EDA

Author: Om Patil

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_csv('Dataset_deeplearning.csv')
# Converting 'date' to datetime format
df['date'] = pd.to_datetime(df['date'])
df['month'] = df['date'].dt.month
df['day_of_week'] = df['date'].dt.dayofweek # Monday=0, Sunday=6
df['is\_weekend'] = df['day\_of\_week'].apply(lambda x: 1 if x >= 5 else 0)
# Display basic info
print(df.info())
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 365 entries, 0 to 364
    Data columns (total 7 columns):
         Column
                       Non-Null Count Dtype
     0
         date
                       365 non-null
                                        datetime64[ns]
     1
         temperature
                       365 non-null
                                        float64
         promotions
                       365 non-null
                                        int64
         sales
                       365 non-null
                                        int64
                       365 non-null
                                        int32
         month
         day_of_week 365 non-null
                                        int32
     6
         is_weekend
                       365 non-null
                                        int64
    \texttt{dtypes: datetime64[ns](1), float64(1), int32(2), int64(3)}
    memory usage: 17.2 KB
#Display summary stats
print(df.describe())
                                                         promotions
<del>_</del>
                                      date
                                            temperature
                                                                            sales
    count
                                                                       365.000000
                                       365
                                             365,000000
                                                         365.000000
    mean
           2022-07-01 23:59:59.999999744
                                              10.019890
                                                           0.471233
                                                                       736.972603
    min
                      2022-01-01 00:00:00
                                              -8.450000
                                                           0.000000
                                                                       190.000000
                      2022-04-02 00:00:00
                                              -0.320000
                                                           0.000000
                                                                       552.000000
                      2022-07-02 00:00:00
                                               9.820000
                                                           0.000000
                                                                       705.000000
    50%
    75%
                      2022-10-01 00:00:00
                                              20.380000
                                                           0.000000
                                                                       864.000000
                                              31.170000
                                                           4.000000
                                                                      1698.000000
                      2022-12-31 00:00:00
    max
                                              10.890047
                                                           0.993036
                                      NaN
                                                                       275.646810
    std
                 month day_of_week
                                      is_weekend
    count 365.000000
                         365.000000
                                     365.000000
    mean
              6.526027
                           3.005479
                                       0.287671
              1.000000
                           0.000000
                                        0.000000
    min
    25%
              4.000000
                           1.000000
                                        0.000000
              7.000000
                           3.000000
                                        0.000000
    50%
             10.000000
    75%
                           5.000000
                                        1.000000
             12.000000
                           6.000000
                                        1.000000
    max
    std
              3.452584
                           2.002738
                                        0.453298
# Correlation matrix
correlation_matrix = df.corr(numeric_only=True)
# Plotting
# Sales over time
plt.figure(figsize=(14, 6))
plt.plot(df['date'], df['sales'], color='blue')
plt.title('Sales Over Time')
plt.xlabel('Date')
plt.ylabel('Sales')
plt.grid(True)
plt.tight_layout()
plt.show()
```



```
# Temperature vs Sales
plt.figure(figsize=(7, 5))
sns.scatterplot(x='temperature', y='sales', data=df)
plt.title('Temperature vs Sales')
plt.grid(True)
plt.tight_layout()
plt.show()
```


temperature

```
# Promotions vs Sales (Boxplot)
plt.figure(figsize=(7, 5))
sns.boxplot(x='promotions', y='sales', data=df)
plt.title('Sales by Promotion Status')
plt.xlabel('Promotions (0 = No, 1 = Yes)')
plt.grid(True)
plt.tight_layout()
plt.show()
```



```
# Correlation heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.tight_layout()
plt.show()
```



```
# Monthly Sales Trend
monthly_sales = df.groupby('month')['sales'].sum().reset_index()

plt.figure(figsize=(8, 5))
sns.barplot(x='month', y='sales', data=monthly_sales)
plt.title('Total Sales by Month')
plt.xlabel('Month')
plt.ylabel('Total Sales')
plt.grid(True)
plt.tight_layout()
plt.show()
```



