2018/2019 SEMESTER ONE MID-SEMESTER TEST

SAS Code: MST

Diploma in Aerospace Electronics (DASE) 2nd Year FT Diploma in Engineering with Business (DEB) 3rd Year FT Diploma in Electrical & Electronic Engineering (DEEE) 2nd Year FT Diploma in Engineering Systems (DES) 2nd Year FT Diploma in Energy Systems and Management (DESM) 2nd Year FT

CIRCUIT THEORY & ANALYSIS

Time Allowed: 1.5 Hours

Instructions to Candidates

- 1. The Singapore Polytechnic examination rules are to be complied with.
- 2. This paper consists of **TWO** sections:

Section A - 10 Multiple Choice Questions, 3 marks each.

Section B - 4 Short Questions

- 3. ALL questions are COMPULSORY.
- 4. All questions are to be answered in the answer booklet. Start each question in Sections B on a new page.
- 5. This paper consists 8 pages, inclusive of the formulae sheet.

SECTION A: MULTIPLE CHOICE QUESTIONS (3 marks each)

- 1. Please **tick** your answers in the **MCQ box** behind the front cover of the answer booklet.
- 2. No marks will be deducted for incorrect answers.
- 1. Which one of the following is the correct nodal voltage equation for voltage V_X in the network shown in Figure A1?

(a)
$$\left[\frac{1}{4} + \frac{1}{4} + \frac{1}{6}\right] [V_X] = \left[-\frac{10 \angle 0^0}{4} + \frac{16 \angle 0^0}{6} \right]$$

(b)
$$\left[\frac{1}{4} + \frac{1}{4} + \frac{1}{6}\right] [V_X] = \left[-\frac{10 \angle 0^0}{4} - \frac{16 \angle 0^0}{6} \right]$$

(c)
$$\left[\frac{1}{4} + \frac{1}{4} + \frac{1}{6}\right] [V_X] = \left[\frac{10 \angle 0^0}{4} + \frac{16 \angle 0^0}{6}\right]$$

(d)
$$\left[\frac{1}{4} + \frac{1}{4} + \frac{1}{6}\right] [V_X] = \left[\frac{10 \angle 0^0}{4} - \frac{16 \angle 0^0}{6}\right]$$

2. For the circuit shown in Figure A1, determine the expression for the current, I in the $6\,\Omega$ resistor.

(a)
$$-\left[\frac{V_X+16\angle 0^0}{6}\right]$$

(b)
$$\frac{V_X - 16 \angle 0^0}{6}$$

(c)
$$\frac{V_X + 16 \angle 0^0}{6}$$

(d)
$$\frac{16\angle 0^0 - V_X}{6}$$

- 3. If the $10\angle0^0$ V supply is shorted for the circuit shown in Figure A1, determine the nodal voltage V_X .
 - (a) 2 V
 - (b) 4 V
 - (c) 6.4 V
 - (d) 8 V
- 4. The Norton's equivalent current source I_N across terminals A and B for the circuit shown

in Figure A4 is

- (b) 0.54 A
- (c) 1 A
- (d) 1.5 A

- 5. In Figure A4, the value of the Norton's equivalent resistance across terminals A and B is
 - (a) 8Ω
 - (b) 13Ω
 - (c) 23Ω
 - (d) 28Ω
- 6. If a 2 A ideal current source as shown in Figure A6 is connected across one of the $20~\Omega$ resistors in Figure A4, calculate the new value of the Norton's equivalent current source, I_N .

(c) 0.79 A

(d) 2.21 A

Figure A6

- 7. A series RLC circuit is to resonate at a frequency of 198 kHz. If the capacitor is 320 pF and resistor is 390 Ω , determine the required inductance.
 - (a) 2.02 mH
 - (b) $2.02 \mu H$
 - (c) 2.02 nH
 - (d) 2.02 pH
- 8. Which one of the following is the correct statement regarding series RLC resonant circuit?
 - (a) The resistor R affects the resonant frequency.
 - (b) The supply voltage and current is in phase.
 - (c) The supply current is magnified.
 - (d) The resistance is maximum.
- 9. Determine the quality factor, Q of the circuit shown in Figure A9 if the resonant frequency is 11 kHz.
 - (a) 0.048
 - (b) 0.48
 - (c) 2.07
 - (d) 20.72

- 10. With regards to Question 9, determine the current through the capacitor if a 10 V AC voltage source is applied.
 - (a) 0.002 A
 - (b) 0.019 A
 - (c) 0.083 A
 - (d) 0.83 A

SECTION B: 4 QUESTIONS

B1. Using the source conversion method, simplify the circuit shown in Figure B1 to its equivalent current source across terminals AB and hence calculate the current in the load, R_L . (15 marks)

- B2. For the circuit shown in Figure B2,
 - (a) convert the star-connected resistors as shown in the dotted box into an equivalent delta-connection, and hence (9 marks)
 - (b) determine the total circuit resistance across terminals X and Y. (6 marks)

