

Better Deep Learning

Better Generalization vs Better Learning

STUDY CASES

- * CARLOS FREDERICO CARVALHEIRA MELLO;
- * CARMEM STEFANIE DA SILVA CAVALCANTE;
 - * EWERTON LEANDRO DE SOUSA.

Métodos

Better Generalization

- Force small weight with weight constraint;
- Halt training at the right time with early stopping.

Better Learning

• Fix vanishing gradiente with relu.

Constraint (restrição de pesos)

Extensões

- Restrição de pesos em conjunto com regularização L2 ou Dropout;
- Demostrar a redução da magnitude dos pesos;
- Aplicar restrição de pesos na camada de saída;
- Aplicar restrição nas Bias.

REDE NEURAL

```
1 model_without = Sequential()
2 model_without.add(Dense(500, input_dim=2, activation='relu'))
3 model_without.add(Dense(1, activation='sigmoid'))
4 model_without.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
1 model_without.summary()
```

Model: "sequential_1"

Layer (type)	Output Shape	Param #
dense_2 (Dense)	(None, 500)	1500
dense_3 (Dense)	(None, 1)	501

Total params: 2,001 Trainable params: 2,001 Non-trainable params: 0

SEM RESTRIÇÃO

model.fit(train_x, train_y,
validation_data=(test_x,
test_y), epochs=4000,
verbose=0, callbacks=
[MyCustomCallback(),tensorb
oard_callback])

COM RESTRIÇÃO (DISTRIBUIÇÃO NORMAL)

model.add(Dense(500,
input_dim=2, activation='relu',
kernel_constraint=unit_norm()))

COM RESTRIÇÃO E 0.4 - REGULARIZAÇÃO L2 0.3 -

Não foi observado melhora na generalização a utilização da restrição do peso com regularização L2.

0.0

COM RESTRIÇÃO E DROPOUT(0.4)

Foi observado melhora na generalização com a utilização da restrição do peso com dropout.

COM RESTRIÇÃO, REGULARIZAÇÃO L2 E DROPOUT(0.4)

A combinação dos 3 métodos 120foi o que obteve o melhor 100resultado. 80-

COM RESTRIÇÃO NA CAMADA DE SAÍDA

COM RESTRIÇÃO NA CAMADA DE ENTRADA E SAÍDA

Único caso de estudo em que o modelo não conseguiu ter um erro igual a 0 e 100% de acurácia.

COM RESTRIÇÃO **NA BIAS**

Accuracy

test

model.add(Dense(500, input_dim=2, activation='relu', bias_constraint=unit_norm()))

200

100

COM RESTRIÇÃO NOS PESOS E NAS BIAS

model.add(Dense(500, 2007)
input_dim=2, activation='relu', 1757
kernel_constraint=unit_norm() 1257
, bias_constraint=unit_norm())) 1007

CONCLUSÕES

A utilização de restrições

teve um impacto positivo forçando a rede a generalização, porém a utilização de muitos métodos de regularização em conjuntos ou em varias camadas da rede pode causa problema de underfitting.

Early Stopping

Extensões

- Usando acurácia
- Usando dados de validação
- Em um problema de regressão

MONITORANDO A ACURÁCIA

ES monitorando loss

Servir de base comparativa para as execuções posteriores.

ES com patience

Espera um determinado número de épocas, após encontrar uma piora na variável que está sendo monitorada, antes de parar o modelo.

ES simples

Na primeira vez que a época seguinte já apresentar piora em relação a atual, para o modelo.

ES e Modelcheckpoint

Durante a execução, guarda o melhor modelo em um checkpoint separado, que é acessado ao fim.

MONITORANDO LOSS

Epoch 01163: early stopping Train: 1.000, Test: 0.943

ES SIMPLES

Epoch 1/4000 Train: 0.467, Test: 0.514

ES + PATIENCE

{0: 'Train: 0.83 Test: 0.76', 50: 'Train: 0.9 Test: 0.73',

100: 'Train: 0.97 Test: 0.81',

200: 'Train: 0.97 Test: 0.84',

400: 'Train: 1.0 Test: 0.94',

600: 'Train: 1.0 Test: 0.93',

800: 'Train: 1.0 Test: 0.91'}

Epoch 00403: early stopping Train: 0.967, Test: 0.843

ES + MODEL-CHECKPOINT

Epoch 01287: early stopping Train: 1.000, Test: 0.943

USANDO TRUE VALIDATION SET

Loss

Epoch 01275: early stopping

Train: 0.860, Test: 0.560

Accuracy

Epoch 01035: early stopping

Train: 1.000, Test: 0.440

REGRESSÃO

Sem Early Stopping

MSE: 33.13

STD: 28.90

MELHOR RESULTADO E MAIS RÁPIDO

Com Early Stopping

MSE: 27.87

STD: 22.61

EPOCH 00253: EARLY STOPPING EPOCH 00238: EARLY STOPPING EPOCH 00140: EARLY STOPPING EPOCH 00185: EARLY STOPPING EPOCH 00289: EARLY STOPPING EPOCH 00273: EARLY STOPPING EPOCH 00218: EARLY STOPPING EPOCH 00218: EARLY STOPPING EPOCH 00223: EARLY STOPPING EPOCH 00286: EARLY STOPPING

