In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
from sklearn.preprocessing import LabelEncoder
import warnings
warnings.filterwarnings('ignore')
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import GridSearchCV
from sklearn import svm
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier,GradientBoostingClassifier
import xgboost
```

Loading Dataset

In [2]:

```
df=pd.read_csv("Churn_Modelling.csv")
df.head()
```

Out[2]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Bala
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	8380
2	3	15619304	Onio	502	France	Female	42	8	15966
3	4	15701354	Boni	699	France	Female	39	1	
4	5	15737888	Mitchell	850	Spain	Female	43	2	12551
4									•

In [3]:

```
df.tail(10)
```

Out[3]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure
9990	9991	15798964	Nkemakonam	714	Germany	Male	33	3
9991	9992	15769959	Ajuluchukwu	597	France	Female	53	4
9992	9993	15657105	Chukwualuka	726	Spain	Male	36	2
9993	9994	15569266	Rahman	644	France	Male	28	7
9994	9995	15719294	Wood	800	France	Female	29	2
9995	9996	15606229	Obijiaku	771	France	Male	39	5
9996	9997	15569892	Johnstone	516	France	Male	35	10
9997	9998	15584532	Liu	709	France	Female	36	7
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3
9999	10000	15628319	Walker	792	France	Female	28	4
4								•

Collecting dataset information using inbuilt functions

In [4]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):
Column Non-Null Count

#	Column	Non-Null Count	Dtype
0	RowNumber	10000 non-null	int64
1	CustomerId	10000 non-null	int64
2	Surname	10000 non-null	object
3	CreditScore	10000 non-null	int64
4	Geography	10000 non-null	object
5	Gender	10000 non-null	object
6	Age	10000 non-null	int64
7	Tenure	10000 non-null	int64
8	Balance	10000 non-null	float64
9	NumOfProducts	10000 non-null	int64
10	HasCrCard	10000 non-null	int64
11	IsActiveMember	10000 non-null	int64
12	EstimatedSalary	10000 non-null	float64
13	Exited	10000 non-null	int64
	67		- \

dtypes: float64(2), int64(9), object(3)

memory usage: 1.1+ MB

In [5]:

df.describe()

Out[5]:

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000
4						>

In [6]:

df.shape

Out[6]:

(10000, 14)

In [7]:

df.dtypes# avoid

Out[7]:

RowNumber	int64
CustomerId	int64
Surname	object
CreditScore	int64
Geography	object
Gender	object
Age	int64
Tenure	int64
Balance	float64
NumOfProducts	int64
HasCrCard	int64
IsActiveMember	int64
EstimatedSalary	float64
Exited	int64
dtype: object	

Here We will check null values in our dataset

In [8]:

```
df.isnull().sum()
```

Out[8]:

RowNumber 0 CustomerId 0 Surname 0 CreditScore 0 Geography 0 Gender 0 0 Age Tenure 0 Balance NumOfProducts 0 HasCrCard IsActiveMember 0 EstimatedSalary 0 Exited 0 dtype: int64

In [9]:

```
# now will see unique values in each parameters
df.nunique()
```

Out[9]:

RowNumber	10000
CustomerId	10000
Surname	2932
CreditScore	460
Geography	3
Gender	2
Age	70
Tenure	11
Balance	6382
NumOfProducts	4
HasCrCard	2
IsActiveMember	2
EstimatedSalary	9999
Exited	2
dtype: int64	

From above operation we can see that some parameters showing very high null values although some of the columns still required like balance and estimated salary

In [10]:

```
# Now we will remove top 3 parameters
df=df.drop(['RowNumber','CustomerId','Surname'],axis=1)
```

In [11]:

```
# checking the new dataset
df.head()
```

Out[11]:

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	Is
0	619	France	Female	42	2	0.00	1	1	
1	608	Spain	Female	41	1	83807.86	1	0	
2	502	France	Female	42	8	159660.80	3	1	
3	699	France	Female	39	1	0.00	2	0	
4	850	Spain	Female	43	2	125510.82	1	1	
4									•

In [12]:

df[['Gender','Geography','Exited']].value_counts() # geography has 3 categories

Out[12]:

Gender	Geography	Exited	
Male	France	0	2403
Female	France	0	1801
Male	Spain	0	1206
	Germany	0	950
Female	Spain	0	858
	Germany	0	745
	France	1	460
	Germany	1	448
Male	Germany	1	366
	France	1	350
Female	Spain	1	231
Male	Spain	1	182
dtype:	int64		

In exited parameter it can be seen that there is some thing biased in this parameter

In [13]:

```
# lets visualize exited parameter
sns.countplot(data=df,x='Exited')
```

Out[13]:

<AxesSubplot:xlabel='Exited', ylabel='count'>

EDA With Univariate and Bivariate analysis

With all parameters

In [14]:

```
df.boxplot(column='CreditScore',by='Exited',figsize=(5,6))
```

Out[14]:

<AxesSubplot:title={'center':'CreditScore'}, xlabel='Exited'>

In [15]:

df.CreditScore.unique()

Out[15]:

```
array([619, 608, 502, 699, 850, 645, 822, 376, 501, 684, 528, 497, 476,
       549, 635, 616, 653, 587, 726, 732, 636, 510, 669, 846, 577, 756,
       571, 574, 411, 591, 533, 553, 520, 722, 475, 490, 804, 582, 472,
       465, 556, 834, 660, 776, 829, 637, 550, 698, 585, 788, 655, 601,
       656, 725, 511, 614, 742, 687, 555, 603, 751, 581, 735, 661, 675,
       738, 813, 657, 604, 519, 664, 678, 757, 416, 665, 777, 543, 506,
       493, 652, 750, 729, 646, 647, 808, 524, 769, 730, 515, 773, 814,
       710, 413, 623, 670, 622, 785, 605, 479, 685, 538, 562, 721, 628,
       668, 828, 674, 625, 432, 770, 758, 795, 686, 789, 589, 461, 584,
       579, 663, 682, 793, 691, 485, 650, 754, 535, 716, 539, 706, 586,
       631, 717, 800, 683, 704, 615, 667, 484, 480, 578, 512, 606, 597,
       778, 514, 525, 715, 580, 807, 521, 759, 516, 711, 618, 643, 671,
       689, 620, 676, 572, 695, 592, 567, 694, 547, 594, 673, 610, 767,
       763, 712, 703, 662, 659, 523, 772, 545, 634, 739, 771, 681, 544
       696, 766, 727, 693, 557, 531, 498, 651, 791, 733, 811, 707, 714
       782, 775, 799, 602, 744, 588, 747, 583, 627, 731, 629, 438, 642
       806, 474, 559, 429, 680, 749, 734, 644, 626, 649, 805, 718, 840,
       630, 654, 762, 568, 613, 522, 737, 648, 443, 640, 540, 460, 593,
       801, 611, 802, 745, 483, 690, 492, 709, 705, 560, 752, 701, 537,
       487, 596, 702, 486, 724, 548, 464, 790, 534, 748, 494, 590, 468,
       509, 818, 816, 536, 753, 774, 621, 569, 658, 798, 641, 542, 692,
       639, 765, 570, 638, 599, 632, 779, 527, 564, 833, 504, 842, 508,
       417, 598, 741, 607, 761, 848, 546, 439, 755, 760, 526, 713, 700,
       666, 566, 495, 688, 612, 477, 427, 839, 819, 720, 459, 503, 624,
       529, 563, 482, 796, 445, 746, 786, 554, 672, 787, 499, 844, 450,
       815, 838, 803, 736, 633, 600, 679, 517, 792, 743, 488, 421, 841,
       708, 507, 505, 456, 435, 561, 518, 565, 728, 784, 552, 609, 764,
       697, 723, 551, 444, 719, 496, 541, 830, 812, 677, 420, 595, 617,
       809, 500, 826, 434, 513, 478, 797, 363, 399, 463, 780, 452, 575,
       837, 794, 824, 428, 823, 781, 849, 489, 431, 457, 768, 831, 359,
       820, 573, 576, 558, 817, 449, 440, 415, 821, 530, 350, 446, 425,
       740, 481, 783, 358, 845, 451, 458, 469, 423, 404, 836, 473, 835,
       466, 491, 351, 827, 843, 365, 532, 414, 453, 471, 401, 810, 832,
       470, 447, 422, 825, 430, 436, 426, 408, 847, 418, 437, 410, 454
       407, 455, 462, 386, 405, 383, 395, 467, 433, 442, 424, 448, 441,
       367, 412, 382, 373, 419], dtype=int64)
```

In [16]:

