Cofactor Matroids and Abstract Rigidity

Bill Jackson
School of Mathematical Sciences
Queen Mary, University of London
England

Algebraic Matroids and Rigidity Theory Seminar Series 25 June, 2020

Matroids

A **matroid** \mathcal{M} is a pair (E,\mathcal{I}) where E is a finite set and \mathcal{I} is a family of subsets of E satisfying:

- $\emptyset \in \mathcal{I}$;
- if $A \subseteq B \subseteq E$ and $B \in \mathcal{I}$ then $A \in \mathcal{I}$;
- if $A, B \in \mathcal{I}$ and |A| < |B| then there exists $x \in B \setminus A$ such that $A + x \in \mathcal{I}$.

Matroids

A **matroid** \mathcal{M} is a pair (E,\mathcal{I}) where E is a finite set and \mathcal{I} is a family of subsets of E satisfying:

- $\emptyset \in \mathcal{I}$;
- if $A \subseteq B \subseteq E$ and $B \in \mathcal{I}$ then $A \in \mathcal{I}$;
- if $A, B \in \mathcal{I}$ and |A| < |B| then there exists $x \in B \setminus A$ such that $A + x \in \mathcal{I}$.

 $A\subseteq E$ is **independent** if $A\in \mathcal{I}$ and A is **dependent** if $A\not\in \mathcal{I}$. The minimal dependent sets of \mathcal{M} are the **circuits** of \mathcal{M} . The **rank** of A, r(A), is the cardinality of a maximal independent subset of A. The **rank** of \mathcal{M} is the cardinality of a maximal independent subset of E.

Matroids

A **matroid** \mathcal{M} is a pair (E,\mathcal{I}) where E is a finite set and \mathcal{I} is a family of subsets of E satisfying:

- $\emptyset \in \mathcal{I}$;
- if $A \subseteq B \subseteq E$ and $B \in \mathcal{I}$ then $A \in \mathcal{I}$;
- if $A, B \in \mathcal{I}$ and |A| < |B| then there exists $x \in B \setminus A$ such that $A + x \in \mathcal{I}$.

 $A\subseteq E$ is **independent** if $A\in\mathcal{I}$ and A is **dependent** if $A\not\in\mathcal{I}$. The minimal dependent sets of \mathcal{M} are the **circuits** of \mathcal{M} . The **rank** of A, r(A), is the cardinality of a maximal independent subset of A. The **rank** of \mathcal{M} is the cardinality of a maximal independent subset of E.

The **weak order** on a set S of matroids with the same groundset is defined as follows. Given two matroids $\mathcal{M}_1 = (E, \mathcal{I}_1)$ and $M_2 = (E, \mathcal{I}_2)$ in S, we say $\mathcal{M}_1 \preceq M_2$ if $\mathcal{I}_1 \subseteq \mathcal{I}_2$.

A *d*-dimensional framework (G, p) is a graph G = (V, E) together with a map $p : V \to \mathbb{R}^d$.

A *d*-dimensional framework (G, p) is a graph G = (V, E) together with a map $p : V \to \mathbb{R}^d$.

The **rigidity matrix** of (G, p) is the matrix R(G, p) of size $|E| \times d|V|$ in which the row associated with the edge $v_i v_j$ is

$$v_i v_j [0...0 \ p(v_i) - p(v_j) \ 0...0 \ p(v_j) - p(v_i) \ 0...0].$$

A *d*-dimensional framework (G, p) is a graph G = (V, E) together with a map $p : V \to \mathbb{R}^d$.

The **rigidity matrix** of (G, p) is the matrix R(G, p) of size $|E| \times d|V|$ in which the row associated with the edge $v_i v_j$ is $v_i v_j = \begin{bmatrix} 0 & \dots & 0 & p(v_i) - p(v_j) & 0 & \dots & 0 & p(v_j) - p(v_i) & 0 & \dots & 0 \end{bmatrix}$.

The generic *d*-dimensional rigidity matroid $\mathcal{R}_{n,d}$ is the row matroid of the rigidity matrix $R(K_n, p)$ for any generic $p: V(K_n) \to \mathbb{R}^d$.

A *d*-dimensional framework (G, p) is a graph G = (V, E) together with a map $p: V \to \mathbb{R}^d$.

The **rigidity matrix** of (G, p) is the matrix R(G, p) of size $|E| \times d|V|$ in which the row associated with the edge $v_i v_j$ is v_j

$$v_i v_j [0...0 p(v_i) - p(v_j) 0...0 p(v_j) - p(v_i) 0...0].$$

The generic *d*-dimensional rigidity matroid $\mathcal{R}_{n,d}$ is the row matroid of the rigidity matrix $R(K_n, p)$ for any generic $p: V(K_n) \to \mathbb{R}^d$.

 $\mathcal{R}_{n,d}$ is a matroid with groundset $E(K_n)$ with rank $dn-\binom{d+1}{2}$. It is the algebraic matriod of the d-dimensional **Cayley-Hamilton** variety defined by the polynomial equations $\|p(v_i)-p(v_j)\|^2=d_{ij}$. Its rank function can be determined (by good characterisations and polynomial algorithms) when d=1,2. Obtaining such characterisations for $d\geq 3$ is a long standing open problem.

Jack Graver (1991) chose two closure properties of $\mathcal{R}_{d,n}$ and used them to define the **family of abstract** d-**rigidity matroids** on $E(K_n)$. Viet Hang Nguyen (2010) gave the following equivalent definition: \mathcal{M} is an **abstract** d-**rigidity matroid** iff rank $\mathcal{M} = dn - \binom{d+1}{2}$, and every $K_{d+2} \subseteq K_n$ is a circuit in \mathcal{M} .

Jack Graver (1991) chose two closure properties of $\mathcal{R}_{d,n}$ and used them to define the **family of abstract** d-**rigidity matroids** on $E(K_n)$. Viet Hang Nguyen (2010) gave the following equivalent definition: \mathcal{M} is an **abstract** d-**rigidity matroid** iff rank $\mathcal{M} = dn - {d+1 \choose 2}$, and every $K_{d+2} \subseteq K_n$ is a circuit in \mathcal{M} .

Conjecture [Graver, 1991]

For all $d, n \ge 1$, $\mathcal{R}_{d,n}$ is the unique maximal element in the family of all abstract d-rigidity matroids on $E(K_n)$.

Jack Graver (1991) chose two closure properties of $\mathcal{R}_{d,n}$ and used them to define the **family of abstract** d-**rigidity matroids** on $E(K_n)$. Viet Hang Nguyen (2010) gave the following equivalent definition: \mathcal{M} is an **abstract** d-**rigidity matroid** iff rank $\mathcal{M} = dn - {d+1 \choose 2}$, and every $K_{d+2} \subseteq K_n$ is a circuit in \mathcal{M} .

Conjecture [Graver, 1991]

For all $d, n \ge 1$, $\mathcal{R}_{d,n}$ is the unique maximal element in the family of all abstract d-rigidity matroids on $E(K_n)$.

Graver verified his conjecture for d = 1, 2.

Jack Graver (1991) chose two closure properties of $\mathcal{R}_{d,n}$ and used them to define the **family of abstract** d-**rigidity matroids** on $E(K_n)$. Viet Hang Nguyen (2010) gave the following equivalent definition: \mathcal{M} is an **abstract** d-**rigidity matroid** iff rank $\mathcal{M} = dn - {d+1 \choose 2}$, and every $K_{d+2} \subseteq K_n$ is a circuit in \mathcal{M} .

Conjecture [Graver, 1991]

For all $d, n \ge 1$, $\mathcal{R}_{d,n}$ is the unique maximal element in the family of all abstract d-rigidity matroids on $E(K_n)$.

Graver verified his conjecture for d = 1, 2.

Walter Whiteley (1996) gave counterexamples to Graver's conjecture for all $d \ge 4$ and $n \ge d + 2$ using 'cofactor matroids'.

Bivariate Splines and Cofactor Matrices

Given a polygonal subdivision Δ of a polygonal domain D in the plane, a bivariate function $f:D\to\mathbb{R}$ is an (s,k)-spline over Δ if it is defined as a polynomial of degree s on each face of Δ and is continuously differentiable k times on D.

