Solução da Competição Elon Lages Lima (2021)

1. Seja

$$A = \begin{pmatrix} 1 & 2 & \dots & 1000 \\ 1001 & 1002 & \dots & 2000 \\ \vdots & \ddots & \vdots & \\ 999001 & 999002 & \dots & 1000^2 \end{pmatrix}$$

Escolha qualquer entrada e a denote por x_1 . Em seguida, apague a linha e coluna contendo x_1 para obtermos uma matriz 999 × 999. Então escolha qualquer entrada e a denote por x_2 . Apague a linha e a coluna contento x_2 para obter uma matriz 998 × 998. Realize esta operação 1000 vezes. Determine o valor da soma

$$x_1 + x_2 + \cdots + x_{1000}$$

Solução: Notemos que $A = (a_{ij})_{1000 \times 1000}$, com $a_{ij} = 1000(i-1) + j$ para $1 \le i, j \le 1000$. Ao denotar $x_k = a_{ij}$ e eliminar as k-ésimas linha e coluna da matriz, estamos colocando exatamente um x_k em cada linha e em cada coluna da matriz. Ao somar todos estes x_k estamos somando exatamente a_{kj} para todos $1 \le j \le 1000$ ou estamos somando a_{ik} para todos $1 \le i \le 1000$.

A soma portanto pode ser obtida por

$$\sum_{k=1}^{1000} x_k = \sum_{k=1}^{1000} a_{kj}$$

$$= \sum_{k=1}^{1000} 1000(k-1) + j$$

$$= \sum_{k=1}^{1000} 1000k - \sum_{k=1}^{1000} 1000 + \sum_{k=1}^{1000} j.$$

Mas note que a soma de todos os j é exatamente $\frac{1001\cdot 1000}{2}$ e portanto

$$\begin{split} \sum_{k=1}^{1000} x_k &= \sum_{k=1}^{1000} 1000k - \sum_{k=1}^{1000} 1000 + \sum_{k=1}^{1000} j \\ &= 1000 \frac{1001 \cdot 1000}{2} - 1000 \cdot 1000 + \frac{1001 \cdot 1000}{2} \\ &= 1000 \frac{1000 \cdot 1000}{2} + 1000 \frac{1000}{2} - 1000 \cdot 1000 + \frac{1000 \cdot 1000}{2} + \frac{1000}{2} \\ &= 1000 \frac{1000 \cdot 1000}{2} + \frac{1000}{2} = \frac{1000^3 + 1000}{2}. \end{split}$$

De forma similar,

$$\sum_{k=1}^{1000} x_k = \sum_{k=1}^{1000} a_{ik}$$

$$= \sum_{k=1}^{1000} 1000(i-1) + k$$
$$= \sum_{k=1}^{1000} 1000i - \sum_{k=1}^{1000} 1000 + \sum_{k=1}^{1000} k.$$

Neste caso, a soma de todos os i é também $\frac{1001 \cdot 1000}{2}$ e portanto

$$\begin{split} \sum_{k=1}^{1000} x_k &= \sum_{k=1}^{1000} 1000i - \sum_{k=1}^{1000} 1000 + \sum_{k=1}^{1000} k \\ &= 1000 \frac{1001 \cdot 1000}{2} - 1000 \cdot 1000 + \frac{1001 \cdot 1000}{2} \\ &= 1000 \frac{1000 \cdot 1000}{2} + 1000 \frac{1000}{2} - 1000 \cdot 1000 + \frac{1000 \cdot 1000}{2} + \frac{1000}{2} \\ &= 1000 \frac{1000 \cdot 1000}{2} + \frac{1000}{2} = \frac{1000^3 + 1000}{2}. \end{split}$$

2. Quantos termos racionais existem na expansão binomial de

$$(\sqrt[3]{2} + \sqrt{6})^{100}$$
?

