

Natural Language Processing

第八周 XFormer

庞彦

yanpang@gzhu.edu.cn

Overview

More Attention Mechanisms

To Learn More ...

Long Range Arena: A Benchmark for Efficient Transformers

https://arxiv.org/abs/2011.04006

Efficient Transformers: A Survey

https://arxiv.org/abs/2009.06732

How to make self-attention efficient?

Notice

- Self-attention is only a module in a larger network. 自注意力机制仅仅知识大网络的一个模块。
- Self-attention dominates computation when *N* is large. 当*N*非常大的时候,自注意力机制的计算量显著上升。
- Usually developed for image processing

$$\begin{array}{c|c}
 N = \\
 256 * 256 \\
 \end{array}$$

Skip Some Calculations with Human Knowledge

Can we fill in some values with human knowledge?

Local Attention / Truncated Attention

Stride Attention

Global Attention

Add special token into original sequence在原句中新增特殊的token

Attend to every token → collect global information搜集全局信息

Attended by every token → it knows global information

Many Different Choices ...

Different heads use different patterns.

不同的头利用不用的特征。

Many Different Choices ...

LongFormer

(b) Sliding window attention

https://arxiv.org/abs/2004.05150

https://arxiv.org/abs/2007.14062

(c) Dilated sliding window

(d) Global+sliding window

• Big Bird

(a) Random attention

(b) Window attention

(c) Global Attention

(d) BIGBIRD

Can we only focus on Critical Parts?

How to quickly estimate the portion with small attention weights?

Clustering

Reformer https://openreview.net/forum?id=rkgNKkHtvB

Clustering

key

Belong to the same cluster, then calculate attention weight

Not the same cluster, set to 0

Learnable Patterns

A grid should be skipped or not is decided by another learned module

https://arxiv.org/abs/2002.11296 (simplified version)

Do we need full attention matrix?

Clustering value Representative K keys output Can we reduce the number of queries?可以减少Q的数量吗? ib change output sequence length 改变序列长度

Reduce Number of Keys

Compressed Attention

https://arxiv.org/abs/1801.10198

Linformer

https://arxiv.org/abs/2006.04768

Linear combination of N vectors N个矢量的线性组合

Attention Mechanism is three-matrix Multiplication

Attention Mechanism is three-matrix Multiplication

Attention Mechanism is three-matrix Multiplication

Let's put softmax back ... 把Softmax激活函数放回来

$$b^{1} = \sum_{i=1}^{N} \alpha'_{1,i} v^{i} = \sum_{i=1}^{N} \frac{exp(q^{1} \cdot k^{i})}{\sum_{j=1}^{N} exp(q^{1} \cdot k^{j})} v^{i}$$

$$exp(q \cdot k)$$

$$\approx \phi(q) \cdot \phi(k)$$

$$= \sum_{i=1}^{N} \frac{\phi(q^{1}) \cdot \phi(k^{i})}{\sum_{j=1}^{N} \phi(q^{1}) \cdot \phi(k^{j})} v^{i}$$

$$= \sum_{i=1}^{N} \frac{\sum_{j=1}^{N} \phi(q^{1}) \cdot \phi(k^{j})}{\sum_{j=1}^{N} \phi(q^{1}) \cdot \phi(k^{j})} v^{i}$$

$$\phi(q^{1}) \cdot \sum_{j=1}^{N} \phi(k^{j})$$

$$\phi(q^{1})$$

$$\boldsymbol{b^1} = \sum_{i=1}^{N} \alpha'_{1,i} \boldsymbol{v^i} = \frac{\sum_{i=1}^{N} \left[\phi(\boldsymbol{q^1}) \cdot \phi(\boldsymbol{k^i})\right] \boldsymbol{v^i}}{\phi(\boldsymbol{q^1}) \cdot \sum_{j=1}^{N} \phi(\boldsymbol{k^i})}$$

$$\sum_{i=1}^{N} \left[\phi(q^1) \cdot \phi(k^i) \right] v^i \qquad \phi(q^1) = \begin{bmatrix} q_1^1 \\ q_2^1 \\ \vdots \end{bmatrix} \qquad \phi(k^1) = \begin{bmatrix} k_1^1 \\ k_2^1 \\ \vdots \end{bmatrix}$$

$$= [\phi(q^{1}) \cdot \phi(k^{1})]v^{1} + [\phi(q^{1}) \cdot \phi(k^{2})]v^{2} + \cdots$$

$$= (q_{1}^{1}k_{1}^{1} + q_{2}^{1}k_{2}^{1} + \cdots)v^{1} + (q_{1}^{1}k_{1}^{2} + q_{2}^{1}k_{2}^{2} + \cdots)v^{2} + \cdots$$

$$= \underline{q_{1}^{1}k_{1}^{1}v^{1}} + \underline{q_{2}^{1}k_{2}^{1}v^{1}} + \cdots + \underline{q_{1}^{1}k_{1}^{2}v^{2}} + \underline{q_{2}^{1}k_{2}^{2}v^{2}} + \cdots + \cdots$$

$$= \underline{q_{1}^{1}(k_{1}^{1}v^{1} + k_{1}^{2}v^{2} + \cdots)} + \underline{q_{2}^{1}(k_{2}^{1}v^{1} + k_{2}^{2}v^{2} + \cdots)}$$

