BREVET D'INVENTION

CERTIFICAT D'UTILITÉ - CERTIFICAT D'ADDITION

RECEIVED

2 2 MAR 2004

WIPO PCT

COPIE OFFICIELLE

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

CERTIFIED COPY OF PRIORITY DOCUMENT

Fait à Paris, le <u>0.5 MARS 2004</u>

Pour le Directeur général de l'Institut national de la propriété industrielle Le Chef du Département des brevets

Martine PLANCHE

DOCUMENT DE PRIORITÉ

PRÉSENTÉ OU TRANSMIS CONFORMÉMENT À LA RÈGLE 17.1.a) OU b)

INSTITUT
NATIONAL DE
LA PROPRIETE
INDUSTRIELLE

SIEGE 26 bis, rue de Saint Petersbourg 75800 PARIS cedex 08 Téléphons : 33 (0)1 53 04 53 04 Télécopie : 33 (0)1 53 04 45 23 www.brul.fr

26 bis, rue de Saint Pétersbourg
75800 Paris Cedex 08
Téléphone: 01 53 04 53 04 Télécopie: 01 42 94 86 54

REQUÊTE EN DÉLIVRANCE 1/2

		Cet Imprimé est à remplir lisiblement à l'encre noire 68 50 17 / 22.09
	Réservé à l'INPI	NOM ET ADRESSE DU DEMANDEUR OU DU MANDATAIRE
NISE DESIGNATES C	ZUUZ Dic	À QUI LA CORRESPONDANCE DOIT ÊTRE ADRESSÉE
75 INPI PA	RIS	François RICALENS
	0216308	RHODIA SERVICES
D'ENREGISTREMENT TIONAL ATTRIBUÉ PAR L'IN	ומו	Direction de la Propriété Industrielle
	2 0 DEC. 2002	40, rue de la Haie-Coq F-93306 AUBERVILLIERS CEDEX
ITE DE DÉPÔT ATTRIBUÉE R L'INPI	ջ Մ ՄԵG. <u>Հ</u> ՍՍՀ	F-93300 AUBERVILLIBRO CESEN
	we decior	3
os références por facultatif) R 02174	ur ce gossier	
		N° attribué par l'INPI à la télécopie
	dépôt par télécopie	Cochez l'une des 4 cases suivantes
2 NATURE DE L		
Demande de br		x
Demande de ce	rtificat d'utilité	
Demande divisi	onnaire	
2021.22		N° Date/ l
	Demande de brevet initiale	Date ! / /
	nde de certificat d'utilité initiale	N° Date : I I
Transformation	d'une demande de	Date/
brevet europées	n Demande de brevel initiale NVENTION (200 caractères o	IV.
DÉCLARATION DE PRIORITÉ OU REQUÊTE DU BÉNÉFICE DE LA DATE DE DÉPÔT D'UNE DEMANDE ANTÉRIEURE FRANÇAISE		Pays ou organisation Date L
		1 11379 / / /
		S'il y a d'autres priorités, cochez la case et utilisez l'imprimé «Suite»
5 DEMANDE	IR	S'il y a d'autres demandeurs, cochez la case et utilisez l'imprimé «Suite»
Nom ou dénomination sociale		RHODIA CHIMIE
. Nom ou dend	Anniquon Sociale	MICONI CAMPAGE
Prėnoms		
Forme juridio	mie	
N° SIREN	440	: 6 .4 .2 .0 .1 .4 .5 .2 .6 !
Code APE-N	ΔF	1
	Rue	26, quai Alphonse Le Gallo
Adresse	Code postal et ville	92512 BOULOGNE-BILLANCOURT CEDEX
	Code postar et ville	FRANCE
Pays		Française
Nationalité		Γταμγαίου
1	hone (facultatif)	
	opie (faculiatif)	
# Advaces Ale	otronique (facultatif)	

REQUÊTE EN DÉLIVRANCE 2/2

REMISE OPILEDE C DATE 75 INPLPA LIEU 75 INPLPA M* D'ENREGISTREMENT NATIONAL ATTRIBUÉ PAR L	0216308		·	OB 540 W /263559	
Vos références po (facultatif)	our ce dossier :	R 02174			
6 MANDATAIRE					
Nom		RICALENS			
Prėnom		François	717000		
Cabinet ou So	ciétė	RHODIA SE Direction de	RVICES la Propriété Industrielle		
N ^o de pouvoir de lien contra	permanent et/ou ctuel	11/02/1998			
Adresse	Rue	40, rue de la			
,,,,,,,	Code postal et ville	93306	AUBERVILLIERS CEDEX		
N° de télépho		01.53.56.54.	17		
N° de télécop	ie (facultatif)	01.53.56.54.	12		
Adresse élect	ronique (facultatif)				
INVENTEUR	(S)				
Les inventeur	s sont les demandeurs	i	ans ce cas fournir une désigna		
RAPPORT D	E RECHERCHE	Uniquemer	rt pour une demande de brevet	t (y compris division et transformation)	
	Établissement immédia ou établissement différ	é 🔲			
Paiement éc	helonné de la redevance	☐Oui ☐Non		nt pour les personnes physiques	
RÉDUCTION DU TAUX DES REDEVANCES		Requise	Uniquement pour les personnes physiques Requise pour la première fois pour cette invention (joindre un avis de non-imposition) Requise antérieurement à ce dépôt (joindre une copie de la décision d'admission pour cette invention ou indiquer sa référence):		
Si vous ave indiquez le	z utilisé l'imprimé «Suite», nombre de pages jointes	,			
OU DU MA	ualité du signataire)			VISA DE LA PRÉFECTURE OU DE L'INPI MIME BLANCANEAUY	

La loi n°78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

ESTERS D'ALLYLE SUBSTITUE PAR UN GROUPE DIFLUOROMETHYLENE, LEUR PROCEDE DE SYNTHESE ET LEUR UTILISATION

5

20

25

La présente invention a pour objet des composés formant un ester d'allyle substitué par un groupe difluorométhylène.

10 Elle a également pour objet une voie de synthèse de ces composés ainsi que leur utilisation dans des procédés de cycloadditions, notamment des cycloadditions 3+2.

Au cours de la dernière décennie, les composés porteurs de groupes fluoroalcoylés ont pris beaucoup d'ampleur, notamment dans l'agrochimie et les produits pharmaceutiques.

En particulier, les hétérocycles, notamment azotés et notamment à 5 chaînons, sont devenus relativement fréquents quand ils portent des groupements (-CF₂). Toutefois, la synthèse de tels composés est difficile et nécessite souvent une séquence d'étapes élevée.

Aussi, un des buts de la présente invention est de fournir une famille de précurseur des ces hétérocycles azotés. L'utilisation de ces précurseurs devant être aisée, ne doit pas nécessiter de nombreuses étapes.

Un autre but de la présente invention est de fournir un procédé de synthèse desdits précurseurs.

