Focused Hierarchical RNNs

Karol Kaczmarek

Adam Mickiewicz University Poznań

> Applica.ai Warsaw

> > 2018

Ideas

- reading a Wikipedia article and trying to identify information that is relevant to answering a question
 - before one knows what the question is
 - where context or question is given before reading the article

Architecture

- Focused Hierarchical RNNs for Conditional Sequence Processing [1]
 - focused hierarchical encoder (FHE)
 - decoder
- ► Focused Hierarchical Encoder = two-layer LSTM
 - lower layer operates at the input token level
 - upper layer focuses on tokens relevant to the context
 - conditional boundary gate to decide, depending on the context or question whether it is useful to update the upper-level LSTM

Focused Hierarchical Encoder - visualization

- ► lower layer LSTM processes each step
- for each token, the boundary gate decides (based on the current lower layer LSTM state and question embedding) if information should be stored in the upper level
- higher layer LSTM states update only when the corresponding gate is open

Lower-level Layer

- sequence of input tokens $P = (x_1, ..., x_n)$
- ► LSTM hidden state h_t^l
- ▶ LSTM cell state c_t^l
- **▶** time *t*
- may be also augmented with other available information (question encoding)

Conditional Boundary Gate

- decides if information at the current time step should be stored in the upper-level representation
- question is essential in deciding how to represent the passage
- question embedding q
- ▶ output of the boundary gate is a scalar $b_t \in (0,1)$ that is taken to be the parameter of a Bernoulli distribution $b_t \sim \text{Bernoulli}(b_t)$
- ▶ time t

Conditional Boundary Gate

- ▶ in the simplest case, the boundary gate forward pass is formulated as $\tilde{b}_t = \sigma(w_b^{\top} \mathsf{LReLU}(W_b z_t + b_b))$
- ► trainable weights W_b, b_b, w_b
- $\blacktriangleright \ \ \text{leaky ReLU LReLU}(x) = \left\{ \begin{array}{ll} x & \text{if } x > 0 \\ 0.01x & \text{otherwise} \end{array} \right.$
- ▶ input $z_t = [q \odot h_t^l, h_t^l, q]$
- ► element-wise product ⊙
- ▶ lower-layer hidden states h_t^l
- ▶ question embedding q

Upper-level Layer

- $\blacktriangleright \ \tilde{h}^u_t, \tilde{c}^u_t = \mathsf{LSTM}(h^l_t, h^u_{t-1}, c^u_{t-1})$
- ▶ $b_t \sim \mathsf{Bernoulli}(b_t)$
- $h_t^u = \tilde{b}_t \tilde{h}_t^u + (1 \tilde{b}_t) h_{t-1}^u$
- ► LSTM hidden state h_t^u
- ▶ LSTM cell state c_t^u
- **▶** time *t*

Baseline

- ► LSTM1 (1-layer LSTM) equivalent to FHE with the always closed ($b_t = 0$ for each t)
- ▶ LSTM2 (2-layer LSTM) equivalent to FHE with the boundary gate fully open ($b_t = 1$ for each t)

Picking task

- given a sequence of randomly generated digits of length n
- ▶ the goal is to determine the most frequent digit within the first k digits ($k \le n$)
- ▶ where value *k* is the question
- ▶ tested for $n \in \{100, 200, 400\}$

Picking task - examples

Input	TARGET		
SEQUENCE	K	Mode	
random examples			
805602017082838371701316304473	10	0	
6387332908 903966902559 3 7986485	23	3	
<u>16455193757937389681398112</u> 5982	26	1	
malicious examples			
666 33366628888288881999999999	6	6	
666 333 666 28888288881999999999	10	6	
6663336662 888828888 1999999999	20	8	
<u>66633366628888288881</u> 999999999 0	30	9	

Picking task - hyper-parameters

- \blacktriangleright hidden = 128, learning rates = 0.0001, Adam optimizer
- ▶ fix hyper-parameters to a small value (for examples $\beta=0.1$ and $\gamma=0.25$) gates can almost freely open
 - once the desired accuracy has been reached, enforce constraints on our hyper-parameters
 - provides a level of control over the accuracy-sparsity tradeoff
 - ▶ this approach with the requirement of achieving a desired accuracy $a \in \{80\%, 90\%, 95\%, 98\%\}$, called: FHE80, FHE90, FHE95, FHE98
- fix hyper-parameters more restricted than previous (for examples $\beta=1$ and $\gamma=0.1$), called FHE-fixed

Picking task - results

LENGTH	LSTM1	LSTM2	FHE-FIXED
100	99.4	99.7	99.5
200	97.0	99.2	99.4
400	92.9	97.5	96.9

LENGTH	FHE80	FHE90	FHE95	FHE98
100	93.4	94.2	96.6	98.7
200	92.3	92.4	93.6	93.6
400	87.2	90.5	90.0	91.0

Picking task - test for longer sequence length

- ightharpoonup models trained on short sequences (n = 200)
- evaluated on longer sequences and $k \le 200$

