PS8_Zilles

Andrew Zilles

 $March\ 2024$

5. How does your estimate compare with the true value of β in (1)?

	$(beta_ols_closed)$
X1	1.5010518
X2	-1.0008296
X3	-0.2516480
X4	0.7490406
X5	3.5005531
X6	-2.0008185
X7	0.4987148
X8	1.0028269
X9	1.2465102
X10	2.0010012

These are all very close. If I were to round to two decimal places they would all be right on. It looks like the farthest one away is off by .0035ish.

7. Do your answers differ?

	$(beta_ols_lbfgs)$	$(beta_ols_neldermead)$
X1	1.501 051 8	1.1770684
X2	-1.0008296	-0.9164661
X3	-0.2516480	-0.1601914
X4	0.7490406	0.9990248
X5	3.5005531	3.0740315
X6	-2.0008185	-2.2658981
X7	0.4987148	0.5961485
X8	1.0028268	0.8454130
X9	1.2465102	1.4415925
X10	2.0010012	2.0331941

Yeah, quite a bit actually. L-BFGS is a virtual match with OLS closed-form solution. Nelder-Mead is quite a bit off though. Some estimates are off by around 0.5.

9. Tell me about how similar your estimates of $\hat{\beta}$ are to the "ground truth" β that you used to create the data in (1)

	$(\mathrm{simple}\ \mathrm{lm}())$
X1	1.501
	(0.002)
X2	-1.001
	(0.002)
X3	-0.252
	(0.002)
X4	$0.749^{'}$
	(0.002)
X5	3.501
	(0.002)
X6	-2.001
	(0.002)
X7	0.499
	(0.002)
X8	1.003
	(0.002)
X9	1.247
	(0.002)
X10	2.001
	(0.002)
Num.Obs.	100 000
R2	0.991
R2 Adj.	0.991
AIC	145143.6
BIC	145248.3
Log.Lik.	-72560.811
RMSE	0.50

Again, these are all really close and within 0.003 of the "ground truth". Most are within 0.001. They seem to be a match with the closed-form OLS estimate used in (5) above.