 1.560+0           | 1.110+0           | 8.142-1           |
| $E_b = 460.6 \text{ eV}$ | $\beta$ $\gamma$                      | 1.636<br>-1.63-2                        | 1.644<br>8.29-2   | 1.597<br>3.51-1   | 1.530<br>6.00-1     | 1.462<br>8.13-1   | 1.397<br>9.94-1     | 1.334<br>1.15+0   | 1.274<br>1.27+0   | 1.217<br>1.38+0   | 1.164<br>1.48+0   |
|                          | δ                                     | 3.70-3                                  | 6.71-3            | 1.38-2            | 2.25-2              | 3.27-2            | 4.43-2              | 5.64-2            | 6.86-2            | 8.07-2            | 9.28-2            |
| $3d_{3/2}$               | σ                                     | 6.228+1                                 | 2.570+1           | 6.808+0           | 2.511+0             | 1.125+0           | 5.732-1             | 3.206-1           | 1.924-1           | 1.219-1           | 8.069-2           |
| $E_b = 283.6 \text{ eV}$ | β                                     | 1.227<br>3.53-1                         | 1.177<br>5.24-1   | 1.046<br>7.78-1   | 0.927<br>9.51-1     | 0.825<br>1.07+0   | 0.736<br>1.16+0     | 0.661<br>1.22+0   | 0.596<br>1.27+0   | 0.540<br>1.31+0   | 0.492<br>1.34+0   |
| 203.0 (7                 | $_{\delta}^{\gamma}$                  | 6.27-2                                  | 7.98-2            | 1.15-1            | 1.52-1              | 1.87-1            | 2.21-1              | 2.53-1            | 2.84-1            | 3.14–1            | 3.43-1            |
|                          |                                       |                                         |                   |                   |                     |                   |                     |                   |                   |                   |                   |

| Tab | nle 1 | l (c | nnt | inı | ed) |
|-----|-------|------|-----|-----|-----|

| 24                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                            |                                                                                                                                                                                               |                                                                                                                                                                                               |                                                                                                                                                                                                                                                          |                                                                                                                                                                                               |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $3d_{5/2}$                                                                                                                                                                                                | $\sigma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.966+1                                                                                                                                                                                                                     | 3.685+1                                                                                                                                                                                                                                                   | 9.703+0                                                                                                                                                                                                                    | 3.559+0                                                                                                                                                                                                                    | 1.587+0                                                                                                                                                                                       | 8.052 - 1                                                                                                                                                                                     | 4.485 - 1                                                                                                                                                                                                                                                | 2.681 - 1                                                                                                                                                                                     | 1.692 - 1                                                                                                                                                                                     | 1.117-1                                                                                                                                                                                                                                                                     |
| $E_b =$                                                                                                                                                                                                   | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.213                                                                                                                                                                                                                       | 1.155                                                                                                                                                                                                                                                     | 1.021                                                                                                                                                                                                                      | 0.905                                                                                                                                                                                                                      | 0.807                                                                                                                                                                                         | 0.725                                                                                                                                                                                         | 0.656                                                                                                                                                                                                                                                    | 0.597                                                                                                                                                                                         | 0.548                                                                                                                                                                                         | 0.505                                                                                                                                                                                                                                                                       |
| 279.4 eV                                                                                                                                                                                                  | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.60 - 1                                                                                                                                                                                                                    | 5.27 - 1                                                                                                                                                                                                                                                  | 7.73 - 1                                                                                                                                                                                                                   | 9.42 - 1                                                                                                                                                                                                                   | 1.06+0                                                                                                                                                                                        | 1.15+0                                                                                                                                                                                        | 1.22+0                                                                                                                                                                                                                                                   | 1.27+0                                                                                                                                                                                        | 1.31+0                                                                                                                                                                                        | 1.34+0                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                           | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.34-2                                                                                                                                                                                                                      | 8.15-2                                                                                                                                                                                                                                                    | 1.19 - 1                                                                                                                                                                                                                   | 1.57 - 1                                                                                                                                                                                                                   | 1.93-1                                                                                                                                                                                        | 2.28 - 1                                                                                                                                                                                      | 2.60-1                                                                                                                                                                                                                                                   | 2.91 - 1                                                                                                                                                                                      | 3.21 - 1                                                                                                                                                                                      | 3.49 - 1                                                                                                                                                                                                                                                                    |
| 4s <sub>1/2</sub>                                                                                                                                                                                         | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.187+0                                                                                                                                                                                                                     | 3.692+0                                                                                                                                                                                                                                                   | 1.738+0                                                                                                                                                                                                                    | 9.963 - 1                                                                                                                                                                                                                  | 6.375 - 1                                                                                                                                                                                     | 4.383 - 1                                                                                                                                                                                     | 3.170 - 1                                                                                                                                                                                                                                                | 2.382 - 1                                                                                                                                                                                     | 1.843 - 1                                                                                                                                                                                     | 1.461 - 1                                                                                                                                                                                                                                                                   |
| $E_b =$                                                                                                                                                                                                   | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.989                                                                                                                                                                                                                       | 1.991                                                                                                                                                                                                                                                     | 1.994                                                                                                                                                                                                                      | 1.996                                                                                                                                                                                                                      | 1.995                                                                                                                                                                                         | 1.993                                                                                                                                                                                         | 1.990                                                                                                                                                                                                                                                    | 1.985                                                                                                                                                                                         | 1.980                                                                                                                                                                                         | 1.975                                                                                                                                                                                                                                                                       |
| 74.9 eV                                                                                                                                                                                                   | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -2.10-2                                                                                                                                                                                                                     | -7.75 - 2                                                                                                                                                                                                                                                 | -8.41-2                                                                                                                                                                                                                    | -1.36-2                                                                                                                                                                                                                    | 9.37 - 2                                                                                                                                                                                      | 2.19 - 1                                                                                                                                                                                      | 3.51 - 1                                                                                                                                                                                                                                                 | 4.87 - 1                                                                                                                                                                                      | 6.21 - 1                                                                                                                                                                                      | 7.52 - 1                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                           | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.00 - 4                                                                                                                                                                                                                   | -1.18 - 4                                                                                                                                                                                                                                                 | -1.39 - 4                                                                                                                                                                                                                  | -1.52 - 4                                                                                                                                                                                                                  | -1.60 - 4                                                                                                                                                                                     | -1.64 - 4                                                                                                                                                                                     | -1.66-4                                                                                                                                                                                                                                                  | -1.67 - 4                                                                                                                                                                                     | -1.66-4                                                                                                                                                                                       | -1.66-4                                                                                                                                                                                                                                                                     |
| 4p <sub>1/2</sub>                                                                                                                                                                                         | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.406+0                                                                                                                                                                                                                     | 3.595+0                                                                                                                                                                                                                                                   | 1.482+0                                                                                                                                                                                                                    | 7.494-1                                                                                                                                                                                                                    | 4.286-1                                                                                                                                                                                       | 2.665-1                                                                                                                                                                                       | 1.760-1                                                                                                                                                                                                                                                  | 1.218-1                                                                                                                                                                                       | 8.747-2                                                                                                                                                                                       | 6.471-2                                                                                                                                                                                                                                                                     |
| $E_b =$                                                                                                                                                                                                   | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.671                                                                                                                                                                                                                       | 1.635                                                                                                                                                                                                                                                     | 1.552                                                                                                                                                                                                                      | 1.471                                                                                                                                                                                                                      | 1.397                                                                                                                                                                                         | 1.329                                                                                                                                                                                         | 1.264                                                                                                                                                                                                                                                    | 1.204                                                                                                                                                                                         | 1.147                                                                                                                                                                                         | 1.093                                                                                                                                                                                                                                                                       |
| 47.0 eV                                                                                                                                                                                                   | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.10-2                                                                                                                                                                                                                      | 1.42 - 1                                                                                                                                                                                                                                                  | 3.88 - 1                                                                                                                                                                                                                   | 6.12 - 1                                                                                                                                                                                                                   | 8.06 - 1                                                                                                                                                                                      | 9.72 - 1                                                                                                                                                                                      | 1.11+0                                                                                                                                                                                                                                                   | 1.23+0                                                                                                                                                                                        | 1.33+0                                                                                                                                                                                        | 1.42+0                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                           | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.09 - 3                                                                                                                                                                                                                    | 3.49 - 3                                                                                                                                                                                                                                                  | 1.08 - 2                                                                                                                                                                                                                   | 2.08 - 2                                                                                                                                                                                                                   | 3.26 - 2                                                                                                                                                                                      | 4.56 - 2                                                                                                                                                                                      | 5.91 - 2                                                                                                                                                                                                                                                 | 7.27 - 2                                                                                                                                                                                      | 8.61 - 2                                                                                                                                                                                      | 9.93 - 2                                                                                                                                                                                                                                                                    |
| 4p <sub>3/2</sub>                                                                                                                                                                                         | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.255+1                                                                                                                                                                                                                     | 6.920+0                                                                                                                                                                                                                                                   | 2.786+0                                                                                                                                                                                                                    | 1.386+0                                                                                                                                                                                                                    | 7.822-1                                                                                                                                                                                       | 4.811-1                                                                                                                                                                                       | 3.149-1                                                                                                                                                                                                                                                  | 2.161-1                                                                                                                                                                                       | 1.540-1                                                                                                                                                                                       | 1.132-1                                                                                                                                                                                                                                                                     |
| $E_b =$                                                                                                                                                                                                   | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.697                                                                                                                                                                                                                       | 1.670                                                                                                                                                                                                                                                     | 1.597                                                                                                                                                                                                                      | 1.521                                                                                                                                                                                                                      | 1.450                                                                                                                                                                                         | 1.383                                                                                                                                                                                         | 1.320                                                                                                                                                                                                                                                    | 1.260                                                                                                                                                                                         | 1.203                                                                                                                                                                                         | 1.151                                                                                                                                                                                                                                                                       |
| 41.2 eV                                                                                                                                                                                                   | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.53 - 2                                                                                                                                                                                                                    | 1.52 - 1                                                                                                                                                                                                                                                  | 4.09 - 1                                                                                                                                                                                                                   | 6.44 - 1                                                                                                                                                                                                                   | 8.45 - 1                                                                                                                                                                                      | 1.02+0                                                                                                                                                                                        | 1.16+0                                                                                                                                                                                                                                                   | 1.29+0                                                                                                                                                                                        | 1.39+0                                                                                                                                                                                        | 1.48+0                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                           | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.34 - 3                                                                                                                                                                                                                    | 5.92 - 3                                                                                                                                                                                                                                                  | 1.26 - 2                                                                                                                                                                                                                   | 2.14 - 2                                                                                                                                                                                                                   | 3.18 - 2                                                                                                                                                                                      | 4.35 - 2                                                                                                                                                                                      | 5.58 - 2                                                                                                                                                                                                                                                 | 6.83 - 2                                                                                                                                                                                      | 8.06 - 2                                                                                                                                                                                      | 9.30 - 2                                                                                                                                                                                                                                                                    |
| 4d <sub>3/2</sub>                                                                                                                                                                                         | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.293+0                                                                                                                                                                                                                     | 1.846+0                                                                                                                                                                                                                                                   | 5.130-1                                                                                                                                                                                                                    | 1.939-1                                                                                                                                                                                                                    | 8.808-2                                                                                                                                                                                       | 4.532-2                                                                                                                                                                                       | 2.551-2                                                                                                                                                                                                                                                  | 1.537-2                                                                                                                                                                                       | 9.771-3                                                                                                                                                                                       | 6.486-3                                                                                                                                                                                                                                                                     |
| $E_b =$                                                                                                                                                                                                   | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.256                                                                                                                                                                                                                       | 1.175                                                                                                                                                                                                                                                     | 1.028                                                                                                                                                                                                                      | 0.907                                                                                                                                                                                                                      | 0.808                                                                                                                                                                                         | 0.723                                                                                                                                                                                         | 0.650                                                                                                                                                                                                                                                    | 0.585                                                                                                                                                                                         | 0.529                                                                                                                                                                                         | 0.479                                                                                                                                                                                                                                                                       |
| 2.4 eV                                                                                                                                                                                                    | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.95 - 1                                                                                                                                                                                                                    | 5.48 - 1                                                                                                                                                                                                                                                  | 7.83 - 1                                                                                                                                                                                                                   | 9.49 - 1                                                                                                                                                                                                                   | 1.07+0                                                                                                                                                                                        | 1.16+0                                                                                                                                                                                        | 1.22+0                                                                                                                                                                                                                                                   | 1.27+0                                                                                                                                                                                        | 1.31+0                                                                                                                                                                                        | 1.33+0                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                           | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.69 - 2                                                                                                                                                                                                                    | 7.49 - 2                                                                                                                                                                                                                                                  | 1.12 - 1                                                                                                                                                                                                                   | 1.49 - 1                                                                                                                                                                                                                   | 1.86 - 1                                                                                                                                                                                      | 2.21 - 1                                                                                                                                                                                      | 2.54 - 1                                                                                                                                                                                                                                                 | 2.85 - 1                                                                                                                                                                                      | 3.15 - 1                                                                                                                                                                                      | 3.43 - 1                                                                                                                                                                                                                                                                    |
| 4d <sub>5/2</sub>                                                                                                                                                                                         | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.075+0                                                                                                                                                                                                                     | 2.600+0                                                                                                                                                                                                                                                   | 7.170-1                                                                                                                                                                                                                    | 2.693-1                                                                                                                                                                                                                    | 1.217-1                                                                                                                                                                                       | 6.231-2                                                                                                                                                                                       | 3.492-2                                                                                                                                                                                                                                                  | 2.096-2                                                                                                                                                                                       | 1.327-2                                                                                                                                                                                       | 8.780-3                                                                                                                                                                                                                                                                     |
| $E_b =$                                                                                                                                                                                                   | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.235                                                                                                                                                                                                                       | 1.150                                                                                                                                                                                                                                                     | 1.002                                                                                                                                                                                                                      | 0.885                                                                                                                                                                                                                      | 0.791                                                                                                                                                                                         | 0.713                                                                                                                                                                                         | 0.646                                                                                                                                                                                                                                                    | 0.587                                                                                                                                                                                         | 0.538                                                                                                                                                                                         | 0.493                                                                                                                                                                                                                                                                       |
| 1.8 eV                                                                                                                                                                                                    | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.99-1                                                                                                                                                                                                                      | 5.49-1                                                                                                                                                                                                                                                    | 7.77-1                                                                                                                                                                                                                     | 9.41-1                                                                                                                                                                                                                     | 1.06+0                                                                                                                                                                                        | 1.15+0                                                                                                                                                                                        | 1.22+0                                                                                                                                                                                                                                                   | 1.27+0                                                                                                                                                                                        | 1.31+0                                                                                                                                                                                        | 1.34+0                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                           | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.78 - 2                                                                                                                                                                                                                    | 7.68-2                                                                                                                                                                                                                                                    | 1.16-1                                                                                                                                                                                                                     | 1.54-1                                                                                                                                                                                                                     | 1.92 - 1                                                                                                                                                                                      | 2.27 - 1                                                                                                                                                                                      | 2.60 - 1                                                                                                                                                                                                                                                 | 2.92 - 1                                                                                                                                                                                      | 3.21 - 1                                                                                                                                                                                      | 3.49 - 1                                                                                                                                                                                                                                                                    |
| 5s <sub>1/2</sub>                                                                                                                                                                                         | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.529-1                                                                                                                                                                                                                     | 2.089-1                                                                                                                                                                                                                                                   | 9.754-2                                                                                                                                                                                                                    | 5.571-2                                                                                                                                                                                                                    | 3.559-2                                                                                                                                                                                       | 2.443-2                                                                                                                                                                                       | 1.765-2                                                                                                                                                                                                                                                  | 1.324-2                                                                                                                                                                                       | 1.024-2                                                                                                                                                                                       | 8.109-3                                                                                                                                                                                                                                                                     |
| E <sub>b</sub> =                                                                                                                                                                                          | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.989                                                                                                                                                                                                                       | 1.991                                                                                                                                                                                                                                                     | 1.994                                                                                                                                                                                                                      | 1.996                                                                                                                                                                                                                      | 1.995                                                                                                                                                                                         | 1.993                                                                                                                                                                                         | 1.990                                                                                                                                                                                                                                                    | 1.985                                                                                                                                                                                         | 1.980                                                                                                                                                                                         | 1.974                                                                                                                                                                                                                                                                       |
| $E_b = 7.0 \text{ eV}$                                                                                                                                                                                    | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -2.88-2                                                                                                                                                                                                                     | -8.06-2                                                                                                                                                                                                                                                   | -8.21-2                                                                                                                                                                                                                    | -9.93-3                                                                                                                                                                                                                    | 9.86-2                                                                                                                                                                                        | 2.25-1                                                                                                                                                                                        | 3.59-1                                                                                                                                                                                                                                                   | 4.93-1                                                                                                                                                                                        | 6.24-1                                                                                                                                                                                        | 7.53-1                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                           | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -9.95-5                                                                                                                                                                                                                     | -1.16-4                                                                                                                                                                                                                                                   | -1.37 - 4                                                                                                                                                                                                                  | -1.49 - 4                                                                                                                                                                                                                  | -1.57 - 4                                                                                                                                                                                     | -1.62 - 4                                                                                                                                                                                     | -1.65-4                                                                                                                                                                                                                                                  | -1.67 - 4                                                                                                                                                                                     | -1.67 - 4                                                                                                                                                                                     | -1.66-4                                                                                                                                                                                                                                                                     |
| Z= 45, Rh: [K                                                                                                                                                                                             | 7-14-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                            |                                                                                                                                                                                               |                                                                                                                                                                                               |                                                                                                                                                                                                                                                          |                                                                                                                                                                                               |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                             |
| Z= 45, KII: [N                                                                                                                                                                                            | 17 J4u <sub>3/2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                            |                                                                                                                                                                                               |                                                                                                                                                                                               |                                                                                                                                                                                                                                                          |                                                                                                                                                                                               |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | k (eV)                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                            |                                                                                                                                                                                               |                                                                                                                                                                                               |                                                                                                                                                                                                                                                          |                                                                                                                                                                                               |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                             |
| Shell                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1500                                                                                                                                                                                                                        | 2000                                                                                                                                                                                                                                                      | 3000                                                                                                                                                                                                                       | 4000                                                                                                                                                                                                                       | 5000                                                                                                                                                                                          | 6000                                                                                                                                                                                          | 7000                                                                                                                                                                                                                                                     | 8000                                                                                                                                                                                          | 9000                                                                                                                                                                                          | 10000                                                                                                                                                                                                                                                                       |
| 3s <sub>1/2</sub>                                                                                                                                                                                         | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.561+1                                                                                                                                                                                                                     | 2.219+1                                                                                                                                                                                                                                                   | 1.085+1                                                                                                                                                                                                                    | 6.322+0                                                                                                                                                                                                                    | 4.087+0                                                                                                                                                                                       | 2.830+0                                                                                                                                                                                       | 2.058+0                                                                                                                                                                                                                                                  | 1.553+0                                                                                                                                                                                       | 1.206+0                                                                                                                                                                                       | 9.589-1                                                                                                                                                                                                                                                                     |
| $E_b =$                                                                                                                                                                                                   | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.983                                                                                                                                                                                                                       | 1.986                                                                                                                                                                                                                                                     | 1.991                                                                                                                                                                                                                      | 1.994                                                                                                                                                                                                                      | 1.995                                                                                                                                                                                         | 1.994                                                                                                                                                                                         | 1.992                                                                                                                                                                                                                                                    | 1.988                                                                                                                                                                                         | 1.983                                                                                                                                                                                         | 1.978                                                                                                                                                                                                                                                                       |
| 627.1 eV                                                                                                                                                                                                  | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.38-1                                                                                                                                                                                                                      | -7.42 - 3                                                                                                                                                                                                                                                 | -1.01-1                                                                                                                                                                                                                    | -6.79-2                                                                                                                                                                                                                    | 2.11-2                                                                                                                                                                                        | 1.36-1                                                                                                                                                                                        | 2.62-1                                                                                                                                                                                                                                                   | 3.94-1                                                                                                                                                                                        | 5.27-1                                                                                                                                                                                        | 6.59-1                                                                                                                                                                                                                                                                      |
| 02/// 07                                                                                                                                                                                                  | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.11-4                                                                                                                                                                                                                     | -1.38-4                                                                                                                                                                                                                                                   | -1.65-4                                                                                                                                                                                                                    | -1.81-4                                                                                                                                                                                                                    | -1.90-4                                                                                                                                                                                       | -1.96-4                                                                                                                                                                                       | -1.99-4                                                                                                                                                                                                                                                  | -2.01-4                                                                                                                                                                                       | -2.00-4                                                                                                                                                                                       | -2.00-4                                                                                                                                                                                                                                                                     |
| 3p <sub>1/2</sub>                                                                                                                                                                                         | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.816+1                                                                                                                                                                                                                     | 2.788+1                                                                                                                                                                                                                                                   | 1.173+1                                                                                                                                                                                                                    | 5.975+0                                                                                                                                                                                                                    | 3.430+0                                                                                                                                                                                       | 2.138+0                                                                                                                                                                                       | 1.415+0                                                                                                                                                                                                                                                  | 9.809-1                                                                                                                                                                                       | 7.052-1                                                                                                                                                                                       | 5.223-1                                                                                                                                                                                                                                                                     |
| $E_b =$                                                                                                                                                                                                   | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.604                                                                                                                                                                                                                       | 1.612                                                                                                                                                                                                                                                     | 1.562                                                                                                                                                                                                                      | 1.493                                                                                                                                                                                                                      | 1.424                                                                                                                                                                                         | 1.359                                                                                                                                                                                         | 1.297                                                                                                                                                                                                                                                    | 1.238                                                                                                                                                                                         | 1.182                                                                                                                                                                                         | 1.129                                                                                                                                                                                                                                                                       |
| 521.0 eV                                                                                                                                                                                                  | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -2.18-2                                                                                                                                                                                                                     | 5.17-2                                                                                                                                                                                                                                                    | 2.98-1                                                                                                                                                                                                                     | 5.37-1                                                                                                                                                                                                                     | 7.43-1                                                                                                                                                                                        | 9.19-1                                                                                                                                                                                        | 1.07+0                                                                                                                                                                                                                                                   | 1.20+0                                                                                                                                                                                        | 1.31+0                                                                                                                                                                                        | 1.40+0                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                            |                                                                                                                                                                                               |                                                                                                                                                                                               |                                                                                                                                                                                                                                                          |                                                                                                                                                                                               |                                                                                                                                                                                               | 9.49-2                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                           | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.42 - 3                                                                                                                                                                                                                    | 3.44 - 3                                                                                                                                                                                                                                                  | 1.05 - 2                                                                                                                                                                                                                   | 1.98 - 2                                                                                                                                                                                                                   | 3.07 - 2                                                                                                                                                                                      | 4.30 - 2                                                                                                                                                                                      | 5.59-2                                                                                                                                                                                                                                                   | 6.91-2                                                                                                                                                                                        | 8.22-2                                                                                                                                                                                        | 9.49-2                                                                                                                                                                                                                                                                      |
| 3n                                                                                                                                                                                                        | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.42-3                                                                                                                                                                                                                      | 3.44-3<br>5.308+1                                                                                                                                                                                                                                         | 1.05-2                                                                                                                                                                                                                     | 1.98-2                                                                                                                                                                                                                     | 3.07-2<br>6.248+0                                                                                                                                                                             | 4.30-2<br>3.849+0                                                                                                                                                                             | 5.59-2<br>2.523+0                                                                                                                                                                                                                                        | 6.91-2                                                                                                                                                                                        | 8.22-2                                                                                                                                                                                        |                                                                                                                                                                                                                                                                             |
| $3p_{3/2}$                                                                                                                                                                                                | $\frac{\delta}{\sigma}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.540+1                                                                                                                                                                                                                     | 5.398+1                                                                                                                                                                                                                                                   | 2.209+1                                                                                                                                                                                                                    | 1.104+1                                                                                                                                                                                                                    | 6.248+0                                                                                                                                                                                       | 3.849+0                                                                                                                                                                                       | 2.523+0                                                                                                                                                                                                                                                  | 1.734+0                                                                                                                                                                                       | 1.237+0                                                                                                                                                                                       | 9.094-1                                                                                                                                                                                                                                                                     |
| $E_b =$                                                                                                                                                                                                   | $\frac{\delta}{\sigma}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.540+1<br>1.630                                                                                                                                                                                                            | 5.398+1<br>1.647                                                                                                                                                                                                                                          | 2.209+1<br>1.607                                                                                                                                                                                                           | 1.104+1<br>1.544                                                                                                                                                                                                           | 6.248+0<br>1.479                                                                                                                                                                              | 3.849+0<br>1.416                                                                                                                                                                              | 2.523+0<br>1.355                                                                                                                                                                                                                                         | 1.734+0<br>1.297                                                                                                                                                                              | 1.237+0<br>1.242                                                                                                                                                                              | 9.094-1<br>1.188                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                           | δ<br>σ<br>β<br>γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.540+1<br>1.630<br>-2.46-2                                                                                                                                                                                                 | 5.398+1<br>1.647<br>6.04-2                                                                                                                                                                                                                                | 2.209+1<br>1.607<br>3.20-1                                                                                                                                                                                                 | 1.104+1<br>1.544<br>5.70-1                                                                                                                                                                                                 | 6.248+0<br>1.479<br>7.84-1                                                                                                                                                                    | 3.849+0<br>1.416<br>9.68-1                                                                                                                                                                    | 2.523+0<br>1.355<br>1.12+0                                                                                                                                                                                                                               | 1.734+0<br>1.297<br>1.26+0                                                                                                                                                                    | 1.237+0<br>1.242<br>1.37+0                                                                                                                                                                    | 9.094-1<br>1.188<br>1.47+0                                                                                                                                                                                                                                                  |
| $E_b = 496.2 \text{ eV}$                                                                                                                                                                                  | δ<br>σ<br>β<br>γ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.540+1<br>1.630<br>-2.46-2<br>3.46-3                                                                                                                                                                                       | 5.398+1<br>1.647<br>6.04-2<br>6.24-3                                                                                                                                                                                                                      | 2.209+1<br>1.607<br>3.20-1<br>1.30-2                                                                                                                                                                                       | 1.104+1<br>1.544<br>5.70-1<br>2.10-2                                                                                                                                                                                       | 6.248+0<br>1.479<br>7.84-1<br>3.06-2                                                                                                                                                          | 3.849+0<br>1.416<br>9.68-1<br>4.14-2                                                                                                                                                          | 2.523+0<br>1.355<br>1.12+0<br>5.30-2                                                                                                                                                                                                                     | 1.734+0<br>1.297<br>1.26+0<br>6.50-2                                                                                                                                                          | 1.237+0<br>1.242<br>1.37+0<br>7.69-2                                                                                                                                                          | 9.094-1<br>1.188<br>1.47+0<br>8.85-2                                                                                                                                                                                                                                        |
| $E_b = 496.2 \text{ eV}$                                                                                                                                                                                  | δ<br>σ<br>β<br>γ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.540+1<br>1.630<br>-2.46-2<br>3.46-3<br>7.094+1                                                                                                                                                                            | 5.398+1<br>1.647<br>6.04-2<br>6.24-3<br>2.950+1                                                                                                                                                                                                           | 2.209+1<br>1.607<br>3.20-1<br>1.30-2<br>7.907+0                                                                                                                                                                            | 1.104+1<br>1.544<br>5.70-1<br>2.10-2<br>2.940+0                                                                                                                                                                            | 6.248+0<br>1.479<br>7.84-1<br>3.06-2<br>1.325+0                                                                                                                                               | 3.849+0<br>1.416<br>9.68-1<br>4.14-2<br>6.786-1                                                                                                                                               | 2.523+0<br>1.355<br>1.12+0<br>5.30-2<br>3.809-1                                                                                                                                                                                                          | 1.734+0<br>1.297<br>1.26+0<br>6.50-2<br>2.292-1                                                                                                                                               | 1.237+0<br>1.242<br>1.37+0<br>7.69-2<br>1.456-1                                                                                                                                               | 9.094-1<br>1.188<br>1.47+0<br>8.85-2<br>9.657-2                                                                                                                                                                                                                             |
| $E_b = 496.2 \text{ eV}$ $3d_{3/2}$ $E_b = 600$                                                                                                                                                           | δ<br>σ<br>β<br>γ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.540+1<br>1.630<br>-2.46-2<br>3.46-3<br>7.094+1<br>1.232                                                                                                                                                                   | 5.398+1<br>1.647<br>6.04-2<br>6.24-3<br>2.950+1<br>1.189                                                                                                                                                                                                  | 2.209+1<br>1.607<br>3.20-1<br>1.30-2<br>7.907+0<br>1.064                                                                                                                                                                   | 1.104+1<br>1.544<br>5.70-1<br>2.10-2<br>2.940+0<br>0.948                                                                                                                                                                   | 6.248+0<br>1.479<br>7.84-1<br>3.06-2<br>1.325+0<br>0.847                                                                                                                                      | 3.849+0<br>1.416<br>9.68-1<br>4.14-2<br>6.786-1<br>0.760                                                                                                                                      | 2.523+0<br>1.355<br>1.12+0<br>5.30-2<br>3.809-1<br>0.684                                                                                                                                                                                                 | 1.734+0<br>1.297<br>1.26+0<br>6.50-2<br>2.292-1<br>0.617                                                                                                                                      | 1.237+0<br>1.242<br>1.37+0<br>7.69-2<br>1.456-1<br>0.560                                                                                                                                      | 9.094-1<br>1.188<br>1.47+0<br>8.85-2<br>9.657-2<br>0.510                                                                                                                                                                                                                    |
| $E_b = 496.2 \text{ eV}$                                                                                                                                                                                  | δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.540+1<br>1.630<br>-2.46-2<br>3.46-3<br>7.094+1                                                                                                                                                                            | 5.398+1<br>1.647<br>6.04-2<br>6.24-3<br>2.950+1<br>1.189<br>5.04-1                                                                                                                                                                                        | 2.209+1<br>1.607<br>3.20-1<br>1.30-2<br>7.907+0<br>1.064<br>7.64-1                                                                                                                                                         | 1.104+1<br>1.544<br>5.70-1<br>2.10-2<br>2.940+0                                                                                                                                                                            | 6.248+0<br>1.479<br>7.84-1<br>3.06-2<br>1.325+0<br>0.847<br>1.07+0                                                                                                                            | 3.849+0<br>1.416<br>9.68-1<br>4.14-2<br>6.786-1<br>0.760<br>1.17+0                                                                                                                            | 2.523+0<br>1.355<br>1.12+0<br>5.30-2<br>3.809-1<br>0.684<br>1.23+0                                                                                                                                                                                       | 1.734+0<br>1.297<br>1.26+0<br>6.50-2<br>2.292-1<br>0.617<br>1.29+0                                                                                                                            | 1.237+0<br>1.242<br>1.37+0<br>7.69-2<br>1.456-1                                                                                                                                               | 9.094-1<br>1.188<br>1.47+0<br>8.85-2<br>9.657-2<br>0.510<br>1.36+0                                                                                                                                                                                                          |
| $E_b = 496.2 \text{ eV}$ $3d_{3/2}$ $E_b = 311.7 \text{ eV}$                                                                                                                                              | δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.540+1<br>1.630<br>-2.46-2<br>3.46-3<br>7.094+1<br>1.232<br>3.28-1<br>6.09-2                                                                                                                                               | 5.398+1<br>1.647<br>6.04-2<br>6.24-3<br>2.950+1<br>1.189<br>5.04-1<br>7.76-2                                                                                                                                                                              | 2.209+1<br>1.607<br>3.20-1<br>1.30-2<br>7.907+0<br>1.064<br>7.64-1<br>1.12-1                                                                                                                                               | 1.104+1<br>1.544<br>5.70-1<br>2.10-2<br>2.940+0<br>0.948<br>9.44-1<br>1.47-1                                                                                                                                               | 6.248+0<br>1.479<br>7.84-1<br>3.06-2<br>1.325+0<br>0.847<br>1.07+0<br>1.82-1                                                                                                                  | 3.849+0<br>1.416<br>9.68-1<br>4.14-2<br>6.786-1<br>0.760<br>1.17+0<br>2.16-1                                                                                                                  | 2.523+0<br>1.355<br>1.12+0<br>5.30-2<br>3.809-1<br>0.684<br>1.23+0<br>2.48-1                                                                                                                                                                             | 1.734+0<br>1.297<br>1.26+0<br>6.50-2<br>2.292-1<br>0.617<br>1.29+0<br>2.78-1                                                                                                                  | 1.237+0<br>1.242<br>1.37+0<br>7.69-2<br>1.456-1<br>0.560<br>1.33+0<br>3.07-1                                                                                                                  | 9.094-1<br>1.188<br>1.47+0<br>8.85-2<br>9.657-2<br>0.510<br>1.36+0<br>3.35-1                                                                                                                                                                                                |
| $E_b = 496.2 \text{ eV}$ $3d_{3/2}$ $E_b = 311.7 \text{ eV}$                                                                                                                                              | δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.540+1<br>1.630<br>-2.46-2<br>3.46-3<br>7.094+1<br>1.232<br>3.28-1<br>6.09-2<br>1.022+2                                                                                                                                    | 5.398+1<br>1.647<br>6.04-2<br>6.24-3<br>2.950+1<br>1.189<br>5.04-1<br>7.76-2<br>4.231+1                                                                                                                                                                   | 2.209+1<br>1.607<br>3.20-1<br>1.30-2<br>7.907+0<br>1.064<br>7.64-1<br>1.12-1<br>1.127+1                                                                                                                                    | 1.104+1<br>1.544<br>5.70-1<br>2.10-2<br>2.940+0<br>0.948<br>9.44-1<br>1.47-1<br>4.167+0                                                                                                                                    | 6.248+0<br>1.479<br>7.84-1<br>3.06-2<br>1.325+0<br>0.847<br>1.07+0<br>1.82-1<br>1.869+0                                                                                                       | 3.849+0<br>1.416<br>9.68-1<br>4.14-2<br>6.786-1<br>0.760<br>1.17+0<br>2.16-1<br>9.529-1                                                                                                       | 2.523+0<br>1.355<br>1.12+0<br>5.30-2<br>3.809-1<br>0.684<br>1.23+0<br>2.48-1<br>5.327-1                                                                                                                                                                  | 1.734+0<br>1.297<br>1.26+0<br>6.50-2<br>2.292-1<br>0.617<br>1.29+0<br>2.78-1<br>3.192-1                                                                                                       | 1.237+0<br>1.242<br>1.37+0<br>7.69-2<br>1.456-1<br>0.560<br>1.33+0<br>3.07-1<br>2.020-1                                                                                                       | 9.094-1<br>1.188<br>1.47+0<br>8.85-2<br>9.657-2<br>0.510<br>1.36+0<br>3.35-1                                                                                                                                                                                                |
| $E_b = 496.2 \text{ eV}$ $3d_{3/2}$ $E_b = 311.7 \text{ eV}$ $3d_{5/2}$ $E_b = 6$                                                                                                                         | δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.540+1<br>1.630<br>-2.46-2<br>3.46-3<br>7.094+1<br>1.232<br>3.28-1<br>6.09-2<br>1.022+2<br>1.219                                                                                                                           | 5.398+1<br>1.647<br>6.04-2<br>6.24-3<br>2.950+1<br>1.189<br>5.04-1<br>7.76-2<br>4.231+1<br>1.167                                                                                                                                                          | 2.209+1<br>1.607<br>3.20-1<br>1.30-2<br>7.907+0<br>1.064<br>7.64-1<br>1.12-1<br>1.127+1<br>1.038                                                                                                                           | 1.104+1<br>1.544<br>5.70-1<br>2.10-2<br>2.940+0<br>0.948<br>9.44-1<br>1.47-1<br>4.167+0<br>0.923                                                                                                                           | 6.248+0<br>1.479<br>7.84-1<br>3.06-2<br>1.325+0<br>0.847<br>1.07+0<br>1.82-1<br>1.869+0<br>0.828                                                                                              | 3.849+0<br>1.416<br>9.68-1<br>4.14-2<br>6.786-1<br>0.760<br>1.17+0<br>2.16-1<br>9.529-1<br>0.746                                                                                              | 2.523+0<br>1.355<br>1.12+0<br>5.30-2<br>3.809-1<br>0.684<br>1.23+0<br>2.48-1<br>5.327-1<br>0.676                                                                                                                                                         | 1.734+0<br>1.297<br>1.26+0<br>6.50-2<br>2.292-1<br>0.617<br>1.29+0<br>2.78-1<br>3.192-1<br>0.616                                                                                              | 1.237+0<br>1.242<br>1.37+0<br>7.69-2<br>1.456-1<br>0.560<br>1.33+0<br>3.07-1<br>2.020-1<br>0.564                                                                                              | 9.094-1<br>1.188<br>1.47+0<br>8.85-2<br>9.657-2<br>0.510<br>1.36+0<br>3.35-1<br>1.335-1<br>0.520                                                                                                                                                                            |
| $E_b = 496.2 \text{ eV}$ $3d_{3/2}$ $E_b = 311.7 \text{ eV}$                                                                                                                                              | δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.540+1<br>1.630<br>-2.46-2<br>3.46-3<br>7.094+1<br>1.232<br>3.28-1<br>6.09-2<br>1.022+2<br>1.219<br>3.36-1                                                                                                                 | 5.398+1<br>1.647<br>6.04-2<br>6.24-3<br>2.950+1<br>1.189<br>5.04-1<br>7.76-2<br>4.231+1<br>1.167<br>5.08-1                                                                                                                                                | 2.209+1<br>1.607<br>3.20-1<br>1.30-2<br>7.907+0<br>1.064<br>7.64-1<br>1.12-1<br>1.127+1<br>1.038<br>7.61-1                                                                                                                 | 1.104+1<br>1.544<br>5.70-1<br>2.10-2<br>2.940+0<br>0.948<br>9.44-1<br>1.47-1<br>4.167+0<br>0.923<br>9.36-1                                                                                                                 | 6.248+0<br>1.479<br>7.84-1<br>3.06-2<br>1.325+0<br>0.847<br>1.07+0<br>1.82-1<br>1.869+0<br>0.828<br>1.06+0                                                                                    | 3.849+0<br>1.416<br>9.68-1<br>4.14-2<br>6.786-1<br>0.760<br>1.17+0<br>2.16-1<br>9.529-1<br>0.746<br>1.16+0                                                                                    | 2.523+0<br>1.355<br>1.12+0<br>5.30-2<br>3.809-1<br>0.684<br>1.23+0<br>2.48-1<br>5.327-1<br>0.676<br>1.23+0                                                                                                                                               | 1.734+0<br>1.297<br>1.26+0<br>6.50-2<br>2.292-1<br>0.617<br>1.29+0<br>2.78-1<br>3.192-1<br>0.616<br>1.28+0                                                                                    | 1.237+0<br>1.242<br>1.37+0<br>7.69-2<br>1.456-1<br>0.560<br>1.33+0<br>3.07-1<br>2.020-1<br>0.564<br>1.32+0                                                                                    | 9.094-1<br>1.188<br>1.47+0<br>8.85-2<br>9.657-2<br>0.510<br>1.36+0<br>3.35-1<br>1.335-1<br>0.520<br>1.36+0                                                                                                                                                                  |
| $E_b = 496.2 \text{ eV}$ $3d_{3/2}$ $E_b = 311.7 \text{ eV}$ $3d_{5/2}$ $E_b = 307.0 \text{ eV}$                                                                                                          | δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.540+1<br>1.630<br>-2.46-2<br>3.46-3<br>7.094+1<br>1.232<br>3.28-1<br>6.09-2<br>1.022+2<br>1.219<br>3.36-1<br>6.14-2                                                                                                       | 5.398+1<br>1.647<br>6.04-2<br>6.24-3<br>2.950+1<br>1.189<br>5.04-1<br>7.76-2<br>4.231+1<br>1.167<br>5.08-1<br>7.91-2                                                                                                                                      | 2.209+1<br>1.607<br>3.20-1<br>1.30-2<br>7.907+0<br>1.064<br>7.64-1<br>1.12-1<br>1.127+1<br>1.038<br>7.61-1<br>1.15-1                                                                                                       | 1.104+1<br>1.544<br>5.70-1<br>2.10-2<br>2.940+0<br>0.948<br>9.44-1<br>1.47-1<br>4.167+0<br>0.923<br>9.36-1<br>1.52-1                                                                                                       | 6.248+0<br>1.479<br>7.84-1<br>3.06-2<br>1.325+0<br>0.847<br>1.07+0<br>1.82-1<br>1.869+0<br>0.828<br>1.06+0<br>1.88-1                                                                          | 3.849+0<br>1.416<br>9.68-1<br>4.14-2<br>6.786-1<br>0.760<br>1.17+0<br>2.16-1<br>9.529-1<br>0.746<br>1.16+0<br>2.23-1                                                                          | 2.523+0<br>1.355<br>1.12+0<br>5.30-2<br>3.809-1<br>0.684<br>1.23+0<br>2.48-1<br>5.327-1<br>0.676<br>1.23+0<br>2.55-1                                                                                                                                     | 1.734+0<br>1.297<br>1.26+0<br>6.50-2<br>2.292-1<br>0.617<br>1.29+0<br>2.78-1<br>3.192-1<br>0.616<br>1.28+0<br>2.85-1                                                                          | 1.237+0<br>1.242<br>1.37+0<br>7.69-2<br>1.456-1<br>0.560<br>1.33+0<br>3.07-1<br>2.020-1<br>0.564<br>1.32+0<br>3.14-1                                                                          | 9.094-1<br>1.188<br>1.47+0<br>8.85-2<br>9.657-2<br>0.510<br>1.36+0<br>3.35-1<br>1.335-1<br>0.520<br>1.36+0<br>3.42-1                                                                                                                                                        |
| $E_b = 496.2 \text{ eV}$ $3d_{3/2}$ $E_b = 311.7 \text{ eV}$ $3d_{5/2}$ $E_b = 307.0 \text{ eV}$ $4s_{1/2}$                                                                                               | δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.540+1<br>1.630<br>-2.46-2<br>3.46-3<br>7.094+1<br>1.232<br>3.28-1<br>6.09-2<br>1.022+2<br>1.219<br>3.36-1<br>6.14-2<br>6.709+0                                                                                            | 5.398+1<br>1.647<br>6.04-2<br>6.24-3<br>2.950+1<br>1.189<br>5.04-1<br>7.76-2<br>4.231+1<br>1.167<br>5.08-1<br>7.91-2<br>4.007+0                                                                                                                           | 2.209+1<br>1.607<br>3.20-1<br>1.30-2<br>7.907+0<br>1.064<br>7.64-1<br>1.12-1<br>1.127+1<br>1.038<br>7.61-1<br>1.15-1<br>1.891+0                                                                                            | 1.104+1<br>1.544<br>5.70-1<br>2.10-2<br>2.940+0<br>0.948<br>9.44-1<br>1.47-1<br>4.167+0<br>0.923<br>9.36-1<br>1.52-1<br>1.086+0                                                                                            | 6.248+0<br>1.479<br>7.84-1<br>3.06-2<br>1.325+0<br>0.847<br>1.07+0<br>1.82-1<br>1.869+0<br>0.828<br>1.06+0<br>1.88-1<br>6.966-1                                                               | 3.849+0<br>1.416<br>9.68-1<br>4.14-2<br>6.786-1<br>0.760<br>1.17+0<br>2.16-1<br>9.529-1<br>0.746<br>1.16+0<br>2.23-1                                                                          | 2.523+0<br>1.355<br>1.12+0<br>5.30-2<br>3.809-1<br>0.684<br>1.23+0<br>2.48-1<br>5.327-1<br>0.676<br>1.23+0<br>2.55-1<br>3.477-1                                                                                                                          | 1.734+0<br>1.297<br>1.26+0<br>6.50-2<br>2.292-1<br>0.617<br>1.29+0<br>2.78-1<br>3.192-1<br>0.616<br>1.28+0<br>2.85-1<br>2.617-1                                                               | 1.237+0<br>1.242<br>1.37+0<br>7.69-2<br>1.456-1<br>0.560<br>1.33+0<br>3.07-1<br>2.020-1<br>0.564<br>1.32+0<br>3.14-1<br>2.028-1                                                               | 9.094-1<br>1.188<br>1.47+0<br>8.85-2<br>9.657-2<br>0.510<br>1.36+0<br>3.35-1<br>1.335-1<br>0.520<br>1.36+0<br>3.42-1<br>1.610-1                                                                                                                                             |
| $E_b = 496.2 \text{ eV}$ $3d_{3/2}$ $E_b = 311.7 \text{ eV}$ $3d_{5/2}$ $E_b = 307.0 \text{ eV}$ $4s_{1/2}$ $E_b = 60.2 \text{ eV}$                                                                       | δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.540+1<br>1.630<br>-2.46-2<br>3.46-3<br>7.094+1<br>1.232<br>3.28-1<br>6.09-2<br>1.022+2<br>1.219<br>3.36-1<br>6.14-2<br>6.709+0<br>1.988                                                                                   | 5.398+1<br>1.647<br>6.04-2<br>6.24-3<br>2.950+1<br>1.189<br>5.04-1<br>7.76-2<br>4.231+1<br>1.167<br>5.08-1<br>7.91-2<br>4.007+0<br>1.990                                                                                                                  | 2.209+1<br>1.607<br>3.20-1<br>1.30-2<br>7.907+0<br>1.064<br>7.64-1<br>1.12-1<br>1.127+1<br>1.038<br>7.61-1<br>1.15-1<br>1.891+0<br>1.993                                                                                   | 1.104+1<br>1.544<br>5.70-1<br>2.10-2<br>2.940+0<br>0.948<br>9.44-1<br>1.47-1<br>4.167+0<br>0.923<br>9.36-1<br>1.52-1<br>1.086+0<br>1.995                                                                                   | 6.248+0<br>1.479<br>7.84-1<br>3.06-2<br>1.325+0<br>0.847<br>1.07+0<br>1.82-1<br>1.869+0<br>0.828<br>1.06+0<br>1.88-1<br>6.966-1<br>1.995                                                      | 3.849+0<br>1.416<br>9.68-1<br>4.14-2<br>6.786-1<br>0.760<br>1.17+0<br>2.16-1<br>9.529-1<br>0.746<br>1.16+0<br>2.23-1<br>4.799-1<br>1.993                                                      | 2.523+0<br>1.355<br>1.12+0<br>5.30-2<br>3.809-1<br>0.684<br>1.23+0<br>2.48-1<br>5.327-1<br>0.676<br>1.23+0<br>2.55-1<br>3.477-1<br>1.990                                                                                                                 | 1.734+0<br>1.297<br>1.26+0<br>6.50-2<br>2.292-1<br>0.617<br>1.29+0<br>2.78-1<br>3.192-1<br>0.616<br>1.28+0<br>2.85-1<br>2.617-1<br>1.986                                                      | 1.237+0<br>1.242<br>1.37+0<br>7.69-2<br>1.456-1<br>0.560<br>1.33+0<br>3.07-1<br>2.020-1<br>0.564<br>1.32+0<br>3.14-1<br>2.028-1<br>1.981                                                      | 9.094-1<br>1.188<br>1.47+0<br>8.85-2<br>9.657-2<br>0.510<br>1.36+0<br>3.35-1<br>1.335-1<br>0.520<br>1.36+0<br>3.42-1<br>1.610-1<br>1.976                                                                                                                                    |
| $E_b = 496.2 \text{ eV}$ $3d_{3/2}$ $E_b = 311.7 \text{ eV}$ $3d_{5/2}$ $E_b = 307.0 \text{ eV}$ $4s_{1/2}$                                                                                               | δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.540+1<br>1.630<br>-2.46-2<br>3.46-3<br>7.094+1<br>1.232<br>3.28-1<br>6.09-2<br>1.022+2<br>1.219<br>3.36-1<br>6.14-2<br>6.709+0<br>1.988<br>-1.03-2                                                                        | 5.398+1<br>1.647<br>6.04-2<br>6.24-3<br>2.950+1<br>1.189<br>5.04-1<br>7.76-2<br>4.231+1<br>1.167<br>5.08-1<br>7.91-2<br>4.007+0<br>1.990<br>-7.26-2                                                                                                       | 2.209+1<br>1.607<br>3.20-1<br>1.30-2<br>7.907+0<br>1.064<br>7.64-1<br>1.12-1<br>1.127+1<br>1.038<br>7.61-1<br>1.15-1<br>1.891+0<br>1.993<br>-9.09-2                                                                        | 1.104+1<br>1.544<br>5.70-1<br>2.10-2<br>2.940+0<br>0.948<br>9.44-1<br>1.47-1<br>4.167+0<br>0.923<br>9.36-1<br>1.52-1<br>1.086+0<br>1.995<br>-3.05-2                                                                        | 6.248+0<br>1.479<br>7.84-1<br>3.06-2<br>1.325+0<br>0.847<br>1.07+0<br>1.82-1<br>1.869+0<br>0.828<br>1.06+0<br>1.88-1<br>6.966-1<br>1.995<br>6.89-2                                            | 3.849+0 1.416 9.68-1 4.14-2 6.786-1 0.760 1.17+0 2.16-1 9.529-1 0.746 1.16+0 2.23-1 4.799-1 1.993 1.87-1                                                                                      | 2.523+0<br>1.355<br>1.12+0<br>5.30-2<br>3.809-1<br>0.684<br>1.23+0<br>2.48-1<br>5.327-1<br>0.676<br>1.23+0<br>2.55-1<br>3.477-1<br>1.990<br>3.15-1                                                                                                       | 1.734+0<br>1.297<br>1.26+0<br>6.50-2<br>2.292-1<br>0.617<br>1.29+0<br>2.78-1<br>3.192-1<br>0.616<br>1.28+0<br>2.85-1<br>2.617-1<br>1.986<br>4.46-1                                            | 1.237+0<br>1.242<br>1.37+0<br>7.69-2<br>1.456-1<br>0.560<br>1.33+0<br>3.07-1<br>2.020-1<br>0.564<br>1.32+0<br>3.14-1<br>2.028-1<br>1.981<br>5.77-1                                            | 9.094-1<br>1.188<br>1.47+0<br>8.85-2<br>9.657-2<br>0.510<br>1.36+0<br>3.35-1<br>1.335-1<br>0.520<br>1.36+0<br>3.42-1<br>1.610-1<br>1.976<br>7.07-1                                                                                                                          |
| $E_b = 496.2 \text{ eV}$ $3d_{3/2}$ $E_b = 311.7 \text{ eV}$ $3d_{5/2}$ $E_b = 307.0 \text{ eV}$ $4s_{1/2}$ $E_b = 81.0 \text{ eV}$                                                                       | δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.540+1<br>1.630<br>-2.46-2<br>3.46-3<br>7.094+1<br>1.232<br>3.28-1<br>6.09-2<br>1.022+2<br>1.219<br>3.36-1<br>6.14-2<br>6.709+0<br>1.988<br>-1.03-2<br>-1.10-4                                                             | 5.398+1<br>1.647<br>6.04-2<br>6.24-3<br>2.950+1<br>1.189<br>5.04-1<br>7.76-2<br>4.231+1<br>1.167<br>5.08-1<br>7.91-2<br>4.007+0<br>1.990<br>-7.26-2<br>-1.30-4                                                                                            | 2.209+1<br>1.607<br>3.20-1<br>1.30-2<br>7.907+0<br>1.064<br>7.64-1<br>1.12-1<br>1.127+1<br>1.038<br>7.61-1<br>1.15-1<br>1.891+0<br>1.993<br>-9.09-2<br>-1.55-4                                                             | 1.104+1<br>1.544<br>5.70-1<br>2.10-2<br>2.940+0<br>0.948<br>9.44-1<br>1.47-1<br>4.167+0<br>0.923<br>9.36-1<br>1.52-1<br>1.086+0<br>1.995<br>-3.05-2<br>-1.69-4                                                             | 6.248+0<br>1.479<br>7.84-1<br>3.06-2<br>1.325+0<br>0.847<br>1.07+0<br>1.82-1<br>1.869+0<br>0.828<br>1.06+0<br>1.88-1<br>6.966-1<br>1.995<br>6.89-2<br>-1.79-4                                 | 3.849+0 1.416 9.68-1 4.14-2 6.786-1 0.760 1.17+0 2.16-1 9.529-1 0.746 1.16+0 2.23-1 4.799-1 1.993 1.87-1 -1.85-4                                                                              | 2.523+0<br>1.355<br>1.12+0<br>5.30-2<br>3.809-1<br>0.684<br>1.23+0<br>2.48-1<br>5.327-1<br>0.676<br>1.23+0<br>2.55-1<br>3.477-1<br>1.990<br>3.15-1<br>-1.88-4                                                                                            | 1.734+0<br>1.297<br>1.26+0<br>6.50-2<br>2.292-1<br>0.617<br>1.29+0<br>2.78-1<br>3.192-1<br>0.616<br>1.28+0<br>2.85-1<br>2.617-1<br>1.986<br>4.46-1<br>-1.89-4                                 | 1.237+0<br>1.242<br>1.37+0<br>7.69-2<br>1.456-1<br>0.560<br>1.33+0<br>3.07-1<br>2.020-1<br>0.564<br>1.32+0<br>3.14-1<br>2.028-1<br>1.981<br>5.77-1<br>-1.88-4                                 | 9.094-1<br>1.188<br>1.47+0<br>8.85-2<br>9.657-2<br>0.510<br>1.36+0<br>3.35-1<br>1.335-1<br>0.520<br>1.36+0<br>3.42-1<br>1.610-1<br>1.976<br>7.07-1<br>-1.88-4                                                                                                               |
| $E_b = 496.2 \text{ eV}$ $3d_{3/2}$ $E_b = 311.7 \text{ eV}$ $3d_{5/2}$ $E_b = 307.0 \text{ eV}$ $4s_{1/2}$ $E_b = 81.0 \text{ eV}$                                                                       | δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  σ  β  γ  δ  σ  σ  σ  σ  σ  σ  σ  σ  σ  σ  σ  σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.540+1<br>1.630<br>-2.46-2<br>3.46-3<br>7.094+1<br>1.232<br>3.28-1<br>6.09-2<br>1.022+2<br>1.219<br>3.36-1<br>6.14-2<br>6.709+0<br>1.988<br>-1.03-2<br>-1.10-4<br>7.069+0                                                  | 5.398+1<br>1.647<br>6.04-2<br>6.24-3<br>2.950+1<br>1.189<br>5.04-1<br>7.76-2<br>4.231+1<br>1.167<br>5.08-1<br>7.91-2<br>4.007+0<br>1.990<br>-7.26-2<br>-1.30-4<br>3.991+0                                                                                 | 2.209+1<br>1.607<br>3.20-1<br>1.30-2<br>7.907+0<br>1.064<br>7.64-1<br>1.12-1<br>1.127+1<br>1.038<br>7.61-1<br>1.15-1<br>1.891+0<br>1.993<br>-9.09-2<br>-1.55-4<br>1.661+0                                                  | 1.104+1<br>1.544<br>5.70-1<br>2.10-2<br>2.940+0<br>0.948<br>9.44-1<br>1.47-1<br>4.167+0<br>0.923<br>9.36-1<br>1.52-1<br>1.086+0<br>1.995<br>-3.05-2<br>-1.69-4<br>8.464-1                                                  | 6.248+0 1.479 7.84-1 3.06-2 1.325+0 0.847 1.07+0 1.82-1 1.869+0 0.828 1.06+0 1.88-1 6.966-1 1.995 6.89-2 -1.79-4 4.871-1                                                                      | 3.849+0 1.416 9.68-1 4.14-2 6.786-1 0.760 1.17+0 2.16-1 9.529-1 0.746 1.16+0 2.23-1 4.799-1 1.993 1.87-1 -1.85-4 3.043-1                                                                      | 2.523+0<br>1.355<br>1.12+0<br>5.30-2<br>3.809-1<br>0.684<br>1.23+0<br>2.48-1<br>5.327-1<br>0.676<br>1.23+0<br>2.55-1<br>3.477-1<br>1.990<br>3.15-1<br>-1.88-4<br>2.019-1                                                                                 | 1.734+0<br>1.297<br>1.26+0<br>6.50-2<br>2.292-1<br>0.617<br>1.29+0<br>2.78-1<br>3.192-1<br>0.616<br>1.28+0<br>2.85-1<br>2.617-1<br>1.986<br>4.46-1<br>-1.89-4<br>1.402-1                      | 1.237+0<br>1.242<br>1.37+0<br>7.69-2<br>1.456-1<br>0.560<br>1.33+0<br>3.07-1<br>2.020-1<br>0.564<br>1.32+0<br>3.14-1<br>2.028-1<br>1.981<br>5.77-1<br>-1.88-4<br>1.010-1                      | 9.094-1<br>1.188<br>1.47+0<br>8.85-2<br>9.657-2<br>0.510<br>1.36+0<br>3.35-1<br>1.335-1<br>0.520<br>1.36+0<br>3.42-1<br>1.610-1<br>1.976<br>7.07-1<br>-1.88-4<br>7.489-2                                                                                                    |
| $E_b = 496.2 \text{ eV}$ $3d_{3/2}$ $E_b = 311.7 \text{ eV}$ $3d_{5/2}$ $E_b = 307.0 \text{ eV}$ $4s_{1/2}$ $E_b = 81.0 \text{ eV}$                                                                       | δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.540+1<br>1.630<br>-2.46-2<br>3.46-3<br>7.094+1<br>1.232<br>3.28-1<br>6.09-2<br>1.022+2<br>1.219<br>3.36-1<br>6.14-2<br>6.709+0<br>1.988<br>-1.03-2<br>-1.10-4<br>7.069+0<br>1.676                                         | 5.398+1<br>1.647<br>6.04-2<br>6.24-3<br>2.950+1<br>1.189<br>5.04-1<br>7.76-2<br>4.231+1<br>1.167<br>5.08-1<br>7.91-2<br>4.007+0<br>1.990<br>-7.26-2<br>-1.30-4<br>3.991+0<br>1.643                                                                        | 2.209+1<br>1.607<br>3.20-1<br>1.30-2<br>7.907+0<br>1.064<br>7.64-1<br>1.12-1<br>1.127+1<br>1.038<br>7.61-1<br>1.15-1<br>1.891+0<br>1.993<br>-9.09-2<br>-1.55-4<br>1.661+0<br>1.563                                         | 1.104+1<br>1.544<br>5.70-1<br>2.10-2<br>2.940+0<br>0.948<br>9.44-1<br>1.47-1<br>4.167+0<br>0.923<br>9.36-1<br>1.52-1<br>1.086+0<br>1.995<br>-3.05-2<br>-1.69-4<br>8.464-1<br>1.484                                         | 6.248+0 1.479 7.84-1 3.06-2 1.325+0 0.847 1.07+0 1.82-1 1.869+0 0.828 1.06+0 1.88-1 6.966-1 1.995 6.89-2 -1.79-4 4.871-1 1.412                                                                | 3.849+0 1.416 9.68-1 4.14-2 6.786-1 0.760 1.17+0 2.16-1 9.529-1 0.746 1.16+0 2.23-1 4.799-1 1.993 1.87-1 -1.85-4 3.043-1 1.345                                                                | 2.523+0<br>1.355<br>1.12+0<br>5.30-2<br>3.809-1<br>0.684<br>1.23+0<br>2.48-1<br>5.327-1<br>0.676<br>1.23+0<br>2.55-1<br>3.477-1<br>1.990<br>3.15-1<br>-1.88-4<br>2.019-1<br>1.283                                                                        | 1.734+0 1.297 1.26+0 6.50-2 2.292-1 0.617 1.29+0 2.78-1 3.192-1 0.616 1.28+0 2.85-1 1.986 4.46-1 -1.89-4 1.402-1 1.224                                                                        | 1.237+0 1.242 1.37+0 7.69-2 1.456-1 0.560 1.33+0 3.07-1 2.020-1 0.564 1.32+0 3.14-1 2.028-1 1.981 5.77-1 -1.88-4 1.010-1 1.168                                                                | 9.094-1<br>1.188<br>1.47+0<br>8.85-2<br>9.657-2<br>0.510<br>1.36+0<br>3.35-1<br>0.520<br>1.36+0<br>3.42-1<br>1.610-1<br>1.976<br>7.07-1<br>-1.88-4<br>7.489-2<br>1.116                                                                                                      |
| $E_b = 496.2 \text{ eV}$ $3d_{3/2}$ $E_b = 311.7 \text{ eV}$ $3d_{5/2}$ $E_b = 307.0 \text{ eV}$ $4s_{1/2}$ $E_b = 81.0 \text{ eV}$                                                                       | δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.540+1<br>1.630<br>-2.46-2<br>3.46-3<br>7.094+1<br>1.232<br>3.28-1<br>6.09-2<br>1.022+2<br>1.219<br>3.36-1<br>6.14-2<br>6.709+0<br>1.988<br>-1.03-2<br>-1.10-4<br>7.069+0<br>1.676<br>1.91-2                               | 5.398+1<br>1.647<br>6.04-2<br>6.24-3<br>2.950+1<br>1.189<br>5.04-1<br>7.76-2<br>4.231+1<br>1.167<br>5.08-1<br>7.91-2<br>4.007+0<br>1.990<br>-7.26-2<br>-1.30-4<br>3.991+0<br>1.643<br>1.23-1                                                              | 2.209+1<br>1.607<br>3.20-1<br>1.30-2<br>7.907+0<br>1.064<br>7.64-1<br>1.12-1<br>1.127+1<br>1.038<br>7.61-1<br>1.15-1<br>1.891+0<br>1.993<br>-9.09-2<br>-1.55-4<br>1.661+0<br>1.563<br>3.63-1                               | 1.104+1<br>1.544<br>5.70-1<br>2.10-2<br>2.940+0<br>0.948<br>9.44-1<br>1.47-1<br>4.167+0<br>0.923<br>9.36-1<br>1.52-1<br>1.086+0<br>1.995<br>-3.05-2<br>-1.69-4<br>8.464-1<br>1.484<br>5.86-1                               | 6.248+0 1.479 7.84-1 3.06-2 1.325+0 0.847 1.07+0 1.82-1 1.869+0 0.828 1.06+0 1.88-1 6.966-1 1.995 6.89-2 -1.79-4 4.871-1 1.412 7.80-1                                                         | 3.849+0 1.416 9.68-1 4.14-2 6.786-1 0.760 1.17+0 2.16-1 9.529-1 0.746 1.16+0 2.23-1 4.799-1 1.993 1.87-1 -1.85-4 3.043-1 1.345 9.48-1                                                         | 2.523+0<br>1.355<br>1.12+0<br>5.30-2<br>3.809-1<br>0.684<br>1.23+0<br>2.48-1<br>5.327-1<br>0.676<br>1.23+0<br>2.55-1<br>3.477-1<br>1.990<br>3.15-1<br>-1.88-4<br>2.019-1<br>1.283<br>1.09+0                                                              | 1.734+0 1.297 1.26+0 6.50-2 2.292-1 0.617 1.29+0 2.78-1 3.192-1 0.616 1.28+0 2.85-1 2.617-1 1.986 4.46-1 -1.89-4 1.402-1 1.224 1.22+0                                                         | 1.237+0 1.242 1.37+0 7.69-2 1.456-1 0.560 1.33+0 3.07-1 2.020-1 0.564 1.32+0 3.14-1 2.028-1 1.981 5.77-1 -1.88-4 1.010-1 1.168 1.32+0                                                         | 9.094-1<br>1.188<br>1.47+0<br>8.85-2<br>9.657-2<br>0.510<br>1.36+0<br>3.35-1<br>0.520<br>1.36+0<br>3.42-1<br>1.610-1<br>1.976<br>7.07-1<br>-1.88-4<br>7.489-2<br>1.116<br>1.41+0                                                                                            |
| $E_b = 496.2 \text{ eV}$ $3d_{3/2}$ $E_b = 311.7 \text{ eV}$ $3d_{5/2}$ $E_b = 307.0 \text{ eV}$ $4s_{1/2}$ $E_b = 81.0 \text{ eV}$ $4p_{1/2}$ $E_b = 51.9 \text{ eV}$                                    | δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.540+1<br>1.630<br>-2.46-2<br>3.46-3<br>7.094+1<br>1.232<br>3.28-1<br>6.09-2<br>1.022+2<br>1.219<br>3.36-1<br>6.14-2<br>6.709+0<br>1.988<br>-1.03-2<br>-1.10-4<br>7.069+0<br>1.676<br>1.91-2<br>7.12-4                     | 5.398+1<br>1.647<br>6.04-2<br>6.24-3<br>2.950+1<br>1.189<br>5.04-1<br>7.76-2<br>4.231+1<br>1.167<br>5.08-1<br>7.91-2<br>4.007+0<br>1.990<br>-7.26-2<br>-1.30-4<br>3.991+0<br>1.643<br>1.23-1<br>2.87-3                                                    | 2.209+1 1.607 3.20-1 1.30-2 7.907+0 1.064 7.64-1 1.12-1 1.127+1 1.038 7.61-1 1.15-1 1.891+0 1.993 -9.09-2 -1.55-4 1.661+0 1.563 3.63-1 9.66-3                                                                              | 1.104+1 1.544 5.70-1 2.10-2 2.940+0 0.948 9.44-1 1.47-1 4.167+0 0.923 9.36-1 1.52-1 1.086+0 1.995 -3.05-2 -1.69-4 8.464-1 1.484 5.86-1 1.89-2                                                                              | 6.248+0 1.479 7.84-1 3.06-2 1.325+0 0.847 1.07+0 1.82-1 1.869+0 0.828 1.06+0 1.88-1 6.966-1 1.995 6.89-2 -1.79-4 4.871-1 1.412 7.80-1 3.00-2                                                  | 3.849+0 1.416 9.68-1 4.14-2 6.786-1 0.760 1.17+0 2.16-1 9.529-1 0.746 1.16+0 2.23-1 4.799-1 1.993 1.87-1 -1.85-4 3.043-1 1.345 9.48-1 4.24-2                                                  | 2.523+0<br>1.355<br>1.12+0<br>5.30-2<br>3.809-1<br>0.684<br>1.23+0<br>2.48-1<br>5.327-1<br>0.676<br>1.23+0<br>2.55-1<br>3.477-1<br>1.990<br>3.15-1<br>-1.88-4<br>2.019-1<br>1.283<br>1.09+0<br>5.55-2                                                    | 1.734+0 1.297 1.26+0 6.50-2 2.292-1 0.617 1.29+0 2.78-1 3.192-1 0.616 1.28+0 2.85-1 2.617-1 1.986 4.46-1 -1.89-4 1.402-1 1.224 1.22+0 6.88-2                                                  | 1.237+0 1.242 1.37+0 7.69-2 1.456-1 0.560 1.33+0 3.07-1 2.020-1 0.564 1.32+0 3.14-1 2.028-1 1.981 5.77-1 -1.88-4 1.010-1 1.168 1.32+0 8.20-2                                                  | 9.094-1<br>1.188<br>1.47+0<br>8.85-2<br>9.657-2<br>0.510<br>1.36+0<br>3.35-1<br>0.520<br>1.36+0<br>3.42-1<br>1.610-1<br>1.976<br>7.07-1<br>-1.88-4<br>7.489-2<br>1.116<br>1.41+0<br>9.51-2                                                                                  |
| $E_b = 496.2 \text{ eV}$ $3d_{3/2}$ $E_b = 311.7 \text{ eV}$ $3d_{5/2}$ $E_b = 307.0 \text{ eV}$ $4s_{1/2}$ $E_b = 81.0 \text{ eV}$ $4p_{1/2}$ $E_b = 51.9 \text{ eV}$                                    | δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.540+1<br>1.630<br>-2.46-2<br>3.46-3<br>7.094+1<br>1.232<br>3.28-1<br>6.09-2<br>1.022+2<br>1.219<br>3.36-1<br>6.14-2<br>6.709+0<br>1.988<br>-1.03-2<br>-1.10-4<br>7.069+0<br>1.676<br>1.91-2<br>7.12-4<br>1.382+1          | 5.398+1<br>1.647<br>6.04-2<br>6.24-3<br>2.950+1<br>1.189<br>5.04-1<br>7.76-2<br>4.231+1<br>1.167<br>5.08-1<br>7.91-2<br>4.007+0<br>1.990<br>-7.26-2<br>-1.30-4<br>3.991+0<br>1.643<br>1.23-1<br>2.87-3<br>7.664+0                                         | 2.209+1<br>1.607<br>3.20-1<br>1.30-2<br>7.907+0<br>1.064<br>7.64-1<br>1.12-1<br>1.127+1<br>1.038<br>7.61-1<br>1.15-1<br>1.891+0<br>1.993<br>-9.09-2<br>-1.55-4<br>1.661+0<br>1.563<br>3.63-1<br>9.66-3<br>3.111+0          | 1.104+1<br>1.544<br>5.70-1<br>2.10-2<br>2.940+0<br>0.948<br>9.44-1<br>1.47-1<br>4.167+0<br>0.923<br>9.36-1<br>1.52-1<br>1.086+0<br>1.995<br>-3.05-2<br>-1.69-4<br>8.464-1<br>1.484<br>5.86-1<br>1.89-2<br>1.558+0          | 6.248+0 1.479 7.84-1 3.06-2 1.325+0 0.847 1.07+0 1.82-1 1.869+0 0.828 1.06+0 1.88-1 6.966-1 1.995 6.89-2 -1.79-4 4.871-1 1.412 7.80-1 3.00-2 8.846-1                                          | 3.849+0 1.416 9.68-1 4.14-2 6.786-1 0.760 1.17+0 2.16-1 9.529-1 0.746 1.16+0 2.23-1 4.799-1 1.993 1.87-1 -1.85-4 3.043-1 1.345 9.48-1 4.24-2 5.465-1                                          | 2.523+0<br>1.355<br>1.12+0<br>5.30-2<br>3.809-1<br>0.684<br>1.23+0<br>2.48-1<br>5.327-1<br>0.676<br>1.23+0<br>2.55-1<br>3.477-1<br>1.990<br>3.15-1<br>-1.88-4<br>2.019-1<br>1.283<br>1.09+0<br>5.55-2<br>3.590-1                                         | 1.734+0 1.297 1.26+0 6.50-2 2.292-1 0.617 1.29+0 2.78-1 3.192-1 0.616 1.28+0 2.85-1 2.617-1 1.986 4.46-1 -1.89-4 1.402-1 1.224 1.22+0 6.88-2 2.472-1                                          | 1.237+0 1.242 1.37+0 7.69-2 1.456-1 0.560 1.33+0 3.07-1 2.020-1 0.564 1.32+0 3.14-1 2.028-1 1.981 5.77-1 -1.88-4 1.010-1 1.168 1.32+0 8.20-2 1.767-1                                          | 9.094-1<br>1.188<br>1.47+0<br>8.85-2<br>9.657-2<br>0.510<br>1.36+0<br>3.35-1<br>0.520<br>1.36+0<br>3.42-1<br>1.610-1<br>1.976<br>7.07-1<br>-1.88-4<br>7.489-2<br>1.116<br>1.41+0<br>9.51-2<br>1.301-1                                                                       |
| $E_b = 496.2 \text{ eV}$ $3d_{3/2}$ $E_b = 311.7 \text{ eV}$ $3d_{5/2}$ $E_b = 307.0 \text{ eV}$ $4s_{1/2}$ $E_b = 81.0 \text{ eV}$ $4p_{1/2}$ $E_b = 51.9 \text{ eV}$                                    | δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.540+1<br>1.630<br>-2.46-2<br>3.46-3<br>7.094+1<br>1.232<br>3.28-1<br>6.09-2<br>1.022+2<br>1.219<br>3.36-1<br>6.14-2<br>6.709+0<br>1.988<br>-1.03-2<br>-1.10-4<br>7.069+0<br>1.676<br>1.91-2<br>7.12-4<br>1.382+1<br>1.702 | 5.398+1<br>1.647<br>6.04-2<br>6.24-3<br>2.950+1<br>1.189<br>5.04-1<br>7.76-2<br>4.231+1<br>1.167<br>5.08-1<br>7.91-2<br>4.007+0<br>1.990<br>-7.26-2<br>-1.30-4<br>3.991+0<br>1.643<br>1.23-1<br>2.87-3<br>7.664+0<br>1.678                                | 2.209+1<br>1.607<br>3.20-1<br>1.30-2<br>7.907+0<br>1.064<br>7.64-1<br>1.12-1<br>1.127+1<br>1.038<br>7.61-1<br>1.15-1<br>1.891+0<br>1.993<br>-9.09-2<br>-1.55-4<br>1.661+0<br>1.563<br>3.63-1<br>9.66-3<br>3.111+0<br>1.609 | 1.104+1<br>1.544<br>5.70-1<br>2.10-2<br>2.940+0<br>0.948<br>9.44-1<br>1.47-1<br>4.167+0<br>0.923<br>9.36-1<br>1.52-1<br>1.086+0<br>1.995<br>-3.05-2<br>-1.69-4<br>8.464-1<br>1.484<br>5.86-1<br>1.89-2<br>1.558+0<br>1.536 | 6.248+0 1.479 7.84-1 3.06-2 1.325+0 0.847 1.07+0 1.82-1 1.869+0 0.828 1.06+0 1.88-1 6.966-1 1.995 6.89-2 -1.79-4 4.871-1 1.412 7.80-1 3.00-2 8.846-1 1.467                                    | 3.849+0 1.416 9.68-1 4.14-2 6.786-1 0.760 1.17+0 2.16-1 9.529-1 0.746 1.16+0 2.23-1 4.799-1 1.993 1.87-1 -1.85-4 3.043-1 1.345 9.48-1 4.24-2 5.465-1 1.402                                    | 2.523+0<br>1.355<br>1.12+0<br>5.30-2<br>3.809-1<br>0.684<br>1.23+0<br>2.48-1<br>5.327-1<br>0.676<br>1.23+0<br>2.55-1<br>3.477-1<br>1.990<br>3.15-1<br>-1.88-4<br>2.019-1<br>1.283<br>1.09+0<br>5.55-2<br>3.590-1<br>1.341                                | 1.734+0 1.297 1.26+0 6.50-2 2.292-1 0.617 1.29+0 2.78-1 3.192-1 0.616 1.28+0 2.85-1 2.617-1 1.986 4.46-1 -1.89-4 1.402-1 1.224 1.22+0 6.88-2 2.472-1 1.283                                    | 1.237+0 1.242 1.37+0 7.69-2 1.456-1 0.560 1.33+0 3.07-1 2.020-1 0.564 1.32+0 3.14-1 2.028-1 1.981 5.77-1 -1.88-4 1.010-1 1.168 1.32+0 8.20-2 1.767-1 1.228                                    | 9.094-1<br>1.188<br>1.47+0<br>8.85-2<br>9.657-2<br>0.510<br>1.36+0<br>3.35-1<br>1.335-1<br>0.520<br>1.36+0<br>3.42-1<br>1.610-1<br>1.976<br>7.07-1<br>-1.88-4<br>7.489-2<br>1.116<br>1.41+0<br>9.51-2<br>1.301-1<br>1.175                                                   |
| $E_b = 496.2 \text{ eV}$ $3d_{3/2}$ $E_b = 311.7 \text{ eV}$ $3d_{5/2}$ $E_b = 307.0 \text{ eV}$ $4s_{1/2}$ $E_b = 81.0 \text{ eV}$ $4p_{1/2}$ $E_b = 51.9 \text{ eV}$                                    | δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ σ β γ γ δ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ σ σ σ σ β γ γ σ σ σ σ σ σ σ σ                                                                                                                                     | 9.540+1 1.630 -2.46-2 3.46-3 7.094+1 1.232 3.28-1 6.09-2 1.022+2 1.219 3.36-1 6.14-2 6.709+0 1.988 -1.03-2 -1.10-4 7.069+0 1.676 1.91-2 7.12-4 1.382+1 1.702 2.25-2                                                         | 5.398+1<br>1.647<br>6.04-2<br>6.24-3<br>2.950+1<br>1.189<br>5.04-1<br>7.76-2<br>4.231+1<br>1.167<br>5.08-1<br>7.91-2<br>4.007+0<br>1.990<br>-7.26-2<br>-1.30-4<br>3.991+0<br>1.643<br>1.23-1<br>2.87-3<br>7.664+0<br>1.678<br>1.33-1                      | 2.209+1 1.607 3.20-1 1.30-2 7.907+0 1.064 7.64-1 1.12-1 1.127+1 1.038 7.61-1 1.15-1 1.891+0 1.993 -9.09-2 -1.55-4 1.661+0 1.563 3.63-1 9.66-3 3.111+0 1.609 3.84-1                                                         | 1.104+1 1.544 5.70-1 2.10-2 2.940+0 0.948 9.44-1 1.47-1 4.167+0 0.923 9.36-1 1.52-1 1.086+0 1.995 -3.05-2 -1.69-4 8.464-1 1.484 5.86-1 1.89-2 1.558+0 1.536 6.17-1                                                         | 6.248+0 1.479 7.84-1 3.06-2 1.325+0 0.847 1.07+0 1.82-1 1.869+0 0.828 1.06+0 1.88-1 6.966-1 1.995 6.89-2 -1.79-4 4.871-1 1.412 7.80-1 3.00-2 8.846-1 1.467 8.20-1                             | 3.849+0 1.416 9.68-1 4.14-2 6.786-1 0.760 1.17+0 2.16-1 9.529-1 0.746 1.16+0 2.23-1 4.799-1 1.993 1.87-1 -1.85-4 3.043-1 1.345 9.48-1 4.24-2 5.465-1 1.402 9.95-1                             | 2.523+0<br>1.355<br>1.12+0<br>5.30-2<br>3.809-1<br>0.684<br>1.23+0<br>2.48-1<br>5.327-1<br>0.676<br>1.23+0<br>2.55-1<br>3.477-1<br>1.990<br>3.15-1<br>-1.88-4<br>2.019-1<br>1.283<br>1.09+0<br>5.55-2<br>3.590-1<br>1.341<br>1.14+0                      | 1.734+0 1.297 1.26+0 6.50-2 2.292-1 0.617 1.29+0 2.78-1 3.192-1 0.616 1.28+0 2.85-1 2.617-1 1.986 4.46-1 -1.89-4 1.402-1 1.224 1.22+0 6.88-2 2.472-1 1.283 1.27+0                             | 1.237+0 1.242 1.37+0 7.69-2 1.456-1 0.560 1.33+0 3.07-1 2.020-1 0.564 1.32+0 3.14-1 2.028-1 1.981 5.77-1 -1.88-4 1.010-1 1.168 1.32+0 8.20-2 1.767-1 1.228 1.38+0                             | 9.094-1<br>1.188<br>1.47+0<br>8.85-2<br>9.657-2<br>0.510<br>1.36+0<br>3.35-1<br>1.335-1<br>0.520<br>1.36+0<br>3.42-1<br>1.610-1<br>1.976<br>7.07-1<br>-1.88-4<br>7.489-2<br>1.116<br>1.41+0<br>9.51-2<br>1.301-1<br>1.175<br>1.48+0                                         |
| $E_b = 496.2 \text{ eV}$ $3d_{3/2} E_b = 311.7 \text{ eV}$ $3d_{5/2} E_b = 307.0 \text{ eV}$ $4s_{1/2} E_b = 81.0 \text{ eV}$ $4p_{1/2} E_b = 51.9 \text{ eV}$ $4p_{3/2} E_b = 46.3 \text{ eV}$           | δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.540+1 1.630 -2.46-2 3.46-3 7.094+1 1.232 3.28-1 6.09-2 1.022+2 1.219 3.36-1 6.14-2 6.709+0 1.988 -1.03-2 -1.10-4 7.069+0 1.676 1.91-2 7.12-4 1.382+1 1.702 2.25-2 3.06-3                                                  | 5.398+1<br>1.647<br>6.04-2<br>6.24-3<br>2.950+1<br>1.189<br>5.04-1<br>7.76-2<br>4.231+1<br>1.167<br>5.08-1<br>7.91-2<br>4.007+0<br>1.990<br>-7.26-2<br>-1.30-4<br>3.991+0<br>1.643<br>1.23-1<br>2.87-3<br>7.664+0<br>1.678<br>1.33-1<br>5.49-3            | 2.209+1 1.607 3.20-1 1.30-2 7.907+0 1.064 7.64-1 1.12-1 1.127+1 1.038 7.61-1 1.15-1 1.891+0 1.993 -9.09-2 -1.55-4 1.661+0 1.563 3.63-1 9.66-3 3.111+0 1.609 3.84-1 1.17-2                                                  | 1.104+1 1.544 5.70-1 2.10-2 2.940+0 0.948 9.44-1 1.47-1 4.167+0 0.923 9.36-1 1.52-1 1.086+0 1.995 -3.05-2 -1.69-4 8.464-1 1.484 5.86-1 1.89-2 1.558+0 1.536 6.17-1 1.98-2                                                  | 6.248+0 1.479 7.84-1 3.06-2 1.325+0 0.847 1.07+0 1.82-1 1.869+0 0.828 1.06+0 1.88-1 6.966-1 1.995 6.89-2 -1.79-4 4.871-1 1.412 7.80-1 3.00-2 8.846-1 1.467 8.20-1 2.95-2                      | 3.849+0 1.416 9.68-1 4.14-2 6.786-1 0.760 1.17+0 2.16-1 9.529-1 0.746 1.16+0 2.23-1 4.799-1 1.993 1.87-1 -1.85-4 3.043-1 1.345 9.48-1 4.24-2 5.465-1 1.402 9.95-1 4.06-2                      | 2.523+0<br>1.355<br>1.12+0<br>5.30-2<br>3.809-1<br>0.684<br>1.23+0<br>2.48-1<br>5.327-1<br>0.676<br>1.23+0<br>2.55-1<br>3.477-1<br>1.990<br>3.15-1<br>-1.88-4<br>2.019-1<br>1.283<br>1.09+0<br>5.55-2<br>3.590-1<br>1.341<br>1.14+0<br>5.23-2            | 1.734+0 1.297 1.26+0 6.50-2 2.292-1 0.617 1.29+0 2.78-1 3.192-1 0.616 1.28+0 2.85-1 2.617-1 1.986 4.46-1 -1.89-4 1.402-1 1.224 1.22+0 6.88-2 2.472-1 1.283 1.27+0 6.45-2                      | 1.237+0 1.242 1.37+0 7.69-2 1.456-1 0.560 1.33+0 3.07-1 2.020-1 0.564 1.32+0 3.14-1 2.028-1 1.981 5.77-1 -1.88-4 1.010-1 1.168 1.32+0 8.20-2 1.767-1 1.228 1.38+0 7.66-2                      | 9.094-1<br>1.188<br>1.47+0<br>8.85-2<br>9.657-2<br>0.510<br>1.36+0<br>3.35-1<br>1.335-1<br>0.520<br>1.36+0<br>3.42-1<br>1.610-1<br>1.976<br>7.07-1<br>-1.88-4<br>7.489-2<br>1.116<br>1.41+0<br>9.51-2<br>1.301-1<br>1.175<br>1.48+0<br>8.86-2                               |
| $E_b = 496.2 \text{ eV}$ $3d_{3/2}$ $E_b = 311.7 \text{ eV}$ $3d_{5/2}$ $E_b = 307.0 \text{ eV}$ $4s_{1/2}$ $E_b = 81.0 \text{ eV}$ $4p_{1/2}$ $E_b = 51.9 \text{ eV}$ $4p_{3/2}$ $E_b = 46.3 \text{ eV}$ | δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.540+1 1.630 -2.46-2 3.46-3 7.094+1 1.232 3.28-1 6.09-2 1.022+2 1.219 3.36-1 6.14-2 6.709+0 1.988 -1.03-2 -1.10-4 7.069+0 1.676 1.91-2 7.12-4 1.382+1 1.702 2.25-2 3.06-3 5.196+0                                          | 5.398+1<br>1.647<br>6.04-2<br>6.24-3<br>2.950+1<br>1.189<br>5.04-1<br>7.76-2<br>4.231+1<br>1.167<br>5.08-1<br>7.91-2<br>4.007+0<br>1.990<br>-7.26-2<br>-1.30-4<br>3.991+0<br>1.643<br>1.23-1<br>2.87-3<br>7.664+0<br>1.678<br>1.33-1<br>5.49-3<br>2.257+0 | 2.209+1 1.607 3.20-1 1.30-2 7.907+0 1.064 7.64-1 1.12-1 1.127+1 1.038 7.61-1 1.15-1 1.891+0 1.993 -9.09-2 -1.55-4 1.661+0 1.563 3.63-1 9.66-3 3.111+0 1.609 3.84-1 1.17-2 6.368-1                                          | 1.104+1 1.544 5.70-1 2.10-2 2.940+0 0.948 9.44-1 1.47-1 4.167+0 0.923 9.36-1 1.52-1 1.086+0 1.995 -3.05-2 -1.69-4 8.464-1 1.484 5.86-1 1.89-2 1.558+0 1.536 6.17-1 1.98-2 2.433-1                                          | 6.248+0 1.479 7.84-1 3.06-2 1.325+0 0.847 1.07+0 1.82-1 1.869+0 0.828 1.06+0 1.88-1 6.966-1 1.995 6.89-2 -1.79-4 4.871-1 1.412 7.80-1 3.00-2 8.846-1 1.467 8.20-1 2.95-2 1.114-1              | 3.849+0 1.416 9.68-1 4.14-2 6.786-1 0.760 1.17+0 2.16-1 9.529-1 0.746 1.16+0 2.23-1 4.799-1 1.993 1.87-1 -1.85-4 3.043-1 1.345 9.48-1 4.24-2 5.465-1 1.402 9.95-1 4.06-2 5.767-2              | 2.523+0<br>1.355<br>1.12+0<br>5.30-2<br>3.809-1<br>0.684<br>1.23+0<br>2.48-1<br>5.327-1<br>0.676<br>1.23+0<br>2.55-1<br>3.477-1<br>1.990<br>3.15-1<br>-1.88-4<br>2.019-1<br>1.283<br>1.09+0<br>5.55-2<br>3.590-1<br>1.341<br>1.14+0<br>5.23-2<br>3.261-2 | 1.734+0 1.297 1.26+0 6.50-2 2.292-1 0.617 1.29+0 2.78-1 3.192-1 0.616 1.28+0 2.85-1 2.617-1 1.986 4.46-1 -1.89-4 1.402-1 1.224 1.22+0 6.88-2 2.472-1 1.283 1.27+0 6.45-2 1.972-2              | 1.237+0 1.242 1.37+0 7.69-2 1.456-1 0.560 1.33+0 3.07-1 2.020-1 0.564 1.32+0 3.14-1 2.028-1 1.981 5.77-1 -1.88-4 1.010-1 1.168 1.32+0 8.20-2 1.767-1 1.228 1.38+0 7.66-2 1.257-2              | 9.094-1<br>1.188<br>1.47+0<br>8.85-2<br>9.657-2<br>0.510<br>1.36+0<br>3.35-1<br>1.335-1<br>0.520<br>1.36+0<br>3.42-1<br>1.610-1<br>1.976<br>7.07-1<br>-1.88-4<br>7.489-2<br>1.116<br>1.41+0<br>9.51-2<br>1.301-1<br>1.175<br>1.48+0<br>8.86-2<br>8.367-3                    |
| $E_b = 496.2 \text{ eV}$ $3d_{3/2}$ $E_b = 311.7 \text{ eV}$ $3d_{5/2}$ $E_b = 307.0 \text{ eV}$ $4s_{1/2}$ $E_b = 81.0 \text{ eV}$ $4p_{1/2}$ $E_b = 51.9 \text{ eV}$ $4p_{3/2}$ $E_b = 46.3 \text{ eV}$ | δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ δ ρ γ δ δ σ δ ρ γ δ δ σ δ ρ γ δ δ σ δ ρ γ δ δ σ δ ρ γ δ δ σ δ ρ γ δ δ σ δ ρ γ δ δ σ δ ρ γ δ δ σ δ ρ γ δ δ σ δ ρ γ δ δ σ δ ρ γ δ δ σ δ ρ γ δ δ σ δ ρ γ δ δ σ δ σ δ ρ γ δ δ σ δ σ δ ρ γ δ δ σ δ σ δ ρ γ δ δ σ δ σ δ ρ γ δ δ σ δ σ δ σ δ σ δ σ δ σ δ σ δ σ δ σ | 9.540+1 1.630 -2.46-2 3.46-3 7.094+1 1.232 3.28-1 6.09-2 1.022+2 1.219 3.36-1 6.14-2 6.709+0 1.988 -1.03-2 -1.10-4 7.069+0 1.676 1.91-2 7.12-4 1.382+1 1.702 2.25-2 3.06-3 5.196+0 1.269                                    | 5.398+1 1.647 6.04-2 6.24-3 2.950+1 1.189 5.04-1 7.76-2 4.231+1 1.167 5.08-1 7.91-2 4.007+0 1.990 -7.26-2 -1.30-4 3.991+0 1.643 1.23-1 2.87-3 7.664+0 1.678 1.33-1 5.49-3 2.257+0 1.192                                                                   | 2.209+1 1.607 3.20-1 1.30-2 7.907+0 1.064 7.64-1 1.12-1 1.127+1 1.038 7.61-1 1.15-1 1.891+0 1.993 -9.09-2 -1.55-4 1.661+0 1.563 3.63-1 9.66-3 3.111+0 1.609 3.84-1 1.17-2 6.368-1 1.047                                    | 1.104+1 1.544 5.70-1 2.10-2 2.940+0 0.948 9.44-1 1.47-1 4.167+0 0.923 9.36-1 1.52-1 1.086+0 1.995 -3.05-2 -1.69-4 8.464-1 1.484 5.86-1 1.89-2 1.558+0 1.536 6.17-1 1.98-2 2.433-1 0.927                                    | 6.248+0 1.479 7.84-1 3.06-2 1.325+0 0.847 1.07+0 1.82-1 1.869+0 0.828 1.06+0 1.88-1 6.966-1 1.995 6.89-2 -1.79-4 4.871-1 1.412 7.80-1 3.00-2 8.846-1 1.467 8.20-1 2.95-2 1.114-1 0.828        | 3.849+0 1.416 9.68-1 4.14-2 6.786-1 0.760 1.17+0 2.16-1 9.529-1 0.746 1.16+0 2.23-1 4.799-1 1.993 1.87-1 -1.85-4 3.043-1 1.345 9.48-1 4.24-2 5.465-1 1.402 9.95-1 4.06-2 5.767-2 0.744        | 2.523+0 1.355 1.12+0 5.30-2 3.809-1 0.684 1.23+0 2.48-1 5.327-1 0.676 1.23+0 2.55-1 3.477-1 1.990 3.15-1 -1.88-4 2.019-1 1.283 1.09+0 5.55-2 3.590-1 1.341 1.14+0 5.23-2 3.261-2 0.671                                                                   | 1.734+0 1.297 1.26+0 6.50-2 2.292-1 0.617 1.29+0 2.78-1 3.192-1 0.616 1.28+0 2.85-1 2.617-1 1.986 4.46-1 -1.89-4 1.402-1 1.224 1.22+0 6.88-2 2.472-1 1.283 1.27+0 6.45-2 1.972-2 0.606        | 1.237+0 1.242 1.37+0 7.69-2 1.456-1 0.560 1.33+0 3.07-1 2.020-1 0.564 1.32+0 3.14-1 2.028-1 1.981 5.77-1 -1.88-4 1.010-1 1.168 1.32+0 8.20-2 1.767-1 1.228 1.38+0 7.66-2 1.257-2 0.548        | 9.094-1<br>1.188<br>1.47+0<br>8.85-2<br>9.657-2<br>0.510<br>1.36+0<br>3.35-1<br>1.335-1<br>0.520<br>1.36+0<br>3.42-1<br>1.610-1<br>1.976<br>7.07-1<br>-1.88-4<br>7.489-2<br>1.116<br>1.41+0<br>9.51-2<br>1.301-1<br>1.175<br>1.48+0<br>8.86-2<br>8.367-3<br>0.497           |
| $E_b = 496.2 \text{ eV}$ $3d_{3/2} E_b = 311.7 \text{ eV}$ $3d_{5/2} E_b = 307.0 \text{ eV}$ $4s_{1/2} E_b = 81.0 \text{ eV}$ $4p_{1/2} E_b = 51.9 \text{ eV}$ $4p_{3/2} E_b = 46.3 \text{ eV}$           | δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ  σ  β  γ  δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.540+1 1.630 -2.46-2 3.46-3 7.094+1 1.232 3.28-1 6.09-2 1.022+2 1.219 3.36-1 6.14-2 6.709+0 1.988 -1.03-2 -1.10-4 7.069+0 1.676 1.91-2 7.12-4 1.382+1 1.702 2.25-2 3.06-3 5.196+0 1.269 3.79-1                             | 5.398+1 1.647 6.04-2 6.24-3 2.950+1 1.189 5.04-1 7.76-2 4.231+1 1.167 5.08-1 7.91-2 4.007+0 1.990 -7.26-2 -1.30-4 3.991+0 1.643 1.23-1 2.87-3 7.664+0 1.678 1.33-1 5.49-3 2.257+0 1.192 5.34-1                                                            | 2.209+1 1.607 3.20-1 1.30-2 7.907+0 1.064 7.64-1 1.12-1 1.127+1 1.038 7.61-1 1.15-1 1.891+0 1.993 -9.09-2 -1.55-4 1.661+0 1.563 3.63-1 9.66-3 3.111+0 1.609 3.84-1 1.17-2 6.368-1 1.047 7.72-1                             | 1.104+1 1.544 5.70-1 2.10-2 2.940+0 0.948 9.44-1 1.47-1 4.167+0 0.923 9.36-1 1.52-1 1.086+0 1.995 -3.05-2 -1.69-4 8.464-1 1.484 5.86-1 1.89-2 1.558+0 1.536 6.17-1 1.98-2 2.433-1 0.927 9.44-1                             | 6.248+0 1.479 7.84-1 3.06-2 1.325+0 0.847 1.07+0 1.82-1 1.869+0 0.828 1.06+0 1.88-1 6.966-1 1.995 6.89-2 -1.79-4 4.871-1 1.412 7.80-1 3.00-2 8.846-1 1.467 8.20-1 2.95-2 1.114-1 0.828 1.07+0 | 3.849+0 1.416 9.68-1 4.14-2 6.786-1 0.760 1.17+0 2.16-1 9.529-1 0.746 1.16+0 2.23-1 4.799-1 1.993 1.87-1 -1.85-4 3.043-1 1.345 9.48-1 4.24-2 5.465-1 1.402 9.95-1 4.06-2 5.767-2 0.744 1.16+0 | 2.523+0 1.355 1.12+0 5.30-2 3.809-1 0.684 1.23+0 2.48-1 5.327-1 0.676 1.23+0 2.55-1 3.477-1 1.990 3.15-1 -1.88-4 2.019-1 1.283 1.09+0 5.55-2 3.590-1 1.341 1.14+0 5.23-2 3.261-2 0.671 1.23+0                                                            | 1.734+0 1.297 1.26+0 6.50-2 2.292-1 0.617 1.29+0 2.78-1 3.192-1 0.616 1.28+0 2.85-1 2.617-1 1.986 4.46-1 -1.89-4 1.402-1 1.224 1.22+0 6.88-2 2.472-1 1.283 1.27+0 6.45-2 1.972-2 0.606 1.28+0 | 1.237+0 1.242 1.37+0 7.69-2 1.456-1 0.560 1.33+0 3.07-1 2.020-1 0.564 1.32+0 3.14-1 2.028-1 1.981 5.77-1 -1.88-4 1.010-1 1.168 1.32+0 8.20-2 1.767-1 1.228 1.38+0 7.66-2 1.257-2 0.548 1.32+0 | 9.094-1<br>1.188<br>1.47+0<br>8.85-2<br>9.657-2<br>0.510<br>1.36+0<br>3.35-1<br>1.335-1<br>0.520<br>1.36+0<br>3.42-1<br>1.610-1<br>1.976<br>7.07-1<br>-1.88-4<br>7.489-2<br>1.116<br>1.41+0<br>9.51-2<br>1.301-1<br>1.175<br>1.48+0<br>8.86-2<br>8.367-3<br>0.497<br>1.35+0 |
| $E_b = 496.2 \text{ eV}$ $3d_{3/2}$ $E_b = 311.7 \text{ eV}$ $3d_{5/2}$ $E_b = 307.0 \text{ eV}$ $4s_{1/2}$ $E_b = 81.0 \text{ eV}$ $4p_{1/2}$ $E_b = 51.9 \text{ eV}$ $4p_{3/2}$ $E_b = 46.3 \text{ eV}$ | δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.540+1 1.630 -2.46-2 3.46-3 7.094+1 1.232 3.28-1 6.09-2 1.022+2 1.219 3.36-1 6.14-2 6.709+0 1.988 -1.03-2 -1.10-4 7.069+0 1.676 1.91-2 7.12-4 1.382+1 1.702 2.25-2 3.06-3 5.196+0 1.269                                    | 5.398+1 1.647 6.04-2 6.24-3 2.950+1 1.189 5.04-1 7.76-2 4.231+1 1.167 5.08-1 7.91-2 4.007+0 1.990 -7.26-2 -1.30-4 3.991+0 1.643 1.23-1 2.87-3 7.664+0 1.678 1.33-1 5.49-3 2.257+0 1.192                                                                   | 2.209+1 1.607 3.20-1 1.30-2 7.907+0 1.064 7.64-1 1.12-1 1.127+1 1.038 7.61-1 1.15-1 1.891+0 1.993 -9.09-2 -1.55-4 1.661+0 1.563 3.63-1 9.66-3 3.111+0 1.609 3.84-1 1.17-2 6.368-1 1.047                                    | 1.104+1 1.544 5.70-1 2.10-2 2.940+0 0.948 9.44-1 1.47-1 4.167+0 0.923 9.36-1 1.52-1 1.086+0 1.995 -3.05-2 -1.69-4 8.464-1 1.484 5.86-1 1.89-2 1.558+0 1.536 6.17-1 1.98-2 2.433-1 0.927                                    | 6.248+0 1.479 7.84-1 3.06-2 1.325+0 0.847 1.07+0 1.82-1 1.869+0 0.828 1.06+0 1.88-1 6.966-1 1.995 6.89-2 -1.79-4 4.871-1 1.412 7.80-1 3.00-2 8.846-1 1.467 8.20-1 2.95-2 1.114-1 0.828        | 3.849+0 1.416 9.68-1 4.14-2 6.786-1 0.760 1.17+0 2.16-1 9.529-1 0.746 1.16+0 2.23-1 4.799-1 1.993 1.87-1 -1.85-4 3.043-1 1.345 9.48-1 4.24-2 5.465-1 1.402 9.95-1 4.06-2 5.767-2 0.744        | 2.523+0 1.355 1.12+0 5.30-2 3.809-1 0.684 1.23+0 2.48-1 5.327-1 0.676 1.23+0 2.55-1 3.477-1 1.990 3.15-1 -1.88-4 2.019-1 1.283 1.09+0 5.55-2 3.590-1 1.341 1.14+0 5.23-2 3.261-2 0.671                                                                   | 1.734+0 1.297 1.26+0 6.50-2 2.292-1 0.617 1.29+0 2.78-1 3.192-1 0.616 1.28+0 2.85-1 2.617-1 1.986 4.46-1 -1.89-4 1.402-1 1.224 1.22+0 6.88-2 2.472-1 1.283 1.27+0 6.45-2 1.972-2 0.606        | 1.237+0 1.242 1.37+0 7.69-2 1.456-1 0.560 1.33+0 3.07-1 2.020-1 0.564 1.32+0 3.14-1 2.028-1 1.981 5.77-1 -1.88-4 1.010-1 1.168 1.32+0 8.20-2 1.767-1 1.228 1.38+0 7.66-2 1.257-2 0.548        | 9.094-1<br>1.188<br>1.47+0<br>8.85-2<br>9.657-2<br>0.510<br>1.36+0<br>3.35-1<br>1.335-1<br>0.520<br>1.36+0<br>3.42-1<br>1.610-1<br>1.976<br>7.07-1<br>-1.88-4<br>7.489-2<br>1.116<br>1.41+0<br>9.51-2<br>1.301-1<br>1.175<br>1.48+0<br>8.86-2<br>8.367-3<br>0.497           |

| Table 1 (contin                                  | ued)                    |                   |                   |                   |                     |                     |                      |                   |                      |                      |                       |
|--------------------------------------------------|-------------------------|-------------------|-------------------|-------------------|---------------------|---------------------|----------------------|-------------------|----------------------|----------------------|-----------------------|
| $E_b =$                                          | β                       | 1.248             | 1.165             | 1.019             | 0.902               | 0.808               | 0.731                | 0.664             | 0.605                | 0.554                | 0.509                 |
| 2.2 eV                                           | $\gamma \over \delta$   | 3.84-1<br>5.56-2  | 5.35-1<br>7.42-2  | 7.67-1<br>1.12-1  | 9.35-1<br>1.50-1    | 1.06+0<br>1.86-1    | 1.15+0<br>2.22-1     | 1.22+0<br>2.55-1  | 1.28+0<br>2.85-1     | 1.32+0<br>3.14-1     | 1.35+0<br>3.42-1      |
|                                                  | σ                       | 3.702-1           | 2.192-1           | 1.025-1           | 5.865-2             | 3.755-2             | 2.583-2              | 1.870-2           | 1.405-2              | 1.088-2              | 8.628-3               |
| $E_b =$                                          | β                       | 1.988             | 1.990             | 1.994             | 1.995               | 1.995               | 1.993                | 1.990             | 1.986                | 1.981                | 1.976                 |
| 7.0 eV                                           | $\gamma \delta$         | -1.95-2 $-1.09-4$ | -7.66-2 $-1.28-4$ | -8.91-2 $-1.53-4$ | -2.65-2 $-1.66-4$   | 7.36-2 $-1.75-4$    | 1.94 - 1 $-1.81 - 4$ | 3.23-1<br>-1.86-4 | 4.54 - 1 $-1.88 - 4$ | 5.83-1<br>-1.89-4    | 7.09-1 $-1.89-4$      |
| Z= 46, Pd: [K                                    | (r]4d <sub>3/2</sub>    |                   |                   |                   |                     |                     |                      |                   |                      |                      |                       |
|                                                  | 3,2                     | k (eV)            |                   |                   |                     |                     |                      |                   |                      |                      |                       |
| Shell                                            |                         | 1500              | 2000              | 3000              | 4000                | 5000                | 6000                 | 7000              | 8000                 | 9000                 | 10000                 |
| 3s <sub>1/2</sub>                                | σ                       | 3.721+1           | 2.331+1           | 1.144+1           | 6.696+0             | 4.343+0             | 3.014+0              | 2.195+0           | 1.659+0              | 1.290+0              | 1.027+0               |
| $E_b = 669.9 \text{ eV}$                         | $eta \ \gamma$          | 1.981<br>1.74-1   | 1.984<br>1.51-2   | 1.990<br>-9.87-2  | 1.994<br>-8.11-2    | 1.995<br>-3.18-3    | 1.994<br>1.05-1      | 1.992<br>2.26-1   | 1.989<br>3.52-1      | 1.984<br>4.80-1      | 1.979<br>6.08-1       |
|                                                  | δ                       | -1.13-4           | -1.48-4           | -1.80-4           | -1.99-4             | -2.12-4             | -2.20-4              | -2.25-4           | -2.27-4              | -2.28-4              | -2.27-4               |
| $\begin{array}{l} 3p_{1/2} \\ E_b = \end{array}$ | $\frac{\sigma}{eta}$    | 5.090+1<br>1.596  | 2.978+1<br>1.613  | 1.269+1<br>1.571  | 6.515+0<br>1.506    | 3.762+0<br>1.438    | 2.355+0<br>1.372     | 1.565+0<br>1.312  | 1.088+0<br>1.256     | 7.848-1<br>1.204     | 5.827-1<br>1.153      |
| 559.1 eV                                         | γ                       | -2.34-2           | 3.15-2            | 2.65-1            | 5.05-1              | 7.14-1              | 8.92-1               | 1.04+0            | 1.18+0               | 1.204                | 1.39+0                |
|                                                  | δ                       | 1.40-3            | 2.90-3            | 9.46-3            | 1.85-2              | 2.89-2              | 4.00-2               | 5.18-2            | 6.45-2               | 7.78-2               | 9.09-2                |
| $3p_{3/2}$<br>$E_b =$                            | $\frac{\sigma}{eta}$    | 1.013+2<br>1.622  | 5.784+1<br>1.648  | 2.391+1<br>1.617  | 1.204+1<br>1.559    | 6.850+0<br>1.495    | 4.236+0<br>1.431     | 2.785+0<br>1.372  | 1.920+0<br>1.318     | 1.373+0<br>1.266     | 1.012+0<br>1.216      |
| 531.5 eV                                         | γ                       | -2.96-2           | 3.88 - 2          | 2.87 - 1          | 5.38 - 1            | 7.57 - 1            | 9.43 - 1             | 1.10+0            | 1.24+0               | 1.36+0               | 1.46+0                |
|                                                  | δ                       | 3.30-3            | 5.81-3            | 1.22-2            | 2.02-2              | 2.92-2              | 3.88-2               | 4.92-2            | 6.06-2               | 7.26-2               | 8.45-2                |
| $3d_{3/2} E_b =$                                 | $\frac{\sigma}{eta}$    | 8.068+1<br>1.234  | 3.379+1<br>1.201  | 9.151+0<br>1.084  | 3.426+0<br>0.966    | 1.553+0<br>0.865    | 7.988-1<br>0.780     | 4.501-1<br>0.708  | 2.716-1<br>0.642     | 1.729-1<br>0.583     | 1.149-1<br>0.529      |
| 340.0 eV                                         | γ                       | 3.04-1            | 4.83-1            | 7.52 - 1          | 9.37-1              | 1.07+0              | 1.17+0               | 1.24+0            | 1.30+0               | 1.34+0               | 1.38+0                |
| 3d <sub>5/2</sub>                                | $\frac{\delta}{\sigma}$ | 5.94-2<br>1.164+2 | 7.63-2<br>4.853+1 | 1.10-1<br>1.306+1 | 1.43-1<br>4.861+0   | 1.76-1<br>2.192+0   | 2.09-1<br>1.123+0    | 2.42-1<br>6.299-1 | 2.72-1<br>3.786-1    | 3.01-1<br>2.401-1    | 3.28-1<br>1.590-1     |
| $E_b =$                                          | β                       | 1.223             | 1.180             | 1.057             | 0.940               | 0.843               | 0.764                | 0.299-1           | 0.638                | 0.585                | 0.537                 |
| 334.7 eV                                         | $_{\delta}^{\gamma}$    | 3.13-1<br>5.98-2  | 4.89-1<br>7.77-2  | 7.50-1<br>1.13-1  | 9.29 - 1 $1.48 - 1$ | 1.06+0<br>1.83-1    | 1.16+0<br>2.17-1     | 1.23+0<br>2.49-1  | 1.29+0<br>2.80-1     | 1.34+0<br>3.08-1     | 1.37+0<br>3.35-1      |
| 4s <sub>1/2</sub>                                | σ                       | 7.197+0           | 4.300+0           | 2.032+0           | 1.170+0             | 7.523-1             | 5.192-1              | 3.767-1           | 2.839-1              | 2.203-1              | 1.751-1               |
| $E_b =$                                          | β                       | 1.987             | 1.989             | 1.993             | 1.994               | 1.995               | 1.993                | 1.991             | 1.987                | 1.983                | 1.977                 |
| 86.4 eV                                          | $\delta$                | 2.16-3 $-1.18-4$  | -6.53-2 $-1.40-4$ | -9.52-2 $-1.69-4$ | -4.58-2 $-1.87-4$   | 4.54-2 $-1.99-4$    | 1.58 - 1 $-2.07 - 4$ | 2.80-1 $-2.12-4$  | 4.06-1 $-2.15-4$     | 5.33-1<br>-2.14-4    | 6.59 - 1 $-2.14 - 4$  |
| $-4p_{1/2}$                                      | σ                       | 7.691+0           | 4.365+0           | 1.833+0           | 9.414-1             | 5.448-1             | 3.418-1              | 2.277-1           | 1.587-1              | 1.146-1              | 8.523-2               |
| $E_b = 54.4 \text{ eV}$                          | β                       | 1.681<br>8.06-3   | 1.650<br>1.03-1   | 1.575<br>3.36-1   | 1.499<br>5.60-1     | 1.426<br>7.57-1     | 1.359<br>9.24-1      | 1.298<br>1.07+0   | 1.242<br>1.20+0      | 1.189<br>1.31+0      | 1.139<br>1.40+0       |
| 34.4 CV                                          | $\frac{\gamma}{\delta}$ | 3.73-4            | 2.32-3            | 8.72-3            | 1.77-2              | 2.81-2              | 3.92-2               | 5.14-2            | 6.43-2               | 7.75-2               | 9.08-2                |
| $4p_{3/2}$                                       | σ                       | 1.499+1           | 8.348+0           | 3.416+0           | 1.723+0             | 9.828-1             | 6.095-1              | 4.018-1           | 2.776-1              | 1.989-1              | 1.469-1               |
| $E_b = 50.0 \text{ eV}$                          | $\beta$ $\gamma$        | 1.706<br>1.04-2   | 1.686<br>1.12-1   | 1.622<br>3.58-1   | 1.552<br>5.92-1     | 1.483<br>7.97-1     | 1.418<br>9.73-1      | 1.358<br>1.12+0   | 1.303<br>1.25+0      | 1.251<br>1.37+0      | 1.201<br>1.47+0       |
|                                                  | δ                       | 2.80-3            | 5.10-3            | 1.11-2            | 1.90-2              | 2.80-2              | 3.78-2               | 4.85 - 2          | 6.00-2               | 7.21-2               | 8.43-2                |
| 4d <sub>3/2</sub>                                | σ                       | 5.747+0           | 2.519+0           | 7.208-1           | 2.781-1             | 1.283-1             | 6.676-2              | 3.792-2           | 2.302-2              | 1.472-2              | 9.821-3               |
| $E_b = 1.7 \text{ eV}$                           | $eta \ \gamma$          | 1.282<br>3.63-1   | 1.210<br>5.20-1   | 1.070<br>7.63-1   | 0.948<br>9.39-1     | 0.845<br>1.07+0     | 0.760<br>1.16+0      | 0.690<br>1.24+0   | 0.627<br>1.30+0      | 0.571<br>1.34+0      | 0.519<br>1.37+0       |
|                                                  | δ                       | 5.31-2            | 7.03-2            | 1.06-1            | 1.41-1              | 1.75-1              | 2.08 - 1             | 2.41 - 1          | 2.72 - 1             | 3.01-1               | 3.29-1                |
| $4d_{5/2} E_b =$                                 | $\frac{\sigma}{eta}$    | 8.101+0<br>1.262  | 3.533+0<br>1.183  | 1.003+0<br>1.041  | 3.845-1<br>0.922    | 1.763-1<br>0.824    | 9.133-2<br>0.744     | 5.165-2<br>0.680  | 3.122-2<br>0.623     | 1.989-2<br>0.573     | 1.322-2<br>0.527      |
| 1.3 eV                                           | γ                       | 3.68-1            | 5.21 - 1          | 7.59-1            | 9.30-1              | 1.06+0              | 1.15+0               | 1.23+0            | 1.29+0               | 1.33+0               | 1.37+0                |
|                                                  | δ                       | 5.38-2            | 7.21-2            | 1.10-1            | 1.46-1              | 1.81-1              | 2.15-1               | 2.48-1            | 2.80-1               | 3.09-1               | 3.36-1                |
| Z= 47, Ag: [K                                    | (r]4d <sub>3/2</sub>    |                   |                   |                   |                     |                     |                      |                   |                      |                      |                       |
| Chell                                            |                         | k (eV)<br>1500    | 2000              | 2000              | 4000                | 5000                | 6000                 | 7000              | 9000                 | 0000                 | 10000                 |
| $\frac{\text{Shell}}{3s_{1/2}}$                  | σ                       | 3.871+1           | 2.437+1           | 3000<br>1.204+1   | 4000<br>7.071+0     | 5000<br>4.598+0     | 3.198+0              | 7000<br>2.335+0   | 8000<br>1.768+0      | 9000<br>1.377+0      | 10000                 |
| $E_b =$                                          | β                       | 1.979             | 1.983             | 1.989             | 1.992               | 1.994               | 1.994                | 1.992             | 1.989                | 1.985                | 1.981                 |
| 717.5 eV                                         | $\gamma \over \delta$   | 2.13-1 $-1.18-4$  | 3.91-2 $-1.60-4$  | -9.61-2 $-2.02-4$ | -9.28-2 $-2.23-4$   | -2.50-2 $-2.37-4$   | 7.46-2 $-2.45-4$     | 1.89-1<br>-2.51-4 | 3.11-1<br>-2.55-4    | 4.37 - 1 $-2.56 - 4$ | 5.62 - 1<br>-2.55 - 4 |
| 3p <sub>1/2</sub>                                | σ                       | 5.352+1           | 3.162+1           | 1.364+1           | 7.063+0             | 4.103+0             | 2.582+0              | 1.723+0           | 1.202+0              | 8.694-1              | 6.471-1               |
| $E_b =$                                          | β                       | 1.586             | 1.613             | 1.578             | 1.517               | 1.452               | 1.389                | 1.331             | 1.276                | 1.223                | 1.172                 |
| 602.4 eV                                         | $\frac{\gamma}{\delta}$ | -2.01-2<br>1.57-3 | 1.49-2 $2.41-3$   | 2.36-1<br>8.41-3  | 4.73 - 1 $1.67 - 2$ | 6.82 - 1 $2.65 - 2$ | 8.62-1 $3.72-2$      | 1.02+0<br>4.90-2  | 1.15+0<br>6.13-2     | 1.27+0<br>7.41-2     | 1.38+0<br>8.67-2      |
| 3p <sub>3/2</sub>                                | σ                       | 1.070+2           | 6.159+1           | 2.574+1           | 1.305+1             | 7.467+0             | 4.639+0              | 3.062+0           | 2.117+0              | 1.518+0              | 1.121+0               |
| $E_b = 571.4 \text{ eV}$                         | β                       | 1.613<br>-3.02-2  | 1.649<br>2.06-2   | 1.625<br>2.58-1   | 1.571<br>5.07-1     | 1.510<br>7.26-1     | 1.450<br>9.14-1      | 1.394<br>1.08+0   | 1.340<br>1.22+0      | 1.288<br>1.34+0      | 1.237<br>1.45+0       |
|                                                  | $\delta ^{\gamma }$     | 3.27 - 3          | 5.45 - 3          | 1.15 - 2          | 1.88 - 2            | 2.71 - 2            | 3.63 - 2             | 4.66 - 2          | 5.77 - 2             | 6.90-2               | 8.04 - 2              |
| Shell                                            | -                       | 1500<br>9.083+1   | 2000<br>3.831+1   | 3000              | 4000                | 5000<br>1.806+0     | 6000<br>9.337-1      | 7000<br>5.280 1   | 8000                 | 9000                 | 10000<br>1.358-1      |
| $3d_{3/2}$ $E_b =$                               | $\frac{\sigma}{eta}$    | 9.083+1<br>1.235  | 3.831+1<br>1.210  | 1.049+1<br>1.100  | 3.961+0<br>0.987    | 0.888               | 9.337—1<br>0.804     | 5.280-1<br>0.729  | 3.195-1<br>0.662     | 2.039-1<br>0.601     | 0.548                 |
|                                                  |                         |                   |                   |                   |                     |                     |                      |                   |                      |                      |                       |

| Table 1 (contin                                  | ued)                              |                           |                           |                           |                           |                           |                           |                           |                           |                           |                           |
|--------------------------------------------------|-----------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| 372.8 eV                                         | $_{\delta}^{\gamma}$              | 2.75-1<br>5.72-2          | 4.60-1<br>7.37-2          | 7.36-1<br>1.06-1          | 9.27-1<br>1.39-1          | 1.07+0<br>1.72-1          | 1.17+0<br>2.05-1          | 1.25+0<br>2.36-1          | 1.31+0<br>2.65-1          | 1.36+0<br>2.93-1          | 1.39+0<br>3.20-1          |
| $3d_{5/2}$ $E_b =$                               | $\sigma \ eta$                    | 1.309+2<br>1.225          | 5.497+1<br>1.189          | 1.495+1<br>1.071          | 5.613+0<br>0.959          | 2.547+0<br>0.864          | 1.310+0<br>0.785          | 7.377-1<br>0.716          | 4.446-1<br>0.655          | 2.827-1<br>0.600          | 1.876-1<br>0.553          |
| 366.7 eV                                         | $\frac{\gamma}{\delta}$           | 2.85-1<br>5.74-2          | 4.67-1<br>7.49-2          | 7.34-1<br>1.10-1          | 9.20-1<br>1.44-1          | 1.06+0<br>1.78-1          | 1.16+0<br>2.12-1          | 1.24+0<br>2.44-1          | 1.30+0<br>2.74-1          | 1.35+0<br>3.02-1          | 1.39+0<br>3.29-1          |
| $4s_{1/2}  E_b =$                                | $\sigma \ eta$                    | 7.791+0<br>1.985          | 4.663+0<br>1.988          | 2.207+0<br>1.991          | 1.273+0<br>1.994          | 8.202-1<br>1.994          | 5.672-1<br>1.993          | 4.124-1<br>1.991          | 3.113-1<br>1.988          | 2.419-1<br>1.983          | 1.925-1<br>1.979          |
| 95.2 eV                                          | $\frac{\gamma}{\delta}$           | 1.39-2 $-1.30-4$          | -5.90-2 $-1.56-4$         | -9.96-2 $-1.88-4$         | -5.95-2 $-2.08-4$         | 2.37-2 $-2.23-4$          | 1.29-1<br>-2.31-4         | 2.46-1 $-2.37-4$          | 3.68 - 1 $-2.40 - 4$      | 4.92 - 1 $-2.40 - 4$      | 6.17-1<br>-2.41-4         |
| $\begin{array}{l} 4p_{1/2} \\ E_b = \end{array}$ | $\sigma \ eta$                    | 8.448+0<br>1.684          | 4.823+0<br>1.657          | 2.043+0<br>1.584          | 1.056+0<br>1.510          | 6.150-1<br>1.440          | 3.879-1<br>1.376          | 2.594-1<br>1.317          | 1.814-1<br>1.261          | 1.314-1<br>1.208          | 9.796-2<br>1.158          |
| 62.6 eV                                          | $_{\delta}^{\gamma}$              | -8.86-4 $4.86-5$          | 8.70-2<br>1.79-3          | 3.13-1<br>7.62-3          | 5.33-1<br>1.58-2          | 7.29-1<br>2.56-2          | 8.99-1<br>3.65-2          | 1.05+0<br>4.84-2          | 1.18+0<br>6.11-2          | 1.29+0<br>7.38-2          | 1.39+0<br>8.65-2          |
| $\begin{array}{l} 4p_{3/2} \\ E_b = \end{array}$ | $\sigma \ eta$                    | 1.650+1<br>1.709          | 9.237+0<br>1.692          | 3.809+0<br>1.632          | 1.933+0<br>1.565          | 1.109+0<br>1.499          | 6.909-1<br>1.437          | 4.572-1<br>1.379          | 3.168-1<br>1.325          | 2.276-1<br>1.272          | 1.684-1<br>1.222          |
| 55.9 eV                                          | $_{\delta}^{\gamma}$              | 6.98 - 4 $2.57 - 3$       | 9.60-2 $4.78-3$           | 3.35-1<br>1.03-2          | 5.66-1<br>1.74-2          | 7.70-1<br>2.58-2          | 9.48-1<br>3.53-2          | 1.10+0<br>4.58-2          | 1.24+0<br>5.71-2          | 1.36+0<br>6.86-2          | 1.46+0<br>8.01-2          |
| $4d_{3/2} E_b =$                                 | σ<br>β                            | 7.263+0<br>1.294          | 3.215+0<br>1.223          | 9.331-1<br>1.085          | 3.640-1<br>0.966          | 1.693-1<br>0.867          | 8.867-2<br>0.784          | 5.060-2<br>0.712          | 3.083-2<br>0.647          | 1.978-2<br>0.589          | 1.323-2<br>0.536          |
| $E_b = 3.6 \text{ eV}$                           | $\gamma \over \delta$             | 3.46-1<br>5.09-2          | 5.06-1<br>6.79-2          | 7.51-1<br>1.02-1          | 9.31-1<br>1.36-1          | 1.07+0<br>1.69-1          | 1.17+0<br>2.03-1          | 1.25+0<br>2.35-1          | 1.31+0<br>2.65-1          | 1.35+0<br>2.94-1          | 1.39+0<br>3.21-1          |
| $4d_{5/2}$ $E_b =$                               | $\sigma$ $\beta$                  | 1.031+1<br>1.273          | 4.538+0<br>1.196          | 1.307+0<br>1.055          | 5.063-1<br>0.938          | 2.342-1<br>0.843          | 1.220-1<br>0.765          | 6.932-2<br>0.699          | 4.205-2<br>0.640          | 2.687-2<br>0.588          | 1.791-2<br>0.541          |
| 3.1 eV                                           | γ<br>δ                            | 3.53-1<br>5.15-2          | 5.08-1<br>6.96-2          | 7.47-1<br>1.06-1          | 9.22-1<br>1.41-1          | 1.05+0<br>1.76-1          | 1.16+0<br>2.10-1          | 1.24+0<br>2.43-1          | 1.30+0<br>2.74-1          | 1.35+0<br>3.02-1          | 1.38+0<br>3.29-1          |
| $5s_{1/2}$ $E_b =$                               | $\sigma$ $\beta$                  | 4.011-1<br>1.986          | 2.377-1<br>1.988          | 1.114-1<br>1.992          | 6.394-2<br>1.994          | 4.109-2<br>1.994          | 2.838-2<br>1.993          | 2.061-2<br>1.991          | 1.554-2<br>1.987          | 1.207-2<br>1.983          | 9.593-3<br>1.978          |
| 8.0 eV                                           | γ<br>δ                            | 1.35-3<br>-1.30-4         | -6.55-2 $-1.54-4$         | -9.93-2 $-1.87-4$         | -5.55-2 $-2.06-4$         | 2.86-2<br>-2.18-4         | 1.35-1<br>-2.26-4         | 2.53-1<br>-2.33-4         | 3.77-1<br>-2.37-4         | 5.02 - 1 $-2.38 - 4$      | 6.25 - 1 $-2.41 - 4$      |
| Z= 48, Cd: [K                                    | (r]4d <sup>4</sup> <sub>3/2</sub> |                           |                           |                           |                           |                           |                           |                           |                           |                           |                           |
| Shell                                            |                                   | k (eV)<br>1500            | 2000                      | 3000                      | 4000                      | 5000                      | 6000                      | 7000                      | 8000                      | 9000                      | 10000                     |
| $3s_{1/2} E_b =$                                 | $\sigma$ $\beta$                  | 4.022+1<br>1.977          | 2.547+1<br>1.981          | 1.265+1<br>1.987          | 7.454+0<br>1.991          | 4.860+0<br>1.993          | 3.388+0<br>1.994          | 2.479+0<br>1.992          | 1.880+0<br>1.990          | 1.467+0<br>1.986          | 1.171+0<br>1.982          |
| 770.2 eV                                         | γ<br>δ                            | 2.55-1<br>-1.22-4         | 6.69-2<br>-1.72-4         | -9.00-2<br>-2.22-4        | -1.02-1 $-2.47-4$         | -4.49-2 $-2.62-4$         | 4.61-2<br>-2.72-4         | 1.55-1<br>-2.79-4         | 2.72-1<br>-2.84-4         | 3.94-1<br>-2.86-4         | 5.18-1<br>-2.87-4         |
| $3p_{1/2}$ $E_b =$                               | $\frac{\sigma}{\beta}$            | 5.614+1<br>1.573          | 3.352+1<br>1.612          | 1.463+1<br>1.585          | 7.638+0<br>1.528          | 4.465+0<br>1.466          | 2.824+0<br>1.406          | 1.891+0<br>1.349          | 1.324+0<br>1.294          | 9.602-1<br>1.241          | 7.164-1<br>1.190          |
| 650.7 eV                                         | γ<br>δ                            | -1.17-2 $2.02-3$          | 2.92-4<br>2.02-3          | 2.05-1<br>7.29-3          | 4.38-1<br>1.50-2          | 6.48-1<br>2.43-2          | 8.32-1<br>3.49-2          | 9.92-1<br>4.64-2          | 1.13+0<br>5.84-2          | 1.25+0<br>7.05-2          | 1.36+0<br>8.24-2          |
| $3p_{3/2}$ $E_b =$                               | $\frac{\sigma}{\beta}$            | 1.129+2<br>1.600          | 6.551+1<br>1.647          | 2.765+1<br>1.633          | 1.412+1<br>1.583          | 8.122+0<br>1.527          | 5.068+0<br>1.469          | 3.357+0<br>1.414          | 2.327+0<br>1.360          | 1.673+0<br>1.308          | 1.238+0<br>1.258          |
| 616.5 eV                                         | γ<br>δ                            | -2.69-2 $3.42-3$          | 3.65-3<br>5.09-3          | 2.27-1<br>1.07-2          | 4.72-1<br>1.74-2          | 6.92-1<br>2.53-2          | 8.85-1<br>3.44-2          | 1.05+0<br>4.43-2          | 1.20+0<br>5.50-2          | 1.32+0<br>6.56-2          | 1.43+0<br>7.63-2          |
| 3d <sub>3/2</sub>                                | σ                                 | 1.022+2                   | 4.339+1                   | 1.200+1                   | 4.565+0                   | 2.093+0                   | 1.086+0                   | 6.164-1                   | 3.741-1                   | 2.393-1                   | 1.598-1                   |
| $E_b = 410.5 \text{ eV}$                         | $eta \ \gamma \ \delta$           | 1.234<br>2.48-1<br>5.57-2 | 1.219<br>4.34-1<br>7.17-2 | 1.118<br>7.18-1<br>1.03-1 | 1.010<br>9.18-1<br>1.35-1 | 0.912<br>1.06+0<br>1.68-1 | 0.826<br>1.17+0<br>2.00-1 | 0.749<br>1.26+0<br>2.30-1 | 0.680<br>1.32+0<br>2.59-1 | 0.620<br>1.37+0<br>2.86-1 | 0.567<br>1.41+0<br>3.13-1 |
| 3d <sub>5/2</sub>                                | σ                                 | 1.472+2                   | 6.220+1                   | 1.708+1                   | 6.460+0                   | 2.947+0                   | 1.522+0                   | 8.600-1                   | 5.198-1                   | 3.312-1                   | 2.203-1                   |
| $E_b = 403.7 \text{ eV}$                         | β                                 | 1.225<br>2.60-1           | 1.199<br>4.43-1           | 1.089<br>7.18-1           | 0.980<br>9.11-1           | 0.886<br>1.05+0           | 0.804<br>1.16+0           | 0.733<br>1.24+0           | 0.671<br>1.31+0           | 0.616<br>1.36+0           | 0.568<br>1.40+0           |
| 4s <sub>1/2</sub>                                | $\frac{\delta}{\sigma}$           | 5.57-2<br>8.440+0         | 7.28-2<br>5.055+0         | 1.06-1<br>2.396+0         | 1.41-1<br>1.385+0         | 1.75-1<br>8.938-1         | 2.07-1<br>6.193-1         | 2.38-1<br>4.511-1         | 2.67-1<br>3.410-1         | 2.95-1<br>2.654-1         | 3.22-1<br>2.114-1         |
| $E_b = 107.6 \text{ eV}$                         | $\beta$ $\gamma$                  | 1.984<br>2.75-2           | 1.986<br>-5.06-2          | 1.990<br>-1.02-1          | 1.993<br>-7.13-2          | 1.994<br>3.28-3           | 1.993<br>1.02-1           | 1.991<br>2.13-1           | 1.988<br>3.32-1           | 1.984<br>4.53-1           | 1.980<br>5.75-1           |
| 4p <sub>1/2</sub>                                | $\frac{\delta}{\sigma}$           | -1.40-4<br>9.254+0        | -1.70-4<br>5.311+0        | -2.08-4<br>2.269+0        | -2.30-4<br>1.182+0        | -2.47-4<br>6.919-1        | -2.56-4<br>4.386-1        | -2.63-4<br>2.945-1        | -2.68-4<br>2.066-1        | -2.69-4<br>1.501-1        | -2.70-4<br>1.122-1        |
| $E_b = 70.8 \text{ eV}$                          | $\beta$<br>$\gamma$               | 1.687<br>-8.44-3          | 1.663<br>7.05-2           | 1.594<br>2.88-1           | 1.523<br>5.05-1           | 1.455<br>7.00-1           | 1.393<br>8.73-1           | 1.334<br>1.02+0           | 1.279<br>1.16+0           | 1.226<br>1.27+0           | 1.175<br>1.37+0           |
| 4p <sub>3/2</sub>                                | δ                                 | -2.01-4<br>1.817+1        | 1.29-3<br>1.021+1         | 6.47-3<br>4.240+0         | 1.41-2<br>2.165+0         | 2.35-2<br>1.248+0         | 3.43-2<br>7.812-1         | 4.59-2<br>5.189-1         | 5.80-2<br>3.606-1         | 7.02-2<br>2.597-1         | 8.22-2<br>1.926-1         |
| $E_b = 65.0 \text{ eV}$                          | $\beta$ $\gamma$                  | 1.712<br>-8.27-3          | 1.698<br>7.84–2           | 1.643<br>3.09-1           | 1.579<br>5.37—1           | 1.516<br>7.43-1           | 1.456<br>9.24-1           | 1.399<br>1.08+0           | 1.345<br>1.22+0           | 1.292<br>1.34+0           | 1.242<br>1.45+0           |
|                                                  | δ                                 | 2.35-3                    | 4.42-3                    | 9.42-3                    | 1.60-2                    | 2.40-2                    | 3.33-2                    | 4.36-2                    | 5.43-2                    | 6.51-2                    | 7.59-2                    |
| $4d_{3/2}$ $E_b =$                               | $\frac{\sigma}{eta}$              | 8.979+0<br>1.306          | 4.008+0<br>1.240          | 1.179+0<br>1.105          | 4.645-1<br>0.989          | 2.177-1<br>0.891          | 1.146-1<br>0.806          | 6.572-2<br>0.732          | 4.018-2<br>0.665          | 2.586—2<br>0.605          | 1.734-2<br>0.552          |
| 9.7 eV                                           | $\delta \gamma$                   | 3.28-1<br>4.89-2          | 4.88-1<br>6.50-2          | 7.39-1<br>9.80-2          | 9.24-1<br>1.32-1          | 1.06+0<br>1.65-1          | 1.17+0<br>1.98-1          | 1.25+0<br>2.29-1          | 1.31+0<br>2.58-1          | 1.36+0<br>2.86-1          | 1.40+0<br>3.13-1          |
|                                                  |                                   |                           |                           |                           |                           |                           |                           |                           |                           |                           |                           |

| Table | e 1 ( | (continued) | ١ |
|-------|-------|-------------|---|
|-------|-------|-------------|---|

| abic i (contini          | ucu)                    |                                                                   |                   |                   |                    |                     |                   |                  |                  |                  |                   |
|--------------------------|-------------------------|-------------------------------------------------------------------|-------------------|-------------------|--------------------|---------------------|-------------------|------------------|------------------|------------------|-------------------|
| 4d <sub>5/2</sub>        | σ                       | 1.278+1                                                           | 5.675+0           | 1.655+0           | 6.479-1            | 3.019-1             | 1.582-1           | 9.025-2          | 5.494-2          | 3.521-2          | 2.353-2           |
| $E_b =$                  | $\beta$                 | 1.285                                                             | 1.211             | 1.072             | 0.958              | 0.864               | 0.785             | 0.716            | 0.656            | 0.602            | 0.555             |
| 9.0 eV                   | γ                       | 3.35-1                                                            | 4.92-1            | 7.35-1            | 9.15-1             | 1.05+0              | 1.16+0            | 1.24+0           | 1.30+0           | 1.35+0           | 1.39+0            |
|                          | δ                       | 4.94-2                                                            | 6.66-2            | 1.02-1            | 1.37-1             | 1.72-1              | 2.06-1            | 2.37-1           | 2.67-1           | 2.95-1           | 3.22-1            |
| $5s_{1/2}$               | $\sigma$                | 5.374-1                                                           | 3.188-1           | 1.496-1           | 8.608-2            | 5.543-2             | 3.835-2           | 2.790-2          | 2.107-2          | 1.638-2          | 1.304-2           |
| $E_b = 2.2 \text{ eV}$   | β                       | 1.985<br>1.10-2                                                   | 1.987<br>-5.86-2  | 1.991             | 1.993              | 1.994               | 1.993             | 1.991<br>2.23-1  | 1.988<br>3.42-1  | 1.984<br>4.62-1  | 1.979             |
| 2.2 EV                   | $_{\delta}^{\gamma}$    | -1.40-4                                                           | -3.80-2 $-1.68-4$ | -1.01-1 $-2.04-4$ | -6.64-2 $-2.27-4$  | 9.65-3<br>-2.41-4   | 1.10-1 $-2.52-4$  | -2.60-4          | -2.66-4          | -2.68-4          | 5.81-1<br>-2.71-4 |
| 7= 40 In [I/s            |                         | $\frac{1}{\text{Id}_{5/2}^6 5\text{s}_{1/2}^2 5\text{p}_{1/2}^1}$ |                   | 2.01              | 2,2, 1             | 2,,,                | 2,02              | 2.00             | 2,00             | 2,00 1           | 21,7 1            |
| Z= 49, III: [KI          | rj4u <sub>3/2</sub> 4   |                                                                   | 2                 |                   |                    |                     |                   |                  |                  |                  |                   |
| Shell                    |                         | k (eV)<br>1500                                                    | 2000              | 3000              | 4000               | 5000                | 6000              | 7000             | 8000             | 9000             | 10000             |
|                          |                         | 4.168+1                                                           | 2.655+1           | 1.327+1           | 7.843+0            | 5.127+0             | 3.584+0           | 2.627+0          | 1.996+0          |                  |                   |
| $3s_{1/2}$<br>$E_b =$    | $\frac{\sigma}{\beta}$  | 1.975                                                             | 2.655+1<br>1.979  | 1.327+1           | 1.990              | 1.992               | 3.584+0<br>1.993  | 1.992            | 1.996+0          | 1.559+0<br>1.987 | 1.246+0<br>1.983  |
| 825.6 eV                 | γ                       | 3.02-1                                                            | 9.75-2            | -8.04-2           | -1.07 - 1          | -6.23-2             | 1.99-2            | 1.22-1           | 2.36-1           | 3.54-1           | 4.75-1            |
|                          | δ                       | -1.25-4                                                           | -1.87 - 4         | -2.41-4           | -2.70-4            | -2.88 - 4           | -3.01-4           | -3.10-4          | -3.16-4          | -3.20 - 4        | -3.22-4           |
| $3p_{1/2}$               | σ                       | 5.867+1                                                           | 3.543+1           | 1.566+1           | 8.239+0            | 4.845+0             | 3.078+0           | 2.069+0          | 1.453+0          | 1.057+0          | 7.903-1           |
| $E_b =$                  | $\beta$                 | 1.559                                                             | 1.608             | 1.591             | 1.539              | 1.480               | 1.421             | 1.364            | 1.309            | 1.257            | 1.207             |
| 702.2 eV                 | $_{\delta}^{\gamma}$    | 2.90-3<br>2.83-3                                                  | -1.09-2<br>1.73-3 | 1.76-1<br>6.48-3  | 4.05-1<br>1.39-2   | 6.17 - 1 $2.29 - 2$ | 8.03-1<br>3.31-2  | 9.66-1<br>4.39-2 | 1.11+0<br>5.51-2 | 1.23+0<br>6.64-2 | 1.34+0<br>7.78-2  |
| 2n                       |                         | 1.187+2                                                           | 6.950+1           | 2.964+1           | 1.524+1            | 8.810+0             | 5.519+0           | 3.668+0          | 2.550+0          | 1.837+0          | 1.363+0           |
| $3p_{3/2}$ $E_b =$       | $\frac{\sigma}{\beta}$  | 1.187+2                                                           | 1.644             | 1.640             | 1.524+1            | 1.542               | 1.486             | 1.431            | 2.550+0<br>1.378 | 1.837+0          | 1.363+0           |
| 664.3 eV                 | γ                       | -1.84-2                                                           | -1.02-2           | 1.97-1            | 4.39-1             | 6.62-1              | 8.58-1            | 1.03+0           | 1.18+0           | 1.30+0           | 1.42+0            |
|                          | δ                       | 3.77-3                                                            | 4.84-3            | 1.02-2            | 1.67-2             | 2.44-2              | 3.30-2            | 4.23-2           | 5.20-2           | 6.18-2           | 7.19-2            |
| 3d <sub>3/2</sub>        | σ                       | 1.143+2                                                           | 4.887+1           | 1.365+1           | 5.229+0            | 2.410+0             | 1.257+0           | 7.155-1          | 4.356-1          | 2.794-1          | 1.870-1           |
| $E_b =$                  | β                       | 1.230                                                             | 1.226             | 1.135             | 1.029              | 0.930               | 0.843             | 0.766            | 0.699            | 0.640            | 0.588             |
| 450.8 eV                 | γ                       | 2.19-1                                                            | 4.11-1            | 7.03-1            | 9.09-1             | 1.06+0              | 1.17+0            | 1.26+0           | 1.33+0           | 1.38+0           | 1.42+0            |
|                          | δ                       | 5.37-2                                                            | 7.03-2            | 1.01-1            | 1.33-1             | 1.64-1              | 1.94-1            | 2.23-1           | 2.52-1           | 2.80-1           | 3.07-1            |
| $3d_{5/2}$               | σ                       | 1.646+2<br>1.224                                                  | 6.999+1<br>1.207  | 1.940+1<br>1.105  | 7.391+0<br>0.998   | 3.389+0<br>0.902    | 1.758+0<br>0.819  | 9.968-1<br>0.748 | 6.042-1<br>0.686 | 3.861-1<br>0.633 | 2.574-1           |
| $E_b = 443.1 \text{ eV}$ | $eta \ \gamma$          | 2.31-1                                                            | 4.21-1            | 7.04–1            | 9.03-1             | 1.05+0              | 1.16+0            | 1.25+0           | 1.31+0           | 1.37+0           | 0.586<br>1.41+0   |
|                          | δ                       | 5.35-2                                                            | 7.12-2            | 1.05-1            | 1.38-1             | 1.70-1              | 2.02-1            | 2.32-1           | 2.61-1           | 2.89-1           | 3.16-1            |
| 4s <sub>1/2</sub>        | σ                       | 9.111+0                                                           | 5.464+0           | 2.594+0           | 1.501+0            | 9.708-1             | 6.739-1           | 4.917-1          | 3.722-1          | 2.900-1          | 2.313-1           |
| $E_b =$                  | β                       | 1.983                                                             | 1.985             | 1.989             | 1.992              | 1.993               | 1.993             | 1.991            | 1.988            | 1.985            | 1.981             |
| 121.9 eV                 | γ                       | 4.14 - 2                                                          | -4.10-2           | -1.02 - 1         | -8.13-2            | -1.53-2             | 7.65 - 2          | 1.83 - 1         | 2.98 - 1         | 4.16 - 1         | 5.35 - 1          |
|                          | δ                       | -1.53-4                                                           | -1.85-4           | -2.27-4           | -2.52-4            | -2.71-4             | -2.83-4           | -2.92-4          | -2.99-4          | -3.01-4          | -3.04-4           |
| $4p_{1/2}$               | σ                       | 1.013+1                                                           | 5.847+0           | 2.518+0<br>1.604  | 1.320+0            | 7.773-1             | 4.949-1           | 3.335-1          | 2.347-1          | 1.710-1          | 1.281-1           |
| $E_b = 81.9 \text{ eV}$  | $\beta$ $\gamma$        | 1.690<br>-1.47-2                                                  | 1.669<br>5.54-2   | 2.64-1            | 1.535<br>4.78-1    | 1.470<br>6.75-1     | 1.408<br>8.50-1   | 1.349<br>1.00+0  | 1.293<br>1.14+0  | 1.241<br>1.25+0  | 1.191<br>1.36+0   |
| 01.5 CV                  | δ                       | -4.56-4                                                           | 8.90-4            | 5.72-3            | 1.30-2             | 2.21-2              | 3.24-2            | 4.33-2           | 5.45-2           | 6.60-2           | 7.75-2            |
| $4p_{3/2}$               | σ                       | 1.994+1                                                           | 1.126+1           | 4.707+0           | 2.417+0            | 1.401+0             | 8.802-1           | 5.865-1          | 4.088-1          | 2.951-1          | 2.193-1           |
| $E_b =$                  | β                       | 1.713                                                             | 1.704             | 1.653             | 1.593              | 1.532               | 1.473             | 1.416            | 1.362            | 1.309            | 1.260             |
| 75.1 eV                  | γ                       | -1.57-2                                                           | 6.25-2            | 2.84-1            | 5.11-1             | 7.18-1              | 9.02 - 1          | 1.06+0           | 1.20+0           | 1.32+0           | 1.43+0            |
|                          | δ                       | 2.16-3                                                            | 4.17-3            | 8.96-3            | 1.53-2             | 2.31-2              | 3.19-2            | 4.13-2           | 5.12-2           | 6.12-2           | 7.15-2            |
| $4d_{3/2}$               | σ                       | 1.087+1                                                           | 4.895+0           | 1.458+0           | 5.799-1            | 2.738-1             | 1.450-1           | 8.350-2          | 5.125-2          | 3.309-2          | 2.225-2           |
| $E_b = 16.8 \text{ eV}$  | β<br>γ                  | 1.316<br>3.11-1                                                   | 1.254<br>4.74-1   | 1.124<br>7.28-1   | 1.009<br>9.16-1    | 0.910<br>1.06+0     | 0.823<br>1.17+0   | 0.748<br>1.25+0  | 0.681<br>1.32+0  | 0.622<br>1.37+0  | 0.571<br>1.41+0   |
| 10.0 C V                 | δ                       | 4.74-2                                                            | 6.34-2            | 9.59-2            | 1.29-1             | 1.61-1              | 1.92-1            | 2.22-1           | 2.51-1           | 2.79-1           | 3.06-1            |
| 4d <sub>5/2</sub>        | σ                       | 1.558+1                                                           | 6.977+0           | 2.060+0           | 8.140-1            | 3.820-1             | 2.013-1           | 1.154-1          | 7.050-2          | 4.533-2          | 3.036-2           |
| $E_b =$                  | β                       | 1.296                                                             | 1.226             | 1.091             | 0.977              | 0.881               | 0.800             | 0.730            | 0.669            | 0.616            | 0.569             |
| 15.8 eV                  | γ<br>δ                  | 3.20 - 1                                                          | 4.79 - 1          | 7.25 - 1          | 9.08 - 1           | 1.05+0              | 1.16+0            | 1.24+0           | 1.31+0           | 1.36+0           | 1.41+0            |
|                          | δ                       | 4.78-2                                                            | 6.50-2            | 9.96-2            | 1.34-1             | 1.68-1              | 2.00-1            | 2.31-1           | 2.60-1           | 2.88-1           | 3.16-1            |
| $5s_{1/2}$               | σ                       | 7.283-1                                                           | 4.328-1           | 2.035-1           | 1.172-1            | 7.558-2             | 5.237-2           | 3.815-2          | 2.886-2          | 2.247-2          | 1.791-2           |
| $E_b = 0.1 \text{ eV}$   | β                       | 1.983                                                             | 1.986<br>-5.28-2  | 1.989             | 1.992<br>-7.72-2   | 1.993               | 1.993             | 1.991<br>1.92-1  | 1.988<br>3.05-1  | 1.985<br>4.22-1  | 1.980             |
| 0.167                    | $\delta ^{\gamma }$     | 2.06-2 $-1.54-4$                                                  | -5.28-2 $-1.87-4$ | -1.04-1 $-2.26-4$ | -7.72-2<br>-2.52-4 | -8.12-3 $-2.69-4$   | 8.53-2 $-2.81-4$  | -2.90-4          | -2.96-4          | -2.99-4          | 5.40-1<br>-3.03-4 |
| 5n <sub>1/2</sub>        | σ                       | 4.187-1                                                           | 2.401-1           | 1.028-1           | 5.373-2            | 3.160-2             | 2.010-2           | 1.354-2          | 9.529-3          | 6.942-3          | 5.201-3           |
| $5p_{1/2}$<br>$E_b =$    | $\beta$                 | 1.701                                                             | 1.675             | 1.606             | 1.535              | 1.468               | 1.404             | 1.334-2          | 9.329-3<br>1.291 | 1.241            | 3.201-3<br>1.194  |
| 0.8 eV                   | γ                       | -1.19-2                                                           | 6.26-2            | 2.73-1            | 4.88-1             | 6.83-1              | 8.55-1            | 1.01+0           | 1.14+0           | 1.26+0           | 1.36+0            |
|                          | δ                       | -6.83 - 4                                                         | 6.67 - 4          | 5.50-3            | 1.28-2             | 2.18 - 2            | 3.16-2            | 4.22 - 2         | 5.35 - 2         | 6.53 - 2         | 7.74-2            |
| Z= 50, Sn: [K            | r]4d <sub>3/2</sub> 4   | $4d_{5/2}^6 5s_{1/2}^2 5p_{1/2}^2$                                | 2                 |                   |                    |                     |                   |                  |                  |                  |                   |
|                          | · ·                     | k (eV)                                                            |                   |                   |                    |                     |                   |                  |                  |                  |                   |
| Shell                    |                         | 1500                                                              | 2000              | 3000              | 4000               | 5000                | 6000              | 7000             | 8000             | 9000             | 10000             |
| 3s <sub>1/2</sub>        | σ                       | 4.306+1                                                           | 2.762+1           | 1.389+1           | 8.241+0            | 5.401+0             | 3.783+0           | 2.778+0          | 2.114+0          | 1.654+0          | 1.323+0           |
| $E_b =$                  | β                       | 1.973                                                             | 1.976             | 1.983             | 1.988              | 1.991               | 1.992             | 1.992            | 1.990            | 1.987            | 1.984             |
| 883.8 eV                 | γ                       | 3.52-1<br>-1.25-4                                                 | 1.31-1<br>-1.99-4 | -6.98-2 $-2.66-4$ | -1.12-1 $-2.99-4$  | -7.85-2             | -4.48-3 $-3.36-4$ | 9.16-2           | 2.00-1           | 3.14-1           | 4.30-1            |
|                          |                         |                                                                   | - 1.99-4          | -2.00-4           | -2.99-4            | -3.21 - 4           | 4—ەد.د—           | -3.46 - 4        | -3.54 - 4        | -3.59 - 4        | -3.62-4           |
| 3p <sub>1/2</sub>        | $\frac{\delta}{\sigma}$ | 6.115+1                                                           | 3.732+1           | 1.671+1           | 8.859+0            | 5.240+0             | 3.344+0           | 2.257+0          | 1.590+0          | 1.159+0          | 8.692-1           |

| $E_b =$                                            | ued)<br>β              | 1.539                                | 1.604                          | 1.596             | 1.548             | 1.491             | 1.434             | 1.378             | 1.324                | 1.274             | 1.226            |
|----------------------------------------------------|------------------------|--------------------------------------|--------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------|-------------------|------------------|
| 756.4 eV                                           | γ                      | 2.38 - 2                             | -1.87 - 2                      | 1.49 - 1          | 3.73 - 1          | 5.85 - 1          | 7.72 - 1          | 9.36 - 1          | 1.08+0               | 1.21+0            | 1.32+0           |
|                                                    | δ                      | 4.13-3                               | 1.57-3                         | 5.62-3            | 1.25-2            | 2.09-2            | 3.05-2            | 4.06-2            | 5.13-2               | 6.22-2            | 7.34-2           |
| $ \begin{array}{l} 3p_{3/2} \\ E_b = \end{array} $ | $\frac{\sigma}{eta}$   | 1.245+2<br>1.569                     | 7.352+1<br>1.639               | 3.168+1<br>1.646  | 1.639+1<br>1.606  | 9.524+0<br>1.554  | 5.991+0<br>1.500  | 3.994+0<br>1.447  | 2.784+0<br>1.395     | 2.011+0<br>1.345  | 1.495+0<br>1.298 |
| -₀ —<br>714.4 eV                                   | γ                      | -4.84 - 3                            | -2.14-2                        | 1.69-1            | 4.08-1            | 6.31-1            | 8.28-1            | 1.00+0            | 1.15+0               | 1.28+0            | 1.40+0           |
|                                                    | δ                      | 4.42 - 3                             | 4.64-3                         | 9.68-3            | 1.58-2            | 2.29-2            | 3.08-2            | 3.94-2            | 4.85-2               | 5.79-2            | 6.77-2           |
| $3d_{3/2}$                                         | $\sigma$               | 1.275+2                              | 5.483+1                        | 1.545+1           | 5.961+0           | 2.763+0           | 1.447+0           | 8.269-1           | 5.049-1              | 3.247-1           | 2.177-           |
| $E_b = 493.3 \text{ eV}$                           | $\beta$ $\gamma$       | 1.223<br>1.87-1                      | 1.231<br>3.83-1                | 1.149<br>6.83-1   | 1.045<br>8.95-1   | 0.949<br>1.05+0   | 0.864<br>1.17+0   | 0.789<br>1.26+0   | 0.722<br>1.34+0      | 0.663<br>1.39+0   | 0.610<br>1.44+0  |
| 155.5 CV                                           | δ                      | 5.16-2                               | 6.82-2                         | 9.82-2            | 1.28-1            | 1.58-1            | 1.88-1            | 2.17-1            | 2.46-1               | 2.74-1            | 3.00-1           |
| 3d <sub>5/2</sub>                                  | σ                      | 1.835+2                              | 7.848+1                        | 2.195+1           | 8.415+0           | 3.880+0           | 2.022+0           | 1.150+0           | 6.993-1              | 4.479-1           | 2.992-           |
| $E_b = 484.8 \text{ eV}$                           | β                      | 1.220<br>2.01-1                      | 1.213<br>3.95-1                | 1.118<br>6.85-1   | 1.013<br>8.90-1   | 0.918<br>1.04+0   | 0.837<br>1.16+0   | 0.767<br>1.25+0   | 0.706<br>1.32+0      | 0.652<br>1.38+0   | 0.605<br>1.43+0  |
| 404.0 EV                                           | $_{\delta}^{\gamma}$   | 5.13-2                               | 6.89-2                         | 1.01-1            | 1.33-1            | 1.65-1            | 1.16+0            | 2.26-1            | 2.56-1               | 2.84-1            | 3.10-1           |
| 4s <sub>1/2</sub>                                  | σ                      | 9.808+0                              | 5.892+0                        | 2.802+0           | 1.624+0           | 1.052+0           | 7.314-1           | 5.344-1           | 4.051-1              | 3.160-1           | 2.523-           |
| $E_b =$                                            | β                      | 1.981                                | 1.984                          | 1.988             | 1.991             | 1.992             | 1.992             | 1.991             | 1.989                | 1.985             | 1.981            |
| 136.5 eV                                           | $\gamma \\ \delta$     | 5.59-2<br>-1.66-4                    | -3.13-2 $-2.04-4$              | -1.03-1 $-2.51-4$ | -9.11-2 $-2.80-4$ | -3.26-2 $-3.01-4$ | 5.29-2<br>-3.15-4 | 1.54-1<br>-3.25-4 | 2.64-1 $-3.34-4$     | 3.78-1<br>-3.38-4 | 4.93-1<br>-3.41- |
| 1n                                                 |                        | 1.106+1                              | 6,419+0                        | 2.786+0           | 1.470+0           | 8.698-1           | 5.563-1           | 3.763-1           | 2.657-1              | 1.941-1           | 1.458-           |
| $\begin{array}{l} 4p_{1/2} \\ E_b = \end{array}$   | $\frac{\sigma}{\beta}$ | 1.691                                | 1.674                          | 1.612             | 1.470+0           | 1.481             | 1.420             | 3.763—1<br>1.362  | 1.308                | 1.941 – 1         | 1.458-           |
| 93.9 eV                                            | γ                      | -1.94-2                              | 4.18 - 2                       | 2.42 - 1          | 4.54 - 1          | 6.49 - 1          | 8.23 - 1          | 9.77 - 1          | 1.11+0               | 1.23+0            | 1.34+0           |
|                                                    | δ                      | -6.80-4                              | 4.72-4                         | 4.84-3            | 1.16-2            | 2.01-2            | 2.97-2            | 3.99-2            | 5.07-2               | 6.18-2            | 7.31-2           |
| $4p_{3/2}$ $E_b =$                                 | $\frac{\sigma}{\beta}$ | 2.181+1<br>1.714                     | 1.237+1<br>1.709               | 5.207+0<br>1.662  | 2.688+0<br>1.604  | 1.565+0<br>1.545  | 9.873-1<br>1.487  | 6.601-1<br>1.431  | 4.613-1<br>1.379     | 3.339-1<br>1.329  | 2.487 –<br>1.281 |
| 86.0 eV                                            | γ                      | -2.19-2                              | 4.81-2                         | 2.63-1            | 4.87-1            | 6.93-1            | 8.76-1            | 1.431             | 1.18+0               | 1.30+0            | 1.42+0           |
|                                                    | δ                      | 1.98 - 3                             | 3.92 - 3                       | 8.42 - 3          | 1.43-2            | 2.14 - 2          | 2.96-2            | 3.83-2            | 4.76 - 2             | 5.72-2            | 6.71 - 2         |
| $4d_{3/2}$                                         | $\sigma$               | 1.293+1                              | 5.871+0                        | 1.769+0           | 7.104-1           | 3.378-1           | 1.800-1           | 1.041-1           | 6.418-2              | 4.156-2           | 2.803-           |
| $E_b = 24.6 \text{ eV}$                            | $\beta$ $\gamma$       | 1.325<br>2.93-1                      | 1.267<br>4.57-1                | 1.139<br>7.15-1   | 1.025<br>9.06-1   | 0.926<br>1.05+0   | 0.841<br>1.17+0   | 0.767<br>1.26+0   | 0.702<br>1.33+0      | 0.645<br>1.38+0   | 0.593<br>1.43+0  |
| 24.0 C V                                           | δ                      | 4.53-2                               | 6.09-2                         | 9.22-2            | 1.24-1            | 1.55-1            | 1.86-1            | 2.16-1            | 2.45-1               | 2.73-1            | 3.00-1           |
| $4d_{5/2}$                                         | σ                      | 1.863+1                              | 8.409+0                        | 2.512+0           | 1.001+0           | 4.734-1           | 2.509-1           | 1.445-1           | 8.862-2              | 5.715-2           | 3.839-           |
| $E_b =$                                            | β                      | 1.305                                | 1.238                          | 1.104             | 0.990             | 0.895             | 0.815             | 0.746             | 0.687                | 0.634             | 0.588            |
| 23.4 eV                                            | $\gamma \\ \delta$     | 3.02-1<br>4.57-2                     | 4.63-1<br>6.23-2               | 7.13-1<br>9.59-2  | 8.98-1<br>1.29-1  | 1.04+0<br>1.62-1  | 1.15+0<br>1.94-1  | 1.24+0<br>2.25-1  | 1.31+0<br>2.55-1     | 1.37+0<br>2.83-1  | 1.42+0<br>3.10-1 |
| 5s <sub>1/2</sub>                                  | σ                      | 9.174-1                              | 5.457-1                        | 2.567-1           | 1.481-1           | 9.561-2           | 6.636-2           | 4.842-2           | 3.668-2              | 2.860-2           | 2.282-           |
| $E_b =$                                            | β                      | 1.982                                | 1.984                          | 1.988             | 1.991             | 1.992             | 1.992             | 1.991             | 1.989                | 1.985             | 1.981            |
| 0.9 eV                                             | $\gamma \\ \delta$     | 3.13-2<br>-1.68-4                    | -4.45-2 $-2.03-4$              | -1.03-1 $-2.47-4$ | -8.56-2 $-2.76-4$ | -2.46-2 $-2.96-4$ | 6.16-2 $-3.09-4$  | 1.63-1<br>-3.19-4 | 2.72 - 1 $-3.27 - 4$ | 3.86-1<br>-3.31-4 | 5.01-1<br>-3.36- |
| 5 <i>p</i> <sub>1/2</sub>                          | σ                      | 6.047-1                              | 3.484-1                        | 1.502-1           | 7.902-2           | 4.672-2           | 2.986-2           | 2.020-2           | 1.426-2              | 1.042-2           | 7.825-           |
| $E_b =$                                            | β                      | 1.705                                | 1.681                          | 1.615             | 1.546             | 1.481             | 1.420             | 1.364             | 1.311                | 1.260             | 1.212            |
| 1.1 eV                                             | γ                      | -1.68-2                              | 4.96-2                         | 2.51-1            | 4.61-1            | 6.54-1            | 8.27-1            | 9.81-1            | 1.12+0               | 1.24+0            | 1.34+0           |
|                                                    | δ                      | -9.05-4                              | 2.16-4                         | 4.45-3            | 1.11-2            | 1.94-2            | 2.91-2            | 3.97-2            | 5.09-2               | 6.26-2            | 7.42-2           |
| Z= 51, Sb: [Ki                                     | r]4d <sub>3/2</sub>    | $4d_{5/2}^6  5s_{1/2}^2  5p_{1/2}^2$ | <sub>2</sub> 5p <sub>3/2</sub> |                   |                   |                   |                   |                   |                      |                   |                  |
|                                                    |                        | k (eV)                               |                                |                   |                   |                   |                   |                   |                      |                   |                  |
| Shell                                              |                        | 1500                                 | 2000                           | 3000              | 4000              | 5000              | 6000              | 7000              | 8000                 | 9000              | 10000            |
| $3s_{1/2}  E_b =$                                  | $\frac{\sigma}{\beta}$ | 4.438+1<br>1.970                     | 2.866+1<br>1.974               | 1.451+1<br>1.981  | 8.640+0<br>1.987  | 5.677+0<br>1.990  | 3.984+0<br>1.992  | 2.931+0<br>1.991  | 2.234+0<br>1.990     | 1.750+0<br>1.988  | 1.402+0<br>1.984 |
| ь —<br>943.7 eV                                    | γ                      | 4.03-1                               | 1.68-1                         | -5.59-2           | -1.14-1           | -9.19-2           | -2.69-2           | 6.19-2            | 1.64-1               | 2.73-1            | 3.85-1           |
|                                                    | δ                      | -1.20-4                              | -2.11-4                        | -2.91-4           | -3.30 - 4         | -3.54 - 4         | -3.72 - 4         | -3.85 - 4         | -3.93 - 4            | -4.00-4           | -4.03-           |
| $3p_{1/2}$                                         | σ                      | 6.348+1                              | 3.920+1                        | 1.777+1           | 9.494+0           | 5.648+0           | 3.621+0           | 2.453+0           | 1.734+0              | 1.268+0           | 9.530-           |
| $E_b = 811.9 \text{ eV}$                           | β                      | 1.516<br>5.14-2                      | 1.597<br>-2.25-2               | 1.601<br>1.22-1   | 1.557<br>3.40-1   | 1.503<br>5.49-1   | 1.447             | 1.394<br>9.04-1   | 1.342<br>1.05+0      | 1.293<br>1.18+0   | 1.247<br>1.29+0  |
| 611.9 EV                                           | $_{\delta}^{\gamma}$   | 6.08 - 3                             | -2.23-2<br>1.57-3              | 4.82-3            | 1.11-2            | 1.89-2            | 7.37-1<br>2.79-2  | 3.77-2            | 4.81-2               | 5.89-2            | 7.00-2           |
| $3p_{3/2}$                                         | σ                      | 1.302+2                              | 7.757+1                        | 3.376+1           | 1.758+1           | 1.027+1           | 6.483+0           | 4.337+0           | 3.032+0              | 2.195+0           | 1.635+           |
| $E_b =$                                            | β                      | 1.547                                | 1.633                          | 1.651             | 1.616             | 1.568             | 1.516             | 1.465             | 1.415                | 1.367             | 1.322            |
| 765.6 eV                                           | $_{\delta}^{\gamma}$   | 1.39-2<br>5.47-3                     | -2.93-2 $4.51-3$               | 1.41-1<br>9.17-3  | 3.74-1<br>1.48-2  | 5.96-1<br>2.13-2  | 7.94-1<br>2.87-2  | 9.69-1<br>3.69-2  | 1.12+0<br>4.56-2     | 1.26+0<br>5.49-2  | 1.38+0<br>6.45-2 |
| 3d <sub>3/2</sub>                                  | σ                      | 1.416+2                              | 6.125+1                        | 1.741+1           | 6.764+0           | 3.153+0           | 1.658+0           | 9.511-1           | 5.824-1              | 3.754-1           | 2.523-           |
| $E_b =$                                            | β                      | 1.213                                | 1.235                          | 1.163             | 1.065             | 0.972             | 0.888             | 0.813             | 0.746                | 0.686             | 0.631            |
| 536.9 eV                                           | γ                      | 1.56 - 1                             | 3.54 - 1                       | 6.61 - 1          | 8.81 - 1          | 1.04+0            | 1.17+0            | 1.27+0            | 1.34+0               | 1.40+0            | 1.45+0           |
| 0.1                                                | δ                      | 4.95-2                               | 6.62-2                         | 9.53-2            | 1.24-1            | 1.54-1            | 1.84-1            | 2.13-1            | 2.41-1               | 2.68-1            | 2.94-1           |
| 3d <sub>5/2</sub>                                  | $\sigma_{\rho}$        | 2.036+2<br>1.214                     | 8.760+1<br>1.218               | 2.471+1<br>1.132  | 9.537+0<br>1.031  | 4.421+0<br>0.939  | 2.314+0<br>0.858  | 1.321+0<br>0.788  | 8.054-1<br>0.726     | 5.170-1<br>0.672  | 3.461-<br>0.622  |
| $E_b = 527.5 \text{ eV}$                           | $eta \ \gamma$         | 1.214                                | 3.68–1                         | 6.66—1            | 8.77—1            | 0.939<br>1.03+0   | 0.858<br>1.16+0   | 0.788<br>1.25+0   | 0.726<br>1.33+0      | 1.39+0            | 1.44+0           |
| -                                                  | δ                      | 4.90-2                               | 6.67-2                         | 9.82-2            | 1.30-1            | 1.61-1            | 1.92-1            | 2.22-1            | 2.51-1               | 2.78-1            | 3.05-1           |
| 4s <sub>1/2</sub>                                  | σ                      | 1.053+1                              | 6.338+0                        | 3.019+0           | 1.752+0           | 1.137+0           | 7.913-1           | 5.790-1           | 4.395-1              | 3.433-1           | 2.744-           |
| $E_b = 152.0 \text{ eV}$                           | β                      | 1.979<br>7.12-2                      | 1.982                          | 1.986             | 1.990             | 1.991             | 1.992             | 1.991             | 1.989                | 1.986             | 1.982            |
|                                                    | γ                      | / 1/-7                               | -2.04-2                        | -1.02 - 1         | -9.90 - 2         | -4.83 - 2         | 3.03 - 2          | 1.25 - 1          | 2.30 - 1             | 3.39 - 1          | 4.50 - 1         |

