

- What is a neural network?
- How do we structure it?
- How do we train it?
- How do we implement it?

NEURONS

ARTIFICIAL NEURONS

ARE REALLY JUST FUNCTIONS

ARTIFICIAL NEURAL NETWORKS

attempts to mimic the brain

HOWEVER ...

... a neural network has absolutely nothing to do with a brain.

Rather, it allows for arbitarily complex decision boundaries/regression functions

NOTATION: WEIGHTS AND BIASES

PERCEPTRONS

$$output = \begin{cases} 0 & \text{if } \overline{w}.\overline{x}+b \leq 0 \\ 1 & \text{if } \overline{w}.\overline{x}+b > 0 \end{cases}$$

THE SNACK EXAMPLE

You just sat down in the couch to watch your favorite tv show! Is it really worth it to get up again to get some snacks?

THE SNACK EXAMPLE II

You decide that you absolutely want snacks.

Luckily, your partner is not sitting in the couch!

THE SNACK EXAMPLE II

You decide that you absolutely want snacks.

Luckily, your partner is not sitting in the couch!

TRAINING A NEURAL NETWORK

means finding the best set of weights 2 biases for a given network architechture

THIS LEAVES TWO QUESTIONS

1. How to structure the network

2. Hon to optimize weights & biases

THE TENSORFLOW PLAYGROUND

playground.tensorflow.org

- What is a neural network?
- How do we structure it?
- How do we train it?
- How do we implement it?

FULLY-CONNECTED

HOW TO STRUCTURE THE NETWORK

usually one hidden layer is enough input layershidden layersoutput layer

- What is a neural network?
- How do we structure it?
- How do we train it?
- How do we implement it?

HOW TO OPTIMIZE WEIGHTS AND BIASES

Minimization problem

Searching for the lowest paint in a Landscape

Longitude & latitude: Weights & bicses

Altitude: 50 mething like

Toss fundion #of misclassifications

(1-accuracy)

GRADIENT DESCENT

I. Find the direction in which the descent is steepest

2. Take a step in that direction

3. Repeat until you reach the bottom

THE LEARNING RATE

STOCHASTIC GRADIENT DESCENT

Don't update weights and biases based on all your data every time. Instead,

,

BUT WHAT IF ...

landsages mostly flat small step => sudden change

SUDDEN CHANGES

1. Perceptrons suddenly change output from 0 to 1

I adout use perceptrons

2. The number of misclassifications (1-accuracy) 5 when a perception changes
its mind

adon't use accuracy

FIXING THE PERCEPTRON PROBLEM

output =
$$\begin{cases} 0 & \text{if} & wx + b \le 0 \\ 1 & \text{if} & wx + b > 0 \end{cases}$$

without activation function

DIFFERENT ACTIVATION FUNCTIONS

ACTIVATION IN THE OUTPUT LAYER

softmax
$$(z_i) = \frac{e^{z_i}}{Ze^{z_i}}$$
output layer

class A $(z_i) = \frac{e^{z_i}}{Ze^{z_i}}$

class B (z_i) softmax $(z_i) = \frac{e^{z_i}}{Ze^{z_i}}$

class C (z_i) softmax $(z_i) = \frac{e^{z_i}}{Ze^{z_i}}$

FIXING THE ACCURACY PROBLEM

Define a less function 1

true

$$y(x_i) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
true

$$dass$$

$$y(x_i, w_ib) = \begin{bmatrix} 0.8 \\ 0.03 \\ 0.03 \end{bmatrix}$$
prediction
$$1 = \frac{1}{2\pi} \sum_{i} ||y(x_i) - y(x_i, w_ib)||^2 \quad (MSE)$$

THE LOSS FUNCTION

The quadratic loss function captures the general idea

$$L(\boldsymbol{w}, \boldsymbol{b}) = \frac{1}{2n} \sum_{x} ||y(x) - \hat{y}(x, \boldsymbol{w}, \boldsymbol{b})||^{2}$$

but usually we use the cross-entropy loss function
$$L(w,b) = -\frac{1}{n} \sum_{x} y(x) \cdot Ln(\hat{y}(x,w,b))$$

$$y(x) \cdot \ln(\hat{y}(x_1, w_1 b)) = 0 \times \ln 0.1 + 1 \times \ln 0.8 + 0 \times \ln 0.00 + 0.00 = \ln 0.8 = -0.223$$

Example from before

$$y(x_1) = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\hat{y}(x_1, \mathbf{w}, \mathbf{b}) = \begin{bmatrix} 0.1\\0.8\\0.07\\0.03 \end{bmatrix}$$

- What is a neural network?
- How do we structure it?
- How do we train it?
- How do we implement it?

LET'S TRY TO MAKE ONE

Jupyter Notebook Neural networks - Digits

