

TỬ SÁCH KỸ THUẬT ĐIỆN - ĐIỆN TỬ THS NGUYỄN TẦN PHƯỚC

CAM BIÊN

ĐO LƯỜNG VÀ ĐIỀU KHIỂN

NHÀ XUẤT BẢN HỒNG ĐỰC

TỬ SÁCH KỸ THUẬT ĐIỆN - ĐIỆN TỬ THS NGUYỄN TẦN PHƯỚC

CAM BIÊN

ĐO LƯỜNG VÀ ĐIỀU KHIỂN

NHÀ XUẤT BẢN HỒNG ĐỰC

TỦ SÁCH KỸ THUẬT ĐIỆN – ĐIỆN TỬ ThS NGUYỄN TẦN PHƯỚC

CẢM BIẾN ĐO LƯỜNG VÀ ĐIỀU KHIỂN

Chiu trách nhiệm xuất bản: HOÀNG CHÍ DŨNG

Biên tập: HồNG NAM

Trình bày: NGUYỄN PHƯỚC TƯỜNG VÂN

Bìa: NGUYỄN TẤN PHƯỚC

NHÀ XUẤT BẢN HỒNG ĐỰC

111 Lê Thánh Tôn - Q.1 - TP.HCM

DT: 08.8244534

Thực hiện liên doanh: NGUYỄN TẦN PHƯỚC

LỜI NÓI ĐẦU

Cảm biến là loại thiết bị được sử dụng ngày càng nhiều trong lĩnh vực đo lường và điều khiển.

Trước dây, cảm biến được sử dụng làm linh kiện cảm nhận hay phát hiện các đại lượng vật lý không điện. Hiện nay, với sự phát triển nhanh của các ngành khoa học kỹ thuật và công nghệ chế tạo linh kiện điện tử, cảm biến ngày càng được ứng dụng rộng rãi trong hầu hết các lĩnh vực với nhiều tính năng ưu việt, phong phú và đa dạng.

Không chỉ ứng dụng trên các thiết bị công nghệ mới, trên các dây chuyền sản xuất tự động hay trên các robot công nghiệp; cảm biến còn được ứng dụng ngay trong cả các thiết bị điện – điện tử dân dụng, phục vụ cho sinh hoạt thường ngày.

"Cảm biến – Đo lường và điều khiển" đã trở thành môn học chính thức trong chương trình đào tạo các ngành Điện – Điện tử ở các trường Đại học, Cao đẳng và Trung cấp chuyên nghiệp.

Tuy nhiên, tài liệu tham khảo cũng như giáo trình phục vụ cho việc dạy và học môn học mới này hiện rất thiếu trên thị trường sách. Đặc biệt, tính thực tế chưa được cụ thể và phong phú.

Giáo trình này được biên soạn nhằm mục đích giới thiệu với đối tượng độc giả là giáo viên, sinh viên, học sinh một tài liệu học tập, nghiên cứu, tham khảo có tính thực tế, ứng dụng cụ thể và không quá nặng tính lý luận.

Tuy đã rất cố gắng, nhưng do hạn chế về tài liệu tham khảo và thời gian nghiên cứu, giáo trình này chắc chắn còn nhiều khiếm khuyết. Rất mong nhận được sự đóng góp ý kiến của bạn đọc để sách được hoàn thiện hơn trong lần tái bản sau.

HCM, ngày 10 tháng 9 năm 2007 Tác giả

CẢM BIẾN ĐO LƯỜNG VÀ ĐIỀU KHIỂN

Mục lục

	Trang
Lời nói đầu	3
Mục lục	4
Tài liệu tham khảo	6
Chương 1: Khái niệm cơ bản về linh kiện cảm biến	7
1.1- Đại cương	
1.2- Phân loại linh kiện cảm biến	
1.3- Đặc trưng cơ bản	
Chương 2: Linh kiện cảm biến quang điện	12
2.1- Khái niệm cơ bản về ánh sáng	
2.2- Nguồn sáng	
2.3- Mặt chỉ thị tinh thể lõng LCD	
2.4- Đặc tính chung của cảm biến quang	
2.5- Quang trở	
2.6- Quang diod	
2.7- Quang transistor	
2.8- Các bộ ghép quang	
2 9- Tế bào quang điện và pin mặt trời	
Chương 3: Ứng dụng cảm biến quang điện	38
3.1- Mach tự đồng điều khiển đèn đường	
3.2- Mạch phát hiện đứt cúi	

Cám	biển –	Đa	lường	và	diều	khiển
$\sim am$	CACII -	,,,,	100115	, at	a10 (i	KIIICII

Ngu	vễn	Tấn	Phước

3.3- Bộ thu phát quang điện đa năng

Chương 4: Cảm biến nhiệt điện	56
4.1- Đại cương	
4.2- Nhiệt điện trở kim loại	
4.3- Nhiệt trở bán dẫn	
4.4- Varistor drod	
4.5- Cập nhiệt	
4.6- Đo nhiệt đô bằng điod và transistor	
4.7- Diod Zener cám biến nhiết	
4.8- IC cấm biến nhiết	
Chương 5: Linh kiện cám biến từ	76
5.1- Khát niệm về từ học	
5.2- Cảm biến Hall	
5.3- Ứng dụng của cám biến Hall	
5.4- Cảm biến điện trợ từ	
Chương 6: Cảm biến lực	94
6.1- Đại cương	
6.2- Cảm biến áp điện	
6.3- Mach khuếch đại điện áp	
6.4- Mạch khuếch đại điện tích	
Chương 7: Cảm biến vi trí - Sự dịch chuyển	104
7.1- Đại cương	
7.2- Cám biến điện trở	
7.3- Cám biển điện cám	
7.4- Cẩm biến điện dung	
7.5- Cám biến tiệm cận điện cảm	
7.6- Ứng dụng cảm biến tiệm cận trong công nghiệp	
Tài liệu tham khảo	128

CHUONG 1

KHÁI NIỆM CƠ BẢN VỀ LINH KIỆN CẢM BIẾN

§1.1- DAI CUONG

Trong sản xuất công nghiệp cũng như trong đời sống tự nhiên, các đại lượng vật lý, hoá học, sinh học cần đo lường, kiểm tra, điều chỉnh, khống chế hay tự động điều khiển ... thường là các đại lượng không điện. Thí dụ: ánh sáng, nhiệt độ, áp suất, độ ẩm, từ trường, khoảng cách, lưu lượng, vận tốc ...

Linh kiện cảm biến có chức năng chuyển đổi các đại lương không điện thành tín hiệu điện, hay từ đại lượng điện này sang đại lượng điện khác.

<u>Hình 1.1</u>: Mô hình mạch của bộ cảm biến

Phương trình mô tả quan hệ giữa đáp ứng y và kích thích x của bộ cảm biến có dạng: y = f(x)

Quan hệ y = f(x) của bộ cảm biến thường rất phức tạp và có rất nhiều yếu tố ảnh hưởng tác động cùng lúc lên bộ cảm biến. Trong nhiều trường hợp, để đơn giản, người ta chỉ xét đáp ứng y ở ngỗ ra theo tác động của kích thích x ở ngỗ vào, còn các yếu tố khác được xem như không đổi. Các yếu tố khác thường là các thông số môi trường như nhiệt độ, áp suất, độ ẩm, ... và các thông số của nguồn như biên độ, tần số, điện áp làm việc của các bộ cảm biến.

" Các bộ cảm biến thường được định nghĩa theo nghiã rộng là thiết bị cảm nhận và đáp ứng đối với các tín hiệu và kích thích".

Kích thích x ở ngõ vào là các đại lượng lý, hoá không điện. Đáp ứng y ở ngõ ra là các đại lượng điện và thường biên độ rất nhỏ.

Để thực hiện chức năng đo lường hay điều khiển tự động quá trình, đáp ứng y thường phải qua mạch khuếch đại trước khi cấp tín hiệu hay năng lượng cho tải (hình 1.2).

Hình 1.2: Đáp ứng y qua bộ khuếch đại

Nếu là mạch đo lường tự động, tái là cơ cấu đo hay thiết bị đo điện hoặc điện tử. Nếu là mạch điều khiến tự động thì tải có thể là rơ-le, điện trở công suất, động cơ...

Trong các hệ thống đo lường, điều khiển tự động hiện đại, thường có yêu cầu hỗi tiếp để khống chế trạng thái của quá trình. Việc thu nhận và xử lý tín hiệu thường do bộ vi xử lý đảm nhận và điều khiển tự động theo chương trình cài đặt trước (hình 1.3).

Hình 1.3; Điều khiến tự động dùng bộ vi xử lý

§1.2- PHÂN LOẠI LINH KIỆN CẨM BIẾN

Có nhiều cách phân loại linh kiện cảm biến như sau.

1) Phân loại theo nguyên lý chuyển đổi:

- Linh kiện cảm biến vật lý
- Linh kiến cấm biến hoá học
- Linh kiến cảm biến sinh học

2) Phân loại theo thông số của mô hình mạch thay thế:

- Cảnt biến tích cực (có nguồn) đầu ra là nguồn áp hay nguồn đông
- Cẩm biến thư động (không có nguồn) được đặc trưng bàng các thông số R, L, C., , tuyến tính hay phi tuyến.

3) Phân loại theo tín hiệu kích thích:

- Cám biến quang điện
- Cám biên nhiệt điển
- Cám biển vị trí, khoảng cách
- Cám biến vận tốc, gia tốc
- Cám biến do lường, thể tích chất lỏng
- Cảm biến điện hoá
- Cảm biến từ
- Cảm biến lưc

§1.3- ĐẶC TRƯNG CƠ BẨN CỦA LINH KIỆN CẨM BIẾN

Linh kiện cảm biến thường có các đặc trưng cơ bản là:

1) Hàm truyền

Quan hệ giữa đáp ứng ở ngõ ra và kích thích ở ngõ vào của bộ cảm biến có thể cho dưới dang bảng giá trị hay biểu thức toán học.

Gọi x là tín hiệu kích thích, y là tín hiệu điện đáp ứng, hàm truyền cho ta quan hệ giữa đáp ứng và kích thích. Hàm truyền có thể được biểu diễn dưới dạng tuyến tính, phi tuyến, hàm logarit, hàm luỹ thừa hay hàm mũ.

Hàm truyền tuyến tính có dạng:

$$y = a + bx$$

(a: hằng số, b: độ nhạy)

Hàm truyền logarit có dạng:

$$y = 1 + b.lnx$$

Hàm luỹ thừa có dạng:

$$y = a_0 + a_1.x^k$$

(k; hằng số)

Hàm luỹ thừa có dạng:

$$y = a.e^{kx}$$

Hàm truyền phi tuyến không thể đặc trưng bằng các dạng trên. Trong nhiều trường hợp, có thể làm gần đúng hàm truyền phi tuyến bằng phương pháp tuyến tính hoá từng đoạn.

2) Độ lớn của tín hiệu vào

Độ lớn của tín hiệu vào là giá trị lớn nhất của tín hiệu đặt vào bộ cảm biến mà sai số không vượt quá ngưỡng cho phép.

Nhiều bộ cảm biến có khoảng giới hạn cụ thể của tín hiệu vào. Thí dụ: nhiệt trở có khoảng nhiệt độ sử dụng từ -10°C đến +80°C.

3) Sai số và độ chính xác

Các bộ cảm biến cũng như các thiết bị đo, ngoài đai lượng cần đo, còn chịu tác động của nhiều đại lượng vật lý khác nên gây ra sai số giữa giá trị đo được và giá trị thực của đại lượng cần đo.

Gọi Δx là độ sai số tuyệt đối giữa giá trị đo và giá trị thực x, sai số tương đối của bộ cảm biến được tính bằng công thức:

$$\delta\% = \frac{\Delta x}{x}.100$$
 $\delta\%$: sai số tương đối

Δx: sai số tuyệt đối

Câu hới

- 1- Định nghĩa và phân toại cảm biến?
- 2- Cho biết vị trí của cảm biến trong hệ thống tự động điều khiển quá trình?
- 3- Cho biết những đặc trưng cơ bản của cảm biến?

CHƯƠNG 2

LINH KIỆN CẨM BIẾN QUANG ĐIỆN

§2.1- KHÁI NIỆM CƠ BẦN VỀ ÁNH SÁNG

Dạng sống ánh sáng là sống điển từ phẳng. Tại mỗi điểm trong không gian, vec-tơ cường độ điển trường E, cường độ từ trương H và phương truyền Z tạo thành một tạm điển thuận (hình 2.1).

Ánh sáng lan truyền trong chân không với vận tốc v = 299.792km/s (c = 300.000km/s). Trong vật chất ánh sáng có vận tốc:

$$v = \frac{c}{n}$$
 η: chiết suất của môi trường

Bước sóng của ánh sáng tỉ lệ nghịch với tần số theo công

thức:

$$\lambda = \frac{V}{f}$$

Phổ của ánh sáng theo bước sóng như sau:

λ (nm)	310	i	 	575	i	760	880	920
Ánh sáng				•	l .	Hồng	Led hồng	
		i I	! !			`	ngoại	

§2.2- NGUỒN SÁNG

Đối với linh kiện cảm biến quang điện, việc chọn lựa nguồn sáng rất quan trọng. Đáp ứng của bộ cảm biến chỉ đạt yêu cầu kỹ thuật khi nó được kích thích bởi nguồn sáng có bức xạ ánh sáng phù hợp (phố, quang thông, tần số).

Các loại nguồn sáng thông dụng hiện nay là đèn có tim, Led thường và Led hồng ngoại.

1- Đèn có tim

Đèn có tim làm bằng sợi wonfram đặt trong bóng thuỷ tinh có chứa khí trơ. Đèn có tim có các đặc diểm:

- Dái phổ rộng
- Hiệu suất phát quang thấp (tỉ số quang thông trên công suất tiêu thụ – lumen/watt)
- Quán tính nhiệt lớn nên không thể thay đổi bức xạ một cách nhanh chóng được
 - Tuổi thọ ngắn (vài trăm giờ đến 1000 giờ).

2- Diod phát quang (LED)

Diod phát quang có các đặc điểm:

- Đáp ứng nhanh, thời gian trễ nhỏ cỡ ns, có khả năng điều biến ở tần số cao
 - Phổ ánh sáng xác định theo màu phát sáng của LED
 - Tuổi thọ có thể đạt tới 100,000 giờ
 - Kích thước nhỏ
 - Tiêu thụ công suất rất thấp, quang thông rất nhỏ.

a) Cấu tạo:

Diod phát quang được gọi tắt là LED (Light Emitting Diod) được làm từ các chất Ga As, Ga P và GaAs P.

Loại LED phát sáng dùng làm tín hiệu báo nguồn, báo trạng thái hoạt động của mạch, loại LED hồng ngoại dùng để truyền tín hiệu trong các bộ ghép quang ...

LED có ký hiệu và hình đáng như hình 2.2.

b) Phân loại:

Theo vật liệu:

- Diod GaAs cho ra ánh sáng hồng ngoại mà mắt không nhìn thấy được
- Dìod GaAsP cho ra ánh sáng thấy được, khi thay đổi hàm lượng photpho sẽ cho ra ánh sáng khác nhau như đỏ, cam, vàng
- Diod GaP pha thêm tạp chất sẽ bức xạ cho ánh sáng. Tùy loại tạp chất mà điốt có thể cho ra các màu từ đỏ, cam, vàng, xanh lá cây
- Diod SiC khi pha thêm tạp chất sẽ cho ra ánh sáng màu xanh da trời. LED màu xanh da trời chưa được phổ biến vì giá thành cao.

Do khác nhau về vật liệu chế tạo nên điện áp ngưỡng của các loại LED cũng khác nhau:

- LED đổ có
$$V_v = 1.6V \div 2V$$

- LED cam có $V_y = 2.2V \div 3V$
- LED xanh lá có $V_v = 2.7V \div 3.2V$
- LED vàng có $V_v = 2.4V \div 3.2V$
- LED xanh da trời có V_y = 3V ÷ 5V
- LED hồng ngoại có $V_y = 1.8V \div 5V$

LED hai màu:

LED hai màu là loại LED đôi gồm hai LED nằm song song và ngược chiều nhau, trong đó có một LED đỏ và một LED xanh lá cây hay một LED vàng và một LED xanh lá cây. Loại LED hai màu thường để chỉ cực tính của nguồn hay chiều quay của động cơ.

Hình 2.3 là ký hiệu của LED đôi loại hai màu. Nếu chân A_1 có điện áp dương thì LED I sáng và ngược lại nếu chân A_2 có điện áp dương thì LED hai sáng.

LED ha màu:

LED ba màu cũng là loại LED đôi nhưng không ghép song song mà hai LED chỉ có chung chân catod, trong đó một LED màu đỏ ra chân ngắn, một LED màu xanh lá cây ra chân dài, chân giữa là catod chung.

Nếu chân A_1 có điện áp dương thì LED đỏ sáng, nếu chân A_2 có điện áp dương thì LED xanh sáng, nếu chân A_1 và A_2 đều có điện áp dương thì hai LED đều sáng và cho ra ánh sáng màu vàng.

c) Các thông số kỹ thuật:

Điện áp ngưỡng của LED có trị số thay đổi theo ánh sáng màu như sau:

- LED đổ có $V_y = 1.6V \div 2V$
- LED cam có $V_y = 2.2V \div 3V$
- LED xanh lá cây có $V_i = 2.7V \div 3.2V$
- LED vàng có $V_z = 2.4V \pm 3.2V$
- LED xanh da trời $V_y = 3V \div 5$
- LED hồng ngoại $V_{\gamma} = 1.8V \div 5V$

Dòng điện thuận I_F qua LED có trị số nhỏ thường khoảng vài mA đến vài chuc mA.

Điện áp ngược của LED thường thấp khoảng vài volt nên khi sử dung LED trong nguồn xoay chiều phải có một diod thường ghép song song và ngược chiều để nối tắt điện áp ngược trên LED.

<u>Hình 2.5</u>: Dùng diod bảo vệ

LED & trang thái ngược

d) Ung dung:

LED được ứng dụng rất rộng rãi trong các thiết bị điển tử dân dụng cũng như điện tử công nghiệp. Ở đây chỉ giới thiệu các ứng dụng đơn giản của LED.

Mach báo nguồn DC:

Khi sử dụng LED phải tính điện trở nối tiếp với LED co trị số thích hợp để tránh đồng điện qua LED quá lớn sẽ làm hư LED.

Hình 2.6: Mạch báo nguồn DC

Hình 2.7: Mạch báo nguồn AC

Diện trở R trong mạch báo nguồn DC tính theo công thức:

$$R = \frac{V_{I^{\mu}} - V_{Icd}}{I_{Icd}}$$
 (chon $V_{Icd} = 2V$, $I_{Ied} = 10 \text{mA}$)

Mach báo nguồn AC:

Trong mạch báo nguồn AC, LED chỉ sáng khi được phân cực thuận bằng bán kỳ thích hợp, khi LED bị phân cực ngược thì diod D được phân cực thuận nên dẫn điện để giữ cho mức điện áp ngược trên LED là $V_{\rm D}$ = 0.7V tránh hư LED.

