座位号	
-----	--

国家开放大学(中央广播电视大学)2016年秋季学期"开放本科"期末考试

机电控制工程基础 试题(半开卷)

2017年1月

题	号	 =	=	四	五	六	总	分
分	数							

得	分	评卷人

一、单项选择题(共15分,每小题3分)

1. 一阶系统的传递函数为 $\frac{1}{2s+1}$,则其时间常数为()。

A. 0. 5

B. 5

C. 2

D. 1

2. 已知线性系统的输入为单位阶跃函数,系统传递函数为 G(s),则输出 Y(s)的正确表达式是()。

A.
$$y(t) = L^{-1} \left[\frac{G(s)}{s} \right]$$

B.
$$Y(s) = \frac{G(s)}{s}$$

C.
$$X(s) = Y(s) \cdot G(s)$$

D.
$$Y(s) = s$$
. $G(s)$

3. 二阶欠阻尼系统在阶跃输入下的输出响应表现为()。

A. 衰减振荡

B. 单调上升并趋于稳态值

C. 振荡发散

D. 等幅振荡

4. 理想纯微分环节对数幅频特性曲线是一条斜率为()的直线。

A. +20 dB/dec

B. -20 dB/dec

C. 0dB/dec

D. $\pm 40 \text{dB/dec}$

5. 时域分析法研究自动控制系统时最常用的典型输入信号是()。

A. 三角函数

B. 斜坡函数

C. 抛物线函数

D. 阶跃函数

得	分	评卷人

二、判断题(10分)

- 6. 传递函数只与系统结构参数有关,与输出量、输入量无关()。
- 7. 惯性环节的时间常数越大,则系统的快速性越好()。
- 8. 某环节的输出量与输入量的关系为 y(t) = Kx(t), K 是一个常数,则称其为惯性环节

()。

得	分	评卷人

三、填空题(共30分,每空2分)

9. 将被控量的全部或部分反馈回系统的输入端,参与系统的控制,这种控制方式称为
•
10. 单位阶跃函数的拉普拉斯变换结果是。
11. 对于负反馈结构的系统,其前向通道传递函数为 G(s),反馈通道的传递函数为 H
(s),则系统的开环传递函数为,闭环传递函数为
a
12. 系统的传递函数为 $G(s) = \frac{5(s+2)}{s(s+4)}$,则该系统零点为,极点为。
13. 典型惯性环节的传递函数为,一阶微分环节的传递函数为
0
14. 二阶过阻尼系统的两个极点分布于
统的两个极点分布于。
15. 某环节的传递函数为 2s,则它的幅频特性的数学表达式是,相频特
性的数学表达式是。
16. 系统的传递函数为 $G(s) = \frac{10}{s+2}$,它包含的典型环节有
°
17. 系统根轨迹的起点是,终点是。

得	分	评卷人

- 18. 设单位负反馈系统的开环传递函数为 $G_k(s) = \frac{25}{s(s+6)}$,求
- (1)系统的阻尼比 ζ 和无阻尼自然频率 ω";
- (2)系统在阶跃函数输入下的超调量 σ %及调整时间 t_s (取 5%的误差带)。

得	分	评卷人

五、(15分)

19. 已知系统的动态结构图如图 1 所示,求系统的传递函数 $\frac{C(s)}{R(s)}$.

图 1

得	分	评卷人

六、(15分)

20. 已知单位负反馈系统的开环传递函数如下

$$G_{K}(s) = \frac{K}{s(s+2)}$$

- 求:(1)写出系统的闭环特征方程并确定使得闭环系统稳定的 K 的取值范围。
- (2)当 K=100 时,试确定系统的型别及开环增益的大小。

国家开放大学 (中央广播电视大学)2016 年秋季学期"开放本科"期末考试

机电控制工程基础 试题答案及评分标准(半开卷)

(供参考)

2017年1月

一、单项选择题(每小题 3 分,共 15 分)

- 1. C 2. B 3. A 4. A 5. D

二、判断题(10分)

- 6. √ (3分)
- 7.× (3分)
- 8.× (4分)

三、填空题(30分,每空2分)

- 9. 反馈控制(或闭环控制)
- 10. $\frac{1}{s}$

11.
$$G(s)H(s) = \frac{G(s)}{1+G(s)H(s)}$$

- 12. -2 0, -4
- 13. $G(s) = \frac{1}{T_s + 1}$ $G(s) = \tau s + 1$ $\not \subseteq G(s) = T_s + 1$
- 14. 负实轴的不同位置 复平面的左半平面
- 15. $A(\omega) = 2\omega$ $\varphi(\omega) = 90^{\circ}$
- 16. 比例及惯性环节
- 17. 开环极点 开环零点

四、(15分)

18. 解答:(1)系统闭环传递函数
$$G_B(s) = \frac{\frac{25}{s(s+6)}}{1 + \frac{25}{s(s+6)}} = \frac{25}{s(s+6) + 25} = \frac{25}{s^2 + 6s + 25}$$

与标准形式对比,可知 $2\xi\omega_n=6$, $\omega_n^2=25$

故
$$\omega_n = 5$$
, $\xi = 0.6(8 \, \text{分})$

$$(2)\sigma\% = e^{\frac{-\xi\pi}{\sqrt{1-\xi^2}}} \times 100\% = e^{\frac{-0.5\pi}{\sqrt{1-0.6^2}}} \times 100\% = 9.5\%$$

$$t_s = \frac{3}{\xi \omega_n} = 1s(7 \text{ }\%)$$

五、(15分)

19. 解答:通过结构图的等效变换法则,将分支点向后移动,系统结构图转换为如下形式

可得到系统的传递函数为

$$\frac{C(s)}{R(s)} = \frac{G_1G_2}{1+G_2H_2+G_1H_1}$$
(5分)

六、(15分)

- 20. 解答:
- (1)闭环特征方程为: $s^2 + 2s + K = 0$

若闭环系统稳定,要求满足 K>0(7分)

(2)将传递函数化成标准形式

$$G_{\kappa}(s) = \frac{100}{s(s+2)} = \frac{50}{s(0.5s+1)}$$

可见,系统型别 v=1,这是一个 I型系统,开环增益为 50。(8 分)

|--|

国家开放大学(中央广播电视大学)2017年春季学期"开放本科"期末考试

机电控制工程基础 试题(半开卷)

2017年6月

题	号	<u> </u>	_	Ξ	四	五	六	总	分
分	数								

得	分	评卷人

一、单项选择题(共15分,每小题3分)

1.	系统的动态	性能包括()。		
	A. 稳定性	和平稳性	B. 平稳性和快速性	
	C. 快速性:	和稳定性	D. 稳定性和准确性	
2.	如果典型二	.阶系统的单位阶跃响应为等幅	振荡,则系统的阻尼比 & 为(),
	A. $\xi = 0$		B. 1> ६ >0	
	C . ફ ≥1		D. ξ <0	
3.	已知单位负	反馈系统在阶跃函数作用下,积	急态误差为常数,则该系统是(),
	A. Ⅰ型系统	充	B.0 型系统	
	C. II 型系织	充	D. Ⅲ型系统	
4.	如下为 PID	控制器的传递函数形式的是().	
	A. 3+2s		B. $3+2\frac{1}{s}$	
	C. 3+2s+	$4\frac{1}{s}$	D. 3	

5. 令线性定常系统传递函数的分母多项式为零,则可得到系统的()。

A. 代数方程

B. 特征方程

C. 差分方程

D. 状态方程

得	分	评卷人
	_	·

二、判断题(共10分)

