Model Documentation of the Two Mass Floating Bodies

1 Nomenclature

1.1 Nomenclature for Model Equations

 m_1 mass of the iron ball

 m_2 mass of the brass ball

 k_1 geometry constant

 k_2 air gap of magnet

 k_f spring constant

g acceleration of gravity

I current

 s_1 position of the iron ball in x-direction

 s_2 position of the brass ball in x-direction

 v_1 velocity of the iron ball in x-direction

 v_2 velocity of the brass ball in x-direction

2 Model Equations

State Vector and Input Vector:

$$\underline{x} = (x_1 \ x_2 \ x_3 \ x_4)^T = (s_1 \ s_2 \ v_1 \ v_2)^T$$

 $u = u_1 = I$

System Equations:

$$\dot{x}_1 = x_3 \tag{1a}$$

$$\dot{x}_2 = x_4 \tag{1b}$$

$$\dot{x}_3 = g - \frac{k_f}{m_1}(x_1 - x_2) - k_1 \frac{I}{m_1(x_1 + k_2)^2}$$
(1c)

$$\dot{x}_4 = g + \frac{k_f}{m_2}(x_1 - x_2) \tag{1d}$$

(1e)

Parameters: $m_1 m_2 k_1 k_2 k_f g$ Outputs: s_2

2.1 Assumptions

- 1. Mass of the iron ball is a pointmass
- 2. Mass of the brass ball is a pointmass

2.2 Exemplary parameter values

Parameter Name	Symbol	Value	Unit
mass of the iron ball	m_1	0.05	kg
mass of the brass ball	m_2	0.04	$_{ m kg}$
geometry constant	k_1	$4.0 \cdot 10^{-5}$	
air gap of magnet	k_2	0.005	\mathbf{m}
spring constant	kf	10	$\frac{N}{m}$
acceleration of gravity	g	9.8	$\frac{m}{s^2}$

3 Derivation and Explanation

 $Not\ available$

4 Simulation

Figure 1: Simulation of the Two Mass Floating Bodies.

References

[1] Xinyu Wang: Erstellung eines Katalogs regelungstechnischer Problemstellungen mit ausführbaren Beispiellösungen