FIG.1A

· .

Party.

25

•

Ġ

FIG.1B

, X

à

FIG.1C

FIG. 2

.?

FIG. 3A

ij,

3

1

í,

FIG. 3B

FIG. 4

Z

FIG. 5

FIG. 6

FIG. 7

24.00

,i

٠..

FIG. 8

3

.

246.25

ķ

·

.;

\$37 7

å

ŕ

¥

• ;

ij.

$$O = N = N$$

1,135

FIG.12

$$\begin{array}{c|c} Me \\ \hline \\ N \\ \hline \\ Me \\ \end{array}$$

	D1/mm	D2/mm
EXAMPLE 1-1	0	0
EXAMPLE 1-2	20	0
EXAMPLE 1-3	50	0
EXAMPLE 1-4	100	0
EXAMPLE 1~5	20	5
EXAMPLE 1-6	20	25
EXAMPLE 1-7	20	50
EXAMPLE 1-8	20	90
COMPARATIVE EXAMPLE 1-1	-10	0
COMPARATIVE EXAMPLE 1-2	-30	0

发展了。

4

÷

æ

IMAGE ESTIMATION	m)	IESS TRIMMED HALFTONE IMAGE		O w	O w	O w	O E	O E	O w	O E	m SHEAR AT IRREGULAR DENSITY AT BOTTOM	m SHEAR AT IRREGULAR DENSITY FROM TOP CENTER TO BOTTOM
DEGREE OF SLOPE	290mm)	THICKNESS	3.2 μ m	3.1 μ m	3.5 μ m	3.4 μ m	0.3 μ m	0.2 μ m	0.3 μ m	0.3 μ m	8.2 μ m	9.1 μ m
THICKNESS	DISTRIBUTION		SLOPE IN AXIAL DIRECTION	SLOPE IN AXIAL DIRECTION	SLOPE IN AXIAL DIRECTION	SLOPE IN AXIAL DIRECTION	NO SLOPE	NO SLOPE	NO SLOPE	NO SLOPE	SLOPE IN AXIAL DIRECTION	SLOPE IN AXIAL DIRECTION
k(μm) & MIN.	M TOP	290mm	1.23	0.53	0.22	0.28	0.23	0.25	0.28	0.25	2.3	3.1
DIFFERENCE R(μ m) BETWEEN MAX. & MIN.	DISTANCE FROM TOP	170mm	0.45	0.33	0.33	0.15	0.12	0.19	0.33	0.75	6.73	1.58
DIFFE BETWE	DISTA	20mm	0.15	0.11	0.09	0.08	0.09	0.12	0.43	1.29	0.13	0.22
			EXAMPLE 1-1	EXAMPLE 1-2	EXAMPLE 1-3	EXAMPLE 1-4	EXAMPLE 1-5	EXAMPLE 1-6	EXAMPLE 1-7	EXAMPLE 1-8	COMPARATIVE EXAMPLE 1-1	COMPARATIVE EXAMPLE 1-2

126.45.

:

-!

* 15 days

.

IMAGE ESTIMATION		D HALFTONE IMAGE	IRREGULAR DENSITY AT BOTTOM	LIGHT IRREGULAR DENSITY AT BOTTOM	AT LIGHT IRREGULAR DENSITY AT BOTTOM	HEAVY IRREGULAR DENSITY FROM TOP TO CENTER				
		TRIMMED IMAGE	0	0	SHEAR AT TOP	0	0	0	0	0
DEGREE OF SLOPE	290mm) FILM	THICKNESS	5.2 μ m	m η 8.4	4.6 µ m	4.9 μ m	2.2 µ m	2.3 μ m	1.9 μ m	2.7 µ m
THICKNESS	DISTRIBUTION		SLOPE IN AXIAL DIRECTION	SLOPE IN AXIAL DIRECTION	SLOPE IN AXIAL DIRECTION	SLOPE IN AXIAL DIRECTION	NO SLOPE	NO SLOPE	NO SLOPE	NO SLOPE
λ(μm) & MIN.	M TOP	290mm	2.16	1.62	1.58	1.55	1.73	0.25	0.28	0.53
DIFFERENCE R(μm) BETWEEN MAX. & MIN	DISTANCE FROM TOP	170mm	0.55	0.57	0.62	0.57	0.58	0.73	0.33	1.2
DIFFE	DISTA	50mm	0.35	0.44	0.47	0.53	0.44	1.59	1.73	2.5
			EXAMPLE 2-1	EXAMPLE 2-2	EXAMPLE 2-3	EXAMPLE 2-4	EXAMPLE 2-5	EXAMPLE 2-6	EXAMPLE 2-7	EXAMPLE 2-8

j

.

;:

FIG.16

	DIFFE	DIFFERENCE R(μm) BETWEEN MAX. & MIN	k(μm) & MIN.	THICKNESS	DEGREE OF SLOPE		IMAGE ESTIMATION
	DISTA	DISTANCE FROM TOP	м тор	DISTRIBUTION	290mm) FILM	¥.	
	50mm	170mm	290mm		THICKNESS	TRIMMED IMAGE	HALFTONE IMAGE
EXAMPLE 3-1	0.13	0.23	1.23	SLOPE IN AXIAL DIRECTION	2.9 μ m	0	0
EXAMPLE 3-2	0.11	0.22	0.49	SLOPE IN AXIAL DIRECTION	3.1 μ m	0	0
EXAMPLE 3-3	0.11	0.17	0.22	SLOPE IN AXIAL DIRECTION	2.8 μ m	0	0
EXAMPLE 3-4	0.12	0.12	0.28	SLOPE IN AXIAL DIRECTION	2.9 μ m	0	0
EXAMPLE 3-5	0.09	0.16	0.3	NO SLOPE	0.9 µ m	0	0
EXAMPLE 3-6	0.1	0.22	0.29	NO SLOPE	0.7 µ m	0	0
EXAMPLE 3-7	0.38	0.35	0.3	NO SLOPE	0.6 μ m	0	0
EXAMPLE 3-8	0.43	0.37	0.25	NO SLOPE	0.7 μ m	0	0

37.77

٠<u>٠</u>

A. C. S. M.

:15:

ž

۲.