ZASTOSOWANE I ANALIZA METOD WYJAŚNALNEGO UZENA MASZYNDWEGO NA ZBORZEADLI

KRÓTKO O ZBIORZE

Predict whether annual income of an individual exceeds \$50K/yr based on census data. Also known as "Census Income" dataset.

Dataset Characteristics Subject Area Associated Tasks

Multivariate Social Science Classification

Feature Type # Instances # Features

Categorical, Integer 48842 14

CECHY

Zmienne skategoryzowane: workclass, education, maritalstatus, occupation, relationship, race, sex, native-country

Zmienne numeryczne: age, fnlwgt, education-num, capital-gain, capital-loss, hours-per-week

Zmienna objaśniana: income (>50K lub <=50K)

ROZKŁADY CECH

WYNIKI ANALIZOWANYCH MODELI

Tabela 1: Wyniki wybranych klasyfikatorów na zbiorze testowym przy zastosowaniu domyślnych parametrów.

Model	Accuracy	Precision	Recall
GradientBoosting	0.87	0.83	0.78
MLP	0.85	0.80	0.78
RandomForest	0.85	0.80	0.77
KNN	0.84	0.79	0.78
GaussianNB	0.82	0.76	0.80
SVC	0.80	0.77	0.62

METODY XAI

Oraz uzyskane przez nie wyniki

SHAP

Potrzebujemy miary, która intuicyjnie wyjaśni nam wpływ wartości zmiennej na predykcję modelu.

Dobrym pomysłem wydaje się:

$$\phi_k := \mathbb{E}[f(x) \mid x_1, \cdots, x_k] - \mathbb{E}[f(x) \mid x_1, \cdots, x_{k-1}]$$

JAK TO POLICZYĆ?

Definicja klasycznej wartości Shapley'a:

$$egin{aligned} arphi_i(v) &= \sum_{S \subseteq N \setminus \{i\}} rac{|S|! \ (n-|S|-1)!}{n!} (v(S \cup \{i\}) - v(S)) \ &= rac{1}{n} \sum_{S \subseteq N \setminus \{i\}} inom{n-1}{|S|}^{-1} (v(S \cup \{i\}) - v(S)) \end{aligned}$$

Gdzie N - zbiór zmiennych objaśniających, i – indeks zmiennej, v – predykcja modelu dla ustalonego zbioru zmiennych

Problem: Złożoność obliczeniowa - zauważmy, że wyliczenie wartości Shapleya dla jednej zmiennej wymaga dopasowania 2**(N-1) modeli! (2**N dla wszystkich wartości)

JAK TO POLICZYĆ W SKOŃCZONYM CZASIE?

Metod jest wiele – dla większości modeli możliwe jest jedynie wyliczenie przybliżonych wartości SHAP.

Istnieją jednak przypadki, w których obliczenia da się sprowadzić do algorytmu o złożoności wielomianowej. Przykładowo - TreeSHAP.

WYNIKI (DLA MLP)

PERMUTACYJNA ISTOTNOŚĆ ZMIENNYCH

Permutacyjna istotność zmiennych (ang. *permutation feature importance*) to metoda oszacowania istotności zmiennych na podstawie wzrostu błędu predykcji (lub poprawy miary dopasowania) po spermutowaniu wybranej zmiennej

$$PFI(X_j) = Acc_{\text{original}} - \mathbb{E}[Acc_{\text{permuted}}(X_j)]$$

PARTIAL DEPENDENCE PLOTS (PDP)

- Oznaczmy przez $S \subset \{1, \dots p\}$ zbiór wybranych cech oraz przez C jego zbiór dopełniający
- Przez x_S rozumiemy obserwacje powstałe z $x \in X^p$ poprzez wybór cech S

$$f_S = \mathbb{E}_{\boldsymbol{x}_C} \left[f\left(\boldsymbol{x}_S, \boldsymbol{x}_C\right) \right] = \int f\left(\boldsymbol{x}_S, \boldsymbol{x}_C\right) dP\left(\boldsymbol{x}_C\right)$$

• Nie znamy f oraz nie znamy $P(x_C)$, ale mamy nasz model i możemy obliczyć średnią

$$\hat{f}_S = \frac{1}{N} \sum_{i=1}^{N} \hat{f} \left(\boldsymbol{x}_S, \boldsymbol{x}_{Ci} \right)$$

ALE TA METODA MA ISTOTNĄ WADĘ...

