Chapter 1

Continuity

In calculus classes, we are often taught: "f is continuous at c if $\lim_{x\to c}=f(c)$." This is fine for "well-behaving" functions, but consider a function $f:[0,1]\cup\{2\}\to\mathbb{R}$. It may be tempting to say f is not continuous at 2 because it does not have a limit when x approaches 2. However, for the sake of simplifying future ideas and theorems, we will consider f to be (vacuously) continuous at 2.

Definition 1.0.1 ► **Isolated Point**

Let $A \subseteq \mathbb{R}$. A point $x \in A$ is an *isolated point* of A if there exists r > 0 such that $B(x,r) \cap A = \{x\}$.

In other words, and isolated point is anything that is not a limit point. For example, in the set $[0,1] \cup \{2\}$, we would consider 2 to be an isolated point.

Lemma 1.0.2 ► Limit/Isolated Point Exclusivity

Let $A \subseteq \mathbb{R}$ and $x \in A$. Then x is **either** a limit point of A or isolated point of A.

Proof. Suppose x is not an isolated point of A. Then, for any $n \in \mathbb{N}$, there exists some value $x_n \in A$ such that $x_n \neq x$, and $x_n \in B(x, 1/n)$. Then (x_n) is entirely contained in $A \setminus \{x\}$, and $|x_n - x| < 1/n$ for any $n \in \mathbb{N}$. That is, x_n converges to x. Therefore, x is a limit point of A.

We upgrade the normal calculus definition of continuity by accounting for any potential isolated points.

Definition 1.0.3 ► Continuity at a Point

Let $A \subseteq \mathbb{R}$, $f : A \to \mathbb{R}$, $c \in A$. Then f is **continuous at** c if:

- 1. c is an isolated point of A, or
- 2. $c \in A'$, $\lim_{x \to c} f(x)$ exists, and $\lim_{x \to c} f(x) = f(c)$.

Theorem 1.0.4 ▶ Equivalent Characterizations of Continuity

Let $A \subseteq \mathbb{R}$, $f : A \to \mathbb{R}$, $c \in A$. Then the following are equivalent:

- (a) f is continuous at c.
- (b) For all $\epsilon > 0$, there exists $\delta > 0$ such that if $|x c| < \delta$, then $|f(x) f(c)| < \epsilon$.
- (c) For all sequences (x_n) contained in A that converge to c, $\lim_{n\to\infty} f(x_n) = f(c)$.

Proof sketch. If c is an isolated point of A, then (a) holds. For $\epsilon > 0$, choose $\delta > 0$ such that $B(c, \delta) \cap A = \{c\}$. If $x \in A$ and $|x - c| < \delta$, then x = c, so (b) holds. Similarly, if (x_n) is contained in A and converges to c, then $x_n = c$ for some large enough n. Thus, $\lim_{n \to \infty} f(x_n) = f(c)$.

 \Box

If instead c is a limit point of A, then we can simply prove the following statements:

- (a) \implies (b) by definition (only need to check |x c| = 0)
- (b) \implies (c) similar to proof of sequential characterization of limits
- (c) \Longrightarrow (a) similar to the above case

Theorem 1.0.5 ► **Continuity Preservation**

Let $A \subseteq \mathbb{R}$, $c \in A$, and $f, g : A \to \mathbb{R}$ that are continuous at c. Then:

- (a) For all $\alpha \in \mathbb{R}$, αf is continuous at c.
- (b) f + g is continuous at c.
- (c) fg is continuous at c.
- (d) if $g(c) \neq 0$, then f/g is continuous at c.

Proof of (b). If c is an isolated point of A, then f + g is continuous at c, and we are done. Otherwise, c is a limit point. Then:

$$\lim_{x \to c} (f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x) = f(c) + g(c)$$

Therefore, f + g is continuous at c.

