

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : C12N 15/12, 15/63, 15/64 C12N 5/10, C07K 13/00 A01N 33/00, A61K 37/00		A1	(11) International Publication Number: WO 92/17585 (43) International Publication Date: 15 October 1992 (15.10.92)
(21) International Application Number: PCT/US92/02741 (22) International Filing Date: 6 April 1992 (06.04.92)		(72) Inventors; and (75) Inventors/Applicants (for US only) : BUCK, Linda, B. [US/US]; 100 Haven Avenue, New York, NY 10032 (US). AXEL, Richard [US/US]; 445 Riverside Drive, New York, NY 10027 (US).	
(30) Priority data: 681,880 5 April 1991 (05.04.91)		US	(74) Agent: WHITE, John, P.; Cooper & Dunham, 30 Rockefeller Plaza, New York, NY 10112 (US).
(60) Parent Application or Grant (63) Related by Continuation US Filed on 681,880 (CIP) 5 April 1991 (05.04.91)		(81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, LU (European patent), MC (European patent), NL (European patent), SE (European patent), US.	
(71) Applicant (for all designated States except US): THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK [US/US]; Broadway and West 116th Street, New York, NY 10027 (US).		Published <i>With international search report.</i>	

(54) Title: ODORANT RECEPTORS AND USES THEREOF

(57) Abstract

The invention provides an isolated nucleic acid, e.g. cDNA encoding an odorant receptor. The invention further provides expression vectors containing such nucleic acid. Also provided is a purified protein encoding an odorant receptor, with the foregoing and of identifying odorant receptors. The invention also provides methods of identifying odorant ligands and of detecting odors.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MG	Madagascar
AU	Australia	FI	Finland	ML	Mali
BB	Barbados	FR	France	MN	Mongolia
BE	Belgium	GA	Gabon	MR	Mauritania
BF	Burkina Faso	GB	United Kingdom	MW	Malawi
BG	Bulgaria	CN	Guinea	NL	Netherlands
BJ	Benin	CR	Greece	NO	Norway
BR	Brazil	HU	Hungary	PL	Poland
CA	Canada	IT	Italy	RO	Romania
CF	Central African Republic	JP	Japan	RU	Russian Federation
CG	Congo	KP	Democratic People's Republic of Korea	SD	Sudan
CH	Switzerland	KR	Republic of Korea	SE	Sweden
CI	Côte d'Ivoire	LI	Liechtenstein	SN	Senegal
CM	Cameroon	LK	Sri Lanka	SU	Soviet Union
CS	Czechoslovakia	LU	Luxembourg	TD	Thailand
DE	Germany	MC	Monaco	TG	Togo
DK	Denmark			US	United States of America

ODORANT RECEPTORS AND USES THEREOFBackground of the Invention

- 5 This application is a continuation-in-part of U.S. Serial No. 681,880, filed April 5, 1991, the contents of which are hereby incorporated by reference.
- 10 Throughout this application, various publications are referenced by Arabic numerals within parentheses. Full citations for these publications may be found at the end of the specification immediately preceding the claims. The disclosures of these publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art as known to those skilled therein as of the date of the invention described and claimed herein.
- 20 In vertebrate sensory systems, peripheral neurons respond to environmental stimuli and transmit these signals to higher sensory centers in the brain where they are processed to allow the discrimination of complex sensory information. The delineation of the peripheral mechanisms by which environmental stimuli are transduced into neural information can provide insight into the logic underlying sensory processing. Our understanding of color vision, for example, emerged only after the observation that the discrimination of hue results from the blending of information from only three classes of photoreceptors (1, 2, 3, 4). The basic logic underlying olfactory sensory perception, however, has remained elusive. Mammals possess an olfactory system of enormous discriminatory power (5, 6). Humans, for example, are thought to be capable of distinguishing among thousands of distinct odors. The specificity of odor recognition is emphasized by the observation that subtle alterations in the molecular structure of an odorant can lead to profound
- 25
- 30
- 35

-2-

changes in perceived odor.

The detection of chemically distinct odorant presumably results from the association of odorous ligands with specific receptors on olfactory neurons which reside in a specialized epithelium in the nose. Since these receptors have not been identified, it has been difficult to determine how odor discrimination might be achieved. It is possible that olfaction, by analogy with color vision, involves only a few odor receptors, each capable of interaction with multiple odorant molecules. Alternatively, the sense of smell may involve a large number of distinct receptors each capable of associating with one or a small number of odorant. In either case, the brain must distinguish which receptors or which neurons have been activated to allow the discrimination between different odorant stimuli. Insight into the mechanisms underlying olfactory perception is likely to depend upon the isolation of the odorant receptors, and the characterization of their diversity, specificity, and patterns of expression.

The primary events in odor detection occur in a specialized olfactory neuroepithelium located in the posterior recesses of the nasal cavity. Three cell types dominate this epithelium (Figure 1A): the olfactory sensory neuron, the sustentacular or supporting cell, and the basal cell which is a stem cell that generates olfactory neurons throughout life (7, 8). The olfactory sensory neuron is bipolar: a dendritic process extends to the mucosal surface where it gives rise to a number of specialized cilia which provide an extensive, receptive surface for the interaction of odors with olfactory sensory neurons. The olfactory neuron also gives rise to an axon which projects to the olfactory bulb of the brain, the first relay in the olfactory system. The axons of the olfactory bulb neurons, in turn, project to

-3-

subcortical and cortical regions where higher level processing of olfactory information allows the discrimination of odors by the brain.

5 The initial events in odor discrimination are thought to involve the association of odors with specific receptors on the cilia of olfactory neurons. Selective removal of the cilia results in the loss of olfactory response (9). Moreover, in fish, whose olfactory system senses amino acids
10 as odors, the specific binding of amino acids to isolated cilia has been demonstrated (10, 11). The cilia are also the site of olfactory signal transduction. Exposure of isolated cilia from rat olfactory epithelium to numerous odorant leads to the rapid stimulation of adenylyl cyclase
15 and elevations in cyclic AMP (an elevation in IP₃ in response to one odorant has also been observed) (12, 13, 14, 15). The activation of adenylyl cyclase is dependent on the presence of GTP and is therefore likely to be mediated by receptor-coupled GTP binding proteins (G-proteins) (16).
20 Elevations in cyclic AMP, in turn, are thought to elicit depolarization of olfactory neurons by direct activation of a cyclic nucleotide-gated, cation permeable channel (17, 18). This channel is opened upon binding of cyclic nucleotides to its cytoplasmic domain, and can therefore
25 transduce changes in intracellular levels of cyclic AMP into alterations in the membrane potential.

These observations suggest a pathway for olfactory signal transduction (Figure 1B) in which the binding of odors to specific surface receptors activates specific G-proteins.
30 The G-proteins then initiate a cascade of intracellular signalling events leading to the generation of an action potential which is propagated along the olfactory sensory axon to the brain. A number of neurotransmitter and hormone receptors which transduce intracellular signals by
35

-4-

activation of specific G-proteins have been identified. Gene cloning has demonstrated that each of these receptors is a member of a large superfamily of surface receptors which traverse the membrane seven times (19, 20). The 5 pathway of olfactory signal transduction (Figure 1B) predicts that the odorant receptors might also be members of this superfamily of receptor proteins. The detection of odors in the periphery is therefore likely to involve signalling mechanisms shared by other hormone or neurotransmitter systems, but the vast discriminatory power of the olfactory system will require higher order neural processing to permit the perception of individual odors. This invention address the problem of olfactory perception 10 at a molecular level. Eighteen different members of an extremely large multigene family have been cloned and characterized which encodes seven transmembrane domain 15 proteins whose expression is restricted to the olfactory epithelium. The members of this novel gene family encode the individual odorant receptors.

20

-5-

SUMMARY OF THE INVENTION

The invention provides an isolated nucleic acid, e.g. a DNA and cDNA molecule, encoding an odorant receptor. The invention further provides expression vectors containing such nucleic acid. Also provided by the invention is a purified protein encoding an odorant receptor. The invention further provides a method of transforming cells which comprises transfecting a suitable host cell with a suitable expression vector containing the nucleic acid encoding the odorant receptor.

The invention also provides methods of identifying odorant ligands and of identifying odorant receptors. The invention further provides methods of developing fragrances, of identifying appetite suppressant compounds, of controlling appetite. The invention also provides methods of controlling insect and other animal populations. The invention additionally provides a method of detecting odors such as the vapors emanating from Cocaine, Marijuana, Heroin, Hashish, Angel Dust, gasoline, decayed human flesh, alcohol, gun powder explosives, plastic explosives, firearms, poisonous or harmful smoke, or natural gas.

-6-

Description of the Figures

Figure 1. The Olfactory Neuroepithelium and a Pathway for Olfactory Signal Transduction. A. The Olfactory Neuroepithelium. The initial event in odor perception occurs in the nasal cavity in a specialized neuroepithelium which is diagrammed here. Odors are believed to interact with specific receptors on the cilia of olfactory sensory neurons. The signal generated by these initial binding events are propagated by olfactory neuron axons to the olfactory bulb. B. A Pathway of Olfactory Signal Transduction. In this scheme, the binding of an odorant molecule to an odor-specific transmembrane receptor leads to the interaction of the receptor with a GTP-binding protein ($G_{S[olf]}$). This interaction, in turn, leads to the release of the GTP-coupled α -subunit of the G-protein, which then stimulates adenylyl cyclase to produce elevated levels of cAMP. The increase in cAMP opens nucleotide-gated cation channels, thus causing an alteration in membrane potential.

Figure 2. A PCR Amplification Product Containing Multiple Species of DNA. cDNA prepared from olfactory epithelium RNA was subjected to PCR amplification with a series of different primer oligonucleotides and the DNA products of appropriate size were isolated, further amplified by PCR, and size fractionated on agarose gels (A) (For details, see text). Each of these semipurified PCR products was digested with the restriction enzyme, Hinf I, and analyzed by agarose gel electrophoresis. Lanes marked "M" contain size markers of 23.1, 9.4, 5.6, 4.4, 2.3, 2.0, 1.35, 1.08, 0.87, 0.60, 0.31, 0.28, 0.23, 0.19, 0.12 and 0.07kb. (B). Twenty-two of the 64 PCR products that were isolated and digested with Hinf I are shown here. Digestion of one of these, PCR 13, yielded a large number of fragments whose sizes summed to a value much greater than that of the undigested PCR 13

-7-

DNA, indicating that PCR 13 might contain multiple species of DNA which are representatives of a multigene family.

5 Figure 3. Northern Blot Analysis with a Mixture of Twenty Probes. One μ g of polyA+ RNA isolated from rat olfactory epithelium, brain, or spleen was size-fractionated in formaldehyde agarose, blotted onto a nylon membrane, and hybridized with a 32 P-labeled mixture of segments of 20 cDNA clones. The DNA segments were obtained by PCR using primers
10 homologous to transmembrane domains 2 and 7.

15 Figure 4. The Protein Sequences Encoded by Ten Divergent cDNA Clones. Ten divergent cDNA clones were subjected to DNA sequence analyses and the protein sequence encoded by each was determined. Amino acid residues which are conserved in 60% or more of the proteins are shaded. The presence of seven hydrophobic domains (I-VII), as well as short conserved motifs shared with other members of the superfamily, demonstrate that these proteins belong to the seven transmembrane domain protein superfamily. Motifs conserved among members of the superfamily and the family of olfactory proteins include the GN in TM1 (transmembrane domain 1), the central W of TM4, the Y near the C-terminal end of TM5, and the NP in TM7. In addition, the DRY motif C-terminal to TM3 is common to many members of the G-protein-coupled superfamily. However, all of the proteins shown here share sequence motifs not found in other members of this superfamily and are clearly members of a novel family of proteins.
20
25

30

35 Figure 5. Positions of Greatest Variability in the Olfactory Protein Family. In this diagram, the protein encoded by cDNA clone I15 is shown traversing the plasma membrane seven times with its N-terminus located extracellularly, and its C-terminus intracellularly. The

-8-

vertical cylinders delineate the seven putative α -helices spanning the membrane. Positions at which 60% or more of the 10 clones shown in Figure 4 share the same residue as I15 are shown as white balls. More variable residues are shown as black balls. The high degree of variability encountered in transmembrane domains III, IV, and V is evident in this schematic.

Figure 6. The Presence of Subfamilies in a Divergent Multigene Family. Partial nucleotide sequences and deduced protein sequences were obtained for 18 different cDNA clones. Transmembrane domain V along with the flanking loop sequences, including the entire cytoplasmic loop between transmembrane domains V and VI, are shown here for each protein. Amino acid residues found in 60% or more of the clones in a given position are shaded (A). This region of the olfactory proteins (particularly transmembrane domain V) appears to be highly variable (see Figure 4). These proteins, however, can be grouped into subfamilies (B,C,D) in which the individual subfamily members share considerable homology in this divergent region of the protein.

Figure 7. Southern Blot Analyses with Non-crosshybridizing Fragments of Divergent cDNAs. Five μ g of rat liver DNA was digested with Eco RI (A) or Hind III (B), electrophoresed in 0.75% agarose, blotted onto a nylon membrane, and hybridized to the 32 P-labeled probes indicated. The probes used were PCR-generated fragments of: 1, clone F9 (identical to F12 in Figure 4); 2, F5; 3, F6; 4, I3; 5, I7; 6, I14; or 7, I15. The lane labeled "1-7" was hybridized to a mixture of the seven probes. The probes used showed either no crosshybridization or only trace crosshybridization with one another. The size markers on the left correspond to the four blots on the left (1-4) whereas the marker positions noted on the right correspond to the four blots on the right

-9-

(5-7, "1-7").

- 5 Figure 8. Northern Blot Analysis with a Mix of Seven Divergent Clones. One µg of polyA+ RNA from each of the tissues shown was size-fractionated, blotted onto a nylon membrane, and hybridized with a ³²P-labeled mixture of segments of seven divergent cDNA clones (see Legend to Figure 7).
- 10 Figure 9. The amino acid and nucleic acid sequence of clone F3.
- 15 Figure 10. The amino acid and nucleic acid sequence of clone F5.
- 15 Figure 11. The amino acid and nucleic acid sequence of clone F6.
- 20 Figure 12. The amino acid and nucleic acid sequence of clone F12.
- 25 Figure 13. The amino acid and nucleic acid sequence of clone I3.
- 30 Figure 14. The amino acid and nucleic acid sequence of clone I7.
- 30 Figure 15. The amino acid and nucleic acid sequence of clone I8.
- 35 Figure 16. The amino acid and nucleic acid sequence of clone I9.
- 35 Figure 17. The amino acid and nucleic acid sequence of clone I14.

-10-

Figure 18. The amino acid and nucleic acid sequence of clone I15.

5 Figure 19. The amino acid and nucleic acid sequence of human clone H5.

10 Figure 20. The amino acid and nucleic acid sequence of clone J1, where the reading frame starts at nucleotide position 2.

15 Figure 21. The amino acid and nucleic acid sequence of clone J2.

20 Figure 22. The amino acid and nucleic acid sequence of clone J4, where the reading frame starts at nucleotide position 2.

25 Figure 23. The amino acid and nucleic acid sequence of clone J7, where the reading frame starts at nucleotide position 2.

30 Figure 24. The amino acid and nucleic acid sequence of clone J8, where the reading frame starts at nucleotide position 2.

35 Figure 25. The amino acid and nucleic acid sequence of clone J11.

Figure 26. The amino acid and nucleic acid sequence of clone J14, where the reading frame starts at nucleotide position 2.

Figure 27. The amino acid and nucleic acid sequence of clone J15, where the reading frame starts at nucleotide position 2.

-11-

Figure 28. The amino acid and nucleic acid sequence of clone J16, where the reading frame starts at nucleotide position 2.

5 Figure 29. The amino acid and nucleic acid sequence of clone J17, where the reading frame starts at nucleotide position 2.

10 Figure 30. The amino acid and nucleic acid sequence of clone J19, where the reading frame starts at nucleotide position 2.

15 Figure 31. The amino acid and nucleic acid sequence of clone J20, where the reading frame starts at nucleotide position 2.

20 Figure 32. SOUTHERN BLOT: Five micrograms of DNA isolated from 1. Human placenta, 2. NCI-H-1011 neuroblastoma cells, or 3. CHP 134 neuroblastoma cells were treated with the restriction enzyme A. Eco RI, B. Hind III, C. Bam HI, or D. Pst I, and then electrophoresed on an agarose gel and blotted onto a nylon membrane. The blotted DNA was hybridized to the ³²P-labeled H3/H5 sequence. An autoradiograph of the hybridized blot is shown with the sizes of co-electrophoresed size markers noted in kilobases.

-12-

Detailed Description of the Invention

The invention provides an isolated nucleic acid, e.g. a DNA or cDNA molecule, encoding an odorant receptor. Such a receptor is a receptor which binds an odorant ligand and include but not limited to pheromone receptors. An odorant ligand may include, but is not limited to, molecules which interact with the olfactory sensory neuron, molecules which interact with the olfactory cilia, pheromones, and molecules which interact with structures within the vomeronasal organ.

The invention specifically provides the isolated cDNAs encoding odorant receptors the sequences of which are shown in Figures 9-31. The nucleic acid is most typically a cDNA and encodes an insect, a vertebrate, a fish or a mammalian odorant receptor. The mammalian odorant receptor is preferably a human, rat, mouse or dog receptor. In an embodiment, human odorant receptor cDNA sequence and the correspondent protein is isolated (Figure 19).

In another embodiment, phermone receptors are isolated and shown as clones J1, J2, J4, J7, J8, J11, J14, J15, J16, J17, J19 and J20 (Figures 20-31).

The invention further provides expression vectors containing cDNA which encodes odorant receptors. Such expression vectors are well known in the art and include in addition to the nucleic acid the elements necessary for replication and expression in a suitable hosts. Suitable hosts are well known in the art and include without limitation bacterial hosts such as E. coli, animal hosts such as CHO cells, insect cells, yeast cells and like.

The invention also provides purified proteins encoding odorant receptors. Such proteins may be prepared by

-13-

expression of the forementioned expression vectors in suitable host cells and recovery and purification of the receptors using methods well known in the art. Examples of such proteins include those having the amino acid sequences
5 shown in figures 9-31.

The purified protein typically encodes an insect, vertebrate, fish or mammalian odorant receptor. The mammalian odorant receptor may be a human, rat, mouse or
10 dog.

In one embodiment the invention provides a novel purified protein which belong to a class of proteins which have 7 transmembrane regions and a third cytoplasmic loop from the
15 N-terminus which is approximately 17 amino acid long and to nucleic acid molecules encoding such proteins.

The invention provides methods of transforming cells which comprises transfecting a suitable host cell with a suitable
20 expression vector containing nucleic acid encoding of the odorant receptor. Techniques for carrying out such transformations on cells are well known to those skilled in the art. (41,42) Additionally, the resulting transformed cells are also provided by the invention. These transformed
25 cells may be either olfactory cells or non-olfactory cells. One advantage of using transformed non-olfactory cells is that the desired odorant receptor will be the only odorant receptor expressed on the cell's surface.

30 In order to obtain cell lines that express a single receptor type, standard procedures may be used to clone individual cDNAs or genes into expression vectors and then transfet the cloned sequences into mammalian cell lines. This approach has been used with sequences encoding some other
35 members of the seven transmembrane domain superfamily

-14-

including the 5HT_{1c} serotonin receptor. (43) The cited work illustrates how members of this superfamily transferred into cell lines may generate immortal cell lines that express high levels of the transfected receptor on the cell surface 5 where it will bind ligand and that such abnormally expressed receptor molecules can transduce signals upon binding to ligand.

10 The invention also provides a method of identifying a desired odorant ligand which comprises contacting transformed non-olfactory cells expressing a known odorant receptor with a series of odorant ligands to determining which ligands bind to the receptors present on the non-olfactory cells.

15 Additionally, the invention provides a method of identifying a desired odorant receptor comprising contacting a series of transformed non-olfactory cells with a known odorant ligand and determining which odorant receptor binds with the 20 odorant ligand.

25 The invention provides a method of detecting an odor which comprises: a) identifying a odorant receptor which binds the desired odorant ligand and; b) imbedding the receptor in a membrane such that when the odorant ligand binds to the receptor so identified a detectable signal is produced. In one embodiment of the invention the membrane used in this method is cellular, including a membrane of an olfactory cell or a synthetic membrane.

30 The ligand tested for may be the vapors emanating from Cocaine, Marijuana, Heroin, Hashish, Angel Dust, gasoline, decayed human flesh, alcohol, gun powder explosives, plastic explosives or firearms. In another embodiment the ligand 35 tested for may be natural gas, a pheromone, toxic fumes,

-15-

noxious fumes or dangerous fumes.

In one embodiment of the invention the detectable signal is
a lightbulb lighting up, a buzzer buzzing, a bell ringing,
5 a color change, phosphorescence, or radioactivity.

The invention further provides a method of quantifying the
amount of an odorant ligand present in a sample which
comprises utilizing the above-mentioned method for odor
10 detection and then quantifying the amount of signal
produced.

The invention further provides a method of developing
15 fragrances which comprises identifying a desired odorant
receptor by the above method, then contacting non-olfactory
cells, which have been transfected with an expression vector
containing nucleic acid encoding the desired odorant
receptor such that the receptor is expressed upon the
20 surface of the non-olfactory cell, with a series of
compounds to determine which compound or compounds bind the
receptor.

The invention provides to a method of identifying an
25 "odorant fingerprint" which comprises contacting a series of
cells, which have been transformed such that each express a
known odorant receptor, with a desired sample and
determining the type and quantity of the odorant ligands
present in the sample.

30 The invention provides a method of identifying odorant
ligands which inhibit the activity of a desired odorant
receptor which comprises contacting the desired odorant
receptor with a series of compounds and determining which
35 compounds inhibit the odorant ligand - odorant receptor
interaction.

-16-

The invention also provides for a method of identifying appetite suppressant compounds which comprises identifying odorant ligands by the method mentioned in the preceding paragraph wherein the desired odorant receptor is that which
5 is associated with the perception of food. Additionally, the invention provides a method of controlling appetite in a subject which comprises contacting the olfactory epithelium of the subject with these odorant ligands. Further the invention provides a nasal spray, to control
10 appetite comprising the compounds identified by the above method in a suitable carrier.

15 The invention provides a method of trapping odors which comprises contacting a membrane which contains multiples of the desired odorant receptor, with a sample such that the desired odorant ligand is absorbed by the binding of the odorant ligand to the odorant receptor. The invention also provides an odor trap employing this method.

20 The invention also provides a method of controlling pest populations which comprises identifying odorant ligands by the method mentioned above which are alarm odorant ligands and spraying the desired area with the identified odorant ligands. Additionally, provided by the invention is a
25 method of controlling a pest population which comprises identifying odorant ligands by the above mentioned method, which interfere with the interaction between the odorant ligands and the odorant receptors which are associated with fertility. In one embodiment the pest population is a population of insects or rodents, including mice and rats.
30

35 The invention also provides a method of promoting fertility which comprises identifying odorant ligands which interact with the odorant receptors associated with fertility by the above mentioned method. Further, the invention provides a

-17-

method of inhibiting fertility which comprises employing the above mentioned method to identifying odorant ligands which inhibit the interaction between the odorant ligands and the odorant receptors associated with fertility.

5

This invention is illustrated in the Experimental Detail section which follow. These sections are set forth to aid in an understanding of the invention but are not intended to, and should not be construed to, limit in any way the 10 invention as set forth in the claims which follow thereafter.

15

MATERIALS AND METHODS

Polymerase Chain Reaction

20 RNA was prepared from the olfactory epithelia of Sprague Dawley rats according to Chirgwin et al. (40) or using RNAzol B (Cinna/Biotecx) and then treated with DNase I (0.1 unit/ μ g RNA) (Promega). In order to obtain cDNA, this RNA was incubated at 0.1 μ g/ μ l with 5 μ M random hexamers 25 (Pharmacia) 1 mM each of dATP, dCTP, dGTP, TTP, and 2 units/ μ l RNase inhibitor (Promega) in 10 mM TrisCl (pH 8.3), 50 mM KCl, 2.5 mM MgCl₂, and 0.001% gelatin for 10 min. at 22°C, and then for a further 45 min. at 37°C following the addition of 20 u./ μ l of Moloney murine leukemia virus 30 reverse transcriptase (BRL). After heating at 95°C for 3 min., cDNA prepared from 0.2 μ g of RNA was used in each of a series of polymerase chain reactions (PCR) containing 10 mM TrisCl (pH 8.3), 50 mM KCl, 1.5 mM MgCl₂, 0.001% gelatin, 200 μ M each of dATP, dCTP, dGTP, and TTP, 2.5 u. Taq 35 polymerase (Perkin Elmer Cetus), and 2 μ M of each PCR

-18-

primer. PCR reactions were performed according to the following schedule: 96°C for 45 sec., 55°C for 4 min. (or 45°C for 2 min.), 72°C for 3 min. with 6 sec. extension per cycle for 48 cycles. The primers used for PCR were a series of degenerate oligonucleotides made according to the amino acid sequences found in transmembrane domain 2 and 7 of a variety of different members of the 7 transmembrane domain protein superfamily (19). The regions used correspond to amino acids number 60-70 and 286-295 of clone I15 (Figure 4). Each of five different 5' primers were used in PCR reactions with each of six different 3' primers. The 5' primers had the sequences:

15 C AC A C CT
A1, AATTGGATICTIGTIAATCTIGCIGTIGCIGCIGA;

20 C C CA A C C
A2, AATTATTTCTIGTIAATCTIGCITTIGCIGA;

25 CCA CC A C
A3, AATTTITTTATIATITCCTCTIGCITGIGCIGA;

30 A T C T ACT C
A4, CGITTCTIATGTGTAACCTITGCTTGCGA;

35 C CT TG
A5, ACIGTTATATIACICATCTIACIATIGCIGA.

The 3' primers were:

40 TTA T CAG C C A
B1, CTGICGGTTCATIAAIACATAIATIATIGGGTT;

45 TG GA G G A A
B2, GATCGTTIAGACAACAATAIATIATIGGGTT;

50 A G G A
B3, TCIATGTTAAAIGTIGTATAIATIATIGGGTT;

55 T G G A A
B4, GCCTTIGTAAAIATIGCATAIAGGAAIGGGTT;

60 G AGA G G G A
B5, AAATCIGGGCTICGICAATAIATCAIIGGGTT;

65 CT CT G G G G A

-19-

B6, GAIGAICCIACAAAAAAATAIATAAAIGGGTT.

An aliquot of each PCR reaction was analyzed by agarose gel
5 electrophoresis and bands of interest were amplified further
by performing PCR reactions on pipet tip (approx. 1 μ l)
plugs of the agarose gels containing those DNAs. Aliquots
of these semi-purified PCR products were digested with the
restriction enzymes Hae III or Hinf I and the digestion
10 products were compared with the undigested DNAs on agarose
gels.

Isolation and Analysis of cDNA Clones

15 CDNA libraries were prepared according to standard
procedures (41, 42) in the cloning vector, λ ZAP II
(Stratagene) using poly A⁺ RNA prepared from Sprague Dawley
rat epithelia (see above) or from an enriched population of
olfactory neurons which had been obtained by a 'panning'
20 procedure, using an antibody against the H blood group
antigen (Chembimed) found on a large percentage of rat
olfactory neurons. In initial library screens, 8.5×10^5
independent clones from the olfactory neuron library and 1.8×10^6
clones from the olfactory epithelium library were
25 screened (41) with a ³²P-labeled probe (prime-it,
Stratagene) consisting of a pool of gel-isolated PCR
products obtained using primers A4 and B6 (see above) in PCR
reactions using as template, olfactory epithelium cDNA, rat
liver DNA, or DNA prepared from the two cDNA libraries. In
30 later library screens, a mixture of PCR products obtained
from 20 cDNA clones with the A4 and B6 primers was used as
probe ('P1' probe). In initial screens, phage clones were
analyzed by PCR using primers A4 and B6 and those which
showed the appropriate size species were purified. In later
35 screens, all position clones were purified, but only those
that could be amplified with the B6 primer and a primer

-20-

5 specific for vector sequence were analyzed further. To obtain plasmids from the isolated phage clones, phagemid rescue was performed according to the instructions of the manufacturer of λZAP II (Stratagene). DNA sequence analysis was performed on plasmid DNAs using the Sequenase system (USB), initially with the A4 and B6 primers and later with oligonucleotide primers made according to sequences already obtained.

10 Northern and Southern Blot Analyses

15 For Northern blots, poly A⁺ RNAs from various tissues were prepared as described above or purchased from Clontech. One µg of each RNA was size fractionated on formaldehyde agarose gels and blotted onto nylon membranes (41, 42). For Southern blots, genomic DNA prepared from Sprague Dawley rat liver was digested with the restriction enzymes Eco RI or Hind III, size fractionated on agarose gels and blotted onto nylon membranes (41, 42). The membranes were dried at 80°C, and then prehybridized in 0.5 M sodium phosphate buffer (pH 20 7.3) containing 1% bovine serum albumin and 4% sodium dodecyl sulfate. Hybridization was carried out in the same buffer at 65°-70°C for 14-20 hrs. with DNAs labeled with ³²P. For the first Northern blot shown, the 'P1' probe (see above under cDNA clone isolation) was used. For the second Northern blot shown, a mix of PCR fragments from seven divergent cDNA clones was used. For Southern blots, the region indicated in clone I15 by amino acids 118 through 251 was amplified from a series of divergent cDNA clones using PCR. The primers used for these reactions had the sequences:

P1, ATGGCITATGATCGITATGTIGC, and

35 P4, AAIAGIGAIACIATIGAIAGATGIGAICC

-21-

These DNAs (or a DNA encompassing transmembrane domains 2 through 7 for clone F6) were labeled and tested for crosshybridization at 70°C. Those DNAs which did not show appreciable crosshybridization were hybridized individually, 5 or as a pool to Southern blots at 70°C.

Rat Sequences used to obtain similar sequences expressed in Humans

10 There are genes similar to the rat genes discussed above present in humans, these genes may be readily isolated by screening human gene libraries with the cloned rat sequences or by performing PCR experiments on human genomic DNA with primers homologous to the rat sequences. First, 15 PCR experiments were performed with genomic DNA from rat, human, mouse, and several other species. When primers homologous to transmembrane domains 2 and 6 (the A4/B6 primer set used to isolate the original rat sequences) were used, DNA of the appropriate size was amplified from rat, 20 human and mouse DNAs. When these primary PCR reactions were subsequently diluted and subjected to PCR using primers to internal sequences (P1 and P4 primers), smaller DNA species were amplified whose size was that seen when the same primers were used in PCR reactions with the cloned rat cDNAs. Similarly, when the secondary PCR was performed with 25 one outer primer together with one inner primer (ie. A4/P4 or P1/B6), amplified DNAs were obtained whose sizes were also consistent with the amplification of genes similar in sequence and organization to the cloned rat cDNAs. Second, 30 a mix of segments from 20 of the rat cDNAs ('P1" probe) was used to screen libraries constructed from human genomic DNAs. Hybridization under high or low stringency conditions reveals the presence of a large number of cloned human DNA segments that are homologous to the rat sequences. Finally, 35 RNA from a human olfactory tumor (neuroesthesia ma,

-22-

5 NCI-H-1011) cell line has been examined for sequences homologous to those cloned in the rat. cDNA prepared from this RNA was subjected to PCR with the A4/B6 primer set and a DNA species of the appropriate size was seen. This DNA
was subcloned and partially sequenced and clearly encodes a member of the olfactory protein family identified in the rat.