```
# Daily Sales Trend (Day of the Week)
# Mapping day numbers to names
day_map = {0: 'Mon', 1: 'Tue', 2: 'Wed', 3: 'Thu', 4: 'Fri', 5: 'Sat', 6: 'Sun'}
df['day_name'] = df['day_of_week'].map(day_map)

daily_sales = df.groupby('day_name')['sales'].sum().reindex(['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']).reset_index()

plt.figure(figsize=(8, 5))
sns.barplot(x='day_name', y='sales', data=daily_sales)
plt.title('Daily Sales Trend (by Day of the Week)')
plt.xlabel('Day of Week')
plt.ylabel('Total Sales')
plt.grid(True)
plt.tight_layout()
plt.show()
```



```
# Quarterly Sales Trend
df['quarter'] = df['date'].dt.quarter
quarterly_sales = df.groupby('quarter')['sales'].sum().reset_index()

plt.figure(figsize=(7, 5))
sns.barplot(x='quarter', y='sales', data=quarterly_sales)
plt.title('Quarterly Sales Trend')
plt.xlabel('Quarter')
plt.ylabel('Total Sales')
plt.grid(True)
```

Day of Week

plt.tight_layout()
plt.show()

Start coding or $\underline{\text{generate}}$ with AI.

Start coding or generate with AI.

Time Series decomposition and seasonality analysis

Nischal Pradhan

```
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.tsa.seasonal import seasonal_decompose

df = pd.read_csv("./Preprocessed.csv")

df['date'] = pd.to_datetime(df['date'])
df = df.sort_values('date')
df.set_index('date', inplace=True)
```

df.head()

temperature	promotions	sales	month	day	year
e					
1 -4.01	0	528	1	1	2022
-5.27	0	424	1	2	2022
3 -3.70	1	671	1	3	2022
4 -1.93	1	640	1	4	2022
5 -5.43	1	520	1	5	2022
	-4.01 2 -5.27 3 -3.70 4 -1.93	-4.01 0 2 -5.27 0 3 -3.70 1 4 -1.93 1	-4.01 0 528 2 -5.27 0 424 3 -3.70 1 671 4 -1.93 1 640	1 -4.01 0 528 1 2 -5.27 0 424 1 3 -3.70 1 671 1 4 -1.93 1 640 1	1 -4.01 0 528 1 1 2 2 -5.27 0 424 1 2 3 -3.70 1 671 1 3 4 -1.93 1 640 1 4

df.tail()

	temperature	promotions	sales	month	day	year
date						
2022-12-27	-3.91	0	377	12	27	2022
2022-12-28	-1.90	0	419	12	28	2022
2022-12-29	-5.20	0	265	12	29	2022
2022-12-30	-4.19	0	237	12	30	2022
2022-12-31	-3.62	0	520	12	31	2022

df.info()

Ducu	co camino (co co	ac o cocamins,	
#	Column	Non-Null Count	Dtype
0	temperature	365 non-null	float64
1	promotions	365 non-null	int64
2	sales	365 non-null	int64
3	month	365 non-null	int64
4	day	365 non-null	int64
5	year	365 non-null	int64
dtype	es: float64(1)), int64(5)	
memo	ry usage: 20.0	0 KB	

df.describe()

	temperature	promotions	sales	month	day	year
count	365.000000	365.000000	365.000000	365.000000	365.000000	365.0
mean	10.019890	0.471233	736.972603	6.526027	15.717808	2022.0
std	10.890047	0.993036	275.646810	3.452584	8.811820	0.0
min	-8.450000	0.000000	190.000000	1.000000	1.000000	2022.0
25%	-0.320000	0.000000	552.000000	4.000000	8.000000	2022.0
50%	9.820000	0.000000	705.000000	7.000000	16.000000	2022.0
75%	20.380000	0.000000	864.000000	10.000000	23.000000	2022.0
max	31.170000	4.000000	1698.000000	12.000000	31.000000	2022.0

→ Time series decomposition

- Trend: shows long term rise or fall in sales trend over time.
- Seasonality: shows weekly (7-days) and monthly (30-days) sales pattern in regular interval.
- Residuals: shows day to day fluctuation which are not explained by trend and seasonality

```
# decomposing the sales series into trend, seasonality, residual
result = seasonal_decompose(df['sales'], model='additive', period=7)

fig = result.plot()
fig.set_size_inches(12, 8)
plt.suptitle("Time Series Decomposition of Sales", fontsize=16)
plt.tight_layout()
plt.show()
```


Time Series Decomposition of Sales

- From trend we can see that the sales trend is increasing massively in mid-year, and is less in the early and end of year
- From Seasonal we can see that weekly sales pattern are almost consistance
- From residuals we can see sudden spikes or outliers through the scatter plot

Sales Trend with 7-Day and 30-Day Rolling Averages

