Hall Of Fame Baseball

By: Brian McCabe

Purpose

Identifying Hall Of Fame Baseball Players

Batting, Fielding, Pitching, All-star and Awards Statistics

Comparing Binary Classification Algorithms

K-Nearest Neighbors

Logistic Regression

SVM

Decision Trees

Random Forest

Naïve Bayes

XGBoost

What makes a Hall Of Fame Baseball Player?

Significance

How can this be used?

Who would benefit from this analysis?

Data Description

- 46 input variables
- Batting
 - At Bats
 - Runs
 - Hits
 - Home Runs
 - Walks
 - Runs Batted In
 - Walks
 - Strike Outs

- Pitching
 - Wins
 - Loses
 - Shut Outs
 - Strike Outs
 - Runs Allowed
- Fielding
 - Games Started
 - Put Outs
 - Assist
 - Errors
 - Inn Outs
 - Double Plays
- Awards
 - All Star Appearances
 - Awards Won

- 1 Out-Put Variable: HOF Status
 - 1 if player is in HOF
 - 0 if player is not in HOF

Exploratory

Exploratory

Data Preparation

- Combined records on player ID
- Used Aggregate Functions
- Merged all 7 Data sets into one 23005 x 50

y = merged_df['inducted']

standardizer = StandardScaler() X = standardizer.fit transform(X)

X train, X test, y train, y test = train test split(X, y , test size=0.25, random state=0)

- Changed out-put variable to binary
- Filled NANs with Zeros
- 75/25 Train Test Split
- Standard Scaler

```
aggregation_functions_f = {'POS': 'first', 'G': 'sum', 'GS': 'sum', 'InnOuts':'sum',
                                                                                         'PO':'sum','A':'sum','E':'sum','DP':'sum'}
                                                             aggregation functions b = {'G': 'sum', 'AB': 'sum', 'R':'sum', 'H':'sum',
                                                                                         '2B':'sum','3B':'sum','HR':'sum','RBI':'sum','SB':'sum',
                                                                                        'CS':'sum', 'BB':'sum', 'SO':'sum', 'IBB':'sum', 'HBP':'sum',
                                                                                         'SH': 'sum', 'SF': 'sum', 'GIDP': 'sum'}
                                                             aggregation functions p = {'W': 'sum', 'L': 'sum', 'G':'sum', 'GS':'sum',
                                                                                         'CG':'sum', 'SHO':'sum', 'SV':'sum', 'IPouts':'sum', 'H':'sum',
                                                                                        'R': 'sum', 'GIDP': 'sum', 'WP': 'sum', 'BK': 'sum'}
                                                             combined f = fielding.groupby(fielding['playerID']).aggregate(aggregation functions f)
                                                             combined b = batting.groupby(batting['playerID']).aggregate(aggregation functions b)
                                                             combined p = pitching.groupby(pitching['playerID']).aggregate(aggregation functions p)
                                                             merged_df = pd.merge(combined_f,combined_b, on='playerID',how = 'outer')
                                                             merged_df = pd.merge(merged_df,combined_p, on='playerID',how='outer')
                                                             merged df['POS'].fillna("DH",inplace=True)
                                                            info = info[['playerID', 'nameFirst', 'nameLast', 'weight', 'height']]
                                                            hof['inducted'] = hof['inducted'].map({'Y': 1, 'N': 0})
                                                            hof = hof[hof['category']=='Player']
                                                            hof = hof[['playerID','inducted']]
                                                             awards clean = pd.DataFrame(awards.groupby(['playerID'])['playerID'].count())
                                                            awards clean.rename(columns={"playerID": "Awards"},inplace=True)
                                                            as_clean = pd.DataFrame(allstar.groupby(['playerID'])['playerID'].count())
                                                            as_clean.rename(columns={"playerID": "AS_ap"},inplace=True)
                                                            merged_df = pd.merge(merged_df,info, on='playerID',how = 'outer')
                                                            merged df = pd.merge(merged df,hof, on='playerID',how='outer')
                                                             merged_df = pd.merge(merged_df,awards_clean, on='playerID',how='outer')
                                                            merged_df = pd.merge(merged_df,as_clean, on='playerID',how='outer')
                                                            merged df = merged df.fillna(0)
                                                            merged df = merged df[merged df['POS']!=0]
                                                            merged df = merged df.set index('playerID')
                                                            merged df
X = merged df.drop(['POS','nameLast','nameFirst','inducted'], axis=1)
```

