Exam 3 Information

• Date: April 8, 2020

• Topics: Chapter 3 4

Key Terms and Concepts

- Uniform Continuity
- Closed
- Open
- Compact
- Heine Borel Theorem
- Extreme Value Theorem
- Bolzano's Theorem
- connected
- Modified Bolzano's Theorem
- Intermediate Value Theorem
- Differentiable
- Chain Rule
- Relative Extrema
- Rolle's Theorem
- Mean Value Theorem
- Cauchy Mean Value Theorem

Sample Problems

- 1. Give the definitions of a uniformly continuous function on its domain $D \subset \mathbb{R}$
- 2. Give the definition of a f to be differentiable at x_0 .
- 3. State the following theorems:
 - The Mean Value Theorem
 - The Extreme Value Theorem
 - The Intermediate Value Theorem

- 4. Prove that the equation $x^3 + 3x + 1 = 0$ has exactly one root in the interval [-2,2].
- 5. Let f be defined by

$$f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Show that f'(x) exists for all $x \in \mathbb{R}$ but the function $f' : \mathbb{R} \to \mathbb{R}$ is not continuous.

- 6. Prove that the curves $f(x) = 2x^3$ and $g(x) = 3x^2 2$ intersect on the interval [-1,1]. Justify your answers.
- 7. True or False
 - If $f:(2,10) \to \mathbb{R}$ is uniformly continuous then f is bounded
 - If a function is defined on (-1,1) and f is differentiable at x = 0, then $\lim_{x\to 0} f(x) = 0$
- 8. Let f,g: $\mathbb{R} \to \mathbb{R}$ be bounded and uniformly continuous on \mathbb{R} . Prove that the product fg is uniformly continuous on \mathbb{R}