10 The inserted sequence in human clones H3/H5 was amplified by PCR with the A4/B6 primers, gel purified, and then labeled with ³²P. The labeled DNA was then hybridized to restriction enzyme human placenta. Multiple hybridizing species were observed with each DNA (See Figure 32). This observation is consistent with the presence of a family of
15 odorant receptor genes in the human genome.

20 The sequence of clone H5 is hereby shown in Figure 19. In addition, the translated protein sequence is shown in Figure 19.

25 In order to identify odorant receptors in other species, degenerated primer oligonucleotides homologous to conserved regions within the rat odorant receptor family may be used in PCR reactions with genomic DNA or with cDNA prepared from olfactory tissue RNA from those species.

RESULTS

Cloning the Gene Family

30 A series of degenerate oligonucleotides were designated which could anneal to conserved regions of members of the superfamily of G-protein coupled seven transmembrane domain receptor genes. Five degenerate oligonucleotides (A1-5; see Experimental Procedures) matching sequences within
35 transmembrane domain 2, and six degenerate oligonucleotides

-23-

(B1-6) matching transmembrane domain 7 were used in all combinations in PCR reactions to amplify homologous sequences in cDNA prepared from rat olfactory epithelium RNA. The amplification products of each PCR reaction were 5 then analyzed by agarose gel electrophoresis. Multiple bands were observed with each of the primer combinations. The PCR products within the size range expected for this family of receptors (600 to 1300 bp) were subsequently 10 picked and amplified further with the appropriate primer pair in order to isolate individual PCR bands. Sixty-four PCR bands isolated in this fashion revealed only one or a small number of bands upon agarose gel electrophoresis. Representatives of these isolated PCR products are shown in Figure 2A.

15

The isolated PCR products were digested with the endonuclease, Hae III or Hinf I, which recognize four base restriction sites and cut DNA at frequent intervals. In most instances, digestion of the PCR product with Hinf I 20 generated a set of fragments whose molecular weights sum to the size of the original DNA (Figure 2B). These PCR bands are therefore likely to each contain a single DNA species. In some cases, however, restriction digestion yielded a series of fragments whose molecular weights sum to a value 25 greater than that of the original PCR product. The most dramatic example is shown in Figure 2 where the 710 bp, PCR 13 DNA, is cleaved by Hinf I to yield a very large number of restriction fragments whose sizes sum to a value five- to ten-fold greater than that of the original PCR product. These 30 observations indicated that PCR product 13 consists of a number of different species of DNA, each of which could be amplified with the same pair of primer oligonucleotides. In addition, when PCR experiments similar to those described 35 were performed using cDNA library DNAs as templates, a 710 bp PCR product was obtained with the PCR13 primer pair

-24-

(A4/B6) with DNA from olfactory cDNA libraries, but not a glioma cDNA library. Moreover, digestion of one of this 710 bp product also revealed the presence of multiple DNA species. In other cases (see PCR product 20, for example), 5 digestion yielded a series of restriction fragments whose molecular weights also sum to a size greater than the starting material. Further analysis, however, revealed that the original PCR product consisted of multiple bands of similar but different sizes.

10

In order to determine whether the multiple DNA species present in PCR 13 encode members of a family of seven transmembrane domain proteins, PCR 13 DNA was cloned into the plasmid vector Bluescript and five individual clones were subjected to DNA sequence analysis. Each of the five 15 clones exhibited a different DNA sequence, but each encoded a protein which displayed conserved features of the superfamily of seven transmembrane domain receptor proteins. In addition, the proteins encoded by all five clones shared 20 distinctive sequence motifs not found in other superfamily members indicating they were all members of a new family of receptors.

To obtain full-length cDNA clones, cDNA libraries prepared 25 from olfactory epithelium RNA or from RNA of an enriched population of olfactory sensory neurons were screened. The probe used in these initial screens was a mixture of PCR 13 DNA as well as DNA obtained by amplification of rat genomic DNA or DNA from two olfactory cDNA libraries with the same primers used to generate PCR 13 (A4 and B6 primers). Hybridizing plaques were subjected to PCR amplification with 30 the A4/B6 primer set and only those giving a PCR product of the appropriate size (approximately 710 bp) were purified. The frequency of such positive clones in the enriched 35 olfactory neuron cDNA library was approximately five times

-25-

greater than the frequency in the olfactory epithelium cDNA library. The increased frequency of positive clones observed in the olfactory neuron library is comparable to the enrichment in olfactory neurons generally obtained in
5 the purification procedure.

The original pair of primers used to amplify PCR 13 DNA were then used to amplify coding segments of 20 different cDNA clones. A mix of these PCR products were labeled and used
10 as probe for further cDNA library screens. This mixed probe was also used in a Northern blot (Figure 3) to determine whether the expression of the gene family is restricted to the olfactory epithelium. The mixed probe detects two diffuse bands centered at 2 and 5 kb in RNA from olfactory epithelium; no hybridization can be detected in brain or
15 spleen. (Later experiments which examined a larger number of tissue RNAs with a more restricted probe will be shown below.) Taken together, these data indicate the discovery of a novel multigene family encoding seven transmembrane domain proteins which are expressed in olfactory epithelium,
20 and could be expressed predominantly or exclusively in olfactory neurons.

25 The Protein Sequences of Numerous, Olfactory-specific Members of the Seven Transmembrane Domain Superfamily

Numerous clones were obtained upon screening cDNA libraries constructed from olfactory epithelium and olfactory neuron RNA at high stringency. Partial DNA sequences were obtained
30 from 36 clones; 18 of these cDNA clones are different, but all of them encode proteins which exhibit shared sequence motifs indicating that they are members of the family identified in PCR 13 DNA. A complete nucleotide sequence was determined for coding regions of ten of the most divergent clones (Figure 4). The deduced protein sequences
35

-26-

of these cDNAs defines a new multigene family which shares sequence and structural properties with the superfamily of neurotransmitter and hormone receptors that traverse the membrane seven times. This novel family, however, exhibits
5 features different from any other member of the receptor superfamily thus far identified.

Each of the ten sequences contains seven hydrophobic stretches (19-26 amino acids) that represent potential transmembrane domains. These domains constitute the regions of maximal sequence similarity to other members of the seven transmembrane domain superfamily (see legend to Figure 4). On the basis of structural homologies with rhodopsin and the
10 β-adrenergic receptors, (19) it is likely that the amino termini of the olfactory proteins are located on the extracellular side of the plasma membrane and the carboxyl termini are located in the cytoplasm. In this scheme, three extracellular loops alternate with three intracellular loops to link the seven transmembrane domains (see Figure 5).
15 Analysis of the sequences in figure 4 demonstrates that the olfactory proteins, like other members of the receptor superfamily, display no evidence of an N-terminal signal sequence. As in several other superfamily members, a potential N-linked glycosylation site is present in all ten
20 proteins within the short N-terminal extracellular segment. Other structural features conserved with previously identified members of the superfamily included cysteine residues at fixed positions within the first and second extracellular loops that are thought to form a disulfide bond.
25 Finally, many of the olfactory proteins reveal a conserved cysteine within the C-terminal domain which may serve as a palmitoylation site anchoring this domain to the membrane (21). These features, taken together with several short, conserved sequence motifs (see legend to Figure 4),
30 clearly define this new family as a member of the
35

-27-

superfamily of genes encoding the seven transmembrane domain receptors.

There are, however, important differences between the
5 olfactory protein family and the other seven transmembrane domain proteins described previously and these differences may be relevant to proposed function of these proteins in odor recognition. Structure-function experiments involving
10 in vitro mutagenesis suggest that adrenergic ligands interact with this class of receptor molecule by binding within the plane of the membrane (22, 20). Not surprisingly, small receptor families that bind the same class of ligands, such as the adrenergic and muscarinic acetylcholine receptor families exhibit maximum sequence
15 conservation (often over 80%) within the transmembrane domains. In contrast, the family of receptors discussed in this application shows striking divergence within the third, fourth, and fifth transmembrane domains (Figure 4). The variability in the three central transmembrane domains is highlighted schematically in Figure 5. The divergence in potential ligand binding domains is consistent with the idea that the family of molecules cloned is capable of associating with a large number of odorant of diverse molecular structure.

25 Receptors which belong to the superfamily of seven transmembrane domain proteins interact with G-proteins to generate intracellular signals. In vitro mutagenesis experiments indicate that one site of association between
30 receptor and G-protein resides within the third cytoplasmic loop (22, 23). The sequence of this cytoplasmic loop in 18 different clones we have characterized is shown in Figure 6A. This loop which is often quite long and of variable length in the receptor superfamily is relatively short (only
35 17 amino acids) and of fixed length in the 18 clones

-28-

examined. Eleven of the 18 different clones exhibit the sequence motif K/R I V S S I (or a close relative) at the N-terminus of this loop. Two of the cDNA clones reveal a different H I T C/W A V motif at this site. If this short
5 loop is a site of contact with G-proteins, it is possible that the conserved motifs may reflect sites of interaction with different G-proteins that activate different intracellular signalling systems in response to odors. In addition, the receptors cloned reveal several serine or
10 threonine residues within the third cytoplasmic loop. By analogy with other G-protein coupled receptors, these residues may represent sites of phosphorylation for specific receptor kinases involved in desensitization. (24)

15 Subfamilies within the Multigene Family

Figure 6A displays the sequences of the fifth transmembrane domain and the adjacent cytoplasmic loop encoded by L8 of the cDNA clones we have analyzed. As a group, the 18 sequences exhibit considerable divergence within this region. The multigene family, however, can be divided into subfamilies such that the members of a given subfamily share significant sequence conservation. In subfamily B, clones F12 and F13, for example, differ from one another at only
20 four of 44 positions (91% identify), and clearly define a subfamily. Clones F5 and I11 (subfamily D) differ from F12 and F13 at 34-36 positions within this region and clearly define a separate subfamily. Thus, this olfactory-specific multigene family consists of highly divergent subfamilies.
25 If these genes encode odor receptors, it is possible that members of the divergent subfamilies bind odorant of widely differing structural classes. Members of the individual subfamilies could therefore recognize more subtle differences between molecules which belong to the same
30 structural class of molecules structures.

35

-29-

The Size of the Multigene Family

Genomic Southern blotting experiments were preformed and genomic libraries were screened to obtain an estimate of the sizes of the multigene family and the member subfamilies encoding the putative odor receptors. DNAs extending from the 3' end of transmembrane domain 3 to the middle of transmembrane domain 6 were synthesized by PCR from DNA of seven of the divergent cDNA clones (Figure 4). In initial experiments, these DNAs were labeled and hybridized to each other to define conditions under which minimal crosshybridization would be observed among the individual clones. At 70°C, the seven DNAs showed no crosshybridization, or crosshybridized only very slightly. The trace levels of crosshybridization observed are not likely to be apparent upon genomic Southern blot analysis where the amounts of DNA are far lower than in the test cross.

Probes derived from these seven DNAs were annealed under stringent conditions, either individually or as a group, to Southern blots of rat liver DNA digested with the restriction endonucleases Eco RI or Hind III (Figure 7). Examination of the Southern blots reveals that all but one of the cDNAs detects a relatively large, distinctive array of bands in genomic DNA. Clone I15 (probe 7), for example, detects about 17 bands with each restriction endonuclease, whereas clone F9 (probe 1) detects only about 5-7 bands with each enzyme. A single band is obtained with clone I7 (probe 5). PCR experiments using nested primers (TM2/TM7 primers followed by primers to internal sequences) and genomic DNA as template indicate that the coding regions of the members of this multigene family, like those of many members of the G-protein coupled superfamily, may not be interrupted by introns. This observation, together with the fact that most

-30-

of the probes only encompasses 400 nucleotides suggests that each band observed in these experiments is likely to represent a different gene. These data suggest that the individual probes chosen are representatives of subfamilies which range in size from a single member to as many as 17 members. A total of about 70 individual bands were detected in this analysis which could represent the presence of at least 70 different genes. Although the DNA probes used in these blots did not crosshybridize appreciably with each other, it is possible that a given gene might hybridize to more than one probe, resulting in an overestimate of gene number. However, it is probable that the total number of bands only reflects a minimal estimate of gene number since it is unlikely that we have isolated representative cDNAs from all of the potential subfamilies and the hybridizations were performed under conditions of very high stringency.

A more accurate estimate of the size of the olfactory-specific gene family was obtained by screening rat genomic libraries. The mix of the seven divergent probes used in Southern blots, or the mix of 20 different probes used in our initial Northern blots (see Figure 3), were used as hybridization probes under high (65°C) or lowered (55°C) stringency conditions in these experiments. Nested PCR (see above) was used to verify that the clones giving a positive signal under low stringency annealing conditions were indeed members of this gene family. It is estimated from these studies that there are between 100 and 200 positive clones per haploid genome. The estimate of the size of the family obtain from screens of genomic libraries again represents a lower limit. Given the size of the multigene family, one might anticipate that many of these genes are linked such that a given genomic clone may contain multiple genes. Thus the data from Southern blotting and screens of genomic libraries indicate that the multigene family identified

-31-

consists of one to several hundred member genes which can be divided into multiple subfamilies.

It should be noted that the cDNA probes isolated may not be representative of the full complement of subfamilies within the larger family of olfactory proteins. The isolation of cDNAs, for example, relies heavily on PCR with primers from transmembrane domains 2 and 7 and biases our clones for homology within these regions. Thus, estimates of gene number as well as subsequent estimates of RNA abundance should be considered as minimal.

Expression of the Members of this Multigene Family

Additional Northern blot analyses were preformed to demonstrate that expression of the members of this gene family is restricted to the olfactory epithelium. (Figure 8) Northern blot analysis with a mixed probe consisting of the seven divergent cDNAs used above reveals two diffuse bands about 5 and 2 kb in length in olfactory epithelium RNA. This pattern is the same as that seen previously with the mix of 20 DNAs. No annealing is observed to RNA from the brain or retina or other, nonneural tissues, including lung, liver, spleen, and kidney.

An estimate of the level of expression of this family can be obtained from screens of cDNA libraries. The frequency of positive clones in cDNA libraries made from olfactory epithelium RNA suggests that the abundance of the RNAs in the epithelium is about one in 20,000. The frequency of positive clones is approximately five-fold higher in a cDNA library prepared from RNA from purified olfactory neurons (in which 75% of the cells are olfactory neurons). The increased frequency of positive clones obtained in the olfactory neuron cDNA library is comparabl to the

-32-

enrichment we obtain upon purification of olfactory neurons. These observations suggest that this multigene family is expressed largely, if not solely, in olfactory neurons and may not be expressed in other cell types within the epithelium. If each olfactory neuron contains 10^5 mRNA molecules, from the frequency of positive clones we predict that each neuron contains only 25-30 transcripts derived from this gene family. Since the family of olfactory proteins consists of a minimum of a hundred genes, a given olfactory neuron could maximally express only a proportion of the many different family members. These values thus suggest that olfactory neurons will exhibit significant diversity at the level of expression of these olfactory proteins.

15

Identification of pheromone receptors in vomeronasal organ
The vomeronasal organ (vomeronasal gland) is an accessory olfactory structure that is located near the nasal cavity. Like the olfactory epithelium of the nasal cavity, the olfactory epithelium of the vomeronasal organ contains olfactory sensory neurons. The vomeronasal organ is believed to play an important role in the sensing of pheromones in numerous species. Pheromones are believed to have profound effects on both physiological and behavioral aspects of reproduction. The identification of pheromone receptors would permit the identification of the pheromones themselves. It would also enable one to identify agonists or antagonists that would either mimic the pheromones or block the pheromone receptors from transducing pheromone signals. Such information would be important to the development of species specific pesticides and, conversely, to animal husbandry. The identification of pheromone receptors in humans could ultimately lead to the development of contraceptives or to treatments for infertility in humans. It is likely that the identification of pheromone receptors

35

-33-

in low mammals such as rodents would lead to the identification of similar receptors in human.

5 In order to identify potential pheromone receptors, we isolate RNA from the vomeronasal organs of female rats and prepared cDNA from this RNA. The cDNA was subjected to PCR with several different pairs of degenerate oligonucleotide primers that match sequences present in the rat odorant receptor family. The PCR products were subcloned and the
10 nucleotide sequences of the subcloned DNAs were determined. Each of the subcloned DNAs encodes a protein that belongs to the odorant receptor family. The sequences of the following vomeronasal subclones are shown: J1, J2, J4, J7, J8, J11, J14, J15, J16, J17, J19, J20. In a few cases (J2, J4), the
15 same sequence was amplified with two different primer pairs and the sequence shown is a composite of the two sequences. It is possible that one or more of these molecules, or closely related molecules, serve as pheromone receptors in the rat.

20

DISCUSSION

25 The mammalian olfactory system can recognize and discriminate a large number of odorous molecules. Perception in this system, as in other sensory systems, initially involves the recognition of external stimuli by primary sensory neurons. This sensory information is then transmitted to the brain where it is decoded to permit the discrimination of different odors. Elucidation of the logic underlying olfactory perception is likely to require the identification of the specific odorant receptors, the analysis of the extent of receptor diversity and receptor specificity, as well as an understanding of the pattern of receptor expression in the olfactory epithelium.

30

35

-34-

The odorant receptors are thought to transduce intracellular signals by interacting with G-proteins which activate second messenger systems (12, 13, 14, 15). These proteins are clearly members of the family of G-protein coupled receptors which traverse the membrane seven times (19). The odorant receptors should be expressed specifically in the tissue in which odorant are recognized. The family of olfactory proteins cloned is expressed in the olfactory epithelium. Hybridizing RNA is not detected in brain or retina, or in a host of nonneural tissues. Moreover, expression of this gene family the epithelium may be restricted to olfactory neurons. The family of odorant receptors must be capable of interacting with extremely diverse molecular structures. The genes cloned are members of any extremely large multigene family which exhibit variability in regions thought to be important in ligand binding. The possibility that each member of this large family of seven transmembrane proteins is capable of interacting with only one or a small number of odorant provides a plausible mechanism to accommodate the diversity of odor perception. The properties of the gene family identified suggests that this family is likely to encode a large number of distinct odorant receptors.

25 Size of the Multigene Family

The size of the receptor repertoire is likely to reflect the range of detectable odors and the degree of structural specificity exhibited by the individual receptors. It has been estimated that humans can identify over 10,000 structurally-distinct odorous ligands. However, this does not necessarily imply that humans possess an equally large repertoire of odorant receptors. For example, binding studies in lower vertebrates suggest that structurally-related odorant may activate the same receptor molecules.

-35-

In fish which smell amino acids, the binding of alanine to isolated cilia can be competed by other small polar residues (threonine and serine), but not by the basic amino acids, lysine or arginine (11). These data suggest that individual receptors are capable of associating with several structurally-related ligands, albeit with different affinities. Stereochemical models of olfactory recognition in mammals (25) (based largely on psychophysical, rather than biophysical data) have suggested existence of several primary odor groups including camphoraceous, musky, peppermint, ethereal, pungent, and putrid. In such a model, each group would contain odorant with common molecular configurations which bind to common receptors and share similar odor qualities.

15

Screens of genomic libraries with mixed probes consisting of divergent family members detect approximately 100 to 200 positive clones per genome. The present estimate of at least 100 genes provides only a lower limit since it is likely that the probes used do not detect all of the possible subfamilies. Moreover, it is probable that many of these genes are linked such that a given genomic clone may contain multiple genes. It is therefore expected that the actual size of the gene family may be considerably higher and this family of putative odorant receptors could constitute one of the largest gene families in the genome.

20
25

The characterization of a large multigene family encoding putative odorant receptors suggests that the olfactory system utilizes a far greater number of receptors than the visual system. Color vision, for example, allows the discrimination of several hundred hues, but is accomplished by only three different photoreceptors (1, 2, 3 and 4). The photoreceptors each have different, but overlapping absorption spectra which cover the entire spectrum of

30
35

-36-

visible wavelengths. Discrimination of color results from comparative processing of the information from these three classes of photoreceptors in the brain. Whereas three photoreceptors can absorb light across the entire visible spectrum, our data suggest that a small number of odorant receptors cannot recognize and discriminate the full spectrum of distinct molecular structures perceived by the mammalian olfactory system. Rather, olfactory perception probably employs an extremely large number of receptors each capable of recognizing a small number of odorous ligands.

Diversity within the Gene Family and the Specificity of Odor Recognition

The olfactory proteins identified in this application are clearly members of the superfamily of receptors which traverse the membrane seven time. Analysis of the proteins encoded by the 18 distinct cDNAs we have cloned reveals structural features which may render this family particularly well suited for the detection of a diverse array of structurally distinct odorant. Experiments with other members of this class of receptors suggest that the ligand binds to its receptor within the plane of the membrane such that the ligand contacts many, if not all of the transmembrane helices. The family of olfactory proteins can be divided into several different subfamilies which exhibit significant sequence divergence within the transmembrane domains. Nonconservative changes are commonly observed within blocks of residues in transmembrane regions 3, 4, and 5 (Figures 4, 5, 6); these blocks could reflect the sites of direct contact with odorous ligands. Some members, for example, have acidic residues in transmembrane domain 3, which in other families are thought to be essential for binding aminergic ligands (20) while other members maintain hydrophobic residues at these positions.

-37-

This divergence within transmembrane domains may reflect the fact that the members of the family of odorant receptors must associate with odorant of widely different molecular structures.

5

These observations suggest a model in which each of the individual subfamilies encode receptors which bind distinct structural classes of odorant. Within a given subfamily, however, the sequence differences are far less dramatic and are often restricted to a small number of residues. Thus, the members of a subfamily may recognize more subtle variations among odor molecules of a given structural class. At a practical level, individual subfamilies may recognize grossly different structures such that one subfamily may associate, for example, with the aromatic compound, benzene and its derivatives, whereas a second subfamily may recognize odorous, short chain, aliphatic molecules. Subtle variations in the structure of the receptors within, for example, the hypothetical benzene subfamily could facilitate the recognition and discrimination of various substituted derivatives such as toluene, xylene or phenol. It should be noted that such a model, unlike previous stereochemical models, does not necessarily predict that molecules with similar structures will have similar odors. The activation of distinct receptors with similar structures could elicit different odors, since perceived odor will depend upon higher order processing of primary sensory information.

30

Evolution of the Gene Family and the Generation of Diversity
Preliminary evidence from PCR analyses suggests that members of this family of olfactory proteins are conserved in lower vertebrates as well as invertebrates. This gene family presumably expanded over evolutionary time providing mammals with the ability to recognize an increasing diversity of

35

-38-

odorant. Examination of the sequences of the family members cloned from mammals provides some insight into the evolution of this multigene family. Although the chromosomal loci encoding these genes has yet to be characterized, it is 5 likely that at least some member genes will be tandemly arranged in a large cluster as is observed with other large multigene families. A tandem array of this sort provides a template for recombination events including unequal crossing over and gene conversion, that can lead to expansion and 10 further diversification of the sort apparent among the family members we have cloned (26).

The multigene family encoding the olfactory proteins is 15 large: all of the member genes clearly have a common ancestral origin, but have undergone considerable divergence such that individual genes encode proteins that share from 40-80% amino acid identity. Subfamilies are apparent with groups of genes sharing greater homology among themselves than with members of other subfamilies. Examination of the 20 sequences of even the most divergent subfamilies, however, reveals a pattern in which several blocks of conserved residues are interspersed with variable regions. This segmental homology is conceptually similar to the organization of framework and hypervariable domains within 25 the families of immunoglobulin and T cell receptor variable region sequences (27, 28). This analogy goes beyond structural organization and may extend to the function of these two gene families: each family consists of a large number of genes which have diversified over evolutionary 30 time to accommodate the binding of a highly diverse array of ligands. The evolutionary mechanisms responsible for the diversification and maintenance of these large gene families may also be similar. It has been suggested that gene conversion has played a major role in the evolution f 35 immunoglobulin and T cell receptor variable domains (29, 30

-39-

- and 31). Analysis of the sequence of the putative olfactory receptors reveals at least one instance where a motif from a variable region of one subfamily is found imbedded in the otherwise divergent sequence of a second subfamily,
5 suggesting that conversion has occurred. Such a mixing of motifs from one subfamily to another over evolutionary time would provide additional combinatorial possibilities leading to the generation of diversity.
- 10 It should be noted, however, that the combinatorial joining of gene segments by DNA rearrangement during development, which is characteristic of immunoglobulin loci (27), is not a feature of the putative odor receptor gene family. No evidence for DNA rearrangement to generate the diversity of
15 genes cloned has been observed. The entire coding region has been sequenced along with parts of the 5' and 3' untranslated regions of 10 different cDNA clones. The sequences of the coding regions are all different; no evidence has been obtained for constant regions that would
20 suggest DNA rearrangement of the sort seen in the immune system. The observations indicate that the diversity olfactory proteins are coded by a large number of distinct gene sequences.
- 25 Although it is unlikely from the data that DNA rearrangement is responsible for the generation of diversity among the putative odorant receptors, it remains possible that DNA rearrangements may be involved in the regulation of expression of this gene family. If each olfactory neuron expresses only one or a small number of genes, then a transcriptional control mechanism must be operative to choose which of the more than one hundred genes within the family will be expressed in a given neuron. Gene conversion
30 from one of multiple silent loci into a single active locus,
35 as observed for the trypanosome-variable surface

-40-

glycoproteins (32), provides one attractive model. The gene conversion event could be stochastic, such that a given neuron could randomly express any one of several hundred receptor genes, or regulated (perhaps by positional information), such that a given neuron could only express one or a small number of predetermined receptor types. Alternatively, it is possible that positional information in the olfactory epithelium controls the expression of the family of olfactory receptors by more classical mechanisms that do not involve DNA rearrangement. What ever mechanisms will regulate the expression of receptor genes within this large, multigene family, these mechanisms must accommodate the requirement that olfactory neurons are regenerated every 30-60 days (8) and therefore the expression of the entire repertoire of receptors must be accomplished many times during the life of an organism.

Receptor Diversity and the Central Processing of Olfactory Information

The results suggest the existence of a large family of distinct odorant receptors. Individual members of this receptor family are likely to be expressed by only a small set of the total number of olfactory neurons. The primary sensory neurons within the olfactory epithelium will therefore exhibit significant diversity at the level of receptor expression. The question then emerges as to whether neurons expressing the same receptors are localized in the olfactory epithelium. Does the olfactory system employ a topographic map to discriminate among the numerous odorant? The spatial organization of distinct classes of olfactory sensory neurons, as defined by receptor expression, can now be determined by using the procedures of in situ hybridization and immunohistochemistry with probes specific for the individual receptor subtypes. This

-41-

information should help to distinguish between different models that have been proposed to explain the coding of diverse odorant stimuli (33).

- 5 In one model, sensory neurons that express a given receptor and respond to a given odorant may be localized within defined positions within the olfactory epithelium. This topographic arrangement would also be reflected in the projection of olfactory sensory axons into discrete regions (glomeruli) within the olfactory bulb. In this scheme, the central coding to permit the discrimination of discrete odorant would depend, in part, on the spatial segregation of different receptor populations. Attempts to discern the topographic localization of specific receptors at the level of the olfactory epithelium has led to conflicting results.
- 10 In some studies, electrophysiological recordings have revealed differences in olfactory responses to distinct odorant in different regions of the olfactory epithelium (34, 35). However, these experiments have been difficult to interpret since the differences in response across the epithelium are often small and are not observed in all studies (36).
- 15 A second model argues that sensory neurons expressing distinct odorant receptors are randomly distributed in the epithelium but that neurons responsive to a given odorant project to restricted regions within the olfactory bulb. In this instance, the discrimination of odors would be a consequence of the position of second order neurons in the olfactory bulb, but would be independent of the site of origin of the afferent signals within the epithelium.
- 20 Mapping of the topographic projections of olfactory neurons has been performed by extracellular recordings from different regions of the bulb (37, 38) and by 2-deoxyglucose autoradiography to map regional activity after exposure to
- 25
- 30
- 35

-42-

- different odorant (39). These studies suggest that spatially-localized groups of bulbar neurons preferentially respond to different odorant. The existence of specific odorant receptors, randomly distributed through the olfactory epithelium, which converge on a common target within the olfactory bulb, would raise additional questions about the recognition mechanisms used to guide these distinct axonal subsets to their central targets.
- Other sensory systems also spatially segregate afferent input from primary sensory neurons. The spatial segregation of information employed, for example, by the visual and somatosensory systems, is used to define the location of the stimulus within the external environment as well as to indicate the quality of the stimulus. In contrast, olfactory processing does not extract spatial features of the odorant stimulus. Relieved of the necessity to encode information about the spatial localization of the sensory stimulus, it is possible that the olfactory system of mammals uses the spatial segregation of sensory input solely to encode the identity of the stimulus itself. The molecular identification of the genes likely to encode a large family of olfactory receptors should provide initial insights into the underlying logic of olfactory processing in the mammalian nervous system.

-43-

REFERENCES

1. Rushton, W.A.H. (1965). A Foveal pigment in the deuteranope. *J. Physiol.* 176, 24-37.
- 5 2. Rushton, W.A.H. (1955). Foveal photopigments in normal and colour-blind. *J. Physiol.* 129, 41-42.
- 10 3. Wald, G., Brown, P.K., and Smith, P.H. (1955). Iodopsin. *J. Gen. Physiol.* 38, 623-681.
- 15 4. Nathans, J., Thomas, D., and Hogness, D.S. (1986). Molecular genetics of human color vision: The genes encoding blue, green and red pigments. *Science* 232, 193-202.
- 20 5. Lancet, D. (1986). Vertebrate olfactory reception. *Ann. Rev. Neurosci.* 9, 329-355.
6. Reed, R.R. (1990). How does the nose know? Minireview. *Cell* 60, 1-2.
- 25 7. Moulton, D.G., and Beidler, L.M. (1967). Structure and function in the peripheral olfactory system. *Physiol. Rev.* 47, 1-52.
8. Graziadei, P.P.C., and Monti Graziadei, G.A. (1979). Neurogenesis and neuron regeneration in the olfactory system of mammals. I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons. *J. Neurocytol.* 8, 1-18.
- 30 35 9. Bronshtein, A.A., and Minor, A.V. (1977). Regeneration of olfactory flagella and restoration of the

-44-

electroolfactogram following application of triton X-100 to the olfactory mucosa of frogs. *Tsitologija* 19, 33-39.

- 5 10. Rhein, L.D., and Cagan, R.H. (1980). Biochemical studies of olfaction: Isolation, characterization, and odorant binding activity of cilia from rainbow trout olfactory rosettes. *Proc. Natl. Acad. Sci. USA* 77, 4412-4416.
- 10 11. Rhein, L.D., and Cagan, R.H. (1983). Biochemical studies of olfaction: Binding specificity of odorant to a cilia preparation from rainbow trout olfactory rosettes. *J. Neurochem.* 41, 569-577.
- 15 12. Pace, U., Hanski, E., Salomon, Y., and Lancet, D. (1985). Odorant-sensitive adenylate cyclase may mediate olfactory reception. *Nature* 316, 255-258.
- 20 13. Sklar, P.B., Anholt, R.R.H., and Snyder, S.H. (1986). The odorant-sensitive adenylate cyclase of olfactory receptor cells: Differential stimulation by distinct classes of odorant. *J. Biol. Chem.* 261, 15538-15543.
- 25 14. Breer, H., Boekhoff, I., and Tareilus, E. (1990). Rapid kinetics of second messenger formation in olfactory transduction. *Nature* 345, 65-68.
- 30 15. Boekhoff, I., Tareilus, E., Strotmann, J., and Breer, H. (1990). Rapid activation of alternative second messenger pathways in olfactory cilia from rats by different odorant. *EMBO J.* 9, 2453
- 35 16. Jones, D.T., and Reed, R.R. (1989). G_{olf}: an olfactory neuron specific-G-protein involved in odorant signal

-45-

transduction. *Science* 244, 790-795.