```
# Compute 7-day and 30-days rolling averages
df['7d_avg'] = df['sales'].rolling(window=7).mean()
df['30d_avg'] = df['sales'].rolling(window=30).mean()

plt.figure(figsize=(12, 5))
plt.plot(df['sales'], label='Raw Sales data', alpha=0.5)
plt.plot(df['7d_avg'], label='7-Day Avg', linewidth=2)
plt.plot(df['30d_avg'], label='30-Day Avg', linewidth=2)
plt.title("7-Day and 30-Day Rolling Averages of Sales")
plt.xlabel("Date")
plt.ylabel("Sales")
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
```


- The line chart shows long term "30-days" and short term "7-days" trends in sales pattern
- The daily sales is highly fluctuating over time and after smoothing clear seasonal patterns and trends can be observed

df.describe()

→		temperature	promotions	sales	month	day	year	7d_avg	30d_avg
	count	365.000000	365.000000	365.000000	365.000000	365.000000	365.0	359.000000	336.000000
	mean	10.019890	0.471233	736.972603	6.526027	15.717808	2022.0	741.692002	750.835516
	std	10.890047	0.993036	275.646810	3.452584	8.811820	0.0	214.898153	178.960819
	min	-8.450000	0.000000	190.000000	1.000000	1.000000	2022.0	356.428571	441.133333
	25%	-0.320000	0.000000	552.000000	4.000000	8.000000	2022.0	579.642857	577.675000
	50%	9.820000	0.000000	705.000000	7.000000	16.000000	2022.0	732.285714	771.266667
	75%	20.380000	0.000000	864.000000	10.000000	23.000000	2022.0	843.785714	904.866667
	max	31.170000	4.000000	1698.000000	12.000000	31.000000	2022.0	1590.428571	1103.400000

→ Average sales per day

- · Sales are high on the weekends
- On the weekdays, sales are gradually decreasing, being lowest on Friday

Linear Regression

Author: Arish Panjwani

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
#import data
df = pd.read_csv("Preprocessed-v2.csv")
#Ensure columns are numeric
df["temperature"] = pd.to_numeric(df["temperature"], errors='coerce')
{\tt df["promotions"] = pd.to\_numeric(df["promotions"], errors='coerce')}
df["sales"] = pd.to_numeric(df["sales"], errors='coerce')
# Drop missing values
df.dropna(subset=["temperature", "promotions", "sales"], inplace=True)
df.shape
→ (365, 9)
```

Define feature and target variable

```
X = df[["temperature", "promotions"]]
y = df["sales"]
```

Train Test Split

```
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42
)
```

→ Fit Model

```
model = LinearRegression()
model.fit(X_train, y_train)

* LinearRegression (1)
LinearRegression()
```

→ Predict Data

```
plt.scatter(y_test, y_pred)
plt.xlabel("Actual Sales")
plt.ylabel("Predicted Sales")
plt.title("Actual vs Predicted Sales")
plt.plot([y.min(), y.max()], [y.min(), y.max()], "r--")
plt.show()
```



```
# Assume y_test and y_pred are already defined from your model
r2 = r2_score(y_test, y_pred)

# Treat R² as a percentage accuracy
accuracy = r2 * 100

print(f"Model Accuracy (based on R² score): {accuracy:.2f}%")
```

→ Model Accuracy (based on R² score): 86.74%

Findings from My Model:

- I used a dataset with 365 rows with columns like temperature, promotions, and sales.
- The aim was to predict sales based on temperature and whether there was any promotion running.
- First, I cleaned the data a bit by making sure all values are numbers and removed missing stuff.
- Then I splitted the data into training and testing 80% for train and 20% for test.
- Model Accuracy(based on R2 score): 86.74%

Model Evaluation

Author: Jeffin John Abraham

```
# Evaluation of Linear Regression
intercept = model.intercept_
coefficients = model.coef
r2 = r2_score(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
mae = mean_absolute_error(y_test, y_pred)
print(f"Intercept: {intercept:.2f}")
print(f"Coefficients: {coefficients}")
print(f"R2 Score: {r2:.2f}")
print(f"MSE (Mean Squared Error): {mse:.2f}")
print(f"RMSE (Root Mean Squared Error): {rmse:.2f}")
print(f"MAE (Mean Absolute Error): {mae:.2f}")
→ Intercept: 516.72
    Coefficients: [ 13.1219723 191.16411222]
    R<sup>2</sup> Score: 0.87
    MSE (Mean Squared Error): 13211.34
    RMSE (Root Mean Squared Error): 114.94
    MAE (Mean Absolute Error): 95.73
```

Predictive Modeling: Random Forest

Author: Kanika.

Objective

To build a Random Forest model that predicts daily sales based on: temperature, promotions, Month, Day.

This helps understand the influence of different factors on sales and improve decision-making regarding promotions and seasonal planning.

Why Random Forest?

- · Handles nonlinear relationships and feature interactions well
- · Robust to overfitting with proper tuning
- · Provides feature importance for interpretability

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from \ sklear \textit{n.} ensemble \ import \ Random Forest Regressor
from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error
import matplotlib.pyplot as plt
# Loading dataset
df = pd.read_csv("Preprocessed-v2.csv")
# The relevant features
df = df[["temperature", "promotions", "Month", "Day", "sales"]].dropna()
# Features and target
X = df[["temperature", "promotions", "Month", "Day"]]
y = df["sales"]
# Train/test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Training the model
model = RandomForestRegressor(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
₹
             RandomForestRegressor
     RandomForestRegressor(random_state=42)
y_pred = model.predict(X_test)
```

Evaluation

```
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
print(f"RMSE (Root Mean Squared Error): {rmse:.2f}")

RMSE (Root Mean Squared Error): 113.06

r2 = r2_score(y_test, y_pred)
print(f"R² Score: {r2:.2f}")

R² Score: 0.85

mae = mean_absolute_error(y_test, y_pred)
print(f"MAE (Mean Absolute Error): {mae:.2f}")

MAE (Mean Absolute Error): 90.58

# Feature importance
importance = pd.Series(model.feature_importances_, index=X.columns).sort_values(ascending=False)
```


Insights

 $\overline{2}$

- The most important feature for predicting sales is **promotions**, followed by **temperature**.
- The model explains a significant portion of variance in sales (R2) and the error metrics indicate reasonable prediction accuracy.
- Random Forest is not as interpretable as linear regression.
- It does not provide direct coefficients or causal insights.

Conclusion Random Forest was a suitable choice for capturing nonlinearities and interactions. Further improvements can be made by tuning hyperparameters or incorporating additional features.

Hyperparameter Tuning (Random Forest)

Author: Ashish Lama

```
import pandas as pd
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error
import seaborn as sns
import matplotlib.pyplot as plt

df = pd.read_csv("Preprocessed-v2.csv")
```

```
df = df[["temperature", "promotions", "Month", "Day", "sales"]].dropna()
X = df[["temperature", "promotions", "Month", "Day"]]
y = df["sales"]
X_{train}, X_{test}, y_{train}, y_{test} = train_test_split(X_{train}, Y_{test}, random_state=42)
# Defining parameters
param\_grid = {
    'n_estimators': [50, 100, 200],
    'max_depth': [5, 10, None],
    'min_samples_split': [2, 5],
    'max_features': ['sqrt', 'log2']
}
# Applying GridSearchCV
grid_search = GridSearchCV(
    estimator=RandomForestRegressor(random_state=42),
    param_grid=param_grid,
    cv=5,
    scoring='r2',
    n_{jobs=-1}
grid_search.fit(X_train, y_train)
₹
                    GridSearchCV
                                         (i) (?
                  best_estimator_:
               RandomForestRegressor
            ► RandomForestRegressor
# Tuned model evaluation
tuned_model = grid_search.best_estimator_
y_pred_tuned = tuned_model.predict(X_test)
print("Best Params:", grid_search.best_params_)
Best Params: {'max_depth': 5, 'max_features': 'sqrt', 'min_samples_split': 2, 'n_estimators': 100}
Evaluation
mse = mean_squared_error(y_test, y_pred_tuned)
rmse = np.sqrt(mse)
print(f"RMSE (Root Mean Squared Error): {rmse:.2f}")
RMSE (Root Mean Squared Error): 117.97
r2 = r2_score(y_test, y_pred_tuned)
print(f"R2 Score: {r2:.2f}")
→ R<sup>2</sup> Score: 0.84
mae = mean_absolute_error(y_test, y_pred_tuned)
print(f"MAE (Mean Absolute Error): {mae:.2f}")
MAE (Mean Absolute Error): 95.11
results_df = pd.DataFrame(grid_search.cv_results_)
pivot_table = results_df.pivot_table(
    values="mean_test_score",
    index="param_max_depth",
    columns="param_n_estimators",
    aggfunc="mean"
print(pivot_table)
    param_n_estimators
                                        100
    {\tt param\_max\_depth}
                         0.807504 0.808322 0.807099
                         0.798699 0.798742 0.798357
     10
```

₹

