CrIn GeCrIn GeProduction. Supercringe introduction here:

2 Some basic knowledge about researching problem...

Parameters and constants we use in this work:

```
Constants (3):

e = 2.718282
pi = 3.141593
AbObA = 1337.228690

Variables (3):

a = 3.141500
kek = 13.000000
x = 1.000000

Parameters of exploration:

Number of differentiates = 2
Macloren's accuracy = 3
Tanget point = 0.200000
Delta coverage of tangent point = 2.500000
Graph diapasone = [-1:15]
```

So let's calculate smth with a given function:

```
f(a, kek, x) = \cos\left(a + \frac{kek}{1.000^{AbObA}}\right) + \ln\left(1.000 + x \cdot kek \cdot (1.000^{(\ln e)} - 0.000)\right)
```

Firstly, let's insert all constants:

```
f(a, kek, x) = \cos\left(a + \frac{kek}{1.000^{1337.229}}\right) + \ln\left(1.000 + x \cdot kek \cdot (1.000^{(\ln 2.718)} - 0.000)\right)
```

And simplify this expression (if possible):

```
f(a, kek, x) = \cos(a + kek) + \ln(1.000 + x \cdot kek)
```

3 Exploration the expression as a function of multiple variables

- Calculation a value of function in the point

```
BRITISH SCIENTISTS WERE SHOCKED, WHEN THEY COUNT IT!!! In the point M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000) expression's value = 1.73157
```

- Finding the first derivation of function

Personally, I've always thought about first derivation of something like that function... Haven't you? But now, by using informatics and math skills I feel that I'm prepared enough to calculate it!

```
1 step: Finding a derivation of kek While preparing for exams, I learned a lot of new things, for example: (kek)' = \\ = 1.000
```

2 step: Finding a derivation of xOnly after two cups of beer you might understand it:

$$(x)' = 1.000$$

3 step: Finding a derivation of $x \cdot kek$ Never say it to girls:

```
(x \cdot kek)' = kek + x
```

4 step: Finding a derivation of 1.000 Only by using special skills we might know::

```
(1.000)' = \dots = [\text{top secret}] = \dots = 0.000
```

5 step: Finding a derivation of $1.000 + x \cdot kek$ What if:

$$(1.000 + x \cdot kek)' = kek + x$$

6 step: Finding a derivation of $\ln(1.000 + x \cdot kek)$ Even my two-aged sister knows that:

```
(\ln(1.000 + x \cdot kek))' =
= \frac{1.000}{1.000 + x \cdot kek} \cdot (kek + x)
7 step: Finding a derivation of kek
The first task in MIPT was to calculate:
(kek)' =
= 1.000
8 step: Finding a derivation of a
Never say it to girls:
(a)' =
= 1.000
9 step: Finding a derivation of a + kek
It's simple as fuck:
(a + kek)' = \dots = [\text{top secret}] = \dots =
= 2.000
10 step: Finding a derivation of \cos(a + kek)
As we know:
(\cos(a + kek))' =
= 2.000 \cdot (-1.000) \cdot \sin(a + kek)
11 step: Finding a derivation of \cos(a + kek) + \ln(1.000 + x \cdot kek)
I was asked not to tell anyone that:
(\cos(a+kek) + \ln(1.000 + x \cdot kek))' =
= 2.000 \cdot (-1.000) \cdot \sin (a + kek) + \frac{1.000}{1.000 + x \cdot kek} \cdot (kek + x)
Congratulations! The first derivation of the expression is:
   f'(a, kek, x) = 2.000 \cdot (-1.000) \cdot \sin(a + kek) + \frac{1.000}{1.000 + x \cdot kek} \cdot (kek + x)
   In the point M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000) it's value = 1.84017
Finding the 2 derivation Let's find the 1 derivation of the expression:
1 step: Finding a derivation of kek
Only after two cups of beer you might understand it:
(kek)' = \dots = [top secret] = \dots =
= 1.000
2 step: Finding a derivation of x
Even my two-aged sister knows that:
(x)' =
= 1.000
```

3 step: Finding a derivation of $x \cdot kek$ Even my two-aged sister knows that:

$$(x \cdot kek)' = kek + x$$

4 step: Finding a derivation of 1.000

When I was a child, my father always told me: "Remember, son:

$$(1.000)' = 0.000$$

5 step: Finding a derivation of $1.000 + x \cdot kek$ I have no words to describe this fact:

$$(1.000 + x \cdot kek)' = \dots = [\text{top secret}] = \dots = kek + x$$

6 step: Finding a derivation of $\ln (1.000 + x \cdot kek)$ My roommate mumbled it in his sleep all night:

$$(\ln{(1.000+x\cdot kek)})'=\dots=[\text{top secret}]=\dots=\frac{1.000}{1.000+x\cdot kek}\cdot (kek+x)$$

