Reconnaissance vocale lors d'appel d'urgence grâce à un réseau de neurones

TRAN-THUONG Tien-Thinh [n°30903]

2021-2022

- Introduction
 - Presentation de la problématique
 - Reconnaissance vocale
- Que Généralités sur les réseaux de neurones
 - Du perceptron au réseau de neurones
 - Rétropropagation
 - Amélioration de la rétropropagation
- Réalisations concrètes
 - Reproduction du XOR
 - Reconnaissance de chiffres écrits
 - Convolution d'image
 - Reconnaissance vocale de mots-clés
- Annexe
 - Mes classes
 - Mes codes
 - Compléments

- Introduction
 - Presentation de la problématique
 - Reconnaissance vocale
- Que Généralités sur les réseaux de neurones
 - Du perceptron au réseau de neurones
 - Rétropropagation
 - Amélioration de la rétropropagation
- Réalisations concrètes
 - Reproduction du XOR
 - Reconnaissance de chiffres écrits
 - Convolution d'image
 - Reconnaissance vocale de mots-clés
- Annexe
 - Mes classes
 - Mes codes
 - Compléments

- Introduction
 - Presentation de la problématique
 - Reconnaissance vocale
- Que Généralités sur les réseaux de neurones
 - Du perceptron au réseau de neurones
 - Rétropropagation
 - Amélioration de la rétropropagation
- Réalisations concrètes
 - Reproduction du XOR
 - Reconnaissance de chiffres écrits
 - Convolution d'image
 - Reconnaissance vocale de mots-clés
- Annexe
 - Mes classes
 - Mes codes
 - Compléments

- Introduction
 - Presentation de la problématique
 - Reconnaissance vocale
- Que Généralités sur les réseaux de neurones
 - Du perceptron au réseau de neurones
 - Rétropropagation
 - Amélioration de la rétropropagation
- Réalisations concrètes
 - Reproduction du XOR
 - Reconnaissance de chiffres écrits
 - Convolution d'image
 - Reconnaissance vocale de mots-clés
- Annexe
 - Mes classes
 - Mes codes
 - Compléments

Un cas de non convergence de la descente de gradient

Figure – Descente de gradient SANS/AVEC momentum où $\gamma=0.5$

La terminaison de la descente de gradient

En pratique

Pour terminer les itérations de la rétropropagation sur un réseau de neurones trois conditions de terminaison existent :

- Un nombre maximal d'itération de la rétropropagation
- Un seuil minimal pour l'erreur
- Un seuil minimal pour la norme infinie du gradient

Ainsi, en pratique, si une de ces trois conditions est atteinte, l'algorithme se termine. Le variant de boucle du nombre d'itération assure alors la terminaison de l'algorithme

Les hypothèses pour la terminaison

En théorie

Une fonction de R^n dans R de classe C^2 , strictement convexe et coercive $(\lim_{\|x\|\to+\infty}f(x)=+\infty)$ admet un unique minimum. On peut donc trouver une suite t_k de taux d'apprentissage de sorte que la descente de gradient converge.

Exemple avec les hypothèses

La relation de récurrence s'écrit alors :

$$x_{k+1} = x_k - t_k \nabla f(x_k)$$

avec x_k tendant vers l'unique minimum de f

La rétropropagation sur le XOR

Figure - Schéma du réseau de neurone reproduisant le XOR

$$\begin{cases} \tilde{y}_{1} = w_{11}^{1} \times e_{1} + w_{21}^{1} \times e_{2} \\ \tilde{y}_{2} = w_{12}^{1} \times e_{1} + w_{22}^{1} \times e_{2} \\ \tilde{s} = w_{1}^{2} \times y_{1} + w_{11}^{1} \times y_{2} \end{cases} \quad \text{et} \begin{cases} y_{1} = \sigma_{1}(\tilde{y}_{1}) \\ y_{2} = \sigma_{1}(\tilde{y}_{2}) \\ s = \sigma_{2}(\tilde{s}) \end{cases}$$
(1)

Une simplification matricielle

Convention adoptée

- ① Le produit matricielle
- * Le produit d'Hadamard
- f La fonction d'erreur $f: s \to (s s_{attendue})^2$

$$\begin{cases}
\begin{pmatrix} \tilde{y}_1 \\ \tilde{y}_2 \end{pmatrix} = \begin{pmatrix} w_{11}^1 & w_{21}^1 \\ w_{12}^1 & w_{22}^1 \end{pmatrix} @ \begin{pmatrix} e_1 \\ e_2 \end{pmatrix} \\
\begin{pmatrix} \tilde{s} \end{pmatrix} = \begin{pmatrix} w_1^2 & w_2^2 \end{pmatrix} @ \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}
\end{cases} \tag{2}$$

