Теория вероятностей. Лекция третья Конструктор алгебр

Дмитрий Валерьевич Хлопин glukanat@mail.ru

Институт математики и механики им. Н.Н.Красовского

18.09.2018

Напомним:

- Вероятностное пространство $\,-\,\,$ это тройка $(\Omega,\mathcal{F},\mathbb{P})$, где
 - Ω множество элементарных событий (исходов), некоторое непустое множество;
 - $\mathcal{F} \sigma$ -алгебра событий, $\mathcal{F} \subset 2^{\Omega}$;
 - \mathbb{P} вероятность, σ -аддитивная функция $\mathbb{P}: \mathcal{F} \to [0,1]$ со свойством $\mathbb{P}(\Omega) = 1$.

Задача теории вероятностей — рассчитать вероятность сложных событий.

Функцию $\mathbb P$ из $\mathcal F$ в $\mathbb R \cup \{+\infty\}$ называют

 σ -аддитивной, если $\mathbb{P}(\cup_{i\in\mathbb{N}}A_i)=\sum_{i\in\mathbb{N}}\mathbb{P}(A_i)$ для всех попарно несовместных событий $A_i\in\mathcal{F}, i\in\mathbb{N}$.

Совокупность подмножеств множества Ω называется:

 σ -алгеброй, если его элементы замкнуты относительно счетного числа теоретико-множественных операций и $\Omega \in \mathcal{F}$;

алгеброй, если его элементы замкнуты относительно конечного числа теоретико-множественных операций и $\Omega \in \mathcal{F}$;

кольцом, если его элементы замкнуты относительно конечного числа теоретико-множественных операций;

полукольцом (булевым полукольцом), если $\forall A, B \in \mathcal{F} \ A \cap B \in \mathcal{F}$ и $\forall A, B \in \mathcal{F} \ \exists k \in \mathbb{N}, \ A_1, A_2, \dots, A_k \in \mathcal{F} \ B \setminus A = \cup_{i=1}^k A_i$.

Создай σ -алгебру из чего угодно!

У Вас есть что-то, некая совокупность $\mathcal G$ подмножеств Ω , $\varnothing \neq \mathcal G \subset 2^\Omega$. **Теорема 1.** Существует минимальное кольцо $\mathcal R(\mathcal G)$, содержащее $\mathcal G$; [то есть для любого кольца R из $\mathcal G \subset R$ следует $\mathcal R(\mathcal G) \subset R$]. Идея доказательства [Ширяев]. Рассмотреть пересечение всех таких колец R, для которых $\mathcal G \subset R \subset 2^\Omega$.

Теорема 2. [С-но] Существует минимальное σ -кольцо $\mathcal{S}(\mathcal{G})$, содержащее \mathcal{G} .

Пример 1. Дано $A, H \subset \Omega$. Построить $\mathcal{S}\{A\}, \mathcal{S}\{A, H\}$.

Следствие. Существует минимальная алгебра $\alpha(\mathcal{G})$, содержащая \mathcal{G} . Следствие. Существует минимальная σ -алгебра $\sigma(\mathcal{G})$, содержащая \mathcal{G} . Подумать: про $\alpha(\mathcal{R}(\mathcal{G}))$, $\mathcal{S}(\mathcal{R}(\mathcal{G}) \cup \{\Omega\})$.

О продолжении

Теорема 3 (Каратеодори) [с-но]. Всякую σ -аддитивную функцию, заданную на полукольце Π , можно продолжить на минимальное ее содержащее σ -кольцо, на $\alpha(\Pi)$; более того, такое продолжение единственно.

 $\overline{\mu:\Pi o\mathbb{R}}$ рассмотреть отображение

$$\mu^*(A) = \inf \left\{ \sum_{k=1}^{\infty} \mu(D_k) \mid D_k \in \Pi, A \subset \bigcup_{k=1}^{\infty} D_k \right\} \qquad \forall A \in 2^{\Omega}$$

на σ -кольце $\{A \subset \Omega \,|\, \forall D \subset \Omega \; \mu^*(D \cap A) + \mu^*(D \setminus A) = \mu^*(D)\}$. Единственность. Пусть есть две такие функции, тогда те множества, на которых эти функции принимают одни и те же значения, образуют σ -кольцо, и это σ -кольцо содержит Π . Поскольку $\alpha(\Pi)$ — минимальное σ -кольцо, содержащее Π , то на $\alpha(\Pi)$ эти функции совпадают.

