

# Grundbegriffe der Informatik - Tutorium 21

Christian Jülg Wintersemester 2012/13 11. Dezember 2012

http://gbi-tutor.blogspot.com

## Übersicht



Aufwachen

Rückblick

Aufgabenblatt 6

Aufgabenblatt 8

Wdh.: Gerichtete Gr.

Wdh.: Ungerichtete Gr.

Gewichtete Graphen

Darstellungsformen

Wegematrix

Algorithmen

Warshall-Algorithmus

Abschluss

## Übersicht



#### Aufwachen

Rückblick

Aufgabenblatt 6

Aufgabenblatt 8

Wdh.: Gerichtete Gr.

Wdh.: Ungerichtete Gr

Gewichtete Grapher

Darstellungsformen

Wegematrix

Algorithmer

Warshall-Algorithmu

Abschluss



### Ein ungerichteter Graph U...

- 1. ... kann eine Einbahnstraße modellieren
- 2. ... wurde definiert als U = (N, T, S, P)
- 3. ... hat ausschließlich symmetrische Kanten

#### Ein Pfad...

- 1. ... wird als Liste  $p = (v_0, \ldots, v_n) \in V^{(+)}$  angegeben
- 2. ... mit  $v_0 = v_n$  heißt geschlossen oder Zyklus
- 3. ... hat die Länge |p|

- 1. ... ist immer präfixfrei.
- 2. ... ist immer eindeutig.
- 3. ... kann definiert sein als  $C : \{a, b, c\} \rightarrow \{0.1\}^*$  mit C(a) = 00, C(b) = 010, C(c) = 001.
- 4. ... codiert selten vorkommende Symbole durch kurze Wörter.
- 5. ... lässt sich mittels eines Baumes bestimmen.



### Ein ungerichteter Graph U...

- 1. ... kann eine Einbahnstraße modellieren
- 2. ... wurde definiert als U = (N, T, S, P)
- 3. ... hat ausschließlich symmetrische Kanten

#### Ein Pfad...

- 1. ... wird als Liste  $p = (v_0, \ldots, v_n) \in V^{(+)}$  angegeben
- 2. ... mit  $v_0 = v_n$  heißt geschlossen oder Zyklus
- 3. ... hat die Länge |p|

- 1. ... ist immer präfixfrei.
- 2. ... ist immer eindeutig.
- 3. ... kann definiert sein als  $C : \{a, b, c\} \rightarrow \{0.1\}^*$  mit C(a) = 00, C(b) = 010, C(c) = 001.
- 4. ... codiert selten vorkommende Symbole durch kurze Wörter.
- 5. ... lässt sich mittels eines Baumes bestimmen.



### Ein ungerichteter Graph U...

- 1. ... kann eine Einbahnstraße modellieren
- 2. ... wurde definiert als U = (N, T, S, P)
- 3. ... hat ausschließlich symmetrische Kanten

#### Ein Pfad...

- 1. ... wird als Liste  $p = (v_0, \ldots, v_n) \in V^{(+)}$  angegeben
- 2. ... mit  $v_0 = v_n$  heißt geschlossen oder Zyklus
- 3. ... hat die Länge |p|

- 1. ... ist immer präfixfrei.
- 2. ... ist immer eindeutig.
- 3. ... kann definiert sein als  $C : \{a, b, c\} \rightarrow \{0.1\}^*$  mit C(a) = 00, C(b) = 010, C(c) = 001.
- 4. ... codiert selten vorkommende Symbole durch kurze Wörter.
- 5. ... lässt sich mittels eines Baumes bestimmen.



### Ein ungerichteter Graph U...

- 1. ... kann eine Einbahnstraße modellieren
- 2. ... wurde definiert als U = (N, T, S, P)
- 3. ... hat ausschließlich symmetrische Kanten

#### Ein Pfad...

- 1. ... wird als Liste  $p = (v_0, \ldots, v_n) \in V^{(+)}$  angegeben
- 2. ... mit  $v_0 = v_n$  heißt geschlossen oder Zyklus
- 3. ... hat die Länge |p|

- 1. ... ist immer präfixfrei.
- 2. ... ist immer eindeutig.
- 3. ... kann definiert sein als  $C : \{a, b, c\} \rightarrow \{0.1\}^*$  mit C(a) = 00, C(b) = 010, C(c) = 001.
- 4. ... codiert selten vorkommende Symbole durch kurze Wörter.
- 5. ... lässt sich mittels eines Baumes bestimmen.

## Übersicht



Aufwacher

Rückblick
Aufgabenblatt 6

Aufgabenblatt 8

Wdh.: Gerichtete Gr.

Wdh.: Ungerichtete Gr.

Gewichtete Grapher

Darstellungsformen

Wegematrix

Algorithmer

Warshall-Algorithmus

Abschluss

# Aufgabenblatt 6



#### Blatt 6

Abgaben: 19 / 19

Punkte: Durchschnitt der abgegeben Blätter 13,5 von 21

## häufige Fehler

Notationen beachten:

$$(x,z) \in P \circ R \Leftrightarrow \exists y : (x,y) \in R \land (y,z) \in P$$

# Aufgabenblatt 6



#### Blatt 6

Abgaben: 19 / 19

Punkte: Durchschnitt der abgegeben Blätter 13,5 von 21

## häufige Fehler

Notationen beachten:

$$(x,z) \in P \circ R \Leftrightarrow \exists y : (x,y) \in R \land (y,z) \in P$$

Rekursionen brauchen immer auch Abbruchbedingungen

## Übersicht



Aufwacher

Rückblick

Aufgabenblatt 6

Aufgabenblatt 8

Wdh.: Gerichtete Gr

Wdh.: Ungerichtete Gr.

Gewichtete Grapher

Darstellungsformen

Wegematrix

Algorithmer

Warshall-Algorithmus

Abschluss

## Aufgabenblatt 8



#### Blatt 8

Abgabe: 14.12.2012 um 12:30 Uhr im Untergeschoss des Infobaus

Punkte: maximal 19

#### Themen

- Graphen
  - Teilgraphen
  - Warshall-Algorithmus
  - Wegematrix

## Übersicht



Aufwacher

Rückblick

Aufgabenblatt 6

Aufgabenblatt 8

Wdh.: Gerichtete Gr.

Wdh.: Ungerichtete Gr.

Gewichtete Grapher

Darstellungsformen

Wegematrix

Algorithmer

Warshall-Algorithmus

Abschluss

## **Gerichteter Graph**



#### Definition

Ein gerichteter Graph G ist ein Tupel G = (V, E) mit

- der Grundmenge  $V = \{v_i\}$  (die Menge der Ecken)
- der Relation  $E \subseteq V \times V$  (die Menge der Kanten) Notationen für Kanten:
  - $(v, v') \in E$
  - $v \rightarrow_G v'$
  - $\mathbf{v} \to \mathbf{v}'$







Sind die beiden Graphen isomorph?

Gebt die Graphen in Tupelschreibweise an!







Ja, die beiden Graphen sind isomorph.

Gebt den Graph in Tupelschreibweise an!







Ja, die beiden Graphen sind isomorph.

$$G = (\{a,b,c,d,e\},\{(a,b),(a,c),(a,d),(b,c),(d,b),(d,c)\})$$



## Begriffe

■ Ein Graph heißt **endlich**, wenn V endlich ist  $(|V| < \infty)$ .



- Ein Graph heißt **endlich**, wenn V endlich ist  $(|V| < \infty)$ .
- 2 Knoten x und y heißen **adjazent**, wenn es eine Kante  $(x, y) \in E$  gibt.



- Ein Graph heißt **endlich**, wenn V endlich ist  $(|V| < \infty)$ .
- 2 Knoten x und y heißen **adjazent**, wenn es eine Kante  $(x, y) \in E$  gibt.
- Eine **Schlinge** ist eine Kante der Form  $(x, x) \in E$ .



- Ein Graph heißt **endlich**, wenn V endlich ist  $(|V| < \infty)$ .
- 2 Knoten x und y heißen **adjazent**, wenn es eine Kante  $(x, y) \in E$  gibt.
- Eine **Schlinge** ist eine Kante der Form  $(x, x) \in E$ .
- Ein Graph heißt schlingenfrei, wenn er keine Schlingen besitzt.



- Ein Graph heißt **endlich**, wenn V endlich ist  $(|V| < \infty)$ .
- 2 Knoten x und y heißen **adjazent**, wenn es eine Kante  $(x, y) \in E$  gibt.
- Eine **Schlinge** ist eine Kante der Form  $(x, x) \in E$ .
- Ein Graph heißt **schlingenfrei**, wenn er keine Schlingen besitzt.
- G' = (V', E') ist ein **Teilgraph** von G = (V, E), wenn  $V' \subseteq V$  und  $E' \subseteq E \cap V' \times V'$
- zwei Graphen sind isomorph, wenn es eine Bijektion der Knoten von  $G_1$  gibt, so dass er mit  $G_2$  identisch ist

## **A**ufgabe



### Aufgabe

Gegeben sei ein gerichteter Graph mit n Knoten.

• Wieviele Kanten kann er maximal haben, wenn Schlingen erlaubt sind?

## **Aufgabe**



### Aufgabe

Gegeben sei ein gerichteter Graph mit n Knoten.

- Wieviele Kanten kann er maximal haben, wenn Schlingen erlaubt sind?
  Lösung: n<sup>2</sup> Kanten
- Wieviele Kanten kann er maximal haben, wenn er schlingenfrei ist?

# **Aufgabe**



### Aufgabe

Gegeben sei ein gerichteter Graph mit n Knoten.

- Wieviele Kanten kann er maximal haben, wenn Schlingen erlaubt sind? **Lösung:**  $n^2$  Kanten
- Wieviele Kanten kann er maximal haben, wenn er schlingenfrei ist? Lösung: n(n-1) Kanten

## gerichtete Bäume



### Definition

In einem gerichteten Baum ...

## gerichtete Bäume



#### Definition

In einem gerichteten Baum ...

• ... gibt es genau einen Knoten  $r \in V$  so dass: für alle  $x \in V$  ex. genau ein Pfad von r nach x

## gerichtete Bäume



#### Definition

In einem gerichteten Baum ...

- ... gibt es genau einen Knoten  $r \in V$  so dass: für alle  $x \in V$  ex. genau ein Pfad von r nach x
- ... ist die Wurzel eindeutig



#### Definition

Ein Pfad ist eine nichtleere Liste  $p = (v_0, \dots, v_n) \in V^+$ , wenn für alle  $i \in \mathbb{G}_n$  gilt  $(v_i, v_{i+1}) \in E$ 



#### Definition

Ein Pfad ist eine nichtleere Liste  $p=(v_0,\ldots,v_n)\in V^+$ , wenn für alle  $i\in \mathbb{G}_n$  gilt  $(v_i,v_{i+1})\in E$ 

• Die Anzahl n = |p| - 1 (der Kanten!) heißt die Länge des Pfades



#### Definition

Ein Pfad ist eine nichtleere Liste  $p=(v_0,\ldots,v_n)\in V^+$ , wenn für alle  $i\in \mathbb{G}_n$  gilt  $(v_i,v_{i+1})\in E$ 

- Die Anzahl n = |p| 1 (der Kanten!) heißt die *Länge* des Pfades
- Ein Pfad heißt wiederholungsfrei, wenn alle Knoten  $v_0, \ldots, v_{n-1}$  und  $v_1, \ldots, v_n$  je paarweise verschieden sind, also maximal  $v_0$  und  $v_n$  gleich sind.



#### Definition

Ein Pfad ist eine nichtleere Liste  $p = (v_0, \dots, v_n) \in V^+$ , wenn für alle  $i \in \mathbb{G}_n$  gilt  $(v_i, v_{i+1}) \in E$ 

- Die Anzahl n = |p| 1 (der Kanten!) heißt die Länge des Pfades
- Ein Pfad heißt wiederholungsfrei, wenn alle Knoten  $v_0, \ldots, v_{n-1}$  und  $v_1, \ldots, v_n$  je paarweise verschieden sind, also maximal  $v_0$  und  $v_n$  gleich sind.
- Falls  $v_0 = v_n$  heißt der Pfad geschlossen. Dann ist der Pfad auch ein Zyklus.



#### Definition

Ein Pfad ist eine nichtleere Liste  $p=(v_0,\ldots,v_n)\in V^+$ , wenn für alle  $i\in \mathbb{G}_n$  gilt  $(v_i,v_{i+1})\in E$ 

- Die Anzahl n = |p| 1 (der Kanten!) heißt die Länge des Pfades
- Ein Pfad heißt wiederholungsfrei, wenn alle Knoten  $v_0, \ldots, v_{n-1}$  und  $v_1, \ldots, v_n$  je paarweise verschieden sind, also maximal  $v_0$  und  $v_n$  gleich sind.
- Falls  $v_0 = v_n$  heißt der Pfad geschlossen. Dann ist der Pfad auch ein Zyklus.
- ein geschlossener und wiederholungsfreier Pfad ist ein einfacher Zyklus.

## Übersicht



Wdh.: Ungerichtete Gr.

# **Ungerichteter Graph**



#### Definition

Ein ungerichteter Graph ist definiert als U = (V, E), wobei

- $V = \{v_i\}$  die Menge der Ecken ist und
- $E \subseteq \{\{x,y\}|x \in V \land y \in V\}$  die Menge der Kanten.



# **Ungerichteter Graph**



#### Definition

Ein ungerichteter Graph ist definiert als U = (V, E), wobei

- $V = \{v_i\}$  die Menge der Ecken ist und
- $E \subseteq \{\{x,y\}|x \in V \land y \in V\}$  die Menge der Kanten.



Wie sähe dieser ungerichtete Graph als Menge aus?

# Ungerichteter Graph



#### Definition

Ein ungerichteter Graph ist definiert als U = (V, E), wobei

- $V = \{v_i\}$  die Menge der Ecken ist und
- $E \subseteq \{\{x,y\}|x \in V \land y \in V\}$  die Menge der Kanten.



Wie sähe dieser ungerichtete Graph als Menge aus?  $G = (\{a, b, c, d\}, \{\{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{d, b\}, \{d, c\}\})$ 

# **Aufgabe**



## Aufgabe

Gegeben sei ein ungerichteter Graph mit n Knoten.

• Wieviele Kanten kann er maximal haben, wenn er schlingenfrei ist?

## **Aufgabe**



#### Aufgabe

Gegeben sei ein ungerichteter Graph mit n Knoten.

- Wieviele Kanten kann er maximal haben, wenn er schlingenfrei ist? Lösung: n(n-1)/2 Kanten
- Wieviele Kanten kann er maximal haben, wenn Schlingen erlaubt sind?

# **Aufgabe**



### Aufgabe

Gegeben sei ein ungerichteter Graph mit n Knoten.

- Wieviele Kanten kann er maximal haben, wenn er schlingenfrei ist? **Lösung:** n(n-1)/2 Kanten
- Wieviele Kanten kann er maximal haben, wenn Schlingen erlaubt sind? **Lösung:** n(n+1)/2 Kanten

## zusammenhängende Graphen



#### Definition

Wir nennen . . .

• einen gerichteten Graphen streng zusammenhängend, wenn für jedes Knotenpaar  $(x, y) \in V^2$  gilt: Es gibt in G einen Pfad von x nach y.

## zusammenhängende Graphen



#### Definition

Wir nennen ...

- einen gerichteten Graphen streng zusammenhängend, wenn für jedes Knotenpaar  $(x, y) \in V^2$  gilt: Es gibt in G einen Pfad von x nach y.
- einen ungerichteten Graphen zusammenhängend, wenn der entsprechende gerichtete Graph streng zusammenhängend ist.

## ungerichtete Bäume



#### Definition

lacksquare Jeder zusammenhängende ungerichtete Graph mit |E|=|V|-1 ist ein ungerichteter Baum

## ungerichtete Bäume



#### Definition

- Jeder zusammenhängende ungerichtete Graph mit |E|=|V|-1 ist ein ungerichteter Baum
- Im ungerichteten Baum kann theoretisch jeder Knoten Wurzel sein.

## ungerichtete Bäume



#### Definition

- Jeder zusammenhängende ungerichtete Graph mit |E|=|V|-1 ist ein ungerichteter Baum
- Im ungerichteten Baum kann theoretisch jeder Knoten Wurzel sein.
- Daher wird i.d.R. ein Knoten als Wurzel hervorgehoben.

## Übersicht



Aufwacher

Rückblick

Aufgabenblatt 6

Aufgabenblatt 8

Wdh.: Gerichtete Gr.

Wdh.: Ungerichtete Gr

Gewichtete Graphen

Darstellungsformen

Wegematrix

Algorithmen

Warshall-Algorithmus

Abschluss



## Allgemein

lacktriangle Gegeben ein Graph, dessen Kanten durch c(u,v) gewichtet sind



### Allgemein

- Gegeben ein Graph, dessen Kanten durch c(u, v) gewichtet sind
- Der Graph besitze einen ausgezeichneten Anfangsknoten(Quelle) und Endknoten(Senke)



## Allgemein

- Gegeben ein Graph, dessen Kanten durch c(u, v) gewichtet sind
- Der Graph besitze einen ausgezeichneten Anfangsknoten(Quelle) und Endknoten(Senke)
- Gesucht ist der maximale Fluss zwischen Quelle und Senke



## Allgemein

- Gegeben ein Graph, dessen Kanten durch c(u, v) gewichtet sind
- Der Graph besitze einen ausgezeichneten Anfangsknoten(Quelle) und Endknoten(Senke)
- Gesucht ist der maximale Fluss zwischen Quelle und Senke

## Beispiel

Gegeben sei ein Rohrsystem (von q nach s), durch das Wasser fließt. Wie viel Wasser kann auf einmal durch das Rohrsystem fließen?

# Beispielgraph





# **Beispiel Routenplanung**



## Beispiel

Was ist der kürzeste Weg von S nach Z wenn an den Kanten die Entfernung zwischen den Städten eingetragen ist?

## Matrizenrechnen!



Wer wünscht sich dazu Beispiele?

## Übersicht



Aufwacher

Rückblick

Aufgabenblatt 6

Aufgabenblatt 8

Wdh.: Gerichtete Gr.

Wdh.: Ungerichtete Gr

Gewichtete Grapher

Darstellungsformen

Wegematrix

Algorithmer

Warshall-Algorithmu

Abschluss





#### Ein Graph - verschiedene Schreibweisen

Für den oben angegebenen Graphen - in grafischer Darstellung - gibt es verschiedene Darstellungsarten:

Tupeldarstellung (aus dem letzten Tut):

$$G = (\{a, b, c, d, e\}, \{(a, b), (a, c), (a, d), (b, c), (d, b), (d, c)\})$$





## Ein Graph - verschiedene Schreibweisen

Für den oben angegebenen Graphen - in grafischer Darstellung - gibt es verschiedene Darstellungsarten:

### Adjazenzliste:

a: [b,c,d]

p: [c]

c: []

d: [b, c]

e: []





### Ein Graph - verschiedene Schreibweisen

Für den oben angegebenen Graphen - in grafischer Darstellung - gibt es verschiedene Darstellungsarten:

Adjazenzmatrix 
$$A = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$





### Ein Graph - verschiedene Schreibweisen

Für den oben angegebenen Graphen - in grafischer Darstellung - gibt es verschiedene Darstellungsarten:

Adjazenzmatrix 
$$A = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
 was bedeutet  $(A^2)_{ij}$ ?



