

Languages, Automata, Property Checking – Module A – Exercises

5XIEO Computational Modeling

Twan Basten, Marc Geilen, Jeroen Voeten Electronic Systems Group, Department of Electrical Engineering

A.1 – languages

1 languages

Let Σ be the alphabet $\{0, 1\}$

- 1. $L5 = \{ \sigma \in \Sigma^* \mid (\forall i : i \in \mathbb{N} : \sigma(i) = 1 \Rightarrow \sigma(i+1) = 0) \}$ 00, 0100, 0110, 01010001 elements of *L*5?
- **2.** $L6 = \{ \sigma \in \Sigma^* \mid (\forall i : i \in \mathbb{N} : \sigma(i) = 1 \Rightarrow \sigma(i+1) = 1) \}$ 00, 0100, 0110, 01010001 elements of L6 ?
- 3. $L7 = {\sigma \in \Sigma^* \mid (+i: i \in \mathbb{N} \land \sigma(i) = 1: 1) \text{ is even}}$ ε , 00, 0100, 0110, and 01010001 elements of L7?
- 4. define L8 containing all words with an equal number of 1s and 0s.

$$L8 = \{ \sigma \in \Sigma^* \mid (+i : i \in \mathbb{N} \land \sigma(i) = 0 : 1) = (+i : i \in \mathbb{N} \land \sigma(i) = 1 : 1) \}$$

$$\frac{2}{3} = \begin{bmatrix} 1 & -\infty & 2 \\ -\infty & 3 & -\alpha \end{bmatrix}$$

A.2.1 - regular languages

2 is language concatenation commutative?

no, for instance, $\{a\} \cdot \{b\} = \{ab\} \neq \{ba\} = \{b\} \cdot \{a\}$

Languages, Automata, Property Checking

3 understanding regular expressions

Recall $\alpha = 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9$, $\beta = \varepsilon + + + -$

- which of the following regular expressions also defines $L2 = (\beta \alpha \alpha^* (\varepsilon + E \alpha \alpha^*))$?
 - $\alpha_1 = \beta \alpha \alpha^* (E \alpha \alpha^*)$
- words in $L(\alpha_1)$ always contain an E (precisely one)
- $\alpha_2 = \beta \alpha \alpha^* (E \alpha \alpha)^*$
- $\mathbf{x} \cdot L(\alpha_2)$ allows multiple Es, and an E is always followed by two digits
- $\alpha_3 = \beta \alpha \alpha^* (E \alpha \alpha^*)^*$
- $\mathbf{x} \cdot L(\alpha_3)$ allows multiple Es
- $\alpha_4 = (\beta \alpha \alpha^* (\emptyset + E \alpha \alpha^*)) \times \bullet + \rho = \rho$, so $L(\alpha_4) = L(\alpha_1)$
- which of these four expressions are define the same language?
 - only α_1 and α_4 see above

Languages, Automata, Property Checking

3 understanding regular expressions

- which of the following pairs define the same language? counterexamples?
 - $\alpha = a(a^* + b^*), \ \beta = a(a + b)^*$
 - \times α does not allow α -b switching after initial α , whereas β does
 - $\alpha = a(a^* + b)^*, \ \beta = a(a + b)^*$
 - $L(\alpha) = L(\beta)$; nested iteration in α does not add or remove options

4 creating regular expressions - L3

let
$$\beta = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9$$
; let $\alpha = 0 + \beta$ recall $\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$

• L3 is the language of all numbers in which every 0 is eventually followed by a 1:

$$\{\sigma \in \Sigma^* \mid (\forall i : i \in \mathbb{N} : \sigma(i) = 0 \Rightarrow (\exists j : j \in \mathbb{N} \land j > i : \sigma(j) = 1))\}$$

e.g. 1201 and 1400315 are elements of L3, but 3210 is not

• $(\alpha^*1)^*\beta^*$

4 creating regular expressions - L4

let $\beta = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9$; let $\alpha = 0 + \beta$ recall $\Sigma = \{0,1,2,3,4,5,6,7,8,9,+,=\}$

- L4 is the language of all natural numbers, well-formed additions and addition equations:
 - the word "0" is in *L*4
 - every nonempty word that does not contain "+" or "=" and does not start with "0" is in L4
 - a word containing "+" but not "=" separating two valid words of L4 is in L4
 - a word containing exactly one "=" and separating two valid words of L4 is in L4
 - no other word is in L4 other than those implied by the previous rules

e.g., 481, 27+15, 1+17 = 18, and 481+18=42 are elements of L4, but 040+2 is not

• $\gamma(+\gamma)^* + (\gamma(+\gamma)^* = \gamma(+\gamma)^*)$ with $\gamma = 0 + \beta \alpha^*$

Languages, Automata, Property Checking

4 creating regular expressions - L5-L8

let $\Sigma = \{0,1\}$

- $L5 = \{ \sigma \in \Sigma^* \mid (\forall i : i \in \mathbb{N} : \sigma(i) = 1 \Rightarrow \sigma(i+1) = 0) \}$
 - $(0+10)^*$
- $L6 = \{ \sigma \in \Sigma^* \mid (\forall i : i \in \mathbb{N} : \sigma(i) = 1 \Rightarrow \sigma(i+1) = 1) \}$
- 0*
- $L7 = {\sigma \in \Sigma^* \mid (+i: i \in \mathbb{N} \land \sigma(i) = 1: 1) \text{ is even}}$
 - (0+10*1)*
- L8 containing all words with an equal number of 1s and 0s.
 - L8 requires counting; this is not possible in regular languages

Languages, Automata, Property Checking

A.2.2 – finite automata

5.1 languages of finite automata

Automaton, with $\Sigma = \{a, b, c\}$

- every a is always followed by a b
- $\{\sigma \in \Sigma^* \mid (\forall i : i \in \mathbb{N} : \sigma(i) = a \Rightarrow (\exists j : j \in \mathbb{N} \land j > i : \sigma(j) = b))\}$
- $(b + c + a(a + c)^*b)^*$

5.2 languages of finite automata

Languages, Automata, Property Checking

- both accept, for instance, .-42
- the second automaton accepts words with multiple Es

6.1 creating automata models

$$L1 = \{0,1,4,9,16\}$$
 with $\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$

Languages, Automata, Property Checking

6.1 creating automata models

L2, the language of all integers of the form < [+/-] number [E number] >with $\Sigma = \{0,1,2,3,4,5,6,7,8,9,+,-,E\}$

Languages, Automata, Property Checking

6.2 creating automata models

all nondeterministic! (because of the ε move in the initial state)

Automata?

- $\alpha_1 = \beta \alpha \alpha^* (E \alpha \alpha^*)$
- $\alpha_4 = (\beta \alpha \alpha^* (\emptyset + E \alpha \alpha^*))$
- $\alpha_2 = \beta \alpha \alpha^* (E \alpha \alpha)^*$

6.2 creating automata models

• Automata?

all deterministic!

- $\alpha = a(a^* + b^*), \ \beta = a(a + b)^*$
 - α does not allow a-b switching after initial a, whereas β does

- $\alpha = a(a^* + b)^*, \ \beta = a(a + b)^*$
 - $L(\alpha) = L(\beta)$; nested iteration in α does not add or remove options

Languages, Automata, Property Checking

ES ELECTRONIC SYSTEMS

TU/e

6.3 creating automata models - L7

definition: $L7 = \{ \sigma \in \Sigma^* \mid (+i : i \in \mathbb{N} \land \sigma(i) = 1 : 1) \text{ is even} \}; \text{ automaton?}$

do it yourself, and check your answer with the workbench

- enter your automaton YA in the workbench
- take the regular expression of Exercise 4 and enter it in the workbench
- · convert the expression to a finite automaton EA
- check language inclusion $L(\mathsf{YA}) \subseteq L(\mathsf{EA})$ between your automaton and the expression automaton
- check language inclusion $L(\mathsf{EA}) \subseteq L(\mathsf{YA})$ between the expression automaton and your automaton
- if both inclusions hold, then L(EA) = L(YA) and hence your answer is correct; if any of the inclusions does not hold, then learn from the counterexamples and retry

Languages, Automata, Property Checking

(0+10*1)*

6.4 - DFA?

