СОДЕРЖАНИЕ

3	ВВЕДЕНИЕ
урыОшибка! Закладка не	1. Проектирование сетевой инфра
	определена.
бка! Закладка не определена.	1.1. Схема сети
бка! Закладка не определена.	1.2. Оборудование
бка! Закладка не определена.	2. Настройка сети
бка! Закладка не определена.	2.1. Настройка сети провайдера.
бка! Закладка не определена.	2.2. Базовая настройка филиалог
бка! Закладка не определена.	2.3. Настройка VRRP в филиала
бка! Закладка не определена.	2.4. Настройка DHCP в филиала
бка! Закладка не определена.	ПРИЛОЖЕНИЕ А
бка! Закладка не определена.	ПРИЛОЖЕНИЕ Б
бка! Закладка не определена.	ПРИЛОЖЕНИЕ В

					$V\Pi \Omega \Omega \Omega$	06	\sim	1П2	
Изм.	Лист	№ докум.	Подп.	Дата	УП.09.02.06.01ПЗ				
Разраб	5.	Смирнов С. И.				Лит	Γ.	Лист	Листов
Пров.		Попов И. Д.						4	
					Отчет по учебной				
Н. кон	тр.				практике			ФСПО	ГУАП
Утв.					mp wat in the				

ВВЕДЕНИЕ

Я, Смирнов Сергей Игоревич, проходил учебную практику по профессиональному модулю «ПМ.01 ВЫПОЛНЕНИЕ РАБОТ ПО ПРОЕКТИРОВАНИЮ СЕТЕВОЙ ИНФРАСТРУКТУРЫ» в организации ФСПО ГУАП, лаб. сетевых технологий. По мере прохождения практики я выполнял такие виды работ как:

Проектирование сетевой инфраструктуры

Организация сетевого администрирования

Управление сетевыми сервисами

Модернизация сетевой инфраструктуры

Все виды работ я выполнял для учебной лаборатории сетевых технологий.

			·	
Изм.	Лист	№ докум.	Подп.	Дата

1 Проектирование сетевой инфраструктуры

В ВУЗе есть лаборатория сетевых технологий, также лаборатория есть на факультете СПО этого же учебного заведения. Учебная лаборатория в самом ВУЗе является главным филиалом. Там установлен сервер виртуализации, а также весь трафик, перед тем как попасть в интернет, проходит через главный филиал. Адреса в лабораториях выдаются динамически локальными маршрутизаторами. Каждый компьютер в лаборатории должен находиться в отдельном VLAN. Главный филиал подключен к двум провайдерам, чтоб в случае выхода из строя одного из провайдеров, трафик направлялся в другого провайдера

Схема сети L1 показана в приложении A.

Схема сети L2 показана в приложении Б.

Схема сети L3 показана в приложении В

Таблица 1 – ІР-план главного офиса

	Главный офис	,	
Оборудование	Интерфейс	ІР-адрес	Маска
Mikrotik 7.14.2 (M10)	Loopback	10.10.10.10	32
	ether1	DHCP (200.18.1.2)	24
	Ether2	200.18.10.1	24
	Vrrp1	200.18.10.10	24
	gre-tunnell2	200.18.30.1	24
Mikrotik 7.14.2 (M11)	Loopback	11.11.11.11	32
	Ether1	DHCP (200.18.2.2)	24
	Ether2	200.18.10.2	24
	vrrp	200.18.10.10	24
	gre-tunnell1	200.18.20.1	24
Mikrotik 7.14.2 (M13)	Loopback	13.13.13.13	32
	Ether1	DHCP (200.18.10.11)	24
	Vlan 10	200.18.110.1	24
	Vlan 20	200.18.120.1	24
	Vlan 30	200.18.130.1	24

Изм.	Лист	№ докум.	Подп.	Дата

	Vlan 40	200.18.100.1	24
server		DHCP	
	Ens4	(200.18.100.100)	24
PC1		DHCP	
	Ens4	(200.18.130.100)	24
PC2		DHCP	
	Ens4	(200.18.120.100)	24

Таблица 2 – ІР-план Факультета СПО

Факультет СПО					
Оборудование	Интерфейс	IP-адрес	Маска		
Mikrotik 7.5 (M12)	Loopback	12.12.12.12	32		
	ether1	DHCP (200.18.3.2)	24		
	Gre-tunnel1	200.18.20.2	24		
	Gre-tunnel2	200.18.30.2	24		
	Vlan 10	200.18.140.1	24		
	Vlan 20	200.18.150.1	24		

PC4		DHCP	
	Ens4	(200.18.140.100)	24
PC5		DHCP	
	Ens4	(200.18.150.100)	24

Оборудование

В процессе построения схемы также настраивались сети провайдера. Вот, какое оборудование было использовано.

Таблица 3 – Оборудование провайдера

Оборудование провайдеров				
Кол-во	Наименование			
4	Mikrotik 7.5			
5	Mikrotik 7.14.2			

Таблица 4 – Оборудование учебных лабораторий

	Оборудование филиалов
Кол-во	Наименование
3	Mikrotik 7.14.2
1	Mikrotik 7.5

						Лист
					УП.09.02.06.01ПЗ	5
Изм.	Лист	№ докум.	Подп.	Дата	311.07.02.00.01113	3

5	PC
2	Коммутатор Cisco
1	Proxmox

			·	
Изм.	Лист	№ докум.	Подп.	Дата

Организация сетевого администрирования

Настройка провайдеров

На схеме имеется 3 автономные сети провайдера. В верхней автономной системе AS С в качестве протокола динамической маршрутизации выбран IS-IS, в остальных автономных системах протоколом маршрутизации выбран OSPF. Для связи между автономными системами использовался протоколт BGP

Настройка филиалов

В филиале вуза маршрутизатор получил от провайдера адрес по DHCP, все остальные адреса на маршрутизаторе прописаны статически

Рисунок 1 – Address list M13

Рисунок 2 –DHCP client M13

Изм.	Лист	№ докум.	Подп.	Дата

Адреса на конечные устройства выдавались маршрутизаторами

_	عاشتانا كا					
	Name A	Interface A	Relay	Lease Time	Address Pool	Add AR
	dhcp1	vlan10		00:30:00	dhcp_pool12	no
	dhcp2	vlan20		00:30:00	dhcp_pool13	no
	dhcp3	vlan30		00:30:00	dhcp_pool14	no
	dhcp4	vlan40		00:30:00	dhcp_pool17	no

Рисунок 3 – Настройка DHCP сервера М13

Name	△ Interface	Relay	 Lease Time	Address Pool	Ad ▼
dhcp1	Vlan10		00:10:00	dhcp_pool17	no
dhcp2	vlan20		00:10:00	dhcp_pool18	no

Рисунок 4 – Настройка DHCP сервера М12

Каждому конечному устройству был присвоен статический адрес, который выдавался по DHCP, для дальнейшего использования статического DNS сервера.

Address A	MAC Address 4	Client ID	Server	Active Address	Active MAC Addre	
200.18.110.100	00:0C:29:F8:DE:89	1:0:c:29:f8:de:89	dhcp1			
200.18.100.100	0C:14:9C:03:00:00	ff:9c:3:0:0:0:1:0:1	dhcp4	200.18.100.100	0C:14:9C:03:00:00	del
200.18.120.100	0C:4D:A9:FD:00:00	ff:a9.fd:0:0:0:1:0:	dhcp2	200.18.120.100	0C:4D:A9:FD:00:00	del
 200.18.130.100	0C:72:AE:F0:00:00	ff:ae.f0:0:0:0:1:0:	dhcp3	200.18.130.100	0C:72:AE:F0:00:00	del

Рисунок 5 – Привязка ІР к МАС адресу устройства на М13

1 100100		O / WG1000	OHOTE TO	001101	
200.18	.150.100 OC	1F:50:F3:00:00	ff:50:f3:0:0:0:1:0:	dhcp2	i
200.18	.140.100 OC	06:D6:B2:00:00	ff:d6:b2:0:0:0:1:0:	dhcp1	i

Рисунок 6 – Привязка ІР к МАС адресу устройства на М12

Изм.	Лист	№ докум.	Подп.	Дата

Управление сетевыми сервисами

Настройка VRRP

Для отказоустойчивости сети маршрутизаторы M10 и M11 были подключены к разным провайдерам, а между ними настроен VRRP, чтоб при выходе из строя одного из провайдеров трафик мог проходить через другого.

Рисунок 7 – Настройка VRRP интерфейса на одном из маршрутизаторов

Рисунок 8 – Адрес VRRP интерфейса

Аналогично настроен соседний маршрутизатор (М11)

Настройка GRE тоннелей

Для того, чтобы трафик от лаборатории СПО шел «напрямую» в главный офис, было настроено GRE туннелирование. Также это было сделано для

Изм.	Лист	№ докум.	Подп.	Дата

того, чтобы трафик, перед тем как попадать в интернет из лаборатории СПО, проходил через главный офис для полного контроля сетевого трафика. GRE тоннели были реализованы от М10 и М11 к М12, чтобы при выходе из строя одного из маршрутизаторов трафик проходил через другой тоннель

Рисунок 9 – Настройка GRE тоннеля на M10

Рисунок 10 – Настройка GRE тоннеля на M11

Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 11 – Настройка GRE тоннеля 1 на M12

Рисунок 12 – Настройка GRE тоннеля 2 на M12

```
traceroute to 200.18.120.100 (200.18.120.100), 30 hops max, 60 byte packets 1 200.18.150.1 (200.18.150.1) 1.201 ms 0.896 ms 0.782 ms 2 200.18.20.1 (200.18.20.1) 5.005 ms 6.532 ms 6.519 ms 3 200.18.10.11 (200.18.10.11) 8.312 ms 8.301 ms 8.290 ms 4 lab1PC2.prak (200.18.120.100) 8.777 ms 8.664 ms 8.562 ms debian@debian:~$
```

Рисунок 13 – Прохождение трафика через GRE тоннель

Лист

11

					УП.09.02.06.01ПЗ
Изм.	Лист	№ докум.	Подп.	Дата	311.07.02.00.01113

```
Internet Protocol Version 4, Src: 200.18.2.2, Dst: 200.18.3.2

Generic Routing Encapsulation (IP)

> Flags and Version: 0x0000
    Protocol Type: IP (0x0800)

Internet Protocol Version 4, Src: 200.18.100.100, Dst: 200.18.150.100
```

Рисунок 14 – GRE заголовок в ICMP пакете

Настройка OSPF

На М10 и М11 по OSPF распространяется информация только о GRE тоннелях, в маршрутизаторах, граничащих с конечными устройствами, были распространены следующие маршруты:

Рисунок 15 – Настройка OSPF на M12

Рисунок 16 – Настройка OSPF на M13

					ı
Изм.	Лист	№ докум.	Подп.	Дата	

```
V Open Shortest Path First

> OSPF Header

V OSPF Hello Packet
    Network Mask: 255.255.255.0
Hello Interval [sec]: 10

> Options: 0x02, (E) External Routing
    Router Priority: 128
    Router Dead Interval [sec]: 40
    Designated Router: 200.18.10.1

    Backup Designated Router: 200.18.10.2
```

Рисунок 17 – OSPF hello packet

Настройка VLAN

Для разграничения и более удобного контроля сетевого трафика, каждое конечное устройство было помещено в отдельный VLAN

Настройка VLAN в лаборатории ВУЗа

Рисунок 18 – Создание VLAN интерфейсов M13

L									
	#	Interface	Bridge	Horizon	Trusted	Priority (h	PVID	Role	Actu ▼
-	0	🚢 vlan 10	vlan10		no	80	1	designated port	20
	1	🚢 vlan 20	vlan20		no	80	1	designated port	20
	2	🚢 vlan 30	vlan30		no	80	1	designated port	20
	3	🚢 vlan 40	vlan40		no	80	1	designated port	20
-									

Рисунок 19 – Создание bridge портов для интерфейсов VLAN

```
802.1Q Virtual LAN, PRI: 0, DEI: 0, ID: 20
000. ... = Priority: Best Effort (default) (0)
...0 ... = DEI: Ineligible
... 0000 0001 0100 = ID: 20
Type: IPv4 (0x0800)
```

Рисунок 20 – Метка VLAN в ICMP пакете

Изм.	Лист	№ докум.	Подп.	Дата

Настройка NAТирования трафика

Для того, чтобы конечные устройства имели выход в интернет, на маршрутизаторах главного филиала был настроен NAT

Рисунок 21 – Настройка NAT на M13

На М11 и М10, а также на маршрутизаторе провайдера М1 NAT был настроен аналогично

Настройка DNS сервера

В локальной сети, для более удобного обращения к устройствам им были выданы доменные имена. Доменные имена выдавались маршрутизатором главного филиала статически.

Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 22 – Настройка статических записей DNS

Рисунок 23 – Настройка адресов DNS сервера

Первый адрес является адресом локального DNS сервера, второй же нужен для того, чтоб обращаться по доменным именам к серверам из Интернета

Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 24 – Обращение к устройству из локальной сети и к серверу Google

Изм.	Лист	№ докум.	Подп.	Дата

4 Модернизация сетевой инфраструктуры

Установка ProxmoxVE

Management Interface:	ens192 - 00:50:56:8a:bb:c9 (vmxnet3) ▼
Hostname (FQDN):	pve.dmosk.local
IP Address:	192.168.1.55
Netmask:	255.255.255.0
Gateway:	192.168.1.1
DNS Server:	192.168.1.1

Рисунок 25 — Выдача IP адреса серверу

* Данный скриншот был взят из Интернета в качестве примера настройки

Рисунок 26 – Web интерфейс севера proxmox

Также на сервер были загружены образы российских маршрутизаторов Eltex для дальнейшего изучения

Изм.	Лист	№ докум.	Подп.	Дата