For example, the polynomial $p(x) = \sum_{k=0}^{n} a_k x^k$ is continuous at every $c \in \mathbb{R}$. To prove this, we would show:

- 1. f(x) = x is continuous at every $x \in \mathbb{R}$
- 2. $f(x) = x^k$ is continuous at every $x \in \mathbb{R}$
- 3. $f(x) = ax^k$ is continuous at every $x \in \mathbb{R}$
- 4. $f(x) = \sum a_k x^k$ is continuous at every $x \in \mathbb{R}$

If p and q are polynomials and $q(c) \neq 0$, then the rational function p/q is continuous at $c \in \mathbb{R}$. In other words, rational functions are continuous everywhere in their domain.

Definition 1.0.6 ► Continuity on a Set

Let $f: A \to \mathbb{R}$, $B \subseteq A$. We say f is **continuous on** B if f is continuous at every $x \in B$.

For example, the function $f:(0,1)\to\mathbb{R}$ defined by f(x)=x is continuous on (0,1). Interestingly, this function has neither a maximum nor a minimum on this domain. 0 is the infimum of image of f under (0,1), but 0 can never be attained as a function value. The same can be said about 1 as the supremum of the image of f.

Another example, let $f:(0,1)\to\mathbb{R}$ be a function defined by f(x)=1/x. Then f is continuous on (0,1), but again, there is no minimum nor maximum. This time, we only have an infimum for the image of f under (0,1). There is no upper bound for the function values of f.

If instead f were defined on a closed and bounded (i.e. compact) set, then we would have a minimum and maximum for the function values of f. We prove this in the following theorem.

Theorem 1.0.7 ▶ Extreme Value Theorem

Suppose K is a nonempty and compact subset of \mathbb{R} , and suppose $f:K\to\mathbb{R}$ is continuous. Then:

- (a) f is bounded on K (that is, f[K] is bounded),
- (b) there exists $x_0 \in K$ such that $f(x_0) = \sup(f[K])$
- (c) there exists $x_1 \in K$ such that $f(x_1) = \inf(f[K])$

Proof of (a). Suppose for contradiction that f is not bounded on K. Then for each $n \in \mathbb{N}$, there must exist $x_n \in K$ such that $|f(x_n)| > n$. Since $K \subseteq \mathbb{R}$ is compact (and thus sequentially compact), there exists a subsequence (x_{n_k}) of (x_n) such that (x_{n_k}) converges

to some $x \in K$. Since f is continuous, then the sequence $\{f(x_{n_k})\}$ converges to f(x). Since convergent sequences are bounded, then there exists $M \in \mathbb{R}$ such that $|f(x_{n_k})| \leq M$. This contradicts the fact that $|f(x_{n_k})| > n_k \geq k$. Therefore, f must be bounded on K (i.e. f[K] is bounded).

Proof of (b). By (a), we know f[K] is bounded. Since f[K] is also nonempty, then completeness guarantees that f[K] has a supremum in \mathbb{R} . By Problem Set 6 # 8, there exists a sequence in f[K] that converges to $\sup(f[K])$. That is, there exists a sequence (x_n) contained in K where the sequence $\{f(x_n)\}$ converges to $\sup(f[K])$. Since K is sequentially compact, there exists a subsequence (x_{n_k}) of (x_n) such that x_{n_k} converges to some $x_0 \in K$. By continuity:

$$f(x_0) = \lim_{k \to \infty} f(x_{n_k}) = \lim_{n \to \infty} f(x_n) = \sup f[K]$$

 \bigcap

Theorem 1.0.8

Suppose $O \subseteq \mathbb{R}$ is open and $f: O \to \mathbb{R}$. Then f is continuous on O if and only if, for every open set $U \subseteq \mathbb{R}$, $f[U^{-1}]$ is open.

1.1 Uniform Continuity

Definition 1.1.1 ▶ **Uniform Continuity**

Let $f: A \to \mathbb{R}$ be a function. We say f is *uniformly continuous* on A if, for all $\epsilon > 0$, there exists $\delta > 0$ such that if $|x - y| < \delta$, then $|f(x) - f(y)| < \epsilon$.

Example 1.1.2 ► **Simple Uniform Continuity Proof**

f(x) = x is uniformly continuous on \mathbb{R} .

Proof.

Example 1.1.3 ► Simple Uniform Continuity Disproof	
$f(x) = x^2$ is not uniformly continuous on \mathbb{R} .	
Proof.	0
Theorem 1.1.4	
Let K be a compact subset of \mathbb{R} , and let $f:K\to\mathbb{R}$ be a continuous function on K f is uniformly continuous on K .	. Then

Chapter 2

Differential Calculus

Definition 2.0.1 ▶ **Differentiable, Derivative**

Let $a, b \in \mathbb{R}$ where a < b, let $f : (a, b) \to \mathbb{R}$ be a function, and let $x_0 \in (a, b)$.

- We say f is differentiable at x_0 if $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$ exists.
- We say f is differentiable on I if f is differentiable at every $x \in I$.
- If this limit exists, we define the *derivative* of f as $f'(x_0) := \lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0}$.

We can also write the derivative as $f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$. In this context, we replace x with $x_0 + h$. This is usually the more familiar form and is referred to as the *difference quotient*. Without the limit, the difference quotient by itself gives us the slope of the line from $(x_0, f(x_0))$ to $(x_0 + h, f(x_0 + h))$. With the limit, it gives us the slope of the line tangent to f at x_0 .

We can think of the derivative f'(x) as:

- definition: the limit of the difference quotient
- graphical: slope of the tangent line
- interpretation: instantaneous rate of change

Example 2.0.2 ► **Simple Derivative Example**

Given
$$f(x) = x^2$$
, find $f'(x_0)$.

If $x \neq x_0$, then:

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{x^2 - x_0^2}{x - x_0} = \frac{(x + x_0)(x - x_0)}{x - x_0} = x + x_0$$

Thus:

$$f'(x) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} (x + x_0) = x_0 + x_0 = 2x_0$$

Theorem 2.0.3 ▶ Differentiability Implies Continuity

If f is differentiable at x_0 , then f is continuous at x_0 .

Proof. If $x \neq x_0$, then $f(x) = f(x_0) + \frac{f(x) - f(x_0)}{x - x_0}(x - x_0)$. Thus:

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \left(f(x_0) + \frac{f(x) - f(x_0)}{x - x_0} (x - x_0) \right)$$

$$= \left(\lim_{x \to x_0} f(x_0) \right) + \left(\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \right) \left(\lim_{x \to x_0} (x - x_0) \right)$$

$$= f(x_0) + f'(x_0) \cdot 0$$

$$= f(x_0)$$

Therefore, f is continuous at x_0 .

As we'll see in the next example, the converse statement is not true. That is, continuity does not generally imply differentiability.

Example 2.0.4 ▶ Continuity does not imply differentiability

f(x) = |x| is continuous at 0 but is not differentiable at 0.

Proof. We first show f is continuous at x = 0. We have f(0) = 0, and:

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} |y|$$
$$= 0$$

Now to show it is not differentiable, if $x \neq 0$, we have:

$$\frac{f(x) - f(0)}{x - 0} = \frac{absx - 0}{x - 0} = \frac{|x|}{x} = \begin{cases} 1, & x > 0 \\ -1, & x < 0 \end{cases}$$

Then:

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} |x|y$$

so its limit as x approaches 0 does not exist. Therefore, f is not differentiable at x = 0.

Example 2.0.5 ▶ Piecewise Differentiability Example

Let
$$f(x) := \begin{cases} x^2 \sin^{1/x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
. Is f differentiable at $x = 0$?

It turns out that f is differentiable at x = 0! However, it may be tempting to give the following **incorrect** proof (assuming we already have the chain rule and product rule):

Incorrect proof. If $x \neq 0$:

$$f'(x) = 2x \sin\left(\frac{1}{x}\right) + x^2 \cos\left(\frac{1}{x}\right) \cdot \left(-\frac{1}{x^2}\right) = 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right)$$

 \bigcap

 \bigcirc

This has no limit as x approaches 0, so $\lim_{x\to 0} f'(x)$ does not exist.

The above approach erroneously hinges on the assumption that the derivative must be continuous (which is not generally true). We must instead use the definition of differentiability.

Correct proof. If $x \neq 0$:

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{x}$$
$$= \lim_{x \to 0} x \sin\left(\frac{1}{x}\right)$$
$$= 0$$

Therefore, f is differentiable at x = 0, and f'(0) = 0.

