Uniwersytet Wrocławski Wydział Matematyki i Informatyki Instytut Matematyczny

Michał Bałwanowski

$\begin{array}{c} {\bf Modelowanie\ Deterministyczne} \\ {\bf Projekt} \end{array}$

Spis treści

1	Problemy badawcze oraz przyjęte stałe	3
2	Szkic pomieszczenia	3
3	Przykładowa symulacja	4
4	Optymalne ustawienie grzejnika w pomieszczeniu	6
	4.1 Pierwsza symulacja	6
	4.2 Druga symulacja	8
	4.3 Wnioski	9
5	Zarządzanie ogrzewaniem w czasie pobytu poza mieszkaniem	10
	5.1 Pierwsza symulacja	10
	5.2 Druga symulacja	
	5.3 Wnioski	13

1 Problemy badawcze oraz przyjęte stałe

W niniejszym raporcie odpowiemy na dwa pytania badawcze:

- Jakie jest najbardziej optymalne ustawienie grzejnika w pomieszczeniu?
- Czy warto wyłączać ogrzewanie, wychodząc do pracy?

W obu przypadkach przyjmujemy poniższe parametry:

- Współczynnik przewodnictwa cieplnego: $\alpha = 0.025 \, \mathrm{W/mK}$.
- Liczba węzłów siatki: 60.
- Ciepło właściwe powietrza: $c = 1000 \,\mathrm{J/(kg \cdot K)}$.
- Gestość powietrza: $\rho = 1.2 \,\mathrm{kg/m}^3$.
- Temperatura początkowa: $u_0 = 16^{\circ}$ C.
- Temperatura grzejnika: $T_{\text{grzejnik}} = 50^{\circ}\text{C}$.
- Temperatura okien: $T_{\text{okna}} = -10^{\circ}\text{C}$.

W symulacji przyjęto stałą temperaturę -10° C na zewnątrz mieszkania.

Kod, na podstawie którego przeprowadzane są nasze symulacje, umożliwia wizualizację w postaci animowanych wykresów przedstawiających mapę ciepła w mieszkaniu. Symulacje dla poszczególnych zagadnień znajdują się w repozytorium GitHub. W tym raporcie zostaną zaprezentowane wykresy określające: średnią temperaturę w mieszkaniu oraz ilość energii zużytej przez grzejniki podczas ich pracy.

2 Szkic pomieszczenia

Nasze mieszkanie jest modelowane na podstawie kawalerki, która składa się z trzech pomieszczeń. W mieszkaniu znajdują się dwa grzejniki oraz dwa okna. Poniżej znajduje się szkic pomieszczenia:

Kluczowe dla naszej symulacji elementy mieszkania zostały oznaczone odpowiednimi kolorami:

- Czarnym ściany zewnętrzne mieszkania,
- Szarym ściany między pomieszczeniami,
- Czerwonym grzejniki,
- Niebieskim okna.

W kolejnych symulacjach grzejniki będą zmieniać swoje położenie – aby zwrócić uwagę na zmiany ich położenia, przy każdej sekcji zostanie załączona klatka z animacji, na której widoczne będzie nowe położenie grzejnika.

3 Przykładowa symulacja

W tej krótkiej sekcji przedstawimy wyniki symulacji przeprowadzonej przy użyciu konfiguracji mieszkania przedstawionej powyżej. Nasza temperatura początkowa to 16°C, a symulacja została przeprowadzona w 7 jednostkach czasu. Dodatkowo termostat będzie kontrolował działanie grzejników – gdy temperatura spadnie poniżej 19°C, grzejniki włączą się i będą pracować ze stałą mocą 50°C. Gdy temperatura przekroczy 21°C, grzejniki wyłączą się. Mapa ciepła prezentuje się następująco: Dodatkowo otrzymano następujące wykresy:

Rysunek 1: Mapa ciepła

 ${\it Możemy}$ zauważyć cykliczne zachowania na naszych wykresach – są one oczywiście spowodowane ustawieniami naszego termostatu.

