COMP S264F Discrete Mathematics Tutorial 1: Logic (1) – Suggested Solution

Question 1. Note that p is true, q is false, and r is true.

(a)
$$p \land q \to r \equiv (T \land F) \to T$$

 $\equiv F \to T$
 $\equiv T$

(b)
$$p \lor q \to \neg r \equiv (T \lor F) \to \neg T$$

 $\equiv T \to F$
 $\equiv F$

(c)
$$p \land (q \to r) \equiv T \land (F \to T)$$

 $\equiv T \land T$
 $\equiv T$

(d)
$$p \leftrightarrow (q \rightarrow r) \equiv T \leftrightarrow (F \rightarrow T)$$

 $\equiv T \leftrightarrow T$
 $\equiv T$

Question 2.

(a) Truth table of $p \wedge q \rightarrow r$:

p	q	r	$p \wedge q$	$p \wedge q \to r$
T	Т	Τ	Т	T
Τ	T	\mathbf{F}	Τ	\mathbf{F}
Τ	F	\mathbf{T}	F	${ m T}$
Τ	F	F	F	${ m T}$
F	${\rm T}$	${\rm T}$	F	${ m T}$
F	\mathbf{T}	\mathbf{F}	\mathbf{F}	${ m T}$
F	\mathbf{F}	${\rm T}$	\mathbf{F}	${ m T}$
F	F	F	F	T

(b) Truth table of $p \lor q \to \neg r$:

p	q	r	$\neg r$	$p\vee q$	$p \lor q \to \neg r$
Т	Τ	Τ	F	Τ	F
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	${ m T}$	Γ
\mathbf{T}	\mathbf{F}	\mathbf{T}	F	${ m T}$	\mathbf{F}
${\rm T}$	\mathbf{F}	\mathbf{F}	\mathbf{T}	${ m T}$	Γ
\mathbf{F}	${ m T}$	${\rm T}$	F	${ m T}$	F
\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{T}	${ m T}$	Γ
\mathbf{F}	\mathbf{F}	${\rm T}$	F	\mathbf{F}	Γ
\mathbf{F}	F	F	Т	\mathbf{F}	${f T}$

(c) Truth table of $p \land (q \to r)$:

p	q	r	$q \rightarrow r$	$p \land (q \to r)$
Τ	Τ	Τ	T	T
Τ	${ m T}$	\mathbf{F}	F	F
${\rm T}$	\mathbf{F}	${ m T}$	Т	T
${\rm T}$	\mathbf{F}	\mathbf{F}	Т	T
\mathbf{F}	\mathbf{T}	${ m T}$	Т	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}	F	\mathbf{F}
\mathbf{F}	\mathbf{F}	${ m T}$	Т	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{F}	${ m T}$	F

(d) Truth table of $p \leftrightarrow (q \rightarrow r)$:

p	q	r	$q \rightarrow r$	$p \leftrightarrow (q \to r)$
\overline{T}	Т	Τ	Т	Т
${\rm T}$	\mathbf{T}	\mathbf{F}	\mathbf{F}	F
${\rm T}$	\mathbf{F}	Τ	T	m T
\mathbf{T}	\mathbf{F}	\mathbf{F}	Т	${ m T}$
\mathbf{F}	\mathbf{T}	\mathbf{T}	${ m T}$	F
\mathbf{F}	\mathbf{T}	\mathbf{F}	F	m T
\mathbf{F}	\mathbf{F}	${\rm T}$	Т	F
\mathbf{F}	F	F	Т	F

Question 3.

