(b) The right-to-left implication is easy: if m is an n^{th} power, then clearly $m^{1/n}$ is rational.

Now for the left-to-right implication. Suppose $m^{1/n}$ is rational; so $m^{1/n} = \frac{x}{y}$, where x, y are integers. Then $x^n = my^n$. Let p be a prime, and let p^a, p^b, p^c be the largest powers of p which divide x, y, m, respectively. Then the power of p dividing x^n is p^{an} , while the power of p dividing my^n is p^{c+bn} . By the Fundamental Theorem 11.1, we must have an = c + bn, and hence c = n(a - b) is divisible by n.

We have shown that the power to which each prime divides m is a multiple of n; in other words, the prime factorisation of m is

$$m=p_1^{na_1}\dots p_k^{na_k}$$

for some integers a_i . Hence $m = (p_1^{a_1} \dots p_k^{a_k})^n$, and so m is an n^{th} power, as required.

- 7. (a) The hcf is $2 \cdot 5^2$ and the lcm is $2^2 \cdot 3 \cdot 5^3$. So the pairs (m, n) are $(2 \cdot 5^2, 2^2 \cdot 3 \cdot 5^3)$, $(2 \cdot 3 \cdot 5^2, 2^2 \cdot 5^3)$, $(2 \cdot 5^3, 2^2 \cdot 3 \cdot 5^2)$, $(2 \cdot 3 \cdot 5^3, 2^2 \cdot 5^2)$.
- (b) hcf(m,n) divides m, which divides lcm(m,n); hence hcf(m,n) divides lcm(m,n). They are equal when both equal m, and similarly both equal n, i.e., when m=n.
- (c) As in Proposition 11.2, let $m = p_1^{r_1} \cdots p_k^{r_k}$, $n = p_1^{s_1} \cdots p_k^{s_k}$. Define x to be the product of all the $p_i^{r_i}$ for which $r_i \ge s_i$, and y to be the product of all the $p_j^{s_j}$ for which $r_i < s_j$.
- 9. We must show the equation $x^6 y^5 = 16$ has no solutions $x, y \in \mathbb{Z}$.

Suppose $x, y \in \mathbb{Z}$ are solutions. First suppose x is even. Then y must be even. Hence the LHS of the equation is divisible by 2^5 , so it cannot equal 16.

So x must be odd. The equation is $y^5 = x^6 - 16 = (x^3 - 4)(x^3 + 4)$. The hcf of the two factors $x^3 - 4$ and $x^3 + 4$ divides their difference, 8. As both are odd numbers (since x is odd), we deduce that $hcf(x^3 - 4, x^3 + 4) = 1$. So $x^3 - 4, x^3 + 4$ are coprime numbers with product equal to the fifth power y^5 . By Proposition 11.4(b), this implies that both $x^3 - 4$ and $x^3 + 4$ are fifth powers. But two fifth powers clearly cannot differ by 8 (the fifth powers are ..., -32, -1, 0, 1, 32, ...). Hence there are no solutions.

Chapter 12

1. One of the three numbers p, p+2, p+4 must be divisible by 3. Since they are all supposed to be prime, one of them must therefore be equal to 3, so the only possibility is p=3.

3. For n = 5, 6, 7, 8, 9, 10 we have $\phi(n) = 4, 2, 6, 4, 6, 4$, respectively.

If p is prime then all the numbers 1, 2, ..., p-1 are coprime to p, and hence $\phi(p) = p-1$.

For $r \ge 1$, the numbers between 1 and p^r which are *not* coprime to p^r are those which are divisible by p, namely, the numbers kp with $1 \le k \le p^{r-1}$. There are p^{r-1} such numbers, and hence $\phi(p^r) = p^r - p^{r-1}$.

5. x = 40 will do nicely.

Chapter 13

- 1. (a) $7^2 \equiv 5 \mod 11$, so $7^4 \equiv 5^2 \equiv 3 \mod 11$ and so $7^5 \equiv 3.7 \equiv -1 \mod 11$. Therefore $7^{135} \equiv (-1)^{27} \equiv -1 \mod 11$, so $7^{137} \equiv -7^2 \equiv 6 \mod 11$. So r = 6.
- (b) Use the method of successive squares from Example 13.3. Calculate that $2^{16} \equiv 391 \mod 645$ and $2^{64} \equiv 256 \mod 645$. Hence $2^{81} = 2^{1+16+64} \equiv 2 \cdot 391 \cdot 256 \equiv 242 \mod 645$.
- (c) We need to consider 3^{124} modulo 100. Observe $3^5 \equiv 43 \mod 100$, so $3^{10} \equiv 49 \mod 100$ and then $3^{20} \equiv 1 \mod 100$. Hence $3^{120} \equiv 1 \mod 100$, and so $3^{124} \equiv 3^4 \equiv 81 \mod 100$. Therefore the last two digits of 3^{124} are 81.
- (d) The multiple 21n will have last 3 digits 241 if $21n \equiv 241$ mod 1000. Since hcf(21,1000) = 1, such an n exists, by Proposition 13.6.
- 3. (a) There is a solution by Proposition 13.6, as hcf(99,30) = 3 divides 18. To find a solution, observe first that $3 = 10 \cdot 30 3 \cdot 99$. Multiplying through by 6, we get $18 = 60 \cdot 30 18 \cdot 99$, hence $-18 \cdot 99 \equiv 18 \mod 30$. So x = -18 is a solution.
- (b) There is no solution by Proposition 13.6, as hcf(91, 143) = 13 does not divide 84.
- (c) The squares $0^2, 1^2, 2^2, 3^2, 4^2$ are congruent to 0, 1, 4, 4, 1 modulo 5, respectively. Since any integer x is congruent to one of 0, 1, 2, 3, 4 modulo 5, it follows that x^2 is congruent to 0, 1 or 4. Hence the equation $x^2 \equiv 2 \mod 5$ has no solution.
- (d) Putting x = 0, 1, 2, 3, 4 gives $x^2 + x + 1$ congruent to 1, 3, 2, 3, 1 modulo 5, respectively. Hence the equation $x^2 + x + 1 \equiv 0 \mod 5$ has no solution.
- (e) x = 2 is a solution.
- 5. (a) Since 7|1001, we have $1000 \equiv -1 \mod 7$, so $1000^2 \equiv 1 \mod 7$, $1000^3 \equiv -1 \mod 7$, etc. So the rule is to split the digits of a number n into chunks of size 3 and then alternately add and subtract then the answer is divisible by 7 if and only if n is. The number 6005004003002001 is congruent modulo 7 to 1-2+3-4+5-6=-3, so the remainder is 4.

(b) Same rule as for 7. The number is again congruent to -3 modulo 13, so the remainder is 10.

- (c) Since $1000 \equiv 1 \mod 37$, $1000^2 \equiv 1 \mod 37$, etc., the rule is to split the digits of a number n into chunks of size 3 and then add the answer is divisible by 37 if and only if n is. The given number is congruent modulo 37 to 1+2+3+4+5+6=21.
- 7. Consider a square n^2 . As in Exercise 2(c), $n^2 \equiv 0, 1$ or 4 mod 5. Similarly, we see that $n^2 \equiv 0, 1$ or 4 mod 8.

We first show n is divisible by 5. We know that the squares 2n+1 and 3n+1 are congruent to 0,1 or -1 modulo 5. Say $2n+1\equiv a \mod 5, 3n+1\equiv b \mod 5$, with $a,b\in\{0,1,-1\}$. If $a\neq b$, then adding gives $5n+2\equiv 2\equiv a+b \mod 5$; but this cannot hold when $a\neq b$ and $a,b\in\{0,1,-1\}$. So a=b; then subtracting gives $n\equiv b-a \mod 5$; hence as a=b, we get $n\equiv 0 \mod 5$, i.e., n is divisible by 5.

Now we show n is divisible by 8 in exactly the same way. Hence n is divisible by 40.

The first value of n that works is 40, since then 2n + 1 = 81 and 3n + 1 = 121 are squares.

Another value of *n* that works is 3960, since then $2n + 1 = 7921 = 89^2$ and $3n + 1 = 11881 = 109^2$.

- 9. The equation ax = b has a solution for $x \in \mathbb{Z}_p$ if and only if the congruence equation $ax \equiv b \mod p$ has a solution. Since $a \neq 0$ in \mathbb{Z}_p , a and p are coprime, so there is a solution by Proposition 13.6.
- 11. The number of days in 1000 years is $1000 \times 365 + 250$ (the 250 for the leap years). Since $365 \equiv 1 \mod 7$, this is congruent to 1250 modulo 7, which is congruent to 4 modulo 7. Hence May 6, 3005 will in fact be a Tuesday.

Chapter 14

- 1. (a) By Fermat's Little Theorem, $3^{10} \equiv 1 \mod 11$, so $3^{301} = 3^{300} \cdot 3 \equiv 3 \mod 11$. In other words, $3^{301} \pmod{11} = 3$. Likewise, we have $5^{110} \pmod{13} = 12$ and $7^{1388} \pmod{127} = 49$.
- (b) By Fermat's Little Theorem, $n^7 \equiv n \mod 7$. Also $n^3 \equiv n \mod 3$, and hence $n^7 = n^3 \cdot n^3 \cdot n \equiv n^3 \equiv n \mod 3$. Clearly also $n^7 \equiv n \mod 2$. Hence $n^7 n$ is divisible by 2, 3 and 7, hence by 42, i.e., $n^7 \equiv n \mod 42$.
- 3. Let a be coprime to 561. Then by Fermat, $a^{16} \equiv 1 \mod 17$, $a^{10} \equiv 1 \mod 11$

and $a^2 \equiv 1 \mod 3$. So

$$a^{560} \equiv (a^{16})^{35} \equiv 1 \mod 17,$$

 $a^{560} \equiv (a^{10})^{56} \equiv 1 \mod 11,$
 $a^{560} \equiv (a^2)^{280} \equiv 1 \mod 3,$

and hence $a^{560} - 1$ is divisible by 3,11 and 17, hence by $3 \cdot 11 \cdot 17 = 561$. So $a^{560} \equiv 1 \mod 561$.

- 5. By Fermat, $p^{q-1} \equiv 1 \mod q$. Since $q^{p-1} \equiv 0 \mod q$, this implies that $p^{q-1} + q^{p-1} \equiv 1 \mod q$. Similarly, $p^{q-1} + q^{p-1} \equiv 1 \mod p$. Hence $p^{q-1} + q^{p-1} 1$ is divisible by both p and q, hence by pq, and so $p^{q-1} + q^{p-1} \equiv 1 \mod pq$.
- 7. (a) Use the recipe provided by Proposition 14.2. Since $3 \cdot 19 \equiv 1 \mod 28$, the solution is $x \equiv 2^{19} \mod 29$. Using successive squares, this is $x \equiv 26 \mod 29$.
- (b) Notice cleverly that $143 = 11 \cdot 13$, so we use the recipe of Proposition 14.3. Here (p-1)(q-1) = 120, and $7 \cdot 103 \equiv 1 \mod 120$. So the solution is $x \equiv 12^{103} \mod 143$. Since $12^2 \equiv 1 \mod 143$, the solution is $x \equiv 12 \mod 143$.
- (c) Again use 14.3. Since $11 \cdot 11 \equiv 1 \mod 120$, the solution is $2^{11} \pmod{143}$, which is $46 \pmod{143}$.
- 9. Use successive squares to calculate that $2^{1386} \equiv 1 \mod 1387$, but $2^{693} \equiv 512 \mod 1387$. So Miller's test shows that 1387 is not prime.

Chapter 15

- 1. We have p+q=pq-(p-1)(q-1)+1=18779-18480+1=300. Hence p,q are the roots of $x^2-300x+18779=0$. Using the formula for the roots of a quadratic, these are $\frac{1}{2}(300\pm\sqrt{300^2-4\cdot18779})$, i.e., 211 and 89.
- 3. To crack this code, observe that $1081 = 23 \cdot 47$. Taking p = 23, q = 47, we have (p-1)(q-1) = 1012. Since e = 25 and $25 \cdot 81 \equiv 1 \mod 1012$, the decoding power d = 81. So the decoded message starts with $23^{81} \pmod{1081} = 161$, then $930^{81} \pmod{1081} = 925$, then $228^{81} \pmod{1081} = 30$, and finally $632^{81} \pmod{1081} = 815$. So the decoded message is 161925030815, which with the usual letter substitutions (A for 01, etc.), is PSYCHO. Good choice, Ivor!