Prathamesh Kibhute 18110186
Assignment -3 10.1 we know that, x = J(q)q, x = end effector velocity vector q' = joint velocities vectors. J(g) =) Jacobian matrix mapping x q q The configuration for which rank of Jacobian decreases, where robot loss one or more DoF and it comes impossible for it to move the end effector in a particular direction is called singularity configuration. To find a singularity configuration put det J(q) = 0and obtain the values of q

	1	1 2	150	2	1 2	
	ì	a	2	d	0	
	1	0	90	lı	0.	0.1
	2	12	0	0	0,	I al
	3	13	0	0	02+90	
4		24	-90	0	03-90	
5		ls	-90	- 23	04-90	
6		6	0	16/	6	

A) Direct - Driven - Does not involve any transmission demost between the actuators and the joints -Advantage - Very less power loss 9.7 b) Remotely Inven - Drive shafts are used to transfer the motion to the actuated joints of the arm Advantage - Only the notation angle of motor needed. 2) 5 bar Parallel - Two inputs are given Advantage - More strength and firmness.

en = c = 1 [2dn + 2dn - 2dn] = 7 3911 =0 $C_{121} = \frac{1}{2} \frac{$ $C_{112} = \frac{\partial}{\partial q_1} - \frac{1}{2} \frac{\partial}{\partial q_2} = \frac{\partial}{\partial q_2} = \frac{\partial}{\partial q_1} \left(\frac{1}{2} + \frac{\partial}{\partial q_2} \right)$ $G_{12} = C_{122} = 1 \quad \partial d_{22} = 0 \quad C_{222} = 1 \quad \partial d_{22} = 0$ $2 \quad \partial q_{1} \qquad 2 \quad \partial q_{2}$ Potential Energy

V=migli sing, + mig (listing, + listing) d, = dV = miglicosq, + miglicosq, 02 - 2V - m29 l2 (0092 292

2) Using V(q), calculate ox

$$\phi_{K}(q) = \partial V(q)$$

 ∂q_{K}

3) Put the values calculated above in the Euler - Lagrange's Equation