Eksamen på Økonomistudiet summer school 2017

Lineære Modeller

Tirsdag d.15 august 2017

(3-timers prøve med hjælpemidler)

Dette eksamenssæt består af 2 sider med i alt fire opgaver.

OBS: Bliver du syg under selve eksamen på Peter Bangsvej, skal du kontakte et tilsyn, blive registreret som syg hos denne. Derefter afleverer du en blank besvarelse i systemet og forlader eksamen. Når du kommer hjem, skal du kontakte din læge og indsende lægeerklæring til Det Samfundsvidenskabelige Fakultet senest en uge efter eksamensdagen.

KØBENHAVNS UNIVERSITETS ØKONOMISKE INSTITUT

LM August 2017

Eksamen i Lineære Modeller - Sommerskolevariant

Tirsdag d.15 august 2017.

Dette er en 3-timers eksamen (2 sider med i alt 4 opgaver).

Brug af bøger, noter og lignende er tilladt, men brug af lommeregner og casværktøjer er ikke tilladt.

Opgave 1.

Vi betragter den lineære afbildning $T: \mathbf{R}^5 \to \mathbf{R}^2$, som med hensyn til standardbaserne i begge rum har afbildningsmatricen

$$T = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 2 & 3 & 4 \end{pmatrix} .$$

- (1) Bestem en basis for nulrummet, N(T), for T. Er T injektiv?
- (2) Vis, at vektoren v = (6, -9, 1, 1, 1) ligger i N(T), og bestem vektorens koordinater med hensyn til den fundne basis for N(T).
- (3) Bestem løsningsmængden til ligningen Tx = y, hvor $y = (y_1, y_2) \in \mathbf{R}^2$.
- (4) Lad den lineære afbildning $L: \mathbf{R}^2 \to \mathbf{R}^2$ have afbildningsmatricen L, givet ved:

$$L = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} ,$$

med hensyn til standardbasen. Vis, at N(LT) = N(T), hvor $LT : \mathbf{R}^5 \to \mathbf{R}^2$ er den sammensatte afbildning LT(x) = L(Tx).

Opgave 2.

Lad $v_1 = (1, 1, 1)$, $v_2 = (1, -2, 1)$ og $v_3 = (1, 0, -1)$. Om en 3×3 -matrix A, vides, at $Av_1 = (1, 1, 1)$, $Av_2 = (-1, 2, -1)$ og $Av_3 = (0, 0, 0)$. (Vektorerne er skrevet som rækker af pladshensyn).

- (1) Vis at A er symmetrisk.
- (2) Bestem alle egenværdierne for A og deres multipliciteter.

- (3) Bestem determinanten for A.
- (4) Bestem matricen $A^4 A^3$.
- (5) Vis, at $A^{2k+1} = A$, hvor k er et naturligt tal.

Opgave 3.

- (1) Beregn integralet $\int \sin((a-b)x)\cos((b+c)x)dx$, hvor a, b og c er reelle tal.
- (2) Løs ligningen $w^2=3+i$. Løs
ningen ønskes angivet på rektangulær form a+ib. Løs dernæst ligningen

$$z^2 - z - \frac{1}{4}(2+i) = 0.$$

Dennes løsning ønskes ligeledes angivet på rektangulær form.

Opgave 4.

Vi betragter funktionen f, som er sumfunktion for rækken

$$\sum_{n=0}^{\infty} (\frac{1}{x^4 - x^2})^n.$$

- (1) Vis, at f er veldefineret på mængden $]-\infty;-\varphi[\cup]\varphi;\infty[$, hvor φ er tallet $\sqrt{\frac{1+\sqrt{5}}{2}}$.
- (2) Bestem en regneforskrift for funktionen f.
- (3) Bestem monotoniforholdene for funktionen f.
- (4) Bestem værdimængden for funktionen f, og undersøg om funktionen er injektiv.
- (5) Løs ligningen f(x) = y (med hensyn til x) for et givet y beliggende i værdimængden for funktionen f.