cteur : Gestion Commerce

résentation

1 110: Statistique

re Année

ière :

estion des ntreprises ronc comun)

Plan

- Statistique
- Généralités
- Qualification d'une variable qualitative et variable quantitative
- Représentations graphiques
- les Caractéristiques de distribution
- Régression et corrélation

Généralités

Définitions:

statistique : méthode scientifique qui vise à observer, collecter, analyser des données quantitatives.

La statistique descriptive est la partie de la statistique qui sert à décrire un phénomène

Apport de la statistique aux économistes

Apport de la statistique aux économistes

La statistique est utile aux théoriciens

La statistique est utile aux praticiens de l'économie

Qualification d'une variable qualitative et variable quantitative

Pour une variable qualitative, les modalités ne sont pas mesurables.

Pour une variable quantitative, les modalités sont mesurables. Ce sont :

- des valeurs numériques ponctuelles lorsque la variable est discrète
- des intervalles lorsque la variable est continue ou lorsque la variable est discrète et qu'elle comporte beaucoup de modalités

Représentations graphiques

Les tuyaux d'orgue (ou diagramme en barre ou diagramme à bandes

les diagrammes à secteurs (ou camemberts)

- -L'effectif total est représenté par un disque.
- -Chaque modalité est représentée par un secteur circulaire dont la surface (pratiquement : l'angle au centre) est proportionnelle à l'effectif correspondant

_ 1		-
Application :		
La répartition (des candidats convoqués pour pa	articiper au Test d'Admissibilité à la Formation
en Managemen	t (TAFEM 1998) pour l'accessio	on à L'Ecole Nationale de Commerce et de
Gestion d'Agac	<u>dir , selon la série du baccalauré</u>	at se présente comme suit :
Série du Bac xi		Nombre de candidats ni
Sciences éconor	miques	250
🧵 🕴 Sciences mathé	matiques	200
Sciences expéri	mentales	400
T.G.A		50

100

1000

TAF: représentez cette distribution en Tuyaux d'orgues et Diagramme circulaire.

T.G.C

Total

Variable discrète

Diagramme différentiel : le diagramme en bâtons

Les valeurs discrètes xi prises par les variables sont placées sur l'axe des abscisses, et les effectifs (ou les fréquences) sur l'axe des ordonnées. La hauteur du bâton est proportionnelle à l'effectif.

Variable discrète

<u>Diagrammes cumulatifs : ils permettent de visualiser</u>
<u>l'évolution des effectifs (fréquences) cumulés</u>
<u>croissants ou décroissants.</u>

Variable classée

Diagramme différentiel : l'histogramme

C'est un ensemble de rectangles contigus, chaque rectangle associé à chaque classe ayant une surface proportionnelle à l'effectif (fréquence) de cette classe.

Variable classée

Diagrammes cumulatifs

C'est un ensemble de rectangles contigus, chaque rectangle associé à chaque classe ayant une surface proportionnelle à l'effectif (fréquence) de cette classe.

Application : Représentez graphiquement la distribution de 50 étudiants en fonction de leur taille suivante :	
Représentez graphiquement la distribution de 50 étudiants en fonction de leur taille suivante :	
Taille on one wi	
Taille en cm xi Nombre d'étudiants	\neg
150-160 16	$\dashv \mid$
160-165	
165-170 12	
170-175	
175-180 2	
Total 50	<u> </u>

les Caractéristiques de distribution

Caractéristiques de tendance centrale et de position

Les caractéristiques de tendance centrale essayent de donner la valeur la plus représentative d'un ensemble de valeurs numériques.

Le Mode

• C'est la valeur observée d'effectif maximum.

Application:	
Déterminez la valeur modale de l: Taille en cm : xi	a distribution suivante, de 50 étudiants selon leur taille : Nombre d'étudiants : ni
150-160	15
160-170	6
170-175	10
175-180	16
185-200	3
Total	50
Eléments de réponse :	'
Io = 173.77 cm	

Médiane

 Les valeurs étant rangées par ordre croissant, c'est la valeur de la variable qui sépare les observations en deux groupes d'effectifs égaux.

<u>Application :</u> Soit la série statistique suivante :

19 17 20 18 17 17 20 19 15 16 20 23 22 14 15 24

TAF : Calculez la médiane de cette série

Eléments de réponse :

Me=18.5

Moyenne arithmétique

• Si xi sont les observations d'une variable discrète ou les centres de classe d'une variable

Application : Déterminez la taille moyenne des 5	0 étudiants dont la distribution par taille se présente commesuit :
Taille en cm xi	Nombre d'étudiants
150-160	16
160-165	6
165-170	12
170-175	14
175-180	2
Total	50

réponse : x = 168.3 cm

Moyenne géométrique

Moyenne géométrique

Si xi sont les observations d'une variable quantitative, la moyenne géométrique est égale

$$G = \mathbf{N} \mathbf{z}_1^{\mathbf{n}_1} \times \dots \times \mathbf{z}_k^{\mathbf{n}_k}$$

à

Moyenne harmonique

$$H = \frac{\Sigma_{ni}}{\Sigma_{ni}1/x_i}$$

Appl	ication :
Unc	cliste effectue une traversé de 50 kms. Pendant les 20 premiers kms il roulait avec
unev	itesse constance de km/h, les 15 kms suivants à une vitesse constante de 30 km/h. Du
	kilométrique 35 au 55 la vitesse de notre cycliste n'est que de 10 km/h et au-delà du
•	kilométrique sa vitesse n'est que de 5 km/h.
TAF	•
Quel	e est la vitesse de ce cycliste sur l'ensemble du parcours ?
•	ents de réponse :
$\mathbf{H} = \mathbf{I}$	

Moyenne quadratique

Si xi sont les observations d'une variable quantitative, la moyenne harmonique est égale à

Quartiles

Ce sont des caractéristiques de position.

