Задачи к семинарам 17.02.2025

- 1 Пусть (X_1, \ldots, X_n) независимые $\mathcal{N}(a, \sigma^2)$ случайные величины. Обозначим $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$. Докажите, что случайная величина \overline{X} независима с вектором $(X_1 \overline{X}, \ldots, X_n \overline{X})$.
- **2** Пусть последовательность гауссовских векторов $\{\xi_n, n \in \mathbb{N}\}$ размерности m сходится по распределению к вектору $\xi, \xi_n \stackrel{d}{\longrightarrow} \xi$. Докажите, что ξ тоже гауссовский вектор.

$$\Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}.$$

Докажите, что

$$P(X > 0, Y > 0) = \frac{1}{4} + \frac{1}{2\pi} \arcsin \rho,$$

$$P(XY < 0) = \frac{1}{\pi} \arccos \rho.$$

4 Пусть X_1, \ldots, X_n — выборка из распределения Лапласа с параметром σ , имеющего плотность

$$p(x) = \frac{1}{2\sigma} e^{-\frac{|x|}{\sigma}}.$$

Рассмотрим $Y=\frac{1}{n}\sum_{i=1}^n|X_i|,\,Z=\frac{1}{n}\sum_{i=1}^nX_i^2.$ Найдите предел по распределению для выражения

$$\sqrt{n}\left(T-\sigma\right)$$
,

где $T = Z^2/(4Y^3)$.