17. Nakamura, T. and Gold G. (1987). A cyclic nucleotide-gated conductance in olfactory receptor cilia. *Nature* 325, 442-444.
18. Dhallan, R.S., Yau, K.-W., Schrader, K.A., and Reed, R.R. (1990). Primary structure and functional expression of a cyclic nucleotide-activated channel from olfactory neurons. *Nature* 347, 184-187.
19. O'Dowd, B.F., Felkowitz, R.J., and Caron, M.G. (1989). Structure of the adrenergic and related receptors. *Ann. Rev. Neurosci.* 12, 67-83.
20. Strader, C.D., Sigal, I.S., and Dixon, R.F. (1989). Structural basis of β -adrenergic receptor function *FASEB J.* 3, 1825-1832.
21. O'Dowd, B.F., Hnatowich, M., Caron, M.G., Lefkowitz, R.J., and Bouvier, M. (1989) Palmitoylation of the human β_2 -adrenergic receptor. Mutation of CYS³⁴¹ in the carboxyl tail leads to an uncoupled nonpalmitoylated form of the receptor. *J. Biol. Chem.* 264, 7564-7569.
22. Kobilka, B.K., Kobilka, T.S., Daniel, K., Regan, J.W., Caron, M.G., and Lefkowitz, R.J. (1988) Chimeric α_2 - β_2 -adrenergic receptors: delineation of domains involved in effector coupling and ligand binding specificity. *Science* 240, 1310-1316.
23. Hamm, H.E., Deretic, D., Arendt, A., Hargrove, P.A., Koenig, B., and Hofmann, K.P. (1988) Site of G protein binding to rhodopsin mapping with synthetic peptides to

-46-

the α subunit. *Science* 241, 832-835. (1988).

24. Bouvier, M.W., Hausdorff, A., De Blasi, A., O'Dowd,
B.F., Kobilka, B.K., Caron, M.G., and Lefkowitz, R.J.
5 (1988). Removal of phosphorylation sites from the β -
adrenergic receptor delays the onset of agonist-
promoted desensitization. *Nature (London)* 333, 370-
373.
- 10 25. Amoore, J.E. (1982). Odor Theory and Odor
Classification, In *Fragrance Chemistry* (New York:
Academic Press, Inc.), pp. 27-73.
- 15 26. Maeda, N., and Smithies, O. (1986). The evolution of
multigene families: Human haptoglobin genes. *Ann.
Rev. Genet.* 20, 81-108.
- 20 27. Tonegawa, S. (1983). Somatic generation of antibody
diversity. *Nature* 302, 575-581.
28. Hood, L., Kronenberg, M., and Hunkapiller, T. (1985).
T cell antigen receptors and the immunoglobulin
supergene family. *Cell* 40, 225-229.
- 25 29. Baltimore, D. (1981). Gene conversion: Some
implications for immunoglobulin genes. Minireview.
Cell 24, 592-594.
- 30 30. Egel, R. (1981). Intergenic conversion and reiterated
genes. *Nature* 290, 191-192.
- 35 31. Flanagan, J.G., Lefranc, M.-P., and Rabbits, T.H.
(1984). Mechanisms of divergence and convergence of
the human immunoglobulin $\alpha 1$ and $\alpha 2$ constant region gene
sequences. *Cell* 36, 681-688.

-47-

32. Van der Ploeg, L.H.T. (1991). Antigenic variation in African trypanosomes: genetic recombination and transcriptional control of VSG genes. In Gene Rearrangement. (New York: Oxford University Press), pp 51-98.
- 5
33. Shepherd, G.M. (1985). Are there labeled lines in the olfactory pathway? In Taste, Olfaction and the Central Nervous System (New York: The Rockefeller University Press), pp. 307-321.
- 10
34. Mackay-Sim, A., Shaman, P., and Moulton, D.G. (1982). Topographic coding of olfactory quality: odorant-specific patterns of epithelial responsivity in the Salamander. *J. Neurophysiol.* 48, 584-596.
- 15
35. Thommesen, G., and Doving, K.B. (1977). Spatial distribution of the EOG in the rat. A variation with odour stimulation. *Acta physiol. scand.* 99, 270-280.
- 20
36. Sicard, G. (1985). Olfactory discrimination of structurally related molecules: Receptor cell responses to camphoraceous odorant. *Brain Res.* 326, 203-212.
- 25
37. Thommesen, G. (1978). The spatial distribution of odour induced potentials in the olfactory bulb of char and trout (Salmonidae). *Acta Physiol. Scand.* 102, 205-217.
- 30
38. Doving, K.B., Selset, R., and Thommesen, G. (1980). Olfactory sensitivity to bile acids in salmonid fishes. *Acta Physiol. Scand.* 108, 123-131.
- 35
39. Stewart, W.B., Kauer, J.S., and Shepherd, G.M. (1979).

-48-

Functional organization of the rat olfactory bulb analyzed by the 2-deoxyglucose method. J. Comp. Neurol. 185, 715-734.

- 5 40. Chirgwin, J.M., Przbyla, A.E., MacDonald, R.J., and Rutter, W.J. (1979). Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294-5299.
- 10 41. Maniatis, T., Fritsch, E., and Sambrook, J. (1982). Molecular Cloning: A Laboratory Manual (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press).
- 15 42. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, Second Edition (Cold Spring Harbor, New York, Cold Spring Harbor Laboratory Press).
- 20 43. Julius et al., (1988). Molecular Charatization of a Functional cDNA Encoding a Serotonin 1c Receptor. Science 241, 558-564.

-49-

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: Columbia University in the City of N.Y.,
The Trustees of

(ii) TITLE OF INVENTION: ODORANT RECEPTORS AND USES THEREOF

(iii) NUMBER OF SEQUENCES: 36

(iv) CORRESPONDENCE ADDRESS:

- (A) ADDRESSEE: COOPER & DUNHAM
- (B) STREET: 30 Rockefeller Plaza
- (C) CITY: New York
- (D) STATE: New York
- (E) COUNTRY: U.S.A.
- (F) ZIP: 10112

(v) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) OPERATING SYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0, Version #1.25

(vi) PRIOR APPLICATION DATA:

- (A) APPLICATION NUMBER: US 681,880
- (B) FILING DATE: 05-APR-1991

(vii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: White, John P.
- (B) REGISTRATION NUMBER: 28,678
- (C) REFERENCE/DOCKET NUMBER: 38586

(viii) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: (212) 977-9550
- (B) TELEFAX: (212) 664-0525
- (C) TELEX: (212) 422523 COOP UI

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 954 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: NO

(v) ORIGINAL SOURCE:

- (A) ORGANISM: rat olfactory epithelium
- (B) STRAIN: Sprague-Dawley rat
- (F) TISSUE TYPE: olfactory epithelium

(vi) IMMEDIATE SOURCE:

-50-

(B) CLONE: F12

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

ATGGAATCAG	CGAACAGCAC	AAGAAGATT	TCAAGTTTT	TTCTTCTTGG	ATTACAGAA	60
AACCCACAAC	TTCACTTCCT	CATTTTGCA	CTATTCCTGT	CCATGTACCT	GGTAACAGTG	120
CTTGGGAACC	TGCTTATCAT	TATGCCATC	ATCACACAGT	CTCATTGCA	TACACCCATG	180
TACTTTTCC	TTGCTAACCT	ATCCTTGTG	GACATCTGTT	TCACCTCCAC	CACCATCCCA	240
AAGATGTTGG	TAAATATATA	CACCCAGAGC	AAGAGCATCA	CCTATGAAGA	CTGTATTAGC	300
CAGATGTGTG	TCTTCTTGGT	TTTCGCAGAA	TTGGGCAACT	TTCTCCTGGC	TGTGATGGCC	360
TATGACCGAT	ATGTGGCTAA	CTGTCACCCA	CTGTGTTACA	CAGTCATTGT	GAACCACCGG	420
CTCTGTATCC	TGCTGCTTCT	GCTGCTCTGG	GTTATCAGCA	TTTTCCATGC	CTTCATAACAG	480
AGCTTAATTG	TGCTACAGTT	GACCTTCTGT	GGAGATGTGA	AAATCCCTCA	CTTCTTCTGT	540
GAACCTAAC	AGCTGTCCCCA	ACTCACCTGT	TCAGACAACT	TTCCAAGTCA	CCTCATAATG	600
AATCTTGTAC	CTGTTATGTT	GGCAGCCATT	TCCTTCAGTG	GCATCCTTA	CTCTTATTTC	660
AAGATAAGTAT	CCTCCATACA	TTCTATCTCC	ACAGTTCAAGG	GGAAAGTACAA	GGCATTTCT	720
ACTTGTGCCT	CTCACCTTTC	CATTGTCTCC	TTATTTATA	GTACAGGCCT	CGGAGTGTAC	780
GTCAGTTCTG	CTGTGGTCCA	AAGCTCACAT	TCTGCTGCAA	GTGCTTCGGT	CATGTATACT	840
GTGGTCACCC	CCATGCTGAA	CCCCTTCATT	TATAGTCTAA	GGAATAAAGA	TGTGAAGAGA	900
GCTCTGGAAA	GACTGTTAGA	AGGAAACTGT	AAAGTGCATC	ATTGGACTGG	ATGA	954

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1002 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: rat olfactory epithelium
- (B) STRAIN: Sprague-Dawley rat
- (F) TISSUE TYPE: olfactory epithelium

(vii) IMMEDIATE SOURCE:

- (B) CLONE: F3

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

-51-

ATGGACTCAA GCAACAGGAC AAGAGTTCA GAATTCTTC TTCTTGGATT TGTAGAAAAC	60
AAAGACCTAC AACCCCTTAT TTATGGTCTT TTTCTCTCTA TGTACCTGGT TACTGTCATT	120
GGAAACATAT CCATTATTGT GGCTATCATT TCAGATCCCT GTCTGCACAC CCCCATGTAT	180
TTCTTCTCT CTAACCTGTC CTTTGTGGAC ATCTGTTCA TTTCAACCAC TGTCCAAAG	240
ATGTTAGTGA ACATCCAGAC CCAAAACAAT GTCATCACCT ATGCAGGATG CATTACCCAG	300
ATATACTTT TCTTGCTCTT TGTAGAATTG GACAACCTCT TGCTGACTAT CATGGCTAT	360
GACCGTTACG TAGCCATCTG TCACCCCCATG CACTACACAG TTATCATGAA CTACAAGCTC	420
TGTGGATTTC TGGTTCTGGT ATCTTGGATT GTAAGTGTTC TGCATGCCCTT GTTCAAAGC	480
TTGATGATGT TGGCGCTGCC CTTCTGCACA CATCTGGAAA TCCCACACTA CTTCTGTGAA	540
CCTAACTCAGG TGATTCAACT CACCTGTTCT GATGCATTTC TTAATGATCT TGTGATATAT	600
TTTACACTTG TGCTGCTGGC TACTGTTCTT CTTGCTGGCA TCTTCTATTTC TTACTTCAAG	660
ATAGTGTCTT CCATATGTGC TATATCGTCA GTTCATGGGA AGTACAAAGC ATTCTCCACC	720
TGTGCATCTC ACCTTTCACT CGTGTCTTTA TTTTACTGCA CAGGACTAGG AGTGTACCTC	780
AGTTCTGCTG CAAACAAACAG CTCACAGGCA AGTGCCACAG CCTCAGTCAT GTACACTGTA	840
GTTACCCCTA TGGTGAACCC TTTTATCTAT AGTCTTAGGA ATAAAGATGT TAAGAGTGT	900
CTGAAAAAAA CTCTTTGTGA GGAAGTTATA AGGAGTCCAC CTTCCCTACT TCATTTCTTC	960
CTAGTGTAT GTCATCTCCC TTGTTTATT TTTGTTATT AA	1002

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 942 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: rat olfactory epithelium
- (B) STRAIN: Sprague-Dawley rat
- (F) TISSUE TYPE: olfactory epithelium

(vii) IMMEDIATE SOURCE:

- (B) CLONE: P5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

ATGAGCAGCA CCAACCAGTC CAGTGTCAAC GAGTTCTCC TCCTGGGACT CTCCAGGCAG	60
CCCCAGCAGC AGCAGCTCCT CTTCTGCTC TTCCATCA TGTACCTGGC CACTGTCCTG	120

-52-

GGAAACCTGC TCATCATCCT GGCTATTGGC ACAGACTCCC GCCTGCACAC CCCCCATGTAC	180
TTCTTCCTCA GTAACCTGTC CTTGTGGAT GTCTGCTTCT CCTCTACCAC TGTCCCTAAA	240
GTTCTGGCCA ACCATATACT TGGGAGTCAG GCCATTTCT TCTCTGGGTG TCTCACCCAG	300
CTGTATTTTC TCGCTGTGTT TGGTAACATG GACAATTCC TGCTGGCTGT GATGTCCSTAT	360
GACCGAATTG TGGCCATATG CCACCCCTTA CACTACACAA CAAAGATGAC CGTCAGCTC	420
TGTGTCCCTGC TTGTTGTGGG GTCATGGTT GTAGCCAACA TGAATTGTCT GTTGCACATA	480
CTGCTCATGG CTGACTCTC CTTCTGTGCA GACAACATGA TCCCCCACTT CTTCTGTGAT	540
GGAACCTCCCC TCCTGAAACT CTCCTGCTCA GACACACATC TCAATGAGCT GATGATTCTT	600
ACAGAGGGAG CTGTGGTCAT GGTCAACCCCA TTTGTCTGCA TCCTCATCTC CTACATCCAC	660
ATCACCTGTG CTGTCCCTCAG AGTCTCATCC CCCAGGGGAG GATGAAATC CTTCTCCACC	720
TGTGGCTCCC ACCTGGCTGT GGTCTGCCTC TTCTATGGCA CCGTCATCGC TGTGTATTTC	780
AACCCATCAT CCTCTCACTT AGCTGGGAGG GACATGGCAG CTGCAGTGAT GTATGCAGTG	840
GTGACCCCAA TGCTGAACCC TTTCATCTAT AGCCTGAGGA ACAGCGACAT GAAAGCAGCT	900
TTAAGGAAAG TGCTGCCAT GAGATTCCA TCTAAGGAGT AA	942

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 936 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: rat olfactory epithelium
- (B) STRAIN: Sprague-Dawley rat
- (F) TISSUE TYPE: olfactory epithelium

(vii) IMMEDIATE SOURCE:

- (B) CLONE: F6

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

ATGGCTTGGGA GTACTGGCCA GAACCTGTCC ACACCAAGGAC CATTCACTTT GCTGGGCTTC	60
CCAGGGCCAA GGAGCATGCG CATTGGGCTC TTCTGCTTT TCCTGGTCAT GTATCTGCTT	120
ACGGTAGTTG GAAACCTAGC CATCATCTCC CTGGTAGGTG CCCACAGATG CCTACAGACA	180
CCCATGTACT TCTTCCTCTG CAACCTCTCC TTCTGGAGA TCTGGTCAC CACAGCCTGC	240
GTACCCAAGA CCCTGGCCAC ATTTGCGCCT CGGGGTGGAG TCATTTCCCT GGCTGGCTGT	300

-53-

GCCACACAGA TGTACTTTGT CTITTCTTTC GGCTGTACCG AGTACTTCCT GCTGGCTGTG	360
ATGGCTTATG ACCGCTACCT GGCCATCTGC CTGCCACTGC GCTATGGTGG CATCATGACT	420
CCTGGGCTGG CGATGCCGTT GGCCCTGGGA TCCTGGCTGT GTGGGTTTC TGCAATCACA	480
GTTCTGCTA CCCTCATTGC CCGCCTCTCT TTCTGTGGCT CACGTGTCA CAAACCACTTC	540
TTCTGTGACA TTTCGCCCTG GATA GTGCTT TCCTGCACCG ACACCGAGGT GGTGGAAC TG	600
GTGTCCCTTG GCATTGCCCTT CTGTGTTATT CTGGGCTCGT GTGGTATCAC ACTAGTCTCC	660
TATGCTTACA TCATCACTAC CATCATCAAG ATTCCTCTG CCCGGGGCCG GCACCGCGCC	720
TTCTCAACCT GCTCATCCCA TCTCACTGTG GTGCTGATT GGATGGCTC CACCATCTTC	780
TTGCATGTGA GGACCTCGGT AGAGAGCTCC TTGGACCTCA CCAAAGCTAT CACAGTGCTC	840
AACACCATTG TCACACCTGT GCTGAACCTT TTCATATATA CTCTGAGGAA CAAGGATGTC	900
AAGGAAGCTC TCGCAGGAC GGTGAAGGGG AAGTGA	936

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 939 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: rat olfactory epithelium
- (B) STRAIN: Sprague-Dawley rat
- (F) TISSUE TYPE: olfactory epithelium

(vii) IMMEDIATE SOURCE:

- (B) CLONE: I14

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

ATGACTGGAA ATAACCAAAAC TTTGATCTTG GAGTTCCCTCC TCCTGGGTCT GCCCATCCCA	60
TCAGAGTATC ATCTCCTGTT CTATGCCCTG TTCCCTGGCCA TGTACCTCAC CATCATCTG	120
GGAAACCTGC TAATCATTGT CCTTGTTCGA CTGGACTCTC ATCTCCACAT GCCCATGTAC	180
TTGTTTCTCA GCAACTTGTC CTTCTCTGAC CTCTGTTTT CCTCTGTAC AATGCCAAA	240
TTGCTTCAGA ACATGCAGAG CCAAGTACCA TCTATATCCT ATACAGGCTG CCTGACACAG	300
CTGTACTTCT TTATGGTTT TGGAGATATG GAGAGCTTCC TTCTTGTTG CATGGCCTAT	360
GACCGCTATG TGGCCATTG CTTTCCTTTG CGTTACACCA CCATCATGAG CACCAAGTTC	420
TGTGCTTCAC TAGTGCTACT TCTGTGGATG CTGACGATGA CCCATGCCCT GCTGCATACC	480

-54-

CTACTCATTG CTAGATTGTC TTTTGAG AAGAATGTGA TTCTTCACCTT TTTCTGTGAC	540
ATTTCTGCTC TTCTGAAGTT GTCCTGCTCA GACATTTATG TTAATGAGCT GATGATATAT	600
ATCTTGGGTG GACTCATCAT TATTATCCCA TTCCATTAA TTGTTATGTC CTATGTTAGA	660
ATTTCTTCT CCATTTGAA GTTCCATCT ATTCAGGACA TCTACAAGGT ATTCTCAACC	720
TGTGGTCCC ATCTGTCTGT GGTGACCTTG TTTTATGGGA CAATTTTGG TATCTACTTA	780
TGTCCATCAG GTAATAATTC TACTGTGAAG GAGATTGCCA TGGCTATGAT GTACACAGTG	840
GTGACTCCCA TGCTGAATCC CTTCATCTAC AGCCTGAGGA ACAGAGACAT GAAAAGGGCC	900
CTAATAAGAG TTATCTGCAC TAAGAAAATC TCTCTGTAA	939

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 945 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: rat olfactory epithelium
- (B) STRAIN: Sprague-Dawley rat
- (F) TISSUE TYPE: olfactory epithelium

(vii) IMMEDIATE SOURCE:

- (B) CLONE: I15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

ATGACAGAAG AGAACCAAAC TGTGATCTCC CAGTTCCCTTC TCCCTTTCT GCCCATCCCC	60
TCAGAGCACC AGCACCGTGT CTACGCCCTG TTCCCTGTCCA TGTACCTCAC CACTGTCCCTG	120
GGGAACCTCA TCATCATCAT CCTCATTACAC CTGGACTCCC ATCTCCACAC ACCCATGTAC	180
TTGTTCTCA GCAACTTGTC CTTCTCTGAT CTCTGCTTT CCTCTGTTAC GATGCCAAG	240
TTGTTGCAGA ACATGCAGAG CCAAGTCCA TCCATCCCT TTGCAAGGCTG CCTGACACAA	300
TTATACTTTT ACCTGTATTT TGCAGACCTT GAGAGCTTCC TGCTTGTGGC CATGGCTAT	360
GACCGCTATG TGGCCATCTG CTTCCCCCTT CATTACATGA GCATCATGAG CCCCAGCTC	420
TGTGTGAGTC TGGTGGTGCT GTCCTGGGTG CTGACCCACCT TCCATGCCAT GCTGCACACC	480
CTGCTCATGG CCAGATTGTC ATTCTGTGCG GACAATATGA TCCCCCACTT TTTCTGTGAT	540
ATATCTCCTT TATTGAAACT GTCCCTGCTCT GACACGGCATG TTAATGAGTT GGTGATATTT	600

-55-

GTCATGGGAG GGCTTGTTAT TGTCAATTCCA TTTGTGCTCA TCATTGTATC TTATGCACGA	660
GTTGTCGCCCT CCATTCTTAA AGTCCTTCT GTCCGAGGCA TCCACAAGAT CTTCTCCACC	720
TGCGGCTCCC ATCTGTCTGT GGTGTCACTG TTCTATGGGA CAATCATGG TCTCTACTTA	780
TGTCCGTCAG CTAATAACTC TACTGTGAAG GAGACTGTCA TGGCCATGAT GTACACAGTG	840
GTGACCCCCA TGCTGAACCC CTTCATCTAC AGCCTGAGGA ACAGAGACAT GAAAGAGGCA	900
CTGATAAGAG TCCTTTGTAA AAAGAAAATT ACCTTCTGTC TATGA	945

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 933 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: rat olfactory epithelium
- (B) STRAIN: Sprague-Dawley rat
- (P) TISSUE TYPE: olfactory epithelium

(vii) IMMEDIATE SOURCE:

- (B) CLONE: I3

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

ATGAAACAATC AAACTTTCAT CACCCAATC CTTCTCTGG GACTGCCAT CCCTGAAGAA	60
CATCAGCACC TGTCTATGC CTTGTTCTG GTCATGTACC TCACCACCAT CTTGGGAAAC	120
TTGCTAATCA TTGTACTTGT TCAACTGGAC TCCCAGCTCC ACACACCTAT GTATTGTTT	180
CTCAGCAATT TGTCTTTCTC TGATCTATGT TTTCTCTG TCACAATGCC CAAGCTGCTG	240
CAGAACATGA GGAGCCAGGA CACATCCATT CCCTATGGAG GCTGCCCTGGC ACAAACATAC	300
TTCTTTATGG TTTTGGAGA TATGGAGAGT TTCCCTCTG TGGCCATGGC CTATGACCGC	360
TATGTGGCCA TCTGCTTCCC TCTGCATTAC ACCAGCATCA TGAGCCCCAA GCTCTGTACT	420
TGTCTAGTGC TGTATTGTG GATGCTGACG ACATCCCAG CCATGATGCA CACACTGCTT	480
GCAGCAAGAT TGTCTTTTG TGAGAACAT GTGGCTCTCA ACTTCTTCTG TGACCTATTT	540
GTTCTCTAA AGCTGGCCTG CTCAGACACT TATATTAATG AGTTGATGAT ATTATCATG	600
AGTACACTCC TCATTATTAT TCCATTCTC CTCATTGTTA TGTCTATGC AAGGATCATA	660
TCCTCTATTC TTAAGGTTCC ATCTACCCAA GGCACTGCA AGGTCTTCTC TACCTGTGGT	720

-56-

TCCCCATCTGT CTGTAGTATC ACTGTTCTAT GGGACAATTA TTGGTCTCTA CTTATGTCCA	780
CCAGGTAATA ATTCCACTGT AAAAGAGATG GTCATGGCCA TGATGTACAC TGTGGTGACC	840
CCCATGCTGA ATCCCCTCAT CTACAGCCTA AGGAATAGAG ATATGAAGAG GGCCCTAATA	900
AGAGTTATCT GTAGTATGAA AATCACTCTG TAA	933

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 984 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: NO

(v) ORIGINAL SOURCE:

- (A) ORGANISM: rat olfactory epithelium
- (B) STRAIN: Sprague-Dawley rat
- (F) TISSUE TYPE: olfactory epithelium

(vi) IMMEDIATE SOURCE:

- (B) CLONE: I7

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

ATGGAGCGAA GGAACCACAG TGGGAGAGTG AGTGAATTG TGGTGCCTGGG TTTCCCAGCT	60
CCTGCCAAC TGCGAGTACT ACTATTTTC CTTTCTCTTC TGGACTATGT GTTGGTGTG	120
ACTGAAAACA TGCTCATCAT TATAGCAATT AGGAACCACC CAACCCCTCCA CAAACCCATG	180
TATTTTTCT TGGCTAATAT GTCATTTCTG GAGATTTGGT ATGTCACTGT TAGGATTCC	240
AAGATGCTCG CTGGCTTCAT TGGTTCCAAG GAGAACCATG GACAGCTGAT CTCCCTTGAG	300
GCATGCATGA CACAACCTCA CTTTTCTCTG GGCTTGGGTT GCACAGAGTG TGTCTTCCT	360
GCTGTGATGG CCTATGACCG CTATGTGGCT ATCTGTCATC CACTCCACTA CCCCGTCATT	420
GTCAGTAGCC GGCTATGTGT GCAGATGGCA GCTGGATCCT GGGCTGGAGG TTTTGGTATC	480
TCCATGGTTA AAGTTTCCT TATTTCTCGC CTGTCTTACT GTGGCCCCAA CACCATCAAC	540
CACTTTTCT GTGATGTGTC TCCATTGCTC AACCTGTCAT GCACTGACAT GTCCACAGCA	600
GAGCTTACAG ACTTTGTCCT GGCCATTTTT ATTCTGCTGG GACCGCTCTC TGTCACTGG	660
GCATCCTACA TGGCCATCAC AGGTGCTGTG ATGCCATCC CCTCAGCTGC TGGCCGCCAT	720
AAAGCCTTTT CAACCTGTGC CTCCCACCTC ACTGTTGTGA TCATCTCTA TGCAGCCAGT	780
ATTTTCATCT ATGCCAGGCC TAAGGCACTC TCAGCTTTG ACACCAACAA GCTGGTCTCT	840
GTACTCTACG CTGTCATTGT ACCGTTGTTA AATCCCATCA TCTACTGCTT GCGCAACCAA	900

-57-

GATGTCAAAA GAGCGCTACG TGGCACGCTG CACCTGGCCC AGGACCAGGA GGCCAAATACC 960
 AACAAAGGCA GCAAAATTGG TTAC 984

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 939 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: rat olfactory epithelium
- (B) STRAIN: Sprague-Dawley rat
- (F) TISSUE TYPE: olfactory epithelium

(vii) IMMEDIATE SOURCE:

- (B) CLONE: 18

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

ATGAACAAACA AAACTGTCA	CACCCATTTC CTCCTCCTGG GATTGCCAT CCCCCCAGAG	60
CACCAGCAAC TGTCTTTGC CCTGTTCTG ATCATGTACC TCACCCACCTT TCTGGAAAC	120	
CTGCTAATTG TTGTCCTTGT TCAACTGGAC TCTCATCTCC ACACACCCAT GTACTTGT	180	
CTCAGCAACT TGTCTTCTC TGATCTCTGC TTTTCTCTG TTACAATGCT GAAATTGCTG	240	
CAAAATATAAC AGAGCCAAGT ACCATCTATA TCCTATGCAG GATGCCGTAC ACAGATATTC	300	
TTCTTTTGT TGTTGGCTA CCTTGGGAAT TTCTTCTTG TAGCCATGGC CTATGACCGC	360	
TATGTGGCCA TCTGCTTCCC TCTGCATTAT ACCAACATCA TGAGCCATAA GCTCTGTACT	420	
TGTCTCCTGC TGGTATTTG GATAATGACA TCATCTCATG CCATGATGCA CACCTGCTT	480	
GCAGCAAGAT TGTCTTTTG TGAGAACAAAT GTACTCCTCA ACTTTTCTG TGACCTGTT	540	
GTTCTCCTAA AGTTGGCCTG CTCAGACACT TATGTTAATG AGTTGATGAT ACATATCATG	600	
GGCGTGATCA TCATTGTTAT TCCATTGCTG CTCATTGTTA TATCCTATGC CAAGATCATC	660	
TCCTCCATTC TTAAGGTCC ATCTACTCAA AGCATTACA AGGTCTTCTC CACTTGTGCT	720	
TCTCATCTCT CTGTGGTGTG TCTGTTCTAC GGGACAATTAA TTGGTCTCTA TTATGTCCA	780	
TCAGGTGATA ATTTTAGTCT AAAGGGTCT GCCATGGCTA TGATGTACAC AGTGGTAAC	840	
CCAATGCTGA ACCCGTTCAT CTACAGCCTA AGAAACAGAG ACATGAAGCA GGCCCTAATA	900	
AGAGTTACCT GTAGCAAGAA AATCTCTCTG CCATGGTAG	939	

(2) INFORMATION FOR SEQ ID NO:10:

-58-

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 945 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: YES
- (iv) ANTI-SENSE: NO
- (v) ORIGINAL SOURCE:
 (A) ORGANISM: rat olfactory epithelium
 (B) STRAIN: Sprague-Dawley rat
 (F) TISSUE TYPE: olfactory epithelium
- (vi) IMMEDIATE SOURCE:
 (B) CLONE: I9

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

ATGACTAGAA GAAACCAAAC TGCCATCTCT CAGTTCTTCC TTCTGGGCCT GCCATTCCCC	60
CCAGAGTACC AACACCTGTT CTATGCCCTG TTCCCTGGCCA TGTACCTCAC CACTCTCCIG	120
GGGAACCTCA TCATCATCAT CCTCATTCTA CTGGACTCCC ATCTCCACAC ACCCATGTAC	180
TTGTTTCTCA GCAATTATC CTTTGCCGAC CTCTGTTTT CCTCTGTCAC AATGCCAAG	240
TTGTTGCAGA ACATGCAGAG CCAAGTTCCA TCCATCCCCCT ATGCAGGGTG CCTGGCACAG	300
ATATACTTCT TTCTGTTTT TGGAGACCTT GGAAACTTCC TGCTTGTGGC CATGGCCTAT	360
GACCGCTATG TGGCCATCTG CTTCCCCCTT CATTACATGA GCATCATGAG CCCAAGCTC	420
TGTGTGAGTC TGGTGGTGTCT GTCCCTGGTG CTGACTACCT TCCATGCCAT GCTGCACACC	480
CTGCTCATGG CCAGATTGTC ATTCTGTGAG GACAGTGTGA TCCCTCACTA TTTCTGTGAT	540
ATGTCTACTC TGCTGAAGT GGCTTGTCT GACACCCATG ATAATGAATT AGCAATATTT	600
ATCTTAGGGG GCCCTATACTG TGTACTACCT TTCCCTCTCA TCATTGTTTC TTATGCAAGA	660
ATTGTTTCTCT CCATCTTCAA GGTCCTTCT TCTCAAAGCA TCCATAAAGC CTTCTCCACC	720
TGTGGCTCCC ACCTGTCTGT GGTGTCACTG TTCTATGGGA CAGTCATTGG TCTCTACTTA	780
TGTCTTCAG CTAATAACTC CACTGTGAAG GAGACTGTCA TGTCTTGAT GTACACAATG	840
GTGACACCCA TGCTGAACCC CTTCATCTAC AGCCTAAGAA ACAGAGACAT AAAAGATGCA	900
TTAGAAAAAA TAATGTGCAA AAAGCAAATT CCCTCCTTTC TATGA	945

