UNIVERITÉ BADJI MOKHTAR – ANNABA 3ème Proba-Stat Série 01 : Statistiques descriptives.

Statistiques Inférentielle

MATHÉMATIQUES
2019/2020
Goual H.

Exercice I _

Un institut de défense de consommateur étudie l'efficacité d'une auto-école. Pour chaque client de l'auto-école ayant obtenu le permis, l'institut demande le nombre d'heures de leçon prises par le client.

- 1. Indiquez quelle est la population considérée par cette étude statistique.
- 2. Indiquez également quel est le caractère étudié.
- 3. S'agit-il d'une statistique qualitative ou quantitative?
- 4. Les résultats obtenus sont donnés dans le tableau ci-dessous. Complétez-le.

Nombre d'heures	De 21 à 22	de 23 à 27	de 28 à 31	de 32 à 35	de 36 à 40	Total
Effectif	48		51			200
Fréquence		35%			6,5%	

Exercice II

Au poste de péage, on compte le nombre de voitures se présentant sur une période de 5mn. Sur 100 observations de 5mn, on obtient les résultats suivants :

Nombre de voitures	1	2	3	4	5	6	7	8	9	10	11	12
Nombre d'oservations	2	8	14	20	19	15	9	6	2	3	1	1

- 1. Construire la table des fréquences et le diagramme en bâtons en fréquences de la série du nombre de voitures.
- 2. Calculer la moyenne et l'écart-type et de cette série.
- 3. Déterminer le mode, la médiane, les quartiles l'écart-interquartile puis tracer la boite à moustache.
- 4. La série statistique est elle homogène?
- 5. Étudier l'asymétrie et l'aplatissement de la série.

Exercice III

On observe les arrivées des clients à un bureau de poste pendant un intervalle de temps donné (10 minutes). En répétant 100 fois cette observation, on obtient les résultats suivants.

Nombre d'arrivées	1	2	3	4	5	6	Total
Nombre d'observation	15	25	26	20	7	7	100

- 1. Représenter graphiquement ces résultats.
- 2. Calculer la valeur moyenne, la médiane.
- 3. Calculer les paramètres de dispersion suivants :
 - La variance, l'écart-type, le coefficient de variation. Interpréter.
- 4. Calculer l'écart inter-quartile et les limites des moustache pour le nombre d'arrivées.
- 5. Calculer le coefficient d'asymétrie puis interpréter votre résultat.

Exercice IV

D'un échantillon d'étudiants de sexe masculin, on a mesuré la masse de chacun. Les masses ont été arrondies à l'entier. Les données ont été groupées en 7 classes :

Masses en kg	45-54	55-59	60-64	65-69	70-74	75-79	80-89
Nombre d'étudiants	5	14	33	47	26	13	2

- 1. Quelle est la masse la plus répandue.
- 2. Déterminer la classe modale, l'étendue, la moyenne arithmétique, la médiane, la variance et l'écart-type.
- 3. Calculer les quartiles. Indiquez les graphiquement puis, déduire l'intervalle inter-quartile.
- 4. Tracer l'histogramme des fréquences.
- 5. Etudier l'asymétrie de cet échantillon.

Statistiques Inférentielle

MATHÉMATIQUES 2019/2020 Goual H.

	-
Evercice	v

On a lancé 400 fois 5 pièces de monnaie et on a compté le nombre de "faces" obtenus :

Nombre de « faces » parmi les 5 pièces		1	2	3	4
Nombre de lancers de 5 pièces	21	60	134	101	68

- 1. Convertir la distribution discrète en une distribution continue sur les intervalles [-0.5, 0.5], [0.5, 1.5], ..., [4.5; 5.5].
- 2. Calculer:

Les fréquences, laclasse modale, le mode, la moyenne arithmétique, la médiane, l'étendue, la variance, l'écart-type.

3. Faites l'histogramme des fréquences.

Exercice VI

On mesure le poids d'un échantillon de 100 étudiants dont 40 filles et 60 garçons. Chez les filles, on a pbtenu une moyenne $\bar{x}_F = 62.85$ kg et une variance $\sigma_F^2 = 50.20$ kg². Chez les garçons on a obtenu une moyenne $\bar{x}_G = 80.10$ kg et une variance $\sigma_G^2 = 85.30$ kg².

Trouver la moyenne \bar{x}_T et la variance σ_T^2 pour tout l'échantillon. En déduire l'écart-type σ_T . (dans ce cas, considérer la variable poids comme une variable discrète).

Page 2/2

Les statistiques. ça vous fait penser à des choses qu'on n'imaginerait jamais autrement.