Azzolini Riccardo 2020-05-05

Teorema di compattezza

1 Un risultato di supporto

Proposizione (PFS1): Siano Γ un insieme di formule e H una formula. Se $\Gamma \cup \{H\}$ e $\Gamma \cup \{\neg H\}$ sono entrambi non finitamente soddisfacibili, allora Γ non è finitamente soddisfacibile.

Dimostrazione: Se $\Gamma \cup \{H\}$ non fosse finitamente soddisfacibile a causa dell'esistenza di un sottoinsieme $\Delta' \subseteq_{FIN} \Gamma$ insoddisfacibile, si avrebbe immediatamente, per definizione, che Γ non è finitamente soddisfacibile. Lo stesso vale per $\Gamma \cup \{\neg H\}$. Allora, per trattare il caso non banale, si assume che:

• $\Gamma \cup \{H\}$ non sia finitamente soddisfacibile per via di un insieme che contiene H,

$$\Delta' = \Delta_1 \cup \{H\}$$

dove $\Delta_1 \subseteq_{FIN} \Gamma$ è soddisfacibile (altrimenti si tornerebbe al caso banale);

• $\Gamma \cup \{\neg H\}$ non sia finitamente soddisfacibile per via di un insieme che contiene $\neg H$,

$$\Delta'' = \Delta_2 \cup \{\neg H\}$$

con $\Delta_2 \subseteq_{FIN} \Gamma$ soddisfacibile.

In sintesi:

 $\Gamma \cup \{H\} \text{ non finitamente soddisfacibile}$ $\Longrightarrow \widetilde{\exists} \Delta_1 \subseteq_{\mathit{FIN}} \Gamma \colon \Delta_1 \text{ soddisfacibile e } \Delta_1 \cup \{H\} \text{ insoddisfacibile}$ $\Gamma \cup \{\neg H\} \text{ non finitamente soddisfacibile}$ $\Longrightarrow \widetilde{\exists} \Delta_2 \subseteq_{\mathit{FIN}} \Gamma \colon \Delta_2 \text{ soddisfacibile e } \Delta_2 \cup \{\neg H\} \text{ insoddisfacibile}$

Da questi ragionamenti, si deduce che $\Delta_1 \cup \Delta_2 \subseteq_{FIN} \Gamma$, con Δ_1 e Δ_2 entrambi soddisfacibili, ma $\Delta_1 \cup \{H\}$ e $\Delta_2 \cup \{\neg H\}$ insoddisfacibili.

Si suppone che $\Delta_1 \cup \Delta_2$ sia soddisfacibile, cioè che $\widetilde{\exists} v \colon v \models \Delta_1 \cup \Delta_2$. Presa una qualunque valutazione, essa o verifica una formula o non la verifica: $v \models H$ oppure $v \not\models H$, e in quest'ultimo caso $v \models \neg H$. Quindi,

$$v \models \Delta_1 \cup \Delta_2 \cup \{H\} \implies \Delta_1 \cup \{H\} \text{ soddisfacibile}$$

oppure

$$v \models \Delta_1 \cup \Delta_2 \cup \{\neg H\} \implies \Delta_2 \cup \{\neg H\} \text{ soddisfacibile}$$

contrariamente alle ipotesi. Di conseguenza, $\Delta_1 \cup \Delta_2$ non può essere soddisfacibile, e, siccome $\Delta_1 \cup \Delta_2 \subseteq_{FIN} \Gamma$, anche Γ non può essere finitamente soddisfacibile.

2 Enumerazioni

Definizione: Un'**enumerazione** di un insieme \mathcal{I} è una funzione suriettiva $\epsilon : \mathbb{N} \to \mathcal{I}$ dai numeri naturali agli elementi dell'insieme.

La suriettività di ϵ significa che per ogni elemento $e \in \mathcal{I}$ esiste $k \in \mathbb{N}$ tale che $\epsilon(k) = e$.

Siccome questa funzione di enumerazione assegna a ogni numero naturale un elemento dell'insieme, si può interpretare tale numero come un indice dell'elemento corrispondente, dicendo che $e_i \in \mathcal{I}$ è l'i-esimo elemento dell'insieme quando $e_i = \epsilon(i)$.

Un'enumerazione viene indicata elencandone i valori,

$$\epsilon: e_0, e_1, e_2, \ldots, e_i, \ldots$$

che corrisponde a elencare gli elementi dell'insieme $\mathcal I$ (come generati dall'enumerazione ϵ):

$$\epsilon$$
: e_0 , e_1 , e_2 , ..., e_i , ...

 \uparrow \uparrow \uparrow \uparrow
 $\mathcal{I} = \{\epsilon(0), \epsilon(1), \epsilon(2), \ldots, \epsilon(i), \ldots\}$

Osservazione: \mathcal{I} può essere infinito o finito.

- Se è *infinito*, deve essere numerabile ($|\mathcal{I}| = |\mathbb{N}|$).
- Se invece è finito, per almeno un elemento esisteranno infiniti indici:

$$e = \epsilon(i_i) = \epsilon(i_2) = \dots = \epsilon(i_k) = \dots$$

Infatti, non è richiesto che ϵ sia iniettiva (cioè che $i \neq j \implies e(i) \neq e(j)$).

In generale, un'enumerazione per \mathcal{I} esiste se e solo se $|\mathcal{I}| \leq |\mathbb{N}|$.

3 Estendibilità di insiemi finitamente soddisfacibili

Lemma (LFC2): Dato un insieme di formule finitamente soddisfacibile Γ, esiste un insieme finitamente soddisfacibile e completo Γ^* tale che $\Gamma \subseteq \Gamma^*$.

Dimostrazione: Si dà una dimostrazione costruttiva, che oltre a mostrare l'esistenza di Γ^* fornisce un processo (anche se infinito) per generarlo a partire da Γ .

Per iniziare, si considera un'enumerazione delle formule in $FORM^1$ (cioè di tutte le formule della logica proposizionale classica):

$$\epsilon: H_0, H_1, \ldots, H_n, \ldots$$

Si costruisce poi la sequenza di insiemi $\Gamma_0, \Gamma_1, \ldots, \Gamma_n, \ldots$ definita come segue:

$$\Gamma_0 = \Gamma$$

$$\widetilde{\forall} i \geq 0 \quad \Gamma_{i+1} = \begin{cases} \Gamma_i \cup \{H_i\} & \text{se } \Gamma_i \cup \{H_i\} \text{ è finitamente soddisfacibile} \\ \Gamma_i \cup \{\neg H_i\} & \text{altrimenti} \end{cases}$$

Osservazione: Per costruzione, $\Gamma_i \subseteq \Gamma_{i+1}$. In particolare, può essere $\Gamma_i = \Gamma_{i+1}$, quando H_i o $\neg H_i$ appartiene già a Γ .

La dimostrazione del lemma si scompone in tre "fatti":

- 1. Fatto 1: per ogni $i \geq 0$, Γ_i è finitamente soddisfacibile. La dimostrazione procede per induzione su i:
 - Base (i = 0): $\Gamma_0 = \Gamma$ è finitamente soddisfacibile per ipotesi.
 - Passo: si assume (ipotesi induttiva) che Γ_i sia finitamente soddisfacibile, e si considera Γ_{i+1} :
 - Se $\Gamma_{i+1} = \Gamma_i \cup \{H_i\}$, allora Γ_{i+1} è finitamente soddisfacibile per costruzione.
 - Altrimenti, $\Gamma_{i+1} = \Gamma_i \cup \{\neg H_i\}$. Si suppone, per assurdo, che Γ_{i+1} non sia finitamente soddisfacibile. Il fatto che Γ_{i+1} sia stato costruito come $\Gamma_i \cup \{\neg H_i\}$ significa che anche $\Gamma_i \cup \{H_i\}$ non è finitamente soddisfacibile. Allora, per la PFS1, Γ_i deve non essere finitamente soddisfacibile, ma ciò è contrario all'ipotesi induttiva, quindi si deduce che $\Gamma_{i+1} = \Gamma_i \cup \{\neg H_i\}$ è finitamente soddisfacibile (se non lo è $\Gamma_i \cup \{H_i\}$).

Sia adesso

$$\Gamma^* = \bigcup_{i=0}^{\infty} \Gamma_i$$

¹Per costruzione, $|FORM| = |\mathbb{N}|$, cioè FORM è infinito numerabile.

2. Fatto 2: Γ^* è finitamente soddisfacibile.

Si suppone che ciò non sia vero. Questo significa che

$$\widetilde{\exists} \Delta \subseteq_{FIN} \Gamma^* \colon \Delta$$
 è insoddisfacibile

Siccome Δ è un insieme finito di formule, e ciascuna di esse ha un indice nell'enumerazione ϵ , esiste un indice $k \geq 0$ per cui $H_k \in \Delta$ e tutte le altre formule in Δ compaiono nell'enumerazione prima di quell'indice $(i \leq k \ \forall H_i \in \Delta)$. Dunque, per costruzione dei Γ_i , tutte le formule in Δ sono già presenti a partire da Γ_{k+1} , cioè si ha $\Delta \subseteq \Gamma_{k+1}$. Riassumendo:

$$\widetilde{\exists} k \geq 0 \colon \Delta \subseteq_{FIN} \Gamma_{k+1}$$

Se, per ipotesi, Δ è insoddisfacibile, allora anche Γ_{k+1} non è soddisfacibile, contrariamente al Fatto 1. Dunque, l'ipotesi di partenza non è corretta: Γ^* deve essere finitamente soddisfacibile.

