$\mathrm{TD19}: \mathrm{Diagrammes}$ potentiel-pH

TD19: Diagrammes potentiel-pH

Exercice 1 : L'EAU DE JAVEL

On donne le diagramme potentiel-pH du chlore pour une concentration de tracé égale à $0.1 \text{ mol}/\ell$. Les seules espèces considérées sont HClO, ClO⁻, Cl₂ et Cl⁻ en solution aqueuse.

- 1. Donner le nombre d'oxydation du chlore dans ces espèces chimiques.
- 2. Indiquer les domaines de prédominance des différentes espèces du chlore sur le diagramme.
- 3. On considère une solution de dichlore. Que se passe-t-il au-delà du pH du point A?

L'eau de Javel est une solution aqueuse d'hypochlorite de sodium $(Na^+ + ClO^-)$ et de chlorure de sodium $(Na^+ + Cl^-)$; elle est préparée par réaction directe entre le dichlore et l'hydroxyde de sodium $(Na^+ + HO^-)$.

- 4. Écrire l'équation de la réaction de formation de l'eau de Javel.
- 5. Superposer au diagramme potentiel-pH de l'eau de Javel celui de l'eau. L'eau de Javel est-elle thermodynamiquement stable? Commenter
- 6. Que se passe-t-il si l'on mélange de l'eau de Javel avec un détergent acide?

Exercice 2 : DIAGRAMME E-PH DU CHROME

On donne le diagramme E-pH du système chrome-eau, limité aux espèces : Cr(s), Cr^{2+} , CrO_4^{2-} , $Cr(OH)_4^-$, Cr^{3+} , $Cr_2O_7^{2-}$ et $Cr(OH)_3(s)$.

Ce diagramme a été tracé avec les conventions suivantes :

- la concentration totale du chrome à l'état dissous est égale à $c = 10^{-2} \text{ mol } \ell^{-1}$;
- à la frontière entre deux espèces dissoutes, les concentrations en élément chrome dans chacune des deux espèces sont égales.
- 1. Déterminer le nombre d'oxydation du chrome dans chaque espèce.
- 2. L'hydroxyde de chrome $Cr(OH)_3(s)$ a un caractère amphotère. Écrire pour ce précipité les équilibres qui rendent compte du caractère amphotère.
- 3. Identifier pour chacun des domaines numérotés de 1 à 7 à quelle espèce il correspond.
- 4. Quelle est la signification physique du point D sur le diagramme? Déterminer par le calcul ses coordonnées
- 5. Faire figurer sur le diagramme la zone de stabilité de l'eau.
- 6. Le chrome métallique est-il stable en solution aqueuse? Justifier.

Données à 298 K : $E^{\circ}(Cr^{2+}/Cr(s)) = -0.86 \,\text{V}$, $E^{\circ}(Cr^{3+}/Cr^{2+}) = -0.41 \,\text{V}$, produit de solubilité de $Cr(OH)_3(s)$ en milieu acide $K_s = 10^{30.5}$.

Exercice 3: DIAGRAMME E-PH DU CADMIUM

On donne le diagramme potentiel-pH à 25 °C du cadmium pour une concentration en cadmium dissout $c = 10^{-2} \text{ mol } \ell^{-1}$.

- 1. Déterminer la valeur de $E^0(\mathrm{Cd}^{2+}/\mathrm{Cd})$.
- 2. Calculer les produits de solubilités relatifs à Cd(OH)₂(s).
- 3. Quelle est la pente du segment AB?
- 4. Le cadmium est-il stable dans l'eau?

Exercice 4 : DIAGRAMME E-PH DU TITANE

On donne ci-contre le diagramme potentiel-pH du titane, tracé en considérant les espèces suivantes :

- Ti, Ti(OH)₂, Ti(OH)₃ et TiO(OH)₂ solides;
- Ti²⁺, Ti³⁺, TiO²⁺ et HTiO₃ dissoutes.

- 1. Attribuer à chaque espèce son domaine.
- 2. Déterminer la pente de la frontière 1.
- 3. Le titane est-il stable dans l'eau?

page 1/1