

Yuling Yan
University of Wisconsin–Madison, Fall 2024

Classification problem

- Classification: assign a label (or category, class) to an observation based on its features
- \mathcal{X} : input space (e.g. \mathbb{R}^d); \mathcal{Y} : output space (e.g. $\{1, 2, \dots, K\}$)
- $x \in \mathcal{X}$: feature vector, input, data point...
- $y \in \mathcal{Y}$: label, category, class...
- Classifier: a mapping $f: \mathcal{X} \to \mathcal{Y}$
- \bullet Goal: construct a classifier f that accurately predicts the label y given the features x

MNIST dataset

- Input: 28x28 gray scale (1 channel) images, i.e., $\mathcal{X} = \mathbb{R}^{28 \times 28}$ or \mathbb{R}^{784}
- Output: digits 0 through 9 (i.e., $\mathcal{Y} = \{0, 1, \dots, 9\}$)

CIFAR datasets

- Input: 32×32 RGB color (3 channels) images, i.e., $\mathcal{X} = \mathbb{R}^{32 \times 32 \times 3}$ or \mathbb{R}^{3072}
- Output: 10 classes (airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks) or 100 classes

ImageNet dataset

• Input: varies, often high-resolution (often $224 \times 224 \times 3$)

• Output: 1000 different categories

Mathematical set-up

- Modeling assumption: the data (input-output pairs) come from an underlying data distribution ρ over $\mathcal{X} \times \mathcal{Y}$
- Training data: $(x_1, y_1), \ldots, (x_n, y_n) \stackrel{\text{i.i.d.}}{\sim} \rho$
- ullet Error metric: for any given classifier f, its risk, defined as the average (expected) classification error on a new data is

$$R(f) := \mathbb{P}_{(X,Y) \sim \rho}(f(X) \neq Y)$$

ullet Supervised learning: build a classifier f based on training data, that makes the average classification error as small as possible

Questions

• Does there exists a "best" classifier?

— this lecture

ullet Can we construct this "best" classifier with the information of ho?

— this lecture

 What can we do when we only have a finite number of training data?

— next few weeks

Bayes optimal classifier: binary case

- Consider the binary case: $\mathcal{Y} = \{0, 1\}$
- Define the Bayes classifier: for any $x \in \mathcal{X}$,

$$f^{\star}(x) \coloneqq \begin{cases} 1, & \text{if } \mathbb{P}(Y=1 \mid X=x) \geq \mathbb{P}(Y=0 \mid X=x), \\ 0, & \text{otherwise.} \end{cases}$$

Theorem 2.1 (Bayes optimal classifier: binary case)

The Bayes classifier f^* minimizes the misclassification error, i.e.,

$$f^{\star} \in \operatorname*{arg\,min}_{f:\mathcal{X} \to \mathcal{Y}} \mathbb{P}_{(X,Y) \sim \rho}(f(X) \neq Y).$$

A few remarks

Bayes optimal classifier

$$f^{\star}(x) \coloneqq \begin{cases} 1, & \text{if } \mathbb{P}(Y=1 \ | \ X=x) \geq \mathbb{P}(Y=0 \ | \ X=x), \\ 0, & \text{otherwise}. \end{cases}$$

- ullet Depends on the true underlying data distribution ho
- The optimal classifier might not be unique
- ullet When ${\mathcal X}$ is discrete, it is equivalent to

$$f^{\star}(x) \coloneqq \begin{cases} 1, & \text{if } \mathbb{P}(X=x,Y=1) \geq \mathbb{P}(X=x,Y=0), \\ 0, & \text{otherwise}. \end{cases}$$

Bayes risk: binary case

Bayes risk:

$$R^* := \mathbb{P}_{(X,Y) \sim \rho}(f^*(X) \neq Y)$$

 The Bayes risk serves as a lower bound for the classification error that any practical classifier can achieve:

$$R^{\star} = \min_{f: \mathcal{X} \to \mathcal{Y}} \mathbb{P}_{(X,Y) \sim \rho}(f(X) \neq Y).$$

- It represents the inherent uncertainty in the classification problem due to overlapping distributions of the classes.
- Excess risk: $R(f) R^*$

Bayes optimal classifier: multiclass setting

- Consider the multiclass case: $\mathcal{Y} = \{1, \dots, K\}$
- Define the Bayes classifier: for any $x \in \mathcal{X}$,

$$f^{\star}(x) \coloneqq \arg\max_{y \in \mathcal{Y}} \mathbb{P}(Y = y \mid X = x)$$

Theorem 2.2 (Bayes optimal classifier: multiclass case)

The Bayes classifier f^* minimizes the misclassification error, i.e.,

$$f^{\star} \in \operatorname*{arg\,min}_{f: \mathcal{X} \rightarrow \mathcal{Y}} \, \mathbb{P}_{(X,Y) \sim \rho}(f(X) \neq Y).$$

More general loss function?

- Consider more general loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$
- ullet Define the risk for a classifier $f:\mathcal{X}
 ightarrow \mathcal{Y}$ as

$$R_{\ell}(f) := \mathbb{E}_{(X,Y) \sim \rho}[\ell(f(X), Y)]$$

• Example: with 0-1 loss $\ell(y,y')=\mathbb{1}\{y\neq y'\}$, we recover the average classification error

$$R(f) = \mathbb{P}_{(X,Y) \sim \rho}(f(X) \neq Y)$$

• Goal: find f that minimizes the risk $R_{\ell}(f)$ (the Bayes classifier might not be optimal...)

Question: Can you think of settings where other types of loss functions are more appropriate than the 0-1 loss?

Example: traffic signs

- $\mathcal{Y} = \{\text{stop sign}, 50 \text{ mph}, 40 \text{ mph}\}.$
- Predicting 50 mph when it is actually a stop sign is worse than predicting 40 mph when it is actually 50mph.

• 0-1 loss is not suitable here...

Supervised learning

- In practice, we don't know ρ . It is in general impossible to compute the Bayes classifier f^{\star}
- Goal: build a classifier $f: \mathcal{X} \to \mathcal{Y}$ based on training data $(x_1,y_1),\ldots,(x_n,y_n) \overset{\text{i.i.d.}}{\sim} \rho$
- Hope: achieve small excess risk $R(f) R^*$
- High-level framework:
 - \circ Make some modeling assumptions on ho
 - \circ Design a good classifier f under this setup
 - o For example, a good classifier may satisfy

$$R(f) - R^* \le h(n)$$

where h(n) is a function of the sample size n describing the rate of convergence, e.g., h(n) = O(1/n).

Linear classifiers

- Linear classifiers
 - \circ Hyperplane $\mathcal{H}_{\beta,\beta_0} = \{ \boldsymbol{x} \in \mathbb{R}^d : \langle \boldsymbol{\beta}, \boldsymbol{x} \rangle + \beta_0 = 0 \}$
 - Half planes cut by $\mathcal{H}_{\beta,\beta_0}$:

$$\mathcal{H}_{\boldsymbol{\beta},\beta_0}^+ = \{ \boldsymbol{x} \in \mathbb{R}^d : \langle \boldsymbol{\beta}, \boldsymbol{x} \rangle + \beta_0 \ge 0 \},$$

$$\mathcal{H}_{\boldsymbol{\beta},\beta_0}^- = \{ \boldsymbol{x} \in \mathbb{R}^d : \langle \boldsymbol{\beta}, \boldsymbol{x} \rangle + \beta_0 < 0 \}.$$

Example: in the binary case, the linear classifier has the form

$$f(\boldsymbol{x}) = \mathbb{1}\{\boldsymbol{x} \in \mathcal{H}_{\boldsymbol{\beta},\beta_0}^+\}$$

- Three approaches to learn a linear classifier from the data:
 - Linear discriminant analysis (LDA)
 - Logistic regression
 - Support vector machines (SVMs)

Linear discriminant analysis (LDA)

• Model set-up: $\mathcal{X}=\mathbb{R}^d$, $\mathcal{Y}=\{1,\ldots,K\}$. For $k=1,\ldots,K$, $\mathbb{P}(Y=k)=\omega_k, \qquad X\mid Y=k\sim\mathcal{N}(\pmb{\mu}_k,\pmb{\Sigma})$ where $\omega_k>0$, $\sum_{k=1}^K\omega_k=1$, $\mu_k\in\mathbb{R}^d$, $\pmb{\Sigma}\in\mathbb{S}^d$

ullet The Bayes classifier under this setup: for any x, compute

$$\delta_k(\boldsymbol{x}) \coloneqq \underbrace{\boldsymbol{x}^\top \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_k - \frac{1}{2} \boldsymbol{\mu}_k^\top \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_k + \log \omega_k}_{\propto \mathbb{P}(Y = k \mid \boldsymbol{x}) + \text{constant}}.$$

Let $f^{\star}(\boldsymbol{x}) = \arg \max_{1 \leq k \leq K} \delta_k(\boldsymbol{x})$.

• Issue: model parameters are unknown...