Initial analysis

	Accuracy	Precision	Recall	F1
Logistic Regression	0.991134	0.106383	0.357143	0.163934
SVM	0.991829	0.085106	0.500000	0.145455
Decision Trees	0.989395	0.148936	0.250000	0.186667
Random Forest	0.990090	0.148936	0.291667	0.197183
Naive Bayes	0.859875	0.957447	0.053004	0.100446
K-Nearest Neighbor	0.992003	0.085106	0.571429	0.148148
XGBoost	0.990090	0.170213	0.307692	0.219178

Tuning

- Using Up Sampling to tune models
- Used Threshold Technique to tune best model

```
df_majority = merged_df[(merged_df['inducted']==0)]
df minority = merged df[(merged df['inducted']==1)]
df_minority_upsampled = resample(df_minority, replace=True,n_samples= 22775,random_state=42)
df upsampled = pd.concat([df minority upsampled, df majority])
print(df_upsampled['inducted'].value_counts())
sns.countplot(df_upsampled['inducted'])
 1.0
 Name: inducted, dtype: int64
     20000
     15000
     10000
      5000
                                                         1.0
                         0.0
                                       inducted
```

Model Analysis

F1

	Accuracy	Precision	Recall	F1
Logistic Regression	0.930453	0.965529	0.902070	0.932722
SVM	0.928082	0.973444	0.892310	0.931113
Decision Trees	0.967597	1.000000	0.939059	0.968572
Random Forest	0.968739	1.000000	0.941079	0.969645
Naive Bayes	0.891113	0.936159	0.858548	0.895676
K-Nearest Neighbor	0.967422	1.000000	0.938749	0.968407
XGBoost	0.968476	1.000000	0.940612	0.969397

Conclusion

		precision	recall	f1-score	support
	0.0	0.94	1.00	0.97	5343
	1.0	1.00	0.94	0.97	6045
accur	acy			0.97	11388
macro	avg	0.97	0.97	0.97	11388
weighted	avg	0.97	0.97	0.97	11388

	Accuracy	Precision	Recall	F1.
Logistic Regression	0.930453	0.965529	0.902070	0.932722
SVM	0.928082	0.973444	0.892310	0.931113
Decision Trees	0.967597	1.000000	0.939059	0.968572
Random Forest	0.968739	1.000000	0.941079	0.969645
Naive Bayes	0.891113	0.936159	0.858548	0.895676
K-Nearest Neighbor	0.967422	1.000000	0.938749	0.968407
XGBoost	0.968476	1.000000	0.940612	0.969397
RF.7	0.969178	1.000000	0.941859	0.970059

Testing Model

```
dj = merged df[ (merged df['nameFirst'] == 'Derek') & (merged df['nameLast'] == 'Jeter') ].drop(['POS','nameLast']
do = merged df[ (merged df['nameFirst'] == 'David') & (merged df['nameLast'] == 'Ortiz') ].drop(['POS','nameLast']
dw = merged df[ (merged df['nameFirst'] == 'David') & (merged df['nameLast'] == 'Wright') ].drop(['POS','nameTirst'] == 'Wright') ].drop(['POS
 ha = merged df[ (merged df['nameFirst'] == 'Hank') & (merged df['nameLast'] == 'Aaron') ].drop(['POS', 'nameLast']
 cy = merged df[ (merged df['nameFirst'] == 'Cy') & (merged df['nameLast'] == 'Young') ].drop(['POS', 'nameLast']
aj = merged df[ (merged df['nameFirst'] == 'Aaron') & (merged df['nameLast'] == 'Judge') ].drop(['POS','nameLast']
aj = merged df[ (merged df['nameFirst'] == 'Mike') & (merged df['nameLast'] == 'Piazza') ].drop(['POS','name
x = pd.concat([do,dj,dw,ha,cy,aj])
 predicted proba test = models['Random Forest'].predict proba(x)
 predicted proba test
 predicted = (predicted proba test[:,1] >= .7).astype('int')
  print(predicted)
    [00000000000]
 predictions = models[key].predict(x)
  print(predictions)
```

Questions

Thank you

