Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

*			

aTD224 •W2W37

States nent of

Soil Conservation Service

Washington Basin Outlook Report June 1, 1994

Basin Outlook Reports and

Federal - State - Private Cooperative Snow Surveys

For more water supply and resource management information, contact:

Local Soil Conservation Service Field Office

or Scott Pattee Acting Water Supply Specialist Soil Conservation Service W. 316 Boone Ave., Suite 450 Spokane, WA 99201-2348 (509) 353-2341

How forecasts are made

Most of the annual streamflow in the Western United States originates as snowfall that has accumulated high in the mountains during winter and early spring. As the snowpack accumulates, hydrologists estimate the runoff that will occur when it melts. Predictions are based on careful measurements of snow water equivalent at selected index points. Precipitation, temperature, soil moisture and antecedent streamflow data are combined with snowpack data to prepare runoff forecasts. Streamflow forecasts are coordinated by Soil Conservation Service and National Weather Service hydrologists. This report presents a comprehensive picture of water supply conditions for areas dependent upon surface runoff. It includes selected streamflow forecasts, summarized snowpack and precipitation data, reservoir storage data, and narratives describing current conditions.

18

Snowpack data are obtained by using a combination of manual and automated SNOTEL measurement methods. Manual readings of snow depth and water equivalent are taken at locations called snow courses on a monthly or semi-monthly schedule during the winter. In addition, snow water equivalent, precipitation and temperature are monitored on a daily basis and transmitted via meteor burst telemetry to central data collection facilities. Both monthly and daily data are used to project snowmelt runoff.

Forecast uncertainty originates from two sources: (1) uncertainty of future hydrologic and climatic conditions, and (2) error in the forecasting procedure. To express the uncertainty in the most probable forecast, four additional forecasts are provided. The actual streamflow can be expected to exceed the most probable forecast 50% of the time. Similarly, the actual streamflow volume can be expected to exceed the 90% forecast volume 90% of the time. The same is true for the 70%, 30%, and 10% forecasts. Generally, the 90% and 70% forecasts reflect drier than normal hydrologic and climatic conditions; the 30% and 10% forecasts reflect wetter than normal conditions. As the forecast season progresses, a greater portion of the future hydrologic and climatic uncertainty will become known and the additional forecasts will move closer to the most probable forecast.

The United States Department of Agriculture (USDA) prohibits discrimination in its programs on the basis of race, color, national origin, sex, religion, age, disability, political beliefs and marital or familial status. (Not all prohibited bases apply to all programs). Persons with disabilities who require alternative means for communication of program information (braille, large print, audiotape, etc.) should contact the USDA Office of Communications at (202) 720-5881 (voice) or (202) 720-7808 (TDD).

To file a complaint, write the Secretary of Agriculture, U.S. Department of Agriculture, Washington, D.C., 20250, or call (202) 720-7327 (voice) or (202) 720-1127 (TDD). USDA is an equal employment opportunity employer.

Washington Water Supply Outlook

JUNE 1994

General Outlook

Forecasts for 1994 runoff vary from 91% of average for Thunder Creek near Newhalem to 42% for the Spokane River near Post Falls. As of June 1, the snowpack varied from a high of 57% of average in the Cowlitz - Lewis River Basin to 0% in many basins state wide. Washington SNOTEL sites averaged 38% of the normal snowpack, down from 70% on May 1. May precipitation was 92% of normal statewide. It varied from 159% of average in the Walla Walla River Basin to 56% in the Wenatchee - Chelan River Basins. Year-to-date precipitation varies from 66% in the Spokane and Yakima Basins to 83% in the Olympic Basin. May temperatures were two to five degrees above normal across the state. May streamflows varied from 107% of normal in the Columbia at Birchbank to 37% in the Yakima River at Kiona. June 1 reservoir storage continued seasonal fluctuations throughout the state, with highs of 160% of average in the Colville - Pend Oreille system to a low of 70% of normal in the Yakima Basin.

Snowpack

By June 1, only 13 higher elevation SNOTEL sites had snow. Only a few sites in the state normaly are melted out at this time. Maximum snow cover was at Paradise SNOTEL near Mount Rainier, with a water content of 43.6 inches. Normal June 1 water content for this site would be 48.1 inches. The June 1 SNOTEL reading showed the statewide snowpack to be 38% of average. Snowpack varied considerably over the state, with the Spokane, Walla Walla and Olympic river basins at 0% to a high of 57% of normal in the Lewis - Cowlitz River Basin. The Olympics droped from a May 1 statewide high of 91% to 0% of average on June 1. Other Westside snowpack averages were: the Skagit River Basin with 30%, the Snohomish River basin at 12% and the White River at 38% of average. Snowpack along the east slopes of the Cascade Mountains included the Yakima Basin with 25% of normal, and the Wenatchee with 32%. Snowpack in the Okanogan Basin was at 50% of normal, and the Kettle had 7%.

Precipitation

May precipitation varied from 193% of average in the Okanogan - Methow River Basins, to 71% in the Yakima Basin. May precipitation reported from National Weather Service stations was 92% of average statewide. The year-to-date precipitation statewide is 71%. It varies from 66% of normal in the Spokane and Yakima Basins, to 83% in the Olympic Basin. SNOTEL sites in Washington showed high elevation year-to-date precipitation values to be 78% of average. Maximum year-to-date precipitation was at the June Lake SNOTEL site near Mt. St. Helens, with 119 inches since October 1, 1993.

Reservoir

With increased snow melt and runoff due to warmer temperatures, some reservoir levels in the state continued to rise. In contrast other reservoirs are beginning to decrease, this can be attributed to many factors like irrigation draw down and early snow melt combined with evaporation. Reservoir storage in the Yakima Basin was 655,600 acre feet, 70% of normal, up from 66% a month ago. Storage at other reservoirs included Roosevelt at 159% of average, and the Okanogan reservoirs at 130% of normal for June 1. The power generation reservoirs included the following: Coeur d'Alene Lake, 230,500 acre feet, or 82% of normal; Chelan Lake, 492,700 acre feet, 109% of average and 73% of capacity, and Ross Lake at 115% of average and 84% of capacity.

