Fonctionnalités et Techniques des SGBDs Relationnels

Plan

- Pourquoi l'optimisation des requêtes est importante?
- Rappel du processus d'analyse et d'exécution de requêtes
- Optimisation algébrique
 - Règles de réécriture
 - Algorithme d'optimisation
- Limites de l'optimisation algébrique
- Optimisation interne
 - Principes
 - Algorithmes de sélection
 - Algorithmes de jointures
- Choix d'un plan d'exécution
 - Critère d'estimation des coûts
 - Le cas d'Oracle

Exemple

Table P

<u>NumP</u>	NomP	PrenomP	Ville	
P1	Dupont	Pierre	Londres	
P2	Durant	Thomas	Paris	
Р3	Haumont	Bastien	Paris	
P4	Renard	Sylvain	Rome	
P5	Thery	Mathieu	Paris	

Table P x S

=> 30 tuples, 10 colonnes

>< SP=Jointure de S et P

Table S

<u>NumS</u>	NomS	Туре	Taille	Ville
S1	ActiveW	SARL	30	Paris
S2	Elec	EURL	5	Londres
S3	Factis	SA	125	Paris
S4	Lamini	SARL	22	Rome
S5	StatInter	SA	40	Londres
S6	Viabet	SARL	150	Paris

Jointure sur Ville

=> 12 tuples

Pourquoi optimiser l'évaluation d'une requête?

Exemple de requête:

```
SELECT NomP FROM P , S
WHERE S.Ville = P.Ville
AND S.Taille = 30 ;
```

- Strategies possibles :
- 1. ((P > < S) where S.Taille = 30) [NomP]
- 2. (P > < (S where S.Taille = 30)) [NomP]

Graphes de la requête

Critères d' Evaluation des performances

- |T| : taille du résultat intermédiaire T
- {T}: nombre de tuples examinés pour produire T
- Exemple:
- |P| = 100
- |S| = 500

Note : dans le cas où il existe une intégrité référentielle entre P et S

Evaluation des performances

Stratégie 1:

```
| T = P > < S | \le |PS| = 500

| T' = T WHERE taille = 30| = 5 	mtext{ (en moyenne)}

| T'' = T' [NomP] | \le 5

\{T\} \le 100 * 500 = 50.000 	mtext{ (boucle imbriquée)}

\{T'\} = 500

\{T''\} = 5 	mtext{ (en moyenne)}
```

Stratégie 2

```
| T = S WHERE taille = 30| = 5 (en moyenne)

| T' = P > < T | \leq | T | = 5

| T'' = T' [NomP] | \leq 5

{T} \leq 500

{T'} \leq 500

{T2} \leq 5
```

La stratégie 2 est plus intéressante

Traitement d'une Requête d'un SGBD Relationnel

Etapes de Traitement d'une Requête

Analyse

- Syntaxique
 - Syntaxe grammaticale
- Sémantique
 - Existence des tables et des attributs => Métabase

o Contrôle

- Contraintes d'Intégrité
- Modification des Questions
 - Vues
 - réécriture du code de la requête (cf. SQL)
- Déclencheurs
- Autorisations

Optimisation

- Simplification Normalisation + traduction algébrique
 - o => arbre de requête
- Restructuration
 - Choix d'un ordonnancement optimal des opérateurs
- génération d'un plan d'exécution optimisé
 - o choix entre différents algorithmes

Exécution

- Utilisation des méthodes d'accès
 - (B-Tree, Hachage, Index secondaires, ...)
- Sélections Projections Elimination des doubles
- Jointures
- Agrégats

Vues

 Réécriture de la requête par rapport aux vues

- Vues matérialisées
 - Le résultat est pré-calculé et stocké dans une table
 - Les requêtes sont calculés au moyen de cette table
 - Propagation des mises à jour dans la vue

Phase d'optimisation

- Elaboration d'un plan d'exécution=
 - Ordonnancement des opérations d'un arbre algébrique en respectant :
 - Les dépendances sur les flux de données
 - En se basant sur l'associativité des opérations
- Pour chaque opération
 - Choix de l'algorithme le moins coûteux
 - Calcul des coûts
 - Réels
 - Statistiques
 - Sélection du plus petit coût

Règles de réécriture pour l'optimisation algébrique

- Règles principales
 - (1) Commutativité des jointures
 - (R1 >< R2) ⇔ R2 >< R1</p>
 - (2) Associativité des jointures
 - $(R1 > < R2) > < R3 \Leftrightarrow R1 > < (R2 > < R3)$
 - (3) Groupabilité des restrictions
 - σ (R, C1 ^ C2) $\Leftrightarrow \sigma$ (σ (R,C1),C2)
 - (4) Semi-commutativité des projections et restrictions
 - π A1,A2,...Ap (σ (R,Ai = val) \Leftrightarrow σ (π A1,A2,...Ap(R),Ai = val)

res

V•Nom

res

V•Cru

=Gamay

res

P•NV

- Ssi i ∈ {1,...p}
- (5) Semi-commutativité des restrictions et jointures
 - σ (R >< S, A=val) ⇔ σ (R, A=val) >< S
 - Ssi A est un attribut de R

Règles de réécriture pour l'optimisation algébrique(2)

Règles supplémentaires

- (6) Semi-distributivité des projections / jointures
 - π A1,A2,...Ap,B1,B2,...Bq (R > < S) \Leftrightarrow
 - π A1,A2,...Ap (R) > π B1,B2,...Bq (S)
- (7) Distributivité des restrictions / unions ou différences
 - o $\sigma(R \cup S)$, A=val) ⇔ $\sigma(R, A=val) \cup \sigma(S, A=val)$
- (8) Distributivité des projections / unions
 - π A1,A2,...Ap(R \cup S) \Leftrightarrow
 - $\pi \text{ A1,A2,...Ap(R)} \cup \pi \text{ A1,A2,...Ap(S)}$

Algorithme intuitif d'optimisation algébrique

- Toujours pousser vers le bas de l'arbre les restrictions (règles 3, 5 et 7)
 - Diminue le volume des résultats intermédiaires
- Commencer par les jointures les plus restrictives (règle 1 et 2)
 - Produisent moins de résultats
 - Allègent le reste du travail
- Pousser les projections sur l'attribut de jointure sous la jointure (règle 6)
- pousser au maxi les projections vers le bas (règles 4,7 et 8)

Exemple

- Application des règles de réécritures sur la requête :
 - Quels sont les noms et prénoms des buveurs parisiens qui ont commandé du Sauternes de 2012 en quantité > 8 ?

Limites de l'optimisation algébrique

- La restructuration algébrique est nécessaire mais non suffisante
- D'autres éléments doivent être pris en compte:
 - L'accès aux données (séquentiel, haché, indexé)
 - L'algorithme à retenir pour chaque opération
 - des caractéristiques des relations
 - taille des relations,
 - o sélectivité des attributs, ...
 - Statistiques sur le peuplement de la base
 - de la configuration de la machine
 - o mémoire primaire
 - o accélérateur matériel, ...

Optimisation interne des requêtes

Algorithmes des Opérateurs

- Restriction
 - balayage séquentiel
 - fichier indexé (primaire, secondaire)
 - fichier haché
- Jointure
 - boucle imbriquée
 - tri-fusion
 - par hachage
 - avec index
- Projection
 - sans élimination des doublons
 - avec élimination des doublons
 - o basé sur un tri de la relation à projeter
- o Tri
- Agrégat

Restriction

Rappel: Supprime les lignes qui ne vérifient pas la condition

- Condition de Restriction
 - Comparaison entre une colonne et une valeur
 - Condition d'égalité à une valeur unique
 - O SELECT * FROM PERS WHERE SEX='MALE'
 - Condition d'intervalle de valeurs
 - O SELECT * FROM PERS WHERE AGE>10 AND AGE<21
 - Conjonction/Disjonction (AND,OR) sur plusieurs colonnes.
 - O SELECT * FROM PERS WHERE SEX= 'MALE' AND AGE>10 AND AGE<21

Sélectivité d'une Condition

- Taux de réduction de la relation source par restriction sur la condition.
- condition d'égalité
 - Restriction sur l'âge
 - Loi uniforme, Distribution de VA, Loi normal, ...
 - <u>Dépend de la « population » des lignes</u>

Propriétés de la sélectivité d'une question

- Condition < (ex: AGE < 10)
 - Scond = Σi € [Vmin, V[Si
- Condition > (ex: AGE > 10)
 - Scond = Σi €]V, Vmax] Si
- Condition d'intervalle (ex: AGE > 5 AND AGE < 10)
 - Scond = Σi €]V1, V2[Si
- Condition C1 et C2 (ex: AGE > 5 AND SEX= 'M') *
 - S _{C1 ET C2} = SC1 * SC2
- Condition C1 OU C2 (ex: AGE > 5 OR SEX= 'M')*
 - $S_{C1 OU C2} = S \neg C1 * S \neg C2$
 - * Suppose que C1 et C2 portent sur des variables indépendantes

Restriction - Balayage Séquentiel

- Balayage séquentiel
 - Trivial!: parcours des N blocs du fichier contenant la relation source et teste chaque tuple avec la condition

Fichier Source

Buffer In bc

Remarque: le coût de l'écriture est le même quelque soit l'algorithme de restriction

Fichier Résultat

Restriction - Balayage Séquentiel (2)

TempsES (BAL) = BT *TempsTrans + NombrePos * TempsPosDébut

BT : nb de pages (blocs) qu'occupent sur disque la table

Positionnement tête de lecture

Restriction – Accès haché

- Fichiers Hachés
 - SI attribut de restriction \in { attributs de placement } $TempsES(S=H) = [N_T/(TH_T*FB_T)] *$ TempsESBloc

Nt: nombre de tuples

THt: nombres de paquets

FBt: facteur de blocage

Ne convient pas aux Traitements de requêtes D'intervalles

Restriction - Accès par Index

- Rappel : Caractéristiques du Fichier Indexé
 - Attribut Clé / Non Clé
 - Trié / Non Trié (intervalle de valeurs)
- Condition d'égalité
 - Attribut Clé
 - l'index donne l'adresse du bloc où se trouve le tuple (au max 1 par valeur)
 - Attribut Non Clé
 - l'index donne l'adresse des blocs où se trouvent les tuples (si le fichier est trié sur l'attribut d'index, les tuples prenant la valeur de restriction sont groupés).
- Condition d'intervalle
 - Trié: l'index donne les adresses du premier bloc et du dernier bloc dans le fichier
- Cas d'Index Multiples
 - si plusieurs conditions "Attribut Opérateur Valeur"
 - On choisit t l'index de la condition la plus sélective

Restriction – Accès par index

Coût Index Trié

- lecture des blocs d'index dans le chemin vers le premier bloc contenant un enregistrement + lecture des blocs du fichier
- Coût Index Non Trié
 - lecture des blocs d'index
 + lecture des blocs du fichier (au max N)
- Remarque
 - Selon la sélectivité de la condition, un accès séquentiel peut être moins coûteux que l'accès indexé

Projection

- sans élimination des doublons
 - création d'un nouveau tuple en supprimant les attributs n'apparaissant pas dans la projection
 - cette réduction verticale est en général effectuée à la suite d'autres opérations (restriction, jointure, ...)
- avec élimination des doublons
 - Comme précédemment
 - Puis tri (sur disque) des tuples
 - o Avec élimination les éléments en doubles en cours de tri
- Sélectivité
 - sans élimination des doublons
 - Même nombre de tuples que dans la rel source
 - Taille moyenne tuple projeté = Taille moyenne du tuple source / Σ {attributs projection} Taille moy. Attribut
 - avec élimination des doublons :
 - nombre de tuple inférieur à celui de la table source

Algorithmes de jointure

- Jointure sans index
 - Boucle imbriquée mais peu utilisé car couteux si table de grandes tailles
 - Tri-Fusion
 - Jointure par hachage
- Jointure avec index
 - Boucle imbriquée
 - Sur la table externe
 - Sur la table interne

Equi-Jointure par Boucle Imbriquée (Nested Loop)

- O Plusieurs variantes:
 - par ligne
 - par bloc
 - multibloc
 - Raffinement
 - Arrêt de la boucle interne en cas de clé étrangère dès la première jointure
 - avec index sur table interne
 - Avec hachage sur table interne

Equi-Jointure par Boucle Imbriquée multibloc

- Hypothèse : |R| < |S|
 - R est dite table externe
- Algorithme
 - Ressources : N+2 pages de mémoire primaire

Equi-Jointure par Tri-Fusion (Sort-Merge)

- Algorithme
 - Ressources : N+1 pages de mémoire primaire
 - Trier S avec N+1 buffers
 Trier R avec N+1 buffers
 Lire les tuples de S et de R en parallèle
 en "Mariant" les tuples de R et de S
 - Remarque :
 - le résultat est une relation triée sur l'attribut de jointure
 - Algorithme souvent utilisé en cas d'absence d'index

Equi-Jointure Utilisation d'index

- Hypothèse
 - R est Indexé sur l'attribut de Jointure
- Algorithme
- Fusion d'index
 - Quand R et S tous les 2 sont indexés sur l'attribut de Jointure

Equi-Jointure

Equi-Jointure

OHachage "Grace" (Univ of Tokyo)
phase 1

Equi-Jointure

 Hachage Hybride (Univ of Wisconsin-Madisson)

phase 1

L'effet des statistiques

- Le système choisira:
 - La boucle imbriquée simple si les tables sont de petites tailles
 - Le balayage séquentiel au lieu d'un parcours indexée si la sélectivité est trop grande
- Sources d'information
 - Echantillonnages
 - Calcul statistique périodique

Taille du Résultat d'une Jointure

- Evaluation de la Taille de l'article
 - Concaténation des 2 articles
- Evaluation du Nombre d'articles de jointure aj
 - dépendant de la nature des attributs de jointure (S.A et R.B) pour lesquels il existe peut être des contraintes d'intégrité référentielle
 - dépendant du nombre de valeurs discrètes partagées entre l'ensemble des valeurs de S.A et l'ensemble des valeurs de R.B
 - Contraintes d'intégrité référentielle
 - Exemple : S.A références R.B
 - aj = as
 - Remarque:
 - Si une restriction de sélectivité SR porte sur R.B précède la jointure
 - aj = SR * as

Sélectivité du critère de jointure

- Simplification
 - pour simplifier, on suppose un coefficient de sélectivité SJ
 - SJ = aj /(ar * as)
 - SJ = 0 si aucun tuple ne joint
 - SJ = 1 / MAX(NDIST(Ar), NDIST(As))
 - o si distribution uniforme équiprobable des attributs Ar et As sur un même domaine
 - SJ=1 pour un produit cartesien

Jointures Pré-Calculées

- Table contenant le résultat de la jointure
- Schéma
 - J(AS, ROWIDS, AR, ROWIDR)
 - ROWIDS est une adresse physique de ligne de S
 - ROWIDR est une adresse physique de ligne de R
- Mise à jour (delete, insert, update) de R et de S
 - Entraine un Re-calcul partiel de J a partir de J, S, R

Mise en œuvre d'un plan d'exécution

Objectif:

 Réduire le coût de réalisation du plan d'exécution

Plusieurs solutions

- Mise en œuvre par matérialisation
- Mise en œuvre par pipeline

Mise en œuvre par matérialisation

Inconvénients

Ecriture des tables intermédiaires sur disque!

Mise en œuvre par pipeline

oRemarque: ne marche pas pour toutes les situations

Quelques autres règles utiles

- Combinaison avec une opération binaire précédente
 - jointure et projection
 - jointure et restriction
- Combiner les opérations unaires
 - restriction et projection
- Commencer par les jointures qui impliquent des tables en cluster, avec index ou hachées.

Optimisation de requête dans Oracle

- Oracle permet:
 - Définition d'index : il s'agit d'arbre B+
 - Hachage
 - Clustering : regrouper physiquement des données succeptibles d'être concernées par une même jointure
 - Index sur la clé de jointure

Oracle: types d'accès

- o accès séquentiel
 - Full TABLE SCAN < nom de table >
- accès par adresse
 - Accès à un tuple connaissant son adresse
 - ACCESS BY ROWID
- Parcours de données en « cluster »
 - CLUSTER SCAN
- Accès par hachage
 - HASH SCAN < nom de la table >
- Parcourir index
 - INDEX SCAN

Algorithmes de jointure utilisés

- Boucle imbriquée
 - Si un ou deux indexs car moins couteux
 - NESTED LOOP
- Tri fusion
 - Si pas d'index
 - SORT
 - MERGE
- CLUSTERING

L'outil EXPLAIN

- Permet de visualiser le plan d'exécution retenu
- Utilisation
 - EXPLAIN PLAN SET statement = « un_nom » FOR <clause SFW>
 - Exemple
 - EXPLAIN PLAN SET statement = « un_nom »
 FOR SELECT * FROM VINS WHERE COULEUR
 = « Rouge »
 - Resultat
 - SELECT STATEMENT
 - 1 TABLE ACCESS FULL VINS

Autre exemple

from Produits, PrixFour, NoteMag

select desig, marque, prix

```
where Produits.code=PrixFour.code
and Produits.code=NoteMag.code
and note > 8;

0 SELECT STATEMENT
1 MERGE JOIN
2 SORT JOIN
3 NESTED LOOPS
4 TABLE ACCESS FULL NOTEMAG
5 TABLE ACCESS BY INDEX ROWID PRODUITS
6 INDEX UNIQUE SCAN A34561
7 SORT JOIN
```

8 TABLE ACCESS FULL PRIXFOUR

« soulager » l'optimiseur

Problématique

- Pour une même requête :
 - Plusieurs représentations internes équivalentes
 - Plusieurs choix d'implantation
 - Plusieurs plans d'exécutions possibles

Objectif

- Réduire le nombre de plans d'EXQ
- Solutions
 - Eliminer les plans inapplicables
 - Heuristiques

NOM	PRENOM
dupont	david
achour	hakim
durant	laurent
loiseau	kevin
cruise	tom
jolie	angelina
pitt	brad
-roselmack	harry
pajamas	david
delahousse	laurent
chazal	claire
NOM	PRENOM
lucet	elise
aliagas	nikos
castaldi	benjamin
dechavanne	christophe
leymergie	william
davant	sophie
durant	paul
thomas	estelle
19 ligne(s) s?lectio	nn?e(s).

Ecoul?: 00:00:00.01

Plan d'ex?cution

Plan hash value: 979701618

Id Operation	Name	1	Rows		Bytes	Cost	(%CPU)	Time
0 SELECT STATEMENT 1 TABLE ACCESS FUL					456 456			00:00:01 00:00:01

Note

⁻ dynamic sampling used for this statement

NOM	PRENOM
dupont	david
achour	hakim
durant	laurent
loiseau	kevin
cruise	tom
jolie	angelina
pitt	brad
roselmack	harry
pajamas	david

9 ligne(s) s?lectionn?e(s).

Ecoul?: 00:00:00.00

Plan d'ex?cution

Plan hash value: 979701618

I	 d		Operati	ion	1	Name	1	Rows	1	Bytes	I	Cost	(%CPU)	Time	
-		-		STATEMENT ACCESS FULI	-		-			324 324				00:00:01 00:00:01	

Predicate Information (identified by operation id):

1 - filter("VILLE"='valenciennes')

Note

- dynamic sampling used for this statement

NENT	NETUD	NENS	REMUN	ANNE
1	1	1	300	2012
3	3	3	0	2012
4	4	4	150	2012
1	5	5	600	2012
3	6	6	300	2012
4	7	2	200	2012
1	8	4	0	2012
3	9	4	100	2012
4	10	2	300	2012
1	11	1	200	2012
2	13	3	200	2012
NENT	NETUD	NENS	REMUN	ANNE
3	15	5	300	2012
4	17	6	500	2012

13 ligne(s) s?lectionn?e(s).

Ecoul?: 00:00:00.00

Plan d'ex?cution

Plan hash value: 2239145125

Id Operation	Name	Rows	Bytes	Cost (%CPU)	Time
0 SELECT STATEMENT * 1 TABLE ACCESS FULL	•	•	728 728		00:00:01 00:00:01

Predicate Information (identified by operation id):

1 - filter("ANNEE"='2012')

NENS	NOM	PRENOM	INSTITUT
2 3	niar wilbaut desertot lecomte	smail christophe mikael sylvain	ISTV ISTV ISTV ISTV

Ecoul?: 00:00:00.00

Plan d'ex?cution

Plan hash value: 3986204123

I	d Operation	I	Name	I	Rows	1	Bytes	I	Cost (%CPU)	Time	
	0 SELECT STATEMENT 1 TABLE ACCESS FULI									00:00:01 00:00:01	

Predicate Information (identified by operation id):

1 - filter("INSTITUT"='ISTV')

NOM	PRENOM									
dupont achour durant loiseau cruise jolie pitt roselmack pajamas	david hakim laurent kevin tom angelina brad harry david									
9 ligne(s) s?lection										
Ecoul? : 00 :00 :00.	0 2									
Plan d'ex?cution						_				
Plan hash value: 235	1865347									
Id Operation Time			Name							·
0 SELECT STATE 00:00:01	MENT	I		I	9	I	324	I	2	(0)
1 TABLE ACCES 00:00:01	S BY INDEX	ROWID	ETUDIANT	I	9	I	324	I	2	(0)I
* 2 INDEX RANG 00:00:01	E SCAN	I	INDEXVILLE	I	9	I		I	1	(0)
Predicate Informatio			operation id							
2 – access("VILLE	"='valencie	nnes')								

NOM	PRENOM									
achour										
Ecoul? : 00 :00 :00.	01									
Plan d'ex?cution										
Plan hash value: 176										
Id Operation Time		I	Name	I	Rows	I	Bytes	I	Cost	(XCPU)
0 SELECT STATE 00:00:01	MENT	I		I	1	I	37	I	1	. (0)
1 TABLE ACCES 00:00:01	S BY INDEX ROW	IDI	ETUDIANT	I	1	I	37	I	1	. (0)
* 2 INDEX UNIQ 00:00:01	UE SCAN	I	SYS_C0053833	I	1	I		I	1	. (0)
Predicate Informatio	n (identified	by c	operation id):	:						

2 - access("NETUD"=3)

Plan d'ex?cution Plan hash value: 3659458962 | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time 0 | SELECT STATEMENT | 15 | 1125 | 7 (15)| 00:00:01 |* 1 | HASH JOIN | | 15 | 1125 | 7 (15)| 00:00:01 2 | TABLE ACCESS FULL | ENTREPRISE | 4 | 140 | 3 (0) | 00:00:01 3 | TABLE ACCESS FULL| STAGE | 15 | 600 | 3 (0)| 00:00:01 Predicate Information (identified by operation id):

1 - access("ENTREPRISE"."NENT"="STAGE"."NENT")

```
Plan d'ex?cution
Plan hash value: 1465214984
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time
| 0 | SELECT STATEMENT |
                        | 42 | 3612 | 9 (12)| 00:00:
01 l
|* 1 | HASH JOIN
                            | 42 | 3612 | 9 (12)| 00:00:
01 l
| 2 | NESTED LOOPS |
                                 | 42 | 2142 |
                                                   5 (0)| 00:00:
01 |
| 3 | TABLE ACCESS FULL| ETUDIANT | 19 | 475 |
                                                   3 (0)| 00:00:
01 |
|* 4 | INDEX RANGE SCAN | SYS_C0053837 | 2 | 52 | 1 (0) | 00:00:
01 l
| 5 | TABLE ACCESS FULL | FORMATION | 7 | 245 | 3 (0) | 00:00:
01 |
Predicate Information (identified by operation id):
```

^{1 -} access("INSCRIPTIONS"."NFORM"="FORMATION"."NFORM")

^{4 -} access("INSCRIPTIONS"."NETUD"="ETUDIANT"."NETUD")

dupont		300								
delahous	sse	200								
loiseau pitt		600 0								
	: 00 :00 :00.01									
lan d'e	ex?cution									
 Plan has	:h value: 3921539622									
Id 	Operation	Name	I	Rows	Ву	tes	I	Cost (MCPU)	Time
0 :01	SELECT STATEMENT	I	I	4	I	396	I	11	(19)	00:0
1 :01	HASH GROUP BY	I	I	4	I	396	I	11	(19)	00:0
* 2 :01	HASH JOIN	I	I	4	I	396	I	10	(10)	00:0
3 :01	MERGE JOIN CARTESIA	N	I	19	1	140	I	6	(0)	00:0
* 4 :01	TABLE ACCESS FULL	ENTREPRISE	1	1	I	35	I	3	(0)	00:0
5 :01	BUFFER SORT	1	I	19	I	475	I	3	(0)	00:0
6 :01	TABLE ACCESS FULL	ETUDIANT	I	19	I	475	I	3	(0)	00:0
7 :01	TABLE ACCESS FULL	STAGE	I	15	I	585	I	3	(0)	00:0
Predicat	e Information (identif	ied by operat	10	n id):						
2 - 0	access("ENTREPRISE"."NEI "STAGE"."NETUD"=									

NETUD	NOM		PRENOM			۷J	ILLE			(CP	
19 18 14 16	chazal durant davant aliagas dechavanne thomas	-	claire paul sophie nikos christophe estelle			li li li	ille ille ille ille ille ille			<u>:</u> :	59 59 59	 000 000 000 000 000
6 ligne(s)	s?lectionn?e(s).											
Ecoul?:00	3 :00 :00.02											
Plan d'ex?d	cution											
Plan hash v	value: 363209155											
Id Ope	eration	1	Name	 I	Rows	ı	Bytes	 I	Cost	 (%CPU)	 I	 Time
0 SEL 0:01	LECT STATEMENT	I		I	6	I	396	I	6	(17)	I	00:0
* 1 HA 0:01	ASH JOIN ANTI	I		I	6	I	396	I	6	(17)	I	00:0
2 1 0:01	TABLE ACCESS FULL	I	ETUDIANT	I	19	I	1007	I	3	(0)	I	00:0
3 1 0:01	INDEX FAST FULL SCAN	11	SYS_C0053840	I	15	I	195	I	2	(0)		00:0
Predicate 1	Information (identif	ie	ed by operatio	n 	id):							
1 <u>- acc</u> e	ومور"NETUD"_"NETUD" ۱											

1 - access("NETUD"="NETUD")

Bibliographie

- Date
- Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Widom, "Database System Implementation", 2000, Ed Prentice Hall, ISBN 0-13-040264-8
- Steve Adams, "Oracle 8i Internal Services", O Reilly, 1999, ISBN1-56592-598-X
- Cours de G. Gardarin
- Cours de W. LITWIN, « Optimisation algébriques de requêtes relationnelles »
- Cours Rigaux