Regresión Lineal Descenso de Gradiente

Optimización del Error E

- Problema:
 - Datos: ejemplos (x_i, y_i)
 - Parámetros: m y b
 - Función de error: **E**
 - Encontrar m y b que minimicen E(m,b,x,y)
 - **E** es derivable
 - Respecto de **m** y **b**

Regresion Lineal con MLE

- MLE: Maximum Likelihood Estimation
 - (Método de Máxima Verosimilitud)
 - Método estadístico
- Asumo $y = f(x) + \varepsilon = m x + b + \varepsilon$
 - \circ $\epsilon \sim N(0,\sigma)$
 - o m, b y σ son **parámetros**
 - Busco estimadores m', b', σ'
 - \circ $\varepsilon = f(x) y$
 - $(f(x) y) \sim N(0,\sigma)$
 - Función de verosimilitud L
 - $L(m,b,\sigma) = \Pi_i^n Gaussiana[\mu=0,\sigma,](f(x_i) y_i)$
 - MLE → fórmula para m', b' y σ'

Métodos clásicos de Optimización para RL

Métodos clásicos (analíticos)

- Cálculo: $\frac{\partial E}{\partial b} = 0$ y $\frac{\partial E}{\partial m} = 0$, despejo m y b.
- Álgebra lineal: $Y = mX + b = (1 \times)(\frac{b}{m})$, proyecto.
- Probabilidades: y = mx + b + e con $e \sim \mathcal{N}(0, \sigma)$, estimo m y b con MLE
- Ventajas
 - Solución analítica, simple
- Desventajas
 - Poco eficiente con muchos datos -15
 - $n >= 10^6$
 - Problemas numéricos

Alternativa

Descenso de gradiente

Descenso de gradiente para Regresión Lineal

Modelo

- $\circ f(x) = m \times x + b$
- o $E(m,b) = (1/n) \sum_{i=1}^{n} E_{i}(m,b)$ o $E_{i}(m,b) = (y_{i}-m x_{i}+b)^{2}$

- \circ b = b α $\delta E(m,b)/\delta b$
- \circ m = m α $\delta E(m,b)/\delta m$

Derivadas parciales?

- $\delta E(m,b)/\delta b = 1/n \sum_{i=1}^{n} 2 (y_i f(x_i))$ $\delta E(m,b)/\delta m = 1/n \sum_{i=1}^{n} 2 (y_i f(x_i)) x_i$
 - ¿Cómo las obtengo?

Repaso de derivadas

1.
$$\delta f(x) + g(f)/\delta x = \delta f(x)/\delta x + \delta g(x)/\delta x$$

2. $\delta c/\delta x = 0$
a. $\delta f(x) - g(f)/\delta x = \delta f(x)/\delta x - \delta g(x)/\delta x$
b. $\delta f(x) + c/\delta x = \delta f(x)/\delta x$
c. $\delta [\Sigma_i^n f(x_i)] / \delta x = \Sigma_i^n [\delta f(x_i) / \delta x]$
3. $\delta f(g(x))/\delta x = \delta f(g(x))/\delta g(x) \delta g(x)/\delta x$
a. $\delta (3x-4)^2/\delta x = \delta (3x-4)^2/\delta (3x-4) \delta (3x-4)/\delta x$
= $2(3x-4) 3 = 6 (3x-4)$

Derivada del error respecto de b 8E(m,b)/8b

$$\begin{split} \delta \mathbf{E}(\mathbf{m},\mathbf{b})/\delta \mathbf{b} &= \delta (\mathbf{1/n} \ \boldsymbol{\Sigma_i}^n \ \mathbf{E_i}(\mathbf{m},\mathbf{b}))/\delta \mathbf{b} \\ &= \mathbf{1/n} \ \boldsymbol{\Sigma_i}^n \ \delta \mathbf{E_i}(\mathbf{m},\mathbf{b})/\delta \mathbf{b} \\ &= 1/n \ \boldsymbol{\Sigma_i}^n \ \delta ((\mathbf{y_i} - \mathbf{f}(\mathbf{x_i}))^2)/\delta \mathbf{b} \\ &= 1/n \ \boldsymbol{\Sigma_i}^n \ \mathbf{2} \ (\mathbf{y_i} - \mathbf{f}(\mathbf{x_i})) \ \delta (\mathbf{y_i} - \mathbf{f}(\mathbf{x_i}))/\delta \mathbf{b} \\ &= 1/n \ \boldsymbol{\Sigma_i}^n \ \mathbf{2} \ (\mathbf{y_i} - \mathbf{f}(\mathbf{x_i})) \ \delta (\mathbf{y_i} - \mathbf{m} \ \mathbf{x_i} + \mathbf{b})/\delta \mathbf{b} \\ &= 1/n \ \boldsymbol{\Sigma_i}^n \ \mathbf{2} \ (\mathbf{y_i} - \mathbf{f}(\mathbf{x_i})) \ \delta \mathbf{b}/\delta \mathbf{b} \\ &= 1/n \ \boldsymbol{\Sigma_i}^n \ \mathbf{2} \ (\mathbf{y_i} - \mathbf{f}(\mathbf{x_i})) \end{split}$$

