MC458 — Projeto e Análise de Algoritmos I

Cid Carvalho de Souza Cândida Nunes da Silva Orlando Lee

7 de março de 2016

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MC458 — Projeto e Análise de Algoritmos I

Agradecimentos (Cid e Cândida)

- Várias pessoas contribuíram direta ou indiretamente com a preparação deste material.
- Algumas destas pessoas cederam gentilmente seus arquivos digitais enquanto outras cederam gentilmente o seu tempo fazendo correções e dando sugestões.
- Eis a lista de "colaboradores" (em ordem alfabética):
 - Célia Picinin de Mello
 - José Coelho de Pina
 - Orlando Lee
 - Paulo Feofiloff
 - Pedro Rezende
 - Ricardo Dahab
 - Zanoni Dias

Antes de mais nada...

- Uma versão anterior deste conjunto de slides foi preparada por Cid Carvalho de Souza e Cândida Nunes da Silva para uma instância anterior desta disciplina.
- Esses slides são o fruto de um trabalho colaborativo de vários professores.
- Nunca é demais enfatizar que o material é apenas um guia e não deve ser usado como única fonte de estudo. Para isso consultem a bibliografia (em especial, "Cormen" e "Manber").

Orlando Lee

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando L

MC458 — Projeto e Análise de Algoritmos

Indução matemática

Demonstração por Indução

Na Pemonstração por Pemonstração, queremos demonstrar a validade de P(n), uma propriedade P com um parâmetro natural Pemonstração, para todo valor de Pemonstração, queremos demonstrar a validade de Pemonstração, queremos demonstração, que Pemonstração, que Pemonstraç

Há um número infinito de casos a serem considerados, um para cada valor de *n*. Demonstramos os infinitos casos de uma só vez:

- Base da Indução: Demonstramos P(1).
- Hipótese de Indução: Supomos que P(n) é verdadeiro.
- Passo de Indução: Provamos que P(n+1) é verdadeiro, a partir da hipótese de indução.

Exemplo:

A soma dos n primeiros naturais ímpares é n^2 .

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MC458 — Projeto e Análise de Algoritmos

Demonstração por Indução

Às vezes queremos provar que uma proposição P(n) vale para $n \ge n_0$ para algum n_0 .

- Base da Indução: Demonstramos $P(n_0)$.
- Hipótese de Indução: Supomos que P(n-1) é verdadeiro.
- Passo de Indução: Provamos que P(n) é verdadeiro, a partir da hipótese de indução.

Exemplo:

Todo natural $n \ge 2$ pode ser fatorado como um produto de primos.

Demonstração por Indução

Outra forma equivalente:

- Base da Indução: Demonstramos P(1).
- **Hipótese de Indução:** Supomos que P(n-1) é verdadeiro.
- Passo de Indução: Provamos que P(n) é verdadeiro, a partir da hipótese de indução.

Exemplo:

A soma dos n primeiros naturais ímpares é n^2 .

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lo

MC458 — Projeto e Análise de Algoritmos

Indução Fraca Indução Forte

A *indução forte* difere da *indução fraca* (ou *simples*) apenas na suposição da hipótese.

No caso da indução forte, devemos supor que a propriedade vale para todos os casos anteriores, não somente para o anterior, ou seja:

- Base da Indução: Demonstramos P(1).
- Hipótese de Indução Forte: Supomos que P(k) é verdadeiro, para todo $1 \le k < n$.
- Passo de Indução: Provamos que P(n) é verdadeiro, a partir da hipótese de indução.

Exemplo:

Todo natural $n \ge 2$ pode ser fatorado como um produto de primos.

Prove que para naturais $x \ge 1$ e $n \ge 1$, $x^n - 1$ é divisível por x - 1.

Demonstração:

• A base da indução é, naturalmente, o caso n=1. Temos que $x^n-1=x-1$, que é obviamente divisível por x-1. Isso encerra a demonstração da base da indução.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MC458 — Projeto e Análise de Algoritmos I

Exemplo 2

Prove que todo natural $n \ge 8$ pode ser escrito como soma de 3's e 5's. (postagem de selos com valores 3 ou 5)

• A base da indução consiste nos seguintes casos:

$$8 = 3 + 5$$

$$9 = 3 + 3 + 3 + 3,$$

$$10 = 5 + 5.$$

Isto completa a prova da base da indução.

É necessário aumentar a base por causa do **passo de indução** feito a seguir.

Exemplo 1 (cont.)

- A hipótese de indução é: Suponha que $x^n 1$ seja divisível por x 1 para todo natural $x \ge 1$.
- O passo de indução é: Supondo a h.i., mostraremos que $x^{n+1} 1$ é divisível por x 1, para todo natural x > 1.

Primeiro reescrevemos $x^{n+1} - 1$ como

$$x^{n+1} - 1 = x(x^n - 1) + (x - 1).$$

Pela h.i., $x^n - 1$ é divisível por x - 1. Portanto, o lado direito da equação acima é, de fato, divisível por x - 1.

A demonstração por indução está completa.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando L

MC458 — Projeto e Análise de Algoritmos I

Exemplo 2 (cont.)

- A hipótese de indução (forte) é: Para todo natural k tal que 8 ≤ k < n, temos que k pode ser escrito como uma soma de 3's e 5's.
- O **passo de indução** é: Supondo a h.i., mostraremos que *n* pode ser escrito como uma soma de 3's e 5's.

Note que n = (n - 3) + 3.

Como $n \ge 11$ temos que $n-3 \ge 8$ e pela h.i., (n-3) pode ser escrito como uma soma de 3's e 5's.

Portanto, n também pode e isto completa a prova por indução.

Demonstre que o número R_n de regiões no plano criadas por n retas em posição geral é igual a

$$R_n=\frac{n(n+1)}{2}+1.$$

Um conjunto de retas está em posição geral no plano se

- todas as retas são concorrentes, isto é, não há retas paralelas e
- não há três retas interceptando-se no mesmo ponto.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MC458 — Projeto e Análise de Algoritmos I

Exemplo 3 (cont.)

Demonstração: A idéia que queremos explorar para o passo de indução é a seguinte: supondo que a fórmula vale para n, adicionar uma nova reta em posição geral e tentar assim obter a validade de n+1.

• A base da indução é, naturalmente, n = 1. Uma reta sozinha divide o plano em duas regiões. De fato,

$$R_1 = (1 \times 2)/2 + 1 = 2.$$

Isto conclui a prova para n = 1.

Exemplo 3 (cont.)

Antes de prosseguirmos com a demonstração vejamos exemplos de um conjunto de retas que está em posição geral e outro que não está.

Em posição geral

Não estão em posição geral

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando L

MC458 — Projeto e Análise de Algoritmos I

Exemplo 3 (cont.)

- A hipótese de indução é: Suponha que $R_n = n(n+1)/2 + 1$.
- O passo de indução é: Supondo a h.i., mostraremos que para n+1 retas em posição geral vale que

$$R_{n+1} = \frac{(n+1)(n+2)}{2} + 1.$$

Considere um conjunto L de n+1 retas em posição geral no plano e seja r uma dessas retas. Então, as retas do conjunto $L'=L\setminus\{r\}$ obedecem à hipótese de indução e, portanto, o número de regiões distintas do plano definidas por elas é (n(n+1))/2+1.

Exemplo 3 (cont.)

- Além disso, r intersecta as outras n retas em n pontos distintos. O que significa que, saindo de uma ponta de r no infinito e após cruzar as n retas de L', a reta r terá cruzado n+1 regiões, dividindo cada uma destas em duas outras.
- Assim, temos que

$$R_{n+1} = R_n + n + 1$$

= $\frac{n(n+1)}{2} + 1 + n + 1$ (pela h.i.)
= $\frac{(n+1)(n+2)}{2} + 1$.

Isso conclui a demonstração.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Le

MC458 — Projeto e Análise de Algoritmos

Exemplo 4 (cont.)

• O passo de indução é: Supondo a h.i., mostraremos que Sn+1 < 1.

Pela definição de S_n , temos que

$$S_{n+1} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{2^n} + \frac{1}{2^{n+1}} = S_n + \frac{1}{2^{n+1}}.$$

Pela hipótese de indução, $S_n < 1$. Entretanto, nada podemos dizer acerca de S_{n+1} em conseqüência da hipótese, já que não há nada que impeça que $S_{n+1} \geq 1$.

É preciso manipular S_{n+1} de outra maneira.

Exemplo 4

Vejamos agora um exemplo onde a indução é aplicada de forma um pouco diferente.

Demonstre que a série S_n definida abaixo satisfaz

$$S_n = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{2^n} < 1,$$

para todo inteiro $n \ge 1$.

Demonstração:

- A base da indução é n=1, para a qual a desigualdade se reduz a $\frac{1}{2} < 1$, obviamente verdadeira.
- A hipótese de indução é: Suponha que $S_n < 1$.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando

MC458 — Projeto e Análise de Algoritmos

Exemplo 4 (cont.)

• O passo de indução é: Supondo a h.i., mostraremos que Sn+1 < 1.

Então

$$S_{n+1} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{n+1}}$$

$$= \frac{1}{2} + \frac{1}{2} \left[\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} \right]$$

$$= \frac{1}{2} + \frac{1}{2} \times S_n$$

$$< \frac{1}{2} + \frac{1}{2} \times 1 \text{ (pela h.i.)}$$

$$= 1.$$

Isto conclui a demonstração.

Às vezes, parece que o passo de indução não funciona, não importa o que tentemos.

Prove que para todo natural $n \ge 1$ vale que

$$S_n = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2.$$

Demonstração:

• A base da indução é n=1 e o resultado é óbvio.

MC458 — Projeto e Análise de Algoritmos I

Exemplo 5 (cont.)

É necessário fortalecer a hipótese de indução!

A hipótese de indução é: Suponha que

$$S_n = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}.$$

- Esta ideia aparentemente contra-intuitiva segue de um fenômeno bastante comum em matemática: muitas vezes é mais fácil provar um resultado mais forte do que o resultado que desejávamos.
- Polya chamava isso de paradoxo do inventor.
- Obviamente para isto funcionar, é necessário que o resultado fortalecido seja verdadeiro!

Exemplo 5 (cont.)

• A hipótese de indução é: Suponha que $S_n \le 2$.

Pela definição de S_n , temos que

$$S_{n+1} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} + \frac{1}{(n+1)^2} = S_n + \frac{1}{(n+1)^2}.$$

Como no exemplo anterior, usar a h.i. diretamente não nos permite concluir nada.

Além disso, não parece fácil manipular a expressão para obter uma forma melhor de aplicar a h.i.

Exemplo 5 (cont.)

• O passo de indução é: Supondo a h.i., mostraremos que $S_{n+1} \leq 2$.

$$S_{n+1} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \frac{1}{(n+1)^2}$$

$$\leq 2 - \frac{1}{n} + \frac{1}{(n+1)^2} \text{ (pela h.i.)}$$

$$\leq 2 - \frac{1}{n+1},$$

onde a última desigualdade segue do fato de que

$$\frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)} > \frac{1}{(n+1)^2}.$$

Isto completa a prova por indução.

Um bilionário (que chamaremos de Bill para manter seu anonimato) ajudou financeiramente a UNICOMP várias vezes.

Para retribuir tanta generosidade, a UNICOMP decidiu construir um grande pátio de dimensões $2^n \times 2^n$ e cobri-lo com azulejos em forma de L (um quadrado 2×2 com uma casa removida). Uma das casas centrais ficará livre para que uma estátua de Bill seja colocada ali.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Le

MC458 — Projeto e Análise de Algoritmos

Exemplo 6 (cont.)

- A hipótese de indução é: É possível cobrir um quadrado $2^n \times 2^n$ deixando uma casa central livre.
- O passo de indução é: Supondo a h.i., mostraremos que é possível cobrir quadrado $2^{n+1} \times 2^{n+1}$ deixando uma casa central livre.
- Um quadrado $2^{n+1} \times 2^{n+1}$ pode ser dividido em 4 quadrados $2^n \times 2^n$ como na figura seguinte.

Exemplo 6 (cont.)

Prove que para todo natural $n \ge 1$ é sempre possível cobrir um quadrado de dimensões $2^n \times 2^n$ com azulejos em forma de L deixando uma casa central livre.

Demonstração:

• O caso base é n = 1. A figura mostra uma solução.

Isto completa a prova do caso base.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando L

MC458 — Projeto e Análise de Algoritmos I

Exemplo 6 (cont.)

•

- Observando a figura, a ideia óbvia é aplicar a h.i. em cada um dos 4 quadrados 2ⁿ × 2ⁿ e completar com um azulejo nas três casas centrais.
- O problema é que a h.i. diz que é possível cobrir cada quadrado 2ⁿ × 2ⁿ deixando livre uma casa central e não a dos cantos como queremos agora. E agora?

Exemplo 6 (cont.)

Vamos fortalecer a hipótese de indução!

A hipótese de indução é: É possível cobrir um quadrado
 2ⁿ × 2ⁿ deixando livre qualquer casa desejada.

 Agora o passo de indução funciona perfeitamente. Para cada um dos quadrados 2ⁿ × 2ⁿ que não contém a casa livre original escolhemos um canto conveniente para ser livre.
 Aplicamos a h.i para cada um dos 4 quadrados.

Colocamos então mais um azulejo nas três casas centrais do quadrado de dimensão $2^{n+1}\times 2^{n+1}$. Isto completa a prova.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MC458 — Projeto e Análise de Algoritmos

Algumas armadilhas - redução × expansão

Eis um exemplo de "prova" de um resultado falso.

Prove que todo grafo simples com $n \ge 2$ vértices e tal que cada vértice tem grau pelo menos 1 é conexo.

- O caso base é n=2 e claramente o resultado vale.
- A hipótese de indução é: O resultado vale para todo grafo com n vértices.
- O passo de indução é: Mostraremos que o resultado vale para todo grafo com n+1 vértices que satisfaz a hipótese.
- Seja G um grafo com n vértices que satisfaz a hipótese. Pela h.i., G é conexo.

Acrescente um novo vértice v. Como v deve ter grau pelo menos 1, devemos ligá-lo a pelo menos um vértice de G. O grafo resultante G' tem n+1 vértices e satisfaz a hipótese. Como G é conexo, claramente G' é conexo.

Algumas armadilhas - redução × expansão

- A demonstração do passo da indução simples supõe a proposição válida para um n-1 e mostra que é válida para n.
- Portanto, devemos sempre partir de um caso geral n e **reduzi-lo** ao caso n-1. Às vezes porém, parece mais fácil pensar no caso n-1 e **expandi-lo** para o caso geral n.
- O perigo do procedimento de expansão é que ele não seja suficientemente geral, de forma que obtenhamos a implicação, a partir do caso n-1, para um caso **geral** n.
- As conseqüências de um lapso como esse podem ser a obtenção de uma estrutura de tamanho n fora da hipótese de indução, ou a a prova da proposição para casos particulares de estruturas de tamanho n e não todos, como se espera.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando I

MC458 — Projeto e Análise de Algoritmos

Algumas armadilhas - redução × expansão

• O resultado é claramente falso. Considere o grafo

- Mas então onde está o erro?
- Este grafo não pode ser obtido pelo método construtivo descrito.
- Ou seja, o método não consegue construir todos os grafos que satisfazem a hipótese.

Algumas armadilhas - outros passos mal dados

O que há de errado com a demonstração da seguinte proposição, claramente falsa?

Proposição:

Considere n retas no plano, concorrentes duas a duas. Então existe um ponto comum a todas as n retas.

Demonstração:

- A base da indução é o caso n=1, claramente verdadeiro.
- Para o caso n=2, também é fácil ver que a proposição é verdadeira.
- Considere a proposição válida para n-1, n>2, e considere nretas no plano concorrentes duas a duas.

Invariantes de laço e indução matemática

Definição:

Um invariante de um laço de um algoritmo é uma propriedade que é satisfeita pelas variáveis do algoritmo em toda iteração do laço executada pelo algoritmo.

- Usados em provas de corretude de algoritmos.
- Tipicamente um algoritmo é composto de vários laços executados em sequência.
- Para cada laco pode-se obter um invariante que, uma vez provado, garanta o funcionamento correto daquela parte específica do algoritmo.
- A corretude do algoritmo como um todo fica provada se for provado que os invariantes de todos os laços estão corretos.
- O difícil é encontrar o invariante que leva à prova da corretude do algoritmo.

Algumas armadilhas - outros passos mal dados

Pela h.i., todo subconjunto de n-1 das n retas têm um ponto em comum. Sejam S_1 , S_2 dois desses subconjuntos, distintos entre si.

A interseção $S_1 \cap S_2$ contém n-2 retas. Portanto, o ponto em comum às retas de S_1 tem que ser igual ao ponto em comum às retas de S_2 , senão duas retas distintas de $S_1 \cap S_2$ se tocariam em mais que um ponto, o que não é possível.

Portanto, a asserção vale para n, completando a demonstração. Certo?

Errado!

O argumento no passo de indução funciona para todo n > 2, exceto n=3. pois nesse caso $S_1 \cap S_2$ contém apenas uma reta. Não é possível concluir a validade para n=3. De fato, a afirmação não vale para $n \ge 3$.

Invariantes de laço e indução matemática

Usando invariante de laços, provaremos a corretude de um algoritmo que calcula a potência a^d onde a é um real e d é um natural.

```
POTENCIA(a, d)
1 \triangleright devolve a^d
2 x \leftarrow 1, y \leftarrow a, n \leftarrow d
      enquanto n > 0 faça
          se n é ímpar
             então x \leftarrow xy
          n \leftarrow \lfloor n/2 \rfloor
          v \leftarrow v^2
          devolva x
```

Invariantes de laço e indução matemática

Potencia(a, d)

	- (-) - /			
1	⊳ devolve a ^d			
2	$x \leftarrow 1$, $y \leftarrow a$, $n \leftarrow d$	y	n	X
3	enquanto > 0 faça	2	11	1
4	se n é ímpar	4	5	2
5	então $x \leftarrow xy$	16	2	8
6	$n \leftarrow \lfloor n/2 \rfloor$	256	1	8
7	$y \leftarrow y^2$	262144	0	2048
8	devolva x			

Invariante: No início de cada iteração da linha 3 temos que $a^d = y^n x$.

Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

Invariantes de laço e indução matemática

POTENCIA(a, d)

1
$$\triangleright$$
 devolve a^d
2 $x \leftarrow 1, y \leftarrow a, n \leftarrow d$
3 **enquanto** > 0 **faça**
4 **se** $n \in \text{impar}$
5 **então** $x \leftarrow xy$
6 $n \leftarrow \lfloor n/2 \rfloor$
7 $y \leftarrow y^2$

Invariante: No início de cada iteração da linha 3 temos que $a^d = y^n x$.

No início da próxima iteração o valor de y será $y' = y^2$.

Se n é ímpar (n = 2k + 1) então o valor de n na próxima iteração é n' := k e o valor de x será x' = xy.

Por h.i. temos que $a^d = y^n x$. Assim, $a^d = (y^2)^{2k} y x = y^{n'} x'$ e o invariante vale.

Invariantes de laço e indução matemática

POTENCIA(a, d) 1 \triangleright devolve a^d 2 $x \leftarrow 1, y \leftarrow a, n \leftarrow d$ 3 enquanto > 0 faça **se** n é ímpar então $x \leftarrow xy$

 $n \leftarrow \lfloor n/2 \rfloor$ $y \leftarrow v^2$

devolva x

Invariante: No início de cada iteração da linha 3 temos que $a^d = y^n x$.

Vamos provar por indução no número de iterações que o invariante vale. O invariante vale no início da primeira iteração pois y = a, n = d e x = 1.

Suponha então que ele vale no início de alguma iteração e mostraremos que ele vale no início da próxima.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MC458 — Projeto e Análise de Algoritmos

Invariantes de laço e indução matemática

POTENCIA(a, d)

```
1 \triangleright devolve a^d
```

2
$$x \leftarrow 1, y \leftarrow a, n \leftarrow d$$

3 enquanto
$$> 0$$
 faca

$$\mathbf{se} \ n \ \text{\'e impar}$$

5 **então**
$$x \leftarrow xy$$

$$\begin{array}{ll}
6 & n \leftarrow \lfloor n/2 \rfloor \\
7 & y \leftarrow y^2
\end{array}$$

7
$$y \leftarrow y^2$$

$$\mathbf{devolva} \ x$$

Invariante: No início de cada iteração da linha 3 temos que $a^d = v^n x$.

No início da próxima iteração o valor de y será $y' = y^2$.

Se n é par (n = 2k) então o valor de n na próxima iteração é n' := k e o valor de x será x' = x.

Por h.i. temos que $a^d = y^n x$. Assim, $a^d = (y^2)^{2k} x = y^{n'} x'$ e o invariante vale.

Invariantes de laço e indução matemática

```
POTENCIA(a, d)

1 \triangleright devolve a^d

2 x \leftarrow 1, y \leftarrow a, n \leftarrow d

3 enquanto > 0 faça

4 se n \in \text{impar}

5 então x \leftarrow xy

6 n \leftarrow \lfloor n/2 \rfloor

7 y \leftarrow y^2

8 devolva x
```

Invariante: No início de cada iteração da linha 3 temos que $a^d=y^nx$.

Assim, o invariante vale. Note que quando o algoritmo para, temos n=0 e portanto $x=a^d$.

MC458 — Projeto e Análise de Algoritmos I