



# RNA-SEQ MADE EASY: A "HOW TO" MANUAL FROM RAW READS TO COUNTS

Alice Mouton & Wayne lab Assistant Project Scientist-Postdoc fellow EEB-UCLA, Wayne lab Asilomar, September 2016

### **Bioinformatics Workflow**



### Pervasive Effects of Aging on Gene Expression in Wild Wolves

Pauline Charruau,<sup>†,‡,1</sup> Rachel A. Johnston,<sup>†,1</sup> Daniel R. Stahler,<sup>2</sup> Amanda Lea,<sup>3</sup> Noah Snyder-Mackler,<sup>4</sup> Douglas W. Smith,<sup>2</sup> Bridgett M. vonHoldt,<sup>5</sup> Steven W. Cole,<sup>6,7</sup> Jenny Tung,<sup>3,4</sup> and Robert K. Wayne\*,<sup>1</sup> Mol. Biol. Evol. 33(8):1967–1978

Goal: Identify gene expression impacts of social status age, disease, and sex of go copression levels in

atural population of gray wolves

- Whole blood (n = 25)
- Illumina HiSeq 100 bp reads, 5-6 samples/lane
- Subset of data (471F: GSM2127382 (GEO))

# Part o. Backup data for long-term storage



# Seagate Backup Plus 3TB Desktop External Hard Drive with 200GB of Cloud Storage & Mobile Device Backup USB 3.0 - STDT3000100 (Black)



- 200GB of cloud storage for your important files (\$95 value)
- Lyve app to back up directly from your mobile devices
- Share Mac and PC files
- Backup from Facebook and Flickr and share to YouTube

### **Bioinformatics Workflow**

o. Convert data to fastq files and perform back-up of fastq for long-term storage 1. Quality Control: Read removal, trim adapters and low quality bp 2. Map reads to ref Build de novo transcriptome Map reads to ref (Tophat, Bowtie, BWA) (Trinity) 3. Quantify & normalize Concatenate, QC, & filter SNP calling (GATK, FreeBayes) transcriptome 4. Expression analysis Annotate transcriptome Selection analysis (BLAST+) (PAML)

5. GO analysis

### Part 1: Quality control

### RNA-Seq fastq files looks like any other fastq

- 1. (starting with an @) is a read identifier
- 2. the second is the DNA sequence
- 3. the third another identifier (same as line 1, but starting with a +(or sometimes only consisting of a +))
- 4. the fourth is a Phred quality score symbol for each base in the read.

### Part 1: Quality control

Step 1.1. Look at quality of the sequence data: FASTQC

Before



http://www.bioinformatics.babraham.ac.uk/projects/fastqc/https://www.youtube.com/watch?v=bz93ReOv87Y

### Part 1: Quality control filter provided

• Step 1.2 Remove reads that did not pass Y/N: Illumina filter

```
[amouton@sirius Workshop]$ fastq_illumina_filter --keep N -v -o 471_illuminafilter.fq 471F_BL_SE.fastq
fastq_illumina_filter (--keep N) statistics:
Input: 31,453,360 reads
Output: 31,453,360 reads (586,479,284,647%)
```

Y = Low quality reads N = High quality reads

http://cancan.cshl.edu/labmembers/gordon/fastq\_illumina\_filter/

### Part 1: Quality control

• Step 1.3: Remove the low quality base calls as well as adaptor contamination: Trim Galore

```
[amouton@sirius Workshop]$ trim galore -q 20 --fastqc -a AGATCGGAAGAGC --stringency 3 --length 25 471 illuminafilter.fq
```

```
471 illuminafilter.fq trimming report.txt 471 illuminafilter trimmed.fq fastqc
471 illuminafilter trimmed.fq
                                           471 illuminafilter trimmed.fq fastqc.zip
[amouton@sirius Workshop] $ tail 471 illuminafilter.fq trimming report.txt
98
        209
                0.5
99
        235
                0.5
100
        1093
                0.5
RUN STATISTICS FOR INPUT FILE: 471 illuminafilter.fq
31453360 sequences processed in total
Sequences removed because they became shorter than the length cutoff of 25 bp: 76063 (0.2%)
```

Note: A functional version of <u>Cutadapt</u> and optionally <u>FastQC</u> are required

http://www.bioinformatics.babraham.ac.uk/projects/trim\_galore/trim\_galore\_User\_Guide\_v o.3.7.pdf

### Part 1: Quality control

• Step 1.3: Remove the low quality base calls as well as adaptor contamination: Trim Galore







