

2.2 Geração e Processamento de Sinais com o Simulink

Prof. Dr. Sidney Bruce Shiki

E-mail: bruce@ufscar.br

Prof. Dr. Vitor Ramos Franco

e-mail: vrfranco@ufscar.br

UFSCar – Universidade Federal de São Carlos

DEMec – Departamento de Engenharia Mecânica

ufister :

Conteúdo

- Introdução
- Geração de sinais
- Processamento/tratamento de sinais
- Visualização de sinais
- Exercícios

Introdução

- (2) Simulink é uma plataforma do software MATLAB para modelagem, simulação e análise de sistemas dinâmicos
- Na maioria dos casos, para que o sistema entre em movimento é necessário aplicar uma entrada
 - Excitação
 - Condição inicial

Introdução

- Esses sinais de <u>entrada</u>, no simulink, podem ser gerados facilmente
 - Uma visualização confirma se está correta;
- Se o sistema entra em movimento e uma resposta é obtida, o sinal de resposta pode ser visualizado para viabilização da análise;
- Entretanto, caso o sinal de <u>entrada</u> e/ou de <u>saída</u> se não se apresentem visualmente adequados, estes podem ser <u>processados</u>/ <u>tratados</u> para que uma melhor compreensão.

Introdução

- Aqui, o aluno aprenderá:
 - Gerar alguns dos sinais comumente utilizados;
 - Visualizar os sinais (entrada e/ou saída);
 - Aplicar alguns métodos de processamento/ tratamento de sinais;
 - Vincular o sinal (entrada e/ou saída) com o workspace.

ufera :

Geração de sinais

- Um mesmo sinal pode ser gerados de diversas formas;
 - Em todos os casos, eles são encontrados no toolbox <u>Sources</u>, ou seja, são considerados entradas (fontes) de outros blocos.

 A seguir são apresentados alguns blocos de geração de sinais mais comumente utilizados

 Esse bloco gera uma entrada do tipo degrau e é amplamente utilizada em sistemas dinâmicos, controle, etc.

Sine Wave - Esse bloco gera uma onda senoidal.

Chirp Signal -

Esse bloco gera uma onda senoidal com frequência variando linearmente. É muito utilizado em vibrações mecânicas (obter curvas de resposta em frequência)

Band-Limited White Noise Esse bloco gera um sinal randômico com banda limitada. Também é muito utilizado para levantamento de curvas de resposta em frequência, uma vez que excita o sistema em toda a banda.

Band-Limited White Noise. (mask) (link) The Band-Limited White Noise block generates normally distributed random numbers that are suitable for use in continuous or hybrid systems. Parameters Noise power: [0.1] Sample time: 0.1 Tempo de amostragem Seed:	● ○ ● 🎦 Source Block Parameters: Band-Limited White	
Parameters Noise power: [0.1] Potência do ruído (intensidade sample time: 0.1 Tempo de amostragem	Band-Limited White Noise. (mask) (link)	
Noise power: [0.1] Potência do ruído (intensidade sample time: 0.1 Tempo de amostragem	The Band-Limited White Noise block generates normally distributed random numbers that are suitable for use in continuous or hybrid systems.	
Potência do ruído (intensidade Tempo de amostragem	Parameters	
Sample time: O.1 Tempo de amostragem	Noise power:	
□ Tempo de amostragem	[0.1]	Potência do ruído (intensidade
·	Sample time:	· ·
· · · · · · · · · · · · · · · · · · ·	0.1	Tempo de amostragem
	Seed:	
[23341]	[23341]	
	_	
	OK Cancel Help Apply	

Signal Generator - Esse bloco gera alguns tipos de onda pré definidos.

Signal Builder - Esse bloco permite construir (manualmente) alguns tipos de sinal

Pontos podem ser adicionados com shift+clique

 Esse bloco permite utilizar um sinal gerado na linha de comandos e "contido" no workspace.

uferen

Visualização de sinais

- Para visualizar um sinal (gerado ou de resposta de um sistema), é necessário "plota-lo";
 - Blocos de plotagem são encontrados no toolbox <u>Sinks</u>, ou "visualizadores".

 A seguir são apresentados alguns blocos de plotagem/visualização de sinais

Display - Esse bloco simplesmente mostra um valor numérico

Scope - Esse bloco faz o papel de um osciloscópio, ou seja, plota o sinal no domínio do tempo (simulação)

Alguns parâmetros podem ser configurados, como por exemplo alterar o estilo da linha da curva e "salvar" o sinal para o workspace

 Quando se deseja visualizar mais de um sinal no mesmo gráfico, por exemplo para fins de comparação, utiliza-se o seguinte bloco:

Mux - O bloco <u>multiplexador</u> mantém vários sinais ao mesmo tempo

 O mux cria uma espécie de matriz de sinais em que cada coluna (ou linha) representa um sinal diferente.

xy Graph - Esse bloco plota X por Y.

simout

Visualização de sinais

To Workspace - Esse bloco permite enviar o sinal para o workspace a fim de ser manipulado na linha de comandos.

