

Lecture 09: Dynamic Programming

- Y'know, the famous one
 - 1, 1, 2, 3, 5, 8, 13, 21, ...
- As a function:
 - F(1) = 1
 - F(2) = 1
 - F(i) = F(i-1) + F(i-2) for i = 3, 4, ...

x 3	F(x) F(3)=2

X	F(x)
3	F(3)=2

Χ	F(x)
3	F(3)=2

Χ	F(x)	
3	F(3)=2	
4	F(4)=3	

X	F(x)
3	F(3)=2
4	F(4)=3

X	F(x)
3	F(3)=2
4	F(4)=3

X	F(x)
3	F(3)=2
4	F(4)=3

Χ	F(x)
3	F(3)=2
4	F(4)=3

X	F(x)
3	F(3)=2
4	F(4)=3
5	F(5)=5

X	F(x)
3	F(3)=2
4	F(4)=3
5	F(5)=5

X	F(x)
3	F(3)=2
4	F(4)=3
5	F(5)=5

X	F(x)
3	F(3)=2
4	F(4)=3
5	F(5)=5

X	F(x)
3	F(3)=2
4	F(4)=3
5	F(5)=5
6	F(6)=8

Χ	F(x)
3	F(3)=2
4	F(4)=3
5	F(5)=5
6	F(6)=8

X	F(x)
3	F(3)=2
4	F(4)=3
5	F(5)=5
6	F(6)=8

Χ	F(x)
3	F(3)=2
4	F(4)=3
5	F(5)=5
6	F(6)=8

X	F(x)
3	F(3)=2
4	F(4)=3
5	F(5)=5
6	F(6)=8
7	F(7)=13

• Top-down DP memoized sequence for F(8)

F(8)=? F(7)=13 F(6)=?

X	F(x)
3	F(3)=2
4	F(4)=3
5	F(5)=5
6	F(6)=8
7	F(7)=13

• Top-down DP memoized sequence for F(8)

F(8)=? F(6)=?

Χ	F(x)
3	F(3)=2
4	F(4)=3
5	F(5)=5
6	F(6)=8
7	F(7)=13

• Top-down DP memoized sequence for F(8)

F(8)=? F(7)=13 F(6)=8

X	F(x)
3	F(3)=2
4	F(4)=3
5	F(5)=5
6	F(6)=8
7	F(7)=13

• Top-down DP memoized sequence for F(8)

F(8)=21 F(7)=13 F(6)=8

X	F(x)
3	F(3)=2
4	F(4)=3
5	F(5)=5
6	F(6)=8
7	F(7)=13

- Another way of computing the Fibonacci sequence is by iteratively building the solution
 - Referred to as bottom-up
 - "Find the answers for all the sub problems, then find the answer for my problem"

- As a function:
 - F(1) = 1
 - F(2) = 1
 - F(i) = F(i-1) + F(i-2) for i = 3, 4, ...

- As a table:
 - F = new int[9];
 - F[1] = 1
 - F[2] = 1
 - F[n] = F[n-1] + F[n-2]

- As a table:
 - F = new int[9];
 - F[1] = 1
 - F[2] = 1
 - F[n] = F[n-1] + F[n-2]

X	1	2	3	4	5	6	7	8
F[x]	1	1	2					

$$F[3] = F[2] + F[1]$$

- As a table:
 - F = new int[9];
 - F[1] = 1
 - F[2] = 1
 - F[n] = F[n-1] + F[n-2]

X	1	2	3	4	5	6	7	8
F[x]	1	1	2	3				

- As a table:
 - F = new int[9];
 - F[1] = 1
 - F[2] = 1
 - F[n] = F[n-1] + F[n-2]

X	1	2	3	4	5	6	7	8
F[x]	1	1	2	3	5			

- As a table:
 - F = new int[9];
 - F[1] = 1
 - F[2] = 1
 - F[n] = F[n-1] + F[n-2]

X	1	2	3	4	5	6	7	8
F[x]	1	1	2	3	5	8		

$$F[6] = F[5] + F[4]$$

- As a table:
 - F = new int[9];
 - F[1] = 1
 - F[2] = 1
 - F[n] = F[n-1] + F[n-2]

X	1	2	3	4	5	6	7	8
F[x]	1	1	2	3	5	8	13	

Here's F(8)!

