## CES Softwareentwicklungspraktikum

Analyse- und Entwurfsdokument

Lena Blum, Alexander Fischer und William Hulin

Matr.-Nr. 302253, 303979 und 293858 email:

[lena.blum|alexander.fischer|william.hulin]@rwth-aachen.de

# Inhaltsverzeichnis

| 1 | Vor | wort                                        | <b>2</b> |
|---|-----|---------------------------------------------|----------|
|   | 1.1 | Aufgabenstellung und Struktur des Dokuments | 2        |
|   | 1.2 | Projektmanagement                           | 2        |
| 2 | Ana | alyse                                       | 3        |
|   | 2.1 | Anforderungsanalyse                         | 3        |
|   |     | 2.1.1 Benutzeranforderungen                 | 3        |
|   |     | 2.1.2 Anwendungsfallanalyse                 |          |
|   | 2.2 | Begriffsanalyse                             | 10       |
| 3 | Ent | wurf                                        | 11       |
|   | 3.1 | Grobentwurf: Subsysteme                     | 11       |
|   | 3.2 | Detailentwurf: Klassen                      | 12       |
|   | 3.3 | Graphical User Interface                    | 17       |
|   | 3.4 | Use-Case-Diagramm                           | 20       |
| 4 | Ber | utzerdokumentation                          | 21       |
|   | 4.1 | Hauptprogramm                               | 21       |
|   | 4.2 | Fehlermeldungen                             |          |
| 5 | Ent | wicklerdokumentation                        | 31       |

## Vorwort

### 1.1 Aufgabenstellung und Struktur des Dokuments

#### Aufgabenstellung

Im Rahmen des Softwareentwicklungspraktikums (CES\_SS2012) soll eine Software zur Simulation eines Stehaufkreisels erstellt werden. Die Simulationssoftware muss sowohl den reibungsfreien, als auch den reibungsbehafteten Fall korrekt simulieren können.

Als Programmiersprache soll C++ verwendet werden. Der Quellcode soll derart strukturiert und kommentiert sein, dass spätere Modifikationen und Erweiterungen durch Dritte möglich sind.

### ${\bf 1.2} \quad {\bf Projekt management}$

| Protoyping (MATLAB/ FORTRAN)                                                | Alexander |
|-----------------------------------------------------------------------------|-----------|
| Dokumentation                                                               | Lena      |
| Coding:                                                                     |           |
| Parameterset, Solver, Solution, Rkv56Parset, Rkv56,                         |           |
| DESolution, «interface» RightSide, RHS, Rkv56Modified                       | Alexander |
| «interface » OutputInterface, OutputToolbox, Main, ExceptionHandlingModule, |           |
| MathException, NonCriticalME, CriticalME, ParameterException                | William   |
| GUI                                                                         | Lena      |

## Analyse

#### 2.1 Anforderungsanalyse

#### 2.1.1 Benutzeranforderungen

Das von Herrn Professor Gauger gestellte Simulationsproblem umfasst die Erstellung einer Software zur Simulation eines Stehaufkreisels.

Die Simulation muss sowohl den reibungsbehafteten, als auch reibungsfreien Fall korrekt simulieren.

Im Speziellen wird ein Runge-Kutta 56-Verfahren mit adaptiver Schrittweitensteuerung unter Betrachtung einer Erhaltungsgröße (*conserved quantity*) zur Simulation des Problems verwendet.

Das Rkv56 Verfahren wurde durch ein StepperDopr853-Verfahren ersetzt, um eine höhere Genauigkeit zu erreichen.

Die Realisierung der Simulation findet in C++ statt.

Die Bedienung sowie das Ausgeben der Simulationsergebnisse muss durch eine grafische Benutzeroberfläche (GUI) möglich sein.

Die Simulationsergebnisse können in einer ASCII-formatierten Datei zur weiteren Verarbeitung und Auswertung exportiert werden.

Durch den modularen Aufbau ist die Wartbarkeit und einfache Erweiterbarkeit der Software durch Dritte gewährleistet.

