1. Dado el siguiente modelo:

$$IP_t = \alpha + \beta_0 PBIR_t + \beta_1 PBIR_{t-1} + \dots + \alpha_0 M_t + \alpha_1 M_{t-1} + \dots + \mu_t$$
 (1)

De acuerdo a la propuesta de Koyck y con base a la data Data_Examen Parcial

a) Deducir el modelo a estimar

Rezagamos en un periodo y Multiplicamos por

$$IP_{t-1} = \alpha + \beta_0 PBIR_{t-1} + \beta_1 PBIR_{t-2} + \dots + \alpha_0 M_{t-1} + \alpha_1 M_{t-2} + \dots + \mu_{t-1}$$

Luego multiplicamos por δ

$$\delta IP_{t-1} = \delta \alpha + \delta \beta_0 PBIR_{t-1} + \delta \beta_1 PBIR_{t-2} + \dots + \delta \alpha_0 M_{t-1} + \delta \alpha_1 M_{t-2} + \dots + \delta \mu_{t-1}$$
 (2)

Restamos la ecuación (2) y (1) y ordenamos

$$IP_t = \alpha(1 - \delta) + \beta_0 PBIR_t + \alpha_0 M_t + \delta IP_{t-1} + v_t$$

b) Escribir la regresión del modelo propuesto

$$IP_t = -1455.61 - 0.0048PBIR_t + 0.796M_t + 0.0574IP_{t-1}$$

Resumen								
Estadísticas de la regresión								
Coeficiente de c	0.917256							
Coeficiente de d	0.841359							
R^2 ajustado	0.832207							
Error típico	1807.234							
Observaciones	56							
ANÁLISIS DE VARIANZA								
Grad	de cuadro	o de los cu	F	or crítico d	e F			
Regresión	3	9.01E+08	3E+08	91.92834	8.73E-21			
Residuos	52	1.7E+08	3266094					
Total	55	1.07E+09						
C	oeficientes	rror típico	stadístico	robabilida	nferior 95%	uperior 95%	ferior 95.0	perior 95.0
Intercepción	-1455.62	1523.046	-0.95573	0.343632	-4511.83	1600.597	-4511.83	1600.597
Variable X 1	0.796826	0.177829	4.480865	4.11E-05	0.439987	1.153665	0.439987	1.153665
Variable X 2	-0.00488	0.034831	-0.1401	0.889125	-0.07477	0.065013	-0.07477	0.065013
Variable X 3	0.057455	0.1123	0.511616	0.611086	-0.16789	0.282802	-0.16789	0.282802

c) ¿Cuáles son los efectos de corto plazo y de largo plazo? ¿el efecto de corto plazo es estadísticamente significativo? ¿Por qué?

EFECTO DE CORTO PLAZO

 $B_0 = -1455.6175$

EFECTO A LARGO PLAZO

 $B_1 = -$

6:00 pm a 6:40 pm

40 Minutos