```
# with geography
sns.countplot(data=df,x='Geography',hue='Exited')
```

Out[16]:

<AxesSubplot:xlabel='Geography', ylabel='count'>

In [17]:

```
# with Gender
sns.countplot(data=df,x='Gender',hue='Exited')
```

Out[17]:

<AxesSubplot:xlabel='Gender', ylabel='count'>

From gender v/s churn graph we can see that, female has exited more and male has retained more.

In []:

In [18]:

```
# with age
df.boxplot(column='Age',by='Exited',figsize=(5,5))
```

Out[18]:

<AxesSubplot:title={'center':'Age'}, xlabel='Exited'>

In [19]:

```
sns.stripplot(data=df, x="Exited", y="Age", hue="Gender")
```

Out[19]:

<AxesSubplot:xlabel='Exited', ylabel='Age'>

In [20]:

```
sns.stripplot(data=df, x="Exited", y="Tenure", hue="Gender")
```

Out[20]:

<AxesSubplot:xlabel='Exited', ylabel='Tenure'>

In [21]:

```
plt.scatter(df['Exited'],df['Tenure'])
plt.margins(x=0.5)
plt.show()
```


In [22]:

```
sns.stripplot(x="Exited", y="Tenure", data=df)
```

Out[22]:

<AxesSubplot:xlabel='Exited', ylabel='Tenure'>

In below and above graph there is only difference of representation (visualization)

In [23]:

```
sns.stripplot(data=df,x="Exited", y="Tenure")
```

Out[23]:

<AxesSubplot:xlabel='Exited', ylabel='Tenure'>

In [24]:

```
sns.countplot(data=df,x='NumOfProducts',hue='Exited')
```

Out[24]:

<AxesSubplot:xlabel='NumOfProducts', ylabel='count'>

In [25]:

```
sns.countplot(data=df,x='HasCrCard',hue='Exited')
```

Out[25]:

<AxesSubplot:xlabel='HasCrCard', ylabel='count'>

In [26]:

```
sns.countplot(data=df,x='IsActiveMember',hue='Exited')
```

Out[26]:

<AxesSubplot:xlabel='IsActiveMember', ylabel='count'>

In [27]:

```
# for Balance grouping them in a range
df['Balance'].unique()
```

Out[27]:

```
array([ 0., 83807.86, 159660.8, ..., 57369.61, 75075.31, 130142.79])
```

In [28]:

```
Category=pd.cut(df.Balance,bins=[-1,0,10000,20000,30000,40000,50000,60000,70000,80000,90 labels=['No_balance','below_10k','below_20k','below_30k','below_40k','below_70k','below_80k','below_90k','below_1lac','below_1.1lac',' 'below_1.4lac','below_1.5lac','below_1.6lac','below_1.7lac','below_below_2lac','below_2.1lac','below_2.2lac','below_2.3lac','below_
```

```
In [29]:
```

Category

Out[29]:

```
0
          No_balance
           below_90k
1
2
        below_1.6lac
3
          No_balance
4
        below_1.3lac
9995
          No_balance
9996
          below_60k
9997
          No_balance
           below_80k
9998
9999
        below_1.4lac
Name: Balance, Length: 10000, dtype: category
Categories (27, object): ['No_balance' < 'below_10k' < 'below_20k' < 'belo
w_30k' ... 'below_2.3lac' < 'below_2.4lac' < 'below_2.5lac' < 'below_2.6la</pre>
c']
```

In [30]:

```
df.insert(6, 'Balance_label', Category)
```

In [31]:

```
df.sample(5)
```

Out[31]:

	CreditScore	Geography	Gender	Age	Tenure	Balance	Balance_label	NumOfProdu
2719	569	Germany	Female	42	9	146100.75	below_1.5lac	
5597	670	France	Female	42	6	112333.63	below_1.2lac	
1688	601	France	Female	41	1	0.00	No_balance	
611	650	France	Female	27	6	0.00	No_balance	
440	626	France	Female	35	3	0.00	No_balance	
4								>

In [32]:

```
# to perform above operation we need max value in Balance and Salary
mean = df.max(axis=0)
print(mean)
```

CreditScore 850 Geography Spain Gender Male Age 92 Tenure 10 250898.09 Balance Balance_label below_2.6lac NumOfProducts HasCrCard 1 IsActiveMember 1 EstimatedSalary 199992.48 Exited dtype: object

In [33]:

```
df['Balance_label'].value_counts()
```

Out[33]:

No_balance	3617		
below_1.3lac	898		
below_1.2lac	832		
below_1.1lac	786		
below_1.4lac	734		
below_1lac	599		
below_1.5lac	580		
below_90k	400		
below_1.6lac	386		
below_80k	274		
below_1.7lac	264		
below_1.8lac	159		
below_70k	156		
below_1.9lac	86		
below_60k	80		
below_50k	46		
below_2lac	40		
below_2.1lac	21		
below_40k	17		
below_2.2lac	9		
below_30k	8		
below_20k	3		
below_2.3lac	2		
below_10k	1		
below_2.4lac	1		
below_2.6lac	1		
below_2.5lac	0		
Name: Balance	label.	dtvpe:	int

Name: Balance_label, dtype: int64

From This we can see the balance label v/s exited content

In [34]:

```
# Now we made the balance feature as required for visualization
plt.figure(figsize=(20,30))
sns.countplot(data=df,x='Balance_label',hue='Exited')
```

Out[34]:

<AxesSubplot:xlabel='Balance_label', ylabel='count'>


```
In [35]:
```

```
mean = df.min(axis=0)
print(mean)
CreditScore
                                                                                     350
Geography
                                                                          France
Gender
                                                                           Female
                                                                                        18
Age
Tenure
                                                                                           0
                                                                                    0.0
Balance
Balance label
                                                             No_balance
NumOfProducts
                                                                                           1
HasCrCard
                                                                                           0
IsActiveMember
                                                                                           0
EstimatedSalary
                                                                             11.58
Exited
                                                                                           0
dtype: object
In [36]:
Category2=pd.cut(df.EstimatedSalary,bins=[0,10000,20000,30000,40000,50000,60000,70000,80
                                                 labels=['below_10k','below_20k','below_30k','below_40k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k','below_50k
                                                                            'below_70k', 'below_80k', 'below_90k', 'below_1lac', 'below_1.1lac',
                                                                           'below_1.4lac','below_1.5lac','below_1.6lac','below_1.7lac','belo
                                                                           'below_2lac'])
In [37]:
Category2
Out[37]:
0
                          below 1.1lac
                          below 1.2lac
1
2
                          below_1.2lac
3
                                below_1lac
                                    below 80k
4
9995
                                below_1lac
9996
                         below 1.1lac
                                    below_50k
9997
9998
                                below_1lac
9999
                                    below 40k
Name: EstimatedSalary, Length: 10000, dtype: category
Categories (20, object): ['below_10k' < 'below_20k' < 'below_30k' < 'below
_40k' ... 'below_1.7lac' < 'below_1.8lac' < 'below_1.9lac' < 'below_2lac']
```

In [38]:

```
df.insert(11, 'SalaryRange', Category2)
```

In [39]:

```
df.head(2)
```

Out[39]:

	CreditScore	Geography	Gender	Age	Tenure	Balance	Balance_label	NumOfProducts
0	619	France	Female	42	2	0.00	No_balance	1
1	608	Spain	Female	41	1	83807.86	below_90k	1
4								•

In [40]:

```
plt.figure(figsize=(20,10))
sns.countplot(data=df,x='SalaryRange',hue='Exited')# delete
```

Out[40]:

<AxesSubplot:xlabel='SalaryRange', ylabel='count'>

Till Now We Have Finished EDA Work So From Now We Will Drop Additional Parameters Which We Added For Visualization Purpose

In [41]:

df.head(5)

Out[41]:

	CreditScore	Geography	Gender	Age	Tenure	Balance	Balance_label	NumOfProducts
0	619	France	Female	42	2	0.00	No_balance	1
1	608	Spain	Female	41	1	83807.86	below_90k	1
2	502	France	Female	42	8	159660.80	below_1.6lac	3
3	699	France	Female	39	1	0.00	No_balance	2
4	850	Spain	Female	43	2	125510.82	below_1.3lac	1
4								•

In [42]:

balance_label and SalaryRange has to be dropped
df.drop(['Balance_label','SalaryRange'],axis=1)

Out[42]:

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard
0	619	France	Female	42	2	0.00	1	1
1	608	Spain	Female	41	1	83807.86	1	0
2	502	France	Female	42	8	159660.80	3	1
3	699	France	Female	39	1	0.00	2	0
4	850	Spain	Female	43	2	125510.82	1	1
9995	771	France	Male	39	5	0.00	2	1
9996	516	France	Male	35	10	57369.61	1	1
9997	709	France	Female	36	7	0.00	1	0
9998	772	Germany	Male	42	3	75075.31	2	1
9999	792	France	Female	28	4	130142.79	1	1

10000 rows × 11 columns

In [43]:

```
df.describe()
```

Out[43]:

	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCaı
count	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.0000
mean	650.528800	38.921800	5.012800	76485.889288	1.530200	0.7055
std	96.653299	10.487806	2.892174	62397.405202	0.581654	0.4558
min	350.000000	18.000000	0.000000	0.000000	1.000000	0.0000
25%	584.000000	32.000000	3.000000	0.000000	1.000000	0.0000
50%	652.000000	37.000000	5.000000	97198.540000	1.000000	1.0000
75%	718.000000	44.000000	7.000000	127644.240000	2.000000	1.0000
max	850.000000	92.000000	10.000000	250898.090000	4.000000	1.0000
4						•

Now We Will See outliers in our parameters

In [44]:

```
fig=px.histogram(df,x='CreditScore')
fig.show()
```

In [45]:

```
fig=px.box(df,x='CreditScore')
fig.show()
```

From box plotting we can se that some outliers are there below 382 credit score

Now we will try to fix outliers in creditScore

In [46]:

```
# Finding The IQR
percentile25=df['CreditScore'].quantile(0.25)
percentile75=df['CreditScore'].quantile(0.75)
```

In [47]:

```
percentile75
```

Out[47]:

718.0

```
In [48]:
percentile25
Out[48]:
584.0
In [49]:
iqr=percentile75-percentile25
iqr
Out[49]:
134.0
In [50]:
upper_limit=percentile75+1.5*iqr
lower_limit=percentile25-1.5*iqr
In [51]:
print(upper_limit)
print(lower_limit)
919.0
383.0
```

Finding Outliers

```
In [52]:
```

```
df[df['CreditScore']<lower_limit]</pre>
```

Out[52]:

	CreditScore	Geography	Gender	Age	Tenure	Balance	Balance_label	NumOfProdu
7	376	Germany	Female	29	4	115046.74	below_1.2lac	
942	376	France	Female	46	6	0.00	No_balance	
1193	363	Spain	Female	28	6	146098.43	below_1.5lac	
1405	359	France	Female	44	6	128747.69	below_1.3lac	
1631	350	Spain	Male	54	1	152677.48	below_1.6lac	
1838	350	Germany	Male	39	0	109733.20	below_1.1lac	
1962	358	Spain	Female	52	8	143542.36	below_1.5lac	
2473	351	Germany	Female	57	4	163146.46	below_1.7lac	
2579	365	Germany	Male	30	0	127760.07	below_1.3lac	
8154	367	Spain	Male	42	6	93608.28	below_1lac	
8723	350	France	Male	51	10	0.00	No_balance	
8762	350	France	Female	60	3	0.00	No_balance	
9210	382	Spain	Male	36	0	0.00	No_balance	
9356	373	France	Male	42	7	0.00	No_balance	
9624	350	France	Female	40	0	111098.85	below_1.2lac	
4								•

In [53]:

```
df[df['CreditScore']>upper_limit]
```

Out[53]:

```
CreditScore Geography Gender Age Tenure Balance Balance_label NumOfProducts H
```

In [54]:

```
# deleting balance label and estimated salary
df=df.drop(['Balance_label','SalaryRange'],axis=1)
```

Now We Will do Trimming To Delete Those Columns Which Have Outliers

In [55]:

```
new_df=df[df['CreditScore']>lower_limit]
```

```
In [56]:
new_df.shape
Out[56]:
(9984, 11)
Comparing
In [57]:
plt.figure(figsize=(16,8))
plt.subplot(2,2,1)
sns.distplot(df['CreditScore'])
plt.subplot(2,2,2)
sns.boxplot(df['CreditScore'])
plt.subplot(2,2,3)
sns.distplot(new_df['CreditScore'])
plt.subplot(2,2,4)
sns.boxplot(new_df['CreditScore'])
Out[57]:
<AxesSubplot:xlabel='CreditScore'>
 0.0040
  0.0035
 0.0030
£ 0.0025
 0.0020
  0.0015
  0.0010
  0.0005
 0.0000
                                                                   600
                     600
CreditScore
```

So from the above graph we can see outliers has been removed from CreditScore column

0.0040
0.0035
0.0030
0.0025
0.0020
0.0015
0.0010
0.0005
0.0000

Now we will apply this in all continuos parameters