Điện trở R trong mạch báo nguồn AC tính theo công thức:

$$R = \frac{V_{\text{total}} - V_{\text{total}}}{V_{\text{total}}}$$
 (chon $V_{\text{total}} = 2V$, $I_{\text{total}} = 10\text{mA}$)

3) LED bảy đoạn

11mh 2.8:LED báy doan anod chung Hình 2.9:LED bảy đoạn catod chung

LED bảy đoạn có loại anod chung và loại catod chung. Hiện nay LED bảy đoạn được dùng nhiều trong các thiết bị chỉ thị số.

Hình 2.8 là ký hiệu của LED bảy đoạn có anod chung, hình 2.9 là ký hiệu của LED bảy đoạn có catod chung.

LED bảy đoạn là tập hợp bảy LED được chế tạo dạng thanh dài sắp xếp như hình 2.10 và được ký hiệu bằng bảy chữ cái là a, b, c, d, e, f và g. Phần phụ của đèn là một chấm sáng (p) để chỉ dấu phẩy thập phân. Khi cho các thanh sáng với các số lượng và vị trí thích hợp ta có những chữ số từ 0 đến 9 và những chữ cái từ A đến F như hình 2.10.

LED bảy đoạn được điều khiển bằng các loại IC giải mã như IC 7447, 7448 họ logic hay 4511, 4513 họ CMOS.

§2.3- MẶT CHỈ THỊ TINH THỂ LỎNG LCD

1- Cấu tạo

LCD là chữ viết tắt bởi Liquid Crytal Display. Tính thể lỏng dùng trong LCD là những hợp chất hữu cơ có những đặc tính Nematic (các phân tử tinh thể lỏng nằm song song với nhau). Ở

nhiệt độ thấp thì LCD ở trạng thái rắn, khi ở nhiệt độ nóng chảy thì LED chuyển sang trạng thái lỏng.

2- Đặc trưng kỹ thuật

- Khoảng nhiệt độ sử dụng: -10° C đến $+60^{\circ}$ C
- Điện áp: 3V đến 6V (chuẩn là 4,5V)
- Tần số: 30Hz đến 200Hz
- Thời gian đóng: 40ms
- Thời gian ngất: 80ms
- Đồng điện tiêu hao khoảng 0,2 μA

Một màn LCD bảy đoạn tiêu hao công suất khoảng 10 μW.

LCD có cách sắp xếp như LED bảy đoạn có tuổi thọ từ 10.000 giờ đến 100.000 giờ và hiện nay đang được sử dụng thay thế dẫn các loại LED bảy đoạn.

Hình 2.11 là một loại LCD tiêu biểu

Hình 2.11: Một dạng LCD

§2.4- ĐẶC TÍNH CHUNG CỦA CẨM BIẾN QUANG

Cảm biến quang dùng để đổi từ năng lượng ánh sáng ra năng lượng điện, tín hiệu ra của cảm biến thường là dạng dòng điện. Trị số dòng điện thay đổi theo độ chiếu sáng và các đặc trưng của cảm biến do cách cấu tao cảm biến.

1- Dòng điện vùng tối

Khi đặt trong bóng tối, cảm biến vẫn có dòng diện I_0 đi qua. Dòng điện này hiện hữu do các điện tích tự do, tác động bởi nhiệt độ môi trường hay do các tia bức xạ tác động từ bên ngoài.

Dòng điện vùng tối l₀ càng nhỏ càng tốt vì nó sẽ làm ảnh hưởng đến độ nhạy đối với nhiệt độ môi trường và các tia bức xạ, được coi như nhiễu làm ảnh hưởng đến kết quả đo

2- Độ nhạy

Khi cảm biến nhân được quang thông tác động từ bên ngoài sẽ tạo ra dòng điện I_P cộng thêm lên dòng điện vùng tối I_0 . Lúc đó, dòng điện qua cảm biến là:

$$1 = I_0 + I_P$$

Sự thay đổi đồng I_P cho biết đấp ứng của cấm biến đối với ánh sáng tác động lên nó. Hàm truyền của cẩm biến có thể là tuyến tính, hàm logarit hay hàm luỹ thừa.

Độ nhạy của cảm biến được tính theo công thức:

$$S = \frac{\Delta I}{\Delta \Phi} - \frac{\Delta I_T}{\Delta \Phi}$$
 (\$\Delta \Phi\$; sự biến thiên quang thông, \$\Delta_0 = 0\$)

Nếu cầm biến tuyến tính thì độ nhạy độc lập với Φ. Ta có:

$$S = \frac{\Delta I}{\Delta \Phi} = \frac{I_p}{\Phi}$$

Đơn vị của độ nhạy là: A / lumen (quang thông) hay A / lux (độ rợi).

Tuỳ vật hệu chế tạo mà cảm biến còn có độ nhạy thay đổi theo bước sóng λ của tia bức xạ tác động vào. Người ta đưa ra khái niệm độ nhạy phố $S(\lambda)$.

$$S(\lambda) = \frac{\Lambda I_{p}}{\Delta \Phi(\lambda)} = \frac{I_{p}}{\Phi(\lambda)}$$

Hình 2.12: Đường cong đô nhay phổ tổng quát

Hình 2.12 cho thấy độ nhạy phổ lý tưởng và thực tế. Trong đó, λ_P là bước sóng có độ nhạy phổ cực đại, λ_S là bước sóng mà độ nhạy phổ bằng 0. Tuỳ vật liệu chế tạo mà cẩm biến có λ_S khác nhau.

§2.5- QUANG TRỞ (PHOTO RESISTOR)

1- Cấu tạo

Quang trở còn gọi là điện trở tùy thuộc ánh sáng LDR (viết tắt bởi Light Dependent Resistor) có trị số điện trở thay đổi theo độ sáng chiếu vào quang trở. Khi bị che tối thì quang trở có trị số diện trở rất lớn, khi được chiếu sáng thì điện trở giảm nhỏ.

Quang trở thường được làm bằng chất sulfit catmi (CdS), Selenid Cadmium (CdSe), sulfit chì (PbS) ... trong đó loại quang trở CdS có độ nhạy phổ gần như mắt người nên thông dụng nhất. Chất silicium nhạy nhất đối với tia hồng ngoại, chất germanium nhay nhất ở khoảng ánh sáng có tần số thấp hơn tia hồng ngoại, chất Selenium nhạy nhất đối với ánh sáng thấy được và tia tử ngoại.

Quang trở được chế tạo bằng cách tạo một màn bán dẫn trên nền cách điện nối ra hai đầu kim loại rồi đặt trong một vỏ nhựa, mặt trên có lớp thủy tinh trong để nhận ánh sáng bên ngoài tác động vào.

2- Ký hiệu - Hình dáng - Đặc tính

<u>Hình 2.13</u>: Ký hiệu, hình dáng <u>Hình 2.14</u>: Đặc tính của quang trở

Quang trở có trị số điện trở thay đổi không tuyến tính theo độ sáng chiếu vào nó. Điện trở vùng tối của quang trở có trị số lớn khoảng $10^4~\Omega$ đến $10^9~\Omega$ (ở 25°C). Khi được chiếu sáng mạnh, quang trở có trị số rất nhỏ khoảng $10~\Omega$ đến $1~k\Omega$ (ở 25°C).

3- Úng dụng

Hình 2.15 là ứng dụng của quang trở để điều khiến đóng hay ngất rơ-le RY theo độ sáng.

Hai transistor T_1 và T_2 trong sơ đồ là mạch Schmitt Trigger điều khiển tải là rơ le RY. Khi trời sáng thì CdS có trị số nhỏ nên T_1 được phân cực bão hòa, T_1 dẫn sẽ làm T_2 bị mất phân cực nên T_2 ngưng, rơ le không có điện, tiếp điểm OA đóng. Khi trời tối thì CdS có trị số lớn nên T_1 mất phân cực nên T_1 ngưng làm V_{C1} tăng để phân cực cho T_2 bão hòa, rơ le được cấp điện và đóng tiếp điểm OB.

§2.6- QUANG DIOD

1- Cấu tạo - Nguyên lý

Quang diod có cấu tạo bán dẫn giống như diod thường nhưng đặt trong vỏ cách điện có một mặt là nhựa hay thủy tinh trong để nhận ánh sáng bên ngoài chiếu vào mối nối P-N của diod, có loại dùng thấu kính hội tụ để tập trung ánh sáng.

Đối với diod, khi phân cực thuận thì dòng điện thuận qua diod lớn do dòng hạt tải đa số di chuyển, khi phân cực nghịch thì dòng điện nghịch qua diod rất nhỏ do dòng hạt tải thiểu số di chuyển.

Qua thí nghiệm cho thấy khi photo diod được phân cực thuận thì hai trường hợp mối nối PN được chiếu sáng hay che tối, dòng điện thuận qua diod thay đổi không đáng kể. Ngược lại, khi diod bị phân cực nghịch, nếu mối nối PN được chiếu sáng thì dòng điện nghịch tăng lên lớn hơn nhiều lần so với khi bị che tối. Do đó, nguyên lý trên quang diod được sử dụng ở trạng thái ngược trong các mạch điều khiển theo ánh sáng.

2- Ký hiệu - Hình dáng

Photodiod BPW21 của siemens

3- Đặc tính: Quang diod có đặc tính

- Tuyến tính, ít nhiễu
- Dải tần số rộng, tuổi thọ dài

Hình 2.17 là đặc tuyến cho thấy sự thay đổi của dòng điện ngược I_R của quang diod theo độ chiếu sáng.

Do hiệu ứng quang điện, diod cho ra một điện áp khi được chiếu sáng. Do đó, nó có thể làm việc mà không cần một điện áp

bên ngoài. Tuy nhiên, nếu có điện áp ngược đặt vào quang diod thì dòng điện nghịch sẽ lớn hơn và sự tuyến tính sẽ tốt hơn.

Khi cho điện áp V_D vào mối nối, dòng điện qua mối nối được tính theo công thức:

$$I = I_0.(e^{\frac{d^{-1}}{k-t}} + 1)$$
 (I₀= I_R: dòng ngược của điod)

Khi V_D < 0V: dìod bị phân cực ngược và dòng điện qua diod được tính theo công thức:

$$I_R = -I_0.e^{\frac{q-1.5}{k-1}} + I_0 + I_p$$
 (I_P: dòng điện do hiệu ứng quang điện cho ra)

Theo công thức trên, nếu V_D đủ lớn thì thành phần hàm số mũ không đáng kể, ta có:

$$I_R = I_0 + I_P \cong I_P$$

Các thông số kỹ thuật của photo diod với trị số điển hình:

- Công suất tiêu tán cực đại : P_{max} = 50mW

- Dòng điện ngược khi tối : $I_R = 2\mu A$ (0 lux)

- Dòng điện ngược khi sáng $: I_R = 7 \mu A (100 lux)$

- Độ nhạy : S = 7nA/lux

- Diện dung ký sinh : $C_D = 400 \text{ pF}$

- Tần số làm việc cực đại : f = tMHz

4- Úng dụng

Trong mạch điện hình 2.18, khi quang diod bị che tối, transistor không được phân cực nên ngưng dẫn, OP-AMP có điện áp V_1^+ lớn hơn điện áp V_2^+ nên ngõ ra có V_0^- = 0V. Ngược lai, khi

quang diod được chiếu sáng thì transistor được phân cực nên dẫn điện, OP-AMP có $V_1^+ > V_1^-$ nên ngõ ra $V_0 = +V_{CC}$ và LED sáng.

§2.7- QUANG TRANSISTOR

1- Cấu tạo - Nguyên lý

Về cấu tạo bán dẫn, quang transistor coi như gồm có một quang diod và một transistor, trong đó quang diod làm nhiệm vụ cảm biến quang điện và transistor làm nhiệm vụ khuếch đại.

Hình 2.19: Quang transistor và mạch tương đương

Quang diod được sử dụng ở đây là mối nối P-N giữa cực C và cực B, vì trong transistor khi phân cực cho các chân thì diod BE

được phân cực thuận còn diod BC được phân cực nghịch nên khi mối nối BC phân cực ngược và được chiếu sáng thì dòng điện rỉ I_{CB} sẽ tăng cao hơn bình thường nhiều lần. Dòng điện rỉ I_{CB} sẽ trở thành dòng I_B và được transistor khuếch đại. Dòng điện rỉ I_{CB} chính là dòng điện ngược I_R .

Khi mối nối BC được chiếu sáng, transistor hoạt động như một diod quang với dòng điện ngược là:

$$I_R = I_0 + I_P \cong I_P$$
 (l₀: dòng điện vùng tối

của diod và le: dòng điện do hiệu ứng quang điện của diod cho ra)

Nhà tính khuếch đại của transistor, dòng điện ra trên cực C là: $I_{\ell} = \beta(I_0 + I_T) = \beta I_0 + \beta I_T$

Trong đó: βI_0 là dòng điện vùng tối của transistor và βI_P là dòng điện do hiệu ứng quang điện của transistor cho ra.

Như vậy, có thể hiểu 1 quang transistor là tổ hợp của 1 quang diod và 1 transistor khuếch đại.

Độ khuếch đại của quang transistor từ 100 đến 1000 lần và không tuyến tính theo cường độ ánh sáng chiếu vào mối nối.

Quang transistor có tốc độ làm việc chậm do tụ điện ký sinh C_{ch} (tư điện ký sinh giữa cực C và cực B) gây ra hiệu ứng Miller.

Tần số làm việc cực đại của quang transistor khoảng vài trăm kHz, trong khi tần số làm việc cực đại của quang diod khoảng vài MHz.

Để tăng độ nhạy người ta còn chế tạo loại transistor ráp kiểu Darlington (gọi là Darlington photo transistor).

2- Ký hiệu - Mạch áp dụng

<u>Hình 2.20</u>: Ký hiệu của quang transistor

Trường hợp để hở cực B thì mạch làm việc theo nguyên lý của quang transistor, nếu để hở cực E thì mạch làm việc theo nguyên lý của quang diod.

Mạch điện hình 2.22a, quang transistor rấp Darlington với transistor công suất để điều khiển rợ-le RY. Khi được chiếu sáng quang transistor dẫn làm transistor công suất dẫn cấp điện cho rợ le.

Mạch điện hình 2.22b, điện ấp V_C của quang transistor để phân cực cho cực B của transistor công suất. Khi quang transistor được chiếu sáng sẽ dẫn điện và làm điện ấp V_C giảm, cực B transistor công suất không được phân cực nên ngưng dẫn và rơ le không được cấp điện.

Mạch điện hình 2.22c dùng transistor loại PNP nên có nguyên lý ngược lại mạch điện hình 2.22b. Khi quang transistor được chiếu sáng sẽ dẫn điện tạo sụt ấp trên điện trở để phân cực cho cực B của transistor công suất loại PNP làm transistor công suất dẫn cấp điện cho rơ-le.

Cảm biến Quang E3Z và E3JM của OMRON

Photoelectric Sensor E3F3 của OMRON

§2.8- CÁC BỘ GHÉP QUANG (OPTO-COUPLERS)

Các hệ thống tự động điều khiển công suất lớn thường có điện áp cao khoảng 220V - 380V (có trường hợp 660V hay 1000V), trong khi các mạch điều khiển thường lại có điện áp thấp như các mạch logic, máy tính hay các hệ thống phải tiếp xúc với con người. Để tạo sự cách điện giữa mạch điều khiển và mạch công suất có sự khác biệt lớn về điện áp người ta chế tạo ra các bộ ghép quang.

1- Cấu tạo - Nguyên lý

Bộ ghép quang gồm có hai phần gọi là sơ cấp và thứ cấp, phần sơ cấp là một diod loại GaAs phát ra tia hồng ngoại, phần thứ cấp là một linh kiện quang điện tử (có thể là quang transistor, quang SCR, quang triac...). Khi được phân cực thuận, diod phát ra bức xạ hồng ngoại chiếu lên trên mạch nhận ánh sáng của quang transistor.

Bộ ghép quang hoạt động theo nguyên lý: tín hiệu điện được sơ cấp là LED hồng ngoại (còn gọi là phần phát) đổi thành tín hiệu ánh sáng. Tín hiệu ánh sáng được phần thứ cấp là quang transister (còn gọi là phần nhân) đổi lai thành tín hiệu điện.

Hình 2.23: Nguyên lý

Hình 2.24: Cấu tao, cách ra chân

2- Đặc trưng kỹ thuật

- Bộ ghép quang được dùng để cách điện giữa hai mạch điện có điện áp cách biệt lớn. Điện áp cách điện giữa sơ cấp và thứ cấp thường từ vài trăm volt đến hàng ngàn volt
- Bộ ghép quang có thể làm việc với dòng điện một chiều hay tín hiệu điện xoay chiều có tần số cao
- Điện trở cách điện giữa sơ cấp và thứ cấp có trị số rất lớn thường khoảng vài chục đến vài trăm $M\Omega$ đối với dòng điện một chiều
- Hệ số truyền đạt dòng điện (current transfer ratio) là tỉ số phần trăm của dòng điện ra ở thứ cấp I_C với dòng điện vào ở sơ cấp I_E . Đây là thông số quan trọng nhất của bộ ghép quang thường có trị số từ vài chục phần trăm đến vài trăm phần trăm tùy loại bộ ghép quang.

3- Các loại bộ ghép quang

a) Bộ ghép quang transistor (OPTO-transistor)

Thứ cấp của bộ ghép quang này là photo transistor loại silic. Đối với bộ ghép quang transistor có bốn chân thì transistor không có cực B, trường hợp bộ ghép quang transistor có sáu chân thì cực B được nối ra ngoài như hình 2.24.

Bộ ghép quang không dùng cực B có lợi điểm là hệ số truyền đạt lớn, tuy nhiên loại này có nhược điểm là đô ốn định nhiệt kém. Nếu nối giữa cực B và E một điện trở thì các bộ ghép quang transistor là bộ ghép quang làm việc khá ổn định với nhiệt độ, nhưng hệ số truyền đạt lại bị giám.

b) Bộ ghép quang Darlington - Transistor:

Bộ ghép quang với quang Darlington-transistor có nguyên lý như bộ ghép quang với quang transistor nhưng với hệ số truyền đạt lớn hơn vài trăm lần nhờ tính khuếch đại của mạch Darlington.

Bộ ghép quang loại này có nhược điểm là bị ánh hưởng bởi nhiệt độ rất lớn nên thường được chế tạo có điện trở giữa chân B và E của transistor sau để ổn định nhiệt.

<u>Hình 2.25</u>: Quang Darlington transistor

Thí dụ: vài thông số đặc trưng của bộ ghép quang transistor

- Loại quang transistor 4N35 có:

 $I_{\rm F}$ =10mA + hệ số truyền đạt đồng điện 100% - BV_{Clo} = 30V

- Loai quang Darlington transistor ILD 32 có:

 $I_{\rm F}$ =10mA - hệ số truyền dạt đồng điện 500% - $BV_{\rm CFo}$ = 30V

c) Bộ ghép quang SCR: (OPTO-SCR)

Bộ ghép quang SCR, có cấu tạo bán dẫn hình 2.26, gồm một quang diod và hai transistor rấp theo nguyên lý của SCR.

