

FIG. 1



FIG. 2A



FIG. 2B



FIG. 3



FIG. 4



**FIG. 5A**



FIG. 5B



FIG. 6



FIG. 7



**FIG. 8**



**FIG. 9**



**FIG. 10**



**FIG. 11A**



**FIG. 11B**



**FIG. 12A**



**FIG. 12B**



**FIG. 13A**



**FIG. 13B**



**FIG. 13C**



**FIG. 14A**



**FIG. 14B**



**FIG. 15**



**FIG. 16**



**FIG. 17**



**FIG. 18**



**FIG. 19**



**FIG. 20A**



**FIG. 20B**



**FIG. 21A**



**FIG. 21B**



**FIG. 21C**



**FIG. 22**

| ROW | PRIMER<br>SEQUENCE | SEQUENCED<br>SEQUENCE | PREDICTED GAM RNA                                     | DIST-<br>ANCE         | GAM<br>NAME                |
|-----|--------------------|-----------------------|-------------------------------------------------------|-----------------------|----------------------------|
| 1*  | AATTGCTTGAAC       | CCAGGAAGTTGGA         | AATTGCTTGAACCCAGGAAGTGGA                              | 0                     | 25-A                       |
| 2*  | ACTGCACCTCC        | AGCCTGGGC             | ACTGCACCTCCAGCCTGGGCTAC                               | 0                     | 351661-A                   |
| 3   | CACTGCACTC         | CAGCCCAGGCAACA        | CACTGCACTCCAGCCGGAGCAA                                | 0                     | 351946-A                   |
| 4   | CTAGACTGAAG        | CTCCTTGAGGAC          | CTAGACTGAAGCTCCTTGAGGA                                | 0                     | 352759-A                   |
| 5   | GAAGTTGAAG         | CCTGTGTTCA            | GAAGTTGAAGCCTGTGTTCA                                  | 0                     | 4426-A                     |
| 6   | TCACTGCAAC         | CCTCACCA              | (TCACGTCAACCTCCACCCACCGTG),(TCACGTCAACCTCCACCCACCGTG) | (357950-A),(352721-A) |                            |
| 7*  | TCTAAGAGAAAG       | GAAGTTGAGA            | TCTAAGAGAAAGGAAGTCAGA                                 | 0                     | 337950-A                   |
| 8   | GGGCAGTGGGA        | GCTGGAA               | GGGCAGTGGAGGCTGGAAATGATGT                             | 1                     | 351996-A                   |
| 9   | AATTGCTTGAAC       | CCAAGAAGTGGGA         | AATCACTGAAACCCAAGGAAGTG                               | 2                     | 351874-A                   |
| 10  | AGCAGGCCA          | GGGTTTGT              | AGCAAGACCAAGGGTTTGTGTT                                | 2                     | 352083-A                   |
| 11  | AGGCAGAACG         | GACCAGA               | AGGCAGAGGAGGACCAAGGAGCT                               | 2                     | 351944-A                   |
| 12  | AGGGAAAGAAAT       | TAATGTGAA             | GGGAATAATTAATGTGAAAGTC                                | 2                     | 353325-A                   |
| 13  | AGGGAAAGAAAT       | TAATGTGAG             | AGGAAAAAAATTAATGTGAGTC                                | 2                     | 352649-A                   |
| 14  | ATTCACTGTTG        | CCCATGTTT             | (ATTGGTCCCCATGTTTTATT),<br>(TATTCACTGCCCCATGTTTGTGA)  | 2                     | A),(352957-A,<br>352960-A) |
| 15  | CTAGACTGAAG        | CTCTTGAGG             | CTGGACTGAGCTCCTTGAGGCC                                | 2                     | 352288-A                   |
| 16  | TTCAGAGTGGT        | TAAGTTCTG             | TTCTGATGGTTAAGTCTGTCA                                 | 2                     | 353875-A                   |
| 17  | TTCAGAGTGGT        | TAAGTCTGC             | TTCAAGTGTAAAGTCTGTCT                                  | 2                     | 351940-A                   |
| 18  | AGCAGCCCCA         | GAAGGAAGC             | AGGCCAAGAAGGAAGCAGAGG                                 | 3                     | 352496-A                   |
| 19  | AGTTTGCTTGTG       | TAAGAAAAG             | AGTTTGTTAAGAAAAGC                                     | 3                     | 352518-A                   |
| 20  | ATCAGAGGGTG        | GGTGTCAA              | ATTAGGAGAGTGGGTGCTAAGT                                | 3                     | 352511-A                   |
| 21  | ATGGGGGGAG         | AGTTTGTCAGT           | TGGAGGAGAGTTGTCAGTATAG                                | 3                     | 353484-A                   |
| 22  | CCCAGGAAG          | TGGAGCCTGGGC          | CCCGGGGAGGCTGGGTGTG                                   | 3                     | 351990-A                   |
| 23  | GGGCAGTGGGA        | GGTCCCGT              | AGGGCAGGAGGTCGGTCCCTTC                                | 3                     | 353880-A                   |
| 24  | GGGCAGTGGGA        | TCTAGAC               | GTGACAGTGAATCTAGACAGAC                                | 3                     | 352810-A                   |
| 25  | TCAAGCTCATTC       | CACTAA                | CTCAGCTCATCCACTAAATCCC                                | 3                     | 353184-A                   |
| 26  | TGGAAAGTT          | GGTTGTATGGTT          | GGAATGGGGTGTATGGTT                                    | 3                     | 353855-A                   |
| 27  | TGGAGAGTT          | CCATATTG              | TGATAGATCCATATTGGTAA                                  | 3                     | 352004-A                   |
| 28  | TGGAGAGTT          | GTGTTGACAGGT          | TGGGGTTGTTGTACAGGTGA                                  | 3                     | 353160-A                   |
| 29  | TCACTGCAAC         | CTCCACC               | TCACTGCAACCCACCTCCCG                                  | 0                     | 353856-A                   |



