1. Took the log of the prices to reduce heteroscedasticity. Below is the graph:

2. Using Johnson-cointegration test, we can conclude that there is at least one cointegration equation. Below is the screenshot:

Date: 02/16/19 Time: 15:44

Sample (adjusted): 1990M03 2018M12

Included observations: 346 after adjustments

Trend assumption: No deterministic trend (restricted constant) Series: LOG(COPPER) LOG(TIN) LOG(LEAD) LOG(ZINC)

Lags interval (in first differences): 1 to 1

Unrestricted Cointegration Rank Test (Trace)

Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**
None * At most 1 At most 2 At most 3	0.078118	54.58767	54.07904	0.0450
	0.044796	26.44455	35.19275	0.3177
	0.026528	10.58727	20.26184	0.5822
	0.003706	1.284661	9.164546	0.9101

Building the VAR model with log(copper), log(zinc), log(tin), and log(lead), we got the below result:

Vector Error Correction Estimates Date: 02/16/19 Time: 15:52

Sample (adjusted): 1990M03 2018M12 Included observations: 346 after adjustments

Standard errors in () & t-statistics in []

Cointegrating Eq:	CointEq1
LOG(COPPER(-1))	1.000000
LOG(LEAD(-1))	-2.535663 (0.45645) [-5.55520]
LOG(TIN(-1))	1.644632 (0.40814) [4.02953]
LOG(ZINC(-1))	0.166074 (0.34076) [0.48736]
С	-6.925281 (1.93706) [-3.57515]

Error Correction:	D(LOG(COP	D(LOG(LEAD))	D(LOG(TIN))	D(LOG(ZINC))
CointEq1	-0.018218	0.013266	-0.025830	-0.004341
	(0.00820)	(0.00982)	(0.00746)	(0.00838)
	[-2.22041]	[1.35031]	[-3.46049]	[-0.51821]
D(LOG(COPPER(-1)))	0.420624	0.089441	0.091521	0.191225
	(0.06844)	(0.08195)	(0.06226)	(0.06987)
	[6.14621]	[1.09147]	[1.46997]	[2.73686]
D(LOG(LEAD(-1)))	-0.089978	0.227445	0.016599	-0.052085
	(0.05860)	(0.07017)	(0.05331)	(0.05983)
	[-1.53538]	[3.24128]	[0.31135]	[-0.87054]
D(LOG(TIN(-1)))	-0.021968	-0.153571	0.200727	-0.221108
	(0.06506)	(0.07791)	(0.05919)	(0.06643)
	[-0.33765]	[-1.97125]	[3.39117]	[-3.32867]
D(LOG(ZINC(-1)))	0.032673	0.024900	-0.016137	0.303236
	(0.06797)	(0.08139)	(0.06184)	(0.06939)
	[0.48070]	[0.30595]	[-0.26096]	[4.36983]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent	0.163207	0.063175	0.112511	0.136039
	0.153391	0.052186	0.102100	0.125904
	1.119006	1.604394	0.926161	1.166389
	0.057285	0.068593	0.052115	0.058485
	16.62706	5.748865	10.80750	13.42340
	501.0290	438.6961	533.7515	493.8543
	-2.867220	-2.506914	-3.056367	-2.825747
	-2.811635	-2.451330	-3.000782	-2.770163
	0.002733	0.002682	0.003296	0.001814
	0.062258	0.070456	0.054999	0.062555
Determinant resid covariar Determinant resid covariar Log likelihood Akaike information criterior Schwarz criterion	3.90E-11 3.68E-11 2192.584 -12.52939 -12.25146			

3. We got the following cointegration equation (as zinc is not significant): $\log(copper(-1)) = 2.53\log(lead(-1)) - 1.64\log(tin(-1)) + 6.92$

Number of coefficients

It seems that TIN price is the main driver. We can improve the model by removing zinc from the cointegration equation as well as VAR model. We can form another model for zinc using the other metals log price changes.

25

Analysing the stability conditions to test if any of the parameters or relationship between them is explosive, we found that all of the parameters fall within the unit root circle. Below is the screenshot:

While given an impulse to copper, all the prices go up in the short period but after around 4 periods, copper and tin prices go down while lead price goes up and zinc price stays the same. Below is the screenshot:

For the out-of-sample forecasting, we can see that the price of lead goes up, but the rest prices go down. Below is the screenshot:

