SESSION DE 1989

MATHÉMATIQUES GÉNÉRALES

Durée: 6 heures

Calculatrice électronique de poche - y compris calculatrice programmable et alphanumérique - à fonctionnement autonome, non imprimante, autorisée conformément à la circulaire nº 86-228 du 28 juillet 1986.

La clarté et la précision de la rédaction seront prises en compte dans l'appréciation de la copie.

N désigne l'ensemble des entiers naturels, Z l'anneau des entiers relatifs et C le corps des nombres complexes. Si p est un nombre premier, \mathbb{F}_p désigne le corps $\mathbb{Z}/p\mathbb{Z}$.

Soit S un sous-anneau de \mathbb{C} . On note M_n (S) l'anneau des matrices carrées d'ordre n à coefficients dans S et GL (n, S) le groupe des éléments inversibles de $M_n(S)$. Si M est un élément de $M_n(S)$, M* (resp. 'M) désigne la matrice adjointe (resp. la matrice transposée) de M.

On dit qu'une matrice hermitienne (resp. une matrice symétrique réelle) A est définie positive si la forme hermitienne (resp. la forme bilinéaire symétrique) associée à A est définie positive.

On dit que S est un anneau principal, si tout idéal de S peut être engendré par un seul élément, cuclidien s'il existe une application N de S – $\{0\}$ dans N telle que si a et b sont deux éléments non nuls de S, il existe q et r appartenant à S vérifiant a = bq + r et r = 0 ou N (r) < N (b).

La partie III est largement indépendante des parties I et II.

I. PRÉLIMINAIRES

A. Dans cette partie, p désigne un nombre premier impair.

A.1.a. Montrer que, si u, v, w sont trois éléments nou nuls de \mathbb{F}_n l'équation :

a une solution dans F_p . (On pourra considérer le cardinal de l'ensemble des éléments de la forme ux^2 (respectivement de la forme $w - vy^2$)).

A.1.b. Soit n > 1 un entier tel que p ne divise pas 4n - 1. Montrer qu'il existe des entiers relatifs a, b et un entier $m \ge 1$ tels que: $a^2 + ab + nb^2 + 1 = mp$.

A2. On suppose p de la forme 8k+1 ou 8k+3, et soif K une extension de \mathbb{F}_p , corps de rupture du polynôme $t^4 + 1$. Soit b une racine dans K de ce polynôme; on pose: $x = b - b^{-1}$.

A2.a. Montrer les relations suivantes : $x^2 = -2$ et $x^p = x$.

En déduire que x appartient à \mathbb{F}_{x} .

A.2.b. Montrer qu'il existe des entiers a et m tels que : $2a^2 + 1 = (2m - 1)p$

$$2a^2 + 1 = (2m - 1)p$$

et prouver que la matrice : $\begin{pmatrix} p & a & 0 \\ a & m & 1 \\ & & & 2 \end{pmatrix}$ est une matrice symétrique définie positive et de déterminant égal à 1.

Déterminer tous les couples (a, m) lorsque p = 17.

B. Soit $D \ge 1$ un entier qui n'est pas divisible par le carré d'un nombre premier. On pose :

$$\omega_{D} = \begin{cases} i\sqrt{D} & \text{si} \quad D \equiv 1 \text{ ou } 2 \text{ (mod 4)} \\ \frac{1+i\sqrt{D}}{2} & \text{si} \quad D \equiv 3 \text{ (mod 4)} \end{cases}$$

 $\mathbb{Z}\left[\omega_{D}\right]$ désigne le sous-anneau de \mathbb{C} , ensemble des éléments de la forme $\alpha+\beta\omega_{D}$, α et β éléments de \mathbb{Z} .

B.1. Soit p un nombre premier qui ne divise pas D. Montrer qu'il existe des entiers relatifs a, b, m tels que la matrice:

$$\left(\begin{array}{ccc}
p & a+b\omega_{\rm D} \\
a+b\omega_{\rm D} & m
\end{array}\right)$$

soit une matrice hermitienne définie positive et de déterminant égal à 1.

- B.2. Dans le plan euclidien rapporté à un repère orthonormé, on désigne par A, B, C les images respectives des nombres 0, 1, ωD et par T le triangle, enveloppe convexe des points A, B, C. Le rayon du cercle circonscrit à T est noté R.
 - B.2.a. Montrer que pour tout point M de T, on a :

$$\inf (MA, MB, MC) \leq R.$$

B.2.b. On pose:

$$k = \sup_{z \in C} \left(\inf_{u \in \mathcal{L}[w_D]} \left| z - u \right|^2 \right).$$

Prouver l'égalité:

$$k = \sup_{M \in T} \left(\inf \left(MA^2, MB^2, MC^2 \right) \right).$$

B.2.c. En déduire que l'on a :

$$k = \frac{D+1}{4}$$
 si D = 1 ou 2 (mod 4) $k = \frac{(D+1)^2}{16 D}$ si D = 3 (mod 4).

B.2.d. Soient α, β deux éléments de Z [ω_D], β étant supposé non nul. Montrer qu'il existe γ, élément de $\mathbb{Z}[\omega_D]$, tel que :

$$|\alpha - \gamma \beta|^2 \leq \lambda |\beta|^2$$
.

En déduire que $Z[\omega_D]$ est un anneau euclidien lorsque D est égal à l'une des valeurs suivantes : 1, 2, 3, 7, 11.

Application: déterminer y lorsque D = 2, α = 5 + 3 ω , β = -1 + 3 ω ,

II. MATRICES HERMITIENNES DE LA FORME B* B

Dans cette partie, S désigne l'anneau Z ou l'un des anneaux Z $[\omega_D]$ pour D = 1, 2, 3, 7, ou 11. Si S = Z, on pose: k = 1/4, et si $S = \mathbb{Z}[\omega_D]$, k est la constante définie en I.B.2.b.

Deux matrices hermitiennes A et B de $M_n(S)$ sont dites congruentes s'il existe $U \in GL(n, S)$ telle que : A = UBU*. Les classes d'équivalence pour cette relation sont appelées classes de congruence.

A un élément $x = (x_1, ..., x_n)$ de Sⁿ est associée une matrice à une ligne dont les coefficients sont les composantes de x; on notera également x cette matrice. 'x désignera la matrice transposée, et x^* la matrice 'x'.

- 1. Montrer que si Aet B sont deux matrices hermitiennes congruentes, alors : det A = det B.
- 2.a. Soit A une matrice hermitienne définie positive appartenant à $M_n(S)$. Montrer qu'il existe un entier m(A) > 0 et un élément z appartenant à S^n dont les composantes sont premières entre elles tels que l'on $m(A) = \inf_{x \in S^{n}\setminus\{0\}} x A x^{*} = z A z^{*}$

- 2.b. A-t-on toujours m(A) = m(B) lorsque A et B sont congruentes? $A = \begin{pmatrix} 2 & 7 \\ & & \\ 7 & 25 \end{pmatrix}.$ 2.c. Déterminer m(A) lorsque $S = \mathbb{Z}$ et
- A Le cas n = 2,

Soit Aune matrice hermitienne définie positive de $M_{\star}(S)$ et soit z un élément de S^2 tel que : $m(A) = z A z^*$.

- A1.a. Montrer que 'z est vecteur colonne d'une matrice inversible U0 de GL(2, S) et en déduire l'existence d'une matrice hermitienne B = (b_{ij}) , $1 \le i, j \le 2$, où $b_{11} = m(A)$, telle que A et B soient
- $|b_{11}s+b_{12}| \leq k^{\frac{1}{2}}b_{11}$ A1.b. Montrer qu'il existe $s \in S$ tel que : $C = \left(\begin{array}{cc} a & b \\ \hline b & c \end{array}\right)$ et en déduire l'existence d'une matrice C:

congruente à A qui vérifie les deux conditions : i. a = m(A) = m(C)

ii. $k^{-\frac{1}{2}}|b| \leq a \leq c$.

A.1.c. Montrer que si $A \in M_2(S)$ est une matrice hermitienne définie positive de déterminant égal à d, alors on a :

$$m(A) \leq (1-k)^{-\frac{1}{2}} d^{\frac{1}{2}}.$$

- A.1.d. En déduire la finitude de l'ensemble des classes de congruence de matrices hermitiennes d'ordre 2 à coefficients dans S, définies positives, de déterminant donné.
- A2.a. On suppose que d'est égal à 1 et que S est l'un des anneaux suivants :

$$S = Z$$
, $S = Z[\omega_D]$ pour $D = 1, 3, 7$.

Montrer alors que m(A) = 1 et qu'il existe $B \in GL(2, S)$ telle que $A = B^* B$.

- A2.b. En déduire les propriétés suivantes :
 - i. Tout nombre premier est somme de quatre carrés.
 - ii. Quel que soit le nombre premier p, il existe des entiers relatifs a, b, c, d tels que :

$$p = a^2 + ab + b^2 + c^2 + cd + d^2$$
.

iii. Quel que soit le nombre premier p, il existe des entiers relatifs a, b, c, d tels que :

$$p = a^2 + ab + 2b^2 + c^2 + cd + 2d^2$$

- B. Matrices symétriques à coefficients entiers.
 - B.1.a. Soit $f: \mathbb{Z}^n \to \mathbb{Z}$ un homomorphisme surjectif de groupes abéliens, et soit $x \in \mathbb{Z}^n$ tel que f(x) = 1. Montrer que \mathbb{Z}^n est la somme directe du sous-groupe engendré par x et du noyau de f.
 - B.1.b. Soit $x = (x_1, ..., x_n)$ un élément de \mathbb{Z}^n . Montrer que les conditions suivantes sont équivalentes :
 - i. x appartient à une base de \mathbb{Z}^n .
 - ii. Il existe $M \in GL(n, \mathbb{Z})$ admettant 'x comme vecteur-colonne.
 - iii. Il existe des entiers relatifs a_i , $1 \le i \le n$, tels que :

$$\sum_{i=1}^n a_i x_i = 1.$$

- iv. Il existe $f: \mathbb{Z}^n \to \mathbb{Z}$ homomorphisme surjectif de groupes abéliens tels que f(x) = 1.
- B.2. Soit A une matrice symétrique d'ordre n > 1 définie positive à coefficients dans \mathbb{Z} . Montrer l'existence d'une matrice $B = (b_{ij}), 1 \le i, j \le n$, congruente à Aet telle que : $b_{11} = m(A)$.
- B.3. Soit $A = (a_{ij}), 1 \le i, j \le n$, une matrice symétrique définie positive à coefficients dans \mathbb{Z} telle que $m(A) = a_{11}$. Si $x = (x_1, ..., x_n)$ est un élément de \mathbb{Z}^n , on définit l'élément $y = (y_1, ..., y_n)$ par les relations suivantes :

$$y_1 = x_1 + \sum_{i=2}^{n} a_{1i} a_{11}^{-1} x_i$$

$$y_i = x_i$$
 pour $2 \le i \le n$,

On pose:

$$z = (x_2, \ldots, x_n), \quad y = U^i x.$$

B.3.a. Montrer que l'on a: $x A'x = a_{11} y_1^2 + a_{11}^{-1} z B'z$

où B est une matrice symétrique définie positive appartenant à $M_{n-1}(\mathbb{Z})$ et qui vérifie les deux relations

$$A = {}^{t}U\begin{pmatrix} a_{11} & 0 \\ 0 & a_{11}^{-1} B \end{pmatrix} U \qquad \text{det } B = (a_{11})^{a_{11}^{-2}} \text{ det } A.$$

B.3.b. Montrer que l'on a:

$$m(A) \leqslant \left(\frac{4}{3}\right)^{\frac{n-1}{2}} (\det A)^{\frac{1}{n}}$$

(on choisira x de telle sorte que l'on ait: $|y_1| \le \frac{1}{2}$; z B'z = m(B)).

- B.4.a. On suppose $n \le 5$ et soit $A \in M_n(\mathbb{Z})$ une matrice symétrique définie positive dont le déterminant est égal à 1. Montrer que m(A) = 1 et en déduire qu'il existe $B \in M_n(\mathbb{Z})$ telle que $A = B \cdot B$.
- B.4.b. Montrer que tout nombre premier de la forme 8n + 1 ou 8n + 3 est somme de trois carrés.

III. CLASSES D'IDÉAUX ET ANNEAUX PRINCIPAUX

On rappelle que deux éléments A et B de $M_n(\mathbb{Z})$ sont semblables s'il existe un élément Q de GL (n, \mathbb{Z}) tel que $A = Q B Q^{-1}$; les classes d'équivalence pour cette relation sont appelées classes de similitude.

A. Soit P(X) un polynôme unitaire de degré n > 1, à coefficients dans Z et irréductible sur Q[X]. Si θ est une racine complexe de P(X), on note Z[θ] le sous-anneau de C, ensemble des éléments de la forme :

$$\sum_{i=-n}^{n-1} a_i \theta^i \quad \text{où } a_i \in \mathbb{Z} \text{ pour } i = 0, ..., n-1.$$

On dit que deux idéaux I et J de $\mathbb{Z}[\theta]$ appartiennent à la même classe s'il existe deux éléments non nuls a et b de $\mathbb{Z}[\theta]$ tels que $a\mathbb{I} = b\mathbb{J}$. A désigne un élément de $M_n(\mathbb{Z})$ tel que P(A) = 0.

- A.1. Montrer que tout idéal non nul de $\mathbb{Z}[\theta]$ est un groupe abélien libre de rang n.
 - A.2.a. Montrer qu'il existe $x = (x_1, ..., x_n)$ élément de $\mathbb{Z}[\theta]^n \setminus \{0\}$ tel que : $A'x = \theta'x$.
 - A2.b. Montrer que $\mathbb{Z}[x_1 + ... + \mathbb{Z}[x_n]]$ est un idéal de $\mathbb{Z}[\theta]$ dont la classe est indépendante du vecteur propre 'x choisi.

