Classification

Yun-Nan Chang

Classification Method

- **⋄**Regression
- **⋄**K-Means
- ♦k-NN
- **♦**SVM

Classification Method

Linear Regression

K-Means

Decision theory

- In order to make decision based on a given x, we are interested in the probability of $P(C_k|x)$
- \diamond Using Bayes' theory $P(C_k|x) = \frac{P(x|C_k)P(C_k)}{P(x)}$
 - For two classes: $P(C_1|x) = \frac{P(x|C_1)P(C_1)}{P(x)} = \frac{P(x|C_1)P(C_1)}{P(x|C_1)P(C_1) + P(x|C_2)P(C_2)}$
 - ♦ If $P(C_1|x) > 0.5 =$ class 1
- If we can know $p(C_1)$, $p(C_2)$, $p(x|C_1)$, $p(x|C_2)$, we can derive $P(C_k|x)$ and make the decision.
 - ♦ It's called **Probabilistic generative model**.

Minimizing the misclassification rate

- The probability of the misclassification will be
- ♦p(mistake) = $p(x ∈ R_1, C_2) + p(x ∈ R_2, C_1)$ = $\int_{R_1} p(x, C_2) + \int_{R_2} p(x, C_1)$
- ♦The combined area of green an blue regions remain constant, we should try to minimize the red region.
- **\diamond** For multiclasses, p(correct) = $\sum_{1}^{K} \int_{R_k} p(x, C_k)$
- **\diamond**Expected loss $E[L] = \sum_{k} \sum_{j} \int_{R_{j}} L_{kj} p(x, C_{k})$

Gaussian Distribution

♦Gaussian Distribution

$$f_{\mu,\Sigma}(x) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} exp\left\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right\}$$

Probability

Assume the points are sampled from a Gaussian distribution.

lacktriangle We can find μ and Σ

$$f_{\mu,\Sigma}(x) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} exp\left\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right\}$$

Maximum Likelihood

• We can find the 'best' μ and Σ to get the Maximum $L(\mu, \Sigma)$

$$L(\mu, \Sigma) = f_{\mu, \Sigma}(x^1) f_{\mu, \Sigma}(x^2) f_{\mu, \Sigma}(x^3) \dots \dots f_{\mu, \Sigma}(x^N)$$

Different μ and Σ

Classification

We can do classification now.

$$P(C_1|x) = \frac{P(x|C_1)P(C_1)}{P(x|C_1)P(C_1) + P(x|C_2)P(C_2)}$$

$$f_{\mu,\Sigma}(x) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} exp\left\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right\}$$

Example

Gaussian Distribution

Female

$$\sum_{n=1}^{4} \begin{bmatrix} 134 \end{bmatrix} = \begin{bmatrix} 8.24 & 46.37 \\ 46.37 & 373.05 \end{bmatrix}$$

Male

$$\mu = \begin{bmatrix} 69 \\ 186 \end{bmatrix}$$

$$\sum = \begin{bmatrix} 6.76 \ 39.57 \\ 39.57 \ 372.56 \end{bmatrix}$$

Decision Bounce

Modifying Model

 \Leftrightarrow Find μ^1 , μ^2 , Σ maximizing the likelihood $L(\mu^1,\mu^2,\Sigma)$

Male: Female: $x^1, x^2, x^3, \dots, x^{79}$ $x^{80}, x^{81}, x^{82}, \dots, x^{140}$

Find μ^1 , μ^2 , Σ maximizing the likelihood $L(\mu^1,\mu^2,\Sigma)$

$$\begin{split} L\big(\mu^{1},\!\mu^{2},\!\Sigma\big) &= f_{\mu^{1},\!\Sigma}(x^{1}) f_{\mu^{1},\!\Sigma}\big(x^{2}\big) \cdots f_{\mu^{1},\!\Sigma}\big(x^{79}\big) \\ &\quad \times f_{\mu^{2},\!\Sigma}\big(x^{80}\big) f_{\mu^{2},\!\Sigma}\big(x^{81}\big) \cdots f_{\mu^{2},\!\Sigma}\big(x^{140}\big) \end{split}$$

$$\mu^1$$
 and μ^2 is the same $\Sigma = \frac{79}{140} \Sigma^1 + \frac{61}{140} \Sigma^2$

