Matrix Analysis: Review of linear algebra

Jean-Luc Bouchot

School of Mathematics and Statistics Beijing Institute of Technology ¡lbouchot@bit.edu.cn

2018/11/18

Let V be a finite dimensional vector space. The mapping $\|\cdot\|:V\to\mathbb{R}$ is called a vector norm if

- $||\mathbf{v}|| \ge 0$, for all $\mathbf{v} \in V$ (positivity),
- $\|\mathbf{v}\| = 0 \Leftrightarrow \mathbf{v} = 0_V$ (definition),
- $\|\alpha \mathbf{v}\| = |\alpha| \|\mathbf{v}\| \text{ for all } \alpha \in \mathbb{K} \text{ and } \mathbf{v} \in V \text{ (homogeneity)},$
- $||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$ for all $\mathbf{u}, \mathbf{v} \in V$ (triangle inequality).

Example 1

Let $V=\mathbb{R}^n.$ The following define the traditional Minkowski p norms, for a real number $p\geq 1$:

$$\|\mathbf{x}\|_p = \left(\sum |x_i|^p\right)^{1/p}.$$

Some people call this also Hölder's norm.

Particular examples include:

- p=2: Euclidean norm
- p = 1: Manhattan or Taxicab norm
- As $p \to \infty$, we define the *infinity norm* as $\|\mathbf{x}\|_{\infty} = \max_i |x_i|$.

Let $\infty \ge p \ge q \ge 1$. It holds

$$\|\mathbf{x}\|_{p} \leq \|\mathbf{x}\|_{q} \leq n^{1/q-1/p} \|\mathbf{x}\|_{p}.$$

Two norms N_1 and N_2 are said to be **equivalent** if there exist two constants α and β such that

$$\alpha N_1(\mathbf{v}) \le N_2(\mathbf{v}) \le \beta N_1(\mathbf{v}), \text{ for all } \mathbf{v} \in V.$$

Assume $(\mathbf{x}^{(k)})_k$ is a convergence sequence with respect to a norm N_1 . If N_2 is equivalent to N_1 then $(\mathbf{x}^{(k)})_k$ is also convergence with respect to N_2 .

On a finite dimensional vector space, all norms are equivalent.

Example 2

Let N be defined as

$$N(\mathbf{u}) = (|2u_1 + 3u_2|^2 + |u_2|^2)^{1/2}.$$

Does N define a norm?

Let $A:V\to W$ be a linear function where $\dim(V)=n$ and let $\|\cdot\|$ define a norm on W. If rk(A)=n then $\|A(\mathbf{x})\|$ is a norm.

Let ${\bf u}$ and ${\bf v}$ be two n-dimensional vectors. Then Hölder's inequality holds

$$\sum_{i=1}^n |u_i v_i| \le \|\mathbf{u}\|_p \|\mathbf{v}\|_q,$$

where p and q are such that 1/p + 1/q = 1.

Lemma 1 (Young's inequality for product)

Let a and b be non-negative real numbers and 1 . It holds

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

A vector space $(V, \|\cdot\|)$ is said to be a normed vector space if

- ullet V is a vector space over $\mathbb K$ and
- || ⋅ || is a norm.

If moreover V is complete (every Cauchy sequence in V converge in V) we call it a Banach space.

Let V be a vector space over the field \mathbb{K} . The binary function $\langle\cdot,\cdot\rangle:V\times V\to\mathbb{K}$ is called an inner product if for all $\mathbf{u},\mathbf{v},\mathbf{w}\in V$

- $(\mathbf{u}, \mathbf{u}) = 0 \Leftrightarrow \mathbf{v} = 0,$
- $\langle \alpha \mathbf{u}, \mathbf{v} \rangle = \alpha \langle \mathbf{u}, \mathbf{v} \rangle$, for all scalar $\alpha \in \mathbb{K}$,

One may say that the inner product is a positive definite sesquilinear form.

Let V be a vector space and $\langle \cdot, \cdot \rangle$ be an inner product. The mapping $\| \cdot \|$ defined for $\mathbf{u} \in V$ as $\|\mathbf{u}\|^2 = \langle \mathbf{u}, \mathbf{u} \rangle$ is a norm on V.

