University Physics with Modern Physics Electromagnetism Notes

Chris Doble

December 2022

Contents

21	Elec	tric Charge and Electric Field	2
	21.1	Electric Charge	2
	21.2	Conductors, Insulators, and Incuded Charges	2
		Coulomb's Law	2
	21.4	Electric Field and Electric Forces	3
		Electric-Field Calculations	4
		Electric Field Lines	4
		Electric Dipoles	4
22	Gau	ss's Law	5
	22.1	Calculating Electric Flux	5
	22.2	Gauss's Law	5
		Applications of Gauss's Law	5
	22.4	Charges on Conductors	5
23	Elec	etric Potential	6
		Electric Potential Energy	6
	23.2	Electric Potential	6
		Equipotential Surfaces	7
	23.5	Potential Gradient	7
24	Cap	acitance and Dielectrics	7
	24.1	Capacitors and Capacitance	7
	24.2	Capacitors in Series and Parallel	8
	24.3	Energy Storage in Capacitors and Electric-Field Energy	8
		Dielectrics	9
			10
			10

25	Current, Resistance, and Electromotive				
	Force	10			
	25.1 Current	10			
	25.2 Resistivity	11			
	25.3 Resistance	11			
	25.4 Electromotive Force and Circuits	12			
	25.5 Energy and Power in Electric Circuits	12			
	25.6 Theory of Metallic Conduction	13			
26	26 Direct-Current Circuits 13				
	26.1 Resistors in Series and Parallel	13			

21 Electric Charge and Electric Field

21.1 Electric Charge

- Electrons have a much smaller mass than neutrons and protons
- Neutrons and protons have a very similar mass
- Electrons and protons have the same magnitude of charge
- The number of protons in an atom determins its atomic number
- If an electron is added to a neutral atom it becomes a **negative ion**, if one is removed it becomes a **positive ion** this is called **ionisation**
- The **principle of conservation of charge** states that the algebraic sum of all the electric charges in any closed system is constant
- The electron or proton's magnitude of charge is a natural unit of charge every observable amount of electric charge is an integer multiple of this

21.2 Conductors, Insulators, and Incuded Charges

- Conductors pemit easy movement of charge, insulators do not
- Holding a charged object near an uncharged object causes free electrons in the latter to move away/towards the former, resulting in a net charge on either side — this is called induced charge

21.3 Coulomb's Law

• The SI unit of charge is called one **coulomb** (1 C) and is defined such that $1.602176634 \times 10^{-19}$ C is equal to the charge of an electron or proton

• Coulomb's law describes the electric force between two point charges

$$F = \frac{1}{4\pi\epsilon_0} \frac{|q_1 q_2|}{r^2}$$

where the **electric constant** $\epsilon_0 = 8.854 \times 10^{-12} \,\mathrm{C}^2/\mathrm{N} \cdot \mathrm{m}^2$, q_1 and q_2 are the magnitudes of the charges, and r is the distance between them

- The electric force is always directed along the line between the two charges, attracting opposite charges and repelling like charges
- $\frac{1}{4\pi\epsilon_0}$ can be approximated as $9.0 \times 10^9 \,\mathrm{N}\cdot\mathrm{m}^2/\mathrm{C}^2$
- The principle of superposition of forces also applies to electric charges

21.4 Electric Field and Electric Forces

- The electric force on a charged object is exerted by the electric field created by other charged objects
- We can determine if there is an electric field at a point by placing a test charge q_0 there and seeing if it experiences an electric force the electric field at that point (the electric force per unit charge) is then given by

$$\mathbf{E} = rac{\mathbf{F}}{q_0}$$

• Rearranging, the force experienced by a charge q_0 at a point is given by

$$\mathbf{F} = q_0 \mathbf{E}$$

- When considering an electric field produced by a point charge, the location of the point charge is called the **source point** and the location at which we're trying to determine the field is called the **field point**
- The electric field produced by a point charge is given by

