

Лекция 6

Прямая на плоскости

Содержание лекции:

Прямая является одним из основных объектов при построении геометрии на плоскости. В лекции вводится инвариантное определение прямой и рассматриваются различные варианты ее задания в в векторном и координатном виде.

Ключевые слова:

Инвариантное определение прямой на плоскости, векторное параметрическое уравнение, параметрическое уравнение, каноническое уравнение, общее уравнение, уравнение прямой, проходящей через две точки, уравнение с угловым кожффициентом, уравнение в отрезках на осях, нормальное векторное уравнение, уравнение с прицельным параметром.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы: mathdep.ifmo.ru/geolin

6.1 Уравнение прямой на плоскости

Прямой на плоскости называется геометрическое место точек L, равноудаленных от двух заданных точек P_1 и P_2 плоскости:

$$|PP_1| = |PP_2|.$$

Nota bene Пусть $\vec{r}_1, \vec{r}_2, \vec{r}$ - радиусы-векторы точек P_1, P_2 и P соответственно, тогда определение геометрического места может быть переформулировано:

$$|\vec{r} - \vec{r}_1| = |\vec{r} - \vec{r}_2|.$$

После преобразований данного уравнения будем иметь:

$$\left(\vec{r} - \frac{\vec{r}_1 + \vec{r}_2}{2}, \vec{r}_1 - \vec{r}_2\right) = 0.$$

Векторным параметрическим уравнением прямой L называется уравнение вида:

$$\vec{r} = \vec{r}_0 + t \cdot \vec{s}, \quad t \in \mathbb{R}, \tag{6.1}$$

где \vec{r} - радиус-вектор произвольной точки прямой L, r_0 - радиус-вектор фиксированной (опорной) точки $M_0 \in L, \vec{s}$ - направляющий вектор прямой $L, t \in \mathbb{R}$ - вещественный параметр.

Nota bene Геометрический смысл полученной алгебраической конструкции - линия, проходящая через точку M_0 в направлении вектора \vec{s} .

Параметрическим уравнением прямой называется уравнение вид:

$$\begin{cases} x = x_0 + s_x \cdot t, \\ y = y_0 + s_y \cdot t, \end{cases}$$

где

$$\vec{r} = (x, y), \quad \vec{r}_0 = (x_0, y_0), \quad \vec{s} = (s_x, s_y).$$

 $Nota\ bene$ Параметрическое уравнение прямой есть векторное параметрическое уравнение в выбранной системе координат xOy.

Каноническим уравнением прямой называется уравнение вида:

$$\frac{x - x_0}{s_x} = \frac{y - y_0}{s_y}.$$

Nota bene В каноническом уравнении прямой нули в знаменателе допускаются.

 $Nota\ bene$ Каноническое уравнение является уравнением на координаты точек и получается из параметрического уравнения исключением параметра t.

ПРЯМАЯ НА ПЛОСКОСТИ

Общим уравнением прямой называется уравнение вида:

$$Ax + By = D$$
,

где

$$A = s_y, \quad B = -s_x, \quad D = s_y \cdot x_0 - s_x \cdot y_0.$$

Nota bene Общее уравнение получается из канонического перемножением "крестнакрест" по правилу пропорции:

$$s_y(x - x_0) = s_x(y - y_0).$$

Уравнением прямой, проходящей через две заданные точки, называется уравнение вида:

$$\vec{r} = \vec{r}_0 + t(\vec{r}_1 - \vec{r}_0),$$

где \vec{r}_1 - радиус-вектор точки $M_1 \in L$, отличной от точки M_0 .

 $Nota\ bene$ Очевидно, что направляющий вектор \vec{s} и вектор $\overrightarrow{M_0M_1}$ коллинеарны, и значит имеет место:

$$\lambda \vec{s} = \overrightarrow{M_0 M_1} = \vec{r_1} - \vec{r_0}.$$

Nota bene В координатах уравнение прямой, проходящей через две точки может быть записано следующим образом:

$$\overrightarrow{M_0M_1} = \overrightarrow{r_1} - \overrightarrow{r_0} = (x_1 - x_0, y_1 - y_0),$$

где (x_1, y_1) - координаты точки M_1 .

Nota bene Через две заданные точки можно построить единственную прямую.

Уравнением прямой с угловым коэффициентом называется уравнение вида:

$$y - y_0 = k(x - x_0), \quad k = s_y/s_x$$

Nota bene Определяя угловой коэффициент $k \equiv \tan \alpha$ и свободный член $b \equiv y_0$, уравнение обычно записывают в виде:

$$y = kx + b$$
.

Уравнением прямой в отрезках на осях называется уравнение вида:

$$\frac{x}{a} + \frac{y}{b} = 1,$$

где a, b - длины отрезков которые образуются началом координат и точками пересечения линии с соответственно осью абсцисс и ординат:

$$a = D/A$$
, $b = D/B$.

ПРЯМАЯ НА ПЛОСКОСТИ

Нормальный векторным уравнением прямой называется уравнение вида:

$$(\vec{r} - \vec{r}_0, \vec{n}) = 0,$$

где \vec{n} - вектор, нормальный к прямой L.

Nota bene В прямоугольной декартовой системе координат нормальное уравнение принимает вид

$$A(x - x_0) + B(y - y_0) = 0,$$

где $\vec{n} = (A, B)$.

Nota bene Альтернативная форма записи нормального уравнения в координатах:

$$Ax + By = D$$
, $D = A \cdot x_0 + b \cdot y_0$.

Nota bene Отличие этого уравнения от общего уравнения прямой в произвольной косоугольной системе координат заключается в том, что коэффициенты A и B здесь являются координатами вектора нормали прямой (в косоугольной системе координат это не так!).

Уравнением с прицельным параметром называется уравнение вида:

$$x \cdot \cos \alpha + y \cdot \cos \beta - p = 0, \quad p = (\vec{r}_0, \vec{n}),$$

где $\vec{n}=(\cos\alpha,\cos\beta)$ - орт вектора нормали, а $\cos\alpha,\,\cos\beta$ - его направляющие косинусы:

 $\cos \alpha = \frac{n_x}{|\vec{n}|}, \quad \cos \beta = \frac{n_y}{|\vec{n}|}.$

Nota bene Число p называется прицельным параметром, его геометрический смысл - расстояние от начала отсчета до прямой (длина перпендикуляра, опущенного из точки O на прямую).