Exercice 1.—Étudier l'appartenance des distributions suivantes aux espaces de Sobolev $H^s(\mathbb{R}^d)$ en fonction de $s \in \mathbb{R}$ et de $d \in \mathbb{N}^*$:

- 1. les fonctions $x \mapsto 1$ et $x \mapsto e^{-\|x\|^2}$, δ_0 , $\partial_i \delta_0$ (où $j \in \{1, \dots, d\}$), $\partial^{\alpha} \delta_0$ (où $\alpha \in \mathbb{N}^d$),
- 2. pour d=1, les fonctions $H=\mathbf{1}_{\mathbb{R}^+}, x\mapsto e^{-|x|}$ et $x\mapsto \frac{1}{1+x^2}$.

Exercice 2.— On considère l'opérateur différentiel $P = \Delta^2 + \Delta - 2$ dans $\mathcal{S}'(\mathbb{R}^n)$, où l'on rappelle que $\Delta = \sum_{j=1}^n \partial_j^2$ et $\Delta^2 = \Delta \circ \Delta$.

- 1. Soit $k \in \mathbb{N}$. Montrer que si $u \in L^2(\mathbb{R}^n)$ satisfait $Pu \in H^k(\mathbb{R}^n)$, alors $u \in H^{k+4}(\mathbb{R}^n)$.
- 2. P est-il injectif sur $L^2(\mathbb{R}^n)$? Sur $\mathcal{S}'(\mathbb{R}^n)$?
- 3. Montrer que si $T \in L^2(\mathbb{R}^n)$ vérifie $PT \in \mathcal{S}(\mathbb{R}^n)$ alors $T \in C^{\infty}(\mathbb{R}^n)$.

Exercice 3.— Soit $u \in H^1(\mathbb{R}^d, \mathbb{C})$. Pour tout $\varepsilon > 0$, on définit $u_{\varepsilon} := \sqrt{|u|^2 + \varepsilon^2}$.

- 1. Soit $\varphi \in \mathcal{C}_c^{\infty}(\mathbb{R}^d, \mathbb{C})$ et, pour tout $\varepsilon > 0$, $\varphi_{\varepsilon} := \sqrt{|\varphi|^2 + \varepsilon^2}$. Calculer $\nabla \varphi_{\varepsilon}$.
- 2. Soit $(\varphi_j)_{j\in\mathbb{N}}\subset \mathcal{C}_c^{\infty}(\mathbb{R}^d,\mathbb{C})$ vérifiant $\varphi_j\to u$ dans $H^1(\mathbb{R}^d,\mathbb{C})$.
 - (a) Montrer que $\varphi_{j,\varepsilon} \underset{j\to +\infty}{\longrightarrow} u_{\varepsilon}$ dans $\mathcal{S}'(\mathbb{R}^d)$, où l'on a défini $\varphi_{j,\varepsilon} := \sqrt{|\varphi_j|^2 + \varepsilon^2}$.
 - (b) Montrer que, pour tout $\varepsilon > 0$, on a

$$\frac{\operatorname{Re}\left(\bar{\varphi}_{j}\nabla\varphi_{j}\right)}{\varphi_{j,\varepsilon}} \underset{j\to+\infty}{\longrightarrow} \frac{\operatorname{Re}\left(\bar{u}\nabla u\right)}{u_{\varepsilon}} \operatorname{dans} L^{1}(\mathbb{R}^{d},\mathbb{R}^{d}).$$

- (c) En déduire que $\nabla u_{\varepsilon} = \frac{\operatorname{Re}(\bar{u}\nabla u)}{u_{\varepsilon}}$ dans $\mathcal{S}'(\mathbb{R}^d, \mathbb{R}^d)$.
- 3. Montrer que ∇u_{ε} converge dans $L^2(\mathbb{R}^d, \mathbb{R}^d)$ lorsque $\varepsilon \to 0^+$ et déterminer sa limite.
- 4. Montrer que $u_{\varepsilon} \underset{\varepsilon \to 0+}{\longrightarrow} |u|$ dans $\mathcal{S}'(\mathbb{R}^d)$.
- 5. En déduire que $|u| \in H^1(\mathbb{R}^d)$, et que $\|\nabla |u|\|_{L^2} \leq \|\nabla u\|_{L^2}$.