Bivariate Splines and Cofactor Matrices

Given a polygonal subdivision Δ of a polygonal domain D in the plane, a bivariate function $f:D\to\mathbb{R}$ is an (s,k)-spline over Δ if it is defined as a polynomial of degree s on each face of Δ and is continuously differentiable k times on D.

- The set $S_s^k(\Delta)$ of (s,k)-splines over Δ forms a vector space.
- Obtaining tight upper/lower bounds on dim $S_s^k(\Delta)$ (over a given class of subdivisions Δ) is an important problem in approximation theory.

Bivariate Splines and Cofactor Matrices

Given a polygonal subdivision Δ of a polygonal domain D in the plane, a bivariate function $f:D\to\mathbb{R}$ is an (s,k)-spline over Δ if it is defined as a polynomial of degree s on each face of Δ and is continuously differentiable k times on D.

- The set $S_s^k(\Delta)$ of (s,k)-splines over Δ forms a vector space.
- Obtaining tight upper/lower bounds on dim $S_s^k(\Delta)$ (over a given class of subdivisions Δ) is an important problem in approximation theory.
- Whiteley (1990) observed that $\dim S^k_s(\Delta)$ can be calculated from the rank of a matrix $C^k_s(G,p)$ which is determined by the the 1-skeleton (G,p) of the subdivision Δ (viewed as a 2-dim framework), and that rigidity theory can be used to investigate the rank of this matrix.
- His definition of $C_s^k(G, p)$ makes sense for all 2-dim frameworks (not just frameworks whose underlying graph is planar).

Cofactor matroids

Let (G, p) be a 2-dimensional framework and put $p(v_i) = (x_i, y_i)$ for $v_i \in V(G)$. For $v_i v_j \in E(G)$ and $d \ge 1$ let $D_d(v_i, v_i) = ((x_i - x_i)^{d-1}, (x_i - x_i)^{d-2}(y_i - y_i), \dots, (y_i - y_i)^{d-1})$.

Cofactor matroids

Let (G,p) be a 2-dimensional framework and put $p(v_i) = (x_i,y_i)$ for $v_i \in V(G)$. For $v_i v_j \in E(G)$ and $d \ge 1$ let $D_d(v_i,v_j) = ((x_i-x_j)^{d-1},(x_i-x_j)^{d-2}(y_i-y_j),\dots,(y_i-y_j)^{d-1}).$ The C_{d-1}^{d-2} -cofactor matrix of (G,p) is the matrix $C_{d-1}^{d-2}(G,p)$ of size $|E| \times d|V|$ in which the row associated with the edge $v_i v_j$ is $v_i v_j = \begin{bmatrix} 0 \dots 0 & D_d(v_i,v_j) & 0 \dots 0 & -D_d(v_i,v_j) & 0 \dots 0 \end{bmatrix}.$

Cofactor matroids

Let (G, p) be a 2-dimensional framework and put $p(v_i) = (x_i, y_i)$ for $v_i \in V(G)$. For $v_i v_j \in E(G)$ and $d \ge 1$ let $D_d(v_i, v_i) = ((x_i - x_i)^{d-1}, (x_i - x_i)^{d-2}(y_i - y_i), \dots, (y_i - y_i)^{d-1})$.

The C_{d-1}^{d-2} -cofactor matrix of (G,p) is the matrix $C_{d-1}^{d-2}(G,p)$ of size $|E| \times d|V|$ in which the row associated with the edge $v_i v_j$ is

$$v_i v_j$$
 [$0 \dots 0$ $D_d(v_i, v_j)$ $0 \dots 0$ $-D_d(v_i, v_j)$ $0 \dots 0$].

The generic C_{d-1}^{d-2} -cofactor matroid, $C_{d-1,n}^{d-2}$ is the row matroid of the cofactor matrix $C_{d-1}^{d-2}(K_n,p)$ for any generic p.