FIG.  
23B

FIG.  
23B

**FIG.** 23B

|     |      |     |      |      |   |
|-----|------|-----|------|------|---|
| C   | G    | TTC | CCA  | CG   |   |
|     |      |     |      |      |   |
| ACA | ---- | -   | ---- | AG   |   |
| A   | GGC  | GTG | AAGG | CGGC | T |
| T   | CCG  | CGC | TTCC | GCGC | G |
| GAC | AAGG | C   | TGCG | CT   |   |

-- - C GTGACT  
 5' TGG GTTCCCTGGCA TG TGATTT T  
 3' ACC TAGGGACCGT AC ACTAAA A  
 AT T - ATTAGA

- CACT ----- T A ACA -- - G- ----- -GG  
 5' GGTCG CGCT GCA GAT GG GA GGT GCATCT C TAGCT CTTTTT A  
 3' CCAGT CGCG CGT CTG CC CT CCA CGTAGA G GTGCA GAAGAAA A  
 A CC- ATTATTATT A GG- CT A GA CCACCA ACA

Sequence logo for GAM252 N252 showing the sequence TCTCT AGAGA AG- followed by a black box and the sequence ATG AGGTGCAGAGCTTAGCTG TCCACGCTTGAATGGT GA-- TCGAT GTGAAACAG CACTTGTT TGG T GCC T T.

GGGAGGAGCCGCAGAATTGCGCTA  
 TGCA TTAAGTGG TG GGCAG GGGCG GCT A  
 GC GT GGTCGACT AC TCGTC CCGGC CGG C  
 ---- G GAC--- G G -- G

' GGTCAAATGTATTGAAAGTTGCAAAAATTCTTCTTACAAA  
' AAACTAAAACCAATGCATCACCTAAGTCGTGTGAAATCA

TG -- C -- GG T G T  
 5 ' GGCTG A GCGGGG GGGG CG GC TTTCGGAG AGC C  
 3 ' CTCGAC T TGTTCCT CTC GT CG GGGTCTT TTG C  
 GT TA C AA GG G G G

|                           |       |        |
|---------------------------|-------|--------|
| G G A                     | TA    | TCTCAT |
| 5' CTCC GT CCT CTCGAGCTGA | TCAGT | \      |
| 3' GAGG CA GGA GACTTGACT  | GGTCA | T      |
| A A C                     | C-    | CACATT |

|      |      |      |      |       |      |     |    |     |
|------|------|------|------|-------|------|-----|----|-----|
| -    | AT   | T    | AAA  | AG    | ---- | -   | -  | T   |
| TAGC | AGCT | TGTG | ACGC | GCCTG | TACA | GCC | TG | C G |
| GTGC | TGGC | ACAC | TGCG | CGGAC | TGTG | CGG | AC | G G |
| C    | C-   | -    | AC-  | GA    | GCAC | T   | T  | T   |

FIG. 23C



FIG. 24A

## EST72223 (705 nt.)

Chr.X



## EST72223 sequence:

CCCTTATTAGAGGATTCTGCTCATGCCAGGGTGAGGTAGTAAGTTGAT  
TGAGGTAGGGATATTAGGCCAATTAGAAGATAACTATACAACT  
TAC TACT TTCCCTGGTGTGGCATATTCACACTTAGCTTAGCAGTGTG  
TCCATCAGACAAAGTTGTAGATGTCCTTGATAATTGGACTGGAAGAAAAGA  
GACATGGAAGGGGACAGATGGTGTAGGGTAGGCAGATGTCATTATAAAGT  
GA CTT GTCTT CATT AATT GGAGCATATAATT ATTACCTTGGGATGAACTC  
ATTTT GCT ATT CTT CA ACT GTG TA ATGATT GCATTT ATT AGTA ATAGAACAGGA  
AT GTGTGCAAGGGAAATGGAAGCATACTTTAAGAATT TG GCCAGGCGCGGT  
GGTTCATGCCTGTAATCCCAGCATT TTGGAGGCCAGGGCGGTGGATCAC  
CTGAGGTCAGGAGTTCGAGACCAACCTGGCCAACACGGC GAAACCCCCGCCTC  
TACTCAAATACAAAAATTAGCCAGGCTTGGTGA CACT CGC CTGTGGTCCCAGC  
TACTCAGGAGGCTGAGGCAGGAGAATTGCTGAACCCAGGAAGTGGAG  
GCTTCAGTGAGCTGAGAACACGCCACTGCACTCCAGTCCTGGCAAC  
AGAGCAAGACTCTGCTCAGGAAAAAAAAG

**FIG. 24B**



FIG. 24C



FIG. 24D

**FIG. 25A**



**FIG. 25B**



**FIG. 25C**



**FIG. 25D**

| PRE<br>#<br>SEQUENCE | PREDICTED<br>PRECURSOR<br>SEQUENCE                                                                                                               | PRIMER1<br>TYPE/NAME | PRIMER1<br>SEQUENCE        | PRIMER2<br>TYPE/NAME           | PRIMER2<br>SEQUENCE         | METHOD   | OBSERVED<br>SEQUENCE       | GAM<br>NAME |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------|--------------------------------|-----------------------------|----------|----------------------------|-------------|
| 1<br>T               | AATGCTGAGTCCT<br>GTGAGTCTCCTA<br>GCAAATCAAATCT<br>GGAAGGGGTCTG<br>AGGACTCCAGCAT                                                                  |                      |                            | GAGTCCTG<br>TGAGTCTT<br>CCTAGC | TGCTGGAGT<br>CCTCAAGA<br>CC |          |                            |             |
| 2<br>CTGT            | TGAGCCCTCAGCC<br>CTCATGGCTTCC<br>CGATGCTCACCGG<br>TGCAGAGGAGCC<br>AGCTGGGAGCCT                                                                   |                      | AAAGCCAT<br>GAGGCTG<br>AGG | R                              | STEM 1 3                    | R        | STEM 1 3                   | A           |
| 3<br>AACAGT          | ACTGTTGGTCTTC<br>TGTCTAGGCCATTA<br>TTCTCAGTTCTGT<br>GCAGGGAGTGAGCT<br>GAAACAAAGTTGT<br>ATAGCCCAGAGA<br>GTGAGAAGCTGCA<br>TTCTCATGTCCTCC<br>AACAGT | F                    | LOOP 2 1                   |                                | R                           | STEM 2 1 | GTGAGCAT<br>CGGGAAG<br>CCA | B           |

