# Komponenty modelu danych

### Encja

- Reprezentuje zbiór obiektów charakteryzujący się identycznymi cechami.
- Posiada unikalną nazwę (rzeczownik w liczbie pojedynczej) i zestaw atrybutów.
- Konkretny obiekt świata rzeczywistego z właściwymi mu cechami jest reprezentowany, jako wystąpienie encji (instancja encji).



### Atrybut encji

- Stanowi własność (cechę) encji.
- Jest funkcją przypisującą obiektowi wartość cechy ze zbioru wartości cechy.
- Wyróżnia się dwa typy atrybutów:
  - identyfikatory atrybut lub ich zbiór jednoznacznie identyfikujący wystąpienie encji,
  - o deskryptory wszystkie inne atrybuty poza identyfikatorami; reprezentują podstawowe własności encji.
- Atrybut wielowartościowy to atrybut, który może przyjąć wiele wartości w ramach tego samego wystąpienia encji (np. osoba może mieć wiele adresów).
- Atrybut złożony to atrybut posiadający swoją wewnętrzną strukturę (np. adres może składać się z wielu pól takich, jak ulica, numer domu, województwo, kraj etc.).



### Dziedzina atrybutu encji

- Kompletny zbiór wszystkich możliwych wartości, jakie może przyjmować atrybut dowolnego wystąpienia encji.
- Rodzaje dziedzin:
  - o typ − specyfikuje typ danych (np.: integer),
  - o lista wylicza skończony zbiór dopuszczalnych wartości (np.: otwarte, wysłane, zamkniete, anulowane),
  - o zakres określa górną i dolną granicę dopuszczalnych wartości (np.: 0-100).

### Związki encji

### Typy asocjacji (kardynalność):

• jeden do jednego



• jeden do wielu



• wiele do wielu



### Klasy przynależności:

• związek opcjonalny



• związek obowiązkowy (obligatoryjny)



### Nazwy relacji

Nazwa relacji określa stosunek jednej encji do drugiej. Może być różna w zależności od kierunku relacji.



### Związek rekurencyjny

- Musi być opcjonalny z obu stron. W przeciwnym wypadku powstałaby hierarchia nieskończona.
- Może być dowolnego typu.
- W związku rekurencyjnym encja pełni dwie role, które można zidentyfikować dzięki nazwie relacji



### Związek generalizacji

Pewne encje o wspólnym zbiorze atrybutów można uogólnić tworząc encję wyższego poziomu (generalizacja). W związku generalizacji wszystkie atrybuty kadencji (encji wyższego poziomu) są dziedziczone przez potencje (encje niższego poziomu).



### **Podsumowanie**

| ERD Information Engineering Notation |              |  |  |
|--------------------------------------|--------------|--|--|
| Zero or one                          |              |  |  |
|                                      |              |  |  |
| $\longrightarrow$                    | Zero or more |  |  |
|                                      | One or more  |  |  |

**ERD Information Engineering Notation** 

### Rodzaje encji na poziomie konceptualnym

- Encje silne ich wystąpienia są niezależne od wystąpień innych encji; posiadają własny identyfikator
- Encje słabe ich wystąpienia mogą istnieć tylko w kontekście wystąpień encji powiązanych; nie posiadają własnego identyfikatora
- Encje asocjacyjne służą do przechowywania danych o związkach



### Przykłady różnych notacji ERD



źródło: http://en.wikipedia.org/wiki/Entity%E2%80%93relationship\_model

### Reguly biznesowe

Reguły biznesowe to ograniczenia specyficzne dla danej organizacji, zdefiniowane dla całego jej obszaru funkcjonowania<sup>1</sup>. Reguły biznesowe odnoszące się do modelu danych opisują językiem naturalnym wymagania klienta biznesowego dotyczące encji i relacji występujących pomiędzy nimi, które powinny zostać uwzględnione w modelu.

Zazwyczaj pojedyncza reguła biznesowa mówi o tym ile wystąpień encji podanej jako druga odpowiada pojedynczemu wystąpieniu encji wymienionej jako pierwsza. Możemy z takiej reguły odczytać kardynalność i klasę przynależności drugiej z encji w danym związku. Aby móc określić te parametry dla encji pierwszej, konieczne jest zdefiniowanie reguły opisującej związek z perspektywy encji drugiej.