Streamflow

May streamflows varied greatly in Washington. Columbia River at Birchbank was the highest at 107% of normal, the Yakima River at Kiona with 37% of normal, was still the lowest in the state. Other streamflows were the following percentage of normal: the Cowlitz River, 66%; the Okanogan River, 90%; the Wenatchee River, 91%; the Columbia at The Dalles, Oregon, 79%, and the Spokane River, 39%. Forecasts for summer streamflows are for below to much below average. They vary from 91% of average for Thunder Creek near Newhalem to 42% of normal for the Spokane River near Post Falls. June forecasts for some Westside streams include: Cedar River, 52%; Green River, 58%; and the Dungeness River, 73%. Some eastside streams include the Grande Ronde River, 70%; the Wenatchee River, 54%; and the Pend Oreille River, 50%. Salmon Creek near Conconully is forecast to have 73% of normal runoff and the Yakima near Parker 63%.

BASIN SUMMARY OF SNOW COURSE DATA

JUNE 1994

SNOW COURSE		ELEVATION	DATE	SNOW DEPTH	WATER CONTENT	LAST YEAR	AVERAGE 1961-90	SNOW COURSE	ELEVATION	DATE	SNOW DEPTH	WATER CONTENT	LAST YEAR	AVERAGE 1961-90
PEND OREILLE RIVE	 SR							UPPER WHEELER PI	LLOW 4400	6/01/94		.os	.0	.0
BUNCHGRASS MDV	VPILLOW	5000	6/01/94		.0	.0	15.4	SQUILCHUCK CREEK						
HOODOO BASIN		6050	6/01/94		8.8E	13.8	32.9	STEMILT CREEK						
HOODOO CREEK		5900	6/01/94		3.6E	10.8	31.9	UPPER WHEELER PI	ILLOW 4400	6/01/94		.06	.0	.0
LOOKOUT	PILLOW	5140	6/01/94		.0	.0	10.0	COLOCKUM CREEK						
KETTLE RIVER								TROUGH #2 PI	ILLOW 5310	6/01/94		.0s	.0	.0
BIG WHITE MTN	CAN.	5510	5/30/94	2	. 6	.0	8.9	YAKIMA RIVER						
FARRON	CAN.	4000	5/26/94	0	.0	.0	.3	BLEWETT PASS 2PI	ILLOW 4270	6/01/94	0	.0s	.0	.0
COLVILLE RIVER								BUMPING RIDGE PI	LLOW 4600	6/01/94		.05	.0	6.3
OMAK LAKE, TWIN I	AKES							CORRAL PASS PI	LLOW 6000	6/01/94		12.58	11.7	19.6
MOSES MTN	PILLOW	4800	6/01/94		.05		.0	FISH LAKE PI	[LLOW 3370	6/01/94		.08	.0	5.0
SPOKANE RIVER								GREEN LAKE PI	LLLOW 6000	6/01/94		.05	.0	3.8
LOST LAKE	(d)	6110	6/01/94		.0E	20.2	41.6	GROUSE CAMP PI	LLOW 5380	6/01/94		.05	.0	.0
MOSQUITO RDG	PILLOW	5200	6/01/94		.0	.0	16.0	LOST HORSE PI	LLOW 5000	6/01/94		.05	.0	.0
SUNSET	PILLOW	5540	6/01/94		.0	4.9	20.7	MORSE LAKE PI	LLOW 5400	6/01/94		8.75	5.1	21.4
LOOKOUT	PILLOW	5140	6/01/94		.0	.0	10.0	OLALLIE MDWS PI	LLOW 3960	6/01/94		6.05	.0	30.0
NEWMAN LAKE								SASSE RIDGE PI	LLOW 4200	6/01/94		.05	.0	1.3
QUARTZ PEAK	PILLOW	4700	6/01/94		.0	.0	.0	STAMPEDE PASS PI	LLOW 3860	6/01/94		.05	.0	15.0
OKANOGAN RIVER								WHITE PASS ES PI	LLOW 4500	6/01/94		.05	.0	4.6
BLACKWALL PEAK	CAN.	6370	6/01/94		2.0	.0	26.2	AHTANUM CREEK						
ENDERBY	CAN.	6200	5/31/94	60	31.5	16.3	39.0	GREEN LAKE PI	LLOW 6000	6/01/94		.05	.0	3.8
FREEZEOUT CK.	TRAIL	3500	5/27/94	0	.0	.0		LOST HORSE PI	LLOW 5000	6/01/94		.05	.0	.0
HARTS PASS		6500	5/26/94	32	16.0	15.6		MILL CREEK						
HARTS PASS	PILLOW	6500	6/01/94		6.05	5.5	25.3	HIGH RIDGE PI	LLOW 4980	6/01/94		.05	.0	.6
MISSION CREEK	CAN.	5800	6/01/94	10	5.0	2.4	13.6	TOUCHET #2 PI	LLOW 5530	6/01/94		.0	.0	
MT. KOBAU	CAN.	5900	5/29/94	0	.0	.0	5.0	LEWIS - COWLITZ RIV	ERS					
SALMON MDWS	PILLOW	4500	6/01/94		.05	.0	.0	JUNE LAKE PI	LLOW 3200	6/01/94		.05	.0	.0
SILVER STAR MT	N CAN.	6000	5/30/94	25	12.2	8.8	16.9	LONE PINE PI	LLOW 3800	6/01/94		5.18	8.5	9.4
WHITE ROCKS MT	N CAN.	6000	6/03/94	0	.0	.0	9.3	PARADISE PARK PI	LLOW 5500	6/01/94		43.65	39.4	48.1
METHOW RIVER								PIGTAIL PEAK PI	LLOW 5900	6/01/94		19.25	2.0	37.5
HARTS PASS		6500	5/26/94	32	16.0	15.6		POTATO HILL PI	LLOW 4500	6/01/94		.05	.0	1.1
HARTS PASS	PILLOW	6500	6/01/94		6.0S	5.5	25.3	SHEEP CANYON PI	LLOW 4050	6/01/94		.05	.0	11.6
SALMON MDWS	PILLOW	4500	6/01/94		.0S	.0	.0	SPENCER MDW PI	LLOW 3400	6/01/94		.05	.0	.0
CHELAN LAKE BASIN								SPIRIT LAKE PI	LLOW 3100	6/01/94		.05	.0	.0
LYMAN LAKE	PILLOW	5900	6/01/94		17.5S	22.8	43.3	SURPRISE LKS PI	LLOW 4250	6/01/94		4.05	2.3	14.5
MINERS RIDGE	PILLOW	6200	6/01/94		17.0S	14.6	38.1	WHITE PASS ES PI	LLOW 4500	6/01/94		.05	.0	4.6
PARK CK RIDGE	PILLOW	4600	6/01/94		.OE	.0	5.2	WHITE RIVER						
RAINY PASS		4780	5/26/94	6	3.0	.0		CORRAL PASS PI	LLOW 6000	6/01/94		12.55	11.7	19.6
RAINY PASS	PILLOW	4780	6/01/94		.58	.0	20.4	MORSE LAKE PI	LLOW 5400	6/01/94		8.75	5.1	21.4
ENTIAT RIVER								GREEN RIVER						
POPE RIDGE	PILLOW	3540	6/01/94		.05	.0	.0	COUGAR MTN. PI	LLOW 3200	6/01/94		.05	.0	.0
NENATCHEE RIVER								GRASS MOUNTAIN #	2 2900	5/31/94	0	.0		
BLEWETT PASS#21	PILLOW	4270	6/01/94	0	.05	.0	.0	LESTER CREEK	3100	5/31/94	0	.0		
FISH LAKE	PILLOW	3370	6/01/94		.05	.0	5.0	LYNN LAKE	4000	5/31/94	0	.0		
LYMAN LAKE	PILLOW	5900	6/01/94		17.58	22.8	43.3	STAMPEDE PASS PI	LLOW 3860	6/01/94		.05	.0	15.0
STEVENS PASS I	PILLOW	4070	6/01/94		.0E	.0	5.7	TWIN CAMP	4100	5/31/94	0	.0		
TROUGH #2	PILLOW	5310	6/01/94		.05	.0	.0	CEDAR RIVER						

