L2 Foundation of Physics 2B Optics 2019-20

O.WP.1 Harmonic waves, Complex notation

January 17, 2020

(a) The harmonic wave solution of Maxwell's wave equation is

$$\underline{E}(\underline{r},t) = \underline{E}_0 \cos(\underline{k} \cdot \underline{r} - \omega t) . \tag{1}$$

- 1. What are \underline{k} and ω ? [2 marks]
- 2. Write expressions for \underline{k} and ω in terms of the wavelength of light λ . [2 marks]
- 3. For the case where \underline{E}_0 is a constant, sketch the magnitude of the electric field as a function of position for a harmonic wave with wavelength $\lambda = 0.45 \ \mu \text{m}$. Include a scale on both axes. [Hint: Assume that \underline{k} is parallel the z axis.] [2 marks]
- 4. Now plot the magnitude of the field as a function of time. Include a scale on both axes. [2 marks]
- 5. Now plot the intensity as a function of time and show the time-averaged intensity $\mathcal{I}_0 = \frac{1}{2}c\epsilon_0\mathcal{E}_0$. Include a scale on both axes with the vertical axis in units of \mathcal{I}_0 . [2 marks]
- (b) Make a plot (Argand diagram) showing the location of each of theze complex numbers in the complex plane: (i) -1 + 2i (ii) -1 2i (iii) $2e^{i\pi/2}$, (iv) $2e^{i\pi/4}$. Label your axes and provide a scale. [5 marks]
- (c) Sketch the phasor corresponding to a phase $\phi = 3\pi/4$ [2 marks]