```
In [58]:
```

```
new_df.head(5)
```

Out[58]:

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	Is
0	619	France	Female	42	2	0.00	1	1	
1	608	Spain	Female	41	1	83807.86	1	0	
2	502	France	Female	42	8	159660.80	3	1	
3	699	France	Female	39	1	0.00	2	0	
4	850	Spain	Female	43	2	125510.82	1	1	
4									•

In [59]:

```
# Age
percentile25=df['Age'].quantile(0.25)
percentile75=df['Age'].quantile(0.75)
```

In [60]:

```
print(percentile25)
print(percentile75)
```

32.0

44.0

In [61]:

```
iqr=percentile75-percentile25
```

In [62]:

```
iqr
```

Out[62]:

12.0

In [63]:

```
upperlimit=percentile75+1.5*iqr
lowerlimit=percentile25-1.5*iqr
```

In [64]:

```
print(lowerlimit)
print(upperlimit)
```

14.0

62.0

```
In [65]:
df[df['Age']<lowerlimit]</pre>
Out[65]:
  CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsAct
                                                                                     •
In [66]:
df[df['Age']>upperlimit]
Out[66]:
      CreditScore Geography Gender Age Tenure
                                                    Balance NumOfProducts HasCrCard
  58
              511
                       Spain
                              Female
                                       66
                                                4
                                                        0.00
                                                                          1
                                                                                     1
  85
              652
                       Spain
                              Female
                                       75
                                               10
                                                        0.00
                                                                          2
                                                                                     1
             670
 104
                       Spain
                              Female
                                                1
                                                        0.00
                                                                                     1
 158
             646
                      France Female
                                       73
                                                6
                                                    97259.25
                                                                          1
                                                                                     0
                                                                          2
             510
                      France
                                       65
                                                2
 181
                                Male
                                                        0.00
                                                                                     1
                                        ...
9753
             656
                    Germany
                                Male
                                       68
                                                7 153545.11
                                                                          1
                                                                                     1
9765
             445
                      France
                                Male
                                       64
                                                2 136770.67
                                                                          1
                                                                                     0
                    Germany Female
                                                                          1
9832
              595
                                       64
                                                2 105736.32
                                                                                     1
9894
              521
                                                6
                                                                          2
                      France Female
                                                        0.00
                                       77
                                                                                     1
9936
             609
                                       77
                                                        0.00
                      France
                                Male
                                                1
                                                                          1
                                                                                     0
359 rows × 11 columns
In [67]:
# Trimming
new_df1=df[df['Age']<upperlimit]</pre>
In [68]:
new_df1.shape
```

Out[68]:

(9589, 11)

In [69]:

```
# COMPARING
plt.figure(figsize=(16,8))
plt.subplot(2,2,1)
sns.distplot(df['Age'],kde=True)

plt.subplot(2,2,2)
sns.boxplot(df['Age'])

plt.subplot(2,2,3)
sns.distplot(new_df1['Age'])

plt.subplot(2,2,4)
sns.boxplot(new_df1['Age'])
```

Out[69]:

<AxesSubplot:xlabel='Age'>

In [70]:

```
# For Balance also we will do
percentile25=new_df1['Balance'].quantile(0.25)
percentile75=new_df1['Balance'].quantile(0.75)
```

In [71]:

```
print(percentile25)
print(percentile75)
```

0.0
127661.69

In [72]:

```
iqr=percentile75-percentile25
iqr
```

Out[72]:

127661.69

```
In [73]:
upperlimit_balance=percentile75+1.5*iqr
lowerlimit_balance=percentile25-1.5*iqr
In [74]:
print(upperlimit_balance)
print(lowerlimit_balance)
319154.225
-191492.535
In [75]:
new_df1[new_df1['Balance']<lowerlimit_balance]</pre>
Out[75]:
  CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsAci
                                                                               \blacktriangleright
In [76]:
new_df1[new_df1['Balance']>upperlimit_balance]
Out[76]:
  CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsAct
SO IT CAN BE SEEN THAT IN BALANCE PARAMETER THERE ARE NO OUTLIERS
OUTLIER REMOVAL FOR ESTIMATED SALARY USING Z-SCORE
In [77]:
new_df1.head(2)
Out[77]:
   CreditScore
              Geography Gender Age Tenure
                                             Balance
                                                     NumOfProducts HasCrCard IsA
0
          619
                                          2
                                                0.00
                                                                  1
                                                                            1
                                  42
                  France
                         Female
1
          608
                                  41
                                          1 83807.86
                                                                  1
                                                                            0
                   Spain Female
```

In [78]:

```
# FOR USING Z-SCORE WE MUST SURE THAT PARAMETER IS FOLLOWING NORMAL DISTRIBUTION PATTERN
plt.figure(figsize=(16,8))

plt.subplot(1,2,1)
sns.distplot(new_df1['EstimatedSalary'])
plt.show()
```


So it can be seen that this parameter is not following normal distribution. so, now we will apply iqr method

In [79]:

```
percentile25=new_df1['EstimatedSalary'].quantile(0.25)
percentile75=new_df1['EstimatedSalary'].quantile(0.75)
```

In [80]:

```
print(percentile25)
print(percentile75)
```

51226.32 149458.73

```
In [81]:
iqr=percentile75-percentile25
print(iqr)
98232.41
In [82]:
upperlimit_salary=percentile75+1.5*iqr
lowerlimit_salary=percentile25-1.5*iqr
In [83]:
print(upperlimit_salary)
print(lowerlimit_salary)
296807.345
-96122.2949999998
In [84]:
new_df1[new_df1['EstimatedSalary']<lowerlimit_salary]</pre>
Out[84]:
  CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsAct
In [85]:
new_df1[new_df1['EstimatedSalary']>upperlimit_salary]
Out[85]:
  CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsAct
                                                                               \blacktriangleright
```

So, from applied maths and box plot we can see that there are no outliers present in estimated salary parameter

In [86]:

```
plt.figure(figsize=(10,5))
sns.boxplot(new_df1['EstimatedSalary'])
plt.show()
```


Now we have to handle imbalanced features specially in categorical parameters

```
In [87]:
```

```
new_df1.columns

Out[87]:

Index/[[CreditScare] | Goognaphy| | Gorden| | LAge| | Tanune| | Palance|
```

In [88]:

new_df1.dtypes

Out[88]:

CreditScore int64 object Geography Gender object int64 Age Tenure int64 Balance float64 NumOfProducts int64 HasCrCard int64 IsActiveMember int64 EstimatedSalary float64 Exited int64

dtype: object

In [89]:

```
for i in new_df1[['Gender','NumOfProducts','HasCrCard','IsActiveMember','Exited']]:
    fig,ax=plt.subplots()
    feature_plot=sns.countplot(data=new_df1,x=i,ax=ax)
    print(feature_plot)
    plt.show()
```

AxesSubplot(0.125,0.125;0.775x0.755)

AxesSubplot(0.125,0.125;0.775x0.755)

AxesSubplot(0.125,0.125;0.775x0.755)

AxesSubplot(0.125,0.125;0.775x0.755)

AxesSubplot(0.125,0.125;0.775x0.755)

Name: Geography, dtype: int64

