Второе домашнее задание СПБ, Академический Университет, 9 сентября 2014

Содержание

O	бязательны	е задачи	2
1	Задача А.	Число Фибоначчи [1 секунда, 256 mb]	2
2	Задача В.	Проверка ПСП [1 секунда, 256 mb]	3
3	Задача С.	Дети знакомятся [1 секунда, 256 mb]	4
4	Задача D.	Сосчитайте[1 секунда, 256 mb]	5
5	Задача Е.	Перестановки [1 секунда, 256 mb]	6
6	Задача F.	Площадь и прямоугольники [1 секунда, 256 mb]	7
7	Задача G .	Про спрайт [1 секунда, 256 mb]	8
8	Задача Н.	Маленький холодильник [1 секунда, 256 mb]	9
Д	ополнитель	ная задача	10
9	Задача I.	Большой холодильник [5 секунд, 256 mb]	10

Обязательные задачи

1 Задача А. Число Фибоначчи [1 секунда, 256 mb]

Числа Фибоначчи $F_0, F_1, F_2, \ldots, F_n$ определяются следующим образом: $F_0 = F_1 = 1$, а для любого n > 1 выполнено равенство $F_n = F_{n-1} + F_{n-2}$.

По заданному числу n выведите число Фибоначчи F_n .

Формат входных данных

В первой строке входного файла задано единственное число $n \ (0 \le n \le 45)$.

Формат выходных данных

Выведите число F_n в первой строке выходного файла.

fib.in	fib.out
1	1
2	2
3	3
4	5
5	8
6	13

Второе домашнее задание СПБ, Академический Университет, 9 сентября 2014

2 Задача В. Проверка ПСП [1 секунда, 256 mb]

Дана строка, состоящая из круглых, квадратных и фигурных скобок. Нужно проверить, является ли она правильной скобочной последовательностью.

Формат входных данных

Во входном файле записана скобочная последовательность длиной не более $10\,000$ символов.

Формат выходных данных

Выведите YES, если скобочная последовательность является правильной, и NO в противном случае.

check.in	check.out
([]())	YES
([)]	NO

3 Задача С. Дети знакомятся [1 секунда, 256 mb]

Мальчики и девочки со всего лагеря собрались на самой большой поляне, встали в круг, и решили познакомиться. У каждого ребенка есть имя. В определенном порядке каждый ребенок кричит «меня зовут X слева от меня стоит L, справа от меня стоит R», выходит из круга и убегает на полдник. Когда в круге остается 3 человека, они перестают кричать и спокойно расходятся. Известны имена детей и порядок, в котором они выходили из круга. Восстановите, что они кричали.

Формат входных данных

На первой строке количество детей n ($4 \le n \le 10^5$). На второй строке даны имена детей $s_1, s_2 \ldots, s_n$. Дети даны в порядке против часовой стрелки и занумерованы целыми числами от 1 до n. Имена состоят из букв латинского алфавита. Длина имен не более 10. Имена могут совпадать. В третьей строке даны n-3 числа — номера детей, которые выходили из круга.

Формат выходных данных

Для каждого вышедшего из круга ребенка выведите имена L и R, которые он прокричал.

meeting.in	meeting.out
9	A C
A B C D E F G H Masha	CE
2 4 7 5 3 1	F H
	C F
	A F
	Masha F

4 Задача D. Сосчитайте... [1 секунда, 256 mb]

Ваша задача — подсчитать количество неотрицательных целых решений неравенства

$$x_1 + x_2 + \ldots + x_m \leqslant n,$$

где $1 \leqslant m \leqslant 30, \, 0 \leqslant n \leqslant 30.$

Формат входных данных

Входной файл состоит из двух целых чисел m и n.

Формат выходных данных

В выходной файл необходимо вывести количество решений этого неравенства в неотрицательных целых числах.

count.in	count.out
3 5	56

Второе домашнее задание СПБ, Академический Университет, 9 сентября 2014

5 Задача Е. Перестановки [1 секунда, 256 mb]

Во входном файле задано число n ($1 \le n \le 8$). Выведите в выходной файл в лексикографическом порядке все перестановки чисел от 1 до n.

perm.in	perm.out
3	1 2 3
	1 3 2
	2 1 3
	2 3 1
	3 1 2
	3 2 1

6 Задача F. Площадь и прямоугольники [1 секунда, 256 mb]

На плоскости задано N прямоугольников с вершинами в точках с целыми координатами и сторонами, параллельными осям координат. Необходимо посчитать площадь их пересечения.

