Universidade Federal de Alfenas — UNIFAL-MG Departamento de Matemática - Instituto de Ciências Exatas Professora Angela Leite Moreno — 18/06/2025 Terceira Avaliação de Cálculo Numérico - Parte A

Aluno(a):	

ATENÇÃO: Respostas sem justificativa serão desconsideradas. Pode-se utilizar calculadora científica para realizar os cálculos, entretanto os valores deverão ser registrados na folha de avaliação.

1. Considere a integral:

$$I = \int_0^3 \left[e^x - x^2 \right] dx$$

- (a) (2,0) Estime I pela Regra do Ponto Médio, usando h=0,5. Estime o erro cometido e analise o erro real cometido.
- (b) (2,0) Estime I pela Regra de Simpson, usando h=0,5. Estime o erro cometido e analise o erro real cometido.
- (c) (2,0) Estime I por Quadratura Gaussiana com 2 pontos. Qual é o erro cometido?
- (d) (1,0) quantos pontos seriam necessários para que a Regra dos Trapézios obtivesse a mesma precisão que a estimativa obtida para I em (c)?

Critério: Use quatro casas decimais após a vírgula, com truncamento.

2. A energia cinética média do oscilador harmônico, ao longo do período T é dada por $\bar{E}_c=\frac{1}{T}\int_0^T E_c(t)dt$. Considere os dados da tabela abaixo:

t	0,0	0,5	1,0	1,5	2,0
			12,2		

- (a) (1,5) Dos métodos vistos, escolha o melhor método para encontrar a Energia Cinética Média (\bar{E}_c) . Justifique sua escolha.
- (b) (1,5) Determine a potência instantânea (derivada da Energia Cinética) aplicada ao corpo em cada um dos instantes apresentado na tabela.

Critério: Use quatro casas decimais após a vírgula, com arredondamento.

· diferenças finitas retroativas:

$$f'(x_k) = \frac{1}{2h} [f(x_k - 2h) - 4f(x_k - h) + 3f(x_k)]$$

· diferenças finitas centrais:

$$f'(x_k) = \frac{1}{2h} [f(x_k + h) - f(x_k - h)]$$

· diferenças finitas progressivas

$$f'(x_k) = \frac{1}{2h} \left[-3f(x_k) + 4f(x_k + h) - f(x_k + 2h) \right]$$

$$\int_{a}^{b} f(x)dx \approx T_{n} = \frac{\Delta x}{2} [f(x_{0}) + 2f(x_{1}) + 2f(x_{2}) + \cdots + 2f(x_{n-1}) + f(x_{n})],$$

em que $\Delta x = \frac{1}{n}$ e $x_i = a + i\Delta x$

Saponha $|f''(x)| \le k$ para $n \le x \le b$. Se E_T representa o erro na Regra dos Trapézios, então

$$|E_T| \le \frac{k(b-a)^3}{12n^2}$$
.

$$\int_{a}^{b} f(x)dx \approx S_{n} = \frac{\Delta x}{3} [f(x_{0}) + 4f(x_{1}) + 2f(x_{2}) + 4f(x_{3}) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_{n})],$$
em que n é par e $\Delta x = \frac{(b-a)}{n}$.

Suponha $|f^{(4)}(x)| \le k$ para $a \le x \le b$. Se E_S representa o erro na Regra de Simpson, então:

$$|E_S| \le \frac{k(b-a)^5}{180n^4}.$$

Sabendo que a Regra do Ponto Médio é dada por: $\int_a^b f(x)dx \approx M_n = \Delta x [f(\bar{x_1}) + f(\bar{x_2}) + \cdots + f(\bar{x_n})], \text{ onde } \Delta x = \frac{b-a}{a} \in \bar{x_i} = \frac{1}{2}(x_{i-1} + x_i)$

Suponha $|f''(x)| \leq k$ para $a \leq x \leq b$. Se E_M representa o erro na Regra do Ponto Médio, então

$$|E_M| \le \frac{k(b-a)^3}{24n^2}$$
.

$$\int_{a}^{b} f(x)dx = \int_{-1}^{1} F(t)dt \approx \sum_{i=0}^{n-1} A_{i}F(t_{i}).$$

n	t _i	A_i
2.	$t_0 = \frac{-1}{\sqrt{3}}$	$A_0 = 1$
	$t_1 = \frac{1}{\sqrt{3}}$	$A_1 = 1$
3	$t_0 = 01779667$	$A_0 = \frac{5}{9}$
	$t_1 = -0,77459667$	$A_1 = \frac{5}{6}$
	$t_2 = 0$	$A_2 = \frac{8}{9}$