Figure 1: Scatterplot and PDP of X_2 versus Y for a sample of size 1000 from the process described in Equation 3. In this example \hat{f} is fit using SGB. The PDP incorrectly suggests that there is no meaningful relationship between X_2 and the predicted Y.

INDIVIDUAL CONDITIONAL EXPECTATION (ICE)

• Rozważmy zbiór wszystkich próbek $\{(x_{Si}, x_{Ci})\}_{i=1}^{N}$. Krzywa ICE $\hat{f}_{S}^{(i)}$ przyjmuje wartości dla ustalonego x_{C} przy zmiennym x_{S} osiągającym wszystkie wartości ze zbioru treningowego

$$\hat{f}_S = \frac{1}{N} \sum_{i=1}^{N} \hat{f} \left(\boldsymbol{x}_S, \boldsymbol{x}_{Ci} \right)$$

INDIVIDUAL CONDITIONAL EXPECTATION (ICE)

• Rozważmy zbiór wszystkich próbek $\{(x_{Si}, x_{Ci})\}_{i=1}^{N}$. Krzywa ICE $\hat{f}_{S}^{(i)}$ przyjmuje wartości dla ustalonego x_{C} przy zmiennym x_{S} osiągającym wszystkie wartości ze zbioru treningowego

$$\hat{f}_S^{(i)} = \frac{1}{N} \sum_{i=1}^{N} \hat{f}\left(\boldsymbol{x}_S, \boldsymbol{x}_{Ci}\right)$$

I TERAZ JUŻ WIDAĆ...

ACCUMULATED LOCAL EFFECTS (ALE)

• Załóżmy, że dysponujemy modelem predykcyjnym f i chcemy oszacować wpływ zmiennej x_j na predykcję. Niech x_{-j} oznacza wektor pozostałych zmiennych. W metodzie ALE dzielimy najpierw dziedzinę wartości, jakie x_j może przyjmować, na K przedziałów [z_k , z_{k+1}], gdzie k = 1, 2, ..., K. Wówczas definiujemy efekt lokalny

$$\Delta f_j^{(k)} = \mathbb{E}_{x_{-j}|x_j \in [z_k, z_{k+1}]} \left[f(z_{k+1}, x_{-j}) - f(z_k, x_{-j}) \right].$$

ACCUMULATED LOCAL EFFECTS (ALE)

- Efekt lokalny interpretowany jest jako średnia zmiana predykcji, gdy zmieniamy x_j z z_k do z_{k+1} , pozostawiając pozostałe cechy na wartościach występujących w danym zakresie x_j należących do $[z_k, z_{k+1}]$.
- Efekt skumulowany to suma efektów lokalnych z wszystkich przedziałów:

$$\hat{f}_{ALE_j} = \sum_{l=1}^{K} \Delta f_j^{(l)}$$
.

WNIOSKI

KLUCZOWE ZMIENNE WPŁYWAJĄCE NA PREDYKCJĘ

- zysk kapitałowy silny, pozytywny wpływ.
- poziom wykształcenia pozytywny wpływ.
- stan cywilny pozytywny wpływ.
- wiek- największe zarobki w średnim wieku.
- liczba godzin pracy tygodniowo optymalnie ok. 40–50 h/tyg.

OCENA ZASTOSOWANYCH METOD XAI

- SHAP umożliwia globalną i lokalną interpretację wpływu cech.
- ICE i PDP dobre do wizualizacji zależności, ICE lepiej oddaje lokalne zmiany.
- ALE preferowane przy skorelowanych cechach, np. wiek i edukacja.
- Permutacyjna istotność łatwa do zrozumienia, potwierdza wagę najważniejszych cech.

LITERATURA

- A. Goldstein, A. Kapelner, J. Bleich, and E. Pitkin, "Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation," 2014.
- B. Becker and R. Kohavi, "Adult." UCI Machine Learning Repository, 1996. DOI:https://doi.org/10.24432/C5XW20.

DZIĘKUJEMY

• Czy są jakieś pytania?