7 step: Finding a derivation of kek I have no words to describe this fact:

```
(kek)' = ... = [top secret] = ... = 1.000
```

8 step: Finding a derivation of a

While preparing for exams, I learned a lot of new things, for example:

$$(a)' = 1.000$$

9 step: Finding a derivation of a + kek

It's really easy to find:

$$(a + kek)' = 2.000$$

10 step: Finding a derivation of $\cos(a + kek)$

What if:

$$(\cos{(a+kek)})' = \dots = [\text{top secret}] = \dots = 2.000 \cdot (-1.000) \cdot \sin{(a+kek)}$$

11 step: Finding a derivation of $\cos(a + kek) + \ln(1.000 + x \cdot kek)$ You should be aware of the fact that:

$$\begin{array}{l} (\cos{(a+kek)} + \ln{(1.000 + x \cdot kek)})' = \\ = 2.000 \cdot (-1.000) \cdot \sin{(a+kek)} + \frac{1.000}{1.000 + x \cdot kek} \cdot (kek + x) \end{array}$$

So the 1 derivation of the expression is:
$$2.000 \cdot (-1.000) \cdot \sin{(a+kek)} + \frac{1.000}{1.000 + x \cdot kek} \cdot (kek + x)$$

Let's find the 2 derivation of the expression:

1 step: Finding a derivation of x A true prince must know that:

$$(x)' = 1.000$$

2 step: Finding a derivation of kek

For centuries, people have hunted for the secret knowledge that:

$$(kek)' = 1.000$$

3 step: Finding a derivation of kek + x

I spend the hole of my life to find the answer and finally it's:

$$(kek + x)' = \dots = [top secret] = \dots = 2.000$$

4 step: Finding a derivation of kek

Never say it to girls:

$$(kek)' = 1.000$$

5 step: Finding a derivation of x

It's really easy to find:

$$(x)' = 1.000$$

6 step: Finding a derivation of $x \cdot kek$

Sometimes I hear the same voice in my head, it always says:

$$(x \cdot kek)' = \dots = [\text{top secret}] = \dots = kek + x$$

7 step: Finding a derivation of 1.000 Even my two-aged sister knows that:

$$(1.000)' = 0.000$$

8 step: Finding a derivation of $1.000 + x \cdot kek$

Only by using special skills we might know::

$$(1.000 + x \cdot kek)' = kek + x$$

9 step: Finding a derivation of 1.000

My friends always beat me, because I didn't know that:

$$(1.000)' = \dots = [top secret] = \dots = 0.000$$

10 step: Finding a derivation of $\frac{1.000}{1.000+x\cdot kek}$

A true prince must know that:

$$(\frac{1.000}{1.000+x \cdot kek})' = \dots = [\text{top secret}] = \dots = \frac{(-1.000) \cdot (kek+x)}{(1.000+x \cdot kek)^{2.000}}$$

11 step: Finding a derivation of $\frac{1.000}{1.000+x\cdot kek}\cdot (kek+x)$ Sometimes I hear the same voice in my head, it always says:

$$\begin{array}{l} (\frac{1.000}{1.000+x\cdot kek} \cdot (kek+x))' = \\ = \frac{(-1.000) \cdot (kek+x)}{(1.000+x\cdot kek)^{2.000}} \cdot (kek+x) + 2.000 \cdot \frac{1.000}{1.000+x\cdot kek} \end{array}$$

12 step: Finding a derivation of kek

Only by using special skills we might know::

$$(kek)' = \dots = [top secret] = \dots = 1.000$$

13 step: Finding a derivation of a

While preparing for exams, I learned a lot of new things, for example:

$$(a)' = 1.000$$

14 step: Finding a derivation of a + kek

She: please, never speak with my dad about math... Me: ok) Also me after homework of matan:

$$(a + kek)' = \dots = [\text{top secret}] = \dots = 2.000$$

15 step: Finding a derivation of $\sin(a + kek)$

My roommate mumbled it in his sleep all night:

$$(\sin(a+kek))' = \dots = [\text{top secret}] = \dots = 2.000 \cdot \cos(a+kek)$$

16 step: Finding a derivation of -1.000

A true prince must know that:

$$(-1.000)' = \dots = [top secret] = \dots = 0.000$$

17 step: Finding a derivation of $(-1.000) \cdot \sin(a + kek)$

A true prince must know that:

$$((-1.000) \cdot \sin(a + kek))' =$$

= (-1.000) \cdot 2.000 \cdot \cdot \cdot (a + kek)