### Przykładowe diagramy relacji encji:

### Przykład 1



### Przykład 2



<sup>1</sup> https://it-consulting.pl/autoinstalator/wordpress/2010/11/22/reguly-biznesowe ---czym-sa/

Canort

# Modelowanie relacji encji. Model koncepcyjny

### Model koncepcyjny – etapy przygotowania

- 1. Określenie występujących encji.
- 2. Ustalenie typów występujących związków.
- 3. Określenie atrybutów odpowiadających poszczególnym encjom.
- 4. Określenie dziedziny poszczególnych atrybutów.
- 5. Utworzenie diagramu ER.

### Przykład

Reguły biznesowe biblioteki płyt z muzyka:

- Na jednym albumie może znaleźć się między 10 a 20 piosenek.
- Piosenka musi należeć wyłącznie do jednego albumu.
- Jeden album może należeć do wielu kategorii.
- Do jednej kategorii może być przypisanych wiele albumów.
- Album musi być wydany przez jedno studio.
- Studio może wydać wiele albumów.

### 1. Określenie występujących encji.

### Zbiór encji

| Nazwa<br>encji | Opis                                         |
|----------------|----------------------------------------------|
| Album          | Zbiór piosenek wydanych jako spójna całość.  |
| Piosenka       | Utwór muzyczny wykonywany przez zespół       |
| Kategoria      | Zbiór albumów o podobnych cechach            |
| Studio         | Wytwórnia fonograficzna dystrybuująca albumy |
|                | muzyczne                                     |

### 2. Ustalenie typów występujących związków.

### Typy związków

| Nazwa<br>encji | Krotność | Związek      | Nazwa encji | Krotność |
|----------------|----------|--------------|-------------|----------|
| Piosenka       | 11       | należy       | Album       | 11       |
| Album          | 11       | zawiera      | Piosenka    | 1*       |
| Album          | 01       | należy       | Kategoria   | 0*       |
| Kategoria      | 01       | zawiera      | Album       | 0*       |
| Album          | 01       | wydany przez | Studio      | 11       |
| Studio         | 11       | wydaje       | Album       | 0*       |

## 3. Określenie atrybutów odpowiadających poszczególnym encjom.

### **Atrybuty**

| Album           |                                                  |                   |                    |                  |         |  |  |
|-----------------|--------------------------------------------------|-------------------|--------------------|------------------|---------|--|--|
| Atrybut         | Opis                                             | Typ<br>Danych     | Dziedzina          | Wielowartościowy | Złożony |  |  |
| Tytuł           | Tytuł albumu                                     | Łańcuch<br>znaków | Max długość<br>100 | nie              | nie     |  |  |
| Data<br>Wydania | Data wydania<br>albumu                           | Data              | Data               | nie              | nie     |  |  |
| Studio          | Wytwórnia<br>wydająca<br>album                   | Encja             | Encja              | nie              | tak     |  |  |
| Piosenki        | Lista piosenek<br>znajdujących<br>się na albumie | Encja             | Encja              | tak              | tak     |  |  |

| Studio  |                                  |                   |                    |                  |         |  |  |
|---------|----------------------------------|-------------------|--------------------|------------------|---------|--|--|
| Atrybut | Opis                             | Typ<br>Danych     | Dziedzina          | Wielowartościowy | Złożony |  |  |
| Nazwa   | Nazwa studio                     | Łańcuch<br>znaków | Max długość<br>100 | nie              | nie     |  |  |
| Adres   | Adres siedziby studio            | Łańcuch<br>znaków | Max długość<br>200 | nie              | tak     |  |  |
| Telefon | Numery<br>telefoniczne<br>studio | Łańcuch<br>znaków | Telefon            | tak              | nie     |  |  |

• • •

# 4. Określenie dziedziny poszczególnych atrybutów.

## **Dziedziny**

| Nazwa<br>dziedziny | Długość | Format               | Dopuszczalny zbiór<br>wartości                  |
|--------------------|---------|----------------------|-------------------------------------------------|
| Data               | X       | DD-MM-RRR            | Dowolna data nie późniejsza niż<br>data bieżąca |
| Telefon            | 16      | (XX) XXX-XXX-<br>XXX | Cyfry od 0 do 9 zapisane w<br>ustalony formacie |

# 5. Utworzenie diagramu ER.



# Model logiczny i fizyczny

Modelowanie logiczne polega na utworzeniu modelu bazy danych na podstawie modelu koncepcyjnego. Efektem transformacji jest projekt logiczny bazy danych, który może zostać zaimplementowany w systemie zarządzania bazą danych obsługującym wskazany typ bazy danych (model fizyczny). Model fizyczny (np. kod SQL) może zostać automatycznie wygenerowany na podstawie modelu logicznego lub ręcznie zakodowany.

