SISTEMAS DE NUMERAÇÃO

Introdução à Ciência da Computação - ICC0001

Histórico

- Como surgiram os sistemas de numeração?
- Primeiro: As pessoas precisavam contar....
 - Dias, rebanho, árvores e tudo mais...
- Segundo: As pessoas precisavam anotar...
 - Utilizavam símbolos para representar as quantidades
- Exemplo:
 - Vamos anotar (identificar) os computadores desta sala usando símbolos
- Os romanos utilizavam diferentes símbolos para diferentes quantidades
 - A soma dos símbolos representava o número total
 - Não representavam o valor zero

I	V	X	L	С	D	M
1	5	10	50	100	500	1000

Histórico

Sistema Romano utiliza algumas regras de repetição e ordem

I – uma ocorrência IV – quatro ocorrências

II – duas ocorrências V – cinco ocorrências

III – três ocorrências VI – seis ocorrências

Símbolos de menor peso a esquerda representam descontos

• Símbolos de menor peso a direita representam acréscimos

CXLVII = ? MDXCIX = ?

- Os hindus (Índia) utilizavam dez símbolos (sistema decimal) [hindu-arábico]
 - 0 Nenhuma ocorrência
 - 1 Uma ocorrência
 - •
 - 9 Nove ocorrências

Introdução

• O sistema de numeração hindu-arábico difere-se do romano em um importante fator...

Introdução

- O sistema de numeração hindu-arábico difere-se do romano em um importante fator...
- No decimal a posição em que o número se encaixa da direita para a esquerda indica a grandeza deste número:
 - Decimal: 0 → zero ocorrência
 - Decimal: 1 → uma ocorrência
 - Decimal: 10 → dez ocorrências
 - Decimal: 100 → cem ocorrências
- Por isso ele é dito POSICIONAL
- O sistema romano, ao contrário, não é posicional...
 - Existe apenas a 'regra de ordem'

Introdução

- Basicamente podemos criar sistemas de numeração posicionais com qualquer quantidade de símbolos maior que um.
- Vamos testar com o alfabeto de vogais:
 - A zero ocorrência
 - E uma ocorrência
 - I duas ocorrências
 - O três ocorrências
 - U quatro ocorrências
- Cinco ocorrências? Dez ocorrências?

- Os mais comuns são:
 - Decimal (dez algarismos 0 1 2 3 4 5 6 7 8 9)
 - Hexadecimal (16 símbolos 0 1 2 3 4 5 6 7 8 9 A B C D E F)
 - Octal (oito algarismos 0 1 2 3 4 5 6 7)
 - Binário (dois algarismos 0 1)

- Sistema Decimal ou de base 10:
 - Composto de 10 algarismos ou símbolos;
 - Quando os algarismos expressam um número são chamados dígitos;
 - Tipo posicional: o valor do dígito depende da posição dentro do número;
 - Com N posições podemos representar 10^N números

- Sistema Decimal (cont.):
 - Exemplo: 1967₁₀

Sistema Decimal (cont.):

• Exemplo: 1967₁₀

1000	1 x 1000	1×10^3
900	9 x 100	9×10^2
60	6 x 10	6 x 10 ¹
+ 7	+7 x 1	+4 x 10 ⁰
1967	1967	1967

Pesos expressos como potências de dez:

$$1967_{10} = 1 \times 10^3 + 9 \times 10^2 + 6 \times 10^1 + 4 \times 10^0$$

- Sistema Decimal (cont.):
 - Exemplo: 2745,214₁₀

Sistema Decimal (cont.):

• Exemplo: 2745,214₁₀

2000,000	2 x	1000	2	X	10 ³
700,000	7 x	100	7	X	10 ²
40,000	4 x	10	4	X	10 ¹
5,000	5 x	1	5	X	100
0,200	2 x	0,1	2	x 1	L0 ⁻¹
0,010	1 x	0,01	1	x 1	L0 ⁻²
+ 0,004	+4 x	0,001	+4	x 1	L0 ⁻³
2745,214	274	5,214	27	45,i	214

Pesos expressos como potências de dez:

$$2745,214_{10} = 2 \times 10^{3} + 7 \times 10^{2} + 4 \times 10^{1} + 5 \times 10^{0} + 2 \times 10^{-1} + 1 \times 10^{-2} + 4 \times 10^{-3}$$