Solution 1: Using truth table

Truth table can be used to show logical equivalences of propositions. The truth tables of the four propositions are shown below:

m	$a \mid \neg p$		$\neg p \neg q$	Implication	Converse	Contrapositive	Inverse
p	q		'4	$p \to q$	$q \to p$	$\neg q \rightarrow \neg p$	$\neg p \rightarrow \neg q$
$\overline{\mathrm{T}}$	Т	F	F	T	Τ	T	T
${ m T}$	\mathbf{F}	F	${ m T}$	\mathbf{F}	${ m T}$	F	${ m T}$
\mathbf{F}	${ m T}$	Т	\mathbf{F}	${ m T}$	${ m F}$	m T	\mathbf{F}
\mathbf{F}	\mathbf{F}	Т	${ m T}$	${ m T}$	${ m T}$	m T	${ m T}$

By identifying the identical columns in the truth table, we can conclude that

• $Implication \equiv Contrapositive$

• $Converse \equiv Inverse$

Solution 2: Using the propositions

 $\bullet \ \ Implication : \ p \to q \ \equiv \ \neg p \lor q$

 $\bullet \ \ Converse: \ q \to p \ \equiv \ \neg q \lor p \equiv p \lor \neg q$

• Contrapositive: $\neg q \rightarrow \neg p \equiv q \lor \neg p \equiv \neg p \lor q \equiv Implication$

• Inverse: $\neg p \rightarrow \neg q \equiv p \lor \neg q \equiv Converse$

Question 4.

(a)
$$\neg(\neg p \land q) \land (p \lor q) \equiv (p \lor \neg q) \land (p \lor q)$$
 (by De Morgan's law)
$$\equiv p \lor (\neg q \land q)$$
 (by the distributive law)
$$\equiv p \lor F$$

$$\equiv p$$

Thus, the logical equivalence is **true**.

(b)
$$(p \land \neg q) \rightarrow (q \rightarrow \neg r) \equiv (p \land \neg q) \rightarrow (\neg q \lor \neg r)$$
 (as $a \rightarrow b \equiv \neg a \lor b$)
 $\equiv \neg (p \land \neg q) \lor (\neg q \lor \neg r)$ (as $a \rightarrow b \equiv \neg a \lor b$)
 $\equiv (\neg p \lor q) \lor (\neg q \lor \neg r)$ (by De Morgan's law)
 $\equiv (q \lor \neg q) \lor \neg p \lor \neg r$
 $\equiv T \lor \neg p \lor \neg r$
 $\equiv T$

However, when p = T, q = F, r = T, we have $(\neg p \lor q) \lor \neg r \equiv F$.

Thus, the logical equivalence is false.

Question 5.

Solution 1: Using truth table

(a) The following truth table shows that $p \otimes p$ is not a tautology $(p \otimes p)$ is a contradiction instead).

$$\begin{array}{c|c} p & p \otimes p \\ \hline T & F \\ F & F \end{array}$$

(b) The following truth table shows that $p \otimes \neg p$ is a tautology.

$$\begin{array}{c|cc} p & \neg p & p \otimes \neg p \\ \hline T & F & T \\ F & T & T \end{array}$$

(c) The following truth table shows that $[(p \to q) \land \neg q] \to \neg p$ is a tautology.

p	q	$\neg p$	$\neg q$	$p \rightarrow q$	$\mid (p \to q) \land \neg q$	$ [(p \to q) \land \neg q] \to \neg p $
T	Т	F	F	T	F	T
\mathbf{T}	\mathbf{F}	F	${ m T}$	F	F	m T
\mathbf{F}	${ m T}$	Γ	\mathbf{F}	Т	F	m T
F	\mathbf{F}	Т	\mathbf{T}	Γ	brack	m T

(d) The following truth table shows that $[p \land (p \rightarrow q)] \rightarrow q$ is a tautology.

p	q	$p \rightarrow q$	$p \wedge (p \to q)$	$[p \land (p \to q)] \to q$
Т	Τ	Т	T	T
${\rm T}$	\mathbf{F}	F	F	m T
\mathbf{F}	${ m T}$	${ m T}$	F	m T
\mathbf{F}	\mathbf{F}	T	F	m T

(e) The following truth table shows that $[(p \lor q) \land \neg p] \to q$ is a tautology.

p	q	$\neg p$	$p \lor q$	$(p \lor q) \land \neg p$	$[(p \lor q) \land \neg p] \to q$
Т	Т	F	Τ	F	T
\mathbf{T}	\mathbf{F}	F	${ m T}$	F	T
\mathbf{F}	${ m T}$	${ m T}$	${ m T}$	T	T
\mathbf{F}	\mathbf{F}	Τ	\mathbf{F}	F	T

Solution 2: Simplifying propositions

(a)
$$p \otimes p \equiv (p \wedge \neg p) \vee (\neg p \wedge p)$$
 (as $a \otimes b \equiv (a \wedge \neg b) \vee (\neg a \wedge b)$)
 $\equiv F \vee F$ (as $a \wedge \neg a \equiv F$)

Thus, the proposition is not a tautology (it is a contradiction instead).

(b)
$$p \otimes \neg p \equiv (p \wedge \neg (\neg p)) \vee (\neg p \wedge \neg p)$$
 (as $a \otimes b \equiv (a \wedge \neg b) \vee (\neg a \wedge b)$)
 $\equiv (p \wedge p) \vee (\neg p \wedge \neg p)$ (as $a \wedge a \equiv a$)
 $\equiv p \vee \neg p$ (as $a \wedge a \equiv a$)
 $\equiv T$ (as $a \vee \neg a \equiv T$)

Thus, the proposition is a tautology.

(c)
$$[(p \to q) \land \neg q] \to \neg p \equiv \neg [(p \to q) \land \neg q] \lor \neg p$$
 (as $a \to b \equiv \neg a \lor b$)
 $\equiv [\neg (p \to q) \lor q] \lor \neg p$ (by De Morgan's law)
 $\equiv \neg (p \to q) \lor (p \to q)$ (as $\neg p \lor q \equiv p \to q$)
 $\equiv T$

Thus, the proposition is a tautology.

(d)
$$[p \land (p \to q)] \to q \equiv \neg [p \land (p \to q)] \lor q$$
 (as $a \to b \equiv \neg a \lor b$)
 $\equiv [\neg p \lor \neg (p \to q)] \lor q$ (by De Morgan's law)
 $\equiv \neg (p \to q) \lor (p \to q)$ (as $\neg p \lor q \equiv p \to q$)
 $\equiv T$

Thus, the proposition is a tautology.

(e)
$$[(p \lor q) \land \neg p] \to q \equiv \neg [(p \lor q) \land \neg p] \lor q$$
 (as $a \to b \equiv \neg a \lor b$)
 $\equiv [\neg (p \lor q) \lor p] \lor q$ (by De Morgan's law)
 $\equiv \neg (p \lor q) \lor (p \lor q)$
 $\equiv T$

Thus, the proposition is a tautology.

Question 6. Let *vowel* and *even* be the statements "a card has a vowel on a side" and "a card has an even number on a side". Then, the statement equals $vowel \rightarrow even$, and its truth table is:

vowel	even	$vowel \rightarrow even$
${ m T}$	Τ	${ m T}$
${ m T}$	F	${ m F}$
\mathbf{F}	${ m T}$	${ m T}$
\mathbf{F}	\mathbf{F}	${ m T}$

Thus, the only case to falsify the statement is that a card has a vowel and an odd number on the two sides.

Card |A|: Since |A| is a vowel, we need to turn over the card to check the number on the other side. If the number is even, then the statement is true; otherwise (the number is odd), the statement is false.

Card |B|: Since |B| is not a vowel, the statement must be true.

Card |4|: Since |4| is an even number, the statement must be true.

Card |7|: Since |7| is an odd number, we need to turn over the card to check the letter on the other side. If the letter is a vowel, the statement is false; otherwise (the letter is not a vowel), the statement is true.

Therefore, we need to turn over cards |A| and |7|.