Phụ thuộc hàm và Chuẩn hóa CSDL

TS.Nguyễn Quốc Tuấn Bm. Mạng & HTTT

Nội dung

- Phụ thuộc hàm.
- Các dạng chuẩn.
- Một số thuật toán chuẩn hóa.

Phụ thuộc hàm (1)

- □ Phụ thuộc hàm(PTH) Functional Dependencies
- □ Xét lược đồ quan hệ gồm n thuộc tính
 - $R(U), U=\{A_1, A_2, ..., A_n\}$
- PTH giữa hai tập thuộc tính X, Y ⊆ U
 - Ký hiệu: $X \rightarrow Y$.
 - $\forall r \in R, \ \forall \ t_1, t_2 \in r \ \text{n\'eu} \ t_1[X] = t_2[X] \ \text{thì} \ t_1[Y] = t_2[Y].$
- X là vế trái và Y là vế phải của PTH.
- □ X o Y được gọi là PTH hiển nhiên nếu Y ou X
- □ $X \rightarrow Y$ được gọi là PTH nguyên tố (Y PTH đầy đủ vào X nếu nếu $\forall X' \subset X$ thì X' không $\rightarrow Y$

Phụ thuộc hàm (2)

- $r \in R$ thỏa mãn các PTH gọi là trạng thái hợp lệ của R
- □ Nhận xét:
 - Các PTH xuất phát từ các ràng buộc trong thế giới thực.
 - $\forall r \in R, \forall t \in r, t [X]$ là duy nhất thì X là một khóa của R.
 - Nếu K là một khóa của R thì K xác định hàm tất cả các tập thuộc tính của R.
 - PTH dùng để đánh giá một thiết kế CSDL

Bao đóng của tập PTH

- □ F là tập PTH trên R
 - F = {MaNV → TenNV, MaPB → {TenPB, TrPhong}, MaNV → MaPB}.
 - \forall r ∈ R thỏa F và MaNV → {TenPB, TrPhong} cũng đúng với r thì MaNV → {TenPB, TrPhong} gọi là được suy diễn từ F.
- Bao đóng của F, ký hiệu F⁺, gồm
 - F
 - Tất cả các PTH được suy diễn từ F.
- $\overline{}$ F gọi là đầy đủ nếu $F = F^+$.

Luật suy diễn (1)

- Luật suy diễn dùng để suy diễn một PTH mới từ một tập PTH cho trước.
- Hệ luật suy diễn Armstrong
 - Phản xạ: $Y \subseteq X \Rightarrow X \rightarrow Y$.
 - Tăng trưởng: $X \to Y \Rightarrow XZ \to YZ$, với $XZ = X \cup Z$.
 - Bắc cầu: $X \to Y, Y \to Z \Rightarrow X \to Z$.
- Các luật khác:
 - Phân rã: $X \to YZ \Rightarrow X \to Y, X \to Z$.
 - Hợp: $X \to Y, X \to Z \Rightarrow X \to YZ$.
 - Bắc cầu giả: $X \to Y$, $WY \to Z \Rightarrow WX \to Z$.

Luật suy diễn (2)

- □ Ví du 1:
 - Cho $F=\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$
 - Hãy chứng tỏ PTH A → CD suy diễn từ F nhờ luật dẫn Amstrong
 - Cách giải:
 - \blacksquare A \rightarrow B, B \rightarrow C \Rightarrow A \rightarrow C (luật bắc cầu)
 - \blacksquare A \rightarrow C, A \rightarrow D \Rightarrow A \rightarrow CD (luật hợp).
- □ Ví dụ 2: Cho $F=\{AB\rightarrow E, AG\rightarrow I, BE\rightarrow I, E\rightarrow G, GI\rightarrow H\}$
 - Hãy chứng tỏ PTH AB → GH suy diễn từ F nhờ luật dẫn Armstrong

Bao đóng của tập thuộc tính

- □ Làm thế nào để biết một PTH X → Y được suy diễn từ tập PTH F cho trước?
- Bao đóng của tập thuộc tính X đối với F, ký hiệu X⁺ là
 - Tập các thuộc tính PTH vào X.
 - $X^+ = \{A \in U \mid X \rightarrow A \in F^+\}$
- □ Nhận xét:
 - $X \to Y \in F^+ \Leftrightarrow Y \subseteq X^+$.
 - Nếu K là khóa của R thì $K^+ = U$.

