Machine Learning Techniques

Karthik Thiagarajan


```
train (1)
train (0)
test
```



```
train (1)
train (0)
test
```

 $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}\$


```
\mathsf{KNN}(D,d,k,\mathbf{x})
```

```
train (1)
train (0)
test
```


 $\bullet \ L, N \leftarrow \texttt{empty lists}$

- $L, N \leftarrow \texttt{empty lists}$
- for $\mathbf{x}_i \in D$:
 - $L \leftarrow (d(\mathbf{x}_i, \mathbf{x}), y_i)$

```
train (1)
train (0)
test
```


- $L, N \leftarrow \mathsf{empty} \ \mathsf{lists}$
- for $\mathbf{x}_i \in D$:
 $L \leftarrow (d(\mathbf{x}_i, \mathbf{x}), y_i)$
- ullet sort L in ascending order of distance

```
train (1)
train (0)
test
```


- $L, N \leftarrow \mathsf{empty} \ \mathsf{lists}$
- for $\mathbf{x}_i \in D$:
 $L \leftarrow (d(\mathbf{x}_i, \mathbf{x}), y_i)$
- ullet sort L in ascending order of distance
- $N \leftarrow \text{labels of first } k$ elements in L

- $L, N \leftarrow \mathsf{empty} \ \mathsf{lists}$
- ullet sort L in ascending order of distance
- $N \leftarrow \text{labels of first } k$ elements in L
- $\bullet \quad p_{Y|X} \leftarrow \mathsf{PMF}(N)$

$|\mathsf{KNN}(D,d,k,\mathbf{x})|$

- $L, N \leftarrow \mathsf{empty} \ \mathsf{lists}$
- for $\mathbf{x}_i \in D$:
 $L \leftarrow (d(\mathbf{x}_i, \mathbf{x}), y_i)$
- ullet sort L in ascending order of distance
- $N \leftarrow \text{labels of first } k$ elements in L
- $\bullet \quad p_{Y\mid X} \leftarrow \mathsf{PMF}(N)$
- $\bullet \ \ \mathsf{return} \ \ \mathsf{mode}(p_{Y \mid X})$

$$D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}\$$

$KNN(D, d, k, \mathbf{x})$

- $L, N \leftarrow \mathsf{empty} \ \mathsf{lists}$
- for $\mathbf{x}_i \in D$:
 $L \leftarrow (d(\mathbf{x}_i, \mathbf{x}), y_i)$
- ullet sort L in ascending order of distance
- $N \leftarrow \text{labels of first } k$ elements in L
- $\bullet \quad p_{Y|X} \leftarrow \mathsf{PMF}(N)$
- $\bullet \ \ \mathsf{return} \ \ \mathsf{mode}(p_{Y\!\mid\! X})$

$$Y \in \{0, 1\}$$

$$p_{Y|X}(y \mid \mathbf{x}) = \begin{cases} 1/3, & y = 0 \\ 2/3, & y = 1 \end{cases}$$

$$\mathsf{mode}(p_{Y\mid X})=1$$

 $D = \{ (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n) \}$


```
train (1)
train (0)
test
```

 $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}\$


```
train (1)
train (0)
test
```


$$d((a,b),(c,d)) = |a-c| + |b-d|$$

$$d((a,b),(c,d)) = |a-c| + |b-d|$$

$$d((a, b), (c, d)) = |a - c| + |b - d|$$

 $D = \{ (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n) \}$


```
train (1)
train (0)
test
```

 $D = \{ (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n) \}$


```
train (1)
train (0)
test
```

$$||\mathbf{x}||_p = (|x_1|^p + \cdots + |x_n|^p)^{1/p}$$

$$||\mathbf{x}||_p = (|x_1|^p + \cdots + |x_n|^p)^{1/p}$$

$$L_1 \text{ norm}: \qquad ||\mathbf{x}||_1 = |x_1| + \cdots + |x_n|$$

$$||\mathbf{x}||_p = (|x_1|^p + \cdots + |x_n|^p)^{1/p}$$

$$L_1 \text{ norm}: \qquad ||\mathbf{x}||_1 = |x_1| + \cdots + |x_n|$$

$$L_2 \text{ norm}: \qquad ||\mathbf{x}||_2 = \sqrt{{x_1}^2 + \cdots + {x_n}^2}$$

$$||\mathbf{x}||_p = (|x_1|^p + \cdots + |x_n|^p)^{1/p}$$

$$L_1 \text{ norm}: \qquad ||\mathbf{x}||_1 = |x_1| + \cdots + |x_n|$$

$$L_2 \text{ norm}: \qquad ||\mathbf{x}||_2 = \sqrt{{x_1}^2 + \ \cdots \ + {x_n}^2}$$

$$L_{\infty}$$
 norm: $||\mathbf{x}||_{\infty} = \max\{|x_1|, \dots, |x_n|\}$

$$||\mathbf{x}||_p = (|x_1|^p + \cdots + |x_n|^p)^{1/p}$$

$$||\mathbf{x}||_1 = |x_1| + \cdots + |x_n|$$

$$L_2 \; \text{norm} \, : \qquad ||\mathbf{x}||_2 = \sqrt{{x_1}^2 + \, \cdots \, + {x_n}^2}$$

$$L_{\infty}$$
 norm: $||\mathbf{x}||_{\infty} = \max\{|x_1|, \dots, |x_n|\}$

$$l^2 n = k \Longrightarrow l = \sqrt{\frac{k}{n}}$$

$$ln = k \Longrightarrow l = \frac{k}{n}$$

$$ln = k \Longrightarrow l = \frac{k}{n}$$

$$l^2n = k \Longrightarrow l = \sqrt{\frac{k}{n}}$$

$$l^3n = k \Longrightarrow l = \sqrt[3]{\frac{k}{n}}$$

$$ln = k \Longrightarrow l = \frac{k}{n}$$

$$l^2n = k \Longrightarrow l = \sqrt{\frac{k}{n}}$$

$$l^3n = k \Longrightarrow l = \sqrt[3]{\frac{k}{n}}$$

 \mathbb{R}^d

$$ln = k \Longrightarrow l = \frac{k}{n}$$

$$l^2n = k \Longrightarrow l = \sqrt{\frac{k}{n}}$$

$$l^3n = k \Longrightarrow l = \sqrt[3]{\frac{k}{n}}$$

$$\mathbb{R}^d$$

$$l^d n = k \Longrightarrow l = \sqrt[d]{\frac{k}{n}}$$

$$l = \sqrt[d]{\frac{k}{n}}$$

$$n = 1000$$
$$k = 10$$

$$l = \sqrt[d]{\frac{k}{n}}$$

$$n = 1000$$
$$k = 10$$

$$l = \sqrt[d]{\frac{10}{1000}}$$

$$= (0.01)^{1/d}$$

$$l = \sqrt[d]{\frac{k}{n}}$$

$$n = 1000$$
$$k = 10$$

$$l = \sqrt[d]{\frac{10}{1000}}$$

$$= (0.01)^{1/d}$$

d	l
1	
2	
3	
5	
10	
100	
1000	

$$l = \sqrt[d]{\frac{k}{n}}$$

$$n = 1000$$
$$k = 10$$

$$l = \sqrt[d]{\frac{10}{1000}}$$

$$= (0.01)^{1/d}$$

d	l
1	0.01
2	0.10
3	0.22
5	0.40
10	0.63
100	0.95
1000	0.99

$$l = \sqrt[d]{\frac{k}{n}}$$

$$n = 1000$$
$$k = 10$$

$$l = \sqrt[d]{\frac{10}{1000}}$$

$$= (0.01)^{1/d}$$

d	l
1	0.01
2	0.10
3	0.22
5	0.40
10	0.63
100	0.95
1000	0.99

$$n = \frac{k}{l^d}$$

$$k = 10$$
$$l = 0.1$$

$$n = \frac{10}{0.1^d} = 10^{d+1}$$

$$l = \sqrt[d]{\frac{k}{n}}$$

$$n = 1000$$
$$k = 10$$

$$l = \sqrt[d]{\frac{10}{1000}}$$

$$= (0.01)^{1/d}$$

d	l
1	0.01
2	0.10
3	0.22
5	0.40
10	0.63
100	0.95
1000	0.99

m	_	k
11	=	$\overline{l^d}$

$$k = 10$$
$$l = 0.1$$

$$n = \frac{10}{0.1^d} = 10^{d+1}$$

d	n
1	
2	
3	
5	
10	

100

$$l = \sqrt[d]{\frac{k}{n}}$$

$$n = 1000$$
$$k = 10$$

$$l = \sqrt[d]{\frac{10}{1000}}$$

$$= (0.01)^{1/d}$$

d	l
1	0.01
2	0.10
3	0.22
5	0.40
10	0.63
100	0.95
1000	0.99

$$n = \frac{k}{l^{\alpha}}$$

$$k = 10$$
$$l = 0.1$$

$$n = \frac{10}{0.1^d} = 10^{d+1}$$

d	n
1	10^{2}
2	10^{3}
3	10^{4}
5	10^{5}
10	10^{11}
100	10^{101}

$$l = \sqrt[d]{\frac{k}{n}}$$

$$n = 1000$$
$$k = 10$$

$$l = \sqrt[d]{\frac{10}{1000}}$$

$$= (0.01)^{1/d}$$

d	l
1	0.01
2	0.10
3	0.22
5	0.40
10	0.63
100	0.95
1000	0.99

$$n = \frac{k}{l^a}$$

$$k = 10$$
$$l = 0.1$$

$$n = \frac{10}{0.1^d} = 10^{d+1}$$

d	n
1	10^{2}
2	10^{3}
3	10^{4}
5	10^{5}
10	10^{11}
100	10^{101}

Assumptions

- Points that are "close" to me are "similar" to me
- I am not lonely

$$l = \sqrt[d]{\frac{k}{n}}$$

$$n = 1000$$
$$k = 10$$

$$l = \sqrt[d]{\frac{10}{1000}}$$

$$= (0.01)^{1/d}$$

d	l
1	0.01
2	0.10
3	0.22
5	0.40
10	0.63
100	0.95
1000	0.99

$$n = \frac{k}{l^d}$$

$$k = 10$$
$$l = 0.1$$

$$n = \frac{10}{0.1^d} = 10^{d+1}$$

d	n
1	10^{2}
2	10^{3}
3	10^{4}
5	10^{5}
10	10^{11}
100	10101

Assumptions

- Points that are "close" to me are "similar" to me
- I am not lonely

Sparsity

Decision Boundary

Decision Boundary

k = 1

Decision Boundary

Decision Boundary k=5

Decision Boundary k=9

$\begin{array}{c} {\rm Decision} \ \, {\rm Boundary} \\ k=100 \end{array}$

Model Complexity
(flexibility)

Source: ISLR (38)

 X_1

Model Complexity

(flexibility)

KNN: K=1

Source: ISLR (41)

Model Complexity
(flexibility)

$$\mathsf{Loss}(h) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}[h(x_i) \neq y_i]$$

Training

- 200 points

Test

- 5000 points

Source: ISLR (42)

Validation

FIGURE 5.1. A schematic display of the validation set approach. A set of n observations are randomly split into a training set (shown in blue, containing observations 7, 22, and 13, among others) and a validation set (shown in beige, and containing observation 91, among others). The statistical learning method is fit on the training set, and its performance is evaluated on the validation set.

Source: ISLR (177)

Cross Validation

$$\mathrm{CV}_n = \frac{1}{n} \sum_{i=1}^n \mathrm{Loss}(h_i)$$

$$\mathrm{CV}_k = \frac{1}{k} \sum_{i=1}^k \mathrm{Loss}(h_i)$$

Source: ISLR (179 & 181)

Cross Validation

Source: ISLR (186)

Advantages

Disadvantages

- Very easy to implement
- Interpretable
- Easy to explain to non-experts

- Computationally expensive
 - n_1 train, n_2 test
 - $n_1 n_2$ distances
 - Sort n_1 values n_2 times
- No model is learnt
 - Storage for training data
- Curse of dimensionality
 - Distances behave weirdly in higher dimensions