Формат входных данных

В первой строке входного файла указано число N ($1 \le N \le 1500$). В следующих N строках заданы по 4 целых числа x_1, y_1, x_2, y_2 — сначала координаты левого нижнего угла прямоугольника, потом правого верхнего ($-10^9 \le x_1 \le x_2 \le 10^9, -10^9 \le y_1 \le y_2 \le 10^9$). Обратите внимание, что прямоугольники могут вырождаться в отрезки и даже в точки.

Формат выходных данных

Выведите требуемое число.

rect1.in	rect1.out
2	1
0 0 2 2	
1 1 3 3	

7 Задача G. Про спрайт [1 секунда, 256 mb]

86 класс решил на слет взять много Спрайта. Для этого они собрались сконструировать переносной холодильник $a \times b \times c$, который будет вмещать ровно n кубических банок Спрайта размером $1 \times 1 \times 1$ Чтобы лимонад доехал как можно более холодным, они хотят минимизоровать теплопотери; то есть минимизировать площадь поверхности.

Например, если емкость холодильника должна равняться 12, то возможны следующие варианты:

 $322 \rightarrow 32$

 $431 \rightarrow 38$

 $621 \rightarrow 40$

 $1211 \to 50$

В этом примере оптимальным является холодильник 322.

Помогите 8б найти оптимальный холодильник в общем случае.

Формат входных данных

Число $n \ (1 \le n \le 10^6)$

Формат выходных данных

Три числа a, b, c $(1 \le n \le 10^6)$ — размеры наилучшего холодильника.

Если оптимальных ответов несколько, выведите лексикографически минимальный.

sprite.in	sprite.out
12	2 2 3
13	1 1 13
1000000	100 100 100

8 Задача Н. Маленький холодильник [1 секунда, 256 mb]

Дано целое число n ($1 \le n \le 10^{12}$). Нужно найти натуральные a,b,c: abc=n и при этом 2(ab+bc+ca) минимально. Т.е. при фиксированном объеме минимимизировать площадь поверхности.

Формат входных данных

На первой строке число n ($1 \le n \le 10^{12}$).

Формат выходных данных

На первой строке четыре целые числа — 2(ab+bc+ca) и a,b,c.

refrator.in	refrator.out
120	148 4 6 5

Дополнительная задача

9 Задача І. Большой холодильник [5 секунд, 256 mb]

Вася хочет купить новый холодильник. Он считает, что холодильник должен быть прямоугольным параллелепипедом с целочисленными длинами ребер. Вася рассчитал, что для повседневного пользования ему понадобится холодильник объема не меньше V. Кроме того, Вася по натуре минималист, поэтому объем должен быть и не больше V — к чему занимать лишнее место в квартире? Определившись с объемом холодильника, Вася столкнулся с новой непростой задачей — чтобы холодильник было проще мыть, при фиксированном объеме V он должен иметь минимальную площадь поверхности.

Объем и площадь поверхности холодильника с ребрами a, b, c равны V = abc и S = 2(ab + bc + ca), соответственно.

Помогите Васе по заданному объему V найти такие целые длины ребер холодильника a, b, c, чтобы объем холодильника был равен V и при этом его площадь поверхности S была минимальна.

Формат входных данных

В первой строке записано единственное целое число t ($1 \le t \le 500$) — количество наборов данных.

Далее следует описание t наборов данных. Каждый набор состоит из одного целого числа V ($2 \le V \le 10^{18}$), заданного своим разложением на множители следующим образом.

Пусть $V=p_1^{a_1}p_2^{a_2}\dots p_k^{a_k}$, где p_i — различные простые числа, а a_i — положительные целые степени.

Тогда в первой строке описания набора данных записано единственное положительное целое число k — количество различных простых делителей V. В следующих k строках записаны простые числа p_i и их степени a_i , разделенные пробелом. Все p_i различны, все $a_i > 0$.

Формат выходных данных

Выведите t строк, в i-й строке выведите ответ на i-й набор данных — четыре целых числа, записанные через пробел: минимальная возможная площадь поверхности S и соответствующие длины ребер a, b, c. Если вариантов длин ребер, дающих минимальную площадь, несколько, разрешается вывести любой из них. Длины ребер холодильника разрешается выводить в любом порядке.

Второе домашнее задание СПБ, Академический Университет, 9 сентября 2014

Примеры

refrigerator.in	refrigerator.out
3	24 2 2 2
1	70 1 1 17
2 3	148 4 6 5
1	
17 1	
3	
3 1	
2 3	
5 1	

Замечание

В первом наборе данных примера объем холодильника $V=2^3=8,$ и минимальную площадь поверхности дадут ребра одинаковой длины.

Во втором наборе данных объем V=17, и его можно получить из единственного набора ребер целочисленных длин.