Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE220

A.A. 2010-2011 - Docente: Prof. Edoardo Sernesi Tutori: Filippo Maria Bonci, Annamaria Iezzi e Maria Chiara Timpone

SOLUZIONI TUTORATO 7 (12 MAGGIO 2011)

- 1. Classificare le superfici definite dai seguenti poligoni etichettati:
 - $abacb^{-1}c^{-1}$:
 - $a_1a_1^{-1}a_2a_2^{-1}\cdots a_{2g-1}a_{2g-1}^{-1}a_{2g}a_{2g}^{-1};$
 - $a_1a_2\cdots a_qa_1a_2\cdots a_q$;
 - $a_1 a_2 \cdots a_q a_1^{-1} a_2^{-1} \cdots a_q^{-1}$;
 - $a_1 a_2 \cdots a_g a_g^{-1} a_{g-1}^{-1} \cdots a_1^{-1};$
 - abc, bde, $c^{-1}df$, $e^{-1}fa$;

$\underline{Soluzione}$:

Classificheremo le superfici definite dai poligoni etichettati per mezzo della caratteristica di Eulero-Poincarè, poichè quest'ultima è un invariante topologico per una superficie compatta e connessa.

Ricordiamo che la caratteristica di Eulero-Poicarè χ di una superficie S compatta e connessa ottenuta come quoziente di un poligono etichettato P_{2m} a 2m lati, tali che i 2m vertici abbiano per immagine k punti distinti di S, è data dalla seguente formula: $\chi(S) = 1 + k - m$.

Richiamiamo, inoltre, che aa^{-1} denota una coppia del primo tipo mentre aa una coppia del secondo tipo.

- \bullet $abacb^{-1}c^{-1}$
 - Poichè il poligono etichettato contiene coppie del secondo tipo, la superficie S definita da quest'ultimo è omeomorfa a un multipiano proiettivo $g'\mathbb{P}^2$. Determiniamo g' mediante la caratteristica di Eulero-Poincaré.

Notiamo che i vertici si ripartiscono in un'unica classe di equivalenza, per cui $\chi(S)=$ 1+1-3=-1. Essendo $\chi(g'\mathbb{P}^2)=2-g'$, otteniamo che $\chi(S)=\chi(g'\mathbb{P}^2)$ per g'=3. Ne concludiamo che S è omeomorfa a $3\mathbb{P}^2$.

• $a_1a_1^{-1}a_2a_2^{-1}\cdots a_{2g-1}a_{2g-1}^{-1}a_{2g}a_{2g}^{-1}$ Poichè il poligono etichettato è costituito unicamente da coppie del primo tipo adiacenti, per il teorema di classificazione, possiamo dunque eliminarle, ottenendo che la superficie di partenza è omeomorfa a quella definita dal poligono etichettato $a_1a_1^{-1}$, cioè a una sfera.

 $\bullet \ a_1a_2\cdots a_ga_1a_2\cdots a_g$

Poichè il poligono etichettato contiene coppie del secondo tipo, la superficie S definita da quest'ultimo è omeomorfa a un multipiano proiettivo $q'\mathbb{P}^2$. Determiniamo q' mediante la caratteristica di Eulero-Poincaré.

Notiamo che i vertici si ripartiscono in g classi di equivalenza, per cui $\chi(S) = 1 + g - g = 1$. Essendo $\chi(g'\mathbb{P}^2)=2-g'$, otteniamo che $\chi(S)=\chi(g'\mathbb{P}^2)$ per g'=1. Ne concludiamo che S è omeomorfa a un piano proiettivo (\mathbb{P}^2).

• $a_1 a_2 \cdots a_q a_1^{-1} a_2^{-1} \cdots a_q^{-1}$

Poichè il poligono etichettato è costituito unicamente da coppie del primo tipo, la superficie S da esso definita è un multitoro g'T di cui determineremo g'. Distinguiamo due casi:

- g pari: i vertici si ripartiscono in un'unica classe di equivalenza, per cui $\chi(S) = 1 + 1 g = 2 g$. Essendo $\chi(g'T) = 2 2g'$, otteniamo che $\chi(S) = \chi(g'T)$ per $g' = \frac{g}{2}$. Ne concludiamo che S è omeomorfa a un $\frac{g}{2}$ toro $(\frac{g}{2}T)$.
- g dispari: i vertici si ripartiscono in due classi di equivalenza, per cui $\chi(S)=1+2-g=3-g$. Essendo $\chi(g'T)=2-2g'$, otteniamo che $\chi(S)=\chi(g'T)$ per $g'=\frac{g-1}{2}$. Ne concludiamo che S è omeomorfa a un $\frac{g-1}{2}$ toro $(\frac{g-1}{2}T)$.
- $a_1 a_2 \cdots a_g a_g^{-1} a_{g-1}^{-1} \cdots a_1^{-1}$ Per il teorema di classificazione, eliminando man mano coppie del primo tipo adiacenti, otteniamo che la superficie è omeomorfa a quella definita dal poligono etichettato $a_1 a_1^{-1}$, cioè a una sfera.
- abc, bde, c⁻¹df, e⁻¹fa
 Applicando il teorema di classificazione otteniamo che la superficie definita da quest'insieme di poligoni etichettati è omeomorfa alla sfera.
- 2. Dimostrare che se ogni punto di uno spazio topologico X possiede un intorno connesso allora le componenti connesse in X sono aperte.

Solutione:

Sia $C\subseteq X$ una componente connessa. Sia $x\in C$ e U un intorno connesso di x. Poichè $x\in C\cap U$ e C e U sono connessi, si ha che l'unione $C\cup U$ è connessa $\Rightarrow C\cup U\subseteq C\Rightarrow U\subseteq C\Rightarrow C$ è intorno di x. Dall'arbitrarietà di x si conclude che C è aperta.

3. Dimostrare che ogni ricoprimento aperto di uno spazio topologico a base numerabile X ammette un sottoricoprimento numerabile.

Solutione:

Sia $\mathcal B$ una base numerabile per X e sia $\mathcal U$ un ricoprimento qualsiasi di X. Definiamo

$$\mathcal{B}' := \{ B \in \mathcal{B} : \exists U \in \mathcal{U} \text{ tale che } B \subset U \}$$

Chiaramente, essendo $\mathcal{B}' \subseteq \mathcal{B}$ e \mathcal{B} numerabile, sarà \mathcal{B}' numerabile.

Ora per ogni $B \in \mathcal{B}'$ si scelga un elemento $U_B \in \mathcal{U}$ tale che $B \subseteq U_B$ (U_B esiste per definizione di \mathcal{B}'). Ne segue che l'insieme $\mathcal{U}' := \{U_B : B \in \mathcal{B}'\}$ è un sottoinsieme numerabile di \mathcal{U} . L'asserto seguirà allora mostrando che \mathcal{U}' è ancora un ricoprimento di X.

Sia $x \in X \Rightarrow \exists U_0 \in \mathcal{U}$ tale che $x \in U_0$ (essendo \mathcal{U} un ricoprimento); allora, dalla definizione di base, $\exists B \in \mathcal{B}$ tale che $x \in B \subseteq U_0$, cioè $B \in \mathcal{B}' \Rightarrow U_B \in \mathcal{U}'$ è tale che $x \in B \subseteq U_B$ da cui la tesi, per l'arbitrarietà di x.

4. Dimostrare il seguente risultato:

Sia X uno spazio che soddisfi il secondo assioma di numerabilità e $\pi: X \to Y$ una mappa quoziente. Se Y è localmente euclideo, allora anche Y soddisfa il secondo assioma di numerabilità.

Soluzione:

Per ogni $y \in Y$ consideriamo U_y l'aperto di Y contenente y ed omeomorfo ad un disco aperto di \mathbb{R}^n e consideriamo la famiglia $\mathcal{U} := \{U_y\}_{y \in Y}$. Ovviamente \mathcal{U} è un ricoprimento aperto di Y.

La famiglia $\{\pi^{-1}(U_y): U_y \in \mathcal{U}\}$ sarà, dunque, un ricoprimento aperto di X che, per l'esercizio precedente, ammetterà un sottoricoprimento numerabile. Indichiamo con $\mathcal{U}' \subset \mathcal{U}$ la sottofamiglia numerabile di \mathcal{U} tale che $\{\pi^{-1}(U_y): U_y \in \mathcal{U}'\}$ ricopre ancora X. Segue che \mathcal{U}' è un ricoprimento numerabile di Y $(Y = \pi(X) = \pi(\cup_{U_y \in \mathcal{U}'} \pi^{-1}(U_y)) = \cup_{U_y \in \mathcal{U}'} \pi(\pi^{-1}(U_y)) = \cup_{U \in \mathcal{U}'} U_y)$

i cui aperti sono omeomorfi a dischi aperti di \mathbb{R}^n . Ciascun disco possiede una base numerabile, dunque l'unione di queste basi è una base numerabile di Y.

5. Sia X uno spazio topologico, $K \subset X$ un sottoinsieme chiuso e $U \subset X$ un aperto contenente K. Dimostrare che, se X e $U \setminus K$ sono connessi, allora anche $X \setminus K$ è connesso.

