

CSeC & ERC, IIT Bombay

Spring 2025

Introduction to RSA

RSA (Rivest–Shamir–Adleman) is one of the most widely used public-key cryptosystems, securing digital communications through encryption and authentication.

Introduction to RSA

RSA (Rivest–Shamir–Adleman) is one of the most widely used public-key cryptosystems, securing digital communications through encryption and authentication.

- ► Unlike symmetric encryption, **RSA** uses a pair of keys: a public key for encryption and a private key for decryption.
- ► Security relies on the **difficulty of factoring large numbers**.
- Commonly used in secure web browsing (TLS/SSL), email encryption, digital signatures, and more.

Introduction to RSA

RSA (Rivest–Shamir–Adleman) is one of the most widely used public-key cryptosystems, securing digital communications through encryption and authentication.

- ► Unlike symmetric encryption, **RSA** uses a pair of keys: a public key for encryption and a private key for decryption.
- ► Security relies on the difficulty of factoring large numbers.
- ► Commonly used in secure web browsing (TLS/SSL), email encryption, digital signatures, and more.

Alice and Bob: Alice wants to communicate securely with Bob using RSA. First, she needs to generate a key pair...

Alice performs the following steps:

ightharpoonup Generate two large random (and distinct) primes p and q, each roughly the same size

- ightharpoonup Generate two large random (and distinct) primes p and q, each roughly the same size
- ightharpoonup Compute n=pq and $\phi(n)=(p-1)(q-1)$
- ightharpoonup Select e such that $\gcd(e, \phi(n)) = 1$

RSA Key Generation

- ightharpoonup Generate two large random (and distinct) primes p and q, each roughly the same size
- ightharpoonup Compute n=pq and $\phi(n)=(p-1)(q-1)$
- ► Select *e* such that $gcd(e, \phi(n)) = 1$
- ► Compute d such that $de \equiv 1 \mod \phi(n)$ (extended euclidean algorithm)

RSA Key Generation

- ightharpoonup Generate two large random (and distinct) primes p and q, each roughly the same size
- ightharpoonup Compute n=pq and $\phi(n)=(p-1)(q-1)$
- ▶ Select e such that $gcd(e, \phi(n)) = 1$
- ightharpoonup Compute d such that $de \equiv 1 \mod \phi(n)$ (extended euclidean algorithm)
- ▶ Public Key: (*n*, *e*)
- ightharpoonup Private Key: (n, d)

KeyGen example

Let's use 4-bit primes to generate an 8-bit public key

- ▶ p = 3, q = 11
- $n = p \cdot q = 133$
- $\phi(n) = (3-1)(11-1) = 20$
- ▶ e = 7
- ▶ d=3. Note: $(d \cdot e) \mod \phi(n) \equiv 1$
- ► Public Key: (33, 7)
- ► Private Key: (33, 3)

KeyGen Example

Public Key =
$$(n, e) = (33, 7)$$
 Private Key = $(n, d) = (33, 3)$

The Public Key is shared with the Sender and the Private Key is kept secret with the Receiver.

Receiver

(n, d) = (33, 3)

The following parameters are usually used:

- ightharpoonup Key size(n): typically 2048 to 4096 bits
- ▶ In practice, p and q are much larger (2048+ bits) for security.
- e = 65537

General Parameters

The following parameters are usually used:

- ► Here's a real-life RSA example for the value of n with 1024-bit values:

Bob performs the following steps:

- ightharpoonup Obtain Alice's public key (n, e)
- lacktriangle Represent the message as an integer m in the interval [0,n-1]

Bob performs the following steps:

- ▶ Obtain Alice's public key (n, e)
- lacktriangle Represent the message as an integer m in the interval [0,n-1]
- ightharpoonup Compute $c = m^e \mod n$
- ► Ciphertext: *c*

► Let's say that the message is Hello, world!

- ► Let's say that the message is Hello, world!
- ► ASCII value of H is 0x48, e is 0x65, 1 is 0x6c and so on...