Proposition 7 (Cauchy-Schwarz)

Let $\langle \cdot, \cdot \rangle$ be an inner product on V. It holds, for all $\mathbf{u}, \mathbf{v} \in V$

$$|\langle \mathbf{u}, \mathbf{v} \rangle| \leq \|\mathbf{u}\| \|\mathbf{v}\|,$$

where $\|\cdot\|$ is the norm induced by the inner product.

Show that the equality in Cauchy-Schwarz inequality occurs if and only if ${\bf u}$ and ${\bf v}$ are linearly dependent.

A vector space equipped with an inner product is called an **inner product** space.

If the space is also complete, we call it a Hilbert space.

Show that the trace defines an inner product on the space of matrices:

$$\langle A, B \rangle = tr(B^*A).$$

The associated norm is called the **Frobenius**, denoted $\|\cdot\|_F$. What is $\|A\|_F^2$?

An inner product $\langle \cdot, \cdot \rangle$ fulfills the following basic properties (in an vector space V on the field of scalar \mathbb{K}):

- Let $\mathbf{u} \in V$, $T_{\mathbf{u}} : V \to \mathbb{K}$ defined for all $\mathbf{v} \in V$ as $T_{\mathbf{u}}(\mathbf{v}) = \langle \mathbf{u}, \mathbf{v} \rangle$ is a linear map from V to \mathbb{K} .
- $\langle 0, \mathbf{u} \rangle = 0 = \langle \mathbf{u}, 0 \rangle$ for every $\mathbf{u} \in V$.
- $\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$, for every $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$.
- $\langle \mathbf{u}, \lambda \mathbf{v} \rangle = \overline{\lambda} \langle \mathbf{u}, \mathbf{v} \rangle$, for every $\mathbf{u}, \mathbf{v} \in V$ and $\lambda \in \mathbb{K}$.

Let $V, \langle \cdot, \cdot \rangle$ be an inner product space. Two vectors \mathbf{u}, \mathbf{v} are called **orthogonal**

$$\langle \mathbf{u}, \mathbf{v} \rangle = 0.$$

Let $V, \langle \cdot, \cdot \rangle$ be an inner product space. Two families of vectors S and T are called **orthogonal** if

$$\langle \mathbf{u}, \mathbf{v} \rangle = 0, \ \text{for all } \mathbf{u} \in S, \mathbf{v} \in T.$$

Prove the Pythagorean theorem: if $\mathbf u$ and $\mathbf v$ are two orthogonal vectors, then

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2,$$

where $\|\cdot\|$ denotes the norm induced by the given scalar product.

A vector is said to be unit norm or normalized if $\|\mathbf{u}\| = 1$. A family of vectors is said to be orthonormal if it is a family of unit-norm vectors and orthogonal.

A family of p vectors is orthonormal if and only if the matrix U containing those vectors column-wise is such that $U^TU=I_p$.

Proposition 10 (Gram-Schmidt)

Let $S = (\mathbf{v}_1, \dots, \mathbf{v}_k)$ be a linearly independent family vectors. Then there exists an orthonormal family $(\mathbf{w}_1, \dots, \mathbf{w}_k)$ such that $\mathrm{span}(\mathbf{v}_1, \dots, \mathbf{v}_j) = \mathrm{span}(\mathbf{w}_1, \dots, \mathbf{w}_j)$ for all $1 \leq j \leq k$.

A square matrix $A \in \mathbb{K}^{n \times n}$ is called unitary (resp. orthogonal) if

$$A^*A = AA^* = I_n$$
 (resp. $A^TA = AA^T = I_n$).

Let U be a unitary matrix and λ one of its eigenvalues. Show that $|\lambda|=1$. What can be said about $|\det(U)|$?. What does it mean for a real orthogonal matrix?

Let $A \in \mathbb{K}^{n \times n}$. The following statements are equivalent

- A is unitary.
- ② A preserves the ℓ^2 norm: $||A\mathbf{u}|| = ||\mathbf{u}||$, for all $\mathbf{u} \in \mathbb{K}^n$.
- ullet The columns of A form an orthonormal system.

Are sums and product of unitary matrices also unitary?

Let U be a unitary matrix. Show that two vectors \mathbf{x} and \mathbf{y} are orthogonal if and only if $U\mathbf{x}$ and $U\mathbf{y}$ are orthogonal.

Let U be a unitary matrix. Show that adj(U) is unitary.