MIEI/MI - Estruturas Criptográficas

Trabalho Prático 0

João Alves a77070@alunos.uminho.pt Nuno Leite a70132@alunos.uminho.pt

Universidade do Minho

1 Introdução

A resolução deste trabalho prático tem como objetivo servir de iniciação à componente prática da unidade curricular de Estruturas criptográficas, onde se pretende: - Instalar as ferramentas computacionais necessárias para a realização dos trabalhos práticos. - Demonstrar pequenas aplicações implementadas em **Python** e em **SageMath**.

A aplicação em **Python** deve ser implementada de tal forma que permita a comunicação entre um emissor e um recetor, com as seguintes caracteristicas: - Criptograma e metadados devem ser autenticados. - Utilizar uma cifra simétrica em modo *stream cipher*. - Autenticar previamente a chave.

A aplicação em **SageMath** deve ser implementada de tal forma que: - Crie 4 corpos finitos primos. - Crie um *plot* de uma função em cada um dos corpos finitos primos. - Teste, por amostragem, o facto de que, considerando um expoente n, um elemento primitivo de um corpo g e um número primo p, se $g^n = 1$, então $n = 0 \mod (p-1)$.

2 Aplicação Python

2.1 Imports

Esta secção executa os *imports* de **Python** que contêm as funções necessárias para desenvolver a aplicação enunciada.

2.2 Definição da classe de multiprocessamento

Esta secção tem o propósito de definir a classe de multiprocessamento, que permite uma comunicação bidireccional com o *Emitter* e o *Receiver*, sendo estes dois processos criados e implementados

pela API multiprocessing.

```
In [2]: class BiConnection(object):
    def __init__(self,left,right):
        left_side,right_side = Pipe()
        self.timeout = None
        self.left_process = Process(target=left,args=(left_side,))
        self.right_process = Process(target=right,args=(right_side,))
        self.left = lambda : left(left_side)
        self.right = lambda : right(right_side)

# Execução manual apenas devido ao facto de a password
# ter que ser lida em ambos os lados do Pipe
def manual(self):
        self.left()
        self.right()
```

2.3 Definição do Emissor e do Recetor

Nesta secção encontram-se implementados os comportamentos do emissor e do recetor que participam na comunicação bidireccional da aplicação.

```
In [3]: def Emissor(connection):
            con_salt = os.urandom(16)
            passwd = bytes(getpass('Password do emissor: '), 'utf-8')
            text_to_send = os.urandom(128)
            print('Texto a cifrar e enviar:')
            print(b64encode(text_to_send))
            try:
                #derivar a chave apartir da password
                derivation = PBKDF2HMAC(
                        algorithm = hashes.SHA256(),
                        length = 96,
                        salt = con_salt,
                        iterations = 100000,
                        backend = default_backend()
                #Separar a password para cifragem e autenticação
                full_key = derivation.derive(passwd)
                cript_key = full_key[:32]
                mac_key = full_key[32:64]
                mac_passwd_key = full_key[64:]
                # Utilizar o AES com um dos modos que o torna numa stream cipher para cifrar
                nonce = os.urandom(16)
                cipher = Cipher(algorithm = algorithms.AES(cript_key),mode= modes.CTR(nonce)
                cryptogram = cipher.encryptor().update(text_to_send)
```

```
#geração do código de autenticação do criptograma e dos metadados
        message_to_authenticate = cryptogram + nonce + con_salt
        hasher = hmac.HMAC(mac_key,hashes.SHA256(),default_backend())
        hasher.update(message_to_authenticate)
        hash_msg = hasher.finalize()
        #geração do código de autenticação da chave
        #esforço computacional é reduzido no recetor caso insira a password errada.
        hasher_passwd = hmac.HMAC(mac_passwd_key,hashes.SHA256(),default_backend())
        hasher_passwd.update(cript_key)
        hash_pass = hasher_passwd.finalize()
        obj = {'cryptogram': cryptogram, 'mac_code': hash_msg,'pass_code': hash_pass
        connection.send(obj)
    except Exception as e:
        print(e)
def Recetor(connection):
    passwd = bytes(getpass('Password do recetor: '), 'utf-8')
    try:
        obj = connection.recv()
        #Obter parâmetros no objeto
        pass_code = obj['pass_code']
        cryptogram = obj['cryptogram']
        mac_code = obj['mac_code']
        salt = obj['salt']
        nonce = obj['nonce']
        #derivar a chave apartir da password lida
        derivation = PBKDF2HMAC(
                algorithm = hashes.SHA256(),
                length = 96,
                salt = salt,
                iterations = 100000,
                backend = default_backend()
        #Separar a password para cifragem e autenticação
        full_key = derivation.derive(passwd)
        cript_key = full_key[:32]
        mac_key = full_key[32:64]
        mac_passwd_key = full_key[64:]
        #Autenticação prévia da chave
        hasher_passwd = hmac.HMAC(mac_passwd_key,hashes.SHA256(),default_backend())
        hasher_passwd.update(cript_key)
        hasher_passwd.verify(pass_code)
```

```
#Autenticação do criptograma e metadados
    message_to_authenticate = cryptogram + nonce + salt
    hash_msg = hmac.HMAC(mac_key,hashes.SHA256(),default_backend())
    hash_msg.update(message_to_authenticate)
    try:
        hash_msg.verify(mac_code)
        #Decifrar criptograma
        cipher = Cipher(algorithm = algorithms.AES(cript_key),mode = modes.CTR(n
        plain_text = cipher.decryptor().update(cryptogram)
        print('Texto decifrado:')
        print(b64encode(plain_text))
    except InvalidSignature as i:
        print("Código de autenticação não é válido!")
except Exception as e:
    print(e)
connection.close()
```

2.4 Iniciação do processo

Por último, resta apenas criar um objeto de conexão bidireccional passando-lhe como argumentos o emissor e o recetor definidos e, finalmente, prosseguindo com a execução de ambos os processos através da chamada à função manual.

```
In [4]: BiConnection(Emissor, Recetor).manual()

Password do emissor: .....

Texto a cifrar e enviar:
b'Bp7wjCNmvFlppA98akTDp/GDIHBqUOWiF7rSNuZRFzKEJ3dkCZV7xGeqJt+Y8XSeR820mOAVgckpMAY
+GRcTP1UPT+8osucvorZ1pN4RcWZCFH1Nburz1wcIZRwFOYHmMYFubBToo/ZwlqSoJvcESi5vjiceWxc='
Password do recetor: .....

Texto decifrado:
b'Bp7wjCNmvFlppA98akTDp/GDIHBqUOWiF7rSNuZRFzKEJ3dkCZV7xGeqJt+Y8XSeR820mOAVgckpMAY
+GRcTP1UPT+8osucvorZ1pN4RcWZCFH1Nburz1wcIZRwFOYHmMYFubBToo/ZwlqSoJvcESi5vjiceWxc='
```

Através de uma ligera comparação entre o texto antes de ser cifrado e depois de ser decifrado, pode-se verificar que é exatamente o mesmo.

3 Aplicação SageMath

3.1 Criação dos corpos finitos primos

Nesta secção são criadas duas listas:

• A primeira (*P*) corresponde à lista de números primos que serão analisados.

• A segunda (*GP*) corresponde à lista de corpos finitos primos, onde cada elemento corresponde ao corpo finito primo de um dos números primos, previamente adicionados à lista *P*.

```
In [1]: P = [37, 163, 263, 1009]

GP = [GF(p) \text{ for } p \text{ in } P]
```

3.2 Definições Iniciais

De seguida, definiu-se a função que será aplicada aos pontos dos corpos finitos primos. Esta recebe um ponto x e um primo p e calcula "x elevado a p menos 2". Além disso, é definida também uma lista de listas L, onde cada uma das mesmas contém os pontos resultantes da aplicação da função aos pontos de um dos corpos finitos primos.

3.3 Plot da função aplicada a cada um dos corpos finitos

Esta secção tem como objetivo fazer o **plot** dos pontos resultantes da aplicação da função definida anteriormente como f(x,p) a cada um dos corpos finitos primos, sendo que o resultado deverá ser apresentado como um gráfico por cada lista de pontos do corpo finito respetivo.

In [4]: # Plot dos pontos resultantes da aplicação da função aos pontos do In [4]: # corpo finito primo GF(163) list_plot(L[1])

Out[4]:

In [5]: # Plot dos pontos resultantes da aplicação da função aos pontos do In [5]: # corpo finito primo GF(263) list_plot(L[2])

Out[5]:

In [6]: # Plot dos pontos resultantes da aplicação da função aos pontos do In [6]: # corpo finito primo GF(1009) list_plot(L[3])

Out[6]:

A partir da análise dos gráficos previamente gerados podemos verificar que, em todos eles, à primeira vista, parece existir uma certa aleatoriedade nos pontos desenhados mas, analisando melhor cada um deles, podemos confirmar a existência de um padrão simétrico que existe no gráfico.

3.4 Funções da proposição e auxiliares

Resta agora definir duas funções que são utilizadas para garantir a proposição na totalidade. A função checker(n,g,p) testa, com o auxílio das funções anteriormente referidas, a veracidade da proposição para um dado expoente, elemento primitivo e número primo, ao tentar encontrar, por amostragem, elementos que provem que a proposição é incorrecta, seguindo o seguinte algoritmo:

- Se $g^n = 1$:
 - Se n = 0 mod(p-1), a proposição verifica-se, pelo que o resultado retornado é 0 (não existe erro a ser somado).
 - Se n! = 0 mod(p-1), a proposição falha, pelo que o resultado retornado é 1 (proposição é falsa para estes elementos, erro deve ser somado).
- Se $g^n! = 1$, a proposição não é testada.

```
def checker(n,g,p):
    if(prop1(g,n) == 1):
        if(prop2(p) == n):
            return 0
        else: return 1
    else: return 0
```

3.5 Criação da lista de expoentes aleatórios

Por último criou-se uma lista de expoentes, por amostragem, para que seja averiguada a veracidade da proposição enunciada. São criados 100000 expoentes aleatórios que variam entre 1 e 1 bilião.

3.6 Prova da proposição por amostragem

Nesta secção pretendemos, com o auxílio da função checker (n,g,p) definida anteriormente, verificar, para todos os corpos finitos primos criados, que a proposição enunciada se verifica, seguindo o seguinte algoritmo:

- Para todo o número primo *p* em *P*, onde *P* é a lista dos números primos utilizados para criar os corpos finitos:
 - Para todo o expoente n na lista de expoentes previamente calculada:
 - * Calcular o resultado de checker(n,GF(p).primitive_element(),p), onde o segundo argumento é o elemento primitivo do corpo finito do primo p.
 - * Se a proposição se verificar falsa, a variável *checkFalses* será incrementada de uma unidade, caso contrário será incrementada de 0 (sem falsos).
 - Imprimir o número primo e o número de falsos encontrados na aplicação da proposição ao mesmo.

```
Primo:
163
Nº de erros na proposição:
0

Primo:
263
Nº de erros na proposição:
0

Primo:
1009
Nº de erros na proposição:
0
```

Como é possível verificar pelo output produzido, a proposição enunciada verifica-se para todos os expoentes gerados por amostragem e para todos os corpos finitos primos criados.

4 Conclusão

Os resultados da resolução deste trabalho prático são, na nossa opinião, bastante satisfatórios, tendo em conta que os mesmos são os que eram esperados. O desenvolvimento das aplicações foi feito de um modo gradual (texto de explicação pelo entre o código), de forma a tornar a leitura e compreensão do trabalho mais agradável.

As maiores dificuldades que surgiram durante a resolução deste trabalho prático resumiramse, na sua maior parte, aos aspetos que dizem respeito ao desenvolvimento utilizando **sagemath**, visto que este foi o primeiro contacto do grupo com esta tecnologia. Além disso, este é também o primeiro relatório que o grupo produz neste formato, ou seja, utilizando apenas o **jupyter** para a produção do código e do próprio texto do mesmo, pelo que tentámos familiarizar-nos apenas com a ferramenta, especificamente, na produção do ficheiro necessário, que representa o relatório na sua totalidade.

5 Referências

- Worksheets do TP0 fornecidas pelo professor
- 2. Cryptography Symmetric encryption
- 3. Cryptography Message Authentication Codes
- 4. Cryptography Key Derivation Functions
- 5. SageMath Finite Prime Fields
- 6. SageMath 2D Plotting

7. SageMath - Base Classes for Finite Fields