Das Kernproblem besteht im Lösen der Rechten Seite des folgenden Differentialgleichungssystems:

$$\ddot{\theta}(I + ma^2 \sin^2 \theta + kma \sin \theta (R - a \cos \theta)(-\dot{x}_c \sin \phi + \dot{y}_c \cos \phi + (R - a \cos \theta)\dot{\theta}))$$

$$= \underbrace{-(I_3 - I)\dot{\phi}^2 \sin \theta \cos \theta}_{=0} - I_3\dot{\phi}\sin \theta\dot{\psi} + (g + a\dot{\theta}^2 \cos \theta)(-ma \sin \theta - km(R - a \cos \theta))$$

$$(-\dot{x}_c \sin \phi + \dot{y}_c \cos \phi + (R - a \cos \theta)\dot{\theta}))$$

$$\ddot{\phi}I\sin\theta = -\underbrace{(2I - I_3)}_{=I}\dot{\phi}\dot{\theta}\cos\theta + I_3\dot{\theta}\dot{\psi}$$

$$-km(g + a\cos\theta\dot{\theta}^2 + a\sin\theta\ddot{\theta})(a - R\cos\theta)(\dot{x}_c\cos\phi + \dot{y}_c\sin\phi + (a\dot{\phi} + \dot{\psi}R)\sin\theta)$$

$$\ddot{\psi}I_3 = -I_3(\ddot{\phi}\cos\theta - \dot{\phi}\dot{\theta}\sin\theta)$$

$$-km(g + a\cos\theta\dot{\theta}^2 + a\sin\theta\ddot{\theta})(R\sin\theta)(\dot{x}_c\cos\phi + \dot{y}_c\sin\phi + (a\dot{\phi} + \dot{\psi}R)\sin\theta)$$

$$m\ddot{x}_c = -km(g + a\cos\theta\dot{\theta}^2 + a\sin\theta\ddot{\theta})(\dot{x}_c + (a\dot{\phi} + \dot{\psi}R)\sin\theta\cos\phi + (a\cos\theta - R)\sin\phi\dot{\theta})$$

$$m\ddot{y}_c = -km(g + a\cos\theta\dot{\theta}^2 + a\sin\theta\ddot{\theta})(\dot{y}_c + (a\dot{\phi} + \dot{\psi}R)\sin\theta\sin\phi + (R - a\cos\theta)\cos\phi\dot{\theta})$$

### ${\bf 2.1.2}\quad {\bf An wendungs fall analyse}$

## Beschreibung der Anwendungsfälle

| Name                        | Export as Tec          | plot file                                                   |
|-----------------------------|------------------------|-------------------------------------------------------------|
| Ziel                        | Enable storag          | e of simulation da-<br>on file format                       |
| Einordnung                  |                        |                                                             |
| Vorbedingung                | Simulation ha          | s been run or im-                                           |
| Nachbedingung               | A tecplot file         | has been created                                            |
| Nachbedingung im Fehlerfall |                        |                                                             |
| Haupt-Neben-akteure         | User                   |                                                             |
| Auslöser                    | User presses<br>button | the Export Data                                             |
| Standardfluss               | Schritt                | Aktion                                                      |
|                             | 1                      | User presses the<br>Export Data button                      |
|                             | 2                      | User choses a file<br>name and directory<br>in a new dialog |
|                             | 3                      | Export file is created and the main window resumed          |

| Name                        | Import from T                    | Tecplot file                                             |
|-----------------------------|----------------------------------|----------------------------------------------------------|
| Ziel                        | Enable recoverstored data        | ery of previously                                        |
| Einordnung                  |                                  |                                                          |
| Vorbedingung                | Simulation da<br>ted as a tecplo | ta has been expor-<br>ot file                            |
| Nachbedingung               | Simulation dagraphed             | ata is loaded and                                        |
| Nachbedingung im Fehlerfall |                                  |                                                          |
| Haupt-Neben-akteure         | User                             |                                                          |
| Auslöser                    | User presses<br>button           | the Import Data                                          |
| Standardfluss               | Schritt                          | Aktion                                                   |
|                             | 1                                | User presses the Import Data button                      |
|                             | 2                                | User selects a file to import from a new dialog          |
|                             | 3                                | Simulation data is loaded and graphed in the main window |