```
plt.figure(figsize=(8, 5))
sns.heatmap(pivot_table, annot=True, fmt=".3f", cmap="YlGnBu")
plt.title("GridSearchCV Mean R² Scores")
plt.xlabel("n_estimators")
plt.ylabel("max_depth")
plt.tight_layout()
plt.show()
```


Insights

From the heatmap, we can see that max_depth = 5 consistently gave better R² scores across all n_estimators. This suggests that deeper trees may be overfitting or not contributing significantly.

n_estimators = 100 with max_depth = 5 gave the best performance ($R^2 \approx 0.84$), meaning 100 trees struck a good balance between bias and variance.

Performance dropped slightly or plateaued at 200 estimators, implying diminishing returns with more trees.

sqrt for max_features worked better than log2, indicating that considering fewer features per split helped reduce overfitting.

Random Forest Interpretability

Author: Devanshi Adhikari

```
X = df[['temperature', 'promotions']]
y = df['sales']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = RandomForestRegressor(random_state=42)
model.fit(X_train, y_train)
₹
            RandomForestRegressor
     RandomForestRegressor(random_state=42)
explainer = shap.Explainer(model, X_train)
shap_values = explainer(X_test, check_additivity=False)
shap.summary_plot(shap_values, X_test)
₹
                                                                                        High
                                                                                            Feature value
      temperature
       promotions
                               -200
                                                     200
                                                                400
                                                                          600
                                 SHAP value (impact on model output)
shap.plots.bar(shap_values)
→
                                                                                          +148.83
      temperature
       promotions
                                                                                 +130.64
                             20
                                      40
                                                        80
                                                                          120
                                                                                   140
                                                                                            160
                                               mean(|SHAP value|)
print(df.head())
₹
       temperature
                    promotions
                                 sales
             -3.62
                                   520
              -4.19
                              0
                                   237
     1
             -5.20
     2
                              0
                                   265
     3
              -1.90
                              0
                                   419
              -3.91
                                   377
df.columns = df.columns.str.strip().str.lower()
shap_df = pd.DataFrame(shap_values.values, columns=X_test.columns)
sales_actual = y_test.reset_index(drop=True)
shap_promotions = shap_df['promotions']
plt.figure(figsize=(6, 4))
plt.scatter(sales_actual, shap_promotions, alpha=0.7)
plt.xlabel("Actual Sales")
plt.ylabel("SHAP Promotions")
plt.title("Promotions vs Actual Sales")
plt.grid(True)
plt.tight_layout()
plt.show()
```



```
import seaborn as sns

X_test_copy = X_test.copy()
X_test_copy['no_of_promotions '] = X_test_copy['promotions'].astype(int)
shap_df['no_of_promotions '] = X_test_copy['no_of_promotions '].values

