

Statistical Natural Language Processing

Lecture 9: Parsing

Dr. MomtaziAmirkabir University of Technology

Finding structural relationship between words in a sentence

- Applications
 - Spell checking
 - Speech recognition
 - Machine translation
 - Language modeling

- Constituency vs. Dependency
 - 2 Context Free Grammar Syntactic Parsing
 - 3 Probabilistic Context Free Grammar Statistical Parsing
 - 4 Lexicalized PCFG
 - **5** Dependency Parsing
 - 6 Evaluation

Outline

- 4
- Constituency vs. Dependency
 - Context Free Grammar Syntactic Parsing
 - 3 Probabilistic Context Free Grammar Statistical Parsing
 - 4 Lexicalized PCFG
 - **5** Dependency Parsing
- 6 Evaluation

- Working based on Constituency (Phrase structure)
 - Organizing words into nested constituents
 - Showing that groups of words within utterances can act as single units
 - Forming coherent classes from these units that can behave in similar ways
 - With respect to their internal structure
 - With respect to other units in the language
 - Considering a head word for each constituent

the writer talked to the audiences about his new book.

the writer talked about his new book to the audiences. 🗸

about his new book the writer talked to the audiences. 🗸

the writer talked book to the audiences about his new. X

Identifying which words depend on (modify or arguments of) which other words

- Constituency vs. Dependency
 - 2 Context Free Grammar
 - Probabilistic Context Free Gramma
 - 4 Lexicalized PCFG
 - **5** Dependency Parsing
 - 6 Evaluation

Context Free Grammar (CFG)

- Grammar G consists of
 - □ Terminals (*T*)
 - □ Non-terminals (*N*)
 - □ Start symbol (S)
 - □ Rules (R)

- Terminals
 - The set of words in the text
- Non-Terminals
 - The constituents in a language (noun phrase, verb phrase,)
- Start symbol
 - The main constituent of the language (sentence)
- Rules
 - Equations that consist of a single non-terminal on the left and any number of terminals and non-terminals on the right

CFG

12

 $S \rightarrow NP VP$ $S \rightarrow VP$ $NP \rightarrow N$ $NP \rightarrow Det N$ $NP \rightarrow NP NP$ $NP \rightarrow NP PP$ $VP \rightarrow V$ $VP \rightarrow VP PP$ $VP \rightarrow VP NP$ PP → Prep NP

N o book V o book Det o the N o flight Prep o through N o Houston

- Constituency vs. Dependency
 - 2 Context Free Grammar Syntactic Parsing
 - 3 Probabilistic Context Free Grammar
 - 4 Lexicalized PCFG
 - **5** Dependency Parsing
 - 6 Evaluation

- Taking a string and a grammar and returning proper parse tree(s) for that string
- Covering all and only the elements of the input string
- Reaching the start symbol at the top of the string

The system cannot select the correct tree among all the possible trees

- Sentence
- Noun Phrase
 - Agreement
- Verb Phrase
 - Sub-categorization

Grammar Fragments: Sentence

■ Declaratives

A plane left.

 $S \rightarrow NP VP$

- Imperatives Leave! S → VP
- Yes-No Questions Did the plane leave? S → Aux NP VP
- WH Questions When did the plane leave? S → NP_{WH} Aux NP VP

- Each NP has a central critical noun called head
- The head of an NP can be expressed using
 - Pre-nominals: the words that can come before the head
 - Post-nominals: the words that can come after the head

Pre-nominals

- Simple lexical items: the, this, a, an, ... a car
- □ Simple possessives John's car
- Complex recursive possessives John's sister's friend's car
- Quantifiers, cardinals, ordinals...
 three cars
- Adjectives large cars

- Post-nominals
 - Prepositional phrases flight from Seattle
 - Non-finite clauses flight arriving before noon
 - Relative clauses flight that serves breakfast

Agreement

- Having constraints that hold among various constituents
- Considering these constraints in a rule or set of rules

Example: determiners and the head nouns in NPs have to agree in number

```
This flight 

Those flights 

This flights 

Those flight 

X
```

- Grammars that do not consider constraints will over-generate
 - Accepting and assigning correct structures to grammatical examples (this flight)
 - □ But also accepting incorrect examples (these flight)