Example

Posterior Probability

$$P(C_1|x) = \frac{P(x|C_1)P(C_1)}{P(x|C_1)P(C_1) + P(x|C_2)P(C_2)}$$

$$= \frac{1}{1 + \frac{P(x|C_2)P(C_2)}{P(x|C_1)P(C_1)}} = \frac{1}{1 + exp(-z)} = \frac{\sigma(z)}{1 + exp(-z)}$$
Sigmoid function

$$z = ln \frac{P(x|C_1)P(C_1)}{P(x|C_2)P(C_2)}$$

Posterior Probability

$$P(C_1|x) = \sigma(z)$$
 sigmoid $z = ln \frac{P(x|C_1)P(C_1)}{P(x|C_2)P(C_2)}$

$$z = \ln \frac{P(x|C_1)}{P(x|C_2)} + \ln \frac{P(C_1)}{P(C_2)} \longrightarrow \frac{\frac{N_1}{N_1 + N_2}}{\frac{N_2}{N_1 + N_2}} = \frac{N_1}{N_2}$$

$$P(x|C_1) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma^1|^{1/2}} exp\left\{-\frac{1}{2}(x-\mu^1)^T(\Sigma^1)^{-1}(x-\mu^1)\right\}$$

$$P(x|C_2) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma^2|^{1/2}} exp\left\{ -\frac{1}{2} (x - \mu^2)^T (\Sigma^2)^{-1} (x - \mu^2) \right\}$$

$$z = \ln \frac{P(x|C_1)}{P(x|C_2)} + \ln \frac{P(C_1)}{P(C_2)} = \frac{N_1}{N_2}$$

$$P(x|C_1) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma^1|^{1/2}} exp \left\{ -\frac{1}{2} (x - \mu^1)^T (\Sigma^1)^{-1} (x - \mu^1) \right\}$$

$$P(x|C_2) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma^2|^{1/2}} exp \left\{ -\frac{1}{2} (x - \mu^2)^T (\Sigma^2)^{-1} (x - \mu^2) \right\}$$

$$\ln \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma^1|^{1/2}} exp \left\{ -\frac{1}{2} (x - \mu^1)^T (\Sigma^1)^{-1} (x - \mu^1) \right\}$$

$$\ln \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma^2|^{1/2}} exp \left\{ -\frac{1}{2} (x - \mu^2)^T (\Sigma^2)^{-1} (x - \mu^2) \right\}$$

$$= \ln \frac{|\Sigma^2|^{1/2}}{|\Sigma^1|^{1/2}} exp \left\{ -\frac{1}{2} \left[(x - \mu^1)^T (\Sigma^1)^{-1} (x - \mu^1) - (x - \mu^2)^T (\Sigma^2)^{-1} (x - \mu^2) \right] \right\}$$

$$= ln \frac{\left|\Sigma^{2}\right|^{1/2}}{\left|\Sigma^{1}\right|^{1/2}} - \frac{1}{2} \left[(x - \mu^{1})^{T} (\Sigma^{1})^{-1} (x - \mu^{1}) - (x - \mu^{2})^{T} (\Sigma^{2})^{-1} (x - \mu^{2}) \right]_{\text{From NTU Prof. H-Y. Lee's slice}}$$

$$z = \ln \frac{P(x|C_1)}{P(x|C_2)} + \ln \frac{P(C_1)}{P(C_2)} = \frac{N_1}{N_2}$$

$$= \ln \frac{\left| \sum^2 \right|^{1/2}}{\left| \sum^1 \right|^{1/2}} - \frac{1}{2} \left[(x - \mu^1)^T (\Sigma^1)^{-1} (x - \mu^1) - (x - \mu^2)^T (\Sigma^2)^{-1} (x - \mu^2) \right]$$

$$(x - \mu^1)^T (\Sigma^1)^{-1} (x - \mu^1)$$

$$= x^T (\Sigma^1)^{-1} x - x^T (\Sigma^1)^{-1} \mu^1 - (\mu^1)^T (\Sigma^1)^{-1} x + (\mu^1)^T (\Sigma^1)^{-1} \mu^1$$

$$= x^T (\Sigma^1)^{-1} x - 2(\mu^1)^T (\Sigma^1)^{-1} x + (\mu^1)^T (\Sigma^1)^{-1} \mu^1$$

$$(x - \mu^2)^T (\Sigma^2)^{-1} (x - \mu^2)$$

$$= x^T (\Sigma^2)^{-1} x - 2(\mu^2)^T (\Sigma^2)^{-1} x + (\mu^2)^T (\Sigma^2)^{-1} \mu^2$$

$$z = \ln \frac{\left| \sum^2 \right|^{1/2}}{\left| \sum^1 \right|^{1/2}} - \frac{1}{2} x^T (\Sigma^1)^{-1} x + (\mu^1)^T (\Sigma^1)^{-1} x - \frac{1}{2} (\mu^1)^T (\Sigma^1)^{-1} \mu^1$$

$$+ \frac{1}{2} x^T (\Sigma^2)^{-1} x - (\mu^2)^T (\Sigma^2)^{-1} x + \frac{1}{2} (\mu^2)^T (\Sigma^2)^{-1} \mu^2 + \ln \frac{N_1}{N_2}$$

