That wasn't too hard, was it? Now let's look at another application of clustering.

Using Clustering for Semi-Supervised Learning

Another use case for clustering is in semi-supervised learning, when we have plenty of unlabeled instances and very few labeled instances. In this section, we'll use the digits dataset, which is a simple MNIST-like dataset containing 1,797 grayscale 8×8 images representing the digits 0 to 9. First, let's load and split the dataset (it's already shuffled):

```
from sklearn.datasets import load_digits

X_digits, y_digits = load_digits(return_X_y=True)
X_train, y_train = X_digits[:1400], y_digits[:1400]
X_test, y_test = X_digits[1400:], y_digits[1400:]
```

We will pretend we only have labels for 50 instances. To get a baseline performance, let's train a Logistic Regression model on these 50 labeled instances:

```
from sklearn.linear_model import LogisticRegression

n_labeled = 50
log_reg = LogisticRegression(max_iter=10_000)
log reg.fit(X_train[:n_labeled], y_train[:n_labeled])
```

Let's measure the accuracy of this model on the test set (note that the test set must be labeled):

```
>>> log_reg.score(X_test, y_test) 0.7481108312342569
```

The model's accuracy is just 74.8%, while it would have reached 90.7% if we had trained it on the full training set. Let's see how we can do better. First, let's cluster the training set into 50 clusters. Then for each cluster,

let's find the image closest to the centroid. Let's call these images the *representative images*:

```
k = 50
kmeans = KMeans(n_clusters=k, random_state=42)
X_digits_dist = kmeans.fit_transform(X_train)
representative_digit_idx = np.argmin(X_digits_dist, axis=0)
X_representative_digits = X_train[representative_digit_idx]
```

Figure 9-13 shows these 50 representative images.

Figure 9-13. Fifty representative digit images (one per cluster)

Let's look at each image and manually label it:

```
y_representative_digits = np.array([1, 3, 6, 0, 7, 9, 2, ..., 5,
1, 9, 9, 3, 7])
```

Now we have a dataset with just 50 labeled instances, but instead of being random instances, each of them is a representative image of its cluster. Let's see if the performance is any better:

```
>>> log_reg = LogisticRegression(max_iter=10_000)
>>> log_reg.fit(X_representative_digits, y_representative_digits)
>>> log_reg.score(X_test, y_test)
0.8488664987405542
```

Wow! We jumped from 74.8% accuracy to 84.9%, although we are still only training the model on 50 instances. Since it is often costly and painful to label instances, especially when it has to be done manually by experts, it is a good idea to label representative instances rather than just random instances.

But perhaps we can go one step further: what if we propagated the labels to all the other instances in the same cluster? This is called *label propagation*:

```
y_train_propagated = np.empty(len(X_train), dtype=np.int64)
for i in range(k):
    y_train_propagated[kmeans.labels_ == i] =
y representative digits[i]
```

Now let's train the model again and look at its performance:

```
>>> log_reg = LogisticRegression()
>>> log_reg.fit(X_train, y_train_propagated)
>>> log_reg.score(X_test, y_test)
0.8942065491183879
```

We got another significant accuracy boost! Let's see if we can do even better by ignoring the 1% instances that are farthest from their cluster center: this should eliminate some outliers. The following code first computes the distance from each instance to its closest cluster center, then for each cluster it sets the 1% largest distances to -1. Lastly, it creates a set without these instances marked with a -1 distance.

```
percentile closest = 99
```

```
X_cluster_dist = X_digits_dist[np.arange(len(X_train)),
kmeans.labels_]
for i in range(k):
    in_cluster = (kmeans.labels_ == i)
    cluster_dist = X_cluster_dist[in_cluster]
    cutoff_distance = np.percentile(cluster_dist,
percentile_closest)
    above_cutoff = (X_cluster_dist > cutoff_distance)
    X_cluster_dist[in_cluster & above_cutoff] = -1

partially_propagated = (X_cluster_dist != -1)
X_train_partially_propagated = X_train[partially_propagated]
y_train_propagated[partially_propagated]
```

Now let's train the model again on this partially propagated dataset and see what accuracy we get:

```
>>> log_reg = LogisticRegression(max_iter=10_000)
>>> log_reg.fit(X_train_partially_propagated,
    y_train_partially_propagated)
>>> log_reg.score(X_test, y_test)
0.9093198992443325
```

Nice! With just 50 labeled instances (only 5 examples per class on average!), we got 90.9% accuracy, which is actually very slightly higher than the performance we got on the fully labeled digits dataset (90.7%). This is partly thanks to the fact that we dropped some outliers, and partly because the propagated labels are actually pretty good—their accuracy is about 97.5%, as the following code shows:

TIP

Scikit-Learn also offers two classes that can propagate labels automatically: LabelSpreading and LabelPropagation in the sklearn.semi_supervised package. They both construct a similarity matrix between all the instances, and iteratively propagate labels from labeled instances to similar unlabeled instances. There's also a very different class called SelfTrainingClassifier in the same package: you give it a base classifier (such as a RandomForestClassifier) and it trains it on the labeled instances, then uses it to predict labels for the unlabeled samples. It then updates the training set with the labels it is most confident about. Lastly, it repeats this process of training and labeling until it cannot add labels anymore. These techniques are not magic bullets, but they can occasionally give your model a little boost.