30 Un autre but de la présente invention est de fournir une technique d'utilisation de ces précurseurs.

Ces buts, et d'autres qui apparaîtront par la suite, sont atteints au moyen de composés de formule (l) :

dans laquelle:

- ❖ R_f est un radical porteur d'un groupe perfluorométhylène lequel groupe assure la liaison avec le reste de la molécule :
- - Ψ est un groupe électroattracteur tel que Ψ -O-H soit un acide dont le pKa (dans l'eau) est au plus égal à 8, avantageusement à 6, de préférence à 5.
- Selon la présente invention, il est souhaitable que le groupe Ψ-O-H constitue un acide dont le pKa est au moins égal à 1, avantageusement à 2. En effet, il est souhaitable que le groupe Ψ-O ne constitue pas un bon groupe partant, et ce, tant pour l'utilisation comme précurseur de cycloaddition que pour sa synthèse.
- Il est souhaitable que R1 et R3 n'encombrent pas trop la molécule, aussi convient-il d'éviter que R1 et/ou R3 soient attachés à la double-liaison par un carbone tertiaire, voire secondaire.
- Ainsi, il est préférable qu'au moins un des R1 et R3 soit un alcoyle léger (léger, c'est-à-dire d'au plus 4 carbones) ou mieux encore, un hydrogène.
 - Ainsi, il est préféré que R1 soit hydrogène ; il est également préféré que R3 soit hydrogène ; et il est encore plus préféré que R1 et R3 soient hydrogènes.

Avantageusement Rf est de formule (II)

où:

25

les X, semblables (c'est-à-dire qu'ils sont identiques) ou différents, représentent un chlore, un fluor ou un radical de formule C_nF_{2n+1} avec n entier au plus égal à 5, de préférence à 2, avec la condition que les X du groupement méthylène porteur de la liaison ouverte ne soient pas chlore et que l'un d'entre eux au moins soit un atome de fluor, avantageusement les X du méthylène porteur de la liaison ouverte sont ou bien des atomes de fluor ou bien un atome de fluor et un radical de formule C_nF_{2n+1} (de tels radicaux sont en effet considérés comme étant électroniquement voisins des atomes de fluor),

- GEA est un groupe hydrocarboné ou électro-attracteur (c'est à dire que la constante de Hammett σ_p (sigma p) est >0, avantageusement au moins égal à, 0,2), de préférence inerte, avantageusement, quand p est égal à 1, un groupe électroattracteur(cf. lignes précédentes);
- p est un entier positif, c'est-à-dire qu'il ne peut comprendre la valeur 0.

GEA est avantageusement fluor surtout quand p est inférieur ou égal à 2.

5

20

30

35

Les X sont avantageusement tous des fluors surtout quand p est inférieur ou 10 égal à 2.

Une autre valeur de GEA (groupe électroattracteur) est la valeur chlore ; dans ce cas, GEA est un chlore.

p représente un entier avantageusement au plus égal à 4, de préférence à 2 ;

GEA représente avantageusement un groupe électroattracteur dont les éventuelles fonctions sont inertes dans les conditions de la réaction, avantageusement fluor ou un reste perfluoré de formule C_nF_{2n+1} , avec n entier au plus égal à 8, avantageusement à 5,

Le nombre total de carbones de Rf est avantageusement compris entre 1 et 15, de préférence entre 1 et 10.

25 Il est intéressant que Rf soit de formule C_rF_{2r+1} avec r entier au plus égal à 15, avantageusement entre 1 et 10.

La présente invention est particulièrement intéressante pour les R_f de bas poids moléculaire, c'est-à-dire ceux qui sont relativement volatils (c'est-à-dire correspondant à un R_fH dont le point d'ébullition sous pression atmosphérique est au plus égal à $100^{\circ}C$). La technique est particulièrement intéressante pour les R_f ayant un radical présentant un nombre impair de carbones et une mention particulière doit être faite pour les R_f en C_1 , C_2 et C_3 . Ainsi les radicaux trifluorométhyle, pentafluoroéthyle et heptafluoropropyles comptent parmi les valeurs préférées du R_f .

Selon la présente invention, il est préférable que Ψ représente un acyle, avantageusement tel que le pKa (mesuré ou ramené à une valeur dans l'eau)

- GEA est un groupe hydrocarboné ou électro-attracteur (c'est à dire que la constante de Hammett σ_p (sigma p) est >0, avantageusement au moins égal à, 0,2), de préférence inerte, avantageusement, quand p est égal à 1, un groupe électroattracteur(cf. lignes précédentes);
- p est un entier positif, c'est-à-dire qu'il ne peut comprendre la valeur 0.

GEA est avantageusement fluor surtout quand p est inférieur ou égal à 2.

5

20

30

35

Les X sont avantageusement tous des fluors surtout quand p est inférieur ou égal à 2.

Une autre valeur de GEA (groupe électroattracteur) est la valeur chlore ; dans ce cas, GEA est un chlore.

p représente un entier avantageusement au plus égal à 4, de préférence à 2 ;

GEA représente avantageusement un groupe électroattracteur dont les éventuelles fonctions sont inertes dans les conditions de la réaction, avantageusement fluor ou un reste perfluoré de formule C_nF_{2n+1} , avec n entier au plus égal à 8, avantageusement à 5,

Le nombre total de carbones de Rf est avantageusement compris entre 1 et 15, de préférence entre 1 et 10.

25 Il est intéressant que Rf soit de formule C_rF_{2r+1} avec r entier positif allant de 1 à 10, avantageusement de 1 à 5, de préférence de 1 à 3.

La présente invention est particulièrement intéressante pour les R_f de bas poids moléculaire, c'est-à-dire ceux qui sont relativement volatils (c'est-à-dire correspondant à un R_fH dont le point d'ébullition sous pression atmosphérique est au plus égal à 100°C). La technique est particulièrement intéressante pour les R_f ayant un radical présentant un nombre impair de carbones et une mention particulière doit être faite pour les R_f en C₁, C₂ et C₃. Ainsi les radicaux trifluorométhyle, pentafluoroéthyle et heptafluoropropyles comptent parmi les valeurs préférées du R_f.

Selon la présente invention, il est préférable que Ψ représente un acyle, avantageusement tel que le pKa (mesuré ou ramené à une valeur dans l'eau)

soit au moins égal à environ 2 (l'expression environ sert ici à souligner que le nombre qui le suit correspond à un arrondi mathématique), avantageusement à environ 3.

5 Usuellement Ψ-O-H est un acide alcanoïque, avantageusement de 1 à 8 atomes de carbone, de préférence de 2 à 5.

Economiquement, la valeur de Ψ égale à acétyle est la plus intéressante.

Ainsi que cela a été mentionné plus haut, un autre but de la présente invention est de fournir une voie d'accès aisée aux molécules mentionnées ci-dessus.

Ce but est atteint au moyen d'un procédé de synthèse du composé de formule (I), qui comporte la mise en contact d'un composé de formule (III) :

avec une base choisie parmi les bases azotées fortes dont l'acide associé présente un pKa au moins égal à 12 parmi les bases anioniques avec la condition que lorsque la base est une base anionique non azotée cette dernière est en présence d'un solvant ou un mélange de solvants polaires.

Jusqu'à ce jour, l'accès aux composés de formule (I) n'est pas décrit ; une bonne raison pour cela, est que la voie la plus directe à partir de composés connus est difficile est malaisée et, en général, conduit à des produits autres que celui désiré (voir en particulier les exemples comparatifs).

Les composés de formule (III) sont des composés fragiles dont la purification est souvent difficile, voire quasiment impossible, en raison de l'instabilité, notamment thermique, des composés de formule (III), surtout quand X représente un halogène formant un bon groupe partant tel que brome ou iode.

30 Le dérivé chloré est un peu plus stable.

La technique de synthèse des composés de formule (III) a été décrite dans la demande internationale PCT WO 01/58833, déposée au nom de la Demanderesse.

D'une manière générale, on peut réaliser la synthèse des composés de formule (III) par la réaction définie par l'équation ci-après :

avec Z représentant un groupe méthylène (éventuellement substitué mais de préférence non substitué) porteur de Ψ -O- et X limité ici à CI et Br, voire I (mais l'iodure de sulfonyle n'est pas stable ; son existence qui ne pourrait être que transitoire, n'a pas été démontrée et ne peut être mise en œuvre, sauf à le faire in situ).

5

10

15

25

30

L'arrachement de l'acide HX de la molécule de formule (III) pour donner la molécule de formule (I) est difficile à contrôler, la plupart des bases donnant des réactions de substitution nucléophile ou de dégradation, voire d'élimination d'un halogène du groupe Rf.

A la suite de l'étude qui a mené à la présente invention, il a été montré qu'en choisissant certaines bases, la réaction pouvait avoir lieu dans le sens désiré. Il a également été montré que d'autres bases pouvaient être utilisées à condition de choisir les conditions opératoires, et notamment le milieu réactionnel.

On peut ainsi indiquer que peuvent donner de bons résultats les bases ciaprès :

- les bases non anioniques dans lesquelles un doublet d'azote est conjugué avec une liaison double carbone-azote; ces bases peuvent être utilisées; soit seules en quantités stœchiométriques ou sur-stœchiométriques, soit être utilisées en quantités quatalitiques avec une autre base, de préférence plus basique que ces dites bases non-anioniques; en particulier ces bases peuvent être utilisées avec les bases ci-après, qui elles sont en principe utilisées en quantités stœchiométriques ou sur-stœchiométriques;
- les bases azotées anioniques qui donnent de bons résultats, mais sont en général coûteuses, et dont l'effet est d'autant meilleur que l'on utilise comme solvants des solvants polaires aprotiques ;
- les bases anioniques non azotées, avantageusement non issues d'un alcool ou de l'eau (les ions hydroxydes et alcoolates sont respectivement à

proscrire et de préférence à éviter). Ces bases ne donnent de bons résultats que lorsqu'on utilise un solvant polaire dont l'indice donneur est au moins égal à 10, avantageusement à 15, de préférence à 20.

5 Lorsque les solvants polaires sont utilisés selon le procédé de l'invention, il est préférable que ces solvants polaires présentent une constante diélectrique ε (epsilon) au moins égale à 7. Par ailleurs, lorsque le solvant est basique, c'est-à-dire lorsqu'il présente un nombre donneur élevé (supérieur à 20), il est préférable que cette basicité soit relativement faible au sens de la basicité de Bronsted, c'est-à-dire que le pKa de l'acide associé dudit solvant soit supérieur à 5, avantageusement à 6, plus préférentiellement à 7.

15

20

25

30

35

Avantageusement, ledit milieu réactionnel est aprotique et anhydre. En particulier, il est souhaitable que ce milieu aprotique et anhydre soit tel que l'acide le plus fort présent dans le milieu, compte non tenu du substrat présente un pKa au moins égal à 25, avantageusement à 30, de préférence à 35. Cette contrainte vise à éviter les réactions parasites lors de l'arrachement du proton du substrat par la base; en effet les anions issus de l'arrachement d'un proton par une base sont des nucléophiles qui peuvent conduire à une réaction de substitution nucléophile laquelle n'est pas désirée.

Ainsi il est préférable qu'il ne se forme pas de tels anions. D'une manière plus générale il est préférable que les constituants du mélange réactionnel ne soit pas, au contact de la base utilisée, susceptibles de donner des anions nucléophiles. Les acides forts (pKa ≤ 2), voire même moyens (2 < pKa≤ 4,5) ne gênent pas à proprement parler la réaction car ils consomment de la base en ne donnant que des anions peu ou pas nucléophiles, et donc que peu ou pas de réaction(s) parasite(s). Les acides associés aux bases selon la présente invention, ou découlant d'elles, ne nuisent évidemment pas à la présente invention. C'est la raison pour laquelle les ions hydroxydes, voire alcoolates, ne conviennent pas aux procédés selon la présente invention. En effet, ils conduisent à des molécules qui sont à éviter comme solvants.

Ainsi, il est préférable que, dans le réactif, la teneur en atomes d'hydrogène labiles (c'est-à-dire ceux ne correspondant pas aux pKa spécifiés ci-dessus) soit au plus égale à 1/3, avantageusement à 1/4, de préférence à 10% (en moles), par rapport à la teneur initiale en celui de ladite base ou dudit composé de formule (III) qui n'est pas en excès.

proscrire et de préférence à éviter). Ces bases ne donnent de bons résultats que lorsqu'on utilise un solvant polaire dont l'indice donneur est au moins égal à 10, avantageusement à 15, de préférence à 20.

5 Lorsque les solvants polaires sont utilisés selon le procédé de l'invention, il est préférable que ces solvants polaires présentent une constante diélectrique s (epsilon) au moins égale à 7. Par ailleurs, lorsque le solvant est basique, c'est-à-dire lorsqu'il présente un nombre donneur élevé (supérieur à 20), il est préférable que cette basicité soit relativement faible au sens de la basicité de Bronsted, c'est-à-dire que le pKa de l'acide associé dudit solvant soit supérieur à 5, avantageusement à 6, plus préférentiellement à 7.

15

20

25

30

Avantageusement, ledit milieu réactionnel est aprotique et anhydre. En particulier, il est souhaitable que ce milieu aprotique et anhydre soit tel que l'acide le plus fort présent dans le milieu, compte non tenu du substrat présente un pKa au moins égal à 20, mieux à 25, avantageusement à 30, de préférence à 35. Cette contrainte vise à éviter les réactions parasites lors de l'arrachement du proton du substrat par la base ; en effet les anions issus de l'arrachement d'un proton par une base sont des nucléophiles qui peuvent conduire à une réaction de substitution nucléophile laquelle n'est pas désirée.

Ainsi il est préférable qu'il ne se forme pas de tels anions. D'une manière plus générale il est préférable que les constituants du mélange réactionnel ne soit pas, au contact de la base utilisée, susceptibles de donner des anions nucléophiles. Les acides forts (pKa \leq 2), voire même moyens (2<pKa \leq 4,5) ne gênent pas à proprement parler la réaction car ils consomment de la base en ne donnant que des anions peu ou pas nucléophiles, et donc que peu ou pas de réaction(s) parasite(s). Les acides associés aux bases selon la présente invention, ou découlant d'elles, ne nuisent évidemment pas à la présente invention. C'est la raison pour laquelle les ions hydroxydes, voire alcoolates, ne conviennent pas aux procédés selon la présente invention. En effet, ils conduisent à des molécules qui sont à éviter comme solvants.

Ainsi, il est préférable que, dans le réactif, la teneur en atomes d'hydrogène labiles (c'est-à-dire ceux ne correspondant pas aux pKa spécifiés ci-dessus) soit au plus égale à 1/3, avantageusement à 1/4, de préférence à 10% (en moles), par rapport à la teneur initiale en celui de ladite base ou dudit composé de formule (III) qui n'est pas en excès.

Un des avantages des cryptants est de permettre de s'affranchir au moins partiellement des solvants à fort indice donneur.