|                                                                                                                                                                                                                                                                                      | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.79-4                                                                                                                                                                                                                                                                                                                           | -2.22-4                                                                                                                                                                                                                                                                                                                            | -2.76-4                                                                                                                                                                                                                                    | -3.10-4                                                                                                                                                                                                                                                                                                                          | -3.32 - 4                                                                                                                                                                                                                                                                                | -3.48 - 4                                                                                                                                                                                                                                                                                        | -3.60 - 4                                                                                                                                                                                                                         | -3.71-4                                                                                                                                                                                                                           | -3.77 - 4                                                                                                                                                                                                                                               | -3.80-4                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $4p_{1/2}$                                                                                                                                                                                                                                                                           | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.199+1                                                                                                                                                                                                                                                                                                                           | 7.000+0                                                                                                                                                                                                                                                                                                                            | 3.062+0                                                                                                                                                                                                                                    | 1.625+0                                                                                                                                                                                                                                                                                                                          | 9.666-1                                                                                                                                                                                                                                                                                  | 6.209-1                                                                                                                                                                                                                                                                                          | 4.216-1                                                                                                                                                                                                                           | 2.987-1                                                                                                                                                                                                                           | 2.189-1                                                                                                                                                                                                                                                 | 1.648-1                                                                                                                                                                                                                                                                                         |
| $E_b =$                                                                                                                                                                                                                                                                              | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.693                                                                                                                                                                                                                                                                                                                             | 1.678                                                                                                                                                                                                                                                                                                                              | 1.620                                                                                                                                                                                                                                      | 1.556                                                                                                                                                                                                                                                                                                                            | 1.493                                                                                                                                                                                                                                                                                    | 1.434                                                                                                                                                                                                                                                                                            | 1.379                                                                                                                                                                                                                             | 1.327                                                                                                                                                                                                                             | 1.277                                                                                                                                                                                                                                                   | 1.230                                                                                                                                                                                                                                                                                           |
| 104.3 eV                                                                                                                                                                                                                                                                             | $\delta ^{\gamma }$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -2.24-2 $-8.60-4$                                                                                                                                                                                                                                                                                                                 | 2.94-2<br>1.09-4                                                                                                                                                                                                                                                                                                                   | 2.20-1<br>3.99-3                                                                                                                                                                                                                           | 4.27-1<br>1.01-2                                                                                                                                                                                                                                                                                                                 | 6.20-1<br>1.80-2                                                                                                                                                                                                                                                                         | 7.95-1<br>2.71-2                                                                                                                                                                                                                                                                                 | 9.50-1<br>3.70-2                                                                                                                                                                                                                  | 1.09+0<br>4.76-2                                                                                                                                                                                                                  | 1.21+0<br>5.85-2                                                                                                                                                                                                                                        | 1.32+0<br>6.97-2                                                                                                                                                                                                                                                                                |
| $4p_{3/2}$                                                                                                                                                                                                                                                                           | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.378+1                                                                                                                                                                                                                                                                                                                           | 1.355+1                                                                                                                                                                                                                                                                                                                            | 5.739+0                                                                                                                                                                                                                                    | 2.978+0                                                                                                                                                                                                                                                                                                                          | 1.741+0                                                                                                                                                                                                                                                                                  | 1.103+0                                                                                                                                                                                                                                                                                          | 7.399-1                                                                                                                                                                                                                           | 5.186-1                                                                                                                                                                                                                           | 3.764-1                                                                                                                                                                                                                                                 | 2.810-1                                                                                                                                                                                                                                                                                         |
| $E_b =$                                                                                                                                                                                                                                                                              | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.715                                                                                                                                                                                                                                                                                                                             | 1.713                                                                                                                                                                                                                                                                                                                              | 1.671                                                                                                                                                                                                                                      | 1.616                                                                                                                                                                                                                                                                                                                            | 1.559                                                                                                                                                                                                                                                                                    | 1.503                                                                                                                                                                                                                                                                                            | 1.450                                                                                                                                                                                                                             | 1.399                                                                                                                                                                                                                             | 1.351                                                                                                                                                                                                                                                   | 1.305                                                                                                                                                                                                                                                                                           |
| 95.4 eV                                                                                                                                                                                                                                                                              | $\frac{\gamma}{\delta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -2.65-2 $1.82-3$                                                                                                                                                                                                                                                                                                                  | 3.46-2<br>3.69-3                                                                                                                                                                                                                                                                                                                   | 2.40-1<br>7.86-3                                                                                                                                                                                                                           | 4.60-1<br>1.32-2                                                                                                                                                                                                                                                                                                                 | 6.65 - 1 $1.98 - 2$                                                                                                                                                                                                                                                                      | 8.48-1<br>2.73-2                                                                                                                                                                                                                                                                                 | 1.01+0<br>3.57-2                                                                                                                                                                                                                  | 1.16+0<br>4.47-2                                                                                                                                                                                                                  | 1.29+0<br>5.41-2                                                                                                                                                                                                                                        | 1.40+0<br>6.39-2                                                                                                                                                                                                                                                                                |
| 4d <sub>3/2</sub>                                                                                                                                                                                                                                                                    | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.520+1                                                                                                                                                                                                                                                                                                                           | 6.961+0                                                                                                                                                                                                                                                                                                                            | 2.122+0                                                                                                                                                                                                                                    | 8.598-1                                                                                                                                                                                                                                                                                                                          | 4.119-1                                                                                                                                                                                                                                                                                  | 2.207-1                                                                                                                                                                                                                                                                                          | 1.283-1                                                                                                                                                                                                                           | 7.937-2                                                                                                                                                                                                                           | 5.156-2                                                                                                                                                                                                                                                 | 3.486-2                                                                                                                                                                                                                                                                                         |
| $E_b =$                                                                                                                                                                                                                                                                              | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.334                                                                                                                                                                                                                                                                                                                             | 1.280                                                                                                                                                                                                                                                                                                                              | 1.157                                                                                                                                                                                                                                      | 1.045                                                                                                                                                                                                                                                                                                                            | 0.949                                                                                                                                                                                                                                                                                    | 0.865                                                                                                                                                                                                                                                                                            | 0.791                                                                                                                                                                                                                             | 0.726                                                                                                                                                                                                                             | 0.666                                                                                                                                                                                                                                                   | 0.613                                                                                                                                                                                                                                                                                           |
| 32.2 eV                                                                                                                                                                                                                                                                              | $\delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.73-1<br>4.35-2                                                                                                                                                                                                                                                                                                                  | 4.39 - 1 $5.86 - 2$                                                                                                                                                                                                                                                                                                                | 7.01-1<br>8.87-2                                                                                                                                                                                                                           | 8.97-1<br>1.20-1                                                                                                                                                                                                                                                                                                                 | 1.05+0<br>1.51-1                                                                                                                                                                                                                                                                         | 1.17+0<br>1.81-1                                                                                                                                                                                                                                                                                 | 1.26+0<br>2.11-1                                                                                                                                                                                                                  | 1.34+0<br>2.39-1                                                                                                                                                                                                                  | 1.40+0<br>2.67-1                                                                                                                                                                                                                                        | 1.44+0<br>2.93-1                                                                                                                                                                                                                                                                                |
| 4d <sub>5/2</sub>                                                                                                                                                                                                                                                                    | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.188+1                                                                                                                                                                                                                                                                                                                           | 9.955+0                                                                                                                                                                                                                                                                                                                            | 3.008+0                                                                                                                                                                                                                                    | 1.210+0                                                                                                                                                                                                                                                                                                                          | 5.759-1                                                                                                                                                                                                                                                                                  | 3.070-1                                                                                                                                                                                                                                                                                          | 1.776-1                                                                                                                                                                                                                           | 1.093-1                                                                                                                                                                                                                           | 7.073-2                                                                                                                                                                                                                                                 | 4.763-2                                                                                                                                                                                                                                                                                         |
| $E_b = 30.8 \text{ eV}$                                                                                                                                                                                                                                                              | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.315<br>2.83-1                                                                                                                                                                                                                                                                                                                   | 1.251<br>4.46-1                                                                                                                                                                                                                                                                                                                    | 1.120<br>7.00-1                                                                                                                                                                                                                            | 1.008<br>8.89-1                                                                                                                                                                                                                                                                                                                  | 0.915<br>1.04+0                                                                                                                                                                                                                                                                          | 0.835<br>1.15+0                                                                                                                                                                                                                                                                                  | 0.766<br>1.25+0                                                                                                                                                                                                                   | 0.707<br>1.32+0                                                                                                                                                                                                                   | 0.653<br>1.38+0                                                                                                                                                                                                                                         | 0.605<br>1.43+0                                                                                                                                                                                                                                                                                 |
| 30.8 EV                                                                                                                                                                                                                                                                              | $\delta ^{\gamma }$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.37-2                                                                                                                                                                                                                                                                                                                            | 5.99-2                                                                                                                                                                                                                                                                                                                             | 9.24-2                                                                                                                                                                                                                                     | 1.25-1                                                                                                                                                                                                                                                                                                                           | 1.58-1                                                                                                                                                                                                                                                                                   | 1.90-1                                                                                                                                                                                                                                                                                           | 2.20-1                                                                                                                                                                                                                            | 2.50-1                                                                                                                                                                                                                            | 2.78-1                                                                                                                                                                                                                                                  | 3.04-1                                                                                                                                                                                                                                                                                          |
| 5s <sub>1/2</sub>                                                                                                                                                                                                                                                                    | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.111+0                                                                                                                                                                                                                                                                                                                           | 6.617-1                                                                                                                                                                                                                                                                                                                            | 3.115-1                                                                                                                                                                                                                                    | 1.798-1                                                                                                                                                                                                                                                                                                                          | 1.162-1                                                                                                                                                                                                                                                                                  | 8.076-2                                                                                                                                                                                                                                                                                          | 5.901-2                                                                                                                                                                                                                           | 4.475-2                                                                                                                                                                                                                           | 3.493-2                                                                                                                                                                                                                                                 | 2.790-2                                                                                                                                                                                                                                                                                         |
| $E_b = 6.7 \text{ eV}$                                                                                                                                                                                                                                                               | $\beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.980<br>4.34-2                                                                                                                                                                                                                                                                                                                   | 1.983<br>-3.61-2                                                                                                                                                                                                                                                                                                                   | 1.987<br>-1.03-1                                                                                                                                                                                                                           | 1.990<br>-9.38-2                                                                                                                                                                                                                                                                                                                 | 1.992<br>-4.02-2                                                                                                                                                                                                                                                                         | 1.992<br>3.97-2                                                                                                                                                                                                                                                                                  | 1.991<br>1.36-1                                                                                                                                                                                                                   | 1.989<br>2.41-1                                                                                                                                                                                                                   | 1.986<br>3.51-1                                                                                                                                                                                                                                         | 1.982<br>4.64-1                                                                                                                                                                                                                                                                                 |
| 0.7 CV                                                                                                                                                                                                                                                                               | $\delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.83-4                                                                                                                                                                                                                                                                                                                           | -2.20-4                                                                                                                                                                                                                                                                                                                            | -2.72-4                                                                                                                                                                                                                                    | -3.03-4                                                                                                                                                                                                                                                                                                                          | -3.25-4                                                                                                                                                                                                                                                                                  | -3.40-4                                                                                                                                                                                                                                                                                          | -3.53-4                                                                                                                                                                                                                           | -3.63-4                                                                                                                                                                                                                           | -3.67-4                                                                                                                                                                                                                                                 | -3.74-4                                                                                                                                                                                                                                                                                         |
| $5p_{1/2}$                                                                                                                                                                                                                                                                           | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.142-1                                                                                                                                                                                                                                                                                                                           | 4.715-1                                                                                                                                                                                                                                                                                                                            | 2.047-1                                                                                                                                                                                                                                    | 1.083-1                                                                                                                                                                                                                                                                                                                          | 6.435-2                                                                                                                                                                                                                                                                                  | 4.131-2                                                                                                                                                                                                                                                                                          | 2.804-2                                                                                                                                                                                                                           | 1.986-2                                                                                                                                                                                                                           | 1.455-2                                                                                                                                                                                                                                                 | 1.095-2                                                                                                                                                                                                                                                                                         |
| $E_b = 2.2 \text{ eV}$                                                                                                                                                                                                                                                               | $\beta$ $\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.708<br>-2.06-2                                                                                                                                                                                                                                                                                                                  | 1.687<br>3.70-2                                                                                                                                                                                                                                                                                                                    | 1.624<br>2.29-1                                                                                                                                                                                                                            | 1.558<br>4.36-1                                                                                                                                                                                                                                                                                                                  | 1.495<br>6.29-1                                                                                                                                                                                                                                                                          | 1.435<br>8.03-1                                                                                                                                                                                                                                                                                  | 1.379<br>9.58-1                                                                                                                                                                                                                   | 1.326<br>1.10+0                                                                                                                                                                                                                   | 1.275<br>1.22+0                                                                                                                                                                                                                                         | 1.226<br>1.33+0                                                                                                                                                                                                                                                                                 |
| 2.2 C V                                                                                                                                                                                                                                                                              | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.11-3                                                                                                                                                                                                                                                                                                                           | -1.32-4                                                                                                                                                                                                                                                                                                                            | 3.73-3                                                                                                                                                                                                                                     | 1.00-2                                                                                                                                                                                                                                                                                                                           | 1.81-2                                                                                                                                                                                                                                                                                   | 2.75-2                                                                                                                                                                                                                                                                                           | 3.77-2                                                                                                                                                                                                                            | 4.84-2                                                                                                                                                                                                                            | 5.93-2                                                                                                                                                                                                                                                  | 7.02-2                                                                                                                                                                                                                                                                                          |
| 5p <sub>3/2</sub>                                                                                                                                                                                                                                                                    | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.555+0                                                                                                                                                                                                                                                                                                                           | 8.797-1                                                                                                                                                                                                                                                                                                                            | 3.701-1                                                                                                                                                                                                                                    | 1.916-1                                                                                                                                                                                                                                                                                                                          | 1.119-1                                                                                                                                                                                                                                                                                  | 7.082-2                                                                                                                                                                                                                                                                                          | 4.750-2                                                                                                                                                                                                                           | 3.329-2                                                                                                                                                                                                                           | 2.415-2                                                                                                                                                                                                                                                 | 1.803-2                                                                                                                                                                                                                                                                                         |
| $E_b = 2.0 \text{ eV}$                                                                                                                                                                                                                                                               | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.729<br>-2.37-2                                                                                                                                                                                                                                                                                                                  | 1.722<br>4.21-2                                                                                                                                                                                                                                                                                                                    | 1.675<br>2.48-1                                                                                                                                                                                                                            | 1.618<br>4.68-1                                                                                                                                                                                                                                                                                                                  | 1.561<br>6.72-1                                                                                                                                                                                                                                                                          | 1.505<br>8.56-1                                                                                                                                                                                                                                                                                  | 1.451<br>1.02+0                                                                                                                                                                                                                   | 1.399<br>1.17+0                                                                                                                                                                                                                   | 1.349<br>1.29+0                                                                                                                                                                                                                                         | 1.302<br>1.41+0                                                                                                                                                                                                                                                                                 |
| 2.0 EV                                                                                                                                                                                                                                                                               | $\delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.65-3                                                                                                                                                                                                                                                                                                                            | 3.44-3                                                                                                                                                                                                                                                                                                                             | 7.49-3                                                                                                                                                                                                                                     | 1.30-2                                                                                                                                                                                                                                                                                                                           | 1.97 - 2                                                                                                                                                                                                                                                                                 | 2.76-2                                                                                                                                                                                                                                                                                           | 3.63-2                                                                                                                                                                                                                            | 4.55-2                                                                                                                                                                                                                            | 5.49-2                                                                                                                                                                                                                                                  | 6.46-2                                                                                                                                                                                                                                                                                          |
| Z= 52, Te: [K                                                                                                                                                                                                                                                                        | r]4d <sub>3/2</sub> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $4d_{5/2}^6 5s_{1/2}^2 5p_{1/2}^2$                                                                                                                                                                                                                                                                                                | 2 5p <sub>3/2</sub>                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | k (eV)                                                                                                                                                                                                                                                                                                                            | ·                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                 |
| Shell                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1500                                                                                                                                                                                                                                                                                                                              | 2000                                                                                                                                                                                                                                                                                                                               | 3000                                                                                                                                                                                                                                       | 4000                                                                                                                                                                                                                                                                                                                             | 5000                                                                                                                                                                                                                                                                                     | 6000                                                                                                                                                                                                                                                                                             | 7000                                                                                                                                                                                                                              | 8000                                                                                                                                                                                                                              | 9000                                                                                                                                                                                                                                                    | 10000                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 = 00 4                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                   | 1 0 10 . 0                                                                                                                                                                                                                                              | 1 100.0                                                                                                                                                                                                                                                                                         |
| $3s_{1/2}$                                                                                                                                                                                                                                                                           | $\sigma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.562+1                                                                                                                                                                                                                                                                                                                           | 2.969+1                                                                                                                                                                                                                                                                                                                            | 1.514+1                                                                                                                                                                                                                                    | 9.043+0                                                                                                                                                                                                                                                                                                                          | 5.957+0                                                                                                                                                                                                                                                                                  | 4.189+0                                                                                                                                                                                                                                                                                          | 3.087+0                                                                                                                                                                                                                           | 2.356+0                                                                                                                                                                                                                           | 1.849+0                                                                                                                                                                                                                                                 | 1.483+0                                                                                                                                                                                                                                                                                         |
| $3s_{1/2}$<br>$E_b =$<br>1006.0 eV                                                                                                                                                                                                                                                   | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.968                                                                                                                                                                                                                                                                                                                             | 1.972                                                                                                                                                                                                                                                                                                                              | 1.979                                                                                                                                                                                                                                      | 1.985                                                                                                                                                                                                                                                                                                                            | 1.989                                                                                                                                                                                                                                                                                    | 1.991                                                                                                                                                                                                                                                                                            | 1.991                                                                                                                                                                                                                             | 1.990                                                                                                                                                                                                                             | 1.988                                                                                                                                                                                                                                                   | 1.985                                                                                                                                                                                                                                                                                           |
| $E_b =$                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                         | 1.985<br>3.43-1                                                                                                                                                                                                                                                                                 |
| $E_b = 1006.0 \text{ eV}$                                                                                                                                                                                                                                                            | β<br>γ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.968<br>4.65-1<br>-1.10-4<br>6.567+1                                                                                                                                                                                                                                                                                             | 1.972<br>2.09-1<br>-2.21-4<br>4.105+1                                                                                                                                                                                                                                                                                              | 1.979<br>-3.91-2<br>-3.16-4<br>1.885+1                                                                                                                                                                                                     | 1.985<br>-1.13-1<br>-3.62-4<br>1.015+1                                                                                                                                                                                                                                                                                           | 1.989<br>-1.03-1<br>-3.90-4<br>6.072+0                                                                                                                                                                                                                                                   | 1.991<br>-4.72-2<br>-4.09-4<br>3.911+0                                                                                                                                                                                                                                                           | 1.991<br>3.40-2<br>-4.23-4<br>2.660+0                                                                                                                                                                                             | 1.990<br>1.30-1<br>-4.33-4<br>1.886+0                                                                                                                                                                                             | 1.988<br>2.34-1<br>-4.41-4<br>1.383+0                                                                                                                                                                                                                   | 1.985<br>3.43-1<br>-4.46-4<br>1.042+0                                                                                                                                                                                                                                                           |
| $E_b = 1006.0 \text{ eV}$ $3p_{1/2}$ $E_b = $                                                                                                                                                                                                                                        | $\beta$ $\gamma$ $\delta$ $\sigma$ $\beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.968<br>4.65-1<br>-1.10-4<br>6.567+1<br>1.487                                                                                                                                                                                                                                                                                    | 1.972<br>2.09-1<br>-2.21-4<br>4.105+1<br>1.588                                                                                                                                                                                                                                                                                     | 1.979<br>-3.91-2<br>-3.16-4<br>1.885+1<br>1.604                                                                                                                                                                                            | 1.985<br>-1.13-1<br>-3.62-4<br>1.015+1<br>1.565                                                                                                                                                                                                                                                                                  | 1.989<br>-1.03-1<br>-3.90-4<br>6.072+0<br>1.514                                                                                                                                                                                                                                          | 1.991<br>-4.72-2<br>-4.09-4<br>3.911+0<br>1.461                                                                                                                                                                                                                                                  | 1.991<br>3.40-2<br>-4.23-4<br>2.660+0<br>1.410                                                                                                                                                                                    | 1.990<br>1.30-1<br>-4.33-4<br>1.886+0<br>1.360                                                                                                                                                                                    | 1.988<br>2.34-1<br>-4.41-4<br>1.383+0<br>1.312                                                                                                                                                                                                          | 1.985<br>3.43-1<br>-4.46-4<br>1.042+0<br>1.265                                                                                                                                                                                                                                                  |
| $E_b = 1006.0 \text{ eV}$                                                                                                                                                                                                                                                            | β<br>γ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.968<br>4.65-1<br>-1.10-4<br>6.567+1                                                                                                                                                                                                                                                                                             | 1.972<br>2.09-1<br>-2.21-4<br>4.105+1                                                                                                                                                                                                                                                                                              | 1.979<br>-3.91-2<br>-3.16-4<br>1.885+1                                                                                                                                                                                                     | 1.985<br>-1.13-1<br>-3.62-4<br>1.015+1                                                                                                                                                                                                                                                                                           | 1.989<br>-1.03-1<br>-3.90-4<br>6.072+0                                                                                                                                                                                                                                                   | 1.991<br>-4.72-2<br>-4.09-4<br>3.911+0                                                                                                                                                                                                                                                           | 1.991<br>3.40-2<br>-4.23-4<br>2.660+0                                                                                                                                                                                             | 1.990<br>1.30-1<br>-4.33-4<br>1.886+0                                                                                                                                                                                             | 1.988<br>2.34-1<br>-4.41-4<br>1.383+0                                                                                                                                                                                                                   | 1.985<br>3.43-1<br>-4.46-4<br>1.042+0                                                                                                                                                                                                                                                           |
| $E_b = 1006.0 \text{ eV}$ $3p_{1/2}$ $E_b = 869.7 \text{ eV}$                                                                                                                                                                                                                        | β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.968<br>4.65-1<br>-1.10-4<br>6.567+1<br>1.487<br>8.63-2<br>8.96-3<br>1.358+2                                                                                                                                                                                                                                                     | 1.972<br>2.09-1<br>-2.21-4<br>4.105+1<br>1.588<br>-2.17-2<br>1.75-3<br>8.167+1                                                                                                                                                                                                                                                     | 1.979<br>-3.91-2<br>-3.16-4<br>1.885+1<br>1.604<br>9.64-2<br>4.12-3<br>3.590+1                                                                                                                                                             | 1.985<br>-1.13-1<br>-3.62-4<br>1.015+1<br>1.565<br>3.07-1<br>9.88-3<br>1.882+1                                                                                                                                                                                                                                                   | 1.989<br>-1.03-1<br>-3.90-4<br>6.072+0<br>1.514<br>5.14-1<br>1.73-2<br>1.104+1                                                                                                                                                                                                           | 1.991<br>-4.72-2<br>-4.09-4<br>3.911+0<br>1.461<br>7.04-1<br>2.59-2<br>6.999+0                                                                                                                                                                                                                   | 1.991<br>3.40-2<br>-4.23-4<br>2.660+0<br>1.410<br>8.72-1<br>3.56-2<br>4.697+0                                                                                                                                                     | 1.990<br>1.30-1<br>-4.33-4<br>1.886+0<br>1.360<br>1.02+0<br>4.58-2<br>3.293+0                                                                                                                                                     | 1.988<br>2.34-1<br>-4.41-4<br>1.383+0<br>1.312<br>1.16+0<br>5.64-2<br>2.390+0                                                                                                                                                                           | 1.985<br>3.43-1<br>-4.46-4<br>1.042+0<br>1.265<br>1.27+0<br>6.71-2<br>1.784+0                                                                                                                                                                                                                   |
| $E_b = 1006.0 \text{ eV}$ $3p_{1/2}$ $E_b = 869.7 \text{ eV}$ $3p_{3/2}$ $E_b = 69.7 \text{ eV}$                                                                                                                                                                                     | $\begin{array}{c} \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.968<br>4.65-1<br>-1.10-4<br>6.567+1<br>1.487<br>8.63-2<br>8.96-3<br>1.358+2<br>1.521                                                                                                                                                                                                                                            | 1.972<br>2.09-1<br>-2.21-4<br>4.105+1<br>1.588<br>-2.17-2<br>1.75-3<br>8.167+1<br>1.625                                                                                                                                                                                                                                            | 1.979<br>-3.91-2<br>-3.16-4<br>1.885+1<br>1.604<br>9.64-2<br>4.12-3<br>3.590+1<br>1.655                                                                                                                                                    | 1.985<br>-1.13-1<br>-3.62-4<br>1.015+1<br>1.565<br>3.07-1<br>9.88-3<br>1.882+1<br>1.625                                                                                                                                                                                                                                          | 1.989<br>-1.03-1<br>-3.90-4<br>6.072+0<br>1.514<br>5.14-1<br>1.73-2<br>1.104+1<br>1.581                                                                                                                                                                                                  | 1.991<br>-4.72-2<br>-4.09-4<br>3.911+0<br>1.461<br>7.04-1<br>2.59-2<br>6.999+0<br>1.532                                                                                                                                                                                                          | 1.991<br>3.40-2<br>-4.23-4<br>2.660+0<br>1.410<br>8.72-1<br>3.56-2<br>4.697+0<br>1.483                                                                                                                                            | 1.990<br>1.30-1<br>-4.33-4<br>1.886+0<br>1.360<br>1.02+0<br>4.58-2<br>3.293+0<br>1.435                                                                                                                                            | 1.988<br>2.34-1<br>-4.41-4<br>1.383+0<br>1.312<br>1.16+0<br>5.64-2<br>2.390+0<br>1.388                                                                                                                                                                  | 1.985<br>3.43-1<br>-4.46-4<br>1.042+0<br>1.265<br>1.27+0<br>6.71-2<br>1.784+0<br>1.343                                                                                                                                                                                                          |
| $E_b = 1006.0 \text{ eV}$ $3p_{1/2} E_b = 869.7 \text{ eV}$ $3p_{3/2} E_b = 818.7 \text{ eV}$                                                                                                                                                                                        | β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.968<br>4.65-1<br>-1.10-4<br>6.567+1<br>1.487<br>8.63-2<br>8.96-3<br>1.358+2<br>1.521<br>3.85-2<br>7.07-3                                                                                                                                                                                                                        | 1.972<br>2.09-1<br>-2.21-4<br>4.105+1<br>1.588<br>-2.17-2<br>1.75-3<br>8.167+1                                                                                                                                                                                                                                                     | 1.979<br>-3.91-2<br>-3.16-4<br>1.885+1<br>1.604<br>9.64-2<br>4.12-3<br>3.590+1                                                                                                                                                             | 1.985<br>-1.13-1<br>-3.62-4<br>1.015+1<br>1.565<br>3.07-1<br>9.88-3<br>1.882+1                                                                                                                                                                                                                                                   | 1.989<br>-1.03-1<br>-3.90-4<br>6.072+0<br>1.514<br>5.14-1<br>1.73-2<br>1.104+1<br>1.581<br>5.61-1<br>2.01-2                                                                                                                                                                              | 1.991<br>-4.72-2<br>-4.09-4<br>3.911+0<br>1.461<br>7.04-1<br>2.59-2<br>6.999+0                                                                                                                                                                                                                   | 1.991<br>3.40-2<br>-4.23-4<br>2.660+0<br>1.410<br>8.72-1<br>3.56-2<br>4.697+0                                                                                                                                                     | 1.990<br>1.30-1<br>-4.33-4<br>1.886+0<br>1.360<br>1.02+0<br>4.58-2<br>3.293+0                                                                                                                                                     | 1.988<br>2.34-1<br>-4.41-4<br>1.383+0<br>1.312<br>1.16+0<br>5.64-2<br>2.390+0                                                                                                                                                                           | 1.985<br>3.43-1<br>-4.46-4<br>1.042+0<br>1.265<br>1.27+0<br>6.71-2<br>1.784+0                                                                                                                                                                                                                   |
| $E_b = 1006.0 \text{ eV}$ $3p_{1/2} E_b = 869.7 \text{ eV}$ $3p_{3/2} E_b = 818.7 \text{ eV}$ $3d_{3/2}$                                                                                                                                                                             | β γ δ σ β γ δ δ σ β γ γ δ δ σ σ β γ γ δ δ σ σ σ δ σ σ σ σ σ σ σ σ σ σ σ σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.968<br>4.65-1<br>-1.10-4<br>6.567+1<br>1.487<br>8.63-2<br>8.96-3<br>1.358+2<br>1.521<br>3.85-2<br>7.07-3<br>1.567+2                                                                                                                                                                                                             | 1.972<br>2.09-1<br>-2.21-4<br>4.105+1<br>1.588<br>-2.17-2<br>1.75-3<br>8.167+1<br>1.625<br>-3.36-2<br>4.48-3<br>6.820+1                                                                                                                                                                                                            | 1.979<br>-3.91-2<br>-3.16-4<br>1.885+1<br>1.604<br>9.64-2<br>4.12-3<br>3.590+1<br>1.655<br>1.14-1<br>8.74-3                                                                                                                                | 1.985<br>-1.13-1<br>-3.62-4<br>1.015+1<br>1.565<br>3.07-1<br>9.88-3<br>1.882+1<br>1.625<br>3.41-1<br>1.40-2<br>7.646+0                                                                                                                                                                                                           | 1.989<br>-1.03-1<br>-3.90-4<br>6.072+0<br>1.514<br>5.14-1<br>1.73-2<br>1.104+1<br>1.581<br>5.61-1<br>2.01-2<br>3.583+0                                                                                                                                                                   | 1.991<br>-4.72-2<br>-4.09-4<br>3.911+0<br>1.461<br>7.04-1<br>2.59-2<br>6.999+0<br>1.532<br>7.61-1<br>2.72-2<br>1.892+0                                                                                                                                                                           | 1.991<br>3.40-2<br>-4.23-4<br>2.660+0<br>1.410<br>8.72-1<br>3.56-2<br>4.697+0<br>1.483<br>9.40-1<br>3.52-2<br>1.089+0                                                                                                             | 1.990<br>1.30-1<br>-4.33-4<br>1.886+0<br>1.360<br>1.02+0<br>4.58-2<br>3.293+0<br>1.435<br>1.10+0<br>4.37-2<br>6.688-1                                                                                                             | 1.988<br>2.34-1<br>-4.41-4<br>1.383+0<br>1.312<br>1.16+0<br>5.64-2<br>2.390+0<br>1.388<br>1.24+0<br>5.27-2                                                                                                                                              | 1.985<br>3.43-1<br>-4.46-4<br>1.042+0<br>1.265<br>1.27+0<br>6.71-2<br>1.784+0<br>1.343<br>1.36+0<br>6.19-2<br>2.910-1                                                                                                                                                                           |
| $E_b = 1006.0 \text{ eV}$ $3p_{1/2}$ $E_b = 869.7 \text{ eV}$ $3p_{3/2}$ $E_b = 818.7 \text{ eV}$ $3d_{3/2}$ $E_b = 60.7 \text{ eV}$                                                                                                                                                 | β γ δ σ β γ δ δ σ β β γ δ δ σ β β γ δ δ σ β β γ δ δ σ β β γ δ δ σ β β γ δ δ σ β β γ δ δ σ β β γ δ δ σ β β γ δ δ σ β β γ δ δ σ β β γ δ δ σ β β γ δ δ σ β β γ δ δ σ β β γ δ δ σ β β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ δ β γ δ δ σ δ δ σ δ δ σ δ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ σ δ δ δ σ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ | 1.968<br>4.65-1<br>-1.10-4<br>6.567+1<br>1.487<br>8.63-2<br>8.96-3<br>1.358+2<br>1.521<br>3.85-2<br>7.07-3<br>1.567+2<br>1.201                                                                                                                                                                                                    | 1.972<br>2.09-1<br>-2.21-4<br>4.105+1<br>1.588<br>-2.17-2<br>1.75-3<br>8.167+1<br>1.625<br>-3.36-2<br>4.48-3<br>6.820+1<br>1.237                                                                                                                                                                                                   | 1.979 -3.91-2 -3.16-4  1.885+1 1.604 9.64-2 4.12-3 3.590+1 1.655 1.14-1 8.74-3  1.956+1 1.176                                                                                                                                              | 1.985<br>-1.13-1<br>-3.62-4<br>1.015+1<br>1.565<br>3.07-1<br>9.88-3<br>1.882+1<br>1.625<br>3.41-1<br>1.40-2<br>7.646+0<br>1.083                                                                                                                                                                                                  | 1.989<br>-1.03-1<br>-3.90-4<br>6.072+0<br>1.514<br>5.14-1<br>1.73-2<br>1.104+1<br>1.581<br>5.61-1<br>2.01-2<br>3.583+0<br>0.993                                                                                                                                                          | 1.991<br>-4.72-2<br>-4.09-4<br>3.911+0<br>1.461<br>7.04-1<br>2.59-2<br>6.999+0<br>1.532<br>7.61-1<br>2.72-2<br>1.892+0<br>0.909                                                                                                                                                                  | 1.991<br>3.40-2<br>-4.23-4<br>2.660+0<br>1.410<br>8.72-1<br>3.56-2<br>4.697+0<br>1.483<br>9.40-1<br>3.52-2<br>1.089+0<br>0.834                                                                                                    | 1.990<br>1.30-1<br>-4.33-4<br>1.886+0<br>1.360<br>1.02+0<br>4.58-2<br>3.293+0<br>1.435<br>1.10+0<br>4.37-2<br>6.688-1<br>0.766                                                                                                    | 1.988<br>2.34-1<br>-4.41-4<br>1.383+0<br>1.312<br>1.16+0<br>5.64-2<br>2.390+0<br>1.388<br>1.24+0<br>5.27-2<br>4.321-1<br>0.704                                                                                                                          | 1.985<br>3.43-1<br>-4.46-4<br>1.042+0<br>1.265<br>1.27+0<br>6.71-2<br>1.784+0<br>1.343<br>1.36+0<br>6.19-2<br>2.910-1<br>0.648                                                                                                                                                                  |
| $E_b = 1006.0 \text{ eV}$ $3p_{1/2} E_b = 869.7 \text{ eV}$ $3p_{3/2} E_b = 818.7 \text{ eV}$ $3d_{3/2}$                                                                                                                                                                             | β γ δ σ β γ δ δ σ β γ γ δ δ σ σ β γ γ δ δ σ σ σ δ σ σ σ σ σ σ σ σ σ σ σ σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.968<br>4.65-1<br>-1.10-4<br>6.567+1<br>1.487<br>8.63-2<br>8.96-3<br>1.358+2<br>1.521<br>3.85-2<br>7.07-3<br>1.567+2                                                                                                                                                                                                             | 1.972<br>2.09-1<br>-2.21-4<br>4.105+1<br>1.588<br>-2.17-2<br>1.75-3<br>8.167+1<br>1.625<br>-3.36-2<br>4.48-3<br>6.820+1                                                                                                                                                                                                            | 1.979<br>-3.91-2<br>-3.16-4<br>1.885+1<br>1.604<br>9.64-2<br>4.12-3<br>3.590+1<br>1.655<br>1.14-1<br>8.74-3                                                                                                                                | 1.985<br>-1.13-1<br>-3.62-4<br>1.015+1<br>1.565<br>3.07-1<br>9.88-3<br>1.882+1<br>1.625<br>3.41-1<br>1.40-2<br>7.646+0                                                                                                                                                                                                           | 1.989<br>-1.03-1<br>-3.90-4<br>6.072+0<br>1.514<br>5.14-1<br>1.73-2<br>1.104+1<br>1.581<br>5.61-1<br>2.01-2<br>3.583+0                                                                                                                                                                   | 1.991<br>-4.72-2<br>-4.09-4<br>3.911+0<br>1.461<br>7.04-1<br>2.59-2<br>6.999+0<br>1.532<br>7.61-1<br>2.72-2<br>1.892+0                                                                                                                                                                           | 1.991<br>3.40-2<br>-4.23-4<br>2.660+0<br>1.410<br>8.72-1<br>3.56-2<br>4.697+0<br>1.483<br>9.40-1<br>3.52-2<br>1.089+0                                                                                                             | 1.990<br>1.30-1<br>-4.33-4<br>1.886+0<br>1.360<br>1.02+0<br>4.58-2<br>3.293+0<br>1.435<br>1.10+0<br>4.37-2<br>6.688-1                                                                                                             | 1.988<br>2.34-1<br>-4.41-4<br>1.383+0<br>1.312<br>1.16+0<br>5.64-2<br>2.390+0<br>1.388<br>1.24+0<br>5.27-2                                                                                                                                              | 1.985<br>3.43-1<br>-4.46-4<br>1.042+0<br>1.265<br>1.27+0<br>6.71-2<br>1.784+0<br>1.343<br>1.36+0<br>6.19-2<br>2.910-1                                                                                                                                                                           |
| $E_b = 1006.0 \text{ eV}$ $3p_{1/2}$ $E_b = 869.7 \text{ eV}$ $3p_{3/2}$ $E_b = 818.7 \text{ eV}$ $3d_{3/2}$ $E_b = 582.5 \text{ eV}$                                                                                                                                                | β γ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ σ δ δ σ δ δ σ δ δ σ δ δ σ σ δ δ σ σ δ δ σ σ δ δ σ σ σ δ δ σ σ σ σ δ δ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.968<br>4.65-1<br>-1.10-4<br>6.567+1<br>1.487<br>8.63-2<br>8.96-3<br>1.358+2<br>1.521<br>3.85-2<br>7.07-3<br>1.567+2<br>1.201<br>1.24-1<br>4.73-2<br>2.253+2                                                                                                                                                                     | 1.972<br>2.09-1<br>-2.21-4<br>4.105+1<br>1.588<br>-2.17-2<br>1.75-3<br>8.167+1<br>1.625<br>-3.36-2<br>4.48-3<br>6.820+1<br>1.237<br>3.24-1<br>6.44-2<br>9.747+1                                                                                                                                                                    | 1.979 -3.91-2 -3.16-4  1.885+1 1.604 9.64-2 4.12-3 3.590+1 1.655 1.14-1 8.74-3  1.956+1 1.176 6.40-1 9.29-2 2.771+1                                                                                                                        | 1.985<br>-1.13-1<br>-3.62-4<br>1.015+1<br>1.565<br>3.07-1<br>9.88-3<br>1.882+1<br>1.625<br>3.41-1<br>1.40-2<br>7.646+0<br>1.083<br>8.66-1<br>1.21-1                                                                                                                                                                              | 1.989<br>-1.03-1<br>-3.90-4<br>6.072+0<br>1.514<br>5.14-1<br>1.73-2<br>1.104+1<br>1.581<br>5.61-1<br>2.01-2<br>3.583+0<br>0.993<br>1.04+0<br>1.51-1<br>5.016+0                                                                                                                           | 1.991<br>-4.72-2<br>-4.09-4<br>3.911+0<br>1.461<br>7.04-1<br>2.59-2<br>6.999+0<br>1.532<br>7.61-1<br>2.72-2<br>1.892+0<br>0.909<br>1.17+0<br>1.80-1<br>2.636+0                                                                                                                                   | 1.991<br>3.40-2<br>-4.23-4<br>2.660+0<br>1.410<br>8.72-1<br>3.56-2<br>4.697+0<br>1.483<br>9.40-1<br>3.52-2<br>1.089+0<br>0.834<br>1.27+0<br>2.08-1                                                                                | 1.990<br>1.30-1<br>-4.33-4<br>1.886+0<br>1.360<br>1.02+0<br>4.58-2<br>3.293+0<br>1.435<br>1.10+0<br>4.37-2<br>6.688-1<br>0.766<br>1.35+0<br>2.35-1                                                                                | 1.988<br>2.34-1<br>-4.41-4<br>1.383+0<br>1.312<br>1.16+0<br>5.64-2<br>2.390+0<br>1.388<br>1.24+0<br>5.27-2<br>4.321-1<br>0.704<br>1.41+0<br>2.61-1<br>5.941-1                                                                                           | 1.985<br>3.43-1<br>-4.46-4<br>1.042+0<br>1.265<br>1.27+0<br>6.71-2<br>1.784+0<br>1.364<br>6.19-2<br>2.910-1<br>0.648<br>1.46+0<br>2.87-1<br>3.984-1                                                                                                                                             |
| $E_b = 1006.0 \text{ eV}$ $3p_{1/2}$ $E_b = 869.7 \text{ eV}$ $3p_{3/2}$ $E_b = 818.7 \text{ eV}$ $3d_{3/2}$ $E_b = 582.5 \text{ eV}$ $3d_{5/2}$ $E_b = 60.0 \text{ eV}$                                                                                                             | β γ δ σ β γ δ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.968<br>4.65-1<br>-1.10-4<br>6.567+1<br>1.487<br>8.63-2<br>8.96-3<br>1.358+2<br>1.521<br>3.85-2<br>7.07-3<br>1.567+2<br>1.201<br>1.24-1<br>4.73-2<br>2.253+2<br>1.205                                                                                                                                                            | 1.972<br>2.09-1<br>-2.21-4<br>4.105+1<br>1.588<br>-2.17-2<br>1.75-3<br>8.167+1<br>1.625<br>-3.36-2<br>4.48-3<br>6.820+1<br>1.237<br>3.24-1<br>6.44-2<br>9.747+1<br>1.222                                                                                                                                                           | 1.979 -3.91-2 -3.16-4  1.885+1 1.604 9.64-2 4.12-3 3.590+1 1.655 1.14-1 8.74-3 1.956+1 1.176 6.40-1 9.29-2 2.771+1 1.145                                                                                                                   | 1.985<br>-1.13-1<br>-3.62-4<br>1.015+1<br>1.565<br>3.07-1<br>9.88-3<br>1.882+1<br>1.625<br>3.41-1<br>1.40-2<br>7.646+0<br>1.083<br>8.66-1<br>1.21-1<br>1.077+1<br>1.048                                                                                                                                                          | 1.989<br>-1.03-1<br>-3.90-4<br>6.072+0<br>1.514<br>5.14-1<br>1.73-2<br>1.104+1<br>1.581<br>5.61-1<br>2.01-2<br>3.583+0<br>0.993<br>1.04+0<br>1.51-1<br>5.016+0<br>0.958                                                                                                                  | 1.991<br>-4.72-2<br>-4.09-4<br>3.911+0<br>1.461<br>7.04-1<br>2.59-2<br>6.999+0<br>1.532<br>7.61-1<br>2.72-2<br>1.892+0<br>0.909<br>1.17+0<br>1.80-1<br>2.636+0<br>0.878                                                                                                                          | 1.991<br>3.40-2<br>-4.23-4<br>2.660+0<br>1.410<br>8.72-1<br>3.56-2<br>4.697+0<br>1.483<br>9.40-1<br>3.52-2<br>1.089+0<br>0.834<br>1.27+0<br>2.08-1<br>1.510+0<br>0.807                                                            | 1.990<br>1.30-1<br>-4.33-4<br>1.886+0<br>1.360<br>1.02+0<br>4.58-2<br>3.293+0<br>1.435<br>1.10+0<br>4.37-2<br>6.688-1<br>0.766<br>1.35+0<br>2.35-1<br>9.232-1<br>0.743                                                            | 1.988<br>2.34-1<br>-4.41-4<br>1.383+0<br>1.312<br>1.16+0<br>5.64-2<br>2.390+0<br>1.388<br>1.24+0<br>5.27-2<br>4.321-1<br>0.704<br>1.41+0<br>2.61-1<br>5.941-1<br>0.687                                                                                  | 1.985<br>3.43-1<br>-4.46-4<br>1.042+0<br>1.265<br>1.27+0<br>6.71-2<br>1.784+0<br>1.343<br>1.36+0<br>6.19-2<br>2.910-1<br>0.648<br>1.46+0<br>2.87-1<br>3.984-1<br>0.637                                                                                                                          |
| $E_b = 1006.0 \text{ eV}$ $3p_{1/2}$ $E_b = 869.7 \text{ eV}$ $3p_{3/2}$ $E_b = 818.7 \text{ eV}$ $3d_{3/2}$ $E_b = 582.5 \text{ eV}$                                                                                                                                                | β γ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ σ δ δ σ δ δ σ δ δ σ δ δ σ σ δ δ σ σ δ δ σ σ δ δ σ σ σ δ δ σ σ σ σ δ δ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.968<br>4.65-1<br>-1.10-4<br>6.567+1<br>1.487<br>8.63-2<br>8.96-3<br>1.358+2<br>1.521<br>3.85-2<br>7.07-3<br>1.567+2<br>1.201<br>1.24-1<br>4.73-2<br>2.253+2                                                                                                                                                                     | 1.972<br>2.09-1<br>-2.21-4<br>4.105+1<br>1.588<br>-2.17-2<br>1.75-3<br>8.167+1<br>1.625<br>-3.36-2<br>4.48-3<br>6.820+1<br>1.237<br>3.24-1<br>6.44-2<br>9.747+1                                                                                                                                                                    | 1.979 -3.91-2 -3.16-4  1.885+1 1.604 9.64-2 4.12-3 3.590+1 1.655 1.14-1 8.74-3  1.956+1 1.176 6.40-1 9.29-2 2.771+1                                                                                                                        | 1.985<br>-1.13-1<br>-3.62-4<br>1.015+1<br>1.565<br>3.07-1<br>9.88-3<br>1.882+1<br>1.625<br>3.41-1<br>1.40-2<br>7.646+0<br>1.083<br>8.66-1<br>1.21-1                                                                                                                                                                              | 1.989<br>-1.03-1<br>-3.90-4<br>6.072+0<br>1.514<br>5.14-1<br>1.73-2<br>1.104+1<br>1.581<br>5.61-1<br>2.01-2<br>3.583+0<br>0.993<br>1.04+0<br>1.51-1<br>5.016+0                                                                                                                           | 1.991<br>-4.72-2<br>-4.09-4<br>3.911+0<br>1.461<br>7.04-1<br>2.59-2<br>6.999+0<br>1.532<br>7.61-1<br>2.72-2<br>1.892+0<br>0.909<br>1.17+0<br>1.80-1<br>2.636+0                                                                                                                                   | 1.991<br>3.40-2<br>-4.23-4<br>2.660+0<br>1.410<br>8.72-1<br>3.56-2<br>4.697+0<br>1.483<br>9.40-1<br>3.52-2<br>1.089+0<br>0.834<br>1.27+0<br>2.08-1                                                                                | 1.990<br>1.30-1<br>-4.33-4<br>1.886+0<br>1.360<br>1.02+0<br>4.58-2<br>3.293+0<br>1.435<br>1.10+0<br>4.37-2<br>6.688-1<br>0.766<br>1.35+0<br>2.35-1                                                                                | 1.988<br>2.34-1<br>-4.41-4<br>1.383+0<br>1.312<br>1.16+0<br>5.64-2<br>2.390+0<br>1.388<br>1.24+0<br>5.27-2<br>4.321-1<br>0.704<br>1.41+0<br>2.61-1<br>5.941-1                                                                                           | 1.985<br>3.43-1<br>-4.46-4<br>1.042+0<br>1.265<br>1.27+0<br>6.71-2<br>1.784+0<br>1.364<br>6.19-2<br>2.910-1<br>0.648<br>1.46+0<br>2.87-1<br>3.984-1                                                                                                                                             |
| $E_b = 1006.0 \text{ eV}$ $3p_{1/2}$ $E_b = 869.7 \text{ eV}$ $3p_{3/2}$ $E_b = 818.7 \text{ eV}$ $3d_{3/2}$ $E_b = 582.5 \text{ eV}$ $3d_{5/2}$ $E_b = 572.1 \text{ eV}$                                                                                                            | β γ δ σ β γ δ δ σ β γ δ δ σ β γ δ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.968<br>4.65-1<br>-1.10-4<br>6.567+1<br>1.487<br>8.63-2<br>8.96-3<br>1.358+2<br>1.521<br>3.85-2<br>7.07-3<br>1.567+2<br>1.201<br>1.24-1<br>4.73-2<br>2.253+2<br>1.205<br>1.39-1<br>4.67-2<br>1.128+1                                                                                                                             | 1.972<br>2.09-1<br>-2.21-4<br>4.105+1<br>1.588<br>-2.17-2<br>1.75-3<br>8.167+1<br>1.625<br>-3.36-2<br>4.48-3<br>6.820+1<br>1.237<br>3.24-1<br>6.44-2<br>9.747+1<br>1.222<br>3.39-1<br>6.47-2<br>6.800+0                                                                                                                            | 1.979 -3.91-2 -3.16-4  1.885+1 1.604 9.64-2 4.12-3  3.590+1 1.655 1.14-1 8.74-3  1.956+1 1.176 6.40-1 9.29-2  2.771+1 1.145 6.46-1 9.57-2  3.245+0                                                                                         | 1.985<br>-1.13-1<br>-3.62-4<br>1.015+1<br>1.565<br>3.07-1<br>9.88-3<br>1.882+1<br>1.625<br>3.41-1<br>1.40-2<br>7.646+0<br>1.083<br>8.66-1<br>1.21-1<br>1.077+1<br>1.048<br>8.63-1<br>1.26-1<br>1.886+0                                                                                                                           | 1.989<br>-1.03-1<br>-3.90-4<br>6.072+0<br>1.514<br>5.14-1<br>1.73-2<br>1.104+1<br>1.581<br>5.61-1<br>2.01-2<br>3.583+0<br>0.993<br>1.04+0<br>1.51-1<br>5.016+0<br>0.958<br>1.03+0<br>1.58-1<br>1.225+0                                                                                   | 1.991<br>-4.72-2<br>-4.09-4<br>3.911+0<br>1.461<br>7.04-1<br>2.59-2<br>6.999+0<br>1.532<br>7.61-1<br>2.72-2<br>1.892+0<br>0.909<br>1.17+0<br>1.80-1<br>2.636+0<br>0.878<br>1.15+0<br>1.88-1<br>8.539-1                                                                                           | 1.991<br>3.40-2<br>-4.23-4<br>2.660+0<br>1.410<br>8.72-1<br>3.56-2<br>4.697+0<br>1.483<br>9.40-1<br>3.52-2<br>1.089+0<br>0.834<br>1.27+0<br>2.08-1<br>1.510+0<br>0.807<br>1.25+0<br>2.18-1<br>6.257-1                             | 1.990<br>1.30-1<br>-4.33-4<br>1.886+0<br>1.360<br>1.02+0<br>4.58-2<br>3.293+0<br>1.435<br>1.10+0<br>4.37-2<br>6.688-1<br>0.766<br>1.35+0<br>2.35-1<br>9.232-1<br>0.743<br>1.33+0<br>2.46-1<br>4.756-1                             | 1.988<br>2.34-1<br>-4.41-4<br>1.383+0<br>1.312<br>1.16+0<br>5.64-2<br>2.390+0<br>1.388<br>1.24+0<br>5.27-2<br>4.321-1<br>0.704<br>1.41+0<br>2.61-1<br>5.941-1<br>0.687<br>1.39+0<br>2.72-1<br>3.719-1                                                   | 1.985<br>3.43-1<br>-4.46-4<br>1.042+0<br>1.265<br>1.27+0<br>6.71-2<br>1.784+0<br>1.343<br>1.36+0<br>6.19-2<br>2.910-1<br>0.648<br>1.46+0<br>2.87-1<br>3.984-1<br>0.637<br>1.45+0<br>2.98-1<br>2.976-1                                                                                           |
| $E_b = 1006.0 \text{ eV}$ $3p_{1/2}$ $E_b = 869.7 \text{ eV}$ $3p_{3/2}$ $E_b = 818.7 \text{ eV}$ $3d_{3/2}$ $E_b = 582.5 \text{ eV}$ $3d_{5/2}$ $E_b = 572.1 \text{ eV}$                                                                                                            | β γ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β β γ δ δ σ β β γ δ δ σ β β γ δ δ σ β β γ δ δ σ β β γ δ δ σ β β γ δ δ σ β β γ δ δ σ β β γ δ δ σ β β γ δ δ σ β β γ δ δ σ β β γ δ δ σ β β γ δ δ σ β β γ δ δ σ β β γ δ δ σ β β γ δ δ σ β β γ δ δ σ β β γ δ δ σ β β γ δ δ σ β β γ δ δ σ β β γ δ δ σ δ β β γ δ δ σ δ β β γ δ δ σ δ β β γ δ δ σ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.968<br>4.65-1<br>-1.10-4<br>6.567+1<br>1.487<br>8.63-2<br>8.96-3<br>1.358+2<br>1.521<br>3.85-2<br>7.07-3<br>1.567+2<br>1.201<br>1.24-1<br>4.73-2<br>2.253+2<br>1.205<br>1.39-1<br>4.67-2                                                                                                                                        | 1.972<br>2.09-1<br>-2.21-4<br>4.105+1<br>1.588<br>-2.17-2<br>1.75-3<br>8.167+1<br>1.625<br>-3.36-2<br>4.48-3<br>6.820+1<br>1.237<br>3.24-1<br>6.44-2<br>9.747+1<br>1.222<br>3.39-1<br>6.47-2                                                                                                                                       | 1.979 -3.91-2 -3.16-4  1.885+1 1.604 9.64-2 4.12-3  3.590+1 1.655 1.14-1 8.74-3  1.956+1 1.176 6.40-1 9.29-2  2.771+1 1.145 6.46-1 9.57-2                                                                                                  | 1.985<br>-1.13-1<br>-3.62-4<br>1.015+1<br>1.565<br>3.07-1<br>9.88-3<br>1.882+1<br>1.625<br>3.41-1<br>1.40-2<br>7.646+0<br>1.083<br>8.66-1<br>1.21-1<br>1.077+1<br>1.048<br>8.63-1<br>1.26-1                                                                                                                                      | 1.989<br>-1.03-1<br>-3.90-4<br>6.072+0<br>1.514<br>5.14-1<br>1.73-2<br>1.104+1<br>1.581<br>5.61-1<br>2.01-2<br>3.583+0<br>0.993<br>1.04+0<br>1.51-1<br>5.016+0<br>0.958<br>1.03+0<br>1.58-1                                                                                              | 1.991<br>-4.72-2<br>-4.09-4<br>3.911+0<br>1.461<br>7.04-1<br>2.59-2<br>6.999+0<br>1.532<br>7.61-1<br>2.72-2<br>1.892+0<br>0.909<br>1.17+0<br>1.80-1<br>2.636+0<br>0.878<br>1.15+0<br>1.88-1                                                                                                      | 1.991<br>3.40-2<br>-4.23-4<br>2.660+0<br>1.410<br>8.72-1<br>3.56-2<br>4.697+0<br>1.483<br>9.40-1<br>3.52-2<br>1.089+0<br>0.834<br>1.27+0<br>2.08-1<br>1.510+0<br>0.807<br>1.25+0<br>2.18-1                                        | 1.990<br>1.30-1<br>-4.33-4<br>1.886+0<br>1.360<br>1.02+0<br>4.58-2<br>3.293+0<br>1.435<br>1.10+0<br>4.37-2<br>6.688-1<br>0.766<br>1.35+0<br>2.35-1<br>9.232-1<br>0.743<br>1.33+0<br>2.46-1                                        | 1.988<br>2.34-1<br>-4.41-4<br>1.383+0<br>1.312<br>1.16+0<br>5.64-2<br>2.390+0<br>1.388<br>1.24+0<br>5.27-2<br>4.321-1<br>0.704<br>1.41+0<br>2.61-1<br>5.941-1<br>0.687<br>1.39+0<br>2.72-1                                                              | 1.985<br>3.43-1<br>-4.46-4<br>1.042+0<br>1.265<br>1.27+0<br>6.71-2<br>1.784+0<br>1.343<br>1.36+0<br>6.19-2<br>2.910-1<br>0.648<br>1.46+0<br>2.87-1<br>3.984-1<br>0.637<br>1.45+0                                                                                                                |
| $E_b = 1006.0 \text{ eV}$ $3p_{1/2}$ $E_b = 869.7 \text{ eV}$ $3p_{3/2}$ $E_b = 818.7 \text{ eV}$ $3d_{3/2}$ $E_b = 582.5 \text{ eV}$ $3d_{5/2}$ $E_b = 572.1 \text{ eV}$                                                                                                            | β γ δ σ β γ δ δ σ β γ δ δ σ β γ δ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.968<br>4.65-1<br>-1.10-4<br>6.567+1<br>1.487<br>8.63-2<br>8.96-3<br>1.358+2<br>1.521<br>3.85-2<br>7.07-3<br>1.567+2<br>1.201<br>1.24-1<br>4.73-2<br>2.253+2<br>1.205<br>1.39-1<br>4.67-2<br>1.128+1<br>1.978<br>8.71-2<br>-1.92-4                                                                                               | 1.972<br>2.09-1<br>-2.21-4<br>4.105+1<br>1.588<br>-2.17-2<br>1.75-3<br>8.167+1<br>1.625<br>-3.36-2<br>4.48-3<br>6.820+1<br>1.237<br>3.24-1<br>6.44-2<br>9.747+1<br>1.222<br>3.39-1<br>6.47-2<br>6.800+0<br>1.980<br>-8.51-3<br>-2.41-4                                                                                             | 1.979 -3.91-2 -3.16-4  1.885+1 1.604 9.64-2 4.12-3 3.590+1 1.655 1.14-1 8.74-3  1.956+1 1.176 6.40-1 9.29-2 2.771+1 1.145 6.46-1 9.57-2  3.245+0 1.985 -9.94-2 -3.02-4                                                                     | 1.985<br>-1.13-1<br>-3.62-4<br>1.015+1<br>1.565<br>3.07-1<br>9.88-3<br>1.882+1<br>1.625<br>3.41-1<br>1.40-2<br>7.646+0<br>1.083<br>8.66-1<br>1.21-1<br>1.077+1<br>1.048<br>8.63-1<br>1.26-1<br>1.886+0<br>1.988<br>-1.05-1<br>-3.39-4                                                                                            | 1.989<br>-1.03-1<br>-3.90-4<br>6.072+0<br>1.514<br>5.14-1<br>1.73-2<br>1.104+1<br>1.581<br>5.61-1<br>2.01-2<br>3.583+0<br>0.993<br>1.04+0<br>1.51-1<br>5.016+0<br>0.958<br>1.03+0<br>1.58-1<br>1.225+0<br>1.990<br>-6.22-2<br>-3.64-4                                                    | 1.991<br>-4.72-2<br>-4.09-4<br>3.911+0<br>1.461<br>7.04-1<br>2.59-2<br>6.999+0<br>1.532<br>7.61-1<br>2.72-2<br>1.892+0<br>0.909<br>1.17+0<br>1.80-1<br>2.636+0<br>0.878<br>1.15+0<br>1.88-1<br>8.539-1<br>1.991<br>9.20-3<br>-3.82-4                                                             | 1.991 3.40-2 -4.23-4 2.660+0 1.410 8.72-1 3.56-2 4.697+0 1.483 9.40-1 3.52-2 1.089+0 0.834 1.27+0 2.08-1 1.510+0 0.807 1.25+0 2.18-1 6.257-1 1.990 9.80-2 -3.97-4                                                                 | 1.990 1.30-1 -4.33-4 1.886+0 1.360 1.02+0 4.58-2 3.293+0 1.435 1.10+0 4.37-2 6.688-1 0.766 1.35+0 2.35-1 9.232-1 0.743 1.33+0 2.46-1 4.756-1 1.989 1.97-1 -4.08-4                                                                 | 1.988<br>2.34-1<br>-4.41-4<br>1.383+0<br>1.312<br>1.16+0<br>5.64-2<br>2.390+0<br>1.388<br>1.24+0<br>5.27-2<br>4.321-1<br>0.704<br>1.41+0<br>2.61-1<br>5.941-1<br>0.687<br>1.39+0<br>2.72-1<br>3.719-1<br>1.986<br>3.03-1<br>-4.16-4                     | 1.985<br>3.43-1<br>-4.46-4<br>1.265<br>1.27+0<br>6.71-2<br>1.784+0<br>1.343<br>1.36+0<br>6.19-2<br>2.910-1<br>0.648<br>1.46+0<br>2.87-1<br>0.637<br>1.45+0<br>2.98-1<br>2.976-1<br>1.983<br>4.11-1<br>-4.20-4                                                                                   |
| $E_b = 1006.0 \text{ eV}$ $3p_{1/2}$ $E_b = 869.7 \text{ eV}$ $3p_{3/2}$ $E_b = 818.7 \text{ eV}$ $3d_{3/2}$ $E_b = 582.5 \text{ eV}$ $3d_{5/2}$ $E_b = 572.1 \text{ eV}$ $4s_{1/2}$ $E_b = 168.3 \text{ eV}$                                                                        | β γ δ σ β γ δ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ β γ δ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.968<br>4.65-1<br>-1.10-4<br>6.567+1<br>1.487<br>8.63-2<br>8.96-3<br>1.358+2<br>1.521<br>3.85-2<br>7.07-3<br>1.567+2<br>1.201<br>1.24-1<br>4.73-2<br>2.253+2<br>1.205<br>1.39-1<br>4.67-2<br>1.128+1<br>1.978<br>8.71-2<br>-1.92-4<br>1.296+1                                                                                    | 1.972<br>2.09-1<br>-2.21-4<br>4.105+1<br>1.588<br>-2.17-2<br>1.75-3<br>8.167+1<br>1.625<br>-3.36-2<br>4.48-3<br>6.820+1<br>1.237<br>3.24-1<br>6.44-2<br>9.747+1<br>1.222<br>3.39-1<br>6.47-2<br>6.800+0<br>1.980<br>-8.51-3<br>-2.41-4<br>7.607+0                                                                                  | 1.979 -3.91-2 -3.16-4  1.885+1 1.604 9.64-2 4.12-3 3.590+1 1.655 1.14-1 8.74-3  1.956+1 1.176 6.40-1 9.29-2  2.771+1 1.145 6.46-1 9.57-2  3.245+0 1.985 -9.94-2 -3.02-4  3.353+0                                                           | 1.985<br>-1.13-1<br>-3.62-4<br>1.015+1<br>1.565<br>3.07-1<br>9.88-3<br>1.882+1<br>1.625<br>3.41-1<br>1.40-2<br>7.646+0<br>1.083<br>8.66-1<br>1.21-1<br>1.077+1<br>1.048<br>8.63-1<br>1.26-1<br>1.886+0<br>1.988<br>-1.05-1<br>-3.39-4<br>1.789+0                                                                                 | 1.989<br>-1.03-1<br>-3.90-4<br>6.072+0<br>1.514<br>5.14-1<br>1.73-2<br>1.104+1<br>1.581<br>5.61-1<br>2.01-2<br>3.583+0<br>0.993<br>1.04+0<br>1.51-1<br>5.016+0<br>0.958<br>1.03+0<br>1.58-1<br>1.225+0<br>1.990<br>-6.22-2<br>-3.64-4<br>1.070+0                                         | 1.991<br>-4.72-2<br>-4.09-4<br>3.911+0<br>1.461<br>7.04-1<br>2.59-2<br>6.999+0<br>1.532<br>7.61-1<br>2.72-2<br>1.892+0<br>0.909<br>1.17+0<br>1.80-1<br>2.636+0<br>0.878<br>1.15+0<br>1.88-1<br>8.539-1<br>1.991<br>9.20-3<br>-3.82-4<br>6.903-1                                                  | 1.991 3.40-2 -4.23-4 2.660+0 1.410 8.72-1 3.56-2 4.697+0 1.483 9.40-1 3.52-2 1.089+0 0.834 1.27+0 2.08-1 1.510+0 0.807 1.25+0 2.18-1 6.257-1 1.990 9.80-2 -3.97-4 4.705-1                                                         | 1.990 1.30-1 -4.33-4 1.886+0 1.360 1.02+0 4.58-2 3.293+0 1.435 1.10+0 4.37-2 6.688-1 0.766 1.35+0 2.35-1 9.232-1 0.743 1.33+0 2.46-1 4.756-1 1.989 1.97-1 -4.08-4 3.344-1                                                         | 1.988<br>2.34-1<br>-4.41-4<br>1.383+0<br>1.312<br>1.16+0<br>5.64-2<br>2.390+0<br>1.388<br>1.24+0<br>5.27-2<br>4.321-1<br>0.704<br>1.41+0<br>2.61-1<br>5.941-1<br>0.687<br>1.39+0<br>2.72-1<br>3.719-1<br>1.986<br>3.03-1<br>-4.16-4<br>2.457-1          | 1.985<br>3.43-1<br>-4.46-4<br>1.265<br>1.27+0<br>6.71-2<br>1.784+0<br>1.343<br>1.36+0<br>6.19-2<br>2.910-1<br>0.648<br>1.46+0<br>2.87-1<br>3.984-1<br>0.637<br>1.45+0<br>2.976-1<br>1.983<br>4.11-1<br>-4.20-4<br>1.855-1                                                                       |
| $E_b = 1006.0 \text{ eV}$ $3p_{1/2} = E_b = 869.7 \text{ eV}$ $3p_{3/2} = E_b = 818.7 \text{ eV}$ $3d_{3/2} = E_b = 582.5 \text{ eV}$ $3d_{5/2} = E_b = 572.1 \text{ eV}$ $4s_{1/2} = E_b = 168.3 \text{ eV}$                                                                        | β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.968<br>4.65-1<br>-1.10-4<br>6.567+1<br>1.487<br>8.63-2<br>8.96-3<br>1.358+2<br>1.521<br>3.85-2<br>7.07-3<br>1.567+2<br>1.201<br>1.24-1<br>4.73-2<br>2.253+2<br>1.205<br>1.39-1<br>4.67-2<br>1.128+1<br>1.978<br>8.71-2<br>-1.92-4                                                                                               | 1.972<br>2.09-1<br>-2.21-4<br>4.105+1<br>1.588<br>-2.17-2<br>1.75-3<br>8.167+1<br>1.625<br>-3.36-2<br>4.48-3<br>6.820+1<br>1.237<br>3.24-1<br>6.44-2<br>9.747+1<br>1.222<br>3.39-1<br>6.47-2<br>6.800+0<br>1.980<br>-8.51-3<br>-2.41-4                                                                                             | 1.979 -3.91-2 -3.16-4  1.885+1 1.604 9.64-2 4.12-3 3.590+1 1.655 1.14-1 8.74-3  1.956+1 1.176 6.40-1 9.29-2 2.771+1 1.145 6.46-1 9.57-2  3.245+0 1.985 -9.94-2 -3.02-4                                                                     | 1.985<br>-1.13-1<br>-3.62-4<br>1.015+1<br>1.565<br>3.07-1<br>9.88-3<br>1.882+1<br>1.625<br>3.41-1<br>1.40-2<br>7.646+0<br>1.083<br>8.66-1<br>1.21-1<br>1.077+1<br>1.048<br>8.63-1<br>1.26-1<br>1.886+0<br>1.988<br>-1.05-1<br>-3.39-4                                                                                            | 1.989<br>-1.03-1<br>-3.90-4<br>6.072+0<br>1.514<br>5.14-1<br>1.73-2<br>1.104+1<br>1.581<br>5.61-1<br>2.01-2<br>3.583+0<br>0.993<br>1.04+0<br>1.51-1<br>5.016+0<br>0.958<br>1.03+0<br>1.58-1<br>1.225+0<br>1.990<br>-6.22-2<br>-3.64-4                                                    | 1.991<br>-4.72-2<br>-4.09-4<br>3.911+0<br>1.461<br>7.04-1<br>2.59-2<br>6.999+0<br>1.532<br>7.61-1<br>2.72-2<br>1.892+0<br>0.909<br>1.17+0<br>1.80-1<br>2.636+0<br>0.878<br>1.15+0<br>1.88-1<br>8.539-1<br>1.991<br>9.20-3<br>-3.82-4                                                             | 1.991 3.40-2 -4.23-4 2.660+0 1.410 8.72-1 3.56-2 4.697+0 1.483 9.40-1 3.52-2 1.089+0 0.834 1.27+0 2.08-1 1.510+0 0.807 1.25+0 2.18-1 6.257-1 1.990 9.80-2 -3.97-4                                                                 | 1.990 1.30-1 -4.33-4 1.886+0 1.360 1.02+0 4.58-2 3.293+0 1.435 1.10+0 4.37-2 6.688-1 0.766 1.35+0 2.35-1 9.232-1 0.743 1.33+0 2.46-1 4.756-1 1.989 1.97-1 -4.08-4                                                                 | 1.988<br>2.34-1<br>-4.41-4<br>1.383+0<br>1.312<br>1.16+0<br>5.64-2<br>2.390+0<br>1.388<br>1.24+0<br>5.27-2<br>4.321-1<br>0.704<br>1.41+0<br>2.61-1<br>5.941-1<br>0.687<br>1.39+0<br>2.72-1<br>3.719-1<br>1.986<br>3.03-1<br>-4.16-4                     | 1.985<br>3.43-1<br>-4.46-4<br>1.265<br>1.27+0<br>6.71-2<br>1.784+0<br>1.343<br>1.36+0<br>6.19-2<br>2.910-1<br>0.648<br>1.46+0<br>2.87-1<br>0.637<br>1.45+0<br>2.98-1<br>2.976-1<br>1.983<br>4.11-1<br>-4.20-4                                                                                   |
| $E_b = 1006.0 \text{ eV}$ $3p_{1/2}$ $E_b = 869.7 \text{ eV}$ $3p_{3/2}$ $E_b = 818.7 \text{ eV}$ $3d_{3/2}$ $E_b = 582.5 \text{ eV}$ $3d_{5/2}$ $E_b = 168.3 \text{ eV}$ $4p_{1/2}$ $E_b = 1068.3 \text{ eV}$                                                                       | β γ δ σ β γ δ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β σ β γ δ σ β σ β σ β σ β σ β σ β σ β σ β σ β σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.968<br>4.65-1<br>-1.10-4<br>6.567+1<br>1.487<br>8.63-2<br>8.96-3<br>1.358+2<br>1.521<br>3.85-2<br>7.07-3<br>1.567+2<br>1.201<br>1.24-1<br>4.73-2<br>2.253+2<br>1.205<br>1.39-1<br>4.67-2<br>1.128+1<br>1.978<br>8.71-2<br>-1.92-4<br>1.296+1<br>1.693                                                                           | 1.972<br>2.09-1<br>-2.21-4<br>4.105+1<br>1.588<br>-2.17-2<br>1.75-3<br>8.167+1<br>1.625<br>-3.36-2<br>4.48-3<br>6.820+1<br>1.237<br>3.24-1<br>6.44-2<br>9.747+1<br>1.222<br>3.39-1<br>6.47-2<br>6.800+0<br>1.980<br>-8.51-3<br>-2.41-4<br>7.607+0<br>1.682                                                                         | 1.979 -3.91-2 -3.16-4  1.885+1 1.604 9.64-2 4.12-3 3.590+1 1.655 1.14-1 8.74-3  1.956+1 1.176 6.40-1 9.29-2 2.771+1 1.145 6.46-1 9.57-2 3.245+0 1.985 -9.94-2 -3.02-4 3.353+0 1.628                                                        | 1.985<br>-1.13-1<br>-3.62-4<br>1.015+1<br>1.565<br>3.07-1<br>9.88-3<br>1.882+1<br>1.625<br>3.41-1<br>1.40-2<br>7.646+0<br>1.083<br>8.66-1<br>1.21-1<br>1.077+1<br>1.048<br>8.63-1<br>1.26-1<br>1.886+0<br>1.988<br>-1.05-1<br>-3.39-4<br>1.789+0<br>1.567                                                                        | 1.989<br>-1.03-1<br>-3.90-4<br>6.072+0<br>1.514<br>5.14-1<br>1.73-2<br>1.104+1<br>1.581<br>5.61-1<br>2.01-2<br>3.583+0<br>0.993<br>1.04+0<br>1.51-1<br>5.016+0<br>0.958<br>1.03+0<br>1.58-1<br>1.225+0<br>1.990<br>-6.22-2<br>-3.64-4<br>1.070+0<br>1.506                                | 1.991<br>-4.72-2<br>-4.09-4<br>3.911+0<br>1.461<br>7.04-1<br>2.59-2<br>6.999+0<br>1.532<br>7.61-1<br>2.72-2<br>1.892+0<br>0.909<br>1.17+0<br>1.80-1<br>2.636+0<br>0.878<br>1.15+0<br>1.88-1<br>8.539-1<br>1.991<br>9.20-3<br>-3.82-4<br>6.903-1<br>1.449                                         | 1.991 3.40-2 -4.23-4 2.660+0 1.410 8.72-1 3.56-2 4.697+0 1.483 9.40-1 3.52-2 1.089+0 0.834 1.27+0 2.08-1 1.510+0 0.807 1.25+0 2.18-1 6.257-1 1.990 9.80-2 -3.97-4 4.705-1 1.395                                                   | 1.990 1.30-1 -4.33-4 1.886+0 1.360 1.02+0 4.58-2 3.293+0 1.435 1.10+0 4.37-2 6.688-1 0.766 1.35+0 2.35-1 9.232-1 0.743 1.33+0 2.46-1 4.756-1 1.989 1.97-1 -4.08-4 3.344-1 1.344                                                   | 1.988<br>2.34-1<br>-4.41-4<br>1.383+0<br>1.312<br>1.16+0<br>5.64-2<br>2.390+0<br>1.388<br>1.24+0<br>5.27-2<br>4.321-1<br>0.704<br>1.41+0<br>2.61-1<br>5.941-1<br>0.687<br>1.39+0<br>2.72-1<br>3.719-1<br>1.986<br>3.03-1<br>-4.16-4<br>2.457-1<br>1.295 | 1.985<br>3.43-1<br>-4.46-4<br>1.265<br>1.27+0<br>6.71-2<br>1.784+0<br>1.343<br>1.36+0<br>6.19-2<br>2.910-1<br>0.648<br>1.46+0<br>2.87-1<br>3.984-1<br>0.637<br>1.45+0<br>2.98-1<br>1.983<br>4.11-1<br>-4.20-4<br>1.855-1<br>1.249                                                               |
| $E_b = 1006.0 \text{ eV}$ $3p_{1/2}$ $E_b = 869.7 \text{ eV}$ $3p_{3/2}$ $E_b = 818.7 \text{ eV}$ $3d_{3/2}$ $E_b = 582.5 \text{ eV}$ $3d_{5/2}$ $E_b = 672.1 \text{ eV}$ $4s_{1/2}$ $E_b = 1168.3 \text{ eV}$ $4p_{3/2}$                                                            | β γ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ δ β γ δ δ σ σ β γ δ δ σ σ β γ δ δ σ σ β γ δ δ σ σ β γ δ δ σ σ δ δ γ δ δ σ σ δ δ γ δ δ σ σ δ δ γ δ δ σ σ δ δ γ δ δ σ σ σ δ δ γ δ δ σ σ δ δ γ δ δ σ σ σ δ δ γ δ δ σ σ σ δ δ δ γ δ δ σ σ σ δ δ δ δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.968<br>4.65-1<br>-1.10-4<br>6.567+1<br>1.487<br>8.63-2<br>8.96-3<br>1.358+2<br>1.521<br>3.85-2<br>7.07-3<br>1.567+2<br>1.201<br>1.24-1<br>4.73-2<br>2.253+2<br>1.205<br>1.39-1<br>4.67-2<br>1.128+1<br>1.978<br>8.71-2<br>-1.92-4<br>1.296+1<br>1.693<br>-2.39-2<br>-1.01-3<br>2.570+1                                          | 1.972<br>2.09-1<br>-2.21-4<br>4.105+1<br>1.588<br>-2.17-2<br>1.75-3<br>8.167+1<br>1.625<br>-3.36-2<br>4.48-3<br>6.820+1<br>1.237<br>3.24-1<br>6.44-2<br>9.747+1<br>1.222<br>3.39-1<br>6.47-2<br>6.800+0<br>1.980<br>-8.51-3<br>-2.41-4<br>7.607+0<br>1.682<br>1.80-2<br>-2.16-4<br>1.472+1                                         | 1.979 -3.91-2 -3.16-4  1.885+1 1.604 9.64-2 4.12-3 3.590+1 1.655 1.14-1 8.74-3  1.956+1 1.176 6.40-1 9.29-2  2.771+1 1.145 6.46-1 9.57-2 3.245+0 1.985 -9.94-2 -3.02-4 3.353+0 1.628 1.98-1 3.23-3 6.281+0                                 | 1.985<br>-1.13-1<br>-3.62-4<br>1.015+1<br>1.565<br>3.07-1<br>9.88-3<br>1.882+1<br>1.625<br>3.41-1<br>1.40-2<br>7.646+0<br>1.083<br>8.66-1<br>1.21-1<br>1.077+1<br>1.048<br>8.63-1<br>1.26-1<br>1.886+0<br>1.988<br>-1.05-1<br>-3.39-4<br>1.789+0<br>1.567<br>4.00-1<br>8.92-3<br>3.277+0                                         | 1.989<br>-1.03-1<br>-3.90-4<br>6.072+0<br>1.514<br>5.14-1<br>1.73-2<br>1.104+1<br>1.581<br>5.61-1<br>2.01-2<br>3.583+0<br>0.993<br>1.04+0<br>1.51-1<br>5.016+0<br>0.958<br>1.03+0<br>1.58-1<br>1.225+0<br>1.990<br>-6.22-2<br>-3.64-4<br>1.070+0<br>1.506<br>5.92-1<br>1.64-2<br>1.925+0 | 1.991 -4.72-2 -4.09-4 3.911+0 1.461 7.04-1 2.59-2 6.999+0 1.532 7.61-1 2.72-2 1.892+0 0.909 1.17+0 1.80-1 2.636+0 0.878 1.15+0 1.88-1 8.539-1 1.991 9.20-3 -3.82-4 6.903-1 1.449 7.67-1 2.52-2 1.224+0                                                                                           | 1.991 3.40-2 -4.23-4  2.660+0 1.410 8.72-1 3.56-2 4.697+0 1.483 9.40-1 3.52-2 1.089+0 0.834 1.27+0 2.08-1 1.510+0 0.807 1.25+0 2.18-1 6.257-1 1.990 9.80-2 -3.97-4 4.705-1 1.395 9.24-1 3.48-2 8.243-1                            | 1.990 1.30-1 -4.33-4  1.886+0 1.360 1.02+0 4.58-2 3.293+0 1.435 1.10+0 4.37-2 6.688-1 0.766 1.35+0 2.35-1  9.232-1 0.743 1.33+0 2.46-1 4.756-1 1.989 1.97-1 -4.08-4 3.344-1 1.344 1.06+0 4.52-2 5.796-1                           | 1.988 2.34-1 -4.41-4  1.383+0 1.312 1.16+0 5.64-2 2.390+0 1.388 1.24+0 5.27-2  4.321-1 0.704 1.41+0 2.61-1  5.941-1 0.687 1.39+0 2.72-1  3.719-1 1.986 3.03-1 -4.16-4 2.457-1 1.295 1.19+0 5.59-2  4.218-1                                              | 1.985 3.43-1 -4.46-4 1.042+0 1.265 1.27+0 6.71-2 1.784+0 1.343 1.36+0 6.19-2 2.910-1 0.648 1.46+0 2.87-1 3.984-1 0.637 1.45+0 2.98-1 2.976-1 1.983 4.11-1 -4.20-4 1.855-1 1.249 1.30+0 6.68-2 3.156-1                                                                                           |
| $E_b = 1006.0 \text{ eV}$ $3p_{1/2} E_b = 869.7 \text{ eV}$ $3p_{3/2} E_b = 818.7 \text{ eV}$ $3d_{3/2} E_b = 582.5 \text{ eV}$ $3d_{5/2} E_b = 168.3 \text{ eV}$ $4p_{1/2} E_b = 116.8 \text{ eV}$                                                                                  | β         γ           δ         σ           β         γ           δ         σ           β         γ           δ         σ           β         γ           δ         σ           β         γ           δ         σ           β         γ           δ         σ           β         γ           δ         σ           β         γ           δ         σ           β         γ           δ         σ           β         γ           δ         σ           β         γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.968<br>4.65-1<br>-1.10-4<br>6.567+1<br>1.487<br>8.63-2<br>8.96-3<br>1.358+2<br>1.521<br>3.85-2<br>7.07-3<br>1.567+2<br>1.201<br>1.24-1<br>4.73-2<br>2.253+2<br>1.205<br>1.39-1<br>4.67-2<br>1.128+1<br>1.978<br>8.71-2<br>-1.92-4<br>1.296+1<br>1.693<br>-2.39-2<br>-1.01-3<br>2.570+1<br>1.715                                 | 1.972<br>2.09-1<br>-2.21-4<br>4.105+1<br>1.588<br>-2.17-2<br>1.75-3<br>8.167+1<br>1.625<br>-3.36-2<br>4.48-3<br>6.820+1<br>1.237<br>3.24-1<br>6.44-2<br>9.747+1<br>1.222<br>3.39-1<br>6.47-2<br>6.800+0<br>1.980<br>-8.51-3<br>-2.41-4<br>7.607+0<br>1.682<br>1.80-2<br>-2.16-4<br>1.472+1<br>1.717                                | 1.979 -3.91-2 -3.16-4  1.885+1 1.604 9.64-2 4.12-3 3.590+1 1.655 1.14-1 8.74-3  1.956+1 1.176 6.40-1 9.29-2  2.771+1 1.145 6.46-1 9.57-2 3.245+0 1.985 -9.94-2 -3.02-4 3.353+0 1.628 1.98-1 3.23-3 6.281+0 1.679                           | 1.985<br>-1.13-1<br>-3.62-4<br>1.015+1<br>1.565<br>3.07-1<br>9.88-3<br>1.882+1<br>1.625<br>3.41-1<br>1.40-2<br>7.646+0<br>1.083<br>8.66-1<br>1.21-1<br>1.077+1<br>1.048<br>8.63-1<br>1.26-1<br>1.886+0<br>1.988<br>-1.05-1<br>-3.39-4<br>1.789+0<br>1.567<br>4.00-1<br>8.92-3<br>3.277+0<br>1.627                                | 1.989 -1.03-1 -3.90-4 6.072+0 1.514 5.14-1 1.73-2 1.104+1 1.581 5.61-1 2.01-2 3.583+0 0.993 1.04+0 1.51-1 5.016+0 0.958 1.03+0 1.58-1 1.225+0 1.990 -6.22-2 -3.64-4 1.070+0 1.506 5.92-1 1.64-2 1.925+0 1.573                                                                            | 1.991<br>-4.72-2<br>-4.09-4<br>3.911+0<br>1.461<br>7.04-1<br>2.59-2<br>6.999+0<br>1.532<br>7.61-1<br>2.72-2<br>1.892+0<br>0.909<br>1.17+0<br>1.80-1<br>2.636+0<br>0.878<br>1.15+0<br>1.88-1<br>8.539-1<br>1.991<br>9.20-3<br>-3.82-4<br>6.903-1<br>1.449<br>7.67-1<br>2.52-2<br>1.224+0<br>1.520 | 1.991 3.40-2 -4.23-4  2.660+0 1.410 8.72-1 3.56-2  4.697+0 1.483 9.40-1 3.52-2  1.089+0 0.834 1.27+0 2.08-1  1.510+0 0.807 1.25+0 2.18-1 6.257-1 1.990 9.80-2 -3.97-4 4.705-1 1.395 9.24-1 3.48-2  8.243-1 1.468                  | 1.990 1.30-1 -4.33-4  1.886+0 1.360 1.02+0 4.58-2 3.293+0 1.435 1.10+0 4.37-2 6.688-1 0.766 1.35+0 2.35-1  9.232-1 0.743 1.33+0 2.46-1 4.756-1 1.989 1.97-1 -4.08-4 3.344-1 1.344 1.06+0 4.52-2 5.796-1 1.419                     | 1.988 2.34-1 -4.41-4  1.383+0 1.312 1.16+0 5.64-2 2.390+0 1.388 1.24+0 5.27-2 4.321-1 0.704 1.41+0 2.61-1  5.941-1 0.687 1.39+0 2.72-1 3.719-1 1.986 3.03-1 -4.16-4 2.457-1 1.295 1.19+0 5.59-2 4.218-1 1.371                                           | 1.985<br>3.43-1<br>-4.46-4<br>1.042+0<br>1.265<br>1.27+0<br>6.71-2<br>1.784+0<br>1.343<br>1.36+0<br>6.19-2<br>2.910-1<br>0.648<br>1.46+0<br>2.87-1<br>3.984-1<br>0.637<br>1.45+0<br>2.98-1<br>2.976-1<br>1.983<br>4.11-1<br>-4.20-4<br>1.855-1<br>1.249<br>1.30+0<br>6.68-2<br>3.156-1<br>1.326 |
| $E_b = 1006.0 \text{ eV}$ $3p_{1/2}$ $E_b = 869.7 \text{ eV}$ $3p_{3/2}$ $E_b = 818.7 \text{ eV}$ $3d_{3/2}$ $E_b = 582.5 \text{ eV}$ $3d_{5/2}$ $E_b = 672.1 \text{ eV}$ $4s_{1/2}$ $E_b = 1168.3 \text{ eV}$ $4p_{3/2}$                                                            | β γ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ δ β γ δ δ σ σ β γ δ δ σ σ β γ δ δ σ σ β γ δ δ σ σ β γ δ δ σ σ δ δ γ δ δ σ σ δ δ γ δ δ σ σ δ δ γ δ δ σ σ δ δ γ δ δ σ σ σ δ δ γ δ δ σ σ δ δ γ δ δ σ σ σ δ δ γ δ δ σ σ σ δ δ δ γ δ δ σ σ σ δ δ δ δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.968<br>4.65-1<br>-1.10-4<br>6.567+1<br>1.487<br>8.63-2<br>8.96-3<br>1.358+2<br>1.521<br>3.85-2<br>7.07-3<br>1.567+2<br>1.201<br>1.24-1<br>4.73-2<br>2.253+2<br>1.205<br>1.39-1<br>4.67-2<br>1.128+1<br>1.978<br>8.71-2<br>-1.92-4<br>1.296+1<br>1.693<br>-2.39-2<br>-1.01-3<br>2.570+1                                          | 1.972<br>2.09-1<br>-2.21-4<br>4.105+1<br>1.588<br>-2.17-2<br>1.75-3<br>8.167+1<br>1.625<br>-3.36-2<br>4.48-3<br>6.820+1<br>1.237<br>3.24-1<br>6.44-2<br>9.747+1<br>1.222<br>3.39-1<br>6.47-2<br>6.800+0<br>1.980<br>-8.51-3<br>-2.41-4<br>7.607+0<br>1.682<br>1.80-2<br>-2.16-4<br>1.472+1                                         | 1.979 -3.91-2 -3.16-4  1.885+1 1.604 9.64-2 4.12-3 3.590+1 1.655 1.14-1 8.74-3  1.956+1 1.176 6.40-1 9.29-2  2.771+1 1.145 6.46-1 9.57-2 3.245+0 1.985 -9.94-2 -3.02-4 3.353+0 1.628 1.98-1 3.23-3 6.281+0                                 | 1.985<br>-1.13-1<br>-3.62-4<br>1.015+1<br>1.565<br>3.07-1<br>9.88-3<br>1.882+1<br>1.625<br>3.41-1<br>1.40-2<br>7.646+0<br>1.083<br>8.66-1<br>1.21-1<br>1.077+1<br>1.048<br>8.63-1<br>1.26-1<br>1.886+0<br>1.988<br>-1.05-1<br>-3.39-4<br>1.789+0<br>1.567<br>4.00-1<br>8.92-3<br>3.277+0                                         | 1.989<br>-1.03-1<br>-3.90-4<br>6.072+0<br>1.514<br>5.14-1<br>1.73-2<br>1.104+1<br>1.581<br>5.61-1<br>2.01-2<br>3.583+0<br>0.993<br>1.04+0<br>1.51-1<br>5.016+0<br>0.958<br>1.03+0<br>1.58-1<br>1.225+0<br>1.990<br>-6.22-2<br>-3.64-4<br>1.070+0<br>1.506<br>5.92-1<br>1.64-2<br>1.925+0 | 1.991 -4.72-2 -4.09-4 3.911+0 1.461 7.04-1 2.59-2 6.999+0 1.532 7.61-1 2.72-2 1.892+0 0.909 1.17+0 1.80-1 2.636+0 0.878 1.15+0 1.88-1 8.539-1 1.991 9.20-3 -3.82-4 6.903-1 1.449 7.67-1 2.52-2 1.224+0                                                                                           | 1.991 3.40-2 -4.23-4  2.660+0 1.410 8.72-1 3.56-2 4.697+0 1.483 9.40-1 3.52-2 1.089+0 0.834 1.27+0 2.08-1 1.510+0 0.807 1.25+0 2.18-1 6.257-1 1.990 9.80-2 -3.97-4 4.705-1 1.395 9.24-1 3.48-2 8.243-1                            | 1.990 1.30-1 -4.33-4  1.886+0 1.360 1.02+0 4.58-2 3.293+0 1.435 1.10+0 4.37-2 6.688-1 0.766 1.35+0 2.35-1  9.232-1 0.743 1.33+0 2.46-1 4.756-1 1.989 1.97-1 -4.08-4 3.344-1 1.344 1.06+0 4.52-2 5.796-1                           | 1.988 2.34-1 -4.41-4  1.383+0 1.312 1.16+0 5.64-2 2.390+0 1.388 1.24+0 5.27-2  4.321-1 0.704 1.41+0 2.61-1  5.941-1 0.687 1.39+0 2.72-1  3.719-1 1.986 3.03-1 -4.16-4 2.457-1 1.295 1.19+0 5.59-2  4.218-1                                              | 1.985 3.43-1 -4.46-4 1.042+0 1.265 1.27+0 6.71-2 1.784+0 1.343 1.36+0 6.19-2 2.910-1 0.648 1.46+0 2.87-1 3.984-1 0.637 1.45+0 2.98-1 1.983 4.11-1 -4.20-4 1.855-1 1.249 1.30+0 6.68-2 3.156-1                                                                                                   |
| $E_b = 1006.0 \text{ eV}$ $3p_{1/2}$ $E_b = 869.7 \text{ eV}$ $3p_{3/2}$ $E_b = 818.7 \text{ eV}$ $3d_{3/2}$ $E_b = 582.5 \text{ eV}$ $3d_{5/2}$ $E_b = 572.1 \text{ eV}$ $4s_{1/2}$ $E_b = 168.3 \text{ eV}$ $4p_{1/2}$ $E_b = 116.8 \text{ eV}$ $4p_{3/2}$ $E_b = 96.9 \text{ eV}$ | β         γ           δ         σ           β         γ           δ         σ           β         γ           δ         σ           β         γ           δ         σ           β         γ           δ         σ           β         γ           δ         σ           β         γ           δ         σ           σ         σ           σ         σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.968<br>4.65-1<br>-1.10-4<br>6.567+1<br>1.487<br>8.63-2<br>8.96-3<br>1.358+2<br>1.521<br>3.85-2<br>7.07-3<br>1.567+2<br>1.201<br>1.24-1<br>4.73-2<br>2.253+2<br>1.205<br>1.39-1<br>4.67-2<br>1.128+1<br>1.978<br>8.71-2<br>-1.92-4<br>1.296+1<br>1.693<br>-2.39-2<br>-1.01-3<br>2.570+1<br>1.715<br>-2.92-2<br>1.69-3<br>1.767+1 | 1.972<br>2.09-1<br>-2.21-4<br>4.105+1<br>1.588<br>-2.17-2<br>1.75-3<br>8.167+1<br>1.625<br>-3.36-2<br>4.48-3<br>6.820+1<br>1.237<br>3.24-1<br>6.44-2<br>9.747+1<br>1.222<br>3.39-1<br>6.47-2<br>6.800+0<br>1.980<br>-8.51-3<br>-2.41-4<br>7.607+0<br>1.682<br>1.80-2<br>-2.16-4<br>1.472+1<br>1.717<br>2.34-2<br>3.50-3<br>8.155+0 | 1.979 -3.91-2 -3.16-4  1.885+1 1.604 9.64-2 4.12-3  3.590+1 1.655 1.14-1 8.74-3  1.956+1 1.176 6.40-1 9.29-2  2.771+1 1.145 6.46-1 9.57-2  3.245+0 1.985 -9.94-2 -3.02-4  3.353+0 1.628 1.98-1 3.23-3 6.281+0 1.679 2.19-1 7.42-3  2.514+0 | 1.985<br>-1.13-1<br>-3.62-4<br>1.015+1<br>1.565<br>3.07-1<br>9.88-3<br>1.882+1<br>1.625<br>3.41-1<br>1.40-2<br>7.646+0<br>1.083<br>8.66-1<br>1.21-1<br>1.077+1<br>1.048<br>8.63-1<br>1.26-1<br>1.886+0<br>1.988<br>-1.05-1<br>-3.39-4<br>1.789+0<br>1.567<br>4.00-1<br>8.92-3<br>3.277+0<br>1.627<br>4.34-1<br>1.24-2<br>1.027+0 | 1.989 -1.03-1 -3.90-4 6.072+0 1.514 5.14-1 1.73-2 1.104+1 1.581 5.61-1 2.01-2 3.583+0 0.993 1.04+0 1.51-1 5.016+0 0.958 1.03+0 1.58-1 1.225+0 1.990 -6.22-2 -3.64-4 1.070+0 1.506 5.92-1 1.64-2 1.925+0 1.925+0 1.573 6.37-1 1.86-2 4.955-1                                              | 1.991 -4.72-2 -4.09-4 3.911+0 1.461 7.04-1 2.59-2 6.999+0 1.532 7.61-1 2.72-2 1.892+0 0.909 1.17+0 1.80-1 2.636+0 0.878 1.15+0 1.88-1 8.539-1 1.991 9.20-3 -3.82-4 6.903-1 1.449 7.67-1 2.52-2 1.224+0 1.520 8.22-1 2.59-2 2.670-1                                                               | 1.991 3.40-2 -4.23-4 2.660+0 1.410 8.72-1 3.56-2 4.697+0 1.483 9.40-1 3.52-2 1.089+0 0.834 1.27+0 2.08-1 1.510+0 0.807 1.25+0 2.18-1 6.257-1 1.990 9.80-2 -3.97-4 4.705-1 1.395 9.24-1 3.48-2 8.243-1 1.468 9.88-1 3.40-2 1.559-1 | 1.990 1.30-1 -4.33-4 1.886+0 1.360 1.02+0 4.58-2 3.293+0 1.435 1.10+0 4.37-2 6.688-1 0.766 1.35+0 2.35-1 9.232-1 0.743 1.33+0 2.46-1 4.756-1 1.989 1.97-1 -4.08-4 3.344-1 1.344 1.06+0 4.52-2 5.796-1 1.419 1.14+0 4.27-2 9.682-2 | 1.988 2.34-1 -4.41-4 1.383+0 1.312 1.16+0 5.64-2 2.390+0 1.388 1.24+0 5.27-2 4.321-1 0.704 1.41+0 2.61-1 5.941-1 0.687 1.39+0 2.72-1 3.719-1 1.986 3.03-1 -4.16-4 2.457-1 1.295 1.19+0 5.59-2 4.218-1 1.371 1.27+0 5.19-2 6.309-2                       | 1.985 3.43-1 -4.46-4 1.265 1.27+0 6.71-2 1.784+0 1.343 1.36+0 6.19-2 2.910-1 0.648 1.46+0 2.87-1 0.637 1.45+0 2.98-1 2.976-1 1.983 4.11-1 -4.20-4 1.855-1 1.249 1.30+0 6.68-2 3.156-1 1.326 1.38+0 6.13-2 4.277-2                                                                               |
| $E_b = 1006.0 \text{ eV}$ $3p_{1/2} E_b = 869.7 \text{ eV}$ $3p_{3/2} E_b = 818.7 \text{ eV}$ $3d_{3/2} E_b = 582.5 \text{ eV}$ $3d_{5/2} E_b = 168.3 \text{ eV}$ $4s_{1/2} E_b = 168.3 \text{ eV}$ $4p_{1/2} E_b = 116.8 \text{ eV}$                                                | β         γ           δ         σ           β         γ           δ         σ           β         γ           δ         σ           β         γ           δ         σ           β         γ           δ         σ           β         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ           δ         γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.968<br>4.65-1<br>-1.10-4<br>6.567+1<br>1.487<br>8.63-2<br>8.96-3<br>1.358+2<br>1.521<br>3.85-2<br>7.07-3<br>1.567+2<br>1.201<br>1.24-1<br>4.73-2<br>2.253+2<br>1.205<br>1.39-1<br>4.67-2<br>1.128+1<br>1.978<br>8.71-2<br>-1.92-4<br>1.296+1<br>1.693<br>-2.39-2<br>-1.01-3<br>2.570+1<br>1.715<br>-2.92-2<br>1.69-3            | 1.972<br>2.09-1<br>-2.21-4<br>4.105+1<br>1.588<br>-2.17-2<br>1.75-3<br>8.167+1<br>1.625<br>-3.36-2<br>4.48-3<br>6.820+1<br>1.237<br>3.24-1<br>6.44-2<br>9.747+1<br>1.222<br>3.39-1<br>6.47-2<br>6.800+0<br>1.980<br>-8.51-3<br>-2.41-4<br>7.607+0<br>1.682<br>1.80-2<br>-2.16-4<br>1.472+1<br>1.717<br>2.34-2<br>3.50-3            | 1.979 -3.91-2 -3.16-4  1.885+1 1.604 9.64-2 4.12-3  3.590+1 1.655 1.14-1 8.74-3  1.956+1 1.176 6.40-1 9.29-2  2.771+1 1.145 6.46-1 9.57-2  3.245+0 1.985 -9.94-2 -3.02-4  3.353+0 1.628 1.98-1 3.23-3  6.281+0 1.679 2.19-1 7.42-3         | 1.985<br>-1.13-1<br>-3.62-4<br>1.015+1<br>1.565<br>3.07-1<br>9.88-3<br>1.882+1<br>1.625<br>3.41-1<br>1.40-2<br>7.646+0<br>1.083<br>8.66-1<br>1.21-1<br>1.077+1<br>1.048<br>8.63-1<br>1.26-1<br>1.886+0<br>1.988<br>-1.05-1<br>-3.39-4<br>1.789+0<br>1.567<br>4.00-1<br>8.92-3<br>3.277+0<br>1.627<br>4.34-1<br>1.24-2            | 1.989 -1.03-1 -3.90-4 6.072+0 1.514 5.14-1 1.73-2 1.104+1 1.581 5.61-1 2.01-2 3.583+0 0.993 1.04+0 1.51-1 5.016+0 0.958 1.03+0 1.58-1 1.225+0 1.990 -6.22-2 -3.64-4 1.070+0 1.506 5.92-1 1.64-2 1.925+0 1.573 6.37-1 1.86-2                                                              | 1.991 -4.72-2 -4.09-4 3.911+0 1.461 7.04-1 2.59-2 6.999+0 1.532 7.61-1 2.72-2 1.892+0 0.909 1.17+0 1.80-1 2.636+0 0.878 1.15+0 1.88-1 8.539-1 1.991 9.20-3 -3.82-4 6.903-1 1.449 7.67-1 2.52-2 1.224+0 1.520 8.22-1 2.59-2                                                                       | 1.991 3.40-2 -4.23-4 2.660+0 1.410 8.72-1 3.56-2 4.697+0 1.483 9.40-1 3.52-2 1.089+0 0.834 1.27+0 2.08-1 1.510+0 0.807 1.25+0 2.18-1 6.257-1 1.990 9.80-2 -3.97-4 4.705-1 1.395 9.24-1 3.48-2 8.243-1 1.468 9.88-1 3.40-2         | 1.990 1.30-1 -4.33-4 1.886+0 1.360 1.02+0 4.58-2 3.293+0 1.435 1.10+0 4.37-2 6.688-1 0.766 1.35+0 2.35-1 9.232-1 0.743 1.33+0 2.46-1 4.756-1 1.989 1.97-1 -4.08-4 3.344-1 1.344 1.06+0 4.52-2 5.796-1 1.419 1.14+0 4.27-2         | 1.988 2.34-1 -4.41-4 1.383+0 1.312 1.16+0 5.64-2 2.390+0 1.388 1.24+0 5.27-2 4.321-1 0.704 1.41+0 2.61-1 5.941-1 0.687 1.39+0 2.72-1 3.719-1 1.986 3.03-1 -4.16-4 2.457-1 1.295 1.19+0 5.59-2 4.218-1 1.371 1.27+0 5.19-2                               | 1.985 3.43-1 -4.46-4 1.042+0 1.265 1.27+0 6.71-2 1.784+0 1.343 1.36+0 6.19-2 2.910-1 0.648 1.46+0 2.87-1 3.984-1 0.637 1.45+0 2.98-1 2.976-1 1.983 4.11-1 -4.20-4 1.855-1 1.249 1.30+0 6.68-2 3.156-1 1.326 1.38+0                                                                              |

| able 1 (contin<br>4d <sub>5/2</sub>              | σ                       | 2.539+1                             | 1.165+1            | 3.557+0            | 1.443+0            | 6.915-1           | 3.706-1           | 2.154-1           | 1.331-1            | 8.635-2            | 5.829-2              |
|--------------------------------------------------|-------------------------|-------------------------------------|--------------------|--------------------|--------------------|-------------------|-------------------|-------------------|--------------------|--------------------|----------------------|
| $E_b =$                                          | β                       | 1.323                               | 1.263              | 1.135              | 1.026              | 0.934             | 0.854             | 0.784             | 0.723              | 0.668              | 0.619                |
| 39.2 eV                                          | $\delta$                | 2.65-1<br>4.18-2                    | 4.30-1<br>5.77-2   | 6.87-1<br>8.94-2   | 8.80-1<br>1.22-1   | 1.03+0<br>1.54-1  | 1.15+0<br>1.86-1  | 1.25+0<br>2.16-1  | 1.32+0<br>2.44-1   | 1.39+0<br>2.71-1   | 1.44+0<br>2.97-1     |
| 5s <sub>1/2</sub>                                | σ                       | 1.308+0                             | 7.804-1            | 3.678-1            | 2.124-1            | 1.375-1           | 9.562-2           | 6.995-2           | 5.311-2            | 4.150-2            | 3.318-2              |
| $E_b =$                                          | β                       | 1.979                               | 1.981              | 1.986              | 1.989              | 1.990             | 1.991             | 1.990             | 1.988              | 1.986              | 1.982                |
| 11.6 eV                                          | $\delta$                | 5.56-2<br>-1.97-4                   | -2.72-2 $-2.41-4$  | -1.03-1 $-2.99-4$  | -1.01-1 $-3.34-4$  | -5.48-2 $-3.60-4$ | 1.91-2<br>-3.77-4 | 1.10-1 $-3.92-4$  | 2.10-1 $-4.03-4$   | 3.16-1 $-4.10-4$   | 4.25 - 1 $-4.18 - 4$ |
| $5p_{1/2}$                                       | σ                       | 1.033+0                             | 6.012-1            | 2.629-1            | 1.398-1            | 8.346-2           | 5.380-2           | 3.665-2           | 2.604-2            | 1.913-2            | 1.443-2              |
| $E_b = 2.6 \text{ eV}$                           | β                       | 1.710<br>-2.33-2                    | 1.692<br>2.61-2    | 1.632<br>2.10-1    | 1.568<br>4.13-1    | 1.506<br>6.05-1   | 1.447<br>7.79-1   | 1.391<br>9.34-1   | 1.339<br>1.07+0    | 1.289<br>1.20+0    | 1.242<br>1.30+0      |
| 2.0 CV                                           | $\delta$                | -1.30-3                             | -4.71-4            | 3.04-3             | 8.95-3             | 1.66-2            | 2.54-2            | 3.49-2            | 4.49-2             | 5.53-2             | 6.58-2               |
| 5p <sub>3/2</sub>                                | σ                       | 1.973+0                             | 1.121+0            | 4.744-1            | 2.466-1            | 1.446-1           | 9.188-2           | 6.182-2           | 4.344-2            | 3.160-2            | 2.364-2              |
| $E_b = 2.0 \text{ eV}$                           | $\beta$ $\gamma$        | 1.731<br>-2.77-2                    | 1.726<br>3.01-2    | 1.684<br>2.28-1    | 1.630<br>4.45-1    | 1.573<br>6.49-1   | 1.518<br>8.33-1   | 1.465<br>9.97-1   | 1.414<br>1.14+0    | 1.365<br>1.27+0    | 1.319<br>1.39+0      |
| 2.0 C V                                          | δ                       | 1.48-3                              | 3.24-3             | 7.13-3             | 1.23-2             | 1.87-2            | 2.60-2            | 3.39-2            | 4.24-2             | 5.12-2             | 6.05-2               |
| Z= 53, I : [Kr                                   | ]4d <sub>3/2</sub> 4    | $d_{5/2}^6  5s_{1/2}^2  5p_{1/2}^2$ | 5p <sub>3/2</sub>  |                    |                    |                   |                   |                   |                    |                    |                      |
|                                                  |                         | k (eV)                              |                    |                    |                    |                   |                   |                   |                    |                    |                      |
| Shell                                            |                         | 1500                                | 2000               | 3000               | 4000               | 5000              | 6000              | 7000              | 8000               | 9000               | 10000                |
| $3s_{1/2}$                                       | $\sigma_{\rho}$         | 4.677+1                             | 3.070+1<br>1.969   | 1.577+1            | 9.455+0            | 6.243+0           | 4.399+0<br>1.990  | 3.248+0<br>1.990  | 2.483+0<br>1.990   | 1.951+0            | 1.567+0              |
| $E_b = 1072.1 \text{ eV}$                        | $\beta$ $\gamma$        | 1.965<br>5.31-1                     | 2.53-1             | 1.977<br>-1.90-2   | 1.983<br>-1.10-1   | 1.987<br>-1.12-1  | -6.55-2           | 8.04-3            | 9.80-2             | 1.988<br>1.98-1    | 1.985<br>3.03-1      |
|                                                  | δ                       | -9.31-5                             | -2.31-4            | -3.41-4            | -3.95 - 4          | -4.27 - 4         | -4.49-4           | -4.65-4           | -4.78-4            | -4.86-4            | -4.93-4              |
| $3p_{1/2}$                                       | $\sigma_{\rho}$         | 6.771+1<br>1.457                    | 4.287+1<br>1.578   | 1.995+1            | 1.082+1<br>1.572   | 6.512+0<br>1.525  | 4.213+0<br>1.474  | 2.876+0<br>1.424  | 2.046+0<br>1.375   | 1.504+0<br>1.327   | 1.136+0<br>1.281     |
| $E_b = 930.5 \text{ eV}$                         | $\beta$ $\gamma$        | 1.457                               | -1.59-2            | 1.606<br>7.25-2    | 2.75-1             | 4.80-1            | 6.70-1            | 8.41-1            | 9.94—1             | 1.13+0             | 1.25+0               |
|                                                  | δ                       | 1.30-2                              | 2.19-3             | 3.49-3             | 8.79-3             | 1.58-2            | 2.41-2            | 3.34-2            | 4.34-2             | 5.36-2             | 6.40-2               |
| $3p_{3/2}$<br>$E_b =$                            | $\sigma_{\rho}$         | 1.414+2<br>1.489                    | 8.581+1<br>1.614   | 3.811+1<br>1.657   | 2.010+1<br>1.634   | 1.185+1<br>1.593  | 7.539+0<br>1.547  | 5.076+0<br>1.500  | 3.568+0<br>1.453   | 2.596+0<br>1.407   | 1.942+0<br>1.362     |
| $E_b = 874.6 \text{ eV}$                         | $\beta$ $\gamma$        | 6.95-2                              | -3.39-2            | 8.84-2             | 3.08-1             | 5.27-1            | 7.28-1            | 9.10-1            | 1.433              | 1.407              | 1.302                |
|                                                  | δ                       | 9.50-3                              | 4.57-3             | 8.37-3             | 1.34-2             | 1.91-2            | 2.59-2            | 3.36-2            | 4.18-2             | 5.04-2             | 5.92-2               |
| $3d_{3/2}$<br>$E_b =$                            | $\frac{\sigma}{\beta}$  | 1.732+2<br>1.184                    | 7.579+1<br>1.236   | 2.190+1<br>1.188   | 8.616+0<br>1.100   | 4.057+0<br>1.012  | 2.151+0<br>0.929  | 1.242+0<br>0.853  | 7.650-1<br>0.784   | 4.955-1<br>0.722   | 3.343-1<br>0.665     |
| 631.3 eV                                         | γ                       | 9.02-2                              | 2.93-1             | 6.17-1             | 8.50-1             | 1.03+0            | 1.16+0            | 1.27+0            | 1.35+0             | 1.42+0             | 1.47+0               |
|                                                  | δ                       | 4.48-2                              | 6.25-2             | 9.07-2             | 1.18-1             | 1.47-1            | 1.75-1            | 2.03-1            | 2.29-1             | 2.55-1             | 2.79-1               |
| $3d_{5/2}$<br>$E_b =$                            | $\frac{\sigma}{eta}$    | 2.488+2<br>1.193                    | 1.082+2<br>1.224   | 3.100+1<br>1.157   | 1.211+1<br>1.063   | 5.671+0<br>0.975  | 2.992+0<br>0.895  | 1.719+0<br>0.823  | 1.054+0<br>0.759   | 6.799-1<br>0.702   | 4.569-1<br>0.651     |
| 619.4 eV                                         | γ                       | 1.07-1                              | 3.09 - 1           | 6.24 - 1           | 8.49 - 1           | 1.02+0            | 1.15+0            | 1.25+0            | 1.33+0             | 1.40+0             | 1.45+0               |
|                                                  | δ                       | 4.41-2                              | 6.25-2             | 9.32-2             | 1.23-1             | 1.54-1            | 1.84-1            | 2.13-1            | 2.40-1             | 2.66-1             | 2.91-1               |
| $4s_{1/2}$<br>$E_b =$                            | $\frac{\sigma}{\beta}$  | 1.204+1<br>1.976                    | 7.280+0<br>1.978   | 3.480+0<br>1.983   | 2.025+0<br>1.987   | 1.317+0<br>1.989  | 9.193-1<br>1.990  | 6.745-1<br>1.990  | 5.134-1<br>1.989   | 4.020-1<br>1.986   | 3.220-1<br>1.983     |
| 186.4 eV                                         | γ                       | 1.04 - 1                            | 4.53 - 3           | -9.58 - 2          | -1.10 - 1          | -7.49 - 2         | -1.03-2           | 7.26-2            | 1.67 - 1           | 2.69 - 1           | 3.74 - 1             |
|                                                  | δ                       | -2.06-4                             | -2.60-4            | -3.30-4            | -3.71-4            | -3.98-4           | -4.19-4           | -4.36-4           | -4.49-4            | -4.58-4            | -4.64-4              |
| $4p_{1/2}$<br>$E_b =$                            | $\frac{\sigma}{\beta}$  | 1.395+1<br>1.693                    | 8.235+0<br>1.686   | 3.658+0<br>1.636   | 1.963+0<br>1.577   | 1.179+0<br>1.519  | 7.640-1<br>1.463  | 5.226-1<br>1.410  | 3.726-1<br>1.359   | 2.746-1<br>1.310   | 2.078-1<br>1.264     |
| 130.1 eV                                         | γ                       | -2.37 - 2                           | 7.84 - 3           | 1.77 - 1           | 3.75 - 1           | 5.65 - 1          | 7.40 - 1          | 8.98 - 1          | 1.04+0             | 1.17+0             | 1.28+0               |
|                                                  | δ                       | -1.13-3                             | -5.01-4            | 2.56-3             | 7.82-3             | 1.50-2            | 2.35-2            | 3.28-2            | 4.28-2             | 5.31-2             | 6.36-2               |
| $\begin{array}{l} 4p_{3/2} \\ E_b = \end{array}$ | $\frac{\sigma}{\beta}$  | 2.800+1<br>1.713                    | 1.610+1<br>1.720   | 6.905+0<br>1.688   | 3.617+0<br>1.639   | 2.133+0<br>1.587  | 1.361+0<br>1.536  | 9.188-1<br>1.485  | 6.477-1<br>1.436   | 4.724-1<br>1.390   | 3.542-1<br>1.344     |
| 119.0 eV                                         | γ                       | -3.17 - 2                           | 1.04 - 2           | 1.96 - 1           | 4.07 - 1           | 6.10 - 1          | 7.96 - 1          | 9.64 - 1          | 1.11+0             | 1.25+0             | 1.37+0               |
| 4.4                                              | δ                       | 1.53-3                              | 3.30-3             | 7.02-3             | 1.16-2             | 1.76-2            | 2.46-2            | 3.23-2            | 4.07-2             | 4.94-2             | 5.84-2               |
| $4d_{3/2}$ $E_b =$                               | $\frac{\sigma}{\beta}$  | 2.032+1<br>1.349                    | 9.458+0<br>1.305   | 2.947+0<br>1.190   | 1.214+0<br>1.084   | 5.894-1<br>0.989  | 3.193-1<br>0.905  | 1.873-1<br>0.829  | 1.167—1<br>0.762   | 7.629-2<br>0.701   | 5.185-2<br>0.645     |
| 50.7 eV                                          | γ                       | 2.34-1                              | 4.03-1             | 6.72-1             | 8.77-1             | 1.04+0            | 1.16+0            | 1.26+0            | 1.34+0             | 1.41+0             | 1.46+0               |
| 4.1                                              | δ                       | 4.00-2<br>2.919+1                   | 5.46-2             | 8.30-2             | 1.13-1             | 1.43-1            | 1.72-1            | 2.00-1            | 2.27-1<br>1.601-1  | 2.53-1             | 2.78-1               |
| $4d_{5/2}$ $E_b =$                               | $\frac{\sigma}{\beta}$  | 1.331                               | 1.350+1<br>1.275   | 4.164+0<br>1.151   | 1.702+0<br>1.043   | 8.212-1<br>0.950  | 4.424-1<br>0.870  | 2.582-1<br>0.799  | 0.737              | 1.042-1<br>0.681   | 7.053-2<br>0.632     |
| 48.9 eV                                          | γ                       | 2.46-1                              | 4.12-1             | 6.74-1             | 8.71-1             | 1.02+0            | 1.15+0            | 1.25+0            | 1.33+0             | 1.39+0             | 1.44+0               |
| 56                                               | δ                       | 4.00-2<br>1.508+0                   | 5.56-2<br>9.015-1  | 8.65-2<br>4.255-1  | 1.19-1<br>2.460-1  | 1.51-1<br>1.593-1 | 1.81-1<br>1.110-1 | 2.10-1<br>8.126-2 | 2.38-1<br>6.176-2  | 2.65-1<br>4.831-2  | 2.90-1<br>3.867-2    |
| $5s_{1/2}$ $E_b =$                               | $\frac{\sigma}{\beta}$  | 1.977                               | 1.980              | 1.984              | 1.987              | 1.989             | 1.990             | 1.990             | 1.988              | 1.986              | 1.983                |
| 13.6 eV                                          | γ                       | 6.73-2 $-2.12-4$                    | -1.77-2            | -1.01-1            | -1.07 - 1          | -6.75-2 $-3.95-4$ | 8.08-6 $-4.16-4$  | 8.48-2<br>-4.33-4 | 1.80-1             | 2.81-1             | 3.87-1               |
| 5p <sub>1/2</sub>                                | $\frac{\delta}{\sigma}$ | 1.260+0                             | -2.60-4<br>7.377-1 | -3.27-4<br>3.248-1 | -3.67-4<br>1.736-1 | 1.041-1           | 6.737-2           | 4.606-2           | -4.45-4<br>3.283-2 | -4.53-4<br>2.418-2 | -4.63-4<br>1.829-2   |
| $E_b =$                                          | β                       | 1.712                               | 1.697              | 1.640              | 1.578              | 1.517             | 1.459             | 1.405             | 1.354              | 1.306              | 1.260                |
| 3.8 eV                                           | γ                       | -2.47-2                             | 1.60-2             | 1.90-1             | 3.90-1             | 5.79-1            | 7.52-1            | 9.07-1            | 1.05+0             | 1.17+0             | 1.28+0               |
| 5n <sub>2 /2</sub>                               | $\frac{\delta}{\sigma}$ | -1.48-3<br>2.412+0                  | -7.83-4<br>1.376+0 | 2.33-3<br>5.858-1  | 7.72-3<br>3.058-1  | 1.47-2<br>1.800-1 | 2.29-2<br>1.148-1 | 3.20-2<br>7.744-2 | 4.16-2<br>5.457-2  | 5.17-2<br>3.979-2  | 6.21-2<br>2.983-2    |
| $5p_{3/2}$ $E_b =$                               | $\beta$                 | 1.732                               | 1.731              | 1.692              | 1.640              | 1.586             | 1.148-1           | 7.744-2<br>1.481  | 1.432              | 3.979-2<br>1.384   | 2.983—2<br>1.339     |
|                                                  | •                       |                                     |                    |                    |                    |                   |                   |                   |                    |                    |                      |

| Table 1 (contin            | ued)                    |                                                       |                      |                    |                    |                    |                     |                     |                    |                      |                    |
|----------------------------|-------------------------|-------------------------------------------------------|----------------------|--------------------|--------------------|--------------------|---------------------|---------------------|--------------------|----------------------|--------------------|
| 2.9 eV                     | γ<br>δ                  | -3.06-2<br>1.33-3                                     | 1.90-2<br>3.05-3     | 2.09-1<br>6.74-3   | 4.22-1<br>1.15-2   | 6.24-1<br>1.73-2   | 8.07-1<br>2.41-2    | 9.72-1<br>3.14-2    | 1.12+0<br>3.94-2   | 1.25+0<br>4.79-2     | 1.37+0<br>5.68-2   |
| Z= 54, Xe: [K              | (r]4d <sub>3/2</sub>    | 4d <sub>5/2</sub> 5s <sub>1/2</sub> 5p <sub>1/2</sub> | 2 5p <sub>3/2</sub>  |                    |                    |                    |                     |                     |                    |                      |                    |
| Cl II                      |                         | k (eV)                                                | 2000                 | 2000               | 4000               | 5000               | C000                | 7000                | 0000               | 0000                 | 10000              |
| Shell<br>3s <sub>1/2</sub> | σ                       | 1500<br>4.787+1                                       | 2000<br>3.175+1      | 3000<br>1.643+1    | 9.886+0            | 5000<br>6.542+0    | 6000<br>4.619+0     | 7000<br>3.415+0     | 8000<br>2.615+0    | 9000<br>2.057+0      | 10000              |
| $E_b =$                    | β                       | 1.962                                                 | 1.966                | 1.974              | 1.981              | 1.985              | 1.988               | 1.989               | 1.989              | 1.988                | 1.986              |
| 1148.4 eV                  | $\delta$                | 6.13-1<br>-6.17-5                                     | 3.07 - 1 $-2.35 - 4$ | 5.43-3<br>-3.68-4  | -1.04-1 $-4.32-4$  | -1.19-1 $-4.68-4$  | -8.24-2 $-4.92-4$   | -1.66-2 $-5.12-4$   | 6.73-2 $-5.26-4$   | 1.62-1<br>-5.37-4    | 2.64-1<br>-5.46-4  |
| $3p_{1/2}$                 | σ                       | 6.968+1                                               | 4.473+1              | 2.110+1            | 1.153+1            | 6.976+0            | 4.533+0             | 3.106+0             | 2.216+0            | 1.634+0              | 1.237+0            |
| $E_b = 999.0 \text{ eV}$   | $eta \ \gamma$          | 1.409<br>1.83-1                                       | 1.563<br>-3.72-3     | 1.608<br>4.97-2    | 1.579<br>2.43-1    | 1.535<br>4.45-1    | 1.486<br>6.35-1     | 1.438<br>8.09-1     | 1.389<br>9.64-1    | 1.342<br>1.10+0      | 1.297<br>1.22+0    |
| 333.0 CV                   | δ                       | 1.97-2                                                | 3.01-3               | 2.93-3             | 7.77-3             | 1.43-2             | 2.23-2              | 3.13-2              | 4.08-2             | 5.06-2               | 6.05-2             |
| $3p_{3/2}$                 | σ                       | 1.470+2<br>1.454                                      | 9.012+1<br>1.601     | 4.044+1<br>1.659   | 2.145+1<br>1.641   | 1.270+1<br>1.604   | 8.111+0<br>1.561    | 5.478+0<br>1.515    | 3.861+0<br>1.469   | 2.815+0<br>1.424     | 2.110+0<br>1.379   |
| $E_b = 937.0 \text{ eV}$   | $\beta$ $\gamma$        | 1.454                                                 | -2.96-2              | 6.34-2             | 2.75-1             | 4.92-1             | 6.95-1              | 8.79–1              | 1.469              | 1.424                | 1.32+0             |
|                            | δ                       | 1.31-2                                                | 4.85-3               | 8.01-3             | 1.28-2             | 1.82-2             | 2.46-2              | 3.19-2              | 3.98-2             | 4.78-2               | 5.61-2             |
| $3d_{3/2}$<br>$E_b =$      | $\frac{\sigma}{eta}$    | 1.927+2<br>1.161                                      | 8.467+1<br>1.233     | 2.461+1<br>1.200   | 9.722+0<br>1.117   | 4.596+0<br>1.031   | 2.446+0<br>0.949    | 1.416+0<br>0.872    | 8.741-1<br>0.803   | 5.674-1<br>0.741     | 3.835-1<br>0.685   |
| 690.6 eV                   | γ                       | 5.31-2                                                | 2.56 - 1             | 5.91 - 1           | 8.32 - 1           | 1.02+0             | 1.16+0              | 1.27+0              | 1.35+0             | 1.42+0               | 1.48+0             |
| 24                         | δ                       | 4.18-2                                                | 6.03-2               | 8.88-2             | 1.15-1             | 1.43-1             | 1.71-1              | 1.97-1              | 2.23-1             | 2.48-1               | 2.72-1             |
| $3d_{5/2}$ $E_b =$         | $\frac{\sigma}{eta}$    | 2.760+2<br>1.176                                      | 1.205+2<br>1.224     | 3.472+1<br>1.169   | 1.363+1<br>1.079   | 6.407+0<br>0.993   | 3.392+0<br>0.913    | 1.955+0<br>0.840    | 1.201+0<br>0.775   | 7.765-1<br>0.718     | 5.228-1<br>0.667   |
| 674.7 eV                   | γ<br>δ                  | 7.12-2<br>4.11-2                                      | 2.75 - 1 $6.01 - 2$  | 6.02-1<br>9.11-2   | 8.33-1<br>1.20-1   | 1.01+0             | 1.14+0<br>1.80-1    | 1.25+0<br>2.08-1    | 1.33+0             | 1.40+0<br>2.60-1     | 1.46+0<br>2.85-1   |
| 4s <sub>1/2</sub>          | σ                       | 1.291+1                                               | 7.811+0              | 3.738+0            | 2.176+0            | 1.50-1<br>1.416+0  | 9.893-1             | 7.266-1             | 2.34-1<br>5.535-1  | 4.339-1              | 3.479-1            |
| $E_b =$                    | β                       | 1.974                                                 | 1.976                | 1.981              | 1.985              | 1.988              | 1.989               | 1.989               | 1.988              | 1.986                | 1.984              |
| 217.7 eV                   | $\delta$                | 1.25 - 1 $-2.18 - 4$                                  | 2.07-2 $-2.79-4$     | -9.06-2 $-3.59-4$  | -1.14-1 $-4.06-4$  | -8.70-2 $-4.36-4$  | -2.94-2 $-4.60-4$   | 4.78-2 $-4.79-4$    | 1.38-1<br>-4.94-4  | 2.35-1<br>-5.07-4    | 3.38-1<br>-5.15-4  |
| 4p <sub>1/2</sub>          | σ                       | 1.510+1                                               | 8.959+0              | 4.004+0            | 2.158+0            | 1.301+0            | 8.460-1             | 5.805-1             | 4.150-1            | 3.065-1              | 2.324-1            |
| $E_b = 163.9 \text{ eV}$   | β                       | 1.692                                                 | 1.689<br>-2.99-3     | 1.644              | 1.587              | 1.531<br>5.36-1    | 1.476               | 1.424<br>8.72-1     | 1.373<br>1.02+0    | 1.325<br>1.14+0      | 1.279<br>1.26+0    |
| 105.9 ev                   | $\gamma \\ \delta$      | -2.13-2 $-1.24-3$                                     | -2.99-3 $-7.89-4$    | 1.54-1<br>1.88-3   | 3.48-1<br>6.70-3   | 1.34-2             | 7.12-1<br>2.16-2    | 3.06-2              | 4.01-2             | 4.99-2               | 5.99-2             |
| 4p <sub>3/2</sub>          | σ                       | 3.064+1                                               | 1.768+1              | 7.608+0            | 3.996+0            | 2.363+0            | 1.512+0             | 1.023+0             | 7.228-1            | 5.282-1              | 3.967-1            |
| $E_b = 156.5 \text{ eV}$   | $\beta$ $\gamma$        | 1.710<br>-3.22-2                                      | 1.722<br>-3.02-3     | 1.696<br>1.71-1    | 1.651<br>3.79-1    | 1.601<br>5.81-1    | 1.551<br>7.68-1     | 1.502<br>9.38-1     | 1.454<br>1.09+0    | 1.407<br>1.23+0      | 1.362<br>1.35+0    |
|                            | δ                       | 1.34-3                                                | 3.08-3               | 6.65-3             | 1.10-2             | 1.65-2             | 2.32-2              | 3.05-2              | 3.84-2             | 4.66-2               | 5.50-2             |
| $4d_{3/2}$ $E_b =$         | $\frac{\sigma}{eta}$    | 2.336+1<br>1.355                                      | 1.095+1<br>1.317     | 3.441+0<br>1.207   | 1.427+0<br>1.102   | 6.967-1<br>1.009   | 3.793-1<br>0.924    | 2.233-1<br>0.848    | 1.396-1<br>0.779   | 9.154-2<br>0.719     | 6.238-2<br>0.664   |
| 69.5 eV                    | γ                       | 2.11 - 1                                              | 3.82 - 1             | 6.57 - 1           | 8.65-1             | 1.03+0             | 1.16+0              | 1.26+0              | 1.35+0             | 1.41+0               | 1.47+0             |
|                            | δ                       | 3.82-2                                                | 5.27-2               | 8.03-2             | 1.09-1             | 1.39-1             | 1.67-1              | 1.94-1              | 2.20-1             | 2.46-1               | 2.71-1             |
| $4d_{5/2}$ $E_b =$         | $\frac{\sigma}{eta}$    | 3.354+1<br>1.339                                      | 1.561+1<br>1.288     | 4.857+0<br>1.166   | 1.998+0<br>1.059   | 9.693-1<br>0.967   | 5.246-1<br>0.886    | 3.073-1<br>0.815    | 1.912-1<br>0.752   | 1.248-1<br>0.696     | 8.467-2<br>0.647   |
| 67.6 eV                    | γ                       | 2.24 - 1                                              | 3.93 - 1             | 6.60 - 1           | 8.60 - 1           | 1.02+0             | 1.14+0              | 1.24+0              | 1.33+0             | 1.39+0               | 1.45+0             |
| 5s <sub>1/2</sub>          | $\frac{\delta}{\sigma}$ | 3.81-2<br>1.719+0                                     | 5.35-2<br>1.029+0    | 8.37-2<br>4.863-1  | 1.15-1<br>2.812-1  | 1.46-1<br>1.822-1  | 1.76-1<br>1.270-1   | 2.05-1<br>9.310-2   | 2.32-1<br>7.084-2  | 2.59-1<br>5.547-2    | 2.84-1<br>4.444-2  |
| $E_b =$                    | β                       | 1.975                                                 | 1.978                | 1.982              | 1.986              | 1.988              | 1.989               | 1.989               | 1.988              | 1.986                | 1.983              |
| 23.4 eV                    | $\gamma \\ \delta$      | 8.12-2 $-2.26-4$                                      | -6.68-3 $-2.82-4$    | -9.81-2 $-3.56-4$  | -1.12-1 $-4.01-4$  | -7.94-2 $-4.33-4$  | -1.83-2 $-4.55-4$   | 6.06-2 $-4.74-4$    | 1.51-1<br>-4.87-4  | 2.48 - 1 $-4.99 - 4$ | 3.50-1 $-5.08-4$   |
| 5p <sub>1/2</sub>          | σ                       | 1.503+0                                               | 8.842-1              | 3.918-1            | 2.104-1            | 1.266-1            | 8.223-2             | 5.640-2             | 4.032-2            | 2.978-2              | 2.258-2            |
| $E_b =$                    | $\beta$                 | 1.714                                                 | 1.702                | 1.649              | 1.588              | 1.529              | 1.473               | 1.420               | 1.371              | 1.324                | 1.279              |
| 13.4 eV                    | $_{\delta}^{\gamma}$    | -2.51-2 $-1.65-3$                                     | 6.15 - 3 $-1.08 - 3$ | 1.70-1<br>1.64-3   | 3.65-1<br>6.55-3   | 5.52-1<br>1.31-2   | 7.24-1 $2.08-2$     | 8.80-1 $2.96-2$     | 1.02+0<br>3.90-2   | 1.15+0<br>4.89-2     | 1.26+0<br>5.92-2   |
| 5p <sub>3/2</sub>          | σ                       | 2.885+0                                               | 1.653+0              | 7.066-1            | 3.702-1            | 2.186-1            | 1.398-1             | 9.458-2             | 6.682-2            | 4.884-2              | 3.668-2            |
| $E_b = 12.1 \text{ eV}$    | $\beta$                 | 1.733<br>-3.28-2                                      | 1.735<br>7.79-3      | 1.701<br>1.88-1    | 1.651<br>3.97-1    | 1.599<br>5.97—1    | 1.548<br>7.80-1     | 1.498<br>9.46-1     | 1.450<br>1.10+0    | 1.405<br>1.23+0      | 1.361<br>1.35+0    |
| 12.1 CV                    | $\delta$                | 1.16-3                                                | 2.86-3               | 6.36-3             | 1.08-2             | 1.61-2             | 2.24-2              | 2.94-2              | 3.71-2             | 4.54-2               | 5.41-2             |
| Z= 55, Cs: [X              | e]6s <sub>1/2</sub>     |                                                       |                      |                    |                    |                    |                     |                     |                    |                      |                    |
| al .:                      |                         | k (eV)                                                |                      |                    | 40                 |                    |                     |                     |                    |                      | 45                 |
| Shell                      |                         | 1500                                                  | 2000                 | 3000               | 4000               | 5000               | 6000                | 7000                | 8000               | 9000                 | 10000              |
| $3s_{1/2}  E_b =$          | $\frac{\sigma}{eta}$    | 4.865+1<br>1.959                                      | 3.263+1<br>1.963     | 1.702+1<br>1.972   | 1.029+1<br>1.979   | 6.830+0<br>1.984   | 4.833+0<br>1.987    | 3.580+0<br>1.988    | 2.744+0<br>1.988   | 2.161+0<br>1.987     | 1.740+0<br>1.985   |
| 1217.1 eV                  | γ                       | 6.87-1                                                | 3.55-1               | 3.00-2             | -9.48 - 2          | -1.23-1            | -9.69-2             | -3.85-2             | 3.96-2             | 1.30-1               | 2.27-1             |
| 3p <sub>1/2</sub>          | $\frac{\delta}{\sigma}$ | -2.11-5<br>7.121+1                                    | -2.38-4<br>4.636+1   | -3.95-4<br>2.217+1 | -4.65-4<br>1.222+1 | -5.10-4<br>7.439+0 | -5.41-4<br>4.855+0  | -5.65-4<br>3.338+0  | -5.83-4<br>2.389+0 | -5.95-4<br>1.765+0   | -6.06-4<br>1.340+0 |
| $E_b =$                    | β                       | 1.363                                                 | 1.549                | 1.608              | 1.585              | 1.544              | 1.497               | 1.448               | 1.401              | 1.356                | 1.312              |
| 1065.0 eV                  | $\gamma \\ \delta$      | 2.35-1<br>2.77-2                                      | 1.33-2<br>4.14-3     | 3.07-2<br>2.47-3   | 2.12-1 $6.92-3$    | 4.13-1<br>1.33-2   | 6.05 - 1 $2.08 - 2$ | 7.77 - 1 $2.89 - 2$ | 9.32-1<br>3.76-2   | 1.07+0<br>4.67-2     | 1.19+0<br>5.62-2   |
|                            | U                       | 2.11-2                                                | J                    | 2.41-3             | 0.32-3             | 1.33-2             | 2.00-2              | 2.03-2              | 5.70-2             | 4.07-2               | 3.02-2             |

| Tabl | e 1 | (contin | ued) |
|------|-----|---------|------|

| abic i (contin                                   | ucu)                 |                   |                   |                  |                    |                  |                  |                  |                  |                  |                  |
|--------------------------------------------------|----------------------|-------------------|-------------------|------------------|--------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| $3p_{3/2}$                                       | $\sigma$             | 1.519+2           | 9.404+1           | 4.265+1          | 2.278+1            | 1.355+1          | 8.688+0          | 5.884+0          | 4.157+0          | 3.038+0          | 2.281+0          |
| $E_b =$                                          | β                    | 1.409             | 1.587             | 1.660            | 1.648              | 1.614            | 1.573            | 1.528            | 1.483            | 1.439            | 1.397            |
| 997.6 eV                                         | γ                    | 1.49-1            | -2.10-2           | 4.14-2<br>7.70-3 | 2.43-1<br>1.24-2   | 4.61-1           | 6.65-1           | 8.48-1<br>3.01-2 | 1.01+0           | 1.16+0           | 1.29+0           |
| 0.1                                              | δ                    | 1.81-2            | 5.31-3            |                  |                    | 1.78-2           | 2.37-2           |                  | 3.71-2           | 4.44-2           | 5.22-2           |
| $3d_{3/2}$                                       | $\sigma$             | 2.094+2           | 9.267+1           | 2.720+1          | 1.082+1            | 5.142+0          | 2.748+0          | 1.597+0          | 9.890-1          | 6.438-1          | 4.362-1          |
| $E_b = 739.5 \text{ eV}$                         | β                    | 1.139<br>2.24-2   | 1.229<br>2.24-1   | 1.210<br>5.65-1  | 1.132<br>8.16-1    | 1.045<br>1.00+0  | 0.964            | 0.890<br>1.26+0  | 0.824<br>1.35+0  | 0.764<br>1.43+0  | 0.709<br>1.49+0  |
| 739.3 EV                                         | $\gamma \\ \delta$   | 3.88-2            | 5.81-2            | 8.68-2           | 1.13-1             | 1.40-1           | 1.15+0<br>1.65-1 | 1.91-1           | 2.17-1           | 2.42-1           | 2.67-1           |
| 24                                               | σ                    | 3.011+2           | 1.322+2           | 3.843+1          | 1.518+1            | 7.170+0          | 3.810+0          | 2.204+0          | 1.358+0          | 8.804-1          | 5.941-1          |
| $3d_{5/2}$ $E_b =$                               | $\beta$              | 1.158             | 1.322+2           | 3.843+1<br>1.180 | 1.518+1            | 1.005            | 0.925            | 0.855            | 0.793            | 0.737            | 0.687            |
| 725.5 eV                                         | γ                    | 3.95-2            | 2.44-1            | 5.78-1           | 8.18-1             | 9.96-1           | 1.13+0           | 1.24+0           | 1.33+0           | 1.41+0           | 1.47+0           |
|                                                  | δ                    | 3.80-2            | 5.77-2            | 8.89-2           | 1.18-1             | 1.47 - 1         | 1.74 - 1         | 2.02 - 1         | 2.29 - 1         | 2.55 - 1         | 2.80 - 1         |
| 4s <sub>1/2</sub>                                | σ                    | 1.364+1           | 8.282+0           | 3.977+0          | 2.321+0            | 1.513+0          | 1.058+0          | 7.783-1          | 5.937-1          | 4.658-1          | 3.738-1          |
| $E_b =$                                          | β                    | 1.972             | 1.975             | 1.980            | 1.984              | 1.987            | 1.988            | 1.988            | 1.988            | 1.986            | 1.984            |
| 230.8 eV                                         | γ                    | 1.40 - 1          | 3.32 - 2          | -8.39 - 2        | -1.16-1            | -9.70 - 2        | -4.56-2          | 2.64 - 2         | 1.11 - 1         | 2.05 - 1         | 3.03 - 1         |
|                                                  | δ                    | -2.33-4           | -3.00-4           | -3.86-4          | -4.40-4            | -4.78-4          | -5.08-4          | -5.30-4          | -5.46-4          | -5.62-4          | -5.72-4          |
| $4p_{1/2}$                                       | $\sigma$             | 1.604+1           | 9.579+0           | 4.319+0          | 2.343+0            | 1.420+0          | 9.265 - 1        | 6.379 - 1        | 4.574 - 1        | 3.388 - 1        | 2.575 - 1        |
| $E_b =$                                          | β                    | 1.690             | 1.691             | 1.650            | 1.596              | 1.540            | 1.486            | 1.434            | 1.385            | 1.339            | 1.294            |
| 172.3 eV                                         | γ                    | -1.83-2           | -8.97-3           | 1.35-1           | 3.25-1             | 5.13-1           | 6.87-1           | 8.45-1           | 9.88-1           | 1.12+0           | 1.23+0           |
|                                                  | δ                    | -1.33-3           | -9.84-4           | 1.40-3           | 6.02-3             | 1.23-2           | 1.97-2           | 2.79-2           | 3.67-2           | 4.60-2           | 5.56-2           |
| $4p_{3/2}$                                       | $\sigma$             | 3.269+1           | 1.896+1           | 8.223+0          | 4.343+0            | 2.579+0          | 1.656+0          | 1.124+0          | 7.962-1          | 5.832-1          | 4.390-1          |
| $E_b = 161.6 \text{ eV}$                         | β                    | 1.708             | 1.724             | 1.703            | 1.660              | 1.612            | 1.563            | 1.514            | 1.467            | 1.422            | 1.379            |
| 161.6 eV                                         | $\gamma \\ \delta$   | -3.13-2<br>1.25-3 | -1.03-2 $2.95-3$  | 1.52-1<br>6.41-3 | 3.57-1<br>1.07-2   | 5.58-1<br>1.59-2 | 7.44-1<br>2.18-2 | 9.13-1<br>2.84-2 | 1.06+0<br>3.55-2 | 1.20+0<br>4.32-2 | 1.33+0<br>5.11-2 |
| 1.1                                              |                      | 2.621+1           | 1.241+1           | 3.948+0          | 1.650+0            | 8.107-1          | 4.437-1          | 2.625-1          | 1.648-1          | 1.084-1          | 7.410-2          |
| $\begin{array}{l} 4d_{3/2} \\ E_b = \end{array}$ | $\frac{\sigma}{eta}$ | 2.621+1<br>1.359  | 1.241+1           | 3.948+0<br>1.223 | 1.650+0            | 8.107—1<br>1.022 | 4.437—1<br>0.939 | 2.625—1<br>0.866 | 0.801            | 0.741            | 7.410-2<br>0.687 |
| 78.8 eV                                          | γ                    | 1.92-1            | 3.62-1            | 6.43-1           | 8.55-1             | 1.022            | 1.15+0           | 1.26+0           | 1.35+0           | 1.42+0           | 1.48+0           |
|                                                  | δ                    | 3.66-2            | 5.08-2            | 7.86-2           | 1.06-1             | 1.34-1           | 1.61-1           | 1.88-1           | 2.15-1           | 2.40-1           | 2.66-1           |
| 4d <sub>5/2</sub>                                | σ                    | 3.765+1           | 1.769+1           | 5.571+0          | 2.310+0            | 1.127+0          | 6.133-1          | 3.609-1          | 2.255-1          | 1.477-1          | 1.005-1          |
| $E_b =$                                          | β                    | 1.344             | 1.298             | 1.181            | 1.073              | 0.979            | 0.898            | 0.830            | 0.769            | 0.715            | 0.666            |
| 76.5 eV                                          | γ                    | 2.06 - 1          | 3.74 - 1          | 6.47 - 1         | 8.50 - 1           | 1.01+0           | 1.14+0           | 1.24+0           | 1.33+0           | 1.40+0           | 1.46+0           |
|                                                  | δ                    | 3.63 - 2          | 5.15 - 2          | 8.18 - 2         | 1.12 - 1           | 1.42 - 1         | 1.71 - 1         | 1.99 - 1         | 2.27 - 1         | 2.54 - 1         | 2.79 - 1         |
| 5s <sub>1/2</sub>                                | σ                    | 2.026+0           | 1.216+0           | 5.760-1          | 3.336-1            | 2.165-1          | 1.511-1          | 1.109-1          | 8.448-2          | 6.622-2          | 5.311-2          |
| $E_b =$                                          | β                    | 1.974             | 1.976             | 1.981            | 1.985              | 1.987            | 1.988            | 1.988            | 1.988            | 1.986            | 1.983            |
| 22.7 eV                                          | γ                    | 9.14-2            | 2.53-3            | -9.35-2          | -1.14-1            | -8.87-2          | -3.41-2          | 3.95-2           | 1.25-1           | 2.19-1           | 3.18-1           |
|                                                  | δ                    | -2.43-4           | -3.04-4           | -3.84 - 4        | -4.33-4            | -4.70 - 4        | -4.96-4          | -5.18 - 4        | -5.34 - 4        | -5.47 - 4        | -5.59 - 4        |
| $5p_{1/2}$                                       | σ                    | 1.888+0           | 1.116+0           | 4.982-1          | 2.690-1            | 1.627-1          | 1.061-1          | 7.302-2          | 5.235-2          | 3.877-2          | 2.947-2          |
| $E_b = 13.1 \text{ eV}$                          | β                    | 1.715             | 1.705             | 1.656            | 1.598              | 1.541            | 1.486            | 1.434<br>8.57-1  | 1.384<br>9.99-1  | 1.337            | 1.292            |
|                                                  | $\gamma \\ \delta$   | -2.42-2 $-1.79-3$ | -8.06-4 $-1.32-3$ | 1.52-1<br>1.02-3 | 3.40-1<br>5.61-3   | 5.26-1<br>1.20-2 | 6.99-1<br>1.97-2 | 2.82-2           | 3.73-2           | 1.13+0<br>4.68-2 | 1.24+0<br>5.64-2 |
| F                                                |                      | 3.690+0           | 2.122+0           | 9.129-1          | 4.805-1            | 2.849-1          |                  |                  | 8.789-2          |                  | 4.847-2          |
| $5p_{3/2}$<br>$E_b =$                            | $\frac{\sigma}{eta}$ | 1.733             | 1.738             | 9.129—1<br>1.708 | 4.805 – 1<br>1.662 | 1.613            | 1.828-1<br>1.563 | 1.241-1<br>1.515 | 8.789-2<br>1.467 | 6.439-2<br>1.422 | 4.847—2<br>1.378 |
| 11.4 eV                                          | γ                    | -3.36-2           | -3.88-4           | 1.69-1           | 3.72-1             | 5.70-1           | 7.56-1           | 9.24-1           | 1.08+0           | 1.21+0           | 1.33+0           |
|                                                  | δ                    | 1.04 - 3          | 2.72 - 3          | 5.98 - 3         | 1.01 - 2           | 1.54 - 2         | 2.16-2           | 2.86 - 2         | 3.60-2           | 4.39 - 2         | 5.20 - 2         |
| 6s <sub>1/2</sub>                                | σ                    | 1.083-1           | 6.478-2           | 3.059-2          | 1.769-2            | 1.146-2          | 7.993-3          | 5.862-3          | 4.463-3          | 3.497-3          | 2.804-3          |
| $E_b =$                                          | β                    | 1.973             | 1.976             | 1.981            | 1.984              | 1.987            | 1.988            | 1.988            | 1.988            | 1.986            | 1.983            |
| 4.0 eV                                           | γ                    | 9.06 - 2          | 1.20 - 3          | -9.43 - 2        | -1.15 - 1          | -8.94 - 2        | -3.41-2          | 3.98 - 2         | 1.26 - 1         | 2.19 - 1         | 3.17 - 1         |
|                                                  | δ                    | -2.44-4           | -3.08 - 4         | -3.85 - 4        | -4.35 - 4          | -4.73 - 4        | -5.01-4          | -5.19 - 4        | -5.37 - 4        | -5.48 - 4        | -5.62 - 4        |
| Z= 56, Ba: [X                                    | e]6s <sub>1/2</sub>  |                   |                   |                  |                    |                  |                  |                  |                  |                  |                  |
|                                                  | -,-                  | k (eV)            |                   |                  |                    |                  |                  |                  |                  |                  |                  |
| Shell                                            |                      | 1500              | 2000              | 3000             | 4000               | 5000             | 6000             | 7000             | 8000             | 9000             | 10000            |
|                                                  |                      |                   |                   |                  |                    |                  |                  |                  |                  |                  |                  |
| $3s_{1/2}$                                       | $\sigma$             | 4.926+1           | 3.348+1           | 1.762+1          | 1.070+1            | 7.122+0          | 5.049+0          | 3.746+0          | 2.876+0          | 2.268+0          | 1.828+0          |
| $E_b = 1292.8 \text{ eV}$                        | $eta \ \gamma$       | 1.956<br>7.75-1   | 1.960<br>4.08-1   | 1.969<br>5.82-2  | 1.976<br>-8.46-2   | 1.981<br>-1.25-1 | 1.985<br>1.09 1  | 1.987<br>-5.83-2 | 1.988<br>1.28-2  | 1.987<br>9.68-2  | 1.986<br>1.89-1  |
| 1232.0 CV                                        | δ                    | 3.85-5            | -2.35-4           | -4.22-4          | -5.40-2 $-5.08-4$  | -5.59-4          | -5.92-4          | -6.17-4          | -6.37 - 4        | -6.51-4          | -6.64-4          |
| 3p <sub>1/2</sub>                                |                      | 7.254+1           | 4.800+1           | 2.327+1          | 1.293+1            | 7.915+0          | 5.188+0          | 3.580+0          | 2.571+0          | 1.905+0          | 1.449+0          |
| $E_b =$                                          | $\frac{\sigma}{eta}$ | 1.300             | 1.528             | 1.607            | 1.590              | 1.552            | 1.508            | 1.462            | 1.417            | 1.373            | 1.330            |
| 1136.7 eV                                        | γ                    | 2.93-1            | 3.72-2            | 1.40-2           | 1.82-1             | 3.78-1           | 5.67-1           | 7.40-1           | 8.97-1           | 1.04+0           | 1.17+0           |
|                                                  | δ                    | 4.03 - 2          | 5.90-3            | 2.09-3           | 5.93-3             | 1.17-2           | 1.87 - 2         | 2.66-2           | 3.52-2           | 4.44 - 2         | 5.40-2           |
| 3p <sub>3/2</sub>                                | σ                    | 1.566+2           | 9.808+1           | 4.493+1          | 2.415+1            | 1.443+1          | 9.284+0          | 6.307+0          | 4,468+0          | 3.273+0          | 2.463+0          |
| $E_b =$                                          | β                    | 1.360             | 1.568             | 1.659            | 1.654              | 1.624            | 1.585            | 1.544            | 1.501            | 1.459            | 1.418            |
| 1062.2 eV                                        | γ                    | 1.94 - 1          | -7.83 - 3         | 2.16-2           | 2.13 - 1           | 4.25 - 1         | 6.27 - 1         | 8.12 - 1         | 9.80 - 1         | 1.13+0           | 1.27+0           |
|                                                  | δ                    | 2.48 - 2          | 6.10 - 3          | 7.44 - 3         | 1.18-2             | 1.67 - 2         | 2.22-2           | 2.85 - 2         | 3.53-2           | 4.26 - 2         | 5.04-2           |
| 3d <sub>3/2</sub>                                | σ                    | 2.284+2           | 1.017+2           | 3.009+1          | 1.204+1            | 5.751+0          | 3.086+0          | 1.800+0          | 1.118+0          | 7.292-1          | 4.951-1          |
| $E_b =$                                          | β                    | 1.111             | 1.221             | 1.218            | 1.146              | 1.065            | 0.987            | 0.914            | 0.847            | 0.785            | 0.728            |
| 796.1 eV                                         | γ                    | -1.05-2           | 1.89-1            | 5.34-1           | 7.92-1             | 9.87-1           | 1.14+0           | 1.26+0           | 1.36+0           | 1.43+0           | 1.50+0           |
|                                                  | δ                    | 3.50-2            | 5.58-2            | 8.39-2           | 1.10-1             | 1.36-1           | 1.62-1           | 1.88-1           | 2.13-1           | 2.38-1           | 2.61-1           |
| 3d <sub>5/2</sub>                                | σ                    | 3.284+2           | 1.450+2           | 4.246+1          | 1.687+1            | 8.006+0          | 4.272+0          | 2.479+0          | 1.533+0          | 9.955-1          | 6.731-1          |
|                                                  |                      |                   |                   |                  |                    |                  |                  |                  |                  |                  |                  |

| able 1 (contin                                   | ued)                   |                   |                   |                     |                     |                     |                   |                     |                  |                      |                  |
|--------------------------------------------------|------------------------|-------------------|-------------------|---------------------|---------------------|---------------------|-------------------|---------------------|------------------|----------------------|------------------|
| $E_b =$                                          | β                      | 1.135             | 1.218             | 1.189               | 1.107               | 1.023               | 0.946             | 0.876               | 0.812            | 0.755                | 0.703            |
| 780.7 eV                                         | $_{\delta}^{\gamma}$   | 6.39-3<br>3.42-2  | 2.10-1<br>5.52-2  | 5.50-1<br>8.56-2    | 7.97-1<br>1.14-1    | 9.82-1<br>1.43-1    | 1.13+0<br>1.71-1  | 1.24+0<br>1.99-1    | 1.33+0<br>2.25-1 | 1.41+0<br>2.51-1     | 1.47+0<br>2.75-1 |
| 4s <sub>1/2</sub>                                | σ                      | 1.443+1           | 8.789+0           | 4.234+0             | 2.474+0             | 1.614+0             | 1.131+0           | 8.323-1             | 6.356-1          | 4.992-1              | 4.011-1          |
| $E_b =$                                          | β                      | 1.970             | 1.973             | 1.978               | 1.982               | 1.985               | 1.987             | 1.988               | 1.987            | 1.986                | 1.984            |
| 253.0 eV                                         | $_{\delta}^{\gamma}$   | 1.57-1<br>-2.46-4 | 4.79-2 $-3.23-4$  | -7.77-2 $-4.22-4$   | -1.18-1 $-4.82-4$   | -1.05-1 $-5.23-4$   | -6.05-2 $-5.55-4$ | 5.24-3<br>-5.78-4   | 8.45-2 $-5.96-4$ | 1.73-1<br>-6.13-4    | 2.67-1 $-6.25-4$ |
| 4p <sub>1/2</sub>                                | σ                      | 1.707+1           | 1.025+1           | 4.660+0             | 2.541+0             | 1.546+0             | 1.013+0           | 6.999-1             | 5.035-1          | 3.739-1              | 2.849-1          |
| $E_b =$                                          | β                      | 1.689             | 1.693             | 1.656               | 1.605               | 1.551               | 1.499             | 1.449               | 1.402            | 1.357                | 1.313            |
| 191.8 eV                                         | $_{\delta}^{\gamma}$   | -1.29-2 $-1.34-3$ | -1.45-2 $-1.18-3$ | 1.17 - 1 $8.08 - 4$ | 3.00-1<br>4.88-3    | 4.84 - 1 $1.06 - 2$ | 6.56-1<br>1.77-2  | 8.15 - 1 $2.58 - 2$ | 9.60-1 $3.46-2$  | 1.09+0<br>4.38-2     | 1.21+0<br>5.35-2 |
| 4p <sub>3/2</sub>                                | σ                      | 3.500+1           | 2.039+1           | 8.900+0             | 4.721+0             | 2.813+0             | 1.811+0           | 1.233+0             | 8.760-1          | 6.432-1              | 4.852-1          |
| $E_b =$                                          | β                      | 1.705             | 1.725             | 1.709               | 1.670               | 1.624               | 1.578             | 1.532               | 1.487            | 1.443                | 1.401            |
| 179.7 eV                                         | $_{\delta}^{\gamma}$   | -2.85-2 $1.16-3$  | -1.78-2 $2.81-3$  | 1.33-1<br>6.10-3    | 3.31-1<br>9.95-3    | 5.29-1<br>1.47-2    | 7.14-1 $2.03-2$   | 8.84-1<br>2.67-2    | 1.04+0<br>3.38-2 | 1.18+0<br>4.14-2     | 1.31+0<br>4.93-2 |
| 4d <sub>3/2</sub>                                | σ                      | 2.934+1           | 1.400+1           | 4.505+0             | 1.898+0             | 9.384-1             | 5.164-1           | 3.069-1             | 1.934-1          | 1.276-1              | 8.744-2          |
| $E_b =$                                          | β                      | 1.362             | 1.335             | 1.237               | 1.136               | 1.044               | 0.963             | 0.889               | 0.822            | 0.761                | 0.706            |
| 92.5 eV                                          | $_{\delta}^{\gamma}$   | 1.72-1<br>3.48-2  | 3.39-1<br>4.85-2  | 6.23-1<br>7.51-2    | 8.40-1 $1.02-1$     | 1.01+0<br>1.30-1    | 1.15+0<br>1.57-1  | 1.26+0<br>1.84-1    | 1.35+0<br>2.10-1 | 1.43+0<br>2.35-1     | 1.49+0<br>2.59-1 |
| 4d <sub>5/2</sub>                                | σ                      | 4.216+1           | 1.997+1           | 6.357+0             | 2.655+0             | 1.304+0             | 7.132-1           | 4.216-1             | 2.643-1          | 1.736-1              | 1.184-1          |
| $E_b =$                                          | β                      | 1.349             | 1.307             | 1.195               | 1.089               | 0.998               | 0.919             | 0.849               | 0.787            | 0.731                | 0.681            |
| 89.9 eV                                          | $\delta$               | 1.86-1<br>3.45-2  | 3.53-1<br>4.90-2  | 6.29-1<br>7.82-2    | 8.37 - 1 $1.08 - 1$ | 1.00+0<br>1.38-1    | 1.13+0<br>1.67-1  | 1.24+0<br>1.96-1    | 1.33+0<br>2.23-1 | 1.40+0<br>2.49-1     | 1.46+0<br>2.74-1 |
| 5s <sub>1/2</sub>                                | σ                      | 2.359+0           | 1.419+0           | 6.739-1             | 3.907-1             | 2.537-1             | 1.772-1           | 1.302-1             | 9.925-2          | 7.787-2              | 6.250-2          |
| $E_b =$                                          | β                      | 1.972             | 1.974             | 1.979               | 1.983               | 1.985               | 1.987             | 1.987               | 1.987            | 1.985                | 1.983            |
| 29.1 eV                                          | $\delta \gamma$        | 1.03-1 $-2.60-4$  | 1.29-2 $-3.30-4$  | -9.02-2 $-4.22-4$   | -1.18-1 $-4.76-4$   | -9.84-2 $-5.17-4$   | -4.94-2 $-5.46-4$ | 1.89-2<br>-5.71-4   | 9.97-2 $-5.88-4$ | 1.89 - 1 $-6.04 - 4$ | 2.83-1 $-6.18-4$ |
| 5p <sub>1/2</sub>                                | σ                      | 2.283+0           | 1.358+0           | 6.104-1             | 3.312-1             | 2.011-1             | 1.316-1           | 9.085-2             | 6.533-2          | 4.850-2              | 3.696-2          |
| $E_b =$                                          | β                      | 1.717             | 1.709             | 1.663               | 1.606               | 1.550               | 1.497             | 1.445               | 1.397            | 1.351                | 1.307            |
| 16.6 eV                                          | $\delta ^{\gamma }$    | -2.22-2 $-1.90-3$ | -7.10-3 $-1.56-3$ | 1.36-1<br>4.35-4    | 3.20-1<br>4.57-3    | 5.03-1<br>1.04-2    | 6.73-1<br>1.74-2  | 8.29-1<br>2.53-2    | 9.71-1<br>3.39-2 | 1.10+0<br>4.30-2     | 1.22+0<br>5.23-2 |
| 5p <sub>3/2</sub>                                | σ                      | 4.518+0           | 2.611+0           | 1.130+0             | 5.969-1             | 3.550-1             | 2.285-1           | 1.555-1             | 1.104-1          | 8.107-2              | 6.115-2          |
| $E_b =$                                          | β                      | 1.733             | 1.741             | 1.715               | 1.671               | 1.623               | 1.575             | 1.528               | 1.481            | 1.437                | 1.395            |
| 14.6 eV                                          | $\delta$               | -3.33-2 $9.14-4$  | -8.10-3 $2.59-3$  | 1.52-1<br>5.73-3    | 3.51-1<br>9.56-3    | 5.47-1<br>1.43-2    | 7.30-1 $2.00-2$   | 8.97-1<br>2.62-2    | 1.05+0<br>3.31-2 | 1.19+0<br>4.05-2     | 1.31+0<br>4.81-2 |
| 6s <sub>1/2</sub>                                | σ                      | 1.865-1           | 1.118-1           | 5.288-2             | 3.058-2             | 1.983-2             | 1.384-2           | 1.016-2             | 7.744-3          | 6.074-3              | 4.875-3          |
| $E_b = 5.0 \text{ eV}$                           | $\beta$ $\gamma$       | 1.972<br>1.01-1   | 1.974<br>1.09-2   | 1.979<br>-9.13-2    | 1.983<br>-1.18-1    | 1.986<br>-9.76-2    | 1.987<br>-4.86-2  | 1.988<br>1.94-2     | 1.987<br>1.00-1  | 1.986<br>1.90-1      | 1.983<br>2.85-1  |
| 3.0 C V                                          | δ                      | -2.62-4           | -3.31-4           | -4.22-4             | -4.78 - 4           | -5.15-4             | -5.40-4           | -5.60-4             | -5.85-4          | -6.02-4              | -6.14-4          |
| Z= 57, La: [X                                    | e]5d <sub>3/2</sub>    | 6s <sub>1/2</sub> |                   |                     |                     |                     |                   |                     |                  |                      |                  |
|                                                  |                        | k (eV)            |                   |                     |                     |                     |                   |                     |                  |                      |                  |
| Shell                                            |                        | 1500              | 2000              | 3000                | 4000                | 5000                | 6000              | 7000                | 8000             | 9000                 | 10000            |
| 3s <sub>1/2</sub>                                | $\sigma_{\rho}$        | 4.952+1<br>1.952  | 3.424+1<br>1.957  | 1.819+1<br>1.966    | 1.109+1<br>1.973    | 7.407+0<br>1.979    | 5.262+0<br>1.983  | 3.911+0<br>1.986    | 3.008+0<br>1.987 | 2.376+0<br>1.986     | 1.917+0<br>1.985 |
| $E_b = 1361.3 \text{ eV}$                        | $\beta$ $\gamma$       | 8.71–1            | 4.63-1            | 8.75-2              | -7.12-2             | -1.24-1             | -1.18-1           | -7.56-2             | -1.14-2          | 6.71-2               | 1.55-1           |
|                                                  | δ                      | 1.25-4            | -2.31-4           | -4.50 - 4           | -5.47 - 4           | -6.04 - 4           | -6.44 - 4         | -6.72 - 4           | -6.95 - 4        | -7.12 - 4            | -7.28-4          |
| $\begin{array}{l} 3p_{1/2} \\ E_b = \end{array}$ | $\frac{\sigma}{\beta}$ | 7.350+1<br>1.221  | 4.948+1<br>1.505  | 2.435+1<br>1.605    | 1.364+1<br>1.595    | 8.396+0<br>1.560    | 5.529+0<br>1.518  | 3.830+0<br>1.474    | 2.758+0<br>1.430 | 2.050+0<br>1.387     | 1.563+0<br>1.345 |
| 1204.4 eV                                        | γ                      | 3.40-1            | 6.67-2            | 7.07-4              | 1.54-1              | 3.44-1              | 5.32-1            | 7.06-1              | 8.66-1           | 1.01+0               | 1.14+0           |
|                                                  | δ                      | 5.69-2            | 8.26-3            | 1.83-3              | 5.15-3              | 1.05-2              | 1.72-2            | 2.49-2              | 3.34-2           | 4.23-2               | 5.14-2           |
| $3p_{3/2}$<br>$E_b =$                            | $\frac{\sigma}{eta}$   | 1.609+2<br>1.297  | 1.019+2<br>1.547  | 4.720+1<br>1.657    | 2.553+1<br>1.659    | 1.533+1<br>1.633    | 9.897+0<br>1.597  | 6.745+0<br>1.558    | 4.791+0<br>1.517 | 3.517+0<br>1.476     | 2.652+0<br>1.435 |
| 1123.4 eV                                        | γ                      | 2.38-1            | 9.98 - 3          | 4.46 - 3            | 1.83-1              | 3.91-1              | 5.93 - 1          | 7.79 - 1            | 9.50 - 1         | 1.10+0               | 1.24+0           |
|                                                  | δ                      | 3.45-2            | 7.21-3            | 7.24-3              | 1.14-2              | 1.61-2              | 2.14-2            | 2.74-2              | 3.41-2           | 4.11-2               | 4.84-2           |
| $3d_{3/2}$<br>$E_b =$                            | $\frac{\sigma}{\beta}$ | 2.475+2<br>1.079  | 1.110+2<br>1.212  | 3.311+1<br>1.225    | 1.334+1<br>1.161    | 6.401+0<br>1.082    | 3.448+0<br>1.005  | 2.018+0<br>0.932    | 1.257+0<br>0.864 | 8.221-1<br>0.802     | 5.593-1<br>0.745 |
| 848.5 eV                                         | γ                      | -4.03-2           | 1.53-1            | 5.05-1              | 7.71-1              | 9.72-1              | 1.13+0            | 1.25+0              | 1.35+0           | 1.43+0               | 1.50+0           |
|                                                  | δ                      | 3.12-2            | 5.32-2            | 8.18-2              | 1.07-1              | 1.33-1              | 1.59-1            | 1.84-1              | 2.08-1           | 2.32-1               | 2.54-1           |
| $3d_{5/2}$<br>$E_b =$                            | $\frac{\sigma}{\beta}$ | 3.558+2<br>1.110  | 1.581+2<br>1.212  | 4.668+1<br>1.197    | 1.866+1<br>1.121    | 8.897+0<br>1.039    | 4.767+0<br>0.962  | 2.775+0<br>0.891    | 1.720+0<br>0.827 | 1.120+0<br>0.769     | 7.589-1<br>0.717 |
| 831.7 eV                                         | γ                      | -2.39-2           | 1.76 - 1          | 5.23 - 1            | 7.78 - 1            | 9.69 - 1            | 1.12+0            | 1.24+0              | 1.33+0           | 1.41+0               | 1.48+0           |
|                                                  | δ                      | 3.06-2            | 5.25-2            | 8.33-2              | 1.12-1              | 1.40-1              | 1.68-1            | 1.94-1              | 2.20-1           | 2.45-1               | 2.69-1           |
| $4s_{1/2} E_b =$                                 | $\frac{\sigma}{\beta}$ | 1.521+1<br>1.968  | 9.289+0<br>1.970  | 4.490+0<br>1.976    | 2.628+0<br>1.980    | 1.717+0<br>1.983    | 1.204+0<br>1.986  | 8.875-1<br>1.987    | 6.785-1<br>1.986 | 5.335-1<br>1.985     | 4.291-1<br>1.984 |
| $E_b = 270.4 \text{ eV}$                         | γ                      | 1.73-1            | 6.25-2            | -6.96-2             | -1.17-1             | -1.12-1             | -7.39-2           | -1.41-2             | 6.02-2           | 1.44-1               | 2.35-1           |
|                                                  | δ                      | -2.62-4           | -3.47 - 4         | -4.55-4             | -5.22-4             | -5.68-4             | -6.03-4           | -6.31-4             | -6.50-4          | -6.70-4              | -6.85-4          |
| $4p_{1/2}$                                       | $\sigma_{\rho}$        | 1.807+1           | 1.092+1           | 5.005+0<br>1.662    | 2.744+0             | 1.678+0             | 1.103+0           | 7.649-1             | 5.519-1          | 4.109-1              | 3.139-1          |
| $E_b = 205.8 \text{ eV}$                         | β<br>γ                 | 1.686<br>-6.60-3  | 1.694<br>1.84-2   | 1.662<br>1.00-1     | 1.613<br>2.76-1     | 1.561<br>4.57-1     | 1.511<br>6.29-1   | 1.462<br>7.89-1     | 1.415<br>9.35-1  | 1.370<br>1.07+0      | 1.327<br>1.19+0  |
|                                                  | -                      |                   |                   |                     |                     |                     |                   |                     |                  |                      |                  |