- Sistema Binário ou de base 2:
 - Composto de 2 algarismos ou símbolos;
 - 0, 1;
 - Pode ser usado para caracterizar qualquer número;
 - O dígito é chamado de bit (binary digit).
 - Também é do tipo posicional;
 - Com N posições podemos representar 2^N números

- Sistema Binário (cont.):
 - Contagem binária:
 - Restrita ao número de bits disponíveis Ex.: 3 bits

Peso	2 ² =4	2 ¹ =2	2 ⁰ =1		Decimal
	0	0	0	000	0
	0	0	1	001	1
	0	1	0	010	2
	0	1	1	011	3
	1	0	0	100	4
	1	0	1	101	5
	1	1	0	110	6
	1	1	1	111	7

- Sistema Binário (cont.):
 - Representação

Exemplo: 1010₂

Pesos expressos como potências de dois:

$$1010_{2} = (1 \times 2^{3}) + (0 \times 2^{2}) + (1 \times 2^{1}) + (0 \times 2^{0})$$
Decimal = (1 x 8) + (0 x 4) + (1 x 2) + (0 x 1)
$$= 8 + 0 + 2 + 0$$

$$= 10_{10}$$

- Sistema Binário (cont.):
 - Representação

Exemplo: 11011,11₂

Pesos expressos como potências de dois:

$$11011,11_{2} = (1 \times 2^{4}) + (1 \times 2^{3}) + (0 \times 2^{2}) + (1 \times 2^{1}) + (1 \times 2^{0}) + (1 \times 2^{-1}) + (1 \times 2^{-2})$$

$$Decimal = (1 \times 16) + (1 \times 8) + (0 \times 4) + (1 \times 2) + (1 \times 1) + (1 \times 0,5) + (1 \times 0,25)$$

$$= 16 + 8 + 0 + 2 + 1 + 0,5 + 0,25$$

$$= 27,75_{10}$$

- Sistema Octal ou de base 8:
 - Composto de 8 algarismos ou símbolos;
 - 0, 1, 2, 3, 4, 5, 6, 7;
 - É do tipo posicional;
 - Com N posições podemos representar 8^N números

- Sistema Octal (cont.):
 - Contagem octal:

0	10		100	1000
1	11		101	1001
2	12		•••	•••
3	13		177	1477
4	14		200	1500
5	15	***	201	•••
6	16		•••	1777
7	17		777	2000

- Sistema Octal (cont.):
 - Representação

```
Exemplo: 2510<sub>8</sub>
```

Pesos expressos como potências de oito:

$$2510_8 = (2 \times 8^3) + (5 \times 8^2) + (1 \times 8^1) + (0 \times 8^0)$$
Decimal = 2 x 512 + 5 x 64 + 1 x 8 + 0 x 1
$$= 1024 + 320 + 8 + 0$$

$$= 1352_{10}$$

- Sistema Octal (cont.):
 - Representação

Exemplo: 765,21₈

Pesos expressos como potências de oito:

```
765,21_8 = (7 \times 8^2) + (6 \times 8^1) + (5 \times 8^0) + (2 \times 8^{-1}) + (1 \times 8^{-2})

Decimal = 7 \times 64 + 6 \times 8 + 5 \times 1 + 2 \times 0,125 + 1 \times 0,015625

= 448 + 48 + 5 + 0,25 + 0,015625

= 501,265625_{10}
```

- Sistema Hexadecimal ou de base 16:
 - Composto de 16 algarismos ou símbolos;
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
 - É do tipo posicional;
 - Com N posições podemos representar 16^N números

- Sistema Hexadecimal (cont.):
 - Contagem hexadecimal:

0	10		100
1	11		101
•••	•••		•••
9	19		1FF
А	1A		200
В	1B	•••	201
С	10		•••
D	1D		2FF
Е	1E		300
F	1F		***

- Sistema Hexadecimal (cont.):
 - Representação

```
Exemplo: 1A5<sub>16</sub>
```

Pesos expressos como potências de dezesseis:

```
1A5_{16} = (1 \times 16^{2}) + (A \times 16^{1}) + (5 \times 16^{0})

Decimal = 1 \times 256 + 10 \times 16 + 5 \times 1

= 256 + 160 + 5

= 421_{10}
```

- Sistema Hexadecimal (cont.):
 - Representação

```
Exemplo: C0,5F<sub>16</sub>
```

