Question: 4

Prove or disprove: Any subring of a field F containing 1 is an integral domain.

Solution: Let $R \subseteq F$. Suppose $x, y \in R$ such that xy = 0. Since the 0 element is the same in R and F, either x = 0 or y = 0 and as such, R has no zero divisors and therefore, is an integral domain.

Question: 6

Let F be a field of characteristic zero. Prove that F contains a subfield isomorphic to \mathbb{Q} .

Solution: Let $\phi : \mathbb{Z} \to F$ and define $\phi(1_{\mathbb{Z}}) = 1_F$. Characteristic 0 means that ϕ is injective. We can use this to define $\varphi : \mathbb{Q} \to F$ such that $\varphi(a/b) = \phi(a)/\phi(b)$ whenever $b \neq 0_{\mathbb{Z}}$. This is a homomorphism because:

$$\varphi(1_{\mathbb{Z}}/1_{\mathbb{Z}}) = \varphi(1_{\mathbb{Z}})/\varphi(1_{\mathbb{Z}}) = 1_F/1_F = 1_F,$$

$$\varphi(\frac{a}{b}\frac{c}{d}) = \varphi(\frac{ac}{bd}) = \frac{\varphi(ac)}{\varphi(bd)} = \frac{\varphi(a)}{\varphi(b)}\frac{\varphi(c)}{\varphi(d)} = \varphi(\frac{a}{b})\varphi(\frac{c}{d}),$$

$$\varphi(\frac{a}{b} + \frac{c}{d}) = \varphi(\frac{ad + bc}{bd}) = \frac{\varphi(ad + bc)}{\varphi(bd)} = \frac{\varphi(a)\varphi(d) + \varphi(b)\varphi(c)}{\varphi(b)\varphi(d)} = \frac{\varphi(a)}{\varphi(b)} + \frac{\varphi(c)}{\varphi(d)} = \varphi(\frac{a}{b}) + \varphi(\frac{c}{d}).$$

 φ is also injective because cross-multiplication. This injectiveness means that $ad = bc \implies a/b = c/d$. As such, contains a subfield isomorphic to \mathbb{Q} that is $\varphi(\mathbb{Q}) \subseteq F$. Θ

Question: 10

A field F is called a **prime field** if it has no proper subfields. If E is a subfield of F and E is a prime subfield of F:

- a. Prove that every field contains a unique prime subfield.
- b. If F is a field of characteristic 0, prove that the prime subfield of F is isomorphic to the field of rational numbers, \mathbb{Q} .
- c. If F is a field of characteristic p, prove that the prime subfield of F is isomorphic to the field of integers modulo p, \mathbb{Z}_p .

Solution:

- a. To convince ourselves that E is nonempty, we realize that $0,1 \in E$. For any $a,b \in E$, $a,b \in L$, so ab, a+b, a-b, and a/b are all in L, and thus all in E. As such, E is a subfield. If $L \subset E$ is a proper subfield, it is a subfield of E too. By definition, E is contained in all subfields of E. As such, E is a prime field.
 - If E' is another prime subfield, by construction, $E \subseteq E'$. Since E' is prime, E' = E.
- b. Define $\phi: \mathbb{Z} \to F$ as $\phi(x) = x * 1_F$. F having characteristic 0 means that this definition of ϕ is injective, so its image is a subring of F isomorphic to \mathbb{Z} . By a theorem related to a field of fractions that we covered in class, F contains a subfield isomorphic to \mathbb{Q} . \mathbb{Q} has no subfields, it is prime, and by part a., it is the unique subfield of F.

c. Define ϕ the same as we did in b. Since $\operatorname{char}(F) = p$, the kernel of ϕ is $p\mathbb{Z}$. By the first isomorphism theorem, the image of ϕ is isomorphic to \mathbb{Z}_p , which is a prime field. By part a., it is the unique prime field of F.