|                                                                                                                                                                                                                                                                                       | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.35-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.34 - 3                                                                                                                                                                                                                       | 3.55-4                                                                                                                                                                                                                  | 4.08-3                                                                                                                                                                                                                                        | 9.53-3                                                                                                                                                                                                               | 1.64-2                                                                                                                                                                                                                                                                                                      | 2.42-2                                                                                                                                                                                                               | 3.27-2                                                                                                                                                                                                                             | 4.16-2                                                                                                                                                                                                                                                          | 5.08-2                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $4p_{3/2}$                                                                                                                                                                                                                                                                            | $\sigma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.727+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.182+1                                                                                                                                                                                                                         | 9.585+0                                                                                                                                                                                                                 | 5.107+0                                                                                                                                                                                                                                       | 3.055+0                                                                                                                                                                                                              | 1.974+0                                                                                                                                                                                                                                                                                                     | 1.348+0                                                                                                                                                                                                              | 9.597-1                                                                                                                                                                                                                            | 7.062-1                                                                                                                                                                                                                                                         | 5.338-                                                                                                                                                                                                            |
| $E_b = 191.4 \text{ eV}$                                                                                                                                                                                                                                                              | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.702<br>-2.51-2                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.725<br>-2.36-2                                                                                                                                                                                                                | 1.714<br>1.15-1                                                                                                                                                                                                         | 1.679<br>3.07-1                                                                                                                                                                                                                               | 1.636<br>5.02-1                                                                                                                                                                                                      | 1.591<br>6.87-1                                                                                                                                                                                                                                                                                             | 1.546<br>8.59-1                                                                                                                                                                                                      | 1.502<br>1.02+0                                                                                                                                                                                                                    | 1.459<br>1.16+0                                                                                                                                                                                                                                                 | 1.417<br>1.29+0                                                                                                                                                                                                   |
| 191.4 ev                                                                                                                                                                                                                                                                              | $\frac{\gamma}{\delta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.09-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.70-3                                                                                                                                                                                                                          | 5.90-3                                                                                                                                                                                                                  | 9.54-3                                                                                                                                                                                                                                        | 1.40-2                                                                                                                                                                                                               | 1.95-2                                                                                                                                                                                                                                                                                                      | 2.57-2                                                                                                                                                                                                               | 3.25-2                                                                                                                                                                                                                             | 3.97-2                                                                                                                                                                                                                                                          | 4.71-2                                                                                                                                                                                                            |
| 4d <sub>3/2</sub>                                                                                                                                                                                                                                                                     | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.256+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.569+1                                                                                                                                                                                                                         | 5.107+0                                                                                                                                                                                                                 | 2.168+0                                                                                                                                                                                                                                       | 1.079+0                                                                                                                                                                                                              | 5.966-1                                                                                                                                                                                                                                                                                                     | 3.561-1                                                                                                                                                                                                              | 2.252-1                                                                                                                                                                                                                            | 1.491-1                                                                                                                                                                                                                                                         | 1.024-                                                                                                                                                                                                            |
| $E_b =$                                                                                                                                                                                                                                                                               | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.365                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.343                                                                                                                                                                                                                           | 1.251                                                                                                                                                                                                                   | 1.153                                                                                                                                                                                                                                         | 1.062                                                                                                                                                                                                                | 0.981                                                                                                                                                                                                                                                                                                       | 0.906                                                                                                                                                                                                                | 0.838                                                                                                                                                                                                                              | 0.777                                                                                                                                                                                                                                                           | 0.721                                                                                                                                                                                                             |
| 100.7 eV                                                                                                                                                                                                                                                                              | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.53-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.19-1                                                                                                                                                                                                                          | 6.06-1                                                                                                                                                                                                                  | 8.28-1                                                                                                                                                                                                                                        | 1.00+0                                                                                                                                                                                                               | 1.14+0                                                                                                                                                                                                                                                                                                      | 1.26+0                                                                                                                                                                                                               | 1.35+0                                                                                                                                                                                                                             | 1.43+0                                                                                                                                                                                                                                                          | 1.49+0                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                       | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.32-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.68-2                                                                                                                                                                                                                          | 7.29-2                                                                                                                                                                                                                  | 9.96-2                                                                                                                                                                                                                                        | 1.27-1                                                                                                                                                                                                               | 1.53-1                                                                                                                                                                                                                                                                                                      | 1.79-1                                                                                                                                                                                                               | 2.04-1                                                                                                                                                                                                                             | 2.29-1                                                                                                                                                                                                                                                          | 2.52-1                                                                                                                                                                                                            |
| $4d_{5/2}$<br>$E_b =$                                                                                                                                                                                                                                                                 | $\frac{\sigma}{\beta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.673+1<br>1.353                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.234+1<br>1.315                                                                                                                                                                                                                | 7.192+0<br>1.208                                                                                                                                                                                                        | 3.028+0<br>1.104                                                                                                                                                                                                                              | 1.496+0<br>1.014                                                                                                                                                                                                     | 8.222-1<br>0.934                                                                                                                                                                                                                                                                                            | 4.880-1<br>0.864                                                                                                                                                                                                     | 3.071-1<br>0.801                                                                                                                                                                                                                   | 2.023-1<br>0.744                                                                                                                                                                                                                                                | 1.384-<br>0.693                                                                                                                                                                                                   |
| 97.7 eV                                                                                                                                                                                                                                                                               | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.68-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.34–1                                                                                                                                                                                                                          | 6.14-1                                                                                                                                                                                                                  | 8.26-1                                                                                                                                                                                                                                        | 9.92-1                                                                                                                                                                                                               | 1.13+0                                                                                                                                                                                                                                                                                                      | 1.24+0                                                                                                                                                                                                               | 1.33+0                                                                                                                                                                                                                             | 1.40+0                                                                                                                                                                                                                                                          | 1.47+0                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                       | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.27 - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.71 - 2                                                                                                                                                                                                                        | 7.58-2                                                                                                                                                                                                                  | 1.05 - 1                                                                                                                                                                                                                                      | 1.35-1                                                                                                                                                                                                               | 1.63-1                                                                                                                                                                                                                                                                                                      | 1.91-1                                                                                                                                                                                                               | 2.17 - 1                                                                                                                                                                                                                           | 2.43 - 1                                                                                                                                                                                                                                                        | 2.67 - 1                                                                                                                                                                                                          |
| 5s <sub>1/2</sub>                                                                                                                                                                                                                                                                     | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.653+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.599+0                                                                                                                                                                                                                         | 7.613-1                                                                                                                                                                                                                 | 4.419-1                                                                                                                                                                                                                                       | 2.872-1                                                                                                                                                                                                              | 2.008-1                                                                                                                                                                                                                                                                                                     | 1.476-1                                                                                                                                                                                                              | 1.127-1                                                                                                                                                                                                                            | 8.847-2                                                                                                                                                                                                                                                         | 7.108-                                                                                                                                                                                                            |
| $E_b =$                                                                                                                                                                                                                                                                               | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.970                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.972                                                                                                                                                                                                                           | 1.977                                                                                                                                                                                                                   | 1.981                                                                                                                                                                                                                                         | 1.984                                                                                                                                                                                                                | 1.986                                                                                                                                                                                                                                                                                                       | 1.987                                                                                                                                                                                                                | 1.986                                                                                                                                                                                                                              | 1.985                                                                                                                                                                                                                                                           | 1.983                                                                                                                                                                                                             |
| 32.3 eV                                                                                                                                                                                                                                                                               | $\gamma \\ \delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.15-1<br>-2.78-4                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.38-2<br>-3.55-4                                                                                                                                                                                                               | -8.46-2 $-4.56-4$                                                                                                                                                                                                       | -1.19-1 $-5.16-4$                                                                                                                                                                                                                             | -1.06-1 $-5.61-4$                                                                                                                                                                                                    | -6.30-2 $-5.94-4$                                                                                                                                                                                                                                                                                           | -4.11-4 $-6.21-4$                                                                                                                                                                                                    | 7.53-2 $-6.40-4$                                                                                                                                                                                                                   | 1.60-1 $-6.59-4$                                                                                                                                                                                                                                                | 2.50-1<br>-6.74-                                                                                                                                                                                                  |
| 5p <sub>1/2</sub>                                                                                                                                                                                                                                                                     | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.599+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.554+0                                                                                                                                                                                                                         | 7.036-1                                                                                                                                                                                                                 | 3.837-1                                                                                                                                                                                                                                       | 2.339-1                                                                                                                                                                                                              | 1.536-1                                                                                                                                                                                                                                                                                                     | 1.064-1                                                                                                                                                                                                              | 7.674-2                                                                                                                                                                                                                            | 5.713-2                                                                                                                                                                                                                                                         | 4.363-                                                                                                                                                                                                            |
| $E_b =$                                                                                                                                                                                                                                                                               | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.717                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.712                                                                                                                                                                                                                           | 1.669                                                                                                                                                                                                                   | 1.615                                                                                                                                                                                                                                         | 1.561                                                                                                                                                                                                                | 1.509                                                                                                                                                                                                                                                                                                       | 1.459                                                                                                                                                                                                                | 1.413                                                                                                                                                                                                                              | 1.368                                                                                                                                                                                                                                                           | 1.325                                                                                                                                                                                                             |
| 16.6 eV                                                                                                                                                                                                                                                                               | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.94-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.23-2                                                                                                                                                                                                                         | 1.19 - 1                                                                                                                                                                                                                | 2.97 - 1                                                                                                                                                                                                                                      | 4.76 - 1                                                                                                                                                                                                             | 6.45 - 1                                                                                                                                                                                                                                                                                                    | 8.02 - 1                                                                                                                                                                                                             | 9.45 - 1                                                                                                                                                                                                                           | 1.08+0                                                                                                                                                                                                                                                          | 1.20+0                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                       | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -2.01-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.76 - 3                                                                                                                                                                                                                       | -5.84 - 5                                                                                                                                                                                                               | 3.65-3                                                                                                                                                                                                                                        | 9.07-3                                                                                                                                                                                                               | 1.58-2                                                                                                                                                                                                                                                                                                      | 2.34-2                                                                                                                                                                                                               | 3.18-2                                                                                                                                                                                                                             | 4.08-2                                                                                                                                                                                                                                                          | 4.99-2                                                                                                                                                                                                            |
| $5p_{3/2}$                                                                                                                                                                                                                                                                            | $\sigma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.251+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.047+0                                                                                                                                                                                                                         | 1.326+0                                                                                                                                                                                                                 | 7.037-1                                                                                                                                                                                                                                       | 4.200-1                                                                                                                                                                                                              | 2.711-1                                                                                                                                                                                                                                                                                                     | 1.850-1                                                                                                                                                                                                              | 1.317-1                                                                                                                                                                                                                            | 9.692-2                                                                                                                                                                                                                                                         | 7.326-                                                                                                                                                                                                            |
| $E_b = 13.3 \text{ eV}$                                                                                                                                                                                                                                                               | $\beta$ $\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.732<br>-3.24-2                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.743<br>-1.47-2                                                                                                                                                                                                                | 1.722<br>1.34-1                                                                                                                                                                                                         | 1.681<br>3.27-1                                                                                                                                                                                                                               | 1.635<br>5.21-1                                                                                                                                                                                                      | 1.589<br>7.03-1                                                                                                                                                                                                                                                                                             | 1.544<br>8.71-1                                                                                                                                                                                                      | 1.499<br>1.02+0                                                                                                                                                                                                                    | 1.456<br>1.16+0                                                                                                                                                                                                                                                 | 1.415<br>1.29+0                                                                                                                                                                                                   |
| 15.5 CV                                                                                                                                                                                                                                                                               | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -3.24-2 $7.96-4$                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.47-3                                                                                                                                                                                                                          | 5.48-3                                                                                                                                                                                                                  | 9.02-3                                                                                                                                                                                                                                        | 1.35-2                                                                                                                                                                                                               | 1.87-2                                                                                                                                                                                                                                                                                                      | 2.48-2                                                                                                                                                                                                               | 3.14-2                                                                                                                                                                                                                             | 3.85-2                                                                                                                                                                                                                                                          | 4.60-2                                                                                                                                                                                                            |
| 5d <sub>3/2</sub>                                                                                                                                                                                                                                                                     | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.041+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.857-1                                                                                                                                                                                                                         | 3.215-1                                                                                                                                                                                                                 | 1.366-1                                                                                                                                                                                                                                       | 6.805-2                                                                                                                                                                                                              | 3.768-2                                                                                                                                                                                                                                                                                                     | 2.251-2                                                                                                                                                                                                              | 1.425-2                                                                                                                                                                                                                            | 9.443-3                                                                                                                                                                                                                                                         | 6.492-                                                                                                                                                                                                            |
| $E_b =$                                                                                                                                                                                                                                                                               | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.385                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.354                                                                                                                                                                                                                           | 1.253                                                                                                                                                                                                                   | 1.150                                                                                                                                                                                                                                         | 1.057                                                                                                                                                                                                                | 0.975                                                                                                                                                                                                                                                                                                       | 0.902                                                                                                                                                                                                                | 0.836                                                                                                                                                                                                                              | 0.777                                                                                                                                                                                                                                                           | 0.722                                                                                                                                                                                                             |
| 6.0 eV                                                                                                                                                                                                                                                                                | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.67 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.34-1                                                                                                                                                                                                                          | 6.19-1                                                                                                                                                                                                                  | 8.36-1                                                                                                                                                                                                                                        | 1.01+0                                                                                                                                                                                                               | 1.14+0                                                                                                                                                                                                                                                                                                      | 1.26+0                                                                                                                                                                                                               | 1.35+0                                                                                                                                                                                                                             | 1.43+0                                                                                                                                                                                                                                                          | 1.49+0                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                       | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.21-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.56-2                                                                                                                                                                                                                          | 7.19-2                                                                                                                                                                                                                  | 9.84-2                                                                                                                                                                                                                                        | 1.25-1                                                                                                                                                                                                               | 1.51-1                                                                                                                                                                                                                                                                                                      | 1.77-1                                                                                                                                                                                                               | 2.03-1                                                                                                                                                                                                                             | 2.28-1                                                                                                                                                                                                                                                          | 2.52-1                                                                                                                                                                                                            |
| $6s_{1/2}  E_b =$                                                                                                                                                                                                                                                                     | $\sigma_{\rho}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.261-1<br>1.970                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.358-1<br>1.972                                                                                                                                                                                                                | 6.434-2<br>1.977                                                                                                                                                                                                        | 3.725-2<br>1.981                                                                                                                                                                                                                              | 2.418-2<br>1.984                                                                                                                                                                                                     | 1.689-2<br>1.986                                                                                                                                                                                                                                                                                            | 1.241-2<br>1.987                                                                                                                                                                                                     | 9.466-3<br>1.986                                                                                                                                                                                                                   | 7.431-3<br>1.985                                                                                                                                                                                                                                                | 5.968-<br>1.983                                                                                                                                                                                                   |
| 5.0 eV                                                                                                                                                                                                                                                                                | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.12-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.15-2                                                                                                                                                                                                                          | -8.58-2                                                                                                                                                                                                                 | -1.19-1                                                                                                                                                                                                                                       | -1.05-1                                                                                                                                                                                                              | -6.25-2                                                                                                                                                                                                                                                                                                     | 2.99-4                                                                                                                                                                                                               | 7.68-2                                                                                                                                                                                                                             | 1.62-1                                                                                                                                                                                                                                                          | 2.54-1                                                                                                                                                                                                            |
| .).U e v                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                       | $\frac{\gamma}{\delta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2.80 - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -3.56-4                                                                                                                                                                                                                         | -4.55 - 4                                                                                                                                                                                                               | -5.17 - 4                                                                                                                                                                                                                                     | -5.59 - 4                                                                                                                                                                                                            | -5.90 - 4                                                                                                                                                                                                                                                                                                   | -6.14 - 4                                                                                                                                                                                                            | -6.42 - 4                                                                                                                                                                                                                          | -6.62 - 4                                                                                                                                                                                                                                                       | -6.76-                                                                                                                                                                                                            |
| Z= 58, Ce: [X                                                                                                                                                                                                                                                                         | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -2.80 - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                         | -5.17-4                                                                                                                                                                                                                                       | -5.59-4                                                                                                                                                                                                              | -5.90-4                                                                                                                                                                                                                                                                                                     | -6.14-4                                                                                                                                                                                                              | -6.42-4                                                                                                                                                                                                                            | -6.62-4                                                                                                                                                                                                                                                         | -6.76-                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                       | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $-2.80-4$ $6s_{1/2}^2$ $k \text{ (eV)}$                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                         | -5.17-4                                                                                                                                                                                                                                       | -5.59-4                                                                                                                                                                                                              | -5.90-4                                                                                                                                                                                                                                                                                                     | -6.14-4                                                                                                                                                                                                              | -6.42-4                                                                                                                                                                                                                            | -6.62-4                                                                                                                                                                                                                                                         | -6.76-                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                       | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $-2.80-4$ $6s_{1/2}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                         | -5.17-4<br>4000                                                                                                                                                                                                                               | -5.59-4<br>5000                                                                                                                                                                                                      | -5.90-4<br>6000                                                                                                                                                                                                                                                                                             | 7000                                                                                                                                                                                                                 | -6.42-4<br>8000                                                                                                                                                                                                                    | 9000                                                                                                                                                                                                                                                            | 10000                                                                                                                                                                                                             |
| Z= 58, Ce: [X                                                                                                                                                                                                                                                                         | $\frac{\delta}{\text{ce}]4f_{5/2}^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -3.56-4<br>2000<br>3.515+1                                                                                                                                                                                                      | -4.55-4<br>3000<br>1.885+1                                                                                                                                                                                              | 4000<br>1.155+1                                                                                                                                                                                                                               | 5000<br>7.728+0                                                                                                                                                                                                      | 6000<br>5.500+0                                                                                                                                                                                                                                                                                             | 7000<br>4.094+0                                                                                                                                                                                                      | 8000<br>3.152+0                                                                                                                                                                                                                    | 9000                                                                                                                                                                                                                                                            | 10000                                                                                                                                                                                                             |
| <b>Z= 58, Ce:</b> [X Shell $3s_{1/2}$ $E_b =$                                                                                                                                                                                                                                         | $\frac{\delta}{\delta}$ (e)4 $f_{5/2}^2$ (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2000<br>3.515+1<br>1.953                                                                                                                                                                                                        | 3000<br>1.885+1<br>1.962                                                                                                                                                                                                | 4000<br>1.155+1<br>1.970                                                                                                                                                                                                                      | 5000<br>7.728+0<br>1.976                                                                                                                                                                                             | 6000<br>5.500+0<br>1.981                                                                                                                                                                                                                                                                                    | 7000<br>4.094+0<br>1.984                                                                                                                                                                                             | 8000<br>3.152+0<br>1.985                                                                                                                                                                                                           | 9000<br>2.492+0<br>1.985                                                                                                                                                                                                                                        | 10000<br>2.012+0<br>1.985                                                                                                                                                                                         |
| <b>Z= 58, Ce: [X</b> Shell $3s_{1/2}$                                                                                                                                                                                                                                                 | $\frac{\delta}{\text{fe]4f}_{5/2}^2}$ $\frac{\sigma}{\beta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -2.80-4  6s <sup>2</sup> <sub>1/2</sub> k (eV)  1500  4.933+1 1.947 1.01+0                                                                                                                                                                                                                                                                                                                                                                                             | 2000<br>3.515+1<br>1.953<br>5.38-1                                                                                                                                                                                              | 3000<br>1.885+1<br>1.962<br>1.25-1                                                                                                                                                                                      | 4000<br>1.155+1<br>1.970<br>-5.46-2                                                                                                                                                                                                           | 5000<br>7.728+0<br>1.976<br>-1.22-1                                                                                                                                                                                  | 6000<br>5.500+0<br>1.981<br>-1.27-1                                                                                                                                                                                                                                                                         | 7000<br>4.094+0<br>1.984<br>-9.32-2                                                                                                                                                                                  | 8000<br>3.152+0<br>1.985<br>-3.54-2                                                                                                                                                                                                | 9000<br>2.492+0<br>1.985<br>3.76-2                                                                                                                                                                                                                              | 10000<br>2.012+0<br>1.985<br>1.20-1                                                                                                                                                                               |
| Z= 58, Ce: [X<br>Shell<br>3s <sub>1/2</sub><br>E <sub>b</sub> =<br>1434.6 eV                                                                                                                                                                                                          | $\frac{\delta}{\text{ce}]\mathbf{4f}_{5/2}^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -2.80-4  65s <sub>1/2</sub> k (eV)  1500  4.933+1 1.947 1.01+0 3.81-4                                                                                                                                                                                                                                                                                                                                                                                                  | 2000<br>3.515+1<br>1.953<br>5.38-1<br>-2.14-4                                                                                                                                                                                   | 3000<br>1.885+1<br>1.962<br>1.25-1<br>-4.79-4                                                                                                                                                                           | 4000<br>1.155+1<br>1.970<br>-5.46-2<br>-5.95-4                                                                                                                                                                                                | 5000<br>7.728+0<br>1.976<br>-1.22-1<br>-6.62-4                                                                                                                                                                       | 6000<br>5.500+0<br>1.981<br>-1.27-1<br>-7.08-4                                                                                                                                                                                                                                                              | 7000<br>4.094+0<br>1.984<br>-9.32-2<br>-7.40-4                                                                                                                                                                       | 8000<br>3.152+0<br>1.985<br>-3.54-2<br>-7.66-4                                                                                                                                                                                     | 9000<br>2.492+0<br>1.985<br>3.76-2<br>-7.85-4                                                                                                                                                                                                                   | 10000<br>2.012+0<br>1.985<br>1.20-1<br>-8.02-                                                                                                                                                                     |
| <b>Z= 58, Ce:</b> [X Shell $3s_{1/2}$ $E_b =$                                                                                                                                                                                                                                         | $\frac{\delta}{\text{fe]4f}_{5/2}^2}$ $\frac{\sigma}{\beta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -2.80-4  6s <sup>2</sup> <sub>1/2</sub> k (eV)  1500  4.933+1 1.947 1.01+0                                                                                                                                                                                                                                                                                                                                                                                             | 2000<br>3.515+1<br>1.953<br>5.38-1                                                                                                                                                                                              | 3000<br>1.885+1<br>1.962<br>1.25-1                                                                                                                                                                                      | 4000<br>1.155+1<br>1.970<br>-5.46-2                                                                                                                                                                                                           | 5000<br>7.728+0<br>1.976<br>-1.22-1                                                                                                                                                                                  | 6000<br>5.500+0<br>1.981<br>-1.27-1                                                                                                                                                                                                                                                                         | 7000<br>4.094+0<br>1.984<br>-9.32-2                                                                                                                                                                                  | 8000<br>3.152+0<br>1.985<br>-3.54-2                                                                                                                                                                                                | 9000<br>2.492+0<br>1.985<br>3.76-2                                                                                                                                                                                                                              | 10000<br>2.012+(<br>1.985<br>1.20-1<br>-8.02-                                                                                                                                                                     |
| Z= 58, Ce: [X<br>Shell $3s_{1/2}$ $E_b = 1434.6$ eV $3p_{1/2}$                                                                                                                                                                                                                        | $\delta$ $e   4f_{5/2}^2$ $\delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{r} -2.80-4 \\ \hline 65s_{1/2}^2 \\ \underline{k \text{ (eV)}} \\ 1500 \\ 4.933+1 \\ 1.947 \\ 1.01+0 \\ 3.81-4 \\ 7.425+1 \\ 1.105 \\ 3.75-1 \end{array} $                                                                                                                                                                                                                                                                                             | 2000<br>3.515+1<br>1.953<br>5.38-1<br>-2.14-4<br>5.111+1<br>1.477<br>1.10-1                                                                                                                                                     | 3000<br>1.885+1<br>1.962<br>1.25-1<br>-4.79-4<br>2.555+1<br>1.601<br>-1.06-2                                                                                                                                            | 4000<br>1.155+1<br>1.970<br>-5.46-2<br>-5.95-4<br>1.443+1<br>1.598<br>1.26-1                                                                                                                                                                  | 5000<br>7.728+0<br>1.976<br>-1.22-1<br>-6.62-4<br>8.929+0<br>1.567<br>3.12-1                                                                                                                                         | 6000<br>5.500+0<br>1.981<br>-1.27-1<br>-7.08-4<br>5.903+0<br>1.527<br>4.98-1                                                                                                                                                                                                                                | 7000<br>4.094+0<br>1.984<br>-9.32-2<br>-7.40-4<br>4.102+0<br>1.485<br>6.71-1                                                                                                                                         | 8000<br>3.152+0<br>1.985<br>-3.54-2<br>-7.66-4<br>2.962+0<br>1.442<br>8.30-1                                                                                                                                                       | 9000<br>2.492+0<br>1.985<br>3.76-2<br>-7.85-4<br>2.207+0<br>1.400<br>9.75-1                                                                                                                                                                                     | 10000<br>2.012+0<br>1.985<br>1.20-1<br>-8.02-<br>1.686+0<br>1.360<br>1.11+0                                                                                                                                       |
| Z= 58, Ce: [X<br>Shell $3s_{1/2}$ $E_b = 1434.6 \text{ eV}$ $3p_{1/2}$ $E_b = 1272.8 \text{ eV}$                                                                                                                                                                                      | δ (e)4f <sub>5/2</sub> ( σ β γ δ δ β γ δ δ β γ δ δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -2.80-4  6s <sup>2</sup> <sub>1/2</sub> k (eV)  1500  4.933+1 1.947 1.01+0 3.81-4  7.425+1 1.105 3.75-1 8.54-2                                                                                                                                                                                                                                                                                                                                                         | 2000<br>3.515+1<br>1.953<br>5.38-1<br>-2.14-4<br>5.111+1<br>1.477<br>1.10-1<br>1.20-2                                                                                                                                           | 3000<br>1.885+1<br>1.962<br>1.25-1<br>-4.79-4<br>2.555+1<br>1.601<br>-1.06-2<br>1.62-3                                                                                                                                  | 4000<br>1.155+1<br>1.970<br>-5.46-2<br>-5.95-4<br>1.443+1<br>1.598<br>1.26-1<br>4.36-3                                                                                                                                                        | 5000<br>7.728+0<br>1.976<br>-1.22-1<br>-6.62-4<br>8.929+0<br>1.567<br>3.12-1<br>9.36-3                                                                                                                               | 5.500+0<br>1.981<br>-1.27-1<br>-7.08-4<br>5.903+0<br>1.527<br>4.98-1<br>1.56-2                                                                                                                                                                                                                              | 7000<br>4.094+0<br>1.984<br>-9.32-2<br>-7.40-4<br>4.102+0<br>1.485<br>6.71-1<br>2.27-2                                                                                                                               | 8000<br>3.152+0<br>1.985<br>-3.54-2<br>-7.66-4<br>2.962+0<br>1.442<br>8.30-1<br>3.05-2                                                                                                                                             | 9000<br>2.492+0<br>1.985<br>3.76-2<br>-7.85-4<br>2.207+0<br>1.400<br>9.75-1<br>3.89-2                                                                                                                                                                           | 10000<br>2.012+0<br>1.985<br>1.20-1<br>-8.02-<br>1.686+0<br>1.360<br>1.11+0<br>4.77-2                                                                                                                             |
| Z= 58, Ce: [X<br>Shell<br>$3s_{1/2}$<br>$E_b = 1434.6 \text{ eV}$<br>$3p_{1/2}$<br>$E_b = 1272.8 \text{ eV}$<br>$3p_{3/2}$                                                                                                                                                            | $ \begin{array}{c} \delta \\ \mathbf{e}   \mathbf{4f_{5/2}^2} 0 \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \sigma \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} -2.80-4 \\ \hline 68_{1/2}^2 \\ \hline k  (eV) \\ \hline 1500 \\ \hline 4.933+1 \\ 1.947 \\ 1.01+0 \\ 3.81-4 \\ \hline 7.425+1 \\ 1.105 \\ 3.75-1 \\ 8.54-2 \\ \hline 1.658+2 \\ \end{array}$                                                                                                                                                                                                                                                        | 2000<br>3.515+1<br>1.953<br>5.38-1<br>-2.14-4<br>5.111+1<br>1.477<br>1.10-1<br>1.20-2<br>1.065+2                                                                                                                                | 3000<br>1.885+1<br>1.962<br>1.25-1<br>-4.79-4<br>2.555+1<br>1.601<br>-1.06-2<br>1.62-3<br>4.983+1                                                                                                                       | 4000<br>1.155+1<br>1.970<br>-5.46-2<br>-5.95-4<br>1.443+1<br>1.598<br>1.26-1<br>4.36-3<br>2.711+1                                                                                                                                             | 5000<br>7.728+0<br>1.976<br>-1.22-1<br>-6.62-4<br>8.929+0<br>1.567<br>3.12-1<br>9.36-3<br>1.634+1                                                                                                                    | 5.500+0<br>1.981<br>-1.27-1<br>-7.08-4<br>5.903+0<br>1.527<br>4.98-1<br>1.56-2<br>1.058+1                                                                                                                                                                                                                   | 7000<br>4.094+0<br>1.984<br>-9.32-2<br>-7.40-4<br>4.102+0<br>1.485<br>6.71-1<br>2.27-2<br>7.228+0                                                                                                                    | 8000<br>3.152+0<br>1.985<br>-3.54-2<br>-7.66-4<br>2.962+0<br>1.442<br>8.30-1<br>3.05-2<br>5.145+0                                                                                                                                  | 9000<br>2.492+0<br>1.985<br>3.76-2<br>-7.85-4<br>2.207+0<br>1.400<br>9.75-1<br>3.89-2<br>3.784+0                                                                                                                                                                | 10000<br>2.012+0<br>1.985<br>1.20-1<br>-8.02-<br>1.686+0<br>1.360<br>1.11+0<br>4.77-2<br>2.859+0                                                                                                                  |
| Z= 58, Ce: [X<br>Shell $3s_{1/2}$ $E_b = 1434.6$ eV $3p_{1/2}$ $E_b = 1272.8$ eV $3p_{3/2}$ $E_b = 1272.8$ eV                                                                                                                                                                         | $ \begin{array}{c} \delta \\ \mathbf{e}   \mathbf{4f}_{5/2}^2 0 \\  & \sigma \\ \beta \\ \gamma \\ \delta \\  & \sigma \\ \beta \\ \gamma \\ \delta \\  & \sigma \\ \beta \\ \beta \\ \sigma \\ \beta \\ \beta \\ \sigma \\ \rho \\ \sigma \\ \sigma \\ \rho \\ \sigma \\ \sigma \\ \rho \\ \sigma \\ \sigma \\ \sigma \\ \rho \\ \sigma \\ \sigma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} -2.80-4 \\ \hline 68_{1/2}^2 \\ \hline k  (eV) \\ \hline 1500 \\ \hline 4.933+1 \\ 1.947 \\ 1.01+0 \\ 3.81-4 \\ \hline 7.425+1 \\ 1.105 \\ 3.75-1 \\ 8.54-2 \\ \hline 1.658+2 \\ 1.213 \\ \end{array}$                                                                                                                                                                                                                                               | 2000<br>3.515+1<br>1.953<br>5.38-1<br>-2.14-4<br>5.111+1<br>1.477<br>1.10-1<br>1.20-2<br>1.065+2<br>1.520                                                                                                                       | 3000<br>1.885+1<br>1.962<br>1.25-1<br>-4.79-4<br>2.555+1<br>1.601<br>-1.06-2<br>1.62-3<br>4.983+1<br>1.653                                                                                                              | 4000<br>1.155+1<br>1.970<br>-5.46-2<br>-5.95-4<br>1.443+1<br>1.598<br>1.26-1<br>4.36-3<br>2.711+1<br>1.663                                                                                                                                    | 5000<br>7.728+0<br>1.976<br>-1.22-1<br>-6.62-4<br>8.929+0<br>1.567<br>3.12-1<br>9.36-3<br>1.634+1<br>1.641                                                                                                           | 5.500+0<br>1.981<br>-1.27-1<br>-7.08-4<br>5.903+0<br>1.527<br>4.98-1<br>1.56-2<br>1.058+1<br>1.608                                                                                                                                                                                                          | 7000<br>4.094+0<br>1.984<br>-9.32-2<br>-7.40-4<br>4.102+0<br>1.485<br>6.71-1<br>2.27-2<br>7.228+0<br>1.570                                                                                                           | 8000<br>3.152+0<br>1.985<br>-3.54-2<br>-7.66-4<br>2.962+0<br>1.442<br>8.30-1<br>3.05-2<br>5.145+0<br>1.531                                                                                                                         | 9000<br>2.492+0<br>1.985<br>3.76-2<br>-7.85-4<br>2.207+0<br>1.400<br>9.75-1<br>3.89-2<br>3.784+0<br>1.491                                                                                                                                                       | 10000<br>2.012+0<br>1.985<br>1.20-1<br>-8.02-<br>1.686+0<br>1.360<br>4.77-2<br>2.859+0<br>1.452                                                                                                                   |
| Z= 58, Ce: [X<br>Shell<br>$3s_{1/2}$<br>$E_b = 1434.6 \text{ eV}$<br>$3p_{1/2}$<br>$E_b = 1272.8 \text{ eV}$<br>$3p_{3/2}$                                                                                                                                                            | $ \begin{array}{c} \delta \\ \mathbf{e}   \mathbf{4f_{5/2}^2} 0 \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \sigma \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} -2.80-4 \\ \hline 68_{1/2}^2 \\ \hline k  (eV) \\ \hline 1500 \\ \hline 4.933+1 \\ 1.947 \\ 1.01+0 \\ 3.81-4 \\ \hline 7.425+1 \\ 1.105 \\ 3.75-1 \\ 8.54-2 \\ \hline 1.658+2 \\ \end{array}$                                                                                                                                                                                                                                                        | 2000<br>3.515+1<br>1.953<br>5.38-1<br>-2.14-4<br>5.111+1<br>1.477<br>1.10-1<br>1.20-2<br>1.065+2                                                                                                                                | 3000<br>1.885+1<br>1.962<br>1.25-1<br>-4.79-4<br>2.555+1<br>1.601<br>-1.06-2<br>1.62-3<br>4.983+1                                                                                                                       | 4000<br>1.155+1<br>1.970<br>-5.46-2<br>-5.95-4<br>1.443+1<br>1.598<br>1.26-1<br>4.36-3<br>2.711+1                                                                                                                                             | 5000<br>7.728+0<br>1.976<br>-1.22-1<br>-6.62-4<br>8.929+0<br>1.567<br>3.12-1<br>9.36-3<br>1.634+1                                                                                                                    | 5.500+0<br>1.981<br>-1.27-1<br>-7.08-4<br>5.903+0<br>1.527<br>4.98-1<br>1.56-2<br>1.058+1                                                                                                                                                                                                                   | 7000<br>4.094+0<br>1.984<br>-9.32-2<br>-7.40-4<br>4.102+0<br>1.485<br>6.71-1<br>2.27-2<br>7.228+0                                                                                                                    | 8000<br>3.152+0<br>1.985<br>-3.54-2<br>-7.66-4<br>2.962+0<br>1.442<br>8.30-1<br>3.05-2<br>5.145+0                                                                                                                                  | 9000<br>2.492+0<br>1.985<br>3.76-2<br>-7.85-4<br>2.207+0<br>1.400<br>9.75-1<br>3.89-2<br>3.784+0                                                                                                                                                                | 10000<br>2.012+(<br>1.985<br>1.20-1<br>-8.02-<br>1.686+(<br>1.360<br>1.11+0<br>4.77-2<br>2.859+(                                                                                                                  |
| Z= 58, Ce: [X<br>Shell $3s_{1/2}$ $E_b = 1434.6$ eV $3p_{1/2}$ $E_b = 1272.8$ eV $3p_{3/2}$ $E_b = 1272.8$ eV                                                                                                                                                                         | $ \begin{array}{c} \delta \\ \mathbf{e}   \mathbf{4f_{5/2}^2} 0 \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} -2.80-4 \\ \hline 68_{1/2}^2 \\ \hline k  (eV) \\ \hline 1500 \\ \hline 4.933+1 \\ 1.947 \\ 1.01+0 \\ 3.81-4 \\ \hline 7.425+1 \\ 1.105 \\ 3.75-1 \\ 8.54-2 \\ \hline 1.658+2 \\ 1.213 \\ 2.91-1 \\ \end{array}$                                                                                                                                                                                                                                     | 2000 3.515+1 1.953 5.38-1 -2.14-4 5.111+1 1.477 1.10-1 1.20-2 1.065+2 1.520 3.79-2                                                                                                                                              | 3000<br>1.885+1<br>1.962<br>1.25-1<br>-4.79-4<br>2.555+1<br>1.601<br>-1.06-2<br>1.62-3<br>4.983+1<br>1.653<br>-1.21-2                                                                                                   | 4000<br>1.155+1<br>1.970<br>-5.46-2<br>-5.95-4<br>1.443+1<br>1.598<br>1.26-1<br>4.36-3<br>2.711+1<br>1.663<br>1.53-1                                                                                                                          | 5000<br>7.728+0<br>1.976<br>-1.22-1<br>-6.62-4<br>8.929+0<br>1.567<br>3.12-1<br>9.36-3<br>1.634+1<br>1.641<br>3.58-1                                                                                                 | 5.500+0<br>1.981<br>-1.27-1<br>-7.08-4<br>5.903+0<br>1.527<br>4.98-1<br>1.56-2<br>1.058+1<br>1.608<br>5.59-1                                                                                                                                                                                                | 7000<br>4.094+0<br>1.984<br>-9.32-2<br>-7.40-4<br>4.102+0<br>1.485<br>6.71-1<br>2.27-2<br>7.228+0<br>1.570<br>7.45-1                                                                                                 | 8000<br>3.152+0<br>1.985<br>-3.54-2<br>-7.66-4<br>2.962+0<br>1.442<br>8.30-1<br>3.05-2<br>5.145+0<br>1.531<br>9.15-1                                                                                                               | 9000<br>2.492+0<br>1.985<br>3.76-2<br>-7.85-4<br>2.207+0<br>1.400<br>9.75-1<br>3.89-2<br>3.784+0<br>1.491<br>1.07+0                                                                                                                                             | 10000<br>2.012+0<br>1.985<br>1.20-1<br>-8.02-<br>1.686+0<br>1.360<br>4.77-2<br>2.859+0<br>1.452<br>1.21+0<br>4.53-2                                                                                               |
| Z= 58, Ce: [X<br>Shell $3s_{1/2}$ $E_b = 1434.6$ eV $3p_{1/2}$ $E_b = 1272.8$ eV $3p_{3/2}$ $E_b = 1185.4$ eV $3d_{3/2}$ $E_b = 160.4$ eV                             | $ \begin{array}{c} \delta \\ \mathbf{e}   \mathbf{4f_{5/2}^2} \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \beta \\ \beta \\ \rho \\ \delta \\ \sigma \\ \beta \\ \beta \\ \rho \\ \delta \\ \sigma \\ \beta \\ \beta \\ \rho \\ \delta \\ \sigma \\ \beta \\ \rho \\ \delta \\ \sigma \\ \beta \\ \rho \\ \delta \\ \sigma \\ \beta \\ \rho \\ \rho \\ \delta \\ \sigma \\ \beta \\ \rho \\ \rho \\ \delta \\ \sigma \\ \beta \\ \rho \\ \rho \\ \delta \\ \sigma \\ \beta \\ \rho \\ \rho \\ \delta \\ \sigma \\ \beta \\ \rho \\ \rho \\ \delta \\ \sigma \\ \beta \\ \rho \\ \rho \\ \delta \\ \sigma \\ \rho \\ \rho \\ \rho \\ \delta \\ \sigma \\ \rho \\ \rho$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} -2.80-4 \\ \hline 68^2_{1/2} \\ \hline k  (\mathrm{eV}) \\ \hline 1500 \\ \hline 4.933+1 \\ 1.947 \\ 1.01+0 \\ 3.81-4 \\ \hline 7.425+1 \\ 1.105 \\ 3.75-1 \\ 8.54-2 \\ \hline 1.658+2 \\ 1.213 \\ 2.91-1 \\ 5.05-2 \\ \hline 2.719+2 \\ 1.036 \\ \end{array}$                                                                                                                                                                                       | 2000 3.515+1 1.953 5.38-1 -2.14-4 5.111+1 1.477 1.10-1 1.20-2 1.065+2 1.520 3.79-2 9.07-3 1.226+2 1.198                                                                                                                         | 3000<br>1.885+1<br>1.962<br>1.25-1<br>-4.79-4<br>2.555+1<br>1.601<br>-1.06-2<br>1.62-3<br>4.983+1<br>1.653<br>-1.21-2<br>7.04-3<br>3.678+1<br>1.231                                                                     | 4000<br>1.155+1<br>1.970<br>-5.46-2<br>-5.95-4<br>1.443+1<br>1.598<br>1.26-1<br>4.36-3<br>2.711+1<br>1.663<br>1.53-1<br>1.11-2<br>1.487+1<br>1.172                                                                                            | 5000<br>7.728+0<br>1.976<br>-1.22-1<br>-6.62-4<br>8.929+0<br>1.567<br>3.12-1<br>9.36-3<br>1.634+1<br>1.641<br>3.58-1<br>1.56-2<br>7.160+0<br>1.097                                                                   | 6000<br>5.500+0<br>1.981<br>-1.27-1<br>-7.08-4<br>5.903+0<br>1.527<br>4.98-1<br>1.56-2<br>1.058+1<br>1.608<br>5.59-1<br>2.05-2<br>3.869+0<br>1.022                                                                                                                                                          | 7000<br>4.094+0<br>1.984<br>-9.32-2<br>-7.40-4<br>4.102+0<br>1.485<br>6.71-1<br>2.27-2<br>7.228+0<br>1.570<br>7.45-1<br>2.59-2<br>2.270+0<br>0.951                                                                   | 8000<br>3.152+0<br>1.985<br>-3.54-2<br>-7.66-4<br>2.962+0<br>1.442<br>8.30-1<br>3.05-2<br>5.145+0<br>1.531<br>9.15-1<br>3.18-2<br>1.417+0<br>0.886                                                                                 | 9000<br>2.492+0<br>1.985<br>3.76-2<br>-7.85-4<br>2.207+0<br>1.400<br>9.75-1<br>3.89-2<br>3.784+0<br>1.491<br>1.07+0<br>3.83-2<br>9.288-1<br>0.825                                                                                                               | 10000<br>2.012+(<br>1.985<br>1.20-1<br>-8.02-<br>1.686+(<br>1.360<br>1.11+0<br>4.77-2<br>2.859+(<br>1.452<br>1.21+0<br>4.53-2<br>0.769                                                                            |
| Z= 58, Ce: [X<br>Shell $3s_{1/2}$ $E_b = 1434.6$ eV $3p_{1/2}$ $E_b = 1272.8$ eV $3p_{3/2}$ $E_b = 1185.4$ eV $3d_{3/2}$                                                                                                                                                              | $ \begin{array}{c} \delta \\ \mathbf{fe}   \mathbf{4f_{5/2}^2} \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \sigma \\ \rho \\ \gamma \\ \delta \\ \sigma \\ \sigma \\ \rho \\ \gamma \\ \delta \\ \sigma \\ \sigma \\ \rho \\ \gamma \\ \delta \\ \sigma \\ \sigma \\ \rho \\ \gamma \\ \delta \\ \sigma \\ \sigma \\ \rho \\ \gamma \\ \delta \\ \sigma \\ \sigma \\ \rho \\ \gamma \\ \delta \\ \sigma \\ \sigma \\ \rho \\ \gamma \\ \delta \\ \sigma \\ \sigma \\ \rho \\ \gamma \\ \delta \\ \sigma \\ \sigma \\ \rho \\ \gamma \\ \delta \\ \sigma \\ \sigma \\ \rho \\ \rho \\ \sigma \\ \sigma \\ \rho \\ \sigma \\ \sigma \\ \sigma \\ \rho \\ \sigma \\ \sigma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} -2.80-4 \\ \hline 65s_{1/2}^2 \\ \hline k  (\mathrm{eV}) \\ \hline 1500 \\ \hline 4.933+1 \\ 1.947 \\ 1.01+0 \\ 3.81-4 \\ \hline 7.425+1 \\ 1.105 \\ 3.75-1 \\ 8.54-2 \\ 1.658+2 \\ 1.213 \\ 2.91-1 \\ 5.05-2 \\ \hline 2.719+2 \\ 1.036 \\ -7.18-2 \\ \end{array}$                                                                                                                                                                                  | 2000 3.515+1 1.953 5.38-1 -2.14-4 5.111+1 1.477 1.10-1 1.20-2 1.065+2 1.520 3.79-2 9.07-3 1.226+2 1.198 1.14-1                                                                                                                  | 3000  1.885+1 1.962 1.25-1 -4.79-4  2.555+1 1.601 -1.06-2 1.62-3  4.983+1 1.653 -1.21-2 7.04-3 3.678+1 1.231 4.73-1                                                                                                     | 4000<br>1.155+1<br>1.970<br>-5.46-2<br>-5.95-4<br>1.443+1<br>1.598<br>1.26-1<br>4.36-3<br>2.711+1<br>1.663<br>1.53-1<br>1.11-2<br>1.487+1<br>1.172<br>7.47-1                                                                                  | 5000<br>7.728+0<br>1.976<br>-1.22-1<br>-6.62-4<br>8.929+0<br>1.567<br>3.12-1<br>9.36-3<br>1.634+1<br>1.641<br>3.58-1<br>1.56-2<br>7.160+0<br>1.097<br>9.54-1                                                         | 6000<br>5.500+0<br>1.981<br>-1.27-1<br>-7.08-4<br>5.903+0<br>1.527<br>4.98-1<br>1.56-2<br>1.058+1<br>1.608<br>5.59-1<br>2.05-2<br>3.869+0<br>1.022<br>1.12+0                                                                                                                                                | 7000 4.094+0 1.984 -9.32-2 -7.40-4 4.102+0 1.485 6.71-1 2.27-2 7.228+0 1.570 7.45-1 2.59-2 2.270+0 0.951 1.25+0                                                                                                      | 8000<br>3.152+0<br>1.985<br>-3.54-2<br>-7.66-4<br>2.962+0<br>1.442<br>8.30-1<br>3.05-2<br>5.145+0<br>1.531<br>9.15-1<br>3.18-2<br>1.417+0<br>0.886<br>1.35+0                                                                       | 9000<br>2.492+0<br>1.985<br>3.76-2<br>-7.85-4<br>2.207+0<br>1.400<br>9.75-1<br>3.89-2<br>3.784+0<br>1.491<br>1.07+0<br>3.83-2<br>9.288-1<br>0.825<br>1.44+0                                                                                                     | 10000<br>2.012+(<br>1.985<br>1.20-1<br>-8.02-<br>1.686+(<br>1.360<br>1.11+0<br>4.77-2<br>2.859+(<br>1.452<br>1.21+0<br>4.53-2<br>0.769<br>1.51+0                                                                  |
| Z= 58, Ce: [X<br>Shell $3s_{1/2}$ $E_b = 1434.6$ eV $3p_{1/2}$ $E_b = 1272.8$ eV $3p_{3/2}$ $E_b = 1185.4$ eV $3d_{3/2}$ $E_b = 901.3$ eV                                                                                                                                             | $ \begin{array}{c} \delta \\ \mathbf{e}   \mathbf{4f_{5/2}^2} \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \rho \\ \gamma \\ \delta \\ \sigma \\ \sigma \\ \rho \\ \rho \\ \sigma \\ \sigma \\ \rho \\ \sigma \\ \sigma \\ \rho \\ \sigma \\ \rho \\ \sigma \\ \sigma \\ \rho \\ \sigma \\ \sigma \\ \rho \\ \sigma \\ \rho \\ \sigma \\ \sigma \\ \rho \\ \sigma \\ \sigma \\ \sigma \\ \sigma \\ \rho \\ \sigma \\ \sigma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} -2.80-4 \\ \hline 68^2_{1/2} \\ \hline k  (\mathrm{eV}) \\ \hline 1500 \\ \hline 4.933+1 \\ 1.947 \\ 1.01+0 \\ 3.81-4 \\ \hline 7.425+1 \\ 1.105 \\ 3.75-1 \\ 8.54-2 \\ \hline 1.658+2 \\ 1.213 \\ 2.91-1 \\ 5.05-2 \\ \hline 2.719+2 \\ 1.036 \\ -7.18-2 \\ 2.65-2 \\ \end{array}$                                                                                                                                                                  | 2000 3.515+1 1.953 5.38-1 -2.14-4 5.111+1 1.477 1.10-1 1.20-2 1.065+2 1.520 3.79-2 9.07-3 1.226+2 1.198 1.14-1 5.05-2                                                                                                           | 3000  1.885+1 1.962 1.25-1 -4.79-4 2.555+1 1.601 -1.06-2 1.62-3 4.983+1 1.653 -1.21-2 7.04-3 3.678+1 1.231 4.73-1 7.96-2                                                                                                | 4000<br>1.155+1<br>1.970<br>-5.46-2<br>-5.95-4<br>1.443+1<br>1.598<br>1.26-1<br>4.36-3<br>2.711+1<br>1.663<br>1.53-1<br>1.11-2<br>1.487+1<br>1.172<br>7.47-1<br>1.04-1                                                                        | 5000<br>7.728+0<br>1.976<br>-1.22-1<br>-6.62-4<br>8.929+0<br>1.567<br>3.12-1<br>9.36-3<br>1.634+1<br>1.641<br>3.58-1<br>1.56-2<br>7.160+0<br>1.097<br>9.54-1<br>1.29-1                                               | 6000<br>5.500+0<br>1.981<br>-1.27-1<br>-7.08-4<br>5.903+0<br>1.527<br>4.98-1<br>1.56-2<br>1.058+1<br>1.608<br>5.59-1<br>2.05-2<br>3.869+0<br>1.022<br>1.12+0<br>1.53-1                                                                                                                                      | 7000 4.094+0 1.984 -9.32-2 -7.40-4 4.102+0 1.485 6.71-1 2.27-2 7.228+0 1.570 7.45-1 2.59-2 2.270+0 0.951 1.25+0 1.78-1                                                                                               | 8000<br>3.152+0<br>1.985<br>-3.54-2<br>-7.66-4<br>2.962+0<br>1.442<br>8.30-1<br>3.05-2<br>5.145+0<br>1.531<br>9.15-1<br>3.18-2<br>1.417+0<br>0.886<br>1.35+0<br>2.03-1                                                             | 9000<br>2.492+0<br>1.985<br>3.76-2<br>-7.85-4<br>2.207+0<br>1.400<br>9.75-1<br>3.89-2<br>3.784+0<br>1.491<br>1.07+0<br>3.83-2<br>9.288-1<br>0.825<br>1.44+0<br>2.26-1                                                                                           | 10000<br>2.012+(<br>1.985<br>1.20-1<br>-8.02-<br>1.686+(<br>1.360<br>1.11+0<br>4.77-2<br>2.859+(<br>1.452<br>4.53-2<br>0.769<br>1.51+0<br>2.49-1                                                                  |
| Z= 58, Ce: [X<br>Shell $3s_{1/2}$ $E_b = 1434.6 \text{ eV}$<br>$3p_{1/2}$ $E_b = 1272.8 \text{ eV}$<br>$3p_{3/2}$ $E_b = 1185.4 \text{ eV}$<br>$3d_{3/2}$ $E_b = 901.3 \text{ eV}$                                                                                                    | δ (e)4f <sup>2</sup> <sub>5/2</sub> (  σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} -2.80-4 \\ \hline 65s_{1/2}^2 \\ \hline k  (\mathrm{eV}) \\ \hline 1500 \\ \hline 4.933+1 \\ 1.947 \\ 1.01+0 \\ 3.81-4 \\ \hline 7.425+1 \\ 1.105 \\ 3.75-1 \\ 8.54-2 \\ \hline 1.658+2 \\ 1.213 \\ 2.91-1 \\ 5.05-2 \\ \hline 2.719+2 \\ 1.036 \\ -7.18-2 \\ 2.65-2 \\ \hline 3.926+2 \\ \hline \end{array}$                                                                                                                                        | 2000 3.515+1 1.953 5.38-1 -2.14-4 5.111+1 1.477 1.10-1 1.20-2 1.065+2 1.520 3.79-2 9.07-3 1.226+2 1.198 1.14-1 5.05-2 1.751+2                                                                                                   | 3000  1.885+1 1.962 1.25-1 -4.79-4  2.555+1 1.601 -1.06-2 1.62-3  4.983+1 1.653 -1.21-2 7.04-3 3.678+1 1.231 4.73-1 7.96-2 5.191+1                                                                                      | 4000<br>1.155+1<br>1.970<br>-5.46-2<br>-5.95-4<br>1.443+1<br>1.598<br>1.26-1<br>4.36-3<br>2.711+1<br>1.663<br>1.53-1<br>1.11-2<br>1.487+1<br>1.172<br>7.47-1<br>1.04-1<br>2.082+1                                                             | 5000<br>7.728+0<br>1.976<br>-1.22-1<br>-6.62-4<br>8.929+0<br>1.567<br>3.12-1<br>9.36-3<br>1.634+1<br>1.641<br>3.58-1<br>1.56-2<br>7.160+0<br>1.097<br>9.54-1<br>1.29-1<br>9.958+0                                    | 6000<br>5.500+0<br>1.981<br>-1.27-1<br>-7.08-4<br>5.903+0<br>1.527<br>4.98-1<br>1.56-2<br>1.058+1<br>1.608<br>5.59-1<br>2.05-2<br>3.869+0<br>1.022<br>1.12+0<br>1.53-1<br>5.349+0                                                                                                                           | 7000 4.094+0 1.984 -9.32-2 -7.40-4 4.102+0 1.485 6.71-1 2.27-2 7.228+0 1.570 7.45-1 2.59-2 2.270+0 0.951 1.25+0 1.78-1 3.122+0                                                                                       | 8000<br>3.152+0<br>1.985<br>-3.54-2<br>-7.66-4<br>2.962+0<br>1.442<br>8.30-1<br>3.05-2<br>5.145+0<br>1.531<br>9.15-1<br>3.18-2<br>1.417+0<br>0.886<br>1.35+0<br>2.03-1<br>1.939+0                                                  | 9000<br>2.492+0<br>1.985<br>3.76-2<br>-7.85-4<br>2.207+0<br>1.400<br>9.75-1<br>3.89-2<br>3.784+0<br>1.491<br>1.07+0<br>3.83-2<br>9.288-1<br>0.825<br>1.44+0<br>2.26-1<br>1.265+0                                                                                | 10000<br>2.012+(<br>1.985<br>1.20-1<br>-8.02-<br>1.686+(<br>1.360<br>1.11+0<br>4.77-2<br>2.859+(<br>1.452<br>1.21+0<br>4.53-2<br>0.769<br>1.51+0<br>2.49-1<br>8.589-                                              |
| Z= 58, Ce: [X<br>Shell $3s_{1/2}$ $E_b = 1434.6$ eV $3p_{1/2}$ $E_b = 1272.8$ eV $3p_{3/2}$ $E_b = 1185.4$ eV $3d_{3/2}$ $E_b = 901.3$ eV                                                                                                                                             | $ \begin{array}{c} \delta \\ \mathbf{fe}   \mathbf{4f_{5/2}^2} \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \delta \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \delta \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \delta \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \delta \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \delta \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \delta \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \delta \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \delta \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \gamma \\ \delta \\ \delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} -2.80-4 \\ \hline 68_{1/2}^2 \\ \hline k  (\mathrm{eV}) \\ \hline 1500 \\ \hline 4.933+1 \\ 1.947 \\ 1.01+0 \\ 3.81-4 \\ \hline 7.425+1 \\ 1.105 \\ 3.75-1 \\ 8.54-2 \\ \hline 1.658+2 \\ 1.213 \\ 2.91-1 \\ 5.05-2 \\ \hline 2.719+2 \\ 1.036 \\ -7.18-2 \\ 2.65-2 \\ \hline 3.926+2 \\ 1.075 \\ -5.77-2 \\ \end{array}$                                                                                                                            | -3.56-4  2000  3.515+1 1.953 5.38-1 -2.14-4  5.111+1 1.477 1.10-1 1.20-2  1.065+2 1.520 3.79-2 9.07-3  1.226+2 1.198 1.14-1 5.05-2 1.751+2 1.203 1.38-1                                                                         | 3000 1.885+1 1.962 1.25-1 -4.79-4 2.555+1 1.601 -1.06-2 1.62-3 4.983+1 1.653 -1.21-2 7.04-3 3.678+1 1.231 4.73-1 7.96-2 5.191+1 1.204 4.93-1                                                                            | 4000<br>1.155+1<br>1.970<br>-5.46-2<br>-5.95-4<br>1.443+1<br>1.598<br>1.26-1<br>4.36-3<br>2.711+1<br>1.663<br>1.53-1<br>1.11-2<br>1.487+1<br>1.172<br>7.47-1<br>1.04-1<br>2.082+1<br>1.132<br>7.56-1                                          | 5000<br>7.728+0<br>1.976<br>-1.22-1<br>-6.62-4<br>8.929+0<br>1.567<br>3.12-1<br>9.36-3<br>1.634+1<br>1.641<br>3.58-1<br>1.56-2<br>7.160+0<br>1.097<br>9.54-1<br>1.29-1<br>9.958+0<br>1.052<br>9.53-1                 | 6000<br>5.500+0<br>1.981<br>-1.27-1<br>-7.08-4<br>5.903+0<br>1.527<br>4.98-1<br>1.56-2<br>1.058+1<br>1.608<br>5.59-1<br>2.05-2<br>3.869+0<br>1.022<br>1.12+0<br>1.53-1<br>5.349+0<br>0.977<br>1.11+0                                                                                                        | 7000 4.094+0 1.984 -9.32-2 -7.40-4 4.102+0 1.485 6.71-1 2.27-2 7.228+0 1.570 7.45-1 2.59-2 2.270+0 0.951 1.25+0 1.78-1 3.122+0 0.908 1.23+0                                                                          | 8000<br>3.152+0<br>1.985<br>-3.54-2<br>-7.66-4<br>2.962+0<br>1.442<br>8.30-1<br>3.05-2<br>5.145+0<br>1.531<br>9.15-1<br>3.18-2<br>1.417+0<br>0.886<br>1.35+0<br>2.03-1<br>1.939+0<br>0.846<br>1.33+0                               | 9000<br>2.492+0<br>1.985<br>3.76-2<br>-7.85-4<br>2.207+0<br>1.400<br>9.75-1<br>3.89-2<br>3.784+0<br>1.491<br>1.07+0<br>3.83-2<br>9.288-1<br>0.825<br>1.44+0<br>2.26-1<br>1.265+0<br>0.789<br>1.41+0                                                             | 10000<br>2.012+(<br>1.985<br>1.20-1<br>-8.02-<br>1.686+(<br>1.360<br>1.11+0<br>4.77-2<br>2.859+(<br>1.452<br>1.21+0<br>4.53-2<br>0.769<br>1.51+0<br>2.49-1<br>8.589-<br>0.737<br>1.48+0                           |
| Z= 58, Ce: [X<br>Shell<br>$3s_{1/2}$<br>$E_b = 1434.6 \text{ eV}$<br>$3p_{1/2}$<br>$E_b = 1272.8 \text{ eV}$<br>$3p_{3/2}$<br>$E_b = 1185.4 \text{ eV}$<br>$3d_{3/2}$<br>$E_b = 901.3 \text{ eV}$                                                                                     | $ \begin{array}{c} \delta \\ \mathbf{fe}   \mathbf{4f_{5/2}^2} \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \beta \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \beta \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \beta \\ \beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} -2.80-4 \\ \hline 68_{1/2}^2 \\ \hline k  (eV) \\ \hline 1500 \\ \hline 4.933+1 \\ 1.947 \\ 1.01+0 \\ 3.81-4 \\ \hline 7.425+1 \\ 1.105 \\ 3.75-1 \\ 8.54-2 \\ \hline 1.658+2 \\ 1.213 \\ 2.91-1 \\ 5.05-2 \\ \hline 2.719+2 \\ 1.036 \\ -7.18-2 \\ 2.65-2 \\ \hline 3.926+2 \\ 1.075 \\ \end{array}$                                                                                                                                                | -3.56-4  2000  3.515+1 1.953 5.38-1 -2.14-4  5.111+1 1.477 1.10-1 1.20-2 1.065+2 1.520 3.79-2 9.07-3 1.226+2 1.198 1.14-1 5.05-2 1.751+2 1.203                                                                                  | 3000  1.885+1 1.962 1.25-1 -4.79-4 2.555+1 1.601 -1.06-2 1.62-3 4.983+1 1.653 -1.21-2 7.04-3 3.678+1 1.231 4.73-1 7.96-2 5.191+1 1.204                                                                                  | 4000<br>1.155+1<br>1.970<br>-5.46-2<br>-5.95-4<br>1.443+1<br>1.598<br>1.26-1<br>4.36-3<br>2.711+1<br>1.663<br>1.53-1<br>1.11-2<br>1.487+1<br>1.172<br>7.47-1<br>1.04-1<br>2.082+1<br>1.132                                                    | 5000 7.728+0 1.976 -1.22-1 -6.62-4 8.929+0 1.567 3.12-1 9.36-3 1.634+1 1.641 3.58-1 1.56-2 7.160+0 1.097 9.54-1 1.29-1 9.958+0 1.052                                                                                 | 6000<br>5.500+0<br>1.981<br>-1.27-1<br>-7.08-4<br>5.903+0<br>1.527<br>4.98-1<br>1.56-2<br>1.058+1<br>1.608<br>5.59-1<br>2.05-2<br>3.869+0<br>1.022<br>1.12+0<br>1.53-1<br>5.349+0<br>0.977                                                                                                                  | 7000  4.094+0 1.984 -9.32-2 -7.40-4 4.102+0 1.485 6.71-1 2.27-2 7.228+0 1.570 7.45-1 2.59-2 2.270+0 0.951 1.25+0 1.78-1 3.122+0 0.908                                                                                | 8000<br>3.152+0<br>1.985<br>-3.54-2<br>-7.66-4<br>2.962+0<br>1.442<br>8.30-1<br>3.05-2<br>5.145+0<br>1.531<br>9.15-1<br>3.18-2<br>1.417+0<br>0.886<br>1.35+0<br>2.03-1<br>1.939+0<br>0.846                                         | 9000<br>2.492+0<br>1.985<br>3.76-2<br>-7.85-4<br>2.207+0<br>1.400<br>9.75-1<br>3.89-2<br>3.784+0<br>1.491<br>1.07+0<br>3.83-2<br>9.288-1<br>0.825<br>1.44+0<br>2.26-1<br>1.265+0<br>0.789                                                                       | 10000 2.012+( 1.985 1.20-1 -8.02- 1.686+( 1.360 1.11+0 4.77-2 2.859+( 1.21+0 4.53-2 6.332- 0.769 1.51+0 2.49-1 8.589- 0.737                                                                                       |
| Z= 58, Ce: [X]  Shell $3s_{1/2}$ $E_b = 1434.6 \text{ eV}$ $3p_{1/2}$ $E_b = 1272.8 \text{ eV}$ $3p_{3/2}$ $E_b = 1185.4 \text{ eV}$ $3d_{3/2}$ $E_b = 901.3 \text{ eV}$ $3d_{5/2}$ $E_b = 883.3 \text{ eV}$                                                                          | $\begin{array}{c} \delta \\ \mathbf{e}   \mathbf{4f_{5/2}^2} \\ \mathbf{e} \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \\ \sigma \\ \\ \sigma \\ \\ \beta \\ \\ \gamma \\ \delta \\ \\ \sigma \\ \\ \sigma \\ \\ \beta \\ \\ \gamma \\ \delta \\ \\ \sigma \\ \\ \sigma \\ \\ \beta \\ \\ \gamma \\ \delta \\ \\ \sigma \\ \\ \sigma \\ \sigma \\ \\ \sigma \\ \sigma \\ \sigma \\ \sigma \\ \\ \sigma \\ \sigma \\ \sigma \\ \sigma \\ \\ \sigma \\ \sigma \\ \sigma \\ \sigma$ | $\begin{array}{c} -2.80-4 \\ \hline 68_{1/2}^2 \\ \hline k  (\mathrm{eV}) \\ \hline 1500 \\ \hline 4.933+1 \\ 1.947 \\ 1.01+0 \\ 3.81-4 \\ \hline 7.425+1 \\ 1.105 \\ 3.75-1 \\ 8.54-2 \\ \hline 1.658+2 \\ 1.213 \\ 2.91-1 \\ 5.05-2 \\ \hline 2.719+2 \\ 1.036 \\ -7.18-2 \\ 2.65-2 \\ \hline 3.926+2 \\ 1.075 \\ -5.77-2 \\ 2.58-2 \\ \hline 1.585+1 \\ \hline \end{array}$                                                                                         | 2000 3.515+1 1.953 5.38-1 -2.14-4 5.111+1 1.477 1.10-1 1.20-2 1.065+2 1.520 3.79-2 9.07-3 1.226+2 1.198 1.14-1 5.05-2 1.751+2 1.203 1.38-1 4.96-2 9.712+0                                                                       | 3000  1.885+1 1.962 1.25-1 -4.79-4  2.555+1 1.601 -1.06-2 1.62-3  4.983+1 1.653 -1.21-2 7.04-3  3.678+1 1.231 4.73-1 7.96-2  5.191+1 1.204 4.93-1 8.07-2 4.707+0                                                        | 4000<br>1.155+1<br>1.970<br>-5.46-2<br>-5.95-4<br>1.443+1<br>1.598<br>1.26-1<br>4.36-3<br>2.711+1<br>1.663<br>1.53-1<br>1.11-2<br>1.487+1<br>1.172<br>7.47-1<br>1.04-1<br>2.082+1<br>1.132<br>7.56-1<br>1.08-1<br>2.758+0                     | 5000 7.728+0 1.976 -1.22-1 -6.62-4 8.929+0 1.567 3.12-1 9.36-3 1.634+1 1.641 3.58-1 1.56-2 7.160+0 1.097 9.54-1 1.29-1 9.958+0 1.052 9.53-1 1.35-1 1.804+0                                                           | 6000<br>5.500+0<br>1.981<br>-1.27-1<br>-7.08-4<br>5.903+0<br>1.527<br>4.98-1<br>1.56-2<br>1.058+1<br>1.608<br>5.59-1<br>2.05-2<br>3.869+0<br>1.022<br>1.12+0<br>1.53-1<br>5.349+0<br>0.977<br>1.11+0<br>1.62-1<br>1.266+0                                                                                   | 7000 4.094+0 1.984 -9.32-2 -7.40-4 4.102+0 1.485 6.71-1 2.27-2 7.228+0 1.570 7.45-1 2.59-2 2.270+0 0.951 1.25+0 1.78-1 3.122+0 0.908 1.23+0 1.89-1 9.335-1                                                           | 8000<br>3.152+0<br>1.985<br>-3.54-2<br>-7.66-4<br>2.962+0<br>1.442<br>8.30-1<br>3.05-2<br>5.145+0<br>1.531<br>9.15-1<br>3.18-2<br>1.417+0<br>0.886<br>1.35+0<br>2.03-1<br>1.939+0<br>0.846<br>1.33+0<br>2.15-1<br>7.141-1          | 9000<br>2.492+0<br>1.985<br>3.76-2<br>-7.85-4<br>2.207+0<br>1.400<br>9.75-1<br>3.89-2<br>3.784+0<br>1.491<br>1.07+0<br>3.83-2<br>9.288-1<br>0.825<br>1.44+0<br>2.26-1<br>1.265+0<br>0.789<br>1.41+0<br>2.40-1<br>5.620-1                                        | 10000<br>2.012+(<br>1.985<br>1.20-1<br>-8.02-<br>1.686+(<br>1.360<br>1.11+0<br>4.77-2<br>2.859+(<br>1.452<br>1.21+0<br>4.53-2<br>0.769<br>1.51+0<br>2.49-1<br>8.589-<br>0.737<br>1.48+0<br>2.64-1                 |
| Z= 58, Ce: [X] Shell $3s_{1/2}$ $E_b = 1434.6 \text{ eV}$ $3p_{1/2}$ $E_b = 1272.8 \text{ eV}$ $3p_{3/2}$ $E_b = 1185.4 \text{ eV}$ $3d_{3/2}$ $E_b = 901.3 \text{ eV}$ $3d_{5/2}$ $E_b = 883.3 \text{ eV}$                                                                           | $ \begin{array}{c} \delta \\ \mathbf{fe}   \mathbf{4f_{5/2}^2} \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \beta \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \beta \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \beta \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \beta \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \beta \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \beta \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \beta \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \beta \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \sigma \\ \rho \\ \rho \\ \sigma \\ \sigma \\ \rho \\ \rho \\ \sigma \\ \sigma \\ \rho \\ \rho \\ \rho \\ \sigma \\ \sigma \\ \rho \\ \rho \\ \sigma \\ \rho \\ \sigma \\ \rho \\ \sigma \\ \rho \\ \rho \\ \sigma \\ \rho \\ \sigma \\ \rho \\ \sigma \\ \rho \\ \rho \\ \sigma \\ \rho \\ \sigma \\ \rho \\ \rho \\ \sigma \\ \rho \\ \sigma \\ \rho \\ \rho \\ \sigma \\ \rho \\ \rho \\ \sigma \\ \rho \\ \rho$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} -2.80-4 \\ \hline 65s_{1/2}^2 \\ \hline k  (eV) \\ \hline 1500 \\ \hline 4.933+1 \\ 1.947 \\ 1.01+0 \\ 3.81-4 \\ \hline 7.425+1 \\ 1.105 \\ 3.75-1 \\ 8.54-2 \\ \hline 1.658+2 \\ 1.213 \\ 2.91-1 \\ 5.05-2 \\ \hline 2.719+2 \\ 1.036 \\ -7.18-2 \\ 2.65-2 \\ \hline 3.926+2 \\ 1.075 \\ -5.77-2 \\ 2.58-2 \\ \hline 1.585+1 \\ 1.965 \\ \hline \end{array}$                                                                                        | 2000 3.515+1 1.953 5.38-1 -2.14-4 5.111+1 1.477 1.10-1 1.20-2 1.065+2 1.520 3.79-2 9.07-3 1.226+2 1.198 1.14-1 5.05-2 1.751+2 1.203 1.38-1 4.96-2 9.712+0 1.968                                                                 | 3000 1.885+1 1.962 1.25-1 -4.79-4 2.555+1 1.601 -1.06-2 1.62-3 4.983+1 1.653 -1.21-2 7.04-3 3.678+1 1.231 4.73-1 7.96-2 5.191+1 1.204 4.93-1 8.07-2 4.707+0 1.973                                                       | 4000<br>1.155+1<br>1.970<br>-5.46-2<br>-5.95-4<br>1.443+1<br>1.598<br>1.26-1<br>4.36-3<br>2.711+1<br>1.663<br>1.53-1<br>1.11-2<br>1.487+1<br>1.172<br>7.47-1<br>1.04-1<br>2.082+1<br>1.132<br>7.56-1<br>1.08-1<br>2.758+0<br>1.978            | 5000 7.728+0 1.976 -1.22-1 -6.62-4 8.929+0 1.567 3.12-1 9.36-3 1.634+1 1.641 3.58-1 1.56-2 7.160+0 1.097 9.54-1 1.29-1 9.958+0 1.052 9.53-1 1.35-1 1.804+0 1.981                                                     | 6000<br>5.500+0<br>1.981<br>-1.27-1<br>-7.08-4<br>5.903+0<br>1.527<br>4.98-1<br>1.56-2<br>1.058+1<br>1.608<br>5.59-1<br>2.05-2<br>3.869+0<br>1.022<br>1.12+0<br>1.53-1<br>5.349+0<br>0.977<br>1.11+0<br>1.62-1<br>1.266+0<br>1.984                                                                          | 7000 4.094+0 1.984 -9.32-2 -7.40-4 4.102+0 1.485 6.71-1 2.27-2 7.228+0 1.570 7.45-1 2.59-2 2.270+0 0.951 1.25+0 1.78-1 3.122+0 0.908 1.23+0 1.89-1 9.335-1 1.985                                                     | 8000<br>3.152+0<br>1.985<br>-3.54-2<br>-7.66-4<br>2.962+0<br>1.442<br>8.30-1<br>3.05-2<br>5.145+0<br>1.531<br>9.15-1<br>3.18-2<br>1.417+0<br>0.886<br>1.35+0<br>2.03-1<br>1.939+0<br>0.846<br>1.33+0<br>2.15-1<br>7.141-1<br>1.985 | 9000<br>2.492+0<br>1.985<br>3.76-2<br>-7.85-4<br>2.207+0<br>1.400<br>9.75-1<br>3.89-2<br>3.784+0<br>1.491<br>1.07+0<br>3.83-2<br>9.288-1<br>0.825<br>1.44+0<br>2.26-1<br>1.265+0<br>0.789<br>1.41+0<br>2.40-1<br>5.620-1<br>1.985                               | 10000<br>2.012+0<br>1.985<br>1.20-1<br>-8.02-<br>1.686+0<br>1.360<br>1.11+0<br>4.77-2<br>2.859+0<br>1.452<br>1.21+0<br>4.53-2<br>0.769<br>1.51+0<br>2.49-1<br>8.589-0<br>0.737<br>1.48+0<br>2.64-1<br>4.522-1.983 |
| Z= 58, Ce: [X]  Shell $3s_{1/2}$ $E_b = 1434.6 \text{ eV}$ $3p_{1/2}$ $E_b = 1272.8 \text{ eV}$ $3p_{3/2}$ $E_b = 1185.4 \text{ eV}$ $3d_{3/2}$ $E_b = 901.3 \text{ eV}$ $3d_{5/2}$ $E_b = 883.3 \text{ eV}$                                                                          | $\begin{array}{c} \delta \\ \mathbf{e}   \mathbf{4f_{5/2}^2} \\ \mathbf{e} \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \sigma \\ \delta \\ \sigma \\ \sigma \\ \delta \\ \sigma \\ \sigma \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} -2.80-4 \\ \hline 6s_{1/2}^2 \\ \hline k  (eV) \\ \hline 1500 \\ \hline 4.933+1 \\ 1.947 \\ 1.01+0 \\ 3.81-4 \\ \hline 7.425+1 \\ 1.105 \\ 3.75-1 \\ 8.54-2 \\ \hline 1.658+2 \\ 1.213 \\ 2.91-1 \\ 5.05-2 \\ \hline 2.719+2 \\ 1.036 \\ -7.18-2 \\ 2.65-2 \\ \hline 3.926+2 \\ 1.075 \\ -5.77-2 \\ 2.58-2 \\ \hline 1.585+1 \\ 1.965 \\ 1.96-1 \\ \hline \end{array}$                                                                               | 2000 3.515+1 1.953 5.38-1 -2.14-4 5.111+1 1.477 1.10-1 1.20-2 1.065+2 1.520 3.79-2 9.07-3 1.226+2 1.198 1.14-1 5.05-2 1.751+2 1.203 1.38-1 4.96-2 9.712+0 1.968 8.17-2                                                          | 3000  1.885+1 1.962 1.25-1 -4.79-4  2.555+1 1.601 -1.06-2 1.62-3  4.983+1 1.653 -1.21-2 7.04-3  3.678+1 1.231 4.73-1 7.96-2  5.191+1 1.204 4.93-1 8.07-2  4.707+0 1.973 -6.05-2                                         | 4000<br>1.155+1<br>1.970<br>-5.46-2<br>-5.95-4<br>1.443+1<br>1.598<br>1.26-1<br>4.36-3<br>2.711+1<br>1.663<br>1.53-1<br>1.11-2<br>1.487+1<br>1.172<br>7.47-1<br>1.04-1<br>2.082+1<br>1.132<br>7.56-1<br>1.08-1<br>2.758+0<br>1.978<br>-1.17-1 | 5000 7.728+0 1.976 -1.22-1 -6.62-4 8.929+0 1.567 3.12-1 9.36-3 1.634+1 1.56-2 7.160+0 1.097 9.54-1 1.29-1 9.958+0 1.052 9.53-1 1.35-1 1.804+0 1.981 -1.20-1                                                          | 6000<br>5.500+0<br>1.981<br>-1.27-1<br>-7.08-4<br>5.903+0<br>1.527<br>4.98-1<br>1.56-2<br>1.058+1<br>1.608<br>5.59-1<br>2.05-2<br>3.869+0<br>1.022<br>1.12+0<br>1.53-1<br>5.349+0<br>0.977<br>1.11+0<br>1.62-1<br>1.266+0<br>1.984<br>-8.81-2                                                               | 7000 4.094+0 1.984 -9.32-2 -7.40-4 4.102+0 1.485 6.71-1 2.27-2 7.228+0 1.570 7.45-1 2.59-2 2.270+0 0.951 1.25+0 1.78-1 3.122+0 0.908 1.23+0 1.89-1 9.335-1 1.985 -3.37-2                                             | 8000 3.152+0 1.985 -3.54-2 -7.66-4 2.962+0 1.442 8.30-1 3.05-2 5.145+0 1.531 9.15-1 3.18-2 1.417+0 0.886 1.35+0 2.03-1 1.939+0 0.846 1.33+0 2.15-1 7.141-1 1.985 3.57-2                                                            | 9000<br>2.492+0<br>1.985<br>3.76-2<br>-7.85-4<br>2.207+0<br>1.400<br>9.75-1<br>3.89-2<br>3.784+0<br>1.491<br>1.07+0<br>3.83-2<br>9.288-1<br>0.825<br>1.44+0<br>2.26-1<br>1.265+0<br>0.789<br>1.41+0<br>2.40-1<br>5.620-1<br>1.985<br>1.15-1                     | 10000 2.012+( 1.985 1.20-1 -8.02- 1.686+( 1.360 1.11+0 4.77-2 2.859+( 1.452 1.21+0 4.53-2 0.769 1.51+0 2.49-1 8.589- 0.73 1.48+0 2.64-1 4.522- 1.983 2.01-1                                                       |
| Z= 58, Ce: [X<br>Shell $3s_{1/2}$ $E_b = 1434.6 \text{ eV}$ $3p_{1/2}$ $E_b = 1272.8 \text{ eV}$ $3p_{3/2}$ $E_b = 1185.4 \text{ eV}$ $3d_{3/2}$ $E_b = 901.3 \text{ eV}$ $3d_{5/2}$ $E_b = 883.3 \text{ eV}$ $4s_{1/2}$ $E_b = 289.6 \text{ eV}$                                     | $\begin{array}{c} \delta \\ \mathbf{e}   \mathbf{4f_{5/2}^2} \\ \mathbf{e} \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \sigma \\ \delta \\ \phi \\ \gamma \\ \delta \\ \\ \sigma \\ \sigma \\ \phi \\ \delta \\ \sigma \\ \phi \\ \delta \\ \sigma \\ \phi \\ \phi \\ \phi \\ \delta \\ \sigma \\ \phi \\ \phi \\ \delta \\ \phi \\ \phi \\ \phi \\ \phi \\ \delta \\ \phi \\ \phi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} -2.80-4 \\ \hline 68^2_{1/2} \\ \hline k  (\mathrm{eV}) \\ \hline 1500 \\ \hline 4.933+1 \\ 1.947 \\ 1.01+0 \\ 3.81-4 \\ \hline 7.425+1 \\ 1.105 \\ 3.75-1 \\ 8.54-2 \\ \hline 1.658+2 \\ 1.213 \\ 2.91-1 \\ 5.05-2 \\ \hline 2.719+2 \\ 1.036 \\ -7.18-2 \\ 2.65-2 \\ \hline 3.926+2 \\ 1.075 \\ -5.77-2 \\ 2.58-2 \\ \hline 1.585+1 \\ 1.965 \\ 1.96-1 \\ -2.79-4 \\ \hline \end{array}$                                                           | 2000 3.515+1 1.953 5.38-1 -2.14-4 5.111+1 1.477 1.10-1 1.20-2 1.065+2 1.520 3.79-2 9.07-3 1.226+2 1.198 1.14-1 5.05-2 1.751+2 1.203 1.38-1 4.96-2 9.712+0 1.968 8.17-2 -3.74-4                                                  | 3000 1.885+1 1.962 1.25-1 -4.79-4 2.555+1 1.601 -1.06-2 1.62-3 4.983+1 1.653 -1.21-2 7.04-3 3.678+1 1.231 4.73-1 7.96-2 5.191+1 1.204 4.93-1 8.07-2 4.707+0 1.973 -6.05-2 -4.96-4                                       | 4000  1.155+1 1.970 -5.46-2 -5.95-4  1.443+1 1.598 1.26-1 4.36-3  2.711+1 1.663 1.53-1 1.11-2  1.487+1 1.172 7.47-1 1.04-1 2.082+1 1.132 7.56-1 1.08-1  2.758+0 1.978 -1.17-1 -5.71-4                                                         | 5000 7.728+0 1.976 -1.22-1 -6.62-4 8.929+0 1.567 3.12-1 9.36-3 1.634+1 1.56-2 7.160+0 1.097 9.54-1 1.29-1 9.958+0 1.052 9.53-1 1.35-1 1.804+0 1.981 -1.20-1 -6.24-4                                                  | 5.500+0 1.981 -1.27-1 -7.08-4 5.903+0 1.527 4.98-1 1.56-2 1.058+1 1.608 5.59-1 2.05-2 3.869+0 1.022 1.12+0 1.53-1 5.349+0 0.977 1.11+0 1.62-1 1.266+0 1.984 -8.81-2 -6.62-4                                                                                                                                 | 7000 4.094+0 1.984 -9.32-2 -7.40-4 4.102+0 1.485 6.71-1 2.27-2 7.228+0 1.570 7.45-1 2.59-2 2.270+0 0.951 1.25+0 1.78-1 3.122+0 0.908 1.23+0 1.89-1 9.335-1 1.985 -3.37-2 -6.93-4                                     | 8000 3.152+0 1.985 -3.54-2 -7.66-4 2.962+0 1.442 8.30-1 3.05-2 5.145+0 1.531 9.15-1 3.18-2 1.417+0 0.886 1.35+0 2.03-1 1.939+0 0.846 1.33+0 2.15-1 7.141-1 1.985 3.57-2 -7.15-4                                                    | 9000<br>2.492+0<br>1.985<br>3.76-2<br>-7.85-4<br>2.207+0<br>1.400<br>9.75-1<br>3.89-2<br>3.784+0<br>1.491<br>1.07+0<br>3.83-2<br>9.288-1<br>0.825<br>1.44+0<br>2.26-1<br>1.265+0<br>0.789<br>1.41+0<br>2.40-1<br>5.620-1<br>1.985<br>1.15-1<br>-7.37-4          | 10000 2.012+( 1.985 1.20-1 -8.02- 1.686+( 1.360 1.11+0 4.77-2 2.859+( 1.452 1.21+0 4.53-2 0.769 1.51+0 2.49-1 8.589- 0.737 1.48+0 2.64-1 4.522- 1.983 2.01-1 -7.54-                                               |
| Z= 58, Ce: [X] Shell $3s_{1/2}$ $E_b = 1434.6 \text{ eV}$ $3p_{1/2}$ $E_b = 1272.8 \text{ eV}$ $3p_{3/2}$ $E_b = 1185.4 \text{ eV}$ $3d_{3/2}$ $E_b = 901.3 \text{ eV}$ $3d_{5/2}$ $E_b = 883.3 \text{ eV}$                                                                           | $\begin{array}{c} \delta \\ \mathbf{e}   \mathbf{4f_{5/2}^2} \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \\ \sigma \\ \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \\ \sigma \\ \\ \beta \\ \\ \gamma \\ \delta \\ \\ \sigma \\ \\ \sigma \\ \\ \beta \\ \\ \gamma \\ \delta \\ \\ \sigma \\ \\ \sigma \\ \\ \beta \\ \\ \gamma \\ \delta \\ \\ \sigma \\ \sigma \\ \sigma \\ \sigma \\ \sigma \\ \\ \sigma \\ \\ \sigma \\ \sigma \\ \sigma \\ \\ \sigma \\ \sigma \\ \sigma \\ \sigma \\ \\ \sigma \\ \sigma \\ \sigma \\ \sigma \\ $                    | $\begin{array}{c} -2.80-4 \\ \hline 6s_{1/2}^2 \\ \hline k  (eV) \\ \hline 1500 \\ \hline 4.933+1 \\ 1.947 \\ 1.01+0 \\ 3.81-4 \\ \hline 7.425+1 \\ 1.105 \\ 3.75-1 \\ 8.54-2 \\ \hline 1.658+2 \\ 1.213 \\ 2.91-1 \\ 5.05-2 \\ \hline 2.719+2 \\ 1.036 \\ -7.18-2 \\ 2.65-2 \\ \hline 3.926+2 \\ 1.075 \\ -5.77-2 \\ 2.58-2 \\ \hline 1.585+1 \\ 1.965 \\ 1.96-1 \\ \hline \end{array}$                                                                               | 2000 3.515+1 1.953 5.38-1 -2.14-4 5.111+1 1.477 1.10-1 1.20-2 1.065+2 1.520 3.79-2 9.07-3 1.226+2 1.198 1.14-1 5.05-2 1.751+2 1.203 1.38-1 4.96-2 9.712+0 1.968 8.17-2                                                          | 3000  1.885+1 1.962 1.25-1 -4.79-4  2.555+1 1.601 -1.06-2 1.62-3  4.983+1 1.653 -1.21-2 7.04-3  3.678+1 1.231 4.73-1 7.96-2  5.191+1 1.204 4.93-1 8.07-2  4.707+0 1.973 -6.05-2                                         | 4000<br>1.155+1<br>1.970<br>-5.46-2<br>-5.95-4<br>1.443+1<br>1.598<br>1.26-1<br>4.36-3<br>2.711+1<br>1.663<br>1.53-1<br>1.11-2<br>1.487+1<br>1.172<br>7.47-1<br>1.04-1<br>2.082+1<br>1.132<br>7.56-1<br>1.08-1<br>2.758+0<br>1.978<br>-1.17-1 | 5000 7.728+0 1.976 -1.22-1 -6.62-4 8.929+0 1.567 3.12-1 9.36-3 1.634+1 1.56-2 7.160+0 1.097 9.54-1 1.29-1 9.958+0 1.052 9.53-1 1.35-1 1.804+0 1.981 -1.20-1                                                          | 6000<br>5.500+0<br>1.981<br>-1.27-1<br>-7.08-4<br>5.903+0<br>1.527<br>4.98-1<br>1.56-2<br>1.058+1<br>1.608<br>5.59-1<br>2.05-2<br>3.869+0<br>1.022<br>1.12+0<br>1.53-1<br>5.349+0<br>0.977<br>1.11+0<br>1.62-1<br>1.266+0<br>1.984<br>-8.81-2                                                               | 7000 4.094+0 1.984 -9.32-2 -7.40-4 4.102+0 1.485 6.71-1 2.27-2 7.228+0 1.570 7.45-1 2.59-2 2.270+0 0.951 1.25+0 1.78-1 3.122+0 0.908 1.23+0 1.89-1 9.335-1 1.985 -3.37-2                                             | 8000 3.152+0 1.985 -3.54-2 -7.66-4 2.962+0 1.442 8.30-1 3.05-2 5.145+0 1.531 9.15-1 3.18-2 1.417+0 0.886 1.35+0 2.03-1 1.939+0 0.846 1.33+0 2.15-1 7.141-1 1.985 3.57-2                                                            | 9000<br>2.492+0<br>1.985<br>3.76-2<br>-7.85-4<br>2.207+0<br>1.400<br>9.75-1<br>3.89-2<br>3.784+0<br>1.491<br>1.07+0<br>3.83-2<br>9.288-1<br>0.825<br>1.44+0<br>2.26-1<br>1.265+0<br>0.789<br>1.41+0<br>2.40-1<br>5.620-1<br>1.985<br>1.15-1                     | 10000 2.012+( 1.985 1.20-1 -8.02- 1.686+( 1.360 1.11+0 4.77-2 2.859+( 1.452 1.21+0 4.53-2 0.769 1.51+0 2.49-1 8.589- 0.737 1.48+0 2.64-1 4.522- 1.983 2.01-1 -7.54-                                               |
| Z= 58, Ce: [X] Shell $3s_{1/2}$ $E_b = 1434.6 \text{ eV}$ $3p_{1/2}$ $E_b = 1272.8 \text{ eV}$ $3p_{3/2}$ $E_b = 1185.4 \text{ eV}$ $3d_{3/2}$ $E_b = 901.3 \text{ eV}$ $3d_{5/2}$ $E_b = 883.3 \text{ eV}$ $4s_{1/2}$ $E_b = 289.6 \text{ eV}$                                       | δ (e) 4f <sub>5/2</sub> (  σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} -2.80-4 \\ \hline 65s_{1/2}^2 \\ \hline k  (eV) \\ \hline 1500 \\ \hline 4.933+1 \\ 1.947 \\ 1.01+0 \\ 3.81-4 \\ \hline 7.425+1 \\ 1.105 \\ 3.75-1 \\ 8.54-2 \\ \hline 1.658+2 \\ 1.213 \\ 2.91-1 \\ 5.05-2 \\ \hline 2.719+2 \\ 1.036 \\ -7.18-2 \\ 2.65-2 \\ \hline 3.926+2 \\ 1.075 \\ -5.77-2 \\ 2.58-2 \\ \hline 1.585+1 \\ 1.965 \\ 1.96-1 \\ -2.79-4 \\ \hline 1.885+1 \\ 1.682 \\ 3.66-3 \\ \hline \end{array}$                              | -3.56-4  2000  3.515+1 1.953 5.38-1 -2.14-4  5.111+1 1.477 1.10-1 1.20-2 1.065+2 1.520 3.79-2 9.07-3 1.226+2 1.198 1.14-1 5.05-2 1.751+2 1.203 1.38-1 4.96-2 9.712+0 1.968 8.17-2 -3.74-4 1.147+1 1.695 -2.18-2                 | 3000  1.885+1 1.962 1.25-1 -4.79-4 2.555+1 1.601 -1.06-2 1.62-3 4.983+1 1.653 -1.21-2 7.04-3 3.678+1 1.231 4.73-1 7.96-2 5.191+1 1.204 4.93-1 8.07-2 4.707+0 1.973 -6.05-2 -4.96-4 5.296+0 1.667 8.23-2                 | 4000  1.155+1 1.970 -5.46-2 -5.95-4  1.443+1 1.598 1.26-1 4.36-3  2.711+1 1.663 1.53-1 1.11-2  1.487+1 1.172 7.47-1 1.04-1  2.082+1 1.132 7.56-1 1.08-1  2.758+0 1.978 -1.17-1 -5.71-4  2.918+0 1.621 2.53-1                                  | 5000 7.728+0 1.976 -1.22-1 -6.62-4 8.929+0 1.567 3.12-1 9.36-3 1.634+1 1.641 3.58-1 1.56-2 7.160+0 1.097 9.54-1 1.29-1 9.958+0 1.052 9.53-1 1.35-1 1.804+0 1.981 -1.20-1 -6.24-4 1.790+0 1.571 4.31-1                | 6000<br>5.500+0<br>1.981<br>-1.27-1<br>-7.08-4<br>5.903+0<br>1.527<br>4.98-1<br>1.56-2<br>1.058+1<br>1.608<br>5.59-1<br>2.05-2<br>3.869+0<br>1.022<br>1.12+0<br>1.53-1<br>5.349+0<br>0.977<br>1.11+0<br>1.62-1<br>1.266+0<br>1.984<br>-8.81-2<br>-6.62-4<br>1.181+0<br>1.521<br>6.01-1                      | 7000 4.094+0 1.984 -9.32-2 -7.40-4 4.102+0 1.485 6.71-1 2.27-2 7.228+0 1.570 7.45-1 2.59-2 2.270+0 0.951 1.25+0 1.78-1 3.122+0 0.908 1.23+0 1.89-1 9.335-1 1.985 -3.37-2 -6.93-4 8.210-1 1.474 7.59-1                | 8000 3.152+0 1.985 -3.54-2 -7.66-4 2.962+0 1.442 8.30-1 3.05-2 5.145+0 1.531 9.15-1 3.18-2 1.417+0 0.886 1.35+0 2.03-1 1.939+0 0.846 1.33+0 2.15-1 7.141-1 1.985 3.57-2 -7.15-4 5.938-1 1.428 9.05-1                               | 9000 2.492+0 1.985 3.76-2 -7.85-4 2.207+0 1.400 9.75-1 3.89-2 3.784+0 1.491 1.07+0 3.83-2 9.288-1 0.825 1.44+0 2.26-1 1.265+0 0.789 1.41+0 2.40-1 5.620-1 1.985 1.15-1 -7.37-4 4.431-1 1.385 1.04+0                                                             | 10000 2.012+( 1.985 1.20-1 -8.02- 1.686+( 1.360 1.11+0 4.77-2 2.859+( 1.452 -0.769 1.51+0 2.49-1 8.589- 0.737 1.48+0 2.64-1 4.522- 1.983 2.01-1 -7.54- 3.392- 1.343 1.16+0                                        |
| Z= 58, Ce: [X<br>Shell<br>$3s_{1/2}$<br>$E_b = 1434.6 \text{ eV}$<br>$3p_{1/2}$<br>$E_b = 1272.8 \text{ eV}$<br>$3p_{3/2}$<br>$E_b = 1185.4 \text{ eV}$<br>$3d_{3/2}$<br>$E_b = 901.3 \text{ eV}$<br>$3d_{5/2}$<br>$E_b = 883.3 \text{ eV}$<br>$4s_{1/2}$<br>$E_b = 289.6 \text{ eV}$ | $\begin{array}{c} \delta \\ \text{fe}   \text{Aff}_{5/2}^{2} \text{c} \end{array}$ $\begin{array}{c} \sigma \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \sigma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} -2.80-4 \\ \hline 6s_{1/2}^2 \\ \hline k  (eV) \\ \hline 1500 \\ \hline 4.933+1 \\ 1.947 \\ 1.01+0 \\ 3.81-4 \\ \hline 7.425+1 \\ 1.105 \\ 3.75-1 \\ 8.54-2 \\ \hline 1.658+2 \\ 1.213 \\ 2.91-1 \\ 5.05-2 \\ \hline 2.719+2 \\ 1.036 \\ -7.18-2 \\ 2.65-2 \\ \hline 3.926+2 \\ 1.075 \\ -5.77-2 \\ 2.58-2 \\ \hline 1.585+1 \\ 1.965 \\ 1.96-1 \\ -2.79-4 \\ \hline 1.885+1 \\ 1.682 \\ \hline \end{array}$                                         | 2000 3.515+1 1.953 5.38-1 -2.14-4 5.111+1 1.477 1.10-1 1.20-2 1.065+2 1.520 3.79-2 9.07-3 1.226+2 1.198 1.14-1 5.05-2 1.751+2 1.203 1.38-1 4.96-2 9.712+0 1.968 8.17-2 -3.74-4 1.147+1 1.695                                    | 3000  1.885+1 1.962 1.25-1 -4.79-4 2.555+1 1.601 -1.06-2 1.62-3 4.983+1 1.653 -1.21-2 7.04-3 3.678+1 1.231 4.73-1 7.96-2 5.191+1 1.204 4.93-1 8.07-2 4.707+0 1.973 -6.05-2 -4.96-4 5.296+0 1.667                        | 4000  1.155+1 1.970 -5.46-2 -5.95-4  1.443+1 1.598 1.26-1 4.36-3  2.711+1 1.663 1.53-1 1.11-2  1.487+1 1.172 7.47-1 1.04-1  2.082+1 1.132 7.56-1 1.08-1  2.758+0 1.978 -1.17-1 -5.71-4  2.918+0 1.621                                         | 5000 7.728+0 1.976 -1.22-1 -6.62-4 8.929+0 1.567 3.12-1 9.36-3 1.634+1 1.56-2 7.160+0 1.097 9.54-1 1.29-1 9.958+0 1.052 9.53-1 1.35-1 1.804+0 1.981 -1.20-1 -6.24-4 1.790+0 1.571                                    | 6000<br>5.500+0<br>1.981<br>-1.27-1<br>-7.08-4<br>5.903+0<br>1.527<br>4.98-1<br>1.56-2<br>1.058+1<br>1.608<br>5.59-1<br>2.05-2<br>3.869+0<br>1.022<br>1.12+0<br>1.53-1<br>5.349+0<br>0.977<br>1.11+0<br>1.62-1<br>1.266+0<br>1.984<br>-8.81-2<br>-6.62-4<br>1.181+0<br>1.521                                | 7000  4.094+0 1.984 -9.32-2 -7.40-4  4.102+0 1.485 6.71-1 2.27-2 7.228+0 1.570 7.45-1 2.59-2 2.270+0 0.951 1.25+0 1.78-1 3.122+0 0.908 1.23+0 1.89-1 9.335-1 1.985 -3.37-2 -6.93-4 8.210-1 1.474                     | 8000 3.152+0 1.985 -3.54-2 -7.66-4 2.962+0 1.442 8.30-1 3.05-2 5.145+0 1.531 9.15-1 3.18-2 1.417+0 0.886 1.35+0 2.03-1 1.939+0 0.846 1.33+0 2.15-1 7.141-1 1.985 3.57-2 -7.15-4 5.938-1 1.428                                      | 9000<br>2.492+0<br>1.985<br>3.76-2<br>-7.85-4<br>2.207+0<br>1.400<br>9.75-1<br>3.89-2<br>3.784+0<br>1.491<br>1.07+0<br>3.83-2<br>9.288-1<br>0.825<br>1.44+0<br>2.26-1<br>1.265+0<br>0.789<br>1.41+0<br>2.40-1<br>1.985<br>1.15-1<br>-7.37-4<br>4.431-1<br>1.385 | 10000 2.012+( 1.985 1.20-1 -8.02- 1.686+( 1.360 1.11+0 4.77-2 2.859+( 1.452 -0.769 1.51+0 2.49-1 8.589- 0.737 1.48+0 2.64-1 4.522- 1.983 2.01-1 -7.54- 3.392- 1.343 1.16+0                                        |
| Z= 58, Ce: [X] Shell $3s_{1/2}$ $E_b = 1434.6 \text{ eV}$ $3p_{1/2}$ $E_b = 1185.4 \text{ eV}$ $3d_{3/2}$ $E_b = 901.3 \text{ eV}$ $3d_{5/2}$ $E_b = 883.3 \text{ eV}$ $4s_{1/2}$ $E_b = 289.6 \text{ eV}$ $4p_{1/2}$ $E_b = 223.3 \text{ eV}$                                        | $\begin{array}{c} \delta \\ \epsilon   \mathbf{4f_{5/2}^2} \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \\ \sigma \\ \sigma \\ \delta \\ \sigma \\ \sigma \\ \rho \\ \gamma \\ \delta \\ \sigma \\ \sigma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} -2.80-4 \\ \hline 65s_{1/2}^2 \\ \hline k  (eV) \\ \hline 1500 \\ \hline 4.933+1 \\ 1.947 \\ 1.01+0 \\ 3.81-4 \\ \hline 7.425+1 \\ 1.105 \\ 3.75-1 \\ 8.54-2 \\ \hline 1.658+2 \\ 1.213 \\ 2.91-1 \\ 5.05-2 \\ \hline 2.719+2 \\ 1.036 \\ -7.18-2 \\ 2.65-2 \\ \hline 3.926+2 \\ 1.075 \\ -5.77-2 \\ 2.58-2 \\ \hline 1.585+1 \\ 1.965 \\ 1.96-1 \\ -2.79-4 \\ \hline 1.885+1 \\ 1.682 \\ 3.66-3 \\ -1.38-3 \\ \hline 3.915+1 \\ \hline \end{array}$ | -3.56-4  2000  3.515+1 1.953 5.38-1 -2.14-4  5.111+1 1.477 1.10-1 1.20-2 1.065+2 1.520 3.79-2 9.07-3 1.226+2 1.198 1.14-1 5.05-2 1.751+2 1.203 1.38-1 4.96-2 9.712+0 1.968 8.17-2 -3.74-4 1.147+1 1.695 -2.18-2 -1.56-3 2.303+1 | 3000  1.885+1 1.962 1.25-1 -4.79-4 2.555+1 1.601 -1.06-2 1.62-3 4.983+1 1.653 -1.21-2 7.04-3 3.678+1 1.231 4.73-1 7.96-2 5.191+1 1.204 4.93-1 8.07-2 4.707+0 1.973 -6.05-2 -4.96-4 5.296+0 1.667 8.23-2 -1.63-4 1.017+1 | 4000  1.155+1 1.970 -5.46-2 -5.95-4  1.443+1 1.598 1.26-1 4.36-3  2.711+1 1.663 1.53-1 1.11-2  1.487+1 1.172 7.47-1 1.04-1  2.082+1 1.132 7.56-1 1.08-1  2.758+0 1.978 -1.17-1 -5.71-4  2.918+0 1.621 2.53-1 3.22-3 5.437+0                   | 5000 7.728+0 1.976 -1.22-1 -6.62-4 8.929+0 1.567 3.12-1 9.36-3 1.634+1 1.641 3.58-1 1.56-2 7.160+0 1.097 9.54-1 1.29-1 9.958+0 1.052 9.53-1 1.35-1 1.804+0 1.981 -1.20-1 -6.24-4 1.790+0 1.571 4.31-1 8.23-3 3.261+0 | 6000<br>5.500+0<br>1.981<br>-1.27-1<br>-7.08-4<br>5.903+0<br>1.527<br>4.98-1<br>1.56-2<br>1.058+1<br>1.608<br>5.59-1<br>2.05-2<br>3.869+0<br>1.022<br>1.12+0<br>1.53-1<br>5.349+0<br>0.977<br>1.11+0<br>1.62-1<br>1.266+0<br>1.984<br>-8.81-2<br>-6.62-4<br>1.181+0<br>1.521<br>6.01-1<br>1.45-2<br>2.112+0 | 7000 4.094+0 1.984 -9.32-2 -7.40-4 4.102+0 1.485 6.71-1 2.27-2 7.228+0 1.570 7.45-1 2.59-2 2.270+0 0.951 1.25+0 1.78-1 3.122+0 0.908 1.23+0 1.89-1 9.335-1 1.985 -3.37-2 -6.93-4 8.210-1 1.474 7.59-1 2.17-2 1.445+0 | 8000 3.152+0 1.985 -3.54-2 -7.66-4 2.962+0 1.442 8.30-1 3.05-2 5.145+0 1.531 9.15-1 3.18-2 1.417+0 0.886 1.35+0 2.03-1 1.939+0 0.846 1.33+0 2.15-1 7.141-1 1.985 3.57-2 -7.15-4 5.938-1 1.428 9.05-1 2.97-2 1.031+0                | 9000 2.492+0 1.985 3.76-2 -7.85-4 2.207+0 1.400 9.75-1 3.89-2 3.784+0 1.491 1.07+0 3.83-2 9.288-1 0.825 1.44+0 2.26-1 1.265+0 0.789 1.41+0 2.40-1 5.620-1 1.985 1.15-1 -7.37-4 4.431-1 1.385 1.04+0 3.82-2 7.601-1                                              | 10000 2.012+( 1.985 1.20-1 -8.02- 1.686+( 1.360 1.11+0 4.77-2 2.859+( 1.452 1.21+0 4.53-2 0.769 1.51+0 2.49-1 8.589- 0.737 1.48+0 2.64-1 4.522- 1.983 2.01-1 -7.54- 3.392- 1.343 1.16+0 4.71-2 5.755-             |
| Z= 58, Ce: [X]  Shell $3s_{1/2}$ $E_b = 1434.6 \text{ eV}$ $3p_{1/2}$ $E_b = 1272.8 \text{ eV}$ $3d_{3/2}$ $E_b = 901.3 \text{ eV}$ $3d_{5/2}$ $E_b = 883.3 \text{ eV}$ $4s_{1/2}$ $E_b = 289.6 \text{ eV}$ $4p_{1/2}$ $E_b = 223.3 \text{ eV}$                                       | δ (e) 4f <sup>2</sup> <sub>5/2</sub> (c) σ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ β γ γ δ σ σ γ δ σ σ γ δ σ σ γ δ σ σ γ δ σ σ γ δ σ σ γ δ σ σ γ δ σ σ γ δ σ σ σ γ δ σ σ σ γ δ σ σ σ γ δ σ σ σ σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} -2.80-4 \\ \hline 65s_{1/2}^2 \\ \hline k  (eV) \\ \hline 1500 \\ \hline 4.933+1 \\ 1.947 \\ 1.01+0 \\ 3.81-4 \\ \hline 7.425+1 \\ 1.105 \\ 3.75-1 \\ 8.54-2 \\ \hline 1.658+2 \\ 1.213 \\ 2.91-1 \\ 5.05-2 \\ \hline 2.719+2 \\ 1.036 \\ -7.18-2 \\ 2.65-2 \\ \hline 3.926+2 \\ 1.075 \\ -5.77-2 \\ 2.58-2 \\ \hline 1.585+1 \\ 1.965 \\ 1.96-1 \\ -2.79-4 \\ \hline 1.885+1 \\ 1.682 \\ 3.66-3 \\ -1.38-3 \\ \hline \end{array}$                   | 2000 3.515+1 1.953 5.38-1 -2.14-4 5.111+1 1.477 1.10-1 1.20-2 1.065+2 1.520 3.79-2 9.07-3 1.226+2 1.198 1.14-1 5.05-2 1.751+2 1.203 1.38-1 4.96-2 9.712+0 1.98 8.17-2 -3.74-4 1.147+1 1.695 -2.18-2 -1.56-3                     | 3000  1.885+1 1.962 1.25-1 -4.79-4 2.555+1 1.601 -1.06-2 1.62-3 4.983+1 1.653 -1.21-2 7.04-3 3.678+1 1.231 4.73-1 7.96-2 5.191+1 1.204 4.93-1 8.07-2 4.707+0 1.973 -6.05-2 -4.96-4 5.296+0 1.667 8.23-2 -1.63-4         | 4000  1.155+1 1.970 -5.46-2 -5.95-4  1.443+1 1.598 1.26-1 4.36-3  2.711+1 1.663 1.53-1 1.11-2  1.487+1 1.172 7.47-1 1.04-1  2.082+1 1.132 7.56-1 1.08-1  2.758+0 1.978 -1.17-1 -5.71-4  2.918+0 1.621 2.53-1 3.22-3                           | 5000 7.728+0 1.976 -1.22-1 -6.62-4 8.929+0 1.567 3.12-1 9.36-3 1.634+1 1.56-2 7.160+0 1.097 9.54-1 1.29-1 9.958+0 1.052 9.53-1 1.35-1 1.804+0 1.981 -1.20-1 -6.24-4 1.790+0 1.571 4.31-1 8.23-3                      | 6000<br>5.500+0<br>1.981<br>-1.27-1<br>-7.08-4<br>5.903+0<br>1.527<br>4.98-1<br>1.56-2<br>1.058+1<br>1.608<br>5.59-1<br>2.05-2<br>3.869+0<br>1.022<br>1.12+0<br>1.53-1<br>5.349+0<br>0.977<br>1.11+0<br>1.62-1<br>1.266+0<br>1.984<br>-8.81-2<br>-6.62-4<br>1.181+0<br>1.521<br>6.01-1<br>1.45-2            | 7000  4.094+0 1.984 -9.32-2 -7.40-4  4.102+0 1.485 6.71-1 2.27-2  7.228+0 1.570 7.45-1 2.59-2  2.270+0 0.951 1.25+0 1.78-1 3.122+0 0.908 1.23+0 1.89-1 9.335-1 1.985 -3.37-2 -6.93-4  8.210-1 1.474 7.59-1 2.17-2    | 8000  3.152+0 1.985 -3.54-2 -7.66-4 2.962+0 1.442 8.30-1 3.05-2 5.145+0 1.531 9.15-1 3.18-2 1.417+0 0.886 1.35+0 2.03-1 1.939+0 0.846 1.33+0 2.15-1 7.141-1 1.985 3.57-2 -7.15-4 5.938-1 1.428 9.05-1 2.97-2                       | 9000  2.492+0 1.985 3.76-2 -7.85-4  2.207+0 1.400 9.75-1 3.89-2  3.784+0 1.491 1.07+0 3.83-2  9.288-1 0.825 1.44+0 2.26-1 1.265+0 0.789 1.41+0 2.40-1 1.985 1.15-1 -7.37-4 4.431-1 1.385 1.04+0 3.82-2                                                          | 10000 2.012+( 1.985 1.20-1 -8.02- 1.686+( 1.360 1.11+0 4.77-2 2.859+( 1.452 1.21+0 4.53-2 0.769 1.51+0 2.49-1 8.589- 0.737 1.48+0 2.64-1 4.522- 1.983 2.01-1 -7.54- 3.392- 1.343                                  |

| Table 1 (contin                                                        | ued)                                   |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                       |                                       |                                       |
|------------------------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| $4d_{3/2}$ $E_b = 113.6 \text{ eV}$                                    | σ<br>β<br>γ<br>δ                       | 3.530+1<br>1.365<br>1.30-1<br>3.15-2   | 1.713+1<br>1.350<br>2.95-1<br>4.49-2   | 5.623+0<br>1.264<br>5.87-1<br>7.04-2   | 2.400+0<br>1.168<br>8.12-1<br>9.59-2   | 1.199+0<br>1.078<br>9.90-1<br>1.22-1   | 6.659-1<br>0.999<br>1.13+0<br>1.48-1   | 3.988-1<br>0.927<br>1.25+0<br>1.74-1   | 2.530-1<br>0.861<br>1.35+0<br>1.99-1  | 1.680-1<br>0.800<br>1.43+0<br>2.23-1  | 1.157-1<br>0.745<br>1.50+0<br>2.47-1  |
| $4d_{5/2}$<br>$E_b =$<br>107.6 eV                                      | σ<br>β<br>γ<br>δ                       | 5.060+1<br>1.356<br>1.45-1<br>3.09-2   | 2.436+1<br>1.323<br>3.12-1<br>4.50-2   | 7.905+0<br>1.220<br>5.96-1<br>7.31-2   | 3.345+0<br>1.117<br>8.12-1<br>1.01-1   | 1.660+0<br>1.027<br>9.81-1<br>1.30-1   | 9.158-1<br>0.949<br>1.12+0<br>1.58-1   | 5.454-1<br>0.880<br>1.23+0<br>1.86-1   | 3.443-1<br>0.819<br>1.33+0<br>2.12-1  | 2.274-1<br>0.764<br>1.41+0<br>2.38-1  | 1.559-1<br>0.713<br>1.47+0<br>2.62-1  |
| $4f_{5/2}$ $E_b = 0.1 \text{ eV}$                                      | σ<br>β<br>γ<br>δ                       | 4.446+0<br>1.013<br>5.22-1<br>1.20-1   | 1.504+0<br>0.925<br>6.44-1<br>1.50-1   | 3.078-1<br>0.780<br>8.04-1<br>2.08-1   | 9.568-2<br>0.678<br>9.15-1<br>2.62-1   | 3.752-2<br>0.600<br>1.00+0<br>3.13-1   | 1.708-2<br>0.534<br>1.07+0<br>3.59-1   | 8.634-3<br>0.476<br>1.13+0<br>4.01-1   | 4.724-3<br>0.423<br>1.17+0<br>4.40-1  | 2.750-3<br>0.375<br>1.20+0<br>4.76-1  | 1.684-3<br>0.330<br>1.23+0<br>5.09-1  |
| $5s_{1/2}$ $E_b =$ 37.8 eV                                             | σ<br>β<br>γ<br>δ                       | 2.611+0<br>1.967<br>1.32-1<br>-2.99-4  | 1.578+0<br>1.969<br>3.80-2<br>-3.84-4  | 7.536-1<br>1.974<br>-7.82-2<br>-4.96-4 | 4.379-1<br>1.979<br>-1.20-1<br>-5.63-4 | 2.848-1<br>1.982<br>-1.15-1<br>-6.14-4 | 1.993-1<br>1.984<br>-7.76-2<br>-6.52-4 | 1.466-1<br>1.985<br>-2.01-2<br>-6.83-4 | 1.120-1<br>1.985<br>5.13-2<br>-7.04-4 | 8.800-2<br>1.984<br>1.32-1<br>-7.26-4 | 7.075-2<br>1.983<br>2.19-1<br>-7.42-4 |
| $ \begin{array}{c} 5p_{1/2} \\ E_b = \\ 21.8 \text{ eV} \end{array} $  | σ<br>β<br>γ<br>δ                       | 2.558+0<br>1.716<br>-1.43-2<br>-2.17-3 | 1.538+0<br>1.714<br>-1.79-2<br>-2.02-3 | 7.020-1<br>1.675<br>1.01-1<br>-5.48-4  | 3.847-1<br>1.624<br>2.74-1<br>2.90-3   | 2.354-1<br>1.571<br>4.52-1<br>8.02-3   | 1.551-1<br>1.520<br>6.21-1<br>1.43-2   | 1.077-1<br>1.471<br>7.77-1<br>2.15-2   | 7.786-2<br>1.424<br>9.20-1<br>2.93-2  | 5.809-2<br>1.379<br>1.05+0<br>3.77-2  | 4.446-2<br>1.337<br>1.17+0<br>4.64-2  |
| $5p_{3/2}$ $E_b =$ 18.8 eV                                             | $\sigma \ eta \ eta \ \gamma \ \delta$ | 5.008+0<br>1.729<br>-3.00-2<br>5.90-4  | 2.919+0<br>1.744<br>-2.25-2<br>2.29-3  | 1.278+0<br>1.727<br>1.15-1<br>5.31-3   | 6.803-1<br>1.690<br>3.04-1<br>8.75-3   | 4.072-1<br>1.647<br>4.96-1<br>1.30-2   | 2.635-1<br>1.601<br>6.78-1<br>1.80-2   | 1.802-1<br>1.557<br>8.47-1<br>2.36-2   | 1.286-1<br>1.513<br>1.00+0<br>2.97-2  | 9.478-2<br>1.470<br>1.14+0<br>3.63-2  | 7.176-2<br>1.429<br>1.27+0<br>4.32-2  |
| $6s_{1/2}$ $E_b = 6.0 \text{ eV}$                                      | $\sigma \ eta \ eta \ \gamma \ \delta$ | 1.946-1<br>1.967<br>1.28-1<br>-3.02-4  | 1.173-1<br>1.969<br>3.50-2<br>-3.85-4  | 5.578-2<br>1.975<br>-7.99-2<br>-4.96-4 | 3.234-2<br>1.979<br>-1.21-1<br>-5.67-4 | 2.101-2<br>1.982<br>-1.14-1<br>-6.14-4 | 1.468-2<br>1.984<br>-7.64-2<br>-6.46-4 | 1.080-2<br>1.985<br>-1.90-2<br>-6.71-4 | 8.244-3<br>1.985<br>5.21-2<br>-7.00-4 | 6.477-3<br>1.985<br>1.33-1<br>-7.22-4 | 5.207-3<br>1.983<br>2.20-1<br>-7.37-4 |
| Z= 59, Pr: [X                                                          | e]4f <sub>5/2</sub> 6                  | *                                      |                                        |                                        |                                        |                                        |                                        |                                        |                                       |                                       |                                       |
| Shell                                                                  |                                        | k (eV)<br>1500                         | 2000                                   | 3000                                   | 4000                                   | 5000                                   | 6000                                   | 7000                                   | 8000                                  | 9000                                  | 10000                                 |
| $3p_{1/2}$<br>$E_b =$<br>1337.4 eV                                     | σ<br>β<br>γ<br>δ                       | 7.420+1<br>0.959<br>3.48-1<br>1.21-1   | 5.243+1<br>1.446<br>1.55-1<br>1.67-2   | 2.663+1<br>1.596<br>-1.72-2<br>1.58-3  | 1.517+1<br>1.601<br>1.00-1<br>3.69-3   | 9.441+0<br>1.574<br>2.80-1<br>8.34-3   | 6.269+0<br>1.537<br>4.64-1<br>1.42-2   | 4.371+0<br>1.496<br>6.37-1<br>2.10-2   | 3.167+0<br>1.454<br>7.97-1<br>2.84-2  | 2.365+0<br>1.413<br>9.42-1<br>3.63-2  | 1.811+0<br>1.373<br>1.07+0<br>4.47-2  |
| $3p_{3/2}$ $E_b = 1242.2 \text{ eV}$                                   | σ<br>β<br>γ<br>δ                       | 1.695+2<br>1.121<br>3.18-1<br>6.93-2   | 1.104+2<br>1.492<br>6.77-2<br>1.14-2   | 5.223+1<br>1.649<br>-2.43-2<br>6.91-3  | 2.860+1<br>1.666<br>1.25-1<br>1.08-2   | 1.731+1<br>1.649<br>3.25-1<br>1.51-2   | 1.125+1<br>1.618<br>5.25-1<br>1.98-2   | 7.706+0<br>1.582<br>7.12-1<br>2.49-2   | 5.498+0<br>1.545<br>8.83-1<br>3.04-2  | 4.053+0<br>1.506<br>1.04+0<br>3.65-2  | 3.067+0<br>1.468<br>1.18+0<br>4.29-2  |
| $3d_{3/2}$ $E_b = 951.1 \text{ eV}$                                    | σ<br>β<br>γ<br>δ                       | 2.939+2<br>0.990<br>-9.71-2<br>2.17-2  | 1.336+2<br>1.182<br>7.83-2<br>4.77-2   | 4.040+1<br>1.235<br>4.40-1<br>7.76-2   | 1.642+1<br>1.184<br>7.22-1<br>1.02-1   | 7.941+0<br>1.112<br>9.36-1<br>1.26-1   | 4.305+0<br>1.038<br>1.10+0<br>1.49-1   | 2.533+0<br>0.969<br>1.24+0<br>1.73-1   | 1.586+0<br>0.904<br>1.35+0<br>1.97-1  | 1.042+0<br>0.844<br>1.44+0<br>2.21-1  | 7.117-1<br>0.788<br>1.51+0<br>2.44-1  |
| $3d_{5/2}$<br>$E_b =$<br>931.0 eV                                      | σ<br>β<br>γ<br>δ                       | 4.254+2<br>1.038<br>-8.49-2<br>2.11-2  | 1.910+2<br>1.192<br>1.02-1<br>4.65-2   | 5.700+1<br>1.210<br>4.63-1<br>7.85-2   | 2.298+1<br>1.144<br>7.34-1<br>1.06-1   | 1.104+1<br>1.066<br>9.37-1<br>1.32-1   | 5.947+0<br>0.991<br>1.09+0<br>1.58-1   | 3.481+0<br>0.923<br>1.22+0<br>1.84-1   | 2.168+0<br>0.861<br>1.33+0<br>2.10-1  | 1.418+0<br>0.804<br>1.41+0<br>2.35-1  | 9.643-1<br>0.753<br>1.48+0<br>2.59-1  |
| $4s_{1/2}$<br>$E_b =$<br>304.5 eV                                      | $\sigma \ eta \ eta \ \gamma \ \delta$ | 1.651+1<br>1.962<br>2.16-1<br>-2.96-4  | 1.015+1<br>1.965<br>9.91-2<br>-4.01-4  | 4.936+0<br>1.971<br>-5.02-2<br>-5.36-4 | 2.898+0<br>1.976<br>-1.15-1<br>-6.19-4 | 1.897+0<br>1.979<br>-1.25-1<br>-6.78-4 | 1.333+0<br>1.982<br>-9.98-2<br>-7.22-4 | 9.841-1<br>1.984<br>-5.11-2<br>-7.56-4 | 7.535-1<br>1.984<br>1.33-2<br>-7.82-4 | 5.935-1<br>1.984<br>8.84-2<br>-8.06-4 | 4.780-1<br>1.983<br>1.71-1<br>-8.26-4 |
| $4p_{1/2}$<br>$E_b =$<br>236.3 eV                                      | $\sigma \ eta \ eta \ \gamma \ \delta$ | 1.967+1<br>1.678<br>1.43-2<br>-1.35-3  | 1.205+1<br>1.694<br>-2.28-2<br>-1.72-3 | 5.611+0<br>1.672<br>6.64-2<br>-5.84-4  | 3.108+0<br>1.628<br>2.30-1<br>2.50-3   | 1.915+0<br>1.580<br>4.05-1<br>7.19-3   | 1.267+0<br>1.532<br>5.74-1<br>1.30-2   | 8.836-1<br>1.485<br>7.32-1<br>1.98-2   | 6.408-1<br>1.440<br>8.77-1<br>2.74-2  | 4.793-1<br>1.397<br>1.01+0<br>3.55-2  | 3.677-1<br>1.357<br>1.13+0<br>4.41-2  |
| $4p_{3/2}$<br>$E_b =$<br>217.6 eV                                      | σ<br>β<br>γ<br>δ                       | 4.110+1<br>1.690<br>-1.18-2<br>8.50-4  | 2.430+1<br>1.723<br>-3.35-2<br>2.35-3  | 1.080+1<br>1.724<br>7.79-2<br>5.51-3   | 5.797+0<br>1.695<br>2.59-1<br>8.86-3   | 3.488+0<br>1.656<br>4.50-1<br>1.28-2   | 2.265+0<br>1.615<br>6.33-1<br>1.74-2   | 1.554+0<br>1.573<br>8.03-1<br>2.26-2   | 1.111+0<br>1.531<br>9.60-1<br>2.84-2  | 8.207-1<br>1.491<br>1.10+0<br>3.47-2  | 6.225-1<br>1.452<br>1.24+0<br>4.15-2  |
| $ \begin{array}{c} 4d_{3/2} \\ E_b = \\ 117.9 \text{ eV} \end{array} $ | σ<br>β<br>γ<br>δ                       | 3.817+1<br>1.364<br>1.11-1<br>2.99-2   | 1.870+1<br>1.356<br>2.74-1<br>4.33-2   | 6.206+0<br>1.276<br>5.68-1<br>6.83-2   | 2.668+0<br>1.183<br>7.97-1<br>9.32-2   | 1.340+0<br>1.095<br>9.78-1<br>1.18-1   | 7.476-1<br>1.015<br>1.13+0<br>1.43-1   | 4.495-1<br>0.944<br>1.25+0<br>1.69-1   | 2.862-1<br>0.879<br>1.35+0<br>1.93-1  | 1.905-1<br>0.819<br>1.43+0<br>2.17-1  | 1.316-1<br>0.764<br>1.50+0<br>2.41-1  |
| $4d_{5/2}$ $E_b = 110.1 \text{ eV}$                                    | σ<br>β<br>γ<br>δ                       | 5.460+1<br>1.357<br>1.27-1<br>2.92-2   | 2.652+1<br>1.330<br>2.92-1<br>4.32-2   | 8.700+0<br>1.231<br>5.79-1<br>7.08-2   | 3.707+0<br>1.130<br>7.99-1<br>9.86-2   | 1.849+0<br>1.041<br>9.71-1<br>1.26-1   | 1.025+0<br>0.963<br>1.11+0<br>1.54-1   | 6.127-1<br>0.895<br>1.23+0<br>1.81-1   | 3.880-1<br>0.834<br>1.32+0<br>2.07-1  | 2.571-1<br>0.778<br>1.41+0<br>2.33-1  | 1.767-1<br>0.728<br>1.48+0<br>2.57-1  |
| $\begin{array}{c} 4f_{5/2} \\ E_b = \end{array}$                       | σ<br>β                                 | 5.602+0<br>1.022                       | 1.908+0<br>0.938                       | 3.933-1<br>0.793                       | 1.229-1<br>0.689                       | 4.845-2<br>0.611                       | 2.217-2<br>0.545                       | 1.126-2<br>0.487                       | 6.187-3<br>0.434                      | 3.615-3<br>0.386                      | 2.220-3<br>0.341                      |

| able 1 (continu                                  | ued)                   |                      |                   |                   |                   |                   |                     |                   |                    |                  |                   |
|--------------------------------------------------|------------------------|----------------------|-------------------|-------------------|-------------------|-------------------|---------------------|-------------------|--------------------|------------------|-------------------|
| 2.0 eV                                           | γ                      | 5.12-1<br>1.18-1     | 6.39-1<br>1.47-1  | 8.05-1<br>2.04-1  | 9.19-1<br>2.57-1  | 1.01+0<br>3.08-1  | 1.08+0<br>3.53-1    | 1.14+0<br>3.96-1  | 1.18+0<br>4.34-1   | 1.22+0<br>4.70-1 | 1.24+0<br>5.04-1  |
| $5s_{1/2}$                                       | $\sigma$               | 2.712+0              | 1.644+0           | 7.877-1           | 4.585-1           | 2.986-1           | 2.091-1             | 1.540-1           | 1.177-1            | 9.257-2          | 7.449-2           |
| $E_b = 37.4 \text{ eV}$                          | $\beta$ $\gamma$       | 1.965<br>1.46-1      | 1.967<br>5.07-2   | 1.972<br>-7.10-2  | 1.977<br>-1.20-1  | 1.980<br>-1.21-1  | 1.983<br>-8.97-2    | 1.984<br>-3.76-2  | 1.984<br>2.90-2    | 1.984<br>1.06-1  | 1.982<br>1.89-1   |
| 37.16                                            | δ                      | -3.21-4              | -4.13-4           | -5.36-4           | -6.11-4           | -6.67 - 4         | -7.09-4             | -7.44-4           | -7.68-4            | -7.93-4          | -8.12-4           |
| $5p_{1/2}$                                       | σ                      | 2.672+0              | 1.616+0           | 7.431-1           | 4.092-1           | 2.513-1           | 1.661-1             | 1.157-1           | 8.387-2            | 6.272-2          | 4.811-2           |
| $E_b =$                                          | β                      | 1.715                | 1.715             | 1.681             | 1.632             | 1.581             | 1.531               | 1.483             | 1.437              | 1.393            | 1.351             |
| 24.6 eV                                          | γ                      | -8.29 - 3            | -2.15-2           | 8.50-2            | 2.51 - 1          | 4.26 - 1          | 5.94 - 1            | 7.50 - 1          | 8.94 - 1           | 1.03+0           | 1.15+0            |
|                                                  | δ                      | -2.30-3              | -2.23-3           | -9.90-4           | 2.15-3            | 6.92-3            | 1.30-2              | 1.98-2            | 2.74-2             | 3.54-2           | 4.37-2            |
| $5p_{3/2}$                                       | σ                      | 5.206+0              | 3.048+0           | 1.342+0           | 7.171-1           | 4.305-1           | 2.793-1             | 1.915-1           | 1.369-1            | 1.011-1          | 7.670-2           |
| $E_b = 21.2 \text{ eV}$                          | $\beta$ $\gamma$       | 1.725<br>-2.67-2     | 1.744<br>-2.81-2  | 1.733<br>9.74–2   | 1.699<br>2.80-1   | 1.658<br>4.70-1   | 1.614<br>6.52-1     | 1.571<br>8.21-1   | 1.528<br>9.76-1    | 1.486<br>1.12+0  | 1.446<br>1.25+0   |
| 21.2 CV                                          | δ                      | 4.18-4               | 2.13-3            | 5.13-3            | 8.41-3            | 1.24-2            | 1.71-2              | 2.24-2            | 2.83-2             | 3.45-2           | 4.11-2            |
| 6s <sub>1/2</sub>                                | σ                      | 1.972-1              | 1.192-1           | 5.686-2           | 3.302-2           | 2.147-2           | 1.502-2             | 1.105-2           | 8.444-3            | 6.640-3          | 5.342-3           |
| $E_b =$                                          | $\beta$                | 1.965                | 1.967             | 1.972             | 1.977             | 1.980             | 1.983               | 1.984             | 1.984              | 1.984            | 1.982             |
| 6.0 eV                                           | γ                      | 1.43-1               | 4.78-2            | -7.26-2           | -1.21-1           | -1.20-1           | -8.88-2             | -3.65-2           | 2.98-2             | 1.06-1           | 1.89-1            |
|                                                  | δ                      | -3.23-4              | -4.14-4           | -5.36-4           | -6.15-4           | -6.69-4           | -7.05-4             | -7.33-4           | -7.64-4            | -7.89-4          | -8.06-4           |
| Z= 60, Nd: [X                                    | e]4f <sub>5/2</sub>    | -/-                  |                   |                   |                   |                   |                     |                   |                    |                  |                   |
|                                                  |                        | k (eV)               |                   |                   |                   |                   |                     |                   |                    |                  |                   |
| Shell                                            |                        | 1500                 | 2000              | 3000              | 4000              | 5000              | 6000                | 7000              | 8000               | 9000             | 10000             |
| $3p_{1/2}$                                       | σ                      | 7.314+1              | 5.361+1           | 2.769+1           | 1.591+1           | 9.960+0           | 6.643+0             | 4.649+0           | 3.377+0            | 2.529+0          | 1.941+0           |
| $E_b = 1402.8 \text{ eV}$                        | β                      | 0.738<br>2.03-1      | 1.408             | 1.589<br>-1.97-2  | 1.603<br>7.68-2   | 1.580             | 1.545<br>4.29-1     | 1.506             | 1.466              | 1.425<br>9.09-1  | 1.386             |
| 1402.8 eV                                        | $_{\delta}^{\gamma}$   | 2.03 – 1<br>1.69 – 1 | 2.05-1 $2.29-2$   | 1.69-3            | 3.08-3            | 2.48-1<br>7.35-3  | 4.29—1<br>1.29—2    | 6.03-1<br>1.94-2  | 7.63-1<br>2.65-2   | 3.41–2           | 1.04+0<br>4.21-2  |
| 3p <sub>3/2</sub>                                | σ                      | 1.723+2              | 1.141+2           | 5.460+1           | 3.009+1           | 1.829+1           | 1.193+1             | 8.195+0           | 5.862+0            | 4.329+0          | 3.282+0           |
| $E_b =$                                          | β                      | 1.004                | 1.462             | 1.642             | 1.669             | 1.656             | 1.628               | 1.594             | 1.558              | 1.521            | 1.484             |
| 1297.4 eV                                        | γ                      | 3.17 - 1             | 1.01 - 1          | -3.34-2           | 9.93-2            | 2.92 - 1          | 4.90 - 1            | 6.78 - 1          | 8.50 - 1           | 1.01+0           | 1.15+0            |
|                                                  | δ                      | 9.46-2               | 1.45-2            | 6.83-3            | 1.05-2            | 1.47-2            | 1.92-2              | 2.41-2            | 2.93-2             | 3.49-2           | 4.10-2            |
| $3d_{3/2}$                                       | σ                      | 3.158+2              | 1.450+2           | 4.420+1           | 1.807+1           | 8.774+0           | 4.774+0             | 2.818+0           | 1.768+0            | 1.164+0          | 7.971 - 1         |
| $E_b =$                                          | $\beta$                | 0.938                | 1.164             | 1.237             | 1.194             | 1.126             | 1.055               | 0.986             | 0.922              | 0.862            | 0.807             |
| 999.9 eV                                         | $_{\delta}^{\gamma}$   | -1.18-1<br>1.65-2    | 4.32-2<br>4.46-2  | 4.07-1<br>7.57-2  | 6.96-1<br>1.00-1  | 9.17-1<br>1.23-1  | 1.09+0<br>1.46-1    | 1.23+0<br>1.69-1  | 1.34+0<br>1.92-1   | 1.44+0<br>2.15-1 | 1.51+0<br>2.37-1  |
| 24                                               |                        | 4,587+2              | 2.074+2           | 6.236+1           | 2.527+1           | 1.219+1           | 6.590+0             | 3.868+0           | 2.415+0            | 1.583+0          | 1.079+0           |
| $3d_{5/2}$ $E_b =$                               | $\frac{\sigma}{\beta}$ | 0.996                | 2.074+2<br>1.179  | 1.214             | 1.154             | 1.219+1           | 1.005               | 0.937             | 0.876              | 0.819            | 0.768             |
| 977.7 eV                                         | γ                      | -1.08-1              | 6.74-2            | 4.33-1            | 7.11-1            | 9.20-1            | 1.08+0              | 1.21+0            | 1.32+0             | 1.41+0           | 1.48+0            |
|                                                  | δ                      | 1.61 - 2             | 4.34 - 2          | 7.62 - 2          | 1.03 - 1          | 1.29 - 1          | 1.55 - 1            | 1.80 - 1          | 2.05 - 1           | 2.30 - 1         | 2.53 - 1          |
| 4s <sub>1/2</sub>                                | σ                      | 1.711+1              | 1.056+1           | 5.159+0           | 3.036+0           | 1.990+0           | 1.400+0             | 1.035+0           | 7.929-1            | 6.250-1          | 5.039-1           |
| $E_b =$                                          | $\beta$                | 1.959                | 1.962             | 1.968             | 1.973             | 1.977             | 1.980               | 1.982             | 1.983              | 1.983            | 1.982             |
| 315.2 eV                                         | $_{\delta}^{\gamma}$   | 2.34-1<br>-3.14-4    | 1.16-1<br>-4.29-4 | -3.93-2 $-5.77-4$ | -1.11-1 $-6.70-4$ | -1.29-1 $-7.36-4$ | -1.10-1 $-7.85-4$   | -6.70-2 $-8.24-4$ | -7.59-3<br>-8.53-4 | 6.31-2 $-8.80-4$ | 1.41-1<br>-9.02-4 |
| 4n                                               | σ                      | 2.041+1              | 1.259+1           | 5.914+0           | 3.295+0           | 2.039+0           | 1.354+0             | 9.471-1           | 6.886-1            | 5.164-1          | 3.970-1           |
| $\begin{array}{l} 4p_{1/2} \\ E_b = \end{array}$ | $\beta$                | 1.674                | 1.694             | 1.676             | 1.635             | 1.589             | 1.534+0             | 1.496             | 1.452              | 1.410            | 1.370             |
| 243.3 eV                                         | γ                      | 2.54-2               | -2.22-2           | 5.23-2            | 2.08-1            | 3.80-1            | 5.47-1              | 7.04-1            | 8.50-1             | 9.84-1           | 1.11+0            |
|                                                  | δ                      | -1.30 - 3            | -1.86 - 3         | -9.61 - 4         | 1.83-3            | 6.20 - 3          | 1.18 - 2            | 1.82-2            | 2.53-2             | 3.31-2           | 4.12 - 2          |
| 4p <sub>3/2</sub>                                | σ                      | 4.296+1              | 2.553+1           | 1.142+1           | 6.157+0           | 3.717+0           | 2.420+0             | 1.664+0           | 1.193+0            | 8.828-1          | 6.708-1           |
| $E_b =$                                          | $\beta$                | 1.684                | 1.721             | 1.728             | 1.702             | 1.666             | 1.627               | 1.586             | 1.545              | 1.506            | 1.467             |
| 224.6 eV                                         | $\delta$               | -4.03 - 3 $7.79 - 4$ | -3.57-2 $2.21-3$  | 6.18-2<br>5.36-3  | 2.36-1<br>8.59-3  | 4.24-1<br>1.24-2  | 6.06 - 1 $1.67 - 2$ | 7.76-1<br>2.16-2  | 9.33-1<br>2.70-2   | 1.08+0<br>3.29-2 | 1.21+0<br>3.92-2  |
| 14                                               |                        | 4.114+1              | 2.034+1           | 6.824+0           | 2.954+0           | 1.492+0           | 8.357-1             | 5.044-1           | 3.222-1            | 2.151-1          | 1.490-1           |
| $4d_{3/2}$ $E_b =$                               | $\frac{\sigma}{\beta}$ | 1.363                | 1.361             | 1.288             | 1.198             | 1.492+0           | 1.033               | 0.961             | 0.897              | 0.837            | 0.783             |
| 123.4 eV                                         | γ                      | 9.28-2               | 2.53-1            | 5.48-1            | 7.82-1            | 9.66-1            | 1.12+0              | 1.24+0            | 1.35+0             | 1.43+0           | 1.51+0            |
|                                                  | δ                      | 2.84 - 2             | 4.18-2            | 6.63-2            | 9.06-2            | 1.15-1            | 1.39-1              | 1.64 - 1          | 1.88 - 1           | 2.12 - 1         | 2.35 - 1          |
| 4d <sub>5/2</sub>                                | σ                      | 5.870+1              | 2.877+1           | 9.536+0           | 4.091+0           | 2.051+0           | 1.141+0             | 6.849-1           | 4.352-1            | 2.891-1          | 1.993-1           |
| $E_b =$                                          | β                      | 1.358                | 1.336             | 1.243             | 1.144             | 1.055             | 0.977               | 0.909             | 0.848              | 0.793            | 0.743             |
| 113.5 eV                                         | $_{\delta}^{\gamma}$   | 1.09-1<br>2.76-2     | 2.72-1<br>4.15-2  | 5.61-1<br>6.86-2  | 7.85-1<br>9.59-2  | 9.60-1<br>1.23-1  | 1.10+0<br>1.50-1    | 1.22+0<br>1.76-1  | 1.32+0<br>2.02-1   | 1.41+0<br>2.27-1 | 1.48+0<br>2.51-1  |
| 1f                                               |                        | 6.861+0              | 2.356+0           |                   |                   |                   | 2.803-2             | 1.430-2           | 7.891-3            | 4.628-3          |                   |
| $4f_{5/2}$<br>$E_b =$                            | $\frac{\sigma}{\beta}$ | 6.861+0<br>1.030     | 2.356+0<br>0.949  | 4.895-1<br>0.805  | 1.538-1<br>0.701  | 6.095-2<br>0.621  | 2.803-2<br>0.556    | 1.430-2<br>0.498  | 7.891-3<br>0.446   | 4.628-3<br>0.397 | 2.851-3<br>0.352  |
| 1.5 eV                                           | γ                      | 5.00-1               | 6.32-1            | 8.06-1            | 9.22-1            | 1.01+0            | 1.09+0              | 1.14+0            | 1.19+0             | 1.23+0           | 1.25+0            |
|                                                  | δ                      | 1.16-1               | 1.44-1            | 2.00-1            | 2.53-1            | 3.02-1            | 3.48-1              | 3.90-1            | 4.29-1             | 4.65-1           | 4.98-1            |
| 5s <sub>1/2</sub>                                | σ                      | 2.806+0              | 1.706+0           | 8.203-1           | 4.784-1           | 3.119-1           | 2.186-1             | 1.611-1           | 1.232-1            | 9.702-2          | 7.813-2           |
| $E_b =$                                          | β                      | 1.962                | 1.964             | 1.970             | 1.975             | 1.978             | 1.981               | 1.982             | 1.983              | 1.983            | 1.982             |
| 37.5 eV                                          | γ                      | 1.60-1               | 6.40-2            | -6.28 - 2         | -1.18 - 1         | -1.25 - 1         | -1.01-1             | -5.40-2           | 7.75-3             | 8.01-2           | 1.60-1            |
|                                                  | δ                      | -3.44-4              | -4.44-4           | -5.79-4           | -6.60-4           | -7.24-4           | -7.71-4             | -8.10-4           | -8.37-4            | -8.65-4          | -8.86-4           |
| $5p_{1/2}$                                       | $\sigma$               | 2.771+0              | 1.686+0           | 7.816-1           | 4.326-1           | 2.668-1           | 1.769-1             | 1.236-1           | 8.982-2            | 6.733-2          | 5.175-2           |
| $E_b = 23.6 \text{ eV}$                          | β                      | 1.713<br>-1.45-3     | 1.717<br>-2.35-2  | 1.686<br>7.01-2   | 1.639<br>2.29-1   | 1.590<br>4.01-1   | 1.542<br>5.67-1     | 1.495<br>7.23-1   | 1.450<br>8.67-1    | 1.406<br>1.00+0  | 1.365<br>1.12+0   |
| 23.0 EV                                          | γ                      | -1.43-3              | -2.55-2           | 7.01-2            | 2.25-1            | 4.01-1            | J.07 — I            | 1.23-1            | 0.07-1             | 1.00⊤0           | 1.12+0            |

| Table 1 (contin           | ued)                    |                       |                   |                     |                     |                  |                  |                     |                  |                  |                  |
|---------------------------|-------------------------|-----------------------|-------------------|---------------------|---------------------|------------------|------------------|---------------------|------------------|------------------|------------------|
| Table 1 (contin           | δ                       | -2.43 - 3             | -2.42 - 3         | -1.39-3             | 1.43-3              | 5.90-3           | 1.16-2           | 1.82-2              | 2.54-2           | 3.31-2           | 4.11-2           |
| 5p <sub>3/2</sub>         | σ                       | 5.376+0               | 3.162+0           | 1.401+0             | 7.516-1             | 4.527-1          | 2.944-1          | 2.024-1             | 1.450-1          | 1.073-1          | 8.153-2          |
| $E_b =$                   | β                       | 1.722                 | 1.744             | 1.737               | 1.707               | 1.668            | 1.627            | 1.585               | 1.543            | 1.502            | 1.463            |
| 19.8 eV                   | $\delta$                | -2.25-2 $2.59-4$      | -3.23-2 $1.98-3$  | 8.10-2<br>4.97-3    | 2.57-1<br>8.11-3    | 4.44-1<br>1.19-2 | 6.25-1<br>1.64-2 | 7.94-1<br>2.15-2    | 9.50-1<br>2.70-2 | 1.09+0<br>3.29-2 | 1.22+0<br>3.91-2 |
| 6s <sub>1/2</sub>         | σ                       | 1.993-1               | 1.208-1           | 5.783-2             | 3.365-2             | 2.190-2          | 1.533-2          | 1.129-2             | 8.634-3          | 6.795-3          | 5.471-3          |
| $E_b =$                   | β                       | 1.962                 | 1.965             | 1.970               | 1.975               | 1.978            | 1.981            | 1.983               | 1.983            | 1.983            | 1.982            |
| 5.0 eV                    | γ                       | 1.57-1                | 6.09-2            | -6.45 - 2           | -1.19-1             | -1.26-1          | -1.00-1          | -5.29-2             | 8.72-3           | 8.05-2           | 1.60-1           |
| 7= C1 Des. [7             | δ                       | $\frac{-3.46-4}{c^2}$ | -4.45-4           | -5.78-4             | -6.67-4             | -7.27-4          | -7.69-4          | -8.00-4             | -8.34-4          | -8.61-4          | -8.80-4          |
| Z= 61, Pm: [X             | xe j41 <sub>5/2</sub>   | k (eV)                |                   |                     |                     |                  |                  |                     |                  |                  |                  |
| Shell                     |                         | 1500                  | 2000              | 3000                | 4000                | 5000             | 6000             | 7000                | 8000             | 9000             | 10000            |
| ${3p_{1/2}}$              | σ                       | 6.997+1               | 5.468+1           | 2.874+1             | 1.666+1             | 1.049+1          | 7.027+0          | 4.935+0             | 3.596+0          | 2.700+0          | 2.077+0          |
| $E_b =$                   | β                       | 0.267                 | 1.359             | 1.581               | 1.603               | 1.585            | 1.553            | 1.516               | 1.477            | 1.438            | 1.399            |
| 1471.4 eV                 | $\gamma \\ \delta$      | -2.38-1<br>1.65-1     | 2.61-1 $3.19-2$   | -1.79-2<br>1.99-3   | 5.49-2<br>2.53-3    | 2.16-1<br>6.41-3 | 3.94-1<br>1.17-2 | 5.67-1<br>1.79-2    | 7.28-1<br>2.47-2 | 8.76-1<br>3.19-2 | 1.01+0<br>3.96-2 |
|                           |                         | 1.738+2               | 1.178+2           | 5.704+1             | 3.163+1             |                  |                  |                     | 6.242+0          |                  |                  |
| $3p_{3/2} E_b =$          | $\frac{\sigma}{eta}$    | 0.832                 | 1.178+2           | 1.635               | 1.670               | 1.931+1<br>1.662 | 1.264+1<br>1.637 | 8.706+0<br>1.606    | 1.571            | 4.619+0<br>1.535 | 3.509+0<br>1.499 |
| 1356.9 eV                 | γ                       | 2.57 - 1              | 1.41 - 1          | -3.95 - 2           | 7.42 - 2            | 2.59 - 1         | 4.55 - 1         | 6.43 - 1            | 8.17 - 1         | 9.76 - 1         | 1.12+0           |
|                           | δ                       | 1.31-1                | 1.88-2            | 6.81-3              | 1.03-2              | 1.43-2           | 1.87-2           | 2.33-2              | 2.83-2           | 3.36-2           | 3.92-2           |
| $3d_{3/2}$ $E_b =$        | $\frac{\sigma}{eta}$    | 3.385+2<br>0.882      | 1.571+2<br>1.142  | 4.829+1<br>1.238    | 1.985+1<br>1.204    | 9.677+0<br>1.140 | 5.283+0<br>1.071 | 3.127+0<br>1.003    | 1.967+0<br>0.939 | 1.298+0<br>0.880 | 8.905-1<br>0.825 |
| 1051.5 eV                 | γ                       | -1.35-1               | 8.39 - 3          | 3.73 - 1            | 6.69 - 1            | 8.96 - 1         | 1.07+0           | 1.22+0              | 1.33+0           | 1.43+0           | 1.51+0           |
|                           | δ                       | 1.06-2                | 4.13-2            | 7.37-2              | 9.81-2              | 1.21-1           | 1.43-1           | 1.65-1              | 1.87-1           | 2.09-1           | 2.32 - 1         |
| $3d_{5/2}$                | $\sigma$                | 4.941+2               | 2.251+2           | 6.815+1             | 2.775+1             | 1.343+1          | 7.287+0          | 4.289+0             | 2.685+0          | 1.763+0          | 1.204+0          |
| $E_b = 1026.9 \text{ eV}$ | $eta \ \gamma$          | 0.946<br>-1.29-1      | 1.163<br>3.23-2   | 1.217<br>4.01-1     | 1.165<br>6.87-1     | 1.093<br>9.02-1  | 1.020<br>1.07+0  | 0.952<br>1.20+0     | 0.890<br>1.31+0  | 0.834<br>1.41+0  | 0.783<br>1.48+0  |
|                           | δ                       | 1.04-2                | 3.99-2            | 7.39-2              | 1.01-1              | 1.27-1           | 1.52-1           | 1.76-1              | 2.00-1           | 2.24-1           | 2.48-1           |
| 4s <sub>1/2</sub>         | σ                       | 1.772+1               | 1.098+1           | 5.387+0             | 3.176+0             | 2.085+0          | 1.468+0          | 1.086+0             | 8.332-1          | 6.574-1          | 5.303-1          |
| $E_b = 331.4 \text{ eV}$  | $\beta$ $\gamma$        | 1.956<br>2.55-1       | 1.959<br>1.35-1   | 1.965<br>-2.68-2    | 1.971<br>1.06 1     | 1.975<br>-1.31-1 | 1.978<br>-1.19-1 | 1.980<br>-8.19-2    | 1.981<br>-2.76-2 | 1.982<br>3.86-2  | 1.981<br>1.13-1  |
| 331.167                   | δ                       | -3.32-4               | -4.59-4           | -6.21-4             | -7.23-4             | -7.96-4          | -8.51-4          | -8.95 - 4           | -9.29-4          | -9.59-4          | -9.84-4          |
| $4p_{1/2}$                | σ                       | 2.115+1               | 1.314+1           | 6.226+0             | 3.488+0             | 2.167+0          | 1.445+0          | 1.013+0             | 7.386-1          | 5.551-1          | 4.277-1          |
| $E_b = 254.7 \text{ eV}$  | $\beta$ $\gamma$        | 1.668<br>3.88-2       | 1.692<br>-2.01-2  | 1.680<br>3.87-2     | 1.642<br>1.86-1     | 1.597<br>3.54-1  | 1.552<br>5.20-1  | 1.507<br>6.76-1     | 1.464<br>8.22-1  | 1.423<br>9.57-1  | 1.383<br>1.08+0  |
| 20 117 01                 | δ                       | -1.21-3               | -1.99-3           | -1.32-3             | 1.18-3              | 5.27-3           | 1.05-2           | 1.66-2              | 2.35-2           | 3.08-2           | 3.86-2           |
| $-4p_{3/2}$               | σ                       | 4.487+1               | 2.680+1           | 1.206+1             | 6.531+0             | 3.955+0          | 2.582+0          | 1.780+0             | 1.278+0          | 9.477-1          | 7.214-1          |
| $E_b = 236.2 \text{ eV}$  | β                       | 1.676<br>5.67-3       | 1.718<br>-3.67-2  | 1.731<br>4.60-2     | 1.709<br>2.12-1     | 1.676<br>3.97-1  | 1.638<br>5.78-1  | 1.599<br>7.48-1     | 1.559<br>9.07-1  | 1.521<br>1.05+0  | 1.483<br>1.19+0  |
| 230.2 60                  | $\delta \gamma$         | 7.27 - 4              | 2.05-3            | 5.20-3              | 8.34-3              | 1.20-2           | 1.61-2           | 2.07-2              | 2.58-2           | 3.12-2           | 3.72-2           |
| 4d <sub>3/2</sub>         | σ                       | 4.411+1               | 2.201+1           | 7.468+0             | 3.255+0             | 1.653+0          | 9.298-1          | 5.633-1             | 3.609-1          | 2.417-1          | 1.678-1          |
| $E_b = 127.6 \text{ eV}$  | β                       | 1.360                 | 1.365             | 1.299               | 1.213               | 1.128            | 1.049            | 0.979               | 0.914            | 0.855            | 0.801            |
| 127.0 ev                  | $\frac{\gamma}{\delta}$ | 7.57-2<br>2.69-2      | 2.32-1 $4.03-2$   | 5.28 - 1 $6.45 - 2$ | 7.65-1<br>8.81-2    | 9.54-1<br>1.12-1 | 1.11+0<br>1.35-1 | 1.23+0<br>1.59-1    | 1.34+0<br>1.82-1 | 1.43+0<br>2.06-1 | 1.51+0<br>2.28-1 |
| 4d <sub>5/2</sub>         | σ                       | 6.277+1               | 3.104+1           | 1.040+1             | 4.492+0             | 2.264+0          | 1.265+0          | 7.618-1             | 4.855-1          | 3.235-1          | 2.235-1          |
| $E_b = 115.6 \text{ eV}$  | $\beta$ $\gamma$        | 1.358<br>9.22-2       | 1.341<br>2.52-1   | 1.253<br>5.43-1     | 1.157<br>7.70—1     | 1.069<br>9.49-1  | 0.991<br>1.09+0  | 0.923<br>1.21+0     | 0.862<br>1.32+0  | 0.807<br>1.40+0  | 0.757<br>1.48+0  |
| 113.0 CV                  | δ                       | 2.61-2                | 3.98-2            | 6.65-2              | 9.32-2              | 1.20-1           | 1.46-1           | 1.72-1              | 1.97 – 1         | 2.22-1           | 2.46-1           |
| 4f <sub>5/2</sub>         | σ                       | 8.293+0               | 2.869+0           | 6.005-1             | 1.896-1             | 7.547-2          | 3.486-2          | 1.786-2             | 9.893-3          | 5.822-3          | 3.597-3          |
| $E_b = 3.5 \text{ eV}$    | β                       | 1.037<br>4.88-1       | 0.960<br>6.25-1   | 0.819<br>8.06-1     | 0.713<br>9.25-1     | 0.632<br>1.02+0  | 0.566<br>1.09+0  | 0.508<br>1.15+0     | 0.456<br>1.20+0  | 0.408<br>1.24+0  | 0.363<br>1.26+0  |
| 3.3 ev                    | $\frac{\gamma}{\delta}$ | 1.14-1                | 1.42-1            | 1.97 – 1            | 2.49-1              | 2.97-1           | 3.43-1           | 3.85-1              | 4.24-1           | 4.59-1           | 4.92-1           |
| 5s <sub>1/2</sub>         | σ                       | 2.891+0               | 1.764+0           | 8.514-1             | 4.975-1             | 3.248-1          | 2.278-1          | 1.681-1             | 1.287-1          | 1.014-1          | 8.171-2          |
| $E_b = 36.0 \text{ eV}$   | β                       | 1.959<br>1.74-1       | 1.962<br>7.75-2   | 1.967<br>-5.39-2    | 1.972<br>-1.15-1    | 1.976<br>1.29 1  | 1.979<br>-1.10-1 | 1.981<br>-6.91-2    | 1.982<br>-1.22-2 | 1.982<br>5.58-2  | 1.981<br>1.31-1  |
| 30.0 6                    | $\delta ^{\gamma }$     | -3.68-4               | -4.76-4           | -6.23-4             | -7.14-4             | -7.84-4          | -8.35-4          | -8.79-4             | -9.10-4          | -9.41-4          | -9.65-4          |
| 5 <i>p</i> <sub>1/2</sub> | σ                       | 2.865+0               | 1.754+0           | 8.194-1             | 4.559-1             | 2.822-1          | 1.878-1          | 1.315-1             | 9.584-2          | 7.200-2          | 5.546-2          |
| $E_b =$                   | β                       | 1.711                 | 1.717             | 1.690               | 1.646               | 1.599            | 1.552            | 1.506               | 1.462            | 1.420            | 1.379            |
| 24.5 eV                   | $\frac{\gamma}{\delta}$ | 6.81-3 $-2.55-3$      | -2.43-2 $-2.61-3$ | 5.59-2<br>-1.76-3   | 2.08 - 1 $7.54 - 4$ | 3.75-1<br>4.89-3 | 5.40-1<br>1.03-2 | 6.96 - 1 $1.66 - 2$ | 8.40-1 $2.35-2$  | 9.73-1<br>3.10-2 | 1.10+0<br>3.87-2 |
| 5p <sub>3/2</sub>         | σ                       | 5.537+0               | 3.272+0           | 1.458+0             | 7.855-1             | 4.745-1          | 3.094-1          | 2.131-1             | 1.530-1          | 1.135-1          | 8.636-2          |
| $E_b =$                   | β                       | 1.717                 | 1.743             | 1.742               | 1.714               | 1.678            | 1.638            | 1.598               | 1.558            | 1.518            | 1.479            |
| 20.1 eV                   | $\gamma \over \delta$   | -1.72-2 $8.84-5$      | -3.55-2 $1.82-3$  | 6.52-2<br>4.82-3    | 2.34-1<br>7.83-3    | 4.18-1<br>1.14-2 | 5.98-1<br>1.57-2 | 7.67-1<br>2.05-2    | 9.24-1<br>2.58-2 | 1.07+0<br>3.14-2 | 1.20+0<br>3.73-2 |
|                           | σ                       | 2.012-1               | 1.223-1           | 5.876-2             | 3.426-2             | 2.232-2          | 1.564-2          | 1.153-2             | 8.821-3          | 6.947-3          | 5.597-3          |
| $E_b =$                   | β                       | 1.959                 | 1.962             | 1.967               | 1.972               | 1.976            | 1.979            | 1.981               | 1.982            | 1.982            | 1.981            |
| 5.0 eV                    | γ                       | 1.71-1                | 7.47-2            | -5.56-2             | -1.17 - 1           | -1.30-1          | -1.10-1          | -6.83-2             | -1.13-2          | 5.62-2           | 1.31-1           |
|                           | δ                       | -3.70-4               | -4.77-4           | -6.23-4             | -7.20-4             | -7.89-4          | -8.37-4          | -8.73-4             | -9.09-4          | -9.39-4          | -9.60-4          |

Table 1 (continued)

Z= 62, Sm: [Xe]4f<sup>6</sup><sub>5/2</sub> 6s<sup>2</sup><sub>1/2</sub>

|                           | · 3/2                  | 1/2                                 |                  |                  |                  |                  |                  |                  |                  |                    |                  |
|---------------------------|------------------------|-------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|--------------------|------------------|
|                           |                        | k (eV)                              |                  |                  |                  |                  |                  |                  |                  |                    |                  |
| Shell                     |                        | 1500                                | 2000             | 3000             | 4000             | 5000             | 6000             | 7000             | 8000             | 9000               | 10000            |
| $3p_{3/2}$                | σ                      | 1.728+2                             | 1.215+2          | 5.953+1          | 3.321+1          | 2.037+1          | 1.337+1          | 9.237+0          | 6.637+0          | 4.922+0            | 3.745+0          |
| $E_b = 1419.8 \text{ eV}$ | β                      | 0.561<br>6.60-2                     | 1.381<br>1.86-1  | 1.625<br>-4.22-2 | 1.670<br>5.03-2  | 1.667<br>2.26-1  | 1.646<br>4.19-1  | 1.617<br>6.07-1  | 1.584<br>7.82-1  | 1.549<br>9.44-1    | 1.514<br>1.09+0  |
| 1419.0 EV                 | $\gamma \\ \delta$     | 1.77-1                              | 2.48-2           | 6.88-3           | 1.00-2           | 1.39-2           | 1.81-2           | 2.26-2           | 2.74-2           | 3.24-2             | 3.77-2           |
| 3d <sub>3/2</sub>         | σ                      | 3.617+2                             | 1.701+2          | 5.271+1          | 2.177+1          | 1.066+1          | 5.836+0          | 3.464+0          | 2.184+0          | 1.444+0            | 9.926-1          |
| $E_b =$                   | β                      | 0.812                               | 1.115            | 1.238            | 1.213            | 1.154            | 1.087            | 1.020            | 0.957            | 0.898              | 0.843            |
| 1106.0 eV                 | γ                      | -1.46-1                             | -2.60-2          | 3.37 - 1         | 6.40 - 1         | 8.74 - 1         | 1.06+0           | 1.21+0           | 1.33+0           | 1.43+0             | 1.51+0           |
|                           | δ                      | 4.15 - 3                            | 3.76-2           | 7.18 - 2         | 9.61 - 2         | 1.18 - 1         | 1.40 - 1         | 1.61 - 1         | 1.83 - 1         | 2.04 - 1           | 2.26 - 1         |
| 3d <sub>5/2</sub>         | σ                      | 5.318+2                             | 2.444+2          | 7.445+1          | 3.045+1          | 1.479+1          | 8.048+0          | 4.749+0          | 2.979+0          | 1.960+0            | 1.341+0          |
| $E_b =$                   | β                      | 0.890                               | 1.144            | 1.220            | 1.174            | 1.106            | 1.035            | 0.967            | 0.905            | 0.849              | 0.797            |
| 1080.2 eV                 | $_{\delta}^{\gamma}$   | -1.43-1 $4.17-3$                    | -3.43-3 $3.61-2$ | 3.67-1<br>7.15-2 | 6.60-1 $9.88-2$  | 8.83-1<br>1.24-1 | 1.06+0<br>1.49-1 | 1.19+0<br>1.73-1 | 1.31+0<br>1.96-1 | 1.40+0<br>2.19-1   | 1.48+0<br>2.42-1 |
| 10                        |                        |                                     | 1.139+1          | 5.611+0          | 3.316+0          | 2.180+0          |                  |                  |                  |                    | 5.571-1          |
| $4s_{1/2}  E_b =$         | $\frac{\sigma}{\beta}$ | 1.830+1<br>1.953                    | 1.139+1          | 1.962            | 1.968            | 2.180+0<br>1.973 | 1.537+0<br>1.976 | 1.138+0<br>1.978 | 8.737-1<br>1.980 | 6.899-1<br>1.980   | 1.980            |
| 345.7 eV                  | γ                      | 2.75-1                              | 1.54-1           | -1.36-2          | -9.99-2          | -1.32-1          | -1.26-1          | -9.52-2          | -4.63-2          | 1.53-2             | 8.58-2           |
|                           | δ                      | -3.51 - 4                           | -4.88 - 4        | -6.66 - 4        | -7.78 - 4        | -8.60 - 4        | -9.21 - 4        | -9.71 - 4        | -1.01 - 3        | -1.04 - 3          | -1.07 - 3        |
| 4p <sub>1/2</sub>         | σ                      | 2.185+1                             | 1.368+1          | 6.536+0          | 3.682+0          | 2.297+0          | 1.537+0          | 1.081+0          | 7.901-1          | 5.952-1            | 4.595-1          |
| $E_b =$                   | β                      | 1.662                               | 1.690            | 1.683            | 1.648            | 1.606            | 1.562            | 1.518            | 1.476            | 1.435              | 1.396            |
| 265.6 eV                  | γ                      | 5.35-2                              | -1.62-2          | 2.65-2           | 1.65-1           | 3.28-1           | 4.92-1           | 6.48-1           | 7.94-1           | 9.29-1             | 1.05+0           |
|                           | δ                      | -1.09-3                             | -2.09-3          | -1.65-3          | 5.76-4           | 4.35-3           | 9.36-3           | 1.52-2           | 2.17-2           | 2.87-2             | 3.62-2           |
| $4p_{3/2}$                | $\sigma_{\rho}$        | 4.675+1<br>1.667                    | 2.807+1<br>1.715 | 1.271+1<br>1.734 | 6.911+0<br>1.716 | 4.198+0<br>1.685 | 2.748+0<br>1.649 | 1.898+0<br>1.611 | 1.366+0<br>1.573 | 1.015+0<br>1.535   | 7.736-1<br>1.498 |
| $E_b = 247.4 \text{ eV}$  | $\beta$ $\gamma$       | 1.66-2                              | -3.62-2          | 3.14-2           | 1.89-1           | 3.70-1           | 5.50-1           | 7.21-1           | 8.79-1           | 1.03+0             | 1.16+0           |
| 2                         | δ                      | 6.99-4                              | 1.89-3           | 5.06-3           | 8.13-3           | 1.16-2           | 1.55-2           | 1.99-2           | 2.47-2           | 2.99-2             | 3.54-2           |
| 4d <sub>3/2</sub>         | σ                      | 4.735+1                             | 2.384+1          | 8.172+0          | 3.585+0          | 1.829+0          | 1.033+0          | 6.278-1          | 4.035-1          | 2.709-1            | 1.885-1          |
| $E_b =$                   | β                      | 1.356                               | 1.368            | 1.310            | 1.227            | 1.144            | 1.067            | 0.996            | 0.932            | 0.872              | 0.819            |
| 137.5 eV                  | γ                      | 5.81-2                              | 2.09-1           | 5.06-1           | 7.47 - 1         | 9.40-1           | 1.10+0           | 1.23+0           | 1.34+0           | 1.43+0             | 1.51+0           |
|                           | δ                      | 2.54-2                              | 3.88-2           | 6.26-2           | 8.59-2           | 1.09-1           | 1.32-1           | 1.55-1           | 1.77-1           | 2.00-1             | 2.22-1           |
| $4d_{5/2}$                | σ                      | 6.720+1                             | 3.351+1<br>1.346 | 1.134+1<br>1.264 | 4.928+0          | 2.495+0          | 1.399+0          | 8.455-1<br>0.937 | 5.404-1          | 3.610-1            | 2.500-1          |
| $E_b = 123.3 \text{ eV}$  | $eta \ \gamma$         | 1.358<br>7.46-2                     | 2.30-1           | 5.23-1           | 1.171<br>7.55-1  | 1.084<br>9.38-1  | 1.006<br>1.09+0  | 0.937<br>1.21+0  | 0.876<br>1.31+0  | 0.821<br>1.40+0    | 0.771<br>1.48+0  |
| 123.3 CV                  | δ                      | 2.45-2                              | 3.81-2           | 6.44-2           | 9.08-2           | 1.17-1           | 1.42-1           | 1.67-1           | 1.92-1           | 2.16-1             | 2.40-1           |
| $4f_{5/2}$                | σ                      | 9.888+0                             | 3.447+0          | 7.269-1          | 2.306-1          | 9.216-2          | 4.274-2          | 2.199-2          | 1.222-2          | 7.217-3            | 4.473-3          |
| $E_b =$                   | β                      | 1.044                               | 0.970            | 0.832            | 0.725            | 0.643            | 0.576            | 0.518            | 0.466            | 0.419              | 0.374            |
| 5.5 eV                    | γ                      | 4.75-1                              | 6.16-1           | 8.05-1           | 9.28-1           | 1.02+0           | 1.10+0           | 1.16+0           | 1.21+0           | 1.25+0             | 1.28+0           |
|                           | δ                      | 1.12-1                              | 1.40-1           | 1.94-1           | 2.45-1           | 2.93-1           | 3.37-1           | 3.79-1           | 4.18-1           | 4.54-1             | 4.87-1           |
| $5s_{1/2} E_b =$          | $\sigma_{\rho}$        | 2.975+0<br>1.956                    | 1.821+0<br>1.959 | 8.822-1<br>1.965 | 5.166-1<br>1.970 | 3.376-1<br>1.974 | 2.370-1<br>1.977 | 1.750-1<br>1.979 | 1.341-1<br>1.980 | 1.057 – 1<br>1.980 | 8.527-2<br>1.980 |
| 37.4 eV                   | $\beta$ $\gamma$       | 1.89-1                              | 9.20-2           | -4.39-2          | -1.12-1          | -1.31-1          | -1.19-1          | -8.30-2          | -3.12-2          | 3.23-2             | 1.04-1           |
|                           | δ                      | -3.93 - 4                           | -5.10-4          | -6.70 - 4        | -7.70 - 4        | -8.47 - 4        | -9.05 - 4        | -9.53 - 4        | -9.87 - 4        | -1.02 - 3          | -1.05 - 3        |
| 5p <sub>1/2</sub>         | σ                      | 2.950+0                             | 1.817+0          | 8.558-1          | 4.787-1          | 2.975-1          | 1.986-1          | 1.395-1          | 1.019-1          | 7.673-2            | 5.922-2          |
| $E_b =$                   | β                      | 1.708                               | 1.718            | 1.694            | 1.653            | 1.608            | 1.562            | 1.518            | 1.475            | 1.433              | 1.393            |
| 23.6 eV                   | γ                      | 1.60-2                              | -2.38-2          | 4.29-2           | 1.87-1           | 3.50-1           | 5.13-1           | 6.68-1           | 8.12-1           | 9.46-1             | 1.07+0           |
|                           | δ                      | -2.66-3                             | -2.78-3          | -2.11-3          | 1.18-4           | 3.93-3           | 9.01-3           | 1.50-2           | 2.17-2           | 2.89-2             | 3.64-2           |
| $5p_{3/2}$                | $\sigma_{\rho}$        | 5.683+0<br>1.712                    | 3.374+0<br>1.742 | 1.513+0<br>1.745 | 8.183-1<br>1.721 | 4.958-1<br>1.687 | 3.241-1<br>1.650 | 2.238-1<br>1.611 | 1.610-1<br>1.572 | 1.196-1<br>1.534   | 9.118-2<br>1.496 |
| $E_b = 18.9 \text{ eV}$   | $eta \ \gamma$         | -1.11-2                             | -3.74-2          | 5.05-2           | 2.12-1           | 3.92-1           | 5.70–1           | 7.39–1           | 8.97—1           | 1.04+0             | 1.490            |
| 10.0 01                   | δ                      | -7.66-5                             | 1.66-3           | 4.69-3           | 7.59-3           | 1.10-2           | 1.50-2           | 1.96-2           | 2.46-2           | 3.00-2             | 3.57-2           |
| 6s <sub>1/2</sub>         | σ                      | 2.028-1                             | 1.236-1          | 5.964-2          | 3.484-2          | 2.273-2          | 1.594-2          | 1.176-2          | 9.005-3          | 7.096-3            | 5.721-3          |
| $E_b =$                   | β                      | 1.956                               | 1.959            | 1.965            | 1.970            | 1.974            | 1.977            | 1.979            | 1.980            | 1.980              | 1.980            |
| 5.0 eV                    | γ                      | 1.86-1                              | 8.89-2           | -4.57-2          | -1.13-1          | -1.33-1          | -1.19-1          | -8.26-2          | -3.03-2          | 3.30-2             | 1.04-1           |
|                           | δ                      | -3.95-4                             | -5.11-4          | -6.69-4          | -7.77-4          | -8.54-4          | -9.09-4          | -9.50-4          | -9.90-4          | -1.02-3            | -1.05-3          |
| Z= 63, Eu: [X             | [e]4f <sub>5/2</sub>   | 4f <sub>7/2</sub> 6s <sub>1/2</sub> |                  |                  |                  |                  |                  |                  |                  |                    |                  |
|                           |                        | k (eV)                              |                  |                  |                  |                  |                  |                  |                  |                    |                  |
| Shell                     |                        | 1500                                | 2000             | 3000             | 4000             | 5000             | 6000             | 7000             | 8000             | 9000               | 10000            |
| $3p_{3/2}$                | σ                      | 1.679+2                             | 1.243+2          | 6.165+1          | 3.462+1          | 2.134+1          | 1.406+1          | 9.741+0          | 7.018+0          | 5.216+0            | 3.977+0          |
| $E_b = 1480.6 \text{ eV}$ | β                      | 0.123                               | 1.337            | 1.616            | 1.669            | 1.671            | 1.653            | 1.627            | 1.597            | 1.564              | 1.531            |
| 1480.6 eV                 | $_{\delta}^{\gamma}$   | -2.67-1 $1.26-1$                    | 2.23-1<br>3.16-2 | -4.11-2 $7.02-3$ | 3.05-2<br>9.79-3 | 1.98-1<br>1.37-2 | 3.86-1<br>1.77-2 | 5.71-1<br>2.20-2 | 7.46-1 $2.66-2$  | 9.09-1<br>3.16-2   | 1.06+0<br>3.69-2 |
| 3d                        |                        | 3.788+2                             | 1.811+2          | 5.676+1          | 2.359+1          | 1.161+1          | 6.386+0          | 3.804+0          | 2.406+0          | 1.595+0            | 1.098+0          |
| $3d_{3/2}$ $E_b =$        | $\frac{\sigma}{\beta}$ | 3.788+2<br>0.747                    | 1.811+2          | 1.236            | 2.359+1<br>1.220 | 1.161+1          | 6.386+0<br>1.102 | 3.804+0<br>1.038 | 2.406+0<br>0.976 | 0.917              | 0.861            |
| 1160.6 eV                 | γ                      | -1.50-1                             | -5.40-2          | 3.03-1           | 6.06-1           | 8.49-1           | 1.04+0           | 1.19+0           | 1.32+0           | 1.42+0             | 1.51+0           |
|                           | δ                      | -1.76 - 3                           | 3.41-2           | 6.98 - 2         | 9.31-2           | 1.15-1           | 1.37 - 1         | 1.59 - 1         | 1.80 - 1         | 2.01 - 1           | 2.22 - 1         |
| 3d <sub>5/2</sub>         | σ                      | 5.594+2                             | 2.601+2          | 8.008+1          | 3.295+1          | 1.609+1          | 8.792+0          | 5.206+0          | 3.275+0          | 2.161+0            | 1.481+0          |
| $E_b =$                   | β                      | 0.838                               | 1.124            | 1.220            | 1.182            | 1.117            | 1.049            | 0.983            | 0.922            | 0.865              | 0.812            |
|                           |                        |                                     |                  |                  |                  |                  |                  |                  |                  |                    |                  |

