Моделирование городского ландшафта в условиях солнечной погоды

Панафидин Егор ИУ7-51Б

Научный руководитель: Ваулин Анатолий Сергеевич

Цель работы

• Целью данного курсового проекта является разработка программного обеспечения, позволяющего моделировать городской ландшафт в условиях солнечной погоды с учетом добавления, удаления объектов сцены и изменения положения наблюдателя и источника освещения.

Возможности программного обеспечения

- Добавление и удаление зданий, дорог и остановок общественного транспорта
- Изменение положения наблюдателя
- Изменение положения освещения

Использованные алгоритмы

- Алгоритм Моллера-Трумбора поиска пересечения с треугольниками
- Обратная трассировка лучей
- Поворот сцены с помощью матриц поворота вокруг осей
- Простая модель освещения Ламберта

Простая модель освещения

Высчитывается по закону Ламберта:

$$I = I_0 * \cos \alpha$$

Где I — интенсивность света

 I_{0} - интенсивность источника

 α – угол между вектором нормали к плоскости и вектором направления света

Алгоритм обратной трассировки лучей

- 1. Для каждого луча, выходящего из камеры:
 - 1. Получить цвет ближайшей к наблюдателю точки
 - 2. Проверить не лежит ли точка в тени другого объекта
 - 3. Вычислить интенсивность освещения в точке
 - 4. Отрисовать полученный цвет

Демонстрация работы

Демонстрация работы. Изменено положение источника.

Демонстрация работы. Изменено положение наблюдателя

Исследовательская часть.

- Цель эксперимента: сравнение времени работы обратной трассировки лучей с алгоритмов Моллера-Трумбора и стандартного метода нахождения пересечения луча и треугольника
- Исходные объекты сцены эксперимента: 4 дороги, 1 здание и 1 остановка общественного транспорта

Исследовательская часть. Результаты

Замер времени работы алгоритмов проводился 50 раз, а затем бралось среднее значение из полученных результатов.

Полученные результаты работы алгоритма обратной трассировки лучей с использованием

- 1. Алгоритма Моллера-Трумбора **4,567 секунды**
- 2. Стандартного алгоритма нахождения пересечения луча с треугольником 9,9945 секунды