Disclaimer

Auch in diesem Dokument können sich Fehler befinden! Sie sind nicht die Musterlösung der Aufgaben, sondern selbst erstellte Lösungen.

Als generelle Lektüre kann ich nur das Skript von Markus Junker aus dem WS 17/18 empfehlen:

http://home.mathematik.uni-freiburg.de/junker/skripte/InfoLogik.pdf Hier ist vieles sehr genau und verständlich erklärt.

Siehe auch

Aufgabe 1 (4 Punkte).

Sei \mathcal{L} die Sprache mit einem zweistelligen Relationszeichen E. Wir betrachten zwei \mathcal{L} -Strukturen \mathcal{A} und \mathcal{B} derart, dass $E^{\mathcal{A}}$ und $E^{\mathcal{B}}$ Äquivalenzrelationen sind. Ferner ist jede Äquivalenzklasse unendlich und es gibt unendlich viele Äquivalenzklassen (in beiden Strukturen). Zeige, dass \mathcal{A} und \mathcal{B} ein nichtleeres Back-&-Forth System haben.

Beweis:

Wir sollen zeigen, dass es ein nicht leeres Back and Forth System gibt, also müssen wir uns zuerst eines aussuchen.

Hierfür empfiehlt es sich zuerst mit folgendem S anzufangen: $S = \{F : \mathfrak{C} \to \mathfrak{D} \mathscr{L} - Isomorphismus | \mathfrak{C} \subset \mathfrak{A}, \mathfrak{D} \subset \mathfrak{B}, \text{ wobei } \mathfrak{C}, \mathfrak{D} \text{ endlich erzeugt} \} \text{ ist.}$ Mit $\mathfrak{C} \subset \mathfrak{A}$ ist gemeint, dass \mathfrak{C} Unterstruktur von \mathfrak{A} ist.

Zeigen wir also nun, dass S ein nichtleeres Back and Forth System ist.

• S ist nichtleer Sei gegeben: $\mathfrak{C} = (\{c\}, \{E^{\mathfrak{C}}\}), \mathfrak{D} = (\{d\}, \{E^{\mathfrak{D}}\})$

Dann gilt, dass $F : \{c\} \to \{d\}, c \mapsto d$ Isomorphismus ist (Die von $\{c\}$ und $\{d\}$ erzeugten Mengen sind wieder $\{c\}$ bzw. $\{d\}$ und offensichtlich endlich erzeugt),

da F klar bijektiv und E in beiden Strukturen Äquivalenzerelartion ist, womit F auch starker \mathscr{L} -Hom. ist.

• S ist Back Forth System

- Back:

Aufgabe 2 (5 Punkte).

- (a) Sei $\mathcal{L} = \{P\}$ die Sprache, welche aus einem einstelligen Relationszeichen P besteht. Schreibe eine Theorie, deren Modelle genau die \mathcal{L} -Strukturen \mathcal{A} sind, so dass $P^{\mathcal{A}}$ als auch $A \setminus P^{\mathcal{A}}$ unendlich sind.
- (b) Sei $\mathcal{L} = \{E\}$ die Sprache, welche aus einem zweistelligen Relationszeichen E besteht. Schreibe eine Theorie, deren Modelle genau die \mathcal{L} -Strukturen \mathcal{A} sind, in denen $E^{\mathcal{A}}$ eine Äquivalenzrelation auf A mit genau einer Klasse der Größe n für jedes n aus \mathbb{N} ist.
- (c) Für zwei L-Strukturen wie in (b), ist die Kollektion aller partiellen Isomorphismen zwischen endlich erzeugten Unterstrukturen ein nichtleeres Back-&-Forth System?

Eine Theorie ist eine Menge T von \mathscr{L} -Aussagen.

• a)

 $T = A_1 \cup A_2$ $A_1 = \{\exists x_1 \dots \exists x_n (\bigwedge_{i \neq j} (\neg x_i \doteq x_j \land P(x_i, x_j))) | n \in \mathbb{N} \}$

Also keine zwei Variablen sind gleich und alle n sind in Relation

- \Rightarrow Es gibt min n Elemente in P $\forall n \in \mathbb{N}$
- \Rightarrow Es gibt unendlich viele Elemente in P

$$A_2 = \{\exists x_1 \dots \exists x_n (\bigwedge_{i \neq j} (\neg x_i \doteq x_j \land \neg P(x_i, x_j))) | n \in \mathbb{N}\}$$

Es sind also mindestens n Elemente nicht in P $\forall n \in \mathbb{N}$

⇒ Es gibt unendlich viele Elemente, die nicht in P liegen.

Aus $T = A_1 \cup A_2$ folgt, dass unendlich viele Elemente in P sind und unendlich viele es nicht sind.

• b)

Aufgabe 3 (5 Punkte).

Sei R ein zweistelliges Relationszeichen. Ein Zufallsgraph ist ein Graph \mathcal{G} , der gesehen als $\{R\}$ -Struktur (siehe Aufgabe 4, Blatt 2) die folgende Eigenschaft hat: Für je zwei endliche disjunkte Teilmengen A und B der Grundmenge gibt es einen Punkt c, so dass

$$(a,c) \in R^{\mathcal{G}}$$
, aber $(b,c) \notin R^{\mathcal{G}}$

für alle a aus A und b aus B.