Softmax
$$b^1 = \sum_{i=1}^N \alpha'_{1,i} v^i = \frac{\sum_{i=1}^N [\phi(q^1) \cdot \phi(k^i)] v^i}{\phi(q^1) \cdot \sum_{j=1}^N \phi(k^j)}$$

$$\sum_{i=1}^{N} \left[\phi(q^{1}) \cdot \phi(k^{i})\right] v^{i} \qquad \phi(q^{1}) = \begin{bmatrix} q_{1}^{1} \\ q_{2}^{1} \\ \vdots \end{bmatrix} \qquad \phi(k^{1}) = \begin{bmatrix} k_{1}^{1} \\ k_{2}^{1} \\ \vdots \end{bmatrix}$$

$$= \begin{bmatrix} q_{1}^{1} \\ k_{1}^{1} v^{1} + k_{1}^{2} v^{2} + \cdots \\ \end{bmatrix} + \begin{bmatrix} q_{1}^{1} \\ k_{2}^{1} \\ \vdots \end{bmatrix}$$

$$= \begin{bmatrix} q_{1}^{1} \\ k_{1}^{1} v^{1} + k_{1}^{2} v^{2} + \cdots \\ \end{bmatrix} + \begin{bmatrix} q_{1}^{1} \\ k_{2}^{1} \\ \vdots \end{bmatrix}$$

$$= \begin{bmatrix} k_{1}^{1} \\ k_{2}^{1} \\ \vdots$$

$$b^{1} =$$

$$\phi(q^1)$$

Don't compute again

weighted sum

$$= v^1 + v^2 + v^3 + v^4$$

$$\phi(\boldsymbol{q}^1) = \begin{bmatrix} q_1^1 \\ q_2^1 \\ \vdots \end{bmatrix} \qquad = \boldsymbol{v}^1 + \boldsymbol{v}^2 + \boldsymbol{v}^3 + \boldsymbol{v}^4$$

$$= v^1 + v^2 + v^3 + v^4$$

$$\phi(q^1) = \begin{bmatrix} q_1^1 \\ q_2^1 \\ \vdots \end{bmatrix} = v^1 + v^2 + v^3 + v^4$$

$$\vdots$$
M vectors

$$b^{1} = \frac{\sum_{i=1}^{N} \phi(k^{i})}{\phi(q^{1})}$$

template selection

$$b^2 = ?$$
 $\phi(q^2)$ template 1

 $= v^1 + v^2 + v^3 + v^4$

template 2

M vectors

 $\phi(k^1)$ $\phi(k^2)$ $\phi(k^3)$ $\phi(k^4)$
 $q^1 \quad k^1 \quad v^1 \qquad q^2 \quad k^2 \quad v^2 \qquad k^3 \quad v^3 \qquad k^4 \quad v^4$
 $a^1 \qquad a^2 \quad pring 2023 \qquad a^3 \qquad a^4$

Realization

- Efficient attention

 https://arxiv.org/pdf/1812.01243.pdf
- Linear Transformer

 https://linear-transformers.com/
- Random Feature Attention
 https://arxiv.org/pdf/2103.02143.pdf
- Performer

https://arxiv.org/pdf/2009.14794.pdf

Do we need q and k to compute attention? Synthe

$\alpha_{1,1}$	$\alpha_{1,2}$	$\alpha_{1,3}$	$\alpha_{1,4}$
$\alpha_{1,2}$	$\alpha_{2,2}$	$\alpha_{2,3}$	$\alpha_{2,4}$
$\alpha_{1,3}$	$\alpha_{2,3}$	$\alpha_{3,3}$	$\alpha_{3,4}$
$\alpha_{1,4}$	$\alpha_{2,4}$	$\alpha_{3,4}$	$\alpha_{4,4}$

From q and k?

They are network parameters!

Attention-Free

https://arxiv.org/abs/2105.03824

• Pay Attention to MLPs https://arxiv.org/abs/2105.08050

MLP-Mixer: An all-MLP Architecture for Vision

https://arxiv.org/abs/2105.01601

Summary

- Human knowledge
 - Local Attention, Big Bird
- Clustering
 - Reformer
- Learnable Pattern
 - SinFform
- Representative key
 - LinFormer
- k,q first $\rightarrow v,k$ first
 - Linear Transformer, Performer
- New framework
 - Synthesizer

Q&A