- 6. 绘制根轨迹的依据是输入信号()。
- 7. 两个二阶系统具有相同的超调量,则这两个系统具有相同的阻尼比()。
- 8. 一阶系统的时间常数越小,系统的响应速度越快()。

得	分	评卷人

三、填空題(共30分,每空2分)

9.	闭环系统的传递函数为 $\varphi(s) = \frac{1}{s^2 + 2s + 1}$,则闭环极点为	, 6
	G(s) = s + 1 的幅频特性 A(ω) =	_,相频特性 φ(ω)
	。 对控制系统的三个基本要求是稳定、及。	
12.	I 型系统对数幅频特性低频段的斜率为。	
13.	PID 调节中的"D"指的是	
14.	控制系统的稳态误差大小除了和	有关
外,还和	外输人有关。	
15.	传递函数 $G(s) = \frac{s+1}{s(s+2)(2s+1)}$ 的零点为	,极 点
为	=	
16.	设系统的传递函数为 $G(s) = \frac{25}{s^2 + 5s + 25}$,则系统的阻尼比为	•
17.	线性系统和非线性系统的根本区别在于满足	迭加原理,
_	不满足迭加原理。	
18. 390	自动控制中的基本的控制方式有、、、	和复合控制。

得 分		评卷人

四、(10分)

19. 设系统的结构图如图 1 所示,试求系统的闭环传递函数 $\varphi(s) = \frac{C(s)}{R(s)}$ 。

得	分	评卷人

五、(15分)

- 20. 已知系统的结构图如图 2 所示,要求
- (1)写出系统的闭环传递函数。
- (2)试确定使闭环系统稳定的 K 的取值范围。

图 2

得	分	评卷人

六、(共20分)

- 21. 某系统结构图如图 3 所示,试根据频率特性的物理意义,求
- (1)写出系统闭环传递函数及相应的频率特性表达式、幅频特性及相频特性。

国家开放大学(中央广播电视大学)2017年春季学期"开放本科"期末考试

机电控制工程基础 试题答案及评分标准(半开卷)

(供参考)

2017年6月

一、单项选择题(每小题 3 分,共 15 分)

- 1. B
- 2. A 3. B
- 4. C
- 5. B

二、判断题(共10分)

- 6.× (3分)
- 7. √ (3分)
- 8. √ (4分)

三、填空题(30分,每空2分)

- 9. -1. -1
- 10. $A(\omega) = \sqrt{1 + \omega^2}$ $\varphi(\omega) = \arctan \omega$

- 11. 准确 快速
- 12. -20 dB/dec
- 13. 微分
- 14. 系统自身的结构与参数
- 15. -1 0, -2, -1/2
- 16. 0.5
- 17. 线性系统 非线性系统
- 18. 开环控制 闭环控制

四、(10分)

19. 闭环传递函数 $\varphi(s) = \frac{C(s)}{R(s)} = \frac{G_2(G_1 + H_1)}{1 + G_1 H_2}$ (10 分)

五、(15分)

20. (1) 闭环传递函数
$$\varphi(s) = \frac{C(s)}{R(s)} = \frac{10(Ks+1)}{s^3 + s^2 + 10Ks + 10} (5 分)$$

(2)系统闭环特征方程为 $D(s)=s^3+s^2+10Ks+10=0(5 分)$

根据劳斯稳定判据得,闭环系统稳定下 K 的取值范围是:K>1(5分) 六、(20分)

21. (1)闭环传递函数
$$\varphi(s) = \frac{C(s)}{R(s)} = \frac{1}{s+2} (5 \text{ } \%)$$

频率特性表达式为
$$\varphi(j\omega) = \frac{1}{j\omega+2}(5 \text{ } f)$$

幅频特性
$$A(\omega) = \frac{1}{\sqrt{4+\omega^2}}$$
, 相频特性 $\varphi(\omega) = -\arctan\frac{\omega}{2}$ (10 分)

国家开放大学(中央广播电视大学)2017年秋季学期"开放本科"期末考试

机电控制工程基础 试题(半开卷)

2018年1月

题	号	_	=	Ξ	四	五	六	总分	}
分	数								

得 分		评卷人

	一、单项选择题(共 15 分	〉,每小题 3 分)
1.	反馈控制系统又称为()。	
	A. 闭环控制系统	B. 开环控制系统
	C. 按扰动补偿的复合控制系统	D. 按给定补偿的复合控制系统
2.	如果典型二阶系统的单位阶跃响应为衰减	ដ振荡,则系统的阻尼比ξ为()
	A. $\xi = 0$	B. 1>ξ>0
	C. ξ ≥1	D. \$ <0
3.	反映线性系统的稳态输出和输入的相位差	随频率变化的关系是()。
	A. 幅频特性	B. 传递函数
	C. 微分方程	D. 相频特性
4.	在系统开环对数幅频特性图中,反映系统	动态性能的是()。
	A. 低频段	B. 中频段
	C. 高频段	D. 无法反映
5.	开环传递函数为 $G(s) = \frac{K}{s^2(s+2)}$,则实轴	上的根轨迹区间为()。

A. [-2, 0]

B. $(-\infty, 0]$

C. $(-\infty, -2]$

D. $[0, +\infty)$

得	分	评卷人

二、判断题(共10分)

- 6. $G(s) = \frac{1}{2s+1}$ 的转折频率为 2()。
- 7. 二阶系统在单位阶跃函数作用下,当阻尼 &>0 时系统输出为等幅振荡()。
- 8. 线性定常系统的传递函数是零初始条件下输出与输入信号之比()。

得	分	评卷人

三、填空题(共30分,每空2分)

- 9. 闭环系统的传递函数为 $\varphi(s) = \frac{1}{s^2 + 2s + 1}$,则闭环特征方程式为_____。
- 10. 某单位负反馈系统的开环传递函数为 $G(s) = \frac{2}{s(s+2)}$,则此系统为______型系统,它在单位阶跃函数输入下的稳态误差为_____。
 - 11. 线性定常连续时间系统稳定的充分必要条件是______
- 12. 某系统的微分方程为 $\frac{dc(t)}{dt}$ +c(t)=r(t),其中c(t)为输出,r(t)为输入。则该系统的闭环传递函数 $\varphi(s)$ =_____,单位阶跃输入下系统超调量为_____,调节时间为(取 2%的误差带 t=4T)。
 - 13. 传递函数分母多项式的根称为系统的_____,分子多项式的根称为系统的
- 14. 比例环节的传递函数为_____。
- - 17. 单位斜坡函数的拉氏变换为_____。
 - 18. 系统开环对数幅频特性的低频段反映系统的_____性能。

得	分	评卷人

四、(10分)

19. 设系统的结构图如图 1 所示,试求系统的闭环传递函数 $\varphi(s) = \frac{C(s)}{R(s)}$.