As a table:

•
$$F = new int[9];$$

•
$$F[1] = 1$$

•
$$F[2] = 1$$

•
$$F[n] = F[n-1] + F[n-2]$$

X	1	2	3	4	5	6	7 (8
F[x]	1	1	2	3	5	8	13	21

i	0	1	2	3	4	5	6	7	8	9
a[i]	4	15	11	2	7	19	15	20	9	3

- Given an array of numbers,
 - int a = new int[n];
- find the longest increasing subsequence
 - a subset *s* such that *a*[*s*[0]] < *a*[*s*[1]] < *a*[*s*[2]] < ... < *a*[*s*[m-1]]
 - And |s| is maximal

_	i	0	1	2	3	4	5	6	7	8	9
	a[i]	4	15	11	2	$\overline{7}$	19	15	20	9	3

- Here's an increasing subsequence
 - Is it the longest increasing subsequence?
- To check, we can use bottom-up DP
 - Our algorithm will build the solution to all sub problems before finding the solution to the overall problem
 - Find the solution for a[0:1], then a[0:2], ..., then a[0:n]

i	0	1	2	3	4	5	6	7	8	9
a[i]	4	15	11	2	7	19	15	20	9	3

Algorithm:

- Build a table s so that s[i] is the longest increasing subsequence ending with a[i]
 - Includes *a*[*i*] in the sequence

•
$$s[i] = \max \begin{cases} s[j] + 1 \text{ if } a[i] > a[j] \text{ for } j = 1, 2, ..., i-1 \\ 1 \end{cases}$$

Builds on prior subsequences

Subsequence of itself

i										
a[i]	4	15	11	2	7	19	15	20	9	3
s[i]										

$$s[i] = \max \left\{ s[j] + 1 \text{ if } a[i] > a[j] \text{ for } j = 1, 2, ..., i-1 \right\}$$

										9
a[i]	4	15	11	2	7	19	15	20	9	3
s[i]	1									

$$s[i] = \max \left\{ s[j] + 1 \text{ if } a[i] > a[j] \text{ for } j = 1, 2, ..., i-1 \right\}$$

						5				
a[i]	4	15	11	2	7	19	15	20	9	3
s[i]	1	2								

$$s[i] = \max \left\{ s[j] + 1 \text{ if } a[i] > a[j] \text{ for } j = 1, 2, ..., i-1 \right\}$$

i										
a[i]	4	15	11	2	7	19	15	20	9	3
s[i]	1	2	2							

$$s[i] = \max \left\{ s[j] + 1 \text{ if } a[i] > a[j] \text{ for } j = 1, 2, ..., i-1 \right\}$$

i										
a[i]	4	15	11	2	7	19	15	20	9	3
s[i]	1	2	2	1						

$$s[i] = \max \left\{ s[j] + 1 \text{ if } a[i] > a[j] \text{ for } j = 1, 2, ..., i-1 \right\}$$

i										
a[i]	4	15	11	2	7	19	15	20	9	3
s[i]	1	2	2	1	2					

$$s[i] = \max \left\{ s[j] + 1 \text{ if } a[i] > a[j] \text{ for } j = 1, 2, ..., i-1 \right\}$$

i	0	1	2	3	4	5	6	7	8	9
a[i]	4	15	11	2	7	19	15	20	9	3
s[i]	1	2	2	1	2	3				

$$s[i] = \max \left\{ s[j] + 1 \text{ if } a[i] > a[j] \text{ for } j = 1, 2, ..., i-1 \right\}$$

i	0	1	2	3	4	5	6	7	8	9
a[i]	4	15	11	2	7	19	15	20	9	3
s[i]	1	2	2	1	2	3	3			

$$s[i] = \max \left\{ s[j] + 1 \text{ if } a[i] > a[j] \text{ for } j = 1, 2, ..., i-1 \right\}$$