Adjazenzlisten



### Adjazenzlisten

• einfacher Zugriff auf alle adjazenten Knoten



### Adjazenzlisten

- einfacher Zugriff auf alle adjazenten Knoten
- Um zu überprüfen, ob eine Kante existiert, muss man eventuell alle Nachbarn durchgehen



### Adjazenzlisten

- einfacher Zugriff auf alle adjazenten Knoten
- Um zu überprüfen, ob eine Kante existiert, muss man eventuell alle Nachbarn durchgehen

## Adjanzenzmatrixen

 schnelle Überprüfung, ob eine Kante zwischen zwei Knoten i und j existiert



### Adjazenzlisten

- einfacher Zugriff auf alle adjazenten Knoten
- Um zu überprüfen, ob eine Kante existiert, muss man eventuell alle Nachbarn durchgehen

- schnelle Überprüfung, ob eine Kante zwischen zwei Knoten i und j existiert
- Um auf einen Nachbarn zuzugreifen, muss man eventuell alle Knoten durchgehen



Welche Darstellungsform ist geeigneter?

Für einen...

vollständigen Graphen?



Welche Darstellungsform ist geeigneter?

Für einen...

- vollständigen Graphen? Adjazenzmatrix
- Graphen mit nur wenigen Kanten?



Welche Darstellungsform ist geeigneter?

Für einen...

- vollständigen Graphen? Adjazenzmatrix
- Graphen mit nur wenigen Kanten? Adjazenzliste
- Graphen, den wir später auf Reflexivität untersuchen wollen?



### Welche Darstellungsform ist geeigneter?

#### Für einen...

- vollständigen Graphen? Adjazenzmatrix
- Graphen mit nur wenigen Kanten? Adjazenzliste
- Graphen, den wir später auf Reflexivität untersuchen wollen? Adjazenzmatrix

## Übersicht



Wegematrix Algorithmen

# Wegematrix I



### Darstellung von Relationen

So wie die Adjazenzmatrix Relationen zwischen Knoten darstellt, können auch weitere Relationen als Matrix dargestellt werden. Ein Beispiel ist die Wegematrix, die eine Darstellungsform der Erreichbarkeitssrelation  $E^* = \bigcup_{i=0}^{n-1} E^i$ .

Für die Wegematrix gilt

$$W_{ij} = \begin{cases} 1, & \text{falls es in G einen Pfad von i nach j gibt} \\ 0, & \text{falls es in G keinen Pfad von i nach j gibt} \end{cases}$$

#### **Aufwand**



#### Zählweise

Beim Vergleich verschiedener Algorithmen in Bezug auf den Aufwand, sucht man nach einem Maß für die Anzahl der Rechenoperationen für eine Aufgabe der Größe n.

Beispiel

#### **Aufwand**



#### Zählweise

Beim Vergleich verschiedener Algorithmen in Bezug auf den Aufwand, sucht man nach einem Maß für die Anzahl der Rechenoperationen für eine Aufgabe der Größe n.

## Beispiel

Summe aller Zahlen von 1 bis n:

$$\sum_{i=0}^{n} i =$$

### **Aufwand**



#### Zählweise

Beim Vergleich verschiedener Algorithmen in Bezug auf den Aufwand, sucht man nach einem Maß für die Anzahl der Rechenoperationen für eine Aufgabe der Größe n.

# Beispiel

Summe aller Zahlen von 1 bis n:

$$\sum_{i=0}^{n} i = n * (n+1)/2$$

# Algorithmus I



```
1 // Matrix A sei die Adjazenzmatrix
2 // Matrix W wird am Ende die Wegematrix enthalten
  // Matrix M wird benutzt um A<sup>i</sup> zu berechnen
  W \leftarrow 0 // Nullmatrix
  for i \leftarrow 0 to n-1 do
      M \leftarrow Id // Einheitsmatrix
   for j \leftarrow 1 to i do
         M \leftarrow M \cdot A // Matrixmultiplikation
      od
10
      W ← W + M // Matrixaddition
11
  od
   W \leftarrow \operatorname{sgn}(W)
```

## Algorithmus II



# Wegematrix II





$$\begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Ihr seid dran...

