

PROCESS DYNAMICS - CPN321

Semester Test 1

Chemical Engineering Engineering and the Built Environment

Examiner: Carl Sandrock

2015-08-28

(90 minutes)

Instructions - Read carefully

• Answer all the questions. • This is a closed book test. All the information you may use is contained in the paper. • You may use the computer • Make sure that you motivate all your answers and write legibly.

4)
$$3 \times 9 = ?$$

$$= 3 \times \sqrt{81} = 3\sqrt{81} = 3\sqrt{81} = 27$$

xkcd.com

1 Modelling

Consider a liquid flow system consisting of a sealed tank with noncondensible gas above the liquid as shown in Figure 1. The walls of the tank are well-insulated. The incoming flow contains only liquid and the gas does not dissolve into the liquid. The pressure at the end of the outgoing line is P_a .

Figure 1: Closed tank system for question 1

You may further assume:

- the gas obeys the ideal gas law,
- the liquid density is constant,
- flow through the valve is proportional to the square root of the pressure difference over it,
- Newton's law of cooling describes the heat transfer between bulk gas and liquid temperatures.
- 1. Derive a dynamic model of the system which will allow you to predict the temperature of the liquid and the level in the tank. (40)
- 2. Indicate each symbol in your model as a parameter, an input or an output. $\boxed{5}$
- 3. Show that specifying the parameters and inputs in the model completely specifies it. 5
- 4. It is desired to control the temperature and the level in the tank. Comment on how feedback control could be used to achieve this (think carefully about realistic manipulated variables). 5

(55)

2 Simulation and Linear analysis

The following equations describe a reactor in a water bath at constant temperature T_c :

				P	I	О
1	$\frac{\mathrm{d}V}{\mathrm{d}t}$	=	$q_i - q_o$		$ q_i $	q_o, V
2			$q_i C_{Ai} - q_o C_A + Vr$		C_{Ai}	C_A, r
3	$C\rho \frac{\mathrm{d}VT}{\mathrm{d}t}$	=	$C\rho q_i T_i - C\rho q_o T - \Delta H_R V r - Q$	$C, \rho, \Delta H_R, T_C$	T_i	T
4	•		$UA(T_C-T)$	$ \begin{vmatrix} U, A, T_C \\ k_0, E, R \end{vmatrix} $		Q
5	k	=	$k_0 \exp\left(-\frac{E}{RT}\right)$	k_0, E, R		k
6	r	=	kC_A			
7	A	=	k_1V	k_1		A
8	q_o	=	$k_2\sqrt{V}$	$\mid k_2 \mid$		
			DOF = 0	12	3	8

- 1. Rewrite these equations in a form that will be suitable for computer solution by an ODE solver. 5
- 2. Assume that $q = q_i = q_o$ and that T_i and q are not changing over time. Find the transfer function for the relationship between $C'_{Ai}(t)$ and $C'_{A}(t)$ 25
- 3. If $C'_A(s) \approx \frac{1}{s+1}C'_{Ai}(s)$ and $c'_{Ai}(t) = \sin(2t)$, find $C_A(t)$. Show your working. If you are using the computer for this, please write down what you have done to obtain the answer. 5

35

Full Marks (90)

 This page is blank

DATASHEET: CPN321/CPB410

Compiled on October 31, 2013

General solution of 1st order DE:

$$\dot{x} + P(t)x = Q(t)$$
 \Rightarrow $x = \frac{1}{F_I} \int Q(t)F_I dt + c_1$ with $F_I = \exp\left(\int P(t)dt\right)$

Taylor Series expansion near point x = a:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^n(a)}{n!} (x - a)^n$$

$$f(x_1, \dots, x_d) = \sum_{n_1=0}^{\infty} \dots \sum_{n_d=0}^{\infty} \frac{(x_1 - a_1)^{n_1} \dots (x_d - a_d)^{n_d}}{n_1! \dots n_d!} \left(\frac{\partial^{n_1 + \dots + n_d} f}{\partial x_1^{n_1} \dots \partial x_d^{n_d}} \right) (a_1, \dots, a_d)$$

Linear approximation around point $\mathbf{x} = \mathbf{0}$, where $f(\mathbf{x}) = \mathbf{0}$:

$$f(\mathbf{x}) \approx \nabla f(\mathbf{0}) \cdot \mathbf{x}$$
$$f(x_1, x_2, \dots, x_d) \approx \frac{\partial f}{\partial x_1}(0)x_1 + \frac{\partial f}{\partial x_2}(0)x_2 + \dots + \frac{\partial f}{\partial x_d}(0)x_d$$

Partial fraction expansion (for strictly proper rational functions of s)

$$F(s) = \frac{(s-z_1)(s-z_2)(s-z_3)\cdots}{(s-p_1)^n(s-p_2)(s-p_3)\cdots} = \underbrace{\sum_{m=0}^{n-1} \frac{A_m}{(s-p_1)^{n-m}}}_{\text{repeated roots}} + \frac{B}{s-p_2} + \frac{C}{s-p_3}\cdots$$

$$A_m = \lim_{s \to p_1} \left\{ \frac{\mathrm{d}^m}{\mathrm{d}s^m} \left[(s - p_1)^n F(s) \right] \right\} \frac{1}{m!}$$
$$B = \lim_{s \to p_2} \left[(s - p_2) F(s) \right]$$

Euler identity:

$$e^{i\theta} = \cos\theta + i\sin\theta$$
 $\therefore e^{-i\theta} = \cos\theta - i\sin\theta$ and $e^{i\pi} - 1 = 0$

(1,1) Padé approximation of dead time:

$$e^{-Ds} \approx \frac{1 - \frac{D}{2}s}{1 + \frac{D}{2}s}$$

PID controller:

$$m = K_C \left(\varepsilon + \frac{1}{\tau_I} \int_0^t \varepsilon dt + \tau_D \frac{d\varepsilon}{dt} \right) \qquad \frac{m}{\varepsilon}(s) = K_C \left(1 + \frac{1}{\tau_I s} + \tau_D s \right)$$

Tuning rules:

	Ziegler-Nichols			Cohen-Coon (with $\phi = \frac{t_D}{\tau_P}$)		
	K_C	$ au_I$	$ au_D$	K_C	$ au_I$	$ au_D$
Р	$\frac{K_u}{2}$			$\frac{\phi+3}{3K_P\phi}$		
PI	$\frac{K_u}{2.2}$	$\frac{P_u}{1.2}$		$\frac{5\phi + 54}{60K_P\phi}$	$t_D \frac{30 + 3\phi}{9 + 20\phi}$	
PID	$\frac{K_u}{1.7}$	$\frac{P_u}{2}$	$\frac{P_u}{8}$	$\frac{3\phi + 16}{12K_P\phi}$	$t_D \frac{32 + 6\phi}{13 + 8\phi}$	$\frac{4}{11 + 2\phi}$

Time domain	Laplace-transform	z-transform $(b = e^{-aT})$	
Impulse: $\delta(t)$	1	1	
Unit step: $u(t)$	$\frac{1}{s}$	$\frac{1}{1-z^{-1}}$	
Ramp: t	$\frac{1}{s^2}$	$\frac{Tz^{-1}}{(1-z^{-1})^2}$	
t^n	$\frac{n!}{s^{n+1}}$	$\lim_{a \to 0} (-1)^n \frac{\partial^n}{\partial a^n} \frac{1}{1 - bz^{-1}}$	
e^{-at}	$\frac{1}{s+a}$	$\frac{1}{1 - bz^{-1}}$	
te^{-at}	$\frac{1}{(s+a)^2}$	$\frac{Tbz^{-1}}{(1 - bz^{-1})^2}$	
t^2e^{-at}	$\frac{2}{(s+a)^3}$	$\frac{T^2bz^{-1}(1+bz^{-1})}{(1-bz^{-1})^3}$	
$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$	$\frac{z^{-1}\sin(\omega T)}{1 - 2z^{-1}\cos(\omega T) + z^{-2}}$	
$\cos(\omega t)$	$\frac{s}{s^2 + \omega^2}$	$\frac{1 - z^{-1}\cos(\omega T)}{1 - 2z^{-1}\cos(\omega T) + z^{-2}}$	
$1 - e^{-at}$	$\frac{a}{s(s+a)}$	$\frac{(1-b)z^{-1}}{(1-z^{-1})(1-bz^{-1})}$	
$e^{-at}\sin(\omega t)$	$\frac{\omega}{(s+a)^2 + \omega^2}$	$\frac{z^{-1}b\sin(\omega T)}{1 - 2z^{-1}b\cos(\omega T) + b^2z^{-2}}$	
$e^{-at}\cos(\omega t)$	$\frac{s+a}{(s+a)^2+\omega^2}$	$\frac{1 - z^{-1}b\cos(\omega T)}{1 - 2z^{-1}b\cos(\omega T) + b^2z^{-2}}$	
Initial value theorem: $\lim_{t\to 0} f(t)$	$\lim_{s \to \infty} sF(s)$	$\lim_{z \to \infty} F(z)$	
Final value theorem: $\lim_{s\to\infty} f(t)$	$\lim_{s \to 0} sF(s)$	$\lim_{z \to 1} \left[\left(1 - z^{-1} \right) F(z) \right]$	
Translation: $f(t-D)u(t-D)$	$e^{-Ds}F(s)$	$F(z)z^{-n}$ where $D=nT$	
Derivative: $\frac{\mathrm{d}^n f(t)}{\mathrm{d}t^n} = f^n(t)$	$s^{n}F(s) - \sum_{k=1}^{n} s^{k-1}f^{n-k}(0)$		
Integral: $\int_0^t f(t)dt$	$\frac{1}{s}F(s)$		
Zero th order hold	$H(s) = \frac{1 - e^{-Ts}}{s}$		