Agreement at sentence level

Considering similar constraints at sentence level

Example: subject and verb in sentences have to agree in number and person

```
John flies ✓
We fly ✓
John fly X
We flies X
```

Possible CFG solution

$$S_{sg}
ightarrow NP_{sg} \ VP_{sg}$$
 $S_{\rho l}
ightarrow NP_{
ho l} \ VP_{
ho l}$ $NP_{sg}
ightarrow Det_{sg} \ N_{sg}$ $NP_{
ho l}
ightarrow Det_{
ho l} \ N_{
ho l}$ $VP_{sg}
ightarrow V_{sg} \ NP_{sg}$ $VP_{
ho l}
ightarrow V_{
ho l} \ NP_{
ho l}$...

- Shortcoming:
 - Introducing many rules in the system

 VPs consist of a head verb along with zero or more constituents called arguments

 $VP \rightarrow V$ disappear $VP \rightarrow V NP$ prefer a morning flight $VP \rightarrow V PP$ fly on Thursday

 $VP \rightarrow V NP PP$ leave Boston in the morning $VP \rightarrow V NP NP$ aive me the flight number

Arguments

Obligatory: complement

Optional: adjunct

Sub-categorization

 Even though there are many valid VP rules, not all verbs are allowed to participate in all VP rules

disappear a morning flight X

- Solution:
 - Subcategorizing the verbs according to the sets of VP rules that they can participate in
 - This is a modern take on the traditional notion of transitive/intransitive
 - Modern grammars may have 100s or such classes

Sub-categorization

27

Example:

Sneeze John sneezed

Find Please find [a flight to NY]NP
Give Give [me]NP[a cheaper fair]NP

Help Can you help [me]NP[with a flight]PP

Prefer | I prefer [to leave earlier] TO-VP | Told | I was told [United has a flight]s

John sneezed the book X
I prefer United has a flight X
Give with a flight X

Sub-categorization

- The over-generation problem also exists in VP rules
 - Permitting the presence of strings containing verbs and arguments that do not go together

John sneezed the book $VP \rightarrow V NP$

- Solution:
 - Similar to agreement phenomena, we need a way to formally express the constraints

Parsing Algorithms

Top-Down

- Starting with the rules that give us an S, since trees should be rooted with an S
- Working on the way down from S to the words

Bottom-Up

- Starting with trees that link up with the words, since trees should cover the input words
- Working on the way up from words to larger and larger trees

- Top-Down
 - Only searches for trees that can be answers (i.e. S's)
 - But also suggests trees that are not consistent with any of the words

- Bottom-Up
 - Only forms trees consistent with the words
 - But suggests trees that make no sense globally

- In both cases, we left out how to keep track of the search space and how to make choices
- Solutions
 - Backtracking
 - Making a choice, if it works out then fine
 - If not, then back up and make a different choice
 ⇒ duplicated work
 - Dynamic programming
 - Avoiding repeated work
 - Solving exponential problems in polynomial time
 - Storing ambiguous structures efficiently

Dynamic Programming Methods

- CKY: bottom-up
- Early: top-down

Chomsky Normal Form

Each grammar can be represented by a set of binary rules

$$A \rightarrow B C$$

$$A \rightarrow w$$

A, B, C are noun-terminals w is a terminal

Chomsky Normal Form

Converting to Chomsky normal form

$$A \rightarrow B C D$$

$$X \rightarrow B C$$

$$A \rightarrow X D$$

X does not occur anywhere else in the the grammar

Converting to Chomsky normal form

$$A \rightarrow B$$
 $B \rightarrow C D$

$$A \rightarrow C D$$

$$A \rightarrow B C$$

- If there is an A somewhere in the input, then there must be a B followed by a C in the input
- If the A spans from i to j in the input, then there must be a k such that i < k < j</p>
 - B spans from i to k
 - \Box C spans from k to j