4 Optymalne ustawienie grzejnika w pomieszczeniu

W celu przeprowadzenia tej symulacji wykonane zostaną dwie symulacje:

- \bullet W pierwszej, pod każdym oknem znajduje się grzejnik, utrzymujący stałą temperaturę $40^{\circ}\mathrm{C}.$
- W drugiej, grzejniki znajdują się dalej od okien.

W obu przypadkach zmierzona zostanie ilość energii zużytej przez grzejniki oraz zaprezentowane zostaną wykresy pokazujące średnią temperaturę panującą w mieszkaniu.

4.1 Pierwsza symulacja

W tej symulacji operowaliśmy na poniższej konfiguracji:

Końcowy rozkład temperatur prezentuje się następująco:

Dodatkowo otrzymaliśmy następujące wykresy:

Możemy zauważyć, że osiągnięto bardzo wysoką temperaturę – prawie $27^{\circ}\mathrm{C}.$

4.2 Druga symulacja

 \mathbf{W} tej symulacji zmieniono położenie jednego z grzejników. Konfiguracja mieszkania jest przedstawiona poniżej:

Mapa ciepła na końcu symulacji prezentuje się następująco:

Dodatkowo otrzymano wykresy:

Możemy zauważyć, że pomimo ciągłego dostarczania ciepła do mieszkania, średnia temperatura stabilizuje się w okolicy 19.8° C.

4.3 Wnioski

Możemy zauważyć znaczny kontrast pomiędzy symulacjami – przy tej samej temperaturze grzejników, w pierwszej symulacji osiągnięto znacznie wyższą średnią temperaturę w mieszkaniu. Nasze symulacje sugerują więc, że konfiguracja z grzejnikami znajdującymi się pod oknem jest znacznie bardziej opłacalna od konfiguracji z grzejnikami znajdującymi się dalej od okien.

5 Zarządzanie ogrzewaniem w czasie pobytu poza mieszkaniem

W celu przeprowadzenia tego eksperymentu wykonane zostaną dwie symulacje o takim samym czasie:

- Pierwsza symulacja ma modelować sytuację, w której wychodząc z domu, wyłączamy ogrzewanie i pozwalamy na wychłodzenie się mieszkania. Zakładamy, że przy powrocie do mieszkania temperatura wynosi 14°C. Zasymulujemy więc włączenie ogrzewania mieszkania i zmierzymy ilość energii zużytej do osiągnięcia komfortowej temperatury 21°C i późniejszego standardowego funkcjonowania ogrzewania w 7 jednostkach czasu.
- Druga symulacja ma na celu zamodelowanie sytuacji, w której wychodząc z domu, nie wyłączamy ogrzewania uznajmy, że początkowo mieszkanie będzie miało temperaturę powietrza 20°C. Termostat będzie kontrolował działanie grzejników gdy temperatura spadnie poniżej 19°C, grzejniki włączą się i będą pracować ze stałą mocą 50°C. Gdy temperatura przekroczy 21°C, grzejniki wyłączą się. Ta symulacja również przebiega w 7 jednostkach czasu.

Obie symulacje zostały przeprowadzone na następującej konfiguracji mieszkania:

5.1 Pierwsza symulacja

W tej symulacji otrzymano następujące wykresy:

5.2 Druga symulacja

W tej symulacji otrzymano następujące wyniki:

5.3 Wnioski

Porównując wykresy dla obu sytuacji, możemy zauważyć, że pozostawienie włączonego ogrzewania pozwoliło ograniczyć zużycie energii o 1000 jednostek energii. Jednak nasza symulacja porównuje tylko okres ogrzewania się mieszkania i kilka późniejszych cykli standardowego funkcjonowania naszego ogrzewania. Biorąc pod uwagę okres, w którym nie będziemy obecni w domu, możemy (nawet bez przeprowadzania kolejnych symulacji) stwierdzić, że różnica 1000 jednostek energii nie pokryje strat poniesionych w czasie ogrzewania pustego domu. Sugerując się tą uwagą, możemy stwierdzić, że bardziej opłacalne jest wyłączanie ogrzewania na czas naszej nieobecności.