SNOW COURSE	ELEVATION	DATE	SNOW DEPTH	WATER CONTENT	LAST YEAR	AVERAGE 1961-90	SNOW COURSE	ELEVATION	DATE	SNOW DEPTH	WATER CONTENT	LAST YEAR	AVERAGE 1961-90
MT. GARDNER PIL	LOW 2860	6/01/94		.08		.0	NEW HOZOMEEN LAKE	2800	5/27/94	0	. 0	.0	
TINKHAM CREEK PIL	LOW 3000	6/01/94		.08		.0	RAINY PASS	4780	5/26/94	6	3.0	.0	
MEADOWS PASS PIL	LOW 3240	6/01/94		.08		.0	RAINY PASS PILLO	W 4780	6/01/94		.58	.0	20.4
SNOQUALHIE RIVER							THUNDER BASIN	4200	5/26/94	3	.8	. 0	6.9
OLALLIE MDWS PIL	LOW 3960	6/01/94		6.05	.0	30.0	THUNDER BASIN PILLO	W 4200	6/01/94		.08	.0	
SKYKOMISH RIVER							BAKER RIVER						
STAMPEDE PASS PIL	LOW 3860	6/01/94		.05	.0	15.0	DOCK BUTTE A	Н 3800	6/01/94		24.4E		52.5
STEVENS PASS PIL	LOW 4070	6/01/94		.0E	.0	5.7	BASY PASS A	M 5200	6/01/94		36.6E		73.3
SKAGIT RIVER							HT. BLUM A	H 5800	6/01/94		34.0E		68.1
BEAVER CREEK TRAI	L 2200	5/27/94	0	. 0	.0		SCHREIBERS MDW A	н 3400	6/01/94		18.6E		41.4
BEAVER PASS	3680	5/27/94	0	.0	.0		WATSON LAKES A	H 4500	6/01/94		25.8€		57.4
BROWN TOP	AH 6000	5/27/94	43	21.6	16.0		ELWHA RIVER						
DEVILS PARK	5900	5/26/94	26	13.6	4.6	31.8	MORSE CREEK						
FREEZEOUT CK. TRA	IL 3500	5/27/94	0	.0	.0		DUNGENESS RIVER						
HARTS PASS	6500	5/26/94	32	16.0	15.6		QUILCENE RIVER						
HARTS PASS PIL	LOW 6500	6/01/94		6.0S	5.5	25.3	MOUNT CRAG PILLO	₩ 4050	6/01/94		.08	.0	.0
LYMAN LAKE PIL	LOW 5900	6/01/94		17.55	22.8	43.3	WYNOOCHEE RIVER						
MEADOWS CABIN	1900	5/26/94	0	.0	.0		(d) Denotes discontinue	d site.					

Interpreting Streamflow Forecasts

Introduction

Each month, five forecasts are issued for each forecast point and each forecast period. Unless otherwise specified, all streamflow forecasts are for streamflow volumes that would occur naturally without any upstream influences. Water users need to know what the different forecasts represent if they are to use the information correctly when making operational decisions. The following is an explanation of each of the forecasts.

Most Probable (50 Percent Chance of Exceeding) Forecast. This forecast is the best estimate of streamflow volume that can be produced given current conditions and based on the outcome of similar past situations. There is a 50 percent chance that the streamflow volume will exceed this forecast value. There is a 50 percent chance that the streamflow volume will be less than this forecast value.

The most probable forecast will rarely be exactly right, due to errors resulting from future weather conditions and the forecast equation itself. This does not mean that users should not use the most probable forecast; it means that they need to evaluate existing circumstances and determine the amount of risk they are willing to take by accepting this forecast value.

To Decrease the Chance of Having Too Little Water

If users want to make sure there is enough water available for their operations, they might determine that a 50 percent chance of the streamflow volume being lower than the most probable forecast is too much risk to take. To reduce the risk of not having enough water available during the forecast period, users can base their operational decisions on one of the forecasts with a greater chance of being exceeded (or possibly some point in-between). These include:

70 Percent Chance of Exceeding Forecast. There is a 70 percent chance that the streamflow volume will exceed this forecast value. There is a 30 percent chance the streamflow volume will be less than this forecast value.

90 Percent Chance of Exceeding Forecast. There is a 90 percent chance that the streamflow volume will exceed this forecast value. There is a 10 percent chance the streamflow volume will be less than this forecast value.

To Decrease the Chance of Having Too Much Water

If users want to make sure they don't have too much water, they might determine that a 50 percent chance of the streamflow being higher than the most probable forecast is too much of a risk to take. To reduce the risk of having too much water available during the forecast period, users can base their operational decisions on one of the forecasts with a smaller chance of being exceeded. These include:

30 Percent Chance of Exceeding Forecast. There is a 30 percent chance that the streamflow volume will exceed this forecast value. There is a 70 percent chance the streamflow volume will be less than this forecast value.

10 Percent Chance of Exceeding Forecast. There is a 10 percent chance that the streamflow volume will exceed this forecast value. There is a 90 percent chance the streamflow volume will be less than this forecast value.

Using the Most Probable Forecast. Using the example forecasts shown below, users can reasonably expect 36,000 acre-feet to flow past the gaging station on the Mary's River near Deeth between March 1 and July 31.

