PyTorch Tutorials

Zhuangwei Zhuang

Southern Artificial Intelligence Laboratory

South China University of Technology

Nov 15, 2017

Background

Deep learning has achieved great performance on image classification, object detection and speech recognition

Image classification

Object detection

Platforms for Deep Learning

Outline

- >Introduction
- **≻Use PyTorch on PC**
- >Use PyTorch for computation
 - **♦** Tensor
 - **♦** Variable
 - GPU supported
- **➤ Deep learning in PyTorch**
 - ◆ Data loader
 - Optimizer
 - ◆ Model
 - ◆ GPU supported
 - ◆ CNN example

Introduction

What is PyTorch

PyTorch is a python package for tensor computation and deep neural networks (DNNs). One can use PyTorch as:

- A replacement for numpy to use power of GPU
- A deep learning platform with maximum flexibility and speed

Official Websites

Get help from the following websites:

- Source codes: https://github.com/pytorch/pytorch
- Official website: http://pytorch.org/
- Official tutorials: http://pytorch.org/tutorials/
- Official documentation: (Provide detail description of all packages): http://pytorch.org/docs/
- PyTorch forums: (Platform for discussion)
 https://discuss.pytorch.org/
- PyTorch examples: https://github.com/pytorch/examples

Official Websites

PyTorch documentation

Docs » PyTorch documentation

C Edit on GitHub

PyTorch documentation

PyTorch is an optimized tensor library for deep learning using GPUs and CPUs.

Notes

- · Autograd mechanics
- · Broadcasting semantics
- CUDA semantics
- · Extending PyTorch
- · Multiprocessing best practices
- · Serialization semantics

Package Reference

- torch
- torch.Tensor
- · torch.sparse
- · torch.Storage
- · torch.nn
- · torch.nn.functional
- torch.nn.init

Official Websites

➤ PyTorch forums

Installation

PyTorch only supports **Linux** and **OSX**. One can install PyTorch with following methods:

- Binaries(recommended)
- From source
- Docker image

Installation

- ➤ Install PyTorch from binaries:
 - **Settings:** Linux, Python-2.7, Cuda-8.0
 - Run the following commands on shell:

pip install http://download.pytorch.org/whl/cu80/torch-0.1.12.post2-cp27-none-linux_x86_64.whl
pip install torchvision ¹

¹torchvision is a package that contains deep learning models and data sets for computer vision tasks.

11/76

PyTorch Packages

PyTorch consists of the following components:

- torch: a tensor library with strong GPU support
- torch.autograd: a automatic dierentiation library
- torch.nn: a neural networks library
- torch.multiprocessing: a python multiprocessing library with memory sharing of Tensors across processes.
- torch.utils: including utility functions.
- torch.legacy: legacy code ported over from Torch

Use PyTorch on PC

Software

Visual Studio Code

Python package: Anaconda (python-2.7 recommended)

PyCharm

VS Code

Learning PyTorch in Yourself

Use PyTorch for Computation

Data Type

- > Tensor: an n-dimensional array like numpy array
- Variable: used for automatic differentiation. Almost all operations of Tensor can be performed on Variable
- Parameter: A kind of Variable that is to be considered a module parameter

Tensor

PyTorch defines seven CPU tensor types and eight GPU tensor types

Data type	CPU tensor	GPU tensor
16-bit floating point	-	torch.cuda.HalfTensor
32-bit floating point	torch.FloatTensor	torch.cuda.FloatTensor
64-bit floating point	torch.DoubleTensor	torch.cuda.DoubleTensor
8-bit integer (unsigned)	torch.ByteTensor	torch.cuda.ByteTensor
8-bit integer (signed)	torch.CharTensor	torch.cuda.CharTensor
16-bit integer (signed)	torch.ShortTensor	torch.cuda.ShortTensor
32-bit integer (signed)	torch.IntTensor	torch.cuda.IntTensor
64-bit integer (signed)	torch.LongTensor	torch.cuda.LongTensor

Tensor

A tensor can be constructed through two methods:

- From Python list or sequence
- By specifying tensor size

```
>>>import torch
>>>torch.FloatTensor([[1, 2, 3], [1, 2, 3]])
123
123
[torch.FloatTensor of size 2x3]
>>>torch.FloatTensor(2, 4).fill (1)
[torch.FloatTensor of size 2x4]
```

