STA 210: HW 3

Jackson Hubbard

September 27

Question 1: Ex. 7.24

 \mathbf{a}

```
#use ex0724 data set
male births <- ex0724
model_denmark <- lm(Denmark~ Year, data= male_births)</pre>
tidy(model denmark)
## # A tibble: 2 x 5
##
                   estimate std.error statistic p.value
     term
##
     <chr>
                       <dbl>
                                 <dbl>
                                          <dbl>
                                                     <dbl>
## 1 (Intercept) 0.599
                             0.0408
                                           14.7 2.40e-18
                 -0.0000429 0.0000207
## 2 Year
                                           -2.07 4.42e- 2
model Netherlands <- lm(Netherlands~ Year, data= male births)
tidy(model Netherlands)
## # A tibble: 2 x 5
##
     term
                   estimate std.error statistic p.value
     <chr>
                       <dbl>
                                 <dbl>
                                           <dbl>
                                           24.1 1.37e-26
                             0.0279
## 1 (Intercept) 0.672
## 2 Year
                                           -5.71 9.64e- 7
                 -0.0000808 0.0000142
model_Canada <- lm(Canada~ Year, data= male_births)</pre>
tidy(model Canada)
## # A tibble: 2 x 5
##
     term
                  estimate std.error statistic p.value
##
     <chr>
                     <dbl>
                                <dbl>
                                          <dbl>
                            0.0548
                                          13.4 3.98e-11
## 1 (Intercept) 0.734
## 2 Year
                 -0.000111 0.0000277
                                          -4.02 7.38e- 4
model_USA <- lm(USA~ Year, data= male_births)</pre>
tidy(model USA)
## # A tibble: 2 x 5
##
                   estimate std.error statistic p.value
```

```
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> 33.3 2.52e-18 ## 2 Year -0.0000543 0.00000939 -5.78 1.44e- 5
```

Looking at the output, we see that the estimates and standard error's from the textbook are replicated correctly.

b

The tables also show the test statistics for the test that the slope of the regression model on the proportion of male births by year is zero. Looking at each of the tables, we see that each of the 4 countries have test statistics that are sufficiently high. This means that all of the resulting p values are smaller than 0.05 which means that there is sufficient evidence to reject the null hypothesis of the slopes being equal to 0. Further, since each of the estimates for the slope are negative, we see that the proportion of male births is declining.

\mathbf{c}

The United States has the largest of the 4 test statistics even though its slope is only the third largest. This can be understood by looking at the equation for the test statistic, which is $(\hat{\beta}_1/\beta_1)/SE(\hat{\beta}_1)$. In this formula, the numerator represents the slope coefficient. Thus, the United States has the third largest numerator. However, the United States also has the smallest standard error its slope. This results in the largest test statistic.

\mathbf{d}

The United States has a lower standard error of the estimated slope than Canada even though their sample sizes are the same because the formula for standard error is σ/\sqrt{n} . Thus even though the n value is the same, the United States has a smaller standard deviation, which results in a smaller standard error.

\mathbf{e}

Since the proportion of male births is reported as an average, the sample size comes into play. As the sample size increases, the standard deviation decreases because the formula for standard deviations has n in the denominator.

Question 2: Ex. 7.27

```
#use ex0727 data set
q2 <- ex0727

q2 %>% ggplot(aes(x = Mass, y = Tcell)) + geom_point() + labs(title = "Average Mass of y = "T-Cell response", subtitle = "T-cell is measure of Immune Health") +
    theme(plot.title = element_text(hjust = 0.5, size=18),
        plot.subtitle=element_text(hjust=0.5, size=14))
```

Average Mass of Stones Carried (g) vs. T-cell response T-cell is measure of Immune Health

Looking at the scatterplot, we see that there is a small positive correlation between mean mass size and T cell response so I will create a linear model.

```
model1 \leftarrow lm(Tcell \sim Mass, data = q2)
tidy(model1)
## # A tibble: 2 x 5
##
     term
                  estimate std.error statistic p.value
     <chr>
                     <dbl>
                                <dbl>
                                          <dbl>
                                                   <dbl>
## 1 (Intercept)
                    0.0875
                               0.0787
                                           1.11 0.280
## 2 Mass
                    0.0328
                               0.0106
                                           3.08 0.00611
glance(model1)
## # A tibble: 1 x 11
     r.squared adj.r.squared sigma statistic p.value
                                                            df logLik
                                                                         AIC
                                                                                BIC
```

 $H_0: \beta_1 = 0$

 $H_A: \beta_1 \neq 0 \ \beta_1$ is the slope of the model predicting the T-cell response based on the average mass of stones carried by the bird.

Looking at the output we see that the estimate for β_1 is 0.03282149. This slope has a p value of 0.006105022, which is lower than 0.05. This means that it is significant. There is sufficient evidence to reject the null hypothesis, which means there is sufficient evidence that the slope is not equal to 0.

The interpretation of this slope is that for every 1 gram increase in the mean stone mass that a bird carries, their T-cell response is increases by 0.03282149 mm on average. The interpretation of the intercept is that if a wheatears bird carried 0 grams of stones to his nest, his average T-cell repsonse is 0.08749698 mm.

Now, looking at the other table outputted, we see that the R squared value is .334. This means that 33.4% of the variation in T-cell response is explained by the model.

Checking assumptions of linear model:

```
q2 <- q2 %>% mutate(resid1 = resid(model1))

q2 %>% ggplot(aes(x = Mass, y = resid1)) + geom_point() + geom_hline(yintercept = 0) +
plot.subtitle=element_text(hjust=0.5,size=14))
```

Scatterplot of Residuals for Linear Regression Model 1


```
qqnorm(q2$resid1, pch = 1, frame = FALSE)
qqline(q2$resid1, col = "black", lwd = 2)
```

Normal Q-Q Plot

check the assumptions, first we look at the residuals scatterplot. We see that there is no systemized pattern and that the residuals appear to be random. This means that we were correct in building a linear model, as there is indeed a linear relationship between Mass of stones carried and the t-cell reposnse. This graph also shows that the assumption of constant variance is also met. Next, looking at the QQ plot, we see that the Normality assumption is also met. We also can conclude that the observations are indeednet, as there are no cluster or serial effects.

To

Based on the results of the model and the confirmation of the validity of the assumptions we can conclude that there is sufficient evidence to reject the null hypothsis of there being no relationship between average mass of stones carried by wheatears birds and its health.

With the assumptions verified, we can say that the linear regression equation is T-cell = 0.0874 + 0.0328 * Mean Mass of Rocks carried

Question 3: Ex. 7.28

Question #1- Is neuron activity different for string musicians (defined as playing years > 1) and the controls (playing years = 0)?

```
#use ex0728 data set

q3 <- ex0728
q3 <- q3 %>% mutate(string = case_when(
Years == 0 ~ "Control",
```

```
Years > 0 ~ "Player" )
)

ggplot(q3, aes(Activity)) + geom_density(aes(fill = factor(string)),alpha=0.7) + labs(t
```

Density Plot of Neuron Activity For String Musicians and Control


```
q3 %>%
group_by(string) %>%
summarise(n = n(), mean = mean(Activity), median = median(Activity), sd = sd(Activity))
## # A tibble: 2 x 5
## string n mean median sd
## <chr> <int> <dbl> <dbl> <dbl><</pre>
```

Looking at the density plot and the summary statistics we see that there is a difference in mean Neuron activity between the Sting musicians and the control group. But to confirm this I will perform a 2 sample t test.

2.26

5.59

 $H_0: \mu_1 - \mu_2 = 0$

6

9

8

20.6

8.25

23

1 Control

2 Player

 $H_A: \mu_1 - \mu_2 \neq 0 \ \mu_1 = \text{mean activity of musicians } \mu_2 = \text{mean activity of contorl}$

When performing the t test, we want a two sided test (based off of our hypothesises) and we

need to set the equal variance parameter to FALSE (from the summary statistics we see that they are not equal)

```
musicians <- q3 %>% filter(Years > 0)
control <- q3 %>% filter(Years == 0)
t.test(musicians$Activity,control$Activity, alternative="two.sided", var.equal=FALSE)
##
##
   Welch Two Sample t-test
##
## data: musicians$Activity and control$Activity
## t = 6.067, df = 11.313, p-value = 7.205e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
     8.051473 17.170750
## sample estimates:
## mean of x mean of y
   20.61111
               8.00000
```

Looking at the results of the t-test, we see that the p-value is very small. This means there is sufficient evidence to reject the null hypothesis. There is sufficient evidence that the neuron activity is different between string players and the control (people who have never played a string instrument). We also see a 95% confidence interval (8.051473 17.170750), which does not include 0, which is further reason to believe there is a difference.