```
In [91]:
new_df1['Gender'].value_counts()
Out[91]:
Male
           5236
Female
           4353
Name: Gender, dtype: int64
In [92]:
# applying label encoding
labelenc=LabelEncoder()
In [93]:
new_df1[['Geography','Gender']]=new_df1[['Geography','Gender']].apply(LabelEncoder().fit
In [94]:
new_df1.head(5)
Out[94]:
                                                 Balance NumOfProducts HasCrCard Is
   CreditScore
               Geography Gender Age Tenure
 0
           619
                                0
                                    42
                                             2
                                                    0.00
                                                                                  1
                        0
                                                                      1
 1
           608
                        2
                                0
                                    41
                                             1
                                                83807.86
                                                                      1
                                                                                 0
 2
           502
                        0
                                0
                                    42
                                               159660.80
                                                                      3
                                                                                  1
 3
           699
                                    39
                                                    0.00
                                                                      2
                                                                                 0
                        0
                                0
                                             1
           850
                        2
                                0
                                    43
                                               125510.82
                                                                                    •
In [95]:
new_df1.tail(5)
Out[95]:
      CreditScore Geography
                                                            NumOfProducts HasCrCard
                             Gender Age Tenure
                                                    Balance
 9995
                           0
                                                                         2
             771
                                   1
                                       39
                                               5
                                                       0.00
                                                                                    1
                                       35
 9996
             516
                          0
                                   1
                                               10
                                                   57369.61
                                                                         1
                                                                                    1
 9997
             709
                           0
                                               7
                                                       0.00
                                   0
                                       36
                                                                         1
                                                                                    0
 9998
             772
                                       42
                                               3
                                                   75075.31
                                                                         2
                           1
                                   1
                                                                                    1
```

130142.79

Type *Markdown* and LaTeX: α^2

Now We Will Do Feature Scaling Task First

```
In [96]:
# we will use either of the two that is normalization or standardization
# standardization main point is to have normal distribution type of data
# normalization when we are not sure about data distribution
# to check which scaling we have to use first we will check the distribution of our data
# we can say that not all the parameters are normally distributed. So, we will go with no
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
In [97]:
x=new_df1.drop('Exited',axis=1)
y=new_df1['Exited']
In [98]:
print('shape of x -',x.shape)
print('shape of y -',y.shape)
shape of x - (9589, 10)
shape of y - (9589,)
In [99]:
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25,random_state=45)
In [100]:
print('shape of x_train', x_train.shape)
print('shape of x_test', x_test.shape)
print('shape of y_train', y_train.shape)
print('shape of y_test', y_test.shape)
shape of x_{train} (7191, 10)
shape of x_test (2398, 10)
shape of y_train (7191,)
shape of y_test (2398,)
In [101]:
mms=MinMaxScaler()
In [102]:
mms.fit(x_train)
```

Out[102]:

MinMaxScaler()

```
x train mms=mms.transform(x train)
x_test_mms= mms.transform(x_test)
In [104]:
x_train_mms
Out[104]:
array([[0.686 , 0.
                            , 1.
                                                  , 1.
                                 , ..., 1.
                                                                    ,
       0.50938889],
      [0.844
              , 0.5
                            , 0.
                                        , ..., 0.
                                                        , 1.
       0.23303447],
      [0.634 , 0.
                            , 1.
                                        , ..., 1.
                                                        , 1.
       0.65904212],
       . . . ,
                 , 1.
      [0.604
                            , 0.
                                       , ..., 1.
                                                        , 1.
       0.09610285],
              , 0.
      [0.628
                            , 1.
                                        , ..., 1.
                                                       , 0.
       0.97386113],
      [0.76 , 0.5
                            , 0.
                                        , ..., 1.
                                                        , 0.
       0.59279383]])
In [105]:
x_test_mms
Out[105]:
array([[0.682
                 , 0.
                            , 1.
                                       , ..., 0.
                                                       , 0.
       0.2229194],
      [0.888 , 0.
                            , 1.
                                                        , 1.
                                        , ..., 1.
       0.35860304],
      [0.73
            , 0.5
                            , 1.
                                        , ..., 1.
                                                        , 1.
       0.10626009],
       . . . ,
      [0.684
                 , 1.
                                        , ..., 1.
                            , 0.
                                                        , 1.
       0.18912967],
      [0.49 , 0.
                            , 1.
                                        , ..., 1.
                                                        , 0.
       0.43861426],
      [0.534 , 0.
                            , 0.
                                        , ..., 0.
                                                        , 1.
       0.84413213]])
In [106]:
new_df1.columns
Out[106]:
Index(['CreditScore', 'Geography', 'Gender', 'Age', 'Tenure', 'Balance',
       'NumOfProducts', 'HasCrCard', 'IsActiveMember', 'EstimatedSalary',
      'Exited'],
     dtype='object')
```

NOW WE HAVE TO CONVERT THIS 2D ARRAY INTO DATAFRAME

In [103]:

In [107]:

```
x_train_mms=pd.DataFrame(x_train_mms,columns=['CreditScore','Geography','Gender','Age','
x_test_mms=pd.DataFrame(x_test_mms,columns=['CreditScore','Geography','Gender','Age','Te
```

In [108]:

x_train_mms

Out[108]:

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrC
0	0.686	0.0	1.0	0.511628	0.4	0.587859	0.000000	
1	0.844	0.5	0.0	0.767442	0.9	0.647557	0.000000	
2	0.634	0.0	1.0	0.348837	0.4	0.000000	0.333333	
3	0.512	0.5	1.0	0.697674	0.4	0.595694	0.000000	
4	0.454	1.0	1.0	0.302326	0.6	0.000000	0.000000	
7186	0.288	0.0	0.0	0.395349	0.9	0.507168	0.333333	
7187	0.530	1.0	0.0	0.534884	0.9	0.490459	0.000000	
7188	0.604	1.0	0.0	0.418605	0.1	0.000000	0.333333	
7189	0.628	0.0	1.0	0.511628	0.9	0.000000	0.333333	
7190	0.760	0.5	0.0	0.441860	0.5	0.558125	0.000000	

7191 rows × 10 columns

In [109]:

datatoconcatenate=[x_train_mms,x_test_mms]
data=pd.concat(datatoconcatenate)

In [110]:

data.head(5)

Out[110]:

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard
0	0.686	0.0	1.0	0.511628	0.4	0.587859	0.000000	1.0
1	0.844	0.5	0.0	0.767442	0.9	0.647557	0.000000	0.0
2	0.634	0.0	1.0	0.348837	0.4	0.000000	0.333333	1.0
3	0.512	0.5	1.0	0.697674	0.4	0.595694	0.000000	0.0
4	0.454	1.0	1.0	0.302326	0.6	0.000000	0.000000	1.0
4								>

```
In [111]:
data.shape
Out[111]:
(9589, 10)
In [112]:
У
Out[112]:
0
         1
1
         0
2
         1
3
         0
9995
        0
9996
        0
        1
9997
9998
        1
        0
9999
Name: Exited, Length: 9589, dtype: int64
In [113]:
y=pd.DataFrame(y,columns=['Exited'])
In [114]:
у
Out[114]:
      Exited
   0
           1
    1
           0
    2
           1
    3
           0
          0
 9995
 9996
 9997
 9998
           1
 9999
          0
9589 rows × 1 columns
```

There was some problem with concatenation so we directly append exited column now will proceed with

In [115]:

data['Exited']=y

In [116]:

data.head(60)

Out[116]:

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCar
0	0.686	0.0	1.0	0.511628	0.4	0.587859	0.000000	1.
1	0.844	0.5	0.0	0.767442	0.9	0.647557	0.000000	0.
2	0.634	0.0	1.0	0.348837	0.4	0.000000	0.333333	1.
3	0.512	0.5	1.0	0.697674	0.4	0.595694	0.000000	0.
4	0.454	1.0	1.0	0.302326	0.6	0.000000	0.000000	1.
5	0.580	0.0	0.0	0.558140	0.5	0.792284	0.000000	1.
6	0.568	0.0	1.0	0.441860	0.5	0.518950	0.333333	0.
7	0.722	0.0	0.0	0.534884	0.3	0.655763	0.000000	1.
8	0.504	0.5	1.0	0.395349	0.7	0.407628	0.333333	1.
9	0.358	1.0	1.0	0.395349	0.5	0.000000	0.333333	1.
10	1.000	0.5	1.0	0.813953	0.2	0.423269	0.333333	1.
11	0.494	1.0	0.0	0.186047	0.7	0.000000	0.333333	1.
12	0.494	0.0	0.0	0.186047	0.8	0.674814	0.000000	1.
13	0.434	0.0	1.0	0.953488	0.3	0.000000	0.333333	1.
14	0.504	0.0	1.0	0.395349	0.8	0.000000	0.000000	1.
15	0.144	1.0	0.0	0.837209	0.4	0.000000	0.333333	1.
16	0.270	1.0	1.0	0.325581	0.6	0.459977	0.333333	1.
17	0.800	0.0	1.0	0.093023	0.5	0.000000	0.333333	0.
18	0.384	0.0	0.0	0.953488	0.2	0.309954	0.333333	1.
19	0.598	0.0	1.0	0.488372	0.3	0.508830	0.000000	1.
20	0.740	0.5	1.0	0.651163	0.3	0.436602	0.000000	1.
21	0.712	1.0	0.0	0.558140	0.8	0.429153	0.000000	1.
22	0.608	0.0	0.0	0.441860	0.5	0.000000	0.000000	0.
23	0.968	1.0	1.0	0.372093	0.5	0.000000	0.333333	0.
24	0.648	0.5	1.0	0.372093	0.2	0.687450	0.000000	1.
25	0.688	0.0	0.0	0.465116	0.5	0.881489	0.000000	1.
26	0.500	0.0	1.0	0.720930	0.7	0.405902	0.000000	1.
27	0.540	0.0	1.0	0.232558	0.9	0.323495	0.000000	0.
28	0.630	0.0	0.0	0.860465	0.8	0.613468	0.000000	1.
29	0.706	0.5	0.0	0.255814	0.3	0.549269	0.000000	0.
30	0.626	0.0	1.0	0.372093	0.7	0.000000	0.333333	1.
31	0.850	1.0	1.0	0.255814	1.0	0.000000	0.333333	1.
32	0.612	1.0	0.0	0.511628	1.0	0.755299	0.000000	0.
33	0.724	1.0	1.0	0.813953	0.2	0.499672	0.333333	0.
34	0.434	0.5	0.0	0.651163	0.1	0.307011	0.333333	1.
35	0.852	0.5	1.0	0.465116	0.5	0.505164	0.000000	0.
36	0.592	0.0	1.0	0.465116	0.7	0.000000	0.333333	1.

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCar
37	0.722	0.0	1.0	0.348837	0.1	0.000000	0.000000	0.
38	0.642	1.0	0.0	0.372093	1.0	0.000000	0.000000	1.
39	0.310	1.0	1.0	0.395349	0.8	0.526089	0.000000	1.
40	0.512	0.5	1.0	0.209302	0.2	0.586114	0.333333	1.
41	0.402	0.0	0.0	0.953488	0.2	0.751204	0.000000	1.
42	0.796	0.0	1.0	0.465116	0.4	0.518390	0.000000	0.
43	0.422	0.0	0.0	0.093023	0.6	0.840379	0.333333	1.
44	0.400	1.0	1.0	0.372093	0.3	0.000000	0.333333	0.
45	0.536	0.5	0.0	0.511628	0.1	0.599482	0.333333	1.
46	0.362	0.0	0.0	0.441860	0.1	0.000000	0.000000	1.
47	0.540	1.0	1.0	0.604651	8.0	0.000000	0.333333	1.
48	0.542	0.0	1.0	0.488372	0.6	0.000000	0.333333	1.
49	0.736	0.0	1.0	0.697674	0.9	0.000000	0.333333	1.
50	0.668	1.0	0.0	0.418605	0.4	0.000000	0.000000	1.
51	0.370	0.5	1.0	0.465116	0.8	0.573521	0.000000	0.
52	0.590	1.0	1.0	0.604651	8.0	0.511796	0.333333	1.
53	0.222	1.0	0.0	0.162791	0.6	0.000000	0.333333	1.
54	0.658	0.0	0.0	0.581395	0.4	0.000000	0.666667	1.
55	0.656	0.0	0.0	0.744186	0.6	0.000000	0.000000	1.
56	0.228	0.0	1.0	0.651163	0.6	0.727945	0.000000	1.
57	0.454	1.0	1.0	0.534884	0.4	0.400488	0.000000	0.
58	0.710	0.0	0.0	0.139535	0.7	0.450671	0.000000	1.
59	0.414	1.0	0.0	0.511628	0.4	0.000000	0.333333	0.

Now We Will Proceed With Feature Selection

In [117]:

```
# using HeatMap
corr=data.corr()
plt.figure(figsize=(15,10))
sns.heatmap(corr,annot=True)
```

Out[117]:

<AxesSubplot:>

FROM HEATMAP WE ARE NOT GETTING MUCH IDEA SO WE WILL PROCEED WITH OTHER FUNCTIONS

In [118]:

from sklearn.feature_selection import VarianceThreshold #Understand from sklearn documen

In [119]:

```
var=VarianceThreshold(threshold=0.1) # we will go with 0.08
var.fit(data)
var.get_support()
```

Out[119]:

Observation

From variance threshold we will select high variance values and avoid having low variance values So, selected features must be

- 1. Geography
- 2. Gender
- 3. Tenure
- 4. HasCrCreditCard
- 5. IsActivemember
- 6. estimated salary

ANNOVA F-TEST AND CHI-SQUARE TEST

In [120]:

```
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import SelectPercentile
from sklearn.feature_selection import chi2 # chi-2 test basically works with categorical
from sklearn.feature_selection import f_classif # The higher the f-value and lower the p
```

In [121]:

```
data.info()
```

••	COTAIIII	non nair counc	
0	CreditScore	9589 non-null	float64
1	Geography	9589 non-null	float64
2	Gender	9589 non-null	float64
3	Age	9589 non-null	float64
4	Tenure	9589 non-null	float64
5	Balance	9589 non-null	float64
6	NumOfProducts	9589 non-null	float64
7	HasCrCard	9589 non-null	float64
8	IsActiveMember	9589 non-null	float64
9	EstimatedSalary	9589 non-null	float64
10	Exited	9210 non-null	float64

dtypes: float64(11)
memory usage: 899.0 KB

In [122]:

```
x=data[['Geography','Gender','HasCrCard','IsActiveMember']]
```

In [123]:

```
y=data['Exited']
```

In [124]:

```
np.isnan(y).sum() # to avoid issue for now we will add values in alternate of nan values
```

Out[124]:

```
In [125]:
np.isnan(x).sum()
Out[125]:
Geography
                   0
Gender
                   0
HasCrCard
                   0
                   0
IsActiveMember
dtype: int64
In [126]:
y_new=y.fillna(0.0)
In [127]:
# checking again
np.isnan(y_new).sum()
Out[127]:
In [128]:
# now we will divide the dataset in to train test split to reduce the dataset size
from sklearn.model_selection import train_test_split
In [129]:
x_train,x_test,y_train,y_test=train_test_split(x,y_new,test_size=0.3,random_state=98)
In [130]:
# checking the shape of test and train size
print('x_train - ',x_train.shape)
print('x_test - ',x_test.shape)
print('y_train - ',y_train.shape)
print('y_test - ',y_test.shape)
x_train - (6712, 4)
x_test - (2877, 4)
y_train - (6712,)
y_test - (2877,)
In [131]:
f_p_value=chi2(x_train,y_train)
```

```
In [132]:
# First value would be f-score and second value p-value
f_p_value
Out[132]:
(array([0.2138678 , 1.39043629, 0.44675144, 2.43250454]),
array([0.64375261, 0.23833143, 0.50388169, 0.11884289]))
In [133]:
# applying in full dataset
f_pvalue2=chi2(x,y_new)
In [134]:
```

```
f_pvalue2# use specific tests only
```

Out[134]:

```
(array([0.77965014, 1.25579242, 1.00125753, 0.58031065]),
array([0.37724816, 0.26244903, 0.31700641, 0.44619058]))
```

Observation

At first we got error to avoid nan values from our input dataset Also we can directly go with full dataset and will select the features accordingly

So, according to the values we get we will choose higher f-value and less p-value

selected parameters will be ----- Geography, Gender, Has Cr Card

NOW WE WILL PROCEED WITH ONE MORE TECHNIQUE

1. INFORMATION GAIN condition ----- we basically put all the continuous variables in independent feature and categorical will be the target. the more the value its importance will be more.

```
In [135]:
```

```
data.columns # we will not taking the columns like tenure and numof products as they hav
```

Out[135]:

```
Index(['CreditScore', 'Geography', 'Gender', 'Age', 'Tenure', 'Balance',
       'NumOfProducts', 'HasCrCard', 'IsActiveMember', 'EstimatedSalary',
       'Exited'],
     dtype='object')
```

```
In [136]:
from sklearn.feature selection import mutual info classif
features=data[['CreditScore','Age','Balance','EstimatedSalary']]
target=y_new # here we have used y_new because it has no nan values ---otherwise it will
feature_scores=mutual_info_classif(features, target, random_state=0)
feature_scores
Out[136]:
array([0.00100946, 0.
                             , 0.
                                                      ])
                                          , 0.
In [137]:
feature_scores=mutual_info_classif(features,target,random_state=100)
feature_scores
Out[137]:
array([0.
                 , 0.00052534, 0.
                                         , 0.
                                                      ])
In [138]:
feature_scores=mutual_info_classif(features,target,random_state=52)
feature_scores
Out[138]:
array([0.00289708, 0.00644824, 0.0026638, 0.
                                                      ])
```

observations

So from information gain we are not getting much idea 1-2 parameters only we identified as age and balance

Based on above operations we will be creating 2 different dataframes according to parameters and will proceed with other operations.

- 1. dataset1=[Age, balance, geography, gender, hascrcard, tenure, isactive member, estimated salary]
- 2. dataset2=[geography,gender,tenure, hascrcard, isactivemember, estimated salary]

```
In [139]:
```

```
# first we will convert our trget feature into int data.dtypes
```

Out[139]:

CreditScore float64 float64 Geography Gender float64 float64 Age float64 Tenure float64 Balance NumOfProducts float64 float64 HasCrCard IsActiveMember float64 EstimatedSalary float64 float64 Exited

dtype: object

In [140]:

```
data['Exited']=data['Exited'].fillna(0)
```

In [141]:

```
data['Exited'].value_counts()
```

Out[141]:

0.0 76931.0 1896

Name: Exited, dtype: int64

In [142]:

```
data['Exited']=data['Exited'].astype(int)
data.dtypes
```

Out[142]:

CreditScore float64 Geography float64 float64 Gender float64 Age float64 Tenure Balance float64 NumOfProducts float64 HasCrCard float64 IsActiveMember float64 float64 EstimatedSalary Exited int32

dtype: object

In [143]:

```
# changes has been done!
data.head(10)
```

Out[143]:

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard
0	0.686	0.0	1.0	0.511628	0.4	0.587859	0.000000	1.0
1	0.844	0.5	0.0	0.767442	0.9	0.647557	0.000000	0.0
2	0.634	0.0	1.0	0.348837	0.4	0.000000	0.333333	1.0
3	0.512	0.5	1.0	0.697674	0.4	0.595694	0.000000	0.0
4	0.454	1.0	1.0	0.302326	0.6	0.000000	0.000000	1.0
5	0.580	0.0	0.0	0.558140	0.5	0.792284	0.000000	1.0
6	0.568	0.0	1.0	0.441860	0.5	0.518950	0.333333	0.0
7	0.722	0.0	0.0	0.534884	0.3	0.655763	0.000000	1.0
8	0.504	0.5	1.0	0.395349	0.7	0.407628	0.333333	1.0
9	0.358	1.0	1.0	0.395349	0.5	0.000000	0.333333	1.0
4								•

In [144]:

```
# now we will handle our imbalanced target variable " Exited " using smotetomek
x=data.drop('Exited',axis=1)
y=data['Exited']
```

In [145]:

```
print(x.shape)
print(y.shape)
y.value_counts()
```

(9589, 10) (9589,)

Out[145]:

0 76931 1896

Name: Exited, dtype: int64

In [146]:

```
from imblearn.combine import SMOTETomek
```

In [147]:

```
# Implementing Oversampling for Handling Imbalanced
smk = SMOTETomek(random_state=42)
x_res,y_res=smk.fit_resample(x,y)
```

```
In [148]:
print(x_res.shape)
print(y_res.shape)
(14938, 10)
(14938,)
In [149]:
y_res.value_counts()
Out[149]:
     7469
     7469
0
Name: Exited, dtype: int64
In [150]:
# applying random oversampling
from imblearn.over_sampling import RandomOverSampler
os = RandomOverSampler(sampling_strategy=0.6)
X_train_res, y_train_res = os.fit_resample(x, y)
In [151]:
X_train_res.shape,y_train_res.shape
Out[151]:
((12308, 10), (12308,))
In [152]:
y_train_res.value_counts() # pca has to be done
Out[152]:
     7693
0
     4615
Name: Exited, dtype: int64
```

observations

- 1. randomoversampling looks well good beacause it is maintaining the data hygene.
- 2. smotetomek is exceptionally creating similar ratio data which is not true

we will proceed with random over sampling

In [153]:

X_train_res.head(5)

Out[153]:

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard
0	0.686	0.0	1.0	0.511628	0.4	0.587859	0.000000	1.0
1	0.844	0.5	0.0	0.767442	0.9	0.647557	0.000000	0.0
2	0.634	0.0	1.0	0.348837	0.4	0.000000	0.333333	1.0
3	0.512	0.5	1.0	0.697674	0.4	0.595694	0.000000	0.0
4	0.454	1.0	1.0	0.302326	0.6	0.000000	0.000000	1.0
4								>

In [154]:

```
y_train_res.head(5)
```

Out[154]:

0 1

1 0

2 1

3 0

4 0

Name: Exited, dtype: int32

In [155]:

```
X_train_res.insert(10,'Exited',y_train_res)
```

In [156]:

```
X_train_res.head(5)
```

Out[156]:

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard
0	0.686	0.0	1.0	0.511628	0.4	0.587859	0.000000	1.0
1	0.844	0.5	0.0	0.767442	0.9	0.647557	0.000000	0.0
2	0.634	0.0	1.0	0.348837	0.4	0.000000	0.333333	1.0
3	0.512	0.5	1.0	0.697674	0.4	0.595694	0.000000	0.0
4	0.454	1.0	1.0	0.302326	0.6	0.000000	0.000000	1.0
4								>

In [157]:

```
X_train_res.head(5)
```

Out[157]:

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard
0	0.686	0.0	1.0	0.511628	0.4	0.587859	0.000000	1.0
1	0.844	0.5	0.0	0.767442	0.9	0.647557	0.000000	0.0
2	0.634	0.0	1.0	0.348837	0.4	0.000000	0.333333	1.0
3	0.512	0.5	1.0	0.697674	0.4	0.595694	0.000000	0.0
4	0.454	1.0	1.0	0.302326	0.6	0.000000	0.000000	1.0
4								•

In [158]:

```
data_final=X_train_res
```

In [159]:

```
data_final.sample()
```

Out[159]:

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCa
7510	0.684	1.0	1.0	0.651163	0.2	0.0	0.333333	
4								•

In [160]:

```
# Now we will prepare two different dataset for Model evaluation dataone=data_final.drop(['CreditScore','NumOfProducts'],axis=1)
```

In [161]:

```
datatwo=data_final.drop(['CreditScore', 'Balance', 'NumOfProducts', 'Age'],axis=1)
```

In [162]:

```
print(dataone.shape)
print(datatwo.shape)
```

(12308, 9) (12308, 7)

NOW WE WILL PROCEED WITH MODEL BUILDING PROCESS

- 1. DATA SPLITTING
- 2. CROSS VALIDATION
- 3. HYPER-PARAMETER TUNING
- 4. MODEL BUILDING
- 5. MODEL EVALUATION AND SELECTION

```
In [163]:
# first we will go with dataone dataset
X=dataone.drop('Exited',axis=1)
Y=dataone['Exited']
In [164]:
print(X.shape)
print(Y.shape)
(12308, 8)
(12308,)
In [165]:
# forst we will go with train test split
x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.3,random_state=69)
In [166]:
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)
(8615, 8)
(3693, 8)
(8615,)
(3693,)
In [167]:
# logistics regression
lg=LogisticRegression()
In [168]:
parameter={
    'penalty':['11','12','elasticnet'],
    'C':[1,2,3,4,5,6,10,20],
    'max_iter':[100,200,300,400,500]
}
In [169]:
aftercv=GridSearchCV(lg,param_grid=parameter,scoring='accuracy',cv=10)
```

```
In [170]:
```

```
aftercv.fit(x_train,y_train)
```

Out[170]:

In [171]:

```
print(aftercv.best_params_)
print(aftercv.best_score_)
```

```
{'C': 1, 'max_iter': 100, 'penalty': '12'} 0.6275100986011518
```

In [172]:

```
y_pred=aftercv.predict(x_test)
```

In [173]:

```
from sklearn.metrics import accuracy_score,classification_report
```

In [174]:

```
score1=accuracy_score(y_pred,y_test)
score1
```

Out[174]:

0.6192797183861359

In [175]:

```
print(classification_report(y_pred,y_test))
```

	precision	recall	f1-score	support	
0	1.00	0.62	0.76	3693	
1	0.00	0.00	0.00	0	
accuracy			0.62	3693	
macro avg	0.50	0.31	0.38	3693	
weighted avg	1.00	0.62	0.76	3693	

NOW WE WILL WORK WITH SVC

```
In [176]:
sv=svm.SVC(kernel='poly',C=5,degree=2)
In [177]:
sv.fit(x_train,y_train)
Out[177]:
SVC(C=5, degree=2, kernel='poly')
In [178]:
y_pred=sv.predict(x_test)
In [179]:
sc=accuracy_score(y_pred,y_test)
In [180]:
sc
Out[180]:
0.6192797183861359
In [181]:
# decision tree
from sklearn.tree import DecisionTreeClassifier
dt=DecisionTreeClassifier()
In [182]:
parameterdt={
    'criterion':['gini','entropy'],
    'max_depth':[1,2,3,4,5,6,None]
}
In [183]:
aftercv_dt=GridSearchCV(dt,param_grid=parameterdt,cv=10,scoring='accuracy')
In [184]:
aftercv_dt.fit(x_train,y_train)
Out[184]:
GridSearchCV(cv=10, estimator=DecisionTreeClassifier(),
             param_grid={'criterion': ['gini', 'entropy'],
                          'max_depth': [1, 2, 3, 4, 5, 6, None]},
             scoring='accuracy')
```

```
In [185]:
aftercv_dt.best_params_
Out[185]:
{'criterion': 'entropy', 'max_depth': None}
In [186]:
aftercv_dt.best_score_
Out[186]:
0.770637929780027
Applying Random Forest Algorithm
In [187]:
# so without using any hyper parameters score is increasing now on next we will apply hy
rf=RandomForestClassifier()
rf.fit(x_train,y_train)
y_pred=rf.predict(x_test)
scorerf=accuracy_score(y_pred,y_test)
scorerf
Out[187]:
0.8773354995938262
In [188]:
rf_new=RandomForestClassifier()
In [189]:
parameter={
    'n_estimators':[10,40,60,100,120],
    'max_features':[0.2,0.4,0.6,1.0,1.2],
    'max_depth':[2,6,8,10,12,14],
    'max_samples':[0.5,0.75,1.0]
}
In [190]:
aftercv_rf=GridSearchCV(rf_new,param_grid=parameter,cv=5,scoring='accuracy',n_jobs=-1,ve
```

```
In [191]:
aftercv_rf.fit(x_train,y_train)
Out[191]:
GridSearchCV(cv=5, estimator=RandomForestClassifier(), n_jobs=-1,
              param_grid={'max_depth': [2, 6, 8, 10, 12, 14],
                           'max_features': [0.2, 0.4, 0.6, 1.0, 1.2],
                           'max_samples': [0.5, 0.75, 1.0],
                          'n_estimators': [10, 40, 60, 100, 120]},
             scoring='accuracy')
In [192]:
print(aftercv_rf.best_params_)
{'max_depth': 14, 'max_features': 0.2, 'max_samples': 1.0, 'n_estimators':
120}
In [193]:
print(aftercv_rf.best_score_)
0.8160185722576901
In [194]:
y_pred=aftercv_rf.predict(x_test)
sco=accuracy_score(y_pred,y_test)
sco
Out[194]:
0.8323855943677227
In [195]:
# now well move with clustering, bagging and boosting techniques
# 1. We have checked with XGBOOST but because of long time we are deleting that for now
OBSERVATIONS:

    Till now we can understand that random forest performing very good with 88% of accuracy

 · So, we will check now ada boost and clustering otherwise will go with random forest algorithm
In [ ]:
```