HPMC: High-Performance MNIST Classification

1. 개요

HPMC는 PyTorch 대비 **최대 8배 빠른 학습 속도**를 달성한 C++ CUDA 기반 MLP 구현 프로젝트입니다. cuBLAS 나 cutlass 와 같은 고수준 라이브러리 없이 End-to-End 학습 파이프라인을 직접 구현하였으며, Kernel Fusion, Shared memory tiling GEMM 등 다양한 CUDA 최적화 전략을 적용하였습니다. 프로젝트의 자세한 사항은 여기에서 확인하실 수 있습니다.

2. 문제 정의 및 동기

최근 GPT, LLaMA, Claude 등 LLM이 NLP(Natural Language Processing) 분야에서 혁신적인 성과를 보이고 있습니다. 이러한 모델들은 텍스트 생성, 번역, 요약, 질문 답변 등 다양한 태스크에서 인간에 준하거나 때로는 그를 뛰어넘는 성능을 보여주고 있습니다. 그러나 이러한 뛰어난 성능의 이면에는 모델의 거대한 크기와 복잡성으로 인한 실용적인 문제가 존재합니다. 특히, 실제 서비스에 적용할 때 요구되는 높은 컴퓨팅 자원과 지연 시간(Latency)은 LLM을 산업 현장에서 활용하는 데 Bottleneck이 되고 있습니다.

마찬가지로, DALL-E와 같은 이미지 생성 모델에서도 inference의 시간이 매우 길어 불편했던 경험이 있으실 것으로 생각됩니다. 이러한 시대적 흐름 속에서, ML System에 대한 저수준 최적화의 이해와 적용 능력은 점점 더 중요해지고 있습니다.

본 프로젝트에서는 MLP (Multi-Layer Perceptron)를 CUDA로 밑바닥부터 직접 구현하고 분석함으로써, ML System 최적화에 대한 High-level overview를 얻고자 하였습니다. 특히, 제가 했던 것처럼 약간의 최적화를 통해 PyTorch 대비 정확성을 유지하면서도 월등히 빠른 학습속도를 보인다는 점에서, CUDA를 처음 접하는 학습자에게도 실용적인 학습자료가 될 수 있다고 생각합니다.

3. 접근 방식 및 해결 전략

1) 초기

- PyTorch baseline Implementation
- CUDA 포팅: Dataloader 및 forward, relu, softmax, backward 등 각각 별도 Kernel 구현하여 End-to-End 학습
- 모델 구조: 784 (Input) → 320 (1st hidden layer) → 160 (2nd hidden layer) → 10 (Class)
- batch_size = 64, lr = 0.03, Optimizer = SGD
- Tensor Shape 및 수식 명시적으로 계산하여 backward kernel 디자인

2) 중기

- forward + relu , forward + softmax 커널 퓨전 적용: 1) 대비 training 4-5x speedup
- Bottleneck을 찾기 위해 Kernel execution latency 정보를 출력하는 Profiling 사용의 필요성을 느낌
 - 기존 nvprof 는 deprecated, ncu (Nsight Compute) 는 과다한 GPU metric 제공
 - CUDA Event 기반 Custom Profiler 직접 구현

Kernel Name	Time(%)	Time	Calls	Avg	Min
forward_relu1	18.05%	1199.89	28110	0.042685	0.038912
update_layer3	17.52%	1164.62	28110	0.041431	0.038592
backward2	13.55%	900.62	28110	0.032039	0.012096
update_layer2	12.27%	815.68	28110	0.029017	0.011264
forward_softmax	9.49%	631.25	28110	0.022456	0.020480
cross_entropy_backwards	7.76%	515.94	28110	0.018354	0.003072
forward_relu2	5.83%	387.84	28110	0.013797	0.011264
update_layer1	3.41%	226.59	28110	0.008061	0.004096
cross_entropy	3.09%	205.59	28110	0.007314	0.003072
backward1	3.04%	202.21	28110	0.007194	0.003712
forward_relu3	2.96%	196.92	4680	0.042077	0.038912
forward_softmax5	1.57%	104.72	4680	0.022375	0.020480
forward_relu4	0.94%	62.39	4680	0.013332	0.011232
cross_entropy2	0.46%	30.83	4680	0.006587	0.003904
init_weight	0.10%	6.83	3	2.277035	0.093184
init_bias	0.00%	0.08	3	0.025120	0.005792

○ 원본 코드에 대해 매번 Kernel을 Timer로 Wrap하고, header를 include 후 Global하게 Kernel Timer Instance를 선언 해야 하는 문제 발생

```
#include "../profile/profile.cuh"
...
KernelProfiler timer_kernel("kernel_name");
...
timer_kernel.start_timing();
kernel<<<dimGrid, dimBlock>>>(...);
CHECK_KERNEL_ERROR();
kernel.stop_timing();
```

○ 앞의 과정을 자동화하여 Kernel을 Regex 로 패턴매칭하여 Kernel 시간 측정 및 출력하는 스크립트 구현

3) 후기

- forward GEMM
 - shared memory tiling: Naive GEMM 대비 18% latency 단축

- bank conflict 방지를 위한 padding 적용: PADDING ∈ {1, 2, 4, 8} 실험 후 PADDING = 8 결정
- cross_entropy
 - 초기에는 16개의 thread로 warp reduction 수행 → 10개의 class에 대해 FP 오차 발생
 - sequential 방식으로 수정
- update_layer
 - bias 업데이트 과정에서 동일 column에 대해 여러 thread 접근하여 race condition 발생
 - o atomicAdd()를 통해 thread-safe하도록 수정
- · Compiler directive optimization
 - onvcc -03 -NDEBUG -Xptxas=-03 -arch=sm_89 -maxrregcount=64 -o a mnist.cu
 - __restrict__ 활용
 - Loop Unrolling (#pragma unroll)

4. 벤치마킹 및 실험 결과

1) 실험 설정

- NVIDIA RTX 4060 Laptop GPU
- batch_size = 64, epoch = 30, block_size = 16, TILE_SIZE = 16
- GPU Metrics 로그 수집: nvidia-smi --query-gpu=memory.used,utilization.gpu --format=csv -1 1 > metric.log

2) 결과

Configuration	Accuracy	Time per Epoch	GPU Utilization	GPU Memory Usage
mnist.ipynb	97.78%	1961ms	34%	145MiB
mnist.cu	97.84%	218ms	64%	126MiB

5. 한계점 및 향후 계획

본 프로젝트를 통해 시스템 수준에서 ML 성능 병목을 분석하고 최적화하는 전체 과정을 직접 수행함으로써, PyTorch 의 추상화된 내부를 벗어나 시스템의 내부를 조망하는 경험을 할 수 있었습니다.

그러나 MLP 구조 자체가 현대의 복잡한 ML Workload를 지원하는 대형 모델에 비해 상대적으로 많이 단순하기 때문에, 본 프로젝트의 결과를 일반화하는 데에는 제한이 있습니다. 실제로 batch_size 가 증가함에 따라 PyTorch 와 CUDA 의 속도차이 의 gap은 줄어든다는 사실을 HPMC Evaluation에서 확인하였습니다.

향후 계획

- CLI 인자를 통한 batch size, 1r, layer[i].dim 설정 지원으로 다양한 구성에서의 실험 가능화
- forward_softmax 를 별도의 forward 와 softmax Kernel (Online softmax)로 분리하여 동기화 오버헤드 제거
- FP16 TensorCore wmma::mma_sync 활용
- 메모리 코얼레싱된 전치 및 공유 메모리 정렬을 통한 GEMM 최적화 (FP16 TensorCore 를 사용하지 않을 때)
- loop-unrolled vectorized memory loads (reinterpret_cast<float4*>) 사용
- .csv 데이터 로딩을 .bin 전처리 데이터셋으로 대체하여 CPU I/O 병목 감소(~2초)
- PyTorch와 CUDA 간 Dataloader 순서 일치 여부 검증 (train/valid 배열 비교)

6. Appendix

1) 구성 전략 최적화

- 커널 그리드/블록 구성 시, 성능과 코드 명확성을 위해 컴파일 타임과 런타임 올림 계산 선택적 사용
- 컴파일 타임 상수: constexpr int _ceil(int a, int b) 를 정의하여 런타임 오버헤드 없이 ceil(a / b) 계산
- 런타임 변수: 불필요한 float-to-double 변환을 피하기 위해 std::ceil() 대신 std::ceilf() 사용
- 컴파일러 옵션: nvcc -03 -NDEBUG -Xptxas=-03 -arch=sm_89 -maxrregcount=64

2) 디버깅 전략

• 두 가지 에러 검사 매크로 제공:

```
#define CHECK_ERROR(ans) { cudaAssert((ans), __FILE__, __LINE__); }
#define CHECK_KERNEL_ERROR() { cudaKernelAssert(__FILE__, __LINE__); }
```

- 동기식(cudaAssert()) 및 비동기식(cudaKernelAssert()) 오류 검사
- --debug 플래그로 전체 커널 수준 동기 디버깅 활성화 가능

```
inline void cudaKernelAssert(const char *file, const int line, bool abort = true) {
   if (debug) CHECK_ERROR(cudaDeviceSynchronize());
   cudaError_t err = cudaGetLastError();
   if (err != cudaSuccess) {
      fprintf(stderr, "cudaKernelAssert(): %s\n[%s: %d]\n\n", cudaGetErrorString(err), file, line);
      if (abort) exit(err);
   }
}
```

3) E2E 수식 및 Tensor Shape

Layer	Input Shape	Weight Shape	Output Shape	Activation
Layer1	(64, 784)	(784, 320)	(64, 320)	ReLU
Layer2	(64, 320)	(320, 160)	(64, 160)	ReLU
Layer3	(64, 160)	(160, 10)	(64, 10)	Softmax