Вероятность достаточно задать на полуалгебре

Теорема 3 (Каратеодори) [с-но]. Всякую σ -аддитивную функцию, заданную на полукольце Π , можно продолжить на минимальное ее содержащее σ -кольцо, на $\alpha(\Pi)$; более того, такое продолжение единственно.

<u>Подумать:</u> условие σ -аддитивности функции существенно, постройте контрпример на множестве натуральных чисел.

Следствие. Всякую счетно-аддитивную неотрицательную функцию, заданную на полуалгебре Π , можно продолжить на минимальную ее содержащую σ -алгебру, на $\sigma(\Pi)$; более того, такое продолжение единственно.

Следствие. Всякую вероятность достаточно задать на полуалгебре Π , на $\sigma(\Pi)$ она восстановится однозначно.

Создать σ -алгебру: умножение

Даны Ω',Ω'' и их σ -алгебры $\mathcal{F}',\mathcal{F}''$. Тогда σ -алгеброй над $\Omega'\times\Omega''$ является

$$\mathcal{F}' \otimes \mathcal{F}'' = \sigma\{A \times B \mid A \in \mathcal{F}', B \in \mathcal{F}''\}.$$

Подумать: зная Ω_n , Ω_m и \mathcal{F}_n = 2^{Ω_n} , \mathcal{F}_m = 2^{Ω_m} , найти $\mathcal{F}_n\otimes\mathcal{F}_m$.

<u>Подумать</u>: как умножать конечное число измеримых пространств, счетное число измеримых пространств, произвольное число измеримых пространств.

<u>Подумать</u>: как построить σ -алгебру, вмещающую в себя каждое \mathcal{F}_n из схемы независимых испытаний Бернулли.

Создать σ -алгебру: образ

Даны измеримое пространство (Ω,\mathcal{F}) и некоторое отображение

$$\xi:\Omega\to\tilde\Omega.$$

Тогда можно ввести индуцированную σ -алгебру как образ:

$$\tilde{\mathcal{F}} \stackrel{\triangle}{=} \{\xi(A) \,|\, A \in \mathcal{F}\} = \{\{\xi(\omega) | \omega \in A\} \,|\, A \in \mathcal{F}\}.$$

Пусть на (Ω, \mathcal{F}) задана некоторая мера μ , тогда можно ввести индуцированную меру (образ меры, push-forward) $\tilde{\mu} = \mu \circ \xi^{-1} = \xi \# \mu$ правилом:

$$\tilde{\mu}(\tilde{A}) = (\xi \# \mu)(\tilde{A}) = \mu(\xi^{-1}(\tilde{A})) \quad \forall \tilde{A} \in \tilde{\mathcal{F}}.$$

 $\underline{\text{Подумать}}$: как, зная $(\Omega_2, \mathcal{F}_2, \mathbb{P}_2)$ и $(\Omega_1 \times \Omega_2, \mathcal{F}_1 \otimes \mathcal{F}_2, \mathbb{P}_{12})$, восстановить заданную на $(\Omega_1, \mathcal{F}_1)$ вероятность \mathbb{P}_1 ?

Создать σ -алгебру: сужение

Даны Ω с σ -алгеброй $\mathcal F$ и непустое подмножество $H\subset \Omega$. Тогда над H можно построить σ -алгебру

$$\mathcal{F}|_{H} = \{ A \cap H \mid A \in \mathcal{F} \}.$$

 \square Подумать: для Ω_n и \mathcal{F}_n = 2^{Ω_n} из схемы независимых испытаний Бернулли рассмотрите σ -алгебру над множеством

 $\{$ конечные строки из нулей и единиц длины n, начинающиеся с $1\}.$

Подумать: А как задать на $(H,\mathcal{F}|_H)$ вероятность в простейшем случае, $\overline{\mathcal{F}}$ = $\sigma\{A,H\}$?

Условная вероятность в простейшем случае

Пусть даны $A, H \in \mathcal{F}, \mathbb{P}(H) > 0$.

Условной вероятностью события A при условии события H называется число

$$\mathbb{P}(A|H) = \frac{\mathbb{P}(A \cap H)}{\mathbb{P}(H)}.$$

Подумать: верны ли тождества

$$\mathbb{P}(A|H) + \mathbb{P}(\bar{A}|H) = 1, \qquad \mathbb{P}(A|H) + \mathbb{P}(A|\bar{H}) = 1?$$

[C-но]: отображение $\mathcal{F}|_H \ni A \mapsto \mathbb{P}(A|H) = \frac{\mathbb{P}(A \cap H)}{\mathbb{P}(H)}$ действительно задает вероятность на $(H, \mathcal{F}|_H)$.