### Zasady transformacji (przy założeniu relacyjnego modelu bazy danych)

- Jedna encja 🗲 jedna tabela.
- Jeden atrybut → jedna kolumna (pole).
- Atrybuty nieatomiczne powinny zostać rozbite na kilka atomicznych pól.
- Dla każdej kolumny powinny zostać określone:
  - o unikalna (w ramach tabeli) nazwa,
  - o typ danych (dla niektórych również długość lub precyzja),
  - o fakt, czy wartości kolumny są wymagane, czy nie,
  - o fakt, czy wartości kolumny są unikatowe, czy nie,
  - o więzy.
- Dla każdej tabeli powinny zostać zidentyfikowane klucze kandydujące i klucze podstawowe (np. atrybuty not null, unique, typ autonumerowany).
- Dla każdej relacji powinny zostać wskazane klucze obce oraz reguły usuwania i modyfikacji rekordów w powiązanych tabelach.
- Relacje "wiele do wielu" należy rozbić na relacje "jeden do wielu" i utworzyć tabele łaczące.
- Dla pól wyliczeniowych wskazane jest utworzenie tabel walidacyjnych.
- Należy wyeliminować redundancję.
- Należy usunąć spacje w nazwach (poprzez zastąpienie ich znakami "\_" lub poprzez użycie stylu (Uper)CamelCase

### Etapy transformacji (przy założeniu relacyjnego modelu bazy danych)

- 1. Transformacja modelu koncepcyjnego do modelu logicznego:
  - a. Przekształcenie encji w tabele, dodanie tabel łączących i walidacyjnych
  - b. Przekształcenie atrybutów w pola, rozbicie pól nieatomicznych na pojedyncze pola (ewentualnie utworzenie osobnej tabeli zawierającej pojedyncze pola z atrybutu złożonego)
  - c. Ustalenie kluczy kandydujących i kluczy głównych.
  - d. Aktualizacja relacji i dodanie kluczy obcych, ustalenie reguł usuwania i modyfikacji dla relacji
  - e. Utworzenie diagramu modelu logicznego<sup>1</sup>
- 2. Zakodowanie bazy danych w języku SQL model fizyczny

Realizując etapy transformacji należy przestrzegać zasad transformacji.

 $<sup>^{\</sup>rm 1}$ Bardzo często w systemach zarządzania bazami danych możliwe jest utworzenie modelu logicznego i na jego podstawie wygenerowanie kodu SQL bazy danych.

### Klucze

### Rodzaje kluczy

- Klucz prosty klucz składający się z jednego pola.
- Klucz złożony klucz składający się z więcej niż jednego pola.
- **Klucz naturalny** klucz utworzony na potrzeby jednoznacznej identyfikacji rekordu na podstawie atrybutów istniejących w rzeczywistości (np. numer PESEL).
- **Klucz sztuczny** klucz utworzony na potrzeby jednoznacznej identyfikacji rekordu, nieposiadający znaczenia biznesowego.
- **Superklucz (nadklucz)** dowolny zestaw pól pozwalający na jednoznaczną identyfikację rekordu w bazie danych.
- Klucz kandydujący (lub po prostu: klucz) minimalny superklucz, tzn. taki, którego żaden podzbiór pól nie jest wystarczający do jednoznacznej identyfikacji obiektu (używany do jednoznacznej identyfikacji rekordów). Klucz kandydujący powinien być:
  - unikatowy zbiór wartości pól klucza kandydującego nie może się powtarzać w kontekście rekordów jednej tabeli, a wartości każdego z tych pól nie mogą być puste,
  - o **stały** zbiór wartości klucza kandydującego dla danego wystąpienia encji nie może się zmieniać,
  - o **minimalny** zbiór pól klucza kandydującego powinien zawierać wyłącznie pola niezbędne do jednoznacznej identyfikacji wystąpienia encji.
- **Klucz główny (podstawowy)** wybrany przez użytkownika klucz kandydujący, służący do jednoznacznej identyfikacji rekordów w bazie danych.
- Klucz alternatywny klucz kandydujący niebędący kluczem podstawowym.
- **Klucz obcy** klucz przeniesiony z jednego typu encji do drugiego w celu identyfikacji rekordów po dokonaniu złączenia encji.