6.5 creating automata models - L8

$$L8 = \{ \sigma \in \Sigma^* \mid (+i: i \in \mathbb{N} \land \sigma(i) = 0: 1) = (+i: i \in \mathbb{N} \land \sigma(i) = 1: 1) \}$$

no NFA can be created

keeping track of all possible differences between 0-counts and 1-counts cannot be done with finitely many states

Languages, Automata, Property Checking

7.1 completing automata models – L1

 $L1 = \{0,1,4,9,16\}$ with $\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$

7.1 completing automata models – L2

 $\it L2$, the language of all integers of the form < [+/-] $\it number$ [E $\it number$] > with $\Sigma = \{0,1,2,3,4,5,6,7,8,9,+,-,E\}$

7.1 completing automata models – L7

• definition: $L7 = \{ \sigma \in \Sigma^* \mid (+i : i \in \mathbb{N} \land \sigma(i) = 1 : 1) \text{ is even} \}$

• regular expression: $(0 + 10^*1)^*$

automaton

– a complete dfa

Languages, Automata, Property Checking

TU/e

7.2 completing automata models

two words with

- only one accepting run in the original NFA
- an additional non-accepting run in the completed NFA?

Languages, Automata, Property Checking

6.7 and +4.5

A.2.4 – conversions between representations of regular languages

11 from regular expression to NFA-ε

$$(a+b)^*aa^*$$

11 from regular expression to NFA- ϵ

 $(a+b)^*aa^*$

Languages, Automata, Property Checking

11 from regular expression to NFA- ϵ

 $(a+b)^*aa^*$

Languages, Automata, Property Checking

30 ES ELECTRONIC SYSTEMS TU/E

11 from regular expression to NFA-ε

 $(a+b)^*aa^*$

Languages, Automata, Property Checking

11 from regular expression to NFA- ϵ

 $(a+b)^*aa^*$

11 from regular expression to NFA- ϵ

workbench - check!

 $(a+b)^*aa^*$

Languages, Automata, Property Checking

12.1 NFA 2 re - state elimination - L7

- definition: $L7 = \{ \sigma \in \Sigma^* \mid (+i : i \in \mathbb{N} \land \sigma(i) = 1 : 1) \text{ is even} \}$
- regular expression: $(0 + 10^*1)^*$
- automaton a complete dfa:

workbench – check! ✓

$$'0'^* \cdot '1' \cdot ('0' + '1' \cdot '0'^* \cdot '1')^* \cdot '1' \cdot '0'^* + '0'^*$$

Languages, Automata, Property Checking

12.2 state elimination

 $\alpha = 0 + 1 + \dots + 8 + 9$ $\beta = \varepsilon + + + -$

12.2 state elimination

right format, initialization

eliminate 1

12.2 state elimination

Languages, Automata, Property Checking

12.2 state elimination

Languages, Automata, Property Checking

12.2 state elimination

Languages, Automata, Property Checking

12.2 state elimination

 $\alpha = 0 + 1 + \dots + 8 + 9$

 $\beta = \varepsilon + + + -$

12.2 state elimination

eliminate 6

$$\beta \alpha^*(\varepsilon + .)\alpha \alpha^* + (\beta \alpha^* E + \beta \alpha^*(\varepsilon + .)\alpha \alpha^* E)\beta \alpha \alpha^*$$

Languages, Automata, Property Checking

12.2 state elimination

workbench - check!

$$('-'+'+'+\epsilon)\cdot ('0'+'6'+'3'+'7'+'4'+'9'+'1'+'8'+'5'+'2')^*\cdot (\epsilon+'.')$$

end result

$$\beta \alpha^* (\varepsilon + .) \alpha \alpha^* + (\beta \alpha^* E + \beta \alpha^* (\varepsilon + .) \alpha \alpha^* E) \beta \alpha \alpha^*$$

Languages, Automata, Property Checking

12.2 state elimination

workbench – check!