sns.violinplot(data=shap_df, x="no_of_promotions ", y="promotions")
plt.title("SHAP distribuition Promotions by no. of Promotions ")
plt.show()
```


K-Means Clustering

Author: Advait Pandit

df=df.parse('Sheet1')

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
import seaborn as sns
from sklearn.decomposition import PCA

df=pd.ExcelFile("Dl_Data.xlsx")
```

```
12/06/2025, 23:38
                                                             EDA-Deep-Learning.ipynb - Colab
   #Convert numeric columns
   df=df.copy()
   df['sales']=pd.to numeric(df['sales'],errors='coerce')
   df['temperature']=pd.to_numeric(df['temperature'],errors='coerce')
   df['promotions']=pd.to_numeric(df['promotions'],errors='coerce')
   #Drop the empty NA rows
   df.dropna(subset=['sales','temperature','promotions'],inplace=True)
   df.info()
    Index: 363 entries, 0 to 364
       Data columns (total 4 columns):
            Column
                         Non-Null Count Dtype
        #
         0
            date
                          363 non-null
                                          datetime64[ns]
         1
             temperature
                         363 non-null
                                          float64
            promotions
                         363 non-null
                                          float64
                          363 non-null
                                          float64
        dtypes: datetime64[ns](1), float64(3)
        memory usage: 14.2 KB
   #Daily Clustering
   #Select essential columns and removing all we don't want for standardization Kmeans algorithm
   daily_data=df[['sales','temperature','promotions']]
   scaler=StandardScaler()
   daily_scaled=scaler.fit_transform(daily_data)
   #we will use k=3 that is generally consider as best fit.
   kmeans=KMeans(n_clusters=3, random_state=42, n_init=10)
   df['cluster']=kmeans.fit_predict(daily_scaled)
    🔂 C:\Users\ADVAIT\anaconda3\envs\tf-gpu\lib\site-packages\sklearn\cluster\_kmeans.py:1419: UserWarning: KMeans is known to
          warnings.warn(
   #See days in each cluster
   print(df['cluster'].value_counts())
       cluster
    →▼
            156
        2
             150
        1
             57
       Name: count, dtype: int64
   # Apply PCA to scaled daily data
   pca=PCA(n_components=2)
   pca_result=pca.fit_transform(daily_scaled)
   df['pca1']=pca_result[:, 0]
   df['pca2']=pca_result[:, 1]
   sns.scatterplot(data=df,x='pca1',y='pca2',hue='cluster',palette='Set1',s=60,edgecolor='black')
   plt.title("KMeans Cluster Visualisation")
   plt.xlabel("PCA 1")
   plt.ylabel("PCA 2")
   plt.grid(True)
   plt.legend()
   plt.show()
```


Analyze average values per cluster
df.groupby('cluster')[['sales','temperature','promotions']].mean()

₹

sales temperature promotions

cluster						
0	523.661743	0.252500	0.102564			
1	1202.121850	14.373509	2.596491			
2	782.493546	18.344733	0.053333			

#Monthy Clustering

```
# Group by month and calculate average sales, temperature, promotions
df['month']=df['date'].dt.month
monthly_data=df.groupby('month').agg({
    'sales':'mean',
    'temperature':'mean',
    'promotions':'mean'
}).reset_index()
print(monthly_data)
```

```
promotions
\overline{2}
                     sales temperature
        month
    0
               573.167369
                               -4.734516
                                            0.903226
            1
                                            0.107143
    1
               500.761859
                              -0.992500
               652.237629
                               5.750968
                                            0.096774
    3
            4
               797.055465
                              13.314000
                                            0.233333
               876.913689
                              19.970645
                                            0.451613
    5
               923.660246
                               24.785667
                                            0.766667
    6
7
                               24.702069
                                            0.793103
               953.612379
               931.198749
                               20.640000
                                            0.709677
    8
               916.446318
                              13.914000
                                            0.866667
    9
                                            0.000000
               673.181312
                               6.529677
           10
    10
               509.158143
                               0.135000
                                            0.000000
           11
                               -4.370968
           12 535.898443
                                            0.741935
```

```
#Standardization for monthly data
monthly_features=monthly_data[['sales','temperature','promotions']]
scaler=StandardScaler()
monthly_scaled=scaler.fit_transform(monthly_features)
```

#In Kmeans cluster we will use k=3 consider as generally best fit
kmeans_monthly=KMeans(n_clusters=3,random_state=42,n_init=10)
monthly_data['cluster']=kmeans_monthly.fit_predict(monthly_scaled)

C:\Users\ADVAIT\anaconda3\envs\tf-gpu\lib\site-packages\sklearn\cluster_kmeans.py:1419: UserWarning: KMeans is known to warnings.warn(

```
#CLuster allcation as per months
monthly_data.sort_values(by='cluster')
```

₹		month sales		temperature	promotions	cluster
	1	2	500.761859	-0.992500	0.107143	0
	2	3	652.237629	5.750968	0.096774	0
	3	4	797.055465	13.314000	0.233333	0