- (a) Gibt es endliche Zufallsgraphen? Wenn ja, beschreibe diese vollständig.
- (b) Sei

$$n = \sum_{i=0}^{k} [n]_i \cdot 2^i,$$

die binäre Darstellung von der natürlichen Zahl n, wobei $[n]_i = 0, 1$ für $0 \le i \le k$. Sei \mathcal{A} die $\{R\}$ -Struktur mit Universum \mathbb{N} und der Interpretation:

$$R^{\mathcal{A}}(n,m) \Leftrightarrow [m]_n = 1 \text{ oder } [n]_m = 1$$

Zeige, dass A ein Graph ist. Zeige weiter, dass A ein Zufallsgraph ist.

(c) Sind je zwei Zufallsgraphen, gesehen als $\{R\}$ -Strukturen, elementar äquivalent? (Hinweis: Back-&-Forth.)

Aufgabe 4 (6 Punkte).

(a) Sei \mathcal{A} eine Unterstruktur von \mathcal{B} in der Sprache \mathcal{L} . Gegeben eine atomare Formel $\varphi[x_1, \ldots, x_n]$ und Elemente a_1, \ldots, a_n aus A, zeige, dass

$$\mathcal{A} \models \varphi[a_1, \dots a_n]$$
 genau dann, wenn $\mathcal{B} \models \varphi[a_1, \dots a_n]$.

- (b) Zeige nun, dass die obige Äquivalenz auch für jede quantorenfreie Formel $\psi[x_1, \ldots, x_n]$ und Elemente a_1, \ldots, a_n aus A gilt. Argumentiere dabei induktiv über den Aufbau von ψ .
- (c) Gegeben die Formel $\theta[x_1,\ldots,x_n] = \exists y \psi[x_1,\ldots,x_n,y]$, wobei ψ quantorenfrei ist, und Elemente a_1,\ldots,a_n aus A, zeige nun, dass

$$\mathcal{A} \models \theta[a_1, \dots a_n] \Longrightarrow \mathcal{B} \models \theta[a_1, \dots a_n].$$

Gilt die Rückrichtung?

Aufbau Back & Forth

Das finden eines nichtleeren Back & Foth Systems S wird dazu genutzt, um zu zeigen, dass zwei Strukturen elementar äquivalent sind.

Korollar 2.20. Falls ein nicht-leeres Back-&-Forth System S zwischen den L-Strukturen A und B existiert, sind A und B elementar äquivalent.

Das heißt, wenn eine eine partielle elementare Abbildung von der einen in die andere Struktur existiert:

Bemerkung 2.19. Ein Isomorphismus von \mathcal{A} und \mathcal{B} ist immer eine elementare Abbildung. Wenn eine partielle elementare Abbildung von \mathcal{A} nach \mathcal{B} existiert, dann sind \mathcal{A} und \mathcal{B} elementar äquivalent.

In der Bemerkung 2.17, zeigen wir, dass jede Abbildung aus S eine elementare partielle Abbildung von A nach B ist.

Was wiederum der fall ist, wenn folgendes gilt:

Definition 2.18. Für zwei \mathcal{L} -Strukturen \mathcal{A} und \mathcal{B} und Teilmengen $\emptyset \neq C \subset A$ und $D \subset B$ ist eine partielle Abbildung $F: C \to D$ elementar, falls

$$\mathcal{A} \models \varphi[c_1, \ldots, c_n]$$
 genau dann gilt, wenn $\mathcal{B} \models \varphi[F(c_1), \ldots, F(c_n)],$

für alle Elemente c_1, \ldots, c_n aus C und jede Formel $\varphi[x_1, \ldots, x_n]$.

Also suchen wir stets (falls nicht gegeben) eine Kollektion S mit den Eigenschaften:

 $S = \{F : \mathfrak{C} \to \mathfrak{D} \mathscr{L} - Isomorphismus | \mathfrak{C} \subset \mathfrak{A}, \mathfrak{D} \subset \mathfrak{B}, \text{ wobei } \mathfrak{C}, \mathfrak{D} \text{ endlich erzeugt} \} \text{ ist.}$ Mit $\mathfrak{C} \subset \mathfrak{A}$ ist gemeint, dass \mathfrak{C} Unterstruktur von \mathfrak{A} ist.

Falls dieses S kein nichtleers Back & Forth System ist, können wir ein weiter eingeschränktes S suchen.

Hier hängt die Einschränkung vom konkreten Fall ab, schaut einfach, wo das Problem für euer erstes S lag.

Es kann natürlich aus sein, dass keins existiert, wenn dies der Fall ist seht ihr das aber in der Regel schnell.

Habt ihr ein S, dann zeigt die nötigen Eigenschaften:

- S ist nichtleer
- S ist Back & Forth System

Back:

Sei $F \in S$, also F bildet von C nach D isomorph ab und gelte $b \in B \setminus Im(F)$.