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 645 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

-59-

- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: YES
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: homosapien
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: H5
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..645

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

ATC TGT TTT GTG TCT ACC ACT GTC CCA AAG CAG CTG GTG AAC ATC CAG Ile Cys Phe Val Ser Thr Thr Val Pro Lys Gln Leu Val Asn Ile Gln 1 5 10 15	48
ACA CAG AGC AGA GTC ATC ACC TAT GCA GAC TGC ATC ACC CAG ATG TGC Thr Gln Ser Arg Val Ile Thr Tyr Ala Asp Cys Ile Thr Gln Met Cys 20 25 30	96
TTT TTT ATA CTC TTT GTA GTG TTG GAC ACC TTA CTC CTG ACT GTG ATG Phe Phe Ile Leu Phe Val Val Leu Asp Ser Leu Leu Leu Thr Val Met 35 40 45	144
GCC TAT GAC CGG TTT GTG GCC ATC TGT CAC CCC CTG CAC TAC ACA GTC Ala Tyr Asp Arg Phe Val Ala Ile Cys His Pro Leu His Tyr Thr Val 50 55 60	192
ATT ATG AGC TCC TCG CTC TGT GGA CTG CTG GTT CTG GTG TCC TGG ATC Ile Met Ser Ser Trp Leu Cys Gly Leu Leu Val Leu Val Ser Trp Ile 65 70 75 80	240
GTG AGC ATC CTA TAT TCT CTG TTA CAA AGC ATA ATG GCA TTG CAG CTG Val Ser Ile Leu Tyr Ser Leu Leu Gln Ser Ile Met Ala Leu Gln Leu 85 90 95	288
TCC TTC TGT ACA GAA CTG AAA ATC CCT CAA TTT TTC TGT GAA CTT AAT Ser Phe Cys Thr Glu Leu Lys Ile Pro Gln Phe Phe Cys Glu Leu Asn 100 105 110	336
CAG GTC ATC CAC CTT GCC TGT TCC GAC ACT TTT ATT AAT GAC ATG ATG Gln Val Ile His Leu Ala Cys Ser Asp Thr Phe Ile Asn Asp Met Met 115 120 125	384
ATG AAT TTT ACA AGT GTG CTG CTG CGT GGG GGA TGC CTC GCT GGA ATA Met Asn Phe Thr Ser Val Leu Leu Gly Gly Cys Leu Ala Gly Ile 130 135 140	432
TTT TAC TNN TAC TTT AAG ATA CTT TGT TGC ATA TGT TCG ATC TCA TCA Phe Tyr Xaa Tyr Phe Lys Ile Leu Cys Cys Ile Cys Ser Ile Ser Ser 145 150 155 160	480
GCT CAG CGG ATG AAT AAA GCA CTT TCC ACC TGT GCA TCT CAC CTC TCA Ala Gln Gly Met Asn Lys Ala Leu Ser Thr Cys Ala Ser His Leu Ser 165 170 175	528

-60-

GTT GTC TCC TTA TTT TAT TGT ACA CGC GTC GGT GTG TAC CTT AGT TCT Val Val Ser Leu Phe Tyr Cys Thr Gly Val Gly Val Tyr Leu Ser Ser 180 r 185 190	576
GCT GCA ACC CAT AAC TCA CTC TCA AAT GCT GCA GCC TCG GTG ATG TAC Ala Ala Thr His Asn Ser Leu Ser Asn Ala Ala Ala Ser Val Met Tyr 195 200 205	624
ACT GTG GTC ACC TCC ATG CTG Thr Val Val Thr Ser Met Leu 210 215	645

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 215 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Ile Cys Phe Val Ser Thr Thr Val Pro Lys Gln Leu Val Asn Ile Gln 1 5 10 15
Thr Gln Ser Arg Val Ile Thr Tyr Ala Asp Cys Ile Thr Gln Met Cys 20 25 30
Phe Phe Ile Leu Phe Val Val Leu Asp Ser Leu Leu Leu Thr Val Met 35 40 45
Ala Tyr Asp Arg Phe Val Ala Ile Cys His Pro Leu His Tyr Thr Val 50 55 60
Ile Met Ser Ser Trp Leu Cys Gly Leu Leu Val Leu Val Ser Trp Ile 65 70 75 80
Val Ser Ile Leu Tyr Ser Leu Leu Gln Ser Ile Met Ala Leu Gln Leu 85 90 95
Ser Phe Cys Thr Glu Leu Lys Ile Pro Gln Phe Phe Cys Glu Leu Asn 100 105 110
Gln Val Ile His Leu Ala Cys Ser Asp Thr Phe Ile Asn Asp Met Met 115 120 125
Met Asn Phe Thr Ser Val Leu Leu Gly Gly Cys Leu Ala Gly Ile 130 135 140
Phe Tyr Xaa Tyr Phe Lys Ile Leu Cys Cys Ile Cys Ser Ile Ser Ser 145 150 155 160
Ala Gln Gly Met Asn Lys Ala Leu Ser Thr Cys Ala Ser His Leu Ser 165 170 175
Val Val Ser Leu Phe Tyr Cys Thr Gly Val Gly Val Tyr Leu Ser Ser 180 185 190
Ala Ala Thr His Asn Ser Leu Ser Asn Ala Ala Ala Ser Val Met Tyr 195 200 205

-61-

Thr Val Val Thr Ser Met Leu
210 215

(2) INFORMATION FOR SEQ ID NO: 13.

(1) SEQUENCE CHARACTERISTICS.

- NUCLEIC ACID CHARACTERISTICS:**

 - (A) LENGTH: 640 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE.

- ORIGINAL SOURCE:
(A) ORGANISM: rat olfactory epithelium
(B) STRAIN: Sprague-Dawley rat
(F) TISSUE TYPE: olfactory epithelium

(vii) IMMEDIATE SOURCE:

(B) CLONE: J1

(ix) FEATURE:

- (A) NAME/KEY: CDS
(B) LOCATION: 2..640

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13

C ATC TGC TTT ACT TCT GCT AGC ATC CCA AAG ATG CTA GTG AAT ATA Ile Cys Phe Thr Ser Ala Ser Ile Pro Lys Met Leu Val Asn Ile 1 5 10 15	46
CAG ACG AAG AAC AAG GTG ATC ACC TAT GAA GGC TGC ATC TCC CAA GTA Gln Thr Lys Asn Lys Val Ile Thr Tyr Glu Gly Cys Ile Ser Gin Val 20 25 30	94
TAC TTT TCA TAC TCT TTG GAG TTT TGG ACA ACT TTC TTC TCG ACT GTG Tyr Phe Ser Tyr Ser Leu Glu Phe Trp Thr Thr Phe Phe Ser Thr Val 35 40 45	142
ATG GCC TAT GAC CGA TAT GTG GCC ATC TGT CAC CCA TCT NAC TAC ACA Met Ala Tyr Asp Arg Tyr Val Ala Ile Cys His Pro Ser Xaa Tyr Thr 50 55 60	190
GGT CAT CAT GAA CCN NNN NNN Gly His His Glu Xaa Xaa 65 70 75	238
NNN NNN Xaa Xaa Xaa 80 85 90 95	286
NN NNN NNN aa Xaa Xaa 100 105 110	334
NN NNN NNN aa Xaa Xaa 110	382

-62-

115	120	125	
NNN NTT Xaa Xaa Xaa 130 135 140			430
TAT TCT TAC TCT AAG ATA GTT TCC TCC ATA CGA GAA ATC TCA TCA TCA Tyr Ser Tyr Ser Lys Ile Val Ser Ser Ile Arg Glu Ile Ser Ser Ser 145 150 155			478
CAG GCA AAG TAC AAG NNA TTC TCC ACC TGT GCA TCC CAC CTC TCA GTT Gln Gly Lys Tyr Lys Xaa Phe Ser Thr Cys Ala Ser His Leu Ser Val 160 165 170 175			526
GTT TCA TTA TTC TAT TCT ACA CTT TTG GGT GTG TAC CTT AGT TCT TCT Val Ser Leu Phe Tyr Ser Thr Leu Leu Gly Val Tyr Leu Ser Ser Ser 180 185 190			574
TTT ACC CAA AAC TCA CAC TCA ACT GCA CGG GCA TCT GTT ATG TAC AGT Phe Thr Gln Asn Ser His Ser Thr Ala Arg Ala Ser Val Met Tyr Ser 195 200 205			622
GTG GTC ACC CCC ATG TTG Val Val Thr Pro Met Leu 210			640

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 213 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

```

Ile Cys Phe Thr Ser Ala Ser Ile Pro Lys Met Leu Val Asn Ile Gln
 1           5           10          15
                    10
Thr Lys Asn Lys Val Ile Thr Tyr Glu Gly Cys Ile Ser Gln Val Tyr
 20          25          30
                    25
Phe Ser Tyr Ser Leu Glu Phe Trp Thr Thr Phe Phe Ser Thr Val Met
 35          40          45
                    40
Ala Tyr Asp Arg Tyr Val Ala Ile Cys His Pro Ser Xaa Tyr Thr Gly
 50          55          60
                    55
His His Glu Xaa Xaa
 65          70          75          80
                    70
Xaa Xaa
 85          90          95
                    85
Xaa Xaa
100         105         110
                    105
Xaa Xaa
115         120         125
                    115

```

-63-

Xaa Tyr
 130 135 140
 S r Tyr Ser Lys Ile Val Ser Ser Il Arg Glu Il S r Ser Ser Gln
 145 150 155 160
 Gly Lys Tyr Lys Xaa Phe Ser Thr Cys Ala Ser His Leu Ser Val Val
 165 170 175
 Ser Leu Phe Tyr Ser Thr Leu Leu Gly Val Tyr Leu Ser Ser Ser Phe
 180 185 190
 Thr Gln Asn Ser His Ser Thr Ala Arg Ala Ser Val Met Tyr Ser Val
 195 200 205
 Val Thr Pro Met Leu
 210

(2) INFORMATION FOR SEQ ID NO: 15

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 636 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: YES
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: rat olfactory epithelium
 - (B) STRAIN: srpague-Dawley rat
 - (F) TISSUE TYPE: olfactory epithelium
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: J2
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..636

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1

SUBSTITUTE SHEET

-64-

CAC CGA CTC TGT ATC CTG CTG CTT CTG CTG TCC TGG GTT GTC AGC ATT His Arg Leu Cys Ile Leu Leu Leu Leu L u S r Trp Val Val Ser Ile 65 70 75 80	240
TTA CAT GCC TTC TTA CAG AGC TTA ATT GTA CTA CAG TTG ACC TTC TGT Leu His Ala Phe Leu Gln Ser Leu Ile Val Leu Gln Leu Thr Phe Cys 85 90 95	288
GGA GAT GTG AAA ATC CCT CAC TTC TTC TGT GAG CTC AAT CAG CTG TCC Gly Asp Val Lys Ile Pro His Phe Phe Cys Glu Leu Asn Gln Leu Ser 100 105 110	336
CAA CTC ACA TGT TCA GAC AAC TTT CCA AGT CAC CTC ACA ATG CAT CTT Gln Leu Thr Cys Ser Asp Asn Phe Pro Ser His Leu Thr Met His Leu 115 120 125	384
GTA CCT GTT ATA TTT GCA GCT ATT TCC CTC AGT GGT ATC CTT TAC TCT Val Pro Val Ile Phe Ala Ala Ile Ser Leu Ser Gly Ile Leu Tyr Ser 130 135 140	432
TAT TTC AAG ATA GTG TCT TCC ATA CGT TCT ATG TCC TCA GTT CAA GGG Tyr Phe Lys Ile Val Ser Ser Ile Arg Ser Met Ser Ser Val Gln Gly 145 150 155 160	480
AAG TAC AAG GCA TTT TCT ACA TGT GCC TCT CAC CTT TCC ATT GTC TCC Lys Tyr Lys Ala Phe Ser Thr Cys Ala Ser His Leu Ser Ile Val Ser 165 170 175	528
TTA TTT TAT AGT ACA GGC CTC GGG GTG TAC GTC AGT TCT GCT GTG ATC Leu Phe Tyr Ser Thr Gly Leu Gly Val Tyr Val Ser Ser Ala Val Ile 180 185 190	576
CGA AGC TCA CAC TCC TCT GCA AGT GCT TCG GTC ATG TAT ACT GTG GTC Arg Ser Ser His Ser Ser Ala Ser Ala Ser Val Met Tyr Thr Val Val 195 200 205	624
ACC CCC ATG TTG Thr Pro Met Leu 210	636

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 212 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Thr Ser Thr Thr Ile Pro Lys Met Leu Val Asn Ile His Thr Gln Ser 1 5 10 15
Asn Thr Ile Thr Tyr Glu Asp Cys Ile Ser Gln Met Phe Val Leu Leu 20 25 30
Val Phe Gly Glu Leu Asp Asn Phe Leu Leu Ala Val Met Ala Tyr Asp 35 40 45
Arg Tyr Val Ala Ile Cys His Pro Leu Tyr Tyr Thr Val Ile Val Asn

-65-

50	55	60
His Arg Leu Cys Ile L u Leu Leu Leu Leu S r Trp Val Val Ser Il		
65	70	75
Leu His Ala Phe Leu Gln Ser Leu Ile Val Leu Gln Leu Thr Phe Cys		
	85	90
Gly Asp Val Lys Ile Pro His Phe Phe Cys Glu Leu Asn Gln Leu Ser		
	100	105
Gln Leu Thr Cys Ser Asp Asn Phe Pro Ser His Leu Thr Met His Leu		
	115	120
Val Pro Val Ile Phe Ala Ala Ile Ser Leu Ser Gly Ile Leu Tyr Ser		
	130	135
Tyr Phe Lys Ile Val Ser Ser Ile Arg Ser Met Ser Ser Val Gln Gly		
	145	150
Lys Tyr Lys Ala Phe Ser Thr Cys Ala Ser His Leu Ser Ile Val Ser		
	165	170
Leu Phe Tyr Ser Thr Gly Leu Gly Val Tyr Val Ser Ser Ala Val Ile		
	180	185
Arg Ser Ser His Ser Ser Ala Ser Ala Ser Val Met Tyr Thr Val Val		
	195	200
Thr Pro Met Leu		
	210	

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 646 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: rat olfactory epithelium
- (B) STRAIN: srpaque-Dawley rat
- (F) TISSUE TYPE: olfactory epithelium

(vii) IMMEDIATE SOURCE:

- (B) CLONE: J4

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 2..646

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

C ATA GGC TAT TCA TCT TCT GTC ACA CCC AAT ATG CTT GTC AAC TTC

-66-

Ile Gly Tyr Ser Ser Ser Val Thr Pro Asn Met Leu Val Asn Phe	
1 5 10 15	
CTT ATA AAG CAA AAT ACC ATC TCA TAC CTT CGA TGT TCT ATA CAG TTT	94
Leu Ile Lys Gln Asn Thr Ile Ser Tyr Leu Gly Cys Ser Ile Gln Phe	
20 25 30	
GGC TCA GCT GCT TTG TTT CGA GGT CTT GAA TGC TTC CTT CTG GCT GCC	142
Gly Ser Ala Ala Leu Phe Gly Gly Leu Glu Cys Phe Leu Leu Ala Ala	
35 40 45	
ATG GCG TAT GAT CGT TTT GTA GCA ATC TGC AAC CCA CTG CTT TAT TCA	190
Met Ala Tyr Asp Arg Phe Val Ala Ile Cys Asn Pro Leu Leu Tyr Ser	
50 55 60	
ACG AAA ATG TCC ACA CAA GTC TGT GTC CAG TTG GTG GGA TCT TAT	238
Thr Lys Met Ser Thr Gln Val Cys Val Gln Leu Val Val Gly Ser Tyr	
65 70 75	
ATA GGG GGA TTT CTT AAT GCC TCC TCT TTT ACC CTT TCC TTT TTT TCC	286
Ile Gly Gly Phe Leu Asn Ala Ser Ser Phe Thr Leu Ser Phe Phe Ser	
80 85 90 95	
TTG TCC TTC TGT GGA CCA AAT AGA ATC AAT CAC TTT TAC TGT GAT TTT	334
Leu Ser Phe Cys Gly Pro Asn Arg Ile Asn His Phe Tyr Cys Asp Phe	
100 105 110	
GCT CCG TTA GTA GAA CTT TCT TGC TCT GAT GTC AGT GTT CCT GAT GCT	382
Ala Pro Leu Val Glu Leu Ser Cys Ser Asp Val Ser Val Pro Asp Ala	
115 120 125	
GTT ACC TCA TTT TCT GCT GCC TCA GTT ACT ATG CTC ACA GTG TTT ATC	430
Val Thr Ser Phe Ser Ala Ala Ser Val Thr Met Leu Thr Val Phe Ile	
130 135 140	
ATA GCC ATC TCC TAT ACC TAT ATC CTC ATC ACC ATC CTG AAG ATG CGT	478
Ile Ala Ile Ser Tyr Thr Tyr Ile Leu Ile Thr Ile Leu Lys Met Arg	
145 150 155	
TCC ACT GAG GGT CGA CAG AAA GCA TTC TCT ACC TGC ACT TCC CAC CTC	526
Ser Thr Glu Gly Arg Gln Lys Ala Phe Ser Thr Cys Thr Ser His Leu	
160 165 170 175	
ACT GCA GTC ACT CTG TGC TAT GGA ACC ATC ACA TTC ATC TAT GTG ATG	574
Thr Ala Val Thr Leu Cys Tyr Gly Thr Ile Thr Phe Ile Tyr Val Met	
180 185 190	
CCC AAG TCC AGC TAC TCC ACA GAC CAG AAC AAG GTG GTG TCT GTG TTT	622
Pro Lys Ser Ser Tyr Ser Thr Asp Gln Asn Lys Val Val Ser Val Phe	
195 200 205	
TAT ATG GTG GTG ATC CCC ATG TTG	646
Tyr Met Val Val Ile Pro Met Leu	
210 215	

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 215 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

-67-

(ii) MOLECULE TYPE: prot in

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

Ile Gly Tyr Ser Ser Ser Val Thr Pro Asn Met Leu Val Asn Phe Leu
 1 5 10 15

Ile Lys Gln Asn Thr Ile Ser Tyr Leu Gly Cys Ser Ile Gln Phe Gly
 20 25 30

Ser Ala Ala Leu Phe Gly Gly Leu Glu Cys Phe Leu Leu Ala Ala Met
 35 40 45

Ala Tyr Asp Arg Phe Val Ala Ile Cys Asn Pro Leu Leu Tyr Ser Thr
 50 55 60

Lys Met Ser Thr Gln Val Cys Val Gln Leu Val Val Gly Ser Tyr Ile
 65 70 75 80

Gly Gly Phe Leu Asn Ala Ser Ser Phe Thr Leu Ser Phe Phe Ser Leu
 85 90 95

Ser Phe Cys Gly Pro Asn Arg Ile Asn His Phe Tyr Cys Asp Phe Ala
 100 105 110

Pro Leu Val Glu Leu Ser Cys Ser Asp Val Ser Val Pro Asp Ala Val
 115 120 125

Thr Ser Phe Ser Ala Ala Ser Val Thr Met Leu Thr Val Phe Ile Ile
 130 135 140

Ala Ile Ser Tyr Thr Tyr Ile Leu Ile Thr Ile Leu Lys Met Arg Ser
 145 150 155 160

Thr Glu Gly Arg Gln Lys Ala Phe Ser Thr Cys Thr Ser His Leu Thr
 165 170 175

Ala Val Thr Leu Cys Tyr Gly Thr Ile Thr Phe Ile Tyr Val Met Pro
 180 185 190

Lys Ser Ser Tyr Ser Thr Asp Gln Asn Lys Val Val Ser Val Phe Tyr
 195 200 205

Met Val Val Ile Pro Met Leu
 210 215

(2) INFORMATION FOR SEQ ID NO:19:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 481 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: rat olfactory epithelium

-68-

(B) STRAIN: Sprague-Dawley rat
(P) TISSUE TYPE: o'factory pitheleum

(vii) IMMEDIATE SOURCE:
(B) CLONE: J7

(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: 2..481

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:19:

C ATC TGC AAG CCC CTG CAC TAC ACC ACC ATC ATG AAT AAC CGA GTG Ile Cys Lys Pro Leu His Tyr Thr Thr Ile Met Asn Asn Arg Val 1 5 10 15	46
TGC ACA GTT CTA GTC CTC TCC TGT TGG TTT GCT GGC CTG TTG ATC ATC Cys Thr Val Leu Val Leu Ser Cys Trp Phe Ala Gly Leu Leu Ile Ile 20 25 30	94
CTC CCA CCT CTT GGT CAT GGC CTC CAG CTG GAG TTC TGT GAC TCC AAT Leu Pro Pro Leu Gly His Gly Leu Gln Leu Glu Phe Cys Asp Ser Asn 35 40 45	142
GTG ATT GAT CAT TTT GGC TGT GAT GCC TCT CCA ATT CTG CAG ATA ACC Val Ile Asp His Phe Gly Cys Asp Ala Ser Pro Ile Leu Gln Ile Thr 50 55 60	190
TGC TCA GAC ACG GTA TTT ATA GAG AAA ATT GTC TTG GCT TTT GCC ATA Cys Ser Asp Thr Val Phe Ile Glu Lys Ile Val Leu Ala Phe Ala Ile 65 70 75	238
CTG ACA CTC ATC ATT ACT CTG GTA TGT GTT GTT CTC TCC TAC ACA TAC Leu Thr Leu Ile Ile Thr Leu Val Cys Val Val Leu Ser Tyr Thr Tyr 80 85 90 95	286
ATC ATC AAG ACC ATT TTA AAG TTT CCT TCT GCT CAA CAA AGA AAA AAG Ile Ile Lys Thr Ile Leu Lys Phe Pro Ser Ala Gln Gln Arg Lys Lys 100 105 110	334
GCC TTT TCT ACA TGT TCT TCC CAC ATG ATT GTG GTT TCC ATC ACC TAT Ala Phe Ser Thr Cys Ser Ser His Met Ile Val Val Ser Ile Thr Tyr 115 120 125	382
GGG AGC TGT ATT TTC ATC TAC ATC AAA CCT TCA GCG AAG GAA GGG GTA Gly Ser Cys Ile Phe Ile Tyr Ile Lys Pro Ser Ala Lys Glu Gly Val 130 135 140	430
GCC ATC AAT AAG GTT GTA TCT GTG CTC ACA ACA TCA GTC GCC CCT TTG Ala Ile Asn Lys Val Val Ser Val Leu Thr Thr Ser Val Ala Pro Leu 145 150 155	478
CTC Leu 160	481

(2) INFORMATION FOR SEQ ID NO:20:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 160 amino acids

-69-

(B) TYPE: amino acid
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Ile	Cys	Lys	Pro	Leu	His	Tyr	Thr	Thr	Ile	Met	Asn	Asn	Arg	Val	Cys
1				5					10					15	
Thr	Val	Leu	Val	Leu	Ser	Cys	Trp	Phe	Ala	Gly	Leu	Leu	Ile	Ile	Leu
				20				25					30		
Pro	Pro	Leu	Gly	His	Gly	Leu	Gln	Leu	Glu	Phe	Cys	Asp	Ser	Asn	Val
				35				40				45			
Ile	Asp	His	Phe	Gly	Cys	Asp	Ala	Ser	Pro	Ile	Leu	Gln	Ile	Thr	Cys
	50					55				60					
Ser	Asp	Thr	Val	Phe	Ile	Glu	Lys	Ile	Val	Leu	Ala	Phe	Ala	Ile	Leu
	65				70				75				80		
Thr	Leu	Ile	Ile	Thr	Leu	Val	Cys	Val	Val	Leu	Ser	Tyr	Thr	Tyr	Ile
				85				90				95			
Ile	Lys	Thr	Ile	Leu	Lys	Phe	Pro	Ser	Ala	Gln	Gln	Arg	Lys	Lys	Ala
	100					105						110			
Phe	Ser	Thr	Cys	Ser	Ser	His	Met	Ile	Val	Val	Ser	Ile	Thr	Tyr	Gly
	115					120						125			
Ser	Cys	Ile	Phe	Ile	Tyr	Ile	Lys	Pro	Ser	Ala	Lys	Glu	Gly	Val	Ala
	130			135				140							
Ile	Asn	Lys	Val	Val	Ser	Val	Leu	Thr	Thr	Ser	Val	Ala	Pro	Leu	Leu
	145				150				155				160		

(2) INFORMATION FOR SEQ ID NO:21:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 481 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

(A) ORGANISM: rat olfactory epithelium
 (B) STRAIN: Sprague-Dawley rat
 (F) TISSUE TYPE: olfactory epithelium

(vii) IMMEDIATE SOURCE:

(B) CLONE: J8

(ix) FEATURE:

(A) NAME/KEY: CDS

-70-

(B) LOCATION: 2..481

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

C ATC TGC CAC CCG CTC CAC TAC TCT CTT CTC ATG AGT CCT GAC AAC Ile Cys His Pro Leu His Tyr Ser Leu Leu Met Ser Pro Asp Asn 1 5 10 15	46
TGT GCT GCT CTG GTA ACA GTC TCC TGG GTG ACA GGG GTG CCC ACG GGC Cys Ala Ala Leu Val Thr Val Ser Trp Val Thr Gly Val Gly Thr Gly 20 25 30	94
TTC CTG CCT TCC CTC CTG ATT TCT AAG TTG GAC TTC TGT GGG CCC AAC Phe Leu Pro Ser Leu Leu Ile Ser Lys Leu Asp Phe Cys Gly Pro Asn 35 40 45	142
CGC ATC AAC CAT TTC TTC TGT GAC CTC CCT CCA TTA ATC CAG CTG TCC Arg Ile Asn His Phe Phe Cys Asp Leu Pro Pro Leu Ile Gln Leu Ser 50 55 60	190
TGC TCC AGC GTC TTT GTG ACA GAA ATG GCC ATC TTT GTC CTG TCC ATC Cys Ser Ser Val Phe Val Thr Glu Met Ala Ile Phe Val Leu Ser Ile 65 70 75	238
GCT GTG CTC TGC ATC TGT TTC CTC CTA ACC CNN NNN TCC TAC ATT TTC Ala Val Leu Cys Ile Cys Phe Leu Leu Thr Xaa Xaa Ser Tyr Ile Phe 80 85 90 95	286
ATA GTG TCC TCC ATT CTG AGA ATC CCT TCC ACT ACC GGC AGG ATG AAG Ile Val Ser Ser Ile Leu Arg Ile Pro Ser Thr Thr Gly Arg Met Lys 100 105 110	334
ACA TTT TCT ACA TGT GGC TCC CAC CTG GCC GTG GTC ACC ATC TAC TAT Thr Phe Ser Thr Cys Gly Ser His Leu Ala Val Val Thr Ile Tyr Tyr 115 120 125	382
CGG ACC ATG ATC TCC ATG TAT GTC GGC CCA AAT GCG CAT CTG TCC CCG Gly Thr Met Ile Ser Met Tyr Val Gly Pro Asn Ala His Leu Ser Pro 130 135 140	430
GAG CTC AAC AAG GTC ATT TCT GTC TTC TAC ACT GTG ATC ACC CCA CTA Glu Leu Asn Lys Val Ile Ser Val Phe Tyr Thr Val Ile Thr Pro Leu 145 150 155	478
CTG Leu 160	481

(2) INFORMATION FOR SEQ ID NO:22:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 160 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Ile Cys His Pro Leu His Tyr Ser Leu Leu Met Ser Pro Asp Asn Cys

-71-

1	5	10	15
Ala Ala Leu Val Thr Val Ser Trp Val Thr Gly Val Gly Thr Gly Phe			
20 .25 30			
Leu Pro Ser Leu Leu Ile Ser Lys Leu Asp Phe Cys Gly Pro Asn Arg			
35 40 45			
Ile Asn His Phe Phe Cys Asp Leu Pro Pro Leu Ile Gln Leu Ser Cys			
50 55 60			
Ser Ser Val Phe Val Thr Glu Met Ala Ile Phe Val Leu Ser Ile Ala			
65 70 75 80			
Val Leu Cys Ile Cys Phe Leu Leu Thr Xaa Xaa Ser Tyr Ile Phe Ile			
85 90 95			
Val Ser Ser Ile Leu Arg Ile Pro Ser Thr Thr Gly Arg Met Lys Thr			
100 105 110			
Phe Ser Thr Cys Gly Ser His Leu Ala Val Val Thr Ile Tyr Tyr Gly			
115 120 125			
Thr Met Ile Ser Met Tyr Val Gly Pro Asn Ala His Leu Ser Pro Glu			
130 135 140			
Leu Asn Lys Val Ile Ser Val Phe Tyr Thr Val Ile Thr Pro Leu Leu			
145 150 155 160			

(2) INFORMATION FOR SEQ ID NO:23:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 646 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: rat olfactory epithelium
- (B) STRAIN: Sprague-Dawley rat
- (F) TISSUE TYPE: olfactory epithelium

(vii) IMMEDIATE SOURCE:

- (B) CLONE: J11

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 2..646

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

N GTC TGC TTC TCC ACC ACT GTC CCC AAG GTC CTG GCT AAC CAC
 Val Cys Phe Ser Ser Thr Thr Val Pro Lys Val Leu Ala Asn His
 1 5 10 15

46

-72-

ATA CTC AGT AGT CAG GCC ATT TCC TTC TCT GGG TGT CTA ACT CAG CTG Ile Leu Ser Ser Gln Ala Ile Ser Phe Ser Gly Cys Leu Thr Gln Leu 20 25 30	94
TAT TTT CTC TGT CTG TCT GTG AAT ATG GAC AAT TTC CTG CTG CCT GTG Tyr Phe Leu Cys Val Ser Val Asn Met Asp Asn Phe Leu Leu Ala Val 35 40 45	142
ATG GCC TAT GAC AGA TTT GTG GCC ATA TGC CAC CCT TTG TAC TAC ACA Met Ala Tyr Asp Arg Phe Val Ala Ile Cys His Pro Leu Tyr Tyr Thr 50 55 60	190
ACA AAG ATG ACC CAC CAG CTC TGT GTC TTG CTG GTG TCT GGA TCA NNN Thr Lys Met Thr His Gln Leu Cys Val Leu Leu Val Ser Gly Ser Xaa 65 70 75	238
NNN NNN Xaa Xaa Xaa 80 85 90 95	286
NNN NNN Xaa Xaa Xaa 100 105 110	334
NNN NNN Xaa Xaa Xaa 115 120 125	382
NNN NNN NNN NNN NNN NNT GTG ATC ATG GTC ACC CCA TTT GTC TGC Xaa Xaa Xaa Xaa Xaa Xaa Val Ile Met Val Thr Pro Phe Val Cys 130 135 140	430
ATC CTC ATC TCT TAC ATC TAC ATC ACC AAT GCA GTC CTC AGA GTC TCA Ile Leu Ile Ser Tyr Ile Tyr Ile Thr Asn Ala Val Leu Arg Val Ser 145 150 155	478
TCC TTT AGG GGA GGA TGG AAA GCC TTC TCC ACC TGT GGC TCA CAC CTG Ser Phe Arg Gly Gly Trp Lys Ala Phe Ser Thr Cys Gly Ser His Leu 160 165 170 175	526
GCT GTG GTC CTC TTC TAT GGC ACC ATC ATT GCT GTG TAT TTC AAT Ala Val Val Cys Leu Phe Tyr Gly Thr Ile Ile Ala Val Tyr Phe Asn 180 185 190	574
CCT GTA TCT TCC CAT TCA TCT GAG AAG GAC ACT GCA GCA ACT GTG CTA Pro Val Ser Ser His Ser Glu Lys Asp Thr Ala Ala Thr Val Leu 195 200 205	622
TAC ACA GTG GTG ACT CCC ATG TTG Tyr Thr Val Val Thr Pro Met Leu 210 215	646

(2) INFORMATION FOR SEQ ID NO:24:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 215 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

-73-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

Val Cys Ph Ser Ser Thr Thr Val Pr Lys Val Leu Ala Asn His Ile
 1 5 10 15

Leu Ser Ser Gln Ala Ile Ser Phe Ser Gly Cys Leu Thr Gln Leu Tyr
 20 25 30

Phe Leu Cys Val Ser Val Asn Met Asp Asn Phe Leu Leu Ala Val Met
 35 40 45

Ala Tyr Asp Arg Phe Val Ala Ile Cys His Pro Leu Tyr Tyr Thr Thr
 50 55 60

Lys Met Thr His Gln Leu Cys Val Leu Leu Val Ser Gly Ser Xaa Xaa
 65 70 75 80

Xaa
 85 90 95

Xaa
 100 105 110

Xaa
 115 120 125

Xaa Xaa Xaa Xaa Xaa Val Ile Met Val Thr Pro Phe Val Cys Ile
 130 135 140

Leu Ile Ser Tyr Ile Tyr Ile Thr Asn Ala Val Leu Arg Val Ser Ser
 145 150 155 160

Phe Arg Gly Gly Trp Lys Ala Phe Ser Thr Cys Gly Ser His Leu Ala
 165 170 175

Val Val Cys Leu Phe Tyr Gly Thr Ile Ile Ala Val Tyr Phe Asn Pro
 180 185 190

Val Ser Ser His Ser Ser Glu Lys Asp Thr Ala Ala Thr Val Leu Tyr
 195 200 205

Thr Val Val Thr Pro Met Leu
 210 215

(2) INFORMATION FOR SEQ ID NO:25:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 646 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: rat olfactory epithelium
- (B) STRAIN: Sprague-Dawley rat
- (F) TISSUE TYPE: olfactory epithelium.

-74-

(vii) IMMEDIATE SOURCE:
(B) CLONE: J14

(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: 2..646

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25.

T GTC TGC TTC TCC ACC ACT GTC CCC AAG GTA CTG GCT AAC CAC		46
Val Cys Phe Ser Ser Thr Thr Val Pro Lys Val Leu Ala Asn His		
1 5 10 15		
ATA CTC AGT AGT CAG GCC ATT TCC TTC TCT GGG TGT CTA ACT CAG CTG		94
Ile Leu Ser Ser Gln Ala Ile Ser Phe Ser Gly Cys Leu Thr Gln Leu		
20 25 30		
TAT TTT CTC TGT GTG TCT GTG AAT ATG GAC AAT TTC CTG CTG GCT GTG		142
Tyr Phe Leu Cys Val Ser Val Asn Met Asp Asn Phe Leu Leu Ala Val		
35 40 45		
ATG GCC TAT GAC AGA TTT GTG GCC ATA TGC CAC CCT TTG TAC TAC ACA		190
Met Ala Tyr Asp Arg Phe Val Ala Ile Cys His Pro Leu Tyr Tyr Thr		
50 55 60		
ACA CCG ATG ACC CAC CAG CTC TGT GTC TTG CTG GTG TCT GGA TCA NNN		238
Thr Pro Met Thr His Gln Leu Cys Val Leu Leu Val Ser Gly Ser Xaa		
65 70 75		
NNN		286
Xaa		
80 85 90 95		
NNN		334
Xaa		
100 105 110		
NN NNN		382
aa Xaa		
115 120 125		
NN NNN NNN NNN NNN NNT GTG ATC ATG GTC ACC CCA TTT GTC TGC		430
aa Xaa Xaa Xaa Xaa Xaa Val Ile Met Val Thr Pro Phe Val Cys		
130 135 140		
TCT CTC ATC TCT TAC ATC TAC ATC ACC AAT GCA GTC CTC AGA GTC TCA		478
Ile Leu Ile Ser Tyr Ile Tyr Ile Thr Asn Ala Val Leu Arg Val Ser		
145 150 155		
CC TTT AGG GGA GGA TCG AAA GCC TTC TCC ACC TGT GGC TCA CAC CTG		526
er Phe Arg Gly Gly Trp Lys Ala Phe Ser Thr Cys Gly Ser His Leu		
60 165 170 175		
CT GTG GTC TGC CTC TTC TAT GGC ACC ATC ATT GCT GTG TAT TTC AAT		574
a Val Val Cys Leu Phe Tyr Gly Thr Ile Ile Ala Val Tyr Phe Asn		
180 185 190		
T GTA TCT TCC CAT TCA TCT GAG AAG GAC ACT GCA GCA ACT GTG CTA		622
o Val Ser Ser His Ser Ser Glu Lys Asp Thr Ala Ala Thr Val Leu		
195 200 205		

-75-

TAC ACA GTG GTG ACT CCC ATG TTG
 Tyr Thr Val Val Thr Pro Met Leu
 210 215

646

(2) INFORMATION FOR SEQ ID NO:26:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 215 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

Val Cys Phe Ser Ser Thr Thr Val Pro Lys Val Leu Ala Asn His Ile
 1 5 10 15

Leu Ser Ser Gln Ala Ile Ser Phe Ser Gly Cys Leu Thr Gln Leu Tyr
 20 25 30

Phe Leu Cys Val Ser Val Asn Met Asp Asn Phe Leu Leu Ala Val Met
 35 40 45

Ala Tyr Asp Arg Phe Val Ala Ile Cys His Pro Leu Tyr Tyr Thr Thr
 50 55 60

Pro Met Thr His Gln Leu Cys Val Leu Leu Val Ser Gly Ser Xaa Xaa
 65 70 75 80

Xaa
 85 90 95

Xaa
 100 105 110

Xaa
 115 120 125

Xaa Xaa Xaa Xaa Xaa Val Ile Met Val Thr Pro Phe Val Cys Ile
 130 135 140

Leu Ile Ser Tyr Ile Tyr Ile Thr Asn Ala Val Leu Arg Val Ser Ser
 145 150 155 160

Phe Arg Gly Gly Trp Lys Ala Phe Ser Thr Cys Gly Ser His Leu Ala
 165 170 175

Val Val Cys Leu Phe Tyr Gly Thr Ile Ile Ala Val Tyr Phe Asn Pro
 180 185 190

Val Ser Ser His Ser Ser Glu Lys Asp Thr Ala Ala Thr Val Leu Tyr
 195 200 205

Thr Val Val Thr Pro Met Leu
 210 215

(2) INFORMATION FOR SEQ ID NO:27:

(i) SEQUENCE CHARACTERISTICS:

-76-

- (A) LENGTH: 481 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: rat olfactory epithelium
- (B) STRAIN: Sprague-Dawley rat
- (F) TISSUE TYPE: olfactory epithelium

(vii) IMMEDIATE SOURCE:

(B) CLONE: J15

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 2..481

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

T ATC TGC AAC CCT CTG CGC TAC CCA GTG CTC ATG AGC GGC CGG GTC Ile Cys Asn Pro Leu Arg Tyr Pro Val Leu Met Ser Gly Arg Val	46
1 5 10 15	
TGC CTG CTC ATG GTC GTG GCC TCC TGG TTG GGA GGA TCC CTC AAC GCC Cys Leu Leu Met Val Val Ala Ser Trp Leu Gly Gly Ser Leu Asn Ala	94
20 25 30	
TCC ATT CAG ACT TCT CTG ACC CTT CAG TTC CCC TAC TGT GGA TCA CGG Ser Ile Gln Thr Ser Leu Thr Leu Gln Phe Pro Tyr Cys Gly Ser Arg	142
35 40 45	
AAG ATC TCC CAC TTC TGT GAG GTC CCC TCG CTG CTG ANN NTG GCC Lys Ile Ser His Phe Phe Cys Glu Val Pro Ser Leu Leu Xaa Xaa Ala	190
50 55 60	
TGT GCA GAC ACT GAA GCC TAT GAG CAG GTC CTA TTT GTG ACA GGC GTG Cys Ala Asp Thr Glu Ala Tyr Glu Gln Val Leu Phe Val Thr Gly Val	238
65 70 75	
GTC GTC CTC CTG GTG CCC ATT ACA TTC ATT ACT GCC TCT TAT GCC CTC Val Val Leu Leu Val Pro Ile Thr Phe Ile Thr Ala Ser Tyr Ala Leu	286
80 85 90 95	
ATC CTG GCT GTG CTC CGA ATG CAC TCT GCG GAG GGG AGT CAG AAG Ile Leu Ala Ala Val Leu Arg Met His Ser Ala Glu Gly Ser Gln Lys	334
100 105 110	
GCC CTA GCC ACA TGC TCC TCT CAC CTG ACA GTC GTC AAT CTC TTC TAT Ala Leu Ala Thr Cys Ser Ser His Leu Thr Val Val Asn Leu Phe Tyr	382
115 120 125	
GGG CCC CTT GTC TAC ACC TAC ATG TTA CCT GCT TCC TAT CAC TCA CCA Gly Pro Leu Val Tyr Thr Tyr Met Leu Pro Ala Ser Tyr His Ser Pro	430
130 135 140	

-77-

GGC CAA GAC GAC ATA GTA TCC GTC TTT TAC ACC GTT CTC ACA CCC ATG	478
Gly Gln Asp Asp Ile Val Ser Val Ph Tyr Thr Val Leu Thr Pro M t	
145 150 155	
CTT	
Leu	
160	481

(2) INFORMATION FOR SEQ ID NO:28:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 160 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

Ile Cys Asn Pro Leu Arg Tyr Pro Val Leu Met Ser Gly Arg Val Cys	
1 5 10 15	
Leu Leu Met Val Val Ala Ser Trp Leu Gly Gly Ser Leu Asn Ala Ser	
20 25 30	
Ile Gln Thr Ser Leu Thr Leu Gln Phe Pro Tyr Cys Gly Ser Arg Lys	
35 40 45	
Ile Ser His Phe Phe Cys Glu Val Pro Ser Leu Leu Xaa Xaa Ala Cys	
50 55 60	
Ala Asp Thr Glu Ala Tyr Glu Gln Val Leu Phe Val Thr Gly Val Val	
65 70 75 80	
Val Leu Leu Val Pro Ile Thr Phe Ile Thr Ala Ser Tyr Ala Leu Ile	
85 90 95	
Leu Ala Ala Val Leu Arg Met His Ser Ala Glu Gly Ser Gln Lys Ala	
100 105 110	
Leu Ala Thr Cys Ser Ser His Leu Thr Val Val Asn Leu Phe Tyr Gly	
115 120 125	
Pro Leu Val Tyr Thr Tyr Met Leu Pro Ala Ser Tyr His Ser Pro Gly	
130 135 140	
Gln Asp Asp Ile Val Ser Val Phe Tyr Thr Val Leu Thr Pro Met Leu	
145 150 155 160	

(2) INFORMATION FOR SEQ ID NO:29:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 481 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: YES

-78-

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: rat olfactory epithelium
- (B) STRAIN: Sprague-Dawley rat
- (F) TISSUE TYPE: olfactory epithelium

(vii) IMMEDIATE SOURCE:

- (B) CLONE: J16

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 2..481

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

C ATC TGT AGG CCT CTT CAC TAT CCT ACC CTC ATC ACC CAG ACA CTG Ile Cys Arg Pro Leu His Tyr Pro Thr Leu Met Thr Gln Thr Leu 1 5 10 15	46
TGT GCC AAG ATT GCC ACT GGT TGC TGG TTG GGA GGC TTG GCT GGG CCA Cys Ala Lys Ile Ala Thr Gly Cys Trp Leu Gly Gly Leu Ala Gly Pro 20 25 30	94
GTG GTA GAA ATT TCC TTG GTG TCT CGT CTC CTT TTT TGT GGC CCC AAT Val Val Glu Ile Ser Leu Val Ser Arg Leu Leu Phe Cys Gly Pro Asn 35 40 45	142
CAC ATT CAA CAC ATC TTT TGT GAT TTC CCA CCT GTG CTG AGC TTG GCT His Ile Gln His Ile Phe Cys Asp Phe Pro Pro Val Leu Ser Leu Ala 50 55 60	190
TGT ACT GAT ACA TCA GTG AAT GTC CTG GTA GAT TTT ATT ATA AAC CTC Cys Thr Asp Thr Ser Val Asn Val Leu Val Asp Phe Ile Ile Asn Leu 65 70 75	238
TGC AAG ATC CTG GCC ACC TTC CTG CTG ATC CTG AGC TCC TAC TTG CAG Cys Lys Ile Leu Ala Thr Phe Leu Leu Ile Leu Ser Ser Tyr Leu Gln 80 85 90 95	286
ATA ATC CGC ACA GTG CTC AAG ATT CCT TCA GCT GCA GGC AAG AAG AAA Ile Ile Arg Thr Val Leu Lys Ile Pro Ser Ala Ala Gly Lys Lys Lys 100 105 110	334
GCA TTC TCG ACT TGT GCC TCC CAT CTC ACT GTG GTT CTC ATC TTC TAT Ala Phe Ser Thr Cys Ala Ser His Leu Thr Val Val Leu Ile Phe Tyr 115 120 125	382
GGG AGC ATC CTT TTC ATG TAT GTG CCG CTG AAG AAG ACT TAC TCC CTT Gly Ser Ile Leu Phe Met Tyr Val Arg Leu Lys Lys Thr Tyr Ser Leu 130 135 140	430
GAC TAC GAC AGA GCC TTG GCA GTA GTC TAC TCC GTG GTT ACC CCT TTC Asp Tyr Asp Arg Ala Leu Ala Val Val Tyr Ser Val Val Thr Pro Phe 145 150 155	478
CTG Leu 160	481

(2) INFORMATION FOR SEQ ID NO:30:

-79-

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 160 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

Ile	Cys	Arg	Pro	Leu	His	Tyr	Pro	Thr	Leu	Met	Thr	Gln	Thr	Leu	Cys
1				5					10						15
Ala	Lys	Ile	Ala	Thr	Gly	Cys	Trp	Leu	Gly	Gly	Leu	Ala	Gly	Pro	Val
				20				25							30
Val	Glu	Ile	Ser	Leu	Val	Ser	Arg	Leu	Leu	Phe	Cys	Gly	Pro	Asn	His
	35						40								45
Ile	Gln	His	Ile	Phe	Cys	Asp	Phe	Pro	Pro	Val	Leu	Ser	Leu	Ala	Cys
	50					55					60				
Thr	Asp	Thr	Ser	Val	Asn	Val	Leu	Val	Asp	Phe	Ile	Ile	Asn	Leu	Cys
	65					70				75					80
Lys	Ile	Leu	Ala	Thr	Phe	Leu	Leu	Ile	Leu	Ser	Ser	Tyr	Leu	Gln	Ile
						85				90					95
Ile	Arg	Thr	Val	Leu	Lys	Ile	Pro	Ser	Ala	Ala	Gly	Lys	Lys	Lys	Ala
					100			105							110
Phe	Ser	Thr	Cys	Ala	Ser	His	Leu	Thr	Val	Val	Leu	Ile	Phe	Tyr	Gly
						115			120				125		
Ser	Ile	Leu	Phe	Met	Tyr	Val	Arg	Leu	Lys	Lys	Thr	Tyr	Ser	Leu	Asp
						130		135					140		
Tyr	Asp	Arg	Ala	Leu	Ala	Val	Val	Tyr	Ser	Val	Val	Thr	Pro	Phe	Leu
	145						150			155					160

(2) INFORMATION FOR SEQ ID NO:31:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 481 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: rat olfactory epithelium
- (B) STRAIN: Sprague-Dawley rat
- (F) TISSUE TYPE: olfactory epithelium

(vii) IMMEDIATE SOURCE:

- (B) CLONE: J17

-80-

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 2..481

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

A ATC TGC AAC CCA CTG CTT TAT TCC ACC AAA ATG TCC ACA CAA GTC Ile Cys Asn Pro Leu Leu Tyr Ser Thr Lys Met Ser Thr Gln Val	46
1 5 10 15	
TGT ATC CAG TTG GTT GCA GGA TCT TAT ATA GGG GGT TTT CTT AAT ACT Cys Ile Gln Leu Val Ala Gly Ser Tyr Ile Gly Gly Phe Leu Asn Thr	94
20 25 30	
TGC CTC ATC ATG TTT TAC TTT TTC TCT TTT CTC TTC TGT GGG CCA AAT Cys Leu Ile Met Phe Tyr Phe Ser Phe Leu Phe Cys Gly Pro Asn	142
35 40 45	
ATA GTT GAT CAT TTT TTC TGT GAT TTT GCT CCT TTN NTG GAA CTT TCG Ile Val Asp His Phe Phe Cys Asp Phe Ala Pro Xaa Xaa Glu Leu Ser	190
50 55 60	
TGC TCT GAT GTG AGT GTC TCT GTA GTT ATG TCA TTT TCT GCT GGC Cys Ser Asp Val Ser Val Val Val Met Ser Phe Ser Ala Gly	238
65 70 75	
TCA GTT ACT ATG ATC ACA GTG TTT ATC ATA GCC ATC TCC TAT TCT TAC Ser Val Thr Met Ile Thr Val Phe Ile Ile Ala Ile Ser Tyr Ser Tyr	286
80 85 90 95	
ATC CTC ATC ACC ATC CTG AAG ATG TCC TCA ACT GAG GGC CGT CAC AAG Ile Leu Ile Thr Ile Leu Lys Met Ser Ser Thr Glu Gly Arg His Lys	334
100 105 110	
GCT TTC TCC ACA TGT ACC TCC CAC CTC ACT GCA GTC ACT CTC TAC TAT Ala Phe Ser Thr Cys Thr Ser His Leu Thr Ala Val Thr Leu Tyr Tyr	382
115 120 125	
GCC ACC ATT ACC TTC ATT TAT GTG ATG CCC AAG TCC ACA TAC TCT ACA Gly Thr Ile Thr Phe Ile Tyr Val Met Pro Lys Ser Thr Tyr Ser Thr	430
130 135 140	
GAC CAG AAC AAG GTG GTG TCT GTG TTT TAC ATG GTG GTG ATC CCA ATG Asp Gln Asn Lys Val Val Ser Val Phe Tyr Met Val Val Ile Pro Met	478
145 150 155	
TTG Leu 160	481

(2) INFORMATION FOR SEQ ID NO:32:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 160 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

-81-

11 Cys Asn Pro Leu Leu Tyr Ser Thr Lys Met Ser Thr Gln Val Cys
 1 5 10 15
 Ile Gin Leu Val Ala Gly Ser Tyr Ile Gly Gly Phe Leu Asn Thr Cys
 20 25 30
 Leu Ile Met Phe Tyr Phe Ser Phe Leu Phe Cys Gly Pro Asn Ile
 35 40 45
 Val Asp His Phe Phe Cys Asp Phe Ala Pro Xaa Xaa Glu Leu Ser Cys
 50 55 60
 Ser Asp Val Ser Val Ser Val Val Val Met Ser Phe Ser Ala Gly Ser
 65 70 75 80
 Val Thr Met Ile Thr Val Phe Ile Ile Ala Ile Ser Tyr Ser Tyr Ile
 85 90 95
 Leu Ile Thr Ile Leu Lys Met Ser Ser Thr Glu Gly Arg His Lys Ala
 100 105 110
 Phe Ser Thr Cys Thr Ser His Leu Thr Ala Val Thr Leu Tyr Tyr Gly
 115 120 125
 Thr Ile Thr Phe Ile Tyr Val Met Pro Lys Ser Thr Tyr Ser Thr Asp
 130 135 140
 Gln Asn Lys Val Val Ser Val Phe Tyr Met Val Val Ile Pro Met Leu
 145 150 155 160

(2) INFORMATION FOR SEQ ID NO:33:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 479 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: rat olfactory epithelium
- (B) STRAIN: Sprague-Dawley rat
- (F) TISSUE TYPE: olfactory epithelium

(vii) IMMEDIATE SOURCE:

- (B) CLONE: J19

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 2..479

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

T ATC TGC CAC CCT CTG AAG TAC ACA GTT ATC ATG AAT CAC TAT TTT
 Ile Cys His Pro Leu Lys Tyr Thr Val Ile Met Asn His Tyr Phe

46

-82-

1	5	10	15	
TGT GTG ATG CTG CTG CTC TTC TCT GTG TTC GTT AGC ATT GCA CAT GCG Cys Val Met Leu Leu Leu Phe Ser Val Phe Val Ser Ile Ala His Ala	20	25	30	94
TTG TTC CAC ATT TTA ATG GTG TTG ATA CTG ACT TTC AGC ACA AAA ACT Leu Phe His Ile Leu Met Val Leu Ile Leu Thr Phe Ser Thr Lys Thr	35	40	45	142
GAA ATC CCT CAC TTT TTC TGT GAG CTG GCT CAT ATC ATC AAA CTT ACC Glu Ile Pro His Phe Phe Cys Glu Leu Ala His Ile Ile Lys Leu Thr	50	55	60	190
TGT TCC GAT AAT TTT ATC AAC TAT CTG CTG ATA TAC ACA GAG TCT GTC Cys Ser Asp Asn Phe Ile Asn Tyr Leu Leu Ile Tyr Thr Glu Ser Val	65	70	75	238
TTA TTT TTT GGT GTT CAT ATT GTA GGG ATC ATT TTG TCT TAT ATT TAC Leu Phe Phe Gly Val His Ile Val Gly Ile Ile Leu Ser Tyr Ile Tyr	80	85	90	286
ACT GTA TCC TCA GTT TTA AGA ATG TCA TTA TTG GGA GGA ATG TAT AAA Thr Val Ser Ser Val Leu Arg Met Ser Leu Leu Gly Gly Met Tyr Lys	100	105	110	334
GCC TTT TCA ACA TGT GGA TCT CAT TTG TCG GTT GTC TCT GTT TTA TGG Ala Phe Ser Thr Cys Gly Ser His Leu Ser Val Val Ser Val Leu Trp	115	120	125	382
CAC AGG TTT TGG GGT ACA CAT AAG CTC TCC ACT TAC TGA CTC TCC AAG His Arg Phe Trp Gly Thr His Lys Leu Ser Thr Tyr * Leu Ser Lys	130	135	140	430
GAA GAC TGT AGT GGC TTC AGT GAT GTA CAC TGT GGT TAC TCA GAT GCT G Glu Asp Cys Ser Gly Phe Ser Asp Val His Cys Gly Tyr Ser Asp Ala	145	150	155	479

(2) INFORMATION FOR SEQ ID NO:34:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 159 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

Ile Cys His Pro Leu Lys Tyr Thr Val Ile Met Asn His Tyr Phe Cys	1	5	10	15
Val Met Leu Leu Leu Phe Ser Val Phe Val Ser Ile Ala His Ala Leu	20	25	30	
Phe His Ile Leu Met Val Leu Ile Leu Thr Phe Ser Thr Lys Thr Glu	35	40	45	
Ile Pro His Phe Phe Cys Glu Leu Ala His Ile Ile Lys Leu Thr Cys	50	55	60	

-83-

Ser Asp Asn Phe Ile Asn Tyr Leu Leu Ile Tyr Thr Glu Ser Val Leu
 65 70 75 80
 Ph Phe Gly Val His Ile Val Gly Ile Ile Leu Ser Tyr Ile Tyr Thr
 85 90 95
 Val Ser Ser Val Leu Arg Met Ser Leu Leu Gly Gly Met Tyr Lys Ala
 100 105 110
 Phe Ser Thr Cys Gly Ser His Leu Ser Val Val Ser Val Leu Trp His
 115 120 125
 Arg Phe Trp Gly Thr His Lys Leu Ser Thr Tyr Leu Ser Lys Glu
 130 135 140
 Asp Cys Ser Gly Phe Ser Asp Val His Cys Gly Tyr Ser Asp Ala
 145 150 155

(2) INFORMATION FOR SEQ ID NO:35:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 481 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: NO

(v) ORIGINAL SOURCE:

- (A) ORGANISM: rat olfactory epithelium
- (B) STRAIN: Sprague-Dawley rat
- (F) TISSUE TYPE: olfactory epithelium

(vi) IMMEDIATE SOURCE:

- (B) CLONE: J20

(vii) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 2..481

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

A ATC TGC TAC CCA CTG AGG TAC CTT CTC ATC ATG AGC TGG GTG GTG Ile Cys Tyr Pro Leu Arg Tyr Leu Leu Ile Met Ser Trp Val Val	46
1 5 10 15	
TGC ACA GCA CTG TCC GTG GCA ATC TGG GTC ATA GGC TTT TGT GCC TCC Cys Thr Ala Leu Ser Val Ala Ile Trp Val Ile Gly Phe Cys Ala Ser	94
20 25 30	
GTT ATA CCT CTC TGC TTC ACG ATC CTC CCA CTC TGT GGT CCT TAC GTC Val Ile Pro Leu Cys Phe Thr Ile Leu Pro Leu Cys Gly Pro Tyr Val	142
35 40 45	
GTT GAT TAT CTT TTC TGC GAG CTG CCC ATC CTT CTG CAC CTG TPC TGC Val Asp Tyr Leu Phe Cys Glu Leu Pro Ile Leu Leu His Leu Phe Cys	190
50 55 60	
ACA GAT ACA TCT CTC CTG GAG NNN NNN NNN NNN NNN NNN NNN NNN NNN Thr Asp Thr Ser Leu Leu Glu Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa	238
65 70 75	

-84-

NNN NNN NNN NNN CCC TTC CTC CTG ATT CTT CTC TCC TAC CTT CGC Xaa Xaa Xaa Xaa Pro Phe Leu Leu Ile Val Leu Ser Tyr Leu Arg 80 85 90 95	286
ATC CTG GTG GCT GTG ATA AGA ATA GAC TCA GCT GAG GGC AGA AAA AAG Ile Leu Val Ala Val Ile Arg Ile Asp Ser Ala Glu Gly Arg Lys Lys 100 105 110	334
GCC TTT TCA ACT TGT GCT TCA CAC TTG GCT GTG GTG ACC ATC TAC TAT Ala Phe Ser Thr Cys Ala Ser His Leu Ala Val Val Thr Ile Tyr Tyr 115 120 125	382
GGA ACA GGG CTG ATC AGG TAC TTG AGG CCC AAG TCC CTT TAT TCC GCT Gly Thr Gly Leu Ile Arg Tyr Leu Arg Pro Lys Ser Leu Tyr Ser Ala 130 135 140	430
GAG GGA GAC AGA CTG ATC TCT GTG TTC TAT GCA GTC ATT GCC CCT GCA Glu Gly Asp Arg Leu Ile Ser Val Phe Tyr Ala Val Ile Gly Pro Ala 145 150 155	478
CTG Leu 160	481

(2) INFORMATION FOR SEQ ID NO:36:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 160 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

Ile Cys Tyr Pro Leu Arg Tyr Leu Leu Ile Met Ser Trp Val Val Cys 1 5 10 15
Thr Ala Leu Ser Val Ala Ile Trp Val Ile Gly Phe Cys Ala Ser Val 20 25 30
Ile Pro Leu Cys Phe Thr Ile Leu Pro Leu Cys Gly Pro Tyr Val Val 35 40 45
Asp Tyr Leu Phe Cys Glu Leu Pro Ile Leu Leu His Leu Phe Cys Thr 50 55 60
Asp Thr Ser Leu Leu Glu Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 65 70 75 80
Xaa Xaa Xaa Pro Phe Leu Leu Ile Val Leu Ser Tyr Leu Arg Ile 85 90 95
Leu Val Ala Val Ile Arg Ile Asp Ser Ala Glu Gly Arg Lys Lys Ala 100 105 110
Phe Ser Thr Cys Ala Ser His Leu Ala Val Val Thr Ile Tyr Tyr Gly 115 120 125
Thr Gly Leu Ile Arg Tyr Leu Arg Pro Lys Ser Leu Tyr S r Ala Glu 130 135 140
Gly Asp Arg Leu Ile Ser Val Phe Tyr Ala Val Ile Gly Pr Ala Leu 145 150 155 160

What is claim d is:

1. An isolated nucleic acid molecule encoding an odorant receptor.
- 5 2. An isolated DNA of claim 1.
3. An isolated cDNA of claim 2.
- 10 4. An isolated cDNA of claim 3 wherein the sequence of the cDNA has the nucleotide sequence shown in Figure 9.
5. An isolated cDNA of claim 3 wherein the sequence of the cDNA has the nucleotide sequence shown in Figure 10.
- 15 6. An isolated cDNA of claim 3 wherein the sequence of the cDNA has the nucleotide sequence shown in Figure 11.
7. An isolated cDNA of claim 3 wherein the sequence of the cDNA has the nucleotide sequence shown in Figure 12.
- 20 8. An isolated cDNA of claim 3 wherein the sequence of the cDNA has the nucleotide sequence shown in Figure 13.
- 25 9. An isolated cDNA of claim 3 wherein the sequence of the cDNA has the nucleotide sequence shown in Figure 14.
10. An isolated cDNA of claim 3 wherein the sequence of the cDNA has the nucleotide sequence shown in Figure 15.
- 30 11. An isolated cDNA of claim 3 wherein the sequence of the cDNA has the nucleotide sequence shown in Figure 16.
12. An isolated cDNA of claim 3 wherein the sequence of the cDNA has the nucleotide sequence shown in Figure 17.

-86-

13. An isolated cDNA of claim 3 wherein the sequence of the cDNA has the nucleotide sequence shown in Figure 18.
- 5 14. An isolated cDNA of claim 3 wherein the sequence of the cDNA has the nucleotide sequence shown in Figure 19.
15. An isolated cDNA of claim 3 wherein the sequence of the cDNA has the nucleotide sequence shown in Figure 20.
- 10 16. An isolated cDNA of claim 3 wherein the sequence of the cDNA has the nucleotide sequence shown in Figure 21.
17. An isolated cDNA of claim 3 wherein the sequence of the cDNA has the nucleotide sequence shown in Figure 22.
- 15 18. An isolated cDNA of claim 3 wherein the sequence of the cDNA has the nucleotide sequence shown in Figure 23.
19. An isolated cDNA of claim 3 wherein the sequence of the cDNA has the nucleotide sequence shown in Figure 24.
- 20 20. An isolated cDNA of claim 3 wherein the sequence of the cDNA has the nucleotide sequence shown in Figure 25.
- 25 21. An isolated cDNA of claim 3 wherein the sequence of the cDNA has the nucleotide sequence shown in Figure 26.
22. An isolated cDNA of claim 3 wherein the sequence of the cDNA has the nucleotide sequence shown in Figure 27.
- 30 23. An isolated cDNA of claim 3 wherein the sequence of the cDNA has the nucleotide sequence shown in Figure 28.
24. An isolated cDNA of claim 3 wherein the sequence of the cDNA has the nucleotide sequence shown in Figure 29.