得	分	评卷人

五、(25分)

20. 已知单位负反馈系统的开环传递函数如下

$$G(s) = \frac{20}{(0.2s+1)(0.1s+1)}$$

- 求:(1)试确定系统的型别和开环增益;
- (2)试求输入为 r(t)=2+5t 时,系统的稳态误差。

得	分	评卷人

21. 单位负反馈系统的开环传递函数为 $G(s) = \frac{K}{s(s+3)(s+5)}$,要求系统稳定,试确定参数 K 的取值范围。

国家开放大学 (中央广播电视大学)2017 年秋季学期"开放本科"期末考试 机电控制工程基础 试题答案及评分标准(半开卷) (供参考)

2018年1月

一、单项选择题(每小题 3 分,共 15 分)

- 1. A 2. B 3. D
- 4. B 5. C

二、判断题(共 10 分)

- 6.× (3分)
- 7.× (3分)
- 8.× (4分)

三、填空题(30分,每空2分)

- 9. $s^2 + 2s + 1 = 0$
- 10. I型 0
- 11. 闭环特征方程的根均位于复平面的左半平面
- 12. $\frac{1}{s+1}$ 0 4
- 13. 极点 零点
- 14. G(s) = K
- 15. 幅值裕量 相位裕量
- 16. 积分
- 17. $\frac{1}{s^2}$
- 18. 稳态

四、(10分)

19. 解答:闭环传递函数
$$\varphi(s) = \frac{C(s)}{R(s)} = \frac{G_2(G_1 + H_1)}{1 + G_1G_2H_2}$$
 (10 分)

五、(25分)

20. 解答:(1)该传递函数已经为标准形式,可见,系统型别为 0,这是一个 0 型系统。

开环增益 K=20。(10 分)

(2)讨论输入信号,r(t)=2+5t,即 A=2,B=5(5 分)

稳态误差
$$e_{ss} = \frac{A}{1+K_{D}} + \frac{B}{K_{V}} = \frac{2}{1+20} + \frac{5}{0} = \frac{2}{21} + \infty = \infty (10 分)$$

六、(10分)

21. 解:系统特征方程为:

$$D(s) = s^3 + 8s^2 + 15s + K = 0(3 分)$$

$$S \qquad \frac{120 - K}{8} \qquad \Rightarrow K < 120(2 \%)$$

$$S^0$$
 K \Rightarrow K $>0(2分)$

使系统稳定的增益范围为: 0<K<120。(3分)

灬	欱	무		1
脞	<u>117</u>	ち		١

国家开放大学(中央广播电视大学)2018年春季学期"开放本科"期末考试

机电控制工程基础 试题(半开卷)

2018年7月

题	号	_	 Ξ	四	五.	六	总	分
分	数							

得 分 评卷人

一、单项选择题(共15分,每小题3分)

- 1. 关于系统的传递函数,下述说法正确的是()。
 - A. 与输入信号有关
 - B. 与输出信号有关
 - C. 完全由系统的结构和参数决定
 - D. 和系统的结构和参数及输入信号有关
- 2. 比例环节的相频特性 $\varphi(\omega)$ 为()。

A. 90°

B. -90°

C. 0°

D. -180°

- 3. 一阶系统的阶跃响应特征为()。
 - A. 当时间常数 T 较大时有振荡

B. 当时间常数 T 较小时有振荡

C. 有振荡

D. 无振荡

- 4. 某二阶系统阻尼比为 0.2,则系统阶跃响应为()。
 - A. 发散振荡

B. 单调衰减

C. 衰减振荡

D. 等幅振荡

- 5. 令线性定常系统传递函数的分母多项式为零,则可得到系统的()。
 - A. 代数方程

B. 特征方程

C. 差分方程

D. 状态方程

得	分	评卷人

二、判断题(10分)

- 6.0 型系统(其开环增益为 K)在单位阶跃输入下,系统的稳态误差为 $\frac{10000}{K}$ ()。
- 7. 一阶系统的传递函数为 $G(s) = \frac{5}{3s+1}$,其时间常数为 150()。
- 8. 线性系统稳定的充分必要条件是:系统特征方程的根(系统闭环传递函数的极点)全部具有负实部,也就是所有闭环传递函数的极点都位于 s 平面的左侧()。

得	分	评卷人

三、填空题(共30分,每空2分)

	9.	用频域法分析控制系统时,最常用的典型输入信号是。
	10.	、、和准确性是对自动控制系统性能的基本要求。
	11.	反馈控制系统是根据输入量和的偏差进行调节的控制系统。
	12.	决定二阶系统动态性能的两个重要参数是
		和。
	13.	线性定常系统的传递函数,是在条件下,系统输出信号的拉氏变换与输
入信	号的	的拉氏变换的比。
	14.	分析稳态误差时,将系统分为 0 型系统、I 型系统、II 型系统…,这是按开环传递函数
的		环节数来分类的。
	15.	单位反馈系统的开环传递函数为 $G(s) = \frac{K^*}{s(s+2)(s+3)}$,则系统根轨迹的分支数为
		,根轨迹的起点包括,在实轴上的根轨迹区间有。
	16.	二阶系统的阻尼比 ξ 为时,响应曲线为等幅振荡。
	17.	设系统的频率特性为 $G(j\omega) = P(\omega) + jQ(\omega)$,则 $P(\omega)$ 称为,Q(\omega)
称为	·	•
	18.	开环传递函数为 G(s)的单位负反馈系统,其闭环特征方程为
	۰	

得	分	评卷人	
			四、(10分)

19. 设系统的结构图如图 1 所示,试求系统的闭环传递函数 $\varphi(s) = \frac{C(s)}{R(s)}$.

得	分	评卷人

五、(25分)

- 20. 系统结构图如图 2 所示,试求
- (1)系统的闭环传递函数。
- (2)系统的阻尼比及无阻尼自振荡角频率。
- (3)计算系统的动态性能指标中的超调量 σ %(写出表达式即可)和调节时间 t_s (取 5%的 误差带)。
 - (4)当输入为 r(t)=1 时,系统的稳态误差。

得 分	评卷人	六、(10 分)
		X (10 31)

21.(1)设系统开环传递函数如下,

$$G(s) = \frac{30}{s(0.02s+1)}$$

试绘制系统的对数幅频特性渐近特性曲线。

国家开放大学 (中央广播电视大学)2018 年春季学期"开放本科"期末考试 机电控制工程基础 试题答案及评分标准(半开卷)

(供参考)

2018年7月

一、单项选择题(每小题 3 分,共 15 分)

- 1. C 2. C 3. D 4. C
- 5. B

二、判断题(10分)

- 6.× (3分)
- 7.× (3分)
- 8. √ (4分)

三、填空题(30分,每空2分)

- 9. 正弦函数
- 10. 稳定性 快速性(不分次序)
- 11. 反馈量
- 12. 阻尼比 无阻尼自振荡角频率(或ζω")
- 13. 零初始
- 14. 积分
- 15.3 0, -2, -3 [-2,0]和($-\infty$, -3]
- 16. 零
- 17. 实频特性 虚频特性
- 18.1+G(s)=0

四、(10分)

19. 解答:闭环传递函数
$$\varphi(s) = \frac{C(s)}{R(s)} = \frac{G_1(s)G_2(s)}{1 + G_1(s)G_2(s)H_2(s) + G_2(s)H_1(s)}$$
 (10 分)

五、(25分)

20. 解答:(1)闭环传递函数为

$$\phi(s) = \frac{16}{s^2 + s + 16} (7 \text{ }\%)$$

(2) 无阻尼自振荡角频率 $\omega_n = 4$,阻尼比 $\zeta = \frac{1}{8}$ 。 (6 分)

$$(3) \sigma \% = e^{\frac{-\xi \pi}{\sqrt{1-\xi^2}}} \times 100\%$$

$$t_s = \frac{3}{\xi \omega_n} = 6(6 \text{ 分})$$

(4)这是一个 I 型系统。

稳态误差
$$e_{ss} = \frac{1}{1+\infty} = 0(6 \text{ 分})$$

六、(10分)

21. 解答:该系统开环增益 K=30;有一个积分环节,低频渐近线通过(1,20lg30)这点,斜率为-20dB/dec;有一个惯性环节,对应转折频率为 $\omega_1 = \frac{1}{0.02} = 50$,斜率增加-20dB/dec。

系统对数幅频特性渐近特性曲线如下所示。

(10分)

