HOJA DE EJERCICIOS 7 Análisis Matemático (Grupo 130) CURSO 2021–2022.

$\underline{\mathbf{Problema}}$ 1. Explica por qué el conjunto

$$X \ = \ \left\{ \, (x,y,z,u,v) \in \mathbb{R}^5 \, : \, 3x^2 + 5y^7 + v^2 - e^{uz} = 0 \, \right\} \, ,$$

es una subvariedad de $\mathbb{R}^5.$ Dí, razonadamente, cuál es la dimensión geométrica de X.

$S/0=(0,0,0,0,0) \notin X$. Sea $V=R^5$ abjects y
F: 12 = U → 1R, F(x,y,z,u,v) = 3x + 5y + v - eut.
F ∈ C (R 5) y DF (x, y, z, u, v) = (6x, 35y, -ue ^{uz} ,
-20 ^{UZ} , 2V) tieve rango 1 Salvo en el punto
O que no pertenece a X; el rango de DF eo 1 enX
Además, $F^{-1}(103) = X = \mathbb{R}^{5} \cap X$, luep X
Además, $F^{-1}(103) = X = \mathbb{R}^5 \cap X$, trup X es una C^{∞} -subvariedad de dimension $5-1=4$.

Problema 2. Consideramos los dos cilindros siguientes en \mathbb{R}^3

$$C_1 = \{(x, y, z) : x^2 + y^2 = 1\}$$
, $C_2 = \{(x, y, z) : y^2 - 2y + z^2 = 0\}$.

Demuestra que la intersección $C_1 \cap C_2$ es un subvariedad de \mathbb{R}^3 . Dí, razonadamente, cuál es la dimensión geométrica de esta intersección.

s/ F: U=R3 R2
$F(x,y,z) = (x^2 + y^2 + y^2 + z^2)$
$F \in C^{\infty}(\mathbb{R}^3)$, $DF(x,y,z) = \begin{pmatrix} 2x & 2y & 0 \\ 0 & 2y-2 & 2z \end{pmatrix}$
range $DF(x,y,z) \ge 1$ on todo \mathbb{R}^3 y range $DF(x,y,z)=1$
este punto no esté en C1. O bren (X,1,0) un
XEIR, pero no esta en Cz. Asi que vanço DF es
2 en todo punto de $C, \Omega C_2$. Además, $= \frac{1}{F}(\{0\}) = C, \Omega(2 = C, \Omega(2)) \cap \mathbb{R}$
lugo C, M2 es una sub. dif. de dimension 3-2-1

 $\underline{\mathbf{Problema}}$ 3. Demuestra que el siguiente conjunto es una subvariedad de \mathbb{R}^4 , determinando su dimensión geométrica

$$X = \left\{ (x, y, z, u) : \begin{array}{rcl} x^2 + \cos x + e^z & = & 3 \\ u^2 + y^5 & = & 1 \end{array} \right\} \, .$$

5/ F: U= R4 - R2
$F(x,y,z,u) = (x + \omega_0 x + e^{-3}, u + y^{-1})$
$F \in C^{\infty}(\mathbb{R}^4)$, $DF(x,y,z,u) = \begin{pmatrix} 2x-sm \times & 0 & e^{\overline{z}} & 0 \\ 0 & 5y^4 & 0 & 2u \end{pmatrix}$
$F \in C^{(R^4)}$, $DF(x,y,z,u) = $
(0 59 0 24)
range $DF(x,y,z,u) \ge 1$ y range $DF(x,y,z,u) = 1$ si
y=0, u=0, pero (x,0,2,0) € X. Ari gre en
X, rango DF = 2. Como F (1(0,0)) = X = 1R 1X,
X es una subvaried de dif. de dim 4-2=2.
<u>.</u>

Problema 4. Consideramos la función $F: \mathbb{R}^4 \to \mathbb{R}^2$ definida como sigue:

$$F(x_1, x_2, x_3, x_4) = \begin{pmatrix} x_2 \cos x_1 + x_3^2 + 7x_2 x_4 \\ e^{x_1} x_3 + 5e^{x_2} - \sin x_3 - x_1 x_4^2 \end{pmatrix},$$

y los puntos a = (0, 1, 0, 0) y a' = (0, 0, 0, 1).

- a) Queremos resolver el sistema de dos ecuaciones $F(x_1, x_2, x_3, x_4) = F(a)$ cerca del punto a. Determina qué dos variables, entre las x_1, x_2, x_3, x_4 , se puede asegurar que se despejan como funciones diferenciables de las otras dos.
- b) Misma pregunta para el punto a'.

$$S = (0,1,0,0) \quad F(a) = (1,5e); \quad F = (f_1,f_2)$$

$$\frac{1}{0} = -x_2 \times x_1 + 7x_4 \implies \frac{1}{0} = 0$$

$$\frac{1}{0} = (a) = 1$$

$$\frac{1}{0} = 2x_3 \implies \frac{1}{0} = (a) = 1$$

$$\frac{1}{0} = 2x_3 \implies \frac{1}{0} = (a) = 0$$

$$\frac{1}{0} = 7x_2 \implies \frac{1}{0} = (a) = 7$$

$$\frac{1}{0} = x_3 e^{x_1} - x_4 \implies \frac{1}{0} = 0$$

$$\frac{1}{0} = x_3 e^{x_1} - x_4 \implies \frac{1}{0} = 0$$

$$\frac{1}{0} = x_3 e^{x_1} - x_4 \implies \frac{1}{0} = 0$$

$$\frac{1}{0} = x_3 e^{x_1} - x_4 \implies \frac{1}{0} = 0$$

$$\frac{1}{0} = x_3 e^{x_1} - x_4 \implies \frac{1}{0} = 0$$

$$\frac{1}{0} = x_3 e^{x_1} - x_4 \implies \frac{1}{0} = 0$$

$$\frac{1}{0} = x_3 e^{x_1} - x_4 \implies \frac{1}{0} = 0$$

$$\frac{1}{0} = x_3 e^{x_1} - x_4 \implies \frac{1}{0} = 0$$

$$\frac{1}{0} = x_3 e^{x_1} - x_4 \implies \frac{1}{0} = 0$$

$$\frac{1}{0} = x_3 e^{x_1} - x_4 \implies \frac{1}{0} = 0$$

$$\frac{1}{0} = x_4 e^{x_1} - x_4 \implies \frac{1}{0} = 0$$

$$\frac{1}{0} = x_4 e^{x_1} - x_4 \implies \frac{1}{0} = 0$$

$$\frac{1}{0} = x_4 e^{x_1} - x_4 \implies \frac{1}{0} = 0$$

$$\frac{1}{0} = x_4 e^{x_1} - x_4 \implies \frac{1}{0} = 0$$

$$\frac{1}{0} = x_4 e^{x_1} - x_4 \implies \frac{1}{0} = 0$$

$$\frac{1}{0} = x_4 e^{x_1} - x_4 \implies \frac{1}{0} = 0$$

$$\frac{1}{0} = x_4 e^{x_1} - x_4 \implies \frac{1}{0} = 0$$

$$\frac{1}{0} = x_4 e^{x_1} - x_4 e^{x_2} + x_4 e^{x_1} = 0$$

$$\frac{1}{0} = x_4 e^{x_1} - x_4 e^{x_2} + x_4 e^{x_1} = 0$$

$$\frac{1}{0} = x_4 e^{x_1} - x_4 e^{x_2} + x_4 e^{x_1} = 0$$

$$\frac{1}{0} = x_4 e^{x_1} - x_4 e^{x_2} + x_4 e^{x_1} = 0$$

$$\frac{1}{0} = x_4 e^{x_1} - x_4 e^{x_2} + x_4 e^{x_1} = 0$$

$$\frac{1}{0} = x_4 e^{x_1} - x_4 e^{x_2} + x_4 e^{x_1} = 0$$

$$\frac{1}{0} = x_4 e^{x_1} - x_4 e^{x_2} + x_4 e^{x_1} = 0$$

$$\frac{1}{0} = x_4 e^{x_1} - x_4 e^{x_2} + x_4 e^{x_1} = 0$$

$$\frac{1}{0} = x_4 e^{x_1} - x_4 e^{x_2} + x_4 e^{x_1} = 0$$