Khi có ánh sáng hồng ngoại do LED ở sơ cấp chiếu vào quang diod thì sẽ có dòng điện I_B cấp cho transistor NPN và khi transistor NPN dẫn thì sẽ điều khiển transistor PNP dẫn điện. Như vậy, quang đã được dẫn điện và sẽ duy trì trạng thái dẫn mà không cần kích liên tục ở sơ cấp.

Để tăng khả năng chống nhiễu người ta nối giữa chân G và K bằng một điện trở từ vài $k\Omega$ đến vài chục $k\Omega$.

Hình 2.26: Ký hiệu và mạch tương đương của OPTO - SCR

d) Bộ ghép quang Triac: (OPTO-Triac)

OPTO-Triac có cấu trúc bán dẫn tương đương như hình 2.27.

Hình 2.27: Ký hiệu và mạch tương đương OPTO-Triac

4- Úng dụng của OPTO-COUPLERS

Các loại OPTO-Couplers có dòng điện ở sơ cấp qua LED hồng ngoại khoảng 10 mA.

Đối với OPTO-transistor khi thay đổi trị số dòng điện qua LED hồng ngoại ở sơ cấp sẽ làm thay đổi dòng điện ra I_C của photo transistor ở thứ cấp.

OPTO-Couplers có thể dùng thay đổi cho rơ le hay biến áp xung để giao tiếp với tải thường có điện áp cao và dòng điện lớn.

Mạch điện hình 2.28a là ứng dụng của OPTO-transistor để điều khiển đóng ngắt rơ-le. Quang transistor trong bộ ghép quang được phép Darlington với transistor công suất bên ngoài. Khi LED hồng ngoại ở sơ cấp được cấp nguồn 5V thì quang transistor dẫn, điều khiển transistor công suất dẫn để cấp điện cho rơ-le RY. Điện trở 390Ω để giới hạn dòng qua LED hồng ngoại khoảng 10mA.

Mạch điện hình 2.28b là ứng dụng của OPTO - triac để đóng ngắt điện cho tải dùng nguồn xoay chiều 220V. Điện trở 1kΩ để giới hạn dòng qua LED hồng ngoại khoảng 10mA. Khi LED sơ cấp được cấp nguồn 12V thì quang triac sẽ được kích và dẫn điện tạo dòng kích cho triac công suất được kích sẽ dẫn điện tạo dòng kích

cho triac công suất. Khi triac công suất được kích sẽ dẫn điện như một công tắc để đóng điện cho tải.

§2.9- TẾ BÀO QUANG ĐIỆN VÀ PIN MẶT TRỜI

1- Nguyên tắc

Xét đặc tuyến V/A của quang diod. Nếu diod làm việc trong phần tư thứ I trên trục tọa độ thì diod có đặc tính giống như diod nắn điện thông thường (được phân cực thuận thì có dòng điện qua diod theo chiều thuân).

Nếu diod làm việc trong phần tư thứ III trên trục tọa độ thì diod có đặc tính của quang diod (được phân cực ngược thì sẽ có dòng điện ri qua diod theo chiều ngược khi mối nối PN được chiếu sáng).

Nếu diod làm việc trong phần tư thứ IV trên trục tọa độ, khi diod được chiếu sáng, giữa hai chân PN sẽ xuất hiện một điện áp hở mạch. Nếu nốt tắt hai chân PN thì sẽ có điện qua diod theo chiều ngược từ N sang P.

Hiện tượng trên được giải thích như sau:

Hình 2.29: Bức xạ quang điện

Khi mối nối PN được chiếu sáng, những hạt proton mang năng lượng ánh sáng kích thích các nguyên tử bán dẫn cho ra điện tử tự do và để lại nguyên tử có điện tích dương. Hiệu ứng này gọi là "hiệu ứng quang điện bên trong".

Hình 2.30: Đặc tuyến của diod theo ánh sáng

Điện áp khuếch tán hút điện tử tự đo từ vùng P sang vùng N và ngược lại, lổ trống sẽ đi từ vùng N sang P. Như thế, điện trường do điện tử và lỗ trống hình thành sẽ trung hòa điện áp khuếch tán. Lúc đó, giữa hai cực P và N sẽ có điện áp hở như một máy phát điện.

Khi nối tắt hai chân P và N, sẽ có đồng điện ngắn mạch I_P tỉ lệ với cường độ chiếu sáng.

3- Phân loại theo vật liệu

Tế bào quang điện chế tạo bằng chất GaAs có điện áp hở mạch $V_{OP} = 0.7V$, dòng điện ngắn mạch $I_{SC} = 10 \text{mA/cm}^2$.

Tế bào quang điện chế tạo bằng chất Silicon có điện áp hở mạch $V_{OP} = 0.5V$, dòng điện ngắn mạch $I_{SC} = 50 \text{mA/cm}^2$.

4- Pin mặt trời

Mỗi tế bào quang điện có điện áp hở mạch khoảng 0,5V. Như vậy, để có nguồn điện áp cao để nạp cho các bộ pin NiCd, người ta phải ghép nối tiếp nhiều bộ tế bào quang điện, tạo ra các bộ pin mặt trời có điện áp 4,5V hay 14V.

Pin NiCd là loại pin có thể nạp điện lại được (rechargeable battery) có điện áp danh định là 1,2V. Người ta thường chế tạo các bộ pin có điện áp danh định 3,6V (nối tiếp 3 pin NiCd) hay 12V (nối tiếp 10 pin NiCd).

Câu hỏi

- 1- Cho biết cấu tạo và đặc trưng kỹ thuật của Led?
- 2- Cho biết cách tính trị số điện trở R trong mạch điện hình 2.6 và hình 2.7?
- 3- Cho quang diod có các thông số: $I_0 = 2\mu A$; S = 7nA/lux. Tính dòng ngược qua quang diod khi diod được phân cực ngược đủ lớn và nhận độ rọi từ bên ngoài là 500 lux.

Cho biết:
$$I_R = I_0 + I_P$$

4- Cho quang transistor có các thông số: $I_0 = 400 \mu A$; $S = 1 \mu A/lux$. Tính dòng I_C qua transistor khi nhận độ rọi từ bên ngoài là 200 lux.

CHUONG 3

ỨNG DỤNG CẨM BIẾN QUANG ĐIỆN

Từ những năm đầu thập niên 90, các thiết bị quang điện được sử dụng ngày càng nhiều trong công nghiệp, đặc biệt là trong lĩnh vực tự động điều khiển, từ động báo hiệu ...

Các hệ thống ứng dụng cảm biến quang điện hiện đang sử dụng rộng rãi như: mạch tự động điều khiển chiếu sáng, tự động đóng mở cửa, tự động đếm sản phẩm, tự động báo cháy ...

§3.1- MẠCH TỰ ĐỘNG ĐIỀU KHIỂN ĐÈN ĐƯỜNG

1) Sơ đồ

38

2) Nguyên lý

Nguồn một chiều sau mạch nắn điện V_1 có điện áp khoảng 28V để cấp cho rơ-le RY (loại 24 VDC). Nguồn V_2 = 12V nhờ diod Zener Z_1 ghim áp, tạo nguồn cấp cho transistor T_1 và cầu phân áp có quang trở. Nhờ nguồn V_2 ổn áp nên điện áp điểm A chỉ thay đổi theo ánh sáng bên ngoài chiếu vào quang trở.

Quang trở CdS dùng trong mạch này có điện trở thay đổi theo độ rọi chiếu vào nó và trị số thay đổi trong khoảng vài trăm Ω (khi sáng) đến $200k\Omega$ (khi tối).

Khi trời sáng, CdS có trị số nhỏ khoảng vài k Ω nên điểm A có điện áp V_A cao (khoảng 8V đến 12V). Lúc đó, diod D_I bị phân cực ngược nên không dẫn, điện trở $470 k\Omega$ đủ phân cực cho T_I dẫn bão hòa, T_I dẫn bão hòa sẽ điều khiển T_2 ngưng dẫn theo nguyên lý mạch Schmitt Trigger.

Lúc này, T₁ có dòng điện và điện áp các chân là:

$$I_{C1} = \frac{V_2 - V_{CPvat} - V_{Z2}}{R_{C1} + R_1} = \frac{12 - 0.2 - 5.6}{4.7.10^3 + 4.7} \approx 1.32 mA$$

$$V_{E1} = V_{E2} = I_{C1}R_E + V_{Z2} \qquad (do T_1 dan cho ra V_{E1})$$

$$= 1.32.10^{-3}.4.7 + 5.6 = 5.606 V (\approx 5.6 V)$$

$$V_{C1} = V_{E1} + V_{CE sat} = 5.6 + 0.2 = 5.8 V$$

$$V_{B1} = V_{E1} + V_{BE sat} = 5.6 + 0.8 = 6.4 V$$

Khi trời tối, CdS có trị số lớn khoảng $100k\Omega$ đến $200k\Omega$ nên điểm A có điện áp V_A thấp (khoảng 4V đến 5V). Lúc đó, diod D_1 được phân cực thuận sẽ dẫn điện. Dòng điện qua điện trở $470k\Omega$ tạo sụt áp và V_{B1} giảm. Khi V_{B1} giảm nhỏ khoảng 6V thì T_1 ngưng dẫn, T_2 bão hòa, rơ-le có điện.

Rơ-le RY loại 24 VDC có trị số điện trở một chiều của cuộn dây là $R_L = 400\Omega$, dòng điện qua rơ-le cũng chính là dòng điện I_{C2}

$$I_{C2} = \frac{V_1 - V_{CL,vat} - V_{Z2}}{R_L + R_E} = \frac{28 - 0.2 - 5.6}{400 + 4.7} \approx 55 mA$$

$$V_{E2} = V_{E1} = I_{C2}.R_E + V_{Z2}$$
 (do T_2 dẫn cho ra V_{E2})
= $55.10^{-3}.4.7 + 5.6 \approx 5.9 \text{ V}$

Theo phân tích trên, điện áp ngưỡng cao V_{Th}^{\dagger} tại điểm A đủ để đổi trạng thái trở lại T_1 bão hòa, T_2 ngưng là:

$$V_{Th}^{+} = V_{E2} + V_{BE, at} = 5.9 + 0.8 = 6.7V$$

Điện áp ngường thấp V_{Th} tại điểm A để đổi trạng thái thành T_1 ngưng, T_2 bão hòa là:

$$V_{Th}^{-1} = V_{E1} + V_{BE} - V_{D1} = 5.6 + 0.7 - 0.7 = 5.6V$$

Khi trời sáng, điện áp V_A tăng đến mức ngưỡng cao V_{Th}^{+} = 6,7V thì T_1 bão hòa, T_2 ngưng, rơ-le mất điện để tắt hệ thống đèn chiếu sáng.

Khi trời tối, điện áp V_A giảm xuống đến mức $V_{Th}^- = 5,6V$ thì T_1 ngưng, T_2 bão hòa, rơ-le có điện để đóng điện cho hệ thống chiếu sáng.

Diod D_2 để tránh điện áp ngược lớn trên mối nối BE của T_1 . Diod D_3 nối tắt điện áp ngược do cuộn dây của rơ-le tạo ra khi dòng điện qua rơ-le bị ngắt đột ngột, tránh hư transistor T_2 .

Diod Zener \mathbb{Z}_2 dùng để giữ cho tỉ lệ điện áp ngưỡng thấp và điện áp ngưỡng cao không quá lớn, do đòng điện \mathbb{I}_{C1} và \mathbb{I}_{C2} có trị số chênh lệch quá lớn.

§3.2- MACH PHÁT HIỆN ĐỨT CÚI (hay chỉ sợi)

Trong công nghiệp dệt sợi, cúi là bán thành phẩm trong dây chuyền sản xuất kéo sợi. Cúi có kích thước lớn hơn sợi chỉ nhưng

cũng tương đối nhỏ. Để phát hiện cúi bị đứt, rớt xuống thì mạch phát hiện phải có độ nhạy rất cao và tác động nhanh.

Người ta dùng thiết bị quang điện thực hiện việc phát hiện đứt cúi. Thiết bị có đầu phát cho ra ánh sáng thấy được hay ánh sáng hồng ngoại, đầu thu thường là quang diod hay quang transistor. Đầu phát và đầu thu đều có thấu kính hội tụ để tập trung ánh sáng đúng vào tiêu điểm, tránh bị nhiễu bởi các nguồn ánh sáng khác trong công nghiệp.

Hình 3.2b: Mạch khuếch đại quang điện,

2) Nguyên lý

Sơ đồ hình 3.2a là mạch điện khối nguồn nuôi và nguồn sáng. Điện áp $+V_1 = 24V$ là nguồn không ổn áp chỉ để cấp cho rơ-le RY loại 24 VDC. Transistor T_1 và Zener Z-12V tạo nguồn ổn áp cấp cho các mạch khuếch đại DC trong khối khuếch đại quang điện.

Nguồn ổn áp ra +V2 có trị số điện áp ổn định là:

$$+V_2 = V_{B1} = V_{B1} - V_{BE}$$

= $V_7 - V_{BE} = 12 - 0.7 = 11.3V$

Transistor T_2 cũng được phân cực ổn định ở cực B nhờ Zener Z-12V nhưng không phải là mạch ổn áp mà là mạch ổn dòng-vì tải đặt ở cực C còn mạch ổn áp thì tải đặt ở cực E.

Dòng điện tải ổn định của T_2 chính là dòng điện qua Led ! được tính theo công thức:

$$I_{t,cd} = I_{t,2} \approx I_{F2} = \frac{V_{F2}}{R_{F}},$$

Với:
$$V_{E2} = V_{B2} - V_{BE}$$

= $V_{Z} - V_{BE} = 12 - 0.7 = 11.3 \text{ V}$

Dòng điện qua Led 1 được giữ ổn định để có độ sáng chiếu vào quang diod không đổi, tránh độ sáng bị dao động sẽ sinh ra nhiễu, điều khiển sai mạch khuếch đại quang điện, vì mạch này cố đô nhay rất cao.

Led 1 là loại công suất lớn để làm nguồn sáng nên có $I_{\rm Led} \approx 50 mA$, $V_{\rm Led} \approx 5 V$. Bình thường, Led 1 qua thấu kính hội tụ chiếu vào quang diod PD.

Quang diod PD trong sơ đồ hình 3.2h được ráp theo kiểu phân cực ngược - theo nguyên lý làm việc của quang diod - để làm nhiệm vu cảm biến quang điện.

OP-AMP LM 311 là mạch khuếch đại so sánh có điện áp chuẩn ở ngõ vào không đảo nhờ cầu phân áp $27k\Omega$ và $150k\Omega$ nên điện áp chuẩn là:

$$V_R = V_m^+ = 11.3. \frac{27}{150 + 27} = 1.7V$$

Ngõ vào đảo nhận điện áp từ linh kiện cảm biến quang điện và biến trở $100 \mathrm{k}\Omega$ (để điều chính độ nhạy). Bình thường PD được chiếu sáng nên dẫn điện và có dòng điện rĩ qua biến trở $100 \mathrm{k}\Omega$ và điện trở $22 \mathrm{k}\Omega$. Biến trở được chính sao cho:

$$V_{in}^{-} > V_{in}^{+} = 1.7V$$

Như vậy, OP-AMP ở trạng thái bão hòa âm và $V_0 \approx 0.2V$.

Công tắc S_1 có hai vị trí để kết hợp chọn độ nhạy cho mạch. Nếu bộ thu và phát (PD và Led 1) có khoảng cách xa thì cần tặng độ nhạy, S_1 chọn vị trí 2 như hình vẽ.

Ngược lại, nếu bộ thu và phát có khoảng cách gần thì cần giảm độ nhạy, S_1 chọn vị trí 1 có điện trở $39k\Omega$ nối mass sẽ làm giảm điện áp trên biến trở $100k\Omega$.

Khi có vật che ánh sáng giữa Led 1 và PD, PD tức thời bị che tối sẽ ngưng dẫn và điện áp ngõ I_n^- giảm xuống. Lúc đó $V_{un}^+ > V_{un}^-$, OP-AMP chuyển sang trạng thái bão hòa dương. Điện trở $560 k\Omega$ là mạch hồi tiếp dương để việc đổi trạng thái được dứt khoát.

Hai transistor T_3 và T_4 là mạch khuếch đại đảo và tạo tín hiệu báo bằng Led 2. Ngõ ra của T_3 và T_4 có trạng thái ngược nhau và công tắc S_2 sẽ chọn một trạng thái để điều khiển T_5 và rơ-le RY.

Khi PD được chiếu sáng, OP-AMP bão hòa âm, T_3 ngưng dẫn (V_{C3} có điện áp cao), T_4 bão hòa (V_{C4} có điện áp thấp). Nếu S_2 chọn vị trí 1 thì bình thường T_5 không dẫn và rơ-le không có điện. Nếu S_2 chọn vị trí 2 thì T_5 dẫn và rơ-le RY có điện.

Khi PD bị che tối, OP-AMP bão hòa dương, T_3 bão hòa (V_{C3} có điện áp thấp), T_4 ngưng (V_{C4} có điện áp cao). Transistor T_5 và rơle RY sẽ đổi trạng thái.

Bình thường, Led 2 sáng (do T_4 dẫn bão hòa) để báo hiệu PD đang được chiếu sáng. Việc báo hiệu này còn có tác dụng giúp cho việc cân chỉnh vị trí trên máy được dễ dàng.

§3.3- BỘ THU PHÁT QUANG ĐIỆN ĐA NĂNG

Bộ thu phát quang điện đa năng được giới thiệu trong phần này có thể tạo thời gian trễ kiểu On-Delay hay Off-Delay tùy theo cách chọn tín hiệu tác động là trạng thái được chiếu sáng hay bị che tối.

1) Sơ đồ khối nguồn nuôi và nguồn sáng:

Hình 3.3a: Khối nguồn nuôi và nguồn sáng

Transistor T_1 và Zener Z_1 là mạch ổn áp, tạo ra nguồn $+V_2 = 11,3V$ để cấp cho các mạch khuếch đại quang điện.

Transistor T_2 và diod zener Z_2 là mạch ổn dòng, tạo ra dòng điện ổn định qua Led 1 để làm nguồn sáng chiếu vào bộ cảm biến quang điện.

Dòng điện ổn định qua Led 1 được tính theo công thức:

$$I_{l,cd} = I_{C2} \approx I_{E2} = \frac{V_{E2}}{R_{E2}}$$

$$V(3): V_{E2} = V_{B2} - V_{BE} = V_{Z2} - V_{BE}$$

$$= 9V - 0.7V = 8.3 \text{ V}$$

$$Suy \text{ ra: } I_{l,cd} = \frac{V_{k2}}{R_{k2}} = \frac{8.3}{150} = 55 \text{ mA}$$

Led 1 là loại công suất lớn nên có $I_{Led} \approx 50 \text{mA}$ và $V_{Led} \approx 5 \text{V}$.