Solução: Como

$$(\sqrt[3]{2} + \sqrt{6})^{100} = \sum_{j=0}^{100} {100 \choose j} \sqrt[3]{2^j} \sqrt{6^{100-j}},$$

então basta contar quantos índices $j \in \{0, 1, 2, ..., 100\}$ são múltiplos de 3, de forma que 100 - j é par (múltiplo de 2). Para que 100 - j seja par, então j deve ser par também, e portanto basta saber quantos índices $j \in \{0, 1, 2, ..., 100\}$ são múltiplos de 6. São eles

$$j \in \{0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96\},\$$

e portanto um total de 17 termos.

3. Seja $f:\{1,2,\dots\}\to\mathbb{R}$ uma função tal que f(n)-f(n+1)=f(n)f(n+1) para todo $n\geq 1$. Sabendo que $f(2020)=\frac{1}{4040}$, o valor de f(1) é:

Solução: Da igualdade f(n) - f(n+1) = f(n)f(n+1) válida para todo $n \ge 1$, obtemos a expressão

$$f(n) = \frac{f(n+1)}{1 - f(n+1)}$$

para todo $n \ge 1$, desde que $f(n+1) \ne 1$. Além disso, se $f(n) = \frac{1}{k}$ para algum $k \in \mathbb{N}$, então

$$f(n-1) = \frac{f(n)}{1 - f(n)} = \frac{\frac{1}{k}}{1 - \frac{1}{k}} = \frac{1}{k-1}.$$

Por recursividade, podemos ver que, se $f(n) = \frac{1}{k}$, então

$$f(n-j) = \frac{1}{k-j}.$$

Aplicando então as igualdades obtidas, com $n=2020,\,k=4040$ e j=2019, obtemos

$$f(1) = f(n-j) = \frac{1}{4040 - 2019} = \frac{1}{2021}.$$

4. Considere a sequência a_n definida por $a_1 = 2$ e para todo $n \in \mathbb{N}$,

$$a_{n+1} = (a_n)^2 + 6a_n + 6.$$

Determine o resto de a_{100} na divisão por 7.

Solução: Determinar o resto da divisão de a_{100} por 7 significa determinar a congruência de a_{100} módulo 7. Sabemos que se $x \equiv r_1 \mod 7$ e $y \equiv r_2 \mod 7$, então

$$(x+y) \equiv (r_1 + r_2) \mod 7$$
 e $(xy) \equiv (r_1 r_2) \mod 7$.

Desta forma,

$$a_1 \equiv 2 \mod 7$$

 $a_2 \equiv (2^2 + 6 \cdot 2 + 6) \equiv 22 \equiv 1 \mod 7$
 $a_3 \equiv (1^2 + 6 \cdot 1 + 6) \equiv 13 \equiv 6 \mod 7$
 $a_4 \equiv (6^2 + 6 \cdot 6 + 6) \equiv 78 \equiv 1 \mod 7$.

A partir daí as equivalências se repetem pois já usamos no processo a equivalência 1 módulo 7. Teremos portanto que $a_n \equiv 1 \mod 7$ quando n é par e $a_n \equiv 6 \mod 7$ quando n é ímpar.

Segue que $a_{100} \equiv 1 \mod 7$, isto é, o resto da divisão de a_{100} por 7 é 1.

5. Considere o número real, escrito em notação decimal,

$$r = 0, 235831...$$

em que, a partir da terceira casa decimal após a vírgula, todo dígito é igual ao resto na divisão por 10 da soma dos dois dígitos anteriores. Podemos afirmar que

Solução: Como cada algarismos de r depende dos dois que o precedem, logo, como dispomos apenas dos algarismos de 1 à 9, temos uma quantidade finita de combinações possíveis e, portanto, r há de começar a se repetir.