Thuật toán tìm X⁺

- □ Input: U, F và $X \subseteq U$
- □ Output: X⁺
- Thuật toán
 - $B1: X^+ = X;$
 - B2: Nếu tồn tại $Y \rightarrow Z \in F \text{ và } Y \subseteq X^+ \text{ thì}$
 - $X^+ = X^+ \cup Z;$
 - tiếp tục B2.
 - □ Ngược lại qua *B3*.
 - *B3*: output X⁺

Ví dụ tìm X⁺

- □ Input:
 - $F = \{AB \rightarrow C, BC \rightarrow D, D \rightarrow EG\}$
 - X = BD
- Output: X⁺
- □ Thuật toán
 - $X^+ = BD.$
 - Lặp 1:
 - Tìm các PTH có về trái là tập con của $X^+ = BD$
 - D \rightarrow EG, thêm EG vào X⁺ ta được X⁺ = BDEG.
 - Lặp 2:
 - Tìm các PTH có vế trái là tập con của $X^+ = BDEG$
 - Không có PTH nào.
 - $V\hat{a}y X^+ = BDEG.$

Ví dụ tìm X⁺

- □ VD2: Cho lược đồ quan hệ Q(ABCDEGH) và tập PTH F
 - $F = \{ B \rightarrow A, DA \rightarrow CE, D \rightarrow H, GH \rightarrow C, AC \rightarrow D \}$
 - Tìm bao đóng của tập X={AC} dựa trên F
- □ VD3: Cho lược đồ quan hệ Q(ABCDEGH) và tập PTH F
 - $F = \{A \rightarrow C, A \rightarrow EG, B \rightarrow D, G \rightarrow E\}$
 - Xác định X⁺
 - \square X= {AB}
 - \square X={CGD}

Các tập PTH tương đương

- □ Tập PTH F được nói là phủ tập PTH G nếu G ⊂ F+
- □ Hai tập PTH F và G là tương đương nếu
 - F phủ G và
 - G phủ F
- □ Nhận xét
 - ∀X → Y ∈ G, nếu Y ⊆ X_F^+ thì F phủ G.
 - F và G tương đương nếu và chỉ nếu $F^+ = G^+$

Kiểm tra PTH suy diễn

- - Hai PTH AB → E và D → C có được suy diễn từ F hay không?

Tập PTH tối thiểu (1)

- □ Thừa PTH

 - A \rightarrow B, B \rightarrow C \Rightarrow A \rightarrow C (luật bắc cầu).
- □ Thừa thuộc tính
 - $\{A \rightarrow B, B \rightarrow C, A \rightarrow CD\}$, vì $A \rightarrow CD$ được suy diễn từ $\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$
 - $A \rightarrow B, B \rightarrow C \Rightarrow A \rightarrow C$ (luật bắc cầu)
 - \square A \rightarrow C, A \rightarrow D \Rightarrow A \rightarrow CD (luật hợp).
 - $\{A \to B, B \to C, AC \to D\}, \text{ vì } AC \to D \text{ được suy diễn từ } \\ \{A \to B, B \to C, A \to D\}$
 - \square A \rightarrow B, A \rightarrow D \Rightarrow A \rightarrow BD (luật hợp)
 - \square A \rightarrow BD \Rightarrow AC \rightarrow BCD (luật tăng trưởng)
 - \square AC \rightarrow BCD \Rightarrow AC \rightarrow D (luật phân rã).

Tập PTH tối thiểu (2)

- Tập PTH F là tối thiểu nếu thỏa các điều kiện sau:
 - Mọi PTH của F chỉ có một thuộc tính ở vế phải.
 - Không thể thay $X \to A$ thuộc F bằng $Y \to A$ với $Y \subset X$ mà tập mới tương đương với F.
 - Nếu bỏ đi một PTH bất kỳ trong F thì tập PTH còn lại không tương đương với F.
- Phủ tối thiểu của tập PTH E là tập PTH tối thiểu F tương đương với E.
- □ Nhận xét
 - Mọi tập PTH có ít nhất một phủ tối thiểu.