Creation Operations

- torch.eye(n, m=None, out=None)
- torch.from_numpy(ndarray)
- torch.linspace(start, end, steps=100, out=None)
- torch.logspace(start, end, steps=100, out=None)
- torch.ones(*sizes, out=None)
- torch.rand(*sizes, out=None)
- torch.randn(*sizes, out=None)
- torch.randperm(n, out=None)
- torch.arange(start, end, step=1, out=None)
- torch.range(start, end, step=1, out=None)
- torch.zeros(*sizes, out=None)

Creation Operations

```
torch.zeros(*sizes, out=None)
```

returns a tensor filled with the scalar value 0, with the shape defined by the varargs sizes

```
>>>import torch
>>>torch.zeros(4, 5)

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
[torch.FloatTensor of size 4x5]
```

Indexing, Slicing, Joining and Mutating

- torch.cat(seq, dim=0, out=None)
- torch.chunck(tensor, chunks, dim=0)
- torch.gather(input, dim, index, out=None)
- torch.index_select(input, dim, index, out=None)
- torch.masked_select(input, mask, out=None)
- torch.nonezero(input, out=None)
- torch.split(tensor, split size, dim=0)
- torch.squeeze(input, dim=None, out=None)
- torch.stack(sequence, dim=0, out=None)
- torch.t(input, out=None)
- torch.transpose(input, dim0, dim1, out=None)
- torch.unbind(tensor, dim=0)
- torch.unsqueeze(input, dim, out=None)

Indexing, Slicing, Joining and Mutating

torch.squeeze(input, dim=None, out=None)

returns a tensor with all the dimentions of input of size 1 removed

```
>>>import torch
>> x = torch.zeros(2, 1, 2, 1, 2)
>>>x.size()
(2L, 1L, 2L, 1L, 2L)
>>>
>>>y = torch.squeeze(x)
>>>y.size()
(2L, 2L, 2L)
>>>
>>>y = torch.squeeze(x, 0)
>>>y.size()
(2L, 1L, 2L, 1L, 2L)
```

Math Operations

PyTorch provides many math functions:

- Pointwise Operations
 - ◆ add(), ceil(), clamp(), div(), cos(), abs(), ...
- Reduction Operations
 - ◆ dist(), mean(), std(), norm(), sum(), var(), ...
- Comparison Operations
 - eq(), equal(), ge(), max(), ne(), sorted(), ...
- Other Operations
 - diag(), trace(), cross(), ...
- BLAS and LAPACK Operations
 - addbmm(), admm(), addmv(), ...

Pointwise Operations

out = tensor + value

[torch.FloatTensor of size 4]

21

torch.add(input, value, out=None)

Adds the scalar value to each element of the input tensor and returns a new resulting tensor

```
>>> import torch
>>> a = torch.FloatTensor(2).fill_(1)
>>> a
1
1
[torch.FloatTensor of size 2]
>>>
>>> torch.add(a, 20)
21
```

Reduction Operations

torch.mean(input)

Returns the mean value of all elements in the input tensor

```
>>> import torch
>>> x = torch.randn(1, 3)
>>> x

-0.2946 -0.9143 2.1809
[torch.FloatTensor of size 1x3]

>>>torch.mean(x)
0.32398951053619385
```

Comparison Operations

torch.eq(input, other, out=None)

Computes element-wise equality and returns a **torch.ByteTensor** containing a 1 at each location where the tensors are equal and a 0 at every other location

```
>>> x = torch.Tensor([[1, 2], [3, 4]])

1 2
3 4
[torch.FloatTensor of size 2x2]

>>>x.eq(2)

0 1
0 0
[torch.ByteTensor of size 2x2]
```

class torch.autograd.Variable

- data (any tensor class): tensor to wrap
- requires_grad(bool): indicating whether the Variable has been created by a subgraph containing any Variable. Can be changed only on leaf Variables
- volatile(bool): indicating whether the Variable should be used in inference mode

- >>>import torch
- >>> from torch.autograd import Variable
- >>>x = Variable(torch.randn(3, 3), volatile=False)

Variable API is nearly the same as regular Tensor API. In most cases tensors can be safely replaced with Variables

