Nature Inspired Search & Optimization Algorithm

STOCHASTIC DIFFUSION SEARCH

Solving the "Curse of Dimensionality" in Machine Learning

Author: Sotiris Ftiakas - 3076

TABLE OF CONTENTS

1 INTRODUCTION

What is Machine Learning and the Curse of Dimensionality?

7 ABOUT THE ALGORITHM

What is SDS and how does it work?

? SIMULATION

The Restaurant Game

SDS IN THEORY

What is the theoretical background of SDS?

S EXPERIMENTS

Maximization with constraints. (Sonar signals, Image pixels)

RESULTS

Compare with baseline models.

What is Machine Learning and the Curse of Dimensionality?

MACHINE LEARNING

- Method of Data Analysis that automates predictive model building
- Computers learn from data, identify patterns and make decisions.
- Train, Predict, Improve
- More Data = More Accuracy
- Minimal human intervention

EXAMPLE - CAT VS DOG

- Supervised Learning Labelled Data to train the model
- Input in a table format
- Rows = Examples, Columns = Features
- A model is simply a target function (f) that best maps input variables (X) to output variable (Y)

	FEAT	OUTPUT VARIABLE		
$\overline{}$	Big Ears (x1)	Long tail (x2)	Small Nose (x3)	Label (y)
1	1	1	0	DOG
2	0	1	1	CAT
3	0	0	0	DOG
4	1	1	1	DOG
5	0	1	0	CAT
6	0	1	1	CAT

CURSE OF DIMENSIONALITY

"The problem caused by the exponential increase in volume associated with adding extra dimensions to Euclidean space"

—R. BELLMAN, 1957

CURSE OF DIMENSIONALITY

- In programming, this means that the error increases with the increase in the number of features
- Algorithms are harder to design in high dimensions, often having high running times
- Theoretically more information, practically higher possibility of noise and redundancy

Assume we want 10 samples per unique combination of variables:

1 Binary Variable \rightarrow 2 Unique Combinations \rightarrow 20 Samples

2 Binary Variables \rightarrow 4 Unique Combinations \rightarrow 40 Samples

.

k Binary Variables \rightarrow 2^k Unique Combinations \rightarrow 10 x 2^k Samples

ABOUT THE ALGORITHM

What is SDS and how does it work?

- Proposed in 1989 as a population-based pattern-matching algorithm
- Uses a form of direct communication between agents
- Each agent poses a hypothesis about the possible solution and evaluates it partially
- Successful agents repeatedly test their hypothesis, while recruiting unsuccessful agents by direct communication
- Positive feedback mechanism Agents converge onto promising solutions
- Global solution is constructed from agents forming the largest cluster.

- Based on partial evaluation of fitness functions to save on the computational cost of repeated evaluations
- Still holds enough information for optimization purposes
- Variation and selection mechanisms in SDS solve the population homogeneity problem
- Wide exploration of all feasible solutions
- Detailed exploitation of a small number of them

SIMULATION

The Restaurant Game

SIMULATION

The Restaurant Game

"A group of agents attends a long conference in an unfamiliar town.

Each night they have to find somewhere to dine. There is a large choice of restaurants, each of which offers a large variety of meals.

The problem the group faces is to find the best restaurant, that is the restaurant where the maximum number of agents would enjoy dining. Even a parallel exhaustive search through the restaurant and meal combinations would take too long to accomplish.

To solve the problem, agents decide to employ a Stochastic Diffusion Search."

1) Initialization Phase

2) Testing Phase

3) Diffusion Phase

1) Initialization Phase

2) Testing Phase

3) Diffusion Phase

1) Initialization & Testing Phase

2) Halting Phase

SDS IN THEORY

What is the theoretical background of SDS?

- All feasible solutions to the problem form the solution space **S**
- Each point in **S** has an associated objective value
- The objective values taken over the entire solution space form an objective function **f**
- For simplicity, we assume that the objective is to minimize the sum of n {0,1}-valued component functions f_i

$$\min_{\forall s \in \mathbf{S}} f(s) = \min_{\forall s \in \mathbf{S}} \sum_{i=1}^{n} f_i(s) , \qquad f_i : \mathbf{S} \to \{0.1\}$$

 During operation, each agent maintains a hypothesis about the best solution to the problem

 A hypothesis is thus a candidate solution, and designates a point in the solution space

• Hypotheses can be binary strings, integer numbers or even real numbers

1) Initialization Phase

- For the curse of dimensionality, our partial hypotheses are binary strings, indicating which features we should keep
 - \circ E.g. h=10100010, means we should keep the 1st, 3rd and 7th feature only. (3 out of 8)
 - \circ Training with this new dataset gives an accuracy score of 80%, so $s_h = 80$, $s_h \in S$

2) Testing Phase

- Agents randomly select a component function f_i , $i \in \{1, ..., n\}$ and evaluate it for their particular hypothesis.
 - \circ E.g. Agent No.1 randomly selects Agent No.5 and evaluates with component function f_5 ($s_h^{agent_1}$)

• Agents are divided into 2 groups:

 For our machine learning problems, these component functions can be modeled as:

$$f_i(s_h^{agentj}) = unit_step(s_h^{agenti} - s_h^{agentj}), \quad i, j \in \{1, ..., n\}$$

3) Diffusion Phase

- Each unhappy agent chooses at random another agent for communication
 - If the selected agent is happy, the unhappy agent copies its hypothesis (diffusion)
 - If the selected agent is unhappy, there is no flow of information, and the selecting agent adopts a new <u>random</u> hypothesis.
- Happy agents do not initiate a communication and repeat their hypothesis (in standard SDS)

4) Halting Phase

• Many different halting criterions (Threshold of active agents, Number of iterations, etc.)

CODING

You can find my coding repository on my Github Profile

Maximization with constraints. (Sonar signals, Image pixels)

EXPERIMENT 1 – SONAR SIGNALS

Sonar: Mines vs Rocks

- Dataset used to discriminate between sonar signals bounced off a metal cylinder (mines) and those bounced off a roughly cylindrical rock.
- III patterns by bouncing sonar signals off a metal cylinder at various angles
- 7 patterns obtained from rocks under similar conditions
- Each pattern is a set of 60 numbers from 0.0 to 1.0

EXPERIMENT 2 – IMAGE PIXELS

Fashion – MNIST Dataset

- 28 x 28 grayscale clothing images (784 pixels total)
- Pixels take values from 0 255, representing their darkness
- 10 different labels (T-shirt/top, Trouser, Pullover, etc.)
- 45.000 training examples

Compare with baseline models.

SONAR SIGNALS - RESULTS

	Logistic Regression	Random Forest	Decision Tree		
Initial Dataset, 60 Cols	0.77		0.75		
SDS Subset, 36 Cols	0.85	0.88	0.77		
SDS Subset, 8 Cols	0.83	0.85	0.81		

IMAGE PIXELS - RESULTS

				1000 rows	Logistic Regression	Random Forest	Decision Tree
45000 rows	Logistic Regression	Random Forest	Decision Tree	Initial Dataset, 784 Cols	0.79	0.79	0.67
Initial Dataset, 784 Cols	0.85	0.88	0.71	SDS Subset, 145 Cols	0.79	0.81	0.69
SDS Subset, 181 Cols	0.83	0.87	0.70	SDS Subset, 71 Cols	0.75	0.80	0.70
				 SDS Subset, 18 Cols	0.68	0.74	0.66

IMAGE PIXELS - RESULTS

THANKS!

DO YOU HAVE ANY QUESTION?

sftiakas@csd.auth.gr github.com/SotirisFtiakas

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, infographics & images by Freepik.