From NTU Prof. H-Y. Lee's slide

$$P(C_1|x) = \sigma(z)$$

$$z = \ln \frac{\left|\Sigma^{2}\right|^{1/2}}{\left|\Sigma^{1}\right|^{1/2}} = \frac{1}{2} x^{T} (\Sigma^{1})^{-1} x + (\mu^{1})^{T} (\Sigma^{1})^{-1} x - \frac{1}{2} (\mu^{1})^{T} (\Sigma^{1})^{-1} \mu^{1}$$
$$+ \frac{1}{2} x^{T} (\Sigma^{2})^{-1} x - (\mu^{2})^{T} (\Sigma^{2})^{-1} x + \frac{1}{2} (\mu^{2})^{T} (\Sigma^{2})^{-1} \mu^{2} + \ln \frac{N_{1}}{N_{2}}$$

$$\Sigma_{1} = \Sigma_{2} = \Sigma$$

$$z = (\mu^{1} - \mu^{2})^{T} \Sigma^{-1} x - \frac{1}{2} (\mu^{1})^{T} \Sigma^{-1} \mu^{1} + \frac{1}{2} (\mu^{2})^{T} \Sigma^{-1} \mu^{2} + \ln \frac{N_{1}}{N_{2}}$$

$$\mathbf{w}^{T}$$
b

 $P(C_1|x) = \sigma(w \cdot x + b)$ How about directly find **w** and b?

In generative model, we estimate N_1 , N_2 , μ^1 , μ^2 , Σ

Then we have w and b

Binary classification

♦Use linear regression for example, if x is assigned to class C_1 if $y(x) \ge 0$, and to class C_2 otherwise.

Cut-off point for binary classification

- The selection of cut-off will affect decision/prediction outcome
 - ◆ Actual positive: TP+FN Actual negative: TN+FP.

	Actual Yes	Actual No
Predict Yes	TP	FP
Predict No	FN	TN

Confusion Matrix

	Actual Yes	Actual No
Predict Yes	TP (True Positive)	FP (False Positive)
Predict No	FN (False Negative)	TN (True Negative)

Confusion Matrix

額的混淆矩陣

Predict

Actual

	Apple	Banana	Orange
Apple	10	2	1
Banana	1	15	4
Orange	4	2	6

Confusion Matrix of Apple

	Apple	No Apple
Apple	10(TP)	3(FP)
No Apple	5(FN)	27(TN)

F1-score

♦ Combine Recall and Precision.

Sensitivity (Recall)

Precision

 $\frac{TP}{TP + FN}$

 $\frac{TP}{TP + FP}$

F1-Score

$$\frac{2}{\frac{1}{Recall} + \frac{1}{Precision}}$$

ROC

- Sensitivity (true positive rate/recall) vs 1-Specifity (true negative rate)
- ♦The larger sensitivity is better.
- ♦The smaller FPR is better.
- ♦Therefore, the larger *sensitivity-FPR* is better.
 - ◆ The cut-off value which leads to the maximum is usually used as the final decision point.
- Sensitivity-FPR =0 can be regarded as the reference line
 - Different methods could lead to different curves.
 - ◆ Larger AUC (Area under the Curve of ROC) is better.

