SONY

Vision and Sensing Application SDK モデル量子化 機能仕様書

Copyright 2023 Sony Semiconductor Solutions Corporation

Version 0.2.0 2023 - 1 - 30

AITRIOS™、およびそのロゴは、ソニーグループ株式会社またはその関連会社の登録商標または商標です。

目次

1. 更新履歴	1
2. 用語・略語	2
3. 参照資料	3
4. 想定ユースケース	4
5. 機能概要、アルゴリズム	5
6. 操作性仕様、画面仕様	8
7. 目標性能	15
8. 制限事項	16
9. その他特記事項	17
10. 未決定事項	18

1. 更新履歴

Date	What/Why
2022/11/16	初版作成
2023/01/30	量子化のキャリブレーションに使用する画像、評価時に使用する画像の格納方法について修正。評価時に使用するlabel情報ファイルの格納方法について追加。 evaluate_ground_truth_file設定を削除しevaluate_label_file設定を追加。 dataset_image_dir, evaluate_image_dir設定のデフォルトのパスを修正。サポートする画像フォーマットを記載。フォルダ構成変更。シンボリックリンク対応の追加。シークレット情報の削除に伴い、設定ファイルのInitial項目を削除、設定ファイルを作成する旨を追記。PDFビルド環境更新。

2. 用語・略語

Terms/Abbreviations	Meaning
MCT	モデルを量子化するためのオープンソースソフト ウェア
Keras	AIモデルのフォーマットの一種
TFLite	TensorFlow Liteのこと AIモデルのフォーマットの一種
イテレーション	(1回あたりの)学習

3. 参照資料

- Reference/Related documents (関連資料)
 - Model Compression Toolkit (MCT)
 - https://github.com/sony/model_optimization

4. 想定ユースケース

- モデルの量子化を行いたい 量子化を行うことでモデルのサイズを抑え、ターゲットエッジAIデバイスにデプロイできるようにしたい
- 量子化前と後のモデルを使用して推論実行し精度を確認したい

5. 機能概要、アルゴリズム

Functional Overview

- SDKにて下記のフローでImage ClassificationのAIモデル(Keras)を量子化しAIモデル(TFLite)に変換できる
- 量子化前と後のAIモデルで推論実行し、推論実行結果の統計値(Top1 accuracy)を取得できる
- SDKにてサポートするAIモデルは、MCTの supported-features に準拠する
- SDKにてサポートする画像フォーマットはJPEGとする

凡例 処理/ユーザーの行動

フロー概要

- フロー詳細
 - 1. 量子化するAIモデルを用意
 - 変換対象となるAIモデル(Keras)を用意する
 - 2. 量子化用画像と評価用画像を用意
 - 量子化のキャリブレーションに使用するため、AIモデルのtrainingに使用した画像を用意 する
 - 推論評価時に入力として使用するため、AIモデルのvalidationに使用する画像とそのlabel 情報を用意する
 - 3. 量子化実行向け設定ファイル作成・編集
 - 設定ファイルconfiguration.jsonを作成、編集してNotebook実行時の設定を行う
 - 4. Notebook編集
 - 使用するAIモデルに応じてNotebook内のcalibration用preprocessing処理部の実装を修正する
 - 5. 量子化と評価を実行
 - AIモデル(Keras)を量子化しAIモデル(TFLite)に変換し、推論評価するNotebookを実行する

6. 操作性仕様、画面仕様

How to start each function

- 1. SDK環境を立ち上げ、Topの README.md をプレビュー表示する
- 2. SDK環境Topの README.md に含まれるハイパーリンクから、 tutorials ディレクトリの README.md にジャンプする
- 3. tutorials ディレクトリの README.md に含まれるハイパーリンクから、 3_prepare_model ディレクトリの README.md にジャンプする
- 4. **3_prepare_model** ディレクトリの **README.md** に含まれるハイパーリンクから、 **develop_on_sdk** ディレクトリの **README.md** にジャンプする
- 5. **develop_on_sdk** ディレクトリの **README.md** に含まれるハイパーリンクから、 **2_quantize_model** ディレクトリの **README.md** にジャンプする
- 6. 2_quantize_model ディレクトリの README.md に含まれるハイパーリンクから、image_classification ディレクトリの README.md にジャンプする
- 7. image_classification ディレクトリの各ファイルから各機能に遷移する

量子化するAIモデルを用意

- 1. 変換対象となるAIモデル(Keras)を用意する
 - 。 変換対象となるAIモデル(Keras)を、SDK実行環境に格納する

量子化用画像と評価用画像を用意

- 1. 量子化のキャリブレーションに使用するため、AIモデルのtrainingに使用した画像を用意する
 - 。 AIモデルのtrainingに使用した画像(300ファイル程度)が含まれるフォルダを、SDK実行環境 に格納する
 - tutorials/_common/datasetフォルダ内に格納する場合は、下記のように格納する

(1) 学習時に使用したデータセット。フォルダ構成は任意。

- 2. 推論評価時に入力として使用するため、 ImageNet 1.0形式のフォルダ構成 のアノテーション データとそのlabel情報ファイルを用意する
 - 。 AIモデルのvalidationに使用する画像が含まれるフォルダを、SDK実行環境に格納する
 - tutorials/ common/datasetフォルダ内に格納する場合は、下記のように格納する

- (1) 評価時に使用するデータセット。フォルダ構成は上記のように ImageNet 1.0形式のフォルダ構成 にする。
- (2) label情報ファイル
- label情報ファイルのフォーマットは下記のようにlabel名とそのid値が記載されたjsonファイルとする

```
{"daisy": 0, "dandelion": 1, "roses": 2, "sunflowers": 3, "tulips": 4}
```


ユーザー独自で用意したAIモデルをSDKで量子化する場合に、データセットを上記の形式に変換する方法は、CVAT画像アノテーション 機能仕様書 の アノテーション情報をフォーマット変換 を参照。

量子化実行向け設定ファイル作成・編集

- 1. 実行ディレクトリに設定ファイル(configuration. json)を作成し、編集する
 - 「実行ディレクトリ」について、image classificationを実行する場合は quantize_model/image_classification ディレクトリとなる。
 - † 特別な記載がある場合を除き、原則として省略は不可。

原則としてシンボリックリンクのフォルダパス、ファイルパスは使用不可。

Configuration	Meaning	Range	Remarks
source_keras_model	変換元となるAIモデル (Keras) パス。Kerasの SavedModel形式のフ ォルダまたはh5形式の ファイルを指定する	絶対パスまたは Notebook(*.ipynb)から の相対パス	
dataset_image_dir	量子化の際にキャリブ レーションを行うため のデータセット画像を 格納したディレクトリ	絶対パスまたは Notebook(*.ipynb)から の相対パス	
batch_size	量子化の際にキャリブ レーションを行う画像 を小分けにして重みや バイアスなどの特徴を 見つけるセット枚数	1以上かつ、 dataset_image_dir に含まれる画像枚数以 下	
input_tensor_size	AIモデルの入力テンソ ルのサイズ(画像の一辺 のピクセル数)	AIモデルの入力テンソ ルに準拠	
iteration_count	量子化時のイテレーション回数	1以上	
output_dir	変換結果AIモデルの出 力先となるディレクト リ	絶対パスまたは Notebook(*.ipynb)から の相対パス	
evaluate_image_dir	推論実行時に入力する 画像を含むディレクト リ	絶対パスまたは Notebook(*.ipynb)から の相対パス	
evaluate_image_ext ension	推論実行時に入力する 画像の拡張子	文字列	

Configuration	Meaning	Range	Remarks
evaluate_label_fil e	AIモデルのラベル情報	絶対パスまたは Notebook(*.ipynb)から の相対パス	
evaluate_result_di r	推論実行結果の統計情 報を保存するディレク トリ	絶対パスまたは Notebook(*.ipynb)から の相対パス	

Notebook編集

- 1. 実行ディレクトリの量子化実行用Notebook(*.ipynb)を開く
- 2. Notebookの中のcalibration用preprocessing処理部 (FolderImageLoader の引数 preprocessing=[resize, normalization])を編集する
 - 。 使用するAIモデルの学習時のpreprocessing処理に相当する処理となるよう、編集する

量子化と評価を実行

- 1. 実行ディレクトリの量子化実行用Notebook(*.ipynb)を開き、その中のPythonスクリプトを実 行する
 - 。 その後下記の動作をする
 - 実行ディレクトリのconfiguration.json存在をチェックする
 - エラー発生時はその内容を表示し、中断する
 - configuration.json source_keras_model 、dataset_image_dir の存在をチェック する
 - エラー発生時はその内容を表示し、中断する
 - configuration.json の下記の内容を読み取り、MCTへ必要な設定を行い、AIモデル(Keras) を量子化し変換する
 - configuration.json source_keras_model
 - configuration.json dataset_image_dir
 - configuration.json batch_size
 - configuration.json input_tensor_size
 - configuration.json iteration count
 - MCTなどの外製ソフトでエラー発生時は、外製ソフトが出力するエラーを表示し、中断 する
 - configuration.json output_dir に、MCTで量子化したAIモデル(TFLite)ファイル model_quantized.tflite と、TensorFlow標準機能でTFLiteに変換したAIモデル (TFLite)ファイル model.tflite を出力する
 - output dir で指定するディレクトリがなければ作成し、そこに出力する
 - 変換中はNotebookに下記のような表示をする(iteration_count が10の場合)

```
0%| | 0/10 [00:00<?, ?it/s]
...
30%| | 3/10 [00:15<00:35, 5.10s/it]
...
100%| | 10/10 [00:50<00:00, 5.07s/it]
```

- configuration.json output_dir、evaluate_image_dir、evaluate_label_file の存在をチェックする
 - エラー発生時はその内容を表示し、中断する

- configuration.json の下記の内容を読み取り、tflite interpreterへ必要な設定を行う
 - configuration.json output_dir
 - configuration.json evaluate_image_dir
 - configuration.json evaluate_image_extension
 - configuration.json evaluate_labe_file
 - configuration.json evaluate_result_dir
- 元のAIモデル(Keras)、TensorFlow標準機能でTFLiteに変換したAIモデル(TFLite)、MCTで 量子化したAIモデル(TFLite)の3種のAIモデルで推論実行し、統計情報を表示する
- 統計情報を、evaluate_result_dir 配下に results.json ファイルとして保存する
- TensorFlowなどの外製ソフトでエラー発生時は、外製ソフトが出力するエラーを表示 し、中断する
- AIモデル(TFLite)の推論実行中は下記のような表示をする(画像数が10の場合)

```
0%| | 0/10 [00:00<?, ?it/s]
...
40%| | 4/10 [00:03<00:05, 1.08it/s]
...
100%| 10/10 [00:09<00:00, 1.08it/s]
```

- AIモデル(Keras)の推論実行中はTensorFlowライブラリによるログを表示する
- 処理中でもNotebook Cell機能のStop Cell Executionで中断できる

7. 目標性能

- SDKの環境構築完了後、追加のインストール手順なしに、AIモデル(Keras)を量子化しAIモデル (TFLite)に変換できること
- UIの応答時間が1.2秒以内であること
- 処理に5秒以上かかる場合は、処理中の表現を逐次更新表示できること

8. 制限事項

• なし

9. その他特記事項

- MCT(model-compression-toolkit)、TensorFlowのバージョン確認方法について
 - 。 SDK環境のルートフォルダにある requirements.txt を参照する

10. 未決定事項

• なし