### Więzy

Więzy to logiczne warunki nakładające ograniczenia na dane.

- Więzy na poziomie atrybutów (np.: 0 < Wiek < 140).
- Więzy na poziomie krotek (np.: Data\_urodzenia < Data\_zatrudnienia).
- Więzy na poziomie tabel.
- Więzy kluczy głównych i kluczy obcych (więzy spójności referencyjnej).
- Więzy niezwiązane z konkretnym atrybutem, krotką bądź tabelą (np.: Suma wszystkich zarobków pracowników działu X = Fundusz płac działu X).

## Przykład

Transformacja modelu koncepcyjnego dla biblioteki płyt z muzyką przedstawionego w temacie 3.

### a. Przekształcenie encji w tabele, dodanie tabel łączących i walidacyjnych

### **Tabele**

| Nazwa encji | Nazwa tabeli     | Rodzaj tabeli   |
|-------------|------------------|-----------------|
| Album       | albumy           | Tabela z danymi |
| Piosenka    | piosenki         | Tabela z danymi |
| Kategoria   | kategorie        | Tabela z danymi |
| Studio      | studia           | Tabela z danymi |
|             | adresy           | Tabela podzbiór |
|             | studiaTelefony   |                 |
|             | kategorieAlbumow | Tabela łącząca  |

### b. Przekształcenie atrybutów w pola

### **Pola**

| albumy      |                                                                     |           |           |  |  |  |  |
|-------------|---------------------------------------------------------------------|-----------|-----------|--|--|--|--|
| Pole        | Typ Danych                                                          | Unikatowy | Wymagalny |  |  |  |  |
| tytul       | Varchar(100)                                                        | nie       | tak       |  |  |  |  |
| dataWydania | Data                                                                | nie       | tak       |  |  |  |  |
| studio      | (uzupełnić po<br>wyborze klucza<br>podstawowego w<br>tabeli studia) | nie       | tak       |  |  |  |  |

| studia |                                                                     |           |           |
|--------|---------------------------------------------------------------------|-----------|-----------|
| Pole   | Typ Danych                                                          | Unikatowy | Wymagalny |
| nazwa  | Varchar(100)                                                        | nie       | tak       |
| adres  | (uzupełnić po<br>wyborze klucza<br>podstawowego w<br>tabeli adresy) | nie       | tak       |

| studiaTelefony |                                                                     |           |           |  |  |  |  |
|----------------|---------------------------------------------------------------------|-----------|-----------|--|--|--|--|
| Pole           | Typ Danych                                                          | Unikatowy | Wymagalny |  |  |  |  |
| studio         | (uzupełnić po<br>wyborze klucza<br>podstawowego w<br>tabeli studia) | nie       | tak       |  |  |  |  |
| telefon        | varchar(20)                                                         | tak       | tak       |  |  |  |  |

• • •

### c. Ustalenie kluczy kandydujących i kluczy głównych.

### Klucze

| Nazwa tabeli     | Klucze<br>kandydujące                                                                              | Klucz główny             | Uzasadnienie<br>wyboru                                                                                                                |
|------------------|----------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| adresy           | ulica + numerBudynku + numerLokalu + miejscowosc, ulica + numerBudynku + numerLokalu + kodPocztowy | idAdresu                 | Użycie wielopolowego<br>klucza podstawowego<br>złożonego z pól<br>tekstowych może<br>znacznie utrudnić<br>pracę z bazą danych.        |
| albumy           | tytul +<br>dataWydania                                                                             | idAlbumu                 | Wielopolowy klucz<br>podstawowy nie<br>będzie praktyczny<br>jako klucz obcy w<br>licznych relacjach<br>jakie tworzy tabela<br>albumy. |
| studia           | idAdresu +<br>telefon                                                                              | idStudia                 | Adres i/lub telefon studia mogą ulec zmianie.                                                                                         |
| studiaTelefony   | telefon                                                                                            | telefon                  | Jedyne pole, które<br>spełnia warunki<br>klucza podstawowego                                                                          |
| kategorie        | nazwa                                                                                              | nazwa                    | Jedyne pole, spełnia<br>warunki klucza<br>podstawowego                                                                                |
| kategorieAlbumow | idAlbumu +<br>nazwa                                                                                | idAlbumu +<br>nazwa      | Tabela łącząca<br>kategorie i albumy                                                                                                  |
| piosenki         | nrPiosenki +<br>idAlbumu                                                                           | nrPiosenki +<br>idAlbumu | Użycie dwupolowego<br>klucza pozwoli na<br>przechowanie<br>informacji o albumie<br>oraz o kolejności<br>piosenek na albumie           |

Pola typu Id pojawiają się już na etapie modelu logicznego. Są to klucze sztuczne i ich użycie nie zawsze jest konieczne i właściwe.

