MA40042 Measure Theory and Integration

Problem Sheet 4

Solutions should be submitted to the MA40042 pigeonhole by 1500 on Wednesday 2 November.

(Note unusual day and time.)

Work will be returned and answers discussed in the problems class on Thursday 3 November.

- 1. (a) Let Σ be a collection of subsets of a nonempty set X. Show that Σ is a σ -algebra if and only if it is both a π -system and a λ -system.
 - (b) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and fix an event $B \in \mathcal{F}$. Let Λ be the set of events independent of B, so

$$\Lambda = \{ A \in \mathcal{F} : \mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B) \}.$$

Show that Λ is a λ -system.

(c) Let (X, Σ) be a measurable space, and λ, ν two measures on (X, Σ) with $\lambda(X) = \nu(X) < \infty$. Write

$$\Lambda = \left\{ A \in \Sigma : \mu(A) = \nu(A) \right\}$$

for the collection of sets where the measures agree. Show that Λ is a λ -system.

- (d) Give a specific example of a λ -system that is not a σ -algebra.
- (e) An alternative definition of a λ -system (see, for example, A1.2 in *Probability with Martingales* by Williams, who calls them d-systems) is the following: it is a collection Λ of subsets of X with
 - 1. $X \in \Lambda$;
 - 2. if $A, B \in \Lambda$ with $A \subset B$, then $B \setminus A \in \Lambda$;
 - 3. if $A_1 \subset A_2 \subset \cdots$ is a countably infinite 'expanding' sequence of sets in Λ , then $\bigcup_{n=1}^{\infty} A_n \in \Lambda$.

Show that this is equivalent to the definition we gave in lectures. (Remember to show the implication in both directions.)

2. For a set $A \subset \mathbb{R}$ and a real number α , write αA for the dilation

$$\alpha A = \{\alpha x : x \in A\}.$$

Let λ be the Lebesgue measure on $(\mathbb{R}, \mathcal{B})$.

- (a) Show that $\lambda(\alpha A) = |\alpha|\lambda(A)$.
- (b) Show that the Lebesgue measure is the unique measure on $(\mathbb{R}, \mathcal{B})$ with $\lambda(\alpha A) = |\alpha|\lambda(A)$ and $\lambda([0,1)) = 1$.
- (c) What is the equivalent result in d dimensions? (A sketch proof is sufficient.)
- 3. Let $F: \mathbb{R} \to \mathbb{R}$ be a nondecreasing, right-continuous function. Let \mathcal{J} be the set of intervals of the form (a, b], including \emptyset , and the infinite intervals $(-\infty, b]$, (a, ∞) and \mathbb{R} . Define $\pi_F(\emptyset) = 0$ and $\pi_F((a, b]) = F(b) F(a)$.
 - (a) Very briefly explain how you know that \mathcal{J} is a semialgebra that generates the Borel σ -algebra \mathcal{B} .
 - (b) What can you say about the existence of $F(-\infty) := \lim_{x \to -\infty} F(x)$ and $F(\infty) := \lim_{x \to \infty} F(x)$?
 - (c) We wish to extend π_F to a premeasure on $(\mathbb{R}, \mathcal{J})$. How should we define π_F for the infinite intervals?
 - (d) Show that this π_F is indeed a premeasure on $(\mathbb{R}, \mathcal{J})$. (You may wish to follow the similar proof of Lemma 6.9 from the lectures.)
 - (e) Explain why π_F extends to a measure λ_F on $(\mathbb{R}, \mathcal{B})$. Show that this measure is the unique such extension.

(This unique extension is called the $Lebesgue-Stieltjes\ measure\ corresponding$ to F.)

- (f) Show that the Lebesgue measure is a special case of the Lebesgue–Stieltjes measure.
- (g) Explain how we know that the left limit $F(x-) := \lim_{y \uparrow x} F(y)$ exists for every $x \in \mathbb{R}$.
- (h) What is $\lambda_F(\{x\})$?
- (i) What is $\lambda_F([a,b))$?
- (j) To what extent is the function F determined by its Lebesgue–Stieltjes measure λ_F . (*Hint:* To start with, assume F(0) = 0. Can you build F from the measure λ_F ?)