2

6

CLAIMS

What Is Claimed Is:

l		1.	A method of access control in a communication network comprising the steps of:			
2			determining a load status of the network between a call originating node and a call			
3		terminating node;				
1			determining whether the load status permits a specified quality of service; and			
5	÷		if the specified quality of service is permitted, establishing a transport connection			

between the call originating node and the call terminating node.

- A method of access control in a network comprising the steps of: sending a probe packet through the network from a first node to at least one other node;
- updating a portion of the probe packet at each node based on the load status of the node;

determining whether the load status permits a specified quality of service; and if the specified quality of service is permitted, establishing a transport connection between the at least two nodes in the network.

- 3. The method of claim 2, wherein the step of sending a probe packet through the network is performed continuously.
- 1 4. The method of claim 2, wherein the step of sending a probe packet through the network is performed at pre-determined times.
- 1 5. The method of claim 2, wherein the step of sending a probe packet through the network is performed in response to a network event.
- 1 6. The method of claim 2, wherein the step of sending a probe packet is performed for each of a plurality of traffic classes.

2

3

4

5

6

7

8

I	7.	An access	control	system	in a	network	comprisi	าด
L	/ -	Tui access	COILLIOI	System	III a	HOLWOIK	COMPLISH	,≥,,,

- at least one load measurement proxy, which probes the network to determine the congestion state of the network;
- a bandwidth broker server in communication with the at least one load measurement proxy and correlating the determined congestion state information; and
- a bandwidth broker client in communication with the bandwidth broker server and an application, wherein the bandwidth broker client queries the bandwidth broker server based on requirements of the application.
- 8. The access control system of claim 7, wherein the requirements of the application include at least two node addresses and a quality of service.
- 9. The access control system of claim 7, wherein the requirements of the application include at least one of an application traffic class, a peak bit rate, a packet delay, a delay variation, a packet loss, and a guaranteed bit rate.
- 10. The access control system of claim 7, wherein the load measurement proxy continuously probes the network.
- 11. The access control system of claim 7, wherein the load measurement proxy probes the network at predefined intervals.
- 1 12. The access control system of claim 7, wherein the load measurement proxy probes the network in response to a network event.
- 1 13. The access control system of claim 7, wherein the load measurement proxy
- 2 determines the congestion state of the network for each of a plurality of traffic classes.
- 1 14. An access control system in a network comprising:
- 2 at least one load measurement proxy, which probes the network to determine the
- 3 congestion state of the network;

Attorney's Docket No. 040020-290 Patent

a ba	ndwidth broker server in communication with the at least one load measure	ement
proxy and	orrelating the determined congestion state information; and	

a plurality of bandwidth broker clients in communication with the bandwidth broker server and a respective one of a plurality of applications, wherein each of the plurality of bandwidth broker clients queries the bandwidth broker server based on requirements of the respective one of a plurality of applications.