Book

0

37 [0,2] [0,3] [0,5] [0,1] [0,4] [1,2] [1,3] [1,4] [1,5] [2,4] [2,5] [2,3] [3,4] [3,5] [4,5]

the

Momtazi | SNLP

flight

through

Houston

38

N → book[0,1] V → book[0,1] [0,1] [0.2] 10.31 [0,4] [0,5] Det → the[1.2] [1,2] [1,3] [1,4] [1,5] N → flight[2,3] [2,3] [2,4] [2,5] Prep → through[3,4] [3,4] [3,5] N → houston[4,5] [4,5] Book the flight through Houston 0

39

N → book(0.1) V → book[0,1] NP → N_[0,1] VP → V_[0,1] S → VP[0,1] [0.1] [0.2] 10.31 [0,4] [0,5] Det → the[1.2] [1,2] [1,3] [1,4] [1,5] N → flight[2,3] NP → Nr2.31 [2,3] [2,4] [2,5] Prep → through[3,4] [3,4] [3,5] N → houston[4,5] NP → N[4,5] [4.5] Book the flight Houston through 0 2 5

40

N → book(0.1) V → book[0,1] NP → N_[0,1] VP → V_[0,1] S → VP[0,1] [0.1] [0.2] [0.3] [0.4] [0,5] Det → the[1.2] NP → Detr1.21. Nr2.31 [1,3] [1,4] [1,5] N → flight[2,3] NP → Nr2.31 [2,3] [2,4] [2,5] Prep → through[3,4] [3,4] [3,5] N → houston[4,5] NP → N[4,5] [4.5] Book the flight Houston through 0 2 5

N → book(0.1) V → book[0,1] NP → N_[0,1] VP → V_[0,1] S → VP[0,1] [0.1] [0.2] [0.3] [0.4] [0,5] Det → the[1.2] NP → Det[1,2], N[2,3] [1,3] [1,4] [1,5] N → flight[2,3] NP → Nr2.31 [2,3] [2,4] [2,5] Prep → through[3,4] PP → Prep[3,4],NP[4,5] [3,4] [3,5] N → houston[4,5] NP → N[4,5] [4.5] Book flight through Houston the 0 5

$N \rightarrow book_{[0,1]}$		NP → NP[0,1], NP[1,3]		
$V \rightarrow book_{[0,1]}$ $NP \rightarrow N_{[0,1]}$		VP → VP _[0,1] , NP _[1,3] S → VP _[0,3]		
$NP \rightarrow N[0,1]$ $VP \rightarrow V[0,1]$		S → VP[0,3]		
S → VP[0,1]				
[0,1]	[0,2]	[0,3]	[0,4]	[0,5]
	Det → the[1,2]	NP → Det[1,2], N[2,3]		
	[1,2]	[1,3]	[1,4]	[1,5]
		N → flight _[2,3]		
		NP → N[2,3]		
		[2,3]	[2,4]	[2,5]
			Prep → through _[3,4]	PP → Prep[3,4],NP[4,5]
			[3,4]	[3,5]
				N → houston[4,5]
				NP → N _[4,5]
				[4,5]
Book	the	flight	through	Houston
0	1	2	3	4 5

0 1 2

N → book(0.1) NP → NP(0.1), NP(1.3) V → book[0,1] VP → VP[0,1], NP[1,3] NP → N_[0,1] S → VP[0,3] $VP \rightarrow V_{[0,1]}$ S → VP[0,1] [0,1] [0.2] [0.3] [0.4] [0,5] Det → the[1,2] NP → Det[1,2], N[2,3] [1,3] [1,4] [1,5] N → flight[2,3] NP → NP(2.3), PP(3.5) NP - Nr2.31 [2,3] [2,4] [2,5] Prep → through[3,4] PP → Prep[3,4],NP[4,5] [3,4] [3.5] N → houston[4,5] NP → N[4,5] [4.5] Book flight Houston the through 0 2 5

43

$\begin{array}{c} N \rightarrow book_{[0,1]} \\ V \rightarrow book_{[0,1]} \\ NP \rightarrow N_{[0,1]} \\ VP \rightarrow V_{[0,1]} \\ S \rightarrow VP_{[0,1]} \end{array}$		$\begin{array}{l} NP \rightarrow NP_{[0,1]}, NP_{[1,3]} \\ VP \rightarrow VP_{[0,1]}, NP_{[1,3]} \\ S \rightarrow VP_{[0,3]} \end{array}$		
[0,1]	[0,2]	[0,3]	[0,4]	[0,5]
	Det → the[1,2]	NP → Det[1,2], N[2,3]		NP → NP[1,3], PP[3,5]
	[1,2]	[1,3]	[1,4]	[1,5]
	(,,,	$N \rightarrow flight_{[2,3]}$ $NP \rightarrow N_{[2,3]}$		NP → NP[2,3], PP[3,5]
		[2,3]	[2,4]	[2,5]
		[[-1-3]	Prep → through _[3,4]	PP → Prep _[3,4] ,NP _[4,5]
			[3,4]	[3,5]
			[0,7]	N → houston[4,5] NP → N[4,5]
				[4,5]
Book	the	flight	through	Houston

VP → VP[0,1], NP[1,5] N → book(0.1) NP → NP(0.1), NP(1.3) V → book[0,1] VP → VP[0,1], NP[1,3] VP' → VP[0,3], PP[3,5] ambiguity $NP \rightarrow N_{[0,1]}$ S → VP[0,3] S → VP[0,5] $VP \rightarrow V_{[0,1]}$ S - VP'[0,5] $S \rightarrow VP_{[0,1]}$ [0.1] [0.2] [0.3] [0.4] [0.5] Det → the[1.2] NP → Detr1.21. Nr2.31 NP → NP(1.3), PP(3.5) [1,3] [1,4] [1,5] N → fliaht(2.3) NP → NP(2.3), PP(3.5) NP → Nr2.31 [2,3] [2,4] [2,5] Prep \rightarrow through_[3,4] PP \rightarrow Prep_[3,4],NP_[4,5] [3.4] [3.5] N → houston[4,5] $NP \rightarrow N_{[4,5]}$ [4.5] flight Book the through Houston 0 2 5

Momtazi | SNLP

Outline

- 46
- 1 Constituency vs. Dependency
- Context Free Gramma
- 3 Probabilistic Context Free Grammar
- 4 Lexicalized PCFG
- **5** Dependency Parsing
- 6 Evaluation

Probabilistic Context Free Grammar (PCFG)

- Grammar G consists of
 - □ Terminals (*T*)
 - □ Non-terminals (N)
 - □ Start symbol (S)
 - □ Rules (R)
 - □ Probability function (*P*)
 - $P: R \to [0,1]$
 - $\forall X \in \mathbb{N}, \sum_{X \to \lambda \in \mathbb{R}} P(X \to \lambda) = 1$

CFG

48

 $S \rightarrow NP VP$ $S \rightarrow VP$ $NP \rightarrow N$ $NP \rightarrow Det N$ $NP \rightarrow NP NP$ $NP \rightarrow NP PP$ $VP \rightarrow V$ $VP \rightarrow VP PP$ $VP \rightarrow VP NP$ PP → Prep NP

N o book V o book Det o the N o flight Prep o through N o Houston

PCFG

49 $S \rightarrow NP VP$ $S \rightarrow VP$

0.1 $NP \rightarrow N$ 0.3

0.9

 $NP \rightarrow Det N$ 0.4

0.1 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$ 0.2 0.1 $VP \rightarrow V$

 $VP \rightarrow VP PP$ 0.3

 $VP \rightarrow VP NP$ 0.6

1.0 $PP \rightarrow Prep NP$

 $N \rightarrow book$ 0.5 $V \rightarrow \mathsf{book}$ 1.0 $Det \rightarrow the$ 1.0

 $N \rightarrow flight$ 0.4

 $Prep \rightarrow through$ 1.0

 $N \rightarrow Houston$ 0.1

- A treebank is a corpus in which each sentence has been paired with a parse tree
- These are generally created by
 - Parsing the collection with an automatic parser
 - Correcting each parse by human annotators if required
- Requirement: detailed annotation guidelines that provide
 - A POS tagset
 - A grammar
 - Annotation schema
 - Instructions for how to deal with particular grammatical constructions

- Penn Treebank is a widely used treebank for English
 - Most well-known section: Wall Street Journal Section
 - 1 M words from 1987-1989

```
(S (NP (NNP John))
(VP (VPZ flies)
(PP (IN to)
(NNP Paris)))
```

