Socio-Informatics 348

Data Visualisation Exploratory Data Analysis

Dr Lisa Martin

Department of Information Science Stellenbosch University

Today's Reading

R for Data Science, Chapter 10

EDA: A Creative, Iterative Process

Exploratory data analysis is not a rigid protocol. It is an iterative cycle:

- Generate questions about your data.
- Seek answers via visualisation, transformation, and modeling.
- Use new insights to ask better or new questions.

Even when your research questions are predefined, EDA is invaluable for checking data quality and guiding cleaning steps.

Key Questions in EDA

You should ask many questions during EDA, but there are two core types of questions that guide exploration:

- Variation: What type of variation occurs within my variables?
- **2** Covariation: What type of covariation occurs between my variables?

- Variation is the tendency of the values of a variable to change from measurement to measurement.
- Captures how a variable's values spread, cluster, or distribute across observations.
- Visual tools: histograms, density plots, boxplots.

R for Data Science, Chapter 9

Typical Values:

- Which values are the most common? Why?
 - These are the tallest bars or the densest areas in your visualisations.
- Which values are rare? Why? Is this expected?
 - These are the shorter bars or the less dense areas in your visualisations.
- Any unusual patterns? What might explain them?

```
smaller <- diamonds |>
  filter(carat < 3)

ggplot(smaller, aes(x = carat)) +
  geom_histogram(binwidth = 0.01)</pre>
```


- Why are there more diamonds at whole carats and common fractions of carats?
- Why are there more diamonds slightly to the right of each peak than there are slightly to the left of each peak?

Unusual Values:

- These are values that deviate noticeably from the norm.
 - Data entry errors not meaningful
 - Genuine extremes meaningful
 - Something else?
- Regardless, important to identify and understand them.
- Visual tools: boxplots, histograms, scatterplots.
 - Boxplots use a point to indicate unusual values/outliers.
 - In a historogram, unusual values are often visible as isolated bars.
 - In scatterplots, unusual values may appear as points far from the main cluster.

Unusual Values:

With large data sets, unusual values can be hard to spot.

```
ggplot(diamonds, aes(x = y)) +
  geom histogram(binwidth = 0.5)
  12000 -
   8000 -
count
   4000 -
                               20
                                                   40
                                         у
```

Unusual Values:

```
ggplot(diamonds, aes(x = y)) +
geom_histogram(binwidth = 0.5) +
coord_cartesian(ylim = c(0, 50))
```


Unusual Values:

```
unusual <- diamonds |>
 filter(y < 3 | y > 20) | >
 select(price, x, y, z) |>
 arrange(y)
unusual
#> # A tibble: 9 x 4
#> price x y z
#> <int> <dbl> <dbl> <dbl>
#> 1 5139 0 0 0
#> 2 6381 0 0 0
#> 3 12800 0 0 0
#> 4 15686 0 0 0
#> 5 18034 0 0 0
#> 6 2130 0 0 0
#> 7 2130 0 0 0
#> 8 2075 5.15 31.8 5.12
#> 9 12210 8.09 58.9 8.06
```

2. Unusual Values

Handling Unusual Values:

- Decide whether to keep, remove, or transform unusual values based on their context.
- Drop:

Simple, but you lose potentially valuable information in other variables.

```
diamonds2 <- diamonds |>
  filter(between(y, 3, 20))
```

Replace with NA: Keeps the remaining data intact

```
diamonds2 <- diamonds |>
  mutate(y = if_else(y < 3 | y > 20, NA, y))
```

- Good practice:
 - Document your decisions and the rationale behind them.
 - If kept, run analysis with and without them included.

Covariation is the tendency for the values of two or more variables to vary together in a related way.

- The best way to spot covariation is to visualise the relationship between two or more variables.
- Critical for spotting relationships and informing further modeling.

Example 1: Categorical and Numerical Variables

Example 1: Categorical and Numerical Variables

• Appears that 'Fair' has a higher average price?

Example 1: Categorical and Numerical Variables

• Boxplot confirms our suspicion. Needs further exploration.

Example 2: Categorical and Numerical Variables

```
ggplot(mpg, aes(x = class, y = hwy)) +
  geom_boxplot()
```


Example 2: Categorical and Numerical Variables

```
ggplot(mpg, aes(x = fct_reorder(class, hwy, median), y = hwy)) +
geom_boxplot()
```


Example 2: Categorical and Numerical Variables

```
ggplot(mpg, aes(x = hwy, y = fct_reorder(class, hwy, median))) +
   geom_boxplot()
```


Example: Two Categorical Variables

```
ggplot(diamonds, aes(x = cut, y = color)) +
   geom count()
   J-
   1-
   H-
                                                                         1000
oloc
G-
                                                                         2000
                                                                         3000
   F-
                                                                         4000
   E-
   D-
          Fair
                               Very Good
                                           Premium
                     Good
                                                        Ideal
```

cut

Example: Two Categorical Variables

Example: Two Categorical Variables

```
diamonds |>
  count(color, cut) |>
  ggplot(aes(x = color, y = cut)) +
  geom_tile(aes(fill = n))
```


Example: Two Numerical Variables

You are already familiar with the scatterplot, which is a common way to visualize the relationship between two numerical variables.

```
ggplot(smaller, aes(x = carat, y = price)) +
geom_point()
```


Example: Two Numerical Variables

Combat overlap with transparrency, but this is still a problem with very large datasets.

```
ggplot(smaller, aes(x = carat, y = price)) +
geom_point(alpha = 1 / 100)
```


Example: Two Numerical Variables

Use bins to reduce the number of points plotted.

```
ggplot(smaller, aes(x = carat, y = price)) +
  geom bin2d()
# install.packages("hexbin")
ggplot(smaller, aes(x = carat, y = price)) +
  geom hex()
  20000 -
                            count
                                                                          count
                                6000
                                                 15000 -
  15000 -
                                                                               6000
                                              price
  10000 -
                                4000
                                                 10000 -
                                                                               4000
   5000 -
                                                  5000 -
                                2000
                                                                               2000
                                                                 2
                                                            carat
              carat
```

Example: Two Numerical Variables

Another option: Bin one of the variables to create a categorical variable.

```
ggplot(smaller, aes(x = carat, y = price)) +
geom_boxplot(aes(group = cut_width(carat, 0.1)))
```


4. Patterns and Models

If a systematic relationship exists between two variables it will appear as a pattern in the data.

- Could this pattern be due to coincidence (i.e. random chance)?
- How can you describe the relationship implied by the pattern?
- How strong is the relationship implied by the pattern?
- What other variables might affect the relationship?
- Does the relationship change if you look at individual subgroups of the data?

4. Patterns and Models

- Patterns in the data can often be summarised by simple models.
- Modeling in EDA is exploratory—used to reveal trends, not confirm hypotheses.