Marginal probability

Marginal probability (also called simple probability), P(X), is the probability of an event X occurring, where X is a simple event.

Example: referring to the statistics enrolment example below, What is the probability of selecting a male? What is the probability of selecting a person taking statistics?

	Enrolment status				
	Taking	Not taking			
Gender	Stats.	Stats.	Total		
Male	40	58	98		
Female	32	43	75		
Total	72	101	173		

P(male) =
$$\frac{\text{No. of males}}{\text{Total sample size}} = \frac{98}{173} = 0.566$$

P(taking Stats) = $\frac{\text{No. of taking Stats.}}{\text{Total sample size}} = \frac{72}{173} = 0.416$

Joint Probability

The probability of occurrence of two or more simple events

Examples:

- a. What is the probability of randomly selecting a person who is male <u>and</u> taking statistics?
- b. What is the probability of randomly selecting a person who is male **and** not taking statistics?

a. P(male
$$\cap$$
 stats) = $\frac{\text{No. of males and stats}}{\text{Total sample size}} = \frac{40}{173} = 0.231$

b. P(male
$$\cap$$
 not stats) = $\frac{\text{No. of males and not stats}}{\text{Total sample size}} = \frac{58}{173} = 0.335$

Conditional Probability

Exercise 2: The probability that it is Friday and that a student is absent is 0.03. Since there are 5 school days in a week, the probability that it is Friday is 0.2. What is the probability that a student is absent given that today is Friday?

$$P(\text{absent} \mid \text{Friday}) = \frac{P(absent \cap Friday)}{P(Friday)} = \frac{0.03}{0.2} = 0.15$$

Binomial Distribution

Example: A biased coin which produces heads only 40% of the time is tossed twice.

- a. What is the probability of getting one head?
- b. What is the probability of getting at most one head?

Solution: Given: p = 0.4; q = 0.6; n = 2

Formula:
$$P(x) = \frac{n!}{x!(n-x)!} p^x \cdot q^{n-x}$$

a. P(one head): $P(x = 1) = \frac{2!}{1!(2-1)!} \times 0.4^{1} \times 0.6^{1}$ = $\frac{2 \times 1}{1 \times 1} \times 0.4 \times 0.6 = 0.48$

Note: **Excel** f_x function: =binom.dist(1,2,0.4,false)

b. P(at most one head):

$$P(x \le 1) = P(x = 0) + P(x = 1)$$

$$= \left[\frac{2!}{0!(2-0)!} \times 0.4^{0} \times 0.6^{2} \right] + \left[\frac{2!}{1!(2-1)!} \times 0.4^{1} \times 0.6^{1} \right]$$

$$= 0.36 + 0.48$$

$$= 0.84$$

Excel f_x function: =binom.dist(1,2,0.4,true)

Exercise: Forty-five percent of all registered voters in a national election are female. A random sample of 8 voters is selected. What is the probability that the sample contains **2 males**?

Hint:

55% are male and there are two outcomes: male/female, therefore the Binomial distribution equation is applied

n = 8; p = 0.55; q = 1-p = 0.45
Hence
$$P(x = 2) = \frac{8!}{2!(8-2)!} 0.55^2 (0.45)^{8-2} = 0.0703$$

Questions from Lecture 1

- Q1. If I sample with replacement, which of the following may be true?
- (a) The numerator for the next event's probability changes.
- (b) The denominator for the next event's probability changes.
- (c) None of the values used in calculating the next event's probability change.
- (d) Both the numerator and denominator for the net event's probability change.

Questions from Lecture 1

Q2. Using the given data, answer the following question

	Pass Course (A)	Fail Course (A')
Pass Final (B)	142	34
Fail Final (B')	89	56

What is the probability that a student, taken at random from a class, would have passed the course given that he/she failed the final?

(a) 0.72 (b) 0.55 (c) 0.44 (d) 0.61

Questions from Lecture 1

Q2. Solution

	Pass Course (A)	Fail Course (A')	Total
Pass Final (B)	142	34	176
Fail Final (B')	89	56	145
Total	231	90	321

Question: P(A | B')

We know that
$$P(A \mid B') = P(A \text{ and } B')/P(B')$$

= $(89/321)/(145/321)$
= $89/145 = 0.61$