2) Mạch khuếch đại quang điện chọn được chức năng (hình 3.3b)

3) Nguyên lý hoạt động các mạch đặc biệt

Mạch khuếch đại quang điện đa năng, hình 3.3b, khá phức tạp. Có một số mạch điện tử được cải tiến khác với mạch điện tử cơ bản trong lý thuyết. Điều này làm cho việc phân tích mạch tương đối khó.

Để việc phân tích nguyên lý mạch được đơn giản hơn, ta cần giải thích trước một vài mạch chi tiết sau:

Mạch Flip-Flop cơ bản có sơ đồ như hình 3.4a. Giả thiết mạch đang có trạng thái như hình vẽ, OP-AMP (1) đang bão hòa dương, ngỗ ra có mức '1', OP-AMP (2) đang bão hòa âm, ngỗ ra có mức '0'.

Để đổi trạng thái của mạch Flip-Flop, ta có thể thực hiện một trong hai cách sau:

- Cho xung dương vào ngõ $V_{\rm rl}$ để đổi trạng thái của OP-AMP (1) từ bão hòa dương sang bão hòa âm.
- Cho xung âm vào ngõ V_{12} để đổi trạng thái của OP-AMP (2) từ bão hòa âm sang bão hòa đương.

Mạch Flip-Flop dùng diod có sơ đồ như hình 3.4b. Giả thiết mạch đang có trạng thái như hình vẽ, V_{O1} = '1' và V_{O2} = '0'.

Để đổi trạng thái của mạch Flip-Flop này ta chỉ còn một cách là cho xung dương vào ngõ V_{il} để đổi trạng thái của OP-AMP (1) từ bão hòa dương sang bão hòa âm.

Nếu cho xung âm vào ngõ V_{12} thì diod D_2 bị phân cực ngược nên mạch Flip-Flop không nhận được xung âm mà mạch vẫn giữ nguyên trang thái.

Như vậy, mạch Flip-Flop trong sơ đồ khuếch đại quang điện là mạch Flip-Flop dùng diod, chỉ có một cách đổi trạng thái là cho xung dương vào ngõ I_n của OP-AMP đang bão hòa dương.

b) Mạch đặt trước trạng thái cho Flip- Flop: (mạch Preset)

Mạch Flip-Flop là loại mạch có hai trạng thái ổn định khi được cấp nguồn, mạch sẽ có một trạng thái bất kỳ trong hai trạng thái đó. Điều này không thích hợp trong công nghiệp vì không xác định được trạng thái nào.

Để mạch Flip-Flop có một trạng thái xác định theo yêu cầu, người ta dùng mạch đặt trước trạng thái cho Flip-Flop (gọi là mạch Preset).

Hình 3.5: Mạch Preset Flip-Flop

Theo sơ đồ hình 3.5, khi mạch được cấp nguồn, tụ $10\mu F$ được xem như nối tắt lên nguồn, cực B được phân cực rất cao nên transistor dẫn bão hòa. OP-AMP sẽ ở trạng thái bão hòa dương vì ngỗ I_n^+ có điện trở 330Ω rất nhỏ so với $2.2k\Omega$ ở ngỗ I_n^- , bất chấp trạng thái của công tắc S_A .

Sau khi tụ 10µF nạp đầy, cực B có điện áp 0V, transistor sẽ ngưng dẫn, trạng thái của OP-AMP và mạch Flip-Flip sẽ tùy thuộc các điện áp khác đưa vào mạch.

c) Mạch tích phân dùng diod:

Mạch tích phân là mạch đổi từ xung vuông ra xung răng cưa nhờ hiện tượng nạp xả của tụ điện qua điện trở. Nếu thời gian đổi trạng thái của xung vuông khá dài so với hằng số thời gian nạp xả của tụ và điện trở $(t_{on} >> \tau = RC)$ thì mạch tích phân chỉ có tác dụng tạo thời gian trễ, thời gian trễ ở cạnh lên và thời gian trễ ở cạnh xuống của xung.

Sơ đồ hình 3.6a là mạch tích phân cơ bản dùng RC với dạng sóng vào và ra. Sơ đồ hình 3.6b là mạch tích phân dùng OP-AMP và dạng sóng vào và ra. Đối với hai mạch này, thời gian trễ ở hai cạnh lên và xuống bằng nhau.

Ta có:
$$t_1 = t_2 \approx 3 \tau = 3RC$$

Theo lý thuyết, thời gian để tụ C nạp qua R đạt đến mức điện áp tối đa là 5τ . Thực ra, sau thời gian 3τ , điện áp trên tụ đã đạt đến mức $0.95V_P$, nên thời gian trễ được xem khoảng 3τ thay vì 5τ .

Hình 3.6a: Mạch tích phân RC

Hình 3.6b: Mạch tích phân tích cực dùng OP-AMP

Hình 3.6c là sơ đồ mạch và dạng sóng vào và ra của mạch tích phân tích cực dùng diod D. Trong sơ đồ này, diod D thay điện trở R nên đã làm thay đổi dang sóng ra.

Khi điện áp ngõ vào V_i tăng lên mức cao, diod được phân cực thuận nên có điện trở thuận rất nhỏ (vài trăm Ω).

Hình 3.6e: Mach tích phân tích cực dùng Op-amp và diod

Thời gian trễ t_1 được tính theo công thức:

$$t_1 = 3R_{D \text{ thuận}}.C \qquad (t_1 \approx 0)$$

Khi điện áp ngõ vào V_i giảm xuống mức thấp, diod bị phân cực ngược nên có điện trở ngược rất lớn (vài megohm). Thời gian trễ t_2 được tính theo công thức:

$$t_2 = 3R_{D \text{ nguge}} \cdot C \qquad (t_2 \gg t_1)$$

Như vậy, mạch tích phân tích cực dùng diod được xem như chỉ có thời gian trễ t₂ khi xung ở ngõ vào giảm xuống mức 0V.

4) Nguyên lý mạch khuếch đại quang điện đa năng

Led 1 là bộ phát, chiếu ánh sáng vào photo diod PD là bộ thu. Trạng thái của PD sẽ điều khiển transistor T₃ và OP-AMP (1) theo nguyên lý sau:

- Khi PD được chiếu sáng, T_3 được phân cực bão hòa và điều khiển OP-AMP (1) ở trạng thái bão hòa dương, led 2 sáng để báo hiệu. Lúc đó, V_{OI} ở mức cao $(V_{OI} \approx +V_2)$.
- Khi PD bị che tối, T_3 không được phân cực nên ngưng dẫn và điều khiển OP-AMP (1) ở trạng thái bão hòa âm, led 2 tắt để báo hiệu. Lúc đó, V_{O1} ở mức thấp $(V_{O1} \approx 0V)$.

Công tắc S_1 và biến trở $100k\Omega$ để chọn độ nhạy cho bộ thu tùy theo khoảng cách giữa Led 1 và PD. Nếu S_1 chọn ví trí 1: mạch có độ nhạy thấp, nếu S_1 chọn vị trí 2: mạch có độ nhạy cao.

Transistor T_4 là mạch đảo lại trạng thái của V_{OI} . Khi V_{OI} = '1' thì T_4 ngưng \Rightarrow V_{C4} = '0', khi V_{OI} = '0' thì T_4 dẫn bão hòa \Rightarrow V_{C4} = '1'. Hai ngỗ V_{OI} và V_{C4} chính là hai trạng thái đảo nhau ở nhau ở hai vị trí 1 và 2 của công tắc S_2 .

Công tắc S_2 dùng để chọn chức năng của mạch hoạt động theo tín hiệu sáng hay tối. Vị trí 1, tín hiệu điều khiển có khi PD được chiếu sáng. Vị trí 2, tín hiệu điều khiển có khi PD bị che tối.

. Trạng thái V_{O1} và V_{C4} trên sơ đồ là trạng thái PD được chiếu sáng.

Transistor T_5 và OP-AMP (2) là mạch preset cho Flip-Flop dùng OP-AMP (3) và (4). Khi ở điện, tụ $10\mu F$ nạp điện, T_5 bão hòa làm OP-AMP (2) có trạng thái bão hòa dương sẽ điều khiển Flip-Flop có trạng thái preset như trong sơ đồ : V_{03} = '1', V_{04} = '0'.

Trạng thái sau đó của Flip-Flop sẽ tùy thuộc trạng thái được chiếu sáng hay bị che tối của PD và vị trí chọn của công tắc S_2 .

a) Xét trường hợp S_2 chọn vị trí I, S_3 chọn ví trí 2:

Nếu <u>bình thường PD được chiếu sáng</u>, công tắc S_2 có điện áp của $V_{C4}=0V$, OP-AMP (2) giữ nguyên trạng thái preset và Flip-Flop cũng có điện áp ra như hình vẽ (3.3b). Công tắc S_3 chọn vị trí 2 có điện áp $V_{C4}=0V$ nên T_6 ngưng dẫn, rơ-le không có điện.

Khi bị PD che tối (tín hiệu điều khiển là vật che ánh sáng) thì mạch đổi trạng thái $V_{C4} \approx V_{CC}$, OP-AMP (2) đổi trạng thái nhanh (do thời gian trễ $t_1 \approx 0$) $\Rightarrow V_{O2} = 0V$, nhưng D_4 ngưng dẫn và mạch không ảnh hưởng. Sau thời gian trễ ngắn (không đáng kể) để chống nhiễu của tụ $2,2\mu F \Rightarrow \text{diod } D_3$ dẫn kích đổi trạng thái của Flip-Flop $\Rightarrow V_{O4} = +V_{CC}$ và T_6 dẫn, rơ-le có điện.

Khi PD lai được chiếu sáng (vật che sáng đã đi qua) thì mạch trở lại trạng thái cũ, $V_{C4} = 0V \Rightarrow$ mạch tích phân dùng diod D_2 sau thời gian trễ dài ($t_2 \approx t_1$) sẽ đổi trạng thái trở lại $V_{O2} = V_{CC}$ sẽ kích đổi trạng thái của Flip-Flop $\Rightarrow V_{O4} = 0V$, T_6 ngưng, rơ-le mất điện sau thời gian trễ t_2 của mạch tích phân.

Như vậy, mạch có chức năng của <u>rơ-le thời gian Off-Delay</u> với tín hiệu tối.

b) Xét trường hợp S2 chọn vị trí 2, S3 chọn vị trí 2:

Nếu <u>bình thường PD bi che tối</u>, công tắc S_2 có điện áp của $V_{01} = 0V$ (ngược trạng thái ghi trên sơ đồ), OP-AMP (2) cũng giữ nguyên trạng thái preset và Flip-Flop cũng có điện áp ra như hình vẽ (3.3b). Công tắc S_3 cũng chọn vị trí 2 có điện áp $V_{04} = 0V$ nên T_6 ngưng dẫn, rơ-le không có điện.

Khi PD được hiếu sáng thì mạch đổi trạng thái $V_{OI} = V_{CC}$ và mạch cũng hoạt động theo nguyên lý trên và T_6 dẫn, rơ-le có điện.

Khi PD lai bi che tối (mất tín hiệu sáng điều khiển) thì mạch cũng trở lại trạng thái cũ và T_6 ngưng, rơ-le mất điện sau thời gian trễ t_2 của mạch tích phân.

Như vậy, mạch cũng có chức năng của <u>rơ-le thời gian Off-</u> <u>Delay</u> nhưng với <u>tín hiệu sáng.</u>

c) Xét trường hợp S2 chọn vị trí 1, S3 chọn vị trí 1:

Tương tự cách phân tích hai trường hợp a và b như trên, trường hợp này mạch sẽ có chức năng của <u>rơ-le thời gian On-Delay</u> với <u>tín hiệu sáng</u>.

d) Xét trường hợp S2 chọn vị trí 2, S3 chọn vị trí 1:

Phân tích tương tự, trường hợp này mạch sẽ có chức năng của rơ-le thời gian On-Delay với tín hiệu tối.

Hai trường hợp c và d, bạn đọc có thể tự phân tích nguyên lý, sẽ nắm chắc hơn nguyên lý của mạch, để có thể sử dụng mạch đúng chức năng cần thiết.

5) Bảng trạng thái và chức năng của rơ-le

Trạng thái của PD	Vị trí S ₂	Vị trí S ₃	Trạng thái rơ-le	Chức năng của mạch
Bình thường bị che tối	1	1	Ngất	On-Delay tín
Khi có tín hiệu sáng	1	I	Đóng trễ	hiệu sáng
Bình thường chiếu sáng	2	1	Ngắt	On-Delay tin
Khi có tín hiệu tối	2	1	Đóng trễ	hiệu tối
Khi có tín hiệu tối	1	2	Đóng nhanh	Off-Delay tin
Khi mất tín hiệu tối	1	2	Ngắt trễ	hiệu tối
Khi có tín hiệu sáng	2	2	Đóng nhanh	Off-delay tin
Khi mất tín hiệu sáng	2	2	Ngắt trễ	hiệu sáng

Thời gian trễ của rơ-le ON-Delay hay OFF-Delay có thể điều chỉnh được nhờ biến trở $2,2k\Omega$, để chọn mức điện áp chuẩn đặt vào ngỗ I_n^+ của OP-AMP (2) - là mạch tích phân đùng diod.

Câu hỏi

l- Cho mạch tích phân tích cực như hình vẽ. Chọn trị số tụ C và điện trở R để đổi từ xung vuông đối xứng, tần số f=100 Hz thành xung răng cưa. Cho biết nội trở của nguồn V_t là $R_s=100 \Omega$.

2- Cho mạch cấp nguồn như hình vẽ. Tính điện áp V_1 , V_2 và dòng điện qua Led.

CHUONG 4

CẨM BIẾN NHIỆT ĐIỆN

§4.1- ĐẠI CƯƠNG

Trong đời sống tự nhiên, dụng cụ đo nhiệt độ đơn giản nhất là nhiệt kế sử dụng hiện tượng dẫn nở theo nhiệt. Trong sản xuất công nghiệp, để điều khiển tự động quá trình theo nhiệt độ, người ta chế tạo ra nhiều loại cảm biến nhiệt có nguyên lý làm việc khác nhau như: nhiệt điện trở các loại, cặp nhiệt, linh kiện điện tử cảm biến nhiệt (diod, transistor, IC...).

Các linh kiện nhiệt điện được dùng làm bộ cảm biến để đổi từ năng lượng nhiệt ra tín hiệu điện đưa vào các mạch khuếch đại điện tử. Đặc biệt khi dùng ở nhiệt độ cao người ta thường sử dụng cặp nhiệt (Thermo-Couple).

Có ba thang đo nhiệt độ để xác định gía trị nhiệt độ đo được.

1) Thang Kelvin

Thang Kelvin là thang nhiệt độ nhiệt động tuyệt đối, đơn vị là K.

Theo thang Kelvin, nhiệt độ điểm đông đặc của nước có giá tri là 273,15K.

2) Thang Celsius

Thang Celsius là thang nhiệt độ bách phân, đơn vị là "C. Một độ Celsius bằng một độ Kelvin.

Quan hệ giữa nhiệt độ Celsius và nhiệt độ Kelvin được tính theo biểu thức: θ (°C) = θ (K) - 273,15K

3) Thang Fahrenheit

Thang Fahrenheit có đơn vị nhiệt độ là °F. Theo thang này, điểm nước đá tan là 32°F và điểm nước sôi là 212°F.

Quan hệ giữa độ Celsius và Fahrenheit tính theo biểu thức:

$$.0 \, (^{\circ}\text{C}) = [\, \theta \, (^{\circ}\text{F}) - 32 \,]. \frac{100}{180}$$

$$\theta$$
 (°F) = [θ (°C) . $\frac{180}{100}$ + 32

§4.2- NHIỆT ĐIỆN TRỞ KIM LOẠI

Những kim loại thường được dùng để chế tạo nhiệt điện trở là: platin, niken, vonfram.

Các nhiệt điện trở kim loại thường được gọi chung là cảm biến RTD (Resistance Temperature Detector: đầu phát hiện nhiệt độ bằng điện trở).

Nhiệt điện trở kim loại cơ bản là đoạn dây kim loại, trị số điện trở của dây tăng theo nhiệt độ bởi công thức:

$$R = R_o (1 + \alpha \Delta t)$$

trong đó:

- R là điện trở ở θ°

- R₀ là điện trở ở nhiệt độ 0°

- α là hệ số nhiệt điện trở phụ thuộc vật liệu chế tạo

- Δt là độ tặng nhiệt độ với $\Delta t = t - t_0$

Độ nhạy S của nhiệt điện trở được tính theo công thức:

$$S = \frac{\Delta R}{\Delta t} = \alpha . R_0 \qquad \text{với } R_0: \text{ điện trở ở } 0^{\circ}\text{C}$$

Do nhiệt điện trở kim loại có trị số tăng theo nhiệt độ nên gọi là nhiệt điện trở có hệ số nhiệt dương PTC (positive temperature coefficient).

Điện trở RTD tăng tuyến tính theo nhiệt độ đến khoảng 500°C (tuỳ kim loại), sau đó trở nên tăng chậm dần rồi bão hoà.

Các loại nhiệt điện trở tiêu chuẩn là: Pt 100, Pt 300, Pt 500, Pt 1000. Trị số tiêu chuẩn chính là giá trị R_0 ở trị số $0^{\circ}C$.

Hình 4.1: Đặc tính nhiệt điện trở kim loại

Hình 4.2: Nhiệt điện trở Pt 100

§4.3- NHIỆT TRỞ BÁN DẪN

1) Cấu tạo - Phân loại

Nhiệt trở thường được chế tạo từ các chất oxyt bán dẫn vì chất oxyt bán dẫn rất nhạy cảm với nhiệt độ, gọi là Thermistor (do chữ Thermal-Resistor).

Có hai loại nhiệt trở bán dẫn: nhiệt trở có hệ số nhiệt âm và nhiệt trở có hệ số nhiệt dương.

2) Nhiệt trở bán dẫn hệ số nhiệt âm (Th')

Đây là loại nhiệt trở có trị số giảm khi nhiệt độ tăng và trị số tăng khi nhiệt độ giảm, thường được viết tắt là NTC (Negative Temperature Coefficient).

Hình 4.3: Đặc tính của thermistor hệ số nhiệt âm

Quan hệ điện trở theo nhiệt độ là:

$$R = R_0 \cdot e^{-\beta (1/T - 1/T_0)}$$

trong đó: R là điện trở ở nhiệt độ T, R_0 là điện trở ở nhiệt độ chuẩn T_0

 β là hằng số phụ thuộc chất bán dẫn có giá trị từ 3000K đến 5000K.

T và T_0 là nhiệt độ tuyệt đối Kelvin với 0K = -273,15°C.

Trị số điện trở của thermistor giảm theo nhiệt độ nhưng không tuyến tính, do đó, mạch khuếch đại phải có khả năng bù trừ cho sự phi tuyến này.

Hiện nay, người ta đã chế tạo được các thermistor khá tuyến tính trong khoảng nhiệt đô 0°C đến 150°C.

Hình 4.4: Ký hiệu, hình dáng của thermistor

3) Nhiệt trở bán dẫn hệ số nhiệt dương (Th⁺)

Đây là loại nhiệt trở có trị số tăng khi nhiệt độ tăng và trị số giảm khi nhiệt độ giảm, thường được viết tắt là PTC (Positive Temperature Coefficient).

