2014 TAIWAN

International Olympiad in Informatics 2014

13-20th July 2014 Taipei, Taiwan Day-2 tasks

friend

Language: cs-CZ

Přátelé (Friend)

Budujeme novou sociální síť tvořenou n lidmi očíslovanými $0, \ldots, n-1$. Některé dvojice lidí v síti se stanou přáteli. Je-li člověk x přítelem člověka y, potom je také člověk y přítelem člověka x.

Lidi přidáváme do sítě postupně v n krocích, které jsou očíslovány od 0 do n-1. Člověka i přidáváme v kroku i. V kroku 0 se člověk 0 stane jediným členem sítě. V každém z následujících n-1 kroků některý z lidí, které již v síti jsou, pozve dalšího člověka jako jeho *hostitel*. Člověk, který je v kroku i (0 < i < n) hostitelem, přidává člověka i do sítě použitím jednoho z následujících tří protokolů:

- JsemTvůjPřítel znamená, že hostitel se stane jediným přítelem člověka i.
- *MojiPřáteléJsouTvýmiPřáteli* znamená, že *všichni* současní hostitelovi přátelé se stanou přáteli člověka *i*. Hostitel sám se ovšem *nestane* přítelem člověka *i*.
- JsmeTvojiPřátelé znamená, že hostitel a jeho všichni současní přátelé se stanou přáteli člověka
 i.

Poté, co vybudujeme celou síť, bychom rádi vybrali *vzorek* lidí ze sítě pro průzkum volebních preferencí. Protože přátelé mívají podobné názory, hledáme takovou skupinu lidí, v níž žádní dva nejsou navzájem přátelé. Pro každého člověka je známa jeho *sebedůvěra* (confidence), vyjádřena kladným celým číslem. Chceme nalézt vzorek s maximálním součtem sebedůvěry.

Příklad

číslo kroku	hostitel	protokol	nově vzniklá přátelství
1	0	JsemTvůjPřítel	(1, 0)
2	0	MojiPřáteléJsouTvýmiPřáteli	(2, 1)
3	1	JsmeTvojiPřátelé	(3, 1), (3, 0), (3, 2)
4	2	MojiPřáteléJsouTvýmiPřáteli	(4, 1), (4, 3)
5	0	JsemTvůjPřítel	(5,0)

Na začátku síť obsahuje pouze člověka 0. Hostitel v kroku 1 (kterým je člověk 0) pozve nového člověka 1 použitím protokolu JsemTvůjPřítel a stanou se tedy přáteli. Hostitel v kroku 2 (opět člověk 0) pozve člověka 2 protokolem MojiPřáteléJsouTvýmiPřáteli, takže člověk 1 (jediný současný přítel hostitele) se stane jediným přítelem člověka 2. Hostitel v kroku 3 (člověk 1) přidá člověka 3 protokolem JsmeTvojiPřátelé. Důsledkem toho bude člověk 3 přítelem člověka 1 (hostitel) a zároveň přítelem lidí 0 a 2 (přátelé hostitele). Kroky 4 a 5 jsou rovněž uvedeny v tabulce. Výslednou síť vidíme na následujícím obrázku. Číslo uvnitř kroužku znamená číslo člověka, číslo poblíž kroužku určuje jeho sebědůvěru. Vzorek skládající se z lidí číslo 3 a 5 má součet sebedůvěry roven 20 + 15 = 35, což je maximální dosažitelná hodnota.

Úloha

Je dán popis všech kroků budování sítě a hodnota sebedůvěry každého člověka. Nalezněte vzorek s maximálním součtem sebedůvěry. Implementujte funkci findSample.

- findSample(n, confidence, host, protocol)
 - n: počet lidí v síti.
 - lacktriangle confidence: pole délky $m{n}$; confidence[i] udává sebedůvěru člověka $m{i}$.
 - host: pole délky n; host [i] udává číslo hostitele v kroku i.
 - protocol: pole délky n; protocol[i] udává protokol použitý v kroku i (0 < i < n): 0 pro JsemTvůjPřítel, 1 pro MojiPřáteléJsouTvýmiPřáteli, a 2 pro JsmeTvojiPřátelé.
 - Protože v kroku 0 není nikdo hostitelem, hodnoty host[0] a protocol[0] nejsou definovány a neměli by být nikdy použity vaším programem.
 - Funkce vrátí maximální možný součet sebedůvěry vzorku lidí.

Podúlohy

Některé podúlohy používají pouze některé protokoly, jak ukazuje následující tabulka.

podúloha	počet bodů	n	sebedůvěra (confidence)	použité protokoly
1	11	$2 \le n \le 10$	$1 \leq \text{confidence} \leq 1,000,000$	všechny tři protokoly
2	8	$2 \leq n \leq 1,000$	$1 \leq ext{confidence} \leq 1,000,000$	pouze MojiPřáteléJsouTvýmiPřáteli
3	8	$2 \leq n \leq 1,000$	$1 \leq \text{confidence} \leq 1,000,000$	pouze JsmeTvojiPřátelé
4	19	$2 \leq n \leq 1,000$	$1 \leq \text{confidence} \leq 1,000,000$	pouze JsemTvůjPřítel
5	23	$2 \leq n \leq 1,000$	confidence = 1	oba MojiPřáteléJsouTvýmiPřáteli a JsemTvůjPřítel
6	31	$2 \leq n \leq 100,000$	$1 \leq ext{confidence} \leq 10,000$	všechny tři protokoly

Upřesnění implementace

Odevzdejte právě jeden soubor pojmenovaný friend.c, friend.cpp nebo friend.pas. Tento soubor implementuje funkci popsanou výše s následujícími parametry. Nezapomeňte v případě jazyka C/C++ vložit hlavičkový soubor friend.h.

Program v C/C++

```
int findSample(int n, int confidence[], int host[], int protocol[]);
```

Program v Pascalu

```
function findSample(n: longint, confidence: array of longint, host: array
of longint; protocol: array of longint): longint;
```

Ukázkový vyhodnocovač

Ukázkový vyhodnocovač čte vstup v následujícím formátu:

- řádek 1: n
- řádek 2: confidence[0], ..., confidence[n-1]
- řádek 3: host[1], protocol[1], host[2], protocol[2], ..., host[n-1], protocol[n-1]

Ukázkový vyhodnocovač vypíše návratovou hodnotu funkce findSample.