Duração: 1hora 50min.

P2 de Álgebra Linear I -2005.13 de maio de 2005

Nome:	Turma:	
Assinatura:	Matrícula:	

Questão	Valor	Nota	Revis.
1a	1.0		
1b	1.0		
1c	1.0		
1d	1.0		
2a	1.5		
2b	1.0		
2c	1.0		
2d	1.0		
3a	1.0		
3b	1.0		
Total	10.5		

Instruções

- \bullet É proibido usar calculadora. Mantenha o celular desligado.
- É **proibido desgrampear** a prova. Prova com folhas faltando ou rasuradas terá **nota zero.**
- Justifique cuidadosamente todas as respostas de forma completa, ordenada e coerente. Respostas sem justificativa terão nota zero. Escreva de forma clara e legível.
- Faça a prova na sua turma.

- 1) Considere a base $\beta = \{u_1, u_2, u_3\}$ de \mathbb{R}^3 .
 - (1.a) Prove que

$$\gamma = \{u_1 + u_2, u_1 + u_3, u_2 + u_3\}$$

é uma base de \mathbb{R}^3 .

(1.b) Considere o vetor w cujas coordenadas na base β são

$$(w)_{\beta} = (1, 2, 3).$$

Determine as coordenadas $(w)_{\gamma}$ do vetor w na base γ .

(1.c) Considere agora a base de \mathbb{R}^3

$$\alpha = \{(1, 2, 3), (1, 1, 1), (a, b, c)\}.$$

Sabendo que as coordenadas do vetor (1,4,9) na base α são (1,2,2) determine $a,\,b$ e c.

(1.d) Considere os vetores

$$v_1 = (2, -1, 0),$$
 $v_2 = (2, 0, 1),$ $v_3 = (0, 1, 1),$ $v_4 = (4, -2, 0),$ $v_5 = (2, 2, 3),$ $v_6 = (1, 1, a).$

Determine o valor de **a** no vetor v_6 para que os vetores v_1, v_2, v_3, v_4, v_5 e v_6 gerem um plano π . Determine a equação cartesiana de π .

Resposta:

2) Considere o vetor w=(1,2,1) de \mathbb{R}^3 e a transformação linear

$$M : \mathbb{R}^3 \to \mathbb{R}^3, \qquad M(u) = u \times w.$$

- (2.a) Determine a matriz [M] de M na base canônica.
- (2.b) Determine o subespaço imagem de M, isto é,

im
$$(M) = \{u \in \mathbb{R}^3 \text{ tal que existe } v \in \mathbb{R}^3 \text{ tal que } M(v) = u\}.$$

(2.c) Determine o conjunto v de vetores que verifica

$$M(v) = (1, -1, 1).$$

(2.d) Estude se M possui (transformação linear) inversa. Em caso afirmativo, determine $[M]^{-1}$.

Resposta:

3) Considere as retas

$$r_1$$
: $y = 2x - 1$, r_2 : $y = 3x - 3$

е

$$s_1$$
: $y = x + 2$, s_2 : $y = 3$.

Sejam T uma transformação afim

$$T \colon \mathbb{R}^2 \to \mathbb{R}^2$$

que verifica

$$T(r_1) = s_1$$
 e $T(r_2) = s_2$

e $L \colon \mathbb{R}^2 \to \mathbb{R}^2$ a parte linear de T.

- (3.a) Determine a matriz [L] de L.
- (3.b) Determine a forma matricial de T.

Resposta: