Smooth Functions

1. Prove that every continuous linear functional; is differentiable with $Df[{m x}] = {m \alpha}.^1$

We need to find a g(x) such $f(x_0 + x) - f(x_0) \approx g(x)$. Since f is a linear function, we can write

$$f(x) = \alpha^T x$$

for some α . Then,

$$f(\boldsymbol{x}_0 + \boldsymbol{x}) - f(\boldsymbol{x}_0) = \boldsymbol{\alpha}^T (\boldsymbol{x}_0 + \boldsymbol{x}) - \boldsymbol{\alpha}^T \boldsymbol{x}_0$$
$$= \boldsymbol{\alpha}^T \boldsymbol{x} = g(\boldsymbol{x})$$

Then $\mathbf{x} \to \mathbf{0} \implies f(\mathbf{x}_0 + \mathbf{x}) - f(\mathbf{x}_0) - g(\mathbf{x}) \to \mathbf{0} \implies \eta(\mathbf{x}) \to \mathbf{0}$ as desired.

2. Prove that if a differentiable functional $f: \mathbb{R}^n \to \mathbb{R}$ is increasing, then $Df[\boldsymbol{x}_0](\boldsymbol{x}) \geq 0$ for all $\boldsymbol{x} \in X$, or $\frac{\partial f}{\partial x_i} \geq 0$ for all $i \in \{x_1,...,x_n\}$.

We prove the contrapositive. Suppose

$$\frac{\partial f}{\partial x_i} < 0$$

for some i and take $d\mathbf{x} = \{0, ..., dx_i, ..., 0\}$. By the mean value theorem, there exists some $\bar{\mathbf{x}} = \{0, ..., \bar{x}_i, ..., 0\}$ with $0 < \bar{x}_i < dx_i$ such that

$$f(\boldsymbol{x}_0 + \boldsymbol{d}\boldsymbol{x}) + f(\boldsymbol{x}_0) = Df[\bar{\boldsymbol{x}}](\boldsymbol{d}\boldsymbol{x})$$

Our hypothesis implies

$$f(\boldsymbol{x}_0 + \boldsymbol{dx}) + f(\boldsymbol{x}_0) < 0$$

But then f is not increasing. We conclude $\frac{\partial f}{\partial x_i} \geq 0$.

3. Let f be a differentiable functional. Prove that the $\nabla f(\boldsymbol{x}_0)$ is orthogonal to the hyperplane tangent to the contour through $f(\boldsymbol{x}_0)$.

Let $c = f(\mathbf{x}_0)$. The contour through $f(\mathbf{x}_0)$ is

$$f^{-1}(c) = \{ \boldsymbol{x} : f(\boldsymbol{x}) = c \}$$

 $^{^{1}\}mathrm{Carter}\ 4.6$

Define an implicit function h(t) where

$$h(t) = f(\boldsymbol{x}(t)) = c$$

for all t. Since f is differentiable, we have by the chain rule that

$$Dh(t) = Df(\boldsymbol{x}(t))^T D\boldsymbol{x}(t) = 0$$

because c is constant. Since f is a functional this can be written

$$Dh(t) = \nabla f(\boldsymbol{x}(t))^T D\boldsymbol{x}(t) = 0$$

Since $\nabla f(\boldsymbol{x})$ is the gradient of f and $\nabla f(\boldsymbol{x})^T D \boldsymbol{x}(t) = 0$ we know $\nabla f(\boldsymbol{x}_0)$ and $D \boldsymbol{x}(t)$ are orthogonal. Note that $D \boldsymbol{x}(t)$ is a linear approximation of the function $\boldsymbol{x}(t)$ at t-a tangent hyperplane to the contour.

4. Let the policy production function discussed above be written

$$f(x,y) = x^{\alpha} y^{\beta}$$

Give a sufficient condition for this function to be concave on $\{\mathbb{R}_{++} \times \mathbb{R}_{++}\}$. **Hint:** A 2 × 2 symmetric matrix A is negative definite if $A_{11} < 0$ and $A_{11}A_{22} - A_{12}A_{21} > 0$.

We need to find conditions under which

$$z^T H_f(x,y)z \leq 0$$

for arbitrary z. The Hessian is given by

$$H_f(x,y) = \begin{pmatrix} \frac{\partial^2 f(x,y)}{\partial x^2} & \frac{\partial^2 f(x,y)}{\partial x \partial y} \\ \frac{\partial^2 f(x,y)}{\partial x \partial y} & \frac{\partial^2 f(x,y)}{\partial y^2} \end{pmatrix}$$

Computing second derivatives and cross partials,

$$H_f(x,y) = \begin{pmatrix} \alpha(\alpha-1)x^{\alpha-2}y^{\beta} & \alpha x^{\alpha-1}\beta y^{\beta-1} \\ \alpha x^{\alpha-1}\beta y^{\beta-1} & x^{\alpha}\beta(\beta-1)y^{\beta-2} \end{pmatrix} = \begin{pmatrix} \frac{\alpha(\alpha-1)f(x,y)}{x^2} & \frac{\alpha\beta f(x,y)}{xy} \\ \frac{\alpha\beta f(x,y)}{xy} & \frac{\beta(\beta-1)f(x,y)}{y^2} \end{pmatrix} = f(x,y) \begin{pmatrix} \frac{\alpha(\alpha-1)}{x^2} & \frac{\alpha\beta}{xy} \\ \frac{\alpha\beta}{xy} & \frac{\beta(\beta-1)}{y^2} \end{pmatrix}$$

Applying the hint, we need

$$H_{11} < 0$$
 $H_{11}H_{22} > H_{12}^2$

 $H_{11} < 0$ and $H_{22} < 0$ require $\alpha, \beta < 1$. Rearranging the final condition,

$$\begin{aligned} H_{11}H_{22} > H_{12}^2 \\ \frac{\alpha(\alpha - 1)}{x^2} \frac{\beta(\beta - 1)}{y^2} > \left(\frac{\alpha\beta}{xy}\right)^2 \\ \frac{\alpha(\alpha - 1)\beta(\beta - 1)}{y^2x^2} > \frac{\alpha^2\beta^2}{x^2y^2} \\ \frac{\alpha(\alpha - 1)\beta(\beta - 1) - \alpha^2\beta^2}{x^2y^2} > 0 \\ \frac{(\alpha^2 - \alpha)(\beta^2 - \beta) - \alpha^2\beta^2}{x^2y^2} > 0 \\ \frac{\alpha^2\beta^2 - \alpha\beta^2 - \beta\alpha^2 + \alpha\beta - \alpha^2\beta^2}{x^2y^2} > 0 \\ \frac{\alpha\beta(1 - \beta - \alpha)}{x^2y^2} > 0 \end{aligned}$$

which requires $\alpha + \beta < 1$.