Calculando o número r a partir de sua regra obtemos

r = 0,2358314594370774156178538190998752796516730336954932572910112358314...

donde, apartir do par de dígitos "23", ocorre a repetição. Como esse par se situa 60 algarismos após a vírgula, o número $10^60 \cdot r$ é dado por:

 $10^60 \cdot r = 235831459437077415617853819099875279651673033695493257291011, 2358314....$

Assim, ao calcularmos $10^60 \cdot r - r$ nos resulta em:

 $10^60 \cdot r - r = (10^60 - 1) \cdot r = 235831459437077415617853819099875279651673033695493257291011,$ o qual é um número inteiro. \blacksquare

6. Considere a sequência a_n definida por $a_1 = 337$ e, para n > 1,

$$a_n = \frac{n^2}{n^2 + n - 2} a_{n-1}.$$

Determine $\lim_{n\to\infty} (2020+n)a_n$.

Solução: Notemos que

$$a_n = \frac{n^2}{n^2 + n - 2} a_{n-1} = \frac{nn}{(n+2)(n-1)} a_{n-1}$$

para todo n > 1 e assim,

$$a_n = \frac{nn}{(n+2)(n-1)} \cdot \frac{(n-1)(n-1)}{(n+1)(n-2)} \cdot \frac{(n-2)(n-2)}{n(n-3)} \cdot \frac{(n-3)(n-3)}{(n-1)(n-4)} \cdot \frac{(n-4)(n-4)}{(n-2)(n-5)} \cdot \cdot \cdot \cdot \frac{6 \cdot 6}{8 \cdot 5} \cdot \frac{5 \cdot 5}{7 \cdot 4} \cdot \frac{4 \cdot 4}{6 \cdot 3} \cdot \frac{3 \cdot 3}{5 \cdot 2} \cdot \frac{2 \cdot 2}{4 \cdot 1} a_1.$$

Portanto, após as simplificações, obtemos

$$a_n = \frac{n}{(n+2)(n+1)} \cdots 3 \cdot 2a_1.$$

Segue que

$$\lim_{n \to \infty} n a_n = \frac{nn}{(n+2)(n+1)} \cdots 3 \cdot 2a_1 = 6a_1,$$

e

$$\lim_{n \to \infty} 2020a_n = \frac{2020n}{(n+2)(n+1)} \cdots 3 \cdot 2a_1 = 0,$$

e portanto

$$\lim_{n \to \infty} (2020 + n)a_n = 6a_1 = 6 \cdot 337 = 2022.$$

7. Encontre o valor de

$$\int_0^1 \left(\sum_{k=0}^{\infty} (x^{3k+1} - x^{3k+2}) \right) dx.$$

Solução: Primeiro notemos que

$$\sum_{k=0}^{\infty} (x^{3k+1} - x^{3k+2}) = \sum_{k=0}^{\infty} (1-x)x^{3k+1} = (1-x)\sum_{k=0}^{\infty} x^{3k+1}$$

e como $x \in (0,1)$, então a série resultante é uma série geométrica com razão $x^3 \in (0,1)$ e portanto convergente. Mais ainda,

$$\sum_{k=0}^{\infty} (x^{3k+1} - x^{3k+2}) = (1-x)\sum_{k=0}^{\infty} x^{3k+1} = (1-x)\frac{x}{1-x^3} = \frac{x}{1+x+x^2}.$$

Agora resta determinar a integral. Então

$$\int_0^1 \frac{x}{1+x+x^2} dx = \int_0^1 \frac{x}{(\frac{1}{2}+x)^2 + \frac{3}{4}} dx = \frac{4}{3} \int_0^1 \frac{x}{(\frac{1}{\sqrt{3}} + \frac{2}{\sqrt{3}}x)^2 + 1} dx.$$

Fazendo agora a mudança de variáveis $u=\frac{1}{\sqrt{3}}+\frac{2}{\sqrt{3}}x$ temos que $x=\frac{\sqrt{3}u-1}{2}$ e também $\frac{du}{dx}=\frac{2}{\sqrt{3}}$. Então

$$\int_{0}^{1} \frac{x}{1+x+x^{2}} dx = \frac{4}{3} \int_{0}^{1} \frac{x}{(\frac{1}{\sqrt{3}} + \frac{2}{\sqrt{3}}x)^{2} + 1} dx$$

$$= \frac{4}{3} \frac{\sqrt{3}}{2} \int_{0}^{1} \frac{x}{(\frac{1}{\sqrt{3}} + \frac{2}{\sqrt{3}}x)^{2} + 1} \frac{2}{\sqrt{3}} dx$$

$$= \frac{4}{3} \frac{\sqrt{3}}{2} \int_{\frac{1}{\sqrt{3}}}^{\frac{3}{\sqrt{3}}} \frac{\sqrt{3}u - 1}{2(1+u^{2})} du$$

$$= \frac{4}{3} \frac{\sqrt{3}}{2} \frac{1}{2} \int_{\frac{1}{\sqrt{3}}}^{\frac{3}{\sqrt{3}}} \frac{\sqrt{3}u}{(1+u^{2})} - \frac{1}{(1+u^{2})} du$$

$$= \frac{4}{3} \frac{\sqrt{3}}{2} \frac{1}{2} \left[\frac{\sqrt{3}}{2} \ln(1+u^{2}) - \arctan u \right]_{\frac{1}{\sqrt{3}}}^{\frac{3}{\sqrt{3}}}$$

$$= \frac{\sqrt{3}}{3} \left[\frac{\sqrt{3}}{2} \ln(1+u^{2}) - \arctan u \right]_{\frac{\sqrt{3}}{3}}^{\frac{3}{3}}$$

$$= \frac{\sqrt{3}}{3} \left[\frac{\sqrt{3}}{2} \ln(4) - \arctan(\sqrt{3}) - \frac{\sqrt{3}}{2} \ln(\frac{4}{3}) + \arctan(\frac{\sqrt{3}}{3}) \right]$$

$$= \frac{\sqrt{3}}{3} \left[\frac{\sqrt{3}}{2} \ln(3) - \frac{\pi}{3} + \frac{\pi}{6} \right]$$

$$= \frac{1}{2} \ln(3) - \frac{\pi}{6} \frac{\sqrt{3}}{3}$$

$$= \frac{\ln 3}{2} - \frac{\sqrt{3}\pi}{18}.$$

- 8. Calcule $\lim_{x\to\infty} (\operatorname{sen}(\sqrt{x+1}) \operatorname{sen}(\sqrt{x}))$.
- **9.** Em uma moeda viciada, a probabilidade de se obter cara é 1/5. Um jogador lança sucessivamente esta moeda até obter duas caras consecutivas. Qual é o número esperado de tais lançamentos?
- **10.** Seja $f_1(x) = x^2 + 4x + 2$, e para $n \ge 2$, seja $f_n(x)$ a n-ésima composição do polinômio $f_1(x)$ consigo mesmo. Por exemplo,

$$f_2(x) = f_1(f_1(x)) = x^4 + 8x^3 + 24x^2 + 32x + 14.$$

Seja s_n a soma dos coeficientes dos termos de grau par de $f_n(x)$. Por exemplo, $s_2 = 1 + 24 + 14 = 39$. Encontre o valor de s_{2020} .

Solução: Notemos primeiro que como $f_n(x)$ é um polinômio, a soma dos coeficientes pares pode ser obtida por $\frac{f_n(1)+f_n(-1)}{2}$. No caso,

$$s_{2020} = \frac{f_{2020}(1) + f_{2020}(-1)}{2}.$$

Agora vamos determinar $f_{2020}(1)$ e $f_{2020}(-1)$. Notemos que, dado qualquer $n \in \mathbb{N}$, temos que