### **Bioinformatics Workflow**



# Part 2: Mapping

### Available genome vs. de novo transcriptome

| Reference                              | Pros/Cons                                                                                                                                                            | When to use                                                                                                              |  |  |  |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Available genome<br>(GTF/GFF required) | <ul> <li>You don't have to spend     weeks/months trying to assemble     and annotate a transcriptome</li> <li>Can use more advanced mapping     programs</li> </ul> | When files are available for related spp                                                                                 |  |  |  |
| De novo<br>transcriptome               | <ul> <li>Transcriptome assemblies will be incomplete and have redundancy</li> <li>You still rely on a reference genome for annotation</li> </ul>                     | <ul> <li>Usually never</li> <li>If no related spp<br/>reference is<br/>available (100's of<br/>million years)</li> </ul> |  |  |  |

Kim et al. Genome Biology 2013, 14:R36 http://genomebiology.com/2013/14/4/R36



METHOD Open Access

### TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions

- Specifically made for mapping RNA-Seq reads to reference genome
- Fast splice junction mapper for RNA-Seq reads
- Needs genome (fasta) and annotation file (GTF)

To use TopHat2, you will need the following programs in your PATH:

- \* bowtie2 and bowtie2-align (or bowtie)
- \* bowtie2-inspect (or bowtie-inspect)
- \* bowtie2-build (or bowtie-build)
- \* samtools
- \* Python version 2.6 or higher

Step o: download my genome and GTF (in the same new directory)

http://www.ensembl.org/info/data/ftp/index.html

|        | P-11 **                                         |                                               | risci              | 110110               | . 81             | oraat                          | a, i cp,                        | птасх.                             | 110111         |                                     |                    |                    | The state of the s | N A A               | CE BEST       |              |
|--------|-------------------------------------------------|-----------------------------------------------|--------------------|----------------------|------------------|--------------------------------|---------------------------------|------------------------------------|----------------|-------------------------------------|--------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------|--------------|
| * ;    | Species                                         | DNA<br>(FASTA)                                | cDNA<br>(FASTA)    | CDS<br>(FASTA)       | ncRNA<br>(FASTA) | Protein<br>sequence<br>(FASTA) |                                 | Annotated<br>sequence<br>(GenBank) | Gene<br>sets   | Whole<br>databases                  | Variation<br>(GVF) | Variation<br>(VCF) | Variation<br>(VEP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Regulation<br>(GFF) | Data<br>files | BAM/BigWig   |
| (      | <mark>Dog</mark><br>Canis<br>upus<br>familiaris | FASTA ₺                                       | FASTA ₽            | <u>FASTA</u> ₽       | FASTA ₽          | FASTA ₽                        | <u>EMBL</u> &                   | <u>GenBank</u> &                   | GTF&<br>GFF3&  | MySQL &                             | <u>GVF</u> ₽       | <u>VCF</u> ₽       | <u>VEP</u> ₽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                   | -             | BAM/BigWig ₽ |
|        |                                                 | 1                                             |                    |                      |                  |                                |                                 |                                    |                |                                     |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |               |              |
| □ C    | anis_fam<br>HECKSU<br>EADME                     |                                               | nFam3.1            | l.dna.top            | level.fa.g       | Z                              |                                 | 692 MB<br>8.0 kB<br>4.8 kB         | 10/            | 07/2016 0<br>07/2016 2<br>07/2016 0 | 21:00:00           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |               |              |
|        | EADME                                           | 3355 - 35                                     | \$18888            |                      |                  |                                |                                 | 4.0 KD                             | 07/            | 07/2010 0                           | 77.22.00           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |               |              |
|        |                                                 |                                               |                    |                      |                  | 0.5./                          |                                 |                                    |                |                                     |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |               |              |
| 120210 | V4.5-4-3-4-3-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-     | TATALAN AND AND AND AND AND AND AND AND AND A | BARRAKAK K         | NAMES AND ADDRESS OF | CHRESALIN        | ARRESTANA                      | M. ROMONICAL PORT AND A ST      | anis_tam                           | IIIar          | IS/dna/                             | canis_i            | amiliari           | .s.canrama                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .1.dna.to           | brever        | la.gz        |
| [amou  | uton@si<br>uton@si                              | rius Wo                                       | orkshor<br>orkshor | p]\$ mv<br>p]\$ cd   | Canis_<br>genome | _canis/                        | ris.Can                         | Fam3.1.c                           |                |                                     |                    |                    | _canis/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |               |              |
|        |                                                 |                                               |                    |                      |                  |                                |                                 |                                    |                |                                     | 6500000            |                    | 455. 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |               |              |
| ★ S    | Species                                         | DNA<br>(FASTA)                                | cDNA<br>(FASTA)    | CDS<br>(FASTA)       | ncRNA<br>(FASTA) |                                | Annotated<br>sequence<br>(EMBL) | Annotated<br>sequence<br>(GenBank  | Gene<br>sets   | Whole<br>databases                  | Variation<br>(GVF) | Variation<br>(VCF) | Variation<br>(VEP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Regulation<br>(GFF) | Data<br>files | BAM/BigWig   |
| l      | <mark>Dog</mark><br>Canis<br>upus<br>amiliaris  | FASTA ₽                                       | FASTA ₽            | FASTA ₽              | FASTA ₽          | <u>FASTA</u> ₽                 | <u>EMBL</u> ₽                   | <u>GenBank</u> ể                   | GTF ₽<br>GFF3₽ | l <u>∕lySQL</u> &                   | <u>GVF</u> ₽       | <u>VCF</u> &       | <u>VEP</u> &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                   | -             | BAM/BigWig ស |
|        |                                                 |                                               |                    |                      |                  |                                |                                 |                                    | 1              |                                     |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |               |              |
|        |                                                 |                                               |                    |                      |                  | Canis_fa                       | miliaris.C                      | anFam3.1                           | 85.gtf.g       | gz<br>182                           | 9.8                | MB 0               | 8/07/2016 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | :06:00              |               |              |

