1 Question 1 (FA)

Given the standardized variables Z_1 , Z_2 , and Z_3 with the correlation matrix R,

$$R = \left[\begin{array}{rrr} 1 & 0.63 & 0.45 \\ 0.63 & 1 & 0.35 \\ 0.45 & 0.35 & 1 \end{array} \right]$$

can be generated by the following one factor model,

$$\begin{cases} Z_1 = 0.9F_1 + \epsilon_1 \\ Z_2 = 0.7F_1 + \epsilon_2 \\ Z_3 = 0.5F_1 + \epsilon_3 \end{cases}$$

where $E(F_1) = 0$, $Var(F_1) = 1$, $E(\epsilon) = 0$, and $Cov(\epsilon, F_1) = 0$. Prove that

$$Cov(\epsilon) = \Sigma_{\epsilon} = \begin{bmatrix} 0.19 & 0 & 0 \\ 0 & 0.51 & 0 \\ 0 & 0 & 0.75 \end{bmatrix}.$$

2 Question 2 (CCA, Question 12.2 in textbook 1)

Let $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_q > 0$ be the positive roots of

$$\det \left(\begin{array}{cc} -\lambda \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & -\lambda \Sigma_{22} \end{array} \right) = 0,$$

where Σ_{11} and Σ_{22} are $q \times q$ nonsingular matrices.

- (a) What is the rank of Σ_{12} ?
- (b) Write $\prod_{i=1}^{q} \lambda_i^2$ as the determinant of a rational function of Σ_{11} , Σ_{12} , Σ_{21} and Σ_{22} . Justify your answer.

3 Question 3 (CCA, Question 12.4 in textbook 1)

Let

$$X^{(1)} = AZ + Y^{(1)},$$

$$X^{(2)} = BZ + Y^{(2)},$$

where $Y^{(1)}, Y^{(2)}, Z$ are independent with mean zero and covariance matrices I with appropriate dimensionalities. Let $A = (a_1, \ldots, a_k), B = (b_1, \ldots, b_k)$, and suppose that $A^T A, B^T B$ are diagonal with positive diagonal elements. Show that the canonical variables for nonzero canonical correlations are proportional to $a_i^T X^{(1)}, b_i^T X^{(2)}$.

1 Question 1 (FA)

Given the standardized variables Z_1 , Z_2 , and Z_3 with the correlation matrix R,

$$R = \left[\begin{array}{rrr} 1 & 0.63 & 0.45 \\ 0.63 & 1 & 0.35 \\ 0.45 & 0.35 & 1 \end{array} \right]$$

can be generated by the following one factor model,

$$\begin{cases} Z_1 = 0.9F_1 + \epsilon_1 \\ Z_2 = 0.7F_1 + \epsilon_2 \\ Z_3 = 0.5F_1 + \epsilon_3 \end{cases}$$

where $E(F_1) = 0$, $Var(F_1) = 1$, $E(\epsilon) = 0$, and $Cov(\epsilon, F_1) = 0$. Prove that

$$Cov(\epsilon) = \Sigma_{\epsilon} = \begin{bmatrix} 0.19 & 0 & 0 \\ 0 & 0.51 & 0 \\ 0 & 0 & 0.75 \end{bmatrix}.$$

1.1 Solution

Proof.

$$R = \begin{pmatrix} 1 & r_{12} & r_{13} \\ r_{12} & 1 & r_{23} \\ r_{13} & r_{23} & 1 \end{pmatrix} = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} (\lambda_1, \lambda_2, \lambda_3) + \begin{pmatrix} \psi_1 & 0 & 0 \\ 0 & \psi_2 & 0 \\ 0 & 0 & \psi_3 \end{pmatrix}.$$

$$\implies \begin{pmatrix} \psi_1 & 0 & 0 \\ 0 & \psi_2 & 0 \\ 0 & 0 & \psi_3 \end{pmatrix} = R - \begin{pmatrix} 0.9 \\ 0.7 \\ 0.5 \end{pmatrix} (0.9, 0.7, 0.5).$$

We have $\psi_1 = 0.19$, $\psi_2 = 0.51$, and $\psi_3 = 0.75$ and $Cov(\epsilon) = \Sigma_{\epsilon} = diag(\psi_1, \psi_2, \psi_3)$.

2 Canonical Correlation Analysis (CCA)

- The purpose of CCA?
 - In PCA technique, to find the new component with maximum variance.
 - In CCA technique, study correlation between two sets of variables (or components).