**FIG. 26A**



FIG. 26B



FIG. 26C



**FIG. 27A**



**FIG. 27B**



**FIG. 27C**

| MIRNA NAME   | HELA | BRAIN        | LIVER        | THYMUS       | TESTES       | PLACENTA     | REFERENCE |
|--------------|------|--------------|--------------|--------------|--------------|--------------|-----------|
| HSA-MIR-124A | 1879 | <b>65517</b> | 7025         | 3099         | 2672         | 2498         | 1,3       |
| HSA-MIR-9    | 642  | <b>42659</b> | 3504         | 4455         | 4485         | 2313         | 2,3       |
| HSA-MIR-128A | 2015 | <b>27701</b> | 4940         | 4876         | 5166         | 2495         | 3         |
| HSA-MIR-129  | 503  | <b>22573</b> | 1175         | 2213         | 5364         | 2017         | 3         |
| HSA-MIR-128B | 1168 | <b>21969</b> | 3954         | 4819         | 5383         | 2027         |           |
| HSA-MIR-122A | 1051 | <b>447</b>   | <b>65518</b> | 2644         | 617          | 570          | 1,3       |
| HSA-MIR-194  | 501  | 910          | <b>65518</b> | 4737         | 2342         | 7952         | 3         |
| HSA-MIR-148  | 413  | 620          | <b>38436</b> | 5250         | 6204         | 2711         |           |
| HSA-MIR-192  | 452  | 606          | <b>20650</b> | 1628         | 1263         | 2607         |           |
| HSA-MIR-96   | 887  | 3100         | 1477         | <b>44800</b> | 2266         | 5466         |           |
| HSA-MIR-150  | 648  | 1463         | 5295         | <b>65518</b> | <b>29728</b> | 5280         |           |
| HSA-MIR-205  | 551  | 615          | 1646         | <b>65518</b> | 2645         | <b>39072</b> |           |
| HSA-MIR-182  | 662  | 1944         | 1091         | <b>25771</b> | 2034         | 3683         |           |
| HSA-MIR-183  | 1026 | 1123         | 1286         | <b>8754</b>  | 1681         | 2138         |           |
| HSA-MIR-204  | 525  | 3898         | 1757         | 6535         | <b>64859</b> | 6233         |           |
| HSA-MIR-10B  | 410  | 433          | 477          | 3871         | <b>23083</b> | 738          |           |
| HSA-MIR-154  | 438  | 733          | 1914         | 3309         | <b>14750</b> | 9637         |           |
| HSA-MIR-134  | 448  | 617          | 698          | 763          | <b>2250</b>  | 997          |           |
| HSA-MIR-224  | 3233 | 11061        | 7684         | <b>32305</b> | 5377         | <b>65518</b> |           |
| HSA-MIR-210  | 844  | 2280         | 10703        | 6864         | 15288        | <b>62452</b> |           |
| HSA-MIR-221  | 625  | 9325         | 3520         | <b>20212</b> | 10608        | <b>54287</b> |           |
| HSA-MIR-141  | 696  | 805          | 1220         | 4063         | 2000         | <b>46845</b> |           |
| HSA-MIR-23A  | 1312 | 3492         | 2990         | 6021         | 11173        | <b>40076</b> |           |
| HSA-MIR-200C | 556  | 595          | 1027         | 10636        | 1478         | <b>33532</b> |           |
| HSA-MIR-136  | 465  | 725          | 709          | 776          | 3100         | <b>8840</b>  |           |

<sup>1</sup> LAGOS-QUINTANA ET AL., CURRENT BIOLOGY 12:735 (2002)

<sup>2</sup> KRICHEVSKY ET AL., RNA 9:1274 (2003)

<sup>3</sup> SEMPLER ET AL., GENOME BIOLOGY 5:R13 (2004)