$\phi_O:=P_\star\phi$ and let $\{p_i\colon i\in\Delta\}$ be an increasing net of projections of finite rank in B(H) with strong limit 1 . Since the set $K:=\{\phi_t\colon t\geqq0\}$ is relatively compact in the $\sigma(B(H)_\star,B(H))$ -topology, there exists for every $\delta>0$ an index $i_O\in\Delta$ such that

$$\| (1 - p_i) \psi (1 - p_i) \| \le \delta$$

for every $\psi \in K$ and $i \ge i_0$ [Takesaki (1979), Theorem III.5.4.(vi)]. In particular

$$|\psi(1 - p_i)| \le \delta$$
, $\psi \in K$, $i(0) \le i$.

Let p := p(i(o)). Then for all x in the unit ball of M it follows that

Since the W*-algebra pB(H)p is finite dimensional, there exists $U\in \mathcal{U}$ such that

$$\|(\phi_t - \phi_0)\|_{pB(H)p}\| \leq \delta$$

for all $t \in U$. Consequently

$$\|(\phi_+ - \phi_0)\| \le (\delta + 4\sqrt{\delta})$$

for all t(U . Therefore $\lim_{U} T(t)_{\star}\phi = P_{\star}\phi$ in the strong operator topology. Since the positive cone of $B(H)_{\star}$ is generating, the assertion is proved.

For irreducible W^* -dynamical systems on B(H) the above properties always hold.

Theorem 3.8. Let $(B(H), \Phi, T)$ be an irreducible W*-dynamical system. Then

$$P\sigma(A) \cap i\mathbb{R} = \{0\}$$
.