Using the Higher Exceedance Forecasts. If users anticipate a somewhat drier trend in the future (monthly and seasonal weather outlooks are available from the National Weather Service every two weeks), or if they are operating at a level where an unexpected shortage of water could cause problems, they might want to plan on receiving only 20,000 acre-feet (from the 70 percent chance of exceeding forecast). In seven out of ten years with similar conditions, streamflow volumes will exceed the 20,000 acre-foot forecast.

If users anticipate extremely dry conditions for the remainder of the season, or if they determine the risk of using the 70 percent chance of exceeding forecast is too great, then they might plan on receiving only 5000 acre-feet (from the 90 percent chance of exceeding forecast). Nine out of ten years with similar conditions, streamflow volumes will exceed the 5000 acre-foot forecast.

Using the Lower Exceedance Forecasts. If users expect wetter future conditions, or if the chance that five out of every ten years with similar conditions would produce streamflow volumes greater than 36,000 acre-feet was more than they would like to risk, they might plan on receiving 52,000 acre-feet (from the 30 percent chance of exceeding forecast) to minimize potential flooding problems. Three out of ten years with similar conditions, streamflows will exceed the 52,000 acre-foot forecast.

In years when users expect extremely wet conditions for the remainder of the season and the threat of severe flooding and downstream damage exists, they might choose to use the 76,000 acre-foot (10 percent chance of exceeding) forecast for their water management operations. Streamflow volumes will exceed this level only one year out of ten.

			STREA	MFLOV	V FORECAS	STS		
		<dri< th=""><th>ER FU</th><th>TURE CO</th><th>NOTTIONS -</th><th>WETT</th><th>TER> </th><th></th></dri<>	ER FU	TURE CO	NOTTIONS -	WETT	TER>	
FORECAST POINT	FORECAST	I			Exceeding -			
	PERIOD	I 90% I (1000AF)	70% I 50 (1000AF)I (1		Probable) % AVG.) (
MARY'S RIVER nr Deeth	MAR-JUL	5.0	20.0	36	<i>7</i> 7 I	52	76	47
	APR-JUL	8.0	17.0 I	31	74 I	45	67	42
LAMOILLE CREEK nr Lamoille	MAR-JUL	6.0	16.0 I	24	79 I	32	43	31
	APR-JUL	4.0	15.0 l	22	75 I	30	41	30
NF HUMBOLDT RIVER at Devils Gate	MAR-JUL	6.0	120 1	43	73 1	74	121	59

For more information concerning streamflow forecasting ask your local SCS field office for a copy of "A Field Office Guide for Interpreting Steamflow Forecasts".

1) Spokane River Basin

Mountain Snowpack* (inches)

Precipitation* (% of normal)

*Based on selected stations

The June 1 forecast for summer runoff within the Spokane River Basin is 42% of normal, up slightly from 41% last month. The forecast is based on a snowpack that is 0% of average and precipitation that is 66% of normal for the water year. Precipitation for May was 101% of average. Streamflow in the Spokane River was 39% of average for May. June 1 storage in Coeur d'Alene Lake was 230,500 acre feet, 82% of normal, and 97% of capacity. Temperatures in the basin were three degrees above normal during May.

SPOKANE RIVER BASIN

Streamflow Forecasts - June 1, 1994

		<< 	- Drier	Future C	conditions	Wetter	>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	50% (Most	Exceeding * = Probable (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
SPOKANE near Post Falls	JUN-SEP	109	245	335	42	425	560	794
SPOKANE at Long Lake	JUN-JUL JUN-SEP	200 330	320 470	400 565	46 52	480 660	600 800	861 1083
SPOKANE RIVER Reservoir Storage		of May		 	SPOKANE RI	IVER BASIN owpack Analys	is - June 1	, 1994
Reservoir	Usable Capacity	*** Usab] This Year	le Storage * Last Year A	•	rshed	Numbe of Data Si		Year as & of Yr Average
COFID D'ALENE	238.5	230.5	227.5 28	0.5 Spok	ane River	7		

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
- (2) The value is natural flow actual flow may be affected by upstream water management.

Quartz Peak SNOTEL

2) Colville - Pend Oreille River Basins

Mountain Snowpack* (inches)

Precipitation* (% of normal)

*Based on selected stations

The forecast for the Kettle River streamflow is for 73% of normal; the Pend Oreille, 50%, and the Colville River, 66% of normal for the summer runoff period. Forecast for the Columbia River at Birchbank is for runoff to be 87% of average. May streamflow was 73% of normal in the Pend Oreille River, 107% in the Columbia at the International Boundary, and 89% in the Kettle River. June 1 snow cover was 19% of normal in the Pend Oreille Basin. Snowpack at Bunchgrass Meadow SNOTEL site contained 0.0 inches of water, the average June 1 reading is 15.4 inches. Precipitation during May was 91% of average, bringing the water year-to-date to 79% of normal. Temperatures were three degrees above normal for May.

COLVILLE - PEND OREILLE RIVER BASINS

Streamflow Forecasts - June 1, 1994

		<<	Drier	Future Co	onditions	Wetter	>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	50% (Most	Probable) (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg (1000AF
PEND OREILLE bl Box Canyon (1,2)	JUN-JUL JUN-SEP	485 1010	2160 2860	2920 3700	45 48	3680 4540	5360 6390	6543 7756
CHAMOKANE CK nr Long Lake	MAY-AUG JUL-AUG	0.3	3.1 1.9	5.1 2.0	54 61	7.1 2.1	9.9 2.4	9.4 3.3
COLVILLE at Kettle Falls	Jun-sep Jun-Jul	14.0 9.0	22 16.0	 27 20	66 67	32 24	40 31	41
ETTLE near Laurier	JUN-SEP JUN-JUL	420 390	540 485	 620 550	73 73	700 615	820 710	851 758
OLUMBIA at Birchbank (1,2)	jun-jul jun-sep	15800 23100	17900 25900	 18900 27100	82 86	19900 28300	22000 31100	22910 31580
OLUMBIA at Grand Coulee Dm (1,2)	JUN-SEP JUN-JUL	27200 19500	31100 22700	 32800 2 4 100	79 77	34500 25500	38400 28700	4170 <i>6</i> 31400

	COLVILLE - PEND OREILLE RIVER Reservoir Storage (1000 AF) - End		COLVILLE - PEND OREILLE RIVER BASINS Watershed Snowpack Analysis - June 1, 1994					
Reservoir	Usable Capacity 		able Store Last Year	age *** Avg	Watershed	Number of Data Sites		r as & of
ROOSEVELT	5232.0	4532.3	4491.4	2851.0	Colville River	0	0	0
BANKS	715.0	689.6	701.5	418.0	Pend Oreille River	43	54	19
					Kettle River	2	0	7