Exercice 4.—

1. Soit $\varphi \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{3})$ et soit $x \in \mathbb{R}^{3}$. Montrer que $|\varphi(x)|^{4} \leq 2 \int_{\mathbb{R}} |\varphi(x)|^{3} |\partial_{1}\varphi(x)| dx_{1}$ et en déduire que

$$|\varphi(x)|^6 \le \sqrt{8} \prod_{i=1}^3 \left(\int_{\mathbb{R}} |\varphi(x)|^3 |\partial_i \varphi(x)| dx_i \right)^{1/2}.$$

2. En intégrant successivement par rapport à x_1, x_2, x_3 et en utilisant l'inégalité de Hölder, montrer que

$$\int_{\mathbb{R}^3} |\varphi(x)|^6 dx \le \sqrt{8} \prod_{i=1}^3 \left(\int_{\mathbb{R}^3} |\varphi(x)|^3 |\partial_i \varphi(x)| dx \right)^{1/2},$$

puis que

$$\left(\int_{\mathbb{R}^3} |\varphi(x)|^6 dx\right)^{1/3} \le 4 \prod_{i=1}^3 \left(\int_{\mathbb{R}^3} |\partial_i \varphi(x)|^2 dx\right)^{1/3}.$$

3. En déduire que, pour tout $\varphi \in \mathcal{C}^\infty_c(\mathbb{R}^3)$, on a l'inégalité de Sobolev

$$\left(\int_{\mathbb{R}^3} |\varphi(x)|^6 dx\right)^{1/6} \le \frac{2}{\sqrt{3}} \left(\int_{\mathbb{R}^3} |\nabla \varphi(x)|^2 dx\right)^{1/2}.$$

Rappel. Pour tous $a_1, a_2, a_3 \ge 0$, on $a (a_1 a_2 a_3)^{\frac{1}{3}} \le \frac{a_1 + a_2 + a_3}{3}$.

- 4. Soit $u \in H^1(\mathbb{R}^3)$. Montrer que $u \in L^6(\mathbb{R}^3)$ et que $||u||_{L^6} \leq C||\nabla u||_{L^2}$. Indication. Utiliser la densité de $\mathcal{C}_c^{\infty}(\mathbb{R}^3)$ dans $H^1(\mathbb{R}^3)$.
- 5. En déduire que, pour tout $p \in [2,6]$, $u \in L^p(\mathbb{R}^3)$ et $||u||_{L^p} \leq C_p ||u||_{H^1}$. Indication. Utiliser l'inégalité de Hölder et l'égalité paramétrique

$$]2, 6[= \{2(1-\theta) + 6\theta, \theta \in]0, 1[\}.$$

6. Soit $u(x) = ||x||^{\alpha} e^{-||x||}$, $\alpha \in \mathbb{R}$. Déterminer les valeurs de α pour lesquelles $u \in L^p(\mathbb{R}^3)$ (où $p \ge 1$) ainsi que celles pour lesquelles $u \in H^1(\mathbb{R}^3)$. Peut-on étendre le résultat de la question 4 à p > 6?

Exercice 5.— Soient $f, g \in H^s(\mathbb{R}^d)$, où $d \in \mathbb{N}^*$ et $s \in \mathbb{R}$ vérifient $s > \frac{d}{2}$.

- 1. Montrer que $\widehat{f} \in L^1(\mathbb{R}^d)$ et qu'il existe une constante $C_1 > 0$ telle que $\|\widehat{f}\|_{L^1} \leq C_1 \|f\|_{H^s}$. En déduire que $f \in L^2(\mathbb{R}^d) \cap L^{\infty}(\mathbb{R}^d)$.
- 2. Montrer que $h = fg \in L^1(\mathbb{R}^d) \cap L^{\infty}(\mathbb{R}^d)$ et que $\hat{h} = (2\pi)^{-d} \hat{f} * \hat{g}$.
- 3. Montrer que $h = fg \in H^s(\mathbb{R}^d)$ et qu'il existe $C_2 > 0$ telle que $||h||_{H^s} \le C_2 ||f||_{H^s} ||g||_{H^s}$. Indication. On pourra vérifier et utiliser la relation

$$\forall \xi, \eta \in \mathbb{R}^d, \quad (1 + \|\xi\|^2)^{s/2} \le 2^{s-1} \Big((1 + \|\xi - \eta\|^2)^{s/2} + (1 + \|\eta\|^2)^{s/2} \Big).$$