AUC

- ♦TPR, true positive rate
- ♦FPR, false positive rate

Binary classification example

♦ Dataset : People's height and weight

♦ Purpose : Predict Male or Female

Logistic Regression scikit learn


```
### Train
# read data
df_gender=pd.read_csv('./data/weight-height.csv')
df_gender=df_gender.replace('Male','0')
df_gender=df_gender.replace('Female','1')
df_gender.head()
y=df_gender['Gender']
df gender.drop( ['Gender'],axis = 1,inplace = True)
X=df_gender
# split data
X_train, X_test, y_train, y_test=train_test_split(X,y,test_size=0.3, random_state=0)
# train
model = GaussianNB()
model.fit(X train, y train)
# predict
v pred = model.predict(X test)
# confusion matrix
print(confusion matrix(y test, y pred))
ax = sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt="d")
plt.show()
```


- ♦use csv file
- Import pandas as pd

```
df_gender=pd.read_csv('./data/weight-
height.csv')
```

df_gender=df_gender.replace('Male','0')
df_gender=df_gender.replace('Female','1')
df_gender.head()

♦ Split dataset

from sklearn model, selection import

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test

= train_test_split(X,y,test_size=0.3, random_state=0)

Load Data Preprocessing Model fit **Model Predict Show Result**

♦Use Gaussian Naive Bayes model from sklearn from sklearn.naive_bayes import GaussianNB model = GaussianNB()

♦Use this model to train model.fit(X_train, y_train)

♦Get predict

y_pred = model.predict(X_test)

Load Data Preprocessing Model fit **Model Predict Show Result**

♦Use matplotlib and seaborn import matplotlib.pyplot as plt import seaborn as sns ax = sns.heatmap(CM, annot=True, fmt="d") plt.show()

Logistic Regression

Setting of the object function

Training Data

- \diamond Assume the data is generated based on $f_{w,b}(x) = P_{w,b}(C_1|x)$
- ♦Given a set of w and b, what is its probability of generating the data?

$$\diamond L(w,b) = f_{w,b}(x^1) f_{w,b}(x^2) \left(1 - f_{w,b}(x^3)\right) \cdots f_{w,b}(x^N)$$

The most likely w^* and b^* is the one with the largest L(w, b).

 C_1

 C_2

 \hat{y}^n : 1 for class 1, 0 for class 2

$$L(w,b) = f_{w,b}(x^1) f_{w,b}(x^2) \left(1 - f_{w,b}(x^3)\right) \cdots$$

$$w^*, b^* = arg \max_{w,b} L(w,b) = w^*, b^* = arg \min_{w,b} -lnL(w,b)$$
$$-lnL(w,b)$$

$$= -lnf_{w,b}(x^{1}) \longrightarrow -\left[1 \ln f(x^{1}) + 0 \ln \left(1 - f(x^{1})\right)\right]$$

$$-lnf_{w,b}(x^{2}) \longrightarrow -\left[1 \ln f(x^{2}) + 0 \ln \left(1 - f(x^{2})\right)\right]$$

$$-ln\left(1 - f_{w,b}(x^{3})\right) \longrightarrow -\left[0 \ln f(x^{2}) + 1 \ln \left(1 - f(x^{3})\right)\right]$$
:

Setting of the object function

$$L(w,b) = f_{w,b}(x^1) f_{w,b}(x^2) \left(1 - f_{w,b}(x^3)\right) \cdots f_{w,b}(x^N)$$

$$-lnL(w,b) = lnf_{w,b}(x^1) + lnf_{w,b}(x^2) + ln\left(1 - f_{w,b}(x^3)\right) \cdots$$

$$\hat{y}^n \colon 1 \text{ for class 1, 0 for class 2}$$

$$= \sum_{n=1}^{\infty} -\left[\hat{y}^n lnf_{w,b}(x^n) + (1 - \hat{y}^n) ln\left(1 - f_{w,b}(x^n)\right)\right]$$
Cross entropy between two Bernoulli distribution

Distribution p:

$$p(x=1) = \hat{y}^n$$

$$p(x=0) = 1 - \hat{y}^n \quad \text{entropy}$$

cross

Distribution q:

$$q(x = 1) = f(x^n)$$

$$q(x=0) = 1 - f(x^n)$$

$$H(p,q) = -\sum_{x} p(x) ln(q(x))$$

Setting of the object function

$$L(w,b) = f_{w,b}(x^1) f_{w,b}(x^2) \left(1 - f_{w,b}(x^3)\right) \cdots f_{w,b}(x^N)$$

$$-lnL(w,b) = lnf_{w,b}(x^1) + lnf_{w,b}(x^2) + ln\left(1 - f_{w,b}(x^3)\right) \cdots$$

$$\hat{y}^n \colon 1 \text{ for class } 1, \text{ 0 for class } 2$$

$$= \sum_{n} -\left[\hat{y}^n lnf_{w,b}(x^n) + (1 - \hat{y}^n) ln\left(1 - f_{w,b}(x^n)\right)\right]$$
Cross entropy between two Bernoulli distribution