Pour la définition de l'indice donneur (ou nombre donneur : "donor number") on peut se référer à l'ouvrage de Christian Reichardt, Solvents and solvents effects in organic chemistry, p. 19 (1988), ouvrage où l'on trouve comme définition le négatif de l'enthalpie (-ΔH exprimé en kilocalorie/mol) de l'interaction entre le solvant et le pentachlorure d'antimoine dans une solution diluée de dichlorométhane.

Dans le cas des mélanges de solvants, ou de solvants contenant des cryptants, l'indice donneur sera calculé par fonction donneuse en multipliant l'indice donneur de chacun des solvants par la fraction molaire qu'il représente et en faisant la somme de ces produits.

15

20

25

35

Parmi les bases azotées anioniques, il convient de citer les sels, notamment alcalins ou alcalinoterreux, d'amines, silylées ou non, ainsi que de silylamines. Parmi les sels donnant les meilleurs résultats, il convient de citer les disilylamines salifiées et notamment les sels, en particulier alcalins ou alcalinoterreux, de l'hexaméthyldisilazane (HMDZ).

Parmi les bases anioniques non azotées, il convient de citer les bases non oxygénées telles que par exemple les hydrures alcalins ou alcalinoterreux, et les sels d'alcane tels que le butyllithium et les carbonates alcalins. Il convient de rappeler que les bases de cette famille doivent être utilisées en présence de solvants polaires.

Rappelons qu'il est souhaitable d'utiliser des solvants facilement distillables (Eb inférieur ou égal à 120°C) et/ou miscibles à l'eau, avantageusement en toute proportion afin de traiter plus aisément le mélange réactionnel.

Les bases donnant les meilleurs résultats sont les bases comportant 2 atomes d'azote conjugués comme cela a déjà été mentionné et comme cela est détaillé ci-après.

Selon un mode avantageux de mise en œuvre selon la présente invention ladite base est azotée et non anionique et répond à la formule (IV) :

D-A"=A-R2

- où A est un atome métalloïde de la colonne VB (colonne de l'azote, et avantageusement ce dernier) (la classification périodique des éléments utilisée dans la présente demande est celle du supplément au Bulletin de la Société Chimique de France, janvier 1966, n° 1).
- 5 où A" est un atome de carbone porteur d'hydrogène ou substitué par un radical hydrocarboné R₅,
 - où le radical D est:

10

15

20

- ⇒ ou bien un métalloïde porteur de doublet choisi parmi :
- les chalcogènes avantageusement monosubstitués par un radical monovalent R₆ (auquel cas les chalcogènes constituent ledit métalloïde porteur de doublet),
 - les métalloïdes de la colonne VB, notamment azote ou phosphore (auquel cas les métalloïdes de la colonne V constituent ledit métalloïde porteur de doublet), de préférence azote, lesquels métalloïdes de la colonne VB sont avantageusement disubstitués par deux radicaux hydrocarbonés monovalents R₆, et R'₆ pour former un radical D de formule –A' (R₆,)(R'₆);
 - \Rightarrow ou bien un radical porteur, à la fois d'un atome métalloïde et d'au moins une insaturation, ladite ou lesdites insaturations assurant la conjugaison entre un doublet dudit atome métalloïde et la double-liaison -A3 = A-; ce groupe est relié au reste de la molécule par une liaison simple portée par un atome choisi parmi les atomes de carbone d'hybridation sp² substitués par une fonction ou un radical divalent R_7 porteurs d'un hydrogène ou éventuellement substitués par un radical carboné R_6 .
- 25 Il convient de rappeler que dans cette formule les métalloïdes de la colonne VB sont de préférence un azote, que ce soit pour A" ou pour A'.

Lorsque A" est un atome de colonne VB, et notamment un azote, il est préféré que D soit choisi parmi ceux décrits ci-dessus et dont la liaison simple assurant le lien avec le reste de la molécule est portée par un atome choisi parmi les atomes de carbone d'hybridation sp² substitués par une fonction ou par un radical bivalent R₇ porteur d'un hydrogène ou éventuellement substitué par un radical carboné R₆ pour donner une formule de D spécifiée ci-après :

Lorsque ledit carbone est porteur d'un hydrogène, cet hydrogène se trouve en lieu et place de R_6 pour ainsi donner à R_6 la valeur Hydrogène.

Comme cela a été dit précédemment, il est souhaitable que la base de formule (IV) comporte un atome métalloïde (saturé, c'est-à-dire non porteur de double-liaison), présentant une résonance (ou conjugaison) avec une liaison π reliant deux atomes dont au moins un est un atome disubstitué et chargé positivement de la colonne VB; avantageusement une base organique comportant un atome trivalent de la colonne VB (colonne de l'azote dans le tableau de Mendeleïev), avantageusement de l'azote, atome dont le doublet est conjugué directement ou indirectement à une liaison π reliant deux atomes, dont au moins un est un atome de la colonne VB (à savoir A).

Selon une mise en œuvre particulièrement avantageuse de la présente invention, ladite liaison π reliant deux atomes est la liaison π d'une fonction imine (>C=N-).

Cette fonction imine peut être écrite de la manière ci après :

,*.4\ .

- avec A" représentant un carbone,
- avec D choisi parmi :

5

10

15

20

25

- · les chalcogènes monosubstitués par un radical monovalent R₆,
 - · un métalloïde de la colonne VB, azote avantageusement substitué par deux radicaux monovalent R₆ et R'₆ notamment ou phosphore, de préférence azote; et
 - · ceux décrits précédemment où le lien avec le reste de la molécule est assuré par une liaison portée par les atomes de carbone sp² substitués par une fonction ou un radical divalent R₇ porteurs d'un hydrogène où éventuellement substitués par un radical carboné R₆.

Le radical R₅ est choisi parmi l'hydrogène, les valeurs de D et parmi les radicaux hydrocarbonés, avantageusement aryles et surtout alcoyles.

Il est préférable que le radical D et cette fonction imine soient disposés de telle manière que les atomes d'azote et dudit métalloïde soient le plus éloignés possible, en d'autres termes et par exemple, que l'azote de la fonction imine soit celui des deux atomes reliés par la liaison π qui est le plus éloigné de l'atome trivalent de la colonne V. Ce qui vient d'être dit à propos de la fonction imine est général pour tous les atomes de la colonne VB reliés par la liaison π dans le cas où la liaison π comporte un atome de carbone et un atome de la colonne V.

Selon la présente invention, il est préféré que le cation organique comportant un atome trivalent de la colonne VB dont le doublet est conjugué à une liaison π , présente un enchaînement, ou plutôt un squelette, de formule > N-[C = C]_V-C = N[±]<, avec ν égal à zéro ou un entier choisi dans l'intervalle fermé (c'est-à-dire comprenant les bornes) 1 à 4, avantageusement de 1 à 3, de préférence de 1 à 2. De préférence l'enchaînement précédent répond à la formule :

$$Q = C(R_8) = C(R_6) - C(R_5) = N (R_2)$$

15 - avec Q représentant

5

10

20

25

35

- un chalcogène substitué par un radical aliphatique ou aromatique R_9 ; ou
- un phosphore disubstitué ou plus préférentiellement un azote disubstitué par deux radicaux, identiques ou différents, aliphatique ou aromatique R₉ et R₁₀: (R₁₀)(R₉)N-;
- avec v égal à zéro ou un entier choisi dans l'intervalle fermé (c'est-à-dire comprenant les bornes) 1 à 4, avantageusement de 1 à 3, de préférence de 1 à 2 et où, R₂ est choisi parmi les dérivés hydrocarbonés, avantageusement alcoyles d'au plus 4 atomes de carbone et l'hydrogène.

