

Statistical and Sequential Learning for Time Series Forecasting

Expert online aggregation

Introduction

Framework

Regret

Algorithms

EWA

Gradient trick

Exponential Gradient

BOA

MLPol

In practice

Introduction

Framework

Let $Y = (Y_t)_{t \in \mathbb{N}^*}$ be a time series

Assumption: at a time step t = 1, 2, 3, ...

- Observe the data with a delay d: Y_{t-d}
- Receive K predictions $f_{1t}, ..., f_{Kt}$ from expert advice / (deterministic or statistic) models

Aim

Providing the best possible forecast \hat{Y}_t of the future realization of Y by mixing the predictions

Aggregation
$$\hat{Y}_t = \hat{f}(f_{1t}, ..., f_{Kt}) = \sum_{k=1}^{K} \omega_{k,t} f_{kt}$$

Forecast evaluation:

On a testing dataset $\{Y_t, f_{1t}, ..., f_{Kt}\}_{t=1, ..., T}$ and a loss function \mathscr{C} , we aim to minimise $\frac{1}{T} \sum_{t=1}^{T} \mathscr{C}(Y_t, \hat{Y}_t)$

Illustration

Expert 1

 $f_{1,t} = \text{Neural Network}(X_t)$

Expert 2

 $f_{2,t} = \text{PDE resolution at } t$

•

•

Expert K

 $f_{1,K}$ = Vision of Cassandra at t

References

- Hannan(1957) and Blackwell et al. (1956) in a game theory framework
- Littlestone and Warmuth (1994) and Vovk (1990) in a statistical learning framework
- Cesa-Bianchi et al. (1997), Freund et al. (1997) and Vovk (1998) for theoretical results
- Cesa-Bianchi and Lugosi (2006) for a review
- Goude (2008) and Gaillard (2015) PhDs for an application to electricity consumption forecasting and the development of the « opera » package (in R and Python)

Regret

To assess the quality of the final forecast, a benchmark is needed!

We could look directly at the performance of \hat{Y}_t , but that wouldn't make much sense:

- if all the experts are bad, the mixture of forecasts will has poor performance, whereas it's possible that the aggregation performs well (that the mixture is better than each forecast)
- Conversely, if all the forecasts are good, it is highly likely that whatever the mix, it will be good

We need:

- ullet a set for the weights ω_{kt} (the simplex of K-dimension for exemple)
- \bullet a set S of strategies to compare ourselves (the set of constant strategies for example)

Regret:
$$R_T = \sum_{t=1}^T \mathscr{C}\left(Y_t, \sum_{k=1}^K \omega_{kt} f_{kt}\right) - \min_{s \in S} \sum_{t=1}^T \mathscr{C}\left(Y_t, \sum_{k=1}^K \omega_{kt}(s) f_{kt}\right)$$

Examples

Regret regarding the best expert:

$$R_{T} = \sum_{t=1}^{T} \mathscr{C}\left(Y_{t}, \sum_{k=1}^{K} \omega_{kt} f_{kt}\right) - \min_{k=1,...K} \sum_{t=1}^{T} \mathscr{C}\left(Y_{t}, f_{kt}\right)$$

Regret regarding the best constant convex combination of experts:

$$R_T = \sum_{t=1}^T \mathscr{E}\left(Y_t, \sum_{k=1}^K \omega_{kt} f_{kt}\right) - \min_{\omega_1, \dots, \omega_K} \sum_{t=1}^T \mathscr{E}\left(Y_t, \sum_{k=1}^K \omega_k f_{kt}\right)$$
with
$$\sum_{k=1}^K \omega_k = 1 \text{ and } \forall k = 1, \dots, K, \quad \omega_k \in [0,1]$$

Question: What kind of regret should our strategy have?

Clue: What is the regret of a dumb strategy?

Regret bounds

If the loss function is bounded (true as soon as Y_t is too), the regret is at most proportional to T

→ our strategy should satisfy

$$\lim_{T\to\infty} \sup_{f_{1,1},\dots,f_{k,t},\dots,f_{K,T}} \frac{R_T}{T} \to 0$$

So as time goes by, we get closer to the strategy we're comparing ourselves to, or even better: we beat it!