Już klucz kandydujący musi spełniać warunek unikatowości więc niewłaściwym jest użycie pola nie unikatowego jako klucza kandydującego i odrzucenie go ze względu na tą cechę.

# d. Aktualizacja relacji, dodanie kluczy obcych oraz ustalenie reguł usuwania i modyfikacji dla relacji

| Nazwa tabeli<br>podstawowej | Pole     | Krotność | Nazwa tabeli<br>związanej | Pole           | Krotność | Regula<br>usuwania | Reguła<br>modyfikacji |
|-----------------------------|----------|----------|---------------------------|----------------|----------|--------------------|-----------------------|
| albumy                      | idAlbumu | 11       | piosenki                  | idAlbumu       | 0*       | restrykcyjna       | kaskadowa             |
| albumy                      | idAlbumu | 11       | kategorieAlbumow          | idAlbumu       | 0*       | restrykcyjna       | kaskadowa             |
| kategorie                   | nazwa    | 11       | kategorieAlbumow          | nazwaKategorii | 0*       | restrykcyjna       | kaskadowa             |
| studia                      | idStudia | 11       | albumy                    | idStudia       | 0*       | restrykcyjna       | kaskadowa             |
| studia                      | idStudia | 11       | studiaTelefony            | idStudia       | 1*       | kaskadowa          | kaskadowa             |
| adresy                      | idAdresu | 11       | studia                    | idAdresu       | 0*       | restrykcyjna       | restrykcyjna          |

Nazwy pól tworzących relację w tabeli podstawowej i w tabeli związanej nie muszą być takie same.

### e. Transformacja diagramu

### Model koncepcyjny



## Odpowiadający mu model logiczny





## Zmiany dokonane przy transformacji

- Encje zostały przekształcone na tabele → nazwy zostały zapisane w liczbie mnogiej, z małej litery
- Atrybuty encji zostały przekształcone w pola → nazwy zapisano stylem
  CamelCase, dodano typy danych, długości pól i precyzję, określono wymagalność i
  unikatowość, atrybut złożony Adres został rozbity na pola i finalnie wydzielony do
  osobnej tabeli adresy, a atrybut wielowartościowy Telefony został przeniesiony do
  osobnej tabeli studiaTelefony.
- Utworzone zostały klucze podstawowe i klucze obce. Tabele zostały połączone
  relacjami z wykorzystaniem kluczy. Dla każdej relacji określono reguły usuwania
  i modyfikacji.
- Relacja wiele do wielu pomiędzy kategoriami i albumami została rozbita na dwie relacje jeden do wielu. Została utworzona tabela łącząca kategorieAlbumow

### Kod SQL

Moodle/Modelowanie danych/ Model logiczny i fizyczny – pliki/ baza wygenerowana na podstawie modelu fizycznego.sql

### Podstawowe różnice między modelem koncepcyjnym a logicznym

| Model koncepcyjny                                                                        | Model logiczny relacyjnej bazy<br>danych                                                                   |
|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Nazwy encji w liczbie pojedynczej z<br>wielkiej litery                                   | Nazwy tabel w liczbie mnogiej,<br>najczęściej z małej litery                                               |
| Występuje relacja wiele do wielu                                                         | Relacje wiele do wielu muszą<br>zostać rozbite na dwie relacje jeden<br>do wielu połączone tabelą łączącą  |
| Encje asocjacyjne przechowujące<br>informacje o związkach posiadające<br>własne atrybuty | Tabele łączące                                                                                             |
| Nazwy relacji                                                                            | Powiązania po poziomie kluczy (podstawowy-obcy)                                                            |
| Atrybuty złożone i<br>wielowartościowe                                                   | Rozbicie atrybutów złożonych na<br>pola i wydzielenie atrybutów<br>wielowartościowych do osobnej<br>tabeli |
| Atrybuty z dziedziną w postaci listy wyliczeniowej                                       | Tabele walidacyjne                                                                                         |

### ORM – Definicja i przykład

Mapowanie obiektowo-relacyjne (ang. Object-Relational Mapping ORM) – sposób odwzorowania obiektowej architektury systemu informatycznego na bazę danych (lub inny element systemu) o relacyjnym charakterze. Implementacja takiego odwzorowania stosowana jest m.in. w przypadku, gdy tworzony system oparty jest na podejściu obiektowym, a system bazy danych operuje na relacjach².

\_

<sup>&</sup>lt;sup>2</sup> https://pl.wikipedia.org/wiki/Mapowanie\_obiektowo-relacyjne

### Diagram klas UML



### Definicje klas z anotacjami (Doctrine2 ORM)

Moodle/Modelowanie danych/ Model logiczny i fizyczny – pliki/ Definicje klas z anotacjami potrzebnymi do wygenerowania bazy danych

### Reguły ORM w plikach .yml lub .xml (Doctrine2 ORM)

## Konfiguracje .yml

Moodle/Modelowanie danych/ Model logiczny i fizyczny – pliki/ Pliki .yml z konfiguracją bazy danych

### Konfiguracje .xml

Moodle/Modelowanie danych/ Model logiczny i fizyczny – pliki/ Pliki .xml z konfiguracją bazy danych

### Relacyjny model bazy danych



### Kod SQL

Moodle/Modelowanie danych/ Model logiczny i fizyczny – pliki/ baza wygenerowana przez ORM.sql

# Normalizacja – 1NF, 2NF

### Zależność funkcyjna

- Zależność funkcyjna: jeżeli dwie krotki relacji są zgodne co do atrybutów A<sub>1</sub>, A<sub>2</sub>,
  ..., A<sub>n</sub>, to muszą także zgadzać się we wszystkich pozostałych atrybutach B<sub>1</sub>, B<sub>2</sub>,
  ..., B<sub>m</sub>.
- "Jeżeli znam X, to znam Y" (np.: PESEL→Nazwisko, Kod paskowy→Nazwa towaru, cena).
- "X determinuje Y" lub "Y zależy od X" (np.: PESEL determinuje Nazwisko; Nazwa towaru i cena zależą od Kodu paskowego).
- Innymi słowy zależność funkcyjna występuje wtedy, kiedy wartość w jednym polu tabeli zależy od wartości w innym polu tabeli.

### Anomalie

- Redundancja ta sama informacja zostaje wprowadzona wielokrotnie.
- Anomalie przy aktualizacji informacja zostaje uaktualniona tylko w niektórych miejscach, np.: zmiana adresu studenta na nowy, jeśli informacja o studencie i jego adresie trzymana jest w kilku miejscach.
- Anomalie przy usuwaniu wraz z usunięciem ostatniego wiersza szczegółowego znika informacja ogólna, np.: gdy informacje o adresie studenta trzymane są w jednej tabeli wraz z przedmiotami, na które jest zarejestrowany, po zakończeniu sesji adres ten by zniknał.
- Anomalie przy wstawianiu brak możliwości wstawienia rekordu z uwagi na
  więzy integralności, np. gdy informacje o adresie studenta trzymane są w jednej
  tabeli wraz z przedmiotami, na które jest zarejestrowany, podczas próby
  dopisania nowego studenta, który nie jest jeszcze zapisany na żaden przedmiot,
  system bazy danych uniemożliwi wprowadzenie rekordu, gdyż przedmiot jest
  atrybutem wymaganym.

### Cele normalizacji

- Wyeliminowanie redundancji.
- Wyeliminowanie anomalii.
- Dekompozycja rozkład relacji na mniejsze, które nie maja redundancji i anomalii.

### Własności normalizacji

- Zachowanie atrybutów
- Zachowanie informacji
- Zachowanie zależności funkcyjnych w relacjach.

### Definicja normalizacji

Normalizacja to proces odpowiedniej organizacji danych, którego celem jest wyeliminowanie nadmiarowych danych oraz niespójnych zależności między danymi (anomalii).

### Pierwsza postać normalna (1NF)

- Wszystkie użyte dziedziny zawierają wyłącznie wartości atomowe (wszystkie dane są atomiczne).
- Reguly:
  - o Nazwa każdej kolumny powinna być unikatowa,
  - o Porządek kolumn oraz krotek jest nieistotny (nie ma znaczenia).
  - Każda kolumna powinna posiadać pojedynczy typ danych (wartości krotek w tej kolumnie nie moga być różnych typów).
  - O Żadne dwie krotki nie mogą posiadać wszystkich atrybutów identycznych (tabela musi posiadać klucz główny).
  - Każda kolumna powinna zawierać pojedynczą wartość (np.: niedozwolona jest kolumna Aktor przechowująca wartości "George, Clooney", "Robert De Niro", "Al Pacino", etc.).
  - o Kolumny nie powinny zawierać powtarzających się grup (atrybuty nie mogą być wielowartościowe, np.: niedozwolony jest zestaw kolumn "Phone1", "Phone2", "Phone3", etc.).

### Druga postać normalna (2NF)

- Reguly:
  - o Tabela jest w pierwszej postaci normalnej (1NF) **ORAZ**
  - Każda kolumna nienależąca do klucza głównego zależy od wszystkich kolumn (razem), składających się na klucz główny
  - LUB dowolna kolumna nienależąca do klucza głównego nie zależy od części klucza głównego
  - o **LUB** każdy atrybut spoza klucza głównego jest od niego w pełni funkcyjnie zależny (czyli nie jest zależny od jego części).
- Pytanie pomocnicze: "czy ta kolumna może istnieć bez któregoś ze składników klucza?".
- Naruszenie drugiej postaci normalnej wymaga istnienia klucza złożonego i atrybutu niekluczowego.
- Atrybut taki musi być zależny funkcyjnie od fragmentu tego klucza.

# Normalizacja – 3NF, BCNF

### Przechodnia zależność funkcyjna

- Występuje, gdy dowolna niekluczowa kolumna zależy od innej niekluczowej kolumny.
- W relacji R(A, B, C) zachodzą zależności funkcyjne A→B, B→C. Wnioskujemy stąd, że zachodzi także zależność A→C.

### Trzecia postać normalna (3NF)

- Reguly:
  - o Tabela jest w drugiej postaci normalnej (2NF) ORAZ
  - o Dowolna kolumna nienależąca do klucza głównego nie zależy od innej kolumny nienależącej do klucza głównego
  - LUB każdy niekluczowy atrybut jest bezpośrednio zależny od klucza głównego
  - o LUB tabela nie posiada żadnych przechodnich zależności funkcyjnych¹.
  - LUB żaden atrybut spoza klucza głównego nie jest od niego przechodnio zależny (czyli jest zależny bezpośrednio).
- Pytanie pomocnicze: "Czy ta kolumna jest zależna od innej kolumny niekluczowej?"

### Postać BCNF

- Boyce-Codd Normal Form.
- Reguly:
  - o Tabela jest w trzeciej postaci normalnej (3NF) **ORAZ**
  - o Każdy determinant jest kluczem kandydującym
  - o LUB wszystkie zależności kluczowe są zależnościami od kluczy.

**Determinant** to atrybut, który przynajmniej częściowo determinuje inny atrybut.

-

<sup>&</sup>lt;sup>1</sup> Więcej o zależnościach częściowych i funkcyjnych: http://edu.pjwstk.edu.pl/wyklady/rbd/scb/wyklad5/norm.htm

# Normalizacja – 4NF, 5NF

#### Zależność wielowartościowa

- Zbiór atrybutów Y jest zależny wielowartościowo od zbioru X gdy z każdą konfiguracją wartości atrybutów z X jest związany zbiór konfiguracji wartości z Y niezależnie od wartości pozostałych atrybutów.
- Występuje, gdy zbiór wartości kolumny X, zależnej od każdej wartości kolumny Y jest niezależny od wszystkich innych kolumn.

### Zależność trywialna

Jeśli zbiór złożony z atrybutów B jest podzbiorem zbioru złożonego z atrybutów A.

### Zależność nietrywialna

 Jeśli co najmniej jeden atrybut zbioru złożonego z atrybutów B nie jest podzbiorem zbioru złożonego z atrybutów A.

### Czwarta postać normalna (4NF)

- Reguly:
  - o Tabela jest w postaci BCNF **ORAZ**
  - o usunięto nietrywialne wielowartościowe zależności funkcyjne
  - o **LUB** dla każdej nietrywialnej zależności wielowartościowej  $X \rightarrow Y$ , X jest nadkluczem.

