funkce f	graf (s prostou restrikcí)	vzorce	$f' \int f$	inverze f_{-1}	graf f_{-1}	f_{-1}
$\sin(x)$	$-\frac{\pi}{2}$ 1 $\frac{3\pi}{2}$	$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$	$\cos(x)$	arcsin(x)	$\frac{\pi}{2}$ \uparrow	$\frac{1}{\sqrt{1-x^2}}$
$=\frac{e^{ix}-e^{-ix}}{2i}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\sin(2x) = 2\sin(x)\cos(x) \qquad \sin^2(x) = \frac{1 - \cos(2x)}{2}$	$\int f dx =$		-1 1	V 1-x
lichá, T=2π		$\sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2} \sin(\frac{\pi}{2}) = \frac{\sqrt{4}}{2} = 1 \sin^2(x) + \cos^2(x) = 1$		$D(f_{-1})=\langle -1,1\rangle$	$-\frac{\pi}{2}$	$D(f_{-1})=(-1,1)$
$\cos(x)$	$\sin(0) - \frac{1}{2} = 0$ $\sin(\frac{1}{6}) - \frac{1}{2} = \frac{1}{2}$ $\sin(\frac{1}{4}) - \frac{1}{2}$	$\sin(3) - 2 = \sin(2) - 2 - 1 = \sin(x) + \cos(x) = 1$	$-\sin(x)$	arccos(x)	$\P^{\pi \uparrow}$	$\frac{-1}{\sqrt{1-x^2}}$
$=\frac{e^{ix}+e^{-ix}}{2}$		$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$	$\int f dx =$		$\frac{\pi}{2}$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
sudá, T=2π	$ \frac{\pi}{2} - 1 + \frac{\pi}{2} \qquad \frac{\pi}{2} \qquad \frac{3\pi}{2} \qquad \frac{2\pi}{D(f)} = \mathbb{R} $	$\cos(2x) = \cos^2(x) - \sin^2(x)$ $\cos^2(x) = \frac{1 + \cos(2x)}{2}$	$\sin(x)$	$D(f_{-1}) = \langle -1, 1 \rangle$	-1 1 -1 1	$D(f_{-1})=(-1,1)$
tg(x)		$tg(x+y) = \frac{tg(x) + tg(y)}{1 - tg(x)tg(y)}$	$\frac{1}{\cos^2(x)}$	arctg(x)	$ \frac{\pi}{2}$	$\frac{1}{x^2+1}$
$=\frac{\sin(x)}{\cos(x)}$	$\frac{\pi}{2}$ π $\frac{3\pi}{2}$ 2π	$tg(2x) = \frac{2tg(x)}{1 - tg^2(x)}$	$\int f dx =$		$-\frac{\pi}{2}$	
lichá, T=π	$\int \int \int \nabla f dx = \frac{\pi}{2} + k\pi$		$-\ln \cos(x) $	$D(f_{-1})=IR$	<u></u> +-2	$D(f_{-1})=IR$
$\cot g(x)$	1	$\cot g(x+y) = \frac{\cot g(x)\cot g(y) - 1}{\cot g(x) + \cot g(y)}$	$\frac{-1}{\sin^2(x)}$	arccotg(x)	$\bar{\pi}$	$\frac{-1}{x^2+1}$
$=\frac{\cos(x)}{\sin(x)}$	$\frac{\pi}{2}$ $\frac{\pi}{2}$ $\frac{3\pi}{2}$ 2π	2			$\frac{\pi}{2}$	
lichá, T=π	$\begin{vmatrix} 2 \\ D(f) \end{vmatrix}$ $\begin{vmatrix} 2 \\ x \neq k\pi \end{vmatrix}$	$\cot g(2x) = \frac{\cot g^2(x) - 1}{2\cot g(x)}$		$D(f_{-1})=IR$		$D(f_{-1})=IR$
sinh(x)	1	$\sinh(x+y) = \sinh(x)\cosh(y) + \cosh(x)\sinh(y)$	cosh(x)	argsinh(x)	1	$\frac{1}{\sqrt{x^2+1}}$
$=\frac{e^x-e^{-x}}{2}$	\rightarrow	$\sinh(2x) = 2\sinh(x)\cosh(x)$ $\sinh^{2}(x) = \frac{\cosh(2x) - 1}{2}$	$\int f dx =$	$=\ln(x+\sqrt{x^2+1})$	\longrightarrow	$\sqrt{x^2+1}$
lichá	$D(f)=I\!\!R$	<u> </u>	$\cosh(x)$	D(f ₋₁)= I R		$D(f_{-1})=\mathbf{R}$
$\cosh(x)$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\cosh^2(x) - \sinh^2(x) = 1$	sinh(x)	argcosh(x)	1	1
$=\frac{e^x+e^{-x}}{2}$		$\cosh(x+y) = \cosh(x)\cosh(y) + \sinh(x)\sinh(y)$ $\cosh(2x) = \cosh^{2}(x) + \sinh^{2}(x)$		$=\ln(x+\sqrt{x^2-1})$		$\frac{1}{\sqrt{x^2-1}}$
sudá	$D(f)-\mathbf{R}$	$\cosh^2(x) = \frac{\cosh(2x) + \sinh(x)}{2}$	$\int f dx = $ $\sinh(x)$	$D(f_{-1})=\langle 1,\infty \rangle$	$\frac{1}{1}$	$D(f_{-1}') = (1, \infty)$
tgh(x)		$tgh(x+y) = \frac{tgh(x) + tgh(y)}{1 + tgh(x)tgh(y)}$	$\frac{1}{\cosh^2(x)}$	$\frac{D(J-1)-\langle 1, \infty \rangle}{\operatorname{argtgh}(x)}$		$\frac{1}{1-x^2}$
$=\frac{\sinh(x)}{\cosh(x)}$		$\frac{\operatorname{tgh}(x+y)-1}{1+\operatorname{tgh}(x)\operatorname{tgh}(y)}$	$\cosh(x)$	$-\frac{1}{2}\ln\left(\frac{1+x}{1+x}\right)$		$1-x^2$
		$tgh(2x) = \frac{2tgh(x)}{1 + tgh^{2}(x)}$	$\int f dx =$		-1	
lichá	$D(f)=\mathbb{R}$			$D(f_{-1}) = (-1,1)$		$D(f_{-1})=(-1,1)$
cotgh(x) $ cosh(x)$		$\cot gh(x+y) = \frac{1 + \cot gh(x) \cot gh(y)}{\cot gh(x) + \cot gh(y)}$	$\frac{-1}{\sinh^2(x)}$	argcotgh(x)		$\frac{1}{1-x^2}$
$=\frac{\cosh(x)}{\sinh(x)}$	—————————————————————————————————————	$\cot gh(2x) = \frac{1 + \cot gh^2(x)}{2\cot gh(x)}$		$=\frac{1}{2}\ln\left(\frac{x+1}{x-1}\right)$		$D(f^2)$
lichá	$D(f): x \neq 0$	$2\cot(x)$		$D(f_{-1}): x > 1$		$D(f_{-1}'): x > 1$ © pHabala 2009