Cofactor matroids - Whiteley's Results and Conjectures

Theorem [Whiteley]

- $C_{d-1,n}^{d-2}$ is an abstract d-rigidity matroid for all $d, n \ge 1$.
- $C_{d-1,n}^{d-2} = \mathcal{R}_{d,n}$ for d = 1, 2.
- $C_{d-1,n}^{d-2} \not\preceq \mathcal{R}_{d,n}$ when $d \geq 4$ and $n \geq 2(d+2)$ since $K_{d+2,d+2}$ is independent in $C_{d-1,n}^{d-2}$ and dependent in $\mathcal{R}_{d,n}$.

Cofactor matroids - Whiteley's Results and Conjectures

Theorem [Whiteley]

- $\mathcal{C}^{d-2}_{d-1,n}$ is an abstract d-rigidity matroid for all $d,n\geq 1$.
- $C_{d-1,n}^{d-2} = \mathcal{R}_{d,n}$ for d = 1, 2.
- $C_{d-1,n}^{d-2} \not\preceq \mathcal{R}_{d,n}$ when $d \geq 4$ and $n \geq 2(d+2)$ since $K_{d+2,d+2}$ is independent in $C_{d-1,n}^{d-2}$ and dependent in $\mathcal{R}_{d,n}$.

Conjecture [Whiteley, 1996]

For all $d, n \ge 1$, $C_{d-1,n}^{d-2}$ is the unique maximal abstract d-rigidity matroid on $E(K_n)$.

Cofactor matroids - Whiteley's Results and Conjectures

Theorem [Whiteley]

- $C_{d-1,n}^{d-2}$ is an abstract d-rigidity matroid for all $d, n \ge 1$.
- $C_{d-1,n}^{d-2} = \mathcal{R}_{d,n}$ for d = 1, 2.
- $C_{d-1,n}^{d-2} \not\preceq \mathcal{R}_{d,n}$ when $d \geq 4$ and $n \geq 2(d+2)$ since $K_{d+2,d+2}$ is independent in $C_{d-1,n}^{d-2}$ and dependent in $\mathcal{R}_{d,n}$.

Conjecture [Whiteley, 1996]

For all $d, n \ge 1$, $C_{d-1,n}^{d-2}$ is the unique maximal abstract d-rigidity matroid on $E(K_n)$.

Conjecture [Whiteley, 1996]

For all $n \geq 1$, $C_{2,n}^1 = \mathcal{R}_{3,n}$.

Theorem [Clinch, BJ, Tanigawa 2019+]

 $C_{2,n}^1$ is the unique maximal abstract 3-rigidity matroid on $E(K_n)$.

Theorem [Clinch, BJ, Tanigawa 2019+]

 $C_{2,n}^1$ is the unique maximal abstract 3-rigidity matroid on $E(K_n)$.

Sketch Proof Suppose \mathcal{M} is an abstract 3-rigidity matroid on $E(K_n)$ and $F \subseteq E(K_n)$ is independent in M. We show that F is independent in $\mathcal{C}^1_{2,n}$ by induction on |F|. Since \mathcal{M} is an abstract 3-rigidity matroid, $|F| = r(F) \leq 3|V(F)| - 6$ and hence F has a vertex v with $d_F(v) \leq 5$.

Theorem [Clinch, BJ, Tanigawa 2019+]

 $\mathcal{C}^1_{2,n}$ is the unique maximal abstract 3-rigidity matroid on $E(K_n)$.

Sketch Proof Suppose \mathcal{M} is an abstract 3-rigidity matroid on $E(K_n)$ and $F \subseteq E(K_n)$ is independent in M. We show that F is independent in $\mathcal{C}^1_{2,n}$ by induction on |F|. Since \mathcal{M} is an abstract 3-rigidity matroid, $|F| = r(F) \leq 3|V(F)| - 6$ and hence F has a vertex v with $d_F(v) \leq 5$.

Theorem [Clinch, BJ, Tanigawa 2019+]

 $\mathcal{C}_{3,n}^2$ is the unique maximal abstract *d*-rigidity matroid on $E(K_n)$.

Sketch Proof Suppose \mathcal{M} is an abstract rigidity matroid on $E(K_n)$ and $F \subseteq E(K_n)$ is independent in M. We show that F is independent in $\mathcal{C}^1_{2,n}$ by induction on |F|. Since \mathcal{M} is an abstract 3-rigidity matroid, $|F| = r(F) \leq 3|V(F)| - 6$ and hence F has a vertex v with $d_F(v) \leq 5$.