Thuật toán tìm tập PTH tối thiểu

- Input: tập PTH E.
- Output: phủ tối thiểu F của E.
- □ Thuật toán:
 - B1: $F = \emptyset$
 - B2: Với mọi $X \rightarrow Y \in E, Y = \{A_1, ..., A_k\}, A_i \in \overline{U}$
 - B3: Với mỗi $X \rightarrow \{A\} \in F, X = \{B_1, ..., B_1\}, B_i \in U$
 - □ Với mỗi B_i , nếu $A \in (X \{B_i\})_F^+$ thì
 - F = $(F \{X \rightarrow \{A\}\}) \cup \{(X \{B_i\}) \rightarrow \{A\}\}$
 - B4: Với mỗi $X \rightarrow \{A\} \in F$
 - $\Box \quad G = F \{X \to \{A\}\}\$
 - Nếu $A \in X_G^+$ thì $F = F \{X \rightarrow \{A\}\}.$

Ví dụ tìm tập PTH tối thiểu

□ Tìm phủ tối thiểu của

$$E = \{A \rightarrow BC, A \rightarrow B, B \rightarrow C, AB \rightarrow C\}$$

- B1: $F = \emptyset$.
- B2: $F = \{A \rightarrow B, A \rightarrow C, B \rightarrow C, AB \rightarrow C\}.$
- B3: Xét AB \rightarrow C
 - \Box $(B)_F + = C$
 - $\Box \quad F = \{A \to B, A \to C, B \to C\}.$
- B4: A \rightarrow C thùa.
- $F = \{A \rightarrow B, B \rightarrow C\}.$

Siêu khóa và Khóa

- \Box Cho R(U)
 - S \subseteq U là siêu khóa nếu $\forall r \in R, \ \forall t_1, t_2 \in r, \ t_1 \neq t_2 \ \text{thì } t_1[S] \neq t_2[S].$
 - K ⊆ U là khóa nếu K là siêu khóa nhỏ nhất.
 - \triangle A \in K được gọi là thuộc tính khóa.
- □ Nhận xét
 - S xác định hàm tất cả các thuộc tính của R.
 - R có thể có nhiều khóa.

Xác định khóa của lược đồ

- Input: tập PTH F xác định trên lược đồ R(U).
- Output: khóa K của R.
- □ Thuật toán
 - *B1*:

 - \Box i=1;
 - **B**2:
 - $\square \quad \text{N\'eu U} \subseteq (K \{A_i\})_F^+ \text{ thì } K = K \overline{\{A_i\}}.$
 - \Box i=i+1;
 - Nếu i > n thì sang B3. Ngược lại, tiếp tục B2.
 - **B**3:
 - Output K.

Ví dụ tìm khóa của lược đồ

- \Box Cho R(U), U = {A, B, C, D, E, F, G}.
 - $F = \{B \to A, D \to C, D \to BE, DF \to G\}.$
- □ Tìm khóa của R
 - **B**1:
 - \square K = ABCDEFG.
 - **B**2:
 - □ Lặp 1: $(BCDEFG)_{F}^{+} = BCDEFGA \Rightarrow K = BCDEFG$.
 - □ Lặp 2: $(CDEFG)_{F}^{+} = CDEFGBA \Rightarrow K = CDEFG$.
 - □ Lặp 3: $(DEFG)_F^+ = DEFGCBA \Rightarrow K = DEFG$.
 - \square Lặp 4: $(EFG)_F^+$ = EFG.
 - Lặp 5: $(DFG)_F^+$ = DFGCBEA \Rightarrow K = DFG.
 - \square Lặp 6: $(DG)_{F}^{+}$ = DGCBEA.
 - Lặp 7: $(DF)_{F}^{+}$ = DFCBEAG \Rightarrow K = DF.
 - **B**3:
 - \square Khóa là K = DF.

Xác định tất cả khóa của lược đồ

- □ Input: tập PTH F xác định trên lược đồ R(U).
- Output: tất cả khóa của R.
- □ Thuật toán
 - *B1*:
 - \square Xây dựng 2^n tập con của $U = \{A_1, ..., A_n\}$
 - \square $S = \{\};$
 - **B**2:
 - Với mỗi tập con X ⊆ U
 - □ Nếu $U \subseteq X_F^+$ thì $S = S \cup \{X\}$
 - **B**3:
 - $\forall X, Y \in S, \text{ n\'eu } X \subseteq Y \text{ thì } S = S \{Y\}$
 - **B**4:
 - S là tập các khóa của R

Ví dụ tìm tất cả khóa của lược đồ

- \Box Cho R(U), U = {A, B, C, D, E, F}.
 - $\overline{F} = \{AE \rightarrow C, CF \rightarrow A, BD \rightarrow F, AF \rightarrow E\}.$
- Tìm tất cả khóa của R
 - Tập siêu khóa
 - S = {ABD, BCD, ABCD, ABDE, BCDE, ABCDE, ABDF, BCDF, ABCDF, ABCDF, BCDEF, ABCDEF}.

