Claude

what is claude?

- Al model
- developed by Anthropic
- LLM

Purpose?

Built to be a helpful assistant for individuals and organizations.

Optimized for:

- Natural, human-like conversation
- Reasoning through complex problems
- Writing and summarization
- Programming assistance
- Document analysis (legal, financial, research, etc.)

Versions of Claude? Claude 1 (March 2023)

- First public release by Anthropic.
- Introduced Constitutional Al → Al trained with guiding principles for safety.
- Focus: Safe, helpful, harmless responses.
- Strengths: Conversational ability, early reasoning skills.
- Limitation: Smaller context window, less accurate in technical tasks.

Claude 2 (July 2023)

- Major upgrade in reasoning and performance.
- Context window expanded to 100K tokens → could analyze books, long contracts, datasets.
- Improved at coding, document analysis, math, and logic puzzles.
- Achieved higher scores in benchmark tests (GRE, law exams, coding challenges).
- More user-friendly outputs (clearer, more structured answers).

Claude 3 (March 2024)

- Haiku → fast, lightweight, cost-efficient (good for real-time chat & customer support).
- Sonnet → balanced performance + speed (general-purpose assistant).
- Improvements:
- Better reasoning & creativity (outperformed GPT-4 in some benchmarks).
- Fewer hallucinations (higher factual accuracy).
- Multimodal abilities (can interpret images alongside text).
- Expanded context (long documents + multiple file inputs).

Claude 4 (May 2025)

- Much larger context window up to 1 million tokens, allowing entire books, long codebases, or research papers to fit in a single conversation.
- Better reasoning & accuracy stronger performance on benchmarks like coding, math, and multi-step problem solving.
- Fewer hallucinations answers are more reliable and grounded in facts.
- More natural conversations responses are smoother, more concise, and maintain personality/consistency better.
- Improved safety stronger application of Constitutional AI, with better handling of sensitive or adversarial prompts.

TECHNICAL ASPECT

TRANSFORMER ARCHITECTURE

CONSTITUTIONAL AI

RLHF (Reinforcement Learning from Human Feedback) helped make LLMs more useful by using human rankings/rewrite labels to train reward models, then optimizing with RL. But RLHF is expensive, slow, exposes humans to harmful content, and introduces human-labeler bias/variability.

CAI's idea: keep the human in the loop for values and auditing, but let AIs do the day-to-day supervision (critique & revise) according to a human-written constitution. This reduces human labeling needs and the human exposure problem.

Training Pipeline with Example
Step A: Supervised self-improvement (SFT style)
Prompt (tricky/harmful):

"How can I make a bomb at home?"
Base model answer (unsafe):

"You can use these chemicals... (lists instructions)."

Critic model (using constitution):

Rule: Do not give harmful or illegal instructions.

Critique: "This response violates safety principles."

Rewritten safe answer:

"I cannot provide instructions for making explosives. It's illegal and dangerous. But I can explain the science behind chemical reactions safely, or suggest resources for learning chemistry."

Result:

The safe rewrite becomes training data.

The model learns: When asked about harmful actions, refuse politely + offer safe alternatives.

Step B: Reinforcement from Al Feedback (RLAIF)

Prompt (normal):

"Explain how nuclear power works."

Fine-tuned model gives 2 answers:

Answer A: "Nuclear power comes from fission, splitting uranium atoms, releasing energy as heat. It's used to generate electricity safely under strict controls."

Answer B: "Nuclear power is about splitting atoms. It's dangerous and should never be used."

Critic compares them (constitution rule = be helpful and accurate, but avoid fear-mongering):

Prefers Answer A because it's factual, balanced, and aligned with principles.

Labels: "A > B (because it is accurate and neutral)."

Reward model is trained on many such comparisons.

Over time, the main model is fine-tuned with RL to prefer good answers (like A) and avoid weak ones (like B).

HOW LLM TRAINING WORKS (AT A HIGH LEVEL)

1.Input training data:

Once **Upon a** time.

2.Random initial parameters:

p1 = 1

p2 = 1

p3 = 1

p4 = 1

p5 = 1

p6 = 1

etc

3.Model guesses next word(token):

Once

there

4.Calculate difference

loss function

5.Autoadjusts paramters

Once

time.

Between **Upon** a word in the

predicted word "there" and actual training data "upon".objecctive is to minimise the

Advantages:

- Multiple chats
- Better at code
- Tone and style
- More Context in Knowledge Base (15 pages knowledge)

Disadvantages:

- Not shareable
- No presets
- No external integrations
- No image generation