• Wie sieht die Wegematrix zum oben gezeigten Graph aus?

# Wegematrix II





$$\begin{pmatrix}
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

### Ihr seid dran...

- Wie sieht die Wegematrix zum oben gezeigten Graph aus?
- Wie sieht die Wegematrix für eine vollständig mit 1en gefüllte Matrix aus?

# Wegematrix II





$$\begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

#### Ihr seid dran...

- Wie sieht die Wegematrix zum oben gezeigten Graph aus?
- Wie sieht die Wegematrix für eine vollständig mit 1en gefüllte Matrix aus?
- Wann gilt allgemein W = A? Wann gilt  $E^1 = A$ ?

# Übersicht



Warshall-Algorithmus



$$\sigma^{(k)} = \{(i,j) \in E \times E | \exists \mathsf{Weg} \ i \to e_1 \to \cdots \to e_{l-1} \to j \\ \mathsf{mit} \ l \le k+2, e_r \in \{0, \dots, k\} \ \mathsf{für} \ 1 \le r \le l-1 \}$$



$$\sigma^{(0)}: egin{pmatrix} 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \ 0 & 1 & 1 & 0 \ 1 & 0 & 0 & 1 \end{pmatrix}$$



$$\sigma^{(k)} = \{(i,j) \in E \times E | \exists \mathsf{Weg} \ i \to e_1 \to \cdots \to e_{l-1} \to j \\ \mathsf{mit} \ l \le k+2, e_r \in \{0, \dots, k\} \ \mathsf{für} \ 1 \le r \le l-1 \}$$





$$\sigma^{(k)} = \{(i,j) \in E \times E | \exists \mathsf{Weg} \ i \to e_1 \to \cdots \to e_{l-1} \to j \\ \mathsf{mit} \ l \le k+2, e_r \in \{0, \dots, k\} \ \mathsf{für} \ 1 \le r \le l-1 \}$$

$$\begin{array}{c}
3 & & & & & \\
\downarrow & & & & \\
0 & & & & & \\
\end{array}$$

$$\sigma^{(0)}: egin{pmatrix} 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \ 0 & 1 & 1 & 0 \ 1 & 0 & 1 & 1 \end{pmatrix}$$

$$\sigma^{(1)}: egin{pmatrix} 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \ 0 & 1 & 1 & 0 \ 1 & 0 & 1 & 1 \end{pmatrix}$$



$$\sigma^{(k)} = \{(i,j) \in E \times E | \exists \mathsf{Weg} \ i \to e_1 \to \cdots \to e_{l-1} \to j \\ \mathsf{mit} \ l \le k+2, e_r \in \{0, \dots, k\} \ \mathsf{für} \ 1 \le r \le l-1 \}$$

$$\sigma^{(0)}: egin{pmatrix} 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \ 0 & 1 & 1 & 0 \ 1 & 0 & 1 & 1 \end{pmatrix}$$

$$\sigma^{(1)}: egin{pmatrix} 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \ 0 & 1 & 1 & 0 \ 1 & 0 & 1 & 1 \end{pmatrix}$$



$$\sigma^{(k)} = \{(i,j) \in E \times E | \exists \mathsf{Weg} \ i \to e_1 \to \cdots \to e_{l-1} \to j \\ \mathsf{mit} \ l \le k+2, e_r \in \{0, \dots, k\} \ \mathsf{für} \ 1 \le r \le l-1 \}$$

$$\begin{array}{c}
3 & \bigcirc & \bigcirc \\
\downarrow & \downarrow \\
0 & \bigcirc & \bigcirc & 1
\end{array}$$

