AR13 SET-2

CODE: 13EC3018

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

III B.Tech I Semester Regular / Supplementary Examinations, November-2016 SIGNALS AND SYSTEMS

(Electrical and Electronics Engineering)

Time: 3 Hours Max Marks: 70

PART-A

ANSWER ALL QUESTIONS

 $[1 \times 10 = 10 \text{ M}]$

- 1. a) Define unit step response.
 - b) Define transfer function.
 - c) Mention the relation between unit step and impulse function.
 - d) Mention the necessary conditions for a Fourier transform to exist.
 - e) Mention the condition for causality of an LTI system.
 - f) What is the use of unilateral Z transform?
 - g) Obtain the relation between DTFT and Z transform.
 - h) Define singularity function.
 - i) Mention the ROC properties of Laplace Transform.
 - j) Find the Laplace transformer of $x(t) = e^{-at} u(t)$.

PART-B

Answer one question from each unit

[5X12=60M]

UNIT-I

- 2. a) Evaluate the convolution integral for a system with input x(t) and impulse response h(t) respectively given by $x(t)=h(t)=A[u(t+\tau)-u(t-\tau)]$. [8M]
 - b) Derive the condition for stability for LTI systems.

[4M]

(OR)

- 3. a) Find the ever and odd compone of the following signals (i) $x(t)=u(t)=\begin{cases} 1 & t>0 \\ 0 & t<0 \end{cases}$ (ii) $x(t)=Ae^{-\alpha} & t>0$ =0 & t<0
 - b) For an energy signal x(t) with energy E_x , show that (i) the energy of the signal $x_1(t)=-x(t), x_2(t)=x(-t), \text{ and } x_3(t)=x(t-T) \text{ is } E_x$ (ii) The energy of $x_1(t)=ax(t)$ is $a^2 E_x$.

UNIT – II

4. a) State and prove the (i) time shifting (ii) time scaling (iii) Differentiation properties of Fourier series. [6M]

CODE: 13EC3018

b) Find the trigonometric Fourier series for the waveform shown below and sketch the line spectrum. [6M]

5. Prove that for half wave symmetry $x(t) = x\left(t \pm \frac{T}{2}\right)$ the Fourier series coefficients $a_0=0$; [12M]

$$\begin{aligned} & \mathbf{c}_{h} = 0 \text{ for } n \text{ even} \\ & = \frac{4}{T} \int_{0}^{T} x(t) \cos(n\omega_{h}t) \, dt \text{ for } n \text{ odd} \end{aligned} \qquad = \frac{4}{T} \int_{0}^{T} x(t) \sin(n\omega_{h}t)$$

$$b_n = 0 \text{ for neven}$$

$$= \frac{4}{T} \int_{-\infty}^{T/2} x(t) \sin(n\omega_n t)$$

UNIT - III

6. a) Find the Fourier Transform of the following signal.

i)
$$\operatorname{Sgn}(t)$$
 ii) $x(t) = e^{-at} u(t)$ [8M]

b) Derive the expression for Fourier Transform for periodic signals. [4M]

(OR)

- 7. a) Find the total area under the function $x(t) = 10 \sin \left(\frac{t+4}{7}\right)$ using Fourier Transform [6M] properties.
 - b) Consider an LTI system with impulse response $h(t)=e^{-at}u(t)$. Find the response y(t) of this system when the input is the unit step function i.e; x(t)=u(t). [6M]

UNIT - IV

8. a) Use the convolution property of the Laplace transform to determine $y(t)=e^{at} u(t) * e^{bt} u(t).$ [6M]

b) Find the inverse Laplace transform of
$$H(S) = \frac{4S^2 + 15S + 8}{(S+2)^2(S-1)}$$

[6M]

CODE: 13EC3018

(OR)

- 9. a) Determine the Laplace Transform of the signal $g(t) = \frac{1}{t}\sin(\omega t)$ u(t) using unilateral Laplace Transform. [6+6M]
 - b) Find the Laplace Transform and ROC of the following damped sinusoidal signals

i)
$$g_1(t) = e^{-at} \cos(\omega_o t)$$
 u(t) (ii) $g_2(t) = e^{-at} \sin(\omega_o t)$

UNIT – V

10. a) Determine the z-transform of the causal signal $x(n)=a^n u(n)$ and anticausal signal $x(n)=-a^n u(-n-1)$ and depict their ROCs and location of poles and zeros in the z-plane.

[6+6M]

b) Determine the z-transform of the sequence g(n)=n a^n u(n).

(OR)

- 11. An LTI system is characterized by the system function $H(Z) = \frac{3 4Z^{-1}}{1 3.5Z^{-1} + 1.5Z^{-2}}$ specify the ROC of H(Z) and determine h(n) for the following conditions. [12M]
 - (i) The system is causal and unstable
 - (ii) The system is non causal and stable
 - (iii) The system is anti causal and unstable.

3 of 3

AR13 SET-2

CODE: 13CS3008

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

III B.Tech I Semester Regular / Supplementary Examinations, November-2016

COMPUTER ORGANIZATION AND ARCHITECTURE (Electronics and Communication Engineering)

Time: 3 Hours Max Marks: 70

PART-A

ANSWER ALL QUESTIONS

 $[1 \times 10 = 10M]$

- 1. a) Write two functionalities of ALU.
 - b) Define bus.
 - c) List the representations of signed integers.
 - d) What is Bias?
 - e) Define hit ratio.
 - f) What is the need for content addressable memory?
 - g) What is Arithmetic pipeline?
 - h) Give two advantages of RISC over CISC?
 - i) What is processor arbitration?
 - i) Name any two synchronization tools

PART-B

Answer one question from each unit [5x12=60M]**UNIT-I** 2. (a) Explain the functional architecture of the computer system. [6M] (b) Explain performance equation of the processor [6M] (OR) (a) What is the difference between computer organization and architecture? 3. [6M] Explain different types of computers. Discuss about fixed point and floating point representations (b) [6M] **UNIT-II** 4. (a) Differentiate between non-restoring division algorithm and restoring division [6M] (b) Explain hardware implementation of Binary multiplier with example. [6M] (OR) What are the methods we can use to round the floating point numbers? 5 [6 M](b) Explain addition and subtraction of a floating point number. [6 M]

AR13 SET-2

CODE: 13CS3008

<u>UNIT-III</u>

6	(a)	Explain the various addressing modes with examples.	[6 M]
	(b)	With a neat diagram explain the internal organization of a processor.	[6M]
		(OR)	
7	(a) Explain the organization of registers.		[6M]
	(b)	What is micro-operation? Explain how Register Transfer Language is related	[6M]
		to this with an example.	
		<u>UNIT-IV</u>	
8	(a	Explain Techniques used to write Data in the Cache	[6 M]
	(t	Distinguish between logical address and physical address with an example	[6 M]
		(OR)	
9	(a	With a neat sketch explain the working principle of DMA	[6 M]
	(ł	Explain the I/O processor with a neat diagram.	[6 M]
		<u>UNIT-V</u>	
10	(a)	Explain Flynn's classifications of parallel computers	[6 M]
	(b)	Discuss in detail about No-operations, Instruction reordering and Data	[6 M]
		forwarding	
		(OR)	
11	(a)	What is parallel processing? Explain any parallel processing mechanism.	[6M]
	(b)	Explain cache coherence with example	[6M]

2 of 2
