Algebra Qualifying Exam January 29, 2002

Instructions: You are given 10 problems from which you are to do 8. Please indicate those 8 problems which you would like to be graded by circling the problem numbers on the problem sheet.

Note: All rings in this exam are associative and with 1 and all integral domains are commutative.

- 1. Let G be an arbitary group and H_1, H_2, \ldots, H_n be subgroups of G of with finite index in G. Show that there is a normal subgroup K of finite index such that $K \subseteq H_i$ for all $i = 1, 2, \ldots, n$.
- 2. Let \mathbb{F} be a field and G be the group

$$G = \left\{ \begin{pmatrix} 1 & a & b & c \\ 0 & 1 & d & e \\ 0 & 0 & 1 & f \\ 0 & 0 & 0 & 1 \end{pmatrix} \mid a, b, c, d, e, f \in \mathbb{F} \right\}$$

with usual matrix multiplication. Prove that the group G is nilpotent.

- 3. Let R be a commutative ring. Show that if I_1, \dots, I_n are ideals with $\bigcap_{i=1}^n I_i \subseteq P$ for some prime ideal P, then there is an i such that $I_i \subseteq P$.
- 4. Let p be a fixed prime number. Define $\mathbb{Z}(p) = \{ap^{-n} \in \mathbb{Q} \mid a \in \mathbb{Z}, n \in \mathbb{Z}\}.$
 - (a) Show that $\mathbb{Z}(p)$ is a subgring of \mathbb{Q} the field of rational numbers \mathbb{Q} containing \mathbb{Z} as a subring.
 - (b) Assume that A is a ring and that $\phi : \mathbb{Z} \to A$ is a ring homomorphism such that $\phi(p)$ has an muliplicative inverse in A. Show that there exists a unique ring homomorphism $\psi : \mathbb{Z}(p) \to A$ such that $\psi(x) = \phi(x)$ for all $x \in \mathbb{Z}$.
- 5. Let A be a commutative ring, and let A[x] be the ring of all polynomials $f(x) = \sum_{i=0}^{n} a_i x^n$ in the indeterminate x with coefficients $a_i \in A$. Show that for any two polynomials f(x) and g(x) such that the leading coefficient of g(x) is invertible in A, then there is a unique pair of polynomials in g(x) and g(x) and g(x) such that

$$f(x) = g(x)q(x) + r(x),$$

where $\deg(r(x)) < \deg(g(x))$. Can you conclude that the ring A[x] is an Euclidean domain? Justify your conclusion.

6. Let D be a unique factorization domain and Q(D) be the field of factions (quotient field of D). Suppose a, b, f, g are in D with $b \neq 0$ and $g \neq 0$ such that $\frac{a}{b} = \frac{f}{g} \in Q(D)$. If a and b are relatively prime, show that a|f and b|g.

- 7. Let \mathbb{F} be field and $R = M_n(\mathbb{F})$ be the ring of all $n \times n$ matrices with entries in \mathbb{F} . Show that the vector space \mathbb{F}^n of $n \times 1$ column vectors with coefficients in \mathbb{F} is an irreducible module of R (relative to ordinary matrix multiplication). Then show that any finite-dimensional R-module is a finite-dimensional vector space of dimension divisible by n.
- 8. Let \mathbb{F}_q be a finite field with q elements. Compute the order of the group $\mathrm{GL}_n(q)$ of all invertible linear transformations of the vector space \mathbb{F}_q^n .
- 9. Let \mathbb{F} be a field, let x be an indeterminate over \mathbb{F} , and set $R = \mathbb{F}[x]/(x^5(x-2)^6)$. Describe all R-modules of \mathbb{F} -dimension 25 up to R-module isomorphism.
- 10. Let q be a prime power. Show that the finite field \mathbb{F}_{q^r} is isomorphic to a subfield of \mathbb{F}_{q^n} if and only if r divides n. If r divides n, then show that \mathbb{F}_{q^n} is a Galois extension of \mathbb{F}_{q^r} and compute the Galois group of \mathbb{F}_{q^n} over \mathbb{F}_{q^r} .