3. Fatto 3: Γ^* è completo.

Si considera una qualunque formula $H \in FORM$. Per definizione di enumerazione, H compare nell'enumerazione ϵ , ovvero $\widetilde{\exists} j \geq 0$ tale che $H = H_j$.

Per costruzione, Γ_{j+1} contiene $H_j = H$ o $\neg H_j = \neg H$, e quindi $H \in \Gamma^*$ oppure $\neg H \in \Gamma^*$, che significa che Γ^* è completo.

I fatti 2 e 3 costituiscono, insieme, la dimostrazione del lemma.

4 Dimostrazione del teorema di compattezza

Teorema (di compattezza): Un insieme è soddisfacibile se e solo se è finitamente soddisfacibile.

Dimostrazione: Come già anticipato, si dimostra la parte "difficile", cioè che se Γ è finitamente soddisfacibile allora è anche soddisfacibile (mentre il viceversa è banale).

 Γ finitamente soddisfacibile

$$\Longrightarrow \widetilde{\exists} \Gamma^* \supseteq \Gamma$$
 finitamente soddisfacibile e completo (LFC2)

$$\implies \Gamma^*$$
 soddisfacibile (LFC1)

$$\implies \Gamma$$
 soddisfacibile $(\Gamma \subseteq \Gamma^*)$

5 Esempio di applicazione del teorema

Si consideri l'insieme

$$\Gamma = \{X_1, X_3, X_5, X_7, \dots, X_{2i-1}, \dots, X_{1} \to \neg X_4, X_3 \to \neg X_8, X_5 \to \neg X_{12}, \dots, X_{2i-1} \to \neg X_{4i}, \dots\}$$

Per controllare se Γ è soddisfacibile, bisognerebbe trovare una valutazione che soddisfi tutte le infinite formule di Γ . Invece, per il teorema di compattezza, è sufficiente ragionare sui sottoinsiemi finiti di Γ .

Innanzitutto, si osserva che Γ è costituito da due famiglie di formule:

• variabili proposizionali di indice dispari:

$$X_{2i-1} \in \Gamma \quad \forall i \ge 1$$

• implicazioni, aventi come antecedente una variabile di indice dispari e come conseguente la negazione di una variabile di indice multiplo di 4:

$$X_{2i-1} \to \neg X_{4i} \in \Gamma \quad \forall i \ge 1$$

Ciascuna variabile e ciascuna implicazione è soddisfacibile, se considerata individualmente. Allora, bisogna valutare la soddisfacibilità di tutti i possibili sottoinsiemi finiti formati da più formule:

- Un sottoinsieme finito che contiene solo variabili è soddisfacibile: basta scegliere la valutazione che dà il valore di verità 1 a ogni variabile X presente nell'insieme, v(X) = 1.
- Un sottoinsieme finito che contiene solo implicazioni è soddisfacibile: siccome non ci sono formule con le stesse variabili, si può ad esempio scegliere una valutazione che dia il valore 0 a tutte le variabili che compaiono nei conseguenti, $v(X_{4i}) = 0$ (infatti, così, $v \models \neg X_{4i}$, e quindi $v \models X_{2i-1} \rightarrow \neg X_{4i}$).
- Un sottoinsieme finito contenente variabili X_{2j-1} , e implicazioni $X_{2i-1} \to \neg X_{4i}$ in cui non compaiono tali variabili, è soddisfatto da una valutazione tale che

$$v(X_{2i-1}) = 1$$
 $v(X_{4i}) = 0$

Infine, un sottoinsieme finito potrebbe contenere delle implicazioni e delle variabili
che compaiono nelle implicazioni. Per come sono scelte le variabili presenti in Γ
(sono tutte quelle di indice dispari), esse possono comparire solo nell'antecedente
delle implicazioni. Allora, una valutazione

$$v(X_{2j-1}) = 1$$
 $v(X_{4j}) = 0$

soddisfa sia la sola variabile X_{2j-1} che l'implicazione $X_{2j-1} \to \neg X_{4j}$ in cui essa compare.

Siccome questi quattro sono tutti i casi possibili, qualunque sottoinsieme finito di Γ è soddisfacibile, ovvero Γ è finitamente soddisfacibile, e dunque, per il teorema di compattezza, è anche soddisfacibile.

Osservazione: Procedendo in questo modo, è stato possibile scegliere per ciascun "tipo" di sottoinsieme la valutazione più "comoda" al fine di dimostrarne la soddisfacibilità. Invece, se si ragionasse direttamente sull'intero Γ , bisognerebbe produrre un'unica valutazione che soddisfi tutte le infinite formule presenti in Γ .

