Chapitre 1

Talk

1.1 Stronger Bend and Break Lemma

Chap $3.3~\mathrm{p.63}$

1.1.1 Example(s)

Example 1

$$f_t: \left(\begin{array}{ccc} \mathbb{P}^1 & \longrightarrow & \mathbb{P}^2 \\ [u:v] & \mapsto & [u^2:tuv:v^2] \end{array} \right)$$

Étude du cas limite t = 0.

Example 2

Étude du cas limite $t = \infty$.

1.1.2 Bend and Break with bounds on degree

Proposition 3.5

Statement

What is $H \cdot C$? Que signifie $H \cdot C$?

Possibilités

- 1. $H \cdot f_*C$
- 2. $\deg_C(f^*H)$

On a dans le texte : $e^*H \cdot \varepsilon^*C = H \cdot C$

In the smooth case

Proof

(A) Normalisation

"Normalisation of the image" L'image f_*C est un 1-cycle (non réduit en quelque sorte) On prend C'' une componante et on note C' sa normalisé.

(B) Compactification

lemme de rigidité

(C) Resolution of singularities

 $E_{ij} \cdot E_{kl}$ For $i = 1 \cdots b$, we denote by $E_{i1}, E_{i2}, \cdots, E_{in_i}$ the (effective) inverse images on S of the (-1)-exceptional curves that appear every time some point *lying over* $\{c_i\} \times \overline{T}$ is blown up. We have :

$$E_{ij} \cdot E_{kl} = -\delta_{ik}\delta_{jl}$$

 $E_{ij} \cdot T_i = 1$ if the blown up point is on the (smooth) strict transform of $\{c_i\} \times \overline{T}$ and 0 otherwise.

Dans le cas de résolution de singularités type cusp : on éclate le cusp de T puis on rééclate le point (double) de rencontre en T et E en un nouveau diviseur exceptionnel F . . .

Donc si c'etait $T = c_i \times T$ On aurait $E_{i1} = E$ $E_{i2} = F$ et $E_{i1} \cdot E_{i2} = E \cdot F = 1$ -> contradiction avec ci-dessus!

Pareil, si la formule tout en haut est fausse, alors comme on montre que $a_{ij} \geq 0$ car avec cette formule on a : $e^*H \cdot E_{ij} = +a_{ij}$ et on sait que H est nef.

(D) Decomposition in $N^1(X)_R$

$$G \cdot T_i = 0$$

- (E) Hodge Index Theorem
- (F) Conclusion

1.2 Not nef anticanonical

Chap 3.4 p. 66

1.2.1 Theorem 3.6

Statement

Sketch of proof

In finite caracteristic

Lemma 3.7 Closeness of evaluation map

In caracteristic 0

1.2.2 Generic Nefness

Definition

Example

Theorem 3.10

Statement

Proof