PCT/DE98/02621

1

CONDUCTINPROTEIN UND VERWANDTES MITTEL ZUR DIAGNOSE UND ZUR THERAPIE VON TUMORERKRANKUNGEN

Beschreibung

Bekämpfung zur von Wege betrifft neue Die Erfindung molekularbiologischer Ausnutzung Tumorerkrankungen durch Zusammenhänge bei der Tumorentstehung. Sie betrifft im einzelnen Diagnose von Tumorerkrankungen, ein Mittel zur aufbauend ein Mittel zur Therapie. Sie betrifft ferner das neue Protein Conductin, seine Mutanten und Varianten sowie Teile davon, die dazu analogen cDNA-Sequenzen und deren Verwendung in gentherapeutischen und pharmakologischen Verfahren. Anwendungsgebiete der Erfindung sind die Medizin und die pharmazeutische Industrie.

Cadherine und Catenine bilden Zelladhäsionskomplexe, zahlreichen Geweben für die Anheftung der Zellen aneinander verantwortlich sind. Die Cadherine sind Transmembranproteine und stellen den direkten Kontakt zwischen benachbarten Zellen her. - α , β - und γ -Catenin sind zytoplasmatische Komponenten, die die dem Aktin-Zytoskelett verbinden. Neben der Cadherine mit haben Catenine auch eine bei der Zelladhäsion Funktion entscheidende Rolle bei Signaltransduktionsprozessen. b-Catenin in Vertebraten und das homologe Segmentpolaritäts-Genprodukt Armadillo in Drosphila werden durch den Wnt/Wingless-Signalweg stabilisiert (Nusse, R., Cell 89, 321-323, 1997). Dies führt zu zytoplasmatischen, nicht Cadherin einer Erhöhung der an gebundenen Fraktion dieser Proteine, die daraufhin mit HMG-LEF-1/TCF-Familie wechselwirken Transkriptionsfaktoren der können. Als Resultat wird ß-Catenin/Armadillo in den Zellkern transportiert, wo es zusammen mit den LEF/TCF-Proteinen an DNA bindet und bestimmte Gene aktiviert (Behrens, J. et. al., Nature 382, 638-642, 1996).

Dies r Signalweg spielt auch eine Rolle bei der Tumorentstehung. In Kolonepithelzellen wird der zytoplasmatische Pool von 8-

PCT/DE98/02621

2

Catenin durch das Tumorsuppressor-Genprodukt APC (Adenomatosis Polyposis Coli) streng reguliert. Mutationen von APC, wie sie in etwa 80% aller Kolonkarzinome auftreten, führen zu verkürzten Formen des APC Proteins, die nicht mehr in der Lage sind ß-Catenin zu destabilisieren. Dadurch findet man in diesen Tumoren permanente Komplexe von B-Catenin mit dem HMG-Transkriptions-Transformation der Zellen die faktor TCF-4, welche für verantwortlich gemacht werden. Diese Theorie wird gestützt durch den kürzlichen Befund, daß in Tumoren, in denen APC nicht verändert ist, Mutationen von B-Catenin auftreten. Diese führen ebenfalls zur zytoplasmatischen Stabilisierung von ß-Catenin und zur Assoziation mit LEF-1/TCF-Faktoren (Morin, P.J. et. al., Science 275, 1787-1790).

Die Erfindung hat das Ziel, einen neuen Weg zur Verhinderung der Tumorentstehung zu finden. Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Kontrolle der Regulation von ß-Catenin in Körperzellen zu entwickeln.

Gegenstand der Erfindung ist ein neues Protein, welches an ß-Catenin bindet und zu dessem zytoplasmatischen Abbau führt. Dieses Protein hat die Aminosäuresequenz gemäß Abb. 1 und wurde als CONDUCTIN bezeichnet.

Das Erfindung beruht nun auf der eigenen Erkenntnis, daß Conductin über eine B-Catenin-Bindungsdomäne an B-Catenin, über eine GSK 3ß-Bindungsdomäne an GSK 3ß und über eine sogenannte RGS-Domäne (Regulator of G-Protein Signalling) an APC-Fragmente bindet. Dadurch kommt es zum zytoplasmatischen Abbau von B-Catenin und in Vertebraten zur Blockade des Wnt/Wingless-Signalwegs. Damit ist klar, daß Conductin ein wichtiger Regulator der B-Catenin-Funktion ist und im Zusammenspiel mit APC zur Tumorsuppression beiträgt.