$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{\mathbf{r}}$$

where q is the charge of the point charge, r is the distance between the source and field points, and $\hat{\mathbf{r}}$ is the unit vector from the source to the field point

- Unlike Coulomb's law this equation doesn't use the absolute value of q meaning that the electric fields of positive charges point away from the charge, while those of negative charges point towards them
- \bullet In electrostatics, the electric field inside the material of a conductor (but not holes within the material) is ${\bf 0}$

21.5 Electric-Field Calculations

• The **principle of superposition of electric fields** states that the total electric field at a point *P* is the vector sum of the fields at *P* due to each point charge in the charge distribution

$$\mathbf{E} = \mathbf{E}_1 + \mathbf{E}_2 + \cdots$$

- For a line charge distribution the **linear charge density** is represented by λ (the charge per unit length, measured in C/m)
- For a surface charge distribution the **surface charge density** is represented by σ (the charge per unit area, measured in C/m²)
- For a volume charge distribution the volume charge density is represented by ρ (the charge per unit volume, measured in C/m^3)
- \bullet The electric field of an infinitely long line charge along the y-axis is

$$E = \frac{\lambda}{2\pi\epsilon_0 r}$$

21.6 Electric Field Lines

- An **electric field line** is a line drawn through space such that its tangent at any point is in the direction of the electric field vector at that point
- Fewer lines are drawn in areas where the electric field is weak and more lines are drawn in areas where it's strong

21.7 Electric Dipoles

- An **electric dipole** is a pair of point charges of equal magnitude q and opposite sign separated by a distance d
- ullet The net force on an electric dipole in a uniform electric field is $oldsymbol{0}$
- The **electric dipole moment p** of an electric dipole is a vector directed from the negative charge to the positive charge with magnitude qd
- The net torque on an electric dipole in a uniform electric field is $\mathbf{p} \times \mathbf{E}$ or $qEd\sin\phi$ where ϕ is the angle between the electric dipole and the electric field
- The potential energy of an electric dipole in a uniform electric field is

$$U = -\mathbf{p} \cdot \mathbf{E}$$

22 Gauss's Law

22.1 Calculating Electric Flux

 \bullet The electric flux of a uniform electric field through a flat surface A is

$$\Phi_E = \mathbf{E} \cdot \mathbf{A}$$

where \mathbf{A} is normal to A and has a magnitude equal to its area

The electric flux of a nonuniform electric field through a curved surface A
is

$$\Phi_E = \int \mathbf{E} \cdot \mathbf{dA}$$

22.2 Gauss's Law

• Gauss's law states that the total electric flux through a closed surface is equal to the total electric charge enclosed by the surface divided by ϵ_0

$$\Phi_E = \oint \mathbf{E} \cdot \mathbf{dA} = \frac{Q_{\mathrm{enc}}}{\epsilon_0}$$

22.3 Applications of Gauss's Law

- Gauss's law can be used in two ways:
 - If we know the charge distribution and it has enough symmetry to let us evaluate the integral in Gauss's law, we can find the field
 - If we know the field, we can use Gauss's law to find the charge distribution
- Under electrostatics, excess charge always lies of the surface of a conductor
- The electric field of an infinite line charge is

$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{2\lambda}{r} \hat{\mathbf{r}}$$

22.4 Charges on Conductors

- If there is excess charge at rest on a conductor, all of that charge must lie on the surface of the conductor and the electric field inside the conductor must be zero. If there is a cavity inside the conductor, the net charge on the cavity walls equals the amount of charge enclosed by the cavity
- Charges outside a conductor have no effect on the interior of the conductor, even if it has a cavity inside this is why Faraday cages work
- At the surface of a conductor, the component of the electric field that is perpendicular to the surface is

$$E_{\perp} = \frac{\sigma}{\epsilon_0}$$

23 Electric Potential

23.1 Electric Potential Energy

• The electric potential energy of two point charges is

$$U = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r}$$

• The electric potential energy of a point charge q_0 and a collection of charges q_1, q_2 , etc. is

$$U = \frac{q_0}{4\pi\epsilon_0} \left(\frac{q_1}{r_1} + \frac{q_2}{r_2} + \cdots \right) = \frac{q_0}{4\pi\epsilon_0} \sum_i \frac{q_i}{r_i}$$

