1. Show that $f:(0,\infty)\to\mathbb{R}$ defined by $f(x)\coloneqq sin(\frac{1}{x})$ is not uniformly continuous.

Let $\epsilon = 2$.

Let
$$x_n = \frac{1}{\frac{\pi}{2} + 2n\pi}$$
 and $y_n = \frac{1}{\frac{3\pi}{2} + 2n\pi}$.

Consider
$$|f(x) - f(y)| = |\sin(\frac{\pi}{2} + 2n\pi) - \sin(\frac{3\pi}{2} + 2n\pi)| = |\sin(\frac{\pi}{2} - \sin(\frac{3\pi}{2})| = 2 \ge \epsilon$$
,

while
$$|x_n - y_n| = \left| \frac{1}{\frac{\pi}{2} + 2n\pi} - \frac{1}{\frac{3\pi}{2} + 2n\pi} \right| = \left| \frac{2}{\pi + 2n\pi} - \frac{2}{3\pi + 2n\pi} \right| = \frac{2}{\pi} \left| \frac{1}{4n + 1} - \frac{1}{4n + 3} \right| = \frac{2}{\pi} \left| \frac{2}{(4n + 1)(4n + 3)} \right|.$$

Since $\left|\frac{2}{(4n+1)(4n+3)}\right|$ can be made arbitrarily small, f is uniformly continuous.

2. Let $f: S \to \mathbb{R}$ be uniformly continuous. Let $A \subset S$. Prove that $f|_A$ is uniformly continuous.

Let $\epsilon > 0$ be given.

Since f is uniformly continuous on S, for some $\delta>0, \ \forall x,y\in S$ that if $|x-y|<\delta, \ |f(x)-f(y)|<\epsilon.$

Then $\forall x,y\in A\subset S$ that if $|x-y|<\delta, |f(x)-f(y)|<\epsilon.$ So $f|_A$ is uniformly continuous. \Box

3. Let A,B be intervals. Let $f:A\to\mathbb{R}$ and $g:B\to\mathbb{R}$ be uniformly continuous such that f(x)=g(x) for all $x\in A\cap B$. Define the function

$$h(x) = \begin{cases} f(x) & x \in A \\ g(x) & x \in B \setminus A \end{cases}$$

Prove that h is uniformly continuous.

Let $x, y \in A \cup B$.

Let $\epsilon > 0$ be given.

Case 1: x and y both in A or B.

Then, for either f or g, $\exists \delta > 0$ such that if $|x - y| < \delta$, |h(x) - h(y)| will be equal to either $|f(x) - f(y)| < \epsilon$ or $|g(x) - g(y)| < \epsilon$, since both are uniformly continuous.

Case 2: x and y are in different set.

Assume that $A \cap B \neq \emptyset$.

Let $z \in A \cap B$.

Since f is uniformly continuous, $\exists \delta_1 > 0$ such that $\forall x, z \in A$ such that if $|x - z| < \delta_1, |f(x) - f(z)| < \frac{\epsilon}{2}$.

Since g is uniformly continuous, $\exists \delta_2 > 0$ such that $\forall y, z \in B$ such that if $|z - y| < \delta_2$, $|g(z) - g(y)| < \frac{\epsilon}{2}$.

Then, $\exists \delta_1 + \delta_2 > 0$ such that

$$|x - y| = |x - z + z - y| \le |x - z| + |z - y| < \delta_1 + \delta_2$$

we have

$$|h(x) - h(y)| = |f(x) - f(z) + g(z) - g(y)|$$

$$\leq |f(x) - f(z)| + |g(z) - g(y)|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

So h is uniformly continuous. \square

In case $A \cap B = \emptyset$.

Consider A = [1, 2) and B = [2, 3].

Let $f:A \to \mathbb{R}; x \mapsto x$ and $g:B \to \mathbb{R}; x \mapsto x^2$.

For any $\epsilon > 0$, let $\delta = \epsilon > 0$. Then for all x and y such that $|x - y| < \delta$, $|f(x) - f(y)| = |x - y| < \delta = \epsilon$. So, f is uniformly continuous.

Since g is a polynomial, it is continuous on closed interval [2,3], the g is uniformly continuous.

We have $1 \le f < 2$ and $4 \le g \le 9$, so 2 < |f - g| < 8.

Let $\epsilon=1$, then $\forall x\in A,y\in B, |h(x)-h(y)|=|f(x)-g(y)|>\epsilon$, so h is not uniformly continuous.

4. Suppose $f: S \to \mathbb{R}$ and $g: [0, \infty) \to [0, \infty)$ are functions, g is continuous at 0, g(0) = 0, and whenever x, y are in S, we have $|f(x) - f(y)| \le g(|x - y|)$. Prove that f is uniformly continuous.

Let $\epsilon > 0$ be given.

Since g is continuous at x=0, $\exists \delta>0$ such that $|x-y|-0<\delta,$ $|g(|x-y|)-g(0)|=g(|x-y|)<\epsilon.$

For all $x,y\in S$ that $|x-y|<\delta$, we have $|f(x)-f(y)|\leq |g(|x-y|)|<\epsilon$. Thus f is uniformly continuous. \square