

Fiche méthode Tracer d'un graphique

Pour exploiter des résultats expérimentaux, on peut représenter l'évolution d'une grandeur (en ordonnées) en fonction d'une autre (en abscisses).

Au crayon à papier, après avoir orienté la feuille pour obtenir un graphique clair et lisible :

Tracer, à la règle, les deux axes perpendiculaires orientés.

- Indiquer à l'extrémité de chaque axe la grandeur et l'unité.
- Graduer régulièrement les axes en définissant une échelle pour que toutes les valeurs s'étalent au maximum dans la zone graphique.
- Placer les points en les représentant par des +.
- Tracer la courbe à main levée ou à la règle en passant le plus près possible de tous les points (la courbe doit être lissée).
- Donner un titre au graphique.

Fiche méthode Tracer d'un graphique

Certaines séries de mesures peuvent être modélisées par une droite, dont l'équation donne la relation mathématique qui lie les deux grandeurs mesurées.

Droite passant par l'origine

Une fonction linéaire est représentée par une droite passant par l'origine, d'équation y=a. x. a est le coefficient directeur. Calculer le coefficient directeur a à partir des coordonnées de deux points A et B de la droite :

$$a = \frac{y_B - y_A}{x_B - x_A}$$

Ne pas oublier de préciser l'unité de a.

Droite ne passant pas par l'origine

Une fonction affine est représentée par une droite ne passant pas par l'origine, d'équation y = a. x + b. a est le coefficient directeur et b est l'ordonnée à l'origine.

Calculer le coefficient directeur a à partir des coordonnées de deux points A et B de la droite :

$$a = \frac{y_B - y_A}{x_B - x_A}$$

Lire l'ordonnée à l'origine b à l'intersection de la droite avec l'axe des ordonnées.

Ne pas oublier de préciser les unités de a et de b.

