Всероссийская олимпиада школьников по физике

$11\ \mathrm{класc},$ заключительный этап, $2017/18\ \mathrm{год}$

Задача 1. Верхняя часть наклонной плоскости гладкая, нижняя — шероховатая. На верхнюю часть кладут тонкостенную цилиндрическую трубу, вращающуюся вокруг своей оси с угловой скоростью ω_0 , и отпускают. В начальный момент ось цилиндра неподвижна, а линия касания трубы с плоскостью находится на высоте h = 10 см над границей раздела гладкого и шероховатого участков. Коэффициент трения между трубой и шероховатой поверхностью $\mu = 0.1$. Радиус цилиндра равен R = 5 см. Ускорение свободного падения $q = 10 \text{ м/c}^2$.

- 1) Считайте, что ω_0 велико. При каком угле $\varphi = \varphi_m$ труба вернётся в начальное положение за минимальное время?
 - 2) Найдите это минимальное время t_{\min} .
 - 3) Пусть $\varphi = \varphi_m$. При каких ω_0 труба вернётся в начальное положение?

]
$$\sigma_m = 0.05$$
; 2) $\tau_{min} = 11.3$ c; 3) $\omega_0 > \frac{5\sqrt{2g\hbar}}{R} = 140$ paulo

Задача 2. В архиве лорда Кельвина нашли цилиндр с одним молем идеального одноатомного газа. Лорд Кельвин проводил с ним два процесса и изобразил их на pV-диаграмме. Чернила, разумеется, выцвели. От первого процесса уцелела часть графика — отрезок прямой, а от графика второго процесса, как обычно, сохранилась единственная точка А. Из поясняющих записей следовало, что в этих процессах при равных температурах теплоёмкости совпадали. Восстановите график зависимости давления p от объёма V для второго процесса.

отрезок из точки (2;3,5) в точку (16;7)

Задача 3. В далёком космосе есть планета, состоящая полностью из воды. Известно, что глубоководные обитатели изнутри могут обозревать всё пространство вокруг тогда и только тогда, когда находятся на расстоянии не более чем x = 3000 км от центра планеты. Местные жители решили запустить спутник. С какой скоростью он должен двигаться на самой низкой возможной орбите? Показатель преломления воды n=4/3, плотность воды $\rho=1000~{\rm kr/m^3}$, гравитационная постоянная $G = 6.67 \cdot 10^{-11} \; \mathrm{H} \cdot \mathrm{m}^2/\mathrm{kr}^2$. Планета не вращается вокруг своей оси, волн на её поверхности не бывает, воду можно считать несжимаемой.

$$z/м$$
и $I, 2 = \overline{qD\pi^{\frac{L}{2}}}\sqrt{x}n = u$

ЗАДАЧА 4. По двум горизонтальным проводящим рельсам может скользить без трения металлическая перемычка массой m (см. рис.). Расстояние между рельсами l. Движение перемычки ограничено двумя непроводящими жёсткими вертикальными стенками W_1 и W_2 , находящимися на расстоянии D друг от друга. К рельсам через ключ K последовательно подключены заряженный до напряжения U_0 конденсатор ёмкости C и резистор сопротивления R. Перпендикулярно плоскости рельсов включено вертикальное однородное магнитное поле с индукцией B, такое, что $m > B^2 l^2 C$ и $DBl \gg RCU_0$. В момент, когда ключ замкнули, перемычка покоилась посередине между стенками. Определите:

- 1) с какой стенкой произойдёт первое столкновение перемычки;
- 2) скорость v_1 перед первым столкновением;
- 3) скорость v_n перед n-м столкновением.

Все столкновения перемычки со стенками абсолютно упругие.

$$a^{\mathrm{I}} = \frac{1}{2} \frac$$

Задача 5. Из точки O на поверхности воды в реку бросают одинаковые маленькие металлические шарики (см. рис.). Отпущенный без начальной скорости шарик упал на дно в точке B, а шарик, запущенный вертикально вниз с известной скоростью v — в точку C. Расстояние BC = L. Найдите горизонтальную составляющую u_x скорости второго шарика при ударе о дно. Считайте, что при движении на шарик со стороны воды действует сила, прямо пропорциональная скорости движения шарика относительно воды и направленная против этой скорости. Скорость течения не зависит от глубины, а дно горизонтально. Силу Архимеда не учитывать.

$$\frac{a}{T^{6}} = xn$$