Nhiệt trở hệ số nhiệt dương được chế tạo khá đặc biệt, trong khoảng nhiệt độ thấp, đặc tính gần giống như nhiệt trở hệ số nhiệt âm, nhiệt độ tăng thì nhiệt trở giảm trị số. Khi nhiệt độ tăng đến giá trị danh định θ_N thì trị số điện trở sẽ tăng nhanh đột ngột (hình 4.5).

Hình 4.5: Đặc tính của thermistor hệ số nhiệt dương

Loại nhiệt trở này thường được sử dụng trong các mạch bảo vệ quá nhiệt rất chính xác.

2) Nhiệt trở có các đặc trưng kỹ thuật

- Khoảng nhiệt độ sử dụng
- Dòng điện đỉnh cực đại Ipmax
- Dòng điện chịu đựng cực đại Imax
- Điện áp đỉnh cực đại V_{pmax}
- Trị số điện trở tương ứng với khoảng nhiệt độ sử dụng
- Hệ số nhiệt là trị số chỉ mức biến thiên điện trở tính theo phần trăm khi nhiệt độ môi trường tăng lên 1^{9} C.

Bảng tra dưới đây là các thông số kỹ thuật đặc trưng của loại nhiệt trở có hệ số nhiệt âm dùng trong máy điện tử dân dụng.

Tên	Nhiệt đô sử dụng	I _{Pmax}	I _{max}	V _{max}	Khoảng điên trở	Hệ số nhiệt
D-1A	-20°C đến +60°C	30mA	10mA	1V	90Ω đến 18Ω	-3% đến -3.5%
D-IE	-20°C đến +60°C	20mA	4mA	0,3V	90Ω đến 18Ω	-3% đến -3,5%

3) Ứng dụng của nhiệt trở

a) Ẩn định nhiệt cho các linh kiện điện tử:

Trong mạch điện hình 4.6, transistor được phân cực bằng cầu phân áp với điện trở nhiệt có hệ số nhiệt âm Th. Khi nhiệt độ môi trường tăng hay khi transistor công suất bị nóng do chạy bão hòa thì nhiệt trở có trị số giảm xuống làm giảm điện áp phân cực cho cực B, transistor bị giảm phân cực nên chạy yếu lại va không bị nóng.

b) Bảo vệ quá nhiệt cho thiết bị điện:

Trong mạch điện hình 4.7 điện trở nhiệt loại hệ số nhiệt dương dùng làm bộ cảm biến nhưng để nhận nhiệt độ của thiết bị điện cần bảo vệ đổi thành tín hiệu điện phân cực cho transistor T_1 . Hai transistor T_1 và T_2 là mạch Schmitt - Trigger nên sẽ hoạt động ở hai trạng thái tuỳ thuộc điện áp phân cực cho T_1 , tức là tùy thuộc vào nhiệt độ của thiết bị. Nếu thiết bị nhiệt độ thấp thì nhiệt trở có trị số nhỏ nên $V_{\rm B1}$ thấp làm T_1 ngưng và T_2 dẫn bão hoà, rơ-le RY có điện sẽ đóng tiếp điểm cấp nguồn cho tải.

Khi nhiệt độ của thiết bị tăng quá mức chơ phép làm nhiệt trở tăng trị số nên tăng phân cực cho T_1 làm T_1 dẫn bão hòa, lúc đó T_2 mất phân cực nên T_2 ngưng dẫn, rơ-le mất điện sẽ làm hở tiếp điểm để ngắt tải ra khỏi nguồn.

§4.4- VARISTOR DIOD (VD)

1) Cấu tạo - Phân loại

Varistor diod là từ ghép bởi Variable-Resistor-Diod (diod có điện trở thay đổi được), do đây là điện trở thay đổi theo nhiệt độ. Thật ra các linh kiện bán dẫn đều bị ảnh hưởng bởi nhiệt độ nhưng VD được chế tạo có độ nhạy theo nhiệt độ cao hơn các loại diod thường.

VD được dùng trong các thiết bị điện tử dân dụng để ổn định nhiệt cho các transistor công suất hay được dùng trong hệ thống điện tử công nghiệp để giới hạn nhiệt độ, bảo vệ quá nhiệt...

2) Đặc trưng kỹ thuật của VD

- Khoảng nhiệt độ sử dụng
- Dòng điện thuận cực đại I_{Fmax}
- Hệ số nhiệt của VD là mức điện áp phân cực thuận giữa anod và catod bị giảm xuống khi nhiệt độ tăng lên 1°C.

Bảng tra dưới đây là các thông số kỹ thuật của hai loại VD được sử dụng trong các mạch ổn định nhiệt. Cột cuối cùng là hệ số nhiệt của VD có nghĩa khi nhiệt độ tăng 1°C thì điện áp phân cực thuận trên diod sẽ bị giảm xuống 2,26mV.

Τêπ	Nhiệt đô	$l_{\rm t,max}$	I _{P max}	Điều kiện lúc to		Hệ số nhiệt
	sử dung			V _F	I,	mV/ °C
HV15	-20°С để п +60°С	20mA	10mA	145mV	1,5mA	-2,26
HV18	-20°C đến +60°C	10mA	4mA	445mV	3,5mA	-2.26

3) Ứng dụng

<u>Hình 4.8</u>: Mạch khuếch đại công suất bổ phụ

Mạch điện hình 4.8 là trích trong sơ đồ khối khuếch đại công suất của ampli kiểu OTL, trong đó T_1 - T_2 là hai transistor công suất rấp kiểu bổ phụ, T_3 là transistor thúc. Trong mạch này, diod VD là bộ cảm biến nhiệt có tác dụng ổn định nhiệt cho hai transistor công suất T_1 - T_2 . Khi hai transistor công suất bị nóng sẽ làm tăng nhiệt độ và VD nóng theo, lúc đó, diod VD bị giảm điện áp phân cực sẽ làm cho điện áp giữa hai chân T_1 và T_2 nên hai transistor sẽ chạy yếu lại và không bị cháy, nhiệt độ của hai transistor công suất sẽ được ổn định.

§4.5- CĂP NHIỆT (Thermo-Couple)

Cặp nhiệt được chế tạo dựa trên hiệu ứng nhiệt điện. Khi hai dây dẫn có bản chất hoá học khác nhau được hàn dính sẽ xuất hiện sức điện động ở hai đầu thay đổi theo nhiệt độ của mối hàn.

Cảm biến nhiệt

Theo nguyên tắc, sức điện động nhiệt do cặp nhiệt sinh ra khi một đầu cặp nhiệt (đầu mối hàn) được đặt vào điểm cần đo nhiệt độ và đầu kia đặt vào nơi có nhiệt độ 0°C như một nhiệt độ chuẩn để so sánh (hình 4.9a).

Điều này gây phức tạp cho việc đo nhiệt độ bằng cặp nhiệt. Trong thực tế, nhiệt độ θ_2 chính là nhiệt độ của môi trường và điều này sẽ gây ra sai số. Để bù trừ cho sai số, người ta dùng dây dẫn có cùng vật liệu như cặp nhiệt điện hay vật liệu khác có tính chất nhiệt tương tự, dây này gọi là dây thay thế hay dây bù. Như vậy, ở điểm nối với cặp nhiệt điện không có sức điện động nhiệt (hình 4.9b).

Hình 4.9b: Nguyên tắc đo của cặp nhiệt có dây bù

Hiện nay có các loại cặp nhiệt thông dụng là:

1) Cặp nhiệt đồng+Constantan (gọi là Type T Thermo-Couple) Nhiệt độ sử dụng từ -310^{0} F đến $+750^{0}$ F, cấp chính xác \pm 0,8%.

Dưới đây là bảng tra đổi từ nhiệt độ tại mối nối của Thermo-Couple ra điện áp ở một vài trị số.

Nhiệt độ (°F)	-300	-250	-200	-150	-100	-50	0
Điện áp (mV)	-5,284	-4,747	-4,111	-3,380	-2,559	-1,654	-0,670
Nhiệt độ (°F)	+50	+100	+150	+200	+250	+300	+350
Điện áp (mV)	0,389	1,517	2,711	3,967	5,280	6,647	8,064

2) Cặp nhiệt sắt+Constantan (gọi là Type J Thermo-Couple) Nhiệt độ sử dụng từ -200 đến $+870^{\circ}$ C, cấp chính xác $\pm 3\%$.

Nhiệt độ (°C)	-200	-150	-100	-50	0	+50	+100
Điện áp (mV)	-7,89	-6,50	-4,63	-2,43	0,00	2,58	5,27
Nhiệt độ (°C)	+150	+250	+300	+350	+400	+450	+500
Điện áp (mV)	8,00	13,56	16,33	19,09	21,85	24,61	27,39

3. Cặp nhiệt Chromel+Alumel: (gọi là Type K Thermo-Couple) Nhiệt độ sử dụng từ 0^{0} C đến + 1350^{0} C, cấp chính xác ± 3%.

Nhiệt độ (°C)	0	50	100	150	200	250	300
Điện áp (mV)	0,00	2,02	4,10	6,13	8,13	10,16	12,21

Nhiệt độ (°C)	350	500	550	600	650	700	750
Điện áp (mV)	14,29	20,65	22,78	24,9	27,03	29,14	31,23

4. Cặp nhiệt Platinum+Platinum có 13% Rhodium: (Gọi là Type R Thermo-Couple) Nhiệt độ sử dụng từ 0° C đến 1700° C, cấp chính xác \pm 1,4%.

Nhiệt độ (°C)	0	50	100	150	200	250	300
Điện áp (mV)	()	0,298	0,645	1,04	1,465	1,92	2,39
Nhiệt độ ("C)	350	4()()	550	600	650	700	750
Điện áp (mV)	2,89	3,399	5,004	5,56	5,14	6,72	7,32

Các loại cặp nhiệt trên được goi là cặp nhiệt loại dây có hình dạng như hình 3.8a loại dây và hình 3.8b loại thanh.

Hình 4.10a: Loại dây

Hình 4.10b: Loại thanh

5. Cặp nhiệt loại thanh (cây) dùng chất Platinum

Loại cặp nhiệt loại thanh là loại cảm biến nhiệt có điện trở thay đổi theo nhiệt độ của mối nối, điện trở của cặp nhiệt tăng lên khi nhiệt độ tăng (đặc tính như Thermistor có hệ số nhiệt dương).

Thí du : cặp nhiệt loại thanh PT 100 nghĩa là khi ở nhiệt độ 0^0 C thì điện trở của cặp nhiệt là 100Ω .

Các loại cặp nhiệt trên có hệ số nhiệt mV/ 0 C không tuyến tính nhưng nếu sử dụng trong một khoảng nhiệt độ không rộng thì có thể coi như tuyến tính. Do hệ số nhiệt mV 0 C rất nhỏ thường khoảng vài chục μ V/ 0 C nên điện áp do Thermo-Couple cho ra phải qua mạch khuếch đại DC trước khi đưa vào mạch điều khiển, chỉ thị hay bảo vệ.

Hình dáng một vài cặp nhiệt loại thanh

6. Úng dụng của Thermo-Couple

a) Mạch điện hình 4.11 dùng cặp nhiệt làm bộ cảm biến nhiệt cho ra tín hiệu điện để điều khiển OP-AMP và transistor đóng ngắt điện cấp cho rơ-le RY. Trong mạch này OP-AMP là mạch

Chương 4 Cẩm biến nhiệt

khuếch đại so sánh có tác dụng so điện áp do cặp nhiệt cho ra với điện áp chuẩn được chỉnh định bằng biến trở R_2 . Khi nhiệt độ tăng lên trị số giới hạn thì điện áp ngõ V_1^- lớn hơn điện áp ngõ V_1^+ , lúc đó OP-AMP có $V_0=0V$ tạo dòng qua cầu phân áp R_5 - R_6 để phân cực cho transistor. Khi transistor dẫn sẽ cấp điện cho rơ-le làm đóng hay ngắt tiếp điểm mạch công suất.

b) Mạch ứng dụng pin nhiệt điện

Hình 4.11b: Ứng dụng nhiệt trở và pin nhiệt điện

§4.6- ĐO NHIỆT ĐỘ BẰNG DIOD VÀ TRANSISTOR

Linh kiện bán dẫn nhạy cảm với nhiệt độ do đó có thể sử dụng một số linh kiện như diod hay transistor nối theo kiểu diod (mối nối BC) phân cực thuận có dòng điện không đổi để làm cảm biến nhiệt. Khi đó, điện áp giữa hai cực là hàm của nhiệt độ.

Độ nhạy theo nhiệt của diod hay transistor mắc theo kiểu diod được xác định theo biểu thức:

$$S = \frac{dV}{dt''} \cong -2.5 mV / C$$

Để tăng độ tuyến tính và khả năng thay thế, ta dùng cặp transistor mắc đối nhau với 2 dòng I_1 và I_2 không đổi chạy qua rồi đo điện áp B-E. Bằng cách này ta loại trừ được dòng điện ngược và độ nhạy nhiệt được tính theo công thức: $S = \frac{d(V_1 - V_2)}{dt^a}$

Hình 4.12: Đo nhiệt độ bằng diod và transistor

Độ nhạy nhiệt độ của linh kiện bán dẫn lớn hơn nhiều so với cặp nhiệt nhưng nhỏ hơn so với nhiệt điện trở. Trường hợp này không cần nhiệt độ chuẩn nhưng đải nhiệt độ bị giới hạn trong khoảng T= -50°C đến 150°C. Trong khoảng nhiệt độ này bộ cảm biến có độ ổn định cao.

§4.7- DIOD ZENER CẨM BIẾN NHIỆT

1- Cấu tạo - Nguyên lý

Đây là loại cảm biến bán dẫn khác dựa vào đặc tính của diod Zener khi được phân cực ngược thì dòng điện ngược phụ thuộc vào nhiệt độ. Điện áp ra V_0 giữa 2 chân thay đổi tuyến tính theo nhiệt độ khoảng $\underline{10mV/C}$. Ở 0° C, $V_0 = 0$ V.

Các cảm biến bán dẫn dùng được đến nhiệt độ tối đa khoảng 150°C đến 200°C.

Đặc điểm của cảm biến này là điện áp ra tăng rất tuyến tính theo nhiệt độ (do có sự khống chế tốt trong quá trình tạo chất bán dẫn cũng như đã kết hợp khả năng bù trừ phi tuyến cần thiết).

Hình 4.13: Cách ra chân của Zener cảm biến nhiệt

2- Phân cực - Ứng dụng

Cách phân cực và ứng dụng đơn giản của Zener cảm biến nhiệt như hình 4.14. Hình 4.14a cho điện áp ra tính theo độ Kelvin, hình 4.14b cho điện áp ra theo độ Celcius nếu điều chỉnh VR sao cho $V_O = 2,982$ V ở 25° C.

Trong thực tế để có độ chính xác cao người ta dùng mạch đo nhiệt độ theo mạch điện như hình 4.14. Giả sử nhiệt độ phòng là T_a = 25°C, chỉnh VR_1 để điện áp V_A = 0V. Chỉnh VR_2 sao cho:

$$V_Z = V_O = 2,73V + (10mV/^{\circ}C).25^{\circ}C = 2,98V$$

Chỉnh lại VR₁ sao cho điện áp điểm A là:

$$V_A = V_{OFFSET} = -2,78V$$

Điện áp ra bây giờ là:

$$V_0 = V_z + V_{OFFSET} = 2,98V - 2,78V = 0,2V$$

Sau khi điều chỉnh xong, điện áp ra sẽ thay đổi 10mV/°C chung quanh 0,2V.

Hình 4.15: Ứng dụng cảm biến LM335

3- Mạch khuếch đại đo nhiệt độ

Hình 4,16: Mạch khuếch đại đo nhiệt độ

Độ khuếch đại điện áp của mạch là:

$$A_1 = \frac{V_O}{V_Z} = -\frac{R_2}{R_1} = -10$$

Định chuẩn bằng cách chỉnh VR cho $V_{OFFSET}=0V$. Đo V_O và V_Z ở nhiệt độ phòng T_a . Sau đó, chỉnh VR sao cho $V_O=0V$ ở nhiệt độ phòng.

Diod Zener làm cảm biến nhiệt cho điện áp ra thay đổi - 100mV/°C vì mạch đã khuếch đại lên 10 lần nhờ Op-Amp.

§4.8- IC CẨM BIẾN NHIỆT

Hiện nay người ta đã chế tạo IC bán dẫn để đo và hiệu chỉnh nhiệt độ rất tiện lợi. IC cảm biến nhiệt được chế tạo trên cơ sở nguyên lý của diod zener LM335.

1) IC LM35

IC LM35 có điện áp ra tỉ lệ trực tiếp với nhiệt độ thang Celcius. Như thế, mạch điện bù trừ điểm 0 của thang Kelvin (thang nhiệt độ tuyệt đối) không còn cần thiết như các IC cảm biến nhiệt trước đây. Điện áp ngõ ra là $10\text{mV}/^{\circ}\text{C}$ và sai số do không tuyến tính là $\pm 1.8\text{mV}$ cho toàn thang đo.

IC LM35 được chế tạo ở 3 thang đo nhiệt độ là:

$$-50^{\circ}\text{C} \rightarrow +150^{\circ}\text{C} \quad (LM35 / LM35A)$$

 $-40^{\circ}\text{C} \rightarrow +110^{\circ}\text{C} \quad (LM35\text{C} / LM35\text{CA})$
 $0^{\circ}\text{C} \rightarrow +100^{\circ}\text{C} \quad (LM35\text{D})$

Để có thể đo được nhiệt độ âm, cần có điện trở từ ngõ ra nối xuống nguồn âm. Điện trở này phải được tính sao cho có dòng qua lớn hơn 50µA. Nguồn âm phải có giá trị thấp hơn điện áp ra khi đo ở nhiệt độ cực tiểu.

Thí du: $\dot{\sigma}$ -50°C sẽ cho ra $V_0 = -50$ °C. 10 mV/°C = -0.5V

2) Ứng dụng IC LM35

Hình 4.17: Mạch đo nhiệt độ dùng IC LM35

Câu hỏi

- 1- Đổi từ nhiệt độ thang Fahrenheit ra nhiệt độ thang Celsius và Kelvin: -150^{0} F, $+35^{0}$ F, $+96^{0}$ F, $+350^{0}$ F.
- 2- Cho biết giá trị của RTD khi ở môi trường có nhiệt độ. 120^{0} C. Cho biết hệ số nhiệt là $\alpha = 0.002/{^{0}}$ C và khi ở 0^{0} C thì diện trở có tri số là 300Ω .
- 3- Sơ đồ sau dùng cặp nhiệt loại K có hệ số nhiệt là $k = 40\mu V/^{0}C$. Cho biết biến trở R_{2} phải chỉnh ở mức điện áp bao nhiều volt để điều khiển đóng rơ-le khi mỗi trường có nhiệt độ là $800_{0}C$.

