Programmation Python

Application de Numpy et Matplotlib : Gradient Descent et Régression Linéaire

1. Quel la différence entre les méthodes floor(), ceil(), round() et trunc() de numpy

AU: 2021/2022

- 2. Tester si au moins un élément d'un tableau est nul
- 3. Tester si tous les éléments d'un tableau sont nuls
- 4. Générer un nombre réel aléatoire compris entre 0 et 1.
- 5. Générer 5 nombres réels aléatoires entre 0 et 1
- 6. Générer un nombre entier aléatoire compris entre 5 et 10.
- 7. Générer 5 nombres entiers aléatoires entre 5 et 10
- 8. Générer un tableau de dimension 3X5, remplie de nombres réels aléatoires compris entre 0 et 1
- 9. afficher la somme de tous les éléments de M, la somme des lignes de M et la somme des colonnes de M
- 10. Calculer le $n^{i \`{e}me}$ élément de la série définie par : x_0 =1, et x_{i+1} = $5x_i$ + 10
- 11. Ecrire une fonction Python pour $f(x) = x^2$
- 12. Tracer la fonction précédente avec Matplotlib
- 13. En utilisant la descente de gradient, estimer le minimum de cette fonction
- 14. Générer un nuage de points ayant l'aspect presque lineaire
- 15. Définir une fonction qui retourne une droite ax + b, a et b donné
- 16. Tracer une droite sur le nuage de point précédent
- 17. Utiliser la descente de gradient pour trouver la meilleure droite qui rapproche le nuage de points

Descente de gradient (Rappel)

La Descente de Gradient est un algorithme d'optimisation qui permet de trouver le minimum de n'importe quelle fonction convexe en convergeant progressivement vers celui-ci.

L'algorithme de la descente de gradient est donné ci-dessous :

- 1. Initialiser avec x_0 (au hasard)
- 2. Répéter

$$x_{t+1} = x_t - \eta \times \nabla(x_t)$$

3. Jusqu'à convergence

Remarques

- 1. Quasiment impossible de suggérer des valeurs « intelligentes »
- 2. $\nabla(x_t)$: Le « gradient », généralisation multidimensionnelle de la dérivée [si un seul paramètre], au point x_t . Indique la direction de la pente au voisinage de x_t
- 3. η est un paramètre qui permet de moduler la correction (η trop faible, lenteur de convergence ; η trop élevé, oscillation)
- 4. Le signe "-" parce qu'on cherche à minimiser la fonction f(), on prendrait le signe "+" sinon.
- 5. L'étape 3 indique le nombre d'itérations fixé, ou différence entre valeurs successives x_t , ou x_t très petit