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

3) Okanogan - Methow River Basins

Mountain Snowpack* (inches)

Precipitation* (% of normal)

*Based on selected stations

Summer runoff forecast for the Okanogan River is for 51% of normal; the Similkameen River, 50%, and the Methow River, 64% of normal. With Salmon Creek near Conconully at 73% of average. June 1 snow cover in the Okanogan was 42% of normal, the Smilkameen 8%, and the Methow 24%. May precipitation in the Okanogan - Methow was 99% of normal, with water year-to-date at 79% of average. May streamflow in the Methow River was 83% of normal, 86% in the Similkameen, and 90% in the Okanogan River. Snow water content at the Harts Pass SNOTEL, elevation 6500 feet, was 6.0 inches; normal for this site is 25.3 inches. Temperatures were three degrees above normal for May. Combined storage in the Conconully and Salmon Lake Reservoirs was 23,400 acre feet, which is 100% of capacity and 130% of the June 1 average.

OKANOGAN - METHOW RIVER BASINS

Streamflow Forecasts - June 1, 1994

		<<	Drier	Future Co	onditions	Wetter	>>	
Forecast Point	Forecast	 		- Chance Of E	Exceeding * =			
	Period	90%	70%	50% (Most	Probable)	30%	10%	30-Yr Avg.
		(1000AP)	(1000AF)	(1000AF)	(% AVG.)	(1000AF)	(1000AF)	(1000AF)
SIMILKAMEEN nr Nighthawk (1)	MAY-SEP	485	600	655	50	710	825	1300
	MAY-JUL	470	585	640	53	695	810	1205
	MAY-JUN	435	510	540	53	570	645	1014
OKANOGAN RIVER nr Tonasket (1)	MAY-SEP	260	595	 750	51	905	1240	1485
	MAY-JUL	260	555	690	52	825	1120	1328
	MAY-JUN	235	475	580	53	685	925	1095
SALMON CREEK nr Conconully	JUN-JUL	0.1	4.3	7.1	76	9.9	14.1	9.3
•	JUN-SEP	0.1	4.3	7.4	73	10.5	15.1	10.2
METHOW RIVER nr Pateros (1)	MAY-SEP	370	490	545	64	600	720	854
	MAY-JUL	350	470	520	66	570	690	786
	MAY-JUN	280	390	440	67 İ	490	600	659

Reservoir Storage (100	0 AF) - End	of May	!	Watershed Snowpack Analysis - June 1, 1994					
Reservoir	Usable Capacity	*** Usab This Year	le Storag Last Year	ge *** Avg	Watershed	Number of Data Sites	This Year		
SALMON LAKE	10.5	10.4	8.9	9.0	Okanogan River	8	172	42	
CONCONULLY RESERVOIR	13.0	13.0	8.7	9.0	Methow River	2	109	24	

1

OKANOGAN - METHOW RIVER BASINS

The average is computed for the 1961-1990 base period.

OKANOGAN - METHOW RIVER BASINS

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
- (2) The value is natural flow actual flow may be affected by upstream water management.

Rainy Pass SNOTEL

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

4) Wenatchee - Chelan River Basins

Mountain Snowpack* (inches)

Precipitation* (% of normal)

*Based on selected stations

The summer forecast for the Chelan River is for 71% of normal, for the Wenatchee River it is 54%, and 74% for the Squilchuck-Stemilt. Icicle Creek can expect 82% runoff this summer. Streamflow for May on the Chelan River was 95% of average and on the Wenatchee River it was 91% of normal. June 1 snowpack in the Wenatchee Basin was 32% of average, the Chelan 33% and the Stimelt was 0% of normal. Precipitation during May was 56% of normal in the basin and 69% for the year-to-date. Runoff for the Entiat River is forecast to be 72% of normal for the summer. Reservoir storage in Lake Chelan was 492,700 acre feet or 109% of June 1 average and 73% of capacity. Lyman Lake SNOTEL had the most snow water with 17.5 inches of water. This site would normally have 43.3 inches.

WENATCHEE - CHELAN RIVER BASINS

Streamflow Forecasts - June 1, 1994

		<<	- Drier		Future Co	nditions	Wetter	>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)		0% (Most (1000AF)	Probable) (% AVG.)	30 % (1000AF) (10% (1000AF)	30-Yr Avg (1000AF
CHELAN RIVER at Chelan (1)	MAY-SEP	5 3 5	675		740	71	805	945	1041
	MAY-JUL	460	585	1	640	71	695	820	905
	MAY-JUN	355	445	-	490	71	535	625	693
STEHEKIN R. at Stehekin	MAY-SEP	475	520	i	550	73	580	625	751
	MAY-JUL	395	435	- 1	460	74	485	525	625
	MAY-JUN	295	320		340	74	360	385	462
ENTIAT RIVER nr Ardenvoir	MAY-SEP	118	137	-	150	72	163	182	208
	MAY-JUL	111	128	ı	140	74	152	169	188
	MAY-JUN	90	104	1	113	75	122	136	150
WENATCHEE R. at Peshastin	MAY-SEP	275	570	-	765	54	960	1250	1428
	MAY-JUL	270	530	i	705	55	880	1140	1277
	MAY-JUN	230	430	į	568	57	705	905	997
STEMILT nr Wenatchee (miners in)	MAY-SEP	57	84		102	74	120	147	138
ICICLE CREEK nr Leavenworth	APR-SEP	184	255		305	82	355	425	370
	APR-JUL	169	235	- 1	280	82	325	390	340
	APR-JUN	137	189	-	225	83	260	315	270
COLUMBIA R. bl Rock Island Dam (2)	JUN-SEP	28100	32300	i	35200	78	38100	42300	45171
	JUN-JUL	20200	23700		26100	76 	28500	32000	34423
WENATCHEE - CHELAN F Reservoir Storage (1000	RIVER BASINS	;			!	WENATCHEE	- CHELAN RIVER wpack Analysis	BASINS	
	Usable		e Storage		 !		Number		Year as % of
Reservoir	Capacity		Last		Waters	shed	of		
	i	Year	Year	Avg	į		Data Site		ir Average
HELAN LAKE	676.1			50.6	!	n Lake Basin	4	94	33
					Entiat	River	1	0	0
					 Wenato	chee River	6	77	32

Squilchuck Creek
Stemilt Creek
Colockum Creek

The average is computed for the 1961-1990 base period.

