Analisi 1

UniVR - Dipartimento di Informatica

Fabio Irimie

Indice

Intr	roduzione	2
1.1	Numeri reali	2
1.2		2
1.3	~~	2
1.4		3
1.5	Estremo inferiore	3
1.6	Massimo	3
1.7		4
1.8		4
	1.8.1 Dominio di una funzione	4
Lim	niti	5
2.1	Esempi	6
2.2	Osservazioni	8
2.3	Risultati utili per il calcolo dei limiti	9
2.4		9
2.5		10
2.6		10
2.7		10
Teo	rema dei carabinieri	13
	Variante	
	1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Lim 2.1 2.2 2.3 2.4 2.5 2.6 2.7	1.2 Maggiorante 1.3 Minorante 1.4 Estremo superiore 1.5 Estremo inferiore 1.6 Massimo 1.7 Minimo 1.8 Funzioni 1.8.1 Dominio di una funzione Limiti 2.1 Esempi 2.2 Osservazioni 2.3 Risultati utili per il calcolo dei limiti 2.4 Forme indeterminate 2.5 Esempi di calcolo di limiti 2.6 Limiti razionali 2.7 Limiti delle funzioni monotone Teorema dei carabinieri

1 Introduzione

1.1 Numeri reali

I numeri reali sono descritti tramite rappresentazioni decimali limitate o illimitate, periodiche o non periodiche, e sono tutti i numeri razionali e irrazioneli; questo insieme viene indicato con il simbolo $\mathbb R$

Proprietà necessarie dei numeri reali:

• 1^a proprietà (Eudosso-Archimede): due grandezze sono confrontabili quando esiste un multiplo della minore che supera la maggiore. Ciò significa che non possiamo confrontare linee con superfici, o superfici con volumi, ecc.

Questa proprietà veniva assunta come definizione di grandezze omogenee.

Assioma: dati due numeri reali positivi a, b con 0 < a < b esiste un intero n tale che na > b.

• 2^a proprietà (Intervalli inscatolati): date due serie di grandezze: a_1, a_2, \ldots, a_n e b_1, b_2, \ldots, b_n : la prima crescente (numeri della famiglia a) e la seconda decrescente (numeri della famiglia b), in cui ogni a_k è minore di b_k e tali che per ogni altra grandezza d si ha $b_k - a_k < c$ per qualche k, allora esiste una grandezza c tale che per ogni k $a_k \le c \le b_k$.

1.2 Maggiorante

Definizione 1.1

Sia $S \subseteq \mathbb{R}$ un sottoinsieme di numeri reali. Un numero $y \in \mathbb{R}$ ' è un maggiorante dell'insieme S se per ogni $x \in S$ si ha che $y \geq x$.

Se sommassimo un qualsiasi numero positivo a questo maggiorante si otterrebbe un altro maggiorante.

Se l'interballo tendesse verso $+\infty$ non si sarebbe alcun maggiorante poichè $+\infty$ non è un numero reale. Esempi:

- I = (1, 10]: tutti i maggioranti sono quelli per $y \ge 10$
- I = [0,3): tutti i maggioranti sono quelli per $y \ge 3$
- $\mathbb{R} = (-\infty, +\infty)$: non ha maggiorante

1.3 Minorante

Definizione 1.2

Sia $S \subseteq \mathbb{R}$ un sottoinsieme di numeri reali. Un numero $y \in \mathbb{R}$ è un minorante dell'insieme S se per ogni $x \in S$ si ha che $y \leq x$.

Se sottraessimo un qualsiasi numero negativo a questo minorante si otterrebbe un altro minorante.

Se l'intervallo tendesse verso $-\infty$ non ci sarebbe alcun minorante poichè $-\infty$ non è un numero reale. Esempi:

• I = (1, 10]: tutti i minoranti sono quelli per $y \le 1$

- I = [9, 3): tutti i minoranti sono quelli per $y \le 9$
- $\mathbb{R} = (-\infty, +\infty)$: non ha minorante

1.4 Estremo superiore

Dato un insieme $S\subseteq\mathbb{R},\ S$ è un insieme limitato superiormente con $y\in\mathbb{R}$ estremo superiore di S se:

- \bullet y è un maggiorante di S
- $\bullet \;\; y$ è il più piccolo maggiorante di S

Se S è un insieme illimitato superiormente allora l'estremo superiore di S è $sup(S)=+\infty.$ Esempi:

- I = (1, 10]: sup(I) = 10
- $I = (-\infty, 0)$: sup(I) = 0
- $\mathbb{R} = (-\infty, +\infty)$: $sup(\mathbb{R}) = +\infty$

1.5 Estremo inferiore

Dato un insieme $S\subseteq\mathbb{R},\,S$ è un insieme limitato inferiormente con $y\in\mathbb{R}$ estremo inferiore di S se:

- $\bullet \;\; y$ è un minorante di S
- $\bullet \;\; y$ è il più grande minorante di S

Se S è un insieme illimitato inferiormente allora l'estremo inferiore di S è $inf(S)=-\infty.$ Esempi:

- I = [1, 8): inf(I) = 1
- I = (-13, 0): inf(I) = -13
- $\mathbb{R} = (-\infty, +\infty)$: $in f(\mathbb{R}) = -\infty$

1.6 Massimo

Definizione 1.3

Sia $S\subseteq\mathbb{R}$ un sottoinsieme reale, dove $y\in\mathbb{R}$ è il massimo di S se y è l'estremo superiore di S e se $y\in S$.

Quindi se l'estremo superiore di un insieme appartiene all'insieme stesso, esso si chiamerà massimo indicato con Max(S) = y.

1.7 Minimo

Definizione 1.4

Sia $S \subseteq \mathbb{R}$ un sottoinsieme reale, dove $y \in \mathbb{R}$ è il minimo di S se y è l'estremo inferiore di S e se $y \in S$.

Quindi se l'estremo inferiore di un insieme appartiene all'insieme stesso, esso si chiamerà minimo indicato con Min(S) = y.

Teorema 1 Ogni insieme di numeri reali che sia limitato superiormente ha estremo superiore.

1.8 Funzioni

Definizione 1.5

Una **funzione** è una corrispondenza che collega gli elementi di due insiemi dove tutti gli elementi del primo insieme hanno associati un solo elemento del secondo insieme:

$$f:A\to B$$

Questa è una funzione se e solo se a ogni elemento di A è associato uno e uno solo elemento di B.

Tradotto in simboli diventa:

$$\forall a \in A \exists ! b \in B \ tale \ che \ f : A \rightarrow B$$

Esempio di funzione corretta:

1.8.1 Dominio di una funzione

Definizione 1.6

Dato un insieme di partenza A gli elementi ai quali è applicata la funzione f sono il dominio stesso della funzione

Esempio:

$$x \to x^2 \text{ con } D = \mathbb{R}$$

 $x \to \sqrt{x} \text{ con } D = [0, +\infty)$

Si può dare un nome simbolico alla funzione scrivendo in questo modo:

$$f(x) = x^2 con D = \mathbb{R}$$
$$f(x) = \sqrt{x} con D = [0, +\infty)$$

2 Limiti

I limiti sono il calcolo infinitesimale, ovvero il calcolo che si occupa di studiare il comportamento di una funzione in un intorno di un punto.

Nelle definizioni che seguono, è data una funzione $f:A\to\mathbb{R}$ il cui dominio $A\subseteq\mathbb{R}$ è un insieme **non** limitato superiormente. (Questa ipotesi serve per definire i limiti per $x\to+\infty$)

Definizione 2.1

 $Sia\ L \in \mathbb{R}$. $Si\ dice\ che$

$$\lim_{x \to +\infty} f(x) = L$$

Se e solo se

$$\forall \epsilon > 0 \exists k > 0 \ t.c. \ \forall x \subset A^a,$$

$$x \ge k \to L - \epsilon \le f(x) \le L + \epsilon$$

(Notazione alternativa: $f(x) \to L \ per \ x \to +\infty$)

La condizione deve essere soddisfatta per ogni ϵ .

Per la definizione di limite, la funzione deve entrare in un intorno di L e non uscirne più. Questo vale per ogni ϵ , quindi anche per ϵ^1 .

^aIl dominio della funzione

2.1 Esempi

Esempio 2.1

$$\lim_{x\to +\infty}\frac{1}{x}=0 \quad Dominio=\mathbb{R}/\{0\}$$

Sia dato $\epsilon>0$ arbitrario. Definisco $k:=\frac{1}{\epsilon}.$ Sia dato x>0 arbitrario, supponiamo $x\geq k.$ Allora

$$0-\epsilon \leq 0 \leq \frac{1}{x} \leq \frac{1}{k} = \frac{1}{\frac{1}{\epsilon}} = \epsilon$$

Quindi, ho dimostrato che la definizione di limite è soddisfatta (con L=0).

Esempio 2.2

$$\lim_{x\to +\infty} x = +\infty$$

Sia dato M > 0 arbitrario. Definisco k := M. Sia dato $x \ge k$. Allora $x \ge M$.

Quindi è verificata la definizione di limite.

2.2 Osservazioni

Non è detto che un limite esista.

$$\lim_{x \to +\infty} \sin(x)$$

$$\lim_{x \to +\infty} \cos(x)$$

$$y$$

$$\uparrow$$

$$\downarrow_{0+\epsilon}$$

La funzione non entra in un intevallo limitato senza poi uscirne, quindi non esiste il limite.

Tuttavia, se una funzione ammette limite, allora esso è unico. Questa funzione dovrebbe entrare in entrambe le strisce e non uscirne più, ma questo non è possibile.

2.3 Risultati utili per il calcolo dei limiti

Teorema 2 (Algebra dei limiti) Sia $A \subseteq \mathbb{R}$ un insieme non limitato superiormente, f e g due funzioni. $A \to \mathbb{R}$. Supponiamo che i limiti

$$F:=\lim_{x\to +\infty}f(x)$$

$$G := \lim_{x \to +\infty} g(x)$$

esistano e siano finiti. Allora

$$\lim_{x \to +\infty} (f(x) + g(x)) = F + G$$
$$\lim_{x \to +\infty} (f(x) - g(x)) = F - G$$

$$\lim_{x \to +\infty} (f(x) \cdot g(x)) = F \cdot G$$

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \frac{F}{G} \quad se \ G \neq 0$$

Il teorema si estende parzialmente nel caso F o G siano infiniti, secondo le regole seguenti:

- $F + \infty = +\infty$, $F \infty = -\infty \ \forall F \in \mathbb{R}$
- $+\infty + \infty = +\infty$, $+\infty \infty = -\infty$
- $F \cdot \infty = \infty$, $\forall F \in \mathbb{R}, F \neq 0$
- $\bullet \ \infty \cdot \infty = \infty$
- $\frac{F}{\infty} = 0 \ \forall F \in \mathbb{R}$
- $\frac{F}{0} = \infty \ \forall F \in \mathbb{R}, \ F \neq 0$
- $\bullet \ \frac{0}{\infty} = 0$
- $\frac{\infty}{0} = \infty$

Il segno di ∞ è da determinare secondo la regola usuale.

2.4 Forme indeterminate

Sono dei casi in cui il teorema **non** si applica e tutto può succdere:

- \bullet $+\infty-\infty$
- $0 \cdot \infty$
- \bullet $\frac{0}{0}$
- \bullet $\frac{\infty}{\infty}$
- 1[∞]
- 0⁰
- ∞^0

N.B.: in questo contesto, 0, ∞ e 1 sono da intendersi come abbreviazioni.