-87-

25. An isolated cDNA of claim 3 wherein the sequence of the cDNA has the nucleotide sequence shown in Figure 30.
- 5 26. An isolated cDNA of claim 3 wherein the sequence of the cDNA has the nucleotide sequence shown in Figure 31.
27. An isolated cDNA of claim 3 encoding an insect odorant receptor.
- 10 28. An isolated cDNA of claim 3 encoding a vertebrate odorant receptor.
29. An isolated cDNA of claim 3 encoding a fish odorant receptor.
- 15 30. An isolated cDNA of claim 3 encoding a mammalian odorant receptor.
31. An isolated cDNA of claim 30 wherein the mammalian odorant receptor is a human odorant receptor.
- 20 32. An isolated cDNA of claim 30 wherein the mammalian odorant receptor is a rat, dog or mouse odorant receptor.
- 25 33. An expression vector comprising the cDNA of claim 3 and the sequence elements necessary for replication and expression in a suitable host.
- 30 34. An expression vector comprising the cDNA of any of claims 4-19 and the sequence elements necessary for replication and expression in a suitable host.
35. A purified protein encoding an odorant receptor.

35

SUBSTITUTE SHEET

-88-

36. A purified protein of claim 35 wherein the amino acid sequence is the sequence in Figure 9.
- 5 37. A purified protein of claim 35 wherein the amino acid sequence is the sequence in Figure 10.
38. A purified protein of claim 35 wherein the amino acid sequence is the sequence in Figure 11.
- 10 39. A purified protein of claim 35 wherein the amino acid sequence is the sequence in Figure 12.
40. A purified protein of claim 35 wherein the amino acid sequence is the sequence in Figure 13.
- 15 41. A purified protein of claim 35 wherein the amino acid sequence is the sequence in Figure 14.
42. A purified protein of claim 35 wherein the amino acid sequence is the sequence in Figure 15.
- 20 43. A purified protein of claim 35 wherein the amino acid sequence is the sequence in Figure 16.
- 25 44. A purified protein of claim 35 wherein the amino acid sequence is the sequence in Figure 17.
45. A purified protein of claim 35 wherein the amino acid sequence is the sequence in Figure 18.
- 30 46. A purified protein of claim 35 wherein the amino acid sequence is the sequence in Figure 19.
47. A purified protein of claim 35 wherein the amino acid sequence is the sequence in Figure 20.

-89-

48. A purified protein of claim 35 wherein the amino acid sequence is the sequence in Figure 21.
- 5 49. A purified protein of claim 35 wherein the amino acid sequence is the sequence in Figure 22.
50. A purified protein of claim 35 wherein the amino acid sequence is the sequence in Figure 23.
- 10 51. A purified protein of claim 35 wherein the amino acid sequence is the sequence in Figure 24.
52. A purified protein of claim 35 wherein the amino acid sequence is the sequence in Figure 25.
- 15 53. A purified protein of claim 35 wherein the amino acid sequence is the sequence in Figure 26.
54. A purified protein of claim 35 wherein the amino acid sequence is the sequence in Figure 27.
- 20 55. A purified protein of claim 35 wherein the amino acid sequence is the sequence in Figure 28.
- 25 56. A purified protein of claim 35 wherein the amino acid sequence is the sequence in Figure 29.
57. A purified protein of claim 35 wherein the amino acid sequence is the sequence in Figure 31.
- 30 58. A purified protein of claim 35 encoding an insect odorant receptor.
- 35 59. A purified protein of claim 35 encoding a vertebrate odorant receptor.

-90-

60. A purified protein of claim 35 encoding a fish odorant receptor.
- 5 61. A purified protein of claim 35 encoding a mammalian odorant receptor.
62. A purified protein of claim 61 wherein the mammalian odorant receptor is a human odorant receptor.
- 10 63. A purified protein of claim 61 wherein the mammalian odorant receptor is a rat, dog or mouse odorant receptor.
- 15 64. A purified protein of claim 35 which has 7 transmembrane regions and whose third cytoplasmic loop from the N-terminus is approximately 17 amino acid long.
- 20 65. A method of transforming cells which comprises transfecting a host cell with a suitable expression vector of claim 33.
- 25 66. A method of transforming cells which comprises transfecting a host cell with a suitable expression vector of claim 34.
67. Cells transformed by the method of claim 65.
- 30 68. Transformed cells of claim 67 wherein the cells are olfactory cells.
69. Transformed cells of claim 67 wherein the cells are non-olfactory cells.

-91-

70. A method of identifying a desired odorant ligand comprising contacting transformed non-olfactory cells of claim 69, expressing a known odorant receptor with a series of odorant ligands and determining which ligands bind to the receptors present on the non-olfactory cells.
- 5
71. A method of identifying a desired odorant receptor comprising contacting a series of transformed non-olfactory cells of claim 69 with a known odorant ligand and determining which odorant receptor binds with the odorant ligand.
- 10
72. A method of detecting an odor which comprises:
- 15
- a) identifying a odorant receptor which binds the desired odorant ligand by the method of claim 71 and;
- 20
- b) imbedding the receptor in a membrane such that when the odorant ligand binds with the receptor identified in a) above, a detectable signal is produced.
- 25
73. A method of claim 72 wherein the desired odorant is a pheromone.
74. A method of claim 72 wherein the desired odorant ligand is the vapors emanating from cocaine, marijuana, heroin, hashish, or angel dust.
- 30
75. A method of claim 72 wherein the desired odorant ligand is the vapors emanating from gasoline, natural gas or alcohol.
- 35

-92-

76. A method of claim 72 wherein the desired odorant ligand is the vapors emanating from decayed human flesh.
- 5 77. A method of claim 72 wherein the desired odorant ligand is the vapors emanating from explosives, plastic explosives, firearms, or gun powder.
- 10 78. A method of claim 72 wherein the desired odorant ligand is toxic fumes, noxious fumes or dangerous fumes.
- 15 79. A method of claim 72 wherein the membrane is a cell membrane.
80. A method of claim 72 wherein the membrane is an olfactory cell membrane.
- 20 81. A method of claim 72 wherein the membrane is a synthetic membrane.
82. A method of claim 72 wherein the detectable signal is a color change, phosphorescence, or radioactivity.
- 25 83. A method of quantifying the amount of an odorant ligand present in a sample which comprises the method of claim 72 wherein the detectable signal is quantified.
- 30 84. A method of developing fragrances which comprises identifying a desired odorant receptor by the method of claim 71 then contacting non-olfactory cells, which have been transfected with an expression vector containing the cDNA of the desired odorant receptor such that the receptor is expressed upon the surface of the non-olfactory cell, with a series of compounds to determine which ones bind with the receptor.

- 5 85. A method of identifying an odorant fingerprint which comprises contacting a series of cells, which have been transformed such that each express a known odorant receptor, with a desired sample and determining the type and quantity of the odorant ligands present in the sample.
- 10 86. A method of identifying odorant ligands which inhibit the activity of a desired odorant receptor which comprises contacting the desired odorant receptor with a series of compounds and determining which compounds inhibit the odorant ligand - odorant receptor interaction.
- 15 87. A method of identifying appetite suppressant compounds which comprises identifying odorant ligands by the method of claim 86 wherein the desired odorant receptor is that which is associated with the perception of food.
- 20 88. A method of controlling appetite in a subject which comprises contacting the olfactory epithelium of the subject with the odorant ligands identified by the method of claim 87.
- 25 89. A nasal spray, to control appetite comprising the compounds identified by the method of claim 87 in a suitable carrier.
- 30 90. A method of trapping odors which comprises contacting a membrane which contains multiples of the desired odorant receptor, with a sample such that the desired odorant ligand is absorbed by the binding of the odorant ligand to the odorant receptor.

35

-94-

91. An odor trap employing the method of claim 90.
92. A method of controlling pest populations which comprises identifying odorant ligands by the method of
5 claim 70 which are alarm odorant ligands and spraying the desired area with the identified odorant ligands.
93. A method of controlling a pest population which comprises identifying odorant ligands by the method of
10 claim 70 which interfere with the interaction between the odorant ligands and the odorant receptors which are associated with fertility.
94. A method of claim 92 or 93 wherein the pest population
15 is a population of insects.
95. A method of claim 92 or 93 wherein the pest population is a population of rodents.
- 20 96. A method of claim 95 wherein the population of rodents is a population of mice or rats.
97. A method of promoting fertility which comprises employing the method of claim 70 to identify odorant
25 ligands which interact with the odorant receptors associated with fertility and administering the identified odorant ligands to a subject.
98. A method of inhibiting fertility which comprises employing the method of claim 70 to identifying odorant ligands which inhibit the interaction between the odorant ligands and the odorant receptors associated with f rtility and administering the identified odorant ligands to a subject.
30

1/99

Figure 1A**SUBSTITUTE SHEET**

2/99

Figure 1B

4/99

Figure 3

OLFAC TORY
BRAIN
SPLEEN

5.0 -
2.0 -

SUBSTITUTE SHEET

5/99

Figure 4A

F3	M D S S N R T R V S E	11
F5	M S S T N Q S S V T E	11
F6	M A W S T G Q N L S T P G P	14
F12	M E S G N S T R R F S S	12
I3	M N - - N Q T F I T Q	9
I7	M E R R R N H S G R V S E	12
I8	M N - - N K T V I T H	9
I8	M T R R N Q T A I S Q	11
I14	M T G N N Q T L I L E	11
I15	M T E E N Q T V I S Q	11

F3	F L L L G F V E N K D L Q P	25
F5	F L L L G L S R Q P Q Q Q Q	25
F6	F I L L G F P G P R S M R I	28
F12	F F L L G F T E N P Q L H F	26
I3	F L L L G L P I P E E H Q H	23
I7	F V L L L G F P A P A P L R V	26
I8	F L L L G L P I P P E H Q Q	23
I9	F F L L L G L P F P P E Y Q H	25
I14	F L L L G L P I P S E Y H L	25
I15	F L L L F L P I P S E H Q H	25

6/99

Figur 4BI

F3	L I Y G L F L S M Y L V T V	39
F5	L L F L L F L I M Y L A T V	39
F6	G L F L L F L V M Y L L T V	42
F12	L I F A L F L S M Y L V T V	40
I3	L F Y A L F L V M Y L T T I	37
I7	L L F F L S L L X Y V L V L	40
I8	L F F A L F L I M Y L T T F	37
I9	L F Y A L F L A M Y L T T L	39
I14	L F Y A L F L A M Y L T I I	29
I15	V F Y A L F L S M Y L T T V	39

I

F3	I G N I S I I V A I I S D P	53
F5	L G N L L I I L A I G T D S	53
F6	V G N L A I I S L V G A H R	56
F12	L G N L L I I M A I I T Q S	54
I3	L G N L L I I V L V Q L D S	51
I7	T E N M L I I I A I R N H P	54
I8	L G N L L I V V L V Q L D S	51
I9	L G N L I I I I L I L L D S	53
I14	L G N L L I I V L V R L D S	53
I15	L G N L I I I I L I H L D S	53

7/99

Figur 4C

II

F3	C L H T P N Y F F L S N L S	67
F5	R L H T P N Y F F L S N L S	67
F6	C L Q T P N Y F F L C N L S	70
F12	H L H T P N Y F F L A N L S	68
I3	Q L H T P N Y L F L S N L S	65
I7	T L H K P N Y F F L A N M S	68
I8	H L H T P N Y L F L S N L S	65
I9	H L H T P N Y L F L S N L S	67
I14	H L H M P N Y L F L S N L S	67
I15	H L H T P N Y L F L S N L S	67

II

F3	F V D I C F I S T T V P K M	81
F5	F V D V C F S S T T V P K V	81
F6	F L E I W F T T A C V P K T	84
F12	F V D I C F T S T T I P K M	82
I3	F S D L C F S S V T M P K L	79
I7	F L E I W Y V T V T I P K M	82
I8	F S D L C F S S V T M L K L	79
I9	F A D L C F S S V T M P K L	67
I14	F S D L C F S S V T M P K L	67
I15	F S D L C F S S V T M P K L	67

8/99

Figure 4D

F3	L	-	-	-	V	N	I	Q	T	Q	N	N	V	91
F5	L	-	-	-	A	N	H	I	L	G	S	Q	A	91
F6	L	-	-	-	A	T	F	A	P	R	G	G	V	94
F12	L	-	-	-	V	N	I	Y	T	Q	S	K	S	92
I3	L	-	-	-	Q	N	M	R	S	Q	K	T	S	89
I7	L	A	G	F	I	G	S	K	E	N	H	G	Q	96
I8	L	-	-	-	Q	N	I	Q	S	Q	V	P	S	89
I9	L	-	-	-	Q	N	M	Q	S	Q	V	P	S	91
I14	L	-	-	-	Q	N	M	Q	S	Q	V	P	S	91
I15	L	-	-	-	Q	N	M	Q	S	Q	V	P	S	91

													<u>III</u>	
F3	I	T	Y	A	G	C	I	T	Q	I	Y	F	F	L
F5	I	S	F	S	G	C	L	T	Q	L	Y	F	L	A
F6	I	S	L	A	G	C	A	T	Q	M	Y	F	V	F
F12	I	T	Y	E	D	C	I	S	Q	M	C	V	F	L
I3	I	P	Y	G	G	C	L	A	Q	T	Y	F	F	M
I7	I	S	F	E	A	C	M	T	Q	L	Y	F	F	L
I8	I	S	Y	A	G	C	L	T	Q	I	F	F	F	L
I9	I	P	Y	A	G	C	L	A	Q	I	Y	F	F	L
I14	I	S	Y	T	G	C	L	T	Q	L	Y	F	F	M
I15	I	P	F	A	G	C	L	T	Q	L	Y	F	Y	L

9/99

Figure 4EIII

F3	L F V E L D N F L L T I M A	119
F5	V F G N M D N F L L A V N S	119
F6	S L G C T E Y F L L A V N A	119
F12	V F A I L G N F L L A V N A	122
I3	V F G D M E S F L L V A N A	120
I7	G L G C T E C V L L A V N A	117
I8	L F G Y L G N F L L V A N A	124
I9	F F G D L G N F L L V A N A	117
I14	V F G D M E S F L L V V N A	119
I15	Y F A D L E S F L L V A N A	119
		119

III

F3	Y D R Y V A I C H P M H Y T	133
F5	Y D R F V A I C H P L H Y T	133
F6	Y D R Y L A I C L P L R Y G	133
F12	Y D R Y V A X C H P L C Y T	136
I3	Y D R Y V A I C F P L H Y T	134
I7	Y D R Y V A I C H P L H Y P	131
I8	Y D R Y V A I C F P L H Y T	138
I9	Y D R Y V A I C F P L H Y M	131
I14	Y D R Y V A I C F P L R Y T	133
I15	Y D R Y V A I C F P L H Y M	133
		133

10/99

Figur 4FIV

F3	V I M N Y K L C G F L V L V	147
F5	T K M T R Q L C V L L V V G	147
F6	G I M T P G L A M R L A L G	150
F12	V I V N H R L C I L L L L L	148
I3	S I M S P K L C T C L V L L	145
I7	V I V S S R L C V Q M A A G	152
I8	N I M S H K L C T C L L L V	145
I9	S I M S P K L C V S L V V L	147
I14	T I N S T K F C A S L V L L	147
I15	S I M S P K L C V S L V V L	147

IV

F3	S W I V S V L H A L F Q S L	161
F5	S W V V A N M M N C L L H I L	161
F6	S W L C G F S A I T V P A T	164
F12	S W V I S I F H A F I Q S L	162
I3	L W M L T T S H A M M H T L	159
I7	S W A G G F G I S M V K V F	166
I8	F W I M T S S H A M M H T L	159
I9	S W V L T T F H A M L H T L	161
I14	L W M L T M T H A L L H T L	161
I15	S W V L T T F H A M L H T L	161

11/99

Figur 4G

F3	M M L A L P F C T H L E I P	175
F5	L M A R K S F C A D N M I P	175
F6	L I A R L S F C G S R V I N	178
F12	I V L Q L T F C G D V K I P	176
I3	L A A R L S F C E N N N V V L	173
I7	L I S R L S Y C G P N T I N	180
I8	L A A R L S F C E N N N V L L	173
I9	L M A R L S F C E D S V I P	175
I14	L I A R L S F C E K N V I L	175
I15	L M A R L S F C A D N M I P	175

F3	H Y F C E P N Q V I Q L T C	189
F5	H F F C D G T P L L K L S C	189
F6	H F F C D I S P W I V L S C	192
F12	H F F C E L N Q L S Q L T C	190
I3	N F F C D L F V L L K L A C	187
I7	H F F C D V S P L L N L S C	194
I8	N F F C D L F V L L K L A C	187
I9	H Y F C D M S T L L K V A C	189
I14	H F F C D I S A L L K L S C	189
I15	H F F C D I S P L L K L S C	189

12/99

Figure 4H

	<u>V</u>													
F3	S	D	A	F	L	N	D	L	V	I	Y	F	T	L
F5	S	D	T	H	L	N	E	L	M	I	L	T	E	G
F6	T	D	T	Q	V	V	E	L	V	S	F	G	I	A
F12	S	D	N	F	P	S	H	L	I	M	N	L	V	P
I3	S	D	T	Y	I	N	E	L	M	I	F	I	M	S
I7	T	D	M	S	T	A	E	L	T	D	F	V	L	A
I8	S	D	T	Y	V	N	E	L	M	I	H	I	M	G
I9	S	D	T	H	D	N	E	L	A	I	F	I	L	G
I14	S	D	I	Y	V	N	E	L	M	I	Y	I	L	G
I15	S	D	T	H	V	N	E	L	V	I	F	V	M	G
														203

	<u>V</u>													
F3	V	L	L	A	T	V	P	L	A	G	I	F	Y	S
F5	A	V	V	M	V	T	P	F	V	C	I	L	I	S
F6	F	C	V	I	L	G	S	C	G	I	T	L	V	S
F12	V	M	L	A	A	I	S	F	S	G	I	L	Y	S
I3	T	L	L	I	I	I	P	F	F	L	I	V	M	S
I7	I	F	I	L	L	G	P	L	S	V	T	G	A	S
I8	V	I	I	I	V	I	P	F	V	L	I	V	I	S
I9	G	P	I	V	V	L	P	F	L	L	I	I	V	S
I14	G	L	I	I	I	I	P	F	L	L	I	V	M	S
I15	G	L	V	I	V	I	P	F	V	L	I	I	V	S
														203

13/99

Figure 4I

	<u>V</u>		
F3	Y F K I V S S I C A I S S V		231
F5	Y I H I T C A V L R V S S P		231
F6	Y A Y I I T T I I K I P S A		234
F12	Y F K I V S S I H S I S T V		232
I3	Y A R I I S S I L K V P S S T		229
I7	Y M A I T G A V M R I P S A		236
I8	Y A K I I S S I L K V P S S T		229
I9	Y A R I V S S I F K V P S S		231
I14	Y V R I F F S I L K F P S I		231
I15	Y A R V V A S I L K V P S V		231

	<u>VI</u>		
F3	H G K Y K A F S T C A S H L		245
F5	R G G W K S F S T C G S H L		245
F6	R G R H R A F S T C S S H L		248
F12	Q G G K Y K A F S T C A S H L		246
I3	Q G I C K V F S T C G S H L		243
I7	A G R H K A F S T C A S H L		250
I8	Q S I H K V F S T C G S H L		243
I9	Q S I H K A F S T C G S H L		245
I14	Q D I Y K V F S T C G S H L		245
I15	R G I H K I F S T C G S H L		245

14/99
Figur 4J

	<u>VI</u>	
F3	S V V S L F Y C T G L G V Y	259
F5	A V V C L F Y G T V I A V Y	259
F6	T V V L I W Y G S T I F L H	262
F12	S I V S L F Y S T G L G V Y	260
I3	S V V S L F Y G T I I G L Y	257
I7	T V V I I F Y A A S I F I Y	264
I8	S V V S L F Y G T I I G L Y	257
I9	S V V S L F Y G T V I G L Y	259
I14	S V V T L F Y G T I F G I Y	259
I15	S V V S L F Y G T I I G L Y	259

	<u>VI</u>	<u>VII</u>
F3	L S S A A N N S S Q A S A T	273
F5	F N P S S S H L A G R D M A	273
F6	V R T S V E S S S L D L T K A	276
F12	V S S A V V Q S S H S A A S	274
I3	L C P A G N N S T V K E M V	271
I7	A R P K A L S A F D T N K L	278
I8	L C P S G D N F S L K G S A	271
I9	L C P S A N N S T V K E T V	273
I14	L C P S G N N S T V K E I A	273
I15	L C P S A N N S T V K E T V	273

15/99

Figur 4KVII

F3	A S V M Y T V V T P M V N P	287
F5	A A V M Y A V V T P M L N P	287
F6	I T V L N T I V T P V L N P	290
F12	A S V M Y T V V T P M L N P	288
I3	M A M M Y T V V T P M L N P	285
I7	V S V L Y A V I V P L F N P	292
I8	M A M M Y T V V T P M L N P	285
I9	M S L M Y T M V T P M L N P	287
I14	M A M M Y T V V T P M L N P	287
I15	M A M M Y T V V T P M L N P	287

VII

F3	F I Y S L R N K D V K S V L	301
F5	F I Y S L R N S D M K A A L	301
F6	F I Y T L R N K D V K E A L	304
F12	F I Y S L R N K D V K R A L	302
I3	F I Y S L R N R D M K R A L	299
I7	I I Y C L R N Q D V K R A L	306
I8	F I Y S L R N R D M K Q A L	299
I9	F I Y S L R N R D I K D A L	301
I14	F I Y S L R N R D M K R A L	301
I15	F I Y S L R N R D M K E A L	301

16/99

Figure 4L

F3	K K T L C E E V I R S P P S	315
F5	R K V L A M R F P S K Q -	313
F6	R R T V K G K -	311
F12	E R L L E G N C K V H H W T	316
I3	I R V I C S M K I T L -	310
I7	R R T L H L A Q D Q E A N T	320
I8	I R V T C S K K I S L P W -	312
I9	E K I M C K K Q I P S F L -	314
I14	I R V I C T K K I S L -	312
I15	I R V L C K K K I T F C L -	314

F3	L L H F F L V L C H L P C F	329
F5		
F6		
F12	G -	317
I3		
I7	N K G S K I G -	327
I8		
I9		
I14		
I15		

17/99

Figur 4M

F3 I F C Y -
F5
F6
F12
I3
I7
I8
I9
I14
I15

333

Figure 5

19/99

Figure 6A(1)

	V
F2	R V N E V V I F I V V S L F
F3	F L N D L V I Y F T L V L L
F5	H L N E L M I L T E G A V V
F6	Q V V E L V S F G I A F C V
F7	H V N E L V I F V M G G I I
F8	F P S H L T M H L V P V I L
F12	F P S H L I M N L V P V M L
F13	F P S H L I M N L V P V M L
F23	F L N D V I M Y F A L V L L
F24	H E I E M I I L V L A A F N
I3	Y I N E L M I F I M S T L L
I7	S T A E L T D F V L A I F I
I8	Y V N E L M I H I M G V I I
I9	H D N E L A I F I L G G P I
I11	H L N E L M I L T E G A V V
I12	F P S H L I M N L V P V M L
I14	Y V N E L M I Y I L G G L I
I15	H V N E L V I F V M G G L V

20/99

Figure 6A(2)

	V	
F2	L V L P F A L I I M S Y V R	
F3	A T V P L A G I F Y S Y F K	
F5	M V T P F V C I L I S Y I H	
F6	I H G S C G I T L V S Y A Y	
F7	L V I P F V L I I V S Y V R	
F8	A A I S L S G I L Y S Y F K	
F12	A A I S F S G I L Y S Y F K	
F13	A A I S F S G I L Y S Y F K	
F23	A V V P L L G I L Y S Y S K	
F24	L I S S L L V V L V S Y L F	
I3	I I I P F F L I V M S Y A R	
I7	L L G P L S V T G A S Y M A	
I8	I V I P F V L I I V I S Y A K	
I9	V V L P F L L I I V S Y A R	
I11	M V T P F V C I L I S Y I H	
I12	G A I S L S G I L Y S Y F K	
I14	I I I P F L L I V M S Y V R	
I15	I V I P F V L I I V S Y A R	

21/99

Figure 6A(3)

F2	I V S S I L K V P S S S Q G I
F3	I V S S I C A I S S S V H G K
F5	I T C A V L R V S S S P R G G
F6	I I T T I I K I P S S A R G R
F7	I V S S I L K V P S S A R G R
F8	I V S S S I R S M S S V Q G K
F12	I V S S S I H S I S T V Q G K
F13	I V S S S I R S V S S V K G K
F23	I V S S S I R A I S T V Q G K
F24	I L I A I L R M N S A E G R
I3	I I S S S I L K V P S S T Q G I
I7	I T G A V M R I P S S A A G R
I8	I I S S S I L K V P S S T Q S I
I9	I V S S S I F K V P S S S Q S I
I11	I T W A V L R V S S S P R G G
I12	I V S S S V R S I S S S V Q G K
I14	I F F S I L K F P S I Z D I
I15	V V A S I L K V P S V R G I

SUBSTITUTE SHEET

22/99

Figure 6A(4)

F2	Y	K
F3	Y	K
F5	W	K
F6	H	R
F7	R	K
F8	Y	K
F12	Y	K
F13	Y	K
F23	Y	K
F24	R	K
I3	C	K
I7	H	K
I8	H	K
I9	H	K
I11	W	K
I12	H	K
I14	Y	K
I15	H	K

SUBSTITUTE SHEET

23/99

Figure 6B

				V										
F12	F	P	S	H	L	I	N	N	L	V	P	V	M	L
F13	F	P	S	H	L	I	M	N	L	V	P	V	M	L
F8	F	P	S	H	L	T	M	H	L	V	P	V	I	L
I12	F	P	S	H	L	I	M	N	L	V	P	V	M	L
F23	F	L	N	D	V	I	N	Y	F	A	L	V	L	L
F3	F	L	N	D	L	V	I	Y	F	T	L	V	L	L

		V												
F12	A	A	I	S	F	S	G	I	L	Y	S	Y	F	K
F13	A	A	I	S	F	S	G	I	L	Y	S	Y	F	K
F8	A	A	I	S	L	S	G	I	L	Y	S	Y	F	K
I12	G	A	I	S	L	S	G	I	L	Y	S	Y	F	K
F23	A	V	V	P	L	L	G	I	L	Y	S	Y	S	K
F3	A	T	V	P	L	A	G	I	F	Y	S	Y	F	K

24/99

Figure 6B (Continued)

F12	I V S S I H S I S T V Q G K
F13	I V S S I R S V S S V K G K
F8	I V S S I R S M S S V Q G K
I12	I V S S V R S I S S V Q G K
F23	I V S S I R A I S T V Q G K
F3	I V S S I C A I S S S H G K

F12	Y K
F13	Y K
F8	Y K
I12	H K
F23	Y K
F3	Y K

25/99

Figure 6C

		<u>V</u>	
F7	H V N E	L V I F	V M G G I I
I15	H V N E	L V I F	V M G G L V
I3	Y I N E	L M I F I	M S T L L
I8	Y V N E	L M I H I	M G V I I
I9	H D N E	L A I F I	L G G P I
I14	Y V N E	L M I Y I	L G G L I

		<u>V</u>	
F7	L V I P F	V L I I	V S Y V R
I15	I V I P F	V L I I	V S Y A R
I3	I I I P F	F L I V M S Y A R	
I8	I V I P F	V L I V I S Y A K	
I9	V V L P F	L L I I V S Y A R	
I14	I I I P F	L L I V M S Y V R	

SUBSTITUTE SHEET

26/99

Figure 6C (Continued)

F7	I V S S I L K V P S A R G I
I15	V V A S I L K V P S V R G I
I3	I I S S I L K V P S T Q G I
I8	I I S S I L K V P S T Q S I
I9	I V S S I F K V P S S Q S I
I14	I F F S I L K F P S I Q D I

F7	R K
I15	H K
I3	C K
I8	H K
I9	H K
I14	Y K

27/99

Figure 6D

F5	H L N E <u>L</u> M I L T E G A V V
I11	H L N E L M I L T E G A V V
F5	<u>V</u> N V T P F V C I L I S Y I H
I11	N V T P F V C I L I S Y I H
F5	I T C A V L R V S S P R G G
I11	I T W A V L R V S S P R G G
F5	W K
I11	W K

28/99

Figure 7**SUBSTITUTE SHEET**

29/99

Figure 8

Figure 9A Translated sequence of F3T.D1S

	10	20	30	40	50	60	
ATG GAC TCA AGC AAC AGG ACA AGA GTC TCA GAA TTT CTT CTT CTT CTT CTT GAA TTT GAA AAC	*	*	*	*	*	*	
M D S S N R T R V S E F L L L G F V V E N							
	70	80	90	100	110	120	
AAA GAC CTA CAA CCC CTT ATT TAT GGT CTT TTT CTC TCT ATG TAC CTG CTG ACT GTC ATT	*	*	*	*	*	*	
K D L Q P L I Y G L F L S M Y L V T V I							
	130	140	150	160	170	180	30/99
GGA AAC ATA TCC ATT ATT GCT ATC ATT TCA GAT CCC TGT CTG CAC ACC CCC ATG TAT	*	*	*	*	*	*	
G N I S I I V A I S D P C L H T P M Y							
	190	200	210	220	230	240	
TTC TTC CTC TCT AAC CTG TCC TTT GTG GAC ATC TGT TTC ATT TCA ACC ACT GTT CCA AAC	*	*	*	*	*	*	
F F L S N L S F V D I C F I S T T V P K							
	250	260	270	280	290	300	
ATG TTA CTG AAC ATC CAG ACC CAA AAC AAT GTC ATC ACC TAT GCA GGA TGC ATT ACC CAG	*	*	*	*	*	*	
M L V N I Q T Q N N V I T Y A G C C I T Q							

SUBSTITUTE SHEET

Figure 9B

310	A T A T C T T T T C T G T T G C T C T T G T A G A A T T G C A C A A C T T C T G C T G A C T A T C A T G G C C T A T	I Y F F L L F V E L D N F L L T I M A Y	350	360
*	*	*	*	*
320	*	*	*	*
*	*	*	*	*
330	*	*	*	*
*	*	*	*	*
340	*	*	*	*
*	*	*	*	*
350	*	*	*	*
*	*	*	*	*
360	*	*	*	*
*	*	*	*	*
420				
430				
440				
450				
460				
470				
480				
530				
540				
550				
560				
570				
580				
590				
600				
610				
620				
630				
640				
650				

Figure 9C

TTT	ACA	CTT	GTC	CTG	CTG	GCT	ACT	GTR	CCT	GCT	GGC	ATC	TTC	TAT	TCT	TAC	TTC	AAG	*	
F	T	L	V	L	L	A	T	V	P	L	A	G	I	F	Y	S	Y	F	K	*
670	*																			
	*																			
ATA	GTC	TCC	TCC	ATA	TGT	GCT	ATA	TCG	TCA	GTT	CAT	GGG	AAG	TAC	AAA	GCA	TTC	TCC	ACC	*
I	V	S	S	I	C	A	I	S	S	V	H	G	K	Y	K	A	F	S	T	*
730	*																			
	*																			
TGT	GCA	TCT	CAC	CTT	TCA	GTC	GTC	TCT	TTA	TTT	TAC	TGC	ACA	GGA	CTA	GGA	GTA	TAC	CTC	*
C	A	S	H	L	S	V	V	S	L	F	Y	C	T	G	L	G	V	Y	L	*
790	*																			
	*																			
AGT	TCT	GCT	GCA	AAC	AAC	AGC	TCA	CAG	GCA	AGT	CCC	ACA	GCC	TCA	GTC	ATG	TAC	ACT	CTA	32/99
S	S	A	A	N	N	S	S	Q	A	S	A	T	A	S	V	M	Y	T	V	
850	*																			
	*																			
GTT	ACC	CCT	ATG	GTC	AAC	CCT	TTT	ATC	TAT	AGT	CTT	AGG	AAT	AAA	GAT	GTT	AAG	AGT	GTT	
V	T	P	M	V	N	P	F	I	Y	S	L	R	N	K	D	V	K	S	V	

