

1 Phase Conjugate Circuit

2

3 This invention relates generally to phase conjugate
4 circuits and specifically, but not exclusively, to
5 phase conjugate circuits containing phase locked
6 loop circuits.

7

8 Phase conjugation of a particular signal is useful
9 in numerous applications. One example is in retro-
10 directive antenna arrays, where an incoming signal
11 is automatically re-transmitted in the same
12 direction as it was incident on the array by
13 transmitting the phase conjugate of the incoming
14 signal. Another example is in LINC (Linear
15 Amplification using Non-Linear Components)
16 amplifiers, where an amplitude modulated signal is
17 firstly converted to a phase modulated signal and a
18 phase conjugate modulated signal before being

1 amplified by non-linear amplifiers. The two
2 amplified signals are then recombined to provide an
3 amplified version of the original signal.

4

5 In both these applications obtaining the phase
6 conjugate of the incoming signal is an essential
7 part of the electrical circuit.

8

9 Phase conjugation circuitry, to some extent, has
10 limited the commercialisation of both Retro-
11 directive antenna arrays and LINC circuit
12 architectures. For example, prior art phase
13 conjugate circuits for retro-directive arrays use a
14 heterodyning approach involving a signal mixer which
15 relies on a local oscillator (LO) operating at twice
16 the desired input RF (Radio Frequency) frequency. As
17 the RF signal and the signal from the output IF
18 (Intermediate Frequency) ports are the same, or very
19 nearly the same, direct leakage from the RF signal
20 to the IF ports causes significant problems. In
21 addition the LO frequency must be twice the RF
22 frequency so that the down-converted IF output
23 signal is the phase conjugate of the RF input
24 signal. This can be disadvantageous when the RF
25 signal is required to be of very high frequency such
26 as for anti-collision vehicular radars operating at
27 77 GHz. In this case, the LO frequency would have to
28 be 154GHz which would be difficult to construct
29 using currently available technology.

30

31 LINC amplifiers suffer from general circuit
32 complexity in the phase conjugate sections.

1 Subsequently, LINC amplifiers have not been
2 successfully operated at frequencies of greater than
3 a few 10's of Megahertz mainly for this reason.

4

5 Additional problems exist with the prior art
6 associated with phase conjugation circuitry:
7 prominent amongst these are the requirement for:

8 • sophisticated mixer balancing techniques required
9 to prevent unwanted leakage signals corrupting
10 the phase conjugation process. This leads to weak
11 output signal levels since conventional mixer
12 circuits are either passive (and therefore lossy)
13 or limited to the few dB conversion gain that can
14 be achieved with conventional active mixers; and
15 • the need for a local oscillator signal operating
16 at twice the RF signal (as mentioned above).

17

18 Other applications for retrodirective (self
19 tracking) array technology include simplex and
20 duplex communication with low earth orbiting, non-
21 geosynchronous satellites and as a low cost means
22 for automatic beamforming as required for modern
23 spatial division multiple access mobile phone
24 wireless communication systems. Further examples are
25 the use of a self-tracking array for automatic
26 alignment of ground stations with high altitude
27 communications platforms or in the creation of agile
28 radar cross-section modification.

29

30 Phase locked loop circuits have been widely used
31 since first being proposed in 1922. Since that time,
32 PLL's have been used in instrumentation, space

1 telemetry and many other applications requiring a
2 high degree of noise immunity and narrow bandwidth.
3

4 A standard phase lock loop (PLL) circuit comprises a
5 phase detector, a low-pass filter, and an
6 oscillator, usually a voltage-controlled oscillator
7 (VCO). In the case where the oscillator is a VCO,
8 the phase detector outputs a voltage proportional to
9 the phase difference between a PLL input and a
10 feedback signal from the output of the VCO. The low-
11 pass filter acts as an integrator and provides a
12 filtered voltage signal or an error signal which
13 controls the VCO. When the error signal is zero, the
14 VCO operates at a set frequency, known as the free
15 running frequency. When the error signal is not
16 zero, the phase of the PLL input and the feedback
17 signal are no longer in balance and the VCO reacts
18 to the error signal by modifying its output to track
19 the PLL input.
20

21 It is an object of the present invention to obviate
22 or mitigate the problems identified above in
23 relation to phase conjugation circuits.
24

25 According to a first aspect of the present invention
26 there is provided a circuit arrangement for deriving
27 phase conjugation information from a main input
28 signal of a given frequency comprising:

29 an input receiving a reference input signal;
30 at least one phase locked loop circuit
31 comprising an oscillator having a main output
32 signal, an input receiving a PLL input signal, an

1 input receiving a feedback signal from the
2 oscillator and at least one phase detecting means,
3 wherein the phase detection means detects any phase
4 difference between the PLL input signal and the
5 feedback signal and provides a phase control signal
6 to the oscillator.

7

8 In one embodiment, the circuit arrangement further
9 comprises a first heterodyne mixer having an input
10 for receiving the main input signal and an input for
11 receiving the main output signal, the first mixer
12 providing the feedback signal and wherein the PLL
13 input signal is the reference input signal.

14

15 Preferably the feedback signal is the up-converted
16 mixing product of the first heterodyne mixer.

17

18 Preferably, the frequency of the reference input
19 signal is scaled to match the frequency of the
20 feedback signal.

21

22 Further preferably, the feedback signal is scaled.

23

24 Preferably, the phase detection means is a digital
25 phase detector.

26

27 In one form of the invention, the phase detection
28 means also detects any phase difference between an
29 input receiving the main output signal and an input
30 receiving the reference signal thereby creating a
31 further phase locked loop.

32

1 Preferably, the phase detection means comprises:
2 a first phase detector which detects any phase
3 difference between an input receiving the reference
4 input signal and an input receiving the feedback
5 signal;
6 a second phase detector which detects any phase
7 difference between an input receiving the reference
8 input signal and an input receiving the main output
9 signal;
10 an integrator integrating the first phase
11 detector output;
12 an oscillator heterodyne mixer mixing the
13 integrator output and the second phase detector
14 output;
15 wherein the oscillator mixer output is the
16 phase detection means output providing a control
17 signal for the oscillator.
18
19 In an alternative form of the invention, the phase
20 detection means comprises:
21 a first phase detection heterodyne mixer mixing
22 an input receiving the reference input signal and an
23 input receiving the feedback signal and having a
24 first phase detection mixer output wherein the first
25 mixer output is the down-converted mixing product of
26 the first mixer;
27 a second phase detection heterodyne mixer
28 mixing an input receiving the reference input signal
29 and an input receiving the first phase detection
30 mixer output and having a second phase detection
31 mixer output wherein the second phase detection
32 mixer output is the down-converted mixing product of

1 the second phase detection mixer and the phase
2 detection means output providing a control signal
3 for the oscillator.

4

5 In alternative form of the invention, a feedback
6 heterodyne mixer mixes an input receiving the main
7 output signal and an input receiving the reference
8 input signal, the feedback signal is the down-
9 converted mixing product of the feedback heterodyne
10 mixer and the PLL input signal is the main input
11 signal, the feedback signal being proportional to
12 the main input signal.

13

14 Preferably, the main input signal is scaled by a
15 first divider, the main output signal is scaled by a
16 second divider and the feedback signal scaled by a
17 third divider, the first divider having a scaling
18 value equal to the product of the second and third
19 divider scaling values.

20

21 Preferably, an input heterodyne mixer mixes the main
22 input signal and the reference input signal, the PLL
23 input signal is the down-converted mixing product of
24 the input heterodyne mixer and the feedback signal
25 is the main output signal, the main input signal and
26 the main output signal having substantially equal
27 frequencies.

28

29 Preferably, a first divider scales the main input
30 signal, a second divider scales the main output
31 signal, the first divider having a scaling value
32 equal to the second divider scaling value.

1

2 Preferably the oscillator is a voltage controlled
3 oscillator (VCO).

4

5 According to a second aspect of the present
6 invention there is provided a method of deriving
7 phase conjugation information from an input signal,
8 the method comprising detecting phase difference in
9 a phase locked loop (PLL) circuit between an input
10 receiving a feedback signal having a first frequency
11 and an input receiving a PLL input signal of a
12 second frequency which is proportional to the first
13 frequency.

14

15 Embodiments of the present invention will now be
16 described with reference to the accompanying
17 drawings, in which;

18

19 Fig. 1 shows a schematic diagram of a frequency
20 offset phase conjugating phase locked loop (PLL)
21 circuit;

22

23 Fig. 2 shows a schematic diagram of a practical
24 implementation of the phase conjugating PLL circuit
25 of Fig. 1;

26

27 Fig. 3 shows a graphical representation of
28 experimentally derived phase angle of signals in the
29 phase conjugating PLL circuit of Fig. 2;

30

31 Fig. 4 shows a schematic diagram of an integrator
32 based phase conjugating PLL circuit;

1

2 Fig. 5 shows a schematic diagram of a heterodyne
3 mixer based phase conjugating PLL circuit.

4

5 Fig. 6 shows a schematic diagram of an alternative
6 embodiment of a phase conjugating PLL circuit.

7

8 Fig. 7 shows a schematic diagram of a further
9 alternative embodiment of a phase conjugating PLL
10 circuit.

11

12 Referring now to Fig. 1, a frequency offset phase
13 conjugating PLL circuit 100 has a main input signal
14 102 ($F_{in}+\phi$) and a reference input signal 104 (F_{REF}). A
15 reference divider 106 divides the reference input
16 signal 104 and a main divider 108 divides a feedback
17 signal 109 such that a phase detector 110 receives
18 the divided reference input signal and the divided
19 feedback signal at the same frequency. The phase
20 detector outputs a phase control signal representing
21 a phase difference between the reference input
22 signal and the feedback signal 109. A low-pass loop
23 filter 112 filters, or integrates, the phase control
24 signal to provide a DC control signal. A voltage
25 controlled oscillator (VCO) 114 receives the phase
26 control signal and outputs a VCO signal 116 of a
27 particular frequency (F_{vco}) and a phase angle (ϕ)
28 determined by the phase control signal. The VCO
29 signal 116 is also a phase conjugate signal of the
30 main input signal 102 as explained below. A
31 heterodyne mixer 118 mixes the VCO signal 116 and
32 the main input signal 102 to produce the feedback

10

1 signal 109 which in this case is filtered by a band
2 pass filter 120 to allow selection of the up-
3 converted mixing product of the mixer 118.

4

5 The frequency offset phase conjugating PLL circuit
6 100 works in the following manner:

7

8 Up-converted Phase locked Loop without reference
9 divider 106 and main divider 108

10

11 Output of mixer 118 : $F_{IN} + \phi + F_{VCO} + \varphi$

12 Reference Input 104 : $F_{REF} = F_{IN} + F_{VCO}$

13 At position C : $F_{IN} + F_{VCO} = F_{IN} + \phi + F_{VCO} + \varphi$

14 : $F_{IN} + F_{VCO} - F_{IN} - \phi + F_{VCO} - \varphi = 0$

15 : $-\phi - \varphi = 0$

16 : $\varphi = -\phi$

17 VCO signal 116 : $F_{VCO} + \varphi = F_{VCO} - \phi$

18

19 Therefore, if $F_{VCO} = F_{IN}$, the VCO signal 116 is the
20 phase conjugate of the main input signal 102.

21 If $F_{VCO} \neq F_{IN}$ then the VCO signal 116 is the offset
22 phase conjugate of the main input signal 102.

23

24 The reference divider 106 and the main divider 108
25 allow the possibility of reducing the required
26 frequency of the reference input signal 104. The
27 phase detector 110 is intended to detect any
28 difference in phase between the feedback signal 109
29 and the reference input signal 104.