Prob(1)

$$\max \quad Cov(U, V)$$

$$s.t. \quad Var(U) = 1$$

$$Var(V) = 1.$$

• If Var(U) = 1 and Var(V) = 1, then Cov(U, V) = Cor(U, V), that is covariance=correlation.

$$X = \begin{pmatrix} X^{(1)} \\ X^{(2)} \end{pmatrix} \quad \Sigma_X = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$$

- We can just blockwise Σ_X directly, then we can prove that $\Sigma_{X^{(1)}} = \Sigma_{11}$ and $\Sigma_{X^{(2)}} = \Sigma_{22}$.
- $U = \alpha^T X^{(1)}, V = \gamma^T X^{(2)}.$
- $Var(U) = Var(\alpha^T X^{(1)}) = \alpha^T \Sigma_{11} \alpha$.
- $Var(V) = Var(\gamma^T X^{(2)}) = \gamma^T \Sigma_{22} \gamma$.
- $Cov(U, V) = Cov(\alpha^T X^{(1)}, \gamma^T X^{(2)}) = \alpha^T \Sigma_{12} \gamma$. $\Sigma_{12}^T = \Sigma_{21}, \Sigma_X$ is symmetric.
- Rewrite Prob(1):

$$\max \quad \alpha^T \Sigma_{12} \gamma$$

$$s.t. \quad \alpha^T \Sigma_{11} \alpha = 1$$

$$\gamma^T \Sigma_{22} \gamma = 1.$$

- $\phi = \alpha^T \Sigma_{12} \gamma \frac{1}{2} \lambda (\alpha^T \Sigma_{11} \alpha 1) \frac{1}{2} \mu (\gamma^T \Sigma_{22} \gamma 1)$, where λ and μ are Lagrangian multipliers.
- $\frac{\partial \phi}{\partial \alpha} = 0$ and $\frac{\partial \phi}{\partial \gamma} = 0$.
- The solution of Prob (1) is $U^{(1)}$ and $V^{(1)}$.
- $Cov(U, U^{(1)}) = 0$ means that U and $U^{(1)}$ are uncorrelated.

$$\begin{cases} \frac{\partial \phi}{\partial \alpha} = \Sigma_{12} \gamma - \lambda \Sigma_{11} \alpha = 0. \\ \frac{\partial \phi}{\partial \gamma} = \Sigma_{12}^T \alpha - \mu \Sigma_{22} \gamma = 0. \end{cases} \Longrightarrow \begin{cases} \Sigma_{11}^{-1} \Sigma_{12} \gamma - \lambda \alpha = 0. \\ \Sigma_{22}^{-1} \Sigma_{12}^T \alpha - \mu \gamma = 0. \end{cases}$$
(1)

• Now we prove that $\lambda = \mu$.

$$\begin{cases} \Sigma_{12}\gamma - \lambda \Sigma_{11}\alpha = 0. \\ \Sigma_{12}^T\alpha - \mu \Sigma_{22}\gamma = 0. \end{cases} \implies \begin{cases} \alpha^T \Sigma_{12}\gamma - \lambda \alpha^T \Sigma_{11}\alpha = 0. \\ \gamma^T \Sigma_{12}^T\alpha - \mu \gamma^T \Sigma_{22}\gamma = 0. \end{cases} \implies \begin{cases} \alpha^T \Sigma_{12}\gamma = \lambda. \\ \gamma^T \Sigma_{12}^T\alpha = \mu. \end{cases}$$

– According to the constraints, we have $\alpha^T \Sigma_{11} \alpha = 1$ and $\gamma^T \Sigma_{22} \gamma = 1$.

$$-\lambda = \alpha^T \Sigma_{12} \gamma = \lambda^T = (\alpha^T \Sigma_{12} \gamma)^T = \gamma^T \Sigma_{12}^T \alpha = \mu.$$

$$\begin{pmatrix} \Sigma_{11}^{-1} & 0 \\ 0 & \Sigma_{22}^{-1} \end{pmatrix} \begin{pmatrix} 0 & \Sigma_{12} \\ \Sigma_{21} & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \gamma \end{pmatrix} = \begin{pmatrix} 0 & \Sigma_{11}^{-1} \Sigma_{12} \\ \Sigma_{22}^{-1} \Sigma_{21} & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \gamma \end{pmatrix} = \begin{pmatrix} \sum_{11}^{-1} \Sigma_{12} \gamma \\ \Sigma_{22}^{-1} \Sigma_{21} \alpha \end{pmatrix} = \lambda \begin{pmatrix} \alpha \\ \gamma \end{pmatrix}.$$

• Thus, λ is a eigenvalue of A, where

$$A = \begin{pmatrix} \Sigma_{11}^{-1} & 0\\ 0 & \Sigma_{22}^{-1} \end{pmatrix} \begin{pmatrix} 0 & \Sigma_{12}\\ \Sigma_{21} & 0 \end{pmatrix}$$

- Note that $\Sigma_{21} = \Sigma_{12}^T$.
- $\max Cov(U, V) = \max \alpha^T \Sigma_{12} \gamma = \max \lambda$.

