Sample Space and Probability Basics Sample Space (Ω) : Set of all possible outcomes of an Properties: Probability of Event P(A)Number of favorable outcomes

Example: In a coin toss, the sample space is $\Omega = \{H, T\}$. If the coin is fair, $P(H) = \frac{1}{2}$

Set Operations and Probability Laws

Complement of an Event (A^c) : The event that A does not occur. $P(A^c) = 1 - P(A)$

Union of Events $(A \cup B)$: The event that either A or B (or both) occurs.

- Inclusion-Exclusion Principle: $P(A \cup B) =$ $P(A) + P(B) - P(A \cap B)$

Intersection of Events $(A \cap B)$: The event that both A and B occur. **De Morgan's Laws**: $(A \cup B)^c = A^c \cap B^c$ and $(A \cap B)^c = A^c \cap B^c$

 $B)^c = A^c \cup B^c$ Inclusion-Exclusion for Three Events: $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$

Law of Total Probability: $P(A) = \sum_{i} P(A|B_i)P(B_i)$

Bayes' Theorem: $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$ Conditional Probability and Independence

Conditional Probability: $P(A|B) = \frac{P(A \cap B)}{P(B)}$

The probability of A occurring given that \hat{B} has occurred. **Independence**: - Events A and B are independent if $P(A \cap B) = P(A) \cdot P(B)$.

- Definition: X and Y are independent if P(X = x, Y =y) = P(X = x)P(Y = y) for all x and y.

- Continuous Case: $f_{X,Y}(x,y) = f_X(x)f_Y(y)$

Combinatorics Permutations (Ordered): $P(n,r) = \frac{n!}{(n-r)!}$

Combinations (Unordered): $C(n,r) = \binom{n}{r} = \frac{n!}{r!(n-r)!}$

Application Example: Choosing 9 players from a pool of 30 (without replacement): $\binom{30}{9} = \frac{30!}{(30-9)! \times 9!}$

PMF and PDF Cdf of X: $F(x) = P(X \le x), x \in \mathbb{R}$.

Pmf of X: (discrete r.v.) f(x) = P(X = x).

Pdf of X: (continuous r.v.) f(x) = F'(x). For a discrete r.v. X: $P(X \in B) = \sum_{x \in B} P(X = x)$. For a continuous r.v. X with pdf $f: P(X \in B) =$

Cdf (continuous): $F(x) = \int_{-\infty}^{x} f(u) du$.

Conditions for Validity:

1. Non-negativity: $P(X = x) \ge 0$ or $f(x) \ge 0$. 2. Normalization: $\sum_{x} P(X = x) = 1$ or $\int_{-\infty}^{\infty} f(x) \, dx = 1.$

Expected Value, Variance

Expected Value (Mean):

- Discrete: $E(X) = \sum_{x} x \cdot P(X = x)$

- Continuous: $E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx$

E(Y|X) = E(Y) if X and Y are independent Variance (Spread of Distribution):

- Disc.: $Var(X) = E(X^2) - [E(X)]^2$ $= \sum_{x} (x - E(X))^2 \cdot P(X = x)$

- Cont.: $Var(X) = E(X^2) - [E(X)]^2$ = $\int_{-\infty}^{\infty} (x - E(X))^2 \cdot f(x) dx$

Covariance (Relationship between X and Y): Cov(X,Y) = E[(X - E(X))(Y - E(Y))]= E(XY) - E(X)E(Y)

Correlation Coefficient: Cov(X,Y)

 $\rho_{X,Y} = \frac{\text{Cov}(X,Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}$

ρ ranges from -1 (perfect negative) to +1 (perfect

positive).

-E(X + Y) = E(X) + E(Y).