- Providing a valuable linguistic resource
- Can be used by many taggers and parsers (reusablity)
- Broad coverage
- Providing various information
 - Frequencies and distributions
- Can be used for evaluating systems

- Constituency vs. Dependency
- 2 Context Free Grammar
- 3 Probabilistic Context Free Grammar Statistical Parsing
- 4 Lexicalized PCFG
- **5** Dependency Parsing
- 6 Evaluation

- Considering the corresponding probabilities while parsing a sentence
- Selecting the parse tree which has the highest probability
- P(t): the probability of a tree t
 - Product of the probabilities of the rules used to generate the tree

PCFG

55	$\mathcal{S} ightarrow \mathit{NP}$ VP	0.9
	$\mathcal{S} ightarrow \mathit{VP}$	0.1
	NP o N	0.3
	$NP o Det \ N$	0.4
	$\textit{NP} ightarrow \textit{NP} \ \textit{NP}$	0.1
	$\mathit{NP} o \mathit{NP} \ \mathit{PP}$	0.2
	VP o V	0.1

 $\textit{VP} \rightarrow \textit{VP} \ \textit{PP}$

 $VP \rightarrow VP \ NP$

 $PP \rightarrow Prep NP$

N o book	0.5
V o book	1.0
$Det \rightarrow the$	1.0
$N \rightarrow flight$	0.4
$\textit{Prep} ightarrow ext{through}$	1.0
N o Houston	0.1

0.3

1.0

0.6

$$P(t) = 0.2 \times 0.4 \times 1.0 \times 1.0 \times 0.4 \times 1.0 \times 0.1 = 0.0032$$

Probabilistic CKY Parsing

0.5	N → boo	ok [0,1]	0.1*0.1	5*0.16=0.0024	NP -	• NP[0,1], NP[1,3]		VP → VP[0,1], NP[1,5]
1.0	V → boo	k [0,1]	0.6*0.	1*0.16=0.0096	VP -	VPn 11. NPn 31		VP' → VP[0,3], PP[3,5]
0.3*0.5=0.15			0.1*0.	.0096=0.00096	S → '	VP[0,3]		S → VP _[0,5]
0.1*1.0=0.1	VP → V	0,1]						S → VP'[0,5]
0.1*0.1=0.01	$S \rightarrow VP_{[}$	0,1]						
	[0,1]		[0,2]		[0,3]		[0,4]	[0,5]
		1.0	Det →	the[1,2]	NP -	Det[1,2], N[2,3]		NP → NP[1,3], PP[3,5]
						.0*0.4=0.16		
			[1,2]		[1,3]		[1,4]	[1,5]
				0.4	N →	flight[2,3]		$NP \rightarrow NP_{[2,3]}, PP_{[3,5]}$
				0.3*0.4=0.12				
					[2,3]		[2,4]	[2,5]
							Prep → through[3,4]	PP → Prep[3,4], NP[4,5]
							[3,4]	[3,5]
							[[0,4]	
								N → houston _[4,5] NP → N _[4,5]
								NP → N[4,5]
								[4,5]
		3ook		the		flight	through	Houston
		JUUK		uie		mynt	through	Houston
	0		1		2		3	4 5

- The main source of ambiguities in parsing
 - Finding the correct place of attachments

I saw the man with a telescope.

- PCFG considers no knowledge about the words
- Strong independent assumption in parse trees

 Knowing about lexicon help us to select a better option for merging constituents

Local Tree	come	take	think	want
VP → V	9.5%	2.6%	4.6%	5.7%
VP → V NP	1.1%	32.1%	0.2%	13.9%
VP → V PP	34.5%	3.1%	7.1%	0.3%
VP → V SBAR	6.6%	0.3%	73.0%	0.2%
VP → V S	2.2%	1.3%	4.8%	70.8%
VP → V NP S	0.1%	5.7%	0.0%	0.3%
VP → V PRT NP	0.3%	5.8%	0.0%	0.0%
VP → V PRT PP	6.1%	1.5%	0.2%	0.0%

- Constituency vs. Dependency
 - 2 Context Free Grammar
 - 3 Probabilistic Context Free Grammar
 - 4 Lexicalized PCFG
 - **5** Dependency Parsing
 - 6 Evaluation