CHUONG 5

LINH KIÊN CẨM BIẾN TỪ

§5,1- KHÁI NIÊM VỀ TỪ HOC

1. Nam châm

Trong thiên nhiên có những loại đá hút được sắt gọi là nam châm hay từ thạch. Một số kim loại như sắt, nicken, côban hay các hợp kim của chúng khi từ hóa sẽ giữ từ và trở thành các nam châm vĩnh cửu.

2. Từ trường H, cảm ứng từ B

Nam châm có thể làm chuyển đông các hạt bụi sắt, người ta nói bui sắt chiu sức hút của nam châm. Nói cách khác nam châm có một từ trường bao xung quanh.

Khi cho dòng điện một chiều vào cuộn dây, dòng điện sẽ tao ra một từ trường đều trong lõi từ có chiều xác định theo qui tắc văn nút chai.

Lỗi từ có chiều dài trung bình là l, cường độ từ trường sinh ra trong lõi từ là H thì: n: số vòng dây quấn

n.1 = H.1

I : cường độ dòng điện

H : cường độ từ trường

I : chiều dài trung bình lõi từ

H =
$$\frac{nI}{I}$$

H : gọi là từ áp

$$\Rightarrow H = \frac{nI}{I}$$
 H.l: gọi là từ áp

Cường độ từ trường H tỉ lệ với cường độ dòng điện I.

Khi đo cường độ từ trường trong vật liêu dẫn từ thì dùng ký hiệu là \overline{B} gọi là cảm ứng từ (nhiều trường hợp \overline{B} vẫn được gọi là cường độ từ trường).

Chương 5 Cảm biến từ

$$B = \mu \ H = \mu \ \frac{n \ I}{l}$$

 μ là hệ số từ thẩm tương đối của vật liệu nói lên độ nhiễm từ của vật dẫn từ. Thép kỹ thuật điện có $\mu=2000,$

 \vec{B} có đơn vị là Weber/m² (Wb/m²). Đơn vị này gọi là tesla.

3. Từ thông

Từ thông là số đường sức đi qua một mặt có diện tích S.

Từ thông ký hiệu là Φ, đơn vị Wb được tính theo công thức:

$$\Phi = BScosφ$$

$$B: cường độ từ trường (Wb/m²)$$

$$S: diện tích (m²)$$

$$φ: góc hợp bởi \overrightarrow{B} và đường thẳng góc với mặt phẳng S
$$\Phi: từ thông (Wb)$$$$

Theo công thức trên:

- ullet Nếu từ trường $\overrightarrow{\mathbf{B}}$ thẳng góc với S thì từ thông lớn nhất.
- Nếu từ trường \vec{B} song song với S thì từ thông bằng 0.

4- Các đại lượng từ học

Các đại lượng	Đơn vị	Viết tắt
Từ thông (φ)	Weber	Wb
Cảm ứng từ (B)	Tesla hay Weber/m ²	Ť
Cường độ từ trường (H)	Ampere/met	A/m
Điện cảm (L)	Henri	Н
Hệ số từ thẩm (μ)	Henri/met	H/m

§5.2- CẨM BIẾN HALL

1- Hiệu ứng Hall

Khi có từ trường tác dụng theo hướng thẳng góc lên bề mặt của một tấm vật liệu. Tấm vật liệu có bề dày d, chiều đài a, chiều rộng b và d << a, b. Cho một dòng điện I chạy dọc theo chiều dài của tấm vật liệu, ta đo được một điện áp từ hai điểm trên hai mặt dọc theo chiều dài. Điện áp này gọi là điện áp Hall.

Hình 5.1a: Hiệu ứng cảm biến Hall khi không có từ trường

Hình 5.1b: Hiệu ứng cảm biến Hall khi có từ trường

Điện áp Hall phát sinh do tác dụng của lực Lorentz. Khi một điện tích e_0 dịch chuyển trong một từ trường với vận tốc v và có hướng thẳng góc với từ trường này, nó sẽ bị tác dụng bởi lực Lorentz theo công thức: $F_m = e_0 \, v \, B$

Do tác dụng của lực này làm hướng di chuyển của điện tử bị lệch đi và kết quả là một bên hông của tấm vật liệu thiếu điện tử, ngược lại phía bên kia sẽ dư điện tử. Từ đơ, một điện trường được hình thành và tác dụng lên các điện tử một phần lực là $F_{\rm e}$.

Ta có:
$$F_e = e_0 E_H$$
 hay $E_H = \frac{F_e}{e_0}$

Ở trạng thái cân bằng, hai lực này bằng nhau và cho ra:

$$F_m = e_0 v B = F_c = e_0 E_H$$

Suy ra: $E_H = v B$

Diện áp Hall đo được trên tấm vật liệu được tính theo công thức: $V_{Hall} = b.E_H = b.v.B$ (1)

trong đó: B là cảm ứng từ

b là bề rộng tấm vật liệu

v là vận tốc của điện tử

Gọi S là mật độ dòng điện qua tấm vật liệu: $S = \frac{I}{hd}$ và n là mật độ của điện tử, e_0 là điện tích dịch chuyển trong từ trường thì:

$$S = nve_0 = \frac{I}{bd} \qquad \Rightarrow \qquad v = \frac{I}{n.e_0.b.d} \quad (2)$$

Thay (2) vào (1), ta có:

$$V_{Hall} = \frac{1}{n.e_0.b} \cdot \frac{1}{d} I.B$$

Như vậy, điện áp Hall tỉ lệ với cường độ dòng điện I và cảm ứng từ B. Điện áp Hall còn được viết dưới dạng khác là:

$$V_{HoH} = \frac{R_H}{d} I.B$$
 với: $R_H = \frac{1}{n.e_0.b}$

RH là hằng số Hall tuỳ thuộc vật liệu chế tạo.

2- Cấu tao

Vật liệu chế tạo cảm biến Hall thường là InSb (Indium-Antimony), InAs (Arsenic Indium). Với loại vật liệu này, dòng điện không phải được tải với nhiều điện tử di chuyển rất chậm mà với một số điện tử ít hơn nhưng dịch chuyển thật nhanh ($V_{Hall} = b.v.B$) v càng lớn thì V_{Hall} càng lớn, cảm biến càng nhạy.

Các cảm biến Hall InSb, InAs có thể cho ra điện thế Hall đến 100 mV.

Tấm bán dẫn làm cảm biến Hall được chế tạo như sau:

Tấm bán dẫn được cưa mỏng, đánh bóng để có độ dày 5 đến 100μm. Lớp bán dẫn bốc hơi và bám lên vật liệu nền, có bề dày

từ 2 đến 3μm. Cảm biến Hall có thể làm việc ở nhiệt độ rất lạnh đến rất nóng.

3- Đặc trưng kỹ thuật

a) Dòng điện danh định In:

Giá trị dòng điện danh định qua cảm biến được xác định sao cho trong điều kiện không khí tĩnh, nhiệt độ của cảm biến gia tăng từ 10 C đến 15 C.

Với sự gia tăng nhiệt độ này, hằng số Hall R_H tăng và điện áp V_{Hall} không tải cũng tăng. Hằng số Hall R_H không tuỳ thuộc vào từ trường đối với vật liệu InSb và InAs (đến khoảng 5T và 15 T).

b) Cảm ứng từ:

Để đảm bảo sự tuyến tính giữa điện áp Hall và cảm ứng từ B, trị số B có một giới hạn nhất định. Khi B vượt quá ngưỡng giới hạn thì điện trở trong của cảm biến sẽ gia tăng đáng kể. Điều này sẽ làm nhiệt độ của lớp bán dẫn tăng lên và hằng số Hall R_H bị giảm xuống, gây ra sai số.

Khi cảm ứng từ tăng cao hơn 2 Tesla, dòng điện qua cảm biến phải được chọn sao cho nhiệt độ của lớp bán dẫn không được vượt quá 120 C.

c) Đô nhay của cảm biến Hall khi không tải:

Là tỉ số giữa điện áp Hall không tải và tích của dòng điện danh định với cảm ứng từ.

$$K_{B0} = \frac{V_{H0}}{I_n.B}$$
 (V/AT: volt/ampere.tesla)

Trong đó: $V_{H0} = \text{diện áp Hall không tải}$

In: dòng điện danh định

§5.3- ỨNG DỤNG CỦA CẨM BIẾN HALL

1- Mạch cơ bản dùng cảm biến Hall

Hình 5.2: Mạch cơ bản dùng cảm biến Hall

2- Đo cường độ từ trường

Để đo từ trường H hay cảm ứng từ B phải chọn một điện trở tuyến tính thích hợp và một nguồn dòng thật ổn định. Không nên dùng nguồn ổn áp với một điện trở nối tiếp vì khi từ trường gia tăng, điện trở của cảm biến Hall gia tăng theo làm giảm trị số dòng điện qua cảm biến (thường khoảng vàiΩ).

Hình 5.2: Đo cảm ứng từ bằng cảm biến Hall

Trong sơ đồ hình 5.3, nguồn dòng điện J để cấp dòng điện ổ định cho cảm biến Hall. Khi cảm biến nhận cảm ứng từ B sẽ cho ra điện áp Hall V_{Hall} . Điện áp này qua mạch khuếch đại cho ra điện áp V_{O} có trị số lớn hơn V_{Hall} nhiều lần và được tính theo công thức:

$$V_O = A_1 N_{Hall} = \frac{R_1 + R_2}{R_2} A_{\Gamma}$$

Từ trị số $V_{\rm O}$, tính ra $V_{\rm H}$ rồi suy ra cảm ứng từ B theo công thức:

$$V_{Hall} = \frac{R_{II}}{d} .I.B$$

3- Đo cường độ dòng điện DC

Dòng điện một chiều có thể đo mà không cần gỡ rời mạch điện để đặt Ampe kế nối tiếp vào mạch như cách đo thông thường. Ta có thể dùng cảm biến Hall đặt vào khe của một nam châm. Dòng điện cần đo được cho qua một số vòng dây điện quấn quanh nam châm.

Từ trường B do dòng điện cần đo tạo ra được đặt vào cảm biến Hall. Cảm biến Hall vẫn phải có dòng điện ổn định như hình 5.4.

Hình 5.4: Đo cường độ dòng điện DC bằng cảm biến Hall

Mạch đo thực chất là đo cường độ từ trường B rồi qui ra dòng điện I qua các vòng dây.

Hình 5.4 cho thấy cách đặt cảm biến Hall và cách cho dòng điện cần đo I vào cảm biến (thông qua từ cảm B).

Điện áp Hall có được từ bộ cảm biến sẽ được đưa qua mạch khuếch đại và cho ra chỉ thị đo. Trị số hiển thị trên chỉ thị đo chính là dòng điện cần đo I với $I = f(V_{Hall})$.

4- Cẩm biến Hall cho ra điện áp tương tự

Hình 5.5a: Cảm biến Hall kiểu SS49/SS19

Hình 5.5b: Cảm biến Hall có ngõ ra dùng transistor bổ phu

5- Cảm biến Hall cho ra điện áp dạng số (2 mức)

Hình 5.6a: Câm biến Hall có ngỗ ra dùng mạch Schmitt Trigger

<u>Hình 5.6b</u>: Cảm biến Hall dùng mạch Schmitt Trigger và transistor khuếch đại dòng

§5.4- CÂM BIẾN ĐIỆN TRỞ TỪ (Magnetoresistive sensors)

1- Cấu tạo

Cảm biến điện trở từ là linh kiện bán dẫn 2 cực, trị số điện trở của nó bị thay đổi dưới tác dụng của từ trường. Khi từ trường tác dụng thắng góc với mặt phẳng cảm biến sẽ có độ nhạy lớn nhất. Trị số điện trở không bị ảnh hưởng theo chiều của từ trường.

Trong phần cảm biến Hall có nói đến đặc tính điện trở nội của cảm biến Hall thay đổi theo cảm ứng từ B.

Cảm biến Hall với chất InAs có mức thay đổi điện trở theo theo từ cảm B không lớn. Trong khi cảm biến Hall với chất InSb (Indium antimon) có mức thay đổi rất lớn nên được sử dụng làm cảm biến điện trở từ.

Cảm biến điện trở từ gồm nhiều phiến InSb (bề rộng khoảng 1µm) được ghép nối tiếp nhau, giữa các phiến này là các màng kim loại.

2- Đặc tính

Hình 5.8 là đặc tuyến cho thấy quan hệ giữa tỉ số điện trở tương đối R_B/R_0 theo cảm ứng từ B. Trong đó, R_B là điện trở của cảm biến điện trở từ thay đổi theo B.

Khi B < 0.3T thì đặc tuyến có dạng cong parabol. Khi B > 0.5T thì đặc tuyến gần như đường thẳng.

Chương 5 Câm biến từ

Hình 5.8: Điện trở thay đổi tương đối theo cảm ứng từ B

Khi cho cảm ứng từ B tác dụng lên phần cảm biến điện trở từ với các góc lệch khác nhau, sẽ làm thay đổi độ nhạy của cảm biến. Góc ϕ là góc lệch giữa B và trục thẳng góc với mặt phẳng của cảm biến. Nếu $\phi = 0$ (B thẳng góc với mặt phẳng của cảm biến) thì cảm biến có độ nhạy cao nhất. Nếu $\phi = 90^{0}$ (B song song với mặt phẳng của cảm biến) thì cảm biến không bị ảnh hưởng theo cảm ứng từ B.

Điện trở từ có trị số thay đổi theo cảm ứng từ nên được xem như một hàm của B. Công thức tính gần đúng là:

$$R_B = R_0 (1 + k \mu^2 B^2)$$

trong đó: k là một hằng số tuỳ thuộc vật liệu (khoảng 0,85)

μ là hệ số từ thẩm

 R_0 là giá trị điện trở từ khi B = 0 ($R_0 = v$ ài Ω đến 10Ω)

Thí dụ: $R_0 = 5\Omega$; k = 0.8; B = 1T; $\mu = 10$.

$$R_B = 5(1 + 0.8.10^2.1^2) = 405\Omega$$

3- Ứng dụng: cảm biến tiệm cận (Promixity Sensor)

Có nhiều loại cảm biến tiệm cận làm việc theo nhiều nguyên lý khác nhau. Trong chương này chỉ nói về cảm biến tiệm cận dùng cảm biến từ.

a) Mạch cảm biến kim loại: dùng nguyên tắc mạch từ hở

Trong hình 5.9 cảm biến điện trở từ dùng để phát hiện kim loại. Khi không có kim loại, từ trường qua cảm biến là từ thông móc vòng có trị số thấp nên điện trở từ của cảm biến có trị số nhỏ. Khi có kim loại đi ngang qua cảm biến làm tăng cảm ứng từ B, điện trở của cảm biến từ cũng tăng lên sẽ cho tín hiệu điện báo hiệu.

Hình 5.9a: Khi không có kim loại

Thường cảm biến điện trở từ có trị số biến thiên từ vài trăm Ω đến vài ngàn Ω .

Cảm biến điện trở từ sẽ được nối vào mạch khuếch dại so sánh hay cầu phân áp để cho ra tín hiệu điện tích cực làm nhiệm vụ đo lường (cho ra chỉ thị đo) hay điều khiển các cơ cấu chấp hành.

Chương 5 Cảm biến từ

Hình 5.9b: Khi có kim loại làm tăng số đường sức

b) Mạch cảm hiến từ trường: dùng nguyên tắc mạch từ kín

Hình 5.10a: Khi không có từ trường ngoài

Khi bên ngoài khe hở không có nam châm (không có từ trường ngoài) thì cảm biến điện trở từ chỉ nhận từ thông do nam châm trong mạch từ kín tạo ra.

Khi có nam châm chạy ngang khe hở của mạch từ kín, cảm biến điện trở từ sẽ nhận thêm từ thông bên ngoài và làm cảm ứng từ B qua cảm biến tăng lên, điện trở của cảm biến cũng tăng theo.

Hình 5.10b: Khi có từ trường do nam châm bên ngoài

Do khoảng cách từ vật liệu dẫn từ bên ngoài (loại mạch từ hở) hay nam châm bên ngoài (loại mạch từ kín) đến mạch từ chỉ khoảng 1,5mm, nên cảm biến này còn gọi là cảm biến tiệm cận (promixity). Nếu khoảng giữa đối tượng và mạch từ có khoảng cách xa hơn 2,5mm thì mạch không có tác dụng phát hiện đối tương.

4- Ứng dụng: Mạch tạo xung đo tần số hay tốc độ

Bánh rằng cơ khí bằng sắt sẽ được kéo bởi một cơ cấu sản xuất hay bởi hệ thống truyền động. Bộ cảm biến điện trở từ đặt gần bên cạnh với cự ly khoảng 1 – 2 mm.

Trị số điện trở của cảm biến sẽ thay để theo vị trí của bánh răng khi bánh răng xoay và tạo ra xung. Tần số xung ra là tích số của tốc độ quay và số răng của bánh răng.

Hình 5.11: Đo tốc độ cho ra xung

Số xung đếm được trong một khoảng thời gian sẽ được qui ra số vòng quay và tính được tốc độ quay.

Thí dụ: bánh răng có n = 16 răng đặt cạnh cảm biến tiệm cận loại mạch từ hở, sau 60 giây mạch cho ra N = 8000 xung. Tính tốc độ quay của bánh răng.

Tốc độ quay tính theo công thức:

$$v = \frac{N_{\text{tung}}}{n} = \frac{8000}{16} = 500 \text{ vong'/ phút}$$

Mạch tạo xung từ cảm biến điện trở từ có sơ đồ như hình 5.12.

Trong sơ đồ, R_B là cảmbiến điện trở từ, trị số thay đổi theo kim loại hay nam châm bên ngoài. Biến trở VR dùng để điều chỉnh

dòng điện qua cảm biến có trị số thích hợp. Cầu phân áp $R_1 R_2$ dùng để tạo điện áp chuẩn làm cơ sở so sánh với điện áp trên cảm biến.

Hình 5.12: Mạch tạo xung từ cảm biến điện trở từ

Khi chưa nhận được đối tượng, cảm biến có trị số điện trở nhỏ, điện áp trên cảm biến đặt vào ngõ \ln^+ nhỏ hơn điện áp chuẩn ở ngõ \ln^- . Lúc đó, ngõ ra có mức thấp V_{OL} .

Khi nhận được đối tượng, cảm biến có trị số điện trở lớn, điện áp trên cảm biến đặt vào ngõ In $^\circ$ lớn hơn điện áp chuẩn ở ngõ In $^\circ$ Lúc đó, ngõ ra có mức cao $V_{OH}.$

Điện áp sau op-amp liên tục thay đổi ở 2 mức cao và thấp (dạng xung vuông) có tần số tuỳ thuộc số răng của bánh răng chạy qua cảm biến.

Chương 5 Cảm biến từ

Câu hỏi

- 1) Cho biết quan hệ giữa cường độ dòng điện I và cảm ứng từ B trong thiết bị điện từ?
 - 2) Cho biết các thông số kỹ thuật đặc trưng của cảm biến từ?
- 3) Vẽ sơ đồ mạch đo cường độ dòng điện DC dùng cảm biến Hall. Giải thích nguyên lý.

