50 SHEETS 100 SHEETS 200 SHEETS 22-141 22-142 22-144

ILE STAGED CONSTRUCTION (Mostly abstracted from Land (1991)= Terzaghi Lacture).

(Mini-Questions-1P)	Page Na
1. Introduction	
1.1 Background	1
1.2 Types of Stability Analyses and Definition of Factor of Safety	
· TSA · ESA » DSA · USA	
2. Comparison of ESA vs. USA for Staged Construction	
2.1 Conceptual Comparison	2
2.2 Case Histories	3
2.3 Conclusions	3
3 USA Mathodology	
3.1 Recommended approach	4
3,2 Discussion of 3.1	+
3.3 QRS methodology	5
4. Non-Circular Stability Analyses with Anisotropic	
Undrained Shear Strengths	
4.1 Problem Defeneten	6
4.2 Theoretical Relationships	6
4.3 application to CKOV Data on RBBC	7
4.4 Simplified approach	. 8

Sheet A1,213 Case histories from Tugagli Lecture

Sheet B CAUDSS data & QRS methodology.

Shut C anisopopic Undrawed Strength Ration is Plasticty Index

Meni Questine on IIE: Stayed Construction

- 1) Does this material apply both to statchty during construction and to the "long term" case where 1620 (U=100%)?
- 2) Regarding comparison of ESA 5 USA stability analysis: a) Althor both require a honorledge of the insertie of values, how do they defer in use of this information?
 - b) Which type of analysis is easier to use and why (assuming sertensine u data from pregometus)?
 - c) Does the above answer depend upon whether your USA analysis follows Ladd's recommendations or uses the QRS methodology?
- 3) Regarding the three case histories
 - a) Do any of these "prone" that ESA very unsafe values of FS?
 - b) For the two embandments, what are the major limitation of the USA stability estimates? In particular, what would you do in order to obtain more reliable estimates of FS(USA)?
- 4) How would you use CKOU TC/TE data on NC day to develop a best estimate of Cu = f(x) for UTEXAS3 stability analyses (non-varied day)?

22-141 50 SHEETS 22-142 100 SHEETS 22-144 200 SHEETS

Over Day O

IIE STAGED CONSTRUCTION (TZ= Lada (1991) Tenzaghi Lacture)

1 INTRODUCTION

- 1.1 Background (Sections 152)
 - 1) Controlled rate of loading moreased consolidation faster strength gain to improve foundation statilety of embanhments, landfills, tanks, etc. & slope stability of tailings waste storage dams
 - 2) Controversial issue: What TYPE of stability analysis to use
 - · For design of project (need to predict u)
 - · Check stability during construction

(either shortly or long after end of construction)

- 1.2 Types of Stability Analysis & Definition of Factor of Safety (Sections
 - 1) FS = Available shear strength of soil=s Tm = Shear stress required for equilibrium = mobilized T IMPORTANT NOTE: 5 must be consistent with assumed

In situ drainage conditions during potential failure

- 2) TSA = Total Stress Analysis · Su from "UV" type testing, eg. FVT, UK FS = 54/7m · Jenually only applied to UU Case
- 3) ESA = Effective Stress Analysis = Drained Strength Analysis FS = Sd/Tm = tand'/tand'm (since same FS applied to both c' & tand')
 - . Correctly applied to CD Case for unloading problems
 - · But also widely used for staged construction
 - . Treats in site T = Tat failine

4) USA = Undrained Strength Analysis

FS = Cu/2m

- . Treats in situ T' = consolidation stresses prior to unchained facture [cu=f(ci)i]
- · Can be applied to both UU & CU Cases
- · Defferent methodologies CCL no QRS

2. COMPARISON OF ESAVS USA FOR STAGED CONSTRUCTION

Fig. 3 (TL, p 550) 2.1 Conceptual Comparison "DSS" on OUR=1 soil 7 = Tm = The Ty = J- u = Off or Tyc Computed _ 1 _ Measured

- DESA Treate of = OH Sd = TH = of tand' FS = Sd/Tm = tand/tand' Inherently assumes 45 = 0 (altho users may select 4 > measure and/n \$1 < measured) corresponding to CD Case
- 2) USA Treats $\sigma'_{v} = \sigma'_{vc} \rightarrow c_{u} = S \sigma'_{vc} \rightarrow FS = cu/c_{m}$. Inherently assumes undiamed facture corresponding to CU Case.