Headed CFG

63

 Each context-free rule has one special child that is the head of the rule

```
S 
ightarrow NP VP

S 
ightarrow VP

NP 
ightarrow N

NP 
ightarrow NP NP

NP 
ightarrow NP PP

VP 
ightarrow V

VP 
ightarrow VP PP

VP 
ightarrow VP NP

PP 
ightarrow Prep NP
```

- 64
- Trees with headwords
 - Assign a head word to each constituent and transfer it to the parents
 - Each constituent received its headword from its head child

65

- Grammar G consists of
 - □ Terminals (*T*)
 - □ Non-terminals (N)
 - □ Start symbol (*S*)
 - □ Rules (R)
- Rules in CFG are written as follows:

$$\begin{array}{ccc} N \rightarrow N_1 & N_2 \\ N \rightarrow T \end{array}$$

Rules in lexicalized PCFG are written as follows:

$$\begin{array}{ll} N(X) \rightarrow \begin{matrix} N_1(X) & N_2(Y) \\ N(Y) \rightarrow N_1(X) & N_2(Y) \\ N(T) \rightarrow T \end{array}$$

Lexicalized PCFG

```
66
```

```
S \rightarrow NP VP
S \rightarrow VP
NP \rightarrow N
NP(flight) \rightarrow Det(the) N(flight)
NP \rightarrow NP NP
NP(flight) \rightarrow NP(flight) PP(through)
VP(book) \rightarrow V(book)
VP \rightarrow VP PP
VP \rightarrow VP(book) NP(flight)
PP(through) \rightarrow Prep(through) NP(Hauston)
```

$S(book) \rightarrow VP(book) NP(flight)$

$$P(S \rightarrow VP NP)$$

$$P(S(book) \rightarrow_1 VP(book) NP(flight))$$

$$P(S(book)
ightarrow_1 VP(book) NP(flight))$$
 $S(book)
ightarrow_1 VP(book) NP$
 $S(book)
ightarrow_1 VP(book) NP(---)$
flight

$$P(S(book) \rightarrow_1 VP(book) \ NP(flight)) = P(S \rightarrow_1 VP \ NP|S, book) \times P(flight|S \rightarrow_1 VP \ NP, book)$$

Using smoothing to estimate each probability

70

$$P(S(book) \rightarrow_1 VP(book) \ NP(flight)) = P(S \rightarrow_1 VP \ NP|S, book) \times P(flight|S \rightarrow_1 VP \ NP, book)$$

$$P(S \rightarrow_1 VP \ NP|S, book) = \\ \lambda_1 P_{ML}(S \rightarrow_1 VP \ NP|S, book) + \lambda_2 P_{ML}(S \rightarrow_1 VP \ NP|S)$$

$$\begin{split} P_{\mathit{ML}}(S \rightarrow_1 \mathit{VP} \; \mathit{NP}|S, \mathit{book}) &= \frac{\#(\mathit{S}(\mathit{book}) \rightarrow_1 \mathit{VP} \; \mathit{NP})}{\#(\mathit{S}(\mathit{book}))} \\ P_{\mathit{ML}}(S \rightarrow_1 \mathit{VP} \; \mathit{NP}|S) &= \frac{\#(S \rightarrow_1 \mathit{VP} \; \mathit{NP})}{\#(S)} \end{split}$$

Using smoothing to estimate each probability

$$P(S(book) \rightarrow_1 VP(book) \ NP(flight)) = P(S \rightarrow_1 VP \ NP|S, book) \times P(flight|S \rightarrow_1 VP \ NP, book)$$

$$P(flight|S \rightarrow_1 VP NP, book) = \lambda_3 P_{ML}(flight|S \rightarrow_1 VP NP, book) + \lambda_4 P_{ML}(flight|S \rightarrow_1 VP NP) + \lambda_5 P_{ML}(flight|NP)$$