30

31 For example:

1 $F_{IN} = 1000\text{Mhz}$
2 $F_{VCO} = 990\text{Mhz}$
3 $F_{REF} = 10\text{Mhz}$
4 Input to Main divider (up-converted) = 1990Mhz
5 Output from Main divider = $1990/9950 = 0.2\text{MHz}$
6 Input to Reference divider = 10Mhz
7 Output from Reference divider = $10/50 = 0.2\text{MHz}$
8

9 Using this arrangement, the reference input signal
10 104 at a much smaller frequency than the main input
11 signal 102 is required.

12
13 Referring now to Fig. 2, a phase conjugating PLL
14 circuit 200, that is an experimental implementation
15 of the frequency offset phase conjugating PLL
16 circuit of Fig. 1, is shown. A main input signal 202
17 and a reference input signal 204 are generated from
18 a first signal synthesiser 206. A phase shifter 203
19 is introduced to the main input signal 202 so that
20 the main input signal 202 has a different phase
21 angle than that of the reference input signal 204. A
22 first power splitter 205 splits the main input
23 signal 202 so that an oscilloscope 230 can visually
24 display the signal 202 without any losses. A
25 Philips[®] UMA1021M PLL chip contains a reference
26 input divider 210, a main input divider 212 and a
27 phase detector 214. In this example, the reference
28 input divider 210 divides the reference input signal
29 204 which is then inputted to the phase detector
30 214. The main input divider 212 divides a feedback
31 signal 216 which is then also inputted to the phase
32 detector 214. The phase detector produces a phase

1 control signal 218 which represents the phase
2 difference between the reference input signal 204
3 and the feedback signal 216. A loop filter 220
4 integrates the phase control signal 218. A unity
5 gain non-inverting summing amplifier 222 ensures the
6 phase control signal 218 is isolated from the phase
7 detector 214 and also allows the phase control
8 signal 218 to be offset as necessary. A Voltage
9 Controlled Oscillator (VCO) 224 has an output signal
10 226 at a predetermined frequency. The VCO can vary
11 the phase of the output signal 226 dependent on the
12 phase control signal 218. A second power splitter
13 228 allows the output signal 226 to be displayed on
14 the oscilloscope 230 without any losses within the
15 circuit 200. The output signal 226, when the circuit
16 200 is phase locked, is now a phase conjugate signal
17 of the main input signal 202. A heterodyne mixer 232
18 mixes the output signal 226 and the main input
19 signal 202 to produce the feedback signal 216. A
20 band-pass filter 234 filters the feedback signal 216
21 such that only the up-converted mixing product from
22 the mixer 232 remains. A third power splitter 236
23 allows the feedback signal to be analysed by a
24 microwave transition analyser (MTA) 238 as well as
25 being connected to the main divider 212 without any
26 losses to the circuit 200. A second signal
27 synthesiser 240 provides a comparison signal 242 to
28 the oscilloscope 230 and the MTA 238 as required.
29 The main input signal 202 and the comparison signal
30 242 are phase locked to the reference input signal.
31

1 In use, the first signal synthesiser 206 synthesised
2 the main input signal 202 at a frequency of 1.05GHz
3 and the reference input signal 204 at 0.01GHz. The
4 phase shifter 203 introduces a different phase angle
5 to the main input signal 202 than that of the
6 reference input signal 204. The main input signal
7 202 is then viewed on the oscilloscope 230 via the
8 first power splitter 205. The main output signal 226
9 is generated by the VCO 224 at a frequency of
10 0.94GHz and is also viewed on the oscilloscope 230
11 via the second power splitter 228. The mixer 232
12 mixes the main input signal 202 and the main output
13 signal 226. The band-pass filter 234 ensures that
14 only the up-converted mixing product forms the
15 feedback signal 216 at a frequency of 1.99Ghz. The
16 feedback signal 216 is viewed on the MTA 238 via the
17 third power splitter 236. The main input divider 212
18 divides the feedback signal 216 by 9950 producing a
19 signal of 200KHz. The reference divider divide the
20 reference input signal 204 by 50 to also produce a
21 signal of 200KHz. The phase detector 214 then
22 detects the phase difference between the divided
23 feedback signal 216 and the divided reference input
24 signal 204 to produce the phase control signal 218
25 which ultimately controls the VCO's 224 phase angle.
26 The second signal synthesiser 240 is used to
27 generate different signals as required for
28 comparison purposes. Therefore, the comparison
29 signal 242 is set to 0.94GHz for comparison with the
30 main output signal. As the comparison signal 242 is
31 phase locked to the reference input signal 202, the
32 main output signal 226 should be a phase conjugate

1 of the comparison signal and therefore the phase
2 difference can be measured to confirm this. To
3 measure the actual phase of the main input signal
4 202 after it had been phase shifted by the phase
5 shifter 203, the second synthesised source 240 is
6 set to produce a comparison signal 242 of 1.05GHz.
7 To further validate that phase conjugation was
8 operating correctly it was important that the
9 feedback signal 216 had constant phase. The second
10 synthesised source 240 is set to produce a
11 comparison signal 242 of 1.99GHz and the MTA 238
12 used to analyse the feedback signal 216.
13

14 Referring now to Fig. 3 a graphical representation
15 of a non-conjugated phase angle 302 (representing
16 the main input signal 202 of Fig.2) is matched
17 substantially equally and oppositely to a conjugated
18 angle 304 (representing the output signal 226 of
19 Fig. 2). A conjugation error 306 is also shown
20 representing the error in phase angle in the
21 conjugated angle 304. It can be clearly seen from
22 Fig. 3 that the conjugated angle 304 has only a
23 small conjugation error 306 at any time and that the
24 practical implementation circuit 202 effectively
25 produces a frequency offset phase conjugated output.
26

27 Referring now to Fig. 4, an alternative embodiment
28 of a phase conjugation PLL circuit 400 is shown. The
29 circuit 400 has a PLL 402 and a loop 404. A
30 reference signal 406 supplies a reference signal to
31 both the PLL 402 and the loop 404. The PLL 402 has a
32 first phase detector 408 which compares a first

1 feedback signal 410 with the reference signal 406. A
2 summer 412 receives a first phase error signal 414
3 and a second phase error signal 416 to produce a
4 composite phase control signal 418. A VCO 419
5 produces an output signal 420 with a phase dependent
6 on the phase control signal 418. A second heterodyne
7 mixer 422 mixes a main input signal 424 with the
8 output signal 420 to produce a second feedback
9 signal 426. A second phase detector 428 compares the
10 phase of the second feedback signal and the
11 reference signal 406 producing a second phase
12 detector output 430. An integrator 432 integrates
13 the second phase detector output 430 producing the
14 second phase error signal 416.

15

16 In use, the circuit 400 has a fast acting PLL 402
17 that establishes a frequency lock. The loop 404 is
18 relatively slower because of the integrator's 432
19 transfer characteristics. The loop 404 then forces
20 the output signal 420 to the conjugate phase of the
21 main input signal 424.

22

23 Referring now to Fig. 5, an alternative embodiment
24 of a phase conjugation PLL circuit 500 is shown. A
25 first heterodyne mixer 502 mixes a main input signal
26 504 and an output signal 506 to produce a feedback
27 signal 508. The feedback signal 508 is the up-
28 converted mixing product of the first heterodyne
29 mixer 502. A second heterodyne mixer 510 mixes a
30 reference signal 512 with the feedback signal 508
31 producing an intermediate signal 514. The
32 intermediate signal 514 is the down-converted mixing

1 product of the second heterodyne mixer 510. A third
2 heterodyne mixer 516 mixes the intermediate signal
3 514 with the reference signal 512 producing a phase
4 control signal 518. The phase control signal 518 is
5 the down-converted mixing product of the third
6 heterodyne mixer 516. A VCO 520 produces an output
7 signal 506 with a phase dependent on the phase
8 control signal 518.

9

10 The operation of the circuit 500 is explained below.
11

12 Assuming that the circuit 500 is phase locked and
13 the main input signal (RF_{IN}) 504, the output signal
14 (RF_{OUT}) 506 and the reference signal (RF_{REF}) 512 are
15 all the same frequency ω .

16 The feedback signal 508 is RF_F , the intermediate
17 signal 514 is RF_I and the phase control signal 518
18 is RF_C .

19

20 $RF_{REF} = \omega + \theta_{REF}$

21 $RF_{IN} = \omega + \theta_{IN}$

22 $RF_{OUT} = \omega + \theta_{OUT}$

23 $RF_F = 2\omega + \theta_{OUT} + \theta_{IN}$

24 $RF_I = \omega + \theta_{OUT} + \theta_{IN} - \theta_{REF}$

25 $RF_C = \theta_{OUT} + \theta_{IN} - \theta_{REF} - \theta_{REF} = c$

26 $\theta_{OUT} = c + 2\theta_{REF} - \theta_{IN}$

27

28 In the equation above it is shown that the output
29 signal phase is conjugated to the main input signal
30 phase ($\theta_{OUT} = -\theta_{IN}$). The term $c + 2\theta_{REF}$ represents a
31 static phase error introduced by the reference input

1 signal's 512 oscillator. The $2\theta_{REF}$ term may be
2 removed by filtering. The term c represents the
3 control voltage for the VCO 520 and therefore will
4 always be present except where the output frequency
5 is equal to the free-running frequency of the VCO
6 520. The term c will change as the circuit 500
7 tracks changes in the main input signal 504
8 frequency.

9

10 For retrodirective antenna arrays this does not pose
11 a problem as relative phase states are important,
12 not absolute phase states. For LINC type amplifier
13 applications any phase error caused by the term c
14 can be accounted for by a prior calibration process
15 across the expected frequency operating range of the
16 circuit.

17

18 The circuit 500 can instantaneously phase conjugate
19 as the circuit is made up of heterodyne mixers and
20 does not include integrators or phase detectors
21 which have a finite time determined by the loop
22 dynamics in order to establish a phase lock. As the
23 heterodyne mixers act as the phase detectors, the
24 circuit 500 can operate directly at the microwave
25 and millimetre wave frequencies without the need for
26 dividers or digital phase detection circuitry.

27

28 Referring now to Fig. 6, an alternative embodiment
29 of a phase conjugation PLL circuit 600 is shown. A
30 reference input signal ($\omega_c + \psi$) 602 and a main output
31 signal ($\omega + \Phi_i$) 604 are supplied to a mixer 606. In
32 this example, an output divider 608 divides the main

1 output signal 604 by N_1 . A first low-pass filter 610
2 receives and filters the output of the mixer 606 to
3 extract the down-converted mixing product and
4 produce a feedback signal 612. A feedback divider
5 614 divides the feedback signal 612 by N_2 . A phase
6 detector 616 receives the output from the feedback
7 divider 614.

8

9 An input divider 620 receives a main input signal
10 $(\omega_1 + \theta_i)$ 618 and divides by N_3 . The main input signal
11 is then inputted to the phase detector 616.

12

13 The phase detector 616 outputs a phase control
14 signal 621 representing a phase difference between
15 the feedback signal 612 and the main input signal
16 618. A second low-pass filter 622 filters, or
17 integrates, the phase control signal 621 to provide
18 a DC control signal 623. A VCO 624 outputs the main
19 output signal 604 according to the DC control signal
20 623.

21

22 The operation of the circuit 600 is explained below.
23

24 At point A the main output signal 604 is divided by
25 the output divider 608:

26

$$\frac{\omega}{N_1} + \frac{\phi_i}{N_1}$$

28 At point B the reference signal 602 is mixed by the
29 mixer 606 with the main output signal 604 after
30 division by the output divider 608 and filtered by
31 the first low-pass filter 610 to extract the down-
32 converted mixing product:

$$\frac{1}{2} \omega_c + \psi - \frac{\omega}{N_1} - \frac{\varphi_i}{N_1}$$

3 At point C the down converted mixing product of the
4 mixer 606 is divided by the feedback divider 614:

$$\frac{\omega_c}{N_2} + \frac{\psi}{N_2} - \frac{\omega}{N_2 N_1} - \frac{\varphi_i}{N_2 N_1}$$