Davon abgeleitet betrifft die Erfindung ein Mittel zur Diagnose von Tumorerkrankungen, welches dadurch gekennzeichnet ist, daß das Vorhandensein und die Menge von Conductin, seiner Mutanten und Varianten oder seiner Teile in Körperzellen nachgewiesen WO 99/11780 PCT/DE98/02621

3

wird. Dieser Nachweis kann auf der Proteinebene mit spezifischen Antikörpern durchgeführt werden, speziell mit monoklonalen Antikörpern.

Die Diagnose von Tumorerkrankungen kann gemäß der Erfindung auch auf der Genebene erfolgen. Dazu werden mit ausgewählten Primern und cDNA-Sonden, die aus der Gensequenz des Conductins abgeleitet sind,

- das Gen, das für Conductin, seine Mutanten und Varianten oder Teile davon kodiert, bzw.
- mRNA-Sequenzen, die von diesen Genen abgelesen werden, nachgewiesen.

Das erfindungsgemäße Mittel zur Therapie von Tumorerkrankungen enthält Substanzen, die die Wirkung des Conductins im Körper aktivieren/reaktivieren. Das sind vor allem Mittel, die den Genpromoter des Conductins aktivieren bzw. Mittel, die die Stabilität der von den Conductin-Genen abgeleiteten m-RNA-Sequenzen erhöht. Das Hauptziel aller dieser Mittel besteht erfindungsgemäß darin, die Aktivität des Conductins in den Körperzellen zu erhöhen. Dazu kommen u. a. kleinmolekulare Substanzen in Betracht, die z. B. durch High-Througput-Number-Screening gefunden werden.

Die Erfindung umfaßt auch gentherapeutische Mittel, enthaltend Gene, die für Conductin, seine Mutanten und Varianten oder Teile davon kodieren, bzw. mRNA-Sequenzen, die von diesen Genen abgelesen werden.

Unter Schutz gestellt wird ferner das neue Protein Conductin gemäß Abb. 1 - SEQ ID No. 1, seine Mutanten und Varianten sowie Teile davon. Besonders bevorzugte Teilsequenzen Aminosauren 78-200 (RGS) - SEQ ID No. 2, 343-396 (GSK 38-Bindungsdomäne) SEO ID. No. 397-465 3, (B-Catenin-Bindungsdomäne) - SEQ ID No. (Dishevelled 4 und 783-833 Homologie-Region) - SEQ ID No. 5. Zum Schutzumfang gehören auch Teilsequenzen des Adenomatosis Poliposis Coli (APC),

PCT/DE98/02621

4

gekennzeichnet durch die Aminosäuresequenzen 1464-1604, 1516-1595, 1690-1778 und 1995-2083 als RGS-Domänen-Interaktionsorte.

Gleichermaßen beansprucht werden die analogen cDNA-Sequenzen, insbesondere die volle cDNA-Sequenz des Conductins (Basenpaare 1-2825) gemäß Abb. 2 - SEQ ID No. 6 sowie die Teilsequenzen des Conductins der Nukleotidfolge 446-814 (RGS-Genabschnitt) - SEQ ID No. 7, der Nukleotidfolge 1241-1402 (Genabschnitt der GSK 3ß-Bindungsdomäne) - SEQ ID No. 8, 1403-1609 (Genabschnitt der ß-Catenin-Bindungsdomäne) - SEQ ID No. 9 und der Nukleotidfolge 2561-2713 (Genabschnitt der Dishevelled Homologie-Region) - SEQ ID No. 10.

Die Erfindung wird durch die folgenden Ausführungsbeispiele näher erläutert.

Conductin wurde durch einen Hefe 2-Hybrid Screen als B-Catenin-Interaktionspartner identifiziert. Die vollständige cDNA-Sequenz wurde daraufhin isoliert und sequenziert. Die abgeleitete Aminosauresequenz von Conduction ist in Abb. 1 gezeigt, die 2 und die Gegenüberstellung von Nukleotidsequenz in Abb. Aminosäure- und Nukleotidsequenz in Abb. 3. Conductin besteht aus 840 Aminosäuren und hat ein Molekulargewicht von 92,8 kDa. Durch Sequenzvergleiche wurde im Conductin eine RGS-Domäne (Aminosäuren 78-200) und eine zu dem Protein Dishevelled verwandte Domâne (Aminosäuren 783-833, Dishevelled Homologie-Region) identifiziert (Abb. 1-3). Die GSK 3β- und β-Catenin-Bindungsdomänen (Aminosäuren 343-396 bzw. 397-465) wurden durch Interaktionsstudien im 2-Hybrid-System entdeckt (Abb. 4). zeigte sich, daß diese Domänen ausreichend und notwendig für die Bindung an GSK 3B bzw. B-Catenin sind (Abb. 4), wohingegen die RGS- und Dishevelled Homologie-Region nicht beteiligt sind. Die Wechselwirkung von Conductin mit GSK 3B bzw. B-Catenin wurd auch in Co-Immunpräzipitationsexperimenten biochemisch bewiesen.

