

Командная радиоастрономия (115 баллов)

Пожалуйста, прочитайте общие инструкции перед началом работы.

Исследование рукава Персея по данным наблюдений радиолинии водорода 21 см

Цель задачи: оценить расстояние [части] рукава Персея (рис. 1) от центра Млечного Пути из кинематических соображений — по лучевой скорости атомарного водорода, получаемой из наблюдений радиолинии 21 см.

Рис. 1. Карта рукавов Млечного Пути (расстояние – галактическая долгота) [Википедия]

В этой задаче используется подвыборка из Канадского обзора галактической плоскости CGPS (рис. 2), в котором приведены радиоспектры галактического атомарного водорода на луче зрения для разных положений телескопа.

Рис. 2. Канадский обзор галактической плоскости [http://www.ras.ucalgary.ca/CGPS]

Путём перевода доплеровского сдвига длины волны излучения в лучевую скорость можно идентифицировать отдельные детали, которые соответствуют различным рукавам галактики. Это позволяет реконструировать форму каждого рукава и его положение относительно центра Галактики.

В радиоспектре рукав Персея может быть легко идентифицирован: обычно это самая яркая деталь на каждом луче зрения.

За систему отсчета наблюдений радиотелескопа можно взять Солнце, находящееся на расстоянии R_0 от центра Галактики (GC). Луч зрения телескопа (LOS) определяется галактической долготой l на галактической широте b=0. Телескоп принимает излучение области атомарного водорода, находящегося на луче зрения и расположенного на расстоянии r от Солнца и R от центра Галактики. Будем считать, что Солнце и галактический газ обращаются вокруг центра Галактики по круговым орбитам в области плоской кривой вращения. Измеренную (доплеровскую) лучевую скорость газа будем обозначать \mathbf{v}_{LOS} .

Описание датасета

Файл 21cmsurvey_full.csv содержит сведения о яркостной температуре (T_b) различных участков спектра в зависимости от соответствующей частоте наблюдения лучевой скорости (V_{LOS}) по наблюдениям радиолинии атомарного водорода 21 см.

Строка **1**: лучевая скорость v_{LOS} (173 значения, ${
m km/s}$).

Столбец **1** (после строки 1): галактическая долгота l (1024 значения, градусы).

Строки **2–1025**: яркостная температура T_b (К). Каждая строка содержит описание спектра для луча зрения в направлении галактической долготы l (столбец 1). Всего 1024 спектра. Каждый спектр содержит 173 измерения T_b , по одному на каждую v_{LOS} .

	Α	В	С	D	Е	F	G
1	longitude	17.499242	16.674782	15.850322	15.025862	14.201402	13.376942
2	142.195	7.6806355	-3.6773872	10.236036	12.072731	2.6496887	-5.4096527
3	142.2	-2.3566856	-17.443382	10.948601	15.752264	-5.6430779	-4.0766678
4	142.205	-7.2586327	-16.816818	11.409309	14.382421	-8.1247673	-2.1908302
5	142.21	-4.8997993	-1.3861237	8.1782017	0.1741447	-6.5460701	2.8831139
6	142.215	1.4211311	17.361675	3.865963	-19.79607	-5.4956512	10.672174
7	142.22	10.801174	29.229548	6.5995045	-28.279266	-6.2942162	17.140533
8	142.225	15.174841	25.408731	12.852865	-18.843937	-8.4810486	11.249598
9	142.23	11.863876	11.36631	13.676001	-3.8985252	-8.6407623	-3.4193878
10	142.235	1.5808449	-5.765934	4.6522408	3.5158234	-6.70578	-18.493797
11	142.24	-3.855526	-13.573421	-5.8457909	0.7269974	-4.1995239	-23.408031
12	142.245	-1.1465569	-7.5473442	-7.0313492	-3.400959	-1.7116928	-18.352516
13	142.25	5.9913673	8.6634827	2.0968399	-1.6011238	4.3635292	-6.9637794
14	142.255	9.1303349	24.567169	13.166147	4.2713852	13.448717	4.9778061

Часть 1 (50 баллов)

1.1 Постройте графики зависимости T_b от v_{LOS} для различных значений галактических долгот, равномерно охватывающих весь диапазон наблюдений (не менее 20). Определите положение пика, отождествляемого с рукавом Персея, для каждого из графиков.

45.0pt

Указание: используйте график для минимального или максимального значения долготы как ориентир для корректного определения положения пика на промежуточных значениях долгот.

1.2 Почему излучение около $v_{LOS}=0$ (которое можно отождествить с Местным рукавом) имеет более низкую яркостную температуру, чем излучение от рукава Персея?

5.0pt

Часть 2 (20 баллов)

2.1 Выразите R через v_{LOS} , v_{\odot} и l, исходя из следующих предположений:

20.0pt

- Солнечная система и газ рукава Персея обращаются вокруг центра Галактики по круговым орбитам.
- Кривая вращения Галактики плоская в этой области, то есть

$$|\mathbf{v}| = |\mathbf{v}_{\odot}|$$

где v — скорость газа.

Часть 3 (20 баллов)

3.1 Используя ранее полученные значения v_{LOS} , постройте для рукава Персея график зависимости R (расстояние до центра Галактики в kpc) от галактической долготы l. Найдите среднее значение и стандартное отклонение для заданного диапазона галактических долгот.

20.0pt

Справочно:

$$v_{\odot} \approx 225 \text{ km/s}$$

$$R_0 \approx 8 \text{ kpc}$$

Часть 4 (25 баллов)

4.1 Датасет также содержит сведения об излучении внешнего рукава Наугольника. Наболее чётко его можно заметить вблизи $l\approx 145^\circ$. Повторите произведённые ранее шаги для нахождения галактоцентрического расстояния рукава Наугольника в заданном диапазоне галактических долгот. Для определения расстояния от рукава Наугольника до центра Галактики используйте не менее 5 значений.

25.0pt