- For every electric field due to a static charge distribution, the force exterted by that field is conservative
- The total electric potential energy of a collection of charges q_1, q_2 , etc. is

$$U = \frac{1}{4\pi\epsilon_0} \sum_{i < j} \frac{q_i q_j}{r_{ij}}$$

where r_{ij} is the distance between q_i and q_j

23.2 Electric Potential

- Potential is potential energy per unit charge
- The unit of potential is the **volt**, equal to 1 joule per coulomb
- The potential difference between two points $V_{ab} = V_a V_b$ is called the potential of a with respect to b and equals the amount of work done by the electric force when a unit (1 C) of charge moves from a to b
- The electric potential due to a point charge is

$$V = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$$

• The electric potential due to a collection of point charges is

$$V = \frac{1}{4\pi\epsilon_0} \sum_{i} \frac{q_i}{r_i}$$

• The electric potential due to a continuous charge distribution is

$$V = \frac{1}{4\pi\epsilon_0} \int \frac{dq}{r}$$

• The electric potential difference between two points is given by

$$V_a - V_b = \int_a^b \mathbf{E} \cdot d\mathbf{l} = \int_a^b E \cos \phi \, dl$$

- Positive charges tend to "fall" from high- to low-potential regions while negative charges do the opposite
- When a particle with charge $e = 1.602 \times 10^{-19} \,\mathrm{C}$ moves between two points with a potential difference of $1 \,\mathrm{V} = 1 \,\mathrm{J/C}$ the change in energy is $U_a U_b = q V_{ab} = (1.602 \times 10^{-19} \,\mathrm{C})(1 \,\mathrm{J/C}) = 1.602 \times 10^{-19} \,\mathrm{J}$ which is called 1 **electron volt**

23.4 Equipotential Surfaces

- An **equipotential surface** is a three-dimensional surface on which the electric potential is the same at every point
- Because electric potential energy doesn't change as a test charge moves
 over an equipotential surface, the electric field can do no work and thus
 field lines and equipotential surfaces are always perpendicular
- When all charges are at rest, the surface of a conductor is an equipotential surface
- When all charges are at rest, the entire solid volume of a conductor is at the same potential

23.5 Potential Gradient

 \bullet The relationship between **E** and V is given by

$$\mathbf{E} = -\nabla V = -\left(\frac{\partial V}{\partial x}\hat{\mathbf{i}} + \frac{\partial V}{\partial y}\hat{\mathbf{j}} + \frac{\partial V}{\partial z}\hat{\mathbf{k}}\right)$$

• If E has a radial component E_r with respect to an axis or a point and r is the distance from that axis or point, then

$$E_r = -\frac{\partial V}{\partial r}$$

24 Capacitance and Dielectrics

24.1 Capacitors and Capacitance

 Any two conductors separated by an insulator (or a vacuum) form a capacitor • The capacitance of a capacitor measures its ability to store charge

$$C = \frac{Q}{V_{AB}}$$

• Capacitance is measured in **farads** where

$$1 \, \mathrm{F} = 1 \, \mathrm{C/V}$$

• The capacitance of a parallel plate capacitor in a vacuum is

$$C = \epsilon_0 \frac{A}{d}$$

24.2 Capacitors in Series and Parallel

- In a series connection, the magnitude of charge on all plates is the same
- The **equivalent capacitance** of a combination of capacitors is the capacitance of a single capacitor that would have equivalent behaviour
- In a series connection, the reciprocal of the equivalent capacitance equals the sum of the reciprocals of the individual capacitances

$$\frac{1}{C_{\rm eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \cdots$$

meaning the equivalent capacitance is always less than any individual capacitance

