

ANALYSIS OF THE AGN OF NGC2110

ALBERTO MAGARAGGIA ALBERTO SALVARESE

NGC 2110

Name: NGC 2110

Equatorial coordinates (RA,dec): 88.047420, -7.456212

Redshift: 0.0078

Luminosity distance: 34.5 Mpc

Diameter: 26.61 kpc

Morphology: SABO^-

AGNs

AGNs

CHANDRA

NuSTAR

Chandra and NuSTAR specifications

Te	les	CO	pe

Launched on

Energy range

Angular resolution (FWHM)

Spectral resolution (FWHM)

Sensitivity

Temporal resolution

Chandra

July 23, 1999

0.1-10 keV

0.5"

120 eV (ACIS at 6 keV)

 $4 \times 10^{-15} \text{ ergs cm}^{-2} \text{ s}^{-1} (0.4-6 \text{ keV})$

3 ms

NuSTAR

June 13, 2012

3-79 keV

18"

400 eV (at 10 keV)

 $2 \times 10^{-15} \text{ erg cm}^{-2} \text{ s}^{-1} (6-10 \text{ keV})$

 $2 \mu s$

ObsID 3418 e1

Instrument: Chandra

Exposure time: 80 ks

Date: 20 December 2001

Dearth of data!

ObsID 3418 e2

Instrument: Chandra

Exposure time: 80 ks

Date: 20 December 2001

ObsID 3418 e2: Analysis

Range considered: 2-8 keV

Best fit model: WABS(powerlaw+gauss)

Best fit parameters

Line: 6.81 ± 0.06 keV

Element: Magnesium (Mg Kα)

 σ : 2.08 x 10⁻⁶ ± 3

 $X^2: 0.2347$

 N_H : (2.71 ± 0.81) x 10²² atoms cm⁻²

 $\Gamma : 0.30 \pm 0.08$

 Γ_{NORM} : (1.81 ± 0.27) x 10⁻⁴

Instrument: Chandra Exposure time: 50 ks Date: 22 April 2000

Range considered: 1.5-8 keV

Best fit model: WABS(powerlaw+gauss)

Best fit parameters

Line: 6.34 ± 0.03 keV

Element: Iron (Fe Kα)

 σ : (3.16 ± 0.80) x 10⁻²

 $X^2: 0.2752$

 N_H : (2.34 ± 0.15) x 10²² atoms cm⁻²

 $\Gamma: 0.71 \pm 0.07$

 Γ_{NORM} : (7.74 ± 0.86) x 10⁻⁴

Flux: $5.59 \times 10^{-13} \, erg \, cm^{-2} \, s^{-1}$

Range considered: 1.5-8 keV

Best fit model: WABS(powerlaw+gauss)

Best fit parameters

Line: 1.71 ± 0.03 keV

Element: Silicon (Si Kα)

 σ : 1.45 x 10⁻³ ± 0.56

 $X^2: 0.2671$

 N_H : (2.48 ± 0.17) x 10²² atoms cm⁻²

 $\Gamma: 0.74 \pm 0.07$

 Γ_{NORM} : (8.17 ± 0.95) x 10⁻⁴

Flux: $5.29 \times 10^{-14} \text{ erg cm}^{-2} \text{ s}^{-1}$

Range considered: 1.5-8 keV

Best fit model: WABS(powerlaw+gauss)

Best fit parameters

Line: 2.32 ± 0.09 keV

Element: Sulfur (S Kα)

 σ : 1.91 x 10⁻³ ± 0.58

 X^2 : 0.3027

 N_H : (2.24 ± 0.15) x 10²² atoms cm⁻³

 $\Gamma: 0.65 \pm 0.06$

 Γ_{NORM} : (7.03 ± 0.77) x 10⁻⁴

Flux: $1.92 \times 10^{-14} \text{ erg cm}^{-2} \text{ s}^{-1}$

Confidence region: Chi-Squared

Instrument: Chandra

Exposure time: 100 ks

Date: 5 March 2003

Range considered: 1.5-8 keV

Best fit model: WABS(powerlaw+gauss)

Best fit parameters

Line: 6.34 ± 0.04 keV

Element: Iron (Fe Kα)

 σ : (3.65 ± 1.12) x 10⁻²

 $X^2: 0.2709$

 N_H : (1.61 ± 0.29) x 10²² atoms cm⁻²

 $\Gamma : 1.07 \pm 0.13$

 Γ_{NORM} : (4.55 ± 0.84) x 10⁻⁴

Flux: 3.38 x 10⁻¹³ erg cm⁻² s⁻¹

Range considered: 1.5-6 keV

Best fit model: WABS(powerlaw+gauss)

Best fit parameters

Line: 2.30 ± 0.04 keV

Element: Sulfur (S Kα)

 σ : 3.88 x 10⁻³ ± 0.17

 $X^2: 0.2282$

 N_H : (2.47 ± 0.38) x 10²² atoms cm⁻²

 $\Gamma: 1.02 \pm 0.14$

 Γ_{NORM} : (6.69 ± 1.53) x 10⁻⁴

Flux: 7.10 x 10⁻¹⁴ erg cm⁻² s⁻¹

Confidence region: Chi-Squared

Instrument: NuStar

Exposure time: 15.5 ks

Date: 5 October 2012

Range considered:3-13 keV

Best fit model: WABS(powerlaw+gauss)

Best fit parameters

Line: 6.22 ± 0.04 keV

Element: Iron (Fe K α)

 σ : 3.78 x 10⁻² ± 0.13

 $X^2: 1.0596$

 N_H : (3.07 ± 0.24) x 10²² atoms cm⁻²

 $\Gamma: 1.59 \pm 0.02$

 Γ_{NORM} : (5.09 ± 0.18) x 10⁻²

Flux: 9.78 x 10⁻¹² erg cm⁻² s⁻¹

Data comparison

	N _H (x 10 ²² atoms cm ⁻²)	Γ	FeKα (KeV)	SiKα (KeV)	SKα (KeV)	$F_{FeK\alpha}(10^{-5phcm^{-2}s^{-1}})$
Chandra 3418	2.71 ± 0.81	0.30 ± 0.08	_	_	_	_
Chandra 883	2.34 ± 0.15	0.71 ± 0.07	6.34 ± 0.03	1.71 ± 0.03	2.32 ± 0.09	5.50
Chandra 4377	1.61 ± 0.29	1.07 ± 0.14	6.34 ± 0.04	_	2.30 ± 0.04	3.33
Chandra (Evans et al., 2006)	2.89 ± 0.16	1.40 ± 0.04	6.379 ± 0.007	1.741 ± 0.002	2.303 ± 0.008	_
Chandra (Marinucci et al., 2015)	< 4.5	$1.25^{+0.48}_{-0.33}$	6.391 ± 0.016	-	-	$5.5^{+2.5}_{-2.0}$
NuStar 60061061002	3.07 ± 0.24	1.59 ± 0.02	6.22 ± 0.04	_	_	95.5
NuStar (Marinucci et al., 2015)	4.0 ± 0.4	1.64 ± 0.03	6.33 ± 0.07	-	-	9.5 ± 3.0

Data comparison

	N _H (x 10 ²² atoms cm ⁻²)	Γ	FeKα (KeV)	SiKα (KeV)	SKα (KeV)	F _{FeKα} (10 ⁻⁵ ph cm ⁻² s ⁻¹)
Chandra 3418	2.71 ± 0.81	0.30 ± 0.08	-	-	-	-
Chandra 883	2.34 ± 0.15	0.71 ± 0.07	6.34 ± 0.03	1.71 ± 0.03	2.32 ± 0.09	5.50
Chandra 4377	1.61 ± 0.29	1.07 ± 0.14	6.34 ± 0.04	-	2.30 ± 0.04	3.33
Chandra (Evans et al., 2006)	2.89 ± 0.16	1.40 ± 0.04	6.379 ± 0.007	1.741 ± 0.002	2.303 ± 0.008	_
Chandra (Marinucci et al., 2015)	< 4.5	$1.25^{+0.48}_{-0.33}$	6.391 ± 0.016	_	-	$5.5^{+2.5}_{-2.0}$
NuStar 60061061002	3.07 ± 0.24	1.59 ± 0.02	6.22 ± 0.04	_	_	95.5
NuStar (Marinucci et al., 2015)	4.0 ± 0.4	1.64 ± 0.03	6.33 ± 0.07	-	-	9.5 ± 3.0

Inside ± 3 times the errors, data obtained are considered consistent with those found in literature

References

- V. Beckmann et al., The elusive radio loud Seyfert 2 galaxy NGC 2110, 2011
- D. J. Rosario et al., An accreting supermassive black hole irradiating molecular gas in NGC 2110, 2019
- A. Marinucci et al., The Seyfert 2 galaxy NGC 2110: hard X-ray emission observed by NuSTAR and variability of the iron $K\alpha$ line, 2015
- E. Rivers et al., Tracking the complex absorption in NGC 2110 with two Suzaku observations, 2018
- D. A. Evans et al., The Chandra, Hubble Space Telescope, and VLA View of the Circumnuclear Extended Emission in the Narrow Emission Line Galaxy NGC 2110, 2006
- D. A. Evans et al., Probing unification with Chandra HETGs and XMM-Newton epic and RGS spectroscopy of the narrow emission line galaxy NGC 2110, 2007
- P. Padovani et al., Active Galactic Nuclei: what's in a name?, 2017
- C. G. Mundell et al., Radio-Quiet AGN and the Transient Radio Sky, 2011

Black body emission from the accretion disk?

Black body emission from the accretion disk?

- Small soft excess in Chandra
- No reflection hump

NEGLIGIBLE DISK CONTRIBUTION

(Evans et al., 2007, Rivers et al., 2018)