Lab04-Matroid

CS214-Algorithm and Complexity, Xiaofeng Gao, Spring 2021.

* If there is any problem, please contact TA Haolin Zhou. * Name:Xin Xu Student ID:519021910726 Email: xuxin20010203@sjtu.edu.cn

- 1. Property of Matroid.
 - (a) Consider an arbitrary undirected graph G = (V, E). Let us define $M_G = (S, C)$ where S = E and $C = \{I \subseteq E \mid (V, E \setminus I) \text{ is connected}\}$. Prove that M_G is a **matroid**.

Proof. hereditary. Let $B \in C$, and $A \subset B$. So, $(E \backslash B) \subset (E \backslash A)$. Since $(E \backslash B)$ is connected, $(E \backslash A)$ is connected.

exchange property. Let $B, A \in C$ and |A| < |B|. We will prove exchange property by contradiction. The graph $(E \backslash A)$ must have more than one edges to connect the same two components of graph G. Otherwise, $(E \backslash A)$ only have v-1 edges, and v= the number of vertexes. In this case, |A| is of the largest cardinality among all elements of C, which is contradictory to our hypothesis that |A| < |B|. Additionally, B must contain at least one edge e in $(E \backslash A)$ to connect the same two components. If not, $(E \backslash B)$ must hold the same edges of $(E \backslash A)$ except for the single edge connecting two components. But for the single edge, the total number is fixed, which means $|(E \backslash B)|$ is at least the same with $|(E \backslash A)|$ as a result, meaning $|B| \leq |A|$ too. So, we just pick this edge e in B, and $A \cup \{e\} \in C$.

(b) Given a set A containing n real numbers, and you are allowed to choose k numbers from A. The bigger the sum of the chosen numbers is, the better. What is your algorithm to choose? Prove its correctness using **matroid**.

Remark: Denote \mathbf{C} be the collection of all subsets of A that contains no more than k elements. Try to prove (A, \mathbf{C}) is a matroid.

Solution. algorithm. Everytime choosing the largest number x in A, and let $A = A \setminus x$. Repeat this process for k times.

proof. Denote \mathbb{C} be the collection of all subsets of A that contains no more than k elements. And we will try to prove (A, \mathbb{C}) is a matroid. **hereditary:** Let $B \in \mathbb{C}$, and $D \subset B$. So D is a set with elements less than k, which is clearly an element of \mathbb{C} . **exchange property.** Let $B, D \in \mathbb{C}$ and |D| < |B|. For every $x \in B \setminus D, D \cup \{x\}$ is a subset of A, whose cardinality is no more than k. So, $D \cup \{x\} \in \mathbb{C}$. Above all, (A, \mathbb{C}) is a matroid, and the greedy algorithm is the optimal method for maximization problem. \square

- 2. Unit-time Task Scheduling Problem. Consider the instance of the Unit-time Task Scheduling Problem given in class.
 - (a) Each penalty ω_i is replaced by $80 \omega_i$. The modified instance is given in Tab. 1. Give the final schedule and the optimal penalty of the new instance using Greedy-MAX.

Table 1: Task

a_i	1	2	3	4	5	6	7
d_i	4	2	4	3	1	4	6
ω_i	10	20	30	40	50	60	70

Solution. the final schedule. The order is a_5 , a_4 , a_6 , a_3 , a_7 , a_1 , a_2 . And the sequence of a_6 and a_3 can be exchanged, which is the same of a_1 and a_2 .

the optimal penalty. The penalty is the sum of a_1 and a_2 , which is $w_1 + w_2 = 30$. \square

(b) Show how to determine in time O(|A|) whether or not a given set A of tasks is independent. (**Hint**: You can use the lemma of equivalence given in class)

