Amendment to the Specification

Amend paragraphs [0097] and [0098] as follows.

[0097] The most important advantage of decoupling the 2-DOF drive oscillator 12 and sense-mode oscillator 36 is that the Coriolis force that excites the sensing element 20 is not generated by the sensing element 20. Instead, F_{c2} =2 m_2 $\omega_z dx_2/dt$ generated by mass 18 excites the active mass 46-20. The dynamics of the 2-DOF oscillator dictates that the passive mass 20 has to be minimized in order to maximize its oscillation amplitude. Since the Coriolis Force F_{c3} =2 $\omega_z dx_2/dt$ generated by mass 20 is not required to be large, the sensing element 20 can be designed to be as small as the mechanical design requirements and fabrication parameters allow.

[0098] Similarly, the optimal mass ratio $\mu_y = m_3/m_2$ in the sense direction determining the mass of the active mass 18 is selected to achieve insensitivity to damping variation, a wide response bandwidth and a large oscillation amplitude. The optimal ratio of the resonance frequencies of the isolated active system involving mass 20 and passive mass-spring system involving mass 18, $\gamma_y = \omega_{3y}/\omega_{2y} = (k_{3y}m_2/k_{2y}m_3)^{1/2}$ is also selected to maximize oscillation amplitudes of passive mass 18-20.