| Name                        | Input Parame                   | ters                                                                                                                          |
|-----------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Ziel                        | A set of valid pen loaded into | parameters has be-                                                                                                            |
| Einordnung                  |                                |                                                                                                                               |
| Vorbedingung                |                                |                                                                                                                               |
| Nachbedingung               | The user can s                 | start a simulation                                                                                                            |
| Nachbedingung im Fehlerfall | Errormessage                   | is shown                                                                                                                      |
| Haupt-Neben-akteure         | User                           |                                                                                                                               |
| Auslöser                    | User presses meter button      | the Change Para-<br>in the GUI                                                                                                |
| Standardfluss               | Schritt                        | Aktion                                                                                                                        |
|                             | 1                              | User presses the Change Parameter button in the GUI                                                                           |
|                             | 2                              | User enters parameters in a popupwindow or clicks on the <i>Import Parameters</i> button and selects a file in the new dialog |
|                             | 3                              | User clicks Submit   Changes to close the parameters dialog                                                                   |
| Nebenfluss                  | Schritt<br>2a                  | Aktion User can export the current parameters to a file using the Export Parameters button                                    |

Save/Load parameters from file: See  $Input\ Parameters$ .

| Name                        | Start Simulati              | on                                           |
|-----------------------------|-----------------------------|----------------------------------------------|
| Ziel                        | Run the ma                  | athematical solver                           |
| Einordnung                  |                             |                                              |
| Vorbedingung                | Parameters h and checked fo | ave been entered<br>or validity              |
| Nachbedingung               | Solver is finish created    | ed, output is being                          |
| Nachbedingung im Fehlerfall |                             | not finish calculati-<br>dialog is displayed |
| Haupt-Neben-akteure         | User, Solver                |                                              |
| Auslöser                    | User presses the in the GUI | ne Simulate button                           |
| Standardfluss               | Schritt                     | Aktion                                       |
|                             | 1                           | User starts the simulation                   |
|                             | 2                           | GUI is disabled                              |
|                             | 3                           | Run the solver Draw output Gra-              |
|                             | 5                           | phs Enable GUI                               |

| Name                        | Toggle View                      |                                                               |
|-----------------------------|----------------------------------|---------------------------------------------------------------|
| Ziel                        | Enable the us<br>rent set of gra | er to view a diffe-<br>phs                                    |
| Einordnung                  |                                  |                                                               |
| Vorbedingung                | There is simugraphed             | lation data to be                                             |
| Nachbedingung               | A different gra                  | aph is displayed                                              |
| Nachbedingung im Fehlerfall |                                  |                                                               |
| Haupt-Neben-akteure         | User                             |                                                               |
| Auslöser                    | User toggles ti                  | he spinbox                                                    |
| Standardfluss               | Schritt                          | Aktion                                                        |
|                             | 1                                | User selects a different graph from the spinbox               |
|                             | 2                                | A new set of data is graphed according to the number selected |

#### Systemanforderungen

#### Funktionale Anforderungen

Dem Anwender ist es möglich die Simulationsparameter k (Reibung) sowie  $\dot{\psi}(rad/s), \theta(rad), R(cm), a(cm), m(g)$  und die Toleranz der Erhaltungsgröße über eine grafische Eingabemaske festzulegen. Wenn während der Simulation ein Fehler auftritt wird der Anwender über ein Popup-Fenster benachrichtigt. Nach Durchlauf der Simulation bekommt der Anwender die Simulationsergebnisse -  $\theta, \psi, \phi, x_c, y_c, \dot{\theta}, \dot{\psi}, \dot{\phi}, v_x, v_y$  - in Form von LineCharts in eine GUI eingebettet angezeigt.

Die auf der GUI ausgegebenen Plots können als Bilddatei oder im Tecplotformat exportiert werden.

Kommt es während der Laufzeit zu einem kritischen Fehler (ein Fehler, der das korrekte Fortführen des Programmes unmöglich macht) wird der Anwender über

ein Popup-Fenster benachrichtigt und das an die Stelle zurückgesetzt, an der der Fehler auftrat.

#### Nicht-Funktionale Anforderungen

Die Exportfunktion der Simulationssoftware schreibt Tecplot konforme ASCII-kodierte Ausgabedateien. Vormals exportierte Dateien können wieder importiert und geplottet werden. Ebenso können ältere Parameterkonfigurationen importiert werden.