Soluzione:

Supponiamo per assurdo che $X\setminus K$ non sia connesso. Allora esistono A,B aperti non vuoti di $X\setminus K$ tali che $A\cap B=\varnothing$ e

$$A \cup B = X \setminus K. \tag{1}$$

(Si noti che A e B sono aperti anche in X; infatti per definizione $A = A_X \cap (X \setminus K)$, dove A_X è un aperto di X; ne segue che, essendo K chiuso, A è intersezione finita di aperti di X e dunque è aperto. Analogamente per B.)

Chiaramente $U \setminus K$ è un sottospazio connesso di $X \setminus K$. Ne segue che $U \setminus K \subseteq A$ oppure $U \setminus K \subseteq B$.

Supponiamo

$$U \setminus K \subseteq A.$$
 (2)

Osserviamo che $A \cup K = A \cup U$:

- \subseteq : Basta notare che per ipotesi $K \subseteq U$.
- \supseteq : Da (2) otteniamo che $U = K \cup (U \setminus K) \subseteq A \cup K$; poichè chiaramente vale anche $A \subseteq A \cup K$, si ha $A \cup K \subseteq A \cup U$

Inoltre $U \cap B = \emptyset$, poichè da (1) $B \cap K = \emptyset$ ed, essendo $U \setminus K \subseteq A$, $(U \setminus K) \cap B = \emptyset$.

Ne concludiamo che $X=(A\cup K)\cup B=(A\cup U)\cup B$, cioè X è unione di due aperti non vuoti e disgiunti di X, in contraddizione con le ipotesi.

6. Siano M una varietà topologica connessa di dimensione maggiore di 1 e $K \subseteq M$ un sottoinsieme finito contenuto in una carta locale. Dimostrare che $M \setminus K$ è connesso. (Sugg.: utilizzare l'esercizio precedente)

Soluzione:

In particolare M è di Hausdorff e quindi T1. Ne segue che K è chiuso in M, essendo costituito da un numero finito di punti.

Per ipotesi esiste un aperto U che contiene K omeomorfo a \mathbb{R}^n ; sia $\varphi:U\to\mathbb{R}^n$ un omeomorfismo. Per l'esercizio precedente basta mostrare, essendo M connessa per ipotesi, che $U\setminus K$ è connesso.

Sia dunque $A := \mathbb{R}^n \setminus \{\varphi(k) | k \in K\}$; A è chiaramente connesso (poichè n > 1 e K è finito) e $A \cong U \setminus K$. Ne concludiamo che $U \setminus K$ è connesso.

7. Dimostrare che se $\{C_i\}_{i\in I}$ è una famiglia di compatti in uno spazio di Hausdorff tale che l'intersezione degli elementi di ogni sottofamiglia finita è non vuota allora $\bigcap_{i\in I} C_i \neq \emptyset$.

$\underline{Solutione}$:

Sia C_1 il primo compatto della famiglia $\{C_i\}_{i\in I}$. Supponiamo per assurdo che $\forall x\in C_1 x\notin \bigcap_{i\in I, i\neq 1} C_i \Rightarrow$

$$\Rightarrow C_1 \cap \left(\bigcap_{i \in I, i \neq 1} C_i\right) = \varnothing. \tag{3}$$

Sia $D_i = C_i^c$, $\forall i \in I$; in particolare, D_i è aperto per ogni $i \in I$ poiché i C_i sono chiusi (compatti in uno spazio di Hausdorff).

Osserviamo che (3) $\Rightarrow C_1 \subseteq \left(\bigcap_{i \in I, i \neq 1} C_i\right)^c = \bigcup_{i \in I, i \neq 1} D_i$, da cui $\bigcup_{i \in I, i \neq 1} D_i$ è un ricoprimento aperto di C_1 ; essendo C_1 compatto, possiamo estrarne un sottoricoprimento finito ovvero $\exists n \in \mathbb{N}, n < +\infty$ tale che $C_1 \subseteq \bigcup_{i \in I} D_{i_i}$.

 $\exists \ n \in \mathbb{N}, n < +\infty \text{ tale che } C_1 \subseteq \bigcup_{j=2}^n D_{i_j}.$ Segue che $\varnothing = C_1 \cap \left(\bigcup_{j=2}^n D_{i_j}\right)^c = C_1 \cap \left(\bigcap_{j=2}^n C_{i_j}\right)$: assurdo, poiché per ipotesi ogni intersezione di una sottofamiglia finita è non vuota.