$$\begin{split} P_{\mathit{ML}}(\mathit{flight}|S \rightarrow_1 \mathit{VP} \; \mathit{NP}, \mathit{book}) &= \frac{\#(S(\mathit{book}) \rightarrow_1 \mathit{VP}(\mathit{book}) \; \mathit{NP}(\mathit{flight}))}{\#(S(\mathit{book}) \rightarrow_1 \mathit{VP}(\mathit{book}) \; \mathit{NP})} \\ &(\mathit{flight}|S \rightarrow_1 \mathit{VP} \; \mathit{NP}) = \frac{\#(S \rightarrow_1 \mathit{VP} \; \mathit{NP}(\mathit{flight}))}{\#(S \rightarrow_1 \mathit{VP} \; \mathit{NP})} \\ &P_{\mathit{ML}}(\mathit{flight}|\mathit{NP}) = \frac{\#\mathit{NP}(\mathit{flight})}{\#(\mathit{NP})} \\ &\underset{\mathsf{Momtazi}}{\#(\mathit{NP})} = \frac{\#\mathit{NP}(\mathit{flight})}{\#(\mathit{NP})} \end{split}$$

72

- Number of rules increases dramatically
- # rules
 - □ in CFG: *O*(|*N*|³)
 - □ in LPCFG: $O(|\Sigma|^2 \times |N|^3)$
- Running time for parsing an n words sentence
 - \Box in CFG: $O(n^3|N|^3)$
 - \square in LPCFG: $O(n^3|\Sigma|^2|N|^3)$
- But:

Considering the observed words in the sentence, the number of rules will be reduced to $O(n^2 \times |N|^3)$ for parsing each sentence \Rightarrow running time of LPCFG: $O(n^5|N|^3)$

- Constituency vs. Dependency
 - 2 Context Free Grammar
 - 3 Probabilistic Context Free Grammar
 - 4 Lexicalized PCFG
 - 5 Dependency Parsing
 - 6 Evaluation

- A special symbol, called root, is used to point the head of the sentence
- Each dependency connect a head word h to a modifier m

- Dependencies in the above example are as follows:
 - (0,2)
 - (2,1)
 - (2,4)
 - (4,3)

- The dependency arcs form a directed tree, with the root symbol at the root of the tree
- For each word there is a directed path from root
- There is no crossing dependencies (called projective structure)

Example: Possible Dependency Structures for a Sentence

ALGORITHM:

- For an input sentence s, list all possible dependency parse trees GEN(x)
- ② For each parse tree y, create a global feature vector f(x, y) based on the local feature vectors g(x, h, m)

$$f(x,y) = \sum_{(h,m)\in y} g(x,h,m)$$

3 Select the parse tree with the maximum value for f(x, y)

$$F(x) = \operatorname{arg\,max}_{y \in GEN(x)} w.f(x, y)$$

Example

79

$$x = I$$
, eat, an, apple $y = (0,2), (2,1), (2,4), (4,3)$ $f(x,y) = \sum_{(h,m)\in y} g(x,h,m)$ $f(x,y) = g(x,0,2) + g(x,2,1) + g(x,2,4) + g(x,4,3)$

Momtazi | SNLP

$$g(x,h,m) = < g_1(x,h,m), g_2(x,h,m), g_3(x,h,m), ..., g_d(x,h,m) >$$

$$g_1(x, h, m) = \begin{cases} 1 & \text{if } x_h = \text{``A''} AND x_m = \text{``B''} \\ 0 & \text{otherwise} \end{cases}$$

$$g(x, h, m) = \langle g_1(x, h, m), g_2(x, h, m), g_3(x, h, m), ..., g_d(x, h, m) \rangle$$

$$g_2(x, h, m) = \begin{cases} 1 & \text{if } POS(h) = \text{"}K\text{"} AND POS(m) = \text{"}L\text{"} \\ 0 & \text{otherwise} \end{cases}$$

$$g(x, h, m) = \langle g_1(x, h, m), g_2(x, h, m), g_3(x, h, m), ..., g_d(x, h, m) \rangle$$

$$g_3(x, h, m) = egin{cases} 1 & & ext{if } |h - m| > C \\ 0 & & ext{otherwise} \end{cases}$$

- Single features
 - □ The head word: w_h
 - \square The modifier word: w_m
 - The POS of head word: t_h
 - \Box The POS of modifier word: t_m
- The combination of the single features:

$$< w_h, w_m > < w_h, w_m, t_h, t_m >$$

■ Contextual features: t_{h-1} t_{h+1} t_{m-1} t_{m+1}

- For some languages, there exist "Dependency banks";e.g., Czech
- If no dependency bank is available for a language, it is possible to extract it from a constituency-based treebank