Die Wirkung von Conductin auf B-Catenin wurde in SW480 Zellen untersucht. In diesen Zellen ist das Tumor-Suppressor-Genprodukt

PCT/DE98/02621

5

DR BAUMBACH

APC mutiert, wodurch es zu einem Anstieg des cytoplasmatischen und vor allem nukleären Gehalts von ß-Catenin kommt. Einbringung von Conductin in diese Zellen führt zu einem drastischen Abbau von 8-Catenin, wodurch die Zelle cytoplasmatischem und im Zellkern befindlichen **B-Catenin** depletiert wird (Abb. 4). Diese Wirkung auf den Gehalt von B-Catenin ist gleich stark wie die von nichtmutiertem APC, woraus geschlossen werden kann, daß Conductin ebenfalls Tumorsuppressor durch Regulation von B-Catenin wirkt. Es wurde außerdem gezeigt, daß Conductin den Wnt/Wingless-Signalweg auch in Xenopus-Embryonen durch seine Wirkung auf ß-Catenin hemmt.

Es wurde außerdem festgestellt, daß Conductin mit APC direkt interagiert. APC-Fragmente von Aminosäure 1464-1604, 1516-1595, 1690-1778 und 1995-2083 wurden als Interaktionsstellen für Conductin identifiziert. In Conductin erfolgt die Bindung an APC die RGS-Domäne; dieser Bereich ist ausreichend notwendig für die Interaktion. Die anderen Domänen in Conductin sind nicht beteiligt (Abb. 4).

PCT/DE98/02621

б

Legende zu den Abbildungen:

Abb. 1

Aminosäuresequenz von Conductin

Die Conductin cDNA kodiert ein Protein von 840 Aminosäuren mit einem berechneten Molekulargewicht von 92,8 kDa. Die RGS-Domäne (doppelt unterstrichen), die ß-Catenin-Bindungsdomäne (einfach unterstrichen) und die Dishevelled Homologie-Region sind durch Fettdruck hervorgehoben.

Abb. 2

Nukleotidsequenz von Conductin von Position 1-2825

Die Sequenzbereiche sind analog zu Abb.1 markiert.

Abb. 3

Gegenüberstellung von Aminosäure- und Nukleotidsequenz von Conductin

Abb, 4

Analyse der Interaktion von Conductin und seinen Teilen mit 8-Catenin, APC und GSK 3B

und abgeleitete Teilstücke Conductin Protein Das die RGS-Domäne schematisch dargestellt. Hervorgehoben sind (RGS), die GSK 3B-Bindungsdomäne (GSK BD) und die B-Catenin-Bindungsstelle (8-BD). Die Interaktion mit 8-Catenin mit den APC Fragmenten von Aminosaure 1464-1604 (APCfr.1) und 1516-1595 (APCfr. 2) und GSK 3B wurde im Hefe 2-Hybrid Assay untersucht und als B-Galaktosidase Einheiten quantifiziert. Man erkennt, daß die Bindung an B-Catenin auf die B-Catenin-Bindungsstelle beschränkt ist, die anderen Teile des Prot ins tragen dazu nicht bei. Die Analyse zeigt außerdem die ausschließliche Interaktion der RGS-Domäne Conductin. von APC mit von Vergleichbare Ergebnisse für die Bindung an die RGS-Domäne wurden mit APC Fragmenten von Aminosäure 1690-1778 und 1995-2083 erhalten. Der

PCT/DE98/02621

7

Abbau von B-Catenin in SW480 Zellen durch Conductin wurde nach transienter Expression der angegebenen Proteine und Immunfluoreszenz-Färbung von B-Catenin analysiert. Nur Teilstücke von Conductin, die an B-Catenin binden, führen zu dessen Abbau. Die Analyse zeigt schließlich die Bindung von GSK 3B an die GSK 3B-Bindungsdomäne von Conductin.