										9
a[i]	4	15	11	2	7	19	15	20	9	3
s[i]	1	2	2	1	2	3	3	4		

$$s[i] = \max \left\{ s[j] + 1 \text{ if } a[i] > a[j] \text{ for } j = 1, 2, ..., i-1 \right\}$$

i	0	1	2	3	4	5	6	7	8	9
a[i]	4	15	11	2	7	19	15	20	9	3
s[i]	1	2	2	1	2	3	3	4	3	

$$s[i] = \max \left\{ s[j] + 1 \text{ if } a[i] > a[j] \text{ for } j = 1, 2, ..., i-1 \right\}$$

										9
a[i]	4	15	11	2	7	19	15	20	9	3
s[i]	1	2	2	1	2	3	3	4	3	2

$$s[i] = \max \left\{ s[j] + 1 \text{ if } a[i] > a[j] \text{ for } j = 1, 2, ..., i-1 \right\}$$

i	0	1	2	3	4	5	6	7	8	9
a[i]	4	15	11	2	7	19	15	20	9	3
s[i]	1	2	2	1	2	3	3	4	3	2

$$s[i] = \max \left\{ s[j] + 1 \text{ if } a[i] > a[j] \text{ for } j = 1, 2, ..., i-1 \right\}$$

i	0	1	2	3	4	5	6	7	8	9
a[i]	4	15	11	2	7	19	15	20	9	3
s[i]										
p[i]										

$$s[i] = \max \{ s[j] + 1 \text{ if } a[i] > a[j] \text{ for } j = 1, 2, ..., i-1 \}$$

 $p[i] = j, \text{ or } -1 \text{ if no } j \text{ exists}$

- Demo of the algorithm
 - Keeping track of the longest increasing subsequence

	i	0	1	2	3	4	5	6	7	8	9
	a[i]	4	15	11	2	7	19	15	20	9	3
	s[i]	1									
	p[i]	-1									
7		-1									

$$s[i] = \max \left\{ s[j] + 1 \text{ if } a[i] > a[j] \text{ for } j = 1, 2, ..., i-1 \right\}$$

- Demo of the algorithm
 - Keeping track of the longest increasing subsequence

i	0	1	2	3	4	5	6	7	8	9
a[i]	4	15	11	2	7	19	15	20	9	3
s[i]	1	2								
p[i]	-1	0								

$$s[i] = \max \{ s[j] + 1 \text{ if } a[i] > a[j] \text{ for } j = 1, 2, ..., i-1 \}$$

- Demo of the algorithm
 - Keeping track of the longest increasing subsequence

	i	0	1	2	3	4	5	6	7	8	9
	a[i]	4	15	11	2	7	19	15	20	9	3
	s[i]	1	2	2							
7	p[i]	-1	0	0							
4				A							

$$s[i] = \max \{ s[j] + 1 \text{ if } a[i] > a[j] \text{ for } j = 1, 2, ..., i-1 \}$$

- Demo of the algorithm
 - Keeping track of the longest increasing subsequence

i	0	1	2	3	4	5	6	7	8	9
a[i]	4	15	11	2	7	19	15	20	9	3
s[i]	1	2	2	1						
p[i]	-1	0	0	-1						

$$s[i] = \max \left\{ s[j] + 1 \text{ if } a[i] > a[j] \text{ for } j = 1, 2, ..., i-1 \right\}$$

- Demo of the algorithm
 - Keeping track of the longest increasing subsequence

i	0	1	2	3	4	5	6	7	8	9
a[i]	4	15	11	2	7	19	15	20	9	3
s[i]	1	2	2	1	2					
p[i]	-1	0	0	-1	0					

$$s[i] = \max \left\{ s[j] + 1 \text{ if } a[i] > a[j] \text{ for } j = 1, 2, ..., i-1 \right\}$$

- p[i] = j, or -1 if no j exists
- Demo of the algorithm
 - Keeping track of the longest increasing subsequence

i	0	1	2	3	4	5	6	7	8	9
a[i]	4	15	11	2	7	19	15	20	9	3
s[i]	1	2	2	1	2	3				
p[i]	-1	0	0	-1	0	1				

$$s[i] = \max \left\{ s[j] + 1 \text{ if } a[i] > a[j] \text{ for } j = 1, 2, ..., i-1 \right\}$$

- Demo of the algorithm
 - Keeping track of the longest increasing subsequence

i	0	1	2	3	4	5	6	7	8	9
a[i]	4	15	11	2	7	19	15	20	9	3
s[i]	1	2	2	1	2	3	3			
p[i]	-1	0	0	-1	0	1	2			

$$s[i] = \max \left\{ s[j] + 1 \text{ if } a[i] > a[j] \text{ for } j = 1, 2, ..., i-1 \right\}$$

- Demo of the algorithm
 - Keeping track of the longest increasing subsequence

i	0	1	2	3	4	5	6	7	8	9
a[i]	4	15	11	2	7	19	15	20	9	3
s[i]	1	2	2	1	2	3	3	4		
p[i]	-1	0	0	-1	0	1	2	5		

$$s[i] = \max \{ s[j] + 1 \text{ if } a[i] > a[j] \text{ for } j = 1, 2, ..., i-1 \}$$

- Demo of the algorithm
 - Keeping track of the longest increasing subsequence

i										
a[i]	4	15	11	2	7	19	15	20	9	3
s[i]	1	2	2	1	2	3	3	4	3	
p[i]	-1	0	0	-1	0	1	2	5	4	

$$s[i] = \max \left\{ s[j] + 1 \text{ if } a[i] > a[j] \text{ for } j = 1, 2, ..., i-1 \right\}$$

- p[i] = j, or -1 if no j exists
- Demo of the algorithm
 - Keeping track of the longest increasing subsequence

	i	0	1	2	3	4	5	6	7	8	9	3
_	a[i]	4	15	11	2	7	19	15	20	9	3	3
_	s[i]	1	2	2	1	2	3	3	4	3	2	1
The state of the s	p[i]	-1	0	0	-1	0	1	2	5	4	3	1888

$$s[i] = \max \{ s[j] + 1 \text{ if } a[i] > a[j] \text{ for } j = 1, 2, ..., i-1 \}$$

 $p[i] = j, \text{ or } -1 \text{ if no } j \text{ exists}$

- Demo of the algorithm
 - Keeping track of the longest increasing subsequence

	i	0	1	2	3	4	5	6	7	8	9	
	a[i]	4	15	11	2	7	19	15	20	9	3	1
	s[i]	1	2	2	1	2	3	3	4	3	2	2
Z	p[i]	-1	0	0	-1	0	1	2	5	4	3	

$$s[i] = \max \{ s[j] + 1 \text{ if } a[i] > a[j] \text{ for } j = 1, 2, ..., i-1 \}$$

 $p[i] = j, \text{ or } -1 \text{ if no } j \text{ exists}$

- Demo of the algorithm
 - Keeping track of the longest increasing subsequence

	i	0	1	2	3	4	5	6	7	8	9	3
	a[i]	4	15	11	2	7	19	15	20	9	3	3
_	s[i]	1	2	2	1	2	3	3	4	3	2	2
Z	p[i]	-1	0	0	-1	0	1	2	5	4	3	100

$$s[i] = \max \{ s[j] + 1 \text{ if } a[i] > a[j] \text{ for } j = 1, 2, ..., i-1 \}$$

 $p[i] = j, \text{ or } -1 \text{ if no } j \text{ exists}$

- Demo of the algorithm
 - Keeping track of the longest increasing subsequence

	i	0	1	2	3	4	5	6	7	8	9	
					2							
_	s[i]	1	2	2	1	2	3	3	4	3	2	2
ZZ.	p[i]	-1	0	0	-1	0	1	2	5	4	3	

$$s[i] = \max \{ s[j] + 1 \text{ if } a[i] > a[j] \text{ for } j = 1, 2, ..., i-1 \}$$

 $p[i] = j, \text{ or } -1 \text{ if no } j \text{ exists}$

- Demo of the algorithm
 - Keeping track of the longest increasing subsequence

	i	0	1	2	3	4	5	6	7	8	9	3
	a[i]	4	15	11	2	7	19	15	20	9	3	3
	s[i]	1	2	2	1	2	3	3	4	3	2	2
Z	p[i]	-1	0	0	-1	0	1	2	5	4	3	100

$$s[i] = \max \{ s[j] + 1 \text{ if } a[i] > a[j] \text{ for } j = 1, 2, ..., i-1 \}$$

 $p[i] = j, \text{ or } -1 \text{ if no } j \text{ exists}$

- Demo of the algorithm
 - Keeping track of the longest increasing subsequence

```
void lisLength(int a[]) {
    int N = a.length;
    int LIS[] = new int[N];
    int backIdx[] = new int[N];
    for (int i = 0; i < N; i++) {
        LIS[i] = 1;
        backIdx[i] = -1;
        for (int j = 0; j < i; j++) {
             if (a[i] > a[j]) {
                 LIS[i] = Math.max(LIS[i], LIS[j]+1);
                 backIdx[i] = j;
    int LISlength = 0;
    for (int i = 0; i < N; i++) LISlength = Math.max(LISlength, LIS[i]);</pre>
    return LISlength;
```

- You are going shopping for a wedding
 - There are $1 \le C \le 20$ types of garments
 - Each garment type has $1 \le K \le 20$ items
 - e.g., 2 types of shirts, 3 different belts, etc.
 - You have a budget of $1 \le M \le 200$
 - Task: Buy one of each type of garment, spending as much money as possible without going over budget
 - What is the maximum possible amount to spend?

Item

M = 100	0	1	2	3
Shirt	8	6	4	
Pants	5	10		
Belt	1	3	3	7
Shoes	50	14	23	8

Answer: 75

Item

M = 100	0	1	2	3
Shirt	8	6	4	
Pants	5	10		
Belt	1	3	3	7
Shoes	50	14	23	8

Answer: 75

Item

M = 20	0	1	2	3
Shirt	4	6	8	
Pants	5	10		
Belt	(1)	3	5	5

Answer: 19 (Multiple solutions)

Item

M = 5	0	1	2	3
Shirt	6	4	8	
Pants	10	6		
Belt	7	3	1	7

Answer: No solution!

- Dynamic programming (top-down)
- State: (money remaining, garment index)
- Goal: Find all reachable states
 - i.e., find out how much money we have remaining when we have selected some number of garments
 - The answer will be the least amount of money remaining when we have selected all garments

Example:				
M = 12	0	1	2	3
Shirt (1)	6	4	8	
Pants (2)	10	6		
Belt (3)	7	3	1	7

dp[moneyRem][*i*] is true if it's possible to end up with moneyRem by choosing garments 1 through *i*

dp		0	1	2	3	4	5	6	7	8	9	10	11	12
THE STATE OF THE S	0													
	1													
(garment index)	2													
	3													

Example:		Item						
M = 12	0	1	2	3				
Shirt (1)	6	4	8					
Pants (2)	10	6						
Belt (3)	7	3	1	7				

dp[moneyRem][*i*] is true if it's possible to end up with moneyRem by choosing garments 1 through *i*

d	p:		0	1	2	3	4	5	6	7	8	9	10	11	12
*****		0													Т
		1													
(garment inde	x)	2													
		3													

Example:				
M = 12	0	1	2	3
Shirt (1)	6	4	8	
Pants (2)	10	6		
Belt (3)	7	3	1	7

dp[moneyRem][*i*] is true if it's possible to end up with moneyRem by choosing garments 1 through *i*

dp	:	0	1	2	3	4	5	6	7	8	9	10	11	12
-	0													Т
	1					Т		Т		Т				-
(garment index	2													
40	3													

Example:		Item		
M = 12	0	1	2	3
Shirt (1)	6	4	8	
Pants (2)	10	6		
Belt (3)	7	3	1	7

dp[moneyRem][*i*] is true if it's possible to end up with moneyRem by choosing garments 1 through *i*

dp	:	0	1	2	3	4	5	6	7	8	9	10	11	12
Three	0													Т
	1					Т		T		Т				
(garment index	2	Т		Т										
	3													

Example:		Item		
M = 12	0	1	2	3
Shirt (1)	6	4	8	
Pants (2)	10	6		
Belt (3)	7	3	1	7

dp[moneyRem][*i*] is true if it's possible to end up with moneyRem by choosing garments 1 through *i*

dp:		0	1	2	3	4	5	6	7	8	9	10	11	12
****	0													Т
	1					Т		Т		Т				
(garment index)	2	Т		Т										
	3		Т											-

- Bottom-up DP formulation
 - dp[moneyRem][i] = OR (dp[moneyRem – price_j][i-1] for j = 0, 1, ..., | items_i |-1)
 - items, refers to all the items for the ith garment

- This works because we're simply marking all possible states that are reachable
- The answer to "is it possible to have x remaining on m garments?" is yes if and only if dp[x][m] is true

Wedding Shopping swer to "what is the most on

- The answer to "what is the most one can spend on all n garments without going over budget?" is:
 - min(moneyRem for all dp[moneyRem][n] that are true)

- Runtime analysis:
 - It only takes as long as it takes to fill up each of the states in the dp table
 - (Amount of money) * (number of garments)
 = 200 * 20 = 4000 state space
 - (Number of items) = 20 operations to fill each state
 - 4000 * 20 = 80,000 operations, small!

 Given the coin system { 1, 5, 10, 25, 50 }, how many different combinations of coins can make n cents?

- Sketch of how to do this:
 - Create a 2D int array so that dp[amount][i]
 contains the number of ways to make
 amount using coins 0 through i
 - coins = [1, 5, 10, 25, 50] (an array)
 - This ensures we are counting combinations and not permutations

- Sketch of how to do this:
 - Create a 2D int array so that dp[amount][i] contains the number of ways to make amount using coins 0 through i "pjck zero coins"

```
dp[ amount ][ i ] = dp[ amount ][ i-1 ] /
+ dp[ amount – coins[ i ]][ i ]

"pick another coin"
```

		0	1	2	3	4	5	6	7	8	9	10	11	12	13
_	50	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	25	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7															1

Base case

Result will be here

```
dp[ amount ][ i ] = dp[ amount ][ i-1 ]
+ dp[ amount – coins[ i ]][ i ]
```

		0	1	2	3	4	5	6	7	8	9	10	11	12	13	
			0			0	0	0	0	0	0	0	0	0	0	3
	25	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1
星	10		0		0	0	0	0	0	0	0	0	0	0	0	1
	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	M
	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Pick zero coins

```
dp[amount][i] = dp[amount][i-1] + dp[amount - coins[i]][i]
```


		0	1	2	3	4	5	6	7	8	9	10	11	12	13	200
_	50	1	0	0	0	0	0	0	0	0	0	0	0	0	0	7
_	25	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1
F.	10	1	0	0	0	0	0	0	0	0	0	1	0	0	0	1
T	5	•	0	0	0	0	0	0	0	0	0	đ	0	0	0	3
7	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	H

Pick zero coins

Pick another coin

```
dp[ amount ][ i ] = dp[ amount ][ i-1 ]
+ dp[ amount – coins[ i ]][ i ]
```

		0	1	2	3	4	5	6	7	8	9	10	11	12	13
	50	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	25	1	0	0	0	0	0	0	0	0	0	0	0	0	0
7	10	1	0	0	0	0	0	0	0	0	0	1	0	0	0
Ī	5	1	0	0	0	0	1	0	0	0	0	2	0	0	0
Z	1	0	0	0	0	0	0	0	0	0	0 /	0	0	0	0

Pick zero coins AND pick another coin

```
dp[ amount ][ i ] = dp[ amount ][ i-1 ]
+ dp[ amount – coins[ i ]][ i ]
```

		0	1	2	3	4	5	6	7	8	9	10	11	12	13	2
_	50	1	0	0	0	0	0	0	0	0	0	0	0	0	0	7
_	25	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1
THE STATE OF THE S	10	1	0	0	0	0	0	0	0	0	0	1	0	0	0	1888
T				0		0						2			0	7
1 2	1	1	1	1	1	1	2	2	2	2	2	4	4	4	4	I

```
dp[amount][i] = dp[amount][i-1] + dp[amount - coins[i]][i]
```

- Runtime analysis:
 - 5 types of coins, given values are at most 30,000 (as per problem statement)
 - O(1) to compute each cell
 - 5 * 30,000 = 150,000 operations, cool!

Dynamic Programming

- Top-down DP
 - Pro: Natural transformation from recursion
 - Pro: Computes subproblems only when necessary
 - Con: May be slower due to recursion overhead
 - Con: Uses exactly O(states) table size

- Bottom-up DP
 - Pro: Faster if many subproblems visited, no recursion
 - Pro: Can save memory space
 - Con: May not be as intuitive
 - Con: Fills values for all the states, does not skip unreachable states

Vacation

- UVa 10192
- "Longest common subsequence"
 - You are given two strings, S₁ and S₂
 - dp[i][j] is the length of the longest common subsequence after i characters of S₁ and j characters of S₂
 - dp[i][j] = max(dp[i 1][j], dp[i][j – 1], dp[i – 1][j – 1] + 1 if S_1 [i] = S_2 [j])

Vacation

Example:

abcd and acdb

	_	а	b	С	d
_	0	0	0	0	0
а	0	1	1	1	1
С	0	1	1	2	2
d	0	1	1	2	3
b	0	1	1	2	3

$$\begin{split} \text{dp}[\,i\,][\,j\,] &= \max(& \text{dp}[\,i\,-\,1\,][\,j\,], \\ \text{dp}[\,i\,][\,j\,-\,1\,], \\ \text{dp}[\,i\,-\,1\,][\,j\,-\,1\,] + 1 \text{ if } S_{_1}[\,i\,] = S_{_2}[\,j\,] \,) \end{split}$$

Vacation

- Why this works (sketch):
 - dp[i][j] contains the largest common subsequence between $S_1[0:i]$ and $S_2[0:j]$
 - At each step, "consume" a character from either string, incrementally build upon the best answer
 - If possible (and if the answer is better), "consume" a character from both and increment the subsolution
 - Therefore the largest common subsequence is in dp[n][m] where $|S_1| = n$ and $|S_2| = m$

Is Bigger Smarter?

- UVa 10131
 - Read it, then try to solve it! Hint in 5 minutes.
- Hint: Sort the elephants by weights increasing, if there's a tie then by IQ decreasing
 - This reduces the problem down to longest increasing subsequence
 - Discuss why?

6000 2100	(1000 4000

1000 4000 Sort by weight 2000 1900 Then by IQ	ongest decreasing subsequence	Answer!
---	-------------------------------	---------

1100 3000 6000 2100

6000 2000 6000 2000

8000 1400 6000 1200

6000 1200 6008 1300

2000 1900 8000 1400