Lectures on Random Matrices (Spring 2025)

Lecture 6: Double contour integral kernel. Steepest descent and local statistics

Leonid Petrov

February 12, 2025*

Notes for the lecturer

- 1. GUE det structure
 - 2. Formulate Cauchy-Binet and Andreief
 - 3. Recall that $\rho_n = P_n$ and it is $(\det[\psi_i(x_j)]_{n \times n})^2$, then reproduce the proofs here.

1 Recap: Determinantal structure of the GUE

Last time, we proved the following result:

Theorem 1.1. The GUE correlation functions are given by

$$\rho_k(x_1,\ldots,x_k) = \det\left[K_n(x_i,x_j)\right]_{i,j=1}^k,$$

with the correlation kernel

$$K_n(x,y) = \sum_{j=0}^{n-1} \psi_j(x)\psi_j(y).$$

Here

$$\psi_j(x) = \frac{1}{\sqrt{h_j}} p_j(x) e^{-x^2/4},$$

where $p_j(x)$ are the monic Hermite polynomials, and h_j are the normalization constants so that $\psi_j(x)$ are orthonormal in $L^2(\mathbb{R})$.

For this theorem, we need Cauchy–Binet summation formula and Andreief identity (which is essentially the same as Cauchy–Binet, but when summation is replaced by integration). Having these, we can write

$$\rho_k(x_1, \dots, x_k) = \frac{n!}{(n-k)!} \int_{\mathbb{R}^{n-k}} p(x_1, \dots, x_n) \, dx_{k+1} \cdots dx_n$$

^{*}Course webpage • Live simulations • TeX Source • Updated at 14:21, Saturday 8th February, 2025

$$= \frac{1}{(n-k)!} \sum_{\substack{\sigma,\tau \in S_n \\ \sigma(k+1) = \tau(k+1), \dots, \sigma(n) = \tau(n)}} \operatorname{sgn}(\sigma) \operatorname{sgn}(\tau) \prod_{i=1}^k \psi_{\sigma(i)-1}(x_i) \psi_{\tau(i)-1}(x_i)$$

$$= \operatorname{const}_n \sum_{I \subseteq [n], |I| = k} \sum_{\sigma',\tau' \in S(I)} \operatorname{sgn}(\sigma') \operatorname{sgn}(\tau') \prod_{i=1}^k \psi_{\sigma'(i)-1}(x_i) \psi_{\tau'(i)-1}(x_i)$$

$$= \operatorname{const}_n \sum_{I \subseteq [n], |I| = k} \det \left[\psi_{i_{\alpha}}(x_j) \right]_{\alpha,j=1}^k \det \left[\psi_{i_{\alpha}}(x_j) \right]_{\alpha,j=1}^k,$$

where $I = \{i_1, \ldots, i_k\}$ is a subset of [n] of size k, and S(I) is the set of permutations of I. The last sum of products of two determinants is written by the Cauchy–Binet formula as

$$\operatorname{const}_n \cdot \det \left[\sum_{j=0}^{n-1} \psi_j(x_\alpha) \psi_j(x_\beta) \right]_{\alpha, \beta = 1}^k,$$

and finally the constant is equal to 1 by Andreief identity.

2 Double Contour Integral Representation for the GUE Kernel

2.1 One contour integral representation for Hermite polynomials

Recall that the GUE kernel is defined by

$$K_N(x,y) = \sum_{n=0}^{N-1} \psi_n(x)\psi_n(y),$$

with the orthonormal functions

$$\psi_n(x) = \frac{1}{\sqrt{h_n}} p_n(x) e^{-x^2/4},$$

where the (monic, probabilists') Hermite polynomials are given by

$$p_n(x) = (-1)^n e^{x^2/2} \frac{d^n}{dx^n} e^{-x^2/2},$$

and satisfy the generating function

$$\exp\left(xt - \frac{t^2}{2}\right) = \sum_{n \ge 0} p_n(x) \frac{t^n}{n!}.$$

By Cauchy's integral formula we can write

$$p_n(x) = \frac{n!}{2\pi i} \oint_C \frac{\exp\left(xt - \frac{t^2}{2}\right)}{t^{n+1}} dt,$$

where the contour C is a simple closed curve encircling the origin. Therefore,

$$\psi_n(x) = \frac{1}{\sqrt{h_n}} p_n(x) e^{-x^2/4} = \frac{e^{-x^2/4}}{\sqrt{h_n}} \frac{n!}{2\pi i} \oint_C \frac{\exp\left(xt - \frac{t^2}{2}\right)}{t^{n+1}} dt.$$

2.2 Another contour integral representation for Hermite polynomials

Note also that

$$\int_{-\infty}^{\infty} e^{-t^2 + \sqrt{2}itx} dt = \sqrt{\pi} e^{-x^2/2}.$$

Differentiating both sides n times with respect to x (and using the fact that in our convention the Gaussian appears with $x^2/2$) yields

$$\frac{d^n}{dx^n} \left(e^{-x^2/2} \right) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \left(\sqrt{2}i \, t \right)^n e^{-t^2 + \sqrt{2}i \, t \, x} \, dt.$$

Changing variables via s = it (so that t = -is and dt = -ids) one obtains

$$\frac{d^{n}}{dx^{n}} \left(e^{-x^{2}/2} \right) = \frac{(\sqrt{2})^{n}}{i\sqrt{\pi}} \int_{-i\infty}^{i\infty} s^{n} e^{s^{2} + \sqrt{2} s x} ds.$$

Multiplying by $(-1)^n e^{x^2/2}$ we deduce that

$$p_n(x) = (-1)^n e^{x^2/2} \frac{d^n}{dx^n} \left(e^{-x^2/2} \right) = \frac{i(\sqrt{2})^n e^{x^2/2}}{\sqrt{\pi}} \int_{-i\infty}^{i\infty} s^n e^{s^2 - \sqrt{2} s x} ds.$$
 (2.1)

Now, recall that the orthonormal functions are defined as

$$\psi_n(x) = \frac{1}{\sqrt{h_n}} p_n(x) e^{-x^2/4},$$

so that by (2.1)

$$\psi_n(x) = \frac{i e^{x^2/4}}{\sqrt{\pi h_n}} \int_{-i\infty}^{i\infty} (\sqrt{2}s)^n e^{s^2 - \sqrt{2}sx} ds = \frac{i e^{x^2/4}}{\sqrt{2\pi h_n}} \int_{-i\infty}^{i\infty} s^n e^{s^2/2 - sx} ds.$$

2.3 Double contour integral representation for the GUE kernel

We have (Problem ??)

$$h_n = \int_{-\infty}^{\infty} p_n(x)^2 e^{-x^2/2} dx = n! \sqrt{2\pi}.$$

Therefore, we can sum up the kernel (another proof of the Christoffel–Darboux formula):

$$K_n(x,y) = \sum_{k=0}^{n-1} \psi_k(x)\psi_k(y)$$

$$= \sum_{k=0}^{n-1} \frac{e^{-x^2/4}}{\sqrt{h_k}} \frac{k!}{2\pi i} \oint_C \frac{\exp\left(xt - \frac{t^2}{2}\right)}{t^{k+1}} dt \frac{i e^{y^2/4}}{\sqrt{2\pi h_k}} \int_{-i\infty}^{i\infty} s^k e^{s^2/2 - sy} ds$$

$$= e^{(y^2 - x^2)/4} \sum_{k=0}^{n-1} \frac{1}{4\pi^2} \oint_C \frac{\exp\left(xt - \frac{t^2}{2}\right)}{t^{k+1}} dt \int_{-i\infty}^{i\infty} s^k e^{s^2/2 - sy} ds.$$

We can now extend the sum to $k = -\infty$, and get a formula for the GUE kernel as a double contour integral:

$$K_n(x,y) = \frac{e^{(y^2 - x^2)/4}}{4\pi^2} \oint_C \int_{-i\infty}^{i\infty} \frac{\exp\left\{\frac{s^2}{2} - sy - \frac{t^2}{2} + tx\right\}}{s - t} \left(\frac{s}{t}\right)^n ds dt.$$

Details will be in the next Lecture 6.

Remark 2.1. Many other versions of the GUE / unitary invariant ensembles admit determinantal structure:

- 1. The GUE corners process [JN06]
- 2. The Dyson Brownian motion (e.g., add a GUE to a diagonal matrix) [NF98]
- 3. GUE corners plus a fixed matrix [FF14]
- 4. Corners invariant ensembles with fixed eigenvalues UDU^{\dagger} , where D is a fixed diagonal matrix and U is Haar distributed on the unitary group [Met13]

F Problems (due DATE)

References

- [FF14] P. Ferrari and R. Frings, Perturbed GUE minor process and Warren's process with drifts, J. Stat. Phys 154 (2014), no. 1-2, 356−377. arXiv:1212.5534 [math-ph]. ↑4
- [JN06] K. Johansson and E. Nordenstam, Eigenvalues of GUE minors, Electron. J. Probab. 11 (2006), no. 50, 1342-1371. arXiv:math/0606760 [math.PR]. $\uparrow 4$
- [Met13] A. Metcalfe, Universality properties of Gelfand-Tsetlin patterns, Probab. Theory Relat. Fields 155 (2013), no. 1-2, 303-346. arXiv:1105.1272 [math.PR]. ↑4
- [NF98] T. Nagao and P.J. Forrester, Multilevel dynamical correlation functions for Dyson's Brownian motion model of random matrices, Physics Letters A 247 (1998), no. 1-2, 42–46. ↑4
- L. Petrov, University of Virginia, Department of Mathematics, 141 Cabell Drive, Kerchof Hall, P.O. Box 400137, Charlottesville, VA 22904, USA E-mail: lenia.petrov@gmail.com