Bài tấp

1) Cho cảm biến điện trở từ có các thông số: $R_0 = 10\Omega$; k = 0.85; B = 1.5T; $\mu = 1$; $I_0 = 5 mA$. Tính trị số các điện trở trong mạch điện hình 4.8 để khi cảm biến nhận cảm ứng từ có giá trị B = 2T thì op-amp đổi trạng thái.

Cho biết nguồn $+V_{CC} = 9V$.

2) Mạch tạo xung từ cảm biến điện trở từ như hình 4.9. Nếu tốc độ quay là 100 vòng / phút, bánh răng có 8 răng thì độ sai số tương đối của tần số xung ra là bao nhiều? Cho biết phương pháp để giảm mức độ sai số tương đối này?

CHUONG 6

CẢM BIẾN LỰC

§6.1- ĐẠI CƯƠNG

1- Các định nghĩa

Lực được xác định từ định luật cơ bản của động lực học:

$$\vec{F} = M\vec{\gamma}$$

trong đó: M là khối lượng (kg) chịu tác động của lực F gây nên gia tốc γ (m/s²). Đơn vị của lực là Newton (N).

Newton được định nghĩa là lực cần thiết để gia tốc một vật thể có khối lượng lkg với trị số lm/s^2 .

Trọng lượng P của một vật chính là lực tác dụng lên vật đó trong trường của trái đất:

$$\vec{P} = M\vec{g}$$

trong đó g là gia tốc trọng trường (≅ 9,8m/s²) phụ thuộc vào độ cao.

Nói cách khác 1 kilopond (1 kp) là lực trọng trường tác động lên khối lương 1kg để có gia tốc 9,81m/s².

2- Quan hệ giữa các đại lượng

1 N = 0,102 kp
$$\left(\frac{1}{9,81} = 0,102\right)$$

1 kp = 9,81 N $\left(1 \text{kp} = 1 \text{kG: kilogam fuc}\right)$

Đo lực là đo những hiệu quả do nó gây ra. Phép đo lực được thực hiện bằng cách làm cân bằng lực đó với một lực đối kháng sao cho lực tổng cộng và mômen tổng của chúng bằng không.

Trước đây người ta dùng cân để đo lực như cân lò xo, cân đòn bẩy ... Về nguyên tắc vật lý, không thể phân biệt giữa các cảm biến đo lực hay cân. Tuy nhiên, trong sử dụng cần phân biệt giữa cảm biến lực và cân; đặc biệt là trong việc chuẩn hóa và phân biệt cấp chính xác. Cân được chuẩn hóa theo kg, cảm biến lực được chuẩn hóa theo Newton.

§6.2- CẨM BIẾN ÁP ĐIỆN

1- Cấu tạo

Vật liệu làm cảm biến áp điện thường là thạch anh (quartz) hay là gốm(ceramic). Thạch anh có ưu điểm nhờ tính ổn định và độ cứng cao, gốm có ưu điểm là dễ sản xuất và giá thành thấp.

Cảm biến áp điện thạch anh là một phiến thạch anh được cắt theo một hướng nhất định. Hai mặt trên và dưới được, phủ kim loại hình thành hai điện cực.

Hình 6.1: Cấu tạo của cảm biến áp điện

Do điện tích sinh ra trên hai điện cực rất. Ở nên người ta thường ghép nhiều phiến thạch anh nối tiếp hoặc song song nhau. Khi ghép song song thì điện tích và điện dung của cảm biến tăng gấp đôi (hình 6.2a). Khi ghép nối tiếp thì điện áp khi hở mạch và trở kháng trong của cảm biến tăng gấp đôi, nhưng điện dung bị giảm còn một phần hai (hình 6.2b).

Hình 6.2a: Hai phiến song song

Hình 6.2b: Hai phiến nổi tiếp

2- Nguyên lý

Khi tác dụng một lực lên phiến thạch anh sẽ sinh ra điện tích · Q trên 2 điện cực.

Ta có:
$$Q = k.F$$
 $(k = 2,3.10^{-12} C / N)$

Điện tích Q gia tăng theo lực tác dụng, độ nhạy k là một hằng số tuỳ vật liệu và cấu tạo.

Sự di chuyển của điện tích Q khi có lực F tác dụng có liên quan đến dòng điện tức thời i, do đó, cảm biến áp điện khi tính toán được thay thế bằng mạch tương đương gồm nguồn dòng điện, điện trở trong R_q và điện dung ký sinh C_q (hình 6.3).

Hình 6.3: Mạch tương đương của cảm biến áp điện

Điện áp trên tụ Cq được tính như hiện tượng tụ nạp điện:

$$V_q = \frac{Q}{C_q} \qquad (\text{do Q} = \text{U.C})$$

Do có điện trở trong R_q nên điện tích q và điện áp V_q không tồn tại mãi mà có biên độ giảm dần, mặc dù vẫn tồn tại lực tác dụng F. Hình 6.4 cho thấy đáp ứng của Q theo thời gian khi có lực F.

Hình 6.4a: Đáp ứng F theo t

Hình 6.4b: Đấp ứng Q theo t

3- Các công thức

Hình 6.5: Phân tích mạch

Phân tích trên mạch tương đương, ta có:

$$i = \frac{dQ}{dt}$$
 (dòng sinh ra khi có điện tích)

$$i_R = \frac{V_q}{R}$$
 (dòng qua điện trở trong khi có V_q)

$$i_{\ell} = \frac{dQ}{dt} = C_q \frac{dV_q}{dt}$$
 (dòng nạp vào tụ ký sinh)

Tổng dòng điện tại một điểm là 0 nên:

$$\frac{dQ}{dt} - \frac{V_q}{R_a} - C_q \frac{dV_q}{dt} = 0$$

Giải phương trình ta có kết quả: (dạng hàm số mũ giảm dần)

$$V_q = \frac{Q_0}{C_u} e^{-\frac{t}{R_q C_q}}$$
 (dang $v_c = V_0 e^{-\frac{t}{r}}$)

trong đó:

$$\tau = R_q C_q$$
 (là hằng số thời gian)

và

$$V_0 = \frac{Q_0}{C} \qquad (\text{diện áp tức thời ở thời điểm } t = 0)$$

4- Thí dụ

Một cảm biến lực loại thạch anh có độ nhạy $k=2,3.10^{-12}$; cảm biến có diện tích $S=10~\text{cm}^2$; dày d=1~mm; điện trở suất $\rho=10^{14}~\Omega\text{cm}$; hằng số điện môi $\epsilon_0=8,85.10^{-12}~\text{C/Vm}$; hằng số điện môi tương đối $\epsilon_r=5$. Tính điện áp cảm biến cho ra khi chịu tác dụng bởi lưc F=100~N.

Tính nôi trở của cảm biến:

$$R_q = \rho \frac{d}{S} = 10^{14} \cdot \frac{0.1 cm}{10 cm^2} = 10^{12} \Omega$$

Điện đung ký sinh của cảm biến:

$$C_q = \frac{\varepsilon_0 \varepsilon_r S}{d} = \frac{8.85.10^{-12}.5.0.001m^2}{0.001m} = 44 pF$$

Điện tích phát sinh khi có lực F:

$$Q = k.F = 2.3.10^{-12}$$
. $100 = 0.23.10^{-9}$ C

Điện áp do cảm biến cho ra:

$$V_q = \frac{Q}{C_q} = \frac{0.23.10^{-9}}{44.10^{-12}} = 5.2V$$

§6.3- MẠCH KHUẾCH ĐẠI ĐIỆN ÁP

1- Sơ đồ

Qua thí dụ trên cho thấy, cảm biến áp điện có nội trở rất lớn. Nếu dùng volt kế để đo điện áp cảm biến cho ra, nội trở của volt kế thường nhỏ hơn nội trở của cảm biến nhiều lần, sẽ làm nối tất điện áp ra của cảm biến.

Do đó, cần có mạch khuếch đại điện áp do cảm biến tạo ravà mạch này cần có tổng trở vào phải đủ lớn so với nội trở của cảm biến.

2- Nguyên tắc

Dây dẫn có độ cách điện kém và điện dung ký sinh cũng làm ảnh hưởng đến kết quả đo. Để có kết quả tương đối chính xác, có thể đặt mạch khuếch đại cạnh bên cảm biến và không cần dùng dây dẫn.

Op-Amp có tổng trở vào rất lớn nên có thể thỏa yêu cầu trên.

Điện áp ra sau mạch khuếch đại được tính theo công thức:

$$V_{ij} = V_{ij} \cdot \frac{R_1 + R_2}{R_2}$$

$$V \dot{\sigma} i$$
: $V_q = \frac{Q}{C_q}$

Thực ra điện áp V_q sẽ bị giảm xuống theo hàm số mũ theo thời gian. Hằng số thời gian là:

$$\tau = R_{\alpha} C_{\alpha} = 10^{12} .44.10^{-12} = 44 s$$

Để phép đo có sai số 1% thì phép đo phải được thực hiện trong thời gian tối đa là $0.44~\rm s.$

Khảo sát đáp ứng của lực F và điện áp ra Vo ta có:

<u>Hình 6.7</u>: Đáp ứng ngõ vào và ra

Chương 6 Cảm biến lực

§6.4- MẠCH KHUẾCH ĐẠI ĐIỆN TÍCH

1- Sơ đồ

Hình 6.8: Mạch khuếch đại điện tích

2- Nguyên lý

Thực chất đây là mạch tích phân tích cực dùng op-amp.

Do tổng trở vào của op-amp rất lớn nên coi như dòng điện vào op-amp bằng 0.

Tại ngỗ vào đảo ta có phương trình vi phân:

$$i + \frac{V_o}{R_t} + C_T \frac{dV_o}{dt} = 0$$

Điện tích do cảm biến sinh ra sẽ được nạp vào tụ C_F . Ở thời điểm ban đầu, dưới tác dụng của lực F, điện tích sinh ra là:

$$Q_0 = k.F_0$$

Diện áp ra sau op-amp là: $V_{ij} = -\frac{Q_0}{C_F} e^{-\frac{t}{R_F C_I}}$

(dấu trừ do đảo pha)

Nếu có: $R_F \to \infty$ thì $e^0=1$. Lúc đó, điện áp $V_O=-\frac{Q_0}{C_F}$ là hằng số và tồn tại mãi.

Như vậy mạch này có thể dùng để đo các lực thay đổi chậm mà vẫn có kết quả chính xác.

Khảo sát đáp ứng của lực F và điện áp ra Vo ta có:

Hình 6.9: Đáp ứng ngỗ vào và ra mạch khếch đại điện tích

Cám biến lưc

Câu hỏi

- 1- Phân biệt khối lượng của vật thể và trọng lượng của vật đó?
- 2- Cho biết quan hệ giữa các đơn vị đo lực là N và kp?
- 3- Cho biết cấu tạo của cảm biến lực thạch anh? Nguyên tắc ghép nổi tiếp và ghép song song? Đặc điểm của hai cách ghép này?
- 4- Phân biệt nguyên lý mạch khuếch đại điện áp và mạch khuếch đại điện tích?

Bài tâp

- 1- Cho cảm biến áp điện loại thạch anh có độ nhạy $k=2,3.10^{-12}$; cảm biến có diện tích $S=20~cm^2$; dày d=1,5~mm; điện trở suất $\rho=10^{14}~\Omega cm$; hằng số điện môi $\epsilon_0=8,85.10^{-12}~C/Vm$; hằng số điện môi tương đối $\epsilon_r=7$. Tính điện áp cảm biến cho ra khi chịu tác dụng bởi lực F=50~N.
- 2- Một cảm biến áp điện cho ra điện áp $V_q=10V$ khi nhận lực tác dụng là F=50 N. Cho biết thạch anh có các thông số chuẩn là: độ nhạy $k=2,3.10^{-12}$; dày d=1 mm; điện trở suất $\rho=10^{14}\,\Omega\text{cm}$; hằng số điện mỗi $\epsilon_0=8,85.10^{-12}\,\text{C/Vm}$; hằng số điện mỗi tương đối $\epsilon_r=5$. Phải chế tạo cảm biến có tiết diện bao nhiều để đạt yêu cầu kỹ thuật trên?

CHUONG 7

CẢM BIẾN VỊ TRÍ – SỰ DỊCH CHUYỂN

§7.1- ĐAI CƯƠNG

Hiện nay các chi tiết cơ khí, các cơ cấu truyền động, sản phẩm trên dây chuyền ... trên các máy công nghệ cần xác định chính xác ở từng thời điểm, trong quá trình sản xuất. Điều này rất quan trọng vì nó phục vụ cho quá trình điều khiển tự động của máy, tăng tốc độ sản xuất, độ chính xác, chất lượng sản phẩm ... Thí dụ trên dây chuyền sản xuất nước ngọt cần biết khi nào có lon hay chai chạy đến để châm nước, khi nào đóng nắp và khi nào dán nhãn; trong khi tốc độ sản xuất rất nhanh mà người ta không thể thực hiện các công việc đó bằng tay được.

Để thực hiện chức năng này, người ta thường dùng các bộ cảm biến vị trí, sự dịch chuyển. Cảm biến vị trí làmviệc theo nguyên tắc xác định vị trí của vật thể mà không cần công tắc (không đụng chạm vào). Tín hiệu ngõ ra là tín hiệu logic với hai mức 0 và 1. Nếu mức 1 ứng với trường hợp có tín hiệu thì mức 0 ứng với trường hợp không có tín hiệu hoặc ngược lại.

Có nhiều loại cảm biến tiệm cận làm việc theo những nguyên tắc khác nhau.

- Cảm biến quang
- Cảm biến từ trường
- Cảm biến kim loại
- Cảm biến điện trở
- Cảm biến điện cảm
- Cảm biến điện dung

Hai loại cảm biến từ trường bên ngoài và cảm biến kim loại (cảm biến tiệm cận) đã được giới thiệu trong chương cảm biến từ.

§7.2- CẨM BIẾN ĐIỆN TRỞ

Cảm hiến điện trở có cấu tạo đơn giản, để chế tạo, rẻ tiền, độ biến đổi lớn, tuyến tính và có trường hợp dùng trực tiếp ngô ra để điều khiến mà không cần khuếch đại, nếu dùng mạch khuếch đại cũng là mạch cơ bản không có yêu cầu phức tạp.

1- Cấu tao

Có nhiều loại cảm biến điện trở, được phân loại theo vật liệu và hình dạng.

Theo vật liệu có cảm biến điện trở than, cảm biến điện trở dây quấn. Theo hình dạng có cảm biến dạng xoay tròn ($< 360^{\circ}$), dạng thẳng và dạng chuyển dịch xoắn (xoay nhiều vòng $> 360^{\circ}$). Có cảm biến chuyển dịch xoắn xoay được 10 vòng nên góc xoay đến 3600° .

<u>Hình 7.1a</u>: Cảm biến dạng thẳng <u>Hình 7.1b</u>: Cảm biến dạng xoay

Hình 7.1c: Cảm biến dạng xoắn

Các vòng điện trở

Truc xoay

2- Nguyên lý

a) Cảm biến điện trở dạng thẳng: thường có 4 dây ra (hình 7.1a). Dây C ở vị trí giữa của biến trở nên $R_{AC} = R_{CB}$. Trường hợp này có thể dùng nguồn đối xứng $\pm V_{CC}$, điểm A nối nguồn dương, điểm B nối nguồn âm và điểm C có điện áp θ V. Vị trí của điểm D sẽ cho biết hệ thống hoạt động như thế nào. Thí dụ: điện áp θ V bc > θ V là động cơ quay theo chiều thuận hay sảm phẩm quá trọng lượng, điện áp θ V bc < θ V là động cơ quay theo chiều ngược hay sản phẩm thiếu trọng lượng.

Trị số điện trở được tính theo công thức:

$$R(l) = \frac{l}{L} R_n$$
 l: chiều dài đang có
L: chiều dài của biến trở
$$R_n: \text{trị số điện trở chung}$$

b) Cảm biến dạng xoay: có thể là biến trở than, có thể là biến trở dây quấn. Tuỳ vị trí con trượt B mà điện trở R_{AB} và R_{BC} sẽ bị thay đổi theo hướng ngược nhau.

Tri số điện trở được tính theo công thức:

$$R(\alpha) = \frac{\alpha}{\alpha_M} R_n$$

$$\alpha: \text{góc quay đang có}$$

$$\alpha_M: \text{góc quay cực đại}$$

$$R_n: \text{trị số điện trở chung}$$

c) Căm biến dạng xoắn: thướng có 10 vòng điện trở liên tiếp nhau, con trượt có thể trượt từ đầu vòng 1 đến cuối vòng 10. Việc điều chỉnh sẽ cho ra mức độ thay đổi rất ít. Thí dụ biến trở có trị số $2k\Omega$, mỗi vòng sẽ có giới hạn điện trở là 200Ω , góc quay cho mỗi vòng là 360° ; khi xoay một góc 10° thì mức thay đổi điện trở là: $\Delta R = 200.\frac{10}{360} = 5.5\Omega$. Biến trở loại này thường là biến trở dây quấn.

§7.3- CẨM BIẾN ĐIỆN CẨM

1- Nguyên tắc

Cảm biến điện cảm làm nhiệm vụ cảm nhận vị trí hay sự dịch chuyển hoạt động theo nguyên tắc: khí vật thể di chuyển sẽ làm thay đổi từ thông trong cuộn dây.

Khi vật thể là lõi sắt từ, khi dịch chuyển sẽ làm thay đổi hệ số từ cảm (điện cảm L) hay thay đổi độ ghép giữa cuộn sơ và thứ cấp của biến áp.

Khi vật thể là cuộn dây dịch chuyển so với cuộn dây cố định thì một cuộn là sơ cấp, một cuộn là sơ cấp, một cuộn là thứ cấp. Sự dịch chuyển sẽ làm thay đổi độ ghép và đưa đến thay đổi hệ số hỗ cảm của hai cuộn dây.

Cảm biến điện cảm thường dùng mạch dao động hình sin có tần số khoảng vài chục kHz để giới hạn tổn hao công suất do dòng điện Foucault cũng như ảnh hưởng của tụ điện ký sinh.

Khoảng cách dịch chuyển và sự thay đổi tần số của cảm biến không tỉ lệ tuyến tính với nhau, do đó, sự dịch chuyển phải có tần số rất thấp so với tần số của dao động hình sin do mạch cảm biến tạo ra.

2- Cảm biến có khe từ thay đổi

a) Cấu tạo:

Hình 7.2: Cảm biến có khe từ thay đổi

b) Nguyên K:

Điện cảm L của cuộn dây N vòng được tính theo công thức:

$$L = \frac{N^2}{R}$$

(R: từ trở của mạch từ)

Với:

$$R = \frac{l_{t}}{\mu_{0}.\mu_{t}.S} + \frac{l_{0}}{\mu_{0}.S}$$

Trong đó: l_i: chiều dài trung bình của đường sức trong lõi sắt

 l_0 : chiều dài trung bình của đường sức trong không khí

 $\mu_{\rm I}$: độ từ thẩm tương đối của vật liệu (10^3-10^4)

 μ_0 : 4π . 10^{-7} MKSA

S: tiết diện mạch từ

Công thức tính điện cảm L của mạch:

$$L = \mu_0 N^2 S \left[\frac{1}{l_0 + \frac{l_1}{\mu_1}} \right]$$

Để cho trị số diên cảm L nhạy với sự thay đổi khe hở của không khí, cần chọn: $l_0 >> l_0 + \frac{l_f}{H_0}$.

