DS numéro 1

7 Octobre 2016

1 A propos des acides gras oméga-3

On a récemment découvert que les acides gras oméga-3, présents dans des poissons comme la truite ou le saumon, ont un effet protecteur contre les maladies cardio-vasculaires. Les pourcentages demandés seront arrondis à 10^{-2} . %

1)

Une portion de 180 g de saumon d'élevage fournit environ 1,5g d'oméga-3. Calculer le pourcentage d'oméga-3 dans le saumon d'élevage.

Solution:

 $\frac{1.5}{180}\approx 0{,}0083,$ soit 0,83 % d'oméga-3 dans le saumon d'élevage.

2)

Le pourcentage d'omega-3 dans le saumon sauvage est de 0.78 %. En déduire la quantité d'oméga-3 contenue dans une portion de 180g de saumon sauvage (arrondir à 0.1 g).

Solution:

 $180 \times \frac{0.78}{100} = 1{,}404,$ soit environ 1,4 g d'oméga-3 pour 180 g de saumon sauvage.

3)

Consigner les résultats précédents dans le tableau suivant et finir de le compléter. Le détail des calculs n'est pas demandé.

	Elevage		Sauvage	
	Pourcentage d'oméga-3	Quantité d'oméga-3	Pourcentage d'oméga-3	Quantité d'oméga-3
Saumon (180 g)		1,5 g	0,78%	
Truite (180 g)		1,3 g	0,22%	

Solution:

	Elevage		Sauvage	
	Pourcentage d'oméga-3	Quantité d'oméga-3	Pourcentage d'oméga-3	Quantité d'oméga-3
Saumon (180 g)	0,83 %	1,5 g	0,78%	1,4 g
Truite (180 g)	0,72 %	1,3 g	$0,\!22\%$	0,4 g

4)

La consommation d'une portion de 180 g de truite d'élevage couvre environ 37 % des besoins hebdomadaires d'un être humain. Montrer que ces besoins, arrondis à 0.1 g, sont de 3.5 g.

Solution:

Soit x le besoin hebdomadaire en oméga-3 d'un être humain. On a $\frac{37 \times x}{100} = 1,3$.

Donc
$$x = \frac{1,3}{0,37} \approx 3,51$$
 g.

5)
Retrouver la réponse précédente sachant que ces besoins hebdomadaires sont exactement couverts si on consomme 450 g de saumon sauvage.

Solution:
$$\frac{450 \times 0.78}{100} = 3.51 \text{ soit } 3.5 \text{ g.}$$

6)
Calculer la quantité de truite sauvage qu'il faudrait consommer pour couvrir la totalité de ces besoins hebdomadaires (arrondir à 10 g).

Solution: $\frac{3.5}{0.4} \times 180 = 1575$, soit 1570 g de truite sauvage pour couvrir les besoins hebdomadaires en oméga-3.

2 Évolution de la population de deux communes

Le graphique ci-dessous représente l'évolution du nombre d'habitants de deux communes voisines, nommées A et B, de l'année 1986 à l'année 2010 (de quatre années en quatre années).

A. Lecture graphique

Répondre aux questions suivantes en utilisant uniquement le graphique ci-dessus.

1)
En quelle année, la population de la commune A a été maximale?

Solution:

La population de la commune A a été maximale en 2002.

2)
Préciser les années où les deux communes on eu le même nombre d'habitants.

Solution:

Les deux villes ont eu la même population en 1992 et 2008.

3)
Quelles sont les périodes où la commune B a eu plus d'habitants que la commune A.

Solution:

La commune B a eu plus d'habitants que la commune A entre 1986 et 1992 et entre 2008 et 2010.

4)
En quelle année l'écart entre le nombre d'habitants des deux communes a-t-il été le plus important.

Solution:

L'écart entre les deux communes a été le plus important en 1998.

5)
Préciser, en justifiant la réponse, pendant quelle période de quatre années, la commune A a eu la plus forte augmentation de sa population.

Solution:

La plus forte augmentation de la population de la commune A a eu lieu entre 1994 et 1998. L'angle de la pente de la courbe est la plus importante sur cette période.

B. Pourcentage d'évolution

On s'intéresse à l'évolution de la population dans ces communes entre 2006 et 2010. Le tableau suivant indique le nombre d'habitants dans ces deux communes en 2006 et en 2010.

Années	2006	2010
Commune A	863	795
Commune B	711	947

Les questions sont indépendantes.

1) Justifier que, de 2006 à 2010, la population à baissé d'environ 7,9 %.

Solution:
$$\frac{795 - 863}{863} \approx -0.079$$
, soit une baisse de 7,9 %.

2) Déterminer le pourcentage d'augmentation de la population de la commune B dans cette même période (on donnera le résultat arrondi à 0,1%).

Solution:
$$\frac{947-711}{711} \approx 0.331$$
, soit une hausse de 33,1%.

3)
Si on considère la population des deux communes réunies, déterminer le pourcentage de cette évolution pendant durant cette période (on donnera le résultat arrondi à 0,1 %).

Solution:

- Population globale en 2006:863+711=1574 habitants.
- Population globale en 2010:795+947=1742 habitants.
- Évolution globale : $\frac{1742 1574}{1574} \approx 0,107$, soit une hausse de 10,7 %.

3 Le laboratoire perd du terrain

Le chiffre d'affaires annuel d'un laboratoire pharmaceutique était en 2008 de $32\,860\,000$ euros et en 2009 de $28\,947\,000$ euros.

1) Calculer le pourcentage de baisse du chiffre d'affaire de l'entreprise entre 2008 et 2009. Arrondir à 0.01~%.

```
Solution: \frac{28\,947\,000 - 32\,860\,000}{32\,860\,000} \approx -0.1191, soit une baisse de 11,91 %.
```

2) Calculer le pourcentage de hausse qui ramènerait, en 2010, le chiffre d'affaires au niveau de 2008. Arrondir les coefficients multiplicateurs à 10^{-4} .

Solution:

Le coefficient multiplicateur correspondant à une baisse de 11,91 % est (1-0,1191=0,8809).

 $\frac{1}{0,8809} = 1,1352$, soit une hausse de 13,52 %.