

Wrap up session and open questions

BAMB! Summer School

Day 8 - 26 July 2023

What have we learnt?

Day 1 What is a model (1A)

Model definition & simulations

Maximum likelihood

Day 1 What is a model (1B)

Bootstrapping

Parameter recovery

Model validation

Day 1 What is a model (1C)

Cross validation

Model recovery

Model selection

testing:

We can then compare models by examining how well each one categorises the test data

Day 2 Drift-diffusion models

Basic structure ...

... Lots of extensions eg. collapsing bounds

Day 3 RL

Reinforcement Learning as a cognitive model

Value(s) += α * RPE RPE = r - Value(s)

Goal

189 4

Reward

+1

Algorithm

$$a = [F, H]$$

 $s = [A, A]$
 $r = [0, +1]$

$$V(a|s) += \alpha * RPE$$

 $RPE = r - V(a|s)$
 $p(a|s) = softmax(\beta * V(a|s))$

$$a = [\rightarrow, \leftarrow]$$

$$s = [\boxed{}$$

$$r = [0, +1]$$

$$V(a|s) += \alpha * RPE$$

 $RPE = r - V(a|s)$
 $p(a|s) = softmax(\beta * V(a|s))$

Reasons for cognitive models:

- Process models
- Precise
- Quantifiable
- Generate predictions
- Optimality, complexity
- Statistical methods

[Daw, 2011. DM, A&L: A&P]
[Wilson & Collins, 2019. eLife]

Day 4 RNN

Theories of representation learning for sensory neocortex

Accurate but fragile:

- vulnerable to seemingly innocuous changes in inputs
- error patterns different from biological systems

Day 6 Bayesian models

Bayes-optimal models can be used to quantify and qualify suboptimal human inferences

Day 7 Latent variables

Expectation Maximization

The expectation maximization (EM) algorithm

- 0. Initialization: Choose θ^0 .
- 1. **E step:** $\mathbb{E}[z]$ under posterior $p(z|x, \theta^i)$
- 2. **M step:** Update θ^{i+1} by maximizing $\mathbb{E}_{z}[\ln p(x,z|\theta)]$

Alternate 1. and 2. until convergence.

- Iterative algorithm
- Joint inference of posteriors and parameter estimation
- E and/or M step can also be numerical

Mixture Models

Hidden Markov Models

- Cluster complex data into simpler patterns (classes [MM] / states [HMM])
- Inference of *latent variables* and *observation models*
- Observation models can be more complex than Gaussian (e.g. linear model [MM/HMM], differential equation [HMM]...)

Regression analyses - mechanistic-free modelling

Generalized Linear Models (GLMs)

(International Brain Lab, eLife, 2021)

Generalized Additive Models (GAMs)

fits arbitrary function of regressor

(Lieder et al, Nat Neuro, 2019)

From mechanistic-free to mechanistic model

Hermoso-Mendizabal et al., ,Nat Comms (2019)

Population-level analyses

Subject 1: $(oldsymbol{X}_1,oldsymbol{Y}_1)$ \longrightarrow $\hat{oldsymbol{\hat{\theta}}}_1$

Subject 2: $(oldsymbol{X}_2, oldsymbol{Y}_2)$

Subject $m{:}(oldsymbol{X}_m,oldsymbol{Y}_m) \longrightarrow$

We want to infer from a sample of subjects conclusions about general population(s)

Summary statistics approach $\{\hat{\boldsymbol{\theta}}_i\} \longrightarrow p(\boldsymbol{\theta}|\boldsymbol{Y})$

Mixed models

(Generalized Linear Mixed Models (GLMM), HDDM

 $\{(\boldsymbol{X}_i, \boldsymbol{Y}_i)\}$

Computing the likelihood

direct access:

- psychometric curve (with/without lapses) [Wichmann&Hill, 2001]
- generalized linear model
- standard DDM
- RL model with deterministic value update

numerical approximation/integration:

- generalized DDM [Shinn et al, eLife 2001]
- expectation-maximization: for latent variable model
 - HMM, Gaussian mixtures
 - RL model with stochastic value update, Kalman filter
 - GLMM

Computing the likelihood (cont'd)

simulation-based inference:

Computing the posterior

direct access: linear regression

VBMC [Acerbi, NeuIPS 2018,2020]

sampling
methods
(MCMC)

variational inference:

e.g. VBA [Daunizeau et al., PlosCB 2014]

Illuminating neural analysis with behavioral modelling

model-based fMRI (brain mapping)

correlate latent variable estimated from behavioral model with neural activity

neural modelling

test a model of neural activity inspired from behavioral model

Weiss et al,Nat Comms (2021) Hyafil et al, eLife 2023

mediation analysis

test whether the impact of variables onto behavior is mediated by neural activity

Padoa Schioppa, Neuron (2022) El Zein et al, eLife 2015

Open questions session