Plug-in approach

- ullet Suppose we have i.i.d. data $(oldsymbol{x}_1,y_1),\ldots,(oldsymbol{x}_n,y_n)$
- For each $1 \le k \le K$, let $n_k = \sum_{i=1}^n \mathbb{1}\{y_i = k\}$ and

$$\widehat{\boldsymbol{\mu}}_k = \frac{1}{n_k} \sum_{i:y_i=k} \boldsymbol{x}_i, \qquad \widehat{\omega}_k = \frac{n_k}{n}$$

Estimate the covariance matrix

$$\widehat{oldsymbol{\Sigma}} = rac{1}{N-oldsymbol{K}} \sum_{k=1}^K \sum_{i: n_i = k} ig(oldsymbol{x}_i - \widehat{oldsymbol{\mu}}_kig) ig(oldsymbol{x}_i - \widehat{oldsymbol{\mu}}_kig)^ op$$

• Replace μ_k , ω_k , Σ with $\widehat{\mu}_k$, $\widehat{\omega}_k$, $\widehat{\Sigma}$

$$\widehat{\delta}_k(\boldsymbol{x}) \coloneqq \underbrace{\boldsymbol{x}^\top \widehat{\boldsymbol{\Sigma}}^{-1} \widehat{\boldsymbol{\mu}}_k - \frac{1}{2} \widehat{\boldsymbol{\mu}}_k^\top \widehat{\boldsymbol{\Sigma}}^{-1} \widehat{\boldsymbol{\mu}}_k + \log \widehat{\boldsymbol{\omega}}_k}_{\text{linear in } \boldsymbol{x}}.$$

Generalization

• Consider a more general set-up: for k = 1, ..., K, assume

$$\begin{split} \mathbb{P}(Y=k) = \omega_k, \qquad X \mid Y = k \sim \mathcal{N}(\pmb{\mu}_k, \pmb{\Sigma}_k) \end{split}$$
 where $\omega_k \geq 0$, $\sum_{k=1}^K \omega_k = 1$, $\mu_k \in \mathbb{R}^d$, $\pmb{\Sigma}_k \in \mathbb{S}_+^d$

- This setup will lead to the so-called quadratic discriminant analysis (QDA)
- After class: derive QDA
 - What is the Bayes classifier under this setup?
 - o How to derive a practical (data-driven) classifier?

Logistic regression

• Model set-up: $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{0, 1, \dots, K\}$. Let

$$\mathbb{P}(Y = k \mid \boldsymbol{x}) = \frac{\exp(\boldsymbol{\beta}_k^{\top} \boldsymbol{x} + \beta_{0,k})}{1 + \sum_{k'=1}^{K} \exp(\boldsymbol{\beta}_{k'}^{\top} \boldsymbol{x} + \beta_{0,k'})}, \quad (1 \le k \le K),$$

$$\mathbb{P}(Y = 0 \mid \boldsymbol{x}) = \frac{1}{1 + \sum_{k'=1}^{K} \exp(\boldsymbol{\beta}_{k'}^{\top} \boldsymbol{x} + \beta_{0,k})},$$

where the parameters $\beta_k \in \mathbb{R}^d$, $\beta_{0,k} \in \mathbb{R}$ for $k = 1, \dots, K$

Logistic regression

• Model set-up: $\mathcal{X} = \mathbb{R}^d \times \{1\}$, $\mathcal{Y} = \{0, 1, \dots, K\}$. Let

$$\mathbb{P}(Y = k \mid \boldsymbol{x}) = \frac{\exp(\boldsymbol{\beta}_{k}^{\top} \boldsymbol{x})}{1 + \sum_{k'=1}^{K} \exp(\boldsymbol{\beta}_{k'}^{\top} \boldsymbol{x})}, \qquad (k = 1, \dots, K),$$
$$\mathbb{P}(Y = 0 \mid \boldsymbol{x}) = \frac{1}{1 + \sum_{k'=1}^{K} \exp(\boldsymbol{\beta}_{k'}^{\top} \boldsymbol{x})},$$

where the parameters $\beta_k \in \mathbb{R}^{d+1}$ for $k = 1, \dots, K$

- Bayes classifier: $f(\boldsymbol{x}) = \arg\max_{0 \leq k \leq K} \mathbb{P}(Y = k \mid \boldsymbol{x})$
- Estimate β_k 's: maximum likelihood estimation (MLE)

Maximum likelihood estimation

- Suppose we have i.i.d. data $(x_1, y_1), \ldots, (x_n, y_n)$
- The negative log-likelihood function

$$\ell(\boldsymbol{\beta}) = -\frac{1}{n} \sum_{k=1}^{K} \sum_{i:y_i = k} \boldsymbol{x}_i^{\top} \boldsymbol{\beta}_k + \frac{1}{n} \sum_{i=1}^{n} \log \left[1 + \sum_{k'=1}^{K} \exp(\boldsymbol{x}_i^{\top} \boldsymbol{\beta}_{k'}) \right]$$

Maximum likelihood estimation (MLE)

$$\widehat{\boldsymbol{\beta}}\coloneqq \arg\min_{\boldsymbol{\beta}}\ell(\boldsymbol{\beta})$$

• Convex optimization: solve by e.g., gradient descent

$$\boldsymbol{\beta}^{(t+1)} = \boldsymbol{\beta}^{(t)} - \eta \nabla \ell(\boldsymbol{\beta}^{(t)}) \qquad (t = 0, 1, \ldots)$$