The rank function of $C_{2,n}^1$

A K_5 -sequence in K_n is a sequence of subgraphs $(K_5^1, K_5^2, \ldots, K_5^t)$ each of which is isomorphic to K_5 . It is **proper** if $K_5^i \not\subseteq \bigcup_{i=1}^{i-1} K_5^i$ for all $2 \le i \le t$.

The rank function of $\mathcal{C}_{2,n}^1$

A K_5 -sequence in K_n is a sequence of subgraphs $(K_5^1, K_5^2, \dots, K_5^t)$ each of which is isomorphic to K_5 .

It is **proper** if $K_5^i \nsubseteq \bigcup_{j=1}^{i-1} K_5^j$ for all $2 \le i \le t$.

Theorem [Clinch, BJ, Tanigawa 2019+]

The rank of any $F \subseteq E(K_n)$ in $\mathcal{C}^1_{2,n}$ is given by

$$r(F) = \min \left\{ |F_0| + \left| \bigcup_{i=1}^t E(K_5^i) \right| - t \right\}$$

where the minimum is taken over all $F_0 \subseteq F$ and all proper K_5 -sequences $(K_5^1, K_5^2, \dots, K_5^t)$ in K_n which cover $F \setminus F_0$.

Example

Let $F_0 = \{e_1, e_2, e_3\}$ and $(K_5^1, K_5^2, \dots, K_5^7)$ be the 'obvious' proper K_5 -sequence which covers $F \setminus F_0$. We have |F| = 60 and

$$r(F) \le |F_0| + \left| \bigcup_{i=1}^{7} E(K_5^i) \right| - 7 = 59$$

so F is not independent in $\mathcal{C}^1_{2,n}$. Since 3|V(F)|-6=60, F is not rigid in any abstract 3-rigidity matroid.

Key Matroid Lemma

Theorem [Clinch, BJ, Tanigawa 2019+]

Let \mathcal{M} be a matroid, \mathcal{M}_0 be the truncation of M to rank k and S be the set of all matroids which can be truncated to \mathcal{M}_0 . Suppose that \mathcal{M} is the unique maximal matroid in S and F is a cyclic flat in \mathcal{M} . Then every element of F belongs to a circuit of \mathcal{M}_0 in F.

Take $\mathcal{M} = \mathcal{C}^1_{2,n}$ and k = 10.

Corollary

Supose $F \subseteq E(K_n)$ is a cyclic flat in $C^1_{2,n}$. Then every element of F belongs to a copy of K_5 in F.

Application

Theorem [Clinch, BJ, Tanigawa 2019+]

Every 12-connected graph is rigid in the maximal abstract 3-rigidity matroid.

Application

Theorem [Clinch, BJ, Tanigawa 2019+]

Every 12-connected graph is rigid in the maximal abstract 3-rigidity matroid.

Lovász and Yemini (1982) conjectured that the analogous result holds for the generic 3-dimensional rigidity matroid. Examples constructed by Lovász and Yemini show that the connectivity hypothesis in the above theorem is best possible.

Open Problems and Preprints

Problem 1 Determine whether the X-replacement operation preserves independence in the generic 3-dimensional rigidity matroid.

Open Problems and Preprints

Problem 1 Determine whether the X-replacement operation preserves independence in the generic 3-dimensional rigidity matroid.

Problem 2 Find a polynomial algorithm for determining the rank function of $C_{2,n}^1$.

Open Problems and Preprints

Problem 1 Determine whether the X-replacement operation preserves independence in the generic 3-dimensional rigidity matroid.

Problem 2 Find a polynomial algorithm for determining the rank function of $\mathcal{C}^1_{2,n}$.

Preprints

K. Clinch, B. Jackson and S. Tanigawa, Abstract 3-rigidity and bivariate C_2^1 -splines I: Whiteley's maximality conjecture, preprint available at https://arxiv.org/abs/1911.00205.

K. Clinch, B. Jackson and S. Tanigawa, Abstract 3-rigidity and bivariate C_2^1 -splines II: Combinatorial Characterization, preprint available at https://arxiv.org/abs/1911.00207.