La rétropropagation matricielle

$$\begin{cases}
\left(\frac{\partial f}{\partial w_1^2}(w_1^2) & \frac{\partial f}{\partial w_2^2}(w_1^2)\right) = \left(\frac{\partial f}{\partial s}(s)\right) * \left(\sigma_2'(\tilde{s})\right) \otimes \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}^t \\
\left(\frac{\partial f}{\partial w_{11}^2}(w_{11}^2) & \frac{\partial f}{\partial w_{21}^2}(w_{21}^2)\right) = \left(\frac{\partial f}{\partial y_1}(y_1)\right) * \left(\frac{\sigma_1'(\tilde{y}_1)}{\sigma_1'(\tilde{y}_2)}\right) \otimes \begin{pmatrix} e_1 \\ e_2 \end{pmatrix}^t
\end{cases} (3)$$

avec

$$\left\{ \begin{pmatrix} \frac{\partial f}{\partial y_1}(y_1) \\ \frac{\partial f}{\partial y_2}(y_2) \end{pmatrix}^t = \begin{pmatrix} \frac{\partial f}{\partial s}(s) \end{pmatrix} * \begin{pmatrix} \sigma_2'(\tilde{s}) \end{pmatrix} @ \begin{pmatrix} w_1^2 & w_2^2 \end{pmatrix} \right.$$
(4)

Des fonctions d'activation

Fonction	Formule	Dérivée
Sigmoïde	$\frac{1}{1+e^{-x}}$	$ f(x) \times (1 - f(x)) $
Tangente Hyperbolique (Tanh)	$\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$	
Unité Linéaire Rectifiée (ReLU)	max(0,x)	$\left \begin{array}{cc} 0 & \sin x < 0 \\ 1 & \text{sinon} \end{array} \right $

La fonction d'activation : Sigmoïde

Figure - Sigmoïde

La fonction d'activation : TANH

Figure - TANH

La fonction d'activation : ReLu

Figure - ReLu

La rétropropagation pour la classification

Cross-entropy

La fonction d'erreur des problèmes de classification est Cross-entropy :

- $L = -\sum_{k=1}^{n} y_i log(p_i)$ avec y_i la sortie attendue
- $\bullet \ \frac{\partial L}{\partial a_i} = p_i y_i$

Une base de données plus complexe

Description

Images de taille 28×28 pixels en noir et blanc :

- 60 000 images pour l'entrainement.
- 10 000 autres pour la vérification.

Figure - MNIST

Figure - Fashion MNIST

Mes résultats

Figure – Exemple sur un échantillon de 40 images Fashion MNIST

Réseau de neurones modèle

```
Laver (type)
                                 Output Shape
                                                             Param
   resizing (Resizing)
                                  (None, 32, 32, 1)
   conv2d (Conv2D)
                                  (None, 30, 30, 32)
                                                             320
   conv2d 1 (Conv2D)
                                  (None, 28, 28, 64)
                                                             18496
   max_pooling2d (MaxPooling2D)
                                 (None, 14, 14, 64)
   dropout (Dropout)
                                  (None, 14, 14, 64)
   flatten (Flatten)
                                  (None, 12544)
   dense (Dense)
                                  (None, 128)
                                                             1605760
   dropout_1 (Dropout)
                                  (None, 128)
1.0
   dense 1 (Dense)
                                  (None, 8)
                                                             1032
  Total params: 1,625,608
  Trainable params: 1,625,608
  Non-trainable params: 0
```

Réseau de neurones adapté

```
Laver (type)
                                 Output Shape
                                                             Param
   resizing (Resizing)
                                  (None, 32, 32, 1)
   conv2d (Conv2D)
                                  (None, 30, 30, 32)
                                                             320
   conv2d 1 (Conv2D)
                                  (None, 28, 28, 64)
                                                             18496
   max_pooling2d (MaxPooling2D)
                                 (None, 14, 14, 64)
   dropout (Dropout)
                                  (None, 14, 14, 64)
   flatten (Flatten)
                                  (None, 12544)
   dense (Dense)
                                  (None, 128)
                                                             1605760
   dropout_1 (Dropout)
                                  (None, 128)
1.0
   adaptation (Dense)
                                  (None, 12)
                                                             1548
  Total params: 1,626,124
  Trainable params: 1,548
  Non-trainable params: 1,624,576
```