Chuẩn hóa dữ liệu

- Giới thiệu về chuẩn hóa?
- Các dạng chuẩn
 - Dang 1 (1 Normal Form 1NF)
 - Dang 2 (2 Normal Form 2NF)
 - Dạng 3 (3 Normal Form 3NF).
 - Dang Boyce Codd (Boyce Codd Normal Form - BCNF)

Các dạng chuẩn

- Dang 1 (1 Normal Form 1NF)
- Dang 2 (2 Normal Form 2NF)
- Dang 3 (3 Normal Form 3NF).
- Dang Boyce Codd (Boyce Codd Normal Form - BCNF)

Dạng chuẩn 1 (1)

Dịnh nghĩa

Lược đồ quan hệ R được gọi là thuộc dạng chuẩn 1 khi và chỉ khi mọi thuộc tính của R là thuộc tính đơn.

Ví dụ

PHONGBAN

TENPB	MAPB	TrPhong	CacTruso
Hành chính	5	22221	Đống Đa,
			Hoàng Mai
Nghiên cứu	2	21113	Ba Đình

Không thuộc dạng chuẩn 1

PHONGBAN

TENPB	MAPB	TrPhong	CacTruso
Hành chính	5	22221	Đống Đa
Hành chính	5	22221	Hoàng Mai
Nghiên cứu	2	21113	Ba Đình

Thuộc dạng chuẩn 1

Dạng chuẩn 2 (1)

Dịnh nghĩa

- Lược đồ quan hệ R được gọi là thuộc dạng chuẩn 2 khi và chỉ khi:
 - R ở dạng chuẩn 1
 - Mọi thuộc tính không khóa đều phụ thuộc hàm đầy đủ vào khóa chính.
- \square R(U), K \subseteq U là khóa chính của R
 - A ∈ U là thuộc tính không khóa nếu $A \notin K$.
 - N → Y là PTH đầy đủ nếu $\forall A \in X$ thì $(X \{A\})$ → Y không đúng trên R.

Ngược lại $X \rightarrow Y$ là PTH bộ phận.

Dạng chuẩn 2 (2)

Ví dụ 1:

Dạng chuẩn 2 (3)

Ví dụ 2:

Dạng chuẩn 3 (1)

Dịnh nghĩa

- Lược đồ quan hệ R được gọi là thuộc dạng chuẩn 3 khi và chỉ khi:
 - R ở dạng chuẩn 2
 - Mọi thuộc tính không khóa đều không phụ thuộc hàm bắc cầu vào khóa chính.
- \square R(U)
 - X → Y là PTH bắc cầu nếu ∃Z ⊆ U, Z không là khóa và cũng không là tập con của khóa của R mà X → Z và Z → Y đúng trên R.

Dạng chuẩn 3 (2)

- Ví dụ:
 - FD3 là PTH bắc cầu

Dạng chuẩn Boyce Codd (1)

- Dịnh nghĩa
 - Lược đồ quan hệ R được gọi là thuộc dạng chuẩn BCNF khi và chỉ khi:
 - PTH không hiển nhiên $X \rightarrow Y$ đúng trên R thì X là siêu khóa của R.
- Ví dụ
 - □ Cho lược đồ quan hệ R(ABCD)

R ở dạng chuẩn nào?

Dạng chuẩn Boyce Codd (2)

<u>A</u>	В	С	D
1	а	а	1
2	а	b	1
3	b	а	2
4	р	b	2

<u>A</u>	С	D
1	а	1
2	b	1
3	а	2
4	b	2

<u>D</u>	В
1	а
2	b

<u>A</u>	С	D
FD1	†	•

В	<u>D</u>
FD5 ↑	

Dạng chuẩn Boyce Codd (3)

Nhận xét:

- Mọi quan hệ thuộc dạng chuẩn BCNF cũng thuộc dạng chuẩn 3
- Dạng chuẩn BCNF đơn giản và chặt chẽ hơn chuẩn 3
- Mục tiêu của quá trình chuẩn hóa là đưa lược đồ quan hệ về dạng chuẩn 3 hoặc chuẩn BCNF.