2.5 Esempi di calcolo di limiti

Esempio 2.3

$$\lim_{x \to +\infty} (x^2 + \frac{1}{x})$$

$$\underbrace{x^2}_{+\infty} + \underbrace{\frac{1}{x}}_{0} \to +\infty$$

 $Per \ x \to +\infty$ (per il teorema dell'algebra dei limiti)

Esempio 2.4

$$\lim_{x \to +\infty} x^2 - x^3 = +\infty - \infty$$

$$\underbrace{x^3}_{+\infty} \left(\underbrace{\frac{1}{x}}_{-1}\right) \to -\infty$$

 $Per \ x \to +\infty$

Esempio 2.5

$$\lim_{x \to +\infty} (5x^6 - 4x) = +\infty - \infty$$

$$\underbrace{x}_{+\infty} \underbrace{(5x^5 - 4)}_{+\infty} \to +\infty$$

2.6 Limiti razionali

Se P è un polinomio di grado p e Q è un polinomio di grado q, allora

$$\lim_{x \to +\infty} \frac{P(x)}{Q(x)} = \begin{cases} \pm \infty & se \ p > q \\ 0 & se \ p < q \\ coefficiente \ denominante \ di \ P & se \ p = q \\ coefficiente \ denominante \ di \ Q & se \ p = q \end{cases}$$

2.7 Limiti delle funzioni monotone

Teorema 3 (di monotonia) Sia $A \subseteq \mathbb{R}$ un insieme non limitato superiormente e sia $f: A \to \mathbb{R}$ una funzione monotona¹. Allora

$$\lim_{x \to +\infty} f(x) \ esiste \ e$$

¹Le funzioni **monotone** sono funzioni che sono sempre crescenti o sempre decrescenti

$$\lim_{x\to +\infty} f(x) = \begin{cases} \sup\{f(x): \ x\in A\} & se \ f \ cresce \ (nondecrescente) \\ \inf\{f(x): \ x\in A\} & se \ f \ decresce \ (noncrescente) \end{cases}$$

 $f:(0,+\infty)\to\mathbb{R}$ f è strettamente crescente e limitata (l'immagine di f è un insieme limitato).

$$\lim_{x \to +\infty} f(x) = 5$$

 $g:(0,+\infty)\to\mathbb{R}$ è strettamente crescente e non limitata

$$\lim_{x \to +\infty} g(x) = +\infty$$

Questa funzione non è monotona, ma se guardiamo ciò che succede eprx>5 si ottiene una funzione monotona. Quindi la funzione globalmente non è monotona, ma è decrescente ristrettamente a partire da x=5.

Per il teorema di monotonia,

$$\lim_{x \to +\infty} f(x) = L$$

Esempio 2.6

$$\lim_{x \to +\infty} \log(x) = +\infty$$

Per il teorema di monotonia:

$$\lim_{x \to +\infty} log(x) = \sup\{log(x) : x > 0\}$$

 $\geq \sup\{\log(e^n): n \in \mathbb{Z}, n > 0\}$ scelto arbitrariamente

$$= \sup\{n \cdot \log(e) : n \in \mathbb{Z}, n > 0\} = +\infty$$

Abbiamo dimostrato (per il postulato di Eudosso - Archimede) che il limite di questa funzione è uguale $a + \infty$.

Esercizio 2.1

Dimostrare che:

$$\lim_{x \to +\infty} e^x = +\infty$$

 $E\ similmente\ che:$

$$\lim_{x \to +\infty} a^x = +\infty \quad \forall a \in (0, +\infty)$$

3 Teorema dei carabinieri

Teorema 4 (del confronto tra i limiti, o dei carabinieri) Sia $A \subseteq \mathbb{R}$ un insieme non limitato superiormente e siano $f, g, h : A \to \mathbb{R}$. Supponiamo che

$$f(x) \le g(x) \le h(x) \quad \forall x \in A$$

 $Supponiamo\ inoltre\ che\ i\ limiti$

$$\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} h(x) = L$$

esistano (e che siano uguali tra di loro). Allora

$$\lim_{x \to +\infty} g(x) = L$$

3.1 Variante

Sia $A\subseteq\mathbb{R}$ non limitato superiormente e siano $f,g:A\to\mathbb{R}$ t.c. $f(x)\leq g(x)$ $\forall x\in A.$

Se $\lim_{x\to +\infty} f(x) = +\infty$ allora $\lim_{x\to +\infty} g(x) = +\infty$.

Se $\lim_{x\to +\infty} f(x) = -\infty$ allora $\lim_{x\to +\infty} g(x) = -\infty$.

