Bayesian Filtering and Smoothing: Exercise Set 1

In this exercise set, symbols for random variables and random vectors are underlined.

1. Consider the bivariate random vector $\underline{\mathbf{x}}$ whose probability density function is

$$p_{\underline{\mathbf{x}}}(\mathbf{x}) = \begin{cases} 1/\pi & \text{if } x_1^2 + x_2^2 < 1\\ 0 & \text{otherwise} \end{cases}$$

Find the marginal distributions $p_{\underline{x}_1}(x_1)$ and $p_{\underline{x}_2}(x_2)$. Are the random variables \underline{x}_1 and \underline{x}_2 independent?

- 2. (continued) Find $E[\underline{\mathbf{x}}]$ and $var[\underline{\mathbf{x}}]$. Are the random variables \underline{x}_1 and \underline{x}_2 uncorrelated?
- 3. (continued) Find the mean and covariance matrix of the random vector

$$\underline{\mathbf{y}} = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} \underline{\mathbf{x}} + \begin{bmatrix} 2 \\ 3 \end{bmatrix} \tag{1}$$

- 4. (continued) Use the Chebyshev inequality to find the radius of a $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ -centred circle in \mathbb{R}^2 that contains at least 90% of the probability of $\underline{\mathbf{y}}$. Plot the circle. Hint: in MATLAB, use axis equal to ensure that the data units are the same in every direction.
- 5. (continued) Generate and plot 200 independent samples of $\underline{\mathbf{y}}$ on the same figure.
- 6. (continued) Find the estimate $\hat{\mathbf{y}}$ of the random vector $\underline{\mathbf{y}}$ that minimises the mean square error

$$\begin{aligned} \mathsf{E}[\|\underline{\mathbf{y}} - \hat{\mathbf{y}}\|^2] &= \mathsf{E}[(\underline{y}_1 - \hat{y}_1)^2 + (\underline{y}_2 - \hat{y}_2)^2] \\ &= \iint \left((y_1 - \hat{y}_1)^2 + (y_2 - \hat{y}_2)^2 \right) p_{\underline{\mathbf{y}}}(y_1, y_2) \, \mathrm{d}y_1 \, \mathrm{d}y_2 \end{aligned}$$

Answers

1.
$$p_{\underline{x}_1}(x_1) = \frac{2}{\pi} \sqrt{1 - x_1^2}$$
 for $|x_1| < 1$. 2. $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\frac{1}{4} \mathbf{I}$ 3. $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$, $\frac{1}{2} \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$ 4. $\sqrt{15}$ 6. $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$