国家开放大学(中央广播电视大学)2018年秋季学期"开放本科"期末考试

机电控制工程基础 试题(半开卷)

2019年1月

题	号	 =	Ξ	四	五	总	分
分	数						

得	分	评卷人

一、单项选择题(每小题 3 分,共 15 分)

- 1. 一阶系统的传递函数为 $\frac{1}{5s+1}$,则其时间常数为()。
 - A. 0.5

B. 5

C. 2

D. 1

2. 已知线性系统的输入为单位阶跃函数,系统传递函数为G(s),则输出Y(s)的正确表达式是()。

A.
$$y(t) = L^{-1}sG(s)$$

B.
$$Y(s) = \frac{G(s)}{s}$$

C.
$$X(s)=Y(s) \cdot G(s)$$

D.
$$Y(s) = s \cdot G(s)$$

- 3. 二阶欠阻尼系统在阶跃输入下的输出响应表现为()。
 - A. 衰减振荡

B. 单调上升并趋于稳态值

C. 振荡发散

- D. 等幅振荡
- 4. 理想纯微分环节对数幅频特性曲线是一条斜率为()的直线。

A. $\pm 20 dB/dec$

B. $-60 \, \text{dB/dec}$

C. 0dB/dec

D. $\pm 40 \, \text{dB/dec}$

5. 频域分析法研究自动控制系	系统时使用的典型输入信号是()。	
A. 拋物线函数	B. 斜坡函数	
C. 正弦函数	D. 双曲线函数	
得分 评卷人 二、判断题	鹽(10分)	
6. 两个二阶系统具有相同的超	超调量,则这两个系统具有不同的阻尼比。()
7. 一阶系统的时间常数越小,	系统的响应速度越快。()	
8. 叠加性和齐次性是鉴别系统	· 是否为线性系统的根据。()	
得 分 评卷人 三、填空縣	題(每空2分,共30分)	
9. 将被控量的全部或部分反馈 ————。 10. 单位阶跃函数的拉普拉斯图	馈回系统的输入端,参与系统的控制,这种技 变换结果是。	空制方式称为
	-	函数为 H(s),
	,闭环传递函数为。	
12. 系统的传递函数为 G(s)=	$=\frac{5(s-1)}{s(s+2)}$,则该系统零点为,极点为_	
13. 在经典控制理论中常用的	内控制系统数学模型有	,
和。		
14. 二阶稳定系统的两个极点。	分布于复平面的。	
15. 某环节的传递函数为 2s,则	则它的幅频特性的数学表达式是	,相频特
性的数学表达式是	°	
16. 系统的传递函数为 G(s)=	$=\frac{10}{s+2}$,它包含的典型环节有	
。 17. 系统根轨迹的起点是开环_	,终点是开环	°

得	分	评卷人

四、计算题(15分)

- 18. 设单位负反馈系统的开环传递函数为 $G_{k}(s) = \frac{25}{s(s+6)}$,求
- (1)系统的阻尼比ζ和无阻尼自然频率ω,;(6分)
- (2) 系统在阶跃函数输入下的超调量 σ % 及调整时间 t_s (取 5%的误差带 $t_s = \frac{3}{\zeta w_s}$)。(9 分)

得	分	评卷人

五、综合题(30分)

19. (10 分)已知系统的动态结构图如图 1 所示,求系统的传递函数 $\frac{C(s)}{R(s)}$.

20. (20分)已知单位负反馈系统的开环传递函数如下

$$G_K(s) = \frac{K}{s(s+2)}$$

求:

- (1)写出系统的闭环传递函数。(10分)
- (2)确定系统的闭环特征方程并确定使得闭环系统稳定的 K 的取值范围。(10 分)

国家开放大学(中央广播电视大学)2018年秋季学期"开放本科"期末考试

机电控制工程基础 试题答案及评分标准(半开卷)

(供参考)

2019年1月 一、单项选择题(每小题3分,共15分) 2. B 3. A 4. A 5. C 1. B 二、判断题(10分) 三、填空题(每空2分,共30分) 9. 反馈控制(或闭环控制) 10. $\frac{1}{s}$ G(s)11. G(s)H(s) $\overline{1+G(s)H(s)}$ 12. 1:0 -213. 微分方程 传递函数 频率特性

- 15. $A(\omega) = 2\omega$ $\varphi(\omega) = 90^{\circ}$
- 16. 比例及惯性环节

14. 左半平面

17. 极点 零点

四、计算题(15分)

- 18. 解答:
- (1)系统闭环传递函数为

$$G_B(s) = \frac{\frac{25}{s(s+6)}}{1 + \frac{25}{s(s+6)}} = \frac{25}{s(s+6) + 25} = \frac{25}{s^2 + 6s + 25}$$
 (2 \$\frac{\partial}{s}\$)

与标准形式对比,可知

$$2\xi\omega_{n}=6,\omega_{n}^{2}=25$$

$$(2)\sigma\% = e^{\frac{-6\pi}{\sqrt{1-6^2}}} \times 100\% = e^{\frac{-0.6\pi}{\sqrt{1-0.6^2}}} \times 100\% = 9.5\% \dots (5 \%)$$

$$t_s = \frac{3}{\xi \omega_n} = 1 \quad \dots \tag{4 }$$

五、综合题(30分)

19. 解答:通过结构图的等效变换法则,可得到系统的传递函数分别为

$$\frac{C(s)}{R(s)} = \frac{G_1 G_2}{1 + G_2}$$
 (10 分)

- 20. 解答:
- (1) 闭环传递函数为

$$\phi(s) = \frac{K}{s^2 + 2s + K}$$
 (10 分)

(2) 闭环特征方程为: $s^2 + 2s + K = 0$

国家开放大学2019年春季学期期末统一考试

机电控制工程基础 试题(半开卷)

2019年7月

题	号	_	=	=	总	分
分	数					

得	分	评卷人

一、选择题(每小题 4 分,共 32 分)