Теорема умножения

Теорема 4. [С-но]

Пусть
$$A,A_1,\ldots,A_n,B\in\mathcal{F}$$
. Если $\mathbb{P}(A),\mathbb{P}(B),\mathbb{P}(A_1),\ldots,\mathbb{P}(A_n)>0$, то

$$\mathbb{P}(A \cap B) = \mathbb{P}(B)\mathbb{P}(A|B) = \mathbb{P}(B|A)\mathbb{P}(A),$$

$$\mathbb{P}(\cap_{i=1}^{n} A_{i}) = \mathbb{P}(A_{n} | \cap_{i=1}^{n-1} A_{i}) \cdot \mathbb{P}(A_{n-1} | \cap_{i=1}^{n-2} A_{i}) \cdot \ldots \cdot \mathbb{P}(A_{2} | A_{1}) \mathbb{P}(A_{1}).$$

Подумать: почему тождества $\mathbb{P}(A \cap B) \equiv \mathbb{P}(B)\mathbb{P}(A|B) \equiv \mathbb{P}(B|A)\mathbb{P}(A)$ не зависят от положительности $\mathbb{P}(A), \mathbb{P}(B)$?

Пример типичной задачи

Петя и Вася подбрасывают по правильной кости. Выигрывает тот, у кого больше.

С какой вероятностью выиграет Вася, если ему выпало k? С какой вероятностью выиграет Вася?

Примем:

$$\Omega = \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}, \quad \mathcal{F} = 2^{\Omega}, \quad W = \{\text{"Вася выиграл"}\},$$

$$H_i = \{1, 2, 3, 4, 5, 6\} \times \{i\}, \quad \forall i \in \{1, 2, 3, 4, 5, 6\}.$$

Теперь,

 $\mathbb{P}(W|H_k)$ — вероятность того, что выиграл Вася, если ему выпало k.

На вырост, в терминах стратосферы

Пусть $\mathcal{H}\stackrel{\triangle}{=} \sigma\{H_1,\dots,H_6\}$, через $v(\omega)$ обозначим число очков, полученное Васей при исходе ω .

Фактически мы получили

1. условную вероятность $\mathbb{P}(W|v)$ относительно функции v, отображение

$$k \mapsto \mathbb{P}(W|v)(k) = \mathbb{P}(W|v=k) = \mathbb{P}(W|H_k);$$

2. условную вероятность $\mathbb{P}(W|\mathcal{H})$ относительно σ -алгебры \mathcal{H} , отображение

$$\omega \mapsto \mathbb{P}(W|\mathcal{H})(\omega) = \begin{cases} \mathbb{P}(W|H_1), & \text{если } \omega \in H_1; \\ \dots \\ \mathbb{P}(W|H_6), & \text{если } \omega \in H_6. \end{cases}$$

 \square Подумать: найдите образ пространства $(\Omega, \mathcal{F}, \mathbb{P})$ при отображении v, в частности, вероятность $v \# \mathbb{P}$.

Создать σ -алгебру: объединение

Даны H_1,H_2 с σ -алгебрами $\mathcal{F}_1,\mathcal{F}_2$, причем $H_1\cap H_2$ = Ø. Тогда над $H_1\sqcup H_2$ можно построить σ -алгебру

$$\mathcal{F}_1 \uplus \mathcal{F}_2 = \{A \cup B \mid A \in \mathcal{F}_1, B \in \mathcal{F}_2\}.$$

Подумать: догадайтесь в задаче с Васей, что за пространство $(\sqcup_{i=1}^6 H_i, \uplus_{i=1}^6 \mathcal{F}|_{H_i})$. А как на нем можно задать вероятность?

Простейший случай объединения: полная группа событий

Говорят, что набор событий $H_1,H_2,\ldots,H_n\in\mathcal{F}$ образует полную группу событий, если $H_i\cap H_j=\varnothing(i\neq j)$ и $\cup_i H_i=\Omega.$

Формула полной вероятности

[С-но] Для полной группы событий $H_1, H_2, \ldots, H_n \in \mathcal{F}$ и любого события $A \in \mathcal{F}$ выполнена формула полной вероятности:

$$\mathbb{P}(A) = \mathbb{P}(A|H_1)\mathbb{P}(H_1) + \ldots + \mathbb{P}(A|H_n)\mathbb{P}(H_n).$$

Подумать: почему формулу нисколько не беспокоит, если одно из $\overline{\mathbb{P}(H_i)}$ обратится в ноль?