(continued on next page)

| able 1 (contin                        | ued)                 |                                        |                  |                  |                  |                  |                  |                  |                  |                  |                  |
|---------------------------------------|----------------------|----------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| 1130.9 eV                             | γ                    | -1.50-1                                | -3.17-2          | 3.36 - 1         | 6.30 - 1         | 8.61 - 1         | 1.04+0           | 1.18+0           | 1.30+0           | 1.40+0           | 1.48+0           |
|                                       | δ                    | -1.12-3                                | 3.27-2           | 6.93-2           | 9.53-2           | 1.21-1           | 1.46-1           | 1.70-1           | 1.94 - 1         | 2.17 - 1         | 2.39-1           |
| $4s_{1/2}$                            | $\sigma$             | 1.885+1                                | 1.179+1          | 5.836+0          | 3.461+0          | 2.280+0          | 1.609+0          | 1.193+0          | 9.168 - 1        | 7.247 - 1        | 5.857 - 1        |
| $E_b =$                               | β                    | 1.949                                  | 1.953            | 1.960            | 1.965            | 1.970            | 1.974            | 1.977            | 1.978            | 1.979            | 1.979            |
| 360.2 eV                              | γ                    | 2.91-1                                 | 1.70-1           | -1.15-3          | -9.40-2          | -1.31-1          | -1.31-1          | -1.06-1          | -6.21-2          | -5.61-3          | 6.03-2           |
|                                       | δ                    | -3.69-4                                | -5.19-4          | -7.11-4          | -8.42-4          | -9.26-4          | -9.90-4          | -1.04-3          | -1.09-3          | -1.12-3          | -1.16-3          |
| $4p_{1/2}$                            | $\sigma$             | 2.261+1                                | 1.424+1          | 6.866+0          | 3.892+0          | 2.439+0          | 1.637+0          | 1.155+0          | 8.467 - 1        | 6.394 - 1        | 4.947 - 1        |
| $E_b =$                               | β                    | 1.654                                  | 1.688            | 1.685            | 1.653            | 1.613            | 1.571            | 1.530            | 1.489            | 1.449            | 1.411            |
| 283.9 eV                              | γ                    | 6.77-2                                 | -1.12-2          | 1.65-2           | 1.46-1           | 3.03-1           | 4.64-1           | 6.18-1           | 7.64-1           | 9.01-1           | 1.03+0           |
|                                       | δ                    | -9.52-4                                | -2.15-3          | -1.92-3          | -1.19-5          | 3.51-3           | 8.24-3           | 1.39-2           | 2.03-2           | 2.73-2           | 3.47-2           |
| $4p_{3/2}$                            | σ                    | 4.856+1                                | 2.931+1          | 1.337+1          | 7.306+0          | 4.453+0          | 2.923+0          | 2.025+0          | 1.460+0          | 1.087+0          | 8.306 - 1        |
| $E_b =$                               | β                    | 1.659                                  | 1.711            | 1.735            | 1.721            | 1.693            | 1.660            | 1.624            | 1.588            | 1.552            | 1.516            |
| 256.6 eV                              | $\gamma \\ \delta$   | 2.50-2                                 | -3.46-2          | 1.99-2           | 1.70-1           | 3.45-1           | 5.21-1           | 6.91-1           | 8.51-1           | 9.99-1           | 1.14+0           |
|                                       |                      | 7.22-4                                 | 1.80-3           | 4.94-3           | 7.96-3           | 1.13-2           | 1.50-2           | 1.92-2           | 2.40-2           | 2.92-2           | 3.47-2           |
| $4d_{3/2}$                            | σ                    | 5.033+1                                | 2.561+1          | 8.892+0          | 3.934+0          | 2.020+0          | 1.147+0          | 6.998-1          | 4.514-1          | 3.040-1          | 2.121-1          |
| $E_b =$                               | β                    | 1.354                                  | 1.370            | 1.319<br>4.82-1  | 1.240<br>7.29-1  | 1.160            | 1.085            | 1.015            | 0.950            | 0.890            | 0.835            |
| 141.4 eV                              | $\gamma \\ \delta$   | 4.61-2<br>2.42-2                       | 1.92-1<br>3.75-2 | 6.02 - 2         | 8.30-2           | 9.26-1<br>1.06-1 | 1.09+0<br>1.29-1 | 1.22+0<br>1.52-1 | 1.33+0<br>1.74-1 | 1.43+0<br>1.96-1 | 1.51+0<br>2.17-1 |
|                                       |                      |                                        |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| $4d_{5/2}$                            | σ                    | 7.130+1                                | 3.592+1          | 1.230+1          | 5.391+0          | 2.745+0          | 1.548+0          | 9.388-1          | 6.021-1          | 4.034-1          | 2.801-1          |
| $E_b =$                               | β                    | 1.357<br>6.20-2                        | 1.350            | 1.273            | 1.182            | 1.098            | 1.023            | 0.954            | 0.892            | 0.836            | 0.784<br>1.48+0  |
| 127.7 eV                              | $\gamma \\ \delta$   | 6.20—2<br>2.32—2                       | 2.13-1<br>3.67-2 | 5.01-1<br>6.17-2 | 7.38-1<br>8.79-2 | 9.25-1<br>1.14-1 | 1.08+0<br>1.40-1 | 1.20+0<br>1.65-1 | 1.31+0<br>1.89-1 | 1.40+0<br>2.13-1 | 1.48+0<br>2.36-1 |
| A.C.                                  |                      |                                        |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| $4f_{5/2}$                            | $\sigma_{\rho}$      | 1.229+1<br>1.048                       | 4.352+0<br>0.979 | 9.326-1<br>0.846 | 2.985-1<br>0.736 | 1.201-1<br>0.653 | 5.604-2<br>0.585 | 2.898-2<br>0.526 | 1.618-2<br>0.473 | 9.591-3<br>0.425 | 5.966-3<br>0.380 |
| $E_b = 1.5 \text{ eV}$                | $\beta$ $\gamma$     | 1.048<br>4.62-1                        | 0.979<br>6.07-1  | 0.846<br>8.03-1  | 0.736<br>9.29—1  | 0.653<br>1.02+0  | 0.585<br>1.10+0  | 0.526<br>1.16+0  | 0.473<br>1.21+0  | 0.425<br>1.25+0  | 0.380<br>1.28+0  |
| 1.5 ( )                               | δ                    | 1.10-1                                 | 1.38-1           | 1.91-1           | 2.41-1           | 2.88-1           | 3.32-1           | 3.73-1           | 4.11-1           | 4.46-1           | 4.79-1           |
| 4f <sub>7/2</sub>                     | σ                    | 7.493-3                                | 2.600-3          | 5.443-4          | 1.718-4          | 6.852-5          | 3.171–5          | 1.630-5          | 9.053-6          | 5.349-6          | 3.316-6          |
| $E_b =$                               | β                    | 1.040                                  | 0.973            | 0.841            | 0.740            | 0.659            | 0.594            | 0.537            | 0.491            | 0.442            | 0.402            |
| 1.2 eV                                | γ                    | 4.67-1                                 | 6.13-1           | 8.10-1           | 9.40-1           | 1.03+0           | 1.10+0           | 1.16+0           | 1.21+0           | 1.25+0           | 1.28+0           |
| 1.2 CV                                | δ                    | 1.12-1                                 | 1.39-1           | 1.94-1           | 2.44-1           | 2.93-1           | 3.38-1           | 3.79-1           | 4.15-1           | 4.50-1           | 4.88-1           |
| 5s <sub>1/2</sub>                     | σ                    | 3.246+0                                | 1.994+0          | 9.709-1          | 5.703-1          | 3.733-1          | 2.624-1          | 1.939-1          | 1.488-1          | 1.174-1          | 9.475-2          |
| 55 <sub>1/2</sub><br>F <sub>b</sub> = | β                    | 1.954                                  | 1.956            | 1.962            | 1.967            | 1.972            | 1.975            | 1.977            | 1.979            | 1.979            | 1.979            |
| $E_b = 31.8 \text{ eV}$               | γ                    | 1.96-1                                 | 1.02-1           | -3.57-2          | -1.08-1          | -1.32-1          | -1.25-1          | -9.40-2          | -4.71-2          | 1.15-2           | 7.87-2           |
|                                       | δ                    | -4.18 - 4                              | -5.44 - 4        | -7.22 - 4        | -8.33 - 4        | -9.13 - 4        | -9.75 - 4        | -1.03 - 3        | -1.07 - 3        | -1.10 - 3        | -1.14 - 3        |
| 5p <sub>1/2</sub>                     | σ                    | 3.297+0                                | 2.042+0          | 9.698-1          | 5.456-1          | 3.404-1          | 2.279-1          | 1.606-1          | 1.176-1          | 8.875-2          | 6.865-2          |
| $E_b =$                               | β                    | 1.707                                  | 1.718            | 1.698            | 1.659            | 1.616            | 1.572            | 1.529            | 1.487            | 1.447            | 1.408            |
| 25.2 eV                               | γ                    | 2.41-2                                 | -2.21-2          | 3.27-2           | 1.69-1           | 3.27-1           | 4.86-1           | 6.38-1           | 7.82-1           | 9.16-1           | 1.04+0           |
|                                       | δ                    | -2.72 - 3                              | -2.90 - 3        | -2.44 - 3        | -4.60 - 4        | 3.02 - 3         | 7.67 - 3         | 1.33 - 2         | 1.97 - 2         | 2.65 - 2         | 3.39 - 2         |
| 5p <sub>3/2</sub>                     | σ                    | 6.482+0                                | 3.865+0          | 1.744+0          | 9.477-1          | 5.759-1          | 3.774-1          | 2.612-1          | 1.883-1          | 1.401-1          | 1.070-1          |
| $E_b =$                               | β                    | 1.709                                  | 1.741            | 1.748            | 1.727            | 1.696            | 1.660            | 1.623            | 1.586            | 1.549            | 1.513            |
| 20.4 eV                               | γ                    | -5.47 - 3                              | -3.79 - 2        | 3.85 - 2         | 1.94 - 1         | 3.68 - 1         | 5.42 - 1         | 7.10 - 1         | 8.66 - 1         | 1.01+0           | 1.15+0           |
|                                       | δ                    | -1.84 - 4                              | 1.54 - 3         | 4.59 - 3         | 7.43 - 3         | 1.06 - 2         | 1.42 - 2         | 1.84 - 2         | 2.30-2           | 2.80 - 2         | 3.35 - 2         |
| 6s <sub>1/2</sub>                     | σ                    | 3.573-1                                | 2.182-1          | 1.056-1          | 6.183-2          | 4.039-2          | 2.836-2          | 2.094-2          | 1.604-2          | 1.265-2          | 1.021-2          |
| $E_b =$                               | β                    | 1.953                                  | 1.956            | 1.962            | 1.967            | 1.971            | 1.975            | 1.977            | 1.978            | 1.979            | 1.979            |
| 6.0 eV                                | γ                    | 1.96 - 1                               | 1.01 - 1         | -3.71-2          | -1.10-1          | -1.34-1          | -1.26-1          | -9.48 - 2        | -4.73 - 2        | 1.20 - 2         | 8.00 - 2         |
|                                       | δ                    | -4.20-4                                | -5.49 - 4        | -7.22 - 4        | -8.39 - 4        | -9.20 - 4        | -9.82 - 4        | -1.03 - 3        | -1.07 - 3        | -1.11-3          | -1.14 - 3        |
| Z= 64, Gd: [X                         | e  4f <sub>5/2</sub> | $4f_{7/2}^1 \ 5d_{3/2}^1 \ 6s_{1/2}^2$ |                  |                  |                  |                  |                  |                  |                  |                  |                  |
|                                       | -/-                  | k (eV)                                 |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| Shell                                 |                      | 1500                                   | 2000             | 3000             | 4000             | 5000             | 6000             | 7000             | 8000             | 9000             | 10000            |
|                                       |                      |                                        |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| $3d_{3/2}$                            | $\sigma_{\rho}$      | 4.036+2<br>0.652                       | 1.965+2<br>1.053 | 6.200+1<br>1.231 | 2.588+1<br>1.227 | 1.277+1<br>1.178 | 7.043+0<br>1.117 | 4.205+0<br>1.054 | 2.665+0<br>0.993 | 1.770+0<br>0.935 | 1.221+0<br>0.881 |
| $E_b = 1217.2 \text{ eV}$             | β                    | -1.45-1                                | -8.77-2          | 2.62-1           | 5.76-1           | 8.23-1           | 1.02+0           | 1.034            | 1.31+0           | 1.42+0           | 1.51+0           |
| 1217.2 CV                             | $\gamma \\ \delta$   | -8.74-3                                | 2.91-2           | 6.73-2           | 9.16-2           | 1.13-1           | 1.34-1           | 1.54-1           | 1.75-1           | 1.95-1           | 2.16-1           |
| 2.4                                   |                      |                                        |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| 3d <sub>5/2</sub>                     | $\sigma_{\beta}$     | 5.990+2<br>0.754                       | 2.822+2<br>1.098 | 8.734+1<br>1.220 | 3.608+1<br>1.190 | 1.767+1<br>1.129 | 9.674+0<br>1.061 | 5.740+0<br>0.996 | 3.618+0<br>0.935 | 2.391+0<br>0.880 | 1.642+0<br>0.828 |
| $E_b = 1185.2 \text{ eV}$             | $\beta$              | 0.754<br>-1.51-1                       | -6.66-2          | 1.220<br>2.97—1  | 6.03-1           | 8.38-1           | 1.061            | 0.996<br>1.17+0  | 0.935<br>1.29+0  | 0.880<br>1.39+0  | 0.828<br>1.48+0  |
| . 103.2 CV                            | $\gamma \\ \delta$   | -7.63-3                                | 2.79-2           | 6.65-2           | 9.35-2           | 1.18-1           | 1.42-1           | 1.65-1           | 1.88-1           | 2.11-1           | 2.33-1           |
| 1c                                    | σ                    | 1.944+1                                | 1.221+1          | 6.072+0          | 3.607+0          | 2.380+0          | 1.682+0          | 1.248+0          | 9.596-1          | 7.590-1          | 6.138-1          |
| $4s_{1/2} E_b =$                      | $\beta$              | 1.944+1                                | 1.221+1          | 1.956            | 1.962            | 2.380+0<br>1.967 | 1.082+0          | 1.248+0          | 9.596—1<br>1.976 | 7.590—1<br>1.977 | 1.977            |
| 375.8 eV                              | γ                    | 3.13-1                                 | 1.92-1           | 1.45-2           | -8.52-2          | -1.30-1          | -1.37 - 1        | -1.18-1          | -7.91-2          | -2.68-2          | 3.52-2           |
| = = •                                 | δ                    | -3.77-4                                | -5.46-4          | -7.65-4          | -9.04-4          | -1.00-3          | -1.08 - 3        | -1.14-3          | -1.19-3          | -1.23-3          | -1.26 - 3        |
| 4p <sub>1/2</sub>                     | σ                    | 2.325+1                                | 1.476+1          | 7.182+0          | 4.093+0          | 2.576+0          | 1.735+0          | 1.227+0          | 9.017-1          | 6.824-1          | 5.291-1          |
| $E_b =$                               | β                    | 1.648                                  | 1.685            | 1.687            | 1.658            | 1.620            | 1.580            | 1.539            | 1.498            | 1.460            | 1.422            |
| 288.5 eV                              | γ                    | 8.49-2                                 | -4.18-3          | 6.97-3           | 1.26-1           | 2.79-1           | 4.38-1           | 5.91-1           | 7.36-1           | 8.71-1           | 9.97-1           |
| · · · · · <del>·</del> ·              | δ                    | -7.33-4                                | -2.22 - 3        | -2.23-3          | -5.30-4          | 2.62-3           | 6.96-3           | 1.22-2           | 1.81-2           | 2.46-2           | 3.15-2           |
| 4p <sub>3/2</sub>                     | σ                    | 5.061+1                                | 3.070+1          | 1.409+1          | 7.725+0          | 4.722+0          | 3.107+0          | 2.156+0          | 1.557+0          | 1.161+0          | 8.883-1          |
| $E_b =$                               | $\beta$              | 1.649                                  | 1.706            | 1.409+1          | 7.725+0<br>1.726 | 4.722+0<br>1.701 | 1.669            | 1.635            | 1.557+0          | 1.161+0          | 8.883—1<br>1.529 |
| 270.9 eV                              | γ                    | 4.01-2                                 | -3.11-2          | 6.77-3           | 1.48-1           | 3.19-1           | 4.94-1           | 6.63-1           | 8.22-1           | 9.70-1           | 1.11+0           |
|                                       | δ                    | 7.60-4                                 | 1.62-3           | 4.82-3           | 7.79-3           | 1.09-2           | 1.44-2           | 1.83-2           | 2.26-2           | 2.72-2           | 3.22-2           |
|                                       |                      |                                        | -                | -                |                  |                  |                  |                  |                  |                  | =                |

| Tab | nle 1 | l (c | nnt | inı | ed) |
|-----|-------|------|-----|-----|-----|

|                                                                                   | ,                                                                  |                                                                                                                                 |                                                                                                                                  |                                                                                                                                   |                                                                                                                                 |                                                                                                                                |                                                                                                                                |                                                                                                                                |                                                                                                                                |                                                                                                                                |                                                                                                                                |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 4d <sub>3/2</sub>                                                                 | σ                                                                  | 5.391+1                                                                                                                         | 2.766+1                                                                                                                          | 9.699+0                                                                                                                           | 4.315+0                                                                                                                         | 2.224+0                                                                                                                        | 1.267+0                                                                                                                        | 7.756-1                                                                                                                        | 5.016-1                                                                                                                        | 3.387-1                                                                                                                        | 2.368-1                                                                                                                        |
| $E_b =$                                                                           | β                                                                  | 1.347                                                                                                                           | 1.371                                                                                                                            | 1.329                                                                                                                             | 1.254                                                                                                                           | 1.175                                                                                                                          | 1.100                                                                                                                          | 1.032                                                                                                                          | 0.969                                                                                                                          | 0.910                                                                                                                          | 0.856                                                                                                                          |
| 149.5 eV                                                                          | γ                                                                  | 2.93-2                                                                                                                          | 1.68 - 1                                                                                                                         | 4.61 - 1                                                                                                                          | 7.09 - 1                                                                                                                        | 9.09 - 1                                                                                                                       | 1.07+0                                                                                                                         | 1.21+0                                                                                                                         | 1.33+0                                                                                                                         | 1.43+0                                                                                                                         | 1.51+0                                                                                                                         |
|                                                                                   | δ                                                                  | 2.26-2                                                                                                                          | 3.58-2                                                                                                                           | 5.88-2                                                                                                                            | 8.08-2                                                                                                                          | 1.03-1                                                                                                                         | 1.25-1                                                                                                                         | 1.46-1                                                                                                                         | 1.68-1                                                                                                                         | 1.90-1                                                                                                                         | 2.11-1                                                                                                                         |
| $4d_{5/2}$                                                                        | $\sigma$                                                           | 7.630+1                                                                                                                         | 3.874+1                                                                                                                          | 1.340+1                                                                                                                           | 5.901+0                                                                                                                         | 3.017+0                                                                                                                        | 1.706+0                                                                                                                        | 1.038+0                                                                                                                        | 6.675 - 1                                                                                                                      | 4.483 - 1                                                                                                                      | 3.119 - 1                                                                                                                      |
| $E_b =$                                                                           | β                                                                  | 1.355                                                                                                                           | 1.353                                                                                                                            | 1.283                                                                                                                             | 1.195                                                                                                                           | 1.111                                                                                                                          | 1.035                                                                                                                          | 0.967                                                                                                                          | 0.906                                                                                                                          | 0.851                                                                                                                          | 0.801                                                                                                                          |
| 134.5 eV                                                                          | γ                                                                  | 4.52-2                                                                                                                          | 1.91-1                                                                                                                           | 4.82-1                                                                                                                            | 7.21-1                                                                                                                          | 9.10-1                                                                                                                         | 1.06+0                                                                                                                         | 1.19+0                                                                                                                         | 1.30+0                                                                                                                         | 1.40+0                                                                                                                         | 1.48+0                                                                                                                         |
|                                                                                   | δ                                                                  | 2.17-2                                                                                                                          | 3.49-2                                                                                                                           | 6.01-2                                                                                                                            | 8.53-2                                                                                                                          | 1.10-1                                                                                                                         | 1.35-1                                                                                                                         | 1.59-1                                                                                                                         | 1.83-1                                                                                                                         | 2.07-1                                                                                                                         | 2.30-1                                                                                                                         |
| $4f_{5/2}$                                                                        | σ                                                                  | 1.435+1                                                                                                                         | 5.105+0                                                                                                                          | 1.100+0                                                                                                                           | 3.531-1                                                                                                                         | 1.426-1                                                                                                                        | 6.671-2                                                                                                                        | 3.461-2                                                                                                                        | 1.938-2                                                                                                                        | 1.152-2                                                                                                                        | 7.185-3                                                                                                                        |
| $E_b = 2.0 \text{ eV}$                                                            | β                                                                  | 1.053<br>4.48-1                                                                                                                 | 0.989                                                                                                                            | 0.856                                                                                                                             | 0.749<br>9.31-1                                                                                                                 | 0.666                                                                                                                          | 0.598                                                                                                                          | 0.540<br>1.17+0                                                                                                                | 0.487                                                                                                                          | 0.439                                                                                                                          | 0.393<br>1.30+0                                                                                                                |
| 2.0 eV                                                                            | $\delta$                                                           | 4.48 – 1<br>1.08 – 1                                                                                                            | 5.96-1<br>1.35-1                                                                                                                 | 7.99-1<br>1.87-1                                                                                                                  | 2.37-1                                                                                                                          | 1.03+0<br>2.84-1                                                                                                               | 1.11+0<br>3.28-1                                                                                                               | 3.69-1                                                                                                                         | 1.22+0<br>4.07-1                                                                                                               | 1.26+0<br>4.42-1                                                                                                               | 4.75-1                                                                                                                         |
| 46                                                                                |                                                                    |                                                                                                                                 |                                                                                                                                  |                                                                                                                                   |                                                                                                                                 |                                                                                                                                |                                                                                                                                |                                                                                                                                | 2.368-2                                                                                                                        |                                                                                                                                |                                                                                                                                |
| $\begin{array}{l} 4f_{7/2} \\ E_b = \end{array}$                                  | $\frac{\sigma}{eta}$                                               | 1.829+1<br>1.044                                                                                                                | 6.453+0<br>0.979                                                                                                                 | 1.376+0<br>0.849                                                                                                                  | 4.387-1<br>0.746                                                                                                                | 1.761-1<br>0.667                                                                                                               | 8.205-2<br>0.604                                                                                                               | 4.241-2<br>0.549                                                                                                               | 2.368-2<br>0.500                                                                                                               | 1.404-2<br>0.456                                                                                                               | 8.733-3<br>0.414                                                                                                               |
| 1.3 eV                                                                            | γ                                                                  | 4.52-1                                                                                                                          | 6.01-1                                                                                                                           | 8.06-1                                                                                                                            | 9.37-1                                                                                                                          | 1.03+0                                                                                                                         | 1.11+0                                                                                                                         | 1.17+0                                                                                                                         | 1.22+0                                                                                                                         | 1.26+0                                                                                                                         | 1.29+0                                                                                                                         |
| -1.0                                                                              | δ                                                                  | 1.08-1                                                                                                                          | 1.35-1                                                                                                                           | 1.89-1                                                                                                                            | 2.39-1                                                                                                                          | 2.87-1                                                                                                                         | 3.32-1                                                                                                                         | 3.73-1                                                                                                                         | 4.11-1                                                                                                                         | 4.47-1                                                                                                                         | 4.80-1                                                                                                                         |
| 5s <sub>1/2</sub>                                                                 | σ                                                                  | 3.296+0                                                                                                                         | 2.030+0                                                                                                                          | 9.915-1                                                                                                                           | 5.833-1                                                                                                                         | 3.823-1                                                                                                                        | 2.690-1                                                                                                                        | 1.989-1                                                                                                                        | 1.527-1                                                                                                                        | 1.205-1                                                                                                                        | 9.735-2                                                                                                                        |
| $E_b =$                                                                           | β                                                                  | 1.950                                                                                                                           | 1.953                                                                                                                            | 1.959                                                                                                                             | 1.964                                                                                                                           | 1.969                                                                                                                          | 1.972                                                                                                                          | 1.975                                                                                                                          | 1.976                                                                                                                          | 1.977                                                                                                                          | 1.977                                                                                                                          |
| 36.1 eV                                                                           | γ                                                                  | 2.16-1                                                                                                                          | 1.19-1                                                                                                                           | -2.34-2                                                                                                                           | -1.02-1                                                                                                                         | -1.34-1                                                                                                                        | -1.33-1                                                                                                                        | -1.07 - 1                                                                                                                      | -6.49 - 2                                                                                                                      | -1.01-2                                                                                                                        | 5.37-2                                                                                                                         |
|                                                                                   | δ                                                                  | -4.37 - 4                                                                                                                       | -5.78 - 4                                                                                                                        | -7.73 - 4                                                                                                                         | -8.97 - 4                                                                                                                       | -9.93 - 4                                                                                                                      | -1.06 - 3                                                                                                                      | -1.12 - 3                                                                                                                      | -1.17 - 3                                                                                                                      | -1.21-3                                                                                                                        | -1.24 - 3                                                                                                                      |
| 5p <sub>1/2</sub>                                                                 | σ                                                                  | 3.268+0                                                                                                                         | 2.037+0                                                                                                                          | 9.749-1                                                                                                                           | 5.512-1                                                                                                                         | 3.453-1                                                                                                                        | 2.319-1                                                                                                                        | 1.638-1                                                                                                                        | 1.202-1                                                                                                                        | 9.092-2                                                                                                                        | 7.046-2                                                                                                                        |
| $E_b =$                                                                           | β                                                                  | 1.702                                                                                                                           | 1.717                                                                                                                            | 1.702                                                                                                                             | 1.665                                                                                                                           | 1.624                                                                                                                          | 1.581                                                                                                                          | 1.538                                                                                                                          | 1.497                                                                                                                          | 1.457                                                                                                                          | 1.419                                                                                                                          |
| 24.3 eV                                                                           | γ                                                                  | 3.66 - 2                                                                                                                        | -1.91-2                                                                                                                          | 2.11-2                                                                                                                            | 1.49 - 1                                                                                                                        | 3.04 - 1                                                                                                                       | 4.61 - 1                                                                                                                       | 6.14 - 1                                                                                                                       | 7.57 - 1                                                                                                                       | 8.91 - 1                                                                                                                       | 1.02+0                                                                                                                         |
|                                                                                   | δ                                                                  | -2.86-3                                                                                                                         | -3.09-3                                                                                                                          | -2.74-3                                                                                                                           | -1.03-3                                                                                                                         | 2.15-3                                                                                                                         | 6.58-3                                                                                                                         | 1.19-2                                                                                                                         | 1.80-2                                                                                                                         | 2.45-2                                                                                                                         | 3.15-2                                                                                                                         |
| $5p_{3/2}$                                                                        | $\sigma$                                                           | 6.527+0                                                                                                                         | 3.907+0                                                                                                                          | 1.774+0                                                                                                                           | 9.673 - 1                                                                                                                       | 5.896 - 1                                                                                                                      | 3.873 - 1                                                                                                                      | 2.685 - 1                                                                                                                      | 1.939 - 1                                                                                                                      | 1.446 - 1                                                                                                                      | 1.106 - 1                                                                                                                      |
| $E_b =$                                                                           | β                                                                  | 1.702                                                                                                                           | 1.738                                                                                                                            | 1.751                                                                                                                             | 1.733                                                                                                                           | 1.704                                                                                                                          | 1.670                                                                                                                          | 1.635                                                                                                                          | 1.598                                                                                                                          | 1.562                                                                                                                          | 1.526                                                                                                                          |
| 18.3 eV                                                                           | γ                                                                  | 2.85-3                                                                                                                          | -3.81-2                                                                                                                          | 2.50-2                                                                                                                            | 1.72-1                                                                                                                          | 3.44-1                                                                                                                         | 5.18-1                                                                                                                         | 6.85-1                                                                                                                         | 8.43-1                                                                                                                         | 9.89-1                                                                                                                         | 1.12+0                                                                                                                         |
|                                                                                   | δ                                                                  | -3.81-4                                                                                                                         | 1.35-3                                                                                                                           | 4.48-3                                                                                                                            | 7.27-3                                                                                                                          | 1.03-2                                                                                                                         | 1.39-2                                                                                                                         | 1.79-2                                                                                                                         | 2.22-2                                                                                                                         | 2.70-2                                                                                                                         | 3.21-2                                                                                                                         |
| $5d_{3/2}$                                                                        | σ                                                                  | 2.780+0                                                                                                                         | 1.430+0                                                                                                                          | 5.033-1                                                                                                                           | 2.244-1                                                                                                                         | 1.159-1                                                                                                                        | 6.610-2                                                                                                                        | 4.052-2                                                                                                                        | 2.623-2                                                                                                                        | 1.773-2                                                                                                                        | 1.240-2                                                                                                                        |
| $E_b = 6.0 \text{ eV}$                                                            | β                                                                  | 1.386<br>4.92-2                                                                                                                 | 1.393<br>1.88-1                                                                                                                  | 1.338<br>4.76-1                                                                                                                   | 1.258<br>7.21-1                                                                                                                 | 1.178<br>9.21-1                                                                                                                | 1.102<br>1.08+0                                                                                                                | 1.031<br>1.22+0                                                                                                                | 0.966<br>1.33+0                                                                                                                | 0.905<br>1.43+0                                                                                                                | 0.849<br>1.51+0                                                                                                                |
| 0.0 6 V                                                                           | $\delta$                                                           | 2.21-2                                                                                                                          | 3.46-2                                                                                                                           | 5.70-2                                                                                                                            | 7.21-1 $7.92-2$                                                                                                                 | 1.02-1                                                                                                                         | 1.25-1                                                                                                                         | 1.47-1                                                                                                                         | 1.69-1                                                                                                                         | 1.45+0                                                                                                                         | 2.11-1                                                                                                                         |
| C-                                                                                |                                                                    |                                                                                                                                 |                                                                                                                                  |                                                                                                                                   |                                                                                                                                 |                                                                                                                                |                                                                                                                                |                                                                                                                                |                                                                                                                                |                                                                                                                                |                                                                                                                                |
| 6s <sub>1/2</sub>                                                                 | $\frac{\sigma}{eta}$                                               | 2.444-1<br>1.950                                                                                                                | 1.497 – 1<br>1.953                                                                                                               | 7.273-2<br>1.958                                                                                                                  | 4.266-2<br>1.964                                                                                                                | 2.790-2<br>1.968                                                                                                               | 1.960-2<br>1.972                                                                                                               | 1.448-2<br>1.975                                                                                                               | 1.110-2<br>1.977                                                                                                               | 8.763-3<br>1.977                                                                                                               | 7.074-3<br>1.978                                                                                                               |
| $E_b = 6.0 \text{ eV}$                                                            | γ                                                                  | 2.14-1                                                                                                                          | 1.17-1                                                                                                                           | -2.52-2                                                                                                                           | -1.04-1                                                                                                                         | -1.36-1                                                                                                                        | -1.33-1                                                                                                                        | -1.07 - 1                                                                                                                      | -6.40-2                                                                                                                        | -9.46-3                                                                                                                        | 5.40-2                                                                                                                         |
| 0.0 0.                                                                            | δ                                                                  | -4.40-4                                                                                                                         | -5.83-4                                                                                                                          | -7.75-4                                                                                                                           | -9.05-4                                                                                                                         | -9.99-4                                                                                                                        | -1.06-3                                                                                                                        | -1.12-3                                                                                                                        | -1.16-3                                                                                                                        | -1.20-3                                                                                                                        | -1.23-3                                                                                                                        |
| Z= 65, Tb: [X                                                                     | el4f <sup>6</sup> 4                                                | 1f <sup>3</sup> 6s <sup>2</sup>                                                                                                 |                                                                                                                                  |                                                                                                                                   |                                                                                                                                 |                                                                                                                                |                                                                                                                                |                                                                                                                                |                                                                                                                                |                                                                                                                                |                                                                                                                                |
|                                                                                   | -1-5/2                                                             | k (eV)                                                                                                                          |                                                                                                                                  |                                                                                                                                   |                                                                                                                                 |                                                                                                                                |                                                                                                                                |                                                                                                                                |                                                                                                                                |                                                                                                                                |                                                                                                                                |
| a                                                                                 |                                                                    |                                                                                                                                 | 2222                                                                                                                             |                                                                                                                                   | 1000                                                                                                                            | =000                                                                                                                           | 2222                                                                                                                           |                                                                                                                                |                                                                                                                                |                                                                                                                                | 10000                                                                                                                          |
| Shell                                                                             |                                                                    | 1500                                                                                                                            | 2000                                                                                                                             | 3000                                                                                                                              | 4000                                                                                                                            | 5000                                                                                                                           | 6000                                                                                                                           | 7000                                                                                                                           | 8000                                                                                                                           | 9000                                                                                                                           | 10000                                                                                                                          |
| $3d_{3/2}$                                                                        | σ                                                                  | 4.281+2                                                                                                                         | 2.132+2                                                                                                                          | 6.773+1                                                                                                                           | 2.838+1                                                                                                                         | 1.405+1                                                                                                                        | 7.765+0                                                                                                                        | 4.645+0                                                                                                                        | 2.950+0                                                                                                                        | 1.963+0                                                                                                                        | 1.356+0                                                                                                                        |
| $E_b =$                                                                           | β                                                                  | 0.550                                                                                                                           | 1.009                                                                                                                            | 1.225                                                                                                                             | 1.232                                                                                                                           | 1.190                                                                                                                          | 1.132                                                                                                                          | 1.071                                                                                                                          | 1.010                                                                                                                          | 0.952                                                                                                                          | 0.897                                                                                                                          |
| 1275.0 eV                                                                         | $\gamma \delta$                                                    | -1.26-1 $-1.28-2$                                                                                                               | -1.18-1<br>2.37-2                                                                                                                | 2.21-1<br>6.51-2                                                                                                                  | 5.40-1<br>8.98-2                                                                                                                | 7.95-1<br>1.11-1                                                                                                               | 9.98-1<br>1.32-1                                                                                                               | 1.16+0<br>1.52-1                                                                                                               | 1.30+0<br>1.72-1                                                                                                               | 1.41+0<br>1.91-1                                                                                                               | 1.50+0<br>2.10-1                                                                                                               |
| 2.1                                                                               |                                                                    |                                                                                                                                 |                                                                                                                                  |                                                                                                                                   |                                                                                                                                 |                                                                                                                                |                                                                                                                                |                                                                                                                                |                                                                                                                                |                                                                                                                                |                                                                                                                                |
| $3d_{5/2}$<br>$E_b =$                                                             | $\frac{\sigma}{eta}$                                               | 6.371+2<br>0.666                                                                                                                | 3.058+2<br>1.064                                                                                                                 | 9.521+1<br>1.218                                                                                                                  | 3.947+1<br>1.197                                                                                                                | 1.937+1<br>1.141                                                                                                               | 1.064+1<br>1.077                                                                                                               | 6.325+0<br>1.012                                                                                                               | 3.994+0<br>0.951                                                                                                               | 2.643+0<br>0.894                                                                                                               | 1.817+0<br>0.841                                                                                                               |
| 1241.2 eV                                                                         | γ                                                                  | -1.38 - 1                                                                                                                       | -9.86-2                                                                                                                          | 2.59-1                                                                                                                            | 5.71-1                                                                                                                          | 8.14-1                                                                                                                         | 1.00+0                                                                                                                         | 1.16+0                                                                                                                         | 1.28+0                                                                                                                         | 1.39+0                                                                                                                         | 1.47+0                                                                                                                         |
| 12 11.2 CV                                                                        | δ                                                                  | -1.21-2                                                                                                                         | 2.30-2                                                                                                                           | 6.40-2                                                                                                                            | 9.12-2                                                                                                                          | 1.16-1                                                                                                                         | 1.40-1                                                                                                                         | 1.63-1                                                                                                                         | 1.85-1                                                                                                                         | 2.07-1                                                                                                                         | 2.28-1                                                                                                                         |
| 4s <sub>1/2</sub>                                                                 | σ                                                                  | 1.998+1                                                                                                                         | 1.260+1                                                                                                                          | 6.291+0                                                                                                                           | 3.745+0                                                                                                                         | 2.473+0                                                                                                                        | 1.750+0                                                                                                                        | 1.299+0                                                                                                                        | 1.000+0                                                                                                                        | 7.915-1                                                                                                                        | 6.405-1                                                                                                                        |
| $E_b =$                                                                           | β                                                                  | 1.941                                                                                                                           | 1.945                                                                                                                            | 1.952                                                                                                                             | 1.959                                                                                                                           | 1.964                                                                                                                          | 1.968                                                                                                                          | 1.972                                                                                                                          | 1.974                                                                                                                          | 1.975                                                                                                                          | 1.976                                                                                                                          |
| 397.9 eV                                                                          | γ                                                                  | 3.41 - 1                                                                                                                        | 2.17 - 1                                                                                                                         | 3.27-2                                                                                                                            | -7.43 - 2                                                                                                                       | -1.26-1                                                                                                                        | -1.40-1                                                                                                                        | -1.27 - 1                                                                                                                      | -9.44 - 2                                                                                                                      | -4.72 - 2                                                                                                                      | 1.05 - 2                                                                                                                       |
|                                                                                   | δ                                                                  | -3.70 - 4                                                                                                                       | -5.65 - 4                                                                                                                        | -8.09 - 4                                                                                                                         | -9.64 - 4                                                                                                                       | -1.07 - 3                                                                                                                      | -1.16 - 3                                                                                                                      | -1.23 - 3                                                                                                                      | -1.28 - 3                                                                                                                      | -1.33 - 3                                                                                                                      | -1.37 - 3                                                                                                                      |
| $4p_{1/2}$                                                                        | σ                                                                  | 2.386+1                                                                                                                         | 1.527+1                                                                                                                          | 7.493+0                                                                                                                           | 4.292+0                                                                                                                         | 2.711+0                                                                                                                        | 1.831+0                                                                                                                        | 1.299+0                                                                                                                        | 9.566-1                                                                                                                        | 7.255-1                                                                                                                        | 5.634-1                                                                                                                        |
| $E_b =$                                                                           | β                                                                  | 1 620                                                                                                                           | 1 CO1                                                                                                                            | 4 000                                                                                                                             |                                                                                                                                 |                                                                                                                                |                                                                                                                                | 1.550                                                                                                                          | 1.510                                                                                                                          | 1.472                                                                                                                          | 1.434                                                                                                                          |
| 310.2 eV                                                                          | Ρ                                                                  | 1.638                                                                                                                           | 1.681                                                                                                                            | 1.689                                                                                                                             | 1.664                                                                                                                           | 1.628                                                                                                                          | 1.589                                                                                                                          | 1.550                                                                                                                          |                                                                                                                                |                                                                                                                                |                                                                                                                                |
|                                                                                   | γ                                                                  | 1.10 - 1                                                                                                                        | 6.63 - 3                                                                                                                         | -2.59 - 3                                                                                                                         | 1.05 - 1                                                                                                                        | 2.52 - 1                                                                                                                       | 4.08 - 1                                                                                                                       | 5.61 - 1                                                                                                                       | 7.07 - 1                                                                                                                       | 8.43 - 1                                                                                                                       | 9.70 - 1                                                                                                                       |
|                                                                                   |                                                                    | 1.10-1<br>-3.84-4                                                                                                               | 6.63-3<br>-2.28-3                                                                                                                | -2.59-3<br>-2.51-3                                                                                                                | 1.05-1<br>-1.07-3                                                                                                               | 2.52-1<br>1.81-3                                                                                                               | 4.08-1<br>5.94-3                                                                                                               | 5.61-1<br>1.10-2                                                                                                               | 7.07-1<br>1.68-2                                                                                                               | 8.43-1<br>2.31-2                                                                                                               | 9.70-1<br>2.97-2                                                                                                               |
| 4p <sub>3/2</sub>                                                                 | γ<br>δ                                                             | 1.10-1<br>-3.84-4<br>5.235+1                                                                                                    | 6.63-3<br>-2.28-3<br>3.192+1                                                                                                     | -2.59-3<br>-2.51-3<br>1.474+1                                                                                                     | 1.05-1<br>-1.07-3<br>8.109+0                                                                                                    | 2.52-1<br>1.81-3<br>4.970+0                                                                                                    | 4.08-1<br>5.94-3<br>3.278+0                                                                                                    | 5.61-1<br>1.10-2<br>2.279+0                                                                                                    | 7.07-1<br>1.68-2<br>1.649+0                                                                                                    | 8.43-1<br>2.31-2<br>1.232+0                                                                                                    | 9.70-1<br>2.97-2<br>9.437-1                                                                                                    |
| $E_b =$                                                                           | $\frac{\gamma}{\delta}$ $\frac{\sigma}{\beta}$                     | 1.10-1<br>-3.84-4<br>5.235+1<br>1.637                                                                                           | 6.63-3<br>-2.28-3<br>3.192+1<br>1.700                                                                                            | -2.59-3<br>-2.51-3<br>1.474+1<br>1.737                                                                                            | 1.05-1<br>-1.07-3<br>8.109+0<br>1.731                                                                                           | 2.52-1<br>1.81-3<br>4.970+0<br>1.709                                                                                           | 4.08-1<br>5.94-3<br>3.278+0<br>1.679                                                                                           | 5.61-1<br>1.10-2<br>2.279+0<br>1.647                                                                                           | 7.07-1<br>1.68-2<br>1.649+0<br>1.613                                                                                           | 8.43-1<br>2.31-2<br>1.232+0<br>1.578                                                                                           | 9.70-1<br>2.97-2<br>9.437-1<br>1.544                                                                                           |
|                                                                                   | γ<br>δ<br>σ<br>β<br>γ                                              | 1.10-1<br>-3.84-4<br>5.235+1<br>1.637<br>5.70-2                                                                                 | 6.63-3<br>-2.28-3<br>3.192+1<br>1.700<br>-2.57-2                                                                                 | -2.59-3<br>-2.51-3<br>1.474+1<br>1.737<br>-5.29-3                                                                                 | 1.05-1<br>-1.07-3<br>8.109+0<br>1.731<br>1.25-1                                                                                 | 2.52-1<br>1.81-3<br>4.970+0<br>1.709<br>2.91-1                                                                                 | 4.08-1<br>5.94-3<br>3.278+0<br>1.679<br>4.64-1                                                                                 | 5.61-1<br>1.10-2<br>2.279+0<br>1.647<br>6.33-1                                                                                 | 7.07-1<br>1.68-2<br>1.649+0<br>1.613<br>7.94-1                                                                                 | 8.43-1<br>2.31-2<br>1.232+0<br>1.578<br>9.43-1                                                                                 | 9.70-1<br>2.97-2<br>9.437-1<br>1.544<br>1.08+0                                                                                 |
| $E_b = 285.0 \text{ eV}$                                                          | γ<br>δ<br>σ<br>β<br>γ<br>δ                                         | 1.10-1<br>-3.84-4<br>5.235+1<br>1.637<br>5.70-2<br>8.52-4                                                                       | 6.63-3<br>-2.28-3<br>3.192+1<br>1.700<br>-2.57-2<br>1.43-3                                                                       | -2.59-3<br>-2.51-3<br>1.474+1<br>1.737<br>-5.29-3<br>4.64-3                                                                       | 1.05-1<br>-1.07-3<br>8.109+0<br>1.731<br>1.25-1<br>7.61-3                                                                       | 2.52-1<br>1.81-3<br>4.970+0<br>1.709<br>2.91-1<br>1.06-2                                                                       | 4.08-1<br>5.94-3<br>3.278+0<br>1.679<br>4.64-1<br>1.41-2                                                                       | 5.61-1<br>1.10-2<br>2.279+0<br>1.647<br>6.33-1<br>1.79-2                                                                       | 7.07-1<br>1.68-2<br>1.649+0<br>1.613<br>7.94-1<br>2.21-2                                                                       | 8.43-1<br>2.31-2<br>1.232+0<br>1.578<br>9.43-1<br>2.66-2                                                                       | 9.70-1<br>2.97-2<br>9.437-1<br>1.544<br>1.08+0<br>3.12-2                                                                       |
| $E_b = 285.0 \text{ eV}$                                                          | γ<br>δ<br>σ<br>β<br>γ<br>δ                                         | 1.10-1<br>-3.84-4<br>5.235+1<br>1.637<br>5.70-2<br>8.52-4<br>5.674+1                                                            | 6.63-3<br>-2.28-3<br>3.192+1<br>1.700<br>-2.57-2<br>1.43-3<br>2.938+1                                                            | -2.59-3<br>-2.51-3<br>1.474+1<br>1.737<br>-5.29-3<br>4.64-3<br>1.040+1                                                            | 1.05-1<br>-1.07-3<br>8.109+0<br>1.731<br>1.25-1<br>7.61-3<br>4.657+0                                                            | 2.52-1<br>1.81-3<br>4.970+0<br>1.709<br>2.91-1<br>1.06-2<br>2.411+0                                                            | 4.08-1<br>5.94-3<br>3.278+0<br>1.679<br>4.64-1<br>1.41-2<br>1.378+0                                                            | 5.61-1<br>1.10-2<br>2.279+0<br>1.647<br>6.33-1<br>1.79-2<br>8.463-1                                                            | 7.07-1<br>1.68-2<br>1.649+0<br>1.613<br>7.94-1<br>2.21-2<br>5.487-1                                                            | 8.43-1<br>2.31-2<br>1.232+0<br>1.578<br>9.43-1<br>2.66-2<br>3.713-1                                                            | 9.70-1<br>2.97-2<br>9.437-1<br>1.544<br>1.08+0<br>3.12-2<br>2.602-1                                                            |
| $E_b = 285.0 \text{ eV}$<br>$4d_{3/2}$<br>$E_b = $                                | γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β                               | 1.10-1<br>-3.84-4<br>5.235+1<br>1.637<br>5.70-2<br>8.52-4<br>5.674+1<br>1.339                                                   | 6.63-3<br>-2.28-3<br>3.192+1<br>1.700<br>-2.57-2<br>1.43-3<br>2.938+1<br>1.371                                                   | -2.59-3<br>-2.51-3<br>1.474+1<br>1.737<br>-5.29-3<br>4.64-3<br>1.040+1<br>1.338                                                   | 1.05-1<br>-1.07-3<br>8.109+0<br>1.731<br>1.25-1<br>7.61-3<br>4.657+0<br>1.268                                                   | 2.52-1<br>1.81-3<br>4.970+0<br>1.709<br>2.91-1<br>1.06-2<br>2.411+0<br>1.192                                                   | 4.08-1<br>5.94-3<br>3.278+0<br>1.679<br>4.64-1<br>1.41-2<br>1.378+0<br>1.118                                                   | 5.61-1<br>1.10-2<br>2.279+0<br>1.647<br>6.33-1<br>1.79-2<br>8.463-1<br>1.049                                                   | 7.07-1<br>1.68-2<br>1.649+0<br>1.613<br>7.94-1<br>2.21-2<br>5.487-1<br>0.985                                                   | 8.43-1<br>2.31-2<br>1.232+0<br>1.578<br>9.43-1<br>2.66-2<br>3.713-1<br>0.925                                                   | 9.70-1<br>2.97-2<br>9.437-1<br>1.544<br>1.08+0<br>3.12-2<br>2.602-1<br>0.871                                                   |
| $E_b = 285.0 \text{ eV}$                                                          | γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ                          | 1.10-1<br>-3.84-4<br>5.235+1<br>1.637<br>5.70-2<br>8.52-4<br>5.674+1<br>1.339<br>1.41-2                                         | 6.63-3<br>-2.28-3<br>3.192+1<br>1.700<br>-2.57-2<br>1.43-3<br>2.938+1<br>1.371<br>1.46-1                                         | -2.59-3<br>-2.51-3<br>1.474+1<br>1.737<br>-5.29-3<br>4.64-3<br>1.040+1<br>1.338<br>4.36-1                                         | 1.05-1<br>-1.07-3<br>8.109+0<br>1.731<br>1.25-1<br>7.61-3<br>4.657+0<br>1.268<br>6.88-1                                         | 2.52-1<br>1.81-3<br>4.970+0<br>1.709<br>2.91-1<br>1.06-2<br>2.411+0<br>1.192<br>8.94-1                                         | 4.08-1<br>5.94-3<br>3.278+0<br>1.679<br>4.64-1<br>1.41-2<br>1.378+0<br>1.118<br>1.06+0                                         | 5.61-1<br>1.10-2<br>2.279+0<br>1.647<br>6.33-1<br>1.79-2<br>8.463-1<br>1.049<br>1.20+0                                         | 7.07-1<br>1.68-2<br>1.649+0<br>1.613<br>7.94-1<br>2.21-2<br>5.487-1<br>0.985<br>1.32+0                                         | 8.43-1<br>2.31-2<br>1.232+0<br>1.578<br>9.43-1<br>2.66-2<br>3.713-1<br>0.925<br>1.42+0                                         | 9.70-1<br>2.97-2<br>9.437-1<br>1.544<br>1.08+0<br>3.12-2<br>2.602-1<br>0.871<br>1.51+0                                         |
| $E_b = 285.0 \text{ eV}$ $4d_{3/2}$ $E_b = 154.5 \text{ eV}$                      | γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ                     | 1.10-1<br>-3.84-4<br>5.235+1<br>1.637<br>5.70-2<br>8.52-4<br>5.674+1<br>1.339<br>1.41-2<br>2.09-2                               | 6.63-3<br>-2.28-3<br>3.192+1<br>1.700<br>-2.57-2<br>1.43-3<br>2.938+1<br>1.371<br>1.46-1<br>3.43-2                               | -2.59-3<br>-2.51-3<br>1.474+1<br>1.737<br>-5.29-3<br>4.64-3<br>1.040+1<br>1.338<br>4.36-1<br>5.71-2                               | 1.05-1<br>-1.07-3<br>8.109+0<br>1.731<br>1.25-1<br>7.61-3<br>4.657+0<br>1.268<br>6.88-1<br>7.89-2                               | 2.52-1<br>1.81-3<br>4.970+0<br>1.709<br>2.91-1<br>1.06-2<br>2.411+0<br>1.192<br>8.94-1<br>1.01-1                               | 4.08-1<br>5.94-3<br>3.278+0<br>1.679<br>4.64-1<br>1.41-2<br>1.378+0<br>1.118<br>1.06+0<br>1.22-1                               | 5.61-1<br>1.10-2<br>2.279+0<br>1.647<br>6.33-1<br>1.79-2<br>8.463-1<br>1.049<br>1.20+0<br>1.43-1                               | 7.07-1<br>1.68-2<br>1.649+0<br>1.613<br>7.94-1<br>2.21-2<br>5.487-1<br>0.985<br>1.32+0<br>1.64-1                               | 8.43-1<br>2.31-2<br>1.232+0<br>1.578<br>9.43-1<br>2.66-2<br>3.713-1<br>0.925<br>1.42+0<br>1.85-1                               | 9.70-1<br>2.97-2<br>9.437-1<br>1.544<br>1.08+0<br>3.12-2<br>2.602-1<br>0.871<br>1.51+0<br>2.05-1                               |
| $E_b =$ 285.0 eV $4d_{3/2}$ $E_b =$ 154.5 eV                                      | γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ                     | 1.10-1<br>-3.84-4<br>5.235+1<br>1.637<br>5.70-2<br>8.52-4<br>5.674+1<br>1.339<br>1.41-2<br>2.09-2<br>8.072+1                    | 6.63-3<br>-2.28-3<br>3.192+1<br>1.700<br>-2.57-2<br>1.43-3<br>2.938+1<br>1.371<br>1.46-1<br>3.43-2<br>4.133+1                    | -2.59-3<br>-2.51-3<br>1.474+1<br>1.737<br>-5.29-3<br>4.64-3<br>1.040+1<br>1.338<br>4.36-1<br>5.71-2<br>1.443+1                    | 1.05-1<br>-1.07-3<br>8.109+0<br>1.731<br>1.25-1<br>7.61-3<br>4.657+0<br>1.268<br>6.88-1<br>7.89-2<br>6.389+0                    | 2.52-1<br>1.81-3<br>4.970+0<br>1.709<br>2.91-1<br>1.06-2<br>2.411+0<br>1.192<br>8.94-1<br>1.01-1<br>3.281+0                    | 4.08-1<br>5.94-3<br>3.278+0<br>1.679<br>4.64-1<br>1.41-2<br>1.378+0<br>1.118<br>1.06+0<br>1.22-1<br>1.861+0                    | 5.61-1<br>1.10-2<br>2.279+0<br>1.647<br>6.33-1<br>1.79-2<br>8.463-1<br>1.049<br>1.20+0<br>1.43-1<br>1.135+0                    | 7.07-1<br>1.68-2<br>1.649+0<br>1.613<br>7.94-1<br>2.21-2<br>5.487-1<br>0.985<br>1.32+0<br>1.64-1<br>7.319-1                    | 8.43-1<br>2.31-2<br>1.232+0<br>1.578<br>9.43-1<br>2.66-2<br>3.713-1<br>0.925<br>1.42+0<br>1.85-1<br>4.926-1                    | 9.70-1<br>2.97-2<br>9.437-1<br>1.544<br>1.08+0<br>3.12-2<br>2.602-1<br>0.871<br>1.51+0<br>2.05-1<br>3.434-1                    |
| $E_b = 285.0 \text{ eV}$ $4d_{3/2}$ $E_b = 154.5 \text{ eV}$ $4d_{5/2}$ $E_b = 6$ | γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ | 1.10-1<br>-3.84-4<br>5.235+1<br>1.637<br>5.70-2<br>8.52-4<br>5.674+1<br>1.339<br>1.41-2<br>2.09-2<br>8.072+1<br>1.351           | 6.63-3<br>-2.28-3<br>3.192+1<br>1.700<br>-2.57-2<br>1.43-3<br>2.938+1<br>1.371<br>1.46-1<br>3.43-2<br>4.133+1<br>1.356           | -2.59-3<br>-2.51-3<br>1.474+1<br>1.737<br>-5.29-3<br>4.64-3<br>1.040+1<br>1.338<br>4.36-1<br>5.71-2<br>1.443+1<br>1.293           | 1.05-1<br>-1.07-3<br>8.109+0<br>1.731<br>1.25-1<br>7.61-3<br>4.657+0<br>1.268<br>6.88-1<br>7.89-2<br>6.389+0<br>1.209           | 2.52-1<br>1.81-3<br>4.970+0<br>1.709<br>2.91-1<br>1.06-2<br>2.411+0<br>1.192<br>8.94-1<br>1.01-1<br>3.281+0<br>1.127           | 4.08-1<br>5.94-3<br>3.278+0<br>1.679<br>4.64-1<br>1.41-2<br>1.378+0<br>1.118<br>1.06+0<br>1.22-1<br>1.861+0<br>1.051           | 5.61-1<br>1.10-2<br>2.279+0<br>1.647<br>6.33-1<br>1.79-2<br>8.463-1<br>1.049<br>1.20+0<br>1.43-1<br>1.135+0<br>0.982           | 7.07-1<br>1.68-2<br>1.649+0<br>1.613<br>7.94-1<br>2.21-2<br>5.487-1<br>0.985<br>1.32+0<br>1.64-1<br>7.319-1<br>0.919           | 8.43-1<br>2.31-2<br>1.232+0<br>1.578<br>9.43-1<br>2.66-2<br>3.713-1<br>0.925<br>1.42+0<br>1.85-1<br>4.926-1<br>0.863           | 9.70-1<br>2.97-2<br>9.437-1<br>1.544<br>1.08+0<br>3.12-2<br>2.602-1<br>0.871<br>1.51+0<br>2.05-1<br>3.434-1<br>0.812           |
| $E_b = 285.0 \text{ eV}$ $4d_{3/2}$ $E_b = 154.5 \text{ eV}$                      | γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ                     | 1.10-1<br>-3.84-4<br>5.235+1<br>1.637<br>5.70-2<br>8.52-4<br>5.674+1<br>1.339<br>1.41-2<br>2.09-2<br>8.072+1                    | 6.63-3<br>-2.28-3<br>3.192+1<br>1.700<br>-2.57-2<br>1.43-3<br>2.938+1<br>1.371<br>1.46-1<br>3.43-2<br>4.133+1                    | -2.59-3<br>-2.51-3<br>1.474+1<br>1.737<br>-5.29-3<br>4.64-3<br>1.040+1<br>1.338<br>4.36-1<br>5.71-2<br>1.443+1                    | 1.05-1<br>-1.07-3<br>8.109+0<br>1.731<br>1.25-1<br>7.61-3<br>4.657+0<br>1.268<br>6.88-1<br>7.89-2<br>6.389+0                    | 2.52-1<br>1.81-3<br>4.970+0<br>1.709<br>2.91-1<br>1.06-2<br>2.411+0<br>1.192<br>8.94-1<br>1.01-1<br>3.281+0                    | 4.08-1<br>5.94-3<br>3.278+0<br>1.679<br>4.64-1<br>1.41-2<br>1.378+0<br>1.118<br>1.06+0<br>1.22-1<br>1.861+0                    | 5.61-1<br>1.10-2<br>2.279+0<br>1.647<br>6.33-1<br>1.79-2<br>8.463-1<br>1.049<br>1.20+0<br>1.43-1<br>1.135+0                    | 7.07-1<br>1.68-2<br>1.649+0<br>1.613<br>7.94-1<br>2.21-2<br>5.487-1<br>0.985<br>1.32+0<br>1.64-1<br>7.319-1                    | 8.43-1<br>2.31-2<br>1.232+0<br>1.578<br>9.43-1<br>2.66-2<br>3.713-1<br>0.925<br>1.42+0<br>1.85-1<br>4.926-1                    | 9.70-1<br>2.97-2<br>9.437-1<br>1.544<br>1.08+0<br>3.12-2<br>2.602-1<br>0.871<br>1.51+0<br>2.05-1<br>3.434-1                    |
| $E_b = 285.0 \text{ eV}$ $4d_{3/2}$ $E_b = 154.5 \text{ eV}$ $4d_{5/2}$ $E_b = 6$ | γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>γ | 1.10-1<br>-3.84-4<br>5.235+1<br>1.637<br>5.70-2<br>8.52-4<br>5.674+1<br>1.339<br>1.41-2<br>2.09-2<br>8.072+1<br>1.351<br>2.91-2 | 6.63-3<br>-2.28-3<br>3.192+1<br>1.700<br>-2.57-2<br>1.43-3<br>2.938+1<br>1.371<br>1.46-1<br>3.43-2<br>4.133+1<br>1.356<br>1.69-1 | -2.59-3<br>-2.51-3<br>1.474+1<br>1.737<br>-5.29-3<br>4.64-3<br>1.040+1<br>1.338<br>4.36-1<br>5.71-2<br>1.443+1<br>1.293<br>4.59-1 | 1.05-1<br>-1.07-3<br>8.109+0<br>1.731<br>1.25-1<br>7.61-3<br>4.657+0<br>1.268<br>6.88-1<br>7.89-2<br>6.389+0<br>1.209<br>7.02-1 | 2.52-1<br>1.81-3<br>4.970+0<br>1.709<br>2.91-1<br>1.06-2<br>2.411+0<br>1.192<br>8.94-1<br>1.01-1<br>3.281+0<br>1.127<br>8.97-1 | 4.08-1<br>5.94-3<br>3.278+0<br>1.679<br>4.64-1<br>1.41-2<br>1.378+0<br>1.118<br>1.06+0<br>1.22-1<br>1.861+0<br>1.051<br>1.05+0 | 5.61-1<br>1.10-2<br>2.279+0<br>1.647<br>6.33-1<br>1.79-2<br>8.463-1<br>1.049<br>1.20+0<br>1.43-1<br>1.135+0<br>0.982<br>1.19+0 | 7.07-1<br>1.68-2<br>1.649+0<br>1.613<br>7.94-1<br>2.21-2<br>5.487-1<br>0.985<br>1.32+0<br>1.64-1<br>7.319-1<br>0.919<br>1.30+0 | 8.43-1<br>2.31-2<br>1.232+0<br>1.578<br>9.43-1<br>2.66-2<br>3.713-1<br>0.925<br>1.42+0<br>1.85-1<br>4.926-1<br>0.863<br>1.39+0 | 9.70-1<br>2.97-2<br>9.437-1<br>1.544<br>1.08+0<br>3.12-2<br>2.602-1<br>0.871<br>1.51+0<br>2.05-1<br>3.434-1<br>0.812<br>1.47+0 |

| Table 1 (contin                                  | ued)                              |                                     |                   |                    |                     |                   |                        |                   |                   |                   |                     |
|--------------------------------------------------|-----------------------------------|-------------------------------------|-------------------|--------------------|---------------------|-------------------|------------------------|-------------------|-------------------|-------------------|---------------------|
| $E_b =$                                          | β                                 | 1.056                               | 0.997             | 0.870              | 0.763               | 0.677             | 0.607                  | 0.547             | 0.495             | 0.448             | 0.403               |
| 4.0 eV                                           | $\gamma \\ \delta$                | 4.33-1<br>1.07-1                    | 5.86-1<br>1.34-1  | 7.97-1<br>1.86-1   | 9.34-1<br>2.34-1    | 1.03+0<br>2.80-1  | 1.11+0<br>3.22-1       | 1.17+0<br>3.63-1  | 1.23+0<br>4.01-1  | 1.27+0<br>4.36-1  | 1.31+0<br>4.70-1    |
| 4f <sub>7/2</sub>                                | σ                                 | 1.964+1                             | 6.972+0           | 1.495+0            | 4.781-1             | 1.924-1           | 8.986-2                | 4.657-2           | 2.607-2           | 1.550-2           | 9.663-3             |
| $E_b = 1.6 \text{ eV}$                           | $eta \ \gamma$                    | 1.047<br>4.39-1                     | 0.988<br>5.92-1   | 0.862<br>8.04-1    | 0.759<br>9.40-1     | 0.678<br>1.04+0   | 0.612<br>1.11+0        | 0.556<br>1.17+0   | 0.507<br>1.22+0   | 0.464<br>1.27+0   | 0.423<br>1.30+0     |
|                                                  | δ                                 | 1.06-1                              | 1.34-1            | 1.87-1             | 2.37-1              | 2.83-1            | 3.26-1                 | 3.67-1            | 4.05-1            | 4.41-1            | 4.75-1              |
| $5s_{1/2}$<br>$E_b =$                            | $\frac{\sigma}{eta}$              | 3.221+0<br>1.946                    | 1.991+0<br>1.949  | 9.760-1<br>1.955   | 5.755-1<br>1.961    | 3.777-1<br>1.966  | 2.660-1<br>1.970       | 1.969-1<br>1.973  | 1.512-1<br>1.974  | 1.195-1<br>1.976  | 9.656-2<br>1.976    |
| 39.0 eV                                          | γ                                 | 2.34 - 1                            | 1.37 - 1          | -1.00-2            | -9.49 - 2           | -1.33-1           | -1.37 - 1              | -1.17 - 1         | -8.03 - 2         | -3.04 - 2         | 2.90 - 2            |
| F                                                | δ                                 | -4.48-4                             | -6.05-4           | -8.19-4            | -9.58-4             | -1.06-3           | -1.14-3                | -1.21-3           | -1.25-3           | -1.30-3           | -1.34-3             |
| $5p_{1/2}$ $E_b =$                               | $\frac{\sigma}{eta}$              | 3.134+0<br>1.697                    | 1.966+0<br>1.716  | 9.487-1<br>1.704   | 5.392-1<br>1.671    | 3.391-1<br>1.631  | 2.284-1<br>1.590       | 1.618-1<br>1.550  | 1.190-1<br>1.510  | 9.022-2<br>1.471  | 7.005-2<br>1.433    |
| 26.3 eV                                          | $\gamma \\ \delta$                | 5.13-2<br>-2.97-3                   | -1.43-2 $-3.26-3$ | 1.05-2<br>-3.02-3  | 1.29-1<br>-1.57-3   | 2.77-1<br>1.29-3  | 4.32-1<br>5.40-3       | 5.83-1<br>1.05-2  | 7.27-1<br>1.65-2  | 8.62-1<br>2.29-2  | 9.87 - 1 $2.98 - 2$ |
| 5p <sub>3/2</sub>                                | σ                                 | 6.218+0                             | 3.740+0           | 1.707+0            | 9.347-1             | 5.713-1           | 3.761-1                | 2.613-1           | 1.890-1           | 1.412-1           | 1.082-1             |
| $E_b =$                                          | β                                 | 1.694                               | 1.735             | 1.753              | 1.738               | 1.712             | 1.681                  | 1.647             | 1.612             | 1.577             | 1.543               |
| 21.3 eV                                          | $\gamma \over \delta$             | 1.33-2<br>-5.69-4                   | -3.66-2<br>1.13-3 | 1.19-2<br>4.34-3   | 1.50-1<br>7.07-3    | 3.16-1<br>9.97-3  | 4.87-1<br>1.33-2       | 6.54-1<br>1.71-2  | 8.12-1<br>2.14-2  | 9.60-1 $2.61-2$   | 1.10+0<br>3.11-2    |
| 6s <sub>1/2</sub>                                | σ                                 | 2.075-1                             | 1.276-1           | 6.227-2            | 3.663-2             | 2.400-2           | 1.688-2                | 1.248-2           | 9.579-3           | 7.563-3           | 6.109-3             |
| $E_b = 6.0 \text{ eV}$                           | $\beta$ $\gamma$                  | 1.946<br>2.31-1                     | 1.949<br>1.34-1   | 1.955<br>-1.21-2   | 1.961<br>-9.65-2    | 1.966<br>1.34 1   | 1.969<br>-1.39-1       | 1.972<br>-1.18-1  | 1.974<br>-8.04-2  | 1.975<br>-2.99-2  | 1.976<br>2.98-2     |
| 0.0 C V                                          | δ                                 | -4.50-4                             | -6.08-4           | -8.21-4            | -9.64-4             | -1.07 - 3         | -1.15-3                | -1.21-3           | -1.27 - 3         | -1.31-3           | -1.34-3             |
| Z= 66, Dy: [X                                    | (e]4f <sup>6</sup> <sub>5/2</sub> | 4f <sub>7/2</sub> 6s <sub>1/2</sub> |                   |                    |                     |                   |                        |                   |                   |                   |                     |
|                                                  |                                   | k (eV)                              |                   |                    |                     |                   |                        |                   |                   |                   |                     |
| Shell                                            |                                   | 1500                                | 2000              | 3000               | 4000                | 5000              | 6000                   | 7000              | 8000              | 9000              | 10000               |
| $3d_{3/2}$ $E_b =$                               | $\frac{\sigma}{eta}$              | 4.443+2<br>0.450                    | 2.284+2<br>0.963  | 7.328+1<br>1.216   | 3.085+1<br>1.236    | 1.532+1<br>1.200  | 8.498+0<br>1.146       | 5.097+0<br>1.087  | 3.244+0<br>1.027  | 2.163+0<br>0.970  | 1.497+0<br>0.915    |
| 1332.5 eV                                        | γ                                 | -9.87 - 2                           | -1.42 - 1         | 1.82 - 1           | 5.04 - 1            | 7.65 - 1          | 9.75 - 1               | 1.15+0            | 1.28+0            | 1.40+0            | 1.50+0              |
| 3d <sub>5/2</sub>                                | $\frac{\delta}{\sigma}$           | -1.22-2<br>6.657+2                  | 1.80-2<br>3.273+2 | 6.26-2<br>1.028+2  | 8.76-2<br>4.280+1   | 1.09-1<br>2.109+1 | 1.29-1<br>1.161+1      | 1.49-1<br>6.921+0 | 1.68-1<br>4.380+0 | 1.87-1<br>2.905+0 | 2.06-1<br>2.000+0   |
| $E_b =$                                          | β                                 | 0.575                               | 1.030             | 1.214              | 1.203               | 1.151             | 1.090                  | 1.027             | 0.966             | 0.909             | 0.856               |
| 1294.9 eV                                        | $\gamma \\ \delta$                | -1.17-1 $-1.34-2$                   | -1.25-1 $1.80-2$  | 2.22-1 $6.12-2$    | 5.39-1<br>8.87-2    | 7.88-1<br>1.13-1  | 9.85-1<br>1.37-1       | 1.14+0<br>1.60-1  | 1.27+0<br>1.82-1  | 1.38+0<br>2.03-1  | 1.47+0<br>2.24-1    |
| 4s <sub>1/2</sub>                                | σ                                 | 2.049+1                             | 1.298+1           | 6.514+0            | 3.888+0             | 2.572+0           | 1.822+0                | 1.354+0           | 1.043+0           | 8.262-1           | 6.691-1             |
| $E_b = 416.3 \text{ eV}$                         | $\beta$ $\gamma$                  | 1.937<br>3.63-1                     | 1.941<br>2.40-1   | 1.949<br>5.00-2    | 1.955<br>-6.35-2    | 1.961<br>-1.22-1  | 1.965<br>-1.42-1       | 1.969<br>-1.35-1  | 1.971<br>-1.08-1  | 1.973<br>-6.54-2  | 1.974<br>-1.21-2    |
| 410.5 CV                                         | δ                                 | -3.67-4                             | -5.86-4           | -8.59-4            | -0.33-2 $-1.03-3$   | -1.16-3           | -1.42 - 1<br>-1.25 - 3 | -1.32 - 3         | -1.38 - 3         | -0.34-2 $-1.44-3$ | -1.48 - 3           |
| 4p <sub>1/2</sub>                                | σ                                 | 2.449+1                             | 1.579+1           | 7.820+0            | 4.504+0             | 2.856+0           | 1.935+0                | 1.377+0           | 1.016+0           | 7.723-1           | 6.010-1             |
| $E_b = 331.8 \text{ eV}$                         | $\beta$ $\gamma$                  | 1.627<br>1.35-1                     | 1.676<br>1.89-2   | 1.690<br>-9.58-3   | 1.668<br>8.71-2     | 1.635<br>2.27-1   | 1.598<br>3.79-1        | 1.560<br>5.31-1   | 1.521<br>6.76-1   | 1.484<br>8.13-1   | 1.447<br>9.41-1     |
|                                                  | δ                                 | 3.60-5                              | -2.29-3           | -2.76-3            | -1.56-3             | 1.03-3            | 4.85-3                 | 9.67-3            | 1.52-2            | 2.13-2            | 2.77-2              |
| $\begin{array}{l} 4p_{3/2} \\ E_b = \end{array}$ | $\frac{\sigma}{eta}$              | 5.405+1<br>1.626                    | 3.313+1<br>1.694  | 1.540+1<br>1.737   | 8.510+0<br>1.735    | 5.232+0<br>1.715  | 3.459+0<br>1.688       | 2.411+0<br>1.658  | 1.748+0<br>1.625  | 1.308+0<br>1.592  | 1.003+0<br>1.558    |
| 292.9 eV                                         | γ                                 | 7.11 - 2                            | -1.97 - 2         | -1.45 - 2          | 1.06 - 1            | 2.66 - 1          | 4.36 - 1               | 6.04 - 1          | 7.64 - 1          | 9.14 - 1          | 1.05+0              |
| 4.4                                              | δ                                 | 9.84-4<br>5.994+1                   | 1.29-3            | 4.51-3             | 7.48-3<br>5.053+0   | 1.04-2            | 1.37-2                 | 1.73-2<br>9.291-1 | 2.13-2<br>6.041-1 | 2.56-2<br>4.098-1 | 3.01-2              |
| $4d_{3/2}$ $E_b =$                               | $\frac{\sigma}{eta}$              | 1.331                               | 3.133+1<br>1.371  | 1.121+1<br>1.345   | 1.280               | 2.629+0<br>1.207  | 1.508+0<br>1.135       | 1.067             | 1.003             | 0.944             | 2.878-1<br>0.889    |
| 161.4 eV                                         | $\gamma \\ \delta$                | 1.49-3<br>1.95-2                    | 1.26-1 $3.28-2$   | 4.12-1<br>5.53-2   | 6.66-1 $7.66-2$     | 8.75-1<br>9.79-2  | 1.05+0<br>1.19-1       | 1.19+0<br>1.40-1  | 1.31+0<br>1.60-1  | 1.42+0<br>1.80-1  | 1.51+0<br>2.00-1    |
| 4d <sub>5/2</sub>                                | σ                                 | 8.537+1                             | 4.410+1           | 1.555+1            | 6.931+0             | 3.575+0           | 2.035+0                | 1.246+0           | 8.050-1           | 5.431-1           | 3.794-1             |
| $E_b =$                                          | β                                 | 1.347                               | 1.358             | 1.301              | 1.221               | 1.141             | 1.065                  | 0.997             | 0.935             | 0.878             | 0.826               |
| 149.4 eV                                         | $\gamma \\ \delta$                | 1.57-2<br>1.87-2                    | 1.49-1 $3.18-2$   | 4.37-1<br>5.61-2   | 6.82 - 1 $8.05 - 2$ | 8.81-1 $1.05-1$   | 1.04+0<br>1.29-1       | 1.18+0<br>1.53-1  | 1.29+0<br>1.76-1  | 1.39+0<br>1.98-1  | 1.47+0<br>2.20-1    |
| 4f <sub>5/2</sub>                                | σ                                 | 1.807+1                             | 6.504+0           | 1.418+0            | 4.586-1             | 1.862-1           | 8.759-2                | 4.569-2           | 2.573-2           | 1.538-2           | 9.638-3             |
| $E_b = 5.5 \text{ eV}$                           | $eta \ \gamma$                    | 1.058<br>4.19-1                     | 1.005<br>5.74-1   | 0.882<br>7.93-1    | 0.776<br>9.35-1     | 0.689<br>1.04+0   | 0.618<br>1.12+0        | 0.558<br>1.18+0   | 0.504<br>1.23+0   | 0.457<br>1.28+0   | 0.413<br>1.31+0     |
| 5.5 € 1                                          | δ                                 | 1.05-1                              | 1.32-1            | 1.83-1             | 2.31-1              | 2.76-1            | 3.18-1                 | 3.58-1            | 3.95-1            | 4.30-1            | 4.64-1              |
| $4f_{7/2}$                                       | $\sigma$                          | 2.266+1                             | 8.105+0           | 1.753+0            | 5.630-1             | 2.274-1           | 1.065-1                | 5.536-2           | 3.108-2           | 1.852-2           | 1.158-2             |
| $E_b = 3.3 \text{ eV}$                           | $eta \ \gamma$                    | 1.050<br>4.25-1                     | 0.996<br>5.81-1   | 0.874<br>8.00-1    | 0.771<br>9.41-1     | 0.689<br>1.04+0   | 0.622<br>1.12+0        | 0.566<br>1.18+0   | 0.516<br>1.23+0   | 0.472<br>1.27+0   | 0.432<br>1.31+0     |
|                                                  | δ                                 | 1.05-1                              | 1.32-1            | 1.84-1             | 2.33-1              | 2.79-1            | 3.22-1                 | 3.62-1            | 4.00-1            | 4.35-1            | 4.69-1              |
| $5s_{1/2} E_b =$                                 | $\frac{\sigma}{eta}$              | 3.327+0<br>1.941                    | 2.060+0<br>1.945  | 1.012+0<br>1.952   | 5.975-1<br>1.957    | 3.925-1<br>1.963  | 2.765-1<br>1.967       | 2.048-1<br>1.970  | 1.573-1<br>1.972  | 1.244-1<br>1.974  | 1.006-1<br>1.974    |
| 62.9 eV                                          | γ                                 | 2.58 - 1                            | 1.59 - 1          | 5.49 - 3           | -8.65 - 2           | -1.31-1           | -1.42 - 1              | -1.27 - 1         | -9.55 - 2         | -5.02 - 2         | 4.98 - 3            |
| 5n                                               | δ                                 | -4.61-4<br>2.184±0                  | -6.36-4           | -8.73-4<br>0.780 1 | -1.03-3             | -1.15-3           | -1.23-3                | -1.30-3           | -1.36-3           | -1.41-3           | -1.45-3             |
| $5p_{1/2}$ $E_b =$                               | $\frac{\sigma}{eta}$              | 3.184+0<br>1.692                    | 2.010+0<br>1.715  | 9.780—1<br>1.707   | 5.589-1<br>1.676    | 3.528-1<br>1.639  | 2.384-1<br>1.599       | 1.693-1<br>1.560  | 1.249-1<br>1.521  | 9.484-2<br>1.483  | 7.378-2<br>1.446    |
| 28.2 eV                                          | γ                                 | 6.56 - 2                            | -8.30 - 3         | 2.08 - 3           | 1.11 - 1            | 2.54 - 1          | 4.05 - 1               | 5.54 - 1          | 6.97 - 1          | 8.32 - 1          | 9.59 - 1            |

|                              | δ                                  | -3.06-3           | -3.41-3              | -3.29-3           | -2.06-3           | 5.14-4               | 4.30-3            | 9.13-3              | 1.48-2              | 2.10-2            | 2.76-2           |
|------------------------------|------------------------------------|-------------------|----------------------|-------------------|-------------------|----------------------|-------------------|---------------------|---------------------|-------------------|------------------|
| $p_{3/2}$                    | σ                                  | 6.382+0           | 3.855+0              | 1.770+0           | 9.730-1           | 5.964-1              | 3.936-1           | 2.740-1             | 1.985-1             | 1.485-1           | 1.139-1          |
| $E_b =$                      | β                                  | 1.686             | 1.731                | 1.754             | 1.743             | 1.719                | 1.690             | 1.658               | 1.625               | 1.591             | 1.557            |
| 22.9 eV                      | $\frac{\gamma}{\delta}$            | 2.33-2 $-7.26-4$  | -3.41-2<br>9.33-4    | 1.08-3<br>4.22-3  | 1.30-1<br>6.96-3  | 2.92-1<br>9.74-3     | 4.60-1 $1.28-2$   | 6.25 - 1 $1.64 - 2$ | 7.82 - 1 $2.05 - 2$ | 9.31-1<br>2.50-2  | 1.07+0<br>2.97-2 |
| $6s_{1/2}$                   | σ                                  | 2.085-1           | 1.286-1              | 6.303-2           | 3.716-2           | 2.439-2              | 1.718-2           | 1.271-2             | 9.761-3             | 7.713-3           | 6.233-           |
| $E_b =$                      | $\boldsymbol{\beta}$               | 1.942             | 1.946                | 1.952             | 1.958             | 1.963                | 1.967             | 1.970               | 1.972               | 1.973             | 1.974            |
| 6.0 eV                       | γ                                  | 2.46-1 $-4.66-4$  | 1.49 - 1 $-6.39 - 4$ | 5.56-4<br>-8.76-4 | -8.91-2 $-1.03-3$ | -1.33-1 $-1.15-3$    | -1.42-1 $-1.24-3$ | -1.28-1 $-1.31-3$   | -9.48-2 $-1.37-3$   | -4.87-2 $-1.42-3$ | 7.14-3<br>-1.46- |
| Z= 67, Ho: [X                |                                    |                   | -0.55-4              | -0.70-4           | -1.05-5           | -1,13-3              | -1.24-3           | -1.51-5             | -1.57-5             | -1,42-5           | -1.40-           |
| 2 07,110. [71                | 115/2                              | k (eV)            |                      |                   |                   |                      |                   |                     |                     |                   |                  |
| Shell                        |                                    | 1500              | 2000                 | 3000              | 4000              | 5000                 | 6000              | 7000                | 8000                | 9000              | 10000            |
| 3d <sub>3/2</sub>            | σ                                  | 4.520+2           | 2.441+2              | 7.914+1           | 3.347+1           | 1.669+1              | 9.281+0           | 5.582+0             | 3.560+0             | 2.378+0           | 1.649+0          |
| $E_b =$                      | β                                  | 0.375             | 0.914                | 1.206             | 1.238             | 1.209                | 1.159             | 1.103               | 1.045               | 0.988             | 0.933            |
| 1391.5 eV                    | $\delta$                           | -6.50-2 $-6.44-3$ | -1.62 - 1 $1.17 - 2$ | 1.41-1<br>5.99-2  | 4.66-1<br>8.55-2  | 7.33-1<br>1.06-1     | 9.49-1<br>1.26-1  | 1.13+0<br>1.46-1    | 1.27+0<br>1.65-1    | 1.39+0<br>1.84-1  | 1.49+0<br>2.02-1 |
| 3d <sub>5/2</sub>            | σ                                  | 6.876+2           | 3.498+2              | 1.109+2           | 4.637+1           | 2.292+1              | 1.266+1           | 7.562+0             | 4.796+0             | 3.187+0           | 2.198+0          |
| $E_b =$                      | β                                  | 0.478             | 0.991                | 1.209             | 1.208             | 1.161                | 1.102             | 1.041               | 0.981               | 0.925             | 0.871            |
| 1351.4 eV                    | γ                                  | -8.70-2           | -1.48 - 1            | 1.84-1            | 5.05-1            | 7.60-1               | 9.63-1            | 1.13+0              | 1.26+0              | 1.37+0            | 1.47+0           |
|                              | δ                                  | -1.07-2           | 1.24-2               | 5.83-2            | 8.61-2            | 1.10-1               | 1.33-1            | 1.56-1              | 1.78-1              | 1.99-1            | 2.20-1           |
| $4s_{1/2}$ $E_b =$           | $\frac{\sigma}{eta}$               | 2.098+1<br>1.932  | 1.335+1<br>1.936     | 6.735+0<br>1.945  | 4.032+0<br>1.951  | 2.672+0<br>1.957     | 1.894+0<br>1.962  | 1.409+0<br>1.966    | 1.087+0<br>1.969    | 8.614-1<br>1.971  | 6.981-<br>1.972  |
| 435.7 eV                     | γ                                  | 3.87-1<br>-3.61-4 | 2.63-1 $-6.06-4$     | 6.85-2 $-9.11-4$  | -5.15-2 $-1.10-3$ | -1.17-1 $-1.24-3$    | -1.43-1 $-1.34-3$ | -1.42-1 $-1.42-3$   | -1.19-1 $-1.49-3$   | -8.22-2 $-1.55-3$ | -3.34-<br>-1.60- |
| $4p_{1/2}$                   | σ                                  | 2.499+1           | 1.625+1              | 8.122+0           | 4.706+0           | 2.997+0              | 2.038+0           | 1.454+0             | 1.076+0             | 8.193-1           | 6.388-           |
| $E_b =$                      | β                                  | 1.616             | 1.671                | 1.691             | 1.672             | 1.641                | 1.605             | 1.569               | 1.532               | 1.495             | 1.459            |
| 343.5 eV                     | γ                                  | 1.57 - 1          | 3.16 - 2             | -1.43-2           | 7.12 - 2          | 2.04 - 1             | 3.52 - 1          | 5.01 - 1            | 6.45 - 1            | 7.82 - 1          | 9.11 - 1         |
|                              | δ                                  | 4.51-4            | -2.29-3              | -2.99-3           | -2.00-3           | 3.22-4               | 3.85-3            | 8.39-3              | 1.37-2              | 1.96-2            | 2.58-2           |
| $4p_{3/2}$                   | σ                                  | 5.584+1           | 3.440+1              | 1.610+1           | 8.931+0           | 5.507+0              | 3.650+0           | 2.548+0             | 1.851+0             | 1.387+0           | 1.066+0          |
| $E_b = 306.6 \text{ eV}$     | β                                  | 1.612<br>8.78-2   | 1.686<br>-1.19-2     | 1.737<br>-2.29-2  | 1.738<br>8.70-2   | 1.722<br>2.41-1      | 1.697<br>4.07-1   | 1.668<br>5.73-1     | 1.637<br>7.34-1     | 1.605<br>8.84-1   | 1.573<br>1.03+0  |
| 300.0 EV                     | $\delta$                           | 1.19-3            | 1.15-3               | 4.36-3            | 7.37-3            | 1.02-2               | 1.33-2            | 1.68-2              | 2.06-2              | 2.47-2            | 2.90-2           |
| 4d <sub>3/2</sub>            | σ                                  | 6.310+1           | 3.329+1              | 1.205+1           | 5.465+0           | 2.857+0              | 1.645+0           | 1.017+0             | 6.630-1             | 4.509-1           | 3.173-           |
| $E_b =$                      | $\beta$                            | 1.322             | 1.369                | 1.352             | 1.291             | 1.222                | 1.152             | 1.085               | 1.021               | 0.962             | 0.907            |
| 167.8 eV                     | γ                                  | -9.72-3           | 1.06-1               | 3.87-1            | 6.43-1            | 8.56-1               | 1.03+0            | 1.18+0              | 1.31+0              | 1.41+0            | 1.50+0           |
|                              | δ                                  | 1.80-2            | 3.13-2               | 5.36-2            | 7.44-2            | 9.52-2               | 1.16-1            | 1.37-1              | 1.56-1              | 1.76-1            | 1.95-1           |
| $4d_{5/2}$                   | σ                                  | 9.002+1<br>1.342  | 4.691+1<br>1.359     | 1.671+1<br>1.309  | 7.497+0<br>1.232  | 3.884+0<br>1.153     | 2.220+0<br>1.080  | 1.362+0<br>1.012    | 8.828-1<br>0.950    | 5.970-1<br>0.893  | 4.179-<br>0.841  |
| E <sub>b</sub> =<br>156.5 eV | $\beta$ $\gamma$                   | 3.43-3            | 1.30-1               | 4.14-1            | 6.61-1            | 8.64–1               | 1.03+0            | 1.012               | 1.28+0              | 1.38+0            | 1.47+0           |
| 150.5 CV                     | δ                                  | 1.73-2            | 3.02-2               | 5.41-2            | 7.79–2            | 1.02-1               | 1.26-1            | 1.50-1              | 1.72-1              | 1.94-1            | 2.15-1           |
| $4f_{5/2}$                   | σ                                  | 2.059+1           | 7.470+0              | 1.644+0           | 5.341-1           | 2.176-1              | 1.027-1           | 5.375-2             | 3.036-2             | 1.819-2           | 1.143-           |
| $E_b =$                      | β                                  | 1.060             | 1.012                | 0.894             | 0.788             | 0.702                | 0.630             | 0.568               | 0.514               | 0.466             | 0.422            |
| 4.8 eV                       | $_{\delta}^{\gamma}$               | 4.04-1<br>1.03-1  | 5.61-1<br>1.30-1     | 7.87-1<br>1.80-1  | 9.34-1<br>2.28-1  | 1.04+0<br>2.73-1     | 1.12+0<br>3.14-1  | 1.19+0<br>3.53-1    | 1.24+0<br>3.90-1    | 1.29+0<br>4.25-1  | 1.32+0<br>4.58-1 |
| 4f <sub>7/2</sub>            | σ                                  | 2.584+1           | 9.326+0              | 2.036+0           | 6.572-1           | 2.664-1              | 1.252-1           | 6.526-2             | 3.674-2             | 2.195-2           | 1.376-           |
| $E_b =$                      | β                                  | 1.053             | 1.003                | 0.885             | 0.783             | 0.701                | 0.633             | 0.575               | 0.525               | 0.481             | 0.440            |
| 2.8 eV                       | γ                                  | 4.11-1            | 5.69-1               | 7.94-1            | 9.41-1            | 1.04+0               | 1.12+0            | 1.19+0              | 1.24+0              | 1.28+0            | 1.32+0           |
|                              | δ                                  | 1.03-1            | 1.30-1               | 1.82-1            | 2.30-1            | 2.76-1               | 3.18-1            | 3.57-1              | 3.95-1              | 4.30-1            | 4.63-1           |
| $5s_{1/2}$                   | $\sigma$                           | 3.380+0           | 2.101+0              | 1.038+0           | 6.149-1           | 4.047-1              | 2.856-1           | 2.117-1             | 1.628-1             | 1.288-1           | 1.042-           |
| $E_b = 51.2 \text{ eV}$      | $\beta$ $\gamma$                   | 1.937<br>2.69-1   | 1.941<br>1.71-1      | 1.948<br>1.75-2   | 1.954<br>-7.87-2  | 1.959<br>-1.28-1     | 1.964<br>1.44 1   | 1.967<br>1.35 1     | 1.970<br>1.08 1     | 1.971<br>-6.67-2  | 1.972<br>1.57    |
| 31.2 CV                      | δ                                  | -4.76-4           | -6.68-4              | -9.29-4           | -1.10-3           | -1.23 - 3            | -1.33-3           | -1.41-3             | -1.47 - 3           | -1.52 - 3         | -1.57<br>-       |
| 5p <sub>1/2</sub>            | σ                                  | 3.224+0           | 2.048+0              | 1.005+0           | 5.777-1           | 3.662-1              | 2.483-1           | 1.768-1             | 1.307-1             | 9.945-2           | 7.752-           |
| $E_b = 24.9 \text{ eV}$      | β                                  | 1.687<br>7.94_2   | 1.713<br>_1.51_3     | 1.709<br>_4.73_3  | 1.681<br>9.49-2   | 1.645<br>2.32—1      | 1.607<br>3.80-1   | 1.569<br>5.26-1     | 1.531<br>6.68-1     | 1.494<br>8.03_1   | 1.458<br>9.29-1  |
| 24.9 eV                      | $\delta$                           | 7.94-2 $-3.15-3$  | -1.51-3 $-3.56-3$    | -4.73-3 $-3.54-3$ | -2.51-3           | 2.32 - 1 $-2.02 - 4$ | 3.80-1<br>3.29-3  | 5.26-1 $7.80-3$     | 1.32-2              | 8.03-1<br>1.91-2  | 9.29—1<br>2.55—2 |
| $5p_{3/2}$                   | σ                                  | 6.524+0           | 3.958+0              | 1.829+0           | 1.010+0           | 6.208-1              | 4.107-1           | 2.864-1             | 2.080-1             | 1.558-1           | 1.197-           |
| $E_b =$                      | β                                  | 1.679             | 1.727                | 1.755             | 1.747             | 1.726                | 1.699             | 1.668               | 1.636               | 1.604             | 1.572            |
| 19.5 eV                      | $_{\delta}^{\gamma}$               | 3.29-2<br>-8.63-4 | -3.08-2 $7.42-4$     | -8.20-3<br>4.11-3 | 1.13-1<br>6.88-3  | 2.69-1<br>9.57-3     | 4.34-1 $1.25-2$   | 5.97-1<br>1.59-2    | 7.54-1<br>1.97-2    | 9.02-1<br>2.39-2  | 1.04+0<br>2.84-2 |
| 6s <sub>1/2</sub>            | σ                                  | 2.093-1           | 1.295-1              | 6.374-2           | 3.768-2           | 2.477-2              | 1.746-2           | 1.294-2             | 9.941-3             | 7.860-3           | 6.357-           |
| $E_b =$                      | β                                  | 1.938             | 1.942                | 1.948             | 1.954             | 1.959                | 1.964             | 1.967               | 1.969               | 1.971             | 1.972            |
| 6.0 eV                       | γ                                  | 2.62 - 1          | 1.65 - 1             | 1.38 - 2          | -8.07 - 2         | -1.30-1              | -1.45-1           | -1.36-1             | -1.08-1             | -6.63 - 2         | -1.44-           |
|                              | δ                                  | -4.81-4           | -6.72-4              | -9.33-4           | -1.11-3           | -1.23-3              | -1.33-3           | -1.41-3             | -1.48-3             | -1.54-3           | -1.58-           |
| Z= 68, Er: [X                | e]4f <sup>6</sup> <sub>5/2</sub> 4 |                   |                      |                   |                   |                      |                   |                     |                     |                   |                  |
| 21 11                        |                                    | k (eV)            | 2005                 | 2000              | 4000              | FOOC                 | C00C              | 7000                | 0000                | 0000              | 10000            |
| Shell                        |                                    | 1500              | 2000                 | 3000              | 4000              | 5000                 | 6000              | 7000                | 8000                | 9000              | 10000            |
| $3d_{3/2}$                   | σ                                  | 4.115+2           | 2.603+2              | 8.540+1           | 3.629+1           | 1.815+1              | 1.012+1           | 6.103+0             | 3.901+0             | 2.611+0           | 1.813+0          |
|                              |                                    |                   |                      |                   |                   |                      |                   |                     |                     |                   |                  |

