فظریه زبان ها و ماشین ها حل تمرین سری دوم

مصطفے فضلے 9822803

.1. گرامرهایی برای $\Sigma = \{a, b\}$ بنویسید که مجموعه های زیر را تولید کند.

الف) همه رشته هایی که دقیقا یک a دارند.

روش اول : S-> a | Sb | bS

روش دوم :

 $A \rightarrow bA \mid Ab \mid \lambda$

ب) همه رشته هایی که حداقل دو a دارند .

S -> BaBaB

 $B \rightarrow \lambda \mid bB \mid aB$

ج) همه رشته هایی که حداکثر سه a دارند.

S -> BaBaBaB | BaBaB | BaB | B

 $B \rightarrow \lambda \mid bB$

2. با فرض اینکه $oldsymbol{\mathcal{E}} = \{a,b\}$ گرامر های تولید کننده زبان های زیر را بنویسید. $L_1 = \{a^mb^n \colon m \geq 1, n > m\}$ (الف

S -> aAbbB

 $A \rightarrow aAb \mid \lambda$

 $B \rightarrow bB \mid \lambda$

 $L_2 = \{a^nb^{2n}: n \geq 1\}$ (ب

S -> aAbb

 $A \rightarrow aAbb \mid \lambda$

$$L_3 = \{a^m b^n a^x b^y a^i b^j : m, x, i > 0, n > m, y > k, j > i\}$$
 (5)

S->CCC

C->AbB

 $A \rightarrow aAb \mid \lambda$

 $B \rightarrow bB \mid \lambda$

$$A = \{WW^R : w \in \{a, b\}^+\}$$
 (s

S -> aSa | bSb | aa | bb

3. در هر مورد زبان داده شده است، گرامر مربوط به آن را بنویسید.

$$A = \{w \colon n_a(w) > n_b(w)\} \cdot \Sigma = \{a,b\}$$
 (الف

S -> SS | aSb | bSa | aS | Sa | a

$$B = \{w : n_a(w) = n_b(w) + 1\} \cdot \Sigma = \{a, b\}$$
 (ب

S->BaB

 $B \rightarrow aBb \mid bBa \mid BB \mid \lambda$

$$B = \{w \cdot | w | \bmod 3 \ge | w | \bmod 2\} \cdot \Sigma = \{a\} \ (\pi)$$

S -> aB | aaB | D

 $B \rightarrow aaaB \mid \lambda$

D -> aaaaaaD $| \lambda$

4. برای هر مجموعه یک nfa رسم کنید.

$$A = \{aba^n\} \cup \{abab^n\}_3 n \geq 0$$
 (الف) الف $A = \{aba^n\} \cup \{abab^n\}_3 n \geq 0$

state و حداکثر با $B=\{abc,ab\}^*$ (ب

state 4 با حداكثر $c=\{a^n \colon n\geq 0\} \cup \{b^na\colon n\geq 1\}$ (ج

5. تعداد وضعیت(state) های dfa های زیر را به حداقل برسانید. الف)

با حذف زوج وضعیت هایی که از طرف نهایی و طرف دیگر غیرنهایی داریم:

q2, q3q3, q4q2, q4q5, q6

اكنون بررسي مي كنيم طبق جدول:

	0	1
qo	q2	q1
q1	95	95
q2	q3	94
q 3	q3	94
q4	95	95
q 5	q6	q 5

a6	a6	a6
40	40	90

طبق جدول و رابطه بالا می توان دو زوجی که با یک علامت مشترک به یک وضعیت می روند و در روند تاثیر چندانی ندارند را ساده نمود:

q1, q4 q2, q3

	0	1
qo	q2,q3	q1, q2
q1,q2	q5, q6	q5, q6
q2, q3	q2,q3	q5, q6
q5, q6	q5, q6	q5, q6

ب)

	0	1
qo	q1	q3
q1	qo	q3
q2	q1	q4
q 3	q 3	q4
q4	q3	q3
95	q 5	q 5

با حذف حالات غيرقابل دسترس داريم:

ofa های زیر را به dfa هم ارز آن تبدیل کنید.

الف)

ابتدا بررسی میکنیم هر حالت با هر متغیر به کدام حالت دیگر می رود.

qo,o => q1,q2

q0,1 => q1,q2

qoq2,1 => q1,q2

qoq2,0 => q1,q2

q1q2,1 => q1,q2

q1q2,0 => q0,q2

ب)

همانند بالا تمام حالاتی که از یک وضعیت می توان به وضعیت دیگر رفت را بررسی می نویسیم و بررسی میکنیم که کدام حالات را می توان با هم ساده کرد:

qo, o => qo,q1,q2

qo,1 => q1, q2

q1q2,0=>q0,q1,q2

q1q2,1 => q1, q2

q1q2,1 => q1,q2

qoq1q2, o => qo,q1,q2

qoq1q2,1 => q1,q2

که باز هم میتوان این نمودار را ساده تر کرد و به شکل زیر در آورد:

