ESPACIOS VECTORIALES – SUBESPACIOS

DEFINICIONES Y PROPIEDADES

ESPACIOS VECTORIALES

Un *espacio vectorial real* \mathbb{V} , o espacio vectorial sobre \mathbb{R} , es un conjunto de elementos llamados *vectores*, junto con dos operaciones: *suma* y *producto por un escalar*, que satisfacen las siguientes propiedades.

EV1.- Si $\mathbf{u} \in \mathbb{V}$ y $\mathbf{v} \in \mathbb{V}$, entonces la suma $\mathbf{u} + \mathbf{v} \in \mathbb{V}$.

EV2.- Si $k \in \mathbb{R}$ y $\mathbf{v} \in \mathbb{V}$, entonces el producto $k\mathbf{v} \in \mathbb{V}$.

EV3.- Si \mathbf{u} , \mathbf{v} y $\mathbf{w} \in \mathbb{V}$, entonces $(\mathbf{u}+\mathbf{v})+\mathbf{w} = \mathbf{u}+(\mathbf{v}+\mathbf{w})$

EV4.- Existe un elemento en \mathbb{V} , notado $\mathbf{0}$, tal que $\mathbf{0}+\mathbf{u}=\mathbf{u}+\mathbf{0}=\mathbf{u}$ para todo $\mathbf{u}\in\mathbb{V}$.

EV5.- Para cada elemento $\mathbf{u} \in \mathbb{V}$ existe $-\mathbf{u} \in \mathbb{V}$ tal que $\mathbf{u} + (-\mathbf{u}) = -\mathbf{u} + \mathbf{u} = \mathbf{0}$.

EV6.- Si **u** y $\mathbf{v} \in \mathbb{V}$, entonces $\mathbf{u}+\mathbf{v} = \mathbf{v}+\mathbf{u}$.

EV7.- Si \mathbf{u} y $\mathbf{v} \in \mathbb{V}$ y $c \in \mathbb{R}$, entonces $c(\mathbf{u}+\mathbf{v}) = c\mathbf{u}+c\mathbf{v}$.

EV8.- Si $a ext{ y } b \in \mathbb{R} ext{ y } ext{ v} \in \mathbb{V}$, entonces $(a+b) ext{ v} = a ext{ v} + b ext{ v}$.

EV9.- Si $a y b \in \mathbb{R}$ $y \mathbf{v} \in \mathbb{V}$, entonces $(ab)\mathbf{v} = a(b\mathbf{v})$.

EV10.- Si $\mathbf{u} \in \mathbb{V}$, entonces $1\mathbf{u} = \mathbf{u} \quad (1 \in \mathbb{R})$

Notación: $\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v})$

Si V es un espacio vectorial real valen las siguientes propiedades.

- a) $0\mathbf{v} = \mathbf{0}$ para todo $\mathbf{v} \in \mathbb{V}$.
- b) $k\mathbf{0} = \mathbf{0}$ para todo $k \in \mathbb{R}$.

- c) $(-1)\mathbf{v} = -\mathbf{v}$ para todo $\mathbf{v} \in \mathbb{V}$.
- d) $-(\mathbf{v}+\mathbf{w}) = -\mathbf{v}-\mathbf{w}$ para todo \mathbf{v} y $\mathbf{w} \in \mathbb{V}$.
- e) $k(\mathbf{v}-\mathbf{w}) = k\mathbf{v}-k\mathbf{w}$ para todo \mathbf{v} y $\mathbf{w} \in \mathbb{V}$, $k \in \mathbb{R}$.
- f) $k\mathbf{v} = \mathbf{0}$ si y sólo si k = 0 ó $\mathbf{v} = \mathbf{0}$.

SUBESPACIOS

Sea \mathbb{V} un espacio vectorial real, y sea \mathbb{W} un subconjunto de \mathbb{V} . \mathbb{W} es un *subespacio* de \mathbb{V} si se satisfacen las siguientes tres condiciones:

- El vector $\mathbf{0}$ de \mathbb{V} pertenece a \mathbb{W} .
- Si \mathbf{u} y \mathbf{v} son elementos de \mathbb{W} , entonces su suma $\mathbf{u}+\mathbf{v}$ pertenece a \mathbb{W} .
- Si \mathbf{v} es un elemento de \mathbb{W} y c es un número real, entonces el producto $c\mathbf{v}$ pertenece a \mathbb{W} .

Observación: W es un espacio vectorial real.

Propiedad: Si $\mathbb S$ y $\mathbb T$ son subespacios de un espacio vectorial $\mathbb V$, entonces la intersección $\mathbb S\cap\mathbb T$ es un subespacio de $\mathbb V$.

Propiedad: El conjunto de soluciones de un sistema homogéneo con n incógnitas es un subespacio de \mathbb{R}^n .

COMBINACIONES LINEALES

Sean \mathbb{V} un espacio vectorial sobre \mathbb{R} y \mathbf{v}_1 , ..., \mathbf{v}_n elementos de \mathbb{V} . Se dice que un vector \mathbf{w} es una *combinación lineal* de \mathbf{v}_1 , ..., \mathbf{v}_n si se puede expresar en la forma $\mathbf{w} = k_1\mathbf{v}_1 + ... + k_n\mathbf{v}_n$, donde k_1 , ..., k_n son números reales.

Si todo elemento de \mathbb{V} es una combinación lineal de $\mathbf{v}_1, ..., \mathbf{v}_n$ decimos que $\{\mathbf{v}_1, ..., \mathbf{v}_n\}$ genera \mathbb{V} o que $\{\mathbf{v}_1, ..., \mathbf{v}_n\}$ es un *conjunto de generadores* de \mathbb{V} .

 $\mathbb{W} = \left\{ \sum_{i=1}^{r} k_i \mathbf{v}_i / k_i \in \mathbb{R} \right\} \text{ es un subespacio de } \mathbb{V} \text{ que se denomina } \textit{subespacio generado por } \left\{ \mathbf{v}_1, ..., \mathbf{v}_r \right\} \text{ y se nota } \mathbb{W} = \left\langle \mathbf{v}_1, ..., \mathbf{v}_r \right\rangle.$

Propiedad: Si \mathbb{W} es un subespacio de \mathbb{V} y $\mathbf{v}_1,...,\mathbf{v}_r$ son vectores de \mathbb{W} , entonces $\langle \mathbf{v}_1,...,\mathbf{v}_r \rangle \subseteq \mathbb{W}$. O sea $\langle \mathbf{v}_1,...,\mathbf{v}_r \rangle$ es el menor subespacio de \mathbb{V} que contiene a los vectores $\mathbf{v}_1,...,\mathbf{v}_r$.

DEPENDENCIA E INDEPENDENCIA LINEAL

Sea \mathbb{V} un espacio vectorial sobre \mathbb{R} , y sean $\mathbf{v}_1,...,\mathbf{v}_n$ elementos de \mathbb{V} .

Decimos que $\{\mathbf{v}_1,...,\mathbf{v}_n\}$ es *linealmente dependiente* si existen números reales $a_1,...,a_n$, no todos iguales a cero, tales que $a_1\mathbf{v}_1+...+a_n\mathbf{v}_n=\mathbf{0}$.

Decimos que $\{\mathbf{v}_1,...,\mathbf{v}_n\}$ es *linealmente independiente* si y sólo si se satisface la siguiente condición: siempre que $a_1,...,a_n$ sean números reales tales que $a_1\mathbf{v}_1+...+a_n\mathbf{v}_n=\mathbf{0}$, entonces $a_1=...=a_n=0$.

Propiedad: Sea \mathbb{V} un espacio vectorial sobre \mathbb{R} , y sean \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{v}_4 vectores de \mathbb{V} . Son equivalentes:

- a) $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ es linealmente independiente.
- b) $\{\mathbf{v}_1, k\mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ con $k \in \mathbb{R}, k \neq 0$, es linealmente independiente.
- c) $\{\mathbf{v}_1 + k\mathbf{v}_2, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ con $k \in \mathbb{R}$, es linealmente independiente.

Propiedad: Si $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ es linealmente independiente y $\mathbf{w} \notin \langle \mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n \rangle$ entonces $\langle \mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n, \mathbf{w} \rangle$ es linealmente independiente.

Propiedad: Si **w** es combinación lineal de $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k$, entonces $\langle \mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k, \mathbf{w} \rangle = \langle \mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k \rangle$.

El rango fila de una matriz A es igual al máximo número de filas linealmente independientes de A.

El rango columna de una matriz A es igual al máximo número de columnas linealmente independientes de A.

Propiedad: El rango fila de A es igual al rango columna de A, y lo notamos rgA.

De aquí en más, cuando decimos espacio vectorial entenderemos espacio vectorial sobre \mathbb{R} .

BASES

Una *base* de un espacio vectorial $\mathbb V$ es una sucesión de elementos $\mathbf v_1,...,\mathbf v_n$ de $\mathbb V$ tales que:

- a) $\{\mathbf v_1,...,\mathbf v_n\}$ genera $\mathbb V$
- b) $\{\mathbf{v}_1,...,\mathbf{v}_n\}$ es linealmente independiente

Se dice que un espacio vectorial \mathbb{V} , diferente de cero, es de *dimensión finita* si contiene una sucesión finita de vectores que forman una base de \mathbb{V} .

Propiedad: Dos bases cualesquiera de un espacio vectorial $\mathbb V$ de dimensión finita tienen el mismo número de vectores.

Si \mathbb{V} es un espacio vectorial de dimensión finita, la *dimensión* de \mathbb{V} es el número de vectores que tiene cualquier base de \mathbb{V} . Si $\mathbb{V} = \{0\}$, entonces \mathbb{V} no tiene base y se dice que su dimensión es cero.

Propiedad: La dimensión de $\mathbb{S}_0 = \{\mathbf{x} \in \mathbb{R}^{n \times 1} / A\mathbf{x} = 0\}$, es igual a n - rgA.

SUMA DE SUBESPACIOS

Sea $\mathbb V$ un espacio vectorial, y sean $\mathbb S$ y $\mathbb T$ subespacios de $\mathbb V$; se define la *suma* de $\mathbb S$ y $\mathbb T$ como $\mathbb S + \mathbb T = \{ \mathbf v \in \mathbb V / \mathbf v = \mathbf s + \mathbf t, \, \text{con} \, \mathbf s \in \mathbb S \, \text{y} \, \mathbf t \in \mathbb T \}$.

Propiedades: a) $\mathbb{S} + \mathbb{T}$ es un subespacio de \mathbb{V} .

b) Si dim $\mathbb{V} = n$, entonces dim $(\mathbb{S} + \mathbb{T}) = \dim \mathbb{S} + \dim \mathbb{T} - \dim(\mathbb{S} \cap \mathbb{T})$.

Sea $\mathbb V$ un espacio vectorial. Si $\mathbb S$ y $\mathbb T$ son subespacios de $\mathbb V$ que verifican simultáneamente: $\mathbb S+\mathbb T=\mathbb V$ y $\mathbb S\cap\mathbb T=\{\mathbf 0\}$, entonces $\mathbb V$ es la *suma directa* de $\mathbb S$ y $\mathbb T$, y se nota $\mathbb V=\mathbb S\oplus\mathbb T$.

En general, si $\mathbb{W}\subseteq\mathbb{V}$ verifica $\mathbb{W}=\mathbb{S}+\mathbb{T}$ y $\mathbb{S}\cap\mathbb{T}=\left\{\mathbf{0}\right\}$, se dirá que \mathbb{W} es la suma directa de \mathbb{S} y \mathbb{T} , y se notará $\mathbb{W}=\mathbb{S}\oplus\mathbb{T}$.

COORDENADAS

Sea \mathbb{V} un espacio vectorial, y $\mathbf{B} = \{\mathbf{v}_1,...,\mathbf{v}_n\}$ una base de \mathbb{V} . Si $\mathbf{v} = a_1\mathbf{v}_1 + ... + a_n\mathbf{v}_n$, entonces $(a_1,...,a_n)$ son las coordenadas de \mathbf{v} con respecto a la base \mathbf{B} , y notamos $(\mathbf{v})_{\mathbf{B}} = (a_1,...,a_n)$

Observación: Las coordenadas de un vector dependen de la base. Recuerde que cuando se da una base $\{\mathbf{v}_1,...,\mathbf{v}_n\}$, importa el orden en que se dan los vectores.

ESPACIO EUCLÍDEO

Llamamos *espacio euclídeo* de dimensión n al espacio vectorial \mathbb{R}^n con el producto

interno
$$(x_1, x_2, ..., x_n) \cdot (y_1, y_2, ..., y_n) = x_1 y_1 + x_2 y_2 + ... + x_n y_n$$
.

Si \mathbb{S} es un subespacio de \mathbb{R}^n , el conjunto $\left\{\mathbf{x} \in \mathbb{R}^n \, / \, \mathbf{x} \cdot \mathbf{s} = 0 \right\}$ se llama el complemento ortogonal de \mathbb{S} y se nota \mathbb{S}^\perp .

Propiedades: \mathbb{S}^{\perp} es un subespacio de \mathbb{R}^{n} .

$$\mathbb{S} \cap \mathbb{S}^{\perp} = \{\mathbf{0}\}.$$

$$\dim \mathbb{S}^{\perp} = n - \dim \mathbb{S}$$
 y $\mathbb{S} \oplus \mathbb{S}^{\perp} = \mathbb{R}^{n}$.

$$(\mathbb{S}^{\perp})^{\perp} = \mathbb{S}$$

Si $\mathbb{S} = \langle \mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r \rangle$, \mathbf{w} es ortogonal a \mathbf{v} para todo $\mathbf{v} \in \mathbb{S}$ si y sólo si

$$\mathbf{w} \cdot \mathbf{v}_i = 0$$
 para $1 \le i \le r$.

Observación: Si $\{\mathbf v_1, \mathbf v_2, ..., \mathbf v_r\}$ es una base de $\mathbb S$, para hallar $\mathbb S^\perp$ basta buscar n-r vectores linealmente independientes que sean ortogonales a todos los $\mathbf v_i$.

Si $\mathbf{v} = \mathbf{s}_1 + \mathbf{s}_2$ con $\mathbf{s}_1 \in \mathbb{S}$ y $\mathbf{s}_2 \in \mathbb{S}^{\perp}$, \mathbf{s}_1 se llama la proyección ortogonal de \mathbf{v} sobre \mathbb{S} .

Propiedad: La proyección ortogonal de \mathbf{v} sobre \mathbb{S} es el punto de \mathbb{S} que está a menor distancia de \mathbf{v} , es decir que $\|\mathbf{v} - \mathbf{s}_1\| \le \|\mathbf{v} - \mathbf{s}\| \quad \forall \, \mathbf{s} \in \mathbb{S}$.