

Part III - Knowledge and Reasoning

9 Inference in First-Order Logic

- Inference Rules. Generalised Modus Ponens.
- Forward and Backward Chaining.
 Resolution.

10 Logical Reasoning Systems

- Indexing, Retrieval and Unification. Logic
 Programming / Prolog. Production Systems.
- Frames and Semantic / Conceptual Networks.
- Managing Retractions, Assumptions, and Explanations.

Forward and Backward Chaining

Reasoning

- Knowledge representation language (First-Order Logic)
- Efficient inference rule (Generalised Modus Ponens)
- > Generate the proof

Using the GMP

- Forward chaining (data-driven): KB, $\alpha \mid -?$

- Start with the KB and generate new sentences
 e.g. to derive the consequences of newly added facts.
- Backward chaining (goal-driven): KB \mid α ?
 - Start with a sentence not in the KB and attempt to establish its premises, e.g. to prove some new fact.

Forward Chaining

- Idea: inferring consequences
 - TELLing a new sentence α , KB, α |–?

Pseudo-algorithm

- If α already in the KB, do nothing
- Find all implications that have α as a premise, i.e. $\alpha \wedge \alpha_1 \wedge \dots \wedge \alpha_n \Rightarrow \beta$ then
- If all other premises α_i are known under some MGU θ , infer the conclusion β under θ
- If some premises α_i can be matched several ways, then infer each corresponding conclusion

Variable Substitution

Renaming

- Sentence identical to another, except for variable names
 - e.g. Hates(x,Elizabeth) and Hates(y,Elizabeth)

Composition of substitutions

 Substitution with composed unifier identical to the sequence of substitutions with each unifier i.e.

Subst(Compose(θ_1, θ_2), α) = Subst(θ_2 , Subst(θ_1, α))

• e.g. $\alpha = \text{Knows}(x,y)$, $\theta_1 = \{x/\text{John}\}$, $\theta_2 = \{y/\text{ Elizabeth}\}$ Subst $(\theta_2,\text{Subst}(\theta_1,\alpha)) = \text{Subst}(\theta_2,\text{Knows}(\text{John},y)) =$ Subst $(\{x/\text{John},y/\text{Elizabeth}\}$, Knows(x,y)) = Knows(John,Elizabeth)

Example of Forward Chaining

Knowledge Base (HNF)

- (1) American(x) Λ Weapon(y) Λ Nation (z) Λ Hostile(z) Λ Sells(x,z,y) \Rightarrow Criminal(x)
- (2) Owns(Nono,x) Λ Missile(x) \Rightarrow Sells(West,Nono,x)
- (3) $Missile(x) \Rightarrow Weapon(x)$
- (4) Enemy(x,America) \Rightarrow Hostile(x)

Adding Atomic Sentences

Forward-Chain(KB, American(West)):

(5) American(West)

Unifies with a premise of (1), others not known: no new inference.

Forward-Chain(KB, Nation(Nono)):

(6) Nation(Nono) id.

Forward-Chain(KB,

Enemy(Nono,America)):

(7) Enemy(Nono, America)

Unifies with (4), with unifier {x/Nono}; call ...

- (1) American(x) Λ Weapon(y) Λ Nation (z) Λ Hostile(z) Λ Sells(x,z,y) \Rightarrow Criminal(x)
- (2) Owns(Nono,x) Λ Missile(x) \Rightarrow Sells(West,Nono,x)
- (3) $Missile(x) \Rightarrow Weapon(x)$
- (4) Enemy(x,America) \Rightarrow Hostile(x)
- (5) American(West)
- (6) Nation(Nono)
- (7) Enemy(Nono, America)

Inferences

Forward-Chain(KB, Hostile(Nono)):

(8) Hostile(Nono)

Unifies with (1), no new inference.

Forward-Chain(KB, Owns(Nono,M1)):

(9) Owns(Nono,M1)

Unifies with (2), no new inference.

Forward-Chain(KB, Missile(M1)):

(10) Missile(M1)

Unifies with (2), with unifier {x/M1}.

Other premise known; call

Forward-Chain(KB, Sells(West,

Nono, M1)):

- (1) American(x) Λ Weapon(y) Λ Nation (z) Λ Hostile(z) Λ Sells(x,z,y) \Rightarrow Criminal(x)
- (2) Owns(Nono,x) Λ Missile(x) \Rightarrow Sells(West,Nono,x)
- (3) $Missile(x) \Rightarrow Weapon(x)$
- **(4)** Enemy(x,America) \Rightarrow Hostile(x)
- (5) American(West)
- (6) Nation(Nono)
- (7) Enemy(Nono, America)
- (8) Hostile(Nono)
- **(9)** Owns(Nono,M1)
- (10) Missile(M1)

Inferences

(11) Sells(West, Nono, M1) Unifies with (1), no new inference.