| Table 1 (contin                                  | ued)                   |                                     |                  |                   |                   |                      |                    |                     |                    |                    |                     |
|--------------------------------------------------|------------------------|-------------------------------------|------------------|-------------------|-------------------|----------------------|--------------------|---------------------|--------------------|--------------------|---------------------|
| $E_b =$                                          | β                      | 0.492                               | 0.856            | 1.193             | 1.239             | 1.216                | 1.171              | 1.117               | 1.061              | 1.006              | 0.952               |
| 1453.3 eV                                        | $\gamma \\ \delta$     | -1.93-2 $-1.80-3$                   | -1.76-1 $4.95-3$ | 1.01-1<br>5.70-2  | 4.27-1<br>8.34-2  | 7.00-1<br>1.04-1     | 9.22-1<br>1.24-1   | 1.10+0<br>1.43-1    | 1.26+0<br>1.62-1   | 1.38+0<br>1.80-1   | 1.49+0<br>1.98-1    |
| 3d <sub>5/2</sub>                                | σ                      | 6.884+2                             | 3.729+2          | 1.194+2           | 5.014+1           | 2.487+1              | 1.377+1            | 8.247+0             | 5.241+0            | 3.489+0            | 2.410+0             |
| $E_b =$                                          | β                      | 0.884+2                             | 0.947            | 1.194+2           | 1.212             | 1.170                | 1.113              | 1.054               | 0.996              | 0.940              | 0.887               |
| 1409.3 eV                                        | γ                      | -5.21-2                             | -1.67 - 1        | 1.45 - 1          | 4.70 - 1          | 7.31 - 1             | 9.39 - 1           | 1.11+0              | 1.25+0             | 1.36+0             | 1.46+0              |
|                                                  | δ                      | -4.91-3                             | 6.44-3           | 5.53-2            | 8.34-2            | 1.07-1               | 1.30-1             | 1.53-1              | 1.75-1             | 1.96-1             | 2.16-1              |
| $4s_{1/2}$                                       | σ                      | 2.140+1                             | 1.369+1          | 6.943+0           | 4.169+0           | 2.769+0              | 1.966+0            | 1.464+0             | 1.130+0            | 8.963-1            | 7.269-1             |
| $E_b = 449.1 \text{ eV}$                         | $\beta$ $\gamma$       | 1.927<br>4.07-1                     | 1.932<br>2.84-1  | 1.941<br>8.66-2   | 1.947<br>-3.89-2  | 1.953<br>-1.11-1     | 1.959<br>-1.43-1   | 1.963<br>-1.47-1    | 1.966<br>-1.30-1   | 1.968<br>-9.72-2   | 1.970<br>-5.29-2    |
| 113.1 € \$                                       | δ                      | -3.52-4                             | -6.25-4          | -9.63-4           | -1.18 - 3         | -1.33-3              | -1.45 - 3          | -1.53-3             | -1.61-3            | -1.67 - 3          | -1.73 - 3           |
| $4p_{1/2}$                                       | σ                      | 2.552+1                             | 1.673+1          | 8.444+0           | 4.921+0           | 3.146+0              | 2.146+0            | 1.535+0             | 1.138+0            | 8.689-1            | 6.787-1             |
| $E_b =$                                          | β                      | 1.603                               | 1.665            | 1.691             | 1.676             | 1.647                | 1.613              | 1.578               | 1.542              | 1.507              | 1.472               |
| 366.2 eV                                         | $\gamma \\ \delta$     | 1.85-1<br>1.07-3                    | 4.81-2 $-2.24-3$ | -1.78-2 $-3.22-3$ | 5.55-2<br>-2.43-3 | 1.81 - 1 $-3.68 - 4$ | 3.25-1<br>2.86-3   | 4.71 - 1 $7.12 - 3$ | 6.14-1<br>1.21-2   | 7.51-1<br>1.78-2   | 8.80-1<br>2.39-2    |
| 4p <sub>3/2</sub>                                | σ                      | 5.758+1                             | 3.567+1          | 1.679+1           | 9.357+0           | 5.787+0              | 3.844+0            | 2.689+0             | 1.957+0            | 1.469+0            | 1.130+0             |
| $E_b =$                                          | β                      | 1.598                               | 1.679            | 1.736             | 1.741             | 1.727                | 1.705              | 1.678               | 1.649              | 1.618              | 1.587               |
| 320.0 eV                                         | γ                      | 1.05 - 1                            | -2.83 - 3        | -3.00-2           | 6.94 - 2          | 2.17 - 1             | 3.79 - 1           | 5.43 - 1            | 7.02 - 1           | 8.54 - 1           | 9.96 - 1            |
|                                                  | δ                      | 1.47-3                              | 1.02-3           | 4.21-3            | 7.28-3            | 1.01-2               | 1.30-2             | 1.63-2              | 1.99-2             | 2.39-2             | 2.80-2              |
| $4d_{3/2}$                                       | σ                      | 6.636+1                             | 3.534+1<br>1.366 | 1.293+1           | 5.903+0           | 3.100+0              | 1.792+0            | 1.111+0             | 7.262-1            | 4.951-1            | 3.491-1             |
| $E_b = 176.7 \text{ eV}$                         | $\beta$ $\gamma$       | 1.312<br>-1.99-2                    | 8.66-2           | 1.358<br>3.62-1   | 1.302<br>6.19-1   | 1.235<br>8.36-1      | 1.167<br>1.02+0    | 1.102<br>1.17+0     | 1.039<br>1.30+0    | 0.981<br>1.41+0    | 0.925<br>1.50+0     |
|                                                  | δ                      | 1.65-2                              | 2.98-2           | 5.19-2            | 7.22-2            | 9.25-2               | 1.13-1             | 1.33-1              | 1.53-1             | 1.72-1             | 1.91-1              |
| 4d <sub>5/2</sub>                                | σ                      | 9.493+1                             | 4.991+1          | 1.796+1           | 8.103+0           | 4.216+0              | 2.418+0            | 1.488+0             | 9.667-1            | 6.551-1            | 4.595-1             |
| $E_b =$                                          | β                      | 1.337                               | 1.360            | 1.316             | 1.242             | 1.166                | 1.094              | 1.027               | 0.965              | 0.908              | 0.855               |
| 167.6 eV                                         | $\delta \gamma$        | -8.34-3<br>1.59-2                   | 1.10-1<br>2.86-2 | 3.91-1<br>5.21-2  | 6.40-1 $7.53-2$   | 8.46-1 $9.90-2$      | 1.02+0<br>1.23-1   | 1.16+0<br>1.46-1    | 1.28+0<br>1.68-1   | 1.38+0<br>1.90-1   | 1.47+0<br>2.11-1    |
| 4f <sub>5/2</sub>                                | σ                      | 2.335+1                             | 8.541+0          | 1.896+0           | 6.190-1           | 2.531-1              | 1.198-1            | 6.287-2             | 3.560-2            | 2.139-2            | 1.347-2             |
| $E_b =$                                          | β                      | 1.061                               | 1.019            | 0.905             | 0.801             | 0.714                | 0.641              | 0.579               | 0.524              | 0.476              | 0.431               |
| 5.3 eV                                           | γ                      | 3.90 - 1                            | 5.48 - 1         | 7.80 - 1          | 9.33 - 1          | 1.04+0               | 1.13+0             | 1.19+0              | 1.25+0             | 1.29+0             | 1.33+0              |
|                                                  | δ                      | 1.02-1                              | 1.28-1           | 1.78-1            | 2.25-1            | 2.69-1               | 3.10-1             | 3.48-1              | 3.85-1             | 4.19-1             | 4.52-1              |
| $4f_{7/2}$                                       | σ                      | 2.934+1<br>1.054                    | 1.068+1<br>1.009 | 2.352+0           | 7.631-1           | 3.104-1              | 1.463-1<br>0.644   | 7.647-2<br>0.585    | 4.317-2            | 2.586-2            | 1.624-2             |
| $E_b = 3.6 \text{ eV}$                           | $\beta$ $\gamma$       | 3.97—1                              | 5.56-1           | 0.896<br>7.88-1   | 0.795<br>9.40-1   | 0.712<br>1.05+0      | 1.13+0             | 0.585<br>1.19+0     | 0.535<br>1.25+0    | 0.490<br>1.29+0    | 0.449<br>1.33+0     |
| -,                                               | δ                      | 1.02-1                              | 1.28-1           | 1.79-1            | 2.27-1            | 2.72-1               | 3.14-1             | 3.53-1              | 3.90-1             | 4.24-1             | 4.57-1              |
| 5s <sub>1/2</sub>                                | σ                      | 3.458+0                             | 2.155+0          | 1.069+0           | 6.347-1           | 4.184-1              | 2.955-1            | 2.192-1             | 1.687-1            | 1.335-1            | 1.081-1             |
| $E_b =$                                          | β                      | 1.933                               | 1.937            | 1.944             | 1.950             | 1.956                | 1.960              | 1.964               | 1.967              | 1.969              | 1.970               |
| 59.8 eV                                          | $\gamma \\ \delta$     | 2.88 - 1 $-4.86 - 4$                | 1.90-1 $-6.97-4$ | 3.27-2<br>-9.87-4 | -6.90-2 $-1.18-3$ | -1.25-1 $-1.33-3$    | -1.46-1 $-1.43-3$  | -1.42-1 $-1.52-3$   | -1.20-1 $-1.58-3$  | -8.31-2 $-1.65-3$  | -3.62-2 $-1.69-3$   |
| 5p <sub>1/2</sub>                                | σ                      | 3.266+0                             | 2.087+0          | 1.033+0           | 5.971-1           | 3.800-1              | 2.584-1            | 1.845-1             | 1.367-1            | 1.042-1            | 8.140-2             |
| $E_b =$                                          | β                      | 1.681                               | 1.711            | 1.711             | 1.685             | 1.651                | 1.615              | 1.578               | 1.541              | 1.505              | 1.470               |
| 27.9 eV                                          | γ                      | 9.59-2                              | 7.11-3           | -1.07-2           | 7.92-2            | 2.10-1               | 3.54-1             | 4.99-1              | 6.39-1             | 7.73-1             | 8.99-1              |
| _                                                | δ                      | -3.24-3                             | -3.73-3          | -3.80-3           | -2.95-3           | -8.88-4              | 2.31-3             | 6.52-3              | 1.16-2             | 1.73-2             | 2.34-2              |
| $5p_{3/2}$<br>$E_b =$                            | $\frac{\sigma}{\beta}$ | 6.678+0<br>1.670                    | 4.068+0<br>1.723 | 1.891+0<br>1.755  | 1.048+0<br>1.751  | 6.462-1<br>1.733     | 4.284-1<br>1.707   | 2.994-1<br>1.678    | 2.177-1<br>1.648   | 1.633-1<br>1.617   | 1.257—1<br>1.585    |
| 22.3 eV                                          | γ                      | 4.46-2                              | -2.61-2          | -1.70-2           | 9.47-2            | 2.45-1               | 4.07 – 1           | 5.69-1              | 7.24–1             | 8.73-1             | 1.01+0              |
|                                                  | δ                      | -1.00 - 3                           | 5.25 - 4         | 3.99 - 3          | 6.81 - 3          | 9.44 - 3             | 1.22-2             | 1.54 - 2            | 1.90 - 2           | 2.29 - 2           | 2.71 - 2            |
| 6s <sub>1/2</sub>                                | σ                      | 2.100 - 1                           | 1.303 - 1        | 6.441-2           | 3.818 - 2         | 2.514 - 2            | 1.774 - 2          | 1.316-2             | 1.012-2            | 8.006 - 3          | 6.479 - 3           |
| $E_b = 6.0 \text{ eV}$                           | β                      | 1.933<br>2.77-1                     | 1.938<br>1.82-1  | 1.944<br>2.78-2   | 1.950             | 1.956<br>1.26 1      | 1.960<br>-1.47-1   | 1.964               | 1.966<br>1.20 1    | 1.968<br>-8.26-2   | 1.970<br>-3.49-2    |
| 0.0 ev                                           | $\gamma \\ \delta$     | -4.95-4                             | -7.03-4          | -9.92-4           | -7.15-2 $-1.18-3$ | -1.20-1<br>-1.32-3   | -1.47-1<br>-1.43-3 | -1.43-1 $-1.52-3$   | -1.20-1<br>-1.60-3 | -8.26-2<br>-1.66-3 | -3.49-2 $-1.71-3$   |
| Z= 69, Tm: [X                                    | Xel4f                  | 4f <sup>7</sup> - 6s <sup>2</sup> - |                  |                   |                   |                      |                    |                     |                    |                    |                     |
| 2 00, 1111 [.                                    | 115/2                  | k (eV)                              |                  |                   |                   |                      |                    |                     |                    |                    |                     |
| Shell                                            |                        | 1500                                | 2000             | 3000              | 4000              | 5000                 | 6000               | 7000                | 8000               | 9000               | 10000               |
| 3d <sub>5/2</sub>                                | σ                      | 5.454+2                             | 3.961+2          | 1.283+2           | 5.411+1           | 2.692+1              | 1.495+1            | 8.973+0             | 5.714+0            | 3.810+0            | 2.637+0             |
| $E_b =$                                          | β                      | 0.625                               | 0.898            | 1.193             | 1.215             | 1.178                | 1.124              | 1.067               | 1.009              | 0.955              | 0.902               |
| 1467.7 eV                                        | γ                      | -3.84 - 3                           | -1.79 - 1        | 1.07 - 1          | 4.34 - 1          | 7.01 - 1             | 9.15 - 1           | 1.09+0              | 1.23+0             | 1.35+0             | 1.45+0              |
|                                                  | δ                      | -2.54-3                             | 4.08-4           | 5.21-2            | 8.08-2            | 1.05-1               | 1.27-1             | 1.49-1              | 1.71-1             | 1.92-1             | 2.12-1              |
| $4s_{1/2}$                                       | σ                      | 2.185+1                             | 1.404+1          | 7.162+0           | 4.313+0           | 2.870+0              | 2.040+0            | 1.521+0             | 1.175+0            | 9.325-1            | 7.567-1             |
| $E_b = 471.7 \text{ eV}$                         | β                      | 1.921<br>4.32-1                     | 1.927<br>3.09-1  | 1.936<br>1.07-1   | 1.943<br>-2.44-2  | 1.949<br>-1.03-1     | 1.955<br>-1.41-1   | 1.959<br>1.51 1     | 1.963<br>-1.39-1   | 1.965<br>-1.11-1   | 1.967<br>-7.16-2    |
| 1, 1,, 0                                         | $_{\delta}^{\gamma}$   | -3.34-4                             | -6.41-4          | -1.02-3           | -2.44-2 $-1.26-3$ | -1.43-3              | -1.55-3            | -1.65-3             | -1.73-1            | -1.80-3            | -1.86-3             |
| 4p <sub>1/2</sub>                                | σ                      | 2.597+1                             | 1.717+1          | 8.753+0           | 5.131+0           | 3.295+0              | 2.255+0            | 1.617+0             | 1.202+0            | 9.194-1            | 7.195-1             |
| $E_b =$                                          | β                      | 1.589                               | 1.658            | 1.691             | 1.679             | 1.652                | 1.620              | 1.586               | 1.552              | 1.517              | 1.483               |
| 385.9 eV                                         | $\gamma \\ \delta$     | 2.12-1<br>1.78-3                    | 6.60-2 $-2.16-3$ | -1.94-2 $-3.44-3$ | 4.14-2 $-2.83-3$  | 1.60-1 $-1.01-3$     | 2.99-1<br>1.95-3   | 4.42 - 1 $5.92 - 3$ | 5.83-1<br>1.07-2   | 7.19-1<br>1.61-2   | 8.48 - 1 $2.19 - 2$ |
| 4n                                               |                        | 5.935+1                             | 3.696+1          | 1.751+1           | 9.797+0           | 6.077+0              | 4.046+0            | 2.836+0             | 2.067+0            |                    |                     |
| $\begin{array}{l} 4p_{3/2} \\ E_b = \end{array}$ | $\frac{\sigma}{eta}$   | 1.583                               | 1.669            | 1.731+1           | 9.797+0<br>1.743  | 1.732                | 4.046+0<br>1.712   | 2.836+0<br>1.687    | 2.067+0<br>1.659   | 1.554+0<br>1.630   | 1.197+0<br>1.600    |
| 336.6 eV                                         | γ                      | 1.25-1                              | 8.08-3           | -3.58-2           | 5.25-2            | 1.93-1               | 3.52-1             | 5.13-1              | 6.71-1             | 8.23-1             | 9.65-1              |
|                                                  |                        |                                     |                  |                   |                   |                      |                    |                     |                    |                    |                     |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.86-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.97-4                                                                                                                                                                                                                                                            | 4.04-3                                                                                                                                                                                                               | 7.18-3                                                                                                                                                                                                                                                                                                     | 9.99-3                                                                                                                                                                                                                                                             | 1.28-2                                                                                                                                                                                                              | 1.59-2                                                                                                                                                                                                              | 1.93-2                                                                                                                                                                                                                                                                     | 2.31-2                                                                                                                                                                                                                                                                     | 2.70-2                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4d <sub>3/2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.960+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.742+1                                                                                                                                                                                                                                                           | 1.384+1                                                                                                                                                                                                              | 6.359+0                                                                                                                                                                                                                                                                                                    | 3.355+0                                                                                                                                                                                                                                                            | 1.946+0                                                                                                                                                                                                             | 1.210+0                                                                                                                                                                                                             | 7.933-1                                                                                                                                                                                                                                                                    | 5.421 - 1                                                                                                                                                                                                                                                                  | 3.831-                                                                                                                                                                                           |
| $E_b =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.363                                                                                                                                                                                                                                                             | 1.364                                                                                                                                                                                                                | 1.313                                                                                                                                                                                                                                                                                                      | 1.249                                                                                                                                                                                                                                                              | 1.183                                                                                                                                                                                                               | 1.119                                                                                                                                                                                                               | 1.057                                                                                                                                                                                                                                                                      | 0.999                                                                                                                                                                                                                                                                      | 0.944                                                                                                                                                                                            |
| 185.5 eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\gamma \\ \delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -2.85-2 $1.50-2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.81-2<br>2.83-2                                                                                                                                                                                                                                                  | 3.37-1<br>5.02-2                                                                                                                                                                                                     | 5.95-1<br>7.02-2                                                                                                                                                                                                                                                                                           | 8.15-1<br>8.99-2                                                                                                                                                                                                                                                   | 1.00+0<br>1.10-1                                                                                                                                                                                                    | 1.16+0<br>1.30-1                                                                                                                                                                                                    | 1.29+0<br>1.49-1                                                                                                                                                                                                                                                           | 1.40+0<br>1.68-1                                                                                                                                                                                                                                                           | 1.50+0<br>1.86-                                                                                                                                                                                  |
| 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                     |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                  |
| $4d_{5/2}$ $E_b =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{\sigma}{eta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.964+1<br>1.331                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.286+1<br>1.360                                                                                                                                                                                                                                                  | 1.922+1<br>1.323                                                                                                                                                                                                     | 8.726+0<br>1.252                                                                                                                                                                                                                                                                                           | 4.560+0<br>1.178                                                                                                                                                                                                                                                   | 2.624+0<br>1.107                                                                                                                                                                                                    | 1.620+0<br>1.041                                                                                                                                                                                                    | 1.055+0<br>0.980                                                                                                                                                                                                                                                           | 7.165-1<br>0.923                                                                                                                                                                                                                                                           | 5.035-<br>0.870                                                                                                                                                                                  |
| ւր —<br>175.7 eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1.82-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.17-2                                                                                                                                                                                                                                                            | 3.67-1                                                                                                                                                                                                               | 6.19-1                                                                                                                                                                                                                                                                                                     | 8.28-1                                                                                                                                                                                                                                                             | 1.00+0                                                                                                                                                                                                              | 1.15+0                                                                                                                                                                                                              | 1.27+0                                                                                                                                                                                                                                                                     | 1.37+0                                                                                                                                                                                                                                                                     | 1.46+0                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.46-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.71-2                                                                                                                                                                                                                                                            | 5.02-2                                                                                                                                                                                                               | 7.30-2                                                                                                                                                                                                                                                                                                     | 9.62-2                                                                                                                                                                                                                                                             | 1.19-1                                                                                                                                                                                                              | 1.42-1                                                                                                                                                                                                              | 1.65-1                                                                                                                                                                                                                                                                     | 1.86-1                                                                                                                                                                                                                                                                     | 2.07-                                                                                                                                                                                            |
| $4f_{5/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.635+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.717+0                                                                                                                                                                                                                                                           | 2.176+0                                                                                                                                                                                                              | 7.137-1                                                                                                                                                                                                                                                                                                    | 2.928-1                                                                                                                                                                                                                                                            | 1.390-1                                                                                                                                                                                                             | 7.314-2                                                                                                                                                                                                             | 4.152-2                                                                                                                                                                                                                                                                    | 2.501-2                                                                                                                                                                                                                                                                    | 1.579-                                                                                                                                                                                           |
| $E_b =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.024                                                                                                                                                                                                                                                             | 0.916                                                                                                                                                                                                                | 0.813                                                                                                                                                                                                                                                                                                      | 0.726                                                                                                                                                                                                                                                              | 0.653                                                                                                                                                                                                               | 0.590                                                                                                                                                                                                               | 0.535                                                                                                                                                                                                                                                                      | 0.485                                                                                                                                                                                                                                                                      | 0.440                                                                                                                                                                                            |
| 6.2 eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.75 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.34 - 1                                                                                                                                                                                                                                                          | 7.72 - 1                                                                                                                                                                                                             | 9.31 - 1                                                                                                                                                                                                                                                                                                   | 1.04+0                                                                                                                                                                                                                                                             | 1.13+0                                                                                                                                                                                                              | 1.20+0                                                                                                                                                                                                              | 1.26+0                                                                                                                                                                                                                                                                     | 1.30+0                                                                                                                                                                                                                                                                     | 1.34+0                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.01-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.27-1                                                                                                                                                                                                                                                            | 1.75-1                                                                                                                                                                                                               | 2.22-1                                                                                                                                                                                                                                                                                                     | 2.65-1                                                                                                                                                                                                                                                             | 3.06-1                                                                                                                                                                                                              | 3.44-1                                                                                                                                                                                                              | 3.80-1                                                                                                                                                                                                                                                                     | 4.14-1                                                                                                                                                                                                                                                                     | 4.46-                                                                                                                                                                                            |
| $4f_{7/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.313+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.216+1                                                                                                                                                                                                                                                           | 2.703+0                                                                                                                                                                                                              | 8.813-1                                                                                                                                                                                                                                                                                                    | 3.597-1                                                                                                                                                                                                                                                            | 1.700-1                                                                                                                                                                                                             | 8.910-2                                                                                                                                                                                                             | 5.042-2                                                                                                                                                                                                                                                                    | 3.027-2                                                                                                                                                                                                                                                                    | 1.906-                                                                                                                                                                                           |
| $E_b = 4.7 \text{ eV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.055<br>3.82-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.015<br>5.43-1                                                                                                                                                                                                                                                   | 0.906                                                                                                                                                                                                                | 0.806                                                                                                                                                                                                                                                                                                      | 0.724<br>1.05+0                                                                                                                                                                                                                                                    | 0.655<br>1.13+0                                                                                                                                                                                                     | 0.596<br>1.20+0                                                                                                                                                                                                     | 0.544                                                                                                                                                                                                                                                                      | 0.499                                                                                                                                                                                                                                                                      | 0.457                                                                                                                                                                                            |
| 4.7 ev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\gamma \\ \delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.27-1                                                                                                                                                                                                                                                            | 7.80-1<br>1.76-1                                                                                                                                                                                                     | 9.39-1<br>2.24-1                                                                                                                                                                                                                                                                                           | 2.68-1                                                                                                                                                                                                                                                             | 3.10-1                                                                                                                                                                                                              | 3.49-1                                                                                                                                                                                                              | 1.25+0<br>3.85-1                                                                                                                                                                                                                                                           | 1.30+0<br>4.19-1                                                                                                                                                                                                                                                           | 1.34+0<br>4.52-                                                                                                                                                                                  |
| 5s <sub>1/2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.511+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.197+0                                                                                                                                                                                                                                                           | 1.095+0                                                                                                                                                                                                              | 6.523-1                                                                                                                                                                                                                                                                                                    | 4.309-1                                                                                                                                                                                                                                                            | 3.048-1                                                                                                                                                                                                             | 2.263-1                                                                                                                                                                                                             | 1.743-1                                                                                                                                                                                                                                                                    | 1.381-1                                                                                                                                                                                                                                                                    | 1.119-                                                                                                                                                                                           |
| $E_b =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.933                                                                                                                                                                                                                                                             | 1.940                                                                                                                                                                                                                | 1.946                                                                                                                                                                                                                                                                                                      | 1.952                                                                                                                                                                                                                                                              | 1.957                                                                                                                                                                                                               | 1.961                                                                                                                                                                                                               | 1.964                                                                                                                                                                                                                                                                      | 1.966                                                                                                                                                                                                                                                                      | 1.968                                                                                                                                                                                            |
| 53.2 eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.01-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.05-1                                                                                                                                                                                                                                                            | 4.65-2                                                                                                                                                                                                               | -5.91-2                                                                                                                                                                                                                                                                                                    | -1.20-1                                                                                                                                                                                                                                                            | -1.46-1                                                                                                                                                                                                             | -1.47 - 1                                                                                                                                                                                                           | -1.30-1                                                                                                                                                                                                                                                                    | -9.76 - 2                                                                                                                                                                                                                                                                  | -5.48                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.97 - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -7.29 - 4                                                                                                                                                                                                                                                         | -1.05 - 3                                                                                                                                                                                                            | -1.26 - 3                                                                                                                                                                                                                                                                                                  | -1.42 - 3                                                                                                                                                                                                                                                          | -1.54 - 3                                                                                                                                                                                                           | -1.63 - 3                                                                                                                                                                                                           | -1.71 - 3                                                                                                                                                                                                                                                                  | -1.78 - 3                                                                                                                                                                                                                                                                  | -1.83                                                                                                                                                                                            |
| 5p <sub>1/2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.309+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.127+0                                                                                                                                                                                                                                                           | 1.062+0                                                                                                                                                                                                              | 6.170-1                                                                                                                                                                                                                                                                                                    | 3.942-1                                                                                                                                                                                                                                                            | 2.689-1                                                                                                                                                                                                             | 1.925-1                                                                                                                                                                                                             | 1.429-1                                                                                                                                                                                                                                                                    | 1.092-1                                                                                                                                                                                                                                                                    | 8.542-                                                                                                                                                                                           |
| $E_b =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.708                                                                                                                                                                                                                                                             | 1.712                                                                                                                                                                                                                | 1.689                                                                                                                                                                                                                                                                                                      | 1.658                                                                                                                                                                                                                                                              | 1.623                                                                                                                                                                                                               | 1.587                                                                                                                                                                                                               | 1.551                                                                                                                                                                                                                                                                      | 1.516                                                                                                                                                                                                                                                                      | 1.481                                                                                                                                                                                            |
| 36.2 eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.15-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.78-2                                                                                                                                                                                                                                                            | -1.55-2                                                                                                                                                                                                              | 6.39-2                                                                                                                                                                                                                                                                                                     | 1.89-1                                                                                                                                                                                                                                                             | 3.29-1                                                                                                                                                                                                              | 4.71-1                                                                                                                                                                                                              | 6.09-1                                                                                                                                                                                                                                                                     | 7.42-1                                                                                                                                                                                                                                                                     | 8.69-                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -3.32-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3.90-3                                                                                                                                                                                                                                                           | -4.06-3                                                                                                                                                                                                              | -3.37-3                                                                                                                                                                                                                                                                                                    | -1.54-3                                                                                                                                                                                                                                                            | 1.41-3                                                                                                                                                                                                              | 5.34-3                                                                                                                                                                                                              | 1.01-2                                                                                                                                                                                                                                                                     | 1.55-2                                                                                                                                                                                                                                                                     | 2.14-2                                                                                                                                                                                           |
| 5p <sub>3/2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\sigma_{\rho}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.841+0<br>1.659                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.183+0<br>1.717                                                                                                                                                                                                                                                  | 1.956+0                                                                                                                                                                                                              | 1.088+0                                                                                                                                                                                                                                                                                                    | 6.725-1<br>1.739                                                                                                                                                                                                                                                   | 4.468-1<br>1.715                                                                                                                                                                                                    | 3.127-1<br>1.688                                                                                                                                                                                                    | 2.278-1<br>1.659                                                                                                                                                                                                                                                           | 1.711-1<br>1.629                                                                                                                                                                                                                                                           | 1.319-<br>1.599                                                                                                                                                                                  |
| $E_b = 30.4 \text{ eV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\beta$ $\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.659<br>5.83-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.00-2                                                                                                                                                                                                                                                           | 1.755<br>-2.50-2                                                                                                                                                                                                     | 1.754<br>7.71–2                                                                                                                                                                                                                                                                                            | 1./39<br>2.22-1                                                                                                                                                                                                                                                    | 1.715<br>3.81–1                                                                                                                                                                                                     | 1.688<br>5.40—1                                                                                                                                                                                                     | 1.659<br>6.95—1                                                                                                                                                                                                                                                            | 1.629<br>8.43—1                                                                                                                                                                                                                                                            | 9.83-                                                                                                                                                                                            |
| JU.7 CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1.14-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.00-2<br>2.78-4                                                                                                                                                                                                                                                 | -2.30-2<br>3.84-3                                                                                                                                                                                                    | 6.74-3                                                                                                                                                                                                                                                                                                     | 9.35-3                                                                                                                                                                                                                                                             | 1.20-2                                                                                                                                                                                                              | 1.50-2                                                                                                                                                                                                              | 1.83-2                                                                                                                                                                                                                                                                     | 2.20-2                                                                                                                                                                                                                                                                     | 2.60-2                                                                                                                                                                                           |
| 6s <sub>1/2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.105-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.310-1                                                                                                                                                                                                                                                           | 6.503-2                                                                                                                                                                                                              | 3.865-2                                                                                                                                                                                                                                                                                                    | 2.550-2                                                                                                                                                                                                                                                            | 1.802-2                                                                                                                                                                                                             | 1.337-2                                                                                                                                                                                                             | 1.030-2                                                                                                                                                                                                                                                                    | 8.151-3                                                                                                                                                                                                                                                                    | 6.600-                                                                                                                                                                                           |
| $E_b =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.933                                                                                                                                                                                                                                                             | 1.940                                                                                                                                                                                                                | 1.946                                                                                                                                                                                                                                                                                                      | 1.952                                                                                                                                                                                                                                                              | 1.957                                                                                                                                                                                                               | 1.961                                                                                                                                                                                                               | 1.964                                                                                                                                                                                                                                                                      | 1.966                                                                                                                                                                                                                                                                      | 1.967                                                                                                                                                                                            |
| 6.0 eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.93 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.98 - 1                                                                                                                                                                                                                                                          | 4.25 - 2                                                                                                                                                                                                             | -6.14 - 2                                                                                                                                                                                                                                                                                                  | -1.21-1                                                                                                                                                                                                                                                            | -1.47 - 1                                                                                                                                                                                                           | -1.48-1                                                                                                                                                                                                             | -1.30-1                                                                                                                                                                                                                                                                    | -9.78 - 2                                                                                                                                                                                                                                                                  | -5.42                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                     |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                            | 101                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -5.06-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -7.35-4                                                                                                                                                                                                                                                           | -1.05 - 3                                                                                                                                                                                                            | -1.26-3                                                                                                                                                                                                                                                                                                    | -1.42-3                                                                                                                                                                                                                                                            | -1.54-3                                                                                                                                                                                                             | -1.63-3                                                                                                                                                                                                             | -1.72-3                                                                                                                                                                                                                                                                    | -1.79-3                                                                                                                                                                                                                                                                    | -1.84                                                                                                                                                                                            |
| Z= 70, Yb: [X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -5.06-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -7.35-4                                                                                                                                                                                                                                                           | -1.05-3                                                                                                                                                                                                              | -1.26-3                                                                                                                                                                                                                                                                                                    | -1.42-3                                                                                                                                                                                                                                                            | -1.54-3                                                                                                                                                                                                             | -1.63-3                                                                                                                                                                                                             | -1.72-3                                                                                                                                                                                                                                                                    | -1.79-3                                                                                                                                                                                                                                                                    | -1.84-                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -5.06-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -7.35-4                                                                                                                                                                                                                                                           | -1.05-3                                                                                                                                                                                                              | -1.26-3                                                                                                                                                                                                                                                                                                    | -1.42-3                                                                                                                                                                                                                                                            | -1.54-3                                                                                                                                                                                                             | -1.63-3                                                                                                                                                                                                             | -1.72-3                                                                                                                                                                                                                                                                    | -1.79-3                                                                                                                                                                                                                                                                    | -1.84-                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $-5.06-4$ $4f_{7/2}^8 6s_{1/2}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                   | -1.05-3<br>3000                                                                                                                                                                                                      | -1.26-3<br>4000                                                                                                                                                                                                                                                                                            | -1.42-3<br>5000                                                                                                                                                                                                                                                    | -1.54-3<br>6000                                                                                                                                                                                                     |                                                                                                                                                                                                                     | -1.72-3<br>8000                                                                                                                                                                                                                                                            | 9000                                                                                                                                                                                                                                                                       | 10000                                                                                                                                                                                            |
| <b>Z= 70, Yb: [X</b><br>Shell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\delta$<br>(e]4 $f_{5/2}^6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ -5.06-4 $ $ 4f_{7/2}^{8} 6s_{1/2}^{2} $ $ \underline{k (eV)} $ 1500                                                                                                                                                                                                                                                                                                                                                                                                                      | 2000                                                                                                                                                                                                                                                              | 3000                                                                                                                                                                                                                 | 4000                                                                                                                                                                                                                                                                                                       | 5000                                                                                                                                                                                                                                                               | 6000                                                                                                                                                                                                                | 7000                                                                                                                                                                                                                | 8000                                                                                                                                                                                                                                                                       | 9000                                                                                                                                                                                                                                                                       | 10000                                                                                                                                                                                            |
| <b>Z= 70, Yb: [X</b> Shell $4s_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{\delta}{\delta}$ (e]4 $f_{5/2}^6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ -5.06-4 $ $ 4f_{7/2}^{8} 6s_{1/2}^{2} $ $ k (eV) $ $ 1500 $ $ 2.221+1 $                                                                                                                                                                                                                                                                                                                                                                                                                  | 2000<br>1.435+1                                                                                                                                                                                                                                                   | 3000<br>7.364+0                                                                                                                                                                                                      | 4000<br>4.450+0                                                                                                                                                                                                                                                                                            | 5000<br>2.967+0                                                                                                                                                                                                                                                    | 6000<br>2.112+0                                                                                                                                                                                                     | 7000<br>1.576+0                                                                                                                                                                                                     | 8000<br>1.219+0                                                                                                                                                                                                                                                            | 9000<br>9.683-1                                                                                                                                                                                                                                                            | 10000                                                                                                                                                                                            |
| <b>Z= 70, Yb: [X</b> Shell $4s_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\delta$<br>(e]4 $f_{5/2}^6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ -5.06-4 $ $ 4f_{7/2}^{8} 6s_{1/2}^{2} $ $ \underline{k (eV)} $ 1500                                                                                                                                                                                                                                                                                                                                                                                                                      | 2000<br>1.435+1<br>1.921<br>3.32-1                                                                                                                                                                                                                                | 3000                                                                                                                                                                                                                 | 4000                                                                                                                                                                                                                                                                                                       | 5000                                                                                                                                                                                                                                                               | 6000<br>2.112+0<br>1.951<br>-1.38-1                                                                                                                                                                                 | 7000                                                                                                                                                                                                                | 8000                                                                                                                                                                                                                                                                       | 9000<br>9.683-1<br>1.962<br>-1.24-1                                                                                                                                                                                                                                        | 10000<br>7.863-<br>1.964                                                                                                                                                                         |
| <b>Z= 70, Yb:</b> [X<br>Shell $4s_{1/2}$ $E_b =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{\delta}{\delta}$ (e)4 $f_{5/2}^6$ $\frac{\sigma}{\beta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ -5.06-4 $ $ 4f_{7/2}^8 6s_{1/2}^2 $ $ k (eV) $ $ 1500 $ $ 2.221+1 $ $ 1.915 $                                                                                                                                                                                                                                                                                                                                                                                                            | 2000<br>1.435+1<br>1.921                                                                                                                                                                                                                                          | 3000<br>7.364+0<br>1.931                                                                                                                                                                                             | 4000<br>4.450+0<br>1.938                                                                                                                                                                                                                                                                                   | 5000<br>2.967+0<br>1.945                                                                                                                                                                                                                                           | 6000<br>2.112+0<br>1.951                                                                                                                                                                                            | 7000<br>1.576+0<br>1.956                                                                                                                                                                                            | 8000<br>1.219+0<br>1.959                                                                                                                                                                                                                                                   | 9000<br>9.683-1<br>1.962                                                                                                                                                                                                                                                   | 10000<br>7.863-<br>1.964<br>-8.85-                                                                                                                                                               |
| <b>Z= 70, Yb:</b> [X<br>Shell $4s_{1/2}$ $E_b =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{\delta}{\text{Ce]4f}_{5/2}^6}$ $\frac{\sigma}{\beta}$ $\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{r} -5.06-4 \\ \mathbf{4f_{7/2}^8 6s_{1/2}^2} \\ \underline{k \text{ (eV)}} \\ 1500 \\ 2.221+1 \\ 1.915 \\ 4.54-1 \end{array} $                                                                                                                                                                                                                                                                                                                                             | 2000<br>1.435+1<br>1.921<br>3.32-1                                                                                                                                                                                                                                | 3000<br>7.364+0<br>1.931<br>1.27-1                                                                                                                                                                                   | 4000<br>4.450+0<br>1.938<br>-9.51-3                                                                                                                                                                                                                                                                        | 5000<br>2.967+0<br>1.945<br>-9.36-2                                                                                                                                                                                                                                | 6000<br>2.112+0<br>1.951<br>-1.38-1<br>-1.67-3<br>2.361+0                                                                                                                                                           | 7000<br>1.576+0<br>1.956<br>-1.53-1                                                                                                                                                                                 | 8000<br>1.219+0<br>1.959<br>-1.47-1<br>-1.87-3<br>1.265+0                                                                                                                                                                                                                  | 9000<br>9.683-1<br>1.962<br>-1.24-1<br>-1.94-3<br>9.698-1                                                                                                                                                                                                                  | 10000                                                                                                                                                                                            |
| <b>Z= 70, Yb:</b> [X<br>Shell $4s_{1/2}$ $E_b = 487.2 \text{ eV}$ $4p_{1/2}$ $E_b = 487.2 \text{ eV}$                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{\delta}{\delta e  \mathbf{4f_{5/2}^6}} \frac{\delta}{\delta}$ $\frac{\sigma}{\beta}$ $\frac{\gamma}{\delta}$ $\frac{\sigma}{\delta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -5.06-4  4f <sup>8</sup> <sub>7/2</sub> 6s <sup>2</sup> <sub>1/2</sub> k (eV)  1500  2.221+1 1.915 4.54-1 -3.10-4  2.631+1 1.577                                                                                                                                                                                                                                                                                                                                                           | 2000<br>1.435+1<br>1.921<br>3.32-1<br>-6.52-4<br>1.754+1<br>1.651                                                                                                                                                                                                 | 3000<br>7.364+0<br>1.931<br>1.27-1<br>-1.07-3<br>9.035+0<br>1.690                                                                                                                                                    | 4000<br>4.450+0<br>1.938<br>-9.51-3<br>-1.34-3<br>5.330+0<br>1.681                                                                                                                                                                                                                                         | 5000<br>2.967+0<br>1.945<br>-9.36-2<br>-1.53-3<br>3.438+0<br>1.657                                                                                                                                                                                                 | 6000<br>2.112+0<br>1.951<br>-1.38-1<br>-1.67-3<br>2.361+0<br>1.627                                                                                                                                                  | 7000<br>1.576+0<br>1.956<br>-1.53-1<br>-1.78-3<br>1.698+0<br>1.594                                                                                                                                                  | 8000<br>1.219+0<br>1.959<br>-1.47-1<br>-1.87-3<br>1.265+0<br>1.561                                                                                                                                                                                                         | 9000<br>9.683-1<br>1.962<br>-1.24-1<br>-1.94-3<br>9.698-1<br>1.528                                                                                                                                                                                                         | 10000<br>7.863-<br>1.964<br>-8.85-<br>-2.01-<br>7.605-<br>1.495                                                                                                                                  |
| <b>Z= 70, Yb:</b> [X<br>Shell $4s_{1/2}$ $E_b = 487.2 \text{ eV}$ $4p_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \frac{\delta}{\text{Ce}]\mathbf{4f_{5/2}^6}} $ $ \frac{\sigma}{\beta} $ $ \frac{\gamma}{\delta} $ $ \frac{\sigma}{\beta} $ $ \frac{\sigma}{\beta} $ $ \frac{\sigma}{\gamma} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} -5.06-4 \\ \mathbf{4f_{7/2}^8 6s_{1/2}^2} \\ \underline{k  (\text{eV})} \\ 1500 \\ 2.221+1 \\ 1.915 \\ 4.54-1 \\ -3.10-4 \\ 2.631+1 \\ 1.577 \\ 2.37-1 \end{array}$                                                                                                                                                                                                                                                                                                      | 2000<br>1.435+1<br>1.921<br>3.32-1<br>-6.52-4<br>1.754+1<br>1.651<br>8.34-2                                                                                                                                                                                       | 3000<br>7.364+0<br>1.931<br>1.27-1<br>-1.07-3<br>9.035+0<br>1.690<br>-1.90-2                                                                                                                                         | 4000<br>4.450+0<br>1.938<br>-9.51-3<br>-1.34-3<br>5.330+0<br>1.681<br>2.95-2                                                                                                                                                                                                                               | 5000<br>2.967+0<br>1.945<br>-9.36-2<br>-1.53-3<br>3.438+0<br>1.657<br>1.40-1                                                                                                                                                                                       | 6000<br>2.112+0<br>1.951<br>-1.38-1<br>-1.67-3<br>2.361+0<br>1.627<br>2.74-1                                                                                                                                        | 7000<br>1.576+0<br>1.956<br>-1.53-1<br>-1.78-3<br>1.698+0<br>1.594<br>4.14-1                                                                                                                                        | 8000<br>1.219+0<br>1.959<br>-1.47-1<br>-1.87-3<br>1.265+0<br>1.561<br>5.53-1                                                                                                                                                                                               | 9000<br>9.683-1<br>1.962<br>-1.24-1<br>-1.94-3<br>9.698-1<br>1.528<br>6.88-1                                                                                                                                                                                               | 10000<br>7.863-<br>1.964<br>-8.85-<br>-2.01-<br>7.605-<br>1.495<br>8.17-1                                                                                                                        |
| Z= 70, Yb: [X<br>Shell $4s_{1/2}$ $E_b = 487.2 \text{ eV}$ $4p_{1/2}$ $E_b = 396.7 \text{ eV}$                                                                                                                                                                                                                                                                                                                                                                                                                                        | δ (e]4f <sub>5/2</sub> σ β γ δ σ β γ δ δ σ β γ δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $-5.06-4$ $4f_{7/2}^8 6s_{1/2}^2$ $k \text{ (eV)}$ $1500$ $2.221+1$ $1.915$ $4.54-1$ $-3.10-4$ $2.631+1$ $1.577$ $2.37-1$ $2.45-3$                                                                                                                                                                                                                                                                                                                                                         | 2000<br>1.435+1<br>1.921<br>3.32-1<br>-6.52-4<br>1.754+1<br>1.651<br>8.34-2<br>-2.07-3                                                                                                                                                                            | 3000<br>7.364+0<br>1.931<br>1.27-1<br>-1.07-3<br>9.035+0<br>1.690<br>-1.90-2<br>-3.63-3                                                                                                                              | 4000<br>4.450+0<br>1.938<br>-9.51-3<br>-1.34-3<br>5.330+0<br>1.681<br>2.95-2<br>-3.20-3                                                                                                                                                                                                                    | 5000<br>2.967+0<br>1.945<br>-9.36-2<br>-1.53-3<br>3.438+0<br>1.657<br>1.40-1<br>-1.57-3                                                                                                                                                                            | 6000<br>2.112+0<br>1.951<br>-1.38-1<br>-1.67-3<br>2.361+0<br>1.627<br>2.74-1<br>1.12-3                                                                                                                              | 7000<br>1.576+0<br>1.956<br>-1.53-1<br>-1.78-3<br>1.698+0<br>1.594<br>4.14-1<br>4.81-3                                                                                                                              | 8000<br>1.219+0<br>1.959<br>-1.47-1<br>-1.87-3<br>1.265+0<br>1.561<br>5.53-1<br>9.27-3                                                                                                                                                                                     | 9000<br>9.683-1<br>1.962<br>-1.24-1<br>-1.94-3<br>9.698-1<br>1.528<br>6.88-1<br>1.44-2                                                                                                                                                                                     | 10000<br>7.863–<br>1.964<br>-8.85–<br>-2.01-<br>7.605–<br>1.495<br>8.17–1<br>2.01–2                                                                                                              |
| Z= 70, Yb: [X<br>Shell $4s_{1/2}$ $E_b = 487.2 \text{ eV}$ $4p_{1/2}$ $E_b = 396.7 \text{ eV}$ $4p_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{c} \delta \\ \text{Ce]4f}_{5/2}^6 \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \sigma \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} -5.06-4 \\ \textbf{4f}^{8}_{7/2} \ \textbf{6s}^{2}_{1/2} \\ \hline k \ (\text{eV}) \\ \hline 1500 \\ 2.221+1 \\ 1.915 \\ 4.54-1 \\ -3.10-4 \\ 2.631+1 \\ 1.577 \\ 2.37-1 \\ 2.45-3 \\ \hline 6.087+1 \end{array}$                                                                                                                                                                                                                                                        | 2000<br>1.435+1<br>1.921<br>3.32-1<br>-6.52-4<br>1.754+1<br>1.651<br>8.34-2<br>-2.07-3<br>3.810+1                                                                                                                                                                 | 3000<br>7.364+0<br>1.931<br>1.27-1<br>-1.07-3<br>9.035+0<br>1.690<br>-1.90-2<br>-3.63-3<br>1.818+1                                                                                                                   | 4000<br>4.450+0<br>1.938<br>-9.51-3<br>-1.34-3<br>5.330+0<br>1.681<br>2.95-2<br>-3.20-3<br>1.022+1                                                                                                                                                                                                         | 5000<br>2.967+0<br>1.945<br>-9.36-2<br>-1.53-3<br>3.438+0<br>1.657<br>1.40-1<br>-1.57-3<br>6.358+0                                                                                                                                                                 | 6000<br>2.112+0<br>1.951<br>-1.38-1<br>-1.67-3<br>2.361+0<br>1.627<br>2.74-1<br>1.12-3<br>4.243+0                                                                                                                   | 7000<br>1.576+0<br>1.956<br>-1.53-1<br>-1.78-3<br>1.698+0<br>1.594<br>4.14-1<br>4.81-3<br>2.980+0                                                                                                                   | 8000<br>1.219+0<br>1.959<br>-1.47-1<br>-1.87-3<br>1.265+0<br>1.561<br>5.53-1<br>9.27-3<br>2.176+0                                                                                                                                                                          | 9000<br>9.683-1<br>1.962<br>-1.24-1<br>-1.94-3<br>9.698-1<br>1.528<br>6.88-1<br>1.44-2<br>1.638+0                                                                                                                                                                          | 10000<br>7.863–<br>1.964<br>-8.85-<br>-2.01-<br>7.605–<br>1.495<br>8.17–1<br>2.01–2                                                                                                              |
| Z= 70, Yb: [X<br>Shell $4s_{1/2}$ $E_b = 487.2 \text{ eV}$<br>$4p_{1/2}$ $E_b = 396.7 \text{ eV}$<br>$4p_{3/2}$ $E_b = 60.7 \text{ eV}$                                                                                                                                                                                                                                                                                                                                                                                               | $ \begin{array}{c} \delta \\ \text{(e)4f}_{5/2}^{6} \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \beta \\ \beta \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} -5.06-4 \\ \textbf{4f}^8_{7/2} \ \textbf{6s}^2_{1/2} \\ \hline k \ (\text{eV}) \\ \hline 1500 \\ 2.221+1 \\ 1.915 \\ 4.54-1 \\ -3.10-4 \\ 2.631+1 \\ 1.577 \\ 2.37-1 \\ 2.45-3 \\ \hline 6.087+1 \\ 1.569 \end{array}$                                                                                                                                                                                                                                                   | 2000<br>1.435+1<br>1.921<br>3.32-1<br>-6.52-4<br>1.754+1<br>1.651<br>8.34-2<br>-2.07-3<br>3.810+1<br>1.661                                                                                                                                                        | 3000<br>7.364+0<br>1.931<br>1.27-1<br>-1.07-3<br>9.035+0<br>1.690<br>-1.90-2<br>-3.63-3<br>1.818+1<br>1.731                                                                                                          | 4000<br>4.450+0<br>1.938<br>-9.51-3<br>-1.34-3<br>5.330+0<br>1.681<br>2.95-2<br>-3.20-3<br>1.022+1<br>1.745                                                                                                                                                                                                | 5000<br>2.967+0<br>1.945<br>-9.36-2<br>-1.53-3<br>3.438+0<br>1.657<br>1.40-1<br>-1.57-3<br>6.358+0<br>1.737                                                                                                                                                        | 6000<br>2.112+0<br>1.951<br>-1.38-1<br>-1.67-3<br>2.361+0<br>1.627<br>2.74-1<br>1.12-3<br>4.243+0<br>1.719                                                                                                          | 7000<br>1.576+0<br>1.956<br>-1.53-1<br>-1.78-3<br>1.698+0<br>1.594<br>4.14-1<br>4.81-3<br>2.980+0<br>1.696                                                                                                          | 8000<br>1.219+0<br>1.959<br>-1.47-1<br>-1.87-3<br>1.265+0<br>1.561<br>5.53-1<br>9.27-3<br>2.176+0<br>1.670                                                                                                                                                                 | 9000<br>9.683-1<br>1.962<br>-1.24-1<br>-1.94-3<br>9.698-1<br>1.528<br>6.88-1<br>1.44-2<br>1.638+0<br>1.642                                                                                                                                                                 | 10000<br>7.863-<br>1.964<br>-8.85-<br>-2.01-<br>7.605-<br>1.495<br>8.17-<br>2.01-2                                                                                                               |
| Z= 70, Yb: [X<br>Shell $4s_{1/2}$ $E_b = 487.2$ eV $4p_{1/2}$ $E_b = 396.7$ eV $4p_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{c} \delta \\ \text{Ce]4f}_{5/2}^6 \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \sigma \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} -5.06-4 \\ \textbf{4f}^8_{7/2} \ \textbf{6s}^2_{1/2} \\ \hline k \ (\text{eV}) \\ \hline 1500 \\ \hline 2.221+1 \\ 1.915 \\ 4.54-1 \\ -3.10-4 \\ \hline 2.631+1 \\ 1.577 \\ 2.37-1 \\ 2.45-3 \\ \hline 6.087+1 \\ 1.569 \\ 1.40-1 \\ \end{array}$                                                                                                                                                                                                                        | 2000<br>1.435+1<br>1.921<br>3.32-1<br>-6.52-4<br>1.754+1<br>1.651<br>8.34-2<br>-2.07-3<br>3.810+1<br>1.661<br>1.86-2                                                                                                                                              | 3000<br>7.364+0<br>1.931<br>1.27-1<br>-1.07-3<br>9.035+0<br>1.690<br>-1.90-2<br>-3.63-3<br>1.818+1<br>1.731<br>-3.98-2                                                                                               | 4000<br>4.450+0<br>1.938<br>-9.51-3<br>-1.34-3<br>5.330+0<br>1.681<br>2.95-2<br>-3.20-3<br>1.022+1<br>1.745<br>3.77-2                                                                                                                                                                                      | 5000<br>2.967+0<br>1.945<br>-9.36-2<br>-1.53-3<br>3.438+0<br>1.657<br>1.40-1<br>-1.57-3<br>6.358+0<br>1.737<br>1.71-1                                                                                                                                              | 6000<br>2.112+0<br>1.951<br>-1.38-1<br>-1.67-3<br>2.361+0<br>1.627<br>2.74-1<br>1.12-3<br>4.243+0<br>1.719<br>3.26-1                                                                                                | 7000<br>1.576+0<br>1.956<br>-1.53-1<br>-1.78-3<br>1.698+0<br>1.594<br>4.14-1<br>4.81-3<br>2.980+0<br>1.696<br>4.84-1                                                                                                | 8000<br>1.219+0<br>1.959<br>-1.47-1<br>-1.87-3<br>1.265+0<br>1.561<br>5.53-1<br>9.27-3<br>2.176+0<br>1.670<br>6.41-1                                                                                                                                                       | 9000<br>9.683-1<br>1.962<br>-1.24-1<br>-1.94-3<br>9.698-1<br>1.528<br>6.88-1<br>1.44-2<br>1.638+0<br>1.642<br>7.91-1                                                                                                                                                       | 10000<br>7.863-<br>1.964<br>-8.85-<br>-2.01-<br>7.605-<br>1.495<br>8.17-<br>2.01-2<br>1.265+<br>1.613<br>9.34-1                                                                                  |
| Z= 70, Yb: [X<br>Shell $4s_{1/2}$ $E_b = 487.2 \text{ eV}$<br>$4p_{1/2}$ $E_b = 396.7 \text{ eV}$<br>$4p_{3/2}$ $E_b = 343.5 \text{ eV}$                                                                                                                                                                                                                                                                                                                                                                                              | δ (ce   4f <sub>5/2</sub> 4)  σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} -5.06-4 \\ \textbf{4f}^8_{7/2} \ \textbf{6s}^2_{1/2} \\ \hline k \ (\text{eV}) \\ \hline 1500 \\ 2.221+1 \\ 1.915 \\ 4.54-1 \\ -3.10-4 \\ 2.631+1 \\ 1.577 \\ 2.37-1 \\ 2.45-3 \\ \hline 6.087+1 \\ 1.569 \\ 1.40-1 \\ 2.24-3 \\ \end{array}$                                                                                                                                                                                                                            | 2000<br>1.435+1<br>1.921<br>3.32-1<br>-6.52-4<br>1.754+1<br>1.651<br>8.34-2<br>-2.07-3<br>3.810+1<br>1.661<br>1.86-2<br>8.08-4                                                                                                                                    | 3000<br>7.364+0<br>1.931<br>1.27-1<br>-1.07-3<br>9.035+0<br>1.690<br>-1.90-2<br>-3.63-3<br>1.818+1<br>1.731<br>-3.98-2<br>3.87-3                                                                                     | 4000<br>4.450+0<br>1.938<br>-9.51-3<br>-1.34-3<br>5.330+0<br>1.681<br>2.95-2<br>-3.20-3<br>1.022+1<br>1.745<br>3.77-2<br>7.11-3                                                                                                                                                                            | 5000<br>2.967+0<br>1.945<br>-9.36-2<br>-1.53-3<br>3.438+0<br>1.657<br>1.40-1<br>-1.57-3<br>6.358+0<br>1.737<br>1.71-1<br>9.93-3                                                                                                                                    | 6000<br>2.112+0<br>1.951<br>-1.38-1<br>-1.67-3<br>2.361+0<br>1.627<br>2.74-1<br>1.12-3<br>4.243+0<br>1.719<br>3.26-1<br>1.27-2                                                                                      | 7000<br>1.576+0<br>1.956<br>-1.53-1<br>-1.78-3<br>1.698+0<br>1.594<br>4.14-1<br>4.81-3<br>2.980+0<br>1.696<br>4.84-1<br>1.56-2                                                                                      | 8000<br>1.219+0<br>1.959<br>-1.47-1<br>-1.87-3<br>1.265+0<br>1.561<br>5.53-1<br>9.27-3<br>2.176+0<br>1.670<br>6.41-1<br>1.88-2                                                                                                                                             | 9000<br>9.683-1<br>1.962<br>-1.24-1<br>-1.94-3<br>9.698-1<br>1.528<br>6.88-1<br>1.44-2<br>1.638+0<br>1.642<br>7.91-1<br>2.24-2                                                                                                                                             | 10000 7.863- 1.964 -8.852.01- 7.605- 1.495 8.17-1 2.01-2 1.265+ 1.613 9.34-1 2.61-2                                                                                                              |
| Z= 70, Yb: [X<br>Shell $4s_{1/2}$ $E_b = 487.2 \text{ eV}$<br>$4p_{1/2}$ $E_b = 396.7 \text{ eV}$<br>$4p_{3/2}$ $E_b = 343.5 \text{ eV}$                                                                                                                                                                                                                                                                                                                                                                                              | $ \frac{\delta}{\delta e   4f_{5/2}^6 4} $ $ \frac{\sigma}{\beta} $ $ \frac{\beta}{\gamma} $ $ \frac{\delta}{\delta} $ $ \frac{\sigma}{\beta} $ $ \frac{\beta}{\gamma} $ $ \frac{\delta}{\delta} $ $ \frac{\sigma}{\beta} $ $ \frac{\beta}{\gamma} $ $ \frac{\delta}{\delta} $ $ \frac{\sigma}{\delta} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} -5.06-4 \\ \textbf{4f}^8_{7/2} \ \textbf{6s}^2_{1/2} \\ \hline k \ (\text{eV}) \\ \hline 1500 \\ \hline 2.221+1 \\ 1.915 \\ 4.54-1 \\ -3.10-4 \\ \hline 2.631+1 \\ 1.577 \\ 2.37-1 \\ 2.45-3 \\ \hline 6.087+1 \\ 1.569 \\ 1.40-1 \\ \end{array}$                                                                                                                                                                                                                        | 2000<br>1.435+1<br>1.921<br>3.32-1<br>-6.52-4<br>1.754+1<br>1.651<br>8.34-2<br>-2.07-3<br>3.810+1<br>1.661<br>1.86-2                                                                                                                                              | 3000<br>7.364+0<br>1.931<br>1.27-1<br>-1.07-3<br>9.035+0<br>1.690<br>-1.90-2<br>-3.63-3<br>1.818+1<br>1.731<br>-3.98-2                                                                                               | 4000<br>4.450+0<br>1.938<br>-9.51-3<br>-1.34-3<br>5.330+0<br>1.681<br>2.95-2<br>-3.20-3<br>1.022+1<br>1.745<br>3.77-2                                                                                                                                                                                      | 5000<br>2.967+0<br>1.945<br>-9.36-2<br>-1.53-3<br>3.438+0<br>1.657<br>1.40-1<br>-1.57-3<br>6.358+0<br>1.737<br>1.71-1                                                                                                                                              | 6000<br>2.112+0<br>1.951<br>-1.38-1<br>-1.67-3<br>2.361+0<br>1.627<br>2.74-1<br>1.12-3<br>4.243+0<br>1.719<br>3.26-1                                                                                                | 7000<br>1.576+0<br>1.956<br>-1.53-1<br>-1.78-3<br>1.698+0<br>1.594<br>4.14-1<br>4.81-3<br>2.980+0<br>1.696<br>4.84-1                                                                                                | 8000<br>1.219+0<br>1.959<br>-1.47-1<br>-1.87-3<br>1.265+0<br>1.561<br>5.53-1<br>9.27-3<br>2.176+0<br>1.670<br>6.41-1                                                                                                                                                       | 9000<br>9.683-1<br>1.962<br>-1.24-1<br>-1.94-3<br>9.698-1<br>1.528<br>6.88-1<br>1.44-2<br>1.638+0<br>1.642<br>7.91-1                                                                                                                                                       | 10000 7.863- 1.964 -8.852.01- 7.605- 1.495 8.17- 2.01-2 1.265+ 1.613 9.34- 2.61-2                                                                                                                |
| Z= 70, Yb: [X<br>Shell $4s_{1/2}$ $E_b = 487.2 \text{ eV}$<br>$4p_{1/2}$ $E_b = 396.7 \text{ eV}$<br>$4p_{3/2}$ $E_b = 343.5 \text{ eV}$                                                                                                                                                                                                                                                                                                                                                                                              | δ (ce   4f <sub>5/2</sub> 4)  σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} -5.06-4 \\ \textbf{4f}^8_{7/2} \ \textbf{6s}^2_{1/2} \\ \hline k \ (\text{eV}) \\ \hline 1500 \\ \hline 2.221+1 \\ 1.915 \\ 4.54-1 \\ -3.10-4 \\ \hline 2.631+1 \\ 1.577 \\ 2.37-1 \\ 2.45-3 \\ \hline 6.087+1 \\ 1.569 \\ 1.40-1 \\ 2.24-3 \\ \hline 7.298+1 \\ \end{array}$                                                                                                                                                                                            | 2000<br>1.435+1<br>1.921<br>3.32-1<br>-6.52-4<br>1.754+1<br>1.651<br>8.34-2<br>-2.07-3<br>3.810+1<br>1.661<br>1.86-2<br>8.08-4<br>3.961+1                                                                                                                         | 3000<br>7.364+0<br>1.931<br>1.27-1<br>-1.07-3<br>9.035+0<br>1.690<br>-1.90-2<br>-3.63-3<br>1.818+1<br>1.731<br>-3.98-2<br>3.87-3<br>1.481+1                                                                          | 4000<br>4.450+0<br>1.938<br>-9.51-3<br>-1.34-3<br>5.330+0<br>1.681<br>2.95-2<br>-3.20-3<br>1.022+1<br>1.745<br>3.77-2<br>7.11-3<br>6.846+0                                                                                                                                                                 | 5000<br>2.967+0<br>1.945<br>-9.36-2<br>-1.53-3<br>3.438+0<br>1.657<br>1.40-1<br>-1.57-3<br>6.358+0<br>1.737<br>1.71-1<br>9.93-3<br>3.628+0                                                                                                                         | 6000<br>2.112+0<br>1.951<br>-1.38-1<br>-1.67-3<br>2.361+0<br>1.627<br>2.74-1<br>1.12-3<br>4.243+0<br>1.719<br>3.26-1<br>1.27-2<br>2.112+0                                                                           | 7000<br>1.576+0<br>1.956<br>-1.53-1<br>-1.78-3<br>1.698+0<br>1.594<br>4.14-1<br>4.81-3<br>2.980+0<br>1.696<br>4.84-1<br>1.56-2<br>1.317+0                                                                           | 8000<br>1.219+0<br>1.959<br>-1.47-1<br>-1.87-3<br>1.265+0<br>1.561<br>5.53-1<br>9.27-3<br>2.176+0<br>1.670<br>6.41-1<br>1.88-2<br>8.654-1<br>1.075<br>1.28+0                                                                                                               | 9000<br>9.683-1<br>1.962<br>-1.24-1<br>-1.94-3<br>9.698-1<br>1.528<br>6.88-1<br>1.44-2<br>1.638+0<br>1.642<br>7.91-1<br>2.24-2<br>5.926-1                                                                                                                                  | 10000 7.863- 1.964 -8.852.01- 7.605- 1.495 8.17-1 2.01-2 1.265+ 1.613 9.34-1 2.61-2                                                                                                              |
| Z= 70, Yb: [X<br>Shell $4s_{1/2}$ $E_b = 487.2$ eV<br>$4p_{1/2}$ $E_b = 396.7$ eV<br>$4p_{3/2}$ $E_b = 343.5$ eV<br>$4d_{3/2}$ $E_b = 4d_{3/2}$ | $ \begin{array}{c} \delta \\ \text{Ce]4f}_{5/2}^{6} \cdot 4 \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \beta \\ \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} -5.06-4 \\ \textbf{4f}^8_{7/2} \ \textbf{6s}^2_{1/2} \\ \hline k \ (\text{eV}) \\ \hline 1500 \\ \hline 2.221+1 \\ 1.915 \\ 4.54-1 \\ -3.10-4 \\ \hline 2.631+1 \\ 1.577 \\ 2.37-1 \\ 2.45-3 \\ \hline 6.087+1 \\ 1.569 \\ 1.40-1 \\ 2.24-3 \\ \hline 7.298+1 \\ 1.287 \\ \end{array}$                                                                                                                                                                                   | 2000<br>1.435+1<br>1.921<br>3.32-1<br>-6.52-4<br>1.754+1<br>1.651<br>8.34-2<br>-2.07-3<br>3.810+1<br>1.661<br>1.86-2<br>8.08-4<br>3.961+1<br>1.358                                                                                                                | 3000<br>7.364+0<br>1.931<br>1.27-1<br>-1.07-3<br>9.035+0<br>1.690<br>-1.90-2<br>-3.63-3<br>1.818+1<br>1.731<br>-3.98-2<br>3.87-3<br>1.481+1<br>1.368                                                                 | 4000<br>4.450+0<br>1.938<br>-9.51-3<br>-1.34-3<br>5.330+0<br>1.681<br>2.95-2<br>-3.20-3<br>1.022+1<br>1.745<br>3.77-2<br>7.11-3<br>6.846+0<br>1.322                                                                                                                                                        | 5000<br>2.967+0<br>1.945<br>-9.36-2<br>-1.53-3<br>3.438+0<br>1.657<br>1.40-1<br>-1.57-3<br>6.358+0<br>1.737<br>1.71-1<br>9.93-3<br>3.628+0<br>1.261                                                                                                                | 6000<br>2.112+0<br>1.951<br>-1.38-1<br>-1.67-3<br>2.361+0<br>1.627<br>2.74-1<br>1.12-3<br>4.243+0<br>1.719<br>3.26-1<br>1.27-2<br>2.112+0<br>1.198                                                                  | 7000<br>1.576+0<br>1.956<br>-1.53-1<br>-1.78-3<br>1.698+0<br>1.594<br>4.14-1<br>4.81-3<br>2.980+0<br>1.696<br>4.84-1<br>1.56-2<br>1.317+0<br>1.135                                                                  | 8000<br>1.219+0<br>1.959<br>-1.47-1<br>-1.87-3<br>1.265+0<br>1.561<br>5.53-1<br>9.27-3<br>2.176+0<br>1.670<br>6.41-1<br>1.88-2<br>8.654-1<br>1.075                                                                                                                         | 9000<br>9.683-1<br>1.962<br>-1.24-1<br>-1.94-3<br>9.698-1<br>1.528<br>6.88-1<br>1.44-2<br>1.638+0<br>1.642<br>7.91-1<br>2.24-2<br>5.926-1<br>1.018                                                                                                                         | 10000 7.863- 1.964 -8.852.01- 7.605- 1.495 8.17- 2.01-2 1.265+ 1.613 9.34- 2.61-2 4.197- 0.963 1.49+0                                                                                            |
| Z= 70, Yb: [X<br>Shell $4s_{1/2}$ $E_b = 487.2$ eV<br>$4p_{1/2}$ $E_b = 396.7$ eV<br>$4p_{3/2}$ $E_b = 343.5$ eV<br>$4d_{3/2}$ $E_b = 4d_{3/2}$ | δ (c) 4f <sub>5/2</sub> 4 σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} -5.06-4 \\ \textbf{4f}^8_{7/2} \ \textbf{6s}^2_{1/2} \\ \hline k \ (\text{eV}) \\ \hline 1500 \\ \hline 2.221+1 \\ 1.915 \\ 4.54-1 \\ -3.10-4 \\ \hline 2.631+1 \\ 1.577 \\ 2.37-1 \\ 2.45-3 \\ \hline 6.087+1 \\ 1.569 \\ 1.40-1 \\ 2.24-3 \\ \hline 7.298+1 \\ 1.287 \\ -3.59-2 \\ \end{array}$                                                                                                                                                                        | 2000<br>1.435+1<br>1.921<br>3.32-1<br>-6.52-4<br>1.754+1<br>1.651<br>8.34-2<br>-2.07-3<br>3.810+1<br>1.661<br>1.86-2<br>8.08-4<br>3.961+1<br>1.358<br>4.97-2                                                                                                      | 3000<br>7.364+0<br>1.931<br>1.27-1<br>-1.07-3<br>9.035+0<br>1.690<br>-1.90-2<br>-3.63-3<br>1.818+1<br>1.731<br>-3.98-2<br>3.87-3<br>1.481+1<br>1.368<br>3.11-1                                                       | 4000<br>4.450+0<br>1.938<br>-9.51-3<br>-1.34-3<br>5.330+0<br>1.681<br>2.95-2<br>-3.20-3<br>1.022+1<br>1.745<br>3.77-2<br>7.11-3<br>6.846+0<br>1.322<br>5.69-1                                                                                                                                              | 5000<br>2.967+0<br>1.945<br>-9.36-2<br>-1.53-3<br>3.438+0<br>1.657<br>1.40-1<br>-1.57-3<br>6.358+0<br>1.737<br>1.71-1<br>9.93-3<br>3.628+0<br>1.261<br>7.93-1                                                                                                      | 6000<br>2.112+0<br>1.951<br>-1.38-1<br>-1.67-3<br>2.361+0<br>1.627<br>2.74-1<br>1.12-3<br>4.243+0<br>1.719<br>3.26-1<br>1.27-2<br>2.112+0<br>1.198<br>9.81-1                                                        | 7000<br>1.576+0<br>1.956<br>-1.53-1<br>-1.78-3<br>1.698+0<br>1.594<br>4.14-1<br>4.81-3<br>2.980+0<br>1.696<br>4.84-1<br>1.56-2<br>1.317+0<br>1.135<br>1.14+0                                                        | 8000<br>1.219+0<br>1.959<br>-1.47-1<br>-1.87-3<br>1.265+0<br>1.561<br>5.53-1<br>9.27-3<br>2.176+0<br>1.670<br>6.41-1<br>1.88-2<br>8.654-1<br>1.075<br>1.28+0                                                                                                               | 9000<br>9.683-1<br>1.962<br>-1.24-1<br>-1.94-3<br>9.698-1<br>1.528<br>6.88-1<br>1.44-2<br>1.638+0<br>1.642<br>7.91-1<br>2.24-2<br>5.926-1<br>1.018<br>1.39+0                                                                                                               | 10000 7.863- 1.964 -8.852.01- 7.605- 1.495 8.17- 2.01- 1.265+ 1.613 9.34- 2.61- 4.197- 0.963 1.49+0 1.82-                                                                                        |
| Z= 70, Yb: [X<br>Shell<br>$4s_{1/2}$<br>$E_b =$<br>487.2 eV<br>$4p_{1/2}$<br>$E_b =$<br>396.7 eV<br>$4p_{3/2}$<br>$E_b =$<br>343.5 eV<br>$4d_{3/2}$<br>$E_b =$<br>198.1 eV<br>$4d_{5/2}$<br>$E_b =$                                                                                                                                                                                                                                                                                                                                   | δ (c) 4f <sub>5/2</sub> 4 σ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ δ β γ δ δ σ δ β γ δ δ σ δ δ σ δ δ γ δ δ σ δ δ σ δ δ δ σ δ δ δ σ δ δ δ δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} -5.06-4 \\ \mathbf{4f_{7/2}^8 6s_{1/2}^2} \\ \hline k  (\text{eV}) \\ \hline 1500 \\ 2.221+1 \\ 1.915 \\ 4.54-1 \\ -3.10-4 \\ 2.631+1 \\ 1.577 \\ 2.37-1 \\ 2.45-3 \\ \hline 6.087+1 \\ 1.569 \\ 1.40-1 \\ 2.24-3 \\ \hline 7.298+1 \\ 1.287 \\ -3.59-2 \\ 1.35-2 \\ \hline 1.044+2 \\ 1.324 \\ \end{array}$                                                                                                                                                             | 2000<br>1.435+1<br>1.921<br>3.32-1<br>-6.52-4<br>1.754+1<br>1.651<br>8.34-2<br>-2.07-3<br>3.810+1<br>1.661<br>1.86-2<br>8.08-4<br>3.961+1<br>1.358<br>4.97-2<br>2.67-2<br>5.588+1<br>1.359                                                                        | 3000<br>7.364+0<br>1.931<br>1.27-1<br>-1.07-3<br>9.035+0<br>1.690<br>-1.90-2<br>-3.63-3<br>1.818+1<br>1.731<br>-3.98-2<br>3.87-3<br>1.481+1<br>1.368<br>3.11-1<br>4.87-2<br>2.053+1<br>1.329                         | 4000<br>4.450+0<br>1.938<br>-9.51-3<br>-1.34-3<br>5.330+0<br>1.681<br>2.95-2<br>-3.20-3<br>1.022+1<br>1.745<br>3.77-2<br>7.11-3<br>6.846+0<br>1.322<br>5.69-1<br>6.82-2<br>9.380+0<br>1.262                                                                                                                | 5000<br>2.967+0<br>1.945<br>-9.36-2<br>-1.53-3<br>3.438+0<br>1.657<br>1.40-1<br>-1.57-3<br>6.358+0<br>1.737<br>1.71-1<br>9.93-3<br>3.628+0<br>1.261<br>7.93-1<br>8.74-2<br>4.923+0<br>1.189                                                                        | 6000<br>2.112+0<br>1.951<br>-1.38-1<br>-1.67-3<br>2.361+0<br>1.627<br>2.74-1<br>1.12-3<br>4.243+0<br>1.719<br>3.26-1<br>1.27-2<br>2.112+0<br>1.198<br>9.81-1<br>1.07-1<br>2.842+0<br>1.120                          | 7000  1.576+0 1.956 -1.53-1 -1.78-3 1.698+0 1.594 4.14-1 4.81-3 2.980+0 1.696 4.84-1 1.56-2 1.317+0 1.135 1.14+0 1.26-1 1.760+0 1.055                                                                               | 8000<br>1.219+0<br>1.959<br>-1.47-1<br>-1.87-3<br>1.265+0<br>1.561<br>5.53-1<br>9.27-3<br>2.176+0<br>1.670<br>6.41-1<br>1.88-2<br>8.654-1<br>1.075<br>1.28+0<br>1.45-1<br>1.149+0<br>0.994                                                                                 | 9000<br>9.683-1<br>1.962<br>-1.24-1<br>-1.94-3<br>9.698-1<br>1.528<br>6.88-1<br>1.44-2<br>1.638+0<br>1.642<br>7.91-1<br>2.24-2<br>5.926-1<br>1.018<br>1.39+0<br>1.64-1<br>7.819-1<br>0.938                                                                                 | 10000 7.863- 1.964 -8.85 -2.01- 7.605- 1.495 8.17- 2.01- 1.265+ 1.613 9.34- 2.61- 4.197- 0.963 1.49+0 1.82- 5.506- 0.885                                                                         |
| Z= 70, Yb: [X<br>Shell $4s_{1/2}$ $E_b = 487.2 \text{ eV}$<br>$4p_{1/2}$ $E_b = 396.7 \text{ eV}$<br>$4p_{3/2}$ $E_b = 343.5 \text{ eV}$<br>$4d_{3/2}$ $E_b = 198.1 \text{ eV}$                                                                                                                                                                                                                                                                                                                                                       | δ (ce   4f <sub>5/2</sub> 4)  σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} -5.06-4 \\ \textbf{4f}^{8}_{7/2} \ \textbf{6s}^{2}_{1/2} \\ \hline k \ (\text{eV}) \\ \hline 1500 \\ 2.221+1 \\ 1.915 \\ 4.54-1 \\ -3.10-4 \\ 2.631+1 \\ 1.577 \\ 2.37-1 \\ 2.45-3 \\ \hline 6.087+1 \\ 1.569 \\ 1.40-1 \\ 2.24-3 \\ \hline 7.298+1 \\ 1.287 \\ -3.59-2 \\ 1.35-2 \\ \hline 1.044+2 \\ 1.324 \\ -2.69-2 \\ \end{array}$                                                                                                                                  | 2000<br>1.435+1<br>1.921<br>3.32-1<br>-6.52-4<br>1.754+1<br>1.651<br>8.34-2<br>-2.07-3<br>3.810+1<br>1.661<br>1.86-2<br>8.08-4<br>3.961+1<br>1.358<br>4.97-2<br>2.67-2<br>5.588+1<br>1.359<br>7.39-2                                                              | 3000<br>7.364+0<br>1.931<br>1.27-1<br>-1.07-3<br>9.035+0<br>1.690<br>-1.90-2<br>-3.63-3<br>1.818+1<br>1.731<br>-3.98-2<br>3.87-3<br>1.481+1<br>1.368<br>3.11-1<br>4.87-2<br>2.053+1<br>1.329<br>3.44-1               | 4000<br>4.450+0<br>1.938<br>-9.51-3<br>-1.34-3<br>5.330+0<br>1.681<br>2.95-2<br>-3.20-3<br>1.022+1<br>1.745<br>3.77-2<br>7.11-3<br>6.846+0<br>1.322<br>5.69-1<br>6.82-2<br>9.380+0<br>1.262<br>5.97-1                                                                                                      | 5000<br>2.967+0<br>1.945<br>-9.36-2<br>-1.53-3<br>3.438+0<br>1.657<br>1.40-1<br>-1.57-3<br>6.358+0<br>1.737<br>1.71-1<br>9.93-3<br>3.628+0<br>1.261<br>7.93-1<br>8.74-2<br>4.923+0<br>1.189<br>8.09-1                                                              | 6000<br>2.112+0<br>1.951<br>-1.38-1<br>-1.67-3<br>2.361+0<br>1.627<br>2.74-1<br>1.12-3<br>4.243+0<br>1.719<br>3.26-1<br>1.27-2<br>2.112+0<br>1.198<br>9.81-1<br>1.07-1<br>2.842+0<br>1.120<br>9.85-1                | 7000  1.576+0 1.956 -1.53-1 -1.78-3 1.698+0 1.594 4.14-1 4.81-3 2.980+0 1.696 4.84-1 1.56-2 1.317+0 1.135 1.14+0 1.26-1 1.760+0 1.055 1.13+0                                                                        | 8000<br>1.219+0<br>1.959<br>-1.47-1<br>-1.87-3<br>1.265+0<br>1.561<br>5.53-1<br>9.27-3<br>2.176+0<br>1.670<br>6.41-1<br>1.88-2<br>8.654-1<br>1.075<br>1.28+0<br>1.45-1<br>1.149+0<br>0.994<br>1.26+0                                                                       | 9000<br>9.683-1<br>1.962<br>-1.24-1<br>-1.94-3<br>9.698-1<br>1.528<br>6.88-1<br>1.44-2<br>1.638+0<br>1.642<br>7.91-1<br>2.24-2<br>5.926-1<br>1.018<br>1.39+0<br>1.64-1<br>7.819-1<br>0.938<br>1.37+0                                                                       | 10000 7.863- 1.964 -8.852.01- 7.605- 1.495 8.17- 2.01- 1.265+ 1.613 9.34- 2.61- 4.197- 0.963 1.49+0 1.82- 5.506- 0.885 1.46+0                                                                    |
| Z= 70, Yb: [X<br>Shell<br>$4s_{1/2}$<br>$E_b =$<br>487.2  eV<br>$4p_{1/2}$<br>$E_b =$<br>396.7  eV<br>$4p_{3/2}$<br>$E_b =$<br>343.5  eV<br>$4d_{3/2}$<br>$E_b =$<br>198.1  eV<br>$4d_{5/2}$<br>$E_b =$<br>184.9  eV                                                                                                                                                                                                                                                                                                                  | δ (ce   4f <sub>5/2</sub> · c   4f <sub>5/2</sub> · c   4f <sub>5/2</sub> · c   4f <sub>5/2</sub> · c   6   6   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   7   8   8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} -5.06-4 \\ \textbf{4f}^{8}_{7/2} \ \textbf{6s}^{2}_{1/2} \\ \hline k \ (\text{eV}) \\ \hline 1500 \\ 2.221+1 \\ 1.915 \\ 4.54-1 \\ -3.10-4 \\ 2.631+1 \\ 1.577 \\ 2.37-1 \\ 2.45-3 \\ \hline 6.087+1 \\ 1.569 \\ 1.40-1 \\ 2.24-3 \\ \hline 7.298+1 \\ 1.287 \\ -3.59-2 \\ 1.35-2 \\ \hline 1.044+2 \\ 1.324 \\ -2.69-2 \\ 1.33-2 \\ \end{array}$                                                                                                                        | 2000<br>1.435+1<br>1.921<br>3.32-1<br>-6.52-4<br>1.754+1<br>1.651<br>8.34-2<br>-2.07-3<br>3.810+1<br>1.661<br>1.86-2<br>8.08-4<br>3.961+1<br>1.358<br>4.97-2<br>2.67-2<br>5.588+1<br>1.359<br>7.39-2<br>2.56-2                                                    | 3000 7.364+0 1.931 1.27-1 -1.07-3 9.035+0 1.690 -1.90-2 -3.63-3 1.818+1 1.731 -3.98-2 3.87-3 1.481+1 1.368 3.11-1 4.87-2 2.053+1 1.329 3.44-1 4.83-2                                                                 | 4000<br>4.450+0<br>1.938<br>-9.51-3<br>-1.34-3<br>5.330+0<br>1.681<br>2.95-2<br>-3.20-3<br>1.022+1<br>1.745<br>3.77-2<br>7.11-3<br>6.846+0<br>1.322<br>5.69-1<br>6.82-2<br>9.380+0<br>1.262<br>5.97-1<br>7.06-2                                                                                            | 5000<br>2.967+0<br>1.945<br>-9.36-2<br>-1.53-3<br>3.438+0<br>1.657<br>1.40-1<br>-1.57-3<br>6.358+0<br>1.737<br>1.71-1<br>9.93-3<br>3.628+0<br>1.261<br>7.93-1<br>8.74-2<br>4.923+0<br>1.189<br>8.09-1<br>9.33-2                                                    | 6000  2.112+0 1.951 -1.38-1 -1.67-3 2.361+0 1.627 2.74-1 1.12-3 4.243+0 1.719 3.26-1 1.27-2 2.112+0 1.198 9.81-1 1.07-1 2.842+0 1.120 9.85-1 1.16-1                                                                 | 7000  1.576+0 1.956 -1.53-1 -1.78-3 1.698+0 1.594 4.14-1 4.81-3 2.980+0 1.696 4.84-1 1.56-2 1.317+0 1.135 1.14+0 1.26-1 1.760+0 1.055 1.13+0 1.39-1                                                                 | 8000<br>1.219+0<br>1.959<br>-1.47-1<br>-1.87-3<br>1.265+0<br>1.561<br>5.53-1<br>9.27-3<br>2.176+0<br>1.670<br>6.41-1<br>1.88-2<br>8.654-1<br>1.075<br>1.28+0<br>1.45-1<br>1.149+0<br>0.994<br>1.26+0<br>1.61-1                                                             | 9000<br>9.683-1<br>1.962<br>-1.24-1<br>-1.94-3<br>9.698-1<br>1.528<br>6.88-1<br>1.44-2<br>1.638+0<br>1.642<br>7.91-1<br>2.24-2<br>5.926-1<br>1.018<br>1.39+0<br>1.64-1<br>7.819-1<br>0.938<br>1.37+0<br>1.82-1                                                             | 10000 7.863- 1.964 -8.85 -2.01- 7.605- 1.495 8.17- 2.01- 1.265+ 1.613 9.34- 2.61- 2.61- 0.963 1.49+0 0.885 1.46+0 2.03-                                                                          |
| Z= 70, Yb: [X<br>Shell $4s_{1/2}$ $E_b = 487.2 \text{ eV}$<br>$4p_{1/2}$ $E_b = 396.7 \text{ eV}$<br>$4p_{3/2}$ $E_b = 343.5 \text{ eV}$<br>$4d_{3/2}$ $E_b = 198.1 \text{ eV}$<br>$4d_{5/2}$ $E_b = 184.9 \text{ eV}$                                                                                                                                                                                                                                                                                                                | δ (ce   4f <sub>5/2</sub> 4)  σ β γ δ σ β γ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ σ β γ δ δ σ σ β γ δ δ σ σ β γ δ δ σ σ β γ δ δ σ σ β γ δ δ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} -5.06-4 \\ \textbf{4f}^{8}_{7/2} \ \textbf{6s}^{2}_{1/2} \\ \hline k \ (\text{eV}) \\ \hline 1500 \\ 2.221+1 \\ 1.915 \\ 4.54-1 \\ -3.10-4 \\ 2.631+1 \\ 1.577 \\ 2.37-1 \\ 2.45-3 \\ \hline 6.087+1 \\ 1.569 \\ 1.40-1 \\ 2.24-3 \\ \hline 7.298+1 \\ 1.287 \\ -3.59-2 \\ 1.35-2 \\ \hline 1.044+2 \\ 1.324 \\ -2.69-2 \\ 1.33-2 \\ \hline 2.959+1 \\ \end{array}$                                                                                                      | 2000<br>1.435+1<br>1.921<br>3.32-1<br>-6.52-4<br>1.754+1<br>1.651<br>8.34-2<br>-2.07-3<br>3.810+1<br>1.661<br>1.86-2<br>8.08-4<br>3.961+1<br>1.358<br>4.97-2<br>2.67-2<br>5.588+1<br>1.359<br>7.39-2<br>2.56-2<br>1.100+1                                         | 3000 7.364+0 1.931 1.27-1 -1.07-3 9.035+0 1.690 -1.90-2 -3.63-3 1.818+1 1.731 -3.98-2 3.87-3 1.481+1 1.368 3.11-1 4.87-2 2.053+1 1.329 3.44-1 4.83-2 2.484+0                                                         | 4000<br>4.450+0<br>1.938<br>-9.51-3<br>-1.34-3<br>5.330+0<br>1.681<br>2.95-2<br>-3.20-3<br>1.022+1<br>1.745<br>3.77-2<br>7.11-3<br>6.846+0<br>1.322<br>5.69-1<br>6.82-2<br>9.380+0<br>1.262<br>5.97-1<br>7.06-2<br>8.188-1                                                                                 | 5000<br>2.967+0<br>1.945<br>-9.36-2<br>-1.53-3<br>3.438+0<br>1.657<br>1.40-1<br>-1.57-3<br>6.358+0<br>1.737<br>1.71-1<br>9.93-3<br>3.628+0<br>1.261<br>7.93-1<br>8.74-2<br>4.923+0<br>1.189<br>8.09-1<br>9.33-2<br>3.370-1                                         | 6000  2.112+0 1.951 -1.38-1 -1.67-3 2.361+0 1.627 2.74-1 1.12-3 4.243+0 1.719 3.26-1 1.27-2 2.112+0 1.198 9.81-1 1.07-1 2.842+0 1.120 9.85-1 1.16-1                                                                 | 7000  1.576+0 1.956 -1.53-1 -1.78-3 1.698+0 1.594 4.14-1 4.81-3 2.980+0 1.696 4.84-1 1.56-2 1.317+0 1.135 1.14+0 1.26-1 1.760+0 1.055 1.13+0 1.39-1 8.466-2                                                         | 8000<br>1.219+0<br>1.959<br>-1.47-1<br>-1.87-3<br>1.265+0<br>1.561<br>5.53-1<br>9.27-3<br>2.176+0<br>1.670<br>6.41-1<br>1.88-2<br>8.654-1<br>1.075<br>1.28+0<br>1.45-1<br>1.149+0<br>0.994<br>1.26+0<br>1.61-1<br>4.818-2                                                  | 9000<br>9.683-1<br>1.962<br>-1.24-1<br>-1.94-3<br>9.698-1<br>1.528<br>6.88-1<br>1.44-2<br>1.638+0<br>1.642<br>7.91-1<br>2.24-2<br>5.926-1<br>1.018<br>1.39+0<br>1.64-1<br>7.819-1<br>0.938<br>1.37+0<br>1.82-1<br>2.908-2                                                  | 10000 7.863- 1.964 -8.852.01- 7.605- 1.495 8.17- 2.01- 1.265+ 1.613 9.34- 2.61- 4.197- 0.963 1.49+0 1.82- 5.506- 0.885 1.46+0 2.03- 1.840-                                                       |
| Z= 70, Yb: [X<br>Shell $4s_{1/2}$ $E_b = 487.2 \text{ eV}$<br>$4p_{1/2}$ $E_b = 396.7 \text{ eV}$<br>$4p_{3/2}$ $E_b = 343.5 \text{ eV}$<br>$4d_{3/2}$ $E_b = 198.1 \text{ eV}$<br>$4d_{5/2}$ $E_b = 184.9 \text{ eV}$                                                                                                                                                                                                                                                                                                                | δ (ce   4f <sub>5/2</sub> 4 )  σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} -5.06-4 \\ \textbf{4f}^8_{7/2} \ \textbf{6s}^2_{1/2} \\ \hline k \ (\text{eV}) \\ \hline 1500 \\ 2.221+1 \\ 1.915 \\ 4.54-1 \\ -3.10-4 \\ 2.631+1 \\ 1.577 \\ 2.37-1 \\ 2.45-3 \\ \hline 6.087+1 \\ 1.569 \\ 1.40-1 \\ 2.24-3 \\ \hline 7.298+1 \\ 1.287 \\ -3.59-2 \\ 1.35-2 \\ \hline 1.044+2 \\ 1.324 \\ -2.69-2 \\ 1.33-2 \\ \hline 2.959+1 \\ 1.061 \\ \end{array}$                                                                                                 | 2000<br>1.435+1<br>1.921<br>3.32-1<br>-6.52-4<br>1.754+1<br>1.651<br>8.34-2<br>-2.07-3<br>3.810+1<br>1.661<br>1.86-2<br>8.08-4<br>3.961+1<br>1.358<br>4.97-2<br>2.67-2<br>5.588+1<br>1.359<br>7.39-2<br>2.56-2<br>1.100+1<br>1.029                                | 3000 7.364+0 1.931 1.27-1 -1.07-3 9.035+0 1.690 -1.90-2 -3.63-3 1.818+1 1.731 -3.98-2 3.87-3 1.481+1 1.368 3.11-1 4.87-2 2.053+1 1.329 3.44-1 4.83-2 2.484+0 0.926                                                   | 4000<br>4.450+0<br>1.938<br>-9.51-3<br>-1.34-3<br>5.330+0<br>1.681<br>2.95-2<br>-3.20-3<br>1.022+1<br>1.745<br>3.77-2<br>7.11-3<br>6.846+0<br>1.322<br>5.69-1<br>6.82-2<br>9.380+0<br>1.262<br>5.97-1<br>7.06-2<br>8.188-1<br>0.825                                                                        | 5000  2.967+0 1.945 -9.36-2 -1.53-3  3.438+0 1.657 1.40-1 -1.57-3  6.358+0 1.737 1.71-1 9.93-3  3.628+0 1.261 7.93-1 8.74-2 4.923+0 1.189 8.09-1 9.33-2  3.370-1 0.738                                                                                             | 6000  2.112+0 1.951 -1.38-1 -1.67-3  2.361+0 1.627 2.74-1 1.12-3  4.243+0 1.719 3.26-1 1.27-2  2.112+0 1.198 9.81-1 1.07-1 2.842+0 1.120 9.85-1 1.16-1 1.605-1 0.665                                                | 7000  1.576+0 1.956 -1.53-1 -1.78-3  1.698+0 1.594 4.14-1 4.81-3  2.980+0 1.696 4.84-1 1.56-2  1.317+0 1.135 1.14+0 1.26-1 1.760+0 1.055 1.13+0 1.39-1  8.466-2 0.601                                               | 8000<br>1.219+0<br>1.959<br>-1.47-1<br>-1.87-3<br>1.265+0<br>1.561<br>5.53-1<br>9.27-3<br>2.176+0<br>1.670<br>6.41-1<br>1.88-2<br>8.654-1<br>1.075<br>1.28+0<br>1.45-1<br>1.149+0<br>0.994<br>1.26+0<br>1.61-1<br>4.818-2<br>0.546                                         | 9000<br>9.683-1<br>1.962<br>-1.24-1<br>-1.94-3<br>9.698-1<br>1.528<br>6.88-1<br>1.44-2<br>1.638+0<br>1.642<br>7.91-1<br>2.24-2<br>5.926-1<br>1.018<br>1.39+0<br>1.64-1<br>7.819-1<br>0.938<br>1.37+0<br>1.82-1<br>2.908-2<br>0.495                                         | 10000 7.863- 1.964 -8.852.01- 7.605- 1.495 8.17- 2.01- 1.265+ 1.613 9.34- 2.61- 4.197- 0.963 1.49+0 1.82- 5.506- 0.885 1.46+0 2.03- 1.840- 0.450                                                 |
| Z= 70, Yb: [X<br>Shell $4s_{1/2}$ $E_b = 487.2 \text{ eV}$<br>$4p_{1/2}$ $E_b = 396.7 \text{ eV}$<br>$4p_{3/2}$ $E_b = 343.5 \text{ eV}$<br>$4d_{3/2}$ $E_b = 198.1 \text{ eV}$<br>$4d_{5/2}$ $E_b = 184.9 \text{ eV}$                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} \delta \\ \text{Ce}   \mathbf{4f_{5/2}^6} \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \sigma \\ \delta \\ \sigma \\ \sigma \\ \phi \\ \delta \\ \sigma \\ \sigma \\ \phi \\ \delta \\ \sigma \\ \sigma \\ \phi \\ \sigma \\ \sigma \\ \sigma \\ \sigma \\ \sigma \\ \sigma \\ \sigma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} -5.06-4 \\ \textbf{4f}^8_{7/2} \ \textbf{6s}^2_{1/2} \\ \hline k \ (\text{eV}) \\ \hline 1500 \\ \hline 2.221+1 \\ 1.915 \\ 4.54-1 \\ -3.10-4 \\ \hline 2.631+1 \\ 1.577 \\ 2.37-1 \\ 2.45-3 \\ \hline 6.087+1 \\ 1.569 \\ 1.40-1 \\ 2.24-3 \\ \hline 7.298+1 \\ 1.287 \\ -3.59-2 \\ 1.35-2 \\ \hline 1.044+2 \\ 1.324 \\ -2.69-2 \\ 1.33-2 \\ \hline 2.959+1 \\ 1.061 \\ 3.60-1 \\ \end{array}$                                                                         | 2000<br>1.435+1<br>1.921<br>3.32-1<br>-6.52-4<br>1.754+1<br>1.651<br>8.34-2<br>-2.07-3<br>3.810+1<br>1.661<br>1.86-2<br>8.08-4<br>3.961+1<br>1.358<br>4.97-2<br>2.67-2<br>5.588+1<br>1.359<br>7.39-2<br>2.56-2<br>1.100+1<br>1.029<br>5.20-1                      | 3000 7.364+0 1.931 1.27-1 -1.07-3 9.035+0 1.690 -1.90-2 -3.63-3 1.818+1 1.731 -3.98-2 3.87-3 1.481+1 1.368 3.11-1 4.87-2 2.053+1 1.329 3.44-1 4.83-2 2.484+0 0.926 7.63-1                                            | 4000<br>4.450+0<br>1.938<br>-9.51-3<br>-1.34-3<br>5.330+0<br>1.681<br>2.95-2<br>-3.20-3<br>1.022+1<br>1.745<br>3.77-2<br>7.11-3<br>6.846+0<br>1.322<br>5.69-1<br>6.82-2<br>9.380+0<br>1.262<br>5.97-1<br>7.06-2<br>8.188-1<br>0.825<br>9.28-1                                                              | 5000<br>2.967+0<br>1.945<br>-9.36-2<br>-1.53-3<br>3.438+0<br>1.657<br>1.40-1<br>-1.57-3<br>6.358+0<br>1.737<br>1.71-1<br>9.93-3<br>3.628+0<br>1.261<br>7.93-1<br>8.74-2<br>4.923+0<br>1.189<br>8.09-1<br>9.33-2<br>3.370-1<br>0.738<br>1.05+0                      | 6000  2.112+0 1.951 -1.38-1 -1.67-3  2.361+0 1.627 2.74-1 1.12-3  4.243+0 1.719 3.26-1 1.27-2  2.112+0 1.198 9.81-1 1.07-1  2.842+0 1.120 9.85-1 1.16-1  1.605-1 0.665 1.13+0                                       | 7000  1.576+0 1.956 -1.53-1 -1.78-3  1.698+0 1.594 4.14-1 4.81-3  2.980+0 1.696 4.84-1 1.56-2  1.317+0 1.135 1.14+0 1.26-1 1.760+0 1.055 1.13+0 1.39-1  8.466-2 0.601 1.20+0                                        | 8000<br>1.219+0<br>1.959<br>-1.47-1<br>-1.87-3<br>1.265+0<br>1.561<br>5.53-1<br>9.27-3<br>2.176+0<br>1.670<br>6.41-1<br>1.88-2<br>8.654-1<br>1.075<br>1.28+0<br>1.45-1<br>1.149+0<br>0.994<br>1.26+0<br>1.61-1<br>4.818-2<br>0.546<br>1.26+0                               | 9000<br>9.683-1<br>1.962<br>-1.24-1<br>-1.94-3<br>9.698-1<br>1.528<br>6.88-1<br>1.44-2<br>1.638+0<br>1.642<br>7.91-1<br>2.24-2<br>5.926-1<br>1.018<br>1.39+0<br>1.64-1<br>7.819-1<br>0.938<br>1.37+0<br>1.82-1<br>2.908-2<br>0.495<br>1.31+0                               | 10000 7.863- 1.964 -8.852.01- 7.605- 1.495 8.17- 2.01- 1.265+ 1.613 9.34- 2.61- 4.197- 0.963 1.49+0 1.82- 5.506- 0.885 1.46+0 2.03- 1.840- 0.450 1.35+0                                          |
| Z= 70, Yb: [X<br>Shell $4s_{1/2}$ $E_b = 487.2 \text{ eV}$<br>$4p_{1/2}$ $E_b = 396.7 \text{ eV}$<br>$4p_{3/2}$ $E_b = 343.5 \text{ eV}$<br>$4d_{3/2}$ $E_b = 198.1 \text{ eV}$<br>$4d_{5/2}$ $E_b = 184.9 \text{ eV}$<br>$4f_{5/2}$ $E_b = 7.0 \text{ eV}$                                                                                                                                                                                                                                                                           | δ (c) 4f <sub>5/2</sub> 4 σ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ δ β γ δ δ σ δ β γ δ δ σ δ β γ δ δ σ δ β γ δ δ σ δ β γ δ δ σ δ δ δ σ δ δ δ δ σ δ δ δ δ δ δ δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} -5.06-4 \\ \textbf{4f}^8_{7/2} \ \textbf{6s}^2_{1/2} \\ \hline k \ (\text{eV}) \\ \hline 1500 \\ 2.221+1 \\ 1.915 \\ 4.54-1 \\ -3.10-4 \\ 2.631+1 \\ 1.577 \\ 2.37-1 \\ 2.45-3 \\ \hline 6.087+1 \\ 1.569 \\ 1.40-1 \\ 2.24-3 \\ \hline 7.298+1 \\ 1.287 \\ -3.59-2 \\ 1.35-2 \\ 1.044+2 \\ 1.324 \\ -2.69-2 \\ 1.33-2 \\ \hline 2.959+1 \\ 1.061 \\ 3.60-1 \\ 9.91-2 \\ \end{array}$                                                                                    | 2000<br>1.435+1<br>1.921<br>3.32-1<br>-6.52-4<br>1.754+1<br>1.651<br>8.34-2<br>-2.07-3<br>3.810+1<br>1.661<br>1.86-2<br>8.08-4<br>3.961+1<br>1.358<br>4.97-2<br>2.67-2<br>5.588+1<br>1.359<br>7.39-2<br>2.56-2<br>1.100+1<br>1.029<br>5.20-1<br>1.25-1            | 3000 7.364+0 1.931 1.27-1 -1.07-3 9.035+0 1.690 -1.90-2 -3.63-3 1.818+1 1.731 -3.98-2 3.87-3 1.481+1 1.368 3.11-1 4.87-2 2.053+1 1.329 3.44-1 4.83-2 2.484+0 0.926 7.63-1 1.73-1                                     | 4000<br>4.450+0<br>1.938<br>-9.51-3<br>-1.34-3<br>5.330+0<br>1.681<br>2.95-2<br>-3.20-3<br>1.022+1<br>1.745<br>3.77-2<br>7.11-3<br>6.846+0<br>1.322<br>5.69-1<br>6.82-2<br>9.380+0<br>1.262<br>5.97-1<br>7.06-2<br>8.188-1<br>0.825<br>9.28-1<br>2.18-1                                                    | 5000  2.967+0 1.945 -9.36-2 -1.53-3  3.438+0 1.657 1.40-1 -1.57-3  6.358+0 1.737 1.71-1 9.93-3  3.628+0 1.261 7.93-1 8.74-2 4.923+0 1.189 8.09-1 9.33-2  3.370-1 0.738 1.05+0 2.62-1                                                                               | 6000  2.112+0 1.951 -1.38-1 -1.67-3  2.361+0 1.627 2.74-1 1.12-3  4.243+0 1.719 3.26-1 1.27-2  2.112+0 1.198 9.81-1 1.07-1 2.842+0 1.120 9.85-1 1.16-1 1.605-1 0.665 1.13+0 3.02-1                                  | 7000  1.576+0 1.956 -1.53-1 -1.78-3  1.698+0 1.594 4.14-1 4.81-3  2.980+0 1.696 4.84-1 1.56-2  1.317+0 1.135 1.14+0 1.26-1 1.760+0 1.055 1.13+0 1.39-1  8.466-2 0.601 1.20+0 3.40-1                                 | 8000  1.219+0 1.959 -1.47-1 -1.87-3  1.265+0 1.561 5.53-1 9.27-3  2.176+0 1.670 6.41-1 1.88-2  8.654-1 1.075 1.28+0 1.45-1  1.149+0 0.994 1.26+0 1.61-1  4.818-2 0.546 1.26+0 3.75-1                                                                                       | 9000<br>9.683-1<br>1.962<br>-1.24-1<br>-1.94-3<br>9.698-1<br>1.528<br>6.88-1<br>1.44-2<br>1.638+0<br>1.642<br>7.91-1<br>2.24-2<br>5.926-1<br>1.018<br>1.39+0<br>1.64-1<br>7.819-1<br>0.938<br>1.37+0<br>1.82-1<br>2.908-2<br>0.495<br>1.31+0<br>4.08-1                     | 10000 7.863- 1.964 -8.852.01- 7.605- 1.495 8.17- 2.01- 1.265+ 1.613 9.34- 2.61- 4.197- 0.963 1.49+0 1.82- 5.506- 0.885 1.4640 2.03- 1.840- 0.450 1.35+0 4.40-                                    |
| Z= 70, Yb: [X<br>Shell $4s_{1/2}$ $E_b = 487.2 \text{ eV}$<br>$4p_{1/2}$ $E_b = 396.7 \text{ eV}$<br>$4p_{3/2}$ $E_b = 343.5 \text{ eV}$<br>$4d_{3/2}$ $E_b = 198.1 \text{ eV}$<br>$4d_{5/2}$ $E_b = 184.9 \text{ eV}$<br>$4f_{5/2}$ $E_b = 7.0 \text{ eV}$                                                                                                                                                                                                                                                                           | $\begin{array}{c} \delta \\ \delta \\ \text{Ce}   \mathbf{4f_{5/2}^c} \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \\ \sigma \\ \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \\ \sigma \\ \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \\ \sigma \\ \\ \sigma \\ \\ \beta \\ \\ \gamma \\ \delta \\ \\ \sigma \\ \\ \sigma \\ \sigma \\ \sigma \\ \\ \sigma \\ \sigma$                     | $\begin{array}{c} -5.06-4 \\ \textbf{4f}^8_{7/2} \ \textbf{6s}^2_{1/2} \\ \hline k \ (\text{eV}) \\ \hline 1500 \\ \hline 2.221+1 \\ 1.915 \\ 4.54-1 \\ -3.10-4 \\ \hline 2.631+1 \\ 1.577 \\ 2.37-1 \\ 2.45-3 \\ \hline 6.087+1 \\ 1.569 \\ 1.40-1 \\ 2.24-3 \\ \hline 7.298+1 \\ 1.287 \\ -3.59-2 \\ 1.35-2 \\ \hline 1.044+2 \\ 1.324 \\ -2.69-2 \\ 1.33-2 \\ \hline 2.959+1 \\ 1.061 \\ 3.60-1 \\ 9.91-2 \\ \hline 3.719+1 \\ \end{array}$                                             | 2000<br>1.435+1<br>1.921<br>3.32-1<br>-6.52-4<br>1.754+1<br>1.651<br>8.34-2<br>-2.07-3<br>3.810+1<br>1.661<br>1.86-2<br>8.08-4<br>3.961+1<br>1.358<br>4.97-2<br>2.67-2<br>5.588+1<br>1.359<br>7.39-2<br>2.56-2<br>1.100+1<br>1.029<br>5.20-1<br>1.25-1<br>1.377+1 | 3000 7.364+0 1.931 1.27-1 -1.07-3 9.035+0 1.690 -1.90-2 -3.63-3 1.818+1 1.731 -3.98-2 3.87-3 1.481+1 1.368 3.11-1 4.87-2 2.053+1 1.329 3.44-1 4.83-2 2.484+0 0.926 7.63-1 1.73-1 3.089+0                             | 4000<br>4.450+0<br>1.938<br>-9.51-3<br>-1.34-3<br>5.330+0<br>1.681<br>2.95-2<br>-3.20-3<br>1.022+1<br>1.745<br>3.77-2<br>7.11-3<br>6.846+0<br>1.322<br>5.69-1<br>6.82-2<br>9.380+0<br>1.262<br>5.97-1<br>7.06-2<br>8.188-1<br>0.825<br>9.28-1<br>2.18-1<br>1.012+0                                         | 5000<br>2.967+0<br>1.945<br>-9.36-2<br>-1.53-3<br>3.438+0<br>1.657<br>1.40-1<br>-1.57-3<br>6.358+0<br>1.737<br>1.71-1<br>9.93-3<br>3.628+0<br>1.261<br>7.93-1<br>8.74-2<br>4.923+0<br>1.189<br>8.09-1<br>9.33-2<br>3.370-1<br>0.738<br>1.05+0<br>2.62-1<br>4.146-1 | 6000  2.112+0 1.951 -1.38-1 -1.67-3  2.361+0 1.627 2.74-1 1.12-3  4.243+0 1.719 3.26-1 1.27-2  2.112+0 1.198 9.81-1 1.07-1 2.842+0 1.120 9.85-1 1.16-1 1.605-1 0.665 1.13+0 3.02-1                                  | 7000  1.576+0 1.956 -1.53-1 -1.78-3  1.698+0 1.594 4.14-1 4.81-3  2.980+0 1.696 4.84-1 1.56-2  1.317+0 1.135 1.14+0 1.26-1  1.760+0 1.055 1.13+0 1.39-1  8.466-2 0.601 1.20+0 3.40-1  1.033-1                       | 8000<br>1.219+0<br>1.959<br>-1.47-1<br>-1.87-3<br>1.265+0<br>1.561<br>5.53-1<br>9.27-3<br>2.176+0<br>1.670<br>6.41-1<br>1.88-2<br>8.654-1<br>1.075<br>1.28+0<br>1.45-1<br>1.149+0<br>0.994<br>1.26+0<br>1.61-1<br>4.818-2<br>0.546<br>1.26+0<br>3.75-1<br>5.856-2          | 9000<br>9.683-1<br>1.962<br>-1.24-1<br>-1.94-3<br>9.698-1<br>1.528<br>6.88-1<br>1.44-2<br>1.638+0<br>1.642<br>7.91-1<br>2.24-2<br>5.926-1<br>1.018<br>1.39+0<br>1.64-1<br>7.819-1<br>0.938<br>1.37+0<br>1.82-1<br>2.908-2<br>0.495<br>1.31+0<br>4.08-1<br>3.524-2          | 10000 7.863- 1.964 -8.85 -2.01 7.605- 1.495 8.17- 2.01-: 1.265+ 1.613 9.34- 2.61-: 4.197- 0.963 1.49+0 1.82- 5.506- 0.885 1.46+0 2.03- 1.840- 0.450 1.35+0 4.40-                                 |
| Z= 70, Yb: [X<br>Shell $4s_{1/2}$ $E_b = 487.2 \text{ eV}$ $4p_{1/2}$ $E_b = 396.7 \text{ eV}$ $4d_{3/2}$ $E_b = 198.1 \text{ eV}$ $4d_{5/2}$ $E_b = 184.9 \text{ eV}$ $4f_{5/2}$ $E_b = 7.0 \text{ eV}$                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \delta \\ \delta \\ \text{(e)} 4f_{5/2}^6 \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \\ \sigma \\ \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \\ \sigma \\ \\ \sigma \\ \\ \sigma \\ \\ \sigma \\ \\ \sigma \\ \\ \sigma \\ \sigma \\ \\ \sigma \\ \sigma \\ \\ \sigma \\ \sigma \\ \sigma \\ \\ \sigma \\ \sigma \\ \\ \sigma \\ \sigma \\ \sigma \\ \\ \sigma \\ \sigma \\ \\ \sigma \\ \sigma \\ \sigma \\ \\ \sigma \\ \sigma \\ \sigma \\ \sigma \\ \sigma \\ \\ \sigma \\$ | $\begin{array}{c} -5.06-4 \\ \textbf{4f}^8_{7/2} \ \textbf{6s}^2_{1/2} \\ \hline k \ (\text{eV}) \\ \hline 1500 \\ 2.221+1 \\ 1.915 \\ 4.54-1 \\ -3.10-4 \\ 2.631+1 \\ 1.577 \\ 2.37-1 \\ 2.45-3 \\ \hline 6.087+1 \\ 1.569 \\ 1.40-1 \\ 2.24-3 \\ \hline 7.298+1 \\ 1.287 \\ -3.59-2 \\ 1.35-2 \\ 1.044+2 \\ 1.324 \\ -2.69-2 \\ 1.33-2 \\ \hline 2.959+1 \\ 1.061 \\ 3.60-1 \\ 9.91-2 \\ \end{array}$                                                                                    | 2000  1.435+1 1.921 3.32-1 -6.52-4 1.754+1 1.651 8.34-2 -2.07-3 3.810+1 1.661 1.86-2 8.08-4 3.961+1 1.358 4.97-2 2.67-2 5.588+1 1.359 7.39-2 2.56-2 1.100+1 1.029 5.20-1 1.25-1 1.377+1 1.020                                                                     | 3000 7.364+0 1.931 1.27-1 -1.07-3 9.035+0 1.690 -1.90-2 -3.63-3 1.818+1 1.731 -3.98-2 3.87-3 1.481+1 1.368 3.11-1 4.87-2 2.053+1 1.329 3.44-1 4.83-2 2.484+0 0.926 7.63-1 1.73-1 3.089+0 0.915                       | 4000<br>4.450+0<br>1.938<br>-9.51-3<br>-1.34-3<br>5.330+0<br>1.681<br>2.95-2<br>-3.20-3<br>1.022+1<br>1.745<br>3.77-2<br>7.11-3<br>6.846+0<br>1.322<br>5.69-1<br>6.82-2<br>9.380+0<br>1.262<br>5.97-1<br>7.06-2<br>8.188-1<br>0.825<br>9.28-1<br>2.18-1                                                    | 5000  2.967+0 1.945 -9.36-2 -1.53-3 3.438+0 1.657 1.40-1 -1.57-3 6.358+0 1.737 1.71-1 9.93-3 3.628+0 1.261 7.93-1 8.74-2 4.923+0 1.189 8.09-1 9.33-2 3.370-1 0.738 1.05+0 2.62-1 4.146-1 0.735                                                                     | 6000  2.112+0 1.951 -1.38-1 -1.67-3  2.361+0 1.627 2.74-1 1.12-3  4.243+0 1.719 3.26-1 1.27-2  2.112+0 1.198 9.81-1 1.07-1  2.842+0 1.120 9.85-1 1.16-1  1.605-1 0.665 1.13+0 3.02-1  1.965-1 0.666                 | 7000  1.576+0 1.956 -1.53-1 -1.78-3  1.698+0 1.594 4.14-1 4.81-3  2.980+0 1.696 4.84-1 1.56-2  1.317+0 1.135 1.14+0 1.26-1 1.760+0 1.055 1.13+0 1.39-1  8.466-2 0.601 1.20+0 3.40-1  1.033-1 0.606                  | 8000  1.219+0 1.959 -1.47-1 -1.87-3  1.265+0 1.561 5.53-1 9.27-3  2.176+0 1.670 6.41-1 1.88-2  8.654-1 1.075 1.28+0 1.45-1  1.149+0 0.994 1.26+0 1.61-1  4.818-2 0.546 1.26+0 3.75-1                                                                                       | 9000<br>9.683-1<br>1.962<br>-1.24-1<br>-1.94-3<br>9.698-1<br>1.528<br>6.88-1<br>1.44-2<br>1.638+0<br>1.642<br>7.91-1<br>2.24-2<br>5.926-1<br>1.018<br>1.39+0<br>1.64-1<br>7.819-1<br>0.938<br>1.37+0<br>1.82-1<br>2.908-2<br>0.495<br>1.31+0<br>4.08-1<br>3.524-2<br>0.508 | 10000 7.863- 1.964 -8.852.01- 7.605- 1.495 8.17- 2.01- 1.265+ 1.613 9.34- 2.61- 2.61- 5.506- 0.885 1.46+0 2.03- 1.840- 0.450 1.35+0 4.40- 2.223- 0.466                                           |
| Z= 70, Yb: [X]  Shell $4s_{1/2}$ $E_b = 487.2 \text{ eV}$ $4p_{1/2}$ $E_b = 396.7 \text{ eV}$ $4p_{3/2}$ $E_b = 198.1 \text{ eV}$ $4d_{5/2}$ $E_b = 184.9 \text{ eV}$ $4f_{5/2}$ $E_b = 7.0 \text{ eV}$                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} \delta \\ \delta \\ \text{Ce}   \mathbf{4f_{5/2}^c} \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \\ \sigma \\ \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \\ \sigma \\ \\ \beta \\ \gamma \\ \delta \\ \\ \sigma \\ \\ \sigma \\ \\ \sigma \\ \\ \beta \\ \\ \gamma \\ \delta \\ \\ \sigma \\ \\ \sigma \\ \sigma \\ \sigma \\ \\ \sigma \\ \sigma$                     | $\begin{array}{c} -5.06-4 \\ \textbf{4f}^8_{7/2} \ \textbf{6s}^2_{1/2} \\ \hline k \ (\text{eV}) \\ \hline 1500 \\ \hline 2.221+1 \\ 1.915 \\ 4.54-1 \\ -3.10-4 \\ \hline 2.631+1 \\ 1.577 \\ 2.37-1 \\ 2.45-3 \\ \hline 6.087+1 \\ 1.569 \\ 1.40-1 \\ 2.24-3 \\ \hline 7.298+1 \\ 1.287 \\ -3.59-2 \\ 1.35-2 \\ \hline 1.044+2 \\ 1.324 \\ -2.69-2 \\ 1.33-2 \\ \hline 2.959+1 \\ 1.061 \\ 3.60-1 \\ 9.91-2 \\ \hline 3.719+1 \\ 1.056 \\ \end{array}$                                    | 2000<br>1.435+1<br>1.921<br>3.32-1<br>-6.52-4<br>1.754+1<br>1.651<br>8.34-2<br>-2.07-3<br>3.810+1<br>1.661<br>1.86-2<br>8.08-4<br>3.961+1<br>1.358<br>4.97-2<br>2.67-2<br>5.588+1<br>1.359<br>7.39-2<br>2.56-2<br>1.100+1<br>1.029<br>5.20-1<br>1.25-1<br>1.377+1 | 3000 7.364+0 1.931 1.27-1 -1.07-3 9.035+0 1.690 -1.90-2 -3.63-3 1.818+1 1.731 -3.98-2 3.87-3 1.481+1 1.368 3.11-1 4.87-2 2.053+1 1.329 3.44-1 4.83-2 2.484+0 0.926 7.63-1 1.73-1 3.089+0                             | 4000<br>4.450+0<br>1.938<br>-9.51-3<br>-1.34-3<br>5.330+0<br>1.681<br>2.95-2<br>-3.20-3<br>1.022+1<br>1.745<br>3.77-2<br>7.11-3<br>6.846+0<br>1.322<br>5.69-1<br>6.82-2<br>9.380+0<br>1.262<br>5.97-1<br>7.06-2<br>8.188-1<br>0.825<br>9.28-1<br>2.18-1<br>1.012+0<br>0.817                                | 5000<br>2.967+0<br>1.945<br>-9.36-2<br>-1.53-3<br>3.438+0<br>1.657<br>1.40-1<br>-1.57-3<br>6.358+0<br>1.737<br>1.71-1<br>9.93-3<br>3.628+0<br>1.261<br>7.93-1<br>8.74-2<br>4.923+0<br>1.189<br>8.09-1<br>9.33-2<br>3.370-1<br>0.738<br>1.05+0<br>2.62-1<br>4.146-1 | 6000  2.112+0 1.951 -1.38-1 -1.67-3  2.361+0 1.627 2.74-1 1.12-3  4.243+0 1.719 3.26-1 1.27-2  2.112+0 1.198 9.81-1 1.07-1 2.842+0 1.120 9.85-1 1.16-1 1.605-1 0.665 1.13+0 3.02-1                                  | 7000  1.576+0 1.956 -1.53-1 -1.78-3  1.698+0 1.594 4.14-1 4.81-3  2.980+0 1.696 4.84-1 1.56-2  1.317+0 1.135 1.14+0 1.26-1  1.760+0 1.055 1.13+0 1.39-1  8.466-2 0.601 1.20+0 3.40-1  1.033-1                       | 8000<br>1.219+0<br>1.959<br>-1.47-1<br>-1.87-3<br>1.265+0<br>1.561<br>5.53-1<br>9.27-3<br>2.176+0<br>1.670<br>6.41-1<br>1.88-2<br>8.654-1<br>1.075<br>1.28+0<br>1.45-1<br>1.149+0<br>0.994<br>1.26+0<br>1.61-1<br>4.818-2<br>0.546<br>1.26+0<br>3.75-1<br>5.856-2<br>0.554 | 9000<br>9.683-1<br>1.962<br>-1.24-1<br>-1.94-3<br>9.698-1<br>1.528<br>6.88-1<br>1.44-2<br>1.638+0<br>1.642<br>7.91-1<br>2.24-2<br>5.926-1<br>1.018<br>1.39+0<br>1.64-1<br>7.819-1<br>0.938<br>1.37+0<br>1.82-1<br>2.908-2<br>0.495<br>1.31+0<br>4.08-1<br>3.524-2          | 10000 7.863- 1.964 -8.852.01- 7.605- 1.495 8.17- 2.01- 1.265+ 1.613 9.34- 2.61- 2.61- 5.506- 0.885 1.46+0 2.03- 1.840- 0.450 1.35+0 4.40- 2.223- 0.466 1.34+0                                    |
| Z=70, Yb: [X<br>Shell<br>$4s_{1/2}$<br>$E_b =$<br>487.2  eV<br>$4p_{1/2}$<br>$E_b =$<br>396.7  eV<br>$4p_{3/2}$<br>$E_b =$<br>343.5  eV<br>$4d_{3/2}$<br>$E_b =$<br>198.1  eV<br>$4d_{5/2}$<br>$E_b =$<br>184.9  eV<br>$4f_{5/2}$<br>$E_b =$<br>7.0  eV                                                                                                                                                                                                                                                                               | δ (c) 4f <sub>5/2</sub> 4 σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} -5.06-4 \\ \textbf{4f}^{8}_{7/2} \ \textbf{6s}^{2}_{1/2} \\ \hline k \ (\text{eV}) \\ \hline 1500 \\ 2.221+1 \\ 1.915 \\ 4.54-1 \\ -3.10-4 \\ 2.631+1 \\ 1.577 \\ 2.37-1 \\ 2.45-3 \\ \hline 6.087+1 \\ 1.569 \\ 1.40-1 \\ 2.24-3 \\ \hline 7.298+1 \\ 1.287 \\ -3.59-2 \\ 1.35-2 \\ \hline 1.044+2 \\ 1.324 \\ -2.69-2 \\ 1.33-2 \\ \hline 2.959+1 \\ 1.061 \\ 3.60-1 \\ 9.91-2 \\ \hline 3.719+1 \\ 1.056 \\ 3.68-1 \\ 9.90-2 \\ \end{array}$                          | 2000  1.435+1 1.921 3.32-1 -6.52-4 1.754+1 1.651 8.34-2 -2.07-3 3.810+1 1.661 1.86-2 8.08-4 3.961+1 1.358 4.97-2 2.67-2 5.588+1 1.359 7.39-2 2.56-2 1.100+1 1.029 5.20-1 1.25-1 1.377+1 1.020 5.29-1 1.25-1                                                       | 3000 7.364+0 1.931 1.27-1 -1.07-3 9.035+0 1.690 -1.90-2 -3.63-3 1.818+1 1.731 -3.98-2 3.87-3 1.481+1 1.368 3.11-1 4.87-2 2.053+1 1.329 3.44-1 4.83-2 2.484+0 0.926 7.63-1 1.73-1 3.089+0 0.915 7.72-1 1.74-1         | 4000  4.450+0 1.938 -9.51-3 -1.34-3  5.330+0 1.681 2.95-2 -3.20-3  1.022+1 1.745 3.77-2 7.11-3  6.846+0 1.322 5.69-1 6.82-2  9.380+0 1.262 5.97-1 7.06-2  8.188-1 0.825 9.28-1 2.18-1  1.012+0 0.817 9.36-1 2.20-1                                                                                         | 5000  2.967+0 1.945 -9.36-2 -1.53-3 3.438+0 1.657 1.40-1 -1.57-3 6.358+0 1.737 1.71-1 9.93-3 3.628+0 1.261 7.93-1 8.74-2 4.923+0 1.189 8.09-1 9.33-2 3.370-1 0.738 1.05+0 2.62-1 4.146-1 0.735 1.05+0 2.65-1                                                       | 6000  2.112+0 1.951 -1.38-1 -1.67-3  2.361+0 1.627 2.74-1 1.12-3  4.243+0 1.719 3.26-1 1.27-2  2.112+0 1.198 9.81-1 1.07-1 2.842+0 1.120 9.85-1 1.16-1 1.605-1 0.665 1.13+0 3.02-1 1.965-1 0.666 1.14+0 3.06-1      | 7000  1.576+0 1.956 -1.53-1 -1.78-3  1.698+0 1.594 4.14-1 4.81-3  2.980+0 1.696 4.84-1 1.56-2  1.317+0 1.135 1.14+0 1.26-1 1.760+0 1.055 1.13+0 1.39-1  8.466-2 0.601 1.20+0 3.40-1  1.033-1 0.606 1.21+0 3.44-1    | 8000  1.219+0 1.959 -1.47-1 -1.87-3  1.265+0 1.561 5.53-1 9.27-3  2.176+0 1.670 6.41-1 1.88-2  8.654-1 1.075 1.28+0 1.45-1  1.149+0 0.994 1.26+0 1.61-1  4.818-2 0.546 1.26+0 3.75-1  5.856-2 0.554 1.26+0 3.80-1                                                          | 9000  9.683-1 1.962 -1.24-1 -1.94-3  9.698-1 1.528 6.88-1 1.44-2  1.638+0 1.642 7.91-1 2.24-2  5.926-1 1.018 1.39+0 1.64-1  7.819-1 0.938 1.37+0 1.82-1 2.908-2 0.495 1.31+0 4.08-1  3.524-2 0.508 1.31+0 4.14-1                                                           | 10000 7.863- 1.964 -8.852.01- 7.605- 1.495 8.17- 2.01- 2.61-2 1.265+ 1.613 9.34- 2.61-2 4.197- 0.963 1.49+0 1.82- 5.506- 0.885 1.46+0 2.03- 1.840- 0.450 1.35+0 4.40- 2.223- 0.466 1.34+0 4.46-  |
| Z=70, Yb: [X<br>Shell<br>$4s_{1/2}$<br>$E_b =$<br>487.2  eV<br>$4p_{1/2}$<br>$E_b =$<br>396.7  eV<br>$4p_{3/2}$<br>$E_b =$<br>343.5  eV<br>$4d_{3/2}$<br>$E_b =$<br>198.1  eV<br>$4d_{5/2}$<br>$E_b =$<br>184.9  eV<br>$4f_{5/2}$<br>$E_b =$<br>7.0  eV                                                                                                                                                                                                                                                                               | δ (c) 4f <sub>5/2</sub> c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} -5.06-4 \\ \textbf{4f}^{8}_{7/2} \ \textbf{6s}^{2}_{1/2} \\ \hline k \ (\text{eV}) \\ \hline 1500 \\ 2.221+1 \\ 1.915 \\ 4.54-1 \\ -3.10-4 \\ 2.631+1 \\ 1.577 \\ 2.37-1 \\ 2.45-3 \\ \hline 6.087+1 \\ 1.569 \\ 1.40-1 \\ 2.24-3 \\ \hline 7.298+1 \\ 1.287 \\ -3.59-2 \\ 1.35-2 \\ \hline 1.044+2 \\ 1.324 \\ -2.69-2 \\ 1.33-2 \\ \hline 2.959+1 \\ 1.061 \\ 3.60-1 \\ 9.91-2 \\ \hline 3.719+1 \\ 1.056 \\ 3.68-1 \\ \end{array}$                                    | 2000  1.435+1 1.921 3.32-1 -6.52-4  1.754+1 1.651 8.34-2 -2.07-3  3.810+1 1.661 1.86-2 8.08-4  3.961+1 1.358 4.97-2 2.67-2  5.588+1 1.359 7.39-2 2.56-2  1.100+1 1.029 5.20-1 1.25-1  1.377+1 1.020 5.29-1                                                        | 3000 7.364+0 1.931 1.27-1 -1.07-3 9.035+0 1.690 -1.90-2 -3.63-3 1.818+1 1.731 -3.98-2 3.87-3 1.481+1 1.368 3.11-1 4.87-2 2.053+1 1.329 3.44-1 4.83-2 2.484+0 0.926 7.63-1 1.73-1 3.089+0 0.915 7.72-1                | 4000<br>4.450+0<br>1.938<br>-9.51-3<br>-1.34-3<br>5.330+0<br>1.681<br>2.95-2<br>-3.20-3<br>1.022+1<br>1.745<br>3.77-2<br>7.11-3<br>6.846+0<br>1.322<br>5.69-1<br>6.82-2<br>9.380+0<br>1.262<br>5.97-1<br>7.06-2<br>8.188-1<br>0.825<br>9.28-1<br>2.18-1<br>1.012+0<br>0.817<br>9.36-1                      | 5000  2.967+0 1.945 -9.36-2 -1.53-3 3.438+0 1.657 1.40-1 -1.57-3 6.358+0 1.737 1.71-1 9.93-3 3.628+0 1.261 7.93-1 8.74-2 4.923+0 1.189 8.09-1 9.33-2 3.370-1 0.738 1.05+0 2.62-1 4.146-1 0.735 1.05+0                                                              | 6000  2.112+0 1.951 -1.38-1 -1.67-3 2.361+0 1.627 2.74-1 1.12-3 4.243+0 1.719 3.26-1 1.27-2 2.112+0 1.198 9.81-1 1.07-1 2.842+0 1.120 9.85-1 1.16-1 1.605-1 0.665 1.13+0 3.02-1 1.965-1 0.666 1.14+0                | 7000  1.576+0 1.956 -1.53-1 -1.78-3 1.698+0 1.594 4.14-1 4.81-3 2.980+0 1.696 4.84-1 1.56-2 1.317+0 1.135 1.14+0 1.26-1 1.760+0 1.055 1.13+0 1.39-1 8.466-2 0.601 1.20+0 3.40-1 1.033-1 0.606 1.21+0                | 8000  1.219+0 1.959 -1.47-1 -1.87-3 1.265+0 1.561 5.53-1 9.27-3 2.176+0 1.670 6.41-1 1.88-2 8.654-1 1.075 1.28+0 1.45-1 1.149+0 0.994 1.26+0 1.61-1 4.818-2 0.546 1.26+0 3.75-1 5.856-2 0.554 1.26+0                                                                       | 9000  9.683-1 1.962 -1.24-1 -1.94-3  9.698-1 1.528 6.88-1 1.44-2  1.638+0 1.642 7.91-1 2.24-2  5.926-1 1.018 1.39+0 1.64-1  7.819-1 0.938 1.37+0 1.82-1 2.908-2 0.495 1.31+0 4.08-1 3.524-2 0.508 1.31+0                                                                   | 10000 7.863- 1.964 -8.852.01- 7.605- 1.495 8.17- 2.01- 2.01- 2.61- 2.61- 2.61- 2.61- 2.61- 2.61- 2.61- 2.61- 2.61- 2.61- 2.03- 1.49+0 1.82- 1.840- 0.450 1.35+0 4.40- 1.2223- 0.466 1.34+0 4.46- |
| Z= 70, Yb: [X<br>Shell $4s_{1/2}$ $E_b = 487.2 \text{ eV}$<br>$4p_{1/2}$ $E_b = 396.7 \text{ eV}$<br>$4p_{3/2}$ $E_b = 343.5 \text{ eV}$<br>$4d_{3/2}$ $E_b = 198.1 \text{ eV}$<br>$4d_{5/2}$ $E_b = 7.0 \text{ eV}$<br>$4f_{5/2}$ $E_b = 5.8 \text{ eV}$<br>$5s_{1/2}$                                                                                                                                                                                                                                                               | δ (c) 4f <sub>5/2</sub> c  σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} -5.06-4 \\ \textbf{4f}^{8}_{7/2} \ \textbf{6s}^{2}_{1/2} \\ \hline k \ (\text{eV}) \\ \hline 1500 \\ 2.221+1 \\ 1.915 \\ 4.54-1 \\ -3.10-4 \\ 2.631+1 \\ 1.577 \\ 2.37-1 \\ 2.45-3 \\ \hline 6.087+1 \\ 1.569 \\ 1.40-1 \\ 2.24-3 \\ \hline 7.298+1 \\ 1.287 \\ -3.59-2 \\ 1.35-2 \\ \hline 1.044+2 \\ 1.324 \\ -2.69-2 \\ 1.33-2 \\ \hline 2.959+1 \\ 1.061 \\ 3.60-1 \\ 9.91-2 \\ \hline 3.719+1 \\ 1.056 \\ 3.68-1 \\ 9.90-2 \\ \hline 3.571+0 \\ \hline \end{array}$ | 2000  1.435+1 1.921 3.32-1 -6.52-4  1.754+1 1.651 8.34-2 -2.07-3  3.810+1 1.661 1.86-2 8.08-4  3.961+1 1.358 4.97-2 2.67-2  5.588+1 1.359 7.39-2 2.56-2  1.100+1 1.029 5.20-1 1.25-1 1.377+1 1.020 5.29-1 1.25-1 2.242+0                                          | 3000 7.364+0 1.931 1.27-1 -1.07-3 9.035+0 1.690 -1.90-2 -3.63-3 1.818+1 1.731 -3.98-2 3.87-3 1.481+1 1.368 3.11-1 4.87-2 2.053+1 1.329 3.44-1 4.83-2 2.484+0 0.926 7.63-1 1.73-1 3.089+0 0.915 7.72-1 1.74-1 1.123+0 | 4000<br>4.450+0<br>1.938<br>-9.51-3<br>-1.34-3<br>5.330+0<br>1.681<br>2.95-2<br>-3.20-3<br>1.022+1<br>1.745<br>3.77-2<br>7.11-3<br>6.846+0<br>1.322<br>5.69-1<br>6.82-2<br>9.380+0<br>1.262<br>5.97-1<br>7.06-2<br>8.188-1<br>0.825<br>9.28-1<br>2.18-1<br>1.012+0<br>0.817<br>9.36-1<br>2.20-1<br>6.707-1 | 5000  2.967+0 1.945 -9.36-2 -1.53-3 3.438+0 1.657 1.40-1 -1.57-3 6.358+0 1.737 1.71-1 9.93-3 3.628+0 1.261 7.93-1 8.74-2 4.923+0 1.189 8.09-1 9.33-2 3.370-1 0.738 1.05+0 2.62-1 4.146-1 0.735 1.05+0 2.65-1 4.439-1                                               | 6000  2.112+0 1.951 -1.38-1 -1.67-3 2.361+0 1.627 2.74-1 1.12-3 4.243+0 1.719 3.26-1 1.27-2 2.112+0 1.198 9.81-1 1.07-1 2.842+0 1.120 9.85-1 1.16-1 1.605-1 0.665 1.13+0 3.02-1 1.965-1 0.666 1.14+0 3.06-1 3.144-1 | 7000  1.576+0 1.956 -1.53-1 -1.78-3 1.698+0 1.594 4.14-1 4.81-3 2.980+0 1.696 4.84-1 1.56-2 1.317+0 1.135 1.14+0 1.26-1 1.760+0 1.055 1.13+0 1.39-1 8.466-2 0.601 1.20+0 3.40-1 1.033-1 0.606 1.21+0 3.44-1 2.337-1 | 8000  1.219+0 1.959 -1.47-1 -1.87-3 1.265+0 1.561 5.53-1 9.27-3 2.176+0 1.670 6.41-1 1.88-2 8.654-1 1.075 1.28+0 1.45-1 1.149+0 0.994 1.26+0 1.61-1 4.818-2 0.546 1.26+0 3.75-1 5.856-2 0.554 1.26+0 3.80-1 1.801-1                                                        | 9000  9.683-1 1.962 -1.24-1 -1.94-3  9.698-1 1.528 6.88-1 1.44-2  1.638+0 1.642 7.91-1 2.24-2  5.926-1 1.018 1.39+0 1.64-1  7.819-1 0.938 1.37+0 1.82-1  2.908-2 0.495 1.31+0 4.08-1  3.524-2 0.508 1.31+0 4.14-1  1.428-1                                                 | 10000 7.863- 1.964 -8.852.01- 7.605- 1.495 8.17-1 2.01-2 1.265+ 1.613 9.34-1 2.61-2 4.197- 0.963 1.494- 1.82-1 1.840- 0.450 1.35+0 4.40-1 1.158- 1.158-                                          |

| $5p_{1/2}$ $E_b = 27.4 \text{ eV}$ $5p_{3/2}$ $E_b = 21.4 \text{ eV}$ $6s_{1/2}$ $E_b = 6.0 \text{ eV}$ $2=71, \text{Lu: [Xe]}$ Shell $4s_{1/2}$ $E_b = 506.2 \text{ eV}$ $4p_{3/2}$ $E_b = 410.1 \text{ eV}$ $4d_{3/2}$ $E_b = 204.8 \text{ eV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \frac{\sigma}{\beta} $ $ \frac{\gamma}{\gamma} $ $ \frac{\delta}{\delta} $ $ \frac{\sigma}{\beta} $ $ \frac{\beta}{\gamma} $ $ \frac{\delta}{\delta} $ $ \frac{\beta}{\gamma} $ $ \frac{\delta}{\delta} $ $ \frac{\gamma}{\delta} $ $ \frac{\sigma}{\beta} $ $ \frac{\beta}{\gamma} $ $ \frac{\delta}{\delta} $ $ \frac{\sigma}{\beta} $ $ \frac{\sigma}{\delta} $ $ \frac{\beta}{\gamma} $ $ \frac{\delta}{\delta} $ $ \frac{\sigma}{\delta} $ $ \frac{\beta}{\gamma} $ $ \frac{\delta}{\delta} $ $ \frac{\sigma}{\delta} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $3.329+0$ $1.668$ $1.30-1$ $-3.41-3$ $6.948+0$ $1.651$ $6.81-2$ $-1.24-3$ $2.108-1$ $1.923$ $3.08-1$ $-5.15-4$ $f_{7/2}^{8}$ $5d_{3/2}^{1}$ $6s_{1/2}^{2}$ $k$ (eV) $1500$ $2.258+1$ $1.908$ $4.74-1$ $-2.89-4$ $2.667+1$ $1.564$ $2.58-1$ $3.15-3$ $6.261+1$ $1.553$ $1.57-1$                                                                                        | 2.154+0 1.705 2.74-2 -4.06-3 4.268+0 1.712 -1.43-2 8.26-5 1.316-1 1.928 2.15-1 -7.66-4  2000 1.466+1 1.916 3.53-1 -6.67-4 1.792+1 1.644 1.00-1 -1.96-3 3.939+1                                | 1.085+0 1.713 -1.83-2 -4.30-3 2.008+0 1.754 -3.07-2 3.71-3 6.562-2 1.935 5.79-2 -1.12-3  3000 7.572+0 1.926 1.47-1 -1.13-3 9.326+0 1.689 -1.73-2 -3.82-3                             | 6.343-1<br>1.693<br>5.14-2<br>-3.74-3<br>1.122+0<br>1.757<br>6.24-2<br>6.70-3<br>3.911-2<br>1.942<br>-5.05-2<br>-1.35-3<br>4000<br>4.592+0<br>1.934<br>6.37-3<br>-1.42-3<br>5.538+0<br>1.683 | 4.070-1<br>1.663<br>1.70-1<br>-2.11-3<br>6.961-1<br>1.744<br>2.01-1<br>9.31-3<br>2.585-2<br>1.948<br>-1.15-1<br>-1.52-3<br>5000<br>3.069+0<br>1.941<br>-8.30-2<br>-1.63-3<br>3.589+0 | 2.786-1<br>1.630<br>3.05-1<br>5.94-4<br>4.636-1<br>1.722<br>3.56-1<br>1.19-2<br>1.829-2<br>1.953<br>-1.46-1<br>-1.65-3<br>6000<br>2.189+0<br>1.947<br>-1.33-1<br>-1.78-3<br>2.473+0 | 1.999-1 1.595 4.45-1 4.24-3 3.252-1 1.697 5.13-1 1.47-2 1.359-2 1.957 -1.52-1 -1.75-3  7000 1.635+0 1.952 -1.54-1 -1.90-3 1.784+0 1.602                         | 1.488-1<br>1.560<br>5.81-1<br>8.69-3<br>2.373-1<br>1.669<br>6.67-1<br>1.78-2<br>1.047-2<br>1.960<br>-1.39-1<br>-1.85-3<br>8000<br>1.266+0<br>1.956<br>-1.53-1<br>-2.01-3<br>1.333+0 | 1.139-1<br>1.526<br>7.13-1<br>1.38-2<br>1.785-1<br>1.640<br>8.14-1<br>2.13-2<br>8.295-3<br>1.963<br>-1.12-1<br>-1.93-3<br>9000<br>1.007+0<br>1.959<br>-1.35-1<br>-2.09-3 | 1.964<br>-7.23-2<br>-1.99-3<br>10000<br>8.180-1<br>1.961<br>-1.04-1                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 27.4 eV $ 5p_{3/2} E_b = 21.4 \text{ eV} $ $ 6s_{1/2} E_b = 6.0 \text{ eV} $ $ Z=71, Lu: [Xe] $ Shell $ 4s_{1/2} E_b = 506.2 \text{ eV} $ $ 4p_{1/2} E_b = 410.1 \text{ eV} $ $ 4p_{3/2} E_b = 359.3 \text{ eV} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | γ δ σ β γ δ δ σ β β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ ρ γ γ δ δ σ σ γ δ σ σ γ δ σ σ δ σ σ σ σ σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 1.30-1\\ -3.41-3\\ \hline 6.948+0\\ 1.651\\ 6.81-2\\ -1.24-3\\ \hline 2.108-1\\ 1.923\\ 3.08-1\\ -5.15-4\\ \hline \mathbf{f_{/2}^8}  \mathbf{5d_{3/2}^1}  \mathbf{6s_{1/2}^2}\\ \hline k(\text{eV})\\ \hline 1500\\ \hline 2.258+1\\ 1.908\\ 4.74-1\\ -2.89-4\\ 2.667+1\\ 1.564\\ 2.58-1\\ 3.15-3\\ \hline 6.261+1\\ 1.553\\ \end{array}$           | 2.74-2<br>-4.06-3<br>4.268+0<br>1.712<br>-1.43-2<br>8.26-5<br>1.316-1<br>1.928<br>2.15-1<br>-7.66-4<br>2000<br>1.466+1<br>1.916<br>3.53-1<br>-6.67-4<br>1.792+1<br>1.644<br>1.00-1<br>-1.96-3 | -1.83-2<br>-4.30-3<br>2.008+0<br>1.754<br>-3.07-2<br>3.71-3<br>6.562-2<br>1.935<br>5.79-2<br>-1.12-3<br>3000<br>7.572+0<br>1.926<br>1.47-1<br>-1.13-3<br>9.326+0<br>1.689<br>-1.73-2 | 5.14-2<br>-3.74-3<br>1.122+0<br>1.757<br>6.24-2<br>6.70-3<br>3.911-2<br>1.942<br>-5.05-2<br>-1.35-3<br>4000<br>4.592+0<br>1.934<br>6.37-3<br>-1.42-3<br>5.538+0<br>1.683                     | 1.70-1<br>-2.11-3<br>6.961-1<br>1.744<br>2.01-1<br>9.31-3<br>2.585-2<br>1.948<br>-1.15-1<br>-1.52-3<br>5000<br>3.069+0<br>1.941<br>-8.30-2<br>-1.63-3<br>3.589+0                     | 3.05-1<br>5.94-4<br>4.636-1<br>1.722<br>3.56-1<br>1.19-2<br>1.829-2<br>1.953<br>-1.46-1<br>-1.65-3<br>6000<br>2.189+0<br>1.947<br>-1.33-1<br>-1.78-3<br>2.473+0                     | 4.45-1<br>4.24-3<br>3.252-1<br>1.697<br>5.13-1<br>1.47-2<br>1.359-2<br>1.957<br>-1.52-1<br>-1.75-3<br>7000<br>1.635+0<br>1.952<br>-1.54-1<br>-1.90-3<br>1.784+0 | 5.81-1<br>8.69-3<br>2.373-1<br>1.669<br>6.67-1<br>1.78-2<br>1.047-2<br>1.960<br>-1.39-1<br>-1.85-3<br>8000<br>1.266+0<br>1.956<br>-1.53-1<br>-2.01-3                                | 7.13-1<br>1.38-2<br>1.785-1<br>1.640<br>8.14-1<br>2.13-2<br>8.295-3<br>1.963<br>-1.12-1<br>-1.93-3<br>9000<br>1.007+0<br>1.959<br>-1.35-1<br>-2.09-3                     | 8.39-1<br>1.94-2<br>1.378-1<br>1.611<br>9.54-1<br>2.50-2<br>6.721-3<br>1.964<br>-7.23-2<br>-1.99-3<br>10000<br>8.180-1<br>1.961<br>-1.04-1 |
| $5p_{3/2}$ $E_b =$ $21.4 \text{ eV}$ $6s_{1/2}$ $E_b =$ $6.0 \text{ eV}$ $2=71, \text{Lu: [Xe]}$ $4s_{1/2}$ $4s_{1/2}$ $4s_{1/2}$ $4s_{1/2}$ $4s_{1/2}$ $5s_{1/2}$ $5$ | δ   σ   β   γ   δ   σ   β   γ   δ   δ   σ   β   γ   δ   δ   σ   σ   σ   σ   σ   σ   σ   σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} -3.41-3 \\ 6.948+0 \\ 1.651 \\ 6.81-2 \\ -1.24-3 \\ \hline 2.108-1 \\ 1.923 \\ 3.08-1 \\ -5.15-4 \\ \hline {\bf f}_{7/2}^8 {\bf 5d}_{3/2}^1 {\bf 6s}_{1/2}^2 \\ \hline {\bf k (eV)} \\ \hline 1500 \\ \hline 2.258+1 \\ 1.908 \\ 4.74-1 \\ -2.89-4 \\ \hline 2.667+1 \\ 1.564 \\ 2.58-1 \\ 3.15-3 \\ \hline 6.261+1 \\ 1.553 \\ \hline \end{array}$ | -4.06-3  4.268+0 1.712 -1.43-2 8.26-5  1.316-1 1.928 2.15-1 -7.66-4  2000  1.466+1 1.916 3.53-1 -6.67-4  1.792+1 1.644 1.00-1 -1.96-3                                                         | -4.30-3  2.008+0 1.754 -3.07-2 3.71-3  6.562-2 1.935 5.79-2 -1.12-3  3000  7.572+0 1.926 1.47-1 -1.13-3  9.326+0 1.689 -1.73-2                                                       | -3.74-3  1.122+0 1.757 6.24-2 6.70-3  3.911-2 1.942 -5.05-2 -1.35-3  4000  4.592+0 1.934 6.37-3 -1.42-3  5.538+0 1.683                                                                       | -2.11-3 6.961-1 1.744 2.01-1 9.31-3 2.585-2 1.948 -1.15-1 -1.52-3  5000 3.069+0 1.941 -8.30-2 -1.63-3 3.589+0                                                                        | 5.94-4  4.636-1 1.722 3.56-1 1.19-2  1.829-2 1.953 -1.46-1 -1.65-3  6000  2.189+0 1.947 -1.33-1 -1.78-3 2.473+0                                                                     | 4.24-3  3.252-1 1.697 5.13-1 1.47-2  1.359-2 1.957 -1.52-1 -1.75-3  7000  1.635+0 1.952 -1.54-1 -1.90-3  1.784+0                                                | 8.69-3<br>2.373-1<br>1.669<br>6.67-1<br>1.78-2<br>1.047-2<br>1.960<br>-1.39-1<br>-1.85-3<br>8000<br>1.266+0<br>1.956<br>-1.53-1<br>-2.01-3                                          | 1.38-2<br>1.785-1<br>1.640<br>8.14-1<br>2.13-2<br>8.295-3<br>1.963<br>-1.12-1<br>-1.93-3<br>9000<br>1.007+0<br>1.959<br>-1.35-1<br>-2.09-3                               | 1.94-2<br>1.378-1<br>1.611<br>9.54-1<br>2.50-2<br>6.721-3<br>1.964<br>-7.23-2<br>-1.99-3<br>10000<br>8.180-1<br>1.961<br>-1.04-6           |
| $E_b = 21.4 \text{ eV}$ $21.4 \text{ eV}$ $E_b = 6.0 \text{ eV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | β γ δ σ β γ γ δ δ [4f <sub>5/2</sub> 4] σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ β γ γ δ δ σ σ γ δ σ σ γ δ σ σ γ δ σ σ γ δ σ σ γ δ σ σ σ γ δ σ σ σ σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 1.651 \\ 6.81-2 \\ -1.24-3 \\ \hline 2.108-1 \\ 1.923 \\ 3.08-1 \\ -5.15-4 \\ \hline {\bf f}_{7/2}^8 {\bf 5d}_{3/2}^1 {\bf 6s}_{1/2}^2 \\ \hline {\it k}  ({\rm eV}) \\ \hline 1500 \\ \hline 2.258+1 \\ 1.908 \\ 4.74-1 \\ -2.89-4 \\ \hline 2.667+1 \\ 1.564 \\ 2.58-1 \\ 3.15-3 \\ \hline 6.261+1 \\ 1.553 \\ \end{array}$                       | 1.712<br>-1.43-2<br>8.26-5<br>1.316-1<br>1.928<br>2.15-1<br>-7.66-4<br>2000<br>1.466+1<br>1.916<br>3.53-1<br>-6.67-4<br>1.792+1<br>1.644<br>1.00-1<br>-1.96-3                                 | 1.754<br>-3.07-2<br>3.71-3<br>6.562-2<br>1.935<br>5.79-2<br>-1.12-3<br>3000<br>7.572+0<br>1.926<br>1.47-1<br>-1.13-3<br>9.326+0<br>1.689<br>-1.73-2                                  | 1.757<br>6.24-2<br>6.70-3<br>3.911-2<br>1.942<br>-5.05-2<br>-1.35-3<br>4000<br>4.592+0<br>1.934<br>6.37-3<br>-1.42-3<br>5.538+0<br>1.683                                                     | 1.744<br>2.01-1<br>9.31-3<br>2.585-2<br>1.948<br>-1.15-1<br>-1.52-3<br>5000<br>3.069+0<br>1.941<br>-8.30-2<br>-1.63-3<br>3.589+0                                                     | 1.722<br>3.56-1<br>1.19-2<br>1.829-2<br>1.953<br>-1.46-1<br>-1.65-3<br>6000<br>2.189+0<br>1.947<br>-1.33-1<br>-1.78-3<br>2.473+0                                                    | 1.697<br>5.13-1<br>1.47-2<br>1.359-2<br>1.957<br>-1.52-1<br>-1.75-3<br>7000<br>1.635+0<br>1.952<br>-1.54-1<br>-1.90-3<br>1.784+0                                | 1.669<br>6.67-1<br>1.78-2<br>1.047-2<br>1.960<br>-1.39-1<br>-1.85-3<br>8000<br>1.266+0<br>1.956<br>-1.53-1<br>-2.01-3                                                               | 1.640<br>8.14-1<br>2.13-2<br>8.295-3<br>1.963<br>-1.12-1<br>-1.93-3<br>9000<br>1.007+0<br>1.959<br>-1.35-1<br>-2.09-3                                                    | 1.611<br>9.54-1<br>2.50-2<br>6.721-3<br>1.964<br>-7.23-2<br>-1.99-3<br>10000<br>8.180-1<br>1.961<br>-1.04-1                                |
| 21.4 eV $ 6s_{1/2}E_b = 6.0 \text{ eV} $ <b>Z= 71, Lu: [Xe]</b> Shell $4s_{1/2}E_b = 506.2 \text{ eV}$ $4p_{1/2}E_b = 410.1 \text{ eV}$ $4p_{3/2}E_b = 359.3 \text{ eV}$ $4d_{3/2}E_b = 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{c} \gamma \\ \delta \\ \hline \sigma \\ \beta \\ \gamma \\ \delta \\ \end{array} $ $ \begin{array}{c} \sigma \\ \beta \\ \gamma \\ \delta \\ \end{array} $ $ \begin{array}{c} \sigma \\ \beta \\ \gamma \\ \delta \\ \end{array} $ $ \begin{array}{c} \sigma \\ \beta \\ \gamma \\ \delta \\ \end{array} $ $ \begin{array}{c} \sigma \\ \beta \\ \gamma \\ \delta \\ \end{array} $ $ \begin{array}{c} \sigma \\ \beta \\ \gamma \\ \delta \\ \end{array} $ $ \begin{array}{c} \sigma \\ \beta \\ \gamma \\ \delta \\ \end{array} $ $ \begin{array}{c} \sigma \\ \beta \\ \gamma \\ \delta \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 6.81-2 \\ -1.24-3 \\ \hline 2.108-1 \\ 1.923 \\ 3.08-1 \\ -5.15-4 \\ \hline \textbf{f}_{7/2}^8 \textbf{5d}_{3/2}^1 \textbf{6s}_{1/2}^2 \\ \hline \textbf{k (eV)} \\ \hline 1500 \\ 2.258+1 \\ 1.908 \\ 4.74-1 \\ -2.89-4 \\ 2.667+1 \\ 1.564 \\ 2.58-1 \\ 3.15-3 \\ \hline 6.261+1 \\ 1.553 \\ \end{array}$                                         | 2000<br>1.466+1<br>1.916<br>3.53-1<br>-6.67-4<br>1.998<br>2.15-1<br>-7.66-4<br>2000<br>1.466+1<br>1.916<br>3.53-1<br>-6.67-4<br>1.792+1<br>1.644<br>1.00-1<br>-1.96-3                         | -3.07-2<br>3.71-3<br>6.562-2<br>1.935<br>5.79-2<br>-1.12-3<br>3000<br>7.572+0<br>1.926<br>1.47-1<br>-1.13-3<br>9.326+0<br>1.689<br>-1.73-2                                           | 6.24-2<br>6.70-3<br>3.911-2<br>1.942<br>-5.05-2<br>-1.35-3<br>4000<br>4.592+0<br>1.934<br>6.37-3<br>-1.42-3<br>5.538+0<br>1.683                                                              | 2.01-1<br>9.31-3<br>2.585-2<br>1.948<br>-1.15-1<br>-1.52-3<br>5000<br>3.069+0<br>1.941<br>-8.30-2<br>-1.63-3<br>3.589+0                                                              | 3.56-1<br>1.19-2<br>1.829-2<br>1.953<br>-1.46-1<br>-1.65-3<br>6000<br>2.189+0<br>1.947<br>-1.33-1<br>-1.78-3<br>2.473+0                                                             | 5.13-1<br>1.47-2<br>1.359-2<br>1.957<br>-1.52-1<br>-1.75-3<br>7000<br>1.635+0<br>1.952<br>-1.54-1<br>-1.90-3<br>1.784+0                                         | 8000<br>1.266+0<br>1.956<br>-1.39-1<br>-1.85-3                                                                                                                                      | 8.14-1<br>2.13-2<br>8.295-3<br>1.963<br>-1.12-1<br>-1.93-3<br>9000<br>1.007+0<br>1.959<br>-1.35-1<br>-2.09-3                                                             | 9.54-1<br>2.50-2<br>6.721-3<br>1.964<br>-7.23-2<br>-1.99-3<br>10000<br>8.180-1<br>1.961<br>-1.04-1                                         |
| $6s_{1/2}$ $E_b =$ $6.0 \text{ eV}$ <b>Z= 71, Lu: [Xe]</b> Shell $4s_{1/2}$ $E_b =$ $506.2 \text{ eV}$ $4p_{1/2}$ $E_b =$ $410.1 \text{ eV}$ $4p_{3/2}$ $E_b =$ $359.3 \text{ eV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \frac{\delta}{\sigma} \\ \frac{\beta}{\beta} \\ \frac{\gamma}{\delta} \\ \frac{\gamma}{\delta} \\ \frac{\delta}{\delta} \\ \frac{\sigma}{\beta} \\ \frac{\gamma}{\delta} \\ \frac{\sigma}{\delta} \\ \frac{\sigma}{\beta} \\ \frac{\gamma}{\delta} \\ \frac{\sigma}{\delta} \\ \frac{\sigma}{\beta} \\ \frac{\sigma}{\beta} \\ \frac{\gamma}{\delta} \\ \frac{\sigma}{\delta} \\$ | $\begin{array}{c} -1.24-3 \\ 2.108-1 \\ 1.923 \\ 3.08-1 \\ -5.15-4 \\ f_{7/2}^8 5d_{3/2}^1 6s_{1/2}^2 \\ \hline k (eV) \\ \hline 1500 \\ 2.258+1 \\ 1.908 \\ 4.74-1 \\ -2.89-4 \\ 2.667+1 \\ 1.564 \\ 2.58-1 \\ 3.15-3 \\ \hline 6.261+1 \\ 1.553 \\ \end{array}$                                                                                                     | 8.26-5<br>1.316-1<br>1.928<br>2.15-1<br>-7.66-4<br>2000<br>1.466+1<br>1.916<br>3.53-1<br>-6.67-4<br>1.792+1<br>1.644<br>1.00-1<br>-1.96-3                                                     | 3.71-3<br>6.562-2<br>1.935<br>5.79-2<br>-1.12-3<br>3000<br>7.572+0<br>1.926<br>1.47-1<br>-1.13-3<br>9.326+0<br>1.689<br>-1.73-2                                                      | 6.70-3<br>3.911-2<br>1.942<br>-5.05-2<br>-1.35-3<br>4000<br>4.592+0<br>1.934<br>6.37-3<br>-1.42-3<br>5.538+0<br>1.683                                                                        | 9.31-3<br>2.585-2<br>1.948<br>-1.15-1<br>-1.52-3<br>5000<br>3.069+0<br>1.941<br>-8.30-2<br>-1.63-3<br>3.589+0                                                                        | 1.19-2<br>1.829-2<br>1.953<br>-1.46-1<br>-1.65-3<br>6000<br>2.189+0<br>1.947<br>-1.33-1<br>-1.78-3<br>2.473+0                                                                       | 1.47-2<br>1.359-2<br>1.957<br>-1.52-1<br>-1.75-3<br>7000<br>1.635+0<br>1.952<br>-1.54-1<br>-1.90-3<br>1.784+0                                                   | 1.78-2<br>1.047-2<br>1.960<br>-1.39-1<br>-1.85-3<br>8000<br>1.266+0<br>1.956<br>-1.53-1<br>-2.01-3                                                                                  | 2.13-2<br>8.295-3<br>1.963<br>-1.12-1<br>-1.93-3<br>9000<br>1.007+0<br>1.959<br>-1.35-1<br>-2.09-3                                                                       | 2.50-2<br>6.721-3<br>1.964<br>-7.23-2<br>-1.99-3<br>10000<br>8.180-1<br>1.961<br>-1.04-1                                                   |
| $E_b = 6.0 \text{ eV}$ $C = 71, Lu: [Xe]$ Shell $4s_{1/2}$ $E_b = 506.2 \text{ eV}$ $4p_{1/2}$ $E_b = 410.1 \text{ eV}$ $4p_{3/2}$ $E_b = 359.3 \text{ eV}$ $4d_{3/2}$ $E_b = 6.0 \text{ eV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | β<br>γ<br>δ<br> 4f <sub>5/2</sub> 4<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 1.923 \\ 3.08-1 \\ -5.15-4 \\ \textbf{f}_{7/2}^{8}  \textbf{5d}_{3/2}^{1}  \textbf{6s}_{1/2}^{2} \\ \hline k  (\text{eV}) \\ \hline 1500 \\ 2.258+1 \\ 1.908 \\ 4.74-1 \\ -2.89-4 \\ 2.667+1 \\ 1.564 \\ 2.58-1 \\ 3.15-3 \\ \hline 6.261+1 \\ 1.553 \\ \end{array}$                                                                                | 1.928<br>2.15-1<br>-7.66-4<br>2000<br>1.466+1<br>1.916<br>3.53-1<br>-6.67-4<br>1.792+1<br>1.644<br>1.00-1<br>-1.96-3                                                                          | 1.935<br>5.79-2<br>-1.12-3<br>3000<br>7.572+0<br>1.926<br>1.47-1<br>-1.13-3<br>9.326+0<br>1.689<br>-1.73-2                                                                           | 1.942<br>-5.05-2<br>-1.35-3<br>4000<br>4.592+0<br>1.934<br>6.37-3<br>-1.42-3<br>5.538+0<br>1.683                                                                                             | 1.948<br>-1.15-1<br>-1.52-3<br>5000<br>3.069+0<br>1.941<br>-8.30-2<br>-1.63-3<br>3.589+0                                                                                             | 1.953<br>-1.46-1<br>-1.65-3<br>6000<br>2.189+0<br>1.947<br>-1.33-1<br>-1.78-3<br>2.473+0                                                                                            | 1.957<br>-1.52-1<br>-1.75-3<br>7000<br>1.635+0<br>1.952<br>-1.54-1<br>-1.90-3<br>1.784+0                                                                        | 1.960<br>-1.39-1<br>-1.85-3<br>8000<br>1.266+0<br>1.956<br>-1.53-1<br>-2.01-3                                                                                                       | 9000<br>1.007+0<br>1.959<br>-1.35-1<br>-2.09-3                                                                                                                           | -7.23-2<br>-1.99-3<br>10000<br>8.180-1<br>1.961<br>-1.04-1                                                                                 |
| $E_b = 6.0 \text{ eV}$ <b>Z= 71, Lu: [Xe]</b> Shell $4s_{1/2}$ $E_b = 506.2 \text{ eV}$ $4p_{1/2}$ $E_b = 410.1 \text{ eV}$ $4p_{3/2}$ $E_b = 359.3 \text{ eV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | γ δ    4f <sup>6</sup> <sub>5/2</sub> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $3.08-1 \\ -5.15-4$ $\mathbf{f_{7/2}^8 5d_{3/2}^1 6s_{1/2}^2}$ $\frac{k \text{ (eV)}}{1500}$ $2.258+1$ $1.908$ $4.74-1$ $-2.89-4$ $2.667+1$ $1.564$ $2.58-1$ $3.15-3$ $6.261+1$ $1.553$                                                                                                                                                                               | 2.15-1<br>-7.66-4<br>2000<br>1.466+1<br>1.916<br>3.53-1<br>-6.67-4<br>1.792+1<br>1.644<br>1.00-1<br>-1.96-3                                                                                   | 5.79-2<br>-1.12-3<br>3000<br>7.572+0<br>1.926<br>1.47-1<br>-1.13-3<br>9.326+0<br>1.689<br>-1.73-2                                                                                    | -5.05-2<br>-1.35-3<br>4000<br>4.592+0<br>1.934<br>6.37-3<br>-1.42-3<br>5.538+0<br>1.683                                                                                                      | 5000<br>3.069+0<br>1.941<br>-8.30-2<br>-1.63-3<br>3.589+0                                                                                                                            | 6000<br>2.189+0<br>1.947<br>-1.33-1<br>-1.78-3<br>2.473+0                                                                                                                           | 7000<br>1.635+0<br>1.952<br>-1.54-1<br>-1.90-3<br>1.784+0                                                                                                       | 8000<br>1.266+0<br>1.956<br>-1.53-1<br>-2.01-3                                                                                                                                      | 9000<br>1.007+0<br>1.959<br>-1.35-1<br>-2.09-3                                                                                                                           | -7.23-2<br>-1.99-3<br>10000<br>8.180-1<br>1.961<br>-1.04-1                                                                                 |
| Z= 71, Lu: [Xe]  Shell $4s_{1/2}$ $E_b = 506.2 \text{ eV}$ $4p_{1/2}$ $E_b = 410.1 \text{ eV}$ $4p_{3/2}$ $E_b = 359.3 \text{ eV}$ $4d_{3/2}$ $E_b = 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | δ  4f <sub>5/2</sub> 4   σ β γ δ σ β γ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ σ β γ δ δ δ σ β γ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} -5.15-4 \\ \mathbf{f}_{7/2}^8 \ \mathbf{5d}_{3/2}^1 \ \mathbf{6s}_{1/2}^2 \\ \underline{k} \ (\text{eV}) \\ 1500 \\ 2.258+1 \\ 1.908 \\ 4.74-1 \\ -2.89-4 \\ 2.667+1 \\ 1.564 \\ 2.58-1 \\ 3.15-3 \\ 6.261+1 \\ 1.553 \end{array}$                                                                                                                  | 2000<br>1.466+1<br>1.916<br>3.53-1<br>-6.67-4<br>1.792+1<br>1.644<br>1.00-1<br>-1.96-3                                                                                                        | 3000<br>7.572+0<br>1.926<br>1.47-1<br>-1.13-3<br>9.326+0<br>1.689<br>-1.73-2                                                                                                         | 4000<br>4.592+0<br>1.934<br>6.37-3<br>-1.42-3<br>5.538+0<br>1.683                                                                                                                            | 5000<br>3.069+0<br>1.941<br>-8.30-2<br>-1.63-3<br>3.589+0                                                                                                                            | 6000<br>2.189+0<br>1.947<br>-1.33-1<br>-1.78-3<br>2.473+0                                                                                                                           | 7000<br>1.635+0<br>1.952<br>-1.54-1<br>-1.90-3<br>1.784+0                                                                                                       | 8000<br>1.266+0<br>1.956<br>-1.53-1<br>-2.01-3                                                                                                                                      | 9000<br>1.007+0<br>1.959<br>-1.35-1<br>-2.09-3                                                                                                                           | 10000<br>8.180-1<br>1.961<br>-1.04-1                                                                                                       |
| Shell $4s_{1/2}$ $E_b = 506.2 \text{ eV}$ $4p_{1/2}$ $E_b = 410.1 \text{ eV}$ $4p_{3/2}$ $E_b = 359.3 \text{ eV}$ $4d_{3/2}$ $E_b = 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | f <sup>8</sup> <sub>7/2</sub> 5d <sup>1</sup> <sub>3/2</sub> 6s <sup>2</sup> <sub>1/2</sub><br>k (eV)<br>1500<br>2.258+1<br>1.908<br>4.74-1<br>-2.89-4<br>2.667+1<br>1.564<br>2.58-1<br>3.15-3<br>6.261+1<br>1.553                                                                                                                                                    | 2000<br>1.466+1<br>1.916<br>3.53-1<br>-6.67-4<br>1.792+1<br>1.644<br>1.00-1<br>-1.96-3                                                                                                        | 3000<br>7.572+0<br>1.926<br>1.47-1<br>-1.13-3<br>9.326+0<br>1.689<br>-1.73-2                                                                                                         | 4000<br>4.592+0<br>1.934<br>6.37-3<br>-1.42-3<br>5.538+0<br>1.683                                                                                                                            | 5000<br>3.069+0<br>1.941<br>-8.30-2<br>-1.63-3<br>3.589+0                                                                                                                            | 6000<br>2.189+0<br>1.947<br>-1.33-1<br>-1.78-3<br>2.473+0                                                                                                                           | 7000<br>1.635+0<br>1.952<br>-1.54-1<br>-1.90-3<br>1.784+0                                                                                                       | 8000<br>1.266+0<br>1.956<br>-1.53-1<br>-2.01-3                                                                                                                                      | 9000<br>1.007+0<br>1.959<br>-1.35-1<br>-2.09-3                                                                                                                           | 10000<br>8.180-1<br>1.961<br>-1.04-1                                                                                                       |
| Shell $4s_{1/2}$ $E_b = 506.2 \text{ eV}$ $4p_{1/2}$ $E_b = 410.1 \text{ eV}$ $4p_{3/2}$ $E_b = 359.3 \text{ eV}$ $4d_{3/2}$ $E_b = 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | k(eV)<br>1500<br>2.258+1<br>1.908<br>4.74-1<br>-2.89-4<br>2.667+1<br>1.564<br>2.58-1<br>3.15-3<br>6.261+1<br>1.553                                                                                                                                                                                                                                                    | 1.466+1<br>1.916<br>3.53-1<br>-6.67-4<br>1.792+1<br>1.644<br>1.00-1<br>-1.96-3                                                                                                                | 7.572+0<br>1.926<br>1.47-1<br>-1.13-3<br>9.326+0<br>1.689<br>-1.73-2                                                                                                                 | 4.592+0<br>1.934<br>6.37-3<br>-1.42-3<br>5.538+0<br>1.683                                                                                                                                    | 3.069+0<br>1.941<br>-8.30-2<br>-1.63-3<br>3.589+0                                                                                                                                    | 2.189+0<br>1.947<br>-1.33-1<br>-1.78-3<br>2.473+0                                                                                                                                   | 1.635+0<br>1.952<br>-1.54-1<br>-1.90-3<br>1.784+0                                                                                                               | 1.266+0<br>1.956<br>-1.53-1<br>-2.01-3                                                                                                                                              | 1.007+0<br>1.959<br>-1.35-1<br>-2.09-3                                                                                                                                   | 8.180-1<br>1.961<br>-1.04-1                                                                                                                |
| $4s_{1/2}$ $E_b = 506.2 \text{ eV}$ $4p_{1/2}$ $E_b = 410.1 \text{ eV}$ $4p_{3/2}$ $E_b = 359.3 \text{ eV}$ $4d_{3/2}$ $E_b = 60.3 \text{ eV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.258+1<br>1.908<br>4.74-1<br>-2.89-4<br>2.667+1<br>1.564<br>2.58-1<br>3.15-3<br>6.261+1<br>1.553                                                                                                                                                                                                                                                                     | 1.466+1<br>1.916<br>3.53-1<br>-6.67-4<br>1.792+1<br>1.644<br>1.00-1<br>-1.96-3                                                                                                                | 7.572+0<br>1.926<br>1.47-1<br>-1.13-3<br>9.326+0<br>1.689<br>-1.73-2                                                                                                                 | 4.592+0<br>1.934<br>6.37-3<br>-1.42-3<br>5.538+0<br>1.683                                                                                                                                    | 3.069+0<br>1.941<br>-8.30-2<br>-1.63-3<br>3.589+0                                                                                                                                    | 2.189+0<br>1.947<br>-1.33-1<br>-1.78-3<br>2.473+0                                                                                                                                   | 1.635+0<br>1.952<br>-1.54-1<br>-1.90-3<br>1.784+0                                                                                                               | 1.266+0<br>1.956<br>-1.53-1<br>-2.01-3                                                                                                                                              | 1.007+0<br>1.959<br>-1.35-1<br>-2.09-3                                                                                                                                   | 8.180-1<br>1.961<br>-1.04-1                                                                                                                |
| $E_b = 506.2 \text{ eV}$ $4p_{1/2}$ $E_b = 410.1 \text{ eV}$ $4p_{3/2}$ $E_b = 359.3 \text{ eV}$ $4d_{3/2}$ $E_b = 60.2 \text{ eV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.908<br>4.74-1<br>-2.89-4<br>2.667+1<br>1.564<br>2.58-1<br>3.15-3<br>6.261+1<br>1.553                                                                                                                                                                                                                                                                                | 1.916<br>3.53-1<br>-6.67-4<br>1.792+1<br>1.644<br>1.00-1<br>-1.96-3                                                                                                                           | 1.926<br>1.47-1<br>-1.13-3<br>9.326+0<br>1.689<br>-1.73-2                                                                                                                            | 1.934<br>6.37-3<br>-1.42-3<br>5.538+0<br>1.683                                                                                                                                               | 1.941<br>-8.30-2<br>-1.63-3<br>3.589+0                                                                                                                                               | 1.947<br>-1.33-1<br>-1.78-3<br>2.473+0                                                                                                                                              | 1.952<br>-1.54-1<br>-1.90-3<br>1.784+0                                                                                                                          | 1.956<br>-1.53-1<br>-2.01-3                                                                                                                                                         | 1.959<br>-1.35-1<br>-2.09-3                                                                                                                                              | 1.961<br>-1.04-1                                                                                                                           |
| 506.2 eV<br>$4p_{1/2}$<br>$E_b =$<br>410.1 eV<br>$4p_{3/2}$<br>$E_b =$<br>359.3 eV<br>$4d_{3/2}$<br>$E_b =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | γ<br>δ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.74-1<br>-2.89-4<br>2.667+1<br>1.564<br>2.58-1<br>3.15-3<br>6.261+1<br>1.553                                                                                                                                                                                                                                                                                         | 3.53-1<br>-6.67-4<br>1.792+1<br>1.644<br>1.00-1<br>-1.96-3                                                                                                                                    | 1.47-1<br>-1.13-3<br>9.326+0<br>1.689<br>-1.73-2                                                                                                                                     | 6.37-3<br>-1.42-3<br>5.538+0<br>1.683                                                                                                                                                        | -8.30-2<br>-1.63-3<br>3.589+0                                                                                                                                                        | -1.33-1<br>-1.78-3<br>2.473+0                                                                                                                                                       | -1.54-1<br>-1.90-3<br>1.784+0                                                                                                                                   | -1.53-1<br>-2.01-3                                                                                                                                                                  | -1.35-1<br>-2.09-3                                                                                                                                                       | -1.04-1                                                                                                                                    |
| $4p_{1/2} E_b = 410.1 \text{ eV}$ $4p_{3/2} E_b = 359.3 \text{ eV}$ $4d_{3/2} E_b = 60.0000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2.89-4<br>2.667+1<br>1.564<br>2.58-1<br>3.15-3<br>6.261+1<br>1.553                                                                                                                                                                                                                                                                                                   | -6.67-4<br>1.792+1<br>1.644<br>1.00-1<br>-1.96-3                                                                                                                                              | -1.13-3<br>9.326+0<br>1.689<br>-1.73-2                                                                                                                                               | -1.42-3<br>5.538+0<br>1.683                                                                                                                                                                  | -1.63-3<br>3.589+0                                                                                                                                                                   | -1.78-3<br>2.473+0                                                                                                                                                                  | -1.90-3<br>1.784+0                                                                                                                                              | -2.01-3                                                                                                                                                                             | -2.09-3                                                                                                                                                                  | -1.04-1 $-2.17-3$                                                                                                                          |
| $E_b = 410.1 \text{ eV}$ $4p_{3/2}$ $E_b = 359.3 \text{ eV}$ $4d_{3/2}$ $E_b = 600000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\beta$ $\gamma$ $\delta$ $\sigma$ $\beta$ $\gamma$ $\delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.564<br>2.58-1<br>3.15-3<br>6.261+1<br>1.553                                                                                                                                                                                                                                                                                                                         | 1.644<br>1.00-1<br>-1.96-3                                                                                                                                                                    | 1.689<br>-1.73-2                                                                                                                                                                     | 1.683                                                                                                                                                                                        |                                                                                                                                                                                      |                                                                                                                                                                                     |                                                                                                                                                                 | 1.333+0                                                                                                                                                                             | 1.02.4+0                                                                                                                                                                 |                                                                                                                                            |
| 410.1 eV<br>$4p_{3/2}$<br>$E_b = 359.3$ eV<br>$4d_{3/2}$<br>$E_b = 600$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\gamma$ $\delta$ $\sigma$ $\beta$ $\gamma$ $\delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.58-1<br>3.15-3<br>6.261+1<br>1.553                                                                                                                                                                                                                                                                                                                                  | 1.00-1<br>-1.96-3                                                                                                                                                                             | -1.73-2                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                      |                                                                                                                                                                                     | 1.602                                                                                                                                                           |                                                                                                                                                                                     | 1.024+0                                                                                                                                                                  | 8.044-1                                                                                                                                    |
| $4p_{3/2}$ $E_b = 359.3 \text{ eV}$ $4d_{3/2}$ $E_b = 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | δ<br>σ<br>β<br>γ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.15-3<br>6.261+1<br>1.553                                                                                                                                                                                                                                                                                                                                            | -1.96-3                                                                                                                                                                                       |                                                                                                                                                                                      | 102 2                                                                                                                                                                                        | 1.661                                                                                                                                                                                | 1.633                                                                                                                                                                               |                                                                                                                                                                 | 1.569                                                                                                                                                                               | 1.537                                                                                                                                                                    | 1.504                                                                                                                                      |
| $E_b = 359.3 \text{ eV}$ $4d_{3/2}$ $E_b = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | σ<br>β<br>γ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.261+1<br>1.553                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                               |                                                                                                                                                                                      | 1.92-2<br>-3.49-3                                                                                                                                                                            | 1.22 - 1 $-2.03 - 3$                                                                                                                                                                 | 2.51-1<br>4.94-4                                                                                                                                                                    | 3.88-1<br>3.96-3                                                                                                                                                | 5.26-1<br>8.19-3                                                                                                                                                                    | 6.60-1 $1.30-2$                                                                                                                                                          | 7.88 - 1 $1.83 - 2$                                                                                                                        |
| $E_b = 359.3 \text{ eV}$ $4d_{3/2}$ $E_b = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | β<br>γ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.553                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                               | 1.893+1                                                                                                                                                                              | 1.068+1                                                                                                                                                                                      | 6.669+0                                                                                                                                                                              | 4.462+0                                                                                                                                                                             | 3.140+0                                                                                                                                                         | 2.297+0                                                                                                                                                                             | 1.732+0                                                                                                                                                                  | 1.339+0                                                                                                                                    |
| $4d_{3/2}$ $E_b =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.57 - 1                                                                                                                                                                                                                                                                                                                                                              | 1.651                                                                                                                                                                                         | 1.728                                                                                                                                                                                | 1.746                                                                                                                                                                                        | 1.741                                                                                                                                                                                | 1.725                                                                                                                                                                               | 1.704                                                                                                                                                           | 1.679                                                                                                                                                                               | 1.652                                                                                                                                                                    | 1.624                                                                                                                                      |
| $E_b =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.74-3                                                                                                                                                                                                                                                                                                                                                                | 3.01-2<br>7.49-4                                                                                                                                                                              | -4.26-2 3.70-3                                                                                                                                                                       | 2.39-2                                                                                                                                                                                       | 1.50-1<br>9.92-3                                                                                                                                                                     | 3.00-1<br>1.27-2                                                                                                                                                                    | 4.57-1<br>1.56-2                                                                                                                                                | 6.13-1                                                                                                                                                                              | 7.63-1                                                                                                                                                                   | 9.06-1                                                                                                                                     |
| $E_b =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.615+1                                                                                                                                                                                                                                                                                                                                                               | 4.174+1                                                                                                                                                                                       | 1.580+1                                                                                                                                                                              | 7.03-3<br>7.358+0                                                                                                                                                                            | 3.919+0                                                                                                                                                                              | 2.291+0                                                                                                                                                                             | 1.433+0                                                                                                                                                         | 1.86-2<br>9.443-1                                                                                                                                                                   | 2.19-2<br>6.482-1                                                                                                                                                        | 2.54-2<br>4.601-1                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.275                                                                                                                                                                                                                                                                                                                                                                 | 1.353                                                                                                                                                                                         | 1.380+1                                                                                                                                                                              | 7.338+0<br>1.331                                                                                                                                                                             | 1.273                                                                                                                                                                                | 1.211                                                                                                                                                                               | 1.433+0                                                                                                                                                         | 9.443-1<br>1.089                                                                                                                                                                    | 1.033                                                                                                                                                                    | 4.601—1<br>0.979                                                                                                                           |
| 204.0 CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -4.02-2                                                                                                                                                                                                                                                                                                                                                               | 3.58-2                                                                                                                                                                                        | 2.90-1                                                                                                                                                                               | 5.48-1                                                                                                                                                                                       | 7.73-1                                                                                                                                                                               | 9.64-1                                                                                                                                                                              | 1.13+0                                                                                                                                                          | 1.26+0                                                                                                                                                                              | 1.38+0                                                                                                                                                                   | 1.48+0                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.23-2                                                                                                                                                                                                                                                                                                                                                                | 2.54-2                                                                                                                                                                                        | 4.75-2                                                                                                                                                                               | 6.69-2                                                                                                                                                                                       | 8.58-2                                                                                                                                                                               | 1.05-1                                                                                                                                                                              | 1.23-1                                                                                                                                                          | 1.41-1                                                                                                                                                                              | 1.59-1                                                                                                                                                                   | 1.77 - 1                                                                                                                                   |
| $4d_{5/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\sigma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.093+2                                                                                                                                                                                                                                                                                                                                                               | 5.902+1                                                                                                                                                                                       | 2.193+1                                                                                                                                                                              | 1.009+1                                                                                                                                                                                      | 5.320+0                                                                                                                                                                              | 3.082+0                                                                                                                                                                             | 1.914+0                                                                                                                                                         | 1.253+0                                                                                                                                                                             | 8.545-1                                                                                                                                                                  | 6.029-1                                                                                                                                    |
| $E_b = 195.0 \text{ eV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\beta$ $\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.317<br>-3.33-2                                                                                                                                                                                                                                                                                                                                                      | 1.358<br>5.88-2                                                                                                                                                                               | 1.334<br>3.24-1                                                                                                                                                                      | 1.271<br>5.77-1                                                                                                                                                                              | 1.200<br>7.92-1                                                                                                                                                                      | 1.131<br>9.71-1                                                                                                                                                                     | 1.066<br>1.12+0                                                                                                                                                 | 1.005<br>1.25+0                                                                                                                                                                     | 0.949<br>1.36+0                                                                                                                                                          | 0.898<br>1.45+0                                                                                                                            |
| 155.0 CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.22-2                                                                                                                                                                                                                                                                                                                                                                | 2.42-2                                                                                                                                                                                        | 4.69-2                                                                                                                                                                               | 6.91-2                                                                                                                                                                                       | 9.14-2                                                                                                                                                                               | 1.14-1                                                                                                                                                                              | 1.36-1                                                                                                                                                          | 1.57-1                                                                                                                                                                              | 1.78-1                                                                                                                                                                   | 1.98-1                                                                                                                                     |
| $4f_{5/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.420+1                                                                                                                                                                                                                                                                                                                                                               | 1.285+1                                                                                                                                                                                       | 2.941+0                                                                                                                                                                              | 9.762-1                                                                                                                                                                                      | 4.036-1                                                                                                                                                                              | 1.929-1                                                                                                                                                                             | 1.021-1                                                                                                                                                         | 5.826-2                                                                                                                                                                             | 3.526-2                                                                                                                                                                  | 2.236-2                                                                                                                                    |
| $E_b =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.061                                                                                                                                                                                                                                                                                                                                                                 | 1.033                                                                                                                                                                                         | 0.934                                                                                                                                                                                | 0.834                                                                                                                                                                                        | 0.747                                                                                                                                                                                | 0.673                                                                                                                                                                               | 0.610                                                                                                                                                           | 0.555                                                                                                                                                                               | 0.505                                                                                                                                                                    | 0.460                                                                                                                                      |
| 7.8 eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.45-1<br>9.72-2                                                                                                                                                                                                                                                                                                                                                      | 5.06-1<br>1.23-1                                                                                                                                                                              | 7.53-1<br>1.70-1                                                                                                                                                                     | 9.23-1<br>2.15-1                                                                                                                                                                             | 1.04+0<br>2.57-1                                                                                                                                                                     | 1.13+0<br>2.97-1                                                                                                                                                                    | 1.21+0<br>3.34-1                                                                                                                                                | 1.27+0<br>3.70-1                                                                                                                                                                    | 1.32+0<br>4.04-1                                                                                                                                                         | 1.36+0<br>4.35-1                                                                                                                           |
| 4f <sub>7/2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.331+1                                                                                                                                                                                                                                                                                                                                                               | 1.621+1                                                                                                                                                                                       | 3.685+0                                                                                                                                                                              | 1.216+0                                                                                                                                                                                      | 5.003-1                                                                                                                                                                              | 2.380-1                                                                                                                                                                             | 1.254-1                                                                                                                                                         | 7.134-2                                                                                                                                                                             | 4.304-2                                                                                                                                                                  | 2.722-2                                                                                                                                    |
| $E_b =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.056                                                                                                                                                                                                                                                                                                                                                                 | 1.024                                                                                                                                                                                         | 0.923                                                                                                                                                                                | 0.825                                                                                                                                                                                        | 0.742                                                                                                                                                                                | 0.673                                                                                                                                                                               | 0.614                                                                                                                                                           | 0.562                                                                                                                                                                               | 0.517                                                                                                                                                                    | 0.475                                                                                                                                      |
| 6.2 eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.54-1<br>9.71-2                                                                                                                                                                                                                                                                                                                                                      | 5.15-1<br>1.23-1                                                                                                                                                                              | 7.63-1                                                                                                                                                                               | 9.31-1<br>2.17-1                                                                                                                                                                             | 1.05+0                                                                                                                                                                               | 1.14+0<br>3.01-1                                                                                                                                                                    | 1.21+0<br>3.39-1                                                                                                                                                | 1.27+0<br>3.75-1                                                                                                                                                                    | 1.31+0<br>4.09-1                                                                                                                                                         | 1.35+0<br>4.42-1                                                                                                                           |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.789+0                                                                                                                                                                                                                                                                                                                                                               | 2.385+0                                                                                                                                                                                       | 1.71-1<br>1.200+0                                                                                                                                                                    | 7.186-1                                                                                                                                                                                      | 2.60-1<br>4.765-1                                                                                                                                                                    | 3.380-1                                                                                                                                                                             | 2.515-1                                                                                                                                                         | 1.941-1                                                                                                                                                                             | 1.539-1                                                                                                                                                                  | 1.249-1                                                                                                                                    |
| $5s_{1/2}$<br>$E_b =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{\sigma}{\beta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.789+0<br>1.917                                                                                                                                                                                                                                                                                                                                                      | 1.923                                                                                                                                                                                         | 1.200+0                                                                                                                                                                              | 1.938                                                                                                                                                                                        | 1.944                                                                                                                                                                                | 1.949                                                                                                                                                                               | 1.954                                                                                                                                                           | 1.941-1                                                                                                                                                                             | 1.960                                                                                                                                                                    | 1.249-1                                                                                                                                    |
| 56.8 eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.30-1                                                                                                                                                                                                                                                                                                                                                                | 2.38 - 1                                                                                                                                                                                      | 7.73 - 2                                                                                                                                                                             | -3.58-2                                                                                                                                                                                      | -1.06-1                                                                                                                                                                              | -1.43-1                                                                                                                                                                             | -1.55-1                                                                                                                                                         | -1.47 - 1                                                                                                                                                                           | -1.24-1                                                                                                                                                                  | -8.90-2                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -5.18-4                                                                                                                                                                                                                                                                                                                                                               | -7.94-4                                                                                                                                                                                       | -1.17 - 3                                                                                                                                                                            | -1.43-3                                                                                                                                                                                      | -1.62-3                                                                                                                                                                              | -1.77 - 3                                                                                                                                                                           | -1.88 - 3                                                                                                                                                       | -1.98 - 3                                                                                                                                                                           | -2.06-3                                                                                                                                                                  | -2.13-3                                                                                                                                    |
| $5p_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\sigma_{\rho}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.559+0<br>1.661                                                                                                                                                                                                                                                                                                                                                      | 2.315+0<br>1.702                                                                                                                                                                              | 1.176+0<br>1.714                                                                                                                                                                     | 6.912-1<br>1.696                                                                                                                                                                             | 4.454-1<br>1.668                                                                                                                                                                     | 3.058-1<br>1.637                                                                                                                                                                    | 2.201-1<br>1.603                                                                                                                                                | 1.642-1<br>1.569                                                                                                                                                                    | 1.260-1<br>1.536                                                                                                                                                         | 9.890-2<br>1.503                                                                                                                           |
| $E_b = 33.0 \text{ eV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\beta$ $\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.47-1                                                                                                                                                                                                                                                                                                                                                                | 3.89-2                                                                                                                                                                                        | -2.02-2                                                                                                                                                                              | 3.89-2                                                                                                                                                                                       | 1.50-1                                                                                                                                                                               | 2.81-1                                                                                                                                                                              | 4.18-1                                                                                                                                                          | 5.54-1                                                                                                                                                                              | 6.85-1                                                                                                                                                                   | 8.11-1                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -3.49-3                                                                                                                                                                                                                                                                                                                                                               | -4.25 - 3                                                                                                                                                                                     | -4.52 - 3                                                                                                                                                                            | -4.05 - 3                                                                                                                                                                                    | -2.58-3                                                                                                                                                                              | -6.52-5                                                                                                                                                                             | 3.40-3                                                                                                                                                          | 7.67-3                                                                                                                                                                              | 1.25-2                                                                                                                                                                   | 1.79-2                                                                                                                                     |
| $5p_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.631+0                                                                                                                                                                                                                                                                                                                                                               | 4.703+0                                                                                                                                                                                       | 2.225+0                                                                                                                                                                              | 1.248+0                                                                                                                                                                                      | 7.765-1                                                                                                                                                                              | 5.184-1                                                                                                                                                                             | 3.643-1                                                                                                                                                         | 2.663-1                                                                                                                                                                             | 2.007-1                                                                                                                                                                  | 1.550-1                                                                                                                                    |
| $E_b = 25.8 \text{ eV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.642<br>7.98-2                                                                                                                                                                                                                                                                                                                                                       | 1.705<br>-7.61-3                                                                                                                                                                              | 1.753<br>-3.57-2                                                                                                                                                                     | 1.759<br>4.74-2                                                                                                                                                                              | 1.749<br>1.80-1                                                                                                                                                                      | 1.730<br>3.30-1                                                                                                                                                                     | 1.706<br>4.86-1                                                                                                                                                 | 1.680<br>6.39-1                                                                                                                                                                     | 1.652<br>7.86-1                                                                                                                                                          | 1.624<br>9.27-1                                                                                                                            |
| 25.8 eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $_{\delta}^{\gamma}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1.35-3                                                                                                                                                                                                                                                                                                                                                               | -7.61-3<br>-1.50-4                                                                                                                                                                            | -3.57-2 $3.56-3$                                                                                                                                                                     | 6.64-3                                                                                                                                                                                       | 9.29-3                                                                                                                                                                               | 1.19-2                                                                                                                                                                              | 4.86—1<br>1.47—2                                                                                                                                                | 1.77-2                                                                                                                                                                              | 2.10-2                                                                                                                                                                   | 9.27 - 1<br>2.46 - 2                                                                                                                       |
| 5d <sub>3/2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.533+0                                                                                                                                                                                                                                                                                                                                                               | 1.388+0                                                                                                                                                                                       | 5.282-1                                                                                                                                                                              | 2.470-1                                                                                                                                                                                      | 1.319-1                                                                                                                                                                              | 7.724-2                                                                                                                                                                             | 4.840-2                                                                                                                                                         | 3.194-2                                                                                                                                                                             | 2.196-2                                                                                                                                                                  | 1.561-2                                                                                                                                    |
| $E_b =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.343                                                                                                                                                                                                                                                                                                                                                                 | 1.392                                                                                                                                                                                         | 1.387                                                                                                                                                                                | 1.337                                                                                                                                                                                        | 1.274                                                                                                                                                                                | 1.210                                                                                                                                                                               | 1.148                                                                                                                                                           | 1.089                                                                                                                                                                               | 1.033                                                                                                                                                                    | 0.981                                                                                                                                      |
| 4.6 eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.47-2<br>1.26-2                                                                                                                                                                                                                                                                                                                                                     | 6.06-2 $2.48-2$                                                                                                                                                                               | 3.16-1 $4.58-2$                                                                                                                                                                      | 5.69-1 $6.46-2$                                                                                                                                                                              | 7.89-1<br>8.30-2                                                                                                                                                                     | 9.76-1<br>1.01-1                                                                                                                                                                    | 1.13+0<br>1.20-1                                                                                                                                                | 1.27+0<br>1.39-1                                                                                                                                                                    | 1.39+0<br>1.58-1                                                                                                                                                         | 1.49+0<br>1.77-1                                                                                                                           |
| 6s <sub>1/2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.607-1                                                                                                                                                                                                                                                                                                                                                               | 1.632-1                                                                                                                                                                                       | 8.164-2                                                                                                                                                                              | 4.878-2                                                                                                                                                                                      | 3.230-2                                                                                                                                                                              | 2.288-2                                                                                                                                                                             | 1.701-2                                                                                                                                                         | 1.311-2                                                                                                                                                                             | 1.040-2                                                                                                                                                                  | 8.428-3                                                                                                                                    |
| $E_b =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.918                                                                                                                                                                                                                                                                                                                                                                 | 1.923                                                                                                                                                                                         | 1.931                                                                                                                                                                                | 1.938                                                                                                                                                                                        | 1.944                                                                                                                                                                                | 1.949                                                                                                                                                                               | 1.953                                                                                                                                                           | 1.957                                                                                                                                                                               | 1.959                                                                                                                                                                    | 1.961                                                                                                                                      |
| 7.0 eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $_{\delta}^{\gamma}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.23-1<br>-5.32-4                                                                                                                                                                                                                                                                                                                                                     | 2.32-1 $-8.03-4$                                                                                                                                                                              | 7.30-2 $-1.18-3$                                                                                                                                                                     | -3.89-2 $-1.44-3$                                                                                                                                                                            | -1.09-1 $-1.63-3$                                                                                                                                                                    | -1.46-1 $-1.78-3$                                                                                                                                                                   | -1.57-1 $-1.89-3$                                                                                                                                               | -1.48-1 $-1.99-3$                                                                                                                                                                   | -1.24-1 $-2.08-3$                                                                                                                                                        | -8.86-2 $-2.14-3$                                                                                                                          |
| Z= 72, Hf: [Xe]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                       | 0.05-4                                                                                                                                                                                        | 1,10-5                                                                                                                                                                               | r                                                                                                                                                                                            | د—دن.،                                                                                                                                                                               | 1.70-3                                                                                                                                                                              | 1,00-0                                                                                                                                                          | 1,33-3                                                                                                                                                                              | 2.00-3                                                                                                                                                                   | 2,14-3                                                                                                                                     |
| 12, III. [AC]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5/2 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | k (eV)                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                               |                                                                                                                                                                                      |                                                                                                                                                                                              |                                                                                                                                                                                      |                                                                                                                                                                                     |                                                                                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                          |                                                                                                                                            |
| Shell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1500                                                                                                                                                                                                                                                                                                                                                                  | 2000                                                                                                                                                                                          | 3000                                                                                                                                                                                 | 4000                                                                                                                                                                                         | 5000                                                                                                                                                                                 | 6000                                                                                                                                                                                | 7000                                                                                                                                                            | 8000                                                                                                                                                                                | 9000                                                                                                                                                                     | 10000                                                                                                                                      |
| 4s <sub>1/2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.302+1                                                                                                                                                                                                                                                                                                                                                               | 1.502+1                                                                                                                                                                                       | 7.801+0                                                                                                                                                                              | 4.746+0                                                                                                                                                                                      | 3.179+0                                                                                                                                                                              | 2.270+0                                                                                                                                                                             | 1.698+0                                                                                                                                                         | 1.316+0                                                                                                                                                                             | 1.047+0                                                                                                                                                                  | 8.514-1                                                                                                                                    |
| $E_b =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.900                                                                                                                                                                                                                                                                                                                                                                 | 1.909                                                                                                                                                                                         | 1.920                                                                                                                                                                                | 1.929                                                                                                                                                                                        | 1.936                                                                                                                                                                                | 1.942                                                                                                                                                                               | 1.947                                                                                                                                                           | 1.951                                                                                                                                                                               | 1.955                                                                                                                                                                    | 1.957                                                                                                                                      |

| able 1 (contin                                   | ued)                    |                                                 |                      |                   |                   |                    |                    |                   |                   |                   |                    |
|--------------------------------------------------|-------------------------|-------------------------------------------------|----------------------|-------------------|-------------------|--------------------|--------------------|-------------------|-------------------|-------------------|--------------------|
| 538.1 eV                                         | γ<br>δ                  | 5.01-1<br>-2.50-4                               | 3.79-1<br>-6.75-4    | 1.71-1<br>-1.19-3 | 2.44-2<br>-1.51-3 | -7.11-2<br>-1.74-3 | -1.27-1<br>-1.91-3 | -1.54-1 $-2.05-3$ | -1.59-1 $-2.16-3$ | -1.46-1 $-2.26-3$ | -1.19-1<br>-2.34-3 |
| 4p <sub>1/2</sub>                                | σ                       | 2.708+1                                         | 1.835+1              | 9.645+0           | 5.764+0           | 3.753+0            | 2.595+0            | 1.877+0           | 1.405+0           | 1.082+0           | 8.514-1            |
| $E_b = 437.0 \text{ eV}$                         | $eta \gamma$            | 1.545<br>2.87-1                                 | 1.635<br>1.23-1      | 1.687<br>-1.36-2  | 1.685<br>9.52-3   | 1.665<br>1.04-1    | 1.639<br>2.27-1    | 1.609<br>3.62-1   | 1.578<br>4.98-1   | 1.546<br>6.30-1   | 1.514<br>7.57-1    |
|                                                  | δ                       | 4.24-3                                          | -1.75 - 3            | -3.99 - 3         | -3.83 - 3         | -2.54 - 3          | -2.22-4            | 2.99-3            | 6.95-3            | 1.15-2            | 1.65 - 2           |
| $4p_{3/2}$                                       | σ                       | 6.450+1                                         | 4.077+1              | 1.972+1           | 1.118+1           | 6.999+0            | 4.694+0            | 3.309+0           | 2.425+0           | 1.831+0           | 1.417+0            |
| $E_b = 380.4 \text{ eV}$                         | $\beta$ $\gamma$        | 1.534<br>1.76-1                                 | 1.640<br>4.35-2      | 1.724<br>-4.41-2  | 1.746<br>1.09-2   | 1.744<br>1.30-1    | 1.731<br>2.76-1    | 1.711<br>4.30-1   | 1.688<br>5.84-1   | 1.663<br>7.33-1   | 1.636<br>8.76-1    |
| 300.4 C V                                        | δ                       | 3.41-3                                          | 7.22-4               | 3.51-3            | 6.95-3            | 9.91-3             | 1.27-2             | 1.55-2            | 1.84-2            | 2.15-2            | 2.46-2             |
| 4d <sub>3/2</sub>                                | σ                       | 8.002+1                                         | 4.427+1              | 1.694+1           | 7.944+0           | 4.251+0            | 2.493+0            | 1.564+0           | 1.033+0           | 7.107-1           | 5.054-1            |
| $E_b = 223.8 \text{ eV}$                         | β                       | 1.260<br>-4.41-2                                | 1.347<br>2.03-2      | 1.375<br>2.66-1   | 1.339             | 1.284              | 1.224<br>9.45-1    | 1.164<br>1.11+0   | 1.105<br>1.25+0   | 1.049<br>1.37+0   | 0.997              |
| 223.0 EV                                         | $\gamma \\ \delta$      | 1.10-2                                          | 2.39-2               | 4.60-2            | 5.23-1<br>6.53-2  | 7.51-1<br>8.37-2   | 1.02-1             | 1.20-1            | 1.37-1            | 1.55-1            | 1.48+0<br>1.72-1   |
| 4d <sub>5/2</sub>                                | σ                       | 1.149+2                                         | 6.260+1              | 2.350+1           | 1.088+1           | 5.761+0            | 3.349+0            | 2.085+0           | 1.368+0           | 9.349-1           | 6.608-1            |
| $E_b =$                                          | β                       | 1.309                                           | 1.357                | 1.340             | 1.280             | 1.211              | 1.143              | 1.078             | 1.018             | 0.962             | 0.911              |
| 213.7 eV                                         | $\gamma \\ \delta$      | -3.94-2<br>1.10-2                               | 4.25-2<br>2.28-2     | 3.01-1<br>4.52-2  | 5.55-1<br>6.71-2  | 7.73-1<br>8.90-2   | 9.54-1<br>1.11-1   | 1.11+0<br>1.32-1  | 1.24+0<br>1.53-1  | 1.35+0<br>1.73-1  | 1.44+0<br>1.93-1   |
| 4f <sub>5/2</sub>                                | σ                       | 3.973+1                                         | 1.506+1              | 3.480+0           | 1.161+0           | 4.817-1            | 2.308-1            | 1.224-1           | 7.006-2           | 4.250-2           | 2.701-2            |
| $E_b =$                                          | β                       | 1.060                                           | 1.038                | 0.943             | 0.844             | 0.757              | 0.684              | 0.621             | 0.565             | 0.516             | 0.472              |
| 18.2 eV                                          | $\gamma \\ \delta$      | 3.31-1<br>9.58-2                                | 4.91-1<br>1.21-1     | 7.43-1<br>1.68-1  | 9.17-1<br>2.11-1  | 1.04+0<br>2.53-1   | 1.14+0<br>2.92-1   | 1.21+0<br>3.30-1  | 1.27+0<br>3.65-1  | 1.32+0<br>3.99-1  | 1.37+0             |
| Af.                                              |                         | 5.055+1                                         | 1.908+1              | 4.381+0           | 1.453+0           | 5.998-1            | 2.861-1            | 1.512-1           | 8.617-2           | 5.210-2           | 4.31-1<br>3.302-2  |
| $ 4f_{7/2} \\ E_b = $                            | $\frac{\sigma}{\beta}$  | 1.056                                           | 1.029                | 0.932             | 0.835             | 0.752              | 0.682              | 0.623             | 0.572             | 0.526             | 0.485              |
| 16.3 eV                                          | γ                       | 3.40-1                                          | 5.01-1               | 7.53 - 1          | 9.27-1            | 1.05+0             | 1.14+0             | 1.21+0            | 1.27+0            | 1.32+0            | 1.36+0             |
|                                                  | δ                       | 9.57-2                                          | 1.21-1               | 1.68-1            | 2.13-1            | 2.56-1             | 2.96-1             | 3.35-1            | 3.71-1            | 4.05-1            | 4.37-1             |
| $5s_{1/2}  E_b =$                                | $\frac{\sigma}{\beta}$  | 4.022+0<br>1.911                                | 2.536+0<br>1.917     | 1.280+0<br>1.926  | 7.691-1<br>1.933  | 5.110-1<br>1.939   | 3.629-1<br>1.945   | 2.703-1<br>1.949  | 2.087-1<br>1.953  | 1.657-1<br>1.956  | 1.345-1<br>1.958   |
| 64.9 eV                                          | γ                       | 3.46-1                                          | 2.55-1               | 9.39-2            | -2.28-2           | -9.82-2            | -1.40-1            | -1.57 - 1         | -1.54-1           | -1.35-1           | -1.05-1            |
|                                                  | δ                       | -5.29-4                                         | -8.28-4              | -1.24-3           | -1.52-3           | -1.73-3            | -1.89-3            | -2.02-3           | -2.13-3           | -2.22-3           | -2.30-3            |
| $5p_{1/2}$                                       | $\sigma$                | 3.784+0                                         | 2.474+0              | 1.266+0           | 7.489-1           | 4.846-1            | 3.339-1            | 2.409-1           | 1.801-1           | 1.384-1           | 1.089-1            |
| $E_b = 38.2 \text{ eV}$                          | $\beta$ $\gamma$        | 1.655<br>1.65-1                                 | 1.698<br>5.14-2      | 1.714 $-2.07-2$   | 1.699<br>2.80-2   | 1.674<br>1.32-1    | 1.643<br>2.59-1    | 1.611<br>3.93-1   | 1.578<br>5.28-1   | 1.545<br>6.58-1   | 1.513<br>7.83-1    |
|                                                  | δ                       | -3.59 - 3                                       | -4.44-3              | -4.76 - 3         | -4.38 - 3         | -3.07 - 3          | -7.53-4            | 2.49-3            | 6.50-3            | 1.11-2            | 1.62-2             |
| $5p_{3/2}$                                       | σ                       | 8.322+0                                         | 5.144+0              | 2.447+0           | 1.378+0           | 8.597-1            | 5.753-1            | 4.050-1           | 2.965-1           | 2.238-1           | 1.731-1            |
| $E_b = 29.0 \text{ eV}$                          | $\beta$ $\gamma$        | 1.632<br>9.14-2                                 | 1.699<br>-1.84-4     | 1.751<br>-3.97-2  | 1.761<br>3.40-2   | 1.753<br>1.60-1    | 1.736<br>3.07-1    | 1.714<br>4.60-1   | 1.689<br>6.12-1   | 1.663<br>7.59-1   | 1.635<br>9.00-1    |
| 23.0 C V                                         | δ                       | -1.44-3                                         | -3.77-4              | 3.40-3            | 6.59-3            | 9.30-3             | 1.19-2             | 1.46-2            | 1.75-2            | 2.07-2            | 2.40-2             |
| 5d <sub>3/2</sub>                                | σ                       | 3.459+0                                         | 1.912+0              | 7.356-1           | 3.465-1           | 1.860-1            | 1.093-1            | 6.872-2           | 4.548-2           | 3.134-2           | 2.231-2            |
| $E_b =$                                          | β                       | 1.337                                           | 1.390                | 1.392             | 1.347             | 1.288              | 1.226              | 1.165             | 1.106             | 1.051             | 0.997              |
| 6.6 eV                                           | $\gamma \\ \delta$      | -2.95-2 $1.14-2$                                | 4.70-2<br>2.36-2     | 2.92-1<br>4.42-2  | 5.45-1<br>6.27-2  | 7.67-1<br>8.09-2   | 9.58-1<br>9.93-2   | 1.12+0<br>1.18-1  | 1.26+0<br>1.36-1  | 1.38+0<br>1.55-1  | 1.49+0<br>1.73-1   |
| 6s <sub>1/2</sub>                                | σ                       | 2.979-1                                         | 1.867-1              | 9.374-2           | 5.616-2           | 3.725-2            | 2.642-2            | 1.966-2           | 1.517-2           | 1.203-2           | 9.759-3            |
| $E_b =$                                          | β                       | 1.912                                           | 1.918                | 1.926             | 1.933             | 1.939              | 1.944              | 1.949             | 1.953             | 1.956             | 1.958              |
| 7.0 eV                                           | $\gamma \\ \delta$      | 3.37-1<br>-5.49-4                               | 2.47 - 1 $-8.41 - 4$ | 8.83-2 $-1.25-3$  | -2.70-2 $-1.54-3$ | -1.02-1 $-1.75-3$  | -1.43-1 $-1.91-3$  | -1.59-1 $-2.04-3$ | -1.55-1 $-2.14-3$ | -1.35-1 $-2.23-3$ | -1.03-1<br>-2.30-3 |
| 7- 72 Tav [V                                     |                         | $\frac{3.43}{4f_{7/2}^8 5d_{3/2}^3 6s_{1/2}^2}$ | 0,41 4               | 1,23 3            | 1.54 5            | 1.73 3             | 1.51 5             | 2.04 3            | 2,14 3            | 2,23 3            | 2.50               |
| Z- 73, 1a. [A                                    | CJ415/2                 | k (eV)                                          |                      |                   |                   |                    |                    |                   |                   |                   |                    |
| Shell                                            |                         | 1500                                            | 2000                 | 3000              | 4000              | 5000               | 6000               | 7000              | 8000              | 9000              | 10000              |
| 4s <sub>1/2</sub>                                | σ                       | 2.341+1                                         | 1.535+1              | 8.018+0           | 4.896+0           | 3.287+0            | 2.351+0            | 1.761+0           | 1.365+0           | 1.088+0           | 8.850-1            |
| $E_b =$                                          | $\beta$                 | 1.892                                           | 1.903                | 1.915             | 1.923             | 1.931              | 1.937              | 1.943             | 1.947             | 1.951             | 1.954              |
| 565.5 eV                                         | γ                       | 5.25-1                                          | 4.03-1               | 1.94-1            | 4.29-2            | -5.81-2            | -1.20-1            | -1.53-1           | -1.62-1           | -1.54-1           | -1.32-             |
|                                                  | δ                       | -2.06-4                                         | -6.81-4              | -1.24-3           | -1.60-3           | -1.85-3            | -2.04-3            | -2.20-3           | -2.32-3           | -2.43-3           | -2.52-3            |
| $\begin{array}{l} 4p_{1/2} \\ E_b = \end{array}$ | $\frac{\sigma}{eta}$    | 2.744+1<br>1.526                                | 1.876+1<br>1.626     | 9.962+0<br>1.684  | 5.992+0<br>1.686  | 3.919+0<br>1.669   | 2.719+0<br>1.645   | 1.972+0<br>1.616  | 1.480+0<br>1.586  | 1.142+0<br>1.555  | 9.003-1<br>1.524   |
| 464.8 eV                                         | γ                       | 3.16-1                                          | 1.46 - 1             | -7.93 - 3         | 1.40-3            | 8.63-2             | 2.04-1             | 3.35-1            | 4.69-1            | 6.00-1            | 7.25 - 1           |
|                                                  | δ                       | 5.47-3                                          | -1.48 - 3            | -4.16-3           | -4.14 - 3         | -3.02 - 3          | -9.18 - 4          | 2.05-3            | 5.76-3            | 9.99-3            | 1.47-2             |
| $4p_{3/2}$                                       | $\sigma$                | 6.648+1                                         | 4.221+1              | 2.054+1           | 1.169+1           | 7.343+0            | 4.936+0            | 3.487+0           | 2.559+0           | 1.935+0           | 1.499+0            |
| $E_b = 404.5 \text{ eV}$                         | $\beta$ $\gamma$        | 1.513<br>1.95-1                                 | 1.628<br>5.85-2      | 1.719<br>-4.43-2  | 1.746<br>-1.29-3  | 1.747<br>1.10-1    | 1.736<br>2.51-1    | 1.719<br>4.02-1   | 1.697<br>5.54-1   | 1.673<br>7.02-1   | 1.647<br>8.44-1    |
|                                                  | δ                       | 4.21-3                                          | 7.30-4               | 3.30-3            | 6.85-3            | 9.89-3             | 1.26-2             | 1.54-2            | 1.81-2            | 2.10-2            | 2.40-2             |
| 4d <sub>3/2</sub>                                | σ                       | 8.387+1                                         | 4.684+1              | 1.812+1           | 8.557+0           | 4.600+0            | 2.708+0            | 1.703+0           | 1.128+0           | 7.778-1           | 5.542-1            |
| $E_b = 241.3 \text{ eV}$                         | β                       | 1.245<br>-4.61-2                                | 1.340<br>6.40-3      | 1.377<br>2.41-1   | 1.347<br>4.98-1   | 1.296<br>7.27-1    | 1.237<br>9.24-1    | 1.178<br>1.09+0   | 1.121<br>1.23+0   | 1.066<br>1.36+0   | 1.014<br>1.47+0    |
| ∠+1.J EV                                         | $\frac{\gamma}{\delta}$ | 9.74-3                                          | 0.40-3 $2.25-2$      | 4.46-2            | 4.98-1<br>6.36-2  | 8.17-2             | 9.24—1<br>9.93—2   | 1.09+0<br>1.17-1  | 1.23+0            | 1.51-1            | 1.47+0<br>1.67-1   |
| 4d <sub>5/2</sub>                                | σ                       | 1.204+2                                         | 6.615+1              | 2.510+1           | 1.169+1           | 6.221+0            | 3.629+0            | 2.265+0           | 1.489+0           | 1.020+0           | 7.227-1            |
| $E_b =$                                          | β                       | 1.300                                           | 1.355                | 1.344             | 1.288             | 1.221              | 1.154              | 1.090             | 1.031             | 0.976             | 0.925              |
| 229.3 eV                                         | $\gamma \\ \delta$      | -4.35-2 $9.93-3$                                | 2.79-2<br>2.14-2     | 2.78-1<br>4.35-2  | 5.32-1<br>6.50-2  | 7.53-1<br>8.65-2   | 9.37-1<br>1.08-1   | 1.09+0<br>1.29-1  | 1.22+0<br>1.49-1  | 1.34+0<br>1.69-1  | 1.44+0<br>1.89-1   |
|                                                  | 0                       | <i>∍.∍</i> ɔ−ɔ                                  | 2.14-2               | <b>4.</b> JJ−2    | 0.30-2            | 0.03-2             | 1.00-1             | 1.29-1            | 1.49-1            | 1.09-1            | 1.09-1             |

| Tabl | le 1 i | (continued) |  |
|------|--------|-------------|--|
|      |        |             |  |

| $4f_{5/2}$ $E_b =$ 27.5 eV         | σ                                      | 4.565+1                               | 1.745+1                              | 4.076+0                              | 1.368+0                              | 5.696-1                              | 2.737-1                              | 1.456-1                              | 8.349-2                              | 5.076-2                              | 3.233-2                              |
|------------------------------------|----------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
|                                    | β                                      | 1.059                                 | 1.042                                | 0.952                                | 0.855                                | 0.768                                | 0.695                                | 0.631                                | 0.577                                | 0.527                                | 0.482                                |
|                                    | γ                                      | 3.16-1                                | 4.75-1                               | 7.32-1                               | 9.12-1                               | 1.04+0                               | 1.14+0                               | 1.22+0                               | 1.28+0                               | 1.33+0                               | 1.38+0                               |
|                                    | δ                                      | 9.40-2                                | 1.19-1                               | 1.65-1                               | 2.08-1                               | 2.49-1                               | 2.88-1                               | 3.25-1                               | 3.61-1                               | 3.94-1                               | 4.26-1                               |
| $4f_{7/2}$ $E_b =$ 25.6 eV         | $\sigma \ eta \ eta \ \gamma \ \delta$ | 5.829+1<br>1.055<br>3.25-1<br>9.39-2  | 2.220+1<br>1.033<br>4.86-1<br>1.19-1 | 5.149+0<br>0.940<br>7.43-1<br>1.66-1 | 1.718+0<br>0.845<br>9.22-1<br>2.10-1 | 7.116-1<br>0.762<br>1.05+0<br>2.53-1 | 3.404-1<br>0.692<br>1.14+0<br>2.92-1 | 1.803-1<br>0.633<br>1.22+0<br>3.30-1 | 1.030-1<br>0.582<br>1.28+0<br>3.67-1 | 6.241-2<br>0.536<br>1.33+0<br>4.01-1 | 3.963-2<br>0.495<br>1.37+0<br>4.32-1 |
| $5s_{1/2}$ $E_b = 71.1 \text{ eV}$ | σ                                      | 4.255+0                               | 2.688+0                              | 1.362+0                              | 8.205-1                              | 5.462-1                              | 3.885-1                              | 2.897-1                              | 2.239-1                              | 1.778-1                              | 1.444-1                              |
|                                    | β                                      | 1.905                                 | 1.912                                | 1.921                                | 1.928                                | 1.934                                | 1.940                                | 1.945                                | 1.949                                | 1.952                                | 1.955                                |
|                                    | γ                                      | 3.60-1                                | 2.72-1                               | 1.11-1                               | -9.22-3                              | -8.92-2                              | -1.36-1                              | -1.58-1                              | -1.59-1                              | -1.45-1                              | -1.19-1                              |
|                                    | δ                                      | -5.40-4                               | -8.62-4                              | -1.31-3                              | -1.62-3                              | -1.85-3                              | -2.03-3                              | -2.17-3                              | -2.29-3                              | -2.40-3                              | -2.48-3                              |
| $5p_{1/2}$ $E_b = 43.7 \text{ eV}$ | σ                                      | 4.009+0                               | 2.633+0                              | 1.359+0                              | 8.080-1                              | 5.251-1                              | 3.629-1                              | 2.625-1                              | 1.967-1                              | 1.515-1                              | 1.194-1                              |
|                                    | β                                      | 1.648                                 | 1.695                                | 1.715                                | 1.702                                | 1.678                                | 1.649                                | 1.618                                | 1.587                                | 1.555                                | 1.523                                |
|                                    | γ                                      | 1.83-1                                | 6.49-2                               | -1.99-2                              | 1.82-2                               | 1.15-1                               | 2.37-1                               | 3.68-1                               | 5.00-1                               | 6.30-1                               | 7.54-1                               |
|                                    | δ                                      | -3.68-3                               | -4.61-3                              | -4.98-3                              | -4.71-3                              | -3.56-3                              | -1.45-3                              | 1.55-3                               | 5.31-3                               | 9.62-3                               | 1.44-2                               |
| $5p_{3/2}$ $E_b = 34.7 \text{ eV}$ | σ                                      | 9.034+0                               | 5.598+0                              | 2.676+0                              | 1.513+0                              | 9.466-1                              | 6.348-1                              | 4.477-1                              | 3.282-1                              | 2.480-1                              | 1.921-1                              |
|                                    | β                                      | 1.622                                 | 1.692                                | 1.749                                | 1.762                                | 1.757                                | 1.742                                | 1.722                                | 1.698                                | 1.673                                | 1.646                                |
|                                    | γ                                      | 1.04-1                                | 8.25-3                               | -4.27-2                              | 2.14-2                               | 1.40-1                               | 2.83-1                               | 4.34-1                               | 5.85-1                               | 7.31-1                               | 8.71-1                               |
|                                    | δ                                      | -1.54-3                               | -6.15-4                              | 3.22-3                               | 6.53-3                               | 9.30-3                               | 1.19-2                               | 1.45-2                               | 1.73-2                               | 2.02-2                               | 2.33-2                               |
| $5d_{3/2}$ $E_b = 5.7 \text{ eV}$  | $\sigma$ $\beta$ $\gamma$ $\delta$     | 4.317+0<br>1.330<br>-3.31-2<br>1.03-2 | 2.406+0<br>1.388<br>3.49-2<br>2.24-2 | 9.363-1<br>1.397<br>2.71-1<br>4.29-2 | 4.443-1<br>1.356<br>5.22-1<br>6.12-2 | 2.397-1<br>1.300<br>7.46-1<br>7.92-2 | 1.415-1<br>1.240<br>9.40-1<br>9.72-2 | 8.922-2<br>1.180<br>1.11+0<br>1.15-1 | 5.919-2<br>1.122<br>1.25+0<br>1.33-1 | 4.088-2<br>1.066<br>1.37+0<br>1.51-1 | 2.917-2<br>1.013<br>1.48+0<br>1.68-1 |
| $6s_{1/2}$ $E_b = 8.0 \text{ eV}$  | σ                                      | 3.302-1                               | 2.072-1                              | 1.043-1                              | 6.267-2                              | 4.164-2                              | 2.957-2                              | 2.203-2                              | 1.701-2                              | 1.350-2                              | 1.096-2                              |
|                                    | β                                      | 1.906                                 | 1.912                                | 1.920                                | 1.928                                | 1.934                                | 1.940                                | 1.945                                | 1.949                                | 1.952                                | 1.955                                |
|                                    | γ                                      | 3.51-1                                | 2.63-1                               | 1.04-1                               | -1.42-2                              | -9.33-2                              | -1.40-1                              | -1.60-1                              | -1.60-1                              | -1.44-1                              | -1.17-1                              |
|                                    | δ                                      | -5.66-4                               | -8.79-4                              | -1.33-3                              | -1.64-3                              | -1.87-3                              | -2.04-3                              | -2.18-3                              | -2.29-3                              | -2.39-3                              | -2.46-3                              |

Z= 74, W: [Xe] $4f_{5/2}^6 4f_{7/2}^8 5d_{3/2}^4 6s_{1/2}^2$ 

|                                       |                                    | k (eV)                               |                                       |                                        |                                        |                                       |                                       |                                      |                                      |                                      |                                      |
|---------------------------------------|------------------------------------|--------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Shell                                 |                                    | 1500                                 | 2000                                  | 3000                                   | 4000                                   | 5000                                  | 6000                                  | 7000                                 | 8000                                 | 9000                                 | 10000                                |
| $4s_{1/2}$ $E_b = 595.0 \text{ eV}$   | σ                                  | 2.379+1                              | 1.568+1                               | 8.236+0                                | 5.047+0                                | 3.396+0                               | 2.434+0                               | 1.825+0                              | 1.416+0                              | 1.129+0                              | 9.195-1                              |
|                                       | β                                  | 1.884                                | 1.896                                 | 1.909                                  | 1.918                                  | 1.925                                 | 1.932                                 | 1.938                                | 1.942                                | 1.946                                | 1.950                                |
|                                       | γ                                  | 5.50-1                               | 4.28-1                                | 2.17-1                                 | 6.26-2                                 | -4.36-2                               | -1.12-1                               | -1.50-1                              | -1.65-1                              | -1.61-1                              | -1.44-1                              |
|                                       | δ                                  | -1.50-4                              | -6.82-4                               | -1.30-3                                | -1.69-3                                | -1.97-3                               | -2.18-3                               | -2.35-3                              | -2.49-3                              | -2.61-3                              | -2.71-3                              |
| $4p_{1/2}$ $E_b =$ $491.6 \text{ eV}$ | $\sigma$ $\beta$ $\gamma$ $\delta$ | 2.777+1<br>1.507<br>3.44-1<br>6.82-3 | 1.914+1<br>1.617<br>1.70-1<br>-1.17-3 | 1.027+1<br>1.681<br>-4.96-4<br>-4.31-3 | 6.219+0<br>1.687<br>-5.01-3<br>-4.44-3 | 4.086+0<br>1.673<br>7.03-2<br>-3.48-3 | 2.845+0<br>1.650<br>1.82-1<br>-1.57-3 | 2.070+0<br>1.623<br>3.09-1<br>1.17-3 | 1.557+0<br>1.594<br>4.40-1<br>4.61-3 | 1.203+0<br>1.564<br>5.69-1<br>8.65-3 | 9.506-1<br>1.534<br>6.94-1<br>1.31-2 |
| $4p_{3/2}$ $E_b = 425.3 \text{ eV}$   | σ                                  | 6.838+1                              | 4.361+1                               | 2.136+1                                | 1.221+1                                | 7.692+0                               | 5.182+0                               | 3.668+0                              | 2.696+0                              | 2.042+0                              | 1.584+0                              |
|                                       | β                                  | 1.494                                | 1.617                                 | 1.714                                  | 1.745                                  | 1.750                                 | 1.741                                 | 1.726                                | 1.705                                | 1.683                                | 1.658                                |
|                                       | γ                                  | 2.13-1                               | 7.33-2                                | -4.31-2                                | -1.18-2                                | 9.10-2                                | 2.26-1                                | 3.74-1                               | 5.24-1                               | 6.71-1                               | 8.12-1                               |
|                                       | δ                                  | 5.05-3                               | 7.77-4                                | 3.09-3                                 | 6.74-3                                 | 9.86-3                                | 1.27-2                                | 1.53-2                               | 1.80-2                               | 2.07-2                               | 2.35-2                               |
| $4d_{3/2}$ $E_b = 258.8 \text{ eV}$   | σ                                  | 8.775+1                              | 4.946+1                               | 1.936+1                                | 9.201+0                                | 4.970+0                               | 2.936+0                               | 1.853+0                              | 1.230+0                              | 8.498-1                              | 6.068-1                              |
|                                       | β                                  | 1.229                                | 1.333                                 | 1.379                                  | 1.354                                  | 1.306                                 | 1.251                                 | 1.193                                | 1.137                                | 1.083                                | 1.032                                |
|                                       | γ                                  | -4.63-2                              | -6.06-3                               | 2.17-1                                 | 4.72-1                                 | 7.03-1                                | 9.03-1                                | 1.07+0                               | 1.22+0                               | 1.35+0                               | 1.46+0                               |
|                                       | δ                                  | 8.61-3                               | 2.10-2                                | 4.31-2                                 | 6.20-2                                 | 7.98-2                                | 9.70-2                                | 1.14-1                               | 1.30-1                               | 1.47-1                               | 1.63-1                               |
| $4d_{5/2}$ $E_b = 245.4 \text{ eV}$   | σ                                  | 1.259+2                              | 6.980+1                               | 2.677+1                                | 1.255+1                                | 6.708+0                               | 3.926+0                               | 2.458+0                              | 1.620+0                              | 1.112+0                              | 7.891-1                              |
|                                       | β                                  | 1.292                                | 1.352                                 | 1.349                                  | 1.296                                  | 1.232                                 | 1.166                                 | 1.103                                | 1.044                                | 0.989                                | 0.939                                |
|                                       | γ                                  | -4.62-2                              | 1.44-2                                | 2.56-1                                 | 5.09-1                                 | 7.32-1                                | 9.19-1                                | 1.08+0                               | 1.21+0                               | 1.33+0                               | 1.43+0                               |
|                                       | δ                                  | 8.95-3                               | 2.00-2                                | 4.18-2                                 | 6.30-2                                 | 8.42-2                                | 1.05-1                                | 1.25-1                               | 1.45-1                               | 1.65-1                               | 1.84-1                               |
| $4f_{5/2}$ $E_b = 37.4 \text{ eV}$    | σ                                  | 5.206+1                              | 2.008+1                               | 4.740+0                                | 1.600+0                                | 6.687-1                               | 3.223-1                               | 1.718-1                              | 9.876-2                              | 6.017-2                              | 3.840-2                              |
|                                       | β                                  | 1.058                                | 1.045                                 | 0.961                                  | 0.866                                  | 0.779                                 | 0.706                                 | 0.642                                | 0.587                                | 0.538                                | 0.492                                |
|                                       | γ                                  | 3.00-1                               | 4.59-1                                | 7.20-1                                 | 9.06-1                                 | 1.04+0                                | 1.14+0                                | 1.22+0                               | 1.28+0                               | 1.34+0                               | 1.38+0                               |
|                                       | δ                                  | 9.20-2                               | 1.17-1                                | 1.63-1                                 | 2.06-1                                 | 2.46-1                                | 2.84-1                                | 3.21-1                               | 3.56-1                               | 3.90-1                               | 4.21-1                               |
| $4f_{7/2}$<br>$E_b =$<br>35.1 eV      | σ<br>β<br>γ<br>δ                   | 6.659+1<br>1.055<br>3.09-1<br>9.20-2 | 2.559+1<br>1.037<br>4.70-1<br>1.17-1  | 5.999+0<br>0.949<br>7.32-1<br>1.63-1   | 2.013+0<br>0.855<br>9.16-1<br>2.07-1   | 8.370-1<br>0.772<br>1.05+0<br>2.49-1  | 4.015-1<br>0.702<br>1.15+0<br>2.88-1  | 2.131-1<br>0.643<br>1.22+0<br>3.26-1 | 1.220-1<br>0.591<br>1.28+0<br>3.62-1 | 7.410-2<br>0.546<br>1.34+0<br>3.96-1 | 4.714-2<br>0.504<br>1.38+0<br>4.28-1 |
| $5s_{1/2}$ $E_b = 77.1 \text{ eV}$    | σ                                  | 4.491+0                              | 2.842+0                               | 1.445+0                                | 8.728-1                                | 5.822-1                               | 4.147-1                               | 3.096-1                              | 2.394-1                              | 1.903-1                              | 1.547-1                              |
|                                       | β                                  | 1.899                                | 1.906                                 | 1.915                                  | 1.923                                  | 1.929                                 | 1.935                                 | 1.940                                | 1.945                                | 1.948                                | 1.951                                |
|                                       | γ                                  | 3.75-1                               | 2.88-1                                | 1.28-1                                 | 5.15-3                                 | -7.90-2                               | -1.31-1                               | -1.58-1                              | -1.64-1                              | -1.54-1                              | -1.32-1                              |
|                                       | δ                                  | -5.50-4                              | -8.97-4                               | -1.38-3                                | -1.72-3                                | -1.97-3                               | -2.17-3                               | -2.33-3                              | -2.46-3                              | -2.58-3                              | -2.67-3                              |
| $5p_{1/2}$ $E_b =$ 46.7 eV            | σ                                  | 4.230+0                              | 2.791+0                               | 1.451+0                                | 8.677-1                                | 5.663-1                               | 3.928-1                               | 2.849-1                              | 2.139-1                              | 1.651-1                              | 1.303-1                              |
|                                       | β                                  | 1.642                                | 1.691                                 | 1.715                                  | 1.705                                  | 1.683                                 | 1.655                                 | 1.626                                | 1.595                                | 1.564                                | 1.533                                |
|                                       | γ                                  | 2.00-1                               | 7.86-2                                | -1.79-2                                | 9.85-3                                 | 9.86-2                                | 2.15-1                                | 3.44-1                               | 4.74-1                               | 6.01-1                               | 7.24-1                               |
|                                       | δ                                  | -3.78-3                              | -4.80-3                               | -5.21-3                                | -5.02-3                                | -4.02-3                               | -2.11-3                               | 6.61-4                               | 4.17-3                               | 8.21-3                               | 1.27-2                               |

| $5p_{3/2}$ $E_b =$       | $\frac{\sigma}{eta}$    | 9.743+0<br>1.613   | 6.052+0<br>1.686   | 2.908+0<br>1.747     | 1.650+0<br>1.763    | 1.035+0<br>1.760    | 6.960-1<br>1.748   | 4.918-1<br>1.729          | 3.611-1<br>1.707  | 2.733-1<br>1.683  | 2.119-1<br>1.658  |
|--------------------------|-------------------------|--------------------|--------------------|----------------------|---------------------|---------------------|--------------------|---------------------------|-------------------|-------------------|-------------------|
| 36.5 eV                  | $_{\delta}^{\gamma}$    | 1.15-1<br>-1.61-3  | 1.66-2 $-8.46-4$   | -4.46-2 3.04 $-3$    | 1.00-2 $6.47-3$     | 1.22-1<br>9.31-3    | 2.60-1<br>1.19-2   | 4.08 - 1 $1.44 - 2$       | 5.57-1<br>1.71-2  | 7.02-1<br>1.99-2  | 8.41-1 $2.27-2$   |
| $5d_{3/2}$ $E_b =$       | $\sigma$ $\beta$        | 5.161+0<br>1.323   | 2.899+0<br>1.385   | 1.141+0<br>1.401     | 5.453-1<br>1.365    | 2.957-1<br>1.311    | 1.752-1<br>1.253   | 1.108-1<br>1.195          | 7.372-2<br>1.137  | 5.103-2<br>1.082  | 3.649-2<br>1.029  |
| 6.1 eV                   | γ<br>δ                  | -3.57-2<br>9.27-3  | 2.35-2<br>2.12-2   | 2.50-1<br>4.16-2     | 4.99-1<br>5.97-2    | 7.24–1<br>7.73–2    | 9.21-1<br>9.49-2   | 1.195<br>1.09+0<br>1.12-1 | 1.23+0<br>1.30-1  | 1.36+0<br>1.47-1  | 1.47+0<br>1.63-1  |
| 6s <sub>1/2</sub>        | σ                       | 3.593-1            | 2.257-1            | 1.139-1              | 6.861-2             | 4.567-2             | 3.248-2            | 2.422-2                   | 1.871-2           | 1.486-2           | 1.207-2           |
| $E_b = 8.0 \text{ eV}$   | $\beta$<br>$\gamma$     | 1.899<br>3.65-1    | 1.906<br>2.79-1    | 1.915<br>1.21-1      | 1.922<br>-5.43-4    | 1.929<br>-8.37-2    | 1.935<br>-1.34-1   | 1.940<br>-1.59-1          | 1.945<br>-1.63-1  | 1.949<br>-1.52-1  | 1.952<br>-1.29-1  |
|                          | δ                       | -5.80-4            | -9.17-4            | -1.40-3              | -1.74-3             | -1.99-3             | -2.18-3            | -2.33-3                   | -2.45-3           | -2.56-3           | -2.64-3           |
| Z= 75, Re: [X            | e]4f <sub>5/2</sub> 4   | k (eV)             | 6s <sub>1/2</sub>  |                      |                     |                     |                    |                           |                   |                   |                   |
| Shell                    |                         | 1500               | 2000               | 3000                 | 4000                | 5000                | 6000               | 7000                      | 8000              | 9000              | 10000             |
| 4s <sub>1/2</sub>        | σ                       | 2.414+1            | 1.599+1            | 8.450+0              | 5.196+0             | 3.505+0             | 2.516+0            | 1.890+0                   | 1.468+0           | 1.171+0           | 9.544-1           |
| $E_b =$                  | β                       | 1.874              | 1.888              | 1.902                | 1.912               | 1.920               | 1.926              | 1.932                     | 1.937             | 1.942             | 1.945             |
| 625.0 eV                 | $\frac{\gamma}{\delta}$ | 5.74-1<br>-7.97-5  | 4.53-1<br>-6.75-4  | 2.42 - 1 $-1.36 - 3$ | 8.33-2 $-1.78-3$    | -2.80-2 $-2.09-3$   | -1.01-1 $-2.32-3$  | -1.45-1 $-2.51-3$         | -1.65-1 $-2.66-3$ | -1.67-1 $-2.80-3$ | -1.54-1 $-2.90-3$ |
| $4p_{1/2}$               | $\sigma_{\beta}$        | 2.803+1<br>1.487   | 1.949+1<br>1.606   | 1.057+1<br>1.678     | 6.441+0<br>1.687    | 4.252+0<br>1.675    | 2.972+0<br>1.655   | 2.168+0<br>1.629          | 1.635+0<br>1.602  | 1.266+0<br>1.573  | 1.002+0<br>1.544  |
| $E_b = 517.9 \text{ eV}$ | $\beta$ $\gamma$        | 3.71 - 1           | 1.96-1             | 8.57 - 3             | -9.70 - 3           | 5.58-2              | 1.61 - 1           | 2.83 - 1                  | 4.11 - 1          | 5.38 - 1          | 6.62-1            |
|                          | δ                       | 8.30-3             | -7.97-4            | -4.46-3              | -4.72-3             | -3.90-3             | -2.18-3            | 3.64-4                    | 3.57-3            | 7.34-3            | 1.16-2            |
| $4p_{3/2}$<br>$E_b =$    | $\frac{\sigma}{\beta}$  | 7.025+1<br>1.476   | 4.500+1<br>1.604   | 2.217+1<br>1.708     | 1.273+1<br>1.743    | 8.046+0<br>1.751    | 5.434+0<br>1.745   | 3.854+0<br>1.732          | 2.837+0<br>1.713  | 2.152+0<br>1.692  | 1.671+0<br>1.669  |
| 444.4 eV                 | γ                       | 2.30 - 1           | 8.82-2             | -4.07 - 2            | -2.09-2             | 7.34 - 2            | 2.03 - 1           | 3.47 - 1                  | 4.95 - 1          | 6.40 - 1          | 7.80 - 1          |
| 4d <sub>3/2</sub>        | $\frac{\delta}{\sigma}$ | 5.97-3<br>9.141+1  | 8.70-4<br>5.200+1  | 2.87-3<br>2.058+1    | 6.62-3<br>9.855+0   | 9.84-3<br>5.350+0   | 1.27-2<br>3.172+0  | 1.53-2<br>2.008+0         | 1.79-2<br>1.336+0 | 2.04-2<br>9.254-1 | 2.31-2<br>6.621-1 |
| $E_b =$                  | β                       | 1.213              | 1.324              | 1.380                | 1.361               | 1.316               | 1.263              | 1.207                     | 1.152             | 1.100             | 1.050             |
| 273.7 eV                 | $\delta$                | -4.50-2 $7.65-3$   | -1.65-2 $1.97-2$   | 1.94-1<br>4.17-2     | 4.45 - 1 $6.04 - 2$ | 6.78 - 1 $7.80 - 2$ | 8.81-1<br>9.47-2   | 1.05+0<br>1.11-1          | 1.20+0<br>1.27-1  | 1.33+0<br>1.43-1  | 1.45+0<br>1.60-1  |
| 4d <sub>5/2</sub>        | σ                       | 1.315+2            | 7.349+1            | 2.848+1              | 1.344+1             | 7.219+0             | 4.240+0            | 2.662+0                   | 1.759+0           | 1.210+0           | 8.601-1           |
| $E_b = 260.2 \text{ eV}$ | $\beta$ $\gamma$        | 1.282 $-4.74-2$    | 1.349<br>2.45-3    | 1.353<br>2.34-1      | 1.304<br>4.86-1     | 1.242<br>7.11-1     | 1.177<br>9.01-1    | 1.115<br>1.06+0           | 1.057<br>1.20+0   | 1.003<br>1.32+0   | 0.953<br>1.42+0   |
|                          | δ                       | 8.10-3             | 1.87-2             | 4.01-2               | 6.10-2              | 8.19-2              | 1.02-1             | 1.22-1                    | 1.42-1            | 1.61-1            | 1.81-1            |
| $4f_{5/2}$<br>$E_b =$    | $\frac{\sigma}{\beta}$  | 5.910+1<br>1.056   | 2.299+1<br>1.048   | 5.486+0<br>0.970     | 1.863+0<br>0.876    | 7.817—1<br>0.791    | 3.778-1<br>0.716   | 2.019-1<br>0.653          | 1.163-1<br>0.597  | 7.100-2<br>0.548  | 4.540-2<br>0.502  |
| 48.1 eV                  | γ                       | 2.84-1<br>9.00-2   | 4.43-1<br>1.14-1   | 7.08-1<br>1.60-1     | 8.98-1<br>2.03-1    | 1.04+0<br>2.42-1    | 1.14+0<br>2.80-1   | 1.22+0<br>3.17-1          | 1.29+0<br>3.52-1  | 1.34+0<br>3.85-1  | 1.39+0<br>4.16-1  |
| 4f <sub>7/2</sub>        | σ                       | 7.545+1            | 2.924+1            | 6.930+0              | 2.339+0             | 9.763-1             | 4.696-1            | 2.499-1                   | 1.434-1           | 8.722-2           | 5.559-2           |
| $E_b = 45.7 \text{ eV}$  | $\beta$ $\gamma$        | 1.053<br>2.94-1    | 1.040<br>4.54-1    | 0.957<br>7.20-1      | 0.865<br>9.10-1     | 0.782<br>1.05+0     | 0.712<br>1.15+0    | 0.652<br>1.23+0           | 0.601<br>1.29+0   | 0.555<br>1.34+0   | 0.513<br>1.39+0   |
| 15.7 C V                 | δ                       | 8.99-2             | 1.14-1             | 1.61-1               | 2.04-1              | 2.46-1              | 2.84-1             | 3.22-1                    | 3.57-1            | 3.91-1            | 4.23-1            |
| $5s_{1/2}$<br>$E_b =$    | $\frac{\sigma}{\beta}$  | 4.732+0<br>1.892   | 2.999+0<br>1.899   | 1.530+0<br>1.909     | 9.266-1<br>1.917    | 6.193-1<br>1.924    | 4.418-1<br>1.930   | 3.302-1<br>1.935          | 2.556-1<br>1.940  | 2.033-1<br>1.944  | 1.653-1<br>1.947  |
| 82.8 eV                  | γ                       | 3.89 - 1           | 3.05 - 1           | 1.45 - 1             | 2.02 - 2            | -6.80 - 2           | -1.25-1            | -1.56-1                   | -1.67 - 1         | -1.61-1           | -1.43-1           |
| F                        | δ                       | -5.56-4            | -9.30-4            | -1.46-3              | -1.82-3             | -2.10-3             | -2.31-3            | -2.49-3                   | -2.64-3           | -2.76-3           | -2.86-3           |
| $5p_{1/2}$ $E_b =$       | $\frac{\sigma}{\beta}$  | 4.493+0<br>1.635   | 2.977+0<br>1.687   | 1.559+0<br>1.714     | 9.380—1<br>1.707    | 6.148-1<br>1.687    | 4.278-1<br>1.661   | 3.112-1<br>1.633          | 2.342-1<br>1.603  | 1.811-1<br>1.573  | 1.432-1<br>1.543  |
| 48.4 eV                  | γ                       | 2.17-1             | 9.28-2             | -1.47 - 2            | 2.77-3              | 8.36-2              | 1.95-1             | 3.19-1                    | 4.47-1            | 5.73-1            | 6.94-1            |
| 5p <sub>3/2</sub>        | $\frac{\delta}{\sigma}$ | -3.90-3<br>1.043+1 | -5.02-3<br>6.493+0 | -5.45-3<br>3.134+0   | -5.31-3<br>1.785+0  | -4.45-3<br>1.124+0  | -2.73-3<br>7.571-1 | -1.78-4 $5.360-1$         | 3.07-3<br>3.942-1 | 6.86-3<br>2.987-1 | 1.12-2<br>2.320-1 |
| $E_b =$                  | β                       | 1.603              | 1.678              | 1.744                | 1.764               | 1.763               | 1.753              | 1.736                     | 1.715             | 1.693             | 1.668             |
| 36.8 eV                  | $\delta \gamma$         | 1.26-1<br>-1.67-3  | 2.51-2 $-1.08-3$   | -4.55-2 $2.84-3$     | -1.78-4 $6.40-3$    | 1.05 - 1 $9.32 - 3$ | 2.38-1<br>1.19-2   | 3.83-1<br>1.44-2          | 5.29-1<br>1.70-2  | 6.73-1<br>1.96-2  | 8.12-1<br>2.23-2  |
| 5d <sub>3/2</sub>        | σ                       | 6.037+0            | 3.416+0            | 1.359+0              | 6.545-1             | 3.568-1             | 2.123-1            | 1.347-1                   | 8.984-2           | 6.233-2           | 4.466-2           |
| $E_b = 3.8 \text{ eV}$   | $\beta$ $\gamma$        | 1.315<br>-3.73-2   | 1.382<br>1.36-2    | 1.405<br>2.31-1      | 1.372<br>4.75-1     | 1.322<br>7.02-1     | 1.266<br>9.01-1    | 1.208<br>1.07+0           | 1.152<br>1.22+0   | 1.097<br>1.35+0   | 1.045<br>1.46+0   |
|                          | δ                       | 8.30-3             | 2.01-2             | 4.03-2               | 5.81-2              | 7.55-2              | 9.27-2             | 1.10-1                    | 1.26-1            | 1.43-1            | 1.59-1            |
| $5d_{5/2}$ $E_b =$       | $\sigma \ eta$          | 8.076+0<br>1.363   | 4.499+0<br>1.392   | 1.754+0<br>1.367     | 8.328-1<br>1.309    | 4.490-1<br>1.243    | 2.646-1<br>1.177   | 1.665-1<br>1.114          | 1.102-1<br>1.055  | 7.597-2<br>1.000  | 5.409-2<br>0.948  |
| 2.5  eV                  | ρ<br>γ<br>δ             | -3.44-2            | 3.42 - 2           | 2.68 - 1             | 5.12 - 1            | 7.30 - 1            | 9.17 - 1           | 1.08+0                    | 1.21+0            | 1.33+0            | 1.43+0            |
| Co                       |                         | 8.54-3             | 1.89-2             | 3.90-2               | 5.92-2              | 7.98-2              | 1.01-1             | 1.22-1                    | 1.42-1            | 1.62-1            | 1.80-1            |
|                          | $\sigma$                | 3.909 - 1          | 2.457 - 1          | 1.244 - 1            | 7.506 - 2           | 5.006 - 2           | 3.565 - 2          | 2.661 - 2                 | 2.058 - 2         | 1.636 - 2         | 1.329 - 2         |
| $6s_{1/2}$<br>$E_b =$    | β                       | 1.892              | 1.899              | 1.909                | 1.917               | 1.923               | 1.930              | 1.935                     | 1.940             | 1.944             | 1.948             |

