

	Alunos:	Nº Matrícula
)	Curso: Desenvolvimento de Software Multiplataforma	Noturno
	Disciplina: Álgebra Linear	Pré-Prova
	Professor: João Neto	Data
		/ /

1. Para resolver os itens a seguir considere que A= $(a_{ij})_{2x3}$ tal que $a_{ij} = 2i - 3j$, $B = \begin{bmatrix} 1 & 4 \\ 2 & 7 \end{bmatrix}$, $C = \begin{pmatrix} 0 & 2 \\ 1 & -1 \\ 1 & 3 \end{pmatrix}$,

$$\mathsf{D} = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 2 & 1 \\ 3 & 1 & 3 \end{bmatrix} \; \mathsf{e} \; \mathsf{E} = \begin{pmatrix} 1 & 2 & -3 & 2 \\ 0 & -1 & 0 & -7 \\ 4 & -1 & 3 & -3 \\ 5 & 1 & 0 & -1 \end{pmatrix}.$$

a) Apresente a matriz A na forma tabular.

$$A = \begin{pmatrix} -1 - 4 - 7 \\ 1 - 2 - 5 \end{pmatrix}$$

- b) Apresente a matriz Ct (transposta de C) na forma tabular.
- c) Calcule a matriz F = 2A+3Ct;

d) Calcule a matriz G = CB (C vezes B);

e) Calcule o produto dos elementos da diagonal principal de E;

f) Calcule o determinante de E.

$$\det E = \underbrace{e_{13} \cdot E_{13} + \underbrace{e_{33} \cdot E_{33}}_{-3(-52)} = 0 \ (3ero)|_{4}$$

$$E_{13} = (-1)^{4} \begin{vmatrix} 0 \cdot 1 & -1 \\ 4 \cdot 1 & -3 \\ 5 \cdot 1 & -1 \end{vmatrix} = -13 - 39 = -52 \quad E_{33} = (-1)^{6} \begin{vmatrix} 1 & 2 & 2 \\ 0 & -1 & -1 \\ 5 & 1 & -1 \end{vmatrix} = -52$$

g) Calcule o cofator da 1ª linha e 2ª coluna de D;

$$D_{12} = (-1)^{\frac{3}{2}} \begin{vmatrix} 2 & 1 \\ 3 & 3 \end{vmatrix} = -(6 - 3) = -3$$

h) Calcule o elemento da 2ª linha e 1ª coluna de D-1 (inversa da matriz D)

$$d^{-1} = \frac{D_{12}}{\det D} = \frac{-7}{-12} = \frac{7}{12}$$

$$det D = -12$$

$$D_{12} = -3 \text{ (item g)}$$

i) Calcule a inversa de B;

$$B_{49} = 7$$
 $B_{12} = -2$
 $B_{21} = -4$ $B_{22} = 1$ $det B = -1$ $B = \begin{pmatrix} -7 & 4 \\ 2 & -1 \end{pmatrix}$
 $Cofat(B) = \begin{pmatrix} 7 & -2 \\ -4 & 1 \end{pmatrix}$ $Adj(B) = \begin{pmatrix} 7 & -4 \\ 2 & 1 \end{pmatrix}$

2. Para combater a subnutrição infantil, foi desenvolvida uma mistura alimentícia composta por três tipos de suplementos alimentares: I, II e III. Esses suplementos, por sua vez, contêm diferentes concentrações de três nutrientes: A, B e C. Observe as tabelas a seguir, que indicam a concentração de nutrientes nos suplementos e a porcentagem de suplementos na mistura, respectivamente.

Nutrient e	Concentra Alimentare	Suplementos	
•	I	П	III
Α	0,2	0,5	0,4
В	0,3	0,4	0,1
С	0.1	0.4	0.5

Suplemento Alimentar	Quantidade na Mistura (%)
1	45
П	25
III	30

Qual a quantidade do nutriente C, em g/kg, encontrada na mistura alimentícia?

3. Encontre, se existir, o valor de z, em cada sistema a seguir:

a)
$$\begin{cases} x - 3y + z = 1\\ 2x - 5y - z = 5\\ x - 2y + 2z = 0 \end{cases}$$

b)
$$\begin{cases} x - 3y + z = 1\\ 2x - 5y - z = 5\\ 3x - 8y = 7 \end{cases}$$

c)
$$\begin{cases} x - 3y + z = 0 \\ 2x - 5y - z = 0 \\ x - 2y + 2z = 0 \end{cases}$$

a)
$$\begin{cases} x - 3y + z = 1 \\ 2x - 5y - z = 5 \\ x - 2y + 2z = 0 \end{cases}$$

$$-2l_1 + l_2 \begin{cases} x - 3y + z = 1 \\ y - 3z = 3 \\ y + z = -1 \end{cases}$$
b)
$$\begin{cases} x - 3y + z = 1 \\ 2x - 5y - z = 5 \end{cases}$$

$$-2l_1 + l_2 \begin{cases} x - 3y + z = 1 \\ y - 3z = 3 \\ y + z = -1 \end{cases}$$

b)
$$\begin{cases} x - 3y + z = 1 \\ 2x - 5y - z = 5 \\ 3x - 8y = 7 \end{cases} -24 + \frac{1}{2} \begin{cases} x - 3y + 2 = 1 \\ y - 3z = 3 \end{cases}$$
 In consistencia
$$\begin{cases} x - 3y + z = 1 \\ 1 - 3z = 4 \end{cases}$$
 In consistencia

c)
$$\begin{cases} x - 3y + z = 0 \\ 2x - 5y - z = 0 \\ x - 2y + 2z = 0 \end{cases}$$
 Sistema
$$\det A = \begin{vmatrix} 1 - 3 & 1 \\ 2 - 5 & -1 \end{vmatrix} = -11 + 15 = 4 \neq 0$$

$$5PD$$

$$X = 0, Y = 0 \text{ e} = 0$$