5.1 Estensione finitamente soddisfacibile e completa

A scopo illustrativo, si mostra anche come è fatta l'estensione finitamente soddisfacibile e completa Γ^* di Γ .

Considerando le formule $X_{2j-1} \in \Gamma$ e $X_{2j-1} \to \neg X_{4j} \in \Gamma$ (per ogni $j \ge 1$), sia k l'indice dell'enumerazione ϵ di FORM tale che $H_k = X_{4j}$. Ricordando la definizione

$$\Gamma_{i+1} = \begin{cases} \Gamma_i \cup \{H_i\} & \text{se } \Gamma_i \cup \{H_i\} \text{ è finitamente soddisfacibile} \\ \Gamma_i \cup \{\neg H_i\} & \text{altrimenti} \end{cases}$$

si suppone che

$$\Gamma_{k+1} = \Gamma_k \cup \{H_k\} = \Gamma_k \cup \{X_{4j}\}$$

Allora, poiché $\Gamma = \Gamma_0 \subseteq \Gamma_{k+1}$ (cioè Γ_{k+1} contiene tutte le formule di Γ), si ha

$$\Gamma_{k+1} \supset \Delta = \{X_{2j-1}, X_{2j-1} \to \neg X_{4j}, X_{4j}\}$$

ma questo è un sottoinsieme finito insoddisfacibile (per soddisfarlo sarebbe necessaria una valutazione v tale che $v \models X_{4j}$ e $v \models \neg X_{4j}$, la quale non esiste).

Allora, nella costruzione di Γ_{k+1} bisogna per forza scegliere l'altra "strada" della definizione:

$$\Gamma_{k+1} = \Gamma_k \cup \{\neg H_k\} = \Gamma_k \cup \{\neg X_{4i}\}$$

Così, anche nel Γ^* risultante sarà presente la formula $\neg X_{4i}$:

$$\Gamma^* = \{X_1, X_3, \neg X_4, X_5, X_7, \neg X_8, \dots, X_{2i-1}, \dots, \neg X_{4j}, \dots \\ X_1 \to \neg X_4, X_3 \to \neg X_8, X_5 \to \neg X_{12}, \dots, X_{2i-1} \to \neg X_{4i}, \dots \}$$

In precedenza, si è dimostrato che un insieme completo e finitamente soddisfacibile (come Γ^*) è soddisfacibile (LFC1), indicando anche, nella dimostrazione, un modo per costruire una valutazione v che soddisfi tale insieme:

$$\widetilde{\forall} p \in VAR \quad v(p) = \begin{cases} 1 & \text{se } p \in \Gamma^* \\ 0 & \text{se } p \notin \Gamma^* \end{cases}$$

Si può allora dedurre che, in questo caso, la valutazione che soddisfa Γ^* è

$$v(p) = \begin{cases} 1 & \text{se } p = X_{2j-1} \\ 0 & \text{se } p = X_{4j} \end{cases}$$

6 Conseguenza immediata del teorema

Una conseguenza immediata del teorema di compattezza è la seguente:

Corollario: Γ è insoddisfacibile se e solo se esiste un sottoinsieme finito di Γ che è insoddisfacibile.

6.1 Esempio

Si consideri il seguente insieme:

$$\Gamma = \{X_1, X_2, X_3, \dots, X_i, \dots, X_1 \to \neg X_2, X_2 \to \neg X_3, \dots, X_i \to \neg X_{i+1}, \dots\}$$

Se Γ fosse insoddisfacibile, per dimostrarlo sarebbe sufficiente, in base a questo corollario, trovare anche solo un singolo sottoinsieme finito insoddisfacibile di Γ . Un tale sottoinsieme è

$$\{X_1, X_2, X_1 \to \neg X_2\}$$

(per soddisfarlo, servirebbe una valutazione v tale che $v \models X_2$ e $v \models \neg X_2$), quindi Γ è insoddisfacibile.

7 Corollario sulla conseguenza logica

Corollario: $\Gamma \models H$ se e solo se esiste un sottoinsieme finito Δ di Γ tale che $\Delta \models H$.

Dimostrazione:

$$\Gamma \models H \iff \Gamma \cup \{\neg H\}$$
 è insoddisfacibile
$$\iff \widetilde{\exists} \Delta' \subseteq_{FIN} \Gamma \cup \{\neg H\} \colon \Delta' \text{ è insoddisfacibile} \quad \text{(corollario precedente)}$$

"Estraendo" $\neg H$ da Δ' , si ottiene un insieme $\Delta \subseteq_{FIN} \Gamma$:

$$\iff \widetilde{\exists} \Delta \subseteq_{\mathit{FIN}} \Gamma \colon \Delta \cup \{\neg H\}$$
è insoddisfacibile

$$\iff \widetilde{\exists} \Delta \subseteq_{FIN} \Gamma \colon \Delta \models H$$