$$f_1(-1) = -1$$

$$f_2(-1) = f_1(f_1(-1)) = f_1(-1) = -1,$$

$$f_3(-1) = f_1(f_2(-1)) = f_1(-1) = -1,$$

$$\vdots$$

$$f_n(-1) = f_1(f_{n-1}(-1)) = f_1(-1) = -1,$$

e reescrevendo $f_1(x) = x^2 + 4x - 2 = (x+2)^2 - 2$ obtemos

Segue que

$$f_1(1) = 3^2 - 2,$$

$$f_2(1) = f_1(f_1(1)) = f_1(3^2 - 2) = 3^4 - 2,$$

$$f_3(1) = f_1(f_2(1)) = f_1(3^4 - 2) = 3^8 - 2,$$

$$\vdots$$

$$f_n(1) = f_1(f_{n-1}(1)) = f_1(3^{2^{n-1}} - 2) = 3^{2^n} - 2.$$

 $s_{2020} = \frac{f_{2020}(1) + f_{2020}(-1)}{2} = \frac{3^{2^{2020}} - 2 - 1}{2} = \frac{3^{2^{2020}} - 3}{2}.$

11. Considere a curva plana E de equação $y^2 = 4x^3 - 4x^2 + 1$ e a função $T: E \to E$ a seguir. Dado um ponto $P \in E$, seja r a reta tangente a E no ponto P; se r intercepta E em dois pontos, defina $T(P) \in E$ como sendo o ponto de interseção distinto de P, caso contrário defina T(P) = P. Sendo $P_0 = (0,1)$ e $P_{n+1} = T(P_n)$ para $n \ge 0$, então

(a)
$$P_{2021} = (0, -1)$$

(b)
$$P_{2021} = (0,1)$$

(c)
$$P_{2021} = (1,1)$$

(d)
$$P_{2021} = (1/2, \sqrt{2}/2)$$

(e)
$$P_{2021} = (1, -1)$$

12. Encontre o número de inteiros positivos n menores que 2020 tais que o polinômio $(x^4 - 1)^n + (x^2 - x)^n$ seja divisível por $x^5 - 1$.

13. Seja $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ o grupo dos quatérnions, cujo produto (não comutativo) é determinado pelas equações:

$$i^2 = j^2 = k^2 = ijk = -1.$$

Escolhendo-se aleatoriamente e independentemente dois elementos $a, b \in Q_8$ (não necessariamente distintos), qual a probabilidade de que ab = ba?

Solução: Notemos que Q_8 possui 8 elementos e portanto $Q_8 \times Q_8$ possui 64 elementos. Queremos determinar quantos pares $(a, b) \in Q_8 \times Q_8$, dentre os 64, satisfazem ab = ba. A igualdade ab = ba ocorrerá em apenas 2 situações: quando a ou b é real (no caso, igual a ± 1) ou quando $b = \pm a$.

No caso em que a=1 temos 8 pares (1,b) no conjunto $Q_8 \times Q_8$. No caso b=1 temos mais 7 casos a considerar (já contamos (1,1) antes). Para o caso a=-1 temos mais 7 casos a considerar (já contamos (-1,1) antes). Para o caso b=-1 temos mais 6 casos a considerar (já contamos (1,-1) e (-1,-1)). São 28 casos até agora.

Vamos agora contar os casos $b=\pm a$ claramente com $a\neq \pm 1$ pois já foram contados. Para $a=\pm i$ temos 4 casos (i,i), (i,-i), (-i,i) e (-i,-i). Analogamente 4 casos para $a=\pm j$ e 4 casos para $a=\pm k$. São 12 casos aqui e portanto 40 no total.

Logo a probabilidade procurada é $\frac{40}{64} = \frac{5}{8}$.