MLP forward: $\hat{y} = \operatorname{Softmax}(\operatorname{ReLU}((\operatorname{ReLU}(XW^{(1)} + b^{(1)}))W^{(2)} + b^{(2)})W^{(3)} + b^{(3)})$

$$Z^{(1)} = XW^{(1)} + b^{(1)}$$

$$A^{(1)} = \operatorname{ReLU}(Z^{(1)})$$

$$Z^{(2)} = A^{(1)}W^{(2)} + b^{(2)}$$

$$A^{(2)} = \operatorname{ReLU}(Z^{(2)})$$

$$Z^{(3)} = A^{(2)}W^{(3)} + b^{(3)}$$

$$\hat{y} = \text{Softmax}(Z^{(3)})$$

Cross Entropy Loss

$$L = -rac{1}{B}\sum_{i=0}^{B-1} y_i^ op \log \hat{y}_i$$

MLP Backward

z_grad :
$$rac{\partial L}{\partial Z^{(k)}} = \left(rac{\partial L}{\partial Z^{(k+1)}} W^{(k+1) op}
ight)\odot \mathbf{1}(A^{(k)}>0)$$

cross_entropy_softmax_grad (output layer):
$$rac{\partial L}{\partial Z^{(3)}} = \hat{y} - y$$

Backward 수식 유도

$$\frac{\partial L}{\partial W^{(3)}} = \frac{\partial L}{\partial A^{(3)}} \cdot \frac{\partial A^{(3)}}{\partial Z^{(3)}} \cdot \frac{\partial Z^{(3)}}{\partial W^{(3)}}$$

$$rac{\partial L}{\partial A^{(3)}} = rac{\partial}{\partial A^{(3)}} \left(-y^ op \log A^{(3)}
ight) = -rac{y}{A^{(3)}}$$

$$\frac{\partial A^{(3)}}{\partial Z^{(3)}} = \frac{\partial}{\partial Z^{(3)}} \mathrm{Softmax}(Z^{(3)})$$

$$rac{\partial Z^{(3)}}{\partial W^{(3)}} = A^{(2) op}$$

$$\log a_k^{(3)} = z_k - \log \left(\sum_j e^{x_j}
ight)$$

$$rac{1}{a_k^{(3)}} \cdot rac{\partial a_k^{(3)}}{\partial z_k} = \delta_{ik} - a_k^{(3)} \Rightarrow rac{\partial a_k^{(3)}}{\partial z_k} = a_k^{(3)} (\delta_{ik} - a_k^{(3)})$$

$$\therefore rac{\partial L}{\partial z_k} = a_k^{(3)} - y_k = \hat{y} - y$$
 (`cross_entropy_softmax_grad`)

Update_layer (Update Weight & Bias params)

$$rac{\partial L}{\partial W^{(k)}} = A^{(k-1) op} \cdot \delta^{(k)}$$

$$rac{\partial L}{\partial b^{(k)}} = \sum_{i=0}^{B-1} \delta_i^{(k)}$$

$$W^{(k)} \leftarrow W^{(k)} - \frac{\eta}{B} A^{(k-1)\top} \cdot \delta^{(k)}$$

$$b^{(k)} \leftarrow b^{(k)} - \frac{\eta}{B} \sum_{i=0}^{B-1} \delta_i^{(k)}$$

4) CUDA Kernel Design

- forward_relu : 블록 및 그리드 구성은 (output_dim / block_size, batch_size / block_size) 2D 형태로 구성. 각 스레드 블록 내에서 shared memory를 이용한 타일 기반 GEMM(x @ w + b)을 수행하고, 이후 ReLU 활성화를 결합한 단일 커널로 처리함. padding을 통해 bank conflict를 완화하고, 반복문은 #pragma unroll 로 전개함.
- forward_softmax : forward_relu 와 동일한 grid/block 설정을 사용하며, softmax 연산을 포함하는 forward 경로를 하나의 커널로 결합. shared memory를 통한 타일링 최적화를 동일하게 적용.
- z_grad : 역전파 과정에서의 gradient 계산 커널. 다음 레이어의 gradient와 가중치 전치행렬의 곱
 (dz^(k+1) @ w^(k+1)^T)을 수행하고, 여기에 ReLU의 도함수(1(z > 0))를 elementwise product하여 dz^(k)를 구함.
 Loop Unrolling 및 shared memory tiling 적용.
- cross_entropy: softmax 출력을 기반으로 cross-entropy loss를 계산하는 커널. 최초에는 warp-level reduction(__shf1_down_sync)을 사용했으나, FP 정밀도 문제로 인해 sequential loop 방식으로 변경함. width = 10을 define하여 loop unrolling 적용. FP32 수치안정성을 위해 fmaxf(1e-6, y_hat[...]) 추가.
- cross_entropy_softmax_grad : dz = y_hat y 형태로 softmax + cross entropy의 gradient를 직접 계산하는 커널. 연산 량을 줄이기 위해 조건 분기 제거.
- update_layer : gradient를 기반으로 weight와 bias를 동시에 업데이트하는 커널. 동일 column에 대해 여러 thread가 접 근하는 문제로 인해 bias는 atomicAdd()를 통해 업데이트함. 1/B 텀은 수치안정성 및 계산효율을 위해 loss 계산 시 제 외하고 최종 업데이트 단계에서만 적용.