Algorithms

Exponentially Weighted Aggregation (EWA)

Parameter: $\eta > 0$

Initialization:

- $\forall k = 1, ..., K$, $\omega_{k,1} = \frac{1}{K}$ (uniform weights)
- Prediction: $\hat{Y}_1 = \frac{1}{K} \sum_{k=1}^{K} f_{k1}$ (empirical mean)

For t = 2, ..., T

- Weight updates: $\forall k = 1, ..., K$, $\omega_{k,t} = \frac{\omega_{k,t-1} \exp\left(-\eta \sum_{s=1}^{t-1} \ell(Y_s, f_{ks})\right)}{\sum_{j=1}^{K} \omega_{j,t-1} \exp\left(-\eta \sum_{s=1}^{t-1} \ell(Y_s, f_{js})\right)}$
- Prediction: $\hat{Y}_t = \sum_{k=1}^K \omega_{k,t} f_{k,t}$ (empirical mean)

EWA regret bound (Stoltz, 2010)

Assumptions:

- Loss function $\ell: \mathbb{R} \times \mathbb{R} \to [0,M]$ is bounded
- $\forall Y, \mathcal{E}(Y, \cdot)$ is convex

Then, for any $\eta > 0$

$$\sup_{f_{1,1},\dots,f_{k,t},\dots,f_{K,T}} \left(\sum_{t=1}^{T} \mathscr{C}(Y_t, \hat{Y}_t^{\text{EWA}}) - \min_{k=1,\dots,K} \sum_{t=1}^{T} \mathscr{C}(Y_t, f_{k,t}) \right) \leq \frac{\ln K}{\eta} + \frac{\eta M^2}{8} T$$

How to choose η ?

EWA regret bound (Stoltz, 2010)

Assumptions:

- Loss function $\ell: \mathbb{R} \times \mathbb{R} \to [0, M]$ is bounded
- $\forall Y, \ell(Y, \cdot)$ is convex

Then, for any $\eta > 0$

$$\sup_{f_{1,1},...,f_{k,t},...,f_{K,T}} \left(\sum_{t=1}^{T} \mathscr{E}(Y_t, \hat{Y}_t^{\text{EWA}}) - \min_{k=1,...,K} \mathscr{E}(Y_t, f_{k,t}) \right) \le \frac{\ln K}{\eta} + \frac{\eta M^2}{8} T$$

With
$$\eta = \frac{2}{M} \sqrt{\frac{2 \ln K}{T}}$$
, we get $R_T = \mathcal{O}\left(M \sqrt{\frac{T}{2 \ln K}}\right)$

EWA with Gradient Trick = Exponential Gradient

Parameter: $\eta > 0$

Initialization:

- $\forall k=1,...,K$, $\omega_{k1}=\frac{1}{K}$ (uniform weights)
- Prediction: $\hat{Y}_1 = \frac{1}{K} \sum_{k=1}^{K} f_{k1}$ (empirical mean)

For t = 2, ..., T

- Weight updates: $\forall k = 1, ..., K$, $\omega_k = \frac{\exp\left(-\eta \sum_{s=1}^{t-1} \partial \mathcal{E}(Y_s, \hat{Y}_s) \cdot f_{ks}\right)}{\sum_{j=1}^{K} \exp\left(-\eta \sum_{s=1}^{t-1} \partial \mathcal{E}(Y_s, \hat{Y}_s) \cdot f_{js}\right)}$
- Prediction: $\hat{Y}_t = \sum_{k=1}^K \omega_{kt} f_{kt}$ (empirical mean)

Exponential Gradient (EG) - L2

$$\forall k = 1, ..., K, \quad \omega_k = \frac{\exp\left(-\eta \sum_{s=1}^{t-1} 2(\hat{Y}_s - Y_s) f_{ks}\right)}{\sum_{j=1}^{K} \exp\left(-\eta \sum_{s=1}^{t-1} 2(\hat{Y}_s - Y_s) f_{js}\right)}$$

Intuition:

- If $\hat{Y}_{s}>Y_{s}$, experts who forecast the lowest values are at an advantage
- If $\hat{Y}_s < Y_s$, experts who forecast the highest values are at an advantage

In practice

How do you choose experts?

How do you choose experts?

Encouraging diversity!

Encouraging diversity!

- → Train models using a variety of data:
 - Estimation periods
 - Input variables / features
 - Spatial / Temporal resolution
- → Consider various methods:
 - Linear models
 - Ensemble models
 - Neural networks models
 - Deliberately biased models, ...
- → Consider various loss functions:
 - L2
 - L1
 - Multiple quantile loss (so The variable to be forecast is in the convex envelope of the experts' forecasts)...

That's all folks!