Convolutional Neural Network 기본 개념

CNN의 주요 용어 정리

- Convolution(합성곱)
- 채널(Channel)
- 필터(Filter)
- 스트라이드(Strid)
- 피처 맵(Feature Map)
- 액티베이션 맵(Activation Map)
- 패딩(Padding)
- 풀링(Pooling) 레이어

Convolution

1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31	32	33	34	35
36	37	38	39	40	41	42
43	44	45	46	47	48	49

0.1	0.2	0.3
0.4	0.5	0.6
0.7	0.8	0.9

$$= 0.1 \times 10 + 0.2 \times 11 + 0.3 \times 12 + 0.4 \times 17 + 0.5 \times 18 + 0.6 \times 19 + 0.7 \times 24 + 0.8 \times 25 + 0.9 \times 26 = 94.2$$

Smoothing Spatial filters

1 273	1	4	7	4	1
	4	16	26	16	4
	7	26	41	26	7
	4	16	26	16	4
	1	4	7	4	1

Box filter

Weighted average gaussian smoothing filter

Convolution의 작동 원리

- 입력 데이터 5X5, 필터 크기 3X3
- Stride = 1

1 _{×1}	1,	1 _{×1}	0	0
0,0	1 _{×1}	1,0	1	0
0 _{×1}	0,0	1 _{×1}	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

Convolved Feature

Convolution의 작동 원리

필터(Filter) & Stride

- 필터는 이미지의 특징을 찾아내기 위한 공용 파라미터입니다.
- 필터는 일반적으로 (3, 3)과 같은 정사각 행렬로 정의됩니다.
- CNN에서 학습의 대상은 필터 파라미터 입니다.

CNN에서 학습의 대상은 필터 파라미터

1,	1,0	1,	0	0
0,0	1,	1 _{×0}	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

채널, Channel

Keras data_format: A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, width, channels)

이미지 출처: https://en.wikipedia.org/wiki/Channel_(digital_image)

컬러 영상 (3-channel) 에서 Feature Map 생성 과정

패딩(Padding)

- Convolution 레이어에서 Filter와 Stride에 작용으로 Feature Map 크기는 입력데이터 보다 작습니다.
- Convolution 레이어의 출력 데이터가 줄어드는 것을 방지하는 방법이 패딩입니다
- 패딩은 입력 데이터의 외각에 지정된 픽셀만큼 특정 값으로 채워 넣는 것을 의미합니다. 보통 패딩 값으로 0으로 채워 넣 습니다.

패딩(Padding)

0	0	0	0	0	0	0
0	1	1	1	0	0	0
0	0	1	1	1	0	0
0	0	0	1	1	1	0
0	0	1	1	1	0	0
0	0	1	1	0	0	0
0	0	0	0	0	0	0

0	0	0	0	0	0	0
0	60	113	56	139	85	0
0	73	121	54	84	128	0
0	131	99	70	129	127	0
0	80	57	115	69	134	0
0	104	126	123	95	130	0
0	0	0	0	0	0	0

114		

Pooling 레이어

- 풀링 레이어는 컨볼류션 레이어의 출력 데이터를 입력으로 받아서 출력 데이터(Activation Map)의 크기를 줄이거나 특정 데이터를 강조하는 용도로 사용됩니다.
- 플링 레이어를 처리하는 방법으로는 Max Pooling 과 Average Pooning, Min Pooling이 있습니다.

Pooling 레이어

Conv2D layer

Conv2D class

```
tf.keras.layers.Conv2D(
    filters,
    kernel_size,
    strides=(1, 1),
    padding="valid",
    data_format=None,
    dilation_rate=(1, 1),
    groups=1,
    activation=None,
    use_bias=True,
    kernel_initializer="glorot_uniform",
    bias initializer="zeros",
    kernel_regularizer=None,
    bias_regularizer=None,
    activity_regularizer=None,
    kernel_constraint=None,
    bias constraint=None,
    **kwargs
```

Conv2D layer

Arguments

- **filters**: Integer, the dimensionality of the output space (i.e. the number of output filters in the convolution).
- **kernel_size**: An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
- **strides**: An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
- **padding**: one of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
- data_format: A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width). It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json. If you never set it, then it will be channels_last.

Conv2D layer

Examples

```
>>> # The inputs are 28x28 RGB images with `channels_last` and the batch
>>> # size is 4.
>>> input_shape = (4, 28, 28, 3)
>>> x = tf.random.normal(input_shape)
>>> y = tf.keras.layers.Conv2D(
... 2, 3, activation='relu', input_shape=input_shape[1:])(x)
>>> print(y.shape)
(4, 26, 26, 2)
```

CNN 의 특징 정리

- 각 레이어의 입출력 데이터의 형상 유지
- 이미지의 공간 정보를 유지하면서 인접 이미지와의 특징을 효과적으로 인식
- 복수의 필터로 이미지의 특징 추출 및 학습
- 추출한 이미지의 특징을 모으고 강화할 수 있는 Pooling 레 이어를 사용
- 필터를 공유 파라미터로 사용하기 때문에, 일반 인공 신경망과 비교하여 학습 파라미터가 매우 적음