4/92 5/95 4/96

3) Simplified prediction à la p 562 of TL

$$\frac{FS(ESA)}{FS(USA)} = \frac{\tan \phi' / \tan \phi''}{cu / \tau_m} = \frac{\tan \phi' / (\tau_m / \sigma'_{vc})}{(cu / \sigma'_{vc})(\tau_m / \sigma'_{vc})} = \frac{\tan \phi'}{cu / \sigma'_{vc}} = \frac{\tan \phi'}{S(OSS)}$$

$$\phi' = 25^{\circ} f S = 0.20$$
 $\phi' = 30^{\circ} f S = 0.25$
 $f S = 0.25$
 $f S = 0.25$
 $f S = 0.25$
 $f S = 0.25$

2.2 <u>Case Histories</u> (Section 3)

Table 2 (ps61)

Example	Condition	$FS(\frac{ESA}{USA})$	Shut
1) Embankment m CVVC (Design)	Ū=100%	$1.9 \left(\frac{2.8}{1.5}\right)$.41 [*]
2) Embankment on Quich Clay (Design)	Ū=1002	$2.3^{5}\left(\frac{5.2}{2.2}\right)$	A2*
3) Upsteam Tailings Dam (Construction)	During construction	$1.9\left(\frac{2.4}{1.25}\right)$	A 3

NOTES 1) 32) design studies

* See Table 2, Sheet 43 for values of 5 fm

3) Real problem where adjacent dam facled during Construction under similar conditions

2.3 Conclusions

- 1) Experience and common sense tellus that actual faithers of boards on soft, where soils other rapidly (hence preclude significant dissipation of shear induced por pressures, Us).
- 2) Therefore should heat staged construction as CU Case and oftain FS rea Undramed Strength analysis (USA) wherein cu = f (inside consolidation stressed)
- 3) Moreover, an undramid failure will occur whenever in sete 7m mische Cor
- 4) Since an ESA inherently assumes a slow, dramed faction (CO Case). it is highly UNSAFE (born though many practitioning still use: see Seetin 3.8 of Ta)

3.1 Recommended Approach (Section 5 of Table 5, ps80)

- 1) Establish initial steen history, ie, profiles of Top
- 2) Establish Changes in vertical stress history rea sters distribution analyses plus
 - · Consoledation analyses for design 3- 21 TVC = TV-4
- 3) Develop Culove = S(OCR) mulatemotion for for soils
 - CKOU C, DSS { E + Shain compathlety } Ancischopic Cu using SHANSED OF RECOMPRESSION } (TC, TO \$ 7%) CKOUDSS à la SHANSEP

 - Empirical correlations for SIM
- 4) Use 1) + 2) +3) computed cu profiles for USA analyses

3.2 Discussion of 3.1

- 1) Simplifications & envos un estimation of cu
 - a) Use of The that can be significantly less than Tic preducted are towland
 - · How when use CAUDSS testing a la Fig 19 (Sheet B)

The/ove = % ma in cu = 5±5% 30±10%

- b) Should have used I hom CKOU tests with to = to (not to = 1 day) for NC day à la Section 3.4 of IID
- 2) Simplifications in stability analyses for two embandment case his trues
 - a) Used active wedge at x=+50-60° with Te
 " passine" " 11 x=-30° with Te] + horizontel surface with To
 - b) More sophisticited analysis with UTEXAS3 World love FS asing mon-circular search for more critical failine surface (also see Section 4 of ITE).

3.3 QRS Methodology (Section 6)

- 1) brutial ou from UUC You should know problems
- 2) gain in stiength from CIUC Fig. 2,20 (p588)

Cu = of tanden = on tanden

· What is physical significance of Pai? (Arowa = NONE)

·
$$Cu/\sigma_{fc}' = \tan \phi_{cu} = \frac{g_f/\sigma_c'}{\sqrt{1+2g_f/\sigma_c'}}$$

84/0'c tan pcu 0.25 0.204 0.30 0.237 0.35 0.268

0.268

3) Computed cu/ovc Fig. 21 (Sheet B)

Keasonable'

Simplified Brokop (Remimber 1.361 plot)

Cu 1.0

How compare with your understanding of Cu anisohopy?

42 389 200 SHEETS 5 S

22-141 22-142 22-144

AMPAD

4. NON-CIRCULAR STABILITY ANALYSES WITH ANISOTROPIC UNDRAINED SHEAR STRENGTHS

4.1 Problem Definition

Require input of Cu = f(d) Two major questions [8 = 0.5 (0,-03),7

- 1) Defenetion of Cu = 9, cost Use \$=0 or \$= \$'?
- 2) Value of 0 = angle between faction plane and Tit plane = 45 + \$1/2 leading to d = 0-8

Using \$= \$'

1.2 Theoretical Relationships

· From CKOU test like OSC, have known 9+ :vo, 8; d= 0-8

4.3 Application to CKOU Data on Resed. BBC

Figure by MIT OCW.