Les quartiles sont obtenus lorsqu'on a cumulé 25, 50, 75% de la population

Les déciles sont obtenus lorsqu'on a cumulé 10, 20,. , 90% de la population Les centiles sont obtenus lorsqu'on a cumulé 1, 2,. , 99% de la population

Application:		
0.141 1.41	•	00

Soit la population de 80 salariés classés d'après le niveau de leur salaire journalier.

Classes on the

Classes en uns	INI	incumules	- 1
90 à 100	5	5	
100 à 110	9	14	
110 à 120	16	30	
120 à 130	25	55	
130 à 140	13	68	
140 à 150	7	75	
150 à 160	3	78	
160 à 170	2	80	
	80		
	90 à 100 100 à 110 110 à 120 120 à 130 130 à 140 140 à 150 150 à 160	90 à 100 5 100 à 110 9 110 à 120 16 120 à 130 25 130 à 140 13 140 à 150 7 150 à 160 3 160 à 170 2	90 à 100 5 5 14 14 110 à 120 16 30 120 à 130 25 55 130 à 140 13 68 140 à 150 7 75 150 à 160 3 78 160 à 170 2 80

Ni

nicumulás

TAF : calculez la médiane et les deux quartiles Eléments de réponse :

Me = 124 $Q_1 = 110 + (10x6)/16 = 113.7$ $Q_3 = 130 + (10x5)/13 = 133.8$

les Caractéristiques de distribution

Caractéristiques de dispersion

Comme leur nom l'indique, ces caractéristiques essayent de synthétiser par une seule valeur numérique la dispersion de toutes les valeurs observées.

Étendue

C'est la différence entre la plus grande et la plus petite observation

Exemple

Intervalle inter-quartile

C'est la différence entre le troisième et le premier quartile

Exemple

Variance et écart-type

Si xi sont les observations d'une variable discrète ou les centres de classe d'une variable classée, la variance

V est égale à
$$\sum_{i=1}^{k} \frac{n_i (x_i - \overline{x})^2}{n} = \sum_{i=1}^{k} f_i (x_i - \overline{x})^2$$

On a aussi
$$V = \sum_{i=1}^{k} \frac{n_i x_i^2}{n} - \overline{x}^2$$

c.à.d. moyenne des carrés - carré de la moyenne

On utilise plus couramment l'écart type qui est la racine carrée de la variance et qui a l'avantage d'être un nombre de même dimension que les données (contrairement à la variancequi en est le carré)

Coefficient de variation

Exemple

Applications : App.1-Les séries suivantes représentent la mesure d'un caractère auprès des individus d'unepopulation :

a.6 1 8 10 5 4 11 3 2 9 7 12 13 b. 19 17 7 1 4 24 15 22 10 13 c. 15 12 17 15 20 15 20 15 15 9 7 d. 21 25 34 10 20 27 14 20 34

type et lecoefficient de variation.

a. x=7, Me=7, pas de mode, $\sigma^2=14$, $\sigma=3.74$, V=53.4%

Eléments de réponse :

Dans chacun de ces cas calculez : la moyenne, la médiane, le mode "la variance, l'écart

b. x=13.2, Me=14, pas de mode, σ^2 =52.76, σ =7.26, V=55% c. x=14.5, Me=15, Mo=15, $\sigma^2=14.61$, $\sigma=3.82$, V=26.3%

d. x=22.8, Me=21, deux modes : 20 et 34, σ^2 =59.28, σ =7.70, V=33.8%

Régression et corrélation

Lorsqu'on observe deux variables quantitatives sur les mêmes individus, on peut s'intéresser à une liaison éventuelle entre ces deux variables.

La régression fournit une expression de cette liaison sous la forme d'une fonction mathématique.

La corrélation renseigne sur l'intensité de cette liaison.

Ajustement d'un nuage de points à une fonction mathématique

Ajustement linéaire par la méthode des moindres carrés

Lorsque le nuage de points (xi , yi) est à peu près rectiligne, on peut envisager d'exprimer
 la liaison entre x et y sous forme de fonction affine y = ax + b

$$\sum_{i} e_{i}^{2} = \sum_{i} (y_{i} - ax_{i} - b)^{2}$$

$$b = \overline{y} - a\overline{x}$$

$$a = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

Mesure de l'intensité de la relation linéaire entre deux variables

Covariance

$$Cov(x, y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

Cov(x,y) > 0 $\Leftrightarrow_{x \text{ et } y \text{ varient dans le } m \hat{e} m e \text{ sens } x}$

 $Cov(x,y) \! < \! 0 \quad \Leftrightarrow_{\text{et } y \text{ varient en sens contraire}}$

$$Cov(x,y) = Cov(y,x)$$

 $Cov(x,x) = V(x)$

Droites de régression

$$a = \frac{cov(x, y)}{V(x)}$$
 et $b = \overline{y} - a\overline{x}$

$$\mathbf{a}' = \frac{\operatorname{cov}(\mathbf{x}, \mathbf{y})}{\mathbf{x}}$$
 et $\mathbf{b}' = \overline{\mathbf{y}}$

Dy/x : y = ax + b avec

 $a = \overline{V(y)}$ et b = x - a

Merci de votre attention