Algorithm 1: IndependentSystem

```
Input: a set A of n tasks.

Output: Whether or not A is an independent system.

1 Sort n elements by penalties so that w_1 \geqslant w_2 \geqslant ... \geqslant w_{n-1} \geqslant w_n;

2 An array a[n+2]; sum \leftarrow 0; j \leftarrow 0;

3 for j \leftarrow 0 to n+1 do

4 \lfloor a[j] = 0;

5 for j \leftarrow 1 to n do

6 \lfloor +a[d_j];

7 j \leftarrow 0;
```

15 return true;

3. MAX-3DM. Let X, Y, Z be three sets. We say two triples (x_1, y_1, z_1) and (x_2, y_2, z_2) in $X \times Y \times Z$ are disjoint if $x_1 \neq x_2$, $y_1 \neq y_2$, and $z_1 \neq z_2$. Consider the following problem:

Definition 1 (MAX-3DM). Given three disjoint sets X, Y, Z and a non-negative weight function $c(\cdot)$ on all triples in $X \times Y \times Z$, **Maximum 3-Dimensional Matching** (MAX-3DM) is to find a collection \mathcal{F} of disjoint triples with maximum total weight.

- (a) Let $D = X \times Y \times Z$. Define independent sets for MAX-3DM.
- (b) Write a greedy algorithm based on Greedy-MAX in the form of pseudo code.
- (c) Give a counter-example to show that your Greedy-MAX algorithm in Q. 3b is not optimal.
- (d) Show that: $\max_{F \subset D} \frac{v(F)}{u(F)} \leq 3$. (Hint: you may need Theorem 1 for this subquestion.)

Solution. i. Define \mathbb{C} as: $\mathbb{C} = \{ F \subseteq D | F \text{ is a collection of disjoint triples} \}$. And prove it an independent system. Let $B \in \mathbb{C}$ and $A \subset B$, it's clear that A is a collection of disjoint triples. So, $A \in \mathbb{C}$.

Algorithm 2: MAX-3DM

Input: a set D of n triples.

Output: A subset of D with maximum weight.

- 1 Sort n triples by weights decreasingly so that $w_{d_1} \geqslant w_{d_2} \geqslant ... \geqslant w_{d_{n-1}} \geqslant w_{d_n}$;
- ii. 2 $A \leftarrow \emptyset$;
 - з for $j \leftarrow 1$ to n do
 - 4 | if $A \cup \{d_i\} \in \mathbf{C}$ then

 - $\mathbf{6}$ Output A;
- iii. The picture of counter example is below. In this case, the greedy algorithm contains a total weight of 11, while the optimal algorithm contains a total weight of 12.

Figure 1: The Counter Example

iv. **Proof.** The independent system (D, \mathbf{C}) is the intersection of 3 matroids (D, \mathcal{C}_i) , $1 \le i \le 3$; that is, $\mathbf{C} = \bigcap_{i=1}^3 \mathcal{C}_i$. Define \mathcal{C}_1 as: $\mathcal{C}_1 = \{F \subseteq D | F \text{ is a collection of triples that any } x_i \ne x_j \text{ if } i \ne j. \}$. Define \mathcal{C}_2 as: $\mathcal{C}_2 = \{F \subseteq D | F \text{ is a collection of triples that any } y_i \ne y_j \text{ if } i \ne j. \}$. Define \mathcal{C}_3 as: $\mathcal{C}_3 = \{F \subseteq D | F \text{ is a collection of triples that any } z_i \ne z_j \text{ if } i \ne j. \}$. And it's easy to prove that $\mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3$ are all matroids. According to **Theorem 1.**, $\max_{F \subseteq D} \frac{v(F)}{u(F)} \le 3$.

Theorem 1. Suppose an independent system (E, \mathcal{I}) is the intersection of k matroids (E, \mathcal{I}_i) , $1 \leq i \leq k$; that is, $\mathcal{I} = \bigcap_{i=1}^k \mathcal{I}_i$. Then $\max_{F \subseteq E} \frac{v(F)}{u(F)} \leq k$, where v(F) is the maximum size of independent subset in F and u(F) is the minimum size of maximal independent subset in F.

Remark: You need to include your .pdf and .tex files in your uploaded .rar or .zip file.