Lúc đó công thức được đổi thành:

$$L = \mu_0 \frac{N^2 S}{I_0}$$
 (L tỉ lệ nghịch với I_0)

c) Hai mạch từ đối nhau:

Để tăng độ nhạy và độ tuyến tính cho cảm biến, người ta có thể dùng hai lõi mạch từ giống nhau đặt đối xứng với lõi sắt di động (hình 7.3).

Như vậy, khe hở không khí sẽ thay đổi ngược chiều đối với 2 mạch từ cố định. Khi cuộn dây này tăng điện cảm thì cuộn dây kia giảm điện cảm và ngược lại.

Nếu kết hợp được sự thay đổi điện cảm của cả 2 cuộn dây thì mức biến thiên sẽ tăng gấp đôi đồng thời sự tuyến tính sẽ tốt hơn nhờ sự bù trừ.

Hình 7.3: Cảm biến có hai mạch từ đối nhau

3- Cảm biến có lõi từ di chuyển

t: chiều dài của cuộn dây

l₁: chiều dài lõi từ

 l_0 : chiều dài phần cuộn dây không có lõi từ ($l_0 = 1 - l_1$)

N: số vòng dây của cuộn dây

Khi thay đổi chiều dài lõi thép l_f sẽ làm thay đổi trị số điện cảm L. Trị số L thay đổi không tuyến tính theo l_f .

4- Biến áp vi sai

a) Cấu tạo:

Biến áp vi sai có cuộn sơ cấp và hai cuộn thứ cấp quấn chung trên một lõi thép. Hai cuộn thứ cấp quấn đối xứng so với cuộn sơ cấp.

Hình 7.5: Cấu tạo của biến áp vi sai

b) Nguyên lý:

Lõi thép có thể dịch chuyển theo đường thắng đứng và làm thay đổi độ ghép hỗ cảm M giữa cuộn sơ cấp với từng cuộn thứ cấp.

Hai cuộn thứ cấp, có chiều quấn dây như hình 7.5, được nối lại sao cho sức điện động do hai cuộn dây tạo ra, khi cảm ứng từ cuộn sơ cấp, sẽ triệt tiêu nhau. Điện áp ra $V_{\rm m}$ được lấy giữa 2 điểm đầu của 2 cuộn thứ cấp.

Từ nguyên lý của bộ biến áp cho ra công thức tính:

$$e_{1} = (R_{1} + jL_{1}\omega)i_{1} + j[M_{A}(x) - M_{B}(x)]\omega i_{2}$$
$$[R_{2,i} + R_{2B} + R_{L} + j\omega(L_{2A} + L_{2B})]i_{2} + j\omega[M_{A}(x) - M_{B}(x)]i_{1} = 0$$

trong đó: M_A và M_B là hệ số hỗ cảm giữa cuộn sơ cấp và hai cuộn thứ cấp.

Khi lỗi thép ở ngay giữa hai cuộn thứ cấp thì $M_A = M_B và x = 0$ (x là khoảng cách từ điểm giữa của hai cuộn thứ cấp đến điểm giữa của lỗi thép). Lúc đó: $V_m = 0V$.

Trường hợp điện trở tải $R_L > 50 k\Omega$ (nếu tải là máy đo thì R_L là nội trở của máy đo), điện áp V_M tỉ lệ tuyến tính với $M_A(x) - M_B(x)$ và không phụ thuộc vào R_L theo công thức:

$$V_{M} = \frac{j\omega \left[M_{1}(x) - M_{B}(x)\right]}{R_{1} + jL_{1}\omega}e_{1}$$

§7.4- CẨM BIẾN ĐIỆN DUNG

1- Nguyên tắc - Cấu tạo

Cảm biến điện dung là những tụ điện dạng phẳng hay dạng hình trụ có một bản cực cố định và một bản cực và một bản cực có thể di chuyển. Bản cực di chuyển được nối dính với vật thể cần đo sự dịch chuyển. Khi vật thể di chuyển kéo theo sự di chuyển của bản cực làm thay đổi điện dung của tụ.

Điện dung của tụ phẳng được tính theo công thức:

$$C = \varepsilon_0 \varepsilon_r \frac{S}{d}$$

trong đó: S: tiết diện giữa hai bản cực

d: khoảng cách giữa hai bản cực

 ε_0 : hằng số điện môi của chân không (= 8,85.10⁻¹²)

ε_r: hằng số điện môi của môi trường

Điện dung của tụ điện hình trụ được tính theo công thức:

$$C = 2\pi\varepsilon_0 \varepsilon_r \frac{l}{\log \frac{r_2}{r_1}}$$

trong đó: I: chiều sâu của hình trụ trong

r₁: bán kính của trụ trong

r₂: bán kính của trụ ngoài

Sự dịch chuyển của bản cực có thể thực hiện theo các phương thức:

- a) Đối với tụ điện phẳng:
- Dịch chuyển trong một mặt phẳng: S thay đổi, d cố định

Hình 7.6a: S lớn nhất

Hình 7.6b: S trung bình

 Dịch chuyển trong mặt phẳng thẳng góc: d thay đổi, S cố định

Hình 7.7: Bản cực di chuyển thẳng góc, d thay đổi

b) Đối với tụ điện hình trụ:

Thay đổi l bằng cách kéo trụ trong dọc theo trục

Hình 7.8: Bán cực di chuyển dọc theo trục, I thay đổi

c) Tụ điện đôi vi sai:

Hình 7.9: Trụ trong di chuyển đọc theo trục giữa hai trụ ngoài, I thay đổi theo nguyên tắc l₁ tăng thì l₂ giảm và ngược lại

Hình 7.9 là cấu tạo của tụ điện đôi vi sai. Khi l_1 tăng thì điện dung C_1 tăng. Lúc đó, l_2 giảm thì điện dung C_2 cũng giảm theo cùng tỉ lệ.

Hình 7.10: Hình dạng của cảm biến điện dung

2- Nguyên lý đo và đặc trưng kỹ thuật

Khi vật thể cần đo sự dịch chuyển, vật thể được gắn cố định với bản cực của tụ điện phẳng, hay gắn với trục trong của tụ điện hình trụ. Mức dịch chuyển làm thay đổi bề dày d hay chiều dài I của tụ điện.

Bằng phương pháp đo điện dung C, mức biến thiên của C sẽ suy ra được mức biến thiên của d hay l.

Mỗi cảm biến điện dung đều có các đặc trưng kỹ thuật sau:

a) Độ nhạy điện dung:
$$S_C = \frac{\Delta C}{\Delta x}$$

b)
$$D\hat{\phi}$$
 nhạy trở kháng: $S_Z = \frac{\Delta Z}{\Delta x}$

c) Độ nhạy tương đối:
$$S_R = \frac{\Delta C}{C\Delta x} = -\frac{\Delta Z}{Z.\Delta x}$$

Trong đó: Δx là Δd hay Δl .

3- Phương pháp đo độ biến thiên điện dung

a) Dùng cầu Sauty và tụ điện đôi vi sai

Khi trụ trong của tụ điện đôi vi sai bị dịch chuyển, điện dung của hai tụ C_{AB} và C_{BC} sẽ khác nhau. Điện áp đo được giữa hai tụ và hai điện trở R tính theo biểu thức:

$$V_{m} = \frac{V_{10}}{2} \frac{C_{1B} - C_{BC}}{C_{1B} + C_{BC}}$$

b) Mạch đo RC dùng nguồn một chiều:

Trường hợp vật thể cần đo có độ dịch chuyển nhanh, có thể dùng mạch đo RC và nguồn một chiều như hình 7.12, trong đó C là cảm biến tụ điện có một bản cực di chuyển theo vật thể cần đo.

Hình 7.12: Mạch đo RC dùng nguồn một chiều

Goi C_0 là giá tri ban đầu của cảm biến, C_1 là giá biến đổi khi cảm biến bị dịch chuyển. Nếu cảm biến làm việc với dòng điện xoay chiều hình sin thì điện dung của cảm biến là:

$$C = C_0 + C_1 \sin \omega t$$

Trong sơ đồ hình 7.12, ta có:

$$V_{DC} = V_C + V_R$$

trong đó:
$$V_R = R.i$$
 và: $V_c = \frac{1}{C} \int_0^t i.dt$

Nếu khoảng cách giữa các bản cực thay đổi với mức độ nhỏ d₁ so với khoảng cách ban đầu d₀ thì:

$$d = d_0 + d_1 \sin \omega t \qquad (\varepsilon = \varepsilon_0.\varepsilon_r)$$
Suy ra:
$$C = \varepsilon \frac{S}{d_0 + d_1 \sin \omega t} = C_0 + C_1 \sin \omega t$$

$$C = \varepsilon \frac{S}{d_0} - C_0 \frac{d_1}{d_0} \cdot \sin \omega t = C_0 (1 - \frac{d_1}{d_0} \sin \omega t)$$
Như vậy:
$$V_R = -V_{DC} \frac{d_1}{d} \sin \omega t$$

Điện áp đo được trên R sẽ biến thiên theo mức dịch chuyển d₁ sinωt.

§7.5- CẨM BIẾN TIÊM CÂN ĐIỆN CẨM (Inductive Proximity Sensors)

1- Nguyên tắc

Để xác định vật thể trong vùng khoảng cách ngắn khoảng 1-2cm, thường dùng loại cảm biến tiệm cận điện cảm.

Cấu tạo gồm một cuộn dây xác định độ cảm ứng của một mạch dao động LC. Điện từ trường của mạch dao động lan rộng ra khoảng không gian chung quanh nó. Khi có vật thể kim loại đến gần, năng lượng từ trường của mạch dao động sẽ bị tiêu hao để tạo nên các dòng điện xoáy cảm ứng bên trong vật thể kim loại này. Điều này làm cho biên độ sóng dao động bị giảm xuống và đến một vị trí giới hạn (khoảng 1-2 cm) thì mạch không còn dao động nữa. Hai trạng thái có dao động và không có dao động sẽ được mạch khuếch đại điện tử xác định và cho hai trạng thái ở ngõ ra ứng với hai mức logic 0 và 1.

2- Cấu tạo và hoạt động

Hình 7.13a: Mạch từ kín

Hình 7.13b: Mạch từ hở

Hình 7.13c: Cảm biến tiệm cận và vật thể

Hình 7.13d: Cảm biến tiệm cận và vật thể

Hình 7.13 cho thấy khi vật thể đến gần cảm biến sẽ có dòng điện xoáy (Foucault) cảm ứng trên mặt vật thể tạc nên một chi, m giảm biên độ dao động. Hình 7.13 km chi học họng này học, khi vật thể đến càng gần cảm biến thì biên độ càng giảm, ở vị trí gần nhất biên độ giảm gần như bằng 0. Mạch khuếch đại điện tử sẽ phát hiện và cho ra hai mức logic 1 và 0.

Hình 7.14: Vị trí của cảm biến làm thay đổi biến độ dao động

3- Sơ đồ mạch điện tử

Sơ đồ hình 7.15 là mạch dao động LC trong cảm biến tiệm cận dùng điện cảm.

Hình 7.15: Sơ đồ nguyên lý bộ cảm biến tiệm cận

Diod D_1 và T_1 kết hợp cuộn dây và tụ C_1 là mạch dao động nhờ có hồi tiếp dương từ cực E về cực B. T_2 và T_3 là mạch Schmitt Trigger thay đổi trạng thái theo ngường biên độ phân cực cho cực B_2 .

Khi dao động có biên độ lớn thì điện áp V_{C1} giảm làm T_2 dẫn, T_3 ngưng và T_4 ngưng, rơ-le không được cấp nguồn. Khi dao động có biên độ nhỏ thì điện áp V_{C1} tăng làm T_2 ngưng, T_3 dẫn và T_4 dẫn, rơ-le được cấp nguồn.

4- Cách nối dây của cảm biến tiệm cận

Hình 7.16a; Cảm biến tiệm cận loại P (ngỗ ra là transistor PNP)

Hình 7.15b: Cảm biến tiệm cận loại N (ngỗ ra là transistor NPN)

Hình 7.15c: Cảm biến tiệm cận loại N giao tiếp với cổng TTL

Hình 7.15d: Cám biến tiệm cận loại P giao tiếp với cổng TTL

Hình 7.15c: Cảm biến tiệm cận ngỗ ra giao tiếp với tải xoay chiều

§7.6- ỨNG DỤNG CẨM BIẾN TIỆM CẬN TRONG CÔNG NGHIỆP

Hình 7.16: Cảm biến tiệm cận trên máy tiện (Lathe: tiện)

Hình 7.17: Cảm biến tiệm cận trên băng tải

<u>Hình 7.18</u>: Cảm biến tiệm cận xác định vị trí dọc ngang của vật thể đưa vào bể nhúng

Hình 7.19: Cảm biến tiệm cận xác định kim loại trên băng tải

Hình 7.20: Cảm biến tiệm cận điện dung và điện cảm trên máy cưa gỗ

Hình 7.20: Cảm biến tiệm cận xác định chiều dài vật thể

Câu hởi

- 1- Cho biết những ứng dụng thực tế của cảm biến điện trở?
- 2- Vẽ sơ đồ mạch khuếch đại dùng cảm biến điện trở kết hợp transistor hay op-amp. Giải thích nguyên lý để tìm công thức đo được độ dịch chuyển bằng điện áp ngõ ra.
 - 3- Phân biệt nguyên lý của các loại cảm biến điện cảm?
 - 4- Cho biết những ứng dụng thực tế của cảm biến điện cảm?
- 5- Vẽ sơ đồ mạch khuếch đại dùng cảm biến điện cảm kết hợp transistor hay op-amp. Giải thích nguyên lý để tìm công thức đo được độ dịch chuyển bằng điện áp ngỗ ra.
 - 6-Phân biệt nguyên lý của các loại cảm biến điện dung?
- 7- Vẽ sơ đồ mạch khuếch đại dùng cảm biến điện cảm kết hợp transistor hay op-amp. Giải thích nguyên lý để tìm công thức đo được độ dịch chuyển bằng điện áp ngỗ ra.

Bài tấp

- 1- Thiết kế mạch cảm biến vị trí dùng cảm biến điện trở thẳng với các thông số sau:
 - biến trở có $VR = 2k\Omega$, dài I = 20cm
- điện áp ra tối đa ứng với con trượt D ở vị trí A và B là \pm 10V.
 - xác định điện áp ra khi khoảng cách DC là 5 cm?

- 2- Thiết kế mạch cảm biến vị trí dùng cảm biến điện trở xoay với các thông số sau:
 - biến trở có $VR = 1k\Omega$, góc xoay lớn nhất là 300°
 - điện áp ra tối đa ứng với con trượt B ở vị trí A và C là +10V
 - xác định điện áp ra khi góc lệch giữa A và B là 90°?
- 3- Dùng cảm biến điện dung như hình sau. Cho biết: $r_1=2$ cm, $r_2=4$ cm, L=20 cm, $\epsilon=1$. Mạch dùng cầu đo Sauty với hai điện trở $R=500\Omega$, $V_{AC}=10V$. Tính giới hạn điện áp ra khi trục giữa di chuyển đến mức tối đa.

TÀI LIỆU THAM KHẢO

- 1- Điện tử công suất và cảm biến Nguyễn Tấn Phước, NXB Trẻ TP Hồ Chí Minh - 2006
- 2- Cảm biến và ứng dụng Dương Minh Trí,
- NXB Khoa học và Kỹ thuật 2001
- 3- Giáo trình Cảm biến Phan Quốc Phô,NXB Khoa học và Kỹ thuật 2001
- 4- Sensortechnik Wiegleb, Franzis Elektronik Fachbuch.
- 5- Fundamentals of Linear Circuit Tom Floyd, Dunod 1991
- 6- Linh kiện điều khiển Nguyễn Tấn Phước,
- NXB Trẻ TP Hồ Chí Minh 2004
- 7- Điện tử ứng dụng trong công nghiệp Nguyễn tấn Phước, NXB Trẻ TP Hồ Chí Minh 2004

TỦ SÁCH KỸ THUẬT ĐIỆN - ĐIỆN TỬ CỦA TÁC GIẢ NGUYỄN TẦN PHƯỚC

* GIÁO TRÌNH ĐIỆN TỬ KỸ THUẬT

GIAO IKINII DIEN TO KI THUAT	
1- Linh kiện điện tử (khổ 16x24)	(tái bản lần thứ 10)
2- Mạch điện tử - Tập 1	(tái bản lần thứ 6)
3- Mạch điện tử - Tập 2	(tái bản lần thứ 4)
4- Mạch điện tử - Tập 3	(sắp xuất bản)
5- Mạch số - tập 1, 2	(đã xuất bản)
6- Mạch tương tự (khổ 16x24)	(tái bản lần thứ 3)
* GIÁO TRÌNH ĐIỆN TỬ CÔNG NGHIỆP	
1- Linh kiện điều khiển	(tái bản lần thứ 6)
2- Kỹ thuật xung căn bản và nâng cao	(tái bản lần thứ 3)
3- Điện tử ứng dụng trong công nghiệp- Tập 1	(tái bản lần thứ 4)
4- Điện tử ứng dụng trong công nghiệp- Tập 2	(sắp xuất bản)
5- Điện tử công suất	(tái bản lần thứ 2)
* GIÁO TRÌNH ĐIỆN CÔNG NGHIỆP	
1- Điện kỹ thuật	(sắp xuất bản)
2- Đo lường điện và điện tử	(đã xuất bản)
3- Khí cụ điện – Cảm biến	(sắp xuất bản)
4-Trang bị điện	(sắp xuất bản)
* GIÁO TRÌNH ĐIỆN TỬ TỰ ĐỘNG HÓA	
1- Ứng dụng PLC Siemens và Moeller trong tự động hóa	(tái bản lần thứ 5)
2- Tự động hoá với PLC và Inverter của Omron	(tái bản lần thứ 3)
3- Lập trình tự động hoá với PLC S7-200 của Siemens	(sắp xuất bản)
4- Cảm biến - Đo lường và điều khiển	(đã xuất bản)
5 -Trang bị điện không tiếp điểm-Thang máy công ngh	niệp (sắp xuất bản)
* GIÁO TRÌNH DẠY NGHỀ – HƯỚNG NGHIỆP (khổ 14x20)
1- Sửa chữa Thiết bị Điện - Điện tử gia dụng	(đã xuất bản)
2- Điện và Điện tử căn bản	(đã xuất bản)
3- Điện tử công nghiệp và Cảm biến - Tập 1	(đã xuất bản)
4- Điện tử công nghiệp và Cảm biến - Tập 2	(sắp xuất bản)
5- Ampli – Lý thuyết và Thực hành	(sắp xuất bản)

Giá: 22.000 đồng