H1: Gegevens 1.1 soorten gegevens	
Kwalitatieve gegevens	= kenmerken, classes of categorieën
	 nominale variabele = waarde van de variabele plaatst meetgegeven in bepaalde categorie vb: geslacht, nationaliteit, kleur
	 ordinale variabele er is logische ordening tussen elementen in een steekproef vb: sterren voor hotels/restaurants > heeft geen vaste meeteenheid
1.1.2 kwantitatieve gegevens	
Kwantitatieve gegevens	= kunnen in vaste meeteenheden uitgedrukt worden - discrete gegevens
	= worden in gehele getallen uitgedrukt - continue gegevens
	= worden in reële getallen uitgedrukt, mist afronding
schaal van kwantitatieve gegevens	- intervalschaal = geen natuurlijk nulpunt > verhoudingen niet zinvol berekenbaar
	- ratioschaal = wel een nulpunt > verhoudingen zijn zinvol
1.1.4 gegevens voorstellen	
def: absolute frequentie van een klasse	= het aantal elementen van de steekproef die tot de klasse behoren
def: relatieve frequentie ve klasse	= de verhouding van de absolute frequentie tot het aantal waarnemingen vd proef
kwalitatieve variabelen voorstellen	1: staafdiagram: 2: taartdiagram: Munt Onicithture Nature 0.4%
Kwantitatieve variabelen voorstellen	histogrammen: maak de afweging tss nauwkeurigheid en leebaarheid
	nl: hoe breder de intervallen, hoe minder nauwkeurig <> meer leesbaar smaller meer minder
	10 24 intervallen 12 intervallen 40 35 35 35 36 36 36 36 36 36 36 36 36 36 36 36 36

	1.2 numerieke beschrijving van gegevens
1.2.1 beschrijving van de centrale waa	rde van gegevens
def: aritmetisch gemiddelde /rekenkundig	Het aritmetisch gemiddelde van N elementen van x is: $\bar{x} = \frac{1}{N} \sum_{i=1}^N x_i$
	voor N elementen in B intervallen:
	$\bar{x} = \frac{1}{N} \sum_{j=1}^{B} n_j x_j$
	waarbij de interval j slaat op de waarde x_j en bevat n_j tellen.
	Voor een functie f(x):
	$\bar{f} = \frac{1}{N} \sum_{i=1}^{N} f(x_i)$ en met de verdeling in B intervallen
	$ar{f} = rac{1}{N} \sum_{j=1}^B n_j f(x_j)$
def: geometrisch gemiddelde /meetkundig	Voor N elementen van x: $g = \left(\prod_{i=1}^N x_i\right)^{1/N}$
stelling: logaritme en gemiddelden	De logaritme van het meetkundig gemiddelde is het rekenkundig gemiddelde van de afzonderlijke logaritmen
	nl: $\ln g = \ln \sqrt[N]{x_1 \cdot x_2 \cdot \ldots \cdot x_N}$ $= \frac{1}{N} \ln (x_1 \cdot x_2 \cdot \ldots \cdot x_N)$ $= \frac{1}{N} (\ln x_1 + \ln x_2 + \ldots + \ln x_N)$ $= \overline{\ln x}$
def: harmonisch gemiddelde	= reciproke van rekenkundig gemiddelde van de reciproken $h = \left(\frac{1}{N}\sum_{i=0}^N x_i^{-1}\right)^{-1}$
def: kwadratisch gemiddelde	$k = \sqrt{\frac{\sum_{i} x_{i}^{2}}{N}}$
def: modus	= meest populaire waarde in een groep gegevens
stelling: modus van een verdeling	Voor continue gegevens vind je de modus door de verdeling te differentiëren en gelijk te stellen aan 0
def: mediaan	= het halfweg-punt > de helft van de punten bevinden zich beneden het mediaan
1.2.2 beschrijving van de spreiding van	
def: spreidingsbreedte/range R	= het verschil tss de hoogste en laagste waarde van gegevens: $R = x_{\rm max} - x_{\rm min}$
def: gemiddelde absolute afwijking	= rekenkundig gemiddelde van de absolute waarden van de afwijkingen tov het rekenkundig gemiddelde $GAA = \frac{1}{N}\sum_{i=1}^n x_i - \bar{x} $