1. 一阶系统的传递函数为 $\frac{1}{5s+1}$,则其时间常数为()。

A. 0. 5

B. 5

C. 2

D. 1

2. 已知线性系统的输入为单位阶跃函数,系统传递函数为 G(s),则输出 Y(s)的正确表达式是()。

$$\Lambda. y(t) = L^{-1} \left[\frac{G(s)}{2s} \right]$$

B.
$$Y(s) = \frac{G(s)}{s}$$

C.
$$X(s) = Y(s) \cdot G(s)$$

D.
$$Y(s) = s \cdot G(s)$$

3. 二阶系统的两个极点为位于 s 左半平面的共轭复根,则其在阶跃输入下的输出响应表现为()。

A. 衰减振荡

B. 单调上升并趋于稳态值

C. 振荡发散

D. 等幅振荡

4. 某二阶系统的特征根为两个纯虚根,则该系统的单位阶跃响应为()。

A. 单调上升

B. 等幅振荡

C. 衰减振荡

D. 振荡发散

5.	传递函数 $G(s) = \frac{1}{s}$ 表示()环节。	
	A. 微分	B. 积分
	C. 比例	D. 滞后
6.	惯性环节的对数幅频特性的高频渐近线斜	率为()。
	A20dB/dec	B. 20dB/dec
	C40dB/dec	D. 40dB/dec
7.	在单位阶跃输入下, I 型系统的给定稳态;	吴差为()。
	A. 0	B. 1
	C. s	D. 1/s
8.	某系统的传递函数是 $G(s) = \frac{1}{2s+1}e^{-rs}$,则	该系统可看成由()环节串联而成。
	A. 积分、延时	B. 微分、延时
	C. 微分、积分	D. 惯性、延时
得分	二、判断题(每小题3分	,共 30 分)
9.	将被控量的全部或部分反馈回系统的输入	端,参与系统的控制,这种控制方式称为反
馈控制	或闭环控制。()	
10.	单位阶跃函数的拉普拉斯变换结果是1。	()
11.	对于负反馈结构的系统,其前向通道位	传递函数为 G(s),反馈通道的传递函数
为 H(s)),则系统的开环传递函数为 G(s)H(s),闭	环传递函数为 $\frac{G(s)}{1+G(s)H(s)}$ 。()
12.	. 两个二阶系统具有相同的超调量,这两个	系统也会具有不同的阻尼比。()
13.	. 一阶系统的时间常数越小,系统的响应速	度越快。()
14.	. 叠加性和齐次性是鉴别系统是否为线性。	系统的根据。()
15.	. 传递函数分母多项式的根称为系统的极点,	分子多项式的根称为系统的零点。()
16.	. 比例环节的传递函数为 G(s)=K。()
17.	. 系统的传递函数为 $G(s) = \frac{5(s-1)}{s(s+2)}$,则该	系统零点为1,极点为;0,-2。()
18.	. 在经典控制理论中常用的控制系统数学标	莫型有微分方程、传递函数、频率特性等。

得	分	评卷人

三、综合题(共38分)

19. (13分)典型的二阶系统的单位阶跃响应曲线如图 1 所示,试确定系统的闭环传递函数。

20. (10 分)已知单位负反馈系统的开环传递函数如下

$$G(s) = \frac{200}{(0.2s+1)(0.1s+1)}$$

求:(1)试确定系统的型别和开环增益;

(2)试求输入为 r(t)=1+10t 时,系统的稳态误差。

21. (15 分)已知单位负反馈系统开环传函为 $G(s) = \frac{16}{s(s+2)}$, 计算系统的阻尼比 ξ 、无阻尼自振荡角频率 ω_n 及超调量(写出超调量表达式即可)与调节时间(取 5%误差带)。

国家开放大学2019年春季学期期末统一考试

机电控制工程基础 试题答案及评分标准(半开卷)

(供参考)

2019年7月

一、选择题(每小题 4 分,共 32 分)

- 1. B
- 2. B
- 3. A
- 4. B
- 5. B

- 6. A 7. A 8. D

二、判断题(每小题3分,共30分)

- 9. \checkmark 10. \times 11. \checkmark 12. \times 13. \checkmark

- 14. \checkmark 15. \checkmark 16. \checkmark 17. \checkmark 18. \checkmark

三、综合题(38分)

19.(13分)

解:由系统阶跃响应曲线有

$$\begin{cases} h(\infty) = 3 \\ t_p = 0.1 \\ \sigma\% = (4-3)/3 = 33.3\% \end{cases}$$
 (6 \(\frac{\frac{1}{3}}{3}\)

由
$$\begin{cases} t_{p} = \frac{\pi}{\sqrt{1 - \xi^{2}} \omega_{n}} = 0.1 \\ \emptyset = e^{-\xi \pi / \sqrt{1 - \xi^{2}}} = 33.3 \% \end{cases}$$
 联立求解得
$$\begin{cases} \xi = 0.33 \\ \omega_{n} = 33.28 \end{cases}$$
 (4 分)

则系统闭环传递函数为

$$\Phi(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2} = \frac{1107.6}{s^2 + 21.96s + 1107.6}$$
(3 5)

294

20. (10 分)解:(1)该传递函数已经为标准形式,可见,系统型别为 0,这是一个 0 型系统。

稳态误差
$$e_{ss} = \frac{\Lambda}{1 + K_p} + \frac{B}{K_v} = \frac{1}{1 + 200} + \frac{10}{0} = \infty$$
 (3分)

21.(15 分)系统闭环传递函数为: $\frac{16}{s^2+2s+16}$,和标准传递函数相比较得:

$$\xi = 0.25$$
 (3分)

$$\omega_n = 4$$
 (4 $\%$)

$$\sigma_0^0 = e^{\frac{-\xi \pi}{\sqrt{1-\xi^2}}} \times 100\% \tag{4 }$$

$$ts(5\%) = 3(s) \tag{4分}$$

国家开放大学2019年秋季学期期末统一考试

机电控制工程基础 试题(半开卷)

2020年1月

题	号	 =	=	总	分
分	数				

得	分	评卷人

一、选择题(每小题 4 分,共 32 分)

1. 某二阶系统的特征根为两个纯虚根,则该系统的单位阶跃响应为()。

A. 单调上升

B. 等幅振荡

C. 衰减振荡

D. 振荡发散

2. 系统的根轨迹()。

A. 起始于开环极点,终止于开环零点

B. 起始于闭环极点,终止于闭环零点

C. 起始于闭环零点,终止于闭环极点

D. 起始于开环零点,终止于开环极点

3. PI 校正为()校正。

A. 滞后

B. 超前

C. 滞后超前

D. 超前滞后

4. 系统的传递函数 $G(s) = \frac{5}{s^2(s+1)(s+4)}$,其系统的增益和型次为()。

A. 5,2

B. 5/4,2

C.5,4

D.5/4.4

5. 某系统的传递函数是 $G(s) = \frac{1}{2s+1}e^{-rs}$,则该系统可看成由()环节串联而成。

A. 比例、延时

B. 惯性、超前

C. 惯性、延时

D. 惯性、比例

6. 对于单位负反馈系统,其开环传递	函数为 G(s),则闭环传递函数为()。
$A. \frac{10G(s)}{1+G(s)}$	B. $\frac{2G(s)}{1-G(s)}$
C. $\frac{G(s)}{1-G(s)}$	D. $\frac{G(s)}{1+G(s)}$
7. 某单位负反馈系统的开环传递函数	数为 $G(s) = \frac{2}{s^2(s+2)}$,则此系统在单位阶跃函数输入
下的稳态误差为()。	
A. 0	B. 1
C. s	D. 1/s
8. 频率特性是线性系统在()输/	入作用下的稳态响应。
A. 三角信号	B. 正弦信号
C. 脉冲信号	D. 阶跃信号
得分 评卷人 二、判断题(每小	N题 3 分,共 30 分)
9. 叠加性和齐次性是鉴别系统是否分	为线性系统的根据。()
10. 劳斯稳定判据能判断线性定常系	统的稳定性。()
11. 微分环节传递函数为 5s,则它的	幅频特性的数学表达式是 5ω,相频特性的数学表达
式是-90°。()	
12. 线性定常连续时间系统稳定的充	分必要条件是闭环特征方程的根均位于复平面的左
半平面。()	
13. 某系统的微分方程为 $\frac{dc(t)}{dt} + c(t)$	=r(t),其中 c(t)为输出,r(t)为输入。则该系统的
闭环传递函数 $\varphi(s) = \frac{1}{s+1}$ 。()	
14. 某二阶系统的特征根为两个具有	负实部的共轭复根,则该系统的单位阶跃响应曲线
表现为等幅振荡。()	
15. 线性系统的传递函数完全由系统	的结构和参数决定。()
16.0 型系统(其开环增益为 K)在单位	位阶跃输入下,系统的稳态误差为 $rac{1}{1+\mathrm{K}}$ 。()
17. 2e ^{-t} 的拉氏变换为 <mark>2</mark> s+1。()	
18. 单位脉冲函数的拉氏变换为一。	()

得	分	评卷人

三、综合题(共 38 分)

19. (15 分)已知系统闭环传递函数为:

$$\varphi(s) = \frac{1}{0.25s^2 + 0.707s + 1}$$

求系统的 ξ、ω_n 及性能指标 σ%、 t_s (5%)。

20. (10 分)某系统结构图如图所示,试根据频率特性的物理意义,写出系统闭环传递函数 及相应的频率特性表达式。

21. (13分)已知系统的特征方程如下,试判别系统的稳定性。

$$D(s) = s^5 + 2s^4 + s^3 + 3s^2 + 4s + 5 = 0$$

国家开放大学2019年秋季学期期末统一考试

机电控制工程基础 试题答案及评分标准(半开卷)

(供参考)

2020年1月

一、选择题(每小题 4 分,共 32 分)

1. B

2. A

3. A

5. C

6. D

7. A

8. B

二、判断题(每小题3分,共30分)

9. √ 10. √ 11. ×

12. \/

4. B

13. 🗸

 $14. \times 15. \checkmark 16. \checkmark$

17. \

 $18. \times$

三、综合题(38分)

19. (15 分)已知系统闭环传递函数为:

$$\varphi(s) = \frac{1}{0.25s^2 + 0.707s + 1}$$

求系统的 ξ 、ω。及性能指标 σ %、 t_s (5%)。

$$\omega_n = 2$$
 (4 分)

$$\sigma\% = 4.3\% \tag{4分}$$

$$t_s(5\%) = 2.1(s)$$
 (4分)

20. (10 分)某系统结构图如图所示,试根据频率特性的物理意义,写出系统闭环传递函数 及相应的频率特性表达式。

频率特性表达式为
$$\varphi(j_{\omega}) = \frac{1}{j_{\omega} + 2}$$
 (3 分)

幅频特性
$$A(\omega) = \frac{1}{\sqrt{4+\omega^2}}$$
,相频特性 $\varphi(\omega) = -\arctan\frac{\omega}{2}$ (3分)

21. (13 分)系统的特征方程为

$$s^5 + 2s^4 + s^3 + 3s^2 + 4s + 5 = 0$$

试判断系统的稳定性。

解:计算劳斯表中各元素的数值,并排列成下表

由上表可以看出,第一列各数值的符号改变了两次,由+2变成-1,又由-1改变成+9。因此该系统有两个正实部的根,系统是不稳定的。 (8分)

座位号

国家开放大学2020年春季学期期末统一考试

机电控制工程基础 试题

2020年7月

题	号	_	=	=	总	分
分	数	**				

得	分	评卷人

一、单项选择题(每小题 4 分,共 32 分)

- 1. 系统的稳定性取决于()。
 - A. 系统干扰的类型

B. 系统干扰点的位置

C. 系统闭环极点的分布

- D. 系统的输入
- 2. 已知线性系统的输入 x(t),输出 y(t),传递函数 G(s),则正确的关系是(
 - A. $y(t) = x(t) \cdot L^{-1}[G(s)]$ B. $Y(s) = G(s) \cdot X(s)$

C. $X(s) = Y(s) \cdot G(s)$

D. Y(s) = G(s)/X(s)

- 3. PI 校正为()校正。
 - A. 滞后

B. 超前

C. 滞后超前

- D. 超前滞后
- 4. 系统的传递函数 $G(s) = \frac{5}{s^2(s+1)(s+4)}$,其系统的增益和型次为()。
 - A.5,2

B. 5/4,2

C.5,4

- D. 5/4,4
- 5. 某系统的传递函数是 $G(s) = \frac{1}{2s+1}e^{-ts}$,则该系统可看成由()环节串联而成。
 - A. 比例、延时

B. 惯性、超前

C. 惯性、延时

D. 惯性、比例

A. $\frac{2}{s^2}$	B. $\frac{2}{s}$
C. $\frac{2}{s+1}$	D. $\frac{2}{s^3}$
7. 单位负反馈结构的系统,其开环传	·递函数为 $\frac{K}{s(s+2)}$,根轨迹分支数为()。
A. 1	B. 2
C. 3	D. 4
8. 惯性环节的对数幅频特性的高频流	斩近线斜率为()。
A80dB/dec	B60dB/dec
C40dB/dec	D. $-20 \mathrm{dB/dec}$
	小题 3 分,共 30 分) 统的输入端,参与系统的控制,这种控制方式称为反
馈控制或闭环控制。()	
10. 单位阶跃函数的拉普拉斯变换绿	5果是 1。()
	量,这两个系统也会具有不同的阻尼比。()
12. 一阶系统的时间常数越小,系统	
13. 叠加性和齐次性是鉴别系统是否	
14. 劳斯稳定判据能判断线性定常系	
15. 系统的传递函数为 $G(s) = \frac{5(s-1)}{s(s+1)}$	- <u>1)</u> ,则该系统零点为 1,极点为 0,-2。()
16. 在经典控制理论中常用的控制系	《统数学模型有微分方程、传递函数、频率特性等。
	()
17. 频率响应是线性系统在正弦输力	下的稳态响应。()
18. 控制系统的三个基本要求是稳定 278	三、准确及快速。()

6. 函数 f(t)=2t 的拉氏变换为()。

得	分	评卷人

三、综合题(38分)

- 19. (15 分)设单位负反馈系统的开环传递函数为 $G_k(s) = \frac{25}{s(s+6)}$,求
- (1)系统的阻尼比ζ和无阻尼自然频率 ω,;
- (2)系统在单位阶跃函数输入下的超调量 σ%及调整时间 t_s(取 5%的误差带)。
- 20. (10 分)系统的特征方程为

$$s^5 + 2s^4 + s^3 + 3s^2 + 4s + 5 = 0$$

试用劳斯判据判断系统的稳定性。

21. (13 分)已知单位负反馈系统的开环传递函数如下

$$G(s) = \frac{200}{(0.2s+1)(0.1s+1)}$$

- 求:(1)试确定系统的型别和开环增益;
- (2)试求输入为 r(t)=1+10t 时,系统的稳态误差。

国家开放大学2020年春季学期期末统一考试

机电控制工程基础 试题答案及评分标准

(供参考)

2020年7月

一、单项选择题(每小题 4 分,共 32 分)

1. C

2. B

3. A

4. B

5. C

6. A

7. B

8. D

二、判断题(每小题3分,共30分)

9. \

 $10. \times$

11. ×

12.

13. \

14. √ 15. √ 16. √

17. \/

18. \/

三、综合题(38分)

19. (15 分)设单位负反馈系统的开环传递函数为
$$G_k(s) = \frac{25}{s(s+6)}$$
,求

- (1)系统的阻尼比 と和无阻尼自然频率 ω,;
- (2)系统在单位阶跃函数输入下的超调量 σ%及调整时间 t_s(取 5%的误差带)。

解:(1)系统闭环传递函数为

$$G_{B}(s) = \frac{\frac{25}{s(s+6)}}{1 + \frac{25}{s(s+6)}} = \frac{25}{s(s+6) + 25} = \frac{25}{s^{2} + 6s + 25}$$
(5 分)

与标准形式对比,可知

$$2\xi\omega_{n}=6,\omega_{n}^{2}=25$$

散
$$ω_n = 5, \xi = 0.6$$
 (5 分)

$$(2)\sigma\% = e^{\frac{-\xi\pi}{\sqrt{1-\xi^2}}} \times 100\% = e^{\frac{-0.6\pi}{\sqrt{1-0.6^2}}} \times 100\% = 9.5\%$$

$$\mathbf{t}_{s} = \frac{3}{\xi \omega_{p}} = 1 \tag{5 }$$

20. (10 分)系统的特征方程为

$$s^5 + 2s^4 + s^3 + 3s^2 + 4s + 5 = 0$$

试用劳斯判据判断系统的稳定性。

解:计算劳斯表中各元素的数值,并排列成下表

由上表可以看出,第一列各数值的符号改变了两次,由+2变成-1,又由-1改变成+9。 因此该系统有两个正实部的根,系统是不稳定的。 (5分)

21. (13分)已知单位负反馈系统的开环传递函数如下

$$G(s) = \frac{200}{(0.2s+1)(0.1s+1)}$$

求:(1)试确定系统的型别和开环增益;

(2)试求输入为 r(t)=1+10t 时,系统的稳态误差。

解:(1)该传递函数已经为标准形式,可见,系统型别为0,这是一个0型系统。

稳态误差
$$e_{ss} = \frac{A}{1 + K_p} + \frac{B}{K_v} = \frac{1}{1 + 200} + \frac{10}{0} = \infty$$
 (5 分)

国家开放大学2020年春季学期期末统一考试

机电控制工程基础 试题

2020年9月

题	号	_	=	三	总	分
分	数					-

得	分	评卷人

一、选择题(每小题 4 分,共 32 分)

- 1. 某二阶系统的特征根为两个纯虚根,则该系统的单位阶跃响应为()。
 - A. 单调上升

B. 等幅振荡

C. 衰减振荡

D. 振荡发散

- 2. 传递函数 $G(s) = \frac{1}{s}$ 表示()环节。
 - A. 微分

B. 积分

C. 比例

D. 滞后

- 3. 系统的稳定性取决于()。
 - A. 系统干扰的类型

B. 系统干扰点的位置

C. 系统闭环极点的分布

D. 系统的输入

4. 2e^{-t} 的拉氏变换为()。

A. $\frac{2}{s+1}$

B. $\frac{1}{2}$

C. $\frac{0.5}{s-1}$

D. $\frac{1}{2}$

5. 一阶系统的传递函数为 $\frac{0.5}{s+0.5}$,则其时间常数为()。

A. 0. 25

B. 4

C. 2

D. 1

A. $y(t) = x(t) \cdot L^{-1}[G(s)]$	$B. Y(s) = G(s) \cdot X(s)$
$C. X(s) = Y(s) \cdot G(s)$	D. $Y(s) = G(s)/X(s)$
7. 单位负反馈系统的开环传递函数	女为 $G(s) = \frac{K^*}{s(s+2)(s+3)}$,根轨迹的分支数为()。
A. 1	B. 2
C. 3	D. 4
8. 单位脉冲函数的拉氏变换为(),
A. 1	B. 1/s
C. 2	D. 2/s
9. 传递函数分母多项式的根称为 10. 比例环节的传递函数为 G(s)	系统的极点,分子多项式的根称为系统的零点。()
10. 比例外下的传递图数为 G(S)	$=\mathbf{K}_{\circ}$
11. 用劳斯表判断线性连续系统的稳	
	定性,当它的第一列系数全部为正数则系统是稳定的。()
12. 若二阶系统的阻尼比大于1,	
12. 若二阶系统的阻尼比大于 1, j	定性,当它的第一列系数全部为正数则系统是稳定的。()
12. 若二阶系统的阻尼比大于 1,9 · 0.707。() 13. 某二阶系统的特征根为两个身	定性,当它的第一列系数全部为正数则系统是稳定的。() 则其阶跃响应不会出现超调,最佳工程常数为阻尼比等
12. 若二阶系统的阻尼比大于 1,5 · 0.707。() 13. 某二阶系统的特征根为两个身现为等幅振荡。()	定性,当它的第一列系数全部为正数则系统是稳定的。() 则其阶跃响应不会出现超调,最佳工程常数为阻尼比等
12. 若二阶系统的阻尼比大于 1, 5	定性,当它的第一列系数全部为正数则系统是稳定的。()则其阶跃响应不会出现超调,最佳工程常数为阻尼比等具有负实部的共轭复根,则该系统的单位阶跃响应曲线
12. 若二阶系统的阻尼比大于 1, 5	定性,当它的第一列系数全部为正数则系统是稳定的。()则其阶跃响应不会出现超调,最佳工程常数为阻尼比等具有负实部的共轭复根,则该系统的单位阶跃响应曲线前向通道传递函数为 G(s),反馈通道的传递函数
12. 若二阶系统的阻尼比大于 1, 5	定性,当它的第一列系数全部为正数则系统是稳定的。() 则其阶跃响应不会出现超调,最佳工程常数为阻尼比等具有负实部的共轭复根,则该系统的单位阶跃响应曲线前向通道传递函数为 $G(s)$, 反馈通道的传递函数 $G(s)$
12. 若二阶系统的阻尼比大于 1, 1	定性,当它的第一列系数全部为正数则系统是稳定的。() 则其阶跃响应不会出现超调,最佳工程常数为阻尼比等具有负实部的共轭复根,则该系统的单位阶跃响应曲线前向通道传递函数为 $G(s)$,反馈通道的传递函数 $G(s)$,闭环传递函数为 $G(s)$

得	分	评卷人

三、综合题(38分)

19. (10 分)某典型二阶系统的单位阶跃响应如图 1 所示。试确定系统的闭环传递函数。

- 20. (13 分)设单位负反馈系统的开环传递函数为 $G_k(s) = \frac{25}{s(s+6)}$,求
- (1)系统的阻尼比ζ和无阻尼自然频率 ω";
- (2)系统在阶跃函数输入下的超调量 σ %及调整时间 t_s (取 5%的误差带)。
- 21. (15 分)已知系统框图如图 2 所示,试求
- (1)系统的特征参数(阻尼比和无阻尼自振荡角频率);
- (2)简要评价该系统的动态性能;
- (3)写出系统的闭环传递函数。

国家开放大学2020年春季学期期末统一考试

机电控制工程基础 试题答案及评分标准

(供参考)

2020年9月

一、选择题(每小题 4 分,共 32 分)

1. B

2. B

3. C

4. A

5. C

6. B

7. C

8. A

二、判断题(每小题3分,共30分)

9. </

 $10.\sqrt{}$

11. 🗸

12. $\sqrt{ }$

 $13. \times$

14. \(\) 15. \(\) 16. \(\)

17. \

18. \/

三、综合题(38分)

19. (10 分)某典型二阶系统的单位阶跃响应如图 1 所示。试确定系统的闭环传递函数。

解:由 $e^{-\pi \xi / \sqrt{1-\xi^2}} = 0.25$,计算得 $\xi = 0.4$

由峰值时间
$$t_p = \frac{\pi}{\sqrt{1-\zeta^2} \cdot \omega_n} = 2$$
, 计算得 $\omega_n = 1.7$ (5分)

根据二阶系统的标准传递函数表达式 $\frac{\omega^2_n}{s^2+2t\omega_ns+\omega^2_n}$ 得系统得闭环传递函数为:

$$\varphi(s) = \frac{2.9}{s^2 + 1.36s + 2.9} \tag{5 \%}$$

- 20. (13 分)设单位负反馈系统的开环传递函数为 $G_k(s) = \frac{25}{s(s+6)}$,求
- (1)系统的阻尼比 ζ 和无阻尼自然频率 ω,;
- (2)系统在阶跃函数输入下的超调量 σ %及调整时间 t_s (取 5%的误差带)。

解:(1)系统闭环传递函数为

$$G_{B}(s) = \frac{\frac{25}{s(s+6)}}{1 + \frac{25}{s(s+6)}} = \frac{25}{s(s+6) + 25} = \frac{25}{s^{2} + 6s + 25}$$
(5 分)

与标准形式对比,可知

$$2\xi\omega_{n} = 6$$
, $\omega_{n}^{2} = 25$

故
$$\omega_n = 5, \xi = 0.6$$
 (3分)

$$(2)_{\sigma}\% = e^{\frac{-\xi\pi}{\sqrt{1-\xi^2}}} \times 100\% = e^{\frac{-0.6\pi}{\sqrt{1-0.6^2}}} \times 100\% = 9.5\%$$

$$t_s = \frac{3}{\xi \omega_n} = 1 \tag{5 }$$

21. (15分)

$$\mathbf{F}:(1)_{\omega_n}=4,\zeta=\frac{1}{8}$$
 (6分)

(3)闭环传递函数为

$$G_{CL}(s) = \frac{16}{s^2 + s + 16}$$
 (5 分)

座位号

国家开放大学2020年秋季学期期末统一考试

机电控制工程基础 试题

2021年1月

题	号		Ξ	总	分
分	数		. 1		

得	分	评卷人

一、单项选择题 (每小题 4 分,共 32 分)

1. 在零初始条件下,输出量的拉氏变换与输入量的拉氏变换之比称为线性系统(或元件)的()。

A. 传递函数

B. 微分方程

C. 根轨迹

- D. 差分方程
- 2. 单位积分环节的传递函数为()。
 - A. 1/s

B. s

C. 2/s

D. 2s

- 3. PI 校正为()校正。
 - A. 滞后

B. 超前

C. 滞后超前

D. 超前滯后

- 4. 一阶系统 $\frac{1}{Ts+1}$,则其时间常数为()。
 - A. 4T

B. 3*T*

C. 2T

D. *T*

5.	某系统的传递函数是 $G(s) = \frac{1}{3s+1}e^{-rs}$,则	可看成由()环节串联而成。	
	A. 比例、延时	B. 惯性、超前	
	C. 惯性、延时	D. 惯性、比例	
6.	单位负反馈系统开环传函为 $G(s) = \frac{9}{s(s+1)}$	一),系统的无阻尼自振荡角频率为(,,), _e , :
	A. 1	B. 2	
	C. 3	D. 4	
7.	单位负反馈结构的系统,其开环传递函数;	为 $\frac{K}{s(s+2)}$,根轨迹分支数为()。	
	A. 1	B. 2	
	C. 3	D. 4	e e e
8.	某单位负反馈系统的开环传递函数为 G($s = \frac{2}{s^2(s+2)}$,则此系统在单位阶跃函	函数输
人下的	稳态误差为()。		v q
	A. 0	B. 1	
	C. 1/s	D. 1/2s	i -
得り	一 评卷人 二、判断(每小题3分, ;	♥ 30 分)	
0	光 		
	单位阶跃函数的拉普拉斯变换结果是1。 . 对于负反馈结构的系统,其前向通道传		i数为
H(s),	则系统的开环传递函数为 $G(s)H(s)$,闭环	下传递函数为 $\frac{G(s)}{1+G(s)H(s)}$ 。()	
11	. 两个二阶系统具有相同的超调量,这两个	系统也会具有不同的阻尼比。()	
12	. 一阶系统的时间常数越小,系统的响应速	度越快。()	
13	. 某单位负反馈系统的开环传递函数为 G(s)	$y = \frac{1}{s(s+1)}$,则此系统为I型系统。()	
			281

- 14. 积分环节的传递函数为 G(s)=K 。()
- 15. 若二阶系统的阻尼比大于 1,则其阶跃响应不会出现超调,最佳工程常数为阻尼比等于 0.707。()
- 16. 设系统的频率特性为 $G(j\omega)=P(\omega)+jQ(\omega)$,则 $P(\omega)$ 称为实频特性, $Q(\omega)$ 称为虚频特性。()
 - 17. 频率分析法研究自动控制系统时使用的典型输入信号是抛物线函数。()
 - 18. 传递函数 $G(s) = \frac{s+1}{s(s+2)(2s+1)}$ 的零点为-1,极点为 0,-2,-1/2。()

得	分	评卷人

三、综合题(38分)

- 19. $(15 \, \beta)$ 有一系统传递函数 $\phi(s) = \frac{K_k}{s^2 + s + K_k}$,其中 $K_k = 4$ 。求该系统的阻尼比、超调量和调整时间 t(s)(5%)。
 - 20. (13 分)已知单位负反馈系统的开环传递函数如下:

$$G(s) = \frac{200}{(0.2s+1)(0.1s+1)}$$

- 求:(1) 试确定系统的型别和开环增益;
 - (2)试求输入为r(t)=1+10t时,系统的稳态误差。
- 21. (10 分)已知单位负反馈系统的开环传递函数如下:

$$G_K(s) = \frac{K}{s(s+2)}$$

- 求:(1)写出系统的闭环传递函数。
 - (2)确定系统的闭环特征方程并确定使得闭环系统稳定的 K 的取值范围。

国家开放大学2020年秋季学期期末统一考试

机电控制工程基础 试题答案及评分标准

(供参考)

一、单项选择题 (每小题 4 分,共 32 分)

1. A

2. A

3. A

4. D

6. C

7. B

8. A

二、判断(每小题 3 分,共 30 分)

 $9. \times$

10. √ 11. ×

14. X

15. √

 $16. \checkmark$

 $17. \times$

三、综合题(38分)

19. (15 分)有一系统传递函数 $\phi(s) = \frac{K_k}{s^2 + s + K_k}$,其中 $K_k = 4$ 。求该系统的阻尼比、超调 量和调整时间 t(s)(5%)。

解:系统的闭环传递函数为

$$\phi(s) = \frac{K_k}{s^2 + s + K_k} \quad K_k = 4$$

与二阶系统标准形式的传递函数

$$\phi(s) = \frac{\omega^n}{s^2 + 2\zeta\omega_n s + \omega^n} \tag{5 }$$

对比得:(1) 固有频率
$$\omega_n = \sqrt{K_k} = \sqrt{4} = 2$$
 (2分)

(2) 阻尼比由
$$2\zeta\omega_n = 1$$
 得 $\zeta = \frac{1}{2\omega_n} = 0.25$ (3分)

(3) 超调
$$\delta(\%) = e^{-(\xi \pi / \sqrt{1-\xi^2})} \times 100\% = 44\%$$
 (3分)

(4) 调整时间
$$t_s(5\%) \approx \frac{3}{\zeta \omega_n} = 6s$$
 (2分)

20. (13 分)已知单位负反馈系统的开环传递函数如下:

$$G(s) = \frac{200}{(0.2s+1)(0.1s+1)}$$

求:(1) 试确定系统的型别和开环增益;

(2)试求输入为r(t)=1+10t时,系统的稳态误差。

解:(1)该传递函数已经为标准形式,可见,系统型别为0,这是一个0型系统。

开环增益
$$K = 200$$
。 (6 分)

(2)讨论输入信号,
$$r(t)=1+10t$$
,即 $A=1$, $B=10$ (2分)

稳态误差
$$e_{ss} = \frac{A}{1+K_p} + \frac{B}{K_v} = \frac{1}{1+200} + \frac{10}{0} = \infty$$
 (5分)

21. (10 分)已知单位负反馈系统的开环传递函数如下:

$$G_K(s) = \frac{K}{s(s+2)}$$

求:(1)写出系统的闭环传递函数。

(2)确定系统的闭环特征方程并确定使得闭环系统稳定的 K 的取值范围。

解:

(1)闭环传递函数为

$$\phi(s) = \frac{K}{s^2 + 2s + K} \tag{5 }$$

(2)闭环特征方程为: $s^2 + 2s + K = 0$

若闭环系统稳定,应满足 K > 0 (5 分)