Converting Lexicalized Constituency Trees to Dependency Trees

85

Unlabeled Dependencies:

(0,2) root \rightarrow eat

(2,1) eat $\rightarrow 1$

(2,4) eat \rightarrow apple

(4,3) apple \rightarrow an

Running time for parsing an n words sentence

□ in CFG: $O(n^3|N|^3)$

□ in LPCFG: $O(n^5|N|^3)$

□ in Dependency: $O(n^3)$

⇒ Dependency parsing is very efficient and useful

- Constituency vs. Dependency
- 2 Context Free Grammar
- 3 Probabilistic Context Free Grammar
- 4 Lexicalized PCFG
- **5** Dependency Parsing
- 6 Evaluation

Constituents in Parse Tree

Label	Start	End
S	0	5
VP	0	1
NP	1	5
NP	1	3
PP	3	5

Constituents in Parse Tree

Label	Start	End
S	0	5
VP	0	1
NP	1	5
NP	1	3
PP	3	5

Label	Start	End
S	0	5
VP	0	3
NP	1	3
PP	3	5

٢	1	
ì	l	

Label	Start	End
S	0	5
VP	0	1
NP	1	5
NP	1	3
PP	3	5

Labeled Precision
$$=\frac{3}{4}=0.75$$

Labeled Recall
$$=\frac{3}{5}=0.6$$

$$F_1 = 0.66$$

- Labeled precision and labeled recall consider the beginning and end of brackets as well as the label of detected constituencies
- Unlabeled precision and unlabeled recall only match the beginning and end of brackets regardless of their label

- Available results on Penn treebank (Wall Street Journal)
 - □ # train sentences: 40,000
 - □ # test sentences: 2,400

- □ PCFG: 70.6% Recall & 74.8% Precision
- □ LPCFG: 88.1% Recall & 88.3% Precision
- More results:
 - (Charniak & Johnson 2005): 91.2% Recall & 91.8% Precision
 - (Carreras et al. 2008): 90.7% Recall & 91.4% Precision
 - (Petrov 2010): 91.7% Recall & 92.0% Precision

Dependencies in Parse Tree

Head	Word	Rule
Root	book ₁	ROOT
book ₁	flight ₃	$S \rightarrow_1 VP NP$
flight ₃	through ₄	$NP ightarrow_1 NP \ PP$
flight ₃	the ₂	$NP ightarrow_2 DET N$
through ₄	Houston ₅	$PP \rightarrow_1 PREP N$

- The number of dependencies in both gold and guess parse trees are equal to the number of words
- Dependency accuracy:
 The number of dependencies matches in both trees

Head	Word	Rule
Root	book ₁	ROOT
book ₁	flight₃	$S ightarrow_1 VP NP$
flight ₃	through₄	$NP ightarrow_1 NP PP$
flight ₃	the ₂	$NP \rightarrow_2 DET N$
through ₄	Houston ₅	$PP \rightarrow_1 PREP N$
Hood	Mord	Dulo

Head	VVord	Rule
Root	book₁	ROOT
book₁	through₄	$\mathcal{S} ightarrow_1$ VP PP
book₁	flight ₃	$VP ightarrow_1 V NP$
flight ₃	the ₂	$NP \rightarrow_2 DET N$
through ₄	Houston ₅	$PP \rightarrow_1 PREP N$

Dependency Accuracy
$$=\frac{3}{5}=0.6$$

- Comparing LPCFG with Dependency model
- Available results on Penn treebank (Wall Street Journal)
 - □ LPCFG (Collins 1997): 91.4% Dependency Accuracy
 - □ Dependency parsing (McDonald 2005): 90.7%
 - using dynamic programming

■ Precision and recall can still be used, but for a particular dependency type (e.g., $NP \rightarrow_1 NP PP$)

- ⇒ Can be used for error analysis
 - subject-verb: above 95% recall and precision
 - □ object-verb: above 92% recall and precision

 - \square Coordination \approx 61% recall and precision

Further Reading

- Speech and Language Processing
 - □ Chapters 12, 13, 14, 15