Given the quadratic function $3x^2 + 12x + 3 = 0$, state the following:
The equation in vertex form
The vertex
Will the function have a maximum or minimum/ where will that point be?
What are the x- intercepts ?
What is the y-intercept?
Evaluate f(2):
Given the function $f(x) = \frac{x+2}{x^2+7x+6}$ state the following:
The domain of f(x):
The x intercept(s):
The y intercept:
The equation of the vertical asymptote(s):
The equation of the horizontal asymptote:
State the horizontal asymptote, expressed in limit notation:
Evaluate f(-3):
Given: $\frac{x^3+5}{(x-2)(x+3)}$
State all vertical asymptotes:
State the horizontal asymptote, or if not applicable, state the end behavior asymptote:
Given the following roots, create a polynomial of minimal degree in standard form:
1, -1, 2+3i

Verify through synthetic division that 1 and -1 are roots of the polynomial you created:

Solve for x: $\frac{x-3}{x} - \frac{3}{x+1} + \frac{3}{x^2+x} = 0$, state any extraneous solutions:

Find the intervals that make the inequality true:

$$\frac{(2x-7)(x+1)}{x+5} \ge 0$$

For the polynomial: $2x^6 + 7x^5 - 63x^4 + 69x^3 - 17x^2 + 62x + 48$

Descartes rule says there will be how many possible positive roots?

Negative roots?

What are the possible rational roots?

Given that some of the roots are x = 2, 3, -8, -1/2; how many roots in total does this polynomial have? Find the remaining roots:

Rewrite the function as a product of linear factors:

For the polynomial: $f(x) = x^3 + 2x^2 - 6x - 4$

Is 3 an upper bound?

Is -5 a lower bound?

Use the remainder theorem to verify that x-2 is a factor of the polynomial