

DISCRETE DIFFERENTIAL GEOMETRY:

AN APPLIED INTRODUCTION

Keenan Crane • CMU 15-458/858

LECTURE 12: SMOOTH SURFACES I

DISCRETE DIFFERENTIAL GEOMETRY:

AN APPLIED INTRODUCTION

Keenan Crane • CMU 15-458/858

From Curves to Surfaces

- Previously: saw how to talk about 1D curves (both smooth and discrete)
- Today: will study 2D curved surfaces (both smooth and discrete)
 - •Some concepts remain the same (e.g., differential); others need to be generalized (e.g., curvature)
 - •Still use exterior calculus as our lingua franca

Surfaces—From Local to Global to Intrinsic...

- Local picture. Will initially describe surfaces in terms of the geometry of a local patch.
 - As with curves, parameterization gives an *extrinsic* description: how does it sit in space?
- Global picture. Can piece several local pieces together to describe a whole surface, rather than one patch. (Still extrinsic.)
- Intrinsic picture. From here, can "throw away" embeddings into space—induced *Riemannian metric* retains a "memory" of the shape
 - In fact, we never needed an embedding at all! Can describe manifolds purely *intrinsically*.
- (Discrete picture.) mesh geometry via edge lengths (*intrinsic*), rather than vertex positions (*extrinsic*).

Parameterized Surfaces

Parameterized Surface

A parameterized surface is a map $f: U \to \mathbb{R}^n$ from a two-dimensional region $U \subset \mathbb{R}^2$ into space.

 \mathbb{R}^n rather than as a map.

*Continuous, differentiable, smooth, ...

Parameterized Surface—Example

For example, can express a saddle as a parameterized surface:

$$U := \{(u, v) \in \mathbb{R}^2 : u^2 + v^2 \le 1\}$$

$$f : U \to \mathbb{R}^3; (u, v) \mapsto (u, v, u^2 - v^2)$$

Reparameterization

Many different parameterizations describe the same surface:

$$U := \{(u, v) \in \mathbb{R}^2 : u^2 + v^2 \le 1\}$$

$$\tilde{f}: U \to \mathbb{R}^3; (u,v) \mapsto (u+v,u-v,4uv)$$

This "reparameterization symmetry" can be a major challenge in applications—e.g., trying to decide if two parameterized surfaces (or meshes) describe the same shape.

Analogy: graph isomorphism

Reparameterization

Many different parameterizations describe the same surface:

$$U := \{(u, v) \in \mathbb{R}^2 : u^2 + v^2 \le 1$$

$$\tilde{f}: U \to \mathbb{R}^3; (u,v) \mapsto (u+v,u+v)$$

This "reparameterization symmetry" can be a major challenge in applications—e.g., trying to decide if two parameterized surfaces (or meshes) describe the same shape.

Analogy: graph isomorphism

Embedded Surface

- Loosely speaking, an embedding "preserves the topology" of the domain
- More precisely, a parameterized surface f is an **embedding** if it is a continuous bijection onto its image f(U), with continuous inverse

Differential of a Surface

Intuitively, the *differential* of a parameterized surface tells us how tangent vectors on the domain get "stretched out" into space:

We say that *df* "pushes forward" vectors X into \mathbb{R}^n , yielding vectors df(X)

Differential in Coordinates

More explicitly, the differential is the exterior derivative of the parameterization:

$$f: U \to \mathbb{R}^3; (u,v) \mapsto (u,v,u^2-v^2)$$

$$df = \frac{\partial f}{\partial u} du + \frac{\partial f}{\partial v} dv =$$

$$(1,0,2u)du + (0,1,-2v)dv$$

To "push forward" a vector field *X*:

$$X := \frac{3}{4} \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)$$

$$df(X) = \frac{3}{4}(1, -1, 2(u+v))$$

E.g., at
$$u=v=0$$
: $(\frac{3}{4}, -\frac{3}{4}, 0)$

Differential—Matrix Representation (Jacobian)

Definition. Consider a map $f : \mathbb{R}^n \to \mathbb{R}^m$, and let x_1, \dots, x_n be coordinates on \mathbb{R}^n . Then the *Jacobian* of f is the matrix

$$J_{f} := \begin{bmatrix} \frac{\partial f^{1}}{\partial x^{1}} & \cdots & \frac{\partial f^{1}}{\partial x^{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f^{m}}{\partial x^{1}} & \cdots & \frac{\partial f^{m}}{\partial x^{n}} \end{bmatrix},$$

where f^1, \ldots, f^m are the components of f w.r.t. some coordinate system on \mathbb{R}^m . This matrix represents the differential in the sense that $df(X) = J_f X$.

(In solid mechanics, also known as the deformation gradient.)

Note: does not generalize to infinite dimensions! (*E.g.*, maps between functions.)

Immersed Surface

A map $f: U \to \mathbb{R}^n$ is an *immersion* if its differential df is nondegenerate

$$df(X)|_p = 0 \iff X|_p = 0 \qquad \forall p \in U$$

Key idea: as long as surface is immersed, quantities like tangents, normals, etc., are well-defined—even if there are self-intersections!

Fact. Any immersion is locally an embedding and vice versa (*C*¹).

Intuition: no region of the surface gets "pinched" / "squashed"

Immersion—Example

Consider the standard parameterization of the sphere:

$$f(u,v) := (\cos(u)\sin(v),\sin(u)\sin(v),\cos(v))$$

$$df = \frac{\partial f}{\partial u}du + \frac{\partial f}{\partial v}dv = \begin{pmatrix} -\sin(u)\sin(v), & \cos(u)\sin(v), & 0 \\ \cos(u)\cos(v), & \cos(v)\sin(u), & -\sin(v) \end{pmatrix} du + \frac{\partial f}{\partial v}dv = \begin{pmatrix} -\sin(u)\sin(v), & \cos(u)\sin(v), & 0 \\ \cos(u)\cos(v), & \cos(v)\sin(u), & -\sin(v) \end{pmatrix} dv$$

Q: Is *f* an immersion?

A: No: when v = 0 we get

$$(cos(u), sin(u), -sin(v)) du +$$

Can't walk "east/west" at poles!

Immersion vs. Embedding

- Immersions are fairly common notion of "nice" / "regular surface: can pass through themselves (non-physical) but still provide <u>local</u> quantities like tangents, normals, metric, etc.
- Immersions also natural model for how we often think about discrete geometry: <u>local</u> quantities (angles, lengths, etc.) are perfectly well-defined, even if there happen to be self-intersections
- Ensuring a surface is immersed (local) typically easier than ensuring it is embedded (global)
 - roughly speaking: sum of two immersions is "usually" immersion; less likely for embeddings
 - e.g., mesh with random vertex coordinates will likely be immersed but not embedded

Regular Homotopy

- Regular homotopy notion of "nice motion"
 - -no pinches, sharp creases, or stops
- More formally:

$$f_0, f_1: U \to \mathbb{R}^3$$

 $h: U \times [0,1] \rightarrow \mathbb{R}^3$ continuous

$$h(x,0) = f_0(x)$$

$$h(x,1) = f_1(x)$$

 $h(\cdot,t)$ is an immersion for all t

Review: Circle Eversion

- (Whitney-Graustein) For curves in 2D, turning number determines regular homotopy class
 - e.g., can't turn circle inside-out while remaining immersed

What about surfaces in 3D? (Can you turn the sphere inside out?)

Sphere Eversion

See video: Outside In (Thurston/Geometry Center, 1994)

"Optiverse" eversion
Francis/Kusner/Sullivan

ruled eversion(Bednorz & Bednorz; Padilla)

Morin Sphere Eversion

"Turning the Sphere Inside Out" (1976) (director: Nelson Max)

3D prints by Arnaud Chéritat

"Our spatial imagination is framed by manipulating objects ... You act on objects with your hands, not with your eyes"

—Bernhard Morin

Riemannian Metric

Riemann Metric

• Many quantities on manifolds (curves, surfaces, etc.) ultimately boil down to measurements of lengths and angles of tangent vectors *X*, *Y*

• This information is encoded by the so-called Riemannian metric* g(X,Y)

abstractly: smoothly-varying positive-definite bilinear form

• For immersed surface, can (and will!) describe more concretely/geometrically

*Note: not the same as a point-to-point distance metric d(x,y)

Metric Induced by an Immersion

- For an immersion *f*, how should we measure inner product of vectors *X*, *Y* represented in its domain *U*?
 - should **not** use the usual inner product on the plane! (Why not?)
- Planar inner product tells us *nothing* about actual length & angle on the surface—gives the same result for any parameterization!
- Instead, use induced metric

$$g(X,Y) := \langle df(X), df(Y) \rangle$$

Key idea: induced metric accounts for "stretching"

Induced Metric—Matrix Representation

• Metric is a bilinear map from a pair of vectors to a scalar, which we can represent as a 2x2 matrix I called the *first fundamental form*:

$$g(X,Y) = X^T \mathbf{I} Y$$

$$\Rightarrow \mathbf{I}_{ij} = g\left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}\right) = \left\langle df\left(\frac{\partial}{\partial x^i}\right), df\left(\frac{\partial}{\partial x^j}\right)\right\rangle$$

• Alternatively, can express first fundamental form via Jacobian:

$$g(X,Y) = \langle df(X), df(Y) \rangle = (J_f X)^{\mathsf{T}} (J_f Y) = X^{\mathsf{T}} (J_f^{\mathsf{T}} J_f) Y$$

$$\Rightarrow \mathbf{I} = J_f^{\mathsf{T}} J_f$$

• Note: depends on the point p—could write $g_p(X,Y) = \langle df_p(X), df_p(Y) \rangle$

Induced Metric—Example

Can use the differential to obtain the induced metric:

$$f: U \to \mathbb{R}^3; (u,v) \mapsto (u,v,u^2 - v^2)$$

 $df = (1,0,2u)du + (0,1,-2v)dv$

$$J_f = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 2u & -2v \end{bmatrix}$$

$$\mathbf{I} = J_f \, J_f
= \begin{bmatrix} 1 + 4u^2 & -4uv \\ -4uv & 1 + 4v^2 \end{bmatrix} G$$