1) Measured data (Ladd 1994) Will interpret using:

NOTE: 31° = measured & in NC DSC Vests

2) Interpreted data for use in UTEXAS 3 Stability analyses

Curve	Data	φ.	Mean*
(A)	DSC	#=0	0.255 (+38)
B	TX f DSS	\$=0	0.225 (+21)
©	D5c	Ø=34°	0.185
* Fo	d=+45	· to-30	

Figure by MIT OCW.

3) Conclusion: If searchechifeeline senface dose to actual potential facture senface, then " \$=0" assumption -> Cu = 84 5 x = 45°-8 is very UNSAFE (by = 40), for PS data = 20% for TX data

No. 5505 Engineer's Computation Pad

4.4 Simplified Approach

Jeven uncertainty in hour su varies with \$2=45+4/2-8, especially Megarding interpretation of su(DSS) (i.e., \$ = 45±15°), CCL has often used the following approach for UTEXAS anisotropic Stability analyses for non-varied clays.

Comments:

- 1) 4 have TC, TE & DSS data: adjust TX PS & apply shaw compatibility wing Cu = 9. crs p'
- 2) if have only DSS data: use Sheet (to externate To 9 Te
- 3) only Su = in Su(FV): Set To = u Su(FV) { set mate To \$ To vin Sheet &

Design problem for highway embankment on connecticut valley varved (1 ft = 0.305 m; $1 pcf = 0.157 \text{ kN/m}^3$)

ESA and USA factors of safety for embankment on Connecticut valley varved clay at U = 100% [from Ladd and Foott (1977)] (1 ft = 0.35 m; 1 ksf = 47.9 kpa)

Figure by MIT OCW.

Figure by MIT OCW.

Embanhment on Varned Clay: U=1002 (Ladd 1991)

Soil profile, Index properties, and stress history at James Bay Site B-6

Field vane and anisotropic undrained strength profiles at James Bay Site B-6

ESA and USA Factors of safety for Embankment Dam on James Bay sensitive clay at \tilde{U} = 100%

Note: For Circular arc from crest to toe of berm, FS = 5.2 ± 0.7

Adapted from: Embankment on James Bay Quick Clay: U=100% (Ladd 1991)

Figures by MIT OCW.

Figure by MIT OCW.

Figure by MIT OCW.

Upsheam Tailing Dam During Construction

TABLE 2. Undrained Strength Parameters for Connecticut Valley Varved Clay and James Bay Sensitive Clay

	MODE OF FAILURE					
	Compression		Direct Simple Shear		Extension	
Clay deposit (1)	S (2)	m (3)	S (4)	nt (5)	S (6)	(7)
Connecticut Valley	0.21	0.83	0.15	0.775	0.20	0.74
James Bay Marine (1) Intact*	0.26 ±0.015	1.00	0.225 ±0.02	1.00	0.16 ±0.015	1.00
(2) Normally consolidated	0.26	-	0.225		0.16	-
James Bay Lacastrine (1) Intact ^b	0.225 ±0.03	1.00	0.19 ±0.00	1.00	0.14 ±0.01	1.00
(2) Normally consolidated	0.25	-	0.215	-	0.12*	-

"Mean ± one standard deviation from five test series.

Mean ± one standard deviation from two test series.

Estimated from data on other clays.

Lade (1991)

2-141 50 SHEETS 2-142 100 SHEETS 2-144 200 SHEETS

NC Clays

Effect of consolidation shear stress on undrained direct simple shear behavior of normally consolidated clay: (a) Increases in peak strength for Boston blue clay, Copper tailing and Atchafalaya clay; and (b) Shear stress versus shear strain for Boston blue clay.

Note: Copper Tailing data by R.S. Ladd; Other data by MIT

Angle of shearing resistance ϕ'_{fc} from isotropically consolidated - undrained triaxial compression (CIUC) tests as defined by A. Casagrande

QRS computed $c_u = \sigma'_{fc} \tan \phi_{cu}$ (Bishop circle, FS = 1.3)

Simplified trends from CK_OU data on natural clays

 ${\it Undrained strength\ ratios\ from\ QRS\ methodology\ compared\ to\ trends\ from\ CK_OU\ testing\ for\ normally\ consolidated\ clay.}$

QRS Methodology

Definition of few

Computed cultive so of

- · Via OR
- · actual hende

(Ladd 1991)

Undrained shear Strength Ratios vs. Plasticity Index for CL and CH clays Tracted for Strain Compatibility (Duta from Table 4, Ladd 1991)

IF SUMMARY: ESTIMATION OF SU FOR UNDRAINED STRENGTH ANALYSES (USA)

! (nitiol Stability (UV Case)	Page
1.1 In Schu Tests 1) FVT 3) DMT 2) CPFU 4.5) Presowemeter	,
1.2 Lab "UU" Taob 1) TV, LV, PP, FC 2) UUC	.* <i>1</i> .
1,3 Lab CK. U Tests 1) Recompression 2) SHANSEP	2
3) Both - consideration of anisotropy & phein compatibility - " show heating	3,3a
1.4 For All approaches 1) Check Sufor noca 2) Plane shain factive - value of S 3) Typical "end effects" 4) Value of m	≠
2. Staged Construction 2.1 General 2.2 Recompusion on SHANSEP	5
2.3 QRS approved	. , , , , , , , , , , , , , , , , , , ,

5/95 4/29/01

IF SUMMARY: ESTIMATION OF SU FOR UNDRAINED STRENGTH ANALYSES (USA) Note: TL = 22nd Terzaghi

1. INITIAL STABILITY (UU Case)

- 1.1 /17 Situ Tests (NOTE: FVT, CPTU & DMT also useful for shess history profiling)
 - 1) FYT + Bjerrum in re Ip: Typical cov= 20 + 10% for PI= 20.41008 for sat. sedimentary cohesive soils without shells, sand lenses, fibers, et.
- # 2) CPT & CPTU with Nx = 15±5: Smaller data base suggest COV = 35% for medium-soft class. Some evidence of much larger NK for stiff clarp (eg. NK > 50 for Smith Bay)
- (4) Menard Pressuremeter: too empirical of costly
- 5) SBPT: not much better of far more costly (+ derind on regunsofe)
 - * 3) DMT ("sto" application uses 5=0.22 ? m=0.8, but can be altered):
 - · Lacks extensive data base on variety of soil types (Note that empirical correlation is with OCR, not su)
 - · growing popularity, (9. 150PT-1 (1988)
- * NOTE: CPTU! DMT both also applicable to granular soils ? good-excellent for soil profiling (stratification)

1.2 Lab "UU" Tests

- 1) TV, LV, PP, FC ...: Serve as "Su Index" tests , but recommended due to simplicity & low cost
- 2) UUC: Su value depends on 3 compensating errors:
 - · Mer. Su from 5=0 { fast & vs dec. Su due disturbance . Net europ can easely be ± 25-50%

log Ove

SO SHEETS S SQUARE ON SHEETS S SQUARE OU SHEETS S SQUARE

1.3 Lab C'KoU Tests

NOTE: CIUC only applicable as part of Recompression test program when in such OCR & 4 (Ko & 1) and should not be used as sole CU test type sinic -> UNSAFE su (R.g. neglects su anisotropy, plus Kc = 1 falls below Ko Compression curre)

(Also see QRS in 2.3)

- 1) Recompression (Ox = Ovo)
 - · Preferred technique When have block samples
 Kighly "structured" soils (high 5 & \$I_L)
 Very high OCR
 - · Unsafe results when in situ OCR =1
 - · Need variation in su index and/or SH

 to know when to run tests and for
 interpolation / extrapolation of "point" duta
 - · Need OCR to check if sult to is reasonable

2) SHANSEP

- · Reguires well defined SH and more testing USR rs OCR, but can use NSP on area wide basis, plus subsequent jobs.
- · Preferred technique for tube samples of "ordinary" clays and must be used when OCR=1
- · Probably underestimate of Sulop for highly structured soils (and Eu much too low)
- · Underestimates of stiffness of OC clay, esp. in extension
- · Automated CKo-TX & DSS → excellent 1-D compression curves for value of Tp, CR & Ko (for TX) → rary cost effective

- 3) BOTH Racompression & SHANSEP
 - a) Have emperical component regarding time effects, ag, assume using E=0.5-1 1/1/h for TX 1 8=52/h for 055 reasonable values compared to in sihe shearing natur
 - b) Explicitly consider effects of he anisotropy and can evaluate effects of "progressive facteure" vea strain compatibility technique
 - (1) P5 testing complete data à la DSC (future?)
 - ((2) PSC/E +DSS (few PS devues)

(3) TC/E + DSS

- · Can use Tare or Te, Ted & Te
- · See TL Table 4 & Fig. 18 for results that agree quite well with Collective data from case histories · See ITE Sheet C for anisothopy to PI
- (4) DSS · Less soil & larin to run Han TC/E
 - · geonor preferred
 - · See TL Table 4 9 Fig. 18

\$=0 bearing cap. (5) TC/E sup3a - su= { [8+10) + 9+10] - th for - MOS WO 3-D consulting

- c) Should always be accompanied by detailed evaluation of SH (TVO & Tp -OCK)
 - · Old CRSC testing ESSENTIAL
 - Use in sihe testing to help assess spartial variability, ag. FVT, CPTU, DMT.
 - · Evaluate su data ma log sufor so log OCR 5 fm

J.

INSERT : Discussion of Use of CKOU TC ! TE Data

Sources of Compensating Errors

- (1) $TX \text{ VS } PS q_f: TC/PSC = 0.92 \pm 0.05$ $TE/PSE = 0.82 \pm 0.02$ $\Rightarrow 0.87$
- (2) Strain Compatibility: gilAre) at dasign 7 = 0.90 NOTE: assume that se of crust grant of peaks design of selected for "soft" day
- (3) Shear stress on failure surface: (4/9, = cop' = 0.88 fa \$=25-30'
- (4) "Slope" stability, "end-effects": FS(30) = 1.11 ±0.06 50

Stability Evaluations Using C = 0.5 x Peak [8f(c) + 8f(E)] from CKOUTX

- (a) Bearing capacity, UU Case, 5=100%
 - · \$=0, c=8+=0.5(0,-03)+
 - · (1) \$ (2) compensate, ic. $\times \frac{1}{0.87} \times 0.90 = 1.035 \approx 1.0 : OK to use$
- (b) Slope stability analyses with method of slices assuming that pradicted location of critical shear surface a actual failure location
 - · Although \$=0, C= 7f=9f cosp'
 - For true plane strain failure : \(\int (0), (2) \xi(3) = \times \frac{1}{0.87} \times 0.90 \times 0.88 = 0.91 = 0.9 \\
 (cc., F5(20)] : unsate by = 101.
 - · For typical failures, Incl. (4) 0.91x 1.11 = 1.01 = 1.0 : OK to use without consection for inteffects"
- * For S=100%, and approximately linear 8+(8) is & relationship

1.4 For ALL Approaches

1) Check measured/compared Su from 1.1, 1.2 and n 1.3 using Sulty = S(OCR) m, which obversely requires some knowledge of in side STRESS HISTORY.

NOTE: CCL view that good ordonexer test & AL single best approach for estimating su via Level C prediction

2) Plane strain failure , (TL Tuble + 3 Fig. 18)

• Sensetive marine clays $S_p = \frac{54}{6p} = 0.20 \pm 0.0155D$ (Ip < 301, $I_L > 1$)

Above A-line · CL 1CH sed, clays, low-moderate (Ip= 20-802)

S=0.215 ±0.015

(S=0.20+0.05Ip)

NOTE: Varved S = 0.16 (N.E. US)

Below A-line

· Sedementary selts { organic sorts + clays uf shells

S = 0.25 ±0.05

3) Typical "end effects" à la Azzonzetal. (1983) $F(3-D)/F(2-D) = 1.1 \pm 0.06 \Rightarrow S = 0.23^{5} \pm 0.02$ CL SCH low-moduste St(Compares well in the Larsson (1980) case histories non-layered low OCR class, Ip < 60? $Sulop' = 0.23 \pm 0.04$)

- 4) Value of m
 - Mechanically OC $m \approx 0.88(1 Cs/C_c) \pm 0.06$ or Simply $m = 0.8 \pm 0.1$
 - Cemented, high S_{\pm} $m \approx 1 \rightarrow S_{p}(3-0) = 1.1 \times 0.20 = 0.22$ (Messi, 1989, CGJ: $S_{u} = 0.22 \ \overline{\sigma}_{p}^{\prime}$) 26(1),162-164

2. STAGED CONSTRUCTION (CU Case)

Includes "long term" loadings

- 2.1 General
 - 1) The treate in detail + Section IE
 - 2) Sters history most important design parameter
 - · Controls enetial su
 - · generally small DSu until Tic > 0p
 - · Combinated lab old. -CRSC + in site for spatial variations (and/n curb. CKo-TX { DSS)
 - 2.2 Recompression vs SHANSEP
 - · See 1.3, but since will have some NC foundation soil, must run some CK, U lesto with out of
 - 2.3 QRS approach
 - · TL Section 6 Empirici

Empirical appeach that depends m

· IIE, Section 3 compensating euros

- 2.4 Non-Circular Ansotropic Analyses
 - · IE, Section 4

.