$$b \cdot a^* \cdot ('.' + \epsilon) \cdot a \cdot a^* + (b \cdot a^* \cdot ('.' + \epsilon) \cdot a \cdot a^* \cdot E \cdot b \cdot a + b \cdot a^* \cdot E \cdot b \cdot a) \cdot a^*$$

end result $\beta\alpha^*(\varepsilon+.)\alpha\alpha^*+(\beta\alpha^*E+\beta\alpha^*(\varepsilon+.)\alpha\alpha^*E)\beta\alpha\alpha^*$

Languages, Automata, Property Checking

13 NFA-ε 2 NFA

14.4 NFA-ε 2 DFA

14.4 NFA-ε 2 DFA

Languages, Automata, Property Checking

Languages, Automata, Property Checking

Languages, Automata, Property Checking

14.4 NFA-ε 2 DFA

Languages, Automata, Property Checking

→ {1,2,3}

A.2.3 – expressiveness

8.1 complementing incomplete DFA

• incomplete DFA A with $L(A) = {\sigma | \sigma(0) = a}$

- complement \bar{A} – swapping (non-)final states

• $L(\bar{A}) = \{\varepsilon\} \neq \overline{L(A)}$

• complete and complement, \overline{cA}

• $L(\overline{cA}) = \overline{L(A)} = \{\varepsilon\} \cup \{\sigma | \sigma(0) = b\}$

8.2 complementing complete NFA

• complete NFA cA with L(cA) containing all words ending with an a

• complement \overline{cA} – swapping (non-)final states

• $L(\overline{cA}) = \Sigma^* \neq \overline{L(cA)}$

Languages, Automata, Property Checking

9.1 pumping lemma – L2

- L2 is the language of all integers of the form < [+/-] number [E number] >
- Recall the following regular expression for L2:

$$\beta \alpha \alpha^* (\varepsilon + E \alpha \alpha^*)$$
 with $\alpha = 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9$, $\beta = \varepsilon + + + -$

- 5 is a valid pumping length
- any word w in L2 with $|w| \ge 5$ has a two-digit subword, of which one digit can be dropped/pumped
- example +1E23; subwords that can be pumped are 2 and 3; +1E3, +1E2223 are elements of L2
- example 456E7; subwords that can be pumped are 4, 5, 6, 45 and 56; 6E7, 45456E7 are in L2
- a smaller pumping length does not exist
- e.g., +1E2 does not have a part that can be repeated arbitrarily often, including zero (!) times

Languages, Automata, Property Checking

9.2/3 proving non-regularity using the pumping lemma

- 9.2: L8 equal number of 0s and 1s
- 9.3: nested pairs of braces {{...}{}}...

Proving non-regularity of these languages follows Example A.8 (quite literally ...)

- Towards a contradiction, assume p is a valid pumping length
- Then $\sigma = a^p b^p$ (with a = 0, b = 1 resp. $a = \{, b = \}$) is an element of the language
- But $|\sigma| > p$ and dropping or repeating any part of a^p will not give a word in the language
- Hence, p cannot exist and the languages are not regular

10 proving non-regularity using the pigeonhole principle

reasoning follows Example A.9 with a = 0, b = 1 resp. $a = \{, b = \}$

A.3 - property checking

15 checking regular properties

• Property: $\alpha^*(\varepsilon + m\alpha^*(d\alpha^*p + p\alpha^*d)\alpha^*)$ with $\alpha = s + a + b + h + t$

15 checking regular properties

- Property: $\alpha^*(\varepsilon + m\alpha^*(d\alpha^*p + p\alpha^*d)\alpha^*)$ with $\alpha = s + a + b + h + t$
- CMWB:

regular expression Prop = @alpha*.(\e+m.@alpha*.(d.@alpha*.p+p.@alpha*.d).@alpha*) where alpha = s+a+b+h+t

Languages, Automata, Property Checking

p - (execute) payment

15 checking regular properties

• 2 NFA, DFA, minimize, relable

Languages, Automata, Property Checking

s - select drink

h – hold card

m - make drink

d - deliver drink

p - (execute) payment

t - time out

b-back

a - adapt settings

• complete, complement • solution is a select drink a - adapt settings b - back h - hold card t - time out m - make drink d - deliver drink p - (execute) payment