def: variantie	= de gemiddelde waarde van het kwadraat van de afwijkingen vd variabele vh gemiddelde $V(x) \equiv \frac{1}{N} \sum_{i=1}^N (x_i - \bar{x})^2$ > hetzelfde kan met een functie: $V(f) \equiv \frac{1}{N} \sum_{i=1}^N (f(x_i) - \bar{f})^2$	
	$V(J) = \frac{1}{N} \sum_{i=1}^{N} (J(x_i) - J)$	
stelling: variantie en gemiddelde	variantie = het gemiddelde van de kwadraten min kwadraat van gemiddelde: $V(x) \equiv \frac{1}{N} \sum_i (x_i - \bar{x})^2 = \frac{1}{N} \sum_i x_i^2 - \left(\frac{1}{N} \sum_i x\right)^2 = \overline{x^2} - \bar{x}^2$	
def: standaardafwijking	= positieve vierkantswortel van de variantie:	
	$\sigma = \sqrt{V(x)} = \sqrt{\overline{x^2} - \bar{x}^2} = \sqrt{\frac{1}{N} \sum_{i} x_i^2 - \left(\frac{1}{N} \sum_{i} x\right)^2} = \sqrt{\frac{1}{N} \sum_{i} (x_i - \bar{x})^2}$	
def: schatting voor standaardafwijking	$s = \sqrt{\frac{1}{N-1} \sum_{i} (x_i - \bar{x})^2}$	
def: p-de percentiel c _p	= een getal dat groter is dan p% van de waarnemingen en kleiner dan (1-p)% van de waarnemingen	
	> vb: mediaan is het 50ste percentiel	
def: bedenkwartiel bovenkwartiel	= 25e percentiel = 75e percentiel	
def: volle breedte op halve hoogte	= afstand tss de twee snijpunten van het histogram op de helft van de hoogte van de centrale piek= FWHM	
stelling: FWHM en Gaussische verdeling	De FWHM van een Gaussische verdeling is 2.35σ	
verdelingen visueel:	160 - 100 -	
1.2.3 momenten van de gegevens		
def: r-de steekproefmoment	= de gemiddelde waarde van de r-de macht van de waarnemingen: $m_r' = \frac{1}{N} \sum_{i=1}^N x_i^r$	
def: r-de centrale moment	= het gemiddelde vd r-de macht vd afwijkingen ten opzichte vh steekproefgemiddelde $m_r' = \frac{1}{N} \sum_{i=1}^N (x_i - \bar{x})^r$	
def: scheefheid	$\gamma = \frac{1}{N\sigma^3} \sum_{i=1}^{N} (x_i - \bar{x})^3 = \frac{1}{\sigma^3} \overline{(x - \bar{x})^3}$	
	> pos. scheefheid impliceert staart naar rechts neg. scheefheid links	
stelling: scheefheid en steekproefmoment	$m_3 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^3 = \gamma \sigma^3$	
	ı	

def: kurtosis	$c = \frac{1}{\sigma^4} \overline{(x - \bar{x})^4} - 3$
	> pos. kurtosis impliceert relatief hoge piek en lange staarten
	neg. kurtosis plompere verdeling met brede piek en korte staarten
	180 160 140 100 0.025 100 0.025
	Figuur 1.6: Algemene distributies met positieve Figuur 1.7: Algemene distributies met positieve en negatieve kurtosis
	1.3 multivariabele variabelen
1.3.1 bivariate variabelen: covariantie en	correlatie
bivariate variabele	= steekproef op twee variabelen X en Y > elk evenement bestaat uit een paar van getallen: $\{(x_1,y_1),(x_2,y_2),(x_3,y_3),\dots,(x_N,y_N)\}$ Hierbij heeft elke variabele X en Y onafhankelijk van elkaar:
def: covariantie	gemiddelden \bar{x} , \bar{y} , de varianties $V(x)$, $V(y)$ en de standaardafwijkingen σ_x en σ_y covariantie tss de variabelen X en Y:
	$cov(x,y) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})$ $= \frac{(x - \bar{x})(y - \bar{y})}{\bar{x}\bar{y} - \bar{x}\bar{y}}$
stelling: verband variantie en covariantie	De covariantie is een triviale uitbereiding van de univariabele variantie > variantie is de covariantie van de variabele met zichzelf $V(x) = \operatorname{cov}(x,x)$
def: correlatiecoëfficiënt	= de verhouding tss de covariantie en de individuele standaardafwijkingen
	$ ho = \frac{\operatorname{cov}(x,y)}{\sigma_x \sigma_y}$
	$\sigma_x \sigma_y$ > is een getal zonder eenheden, begrensd door -1 en +1
	> geeft aan in welke mate er een lineair verband is tss de twee variabelen
1.3.2 multivariabele uitbreiding: covariar	ntie- en correlatie matrix
multivariabele variabelen	Een steekproef met N elementen van m variabelen wordt geschreven als:
	$\left\{(x_{(1)},x_{(2)},,x_{(m)})_1 , (x_{(1)},x_{(2)},,x_{(m)})_2 , , (x_{(1)},x_{(2)},,x_{(m)})_N\right\}$
	- subscript tss haakjes duiden element aan van individueel evenement - subscript zonder haakjes duid op evenement binnen steekproef
multivariabele covariantie	tussen elk paar variabelen geldt: $\operatorname{cov}(x_{(i)},x_{(j)})=\overline{x_{(i)}x_{(j)}}-\overline{x_{(i)}}\ \overline{x_{(j)}}$
covariantiematrix	$\begin{array}{c} \text{We kunnen de multivariabele covariantie in matrixvorm schrijven:} \\ \text{met elk element V}_{ij} \colon \\ V_{ij} = \text{cov}(x_{(i)}, x_{(j)}) \\ \text{dus:} & \begin{pmatrix} \sigma_1^2 & \text{cov}(x_{(1)}, x_{(2)}) & \cdots & \text{cov}(x_{(1)}, x_{(m)}) \\ \text{cov}(x_{(2)}, x_{(1)}) & \sigma_2^2 & \cdots & \text{cov}(x_{(2)}, x_{(m)}) \\ \vdots & & \ddots & \\ \text{cov}(x_{(m)}, x_{(1)}) & \text{cov}(x_{(m)}, x_{(2)}) & \cdots & \sigma_m^2 \end{pmatrix} \end{array}$
	= matrixvorm van de correlatiecoëfficiënten: $cov(x_0, x_0)$
correlatiematrix	$ ho_{ij} = rac{ ext{cov}(x_{(i)}, x_{(j)})}{\sigma_i \sigma_i}$