Avantageusement, selon la présente invention, ledit atome trivalent de la colonne VB forme ou constitue une amine tertiaire.

Plus précisément, il est souhaitable que ladite base organique comportant un atome trivalent de la colonne VB dont le doublet est conjugué à une liaison π constitue une molécule de formule suivante :

$$(R_{10})(R_9)N-[C(R_8) = C(R_6)]_{V}-C(R_5) = N-(R_2)$$

avec v égal à zéro ou un entier choisi dans l'intervalle fermé (c'est-à-dire comprenant les bornes) 1 à 4, avantageusement de 1 à 3, de préférence de 1 à 2 et où R₂, R₅, R₆ et R₈, identiques ou différents, sont choisis parmi les groupes

hydrocarbonés, avantageusement alcoyles d'au plus 4 atomes de carbone et l'hydrogène et où R₁₀ et R₉, identiques ou différents, sont choisis parmi les groupes hydrocarbonés, avantageusement alcoyles d'au plus 4 atomes de carbone, un ou deux des substituants, R₂, R₅, R₆, R₈, R₉ et R₁₀ pouvant être reliés à d'autre(s) substituant(s) restant pour former un, deux ou plusieurs cycles, notamment aromatiques, voir ci après.

L'effet potentialisation de la base est particulièrement marqué quand ladite liaison π reliant deux atomes est intracyclique (ou qu'une forme mésomère soit intracyclique), même quand elle est intracyclique dans un cycle aromatique.

C'est notamment le cas des cycles pyridiniques, diaziniques (de préférence métadiaziniques, voir formules infra) et des cycles qui en sont dérivés comme la quinoléine ou l'isoquinoléine comme par exemple :

15

20

25

5

10

Plus spécifiquement la base organique comportant un atome métalloïde saturé, présentant une résonance avec une liaison π peut être avantageusement choisie parmi les dialcoylaminopyridines, notamment en position para- ou ortho- (c'est-à-dire en position 2 de la pyridine ou 4 voir formule ci dessus).

.....

Ainsi, ladite base porteuse d'au moins 2 azotes trivalents est avantageusement telle que lesdits 2 azotes trivalents forment un système de liaison comportant une imine conjuguée avec le doublet d'une amine.

Les amines qui, telles la DBU (DiazaBicycloUndécène, qui a 9 atomes carbone) ou la DBN (DiazaBicycloNonène qui a 7 atomes de carbone), forment avec la fonction imine une fonction amidine substituée, avantageusement intracyclique à 1, voire à 2 cycles, constituent également des bases particulièrement intéressantes pour mettre en œuvre la présente invention. Des exemples de

telles bases sont à trouver dans les diazabicycloalcènes de 6 à 15 atomes de carbone :

Les cycles à cinq chaînons sont également intéressants quand ils possèdent deux ou trois hétéroatomes.

Par exemple les structures du type imidazole, oxazole ou guanidine cyclique, voire indolique :

R₆' et R₆" ont la même valeur que R₆.

Il est possible de substituer les sommets libres aryliques (engagé dans un aromatique) ou aliphatique (dont le point d'attache est un carbone sp³). Mais cela présent assez peu d'intérêt et l'inconvénient d'alourdir la base.

15 Les structures triazoles sont également envisageables :

5

10

Les structures pyrazoles sont également possibles.

Il convient également de mentionner que parmi les structures non cycliques, il peut y avoir un certain intérêt à utiliser des structures guanidine qui présentent la caractéristique d'être facilement dérivées de la guanidine et de présenter une formule fortement résonante :

10

20

où R_6 " et R_6 " sont choisis parmi les mêmes valeurs que R_6 ; ils peuvent être identiques ou différents des autres R_6 , ainsi que des R_2 . Il est préférable si l'on veut des composés à bas point de fusion que la molécule soit dissymétrique. R_6 " et R_6 " peuvent être reliés entre eux pour former des cycles, avantageusement aromatique.

Il est souhaitable que la masse moléculaire de la base soit au plus égale à 300, avantageusement à 250, plus préférentiellement à 200. Lorsque les bases sont polyfonctionnelles (c'est-à-dire portent plusieurs systèmes basiques tels que décrit ci dessus), ces valeurs doivent être ramenées par fonction basique D-A"=A-R₂.

Un autre but de la présente invention est de trouver une technique de cycloaddition susceptible de fonctionner avec les composés de formule (l).

Au cours de l'étude qui a mené à la présente invention, il a pu être démontré que, à condition de se placer dans des conditions relativement douces, c'est-à-dire à une température inférieure à 150°C, de préférence au plus égale à 100°C, les cycloadditions donnent de bons résultats et donnent des cycles, notamment des hétérocycles.

Quoiqu'il soit possible de faire des cycloadditions de type 2+4, un des intérêts principaux de la présente invention est de fournir l'accès aisé aux hétérocycles par une addition 3+2, et notamment des cycloadditions 1,3 dipolaires.

25 En particulier, les co-substrats fournissant la partie de 3 atomes correspondent aux formes canoniques dipolaires ci-après :

lci b peut être un azote, éventuellement substitué, a et c peuvent être oxygène, azote ou carbone, ces deux derniers atomes pouvant porter un radical hydrocarboné ou un hydrogène.

10

25

où R_6 " et R_6 " sont choisis parmi les mêmes valeurs que R_6 ; ils peuvent être identiques ou différents des autres R_6 , ainsi que des R_2 . Il est préférable si l'on veut des composés à bas point de fusion que la molécule soit dissymétrique. R_6 " et R_6 " peuvent être reliés entre eux pour former des cycles, avantageusement aromatique.

Il est souhaitable que la masse moléculaire de la base soit au plus égale à 300, avantageusement à 250, plus préférentiellement à 200. Lorsque les bases sont polyfonctionnelles (c'est-à-dire portent plusieurs systèmes basiques tels que décrit ci dessus), ces valeurs doivent être ramenées par fonction basique D-A"=A-R₂.

Un autre but de la présente invention est de trouver une technique de cycloaddition susceptible de fonctionner avec les composés de formule (I).

Au cours de l'étude qui a mené à la présente invention, il a pu être démontré que, à condition de se placer dans des conditions relativement douces, c'est-à-dire à une température inférieure à 150°C, de préférence au plus égale à 100°C, les cycloadditions, ou cyclocondensations, avec un co-substrat porteur de deux doubles liaisons donnent de bons résultats et que leur utilisation donne des cycles, notamment des hétérocycles substitués par un groupe Rf.

Quoiqu'il soit possible de faire des cycloadditions de type 2+4, un des intérêts principaux de la présente invention est de fournir l'accès aisé aux hétérocycles par une addition de type 3+2, et notamment des cycloadditions 1,3 dipolaires. Avantageusement le co-substrat est un composé organique porteur d'un azote pentavalent lui-même porteur de 2 double-liaisons (y compris les liaisons de type donneur-accepteur) dont au moins une double-liaison relie ledit azote à un carbone. En particulier, les co-substrats fournissant la partie de 3 atomes correspondent aux formes canoniques dipolaires cí-après :

Pour ce type de réaction, il est fait référence à l'ouvrage général Advance Organic Chemistry, third edition, par Jerry March, page 743 et suivantes, et aux documents cités dans ce livre de référence.

- Le chauffage de ces composés donne, en présence d'un solvant ou non, une cycloaddition même sans catalyseur. Toutefois, certains des composés dont la forme canonique a été évoquée ci-dessus doivent être synthétisés in situ.
- 10 Les exemples non limitatifs ci-après illustrent l'invention.

Exemple 1 - Déshydrohalogénation du précurseur CF₃CH₂CHCICH₂OAc

lci R_f est trifluorométhyle, R_1 et R_3 sont hydrogène et X est chlore.

15 L'équation de la réaction est donnée ci-après avec certaines des impuretés identifiées :

$$F_3C$$

OAC
Base (leq),
temp (

 F_3C
 F_3C
 (16)
 F_3C
 (21)
 F_3C
 (21)

lci b peut être un azote, éventuellement substitué, a et c peuvent être oxygène, azote ou carbone, ces deux derniers atomes pouvant porter un radical hydrocarboné ou un hydrogène.

Pour ce type de réaction, il est fait référence à l'ouvrage général Advance Organic Chemistry, third edition, par Jerry March, page 743 et suivantes, et aux documents cités dans ce livre de référence.

Le chauffage de ces composés donne, en présence d'un solvant ou non, une cycloaddition même sans catalyseur. Toutefois, certains des composés dont la forme canonique a été évoquée ci-dessus doivent être synthétisés in situ.

Les exemples non limitatifs ci-après illustrent l'invention.

15

Exemple 1 - Déshydrohalogénation du précurseur CF₃CH₂CHCICH₂OAc

lci R_f est trifluorométhyle, R₁ et R₃ sont hydrogène et X est chlore.

L'équation de la réaction est donnée ci-après avec certaines des impuretés 20 identifiées :

$$F_3C$$
OAC
Base (leq),
temp (

 F_3C
 F_3C

ι	1	>
	_	÷

puis on laiss	lace 1% heure	12.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	7,01		ח מ רימי	4	МеОН	1,4	1,54	MeONa
00'0	9'09	0	10.2	200	0(c) 3 + 9		Diisopropyi Ether	8,0	2,80	MeONa
ם	56,8	n.d. ^(d)	n.d. ^(d)	848	0(b) à t.a.	A		, ,	7,7	MECINALIS
-	20,03	traces	3,7	96	$0^{(6)}$ à t.a.	4	Dijsonronyl Ether	-	2 24	MoON9(15)
2.60	23.3	20001	1		. 18	-		0,0	», I	(27)
!	0	42	0	47.5	0 ^(c) à t.a.	4	177L	70	0	KHMDZ
88.42			2	10	0. 8 1.8.	4	THF $(ND = 20)$	6'0	86'0	NaH(31)
88,81	7,85	59.5	ر بر	7.3	O(c) 3 + 0	\		3	2,77	Nam(31)
	7,67	0	2,2	41,1	0 ^(c) à t.a.	4	DHC	00	2 44	Mc11(21)
000	25.0			4,73	00	4	Diisopropyl Ether	,	1,1	dabco
12,63	0	traces	•	1	i i	.	Ullsopropyi Etriel	-	1,1	EtsN
0,00	0	0	c	α u	6.0	,	Dilsopiopyi Eulei	-	1,1	Et ₃ N(10,8)
00,0	0	0	0	14.5	20	17	1 1111			(27)000
		C, 11	0	91	70	4	Diisopropyl Ether	-	-	ומט
85 16	c	1 2 2	,	4,50	20	4	Diisopropyl Ether		1,1	DBU(12)
102,89	0	71,2	c	602	20					
	0	49,1	0	29	0 ^(b) à t.a.	17	Diisopropyl Ether ND~18	,—·	1,1	DBU(12)
83,22			地位2000年2月20日	五年 30 mm 10 mm						(0)0000
								Base		Bases pks (30) Base
K EV	KR (22)		RR(0,016)%	Market Cashozal	Wild Constitution	TANDA TANA				

(a) RMN 19F avec étalon interne (b) ajout à 0°C puis on laisse réagir à t.a. (c) ajout sous 0°C et on laisse dans le bain de glace ½ heure puis réagir à t.a. (d) (16) et (21) n'ont pu être séparés par RMN 19 F (16) + (21)=12,3%

Exemple 2 - Déshydrohalogénation du précurseur CF₃CH₂CHCICH₂Oac en présence de DMF

$$F_{3}C$$

$$Cl$$

$$DMF$$

$$DBU$$

$$F_{3}C$$

$$OAc$$

$$(2)$$

$$(3)$$

Charges RR(isolé)%

(2): 1830 g [8,95 mol] 80%

DBU: 1500 g [9,85 mol] 80%

DMF: 7,5 litres
25°C, 2 à 3 heures

Exemple 3 - Déshydrohalogénation du précurseur CF₃CH₂CHCICH₂OAc au moyen de carbonate de potassium

II a été démontré que le carbonate de potassium, permet d'effectuer cette réaction de déshydrochloration non plus à 25°C mais à 60°C et dans des solvants aprotiques dipolaires comme le DMF ou la NMP (ND = 27,3):

$$F_3C$$
 Cl
 K_2CO_3, DMF
 F_3C
 OAc
 OAc
 OAc

Effet de la concentration :

15 (DMF, K₂CO₃ (5 éq.), 60°C, 4 h)

% poids ^(a)	TT(2)% (b)	RR(3)% (b)
11%	100	92% (E + Z)
16,5%	100	85,5% (E + Z)

(a) masse de (2) / masse de DMF (b) Dosage par RMN ¹⁹F avec étalon interne.

Effet de la quantité de K₂CO₃ :

K₂CO₃ (nbe éq)	TT (2) ^(a) (% mol)	RR (<u>3</u>) ^(a) (% mol)
5	100	88 + 10
3	100	86 + 9
1.5	99	87 + 9

(a) Dosage par RMN 19F avec PhOCF₃ comme étalon interne.

Conditions opératoires: 60°C, 'h, 3 g (15 mmol) de (2) pour 28,5 g de DMF soit en fonction de la stœchiométrie en K₂CO₃ entre 7 et 8,7% poids.

Exemple 4 - déshydrohalogénation du précurseur CF₃CH₂CHBrCH₂OAc

La réaction de déshydrobromation est réalisée sans problème selon le même principe :

~			
Temps ^(a)	(<u>2a</u>) ^(b)	(<u>3E</u>) ^(b)	(<u>3Z</u>) ^(b)
45 min	52,2	43	4,8
· 2h	31,4	61,7	6,9
3 h	18,7	72,9	8,2
4 h	12,5	78,5	8,9
5 h	7,8	82,9	9,3
6,5 h	2,4	87,6	9,9

a) Essai 02JGR910 : essai en RPAS 100 ml avec double enveloppe, agitation : 4 pâles inclinées (600 T/min) : <u>2a</u> (10 g à 96% poids, 38,5 mmol), DMF (35 g), K₂CO₃ (18 g, 0,130 mol), b) % aire CPG

10

15

Le milieu réactionnel est laissé une nuit à température ambiante avant traitement. Après filtration (verre filtré n°4) et lavage du gâteau avec 10 ml de DMF, le filtrat est coulé sur 20 ml d'eau et cette phase aqueuse est extraite avec du MTBE (3*25 ml). La couche organique est dosée par RMN ¹⁹F avec étalon interne :