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

5) Yakima River Basin

Mountain Snowpack* (inches)

Precipitation* (% of normal)

*Based on selected stations

June 1 reservoir storage for the five major reservoirs was 655,600 acre feet, 70% of average. June 1 summer streamflow forecasts are for below normal in the Yakima Basin. Forecasts for the Yakima River at Cle Elum are for 57% of normal; Naches River, 75%; the Yakima River near Parker, 63%; Ahtanum Creek, 71%; and the Tieton River, 78%. new forecast point for the Klickitat River near Glenwood was 52% of May streamflows had the Yakima River at Parker at 64% of normal, 72% for the Yakima near Cle Elum, and 71% for the Naches June 1 snowpack was 25% based upon 11 snow courses and SNOTEL River. readings. May precipitation was 99% of normal and 66% for the water year-to-date. Temperatures were three degrees above average for May. Volume forecasts for the Yakima Basin are for natural flow. they may differ from the U. S. Bureau of Reclamation's forecast for the total water supply available which includes irrigation return flow.

For more information contact your local Soil Conservation Service office.

YAKIMA RIVER BASIN

Streamflow Forecasts - June 1, 1994

			DITCI	rucure co	nditions -	Wetter		
Forecast Point	Forecast	! 		- Chance Of E	xceeding * '			
	Period	90%	70%	50% (Most	Probable)	30%	10%	30-Yr Ave
		(1000AF)	(1000AF)	(1000AF)	(% AVG.)	(1000AF)	(1000AF)	(1000A)
EECHELUS LAKE INFLOW	JUN-JUL	9.0	18.0	24	47	30	40	5:
	JUN-SEP	15.0	26	33	53	40	51	62
	JUN-JUN	9.0	15.0	20	55	24	31	30
ACHESS LAKE INFLOW	JUN-JUL	13.0	20	25	56	30	37	4
	JUN-SEP	16.0	24	30	58	36	44	5
	JUN-JUN	11.0	16.0	20	61	24	29	3
LE ELUM LAKE INFLOW	JUN-JUL	76	100	117	58	134	158	20
	JUN-SEP	94	123	143	60	163	192	23
	JUN-JUN	49	70	84	61	98	119	13
AKIMA at Cle Elum	JUN-JUN	67	102	125	50	148	183	25
	JUN-JUL	107	157	192	53	225	280	36
	JUN-SEP	156	215	255	57	295	355	44
UMPING LAKE INPLOW	JUN-SEP	40	53	62	81	71	84	7
	JUN-JUL	34	45	53	82	61	73	6
	JUN-JUN	21	31	37	82	44	53	4
MERICAN RIVER near Nile	JUN-SEP	40	47	52	80	57	64	6.
	JUN-JUL	30	37	42	75	47	54	5
	JUN-JUN	21	26	30	77	34	39	3
IMROCK LAKE INFLOW	JUN-SEP	85	101	111	78	122	137	14
	JUN-JUL	60	71	79	75	87	98	10
	JUN-JUN	37	45	51	76	57	65	6
CHES near Naches	JUN-SEP	225	280	320	75	360	415	42
	JUN-JUL	186	235	265	76	295	345	34
	JUN-JUN	116	155	182	75	210	250	24
TANUM CREEK nr Tampico (2)	MAY-SEP	19.0	24	27	71	30	36	3
	MAY-JUL	17.0	22	25	74	28	33	3
	MAY-JUN	15.0	18.0	21	75	24	27	2
KIMA near Parker	JUN-SEP	355	495	590	63	685	825	93
	JUN-JUL	260	375	455	61	535	650	74
	JUN-SEP	355	495	590	63	685	825	93
ICKITAT near Glenwood	JUN-JUN	10.0	16.0	20	51	24	30	3
ICKITAL HEAL GLEHWOOD				36			53	70

YAKIMA RIVER BASIN Reservoir Storage (1000	AF) - End	of May			YAKIMA RIVER BASIN Watershed Snowpack Analysis - June 1, 1994						
Reservoir	Usable Capacity	*** Usa This Year	ble Stora Last Year	ge *** Avg	Watershed	Number of Data Sites	This Year	r as % of Average			
KEECHELUS	157.8	122.9	140.4	144.0	Yakima River	11	162	25			
KACHESS	239.0	99.3	133.1	218.0	Ahtanum Creek	1	0	0			
CLE ELUM	436.9	277.3	327.6	378.0							
BUMPING LAKE	33.7	29.1	30.8	27.0							
RIMROCK	198.0	127.0	159.7	167.0 							

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

6) Walla Walla River Basin

Mountain Snowpack* (inches)

Precipitation* (% of normal)

*Based on selected stations

June 1 snowpack was at 0% of normal. The forecast for the coming summer is for 81% of average streamflow in the Walla Walla River for 70% in the Grande Ronde; 47% in the Snake River; and 88% in Mill Creek. May streamflow was 62% of normal in the Walla Walla River, 59% for the Snake River, and 75% on the Grande Ronde River near Troy. May precipitation was 159% of average, bringing the year-to-date precipitation to 77% of normal. The Touchet SNOTEL site apparently melted out on May 17. Temperatures averaged two degrees above normal.

WALLA WALLA RIVER BASIN

Streamflow Forecasts - June 1, 1994

		<	Drier	Future Co	onditions	Wetter	>>	
Forecast Point	Forecast	 		- Chance Of E	xceeding * =			
	Period	90%	70%	50% (Most	Probable)	30%	10%	30-Yr Avg.
		(1000AF)	(1000AF)	(1000AF)	(% AVG.)	(1000AF)	(1000AF)	(1000AF)
GRANDE RONDE at Troy (1)	JUN-JUL	190	280	320	69	360	450	466
	JUN-SEP	240	345	395	70	445	555	564
SNAKE blw Lower Granite Dam (1,2)	JUN-JUL	2340	3450	3960	41	4470	5580	9678
	JUN-SEP	3370	4780	5420	44	6060	7470	12390
MILL CREEK at Walla Walla	MAY-SEP	3.4	5.3	6.6	88	7.9	9.8	7.5
	MAY-JUL	3.2	5.1	6.4	88	7.7	9.6	7.3
	MAY-JUN	3.2	5.0	6.2	87	7.4	9.2	7.1
SF WALLA WALLA nr Milton Freewater	MAY-JUL	24	28	30	81	32	36	37
COLUMBIA R. at The Dalles (2)	JUN-SEP	27400	34300	38900	65	43500	50400	59652
	JUN-JUL	19100	24800	28700	63	32600	38300	45431
WALLA WALLA RIVER BA Reservoir Storage (1000		of May				LA RIVER BASI owpack Analys		1994
	Usable	*** Usable	e Storage **	*		Numbe	r This	ear as & of

Last

Year

The average is computed for the 1961-1990 base period.