- Let's say that the message is Hello, world!
- ► ASCII value of H is 0x48, e is 0x65, 1 is 0x6c and so on...
- ▶ Write the entire string Hello, World! as concatenation of it's ASCII values in hex
- ightharpoonup Hello, world!= 0x48656c6c6f2c20776f726c6421

- ► Let's say that the message is Hello, world!
- ► ASCII value of H is 0x48, e is 0x65, 1 is 0x6c and so on...
- ▶ Write the entire string Hello, World! as concatenation of it's ASCII values in hex
- ightharpoonup Hello, world!= 0x48656c6c6f2c20776f726c6421
- ► Hello, world! = 5735816763073854953388147237921

Let's take M=13 for simplicity

Cipher Text C = M^e mod n

 $C = 13^7 \mod 33$

 $C = 62748517 \mod 33$

C = 7

Alice performs the following steps:

► Obtain Alice's ciphertext *c*

- ► Obtain Alice's ciphertext *c*
- ▶ Use the private key d to recover $m = c^d \mod n$
- ► Why does this work?

ightharpoonup Euler's theorem: $a^{\phi(n)} \equiv 1 \pmod n$ if $\gcd(a,n)=1$

RSA Decryption

- ightharpoonup Euler's theorem: $a^{\phi(n)} \equiv 1 \pmod{n}$ if $\gcd(a, n) = 1$
- ▶ Since e and d are chosen such that $e \cdot d \equiv 1 \pmod{\phi(n)}$, it follows that

$$e \cdot d = k\phi(n) + 1$$

$$\implies m^{ed} = \left(m^{\phi(n)}\right)^k \cdot m$$

$$\implies m^{ed} \equiv m \pmod{n}$$

$$\implies c^d \equiv m \pmod{n}$$

 \blacktriangleright Thus, raising the ciphertext c to the power of d gives back the original message m

Decryption Example

Decrypted Text $M = C^d \mod n$

 $M = 7^3 \mod 33$

 $M = 343 \mod 33$

M = 13

The receiver uses decrypted text M = 13 to get the original message = "AC".

Short answer: Yes! (For now)

- ▶ Prime factorization is computationally very expensive
- ▶ RSA-2048 would take billions of years to break with classical computers
- \blacktriangleright The largest RSA key factored to date is 829 bits (RSA-250) in 2020 (in \sim 2500 core years)

Short answer: Yes! (For now)

- ▶ Prime factorization is computationally very expensive
- ► RSA-2048 would take billions of years to break with classical computers
- ▶ The largest RSA key factored to date is 829 bits (RSA-250) in 2020 (in \sim 2500 core years)
- ightharpoonup A quantum computer with \sim 20 million qubits **could** break RSA-2048 in \sim 8 hours
- ▶ Post-Quantum Cryptography (PQC) is being developed as a replacement

$m^{65537} \mod n$? Really?

The solution: Square and Multiply Algorithm

```
x \leftarrow 1

for i \leftarrow |e| - 1 downto 0 do

x \leftarrow x^2 \mod n

if e_i == 1 then

x \leftarrow x \cdot m \mod n

end if

end for

return x
```

$m^{65537} \mod n$? Really?

The solution: Square and Multiply Algorithm

$$x \leftarrow 1$$

for $i \leftarrow |e| - 1$ downto 0 do

 $x \leftarrow x^2 \mod n$

if $e_i == 1$ then

 $x \leftarrow x \cdot m \mod n$

end if
end for
return x

Note: e_i represents the i^{th} bit of e $m = c^d \mod n$ also uses the same algorithm, as d is generally large.

Square and Multiply

ightharpoonup How many multiplications will you perform to compute $5^{13} \mod 33$?

Square and Multiply

- ► How many multiplications will you perform to compute 5¹³ mod 33?
- ► I can perform it using 7 multiplications! (even 5 if I start with 5)

- ightharpoonup How many multiplications will you perform to compute $5^{13} \mod 33$?
- ► I can perform it using 7 multiplications! (even 5 if I start with 5)
- ► 1. Compute 1² mod 33 (Square 1)

- ightharpoonup How many multiplications will you perform to compute $5^{13} \mod 33$?
- ► I can perform it using 7 multiplications! (even 5 if I start with 5)
- ightharpoonup 1. Compute $1^2 \mod 33$ (Square 1)
- 2. Compute 5 mod 33 (Multiply 1^2 and 5)

- ightharpoonup How many multiplications will you perform to compute $5^{13} \mod 33$?
- ► I can perform it using 7 multiplications! (even 5 if I start with 5)
- ► 1. Compute 1² mod 33 (Square 1)
 - 2. Compute 5 mod 33 (Multiply 1² and 5)
 - 3. Compute 5² mod 33 (Square 5)