- **14.** Sobre o número $\theta = \cos(2\pi/11)$, podemos afirmar que
- (a) é raiz do polinômio $8x^3 + 4x^2 4x 1$
- (b) é raiz do polinômio $x^{5} + x^{4} + x^{3} + x^{2} + x + 1$
- (c) é raiz do polinômio $32x^5+16x^4-32x^3-12x^2+6x+1$
- (d) θ não é algébrico
- (e) é raiz do polinômio $32x^5 26x^4 + 11x^3 + 6x^2 1$
- Joãozinho escreveu em seu caderno a expressão

$$\frac{1}{5} + \frac{1}{6} = \frac{1+1}{5+6} = \frac{2}{11}$$

Sua professora disse que a expressão estava errada, ao que Joãozinho retrucou: "Não se estivermos trabalhando no corpo finito \mathbb{F}_p com p elementos." A afirmação de Joãozinho é correta para qual valor de p?

- **16.** Para um inteiro positivo n, considere todas as funções não crescentes $f:\{1,2,\ldots,n\} \to \{1,2,\ldots,n\}$. Algumas delas possuem pontos fixos, i.e., admitem c tal que f(c)=c, enquanto algumas outras não possuem tal propriedade. Determine a diferença entre os tamanhos desses dois conjuntos de funções.
- 17. O valor do limite

$$\lim_{x \to 0} \frac{\operatorname{sen}(\tan x) - \tan(\operatorname{sen} x)}{\operatorname{arcsen}(\arctan x) - \arctan(\operatorname{arcsen} x)}$$

é igual a

Solução: Como estamos mencionando as funções arco seno e arco tangente, vamos considerar os domínios de definição que fazem as funções seno e tangente bijetoras. Consideramos então a função seno que é bijetora de $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ em $\left(-1, 1\right)$ e a função tangente que é bijetora de $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ em \mathbb{R} . Como todas as funções envolvidas no limte são contínuas em x=0, o limite representa uma indeterminação do tipo $\frac{0}{0}$. Usaremos a regra de L'Hôpital. Para isso, colheremos informações sobre as derivadas de todas as funções envolvidas no limite.

Como sen x e $\tan x$ são deriváveis nos seus intervalos de definição, temos da regra da cadeia que $f(x) = \tan(\sin x)$ e $g(x) = \sin(\tan x)$ são deriváveis nos seus intervalos de definição, e além disso,

$$f'(x) = \frac{1}{\cos^2(\sin(x))}\cos(x),$$

e

$$g'(x) = \cos(\tan(x)) \frac{1}{\cos^2(x)}.$$

É claro que f é bijetora e podemos conseguir um intervalo (-a,a) com a>0 de forma que também g seja bijetora. Além disso, $f^{-1}(x)=\arctan(\arccos x)$ e $g^{-1}(x)=\arcsin(\arctan x)$. Como f e g são deriváveis nos seus intervalos de definição com $f'(x)\neq 0$ e $g'(x)\neq 0$, com as respectivas inversas contínuas, então f^{-1} e g^{-1} são deriváveis, e além disso,

$$(f^{-1})'(x) = \frac{1}{f'(x)}$$
 e $(g^{-1})'(x) = \frac{1}{g'(x)} = 1.$

Portanto

$$\lim_{x \to 0} \frac{\operatorname{sen}(\tan x) - \tan(\operatorname{sen} x)}{\operatorname{arcsen}(\arctan x) - \arctan(\operatorname{arcsen} x)} = \lim_{x \to 0} \frac{g(x) - f(x)}{f^{-1}(x) - g^{-1}(x)}$$

$$= \lim_{x \to 0} \frac{(g(x) - f(x))'}{(f^{-1}(x) - g^{-1}(x))'}$$

$$= \lim_{x \to 0} \frac{g'(x) - f'(x)}{(f^{-1})'(x) - (g^{-1})'(x)}$$

$$= \lim_{x \to 0} \frac{g'(x) - f'(x)}{\frac{1}{f'(x)} - \frac{1}{g'(x)}}$$

$$= \lim_{x \to 0} \frac{g'(x) - f'(x)}{\frac{g'(x) - f'(x)}{f'(x)g'(x)}}$$

$$= \lim_{x \to 0} f'(x)g'(x) = f'(0)g'(0) = 1.$$

18. Tardigrados, também conhecidos como ursos d'água, são os únicos animais nativos do planeta Terra capazes de sobreviver às condições do espaço extraterrestre sem a ajuda de equipamentos de que se tem conhecimento (para saber mais, veja por exemplo o artigo na Wikipedia). Neste exercício, um tardigrado anda no plano \mathbb{R}^2 , saindo da origem (0,0) e andando 1 unidade até (1,0); em seguida, ele vira para a esquerda 80° e anda mais 1/2 unidade até $\left(1 + \frac{\cos 80^{\circ}}{2}, \frac{\sin 80^{\circ}}{2}\right)$; em seguida, vira novamente para a esquerda 80° e anda mais 1/4 unidade; em seguida, vira para a esquerda 80° novamente e anda mais 1/8 unidade e assim por diante, sempre virando à esquerda 80° e andando metade da distância que andou na vez anterior. Eventualmente ele convergirá a um ponto. Qual?

$$\lim_{n \to \infty} \frac{\left(\sum_{k=1}^{n} \frac{1}{k^{1/k}}\right)}{n}$$

é dado por:

20. Para cada inteiro positivo n, seja

$$I_n = \frac{1}{2} \int_{-\pi/2}^{\pi/2} \sin(2nx) \tan(x) dx.$$

21. Considere o conjunto de matrizes reais 3×3 dado por

$$T = \left\{ A \in M_3(\mathbb{R}) | A^t J A = J \right\}$$

em que A^t denota a transposta de A e J é a matriz

$$J = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array}\right).$$

Se v é o vetor $v=(1,0,0)\in\mathbb{R}^3$, visto como vetor coluna, qual dos seguintes itens descreve o subconjunto $\{A\cdot v\in\mathbb{R}^3|A\in T\}$ de \mathbb{R}^3 ?

- (a) o hiperboloide $x^2 + y^2 z^2 = 1$
- (b) a esfera $x^2 + y^2 + z^2 = 1$
- (c) o cilindro $x^2 + y^2 = 1$
- (d) o elipsoide $x^2 + 2y^2 + 2z^2 = 1$
- (e) o hiperboloide $x^2 2y^2 z^2 = 1$

22. Uma cônica é uma curva em \mathbb{R}^2 da forma

$$\{(x,y) \in \mathbb{R}^2 | ax^2 + bxy + cy^2 + dx + ey + f = 0\}$$

onde a, b, c, d, e, f não são todos nulos (alguns de seus exemplos são elipses, hipérboles e parábolas). São fixados três pontos distintos no plano e duas retas não coincidentes. Quantas cônicas, no máximo, contêm os três pontos e são tangentes às duas retas?

- **23.** Qual é o menor grau de um polinômio p(x), mônico e de coeficientes inteiros, de modo que p(n) seja múltiplo de 2021 para todo inteiro positivo n?
- **24.** A quantidade de soluções da equação $y^2=x^3$ (uma curva elíptica singular) em $\mathbb{Z}/57\mathbb{Z}$ é igual a:
- **25.** Considere a transformação linear $T:\mathbb{C}^3\to\mathbb{C}^3$ dada na base standard pela matriz

$$\begin{pmatrix}
1/10 & 71/10 & -29/10 \\
3/2 & -1/2 & 3/2 \\
7/5 & -18/5 & 22/5
\end{pmatrix}$$

cujo polinômio característico é $p(x)=(x-3)^2(x+2)$. Seja $V=\{\mathbf{v}\in\mathbb{C}^3|T\mathbf{v}=-2\mathbf{v}\}$ o autoespaço associado ao autovalor -2. Qual das seguintes transformações lineares $\pi:\mathbb{C}^3\to\mathbb{C}^3$ é uma projeção sobre V (ou seja, $\pi(\mathbb{C}^3)=V$ e $\pi^2=\pi$)? Aqui, $I:\mathbb{C}^3\to\mathbb{C}^3$ denota a identidade.