LENGTH	LSTM1	LSTM2	FHE-FIXED
200	97.1	99.2	99.4
400	55.9	61.4	97.6
800	39.6	39.7	95.6
1600	29.5	28.6	93.3
10000	18.5	14.8	66.8

Pixel-by-Pixel MNIST QA task

- adapt the Pixel-by-Pixel MNIST classification task to the question and answering setting
- encoder reads in MNIST digits one pixel at a time
- question asked is whether the image is a specific digit and the answer is either True or False

LSTM1	LSTM2	FHE-FIXED
97.3	98.4	99.1

Pixel-by-Pixel MNIST QA task

- model learns to open the boundary gate almost always around the digit
- ▶ gates do not depend on the question

Natural Language QA Tasks

- using the MS MARCO and SearchQA datasets and tasks
- use a bidirectional LSTM for question
- ▶ hidden = 300, learning rate = 0.001, Adam optimizer
- ▶ to avoid large-vocabulary issues, use the pointer softmax
 - ▶ distribution over a shortlist of words (100, 10000 most frequent words for SearchQA or MS MARCO tasks) - o_i
 - ightharpoonup distribution over words in the document x_j
 - ightharpoonup variable z_j determines how to interpolate between the indices in the document and the shortlist words
 - $P_j = [z_j o_j; (1 z_j) \alpha_j]$

SearchQA Question and Answering Task

- large scale QA dataset in the form of Question-Context-Answer
- question-answer pairs are real Jeopardy! (crawled from J!Archive)
- contexts are text snippets retrieved by Google
- use F1 scores for multi-word answers
- use Exact Match (EM) for single word answers

SearchQA Question and Answering Task - results

Models	VALIDATION		TEST	
MODELS	F1	\mathbf{EM}	F1	\mathbf{EM}
TF-IDF MAX (DUNN ET AL., 2017)	-	13.0	-	12.7
ASR (DUNN ET AL., 2017)	24.1	43.9	22.8	41.3
AQA (BUCK ET AL., 2018)	47.7	40.5	45.6	38.7
Human (Dunn et al., 2017)	-	-	43.9	-
LSTM1 + POINTER SOFTMAX	52.8	41.9	48.7	39.7
LSTM2 + POINTER SOFTMAX	55.3	44.7	51.9	41.7
OUR MODEL	56.7	49.6	53.4	46.8
CONCURRENT WORK				
AMANDA (Kundu & NG. 2018)	57.7	48.6	56.6	46.8

MS MARCO Question and Answering Task

- one of the largest publicly available QA datasets
- example in the dataset consists of a query
- several context passages retrieved by the Bing search engine
- several human generated answers (synthesized from the given contexts)
- contains many rare words, with around 90% of words appealing less than 20 times in the dataset

MS MARCO Question and Answering Task

- span-based
 - state of the art according to Bleu-1 and Rouge scores
 - trained using "gold-spans", obtained by a preprocessing step which selects the passage in the document maximizing the Bleu-1 score with the answer
 - they cannot answer questions where the answer is not contained in the passage
- generative systems
 - synthesize a novel answer for the given question
 - could learn a disentangled representation, and therefore generalize better

MS MARCO Question and Answering Task - span-based systems

- state of the art according to Bleu-1 and Rouge scores
- trained using "gold-spans", obtained by a preprocessing step which selects the passage in the document maximizing the Bleu-1 score with the answer
- they cannot answer questions where the answer is not contained in the passage

MS MARCO Question and Answering Task - results

GENERATIVE MODELS	VALIDATION		TEST	
GENERATIVE MODELS	BLEU-1	ROUGE-L	BLEU-1	ROUGE-L
SEQ-TO-SEQ (NGUYEN ET AL. 2016)	-	8.9	-	-
MEMORY NETWORK (NGUYEN ET AL., 2016)	-	11.9	-	-
ATTENTION MODEL (HIGGINS & NHO 2017)	9.3	12.8	-	-
LSTM1 + POINTER SOFTMAX	24.8	26.5	28	28
LSTM2 + POINTER SOFTMAX	24.3	23.3	27	28
OUR MODEL	27.3	26.7	30	30
ABLATION STUDY				
OUR MODEL - DOT-PRODUCT BETWEEN QUESTION AND CONTEXT	18.5	19.3	-	-
OUR MODEL - POINTER SOFTMAX		18.7	-	-
OUR MODEL – LEARNED BOUNDARIES	23.5	24	-	-

References I

[1] N. R. Ke, K. Żołna, A. Sordoni, and et al, "Focused hierarchical rnns for conditional sequence processing," 2018.