This function f is differentiable for every $x \in \mathbb{R}$, but $\lim_{x\to 0} f'(x)$ does not exist! So we

have shown f' is not continuous at x = 0.

Theorem 2.0.6 ▶ Properties of Differentiation

Suppose $f,g:(a,b)\to\mathbb{R}$ are differentiable at $x_0\in(a,b)$. Let $c\in\mathbb{R}$. Then cf,f+g,and fg are differentiable at x, and if $g'(x) \neq 0$, then f/g is differentiable. Moreover:

(a)
$$(cf)'(x_0) = cf'(x_0)$$

(b)
$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$

(c)
$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

(c)
$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

(d) $(f/g)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{(g(x_0))^2}$

Proof. To prove (a):

$$(cf)'(x_0) = \lim_{x \to x_0} \frac{cf(x) - cf(x_0)}{x - x_0}$$
$$= c \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
$$= cf'(x)$$

To prove (b):

$$(f+g)'(x) = \lim_{x \to x_0} \frac{(f(x) + g(x)) - (f(x_0) + g(x_0))}{x - x_0}$$

$$= \lim_{x \to x_0} \left[\frac{f(x) - f(x_0)}{x - x_0} + \frac{g(x) - g(x_0)}{x - x_0} \right]$$

$$= \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} + \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0}$$

$$= f'(x_0) + g'(x_0)$$

To prove (c):

$$(fg)'(x) = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x) + f(x_0)g(x) - f(x_0)g(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \left[\frac{f(x) - f(x_0)}{x - x_0} \cdot g(x) + f(x) \cdot \frac{g(x) - g(x_0)}{x - x_0} \right]$$

$$= \dots$$

Since f and g were assumed to be differentiable (and thus continuous at x_0), we can apply properties of limits to finally attain:

$$f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

Theorem 2.0.7 ▶ Chain Rule

Let $f:(a,b)\to (c,d)$ and $g:(c,d)\to \mathbb{R}$ be arbitrary functions. If f is differentiable at some $x\in (a,b)$ and g is differentiable at $f(x)\in (c,d)$, then $g\circ f:(a,b)\to \mathbb{R}$ is differentiable at x, and:

$$(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$$

Intuition: When taking $(g \circ f)'$, there are two rates of the change to consider: f' and g', which "compound" one another.

Proof sketch.

$$(g \circ f)'(x_0) = \lim_{x \to x_0} \frac{g(f(x)) - g(f(x_0))}{x - x_0}$$
$$= \lim_{x \to x_0} \left(\frac{g(f(x)) - g(f(x_0))}{f(x) - f(x_0)} \cdot \frac{f(x) - f(x_0)}{x - x_0} \right)$$

The idea is the first fraction approaches $g'(f(x_0))$, and the second fraction approaches $f'(x_0)$. However, if $f(x) - f(x_0) = 0$, then the first fraction is invalid. To circumvent this, we can redefine differentiability as a multiplicative property. Precisely, we can say a function f is **differentiable** at x to mean:

$$f(x+h) - f(x) = f'(x) \cdot h + \epsilon(h) \cdot h$$

where $\epsilon(h)$ approaches 0 as h approaches 0. Intuitively, this definition verifies that we can well approximate the function at that point using a linear function. The $\epsilon(h) \cdot h$ term denotes the error in the linear approximation, which should become negligible

Definition 2.0.8 ► Local/Global Maxima/Minima (Extreme Values)

Let $I \subseteq \mathbb{R}$ be an interval, $x_0 \in I$, and $f : I \to \mathbb{R}$ be a function. We say f has a:

- local maximum at x_0 if there exists $\delta > 0$ such that for all $x \in B(x_0, \delta) \cap I$, $f(x) \leq f(x_0)$.
- local minimum at x_0 if there exists $\delta > 0$ such that for all $x \in B(x_0, \delta) \cap I$, $f(x) \geq f(x_0)$.
- **global maximum** at x_0 if for all $x \in I$, $f(x) \le f(x_0)$.
- **global minimum** at x_0 if for all $x \in I$, $f(x) \ge f(x_0)$.