Question #2 Whether amount of neuron activity is associated with the number of years the person has played the instrument

Perform a linear regression model:

```
H_0: \beta_1 = 0
```

 $H_A: \beta_1 \neq 0 \ \beta_1$ is the slope of the model predicting the neuron response based on the number of years playing a Stringed instrument.

```
q3 %>% ggplot(aes(x = Years, y = Activity)) + geom_point() +
labs(title = "Years Playing a Stringed Instrument vs. Neuron Activity Index") + theme(y
```



```
model_neuron <- lm(Activity ~ Years, data = q3)
tidy(model_neuron)</pre>
```

```
## # A tibble: 2 x 5
##
     term
                  estimate std.error statistic
                                                     p.value
     <chr>
                                <dbl>
                                           <dbl>
                                                       <dbl>
##
                     <dbl>
## 1 (Intercept)
                     8.39
                                1.11
                                            7.52 0.00000435
## 2 Years
                     0.997
                                0.111
                                            8.98 0.000000618
```

```
glance(model neuron)
```

```
## # A tibble: 1 x 11
     r.squared adj.r.squared sigma statistic p.value
                                                          df logLik
                                                                      AIC
                                                                             BIC
##
                        <dbl> <dbl>
## *
         <dbl>
                                        <dbl>
                                                 <dbl> <int>
                                                              <dbl> <dbl> <dbl>
         0.861
                       0.850
                               3.01
                                         80.6 6.18e-7
                                                           2
                                                              -36.7
## 1
                                                                     79.5
                                                                           81.6
    ... with 2 more variables: deviance <dbl>, df.residual <int>
```

Looking at the outputed tables, we see that the p value is low. This means that there is sufficient evidence to reject the null hypothesis of there being no relationship between the number of years a person has played a string instrument and their neuron activity. We also see that the R squared is 0.861 which means that 86% of the variation in nueron activity is explained by the model.

```
q3 <- q3 %>% mutate(resid = resid(model_neuron))
q3 %>% ggplot(aes(x = Years, y = resid)) + geom_point() + geom_hline(yintercept=0) + la
theme(plot.title = element_text(hjust = 0.5,size=18))
```

Residual Plot


```
qqnorm(q3$resid, pch = 1, frame = FALSE)
qqline(q3$resid, col = "black", lwd = 2)
```

Normal Q-Q Plot

Looking at the residual plot, we see that there is no apparent pattern in the residuals. This means that the constant variance assumption is met and that the linear relationship assumption is also met. Also, from the QQ plot we see that the Normality assumption is met. The independence assumption is also met since the tests are done on different individual subjects and not taken over time.

With the assumptions verified, we can say that the linear regression equation is Activity = 8.39 + 0.997 * Years.

Question 4: Ex. 8.25

```
#use ex0825 data set
q4 <- ex0825
ggplot(q4, aes(Bush2000, Buchanan2000)) + geom_point()</pre>
```


|--|

##		County	Buchanan2000	Bush2000
##	1	Alachua	262	34062
##	2	Baker	73	5610
##	3	Bay	248	38637
##	4	Bradford	65	5413
##	5	Brevard	570	115185
##	6	Broward	789	177279
##	7	Calhoun	90	2873
##	8	Charlotte	182	35419
##	9	Citrus	270	29744
##	10	Clay	186	41745
##	11	Collier	122	60426
##	12	Columbia	89	10964
##	13	Dade	561	289456
##	14	De Soto	36	4256
##	15	Dixie	29	2698
##	16	Duval	650	152082
##	17	Escambia	504	73029
##	18	Flagler	83	12608
##	19	Franklin	33	2448
##	20	Gadsden	39	4750