Подумать: перед нами способ переноса вероятности на $(\sqcup_{i=1}^n H_i, \uplus_{i=1}^n \mathcal{F}|_{H_n})$. Сколько таких способов? А есть ли принципиально другие?

Подумать: найдите, наконец, вероятность выигрыша Васи.

Подумать: хотя бы на примере задачи с Васей, посмотрите на эту формулу с точки зрения условной вероятности относительно σ -алгебры ${\cal H}$ и/или условной вероятности относительно функции v.

Почему надо бы уметь больше?

Пример типичной задачи. Петя и Вася подбрасывают по правильной кости. Выигрывает тот, у кого больше.

C какой вероятностью выиграет Bacя, если ему выпало k?

С какой вероятностью выиграет Вася?

С какой вероятностью Васе выпало k, если он выиграл?

Еще один пример типичной задачи. Датчик случайных чисел выдает Пете и Васе по случайному числу от нуля до единицы.

C какой вероятностью выиграет Bacя, если ему выпало a?

С какой вероятностью выиграет Вася?

С какой вероятностью у Васи число a, если он выиграл?

Вывод: придется решать задачи, даже если вероятности всех гипотез равны нулю.

Формула Байеса

[С-но] Для полной группы событий $H_1, H_2, \ldots, H_n \in \mathcal{F}$ и любого события $A \in \mathcal{F}$ выполнена формула Байеса:

$$\mathbb{P}(H_i|A) = \frac{\mathbb{P}(H_i)\mathbb{P}(A|H_i)}{\mathbb{P}(A|H_1)\mathbb{P}(H_1) + \ldots + \mathbb{P}(A|H_n)\mathbb{P}(H_n)} \quad \forall i \in \{1,\ldots,n\}.$$

 $\overline{\mathbb{P}(H_j)}$ обратится в ноль?

- $\mathbb{P}(H)$ априорная вероятность гипотезы H, a priori, до опыта;
- $\mathbb{P}(H|A)$ апостериорная вероятность гипотезы H, a posteriori, после опыта.

Распространенная интерпретация: мы знаем некое "экспертное" мнение о вероятности $\mathbb{P}(H_i)$. Это априорная вероятность. Провели эксперимент, в ходе которого случилось событие A. После этого можно "уточнить" инфу, взяв апостериорную вероятность.

Образцовая задачка на формулу Байеса

Есть две монеты. Одна монета правильная — орел и решка выпадают с вероятностью 0,5; вторая монета неправильная — решка выпадает с вероятностью 0,75, орел — с вероятностью 0,25. Пусть выбор монет равновероятен.

- а) Бросили монету 1 раз. С какими шансами выпал орел?
- б) Бросили монету 1 раз. Выпал орел. С какими шансами это правильная монета?
- в) Бросили монету 10 раз. Выпал орел 2 раза, решка 8 раз. С какими шансами это правильная монета?
- г) Бросили монету 20 раз. Выпал орел 4 раза, решка 16 раз. С какими шансами это правильная монета?

Вывод первый. Мнение любого эксперта проверяемо, если эксперимент достаточно долгий.

Образцовая задачка на формулу Байеса

Есть две монеты. Одна монета правильная — орел и решка выпадают с вероятностью 0,5; вторая монета неправильная — решка выпадает с вероятностью 0,75, орел — с вероятностью 0,25.

- г) Пусть выбор монет равновероятен. Бросили монету 20 раз. Выпал орел 4 раза, решка 16 раз. С какими шансами это правильная монета?
- д) Априори монета честная с вероятностью 9/10. Бросили монету 20 раз. Выпал орел 4 раза, решка 16 раз. С какими шансами это правильная монета?
- е) Априори монета честная с вероятностью 9999/10000. Бросили монету 20 раз. Выпал орел 4 раза, решка 16 раз. С какими шансами это правильная монета?

Вывод второй. Хороший эксперт экономит.

Вывод третий. Никакой эксперимент не убедит всех экспертов.

Подумать: что делать, если про монету изначально неизвестно ничего? Сколько гипотез потребуется?

Итог лекции

Задача теории вероятностей — рассчитать вероятность сложных событий. Как?

При выполненной гипотезе — условная вероятность; объединение по гипотезам — формула полной вероятности; вероятность *a posteriori* — формула Байеса.

Вывод. Подалгебры только затем учить надо, что они вероятность в соответствие имеющейся информации приводят.

Замечание в минус. Пока всё это работает только для конечного числа гипотез, ненулевой вероятности каждая.

Замечание в плюс. Строить σ -алгебру не требуется, достаточно ввести вероятность на полукольце.