Derivada del error respecto de m δE(m,b)/δm

```
\delta E(m,b)/\delta m = \delta(1/n \Sigma_i^n E_i(m,b))/\delta m
                         = 1/n \Sigma_i^n \delta E_i(m,b)/\delta m
                         = 1/n \sum_{i=1}^{n} \delta((\mathbf{y}_i - \mathbf{f}(\mathbf{x}_i))^2)/\delta \mathbf{m}
                         = 1/n \sum_{i=1}^{n} 2 (y_i - f(x_i)) \delta(y_i - f(x_i)) / \delta m
                         = 1/n \Sigma_i^n 2 (y_i - f(x_i)) \delta(y_i - m x_i + b)/\delta m
                         = 1/n \sum_{i=1}^{n} 2 (y_i - f(x_i)) m x_i / \delta m
                         = 1/n \sum_{i=1}^{n} 2 (y_i - f(x_i)) x_i
```

Igual a δb pero con δm

Pseudocódigo

- descenso_gradiente_rl(x,y,α,iteraciones)
 - o Inicializar m y b de forma aleatoria
 - o for i in iteraciones:
 - Calcular derivadas
 - $\delta E(m,b)/\delta b = 1/n \Sigma_i^n 2 (y_i f(x_i))$
 - $\delta E(m,b)/\delta m = 1/n \Sigma_i^{n} 2 (y_i f(x_i)) x_i$
 - b = b α $\delta E(m,b)/\delta b$
 - $\mathbf{m} = \mathbf{m} \alpha \quad \delta E(\mathbf{m}, \mathbf{b}) / \delta \mathbf{m}$
 - $\blacksquare E = (1/n) \sum_{i}^{n} (y_{i} m x_{i} + b)^{2}$
 - o retornar m,b

Ejemplo con <u>simulador</u>

Cuestiones prácticas

- m_0 y b_0 \rightarrow Valores iniciales de m y b
 - Afectan a la optimización.
 - Aprovechar la experticia del dominio.
 - Ejemplo de las notas,
 - ¿valores sensatos?
 - y_{min} = 2 → Nadie tiene una nota menor a 2
 b₀ = y_{min} = 2
 - x_{max} = 40 → Nadie estudia más de 40 horas
 - $y_{max} = 10 \rightarrow Nota \ máxima 10$ • $m_0 = (y_{max} - y_{min})/x_{max} = (10-2)/40 = 8/40 = 0.2$
- Normalización de variables
 - Escala de notas de 0 al 10 vs 0 al 100
 - ¿Afecta al descenso?

Descenso de gradiente con variables sin normalizar

- Variables sin normalizar
 - Diferentes escalas
 - Idem parámetros
 - Dificulta
 encontrar el
 mínimo
 - Tarda más tiempo.

Normalización de variables

Original

Horas	Nota
2	1
5	3.2
7	4.5
9	6
10	4
11	4.5
13.4	5.5
14	3
15	5

Normalización μ/σ

Horas	Nota
-1.75	-2.03
-1.06	-0.58
-0.60	0.28
-0.14	1.27
0.09	-0.05
0.32	0.28
0.87	0.94
1.01	-0.71
1.24	0.61

Normalización min/max

Nota
0
0.44
0.7
1
0.6
0.7
0.9
0.4
0.8

Descenso de gradiente con variables normalizadas

Divergencia con α muy grande

Saltos erráticos

El algoritmo diverge

Resumen

- Ecuaciones de Descenso de Gradiente
 - Especializadas para Regresión Lineal
 - \circ b = b α $\delta E(m,b)/\delta b$
 - \circ m = m α $\delta E(m,b)/\delta m$
 - Derivadas parciales

 - $\delta E(m,b)/\delta b = 1/n \sum_{i=1}^{n} 2 (y_i f(x_i))$ $\delta E(m,b)/\delta m = 1/n \sum_{i=1}^{n} 2 (y_i f(x_i)) x$
- Cuestiones prácticas
 - Valores iniciales de m y b
 - Valor de α
 - Normalización de las variables
 - Convergencia y velocidad

Ejercicio: Archivo Regresión Lineal -

Probar e interpretar

- o Ejecutar el código y ver como se entrena el modelo
- Cambiar los valores iniciales de m y b
 - ¿Cómo afecta esto al entrenamiento?
- Cambiar el valor de α
 - ¿Cómo afecta esto al entrenamiento?
 - ¿Qué sucede si utilizo un α muy chico?
 - ¿y uno muy grande?
- \circ ¿Son comparables los valores $\delta E/\delta m$ y $\delta E/\delta b$?
 - ¿De qué depende su magnitud?
- Cambiar el conjunto de datos utilizado por anscombe1.csv, anscombe2.csv, anscombe3.csv o anscombe4.csv y repetir.