Applied Data Science

COMS30050/COMS30051/COMSM0055/COMSM0056 (2020 TB-2)

Lab 4: Data Exploration

Week #4 Lab builds on the lectures on data fusion and data exploration and involves exploring the Iris dataset and the MNIST dataset.

Exploratory tasks

- Compute the descriptive statistics for the Iris and the MNIST datasets
 - Central tendency
 - Mean
 - Median
 - Mode
 - Variability
 - Variance
 - Quartiles
 - Max and Min
 - Test the normality of the data
 - Kurtosis and Skewness
 - https://docs.scipy.org/doc/scipy/reference/generated/scipy.sta
 ts.skew.html#scipy.stats.skew
 - o https://docs.scipy.org/doc/scipy/reference/generated/scipy.sta ts.kurtosis.html#scipy.stats.kurtosis
 - More here: https://docs.scipy.org/doc/scipy/reference/stats.html
- In the Iris dataset are there any outliers?
 - Compute the quartiles (Q1, Q2, Q3, and Q4)
 - Compute the Inter Quartile Range (IQR)
 - IQR = Q3 Q1
 - o Are there any values less than Q1-1.5IQR or greater than Q3+1.5IQR?
- Apply dimension reduction algorithm and compare the outputs. Vary the default parameters and observe the changes in the output.
 - o PCA
 - https://scikitlearn.org/stable/modules/generated/sklearn.decomposition.PCA.html
 - t-SNE
 - https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
 - o UMAP
 - https://umap.scikit-tda.org/basic_usage.html
 - Random projections
 - https://scikit-learn.org/stable/modules/random projection.html

from sklearn import random projection

```
min_dim =
random_projection.johnson_lindenstrauss_min_dim(n_samples=X_train.shape[
0], eps=0.9)
grp = random_projection.GaussianRandomProjection(n_components=2)
X_new = grp.fit_transform(Xs)
```

- Additional task: Could we identify clusters automatically?
 - o Prediction using clustering
 - K-mean
 - https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html