Back to (10) Missile(M1):

Unifies with (3), w/ unifier {x/M1}; call

Forward-Chain(KB, Weapon(M1)):

(12) Weapon(M1)

Unifies with (1), all other premises

known, with {x/West, y/M1, z/Nono};

Call

Forward-Chain(KB, Criminal(West)):

(13) Criminal(West)

Backward Chaining

- Idea: checking for causes
 - ASKing a query β , KB |– β ?

Pseudo-algorithm

- If β already in the KB, proof immediate
- Find all implications that have β as a conclusion, i.e. $\alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_n \Rightarrow \beta$ then
- Try and establish all the (qlist) premises [α_i] then infer β

function Backward-Chain (KB, β) returns substitutions return Back-Chain-List(KB, [β], { })

Example of Backward Chaining

Knowledge Base (HNF)

- (1) American(x) Λ Weapon(y) Λ Nation (z) Λ Hostile(z) Λ Sells(x,z,y)
- (2a) Owns(Nono, M1)
- (2b) Missile(M1)
- (3) Owns(Nono,u) Λ Missile(u) \Rightarrow Sells(West,Nono,u)
- (4) $Missile(v) \Rightarrow Weapon(v)$
- (5) Enemy(c,America) \Rightarrow Hostile(c)
- (6) American(West)
- (7) Nation(Nono)
- (8) Enemy(Nono, America)
- (9) Nation(America)

Establishing Premises

Backward-Chain(KB,Criminal(West)):

Call

 \Rightarrow Criminal(x)

B-Chain-List(KB, [Criminal(West)], {})

Unifies with conclusion of (1);

answers = {x/West}; call

B-Chain-List(KB, [American(West),

Weapon(y), Nation(z), Hostile(z),

Sells(West,z,y)], {x/West}):

American(West) as (6);

Weapon(y) unifies with conclusion

of (4) ...

- (1) American(x) Λ Weapon(y) Λ Nation (z) Λ Hostile(z) Λ Sells(x,z,y)
 - \Rightarrow Criminal(x)
- (2a) Owns(Nono, M1)
- **(2b)** Missile(M1)
- (3) Owns(Nono,u) Λ Missile(u) \Rightarrow Sells(West,Nono,u)
- (4) $Missile(v) \Rightarrow Weapon(v)$
- (5) Enemy(c,America) \Rightarrow Hostile(c)
- (6) American(West)
- (7) Nation(Nono)
- (8) Enemy(Nono, America)
- (9) Nation(America)

Establishing Premises

answers = {x/West, y/v}; call B-Chain-List(KB, [Missile(v)], {x/West, y/v}):

Missile(v) unifies with **(2b)**; answers = {x/West, y/M1}; Weapon(M1) established; back, call

B-Chain-List(KB, [Nation(z)], {x/West, y/M1}):

Nation(z) unifies with (7); answers = {x/West, y/M1, z/Nono}; Hostile(Nono) unifies with conclusion of (5); call ...

- (1) American(x) Λ Weapon(y) Λ Nation (z) Λ Hostile(z) Λ Sells(x,z,y)
 - \Rightarrow Criminal(x)
- (2a) Owns(Nono, M1)
- **(2b)** Missile(M1)
- (3) Owns(Nono,u) Λ Missile(u) \Rightarrow Sells(West, Nono, u)
- $Missile(v) \Rightarrow Weapon(v)$
- Enemy(c,America) \Rightarrow Hostile(c)
- (6) American(West)
- Nation(Nono)
- (8) Enemy(Nono, America)
- (9) Nation(America)

Establishing Premises

B-Chain-List(KB, [Enemy(Nono, America)], {x/West, y/M1, z/Nono}):

Enemy(Nono, America) as (8); Hostile(Nono) established; back, call

B-Chain-List(KB, [Sells(West, Nono, M1), {x/West, y/M1, z/Nono}):

Sells(West, Nono, M1) unifies with (3); call

B-Chain-List(KB,[Owns(Nono,M1)] ...)

Owns(Nono,M1) as (2a);

B-Chain-List(KB,[Missile(M1)], ...)

Missile(M1) as (2b).

end

Chaining as a Proof Tree (with Success)

Chaining as a Proof Tree (with Failure)

And-Or Proof Tree (with Backtracking)

Completeness

GMP is not complete

- There exist entailed sentences that GMP cannot prove
 - Some sentences cannot be converted to Horn sentences e.g.

KB:
$$\forall x \ P(x) \Rightarrow Q(x) \ \forall x \ Q(x) \Rightarrow S(x)$$
 entails: $\forall x \ \neg P(x) \Rightarrow R(x) \ \forall x \ R(x) \Rightarrow S(x) \ \forall x \ S(x)$ no Horn form

Need for complete inference rules

- Completeness theorem (Gödel, 1930)
 - There are complete inference rules for first-order logic
- Resolution algorithm (Robinson, 1965)