Theorem 2.0.9 ▶ Fermat's Theorem

Let $f: I \to \mathbb{R}$ be a function. If f has a local minimum or local maximum at $x_0 \in I$, then either:

- (a) x_0 is an endpoint of I, or
- (b) f is not differentiable at x_0 , or
- (c) f is differentiable at x_0 , and $f'(x_0) = 0$.

Proof. Suppose f has a local maximum at x_0 . Then there exists $\delta > 0$ such that for all $x \in B(x_0, \delta) \cap I$, $f(x) \le f(x_0)$. We prove that, if neither (a) nor (b) are true, then (c) must be true. Suppose x_0 is not an endpoint of I, and suppose that f is differentiable at x_0 . Let $x \in B(x_0, \delta) \cap I$ be arbitrary.

- If $x > x_0$, then $x x_0 > 0$ and $f(x) f(x_0) \le 0$. Hence, $\frac{f(x) f(x_0)}{x x_0} \le 0$, so $f'(x_0) = \lim_{x \to 0} \frac{f(x) - f(x_0)}{x - x_0} \le 0.$
- If $x < x_0$, then $x x_0 < 0$ and $f(x) f(x_0) \le 0$. Hence, $\frac{f(x) f(x_0)}{x x_0} \ge 0$, so $f'(x_0) = \lim_{x \to 0} \frac{f(x) - f(x_0)}{x - x_0} \ge 0.$ By trichotomy, $f'(x_0) = 0$

 \bigcirc

Theorem 2.0.10 ▶ Rolle's Theorem

Let $a, b \in \mathbb{R}$ where a < b, and let $f : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b). If f(a) = 0 and f(b) = 0, then there exists $c \in (a, b)$ such that f'(c) = 0.

Proof. Since [a, b] is compact and f is continuous, the Extreme Value Theorem states that f attains both its maximum and minimum on [a, b].

- If both the maximum and minimum of f occur at the endpoints a and b, then maximum and minimum of f[(a,b)] is 0. Thus, f(x) = 0 for all $x \in [a,b]$. Thus, f'(x) = 0 for all $x \in (a,b)$, so we can take c to be any value in (a,b).
- Otherwise, either the maximum or the minimum occurs at some point $c \in (a, b)$. By Fermat's Theorem, we have f'(c) = 0.

 \bigcirc

Since the above cases are exhaustive, the proof is complete.

Theorem 2.0.11 ▶ Mean Value Theorem

Let $a, b \in \mathbb{R}$ where a < b, and let $f : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b). Then there exists $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Proof. Let $l:[a,b] \to \mathbb{R}$ be the function of the line through (a,f(a)) and (b,f(b)). That is, for any $x \in [a,b]$:

$$l(x) := f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$$

Note that $l'(x) = \frac{f(b) - f(a)}{b - a}$. Let $g : [a, b] \to \mathbb{R}$ be defined for every $x \in [a, b]$ by:

$$g(x) := f(x) - l(x)$$

Then g is continuous on [a, b], and g is differentiable on (a, b). Also note g(a) = 0 and g(b) = 0. By Rolle's Theorem, there exists $c \in (a, b)$ such that g'(c) = 0. We then have:

$$0 = g'(c) = f'(c) - l'(c) = f'(c) - \frac{f(b) - f(a)}{b - a}$$

Adding across by $\frac{f(b)-f(a)}{b-a}$, we have $f'(c) = \frac{f(b)-f(a)}{b-a}$.

The Mean Value Theorem has tons of application in both calculus and real analysis.

Example 2.0.12 ▶ Positive derivative means increasing

If f'(x) > 0 for all $x \in (a, b)$, then f is strictly increasing on (a, b).

Intuition: This seems like a fairly obvious result, but to prove it rigorously, we can apply the Mean Value Theorem.

Proof. If a < x < y < b, then there exists $c \in (a,b)$ where $\frac{f(y)-f(x)}{y-x} = f'(c)$. Thus, f(y)-f(x)>0 for any choice of $x,y\in(a,b)$ where y>x. Therefore, f is strictly

\supset