Self-Ensemble of *N*-best Generation Hypotheses by Lexically Constrained Decoding

Ryota Miyano[†], Tomoyuki Kajiwara[‡], Yuki Arase[†]

[†]Graduate School of Information Science and Technology, Osaka University [‡]Graduate School of Science and Engineering, Ehime University

Code, Paper

Introduction

Our approach

- Assumption: There exists *partly* higher quality hypotheses
- Merge high quality fragments to obtain better output
- Use lexical constraints to control output

Existing method – Reranking

- Assumption: There exists a higher quality hypothesis
- Re-evaluate hypotheses and select the best hypothesis

Proposed method

Overview

- Create constraints based on the token-level QE model
 - QE model predict whether each token in *N*-best hypotheses should be used or avoided in the final output
- Generate final output using <u>Lexically constrained decoding</u>
 NeuroLogic-A* (Lu et al., 2022)

Training of the token-level QE model

- Create training data
 - Generate N-best hypotheses for training sentences using a language generation model
 - Assign positive labels to tokens appearing in the reference and negative labels to tokens not appearing
- Fine-tune a pretrained masked language model

Experiments

Evaluate our method on language generation tasks

- Paraphrasing
 - Dataset: DIRECT (Takayama et al., 2021)
 - Metrics: BLEU
- Summarisation
 - Dataset: XSum (Narayan et al., 2018)
 - Metrics: ROUGE-L

Paraphrasing - Oracle (Assume the reranker and QE model are ideal)

Ensembling *N*-best hypotheses is more effective than selecting the best hypothesis

Paraphrasing 40 31 39 30 8 beam-search NCD NCD DrNMT NeuroLogic-A* (P & N) NeuroLogic-A* (P) NeuroLogic-A* (N) Indirect-to-Direct Direct-to-Indirect

Proposed method significantly outperforms the strong reranking methods