Table 1 (continued)

Z= 76, Os: [Xe] $4f_{5/2}^6$  $4f_{7/2}^8$  $5d_{3/2}^4$  $5d_{5/2}^2$  $6s_{1/2}^2$ 

7.423+1

1.430

β

 $4p_{3/2} E_b =$ 

2.391+1

1.693

4.797+1

1.572

1.384+1

1.738

8.798+0

1.753

5.970+0

1.752

4.250+0

1.743

3.139+0

1.728

| Chall                            |                        | k (eV)                                               | 2000              | 2000              | 4000             | E000               | COOC              | 7000               | 9000               | 0000               | 10000             |
|----------------------------------|------------------------|------------------------------------------------------|-------------------|-------------------|------------------|--------------------|-------------------|--------------------|--------------------|--------------------|-------------------|
| Shell                            |                        | 1500                                                 | 2000              | 3000              | 4000             | 5000               | 6000              | 7000               | 8000               | 9000               | 10000             |
| ls <sub>1/2</sub>                | $\frac{\sigma}{\beta}$ | 2.447+1<br>1.864                                     | 1.629+1<br>1.880  | 8.657+0<br>1.895  | 5.343+0<br>1.905 | 3.613+0<br>1.913   | 2.599+0<br>1.921  | 1.954+0<br>1.927   | 1.520+0<br>1.932   | 1.214+0<br>1.937   | 9.898-1<br>1.941  |
| $E_b = 654.3 \text{ eV}$         | ρ<br>γ                 | 5.97—1                                               | 4.78-1            | 2.67-1            | 1.905            | -1.12-2            | -8.98-2           | -1.39-1            | -1.64-1            | -1.71-1            | -1.63-1           |
| )34.3 CV                         | δ                      | 4.10-6                                               | -6.60-4           | -1.42-3           | -1.88 - 3        | -2.21-3            | -2.47 - 3         | -2.68-3            | -2.85-3            | -2.99-3            | -3.11-3           |
| 1p <sub>1/2</sub>                | σ                      | 2.825+1                                              | 1.982+1           | 1.086+1           | 6.663+0          | 4.420+0            | 3.101+0           | 2.269+0            | 1.715+0            | 1.331+0            | 1.055+0           |
| $E_b =$                          | β                      | 1.465                                                | 1.593             | 1.674             | 1.687            | 1.678              | 1.659             | 1.635              | 1.609              | 1.581              | 1.553             |
| 546.5 eV                         | γ                      | 3.99-1                                               | 2.23-1            | 1.96-2            | -1.28-2          | 4.24-2             | 1.40-1            | 2.58-1             | 3.83-1             | 5.08-1             | 6.30-1            |
|                                  | δ                      | 1.01 - 2                                             | -3.24 - 4         | -4.62 - 3         | -5.00 - 3        | -4.31 - 3          | -2.76 - 3         | -4.26 - 4          | 2.60 - 3           | 6.16 - 3           | 1.02 - 2          |
| $4p_{3/2}$                       | σ                      | 7.221+1                                              | 4.646+1           | 2.303+1           | 1.327+1          | 8.416+0            | 5.698+0           | 4.049+0            | 2.985+0            | 2.267+0            | 1.763+0           |
| $E_b =$                          | β                      | 1.455                                                | 1.589             | 1.701             | 1.741            | 1.752              | 1.749             | 1.737              | 1.721              | 1.701              | 1.679             |
| 468.2 eV                         | γ                      | 2.48-1                                               | 1.05-1            | -3.71-2           | -2.91-2          | 5.63-2             | 1.80-1            | 3.20-1             | 4.66-1             | 6.09-1             | 7.49-1            |
|                                  | δ                      | 7.18-3                                               | 1.04-3            | 2.63-3            | 6.47-3           | 9.81-3             | 1.27-2            | 1.53-2             | 1.79-2             | 2.04-2             | 2.29-2            |
| $d_{3/2}$                        | σ                      | 9.510+1                                              | 5.459+1           | 2.185+1           | 1.054+1          | 5.749+0            | 3.422+0           | 2.172+0            | 1.449+0            | 1.006+0            | 7.212-1           |
| $E_b = 289.4 \text{ eV}$         | β                      | 1.195<br>-4.24-2                                     | 1.314<br>-2.57-2  | 1.380<br>1.72-1   | 1.367<br>4.19-1  | 1.326<br>6.53-1    | 1.275<br>8.58-1   | 1.221<br>1.03+0    | 1.168<br>1.19+0    | 1.116<br>1.32+0    | 1.067<br>1.44+0   |
| 203.4 CV                         | $_{\delta}^{\gamma}$   | 6.79-3                                               | 1.84-2            | 4.03-2            | 5.89-2           | 7.62-2             | 9.27-2            | 1.05+0             | 1.19+0             | 1.40-1             | 1.56-1            |
| 4d <sub>5/2</sub>                | σ                      | 1.369+2                                              | 7.716+1           | 3.022+1           | 1.436+1          | 7.749+0            | 4.569+0           | 2.876+0            | 1.905+0            | 1.313+0            | 9.353-1           |
| $E_b =$                          | β                      | 1.273                                                | 1.345             | 1.356             | 1.311            | 1.251              | 1.189             | 1.127              | 1.069              | 1.016              | 0.966             |
| 272.8 eV                         | γ                      | -4.74-2                                              | -7.87-3           | 2.14-1            | 4.63-1           | 6.89-1             | 8.82-1            | 1.05+0             | 1.18+0             | 1.31+0             | 1.41+0            |
|                                  | δ                      | 7.39 - 3                                             | 1.76 - 2          | 3.85 - 2          | 5.90 - 2         | 7.96 - 2           | 9.99 - 2          | 1.20 - 1           | 1.39 - 1           | 1.58 - 1           | 1.77 - 1          |
| $f_{5/2}$                        | σ                      | 6.612+1                                              | 2.598+1           | 6.276+0           | 2.147+0          | 9.049-1            | 4.388-1           | 2.351-1            | 1.358-1            | 8.305-2            | 5.321-2           |
| $E_b =$                          | β                      | 1.053                                                | 1.050             | 0.977             | 0.887            | 0.802              | 0.727             | 0.663              | 0.608              | 0.558              | 0.512             |
| 53.8 eV                          | γ                      | 2.69-1                                               | 4.27 - 1          | 6.94-1            | 8.90-1           | 1.03+0             | 1.14+0            | 1.22+0             | 1.29+0             | 1.35+0             | 1.40+0            |
|                                  | δ                      | 8.80-2                                               | 1.12-1            | 1.58-1            | 2.00-1           | 2.39-1             | 2.77-1            | 3.13-1             | 3.47-1             | 3.80-1             | 4.11-1            |
| $4f_{7/2}$                       | σ                      | 8.427+1                                              | 3.298+1           | 7.913+0           | 2.690+0          | 1.128+0            | 5.443-1           | 2.904-1            | 1.670-1            | 1.018-1            | 6.501-2           |
| $E_b = 51.0 \text{ eV}$          | β                      | 1.052                                                | 1.042             | 0.965             | 0.875            | 0.792              | 0.722             | 0.662              | 0.610<br>1.29+0    | 0.564              | 0.521             |
| 51.0 ev                          | $_{\delta}^{\gamma}$   | 2.80-1<br>8.80-2                                     | 4.39-1<br>1.12-1  | 7.07-1<br>1.58-1  | 9.02-1 $2.02-1$  | 1.04+0<br>2.42-1   | 1.15+0<br>2.81-1  | 1.23+0<br>3.18-1   | 3.53-1             | 1.35+0<br>3.87-1   | 1.39+0<br>4.18-1  |
| · c                              |                        | 4.964+0                                              | 3.151+0           | 1.613+0           | 9.797-1          | 6.563-1            | 4.690-1           | 3.510-1            | 2.719-1            | 2.165-1            | 1.761-1           |
| $\dot{s}_{1/2}$<br>$\dot{s}_b =$ | $\frac{\sigma}{eta}$   | 1.884                                                | 1.892             | 1.903             | 9.797—1<br>1.911 | 1.918              | 4.690—1<br>1.925  | 3.510—1<br>1.930   | 2.719—1<br>1.935   | 2.165 – 1<br>1.939 | 1.761-1           |
| 83.7 eV                          | γ                      | 4.03-1                                               | 3.21-1            | 1.62-1            | 3.53-2           | -5.61-2            | -1.17 - 1         | -1.53-1            | -1.68-1            | -1.67 - 1          | -1.53-1           |
|                                  | δ                      | -5.61-4                                              | -9.63 - 4         | -1.53 - 3         | -1.93 - 3        | -2.23 - 3          | -2.46 - 3         | -2.66-3            | -2.82 - 3          | -2.96 - 3          | -3.07 - 3         |
| $p_{1/2}$                        | σ                      | 4.763+0                                              | 3.169+0           | 1.671+0           | 1.011+0          | 6.653-1            | 4.645-1           | 3.388-1            | 2.555-1            | 1.980-1            | 1.568-1           |
| $E_b =$                          | $\beta$                | 1.625                                                | 1.681             | 1.713             | 1.709            | 1.691              | 1.666             | 1.639              | 1.611              | 1.581              | 1.552             |
| 58.0 eV                          | γ                      | 2.39-1                                               | 1.10-1            | -1.01-2           | -3.50-3          | 6.90-2             | 1.74-1            | 2.95-1             | 4.20-1             | 5.44-1             | 6.64-1            |
|                                  | δ                      | -3.99-3                                              | -5.28-3           | -5.73-3           | -5.62-3          | -4.89-3            | -3.33-3           | -9.98-4            | 2.03-3             | 5.61-3             | 9.69-3            |
| $p_{3/2}$                        | σ                      | 1.116+1                                              | 6.961+0           | 3.373+0           | 1.928+0          | 1.217+0            | 8.215-1           | 5.827-1            | 4.291-1            | 3.256-1            | 2.531-1           |
| $E_b = 45.4 \text{ eV}$          | β                      | 1.589<br>1.40-1                                      | 1.669<br>3.55-2   | 1.740<br>-4.56-2  | 1.763<br>-1.00-2 | 1.766<br>8.73-2    | 1.757<br>2.15-1   | 1.743<br>3.56-1    | 1.724<br>5.01-1    | 1.702<br>6.43-1    | 1.679<br>7.81-1   |
| 43.4 ev                          | $_{\delta}^{\gamma}$   | -1.69-3                                              | -1.34-3           | 2.60-3            | 6.31-3           | 9.32-3             | 1.20-2            | 1.44-2             | 1.69-2             | 1.94-2             | 2.19-2            |
| 5d <sub>3/2</sub>                | σ                      | 6.910+0                                              | 3.938+0           | 1.584+0           | 7.681-1          | 4.210-1            | 2.515-1           | 1.601-1            | 1.071-1            | 7.446-2            | 5.346-2           |
| $E_b =$                          | β                      | 1.306                                                | 1.379             | 1.408             | 1.380            | 1.332              | 1.278             | 1.222              | 1.167              | 1.113              | 1.062             |
| 0.4 eV                           | γ                      | -3.80-2                                              | 4.73-3            | 2.12-1            | 4.53-1           | 6.80-1             | 8.80-1            | 1.05+0             | 1.20+0             | 1.33+0             | 1.45+0            |
|                                  | δ                      | 7.40 - 3                                             | 1.90 - 2          | 3.91 - 2          | 5.66 - 2         | 7.37 - 2           | 9.05 - 2          | 1.07 - 1           | 1.23 - 1           | 1.39 - 1           | 1.55 - 1          |
| 5d <sub>5/2</sub>                | σ                      | 9.315+0                                              | 5.224+0           | 2.057+0           | 9.834-1          | 5.328-1            | 3.152-1           | 1.990-1            | 1.320-1            | 9.119-2            | 6.506-2           |
| $E_b =$                          | $\beta$                | 1.361                                                | 1.393             | 1.373             | 1.317            | 1.252              | 1.188             | 1.126              | 1.067              | 1.012              | 0.960             |
| 0.9 eV                           | γ                      | -3.69-2                                              | 2.42-2            | 2.50-1            | 4.92-1           | 7.11-1             | 9.00-1            | 1.06+0             | 1.20+0             | 1.32+0             | 1.42+0            |
|                                  | δ                      | 7.75-3                                               | 1.79-2            | 3.76-2            | 5.73-2           | 7.76-2             | 9.82-2            | 1.19-1             | 1.39-1             | 1.58-1             | 1.76-1            |
| $5s_{1/2}$                       | $\sigma$               | 4.203-1                                              | 2.643-1           | 1.341-1           | 8.114-2          | 5.421-2            | 3.866-2           | 2.889-2            | 2.236-2            | 1.779-2            | 1.447-2           |
| $E_b =$                          | β                      | 1.885                                                | 1.893             | 1.903             | 1.911<br>2.90-2  | 1.918<br>-6.16-2   | 1.924             | 1.930              | 1.935<br>-1.68-1   | 1.940              | 1.943             |
| 8.0 eV                           | $\gamma \\ \delta$     | 3.92-1 $-6.00-4$                                     | 3.10-1 $-9.87-4$  | 1.54-1<br>-1.55-3 | -1.95-3          | -6.16-2<br>-2.25-3 | -1.21-1 $-2.48-3$ | -1.55-1 $-2.66-3$  | -1.68-1<br>-2.80-3 | -1.65-1 $-2.93-3$  | -1.51-1 $-3.03-3$ |
| - 77 I [V-                       |                        |                                                      |                   | 1.55 3            | 1.55 3           | 2.23               | 2.10 3            | 2.00 3             | 2.00 3             | 2.33               | 3.03 3            |
| z= //, ir: [xe                   | J41 <sub>5/2</sub> 4   | f <sub>7/2</sub> 5d <sub>3/2</sub> 5d <sub>5/2</sub> | 6S <sub>1/2</sub> |                   |                  |                    |                   |                    |                    |                    |                   |
| Chall                            |                        | k (eV)<br>1500                                       | 2000              | 2000              | 4000             | 5000               | 6000              | 7000               | 9000               | 0000               | 10000             |
| Shell                            |                        |                                                      | 2000              | 3000              | 4000             | 5000               | 6000              | 7000               | 8000               | 9000               | 10000             |
| 1s <sub>1/2</sub>                | $\sigma$               | 2.480+1                                              | 1.659+1           | 8.871+0<br>1.887  | 5.494+0          | 3.724+0            | 2.684+0           | 2.021+0            | 1.573+0            | 1.257+0            | 1.026+0           |
| $E_b = 690.1 \text{ eV}$         | β                      | 1.853<br>6.24-1                                      | 1.871<br>5.08-1   | 1.887<br>2.95-1   | 1.898<br>1.28-1  | 1.907<br>7.20—3    | 1.914<br>-7.64-2  | 1.921<br>-1.31-1   | 1.927<br>-1.61-1   | 1.931<br>-1.73-1   | 1.935<br>1.701    |
| JJU, 1 CV                        | $\delta$               | 1.16-4                                               | -6.31-4           | -1.47 - 3         | -1.98 - 3        | -2.34-3            | -7.64-2 $-2.62-3$ | -1.31-1<br>-2.85-3 | -3.04-3            | -3.20-3            | -3.33-3           |
| $1p_{1/2}$                       | σ                      | 2.843+1                                              | 2.012+1           | 1.115+1           | 6.885+0          | 4.589+0            | 3.231+0           | 2.371+0            | 1.797+0            | 1.398+0            | 1.110+0           |
| $E_b =$                          | $\beta$                | 1.440                                                | 1.579             | 1.669             | 1.686            | 1.680              | 1.663             | 1.641              | 1.616              | 1.589              | 1.562             |
| 577.1 eV                         | γ                      | 4.27-1                                               | 2.52-1            | 3.26-2            | -1.42-2          | 3.05-2             | 1.21-1            | 2.34-1             | 3.55-1             | 4.78-1             | 5.99-1            |
|                                  | δ                      | 1.22-2                                               | 2.67 - 4          | -4.78 - 3         | -5.29 - 3        | -4.71 - 3          | -3.32 - 3         | -1.15 - 3          | 1.66 - 3           | 5.04 - 3           | 8.83-3            |
|                                  |                        | 7 422 1                                              | 4707.1            | 2 201 - 1         | 1 20 4 . 1       | 0.700.0            | F 070 · 0         | 4.250.0            | 2 120 . 0          | 2 207 . 0          | 1.050.0           |

(continued on next page)

1.859+0

1.689

2.387+0

1.709

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | able 1 (continu         | ued)                               |          |                   |          |          |          |          |          |          |          |                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------|----------|-------------------|----------|----------|----------|----------|----------|----------|----------|------------------|
| 5 = (a)         β         1.172         1.303         1.302         1.322         1.235         1.237         1.135         1.237         1.304         γ         -378-2         2.50-1         3.52-2         1.62-2         1.50-1         3.52-2         1.62-2         1.00-1         1.22-2         1.63-1         1.00-1         1.22-2         1.63-1         1.00-1         1.22-2         1.00-1         1.22-2         1.00-1         1.22-2         1.00-1         1.22-2         1.00-1         1.00-1         1.22-2         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1         1.00-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 494.3 eV                |                                    |          |                   |          |          |          |          |          |          |          | 7.17-1<br>2.27-2 |
| 131146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $4d_{3/2}$              |                                    |          |                   |          |          |          |          |          |          |          | 7.851-1          |
| 1   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                    |          |                   |          |          |          |          |          |          |          |                  |
| 446/2 σ         σ         1,431-2         8,131-1         3215-1         1,577-1         8,332-0         4,928-0         3,111-0         2,005-0         1,428-0         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 311.4 ev                |                                    |          |                   |          |          |          |          |          |          |          | 1.52-1           |
| 5. ± or start of the property of the p           | 1d- :-                  |                                    |          |                   |          |          |          |          |          |          |          |                  |
| 2949   Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |                                    |          |                   |          |          |          |          |          |          |          |                  |
| 4f <sub>2</sub> /c         σ         7,378*1         2,331*1         7,161*0         2,466*0         1,044*0         5,078*1         2,756*1         1,678*1         9,671*2         6,208*6           63.8 w         y         2,55*1         411*1         6,80*1         1,81*1         1,30*0         1,14*0         1,23*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0         1,30*0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                    |          |                   |          |          |          |          |          |          |          | 1.40+0           |
| ξ̄s         β         1051         1052         0.985         0.897         0.813         0.738         0.673         0.617         0.567         0.521           63         8.62-2         1.10-1         1.55-1         1.97-1         2.36-1         2.73-1         3.08-1         3.42-1         3.75-1         4.06-1           49/2:         a         9.416+1         3.716-1         9.016-0         3.08-1         1.29-0         2.08-1         3.63-1         1.93-1         1.55-0         1.60-0           608 eV         y         2.66-1         3.13-0         1.00-0         1.03-0         1.04-0         1.15-0         1.23-0         1.05-0         1.05-0         1.05-0         1.06-0         1.05-0         1.04-0         1.15-0         1.23-0         1.06-0         1.05-0         1.05-0         1.05-0         1.05-0         1.05-0         1.05-0         1.05-0         1.05-0         1.05-0         1.05-0         1.05-0         1.05-0         1.05-0         1.05-0         1.05-0         1.05-0         1.05-0         1.05-0         1.05-0         1.05-0         1.05-0         1.05-0         1.05-0         1.05-0         1.05-0         1.05-0         1.05-0         1.05-0         1.05-0         1.05-0         1.05-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |                                    | 6.68 - 3 | 1.64 - 2          | 3.70 - 2 | 5.70 - 2 | 7.73 - 2 | 9.74 - 2 | 1.17 - 1 | 1.36 - 1 | 1.54 - 1 | 1.73 - 1         |
| 63.8 (c)         y         2.55-1         4.11-1         68.0-1         8.81-1         1.04-0         1.14+0         1.29-0         1.30-0         1.30-0         1.30-0         1.30-0         1.30-0         1.30-0         1.30-0         1.30-0         1.30-0         1.30-0         1.30-0         1.30-0         1.30-0         1.30-0         1.30-0         1.50-0         1.50-0         1.50-0         1.30-0         1.50-0         1.50-0         1.30-0         1.30-0         1.50-0         1.30-0         1.30-0         1.40-0         1.50-0         1.30-0         1.30-0         1.40-0         1.50-0         1.30-0         1.30-0         1.40-0         1.50-0         1.30-0         1.30-0         1.40-0         1.50-0         1.30-0         1.40-0         1.50-0         1.30-0         1.40-0         1.50-0         1.30-0         1.40-0         1.50-0         1.30-0         1.40-0         1.50-0         1.30-0         1.40-0         1.50-0         1.30-0         1.40-0         1.10-0         1.40-0         1.50-0         1.30-0         1.40-0         1.50-0         1.20-0         1.40-0         1.50-0         1.20-0         1.40-0         1.50-0         1.20-0         1.40-0         1.50-0         1.20-0         1.40-0         1.50-0         1.20-0 <td><math>4f_{5/2}</math></td> <td></td> <td>6.208-2</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $4f_{5/2}$              |                                    |          |                   |          |          |          |          |          |          |          | 6.208-2          |
| 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $E_b =$                 |                                    |          |                   |          |          |          |          |          |          |          |                  |
| β <sub>0</sub> β <sub>0</sub> 1.050         1.044         0.972         0.885         0.803         0.732         0.671         0.619         0.572         0.530           08         8.62-2         1.10-1         1.55-1         1.99-1         2.39-1         2.77-1         3.13-1         3.48-1         3.22-1         4.13-2           551/2         α         5.215·0         3.314-0         1.10-10         1.55-1         1.99-1         2.39-1         2.77-1         3.13-1         3.48-1         3.28-1         4.18-2           551/2         α         5.215·0         3.34-0         1.18-2         5.25-2         -4.27-2         -1.08-1         -1.48-1         -1.68-1         -1.72-1         -1.08-1           551/2         α         5.053·0         3.355·0         1.18-1         1.08-2         -4.01-3         -3.56-3         -3.93-3         -5.01-1         5.07-1         -1.68-8         1.17-3         -3.22-3           551/2         α         1.15-1         1.67-1         1.79-1         1.09-1         1.09-1         1.09-1         1.09-1         1.09-1         1.09-1         1.09-1         1.09-1         1.09-1         1.09-1         1.09-1         1.09-1         1.09-1         1.09-1         1.09-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63.8 eV                 |                                    |          |                   |          |          |          |          |          |          |          | 1.40+0<br>4.06-1 |
| 60.8 (c)         y         2.66-1         4.24-1         6.93-1         8.94-1         1.04-0         1.15-0         1.23-0         1.30-0         1.36-0         1.48-0           55/12         α         5.215-0         3.314-0         1.70-0         1.035-0         6.948-1         2.77-1         3.13-1         3.48-1         3.20-1         1.875           95.2 (c)         γ         4.21-1         3.42-1         1.82-1         5.25-2         4.27-2         -1.08-1         -1.48-1         -1.68-1         -1.72-1         -1.68-1           50.9 (c)         x         4.21-1         3.42-1         1.82-1         5.25-2         -2.44-3         -2.62-3         -2.3-3         -3.01-3         -3.17-3         -3.25-3           50.9 (c)         x         5.91-1         1.675         1.71-1         1.08-9         7.161-1         5.07-1         3.68-3         2.3-3-3         3.31-3         3.47-3         -3.25-3         3.20-3         3.17-3         3.05-3         3.18-1         1.66-6         1.615         1.75         1.712         1.710         1.604         1.61         3.5-4         1.75         1.61         3.5-5         3.62-3         5.59-3         5.59-3         1.51-1         3.59-3         3.11-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $4f_{7/2}$              | σ                                  |          |                   |          |          |          |          |          |          |          | 7.569-2          |
| S   S   S   S   S   S   S   S   S   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $E_b =$                 |                                    |          |                   |          |          |          |          |          |          |          | 0.530            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60.8 eV                 |                                    |          |                   |          |          |          |          |          |          |          |                  |
| E <sub>j</sub> = mode   β   1875   1884   1896   1905   1912   1919   1925   1930   1934   1937   1935   1936   1934   1937   1935   1936   1934   1937   1935   1936   1934   1937   1935   1936   1934   1937   1935   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   1936   19 |                         |                                    |          |                   |          |          |          |          |          |          |          |                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $5s_{1/2}$              |                                    |          |                   |          |          |          |          |          |          |          |                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $E_b = 95.2 \text{ eV}$ |                                    |          |                   |          |          |          |          |          |          |          |                  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00.2 01                 |                                    |          |                   |          |          |          |          |          |          |          | -3.29-           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5p1/2                   | σ                                  | 5.023+0  | 3 355+0           |          | 1.083+0  |          |          |          |          |          | 1.709-1          |
| 630 eV         γ         2.59-1 boole   1.27-1 boole   -5.56-3   -6.39-3   -5.39-3   -5.29-3   -3.99-3   -3.17-1   3.93-1   5.16-1   6.35-59-3   -3.99-3   -1.75-3   1.08-3   1.08-3   4.46-3   6.35-59-3   -5.59-3   -3.99-3   -7.17-3   1.08-3   1.08-3   4.46-3   6.35-59-3   -3.59-3   -3.75-3   1.08-3   1.08-3   1.08-3   4.46-3   6.35-59-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3   1.08-3                              |                         |                                    |          |                   |          |          |          |          |          |          |          | 1.562            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                    |          |                   |          |          |          |          |          |          |          | 6.35 - 1         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E.                      |                                    |          |                   |          |          |          |          |          |          |          | 8.30-3           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                    |          |                   |          |          |          |          |          |          |          |                  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                                    |          |                   |          |          |          |          |          |          |          | 7.51-1           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                                    |          |                   |          |          |          |          |          |          |          | 2.17-2           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5d <sub>3/2</sub>       | σ                                  | 7.818+0  | 4.486+0           | 1.822+0  | 8.897-1  | 4.901-1  | 2.938-1  | 1.876-1  | 1.258-1  | 8.766-2  | 6.306-2          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $E_b =$                 | β                                  | 1.296    | 1.374             | 1.410    | 1.387    | 1.343    | 1.291    | 1.237    | 1.182    | 1.129    | 1.079            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.2 eV                  |                                    |          |                   |          |          |          |          |          |          |          | 1.44+0           |
| $\begin{array}{c} E_{b} = \\ 3 \\ 2 \\ 2 \\ 3 \\ 2 \\ 2 \\ 4 \\ 2 \\ 3 \\ 2 \\ 2 \\ 4 \\ 2 \\ 3 \\ 2 \\ 2 \\ 2 \\ 3 \\ 2 \\ 2 \\ 2 \\ 3 \\ 2 \\ 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | δ                                  |          |                   |          |          | 7.18-2   | 8.83-2   |          |          |          | 1.51-1           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $5d_{5/2}$              |                                    |          |                   |          |          |          |          |          |          |          | 7.691-2          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $E_b =$                 |                                    |          |                   |          |          |          |          |          |          |          |                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | J.2 EV                  |                                    |          |                   |          |          |          |          |          |          |          | 1.72-1           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6s <sub>1/2</sub>       | σ                                  | 4.483-1  | 2.821-1           | 1.434-1  | 8.695-2  | 5.820-2  | 4.157-2  | 3.109-2  | 2.409-2  | 1.918-2  | 1.561-2          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $E_b =$                 | β                                  | 1.877    |                   | 1.896    |          | 1.912    | 1.918    |          | 1.930    | 1.935    | 1.939            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.0 eV                  |                                    |          |                   |          |          |          |          |          |          |          | -1.60-           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                    |          |                   | -1.63-3  | -2.06-3  | -2.39-3  | -2.64-3  | -2.83-3  | -2.99-3  | -3.13-3  | -3.25-           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Z= 78, Pt: [Xe          | e]4f <sup>6</sup> <sub>5/2</sub> 4 |          | 6s <sub>1/2</sub> |          |          |          |          |          |          |          |                  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Shell                   |                                    |          | 2000              | 3000     | 4000     | 5000     | 6000     | 7000     | 8000     | 9000     | 10000            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | σ                                  |          |                   |          |          |          |          |          |          |          | 1.063+0          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |                                    |          |                   |          |          |          |          |          |          |          | 1.930            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 722.8 eV                |                                    |          |                   |          |          |          |          |          |          |          | -1.75-           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | δ                                  |          |                   |          |          |          |          |          |          |          | -3.55-           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |                                    |          |                   |          |          |          |          |          |          |          | 1.167+0          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                    |          |                   |          |          |          |          |          |          |          |                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JUU.7 L V               |                                    |          |                   |          |          |          |          |          |          |          | 7.74-3           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4n <sub>2 /2</sub>      |                                    |          |                   |          |          |          |          |          |          |          | 1.959+0          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |                                    |          |                   |          |          |          |          |          |          |          | 1.698            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 519.0 eV                | γ                                  | 2.87 - 1 | 1.42 - 1          | -2.58-2  | -4.21-2  | 2.55 - 2 | 1.35 - 1 | 2.65 - 1 | 4.05 - 1 | 5.47 - 1 | 6.86 - 1         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                    |          |                   |          |          |          |          |          |          |          | 2.28-2           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |                                    |          |                   |          |          |          |          |          |          |          | 8.531-           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                    |          |                   |          |          |          |          |          |          |          |                  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | JJU./ EV                |                                    |          |                   |          |          |          |          |          |          |          | 1.41+0           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Adr in                  |                                    |          |                   |          |          |          |          |          |          |          |                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |                                    |          |                   |          |          |          |          |          |          |          |                  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 313.4 eV                |                                    |          |                   |          |          |          |          |          |          |          | 1.39+0           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                    |          |                   |          |          |          |          |          |          |          | 1.70-1           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4f <sub>5/2</sub>       | σ                                  | 8.276+1  | 3.304+1           | 8.150+0  | 2.824+0  | 1.201+0  | 5.855-1  | 3.151-1  | 1.826-1  | 1.121-1  | 7.212-2          |
| 74.3 eV $\gamma$ 2.43 – 1 3.98 – 1 6.66 – 1 8.70 – 1 1.02 + 0 1.14 + 0 1.23 + 0 1.30 + 0 1.36 + 0 1.41 + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $E_b =$                 |                                    | 1.047    | 1.053             | 0.990    | 0.906    | 0.826    | 0.751    | 0.684    | 0.626    | 0.575    | 0.529            |
| $\delta$ 8.51-2 1.09-1 1.52-1 1.93-1 2.34-1 2.71-1 3.05-1 3.37-1 3.69-1 4.00-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 74.3 eV                 | γ                                  |          |                   |          |          |          |          |          |          |          | 1.41+0           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         | δ                                  | 8.51-2   | 1.09 - 1          | 1.52 - 1 | 1.93 - 1 | 2.34 - 1 | 2.71 - 1 | 3.05 - 1 | 3.37 - 1 | 3.69 - 1 | 4.00 - 1         |

| Tah | le 1 | (contin | ned) |
|-----|------|---------|------|

| able 1 (continu                                  | •                      | 1.051.2                                               | 4.100.1             | 1.024.1              | 2.524.0           | 1.400+0           | 7 222 1             | 2.075 1           | 2 227 4           | 1 200 1           | 0.760 2            |
|--------------------------------------------------|------------------------|-------------------------------------------------------|---------------------|----------------------|-------------------|-------------------|---------------------|-------------------|-------------------|-------------------|--------------------|
| $4f_{7/2}$<br>$E_b =$                            | $\frac{\sigma}{\beta}$ | 1.051+2<br>1.048                                      | 4.180+1<br>1.046    | 1.024+1<br>0.977     | 3.524+0<br>0.893  | 1.490+0<br>0.815  | 7.232-1<br>0.744    | 3.875-1<br>0.681  | 2.237-1<br>0.626  | 1.368-1<br>0.579  | 8.769-2<br>0.537   |
| 70.9 eV                                          | γ                      | 2.54-1                                                | 4.11-1              | 6.80 - 1             | 8.84-1            | 1.04+0            | 1.15+0              | 1.23+0            | 1.30+0            | 1.36+0            | 1.41+0             |
|                                                  | δ                      | 8.52-2                                                | 1.09-1              | 1.52-1               | 1.95-1            | 2.36-1            | 2.75 - 1            | 3.10-1            | 3.44-1            | 3.76-1            | 4.08-1             |
| $5s_{1/2}$                                       | $\sigma$               | 5.416+0                                               | 3.446+0             | 1.773+0              | 1.082+0           | 7.271-1           | 5.210-1             | 3.908-1           | 3.034-1           | 2.419-1           | 1.971-1            |
| $E_b =$                                          | β                      | 1.866                                                 | 1.876               | 1.888                | 1.897             | 1.905             | 1.913               | 1.919             | 1.924             | 1.929             | 1.933              |
| 101.7 eV                                         | $_{\delta}^{\gamma}$   | 4.40-1 $-5.33-4$                                      | 3.61-1 $-1.01-3$    | 2.02 - 1 $-1.69 - 3$ | 7.00-2 $-2.17-3$  | -2.90-2 $-2.51-3$ | -9.77-2 $-2.78-3$   | -1.42-1 $-3.00-3$ | -1.66-1 $-3.19-3$ | -1.74-1 $-3.37-3$ | -1.69-3<br>-3.51-3 |
| F                                                |                        |                                                       |                     |                      |                   |                   |                     |                   |                   |                   |                    |
| $5p_{1/2}$<br>$E_b =$                            | $\frac{\sigma}{\beta}$ | 5.246+0<br>1.601                                      | 3.518+0<br>1.668    | 1.880+0<br>1.710     | 1.149+0<br>1.711  | 7.628-1<br>1.697  | 5.362-1<br>1.676    | 3.932-1<br>1.652  | 2.981-1<br>1.626  | 2.319-1<br>1.599  | 1.843-1<br>1.571   |
| 65.3 eV                                          | γ                      | 2.80-1                                                | 1.45-1              | 2.21-3               | -1.20-2           | 4.43-2            | 1.36-1              | 2.47-1            | 3.66-1            | 4.87-1            | 6.06-1             |
|                                                  | δ                      | -4.24 - 3                                             | -5.87 - 3           | -6.40 - 3            | -6.32 - 3         | -5.73-3           | -4.46 - 3           | -2.45 - 3         | 2.49-4            | 3.51-3            | 7.17-3             |
| 5p <sub>3/2</sub>                                | σ                      | 1.247+1                                               | 7.805+0             | 3.810+0              | 2.192+0           | 1.391+0           | 9.431-1             | 6.714-1           | 4.960-1           | 3.774-1           | 2.941-1            |
| $E_b =$                                          | β                      | 1.559                                                 | 1.648               | 1.730                | 1.761             | 1.769             | 1.765               | 1.754             | 1.738             | 1.720             | 1.699              |
| 51.6 eV                                          | γ                      | 1.66-1                                                | 5.67-2              | -4.34-2              | -2.61-2           | 5.63-2            | 1.72-1              | 3.04-1            | 4.44-1            | 5.85-1            | 7.22-1             |
|                                                  | δ                      | -1.65-3                                               | -1.85 - 3           | 2.07 - 3             | 6.10-3            | 9.33-3            | 1.20-2              | 1.45-2            | 1.69-2            | 1.94-2            | 2.18-2             |
| $5d_{3/2}$                                       | σ                      | 8.263+0                                               | 4.772+0             | 1.957+0              | 9.620-1           | 5.324-1           | 3.204-1             | 2.053-1           | 1.380-1           | 9.640-2           | 6.948-2            |
| $E_b = 2.8 \text{ eV}$                           | β                      | 1.285                                                 | 1.369               | 1.412                | 1.393             | 1.352             | 1.303               | 1.251             | 1.199             | 1.147             | 1.096              |
| 2.8 eV                                           | $_{\delta}^{\gamma}$   | -3.70-2<br>5.45-3                                     | -1.22-2 $1.68-2$    | 1.75-1<br>3.70-2     | 4.08-1<br>5.40-2  | 6.31-1 $6.97-2$   | 8.33-1<br>8.55-2    | 1.01+0<br>1.02-1  | 1.17+0<br>1.18-1  | 1.31+0<br>1.33-1  | 1.43+0<br>1.48-1   |
| Ed                                               |                        |                                                       | 6.307+0             | 2.530+0              | 1.225+0           | 6.698-1           |                     | 2.535-1           | 1.690-1           |                   |                    |
| $5d_{5/2}$ $E_b =$                               | $\frac{\sigma}{\beta}$ | 1.111+1<br>1.355                                      | 6.307+0<br>1.394    | 2.530+0<br>1.382     | 1.225+0           | 6.698—1<br>1.270  | 3.991-1<br>1.209    | 2.535—1<br>1.150  | 1.690-1           | 1.172-1<br>1.039  | 8.395-2<br>0.987   |
| 1.4 eV                                           | γ                      | -3.98-2                                               | 5.23-3              | 2.15-1               | 4.53-1            | 6.70-1            | 8.61-1              | 1.03+0            | 1.17+0            | 1.30+0            | 1.40+0             |
|                                                  | δ                      | 6.17-3                                                | 1.58-2              | 3.51-2               | 5.40-2            | 7.27-2            | 9.21-2              | 1.12-1            | 1.32-1            | 1.51-1            | 1.69-1             |
| 6s <sub>1/2</sub>                                | σ                      | 4.176-1                                               | 2.629-1             | 1.339-1              | 8.140-2           | 5.462-2           | 3.907-2             | 2.926-2           | 2.269-2           | 1.807-2           | 1.471-2            |
| $E_b =$                                          | β                      | 1.868                                                 | 1.877               | 1.889                | 1.898             | 1.906             | 1.912               | 1.918             | 1.924             | 1.929             | 1.933              |
| 9.0 eV                                           | γ                      | 4.22-1                                                | 3.45-1              | 1.90-1               | 6.19-2            | -3.46-2           | -1.03-1             | -1.46-1           | -1.69 - 1         | -1.74-1           | -1.67-             |
|                                                  | δ                      | -6.06-4                                               | -1.05-3             | -1.70-3              | -2.16-3           | -2.51-3           | -2.80-3             | -3.03-3           | -3.22-3           | -3.36-3           | -3.48-             |
| Z= 79, Au: [X                                    | e]4f <sub>5/2</sub>    | 4f <sub>7/2</sub> 5d <sub>3/2</sub> 5d <sub>5/2</sub> | 2 6s <sub>1/2</sub> |                      |                   |                   |                     |                   |                   |                   |                    |
| CI II                                            |                        | k (eV)                                                | 2000                | 2000                 | 4000              | 5000              | C000                | 7000              | 0000              | 0000              | 10000              |
| Shell                                            |                        | 1500                                                  | 2000                | 3000                 | 4000              | 5000              | 6000                | 7000              | 8000              | 9000              | 10000              |
| 4s <sub>1/2</sub>                                | σ                      | 2.536+1                                               | 1.715+1             | 9.284+0              | 5.791+0           | 3.944+0           | 2.851+0             | 2.153+0           | 1.680+0           | 1.345+0           | 1.100+0            |
| $E_b = 758.8 \text{ eV}$                         | $\beta$ $\gamma$       | 1.827<br>6.76-1                                       | 1.849<br>5.67-1     | 1.870<br>3.52-1      | 1.882<br>1.79-1   | 1.891<br>4.74-2   | 1.900<br>-4.64-2    | 1.908<br>-1.10-1  | 1.915<br>1.50 1   | 1.920<br>-1.72-1  | 1.925<br>1.79-     |
| 730.0 EV                                         | $\delta$               | 4.14-4                                                | -5.16-4             | -1.55-3              | -2.18-3           | -2.63-3           | -4.04-2 $-2.95-3$   | -3.21-3           | -3.43-3           | -3.62-3           | -1.79-<br>-3.79-   |
| 4p <sub>1/2</sub>                                | σ                      | 2.860+1                                               | 2.066+1             | 1.171+1              | 7.329+0           | 4.930+0           | 3.496+0             | 2.581+0           | 1.966+0           | 1.536+0           | 1.225+0            |
| $E_b =$                                          | β                      | 1.380                                                 | 1.543               | 1.656                | 1.683             | 1.683             | 1.670               | 1.651             | 1.629             | 1.605             | 1.580              |
| 643.7 eV                                         | γ                      | 4.84 - 1                                              | 3.18 - 1            | 6.59 - 2             | -1.19 - 2         | 1.11 - 2          | 8.55 - 2            | 1.86 - 1          | 2.99 - 1          | 4.18 - 1          | 5.37 - 1           |
|                                                  | δ                      | 1.81-2                                                | 1.88-3              | -5.08 - 3            | -5.98 - 3         | -5.58 - 3         | -4.43 - 3           | -2.58 - 3         | -4.96 - 5         | 3.04 - 3          | 6.55 - 3           |
| $4p_{3/2}$                                       | σ                      | 7.831+1                                               | 5.105+1             | 2.573+1              | 1.500+1           | 9.591+0           | 6.536+0             | 4.671+0           | 3.461+0           | 2.640+0           | 2.061+0            |
| $E_b =$                                          | β                      | 1.376                                                 | 1.534               | 1.675                | 1.730             | 1.752             | 1.756               | 1.751             | 1.740             | 1.725             | 1.707              |
| 545.4 eV                                         | $_{\delta}^{\gamma}$   | 3.05-1<br>1.25-2                                      | 1.61-1 $2.06-3$     | -1.79-2<br>1.81-3    | -4.65-2 $5.91-3$  | 1.19-2<br>9.68-3  | 1.15 - 1 $1.28 - 2$ | 2.40-1 $1.55-2$   | 3.76-1<br>1.80-2  | 5.16-1<br>2.05-2  | 6.54-1 $2.29-2$    |
|                                                  |                        |                                                       |                     |                      |                   |                   |                     |                   |                   |                   |                    |
| $\begin{array}{l} 4d_{3/2} \\ E_b = \end{array}$ | $\frac{\sigma}{\beta}$ | 1.069+2<br>1.123                                      | 6.310+1<br>1.276    | 2.609+1<br>1.375     | 1.283+1<br>1.380  | 7.095+0<br>1.351  | 4.270+0<br>1.310    | 2.735+0<br>1.263  | 1.838+0<br>1.213  | 1.284+0<br>1.163  | 9.250-1<br>1.115   |
| 25 –<br>352.0 eV                                 |                        | -2.36-2                                               | -4.67 - 2           | 1.10-1               | 3.42-1            | 5.70-1            | 7.80-1              | 9.67-1            | 1.13+0            | 1.105             | 1.40+0             |
| 332.0 € 1                                        | $_{\delta}^{\gamma}$   | 4.89-3                                                | 1.45-2              | 3.67-2               | 5.48-2            | 7.07-2            | 8.64-2              | 1.02-1            | 1.17-1            | 1.32-1            | 1.46-1             |
| 4d <sub>5/2</sub>                                | σ                      | 1.555+2                                               | 8.980+1             | 3.621+1              | 1.752+1           | 9.575+0           | 5.703+0             | 3.621+0           | 2.414+0           | 1.673+0           | 1.198+0            |
| $E_b =$                                          | β                      | 1.231                                                 | 1.330               | 1.364                | 1.331             | 1.279             | 1.222               | 1.165             | 1.109             | 1.055             | 1.004              |
| 333.9 eV                                         | γ                      | -3.81-2                                               | -3.58 - 2           | 1.53 - 1             | 3.94 - 1          | 6.18 - 1          | 8.17 - 1            | 9.91 - 1          | 1.14+0            | 1.27+0            | 1.38+0             |
|                                                  | δ                      | 5.68-3                                                | 1.41-2              | 3.44-2               | 5.37-2            | 7.23-2            | 9.17-2              | 1.11-1            | 1.31-1            | 1.49-1            | 1.66-1             |
| $4f_{5/2}$                                       | $\sigma$               | 9.199+1                                               | 3.701+1             | 9.221+0              | 3.214+0           | 1.372+0           | 6.713-1             | 3.621-1           | 2.103-1           | 1.293-1           | 8.332-2            |
| $E_b =$                                          | β                      | 1.043                                                 | 1.054               | 0.997                | 0.915             | 0.836             | 0.763               | 0.695             | 0.636             | 0.585             | 0.539              |
| 87.3 eV                                          | $_{\delta}^{\gamma}$   | 2.28-1<br>8.34-2                                      | 3.82-1<br>1.07-1    | 6.52-1<br>1.50-1     | 8.59-1<br>1.90-1  | 1.02+0<br>2.30-1  | 1.14+0<br>2.67-1    | 1.23+0<br>3.01-1  | 1.30+0<br>3.33-1  | 1.36+0<br>3.65-1  | 1.41+0<br>3.95-1   |
| Af.                                              |                        |                                                       |                     |                      |                   |                   |                     |                   |                   |                   |                    |
| $4f_{7/2}$ $E_b =$                               | $\frac{\sigma}{\beta}$ | 1.168+2<br>1.045                                      | 4.678+1<br>1.048    | 1.157+1<br>0.984     | 4.008+0<br>0.901  | 1.702+0<br>0.824  | 8.283-1<br>0.754    | 4.448-1<br>0.691  | 2.572-1<br>0.636  | 1.576-1<br>0.588  | 1.012-1<br>0.545   |
| 83.7 eV                                          | γ                      | 2.39-1                                                | 3.96-1              | 6.67-1               | 8.74–1            | 1.03+0            | 1.15+0              | 1.24+0            | 1.31+0            | 1.36+0            | 1.41+0             |
|                                                  | δ                      | 8.35-2                                                | 1.07-1              | 1.50-1               | 1.92-1            | 2.33-1            | 2.71-1              | 3.06-1            | 3.39-1            | 3.72-1            | 4.03-1             |
| 5s <sub>1/2</sub>                                | σ                      | 5.655+0                                               | 3.602+0             | 1.858+0              | 1.136+0           | 7.652-1           | 5.492-1             | 4.124-1           | 3.205-1           | 2.558-1           | 2.085-1            |
| $E_b =$                                          | β                      | 1.856                                                 | 1.867               | 1.880                | 1.890             | 1.898             | 1.906               | 1.913             | 1.918             | 1.923             | 1.927              |
| 107.8 eV                                         | γ                      | 4.54 - 1                                              | 3.78 - 1            | 2.22 - 1             | 8.82 - 2          | -1.42 - 2         | -8.69 - 2           | -1.35-1           | -1.64-1           | -1.76-1           | -1.75-             |
|                                                  | δ                      | -5.16-4                                               | -1.03-3             | -1.77-3              | -2.28-3           | -2.67-3           | -2.96-3             | -3.20-3           | -3.40 - 3         | -3.59-3           | -3.75-             |
| $5p_{1/2}$                                       | σ                      | 5.494+0                                               | 3.698+0             | 1.990+0              | 1.223+0           | 8.148-1           | 5.746-1             | 4.226-1           | 3.211-1           | 2.503-1           | 1.993-1            |
| $E_b =$                                          | β                      | 1.590                                                 | 1.662               | 1.708                | 1.712             | 1.700             | 1.681               | 1.658             | 1.633             | 1.607             | 1.580              |
| 71.7 eV                                          | $\delta$               | 3.01-1<br>-4.39-3                                     | 1.64-1 $-6.15-3$    | 1.05-2 $-6.70-3$     | -1.45-2 $-6.66-3$ | 3.35-2 $-6.14-3$  | 1.19-1<br>-4.99-3   | 2.25-1 $-3.15-3$  | 3.40-1 $-6.33-4$  | 4.59-1<br>2.44-3  | 5.76-1<br>5.92-3   |
| E so                                             |                        |                                                       |                     |                      |                   |                   |                     |                   |                   |                   |                    |
| $5p_{3/2}$                                       | σ                      | 1.323+1                                               | 8.286+0             | 4.058+0              | 2.342+0           | 1.490+0           | 1.012+0             | 7.220-1           | 5.343-1           | 4.071 - 1         | 3.176-1            |
|                                                  |                        |                                                       |                     |                      |                   |                   |                     |                   |                   |                   |                    |

| able 1 (contin                       | ued)                                      |                                                                                 |                                       |                                       |                                        |                                       |                                        |                                        |                                        |                                        |                                        |
|--------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| $E_b = 56.9 \text{ eV}$              | $eta \ \gamma \ \delta$                   | 1.545<br>1.78-1<br>-1.61-3                                                      | 1.638<br>6.80-2<br>-2.09-3            | 1.724<br>-4.07-2<br>1.78-3            | 1.759<br>-3.28-2<br>5.96-3             | 1.770<br>4.21-2<br>9.34-3             | 1.768<br>1.52-1<br>1.21-2              | 1.759<br>2.80-1<br>1.46-2              | 1.745<br>4.16-1<br>1.70-2              | 1.728<br>5.55-1<br>1.94-2              | 1.708<br>6.91-1<br>2.17-2              |
| $5d_{3/2}$ $E_b =$ 3.3 eV            | σ<br>β<br>γ                               | 9.174+0<br>1.275<br>-3.50-2                                                     | 5.331+0<br>1.364<br>-1.91-2           | 2.207+0<br>1.413<br>1.57-1            | 1.092+0<br>1.399<br>3.86-1             | 6.076-1<br>1.361<br>6.08-1            | 3.671-1<br>1.314<br>8.10-1             | 2.359-1<br>1.264<br>9.92-1             | 1.590-1<br>1.213<br>1.15+0             | 1.113-1<br>1.162<br>1.29+0             | 8.039-2<br>1.112<br>1.41+0             |
| 5d <sub>5/2</sub>                    | $\frac{\delta}{\sigma}$                   | 4.56-3<br>1.239+1                                                               | 1.57-2<br>7.073+0                     | 3.59-2<br>2.863+0                     | 5.29-2<br>1.395+0                      | 6.82-2<br>7.664-1                     | 8.36-2<br>4.583-1                      | 9.93-2<br>2.919-1                      | 1.15-1<br>1.952-1                      | 1.30-1<br>1.356-1                      | 1.44-1<br>9.729-2                      |
| $E_b = 1.8 \text{ eV}$               | $eta \ \gamma \ \delta$                   | 1.352<br>-3.99-2<br>5.45-3                                                      | 1.394<br>-3.04-3<br>1.48-2            | 1.387<br>1.97-1<br>3.38-2             | 1.339<br>4.33-1<br>5.24-2              | 1.279<br>6.50-1<br>7.08-2             | 1.220<br>8.42-1<br>8.97-2              | 1.161<br>1.01+0<br>1.09-1              | 1.105<br>1.16+0<br>1.29-1              | 1.051<br>1.28+0<br>1.48-1              | 1.000<br>1.39+0<br>1.66-1              |
| $6s_{1/2}$ $E_b = 9.0 \text{ eV}$    | σ<br>β<br>γ                               | 4.389-1<br>1.858<br>4.37-1                                                      | 2.765-1<br>1.868<br>3.62-1            | 1.410-1<br>1.882<br>2.09-1            | 8.590-2<br>1.891<br>7.89-2             | 5.774-2<br>1.899<br>-2.02-2           | 4.138-2<br>1.906<br>-9.21-2            | 3.103-2<br>1.912<br>-1.40-1            | 2.407-2<br>1.918<br>-1.67-1            | 1.919-2<br>1.923<br>-1.76-1            | 1.564-2<br>1.928<br>-1.73-1            |
| 7= 80 Ha·[Y                          | δ<br>(a)/4f <sup>6</sup>                  | $\frac{-6.01-4}{4\mathbf{f}_{7/2}^8  5\mathbf{d}_{3/2}^4  5\mathbf{d}_{5/2}^6}$ | -1.08-3                               | -1.79-3                               | -2.28-3                                | -2.66-3                               | -2.97-3                                | -3.23-3                                | -3.43-3                                | -3.59-3                                | -3.72-3                                |
| 2- 00, 11g. [A                       | 115/2                                     | $\frac{417/2}{k \text{ (eV)}}$                                                  | 2 031/2                               |                                       |                                        |                                       |                                        |                                        |                                        |                                        |                                        |
| Shell                                |                                           | 1500                                                                            | 2000                                  | 3000                                  | 4000                                   | 5000                                  | 6000                                   | 7000                                   | 8000                                   | 9000                                   | 10000                                  |
| $4s_{1/2}$<br>$E_b =$<br>803.0 eV    | $\sigma \ eta \ eta \ eta \ eta \ \delta$ | 2.560+1<br>1.813<br>7.03-1<br>6.01-4                                            | 1.742+1<br>1.837<br>5.98-1<br>-4.42-4 | 9.486+0<br>1.860<br>3.83-1<br>-1.59-3 | 5.938+0<br>1.873<br>2.06-1<br>-2.28-3  | 4.054+0<br>1.884<br>7.03-2<br>-2.76-3 | 2.937+0<br>1.893<br>-2.83-2<br>-3.12-3 | 2.221+0<br>1.901<br>-9.74-2<br>-3.41-3 | 1.735+0<br>1.908<br>-1.43-1<br>-3.66-3 | 1.391+0<br>1.913<br>-1.70-1<br>-3.87-3 | 1.138+0<br>1.918<br>-1.81-<br>-4.06-   |
| $4p_{1/2}$<br>$E_b =$<br>676.9 eV    | σ<br>β<br>γ<br>δ                          | 2.860+1<br>1.343<br>5.05-1<br>2.15-2                                            | 2.086+1<br>1.526<br>3.49-1<br>2.89-3  | 1.195+1<br>1.648<br>8.45-2<br>-5.23-3 | 7.534+0<br>1.680<br>-7.76-3<br>-6.27-3 | 5.094+0<br>1.683<br>3.87-3<br>-5.93-3 | 3.627+0<br>1.673<br>6.98-2<br>-4.89-3  | 2.686+0<br>1.656<br>1.64-1<br>-3.19-3  | 2.051+0<br>1.635<br>2.74-1<br>-8.67-4  | 1.606+0<br>1.612<br>3.90-1<br>1.99-3   | 1.283+0<br>1.588<br>5.06-1<br>5.26-3   |
| $4p_{3/2}$<br>$E_b =$<br>571.0 eV    | σ<br>β<br>γ                               | 8.020+1<br>1.350<br>3.18-1                                                      | 5.248+1<br>1.515<br>1.79-1            | 2.660+1<br>1.664<br>-9.65-3           | 1.557+1<br>1.725<br>-4.93-2            | 9.985+0<br>1.750<br>-3.50-4           | 6.823+0<br>1.758<br>9.54-2             | 4.885+0<br>1.755<br>2.16-1             | 3.626+0<br>1.745<br>3.49-1             | 2.769+0<br>1.732<br>4.87-1             | 2.164+0<br>1.715<br>6.23-1             |
| $4d_{3/2}$ $E_b =$                   | $\frac{\delta}{\sigma}$ $\beta$           | 1.44-2<br>1.108+2<br>1.098                                                      | 2.60-3<br>6.599+1<br>1.260            | 1.54-3<br>2.757+1<br>1.372            | 5.67-3<br>1.365+1<br>1.383             | 9.58-3<br>7.587+0<br>1.359            | 1.28-2<br>4.582+0<br>1.320             | 1.56-2<br>2.943+0<br>1.274             | 1.82-2<br>1.982+0<br>1.226             | 2.06-2<br>1.387+0<br>1.178             | 2.28-2<br>1.002+0<br>1.131             |
| 378.3 eV                             | $\frac{\gamma}{\delta}$                   | -1.40-2 $4.69-3$                                                                | -5.07-2<br>1.33-2                     | 8.98-2<br>3.53-2                      | 3.14-1<br>5.34-2                       | 5.42-1<br>6.94-2                      | 7.55-1<br>8.51-2                       | 9.45-1<br>1.00-1                       | 1.11+0<br>1.15-1                       | 1.25+0<br>1.28-1                       | 1.38+0<br>1.42-1                       |
| $4d_{5/2}$<br>$E_b =$<br>359.8 eV    | $\sigma \ eta \ eta \ \gamma \ \delta$    | 1.616+2<br>1.216<br>-3.16-2<br>5.43-3                                           | 9.408+1<br>1.323<br>-4.26-2<br>1.30-2 | 3.830+1<br>1.366<br>1.33-1<br>3.29-2  | 1.864+1<br>1.337<br>3.68-1<br>5.17-2   | 1.024+1<br>1.288<br>5.94-1<br>7.05-2  | 6.117+0<br>1.232<br>7.96-1<br>8.98-2   | 3.893+0<br>1.176<br>9.73-1<br>1.09-1   | 2.601+0<br>1.120<br>1.12+0<br>1.27-1   | 1.807+0<br>1.067<br>1.25+0<br>1.45-1   | 1.295+0<br>1.017<br>1.37+0<br>1.62-1   |
| $4f_{5/2}$<br>$E_b =$<br>103.3 eV    | σ<br>β<br>γ<br>δ                          | 1.016+2<br>1.039<br>2.14-1<br>8.14-2                                            | 4.119+1<br>1.055<br>3.66-1<br>1.05-1  | 1.037+1<br>1.003<br>6.36-1<br>1.47-1  | 3.640+0<br>0.925<br>8.49-1<br>1.88-1   | 1.561+0<br>0.846<br>1.01+0<br>2.27-1  | 7.655-1<br>0.772<br>1.13+0<br>2.63-1   | 4.139-1<br>0.705<br>1.23+0<br>2.97-1   | 2.409-1<br>0.647<br>1.30+0<br>3.29-1   | 1.485-1<br>0.596<br>1.37+0<br>3.60-1   | 9.578-2<br>0.550<br>1.42+0<br>3.91-1   |
| $4f_{7/2}$ $E_b = 99.4 \text{ eV}$   | σ<br>β<br>γ<br>δ                          | 1.290+2<br>1.041<br>2.25-1<br>8.17-2                                            | 5.206+1<br>1.050<br>3.80-1<br>1.05-1  | 1.301+1<br>0.990<br>6.52-1<br>1.48-1  | 4.537+0<br>0.911<br>8.64-1<br>1.89-1   | 1.934+0<br>0.834<br>1.02+0<br>2.30-1  | 9.442-1<br>0.763<br>1.14+0<br>2.67-1   | 5.082-1<br>0.699<br>1.24+0<br>3.02-1   | 2.945-1<br>0.645<br>1.31+0<br>3.35-1   | 1.808-1<br>0.597<br>1.37+0<br>3.67-1   | 1.162-1<br>0.555<br>1.42+0<br>3.98-1   |
| $5s_{1/2}$<br>$E_b =$<br>120.3 eV    | σ<br>β<br>γ<br>δ                          | 5.946+0<br>1.845<br>4.72-1<br>-4.93-4                                           | 3.791+0<br>1.857<br>3.98-1<br>-1.05-3 | 1.959+0<br>1.872<br>2.42-1<br>-1.85-3 | 1.201+0<br>1.882<br>1.07-1<br>-2.40-3  | 8.103-1<br>1.891<br>2.35-3<br>-2.81-3 | 5.825-1<br>1.899<br>-7.42-2<br>-3.13-3 | 4.381-1<br>1.906<br>-1.27-1<br>-3.40-3 | 3.408-1<br>1.912<br>-1.60-1<br>-3.64-3 | 2.721-1<br>1.917<br>-1.77-1<br>-3.85-3 | 2.220-1<br>1.921<br>-1.80-1<br>-4.01-3 |
| $5p_{1/2}$ $E_b = 80.5 \text{ eV}$   | σ<br>β<br>γ<br>δ                          | 5.769+0<br>1.577<br>3.22-1<br>-4.46-3                                           | 3.898+0<br>1.654<br>1.83-1<br>-6.49-3 | 2.110+0<br>1.706<br>2.00-2<br>-7.06-3 | 1.304+0<br>1.712<br>-1.53-2<br>-6.96-3 | 8.725-1<br>1.702<br>2.36-2<br>-6.48-3 | 6.176-1<br>1.685<br>1.03-1<br>-5.46-3  | 4.555-1<br>1.663<br>2.04-1<br>-3.79-3  | 3.468-1<br>1.639<br>3.16-1<br>-1.48-3  | 2.709-1<br>1.614<br>4.32-1<br>1.35-3   | 2.161-1<br>1.588<br>5.47-1<br>4.60-3   |
| $5p_{3/2}$ $E_b =$ 61.8 eV           | σ<br>β<br>γ<br>δ                          | 1.414+1<br>1.529<br>1.90-1<br>-1.52-3                                           | 8.873+0<br>1.626<br>7.88-2<br>-2.33-3 | 4.359+0<br>1.718<br>-3.74-2<br>1.47-3 | 2.524+0<br>1.756<br>-3.81-2<br>5.79-3  | 1.610+0<br>1.770<br>2.90-2<br>9.31-3  | 1.097+0<br>1.771<br>1.33-1<br>1.22-2   | 7.835-1<br>1.763<br>2.57-1<br>1.48-2   | 5.806-1<br>1.751<br>3.91-1<br>1.72-2   | 4.429-1<br>1.735<br>5.27-1<br>1.94-2   | 3.459-1<br>1.717<br>6.62-1<br>2.16-2   |
| $5d_{3/2}$ $E_b = $ $7.5 \text{ eV}$ | $\sigma$ $\beta$ $\gamma$ $\delta$        | 1.059+1<br>1.263<br>-3.23-2<br>3.70-3                                           | 6.188+0<br>1.357<br>-2.49-2<br>1.47-2 | 2.585+0<br>1.414<br>1.39-1<br>3.47-2  | 1.288+0<br>1.404<br>3.61-1<br>5.14-2   | 7.202-1<br>1.370<br>5.83-1<br>6.68-2  | 4.369-1<br>1.325<br>7.88-1<br>8.22-2   | 2.816-1<br>1.277<br>9.72-1<br>9.75-2   | 1.903-1<br>1.227<br>1.13+0<br>1.12-1   | 1.335-1<br>1.177<br>1.28+0<br>1.27-1   | 9.657-2<br>1.128<br>1.40+0<br>1.40-1   |
| $5d_{5/2}$ $E_b = $ 5.7 eV           | σ<br>β<br>γ<br>δ                          | 1.448+1<br>1.348<br>-3.94-2<br>4.78-3                                           | 8.308+0<br>1.394<br>-1.02-2<br>1.39-2 | 3.390+0<br>1.391<br>1.81-1<br>3.24-2  | 1.663+0<br>1.346<br>4.11-1<br>5.05-2   | 9.179-1<br>1.289<br>6.28-1<br>6.87-2  | 5.510-1<br>1.231<br>8.23-1<br>8.78-2   | 3.519-1<br>1.173<br>9.94-1<br>1.07-1   | 2.358-1<br>1.116<br>1.14+0<br>1.26-1   | 1.642-1<br>1.062<br>1.27+0<br>1.44-1   | 1.180-1<br>1.012<br>1.38+0<br>1.62-1   |
| $6s_{1/2}$ $E_b = 9.0 \text{ eV}$    | σ<br>β<br>γ                               | 5.248-1<br>1.849<br>4.48-1                                                      | 3.307-1<br>1.860<br>3.77-1            | 1.689-1<br>1.874<br>2.26-1            | 1.031-1<br>1.884<br>9.63-2             | 6.939-2<br>1.892<br>-5.77-3           | 4.978-2<br>1.899<br>-8.12-2            | 3.737-2<br>1.906<br>-1.32-1            | 2.903-2<br>1.912<br>-1.63-1            | 2.316-2<br>1.918<br>-1.77-1            | 1.889-2<br>1.922<br>-1.78-1            |

| Table 1 | (continued) |
|---------|-------------|
|---------|-------------|

|                                                  | δ                                  | -5.98 - 4                                                          | -1.12 - 3                             | -1.87 - 3         | -2.40 - 3         | -2.83 - 3         | -3.16 - 3         | -3.43 - 3            | -3.64 - 3         | -3.82 - 3           | -3.97 - 3           |
|--------------------------------------------------|------------------------------------|--------------------------------------------------------------------|---------------------------------------|-------------------|-------------------|-------------------|-------------------|----------------------|-------------------|---------------------|---------------------|
| Z= 81, Tl: [X                                    | e]4f <sup>6</sup> <sub>5/2</sub> 4 | $f_{7/2}^8 5d_{3/2}^4 5d_{5/2}^6$                                  | 6s <sub>1/2</sub> 6p <sub>1/2</sub>   |                   |                   |                   |                   |                      |                   |                     |                     |
|                                                  |                                    | k (eV)                                                             |                                       |                   |                   |                   |                   |                      |                   |                     |                     |
| Shell                                            |                                    | 1500                                                               | 2000                                  | 3000              | 4000              | 5000              | 6000              | 7000                 | 8000              | 9000                | 10000               |
| 4s <sub>1/2</sub>                                | σ                                  | 2.579+1                                                            | 1.766+1                               | 9.671+0           | 6.078+0           | 4.161+0           | 3.021+0           | 2.288+0              | 1.790+0           | 1.436+0             | 1.175+0             |
| $E_b =$                                          | β                                  | 1.796                                                              | 1.825                                 | 1.851             | 1.865             | 1.876             | 1.885             | 1.893                | 1.900             | 1.906               | 1.911               |
| 845.5 eV                                         | $\delta$                           | 7.27-1<br>8.31-4                                                   | 6.23-1<br>-3.56-4                     | 4.11-1 $-1.62-3$  | 2.32-1 $-2.37-3$  | 9.40-2 $-2.89-3$  | -9.29-3 $-3.30-3$ | -8.40-2 $-3.63-3$    | -1.35-1 $-3.91-3$ | -1.67-1 $-4.14-3$   | -1.82-<br>-4.33-    |
| 4p <sub>1/2</sub>                                | σ                                  | 2.853+1                                                            | 2.104+1                               | 1.220+1           | 7.745+0           | 5.264+0           | 3.763+0           | 2.795+0              | 2.140+0           | 1.678+0             | 1.343+0             |
| $E_b =$                                          | β                                  | 1.303                                                              | 1.509                                 | 1.641             | 1.678             | 1.683             | 1.675             | 1.660                | 1.640             | 1.619               | 1.596               |
| 721.3 eV                                         | γ                                  | 5.30 - 1                                                           | 3.84 - 1                              | 1.06 - 1          | -1.19 - 3         | -2.16 - 3         | 5.52 - 2          | 1.44 - 1             | 2.50 - 1          | 3.61 - 1            | 4.74 - 1            |
|                                                  | δ                                  | 2.66-2                                                             | 4.01-3                                | -5.27-3           | -6.49-3           | -6.29-3           | -5.40-3           | -3.87-3              | -1.75-3           | 8.68-4              | 3.96-3              |
| $4p_{3/2}$                                       | $\sigma$                           | 8.230+1                                                            | 5.406+1                               | 2.754+1           | 1.618+1           | 1.041+1           | 7.130+0           | 5.113+0              | 3.800+0           | 2.905+0             | 2.273+0             |
| $E_b = 609.0 \text{ eV}$                         | $eta \ \gamma$                     | 1.307<br>3.35-1                                                    | 1.498<br>2.00-1                       | 1.655<br>1.19-3   | 1.720<br>-5.07-2  | 1.748<br>-1.20-2  | 1.758<br>7.69-2   | 1.757<br>1.93-1      | 1.750<br>3.22-1   | 1.738<br>4.56-1     | 1.723<br>5.88-1     |
| 005.0 € 1                                        | δ                                  | 1.76-2                                                             | 3.26-3                                | 1.26-3            | 5.37-3            | 9.44-3            | 1.29-2            | 1.58-2               | 1.83-2            | 2.06-2              | 2.28-2              |
| 4d <sub>3/2</sub>                                | σ                                  | 1.147+2                                                            | 6.886+1                               | 2.908+1           | 1.450+1           | 8.098+0           | 4.907+0           | 3.160+0              | 2.134+0           | 1.496+0             | 1.082+0             |
| $E_b =$                                          | β                                  | 1.073                                                              | 1.246                                 | 1.368             | 1.385             | 1.365             | 1.329             | 1.285                | 1.239             | 1.193               | 1.148               |
| 406.6 eV                                         | $\gamma \\ \delta$                 | -2.51-3                                                            | -5.29-2                               | 6.96-2            | 2.88-1            | 5.17-1            | 7.31-1            | 9.20-1               | 1.09+0            | 1.23+0              | 1.36+0              |
| 4.1                                              |                                    | 4.77-3                                                             | 1.20-2                                | 3.38-2            | 5.22-2            | 6.85-2            | 8.37-2            | 9.79-2               | 1.11-1            | 1.25-1              | 1.39-1              |
| $\begin{array}{l} 4d_{5/2} \\ E_b = \end{array}$ | $\frac{\sigma}{eta}$               | 1.675+2<br>1.203                                                   | 9.829+1<br>1.316                      | 4.040+1<br>1.367  | 1.980+1<br>1.343  | 1.092+1<br>1.296  | 6.545+0<br>1.241  | 4.176+0<br>1.185     | 2.796+0<br>1.131  | 1.946+0<br>1.080    | 1.398+0<br>1.032    |
| 386.2 eV                                         | γ                                  | -2.35-2                                                            | -4.78-2                               | 1.13-1            | 3.44-1            | 5.72-1            | 7.77-1            | 9.53-1               | 1.11+0            | 1.24+0              | 1.36+0              |
|                                                  | δ                                  | 5.41 - 3                                                           | 1.20 - 2                              | 3.12-2            | 5.01 - 2          | 6.91 - 2          | 8.79 - 2          | 1.06 - 1             | 1.24 - 1          | 1.41 - 1            | 1.59 - 1            |
| $4f_{5/2}$                                       | σ                                  | 1.120+2                                                            | 4.573+1                               | 1.163+1           | 4.108+0           | 1.768+0           | 8.699-1           | 4.716-1              | 2.750-1           | 1.698-1             | 1.097-1             |
| $E_b =$                                          | β                                  | 1.034                                                              | 1.055                                 | 1.010             | 0.934             | 0.854             | 0.780             | 0.716                | 0.659             | 0.608               | 0.560               |
| 123.0 eV                                         | $\gamma \\ \delta$                 | 1.97-1<br>7.89-2                                                   | 3.47-1<br>1.03-1                      | 6.22-1<br>1.46-1  | 8.39-1<br>1.86-1  | 1.00+0<br>2.24-1  | 1.13+0<br>2.59-1  | 1.23+0<br>2.92-1     | 1.31+0<br>3.25-1  | 1.37+0<br>3.57-1    | 1.43+0<br>3.87-1    |
| $4f_{7/2}$                                       | σ                                  | 1.421+2                                                            | 5.778+1                               | 1.459+1           | 5.119+0           | 2.191+0           | 1.072+0           | 5.787-1              | 3.360-1           | 2.066-1             | 1.330-1             |
| $E_b =$                                          | β                                  | 1.038                                                              | 1.051                                 | 0.998             | 0.919             | 0.841             | 0.770             | 0.709                | 0.656             | 0.608               | 0.565               |
| 118.7 eV                                         | γ                                  | 2.08 - 1                                                           | 3.62 - 1                              | 6.38 - 1          | 8.55 - 1          | 1.02+0            | 1.14+0            | 1.24+0               | 1.31+0            | 1.38+0              | 1.43+0              |
|                                                  | δ                                  | 7.92-2                                                             | 1.03-1                                | 1.46-1            | 1.88-1            | 2.26-1            | 2.62-1            | 2.97-1               | 3.31-1            | 3.64-1              | 3.94-1              |
| $5s_{1/2}$                                       | $\sigma$                           | 6.235+0                                                            | 3.978+0                               | 2.060+0           | 1.265+0           | 8.556-1           | 6.161-1           | 4.638-1              | 3.611-1           | 2.886-1             | 2.356-1             |
| $E_b = 136.3 \text{ eV}$                         | $eta \ \gamma$                     | 1.835<br>4.87-1                                                    | 1.848<br>4.17-1                       | 1.864<br>2.62-1   | 1.875<br>1.27-1   | 1.884<br>2.00-2   | 1.891<br>-6.08-2  | 1.898<br>-1.18-1     | 1.904<br>1.56 1   | 1.910<br>-1.77-1    | 1.915<br>-1.83-     |
|                                                  | δ                                  | -4.71-4                                                            | -1.07 - 3                             | -1.92 - 3         | -2.51-3           | -2.96 - 3         | -3.33 - 3         | -3.63 - 3            | -3.89 - 3         | -4.10-3             | -4.28-3             |
| 5p <sub>1/2</sub>                                | σ                                  | 6.068+0                                                            | 4.115+0                               | 2.242+0           | 1.392+0           | 9.357-1           | 6.645-1           | 4.913-1              | 3.749-1           | 2.934-1             | 2.344-1             |
| $E_b =$                                          | $\beta$                            | 1.567                                                              | 1.647                                 | 1.704             | 1.713             | 1.705             | 1.689             | 1.668                | 1.646             | 1.622               | 1.597               |
| 99.6 eV                                          | $_{\delta}^{\gamma}$               | 3.47-1 $-4.63-3$                                                   | 2.06-1 $-6.81-3$                      | 3.17-2<br>-7.36-3 | -1.50-2 $-7.25-3$ | 1.44-2<br>-6.87-3 | 8.72-2 $-5.99-3$  | 1.84 - 1 $-4.49 - 3$ | 2.92-1 $-2.41-3$  | 4.04-1<br>1.85-4    | 5.16-1<br>3.28-3    |
| F.,.                                             |                                    |                                                                    |                                       | 4.689+0           |                   |                   |                   |                      |                   |                     |                     |
| $5p_{3/2}$ $E_b =$                               | $\frac{\sigma}{\beta}$             | 1.516+1<br>1.518                                                   | 9.519+0<br>1.616                      | 4.689+0<br>1.713  | 2.723+0<br>1.754  | 1.742+0<br>1.770  | 1.189+0<br>1.773  | 8.508-1<br>1.767     | 6.313-1<br>1.756  | 4.821-1<br>1.742    | 3.769-1<br>1.725    |
| 74.5 eV                                          | γ                                  | 2.04-1                                                             | 9.12-2                                | -3.26-2           | -4.25-2           | 1.65-2            | 1.15-1            | 2.36-1               | 3.66-1            | 4.98-1              | 6.29-1              |
|                                                  | δ                                  | -1.43 - 3                                                          | -2.56 - 3                             | 1.14-3            | 5.58-3            | 9.28 - 3          | 1.23-2            | 1.50-2               | 1.73-2            | 1.94 - 2            | 2.15 - 2            |
| $5d_{3/2}$                                       | $\sigma$                           | 1.205+1                                                            | 7.085+0                               | 2.986+0           | 1.498+0           | 8.419 - 1         | 5.126 - 1         | 3.313 - 1            | 2.244 - 1         | 1.577 - 1           | 1.144 - 1           |
| $E_b =$                                          | β                                  | 1.253                                                              | 1.351<br>-3.01-2                      | 1.414<br>1.20-1   | 1.409             | 1.378             | 1.336             | 1.288                | 1.239             | 1.191               | 1.145               |
| 15.3 eV                                          | $\gamma \\ \delta$                 | -2.84-2<br>2.87-3                                                  | -3.01-2<br>1.35-2                     | 3.34-2            | 3.37-1<br>5.03-2  | 5.60-1<br>6.59-2  | 7.67-1<br>8.09-2  | 9.51-1<br>9.52-2     | 1.11+0<br>1.09-1  | 1.26+0<br>1.23-1    | 1.38+0<br>1.37-1    |
| 5d <sub>5/2</sub>                                | σ                                  | 1.681+1                                                            | 9.698+0                               | 3.990+0           | 1.969+0           | 1.092+0           | 6.580-1           | 4.214-1              | 2.830-1           | 1.975-1             | 1.422-1             |
| $E_b =$                                          | β                                  | 1.345                                                              | 1.394                                 | 1.395             | 1.353             | 1.299             | 1.241             | 1.182                | 1.126             | 1.073               | 1.024               |
| 13.1 eV                                          | γ                                  | -3.79-2                                                            | -1.72-2                               | 1.62-1            | 3.89-1            | 6.08-1            | 8.06-1            | 9.78-1               | 1.13+0            | 1.25+0              | 1.37+0              |
|                                                  | δ                                  | 4.13-3                                                             | 1.29-2                                | 3.09-2            | 4.89-2            | 6.74-2            | 8.62-2            | 1.05-1               | 1.22-1            | 1.40-1              | 1.57-1              |
| 6s <sub>1/2</sub>                                | $\sigma_{\beta}$                   | 6.470-1<br>1.838                                                   | 4.080-1<br>1.850                      | 2.087-1<br>1.865  | 1.275-1           | 8.598-2           | 6.179-2<br>1.892  | 4.645-2<br>1.899     | 3.613-2<br>1.906  | 2.885-2<br>1.911    | 2.355-2             |
| $E_b = 8.0 \text{ eV}$                           | $eta \ \gamma$                     | 1.838<br>4.63–1                                                    | 1.850<br>3.94–1                       | 1.865<br>2.45—1   | 1.875<br>1.14-1   | 1.884<br>9.29-3   | -6.84-2           | -1.23-1              | -1.57-1           | -1.76-1             | 1.916<br>1.82-      |
|                                                  | δ                                  | -5.84-4                                                            | -1.14-3                               | -1.96-3           | -2.55-3           | -2.99-3           | -3.34 - 3         | -3.62 - 3            | -3.85 - 3         | -4.06-3             | -4.25-              |
| 6p <sub>1/2</sub>                                | σ                                  | 3.308-1                                                            | 2.220-1                               | 1.198-1           | 7.415-2           | 4.974-2           | 3.526-2           | 2.605-2              | 1.987-2           | 1.555-2             | 1.242-2             |
| $E_b =$                                          | β                                  | 1.588                                                              | 1.662                                 | 1.711             | 1.717             | 1.707             | 1.691             | 1.670                | 1.647             | 1.623               | 1.598               |
| 6.0 eV                                           | $\gamma \\ \delta$                 | 3.28-1 $-6.23-3$                                                   | 1.91-1<br>-7.44-3                     | 2.56-2<br>-7.51-3 | -1.61-2 $-7.44-3$ | 1.70-2<br>-7.08-3 | 9.17-2 $-6.19-3$  | 1.88 - 1 $-4.68 - 3$ | 2.95-1<br>-2.54-3 | 4.07 - 1 $2.28 - 4$ | 5.20-1<br>3.48-3    |
| 7= 02 Db. FV                                     |                                    |                                                                    |                                       | 7.51-5            | ,J                | ,.00-3            | 0.13-3            | -1,00-3              | 2.34-3            | 2.20-4              | J. <del>1</del> 0-3 |
| ∠= 82, PD: [X                                    | ej41 <sub>5/2</sub> 4              | $\frac{\mathbf{4f_{7/2}^8 5d_{3/2}^4 5d_{5/2}^6}}{k  (\text{eV})}$ | 2 0S <sub>1/2</sub> 6P <sub>1/2</sub> |                   |                   |                   |                   |                      |                   |                     |                     |
| Shell                                            |                                    | 1500                                                               | 2000                                  | 3000              | 4000              | 5000              | 6000              | 7000                 | 8000              | 9000                | 10000               |
|                                                  |                                    |                                                                    |                                       |                   |                   |                   |                   |                      |                   |                     |                     |
| $4s_{1/2}  E_b =$                                | $\frac{\sigma}{\beta}$             | 2.595+1<br>1.777                                                   | 1.789+1<br>1.810                      | 9.863+0<br>1.840  | 6.221+0<br>1.855  | 4.270+0<br>1.866  | 3.106+0<br>1.876  | 2.355+0<br>1.884     | 1.844+0<br>1.892  | 1.481+0<br>1.898    | 1.213+0<br>1.905    |
| 893.6 eV                                         | γ                                  | 7.59-1                                                             | 6.57-1                                | 4.42-1            | 2.62-1            | 1.20-1            | 1.11-2            | -6.90-2              | -1.25-1           | -1.61-1             | -1.80-              |
|                                                  | δ                                  | 1.13-3                                                             | -2.20-4                               | -1.64 - 3         | -2.46 - 3         | -3.05 - 3         | -3.50 - 3         | -3.87 - 3            | -4.16 - 3         | -4.40 - 3           | -4.59-1             |

| able 1 (contin           | ued)                    |                   |                                |                   |                   |                       |                   |                   |                  |                   |                  |
|--------------------------|-------------------------|-------------------|--------------------------------|-------------------|-------------------|-----------------------|-------------------|-------------------|------------------|-------------------|------------------|
| $4p_{1/2}$               | σ                       | 2.838+1           | 2.117+1                        | 1.243+1           | 7.949+0           | 5.431+0               | 3.896+0           | 2.903+0           | 2.227+0          | 1.751+0           | 1.404+0          |
| $E_b =$                  | β                       | 1.264             | 1.484                          | 1.633             | 1.674             | 1.683                 | 1.677             | 1.664             | 1.646            | 1.625             | 1.603            |
| 763.9 eV                 | γ                       | 5.50-1            | 4.19-1                         | 1.30-1            | 7.06-3            | -6.25-3               | 4.25-2            | 1.25-1            | 2.25-1           | 3.32-1            | 4.42-1           |
| 4                        | δ                       | 3.13-2            | 5.44-3                         | -5.35-3           | -6.82-3           | -6.74-3               | -5.95-3           | -4.54-3           | -2.58-3          | -9.23-5           | 2.88-3           |
| $4p_{3/2} E_b =$         | $\frac{\sigma}{eta}$    | 8.429+1<br>1.273  | 5.562+1<br>1.474               | 2.849+1<br>1.643  | 1.680+1<br>1.713  | 1.084+1<br>1.745      | 7.437+0<br>1.758  | 5.342+0<br>1.760  | 3.976+0<br>1.754 | 3.044+0<br>1.744  | 2.384+0<br>1.730 |
| 644.5 eV                 | γ                       | 3.50-1            | 2.21-1                         | 1.29-2            | -5.10-2           | -2.22-2               | 5.97-2            | 1.700             | 2.94-1           | 4.24-1            | 5.55-1           |
|                          | δ                       | 2.08 - 2          | 4.09 - 3                       | 9.99 - 4          | 5.06 - 3          | 9.32 - 3              | 1.29 - 2          | 1.59-2            | 1.85 - 2         | 2.07 - 2          | 2.29-2           |
| 4d <sub>3/2</sub>        | σ                       | 1.184+2           | 7.176+1                        | 3.063+1           | 1.537+1           | 8.626+0               | 5.245+0           | 3.387+0           | 2.293+0          | 1.611+0           | 1.168+0          |
| $E_b =$                  | β                       | 1.041             | 1.230                          | 1.363             | 1.387             | 1.371                 | 1.338             | 1.297             | 1.253            | 1.209             | 1.165            |
| 435.2 eV                 | $\gamma \\ \delta$      | 1.01-2<br>5.18-3  | -5.35-2 $1.09-2$               | 5.19-2<br>3.25-2  | 2.64-1<br>5.12-2  | 4.92-1<br>6.74-2      | 7.03-1<br>8.17-2  | 8.93-1<br>9.55-2  | 1.06+0<br>1.09-1 | 1.21+0<br>1.23-1  | 1.35+0<br>1.37-1 |
| 1d                       | σ                       | 1.735+2           | 1.026+2                        | 4.257+1           | 2.099+1           | 1.162+1               | 6.989+0           | 4.471+0           | 3.001+0          | 2.093+0           | 1.506+0          |
| $4d_{5/2}$ $E_b =$       | β                       | 1.735+2           | 1.309                          | 1.368             | 1.348             | 1.303                 | 1.250             | 1.196             | 1.143            | 1.093             | 1.046            |
| 412.9 eV                 | γ                       | -1.41-2           | -5.16 - 2                      | 9.46 - 2          | 3.23 - 1          | 5.50 - 1              | 7.53 - 1          | 9.31 - 1          | 1.09+0           | 1.22+0            | 1.34+0           |
|                          | δ                       | 5.59-3            | 1.10-2                         | 2.99-2            | 4.88-2            | 6.73-2                | 8.52-2            | 1.03-1            | 1.20-1           | 1.38-1            | 1.56-1           |
| $4f_{5/2}$               | σ                       | 1.228+2           | 5.051+1                        | 1.298+1           | 4.611+0           | 1.994+0               | 9.842-1           | 5.350-1           | 3.126-1          | 1.933-1           | 1.251-1          |
| $E_b = 141.8 \text{ eV}$ | β                       | 1.028<br>1.83-1   | 1.055<br>3.32-1                | 1.016<br>6.08-1   | 0.941<br>8.26-1   | 0.863<br>9.93-1       | 0.791<br>1.12+0   | 0.728<br>1.23+0   | 0.671<br>1.31+0  | 0.618<br>1.38+0   | 0.569<br>1.43+0  |
| 141.0 67                 | $\frac{\gamma}{\delta}$ | 7.71–2            | 1.01-1                         | 1.44-1            | 1.83-1            | 2.20-1                | 2.55-1            | 2.89-1            | 3.22-1           | 3.53-1            | 3.82-1           |
| 4f <sub>7/2</sub>        | σ                       | 1.558+2           | 6.380+1                        | 1.627+1           | 5.744+0           | 2.469+0               | 1.213+0           | 6.561-1           | 3.818-1          | 2.351-1           | 1.516-1          |
| $E_b =$                  | β                       | 1.033             | 1.051                          | 1.003             | 0.926             | 0.849                 | 0.780             | 0.720             | 0.667            | 0.618             | 0.573            |
| 136.9 eV                 | γ                       | 1.94-1            | 3.47-1                         | 6.26-1            | 8.44-1            | 1.01+0                | 1.14+0            | 1.24+0            | 1.32+0           | 1.38+0            | 1.43+0           |
|                          | δ                       | 7.74-2            | 1.01-1                         | 1.44-1            | 1.84-1            | 2.22-1                | 2.58-1            | 2.94-1            | 3.28-1           | 3.60-1            | 3.90-1           |
| $5s_{1/2}$               | σ                       | 6.519+0           | 4.166+0                        | 2.161+0           | 1.330+0           | 9.014-1               | 6.500-1           | 4.899-1           | 3.818-1<br>1.897 | 3.054-1<br>1.903  | 2.495-1          |
| $E_b = 147.3 \text{ eV}$ | $\beta$ $\gamma$        | 1.822<br>5.02-1   | 1.838<br>4.34-1                | 1.855<br>2.83-1   | 1.866<br>1.47-1   | 1.875<br>3.75-2       | 1.883<br>-4.71-2  | 1.890<br>-1.09-1  | -1.50-1          | -1.74-1           | 1.908<br>1.84 1  |
|                          | δ                       | -4.32 - 4         | -1.08 - 3                      | -1.99 - 3         | -2.64 - 3         | -3.14 - 3             | -3.54 - 3         | -3.87 - 3         | -4.13 - 3        | -4.36 - 3         | -4.54 - 3        |
| $5p_{1/2}$               | σ                       | 6.358+0           | 4.327+0                        | 2.372+0           | 1.480+0           | 9.994-1               | 7.120-1           | 5.279-1           | 4.038-1          | 3.167-1           | 2.535-1          |
| $E_b =$                  | β                       | 1.554             | 1.641                          | 1.701             | 1.712             | 1.706                 | 1.692             | 1.673             | 1.652            | 1.629             | 1.605            |
| 104.8 eV                 | $\gamma \\ \delta$      | 3.66-1 $-4.85-3$  | 2.25-1<br>-7.18-3              | 4.30-2 $-7.72-3$  | -1.36-2 $-7.64-3$ | 7.54-3<br>-7.31-3     | 7.39-2<br>-6.52-3 | 1.65-1<br>-5.15-3 | 2.68-1 $-3.22-3$ | 3.76-1<br>-7.44-4 | 4.86-1<br>2.24-3 |
| 5p <sub>3/2</sub>        | σ                       | 1.622+1           | 1.019+1                        | 5.034+0           | 2.931+0           | 1.879+0               | 1.285+0           | 9.213-1           | 6.846-1          | 5.234-1           | 4.097-1          |
| $E_b =$                  | β                       | 1.502             | 1.605                          | 1.706             | 1.750             | 1.769                 | 1.774             | 1.771             | 1.761            | 1.749             | 1.733            |
| ้84.5 eV                 | γ                       | 2.16 - 1          | 1.03 - 1                       | -2.73-2           | -4.62 - 2         | 5.44 - 3              | 9.83-2            | 2.13 - 1          | 3.39 - 1         | 4.68 - 1          | 5.97 - 1         |
|                          | δ                       | -1.32-3           | -2.79-3                        | 7.90-4            | 5.36-3            | 9.25-3                | 1.24-2            | 1.51-2            | 1.74-2           | 1.95-2            | 2.16-2           |
| $5d_{3/2}$               | $\sigma$                | 1.353+1           | 7.996+0                        | 3.399+0           | 1.716+0           | 9.690-1               | 5.921-1           | 3.839-1           | 2.606-1          | 1.837-1           | 1.334-1          |
| $E_b = 21.8 \text{ eV}$  | $\beta$ $\gamma$        | 1.241<br>-2.37-2  | 1.345<br>-3.42-2               | 1.414<br>1.04-1   | 1.413<br>3.17-1   | 1.385<br>5.38-1       | 1.345<br>7.43-1   | 1.300<br>9.27-1   | 1.254<br>1.09+0  | 1.208<br>1.24+0   | 1.162<br>1.37+0  |
| 21.0 01                  | δ                       | 2.12-3            | 1.24-2                         | 3.23-2            | 4.94-2            | 6.47-2                | 7.88-2            | 9.25-2            | 1.06-1           | 1.20-1            | 1.34-1           |
| 5d <sub>5/2</sub>        | σ                       | 1.916+1           | 1,111+1                        | 4.606+0           | 2.286+0           | 1.274+0               | 7.700-1           | 4.945-1           | 3.329-1          | 2.328-1           | 1.679-1          |
| $E_b =$                  | β                       | 1.342             | 1.394                          | 1.399             | 1.360             | 1.307                 | 1.249             | 1.192             | 1.138            | 1.087             | 1.039            |
| 19.2 eV                  | $\gamma \\ \delta$      | -3.57-2<br>3.56-3 | -2.31-2<br>1.20-2              | 1.47-1<br>2.98-2  | 3.71-1<br>4.77-2  | 5.90-1<br>6.57-2      | 7.86-1<br>8.35-2  | 9.58-1<br>1.01-1  | 1.11+0<br>1.19-1 | 1.24+0<br>1.36-1  | 1.36+0<br>1.54-1 |
| C-                       |                         |                   |                                |                   |                   |                       |                   |                   |                  |                   |                  |
| $6s_{1/2} E_b =$         | $\frac{\sigma}{\beta}$  | 7.619-1<br>1.828  | 4.807-1<br>1.841               | 2.463-1<br>1.856  | 1.508-1<br>1.867  | 1.019—1<br>1.877      | 7.333-2<br>1.885  | 5.521-2<br>1.892  | 4.299-2<br>1.898 | 3.437-2<br>1.904  | 2.806-2<br>1.909 |
| 3.1 eV                   | γ                       | 4.72-1            | 4.07-1                         | 2.62-1            | 1.31-1            | 2.56-2                | -5.46-2           | -1.13-1           | -1.52 - 1        | -1.75-1           | -1.85 - 1        |
|                          | δ                       | -5.88 - 4         | -1.19 - 3                      | -2.05 - 3         | -2.67 - 3         | -3.14 - 3             | -3.51-3           | -3.83 - 3         | -4.11-3          | -4.35 - 3         | -4.55 - 3        |
| $6p_{1/2}$               | $\sigma$                | 4.376 - 1         | 2.944 - 1                      | 1.597 - 1         | 9.923 - 2         | 6.683 - 2             | 4.756 - 2         | 3.524 - 2         | 2.695 - 2        | 2.113 - 2         | 1.691 - 2        |
| $E_b = 0.7 \text{ eV}$   | β                       | 1.575             | 1.653<br>2.08-1                | 1.708<br>3.51-2   | 1.717<br>-1.49-2  | 1.710                 | 1.694<br>7.76-2   | 1.675<br>1.68-1   | 1.653<br>2.73-1  | 1.629<br>3.83-1   | 1.605            |
| 0.7 ev                   | $\gamma \delta$         | 3.45-1<br>-6.54-3 | -7.94-3                        | -8.01-3           | -7.81-3           | 1.02-2<br>-7.41-3     | -6.58-3           | -5.18-3           | -3.19-3          | -6.62-4           | 4.95-1 $2.32-3$  |
| 7= 83 Ri· [Y             | al4f <sup>6</sup> 4     |                   | $6s_{1/2}^2 6p_{1/2}^2 6p_3^1$ |                   |                   |                       |                   |                   |                  |                   |                  |
| Z- 03, DI. [X            | 5/2                     |                   | $os_{1/2} op_{1/2} op_3$       | /2                |                   |                       |                   |                   |                  |                   |                  |
| Ch -II                   |                         | k (eV)            | 2000                           | 2000              | 4000              | 5000                  | C000              | 7000              | 0000             | 0000              | 10000            |
| Shell                    |                         | 1500              | 2000                           | 3000              | 4000              | 5000                  | 6000              | 7000              | 8000             | 9000              | 10000            |
| $4s_{1/2}$<br>$E_b =$    | $\frac{\sigma}{eta}$    | 2.605+1<br>1.759  | 1.808+1<br>1.795               | 1.004+1<br>1.828  | 6.354+0<br>1.844  | 4.373+0<br>1.856      | 3.186+0<br>1.866  | 2.420+0<br>1.875  | 1.897+0<br>1.884 | 1.525+0<br>1.891  | 1.251+0<br>1.898 |
| 938.2 eV                 | γ                       | 7.81-1            | 6.88-1                         | 4.74-1            | 2.92-1            | 1.46-1                | 3.25-2            | -5.19-2           | -1.12-1          | -1.52-1           | -1.76-1          |
|                          | δ                       | 1.42 - 3          | -6.88 - 5                      | -1.65 - 3         | -2.56 - 3         | -3.21-3               | -3.70 - 3         | -4.08 - 3         | -4.39 - 3        | -4.64 - 3         | -4.86 - 3        |
| 4p <sub>1/2</sub>        | σ                       | 2.818+1           | 2.126+1                        | 1.263+1           | 8.140+0           | 5.588+0               | 4.025+0           | 3.008+0           | 2.315+0          | 1.824+0           | 1.466+0          |
| $E_b =$                  | β                       | 1.216             | 1.458                          | 1.622             | 1.669             | 1.682                 | 1.678             | 1.667             | 1.650            | 1.631             | 1.610            |
| 805.3 eV                 | $\delta \gamma$         | 5.62-1<br>3.67-2  | 4.53-1<br>7.21-3               | 1.56-1<br>-5.45-3 | 1.71-2<br>-7.23-3 | -8.25 - 3 $-7.20 - 3$ | 3.14-2 $-6.45-3$  | 1.06-1<br>-5.12-3 | 2.00-1 $-3.27-3$ | 3.04-1 $-9.01-4$  | 4.12-1<br>1.99-3 |
| 4p <sub>3/2</sub>        | σ                       | 8.621+1           | 5.714+1                        | 2.942+1           | 1.742+1           | 1.126+1               | 7.745+0           | 5.574+0           | 4.155+0          | 3.185+0           | 2.499+0          |
| $E_b =$                  | β                       | 1.240             | 1.449                          | 1.629             | 1.742+1           | 1.741                 | 1.757             | 1.761             | 1.758            | 1.749             | 1.737            |
| 678.9 eV                 | γ                       | 3.62 - 1          | 2.40 - 1                       | 2.52 - 2          | -5.03-2           | -3.10-2               | 4.32 - 2          | 1.47 - 1          | 2.66 - 1         | 3.93 - 1          | 5.23 - 1         |
|                          | δ                       | 2.42-2            | 5.14-3                         | 7.43-4            | 4.74-3            | 9.16-3                | 1.29-2            | 1.60-2            | 1.86-2           | 2.10-2            | 2.32-2           |
| $4d_{3/2}$               | $\sigma_{\rho}$         | 1.220+2           | 7.464+1                        | 3.220+1           | 1.626+1           | 9.166+0               | 5.594+0           | 3.624+0           | 2.459+0          | 1.732+0           | 1.258+0          |
| $E_b =$                  | β                       | 1.009             | 1.211                          | 1.357             | 1.388             | 1.376                 | 1.346             | 1.308             | 1.266            | 1.223             | 1.179            |
|                          |                         |                   |                                |                   |                   |                       |                   |                   |                  |                   |                  |

| 4400   γ   σ.3.3   σ.5.40   7.2.2   3.01   5.05   7.28   1.08   1.07   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   |                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 44-γ2-γ         σ         1.79-γ         1.069-γ         4.477-1         2.291-γ         1.310         1.380         1.380         1.380         1.380         1.380         1.380         1.380         1.380         1.380         1.380         1.380         1.380         1.380         1.380         1.380         1.380         1.380         1.380         1.380         1.380         1.380         1.380         1.380         1.380         1.380         1.381-1         1.210-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-1         1.381-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.33+0<br>1.35-1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.620+0          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.020+0          |
| 18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1   18-1    | 1.33+0           |
| E/s         β         10.22         10.54         10.02         0.949         0.874         0.894         0.234         0.81         0.236         0.226         1.38-1         1.38-1         1.38-1         1.38-1         1.38-1         1.38-1         1.38-1         1.38-1         1.38-1         1.38-1         1.38-1         1.38-1         1.38-1         1.38-1         1.38-1         1.38-1         1.38-1         2.58-1         2.58-1         2.58-1         0.38-1         0.38-1         2.68-1         2.58-1         0.38-1         0.38-1         2.68-1         2.58-1         0.38-1         0.58-1         1.38-1         1.38-1         1.18-1         1.19-1         1.19-0         1.21-0         1.24-0         1.32-0         0.35-1         3.58-1         3.58-1         3.58-1         3.58-1         3.58-1         3.58-1         3.58-1         3.58-1         3.28-1         3.28-1         3.28-1         3.28-1         3.28-1         3.28-1         3.28-1         3.28-1         3.28-1         3.28-1         3.28-1         3.28-1         3.28-1         3.28-1         3.28-1         3.28-1         3.28-1         3.28-1         3.28-1         3.28-1         3.28-1         3.28-1         3.28-1         3.28-1         3.28-1         3.28-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.54 - 1         |
| E/ε         β         10.22         10.54         10.00         0.949         0.874         0.894         0.314         0.836         10.120         11.20         11.20         11.20         11.20         13.96         0.836         10.104         2.886         11.20         12.39         13.81         3.866         14.60         2.896         12.20         13.81         3.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.876         2.754         0.866         0.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1.866         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.421-1          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.577            |
| 4fyz         σ         11/94°2         7,05°1         1,808°1         6,624°0         2,775°0         1,310°0         7,415°1         332°1         2,606°1           157.2 v         y         1,801°1         3,33°1         6,11°1         8,30°1         1,00°0         1,31°0         1,24°0         1,32°0         1,38°0           157.2 v         y         1,808         3,33°1         6,11°1         8,30°1         1,00°0         1,30°1         1,20°1         3,35°1         3,53°1           51/2 v         σ         6,804°0         4,33°4         2,26°1         1,20°1         2,26°1         3,20°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1         1,80°1 <td>1.43+0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.43+0           |
| \$μ̄ = 10 / 10 / 10 / 10 / 10 / 10 / 10 / 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.76-1           |
| 1572   Y   180-0   333-1   611-1   8.30-1   100-0   1.31-0   1.24-0   1.32-0   3.55-1   3.55-1   3.55-1   5.51-2   3   5.51-2   3.55-1   3.55-1   3.55-1   5.51-2   3   5.51-2   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55-1   3.55 | 1.721-1          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.579            |
| 55/10         σ         68/940         43540         22/9410         13.9960         43/6-1         6.163-1         4.029-1         32.56         1.844         18.56         1.866         18.76         1.872         1.814         1.856         1.866         1.876         1.872         -1.81-1         4.51-1         4.51-1         4.51-1         3.06-1         1.69-1         5.59-2         -3.17-2         -9.63-2         -1.41-1         -1.68-1           5.91         σ         6.8390         4.534-0         2.01-0         1.5690         1.063-0         7.75-3         -3.23-3         -3.68-3         5.51-1         3.33-1         3.06-1           1.16.8         V         3.8391         2.47-1         5.62-2         -1.09-2         1.82-3         6.08-2         1.16-1         2.44-1         3.04-1           5.91         σ         7.75-2         7.75-2         3.08-2         3.08-1         1.51-1         3.09-1         1.51-1         3.08-1         1.51-1         3.09-1         1.51-1         3.01-1         1.25-2         1.73-1         1.76-1         1.75-1         1.32-1         1.33-1         1.25-2         1.73-1         1.76-1         1.75-1         1.52-1         1.52-1         1.52-1         1.72-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.44+0<br>3.84-1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.638-1          |
| 1991   1991   1991   1991   1991   1991   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992   1992    | 1.902            |
| 1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6  | -1.83-1          |
| E/ε         B/E         1.536         1.630         1.896         1.711         1.708         1.695         1.678         1.637         1.636           1.168 eV         3         3.891         2.477-1         5.522-2         -8.10-3         -7.75-3         -6.96-3         -5.71-3         -3.89-3         -1.51-3           5.92.2         α         1.723         1.090-1         5.398-0         1.315-0         1.202-0         1.755         1.775         1.754         1.773         1.742-1         1.567-1           29.9 eV         2.271         1.15-1         1.200-2         4.490-2         1.666-3         1.812-1         1.752-1         1.752-1         1.775-1         1.775-1         1.775-1         1.752-1         1.752-1         1.752-1         1.752-1         1.752-1         1.752-1         1.752-1         1.752-1         1.752-1         1.752-1         1.752-1         1.752-1         1.752-1         1.752-1         1.752-1         1.752-1         1.752-1         1.752-1         1.752-1         1.752-1         1.752-1         1.752-1         1.752-1         1.752-1         1.752-1         1.752-1         1.752-1         1.752-1         1.752-1         1.752-1         1.752-1         1.752-1         1.752-1         1.752-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -4.82 - 3        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.732-1          |
| Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.613            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.57 - 1         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.34-3           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.448-1          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.741            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.68-1 $2.19-2$  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.550-1          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.178            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.35+0           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.32 - 1         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.952-1          |
| $6s_{1/2}$ $a$ <t< td=""><td>1.053</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.053            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.35+0           |
| $E_b = \beta \  \  \  \  \  \  \  \  \  \  \  \  \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.52-1           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.274-2<br>1.901 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.86-1          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -4.85 - 3        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.241-2          |
| 6p <sub>3/2</sub> σ         1.203+0         -8.41-3         -8.37-3         -8.09-3         -7.75-3         -7.03-3         -5.79-3         -4.01-3         -1.71-3           6p <sub>3/2</sub> σ         1.203+0         7.512-1         3.693-1         2.150-1         1.380-1         9.448-2         6.782-2         5.046-2         3.856-2 $b_{e}$ β         1.504         1.604         1.705         1.751         1.777         1.775         1.767         1.755           0.2 eV         γ         2.13-1         1.04-1         -2.60-2         -4.78-2         -1.36-3         8.56-2         1.96-1         3.20-1         4.49-1           0.2 eV         γ         2.13-3         1.04-1         -2.60-2         -4.78-2         -1.36-3         8.56-2         1.96-1         3.20-1         4.49-1           0.2 eV         γ         2.13-3         1.04-1         -2.60-2         -4.78-2         -1.36-3         8.56-2         1.96-1         3.20-1         4.49-1           2.0 -2.49-3         -3.30-3         405-3         -3.00-3         400         500         6000         7000         800         900           45         1.373         1.35         1.814         1.833                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.613            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.67 - 1         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.05-3           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.026-2          |
| $\delta$ -2.49-3         -3.50-3         4.05-4         5.14-3         9.10-3         1.23-2         1.51-2         1.75-2         1.97-2 <b>Z= 84, Po:</b> [Xe] $4f_{5/2}^2$ $4f_{7/2}^2$ $5f_{3/2}^4$ $5f_{5/2}^6$ $6f_{7/2}^2$ $6f_$                                                                                                                                                      | 1.741<br>5.78-1  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.17-2           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
| Shell         1500         2000         3000         4000         5000         6000         7000         8000         9000 $4s_{1/2}$ σ         2.612+1         1.825+1         1.020+1         6.484+0         4.474+0         3.267+0         2.485+0         1.951+0         1.570+0 $E_b =$ β         1.736         1.778         1.814         1.833         1.846         1.857         1.867         1.876         1.883           987.5 eV         γ         8.07-1         7.20-1         5.09-1         3.24-1         1.74-1         5.62-2         -3.23-2         -9.69-2         -1.42-1 $\delta$ 1.83-3         1.16-4         -1.64-3         -2.65-3         -3.36-3         -3.88-3         -4.29-3         -4.63-3         -4.92-3 $4p_{1/2}$ σ         2.789+1         2.130+1         1.283+1         8.324+0         5.744+0         4.154+0         3.114+0         2.49-3         -4.63-3         -4.92-3 $E_b =$ β         1.157         1.430         1.610         1.664         1.680         1.679         1.670         1.655         1.637 $85.9$ eV         γ         5.70-1         4.89-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10000            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10000            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.289+0<br>1.890 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1.71-1          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -5.17 - 3        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.529+0          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.617            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.84 - 1         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.06-3           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.617+0          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.743            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.94-1 $2.36-2$  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.353+0          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.353+0          |
| δ 7.21-3 9.00-3 3.01-2 4.88-2 6.43-2 7.87-2 9.27-2 1.06-1 1.20-1<br>$4d_{5/2}$ $σ$ 1.852+2 1.113+2 4.705+1 2.346+1 1.310+1 7.934+0 5.105+0 3.442+0 2.410+0<br>$E_b = β$ 1.145 1.291 1.368 1.357 1.318 1.270 1.219 1.168 1.118<br>469.9  eV $γ$ 9.29-3 -5.51-2 6.15-2 2.78-1 4.99-1 7.04-1 8.87-1 1.05+0 1.19+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.31+0           |
| $E_b = \beta$ 1.145 1.291 1.368 1.357 1.318 1.270 1.219 1.168 1.118 469.9 eV $\gamma$ 9.29-3 -5.51-2 6.15-2 2.78-1 4.99-1 7.04-1 8.87-1 1.05+0 1.19+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.33 - 1         |
| $E_b = \beta$ 1.145 1.291 1.368 1.357 1.318 1.270 1.219 1.168 1.118 469.9 eV $\gamma$ 9.29-3 -5.51-2 6.15-2 2.78-1 4.99-1 7.04-1 8.87-1 1.05+0 1.19+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.740+0          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.069            |
| 0 0.75-3 9.45-3 2.74-2 4.30-2 b.30-2 8.05-2 9.84-2 1.16-1 1.34-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.32+0           |
| 2 2.2 3 2.2 3 2 2 1 2 0.00 2 0.00 2 0.01 2 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.51-1           |

| Tab | nle 1 | l (c | nnt | inı | ed) |
|-----|-------|------|-----|-----|-----|

| abic i (contin            | aca,                   |                                                       |                                |                      |                      |                   |                   |                   |                   |                   |                   |
|---------------------------|------------------------|-------------------------------------------------------|--------------------------------|----------------------|----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| $4f_{5/2}$                | σ                      | 1.466+2                                               | 6.111+1                        | 1.600+1              | 5.757+0              | 2.512+0           | 1.249+0           | 6.818-1           | 3.999-1           | 2.481-1           | 1.610-1           |
| $E_b =$                   | β                      | 1.015                                                 | 1.053                          | 1.025                | 0.957                | 0.885             | 0.815             | 0.749             | 0.689             | 0.635             | 0.585             |
| 184.6 eV                  | γ                      | 1.54 - 1                                              | 3.01 - 1                       | 5.76 - 1             | 7.98 - 1             | 9.75 - 1          | 1.11+0            | 1.22+0            | 1.31+0            | 1.38+0            | 1.44+0            |
|                           | δ                      | 7.33-2                                                | 9.75-2                         | 1.39-1               | 1.77-1               | 2.14-1            | 2.50-1            | 2.83-1            | 3.14-1            | 3.43-1            | 3.71-1            |
| $4f_{7/2}$                | $\sigma$               | 1.860+2                                               | 7.715+1                        | 2.004+1              | 7.166+0              | 3.109+0           | 1.537+0           | 8.353 - 1         | 4.878 - 1         | 3.014 - 1         | 1.948 - 1         |
| $E_b =$                   | β                      | 1.023                                                 | 1.051                          | 1.013                | 0.941                | 0.869             | 0.802             | 0.739             | 0.683             | 0.632             | 0.586             |
| 178.9 eV                  | γ                      | 1.66-1                                                | 3.17-1                         | 5.95-1               | 8.17-1               | 9.93-1            | 1.13+0            | 1.24+0            | 1.32+0            | 1.38+0            | 1.44+0            |
|                           | δ                      | 7.38-2                                                | 9.76-2                         | 1.39-1               | 1.78-1               | 2.16-1            | 2.53-1            | 2.88-1            | 3.20-1            | 3.50-1            | 3.79-1            |
| $5s_{1/2}$                | σ                      | 7.103+0                                               | 4.551+0                        | 2.370+0              | 1.464+0              | 9.951-1           | 7.198-1           | 5.440-1           | 4.249-1           | 3.405 - 1         | 2.787-1           |
| $E_b =$                   | β                      | 1.794                                                 | 1.813                          | 1.833                | 1.846                | 1.857             | 1.866             | 1.875             | 1.882             | 1.888             | 1.894             |
| 177.5 eV                  | $\gamma \\ \delta$     | 5.37-1<br>-3.11-4                                     | 4.75 - 1 $-1.07 - 3$           | 3.28 - 1 $-2.15 - 3$ | 1.91-1<br>-2.91-3    | 7.61-2 $-3.49-3$  | -1.42-2 $-3.94-3$ | -8.20-2 $-4.30-3$ | -1.31-1 $-4.62-3$ | -1.63-1 $-4.89-3$ | -1.82-1 $-5.13-3$ |
|                           |                        |                                                       |                                |                      |                      |                   |                   |                   |                   |                   |                   |
| $5p_{1/2}$                | $\sigma$               | 6.914+0<br>1.519                                      | 4.743+0<br>1.619               | 2.631+0<br>1.692     | 1.658+0<br>1.710     | 1.128+0<br>1.709  | 8.092-1<br>1.698  | 6.036-1<br>1.682  | 4.640-1<br>1.663  | 3.655-1<br>1.642  | 2.938-1<br>1.620  |
| $E_b = 131.8 \text{ eV}$  | $\beta$ $\gamma$       | 4.12-1                                                | 2.72-1                         | 7.11–2               | -6.42 - 3            | -2.82 - 3         | 4.84-2            | 1.062             | 2.21–1            | 3.24-1            | 4.31-1            |
| 131.0 01                  | δ                      | -5.04-3                                               | -8.03 - 3                      | -8.73-3              | -8.52 - 3            | -8.13-3           | -7.40-3           | -6.22 - 3         | -4.52 - 3         | -2.29 - 3         | 4.02-4            |
| 5p <sub>3/2</sub>         | σ                      | 1.848+1                                               | 1.164+1                        | 5.775+0              | 3.379+0              | 2.176+0           | 1.494+0           | 1.075+0           | 8.012-1           | 6.143-1           | 4.821-1           |
| $E_b =$                   | β                      | 1.464                                                 | 1.576                          | 1.688                | 1.740                | 1.765             | 1.775             | 1.776             | 1.770             | 1.760             | 1.747             |
| 103.7 eV                  | γ                      | 2.40-1                                                | 1.28-1                         | -1.56-2              | -5.07 - 2            | -1.40-2           | 6.53-2            | 1.69-1            | 2.87-1            | 4.13-1            | 5.40-1            |
|                           | δ                      | -8.84 - 4                                             | -3.21-3                        | 6.44 - 7             | 4.85 - 3             | 9.06 - 3          | 1.25 - 2          | 1.53-2            | 1.78 - 2          | 2.01-2            | 2.23 - 2          |
| 5d <sub>3/2</sub>         | σ                      | 1.675+1                                               | 1.001+1                        | 4.322+0              | 2.208+0              | 1.259+0           | 7.752-1           | 5.059-1           | 3.454-1           | 2.445-1           | 1.783-1           |
| $E_b =$                   | β                      | 1.214                                                 | 1.328                          | 1.411                | 1.420                | 1.399             | 1.365             | 1.325             | 1.281             | 1.237             | 1.192             |
| 33.8 eV                   | γ                      | -1.25-2                                               | -3.94-2                        | 7.58 - 2             | 2.74 - 1             | 4.85 - 1          | 6.89 - 1          | 8.78 - 1          | 1.05+0            | 1.20+0            | 1.34+0            |
|                           | δ                      | 7.89 - 4                                              | 1.05 - 2                       | 3.04 - 2             | 4.70 - 2             | 6.16 - 2          | 7.55 - 2          | 8.94 - 2          | 1.03 - 1          | 1.16 - 1          | 1.30 - 1          |
| $5d_{5/2}$                | σ                      | 2.386+1                                               | 1.396+1                        | 5.874+0              | 2.948+0              | 1.658+0           | 1.009+0           | 6.523-1           | 4.414 - 1         | 3.099 - 1         | 2.243 - 1         |
| $E_b =$                   | β                      | 1.334                                                 | 1.393                          | 1.406                | 1.372                | 1.323             | 1.270             | 1.216             | 1.163             | 1.113             | 1.064             |
| 30.6 eV                   | γ                      | -2.94-2                                               | -3.23-2                        | 1.19-1               | 3.32-1               | 5.45-1            | 7.42-1            | 9.19-1            | 1.08+0            | 1.21+0            | 1.33+0            |
|                           | δ                      | 2.55-3                                                | 1.04-2                         | 2.76-2               | 4.45-2               | 6.14-2            | 7.86-2            | 9.65-2            | 1.14-1            | 1.32-1            | 1.49-1            |
| $6s_{1/2}$                | $\sigma$               | 9.964 - 1                                             | 6.294 - 1                      | 3.230 - 1            | 1.983 - 1            | 1.343 - 1         | 9.694 - 2         | 7.314 - 2         | 5.705 - 2         | 4.568 - 2         | 3.734 - 2         |
| $E_b =$                   | β                      | 1.802                                                 | 1.818                          | 1.836                | 1.848                | 1.858             | 1.867             | 1.874             | 1.882             | 1.888             | 1.894             |
| 11.0 eV                   | $\gamma \\ \delta$     | 5.00-1<br>-5.31-4                                     | 4.40-1 $-1.22-3$               | 3.01-1 $-2.22-3$     | 1.71 - 1 $-2.94 - 3$ | 6.11-2<br>-3.51-3 | -2.57-2 $-3.97-3$ | -9.12-2 $-4.34-3$ | -1.38-1 $-4.66-3$ | -1.68-1 $-4.92-3$ | -1.84-1 $-5.13-3$ |
|                           |                        |                                                       |                                |                      |                      |                   |                   |                   |                   |                   |                   |
| $6p_{1/2}$                | σ                      | 6.855-1                                               | 4.635-1                        | 2.538-1              | 1.591-1              | 1.080-1           | 7.738-2           | 5.764-2           | 4.427-2           | 3.485-2           | 2.799-2           |
| $E_b = 3.2 \text{ eV}$    | β                      | 1.557<br>3.82-1                                       | 1.642<br>2.45-1                | 1.704<br>5.90-2      | 1.717<br>-9.42-3     | 1.713<br>-1.35-3  | 1.701<br>5.30-2   | 1.684<br>1.34-1   | 1.664<br>2.30-1   | 1.643<br>3.33-1   | 1.621<br>4.38-1   |
| 3.2 ev                    | $\gamma \\ \delta$     | -7.53-3                                               | -8.97 - 3                      | -8.83-3              | -9.42-3<br>-8.54-3   | -8.23-3           | -7.58-3           | -6.45 - 3         | -4.80-3           | -2.66-3           | -3.17-5           |
| 6n                        |                        | 1.518+0                                               | 9.485-1                        | 4.671-1              | 2.725-1              | 1.753-1           | 1.203-1           | 8.646-2           | 6.441-2           | 4.936-2           | 3.871-2           |
| $6p_{3/2}$<br>$E_b =$     | $\frac{\sigma}{\beta}$ | 1.492                                                 | 1.594                          | 1.699                | 2.723—1<br>1.747     | 1.755-1           | 1.778             | 1.778             | 1.771             | 4.930—2<br>1.761  | 1.748             |
| 1.4 eV                    | γ                      | 2.23-1                                                | 1.14-1                         | -2.02-2              | -4.96-2              | -1.04-2           | 7.11-2            | 1.77-1            | 2.96-1            | 4.21-1            | 5.46-1            |
|                           | δ                      | -2.55 - 3                                             | -3.78 - 3                      | 3.49 - 5             | 4.87 - 3             | 9.03 - 3          | 1.24 - 2          | 1.53 - 2          | 1.77 - 2          | 1.99 - 2          | 2.18 - 2          |
| Z= 85. At: [X             | el4f <sup>6</sup> 4    | If <sup>8</sup> , 5d <sup>4</sup> , 5d <sup>6</sup> , | $6s_{1/2}^2 6p_{1/2}^2 6p_3^3$ | 1/2                  |                      |                   |                   |                   |                   |                   |                   |
| ,                         | 3/2                    | k (eV)                                                | 2 - 1/2 - 1/2 - 1/3            | 5/2                  |                      |                   |                   |                   |                   |                   |                   |
| Shell                     |                        | 1500                                                  | 2000                           | 3000                 | 4000                 | 5000              | 6000              | 7000              | 8000              | 9000              | 10000             |
|                           |                        |                                                       |                                |                      |                      |                   |                   |                   |                   |                   |                   |
| $4s_{1/2}$                | σ                      | 2.613+1                                               | 1.840+1                        | 1.036+1              | 6.611+0              | 4.574+0           | 3.346+0           | 2.550+0           | 2.005+0           | 1.615+0           | 1.327+0           |
| $E_b = 1038.2 \text{ eV}$ | $eta \gamma$           | 1.712<br>8.34-1                                       | 1.760<br>7.51-1                | 1.801<br>5.42-1      | 1.821<br>3.57-1      | 1.835<br>2.03-1   | 1.847<br>8.14-2   | 1.857<br>1.14-2   | 1.866<br>-8.09-2  | 1.874<br>-1.31-1  | 1.880<br>-1.65-1  |
| 1030.2 CV                 | δ                      | 2.29-3                                                | 3.41-4                         | -1.62 - 3            | -2.74-3              | -3.50-3           | -4.07 - 3         | -4.52 - 3         | -4.90-3           | -5.23-3           | -5.52 - 3         |
| 4n. /2                    | σ                      | 2.753+1                                               | 2.130+1                        | 1.300+1              | 8.498+0              | 5.895+0           | 4.281+0           | 3.221+0           | 2.493+0           | 1.973+0           | 1.592+0           |
| $4p_{1/2} E_b =$          | $\beta$                | 1.093                                                 | 2.130+1<br>1.400               | 1.500+1              | 1.658                | 1.678             | 1.680             | 3.221+0<br>1.672  | 2.493+0<br>1.659  | 1.642             | 1.592+0           |
| 897.7 eV                  | γ                      | 5.70-1                                                | 5.24-1                         | 2.14-1               | 4.45-2               | -6.46 - 3         | 1.30-2            | 7.27-2            | 1.56-1            | 2.53-1            | 3.56-1            |
|                           | δ                      | 5.30-2                                                | 1.19-2                         | -5.50-3              | -7.97 - 3            | -8.03 - 3         | -7.36-3           | -6.22 - 3         | -4.60-3           | -2.49 - 3         | 4.34-5            |
| 4p <sub>3/2</sub>         | σ                      | 9.005+1                                               | 6.022+1                        | 3.134+1              | 1.867+1              | 1.214+1           | 8.385+0           | 6.058+0           | 4.531+0           | 3.483+0           | 2.738+0           |
| $E_b =$                   | β                      | 1.161                                                 | 1.396                          | 1.598                | 1.687                | 1.731             | 1.753             | 1.762             | 1.763             | 1.758             | 1.748             |
| 753.7 eV                  | γ                      | 3.81 - 1                                              | 2.80 - 1                       | 5.35 - 2             | -4.44-2              | -4.47 - 2         | 1.31-2            | 1.05 - 1          | 2.16 - 1          | 3.38 - 1          | 4.64 - 1          |
|                           | δ                      | 3.25 - 2                                              | 7.83 - 3                       | 2.98 - 4             | 3.98 - 3             | 8.67 - 3          | 1.27 - 2          | 1.62 - 2          | 1.91 - 2          | 2.16-2            | 2.39 - 2          |
| 4d <sub>3/2</sub>         | σ                      | 1.293+2                                               | 8.053+1                        | 3.547+1              | 1.814+1              | 1.032+1           | 6.347+0           | 4.136+0           | 2.820+0           | 1.994+0           | 1.453+0           |
| $E_b =$                   | β                      | 0.939                                                 | 1.168                          | 1.341                | 1.387                | 1.385             | 1.362             | 1.328             | 1.289             | 1.248             | 1.206             |
| 527.6 eV                  | γ                      | 5.53-2                                                | -4.57 - 2                      | 5.15 - 3             | 1.90 - 1             | 4.04 - 1          | 6.16 - 1          | 8.13 - 1          | 9.91 - 1          | 1.15+0            | 1.29+0            |
|                           | δ                      | 8.97-3                                                | 8.19-3                         | 2.88-2               | 4.75-2               | 6.31-2            | 7.77-2            | 9.15-2            | 1.05-1            | 1.17-1            | 1.29-1            |
| $4d_{5/2}$                | σ                      | 1.910+2                                               | 1.157+2                        | 4.936+1              | 2.476+1              | 1.389+1           | 8.438+0           | 5.444+0           | 3.679+0           | 2.580+0           | 1.866+0           |
| $E_b =$                   | β                      | 1.124                                                 | 1.281                          | 1.367                | 1.361                | 1.325             | 1.279             | 1.229             | 1.178             | 1.128             | 1.080             |
| 500.1 eV                  | γ                      | 2.33-2                                                | -5.47-2                        | 4.56-2               | 2.55-1               | 4.74-1            | 6.81-1            | 8.67-1            | 1.03+0            | 1.17+0            | 1.30+0            |
|                           | δ                      | 7.78-3                                                | 8.75-3                         | 2.62-2               | 4.40-2               | 6.13-2            | 7.88-2            | 9.66-2            | 1.14-1            | 1.31-1            | 1.47-1            |
| $4f_{5/2}$                | σ                      | 1.595+2                                               | 6.690+1                        | 1.767+1              | 6.402+0              | 2.806+0           | 1.399+0           | 7.658 - 1         | 4.501 - 1         | 2.797 - 1         | 1.818 - 1         |
| $E_b =$                   | β                      | 1.007                                                 | 1.051                          | 1.030                | 0.965                | 0.894             | 0.824             | 0.758             | 0.698             | 0.644             | 0.596             |
| 207.0 eV                  | γ                      | 1.39-1                                                | 2.84-1                         | 5.59-1               | 7.84-1               | 9.65-1            | 1.11+0            | 1.22+0            | 1.31+0            | 1.38+0            | 1.44+0            |
|                           | δ                      | 7.10-2                                                | 9.54-2                         | 1.37-1               | 1.75-1               | 2.12-1            | 2.47-1            | 2.79-1            | 3.09-1            | 3.38-1            | 3.66-1            |
| $4f_{7/2}$                | $\sigma$               | 2.023+2                                               | 8.443+1                        | 2.213+1              | 7.964+0              | 3.471+0           | 1.721+0           | 9.376 - 1         | 5.486 - 1         | 3.395 - 1         | 2.198 - 1         |
|                           |                        |                                                       |                                |                      |                      |                   |                   |                   |                   |                   |                   |

| table i (contin                        | uea)                                   |                                                          |                                                           |                                                          |                                                          |                                                          |                                                          |                                                          |                                                          |                                                          |                                                          |
|----------------------------------------|----------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| $E_b = 200.8 \text{ eV}$               | $eta \ \gamma \ \delta$                | 1.017<br>1.51-1<br>7.16-2                                | 1.051<br>3.01-1<br>9.55-2                                 | 1.018<br>5.79-1<br>1.37-1                                | 0.949<br>8.04-1<br>1.75-1                                | 0.878<br>9.84-1<br>2.14-1                                | 0.810<br>1.12+0<br>2.50-1                                | 0.747<br>1.23+0<br>2.83-1                                | 0.691<br>1.32+0<br>3.15-1                                | 0.640<br>1.39+0<br>3.45-1                                | 0.596<br>1.44+0<br>3.74-1                                |
| $5s_{1/2}$ $E_b =$ 193.4 eV            | σ                                      | 7.395+0                                                  | 4.745+0                                                   | 2.476+0                                                  | 1.532+0                                                  | 1.043+0                                                  | 7.556-1                                                  | 5.718-1                                                  | 4.471-1                                                  | 3.587-1                                                  | 2.938-1                                                  |
|                                        | β                                      | 1.779                                                    | 1.799                                                     | 1.821                                                    | 1.836                                                    | 1.847                                                    | 1.857                                                    | 1.866                                                    | 1.873                                                    | 1.879                                                    | 1.885                                                    |
|                                        | γ                                      | 5.54-1                                                   | 4.95-1                                                    | 3.51-1                                                   | 2.14-1                                                   | 9.70-2                                                   | 4.16-3                                                   | -6.73-2                                                  | -1.20-1                                                  | -1.57-1                                                  | -1.80-1                                                  |
|                                        | δ                                      | -2.35-4                                                  | -1.06-3                                                   | -2.23-3                                                  | -3.04-3                                                  | -3.65-3                                                  | -4.14-3                                                  | -4.55-3                                                  | -4.90-3                                                  | -5.21-3                                                  | -5.48-3                                                  |
| $5p_{1/2}$ $E_b = 145.6 \text{ eV}$    | σ                                      | 7.177+0                                                  | 4.944+0                                                   | 2.759+0                                                  | 1.747+0                                                  | 1.193+0                                                  | 8.592-1                                                  | 6.428-1                                                  | 4.954-1                                                  | 3.911-1                                                  | 3.148-1                                                  |
|                                        | β                                      | 1.501                                                    | 1.608                                                     | 1.687                                                    | 1.709                                                    | 1.710                                                    | 1.700                                                    | 1.686                                                    | 1.668                                                    | 1.648                                                    | 1.627                                                    |
|                                        | γ                                      | 4.36-1                                                   | 2.96-1                                                    | 8.70-2                                                   | -6.08-4                                                  | -6.19-3                                                  | 3.73-2                                                   | 1.10-1                                                   | 2.01-1                                                   | 3.01-1                                                   | 4.05-1                                                   |
|                                        | δ                                      | -5.17-3                                                  | -8.49-3                                                   | -9.25-3                                                  | -8.95-3                                                  | -8.51-3                                                  | -7.85-3                                                  | -6.77-3                                                  | -5.20-3                                                  | -3.15-3                                                  | -6.43-4                                                  |
| $5p_{3/2}$ $E_b = 113.6 \text{ eV}$    | σ                                      | 1.967+1                                                  | 1.240+1                                                   | 6.166+0                                                  | 3.615+0                                                  | 2.333+0                                                  | 1.606+0                                                  | 1.157+0                                                  | 8.638-1                                                  | 6.632-1                                                  | 5.210-1                                                  |
|                                        | β                                      | 1.446                                                    | 1.562                                                     | 1.678                                                    | 1.735                                                    | 1.763                                                    | 1.775                                                    | 1.777                                                    | 1.773                                                    | 1.765                                                    | 1.753                                                    |
|                                        | γ                                      | 2.51-1                                                   | 1.40-1                                                    | -8.55-3                                                  | -5.13-2                                                  | -2.23-2                                                  | 5.05-2                                                   | 1.50-1                                                   | 2.65-1                                                   | 3.87-1                                                   | 5.13-1                                                   |
|                                        | δ                                      | -6.09-4                                                  | -3.39-3                                                   | -4.16-4                                                  | 4.53-3                                                   | 8.91-3                                                   | 1.25-2                                                   | 1.55-2                                                   | 1.81-2                                                   | 2.05-2                                                   | 2.26-2                                                   |
| $5d_{3/2}$ $E_b = 40.9 \text{ eV}$     | σ                                      | 1.839+1                                                  | 1.105+1                                                   | 4.807+0                                                  | 2.471+0                                                  | 1.415+0                                                  | 8.750-1                                                  | 5.728-1                                                  | 3.920-1                                                  | 2.780-1                                                  | 2.031-1                                                  |
|                                        | β                                      | 1.199                                                    | 1.319                                                     | 1.409                                                    | 1.423                                                    | 1.405                                                    | 1.374                                                    | 1.335                                                    | 1.293                                                    | 1.249                                                    | 1.206                                                    |
|                                        | γ                                      | -5.71-3                                                  | -4.08-2                                                   | 6.18-2                                                   | 2.52-1                                                   | 4.61-1                                                   | 6.65-1                                                   | 8.56-1                                                   | 1.03+0                                                   | 1.18+0                                                   | 1.32+0                                                   |
|                                        | δ                                      | 1.91-4                                                   | 9.52-3                                                    | 2.94-2                                                   | 4.59-2                                                   | 6.05-2                                                   | 7.46-2                                                   | 8.82-2                                                   | 1.01-1                                                   | 1.14-1                                                   | 1.26-1                                                   |
| $5d_{5/2}$ $E_b =$ 37.4 eV             | σ                                      | 2.627+1                                                  | 1.544+1                                                   | 6.540+0                                                  | 3.301+0                                                  | 1.864+0                                                  | 1.139+0                                                  | 7.384-1                                                  | 5.008-1                                                  | 3.523-1                                                  | 2.555-1                                                  |
|                                        | β                                      | 1.329                                                    | 1.392                                                     | 1.410                                                    | 1.378                                                    | 1.331                                                    | 1.279                                                    | 1.226                                                    | 1.173                                                    | 1.122                                                    | 1.074                                                    |
|                                        | γ                                      | -2.52-2                                                  | -3.60-2                                                   | 1.05-1                                                   | 3.12-1                                                   | 5.23-1                                                   | 7.22-1                                                   | 9.01-1                                                   | 1.06+0                                                   | 1.20+0                                                   | 1.32+0                                                   |
|                                        | δ                                      | 2.10-3                                                   | 9.56-3                                                    | 2.65-2                                                   | 4.30-2                                                   | 5.97-2                                                   | 7.71-2                                                   | 9.48-2                                                   | 1.12-1                                                   | 1.29-1                                                   | 1.46-1                                                   |
| $6s_{1/2}$<br>$E_b =$<br>15.0 eV       | $\sigma \ eta \ eta \ \gamma \ \delta$ | 1.109+0<br>1.788<br>5.14-1<br>-4.91-4                    | 7.008-1<br>1.805<br>4.58-1<br>-1.23-3                     | 3.600-1<br>1.825<br>3.22-1<br>-2.31-3                    | 2.212-1<br>1.838<br>1.91-1<br>-3.09-3                    | 1.500-1<br>1.848<br>8.01-2<br>-3.70-3                    | 1.084-1<br>1.858<br>-9.05-3<br>-4.18-3                   | 8.189-2<br>1.866<br>-7.71-2<br>-4.57-3                   | 6.395-2<br>1.874<br>-1.27-1<br>-4.91-3                   | 5.125-2<br>1.881<br>-1.61-1<br>-5.20-3                   | 4.193-2<br>1.887<br>-1.81-1<br>-5.44-3                   |
| $6p_{1/2}$ $E_b = 5.7 \text{ eV}$      | σ                                      | 8.037-1                                                  | 5.450-1                                                   | 2.998-1                                                  | 1.887-1                                                  | 1.286-1                                                  | 9.238-2                                                  | 6.901-2                                                  | 5.313-2                                                  | 4.191-2                                                  | 3.373-2                                                  |
|                                        | β                                      | 1.543                                                    | 1.634                                                     | 1.700                                                    | 1.716                                                    | 1.714                                                    | 1.704                                                    | 1.688                                                    | 1.670                                                    | 1.649                                                    | 1.628                                                    |
|                                        | γ                                      | 4.02-1                                                   | 2.66-1                                                    | 7.27-2                                                   | -5.07-3                                                  | -5.02-3                                                  | 4.24-2                                                   | 1.17-1                                                   | 2.08-1                                                   | 3.07-1                                                   | 4.10-1                                                   |
|                                        | δ                                      | -8.03-3                                                  | -9.59-3                                                   | -9.40-3                                                  | -9.05-3                                                  | -8.70-3                                                  | -8.07-3                                                  | -7.00-3                                                  | -5.45-3                                                  | -3.41-3                                                  | -8.81-4                                                  |
| $6p_{3/2}$ $E_b =$ 2.8 eV              | σ                                      | 1.838+0                                                  | 1.149+0                                                   | 5.668-1                                                  | 3.313-1                                                  | 2.135-1                                                  | 1.468-1                                                  | 1.057-1                                                  | 7.882-2                                                  | 6.048-2                                                  | 4.750-2                                                  |
|                                        | β                                      | 1.478                                                    | 1.583                                                     | 1.691                                                    | 1.742                                                    | 1.767                                                    | 1.778                                                    | 1.780                                                    | 1.775                                                    | 1.766                                                    | 1.754                                                    |
|                                        | γ                                      | 2.33-1                                                   | 1.25-1                                                    | -1.40-2                                                  | -5.10-2                                                  | -1.86-2                                                  | 5.68-2                                                   | 1.57-1                                                   | 2.72-1                                                   | 3.93-1                                                   | 5.16-1                                                   |
|                                        | δ                                      | -2.59-3                                                  | -4.08-3                                                   | -3.75-4                                                  | 4.59-3                                                   | 8.94-3                                                   | 1.25-2                                                   | 1.54-2                                                   | 1.79-2                                                   | 2.01-2                                                   | 2.21-2                                                   |
| Z= 86, Rn: [X                          | (e]4f <sup>6</sup> <sub>5/2</sub>      | $\frac{4f_{7/2}^8 5d_{3/2}^4 5d_{5/2}^6}{k(2V)}$         | 2 6s <sub>1/2</sub> 6p <sub>1/2</sub> 6p                  | 4<br>3/2                                                 |                                                          |                                                          |                                                          |                                                          |                                                          |                                                          |                                                          |
| Shell                                  |                                        | k (eV)<br>1500                                           | 2000                                                      | 3000                                                     | 4000                                                     | 5000                                                     | 6000                                                     | 7000                                                     | 8000                                                     | 9000                                                     | 10000                                                    |
| $4s_{1/2}$<br>$E_b =$<br>1090.5 eV     | σ<br>β<br>γ<br>δ                       | 2.611+1<br>1.684<br>8.62-1<br>2.89-3                     | 1.853+1<br>1.740<br>7.83-1<br>6.13-4                      | 1.051+1<br>1.786<br>5.77-1<br>-1.59-3                    | 6.734+0<br>1.808<br>3.90-1<br>-2.81-3                    | 4.671+0<br>1.824<br>2.33-1<br>-3.65-3                    | 3.425+0<br>1.837<br>1.08-1<br>-4.27-3                    | 2.615+0<br>1.847<br>1.09-2<br>-4.77-3                    | 2.058+0<br>1.856<br>-6.35-2<br>-5.19-3                   | 1.660+0<br>1.863<br>-1.19-1<br>-5.56-3                   | 1.366+0<br>1.870<br>-1.58-1<br>-5.88-3                   |
| $4p_{1/2}$ $E_b = 946.2 \text{ eV}$    | σ                                      | 2.708+1                                                  | 2.124+1                                                   | 1.314+1                                                  | 8.663+0                                                  | 6.042+0                                                  | 4.406+0                                                  | 3.326+0                                                  | 2.581+0                                                  | 2.048+0                                                  | 1.656+0                                                  |
|                                        | β                                      | 1.034                                                    | 1.367                                                     | 1.584                                                    | 1.652                                                    | 1.676                                                    | 1.680                                                    | 1.674                                                    | 1.662                                                    | 1.647                                                    | 1.629                                                    |
|                                        | γ                                      | 5.65-1                                                   | 5.58-1                                                    | 2.47-1                                                   | 6.17-2                                                   | -2.59-3                                                  | 6.40-3                                                   | 5.83-2                                                   | 1.36-1                                                   | 2.29-1                                                   | 3.28-1                                                   |
|                                        | δ                                      | 6.27-2                                                   | 1.48-2                                                    | -5.45-3                                                  | -8.36-3                                                  | -8.47-3                                                  | -7.87-3                                                  | -6.81-3                                                  | -5.31-3                                                  | -3.36-3                                                  | -9.94-4                                                  |
| $4p_{3/2}$<br>$E_b =$<br>791.2  eV     | σ<br>β<br>γ<br>δ                       | 9.190+1<br>1.118<br>3.87-1<br>3.73-2                     | 6.173+1<br>1.369<br>3.00-1<br>9.49-3                      | 3.229+1<br>1.583<br>6.90-2<br>1.30-4                     | 1.931+1<br>1.677<br>-3.95-2<br>3.57-3                    | 1.258+1<br>1.726<br>-4.95-2<br>8.37-3                    | 8.713+0<br>1.751<br>1.68-4<br>1.26-2                     | 6.307+0<br>1.762<br>8.57-2<br>1.62-2                     | 4.724+0<br>1.764<br>1.93-1<br>1.93-2                     | 3.637+0<br>1.761<br>3.11-1<br>2.19-2                     | 2.862+0<br>1.753<br>4.35-1<br>2.42-2                     |
| $4d_{3/2}$<br>$E_b = 560.4 \text{ eV}$ | $\sigma \ eta \ eta \ \gamma \ \delta$ | 1.327+2<br>0.901<br>7.24-2<br>1.13-2                     | 8.344+1<br>1.146<br>-3.98-2<br>7.53-3                     | 3.714+1<br>1.332<br>-8.47-3<br>2.74-2                    | 1.911+1<br>1.385<br>1.67-1<br>4.63-2                     | 1.093+1<br>1.388<br>3.77-1<br>6.21-2                     | 6.745+0<br>1.368<br>5.88-1<br>7.67-2                     | 4.408+0<br>1.337<br>7.86-1<br>9.02-2                     | 3.012+0<br>1.300<br>9.65-1<br>1.03-1                     | 2.134+0<br>1.261<br>1.12+0<br>1.15-1                     | 1.557+0<br>1.220<br>1.27+0<br>1.27-1                     |
| $4d_{5/2}$<br>$E_b =$<br>531.1 eV      | $\sigma \ eta$                         | 1.967+2<br>1.102                                         | 1.201+2<br>1.270                                          | 5.172+1<br>1.366                                         | 2.609+1<br>1.364                                         | 1.470+1<br>1.331                                         | 8.961+0<br>1.287                                         | 5.796+0<br>1.238                                         | 3.925+0<br>1.188                                         | 2.758+0<br>1.139                                         | 1.997+0<br>1.091                                         |
|                                        | γ                                      | 3.88-2                                                   | -5.28-2                                                   | 3.04-2                                                   | 2.33-1                                                   | 4.50-1                                                   | 6.58-1                                                   | 8.46-1                                                   | 1.01+0                                                   | 1.16+0                                                   | 1.28+0                                                   |
|                                        | δ                                      | 9.20-3                                                   | 8.19-3                                                    | 2.49-2                                                   | 4.25-2                                                   | 5.96-2                                                   | 7.71-2                                                   | 9.46-2                                                   | 1.11-1                                                   | 1.28-1                                                   | 1.43-1                                                   |
| $4f_{5/2}$<br>$E_b =$<br>230.1 eV      | γ                                      | 3.88-2<br>9.20-3<br>1.730+2<br>0.999<br>1.24-1<br>6.87-2 | -5.28-2<br>8.19-3<br>7.303+1<br>1.049<br>2.67-1<br>9.32-2 | 3.04-2<br>2.49-2<br>1.946+1<br>1.034<br>5.43-1<br>1.35-1 | 2.33-1<br>4.25-2<br>7.096+0<br>0.973<br>7.70-1<br>1.72-1 | 4.50-1<br>5.96-2<br>3.125+0<br>0.903<br>9.55-1<br>2.09-1 | 6.58-1<br>7.71-2<br>1.563+0<br>0.833<br>1.10+0<br>2.43-1 | 8.46-1<br>9.46-2<br>8.576-1<br>0.767<br>1.21+0<br>2.74-1 | 1.01+0<br>1.11-1<br>5.050-1<br>0.708<br>1.30+0<br>3.05-1 | 1.16+0<br>1.28-1<br>3.144-1<br>0.655<br>1.38+0<br>3.34-1 | 1.28+0<br>1.43-1<br>2.047-1<br>0.607<br>1.44+0<br>3.62-1 |
| $E_b =$                                | γ                                      | 3.88-2                                                   | -5.28-2                                                   | 3.04-2                                                   | 2.33-1                                                   | 4.50-1                                                   | 6.58-1                                                   | 8.46-1                                                   | 1.01+0                                                   | 1.16+0                                                   | 1.28+0                                                   |
|                                        | δ                                      | 9.20-3                                                   | 8.19-3                                                    | 2.49-2                                                   | 4.25-2                                                   | 5.96-2                                                   | 7.71-2                                                   | 9.46-2                                                   | 1.11-1                                                   | 1.28-1                                                   | 1.43-1                                                   |
|                                        | σ                                      | 1.730+2                                                  | 7.303+1                                                   | 1.946+1                                                  | 7.096+0                                                  | 3.125+0                                                  | 1.563+0                                                  | 8.576-1                                                  | 5.050-1                                                  | 3.144-1                                                  | 2.047-1                                                  |
|                                        | β                                      | 0.999                                                    | 1.049                                                     | 1.034                                                    | 0.973                                                    | 0.903                                                    | 0.833                                                    | 0.767                                                    | 0.708                                                    | 0.655                                                    | 0.607                                                    |
|                                        | γ                                      | 1.24-1                                                   | 2.67-1                                                    | 5.43-1                                                   | 7.70-1                                                   | 9.55-1                                                   | 1.10+0                                                   | 1.21+0                                                   | 1.30+0                                                   | 1.38+0                                                   | 1.44+0                                                   |

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ble 1 (continu       | δ                   | -1.42-4 | -1.04 - 3 | -2.29 - 3 | -3.17 - 3 | -3.83 - 3 | -4.37 - 3 | -4.82 - 3 | -5.21-3 | -5.55-3 | -5.84-3          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------|---------|-----------|-----------|-----------|-----------|-----------|-----------|---------|---------|------------------|
| 1935   Y   459-1   321-1   104-1   659-3   -8.23-3   276-2   948-2   181-1   277-1   -403-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3   -303-3 |                      |                     |         |           |           |           |           |           |           |         |         | 3.364-1          |
| \$\begin{array}{c c c c c c c c c c c c c c c c c c c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |         |           |           |           |           |           |           |         |         | 1.634            |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 159.5 eV             |                     |         |           |           |           |           |           |           |         |         | 3.78-1<br>-1.73- |
| 1239   Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                     |         |           |           |           |           |           |           |         |         | 5.616-1          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | -                   |         |           |           |           |           |           |           |         |         | 1.759<br>4.85-1  |
| fb. = 6, state   β   1.184   1.309   1.406   1.425   1.411   1.382   1.345   1.304   1.562   1.616   1.660   8   -3.41-4   8.54-3   2.83-2   2.31-1   4.37-1   6.41-1   8.22-1   1.00-1   1.616   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.625   1.62                       | 123.3 6              |                     |         |           |           |           |           |           |           |         |         | 2.28-2           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                     |         |           |           |           |           |           |           |         |         | 2.296-1          |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                     |         |           |           |           |           |           |           |         |         | 1.220<br>1.30+0  |
| fs, = β         β         1.325         1.391         1.413         1.334         1.339         1.238         1.236         1.130         1.31         1.32         42 2 v         γ         -0.02         2.09         1.040         1.136         1.266         1.136         1.266         1.136         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266         1.266<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.0 6               |                     |         |           |           |           |           |           |           |         |         | 1.23-1           |
| 44.2   γ   γ   −2.02 - 2   −3.88 - 2   −3.14 - 2   −3.91   −3.03 - 1   −7.02 - 1   −8.87   −3.05 - 1   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.05   −3.0  |                      |                     |         |           |           |           |           |           |           |         |         | 2.886-1          |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                     |         |           |           |           |           |           |           |         |         | 1.085<br>1.30+0  |
| E <sub>j</sub> = β         β         1.772         1.792         1.813         1.827         1.838         1.848         1.848         1.845         1.856         1.872         β         5.28 - 4.42 - 4         -1.23 - 3         -3.24 - 3         -3.88 - 3         -6.21 - 2         -1.15 - 1         -1.53 - 1         -1.53 - 1         -1.53 - 1         -1.53 - 1         -1.53 - 1         -1.53 - 1         -1.53 - 1         -1.53 - 1         -1.53 - 1         -1.53 - 1         -1.53 - 1         -1.53 - 1         -1.53 - 1         -1.53 - 1         -1.53 - 1         -1.53 - 1         -1.53 - 1         -1.53 - 1         -1.53 - 1         -1.53 - 1         -1.53 - 1         -1.53 - 1         -1.53 - 1         -1.53 - 1         -1.55 - 1         -1.55 - 1         -1.55 - 1         -1.55 - 1         -1.55 - 1         -1.55 - 1         -1.55 - 1         -1.55 - 1         -1.55 - 1         -1.55 - 1         -1.55 - 1         -1.55 - 1         -1.55 - 1         -1.55 - 1         -1.55 - 1         -1.55 - 1         -1.55 - 1         -1.55 - 1         -1.55 - 1         -1.55 - 1         -1.55 - 1         -1.55 - 1         -1.55 - 1         -1.55 - 1         -1.55 - 1         -1.55 - 1         -1.55 - 1         -1.55 - 1         -1.55 - 1         -1.55 - 1         -1.55 - 1         -1.55 - 1         -1.55 - 1         -1.55 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 44,2 CV              |                     |         |           |           |           |           |           |           |         |         | 1.41-1           |
| 18.7e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |         |           |           |           |           |           |           |         |         | 4.653-2          |
| $β$ $-4.42-4$ $-1.23-3$ $-3.24-3$ $-3.88-3$ $-4.39-3$ $-4.82-3$ $-5.91-3$ $-5.51-3$ $4.91-2$ $E_8$ $β$ $1.529$ $1.625$ $1.696$ $1.715$ $1.706$ $1.626$ $1.625$ $1.685$ $1.685$ $1.685$ $1.685$ $1.685$ $1.685$ $1.685$ $1.685$ $1.682$ $1.682$ $1.682$ $1.715$ $1.706$ $1.682$ $1.682$ $1.612$ $3.78-2$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63-3$ $-0.63$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                     |         |           |           |           |           |           |           |         |         | 1.878<br>-1.78-  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.7 € \$            |                     |         |           |           |           |           |           |           |         |         | -1.78-<br>-5.79- |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                     |         |           |           |           |           |           |           |         |         | 3.965-2          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                     |         |           |           |           |           |           |           |         |         | 1.635<br>3.84-1  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,,o c v              |                     |         |           |           |           |           |           |           |         |         | -1.74-1          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                     |         |           |           |           |           |           |           |         |         | 5.666-2          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | -                   |         |           |           |           |           |           |           |         |         | 1.760<br>4.89-1  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.1 CV               |                     |         |           |           |           |           |           |           |         |         | 2.25-2           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Z= 87, Fr: [Rn       | 1]7s <sub>1/2</sub> |         |           |           |           |           |           |           |         |         |                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |         |           |           |           |           |           |           |         |         |                  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |         |           |           |           |           |           |           |         |         | 10000            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |         |           |           |           |           |           |           |         |         | 1.403+0<br>1.861 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                     |         |           |           |           |           |           |           |         |         | -1.47-1          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |         |           |           |           |           |           |           |         |         | -6.22 - 3        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                     |         |           |           |           |           |           |           |         |         | 1.719+0          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                     |         |           |           |           |           |           |           |         |         | 1.635<br>2.99-1  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1000.7 ev            |                     |         |           |           |           |           |           |           |         |         | -2.00-1          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |         |           |           |           |           |           |           |         |         | 2.988+0          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                     |         |           |           |           |           |           |           |         |         | 1.757<br>4.02-1  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 333.1 EV             |                     |         |           |           |           |           |           |           |         |         | 2.44-2           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $4d_{3/2}$           |                     |         |           |           |           |           |           |           |         |         | 1.667+0          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                     |         |           |           |           |           |           |           |         |         | 1.235<br>1.24+0  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )96.7 EV             |                     |         |           |           |           |           |           |           |         |         | 1.24+0           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                     |         |           |           |           |           |           |           |         |         | 2.135+0          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |         |           |           |           |           |           | 1.246     |         |         | 1.105<br>1.26+0  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JU1.J EV             |                     |         |           |           |           |           |           |           |         |         | 1.26+0<br>1.40-1 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $4f_{5/2}$           |                     |         |           |           |           |           |           |           |         |         | 2.299-1          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $E_b =$              | β                   |         |           |           |           |           |           |           |         |         | 0.619            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 258.6 eV             |                     |         |           |           |           |           |           |           |         |         | 1.45+0<br>3.60-1 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{1}{4f_{7/2}}$ |                     |         | 1.003+2   |           |           |           |           |           |         |         | 2.775-1          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $E_b =$              |                     |         |           |           |           |           |           |           |         |         | 0.616            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 251.6 eV             |                     |         |           |           |           |           |           |           |         |         | 1.45+0<br>3.68-1 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5s <sub>1/2</sub>    |                     |         |           |           |           |           | 8.285-1   |           |         |         | 3.246-1          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $E_b =$              | β                   |         |           |           |           |           |           |           |         |         | 1.867            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 230.9 eV             |                     |         |           |           |           |           |           |           |         |         | -1.70-6          |
| $\stackrel{\longleftarrow}{E_b} = \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5p <sub>1/2</sub>    |                     |         |           |           |           |           |           |           |         |         | 3.586-1          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $E_b =$              |                     | 1.460   | 1.585     | 1.678     | 1.705     | 1.710     | 1.704     | 1.693     | 1.677   | 1.660   | 1.641            |
| $\delta$ -5.33-3 -9.48-3 -1.03-2 -9.93-3 -9.52-3 -8.94-3 -8.00-3 -6.65-3 -4.88-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 178.7 eV             |                     |         |           |           |           |           |           |           |         |         | 3.49-1           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | δ                   | -5.33-3 | -9.48-3   | -1.03-2   | -9.93-3   | -9.52-3   | -8.94-3   | -8.00-3   | -6.65-3 | -4.88-3 | -2.68-           |

| Table 1 (contin           | ued)                   |                   |                  |                  |                  |                  |                  |                  |                   |                  |                  |
|---------------------------|------------------------|-------------------|------------------|------------------|------------------|------------------|------------------|------------------|-------------------|------------------|------------------|
| 5p <sub>3/2</sub>         | σ                      | 2.211+1           | 1.397+1          | 6.974+0          | 4.109+0          | 2.663+0          | 1.840+0          | 1.330+0          | 9.954-1           | 7.661-1          | 6.030-1          |
| $E_b =$                   | β                      | 1.406             | 1.534            | 1.661            | 1.722            | 1.755            | 1.772            | 1.779            | 1.778             | 1.773            | 1.764            |
| 138.7 eV                  | γ                      | 2.73 - 1          | 1.66 - 1         | 7.97 - 3         | -5.00-2          | -3.60-2          | 2.46 - 2         | 1.14 - 1         | 2.19 - 1          | 3.34 - 1         | 4.53 - 1         |
|                           | δ                      | 1.24 - 4          | -3.70 - 3        | -1.27 - 3        | 3.82 - 3         | 8.58 - 3         | 1.26 - 2         | 1.59 - 2         | 1.86 - 2          | 2.09 - 2         | 2.30-2           |
| 5d <sub>3/2</sub>         | σ                      | 2.174+1           | 1.319+1          | 5.827+0          | 3.031+0          | 1.752+0          | 1.091+0          | 7.181 - 1        | 4.939 - 1         | 3.519-1          | 2.580 - 1        |
| $E_b =$                   | β                      | 1.168             | 1.300            | 1.404            | 1.426            | 1.416            | 1.389            | 1.355            | 1.317             | 1.277            | 1.236            |
| 60.0 eV                   | γ                      | 9.90-3            | -4.06-2          | 3.56-2           | 2.13-1           | 4.16-1           | 6.16-1           | 8.03-1           | 9.75-1            | 1.13+0           | 1.27+0           |
|                           | δ                      | -8.12-4           | 7.58-3           | 2.71-2           | 4.42-2           | 5.89-2           | 7.19-2           | 8.43-2           | 9.65-2            | 1.09-1           | 1.21-1           |
| $5d_{5/2}$                | σ                      | 3.127+1           | 1.854+1          | 7.956+0          | 4.059+0          | 2.312+0          | 1.422+0          | 9.268-1          | 6.315-1           | 4.461-1          | 3.246-1          |
| $E_b =$                   | β                      | 1.319             | 1.390            | 1.415            | 1.389            | 1.346            | 1.296            | 1.244            | 1.194             | 1.146            | 1.099            |
| 55.6 eV                   | $\gamma \\ \delta$     | -1.47-2<br>1.34-3 | -4.09-2 $8.05-3$ | 7.75-2<br>2.42-2 | 2.76-1 $4.06-2$  | 4.86-1<br>5.71-2 | 6.82-1<br>7.33-2 | 8.60-1 $8.93-2$  | 1.02+0<br>1.06-1  | 1.16+0<br>1.22-1 | 1.29+0<br>1.38-1 |
| Co                        |                        |                   |                  | 4.524-1          |                  |                  |                  |                  |                   |                  |                  |
| $6s_{1/2} E_b =$          | $\frac{\sigma}{eta}$   | 1.389+0<br>1.756  | 8.792-1<br>1.778 | 4.524-1<br>1.802 | 2.785-1<br>1.817 | 1.894-1<br>1.828 | 1.373-1<br>1.837 | 1.040-1<br>1.846 | 8.134-2<br>1.854  | 6.530-2<br>1.861 | 5.352-2<br>1.868 |
| 26.3 eV                   | γ                      | 5.42-1            | 4.92-1           | 3.62-1           | 2.33-1           | 1.21-1           | 2.77-2           | -4.70-2          | -1.04-1           | -1.46-1          | -1.75-1          |
|                           | δ                      | -3.85 - 4         | -1.24 - 3        | -2.48 - 3        | -3.37 - 3        | -4.06 - 3        | -4.63 - 3        | -5.12 - 3        | -5.54 - 3         | -5.90 - 3        | -6.19 - 3        |
| 6p <sub>1/2</sub>         | σ                      | 1.094+0           | 7.459-1          | 4.140-1          | 2.627-1          | 1.803-1          | 1.304-1          | 9.801-2          | 7.583-2           | 6.007-2          | 4.851-2          |
| $E_b =$                   | β                      | 1.513             | 1.616            | 1.693            | 1.715            | 1.716            | 1.708            | 1.696            | 1.679             | 1.661            | 1.641            |
| 13.2 eV                   | γ                      | 4.43 - 1          | 3.09 - 1         | 1.03 - 1         | 7.87 - 3         | -8.99 - 3        | 2.35 - 2         | 8.71 - 2         | 1.70 - 1          | 2.62 - 1         | 3.61 - 1         |
|                           | δ                      | -9.16-3           | -1.09-2          | -1.06-2          | -9.94-3          | -9.50-3          | -8.96-3          | -8.07-3          | -6.76-3           | -4.99-3          | -2.81-3          |
| $6p_{3/2}$                | $\sigma$               | 2.739+0           | 1.714+0          | 8.470 - 1        | 4.968 - 1        | 3.213 - 1        | 2.217 - 1        | 1.602 - 1        | 1.199 - 1         | 9.221 - 2        | 7.257 - 2        |
| $E_b =$                   | $\beta$                | 1.446             | 1.557            | 1.674            | 1.731            | 1.762            | 1.776            | 1.782            | 1.780             | 1.775            | 1.765            |
| 8.8 eV                    | γ                      | 2.52-1            | 1.47-1           | -6.15-4          | -5.06-2          | -3.23-2          | 3.01-2           | 1.21-1           | 2.28-1            | 3.44-1           | 4.65-1           |
|                           | δ                      | -2.59-3           | -4.64-3          | -1.28-3          | 3.92-3           | 8.58-3           | 1.25-2           | 1.57-2           | 1.84-2            | 2.08-2           | 2.29-2           |
| $7s_{1/2}$                | σ                      | 8.657-2           | 5.463-2<br>1.777 | 2.802-2<br>1.802 | 1.722-2<br>1.816 | 1.170-2<br>1.827 | 8.470-3<br>1.837 | 6.410-3          | 5.014-3<br>1.855  | 4.024-3          | 3.297-3<br>1.869 |
| $E_b = 4.0 \text{ eV}$    | $eta \gamma$           | 1.755<br>5.45-1   | 4.94—1           | 3.61-1           | 2.33-1           | 1.827            | 2.63-2           | 1.846<br>-4.79-2 | -1.04-1           | 1.863<br>-1.45-1 | -1.73-1          |
| 4.0 C V                   | δ                      | -3.90-4           | -1.26-3          | -2.48-3          | -3.39-3          | -4.09 - 3        | -4.65-3          | -5.11-3          | -5.51-3           | -5.84-3          | -6.14-3          |
| Z= 88, Ra: [R             | n 17c <sup>2</sup>     |                   |                  |                  |                  |                  |                  |                  |                   |                  |                  |
| Z- 00, Nd. [N             | 11]/S <sub>1/2</sub>   | k (eV)            |                  |                  |                  |                  |                  |                  |                   |                  |                  |
| Shell                     |                        | 1500              | 2000             | 3000             | 4000             | 5000             | 6000             | 7000             | 8000              | 9000             | 10000            |
|                           |                        |                   |                  |                  |                  |                  |                  |                  |                   |                  |                  |
| 4s <sub>1/2</sub>         | $\sigma_{\rho}$        | 2.587+1<br>1.622  | 1.870+1<br>1.694 | 1.078+1<br>1.753 | 6.961+0<br>1.779 | 4.857+0<br>1.797 | 3.576+0<br>1.811 | 2.739+0<br>1.823 | 2.162+0<br>1.834  | 1.748+0<br>1.843 | 1.440+0<br>1.851 |
| $E_b = 1208.4 \text{ eV}$ | $eta \ \gamma$         | 9.07-1            | 8.47-1           | 6.49-1           | 4.61-1           | 2.99-1           | 1.66-1           | 6.01-2           | -2.28-2           | -8.62-2          | -1.33-1          |
| 1200.4 CV                 | δ                      | 4.33-3            | 1.34-3           | -1.45 - 3        | -2.94-3          | -3.94-3          | -4.70-3          | -5.29 - 3        | -5.77 - 3         | -6.19 - 3        | -6.54-3          |
| $4p_{1/2}$                | σ                      | 2.595+1           | 2.097+1          | 1.337+1          | 8.958+0          | 6.320+0          | 4.647+0          | 3.532+0          | 2.756+0           | 2.197+0          | 1.784+0          |
| $E_b =$                   | β                      | 0.861             | 1.289            | 1.553            | 1.636            | 1.668            | 1.678            | 1.676            | 1.668             | 1.656            | 1.640            |
| 1057.6 eV                 | γ                      | 5.08 - 1          | 6.23 - 1         | 3.19 - 1         | 1.04 - 1         | 1.16 - 2         | -8.95 - 4        | 3.45 - 2         | 9.87 - 2          | 1.80 - 1         | 2.72 - 1         |
|                           | δ                      | 9.01-2            | 2.29-2           | -5.06 - 3        | -9.18 - 3        | -9.56 - 3        | -9.01 - 3        | -8.04 - 3        | -6.68 - 3         | -4.92 - 3        | -2.77 - 3        |
| $4p_{3/2}$                | $\sigma$               | 9.547+1           | 6.470+1          | 3.421+1          | 2.060+1          | 1.350+1          | 9.385+0          | 6.816+0          | 5.120+0           | 3.951+0          | 3.117+0          |
| $E_b =$                   | β                      | 1.016             | 1.308            | 1.547            | 1.654            | 1.711            | 1.742            | 1.758            | 1.765             | 1.765            | 1.761            |
| 879.1 eV                  | γ                      | 3.87-1            | 3.37-1           | 1.03-1           | -2.56-2          | -5.55-2          | -2.20-2          | 5.01-2           | 1.46-1            | 2.55-1           | 3.72-1           |
|                           | δ                      | 4.97-2            | 1.38-2           | -3.36-5          | 2.67-3           | 7.67-3           | 1.23-2           | 1.63-2           | 1.96-2            | 2.24-2           | 2.49-2           |
| $4d_{3/2}$                | $\sigma$               | 1.392+2           | 8.916+1          | 4.052+1          | 2.113+1          | 1.219+1          | 7.576+0          | 4.980+0          | 3.420+0           | 2.434+0          | 1.783+0          |
| $E_b = 635.9 \text{ eV}$  | $\beta$                | 0.819<br>1.07-1   | 1.095<br>-2.35-2 | 1.310<br>-3.17-2 | 1.379<br>1.23-1  | 1.392<br>3.23-1  | 1.379<br>5.28-1  | 1.354<br>7.24-1  | 1.322<br>9.06-1   | 1.286<br>1.07+0  | 1.248<br>1.22+0  |
| 033.3 CV                  | $_{\delta}^{\gamma}$   | 1.82-2            | 6.79-3           | 2.47-2           | 4.40-2           | 6.00-2           | 7.40-2           | 8.71-2           | 9.97-2            | 1.12-1           | 1.24-1           |
| 4d <sub>5/2</sub>         | σ                      | 2.078+2           | 1.289+2          | 5.652+1          | 2.884+1          | 1.638+1          | 1.005+1          | 6.536+0          | 4.447+0           | 3.137+0          | 2.280+0          |
| $E_b =$                   | β                      | 1.052             | 1.244            | 1.362            | 1.370            | 1.343            | 1.303            | 1.257            | 1.210             | 1.163            | 1.117            |
| 602.7 eV                  | γ                      | 7.27-2            | -4.47 - 2        | 2.96-3           | 1.90-1           | 4.03-1           | 6.08-1           | 7.96-1           | 9.66-1            | 1.12+0           | 1.25+0           |
|                           | δ                      | 1.34 - 2          | 7.44 - 3         | 2.24 - 2         | 3.97 - 2         | 5.63 - 2         | 7.28 - 2         | 8.94 - 2         | 1.06 - 1          | 1.23 - 1         | 1.39 - 1         |
| 4f <sub>5/2</sub>         | σ                      | 2.021+2           | 8.634+1          | 2.342+1          | 8.643+0          | 3.839+0          | 1.934+0          | 1.067+0          | 6.310-1           | 3.941-1          | 2.573-1          |
| $E_b =$                   | β                      | 0.979             | 1.043            | 1.042            | 0.986            | 0.920            | 0.854            | 0.790            | 0.730             | 0.676            | 0.625            |
| 287.9 eV                  | γ                      | 9.49-2            | 2.33-1           | 5.07-1           | 7.40-1           | 9.29-1           | 1.08+0           | 1.20+0           | 1.30+0            | 1.38+0           | 1.45+0           |
|                           | δ                      | 6.41-2            | 8.86-2           | 1.30-1           | 1.67-1           | 2.03-1           | 2.37-1           | 2.69-1           | 2.99-1            | 3.27-1           | 3.54-1           |
| $4f_{7/2}$                | σ                      | 2.563+2           | 1.089+2          | 2.929+1          | 1.074+1          | 4.741+0          | 2.375+0          | 1.304+0          | 7.675-1           | 4.774-1          | 3.104-1          |
| $E_b = 280.4 \text{ eV}$  | β                      | 0.995<br>1.06-1   | 1.046<br>2.50-1  | 1.031<br>5.30-1  | 0.970            | 0.903            | 0.838<br>1.10+0  | 0.776<br>1.22+0  | 0.720<br>1.32+0   | 0.669<br>1.39+0  | 0.622<br>1.45+0  |
| 280.4 eV                  | $_{\delta}^{\gamma}$   | 6.50-2            | 8.90-2           | 1.30-1           | 7.64-1<br>1.67-1 | 9.52-1<br>2.04-1 | 2.40-1           | 2.73-1           | 3.05-1            | 3.34-1           | 3.62-1           |
| Fo                        |                        |                   |                  |                  |                  |                  |                  |                  |                   |                  |                  |
| $5s_{1/2}$<br>$E_b =$     | $\frac{\sigma}{\beta}$ | 8.258+0<br>1.725  | 5.325+0<br>1.753 | 2.795+0<br>1.782 | 1.738+0<br>1.799 | 1.189+0<br>1.813 | 8.652-1<br>1.824 | 6.572-1<br>1.834 | 5.156-1<br>1.843  | 4.148-1<br>1.851 | 3.405-1<br>1.858 |
| 254.4 eV                  | γ                      | 6.04-1            | 5.58-1           | 4.24-1           | 2.87-1           | 1.66-1           | 6.50-2           | -1.61-2          | -7.94-2           | -1.27-1          | -1.61-1          |
| 2J7,7 € V                 | $\delta$               | 9.39-5            | -9.59-4          | -2.42-3          | -3.45-3          | -4.23-3          | -4.85 - 3        | -5.36-3          | -7.34-2 $-5.80-3$ | -6.18-3          | -6.51-1          |
| 5p <sub>1/2</sub>         | σ                      | 7.891+0           | 5.509+0          | 3.133+0          | 2.013+0          | 1.392+0          | 1.012+0          | 7.637-1          | 5.929-1           | 4.711-1          | 3.815-1          |
| $E_b =$                   | β                      | 1.441             | 1.568            | 1.669            | 1.702            | 1.709            | 1.706            | 1.695            | 1.681             | 1.665            | 1.647            |
| 200.4 eV                  | γ                      | 5.08 - 1          | 3.75 - 1         | 1.43 - 1         | 2.52 - 2         | -8.07 - 3        | 1.26 - 2         | 6.66 - 2         | 1.41 - 1          | 2.28 - 1         | 3.23-1           |
|                           | δ                      | -5.34-3           | -9.93-3          | -1.11-2          | -1.06-2          | -1.00-2          | -9.37 - 3        | -8.47 - 3        | -7.20-3           | -5.52-3          | -3.41-3          |
|                           |                        |                   |                  |                  |                  |                  |                  |                  |                   |                  |                  |
| $5p_{3/2} E_b =$          | $\frac{\sigma}{eta}$   | 2.335+1<br>1.389  | 1.478+1<br>1.514 | 7.390+0<br>1.647 | 4.361+0<br>1.714 | 2.832+0<br>1.751 | 1.959+0<br>1.770 | 1.419+0<br>1.778 | 1.064+0<br>1.780  | 8.198-1<br>1.776 | 6.462-1<br>1.769 |

| able 1 (contin                                   | ued)                  |                     |                   |                   |                   |                      |                  |                   |                   |                     |                    |
|--------------------------------------------------|-----------------------|---------------------|-------------------|-------------------|-------------------|----------------------|------------------|-------------------|-------------------|---------------------|--------------------|
| 152.8 eV                                         | $_{\delta}^{\gamma}$  | 2.84-1<br>6.09-4    | 1.79-1<br>-3.75-3 | 1.65-2<br>-1.76-3 | -4.84-2 3.41-3    | -4.12-2<br>8.33-3    | 1.24-2<br>1.25-2 | 9.53-2<br>1.59-2  | 1.96-1<br>1.88-2  | 3.08-1<br>2.13-2    | 4.26-1<br>2.35-2   |
| 5d <sub>3/2</sub>                                | σ                     | 2.344+1             | 1.429+1           | 6.359+0           | 3.325+0           | 1.930+0              | 1.207+0          | 7.971-1           | 5.498-1           | 3.926-1             | 2.884-1            |
| $E_b =$                                          | β                     | 1.151               | 1.286             | 1.399             | 1.427             | 1.420                | 1.397            | 1.365             | 1.328             | 1.290               | 1.250              |
| 69.4 eV                                          | γ                     | 1.79 - 2            | -3.95 - 2         | 2.50-2            | 1.93 - 1          | 3.89 - 1             | 5.88 - 1         | 7.77 - 1          | 9.53 - 1          | 1.11+0              | 1.26+0             |
|                                                  | δ                     | -1.20-3             | 6.71-3            | 2.63-2            | 4.31-2            | 5.74-2               | 7.07-2           | 8.34-2            | 9.59-2            | 1.08-1              | 1.20-1             |
| $5d_{5/2}$                                       | $\sigma$              | 3.383+1             | 2.015+1           | 8.703+0           | 4.461+0           | 2.551+0              | 1.575+0          | 1.030+0           | 7.035 - 1         | 4.981 - 1           | 3.631 - 1          |
| $E_b =$                                          | β                     | 1.313               | 1.387             | 1.418             | 1.394             | 1.353                | 1.305            | 1.256             | 1.206             | 1.158               | 1.111              |
| 63.8 eV                                          | γ                     | -9.14-3             | -4.24-2           | 6.67-2            | 2.58-1            | 4.62-1               | 6.58-1           | 8.38-1            | 1.00+0            | 1.15+0              | 1.27+0             |
|                                                  | δ                     | 1.04-3              | 7.42-3            | 2.33-2            | 3.91-2            | 5.49-2               | 7.10-2           | 8.75-2            | 1.04 - 1          | 1.21-1              | 1.37 - 1           |
| $6s_{1/2}$                                       | σ                     | 1.567+0             | 9.927 - 1         | 5.113 - 1         | 3.151 - 1         | 2.145 - 1            | 1.556 - 1        | 1.179 - 1         | 9.236 - 2         | 7.421 - 2           | 6.086 - 2          |
| $E_b =$                                          | β                     | 1.738               | 1.761             | 1.787             | 1.803             | 1.815                | 1.826            | 1.836             | 1.844             | 1.852               | 1.859              |
| 35.5 eV                                          | $\gamma \\ \delta$    | 5.58-1<br>-3.09-4   | 5.14-1 $-1.23-3$  | 3.86-1<br>-2.56-3 | 2.57-1<br>-3.53-3 | 1.43 - 1 $-4.28 - 3$ | 4.69-2 $-4.89-3$ | -3.02-2 $-5.39-3$ | -9.03-2 $-5.83-3$ | -1.35-1 $-6.20-3$   | -1.67-1 $-6.52-3$  |
|                                                  |                       |                     |                   |                   |                   |                      |                  |                   |                   |                     |                    |
| $\begin{array}{l} 6p_{1/2} \\ E_b = \end{array}$ | $\frac{\sigma}{eta}$  | 1.263+0<br>1.496    | 8.644-1<br>1.601  | 4.821-1<br>1.686  | 3.071-1<br>1.712  | 2.115-1<br>1.716     | 1.534-1<br>1.710 | 1.156-1<br>1.699  | 8.963-2<br>1.684  | 7.115-2<br>1.667    | 5.757-2<br>1.648   |
| 19.2 eV                                          | γ                     | 4.64-1              | 3.33-1            | 1.20-1            | 1.57-2            | -9.14-3              | 1.67-2           | 7.42-2            | 1.51-1            | 2.39-1              | 3.33-1             |
| 10.2 01                                          | δ                     | -9.62 - 3           | -1.17-2           | -1.14-2           | -1.06-2           | -1.01-2              | -9.52 - 3        | -8.66-3           | -7.43 - 3         | -5.79-3             | -3.73-3            |
| 6p <sub>3/2</sub>                                | σ                     | 3.302+0             | 2.068+0           | 1.023+0           | 6.011-1           | 3.895-1              | 2.691-1          | 1.947-1           | 1.458-1           | 1.123-1             | 8.850-2            |
| $E_b =$                                          | β                     | 1.427               | 1.539             | 1.662             | 1.723             | 1.757                | 1.774            | 1.782             | 1.782             | 1.778               | 1.770              |
| 13.7 eV                                          | γ                     | 2.61-1              | 1.58-1            | 6.92-3            | -4.99-2           | -3.80-2              | 1.89-2           | 1.04-1            | 2.06-1            | 3.18-1              | 4.35-1             |
|                                                  | δ                     | -2.40 - 3           | -4.90 - 3         | -1.78 - 3         | 3.54 - 3          | 8.42 - 3             | 1.25 - 2         | 1.58 - 2          | 1.86 - 2          | 2.10-2              | 2.31 - 2           |
| 7s <sub>1/2</sub>                                | σ                     | 1.380-1             | 8.712-2           | 4.470-2           | 2.748-2           | 1.869-2              | 1.355-2          | 1.027-2           | 8.040-3           | 6.458-3             | 5.296-3            |
| $E_b =$                                          | β                     | 1.738               | 1.761             | 1.787             | 1.804             | 1.817                | 1.827            | 1.836             | 1.844             | 1.851               | 1.858              |
| 5.0 eV                                           | γ                     | 5.58 - 1            | 5.12 - 1          | 3.84 - 1          | 2.54 - 1          | 1.40 - 1             | 4.59 - 2         | -3.07 - 2         | -9.07 - 2         | -1.36-1             | -1.68-1            |
|                                                  | δ                     | -3.35-4             | -1.24 - 3         | -2.58 - 3         | -3.55-3           | -4.27-3              | -4.86 - 3        | -5.38 - 3         | -5.84 - 3         | -6.22 - 3           | -6.58-3            |
| Z= 89, Ac: [R                                    | n]6d <sub>3/2</sub>   |                     |                   |                   |                   |                      |                  |                   |                   |                     |                    |
|                                                  |                       | k (eV)              |                   |                   |                   |                      |                  |                   |                   |                     |                    |
| Shell                                            |                       | 1500                | 2000              | 3000              | 4000              | 5000                 | 6000             | 7000              | 8000              | 9000                | 10000              |
| $4s_{1/2}$                                       | σ                     | 2.565+1             | 1.875+1           | 1.089+1           | 7.066+0           | 4.944+0              | 3.649+0          | 2.800+0           | 2.213+0           | 1.791+0             | 1.478+0            |
| $E_b = 1269.4 \text{ eV}$                        | β                     | 1.585<br>9.31-1     | 1.667<br>8.79-1   | 1.735<br>6.85-1   | 1.764<br>4.96-1   | 1.784<br>3.33-1      | 1.799<br>1.97—1  | 1.811<br>8.80-2   | 1.822<br>7.89-4   | 1.831<br>-6.75-2    | 1.839<br>1.20 1    |
| 1209.4 ev                                        | $\gamma \\ \delta$    | 5.33-3              | 1.81-3            | -1.35-3           | -2.98-3           | -4.07 - 3            | -4.89 - 3        | -5.54-3           | -6.08-3           | -6.75-2<br>-6.55-3  | -6.96 - 3          |
| 4                                                |                       | 2.529+1             | 2.075+1           | 1.344+1           | 9.082+0           | 6.445+0              | 4.761+0          | 3.631+0           | 2.842+0           | 2.272+0             |                    |
| $\begin{array}{l} 4p_{1/2} \\ E_b = \end{array}$ | $\frac{\sigma}{eta}$  | 0.750               | 2.075+1<br>1.244  | 1.544+1           | 1.628             | 1.664                | 1.677            | 1.677             | 2.842+0<br>1.670  | 1.659               | 1.848+0<br>1.645   |
| 1112.8 eV                                        | γ                     | 4.53-1              | 6.51-1            | 3.58-1            | 1.28-1            | 2.23-2               | -1.70-3          | 2.47-2            | 8.22-2            | 1.59-1              | 2.47-1             |
|                                                  | δ                     | 1.07 - 1            | 2.80-2            | -4.79 - 3         | -9.56 - 3         | -1.00-2              | -9.54 - 3        | -8.63 - 3         | -7.36 - 3         | -5.70 - 3           | -3.68 - 3          |
| 4p <sub>3/2</sub>                                | σ                     | 9.720+1             | 6.620+1           | 3.518+1           | 2.125+1           | 1.396+1              | 9.729+0          | 7.079+0           | 5.326+0           | 4.116+0             | 3.251+0            |
| $E_b =$                                          | β                     | 0.958               | 1.274             | 1.530             | 1.642             | 1.703                | 1.737            | 1.756             | 1.765             | 1.767               | 1.764              |
| 924.3 eV                                         | γ                     | 3.81 - 1            | 3.54 - 1          | 1.21 - 1          | -1.65-2           | -5.61-2              | -3.13-2          | 3.40-2            | 1.25 - 1          | 2.30 - 1            | 3.45 - 1           |
|                                                  | δ                     | 5.73-2              | 1.66-2            | -2.70-5           | 2.20-3            | 7.23-3               | 1.21-2           | 1.62-2            | 1.98-2            | 2.27-2              | 2.53-2             |
| $4d_{3/2}$                                       | $\sigma$              | 1.422+2             | 9.201+1           | 4.225+1           | 2.217+1           | 1.285+1              | 8.017+0          | 5.285+0           | 3.638+0           | 2.594+0             | 1.903+0            |
| $E_b =$                                          | β                     | 0.775               | 1.067             | 1.299             | 1.374             | 1.392                | 1.384            | 1.361             | 1.331             | 1.296               | 1.260              |
| 673.9 eV                                         | γ                     | 1.25-1<br>2.31-2    | -1.29-2           | -4.13-2           | 1.00-1            | 2.95-1               | 5.00-1           | 6.98-1            | 8.81-1            | 1.05+0              | 1.20+0             |
|                                                  | δ                     |                     | 6.78-3            | 2.33-2            | 4.26-2            | 5.89-2               | 7.33-2           | 8.64-2            | 9.87-2            | 1.10-1              | 1.21-1             |
| $4d_{5/2}$                                       | σ                     | 2.134+2             | 1.335+2           | 5.904+1           | 3.029+1           | 1.728+1              | 1.064+1          | 6.935+0           | 4.728+0           | 3.341+0             | 2.432+0            |
| $E_b = 641.1 \text{ eV}$                         | β                     | 1.023<br>9.25-2     | 1.230<br>-3.80-2  | 1.359<br>-9.82-3  | 1.373<br>1.68-1   | 1.349<br>3.78-1      | 1.311<br>5.84-1  | 1.266<br>7.75-1   | 1.220<br>9.46-1   | 1.173<br>1.10+0     | 1.127<br>1.23+0    |
| 041.1 CV                                         | $\gamma \\ \delta$    | 1.65-2              | 7.29-3            | 2.11-2            | 3.81-2            | 5.47-2               | 7.14-2           | 8.80-2            | 1.04-1            | 1.20-1              | 1.36-1             |
| 1f                                               | σ                     | 2.176+2             | 9.354+1           | 2.559+1           | 9.501+0           | 4.240+0              | 2.142+0          | 1.185+0           | 7.021-1           | 4.393-1             | 2.873-1            |
| $ 4f_{5/2}  E_b = $                              | $\beta$               | 0.968               | 1.039             | 1.045             | 0.994             | 0.929                | 0.862            | 0.798             | 0.738             | 0.684               | 0.635              |
| 316.4 eV                                         | γ                     | 8.04-2              | 2.15-1            | 4.89-1            | 7.25 - 1          | 9.18-1               | 1.07+0           | 1.20+0            | 1.30+0            | 1.38+0              | 1.45+0             |
|                                                  | δ                     | 6.17-2              | 8.63-2            | 1.28-1            | 1.65-1            | 2.01-1               | 2.34-1           | 2.65-1            | 2.94-1            | 3.22-1              | 3.49-1             |
| 4f <sub>7/2</sub>                                | σ                     | 2.761+2             | 1.179+2           | 3.199+1           | 1.180+1           | 5.233+0              | 2.630+0          | 1.447+0           | 8.535-1           | 5.318-1             | 3.463-1            |
| $E_b =$                                          | β                     | 0.985               | 1.043             | 1.035             | 0.977             | 0.911                | 0.845            | 0.783             | 0.727             | 0.676               | 0.630              |
| 308.4 eV                                         | γ                     | 9.06 - 2            | 2.33 - 1          | 5.13-1            | 7.50 - 1          | 9.42 - 1             | 1.09+0           | 1.21+0            | 1.31+0            | 1.39+0              | 1.46+0             |
|                                                  | δ                     | 6.26-2              | 8.67-2            | 1.28-1            | 1.66-1            | 2.02 - 1             | 2.37-1           | 2.69-1            | 2.99-1            | 3.29-1              | 3.57-1             |
| $5s_{1/2}$                                       | σ                     | 8.526+0             | 5.509+0           | 2.898+0           | 1.805+0           | 1.237+0              | 9.014 - 1        | 6.857 - 1         | 5.386 - 1         | 4.338 - 1           | 3.564-1            |
| $E_b =$                                          | β                     | 1.704               | 1.735             | 1.768             | 1.787             | 1.801                | 1.813            | 1.823             | 1.832             | 1.839               | 1.847              |
| 273.5 eV                                         | $\gamma \over \delta$ | 6.20-1<br>2.47-4    | 5.77-1<br>-9.06-4 | 4.46-1 $-2.48-3$  | 3.11-1<br>-3.57-3 | 1.90-1<br>-4.41-3    | 8.78-2 $-5.09-3$ | 3.94-3<br>-5.65-3 | -6.30-2 $-6.14-3$ | -1.15-1 $-6.57-3$   | -1.53-1<br>-6.94-3 |
| En                                               |                       |                     |                   |                   |                   |                      |                  |                   |                   |                     | -6.94-3            |
| 5p <sub>1/2</sub>                                | $\sigma_{\beta}$      | 8.096+0<br>1.417    | 5.677+0<br>1.555  | 3.250+0<br>1.663  | 2.098+0<br>1.699  | 1.457+0<br>1.709     | 1.063+0<br>1.707 | 8.046-1<br>1.698  | 6.264-1<br>1.685  | 4.988-1<br>1.670    | 4.047-1<br>1.653   |
| $E_b = 216.9 \text{ eV}$                         | $eta \ \gamma$        | 5.31-1              | 4.01–1            | 1.64–1            | 3.68-2            | -5.73-3              | 6.69-3           | 5.43-2            | 1.085             | 2.08-1              | 1.053<br>2.99—1    |
| _ 10,5 CV                                        | δ                     | -5.38-3             | -1.05-2           | -1.17-2           | -1.11-2           | -3.75-3<br>-1.05-2   | -9.87 - 3        | -9.03-3           | -7.86 - 3         | -6.29-3             | -4.34-3            |
| 5p <sub>3/2</sub>                                | σ                     | 2.463+1             | 1.560+1           | 7.818+0           | 4.622+0           | 3.007+0              | 2.085+0          | 1.512+0           | 1.135+0           | 8.761-1             | 6.913-1            |
| $E_b =$                                          | β                     | 1.367               | 1.498             | 1.637             | 1.707             | 1.746                | 1.767            | 1.778             | 1.781             | 1.779               | 1.773              |
|                                                  |                       |                     |                   |                   |                   |                      |                  |                   |                   |                     |                    |
| 167.8 eV                                         | γ                     | 2.95 - 1            | 1.92 - 1          | 2.62 - 2          | -4.53-2           | -4.55-2              | 1.46 - 3         | 7.91 - 2          | 1.76 - 1          | 2.85 - 1            | 4.00 - 1           |
| 167.8 eV                                         |                       | 2.95 - 1 $1.14 - 3$ | 1.92-1<br>-3.83-3 | 2.62-2 $-2.23-3$  | -4.53-2 $2.96-3$  | -4.55-2 8.03-3       | 1.46-3<br>1.24-2 | 7.91-2<br>1.60-2  | 1.76—1<br>1.91—2  | 2.85 - 1 $2.17 - 2$ | 4.00-1 $2.40-2$    |

| Tab | le 1 ( | continued | ) |
|-----|--------|-----------|---|
|     |        |           |   |

| ible 1 (contini          | ued)                    |                   |                      |                  |                   |                   |                      |                   |                    |                   |                  |
|--------------------------|-------------------------|-------------------|----------------------|------------------|-------------------|-------------------|----------------------|-------------------|--------------------|-------------------|------------------|
| $5d_{3/2}$               | σ                       | 2.525+1           | 1.548+1              | 6.933+0          | 3.644+0           | 2.125+0           | 1.333+0              | 8.832-1           | 6.107-1            | 4.369-1           | 3.216-1          |
| $E_b =$                  | β                       | 1.132             | 1.275                | 1.395            | 1.427             | 1.424             | 1.404<br>5.64-1      | 1.374             | 1.339              | 1.301             | 1.262            |
| 83.3 eV                  | $_{\delta}^{\gamma}$    | 2.79-2<br>-1.55-3 | -3.72-2<br>5.75-3    | 1.36-2<br>2.51-2 | 1.72-1<br>4.20-2  | 3.66-1 $5.66-2$   | 7.01-2               | 7.54-1<br>8.27-2  | 9.30-1 $9.46-2$    | 1.09+0<br>1.06-1  | 1.23+0<br>1.17-1 |
| - d                      |                         |                   |                      |                  |                   |                   |                      |                   |                    |                   |                  |
| 5d <sub>5/2</sub>        | $\sigma_{\rho}$         | 3.657+1<br>1.307  | 2.187+1<br>1.385     | 9.501+0<br>1.420 | 4.893+0<br>1.400  | 2.810+0<br>1.360  | 1.741+0<br>1.314     | 1.141+0<br>1.265  | 7.813-1<br>1.216   | 5.541-1<br>1.167  | 4.046-1<br>1.120 |
| $E_b = 77.7 \text{ eV}$  | $\beta$                 | -1.70-3           | -4.31-2              | 5.40-2           | 2.39-1            | 4.42-1            | 6.38-1               | 8.20-1            | 9.83-1             | 1.107             | 1.120            |
| 77.7 CV                  | $\delta \gamma$         | 7.47-4            | 6.69-3               | 2.21-2           | 3.77-2            | 5.36-2            | 6.98-2               | 8.61-2            | 1.02-1             | 1.18-1            | 1.34-1           |
| 6s <sub>1/2</sub>        | σ                       | 1.722+0           | 1.092+0              | 5.632-1          | 3.474-1           | 2.368-1           | 1.719-1              | 1.305-1           | 1.023-1            | 8.230-2           | 6.755-2          |
| $E_b =$                  | $\beta$                 | 1.719             | 1.745                | 1.773            | 1.791             | 1.804             | 1.815                | 1.825             | 1.834              | 1.842             | 1.849            |
| 39.8 eV                  | $_{\delta}^{\gamma}$    | 5.70-1 $-2.32-4$  | 5.29 - 1 $-1.22 - 3$ | 4.06-1 $-2.64-3$ | 2.79-1<br>-3.68-3 | 1.64-1 $-4.47-3$  | 6.77 - 2 $-5.11 - 3$ | -1.16-2 $-5.66-3$ | -7.45-2 $-6.13-3$  | -1.23-1 $-6.54-3$ | -1.58-<br>-6.90- |
| 6p <sub>1/2</sub>        | σ                       | 1.394+0           | 9.563-1              | 5.359-1          | 3.427-1           | 2.368-1           | 1.724-1              | 1.302-1           | 1.012-1            | 8.054-2           | 6.530-2          |
| $E_b =$                  | β                       | 1.479             | 1.592                | 1.682            | 1.711             | 1.717             | 1.712                | 1.702             | 1.688              | 1.672             | 1.654            |
| 24.1 eV                  | γ                       | 4.85 - 1          | 3.56 - 1             | 1.38 - 1         | 2.53 - 2          | -7.75 - 3         | 1.04 - 2             | 6.12 - 2          | 1.33 - 1           | 2.17 - 1          | 3.08 - 1         |
|                          | δ                       | -1.03-2           | -1.25-2              | -1.21-2          | -1.12-2           | -1.06-2           | -9.95 - 3            | -9.14 - 3         | -7.97 - 3          | -6.42 - 3         | -4.46-           |
| 6p <sub>3/2</sub>        | σ                       | 3.823+0           | 2.395+0              | 1.187+0          | 6.979-1           | 4.529-1           | 3.134-1              | 2.271-1           | 1.704-1            | 1.314-1           | 1.036-           |
| $E_b =$                  | $\beta$                 | 1.411             | 1.527                | 1.652            | 1.717             | 1.753             | 1.772                | 1.782             | 1.784              | 1.781             | 1.774            |
| 17.0 eV                  | γ                       | 2.70 - 1          | 1.69 - 1             | 1.48 - 2         | -4.79 - 2         | -4.25 - 2         | 7.85 - 3             | 8.71 - 2          | 1.84 - 1           | 2.93 - 1          | 4.07 - 1         |
|                          | δ                       | -2.36-3           | -5.17-3              | -2.27 - 3        | 3.12-3            | 8.16-3            | 1.24-2               | 1.59-2            | 1.88-2             | 2.13-2            | 2.36-2           |
| $6d_{3/2}$               | σ                       | 1.544+0           | 9.415-1              | 4.201-1          | 2.206-1           | 1.286-1           | 8.065-2              | 5.343-2           | 3.694-2            | 2.643-2           | 1.946-2          |
| $E_b =$                  | β                       | 1.158             | 1.294                | 1.405            | 1.433             | 1.428             | 1.406                | 1.375             | 1.340              | 1.303             | 1.264            |
| 6.0 eV                   | $_{\delta}^{\gamma}$    | 2.37-2 $-2.48-3$  | -3.68-2 $5.67-3$     | 1.92-2<br>2.51-2 | 1.81-1<br>4.20-2  | 3.75-1<br>5.65-2  | 5.71-1<br>6.93-2     | 7.57-1<br>8.13-2  | 9.30-1<br>9.29-2   | 1.09+0<br>1.04-1  | 1.24+0<br>1.16-1 |
| 7.                       |                         |                   |                      |                  |                   |                   |                      |                   |                    | 8.124-3           | 6.666-3          |
| $7s_{1/2}$<br>$E_b =$    | $\frac{\sigma}{\beta}$  | 1.724-1<br>1.720  | 1.089-1<br>1.746     | 5.591-2<br>1.774 | 3.441-2<br>1.791  | 2.342-2<br>1.804  | 1.700-2<br>1.814     | 1.289-2<br>1.824  | 1.011-2<br>1.832   | 8.124-3<br>1.840  | 1.848            |
| 6.0 eV                   | γ                       | 5.68-1            | 5.26-1               | 4.03-1           | 2.76-1            | 1.63-1            | 6.61-2               | -1.36-2           | -7.71-2            | -1.26-1           | -1.60-           |
|                          | δ                       | -2.75-4           | -1.25 - 3            | -2.67 - 3        | -3.69 - 3         | -4.48 - 3         | -5.14 - 3            | -5.71-3           | -6.21-3            | -6.60 - 3         | -6.98-           |
| Z= 90, Th: [R            | n]6d <sub>3/2</sub>     | 7s <sub>1/2</sub> |                      |                  |                   |                   |                      |                   |                    |                   |                  |
|                          |                         | k (eV)            |                      |                  |                   |                   |                      |                   |                    |                   |                  |
| Shell                    |                         | 1500              | 2000                 | 3000             | 4000              | 5000              | 6000                 | 7000              | 8000               | 9000              | 10000            |
| 4s <sub>1/2</sub>        | σ                       | 2.535+1           | 1.876+1              | 1.099+1          | 7.163+0           | 5.027+0           | 3.718+0              | 2.858+0           | 2.263+0            | 1.834+0           | 1.514+0          |
| $E_b =$                  | β                       | 1.543             | 1.638                | 1.714            | 1.747             | 1.769             | 1.784                | 1.797             | 1.808              | 1.818             | 1.826            |
| 1329.5 eV                | γ                       | 9.53 - 1          | 9.08 - 1             | 7.22 - 1         | 5.34 - 1          | 3.68 - 1          | 2.30-1               | 1.17 - 1          | 2.57 - 2           | -4.72 - 2         | -1.04-           |
|                          | δ                       | 6.56-3            | 2.35-3               | -1.20-3          | -3.00-3           | -4.20-3           | -5.09-3              | -5.82-3           | -6.42-3            | -6.94 - 3         | -7.38-           |
| $4p_{1/2}$               | $\sigma$                | 2.455+1           | 2.048+1              | 1.348+1          | 9.192+0           | 6.563+0           | 4.870+0              | 3.728+0           | 2.926+0            | 2.345+0           | 1.912+0          |
| $E_b =$                  | β                       | 0.633             | 1.197                | 1.517            | 1.618             | 1.659             | 1.674                | 1.677             | 1.672              | 1.662             | 1.650            |
| 1168.2 eV                | $_{\delta}^{\gamma}$    | 3.77-1            | 6.75-1               | 3.98-1           | 1.55-1            | 3.52-2            | -4.04-4              | 1.69-2            | 6.77-2             | 1.39-1            | 2.23-1           |
|                          |                         | 1.28-1            | 3.41-2               | -4.39-3          | -1.00-2           | -1.06-2           | -1.02-2              | -9.31-3           | -8.11-3            | -6.54-3           | -4.64-           |
| $4p_{3/2}$               | σ                       | 9.883+1           | 6.763+1              | 3.613+1<br>1.509 | 2.190+1           | 1.443+1           | 1.007+1              | 7.344+0           | 5.534+0<br>1.763   | 4.282+0<br>1.767  | 3.386+0          |
| $E_b = 967.2 \text{ eV}$ | $\beta$                 | 0.899<br>3.70-1   | 1.238<br>3.70-1      | 1.509<br>1.40-1  | 1.629<br>-6.49-3  | 1.694<br>-5.56-2  | 1.731<br>-3.92-2     | 1.752<br>1.94-2   | 1.763<br>1.05—1    | 2.06-1            | 1.766<br>3.17-1  |
| 307.2 EV                 | $\frac{\gamma}{\delta}$ | 6.54-2            | 1.97-2               | 7.38-5           | 1.73-3            | -3.30-2<br>6.78-3 | -3.92-2<br>1.18-2    | 1.62-2            | 1.99-2             | 2.31-2            | 2.57 - 2         |
| 4d <sub>3/2</sub>        | σ                       | 1.452+2           | 9.488+1              | 4.403+1          | 2.325+1           | 1.354+1           | 8.476+0              | 5.603+0           | 3.866+0            | 2.761+0           | 2.029+0          |
| $E_b =$                  | $\beta$                 | 0.727             | 1.035                | 1.285            | 1.369             | 1.392             | 1.387                | 1.368             | 1.340              | 1.307             | 1.272            |
| 713.7 eV                 | γ                       | 1.42 - 1          | -7.49 - 4            | -4.96-2          | 7.99 - 2          | 2.69 - 1          | 4.72 - 1             | 6.69 - 1          | 8.51 - 1           | 1.02+0            | 1.17+0           |
|                          | δ                       | 2.93-2            | 7.09-3               | 2.19-2           | 4.14-2            | 5.80-2            | 7.25-2               | 8.54-2            | 9.72-2             | 1.08-1            | 1.19-1           |
| $4d_{5/2}$               | σ                       | 2.186+2           | 1.379+2              | 6.153+1          | 3.175+1           | 1.819+1           | 1.123+1              | 7.342+0           | 5.016+0            | 3.551+0           | 2.589+0          |
| $E_b =$                  | β                       | 0.993             | 1.213                | 1.356            | 1.375             | 1.354             | 1.318                | 1.275             | 1.229              | 1.183             | 1.138            |
| 676.6 eV                 | $\delta ^{\gamma }$     | 1.12-1<br>2.01-2  | -3.01-2<br>7.33-3    | -2.09-2 $1.99-2$ | 1.48-1<br>3.67-2  | 3.55-1<br>5.34-2  | 5.62 - 1 $6.99 - 2$  | 7.52-1<br>8.61-2  | 9.24-1<br>1.02-1   | 1.08+0<br>1.17-1  | 1.21+0<br>1.32-1 |
| $4f_{5/2}$               | σ                       | 2.337+2           | 1.010+2              | 2.787+1          | 1.041+1           | 4.667+0           | 2.366+0              | 1.312+0           | 7.791-1            | 4.884-1           | 3.199-           |
| $E_b =$                  | β                       | 0.956             | 1.034                | 1.047            | 1.000             | 0.936             | 0.870                | 0.807             | 0.748              | 0.695             | 0.646            |
| 344.4 eV                 | γ                       | 6.66 - 2          | 1.99 - 1             | 4.71 - 1         | 7.10 - 1          | 9.06 - 1          | 1.06+0               | 1.19+0            | 1.29+0             | 1.38+0            | 1.45+0           |
|                          | δ                       | 5.94-2            | 8.41-2               | 1.26-1           | 1.63-1            | 1.98-1            | 2.30-1               | 2.61-1            | 2.90-1             | 3.18-1            | 3.45-1           |
| $4f_{7/2}$               | $\sigma$                | 2.962+2           | 1.273+2              | 3.480+1          | 1.291+1           | 5.754+0           | 2.901+0              | 1.601+0           | 9.461-1            | 5.905-1           | 3.852-           |
| $E_b =$                  | β                       | 0.976             | 1.040                | 1.038            | 0.984             | 0.918             | 0.852                | 0.791             | 0.735              | 0.685             | 0.640            |
| 335.0 eV                 | $\gamma \\ \delta$      | 7.65-2<br>6.04-2  | 2.16-1 $8.46-2$      | 4.96-1           | 7.37-1<br>1.64-1  | 9.31-1<br>2.00-1  | 1.08+0<br>2.33_1     | 1.21+0<br>2.65—1  | 1.31+0<br>2.95-1   | 1.39+0<br>3.25-1  | 1.46+0<br>3.53_1 |
| F.o.                     |                         | 6.04-2            |                      | 1.25-1           | 1.64-1            | 2.00-1            | 2.33-1               | 2.65-1            |                    |                   | 3.53-1           |
| 5s <sub>1/2</sub>        | $\sigma_{\beta}$        | 8.778+0<br>1.681  | 5.685+0<br>1.716     | 2.998+0          | 1.871+0<br>1.773  | 1.284+0           | 9.372-1<br>1.700     | 7.139-1           | 5.614-1            | 4.526-1           | 3.722-<br>1.835  |
| $E_b = 290.2 \text{ eV}$ | β                       | 1.681<br>6.36-1   | 1.716<br>5.97-1      | 1.752<br>4.70-1  | 1.773<br>3.36-1   | 1.788<br>2.15-1   | 1.799<br>1.11-1      | 1.810<br>2.47-2   | 1.819<br>-4.56-2   | 1.827<br>-1.01-1  | 1.835<br>1.43-   |
| 2JU.2 CV                 | $\frac{\gamma}{\delta}$ | 4.16-4            | -8.28-4              | -2.53-3          | -3.70-3           | -4.60-3           | -5.35-3              | -5.97-3           | -4.30-2<br>-6.51-3 | -6.97 - 3         | -1.43-<br>-7.37- |
| 5p <sub>1/2</sub>        | σ                       | 8.281+0           | 5.835+0              | 3.362+0          | 2.181+0           | 1.521+0           | 1.114+0              | 8.455-1           | 6.599-1            | 5.266-1           | 4.280-           |
| $E_b =$                  | β                       | 1.391             | 1.539                | 1.656            | 1.696             | 1.708             | 1.707                | 1.700             | 1.689              | 1.674             | 1.658            |
| 232.0 eV                 | γ                       | 5.53-1            | 4.28-1               | 1.86-1           | 4.95-2            | -2.11-3           | 2.37-3               | 4.35-2            | 1.08-1             | 1.88-1            | 2.76-1           |
|                          | δ                       | -5.26-3           | -1.11-2              | -1.25-2          | -1.18-2           | -1.11-2           | -1.05-2              | -9.66-3           | -8.56-3            | -7.09-3           | -5.28-           |
| $5p_{3/2}$               | σ                       | 2.591+1           | 1.644+1              | 8.252+0          | 4.887+0           | 3.186+0           | 2.212+0              | 1.607+0           | 1.209+0            | 9.337 - 1         | 7.375            |
|                          |                         |                   |                      |                  |                   |                   |                      |                   |                    |                   |                  |

| $ble 1 (continut)$ $E_b = $                                                                       | β                                                                                                                           | 1.343                                                                                                                                    | 1.480                                                                                                                                     | 1.625                                                                                                                          | 1.699                                                                                                                          | 1.740                                                                                                                          | 1.764                                                                                                                          | 1.776                                                                                                                 | 1.781                                                                                                                  | 1.780                                                                                                                  | 1.776                                                                                                             |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 180.8 eV                                                                                          | γ                                                                                                                           | 3.05 - 1                                                                                                                                 | 2.04 - 1                                                                                                                                  | 3.62-2                                                                                                                         | -4.17-2                                                                                                                        | -4.89-2                                                                                                                        | -8.33 - 3                                                                                                                      | 6.41-2                                                                                                                | 1.57 - 1                                                                                                               | 2.62 - 1                                                                                                               | 3.74 - 1                                                                                                          |
|                                                                                                   | δ                                                                                                                           | 1.83-3                                                                                                                                   | -3.86-3                                                                                                                                   | -2.72-3                                                                                                                        | 2.49-3                                                                                                                         | 7.72-3                                                                                                                         | 1.23-2                                                                                                                         | 1.61-2                                                                                                                | 1.93-2                                                                                                                 | 2.20-2                                                                                                                 | 2.44-2                                                                                                            |
| $d_{3/2}$                                                                                         | σ                                                                                                                           | 2.707+1                                                                                                                                  | 1.668+1                                                                                                                                   | 7.521+0                                                                                                                        | 3.973+0                                                                                                                        | 2.327+0                                                                                                                        | 1.465+0                                                                                                                        | 9.735 - 1                                                                                                             | 6.746 - 1                                                                                                              | 4.837 - 1                                                                                                              | 3.566-                                                                                                            |
| $E_b =$                                                                                           | β                                                                                                                           | 1.111                                                                                                                                    | 1.262                                                                                                                                     | 1.389                                                                                                                          | 1.427                                                                                                                          | 1.427                                                                                                                          | 1.410                                                                                                                          | 1.382                                                                                                                 | 1.349                                                                                                                  | 1.312                                                                                                                  | 1.275                                                                                                             |
| 94.1 eV                                                                                           | $\gamma \\ \delta$                                                                                                          | 3.78-2 $-1.79-3$                                                                                                                         | -3.42-2 $4.86-3$                                                                                                                          | 3.75-3<br>2.41-2                                                                                                               | 1.54-1<br>4.11-2                                                                                                               | 3.43-1<br>5.59-2                                                                                                               | 5.40-1<br>6.92-2                                                                                                               | 7.28-1<br>8.14-2                                                                                                      | 9.03-1<br>9.28-2                                                                                                       | 1.06+0<br>1.04-1                                                                                                       | 1.21+0<br>1.15-1                                                                                                  |
| . d                                                                                               |                                                                                                                             | 3.927+1                                                                                                                                  | 2.359+1                                                                                                                                   | 1.031+1                                                                                                                        | 5.334+0                                                                                                                        | 3.075+0                                                                                                                        | 1.911+0                                                                                                                        | 1.256+0                                                                                                               | 8.621-1                                                                                                                | 6.127-1                                                                                                                | 4.481-                                                                                                            |
| $5d_{5/2}$ $E_b =$                                                                                | $\frac{\sigma}{eta}$                                                                                                        | 1.299                                                                                                                                    | 1.383                                                                                                                                     | 1.423                                                                                                                          | 1.405                                                                                                                          | 3.075+0<br>1.367                                                                                                               | 1.322                                                                                                                          | 1.256+0                                                                                                               | 1.225                                                                                                                  | 6.127 — 1<br>1.177                                                                                                     | 1.131                                                                                                             |
| 87.3 eV                                                                                           | γ                                                                                                                           | 5.63-3                                                                                                                                   | -4.31-2                                                                                                                                   | 4.30-2                                                                                                                         | 2.22-1                                                                                                                         | 4.23-1                                                                                                                         | 6.19-1                                                                                                                         | 8.00-1                                                                                                                | 9.63-1                                                                                                                 | 1.11+0                                                                                                                 | 1.24+0                                                                                                            |
|                                                                                                   | δ                                                                                                                           | 5.24 - 4                                                                                                                                 | 6.04 - 3                                                                                                                                  | 2.11-2                                                                                                                         | 3.66-2                                                                                                                         | 5.23-2                                                                                                                         | 6.83-2                                                                                                                         | 8.40-2                                                                                                                | 9.95 - 2                                                                                                               | 1.15 - 1                                                                                                               | 1.30-1                                                                                                            |
| 6s <sub>1/2</sub>                                                                                 | σ                                                                                                                           | 1.868+0                                                                                                                                  | 1.186+0                                                                                                                                   | 6.126-1                                                                                                                        | 3.783-1                                                                                                                        | 2.581-1                                                                                                                        | 1.877-1                                                                                                                        | 1.426-1                                                                                                               | 1.120-1                                                                                                                | 9.012-2                                                                                                                | 7.404-                                                                                                            |
| $E_b =$                                                                                           | β                                                                                                                           | 1.699                                                                                                                                    | 1.727                                                                                                                                     | 1.758                                                                                                                          | 1.777                                                                                                                          | 1.791                                                                                                                          | 1.803                                                                                                                          | 1.813                                                                                                                 | 1.821                                                                                                                  | 1.830                                                                                                                  | 1.837                                                                                                             |
| 41.4 eV                                                                                           | γ                                                                                                                           | 5.83-1                                                                                                                                   | 5.46-1                                                                                                                                    | 4.27-1                                                                                                                         | 3.01-1                                                                                                                         | 1.87-1                                                                                                                         | 8.91-2                                                                                                                         | 7.51-3                                                                                                                | -5.86-2                                                                                                                | -1.10-1                                                                                                                | -1.49                                                                                                             |
|                                                                                                   | δ                                                                                                                           | -1.36-4                                                                                                                                  | -1.20-3                                                                                                                                   | -2.72-3                                                                                                                        | -3.82-3                                                                                                                        | -4.67-3                                                                                                                        | -5.38-3                                                                                                                        | -5.97-3                                                                                                               | -6.50-3                                                                                                                | -6.95-3                                                                                                                | -7.35-                                                                                                            |
| $6p_{1/2}$                                                                                        | σ                                                                                                                           | 1.507+0                                                                                                                                  | 1.038+0                                                                                                                                   | 5.844-1                                                                                                                        | 3.752-1                                                                                                                        | 2.602-1                                                                                                                        | 1.900-1                                                                                                                        | 1.439-1                                                                                                               | 1.122-1                                                                                                                | 8.946-2                                                                                                                | 7.267-                                                                                                            |
| $E_b = 25.8 \text{ eV}$                                                                           | β                                                                                                                           | 1.460<br>5.05-1                                                                                                                          | 1.580<br>3.79-1                                                                                                                           | 1.677<br>1.56-1                                                                                                                | 1.708<br>3.59-2                                                                                                                | 1.716<br>-5.40-3                                                                                                               | 1.713<br>5.33-3                                                                                                                | 1.704<br>5.00-2                                                                                                       | 1.692<br>1.16-1                                                                                                        | 1.677<br>1.97—1                                                                                                        | 1.660<br>2.86-1                                                                                                   |
| 23.6 EV                                                                                           | $_{\delta}^{\gamma}$                                                                                                        | -1.09-2                                                                                                                                  | -1.34-2                                                                                                                                   | -1.29-2                                                                                                                        | -1.18-2                                                                                                                        | -3.40-3<br>-1.11-2                                                                                                             | -1.05-2                                                                                                                        | -9.71-3                                                                                                               | -8.62 - 3                                                                                                              | -7.18 - 3                                                                                                              | -5.35                                                                                                             |
| Cn.                                                                                               |                                                                                                                             |                                                                                                                                          |                                                                                                                                           |                                                                                                                                |                                                                                                                                |                                                                                                                                |                                                                                                                                |                                                                                                                       | 1.945-1                                                                                                                |                                                                                                                        |                                                                                                                   |
| $6p_{3/2}$ $E_b =$                                                                                | $\frac{\sigma}{eta}$                                                                                                        | 4.320+0<br>1.391                                                                                                                         | 2.708+0<br>1.512                                                                                                                          | 1.344+0<br>1.642                                                                                                               | 7.914—1<br>1.710                                                                                                               | 5.144-1<br>1.748                                                                                                               | 3.566-1<br>1.770                                                                                                               | 2.588-1<br>1.781                                                                                                      | 1.945 – 1<br>1.784                                                                                                     | 1.502-1<br>1.783                                                                                                       | 1.186-<br>1.778                                                                                                   |
| 17.3 eV                                                                                           | γ                                                                                                                           | 2.78-1                                                                                                                                   | 1.79-1                                                                                                                                    | 2.31-2                                                                                                                         | -4.50-2                                                                                                                        | -4.60-2                                                                                                                        | -1.90-3                                                                                                                        | 7.21–2                                                                                                                | 1.66-1                                                                                                                 | 2.71-1                                                                                                                 | 3.83-1                                                                                                            |
|                                                                                                   | δ                                                                                                                           | -2.22-3                                                                                                                                  | -5.42 - 3                                                                                                                                 | -2.76 - 3                                                                                                                      | 2.68-3                                                                                                                         | 7.86-3                                                                                                                         | 1.23-2                                                                                                                         | 1.60-2                                                                                                                | 1.91-2                                                                                                                 | 2.17-2                                                                                                                 | 2.41-2                                                                                                            |
| $6d_{3/2}$                                                                                        | σ                                                                                                                           | 2.074+0                                                                                                                                  | 1.270+0                                                                                                                                   | 5.703-1                                                                                                                        | 3.009-1                                                                                                                        | 1.761-1                                                                                                                        | 1.109-1                                                                                                                        | 7.368-2                                                                                                               | 5.108-2                                                                                                                | 3.664-2                                                                                                                | 2.702-                                                                                                            |
| $E_b =$                                                                                           | β                                                                                                                           | 1.143                                                                                                                                    | 1.283                                                                                                                                     | 1.400                                                                                                                          | 1.434                                                                                                                          | 1.432                                                                                                                          | 1.413                                                                                                                          | 1.384                                                                                                                 | 1.351                                                                                                                  | 1.315                                                                                                                  | 1.277                                                                                                             |
| 6.0 eV                                                                                            | γ                                                                                                                           | 3.18-2                                                                                                                                   | -3.44-2                                                                                                                                   | 1.04-2                                                                                                                         | 1.64-1                                                                                                                         | 3.51-1                                                                                                                         | 5.44-1                                                                                                                         | 7.30-1                                                                                                                | 9.05-1                                                                                                                 | 1.07+0                                                                                                                 | 1.22+0                                                                                                            |
|                                                                                                   | δ                                                                                                                           | -2.92 - 3                                                                                                                                | 4.81-3                                                                                                                                    | 2.42-2                                                                                                                         | 4.11-2                                                                                                                         | 5.53-2                                                                                                                         | 6.80-2                                                                                                                         | 8.02-2                                                                                                                | 9.20-2                                                                                                                 | 1.04-1                                                                                                                 | 1.15-1                                                                                                            |
| $7s_{1/2}$                                                                                        | σ                                                                                                                           | 2.013-1                                                                                                                                  | 1.273-1                                                                                                                                   | 6.542-2                                                                                                                        | 4.029-2                                                                                                                        | 2.745-2                                                                                                                        | 1.994-2                                                                                                                        | 1.514-2                                                                                                               | 1.188-2                                                                                                                | 9.555-3                                                                                                                | 7.846-                                                                                                            |
| $E_b =$                                                                                           | β                                                                                                                           | 1.700                                                                                                                                    | 1.728                                                                                                                                     | 1.759                                                                                                                          | 1.777                                                                                                                          | 1.790                                                                                                                          | 1.801                                                                                                                          | 1.811                                                                                                                 | 1.821                                                                                                                  | 1.830                                                                                                                  | 1.838                                                                                                             |
| 6.0 eV                                                                                            | $\frac{\gamma}{\delta}$                                                                                                     | 5.80-1 $-1.89-4$                                                                                                                         | 5.42-1<br>-1.23-3                                                                                                                         | 4.24-1<br>-2.75-3                                                                                                              | 2.99-1<br>-3.85-3                                                                                                              | 1.86-1<br>-4.72-3                                                                                                              | 8.70-2<br>-5.43-3                                                                                                              | 4.97 - 3 $-6.02 - 3$                                                                                                  | -6.09-2 $-6.54-3$                                                                                                      | -1.12-1 $-6.95-3$                                                                                                      | 1.50-<br>7.35-                                                                                                    |
| 7 04 5 7=                                                                                         |                                                                                                                             |                                                                                                                                          | 1,25-5                                                                                                                                    | 2.13-3                                                                                                                         | J.UJ-J                                                                                                                         | 1,12-3                                                                                                                         | J. <del>1</del> J-J                                                                                                            | 5.02-5                                                                                                                | 3,34-3                                                                                                                 | 5.55-5                                                                                                                 | 1.55                                                                                                              |
| Z= 91, Pa: [R                                                                                     | nj5t <sub>5/2</sub> (                                                                                                       |                                                                                                                                          |                                                                                                                                           |                                                                                                                                |                                                                                                                                |                                                                                                                                |                                                                                                                                |                                                                                                                       |                                                                                                                        |                                                                                                                        |                                                                                                                   |
|                                                                                                   |                                                                                                                             | k (eV)                                                                                                                                   |                                                                                                                                           |                                                                                                                                |                                                                                                                                |                                                                                                                                |                                                                                                                                |                                                                                                                       |                                                                                                                        |                                                                                                                        |                                                                                                                   |
| Shell                                                                                             |                                                                                                                             | 1500                                                                                                                                     | 2000                                                                                                                                      | 3000                                                                                                                           | 4000                                                                                                                           | 5000                                                                                                                           | 6000                                                                                                                           | 7000                                                                                                                  | 8000                                                                                                                   | 9000                                                                                                                   | 10000                                                                                                             |
| 4s <sub>1/2</sub>                                                                                 | σ                                                                                                                           | 2.496+1                                                                                                                                  | 1.875+1                                                                                                                                   | 1.109+1                                                                                                                        | 7.257+0                                                                                                                        | 5.108+0                                                                                                                        | 3.786+0                                                                                                                        | 2.914+0                                                                                                               | 2.311+0                                                                                                                | 1.875+0                                                                                                                | 1.550+0                                                                                                           |
| $E_b =$                                                                                           | β                                                                                                                           | 1.495                                                                                                                                    | 1.606                                                                                                                                     | 1.691                                                                                                                          | 1.727                                                                                                                          | 1.751                                                                                                                          | 1.768                                                                                                                          | 1.783                                                                                                                 | 1.795                                                                                                                  | 1.805                                                                                                                  | 1.814                                                                                                             |
| 1387.1 eV                                                                                         | γ                                                                                                                           | 9.65-1                                                                                                                                   | 9.41-1                                                                                                                                    | 7.64-1                                                                                                                         | 5.76-1                                                                                                                         | 4.08-1                                                                                                                         | 2.66-1                                                                                                                         | 1.48-1                                                                                                                | 5.31-2                                                                                                                 | -2.34-2                                                                                                                | -8.40-                                                                                                            |
|                                                                                                   | δ                                                                                                                           | 8.22-3                                                                                                                                   | 3.04-3                                                                                                                                    | -9.80-4                                                                                                                        | -3.00-3                                                                                                                        | -4.33-3                                                                                                                        | -5.32-3                                                                                                                        | -6.09-3                                                                                                               | -6.72-3                                                                                                                | -7.27-3                                                                                                                | -7.75-                                                                                                            |
| $4p_{1/2}$                                                                                        | σ                                                                                                                           | 2.368+1                                                                                                                                  | 2.013+1<br>1.133                                                                                                                          | 1.350+1<br>1.492                                                                                                               | 9.295+0                                                                                                                        | 6.677+0                                                                                                                        | 4.976+0                                                                                                                        | 3.822+0<br>1.676                                                                                                      | 3.009+0<br>1.673                                                                                                       | 2.418+0                                                                                                                | 1.976+0                                                                                                           |
| $E_b = 1224.3 \text{ eV}$                                                                         | $\beta$ $\gamma$                                                                                                            | 0.472<br>2.54-1                                                                                                                          | 6.95—1                                                                                                                                    | 1.492<br>4.45—1                                                                                                                | 1.604<br>1.87-1                                                                                                                | 1.651<br>5.13-2                                                                                                                | 1.671<br>3.45-3                                                                                                                | 1.076                                                                                                                 | 5.36–2                                                                                                                 | 1.665<br>1.18-1                                                                                                        | 1.654<br>1.97—1                                                                                                   |
| 1224.5 CV                                                                                         | δ                                                                                                                           | 1.57-1                                                                                                                                   | 4.24-2                                                                                                                                    | -3.70-3                                                                                                                        | -1.06-2                                                                                                                        | -1.14-2                                                                                                                        | -1.09-2                                                                                                                        | -9.99-3                                                                                                               | -8.79 - 3                                                                                                              | -7.29 - 3                                                                                                              | -5.45-                                                                                                            |
| $4p_{3/2}$                                                                                        | σ                                                                                                                           | 1.005+2                                                                                                                                  | 6.913+1                                                                                                                                   | 3.713+1                                                                                                                        | 2.258+1                                                                                                                        | 1.491+1                                                                                                                        | 1.043+1                                                                                                                        | 7.613+0                                                                                                               | 5.745+0                                                                                                                | 4.451+0                                                                                                                | 3.524+0                                                                                                           |
| $E_b =$                                                                                           | β                                                                                                                           | 0.824                                                                                                                                    | 1.199                                                                                                                                     | 1.484                                                                                                                          | 1.612                                                                                                                          | 1.682                                                                                                                          | 1.724                                                                                                                          | 1.748                                                                                                                 | 1.761                                                                                                                  | 1.767                                                                                                                  | 1.767                                                                                                             |
| 1006.7 eV                                                                                         | γ                                                                                                                           | 3.52-1                                                                                                                                   | 3.85-1                                                                                                                                    | 1.61-1                                                                                                                         | 4.90-3                                                                                                                         | -5.41-2                                                                                                                        | -4.60-2                                                                                                                        | 5.19-3                                                                                                                | 8.40-2                                                                                                                 | 1.80-1                                                                                                                 | 2.88-1                                                                                                            |
|                                                                                                   | δ                                                                                                                           | 7.50-2                                                                                                                                   | 2.35 - 2                                                                                                                                  | 3.10-4                                                                                                                         | 1.21-3                                                                                                                         | 6.25 - 3                                                                                                                       | 1.15-2                                                                                                                         | 1.60-2                                                                                                                | 1.99-2                                                                                                                 | 2.32-2                                                                                                                 | 2.60-2                                                                                                            |
| 4d <sub>3/2</sub>                                                                                 | σ                                                                                                                           | 1.480+2                                                                                                                                  | 9.765+1                                                                                                                                   | 4.580+1                                                                                                                        | 2.434+1                                                                                                                        | 1.423+1                                                                                                                        | 8.939+0                                                                                                                        | 5.927+0                                                                                                               | 4.100+0                                                                                                                | 2.935+0                                                                                                                | 2.161+0                                                                                                           |
| $E_b =$                                                                                           | β                                                                                                                           | 0.677                                                                                                                                    | 1.003                                                                                                                                     | 1.269                                                                                                                          | 1.362                                                                                                                          | 1.391                                                                                                                          | 1.390                                                                                                                          | 1.374                                                                                                                 | 1.348                                                                                                                  | 1.318                                                                                                                  | 1.284                                                                                                             |
| 743.4 eV                                                                                          | γ                                                                                                                           | 1.57-1                                                                                                                                   | 1.26-2                                                                                                                                    | -5.62-2                                                                                                                        | 6.14-2                                                                                                                         | 2.42-1                                                                                                                         | 4.40-1                                                                                                                         | 6.35-1                                                                                                                | 8.20-1                                                                                                                 | 9.90-1                                                                                                                 | 1.15+0                                                                                                            |
|                                                                                                   | δ                                                                                                                           | 3.62-2                                                                                                                                   | 7.70-3                                                                                                                                    | 2.06-2                                                                                                                         | 4.04-2                                                                                                                         | 5.68-2                                                                                                                         | 7.11-2                                                                                                                         | 8.41-2                                                                                                                | 9.63-2                                                                                                                 | 1.08-1                                                                                                                 | 1.18-1                                                                                                            |
| $4d_{5/2}$                                                                                        | σ                                                                                                                           | 2.240+2                                                                                                                                  | 1.425+2                                                                                                                                   | 6.418+1                                                                                                                        | 3.329+1                                                                                                                        | 1.914+1                                                                                                                        | 1.185+1                                                                                                                        | 7.768+0                                                                                                               | 5.319+0                                                                                                                | 3.773+0                                                                                                                | 2.755+0                                                                                                           |
| $E_b = 7.08.3 \text{ eV}$                                                                         | β                                                                                                                           | 0.959                                                                                                                                    | 1.195                                                                                                                                     | 1.351                                                                                                                          | 1.376                                                                                                                          | 1.359                                                                                                                          | 1.325                                                                                                                          | 1.284                                                                                                                 | 1.240                                                                                                                  | 1.195                                                                                                                  | 1.150                                                                                                             |
| 708.2 eV                                                                                          | γ                                                                                                                           | 1.33-1<br>2.47-2                                                                                                                         | -1.98-2<br>7.57-3                                                                                                                         | -3.12-2 $1.89-2$                                                                                                               | 1.29-1<br>3.55-2                                                                                                               | 3.31-1<br>5.16-2                                                                                                               | 5.33-1<br>6.75-2                                                                                                               | 7.25-1<br>8.36-2                                                                                                      | 8.99-1<br>9.97-2                                                                                                       | 1.06+0<br>1.15-1                                                                                                       | 1.19+0<br>1.31-1                                                                                                  |
|                                                                                                   | λ                                                                                                                           |                                                                                                                                          |                                                                                                                                           | 1.03-2                                                                                                                         |                                                                                                                                | 5.152+0                                                                                                                        |                                                                                                                                |                                                                                                                       |                                                                                                                        |                                                                                                                        |                                                                                                                   |
| A.F.                                                                                              | δ                                                                                                                           |                                                                                                                                          |                                                                                                                                           | 2 0E1 · 1                                                                                                                      |                                                                                                                                | つ コンノナロ                                                                                                                        | 2.620+0                                                                                                                        | 1.457+0                                                                                                               | 8.667 - 1                                                                                                              | 5.441 - 1                                                                                                              | 3.568-                                                                                                            |
| $4f_{5/2}$                                                                                        | σ                                                                                                                           | 2.531+2                                                                                                                                  | 1.099+2                                                                                                                                   | 3.051+1<br>1.050                                                                                                               | 1.145+1<br>1.005                                                                                                               |                                                                                                                                |                                                                                                                                | 0.818                                                                                                                 | () 759                                                                                                                 | 0.704                                                                                                                  | () 654                                                                                                            |
| $E_b =$                                                                                           | $\frac{\sigma}{\beta}$                                                                                                      | 2.531+2<br>0.942                                                                                                                         |                                                                                                                                           | 3.051+1<br>1.050<br>4.54-1                                                                                                     | 1.145+1<br>1.005<br>6.92-1                                                                                                     | 0.945<br>8.90-1                                                                                                                | 0.881                                                                                                                          | 0.818<br>1.18+0                                                                                                       | 0.759<br>1.29+0                                                                                                        | 0.704<br>1.37+0                                                                                                        | 0.654<br>1.45+0                                                                                                   |
| $E_b =$                                                                                           | σ                                                                                                                           | 2.531+2                                                                                                                                  | 1.099+2<br>1.028                                                                                                                          | 1.050                                                                                                                          | 1.005                                                                                                                          | 0.945                                                                                                                          |                                                                                                                                |                                                                                                                       |                                                                                                                        |                                                                                                                        | 1.45+0                                                                                                            |
| E <sub>b</sub> = 371.2 eV                                                                         | σ<br>β<br>γ<br>δ                                                                                                            | 2.531+2<br>0.942<br>5.16-2<br>5.67-2                                                                                                     | 1.099+2<br>1.028<br>1.82-1<br>8.22-2                                                                                                      | 1.050<br>4.54-1<br>1.24-1                                                                                                      | 1.005<br>6.92-1<br>1.60-1                                                                                                      | 0.945<br>8.90-1<br>1.95-1                                                                                                      | 0.881<br>1.05+0<br>2.28-1                                                                                                      | 1.18+0<br>2.59-1                                                                                                      | 1.29+0<br>2.88-1                                                                                                       | 1.37+0<br>3.15-1                                                                                                       | 1.45+0<br>3.41-1                                                                                                  |
| $4f_{5/2}$ $E_b = 371.2 \text{ eV}$ $4f_{7/2}$ $E_b = 6$                                          | σ<br>β<br>γ                                                                                                                 | 2.531+2<br>0.942<br>5.16-2                                                                                                               | 1.099+2<br>1.028<br>1.82-1                                                                                                                | 1.050<br>4.54-1                                                                                                                | 1.005<br>6.92-1                                                                                                                | 0.945<br>8.90-1                                                                                                                | 0.881<br>1.05+0                                                                                                                | 1.18+0                                                                                                                | 1.29+0                                                                                                                 | 1.37+0                                                                                                                 | 1.45+0<br>3.41-1                                                                                                  |
| $E_b = 371.2 \text{ eV}$ $4f_{7/2}$ $E_b = $                                                      | σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ                                                                                             | 2.531+2<br>0.942<br>5.16-2<br>5.67-2<br>3.197+2<br>0.964<br>6.14-2                                                                       | 1.099+2<br>1.028<br>1.82-1<br>8.22-2<br>1.380+2<br>1.036<br>2.00-1                                                                        | 1.050<br>4.54-1<br>1.24-1<br>3.798+1<br>1.041<br>4.80-1                                                                        | 1.005<br>6.92-1<br>1.60-1<br>1.416+1<br>0.989<br>7.19-1                                                                        | 0.945<br>8.90-1<br>1.95-1<br>6.332+0<br>0.926<br>9.16-1                                                                        | 0.881<br>1.05+0<br>2.28-1<br>3.203+0<br>0.863<br>1.08+0                                                                        | 1.18+0<br>2.59-1<br>1.772+0<br>0.802<br>1.20+0                                                                        | 1.29+0<br>2.88-1<br>1.049+0<br>0.746<br>1.31+0                                                                         | 1.37+0<br>3.15-1<br>6.558-1<br>0.694<br>1.39+0                                                                         | 1.45+0<br>3.41-1<br>4.283-<br>0.647                                                                               |
| $E_b = 371.2 \text{ eV}$ $4f_{7/2}$ $E_b = $                                                      | σ<br>β<br>γ<br>δ                                                                                                            | 2.531+2<br>0.942<br>5.16-2<br>5.67-2<br>3.197+2<br>0.964                                                                                 | 1.099+2<br>1.028<br>1.82-1<br>8.22-2<br>1.380+2<br>1.036                                                                                  | 1.050<br>4.54-1<br>1.24-1<br>3.798+1<br>1.041                                                                                  | 1.005<br>6.92-1<br>1.60-1<br>1.416+1<br>0.989                                                                                  | 0.945<br>8.90-1<br>1.95-1<br>6.332+0<br>0.926                                                                                  | 0.881<br>1.05+0<br>2.28-1<br>3.203+0<br>0.863                                                                                  | 1.18+0<br>2.59-1<br>1.772+0<br>0.802                                                                                  | 1.29+0<br>2.88-1<br>1.049+0<br>0.746                                                                                   | 1.37+0<br>3.15-1<br>6.558-1<br>0.694                                                                                   | 1.45+0<br>3.41-1<br>4.283-<br>0.647<br>1.46+0                                                                     |
| $E_b = 371.2 \text{ eV}$ $4f_{7/2}$ $E_b = 359.5 \text{ eV}$                                      | σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ                                                                                             | 2.531+2<br>0.942<br>5.16-2<br>5.67-2<br>3.197+2<br>0.964<br>6.14-2                                                                       | 1.099+2<br>1.028<br>1.82-1<br>8.22-2<br>1.380+2<br>1.036<br>2.00-1                                                                        | 1.050<br>4.54-1<br>1.24-1<br>3.798+1<br>1.041<br>4.80-1                                                                        | 1.005<br>6.92-1<br>1.60-1<br>1.416+1<br>0.989<br>7.19-1                                                                        | 0.945<br>8.90-1<br>1.95-1<br>6.332+0<br>0.926<br>9.16-1<br>1.96-1                                                              | 0.881<br>1.05+0<br>2.28-1<br>3.203+0<br>0.863<br>1.08+0                                                                        | 1.18+0<br>2.59-1<br>1.772+0<br>0.802<br>1.20+0<br>2.63-1<br>7.394-1                                                   | 1.29+0<br>2.88-1<br>1.049+0<br>0.746<br>1.31+0                                                                         | 1.37+0<br>3.15-1<br>6.558-1<br>0.694<br>1.39+0                                                                         | 1.45+0<br>3.41-1<br>4.283-<br>0.647<br>1.46+0<br>3.48-1                                                           |
| $E_b = 371.2 \text{ eV}$ $4f_{7/2}$ $E_b = 359.5 \text{ eV}$ $5s_{1/2}$ $E_b = 6$                 | $\sigma$ $\beta$ $\gamma$ $\delta$ $\sigma$ $\beta$ $\gamma$ $\delta$ $\sigma$ $\delta$ $\delta$ $\delta$ $\delta$ $\delta$ | 2.531+2<br>0.942<br>5.16-2<br>5.67-2<br>3.197+2<br>0.964<br>6.14-2<br>5.80-2<br>9.016+0<br>1.655                                         | 1.099+2<br>1.028<br>1.82-1<br>8.22-2<br>1.380+2<br>1.036<br>2.00-1<br>8.28-2<br>5.850+0<br>1.693                                          | 1.050<br>4.54-1<br>1.24-1<br>3.798+1<br>1.041<br>4.80-1<br>1.24-1<br>3.091+0<br>1.732                                          | 1.005<br>6.92-1<br>1.60-1<br>1.416+1<br>0.989<br>7.19-1<br>1.60-1<br>1.932+0<br>1.755                                          | 0.945<br>8.90-1<br>1.95-1<br>6.332+0<br>0.926<br>9.16-1<br>1.96-1<br>1.327+0<br>1.772                                          | 0.881<br>1.05+0<br>2.28-1<br>3.203+0<br>0.863<br>1.08+0<br>2.30-1<br>9.697-1<br>1.786                                          | 1.18+0<br>2.59-1<br>1.772+0<br>0.802<br>1.20+0<br>2.63-1<br>7.394-1<br>1.797                                          | 1.29+0<br>2.88-1<br>1.049+0<br>0.746<br>1.31+0<br>2.93-1<br>5.821-1<br>1.807                                           | 1.37+0<br>3.15-1<br>6.558-1<br>0.694<br>1.39+0<br>3.21-1<br>4.698-1<br>1.816                                           | 1.45+0<br>3.41-1<br>4.283-<br>0.647<br>1.46+0<br>3.48-1<br>3.867-<br>1.823                                        |
| $E_b = 371.2 \text{ eV}$ $4f_{7/2}$                                                               | σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ                                                                                        | 2.531+2<br>0.942<br>5.16-2<br>5.67-2<br>3.197+2<br>0.964<br>6.14-2<br>5.80-2<br>9.016+0<br>1.655<br>6.56-1                               | 1.099+2<br>1.028<br>1.82-1<br>8.22-2<br>1.380+2<br>1.036<br>2.00-1<br>8.28-2<br>5.850+0<br>1.693<br>6.23-1                                | 1.050<br>4.54-1<br>1.24-1<br>3.798+1<br>1.041<br>4.80-1<br>1.24-1<br>3.091+0<br>1.732<br>5.00-1                                | 1.005<br>6.92-1<br>1.60-1<br>1.416+1<br>0.989<br>7.19-1<br>1.60-1<br>1.932+0<br>1.755<br>3.67-1                                | 0.945<br>8.90-1<br>1.95-1<br>6.332+0<br>0.926<br>9.16-1<br>1.96-1<br>1.327+0<br>1.772<br>2.43-1                                | 0.881<br>1.05+0<br>2.28-1<br>3.203+0<br>0.863<br>1.08+0<br>2.30-1<br>9.697-1<br>1.786<br>1.37-1                                | 1.18+0<br>2.59-1<br>1.772+0<br>0.802<br>1.20+0<br>2.63-1<br>7.394-1<br>1.797<br>4.79-2                                | 1.29+0<br>2.88-1<br>1.049+0<br>0.746<br>1.31+0<br>2.93-1<br>5.821-1<br>1.807<br>-2.51-2                                | 1.37+0<br>3.15-1<br>6.558-1<br>0.694<br>1.39+0<br>3.21-1<br>4.698-1<br>1.816<br>-8.36-2                                | 1.45+0<br>3.41-1<br>4.283-<br>0.647<br>1.46+0<br>3.48-1<br>3.867-<br>1.823<br>-1.29-                              |
| $E_b = 371.2 \text{ eV}$ $4f_{7/2}$ $E_b = 359.5 \text{ eV}$ $55s_{1/2}$ $E_b = 309.6 \text{ eV}$ | σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ                                                                    | 2.531+2<br>0.942<br>5.16-2<br>5.67-2<br>3.197+2<br>0.964<br>6.14-2<br>5.80-2<br>9.016+0<br>1.655<br>6.56-1<br>6.53-4                     | 1.099+2<br>1.028<br>1.82-1<br>8.22-2<br>1.380+2<br>1.036<br>2.00-1<br>8.28-2<br>5.850+0<br>1.693<br>6.23-1<br>-6.93-4                     | 1.050<br>4.54-1<br>1.24-1<br>3.798+1<br>1.041<br>4.80-1<br>1.24-1<br>3.091+0<br>1.732<br>5.00-1<br>-2.56-3                     | 1.005<br>6.92-1<br>1.60-1<br>1.416+1<br>0.989<br>7.19-1<br>1.60-1<br>1.932+0<br>1.755<br>3.67-1<br>-3.85-3                     | 0.945<br>8.90-1<br>1.95-1<br>6.332+0<br>0.926<br>9.16-1<br>1.96-1<br>1.327+0<br>1.772<br>2.43-1<br>-4.82-3                     | 0.881<br>1.05+0<br>2.28-1<br>3.203+0<br>0.863<br>1.08+0<br>2.30-1<br>9.697-1<br>1.786<br>1.37-1<br>-5.61-3                     | 1.18+0<br>2.59-1<br>1.772+0<br>0.802<br>1.20+0<br>2.63-1<br>7.394-1<br>1.797<br>4.79-2<br>-6.26-3                     | 1.29+0<br>2.88-1<br>1.049+0<br>0.746<br>1.31+0<br>2.93-1<br>5.821-1<br>1.807<br>-2.51-2<br>-6.83-3                     | 1.37+0<br>3.15-1<br>6.558-1<br>0.694<br>1.39+0<br>3.21-1<br>4.698-1<br>1.816<br>-8.36-2<br>-7.32-3                     | 1.45+0<br>3.41-1<br>4.283-<br>0.647<br>1.46+0<br>3.48-1<br>3.867-<br>1.823<br>-1.29-<br>-7.76-                    |
| $E_b = 371.2 \text{ eV}$ $4f_{7/2}$ $E_b = 359.5 \text{ eV}$ $55s_{1/2}$ $E_b = 309.6 \text{ eV}$ | σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>δ<br>σ<br>β<br>γ<br>δ                                                               | 2.531+2<br>0.942<br>5.16-2<br>5.67-2<br>3.197+2<br>0.964<br>6.14-2<br>5.80-2<br>9.016+0<br>1.655<br>6.56-1<br>6.53-4<br>8.382+0          | 1.099+2<br>1.028<br>1.82-1<br>8.22-2<br>1.380+2<br>1.036<br>2.00-1<br>8.28-2<br>5.850+0<br>1.693<br>6.23-1<br>-6.93-4<br>5.938+0          | 1.050<br>4.54-1<br>1.24-1<br>3.798+1<br>1.041<br>4.80-1<br>1.24-1<br>3.091+0<br>1.732<br>5.00-1<br>-2.56-3<br>3.446+0          | 1.005<br>6.92-1<br>1.60-1<br>1.416+1<br>0.989<br>7.19-1<br>1.60-1<br>1.932+0<br>1.755<br>3.67-1<br>-3.85-3<br>2.246+0          | 0.945<br>8.90-1<br>1.95-1<br>6.332+0<br>0.926<br>9.16-1<br>1.96-1<br>1.327+0<br>1.772<br>2.43-1<br>-4.82-3<br>1.572+0          | 0.881<br>1.05+0<br>2.28-1<br>3.203+0<br>0.863<br>1.08+0<br>2.30-1<br>9.697-1<br>1.786<br>1.37-1<br>-5.61-3<br>1.155+0          | 1.18+0<br>2.59-1<br>1.772+0<br>0.802<br>1.20+0<br>2.63-1<br>7.394-1<br>1.797<br>4.79-2<br>-6.26-3<br>8.796-1          | 1.29+0<br>2.88-1<br>1.049+0<br>0.746<br>1.31+0<br>2.93-1<br>5.821-1<br>1.807<br>-2.51-2<br>-6.83-3<br>6.883-1          | 1.37+0<br>3.15-1<br>6.558-1<br>0.694<br>1.39+0<br>3.21-1<br>4.698-1<br>1.816<br>-8.36-2<br>-7.32-3<br>5.506-1          | 1.45+0<br>3.41-1<br>4.283-<br>0.647<br>1.46+0<br>3.48-1<br>3.867-<br>1.823<br>-1.29-<br>-7.76-<br>4.485-          |
| $E_b = 371.2 \text{ eV}$ $4f_{7/2} = E_b = 359.5 \text{ eV}$ $55s_{1/2} = 309.6 \text{ eV}$       | σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>δ<br>σ<br>β<br>γ<br>δ                                                               | 2.531+2<br>0.942<br>5.16-2<br>5.67-2<br>3.197+2<br>0.964<br>6.14-2<br>5.80-2<br>9.016+0<br>1.655<br>6.56-1<br>6.53-4<br>8.382+0<br>1.360 | 1.099+2<br>1.028<br>1.82-1<br>8.22-2<br>1.380+2<br>1.036<br>2.00-1<br>8.28-2<br>5.850+0<br>1.693<br>6.23-1<br>-6.93-4<br>5.938+0<br>1.517 | 1.050<br>4.54-1<br>1.24-1<br>3.798+1<br>1.041<br>4.80-1<br>1.24-1<br>3.091+0<br>1.732<br>5.00-1<br>-2.56-3<br>3.446+0<br>1.645 | 1.005<br>6.92-1<br>1.60-1<br>1.416+1<br>0.989<br>7.19-1<br>1.60-1<br>1.932+0<br>1.755<br>3.67-1<br>-3.85-3<br>2.246+0<br>1.690 | 0.945<br>8.90-1<br>1.95-1<br>6.332+0<br>0.926<br>9.16-1<br>1.96-1<br>1.327+0<br>1.772<br>2.43-1<br>-4.82-3<br>1.572+0<br>1.706 | 0.881<br>1.05+0<br>2.28-1<br>3.203+0<br>0.863<br>1.08+0<br>2.30-1<br>9.697-1<br>1.786<br>1.37-1<br>-5.61-3<br>1.155+0<br>1.707 | 1.18+0<br>2.59-1<br>1.772+0<br>0.802<br>1.20+0<br>2.63-1<br>7.394-1<br>1.797<br>4.79-2<br>-6.26-3<br>8.796-1<br>1.702 | 1.29+0<br>2.88-1<br>1.049+0<br>0.746<br>1.31+0<br>2.93-1<br>5.821-1<br>1.807<br>-2.51-2<br>-6.83-3<br>6.883-1<br>1.692 | 1.37+0<br>3.15-1<br>6.558-1<br>0.694<br>1.39+0<br>3.21-1<br>4.698-1<br>1.816<br>-8.36-2<br>-7.32-3<br>5.506-1<br>1.679 | 1.45+0<br>3.41-1<br>4.283-<br>0.647<br>1.46+0<br>3.48-1<br>3.867-<br>1.823<br>-1.29-<br>-7.76-<br>4.485-<br>1.664 |
| $E_b = 871.2 \text{ eV}$ $A_{7/2} = E_b = 859.5 \text{ eV}$ $E_b = 809.6 \text{ eV}$              | σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>δ<br>σ<br>β<br>γ<br>δ                                                               | 2.531+2<br>0.942<br>5.16-2<br>5.67-2<br>3.197+2<br>0.964<br>6.14-2<br>5.80-2<br>9.016+0<br>1.655<br>6.56-1<br>6.53-4<br>8.382+0          | 1.099+2<br>1.028<br>1.82-1<br>8.22-2<br>1.380+2<br>1.036<br>2.00-1<br>8.28-2<br>5.850+0<br>1.693<br>6.23-1<br>-6.93-4<br>5.938+0          | 1.050<br>4.54-1<br>1.24-1<br>3.798+1<br>1.041<br>4.80-1<br>1.24-1<br>3.091+0<br>1.732<br>5.00-1<br>-2.56-3<br>3.446+0          | 1.005<br>6.92-1<br>1.60-1<br>1.416+1<br>0.989<br>7.19-1<br>1.60-1<br>1.932+0<br>1.755<br>3.67-1<br>-3.85-3<br>2.246+0          | 0.945<br>8.90-1<br>1.95-1<br>6.332+0<br>0.926<br>9.16-1<br>1.96-1<br>1.327+0<br>1.772<br>2.43-1<br>-4.82-3<br>1.572+0          | 0.881<br>1.05+0<br>2.28-1<br>3.203+0<br>0.863<br>1.08+0<br>2.30-1<br>9.697-1<br>1.786<br>1.37-1<br>-5.61-3<br>1.155+0          | 1.18+0<br>2.59-1<br>1.772+0<br>0.802<br>1.20+0<br>2.63-1<br>7.394-1<br>1.797<br>4.79-2<br>-6.26-3<br>8.796-1          | 1.29+0<br>2.88-1<br>1.049+0<br>0.746<br>1.31+0<br>2.93-1<br>5.821-1<br>1.807<br>-2.51-2<br>-6.83-3<br>6.883-1          | 1.37+0<br>3.15-1<br>6.558-1<br>0.694<br>1.39+0<br>3.21-1<br>4.698-1<br>1.816<br>-8.36-2<br>-7.32-3<br>5.506-1          | 1.45+0<br>3.41-<br>4.283-<br>0.647<br>1.46+0<br>3.48-<br>3.867-<br>1.823<br>-1.29-<br>-7.76-<br>4.485-            |

|                                                                                                                                                                                                                                  | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -5.12-3                                                                                                                                                                                                               | -1.17-2                                                                                                                                                                                                                                                          | -1.35-2                                                                                                                                                                             | -1.26-2                                                                                                                                                                                                                                                           | -1.18-2                                                                                                                                                                                                            | -1.11-2                                                                                                                                                                                                                                                            | -1.02-2                                                                                                                                                                                  | -9.16-3                                                                                                                                                                                                                                                   | -7.77-3                                                                                                                                                                                                                            | -6.04-3                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $5p_{3/2}$                                                                                                                                                                                                                       | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.700+1                                                                                                                                                                                                               | 1.715+1                                                                                                                                                                                                                                                          | 8.627+0                                                                                                                                                                             | 5.118+0                                                                                                                                                                                                                                                           | 3.341+0                                                                                                                                                                                                            | 2.324+0                                                                                                                                                                                                                                                            | 1.691+0                                                                                                                                                                                  | 1.273+0                                                                                                                                                                                                                                                   | 9.848-1                                                                                                                                                                                                                            | 7.788-1                                                                                                                                                                                                                                                                       |
| $E_b = 186.3 \text{ eV}$                                                                                                                                                                                                         | $\beta$ $\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.318<br>3.15-1                                                                                                                                                                                                       | 1.458<br>2.18-1                                                                                                                                                                                                                                                  | 1.609<br>4.69-2                                                                                                                                                                     | 1.688<br>-3.76-2                                                                                                                                                                                                                                                  | 1.733<br>-5.15-2                                                                                                                                                                                                   | 1.759<br>-1.73-2                                                                                                                                                                                                                                                   | 1.774<br>4.88-2                                                                                                                                                                          | 1.781<br>1.36-1                                                                                                                                                                                                                                           | 1.782<br>2.37-1                                                                                                                                                                                                                    | 1.779<br>3.47-1                                                                                                                                                                                                                                                               |
| 100.5 € 1                                                                                                                                                                                                                        | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.56-3                                                                                                                                                                                                                | -3.82 - 3                                                                                                                                                                                                                                                        | -3.26 - 3                                                                                                                                                                           | 1.94-3                                                                                                                                                                                                                                                            | 7.36-3                                                                                                                                                                                                             | 1.21-2                                                                                                                                                                                                                                                             | 1.61-2                                                                                                                                                                                   | 1.94-2                                                                                                                                                                                                                                                    | 2.23-2                                                                                                                                                                                                                             | 2.48-2                                                                                                                                                                                                                                                                        |
| 5d <sub>3/2</sub>                                                                                                                                                                                                                | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.814+1                                                                                                                                                                                                               | 1.742+1                                                                                                                                                                                                                                                          | 7.911+0                                                                                                                                                                             | 4.200+0                                                                                                                                                                                                                                                           | 2.469+0                                                                                                                                                                                                            | 1.560+0                                                                                                                                                                                                                                                            | 1.040+0                                                                                                                                                                                  | 7.226-1                                                                                                                                                                                                                                                   | 5.192-1                                                                                                                                                                                                                            | 3.836-1                                                                                                                                                                                                                                                                       |
| $E_b = 97.3 \text{ eV}$                                                                                                                                                                                                          | $\beta$ $\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.089<br>4.84-2                                                                                                                                                                                                       | 1.245<br>-3.04-2                                                                                                                                                                                                                                                 | 1.382<br>-4.96-3                                                                                                                                                                    | 1.425<br>1.37-1                                                                                                                                                                                                                                                   | 1.430<br>3.19-1                                                                                                                                                                                                    | 1.415<br>5.11-1                                                                                                                                                                                                                                                    | 1.390<br>6.99-1                                                                                                                                                                          | 1.359<br>8.76-1                                                                                                                                                                                                                                           | 1.324<br>1.04+0                                                                                                                                                                                                                    | 1.288<br>1.19+0                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                  | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.94-3                                                                                                                                                                                                               | 3.98-3                                                                                                                                                                                                                                                           | 2.31-2                                                                                                                                                                              | 4.02-2                                                                                                                                                                                                                                                            | 5.47-2                                                                                                                                                                                                             | 6.79-2                                                                                                                                                                                                                                                             | 8.03-2                                                                                                                                                                                   | 9.20-2                                                                                                                                                                                                                                                    | 1.03-1                                                                                                                                                                                                                             | 1.14-1                                                                                                                                                                                                                                                                        |
| 5d <sub>5/2</sub>                                                                                                                                                                                                                | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.127+1<br>1.291                                                                                                                                                                                                      | 2.489+1<br>1.379                                                                                                                                                                                                                                                 | 1.094+1<br>1.424                                                                                                                                                                    | 5.687+0<br>1.409                                                                                                                                                                                                                                                  | 3.291+0<br>1.374                                                                                                                                                                                                   | 2.052+0<br>1.330                                                                                                                                                                                                                                                   | 1.352+0<br>1.284                                                                                                                                                                         | 9.303-1<br>1.237                                                                                                                                                                                                                                          | 6.625-1<br>1.189                                                                                                                                                                                                                   | 4.854-1<br>1.143                                                                                                                                                                                                                                                              |
| $E_b = 89.2 \text{ eV}$                                                                                                                                                                                                          | $\beta$ $\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.291                                                                                                                                                                                                                 | -4.24-2                                                                                                                                                                                                                                                          | 3.31-2                                                                                                                                                                              | 2.06-1                                                                                                                                                                                                                                                            | 4.01-1                                                                                                                                                                                                             | 5.95–1                                                                                                                                                                                                                                                             | 7.77—1                                                                                                                                                                                   | 9.43-1                                                                                                                                                                                                                                                    | 1.189                                                                                                                                                                                                                              | 1.143                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                  | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.15-4                                                                                                                                                                                                                | 5.39-3                                                                                                                                                                                                                                                           | 2.03-2                                                                                                                                                                              | 3.54-2                                                                                                                                                                                                                                                            | 5.05-2                                                                                                                                                                                                             | 6.60-2                                                                                                                                                                                                                                                             | 8.19-2                                                                                                                                                                                   | 9.77-2                                                                                                                                                                                                                                                    | 1.13-1                                                                                                                                                                                                                             | 1.28-1                                                                                                                                                                                                                                                                        |
| 5f <sub>5/2</sub>                                                                                                                                                                                                                | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.559+1                                                                                                                                                                                                               | 7.137+0                                                                                                                                                                                                                                                          | 2.112+0                                                                                                                                                                             | 8.240-1                                                                                                                                                                                                                                                           | 3.802-1                                                                                                                                                                                                            | 1.967-1                                                                                                                                                                                                                                                            | 1.107-1                                                                                                                                                                                  | 6.640-2                                                                                                                                                                                                                                                   | 4.196-2                                                                                                                                                                                                                            | 2.765-2                                                                                                                                                                                                                                                                       |
| $E_b = 6.0 \text{ eV}$                                                                                                                                                                                                           | $\beta$ $\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.075<br>1.06-1                                                                                                                                                                                                       | 1.104<br>2.36-1                                                                                                                                                                                                                                                  | 1.074<br>4.90-1                                                                                                                                                                     | 1.012<br>7.12-1                                                                                                                                                                                                                                                   | 0.945<br>9.00-1                                                                                                                                                                                                    | 0.879<br>1.06+0                                                                                                                                                                                                                                                    | 0.815<br>1.19+0                                                                                                                                                                          | 0.756<br>1.29+0                                                                                                                                                                                                                                           | 0.701<br>1.38+0                                                                                                                                                                                                                    | 0.650<br>1.45+0                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                  | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.47-2                                                                                                                                                                                                                | 7.79-2                                                                                                                                                                                                                                                           | 1.18-1                                                                                                                                                                              | 1.55-1                                                                                                                                                                                                                                                            | 1.90-1                                                                                                                                                                                                             | 2.24-1                                                                                                                                                                                                                                                             | 2.55-1                                                                                                                                                                                   | 2.85-1                                                                                                                                                                                                                                                    | 3.13-1                                                                                                                                                                                                                             | 3.39-1                                                                                                                                                                                                                                                                        |
| 6s <sub>1/2</sub>                                                                                                                                                                                                                | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.894+0                                                                                                                                                                                                               | 1.204+0                                                                                                                                                                                                                                                          | 6.225-1                                                                                                                                                                             | 3.847-1                                                                                                                                                                                                                                                           | 2.627-1                                                                                                                                                                                                            | 1.912-1                                                                                                                                                                                                                                                            | 1.454-1                                                                                                                                                                                  | 1.143-1                                                                                                                                                                                                                                                   | 9.207-2                                                                                                                                                                                                                            | 7.569-2                                                                                                                                                                                                                                                                       |
| $E_b = 46.7 \text{ eV}$                                                                                                                                                                                                          | $\beta$ $\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.675<br>6.02-1                                                                                                                                                                                                       | 1.706<br>5.69-1                                                                                                                                                                                                                                                  | 1.740<br>4.54-1                                                                                                                                                                     | 1.761<br>3.28-1                                                                                                                                                                                                                                                   | 1.776<br>2.13-1                                                                                                                                                                                                    | 1.789<br>1.12-1                                                                                                                                                                                                                                                    | 1.800<br>2.85-2                                                                                                                                                                          | 1.810 $-4.01-2$                                                                                                                                                                                                                                           | 1.818<br>-9.48-2                                                                                                                                                                                                                   | 1.826<br>1.371                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                  | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.61-5                                                                                                                                                                                                                | -1.13-3                                                                                                                                                                                                                                                          | -2.79-3                                                                                                                                                                             | -3.99-3                                                                                                                                                                                                                                                           | -4.91-3                                                                                                                                                                                                            | -5.66-3                                                                                                                                                                                                                                                            | -6.28-3                                                                                                                                                                                  | -6.83-3                                                                                                                                                                                                                                                   | -7.31-3                                                                                                                                                                                                                            | -7.73-3                                                                                                                                                                                                                                                                       |
| 6p <sub>1/2</sub>                                                                                                                                                                                                                | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.529+0<br>1.433                                                                                                                                                                                                      | 1.056+0<br>1.562                                                                                                                                                                                                                                                 | 5.982-1<br>1.668                                                                                                                                                                    | 3.857-1<br>1.704                                                                                                                                                                                                                                                  | 2.684-1<br>1.715                                                                                                                                                                                                   | 1.966-1<br>1.714                                                                                                                                                                                                                                                   | 1.493-1<br>1.706                                                                                                                                                                         | 1.167-1<br>1.695                                                                                                                                                                                                                                          | 9.323-2<br>1.681                                                                                                                                                                                                                   | 7.589-2<br>1.665                                                                                                                                                                                                                                                              |
| $E_b = 28.1 \text{ eV}$                                                                                                                                                                                                          | $\beta$ $\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.31–1                                                                                                                                                                                                                | 4.07-1                                                                                                                                                                                                                                                           | 1.79-1                                                                                                                                                                              | 4.85-2                                                                                                                                                                                                                                                            | -1.57-3                                                                                                                                                                                                            | 1.714                                                                                                                                                                                                                                                              | 4.00-2                                                                                                                                                                                   | 1.095                                                                                                                                                                                                                                                     | 1.76-1                                                                                                                                                                                                                             | 2.60-1                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                  | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.15-2                                                                                                                                                                                                               | -1.43-2                                                                                                                                                                                                                                                          | -1.39-2                                                                                                                                                                             | -1.27-2                                                                                                                                                                                                                                                           | -1.18-2                                                                                                                                                                                                            | -1.11-2                                                                                                                                                                                                                                                            | -1.03-2                                                                                                                                                                                  | -9.27 - 3                                                                                                                                                                                                                                                 | -7.90-3                                                                                                                                                                                                                            | -6.17-3                                                                                                                                                                                                                                                                       |
| $6p_{3/2}$                                                                                                                                                                                                                       | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.275+0                                                                                                                                                                                                               | 2.682+0                                                                                                                                                                                                                                                          | 1.332+0                                                                                                                                                                             | 7.859-1                                                                                                                                                                                                                                                           | 5.116-1                                                                                                                                                                                                            | 3.551-1                                                                                                                                                                                                                                                            | 2.581-1                                                                                                                                                                                  | 1.941-1                                                                                                                                                                                                                                                   | 1.501-1                                                                                                                                                                                                                            | 1.186-1                                                                                                                                                                                                                                                                       |
| $E_b = 18.9 \text{ eV}$                                                                                                                                                                                                          | $\beta$ $\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.368<br>2.89-1                                                                                                                                                                                                       | 1.491<br>1.92-1                                                                                                                                                                                                                                                  | 1.628<br>3.30-2                                                                                                                                                                     | 1.699<br>-4.19-2                                                                                                                                                                                                                                                  | 1.741<br>-4.95-2                                                                                                                                                                                                   | 1.765<br>-1.13-2                                                                                                                                                                                                                                                   | 1.779<br>5.72-2                                                                                                                                                                          | 1.784<br>1.45-1                                                                                                                                                                                                                                           | 1.784<br>2.46-1                                                                                                                                                                                                                    | 1.781<br>3.55-1                                                                                                                                                                                                                                                               |
| 10.0 0 1                                                                                                                                                                                                                         | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.88 - 3                                                                                                                                                                                                             | -5.62-3                                                                                                                                                                                                                                                          | -3.35 - 3                                                                                                                                                                           | 2.15-3                                                                                                                                                                                                                                                            | 7.54-3                                                                                                                                                                                                             | 1.22-2                                                                                                                                                                                                                                                             | 1.60-2                                                                                                                                                                                   | 1.92-2                                                                                                                                                                                                                                                    | 2.20-2                                                                                                                                                                                                                             | 2.44-2                                                                                                                                                                                                                                                                        |
| 6d <sub>3/2</sub>                                                                                                                                                                                                                | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.928+0                                                                                                                                                                                                               | 1.186+0                                                                                                                                                                                                                                                          | 5.362-1                                                                                                                                                                             | 2.844-1                                                                                                                                                                                                                                                           | 1.672-1                                                                                                                                                                                                            | 1.056-1                                                                                                                                                                                                                                                            | 7.037-2                                                                                                                                                                                  | 4.890-2                                                                                                                                                                                                                                                   | 3.514-2                                                                                                                                                                                                                            | 2.596-2                                                                                                                                                                                                                                                                       |
| $E_b = 6.0 \text{ eV}$                                                                                                                                                                                                           | $\beta$ $\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.127<br>4.20-2                                                                                                                                                                                                       | 1.272<br>-3.08-2                                                                                                                                                                                                                                                 | 1.396<br>7.08-4                                                                                                                                                                     | 1.433<br>1.46-1                                                                                                                                                                                                                                                   | 1.435<br>3.30-1                                                                                                                                                                                                    | 1.418<br>5.22-1                                                                                                                                                                                                                                                    | 1.392<br>7.06-1                                                                                                                                                                          | 1.360<br>8.79-1                                                                                                                                                                                                                                           | 1.326<br>1.04+0                                                                                                                                                                                                                    | 1.290<br>1.19+0                                                                                                                                                                                                                                                               |
| 0.0 0.                                                                                                                                                                                                                           | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -3.29-3                                                                                                                                                                                                               | 3.87-3                                                                                                                                                                                                                                                           | 2.31-2                                                                                                                                                                              | 4.02-2                                                                                                                                                                                                                                                            | 5.48-2                                                                                                                                                                                                             | 6.76-2                                                                                                                                                                                                                                                             | 7.92-2                                                                                                                                                                                   | 9.03-2                                                                                                                                                                                                                                                    | 1.01-1                                                                                                                                                                                                                             | 1.12-1                                                                                                                                                                                                                                                                        |
| $7s_{1/2}$                                                                                                                                                                                                                       | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.777-1                                                                                                                                                                                                               | 1.125-1                                                                                                                                                                                                                                                          | 5.791-2                                                                                                                                                                             | 3.570-2                                                                                                                                                                                                                                                           | 2.435-2                                                                                                                                                                                                            | 1.771-2                                                                                                                                                                                                                                                            | 1.347-2                                                                                                                                                                                  | 1.058-2                                                                                                                                                                                                                                                   | 8.517-3                                                                                                                                                                                                                            | 7.000-3                                                                                                                                                                                                                                                                       |
| $E_b = 6.0 \text{ eV}$                                                                                                                                                                                                           | $\beta$ $\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.677<br>5.97-1                                                                                                                                                                                                       | 1.707<br>5.64-1                                                                                                                                                                                                                                                  | 1.741<br>4.49-1                                                                                                                                                                     | 1.762<br>3.24-1                                                                                                                                                                                                                                                   | 1.777<br>2.10-1                                                                                                                                                                                                    | 1.789<br>1.10-1                                                                                                                                                                                                                                                    | 1.799<br>2.65-2                                                                                                                                                                          | 1.808<br>-4.27-2                                                                                                                                                                                                                                          | 1.816<br>-9.78-2                                                                                                                                                                                                                   | 1.825<br>1.40 1                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                  | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -5.43 - 5                                                                                                                                                                                                             | -1.18 - 3                                                                                                                                                                                                                                                        | -2.82 - 3                                                                                                                                                                           | -4.00 - 3                                                                                                                                                                                                                                                         | -4.91 - 3                                                                                                                                                                                                          | -5.67 - 3                                                                                                                                                                                                                                                          | -6.32 - 3                                                                                                                                                                                | -6.91 - 3                                                                                                                                                                                                                                                 | -7.38 - 3                                                                                                                                                                                                                          | -7.82 - 3                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                    | 7.02                                                                                                                                                                                                                                                                          |
| Z= 92, U : [Ri                                                                                                                                                                                                                   | n]5f <sup>3</sup> <sub>5/2</sub> 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6d <sub>3/2</sub> 7s <sub>1/2</sub>                                                                                                                                                                                   |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                    | 7.02                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                  | n]5f <sup>3</sup> <sub>5/2</sub> 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | k (eV)                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                               |
| Shell                                                                                                                                                                                                                            | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | k (eV)<br>1500                                                                                                                                                                                                        | 2000                                                                                                                                                                                                                                                             | 3000                                                                                                                                                                                | 4000                                                                                                                                                                                                                                                              | 5000                                                                                                                                                                                                               | 6000                                                                                                                                                                                                                                                               | 7000                                                                                                                                                                                     | 8000                                                                                                                                                                                                                                                      | 9000                                                                                                                                                                                                                               | 10000                                                                                                                                                                                                                                                                         |
| Shell<br>4s <sub>1/2</sub>                                                                                                                                                                                                       | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | k (eV)<br>1500<br>2.438+1                                                                                                                                                                                             | 2000<br>1.869+1                                                                                                                                                                                                                                                  | 1.115+1                                                                                                                                                                             | 4000<br>7.335+0                                                                                                                                                                                                                                                   | 5.179+0                                                                                                                                                                                                            | 6000<br>3.847+0                                                                                                                                                                                                                                                    | 7000<br>2.967+0                                                                                                                                                                          | 2.356+0                                                                                                                                                                                                                                                   | 9000                                                                                                                                                                                                                               | 10000<br>1.584+0                                                                                                                                                                                                                                                              |
| Shell                                                                                                                                                                                                                            | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | k (eV)<br>1500                                                                                                                                                                                                        | 2000<br>1.869+1<br>1.572<br>9.65-1                                                                                                                                                                                                                               |                                                                                                                                                                                     | 4000<br>7.335+0<br>1.707<br>6.15-1                                                                                                                                                                                                                                | 5.179+0<br>1.732<br>4.47-1                                                                                                                                                                                         | 6000                                                                                                                                                                                                                                                               | 7000                                                                                                                                                                                     |                                                                                                                                                                                                                                                           | 9000                                                                                                                                                                                                                               | 10000                                                                                                                                                                                                                                                                         |
| Shell $4s_{1/2}$ $E_b = 1440.8 \text{ eV}$                                                                                                                                                                                       | $\frac{\sigma}{\beta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | k (eV)<br>1500<br>2.438+1<br>1.444<br>9.57-1<br>1.05-2                                                                                                                                                                | 2000<br>1.869+1<br>1.572<br>9.65-1<br>3.73-3                                                                                                                                                                                                                     | 1.115+1<br>1.666<br>8.01-1<br>-7.35-4                                                                                                                                               | 4000<br>7.335+0<br>1.707<br>6.15-1<br>-2.97-3                                                                                                                                                                                                                     | 5.179+0<br>1.732<br>4.47-1<br>-4.45-3                                                                                                                                                                              | 6000<br>3.847+0<br>1.751<br>3.02-1<br>-5.53-3                                                                                                                                                                                                                      | 7000<br>2.967+0<br>1.767<br>1.81-1<br>-6.38-3                                                                                                                                            | 2.356+0<br>1.780<br>8.15-2<br>-7.06-3                                                                                                                                                                                                                     | 9000<br>1.914+0<br>1.791<br>1.09-3<br>-7.64-3                                                                                                                                                                                      | 10000<br>1.584+0<br>1.801<br>-6.33-2<br>-8.16-3                                                                                                                                                                                                                               |
| Shell $4s_{1/2}$ $E_b = 1440.8 \text{ eV}$                                                                                                                                                                                       | σ<br>β<br>γ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | k (eV)<br>1500<br>2.438+1<br>1.444<br>9.57-1<br>1.05-2<br>2.287+1                                                                                                                                                     | 2000<br>1.869+1<br>1.572<br>9.65-1<br>3.73-3<br>1.976+1                                                                                                                                                                                                          | 1.115+1<br>1.666<br>8.01-1<br>-7.35-4<br>1.348+1                                                                                                                                    | 4000<br>7.335+0<br>1.707<br>6.15-1<br>-2.97-3<br>9.367+0                                                                                                                                                                                                          | 5.179+0<br>1.732<br>4.47-1<br>-4.45-3<br>6.771+0                                                                                                                                                                   | 6000<br>3.847+0<br>1.751<br>3.02-1<br>-5.53-3<br>5.070+0                                                                                                                                                                                                           | 7000<br>2.967+0<br>1.767<br>1.81-1<br>-6.38-3<br>3.909+0                                                                                                                                 | 2.356+0<br>1.780<br>8.15-2<br>-7.06-3<br>3.087+0                                                                                                                                                                                                          | 9000<br>1.914+0<br>1.791<br>1.09-3<br>-7.64-3<br>2.486+0                                                                                                                                                                           | 10000<br>1.584+0<br>1.801<br>-6.33-2<br>-8.16-3<br>2.037+0                                                                                                                                                                                                                    |
| Shell $4s_{1/2}$ $E_b = 1440.8 \text{ eV}$                                                                                                                                                                                       | σ<br>β<br>γ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | k (eV)<br>1500<br>2.438+1<br>1.444<br>9.57-1<br>1.05-2                                                                                                                                                                | 2000<br>1.869+1<br>1.572<br>9.65-1<br>3.73-3                                                                                                                                                                                                                     | 1.115+1<br>1.666<br>8.01-1<br>-7.35-4                                                                                                                                               | 4000<br>7.335+0<br>1.707<br>6.15-1<br>-2.97-3                                                                                                                                                                                                                     | 5.179+0<br>1.732<br>4.47-1<br>-4.45-3                                                                                                                                                                              | 6000<br>3.847+0<br>1.751<br>3.02-1<br>-5.53-3                                                                                                                                                                                                                      | 7000<br>2.967+0<br>1.767<br>1.81-1<br>-6.38-3                                                                                                                                            | 2.356+0<br>1.780<br>8.15-2<br>-7.06-3                                                                                                                                                                                                                     | 9000<br>1.914+0<br>1.791<br>1.09-3<br>-7.64-3                                                                                                                                                                                      | 10000<br>1.584+0<br>1.801<br>-6.33-2<br>-8.16-3                                                                                                                                                                                                                               |
| Shell $4s_{1/2}$ $E_b = 1440.8 \text{ eV}$ $4p_{1/2}$ $E_b = 1490.8 \text{ eV}$                                                                                                                                                  | σ<br>β<br>γ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | k (eV)<br>1500<br>2.438+1<br>1.444<br>9.57-1<br>1.05-2<br>2.287+1<br>0.332<br>1.26-1<br>1.84-1                                                                                                                        | 2000<br>1.869+1<br>1.572<br>9.65-1<br>3.73-3<br>1.976+1<br>1.075<br>7.04-1<br>5.04-2                                                                                                                                                                             | 1.115+1<br>1.666<br>8.01-1<br>-7.35-4<br>1.348+1<br>1.469<br>4.88-1<br>-3.05-3                                                                                                      | 4000<br>7.335+0<br>1.707<br>6.15-1<br>-2.97-3<br>9.367+0<br>1.592<br>2.19-1<br>-1.11-2                                                                                                                                                                            | 5.179+0<br>1.732<br>4.47-1<br>-4.45-3<br>6.771+0<br>1.644<br>6.89-2<br>-1.21-2                                                                                                                                     | 6000<br>3.847+0<br>1.751<br>3.02-1<br>-5.53-3<br>5.070+0<br>1.667<br>9.21-3<br>-1.16-2                                                                                                                                                                             | 7000<br>2.967+0<br>1.767<br>1.81-1<br>-6.38-3<br>3.909+0<br>1.675<br>7.44-3<br>-1.07-2                                                                                                   | 2.356+0<br>1.780<br>8.15-2<br>-7.06-3<br>3.087+0<br>1.674<br>4.23-2<br>-9.53-3                                                                                                                                                                            | 9000<br>1.914+0<br>1.791<br>1.09-3<br>-7.64-3<br>2.486+0<br>1.667<br>1.01-1<br>-8.07-3                                                                                                                                             | 10000<br>1.584+0<br>1.801<br>-6.33-2<br>-8.16-3<br>2.037+0<br>1.657<br>1.74-1<br>-6.31-3                                                                                                                                                                                      |
| Shell $4s_{1/2}$ $E_b = 1440.8 \text{ eV}$ $4p_{1/2}$ $E_b = 1271.8 \text{ eV}$ $4p_{3/2}$                                                                                                                                       | $\sigma$ $\beta$ $\gamma$ $\delta$ $\sigma$ $\beta$ $\gamma$ $\delta$ $\sigma$ $\delta$ $\sigma$ $\delta$ $\sigma$ $\sigma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | k (eV)<br>1500<br>2.438+1<br>1.444<br>9.57-1<br>1.05-2<br>2.287+1<br>0.332<br>1.26-1<br>1.84-1<br>1.021+2                                                                                                             | 2000<br>1.869+1<br>1.572<br>9.65-1<br>3.73-3<br>1.976+1<br>1.075<br>7.04-1<br>5.04-2<br>7.052+1                                                                                                                                                                  | 1.115+1<br>1.666<br>8.01-1<br>-7.35-4<br>1.348+1<br>1.469<br>4.88-1<br>-3.05-3<br>3.807+1                                                                                           | 4000<br>7.335+0<br>1.707<br>6.15-1<br>-2.97-3<br>9.367+0<br>1.592<br>2.19-1<br>-1.11-2<br>2.323+1                                                                                                                                                                 | 5.179+0<br>1.732<br>4.47-1<br>-4.45-3<br>6.771+0<br>1.644<br>6.89-2<br>-1.21-2<br>1.538+1                                                                                                                          | 6000<br>3.847+0<br>1.751<br>3.02-1<br>-5.53-3<br>5.070+0<br>1.667<br>9.21-3<br>-1.16-2<br>1.078+1                                                                                                                                                                  | 7000<br>2.967+0<br>1.767<br>1.81-1<br>-6.38-3<br>3.909+0<br>1.675<br>7.44-3<br>-1.07-2<br>7.882+0                                                                                        | 2.356+0<br>1.780<br>8.15-2<br>-7.06-3<br>3.087+0<br>1.674<br>4.23-2<br>-9.53-3<br>5.956+0                                                                                                                                                                 | 9000<br>1.914+0<br>1.791<br>1.09-3<br>-7.64-3<br>2.486+0<br>1.667<br>1.01-1<br>-8.07-3<br>4.621+0                                                                                                                                  | 10000<br>1.584+0<br>1.801<br>-6.33-2<br>-8.16-3<br>2.037+0<br>1.657<br>1.74-1<br>-6.31-3<br>3.662+0                                                                                                                                                                           |
| Shell $4s_{1/2}$ $E_b = 1440.8 \text{ eV}$ $4p_{1/2}$ $E_b = 1271.8 \text{ eV}$                                                                                                                                                  | $\sigma$ $\beta$ $\gamma$ $\delta$ $\sigma$ $\beta$ $\gamma$ $\delta$ $\sigma$ $\delta$ $\delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | k (eV)<br>1500<br>2.438+1<br>1.444<br>9.57-1<br>1.05-2<br>2.287+1<br>0.332<br>1.26-1<br>1.84-1                                                                                                                        | 2000<br>1.869+1<br>1.572<br>9.65-1<br>3.73-3<br>1.976+1<br>1.075<br>7.04-1<br>5.04-2                                                                                                                                                                             | 1.115+1<br>1.666<br>8.01-1<br>-7.35-4<br>1.348+1<br>1.469<br>4.88-1<br>-3.05-3                                                                                                      | 4000<br>7.335+0<br>1.707<br>6.15-1<br>-2.97-3<br>9.367+0<br>1.592<br>2.19-1<br>-1.11-2                                                                                                                                                                            | 5.179+0<br>1.732<br>4.47-1<br>-4.45-3<br>6.771+0<br>1.644<br>6.89-2<br>-1.21-2                                                                                                                                     | 6000<br>3.847+0<br>1.751<br>3.02-1<br>-5.53-3<br>5.070+0<br>1.667<br>9.21-3<br>-1.16-2                                                                                                                                                                             | 7000<br>2.967+0<br>1.767<br>1.81-1<br>-6.38-3<br>3.909+0<br>1.675<br>7.44-3<br>-1.07-2                                                                                                   | 2.356+0<br>1.780<br>8.15-2<br>-7.06-3<br>3.087+0<br>1.674<br>4.23-2<br>-9.53-3                                                                                                                                                                            | 9000<br>1.914+0<br>1.791<br>1.09-3<br>-7.64-3<br>2.486+0<br>1.667<br>1.01-1<br>-8.07-3                                                                                                                                             | 10000<br>1.584+0<br>1.801<br>-6.33-2<br>-8.16-3<br>2.037+0<br>1.657<br>1.74-1<br>-6.31-3                                                                                                                                                                                      |
| Shell $4s_{1/2}$ $E_b = 1440.8 \text{ eV}$ $4p_{1/2}$ $E_b = 1271.8 \text{ eV}$ $4p_{3/2}$ $E_b = 1280.8 \text{ eV}$                                                                                                             | $\sigma$ $\beta$ $\gamma$ $\delta$ $\sigma$ $\beta$ $\gamma$ $\delta$ $\sigma$ $\delta$ $\sigma$ $\delta$ $\sigma$ $\sigma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | k (eV)<br>1500<br>2.438+1<br>1.444<br>9.57-1<br>1.05-2<br>2.287+1<br>0.332<br>1.26-1<br>1.84-1<br>1.021+2<br>0.751                                                                                                    | 2000<br>1.869+1<br>1.572<br>9.65-1<br>3.73-3<br>1.976+1<br>1.075<br>7.04-1<br>5.04-2<br>7.052+1<br>1.159                                                                                                                                                         | 1.115+1<br>1.666<br>8.01-1<br>-7.35-4<br>1.348+1<br>1.469<br>4.88-1<br>-3.05-3<br>3.807+1<br>1.460                                                                                  | 4000<br>7.335+0<br>1.707<br>6.15-1<br>-2.97-3<br>9.367+0<br>1.592<br>2.19-1<br>-1.11-2<br>2.323+1<br>1.595                                                                                                                                                        | 5.179+0<br>1.732<br>4.47-1<br>-4.45-3<br>6.771+0<br>1.644<br>6.89-2<br>-1.21-2<br>1.538+1<br>1.670                                                                                                                 | 6000<br>3.847+0<br>1.751<br>3.02-1<br>-5.53-3<br>5.070+0<br>1.667<br>9.21-3<br>-1.16-2<br>1.078+1<br>1.715                                                                                                                                                         | 7000<br>2.967+0<br>1.767<br>1.81-1<br>-6.38-3<br>3.909+0<br>1.675<br>7.44-3<br>-1.07-2<br>7.882+0<br>1.743                                                                               | 2.356+0<br>1.780<br>8.15-2<br>-7.06-3<br>3.087+0<br>1.674<br>4.23-2<br>-9.53-3<br>5.956+0<br>1.758                                                                                                                                                        | 9000<br>1.914+0<br>1.791<br>1.09-3<br>-7.64-3<br>2.486+0<br>1.667<br>1.01-1<br>-8.07-3<br>4.621+0<br>1.766                                                                                                                         | 10000<br>1.584+0<br>1.801<br>-6.33-2<br>-8.16-3<br>2.037+0<br>1.657<br>1.74-1<br>-6.31-3<br>3.662+0<br>1.768                                                                                                                                                                  |
| Shell $4s_{1/2}$ $E_b = 1440.8 \text{ eV}$ $4p_{1/2}$ $E_b = 1271.8 \text{ eV}$ $4p_{3/2}$ $E_b = 1044.9 \text{ eV}$ $4d_{3/2}$                                                                                                  | $\sigma$ $\beta$ $\gamma$ $\delta$ $\sigma$ $\beta$ $\gamma$ $\delta$ $\sigma$ $\delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | k (eV)<br>1500<br>2.438+1<br>1.444<br>9.57-1<br>1.05-2<br>2.287+1<br>0.332<br>1.26-1<br>1.84-1<br>1.021+2<br>0.751<br>3.28-1<br>8.55-2<br>1.507+2                                                                     | 2000<br>1.869+1<br>1.572<br>9.65-1<br>3.73-3<br>1.976+1<br>1.075<br>7.04-1<br>5.04-2<br>7.052+1<br>1.159<br>3.97-1<br>2.74-2<br>1.005+2                                                                                                                          | 1.115+1<br>1.666<br>8.01-1<br>-7.35-4<br>1.348+1<br>1.469<br>4.88-1<br>-3.05-3<br>3.807+1<br>1.460<br>1.80-1<br>6.25-4                                                              | 4000<br>7.335+0<br>1.707<br>6.15-1<br>-2.97-3<br>9.367+0<br>1.592<br>2.19-1<br>-1.11-2<br>2.323+1<br>1.595<br>1.71-2<br>7.23-4<br>2.547+1                                                                                                                         | 5.179+0<br>1.732<br>4.47-1<br>-4.45-3<br>6.771+0<br>1.644<br>6.89-2<br>-1.21-2<br>1.538+1<br>1.670<br>-5.12-2<br>5.71-3<br>1.496+1                                                                                 | 6000<br>3.847+0<br>1.751<br>3.02-1<br>-5.53-3<br>5.070+0<br>1.667<br>9.21-3<br>-1.16-2<br>1.078+1<br>1.715<br>-5.13-2<br>1.11-2<br>9.426+0                                                                                                                         | 7000<br>2.967+0<br>1.767<br>1.81-1<br>-6.38-3<br>3.909+0<br>1.675<br>7.44-3<br>-1.07-2<br>7.882+0<br>1.743<br>-7.09-3<br>1.59-2<br>6.266+0                                               | 2.356+0<br>1.780<br>8.15-2<br>-7.06-3<br>3.087+0<br>1.674<br>4.23-2<br>-9.53-3<br>5.956+0<br>1.758<br>6.57-2<br>1.99-2<br>4.345+0                                                                                                                         | 9000<br>1.914+0<br>1.791<br>1.09-3<br>-7.64-3<br>2.486+0<br>1.667<br>1.01-1<br>-8.07-3<br>4.621+0<br>1.766<br>1.57-1<br>2.34-2<br>3.117+0                                                                                          | 10000<br>1.584+0<br>1.801<br>-6.33-2<br>-8.16-3<br>2.037+0<br>1.657<br>1.74-1<br>-6.31-3<br>3.662+0<br>1.768<br>2.60-1<br>2.63-2<br>2.299+0                                                                                                                                   |
| Shell $4s_{1/2}$ $E_b = 1440.8 \text{ eV}$ $4p_{1/2}$ $E_b = 1271.8 \text{ eV}$ $4p_{3/2}$ $E_b = 1044.9 \text{ eV}$ $4d_{3/2}$ $E_b = 1046.9 \text{ eV}$                                                                        | $\sigma$ $\beta$ $\gamma$ $\delta$ $\sigma$ $\beta$ $\gamma$ $\delta$ $\sigma$ $\delta$ $\sigma$ $\delta$ $\sigma$ $\delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | k (eV) 1500 2.438+1 1.444 9.57-1 1.05-2 2.287+1 0.332 1.26-1 1.84-1 1.021+2 0.751 3.28-1 8.55-2 1.507+2 0.621                                                                                                         | 2000<br>1.869+1<br>1.572<br>9.65-1<br>3.73-3<br>1.976+1<br>1.075<br>7.04-1<br>5.04-2<br>7.052+1<br>1.159<br>3.97-1<br>2.74-2<br>1.005+2<br>0.968                                                                                                                 | 1.115+1<br>1.666<br>8.01-1<br>-7.35-4<br>1.348+1<br>1.469<br>4.88-1<br>-3.05-3<br>3.807+1<br>1.460<br>1.80-1<br>6.25-4<br>4.763+1<br>1.252                                          | 4000<br>7.335+0<br>1.707<br>6.15-1<br>-2.97-3<br>9.367+0<br>1.592<br>2.19-1<br>-1.11-2<br>2.323+1<br>1.595<br>1.71-2<br>7.23-4<br>2.547+1<br>1.354                                                                                                                | 5.179+0<br>1.732<br>4.47-1<br>-4.45-3<br>6.771+0<br>1.644<br>6.89-2<br>-1.21-2<br>1.538+1<br>1.670<br>-5.12-2<br>5.71-3<br>1.496+1<br>1.389                                                                        | 6000<br>3.847+0<br>1.751<br>3.02-1<br>-5.53-3<br>5.070+0<br>1.667<br>9.21-3<br>-1.16-2<br>1.078+1<br>1.715<br>-5.13-2<br>1.11-2<br>9.426+0<br>1.392                                                                                                                | 7000<br>2.967+0<br>1.767<br>1.81-1<br>-6.38-3<br>3.909+0<br>1.675<br>7.44-3<br>-1.07-2<br>7.882+0<br>1.743<br>-7.09-3<br>1.59-2<br>6.266+0<br>1.379                                      | 2.356+0<br>1.780<br>8.15-2<br>-7.06-3<br>3.087+0<br>1.674<br>4.23-2<br>-9.53-3<br>5.956+0<br>1.758<br>6.57-2<br>1.99-2<br>4.345+0<br>1.356                                                                                                                | 9000<br>1.914+0<br>1.791<br>1.09-3<br>-7.64-3<br>2.486+0<br>1.667<br>1.01-1<br>-8.07-3<br>4.621+0<br>1.766<br>1.57-1<br>2.34-2<br>3.117+0<br>1.327                                                                                 | 10000<br>1.584+0<br>1.801<br>-6.33-2<br>-8.16-3<br>2.037+0<br>1.657<br>1.74-1<br>-6.31-3<br>3.662+0<br>1.768<br>2.60-1<br>2.63-2<br>2.299+0<br>1.296                                                                                                                          |
| Shell $4s_{1/2}$ $E_b = 1440.8 \text{ eV}$ $4p_{1/2}$ $E_b = 1271.8 \text{ eV}$ $4p_{3/2}$ $E_b = 1044.9 \text{ eV}$ $4d_{3/2}$ $E_b = 780.2 \text{ eV}$                                                                         | $\sigma$ $\beta$ $\gamma$ $\delta$ $\sigma$ $\beta$ $\gamma$ $\delta$ $\sigma$ $\delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | k (eV)<br>1500<br>2.438+1<br>1.444<br>9.57-1<br>1.05-2<br>2.287+1<br>0.332<br>1.26-1<br>1.84-1<br>1.021+2<br>0.751<br>3.28-1<br>8.55-2<br>1.507+2                                                                     | 2000<br>1.869+1<br>1.572<br>9.65-1<br>3.73-3<br>1.976+1<br>1.075<br>7.04-1<br>5.04-2<br>7.052+1<br>1.159<br>3.97-1<br>2.74-2<br>1.005+2                                                                                                                          | 1.115+1<br>1.666<br>8.01-1<br>-7.35-4<br>1.348+1<br>1.469<br>4.88-1<br>-3.05-3<br>3.807+1<br>1.460<br>1.80-1<br>6.25-4                                                              | 4000<br>7.335+0<br>1.707<br>6.15-1<br>-2.97-3<br>9.367+0<br>1.592<br>2.19-1<br>-1.11-2<br>2.323+1<br>1.595<br>1.71-2<br>7.23-4<br>2.547+1                                                                                                                         | 5.179+0<br>1.732<br>4.47-1<br>-4.45-3<br>6.771+0<br>1.644<br>6.89-2<br>-1.21-2<br>1.538+1<br>1.670<br>-5.12-2<br>5.71-3<br>1.496+1                                                                                 | 6000<br>3.847+0<br>1.751<br>3.02-1<br>-5.53-3<br>5.070+0<br>1.667<br>9.21-3<br>-1.16-2<br>1.078+1<br>1.715<br>-5.13-2<br>1.11-2<br>9.426+0                                                                                                                         | 7000<br>2.967+0<br>1.767<br>1.81-1<br>-6.38-3<br>3.909+0<br>1.675<br>7.44-3<br>-1.07-2<br>7.882+0<br>1.743<br>-7.09-3<br>1.59-2<br>6.266+0                                               | 2.356+0<br>1.780<br>8.15-2<br>-7.06-3<br>3.087+0<br>1.674<br>4.23-2<br>-9.53-3<br>5.956+0<br>1.758<br>6.57-2<br>1.99-2<br>4.345+0                                                                                                                         | 9000<br>1.914+0<br>1.791<br>1.09-3<br>-7.64-3<br>2.486+0<br>1.667<br>1.01-1<br>-8.07-3<br>4.621+0<br>1.766<br>1.57-1<br>2.34-2<br>3.117+0                                                                                          | 10000<br>1.584+0<br>1.801<br>-6.33-2<br>-8.16-3<br>2.037+0<br>1.657<br>1.74-1<br>-6.31-3<br>3.662+0<br>1.768<br>2.60-1<br>2.63-2<br>2.299+0                                                                                                                                   |
| Shell $4s_{1/2}$ $E_b = 1440.8 \text{ eV}$ $4p_{1/2}$ $E_b = 1271.8 \text{ eV}$ $4p_{3/2}$ $E_b = 1044.9 \text{ eV}$ $4d_{3/2}$ $E_b = 780.2 \text{ eV}$                                                                         | σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>σ<br>β<br>γ<br>δ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | k(eV)  1500  2.438+1  1.444  9.57-1  1.05-2  2.287+1  0.332  1.26-1  1.84-1  1.021+2  0.751  3.28-1  8.55-2  1.507+2  0.621  1.71-1  4.52-2  2.288+2                                                                  | 2000<br>1.869+1<br>1.572<br>9.65-1<br>3.73-3<br>1.976+1<br>1.075<br>7.04-1<br>5.04-2<br>7.052+1<br>1.159<br>3.97-1<br>2.74-2<br>1.005+2<br>0.968<br>2.79-2<br>8.79-3<br>1.467+2                                                                                  | 1.115+1<br>1.666<br>8.01-1<br>-7.35-4<br>1.348+1<br>1.469<br>4.88-1<br>-3.05-3<br>3.807+1<br>1.460<br>1.80-1<br>6.25-4<br>4.763+1<br>1.252<br>-6.16-2<br>1.93-2<br>6.669+1          | 4000<br>7.335+0<br>1.707<br>6.15-1<br>-2.97-3<br>9.367+0<br>1.592<br>2.19-1<br>-1.11-2<br>2.323+1<br>1.595<br>1.71-2<br>7.23-4<br>2.547+1<br>1.354<br>4.30-2<br>3.92-2<br>3.479+1                                                                                 | 5.179+0<br>1.732<br>4.47-1<br>-4.45-3<br>6.771+0<br>1.644<br>6.89-2<br>-1.21-2<br>1.538+1<br>1.670<br>-5.12-2<br>5.71-3<br>1.496+1<br>1.389<br>2.17-1<br>5.59-2<br>2.008+1                                         | 6000<br>3.847+0<br>1.751<br>3.02-1<br>-5.53-3<br>5.070+0<br>1.667<br>9.21-3<br>-1.16-2<br>1.078+1<br>1.715<br>-5.13-2<br>1.11-2<br>9.426+0<br>1.392<br>4.10-1<br>7.01-2<br>1.248+1                                                                                 | 7000  2.967+0 1.767 1.81-1 -6.38-3 3.909+0 1.675 7.44-3 -1.07-2 7.882+0 1.743 -7.09-3 1.59-2 6.266+0 1.379 6.03-1 8.29-2 8.196+0                                                         | 2.356+0<br>1.780<br>8.15-2<br>-7.06-3<br>3.087+0<br>1.674<br>4.23-2<br>-9.53-3<br>5.956+0<br>1.758<br>6.57-2<br>1.99-2<br>4.345+0<br>1.356<br>7.88-1<br>9.50-2<br>5.625+0                                                                                 | 9000<br>1.914+0<br>1.791<br>1.09-3<br>-7.64-3<br>2.486+0<br>1.667<br>1.01-1<br>-8.07-3<br>4.621+0<br>1.766<br>1.57-1<br>2.34-2<br>3.117+0<br>1.327<br>9.60-1<br>1.06-1<br>3.998+0                                                  | 10000<br>1.584+0<br>1.801<br>-6.33-2<br>-8.16-3<br>2.037+0<br>1.657<br>1.74-1<br>-6.31-3<br>3.662+0<br>1.768<br>2.60-1<br>2.63-2<br>2.299+0<br>1.12+0<br>1.17-1<br>2.924+0                                                                                                    |
| Shell $4s_{1/2}$ $E_b = 1440.8 \text{ eV}$ $4p_{1/2}$ $E_b = 1271.8 \text{ eV}$ $4p_{3/2}$ $E_b = 1044.9 \text{ eV}$ $4d_{3/2}$ $E_b = 780.2 \text{ eV}$ $4d_{5/2}$ $E_b = 60.2 \text{ eV}$                                      | σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>σ<br>β<br>ρ<br>γ<br>δ<br>δ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | k(eV)  1500  2.438+1  1.444  9.57-1  1.05-2  2.287+1  0.332  1.26-1  1.84-1  1.021+2  0.751  3.28-1  8.55-2  1.507+2  0.621  1.71-1  4.52-2  2.288+2  0.926                                                           | 2000<br>1.869+1<br>1.572<br>9.65-1<br>3.73-3<br>1.976+1<br>1.075<br>7.04-1<br>5.04-2<br>7.052+1<br>1.159<br>3.97-1<br>2.74-2<br>1.005+2<br>0.968<br>2.79-2<br>8.79-3<br>1.467+2<br>1.178                                                                         | 1.115+1<br>1.666<br>8.01-1<br>-7.35-4<br>1.348+1<br>1.469<br>4.88-1<br>-3.05-3<br>3.807+1<br>1.460<br>1.80-1<br>6.25-4<br>4.763+1<br>1.252<br>-6.16-2<br>1.93-2<br>6.669+1<br>1.347 | 4000<br>7.335+0<br>1.707<br>6.15-1<br>-2.97-3<br>9.367+0<br>1.592<br>2.19-1<br>-1.11-2<br>2.323+1<br>1.595<br>1.71-2<br>7.23-4<br>2.547+1<br>1.354<br>4.30-2<br>3.92-2<br>3.479+1<br>1.377                                                                        | 5.179+0<br>1.732<br>4.47-1<br>-4.45-3<br>6.771+0<br>1.644<br>6.89-2<br>-1.21-2<br>1.538+1<br>1.670<br>-5.12-2<br>5.71-3<br>1.496+1<br>1.389<br>2.17-1<br>5.59-2<br>2.008+1<br>1.363                                | 6000<br>3.847+0<br>1.751<br>3.02-1<br>-5.53-3<br>5.070+0<br>1.667<br>9.21-3<br>-1.16-2<br>1.078+1<br>1.715<br>-5.13-2<br>1.11-2<br>9.426+0<br>1.392<br>4.10-1<br>7.01-2<br>1.248+1<br>1.331                                                                        | 7000  2.967+0 1.767 1.81-1 -6.38-3 3.909+0 1.675 7.44-3 -1.07-2 7.882+0 1.743 -7.09-3 1.59-2 6.266+0 1.379 6.03-1 8.29-2 8.196+0 1.292                                                   | 2.356+0<br>1.780<br>8.15-2<br>-7.06-3<br>3.087+0<br>1.674<br>4.23-2<br>-9.53-3<br>5.956+0<br>1.758<br>6.57-2<br>1.99-2<br>4.345+0<br>1.356<br>7.88-1<br>9.50-2<br>5.625+0<br>1.249                                                                        | 9000<br>1.914+0<br>1.791<br>1.09-3<br>-7.64-3<br>2.486+0<br>1.667<br>1.01-1<br>-8.07-3<br>4.621+0<br>1.766<br>1.57-1<br>2.34-2<br>3.117+0<br>1.327<br>9.60-1<br>1.06-1<br>3.998+0<br>1.205                                         | 10000  1.584+0 1.801 -6.33-2 -8.16-3 2.037+0 1.657 1.74-1 -6.31-3 3.662+0 1.768 2.60-1 2.63-2 2.299+0 1.12+0 1.17-1 2.924+0 1.161                                                                                                                                             |
| Shell $4s_{1/2}$ $E_b = 1440.8 \text{ eV}$ $4p_{1/2}$ $E_b = 1271.8 \text{ eV}$ $4p_{3/2}$ $E_b = 1044.9 \text{ eV}$ $4d_{3/2}$ $E_b = 780.2 \text{ eV}$                                                                         | σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>σ<br>β<br>γ<br>δ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | k(eV)  1500  2.438+1  1.444  9.57-1  1.05-2  2.287+1  0.332  1.26-1  1.84-1  1.021+2  0.751  3.28-1  8.55-2  1.507+2  0.621  1.71-1  4.52-2  2.288+2                                                                  | 2000<br>1.869+1<br>1.572<br>9.65-1<br>3.73-3<br>1.976+1<br>1.075<br>7.04-1<br>5.04-2<br>7.052+1<br>1.159<br>3.97-1<br>2.74-2<br>1.005+2<br>0.968<br>2.79-2<br>8.79-3<br>1.467+2                                                                                  | 1.115+1<br>1.666<br>8.01-1<br>-7.35-4<br>1.348+1<br>1.469<br>4.88-1<br>-3.05-3<br>3.807+1<br>1.460<br>1.80-1<br>6.25-4<br>4.763+1<br>1.252<br>-6.16-2<br>1.93-2<br>6.669+1          | 4000<br>7.335+0<br>1.707<br>6.15-1<br>-2.97-3<br>9.367+0<br>1.592<br>2.19-1<br>-1.11-2<br>2.323+1<br>1.595<br>1.71-2<br>7.23-4<br>2.547+1<br>1.354<br>4.30-2<br>3.92-2<br>3.479+1                                                                                 | 5.179+0<br>1.732<br>4.47-1<br>-4.45-3<br>6.771+0<br>1.644<br>6.89-2<br>-1.21-2<br>1.538+1<br>1.670<br>-5.12-2<br>5.71-3<br>1.496+1<br>1.389<br>2.17-1<br>5.59-2<br>2.008+1                                         | 6000<br>3.847+0<br>1.751<br>3.02-1<br>-5.53-3<br>5.070+0<br>1.667<br>9.21-3<br>-1.16-2<br>1.078+1<br>1.715<br>-5.13-2<br>1.11-2<br>9.426+0<br>1.392<br>4.10-1<br>7.01-2<br>1.248+1                                                                                 | 7000  2.967+0 1.767 1.81-1 -6.38-3 3.909+0 1.675 7.44-3 -1.07-2 7.882+0 1.743 -7.09-3 1.59-2 6.266+0 1.379 6.03-1 8.29-2 8.196+0                                                         | 2.356+0<br>1.780<br>8.15-2<br>-7.06-3<br>3.087+0<br>1.674<br>4.23-2<br>-9.53-3<br>5.956+0<br>1.758<br>6.57-2<br>1.99-2<br>4.345+0<br>1.356<br>7.88-1<br>9.50-2<br>5.625+0                                                                                 | 9000<br>1.914+0<br>1.791<br>1.09-3<br>-7.64-3<br>2.486+0<br>1.667<br>1.01-1<br>-8.07-3<br>4.621+0<br>1.766<br>1.57-1<br>2.34-2<br>3.117+0<br>1.327<br>9.60-1<br>1.06-1<br>3.998+0                                                  | 10000<br>1.584+0<br>1.801<br>-6.33-2<br>-8.16-3<br>2.037+0<br>1.657<br>1.74-1<br>-6.31-3<br>3.662+0<br>1.768<br>2.60-1<br>2.63-2<br>2.299+0<br>1.12+0<br>1.17-1<br>2.924+0                                                                                                    |
| Shell $4s_{1/2}$ $E_b = 1440.8 \text{ eV}$ $4p_{1/2}$ $E_b = 1271.8 \text{ eV}$ $4p_{3/2}$ $E_b = 1044.9 \text{ eV}$ $4d_{3/2}$ $E_b = 780.2 \text{ eV}$ $4d_{5/2}$ $E_b = 737.7 \text{ eV}$                                     | σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | k(eV) 1500 2.438+1 1.444 9.57-1 1.05-2 2.287+1 0.332 1.26-1 1.84-1 1.021+2 0.751 3.28-1 8.55-2 1.507+2 0.621 1.71-1 4.52-2 2.288+2 0.926 1.52-1 2.96-2 2.696+2                                                        | 2000<br>1.869+1<br>1.572<br>9.65-1<br>3.73-3<br>1.976+1<br>1.075<br>7.04-1<br>5.04-2<br>7.052+1<br>1.159<br>3.97-1<br>2.74-2<br>1.005+2<br>0.968<br>2.79-2<br>8.79-3<br>1.467+2<br>1.178<br>-8.95-3<br>8.01-3<br>1.179+2                                         | 1.115+1 1.666 8.01-1 -7.35-4 1.348+1 1.469 4.88-1 -3.05-3 3.807+1 1.460 1.80-1 6.25-4 4.763+1 1.252 -6.16-2 1.93-2 6.669+1 1.347 -3.98-2 1.78-2 3.300+1                             | 4000<br>7.335+0<br>1.707<br>6.15-1<br>-2.97-3<br>9.367+0<br>1.592<br>2.19-1<br>-1.11-2<br>2.323+1<br>1.595<br>1.71-2<br>7.23-4<br>2.547+1<br>1.354<br>4.30-2<br>3.92-2<br>3.479+1<br>1.377<br>1.11-1<br>3.43-2<br>1.246+1                                         | 5.179+0<br>1.732<br>4.47-1<br>-4.45-3<br>6.771+0<br>1.644<br>6.89-2<br>-1.21-2<br>1.538+1<br>1.670<br>-5.12-2<br>5.71-3<br>1.496+1<br>1.389<br>2.17-1<br>5.59-2<br>2.008+1<br>1.363<br>3.09-1<br>5.03-2<br>5.635+0 | 6000<br>3.847+0<br>1.751<br>3.02-1<br>-5.53-3<br>5.070+0<br>1.667<br>9.21-3<br>-1.16-2<br>1.078+1<br>1.715<br>-5.13-2<br>1.11-2<br>9.426+0<br>1.392<br>4.10-1<br>7.01-2<br>1.248+1<br>1.331<br>5.09-1<br>6.58-2<br>2.876+0                                         | 7000  2.967+0 1.767 1.81-1 -6.38-3 3.909+0 1.675 7.44-3 -1.07-2 7.882+0 1.743 -7.09-3 1.59-2 6.266+0 1.379 6.03-1 8.29-2 8.196+0 1.292 6.99-1 8.14-2 1.604+0                             | 2.356+0<br>1.780<br>8.15-2<br>-7.06-3<br>3.087+0<br>1.674<br>4.23-2<br>-9.53-3<br>5.956+0<br>1.758<br>6.57-2<br>1.99-2<br>4.345+0<br>1.356<br>7.88-1<br>9.50-2<br>5.625+0<br>1.249<br>8.74-1<br>9.73-2<br>9.566-1                                         | 9000<br>1.914+0<br>1.791<br>1.09-3<br>-7.64-3<br>2.486+0<br>1.667<br>1.01-1<br>-8.07-3<br>4.621+0<br>1.766<br>1.57-1<br>2.34-2<br>3.117+0<br>1.327<br>9.60-1<br>1.06-1<br>3.998+0<br>1.205<br>1.03+0<br>1.13-1<br>6.017-1          | 10000<br>1.584+0<br>1.801<br>-6.33-2<br>-8.16-3<br>2.037+0<br>1.657<br>1.74-1<br>-6.31-3<br>3.662+0<br>1.768<br>2.60-1<br>2.63-2<br>2.299+0<br>1.12+0<br>1.17-1<br>2.924+0<br>1.17-0<br>1.161<br>1.17+0<br>1.28-1<br>3.952-1                                                  |
| Shell $4s_{1/2}$ $E_b = 1440.8 \text{ eV}$ $4p_{1/2}$ $E_b = 1271.8 \text{ eV}$ $4p_{3/2}$ $E_b = 1044.9 \text{ eV}$ $4d_{3/2}$ $E_b = 780.2 \text{ eV}$ $4d_{5/2}$ $E_b = 737.7 \text{ eV}$ $4f_{5/2}$ $E_b = 6$                | $ \begin{array}{c} \sigma \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \beta \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \sigma \\ \beta \\ \gamma \\ \delta \\ \sigma \\ \sigma \\ \rho \\ \sigma \\ \sigma \\ \sigma \\ \rho \\ \sigma \\ \sigma \\ \sigma \\ \sigma \\ \rho \\ \sigma \\ \sigma$ | k(eV) 1500 2.438+1 1.444 9.57-1 1.05-2 2.287+1 0.332 1.26-1 1.84-1 1.021+2 0.751 3.28-1 8.55-2 1.507+2 0.621 1.71-1 4.52-2 2.288+2 0.926 1.52-1 2.96-2 2.696+2 0.930                                                  | 2000<br>1.869+1<br>1.572<br>9.65-1<br>3.73-3<br>1.976+1<br>1.075<br>7.04-1<br>5.04-2<br>7.052+1<br>1.159<br>3.97-1<br>2.74-2<br>1.005+2<br>0.968<br>2.79-2<br>8.79-3<br>1.467+2<br>1.178<br>-8.95-3<br>8.01-3<br>1.179+2<br>1.023                                | 1.115+1 1.666 8.01-1 -7.35-4 1.348+1 1.469 4.88-1 -3.05-3 3.807+1 1.460 1.80-1 6.25-4 4.763+1 1.252 -6.16-2 1.93-2 6.669+1 1.347 -3.98-2 1.78-2 3.300+1 1.051                       | 4000<br>7.335+0<br>1.707<br>6.15-1<br>-2.97-3<br>9.367+0<br>1.592<br>2.19-1<br>-1.11-2<br>2.323+1<br>1.595<br>1.71-2<br>7.23-4<br>2.547+1<br>1.354<br>4.30-2<br>3.92-2<br>3.479+1<br>1.377<br>1.11-1<br>3.43-2<br>1.246+1<br>1.010                                | 5.179+0 1.732 4.47-1 -4.45-3 6.771+0 1.644 6.89-2 -1.21-2 1.538+1 1.670 -5.12-2 5.71-3 1.496+1 1.389 2.17-1 5.59-2 2.008+1 1.363 3.09-1 5.03-2 5.635+0 0.952                                                       | 6000<br>3.847+0<br>1.751<br>3.02-1<br>-5.53-3<br>5.070+0<br>1.667<br>9.21-3<br>-1.16-2<br>1.078+1<br>1.715<br>-5.13-2<br>1.11-2<br>9.426+0<br>1.392<br>4.10-1<br>7.01-2<br>1.248+1<br>1.331<br>5.09-1<br>6.58-2<br>2.876+0<br>0.890                                | 7000  2.967+0 1.767 1.81-1 -6.38-3 3.909+0 1.675 7.44-3 -1.07-2 7.882+0 1.743 -7.09-3 1.59-2 6.266+0 1.379 6.03-1 8.29-2 8.196+0 1.292 6.99-1 8.14-2 1.604+0 0.829                       | 2.356+0<br>1.780<br>8.15-2<br>-7.06-3<br>3.087+0<br>1.674<br>4.23-2<br>-9.53-3<br>5.956+0<br>1.758<br>6.57-2<br>1.99-2<br>4.345+0<br>1.356<br>7.88-1<br>9.50-2<br>5.625+0<br>1.249<br>8.74-1<br>9.73-2<br>9.566-1<br>0.770                                | 9000<br>1.914+0<br>1.791<br>1.09-3<br>-7.64-3<br>2.486+0<br>1.667<br>1.01-1<br>-8.07-3<br>4.621+0<br>1.766<br>1.57-1<br>2.34-2<br>3.117+0<br>1.327<br>9.60-1<br>1.06-1<br>3.998+0<br>1.205<br>1.03+0<br>1.13-1<br>6.017-1<br>0.715 | 10000  1.584+0 1.801 -6.33-2 -8.16-3 2.037+0 1.657 1.74-1 -6.31-3 3.662+0 1.768 2.60-1 2.63-2 2.299+0 1.12+0 1.17-1 2.924+0 1.161 1.17+0 1.28-1 3.952-1 0.664                                                                                                                 |
| Shell $4s_{1/2}$ $E_b = 1440.8 \text{ eV}$ $4p_{1/2}$ $E_b = 1271.8 \text{ eV}$ $4p_{3/2}$ $E_b = 1044.9 \text{ eV}$ $4d_{3/2}$ $E_b = 780.2 \text{ eV}$ $4d_{5/2}$ $E_b = 737.7 \text{ eV}$                                     | σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | k(eV) 1500 2.438+1 1.444 9.57-1 1.05-2 2.287+1 0.332 1.26-1 1.84-1 1.021+2 0.751 3.28-1 8.55-2 1.507+2 0.621 1.71-1 4.52-2 2.288+2 0.926 1.52-1 2.96-2 2.696+2                                                        | 2000<br>1.869+1<br>1.572<br>9.65-1<br>3.73-3<br>1.976+1<br>1.075<br>7.04-1<br>5.04-2<br>7.052+1<br>1.159<br>3.97-1<br>2.74-2<br>1.005+2<br>0.968<br>2.79-2<br>8.79-3<br>1.467+2<br>1.178<br>-8.95-3<br>8.01-3<br>1.179+2                                         | 1.115+1 1.666 8.01-1 -7.35-4 1.348+1 1.469 4.88-1 -3.05-3 3.807+1 1.460 1.80-1 6.25-4 4.763+1 1.252 -6.16-2 1.93-2 6.669+1 1.347 -3.98-2 1.78-2 3.300+1                             | 4000<br>7.335+0<br>1.707<br>6.15-1<br>-2.97-3<br>9.367+0<br>1.592<br>2.19-1<br>-1.11-2<br>2.323+1<br>1.595<br>1.71-2<br>7.23-4<br>2.547+1<br>1.354<br>4.30-2<br>3.92-2<br>3.479+1<br>1.377<br>1.11-1<br>3.43-2<br>1.246+1                                         | 5.179+0<br>1.732<br>4.47-1<br>-4.45-3<br>6.771+0<br>1.644<br>6.89-2<br>-1.21-2<br>1.538+1<br>1.670<br>-5.12-2<br>5.71-3<br>1.496+1<br>1.389<br>2.17-1<br>5.59-2<br>2.008+1<br>1.363<br>3.09-1<br>5.03-2<br>5.635+0 | 6000<br>3.847+0<br>1.751<br>3.02-1<br>-5.53-3<br>5.070+0<br>1.667<br>9.21-3<br>-1.16-2<br>1.078+1<br>1.715<br>-5.13-2<br>1.11-2<br>9.426+0<br>1.392<br>4.10-1<br>7.01-2<br>1.248+1<br>1.331<br>5.09-1<br>6.58-2<br>2.876+0                                         | 7000  2.967+0 1.767 1.81-1 -6.38-3 3.909+0 1.675 7.44-3 -1.07-2 7.882+0 1.743 -7.09-3 1.59-2 6.266+0 1.379 6.03-1 8.29-2 8.196+0 1.292 6.99-1 8.14-2 1.604+0                             | 2.356+0<br>1.780<br>8.15-2<br>-7.06-3<br>3.087+0<br>1.674<br>4.23-2<br>-9.53-3<br>5.956+0<br>1.758<br>6.57-2<br>1.99-2<br>4.345+0<br>1.356<br>7.88-1<br>9.50-2<br>5.625+0<br>1.249<br>8.74-1<br>9.73-2<br>9.566-1                                         | 9000<br>1.914+0<br>1.791<br>1.09-3<br>-7.64-3<br>2.486+0<br>1.667<br>1.01-1<br>-8.07-3<br>4.621+0<br>1.766<br>1.57-1<br>2.34-2<br>3.117+0<br>1.327<br>9.60-1<br>1.06-1<br>3.998+0<br>1.205<br>1.03+0<br>1.13-1<br>6.017-1          | 10000<br>1.584+0<br>1.801<br>-6.33-2<br>-8.16-3<br>2.037+0<br>1.657<br>1.74-1<br>-6.31-3<br>3.662+0<br>1.768<br>2.60-1<br>2.63-2<br>2.299+0<br>1.12+0<br>1.17-1<br>2.924+0<br>1.17-0<br>1.161<br>1.17+0<br>1.28-1<br>3.952-1                                                  |
| Shell $4s_{1/2}$ $E_b = 1440.8 \text{ eV}$ $4p_{1/2}$ $E_b = 1271.8 \text{ eV}$ $4p_{3/2}$ $E_b = 1044.9 \text{ eV}$ $4d_{3/2}$ $E_b = 780.2 \text{ eV}$ $4d_{5/2}$ $E_b = 737.7 \text{ eV}$ $4f_{5/2}$ $E_b = 390.7 \text{ eV}$ | σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>σ<br>β<br>γ<br>δ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | k (eV)  1500  2.438+1  1.444  9.57-1  1.05-2  2.287+1  0.332  1.26-1  1.84-1  1.021+2  0.751  3.28-1  8.55-2  1.507+2  0.621  1.71-1  4.52-2  2.288+2  0.926  1.52-1  2.96-2  2.696+2  0.930  3.90-2  5.42-2  3.409+2 | 2000<br>1.869+1<br>1.572<br>9.65-1<br>3.73-3<br>1.976+1<br>1.075<br>7.04-1<br>5.04-2<br>7.052+1<br>1.159<br>3.97-1<br>2.74-2<br>1.005+2<br>0.968<br>2.79-2<br>8.79-3<br>1.467+2<br>1.178<br>-8.95-3<br>8.01-3<br>1.179+2<br>1.023<br>1.66-1<br>8.00-2<br>1.480+2 | 1.115+1 1.666 8.01-1 -7.35-4 1.348+1 1.469 4.88-1 -3.05-3 3.807+1 1.460 1.80-1 6.25-4 4.763+1 1.252 -6.16-2 1.93-2 6.669+1 1.347 -3.98-2 1.78-2 3.300+1 1.051 4.38-1 1.22-1 4.107+1 | 4000<br>7.335+0<br>1.707<br>6.15-1<br>-2.97-3<br>9.367+0<br>1.592<br>2.19-1<br>-1.11-2<br>2.323+1<br>1.595<br>1.71-2<br>7.23-4<br>2.547+1<br>1.354<br>4.30-2<br>3.92-2<br>3.479+1<br>1.377<br>1.11-1<br>3.43-2<br>1.246+1<br>1.010<br>6.76-1<br>1.58-1<br>1.540+1 | 5.179+0 1.732 4.47-1 -4.45-3 6.771+0 1.644 6.89-2 -1.21-2 1.538+1 1.670 -5.12-2 5.71-3 1.496+1 1.389 2.17-1 5.59-2 2.008+1 1.363 3.09-1 5.03-2 5.635+0 0.952 8.75-1 1.92-1 6.920+0                                 | 6000<br>3.847+0<br>1.751<br>3.02-1<br>-5.53-3<br>5.070+0<br>1.667<br>9.21-3<br>-1.16-2<br>1.078+1<br>1.715<br>-5.13-2<br>1.11-2<br>9.426+0<br>1.392<br>4.10-1<br>7.01-2<br>1.248+1<br>1.331<br>5.09-1<br>6.58-2<br>2.876+0<br>0.890<br>1.04+0<br>2.25-1<br>3.513+0 | 7000  2.967+0 1.767 1.81-1 -6.38-3 3.909+0 1.675 7.44-3 -1.07-2 7.882+0 1.743 -7.09-3 1.59-2 6.266+0 1.379 6.03-1 8.29-2 8.196+0 1.292 6.99-1 8.14-2 1.604+0 0.829 1.17+0 2.56-1 1.949+0 | 2.356+0<br>1.780<br>8.15-2<br>-7.06-3<br>3.087+0<br>1.674<br>4.23-2<br>-9.53-3<br>5.956+0<br>1.758<br>6.57-2<br>1.99-2<br>4.345+0<br>1.356<br>7.88-1<br>9.50-2<br>5.625+0<br>1.249<br>8.74-1<br>9.73-2<br>9.566-1<br>0.770<br>1.28+0<br>2.85-1<br>1.157+0 | 9000  1.914+0 1.791 1.09-3 -7.64-3  2.486+0 1.667 1.01-1 -8.07-3  4.621+0 1.766 1.57-1 2.34-2  3.117+0 1.327 9.60-1 1.06-1  3.998+0 1.205 1.03+0 1.13-1 6.017-1 0.715 1.37+0 3.12-1  7.244-1                                       | 10000<br>1.584+0<br>1.801<br>-6.33-2<br>-8.16-3<br>2.037+0<br>1.657<br>1.74-1<br>-6.31-3<br>3.662+0<br>1.768<br>2.60-1<br>2.63-2<br>2.299+0<br>1.12+0<br>1.17-1<br>2.924+0<br>1.161<br>1.17+0<br>1.161<br>1.17+0<br>1.28-1<br>3.952-1<br>0.664<br>1.44+0<br>3.37-1<br>4.737-1 |
| Shell $4s_{1/2}$ $E_b = 1440.8 \text{ eV}$ $4p_{1/2}$ $E_b = 1271.8 \text{ eV}$ $4p_{3/2}$ $E_b = 1044.9 \text{ eV}$ $4d_{3/2}$ $E_b = 780.2 \text{ eV}$ $4d_{5/2}$ $E_b = 737.7 \text{ eV}$ $4f_{5/2}$ $E_b = 390.7 \text{ eV}$ | σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ<br>δ<br>σ<br>σ<br>β<br>ρ<br>γ<br>δ<br>δ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | k(eV) 1500 2.438+1 1.444 9.57-1 1.05-2 2.287+1 0.332 1.26-1 1.84-1 1.021+2 0.751 3.28-1 8.55-2 1.507+2 0.621 1.71-1 4.52-2 2.288+2 0.926 1.52-1 2.96-2 2.696+2 0.930 3.90-2 5.42-2                                    | 2000<br>1.869+1<br>1.572<br>9.65-1<br>3.73-3<br>1.976+1<br>1.075<br>7.04-1<br>5.04-2<br>7.052+1<br>1.159<br>3.97-1<br>2.74-2<br>1.005+2<br>0.968<br>2.79-2<br>8.79-3<br>1.467+2<br>1.178<br>-8.95-3<br>8.01-3<br>1.179+2<br>1.023<br>1.66-1<br>8.00-2            | 1.115+1 1.666 8.01-1 -7.35-4 1.348+1 1.469 4.88-1 -3.05-3 3.807+1 1.460 1.80-1 6.25-4 4.763+1 1.252 -6.16-2 1.93-2 6.669+1 1.349 -3.98-2 1.78-2 3.300+1 1.051 4.38-1 1.22-1         | 4000<br>7.335+0<br>1.707<br>6.15-1<br>-2.97-3<br>9.367+0<br>1.592<br>2.19-1<br>-1.11-2<br>2.323+1<br>1.595<br>1.71-2<br>7.23-4<br>2.547+1<br>1.354<br>4.30-2<br>3.92-2<br>3.479+1<br>1.377<br>1.11-1<br>3.43-2<br>1.246+1<br>1.010<br>6.76-1<br>1.58-1            | 5.179+0 1.732 4.47-1 -4.45-3 6.771+0 1.644 6.89-2 -1.21-2 1.538+1 1.670 -5.12-2 5.71-3 1.496+1 1.389 2.17-1 5.59-2 2.008+1 1.363 3.09-1 5.03-2 5.635+0 0.952 8.75-1 1.92-1                                         | 6000  3.847+0 1.751 3.02-1 -5.53-3  5.070+0 1.667 9.21-3 -1.16-2 1.078+1 1.715 -5.13-2 1.11-2  9.426+0 1.392 4.10-1 7.01-2 1.248+1 1.331 5.09-1 6.58-2 2.876+0 0.890 1.04+0 2.25-1                                                                                 | 7000  2.967+0 1.767 1.81-1 -6.38-3 3.909+0 1.675 7.44-3 -1.07-2 7.882+0 1.743 -7.09-3 1.59-2 6.266+0 1.379 6.03-1 8.29-2 8.196+0 1.292 6.99-1 8.14-2 1.604+0 0.829 1.17+0 2.56-1         | 2.356+0<br>1.780<br>8.15-2<br>-7.06-3<br>3.087+0<br>1.674<br>4.23-2<br>-9.53-3<br>5.956+0<br>1.758<br>6.57-2<br>1.99-2<br>4.345+0<br>1.356<br>7.88-1<br>9.50-2<br>5.625+0<br>1.249<br>8.74-1<br>9.73-2<br>9.566-1<br>0.770<br>1.28+0<br>2.85-1            | 9000  1.914+0 1.791 1.09-3 -7.64-3  2.486+0 1.667 1.01-1 -8.07-3  4.621+0 1.766 1.57-1 2.34-2  3.117+0 1.327 9.60-1 1.06-1 3.998+0 1.205 1.03+0 1.13-1  6.017-1 0.715 1.37+0 3.12-1                                                | 10000<br>1.584+0<br>1.801<br>-6.33-2<br>-8.16-3<br>2.037+0<br>1.657<br>1.74-1<br>-6.31-3<br>3.662+0<br>1.768<br>2.60-1<br>2.63-2<br>2.299+0<br>1.12+0<br>1.17-1<br>2.924+0<br>1.17+0<br>1.161<br>1.17+0<br>1.28-1<br>3.952-1<br>0.664<br>1.44+0                               |

| able 1 ( <i>contini</i><br>5s <sub>1/2</sub> | ued)<br>σ              | 9.227+0                     | 6.002+0           | 3.180+0           | 1.990+0           | 1.370+0          | 1.002+0            | 7.651-1          | 6.030-1            | 4.871-1          | 4.013-1          |
|----------------------------------------------|------------------------|-----------------------------|-------------------|-------------------|-------------------|------------------|--------------------|------------------|--------------------|------------------|------------------|
| $E_b =$                                      | β                      | 1.627                       | 1.669             | 1.713             | 1.738             | 1.756            | 1.771              | 1.783            | 1.794              | 1.803            | 1.811            |
| 323.3 eV                                     | γ                      | 6.71 - 1                    | 6.43 - 1          | 5.27 - 1          | 3.95 - 1          | 2.71 - 1         | 1.63 - 1           | 7.15 - 2         | -4.19 - 3          | -6.57 - 2        | -1.15-           |
|                                              | δ                      | 8.98-4                      | -5.59-4           | -2.58-3           | -3.98-3           | -5.03-3          | -5.88-3            | -6.58-3          | -7.18-3            | -7.71-3          | -8.19-3          |
| $5p_{1/2}$                                   | $\sigma$               | 8.484+0                     | 6.043+0           | 3.532+0           | 2.314+0           | 1.626+0          | 1.199+0            | 9.157-1          | 7.184-1            | 5.760-1          | 4.702-1          |
| $E_b = 259.3 \text{ eV}$                     | $\beta$ $\gamma$       | 1.327<br>6.02-1             | 1.496<br>4.91-1   | 1.635<br>2.38-1   | 1.685<br>8.11-2   | 1.703<br>1.03-2  | 1.707<br>1.44-3    | 1.703<br>2.54-2  | 1.694<br>7.76-2    | 1.682<br>1.47-1  | 1.668<br>2.27-1  |
| 233.3 C V                                    | δ                      | -4.96 - 3                   | -1.24-2           | -1.44-2           | -1.35-2           | -1.26-2          | -1.17-2            | -1.09-2          | -9.83-3            | -8.51-3          | -6.87-3          |
| $5p_{3/2}$                                   | σ                      | 2.817+1                     | 1.792+1           | 9.030+0           | 5.366+0           | 3.509+0          | 2.444+0            | 1.781+0          | 1.342+0            | 1.040+0          | 8.232-1          |
| $E_b =$                                      | β                      | 1.291                       | 1.437             | 1.594             | 1.677             | 1.725            | 1.754              | 1.771            | 1.780              | 1.782            | 1.781            |
| 195.9 eV                                     | $\gamma \\ \delta$     | 3.25-1<br>3.41-3            | 2.31-1<br>-3.76-3 | 5.83-2<br>-3.79-3 | -3.25-2<br>1.37-3 | -5.32-2 $6.95-3$ | -2.53-2<br>1.19-2  | 3.52-2<br>1.60-2 | 1.17-1<br>1.96-2   | 2.14-1<br>2.26-2 | 3.20-1<br>2.52-2 |
| 5d <sub>3/2</sub>                            | σ                      | 2.952+1                     | 1.837+1           | 8.399+0           | 4.481+0           | 2.645+0          | 1.677+0            | 1.121+0          | 7.808-1            | 5.623-1          | 4.162-1          |
| $E_b =$                                      | β                      | 1.067                       | 1.230             | 1.374             | 1.423             | 1.431            | 1.420              | 1.397            | 1.368              | 1.335            | 1.300            |
| 104.4 eV                                     | γ                      | 5.94 - 2                    | -2.56-2           | -1.32-2           | 1.20 - 1          | 2.96 - 1         | 4.84 - 1           | 6.70 - 1         | 8.48 - 1           | 1.01+0           | 1.16+0           |
|                                              | δ                      | -1.98-3                     | 3.12-3            | 2.21-2            | 3.94-2            | 5.39-2           | 6.69-2             | 7.91-2           | 9.08-2             | 1.02-1           | 1.12-1           |
| $5d_{5/2}$                                   | σ                      | 4.355+1                     | 2.638+1           | 1.166+1           | 6.088+0           | 3.535+0          | 2.211+0            | 1.461+0          | 1.007+0            | 7.189-1          | 5.276-1          |
| $E_b = 95.2 \text{ eV}$                      | $\beta$ $\gamma$       | 1.283<br>2.28-2             | 1.376<br>-4.08-2  | 1.426<br>2.33-2   | 1.414<br>1.90-1   | 1.380<br>3.82-1  | 1.338<br>5.73-1    | 1.293<br>7.54-1  | 1.247<br>9.21-1    | 1.201<br>1.07+0  | 1.155<br>1.21+0  |
| 33.2 CV                                      | δ                      | 1.72-4                      | 4.77-3            | 1.93-2            | 3.43-2            | 4.91-2           | 6.42-2             | 7.97-2           | 9.54-2             | 1.11-1           | 1.26-1           |
| 5f <sub>5/2</sub>                            | σ                      | 1.821+1                     | 8.402+0           | 2.513+0           | 9.877-1           | 4.583-1          | 2.382-1            | 1.345-1          | 8.098-2            | 5.129-2          | 3.387-2          |
| $E_b =$                                      | β                      | 1.074                       | 1.106             | 1.080             | 1.019             | 0.952            | 0.887              | 0.825            | 0.766              | 0.711            | 0.660            |
| 6.0 eV                                       | γ                      | 9.62-2                      | 2.24-1            | 4.77-1            | 6.98-1            | 8.87-1           | 1.05+0             | 1.18+0           | 1.29+0             | 1.38+0           | 1.45+0           |
| C-                                           | δ                      | 5.26-2                      | 7.58-2            | 1.16-1            | 1.52-1            | 1.87-1           | 2.20-1             | 2.52-1           | 2.82-1             | 3.09-1           | 3.35-1           |
| $6s_{1/2}  E_b =$                            | $\frac{\sigma}{\beta}$ | 1.965+0<br>1.650            | 1.251+0<br>1.684  | 6.479-1<br>1.721  | 4.008-1<br>1.744  | 2.740-1<br>1.760 | 1.996-1<br>1.774   | 1.520-1<br>1.786 | 1.195-1<br>1.796   | 9.639-2<br>1.805 | 7.932-2<br>1.814 |
| 49.5 eV                                      | γ                      | 6.17-1                      | 5.88-1            | 4.78 - 1          | 3.55-1            | 2.39 - 1         | 1.37 - 1           | 5.04 - 2         | -2.09-2            | -7.85-2          | -1.24-1          |
|                                              | δ                      | 1.78 - 4                    | -1.05 - 3         | -2.85 - 3         | -4.14 - 3         | -5.14 - 3        | -5.94 - 3          | -6.62 - 3        | -7.20 - 3          | -7.71 - 3        | -8.17-3          |
| $6p_{1/2}$                                   | $\sigma$               | 1.580+0                     | 1.096+0           | 6.241 - 1         | 4.041 - 1         | 2.822 - 1        | 2.073 - 1          | 1.579 - 1        | 1.237 - 1          | 9.906 - 2        | 8.078 - 2        |
| $E_b = 30.8 \text{ eV}$                      | β                      | 1.408                       | 1.546<br>4.35-1   | 1.660<br>2.01-1   | 1.700<br>6.25-2   | 1.713<br>3.64-3  | 1.714<br>-5.38-4   | 1.708<br>3.11-2  | 1.698<br>8.63-2    | 1.685<br>1.57-1  | 1.671<br>2.37-1  |
| 30.6 EV                                      | $\gamma \\ \delta$     | 5.54-1<br>-1.22-2           | -1.53-1           | -1.49-2           | -1.35-2           | -1.26-2          | -3.38-4<br>-1.18-2 | -1.10-2          | -9.94-3            | -8.65-3          | -7.02-3          |
| 6p <sub>3/2</sub>                            | σ                      | 4.456+0                     | 2.798+0           | 1.392+0           | 8.222-1           | 5.360-1          | 3.727-1            | 2.712-1          | 2.042-1            | 1.581-1          | 1.251-1          |
| $E_b =$                                      | β                      | 1.345                       | 1.473             | 1.615             | 1.690             | 1.734            | 1.761              | 1.776            | 1.783              | 1.785            | 1.783            |
| 18.6 eV                                      | γ                      | 2.98-1                      | 2.04-1            | 4.28-2            | -3.77-2           | -5.17-2          | -1.94-2            | 4.38-2           | 1.27-1             | 2.24-1           | 3.29-1           |
|                                              | δ                      | -1.60-3                     | -5.82-3           | -3.91-3           | 1.60-3            | 7.16-3           | 1.20-2             | 1.60-2           | 1.94-2             | 2.23-2           | 2.48-2           |
| $6d_{3/2}$<br>$E_b =$                        | $\frac{\sigma}{\beta}$ | 2.064+0<br>1.110            | 1.275+0<br>1.260  | 5.802-1<br>1.390  | 3.092-1<br>1.432  | 1.825-1<br>1.437 | 1.157-1<br>1.423   | 7.731-2<br>1.399 | 5.385-2<br>1.370   | 3.878-2<br>1.337 | 2.871-2<br>1.302 |
| 6.0 eV                                       | γ                      | 5.19-2                      | -2.68-2           | -7.35-3           | 1.29-1            | 3.08-1           | 4.97-1             | 6.80-1           | 8.53-1             | 1.01+0           | 1.16+0           |
|                                              | δ                      | -3.62 - 3                   | 2.98 - 3          | 2.20-2            | 3.92-2            | 5.39-2           | 6.68 - 2           | 7.84 - 2         | 8.92-2             | 9.99-2           | 1.11-1           |
| $7s_{1/2}$                                   | σ                      | 1.787 - 1                   | 1.133 - 1         | 5.840 - 2         | 3.604-2           | 2.461-2          | 1.792 - 2          | 1.363-2          | 1.072 - 2          | 8.641 - 3        | 7.107 - 3        |
| $E_b = 6.0 \text{ eV}$                       | $\beta$                | 1.652<br>6.12-1             | 1.685<br>5.84-1   | 1.723<br>4.73-1   | 1.746<br>3.49-1   | 1.762<br>2.35-1  | 1.775<br>1.34-1    | 1.785<br>4.86-2  | 1.795<br>-2.32-2   | 1.803<br>-8.15-2 | 1.812<br>-1.27-1 |
| 0.0 6                                        | $\gamma \\ \delta$     | 9.05-5                      | -1.11-3           | -2.89-3           | -4.16-3           | -5.14-3          | -5.94-3            | -6.64-3          | -2.32-2<br>-7.27-3 | -7.79 - 3        | -8.27 - 3        |
| Z= 93, Np: [R                                | n 5f <sub>5/2</sub>    | $6d_{3/2}^{1} 7s_{1/2}^{2}$ |                   |                   |                   |                  |                    |                  |                    |                  |                  |
|                                              | - 3/2                  | k (eV)                      |                   |                   |                   |                  |                    |                  |                    |                  |                  |
| Shell                                        |                        | 1500                        | 2000              | 3000              | 4000              | 5000             | 6000               | 7000             | 8000               | 9000             | 10000            |
| $4p_{1/2}$                                   | σ                      | 2.191+1                     | 1.931+1           | 1.343+1           | 9.427+0           | 6.860+0          | 5.161+0            | 3.994+0          | 3.164+0            | 2.555+0          | 2.098+0          |
| $E_b =$                                      | β                      | 0.113                       | 1.000             | 1.441             | 1.577             | 1.635            | 1.662              | 1.673            | 1.674              | 1.669            | 1.660            |
| 1327.7 eV                                    | γ                      | -7.36-2                     | 7.04-1            | 5.35-1            | 2.55-1            | 9.02-2           | 1.75-2             | 5.64-3           | 3.25-2             | 8.43-2           | 1.52-1           |
| 4                                            | δ                      | 2.22-1                      | 6.17-2            | -2.12-3           | -1.16-2           | -1.29-2          | -1.25-2            | -1.15-2          | -1.03-2            | -8.89-3          | -7.20-3          |
| $4p_{3/2}$<br>$E_b =$                        | $\frac{\sigma}{\beta}$ | 1.035+2<br>0.685            | 7.192+1<br>1.116  | 3.903+1<br>1.435  | 2.389+1<br>1.578  | 1.586+1<br>1.657 | 1.114+1<br>1.706   | 8.157+0<br>1.736 | 6.173+0<br>1.754   | 4.794+0<br>1.764 | 3.804+0<br>1.768 |
| $L_b = 1086.0 \text{ eV}$                    | $\gamma$               | 3.02-1                      | 4.08-1            | 2.01-1            | 3.09-2            | -4.67 - 2        | -5.54-2            | -1.83-2          | 4.85-2             | 1.764            | 2.34-1           |
|                                              | δ                      | 9.71-2                      | 3.20-2            | 1.08-3            | 2.35-4            | 5.11-3           | 1.06-2             | 1.56-2           | 1.99-2             | 2.35-2           | 2.66-2           |
| 4d <sub>3/2</sub>                            | σ                      | 1.531+2                     | 1.032+2           | 4.944+1           | 2.660+1           | 1.570+1          | 9.924+0            | 6.615+0          | 4.597+0            | 3.305+0          | 2.442+0          |
| $E_b = 816.1 \text{ eV}$                     | $\beta$                | 0.563<br>1.82-1             | 0.931<br>4.40-2   | 1.234             | 1.345<br>2.56—2   | 1.386<br>1.93_1  | 1.394<br>3.82_1    | 1.383<br>5.72-1  | 1.363<br>7.55-1    | 1.337            | 1.307            |
| 0 10.1 EV                                    | $_{\delta}^{\gamma}$   | 5.55-2                      | 4.40—2<br>1.04—2  | -6.52-2 $1.79-2$  | 2.56-2<br>3.79-2  | 1.93-1<br>5.50-2 | 3.82-1<br>6.93-2   | 5.72-1<br>8.19-2 | 9.38-2             | 9.28-1<br>1.05-1 | 1.09+0<br>1.16-1 |
| 4d <sub>5/2</sub>                            | σ                      | 2.337+2                     | 1.511+2           | 6.931+1           | 3.635+1           | 2.106+1          | 1.313+1            | 8.645+0          | 5.946+0            | 4.234+0          | 3.102+0          |
| $E_b =$                                      | β                      | 0.889                       | 1.159             | 1.342             | 1.378             | 1.367            | 1.337              | 1.300            | 1.258              | 1.216            | 1.173            |
| 770.8 eV                                     | γ                      | 1.72-1                      | 4.03-3            | -4.76-2           | 9.28-2            | 2.87-1           | 4.85-1             | 6.74-1           | 8.50-1             | 1.01+0           | 1.15+0           |
| 46                                           | δ                      | 3.58-2                      | 8.74-3            | 1.67-2            | 3.30-2            | 4.89-2           | 6.42-2             | 7.94-2           | 9.50-2             | 1.10-1           | 1.26-1           |
| $4f_{5/2}$<br>$E_b =$                        | $\frac{\sigma}{\beta}$ | 2.881+2<br>0.916            | 1.267+2<br>1.017  | 3.574+1<br>1.053  | 1.357+1<br>1.016  | 6.162+0<br>0.959 | 3.156+0<br>0.898   | 1.765+0<br>0.838 | 1.055+0<br>0.780   | 6.649-1<br>0.725 | 4.373-1<br>0.674 |
| $E_b = 414.3 \text{ eV}$                     | $\gamma$               | 2.57-2                      | 1.50-1            | 4.21–1            | 6.60-1            | 8.60-1           | 1.03+0             | 1.16+0           | 1.28+0             | 1.37+0           | 1.44+0           |
|                                              | δ                      | 5.14-2                      | 7.76-2            | 1.20-1            | 1.56-1            | 1.89-1           | 2.21-1             | 2.53-1           | 2.81-1             | 3.08-1           | 3.34-1           |
| 4f <sub>7/2</sub>                            | σ                      | 3.641+2                     | 1.589+2           | 4.443+1           | 1.675+1           | 7.557+0          | 3.849+0            | 2.141+0          | 1.274+0            | 7.990-1          | 5.233-1          |
| $E_b =$                                      | β                      | 0.941                       | 1.027             | 1.045             | 0.999             | 0.940            | 0.879              | 0.820            | 0.764              | 0.713            | 0.665            |
|                                              |                        |                             |                   |                   |                   |                  |                    |                  |                    |                  |                  |

8.89-1

1.05+0

1.19+0

1.30+0

1.39+0

4.48-1 6.90-1

Table 1 (continued)

403.4 eV  $\gamma$  3.40-2

1.67 - 1

1.46+0

| 403.4 eV                | γ                 | 5.40-2          | 7.06      | 4.48-1    | 0.90-1    | 8.89-1    | 1.05+0    | 1.19+0    | 1.30+0    | 1.39+0    | 1.40+0    |
|-------------------------|-------------------|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|                         | δ                 | 5.30-2          | 7.86-2    | 1.20-1    | 1.56-1    | 1.90-1    | 2.23-1    | 2.56-1    | 2.86-1    | 3.15-1    | 3.41-1    |
| $5s_{1/2}$              | $\sigma$          | 9.428+0         | 6.149+0   | 3.266+0   | 2.048+0   | 1.411+0   | 1.034+0   | 7.902 - 1 | 6.235 - 1 | 5.042 - 1 | 4.157 - 1 |
| $E_b =$                 | $\beta$           | 1.597           | 1.644     | 1.693     | 1.719     | 1.739     | 1.754     | 1.767     | 1.779     | 1.789     | 1.798     |
| 339.8 eV                | γ                 | 6.88-1          | 6.65-1    | 5.53-1    | 4.24-1    | 3.01-1    | 1.91-1    | 9.69-2    | 1.84-2    | -4.61-2   | -9.80-2   |
|                         | δ                 | 1.20-3          | -3.93-4   | -2.58-3   | -4.10-3   | -5.25-3   | -6.16-3   | -6.92-3   | -7.56-3   | -8.12-3   | -8.63-3   |
| $5p_{1/2}$              | $\sigma$          | 8.565+0         | 6.137+0   | 3.614+0   | 2.381+0   | 1.680+0   | 1.243+0   | 9.517 - 1 | 7.486 - 1 | 6.016 - 1 | 4.920 - 1 |
| $E_b =$                 | $\beta$           | 1.287           | 1.471     | 1.623     | 1.678     | 1.700     | 1.706     | 1.704     | 1.697     | 1.686     | 1.673     |
| 283.4 eV                | γ                 | 6.30 - 1        | 5.27 - 1  | 2.69 - 1  | 1.01 - 1  | 1.94 - 2  | -1.26 - 3 | 1.83 - 2  | 6.43 - 2  | 1.28 - 1  | 2.04 - 1  |
|                         | δ                 | -4.50 - 3       | -1.31-2   | -1.55-2   | -1.45 - 2 | -1.34-2   | -1.25-2   | -1.16-2   | -1.06-2   | -9.28 - 3 | -7.72 - 3 |
| 5p <sub>3/2</sub>       | σ                 | 2.934+1         | 1.868+1   | 9.433+0   | 5.615+0   | 3.678+0   | 2.565+0   | 1.872+0   | 1.413+0   | 1.095+0   | 8.682-1   |
| $E_b =$                 | $\beta$           | 1.264           | 1.415     | 1.579     | 1.665     | 1.716     | 1.748     | 1.767     | 1.778     | 1.782     | 1.782     |
| 206.0 eV                | γ                 | 3.34 - 1        | 2.44 - 1  | 7.03 - 2  | -2.65-2   | -5.40-2   | -3.24-2   | 2.25 - 2  | 9.96 - 2  | 1.92 - 1  | 2.94 - 1  |
|                         | δ                 | 4.34 - 3        | -3.65 - 3 | -4.32 - 3 | 7.65 - 4  | 6.48 - 3  | 1.16 - 2  | 1.60 - 2  | 1.97 - 2  | 2.28 - 2  | 2.56 - 2  |
| 5d <sub>3/2</sub>       | σ                 | 3.085+1         | 1.929+1   | 8.883+0   | 4.763+0   | 2.823+0   | 1.795+0   | 1.203+0   | 8.403-1   | 6.065-1   | 4.498-1   |
| $E_b =$                 | β                 | 1.044           | 1.214     | 1.366     | 1.420     | 1.432     | 1.424     | 1.404     | 1.377     | 1.346     | 1.312     |
| 109.3 eV                | γ                 | 7.03 - 2        | -2.01-2   | -2.03-2   | 1.04 - 1  | 2.75 - 1  | 4.59 - 1  | 6.42 - 1  | 8.19 - 1  | 9.85 - 1  | 1.14+0    |
|                         | δ                 | -1.92 - 3       | 2.33 - 3  | 2.11-2    | 3.86 - 2  | 5.32 - 2  | 6.61 - 2  | 7.81 - 2  | 8.96 - 2  | 1.01 - 1  | 1.11 - 1  |
| 5d <sub>5/2</sub>       | σ                 | 4.579+1         | 2.785+1   | 1.239+1   | 6.494+0   | 3.783+0   | 2.373+0   | 1.572+0   | 1.087+0   | 7.769-1   | 5.712-1   |
| $E_b =$                 | β                 | 1.275           | 1.373     | 1.427     | 1.418     | 1.386     | 1.345     | 1.302     | 1.257     | 1.211     | 1.167     |
| 101.2 eV                | γ                 | 3.24 - 2        | -3.85 - 2 | 1.40 - 2  | 1.75 - 1  | 3.63 - 1  | 5.52 - 1  | 7.32 - 1  | 8.99 - 1  | 1.05+0    | 1.19+0    |
|                         | δ                 | 8.62 - 5        | 4.17 - 3  | 1.84 - 2  | 3.33 - 2  | 4.78 - 2  | 6.25 - 2  | 7.77 - 2  | 9.30 - 2  | 1.08 - 1  | 1.23 - 1  |
| 5f <sub>5/2</sub>       | σ                 | 2.081+1         | 9.673+0   | 2.923+0   | 1.157+0   | 5.401-1   | 2.820-1   | 1.598-1   | 9.650-2   | 6.128-2   | 4.054-2   |
| $E_b =$                 | β                 | 1.073           | 1.108     | 1.085     | 1.025     | 0.960     | 0.896     | 0.835     | 0.776     | 0.722     | 0.670     |
| 6.0 eV                  | γ                 | 8.60 - 2        | 2.11 - 1  | 4.65 - 1  | 6.86 - 1  | 8.74 - 1  | 1.04+0    | 1.17+0    | 1.28+0    | 1.37+0    | 1.45+0    |
|                         | δ                 | 5.05 - 2        | 7.37 - 2  | 1.14 - 1  | 1.50 - 1  | 1.84 - 1  | 2.17 - 1  | 2.48 - 1  | 2.78 - 1  | 3.06 - 1  | 3.31 - 1  |
| 6s <sub>1/2</sub>       | σ                 | 2.028+0         | 1.294+0   | 6.711-1   | 4.156-1   | 2.844-1   | 2.074-1   | 1.581-1   | 1.245-1   | 1.005-1   | 8.274-2   |
| $E_b =$                 | β                 | 1.623           | 1.661     | 1.702     | 1.726     | 1.744     | 1.758     | 1.771     | 1.782     | 1.792     | 1.800     |
| 50.0 eV                 | γ                 | 6.30 - 1        | 6.06 - 1  | 5.02 - 1  | 3.81 - 1  | 2.65 - 1  | 1.62 - 1  | 7.36 - 2  | -3.16 - 4 | -6.08 - 2 | -1.09 - 1 |
|                         | δ                 | 3.54 - 4        | -9.70 - 4 | -2.90 - 3 | -4.29 - 3 | -5.36 - 3 | -6.24 - 3 | -6.96 - 3 | -7.59 - 3 | -8.14 - 3 | -8.63 - 3 |
| 6p <sub>1/2</sub>       | σ                 | 1.622+0         | 1.130+0   | 6.471-1   | 4.208-1   | 2.950-1   | 2.174-1   | 1.661-1   | 1.304-1   | 1.046-1   | 8.550-2   |
| $E_b =$                 | β                 | 1.382           | 1.530     | 1.652     | 1.695     | 1.711     | 1.714     | 1.710     | 1.701     | 1.689     | 1.675     |
| 29.3 eV                 | γ                 | 5.76-1          | 4.61 - 1  | 2.24 - 1  | 7.75-2    | 1.02-2    | -1.55 - 3 | 2.37 - 2  | 7.33-2    | 1.39 - 1  | 2.15 - 1  |
|                         | δ                 | -1.30-2         | -1.65-2   | -1.59 - 2 | -1.44-2   | -1.33-2   | -1.25-2   | -1.16-2   | -1.06-2   | -9.39 - 3 | -7.85 - 3 |
| 6p <sub>3/2</sub>       | σ                 | 4.618+0         | 2.903+0   | 1.446+0   | 8.555-1   | 5.586-1   | 3.889-1   | 2.834-1   | 2.137-1   | 1.656-1   | 1.311-1   |
|                         | β                 | 1.323           | 1.456     | 1.602     | 1.680     | 1.726     | 1.755     | 1.773     | 1.782     | 1.785     | 1.785     |
| $E_b = 17.5 \text{ eV}$ | γ                 | 3.06-1          | 2.15-1    | 5.29-2    | -3.27-2   | -5.30-2   | -2.67 - 2 | 3.12-2    | 1.10-1    | 2.03-1    | 3.04-1    |
|                         | δ                 | -1.31 - 3       | -6.01 - 3 | -4.48 - 3 | 1.03 - 3  | 6.74 - 3  | 1.18 - 2  | 1.60 - 2  | 1.96 - 2  | 2.26 - 2  | 2.52 - 2  |
| 6d <sub>3/2</sub>       | σ                 | 2.177+0         | 1.351+0   | 6.185-1   | 3.312-1   | 1.962-1   | 1.248-1   | 8.366-2   | 5.841-2   | 4.216-2   | 3.126-2   |
| $E_b =$                 | β                 | 1.092           | 1.247     | 1.383     | 1.430     | 1.439     | 1.428     | 1.406     | 1.378     | 1.347     | 1.314     |
| $E_b = 6.0 \text{ eV}$  | γ                 | 6.21 - 2        | -2.20-2   | -1.46 - 2 | 1.12 - 1  | 2.86 - 1  | 4.72 - 1  | 6.54 - 1  | 8.27 - 1  | 9.88 - 1  | 1.14+0    |
|                         | δ                 | -3.88 - 3       | 2.11 - 3  | 2.10 - 2  | 3.82 - 2  | 5.31 - 2  | 6.61 - 2  | 7.77 - 2  | 8.83-2    | 9.87 - 2  | 1.09 - 1  |
| 7s <sub>1/2</sub>       | σ                 | 1.793-1         | 1.139-1   | 5.879-2   | 3.632-2   | 2.482-2   | 1.809-2   | 1.378-2   | 1.084-2   | 8.750-3   | 7.203-3   |
| $E_b =$                 | β                 | 1.625           | 1.662     | 1.703     | 1.728     | 1.746     | 1.760     | 1.771     | 1.781     | 1.790     | 1.798     |
| 6.0 eV                  | γ                 | 6.27 - 1        | 6.02 - 1  | 4.98 - 1  | 3.76 - 1  | 2.61 - 1  | 1.59 - 1  | 7.19 - 2  | -2.14 - 3 | -6.34 - 2 | -1.12 - 1 |
|                         | δ                 | 2.68 - 4        | -1.03 - 3 | -2.94 - 3 | -4.32 - 3 | -5.37 - 3 | -6.22 - 3 | -6.97 - 3 | -7.65 - 3 | -8.22 - 3 | -8.74 - 3 |
| Z= 94, Pu: [R           | n15f <sup>6</sup> | 7s <sup>2</sup> |           |           |           |           |           |           |           |           |           |
| Z- 34, Fu. [K           | 11]315/2          |                 |           |           |           |           |           |           |           |           |           |
|                         |                   | k (eV)          |           |           |           |           |           |           |           |           |           |
| Shell                   |                   | 1500            | 2000      | 3000      | 4000      | 5000      | 6000      | 7000      | 8000      | 9000      | 10000     |
| 4p <sub>1/2</sub>       | σ                 | 2.094+1         | 1.882+1   | 1.335+1   | 9.463+0   | 6.934+0   | 5.244+0   | 4.075+0   | 3.238+0   | 2.622+0   | 2.157+0   |
| $E_b =$                 | β                 |                 | 0.924     | 1.413     | 1.564     | 1.627     | 1.657     | 1.670     | 1.673     | 1.670     | 1.663     |
| 1377.4 eV               | γ                 | -3.12 - 1       | 6.95 - 1  | 5.81 - 1  | 2.92 - 1  | 1.14 - 1  | 2.83 - 2  | 5.72 - 3  | 2.47 - 2  | 7.03 - 2  | 1.33 - 1  |
|                         | δ                 | 2.62 - 1        | 7.46 - 2  | -1.12 - 3 | -1.21-2   | -1.37 - 2 | -1.33-2   | -1.25 - 2 | -1.13-2   | -9.84 - 3 | -8.17 - 3 |
| 4p <sub>3/2</sub>       | σ                 | 1.050+2         | 7.328+1   | 3.997+1   | 2.455+1   | 1.633+1   | 1.150+1   | 8.435+0   | 6.392+0   | 4.970+0   | 3.947+0   |
| $E_b =$                 | β                 | 0.593           | 1.072     | 1.411     | 1.562     | 1.645     | 1.696     | 1.729     | 1.749     | 1.761     | 1.767     |
| 1120.9 eV               | γ                 | 2.63 - 1        | 4.15 - 1  | 2.21 - 1  | 4.56 - 2  | -4.06-2   | -5.81-2   | -2.82 - 2 | 3.30 - 2  | 1.14 - 1  | 2.08 - 1  |
|                         | δ                 | 1.10 - 1        | 3.69 - 2  | 1.58 - 3  | -2.29 - 4 | 4.48 - 3  | 1.01 - 2  | 1.54 - 2  | 1.99 - 2  | 2.37 - 2  | 2.69 - 2  |
| 4d <sub>3/2</sub>       | σ                 | 1.555+2         | 1.058+2   | 5.126+1   | 2.776+1   | 1.646+1   | 1.044+1   | 6.978+0   | 4.860+0   | 3.499+0   | 2.590+0   |
| $E_b =$                 | β                 | 0.500           | 0.892     | 1.216     | 1.336     | 1.382     | 1.394     | 1.387     | 1.369     | 1.345     | 1.317     |
| 848.9 eV                | γ                 | 1.89-1          | 6.14-2    | -6.71-2   | 8.80-3    | 1.69-1    | 3.55-1    | 5.43-1    | 7.23-1    | 8.94-1    | 1.05+0    |
|                         | δ                 | 6.79 - 2        | 1.25-2    | 1.65 - 2  | 3.64 - 2  | 5.41-2    | 6.89-2    | 8.13-2    | 9.26 - 2  | 1.03-1    | 1.14 - 1  |
| 4d <sub>5/2</sub>       | σ                 | 2.385+2         | 1.556+2   | 7.200+1   | 3.797+1   | 2.209+1   | 1.381+1   | 9.115+0   | 6.280+0   | 4.479+0   | 3.287+0   |
| $E_b =$                 | β                 | 0.847           | 1.138     | 1.336     | 1.378     | 1.371     | 1.343     | 1.307     | 1.266     | 1.225     | 1.184     |
| 801.5 eV                | γ                 | 1.92-1          | 1.91-2    | -5.43-2   | 7.42-2    | 2.64-1    | 4.63-1    | 6.52-1    | 8.25-1    | 9.84-1    | 1.13+0    |
| •                       | δ                 | 4.33-2          | 9.80-3    | 1.55-2    | 3.15-2    | 4.76-2    | 6.31-2    | 7.79-2    | 9.24-2    | 1.07-1    | 1.22-1    |
| $4f_{5/2}$              | σ                 | 3.088+2         | 1.365+2   | 3.876+1   | 1.480+1   | 6.744+0   | 3.464+0   | 1.942+0   | 1.163+0   | 7.345-1   | 4.839-1   |
| $E_b =$                 | β                 | 0.900           | 1.009     | 1.054     | 1.021     | 0.965     | 0.905     | 0.846     | 0.790     | 0.737     | 0.687     |
| 437.4 eV                | γ                 | 1.22-2          | 1.32-1    | 4.02-1    | 6.46-1    | 8.47-1    | 1.01+0    | 1.15+0    | 1.27+0    | 1.36+0    | 1.44+0    |
| -                       | δ                 | 4.84-2          | 7.49-2    | 1.18-1    | 1.55-1    | 1.87-1    | 2.18-1    | 2.48-1    | 2.77-1    | 3.05-1    | 3.31-1    |
|                         | 0                 | 1.01 2          |           |           |           |           |           |           |           |           |           |

| Tab | nle 1 | l (c | nnt | inı | ed) |
|-----|-------|------|-----|-----|-----|

| $4f_{7/2}$ $E_b = 425.2 \text{ eV}$ | σ<br>β<br>γ<br>δ                  | 3.895+2<br>0.927<br>1.99-2<br>5.03-2 | 1.708+2<br>1.022<br>1.50-1<br>7.61-2 | 4.808+1<br>1.047<br>4.30-1<br>1.18-1 | 1.822+1<br>1.005<br>6.76-1<br>1.55-1 | 8.250+0<br>0.946<br>8.78-1<br>1.88-1 | 4.213+0<br>0.885<br>1.04+0<br>2.19-1 | 2.349+0<br>0.827<br>1.18+0<br>2.51-1 | 1.400+0<br>0.773<br>1.29+0<br>2.82-1 | 8.802-1<br>0.723<br>1.39+0<br>3.11-1 | 5.775-1<br>0.676<br>1.46+0<br>3.39-1 |
|-------------------------------------|-----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| 5s <sub>1/2</sub>                   | σ                                 | 9.602+0                              | 6.280+0                              | 3.344+0                              | 2.101+0                              | 1.450+0                              | 1.064+0                              | 8.139-1                              | 6.428-1                              | 5.202-1                              | 4.293-1                              |
| $E_b = 351.9 \text{ eV}$            | $eta \ \gamma \ \delta$           | 1.563<br>7.03-1<br>1.54-3            | 1.616<br>6.85-1<br>-1.97-4           | 1.672<br>5.78-1<br>-2.58-3           | 1.701<br>4.53-1<br>-4.20-3           | 1.720<br>3.31-1<br>-5.44-3           | 1.736<br>2.21-1<br>-6.45-3           | 1.749<br>1.24-1<br>-7.30-3           | 1.762<br>4.22-2<br>-8.00-3           | 1.773<br>-2.56-2<br>-8.59-3          | 1.783<br>-8.04-<br>-9.11-            |
| $5p_{1/2}$ $E_b =$                  | $\sigma$ $\beta$                  | 8.580+0<br>1.255                     | 6.182+0<br>1.452                     | 3.668+0<br>1.614                     | 2.429+0<br>1.673                     | 1.722+0<br>1.696                     | 1.279+0<br>1.704                     | 9.823-1<br>1.704                     | 7.746-1<br>1.698                     | 6.238-1<br>1.689                     | 5.112-1<br>1.677                     |
| 282.5 eV                            | γ<br>δ                            | 6.47 - 1 $-4.61 - 3$                 | 5.53-1<br>-1.41-2                    | 2.95-1 $-1.66-2$                     | 1.20-1<br>-1.54-2                    | 2.93-2<br>-1.43-2                    | 2.08-4 $-1.33-2$                     | 1.31-2<br>-1.24-2                    | 5.37-2<br>-1.14-2                    | 1.12-1<br>-1.01-2                    | 1.83-1<br>-8.56-                     |
| 5p <sub>3/2</sub>                   | σ                                 | 3.044+1                              | 1.941+1                              | 9.815+0                              | 5.851+0                              | 3.839+0                              | 2.682+0                              | 1.959+0                              | 1.480+0                              | 1.149+0                              | 9.113-1                              |
| $E_b =$                             | β                                 | 1.233                                | 1.394                                | 1.565                                | 1.654                                | 1.707                                | 1.741                                | 1.762                                | 1.775                                | 1.781                                | 1.783                                |
| 215.3 eV                            | $\frac{\gamma}{\delta}$           | 3.44-1<br>5.44-3                     | 2.59-1<br>-3.53-3                    | 8.35-2 $-4.86-3$                     | -1.90-2 $1.15-4$                     | -5.37-2<br>5.94-3                    | -3.87-2<br>1.13-2                    | 1.07-2<br>1.59-2                     | 8.30-2<br>1.98-2                     | 1.71-1<br>2.31-2                     | 2.68-1<br>2.59-2                     |
| 5d <sub>3/2</sub>                   | σ                                 | 3.190+1                              | 2.005+1                              | 9.293+0                              | 5.008+0                              | 2.980+0                              | 1.901+0                              | 1.277+0                              | 8.939-1                              | 6.464-1                              | 4.803-                               |
| $E_b =$                             | β                                 | 1.019                                | 1.198                                | 1.358                                | 1.416                                | 1.432                                | 1.427                                | 1.409                                | 1.385                                | 1.356                                | 1.324                                |
| 116.0 eV                            | $\delta$                          | 8.34-2 $-1.72-3$                     | -1.31-2<br>1.50-3                    | -2.72-2 $1.98-2$                     | 8.79-2<br>3.76-2                     | 2.55-1<br>5.27-2                     | 4.36-1<br>6.56-2                     | 6.15-1<br>7.71-2                     | 7.89-1<br>8.80-2                     | 9.53-1<br>9.87-2                     | 1.11+0<br>1.09-1                     |
| 5d <sub>5/2</sub>                   | σ                                 | 4.774+1                              | 2.916+1                              | 1.304+1                              | 6.865+0                              | 4.015+0                              | 2.525+0                              | 1.676+0                              | 1.161+0                              | 8.316-1                              | 6.125-                               |
| $E_b =$                             | β                                 | 1.267                                | 1.369                                | 1.428                                | 1.422                                | 1.392                                | 1.352                                | 1.309                                | 1.265                                | 1.221                                | 1.178                                |
| 105.2 eV                            | $\delta$                          | 4.33-2<br>4.54-5                     | -3.52-2<br>3.57-3                    | 4.69-3<br>1.73-2                     | 1.59-1<br>3.21-2                     | 3.46-1<br>4.69-2                     | 5.34-1<br>6.14-2                     | 7.12-1<br>7.57-2                     | 8.76-1 $9.02-2$                      | 1.03+0<br>1.05-1                     | 1.17+0<br>1.20-1                     |
| $5f_{5/2}$                          | σ                                 | 2.189+1                              | 1.025+1                              | 3.125+0                              | 1.246+0                              | 5.843-1                              | 3.063-1                              | 1.742-1                              | 1.055-1                              | 6.713-2                              | 4.450-2                              |
| $E_b =$                             | β                                 | 1.070                                | 1.109                                | 1.090                                | 1.033                                | 0.967                                | 0.903                                | 0.842                                | 0.786                                | 0.733                                | 0.683                                |
| 6.0 eV                              | $_{\delta}^{\gamma}$              | 7.50-2<br>4.82-2                     | 1.97—1<br>7.13—2                     | 4.50-1<br>1.12-1                     | 6.74-1<br>1.49-1                     | 8.64-1<br>1.82-1                     | 1.02+0<br>2.13-1                     | 1.16+0<br>2.43-1                     | 1.27+0<br>2.73-1                     | 1.37+0<br>3.02-1                     | 1.45+0<br>3.28-1                     |
| 6s <sub>1/2</sub>                   | σ                                 | 2.029+0                              | 1.297+0                              | 6.739-1                              | 4.180-1                              | 2.864-1                              | 2.091-1                              | 1.595-1                              | 1.257-1                              | 1.016-1                              | 8.370-                               |
| $E_b =$                             | β                                 | 1.593                                | 1.636                                | 1.683                                | 1.709                                | 1.727                                | 1.741                                | 1.753                                | 1.765                                | 1.775                                | 1.785                                |
| 48.6 eV                             | $_{\delta}^{\gamma}$              | 6.44-1<br>5.70-4                     | 6.23-1<br>-8.77-4                    | 5.24-1<br>-2.94-3                    | 4.07 - 1 $-4.42 - 3$                 | 2.93-1<br>-5.58-3                    | 1.89-1<br>-6.54-3                    | 9.88-2 $-7.35-3$                     | 2.18-2<br>-8.04-3                    | -4.21-2 $-8.63-3$                    | -9.37-<br>-9.14-                     |
| $6p_{1/2}$                          | σ                                 | 1.616+0                              | 1.130+0                              | 6.512-1                              | 4.254-1                              | 2.994-1                              | 2.214-1                              | 1.696-1                              | 1.335-1                              | 1.074-1                              | 8.789—                               |
| $E_b =$                             | β                                 | 1.352                                | 1.513                                | 1.644                                | 1.691                                | 1.709                                | 1.713                                | 1.711                                | 1.703                                | 1.693                                | 1.680                                |
| 30.6 eV                             | $\delta$                          | 6.01-1 $-1.39-2$                     | 4.91-1 $-1.77-2$                     | 2.50-1 $-1.71-2$                     | 9.51-2<br>-1.53-2                    | 1.87 - 2 $-1.41 - 2$                 | -1.56-3 $-1.33-2$                    | 1.70-2<br>-1.24-2                    | 6.14-2 $-1.15-2$                     | 1.23-1<br>-1.03-2                    | 1.95-1<br>-8.78-                     |
| $6p_{3/2}$                          | σ                                 | 4.483+0                              | 2.821+0                              | 1.407+0                              | 8.334-1                              | 5.449-1                              | 3.800-1                              | 2.773-1                              | 2.094-1                              | 1.624-1                              | 1.288-                               |
| $E_b =$                             | β                                 | 1.299                                | 1.439                                | 1.590                                | 1.671                                | 1.719                                | 1.749                                | 1.769                                | 1.780                                | 1.785                                | 1.786                                |
| 18.4 eV                             | $\delta$                          | 3.16-1 $-9.01-4$                     | 2.28-1 $-6.18-3$                     | 6.43-2 $-5.06-3$                     | -2.64-2 $4.02-4$                     | -5.31-2 $6.22-3$                     | -3.34-2 $1.15-2$                     | 1.91-2<br>1.60-2                     | 9.39-2<br>1.98-2                     | 1.83-1<br>2.30-2                     | 2.81-1<br>2.57-2                     |
| 7s <sub>1/2</sub>                   | σ                                 | 1.520-1                              | 9.674-2                              | 5.005-2                              | 3.095-2                              | 2.117-2                              | 1.544-2                              | 1.177-2                              | 9.275-3                              | 7.492-3                              | 6.174-                               |
| $E_b = 6.0 \text{ eV}$              | β                                 | 1.595                                | 1.638                                | 1.683                                | 1.708                                | 1.727                                | 1.742                                | 1.756                                | 1.767                                | 1.776                                | 1.785                                |
| 6.0 ev                              | $\frac{\gamma}{\delta}$           | 6.41-1 $4.90-4$                      | 6.20-1 $-9.39-4$                     | 5.22-1 $-2.98-3$                     | 4.05-1 $-4.47-3$                     | 2.90-1 $-5.62-3$                     | 1.86 - 1 $-6.54 - 3$                 | 9.65-2 $-7.30-3$                     | 2.08-2 $-8.00-3$                     | -4.26-2 $-8.61-3$                    | -9.46-<br>-9.19-                     |
| Z= 95, Am: [F                       | Rn]5f <sup>6</sup> <sub>5/2</sub> |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |
| Chall                               |                                   | k (eV)<br>1500                       | 2000                                 | 2000                                 | 4000                                 | 5000                                 | 6000                                 | 7000                                 | 9000                                 | 0000                                 | 10000                                |
| Shell<br>4p <sub>1/2</sub>          | σ                                 | 1.986+1                              | 2000<br>1.827+1                      | 3000<br>1.323+1                      | 9.481+0                              | 5000<br>6.995+0                      | 5.319+0                              | 7000<br>4.150+0                      | 8000<br>3.308+0                      | 9000<br>2.686+0                      | 10000<br>2.215+0                     |
| $E_b =$                             | β                                 |                                      | 0.842                                | 1.381                                | 1.548                                | 1.617                                | 1.651                                | 1.666                                | 1.672                                | 1.671                                | 1.665                                |
| 1435.1 eV                           | $\delta \gamma$                   | -6.14-1 $2.94-1$                     | 6.72-1<br>8.99-2                     | 6.31-1<br>3.83-4                     | 3.33-1<br>-1.27-2                    | 1.41-1 $-1.45-2$                     | 4.21-2 $-1.42-2$                     | 8.38 - 3 $-1.33 - 2$                 | 1.84-2 $-1.22-2$                     | 5.72-2 $-1.08-2$                     | 1.14-1<br>-9.12-                     |
| $4p_{3/2}$                          | σ                                 | 1.063+2                              | 7.469+1                              | 4.097+1                              | 2.523+1                              | 1.683+1                              | 1.187+1                              | 8.723+0                              | 6.620+0                              | 5.153+0                              | 4.097+0                              |
| $E_b =$                             | β                                 | 0.496                                | 1.020                                | 1.383                                | 1.543                                | 1.631                                | 1.685                                | 1.721                                | 1.744                                | 1.758                                | 1.765                                |
| 1168.0 eV                           | $\gamma \\ \delta$                | 2.12-1<br>1.26-1                     | 4.22-1<br>4.33-2                     | 2.44-1<br>2.40-3                     | 6.20-2 $-6.89-4$                     | −3.31−2<br>3.78−3                    | -5.93-2<br>9.54-3                    | -3.72-2<br>1.50-2                    | 1.77-2<br>1.98-2                     | 9.40-2<br>2.38-2                     | 1.84-1<br>2.72-2                     |
| 4d <sub>3/2</sub>                   | σ                                 | 1.575+2                              | 1.082+2                              | 5.298+1                              | 2.887+1                              | 1.720+1                              | 1.095+1                              | 7.340+0                              | 5.123+0                              | 3.697+0                              | 2.741+0                              |
| $E_b =$                             | β                                 | 0.443                                | 0.855                                | 1.197                                | 1.326                                | 1.378                                | 1.394                                | 1.390                                | 1.374                                | 1.352                                | 1.326                                |
| 880.4 eV                            | $\frac{\gamma}{\delta}$           | 1.90-1<br>8.04-2                     | 7.73-2<br>1.51-2                     | -6.74-2 $1.53-2$                     | -5.82-3<br>3.50-2                    | 1.45-1<br>5.30-2                     | 3.27-1<br>6.81-2                     | 5.14-1<br>8.08-2                     | 6.93-1<br>9.20-2                     | 8.63-1<br>1.02-1                     | 1.02+0<br>1.13-1                     |
| 4d <sub>5/2</sub>                   | σ                                 | 2.428+2                              | 1.597+2                              | 7.452+1                              | 3.951+1                              | 2.308+1                              | 1.448+1                              | 9.581+0                              | 6.615+0                              | 4.727+0                              | 3.474+0                              |
| $E_b =$                             | β                                 | 0.808                                | 1.118                                | 1.330                                | 1.378                                | 1.374                                | 1.349                                | 1.314                                | 1.275                                | 1.234                                | 1.194                                |
| 830.0 eV                            | $_{\delta}^{\gamma}$              | 2.07-1<br>5.08-2                     | 3.35-2<br>1.10-2                     | -5.90-2 $1.46-2$                     | 5.78-2<br>3.02-2                     | 2.42-1<br>4.61-2                     | 4.39-1<br>6.16-2                     | 6.28-1<br>7.64-2                     | 8.03-1<br>9.07-2                     | 9.61-1<br>1.05-1                     | 1.11+0<br>1.19-1                     |
| $4f_{5/2}$                          | σ                                 | 3.291+2                              | 1.462+2                              | 4.182+1                              | 1.605+1                              | 7.345+0                              | 3.785+0                              | 2.127+0                              | 1.277+0                              | 8.077-1                              | 5.330-                               |
| $E_b =$                             | β                                 | 0.883                                | 1.001                                | 1.054                                | 1.026                                | 0.972                                | 0.913                                | 0.854                                | 0.799                                | 0.747                                | 0.697                                |
| 463.3 eV                            | γ                                 | -5.88-4                              | 1.15-1                               | 3.83-1                               | 6.28-1                               | 8.33-1                               | 1.00+0                               | 1.14+0                               | 1.26+0                               | 1.36+0                               | 1.44+0                               |
| $4f_{7/2}$                          | δ                                 | 4.53-2                               | 7.22-2                               | 1.15-1                               | 1.52-1                               | 1.85-1                               | 2.15-1                               | 2.44-1                               | 2.73-1                               | 3.01-1                               | 3.28-1                               |
| 41- /n                              | σ                                 | 4.147+2                              | 1.828+2                              | 5.181+1                              | 1.974+1                              | 8.976+0                              | 4.599+0                              | 2.571+0                              | 1.536+0                              | 9.671 - 1                            | 6.354 -                              |

(continued on next page)

0.953

8.65 - 1

1.86 - 1

0.892

1.03+0

2.17 - 1

0.835

1.17+0

2.47 - 1

0.781

1.29+0

2.78 - 1

1.010

6.60 - 1

1.52 - 1

Table 1 (continued)

β

γ δ

 $E_b =$ 

449.0 eV

0.914

6.34 - 3

4.73 - 2

1.016

1.32 - 1

7.36 - 2

1.049

4.11 - 1

1.16 - 1

0.685

1.46+0

3.35 - 1

0.732

1.38+0

3.07 - 1

|                                                  | δ                                | 4.73-2                                                | 7.36-2           | 1.16 - 1          | 1.52 - 1          | 1.86 - 1         | 2.17 - 1         | 2.47 - 1         | 2.78 - 1         | 3.07 - 1          | 3.35 - 1         |
|--------------------------------------------------|----------------------------------|-------------------------------------------------------|------------------|-------------------|-------------------|------------------|------------------|------------------|------------------|-------------------|------------------|
| 5s <sub>1/2</sub>                                | σ                                | 9.787+0                                               | 6.419+0          | 3.427+0           | 2.156+0           | 1.490+0          | 1.094+0          | 8.384-1          | 6.629 - 1        | 5.370-1           | 4.435 - 1        |
| $E_b =$                                          | β                                | 1.527                                                 | 1.587            | 1.648             | 1.680             | 1.702            | 1.718            | 1.732            | 1.744            | 1.756             | 1.767            |
| 373.0 eV                                         | $\gamma \over \delta$            | 7.19-1<br>1.98-3                                      | 7.07-1           | 6.07-1            | 4.83-1<br>-4.29-3 | 3.63-1           | 2.52-1           | 1.53-1           | 6.88-2           | -2.27-3 $-9.05-3$ | -6.07 - 2        |
|                                                  |                                  |                                                       | 5.01-5           | -2.54-3           |                   | -5.63-3          | -6.72-3          | -7.64-3          | -8.40-3          |                   | -9.63-3          |
| $5p_{1/2}$                                       | σ                                | 8.619+0                                               | 6.249+0<br>1.426 | 3.738+0           | 2.489+0           | 1.772+0          | 1.321+0          | 1.018+0<br>1.704 | 8.045-1          | 6.494-1           | 5.332-1          |
| $E_b = 303.0 \text{ eV}$                         | β                                | 1.210<br>6.72-1                                       | 1.426<br>5.89—1  | 1.601<br>3.28-1   | 1.666<br>1.43-1   | 1.692<br>4.21-2  | 1.703<br>3.80-3  | 1.704<br>8.80—3  | 1.700<br>4.31-2  | 1.692<br>9.66-2   | 1.681<br>1.63-1  |
| 303.0 CV                                         | $_{\delta}^{\gamma}$             | -4.15-3                                               | -1.50-2          | -1.78-2           | -1.65-2           | -1.52-2          | -1.42-2          | -1.32-2          | -1.22-2          | -1.09-2           | -9.47 - 3        |
| 5p <sub>3/2</sub>                                | σ                                | 3.147+1                                               | 2.011+1          | 1.019+1           | 6.087+0           | 4.000+0          | 2.799+0          | 2.048+0          | 1.550+0          | 1.204+0           | 9.561-1          |
| $E_b =$                                          | β                                | 1.209                                                 | 1.374            | 1.550             | 1.642             | 1.698            | 1.734            | 1.757            | 1.771            | 1.779             | 1.782            |
| 216.4 eV                                         | γ                                | 3.49 - 1                                              | 2.69 - 1         | 9.47 - 2          | -1.19 - 2         | -5.24-2          | -4.35 - 2        | 4.12 - 4         | 6.81 - 2         | 1.51 - 1          | 2.45 - 1         |
|                                                  | δ                                | 6.25 - 3                                              | -3.39 - 3        | -5.34 - 3         | -5.04 - 4         | 5.41 - 3         | 1.10 - 2         | 1.58 - 2         | 1.99 - 2         | 2.33-2            | 2.63 - 2         |
| 5d <sub>3/2</sub>                                | σ                                | 3.329+1                                               | 2.103+1          | 9.811+0           | 5.312+0           | 3.174+0          | 2.031+0          | 1.369+0          | 9.603 - 1        | 6.959 - 1         | 5.180 - 1        |
| $E_b =$                                          | β                                | 0.998                                                 | 1.182            | 1.349             | 1.412             | 1.432            | 1.430            | 1.415            | 1.392            | 1.365             | 1.335            |
| 118.0 eV                                         | γ                                | 9.41-2                                                | -6.47-3          | -3.24-2           | 7.32-2            | 2.34-1           | 4.12-1           | 5.89-1           | 7.61-1           | 9.24-1            | 1.08+0           |
|                                                  | δ                                | -1.45-3                                               | 8.16-4           | 1.87-2            | 3.66-2            | 5.20-2           | 6.51-2           | 7.65-2           | 8.72-2           | 9.75-2            | 1.08-1           |
| $5d_{5/2}$                                       | σ                                | 4.978+1<br>1.260                                      | 3.053+1<br>1.366 | 1.373+1<br>1.429  | 7.260+0<br>1.425  | 4.260+0<br>1.397 | 2.688+0<br>1.359 | 1.789+0<br>1.317 | 1.242+0<br>1.274 | 8.912-1<br>1.231  | 6.575-1<br>1.189 |
| $E_b = 107.9 \text{ eV}$                         | $\beta$ $\gamma$                 | 5.29–2                                                | -3.16-2          | -2.87 - 3         | 1.425             | 3.27-1           | 5.14-1           | 6.91–1           | 8.56—1           | 1.231             | 1.15+0           |
| 107.5 CV                                         | δ                                | 8.25-5                                                | 3.06-3           | 1.64-2            | 3.10-2            | 4.57-2           | 6.01-2           | 7.41-2           | 8.83-2           | 1.03-1            | 1.17-1           |
| 5f <sub>5/2</sub>                                | σ                                | 2.462+1                                               | 1.161+1          | 3.575+0           | 1.435+0           | 6.769-1          | 3.564-1          | 2.034-1          | 1.235-1          | 7.881-2           | 5.236-2          |
| $E_b =$                                          | β                                | 1.068                                                 | 1.110            | 1.095             | 1.040             | 0.975            | 0.911            | 0.851            | 0.795            | 0.742             | 0.692            |
| $E_b = 6.0 \text{ eV}$                           | γ                                | 6.52 - 2                                              | 1.85 - 1         | 4.36 - 1          | 6.61 - 1          | 8.51 - 1         | 1.01+0           | 1.15+0           | 1.27+0           | 1.36+0            | 1.45+0           |
|                                                  | δ                                | 4.60-2                                                | 6.90-2           | 1.09-1            | 1.46-1            | 1.79-1           | 2.10-1           | 2.40-1           | 2.69-1           | 2.97-1            | 3.24-1           |
| 5f <sub>7/2</sub>                                | σ                                | 2.918+1                                               | 1.365+1          | 4.155+0           | 1.653+0           | 7.735 - 1        | 4.045 - 1        | 2.294 - 1        | 1.385 - 1        | 8.797 - 2         | 5.818 - 2        |
| $E_b = 6.0 \text{ eV}$                           | β                                | 1.083                                                 | 1.112            | 1.082             | 1.020             | 0.954            | 0.889            | 0.830            | 0.776            | 0.726             | 0.680            |
| 6.0 eV                                           | $\gamma \over \delta$            | 7.23-2<br>4.77-2                                      | 2.00-1<br>6.99-2 | 4.61-1<br>1.09-1  | 6.90-1            | 8.83-1           | 1.04+0           | 1.18+0           | 1.29+0           | 1.39+0            | 1.47+0           |
| C-                                               |                                  |                                                       |                  |                   | 1.46-1            | 1.80-1           | 2.12-1           | 2.43-1           | 2.74-1           | 3.04-1            | 3.32-1           |
| 6s <sub>1/2</sub>                                | $\frac{\sigma}{eta}$             | 2.086+0<br>1.562                                      | 1.336+0<br>1.610 | 6.956-1<br>1.661  | 4.319-1<br>1.689  | 2.962-1<br>1.708 | 2.165-1<br>1.723 | 1.654-1<br>1.736 | 1.305-1<br>1.748 | 1.055-1<br>1.759  | 8.701-2<br>1.769 |
| $E_b = 50.4 \text{ eV}$                          | γ                                | 6.56-1                                                | 6.41-1           | 5.49-1            | 4.34-1            | 3.21-1           | 2.17-1           | 1.25-1           | 4.59-2           | -2.09-2           | -7.56-2          |
|                                                  | δ                                | 8.12-4                                                | -7.56-4          | -2.98 - 3         | -4.56-3           | -5.79-3          | -6.83-3          | -7.71-3          | -8.46 - 3        | -9.10-3           | -9.66-3          |
| 6p <sub>1/2</sub>                                | σ                                | 1.637+0                                               | 1.150+0          | 6.668-1           | 4.376-1           | 3.091-1          | 2.293-1          | 1.762-1          | 1.390-1          | 1.121-1           | 9.192-2          |
| $E_b =$                                          | β                                | 1.323                                                 | 1.494            | 1.635             | 1.686             | 1.706            | 1.712            | 1.711            | 1.705            | 1.696             | 1.684            |
| 31.1 eV                                          | γ                                | 6.24-1                                                | 5.20-1           | 2.77-1            | 1.14-1            | 2.86-2           | 4.20-4           | 1.18-2           | 5.03-2           | 1.07-1            | 1.75-1           |
|                                                  | δ                                | -1.48-2                                               | -1.91-2          | -1.83-2           | -1.64-2           | -1.50-2          | -1.40-2          | -1.32-2          | -1.22-2          | -1.10-2           | -9.63-3          |
| $6p_{3/2}$                                       | σ                                | 4.654+0                                               | 2.931+0          | 1.465+0           | 8.687-1           | 5.687-1          | 3.971-1          | 2.902-1          | 2.194-1          | 1.704-1           | 1.352-1          |
| $E_b = 18.1 \text{ eV}$                          | β                                | 1.277<br>3.24-1                                       | 1.421<br>2.39-1  | 1.576<br>7.53-2   | 1.659<br>-2.00-2  | 1.710<br>-5.26-2 | 1.743<br>-3.88-2 | 1.764<br>8.10-3  | 1.777<br>7.80—2  | 1.783<br>1.63-1   | 1.786<br>2.58-1  |
| 10.1 6                                           | $_{\delta}^{\gamma}$             | -5.17-4                                               | -6.29-3          | -5.66-3           | -2.50-2 $-2.50-4$ | 5.69-3           | 1.11-2           | 1.59-2           | 1.99-2           | 2.33-2            | 2.61-2           |
| 7s <sub>1/2</sub>                                | σ                                | 1.525-1                                               | 9.723-2          | 5.040-2           | 3.121-2           | 2.136-2          | 1.560-2          | 1.190-2          | 9.385-3          | 7.588-3           | 6.259-3          |
| $E_b =$                                          | β                                | 1.564                                                 | 1.612            | 1.661             | 1.688             | 1.708            | 1.724            | 1.739            | 1.751            | 1.761             | 1.770            |
| 6.0 eV                                           | γ                                | 6.53 - 1                                              | 6.38 - 1         | 5.46 - 1          | 4.32 - 1          | 3.18 - 1         | 2.14 - 1         | 1.22 - 1         | 4.45 - 2         | -2.13-2           | -7.61-2          |
|                                                  | δ                                | 7.18 - 4                                              | -8.22 - 4        | -3.01-3           | -4.61-3           | -5.86 - 3        | -6.85 - 3        | -7.66 - 3        | -8.41-3          | -9.05 - 3         | -9.67 - 3        |
| Z= 96, Cm: [R                                    | n]5f <sup>6</sup> <sub>5/2</sub> | 5f <sub>7/2</sub> 6d <sub>3/2</sub> 7s <sub>1/2</sub> | 2                |                   |                   |                  |                  |                  |                  |                   |                  |
|                                                  | 5,2                              | k (eV)                                                |                  |                   |                   |                  |                  |                  |                  |                   |                  |
| Shell                                            |                                  | 1500                                                  | 2000             | 3000              | 4000              | 5000             | 6000             | 7000             | 8000             | 9000              | 10000            |
|                                                  | ~                                | 1300                                                  | 1.766+1          | 1.307+1           | 9.481+0           | 7.047+0          | 5.386+0          | 4.219+0          | 3.375+0          | 2.748+0           | 2.272+0          |
| $\begin{array}{l} 4p_{1/2} \\ E_b = \end{array}$ | $\frac{\sigma}{eta}$             |                                                       | 0.736            | 1.307+1           | 9.481+0<br>1.527  | 7.047+0<br>1.605 | 5.386+0<br>1.643 | 4.219+0<br>1.662 | 3.375+0<br>1.670 | 2.748+0<br>1.671  | 2.272+0<br>1.667 |
| 1499.9 eV                                        | γ                                |                                                       | 6.25-1           | 6.81-1            | 3.79-1            | 1.71-1           | 5.88-2           | 1.38-2           | 1.46-2           | 4.56-2            | 9.65-2           |
|                                                  | δ                                |                                                       | 1.09 - 1         | 2.42 - 3          | -1.32 - 2         | -1.56-2          | -1.53-2          | -1.43-2          | -1.31-2          | -1.17 - 2         | -1.00-2          |
| 4p <sub>3/2</sub>                                | σ                                | 1.075+2                                               | 7.594+1          | 4.188+1           | 2.588+1           | 1.730+1          | 1.223+1          | 9.000+0          | 6.839+0          | 5.331+0           | 4.244+0          |
| $E_b =$                                          | β                                | 0.398                                                 | 0.970            | 1.353             | 1.522             | 1.615            | 1.673            | 1.712            | 1.737            | 1.754             | 1.763            |
| 1211.0 eV                                        | γ                                | 1.55-1                                                | 4.23-1           | 2.64-1            | 7.81-2            | -2.51-2          | -5.93-2          | -4.43-2          | 4.15-3           | 7.48-2            | 1.60-1           |
|                                                  | δ                                | 1.42-1                                                | 4.96-2           | 3.41-3            | -1.08-3           | 3.09-3           | 8.93-3           | 1.46-2           | 1.96-2           | 2.38-2            | 2.74-2           |
| $4d_{3/2}$                                       | σ                                | 1.593+2                                               | 1.106+2          | 5.476+1           | 3.003+1           | 1.796+1          | 1.148+1          | 7.713+0          | 5.398+0          | 3.903+0           | 2.899+0          |
| $E_b = 919.3 \text{ eV}$                         | β                                | 0.380<br>1.86-1                                       | 0.814<br>9.41-2  | 1.175<br>-6.64-2  | 1.313<br>-1.91-2  | 1.372<br>1.23-1  | 1.392<br>2.99-1  | 1.392<br>4.81-1  | 1.379<br>6.60-1  | 1.359<br>8.31-1   | 1.335            |
| J 13.3 EV                                        | $_{\delta}^{\gamma}$             | 9.55-2                                                | 9.41-2<br>1.85-2 | -6.64-2<br>1.41-2 | -1.91-2 3.37-2    | 5.19-2           | 2.99—1<br>6.71—2 | 4.81—1<br>7.98—2 | 9.11–2           | 8.31-1<br>1.02-1  | 9.92-1<br>1.12-1 |
| 4d <sub>5/2</sub>                                | σ                                | 2.470+2                                               | 1.637+2          | 7.710+1           | 4.110+1           | 2.410+1          | 1.516+1          | 1.006+1          | 6.961+0          | 4.983+0           | 3.669+0          |
| $E_b =$                                          | β                                | 0.766                                                 | 1.037+2          | 1.323             | 1.377             | 1.377            | 1.354            | 1.321            | 1.284            | 1.244             | 1.204            |
| 864.8 eV                                         | γ                                | 2.20-1                                                | 4.93-2           | -6.28-2           | 4.29-2            | 2.21-1           | 4.15-1           | 6.02-1           | 7.77 – 1         | 9.38-1            | 1.09+0           |
|                                                  | δ                                | 5.97-2                                                | 1.27 - 2         | 1.37 - 2          | 2.90-2            | 4.48 - 2         | 5.99-2           | 7.44-2           | 8.86-2           | 1.03-1            | 1.18 - 1         |
| 4f <sub>5/2</sub>                                | σ                                | 3.475+2                                               | 1.554+2          | 4.481+1           | 1.730+1           | 7.954+0          | 4.114+0          | 2.319+0          | 1.396+0          | 8.846-1           | 5.847-1          |
| $E_b =$                                          | β                                | 0.867                                                 | 0.993            | 1.055             | 1.030             | 0.979            | 0.921            | 0.864            | 0.809            | 0.756             | 0.706            |
| 487.4 eV                                         | γ                                | -1.20-2                                               | 9.93 - 2         | 3.66 - 1          | 6.11 - 1          | 8.16 - 1         | 9.87 - 1         | 1.13+0           | 1.25+0           | 1.35+0            | 1.44+0           |
|                                                  |                                  |                                                       |                  |                   |                   |                  |                  |                  |                  |                   |                  |

| able 1 (continu                                                                                             | ued)<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.22-2                                                                                                                                                                                                                                                                                                    | 6.96-2                                                                                                                        | 1.13-1                                                                                                                         | 1.50-1                                                                                                                          | 1.82-1                                                                                                                         | 2.12-1                                                                                                                         | 2.42-1                                                                                                                         | 2.71-1                                                                                                              | 2.98-1                                                                                                             | 3.24-1                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| $4f_{7/2}$                                                                                                  | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.380+2                                                                                                                                                                                                                                                                                                   | 1.942+2                                                                                                                       | 5.549+1                                                                                                                        | 2.126+1                                                                                                                         | 9.711+0                                                                                                                        | 4.994+0                                                                                                                        | 2.800+0                                                                                                                        | 1.677+0                                                                                                             | 1.058+0                                                                                                            | 6.962-1                                                                                                                         |
| $E_b =$                                                                                                     | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.900                                                                                                                                                                                                                                                                                                     | 1.010                                                                                                                         | 1.050                                                                                                                          | 1.015                                                                                                                           | 0.959                                                                                                                          | 0.900                                                                                                                          | 0.843                                                                                                                          | 0.790                                                                                                               | 0.740                                                                                                              | 0.693                                                                                                                           |
| 472.7 eV                                                                                                    | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -6.07 - 3                                                                                                                                                                                                                                                                                                 | 1.16-1                                                                                                                        | 3.95-1                                                                                                                         | 6.44-1                                                                                                                          | 8.50-1                                                                                                                         | 1.02+0                                                                                                                         | 1.16+0                                                                                                                         | 1.28+0                                                                                                              | 1.38+0                                                                                                             | 1.46+0                                                                                                                          |
| r-                                                                                                          | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.44-2                                                                                                                                                                                                                                                                                                    | 7.11–2                                                                                                                        | 1.14-1                                                                                                                         | 1.50-1                                                                                                                          | 1.82-1                                                                                                                         | 2.14-1                                                                                                                         | 2.45-1                                                                                                                         | 2.75-1                                                                                                              | 3.04-1                                                                                                             | 3.31-1                                                                                                                          |
| $5s_{1/2}$ $E_b =$                                                                                          | $\frac{\sigma}{\beta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.951+0<br>1.488                                                                                                                                                                                                                                                                                          | 6.545+0<br>1.554                                                                                                              | 3.506+0<br>1.622                                                                                                               | 2.209+0<br>1.657                                                                                                                | 1.529+0<br>1.680                                                                                                               | 1.124+0<br>1.698                                                                                                               | 8.625-1<br>1.714                                                                                                               | 6.827-1<br>1.727                                                                                                    | 5.536-1<br>1.740                                                                                                   | 4.577 – 1<br>1.751                                                                                                              |
| 392.7 eV                                                                                                    | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.31-1                                                                                                                                                                                                                                                                                                    | 7.27-1                                                                                                                        | 6.36-1                                                                                                                         | 5.16-1                                                                                                                          | 3.95-1                                                                                                                         | 2.83-1                                                                                                                         | 1.83-1                                                                                                                         | 9.64-2                                                                                                              | 2.29-2                                                                                                             | -3.84-2                                                                                                                         |
|                                                                                                             | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.43 - 3                                                                                                                                                                                                                                                                                                  | 3.28 - 4                                                                                                                      | -2.48 - 3                                                                                                                      | -4.38 - 3                                                                                                                       | -5.83 - 3                                                                                                                      | -7.01 - 3                                                                                                                      | -7.98 - 3                                                                                                                      | -8.80 - 3                                                                                                           | -9.49 - 3                                                                                                          | -1.01-2                                                                                                                         |
| $5p_{1/2}$                                                                                                  | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.636+0                                                                                                                                                                                                                                                                                                   | 6.298+0                                                                                                                       | 3.799+0                                                                                                                        | 2.544+0                                                                                                                         | 1.819+0                                                                                                                        | 1.360+0                                                                                                                        | 1.051+0                                                                                                                        | 8.334-1                                                                                                             | 6.744-1                                                                                                            | 5.551-1                                                                                                                         |
| $E_b = 317.7 \text{ eV}$                                                                                    | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.170<br>6.91-1                                                                                                                                                                                                                                                                                           | 1.398<br>6.21-1                                                                                                               | 1.586<br>3.60-1                                                                                                                | 1.656<br>1.66-1                                                                                                                 | 1.687<br>5.60-2                                                                                                                | 1.700<br>9.18-3                                                                                                                | 1.703<br>6.68-3                                                                                                                | 1.701<br>3.43-2                                                                                                     | 1.694<br>8.21-2                                                                                                    | 1.684<br>1.44-1                                                                                                                 |
| 317.7 EV                                                                                                    | $_{\delta}^{\gamma}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -3.92-3                                                                                                                                                                                                                                                                                                   | -1.58-2                                                                                                                       | -1.92-2                                                                                                                        | -1.78-2                                                                                                                         | -1.63-2                                                                                                                        | -1.51-2                                                                                                                        | -1.40-2                                                                                                                        | -1.29-2                                                                                                             | -1.17-2                                                                                                            | -1.03-2                                                                                                                         |
| 5p <sub>3/2</sub>                                                                                           | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.269+1                                                                                                                                                                                                                                                                                                   | 2.092+1                                                                                                                       | 1.063+1                                                                                                                        | 6.356+0                                                                                                                         | 4.183+0                                                                                                                        | 2.930+0                                                                                                                        | 2.147+0                                                                                                                        | 1.626+0                                                                                                             | 1.265+0                                                                                                            | 1.006+0                                                                                                                         |
| $E_b =$                                                                                                     | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.179                                                                                                                                                                                                                                                                                                     | 1.348                                                                                                                         | 1.531                                                                                                                          | 1.627                                                                                                                           | 1.687                                                                                                                          | 1.725                                                                                                                          | 1.751                                                                                                                          | 1.768                                                                                                               | 1.777                                                                                                              | 1.782                                                                                                                           |
| 231.7 eV                                                                                                    | $_{\delta}^{\gamma}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.57-1<br>7.51-3                                                                                                                                                                                                                                                                                          | 2.82-1 $-3.02-3$                                                                                                              | 1.08-1<br>-5.88-3                                                                                                              | -3.60-3 $-1.22-3$                                                                                                               | -5.03-2<br>4.79-3                                                                                                              | -4.75-2 $1.05-2$                                                                                                               | -9.47-3<br>1.56-2                                                                                                              | 5.28-2<br>1.98-2                                                                                                    | 1.32-1<br>2.35-2                                                                                                   | 2.22-1 $2.66-2$                                                                                                                 |
| 5d <sub>3/2</sub>                                                                                           | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.491+1                                                                                                                                                                                                                                                                                                   | 2.216+1                                                                                                                       | 1.041+1                                                                                                                        | 5.663+0                                                                                                                         | 3.395+0                                                                                                                        | 2.179+0                                                                                                                        | 1.473+0                                                                                                                        | 1.036+0                                                                                                             | 7.522-1                                                                                                            | 5.609-1                                                                                                                         |
| $E_b =$                                                                                                     | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.972                                                                                                                                                                                                                                                                                                     | 1.162                                                                                                                         | 1.337                                                                                                                          | 1.407                                                                                                                           | 1.431                                                                                                                          | 1.432                                                                                                                          | 1.419                                                                                                                          | 1.399                                                                                                               | 1.374                                                                                                              | 1.345                                                                                                                           |
| 130.4 eV                                                                                                    | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.07-1                                                                                                                                                                                                                                                                                                    | 1.55 - 3                                                                                                                      | -3.70-2                                                                                                                        | 5.92 - 2                                                                                                                        | 2.12 - 1                                                                                                                       | 3.85 - 1                                                                                                                       | 5.61 - 1                                                                                                                       | 7.32 - 1                                                                                                            | 8.97 - 1                                                                                                           | 1.05+0                                                                                                                          |
|                                                                                                             | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -9.78-4                                                                                                                                                                                                                                                                                                   | 1.08-4                                                                                                                        | 1.77-2                                                                                                                         | 3.57-2                                                                                                                          | 5.11-2                                                                                                                         | 6.42-2                                                                                                                         | 7.57-2                                                                                                                         | 8.65-2                                                                                                              | 9.70-2                                                                                                             | 1.07-1                                                                                                                          |
| $5d_{5/2}$ $E_b =$                                                                                          | $\frac{\sigma}{eta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.213+1<br>1.252                                                                                                                                                                                                                                                                                          | 3.211+1<br>1.361                                                                                                              | 1.453+1<br>1.430                                                                                                               | 7.711+0<br>1.429                                                                                                                | 4.540+0<br>1.403                                                                                                               | 2.872+0<br>1.366                                                                                                               | 1.917+0<br>1.325                                                                                                               | 1.334+0<br>1.283                                                                                                    | 9.591-1<br>1.241                                                                                                   | 7.089-1<br>1.199                                                                                                                |
| $E_b = 113.1 \text{ eV}$                                                                                    | P<br>γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.23-2                                                                                                                                                                                                                                                                                                    | -2.76-2                                                                                                                       | -9.43-3                                                                                                                        | 1.429<br>1.31–1                                                                                                                 | 3.09-1                                                                                                                         | 4.93–1                                                                                                                         | 6.69—1                                                                                                                         | 8.34—1                                                                                                              | 9.88-1                                                                                                             | 1.13+0                                                                                                                          |
|                                                                                                             | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.68-4                                                                                                                                                                                                                                                                                                    | 2.60-3                                                                                                                        | 1.56-2                                                                                                                         | 3.00-2                                                                                                                          | 4.44-2                                                                                                                         | 5.84-2                                                                                                                         | 7.23–2                                                                                                                         | 8.64-2                                                                                                              | 1.01-1                                                                                                             | 1.16-1                                                                                                                          |
| 5f <sub>5/2</sub>                                                                                           | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.876+1                                                                                                                                                                                                                                                                                                   | 1.368+1                                                                                                                       | 4.254+0                                                                                                                        | 1.720+0                                                                                                                         | 8.159-1                                                                                                                        | 4.316-1                                                                                                                        | 2.473-1                                                                                                                        | 1.506-1                                                                                                             | 9.638-2                                                                                                            | 6.417-2                                                                                                                         |
| $E_b = 6.0 \text{ eV}$                                                                                      | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.066                                                                                                                                                                                                                                                                                                     | 1.111                                                                                                                         | 1.100                                                                                                                          | 1.046                                                                                                                           | 0.983                                                                                                                          | 0.920                                                                                                                          | 0.861                                                                                                                          | 0.805                                                                                                               | 0.752                                                                                                              | 0.701                                                                                                                           |
| 6.0 ev                                                                                                      | $\frac{\gamma}{\delta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.66-2<br>4.39-2                                                                                                                                                                                                                                                                                          | 1.74-1<br>6.71-2                                                                                                              | 4.24-1<br>1.07-1                                                                                                               | 6.47-1<br>1.43-1                                                                                                                | 8.37-1<br>1.76-1                                                                                                               | 1.00+0<br>2.07-1                                                                                                               | 1.14+0<br>2.37-1                                                                                                               | 1.26+0<br>2.67-1                                                                                                    | 1.36+0<br>2.94-1                                                                                                   | 1.44+0<br>3.20-1                                                                                                                |
| 5f <sub>7/2</sub>                                                                                           | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.531+1                                                                                                                                                                                                                                                                                                   | 1.665+1                                                                                                                       | 5.120+0                                                                                                                        | 2.051+0                                                                                                                         | 9.651-1                                                                                                                        | 5.071-1                                                                                                                        | 2.887-1                                                                                                                        | 1.749-1                                                                                                             | 1.113-1                                                                                                            | 7.378-2                                                                                                                         |
| $E_b =$                                                                                                     | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.083                                                                                                                                                                                                                                                                                                     | 1.115                                                                                                                         | 1.087                                                                                                                          | 1.026                                                                                                                           | 0.960                                                                                                                          | 0.897                                                                                                                          | 0.839                                                                                                                          | 0.785                                                                                                               | 0.735                                                                                                              | 0.688                                                                                                                           |
| 6.0 eV                                                                                                      | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.31-2                                                                                                                                                                                                                                                                                                    | 1.89-1                                                                                                                        | 4.50-1                                                                                                                         | 6.78-1                                                                                                                          | 8.70-1                                                                                                                         | 1.03+0                                                                                                                         | 1.17+0                                                                                                                         | 1.29+0                                                                                                              | 1.38+0                                                                                                             | 1.46+0                                                                                                                          |
|                                                                                                             | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.58-2                                                                                                                                                                                                                                                                                                    | 6.81-2<br>1.407+0                                                                                                             | 1.07-1<br>7.345-1                                                                                                              | 1.43-1<br>4.565-1                                                                                                               | 1.77-1                                                                                                                         | 2.09-1<br>2.293-1                                                                                                              | 2.40-1                                                                                                                         | 2.71-1                                                                                                              | 3.00-1                                                                                                             | 3.28-1<br>9.245-2                                                                                                               |
| $6s_{1/2}$ $E_b =$                                                                                          | $\frac{\sigma}{eta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.194+0<br>1.528                                                                                                                                                                                                                                                                                          | 1.407+0                                                                                                                       | 7.345 – 1<br>1.636                                                                                                             | 4.565 — I<br>1.667                                                                                                              | 3.134-1<br>1.687                                                                                                               | 2.293—1<br>1.704                                                                                                               | 1.753-1<br>1.718                                                                                                               | 1.384-1<br>1.731                                                                                                    | 1.120-1<br>1.743                                                                                                   | 9.245-2<br>1.754                                                                                                                |
| 56.9 eV                                                                                                     | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.70-1                                                                                                                                                                                                                                                                                                    | 6.61-1                                                                                                                        | 5.76-1                                                                                                                         | 4.64-1                                                                                                                          | 3.51-1                                                                                                                         | 2.47-1                                                                                                                         | 1.53-1                                                                                                                         | 7.14-2                                                                                                              | 2.37-3                                                                                                             | -5.51-2                                                                                                                         |
|                                                                                                             | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.09-3                                                                                                                                                                                                                                                                                                    | -5.79 - 4                                                                                                                     | -2.98 - 3                                                                                                                      | -4.69 - 3                                                                                                                       | -6.03 - 3                                                                                                                      | -7.14 - 3                                                                                                                      | -8.08 - 3                                                                                                                      | -8.87 - 3                                                                                                           | -9.55 - 3                                                                                                          | -1.02-2                                                                                                                         |
| $6p_{1/2}$                                                                                                  | $\sigma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.702+0                                                                                                                                                                                                                                                                                                   | 1.200+0                                                                                                                       | 7.003-1                                                                                                                        | 4.617-1                                                                                                                         | 3.273-1                                                                                                                        | 2.436-1                                                                                                                        | 1.877-1                                                                                                                        | 1.485-1                                                                                                             | 1.199-1                                                                                                            | 9.859-2                                                                                                                         |
| $E_b = 32.1 \text{ eV}$                                                                                     | $\beta$ $\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.293<br>6.46-1                                                                                                                                                                                                                                                                                           | 1.472<br>5.49-1                                                                                                               | 1.622<br>3.04-1                                                                                                                | 1.679<br>1.33-1                                                                                                                 | 1.702<br>3.99-2                                                                                                                | 1.711<br>4.01-3                                                                                                                | 1.711<br>8.61-3                                                                                                                | 1.707<br>4.10-2                                                                                                     | 1.698<br>9.21-2                                                                                                    | 1.688<br>1.56-1                                                                                                                 |
| 32.1 0                                                                                                      | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1.58-2                                                                                                                                                                                                                                                                                                   | -2.04-2                                                                                                                       | -1.98-2                                                                                                                        | -1.76-2                                                                                                                         | -1.60-2                                                                                                                        | -1.49-2                                                                                                                        | -1.40-2                                                                                                                        | -1.29-2                                                                                                             | -1.18-2                                                                                                            | -1.04-2                                                                                                                         |
| 6p <sub>3/2</sub>                                                                                           | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.081+0                                                                                                                                                                                                                                                                                                   | 3.205+0                                                                                                                       | 1.604+0                                                                                                                        | 9.527-1                                                                                                                         | 6.245-1                                                                                                                        | 4.366-1                                                                                                                        | 3.194-1                                                                                                                        | 2.417-1                                                                                                             | 1.879-1                                                                                                            | 1.493-1                                                                                                                         |
| $E_b =$                                                                                                     | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.254                                                                                                                                                                                                                                                                                                     | 1.399                                                                                                                         | 1.559                                                                                                                          | 1.646                                                                                                                           | 1.700                                                                                                                          | 1.735                                                                                                                          | 1.758                                                                                                                          | 1.773                                                                                                               | 1.782                                                                                                              | 1.785                                                                                                                           |
| 18.9 eV                                                                                                     | $\frac{\gamma}{\delta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.30-1<br>-8.04-5                                                                                                                                                                                                                                                                                         | 2.50-1 $-6.37-3$                                                                                                              | 8.64-2 $-6.27-3$                                                                                                               | -1.33-2 $-9.33-4$                                                                                                               | -5.14-2<br>5.14-3                                                                                                              | -4.32-2 $1.08-2$                                                                                                               | -1.59-3<br>1.57-2                                                                                                              | 6.33-2<br>1.99-2                                                                                                    | 1.44-1<br>2.34-2                                                                                                   | 2.35-1 $2.64-2$                                                                                                                 |
| 6d <sub>3/2</sub>                                                                                           | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.318+0                                                                                                                                                                                                                                                                                                   | 1.459+0                                                                                                                       | 6.804-1                                                                                                                        | 3.692-1                                                                                                                         | 2.212-1                                                                                                                        | 1.421-1                                                                                                                        | 9.604-2                                                                                                                        | 6.755-2                                                                                                             | 4.906-2                                                                                                            | 3.658-2                                                                                                                         |
| $E_b =$                                                                                                     | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.032                                                                                                                                                                                                                                                                                                     | 1.200                                                                                                                         | 1.358                                                                                                                          | 1.419                                                                                                                           | 1.439                                                                                                                          | 1.438                                                                                                                          | 1.424                                                                                                                          | 1.402                                                                                                               | 1.375                                                                                                              | 1.346                                                                                                                           |
| 6.0 eV                                                                                                      | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.49-2                                                                                                                                                                                                                                                                                                    | -3.60-3                                                                                                                       | -3.12-2                                                                                                                        | 6.80-2                                                                                                                          | 2.21 - 1                                                                                                                       | 3.96 - 1                                                                                                                       | 5.74 - 1                                                                                                                       | 7.47 - 1                                                                                                            | 9.09 - 1                                                                                                           | 1.06+0                                                                                                                          |
|                                                                                                             | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.21-3                                                                                                                                                                                                                                                                                                   | -4.23-4                                                                                                                       | 1.78-2                                                                                                                         | 3.54-2                                                                                                                          | 5.05-2                                                                                                                         | 6.37-2                                                                                                                         | 7.57-2                                                                                                                         | 8.64-2                                                                                                              | 9.62-2                                                                                                             | 1.06-1                                                                                                                          |
| $7s_{1/2}$                                                                                                  | $\sigma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.811 - 1                                                                                                                                                                                                                                                                                                 |                                                                                                                               |                                                                                                                                |                                                                                                                                 |                                                                                                                                |                                                                                                                                |                                                                                                                                |                                                                                                                     |                                                                                                                    |                                                                                                                                 |
| L                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                           | 1.156-1                                                                                                                       | 6.004-2                                                                                                                        | 3.721-2                                                                                                                         | 2.549-2                                                                                                                        | 1.863-2                                                                                                                        | 1.423-2                                                                                                                        | 1.123-2                                                                                                             | 9.089-3                                                                                                            | 7.502-3                                                                                                                         |
| $E_b = 6.0 \text{ eV}$                                                                                      | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.531                                                                                                                                                                                                                                                                                                     | 1.582<br>6.58-1                                                                                                               | 1.636                                                                                                                          | 1.666                                                                                                                           | 1.689                                                                                                                          | 1.707                                                                                                                          | 1.721                                                                                                                          | 1.733                                                                                                               | 1.743                                                                                                              | 1.753                                                                                                                           |
| $E_b = 6.0 \text{ eV}$                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                           | 1.582                                                                                                                         |                                                                                                                                |                                                                                                                                 |                                                                                                                                |                                                                                                                                |                                                                                                                                |                                                                                                                     |                                                                                                                    |                                                                                                                                 |
| 6.0 eV                                                                                                      | $eta \ \gamma \ \delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.531<br>6.67-1                                                                                                                                                                                                                                                                                           | 1.582<br>6.58-1<br>-6.54-4                                                                                                    | 1.636<br>5.73-1                                                                                                                | 1.666<br>4.60-1                                                                                                                 | 1.689<br>3.46-1                                                                                                                | 1.707<br>2.42-1                                                                                                                | 1.721<br>1.50-1                                                                                                                | 1.733<br>6.97-2                                                                                                     | 1.743<br>1.04-3                                                                                                    | 1.753<br>-5.69-2                                                                                                                |
| 6.0 eV                                                                                                      | $eta \ \gamma \ \delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.531<br>6.67-1<br>9.71-4                                                                                                                                                                                                                                                                                 | 1.582<br>6.58-1<br>-6.54-4                                                                                                    | 1.636<br>5.73-1                                                                                                                | 1.666<br>4.60-1                                                                                                                 | 1.689<br>3.46-1                                                                                                                | 1.707<br>2.42-1                                                                                                                | 1.721<br>1.50-1                                                                                                                | 1.733<br>6.97-2                                                                                                     | 1.743<br>1.04-3                                                                                                    | 1.753<br>-5.69-2                                                                                                                |
| 6.0 eV                                                                                                      | $eta \ \gamma \ \delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \begin{array}{r} 1.531 \\ 6.67 - 1 \\ 9.71 - 4 \end{array} $ $ \mathbf{5f}_{7/2}^{2}  \mathbf{6d}_{3/2}^{1}  \mathbf{7s}_{1/2}^{2} $                                                                                                                                                                    | 1.582<br>6.58-1<br>-6.54-4                                                                                                    | 1.636<br>5.73-1                                                                                                                | 1.666<br>4.60-1                                                                                                                 | 1.689<br>3.46-1                                                                                                                | 1.707<br>2.42-1                                                                                                                | 1.721<br>1.50-1                                                                                                                | 1.733<br>6.97-2                                                                                                     | 1.743<br>1.04-3                                                                                                    | 1.753<br>-5.69-2                                                                                                                |
| 6.0 eV <b>Z= 97, Bk: [Rt</b> Shell  4p <sub>3/2</sub>                                                       | $\frac{\beta}{\delta}$ n]5 $\mathbf{f}_{5/2}^{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{c} 1.531 \\ 6.67 - 1 \\ 9.71 - 4 \end{array} $ $ \begin{array}{c} 5f_{7/2}^2 6d_{3/2}^1 7s_{1/2}^2 \\ \underline{k (eV)} \\ 1500 \\ 1.085 + 2 \end{array} $                                                                                                                               | 1.582<br>6.58-1<br>-6.54-4<br>2000<br>7.715+1                                                                                 | 1.636<br>5.73-1<br>-3.02-3<br>3000<br>4.277+1                                                                                  | 1.666<br>4.60-1<br>-4.75-3<br>4000<br>2.652+1                                                                                   | 1.689<br>3.46-1<br>-6.08-3<br>5000<br>1.777+1                                                                                  | 1.707<br>2.42-1<br>-7.14-3<br>6000<br>1.258+1                                                                                  | 1.721<br>1.50-1<br>-8.02-3<br>7000<br>9.278+0                                                                                  | 1.733<br>6.97-2<br>-8.84-3<br>8000<br>7.062+0                                                                       | 1.743<br>1.04-3<br>-9.56-3<br>9000<br>5.511+0                                                                      | 1.753<br>-5.69-2<br>-1.02-2<br>10000<br>4.392+0                                                                                 |
| 6.0 eV <b>Z= 97, Bk: [Ri</b> Shell $4p_{3/2}$ $E_b =$                                                       | $\beta$ $\gamma$ $\delta$ $n]5f_{5/2}^6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{c} 1.531 \\ 6.67 - 1 \\ 9.71 - 4 \end{array} $ $ \begin{array}{c} \mathbf{5f_{7/2}^2 6d_{3/2}^1 7s_{1/2}^2} \\ \underline{k \text{ (eV)}} \\ 1500 \\ 1.085 + 2 \\ 0.294 \end{array} $                                                                                                     | 1.582<br>6.58-1<br>-6.54-4<br>2000<br>7.715+1<br>0.919                                                                        | 1.636<br>5.73-1<br>-3.02-3<br>3000<br>4.277+1<br>1.325                                                                         | 1.666<br>4.60-1<br>-4.75-3<br>4000<br>2.652+1<br>1.502                                                                          | 1.689<br>3.46-1<br>-6.08-3<br>5000<br>1.777+1<br>1.600                                                                         | 1.707<br>2.42-1<br>-7.14-3<br>6000<br>1.258+1<br>1.661                                                                         | 1.721<br>1.50-1<br>-8.02-3<br>7000<br>9.278+0<br>1.702                                                                         | 1.733<br>6.97-2<br>-8.84-3<br>8000<br>7.062+0<br>1.730                                                              | 1.743<br>1.04-3<br>-9.56-3<br>9000<br>5.511+0<br>1.748                                                             | 1.753<br>-5.69-2<br>-1.02-2<br>10000<br>4.392+0<br>1.760                                                                        |
| 6.0 eV <b>Z= 97, Bk: [Rt</b> Shell  4p <sub>3/2</sub>                                                       | $\beta$ $\gamma$ $\delta$ n]5 $f_{5/2}^6$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{c} 1.531 \\ 6.67 - 1 \\ 9.71 - 4 \end{array} $ $ \begin{array}{c} \mathbf{567_{7/2}} \ \mathbf{6d_{3/2}} \ \mathbf{7s_{1/2}^2} \\ \underline{k \ (eV)} \\ 1500 \\ 1.085 + 2 \\ 0.294 \\ 9.10 - 2 \end{array} $                                                                            | 1.582<br>6.58-1<br>-6.54-4<br>2000<br>7.715+1<br>0.919<br>4.20-1                                                              | 1.636<br>5.73-1<br>-3.02-3<br>3000<br>4.277+1<br>1.325<br>2.83-1                                                               | 1.666<br>4.60-1<br>-4.75-3<br>4000<br>2.652+1<br>1.502<br>9.46-2                                                                | 1.689<br>3.46-1<br>-6.08-3<br>5000<br>1.777+1<br>1.600<br>-1.57-2                                                              | 1.707<br>2.42-1<br>-7.14-3<br>6000<br>1.258+1<br>1.661<br>-5.77-2                                                              | 1.721<br>1.50-1<br>-8.02-3<br>7000<br>9.278+0<br>1.702<br>-5.01-2                                                              | 1.733<br>6.97-2<br>-8.84-3<br>8000<br>7.062+0<br>1.730<br>-7.91-3                                                   | 1.743<br>1.04-3<br>-9.56-3<br>9000<br>5.511+0<br>1.748<br>5.76-2                                                   | 1.753<br>-5.69-2<br>-1.02-2<br>10000<br>4.392+0<br>1.760<br>1.38-1                                                              |
| 6.0 eV <b>Z= 97, Bk: [Ri</b> Shell $4p_{3/2}$ $E_b = 1248.0 \text{ eV}$                                     | $\beta$ $\gamma$ $\delta$ $n]5f_{5/2}^6$ $\beta$ $\gamma$ $\beta$ $\gamma$ $\beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{c} 1.531 \\ 6.67 - 1 \\ 9.71 - 4 \end{array} $ $ \begin{array}{c} 5f_{7/2}^2 6d_{3/2}^1 7s_{1/2}^2 \\ \underline{k \text{ (eV)}} \\ 1500 \\ 1.085 + 2 \\ 0.294 \\ 9.10 - 2 \\ 1.58 - 1 \end{array} $                                                                                      | 1.582<br>6.58-1<br>-6.54-4<br>2000<br>7.715+1<br>0.919<br>4.20-1<br>5.61-2                                                    | 1.636<br>5.73-1<br>-3.02-3<br>3000<br>4.277+1<br>1.325<br>2.83-1<br>4.48-3                                                     | 1.666<br>4.60-1<br>-4.75-3<br>4000<br>2.652+1<br>1.502<br>9.46-2<br>-1.43-3                                                     | 1.689<br>3.46-1<br>-6.08-3<br>5000<br>1.777+1<br>1.600<br>-1.57-2<br>2.39-3                                                    | 1.707<br>2.42-1<br>-7.14-3<br>6000<br>1.258+1<br>1.661<br>-5.77-2<br>8.26-3                                                    | 1.721<br>1.50-1<br>-8.02-3<br>7000<br>9.278+0<br>1.702<br>-5.01-2<br>1.41-2                                                    | 8000<br>7.062+0<br>1.730<br>-7.91-3<br>1.93-2                                                                       | 9000<br>5.511+0<br>1.748<br>5.76-2<br>2.38-2                                                                       | 1.753<br>-5.69-2<br>-1.02-2<br>10000<br>4.392+0<br>1.760<br>1.38-1<br>2.76-2                                                    |
| 6.0 eV <b>Z= 97, Bk: [Rt</b> Shell $4p_{3/2}$ $E_b =$                                                       | $\beta$ $\gamma$ $\delta$ n]5 $f_{5/2}^6$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{c} 1.531 \\ 6.67 - 1 \\ 9.71 - 4 \end{array} $ $ \begin{array}{c} \mathbf{567_{7/2}} \ \mathbf{6d_{3/2}} \ \mathbf{7s_{1/2}^2} \\ \hline  k \ (eV) \\ \hline  1500 \\ 1.085 + 2 \\ 0.294 \\ 9.10 - 2 \end{array} $                                                                        | 1.582<br>6.58-1<br>-6.54-4<br>2000<br>7.715+1<br>0.919<br>4.20-1                                                              | 1.636<br>5.73-1<br>-3.02-3<br>3000<br>4.277+1<br>1.325<br>2.83-1                                                               | 1.666<br>4.60-1<br>-4.75-3<br>4000<br>2.652+1<br>1.502<br>9.46-2                                                                | 1.689<br>3.46-1<br>-6.08-3<br>5000<br>1.777+1<br>1.600<br>-1.57-2                                                              | 1.707<br>2.42-1<br>-7.14-3<br>6000<br>1.258+1<br>1.661<br>-5.77-2                                                              | 1.721<br>1.50-1<br>-8.02-3<br>7000<br>9.278+0<br>1.702<br>-5.01-2                                                              | 1.733<br>6.97-2<br>-8.84-3<br>8000<br>7.062+0<br>1.730<br>-7.91-3                                                   | 1.743<br>1.04-3<br>-9.56-3<br>9000<br>5.511+0<br>1.748<br>5.76-2                                                   | 1.753<br>-5.69-2<br>-1.02-2<br>10000<br>4.392+0<br>1.760<br>1.38-1                                                              |
| 6.0 eV <b>Z= 97, Bk: [Ri</b> Shell $4p_{3/2}$ $E_b = 1248.0 \text{ eV}$ $4d_{3/2}$                          | $ \begin{array}{c} \beta \\ \gamma \\ \delta \end{array} $ $ \begin{array}{c} \sigma \\ \beta \\ \gamma \\ \delta \end{array} $ $ \begin{array}{c} \sigma \\ \beta \\ \gamma \\ \delta \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.531<br>6.67-1<br>9.71-4<br>56 <sup>7</sup> <sub>7/2</sub> 6d <sup>1</sup> <sub>3/2</sub> 7s <sup>2</sup> <sub>1/2</sub><br>k (eV)<br>1500<br>1.085+2<br>0.294<br>9.10-2<br>1.58-1<br>1.610+2<br>0.313<br>1.76-1                                                                                         | 1.582<br>6.58-1<br>-6.54-4<br>2000<br>7.715+1<br>0.919<br>4.20-1<br>5.61-2<br>1.130+2<br>0.770<br>1.12-1                      | 1.636<br>5.73-1<br>-3.02-3<br>3000<br>4.277+1<br>1.325<br>2.83-1<br>4.48-3<br>5.658+1<br>1.153<br>-6.35-2                      | 1.666<br>4.60-1<br>-4.75-3<br>4000<br>2.652+1<br>1.502<br>9.46-2<br>-1.43-3<br>3.122+1<br>1.301<br>-3.18-2                      | 1.689<br>3.46-1<br>-6.08-3<br>5000<br>1.777+1<br>1.600<br>-1.57-2<br>2.39-3<br>1.876+1<br>1.365<br>1.00-1                      | 1.707<br>2.42-1<br>-7.14-3<br>6000<br>1.258+1<br>1.661<br>-5.77-2<br>8.26-3<br>1.203+1<br>1.390<br>2.71-1                      | 1.721<br>1.50-1<br>-8.02-3<br>7000<br>9.278+0<br>1.702<br>-5.01-2<br>1.41-2<br>8.106+0<br>1.393<br>4.51-1                      | 1.733<br>6.97-2<br>-8.84-3<br>8000<br>7.062+0<br>1.730<br>-7.91-3<br>1.93-2<br>5.685+0<br>1.383<br>6.28-1           | 1.743<br>1.04-3<br>-9.56-3<br>9000<br>5.511+0<br>1.748<br>5.76-2<br>2.38-2<br>4.118+0<br>1.366<br>7.98-1           | 1.753<br>-5.69-2<br>-1.02-2<br>10000<br>4.392+0<br>1.760<br>1.38-1<br>2.76-2<br>3.064+0<br>1.343<br>9.59-1                      |
| 6.0 eV <b>Z= 97, Bk: [Rn</b> Shell $4p_{3/2}$ $E_b = 1248.0 \text{ eV}$ $4d_{3/2}$ $E_b = 957.7 \text{ eV}$ | $\beta$ $\gamma$ $\delta$ $n]5f_{5/2}^6$ $\beta$ $\gamma$ $\delta$ $\delta$ $\delta$ $\delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ \begin{array}{c} 1.531 \\ 6.67 - 1 \\ 9.71 - 4 \end{array} $ $ \begin{array}{c} \mathbf{5f_{7/2}^2 6d_{3/2}^1 7s_{1/2}^2} \\ \underline{k \text{ (eV)}} \\ 1500 \\ 1.085 + 2 \\ 0.294 \\ 9.10 - 2 \\ 1.58 - 1 \end{array} $ $ \begin{array}{c} 1.610 + 2 \\ 0.313 \\ 1.76 - 1 \\ 1.14 - 1 \end{array} $ | 1.582<br>6.58-1<br>-6.54-4<br>2000<br>7.715+1<br>0.919<br>4.20-1<br>5.61-2<br>1.130+2<br>0.770<br>1.12-1<br>2.29-2            | 1.636<br>5.73-1<br>-3.02-3<br>3000<br>4.277+1<br>1.325<br>2.83-1<br>4.48-3<br>5.658+1<br>1.153<br>-6.35-2<br>1.30-2            | 1.666<br>4.60-1<br>-4.75-3<br>4000<br>2.652+1<br>1.502<br>9.46-2<br>-1.43-3<br>3.122+1<br>1.301<br>-3.18-2<br>3.22-2            | 1.689<br>3.46-1<br>-6.08-3<br>5000<br>1.777+1<br>1.600<br>-1.57-2<br>2.39-3<br>1.876+1<br>1.365<br>1.00-1<br>5.07-2            | 1.707<br>2.42-1<br>-7.14-3<br>6000<br>1.258+1<br>1.661<br>-5.77-2<br>8.26-3<br>1.203+1<br>1.390<br>2.71-1<br>6.63-2            | 1.721<br>1.50-1<br>-8.02-3<br>7000<br>9.278+0<br>1.702<br>-5.01-2<br>1.41-2<br>8.106+0<br>1.393<br>4.51-1<br>7.93-2            | 1.733<br>6.97-2<br>-8.84-3<br>8000<br>7.062+0<br>1.730<br>-7.91-3<br>1.93-2<br>5.685+0<br>1.383<br>6.28-1<br>9.06-2 | 1.743<br>1.04-3<br>-9.56-3<br>9000<br>5.511+0<br>1.748<br>5.76-2<br>2.38-2<br>4.118+0<br>1.366<br>7.98-1<br>1.01-1 | 1.753<br>-5.69-2<br>-1.02-2<br>10000<br>4.392+0<br>1.760<br>1.38-1<br>2.76-2<br>3.064+0<br>1.343<br>9.59-1<br>1.11-1            |
| 6.0 eV <b>Z= 97, Bk: [Rn</b> Shell $4p_{3/2}$ $E_b = 1248.0 \text{ eV}$ $4d_{3/2}$ $E_b = 957.7 \text{ eV}$ | $ \frac{\beta}{\delta} $ $ \gamma \qquad \delta $ $ \mathbf{n]5f_{5/2}^6} \qquad \vdots $ $ \frac{\sigma}{\beta} $ $ \gamma \qquad \delta $ $ \frac{\sigma}{\beta} $ $ \gamma \qquad \delta $ $ \frac{\sigma}{\beta} $ $ \frac{\sigma}{\delta} $ | 1.531<br>6.67-1<br>9.71-4<br>56 <sup>2</sup> 7 <sub>/2</sub> 6d <sup>1</sup> <sub>3/2</sub> 7s <sup>2</sup> <sub>1/2</sub><br>k (eV)<br>1500<br>1.085+2<br>0.294<br>9.10-2<br>1.58-1<br>1.610+2<br>0.313<br>1.76-1<br>1.14-1<br>2.511+2                                                                   | 1.582<br>6.58-1<br>-6.54-4<br>2000<br>7.715+1<br>0.919<br>4.20-1<br>5.61-2<br>1.130+2<br>0.770<br>1.12-1<br>2.29-2<br>1.680+2 | 1.636<br>5.73-1<br>-3.02-3<br>3000<br>4.277+1<br>1.325<br>2.83-1<br>4.48-3<br>5.658+1<br>1.153<br>-6.35-2<br>1.30-2<br>7.985+1 | 1.666<br>4.60-1<br>-4.75-3<br>4000<br>2.652+1<br>1.502<br>9.46-2<br>-1.43-3<br>3.122+1<br>1.301<br>-3.18-2<br>3.22-2<br>4.278+1 | 1.689<br>3.46-1<br>-6.08-3<br>5000<br>1.777+1<br>1.600<br>-1.57-2<br>2.39-3<br>1.876+1<br>1.365<br>1.00-1<br>5.07-2<br>2.518+1 | 1.707<br>2.42-1<br>-7.14-3<br>6000<br>1.258+1<br>1.661<br>-5.77-2<br>8.26-3<br>1.203+1<br>1.390<br>2.71-1<br>6.63-2<br>1.589+1 | 1.721<br>1.50-1<br>-8.02-3<br>7000<br>9.278+0<br>1.702<br>-5.01-2<br>1.41-2<br>8.106+0<br>1.393<br>4.51-1<br>7.93-2<br>1.057+1 | 8000<br>7.062+0<br>1.730<br>-7.91-3<br>1.93-2<br>5.685+0<br>1.383<br>6.28-1<br>9.06-2<br>7.328+0                    | 9000<br>5.511+0<br>1.748<br>5.76-2<br>2.38-2<br>4.118+0<br>1.366<br>7.98-1<br>1.01-1<br>5.255+0                    | 1.753<br>-5.69-2<br>-1.02-2<br>10000<br>4.392+0<br>1.760<br>1.38-1<br>2.76-2<br>3.064+0<br>1.343<br>9.59-1<br>1.11-1<br>3.875+0 |
| 6.0 eV <b>Z= 97, Bk: [Rr</b> Shell $4p_{3/2}$ $E_b = 1248.0 \text{ eV}$ $4d_{3/2}$ $E_b = 957.7 \text{ eV}$ | β<br>γ<br>δ<br>n]5f <sup>6</sup> <sub>5/2</sub> !<br>σ<br>β<br>γ<br>δ<br>σ<br>β<br>γ<br>δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{c} 1.531 \\ 6.67 - 1 \\ 9.71 - 4 \end{array} $ $ \begin{array}{c} \mathbf{5f_{7/2}^2 6d_{3/2}^1 7s_{1/2}^2} \\ \underline{k \text{ (eV)}} \\ 1500 \\ 1.085 + 2 \\ 0.294 \\ 9.10 - 2 \\ 1.58 - 1 \end{array} $ $ \begin{array}{c} 1.610 + 2 \\ 0.313 \\ 1.76 - 1 \\ 1.14 - 1 \end{array} $ | 1.582<br>6.58-1<br>-6.54-4<br>2000<br>7.715+1<br>0.919<br>4.20-1<br>5.61-2<br>1.130+2<br>0.770<br>1.12-1<br>2.29-2            | 1.636<br>5.73-1<br>-3.02-3<br>3000<br>4.277+1<br>1.325<br>2.83-1<br>4.48-3<br>5.658+1<br>1.153<br>-6.35-2<br>1.30-2            | 1.666<br>4.60-1<br>-4.75-3<br>4000<br>2.652+1<br>1.502<br>9.46-2<br>-1.43-3<br>3.122+1<br>1.301<br>-3.18-2<br>3.22-2            | 1.689<br>3.46-1<br>-6.08-3<br>5000<br>1.777+1<br>1.600<br>-1.57-2<br>2.39-3<br>1.876+1<br>1.365<br>1.00-1<br>5.07-2            | 1.707<br>2.42-1<br>-7.14-3<br>6000<br>1.258+1<br>1.661<br>-5.77-2<br>8.26-3<br>1.203+1<br>1.390<br>2.71-1<br>6.63-2            | 1.721<br>1.50-1<br>-8.02-3<br>7000<br>9.278+0<br>1.702<br>-5.01-2<br>1.41-2<br>8.106+0<br>1.393<br>4.51-1<br>7.93-2            | 1.733<br>6.97-2<br>-8.84-3<br>8000<br>7.062+0<br>1.730<br>-7.91-3<br>1.93-2<br>5.685+0<br>1.383<br>6.28-1<br>9.06-2 | 1.743<br>1.04-3<br>-9.56-3<br>9000<br>5.511+0<br>1.748<br>5.76-2<br>2.38-2<br>4.118+0<br>1.366<br>7.98-1<br>1.01-1 | 1.753<br>-5.69-2<br>-1.02-2<br>10000<br>4.392+0<br>1.760<br>1.38-1<br>2.76-2<br>3.064+0<br>1.343<br>9.59-1<br>1.11-1            |

| Table 1 (contin                                  | ued)                               |                                     |                      |                      |                     |                      |                     |                     |                  |                     |                   |
|--------------------------------------------------|------------------------------------|-------------------------------------|----------------------|----------------------|---------------------|----------------------|---------------------|---------------------|------------------|---------------------|-------------------|
| $4f_{5/2}$                                       | σ                                  | 3.691+2                             | 1.660+2              | 4.819+1              | 1.869+1             | 8.629+0              | 4.478+0             | 2.530+0             | 1.526+0          | 9.689-1             | 6.414-1           |
| $E_b =$                                          | β                                  | 0.849                               | 0.984                | 1.054                | 1.034               | 0.985                | 0.929               | 0.872               | 0.818            | 0.766               | 0.716             |
| 514.4 eV                                         | $\delta$                           | -2.38-2 $3.89-2$                    | 8.26-2 $6.68-2$      | 3.46-1<br>1.11-1     | 5.93-1<br>1.48-1    | 8.01-1 $1.80-1$      | 9.74 - 1 $2.10 - 1$ | 1.12+0<br>2.39-1    | 1.24+0<br>2.67-1 | 1.35+0<br>2.94-1    | 1.43+0<br>3.20-1  |
| $-4f_{7/2}$                                      | σ                                  | 4.657+2                             | 2.075+2              | 5.965+1              | 2.297+1             | 1.053+1              | 5.433+0             | 3.054+0             | 1.833+0          | 1.158+0             | 7.634-1           |
| $E_b =$                                          | β                                  | 0.884                               | 1.002                | 1.051                | 1.019               | 0.966                | 0.907               | 0.851               | 0.798            | 0.749               | 0.702             |
| 498.5 eV                                         | $\delta$                           | -1.91-2 $4.12-2$                    | 9.91-2<br>6.85-2     | 3.76-1<br>1.11-1     | 6.27 - 1 $1.48 - 1$ | 8.36-1<br>1.80-1     | 1.01+0<br>2.11-1    | 1.15+0<br>2.41-1    | 1.27+0<br>2.71-1 | 1.37+0<br>3.00-1    | 1.46+0<br>3.27-1  |
| $-5s_{1/2}$                                      | σ                                  | 1.008+1                             | 6.650+0              | 3.574+0              | 2.257+0             | 1.564+0              | 1.152+0             | 8.848-1             | 7.011-1          | 5.691-1             | 4.710-1           |
| $E_b =$                                          | β                                  | 1.446                               | 1.520                | 1.595                | 1.633               | 1.658                | 1.677               | 1.694               | 1.708            | 1.721               | 1.733             |
| 405.0 eV                                         | $\gamma \\ \delta$                 | 7.40-1 $2.94-3$                     | 7.44-1<br>6.38-4     | 6.62 - 1 $-2.41 - 3$ | 5.46-1<br>-4.45-3   | 4.27 - 1 $-6.01 - 3$ | 3.16-1 $-7.28-3$    | 2.15-1<br>-8.34-3   | 1.26-1 $-9.23-3$ | 4.93-2 $-9.99-3$    | -1.50-2 $-1.07-2$ |
| $-5p_{1/2}$                                      | σ                                  | 8.619+0                             | 6.323+0              | 3.846+0              | 2.590+0             | 1.860+0              | 1.396+0             | 1.083+0             | 8.608-1          | 6.983-1             | 5.759-1           |
| $E_b =$                                          | β                                  | 1.126                               | 1.371                | 1.572                | 1.648               | 1.682                | 1.697               | 1.702               | 1.701            | 1.696               | 1.687             |
| 326.8 eV                                         | $_{\delta}^{\gamma}$               | 7.08-1<br>-3.76-3                   | 6.52 - 1 $-1.68 - 2$ | 3.92 - 1 $-2.06 - 2$ | 1.91-1 $-1.90-2$    | 7.18-2 $-1.74-2$     | 1.62-2 $-1.61-2$    | 5.91-3<br>-1.49-2   | 2.70-2 $-1.38-2$ | 6.94-2 $-1.26-2$    | 1.26-1 $-1.12-2$  |
| $-5p_{3/2}$                                      | σ                                  | 3.383+1                             | 2.169+1              | 1.104+1              | 6.610+0             | 4.355+0              | 3.056+0             | 2.241+0             | 1.700+0          | 1.324+0             | 1.053+0           |
| $E_b =$                                          | β                                  | 1.147                               | 1.324                | 1.513                | 1.613               | 1.675                | 1.716               | 1.744               | 1.762            | 1.774               | 1.780             |
| 245.9 eV                                         | $_{\delta}^{\gamma}$               | 3.65-1<br>8.97-3                    | 2.96-1 $-2.62-3$     | 1.22 - 1 $-6.41 - 3$ | 5.90-3 $-1.98-3$    | -4.71-2 $4.09-3$     | -5.07-2 $1.00-2$    | -1.84-2 $1.53-2$    | 3.88-2<br>1.98-2 | 1.13-1<br>2.36-2    | 1.99-1<br>2.69-2  |
| 5d <sub>3/2</sub>                                | σ                                  | 3.622+1                             | 2.311+1              | 1.093+1              | 5.972+0             | 3.594+0              | 2.315+0             | 1.569+0             | 1.106+0          | 8.048-1             | 6.013-1           |
| $E_b =$                                          | β                                  | 0.949                               | 1.144                | 1.327                | 1.401               | 1.429                | 1.433               | 1.423               | 1.405            | 1.382               | 1.355             |
| 130.4 eV                                         | $\delta$                           | 1.17-1<br>-4.88-4                   | 9.12-3<br>-4.62-4    | -4.03-2 $1.66-2$     | 4.62-2 $3.47-2$     | 1.93-1<br>5.04-2     | 3.62-1<br>6.37-2    | 5.35-1<br>7.52-2    | 7.04-1 $8.58-2$  | 8.67 - 1 $9.60 - 2$ | 1.02+0<br>1.06-1  |
| 5d <sub>5/2</sub>                                | σ                                  | 5.411+1                             | 3.347+1              | 1.523+1              | 8.115+0             | 4.794+0              | 3.042+0             | 2.035+0             | 1.419+0          | 1.022+0             | 7.569-1           |
| $E_b =$                                          | β                                  | 1.243                               | 1.357                | 1.430                | 1.432               | 1.408                | 1.373               | 1.333               | 1.292            | 1.250               | 1.209             |
| 115.1 eV                                         | $\gamma \\ \delta$                 | 7.23-2<br>2.99-4                    | -2.29-2 $2.15-3$     | -1.57-2<br>1.47-2    | 1.17-1<br>2.89-2    | 2.92-1 $4.32-2$      | 4.74-1<br>5.71-2    | 6.49 - 1 $7.08 - 2$ | 8.13-1 $8.46-2$  | 9.67 - 1 $9.86 - 2$ | 1.11+0<br>1.13-1  |
| $-5f_{5/2}$                                      | σ                                  | 3.152+1                             | 1.510+1              | 4.741+0              | 1.929+0             | 9.201-1              | 4.888-1             | 2.810-1             | 1.717-1          | 1.101-1             | 7.346-2           |
| $E_b =$                                          | β                                  | 1.063                               | 1.112                | 1.104                | 1.053               | 0.991                | 0.929               | 0.870               | 0.814            | 0.761               | 0.711             |
| 6.0 eV                                           | $\frac{\gamma}{\delta}$            | 4.75-2 $4.18-2$                     | 1.62 - 1 $6.48 - 2$  | 4.09 - 1 $1.05 - 1$  | 6.34 - 1 $1.41 - 1$ | 8.25-1<br>1.74-1     | 9.88 - 1 $2.04 - 1$ | 1.13+0<br>2.34-1    | 1.25+0<br>2.63-1 | 1.35+0<br>2.90-1    | 1.44+0<br>3.16-1  |
| 5f <sub>7/2</sub>                                | σ                                  | 3.879+1                             | 1.842+1              | 5.716+0              | 2.305+0             | 1.090+0              | 5.752-1             | 3.287-1             | 1.997-1          | 1.274-1             | 8.460-2           |
| $E_b = 6.0 \text{ eV}$                           | β                                  | 1.081<br>5.32-2                     | 1.116<br>1.77-1      | 1.092<br>4.36-1      | 1.033<br>6.66-1     | 0.968<br>8.59-1      | 0.905<br>1.02+0     | 0.847<br>1.16+0     | 0.793<br>1.28+0  | 0.743<br>1.38+0     | 0.696<br>1.46+0   |
| 0.0 6                                            | $\frac{\gamma}{\delta}$            | 4.38-2                              | 6.60-2               | 1.05-1               | 1.41-1              | 1.74-1               | 2.06-1              | 2.37-1              | 2.67-1           | 2.96-1              | 3.24-1            |
| 6s <sub>1/2</sub>                                | σ                                  | 2.240+0                             | 1.441+0              | 7.536-1              | 4.691-1             | 3.224-1              | 2.361-1             | 1.807-1             | 1.428-1          | 1.157-1             | 9.556-2           |
| $E_b = 55.7 \text{ eV}$                          | $\beta$ $\gamma$                   | 1.491<br>6.80-1                     | 1.550<br>6.78-1      | 1.611<br>6.00-1      | 1.644<br>4.92-1     | 1.666<br>3.81-1      | 1.684<br>2.77-1     | 1.699<br>1.82-1     | 1.712<br>9.86-2  | 1.725<br>2.69-2     | 1.736<br>-3.35-2  |
| 55,7 61                                          | δ                                  | 1.40-3                              | -3.99-4              | -2.98 - 3            | -4.81-3             | -6.25 - 3            | -7.44 - 3           | -8.45 - 3           | -9.31-3          | -1.01-2             | -1.07-2           |
| $6p_{1/2}$                                       | σ                                  | 1.710+0                             | 1.211+0              | 7.118-1              | 4.715-1             | 3.355-1              | 2.505-1             | 1.936-1             | 1.535-1          | 1.243-1             | 1.024-1           |
| $E_b = 34.0 \text{ eV}$                          | $\beta$ $\gamma$                   | 1.257<br>6.70-1                     | 1.449<br>5.81-1      | 1.610<br>3.34-1      | 1.672<br>1.55-1     | 1.698<br>5.33-2      | 1.709<br>9.17-3     | 1.711<br>6.41-3     | 1.708<br>3.26-2  | 1.701<br>7.86-2     | 1.691<br>1.38-1   |
| 3 1.0 0 1                                        | δ                                  | -1.68-2                             | -2.19-2              | -2.13-2              | -1.89-2             | -1.71-2              | -1.59-2             | -1.48-2             | -1.38-2          | -1.26-2             | -1.13-2           |
| $6p_{3/2}$                                       | $\sigma$                           | 5.243+0                             | 3.312+0              | 1.661+0              | 9.875-1             | 6.481-1              | 4.537-1             | 3.323-1             | 2.518-1          | 1.960-1             | 1.558-1           |
| $E_b = 18.3 \text{ eV}$                          | $eta \ \gamma$                     | 1.230<br>3.38-1                     | 1.378<br>2.61-1      | 1.543<br>9.81-2      | 1.633<br>-5.65-3    | 1.690<br>-4.92-2     | 1.727<br>-4.68-2    | 1.752<br>1.062      | 1.769<br>4.94-2  | 1.779<br>1.26-1     | 1.784<br>2.13-1   |
| 10.5 01                                          | δ                                  | 4.12-4                              | -6.41-3              | -6.88 - 3            | -1.65 - 3           | 4.51-3               | 1.03-2              | 1.55-2              | 1.99-2           | 2.37-2              | 2.68-2            |
| 6d <sub>3/2</sub>                                | σ                                  | 2.276+0                             | 1.439+0              | 6.754-1              | 3.680-1             | 2.213-1              | 1.425-1             | 9.663-2             | 6.814-2          | 4.958-2             | 3.704-2           |
| $E_b = 6.0 \text{ eV}$                           | $eta \ \gamma$                     | 1.010<br>1.06-1                     | 1.182<br>3.90-3      | 1.347<br>-3.52-2     | 1.414<br>5.50-2     | 1.438<br>2.01-1      | 1.440<br>3.70-1     | 1.428<br>5.47-1     | 1.409<br>7.19-1  | 1.384<br>8.81-1     | 1.356<br>1.03+0   |
|                                                  | δ                                  | -4.13-3                             | -1.22 - 3            | 1.68-2               | 3.45-2              | 4.96-2               | 6.29-2              | 7.50-2              | 8.58-2           | 9.56-2              | 1.05-1            |
| 7s <sub>1/2</sub>                                | σ                                  | 1.820-1                             | 1.164-1              | 6.059-2              | 3.760-2             | 2.578-2              | 1.886-2             | 1.442-2             | 1.139-2          | 9.226-3             | 7.622-3           |
| $E_b = 6.0 \text{ eV}$                           | $\beta$ $\gamma$                   | 1.494<br>6.79-1                     | 1.551<br>6.76-1      | 1.610<br>5.98-1      | 1.643<br>4.90-1     | 1.667<br>3.77-1      | 1.686<br>2.72-1     | 1.702<br>1.78-1     | 1.715<br>9.65-2  | 1.726<br>2.58-2     | 1.736<br>-3.46-2  |
|                                                  | δ                                  | 1.29-3                              | -4.70-4              | -3.02-3              | -4.87-3             | -6.31-3              | -7.46-3             | -8.40-3             | -9.27-3          | -1.00-2             | -1.08-2           |
| Z= 98, Cf: [R                                    | n]5f <sup>6</sup> <sub>5/2</sub> 5 | 5f <sub>7/2</sub> 7s <sub>1/2</sub> |                      |                      |                     |                      |                     |                     |                  |                     |                   |
|                                                  |                                    | k (eV)                              |                      |                      |                     |                      |                     |                     |                  |                     |                   |
| Shell                                            |                                    | 1500                                | 2000                 | 3000                 | 4000                | 5000                 | 6000                | 7000                | 8000             | 9000                | 10000             |
| $\begin{array}{l} 4p_{3/2} \\ E_b = \end{array}$ | $\frac{\sigma}{eta}$               | 1.095+2<br>0.166                    | 7.847+1<br>0.854     | 4.373+1<br>1.296     | 2.720+1<br>1.480    | 1.827+1<br>1.584     | 1.296+1<br>1.649    | 9.571+0<br>1.692    | 7.296+0<br>1.722 | 5.702+0<br>1.742    | 4.549+0<br>1.755  |
| 1291.5 eV                                        | γ                                  | -4.06-4                             | 4.13 - 1             | 3.05 - 1             | 1.14 - 1            | -4.38 - 3            | -5.44 - 2           | -5.46 - 2           | -1.94-2          | 4.07 - 2            | 1.18 - 1          |
|                                                  | δ                                  | 1.79-1                              | 6.49-2               | 5.92-3               | -1.75-3             | 1.61-3               | 7.45-3              | 1.34-2              | 1.90-2           | 2.38-2              | 2.79-2            |
| $4d_{3/2} E_b =$                                 | $\frac{\sigma}{eta}$               | 1.624+2<br>0.243                    | 1.154+2<br>0.722     | 5.842+1<br>1.129     | 3.244+1<br>1.287    | 1.957+1<br>1.357     | 1.259+1<br>1.387    | 8.513+0<br>1.393    | 5.984+0<br>1.386 | 4.343+0<br>1.371    | 3.236+0<br>1.350  |
| 993.7 eV                                         | γ                                  | 1.59 - 1                            | 1.30 - 1             | -5.89 - 2            | -4.31-2             | 7.71 - 2             | 2.41 - 1            | 4.20 - 1            | 5.99 - 1         | 7.68 - 1            | 9.28 - 1          |
| 4.1                                              | δ                                  | 1.35-1                              | 2.85-2               | 1.19-2               | 3.06-2              | 4.92-2               | 6.51-2              | 7.88-2              | 9.06-2           | 1.01-1              | 1.10-1            |
| $4d_{5/2}$ $E_b =$                               | $\frac{\sigma}{eta}$               | 2.550+2<br>0.659                    | 1.722+2<br>1.046     | 8.260+1<br>1.307     | 4.448+1<br>1.374    | 2.628+1<br>1.382     | 1.663+1<br>1.365    | 1.109+1<br>1.335    | 7.708+0<br>1.300 | 5.536+0<br>1.261    | 4.088+0<br>1.222  |
| -                                                | ,                                  |                                     |                      |                      |                     |                      |                     |                     |                  |                     |                   |

| able 1 (contin            | ued)                               |                                     |                      |                      |                     |                   |                    |                      |                      |                    |                    |
|---------------------------|------------------------------------|-------------------------------------|----------------------|----------------------|---------------------|-------------------|--------------------|----------------------|----------------------|--------------------|--------------------|
| 933.1 eV                  | $\gamma \\ \delta$                 | 2.39-1<br>8.51-2                    | 8.83-2<br>1.77-2     | -6.65-2<br>1.19-2    | 1.27-2<br>2.63-2    | 1.76-1<br>4.16-2  | 3.64-1<br>5.67-2   | 5.53-1<br>7.16-2     | 7.31-1<br>8.58-2     | 8.93-1<br>9.94-2   | 1.04+0<br>1.13-1   |
| $4f_{5/2}$                | $\sigma$                           | 3.934+2                             | 1.778+2<br>0.973     | 5.188+1              | 2.021+1             | 9.365+0           | 4.874+0            | 2.760+0<br>0.880     | 1.668+0              | 1.060+0            | 7.030-1            |
| $E_b = 541.1 \text{ eV}$  | $eta \gamma$                       | 0.827 $-3.54-2$                     | 6.51-2               | 1.053<br>3.24-1      | 1.038<br>5.71-1     | 0.993<br>7.84-1   | 0.938<br>9.62-1    | 0.880<br>1.11+0      | 0.825<br>1.23+0      | 0.773<br>1.34+0    | 0.725<br>1.43+0    |
|                           | δ                                  | 3.54 - 2                            | 6.37 - 2             | 1.08 - 1             | 1.45 - 1            | 1.78 - 1          | 2.09 - 1           | 2.37 - 1             | 2.63 - 1             | 2.89 - 1           | 3.15 - 1           |
| 4f <sub>7/2</sub>         | σ                                  | 4.969+2                             | 2.223+2              | 6.423+1              | 2.484+1             | 1.143+1           | 5.916+0            | 3.332+0              | 2.003+0              | 1.268+0            | 8.369-1            |
| $E_b = 523.3 \text{ eV}$  | β                                  | 0.866                               | 0.994                | 1.051                | 1.024               | 0.973             | 0.916              | 0.858                | 0.804                | 0.755              | 0.709              |
| 323.3 EV                  | $\gamma \\ \delta$                 | -3.20-2 $3.77-2$                    | 8.08-2 $6.55-2$      | 3.55-1<br>1.08-1     | 6.07 - 1 $1.45 - 1$ | 8.21-1<br>1.78-1  | 9.98-1 $2.10-1$    | 1.14+0<br>2.39-1     | 1.26+0<br>2.67-1     | 1.37+0<br>2.94-1   | 1.45+0<br>3.22-1   |
| 5s <sub>1/2</sub>         | σ                                  | 1.021+1                             | 6.757+0              | 3.641+0              | 2.303+0             | 1.598+0           | 1.179+0            | 9.064-1              | 7.191-1              | 5.843-1            | 4.839-1            |
| $E_b =$                   | β                                  | 1.397                               | 1.483                | 1.566                | 1.608               | 1.636             | 1.657              | 1.673                | 1.687                | 1.700              | 1.712              |
| 423.6 eV                  | $\delta$                           | 7.52-1<br>3.62-3                    | 7.64-1<br>1.03-3     | 6.91-1 $-2.30-3$     | 5.79-1<br>-4.51-3   | 4.61-1 $-6.17-3$  | 3.50-1<br>-7.52-3  | 2.49-1<br>-8.67-3    | 1.58 - 1 $-9.66 - 3$ | 7.91-2 $-1.05-2$   | 1.10-2 $-1.13-2$   |
| 5p <sub>1/2</sub>         | σ                                  | 8.567+0                             | 6.327+0              | 3.884+0              | 2.631+0             | 1.898+0           | 1.431+0            | 1.113+0              | 8.875-1              | 7.217-1            | 5.965-1            |
| $E_b =$                   | β                                  | 1.072                               | 1.340                | 1.557                | 1.639               | 1.677             | 1.694              | 1.701                | 1.701                | 1.697              | 1.690              |
| 341.9 eV                  | $\gamma \\ \delta$                 | 7.29-1<br>-3.13-3                   | 6.89 - 1 $-1.79 - 2$ | 4.31-1 $-2.22-2$     | 2.20-1 $-2.05-2$    | 9.06-2 $-1.86-2$  | 2.56-2 $-1.71-2$   | 6.60 - 3 $-1.59 - 2$ | 2.05-2 $-1.48-2$     | 5.75-2 $-1.36-2$   | 1.10-1 $-1.22-2$   |
| 5n                        | $\frac{\sigma}{\sigma}$            | 3.478+1                             | 2.234+1              | 1.139+1              | 6.834+0             | 4.509+0           | 3.168+0            | 2.328+0              | 1.768+0              | 1.378+0            | 1.098+0            |
| $5p_{3/2}$ $E_b =$        | $\beta$                            | 1.118                               | 1.303                | 1.139+1              | 1.600               | 1.665             | 1.708              | 1.737                | 1.757                | 1.576+0            | 1.777              |
| 248.8 eV                  | γ                                  | 3.70-1                              | 3.08-1               | 1.36-1               | 1.54-2              | -4.27 - 2         | -5.23-2            | -2.61-2              | 2.61-2               | 9.66-2             | 1.79-1             |
|                           | δ                                  | 1.02-2                              | -2.26-3              | -6.89-3              | -2.72-3             | 3.37-3            | 9.42-3             | 1.49-2               | 1.97-2               | 2.39-2             | 2.73-2             |
| $5d_{3/2}$ $E_b =$        | $\frac{\sigma}{eta}$               | 3.742+1<br>0.922                    | 2.401+1<br>1.125     | 1.143+1<br>1.315     | 6.271+0<br>1.395    | 3.788+0<br>1.426  | 2.448+0<br>1.434   | 1.663+0<br>1.427     | 1.175+0<br>1.410     | 8.566-1<br>1.389   | 6.409-1<br>1.364   |
| 136.0 eV                  | γ                                  | 1.31 - 1                            | 1.90 - 2             | -4.31-2              | 3.24 - 2            | 1.71 - 1          | 3.37-1             | 5.10-1               | 6.79-1               | 8.40-1             | 9.92-1             |
|                           | δ                                  | 2.88 - 4                            | -1.10-3              | 1.53-2               | 3.35-2              | 4.93-2            | 6.31-2             | 7.51-2               | 8.57-2               | 9.54-2             | 1.05-1             |
| $5d_{5/2}$                | $\sigma$                           | 5.591+1                             | 3.474+1              | 1.589+1              | 8.497+0             | 5.036+0           | 3.204+0            | 2.149+0              | 1.501+0              | 1.083+0            | 8.030-1            |
| $E_b = 124.5 \text{ eV}$  | $\beta$ $\gamma$                   | 1.232<br>8.67-2                     | 1.351<br>-1.63-2     | 1.430<br>-2.22-2     | 1.435<br>1.02-1     | 1.413<br>2.71-1   | 1.380<br>4.52-1    | 1.342<br>6.29-1      | 1.300<br>7.95-1      | 1.259<br>9.47-1    | 1.218<br>1.09+0    |
|                           | δ                                  | 5.72-4                              | 1.62-3               | 1.38-2               | 2.76-2              | 4.17-2            | 5.59-2             | 6.99-2               | 8.35-2               | 9.68-2             | 1.10-1             |
| 5f <sub>5/2</sub>         | σ                                  | 3.289+1                             | 1.586+1              | 5.022+0              | 2.056+0             | 9.852-1           | 5.255-1            | 3.030-1              | 1.856-1              | 1.193-1            | 7.974-2            |
| $E_b = 6.0 \text{ eV}$    | $\beta$ $\gamma$                   | 1.058<br>3.78-2                     | 1.112<br>1.48-1      | 1.108<br>3.92-1      | 1.060<br>6.17-1     | 1.000<br>8.12-1   | 0.938<br>9.79-1    | 0.878<br>1.12+0      | 0.821<br>1.24+0      | 0.769<br>1.34+0    | 0.720<br>1.43+0    |
| 0.0 C V                   | δ                                  | 3.96-2                              | 6.25-2               | 1.02-1               | 1.38-1              | 1.72-1            | 2.03-1             | 2.31-1               | 2.58-1               | 2.85-1             | 3.11-1             |
| 5f <sub>7/2</sub>         | σ                                  | 3.978+1                             | 1.900+1              | 5.944+0              | 2.411+0             | 1.146+0           | 6.071-1            | 3.479-1              | 2.119-1              | 1.355-1            | 9.013-2            |
| $E_b = 6.0 \text{ eV}$    | β                                  | 1.078<br>4.26-2                     | 1.117                | 1.097<br>4.20-1      | 1.040<br>6.50-1     | 0.976<br>8.48-1   | 0.914<br>1.01+0    | 0.854<br>1.15+0      | 0.799<br>1.27+0      | 0.749<br>1.37+0    | 0.703<br>1.46+0    |
| 0.0 6 V                   | $\frac{\gamma}{\delta}$            | 4.20-2                              | 1.63-1 $6.38-2$      | 1.02-1               | 1.38-1              | 1.72-1            | 2.04-1             | 2.34-1               | 2.63-1               | 2.91-1             | 3.18-1             |
| 6s <sub>1/2</sub>         | σ                                  | 2.232+0                             | 1.438+0              | 7.539-1              | 4.698-1             | 3.232-1           | 2.369-1            | 1.815-1              | 1.436-1              | 1.164-1            | 9.628-2            |
| $E_b =$                   | β                                  | 1.451                               | 1.516                | 1.583                | 1.620               | 1.646             | 1.664              | 1.680                | 1.693                | 1.705              | 1.716              |
| 58.1 eV                   | $\delta$                           | 6.91-1 $1.80-3$                     | 6.96 - 1 $-1.71 - 4$ | 6.28 - 1 $-2.96 - 3$ | 5.22-1<br>-4.93-3   | 4.12-1 $-6.44-3$  | 3.08-1 $-7.71-3$   | 2.13-1 $-8.80-3$     | 1.29-1<br>-9.74-3    | 5.46-2 $-1.06-2$   | -9.28-3<br>-1.13-2 |
| 6p <sub>1/2</sub>         | σ                                  | 1.662+0                             | 1.183+0              | 7.000-1              | 4.659-1             | 3.329-1           | 2.494-1            | 1.933-1              | 1.537-1              | 1.248-1            | 1.030-1            |
| $E_b =$                   | β                                  | 1.220                               | 1.426                | 1.597                | 1.664               | 1.694             | 1.707              | 1.710                | 1.708                | 1.703              | 1.694              |
| 34.9 eV                   | $\gamma \\ \delta$                 | 6.97-1                              | 6.16-1 $-2.36-2$     | 3.68-1 $-2.30-2$     | 1.80-1 $-2.03-2$    | 6.90-2            | 1.64-2             | 5.70-3<br>-1.57-2    | 2.49-2               | 6.55-2             | 1.21-1             |
| 6n                        |                                    | -1.81-2<br>5.108+0                  | 3.231+0              | 1.623+0              | 9.662-1             | -1.82-2 $6.348-1$ | -1.68-2<br>4.449-1 | 3.263-1              | -1.47-2 $2.476-1$    | -1.36-2<br>1.929-1 | -1.23-2<br>1.536-1 |
| $6p_{3/2}$<br>$E_b =$     | $\frac{\sigma}{eta}$               | 1.206                               | 1.357                | 1.525                | 1.619               | 1.679             | 1.719              | 1.746                | 1.764                | 1.775              | 1.782              |
| 19.4 eV                   | γ                                  | 3.47 - 1                            | 2.74 - 1             | 1.11 - 1             | 2.86 - 3            | -4.60-2           | -4.92-2            | -1.90-2              | 3.56-2               | 1.08 - 1           | 1.92 - 1           |
|                           | δ                                  | 1.09-3                              | -6.33-3              | -7.52-3              | -2.47-3             | 3.78-3            | 9.76-3             | 1.51-2               | 1.97-2               | 2.38-2             | 2.72-2             |
| $7s_{1/2}  E_b =$         | $\frac{\sigma}{eta}$               | 1.518-1<br>1.455                    | 9.738-2<br>1.519     | 5.081-2<br>1.584     | 3.158-2<br>1.620    | 2.168-2<br>1.644  | 1.587-2<br>1.663   | 1.215-2<br>1.679     | 9.602-3<br>1.694     | 7.783—3<br>1.708   | 6.435-3<br>1.719   |
| 6.0 eV                    | γ                                  | 6.88-1                              | 6.92 - 1             | 6.23-1               | 5.18-1              | 4.10-1            | 3.05-1             | 2.10 - 1             | 1.25-1               | 5.23-2             | -1.00-2            |
|                           | δ                                  | 1.65-3                              | -2.81-4              | -3.01-3              | -4.97 - 3           | -6.52 - 3         | -7.79-3            | -8.83-3              | -9.74-3              | -1.05-2            | -1.12-2            |
| Z= 99, Es: [Ri            | n]5f <sup>6</sup> <sub>5/2</sub> 5 | 5f <sub>7/2</sub> 7s <sub>1/2</sub> |                      |                      |                     |                   |                    |                      |                      |                    |                    |
|                           |                                    | k (eV)                              |                      |                      |                     |                   |                    |                      |                      |                    |                    |
| Shell                     |                                    | 1500                                | 2000                 | 3000                 | 4000                | 5000              | 6000               | 7000                 | 8000                 | 9000               | 10000              |
| $4p_{3/2}$                | $\sigma$                           | 1.102+2                             | 7.968+1              | 4.465+1              | 2.786+1             | 1.875+1           | 1.333+1            | 9.860+0              | 7.526+0              | 5.890+0            | 4.704+0            |
| $E_b = 1335.5 \text{ eV}$ | $eta \gamma$                       | 0.013<br>-1.06-1                    | 0.789<br>4.01-1      | 1.262<br>3.26-1      | 1.456<br>1.33-1     | 1.565<br>7.65-3   | 1.634<br>-5.01-2   | 1.681<br>-5.77-2     | 1.713<br>-2.92-2     | 1.735<br>2.51-2    | 1.750<br>9.73-2    |
|                           | δ                                  | 2.01-1                              | 7.44-2               | 7.67-3               | -1.96 - 3           | 8.36-4            | 6.64-3             | 1.28-2               | 1.85-2               | 2.36-2             | 2.79-2             |
| 4d <sub>3/2</sub>         | σ                                  | 1.635+2                             | 1.176+2              | 6.022+1              | 3.365+1             | 2.039+1           | 1.316+1            | 8.923+0              | 6.288+0              | 4.572+0            | 3.413+0            |
| $E_b =$                   | β                                  | 0.167                               | 0.673                | 1.103                | 1.271               | 1.348             | 1.382              | 1.393                | 1.389                | 1.376              | 1.357              |
| 1032.4 eV                 | $\gamma \\ \delta$                 | 1.32-1<br>1.57-1                    | 1.47-1<br>3.52-2     | -5.28-2 $1.10-2$     | -5.27-2 $2.91-2$    | 5.69-2<br>4.79-2  | 2.14-1 $6.40-2$    | 3.89-1<br>7.81-2     | 5.66-1 $9.01-2$      | 7.36-1<br>1.01-1   | 8.96-1<br>1.10-1   |
| 4d <sub>5/2</sub>         | σ                                  | 2.586+2                             | 1.763+2              | 8.532+1              | 4.619+1             | 2.739+1           | 1.738+1            | 1.162+1              | 8.093+0              | 5.824+0            | 4.306+0            |
| $E_b =$                   | β                                  | 0.607                               | 1.018                | 1.298                | 1.372               | 1.384             | 1.369              | 1.342                | 1.308                | 1.270              | 1.232              |
| 968.4 eV                  | γ                                  | 2.42 - 1                            | 1.09-1<br>2.11-2     | -6.63 - 2            | -3.18-4<br>2.51-2   | 1.56-1<br>4.02-2  | 3.40 - 1           | 5.27-1<br>6.98-2     | 7.05 - 1             | 8.69-1<br>9.79-2   | 1.02+0             |
| •                         | δ                                  | 1.00 - 1                            |                      | 1.12 - 2             |                     |                   | 5.51-2             |                      | 8.42 - 2             |                    | 1.11 - 1           |

| Ta | h | ۱۵. | 1 | ( ~ | ^* | ı f | in | ., | n | ď | ١ |
|----|---|-----|---|-----|----|-----|----|----|---|---|---|
|    |   |     |   |     |    |     |    |    |   |   |   |

| Table 1 (contin          | ,                    |                   |                      |                   |                   |                   |                   |                  |                  |                  |                  |
|--------------------------|----------------------|-------------------|----------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|------------------|------------------|
| $4f_{5/2}$               | $\sigma$             | 4.160+2           | 1.891+2              | 5.555+1           | 2.175+1           | 1.011+1           | 5.282+0           | 2.999+0          | 1.816+0          | 1.157+0          | 7.679 - 1        |
| $E_b =$                  | $\beta$              | 0.806             | 0.962                | 1.051             | 1.041             | 0.999             | 0.945             | 0.889            | 0.834            | 0.782            | 0.734            |
| 567.5 eV                 | γ                    | -4.57 - 2         | 4.93 - 2             | 3.05 - 1          | 5.52 - 1          | 7.66 - 1          | 9.47 - 1          | 1.10+0           | 1.22+0           | 1.33+0           | 1.42+0           |
|                          | δ                    | 3.19-2            | 6.08 - 2             | 1.06 - 1          | 1.42 - 1          | 1.75 - 1          | 2.06 - 1          | 2.35 - 1         | 2.60 - 1         | 2.86 - 1         | 3.11 - 1         |
| $4f_{7/2}$               | $\sigma$             | 5.275+2           | 2.371+2              | 6.889+1           | 2.676+1           | 1.236+1           | 6.416+0           | 3.623+0          | 2.182+0          | 1.384+0          | 9.146 - 1        |
| $E_b =$                  | β                    | 0.848             | 0.985                | 1.051             | 1.028             | 0.979             | 0.924             | 0.867            | 0.813            | 0.763            | 0.717            |
| 551.0 eV                 | γ                    | -4.39-2           | 6.36 - 2             | 3.36 - 1          | 5.89 - 1          | 8.05 - 1          | 9.85 - 1          | 1.13+0           | 1.26+0           | 1.36+0           | 1.45+0           |
|                          | δ                    | 3.42-2            | 6.27 - 2             | 1.06 - 1          | 1.42 - 1          | 1.76 - 1          | 2.07 - 1          | 2.37 - 1         | 2.64 - 1         | 2.91 - 1         | 3.17 - 1         |
| $5s_{1/2}$               | $\sigma$             | 1.033+1           | 6.855+0              | 3.705+0           | 2.348+0           | 1.632+0           | 1.205+0           | 9.276 - 1        | 7.368 - 1        | 5.993 - 1        | 4.968 - 1        |
| $E_b =$                  | β                    | 1.346             | 1.442                | 1.533             | 1.580             | 1.611             | 1.634             | 1.651            | 1.666            | 1.679            | 1.691            |
| 442.7 eV                 | γ                    | 7.60-1            | 7.82-1               | 7.21-1            | 6.13-1            | 4.97-1            | 3.85-1            | 2.84-1           | 1.92-1           | 1.10-1           | 3.95-2           |
|                          | δ                    | 4.35-3            | 1.49-3               | -2.14 - 3         | -4.54-3           | -6.34 - 3         | -7.78-3           | -9.01-3          | -1.01-2          | -1.10-2          | -1.18-2          |
| $5p_{1/2}$               | $\sigma$             | 8.499+0           | 6.317+0              | 3.914+0           | 2.668+0           | 1.934+0           | 1.463+0           | 1.142+0          | 9.133 - 1        | 7.446 - 1        | 6.168 - 1        |
| $E_b =$                  | $\beta$              | 1.017             | 1.305                | 1.538             | 1.628             | 1.670             | 1.690             | 1.699            | 1.700            | 1.698            | 1.692            |
| 357.4 eV                 | $\gamma \\ \delta$   | 7.45-1<br>-2.53-3 | 7.25 - 1 $-1.90 - 2$ | 4.70-1 $-2.40-2$  | 2.50-1            | 1.11-1 $-2.00-2$  | 3.70-2            | 9.65-3           | 1.61-2           | 4.69-2 $-1.46-2$ | 9.45-2           |
|                          |                      |                   |                      |                   | -2.21-2           |                   | -1.83-2           | -1.69-2          | -1.58-2          |                  | -1.32-2          |
| $5p_{3/2}$               | σ                    | 3.584+1           | 2.307+1              | 1.179+1           | 7.084+0           | 4.680+0           | 3.293+0           | 2.422+0          | 1.842+0          | 1.437+0          | 1.146+0          |
| $E_b =$                  | β                    | 1.087             | 1.277                | 1.475             | 1.583             | 1.652             | 1.697             | 1.729            | 1.750            | 1.765            | 1.774            |
| 258.7 eV                 | $\gamma \\ \delta$   | 3.76-1<br>1.17-2  | 3.20-1 $-1.69-3$     | 1.50-1<br>-7.37-3 | 2.58-2 $-3.52-3$  | -3.78-2<br>2.59-3 | -5.32-2<br>8.79-3 | -3.28-2 $1.45-2$ | 1.42-2<br>1.95-2 | 8.01-2 $2.39-2$  | 1.59-1<br>2.76-2 |
|                          |                      |                   |                      |                   |                   |                   |                   |                  |                  |                  |                  |
| $5d_{3/2}$               | $\sigma$             | 3.873+1           | 2.499+1              | 1.197+1           | 6.599+0           | 4.000+0           | 2.593+0           | 1.766+0          | 1.251+0          | 9.137-1          | 6.849-1          |
| $E_b = 141.7 \text{ eV}$ | β                    | 0.896<br>1.43-1   | 1.104<br>2.87-2      | 1.302<br>-4.48-2  | 1.387<br>2.07-2   | 1.423             | 1.433<br>3.12-1   | 1.429<br>4.82-1  | 1.415<br>6.51-1  | 1.395<br>8.12-1  | 1.372<br>9.64-1  |
| 141.7 ev                 | $\gamma \\ \delta$   | 1.43-1            | -1.61-3              | -4.46-2<br>1.41-2 | 3.24-2            | 1.52-1<br>4.84-2  | 6.23-2            | 7.46-2           | 8.54-2           | 9.50-2           | 1.04-1           |
|                          |                      |                   |                      |                   |                   |                   |                   |                  |                  |                  |                  |
| $5d_{5/2}$               | σ                    | 5.797+1           | 3.619+1              | 1.664+1<br>1.429  | 8.931+0           | 5.308+0           | 3.386+0           | 2.277+0          | 1.594+0<br>1.309 | 1.152+0          | 8.553-1          |
| $E_b = 133.1 \text{ eV}$ | $eta \ \gamma$       | 1.221<br>9.99-2   | 1.344<br>-9.39-3     | -2.75-2           | 1.438<br>8.85-2   | 1.418<br>2.53-1   | 1.387<br>4.31-1   | 1.349<br>6.07-1  | 7.74–1           | 1.268<br>9.27-1  | 1.228<br>1.07+0  |
| 155.1 CV                 | δ                    | 9.12-4            | 1.18-3               | 1.29-2            | 2.66-2            | 4.03-2            | 5.43-2            | 6.83-2           | 8.19-2           | 9.51-2           | 1.08-1           |
| F.f.                     | σ                    | 3.572+1           | 1.736+1              | 5.543+0           | 2.283+0           | 1.100+0           | 5.890-1           | 3.408-1          | 2.093-1          | 1.349-1          | 9.033-2          |
| $5f_{5/2}$<br>$E_b =$    | $\beta$              | 1.054             | 1.730+1              | 1.113             | 1.066             | 1.100+0           | 0.947             | 0.887            | 0.830            | 0.778            | 9.033-2<br>0.729 |
| 6.0 eV                   | γ                    | 2.95-2            | 1.37-1               | 3.79-1            | 6.02-1            | 7.99-1            | 9.67-1            | 1.11+0           | 1.23+0           | 1.34+0           | 1.43+0           |
|                          | δ                    | 3.75-2            | 6.04-2               | 9.99-2            | 1.36-1            | 1.69-1            | 2.00-1            | 2.29-1           | 2.55-1           | 2.81-1           | 3.07-1           |
| 5f <sub>7/2</sub>        | σ                    | 4.336+1           | 2.086+1              | 6.582+0           | 2.686+0           | 1.283+0           | 6.824-1           | 3.924-1          | 2.396-1          | 1.536-1          | 1.024-1          |
| $E_b =$                  | β                    | 1.076             | 1.118                | 1.101             | 1.046             | 0.984             | 0.922             | 0.863            | 0.807            | 0.757            | 0.711            |
| 6.0 eV                   | γ                    | 3.34-2            | 1.51 - 1             | 4.06 - 1          | 6.37 - 1          | 8.35 - 1          | 1.00+0            | 1.15+0           | 1.26+0           | 1.37+0           | 1.45+0           |
|                          | δ                    | 3.97 - 2          | 6.19 - 2             | 1.00 - 1          | 1.35 - 1          | 1.69 - 1          | 2.02 - 1          | 2.31 - 1         | 2.60 - 1         | 2.87 - 1         | 3.14 - 1         |
| 6s <sub>1/2</sub>        | σ                    | 2.273+0           | 1.468+0              | 7.714-1           | 4.813-1           | 3.314-1           | 2.432-1           | 1.865-1          | 1.476-1          | 1.198-1          | 9.918-2          |
| $E_b =$                  | β                    | 1.407             | 1.479                | 1.553             | 1.594             | 1.621             | 1.642             | 1.658            | 1.672            | 1.684            | 1.696            |
| 60.4 eV                  | γ                    | 7.01 - 1          | 7.14 - 1             | 6.55 - 1          | 5.53 - 1          | 4.45 - 1          | 3.41 - 1          | 2.45 - 1         | 1.60 - 1         | 8.35 - 2         | 1.72 - 2         |
|                          | δ                    | 2.23-3            | 1.11-4               | -2.89-3           | -5.02-3           | -6.66-3           | -8.01-3           | -9.17-3          | -1.02-2          | -1.11-2          | -1.19-2          |
| $6p_{1/2}$               | $\sigma$             | 1.659+0           | 1.186+0              | 7.072 - 1         | 4.732 - 1         | 3.394 - 1         | 2.551 - 1         | 1.983 - 1        | 1.581 - 1        | 1.287 - 1        | 1.064 - 1        |
| $E_b =$                  | $\beta$              | 1.179             | 1.397                | 1.581             | 1.655             | 1.689             | 1.704             | 1.709            | 1.708            | 1.704            | 1.697            |
| 37.7 eV                  | γ                    | 7.22-1            | 6.51-1               | 4.03-1            | 2.06-1            | 8.63-2            | 2.54-2            | 7.12-3           | 1.95-2           | 5.42-2           | 1.05-1           |
|                          | δ                    | -1.92-2           | -2.54-2              | -2.49-2           | -2.20-2           | -1.96-2           | -1.79-2           | -1.67-2          | -1.56-2          | -1.45-2          | -1.32-2          |
| $6p_{3/2}$               | σ                    | 5.247+0           | 3.324+0              | 1.673+0           | 9.971-1           | 6.558-1           | 4.600-1           | 3.377-1          | 2.565-1          | 2.001-1          | 1.594-1          |
| $E_b =$                  | β                    | 1.179             | 1.333                | 1.504             | 1.603             | 1.666             | 1.709             | 1.738            | 1.758            | 1.771            | 1.779            |
| 22.2 eV                  | $_{\delta}^{\gamma}$ | 3.54-1<br>1.87-3  | 2.86-1 $-6.21-3$     | 1.24-1<br>-8.16-3 | 1.20-2<br>-3.30-3 | -4.22-2 3.02-3    | -5.09-2 $9.17-3$  | -2.61-2 $1.47-2$ | 2.34-2 $1.96-2$  | 9.10-2 $2.38-2$  | 1.72-1<br>2.75-2 |
|                          |                      |                   |                      |                   |                   |                   |                   |                  |                  |                  |                  |
| $7s_{1/2}$               | σ                    | 1.513-1<br>1.412  | 9.721-2<br>1.482     | 5.084-2<br>1.555  | 3.164-2<br>1.594  | 2.175-2           | 1.594-2<br>1.639  | 1.220-2<br>1.657 | 9.656-3          | 7.833-3<br>1.687 | 6.482-3          |
| $E_b = 6.0 \text{ eV}$   | $eta \ \gamma$       | 6.98-1            | 7.10-1               | 6.49–1            | 5.49-1            | 1.620<br>4.42-1   | 3.38-1            | 2.42-1           | 1.673<br>1.56-1  | 8.03-2           | 1.699<br>1.57-2  |
| 0.0 C V                  | δ                    | 2.06-3            | -1.71-5              | -2.96-3           | -5.07-3           | -6.73-3           | -8.09-3           | -9.22 - 3        | -1.02-2          | -1.10-2          | -1.18-2          |
| 7 400 5 1                |                      |                   |                      | 2.00              | 0.07              | 0,73 3            | 0.00              | 0,22 3           | 1,02 2           | 2                | 2                |
| Z=100, Fm: [             | Kn J515/2            |                   |                      |                   |                   |                   |                   |                  |                  |                  |                  |
|                          |                      | k (eV)            |                      |                   |                   |                   |                   |                  |                  |                  |                  |
| Shell                    |                      | 1500              | 2000                 | 3000              | 4000              | 5000              | 6000              | 7000             | 8000             | 9000             | 10000            |
| 4p <sub>3/2</sub>        | σ                    | 1.106+2           | 8.083+1              | 4.556+1           | 2.852+1           | 1.924+1           | 1.370+1           | 1.015+1          | 7.759+0          | 6.080+0          | 4.861+0          |
| $E_b =$                  | β                    |                   | 0.720                | 1.227             | 1.430             | 1.545             | 1.618             | 1.668            | 1.703            | 1.727            | 1.744            |
| 1379.9 eV                | γ                    | -2.28-1           | 3.84 - 1             | 3.45 - 1          | 1.53 - 1          | 2.09 - 2          | -4.46-2           | -5.93 - 2        | -3.76 - 2        | 1.07 - 2         | 7.79 - 2         |
|                          | δ                    | 2.21 - 1          | 8.51 - 2             | 9.74 - 3          | -2.07 - 3         | 5.70-5            | 5.77 - 3          | 1.20 - 2         | 1.80 - 2         | 2.33-2           | 2.79 - 2         |
| 4d <sub>3/2</sub>        | σ                    | 1.645+2           | 1.197+2              | 6.200+1           | 3.487+1           | 2.122+1           | 1.374+1           | 9.341+0          | 6.598+0          | 4.808+0          | 3.595+0          |
| $E_b =$                  | β                    | 0.091             | 0.623                | 1.075             | 1.254             | 1.338             | 1.377             | 1.391            | 1.390            | 1.380            | 1.363            |
| 1071.0 eV                | γ                    | 9.57 - 2          | 1.61 - 1             | -4.52 - 2         | -6.08 - 2         | 3.81 - 2          | 1.87 - 1          | 3.57 - 1         | 5.33 - 1         | 7.03 - 1         | 8.63 - 1         |
|                          | δ                    | 1.79-1            | 4.31-2               | 1.02-2            | 2.76-2            | 4.66-2            | 6.30-2            | 7.72-2           | 8.96-2           | 1.00 - 1         | 1.10-1           |
| 4d <sub>5/2</sub>        | σ                    | 2.618+2           | 1.802+2              | 8.805+1           | 4.792+1           | 2.851+1           | 1.815+1           | 1.216+1          | 8.488+0          | 6.119+0          | 4.532+0          |
| $E_b =$                  | β                    | 0.553             | 0.989                | 1.287             | 1.370             | 1.386             | 1.373             | 1.348            | 1.316            | 1.279            | 1.241            |
| 1003.8 eV                | γ                    | 2.38-1            | 1.30-1               | -6.46-2           | -1.23-2           | 1.37-1            | 3.16-1            | 5.01-1           | 6.79-1           | 8.45-1           | 9.96-1           |
|                          | δ                    | 1.16-1            | 2.51-2               | 1.05-2            | 2.38-2            | 3.88-2            | 5.34-2            | 6.80-2           | 8.24-2           | 9.61-2           | 1.09-1           |
| $4f_{5/2}$               | σ                    | 4.396+2           | 2.010+2              | 5.943+1           | 2.337+1           | 1.091+1           | 5.715+0           | 3.254+0          | 1.974+0          | 1.260+0          | 8.375-1          |
|                          |                      |                   |                      |                   |                   |                   |                   |                  |                  |                  |                  |

 $5f_{7/2}$ 

 $E_b = 7.0 \text{ eV}$ 

 $6s_{1/2}$ 

 $E_b =$ 

 $6p_{1/2}$ 

 $6p_{3/2}$ 

 $7s_{1/2}$ 

62.7 eV

39.1 eV

22.9 eV

6.0 eV

4.702+1

1.073

2.44 - 2

3.77 - 2

2.310+0

1.360

7.10 - 1

2.72 - 3

1.652+0

1.133

7.46 - 1

5.374+0

1.152

3.61 - 1

2.68 - 3

1.506 - 1

1.365

7.07 - 1

2.53-3

-2.05 - 2

 $_{eta}^{\sigma}$ 

 $_{\delta}^{\gamma}$ 

σ

β

δ

 $\beta$ 

 $_{\delta}^{\gamma}$ 

β

 $_{\delta}^{\gamma}$ 

 $\sigma$ 

β

2.278+1

1.119

1.39 - 1

6.00 - 2

1.495+0

1.439

7.32 - 1

4.44 - 4

1.186+0

1.366

6.87 - 1

3.411+0

1.308

2.98 - 1

-6.02 - 3

9.697 - 2

1.442

7.28 - 1

3.01 - 4

-2.73 - 2

7.248+0

1.106

3.93 - 1

9.80 - 2

7.879 - 1

1.520

6.83 - 1

-2.79 - 3

7.126 - 1

1.564

4.39 - 1

1.720+0

1.484

1.37 - 1

-8.77 - 3

5.084-2

1.522

6.77 - 1

-2.87 - 3

-2.69 - 2

2.974+0

1.052

6.23 - 1

1.33 - 1

4.923-1

1.564

5.86 - 1

-5.09 - 3

4.793 - 1

1.644

2.35 - 1

-2.38 - 2

1.027+0

1.586

2.17 - 2

-4.15 - 3

3.168 - 2

1.566

5.80 - 1

-5.15 - 3

1.428+0

0.991

8.22 - 1

1.66 - 1

3.393-1

1.595

4.79 - 1

-6.86 - 3

3.451 - 1

1.682

1.06 - 1

6.759 - 1

1.653

-2.11-2

-3.76 - 2

2.21 - 3

2.180 - 2

1.594

4.75 - 1

-6.93 - 3

7.624 - 1

0.930

9.93 - 1

1.99 - 1

2.492 - 1

3.75 - 1

-8.32 - 3

2.603 - 1

1.700

3.63 - 2

-1.92 - 2

4.746 - 1

-5.17 - 2

8.54-3

1.599 - 2

1.615

3.73 - 1

-8.39 - 3

1.698

1.617

4.399 - 1

0.872

1.14+0

2.29 - 1

1.635

2.79 - 1

-9.55 - 3

2.029 - 1

1.707

1.03-2

-1.77 - 2

3.488 - 1

-3.21-2

1.43 - 2

1.633

2.76 - 1

-9.62 - 3

1.226 - 2

1.729

1.912-1

2.694 - 1

0.816

1.26+0

2.57 - 1

1.516-1

1.650

1.92 - 1

-1.06-2

1.623 - 1

1.708

1.58 - 2

-1.66-2

2.652 - 1

1.23 - 2

1.94 - 2

9.705 - 3

1.649

1.88 - 1

-1.07 - 2

1.751

1.730 - 1

0.765

1.36+0

2.84 - 1

1.663

1.14 - 1

-1.16-2

1.324 - 1

1.705

4.44-2

-1.54-2

2.071 - 1

1.766

7.52 - 2

2.38 - 2

7.878 - 3

1.665

1.11 - 1

-1.16-2

1.231-1

1.156 - 1

0.718

1.45+0

3.10 - 1

1.020-1

1.675

4.58 - 2

-1.25-2

1.097 - 1

1.699

8.96-2

-1.42 - 2

1.652 - 1

1.775

1.52 - 1

2.77-2

6.524-3

1.678

4.32-2

-1.24-2

| Table 1 (contin   | nued)              |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |
|-------------------|--------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| $E_b =$           | β                  | 0.784            | 0.950            | 1.049            | 1.044            | 1.004            | 0.953            | 0.898            | 0.843            | 0.791            | 0.742            |
| 594.9 eV          | $\gamma \\ \delta$ | -5.53-2 $2.82-2$ | 3.37-2<br>5.78-2 | 2.86-1<br>1.03-1 | 5.33-1<br>1.40-1 | 7.48-1<br>1.73-1 | 9.32-1<br>2.04-1 | 1.08+0<br>2.32-1 | 1.21+0<br>2.58-1 | 1.32+0<br>2.83-1 | 1.41+0<br>3.07-1 |
| 4f <sub>7/2</sub> | σ                  | 5.582+2          | 2.522+2          | 7.370+1          | 2.875+1          | 1.333+1          | 6.941+0          | 3.930+0          | 2.372+0          | 1.506+0          | 9.972-1          |
| $E_b =$           | β                  | 0.829            | 0.976            | 1.051            | 1.031            | 0.985            | 0.931            | 0.875            | 0.821            | 0.770            | 0.724            |
| 577.4 eV          | γ                  | -5.49 - 2        | 4.69 - 2         | 3.17 - 1         | 5.71 - 1         | 7.88 - 1         | 9.72 - 1         | 1.12+0           | 1.25+0           | 1.35+0           | 1.44+0           |
|                   | δ                  | 3.06-2           | 5.98-2           | 1.04 - 1         | 1.39-1           | 1.72 - 1         | 2.04 - 1         | 2.34 - 1         | 2.61 - 1         | 2.88 - 1         | 3.13-1           |
| $5s_{1/2}$        | $\sigma$           | 1.043+1          | 6.943+0          | 3.765+0          | 2.390+0          | 1.664+0          | 1.230+0          | 9.479 - 1        | 7.537 - 1        | 6.137 - 1        | 5.093 - 1        |
| $E_b =$           | β                  | 1.290            | 1.397            | 1.498            | 1.549            | 1.583            | 1.608            | 1.628            | 1.643            | 1.657            | 1.670            |
| 461.4 eV          | γ                  | 7.66 - 1         | 7.99 - 1         | 7.51 - 1         | 6.48 - 1         | 5.33 - 1         | 4.22 - 1         | 3.20 - 1         | 2.27 - 1         | 1.44 - 1         | 7.05 - 2         |
|                   | δ                  | 5.18-3           | 2.02-3           | -1.92 - 3        | -4.54 - 3        | -6.49 - 3        | -8.05 - 3        | -9.36 - 3        | -1.05-2          | -1.15-2          | -1.24-2          |
| $5p_{1/2}$        | $\sigma$           | 8.409+0          | 6.287+0          | 3.932+0          | 2.698+0          | 1.965+0          | 1.492+0          | 1.169+0          | 9.373 - 1        | 7.662 - 1        | 6.361 - 1        |
| $E_b =$           | β                  | 0.962            | 1.269            | 1.517            | 1.616            | 1.662            | 1.685            | 1.696            | 1.699            | 1.698            | 1.693            |
| 367.0 eV          | γ                  | 7.58 - 1         | 7.58 - 1         | 5.09 - 1         | 2.82 - 1         | 1.33 - 1         | 5.01 - 2         | 1.46 - 2         | 1.38 - 2         | 3.81 - 2         | 8.04 - 2         |
|                   | δ                  | -2.25 - 3        | -2.01-2          | -2.58-2          | -2.39-2          | -2.15-2          | -1.95-2          | -1.81-2          | -1.68-2          | -1.56-2          | -1.42-2          |
| $5p_{3/2}$        | $\sigma$           | 3.688+1          | 2.379+1          | 1.219+1          | 7.335+0          | 4.852+0          | 3.418+0          | 2.517+0          | 1.916+0          | 1.497+0          | 1.195+0          |
| $E_b =$           | β                  | 1.055            | 1.249            | 1.453            | 1.566            | 1.638            | 1.686            | 1.719            | 1.743            | 1.759            | 1.770            |
| 268.5 eV          | γ                  | 3.80 - 1         | 3.31 - 1         | 1.64 - 1         | 3.69 - 2         | -3.20-2          | -5.31-2          | -3.83 - 2        | 3.27 - 3         | 6.45 - 2         | 1.39 - 1         |
|                   | δ                  | 1.34-2           | -1.01-3          | -7.81-3          | -4.34-3          | 1.75-3           | 8.10-3           | 1.40-2           | 1.93-2           | 2.39-2           | 2.78-2           |
| $5d_{3/2}$        | $\sigma$           | 4.001+1          | 2.595+1          | 1.252+1          | 6.930+0          | 4.215+0          | 2.740+0          | 1.872+0          | 1.329+0          | 9.725 - 1        | 7.302 - 1        |
| $E_b =$           | β                  | 0.867            | 1.081            | 1.287            | 1.378            | 1.419            | 1.432            | 1.431            | 1.419            | 1.402            | 1.380            |
| 147.1 eV          | γ                  | 1.55 - 1         | 3.89 - 2         | -4.56-2          | 1.01 - 2         | 1.33 - 1         | 2.88 - 1         | 4.55 - 1         | 6.22 - 1         | 7.83 - 1         | 9.35 - 1         |
|                   | δ                  | 2.29-3           | -2.04-3          | 1.30-2           | 3.14-2           | 4.75 - 2         | 6.16-2           | 7.40-2           | 8.50-2           | 9.48 - 2         | 1.04 - 1         |
| $5d_{5/2}$        | $\sigma$           | 5.997+1          | 3.760+1          | 1.739+1          | 9.367+0          | 5.583+0          | 3.571+0          | 2.406+0          | 1.688+0          | 1.222+0          | 9.090 - 1        |
| $E_b =$           | β                  | 1.210            | 1.338            | 1.428            | 1.440            | 1.423            | 1.393            | 1.357            | 1.318            | 1.278            | 1.237            |
| 139.4 eV          | γ                  | 1.13 - 1         | -2.08 - 3        | -3.19 - 2        | 7.65 - 2         | 2.35 - 1         | 4.10 - 1         | 5.85 - 1         | 7.52 - 1         | 9.07 - 1         | 1.05+0           |
|                   | δ                  | 1.32-3           | 7.79-4           | 1.20-2           | 2.55 - 2         | 3.91 - 2         | 5.29 - 2         | 6.67 - 2         | 8.04 - 2         | 9.36 - 2         | 1.06 - 1         |
| 5f <sub>5/2</sub> | σ                  | 3.861+1          | 1.890+1          | 6.089+0          | 2.523+0          | 1.221+0          | 6.566-1          | 3.812-1          | 2.348-1          | 1.516-1          | 1.018-1          |
| $E_b =$           | β                  | 1.049            | 1.111            | 1.116            | 1.072            | 1.015            | 0.956            | 0.896            | 0.839            | 0.786            | 0.738            |
| 7.0 eV            | γ                  | 2.15 - 2         | 1.25 - 1         | 3.65 - 1         | 5.88 - 1         | 7.84 - 1         | 9.54 - 1         | 1.10+0           | 1.22+0           | 1.33+0           | 1.42+0           |
|                   | δ                  | 3.54 - 2         | 5.84 - 2         | 9.78 - 2         | 1.33 - 1         | 1.66 - 1         | 1.97 - 1         | 2.26 - 1         | 2.53 - 1         | 2.78 - 1         | 3.03 - 1         |