$$\sigma^{(0)}: \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$

$$\sigma^{(2)}: \begin{array}{cccc} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$

$$\sigma^{(1)}: \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$



$$\sigma^{(k)} = \{(i,j) \in E \times E | \exists \mathsf{Weg} \ i \to e_1 \to \cdots \to e_{l-1} \to j \\ \mathsf{mit} \ l \le k+2, e_r \in \{0, \dots, k\} \ \mathsf{für} \ 1 \le r \le l-1 \}$$



$$\sigma^{(0)}: \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$

$$\sigma^{(2)}: egin{pmatrix} 1 & 1 & 1 & 0 \ 0 & 1 & 0 & 0 \ 0 & 1 & 1 & 0 \ 1 & 1 & 1 & 1 \end{pmatrix}$$

$$\sigma^{(1)}: \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$



$$\sigma^{(k)} = \{(i,j) \in E \times E | \exists \mathsf{Weg} \ i \to e_1 \to \cdots \to e_{l-1} \to j \\ \mathsf{mit} \ l \le k+2, e_r \in \{0, \dots, k\} \ \mathsf{für} \ 1 \le r \le l-1 \}$$



$$\sigma^{(0)}: \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$

$$\sigma^{(2)}: egin{pmatrix} 1 & 1 & 1 & 0 \ 0 & 1 & 0 & 0 \ 0 & 1 & 1 & 0 \ 1 & 1 & 1 & 1 \end{pmatrix}$$

$$\sigma^{(1)}: \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$

$$\sigma^{(3)}: \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

# **Der Warshall-Algorithmus**



Anforderungsbeschreibung

Eingabe: Adjazenzmatrix A einer Relation  $\sigma$ 

Ausgabe: Adjanzenzmatrix S von  $\sigma^*$ 

# **Der Warshall-Algorithmus**



Anforderungsbeschreibung

Eingabe: Adjazenzmatrix A einer Relation  $\sigma$ 

Ausgabe: Adjanzenzmatrix S von  $\sigma^*$  (entspricht der

Erreichbarkeitsrelation)

# **Der Warshall-Algorithmus**



## Anforderungsbeschreibung

Eingabe: Adjazenzmatrix A einer Relation  $\sigma$ 

Ausgabe: Adjanzenzmatrix S von  $\sigma^*$  (entspricht der

Erreichbarkeitsrelation)

## Der Algorithmus

# Übersicht



Abschluss





Was ihr nun wissen solltet!

■ Begriffe: Adjazent, Schlinge, Pfad, Zyklus, ...?



- Begriffe: Adjazent, Schlinge, Pfad, Zyklus, ...?
- Wie werden Graphen im Rechner dargestellt?



- Begriffe: Adjazent, Schlinge, Pfad, Zyklus, ...?
- Wie werden Graphen im Rechner dargestellt?
- Vor- & Nachteile von Adjazenzliste und Adjazenzmatrix



- Begriffe: Adjazent, Schlinge, Pfad, Zyklus, ...?
- Wie werden Graphen im Rechner dargestellt?
- Vor- & Nachteile von Adjazenzliste und Adjazenzmatrix
- Was ist eine Wegematrix?



- Begriffe: Adjazent, Schlinge, Pfad, Zyklus, ...?
- Wie werden Graphen im Rechner dargestellt?
- Vor- & Nachteile von Adjazenzliste und Adjazenzmatrix
- Was ist eine Wegematrix?
- Was sind Gewichte von Graphen und wozu sind sie nützlich?



#### Was ihr nun wissen solltet!

- Begriffe: Adjazent, Schlinge, Pfad, Zyklus, ...?
- Wie werden Graphen im Rechner dargestellt?
- Vor- & Nachteile von Adjazenzliste und Adjazenzmatrix
- Was ist eine Wegematrix?
- Was sind Gewichte von Graphen und wozu sind sie nützlich?

Ihr wisst was nicht? Stellt **jetzt** Fragen!

## **Ende**