Geração, processamento e Visualização de sinais

 Exercício 1: Utilizando o bloco Signal Generator, gere todas as possíveis ondas permitidas (com A=1 e f=10Hz) e visualize-as (separadamente) em um intervalo de tempo de 1s.

- Exercício 2: Utilizando o bloco mais adequado, construa uma entrada similar a uma passarela elevada de 30 cm de altura, sobre a qual um carro passa a uma velocidade de 20km/h, sabendo que:
 - A parte inclinada tem 1,5m e
 - A parte reta de cima tem 2,5 m.

Exercício 2: Resposta.

- O processamento/tratamento de sinais geralmente é empregado quando, na configuração atual, o sinal não pode ser adequadamente utilizado
 - Ou porque não se pode visualizar nada
 - amplitude muito baixa
 - presença de ruído
 - Ou porque está em outro domínio
 - Ou porque está defasado no tempo
 - Etc.

 A seguir, serão apresentados alguns procedimentos comumente utilizados no tratamento de sinais.

Amplificação

- A amplificação é realizada simplesmente dando um ganho no sinal.
 - Mesmo se o ganho for menor que 1, o nome se mantém, mesmo sendo uma "redução" da amplitude do sinal.

Amplificação

Gain - Esse bloco dá um ganho na amplitude do sinal (pode ser menor que 1)

ufera -

Processamento de sinais

Filtragem

- Filtragem é o processo no qual sinal é alterado de acordo com a necessidade, retirando aquilo que não interessa
- Aqui, serão utilizados os filtros <u>seletivos em</u> frequência.
 - selecionar determinadas faixas de frequência
 - Passa baixa, passa alta, passa banda e pára banda.

Filtragem

Analog Filter - Esse bloco permite criar facilmente filtros analógicos seletivos em frequência

Butterworth é o mais comumente utilizado.

Filtragem

🛑 🔘 🛑 🛅 Fu	unction Block Parameters: Analog Filter Design
Analog Filter Desig	n (mask) (link)
Design one of seve	eral standard analog filters, implemented in state-space form.
Parameters	
Design method:	Butterworth
High Band	pass pass dpass dstop
Passband edge fre	equency (rad/s):
30	
	OK Cancel Help Apply

 Note que, para cada tipo de filtro, a seleção das frequências de corte se alteram

Filtragem

- Esse bloco permite criar filtros de segunda ordem, ou seja, como se fossem a resposta de sistemas de segunda ordem no domínio da frequência
- Passa baixa: decaem 40 dB por década a partir da frequência de corte (natural não amortecida);
- Passa alta: sobem 40 dB por década a partir da frequência de corte (natural não amortecida);
- Passa banda: composição de um passa alta com um passa baixa.

Filtragem

—— Tipo do filtro

— Frequência de corte

Fator de amortecimento

Tempo de amostragem

 O fator de amortecimento indica características da transição entre região passante e região de corte

Cálculo de módulo

- O cálculo do módulo (absoluto) de um sinal é utilizado com certa frequência
 - e.g. quando se tem sinais complexos (imaginários, com parte Re e Imag)

ufera.

Processamento de sinais

Operações básicas

 Operações básicas entre sinais também podem, de certa forma, ser consideradas como processamento de sinais.

 Os blocos de operações matemáticas básicas podem ser encontrados no toolbox Math Operations

uferen •

Processamento de sinais

FFT – Fast Fourier Transform

- Essa operação é muito utilizada na área de sistemas dinâmicos.
- Consta de uma operação de transformação de domínio, ou seja, transforma o sinal no domínio do tempo para o domínio da frequência, a fim de se verificar o espectro em frequência do sinal (entrada e/ou saída) ou simplesmente espectro do sinal.
- O sinal resultante é um sinal imaginário (pode ser calculado o módulo e a fase)

FFT – Fast Fourier Transform

- Esse bloco calcula o espectro frequência do sinal

- Magnitude FFT Esse bloco calcula a magnitude do espectro em frequência do sinal
- A aplicação dessa transformação não é tão simples de ser realizada no simulink, sendo mais fácil ser realizada na linha de comandos.

• Exercício 3: criar os seguintes sinais

Sinal nº	Tipo	Amplitude	Frequência [Hz]
1	Senoidal	0,1	5
2	Cossenoidal	0,2	25
3	Senoidal	0,4	50

- Em seguida, some os sinais;
- Depois, dê um ganho de 5 no sinal resultante;
- Visualize, durante um intervalo de tempo de 1s, os três sinais na mesma figura;
- Visualize, também, o sinal amplificado;
- Compare o sinal amplificado com o original.

Exercício 3: Resposta

- Em seguida, crie os seguintes filtros e aplique-os no sinal somado amplificado.

Filtro nº	Método	Finalidade
1	Second order	Selecionar a menor frequência
2	Second order	Selecionar a maior frequência
3	Second order	Selecionar a frequência intermedária

 Visualize os sinais filtrados na mesma figura e analise se os filtros funcionaram.

Repare nas figuras internas aos blocos –
 Resposta em frequência (Magnitude) de
 sistemas de 2ª ordem.

Perguntas?