 $-\operatorname{Cov}(X+Y,Z) = \operatorname{Cov}(X,Z) + \operatorname{Cov}(Y,Z).$

Variance of a Linear Transformation: $Var(aX + b) = a^2 Var(X)$

Properties:

1. Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)

2. Cov(X, X) = Var(X)

3. Cov(X,Y) = 0 if X and Y are independent. 4. Cov(X + 2Y) = Cov(X) + 2Cov(Y)

Central Limit Theorem (CLT)

- The sampling distribution of the sample mean \bar{X} approaches a normal distribution $N(\mu, \sigma^2/n)$ as $n \to \infty$, regardless of the population distribution. Cumulative Distribution Function (CDF)

- Definition: $F_X(x) = P(X \le x)$

- Discrete: Sum of probabilities up to x

- Continuous: Integral of f(x) from $-\infty$ to x, $F_X(x) = \int_{-\infty}^x f(t) dt$

- Finding PDF from CDF: $f(x) = \frac{d}{dx} F_X(x)$

Transformations and Quantile Functions

- Transformation: For Y = g(X), use the change of variables to find $f_{V}(u)$.

- Linear Example: If Y = aX + b, then $f_Y(y) =$

- Non-Linear Example: For $Y = X^2$ where $X \sim N(0, 1)$, use the Jacobian approach, splitting $f_X(x)$ for x > 0 and

- Monotonic Functions: For monotonic g(X), $f_Y(y) = f_X(x) \left| \frac{dx}{dy} \right|$ where y = g(x).

- Min and Max of Two Variables: For $X = \min(U, V)$ and $Y = \max(U, V)$, determine distributions by analyzing the values of X and Y.

- Quantile Function: The inverse of the CDF, representing the value below which a proportion p of observations

- Defined as $Q(p) = F^{-1}(p)$.

- Application: Used for calculating percentiles, such as finding the 90th percentile when p = 0.90.

Chi-Square and F-Distributions

- χ^2 -distribution (degrees of freedom): Often used for tests involving variance, such as goodness-of-fit or independence

- Properties: If $X_i \sim N(0,1)$, then $\sum X_i^2 \sim \chi^2$ with n

degrees of freedom.
- F-distribution: Used in ANOVA and comparison of

- Properties: Ratio of two chi-square distributions; if $X_1 \sim \chi_{d_1}^2$ and $X_2 \sim \chi_{d_2}^2$, then $F = \frac{X_1/d_1}{X_2/d_2} \sim F(d_1, d_2)$.

- Test statistic $\chi^2 = \sum \frac{(O-E)^2}{E}$ for independence in

categorical data.
- Purpose: Test if two categorical variables are indepen-

- Test Statistic: $\chi^2 = \sum \frac{(O-E)^2}{E}$ - O: Observed frequency, E: Expected frequency under independence.

- Degrees of Freedom: df = (r-1)(c-1), where r and c are the number of rows and columns.

Moment Generating Functions (MGF)

Definition: $M_X(s) = E(e^{sX})$, useful for finding moments. - $E(X) = M'_X(0)$, $Var(X) = M''_X(0) - [M'_X(0)]^2$

Properties:

1. Linear Transformation: $M_Y(s) = e^{bs} M_X(as)$

2. Uniqueness: Identical MGFs imply identical distribu-

tions.
3. Moment Calculation: $E(X^n) = \frac{d^n M_X(s)}{ds^n}\Big|_{s=0}$

Benford's Law for Leading Digits

- Formula: $P(D = d) = \log_{10}\left(\frac{d+1}{d}\right)$, where by the factor.

- Example: In financial datasets, the first digit distribution often adheres to Benford's Law, making deviations suspect for audit purposes.

Normal Distribution

- Standard Normal (Z): $Z = \frac{X-\mu}{\sigma}, Z \sim N(0,1)$

- 68-95-99.7 Rule: Approx 68% of data falls within 1

standard deviation, 95% within 2, and 99.7% within 3.

- Sum of Normals: The sum of independent normal random variables is also normally distributed. If $X \sim N(\mu_X, \sigma_X^2)$ and $Y \sim N(\mu_Y, \sigma_Y^2)$, then $X + Y \sim N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2).$

- App: Useful for naturally occurring phenomena such as heights, test scores, and measurement errors. Regression Models

- Single Variable Model: $Y = \beta_0 + \beta_1 X + \epsilon$. - Multiple Regression Model: $Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_n + \beta_n X_n + \beta_n X_n$ $\beta_p X_p + \epsilon$.

- Coefficients β_j represent the change in Y for a unit increase in X_i , holding other variables constant.

- Interpreting Slope: β_1 represents the change in Y per unit increase in X.

Regression Assumptions

1. **Linearity**: The relationship between X and Y should be linear.

2. Independence: Observations must be independent. 3. Homoscedasticity: Residuals should have constant variance across levels of X.

4. Normality of Residuals: Residuals should be approx normally distributed.

- Residuals: $e_i = y_i - \hat{y}_i$.

Diagnostics for Assumptions:

- Residuals: $e_i = y_i - \hat{y}_i$ (difference between observed and predicted values), with $\sum e_i = 0$ for least squares.

- Diagnostic Tools: 1. Residual Plot: Checks for homoscedasticity and

Normal Q-Q Plot: Assesses normality of residuals. 3. Leverage and Influence Measures: Identifies influential data points.

Margin of Error and Sample Size for Propor-

- Margin of Error (ME):

 $ME = z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ - Sample Size Calculation:

 $n = \frac{(z^*)^2 \hat{p}(1-\hat{p})}{ME^2}$

- Use ME and confidence level z^* for precision.

F-Test for Model Significance
- Purpose: Tests if at least one predictor is significantly related to Y.

related to r . - Test Statistic: $F = \frac{\text{MS}_{\text{Regression}}}{\text{MS}_{\text{Residual}}}$ with DF: p and n-p-1.

Confidence Interval for Predicted Values - CI for Predicted Value at $X = X_0$:

 $\hat{Y}_0 \pm t^* \cdot \sqrt{\text{SE}^2(\hat{Y}_0) + \sigma^2}$, where $\text{SE}(\hat{Y}_0)$ $\sqrt{\frac{1}{n} + \frac{(X_0 - \bar{X})^2}{\sum (X_i - \bar{X})^2}}$

One-Way ANOVA
- Purpose: Tests if means across multiple groups differ significantly.

- Hypotheses:

- H_0 : All group means are equal.

- H_a : At least one group mean is different.

- Conditions: Independent observations, approx normal data within groups, homogeneity of variances (use Levene's test if needed).

ANOVA Test Statistic

- $F = \frac{\text{MS}_{\text{Detween}}}{\text{MS}_{\text{Within}}} = \frac{\text{SS}_{\text{Between}}/\text{df}_{\text{Between}}}{\text{SS}_{\text{Within}}/\text{df}_{\text{Within}}}.$ - DF for Between: k-1; DF for Within: N-k.

R-Squared in ANOVA

- $R^2 = \frac{SS_{Between}}{SS_{Total}}$: Proportion of total variability explained

Standard Deviation in ANOVA

- Residual SD $\sigma_{\text{residual}} = \sqrt{\frac{\text{SSWithin}}{\text{df}_{\text{Within}}}}$

Post-Hoc Tests

- Used to identify which specific groups differ after a significant F-test. Common methods include Tukey's HSD and Bonferroni correction.

ANOVA vs. Regression: Predictors

- Categorical in ANOVA: Treats factor levels as dis-

- Continuous in Regression: Treats predictors as continuous variables.