$$\frac{1}{0} = x_4 e^{x_1} - x_4 e^{x_2} + x_4 e^{x_1} = 0$$

$$\frac{1}{0} = x_4 e^{x_1} + x_4 e^{x_2} + x_4 e^{x_1} = 0$$

$$\frac{1}{0} = x_4 e^{x_1} + x_4 e^{x_2} + x_4 e^{x_1} = 0$$

$$\frac{1}{0} = x_4 e^{x_1} + x_4 e^{x_2} + x_4 e^{x_1} = 0$$

$$\frac{1}{0} = x_4 e^{x_1} + x_4 e^{x_2} + x_4 e^{x_1} = 0$$

$$\frac{1}{0} = x_4 e^{x_1} + x_4 e^{x_2} + x_4 e^{x_1} = 0$$

$$\frac{1}{0} = x_4 e^{x_1} + x_4 e^{x_2} + x_4 e^{x_1} = 0$$

$$\frac{1}{0} = x_4 e^{x_1} + x_4 e^{x_2} + x_4 e^{x_1} = 0$$

$$\frac{1}{0} = x_4 e^{x_1} + x_4 e^{x_2} + x_4 e^{x_1} = 0$$

$$\frac{1}{0} = x_4 e^{x_1} + x_4 e^{x_2} + x_4 e^{x_1} = 0$$

$$\frac{1}{0}$$

 $\underline{\mathbf{Problema}}$ 5. ¿Es la unión de dos subvariedades siempre una subvariedad? ¿puede serlo alguna vez? Examina estas preguntas mediante ejemplos en el plano.

$S/M = \{(x,y) \in \mathbb{R}^2 : y = 0\}$ $N = \{(x,y) \in \mathbb{R}^2 : x = 0\}$	N
$N = \{(x, y) \in \mathbb{R}^2 : x = 0\}$	
	M
Mes subv. de dim 1 con	
Mes subv. de dim 1 wn $F(x,y) = y$	
N es sub. de dim. 1 con G(x,y) = x	
Pero MUN no es una subv. La dif. esta	en (0,0)=0
Si lo fuera, 3 F: U -> IR dif con rango DF	=1 en
MUN y F- (105) = MUN. Como	
en (0,0) EMUN deborda tener rango 1.	
· Si OF(0,0) ≠0, TF Implicate, X=f1	y) Lon
f dif. y F(f/4), y)=0	
Pero f no es una función porque	<u> </u>
fero f no es una función porque f(0) deburía doman onfinitos valores	
- De manura similar se descenter $\frac{2F}{0y}(90)$	≠ o.

· Si M= {(x,y) \in \mathbb{R}^2: y = 1} y
N= ((x,y) ∈ 122 : y=-13
MUN es una subvarisedad.
1 2 2 2 2
Nota: c como se parametriza M = y:1k → 12
Nota: ¿ Como se parametriza $M^{\frac{2}{5}}$ $y:\mathbb{R}\to\mathbb{R}^2$ $y(t)=(t,1)$
Dy(t)=(1,0) trene range 1
¿ Como se parametriza N? Y: IR → R2
$\varphi(6) = (1, 2)$
Dy(t) = (0,1) trone rango 1.

$$X = \{(x, y, z) : z = xy\}$$
, $Y = \{(x, y, z) : z = 0\}$.

¿Es $X \cap Y$ una subvariedad? Razona tu respuesta.

· X es una subvariedad:

· Y es una subvariedad

· X es un paraboloïde hiperbólico (silla de montar)

e Y es un plano

<i>5</i> /	ط (الح)	= (wst	, mt)	, te	R es	una	Dayon	nebui-
266	ion de	la suh	n 10	(xyy) = [k	2 * : X	+ 7=	1 J p	ero
d no	es enge	ediva e	m IK	ja que	X (C	721().	_ &	• •