Opgave om forudsigelse af vindmølleproduktion

Den følgende tabel viser målinger af sammenhørende værdier for vindhastighed (x) og den strøm, en bestemt vindmølle producerer (y):

	•
Vind-	Produktion
hastighed	af strøm
5.00	1.582
6.00	1.822
3.40	1.057
2.70	0.500
10.00	2.236
9.70	2.386
9.55	2.294
3.05	0.558
8.15	2.166
6.20	1.866
2.90	0.653
6.35	1.930
4.60	1.562
5.80	1.737
7.40	2.088
3.60	1.137
7.85	2.179
8.80	2.112
7.00	1.800
5.45	1.501
9.10	2.303
10.20	2.310
4.10	1.194
3.95	1.144
2.45	0.123

- a. Lav en lineær regressionsanalyse af produceret vindmøllestrøm som funktion af vindhastighed og skriv regressionsligningen op. Beregn den forventede produktion ved en vindhastighed på 9.5.
- b. Forklar v.h.a. regressionsanalysens statistikker, om modellen beskriver observationerne godt.
- c. Lav et scatterplot med målt (y) og estimeret (y_hat) strømproduktion som funktion af vindhastighed. Lav desuden et residualplot (residual mod y_hat). Hvad viser de to plots om regressionsmodellen?
- d. Forsøg at forbedre modellen med transformationer. Prøv følgende to modeller (henholdsvis en logaritmisk og en reciprok transformation af vindhastigheden):

$$y = b_0 + b_1 \ln(x)$$
$$y = b_0 + \frac{b_1}{x}$$

Skriv funktionsudtrykkene for de to transformerede modeller op.

- e. Lav scatterplots og residualplots af de to transformerede modeller.
- f. Diskutter hvilken model, der er bedst.