Differentiation and Integration Rules
Differentiation Rules:

• Power Rule: $\frac{d}{dx}x^n = nx^{n-1}$

• Product Rule: $\frac{d}{dx}[u \cdot v] = u'v + uv'$

• Quotient Rule: $\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{u'v - uv'}{v^2}$

• Chain Rule: $\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)$ Basic Integration Rules:

• Power Rule: $\int x^n dx = \frac{x^{n+1}}{n+1} + C$ (for $n \neq -1$) • Exponential Rule: $\int e^{ax} dx = \frac{e^{ax}}{a} + C$

• Logarithmic Rule: $\int \frac{1}{x} dx = \ln |x| + C$

Trigonometric Integrals:

• $\int \sin(ax) dx = -\frac{\cos(ax)}{a} + C$

 $\bullet \int \cos(ax) \, dx = \frac{\sin(ax)}{a} + C$

Special Techniques:

• Integration by Parts: $\int u \, dv = uv - \int v \, du$

• Substitution: Let u = g(x), then $\int f(g(x))g'(x) dx = \int f(u) du$

Common Confidence Interval Calculations

• Two-Tailed Confidence Intervals: Used when estimating a range for a parameter with both upper

and lower limits. - 90% CI: z = 1.645 - 95% CI: z = 1.96 - 99% CI: z = 2.576

• One-Tailed Confidence Intervals: Applied when focusing on either an upper or lower bound (e.g., "greater than" or "less than" hypotheses).

- 90% CI: z = 1.28. - 95% CI: z = 1.645. - 99% CI: z = 2.33.

For sample sizes n < 30 or unknown population standard deviation, use t-distribution values $(t_{\alpha/2,n-1})$ based on degrees of freedom (df):

Calculating Confidence Intervals For a sample mean \bar{X} :

• Normal Distribution (large n): $\bar{X} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$.

• t-Distribution (small n): $\bar{X} \pm t_{\alpha/2, n-1} \cdot \frac{S}{\sqrt{n}}$.

Standard Errors

• $\operatorname{se}(\bar{x}) = \frac{s}{\sqrt{n}}$

• $\operatorname{se}(\bar{x} - \bar{y}) = s_p \sqrt{\frac{1}{n_x} + \frac{1}{n_y}}$

Pooled sample variance: $s_p^2 = \frac{(n_x-1)s_x^2 + (n_y-1)s_y^2}{n_x + n_y - 2}$

• $\operatorname{se}(\hat{p}) = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

• $\operatorname{se}(\hat{p}_x - \hat{p}_y) = \sqrt{\frac{\hat{p}_x(1-\hat{p}_x)}{n_x} + \frac{\hat{p}_y(1-\hat{p}_y)}{n_y}}$

Interpreting p-values for Hypothesis Testing

The strength of evidence against the null hypothesis H_0 is typically interpreted based on the p-value:

• Strong Evidence: p-value < 0.01 — very strong evidence against H_0 , likely leading to rejection. Moderate Evidence: $0.01 \le p_0$ -value < 0.05moderate evidence against H_0 , often justifying re-

• Weak Evidence: $0.05 \le p$ -value < 0.1 — weak evidence against H_0 , cautious rejection may be

• Inconclusive Evidence: p-value > 0.1 — inconclusive, insufficient evidence to reject H_0 .

#	Parameter	Condition	CI Formula	Test Statistic	Degrees of Freedom (df)
1	Mean	Known σ^2	$ar{X} \pm z_{lpha/2} rac{\sigma}{\sqrt{n}}$	$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$	N/A
2	Mean	Unknown σ^2	$\bar{X} \pm t_{\alpha/2, n-1} \frac{S}{\sqrt{n}}$	$T = \frac{X - \mu_0}{S / \sqrt{n}}$	n-1
3	Two Means	Known variances	$(\bar{X} - \bar{Y}) \pm z_{\alpha/2} \sqrt{\frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y}}$	$Z = \frac{\bar{X} - \bar{Y} - \delta_0}{\sqrt{\frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y}}}$	N/A
4	Two Means	Unknown equal variances	$(\bar{X} - \bar{Y}) \pm t_{\alpha/2, df} \cdot S_p \sqrt{\frac{1}{n_X} + \frac{1}{n_Y}}$	$T = \frac{X - Y - \delta_0}{S_p \sqrt{\frac{1}{n_X} + \frac{1}{n_Y}}}$	$n_X + n_Y - 2$
5	Two Means	Unknown unequal variances	$(\bar{X} - \bar{Y}) \pm t_{\alpha/2,\nu} \sqrt{\frac{s_X^2}{n_X} + \frac{s_Y^2}{n_Y}}$	$T = \frac{\bar{X} - \bar{Y} - \delta_0}{\sqrt{\frac{S_X^2}{n_X} + \frac{S_Y^2}{n_Y}}}$	$\nu = \min(n_X - 1, n_Y - 1)$
6	Proportion	Single	$\hat{p}\pm z_{lpha/2}\sqrt{rac{\hat{p}(1-\hat{p})}{n}}$	$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	N/A
7	Proportion	Two (pooled)	$(\hat{p}_X - \hat{p}_Y) \pm z_{\alpha/2} \sqrt{\hat{p}(1-\hat{p}) \left(\frac{1}{n_X} + \frac{1}{n_Y}\right)}$	$Z = \frac{\hat{p}_X - \hat{p}_Y}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_X} + \frac{1}{n_Y}\right)}}$	N/A
8	Proportion	Two (non-pooled)	$(\hat{p}_X - \hat{p}_Y) \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_X(1-\hat{p}_X)}{n_X} + \frac{\hat{p}_Y(1-\hat{p}_Y)}{n_Y}}$	$Z = \frac{\hat{p}_X - \hat{p}_Y}{\sqrt{\frac{\hat{p}_X (1 - \hat{p}_X)}{\hat{p}_X (1 - \hat{p}_Y)} + \frac{\hat{p}_Y (1 - \hat{p}_Y)}{\hat{p}_Y (1 - \hat{p}_Y)}}}$	N/A

nary of Important Distributions

Summary of Important Distributions									
Distribution	PMF/PDF	Mean	Variance	$MGF M_X(s)$	Support				
Bernoulli $Ber(p)$	$p^x(1-p)^{1-x}$	p	p(1 - p)	$1 - p + pe^s$	$\{0, 1\}$				
Binomial $Bin(n, p)$	$\binom{n}{k} p^k (1-p)^{n-k}$	np	np(1-p)	$(1 - p + pe^s)^n$	$\{0,1,\ldots,n\}$				
Poisson $Poi(\lambda)$	$\frac{\lambda^k e^{-\lambda}}{k!}$	λ	λ	$e^{\lambda(e^s-1)}$	$\{0,1,\dots\}$				
Geometric $Geom(p)$	$p(1-p)^{x-1}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^s}{1-(1-p)e^s}$ for $s < \ln\left(\frac{1}{1-p}\right)$	$\{1,2,\dots\}$				
Uniform $U[a, b]$	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{bs} - e^{as}}{(b-a)s}$	[a,b]				
Exponential $\text{Exp}(\lambda)$	$\lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{\lambda}{\lambda - s}$ for $s < \lambda$	\mathbb{R}^+				
Normal $N(\mu, \sigma^2)$	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2	$e^{\mu s + \frac{\sigma^2 s^2}{2}}$	\mathbb{R}				

- k: Number of successes in binomial trials.
- n: Number of trials in the binomial distribution.
- p: Probability of success in a trial (Bernoulli, Binomial, and Geometric).
- λ: Rate parameter for Poisson and Exponential distributions.
- $\hat{\mu}$: Mean of the normal distribution.
- σ^2 : Variance of the normal distribution.
- a, b: Bounds for the uniform distribution.
 x: Value at which the probability or den-
- sity function is evaluated.

- \bar{X}, \bar{Y} : Sample means for samples X and Y.
- $\sigma, \sigma_X, \sigma_Y$: Known population standard deviations (assumes normal distribution for small n or large sample size n > 30 for approximation).
- S, S_X, S_Y : Sample standard deviations (used when population standard deviation is unknown).
- n, n_X, n_Y : Sample sizes for samples X and Y; if n > 30, normal approximation is valid. Random sampling and independence within samples are
- $z_{\alpha/2}$: Critical value from the standard normal distribution for confidence level $1 - \alpha$; used when sample size is large or population standard deviation
- $t_{\alpha/2,df}$: Critical value from the t-distribution with df degrees of freedom for confidence level $1 - \alpha$; used for smaller sample sizes or unknown population standard deviation
- δ_0 : Hypothesized difference between two population means in two-sample
- $\hat{p}, \hat{p}_X, \hat{p}_Y$: Sample proportions for single or two samples.
- For two-sample tests, ensure $n \cdot \min(\hat{p}_X, 1 \hat{p}_X) > 8$ and $n \cdot \min(\hat{p}_Y, 1 \hat{p}_X) > 8$ \hat{p}_Y) > 8 for normal approximation validity.
- p₀: Hypothesized proportion in a single proportion test.
- S_p : Pooled standard deviation for two samples with equal variances; only used if variances are assumed equal.
- ν : Conservative degrees of freedom, this approach provides a lower bound on the degrees of freedom.

For hypothesis testing about parameters θ_1 and θ_2 of two populations, the p-value is calculated with respect to the alternative hypothesis. Suppose $H_0: \hat{\theta}_1 - \hat{\theta}_2 = \theta_0$.

- If $H_1:\theta_1-\theta_2>\theta_0$, the p-value is $P_{H_0}(T\geq t)$.
 If $H_1:\theta_1-\theta_2<\theta_0$, the p-value is $P_{H_0}(T\leq t)$.
- If $H_1: \theta_1 \theta_2 \neq \theta_0$, the p-value is $2 \min\{P_{H_0}(T \leq t), P_{H_0}(T \geq t)\}$.

Joint, Marginal, and Conditional Distributions, and Expectations

Joint Distributions: Joint PMF (Discrete): P(X = x, Y = y)

Joint PDF (Continuous): $f_{X,Y}(x,y)$, where $P((X,Y) \in A) =$

 $\iint_A f_{X,Y}(x,y) dx dy$

Expressing Joint PDF in Terms of Conditional and Marginal Distri-

 $f_{X,Y}(x,y) = f_{X|Y}(x|y)f_Y(y)$

Marginal Distributions:

Discrete: Obtained by summing over y: $P(X = x) = \sum_{y} P(X = x, Y = y)$ **Continuous**: Obtained by integrating over y: $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$

Conditional Distributions:

Conditional PMF (Discrete): $P(Y = y | X = x) = \frac{P(X = x, Y = y)}{P(X = x)}$

Conditional PDF (Continuous): If $f_X(x) > 0$, then

 $f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_{X}(x)}, \quad y \in \mathbb{R}$

Independence of Random Variables: X and Y are independent if, for all

P(X = x, Y = y) = P(X = x)P(Y = y) or $f_{X,Y}(x, y) = f_X(x)f_Y(y)$

Expectation and Variance: Conditional Expectation of Y given X = x:

 $E[Y|X=x] = \int y f_{Y|X}(y|x) dy$

Expectation of Y^2 : $E[Y^2] = \int_{-\infty}^{\infty} y^2 f_Y(y) dy$

Expected Sum: E(aX + bY) = aE[X] + bE[Y]

Expected Product (if X and Y are independent): E[XY] = E[X]E[Y]

Law of Total Expectation: E(Y) = E[E(Y|X)]

Markov Inequality: For a non-negative random variable X,

 $P(X > x) \leq \frac{E[X]}{x}$

Moment Generating Function (MGF)

• When it exists, for $t \in I \subset \mathbb{R}$: $M(t) = E[e^{tX}] = \int_{-\infty}^{\infty} e^{tx} f(x) dx.$

Moment Property

- The *n*-th moment: $E[X^n] = M_X^{(n)}(0)$, where $M_X^{(n)}(0)$ denotes the *n*-th derivative of the MGF evaluated at t=0.
- If X and Y are independent, then $M_{X+Y}(t) = M_X(t)M_Y(t)$. Properties of Linear Combinations of Normals

• If $X_i \sim N(\mu_i, \sigma_i^2)$ are independent, then $a + \sum_{i=1}^n b_i X_i \sim$ $N\left(a + \sum_{i=1}^{n} b_i \mu_i, \sum_{i=1}^{n} b_i^2 \sigma_i^2\right)$

Multivariate Normal Distribution

• The pdf of a multivariate Normal distribution $N(\mu, \Sigma)$ for a random vector $Z \in \mathbb{R}^n$:

$$f_Z(z) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} \exp\left(-\frac{1}{2}(z-\mu)^T \Sigma^{-1}(z-\mu)\right),$$

where Σ is the covariance matrix and μ is the mean vector.

• If $X \sim N(\mu, \Sigma)$ and Y = a + BX, then $Y \sim N(a + B\mu, B\Sigma B^T)$. Central Limit Theorem

$$\lim_{n \to \infty} P\left(\frac{S_n - n\mu}{\sigma\sqrt{n}} \le x\right) = \Phi(x),$$

where Φ is the cdf of the standard Normal distribution. Normal Approximation to Binomial

If $X \sim \text{Binomial}(n, p)$, for large n, $P(X < k) \approx P(Y < k)$, where $Y \sim N(np, np(1-p)).$

Statistics: Tests and Confidence Intervals

- Test statistic: estimate-hypothesized value
- Confidence interval: estimate \pm (critical value) \times se(estimate). Other Mathematical Formulas
 - **Factorial:** $n! = n(n-1)(n-2)\cdots 1$.
 - Binomial coefficient: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.
 - Newton's binomial theorem: $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$.

- Geometric sum: $1 + a + a^2 + \cdots + a^n = \frac{1 a^{n+1}}{1 a}$ for $a \neq 1$.
- Logarithms:
 - $1. \log(xy) = \log x + \log y.$
- $\begin{array}{c}
 1 & \log(wg) \\
 2 & e^{\log x} = x.
 \end{array}$ Exponential:
- - 1. $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$ 2. $e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$.
- 3. $e^{x+y}=e^xe^y$. Multinomial Dist.: $P(X_1=x_1,X_2=x_2,\ldots,X_k=x_k)$ $=\frac{\sum\limits_{x_1!}\sum\limits_{x_2!}\sum\limits_{x_k!}p_1^{x_1}}{p_1^{x_1}\sum\limits_{x_2!}\sum\limits_{x_k}p_k^{x_k}}$ Differentiation

- \bullet (f+g)'=f'+g'
- $\bullet \ (fg)' = f'g + fg$

- $\frac{dx}{dx}e^x = e^x$ $\frac{d}{dx}\log(x) = \frac{1}{x}$

Chain Rule

(f(g(x)))' = f'(g(x))g'(x).Integration

 $\int_a^b f(x) \, dx = [F(x)]_a^b = F(b) - F(a), \quad \text{where } F' = f.$ Integration by Parts

$$\int_{a}^{b} f(x)G(x) dx = [F(x)G(x)]_{a}^{b} - \int_{a}^{b} F(x)g(x) dx, \text{ where } F' = f \text{ and } G' = g.$$

Source of Variation					P[F > f]
Treatment	k-1	SS_F	$MS_F = \frac{SS_F}{k-1}$	$\frac{MS_F}{MS_E}$	P-value
Error	N-k	SS_E	$MS_E = \frac{SS_E}{N-k}$	-	-
Total	N-1	SS_T	l -	-	-