```
X_0 = 1.0
 Wo = 0.3
 w1 = - 0. 2
 60 = 0.1
 6, = -0.3
                        d x w = w o d x o , d x w = x o d w a
XW = Y0 . W0 = 0.3
                       1xw60 = dxw0, dxw6, = d60
xwb= xw+ 6 = 0.4
                         dx, = 1. (746, 70!) dxubo
x, = Relu(x wb 0) = 0,4
                        1xw 1= w11x1, 1xw1 = x11 w1
XW1 = X1. M1 = -0.04
                        441 = 9×41 7 9 41 = 9 81
Y = xw + 61=-0.34
                       0xf = xkf , 1kf = xkP
Yx = 7, + x 0 = 0.62
```

Z = FeLU(yx) = 0.62 dz = 1. (yx70?) dyx

$$\frac{\partial z}{\partial w_0} = \frac{\partial z}{\partial y^2} \cdot \frac{\partial y}{\partial y} \cdot \frac{\partial y}{\partial x_0} \cdot \frac{\partial x_0}{\partial x_0} \cdot \frac{$$

$$= \frac{\partial z}{\partial w_{i}} = \frac{\partial z}{\partial x} \cdot \frac{\partial y_{i}}{\partial y_{i}} \cdot \frac{\partial y_{i}}{\partial x_{i}} \cdot \frac{\partial x_{i}}{\partial w_{i}} \cdot \frac{\partial x_{i}}{\partial w_{i}}$$

$$= 1 \cdot 1 \cdot 1 \cdot (0.4)$$

$$= \frac{\partial z}{\partial x} \cdot \frac{\partial yx}{\partial x} \cdot \frac{\partial y_1}{\partial x_2} \cdot \frac{\partial x\mu_1}{\partial x} \cdot \frac{\partial x_1}{\partial x_2} \cdot \frac{\partial x\mu_0}{\partial x_2}$$

$$\frac{\partial z}{\partial b_0} = \frac{\partial z}{\partial y^2} \cdot \frac{\partial y^2}{\partial y_1} \cdot \frac{\partial y_1}{\partial x_{w_1}} \cdot \frac{\partial x_{w_1}}{\partial x_1} \cdot \frac{\partial x_{w_2}}{\partial x_{w_3}} \cdot \frac{\partial x_{w_4}}{\partial x_{w_5}} \cdot \frac{\partial x_{w_5}}{\partial x_{w_5}} \cdot$$

$$= 1 \cdot 1 \cdot 1$$

$$= \frac{1}{4} \frac{1}{5} \frac{1}$$

= |

2.

T2. Given the following network architecture specifications, determine the size of the output A, B, and C.

T3. What is the total number of learnable parameters in this network? (Don't forget the bias term)

3. 30×1024 + 1024+ [024×512+512+512+]+1

4.

Recall in class we define the softmax layer as:

$$P(y=j) = \frac{exp(h_j)}{\sum_k exp(h_k)} \tag{1}$$

where h_j is the output of the previous layer for class index j. The cross entropy loss is defined as:

$$L = -\Sigma_j y_j log P(y=j) \tag{2}$$

where y_j is 1 if y is class j, and 0 otherwise.

T4. Prove that the derivative of the loss with respect to h_i is $P(y=i)-y_i$. In other words, find $\frac{\partial L}{\partial h_i}$ for $i \in \{0,...,N-1\}$ where N is the number of classes. Hint: first find $\frac{\partial P(y=j)}{\partial h_i}$ for the case where j=i, and the case where $j\neq i$. Then, use the results with chain rule to find the derivative of the loss.

Next, we will code a simple neural network using numpy. Use the starter code hw4.zip on github. There are 8 tasks you need to complete in the starter code.

Lists. In order to do this next of the assistancest was will need to find

$$\frac{dL}{dh_{i}} = \frac{\partial}{\partial h_{i}} \left(-\xi_{j} \gamma_{j} \log P \left(\eta = j \right) \right)$$

$$= -\xi_{j} \frac{\partial}{\partial h_{i}} \gamma_{j} \log \frac{e^{x}P(h_{i})}{\xi_{k}^{e}P(h_{k})}$$

$$= -\xi_{j} \frac{\partial}{\partial h_{i}} \gamma_{j} \left[h_{j} - \log \left(\xi_{k} \exp (h_{k}) \right) \right]$$

$$= -\left(\frac{\partial}{\partial h_{i}} \gamma_{i} h_{i} + \xi_{i} \left(j + i \right) \frac{\partial}{\partial h_{i}} \gamma_{i} h_{j} \right)$$

$$- \xi_{j} \frac{\partial}{\partial h_{i}} \gamma_{j} \log \left(\xi_{k} \exp (h_{k}) \right)$$

$$= -(\gamma_{i} - \xi_{j} \gamma_{j} \frac{1}{\xi_{k} exp(h_{k})} \cdot \frac{1}{4h_{i}} \xi_{k} exp(h_{k}))$$

$$= -(\gamma_{i} - \xi_{j} \gamma_{j} \frac{1}{\xi_{k} exp(h_{k})} exp(h_{i}) \cdot \frac{1}{4h_{i}} \xi_{k} (k \neq i) \sigma)$$

$$= -(\gamma_{i} - \xi_{j} \gamma_{j} \frac{exp(h_{i})}{\xi_{k} exp(h_{k})})$$

$$= -(\gamma_{i} - (\gamma_{i} \rho(\gamma_{i} = i) + \xi_{j} \gamma_{j} (j \neq i) \rho(\gamma_{i} = i)))$$

$$= -(\gamma_{i} - \rho(\gamma_{i} = i) - \gamma_{i}$$

$$\frac{dx^{2}}{dx^{4}} = \frac{\left(\xi^{n} \operatorname{exb}(x^{2})\right)_{x}}{\left(\xi^{n} \operatorname{exb}(x^{2}) - \left(\operatorname{exb}(x^{2})\right)_{x}}\right)}$$

$$\frac{dx^{4}}{x^{4}} = \frac{\xi^{n} \operatorname{exb}(x^{n}) \cdot \operatorname{exb}(x^{2}) - \left(\operatorname{exb}(x^{2})\right)_{x}}{\left(\xi^{n} \operatorname{exb}(x^{2}) - \left(\operatorname{exb}(x^{2})\right)_{x}}\right)}$$

$$x^{1} = m^{1} + p^{1}$$