Fix Vanishing Gradient

Extensões

- Inicialização dos pesos
- Algoritimo de Aprendizagem
- Visualização do Gradiente
- Incremento na complexidade de Camadas
- Incremento na complexidade de neurônios por camada

Back Propagation and Vanishing <u>Gradients</u>

Summary: the equations of backpropagation

$$\delta^L = \nabla_a C \odot \sigma'(z^L) \tag{BP1}$$

$$\delta^{l} = ((w^{l+1})^{T} \delta^{l+1}) \odot \sigma'(z^{l})$$
(BP2)

$$\frac{\partial C}{\partial b_j^l} = \delta_j^l \tag{BP3}$$

$$\frac{\partial C}{\partial w_{jk}^l} = a_k^{l-1} \delta_j^l \tag{BP4}$$

Deeper Neural Tanh Model

- Hidden Layers: 5
- Nodes per Layer: 5
- Activation: Tanh and Sigmoid(Out Layer)
- Kernel Initializer: Random Uniform [0, 1]
- Optimizer: SVG
 - Learning Rate: 0.01
 - o Momentum: 0.9
- Loss: Binnary Cross-Entropy
- Epochs: 500

Sequential Model Tanh and RandomUniform Kernel Init Train: 0.614, Test: 0.582

Weight Initialization

Update the Deep MLP with **tanh** activation to user **Xavier** uniform wieght initialization and report the results.

kernel_initialization=tf.keras.initializers. GlorotUniform()

$$W_{ij} \sim Uiggl[-rac{1}{\sqrt{n}},rac{1}{\sqrt{n}}iggr]$$

Where U is a Uniform Distribuition

Sequential Model Tanh and Xavier Kernel Init Train: 0.832, Test: 0.820

Learning Algorithm

Update the deep mlp models with tanh activation to use an adaptive learning algorithm such as **Adam** and report the results.

tf.keras.optimizers.Adam(learning_rate=0.0 01,beta_1=0.9,beta_2=0.999,epsilon=1e-0.7,amsgrad=False,name="Adam",)

Gradient Visualization

Update the tanh and relu examples to record and visualize gradients using TensorBoard

```
[3] 1 class ExtendedTensorBoard(tf.keras.callbacks.TensorBoard):
      2 def log gradients(self, epoch):
           step = tf.cast(epoch, dtype=tf.int64)
           writer = self. train writer
           with writer.as_default(), tf.GradientTape() as g:
             x  batch = x  train[:100]
             _y_batch = y_train[:100]
     10
             g.watch(tf.convert_to_tensor(_x_batch))
    11
             _y_pred = self.model(_x_batch)
    12
             loss = self.model.loss(y_true=_y_batch, y_pred=_y_pred[0])
    13
             gradients = g.gradient(loss, self.model.trainable weights)
     14
     15
     16
             for weights, grads in zip(self.model.trainable_weights, gradients):
    17
               tf.summary.histogram(
                   weights.name.replace(':', '_')+'_grads', data=grads, step=step)
     18
     19
     20
           writer.flush()
    21
         def on_epoch_end(self, epoch, logs=None):
     23
           super(ExtendedTensorBoard, self).on_epoch_end(epoch, logs=logs)
     24
           if self.histogram freq and epoch % self.histogram freq == 0:
     26
           self. log gradients(epoch)
```

Gradient Visualization Tanh

Gradient Visualization ReLU

Study Model Depth

Create an experiment using the mlp with tanh activation and report the performance of models as the number of hidden layers is sicreased from 1 to 10.

References

- 1. Xavier Kernel Initialization
 - a. https://paperswithcode.com/method/xavier-initialization
- 2. Vanishing Gradients
 - a. https://towardsdatascience.com/the-problem-of-vanishing-gradients-68cea05e2625
- 3. Back Propagation
 - a. http://neuralnetworksanddeeplearning.com/chap2.html
- 4. Visualization of Gradients on TensorBoard
 - a. https://github.com/tensorflow/tensorflow/issues/31542