- In a parallel connection, the potential difference is the same for all capacitors
- \bullet In a parallel connection, the equivalent capacitance equals the sum of the individual capacitances

$$C_{\rm eq} = C_1 + C_2 + \cdots$$

meaning the equivalent capacitance is always greater than any individual capacitance

24.3 Energy Storage in Capacitors and Electric-Field Energy

• The potential energy stored in a capacitor is

$$U = \frac{Q^2}{2C} = \frac{1}{2}CV^2 = \frac{1}{2}QV$$

• The **energy density** of a parallel plate capacitor is its energy per unit volume

$$u = \frac{\frac{1}{2}CV^2}{Ad} = \frac{1}{2}\epsilon_0 E^2$$

24.4 Dielectrics

- **Dielectrics** are nonconducting materials
- Most capacitors have a dielectric material between their plates because
 - 1. It preserves the distance between the plates
 - It increases the maximum potential difference between the plates by avoiding dielectric breakdown when the material between the plates becomes ionized and becomes conductive — this happens more easily for air
 - 3. It increases the capacitance by decreasing the potential difference for a given charge
- The dielectric constant of a material is defined as

$$K = \frac{C}{C_0}$$

where C_0 is the capacitance of a capacitor with vacuum between the plates and C is the capacitance of the same capacitor with the material between the plates

• If E_0 is the magnitude of the electric field between the plates of a parallel plate capacitor when separated by a vacuum and E is the magnitude when separated by a dielectric then

$$E = \frac{E_0}{K}$$

• The electric field (and electric potential) are reduced because the dielectric becomes **polarized** and an induced surface charge appears of magnitude

$$\sigma_i = \sigma \left(1 - \frac{1}{K} \right)$$

• The **permittivity** of a dielectric is defined as

$$\epsilon = K\epsilon_0$$

• The capacitance of a parallel plate capacitor with dielectric between the plates is thus

$$C = KC_0 = K\epsilon_0 \frac{A}{d} = \epsilon \frac{A}{d}$$

and the electric energy density is

$$u = \frac{1}{2}K\epsilon_0 E^2 = \frac{1}{2}\epsilon E^2$$

ullet The maximum electric-field magnitude that a material can withstand without the occurrence of breakdown is called its **dielectric strength** and is denoted E_m

24.5 Molecular Model of Induced Charge

- If a material is comprised of polar molecules where the net charge of the molecule is 0 but the charge isn't distributed equally, electric fields cause the molecules to rotate which induces a charge
- Even if a material isn't comprised of polar molecules, electric fields cause molecules' positive and negative charges to separate slightly resulting in a dipole which again experiences a torque
- The charges in conductors are free to move so they're known as **free charges** while the charges in dielectrics aren't so they're known as **bound charges**

24.6 Gauss's Law in Dielectrics

• Gauss's Law in a dielectric material relates the flux of KE through the surface to the amount of free (not bound) charge enclosed by the surface

$$\oint K\mathbf{E} \cdot d\mathbf{A} = \frac{Q_{\text{encl-free}}}{\epsilon_0}$$

• This shows that filling a volume with a dielectric with relative permittivity K reduces the magnitude of the electric field by a factor of 1/K

25 Current, Resistance, and Electromotive Force

25.1 Current

- A current is any motion of charge from one region to another
- \bullet The \mathbf{drift} $\mathbf{velocity}$ $\mathbf{v_d}$ of a current is the velocity of its particles
- While a current may come about through the movement of negative and/or
 positive charges, conventional current dictates that by convention we
 describe currents as if they were carried by positive charges
- The unit of current is the ampere which is defined to be one coulomb per second

$$1 A = 1 C/s$$

- ullet The **charge concentration** n is the number of moving charged particles per unit volume
- The current through an area is given by

$$I = \frac{dQ}{dt} = n|q|v_dA$$

• The current density is the current per unit cross-sectional area

$$J = nqv_d$$

25.2 Resistivity

• The **resistivity** ρ of a material is defined by **Ohm's law**

$$\rho = \frac{E}{J}$$

- The unit of resistivity is ohm-meters (Ωm)
- The reciprocal of resistivity is **conductivity**
- Materials that obey Ohm's law are called **ohmic** or **linear** conductors
- Materials that don't obey Ohm's law are called nonohmic or nonlinear conductors
- The resistivity of a metallic conductor nearly always increases with increasing temperature

$$\rho(T) = \rho_0 [1 + \alpha (T - T_0)]$$

where ρ_0 is the resistivity at reference temperature T_0 and α is the **temperature coefficient of resistivity**

- The resistivity of semiconductors decreases with increasing temperature
- Some materials exhibit **superconductivity** where their resistivity drops to 0 below a critical temperature

25.3 Resistance

• The ratio of the voltage and current in a conductor is called its **resistance**

$$R = \frac{V}{I} = \frac{\rho L}{A}$$

where ρ is the resistivity of the conductor, L is its length, and A is its cross-sectional area

- If ρ is constant (as in ohmic materials), then R is also constant
- The unit of resistance is the ohm

$$1\Omega = 1 \, V/A$$

• Because the resistivity of a material varies with temperature, so too does the resistance of a specific conductor

$$R(T) = R_0[1 + \alpha(T - T_0)]$$

• A device made to have a specific resistance is called a **resistor**

25.4 Electromotive Force and Circuits

- When a charge goes around a complete circuit and returns to its starting position its electric potential energy must be the same, but it experienced losses due to resistance along the way
- Electromotive force or emf \mathcal{E} is the influence that makes current flow from lower to higher potential in a circuit and restores its original potential energy
- A device that provides emf is called a source of emf
- The SI unit of emf is the volt
- In an ideal source of emf
 - The potential difference between its terminals is constant regardless of the current passing through it
 - $-\mathcal{E} = V = IR$
- Real sources of emf have internal resistance r that reduce the terminal voltage

$$V_{ab} = \mathcal{E} - Ir$$

• Real sources of emf can be modelled as an ideal source of emf $\mathcal E$ in series with a resistor r

25.5 Energy and Power in Electric Circuits

• Power is the time rate change of energy transfer

$$P = VI$$

where V is the voltage across a circuit element and I is the current in it

• The SI unit of power is the watt

$$1 \, \text{W} = 1 \, \text{J/s}$$

• If the circuit element is a resistor then V = IR and

$$P=VI=I^2R=\frac{V^2}{R}$$

• If the circuit element is a source of emf outputting power then

$$P = VI = (\mathcal{E} - Ir)I = \mathcal{E}I - I^2r$$

where the $\mathcal{E}I$ term is the power generated by the element and the I^2r term is the power dissipated by its internal resistance

• If the circuit element is a source of emf consuming power (charging) then

$$P = VI = (\mathcal{E} + Ir)I = \mathcal{E}I + I^2r$$

where the terms are the same as above

25.6 Theory of Metallic Conduction

- The average time between collisions of an electron and positive ions is called the **mean free time** τ
- The resistivity of a metal can be approximated as

$$\rho = \frac{m}{ne^2\tau}$$

where m is the mass of an electron, n is the number of free electrons per unit volume, e is the charge of an electron, and τ is the mean free time

26 Direct-Current Circuits

26.1 Resistors in Series and Parallel

- Circuit elements connected one after another with a single current path between them are said to be connected in **series**
- The current is the same for all circuit elements connected in series
- Circuit elements connected such there is an alternate current path for each element are said to be connected in **parallel**
- The potential difference / voltage is the same for all circuit elements connected in parallel
- For any combination of resistors we can always find a single resistor that could replace the combination and result in the same current and potential difference the resistance of this resistor is called the **equivalent resistance**
- The equivalent resistance of a series combination of resistors equals the sum of the individual resistances

$$R_{\rm eq} = R_1 + R_2 + \cdots$$

• The reciprocal of the equivalent resistance of a parallel combination of resistors equals the sum of the reciprocals of the individual resistances

$$\frac{1}{R_{\rm eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$$