Mobile Communication Networks

Multi-carrier Modulation OFDM

Note: Some slides and/or pictures in the following are adapted from slides ©2010 AAU, Bettstetter - Mobile and Wireless Systems; ©2012 TUB, Schiller - Telematics, Mobile Communications; and adapted from books: ©2015 Beard and Stallings – Wireless Communication Networks and Systems; ©2003 Schiller: Mobile Communications (2ed); ©2008 Eberspächer et al - GSM – Architecture, Protocols, and Services (3ed)

Inter-Symbol-Interference

frequency selective fading and Jamming

Questions:

- How to overcome data rate limitation due to ISI?
- How to cope with (time varying) frequency selective fading?
- How to cope with narrow-band interference? (unintentional or jamming)
- Can multiple users transmit simultaneously in the same frequency band?

Multi-carrier Modulation

Single-carrier Modulation

In a single carrier modulation scheme each data symbol is transmitted sequentially on a single carrier
 → signaling interval equal to data symbol duration

 In a single carrier modulation scheme the modulated carrier occupies the entire available bandwidth

Multi-carrier Modulation (MCM)

- In a multi-carrier modulation (MCM) scheme, N sequential data symbols are transmitted simultaneously (in parallel) on N multiple carriers
 → signaling interval equal to N times data symbol duration
- In a multi-carrier modulation scheme each modulated carrier occupies only a small part of the entire available bandwidth

Multi-carrier Modulation

MCM on Multipath Channels

How OFDM works

- Start with a data stream of R bps
 - Could be sent with bandwidth B
 - With bit duration $T_b = 1/R$

- OFDM splits into N parallel data streams
 - Called subcarriers
 - Each with bandwidth $B' = B/N = f_b$
 - And data rate R' = R/N
 - Bit duration $T_b' = 1/R' = N/R = N*T_b$

Conceptual Understanding of Orthogonal Frequency Division Multiplexing

Orthogonal Frequency Division Multiplexing (OFDM)

- OFDM is a multi-carrier modulation scheme
- In OFDM the frequency spacing between adjacent subcarriers is f_b =1/(NT)
- f_b =1/(NT) is the minimum frequency separation that is necessary to ensure orthogonality between the sub-carriers over the signaling interval of length **NT**
- In OFDM the frequency spectrum of each sub-carrier overlaps the frequency spectrum of adjacent sub-carriers

- The spacing of the f_b frequencies allows tight packing of signals
 - Actually with overlap between the signals
 - Signals at spacing of f_b , $2f_b$, $3f_b$, etc.

- The choice of f_b is related to the bit rate to make the signals orthogonal
 - Average over bit time of $s_1(t) \times s_2(t) = 0$
 - Receiver is able to extract only the $s_1(t)$ signal
 - If there is no corruption in the frequency spacing

- Traditional FDM makes signals completely avoid frequency overlap
 - OFDM allows overlap which greatly increases capacity

Illustration of Orthogonality of OFDM

(a) Three subcarriers in time domain

(b) Three orthogonal subcarriers in frequency domain

(c) Three carriers using traditional FDM

- Given an OFDM subcarrier bit time of T
 - $-f_b$ must be a multiple of 1/T
- Example: IEEE 802.11n wireless LAN
 - 20 MHz total bandwidth
 - Only 15 MHz can be used
 - 48 subcarriers
 - $-f_b = 0.3125 \text{ MHz}$
 - Signal is translated to 2.4 GHz or 5 GHz bands

Benefits of OFDM

- Frequency selective fading only affects some subcarriers
 - Can easily be handled with a forward errorcorrecting code
 - Easier to equalize

Benefits of OFDM

- More importantly, OFDM overcomes intersymbol interference (ISI)
 - ISI is a caused by multipath signals arriving in later bits
 - OFDM bit times are much, much longer (by a factor of N)
 - ISI is dramatically reduced
 - N is chosen so the root-mean-square delay spread is significantly smaller than the OFDM bit time
 - It may not be necessary to deploy equalizers to overcome ISI
 - Eliminates the use of these complex and expensive devices.

Benefits of OFDM

Bandwidth efficiency

 Possible use of Adaptive Modulation and Coding (AMC) in each of the subcarriers

OFDMA

- Orthogonal Frequency Division Multiple Access (OFDMA) uses OFDM to share the wireless channel
 - Different users can have different slices of time and different groups of subcarriers
 - Subcarriers are allocated in groups
 - Called subchannels or resource blocks
 - Too much computation to allocate every subcarrier separately

OFDMA

- Subchannel allocation
 - Adjacent subcarriers similar SINR
 - Must measure to find the best subchannel
 - Regularly spaced subcarriers diverse SINR
 - Randomly space subcarriers diverse SINR and reduced adjacent-cell interference

OFDM and OFDMA

Frequency of subcarrier

(a) OFDM

Frequency of subcarrier

(b) OFDMA (adjacent subcarriers)

Opportunistic scheduling

- Schedule subchannels and power levels based on
 - Channel conditions
 - Data requirements
- Adjust in a dynamic fashion
 - Use channel variations as an opportunity to schedule the best choice in users
 - Hence the term opportunistic scheduling
 - Criteria (maybe more than one used simultaneously)
 - System efficiency pick users with best throughput
 - Fairness proportional fairness considers the ratio of users' current rates to the users' average rates to know when a channel is best for them
 - Requirements audio, video
 - Priority public safety, emergency, or priority customers

Single-carrier FDMA

- SC-FDMA has similar structure and performance to OFDMA
 - Mobile user benefits battery life, power efficiency, lower cost
 - Good for uplinks
- However:
 - Spreads data symbols over all subcarriers
 - Every data symbol is carried by every subcarrier
- Multiple access is not possible
 - At one time, all subcarriers must be dedicated to one user
 - Multiple access is provided by using different time slots

Example of OFDMA and SC-FDMA

(a) OFDMA: Data symbols occupy f_b kHz for one OFDMA symbol period

(b) SC-FDMA: Data symbols occupy $N \times f_b$ kHz for 1/N SC-FDMA symbol period

Example: LTE networks

OFDMA for downlink

SC-FDMA for uplink

Literature

Wireless Communication Networks and Systems,

- C. Beard and W. Stallings, Prentice Hall
- Chap 8