(Me lacex peuplas)

8

Patentansprüche

- 1. Mittel zur Diagnose von Tumoren, enthaltend eine Substanz, mit der
- Conductin gemäß Abb. 1 oder Teile davon bzw.
- Gene, die für Conductin oder Teile davon kodieren, bzw.
- m-RNA-Sequenzen, die von diesen Genen abgelesen werden, nachgewiesen werden.
- 2. Mittel zur Diagnose von Tumoren nach Anspruch 1, enthaltend spezifische Antikörper gegen Conductin oder Teile davon.
- 3. Mittel zur Diagnose von Tumoren nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die spezifischen Antikörper monoklonale Antikörper sind.
- 4. Mittel zur Diagnose von Tumoren nach Anspruch 1, enthaltend korrespondierende Oligonukleotid-Primer bzw. DNA-Sonden zum Nachweis der Gene und deren Mutationen.
- 5. Mittel zur Diagnose von Tumoren nach Anspruch 1, enthaltend korrespondierende Oligonukleotid-Primer bzw. DNA-Sonden zum Nachweis der RNA-Sequenzen.
- 6. Mittel zur Therapie von Tumoren, enthaltend eine Substanz, die die Wirkung des Conductins im Körper aktiviert/reaktiviert.
- 7. Mittel nach Anspruch 6, enthaltend eine Substanz, die den Genpromoter des Conductins aktiviert.
- 8. Mittel nach Anspruch 6, nthaltend ine Substanz, die die Stabilität der mRNA-Sequenzen erhöht.
- 9. Mittel nach Anspruch 6, enthaltend eine Substanz, die die Aktivität des Conductins erhöht.

- 10. Conductin, gekennzeichnet durch die Aminosäuresequenz 1-840 gemäß Abb. 1 (SEQ ID No. 1), wobei Abb. 1 Bestandteil dieses Anspruchs ist.
- 11. Teilsequenz des Conductins nach Anspruch 10, gekennzeichnet durch die Aminosäuresequenz 78-200 (RGS-Domäne) der Abb. 1 (SEQ ID No. 2).
- 12. Teilsequenz des Conductins nach Anspruch 10, gekennzeichnet durch die Aminosäuresequenz 343-396 (GSK 3B) der Abb. 1 (SEQ ID No. 3).
- 13. Teilsequenz des Conductins nach Anspruch 10, gekennzeichnet durch die Aminosäuresequenz 397-465 (B-Catenin-Bindungsdomäne) der Abb. 1 (SEQ ID No. 4).
- 14. Teilsequenz des Conductins nach Anspruch 10, gekennzeichnet durch die Aminosäuresequenz 783-833 (Dishevelled Homologie-Region) der Abb. 1 (SEQ ID No 5).
- 15. Teilsequenzen des Adenomatosis Poliposis Coli (APC), gekennzeichnet durch die Aminosäuresequenzen 1464-1604, 1516-1595, 1690-1778 und 1995-2083 als RGS-Domänen-Interaktionsorte.
- 16. cDNA-Sequenz des Conductins der Nukleotidfolge 1-2825 der Abb. 2 (SEQ ID No. 6), wobei Abb. 2 Bestandteil dieses Anspruchs ist.
- 17. cDNA-Teilsequenz des Conductins der Nukleotidfolge 446-814 (RGS-Genabschnitt) der Abb. 2 (SEQ ID No. 7).
- 18. cDNA-Teilsequ nz des Conductins der Nukleotidfolge 1241-1402 (Genabschnitt der GSK 3ß-Bindungsdomäne) der Abb. 2 (SEQ ID No. 8).

coscy, a cosco

s.

10

- 19. cDNA-Teilsequenz des Conductins der Nukleotidfolge 1403-1609 (Genabschnitt der β-Catenin-Bindungsdomäne) der Abb. 2 (SEQ ID No. 9).
- 20. cDNA-Teilsequenz des Conductins der Nukleotidfolge 2561-2713 (Genabschnitt der Dishevelled Homologie-Region) der Abb. 2 (SEQ ID No. 10).
- 21. Verwendung des Conductin-Gens für die Gentherapie von Tumorerkrankungen, dadurch gekennzeichnet, daß ein Vektor mit dem Conductin-Gen konstruiert wird, anschließend ein Gentransfer in den menschlichen Körper erfolgt und damit die Aktivität des Conductins in Körperzellen wiederhergestellt wird.