Class: APPM 1360

Charges and Fields

 $F = k \frac{q_1 q_2}{2}$ Coulomb's Law $\vec{E} = \frac{\vec{F}_{onq}}{}$ Definition of electric $\vec{E} = k \frac{q}{r^2} \hat{r}$ E-field (point charge)

 $\vec{E}_{tot} = \sum \vec{E} = \vec{E}_1 + \vec{E}_2 + \vec{E}_3 + \dots$ E-field (many charges)

 $\vec{E}_{tot} = \int d\vec{E}, d\vec{E} = k \frac{d\vec{Q}}{r^2}$ $dQ = \lambda \ dx = \sigma \ dA = \rho \ dV$ E-field (integral) Densitys

Gauss's Law

Electric flux $\Phi = \vec{E} \cdot \vec{A} = \int \vec{E} \cdot d\vec{a}$ $\oiint \vec{E} \cdot d\vec{a}$ Gauss Law

Electro-Dynamic

Voltage

$$\begin{split} v &= \frac{\Delta U}{q} \\ \Delta U &= W_{ext} = -W_{field} \end{split}$$

 $\Delta U = q\Delta V$ $\Delta V = -\vec{E} \cdot \Delta \vec{r}$ $W_{ext} = \Delta U = q\Delta V$

electric current

 $I = \frac{dq}{dt}$ $J = \frac{I}{A} = n_e e v_{drift}$ $J = \sigma E$ Current Density

Ohm's law

Ciruit

 $C = \frac{Q}{V} = \frac{\epsilon_0 A}{d}$ $U = \frac{1}{2}QV$ $I = \frac{dQ}{dt}$ V = IRCapacitance

Electric Current Circuits

 $R = \frac{\rho L}{A}$ $J = nqV_{drift} = \frac{I}{A}$ $P = IV = I^{2}R = \frac{V^{2}}{R}$

Magnetism

 $F_{on\ q} = \vec{qv \times B}$ Definition of ${\bf B}$

 $d\vec{B} = \frac{\mu_0 I}{4\pi} \frac{d\vec{l} \times \hat{r}}{r^2}$ $\vec{F} = I\vec{L} \times \vec{B}$ Bio-Savart Law Force by a wire

$$\begin{split} \vec{F}_{tot} &= \vec{F}_B + \vec{F}_E \\ \oint \vec{B} \cdot d\vec{a} &= 0 \end{split}$$
ma Total force Ampere's Law

 $\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{enclosed}$ Ampere's Law $\mathcal{E} = \oint \frac{\vec{f}_{on\ q}}{q} \cdot d\vec{l} = \oint \vec{E} \cdot d\vec{l}$ $\mathcal{E}_{N\ loop} = -N \frac{d\Phi_B}{dt}$ Faraday's Law