Pesos expressos como potências de dezesseis:

```
C0.5F_{16} = (C \times 16^{1}) + (0 \times 16^{0}) + (5 \times 16^{-1}) + (F \times 16^{-2})

Decimal = 12 \times 16 + 0 \times 1 + 5 \times 0.0625 + 15 \times 0.00390625

= 192 + 0 + 0.3125 + 0.05859375

= 192.37109375
```

- Sistema de base B:
 - (Tipo posicional);
 - Composto de B algarismos ou símbolos;
 - Com N posições podemos representar B^N números;
 - Expresso em decimal como potências de B;

- Sistema de base B (cont.):
 - Representação

Exemplo: #\$&_B

Pesos expressos como potências de "B":

$$\#$\&_B = (\# \times B^2) + (\$ \times B^1) + (\& \times B^0)$$

- Sistema decimal é de fácil compreensão humana
 - Influência da cultura
- Sistema decimal não é adequado para sistemas digitais:
 - Exigiria 10 níveis de tensão (ou corrente) distintos;

Para sistemas digitais, o sistema binário foi considerado

adequado por:

Simplicidade
 ligado / desligado

 Necessita apenas dois níveis de tensão

 Para cada sistema numérico apresentado vimos como obter o equivalente decimal;

• Agora vamos ver outras conversões possíveis.

Decimal para binário

- A conversão do sistema Decimal para o binário é realizado por sucessivas divisões por 2, ou seja, o número em decimal é dividido sucessivamente por 2 até que o quociente seja igual a 0
- O resto da última divisão representa o dígito mais à esquerda do número binário, o resto da próxima divisão o próximo dígito, e assim por diante

Decimal para binário

13
$$2$$

1 6 2

0 3 2

1 1 2

1 0 => 13_{10} = 1101_{2}

Decimal para binário

• Outra opção de representação das divisões sucessivas:

25 ₁₀ para binário			
25/2 = 12	resto	1	
12/2 = 6	resto	0	
6/2 = 3	resto	0	
3/2 = 1	resto	1	
1/2 = 0	resto	1	
11001 ₂			

37 ₁₀ para binário		
37/2 = 18,5	0,5 x 2	1
18/2 = 9,0	0 x 2	0
9/2 = 4,5	0,5 x 2	1
4/2 = 2,0	0 x 2	0
2/2 = 1,0	0 X 2	0
1/2 = 0,5	0,5 x 2	1

100101₂

Decimal para octal

$$135_{10} = ?_8$$

Decimal para hexadecimal

$$1325_{10} = ?_{16}$$

- Lembrando que no sistema hexadecimal:
 - 0, (...), 9 [9], A [10], B[11], C [12], D [13], E [14], F [15]

- Regra Geral:
- Decimal para base B
 - Divisão por B até que o quociente seja 0
 - Obtem-se o número equivalente na base B tomando os restos da última divisão até a primeira, e colocando-os lado a lado da esquerda para a direita.

$$135_{10} = ?_{B}$$

135 B

$$R_{1}$$
 Q_{1} B

 R_{2} Q_{2} B

 R_{n} 0 => 135₁₀ = $(R_{n} ... R_{2}R_{1})_{B}$

- Exemplo Regra Geral:
- Decimal para base 5

$$121_{10} = ?_5$$

121
$$5$$
1 24 5
4 4 5
4 0 => $121_{10} = 441_{5}$

Conversão de base

Base A para base B

Conversão indireta ou em duas etapas :

- 1 Base A para decimal polinômio
- 2 Número decimal para base B divisões sucessivas

Conversão de base

- Exemplo de conversão da Base A para a base B
 - Base 4: dígitos 0, 1, 2, 3; Base 7: dígitos 0, 1, 2, 3, 4, 5, 6;

- Converter 221₄ para base 7
 - Passo 1: converter 221₄ para base decimal (polinômio)

$$2 \times 4^{2} + 2 \times 4^{1} + 1 \times 4^{0} = (2 \times 16) + (2 \times 4) + (1 \times 1) = 32 + 8 + 1 = 41_{10}$$

 Passo 2: converter o valor encontrado (41₁₀) para a base 7 (divisões sucessivas)

Conversão de base com simplificações

- Binário para octal/octal para binário:
 - Por serem bases múltiplas, existe uma associação fácil e rápida;
 - Digitos octais são convertidos nos equivalentes binários de três em três bits e vice-versa:

Dígito Octal	0	1	2	3	4	5	6	7
Equivalente binário	000	001	010	011	100	101	110	111

4	7	2 8
1	1	1
100	111	010 2

101	100	011	001 2
1	1	1	1
5	4	3	1 8

Conversão de base com simplificações

- Binário para hexadecimal / hexadecimal para binário:
 - Por serem bases múltiplas, existe uma associação fácil e rápida;
 - Digitos hexadecimais são convertidos nos equivalentes binários de quatro em quatro bits e vice-versa:

Dígito hexa	0	1	2	3	4	5	6	7
Equivalente binário	0000	0001	0010	0011	0100	0101	0110	0111
Distantant			- (>	, ,				
Dígito hexa	8	9	A (10)	B (11)	C (12)	D (13)	E (14)	F (15)

9F2 ₁₆ = ? ₂					
9	F	2 ₁₆			
1	1	1			
1001	1111	0010 2			

Conversão de base com simplificações

- Octal para hexadecimal / hexadecimal para octal:
 - Conversão indireta: converte-se primeiro para binário

•
$$X_8 => Y_2 => Z_{16}$$

•
$$X_{16} => Y_2 => Z_8$$

Resumo

Número =
$$a_n b^n + a_{n-1} b^{n-1} + a_{n-2} b^{n-2} + \dots + a_0 b^0$$

 a_n = algarismo, b = base do número n = quantidade de algarismo - 1

Importantíssimo

Lembrar de colocar a base do número:

$$1001_2 \neq 1001_{10} \neq 1001_8 \neq 1001_7$$

Assume-se que um número sem base está implicitamente na base 10. Mas, coloquem a base em todos os casos.

- Como representamos números não inteiros?
- Uso da vírgula
- Para cada casa à direita depois da vírgula nós diminuímos a grandeza do número.

• No sistema decimal:

2000,000	2 x	1000	2	x 10 ³
700,000	7 x	100	7	x 10 ²
40,000	4 x	10	4	x 10 ¹
5,000	5 x	1	5	x 10 ⁰
0,200	2 x	0,1	2	x 10 ⁻¹
0,010	1 x	0,01	1	x 10 ⁻²
+ 0,004	+4 x	0,001	+4	x 10 ⁻³
2745,214	274	5,214	274	45,214

• Cada casa a direita diminui a ordem de grandeza em 10 vezes

- Nos demais sistemas esta redução também é verdadeira!
- Quanto vale:

$$111,010_2 = 1x2^2 + 1x2^1 + 1x2^0 + 0x2^{-1} + 1x2^{-2} + 0x2^{-3} = 7,25_{10}$$

- Então é assim que fazemos a conversão de forma direta?
 - Sim

Conversão Inteira:

- Binário para decimal:
 - Potência de base 10
- Decimal para binário:
 - Divisões sucessivas por 2
- Para converter 7,25₁₀ para binário basta divisões sucessivas por 2?
 - Não!

Conversão de números não inteiros

- Binário para decimal:
 - Potência de base 10
- Decimal para binário:
 - Parte inteira → Divisões sucessivas por 2 até quociente ser zero
 - Parte fracionária → Multiplicar por dois até parte fracionária ser zero (cada resultado da multiplicação é um digito binário)
- Converter: $7,25_{10} = X_2$

$$0,25 * 2 = 0,5$$

 $0,5 * 2 = 1,0$
Parte fracionária = ,01
 $7,25_{10} = 111,01_{2}$

Converter:
$$4,3_{10} = X_2$$

 $4/2 = 2 \text{ (resto 0)}$
 $2/2 = 1 \text{ (resto 0)}$
 $1/2 = 0 \text{ (resto 1)}$
Parte inteira = 100_2

Se multiplicação se repetir → é uma dízima periódica

Parte fracionária \approx ,0100110011... 4,3₁₀ = 100,0100110011...₂

A regra da multiplicação fracionária se aplica para a conversão de decimal para outras bases também:

Converter:
$$14,808_{10} = X_5$$

 $14/5 = 2 \text{ (resto 4)}$
 $2/5 = 0 \text{ (resto 2)}$
Parte inteira = 24_5

$$0,808 * 5 = 4,04$$

 $0,04 * 5 = 0,2$
 $0,2 * 5 = 1,0$
Parte fracionária = $,401_5$
 $14,808_{10} = 24,401_5$

SISTEMAS DE NUMERAÇÃO

Introdução à Ciência da Computação - ICC0001