8 At point D the main input signal 618 has been
9 divided by the input divider 620:

$$\frac{\omega_1}{N_2} + \frac{\theta_i}{N_2}$$

12 At point E the phase detector 616 compares the
13 signal at point C and the signal at point D:

$$\frac{\omega_c}{N_2} + \frac{\psi}{N_2} - \frac{\omega}{N_2 N_1} - \frac{\varphi_i}{N_2 N_1} - \frac{\omega_1}{N_3} - \frac{\theta_i}{N_3}$$

17 When the circuit 600 has phase lock, the output of
18 the phase detector 616 is zero.

$$\frac{\omega_c}{N_2} + \frac{\psi}{N_2} - \frac{\omega}{N_2 N_1} - \frac{\varphi_i}{N_2 N_1} - \frac{\omega_1}{N_2} - \frac{\theta_i}{N_2} = 0$$

21 If $\frac{\omega_1}{N_1} = \frac{\omega_c}{N_2} - \frac{\omega}{N_2 N_1}$ and $\psi = 0$, as it is the reference
 22 signal phase, then:

$$23 \quad \quad \quad 24 \quad \quad \quad - \frac{\varphi_i}{N_2 N_1} = \frac{\theta_i}{N_3}$$

26 Provided $N_3 = N_2 N_1$ then $\theta_i = -\varphi_i$ and phase conjugation
 27 occurs

28

29 Referring now to Fig. 7, an alternative embodiment
 30 of a phase conjugation PLL circuit 700 is shown. A
 31 main input signal $(\omega_1 + \theta_i)$ 702 is divided by an input
 32 divider 704 to provide an input for a mixer 706

1 along with a reference signal ($\Delta f + \psi$) 708. A first
2 low-pass filter 710 enables extraction of the down-
3 converted mixing product of the mixer 706. A phase
4 detector 712 receives the down-converted mixing
5 product of the mixer 706 and a feedback signal 714
6 and outputs a phase control signal 715. A second
7 low-pass filter 716 filters the phase control signal
8 715 to generate a DC control signal 718. An
9 oscillator 720 receives the DC control signal 720
10 and generates a main output signal ($\omega + \varphi_i$) 722,
11 which, in this case, is also the feedback signal
12 714. A feedback divider 724 divides the feedback
13 signal 714 before the feedback signal 714 is
14 inputted to the phase detector 712.

15

16 The operation of the circuit 700 is explained below.
17

18 At point A the main input signal 702 has been
19 divided by the input divider 704:

20

$$\frac{\omega_i}{N_1} + \frac{\theta_i}{N_1}$$

22 At point B the divided main input signal and the
23 reference signal 708 have been mixed with the down-
24 converted mixing product being extracted:

25

$$\Delta f + \psi - \frac{\omega}{N_1} - \frac{\theta_i}{N_1}$$

28 At point C the main output signal 722 has been
29 divided by the feedback divider 724:

30

$$\frac{\omega}{N_2} + \frac{\varphi_i}{N_2}$$

32

1

2

3 At point D the phase detector 712 compares the
4 signal at point B and the signal at point C:

5
$$\Delta f + \psi - \frac{\omega_1}{N_1} - \frac{\theta_i}{N_1} - \frac{\omega}{N_2} - \frac{\varphi_i}{N_2}$$

7

8 When the circuit 700 has phase lock, the output of
9 the phase detector 712 is zero:

10
$$\Delta f + \psi - \frac{\omega_1}{N_1} - \frac{\theta_i}{N_1} - \frac{\omega}{N_2} - \frac{\varphi_i}{N_2} = 0$$

11
12 If $N_1 = N_2 = N$, then $\omega = \omega_1$, and $\psi = 0$, as it is the
13 reference signal phase, then:

14
$$\Delta fN - 2\omega - \theta_i - \varphi_i = 0$$

15 or,

16
$$\theta_i = -\varphi_i + (\Delta fN - 2\omega)$$

17 So, if $\Delta fN = 2\omega$, then $\theta_i = -\varphi_i$ and phase conjugation
18 occurs.

19

20 Improvements and modifications may be incorporated
21 without departing from the scope of the present
22 invention.

23

NO FEE BLANK (USPTO)