### 2.2 Begriffsanalyse

- LineChart Zwei Achsen Diagramm mit Kartesischem Koordinatensystem. Die einzelnen Datenpunkte sind durch gerade Linien verbunden.
- GUI Eine grafische Benutzeroberfläche (GBO oder GUI) ist eine Software-Komponente, die dem Benutzer eines Computers die Interaktion mit der Maschine über grafische Symbole erlaubt.
- θ Nutation
- φ Präzession
- $\psi$  Rotation
- $x_c$  x-Koordinate
- $y_c$  y-Koordintate
- $\dot{\theta}$  Nutationsgeschwindigkeit
- $\dot{\phi}$  Präzessionsgeschwindigkeit
- ullet  $\dot{\psi}$  Rotationsgeschwindigkeit
- $v_x$  Geschwindigkeit in x-Richtung
- ullet  $v_y$   $Geschwindigkeit\ in\ y$ -Richtung
- R Radius
- $\bullet$  k Reibungskoeffizient
- a Abstand vom Mittelpunkt zum Schwerpunkt
- m Masse des Kreisels
- $\bullet$  G Erhaltungsgröße
- atol absolute Toleranz des Runge-Kutta-Verfahrens
- rtol relative Toleranz des Runge-Kutta-Verfahrens

# Entwurf

## 3.1 Grobentwurf: Subsysteme



## 3.2 Detailentwurf: Klassen





#### StepperDopr853 - Dormand-Prince 853 method

Entwicklungsschritte vom Prototypen zum fertigen Löser

Um Referenzdaten erzeugen zu können und frühzeitig mathematische Fehler ausschließen zu können haben wir uns für die Implementierung eines Prototypen entschieden. Nach der ersten Implementierung eines rkv56 Verfahrens in Matlab entschieden wir uns, zu Gunsten einer höheren Genauigkeit und Geschwindigkeit, weiter Implementierungen in Fortran95 zu programmieren.

Der fertige Fortran Prototyp, ebenfalls ein Runge-Kutta 56 mit adaptiver Schrittweitensteuerung, benötigte für die Lösung des TippeTop Problems<sup>1</sup>

```
Simulation of the TippeTop gyro
Performing rkv56
Solution computed
Steps:
3160922
Done
```

Lösung des Prototypen für  $\dot{\psi}$  in rot/s

 $<sup>\</sup>frac{1}{1}k = 0.3, h_{min} = 10^{-8}, h_{max} = 10^{-6}, rtol = atol = 10^{-4}, y0 = (0.0, 0.0, 250.0, 0.0, 0.0, 0.1, 0.0, 0.0, 0.0, 0.0), T = [0, 2.75], dG < 10^{-6}, 3160922$  Einzelschritte.



Auf Grund der Erfahrung mit dem Prototypen entschieden wir uns für die Verwendung eines Dopr853 Verfahrens. Die erste Implementierung unter Verwendung des Datentyps double (auf 15 Nachkommastellen genau) lieferte leider signifikant falsche Ergebnisse



Die korrekte Lösung der rkf56 Fortran95 Implementierung ist rot dargestellt, die falsche Lösung des Dopr853\_double Algorithmus in blau. Es lag nahe das diese Unterschiede in der Lösung auf Ungenauigkeiten in der Auswertung der steifen rechten Seite und den Berechnungen des Dopr853 Algorithmus zurückzuführen waren. Wir entschieden uns also für die Verwendung eines genaueren Datentyps,

und zwar NTL::RR aus der NTL library<sup>2</sup>

Unter verwendung des NTL::RR Datentyps kann der fertige Löser (Dopr853 in C++) die Lösung des Problems<sup>1</sup> in 852 Schritten berechnen.

Lösung für  $\dot{\psi}$ (Drehgeschwindigkeit) mit Dopr853:



Der Dopr853 Algorithmus ist ein Algorithmus aus der Familie der Runge-Kutta Algorithmen der Ordnung 8. Für jeden Schritt werden 12 Auswertungen der rechten Seite des DGL benötigt. Der ursprüngliche Algorithmus nutzte eine Fehlerschätzung der Ordnung 6, was sich allerdings in einigen Fällen als unzureichend herausstellte, da dieser Fehlerschätzer jeweils die letzte Auswertung nicht berücksichtigte. Hairer, Nörsett und Wanner<sup>3</sup> konstruierten Abschätzungen der fünften und dritten Ordnung, die auch den letzen Punkt berücksichtigen. Der Fehler kann also über

$$err = err_5 \frac{err_5}{\sqrt{(err_3)^2 + 0.01(err_5)^2}}$$

abgeschätzt werden.

Die meiste Zeit über gilt  $err_5 \ll err_3$  und damit  $err = O(h^8)$ .

Stepper Dopr<br/>853 wurde als Mehrschrittverfahren mit fehlergesteuerter Schrittweitensteuerung implementiert, die neben dem geschätzten Fehler auch noch die Erhaltungsgröße

<sup>&</sup>lt;sup>2</sup>http://www.shoup.net/ntl/

<sup>&</sup>lt;sup>3</sup>Hairer, E., Nørsett, S.P., and Wanner, G. 1993, Solving Ordinary Differential Equations I. Nonstiff Problems, 2nd ed. (New York: Springer). Fortran codes at http://www.unige.ch/hairer/software.html

 $IR\dot{\phi}\sin^2\theta+I_3(R\cos\theta-a)(\dot{\phi}\cos\theta+\dot{\psi})=const=:G$ berücksichtigt. ( $\Delta G$  pro Schritt < 1E-6). Der Löser unterstützt sowohl eine dichte Ausgabe dense~output, als auch die Ausgabe von n äquidistant verteilten Werten.<sup>4</sup>

 $<sup>^4\</sup>mathrm{Frei}$ nach Numerical Recipes3rdEdition - Chapter 17.2.4 Dopr<br/>853 - An Eight-Order Method Implementierung nach Numerical Recipes Software 2007, "Routine Implementing an Eighth-order Runge-Kutta Method,"<br/>Numerical Recipes Webnote No. 20, at <a href="http://www.nr.com/webnotes?20">http://www.nr.com/webnotes?20</a>

### 3.3 Graphical User Interface







|                 | Dialog                |
|-----------------|-----------------------|
| ✓ Friction      |                       |
| psidot0 [rad/s] | 250                   |
| theta0 [rad]    | 0.1                   |
| R [cm]          | 2.5                   |
| a [cm]          | 0.5                   |
| m [g]           | 15                    |
| k [s/cm]        | 0.3                   |
| tolerance       | 1E-4                  |
| cq tolerance    | 1E-4                  |
| t_max [s]       | 2.75                  |
| Import Export   | Cancel Submit Changes |

## 3.4 Use-Case-Diagramm

## Use Case Diagram



## Benutzerdokumentation

### 4.1 Hauptprogramm



Mit einem Mouseclick auf 'Change Parameter' öffnet sich das Parameterfenster:

|                 | Dialog                |
|-----------------|-----------------------|
| ✓ Friction      |                       |
| psidot0 [rad/s] | 250                   |
| theta0 [rad]    | 0.1                   |
| R [cm]          | 2.5                   |
| a [cm]          | 0.5                   |
| m [g]           | 15                    |
| k [s/cm]        | 0.3                   |
| tolerance       | 1E-4                  |
| cq tolerance    | 1E-4                  |
| t_max [s]       | 2.75                  |
| Import Export   | Cancel Submit Changes |

Hier hat der Nutzer die Möglichkeit, die Reibung durch Klicken einer Checkbox ein- bzw. auszuschalten.

| dir bzw. auszuschanten. | Dialog                |
|-------------------------|-----------------------|
| Friction                |                       |
| psidot0 [rad/s]         | 250                   |
| thetaO [rad]            | 0.1                   |
| R [cm]                  | 2.5                   |
| a [cm]                  | 0.5                   |
| m [g]                   | 15                    |
| k [s/cm]                | 0                     |
| tolerance               | 1E-4                  |
| cq tolerance            | 1E-4                  |
| t_max [s]               | 2.75                  |
| Import Export           | Cancel Submit Changes |

Ebenso kann er eine Parameterkonfiguration als \*.par exportieren und wieder importieren.



Nachdem die Parameter mit dem Button 'Submit Changes' gesetzt worden sind, klickt der Nutzer im Hauptfenster auf 'Simulate' und nachdem die Berechnung durch das Programm erfolgt ist, erscheint der erste Graph  $\dot{\theta}$ .









Im Hauptfenster kann der Nutzer nach erfolgter Simulation die Daten entweder als Tecplot oder als \*.gyro speichern und bereits exportierte Daten wieder importieren.



### 4.2 Fehlermeldungen

Bei physikalisch falschen Eingaben erfolgt eine Fehlermeldung.

|                                                                                       | Dialog                          |
|---------------------------------------------------------------------------------------|---------------------------------|
| ✓ Friction                                                                            |                                 |
| psidot0 [rad/s]                                                                       | 250                             |
| theta0 [rad]                                                                          | 0.1                             |
| R [cm]                                                                                | 2.5                             |
| a [cm]                                                                                | 0.5                             |
| m [g]                                                                                 | -10                             |
| k [s/cm]                                                                              | 0.3                             |
| tolerance                                                                             | 1E-4                            |
| cq tolerance                                                                          | 1E-4                            |
| t_max [s]                                                                             | 2.75                            |
| Import Export                                                                         | Cancel Submit Changes           |
|                                                                                       |                                 |
|                                                                                       | Dialog                          |
| ✓ Friction                                                                            | Dialog                          |
|                                                                                       | Dialog                          |
| ✓ Friction                                                                            |                                 |
| ✓ Friction psidot0 [rad/s]                                                            | 250                             |
| ✓ Friction  psidot0 [rad/s]  theta0 [rad]                                             | 250                             |
| ☑ Friction psidot0 [rad/s] theta0 [rad] R [cm]                                        | 250       0.1       2.5         |
| ✓ Friction psidot0 [rad/s] theta0 [rad] R [cm] a [cm]                                 | 250<br>0.1<br>2.5<br>0.5        |
| ✓ Friction  psidot0 [rad/s]  theta0 [rad]  R [cm]  a [cm]  m [g]                      | 250<br>0.1<br>2.5<br>0.5<br>-15 |
| ✓ Friction  psidot0 [rad/s]  theta0 [rad]  R [cm]  a [cm]  m [g]  k [s/cm]            | 250<br>0.1<br>2.5<br>0.5<br>-15 |
| ✓ Friction  psidotO [rad/s]  thetaO [rad]  R [cm]  a [cm]  m [g]  k [s/cm]  tolerance | 250 0.1 2.5 0.5 -15 0.3 1E-4    |

|                                                                     | Dialog                                  |
|---------------------------------------------------------------------|-----------------------------------------|
| ✓ Friction                                                          |                                         |
| psidot0 [rad/s]                                                     | 250                                     |
| theta0 [rad]                                                        | 0.1                                     |
| R [cm]                                                              | - 2.5                                   |
| a [cm]                                                              | 0.5                                     |
| m [g]                                                               | 15                                      |
| k [s/cm]                                                            | 0.3                                     |
| tolerance                                                           | 1E-4                                    |
| cq tolerance                                                        | 1E-4                                    |
| t_max [s]                                                           | 2.75                                    |
| Import Export                                                       | Cancel Submit Changes                   |
|                                                                     |                                         |
|                                                                     | Dialog                                  |
| ✓ Friction                                                          | Dialog                                  |
| ✓ Friction psidot0 [rad/s]                                          | Dialog 250                              |
|                                                                     |                                         |
| psidot0 [rad/s]                                                     | 250                                     |
| psidot0 [rad/s]<br>theta0 [rad]                                     | 250                                     |
| psidot0 [rad/s]<br>theta0 [rad]<br>R [cm]                           | 250<br>0.1<br>-2.5                      |
| psidot0 [rad/s] theta0 [rad] R [cm] a [cm]                          | 0.1<br>-2.5<br>0.5                      |
| psidot0 [rad/s] theta0 [rad] R [cm] a [cm] m [g]                    | 250<br>0.1<br>-2.5<br>0.5               |
| psidotO [rad/s] thetaO [rad] R [cm] a [cm] m [g] k [s/cm]           | 250<br>0.1<br>-2.5<br>0.5<br>15<br>-0.3 |
| psidotO [rad/s] thetaO [rad] R [cm] a [cm] m [g] k [s/cm] tolerance | 250<br>0.1<br>-2.5<br>0.5<br>15<br>-0.3 |



# Entwicklerdokumentation

Im separaten Dokument Entwicklerdokumentation zu finden.