Homework 1

CSCI 3302:: Introduction to Robotics

1. What are the degrees of freedom of a standard, four-wheel, hand-pushed lawnmower like the one pictured? Why are you still able to mow an entire lawn?

- 2. What are the maximum degrees of freedom for objects driving on the X-Y plane?
- 3. (a) Calculate the angle between vectors $(\cos 45, -\sin 45, 0)^T$ and $(\sin 45, \cos 45, 0)^T$.
 - (b) Provide a third vector that forms a coordinate system with the other two.
- 4. (a) Write out the entries of a rotation matrix ${}^A_B R$ assuming basis vectors X_A , Y_A , Z_A , and X_B , Y_B , Z_B .
 - (b) Express $X^B = [0, 1, 0]^T$ in frame {A}.
 - (c) Write out the entries of rotation matrix ${}^{B}_{A}R$.
- 5. Consider a tricycle with two independent standard wheels in the rear and a steerable, actuated front-wheel. Assume r to be the radius of the front wheel and l to be the distance between the front and rear axle. Chose a suitable coordinate system and use ϕ as the steering wheel angle and $\dot{\omega}$ as angular velocity (only the front-wheel is driven). Provide the forward kinematics of the mechanism.

6. A robot using a local coordinate frame *B* detects an object Q at position (8, -4). In coordinate frame A, the robot shows odometry readings of (6, 10, 135). Using a homogenous transform, find the position of Q in coordinate frame A.