- B3. (a) By inspection, **write** the mesh current equations for I_1 , I_2 , and I_3 in matrix form for the network shown in Figure B3. (15 marks)
 - (b) If the values of I₁, I₂, and I₃ are found to be -1.14 A, 1.07 A and 6.07 A respectively, determine the:
 - (i) current in the 22 Ω resistor, and (2 marks)

(ii) power in the 3 Ω resistor. (3 marks) $\frac{6 \Omega}{14 \Omega}$ $\frac{14 \Omega}{10 \Omega}$ $\frac{22 \Omega}{10 \Omega}$ $\frac{60 \angle 0^0 \text{ V}}{1}$ $\frac{10 \Omega}{1}$ $\frac{13 \Omega}{1}$

B4. (a) Apply Thevenin's Theorem to find the Thevenin equivalent circuit parameters V_{TH} and R_{TH} between terminals A and B for the circuit shown in Figure B4. (Include circuit diagrams for finding V_{TH} and R_{TH}) (18 marks)

Figure B3

 7Ω

(b) Draw the Thevenin's equivalent circuit obtained above. (2 marks)

End of Paper

<u>Formulae</u>

Resistors in series	$R_{T} = R_{1} + R_{2} + R_{3} + \dots$
Resistors in parallel	$\frac{1}{R_{T}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} + \dots$
Resistors in parallel (for 2 resistors)	$R_{\mathrm{T}} = \frac{R_{1} R_{2}}{R_{1} + R_{2}}$
Voltage Divider Rule	$V_{X} = \frac{R_{X}}{R_{T}} V_{S}$
Current Divider Rule	$I_1 = \frac{R_2}{R_1 + R_2} I_T$
Source Conversion	$E = I_S R_S I_S = \frac{E}{R_S}$
Mesh Current Analysis	[Z] [I] = [V]
Nodal Voltage Analysis	[Y] [V] = [I]
Delta to Star Conversion	$Z_1 = \frac{Z_A Z_C}{Z_A + Z_B + Z_C}$
	$Z_2 = \frac{Z_A Z_B}{Z_A + Z_B + Z_C}$
	$Z_3 = \frac{Z_B Z_C}{Z_A + Z_B + Z_C}$
Star to Delta Conversion	$Z_{A} = Z_{1} + Z_{2} + \frac{Z_{1}Z_{2}}{Z_{3}}$
	$Z_{\rm B} = Z_2 + Z_3 + \frac{Z_2 Z_3}{Z_1}$
	$Z_{\rm C} = Z_1 + Z_3 + \frac{Z_1 Z_3}{Z_2}$
Inductive Reactance	$X_L = 2\pi f L$
Capacitive Reactance	$X_{C} = \frac{1}{2 \pi f C}$

Series RLC Resonant Circuit	7 - D I - 1//D
	Z = R $I = V/R$
	$f_o = \frac{1}{2\pi\sqrt{LC}}$
	$Q_0 = \frac{X_L}{R} = \frac{X_C}{R}$
	$=\frac{V_L}{V}=\frac{V_C}{V}$
	Bandwidth (BW) = $\frac{f_o}{Q_o} = f_2 - f_1$
	$f_1 = f_o - \frac{BW}{2} \qquad f_2 = f_o + \frac{BW}{2}$
Parallel RLC Resonant Circuit	Z = R $I = V/R$
	$f_o = \frac{1}{2\pi\sqrt{LC}}$
	$Q_0 = \frac{R}{X_L} = \frac{R}{X_C}$
	$=\frac{I_{L}}{I}=\frac{I_{C}}{I}$
	Bandwidth (BW) = $\frac{f_o}{Q_o} = f_2 - f_1$
	$f_1 = f_o - \frac{BW}{2} \qquad f_2 = f_o + \frac{BW}{2}$

ANSWERS:

A	
1	A
2	D
3	В
4	D
5	D C A
6	C
7	A
1 2 3 4 5 6 7 8	В
9	B C C
10	C

$$\begin{array}{ll} \textbf{B1} & I_S=0.5 \ A, \, R=0.92 \ \Omega \\ & I_L=0.078 \ A \end{array} \label{eq:IS}$$

B2
$$R_1 = 43.45 \Omega$$
, $R_2 = 53.11 \Omega$, $R_3 = 68.29 \Omega$ $R_{XY} = 20.57 \Omega$

B3
$$\begin{bmatrix} 32 & -22 & 0 \\ -22 & 52 & -10 \\ 0 & -10 & 10 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} -60 \\ 60 - 40 \\ 50 \end{bmatrix}$$

$$I_{22\Omega} = -2.21 \text{ A}$$
 or 2.21 A , $P_{3\Omega} = 3.9 \text{ W}$

Thevenin's Equivalent Circuit