3 Question 2 (CCA, Question 12.2 in textbook 1)

Let $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_q > 0$ be the positive roots of

$$\det \left(\begin{array}{cc} -\lambda \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & -\lambda \Sigma_{22} \end{array} \right) = 0,$$

where Σ_{11} and Σ_{22} are $q \times q$ nonsingular matrices.

- (a) What is the rank of Σ_{12} ?
- (b) Write $\prod_{i=1}^{q} \lambda_i^2$ as the determinant of a rational function of Σ_{11} , Σ_{12} , Σ_{21} and Σ_{22} . Justify your answer.

3.1 Solution

(a) λ_i also the eigenvalues of

$$A = \begin{pmatrix} \Sigma_{11}^{-1} & 0 \\ 0 & \Sigma_{22}^{-1} \end{pmatrix} \begin{pmatrix} 0 & \Sigma_{12} \\ \Sigma_{21} & 0 \end{pmatrix}$$

. Since $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_q > 0$, A is nonsingular. Thus, we have Σ_{12} is full rank matrix. (b)

$$\det(\lambda^{2} \Sigma_{11} \Sigma_{22} - \Sigma_{12} \Sigma_{21}) = 0$$

$$\Longrightarrow \det(\lambda^{2} I - \Sigma_{22}^{-1} \Sigma_{11}^{-1} \Sigma_{12} \Sigma_{21}) = \det(\Sigma_{22}^{-1} \Sigma_{11}^{-1} \Sigma_{12} \Sigma_{21} - \lambda^{2} I) = 0.$$

Thus, λ_i^2 is eigenvalues of matrix $\Sigma_{22}^{-1}\Sigma_{11}^{-1}\Sigma_{12}\Sigma_{21}$.

$$\prod_{i=1}^{q} \lambda_i^2 = \det \left(\Sigma_{22}^{-1} \Sigma_{11}^{-1} \Sigma_{12} \Sigma_{21} \right).$$

4 Question 3 (CCA, Question 12.4 in textbook 1)

Let

$$X^{(1)} = AZ + Y^{(1)},$$

 $X^{(2)} = BZ + Y^{(2)},$

where $Y^{(1)}, Y^{(2)}, Z$ are independent with mean zero and covariance matrices I with appropriate dimensionalities. Let $A = (a_1, \ldots, a_k), B = (b_1, \ldots, b_k)$, and suppose that $A^T A, B^T B$ are diagonal with positive diagonal elements. Show that the canonical variables for nonzero canonical correlations are proportional to $a_i^T X^{(1)}, b_i^T X^{(2)}$.

4.1 Reform the question in a mathematical form

Consider

$$X = \left(\begin{array}{c} X^{(1)} \\ X^{(2)} \end{array}\right)$$

$$\mathbb{E}(X^{(1)}) = A\mathbb{E}(Z) + \mathbb{E}(Y^{(1)}) = 0,$$

$$\mathbb{E}(X^{(2)}) = B\mathbb{E}(Z) + \mathbb{E}(Y^{(2)}) = 0.$$

$$\Sigma_{11} = Cov(X^{(1)}) = \mathbb{E}(X^{(1)} - \mathbb{E}X^{(1)})(X^{(1)} - \mathbb{E}X^{(1)})^T = \mathbb{E}(AZ + Y^{(1)})(AZ + Y^{(1)})^T$$

$$= ACov(Z)A^T + 2ACov(Z, Y^{(1)}) + Cov(Y^{(1)})$$

$$= AA^T + I.$$

Similarly, we have

$$\Sigma_{22} = Cov(X^{(2)}) = BB^T + I,$$

$$\Sigma_{12} = AB^T,$$

$$\Sigma_{21} = BA^T, \text{ thus we have } \Sigma_{21} = \Sigma_{12}^T.$$

Recall CCA, the problem is to solve the following equation:

$$\left(\begin{array}{cc} 0 & \Sigma_{11}^{-1}\Sigma_{12} \\ \Sigma_{22}^{-1}\Sigma_{21} & 0 \end{array} \right) \left(\begin{array}{c} \alpha \\ \gamma \end{array} \right) = \left(\begin{array}{cc} 0 & (AA^T+I)^{-1}AB^T \\ (BB^T+I)^{-1}BA^T & 0 \end{array} \right) \left(\begin{array}{c} \alpha \\ \gamma \end{array} \right) = \lambda \left(\begin{array}{c} \alpha \\ \gamma \end{array} \right),$$

where $A = (a_1, \ldots, a_k), B = (b_1, \ldots, b_k)$, and suppose that $A^T A, B^T B$ are diagonal with positive diagonal elements. Recall that the canonical variables are $U^{(i)} = (\alpha^{(i)})^T X^{(1)}$ and $V^{(i)} = (\gamma^{(i)})^T X^{(2)}$. We need to prove that $\alpha^{(i)}$ is proportional to a_i and $\gamma^{(i)}$ is proportional to b_i .