CF ₃ CH ₂ -	CF ₃ CH=CHCH ₂ OAc	CF ₃ CH=CHCH ₂ OAc
CHBrCH ₂ OAc	(E)	(Z)
TT = 100%	RR = 74,5%	RR = 8%

Exemple 5 - Cycloaddition mettant en jeux CF₃CH=CHCH₂OAc

Synthèse d'hétérocycles originaux

5 b)

REVENDICATIONS

5 1. composé de formule (I):

dans laquelle:

10

- R_f est un radical porteur d'un groupe perfluorométhylène, lequel groupe assure la liaison avec le reste de la molécule ;
- R1 et R3, qui peuvent être les mêmes ou différents, sont choisis parmi l'hydrogène et les radicaux alcoyles ou aryles;

15

20

- Ψ est un groupe électroattracteur tel que Ψ-O-H soit un acide dont le pKa (dans l'eau) est au plus égal à 8, avantageusement à 6, de préférence à 5.
- Composé selon la revendication 1, caractérisé par le fait que Ψ est un groupe électroattracteur tel que Ψ-O-H soit un acide dont le pKa (dans l'eau) est au moins égal à 1, avantageusement à 2.
 - 3. Composé selon les revendications 1 et 2, caractérisé par le fait que l'un au moins des R1 et R3, est un alcoyle léger (au plus 4 carbones) ou un hydrogène, avantageusement un hydrogène.

25

4. Composé selon les revendications 1 à 4, caractérisé par le fait que le radical R_f est de formule (II) :

GEA -
$$(CX_2)_p$$
-

où:

30

- les X, identiques ou différents, représentent un chlore, un fluor ou un radical de formule C_nF_{2n+1}, avec n entier au plus égal à 5, de préférence à 2, avec la condition que les X du groupement méthylène porteur de la liaison ouverte ne soient pas des chlores et que l'un d'entre eux au moins soit un fluor;

REVENDICATIONS

5 1. composé de formule (I):

dans laquelle:

10

- R_f est un radical porteur d'un groupe perfluorométhylène, lequel groupe assure la liaison avec le reste de la molécule;
- R1 et R3, qui peuvent être les mêmes ou différents, sont choisis parmi l'hydrogène et les radicaux alcoyles ou aryles;

15

- ❖ Ψ est un groupe électroattracteur tel que Ψ-O-H soit un acide dont le pKa (dans l'eau) est au plus égal à 8, avantageusement à 6, de préférence à 5.
- Composé selon la revendication 1, caractérisé par le fait que Ψ est un groupe électroattracteur tel que Ψ-O-H soit un acide dont le pKa (dans l'eau) est au moins égal à 1, avantageusement à 2.
 - Composé selon les revendications 1 et 2, caractérisé par le fait que l'un au moins des R1 et R3, est un alcoyle léger (au plus 4 carbones) ou un hydrogène, avantageusement un hydrogène.

25

20

4. Composé selon les revendications 1 à 4, caractérisé par le fait que le radical R_f est de formule (II) :

où:

30

- les X, identiques ou différents, représentent un chlore, un fluor ou un radical de formule C_nF_{2n+1}, avec n entier au plus égal à 5, de préférence à 2, avec la condition que les X du groupement méthylène porteur de la liaison ouverte ne soient pas des chlores et que l'un d'entre eux au moins soit un fluor;

- GEA est un groupe hydrocarboné ou électroattracteur (c'est-à-dire que la constante de Hammett σ_p (sigma p) est >0, avantageusement au moins égale à 0,2, de préférence inerte, avantageusement, quand p est égal à 1, groupe électroattracteur ;
- 5 p est un entier positif.
 - 5. Composé selon les revendications 1 à 4, caractérisé par le fait que R1 est hydrogène.
- Composé selon les revendications 1 à 5, caractérisé par le fait que R3 est hydrogène.
 - 7. Composé selon les revendications 1 à 6, caractérisé par le fait que R1 et R3 sont hydrogènes.
- Composé selon les revendications 1 à 7, caractérisé par le fait que R_f est un perfluoroalcolyle de formule générale C_vF_{v+1} où v (nu) est un entier positif allant de 1 à 10, avantageusement de 1 à 5, de préférence de 1 à 3.
- Composé selon les revendications 1 à 8, caractérisé par le fait que R_f est choisi parmi les radicaux trifluorométhyle, pentafluoroéthyle et heptafluoropropyle.
- 10. Composé selon les revendications 1 à 8, caractérisé par le fait que Ψ est un acyle.
- 11. Composé selon les revendications 1 à 8, caractérisé par le fait que Ψ est un acyle tel que le pKa de Ψ-O-H soit au moins égal à environ 2, avantageusement Ψ-O-H est un acide alcanoïque avec de 1 à 8 atomes de carbone, de préférence de 2 à 5.
 - 12. Procédé de synthèse de composé de formule (I), caractérisé par le fait qu'il comporte la mise en contact d'un composé de formule (III)

Rf X
R3
R1 O
$$\Psi$$

- GEA est un groupe hydrocarboné ou électroattracteur (c'est-à-dire que la constante de Hammett σ_p (sigma p) est >0, avantageusement au moins égale à 0,2, de préférence inerte, avantageusement, quand p est égal à 1, groupe électroattracteur;
- 5 p est un entier positif.
 - 5. Composé selon les revendications 1 à 4, caractérisé par le fait que R1 est hydrogène.
- 10 6. Composé selon les revendications 1 à 5, caractérisé par le fait que R3 est hydrogène.
 - Composé selon les revendications 1 à 6, caractérisé par le fait que R1 et R3 sont hydrogènes.
 - 8. Composé selon les revendications 1 à 7, caractérisé par le fait que R_f est un perfluoroalcolyle de formule générale C_rF_{2r+1} où r est un entier positif allant de 1 à 10, avantageusement de 1 à 5, de préférence de 1 à 3.
- Composé selon les revendications 1 à 8, caractérisé par le fait que R_f est choisi parmi les radicaux trifluorométhyle, pentafluoroéthyle et heptafluoropropyle.
- 10. Composé selon les revendications 1 à 8, caractérisé par le fait que Ψ est
 25 un acyle.
 - 11. Composé selon les revendications 1 à 8, caractérisé par le fait que Ψ est un acyle tel que le pKa de Ψ-O-H soit au moins égal à environ 2, avantageusement Ψ-O-H est un acide alcanoïque avec de 1 à 8 atomes de carbone, de préférence de 2 à 5.
 - 12. Procédé de synthèse de composé de formule (I), caractérisé par le fait qu'il comporte la mise en contact d'un composé de formule (III)

avec une base choisie parmi les bases azotées fortes dont l'acide associé présente un pKa au moins égal à 12 et/ou parmi les bases anioniques avec la condition que lorsque la base est une base anionique non azotée cette dernière est en présence d'un solvant ou un mélange de solvants polaires.

- 13. Procédé selon la revendication 12 caractérisé par le fait que la base est une base anionique non azotée et par le fait que ledit solvant polaire présente un solvant dont l'indice donneur est au moins égal à 10, avantageusement à 15, de préférence à 20.
- 14. Procédé selon les revendications 12 et 13 caractérisé par le fait que la base est une base anionique non azotée et par le fait que ledit solvant polaire est un solvant miscible à l'eau en toute proportion (pb des mélanges).
- 15. Procédé selon les revendications 12 à 14, caractérisé par le fait que la base est une base anionique non azotée et par le fait que ledit solvant polaire ne présente pas de fonction acide c'est-à-dire que le pKa de l'hydrogène le plus acide dudit solvant est au moins égal à 20, avantageusement à 25, de préférence à 30.
- 16. Procédé selon la revendication 12, caractérisé par le fait que ladite base est une base azotée anionique, avantageusement choisie parmi les sels, notamment alcalins ou alcalino-terreux, d'amines silylées et les silylamines.
 - 17. Procédé selon les revendications 12 et 16, caractérisé par le fait que ladite base est l'anion d'une silylamine choisie parmi les sels alcalins et alcalino-terreux de l'HMDZ (hexaméthyldisilazane).
 - 18. Procédé selon les revendications 12, 16 et 17, caractérisé par le fait que ladite base est mise en œuvre en présence d'un solvant polaire avantageusement aprotique.
 - 19. Procédé selon la revendication 12, caractérisé par le fait que ladite base est une base porteuse d'au moins 2 azotes trivalents.

35

30

5

10

15

avec une base choisie parmi les bases azotées fortes dont l'acide associé présente un pKa au moins égal à 12 et/ou parmi les bases anioniques avec la condition que lorsque la base est une base anionique non azotée cette dernière est en présence d'un solvant ou un mélange de solvants polaires.

13. Procédé selon la revendication 12 caractérisé par le fait que la base est une base anionique non azotée et par le fait que ledit solvant polaire présente un solvant dont l'indice donneur est au moins égal à 10, avantageusement à 15, de préférence à 20.

5

10

15

20

25

- 14. Procédé selon les revendications 12 et 13 caractérisé par le fait que la base est une base anionique non azotée et par le fait que ledit solvant polaire est un solvant miscible à l'eau en toute proportion.
- 15. Procédé selon les revendications 12 à 14, caractérisé par le fait que la base est une base anionique non azotée et par le fait que ledit solvant polaire ne présente pas de fonction acide c'est-à-dire que le pKa de l'hydrogène le plus acide dudit solvant est au moins égal à 20, avantageusement à 25, de préférence à 30.
- 16. Procédé selon la revendication 12, caractérisé par le fait que ladite base est une base azotée anionique, avantageusement choisie parmi les sels, notamment alcalins ou alcalino-terreux, d'amines silylées et les silylamines.
- 17. Procédé selon les revendications 12 et 16, caractérisé par le fait que ladite base est l'anion d'une silylamine choisie parmi les sels alcalins et alcalino-terreux de l'HMDZ (hexaméthyldisilazane).
- 18. Procédé selon les revendications 12, 16 et 17, caractérisé par le fait que ladite base est mise en œuvre en présence d'un solvant polaire avantageusement aprotique.
- 35 19. Procédé selon la revendication 12, caractérisé par le fait que ladite base est une base porteuse d'au moins 2 azotes trivalents.

20. Procédé selon les revendications 12 et 19, caractérisé par le fait que ladite base porteuse d'au moins 2 azotes trivalents est telle que lesdits 2 azotes sont conjugués par l'intermédiaire d'au moins une double-liaison.

5

21. Procédé selon les revendications 12, 19 et 20, caractérisé par le fait que ladite base porteuse d'au moins 2 azotes trivalents est telle que lesdits 2 azotes trivalents forment un système de liaison comportant une imine conjuguée avec le doublet d'une amine.

- 22. Utilisation du composé de formule (I) comme précurseur d'hétérocycle substitué par un groupe R_f par cyclocondensation avec un co-substrat porteur de 2 double-liaisons.
- 15 23. Utilisation selon la revendication 22, caractérisée par le fait que ladite cyclocondensation est de type 3+2.
- Utilisation selon les revendications 22 et 23, caractérisée par le fait que le co-substrat est un composé organique porteur d'un azote pentavalent luimême porteur de 2 double-liaisons (y compris les liaisons de type donneur-accepteur) dont au moins une double-liaison relie ledit azote à un carbone.

20. Procédé selon les revendications 12 et 19, caractérisé par le fait que ladite base porteuse d'au moins 2 azotes trivalents est telle que lesdits 2 azotes sont conjugués par l'intermédiaire d'au moins une doubleliaison.

5

21. Procédé selon les revendications 12, 19 et 20, caractérisé par le fait que ladite base porteuse d'au moins 2 azotes trivalents est telle que lesdits 2 azotes trivalents forment un système de liaison comportant une imine conjuguée avec le doublet d'une amine.

- 22. Utilisation du composé de formule (I) comme précurseur d'hétérocycle substitué par un groupe R_f par cyclocondensation avec un co-substrat porteur de 2 double-liaisons.
- 15 23. Utilisation selon la revendication 22, caractérisée par le fait que ladite cyclocondensation est de type 3+2.
- 24. Utilisation selon les revendications 22 et 23, caractérisée par le fait que le co-substrat est un composé organique porteur d'un azote pentavalent luimême porteur de 2 double-liaisons (y compris les liaisons de type donneur-accepteur) dont au moins une double-liaison relie ledit azote à un carbone.

Code de la propriété intellectuelle - Livre VI

DÉPARTEMENT DES BREVETS

26 bis, rue de Saint Pétersbourg 75800 Paris Cedex 08 Téléphone : 01 53 04 53 04 Télécopie : 01 42 93 59 30

DÉSIGNATION D'INVENTEUR(S) Page N° 1../1.. (Si le demandeur n'est pas l'inventeur ou l'unique inventeur)

	Cet imprimé est à remplir lisiblement à l'encre noire	DB 113 W /26089
Vos références pour ce dossier (facultatif)	R 02174	
N° D'ENREGISTREMENT NATIONAL	02 16308	

TITRE DE L'INVENTION (200 caractères ou espaces maximum)

ESTERS D'ALLYLE SUBSTITUE PAR UN GROUPE DIFLUOROMETHYLENE, LEUR PROCEDE DE SYNTHESE ET LEUR UTILISATION

LE(S) DEMANDEUR(S):

(Nom et qualité du signataire) Aubervilliers, le 2 décembre 2003

François RICALENS

RHODIA CHIMIE 26 quai Alphonse Le Gallo 92512 BOULOGNE-BILLANCOURT CEDEX FRANCE

DESIGNE(NT) EN TANT QU'INVENTEUR(S) : (Indiquez en haut à droîte «Page N° 1/1» S'il y a plus de trois inventeurs, utilisez un formulaire identique et numérotez chaque page en indiquant le nombre total de pages).

Nom		SAINT-JALMES		
Prénoms		Laurent		
Adresse	Rue	16 rue Latouche Tréville		
	Code postal et ville	69330 MEYZIEU		
Société d'appar	rtenance (facultatif)	RHODIA RECHERCHES		
Nom		ROQUES		
Prénoms		Nicolas		
Adresse Rue Code postal et ville		25 rue Guilloud		
		69003 LYON		
Société d'appartenance (facultatif)		RHODIA RECHERCHES		
Nom		BERNARD		
Prénoms		Jean-Marie, Alphonse, Etienne		
Adresse	Rue	Lieudit Les Mures 320 route du Large		
	Code postal et ville	69440 SAINT-LAURENT D'AGNY		
Société d'appartenance (facultatif)		RHODIA RECHERCHES		
DATE ET SIGN DU (DES) DEN OU DU MAND	MANDEUR(S)			

La loi n°78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

THIS PAGE BLANK (USPTO)

PCT Application PCT/FR2003/003780

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.