### Zależność połączeniowa (złączeniowa)

- Jeśli R jest relacją, a A, B, ..., Z są dowolnymi podzbiorami zbioru atrybutów R, to R spełnia zależność połączeniową JD (join dependency):
   \*(A, B, ..., Z)
   wtedy i tylko wtedy, gdy R jest równe połączeniu swoich projekcji na A, B, ..., Z.
- Niech R {R<sub>1</sub>, R<sub>2</sub>, ..., R<sub>p</sub>} oznacza zbiór schematów relacji zdefiniowany na zbiorem atrybutów U = {A<sub>1</sub>, A<sub>2</sub>, ..., A<sub>n</sub>} takich, że R<sub>1</sub> U R<sub>2</sub> U ... U R<sub>p</sub> = U. Mówimy, że relacja r(U) spełnia zależność połączeniową, oznaczaną przez JD [R<sub>1</sub>, R<sub>2</sub>, ..., R<sub>p</sub>], jeżeli można ją zdekomponować bez utraty informacji na podrelacje r<sub>1</sub>(R<sub>1</sub>), r<sub>2</sub>(R<sub>2</sub>) ..., r<sub>p</sub>(R<sub>p</sub>).<sup>1</sup>

\_

<sup>&</sup>lt;sup>1</sup> http://tomasz.kubik.staff.iiar.pwr.wroc.pl/dydaktyka/RelacyjneBazyDanych/

### Piąta postać normalna (5NF)

- Reguly:
  - o Tabela jest w postaci 4NF **ORAZ**
  - o nie zawiera połączeniowej zależności funkcyjnej
  - LUB każda zależność połączeniowa jest implikowana kluczami kandydującymi.

### Postacie normalne

| Postać   | Operacje                                        | Uwagi                                                                                                                                                                                                                                                                                                                                                                    |
|----------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| normalna |                                                 |                                                                                                                                                                                                                                                                                                                                                                          |
| 1NF      | usunięcie danych<br>nieatomicznych              | Rozbicie pól złożonych na<br>szczegółowe pola, a pól<br>wielowartościowych na osobne<br>rekordy (chwilowa rozbudowa tabeli<br>i redundancja).                                                                                                                                                                                                                            |
| 2NF      | usunięcie niepełnej<br>zależności funkcyjnej    | Sprawdzane są tylko tabele z wielopolowym kluczem podstawowym. Badanie, czy pole niekluczowe zależy od całego klucza podstawowego, czy tylko od jego składowej. W tym drugim przypadku wydzielana jest tabela, której kluczem podstawowym jest część klucza tabeli oryginalnej. Przenoszone są do niej wszystkie pola zależne od tego determinantu.                      |
| 3NF      | usunięcie przechodniej<br>zależności funkcyjnej | Badanie zależności pomiędzy polami nie należącymi do klucza podstawowego. Jeśli jakieś pole zależy od innego pola niekluczowego, a dopiero to pole zależy od klucza podstawowego, to wydzielana jest tabela, której kluczem podstawowym jest determinant. Przenoszone są do niej wszystkie pola zależne od tego determinantu, a nie bezpośrednio od klucza podstawowego. |
| BCNF     |                                                 | Każdy determinant (atrybut, który<br>przynajmniej częściowo determinuje<br>inny atrybut) jest kluczem<br>kandydującym                                                                                                                                                                                                                                                    |

| Postać<br>normalna | Operacje                                                                 | Uwagi                                                                                                                                                                                                                                                                                                             |
|--------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4NF                | usunięcie<br>nietrywialnej<br>wielowartościowej<br>zależności funkcyjnej | Jeśli dwa (lub więcej) pola zależą od innego pola, ale między nimi nie ma zależności, to należy podzielić tą tabelę na mniejsze przenosząc do nich pole powodujące zależność wielowartościową wraz z pojedynczymi polami zależnymi od niego.                                                                      |
| 5NF                | usunięcie<br>połączeniowej<br>zależności funkcyjnej                      | Jeśli dwa (lub więcej) pola zależą od innego pola, a między nimi samymi również występują zależności, to należy podzielić tą tabelę na mniejsze przenosząc do nich pola parami na zasadzie "każde z każdym". Jedna z tabel pełni z reguły rolę słownika – ogranicza wartości dopuszczalne w pozostałych tabelach. |

Każda kolejna postać normalna musi spełniać warunki wszystkich poprzednich.