ESALD

DATA ENGINEERING I

Prof. Dr. Jeronymo Marcondes

Introducti on

Why to study Data Engineering?

Data Engineering x Data Science.

What is Data Engineering?

bral de Melo 339.652.318-04

ETL

^{*}A responsabilidade pela idoneidade, originalidade e licitude dos conteúdos didáticos apresentados, é do professor. **Proibida a reprodução** total ou parcial, sem autorização. Lei nº 9610/98

Requirements of large companies

339.652.318-0A Le Melo 339.652.318 A professional of data science must:

- Know about the structures of databases.
- Know how a process of the ETL works.
- Understand about modeling of databases.
- Understand how the use of data in the production works.
- Know SQL.

Our objective

Introduction to the data structure.

Relational database.

SQL.

ERD Model – construction and interpretation.

de Melo 339.652.318-04

The model and the relational algebra.

Data

• Data x Information.

What is a database?

It is a data collection, which describes, typically, the activities and relationships of one or more organizations.

Example: MBA USP.

MBA USP ESALO

DBMS

Database Management Systems:

Software planned to help the maintenance, organization, and collection of existing data in a database.

Example: MySQL.

MBAUSP

Data Structures

The data we can use are divided into:

- Structured Data.
- Semi-structured Data.
- Unstructured data.

Source: https://www.astera.com/pt/tipo/blog/dados-semiestruturados-e-n%C3%A3o-estruturados-estruturados/

MBA USP ESALO

Cabral de Melo 339.652.318-04

Structured the data that have well-defined formats, such as those extracted from spreadsheets or relate databases in SQL.

Semi-structured — Similar to structured data, but not obedient in the totality regarding the form. In this line are the records of languages based on HTML and XML. Unstructured or NoSQL - do not have a specific format, these are data collected in their original form, such as a text, a video, an email fragment, a system log or a simple photo.

Eduardo

MBAUSP

Structured Data

Struct	ured Data	Grade 10 0 10 10 10 10 10 10 10 10 10 10 10 10	
CPF	Name	Grade	1 de N
Х	Zé das couves	10	
у	Maria das desgraças	2	
h	Silvio Santos	5	

Semi-structured data

```
Vin Cabral de Melo 339.652.318-04
        "Zé das couves",
"Grade":
"Telephone":
            "It's none of your business"
"CPF":
"Name":
        "Maria das desgraças"
"Grade":
        "Silvio Santos"
"Grade":
         "Muito alta"
```


Unstructured Data

Relational DBMS

Our focus will be on Relational DBMS

Advantages in the use of a DBMS:

- Independence.
- Efficiency.
- Integrity and security.
- Simplified data management.
- Access control.

Data model

- Data "stored" in the database according to the model. The DBMS will allow us to look at this model and make consultations according to the pre-established logic.
- The description of the data in terms of models is called SCHEMA. As example below:

Students (CPF: string, Name: string, Grade: Integer)

Type of data

- The types of data are classified in different categories and allow N formats.
 We will present only the most common ones.
- Integer Example: 1, 2, etc.
- Float. Example: 0.10, 10.25, etc.
- String. Example: "Good morning", "my name is", etc.
- Date. Example: 2021-01-01.
- VARCHAR and CHAR case.

Data model

Students (CPF: string, Name: string, Grade: Integer)

- This indicates to us that it is a table with three fields.
- Relational model implies that each register is unique.
- Integrity Constraints!

Level of Abstraction

Conceptual model

- The highest level.
- Closer to the reality of the business.
- It describes the relationships between the entities present in a database.

^{*}A responsabilidade pela idoneidade, originalidade e licitude dos conteúdos didáticos apresentados, é do professor. **Proibida a reprodução** total ou parcial, sem autorização. Lei nº 9610/98

ERD Definitions

• Entity: Something that can be defined and can have data stored about it such as a person, an object, concept or event. Think on entities as nouns. Examples: a customer, student, car or product.

Eduardo Aparecido

ERD Definitions

 Relationship: How entities act upon each other or are associated with each other. Think on relationships as verbs. For example, the student can sign up in a course. The two entities would be the student and the course, and the relationship described is the act of signing up, so, connecting the two entities.

ERD Definitions

• Attribute: The property or characteristic of an entity, often represented by an oval or circle.

Aparecido Seres

ERD Example

Level of Abstraction

Logical Model

- As the data will be arranged effectively in tables in the database.
- It takes into account limitations of the bank and DBMS.
- Defines the primary and foreigner keys, and integrity constraints.

Logical Schema

Level of Abstraction

Physical Model

- Implementation How to insert the data and create tables and all the schema.
- The lowest level.
- How the data will be stored.
- Restoration methods, backup.

Query

Given the existence of a database, we may ask:

- How many students are enrolled in a course?
- How many courses are active?
- What is the average age of the students?
- What is the average age of students in a certain course?

SQL enters.

nin Cabral de Melo 339.652.318-04 DML – data manipulation language.

Universally accepted.

Proper to use relational algebra

In to JUL Sereguin Cabral de Melo 339.652 318.01

SQL

Structured Query Language.

• Origin – IBM.

• We do not need the way to get in the result – we define the result.

• Declarative language.

Important Aspects

DML – data manipulation.

DDL – data definition.

Remote Database Access

Transactions management.

Safety.

Te Melo 339.652.318-04

MBA USP ESALO

reguin Cabral de Melo 339.652.318-04 Basic form of a query

SELECT [DISTINCT] list of selection

FROM list of origin

WHERE

qualification

*A responsabilidade pela idoneidade, originalidade e licitude dos conteúdos didáticos apresentados, é do professor. Proibida a reprodução total ou parcial, sem autorização. Lei nº 9610/98

Table: Students CPE Name Grade Well 339.652.318-04					
CPF	Name	Grade			
Х	Zé das couves	g ^W 10			
у	Maria das desgraças	2			
h	Silvio Santos	5			

CPF	CPF Name	
Х	Zé das couves	g ¹¹ 10
у	Maria das desgraças	2
h	Silvio Santos	5

Components

list of selection – columns that must appear in the result.

list of origin — which tables will be consulted.

Qualification – conditions to be imposed in the consultation.

abral de Melo 339.652.318-04

Example 1

How to obtain a table with CPF and grades?

SELECT CPF, Grade

FROM Students

MBAUSP

Observations

• The field's name has to be accurate.

• SQL is case insensitive.

• Separate the name from the columns by commas.

List of origin and Alias

Alias is the "nickname". It is very used in SQL.

You can use it to facilitate the understanding of your query.

SELECT A.CPF, A.Grade

FROM Students A

Qualification

• The qualification are the "where" clauses.

 These are a Boolean combination of conditions in the form of expressions.

• In terms of algebra, they are definitions of subsets.

^{*}A responsabilidade pela idoneidade, originalidade e licitude dos conteúdos didáticos apresentados, é do professor. **Proibida a reprodução** total ou parcial, sem autorização. Lei nº 9610/98

Comparison Operators

Comparison Op	perators	
Operator Operator	Meaning	
=	Equal to	
> (Maior que)	Greater than	
< (Menor que)	Less than	
>= (Maior ou igual a)	Greater than or equal to	
<= (Menor ou igual a)	Less than or equal to	
<> (Diferente de)	It's different to	

How to obtain a table with CPF and grades greater than 9?

SELECT CPF, Grade

FROM Students

WHERE Grade > 9

More than a clause

- In this case, we need to define how the relationship is between the clauses.
- Suppose that we have 2 conditions: condition-1 and condition-2.
- AND => the two conditions has to be true at the same time.

• OR => one of the two has to be true.

Operator	Meaning	Example
AND	and	Condition-1 AND condition-2
OR	or	Condition-1 OR condition-2

CPF	NAME	GRADE	AGE	
XX	JOÃO	10	20	
YY	PEDRO	7	30	

 How to obtain all records with grades greater than 6 AND age greater than 25?

SELECT *

FROM Students

WHERE Grade > 6 AND Age > 25

CPF	NAME	GRADE	AGE	
XX	JOÃO	10	20	
YY	PEDRO	7	30	

 How to obtain all records with grades greater than 9 <u>OR</u> age greater than 25?

SELECT *

FROM Students

WHERE Grade > 9 OR Age > 25

Venn Diagram

Case of repeated lines

PIS	NAME
XXX	Pedro
XXX	Pedro

- Problem in the selection when there are lines with some column of repeated values.
- Use of DISTINCT.

SELECT DISTINCT NAME

FROM Students

MBAUSP

Aggregation

How to add values per operations.

Data summarization operations:

- Average.
- Williamun
- Maximum
- Etc

Melo 339.652.318-04

COUNT

- It counts the number of records under certain conditions.
- The following logic is presented:

SELECT COUNT([Counted Field]), Grouped Fields

FROM Table

GROUP BY Grouped Fields

Example	5			(52.318-04
	CPF	NAME	STATE	29.63
	XXX	JOÃO	SP	1032
	YYY	PEDRO	SP	Melo
	ННН	MARIANA	AL	1 de 14
	ווו	FLAVIA	RJ	bral
SELECT COUN FROM Studen	T(CPF)			
Eduardo	pareci	4		s, é do professor.
sponsabilidade pela idoneidade, origina pida a reprodução total ou parcial, sem a	lidade e licitude d autorização. Lei n	los conteúdos didát º 9610/98	icos apresentado	s, é do professor. 49

^{*}A responsabilidade pela idoneidade, originalidade e licitude dos conteúdos didáticos apresentados, é do professor. Proibida a reprodução total ou parcial, sem autorização. Lei nº 9610/98

CPF NAME STATE XXX JOÃO SP YYY PEDRO SP HHH MARIANA AL JJJ FLAVIA RJ CPF), STATE	5		
YYY PEDRO SP HHH MARIANA AL JJJ FLAVIA RJ CPF), STATE	CPF	NAME	STATE
PEDRO SP HHH MARIANA AL JJJ FLAVIA RJ CPF), STATE	XXX	JOÃO	SP
THH MARIANA AL JJJ FLAVIA RJ CPF), STATE	YYY	PEDRO	SP
CPF), STATE Sereguin Erecido	нн	MARIANA	AL
COPF), STATE Sereguin Erecido	JJJ	FLAVIA	RJ
	PF)	, STATE	
	arec		

SELECT COUNT(CPF), STATE

FROM Students

GROUP BY STATE

2	SP
1	AL
1	RJ

CPF	NAME	STATE
XXX	JOÃO	SP
YYY	PEDRO	SP
ННН	MARIANA	AL
JJJ	FLAVIA	RJ

ral de Melo 339.652.318-04 SELECT COUNT(CPF) THE count, STATE

FROM Students

GROUP BY STATE

ORDER BY count

1	AL
1	RJ
2	SP

SUM

- It sums the number of records under certain conditions.
- The following logic is presented:

SELECT SUM([Summed Field]), Grouped Fields

FROM Table

GROUP BY Grouped Fields

SELECT SUM(AGE)

FROM Students

SELECT SUM(AGE), STATE

FROM Students

GROUP BY STATE

⁵⁰ SP 30 AL 40 RJ

AVERAGE (AVG)

- Calculate the arithmetic average of records under certain conditions.
- The following logic is presented:

SELECT AVG([Field]), Grouped Fields

FROM Table

GROUP BY Grouped Fields

ple 9	a			
CPF	NAME	STATE	AGE	652.310
XXX	JOĀO	SP	20	29.0
YYY	PEDRO	SP	30	1033
ННН	MARIANA	AL	30	a relu
111	FLAVIA	RJ	40	10.
udent	GE), STA s	ATE		Cabral de Melo 339.652.318-04
SY STA	TE			
	25	SP]	
	20	٨١		

SELECT AVG(AGE), STATE

FROM Students

GROUP BY STATE

25	SP
30	AL
40	RJ

MIN and MAX

- Get the lowest or the highest value of the records under certain conditions.
- The following logic is presented:

SELECT MIN([Field]), Grouped Fields

FROM Table

GROUP BY Grouped Fields

SELECT MAX([Field]), Grouped Fields
FROM Table
GROUP BY Grouped Fields

ole í	1 ()			
CPF	NAME	STATE	AGE	652.310
XXX	JOĀO	SP	20	29.0
YYY	PEDRO	SP	30	1033
ННН	MARIANA	AL	30	* Lelu
ווו	FLAVIA	RJ	40	10.
1AX(A udent SY STA	GE), SΤ/ s ΓΕ	ATE		Cabral de Melo 339.652.318-04
1. 3.7	30	SP AI		

SELECT MAX(AGE), STATE

FROM Students

GROUP BY STATE

30	SP
30	AL
40	RJ

le 11	ME	STATE	AGE	652.
XXX JC	ÃO	SP	20	29.03
YYY PE	DRO	SP	30	1,32
HHH MAR	IANA	AL	30	Melu
JJJ FLA	AVIA	RJ	40	10. 1
N(AGE)	STA	TE		Cabral de Melo 339.652.

SELECT MIN(AGE), STATE

FROM Students

GROUP BY STATE

_		
	20	SP
	30	AL
-	40	RJ

^{*}A responsabilidade pela idoneidade, originalidade e licitude dos conteúdos didáticos apresentados, é do professor. Proibida a reprodução total ou parcial, sem autorização. Lei nº 9610/98

Introduction to ETL

Extract, Transformation and Load.

The integration of ETL data is a three-step process in which the data is extracted from one or more data sources, converted to the necessary state and loaded into a database or data warehouse in cloud.

Structure of an ETL

Frameworks for ETL

Example Pentaho

Create Table

- Create a Table with certain fields.
- The following logic is presented:

```
CREATE TABLE ADDRESS
(
Id_Student INTEGER,
Address Varchar(50)
)
```


Insert

- Insert certain fields.
- The following logic is presented:

INSERT INTO ADDRESS (Id_Student, Address)

VALUES (2, "RUA PEIXOTO DA SILVA")

MBAUSP