SUBSTITUTE SHEET

33/99

Translation begun with base no 57

Translated to base no. 1058

Sequence printed from base no. 57 to base no. 1058
Sequence numbered beginning with base no. 57

SUBSTITUTE SHEET

Figure 10A Translated sequence of F5T.D1S

	10	20	30	40	50	60														
	*	*	*	*	*	*														
ATG	ACC	ACC	AAC	CAG	TCC	AGT	GTC	ACC	GAG	TTC	CTC	CTG	GGA	CTC	TCC	AGG	CAG			
M	S	S	T	N	Q	S	S	V	T	E	F	L	L	G	L	S	R	Q		
	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*		
	70	80	90	100	110	120														
	*	*	*	*	*	*														
CCC	CAG	CAG	CAG	CTC	CTC	TTC	CTG	CTG	CTC	TTC	ATC	ATC	TAC	CTG	CCC	ACT	GTC	CTG		
P	Q	Q	Q	L	L	F	L	L	F	L	I	M	Y	L	A	T	V	L		
	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*		
	130	140	150	160	170	180														
	*	*	*	*	*	*														
CGA	AAC	CTG	CTC	ATC	ATC	CTG	GCT	ATT	GGC	ACA	GAC	TCC	CGC	CTG	CAC	ACC	CCC	ATG	TAC	
G	N	L	L	I	I	L	A	I	G	T	D	S	R	L	H	T	P	M	Y	
	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	
	190	200	210	220	230	240														
	*	*	*	*	*	*														
TTC	TTC	CTC	ACT	AAC	CTG	TCC	TTT	GTG	GAT	GTC	TGC	TTC	TCC	TCT	ACC	ACT	GTC	CCT	AAA	
F	F	L	S	N	L	S	F	V	D	V	C	F	S	S	T	T	V	P	K	
	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	
	250	260	270	280	290	300														
	*	*	*	*	*	*														
GTT	CTG	CCC	AAC	CAT	ATA	CTT	GGG	ACT	CAG	CCC	ATT	TCC	TTC	TCT	GGG	TCT	CTC	ACC	CAG	
V	L	A	N	H	I	L	G	S	Q	A	I	S	F	S	G	C	L	T	Q	

SUBSTITUTE SHEET

34/99

Figure 10B

	310	320	330	*	340	*	350	*	360
	*	*	*	*	*	*	*	*	*
CTG TAT TTT CTC GCT GTC TTT GGT AAC ATG GAC AAT TTC CTG CTG GCT GTC ATG TCC TAT	L Y F L A V F G N M D N F L L A V M S Y								
370	380	390	*	400	*	*	*	*	420
CAC CGA TTT CTG CCC ATA TGC CAC CCT TTA CAC TAC ACA ACA AAG ATG ACC CGT CAG CTC	D R F V A I C H P L H Y T T K M T R Q L								
430	440	450	*	460	*	*	*	*	480
TCT GTC CTC CTT GTC GGG TCA TGG GTT GTA GCC AAC ATG AAT TGT CTC TTG CAC ATA	C V L L V V G S W V V A N M N C L L H I								
490	500	510	*	520	*	*	*	*	540
CTG CTC ATG CCT CGA CTC TCC TTC TGT GCA GAC AAC ATG ATC CCC CAC TTC TGT GAT	L L M A R L S F C A D N M I P H F F C D								
550	560	570	*	580	*	*	*	*	600
GGA ACT CCC CTC CTG AAA CTC TCC TGC TCA GAC ACA CAT CTC AAT GAG CTG ATG ATT CTT	G T P L L K L S C S D T H L N E L M I L								
610	620	630	*	640	*	*	*	*	660

SUBSTITUTE SHEET

35/99

Figure 10C

36/99

ACA GAG GGA CCT CTC GTC ATG GTC ACC CCA TTT GTC TGC ATC CTC ATC TCC TAC ATC ATC CAC	*	*	*	*	*	*	*
T E G A V V M	V	T	P	F	V	C	I
670	680	690	700	710	720		
ATC ACC TGT GCT GCT GTC CTC AGA GTC TCA TCC CCC AGG GGA TGG AAA TCC TCC TCC ACC	*	*	*	*	*	*	*
I T C A V L R	V	S	P	R	G	G	S
730	740	750	760	770	780		
TCT CCC TCC CAC CTG GCT GTC GTC TGC CTC TTC TAT GCC ACC GTC ATC GCT GTG TAT TTC	*	*	*	*	*	*	*
C G S H L A V	V	C	L	F	Y	G	T
790	800	810	820	830	840		
AAC CCA TCA TCC TCT CAC TTA GCT GCG AGG GAC ATG GCA GCT GCA GTG ATG TAT GCA GTC	*	*	*	*	*	*	*
PRONUC/TRA OPTION							
N P S S H L A G R D M A A V M Y A V							

SUBSTITUTE SHEET

37/99

Translation begun with base no. 62
Translated to base no. 1003
Sequence printed from base no. 62 to base no. 1003
Sequence numbered beginning with base no. 62

Figure 11A Translated sequence of F6T.D1S

10	*	20	*	30	*	40	*	50	*	60											
M	A	W	S	T	G	Q	N	L	S	T											
ATG	GCT	TGC	AGT	ACT	GGC	CAG	AAC	CTG	TCC	ACA	CCA	CGA	CCA	TTC	ATC	TTC	CTG	CCC	TTC		
P	G	P	R	S	M	R	I	C	L	F	L	F	P	G	P	F	I	L	G	F	
70	*	80	*	90	*	100	*	110	*	120	*										
P	G	CCA	GGG	CCA	AGG	AGC	ATG	CGC	ATT	GGG	CTC	TTC	CTG	CTT	TTC	CTG	GTC	ATG	TAT	CTG	CTT
T	V	V	G	N	L	A	I	I	S	L	V	G	A	H	R	C	L	Y	L	L	L
130	*	140	*	150	*	160	*	170	*	180	*										
T	V	V	G	AAC	CTA	GGC	ATC	TCC	CTG	GTA	GCT	CCC	CAC	AGA	TGC	CTA	CAG	ACA	38/99		
190	*	200	*	210	*	220	*	230	*	240	*										
P	M	Y	F	CTC	TTC	CTC	TTC	TCC	TTC	GAG	ATC	TGG	TTC	ACC	ACA	GCC	TGC	TGT			
V	P	K	T	ACA	TTA	ACA	TTT	CCC	CCT	CCA	ATT	TCC	TTC	CCT	GGC	TGT	TGT	TGT			
250	*	260	*	270	*	280	*	290	*	300	*										
GTA	CCC	AAG	ACC	CTG	CCC	ACA	TTT	CCC	CCT	CCA	GTC	ATT	TCC	TTC	CCT	GGC	TGT	TGT			
V	P	K	T	L	A	T	F	A	P	R	G	G	V	I	S	L	A	G	C		

SUBSTITUTE SHEET

Figure 11B

310	*	320	*	330	*	340	*	350	*	360	*
CCC	ACA	CAG	ATG	TAC	TTT	GTC	TTT	TCT	TTC	GGC	TGT
A	T	Q	M	Y	F	V	S	L	G	C	T
370	*	380	*	390	*	400	*	410	*	420	*
ATG	GCT	TAT	GAC	CGC	TAC	CTG	GGC	ATC	TGC	CCA	CTG
M	A	Y	D	R	Y	L	A	I	C	L	P
430	*	440	*	450	*	460	*	470	*	480	*
CCT	CGG	CTG	GGG	ATG	CGG	TTC	GGC	TCC	TGG	CTG	TGT
P	G	L	A	M	R	L	A	L	G	S	W
490	*	500	*	510	*	520	*	530	*	540	*
GTT	CCT	ACC	CTC	ATT	CCC	CTC	TCT	TTC	TGT	GGC	TCA
V	P	A	T	L	I	A	R	L	S	F	C
550	*	560	*	570	*	580	*	590	*	600	*
TTC	TGT	GAC	ATT	TCG	CCC	TGG	ATA	GTC	CTT	TCC	TGC
F	C	D	I	S	P	W	I	V	L	S	C
610	620	630	640	650	660						

39/99

SUBSTITUTE SHEET

Figure 11C

40/99

GTG TCC TTT GCC ATT GCC TTC TGT GTT ATT CTC GGC TCG TGT GGT ATC ACA CTA GTC TCC	*	*	*	*
V S F G I A F C V I L G S C C G I T L V S				
670 * 680 * 690 * 700 * 710 * 720 *				
TAT CCT TAC ATC ATC ACT ACC ATC ATC AAG ATT CCC TCT GGC CGG CGG CAC CGC CCC				
Y A Y I T I K I P S A R G R H R A				
730 * 740 * 750 * 760 * 770 * 780 *				
TTC TCA ACC TGC TCA TCC CAT CTC ACT GTG CTG ATT TGG TAT CCC TCC ACC ATC TTC				
F S T C S H L T V V L I W Y G S T I F				
790 * 800 * 810 * 820 * 830 * 840 *				
TTC CAT GTG AGG ACC TCG GTA GAG AGC TCC TTC GAC CTC ACC AAA GCT ATC ACA GTC CTG				
PRONUC/TRA OPTION				
L H V R T S V E S S L D L T K A I T V L				

SUBSTITUTE SHEET

41/99

850	860	870	880	890	900
*	*	*	*	*	*
AAC ACC ATT GTC ACA CCT CCTG CTG AAC CCT TTC ATA TAT ACT CTG AGG AAC AAG GAT CTC					
N T I V T P V L N P F I Y T L R N K D V					
910	920	930			
*	*	*			
AAG GAA CCT CTG CCC AGC ACC GTC AAC CGG AAG TGA.					
K E A L R R T V K G K -					

Translation begun with base no. 75
 Translated to base no. 1010
 Sequence printed from base no. 75 to base no. 1010
 Sequence numbered beginning with base no. 75

Translation begun with base no 75

Translated to base no.: 1010

Sequence printed from base no 75 to base no 1010

Sequence numbered beginning with base no. 75

SUBSTITUTE SHEET

Figure 12A Translated sequence of F12T.D1S

	10	20	30	40	50	60
*	*	*	*	*	*	*
ATG	GAA	TCA	GGG	AAC	ACC	ACA
M	E	S	C	N	S	T
	70	80	90	100	110	120
*	*	*	*	*	*	*
AAC	CCA	CAA	CTT	CAC	TTC	CTC
N	P	Q	L	H	F	L
	130	140	150	160	170	180
*	*	*	*	*	*	*
CTT	GGG	AAC	CTG	CTT	ATC	ATT
L	G	N	L	L	I	I
	190	200	210	220	230	240
*	*	*	*	*	*	*
TAC	TTT	TTC	CTT	GCT	TCC	TTT
Y	F	F	L	A	N	L
	250	260	270	280	290	300
*	*	*	*	*	*	*

SUBSTITUTE SHEET

Figure 12B

AAG	ATG	TTG	GTA	AAT	ATA	TAC	ACC	CAG	AGC	ATC	ACC	TAT	GAA	GAC	TGT	ATT	AGC					
K	M	L	V	N	I	Y	T	Q	S	K	S	I	T	Y	E	D	C	I	S			
*																						
310		320		330		340		350		360		370		380		390		400		410		420
*																						
CAG	ATG	TGT	GTC	TTG	TTC	GTT	TTC	GCA	GAA	TTC	GGC	AAC	TTT	CTC	CTG	GCT	GTG	ATG	CCC	*	*	
Q	M	C	V	F	L	V	F	A	E	L	G	N	F	L	L	A	V	M	A	43/99	*	
*																						
TAT	GAC	CGA	TAT	GTG	GCT	A-C	TGT	CAC	CCA	CTG	TGT	TAC	ACA	GTC	ATT	GTC	AAC	CAC	CCC	*	*	
Y	D	R	Y	V	A	X	C	H	P	L	C	Y	T	V	I	V	N	H	R	*	*	
*																						
430		440		450		460		470		480		490		500		510		520		530		540
*																						
CTC	TGT	ATC	CTG	CTG	CTT	CTG	CTG	TCC	TCC	TGG	GTT	ATC	AGC	ATT	TTC	CAT	GCC	TTC	ATA	CAC	*	*
L	C	I	L	L	L	L	L	S	W	V	I	S	I	F	H	A	F	I	Q	*	*	
*																						
ACC	TTA	ATT	CTG	CTA	CAG	TTG	ACC	TTC	TGT	GCA	GAT	GTG	AAA	ATC	CCT	CAC	TTC	TTC	TGT	*	*	
S	L	I	V	L	Q	L	T	F	C	G	D	V	K	I	P	H	F	F	C	*	*	
*																						
GAA	CTT	AAT	CAG	CTG	TCC	CAA	CTC	ACC	TGT	TCA	GAC	AAC	TTT	CCA	AGT	CAC	CTC	ATA	ATC	*	*	
E	L	N	Q	L	S	Q	L	T	C	S	D	N	F	P	S	H	L	I	M	*	*	

Figure 12C

610 * AAT CTT GTA CCT GTT ATG TTG GCA GCC ATT TCC TTC AGT GGC ATC CTT TAC TCT TAT TTC N L V P V M L A A I S F S G I L Y S Y F	620 * * AAG ATA GTA TCC TCC ATA CAT TCT ATC TCC ACA GTC CAG GGG AAG TAC AAG CCA TTT TCT K I V S S I H S I S T V Q G K Y K A F S	630 * * ACT TGT GCC TCT CAC CCTT ATT GTC TCC TTA TTT TAT AGT ACA CCC CTC GGA GTG TAC T C A S H L S I V S L F Y S T G L G V Y	640 * * GTC ACT TCT GCT GTC GTC CAA AGC TCA CAT TCT GCT GCA AGT GCT TCG GTC ATG TAT ACT PRONUC/TRA OPTION V S S A V V Q S S H S A S V M Y T	650 * * 44/99 700 * * 710 * * 720 * * 730 * * 740 * * 750 * * 760 * * 770 * * 780 * * 800 * * 810 * * 820 * * 830 * * 840 * *
--	---	--	--	--

SUBSTITUTE SHEET

45/99

Figure 12D

	850		860		870		880		890		900		
	*		*		*		*		*		*		
CTG	GTC	ACC	CCC	ATC	CTG	AAC	CCC	TTC	ATT	TAT	AGT	CTA	
V	V	T	P	M	L	N	P	F	I	Y	S	L	R
												N	K
												D	V
												K	R
910		920		930		940		950					
*		*		*		*		*					
GCT	CTG	GAA	AGA	CTG	TTA	GAA	GGA	AAC	TGT	AAA	GTC	CAT	CAT
A	L	E	R	L	L	E	G	N	C	K	V	H	W
												T	G
												-	

SUBSTITUTE SHEET

Translation begun with base no. 173
 Translated to base no. 1126

Sequence printed from base no. 173 to base no. 1126
 Sequence numbered beginning with base no. 173

Figure 13A Translated sequence of I3T.DLS

46/99

ATG AAC AAT CAA ACT TTC ATC ACC CAA TTC CTT CTC CTG CCC CTG GGA ATC CCT GAA GAA	*	10	20	30	40	50	60
M N N Q T F I T Q F L L G L P I P E E	*		*	*	*	*	*
CAT CAG CAC CTC TTC TAT GCC TTG RTC CTC GTC ATG TAC CTC ACC ACC ATC TTG GGA AAC	*	70	80	90	100	110	120
H Q H L F Y A L V M Y L T T I L G N	*		*	*	*	*	*
TTC CTA ATC ATT GTA CTT CTT CAA CTG GAC TCC CAG CTC CAC ACA CCT ATG TAT TTG TTT	*	130	140	150	160	170	180
L L I V L V Q L D S Q L H T P M Y L F	*		*	*	*	*	*
CTC AGC AAT TTG TCT RTC GAT CTA TGT TTT TCC TCT GTC ACA ATG CCC AAG CTC CTC	*	190	200	210	220	230	240
L S N L S F S D L C F S S V T M P K L L	*		*	*	*	*	*
CAG AAC ATG AGG AGC CAG GAC ACA TCC ATT CCC TAT GGA CCC TGC CTG CCA CAA ACA TAC	*	250	260	270	280	290	300
Q N M R S Q D T S I P Y G C C L A Q T Y	*		*	*	*	*	*

SUBSTITUTE SHEET

Figure 13B

	310	320	330	340	350	360
F F	TTC TTT ATG GTT TTT GGA GAT ATG GAG AGT TTC CTT GTG CCC ATG GCC TAT GAC CGC	*	*	*	*	*
M V	F G D M E S F L L V A M A Y D R					
	370	380	390	400	410	420
Y V	TAT CTG CCC ATG TGC TTC CCT CTG CAT TAC ACC AGC ATC ATG AGC CCC AAC CTC TGT ACT	*	*	*	*	*
A I	C F P L H Y T S I M S P K L C T					
	430	440	450	460	470	480
C L	TCT CTA CTG CTG TTA TTG TGG ATG CTG ACG ACA TCC CAT CCC ATG ATG CAC ACA CTC CTT	*	*	*	*	*
V L	L W M L T T S H A M H T L L					
	490	500	510	520	530	540
GCA GCA AGA TTG TCT TTT TGT GAG AAC AAT GTC CTC CTC AAC TTC TTC TGT GAC CTA TTT	*	*	*	*	*	*
A A R L S F C E N N V V L N F F C D L F						
	550	560	570	580	590	600
V L	CTT CTC CTA AAG CTC GCC TGC TCA GAC ACT TAT ATT AAT GAG TTG ATG ATA TTT ATC ATG	*	*	*	*	*
L K A C S D T Y I N E L M I F I M						
	610	620	630	640	650	660

SUBSTITUTE SHEET

47/99

Figure 13C

AGT	ACA	CTC	CTC	ATT	ATT	CCA	TTC	TTC	CTC	ATT	CTT	AAT	GCC	TAT	GCA	AGG	ATC	ATA	
S	T	L	L	I	I	I	P	F	F	L	I	V	M	S	Y	A	R	I	
*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	
670																			
TCC	TCT	ATT	CTT	AAG	GTT	CCA	TCT	ACC	CAA	GGC	ATC	TGC	AAC	GTC	TTC	TCT	ACC	TGT	GGT
S	S	I	L	K	V	P	S	T	Q	G	I	C	K	V	F	S	T	C	G
*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
680																			
690																			
700																			
710																			
720																			
730																			
740																			
750																			
760																			
770																			
780																			

48/99

Figure 14A Translated sequence of I7T.D1S

	10	20	30	40	50	60	
ATG CAG CGA AGG AAC CAC AGT	*	*	*	*	*	*	
M E R R N H S G R V S E F V L L G F P A							
	70	80	90	100	110	120	
CCT CCC CCA CTG CGA GTA CTA CTA TTT TTC	*	*	*	*	*	*	
P A P L R V L L F F L S L X Y V L V L							
	130	140	150	160	170	180	
ACT GAA AAC ATG CTC ATC ATT ATA GCA ATT AGG AAC CAC CCA ACC CTC CAC AAA CCC ATC	*	*	*	*	*	*	
T E N M L I I A I R N H P T L H K P M							
	190	200	210	220	230	240	
TAT TTT TTC TTC GCT AAC ATG TCA TTT CTG GAG ATT TGG TAT GTC ACT GTT ACC ATT CCT	*	*	*	*	*	*	
Y F F L A N M S F L E I W Y V T V T I P							
	250	260	270	280	290	300	
AAG ATG CTC CCT GCC TTC ATT GGT TCC AAG GAG AAC CAT GGA CAG CTC ATC TCC TTT CAC	*	*	*	*	*	*	
K M L A G F I G S K E N H G Q L I S F E							

SUBSTITUTE SHEET

49/99

Figure 14B

	310	320	330	340	350	360
	*	*	*	*	*	*
GCA	TGC	ATG	ACA	CAA	CTC	TAC
A	C	M	T	Q	L	Y
	F				G	L
					C	C
					T	G
					E	C
					V	L
					L	L
	370	380	390	400	410	420
	*	*	*	*	*	*
GCT	GTC	ATG	GCC	TAT	GAC	CGC
A	V	M	A	Y	D	R
					Y	V
					A	I
					I	C
					H	P
					L	H
					Y	Y
					P	P
					V	V
					I	I
	430	440	450	460	470	480
	*	*	*	*	*	*
GTC	ACT	AGC	CGG	CTA	TGT	GTG
V	S	S	R	L	C	V
					Q	Q
					M	A
					A	A
					G	G
					S	W
					A	A
					G	G
					T	T
					G	G
					I	I
	490	500	510	520	530	540
	*	*	*	*	*	*
TCC	ATG	GTT	AAA	GTT	TTC	CTT
S	M	V	K	V	F	L
					S	I
					R	S
					S	Y
					C	C
					G	G
					P	N
					T	T
					I	I
					N	N
	550	560	570	580	590	600
	*	*	*	*	*	*
CAC	TTT	TTC	TGT	CAT	GTG	TCT
H	F	F	C	D	V	S
					P	L
					L	N
					S	C
					T	T
					D	M
					S	S
					T	T
					A	A

SUBSTITUTE SHEET

50/99

Figure 14C

SUBSTITUTE SHEET

52/99

Figure 14D

SUBSTITUTE SHEET

Figure 15A

Translated sequence of 18T.D1S

SUBSTITUTE SHEET											
10	*	*	*	*	*	*	*	*	*	*	60
ATG	AAC	AAC	AAA	ACT	GTC	ATC	ACC	CAT	TTC	CTC	CTG
M	N	N	K	T	V	I	T	H	F	L	GGAA
70	*	*	*	*	*	*	*	*	*	*	50
CAC	CAG	CAA	CTG	TTC	TTT	CCC	CTG	TTC	ATC	CTC	CCC
H	Q	Q	L	F	F	A	L	F	I	M	ATC
130	*	*	*	*	*	*	*	*	*	*	40
CTG	CTA	ATT	GTC	CTT	GTC	CTT	GTC	GAC	TCT	CTC	ACC
L	L	I	V	V	L	V	Q	L	D	S	TTT
190	*	*	*	*	*	*	*	*	*	*	30
CTC	AGC	AAC	TTG	TCC	TTC	TCT	GAT	CTC	TCT	CAC	ACA
L	S	N	L	S	F	S	D	L	C	H	CCC
250	*	*	*	*	*	*	*	*	*	*	20
CAA	AAT	ATA	CAG	AGC	CAA	GTA	CCA	TCT	ATA	TCC	TAT
Q	N	I	Q	S	Q	V	P	S	I	S	GGAA

Figure 15B

	310	320	330	340	350	360
TTC TTT TTG TTG TTT CGC TAC CTT GGG AAT TTC CTT CTT GCA GCC ATG CCC	*	*	*	*	*	*
F F L L F G Y L G N F L V A M A Y D R						
	370	380	390	400	410	420
TAT GTG GCC ATC TGC TCC CCT CTG CAT TAT ACC AAC ATC ATC AGC CAT AAG CTC TGT ACT	*	*	*	*	*	*
Y V A I C F P L H Y T N I M S H K L C T						
	430	440	450	460	470	480
TGT CTC CTC GTC GTC TAA TGG ATA ATG ACA TCA TCT CAT CCC ATG ATG CAC ACC CTC CTT	*	*	*	*	*	*
C L L V F W I M T S S H A M H T L L						
	490	500	510	520	530	540
GCA GCA AGA TTC TCT TTT GAG AAC AAT GCA CTC CTC AAC TTT TTC TGT GAC CTC CTT	*	*	*	*	*	*
A A R L S F C E N N V L L N F F C D L F						
	550	560	570	580	590	600
GTT CTC CTA AAG TTC CCC TGC TCA GAC ACT TAT GTC AAT GAG TTG ATG ATA CAT ATC ATG	*	*	*	*	*	*
V L K L A C S D T Y V N E L M I H I M						
	610	620	630	640	650	660

54/99

Figure 15C

* * * * *

GGC	GTC	ATC	ATC	ATT	GTT	ATT	CCA	TTC	GTC	GTC	CTC	ATT	GTT	ATA	TCC	TAT	GGC	AAG	ATC	ATC
G	V	I	I	V	I	P	F	V	L	I	V	I	V	S	Y	A	K	I	I	*
670	680	*	*	*	*	*	*	*	*	*	*	*	690	700	710	720	55/99	900	*	*
TCC	TCC	ATT	CTT	AAG	GTT	CCA	TCT	ACT	CAA	AGC	ATT	CAC	AAG	GTC	TTC	TCC	ACT	TGT	GCT	*
S	S	I	L	K	V	P	S	T	Q	S	I	H	K	V	F	S	T	C	C	*
730	740	*	*	*	*	*	*	*	*	*	*	*	750	760	770	780	*	*	*	*
TCT	CAT	CTC	TCT	CTG	CTG	TCT	CTG	TTC	TAC	GGG	ACA	ATT	ATT	GCT	CTC	TAT	TTA	TGT	CCA	*
S	H	L	S	V	V	S	L	F	Y	G	T	I	I	G	L	Y	L	C	P	*
790	800	*	*	*	*	*	*	*	*	*	*	*	810	820	830	840	*	*	*	*
TCA	GGT	GAT	AAT	TTT	AGT	CTA	AAG	GGG	TCT	CCC	ATG	GCT	ATG	TAC	ACA	GTG	CTA	ACT	OPTION	*
S	G	D	N	F	S	L	K	G	S	A	M	M	M	Y	T	V	V	T	I	*
850	860	*	*	*	*	*	*	*	*	*	*	*	870	880	890	900	*	*	*	*
CCA	ATC	CTG	AAC	CCC	TTC	ATC	TAC	AGC	CTA	AGA	AAC	GCA	ATG	AAG	CAG	GGC	CTA	ATA	ATA	*
P	M	L	N	P	F	I	Y	S	L	R	N	D	M	K	Q	A	L	I	I	*

SUBSTITUTE SHEET

56/99

910 920 930 9

* * *

AGA GTT ACC TGT AGC AAG AAA ATC TCT CTC CCA TGC TAG

R V T C S K K I S L P W -

Translation begun with base no. 57
Translated to base no. 995
Sequence printed from base no. 57 to base no. 995
Sequence numbered beginning with base no. 57

Figure 15D

Figure 16A

Translated sequence of 19T.D1S

	10	20	30	40	50	60
ATG ACT AGA AAC CAA ACT CCC ATC TCT CAG TTC CTT CTC GCC CTC CCA TTC CCC	*	*	*	*	*	*
M T R N Q T A I S Q F F L L G L P F P						
	70	80	90	100	110	120
GCA GAG TAC CAA CAC CTG TAT GCC CTG TTC CTC ATG TAC CTC ACC ACT CTC CTC	*	*	*	*	*	*
P E Y Q H L F Y A L F L A M Y L T T L L						
	130	140	150	160	170	180
GGG AAC CTC ATC ATC ATC CTC ATT CTA CTC GAC TCC CAT CTC CAC ACA CCC ATC TAC	*	*	*	*	*	*
C N L I I I L D S H L H T P M Y						
	190	200	210	220	230	240
TTC TTT CTC AGC AAT TTA TCC TTT GCC GAC CTC TGT TTT TCC TCT GTC ACA ATG CCC AAC	*	*	*	*	*	*
L F L S N L S F A D L C F S S V T M P K						
	250	260	270	280	290	300

SUBSTITUTE SHEET

Figure 16B

	*	TTC TTG CAG AAC ATG CAG AGC CAA GTT CCA TCC ATC CCC TAT GCA GGC TGC CTC GCA CAC	*	*
L L Q N M Q S Q V P S I P Y A G C L A Q	*			
310	320	330	340	350
*	*	*	*	*
ATA TAC TTC TTT CTG TTT TTT GGA GAC CTT GCA AAC TTC CTG CTT GTC GCC ATG CCC TAT				
I Y F F L F F G D L G N F L V A M A Y				
370	380	390	400	410
*	*	*	*	*
GAC CGC TAT GTG GCC ATC TGC TTC CCC CTT CAT TAC ATG AGC ATC ATG AGC CCC AAG CTC				
D R Y V A I C F P L H Y M S I M S P K L				
430	440	450	460	470
*	*	*	*	*
TGT CTG ACT CTC CTG CTC TCC TCC TGG GTC CTG ACT ACC TTC CAT GCC ATG CTG CAC ACC				
C V S L V V L S W V L T T F H A M L H T				
490	500	510	520	530
*	*	*	*	*
CTG CTC ATG CCC AGA TTG TCA TTC TGT GAC GAC AGT GTG ATC CCT CAC TAT TTC TGT GAT				
L L M A R L S F C E D S V I P H Y F C D				
550	560	570	580	590
*	*	*	*	*
ATG TCT ACT CTG CTG AAA GTG GCT TGT TCT CAC ACC CAT GAT AAT GAA TTA GCA ATA TTI				
M S T L K V A C S D T H D N E L A I F				

58/99

SUBSTITUTE SHEET

Figure 16C

59/99

610	*	620	*	630	*	640	*	650	*	660	*								
I	L	G	P	I	V	L	P	F	L	I	V	S							
ATC	TTC	GGC	CCT	ATA	GTT	GTA	CCT	TTC	CCT	ATC	ATT	GTT	TCT	TAT	GCA	AGA			
670	*	680	*	690	*	700	*	710	*	720	*								
I	V	S	I	F	K	V	P	S	S	Q	S	I	H	K	A	F			
TGT	TCC	TCC	ATC	TTC	AAG	GTC	CCT	TCT	TCT	CAA	AGC	ATC	CAT	AAA	CCC	TTC	TCC	ACC	
730	*	740	*	750	*	760	*	770	*	780	*								
C	G	S	H	L	S	V	V	S	L	F	Y	G	T	V	I	G	L	Y	L
TGT	GCC	TCC	CAC	CTG	TCT	GTC	GTC	TCA	CTG	TTC	TAT	GGG	ACA	GTC	ATT	GCT	CTC	TAC	TAA
790	*	800	*	810	*	820	*	830	*	840	*								
C	P	S	A	N	N	S	T	V	K	E	T	V	M	S	L	M	Y	T	M
PRONUC/TRA OPTION																			

60/99

850	*		860	*		870	*
GTG	ACA	CCC	ATG	CTG	AAC	CCC	TTC
V	T	P	M	L	N	P	F
							I
880	*						*
							*
890	*						*
							*
900							
910	*		920	*		930	*
TTA	GAA	AAA	ATA	ATG	TGC	AAA	AAG
L	E	K	I	M	C	K	Q
							I
940	*						*

Translation begun with base no. 200

Translated to base no. 1144

Sequence printed from base no. 200 to base no. 1144
Sequence numbered beginning with base no. 200

SUBSTITUTE SHEET

61/99

Figure 17A Translated sequence of 114T.D1S

	10	20	30	40	50	60
ATG	ACT	GCA	AAT	AAC	CAA	ACT
M	T	G	N	N	Q	T
	*	*	*	*	*	*
TCA	GAG	TAT	CAT	CTC	CTG	TTC
S	E	Y	H	L	F	Y
	*	*	*	*	*	*
GGA	AAC	CTG	CTA	ATC	ATT	GTC
G	N	L	L	I	I	V
	*	*	*	*	*	*
TTG	TTT	CTC	AGC	AAC	TTG	TCC
L	F	L	S	N	L	S
	*	*	*	*	*	*
	200	210	220	230	240	250
	*	*	*	*	*	*
	260	270	280	290	300	
	*	*	*	*	*	
	300	300	300	300	300	

ATG ACT GCA AAT AAC CAA ACT TTG ATC TTG GAG TTC CTC CTC GCT CTC CCC ATC CCA
 M T G N N Q T L I L E F L L G L P I P
 10 20 30 40 50 60
 * * * * * *
 TCA GAG TAT CAT CTC CTG TTC TAT GCC CCC CTC CTG GCC ATG TAC CTC ACC ATC ATC CTG
 S E Y H L L F Y A L F L A M Y L T I I L
 70 80 90 100 110 120
 * * * * * *
 GGA AAC CTG CTA ATC ATT GTC CTT GTT CGA CTG GAC TCT CAT CTC CAC ATG CCC ATC ATC TAC
 G N L L I V L V R L D S H L H M P M Y
 130 140 150 160 170 180
 * * * * * *
 TTG TTT CTC AGC TGC TCC TTC TCT GAC CTC TGC TTT TCC TCT GTC ACA ATG CCC AAA
 L F L S N L S F S D L C F S S V T M P K
 190 200 210 220 230 240
 * * * * * *
 TTG CTT CAG AAC ATG CAG AGC CAA GTC CCA TCT ATA TCC TAT ACA CCC TGC CTG ACA CAG
 L L Q N M Q S Q V P S I S Y T G C L T Q
 250 260 270 280 290 300
 * * * * * *

Figure 17B

	310	320	330	340	350	360
	*	*	*	*	*	*
L Y F F	CTG TAC TTC TTT ATG GTT TTT GGA GAT ATG GAG ACC RTC CTT CTR CTC ATG GCC TAT	M V F G D S E	M E S F L L	V V M A Y		
370	380	390	400	410	420	62/99
D R Y V	CAC CGC TAT CTG CCC ATT TGC TTT CCT TTG CGT TAC ACC ACC ATC ATG ACC ACC AAG TTC	A I C F P L R Y T T I M S T K F				
430	440	450	460	470	480	
C A S L V	TCT GCT TCA CTA CTG CTA CTT CTC TGG ATG CTC ACG ATG ACC CAT CCC CTG CAT ACC	L L W M L T M T H A L L H T				
490	500	510	520	530	540	
L L I A R L S F C E K N V I L H F F C D	CTA CTC ATT CCT AGA TTG TCT TTT TGT GAG AAG AAT GTC ATT CTT CAC TTT TTC TGT GAC					
550	560	570	580	590	600	
I S A L K L S C S D I Y V N E L M I Y	ATT TCT CCT CCT CTG AAG TTC TCC TGC TCA GAC ATT TAT GTT AAT GAG CTC ATG ATA TAT					
610	620	630	640	650	660	

63/99

Figure 17C

ATC	TTC	GGT	CGA	CTC	ATC	ATT	ATC	CCA	TTC	CTA	TTA	ATT	GTT	ATC	TCC	TAT	GTT	AGA
I	L	G	G	L	I	I	I	P	F	L	L	I	V	M	S	Y	V	R
670	*																	
680	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
690																		
700																		
710																		
720																		
ATT	TTC	TCC	TCC	ATT	TTC	AAG	TTG	CCA	TCT	ATT	CAG	GAC	ATC	TAC	AAG	GTA	TTC	TCA
I	F	F	S	I	L	K	F	P	S	I	Q	D	I	Y	K	V	F	S
730	*																	
740	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
750																		
760																		
770																		
TGT	GGT	TCC	CAT	CTG	TCT	GTG	CTG	ACC	TTC	TTG	TAT	GGG	ACA	ATT	TTT	GGT	ATC	TAC
C	G	S	H	L	S	V	V	T	L	F	Y	G	T	I	F	G	I	Y
780	*																	
790	*																	
800	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
810																		
820																		
830																		
840																		
TGT	CCA	TCA	GGT	AAT	AAT	TCT	ACT	GTG	AAG	GAC	ATT	GCC	ATG	GCT	ATG	ATC	TAC	ACA
V	T	P	M	L	N	P	F	I	Y	S	L	R	N	R	D	M	K	R
OPTION	PRONUC/TRA																	
C	P	S	G	N	N	S	T	V	K	E	I	A	M	M	Y	T	V	
850	*																	
860	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
870																		
880																		
CTG	ACT	CCC	ATG	CTG	AAT	CCC	TTG	ATC	TAC	AGC	CTG	AGG	AAC	AGA	GAC	ATG	AAA	AGG
V	T	P	M	L	N	P	F	I	Y	S	L	R	N	R	D	M	K	R
CCC																		

SUBSTITUTE SHEET

64/99

Figure 17D

910 920 930 9
* * *
CTA ATA AGA GTT ATC TCC ACT AAG AAA ATC TCT CTC TAA
L I R V I C T K K I S L -

Translation begun with base no. 64
Translated to base no. 1002
Sequence printed from base no. 64 to base no. 1002
Sequence numbered beginning with base no. 64

Figure 18A

Translated sequence of 115T-D15

	10	20	30	40	50	60
ATG	ACA	GAA	GAC	AAC	CAA	ACT
M	T	E	E	N	Q	T
GTC	ATC	TCC	CAG	TTC	CTT	CTC
F	I	S	Q	V	L	L
CCC	ATC	CCC	ATC	CCC	ATC	CCC
P	I	P	I	P	I	P
	70	80	90	100	110	120
TCA	GAG	CAC	CAG	CAC	GTC	TTC
S	E	H	Q	H	V	F
TAC	GGC	CTG	TTC	TAC	GGC	CTG
A	L	F	Y	A	L	F
CTG	CTG	TCC	ATG	TAC	CTC	ACC
M	M	S	M	Y	L	T
CTG	CTG	TCC	ATG	TAC	ACT	GTC
Y	L	T	V	T	T	V
	130	140	150	160	170	180
GGG	AAC	CTC	ATC	ATC	ATC	ATC
G	N	L	I	I	I	I
CTG	ATT	CAC	CTG	GAC	TCC	CAT
H	L	I	H	L	D	S
CAC	CAC	TCC	CAC	TCC	CAC	ACA
ACA	ACA	TCC	ACA	TCC	ACA	CCC
ATG	ATG	TAC	ATG	TAC	ATG	TAC
	190	200	210	220	230	240
TTG	TTT	CTC	AGC	AAC	TTC	TCC
L	F	L	S	N	L	S
GAT	TCT	GAT	CTC	TCC	TTT	TCT
S	F	S	D	C	C	S
CCC	ATC	CCC	ATC	CCC	ATC	CCC
AAC	AAC	CCC	ATC	CCC	ATC	AAC
	250	260	270	280	290	300
TTG	TTC	CAG	AAC	ATG	CAG	ACC
	*	*	*	*	*	*
CAA	GTG	CCA	GTG	CCC	TTT	GCA
	*	*	*	*	*	*
GGC	CTG	CTG	ACA	CAA	TGC	ACA

SUBSTITUTE SHEET

Figure 18B

66/99

*	310	*	320	*	330	*	340	*	350	*	360
L	Y	F	Y	L	Y	F	A	D	L	E	S
TTA	TAC	TTT	TAC	CTG	TAT	TTT	GCA	GAC	CTT	GAG	TTC
C	V	S	L	R	I	C	F	P	V	W	W
GAC	CGC	TAT	GTG	CCC	ATC	TGC	TTC	CCC	CTT	CAT	TAC
D	R	Y	V	A	I	C	F	P	L	H	Y
TCT	GTG	ACT	CTG	CTG	CTG	TCC	TCC	TGG	CTG	ACC	ACC
C	V	S	L	V	V	L	S	V	V	L	T
CTG	CTC	ATG	CCC	AGA	TTC	TCA	TTC	TGT	CTG	CAC	TTC
L	L	M	A	R	L	S	F	C	A	D	N
ATA	TCT	CCT	TTA	TTC	AAA	CTG	TCC	TCC	GAC	AAT	ATG
I	S	P	L	L	K	L	S	C	D	T	H

SUBSTITUTE SHEET

Figure 18C

67/99

GTC ATG GCA CGG CTT GTT ATT CTC ATT CCA TTT CTC ATT CTC ATT GTA TCT TAT GCA CGA	*	*	*	*	*	*	*
V M G G L V I V I P F V L I V S Y A R							
670 *	680 *	690 *	700 *	710 *	720 *		
GTC GTC GCC TCC ATT CCT AAA GTC CCT TCT GTC CGA CGC ATC CAC AAG ATC TTC TCC ACC							
V V A S I L K V P S V R G I H K I F S T							
730 *	740 *	750 *	760 *	770 *	780 *		
TGC GGC TCC CAT CTG TCT GTG GTG TCA CTC TTC TAT CGG ACA ATC ATT GGT CTC TAC TTA							
C G S H L S V V S L F Y G T I I G L Y L							
790 *	800 *	810 *	820 *	830 *	840 *		
TGT CCC TCA CCT AAT AAC TCT ACT GTG AAC GAG ACT GTC ATG GCC ATG ATG TAC ACA GTC							
PRONUC/TRA OPTION							
C P S A N N S T V K E T V M A M M Y T V							
850 *	860 *	870 *	880 *	890 *	900 *		
GTC ACC CCC ATG CTC AAC CCC TTC ATC TAC AGC CTG AGG AAC AGA GAC ATG AAA GAC GCA							
V T P M L N P F I Y S L R N R D M K E A							

SUBSTITUTE SHEET

68/99

910 920 930 940
* * * *
CTG ATA AGA GTC CTT TGT AAA AAG AAA ATT ACC TTC TGT CTA TGA
L I R V L C K K K F I T C L -

Translation begun with base no. 8
Translated to base no. 952
Sequence printed from base no. 8 to base no. 952
Sequence numbered beginning with base no. 8

Figure 18D

69/99

Figure 19A
Translated Sequence of H5.D1S

10 A T C T G T T G T G T C T A CC A CT G T C CC A I C F V S T T V P	20 70 * G T C A T C A CC T A T G CA G AC T G C A T C A CC V I T Y A D C I T
*	
G AC A GC T TA C TC C TG A CT G T C A T G G CC D S L L L T V M A	*
190 * C AC T AC A CA G TC A TT A T G A GC T CC T GG E Y T V I M S S W	
200 * G T G A GC A TC C TA T AT T CT C TG T TA C AA V S I L Y S L L Q	
250 * G T G A GC A TC C TA T AT T CT C TG T TA C AA V S I L Y S L L Q	
260 * G T G A GC A TC C TA T AT T CT C TG T TA C AA V S I L Y S L L Q	

70/99

Figure 19B

30 *	40 *	50 *	60 *
AAG CAG CTG GTG AAC ATC CAG ACA CAG AGC AGA			
X Q L V N I Q T Q S R			
90 *	100	110	120
CAG ATG TGC TTT TTT ATA CTC TTT GAA GTG TTG			
Q M C F I L F V V L			
160 *	170 *	180 *	
TAT GAC CGG TTT GTG GCC ATC TGT CAC CCC CTG			
X D R F V A I C H P L			
210	220 *	230 *	240
CTC TGT GGA CTG CTG GTT CTG GTG TCC TTG ATC			
L C G L L V L V S W I			
270 *	280 *	290 *	300 *
AGC ATA ATG GCA TTG CAG CTG TCC TTC TGT ACA			
S I M A L Q L S P C T			

71/99

Figure 19C

310	320	330
*	*	*
GAA CTG AAA ATC CCT CAA TTT TTC TGT GAA		
E L K I P Q F F C E		
370	380	390
*	*	*
GAC ACT TTT ATT AAT GAC ATG ATG ATG AAT		
D T F I N D M M M N		
430	440	450
*	*	*
CTC GCT GGA ATA TTT TAC T— TAC TTT AAG		
L A G I F Y X Y F K		
490	500	510
*	*	*
GCT CAG GGG ATG AAT AAA GCA CTT TCC ACC		
A Q G M N K A L S T		
550	560	570
*	*	*
TTT TAT TGT ACA GGC GTA GGT GTG TAC CTT		
F Y C T G V G V Y L		
610	620	630
*	*	*
AAT GCT GCA GCC TCG GTG ATG TAC ACT GTG		
N A A A S V M Y T V		

^{72/99}
Figure 19D

340	350	360
*	*	*
CTT AAT CAG GTC ATC CAC CTT	GCC TGT TCC	
L N Q V I H L	A C S	
400		
*		
410		
*		
TTT ACA AGT GPG CTG CTG GGT GGG GGA TGC		
F T S V L L G C G G C		
420		
*		
460		
*		
470		
*		
ATA CTT TGT TGC ATA TGT TCG ATC TCA TCA		
I L C C I C S I S S		
480		
*		
520		
*		
530		
*		
540		
*		
TGT GCA TCT CAC CTC TCA GTT GTC TCC TTA		
C A S H L S V V S L		
580		
*		
590		
*		
600		
*		
AGT TCT GCT GCA ACC CAT AAC TCA CTC TCA		
S S A A T H N S L S		
640		
*		
GTC ACC TCC ATG CTG		
V T S M L		

73/99

Figure 20A

۲

74/99

Figure 20B

75/99

Figure 20C

541 -
TCTTACACTTTGGCTTGTTACCTTACTTCTTACCCAAA
S T L L G V Y L S S F T Q N S H S T A -
+-----+-----+-----+-----+-----+
ACGGCCATCTGTATGTAAGTGTCGGTCAACCCCCATGTC
601 R A S V W Y S V V T P M L -
+-----+-----+-----+-----+
640

۲۷

Figure 21a

77/99

Figure 21B

ATCCCTCACTTCTCTAGCTCAATCCTGCCCCACTCACATGTTCAGACAACTT
 301 I P H P F C E L N Q L S Q L T C S D N F - +360

CCAAGTCACCTCACAACTCCATCTGGCCCTCTATTGAGCTATTTCCTCTACTCT
 361 P S H L T M H L V P V I F A A I S L S Q - +420

ATCCCTTACTCTATTCAAGATAAGTAGTGCTCTCCATACGTTCTATGTCCTAGTTAACCG
 421 I L Y S Y F K I V S S I R S M S S V Q G - +480

AGTACAGGCAATTCTACATGTGCCTCTCACCTTCACATTGCTCTCTATTATAGT
 481 K Y K A P S T C A S H L S I V S I P Y S - +540

ACAGGCCCTGGGGTGTACCTCTGCTCTGCTCCGAGCTCACCTCTGGCAAGT
 541 T G L C V Y V S S A V I R S S H S S A S - +600

GCTTCGGCTCATGTTACTCTGGTCACCCCCATGTC
 601 A S V M Y T V V T P M L - 636

78/99

J4

Figure 22A

CATAAGGCTTACATCTCTGCAACCCATTAACTCTGTCAACTTCCTTATAGCCAAA
 1 I C Y S S V T P N M L V N F L I K Q N - + 60

TACCATCTCATACCTTGCTTGTTCTATACAGTTGGCTTCACCTCTTGTTGCTTGCCT
 61 T I S Y L Q C S I Q P C S A A L F G C L - + 120

TGAATCTTCCTTCCTCTGCCATGGCTGATGAGAACATCTGCACCCACT
 121 E C P L L A M A Y D R F V A I C N P L - + 180

CCTTATTCAGGAAATGTCACACAGTCCTGCTGCTGCTGCTTATCTTAT
 181 L Y S T K M S T Q V C V Q L V V G S Y I - + 240

AGGGGATTCTTAATGCTTCCTTTCCTTTCCTTCTCTGCTC
 241 G G P L N A S S P T L S F S L S P C G - + 300

79/99

Figure 22B

ACCAAATAGAATTCACTTTACTCTCATTTGCTCCGGTAGAACCTTCAGCTC
 301 P N R I N R F Y C D P A P L V E L S C S - +360

TGTCTAGTGTCTGATCTCTACCTCATTTCTCTGCTGCCTCAGTTACTATGCCAC
 361 D V S V P D A V T S F S A A S V T M L T - +420

AGTGTTTATCAGCCATCTCTTACCTATACTCTCATCACCATCCTGAAGATGCCGTC
 421 V P I I A I S Y T Y I L I T I L K M R S - +480

CACTGAGGCTGAGAGCAAGCTCTACCTGCACTTCCCACCTCACTGCACTCACT
 481 T E G R Q K A P S T C T S H L T A V T L - +540

GTGCTATGAAACCATCACATTCTCATTTGCTAAGTCCAGCTTACTCCACAGACCA
 541 C Y C T I T P I Y V M P K S Y S T D Q - +600

GAACAGCTGCTCTCTCTTATGCTGCTGATCCCCATGTTA
 601 N K V V S V F Y M V V I P M L - 646

80/99

Figure 23A

۵

Figure 23B

81/99

301 TTTAAGCTTCTCTGGTCACAAAGAAAAAGGCCCTTTCATGTTCTTCCCACAT
L K P P S A Q Q R K K A P S T C S S H M - +360

361 GATTGGGTTCATCACCTTGGGCGTGTATTCATCTAACCTTCAGCGAA
I V V S I T Y G S C I P I Y I K P S A K - +420

421 CGAAGGGTAGCCCATATAGGTTGATCTGCTGCACAAACATCAAGTGCCCTTGCT
E G V A I N R V V S V L T T S V A P L L - +480

C 481 - 481 G

82/99

Figure 24A

८८

1 CATTGCCCCCTTCACTTCTCTTCTGAGTCCTGACMACTGCTGCTGCTGCTG
 I C H P L H Y S L L M S P D N C A A L V - + 60
 61 AACAGTCTCCTGGTAAACGGGTGGCACCCGGCTCCCTTGATTTCTTA
 T V S W V T G V G T G F L P S L L I S K - + 120
 121 CTGGACTTCCTGGCCMCCCCATCAACCATTCCTCTGACCCCTCCATTAA
 L D F C G P N R I N H F P C D L P P L I - + 180
 181 CCAGCTGCTGCTCCAGGCTCTTCTGAGMAATGCCATCTTGCCCTGCATCCGC
 Q L S C S S V P V T E M A I F V L S I A - + 240

83/99

Figure 24B

241 T G G C T C T G C A T C T C T T C T A A C C C X X X X T C C T A C T T C A T A G T G T C C T C C A T
 V L C I C F L L T ? ? S Y I P I V S S I - +300
 T C T G A G A T C C C T T C A C T A C C G G C A G G A T G A A G I A C A T T M T C A T G T G C T C C A C C T
 L R I P S T T G R M K T F S T C G S H L - +360
 G C C C T C T C A C C A T C T A C T G G C A C C A T G A T C T C C A T G T G C C C A A T G C C C A
 A V V T I Y Y G T W I S M Y V G P N A H - +420
 T C T G T C C C G G A G G T C A C T G T C T C T C A C T G T G A T C A C C C A C T A C T
 L S P E L N K V I S V F Y T V I T P L L - +480
 G
 481 - 481

84/99

J11

Figure 25A

2 - GTCCTCTCCACCACTGTCCCCAGGGTACTGGCTAACCACTCATCTAGTAGTC
 V C F S S T T V P K V L A N H I L S S Q - 60
 61 - GCCATTTCCTCTCGCTCTAACCTCAGCTGTATTTCTCTGCTCTGCTCTGTAATAT
 A I S F S G C L T Q L Y F L C V S V N M - 120
 GACAAATTTCCTCTCGCTCTGCTATGGCTATCACAGATTGTGGCTATGCCACCCCTT
 121 - D N F L L A V H A Y D R P V A I C H P L - 180
 CTACTACACAAACGATCACCACTCTGCTCTGCTCTGCTCTGATTCAXXX
 181 - Y Y T T K M T H Q L C V L L V S G S ? ? -
 241 - XXXXXXXX
 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - +300

85/99

Figure 25B

XXXXXXXXXXXXXXXXX
 301 - - - - +-----+
 ? ? ? ? ? ? ? ? ? ? - +360
 XXXXXXXXXXXXXXXXX
 361 - - - - +-----+
 ? ? ? ? ? ? ? ? ? ? - +420
 ATTTCCTCCATCTCTACATCACCAATGCAAGTCCAGACTCATC
 421 - - - - +-----+
 P V C I L I S Y I Y I T N A V L R V S S - +460
 CTTAGGGGACGGAATGGAAAGCCCTTCTCCACCTCTGCTCACACCTGGCTGGCTGCCT
 481 - - - - +-----+
 P R G G W K A F S T C G S H L A V V C L - +540

Figure 25c

J14

Figure 26A

87/99

1 TGTCCTCTTCTCCACCACTTCCACCGTACTGGTACCTAACCATACTCAAGTCA	60 V C F S S T T V P K V L A N H I L S S Q -
61 GCCCCATTTCCTCTTGCTCTGCTTCTCTGCTGTCTCTGCTCAATAT	A I S P S Q C L T Q L Y P L C V S V N M
121 GGACAATTTCCTCTGGCTTGATGCGCTTAGCACAGATTGCGCATATGCCACCCCTTT	D N F L L A V M A Y D R P V A I C H P L -
181 GTAATACACAACAAAGATGACCCACCGCTCTGCTCTGCTCTGATCAXXXXXX	Y Y T T K M T H Q L C V L L V S G S ?
241 XXXXXXXXXXXXXXXXXXXXXX	? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

88/99

Figure 26B

301 - XXXXXXXX
 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - +360
 XXXXXXXX
 361 - XXXXXXXX
 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - +420
 ATTTCCTGCAATCCTACATCTACATCACCATACCAATGCCAGTCCTCACAGTCTCATC
 421 P V C I L I S Y I Y I T N A V L R V S S - +480
 CTTAGGGAGGATGAAAGCCCTCTCGCTCTACACCTGGCTCTCGCTCTGCCT
 481 F R G Q W K A F S T C G S H L A V V C L - +540
 CTCTATGGACCATTCTCTCTCTATTCATTCTCTCTCTCCATCTCTGAGAA
 541 F Y G T I I A V Y P N P V S S H S S E K - +600
 GGACACTGGAGCAACTGGCTATAACACAGTGGTCACTCCCATCTC
 601 D T A A T V L Y T V V T P M L - - 646

89/99

J15

Figure 27A

TATCTCCACCCCTCTGGCTACCCAGTCTCATGACCCCGGCGGCTGGCTCAGTCATGCT
 1 I C H P L R Y P V L W S G R V C L L M V - + 60
 CGTGGCCCTCCTGCTGGGATTCCTCAACGGCTTCATTCAGCTTCACCTTCACCTTCAC
 61 V A S W L G Q S L N A S I Q T S L T L Q - + 120
 GTCGCCCTACTTGATACGGAAAGATCTCCCACCTCTCTAGGTGGCCTCGCTGCCT
 121 F P Y C G S R R I S H F P C E V P S L L - + 180
 GAXXXTCCTGTGGAGACACTGAAGCCTATGAGCAGGTAATTTGACACGGCTGCT
 181 ? ? A C A D T R A Y B Q V L F V T G V V - + 240

90/99

Figure 27B

SUBSTITUTE SHEET

91/99

Figure 28A

J16

1 C A T C T G T A G G C C T C T C A C T A T C C T A C C C C T C A T G A C C C A G G C T C T G C C A A G A T T G C C
 I C R P L K Y P T L M T Q T L C A K I A - + 60
 C A C T G G T T G C T G G C T G C T G C C C A G T G C T G A A M T T C C T G C T G C T G C T N C G
 61 T G C W L G C L A G P V V E I S L V S R - + 120
 T C C C T T G T G C C C A A T C A C A T C A C A T C T T G T G A T T G A C C T G C C A C C T G C T G C T
 L L F C Q P N H I Q H I P C D F P P V L - + 180
 C A G C T G G C T G T A C T G A A T C A G T G A A T C T G C T G G T A G T T A T T A A C C T G C T G C T
 121 S L A C T D T S V N V L V D P I I N L C - + 240
 C A A G A T C T G G C C A C C T T C C T G A T C T G G C T C C T A C T G C A G A T A A T C C G G C A C A G T
 181 R I L A T F L L I L S S Y L Q I I R T V - + 300

92/99

Figure 28B

181 GAGCTTGGCTTGACTGATACTCAGTGAATCTCGGTATTTATATAACCTCTG
 S L A C T D T S V N V L V D P I I N L C - +240

241 CAAGATCTGGCCACCTTCCTGCATCCTGAGCTCCTACTTCAGATAATCCGCCACAGT
 R I L A T F L L I L S S Y L Q I I R T V - +300

301 CCTCAAGATTCCTTCAGCTGGCAAGAAGCATTCGACTTGTGCCTCCCATCT
 L K I P S A A Q K K A P S T C A S H L - +360

361 CACTGGCTTCATCTCTGAGGATCCTTTCACTATGTCGGCTGAGAGAC
 T V V L I P Y G S I L P M Y V R L K K S - +420

421 TTACTCCCTTGACTGAGGCCCTGGAGTAGCTACTCCGTTGGTACCCCTTCCT
 Y S L D Y D R A L A V V Y S V V T P F L - +480

G 481 - 481

93/99

J17

Figure 29A

1 M T C O C M A C C C A C T G C T T A T T C C A C C M A T T G C C A C A C M G T G A T C C A C T T G C T
 I C N P L L Y S T K M S T Q V C I Q L V - +60
 61 T G C A G G A T C T T A T A G G G G T T C T T A C T T G C C T C A T C A T G T T T A C T T T C T C
 A G S Y I G C P L N T C L I W F Y F F S - +120
 121 T T T T C T C T C T C G G C C M A T T A G G T G A T C A T T T C T C T C T C T C T X X T
 F L P C G P N I V D H F F C D F A P ? ? - +180
 181 G C A A C T T G C C T C G C T G C T G T G A G T G C T C T G A G T G C T G C T G C T C
 E L S C S D V S V S V V W S F S A C S - +240
 241 A G T A C T A T C A C A G T G T T A T C A G G C A T C T C C T A T T C T A C T C T C A T C A C C A T
 V T M I T V F I I A I S Y S Y I L I T I - +300

94/99

Figure 29B

301 CCTGAAAGATGTCCTCAACTGACCCGTCACAAAGCTTCTCACCATGTACCTCCCACCT
L K M S S T R G R H K A F S T C T S H L - +360

361 CACTGCAGTCACCTCTRACTATGGCACCATTACCTTCATTATGCTGATGCCAAGTCCAC
T A V T L Y Y G T I T P I Y V M P K S T - +420

421 ATACTCTACAGAACAGGGGGCTGCTGCTTACATGGTGGATCCCAATGT
Y S T D Q N R V S V F Y H V V I P M L - +480

481 G - 481

95/99

J19

Figure 30A

TATCTGCCACCCCTGAAAGTACACAGTTCACTATTCACTATTCTGATGATGCTCTCT
 1 I C H P L K Y F V I H N H Y P C V M L L - 60
 GCTCTCTCTCTCGTTAGCACTGCACATTCGGCTTACATTTAGCTGTTGAT
 61 L P S V F V S I A H A L F H I L M V L I - 120
 ACTGACTTTAGCACAAAGTCGAATTCCCTCACTTTCTCTGACCTGGCTCATATCAT
 121 L T F S T K T E I P H F F C E L A H I I - 180
 CAAACTTACCTGTTCGATTTTCAACTATCTCCGATATAACAGACTCTGCTCT
 181 K L T C S D N F I N Y L L I Y T E S V L - 240
 ATTTTGCTGCTATATTCTAGGGATCTTCTCTTATTTACACTGATCCCTCAGT
 241 F F G V H I V G I I L S Y I Y T V S S S V - 300

Figure 30B

96/99

301 TTTAAGAATGTCATTATGCCAATGTATAAGCCTTTAACATGGGATTCATT
L R M S L L Q G W Y R A F S T C G S H L - + 360

361 GCGGTTGTCCTCTTATGCCAACAGCTTCCGGTACACATAAGCTCTCACTTACTG
S V V S V L W H R F W G T H R L S T Y * - + 420

421 ACTCTCCAGGAAGACTGTAGCTCTCACTGTACACTGTGTTACTCAGATGCTG
L S K E D C S G F S D V R C G Y S D A - 479

97/99

۱۲۰

SUBSTITUTE SHEET

98/99

Figure 31B

ATGAGAATAGACTCAGCTGAGGGAGAAAGGCCCTTCAACTTGCTTCACACTTG
I R I D S A E O R K R A F S T C A S H L +360
301

GCTCTGGTGAACCATCTACTATCGAACGCCCTGATCAGGTACTTCAGCCCAAGTCCCTT
A V V T I Y Y C T G L I R Y L R P K S L +420
361

TATTCCCTGAGGAGACAGACTGATCTCTGCTCTATGAGTCATTGGCCCTGCCTG
Y S A E G D R L I S V F Y A V I G P A L +480
421

99/99
Figur 32

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US92/02741

A. CLASSIFICATION OF SUBJECT MATTER

IPC(5) :C12N 15/12, 15/63, 15/64, 5/10; C07K 13/00; A01N 33/00; A61K 37/00
US CL :536/27; 424/418; 435/7.21, 172.3, 240.1, 320.1; 514/2; 530/395

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 536/27; 424/418; 435/7.21, 172.3 240.1, 320.1; 514/2; 530/395

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
CAS ONLINE, MEDLINE, UEMBL, GENBANK, PIR, SWISS PROT, APS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X,P Y,P	Molecular Brain Research, Volume 13, No. 1-2, issued March 1992, L. A. Selbie et al., "Novel G protein-coupled receptors: a gene family of putative human olfactory receptor sequences," abstract.	1-32 33-98
Y X	Sensory Sist., Volume 1, No. 1, issued 1987, V. I. Novoselov et al., "The properties of receptor molecules from rat olfactory epithelium," abstract.	1-34, 65-98 35-64
X,P Y,P	Nature, Volume 355, issued 30 January 1992, M. Parmentier et al., "Expression of members of the putative olfactory receptor gene family in mammalian germ cells," pages 453-455, see entire document.	1-32 33-98
Y X	Biochimica Biophysica Acta, Volume 839, No. 3, issued 1985, E. E. Fesenko et al., "Molecular mechanisms of olfactory reception. VI Kinetic characteristics of camphor interaction with binding sites of rat olfactory epithelium," abstract.	1-34, 65-98 35-64

Further documents are listed in the continuation of Box C.

See patent family annex.

- * Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be part of particular relevance
- "E" earlier document published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search

25 June 1992

Date of mailing of the international search report

23 July 1992

Name and mailing address of the ISA/
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Faxsimile No. NOT APPLICABLE

Authorized officer

LISA T. BENNETT

Telephone No. (703) 308-3988

Form PCT/ISA/210 (second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US92/02741

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X,P Y,P	Chemtracts: Organic Chemistry, Volume 4, No. 4, issued 1991, K. Touhara et al., "A novel multigene family may encode odorant receptors: a molecular basis for odor recognition," abstract.	1-32 33-98
Y,P	Chemical Senses, Volume 16, No. 5, issued 1991, R. H. R. Anholt, "Odor recognition and olfactory transduction: the new frontier," abstract.	1-98
Y	Trends in Neuroscience, Volume 14, No. 7, issued 1991, S. Firestein, "A noseful of odor receptors," abstract.	1-98
Y	Proceedings of the National Academy of Sciences, Volume 86, issued November 1989, E. Danciger et al., "Olfactory marker protein gene: Its structure and olfactory neuron-specific expression in transgenic mice," pages 8565-8569, see entire document.	1-34
Y	Kagaku Kogyo, Volume 40, No. 11, issued 1989, M. Kashiwayanagi et al., "High sensitivity odor sensor using artificial membrane," abstract.	1-98