Step 1: Build indexes (take a while but you have to do it only once)

From the directory containing the genome.fa file, run the "bowtie2-build" command.

```
[amouton@sirius genome_canis]$ bowtie2-build -f Canis_familiaris.CanFam3.1.dna.toplevel.fa Canfam
```

This command will create 6 files with a \*.bt2 file extension.

```
[amouton@sirius genome_canis]$ Is
Canfam.1.bt2 Canfam.3.bt2 Canfam.rev.1.bt2 Canis_familiaris.CanFam3.1.85.gtf
Canfam.2.bt2 Canfam.4.bt2 Canfam.rev.2.bt2 Canis_familiaris.CanFam3.1.dna.toplevel.fa
```

Important considerations to make when you plan to map your reads

- \* Find the most closely related species!!!!
- \* Optimize mapping parameters for species divergence

Swainson's Thrush to **Collared Flycatcher:** 25 million years Swainson's Thrush to **Zebra Finch:** 75 million years



Step 2: Alignment with Tophat2

2.1 Work with a subset of samples

head -n 16000000 yoursamples > subset.fq # don't forget that a fastq file has 4 lines (for instance 4 000 000 reads to play with)

[amouton@sirius subset] \$ head -n 16000000 ../471\_illuminafilter\_trimmed.fq > subset.fq

- 2.2 Optimize your parameters (tophat2 -h)!!
- => the high number of reads with high % of unique reads

You can play with several options such as

- \* -- read-mismatches
- \* -- read-gap-length
- \* -- read-edit-dist

2.2 Optimize your parameters (tophat2 –h): exemple

tophat2 -p 2 --output-dir ./test1 --library-type fr-secondstrand --b2-very-sensitive -N9 --readedit-dist 22 --read-gap-length 3 /work2/Alice/Workshop/genome\_canis/Canfam subset.fq

tophat2 -p 2 --output-dir ./test2 --library-type fr-secondstrand --b2-very-sensitive -N3 --read-edit-dist 3 --read-gap-length 3 /work2/Alice/Workshop/genome\_canis/Canfam subset.fq

```
[2016-09-16 12:32:09] Checking for Bowtie

Bowtie version: 2.2.6.0

[2016-09-16 12:32:09] Checking for Bowtie index files (genome)..

[2016-09-16 12:32:09] Checking for reference FASTA file

[2016-09-16 12:32:09] Generating SAM header for /work2/Alice/Workshop/genome_canis/Canfam

[2016-09-16 12:34:19] Preparing reads

left reads: min. length=25, max. length=100, 3994844 kept reads (5156 discarded)
```

low complexity of reads and number of N (poly-A and poly-T and so one..)

Work in parallel to save time!!

2.2 Optimize your parameters (tophat2 –h): exemple

```
[amouton@sirius test1]$ ls
accepted hits.bam align summary.txt deletions.bed insertions.bed junctions.bed logs prep reads.info unmapped.bam
                                                                              Test 2
                Test 1
                                                               [amouton@sirius logs]$ head bowtie.left kept reads.log
   amouton@sirius logs]$ head bowtie.left kept reads.log
  3994844 reads; of these:
                                                               3994844 reads; of these:
                                                                 3994844 (100.00%) were unpaired; of these:
    3994844 (100.00%) were unpaired; of these:
                                                                   447031 (11.19%) aligned 0 times
      46881 (1.17%) aligned 0 times
      2697510 (67.52%) aligned exactly 1 time
                                                                   3039336 (76.08%) aligned exactly 1 time
                                                                   508477 (12.73%) aligned >1 times
      1250453 (31.30%) aligned >1 times
                                                               88.81% overall alignment rate
  98.83% overall alignment rate
                                        N (mismatches) % overall alignment rate % uniq mapped
```



Mapping of all your samples with the parameters of your choice

The file that we're interested in for now is accepted\_hits.bam, which is the reads that were mapped successfully.

https://samtools.github.io/hts-specs/SAMv1.pdf

2.3 Quality of the mapping (on sorted bam)

\* IGV (Resources:https://www.broadinstitute.org/igv/) => alignment (SAM or BAM) has to be sorted and indexed by coordinates (sorts by chromosome and start position not by read ID)

samtools sort accepted\_hits.bam accepted\_hits\_sorted samtools index accepted\_hits\_sorted.bam #generate a .bam.bai that can be used for the IGV view

\* Qualimap (http://qualimap.bioinfo.cipf.es/)

qualimap bamqc -bam accepted\_hits\_sorted.bam #(html file)

\* 'samtools flagstat' to get a basic summary of an alignment samtools flagstat accepted\_hits\_sorted.bam

# Part 3: SORT and keep UNIQ reads!

```
[amouton@sirius test2]$ samtools sort accepted_hits.bam accepted_hits_sorted [amouton@sirius test2]$ samtools view -h accepted_hits_sorted.bam > sorted.sam
```

```
[amouton@sirius test2]$ tail sorted.sam
HS3:416:C3EJFACXX:7:1102:1553:56933
                                               123848376
                                                                   100M
                                                                                               TGTGGGCTTTTTGTAGATGGCTTTTAAGATGTTGAGGAATGTTCCCTCTATCCCTA
CGCTCTGAAGAGTTTTGATCAGGAATGGATGCTGTATTTTGTCA
                                        ?DBAA?BABCCACCCCAEC=CCD@73AEEFHHD@7==)
                                                                         3>CHGEFF >FDF>HD<HFIEIHDIIGIHGGGEHGEGHGGHGJIJJJIHHFHHGDFFFDD?@@</p>
                                                                                                                                 AS:i:-5 XN:i:0 X
     XO:i:0 XG:i:0 NM:i:1 MD:Z:57A42
                                        YT:Z:UU NH:i:20 XS:A:- HI:i:19
HS3:416:C3EJFACXX:7:1113:8304:35706
                                        ACTCTGAAGAGTTTTGATCAGGAATGGATGCTGTATTTTGTC
                                                                               JJIJJJJJIJJIJJIJIJJJDHIJJIHHHFHFFFFFEEDEEEDEEEEDDD
                                                                                                                                 AS:i:0 XN:i:0 X
M:i:0 XO:i:0 XG:i:0 NM:i:0 MD:Z:98 YT:Z:UU NH:i:20 XS:A:+ HI:i:19
HS3:416:C3EJFACXX:7:1104:8535:52923
                                               123849163
                                                                                               GGCTCTCTGTTTCTCATAAATAAATAAATCTTTTAAAAAGATAAACAATATTTGT
AS:i: 6 XN:i:0 XM:i:1 XO:i:0 XG:i:0 NM:i:1 MD:Z:1T68
                                                                                                                                 YT:Z:UU NH:i:1 X
```

| N _ |     |       |        |                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----|-----|-------|--------|------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ĕ   | Col | Field | Type   | Regexp/Range                             | Brief description                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| š - | 1   | QNAME | String | [!-?A-~]{1,254}                          | Query template NAME                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3   | 2   | FLAG  | Int    | [0,2 <sup>16</sup> -1]                   | bitwise FLAG                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3   | 3   | RNAME | String | \* [!-()+-<>-~][!-~]*                    | Reference sequence NAME               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8   | 4   | POS   | Int    | [0,2 <sup>31</sup> -1]                   | 1-based leftmost mapping POSition     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8   | 5   | MAPQ  | Int    | [0,2 <sup>8</sup> -1]                    | MAPping Quality                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3   | 6   | CIGAR | String | \* ([0-9]+[MIDNSHPX=])+                  | CIGAR string                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8   | 7   | RNEXT | String | \* = [!-()+-<>-~][!-~]*                  | Ref. name of the mate/next read       | o for mate reads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8   | 8   | PNEXT | Int    | [0,2 <sup>31</sup> -1]                   | Position of the mate/next read        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8   | 9   | TLEN  | Int    | [-2 <sup>31</sup> +1,2 <sup>31</sup> -1] | observed Template LENgth              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8   | 10  | SEQ   | String | \* [A-Za-z=.]+                           | segment SEQuence                      | SELECTION OF THE PROPERTY OF T |
| 8 _ | 11  | QUAL  | String | [!-~]+                                   | ASCII of Phred-scaled base QUALity+33 | _ (31) (32) (31) (31) (31) (31) (31) (31) (31) (31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

[amouton@sirius test2]\$ samtools view -h -q 50 sorted.sam > uniq.sam

### Part 4: Count the reads

samtools view -bS uniq.sam > uniq.bam # you want to convert into a bam again to gain space

htseq-count -f bam -r pos -s yes -i gene\_id -m union -q uniq.bam /work2/Alice/Workshop/genome\_canis/ Canis\_familiaris.CanFam3.1.85.gtf> htseqcount.txt

```
gene id "ENSCAFG00000010935"; gene version "3";
    ensembl gene
                    1575
                            5716
[amouton@sirius test2]$ tail htsegcount.txt
NSCAFG00000040958
                        0
ENSCAFG00000040959
ENSCAFG00000040960
NSCAFG00000040961
                                               > reads (or read pairs) which could not be assigned to any feature
ENSCAFG00000040962
 no feature
                2790394
                                                > reads (or read pairs) which could have been assigned to more
                1104
 ambiguous
 too low aQual 0
                                                  than one feature and hence were not counted for any of these
 not aligned
                                                   reads (or read pairs) in the SAM file without alignment
  alignment not unique
```

Note: Check your kit to know if you have to use stranded or no!\*

http://www-huber.embl.de/users/anders/HTSeq/doc/count.html

### Part 4: Count the reads

# copy the htseq counts in the same folder and copy on your computer

| 3  | Α                  | В         | С         | D         | E         | F         | G         | Н         |
|----|--------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 1  | Ensembl_Gene_ID    | 661M_PEr1 | 828M_PEr1 | 759F_PEr1 | 870F_PEr1 | 871M_PEr1 | 825F_PEr1 | 829F_PEr1 |
| 2  | ENSCAFG00000000001 | 37        | 26        | 46        | 41        | 40        | 13        | 34        |
| 3  | ENSCAFG00000000002 | 0         | 0         | 3         | 3         | 1         | 1         | 6         |
| 4  | ENSCAFG00000000005 | 0         | 0         | 4         | 7         | 1         | 0         | 1         |
| 5  | ENSCAFG00000000007 | 271       | 728       | 325       | 244       | 318       | 382       | 334       |
| 6  | ENSCAFG00000000008 | 72        | 131       | 98        | 76        | 30        | 100       | 132       |
| 7  | ENSCAFG00000000009 | 128       | 364       | 136       | 163       | 138       | 313       | 150       |
| 8  | ENSCAFG00000000010 | 360       | 885       | 442       | 325       | 368       | 488       | 297       |
| 9  | ENSCAFG00000000011 | 68        | 243       | 96        | 59        | 105       | 111       | 86        |
| 10 | ENSCAFG00000000012 | 626       | 1119      | 852       | 565       | 590       | 936       | 898       |
| 11 | ENSCAFG00000000013 | 10        | 2         | 4         | 3         | 5         | 0         | 6         |



Now you are ready to analyze your data..

### **Bioinformatics Workflow**

o. Convert data to fastq files and perform back-up of fastq for long-term storage 1. Quality Control: Read removal, trim adapters and low quality bp 2. Map reads to ref Build de novo transcriptome Map reads to ref (Tophat, Bowtie, BWA) (Trinity) Quantify & normalize Concatenate, QC, & filter SNP calling (GATK, FreeBayes) transcriptome Jenny Tung Annotate transcriptome Selection analysis 4. Expression analysis (BLAST+) (PAML)

5. GO analysis