Reservoir

This

Year

Capacity|

Touchet #2 SNOTEL

Watershed

Mill Creek

of

Data Sites

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

7) Cowlitz - Lewis River Basins

Mountain Snowpack* (inches)

Precipitation* (% of normal)

*Based on selected stations

May precipitation was 75% of normal, bringing the precipitation to 74% of average for the water year. June 1 snow cover for the Cowlitz River was 61%, and for the Lewis River it was 38%. The forecast for summer runoff in the Lewis River is 70% of normal. The Cowlitz River, is forecasted for 53% of normal runoff. May streamflow in the Cowlitz River was 66% of average, and 56% in the Lewis River. The Paradise Park SNOTEL contained the most water content for the basin with 43.6 inches of water. Normal June 1 water content is 48.1 inches. Temperatures were four degrees above normal for May.

COWLITZ - LEWIS RIVER BASINS

Streamflow Forecasts - June 1, 1994

Cast 100 90% (1000AI SEP	70% f) (1000AF) 505 415 340 500 420	50% (Most	Exceeding *	30% (1000AF) 675 555 460	10% (1000AF) 805 660 545	30-Yr Avg (1000AF 848 696 578
(1000AI SEP 380 JUL 310 JUN 255 SEP 35 JUL 29	505 415 340	(1000AF) 590 485 400 	70 70 70 69	(1000AF) 675 555 460	(1000AF) 805 660 545	(1000AF 848 696 578 1531
JUL 310 JUN 255 SEP 35 JUL 29	415 340 500	485 400 815	70 69 53	555 460 1130	660 545 1600	696 578 1531
JUN 255 SEP 35 JUL 29	340 500	400 815	69 53	1130	545 1600	578 1531
SEP 35 JUL 29	500	815	53	1130	1600	1531
JUL 29		•	•			
	420	1 685	53	050	3340	
TID: 10 0		005	۱ در	950	1340	1292
JUN 19.0	335	550	53	765	1080	1038
SEP 20	570	975	48	1380	1970	2021
JUL 17.0	470	806	48	1140	1640	1679
JUN 14.0	380	650	48	920	1320	1349
JUN 10.0	16.0	20	51	24	30	39
SEP 19.0	29	36	52	43	53	70
	JUL 17.0 JUN 14.0 JUN 10.0	JUL 17.0 470 JUN 14.0 380 JUN 10.0 16.0 SEP 19.0 29	TUL 17.0 470 806 TUN 14.0 380 650 TUN 10.0 16.0 20 SEP 19.0 29 36	JUL 17.0 470 806 48 JUN 14.0 380 650 48 JUN 10.0 16.0 20 51 SEP 19.0 29 36 52	JUL 17.0 470 806 48 1140 JUN 14.0 380 650 48 920 JUN 10.0 16.0 20 51 24 SEP 19.0 29 36 52 43	TUL 17.0 470 806 48 1140 1640 TUN 14.0 380 650 48 920 1320 TUN 10.0 16.0 20 51 24 30 SEP 19.0 29 36 52 43 53

	COWLITZ - LEWIS RIVER BASINS Reservoir Storage (1000 AF) - End	COWLITZ - LEWIS RIVER BASINS Watershed Snowpack Analysis - June 1, 1994					
Reservoir	· ·	Last	ge *** Avg	Watershed	Number of Data Sites	This Year	r as % of
			 	Cowlitz River	6	152	61
			İ	Lewis River	4	84	38

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
- (2) The value is natural flow actual flow may be affected by upstream water management.

PARADISE SNOTEL

^{*} No average snow pack is available for Mount Crag at this time.

8) White - Green River Basins

Mountain Snowpack* (inches)

Precipitation* (% of normal)

*Based on selected stations

May precipitation was 66% of normal. It brought the water year-to-date to 69% of average. Summer runoff is forecasted to be 58% of normal for the Green River and 52% for the Cedar River, 46% for the Rex River; 62% for the South Fork of the Tolt River and 48% for the Cedar River at Cedar Falls. June 1 snowpack was 52% of normal in the White River Basin and 0% in the Green River Basin. Water content on June 1 at the Stampede Pass SNOTEL, at an elevation of 3860 feet, was 0.0 inches. This site has a June 1 average of 15.0 inches. Temperatures were three degrees above average for May.

WHITE - GREEN RIVER BASINS

Streamflow Forecasts - June 1, 1994

		1	Dilei	Future Co	ndicions	Wetter		
Forecast Point	Forecast			- Chance Of E	xceeding * =			
	Period	90%	70%	50% (Most	Probable)	30%	10%	30-Yr Avg
		(1000AF)	(1000AF)	(1000AF)	(% AVG.)	(1000AF)	(1000AF)	(100 0A F
REEN RIVER below Howard Hanson Dam	JUN-JUL	12.0	30	42	54	54	73	78
	JUN-SEP	28	48	62	58	76	96	106
	JUN-JUN	1.0	15.0	25	45	35	50	55
CEDAR RIVER near Cedar Falls	JUN-JUL	3.0	9.0	 13.0	46	18.0	24	29
	JUN-SEP	6.0	14.0	19.0	52	25	33	37
	JUN-JUN	2.0	6.8	10.1	51	13.4	18.2	20
EX RIVER near Cedar Falls	JUN-JUL	0.1	2.2	4.2	46	6.2	9.2	9.2
	JUN-SEP	0.1	3.2	5.7	46	8.2	12.0	12.3
	JUN-JUN	0.1	1.7	3.1	46	4.5	6.7	6.8
EDAR RIVER at Cedar Falls	JUN-JUL	2.0	7.0	10.0	46	13.0	18.0	21
	JUN-SEP	6.0	9.0	11.0	48	13.0	16.0	22
	JUN-JUN	0.5	5.5	8.9	46	12.3	17.3	19.4
OUTH FORK TOLT near Index	JUN-JUL	1.5	2.5	3.2	51	3.9	4.9	6.3
	JUN-SEP	3.7	4.8	5.5	62	6.2	7.3	8.9
	שטע-שטע	0.9	1.7	2.3	55	2.9	3.7	4.2

	Reservoir Storage (1000 AF) - End	Watershed Snowpack Analysis - June 1, 1994					
Reservoir	Usable Capacity 	le Storage Last Year	Avg	Watershed	Number of Data Sites		r as \ of Average
				White River	2	126	52
			į	Green River	2	0	0
			1	Cedar River	0	0	0

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
- (2) The value is natural flow actual flow may be affected by upstream water management.

Stampede Pass SNOTEL

9) North Puget Sound River Basins

Mountain Snowpack* (inches)

Precipitation* (% of normal)

*Based on selected stations

June 1 snow cover in the Skagit River was 30% of normal, and much below normal in the Baker River. Forecast for the Skagit River streamflow is for 65% of normal for the spring and summer period. May streamflow in the Skagit River was 91% of average. Other summer forecasts include the Baker River at 86% of average and Thunder Creek at 91%. Precipitation for May was 67% of average with a water year-to-date at 77% of normal. Harts Pass SNOTEL, at 6500 feet, had 6.0 inches of water content. Normal June 1 water content is 25.3 inches. June 1 reservoir storage was above average, with Ross Lake at 115% normal and 84% of capacity. May temperatures were two degrees above normal.

NORTH PUGET SOUND RIVER BASINS

Streamflow Forecasts - June 1, 1994

		<<	Drier	Puture Co	onditions	Wetter	>>	
Forecast Point	Forecast	! 		- Chance Of E	xceeding * ==			
	Period	90%	70%	50% (Most	Probable)	30%	10%	30-Yr Avg.
		(1000AF)	(1000AF)	(1000AF)	(% AVG.)	(1000AF)	(1000AF)	(1000AF)
THUNDER CREEK near Newhalem	JUN-JUL	117	129	138	86	147	159	160
	JUN-SEP	210	225	235	91	245	260	259
	אטע-אטע	51	62	69	86	76	87	80
EKAGIT RIVER at Newhalem (2)	MAY-SEP	965	1150	1270	65	1390	1580	1963
	MAY-JUL	810	960	1060	66	1160	1310	1608
	MAY-JUN	610	740	830	70	920	1050	1188
AKER RIVER near Concrete	JUN-JUL	345	370	390	80	410	435	490
	JUN-SEP	595	610	620	86	630	645	717
	JUN-JUN	138	166	185	82	205	230	225
NORTH PUGET SOUND				!		T SOUND RIVE		
Reservoir Storage (1	000 AF) - End	of May		ı	Watershed Sno	wpack Analys	is - June 1	, 1994
	Usable	*** Usabl	e Storage **	·		Numbe:	r This	Year as & of
eservoir	Capacity	This	Last	Water	shed	of		
	1	Year	Year Av	g		Data Si	tes Last	Yr Average

1033.9

86.1

8.3

Snohomish River

Skagit River

Baker River

12

30

117

1145.9

87.5

The average is computed for the 1961-1990 base period.

ROSS

DIABLO RESERVOIR

GORGE RESERVOIR

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
- (2) The value is natural flow actual flow may be affected by upstream water management.

1404.1 1184.5

85.3

90.6

9.8

Rainy Pass SNOTEL

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

10) Olympic Peninsula River Basins

Mountain Snowpack* (inches)

Precipitation* (% of normal)

*Based on selected stations

May precipitation was 75% of average. Precipitation has accumulated at 83% of normal for the water year. May precipitation at Quillayute was 4.42 inches. Snow cover at Mount Crag SNOTEL in the Olympic Basin melted out on May 28 which is near normal for this site. June forecasts for streamflow in the basin are for 73% of average for the Dungeness River and 75% for the Elwha River. The Big Quilcene can expect near to slightly below normal runoff this summer. Temperatures were two degrees above normal for May.

OLYMPIC PENINSULA RIVER BASINS

Streamflow Forecasts - June 1, 1994

		<< 	Drier		onditions	Wetter	>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	- Chance Of E 50% (Most (1000AF)		30% (1000AF)	10% (1000AF)	30-Yr Avç (1000AF
UNGENESS RIVER nr Sequim	MAY-SEP	79	93	102	73	111	125	140
	MAY-JUL	66	77	84	75	91	102	112
	MAY-JUN	46	55	62	78	69	78	79
ELWHA RIVER nr Port Angeles	MAY-SEP	245	290	l 320	75	350	395	427
	MAY-JUL	199	235	260	76	285	320	342

OLYMPIC PENINSULA RIVER BASINS Reservoir Storage (1000 AF) - End of May					OLYMPIC PENINSULA RIVER BASINS Watershed Snowpack Analysis - June 1, 1994					
Reservoir		Usable Capacity 	*** Usab This Year	le Storago Last Year	e *** Avg	Watershed	Number of Data Sites	This Year	r as & of Average	
					 	Elwha River	0	0	0	
					į	Morse Creek	0	0	0	
						Dungeness River	0	0	0	
						Quilcene River	1	0	0	
						Wynoochee River	0	0	0	

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
- (2) The value is natural flow actual flow may be affected by upstream water management.

Mount Crag SNOTEL

In addition to basin outlook reports, a Water Supply Forecast for the Western United States is published by the Soil Conservation Service and National Weather Service monthly, January through May. Reports may be obtained from the Soil Conservation Service, West National Technical Center, 511 Northwest Broadway, Room 248, Portland, OR 97209-3489.

Issued by

Released by

Paul W. Johnson

Chief

Soil Conservation Service
U.S. Department of Agriculture

Lynn A. Brown
State Conservation

State Conservationist Soil Conservation Service Spokane, Washington

The Following Organizations Cooperate With the Soil Conservation Service in Snow Survey Work*:

Canada

Ministry of the Environment

Investigations Branch, Victoria, British Columbia

State

Washington State Department of Ecology

Washington State Department of Natural Resources

Federal

Department of the Army Corps of Engineers

U.S. Department of Agriculture

Forest Service

U.S. Department of Commerce

NOAA, National Weather Service

U.S. Department of Interior

Bonneville Power Administration

Bureau of Reclamation Geological Survey National Park Service Bureau of Indian Affairs

Local

City of Tacoma

City of Seattle

Chelan County P.U.D.

Pacific Power and Light Company

Puget Sound Power and Light Company Washington Water Power Company

Snohomish County P.U.D. Colville Confederated Tribes

Spokane County Yakama Indian Nation

Private

Okanogan Irrigation District

Wenatchee Heights Irrigation District Newman Lake Homeowners Association

^{*}Other organizations and individuals furnish valuable information for the snow survey reports. Their cooperation is gratefully acknowledged.

Rock Pointe Tower II, Suite 450 W. 316 Boone Avenue Spokane, WA 99201-2349

A
U. S. DEPT. OF AGRICULTURE
NATIONAL AGRICUL. LIBRARY
CURRENT SERIAL RECORDS
BELTSVILLE MD 20705

Washington Basin Outlook Report

Soil Conservation Service Spokane, WA

SOIL CONSERVATION SERVICE