- data: tensor
- grad: gradient
- grad_fn: gradient function graph trace

```
>>>import torch
>>> from torch.autograd import Variable
>>>
>>> w = Variable(torch.randn(3, 3))
>>> h = Variable(torch.randn(3, 3))
>>> x = w*h
>>>
>>> y = Variable(torch.randn(3, 3))
>>> z = x+y
```


Forward

Backward

- backward(gradient=None, retain_graph=None, create_graph=None, retain_variables=None)
 computes the gradient of current variable w.r.t graph leaves
- detach()
 returns a new Variable, detached from the current graph
- detach_()
 detaches the Variable from the graph that created it
- register_hook(hook)registers a backward hook
- reinforce(reward)
 registers a reward obtained as a result of a stochastic process

backward(gradient, retain_graph, create_graph)

Computes the gradient of current variable w.r.t. graph leaves.

- gradient (Tensor, Variable, None): gradient w.r.t. the variable
- retain graph (bool): used for double backward
- create_graph (bool): used for higher order derivative products

```
>>>import torch
>>> from torch.autograd import Variable
>>> v = Variable(torch.Tensor([0, 0, 0]), requires_grad=True)
>>>
>> v.backward(torch.Tensor([1, 1, 1]))
>>>
>> v.grad.data
1 1 [torch.FloatTensor of size 3]
>>>
```

Parameters

torch.nn.Parameter(data, requires_grad=True)

A kind of Variable that is to be considered a module parameter

- data(Tensor): parameter tensor
- requires_grad(bool): if True, the parameter requires gradient

Parameter v.s Variable

Parameters are Variable subclasses, that have very special property when used with Modules – when they are assigned as Module attributes they are automatically added to the list of its parameters.

GPU Supported

All operations can be conducted on GPU if the tensor is converted to cuda.tensor

```
>>>import torch
>> x = torch.randn(3, 3)
>>>X
1.1980 -1.2213 0.5500
0.0943 -0.0436 -1.9253
0.6731 0.4803 -1.5076
[torch.FloatTensor of size 3x3]
>>>x.cuda()
1.1980 -1.2213 0.5500
0.0943 -0.0436 -1.9253
0.6731 0.4803 -1.5076
[torch.cuda.FloatTensor of size 3x3 (GPU 0)]
```

Example

> Solve simple regression problem

Prediction: y = wx + b

Ground truth: $\hat{y} = x$

Optimization problem: $\min_{w,b} \|\hat{\mathbf{y}} - \mathbf{y}\|^2$

Example

```
import torch
from torch.autograd import Variable
from torch.nn import Parameter
weight = Parameter(torch.zeros(1))
bias = Parameter(torch.ones(1))
params_list = [{"params": weight}, {"params": bias}]
for i in range(100):
   x = torch.randn(100)
   x var = Variable(x)
   prediction = x_var * weight + bias
   # compute loss
   loss = (x_var - prediction).pow(2).sum()
   # backward and update parameters
   optimizer = torch.optim.SGD(params=params_list, lr=0.001)
   optimizer.zero grad()
   loss.backward()
   optimizer.step()
```

Example

Weight and bias

Example

> Loss

Example

> Prediction

Q & A?

Deep Learning In PyTorch

Framework

Pipeline

Important concepts:

- Data loader:
 loading and preprocessing data
- Model: descripting network structure
- Optimizer: including SGD, Adam, RMSprop etc.

Data Loader

Define a data loader object for loading and preprocessing data sets from disk or cache by using torchversion and torch.utils.data.DataLoader

- torch.utils.data.DataLoader: class for loading data
- Torchversion: package for computer vision tasks, contents state-of-the-art models, data sets, data transformers

Torchvision

The torchvision package consists of popular data sets, model architectures and common image transformations for computer vision

- > torchvision.datasets
 - MNIST
 - COCO
 - LSUN
 - Imagenet-12
 - CIFAR
 - STL10
 - ImageFolder

- > torchvision.transforms
 - Compose
 - CenterCrop
 - RandomCrop
 - RandomHorizontalFlip
 - Normalize
 - ToTensor
 - ...

Data Sets

torchvision.datasets.MNIST(...)

- root(string): root directory of data set
- train(bool): if True, creates data set for training, otherwise for testing
- download(bool): if True, downloads the data set from internet
- transform(callable): function for data transformation
- target transform: function for target transformation

import torchvision.datasets as dset
import torchvision.transforms as transforms

```
mnist_train = dset.MNIST(("/home/dataset/mnist ", train=True, download=True, transform=transforms.ToTensor())
```

Data Augmentation

Origin

Random Crop

Horizontal Flip

Center Crop

Data Loader

torch.utils.data.DataLoader(...)

- dataset(Dataset): dataset from which to load data
- batch_size(int): number of samples per batch
- shuffle(bool): if True, reshuffle data at every epoch
- num_workers(int): number of subprocesses to used for data loading
- pin_memory(bool): if True, the data loader will copy tensors into CUDA pinned memory before returning them

...

Data Loader

Example of creating data loader for training

```
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torch
train loader = torch.utils.data.DataLoader(
  dset.MNIST("/home/dataset/mnist", train=True, download=True,
         transform=transforms.Compose([
           transforms.ToTensor(),
           transforms.Normalize(norm mean, norm std)
         1)),
  batch size=self.train batch size, shuffle=True,
  num workers=self.n threads, pin memory=False
```

torch.optim is a package implementing various optimization algorithm, including SGD, Adam, RMSprop, etc.

- torch.optim.Optimizer
- torch.optim.SGD
- torch.optim.Adadelta
- torch.optim.Adagrad
- torch.optim.Adam
- torch.optim.Adamax
- torch.optim.ASGD
- torch.optim.LBFGS
- torch.optim.RMSprop
- torch.optm.Rprop

torch.optim.Optimizer(params, defaults)

Base class for all optimizers

- params(iterable): an iterable of Variables or dicts. Specifies what Variables should be optimized
- defaults(dict): containing values of optimization options

Functions of optimizer:

- load_state_dict(state_dict): loads the optimizer state
- state_dict(): returns the state of the optimizer as a dict
- step(closure): perform a single optimization step
- zero_grad(): clears the gradients of all optimized Variables

torch.optim.SGD(params, Ir, momentum=0, dampening=0, weight_decay=0, nesterov=False)

import torch

```
optimzer = torch.optim.SGD(params=model.parameters(), lr=0.01, momentum=0.9, weight_decay=0.0001, nesterov=True)
```

update parameters of model

optimizer.zero_grad() # set gradient of parameters to zero
...# backward

optimizer.step() # update parameters

update learning rate of optimizer

for param_group **in** optimzer.param_groups:

param group['lr'] = 0.001

Model

Model

torch.nn: package for deep learning

- Parameters
- Containers
- Convolutional layers
- Pooling layers
- Normalization layers
- Linear layers
- Loss functions
- Non-linear Activations
- Recurrent layers
- ...

Convolutional Layer

torch.nn.Conv2d(...)

Applies a 2D convolution over an input signal composed of several input planes

- in_channels(int): number of channels in the input image
- out_channels(int): number of channels in the output features
- kernel_size(int or tuple): size of the convolving kernel
- stride(int or tuple): stride of the convolution
- padding(int or tuple): zero-padding added to the input
- bias(bool): if True, adds a learnable bias to the output

• ...

Convolutional Layers

No padding, no strides

Stride = 2

Padding = 1

Dilation = 1

Convolutional Layers

input: $(N, C_{in}, H_{in}, W_{in})$ output: $(N, C_{in}, H_{in}, W_{in})$

```
>>> import torch.nn as nn
>>> from torch import autograd
>>>
>>> # With square kernels and equal stride
>>> m = nn.Conv2d(16, 33, 3, stride=2)
>>>
>>> # non-square kernels and unequal stride and with padding
>>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
>>>
>>> input = autograd.Variable(torch.randn(20, 16, 50, 100))
>>> output = m(input)
```

Linear Layers

torch.nn.Linear(in_features, out_features, bias=True)

Applies a linear transformation to the in coming data

- in_features(int): size of each input sample
- out_features(int): size of each output sample
- bias(bool): if True, the layer will learn an additive bias

Linear Layers

input: (N, in_features) output: (N, out_features)

$$\mathbf{Y} = \mathbf{W}\mathbf{X} + \boldsymbol{b}$$

```
>>> import torch.nn as nn
>>> from torch import autograd
>>> m = nn.Linear( 20, 30)
>>>
>>> input = autograd.Variable(torch.randn(128, 20))
>>> output = m(input)
>>> print(output.size())
```

Containers

- > torch.nn.Module
- > torch.nn.Sequential
- > torch.nn.ModuleList
- > torch.nn.ParameterList

Module

torch.nn.Module

Base class for all neural network modules

- cpu(device_id=None): moves module to the CPU
- cuda(device id=None): moves module to the GPU
- eval(): sets the module in evaluation mode
- train(mode=True): sets the module in training mode
- zero_grad(): sets gradients of all model parameters to zero
- load_state_dict(state_dict): copies parameters and buffers from state_dict into this module and its descendants
- state_dict(destination=None, prefix= "): returns a dictionary
 containing a whole state of the module

Module

```
# define your model
import torch.nn as nn
class Model(nn.Module):
   def init (self):
       super(Model, self). init ()
       self.conv 1 = nn.Conv2d(1, 20, 5)
       self.conv 2 = nn.Conv2d(20, 20, 5)
   def forward(self, x):
       out = self.conv 1(x)
       out = self.conv 2(out)
       return out
```


Sequential

torch.nn.Sequential(*args)

A sequential container. Modules will be added to it in the order they are passed in the constructor

define your model

import torch.nn as nn

Model

Conv2d

Nodel = nn.Sequential(

nn.Conv2d(1, 20, 5),

nn.Conv2d(20, 20, 5),

)

GPU Supported

torch.nn.DataParallel(...)

Implements data parallelism at the module level

- module: module to be parallelized
- device id: CUDA devices, default: all devices
- output device: device location of output, default: device id[0]

```
# parallelize your model
net = torch.nn.DataParallel(model, device_ids=[0, 1]).cuda()
output = net(input_var)
```


> Step 1: create data loader

```
import torch
import torch.nn as nn
from torch.autograd import Variable
from torchvision import datasets, transforms
import torch.nn.init as nnInit
train loader = torch.utils.data.DataLoader(
     datasets.MNIST( '../data/' , train=True, download=True,
                       transform=transforms.Compose([
                              transforms.ToTensor(),
                              transforms.Normlize((0.1307,), (0.3081, ))
    batch size=64, shuffle=True, num workers=4, pin_memory=\,\frac{7}{7}\,\frac{1}{7}\text{rue}\)
```

> Step 1: create data loader

Step 2: define model structure

```
class LeNet5(nn.Module):
     def init (self):
         super(LeNet5, self). _init__()
         self.features = nn.Sequential(
                  nn.Conv2d(1, 20, 5)
                  nn.MaxPool2d(2, 2)
                  nn.Conv2d(20, 50, 5)
                 nn.MaxPool2d(2, 2))
         self.classifier = nn.Sequential(
                  nn.Linear(800, 500)
                  nn.ReLU(inplace=True)
                  nn.Linear(500, 10))
     def forward(self, x):
        out = self.features(x)
         out = out.view(out.size(0), -1)
         out = self.classifier(out)
         return out
```


> Step 3: initialize parameters and use GPU for computation

```
# create model instance
model = LeNet5()
# initialize weights and bias
for m in model.modules():
   if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d):
          nnInit.xavier normal(m.weight)
          if m bias is not None:
               m.bias.data.zero ()
```

model.cuda()

> Step 4: define optimizer and criterion

criterion = nn.CrossEntropyLoss().cuda()

Step 5: define training phase

```
def train(epoch):
   model.train()
   for batch idx, (data, target) in enumerate(train loader):
         data, target = Variable(data.cuda()), Variable(target.cuda())
         optimizer.zero grad()
         output = model(data)
         loss = criterion(output, target)
         loss.backward()
         optimizer.step()
         if batch idx % 100 == 0:
                print '[training] loss' , loss.data[0]
                                                                  72/76
```

Step 6: define testing phase

```
def test(epoch):
   model.eval ()
   correct = 0
   for batch idx, (data, target) in enumerate(test_loader):
         data, target = Variable(data.cuda()), Variable(target.cuda())
         output = model(data)
         pred = output.data.max(1)[1]
         correct += pred.eq(target.data).cpu().sum()
```

print '[testing] accuracy' : 100.0*correct/len(test_loader.dataset)

> Step 7: training and testing

```
for epoch in range(1, 11):
    train(epoch)
    test(epoch)
```

Q & A?

Thank You