##	21	Gilchrist	29	3300
##	22	Glades	9	1840
##	23	Gulf	71	3546
##	24	Hamilton	24	2153
##	25	Hardee	30	3764
##	26	Hendry	22	4743
	27	Hernando	242	
##				30646
##	28	Highlands	99	20196
##	29	Hillsborough	836	176967
##	30	Holmes	76	4985
##	31	Indian River	105	28627
##	32	Jackson	102	9138
##	33	Jefferson	29	2481
##	34	Lafayette	10	1669
##	35	Lake	289	49963
##	36	Lee	305	106141
##	37	Leon	282	39053
##	38	Levy	67	6860
##	39	Liberty	39	1316
##	40	Madison	29	3038
##	41	Manatee	272	57948
##	42	Marion	563	55135
##	43	Martin	108	33864
##	44	Monroe	47	16059
##	45	Nassau	90	16404
##	46	Okaloosa	267	52043
##	47	Okeechobee	43	5058
##	48	Orange	446	134476
##	49	Osceola	145	26216
##	50	Pasco	570	68581
##	51	Pinellas	1010	184312
##	52	Polk	538	90101
##	53	Putnam	147	13439
##	54	St. Johns	229	39497
##	55	St. Lucie	124	34705
##	56	Santa Rosa	311	36248
##	57	Sarasota	305	83100
##	58	Seminole	194	75293
##	59	Sumter	114	12126
##	60	Suwannee	108	8014
##	61	Taylor	27	4051
##	62	Union	26	2326
##	63	Volusia	396	82214
##	64	Wakulla	46	4511
##	65	Walton	120	12176

```
## 66 Washington 88 4983
## 67 Palm Beach 3407 152846
```

Looking at the scatterplot, we see that there is a large outlier. So comparing it to the data, we see that it is from the Palm Beach county.

```
# Create a new data set with the Palm Beach observation removed
# for the regression analysis

q4 <- q4[-c(67),]
q4 <- q4 %>% mutate(logBuchanan = log(Buchanan2000), logBush = log(Bush2000))
# ggplot(q4, aes(Bush2000, Buchanan2000)) + geom_point()
# ggplot(q4, aes(logBush, Buchanan2000)) + geom_point()
# ggplot(q4, aes(Bush2000, logBuchanan)) + geom_point()
ggplot(q4, aes(logBush, logBuchanan)) + geom_point() + labs(x= "Log of Bush votes", y=
```

Log of Bush votes v. Log of Buchanan votes

To generate a proper linear regression model, I needed to do some transformations of the data. This involved some trial and error, but after a couple of tries logging the x and the y, I found that by logging both the x and the y variables resulted in the most linear relationship. Thus this is the model I am going to use.

```
modelvotes <- lm(logBuchanan ~ logBush, data = q4)
q4 <- q4 %>% mutate(resid2000 = resid(modelvotes))
```


Log of Bush votes v. Residual Values

ggplot(q4, aes(resid2000)) + geom_histogram() + labs(x = "Residual Values", y = "Count"

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Histogram of Residual Values

After doing a linear regression model, I must check the assumptions. Looking at the residual graph, we see that the residuals do not have a pattern to them. This means that the constant variance and the linearity assumptions are met. Further, the histogram of the values of the residual is also normal, so the normality assumption is also met. The independence assumption is also met since the votes are idnependent.

```
PalmBeach <- 152846
newdata2000 <- data.frame(logBush = log(PalmBeach))
predict.lm(modelvotes, newdata2000, interval = "prediction", conf.level = 0.95)
## fit lwr upr
## 1 6.384143 5.524656 7.24363</pre>
```

Taking a 95% confidence interval from the model for the true amount of Buchanan votes expected for Palm Beach county we see that: The predicted amount of Buchanan votes expected for Palm beach is about 592.37 (e raised to 6.38).

The 95% confidence interval for the mean amount of votes is (250.80, 1399.16) (e raised to 5.52 and e raised to 7.24).

Using this confidence interval and combining it with the actual results, I am 95% confident that the amount of votes that went to Buchannan that were meant for Gore is within the interval (2007.84, 3156.20).