Higher order accuracy methods

1) Richardson extrapolation

Trapezoidal rule, trucation error (TE) & Axi³

Total error = \int \text{(Truncation error)} dx

& \text{\subset} \Delta \chi^3

 $\frac{1}{2} \left(\frac{b-a}{b-a} \right) = \frac{b-a}{b}$ $\frac{1}{2} \left(\frac{b-a}{a} \right) = \frac{b-a}{b}$

Total error of DX2

Trapezoidal rule

 $I = I_1 + C_1 \Delta x_1^2 - C$ exact traperoidal total error
rule

 $I = I_2 + C_1 \Delta \chi_2^2 - (2)$

$$G = \frac{I_{\lambda} - I_{1}}{\Delta x_{1}^{2} - \Delta x_{2}^{2}}$$

$$I = I_1 + I_2 - I_1$$

$$\left(\Delta \chi_1^2 - \Delta \chi_2^2\right)$$

Simplify

$$\mathcal{I} = \frac{\mathcal{I}_2 \Delta x_1^2 - \mathcal{I}_1 \Delta x_1^2}{\Delta x_1^2 - \Delta x_2^2}$$

$$\underline{\underline{T}} = \frac{\chi^2 \underline{I}_2 - \underline{I}_1}{\chi^2 - 1} \Rightarrow \chi = \underline{\underline{A}\chi_1}$$

Choose
$$y = 2$$
 $(4 I_2 - I_1)/3$

It can be shown that I is accurate to Δx^4

$$I = I_1 + Q \Delta x_1^4$$

Truncation error & DX5
Total error & DX4

$$\frac{I^{2}}{\gamma^{4}-1}$$

The resulting I is accurate to Δx^6

EXAMPLE:
$$T_{2}$$
 compute $I = \int \cos(x) dx$ using trapezoidal rule with a step size of

- 3 Use Richardson's extrapolation to get a better estimate of the integral
- (4) Compare against analytical solution

①
$$dx = b - g = \frac{7k - 0}{3} = 0.5236$$
; $x = a + i dx$
 $i = 0,1,2,3$

X	0	0.5236	1.0472	1.5708
65(x)	1	0.8666	0.5	0
	fo	<i>F</i> ,	+	F3

$$I_1 = \frac{dx}{2} \left[f_0 + 2f_1 + 2f_2 + f_3 \right]$$

$$dx = \frac{b-a}{n} = \frac{T_2-0}{6} = 0.2618$$

 $x = a+i dx$ $i = 9,1,2,3,4,5,6$

	X	0	0-2618	0.2236	0.7854	1.0472	1.3090	1.2708
-	(0S(X)	, [0-9659	0.8660	0.7071	0.5	0.5228	٥
		f,	F,	f_2	f3	f4	f_5	f_6

$$I_{2} = \frac{dx}{2} \left[f_{6} + 2f_{1} + 2f_{2} + 2f_{3} + 2f_{4} + 2f_{5} + f_{6} \right]$$

$$I_{2} = 0.9942$$

(3)
$$I = (\frac{1^{2} I_{2} - I_{1}}{1^{2} - I_{1}} = \frac{1 \cdot \frac{\Delta K_{1}}{\Delta K_{2}}}{\frac{\Delta K_{2}}{1^{2} - I_{1}}} = 2$$

$$I = (\frac{1^{2} I_{2} - I_{1}}{1^{2} - I_{1}} = \frac{4(0.9943) - 0.9770}{4 - 1}$$

$$I = 1.001$$

$$I = 3 \times (0.00) = 3 \times$$