18 step: Finding a derivation of 2.000

If someone asked me that in the middle of the night, I wouldn't hesitate to say:

$$(2.000)' = 0.000$$

19 step: Finding a derivation of $2.000 \cdot (-1.000) \cdot \sin(a + kek)$

When I was a child, my father always told me: "Remember, son:

$$(2.000 \cdot (-1.000) \cdot \sin(a + kek))' = \dots = [\text{top secret}] = \dots = 2.000 \cdot (-1.000) \cdot 2.000 \cdot \cos(a + kek)$$

20 step: Finding a derivation of $2.000 \cdot (-1.000) \cdot \sin{(a + kek)} + \frac{1.000}{1.000 + x \cdot kek} \cdot (kek + x)$ thanks to the results of my colleagues' scientific work, I know that:

$$\begin{array}{l} (2.000 \cdot (-1.000) \cdot \sin{(a + kek)} + \frac{1.000}{1.000 + x \cdot kek} \cdot (kek + x))' = \\ = 2.000 \cdot (-1.000) \cdot 2.000 \cdot \cos{(a + kek)} + \frac{(-1.000) \cdot (kek + x)}{(1.000 + x \cdot kek)^{2.000}} \cdot (kek + x) + 2.000 \cdot \frac{1.000}{1.000 + x \cdot kek} \end{array}$$

So the 2 derivation of the expression is:

$$2.000 \cdot (-1.000) \cdot 2.000 \cdot \cos{(a + kek)} + \frac{(-1.000) \cdot (kek + x)}{(1.000 + x \cdot kek)^{2.000}} \cdot (kek + x) + 2.000 \cdot \frac{1.000}{1.000 + x \cdot kek}$$

Finally... The 2 derivation of the expression:

 $f^{(2)}(a, kek, x) = 2.000 \cdot (-1.000) \cdot 2.000 \cdot \cos(a + kek) + \frac{(-1.000) \cdot (kek + x)}{(1.000 + x \cdot kek)^{2.000}} \cdot (kek + x) + 2.000 \cdot \frac{1.000}{1.000 + x \cdot kek}$ BRITISH SCIENTISTS WERE SHOCKED AGAIN, WHEN THEY COUNT THE 2 DERIVATION OF THIS EX-PRESSION!!!

In the point $M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000)$ it's value = 2.77280

Finding partical derivations Partial derivation of the expression on the variable a:

 $\frac{\partial f}{\partial a} = (-1.000) \cdot \sin\left(a + 13.000\right)$

In the point $M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000)$ it's value = 0.42008 !!!

Partial derivation of the expression on the variable kek:

 $\frac{\partial f}{\partial kek} = (-1.000) \cdot \sin(3.142 + kek) + \frac{1.000}{1.000 + kek}$

In the point $M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000)$ it's value = 0.49151 !!!

Partial derivation of the expression on the variable x:

 $\frac{\partial f}{\partial x} = 13.000 \cdot \frac{1.000}{1.000 + 13.000 \cdot x}$ In the point $M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000)$ it's value = 0.92857 !!!

Finding full derivation Full derivation:

$$\sqrt{\left((-1.000) \cdot \sin\left(a + 13.000\right)\right)^{2.000} + \left((-1.000) \cdot \sin\left(3.142 + kek\right) + \frac{1.000}{1.000 + kek}\right)^{2.000} + \left(13.000 \cdot \frac{1.000}{1.000 + 13.000 \cdot x}\right)^{2.000}}$$
In the point $M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000)$ it's value = 1.13150 !!!

Exploration the expression as a function of the first variable

Now let's consider the expression as a function of the first variable a: $f(a) = \cos(a + 13.000) + 2.639$

Decomposing on Macloren's formula Maklorens formula for
$$a \rightarrow a_0 = 3.142$$
:

$$f(a) = 1.732 + 0.420 \cdot (a - 3.142) + 0.454 \cdot (a - 3.142)^{2.000} + (-0.070) \cdot (a - 3.142)^{3.000} + o((a - 3.142)^{3.000})$$

$$f(a) = 1.732 + 0.420 \cdot (a - 3.142) + 0.454 \cdot (a - 3.142)^{2.000} + (-0.070) \cdot (a - 3.142)^{3.000} + o((a - 3.142)^{3.000})$$

Graphics Graph $f(a) = \cos(a + 13.000) + 2.639$ on the diapasone $a \in [-1:15]$:

Equations in the point Tangent equation in the point $a_0 = 0.200$:

 $f(a) = (-0.592) \cdot (a - 0.200) + 3.445$

Normal equation in the point $a_0 = 0.200$:

 $f(a) = 1.689 \cdot (a - 0.200) + 3.445$

Their graphs in $\delta = 2.50000$ coverage of the point $a_0 = 0.200000$

Conclusion 5

Ultrarcringe conclusion here: