

Mathématiques

Classe: 4ème Mathématiques

Devoir de synthèse N°1

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1

(5) 60 min

6 pts

Répondre par Vrai ou Faux, en justifiant la réponse.

- (1) D et Δ sont deux droites strictement parallèles, A est un point de D et B est un point de Δ tels que (AB) n'est pas perpendiculaire à D. Soit $\mathscr E$ l'ensemble des isométries du plan qui transforme D en Δ et A en B.
 - (a) & contient une translation
 - **(b)** & contient une rotation
 - (c) & contient une symétrie orthogonale
 - (d) & contient une symétrie glissante.
- 2 ABDC est un parallèlogramme de centre O. $S_{(AD)} \circ S_O = S_{(BC)}$ si et seulement si ABDC est un losange
- 3) Si f est une isomètrie qu n'admet aucun point fixe alors f o f est une translation
- (4) ABCD est un carré.

 L'isométrie S_(AD) o S_(AB) o S_(BC) est la symétrie glissante de vecteur $2\overrightarrow{AB}$ et d'axe (AB).
- S ABC est un triangle équilatéral et f l'isométrie du plan telle que f(A) = B, f(B) = C et f(C) = A alors $f \circ f \circ f$ est l'identité du plan.
- 6 Δ et Δ' sont deux droites perpendiculaires. Si f et g sont deux symétries glissantes d'axes respectifs Δ et Δ' alors f o g est symétrie centrale.

Exercice 2

5 pts

- 1°) Résoudre dans \mathbb{C} l'équation $z^2 4z = 2\overline{z} 8$.
- 2°) Le plan P est muni d'un repère orthonormé $\left(O,\vec{u},\vec{v}\right)$. On considère les points A , B et C d'affixes respectives $z_A=2$; $z_B=1+i\sqrt{3}$ et $z_C=\overline{z_B}$.
- 3°)a) Montrer que les points B et C appartiennent au cercle (ζ) de centre O et passant par A.
 - b) Soit M un point du cercle (ζ) d'affixe $2e^{i\theta}$; où θ est un réel de l'intervalle $]-\pi;\pi]$.

Construire le point M' image de M par la rotation de centre O et d'angle $\frac{\pi}{3}$.

- c) Justifier que le point M' a pour affixe $z' = z_B e^{i\theta}$.
- 4°) Soient I et J les milieux respectifs des segments [BM]et [CM].
 - a) Montrer que les points I et J ont pour affixes respectives

$$z_{I} = \frac{z_{B}}{2} + e^{i\theta} \ et \ z_{J} = \frac{e^{i\theta}z_{B} + z_{C}}{2}.$$

- b) Montrer que $\frac{z_J 2}{z_I 2} = \frac{z_B}{2}$. En déduire que le triangle AIJ est équilatéral.
- 5°) a) Montrer que Al² = $4-3\cos(\theta)+\sqrt{3}\sin(\theta)$.
- b) Déterminer la position du point M pour laquelle la longueur du coté [Al] du triangle AlJ est minimale.

Exercice 3

(5) 60 min

5 pts

Le plan est orienté dans le sens direct. Soit ABCD un losange de centre O tels que

- $(\overrightarrow{AB}; \overrightarrow{AD}) \equiv \frac{\pi}{3}[2\pi]$
- I, J, K, L et Ω sont les milieux respectifs des segments [AB] ; [AD] ; [DC] ; [BC] et [AO]
- La droite (LJ) coupe la droite (KB) en H.
- 1°) Soit l'isométrie $g = r_{A;\frac{\pi}{2}} \circ t_{\overline{J}}$. Déterminer g (J) puis caractériser g.
- 2°) Soit $f = r_{\left(A; \frac{\pi}{3}\right)} \circ t_{\overline{KB}}$
 - a) Déterminer la droite Δ telle que $\,t_{\overline{\text{KB}}}=\,\,S_{_{\left(AB\right)}}\circ S_{_{\Delta}}\,.$
 - b) En déduire la nature et les éléments caractéristiques de f.
- 3°)a) Montrer qu'il existe un unique antidéplacement h qui envoie B sur A et A sur D.
 - b) Montrer que h est une symétrie glissante dont on déterminera l'axe et le vecteur.
 - c) En déduire que $g \circ h = r_{\left(A; \frac{\pi}{3}\right)} \circ S_{\left(IJ\right)}$.

On donne AB = 2 et on considère le repère orthonormé direct (O,u,OD) avec $\vec{u} = \frac{1}{OC} \overrightarrow{OC}$.

Soit ϕ l'application du plan qui à tout point M (z) associe le point M' (z') tel que $z' = \frac{-1 - i\sqrt{3}}{2} - \sqrt{3} \ .$

- a) Vérifier que $z_1 = \frac{-\sqrt{3} i}{2}$.
- b) Montrer que φ est un antidéplacement qui transforme I en J et O en A.
- c) On note par $\Omega' = r_{\left(A; \frac{\pi}{3}\right)}(\Omega)$. Montrer que $\phi = g \circ h$. En déduire l'image de Ω par ϕ .
- d) Déterminer la nature et les éléments caractéristiques de φ.

Exercice 4

© 50 min

4 pts

Soit f la fonction définie sur l'intervalle $]0,+\infty[$ par : $f(x)=\sqrt{3+\frac{1}{x}}.$

- 🚺 🍙 Etudier le sens de variation de f.
 - **b** Montrer que pour tout réel $x \in]1, 2[, |f'(x)| \le \frac{1}{2\sqrt{3}}.$
- 2 Montrer que l'équation f(2x) = 2x admet une solution unique $\alpha > 0$ et que $\frac{1}{2} < \alpha < 1$.

- $\textbf{3} \ \textit{On considère la suite} \ (U_n) \ \textit{définie par} : U_0 = \frac{3}{4} \ \textit{et pour tout} \ n \geq 0, \quad U_{n+1} = \frac{1}{2} f \left(2 U_n \right)$
 - (a) Montrer que pour tout $n \geq 0, \quad \frac{1}{2} < U_n < 1.$
 - (b) Montrer que pour tout $n \ge 0$, $|U_{n+1} \alpha| \le \frac{1}{2\sqrt{3}}|U_n \alpha|$.
 - (c) Montrer que (U_n) converge vers α .
- (4) Pour tout réel x, on pose : $P(x) = 4x^3 3x$
 - (a) Montrer que l'équation $P(x) = \frac{1}{2}$ possède une solution unique β dans l'intervalle $\left]\frac{1}{2},1\right[$.
 - **b** Montrer qu'il existe un réel unique t dans l'intervalle $\left]0, \frac{\pi}{2}\right[$ tel que $\beta = \cos t$.
 - © Montrer que $\cos 3t = 4 \cos^3 t 3 \cos t$ (On pourra utiliser la formule d'Euler).
 - (d) Déduire que $\alpha = \cos \frac{\pi}{9}$.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000