Describe the images below;

Describe the images below;

This is a schematic of a thermoluminescence dosimeter (TLD) reader which is used to measure the amount of energy stored in the sample crystal and correlate that to an absorbed dose.

A basic TLD reader system includes:

- Planchet for placing and heating the TLD,
- PMT to detect the thermoluminescence light emission and convert it into an electrical signal linearly proportional to the detected photon fluence and
- Electrometer to record the PMT signal as a charge or current

- A plot of thermoluminescence signal vs. temperature (or incubation time) is called a glow curve.
- In most TL materials, there is more than 1 trap type. These traps have different energy gaps to the conduction band and will therefore empty at different temperatures.
- As the temperature of the TL material exposed to radiation is increased, the probability of releasing trapped electrons increases.
- The light emitted (TL) first increases, reaches a maximum value, and falls again to zero. Because most phosphors contain a number of traps at various energy levels in the forbidden band, the glow curve may consist of a number of glow peaks as shown in above. The different peaks correspond to different "trapped" energy levels.

Describe the calibration method for TLDs

Describe the calibration method for TLDs

Describe the method for calibration of TLD's.

- Prior to exposure for measurement purposes, TLDs must be annealed (baked and cooled according to protocol) to bring the electrons to ground state.
- TLD samples are irradiated to various known doses and the relative light output graphed to produce a dose curve which is used to determine the dose from unknown sources.

What is annealing and what is its purpose?

What is annealing and what is its purpose?

- Because the response of the TLD materials is affected by their previous radiation history and thermal history, the material must be suitably annealed to remove residual effects.
- The standard **preirradiation annealing procedure** for LiF is 1 hour of heating at 400C and then 24 h at 80C.
- The heating to 400C (the degree corresponding to the max wavelength in light) is to release any remaining charges from deeper traps (Attix p401).
- The slow heating, namely 24 hours at 80C, removes peaks 1 and 2 of the glow curve (Fig. 8.12) by decreasing the "trapping efficiency".
- Peaks 1 and 2 can also be eliminated by postirradiation annealing for 10 minutes at 100C.
- The need for **eliminating peaks 1 and 2** arises from the fact that the magnitude of these peaks **decreases relativelyfast with time** after irradiation. By removing these peaks by annealing, the **glow curve becomes more stable andtherefore predictable.**

Is TLD energy dependent?

Is TLD energy dependent?

- The TLD response is defined as TL output per unit absorbed dose in the phosphor. Figure below gives the energy response curve for LiF (TLD-100) for photon energies below megavoltage range. 20% over response at low E (30keV), and 5% under-response for linac energy range, normalized to Co60.
- So very small energy sensitivity in our linac energy range

 $Z_{water} = 7.4$; $Z_{Al_2O_3} \sim 11.28$

Advantages and Disadvantages of TLDs?

Advantages and Disadvantages of TLDs?

Advantages:

- Accuracy 3%
- Small size: 3 mm Area x 1 mm thick
- Wide useful dose range;
 - $5x10^{-5} 10^3$ Gy range.
- Dose-rate independence
- Reusability so reduce the cost

Advantages and Disadvantages of TLDs?

Advantages:

- Accuracy 3%
- Small size: 3 mm Area x 1 mm thick
- Wide useful dose range;
 - $5x10^{-5} 10^3$ Gy range.
- Dose-rate independence
- Reusability so reduce the cost

Disadvantages:

- Fading: Irradiated dosimeters do not permanently retain 100% of their trapped charge carriers, LiF fades ~1% per month.
- Results are not instantly available
- Labor intensive (annealing, calibration, reading)
- Memory of radiation & thermal history
- Light sensitivity: TLDs all show some sensitivity to light. This can cause accelerated fading or leakage of filled traps.

What is the advantage of TLD over diode?

- Less energy dependence compared to diode
- No angular dependence
- No dose rate dependence

Follow up Questions

- Describe the properties of luminescence materials, as relate to dosimetry.
- Describe the method for calibration of TLD's.
- Describe a glow curve and why it is important.
- What are some of the practical advantages and disadvantages of TLD's?
- How do TLDs differ from OSL?