4.2 Solution

Hint: $(I + AA^T)^{-1} = I - A(I + A^TA)^{-1}A^T$ and $(I + A^TA)^{-1} = I - (I + A^TA)^{-1}A^TA$ for any matrix A.

We first prove this hint by showing that $(I + AA^T)[I - A(I + A^TA)^{-1}A^T] = I$ and $(I + A^TA)[I - (I + A^TA)^{-1}A^TA] = I$.

Proof.

$$(I + AA^{T})[I - A(I + A^{T}A)^{-1}A^{T}]$$

$$= (I + AA^{T}) - (I + AA^{T})A(I + A^{T}A)^{-1}A^{T}$$

$$= (I + AA^{T}) - (A + AA^{T}A)(I + A^{T}A)^{-1}A^{T}$$

$$= (I + AA^{T}) - A(I + A^{T}A)(I + A^{T}A)^{-1}A^{T}$$

$$= (I + AA^{T}) - AA^{T} = I,$$

$$(I + A^{T}A)[I - (I + A^{T}A)^{-1}A^{T}A] = (I + A^{T}A) - A^{T}A = I.$$

According to this hint, we have

$$(AA^{T} + I)^{-1}AB^{T}$$

$$= [I - A(I + A^{T}A)^{-1}A^{T}]AB^{T}$$

$$= AB^{T} - A(I + A^{T}A)^{-1}A^{T}AB^{T}$$

$$= A[I - (I + A^{T}A)^{-1}A^{T}A]B^{T}$$

$$= A(I + A^{T}A)^{-1}B^{T}$$

2020 STA4002 Wenjia ZHANG

Similarly, we have $(BB^{T} + I)^{-1}BA^{T} = B(I + B^{T}B)^{-1}A^{T}$.

$$\lambda \left(\begin{array}{c} \alpha \\ \gamma \end{array} \right) = \left(\begin{array}{cc} 0 & (AA^T+I)^{-1}AB^T \\ (BB^T+I)^{-1}BA^T & 0 \end{array} \right) \left(\begin{array}{c} \alpha \\ \gamma \end{array} \right),$$

That is,

$$\begin{cases} \lambda \alpha = (AA^T + I)^{-1}AB^T\gamma = A(I + A^TA)^{-1}B^T\gamma, \\ \lambda \gamma = (BB^T + I)^{-1}BA^T\alpha = B(I + B^TB)^{-1}A^T\alpha. \end{cases}$$

$$\Longrightarrow \lambda^2 \alpha = \lambda(\lambda \alpha) = A(I + A^TA)^{-1}B^T(\lambda \gamma) = A(I + A^TA)^{-1}B^TB(I + B^TB)^{-1}A^T\alpha, \text{ multiply } A^T$$

$$\Longrightarrow \lambda^2 A^T\alpha = A^TA(I + A^TA)^{-1}B^TB(I + B^TB)^{-1}A^T\alpha.$$

- Since $A^T A = diag(a_{11}, \ldots, a_{kk})$, that is $A^T(a_1, \ldots, a_k) = diag(a_{11}, \ldots, a_{kk})$, we have $A^T a_i = (0, \ldots, 0, a_{ii}, 0, \ldots, 0)^T$.
- Since A^TA , B^TB are diagonal, $A^TA(I+A^TA)^{-1}B^TB(I+B^TB)^{-1}$ which is denoted by C is diagonal.
- Since $C(A^T\alpha) = \lambda^2(A^T\alpha)$ with diagonal matrix C and constant λ , all diagonal elements of C must be the same (in fact must be λ^2).
- Let $D = (I + A^T A)^{-1} B^T B (I + B^T B)^{-1} = diag(d_{11}, \dots, d_{kk}).$
- $\lambda^2 \alpha = ADA^T \alpha = (a_1, \dots, a_k) diag(d_{11}, \dots, d_{kk}) A^T \alpha = (d_{11}a_1, \dots, d_{kk}a_k) A^T \alpha$.
- The *i*th term of $\lambda^2 \alpha$, that is $\lambda^2 \alpha_i$, should be $[d_{11}a_1a_1^T + \ldots + d_{kk}a_ka_k^T]_i\alpha$.
- $[d_{11}a_1a_1^T + \ldots + d_{kk}a_ka_k^T]_{i,j}\alpha_j = 0$ for $i \neq j$.
- $A^T \alpha = (0, \dots, 0, t, 0, \dots, 0)^T$.