Conformal Coordinates

- As we've just seen, there can be a complicated relationship between length & angle on the domain (2D) and the image (3D)
- For curves, we simplified life by using an *arc-length* or *isometric* parameterization: lengths on domain are identical to lengths along curve
- For surfaces, usually not possible to preserve all *lengths* (e.g., globe). Remarkably, however, can always preserve *angles* (**conformal**)
- Equivalently, a parameterization *f* is *conformal* if at each point the induced metric is simply a positive rescaling of the 2D Euclidean metric
 - one coordinate-invariant number, rather than three

Example (Enneper Surface)

Consider the surface

f(u,v) :=
$$\begin{bmatrix} uv^2 + u - \frac{1}{3}u^3 \\ \frac{1}{3}v(v^2 - 3u^2 - 3) \\ (u - v)(u + v) \end{bmatrix}$$

Its Jacobian matrix is

$$J_f = \begin{bmatrix} -u^2 + v^2 + 1 & 2uv \\ -2uv & -u^2 + v^2 - 1 \\ 2u & -2v \end{bmatrix}$$

Its metric then works out to be just a scalar function times the usual metric of the Euclidean plane:

$$\mathbf{I} = J_f^T J_f = \left(u^2 + v^2 + 1 \right)^2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

This function is called the *conformal scale factor*.

Abstract Riemannian Metric

- Ultimately, induced Riemannian metric is just a (smoothly-varying) inner product at each point
- Suppose we just write down some arbitrary smoothly-varying inner product (*Riemannian metric*)
- (Intrinsic viewpoint) Key idea in differential geometry: don't need to know "where this metric came from" / how it sits in space
 - -given only an inner product, can still measure angles, lengths, areas, distances, ... via the usual formulas

Example: hyperbolic metric on unit disk.

$$U := \{ p \in \mathbb{R}^2 : |p| < 1 \}$$

$$g_p(X, Y) = \frac{4}{(1 - |p|^2)^2} \langle X, Y \rangle$$

$$|X| = \sqrt{g_p(X, X)}$$

$$\theta = \arccos (g_p(X/|X|, Y/|Y))$$

$$area(X,Y) = \sqrt{\det(g_p)}(X \times Y)$$

length(
$$\gamma$$
) = $\int_0^L g_{\gamma(s)}(\gamma', \gamma')^{1/2} ds$

• • •

Embedding Theorems

- Still natural to ask: given a Riemannian metric g, can we find an embedding f such that $g(X,Y) = \langle df(X), df(Y) \rangle$?
- Lots of theorems about this topic—depends on things like the continuity of *f*
- (Hilbert.) For instance, can't find smooth embedding of hyperbolic metric into \mathbb{R}^3
- Positive result: Nash embedding theorems
 - always have global *C*^k embedding in sufficiently high dimension
 - given a "short" embedding (doesn't increase distance), exists a C^1 embedding of n-manifold in \mathbb{R}^{n+1}

Atlas & Charts

- Most surfaces aren't easily expressed as the image of one parameterized "patch"
- Instead, cover a surface with overlapping patches ("charts")
- As usual, each chart ϕ_i defines an induced Riemannian metric g_i
- Though things look different in local charts, the induced metrics give identical measurements (by definition)

$$g_j(d\phi_{ij}(X), d\phi_{ij}(Y)) = g_i(X, Y)$$

Abstract Riemannian Manifold

- Can again adopt *intrinsic* viewpoint: don't need to know where metric came from, as long as agreement across charts
- Leads to notion of *Riemannian manifold*. Roughly speaking*:
- $_{-}$ collection of open sets $U_i \subset \mathbb{R}^n$
- $_{-}$ transition maps ϕ_{ij} on overlaps (differentiable both ways)
- $_{-}$ local metric g_i per patch, compatible on overlaps
- Riemannian manifold *M* is "union" of all these pieces
- $\underline{\hspace{0.1cm}}$ do not need embeddings $\phi_i:U_i o \mathbb{R}^m$
- This information is again often enough to "do geometry" (measure lengths, angles, areas, distances, ...)
- **Key idea:** works even when geometry is not—or cannot—be embedded in low dimensions

$$g_j(d\phi_{ij}(X),d\phi_{ij}(Y))=g_i(X,Y)$$

^{*}To make this more precise, need notion of *topological spaces* (takes some work to define...)

Smooth Surfaces I—Summary

- Introduced two very important descriptions of geometry:
- (Extrinsic) Parameterization
 - encode geometry as map into \mathbb{R}^n
 - describes where points are in space
 - patch together local parameterizations
- (Intrinsic) Riemannian metric
 - encode geometry via inner product on local domains
 - lets you measure angles, lengths, areas, distances, ...
 - to be meaningful, metrics must agree on overlaps
- Next time: more extrinsic geometry, connect to exterior calculus

AN APPLIED INTRODUCTION

Keenan Crane • CMU 15-458/858