Assignment 1. Codes Over Finite Fields

Data Transmission and Cryptography

March 2025

A Constructing the finite field of size 9: \mathbb{F}_9

1. Prove that the polynomial $m(x) = x^2 + x + 2 \in \mathbb{Z}_3[x]$ is irreducible.

Consider the quotient ring $R = \mathbb{Z}_3[x]/(m(x))$. Since m(x) is an irreducible primitive polynomial, the ring R is actually a field. In fact, there is only one finite field of this size, we will denote it by \mathbb{F}_9 .

- 2. Let α be a root of m(x) in \mathbb{F}_9 . Show that α is a primitive element in \mathbb{F}_9 . Give all elements of $\mathbb{F}_9 = \{0, 1, \alpha, \alpha^2, \dots, \alpha^7\}$ in the form $u_1\alpha + u_0$, where $u_1, u_0 \in \mathbb{Z}_3$. For example, $\alpha^2 = 2\alpha + 1$.
- 3. Find the inverse of all nonzero elements in \mathbb{F}_9 (e.g., $(\alpha^2)^{-1} = \alpha^6 = \alpha + 2$).

B A linear code over the finite field \mathbb{F}_9

Consider the linear code C over the finite field \mathbb{F}_9 defined by the following generator matrix:

$$G = \begin{pmatrix} 1 & 0 & 2 & \alpha & 2\\ \alpha & 1 & 0 & \alpha + 1 & \alpha + 2 \end{pmatrix} \tag{1}$$

- 1. Determine the length n and dimension k of C.
- 2. Determine |C|, that is, the number of codewords.
- 3. Encode the information vector (1,1) using the generator matrix G.
- 4. Is G in standard form? If not, find a generator matrix G_s in standard form (no need to make any column permutation).
- 5. Find a parity-check matrix H for C.
- 6. Show that $u = (\alpha + 2, 1, 1, 1, \alpha)$ is a codeword of C.
- 7. Give the syndrome of $v = (\alpha + 2, 1, 1, 2, \alpha)$ using H. Is it a codeword of C? Note that v = u + (0, 0, 0, 1, 0). Compute the syndrome of (0, 0, 0, 1, 0).
- 8. Determine the minimum distance and error correcting capability of C. Hint: Find the minimum number of linearly dependent columns in H.