On notera I_A la classe de l'idéal $\mathbb{Z} x_1 + ... + \mathbb{Z} x_n$.

A.2.c. Soit Q un élément de GL (n, \mathbb{Z}) . Montrer que :

$$I_A = I_{QAQ}^{-1}$$
.

A3. Soit $J = Z y_1 + ... + Z y_n$ un idéal de $Z[\theta]$ on pose :

$$y = (y_1, ..., y_n).$$

Montrer qu'il existe une matrice B à coefficients entiers telle que :

$$B^t y = \theta^t y$$
, $P(B) = 0$.

- A.4. Montrer qu'il existe une bijection entre l'ensemble des classes de similitude des matrices A, éléments de $M_n(\mathbb{Z})$, telles que P(A) = 0 et l'ensemble des classes d'idéaux de $\mathbb{Z}[\theta]$.
- A.5. Montrer que les conditions suivantes sont équivalentes ;
 - i. **Z**[θ] est un anneau principal.
 - ii. Il existe une seule classe de similitude dans $M_n(\mathbb{Z})$ de matrices A d'ordre n à coefficients entiers telles que P(A) = 0.
- B. D ≥ 1 désigne un entier qui n'est pas divisible par le carré d'un nombre premier; Z [ω_D] est l'anneau introduit en I.B.
 - B.1. On suppose D = 1 ou $2 \pmod{4}$:

$$A(\alpha, \beta, \gamma) = \begin{pmatrix} -\alpha & \beta \\ \gamma & \alpha \end{pmatrix}$$

désigne une matrice à coefficients dans Z dont le polynôme caractéristique est ;

$$P(X) = X^2 + D.$$

En considérant les valeurs $\alpha=0$ et $\alpha=1$, montrer que $\mathbb{Z}[\omega_D]$ est principal si et seulement si D=1 ou 2.

B.2. On suppose $D \equiv 3 \pmod{4}$ et l'on pose :

$$K = \frac{D+1}{4}.$$

Soit A un élément de M₂ (Z) dont le polynôme caractéristique est :

$$P(X) = X^2 - X + K.$$

B.2.a. Soit:

$$B = \begin{pmatrix} -a & -b \\ c & a+1 \end{pmatrix}$$

une matrice semblable à A telle que la l soit minimum

En calculant PAP-1 lorsque P est l'une des matrices suivantes :

$$\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

montrer que l'on peut supposer que les coefficients de B vérifient :

$$a \ge 0$$
, $c \ge 2a + 1$, $b \ge 2a + 1$, $3(a^2 + a) + 1 \le K$.

B.2.b. Soient α , β , γ trois entiers tels que:

$$0 \le \alpha < K-1$$
, $1 < \beta \le \gamma$, $\beta \gamma = K + \alpha^2 + \alpha$.

Montrer que, quel que soit l'élément (x, y) de $\mathbb{Z}^2\setminus\{0\}$, on a :

$$\beta x^2 + \gamma y^2 + (2\alpha + 1) xy > y^2$$
.

En déduire que les matrices :

$$A = \begin{pmatrix} 0 & -K \\ 1 & 1 \end{pmatrix} \qquad M = \begin{pmatrix} -\alpha & -\gamma \\ \beta & \alpha+1 \end{pmatrix}$$

ne sont pas semblables.

- B.2.c. On suppose que $\mathbb{Z}[\omega_D]$ est un anneau principal. Montrer que K=1 ou que $K+a^2+a$ est un nombre premier pour tout entier a tel que : $0 \le a < K-1$.
- B.2.d. On suppose que K = 1 ou que K + a^2 + a est premier quel que soit $a \ge 0$ vérifiant $3(a^2 + a) + 1 \le K$. Prouver que $\mathbb{Z}[\omega_D]$ est un anneau principal.
- B.2.e. On suppose $D \le 200$. Prouver que $\mathbb{Z}[\omega_D]$ est principal si et seulement si D = 3, 7, 11, 19, 43, 67, 163.
- B.2.f. On suppose D \leq 106. Écrire un programme permettant de vérifier que les valeurs trouvées sont les seules pour lesquelles l'anneau ℓ [$\omega_{\rm D}$] est principal.
- C. S désigne l'un des anneaux Z [ω_D] pour D = 19, 43, 67, 163 et on suppose S euclidien pour une application N de S = {0} dans N. Soit a un élément non inversible de S = {0} tel que N (a) soit minimum.
 - C.1. Montrer que S/a S est isomorphe à l'un des corps F₂ ou F₃.
 - C.2. En déduire que pour D = 19, 43, 67, 163, $\mathbb{Z}[\omega_D]$ est un anneau principal non euclidien.