- ► How many multiplications will you perform to compute 5¹³ mod 33?
- ► I can perform it using 7 multiplications! (even 5 if I start with 5)
- ▶ 1. Compute 1² mod 33 (Square 1)
 - 2. Compute 5 mod 33 (Multiply 1^2 and 5)
 - 3. Compute 5² mod 33 (Square 5)
 - 4. Compute $5^3 \mod 33$ (Multiply 5^2 and 5)

- ► How many multiplications will you perform to compute 5¹³ mod 33?
- ► I can perform it using 7 multiplications! (even 5 if I start with 5)
- 1. Compute 1² mod 33 (Square 1)
 - 2. Compute 5 mod 33 (Multiply 1² and 5)
 - 3. Compute 5² mod 33 (Square 5)
 - 4. Compute $5^3 \mod 33$ (Multiply 5^2 and 5)
 - 5. Compute 5⁶ mod 33 (Square 5³)

- ► How many multiplications will you perform to compute 5¹³ mod 33?
- ► I can perform it using 7 multiplications! (even 5 if I start with 5)
- 1. Compute 1² mod 33 (Square 1)
 - 2. Compute 5 mod 33 (Multiply 1² and 5)
 - 3. Compute 5² mod 33 (Square 5)
 4. Compute 5³ mod 33 (Multiply 5² and 5)
 - 5. Compute <u>5</u>⁶ mod <u>33 (Square 5</u>³)
 - 6. Compute $5^{12} \mod 33$ (Square 5^6)

- ► How many multiplications will you perform to compute 5¹³ mod 33?
- ► I can perform it using 7 multiplications! (even 5 if I start with 5)
- 1. Compute 1² mod 33 (Square 1)
 - 2. Compute 5 mod 33 (Multiply 1² and 5)
 3. Compute 5² mod 33 (Square 5)
 - 4. Compute $5^3 \mod 33$ (Multiply 5^2 and 5)
 - 5. Compute $5^6 \mod 33$ (Square 5^3)
 - 6. Compute $5^{12} \mod 33$ (Square 5^6)
 - 7. Compute $5^{13} \mod 33$ (Multiply $5^{1}2$ and 5)

- How many multiplications will you perform to compute 5¹³ mod 33?
- I can perform it using 7 multiplications! (even 5 if I start with 5)
- 1. Compute 1² mod 33 (Square 1)
 - 2. Compute 5 mod 33 (Multiply 1² and 5) 3. Compute $5^2 \mod 33$ (Square 5)
 - 4. Compute 5³ mod 33 (Multiply 5² and 5)

 - 5. Compute 5⁶ mod 33 (Square 5³) 6. Compute $5^{12} \mod 33$ (Square 5^6)
 - 7. Compute $5^{13} \mod 33$ (Multiply 5^{12} and 5)
- ► Square and Multiply algorithm does exactly this

Another look at Square and Multiply

```
x \leftarrow 1

for i \leftarrow |e| - 1 downto 0 do

x \leftarrow x^2 \mod n

if e_i == 1 then

x \leftarrow x \cdot m \mod n

end if

end for

return x
```

ightharpoonup All this says is that if the i^{th} bit is 0, then square. If it is 1, then square and multiply

Another look at Square and Multiply

- ► We check the binary representation of the exponent to decide whether to square and multiply, or just square
- ightharpoonup 13 = (1101)₂
- ► The first two bits are 1 so we square and multiply twice, the third bit is 0 so we square once, and finally the last bit is 1 so we square and multiply once

Is Square and Multiply Secure?

Figure: Power consumption trace of a square-and-multiply execution

Is Square and Multiply Secure?

Figure: Same Power consumption trace with widths and exponent bits marked

Breaking RSA Cipher

- Since $m = c^d \mod n$ uses the Square and Multiply algorithm, we can get a Power trace similar to the example shown in the previous slide, during decryption
- ► When the exponent bit is 1, the time taken to compute will be higher compared to when the exponent bit is 0

- ▶ Since $m = c^d \mod n$ uses the Square and Multiply algorithm, we can get a Power trace similar to the example shown in the previous slide, during decryption
- ► When the exponent bit is 1, the time taken to compute will be higher compared to when the exponent bit is 0
- ► The effect? We retrieve the private key, d!

Figure: Square and Multiply Power consumption trace for an FPGA

https://bit.ly/hard-hack

