Aula 09 - Exercício prático aprendizado supervisionado - Parte 2

October 24, 2023

Vitor Albuquerque de Paula

1 Testar o SVM e uma MLP para o dataset IRIS:

https://www.kaggle.com/uciml/iris Separe aleatoriamente 70% dos dados para treino e 30% para teste e reporte com um print da saída qual a acurácia do algoritmo (número de acertos).

```
[1]: from sklearn import datasets
     from sklearn.model_selection import train_test_split
     from sklearn.svm import SVC
     from sklearn.metrics import accuracy_score
     # 1. Carregar o conjunto de dados Iris
     iris = datasets.load_iris()
     X = iris.data
     y = iris.target
     # 2. Dividir os dados em conjuntos de treino e teste (70% treino, 30% teste)
     X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,_
      ⇔random_state=42)
     # 3. Treinar um modelo SVM no conjunto de treino
     svm_classifier = SVC()
     svm_classifier.fit(X_train, y_train)
     # 4. Avaliar o modelo no conjunto de teste e reportar a acurácia
     y_pred = svm_classifier.predict(X_test)
     accuracy = accuracy_score(y_test, y_pred)
     accuracy
```

[1]: 1.0

```
[2]: from sklearn.neural_network import MLPClassifier

# 2. Treinar uma MLP no conjunto de treino
mlp_classifier = MLPClassifier(random_state=42, max_iter=1000) # max_iter_
aumentado para garantir convergência
```

```
mlp_classifier.fit(X_train, y_train)

# 3. Avaliar o modelo no conjunto de teste e reportar a acurácia
y_pred_mlp = mlp_classifier.predict(X_test)
accuracy_mlp = accuracy_score(y_test, y_pred_mlp)
accuracy_mlp
```

[2]: 1.0

2 Compare o resultado com os algoritmos testados na aula anterior se houve melhora na acurácia.

Algoritmo	Acurácia (%)	
KNN	100.00	
Naive Bayes Gaussiano	97.78	
rore de Decisão (Hunt)	71.11	
SVM	100.00	
MLP	100.00	
	KNN Naive Bayes Gaussiano vore de Decisão (Hunt) SVM	Naive Bayes Gaussiano 97.78 wore de Decisão (Hunt) 71.11 SVM 100.00

Análise:

KNN, SVM e MLP alcançaram a acurácia máxima de 100%. Naive Bayes Gaussiano teve um desempenho ligeiramente inferior, com uma acurácia de 97.78%. Árvore de Decisão (usando o algoritmo de Hunt) teve o desempenho mais baixo entre os algoritmos testados, com uma acurácia de 71.11%. Isso sugere que, para o conjunto de dados Iris, o KNN, SVM e MLP são os algoritmos mais adequados, enquanto a Árvore de Decisão (Hunt) pode não ser a melhor escolha.