Algebraic Geometry Approaches to Linear Cryptanalysis Current Insights and Open Problems

Clémence Bouvier

Université de Lorraine, CNRS, Inria, LORIA

(joint work with Tim Beyne)

Grace Seminar, Saclay, France March 25th, 2025

New symmetric primitives

A new context

Traditional case

Alphabet

Motivation 0000000000

> Operations based on logical gates or CPU instructions.

> > \mathbb{F}_2^n , with $n \simeq 4,8$

Arithmetization-Oriented

Alphabet

Operations based on large finite-field arithmetic.

$$\mathbb{F}_q$$
, with $q \in \{2^n, p\}, p \simeq 2^n, n \geq 32$

A new context

Traditional case

Alphabet

Motivation 0000000000

> Operations based on logical gates or CPU instructions.

> > \mathbb{F}_2^n , with $n \simeq 4.8$

Cryptanalysis

Decades of cryptanalysis

- * algebraic attacks 🗸
- * differential attacks <
- * linear attacks 🗸
- * ...

Arithmetization-Oriented

Alphabet

Operations based on large finite-field arithmetic.

$$\mathbb{F}_q$$
, with $q \in \{2^n, p\}, p \simeq 2^n, n \geq 32$

Cryptanalysis

- \leq 8 years of cryptanalysis
 - ★ algebraic attacks ✓
 - * differential attacks X
 - ★ linear attacks X
 - * ...

Characters

Definition

Motivation 0000000000

A character of a finite abelian group G is a homomorphism

$$\chi: G \to \mathbb{C}^{\times}$$
,

where \mathbb{C}^{\times} is the multiplicative group of nonzero complex numbers.

In particular, we have

and for $a_1, a_2 \in G$

$$\chi(1) = 1$$
,

$$\chi(a_1a_2)=\chi(a_1)\chi(a_2).$$

 $\chi(a)$ is a root of unity

Characters

Definition

Motivation 0000000000

A character of a finite abelian group G is a homomorphism

$$\chi: G \to \mathbb{C}^{\times}$$
,

where \mathbb{C}^{\times} is the multiplicative group of nonzero complex numbers.

In particular, we have

and for
$$a_1, a_2 \in G$$

$$\chi(1) = 1$$
,

$$\chi(a_1a_2)=\chi(a_1)\chi(a_2).$$

 $\chi(a)$ is a root of unity

Definition

A linear approximation of $F : \mathbb{F}_q^n \to \mathbb{F}_q^m$ is a pair of characters (χ, ψ) .

Definition

Motivation 000000000000

The correlation of the linear approximation (χ, ψ) of $F : \mathbb{F}_q^n \to \mathbb{F}_q^m$ is

$$C_{\chi,\psi}^{\mathsf{F}} = \frac{1}{q^n} \sum_{x \in \mathbb{F}_q^n} \chi(\mathsf{F}(x)) \, \psi(-x) \; .$$

Let ω be a primitive character, $\mathbb{F}_q \to \mathbb{C}^{\times}$ s.t. $\chi(\mathsf{F}(x)) = \omega^{\langle v, \mathsf{F}(x) \rangle}$ and $\psi(x) = \omega^{\langle u, x \rangle}$. Then

$$C_{\chi,\psi}^{\mathsf{F}} = \frac{1}{q^n} \sum_{\mathbf{x} \in \mathbb{F}_q^n} \omega^{(\langle \mathbf{v}, \mathsf{F}(\mathbf{x}) \rangle - \langle \mathbf{u}, \mathbf{x} \rangle)} .$$

Correlation of linear approximations

Definition

Motivation 000000000000

The correlation of the linear approximation (χ, ψ) of $F : \mathbb{F}_q^n \to \mathbb{F}_q^m$ is

$$C_{\chi,\psi}^{\mathsf{F}} = \frac{1}{q^n} \sum_{x \in \mathbb{F}_q^n} \chi(\mathsf{F}(x)) \, \psi(-x) \; .$$

Let ω be a primitive character, $\mathbb{F}_q \to \mathbb{C}^{\times}$ s.t. $\chi(\mathsf{F}(x)) = \omega^{\langle v, \mathsf{F}(x) \rangle}$ and $\psi(x) = \omega^{\langle u, x \rangle}$. Then

$$C_{\chi,\psi}^{\mathsf{F}} = \frac{1}{q^n} \sum_{\mathbf{x} \in \mathbb{F}_q^n} \omega^{(\langle \mathbf{v}, \mathsf{F}(\mathbf{x}) \rangle - \langle u, \mathbf{x} \rangle)} .$$

Examples:

 \star If $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$, then

$$C_{u,v}^{\mathsf{F}} = \frac{1}{2^n} \sum_{\mathsf{x} \in \mathbb{F}_2^n} (-1)^{(\langle \mathsf{v},\mathsf{F}(\mathsf{x}) \rangle + \langle u,\mathsf{x} \rangle)} \ .$$

 \star If $F: \mathbb{F}_p^n \to \mathbb{F}_p^m$, then

$$C^{\mathsf{F}}_{u,v} = \frac{1}{p^n} \sum_{x \in \mathbb{F}_n^n} \mathrm{e}^{\left(\frac{2i\pi}{p}\right) (\langle v, \mathsf{F}(x) \rangle - \langle u, x \rangle)} \;.$$

Definition

Motivation 000000000000

> The Walsh transform for the character ω of the linear approximation (u, v) of $F : \mathbb{F}_q^n \to \mathbb{F}_q^m$ is given by

$$\mathcal{W}_{u,v}^{\mathsf{F}} = \sum_{x \in \mathbb{F}_q^n} \frac{\omega^{(\langle v, \mathsf{F}(x) \rangle - \langle u, x \rangle)}}{} \; .$$

$$\mathcal{W}_{u,v}^{\mathsf{F}} = q^n \cdot C_{u,v}^{\mathsf{F}}$$

Definition

Motivation 000000000000

> The Walsh transform for the character ω of the linear approximation (u, v) of $F : \mathbb{F}_q^n \to \mathbb{F}_q^m$ is given by

$$\mathcal{W}_{u,v}^{\mathsf{F}} = q^n \cdot C_{u,v}^{\mathsf{F}}$$

Definition

The **Linearity** \mathcal{L}_{F} of $\mathsf{F}: \mathbb{F}_q^n \to \mathbb{F}_q^m$ is the highest Walsh coefficient.

$$\mathcal{L}_{\mathsf{F}} = \max_{u,v \in \mathbb{F}_q, v
eq 0} \left| \mathcal{W}^{\mathsf{F}}_{u,v}
ight| \ .$$

Closed Flystel in \mathbb{F}_{2^n}

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].

Closed Flystel.

$$\mathcal{L}_{\mathsf{F}} = \max_{u,v
eq 0} \left| \sum_{x \in \mathbb{F}_{2^n}^2} (-1)^{(\langle v, \mathsf{F}(x) \rangle - \langle u, x \rangle)} \right|$$

Bound

Linearity bound for the Flystel:

$$\mathcal{L}_{\mathsf{F}} < 2^{n+1}$$

Closed Flystel in \mathbb{F}_n

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].

Motivation 0000000000000

Closed Flystel.

d is a small integer s.t. $x \mapsto x^d$ is a permutation of \mathbb{F}_p (usually d = 3, 5).

$$\mathcal{L}_{\mathsf{F}} = \max_{u,v \neq 0} \left| \sum_{x \in \mathbb{F}_p^2} e^{\left(\frac{2i\pi}{p}\right) \left(\langle v, \mathsf{F}(x) \rangle - \langle u, x \rangle\right)} \right|$$

Closed Flystel in \mathbb{F}_n

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].

Motivation 0000000000000

Closed Flystel.

d is a small integer s.t. $x \mapsto x^d$ is a permutation of \mathbb{F}_p (usually d = 3, 5).

$$\mathcal{L}_{\mathsf{F}} = \max_{u,v \neq 0} \left| \sum_{x \in \mathbb{F}_p^2} e^{\left(\frac{2i\pi}{p}\right) \left(\langle v, \mathsf{F}(x) \rangle - \langle u, x \rangle\right)} \right|$$

How to determine an accurate bound for the linearity of the Closed Flystel in \mathbb{F}_p ?

Weil bound

Proposition [Weil, 1948]

Motivation 000000000000

Let $f \in \mathbb{F}_p[x]$ be a univariate polynomial with $\deg(f) = d$. Then

$$\mathcal{L}_f \leq (\mathbf{d}-1)\sqrt{p}$$

Weil bound

Proposition [Weil, 1948]

Motivation 0000000000000

Let $f \in \mathbb{F}_p[x]$ be a univariate polynomial with $\deg(f) = d$. Then

$$\mathcal{L}_f \leq (\mathbf{d} - 1)\sqrt{p}$$

Closed Flystel.

$$\mathcal{L}_{\mathsf{F}} \leq (d-1)p\sqrt{p} \; ? \qquad egin{cases} \mathcal{L}_{\gamma+eta x^2} & \leq \sqrt{p} \; , \ \mathcal{L}_{\chi d} & \leq (d-1)\sqrt{p} \; , \ \mathcal{L}_{\delta+eta x^2} & \leq \sqrt{p} \; . \end{cases}$$

Conjecture

$$\mathcal{L}_{\mathsf{F}} = \sum_{\mathsf{x} \in \mathbb{F}_{+}^{2}} e^{\left(\frac{2i\pi}{p}\right)(\langle \mathsf{v}, \mathsf{F}(\mathsf{x}) \rangle - \langle \mathsf{u}, \mathsf{x} \rangle)} \leq p \log p$$

Experimental results

Experimental results (d = 3)

Experimental results (d = 5)

Take-away

AO primitives: new symmetric primitives defined over prime fields.

Need for new linear cryptanalysis tools

AO primitives: new symmetric primitives defined over prime fields.

Need for new linear cryptanalysis tools

This Talk:

Motivation 00000000000

* Applications of results for exponential sums (generalization of Weil bound)

$$\mathcal{W}^{\mathsf{F}}_{u,v} = \sum_{x \in \mathbb{F}^n_a} \frac{\omega^{(\langle v, \mathsf{F}(x) \rangle - \langle u, x \rangle)}}{\sigma^{\mathsf{F}(x)}} \quad o \quad S(f) = \sum_{x \in \mathbb{F}^n_a} \frac{\omega^{f(x)}}{\sigma^{\mathsf{F}(x)}} \; .$$

- $\star \mathbb{F}_q$ is a finite field s.t. q is a power of a prime p.
- * Functions with 2 variables $F \in \mathbb{F}_q[x_1, x_2]$.

* Deligne bound

- * Application to the Generalized Butterfly construction
- * Denef and Loeser bound
 - * Application to 3-round Feistel construction
- * Rojas-León bound
 - * Application to the Generalized Flystel construction

Smoothness

Definition

Let $f \in \mathbb{F}_q[x_1, \dots, x_n]$. A hypersurface defined by f = 0 is **smooth**, if the system

$$f = \partial f / \partial x_1 = \cdots = \partial f / \partial x_n = 0$$

has no non zero solutions.

Smoothness

Definition

Let $f \in \mathbb{F}_q[x_1, \dots, x_n]$. A hypersurface defined by f = 0 is smooth, if the system

$$f = \partial f / \partial x_1 = \cdots = \partial f / \partial x_n = 0$$

has no non zero solutions.

Examples:

*
$$f(x_1, x_2) = 2x_1^3 + x_2^2 = 0$$
 is smooth, since

$$\partial f/\partial x_1 = 6x_1^2$$
 and $\partial f/\partial x_2 = 2x_2$,

so that

$$f = \partial f/\partial x_1 = \partial f/\partial x_2 = 0 \qquad \Leftrightarrow \qquad (x_1, x_2) = (0, 0)$$
.

Definition

Let $f \in \mathbb{F}_q[x_1, \dots, x_n]$. A hypersurface defined by f = 0 is **smooth**, if the system

$$f = \partial f / \partial x_1 = \cdots = \partial f / \partial x_n = 0$$

has no non zero solutions.

Examples:

*
$$f(x_1, x_2) = 2x_1^3 + x_2^2 = 0$$
 is smooth, since

$$\partial f/\partial x_1 = 6x_1^2$$
 and $\partial f/\partial x_2 = 2x_2$,

$$f = \partial f/\partial x_1 = \partial f/\partial x_2 = 0 \qquad \Leftrightarrow \qquad (x_1, x_2) = (0, 0) \ .$$

*
$$f(x_1, x_2) = x_1^2 + x_2^2 - 2x_2 + 1 = 0$$
 is not smooth, since

$$\partial f/\partial x_1 = 2x_1$$
 and $\partial f/\partial x_2 = 2x_2 - 2$,

so that

$$f = \partial f / \partial x_1 = \partial f / \partial x_2 = 0$$
 \Leftrightarrow $(x_1, x_2) = (0, 1)$.

Theorem [Deligne, 1974]

Let q be a power of a prime p.

Let $f \in \mathbb{F}_q[x_1, \dots, x_n]$ be a polynomial of degree d, with gcd(d, p) = 1. Let f_d be the degree d homogeneous component of f, i.e.

$$f = f_d + g$$
, $\deg(g) < d$.

If the hypersurface defined by $f_d = 0$ is **smooth**, then, we have

$$|S(f)| = \left| \sum_{x \in \mathbb{F}_a^n} \omega^{f(x)} \right| \leq (d-1)^n \cdot q^{n/2}.$$

Deligne Theorem

Theorem [Deligne, 1974]

Let q be a power of a prime p.

Let $f \in \mathbb{F}_q[x_1, \dots, x_n]$ be a polynomial of degree d, with gcd(d, p) = 1. Let f_d be the degree d homogeneous component of f, i.e.

$$f = f_d + g$$
, $\deg(g) < d$.

If the hypersurface defined by $f_d = 0$ is **smooth**, then, we have

$$|S(f)| = \left|\sum_{x \in \mathbb{F}_a^n} \omega^{f(x)}\right| \leq (d-1)^n \cdot q^{n/2}.$$

Linearity bound for n=2: $\mathcal{L}_{\mathsf{F}} \leq (d-1)^2 \cdot q$.

Butterfly - Definition

Introduced by [Perrin, Udovenko and Biryukov, 2016] over binary fields, $\mathbb{F}_{2^n}^2$, n odd.

Open variant.

$$\begin{cases} y_1 = (x_2 + \alpha y_2)^3 + (\beta y_2)^3 \\ y_2 = (x_1 - (\beta x_2)^3)^{1/3} - \alpha x_2 . \end{cases}$$

Closed variant.

$$\begin{cases} y_1 = (x_1 + \alpha x_2)^3 + (\beta x_2)^3 \\ y_2 = (x_2 + \alpha x_1)^3 + (\beta x_1)^3 \end{cases}.$$

Generalized Butterfly - Definition

BUTTERFLY $[G, H, \alpha]$, with $G : \mathbb{F}_q \to \mathbb{F}_q$ a permutation, $H : \mathbb{F}_q \to \mathbb{F}_q$ a function and $\alpha \in \mathbb{F}_q$.

Open variant.

$$\begin{cases} y_1 &= \mathsf{G}(x_2 + \alpha y_2) + \mathsf{H}(y_2) \\ y_2 &= \mathsf{G}^{-1}(x_1 - \mathsf{H}(x_2)) - \alpha x_2 \,. \end{cases}$$

Closed variant.

$$\begin{cases} y_1 &= \mathsf{G}(x_1 + \alpha x_2) + \mathsf{H}(x_2) \\ y_2 &= \mathsf{G}(x_2 + \alpha x_1) + \mathsf{H}(x_1) \,. \end{cases}$$

Generalized Butterfly - Bound

Let $F = \text{Butterfly}[G, H, \alpha]$, with G a permutation, H a function and α in \mathbb{F}_q .

$$f(x_1, x_2) = \langle (v_1, v_2), F(x_1, x_2) \rangle - \langle (u_1, u_2), (x_1, x_2) \rangle$$

= $v_1 G(x_1 + \alpha x_2) + v_2 G(x_2 + \alpha x_1) + v_1 H(x_2) + v_2 H(x_1) - u_1 x_1 - u_2 x_2$.

$$\begin{cases} y_1 &= \mathsf{G}(x_1 + \alpha x_2) + \mathsf{H}(x_2) \\ y_2 &= \mathsf{G}(x_2 + \alpha x_1) + \mathsf{H}(x_1) \,. \end{cases}$$

Generalized Butterfly - Bound

Let $F = BUTTERFLY[G, H, \alpha]$, with G a permutation, H a function and α in \mathbb{F}_q .

$$f(x_1, x_2) = \langle (v_1, v_2), F(x_1, x_2) \rangle - \langle (u_1, u_2), (x_1, x_2) \rangle$$

= $v_1 G(x_1 + \alpha x_2) + v_2 G(x_2 + \alpha x_1) + v_1 H(x_2) + v_2 H(x_1) - u_1 x_1 - u_2 x_2$.

$$\begin{cases} y_1 &= \mathsf{G}(x_1 + \alpha x_2) + \mathsf{H}(x_2) \\ y_2 &= \mathsf{G}(x_2 + \alpha x_1) + \mathsf{H}(x_1). \end{cases}$$

Linearity Bound

- \star If $d = \deg G > \deg H > 1$, then and $\alpha \neq \pm 1$, $f_d = (x_1 + \alpha x_2)^d + v_2/v_1(x_2 + \alpha x_1)^d = 0$ is smooth.
- * If $d = \deg H > \deg G > 1$. then $f_d = x_1^d + v_1/v_2 x_2^d = 0$ is smooth.

$$ig|\mathcal{L}_{\mathsf{F}} \leq (\mathsf{max}\{\mathsf{deg}\:\mathsf{G},\mathsf{deg}\:\mathsf{H}\}-1)^2\cdot qig|$$

Generalized Butterfly - Results

Let $F = Butterfly[G, H, \alpha]$ with G and H monomial functions.

Low-degree functions (max{deg G, deg H}) = 5 and α = 2).

Generalized Butterfly - Results

Let $F = BUTTERFLY[G, H, \alpha]$ with G and H monomial functions.

Influence of α (deg G = 5 and deg H = 2).

- * Deligne bound
 - * Application to the Generalized Butterfly construction
- * Denef and Loeser bound
 - * Application to 3-round Feistel construction
- * Rojas-León bound
 - * Application to the Generalized Flystel construction

Newton Polyhedron

00000000

Denef and Loeser applied to 3-round Feistel

Definition

Let $f \in \mathbb{F}_a[x_1, \ldots, x_n]$ s.t.

$$f(x_1,...,x_n) = \sum_{e_1,...,e_n} c_{e_1,...,e_n} \prod_{i=1}^n x_i^{e_i}$$
.

The **Newton polyhedron** $\Delta(f)$ of f is the convex hull defined by

$$\{(0,\ldots,0)\}\ \cup\ \{(e_1,\ldots,e_n)\mid c_{e_1,\ldots,e_n}\neq 0\}\subset \mathbb{R}^n\ .$$

Newton Polyhedron

00000000

Denef and Loeser applied to 3-round Feistel

Definition

Let $f \in \mathbb{F}_q[x_1, \ldots, x_n]$ s.t.

$$f(x_1,\ldots,x_n)=\sum_{e_1,\ldots,e_n}c_{e_1,\ldots,e_n}\prod_{i=1}^nx_i^{e_i}.$$

The **Newton polyhedron** $\Delta(f)$ of f is the convex hull defined by

$$\{(0,\ldots,0)\}\ \cup\ \{(e_1,\ldots,e_n)\mid c_{e_1,\ldots,e_n}\neq 0\}\subset\mathbb{R}^n\ .$$

Examples:

$$f(x_1, x_2) = 1 + x_1x_2 - 2x_1^2x_2^4 + 3x_1^5x_2$$

Newton Polyhedron

00000000

Denef and Loeser applied to 3-round Feistel

Definition

Let $f \in \mathbb{F}_q[x_1, \dots, x_n]$ s.t.

$$f(x_1,\ldots,x_n)=\sum_{\mathbf{e}_1,\ldots,\mathbf{e}_n}c_{\mathbf{e}_1,\ldots,\mathbf{e}_n}\prod_{i=1}^nx_i^{\mathbf{e}_i}.$$

The **Newton polyhedron** $\Delta(f)$ of f is the convex hull defined by

$$\{(0,\ldots,0)\}\ \cup\ \{(e_1,\ldots,e_n)\mid c_{e_1,\ldots,e_n}\neq 0\}\subset\mathbb{R}^n\ .$$

Examples:

$$f(x_1, x_2) = 1 + x_1x_2 - 2x_1^2x_2^4 + 3x_1^5x_2$$

Newton Polyhedron

00000000

Denef and Loeser applied to 3-round Feistel

Definition

Let $f \in \mathbb{F}_q[x_1, \ldots, x_n]$ s.t.

$$f(x_1,\ldots,x_n)=\sum_{e_1,\ldots,e_n}c_{e_1,\ldots,e_n}\prod_{i=1}^nx_i^{e_i}.$$

The **Newton polyhedron** $\Delta(f)$ of f is the convex hull defined by

$$\{(0,\ldots,0)\}\ \cup\ \{(e_1,\ldots,e_n)\mid c_{e_1,\ldots,e_n}\neq 0\}\subset\mathbb{R}^n\ .$$

$$f(x_1, x_2) = 1 + x_1 x_2 - 2x_1^2 x_2^4 + 3x_1^5 x_2$$

$$f(x_1, x_2) = 3 - x_1^2 + 5x_1x_2^2 + x_2^4 + 9x_1^5$$

Newton Polyhedron

00000000

Definition

Let $f \in \mathbb{F}_q[x_1, \ldots, x_n]$ s.t.

$$f(x_1,\ldots,x_n) = \sum_{e_1,\ldots,e_n} c_{e_1,\ldots,e_n} \prod_{i=1}^n x_i^{e_i}.$$

The **Newton polyhedron** $\Delta(f)$ of f is the convex hull defined by

$$\{(0,\ldots,0)\}\ \cup\ \{(e_1,\ldots,e_n)\mid c_{e_1,\ldots,e_n}\neq 0\}\subset\mathbb{R}^n\ .$$

$$f(x_1, x_2) = 1 + x_1x_2 - 2x_1^2x_2^4 + 3x_1^5x_2$$

$$f(x_1, x_2) = 3 - x_1^2 + 5x_1x_2^2 + x_2^4 + 9x_1^5$$

0000000

Denef and Loeser applied to 3-round Feistel

Definition

Let $f \in \mathbb{F}_q[x_1, \dots, x_n]$. The **Newton number** $\nu(f)$ of f is

$$\nu(f) = \sum_{I \subseteq \{1,\dots,n\}} (-1)^{|I|} (n-|I|)! \operatorname{Vol}_I \Delta(f) ,$$

where $\operatorname{Vol}_I \Delta(f)$ is the volume of $\Delta(f) \bigcap_{i \in I} \{x_i = 0\}$

Definition

Let $f \in \mathbb{F}_q[x_1, \dots, x_n]$. The **Newton number** $\nu(f)$ of f is

$$\nu(f) = \sum_{I \subseteq \{1,\dots,n\}} (-1)^{|I|} (n-|I|)! \operatorname{Vol}_I \Delta(f) ,$$

where $\operatorname{Vol}_I \Delta(f)$ is the volume of $\Delta(f) \bigcap_{i \in I} \{x_i = 0\}$

$$f(x_1, x_2) = 3 - x_1^2 + 5x_1x_2^2 + x_2^4 + 9x_1^5$$

Denef and Loeser applied to 3-round Feistel

Definition

Let $f \in \mathbb{F}_q[x_1, \dots, x_n]$. The **Newton number** $\nu(f)$ of f is

$$\nu(f) = \sum_{I\subseteq \{1,\dots,n\}} (-1)^{|I|} (n-|I|)! \operatorname{Vol}_I \Delta(f) \ ,$$

where $\operatorname{Vol}_I \Delta(f)$ is the volume of $\Delta(f) \bigcap_{i \in I} \{x_i = 0\}$

$$f(x_1, x_2) = 3 - x_1^2 + 5x_1x_2^2 + x_2^4 + 9x_1^5 \qquad \nu(f) = (-1)^0 \cdot 2! \cdot \text{Vol}_{\Delta(f)}$$
 (I = \emptyset)

$$=2\times(5\times4)/2$$

Definition

Let $f \in \mathbb{F}_q[x_1, \dots, x_n]$. The **Newton number** $\nu(f)$ of f is

$$\nu(f) = \sum_{I\subseteq\{1,\dots,n\}} (-1)^{|I|} (n-|I|)! \operatorname{Vol}_I \Delta(f) ,$$

where $\operatorname{Vol}_I \Delta(f)$ is the volume of $\Delta(f) \bigcap_{i \in I} \{x_i = 0\}$

$$f(x_1, x_2) = 3 - x_1^2 + 5x_1x_2^2 + x_2^4 + 9x_1^5$$
 $v(f) = (-1)^0 \cdot 2! \cdot \text{Vol}_{\Delta(f)}$

$$\nu(f) = (-1)^{0} \cdot 2! \cdot \text{Vol}_{\Delta(f)}$$

$$+ (-1)^{1} \cdot 1! \cdot \text{Vol}_{\Delta(f) \cap \{x_{1} = 0\}}$$

$$(I = \{1\})$$

$$=2\times(5\times4)/2-4$$

Definition

Let $f \in \mathbb{F}_q[x_1, \dots, x_n]$. The **Newton number** $\nu(f)$ of f is

$$\nu(f) = \sum_{I \subseteq \{1,\ldots,n\}} (-1)^{|I|} (n-|I|)! \operatorname{Vol}_I \Delta(f) ,$$

where $\operatorname{Vol}_{I}\Delta(f)$ is the volume of $\Delta(f)\bigcap_{i\in I}\{x_i=0\}$

$$f(x_1, x_2) = 3 - x_1^2 + 5x_1x_2^2 + x_2^4 + 9x_1^5$$

$$\nu(f) = (-1)^0 \cdot 2! \cdot \operatorname{Vol}_{\Delta(f)} \tag{I = \emptyset}$$

$$+ (-1)^1 \cdot 1! \cdot \operatorname{Vol}_{\underline{\Delta(f)} \cap \{x_1 = 0\}} \qquad \qquad (I = \{1\})$$

$$+(-1)^1 \cdot 1! \cdot \operatorname{Vol}_{\Delta(f) \cap \{x_2=0\}}$$
 $(I = \{2\})$

$$= 2 \times (5 \times 4)/2 - 4 - 5$$

00000000

Definition

Let $f \in \mathbb{F}_q[x_1, \dots, x_n]$. The **Newton number** $\nu(f)$ of f is

$$\nu(f) = \sum_{I \subseteq \{1,...,n\}} (-1)^{|I|} (n - |I|)! \operatorname{Vol}_I \Delta(f) ,$$

where $\operatorname{Vol}_{I}\Delta(f)$ is the volume of $\Delta(f)\bigcap_{i\in I}\{x_i=0\}$

$$f(x_1, x_2) = 3 - x_1^2 + 5x_1x_2^2 + x_2^4 + 9x_1^5$$

$$\nu(f) = (-1)^{0} \cdot 2! \cdot \operatorname{Vol}_{\Delta(f)} \qquad (I = \emptyset)$$

$$+ (-1)^{1} \cdot 1! \cdot \operatorname{Vol}_{\Delta(f) \cap \{x_{1} = 0\}} \qquad (I = \{1\})$$

$$+ (-1)^{1} \cdot 1! \cdot \operatorname{Vol}_{\Delta(f) \cap \{x_{2} = 0\}} \qquad (I = \{2\})$$

$$+ (-1)^{2} \cdot 0! \cdot \operatorname{Vol}_{\Delta(f) \cap \{x_{1} = 0\} \cap \{x_{2} = 0\}} \qquad (I = \{1, 2\})$$

$$= 2 \times (5 \times 4)/2 - 4 - 5 + 1$$

Denef and Loeser applied to 3-round Feistel

Definition

Let $f \in \mathbb{F}_q[x_1, \dots, x_n]$. The **Newton number** $\nu(f)$ of f is

$$\nu(f) = \sum_{I \subseteq \{1,...,n\}} (-1)^{|I|} (n - |I|)! \operatorname{Vol}_I \Delta(f) ,$$

where $\operatorname{Vol}_{I}\Delta(f)$ is the volume of $\Delta(f)\bigcap_{i\in I}\{x_i=0\}$

$$f(x_1, x_2) = 3 - x_1^2 + 5x_1x_2^2 + x_2^4 + 9x_1^5$$

$$\nu(f) = (-1)^{0} \cdot 2! \cdot \operatorname{Vol}_{\Delta(f)} \qquad (I = \emptyset)$$

$$+ (-1)^{1} \cdot 1! \cdot \operatorname{Vol}_{\Delta(f) \cap \{x_{1} = 0\}} \qquad (I = \{1\})$$

$$+ (-1)^{1} \cdot 1! \cdot \operatorname{Vol}_{\Delta(f) \cap \{x_{2} = 0\}} \qquad (I = \{2\})$$

$$+ (-1)^{2} \cdot 0! \cdot \operatorname{Vol}_{\Delta(f) \cap \{x_{1} = 0\} \cap \{x_{2} = 0\}} \qquad (I = \{1, 2\})$$

$$= 2 \times (5 \times 4)/2 - 4 - 5 + 1$$

$$= 12$$

Commode functions

00000000

Denef and Loeser applied to 3-round Feistel

Definition

A function f is **commode** if there exist nonzero d_1, d_2, \ldots, d_n such that

$$(d_1, 0, 0, \dots, 0), (0, d_2, 0, \dots, 0), \dots, (0, 0, \dots, 0, d_n) \in \Delta(f)$$

Commode functions

Denef and Loeser applied to 3-round Feistel

Definition

A function f is **commode** if there exist nonzero d_1, d_2, \dots, d_n such that

$$(d_1, 0, 0, \dots, 0), (0, d_2, 0, \dots, 0), \dots, (0, 0, \dots, 0, d_n) \in \Delta(f)$$

Examples:

$$f(x_1, x_2) = 1 + x_1x_2 - 2x_1^2x_2^4 + 3x_1^5x_2$$

f is not commode

Commode functions

Definition

A function f is **commode** if there exist nonzero d_1, d_2, \ldots, d_n such that

$$(d_1, 0, 0, \dots, 0), (0, d_2, 0, \dots, 0), \dots, (0, 0, \dots, 0, d_n) \in \Delta(f)$$

$$f(x_1, x_2) = 1 + x_1x_2 - 2x_1^2x_2^4 + 3x_1^5x_2$$

f is not commode

$$f(x_1, x_2) = 3 - x_1^2 + 5x_1x_2^2 + x_2^4 + 9x_1^5$$

f is commode

00000000

Denef and Loeser applied to 3-round Feistel

Definition

A function f is non-degenerate if for every face τ of $\Delta(f)$ the following system has no nonzero solutions

$$\partial f_{\tau}/\partial x_{1}=\cdots=\partial f_{\tau}/\partial x_{n}=0$$

Denef-Loeser Theorem

Denef and Loeser applied to 3-round Feistel

Definition

A function f is non-degenerate if for every face τ of $\Delta(f)$ the following system has no nonzero solutions

$$\partial f_{\tau}/\partial x_{1} = \cdots = \partial f_{\tau}/\partial x_{n} = 0$$

Theorem [Denef and Loeser, 1991]

Let $f \in \mathbb{F}_a[x_1, \ldots, x_n]$.

If f is commode and non-degenerate with respect to its Newton polyhedron $\Delta(f)$, then, we have

$$|S(f)| = \left| \sum_{x \in \mathbb{F}_q^n} \omega^{f(x)} \right| \leq \nu(f) \cdot q^{n/2}.$$

Denef-Loeser Theorem

Definition

A function f is non-degenerate if for every face τ of $\Delta(f)$ the following system has no nonzero solutions

$$\partial f_{\tau}/\partial x_1 = \cdots = \partial f_{\tau}/\partial x_n = 0$$

Theorem [Denef and Loeser, 1991]

Let $f \in \mathbb{F}_a[x_1, \ldots, x_n]$.

If f is commode and non-degenerate with respect to its Newton polyhedron $\Delta(f)$, then, we have

$$|S(f)| = \left| \sum_{x \in \mathbb{F}_q^n} \omega^{f(x)} \right| \leq \nu(f) \cdot q^{n/2}.$$

Linearity bound for n=2: $\mathcal{L}_{\mathsf{F}} \leq \nu(f) \cdot q$.

3-round Feistel - Definition

Let $FEISTEL[F_1, F_2, F_3]$ be a 3-round Feistel network with

$$d_1 = \deg(F_1), d_2 = \deg(F_2), \text{ and } d_3 = \deg(F_3).$$

$$\begin{cases} y_1 &= x_1 + F_1(x_2) + F_3(x_2 + F_2(x_1 + F_1(x_2))) \\ y_2 &= x_2 + F_2(x_1 + F_1(x_2)) \end{cases}$$

A 3-round Feistel.

3-round Feistel - Definition

Let $FEISTEL[F_1, F_2, F_3]$ be a 3-round Feistel network with

$$d_1 = \deg(F_1), d_2 = \deg(F_2), \text{ and } d_3 = \deg(F_3).$$

A 3-round Feistel.

$$\begin{cases} y_1 = x_1 + F_1(x_2) + F_3(x_2 + F_2(x_1 + F_1(x_2))) \\ y_2 = x_2 + F_2(x_1 + F_1(x_2)) \end{cases}$$

New equations with intermediate variables

$$\begin{cases} x_1 &= z_1 - F_1(z_2) \\ x_2 &= z_2 \\ y_1 &= z_1 + F_3(z_2 + F_2(z_1)) \\ y_2 &= z_2 + F_2(z_1) \end{cases}$$

Let $F = FEISTEL[F_1, F_2, F_3]$, with round functions F_1 , F_2 (permutation) and F_3 . Let $d_1 \ge d_3$.

$$f(z_1, z_2) = \langle (v_1, v_2), F(z_1, z_2) \rangle - \langle (u_1, u_2), (z_1, z_2) \rangle$$

= $v_1 F_3(z_2 + F_2(z_1)) + v_2 F_2(z_1) + u_1 F_1(z_2) + (v_1 - u_1)z_1 + (v_2 - u_2)z_2$.

$$\begin{cases} y_1 = z_1 + F_3(z_2 + F_2(z_1)) \\ y_2 = z_2 + F_2(z_1) \end{cases}$$

3-round Feistel - Bound

Denef and Loeser applied to 3-round Feistel

Let $F = FEISTEL[F_1, F_2, F_3]$, with round functions F_1 , F_2 (permutation) and F_3 . Let $d_1 \ge d_3$.

$$f(z_1, z_2) = \langle (v_1, v_2), F(z_1, z_2) \rangle - \langle (u_1, u_2), (z_1, z_2) \rangle$$

= $v_1 F_3(z_2 + F_2(z_1)) + v_2 F_2(z_1) + u_1 F_1(z_2) + (v_1 - u_1)z_1 + (v_2 - u_2)z_2$.

$= z_1 + F_3(z_2 + F_2(z_1))$ = $z_2 + F_2(z_1)$.

Linearity Bound

- $\star f$ is commode
- \star f is non-degenerate
- * its Newton number is

$$\nu(f) = (d_2d_3-1)(d_1-1)$$
.

$$\left| \mathcal{L}_{\mathsf{F}} \leq (\mathbf{d_1} - 1)(\mathbf{d_2}\mathbf{d_3} - 1) \cdot q \right|$$

3-round Feistel - Results

Let $F = FEISTEL[F_1, F_2, F_3]$ with F_1 , F_2 and F_3 monomial functions.

Rojas-León applied to Flystel

Generalizations of Weil bound

- * Deligne bound
 - * Application to the Generalized Butterfly construction
- * Denef and Loeser bound
 - * Application to 3-round Feistel construction
- ★ Rojas-León bound
 - * Application to the Generalized Flystel construction

Isolated singularities

Definition

- * A singular point of a hypersurface is isolated if there exists a Zariski neighborhood of the point that contains no other singular points.
- * A polynomial g is quasi-homogeneous of degree δ is there exists w_1, \ldots, w_n s.t.

$$g(\lambda^{w_1}x_1,\ldots,\lambda^{w_n}x_n)=\lambda^{\delta}g(x_1,\ldots,x_n)$$
.

* The Milnor number of the singularity is equal to $\prod_{i=1}^{n} (\delta/w_i - 1)$

Isolated singularities

Definition

- * A singular point of a hypersurface is isolated if there exists a Zariski neighborhood of the point that contains no other singular points.
- \star A polynomial g is quasi-homogeneous of degree δ is there exists w_1, \ldots, w_n s.t.

$$g(\lambda^{w_1}x_1,\ldots,\lambda^{w_n}x_n)=\lambda^{\delta}g(x_1,\ldots,x_n)$$
.

* The Milnor number of the singularity is equal to $\prod_{i=1}^{n} (\delta/w_i - 1)$

Example: Let $f(x) = (x-1)^d$.

- * x = 1 is the only singular point of f = 0.
- * Up to translation, we can consider the singularity in the origin: $g(x) = x^d$.

$$g(\lambda^w x) = (\lambda^w x)^d = \lambda^{w \cdot d} x^d = \lambda^{w \cdot d} g(x)$$
 so that $\delta = w \cdot d$

* Milnor number of the singularity: $\delta/w - 1 = d - 1$.

Rojas-León Theorem

Theorem [Rojas-León, 2006]

Let $f \in \mathbb{F}_{\sigma}[x_1, \dots, x_n]$, s.t. $\deg(f) = d$.

Suppose that $f = f_d + f_{d'} + \cdots$, where f_d , $f_{d'}$, are resp. the degree-d, degree-d', homogeneous component of f, with gcd(d, p) = gcd(d', p) = 1 and $d'/d > p/(p + (p-1)^2)$.

If the following conditions are satisfied

- * the hypersurface defined by $f_d = 0$ has at worst quasi-homogeneous isolated singu**larities** of degrees prime to p with Milnor numbers μ_1, \ldots, μ_s ,
- * the hypersurface defined by $f_{d'} = 0$ contains none of these singularities,

then we have

$$|S(f)| = \left| \sum_{x \in \mathbb{F}_q^n} \omega^{f(x)} \right| \leq \left((d-1)^n - (d-d') \sum_{i=1}^s \mu_i \right) \cdot q^{n/2} .$$

Rojas-León Theorem

Theorem [Rojas-León, 2006]

Let $f \in \mathbb{F}_{\sigma}[x_1, \dots, x_n]$, s.t. $\deg(f) = d$.

Suppose that $f = f_d + f_{d'} + \cdots$, where f_d , $f_{d'}$, are resp. the degree-d, degree-d', homogeneous component of f, with gcd(d, p) = gcd(d', p) = 1 and $d'/d > p/(p + (p-1)^2)$.

If the following conditions are satisfied

- * the hypersurface defined by $f_d = 0$ has at worst quasi-homogeneous isolated singu**larities** of degrees prime to p with Milnor numbers μ_1, \ldots, μ_s ,
- * the hypersurface defined by $f_{d'} = 0$ contains none of these singularities,

then we have

$$|S(f)| = \left| \sum_{x \in \mathbb{F}_q^n} \omega^{f(x)} \right| \leq \left((d-1)^n - (d-d') \sum_{i=1}^s \mu_i \right) \cdot q^{n/2}.$$

Linearity bound for n=2: $\mathcal{L}_F \leq ((d-1)^2-(d-d')\sum_{i=1}^s \mu_i) \cdot q$.

Flystel - Definition

Introduced by [Bouvier, Briaud, Chaidos, Perrin, Salen, Velichkov and Willems, 2023].

Open variant.

$$\begin{cases} y_1 = x_1 - Q_{\gamma}(x_2) + Q_{\delta}(x_2 - (x_1 - Q_{\gamma}(x_2))^{1/d}) \\ y_2 = x_2 - (x_1 - Q_{\gamma}(x_2))^{1/d}. \end{cases}$$

Closed variant.

$$\begin{cases} y_1 = (x_1 - x_2)^d + Q_{\gamma}(x_1) \\ y_2 = (x_1 - x_2)^d + Q_{\delta}(x_2). \end{cases}$$

Generalized Flystel - Definition

 $\mathsf{F} = \mathrm{FLYSTEL}[\mathsf{H}_1,\mathsf{G},\mathsf{H}_2],$ with $\mathsf{G} : \mathbb{F}_q \to \mathbb{F}_q$ a permutation, and $\mathsf{H}_1,\mathsf{H}_2 : \mathbb{F}_q \to \mathbb{F}_q$ functions.

Open variant.

$$\begin{cases} y_1 = x_1 - H_1(x_2) + H_2(x_2 - G^{-1}(x_1 - H_1(x_2))) \\ y_2 = x_2 - G^{-1}(x_1 - H_1(x_2)). \end{cases}$$

Closed variant.

$$\begin{cases} y_1 &= \mathsf{G}(x_1 - x_2) + \mathsf{H}_1(x_1) \\ y_2 &= \mathsf{G}(x_1 - x_2) + \mathsf{H}_2(x_2) \,. \end{cases}$$

Generalized Flystel - Bound

Let $F = FLYSTEL[H_1, G, H_2]$, with G a permutation, H_1, H_2 functions (deg $G > deg H_1, deg H_2$).

$$f(x_1, x_2) = \langle (v_1, v_2), F(x_1, x_2) \rangle - \langle (u_1, u_2), (x_1, x_2) \rangle$$

= $(v_1 + v_2) G(x_1 - x_2) + v_1 H_1(x_1) + v_2 H_2(x_2) - u_1 x_1 - u_2 x_2$.

$$\begin{cases} y_1 &= \mathsf{G}(x_1 - x_2) + \mathsf{H}_1(x_1) \\ y_2 &= \mathsf{G}(x_1 - x_2) + \mathsf{H}_2(x_2) \,. \end{cases}$$

Generalized Flystel - Bound

Let $F = FLYSTEL[H_1, G, H_2]$, with G a permutation, H_1, H_2 functions (deg $G > deg H_1, deg H_2$).

$$f(x_1, x_2) = \langle (v_1, v_2), F(x_1, x_2) \rangle - \langle (u_1, u_2), (x_1, x_2) \rangle$$

= $(v_1 + v_2) G(x_1 - x_2) + v_1 H_1(x_1) + v_2 H_2(x_2) - u_1 x_1 - u_2 x_2$.

$\begin{cases} y_1 &= \mathsf{G}(x_1 - x_2) + \mathsf{H}_1(x_1) \\ y_2 &= \mathsf{G}(x_1 - x_2) + \mathsf{H}_2(x_2) \,. \end{cases}$

Linearity Bound

★ The hypersurface

$$f_d = (v_1 + v_2)(x_1 - x_2)^d = 0$$

contains one singular point [1:1] of quasi-homogeneous type with Milnor number d-1.

* The hypersurface

$$f_{d'} = v_i x_i^{\deg H_i} = 0$$

does not contain this point.

$$\mathcal{L}_{\mathsf{F}} \leq (\deg \mathsf{G} - 1)(\max\{\deg \mathsf{H}_{\mathsf{1}}, \deg \mathsf{H}_{\mathsf{2}}\} - 1) \cdot q$$

Generalized Flystel - Results

Let $F = FLYSTEL[H_1, G, H_2]$ with H_1 , G and H_2 monomials.

Low-degree permutations G, H_1 and H_2 .

Generalized Flystel - Results

Let $F = FLYSTEL[H_1, G, H_2]$ with H_1 , G and H_2 monomials.

Conjecture

Let $F = FLYSTEL[H_1, G, H_2]$ be defined by $H_1(x) = \gamma + \beta x^2$, $G(x) = x^d$ and $H_2 = \delta + \beta x^2$, with $\gamma, \delta \in \mathbb{F}_p$ and $\beta \in \mathbb{F}_p^{\times}$. Then

$$\mathcal{L}_{\mathsf{F}} \leq p \log p$$
.

Solving conjecture

Conjecture

Let $F = FLYSTEL[H_1, G, H_2]$ be defined by $H_1(x) = \gamma + \beta x^2$, $G(x) = x^d$ and $H_2 = \delta + \beta x^2$, with $\gamma, \delta \in \mathbb{F}_p$ and $\beta \in \mathbb{F}_p^{\times}$. Then

$$\mathcal{L}_{\mathsf{F}} \leq p \log p$$
.

Conjecture proved for $d < \log p$

Proposition

Let $F = FLYSTEL[H_1, G, H_2]$ be defined by $H_1(x) = \gamma + \beta x^2$, $G(x) = x^d$ and $H_2 = \delta + \beta x^2$, with $\gamma, \delta \in \mathbb{F}_p$ and $\beta \in \mathbb{F}_p^{\times}$. Then

$$\mathcal{L}_{\mathsf{F}} \leq (d-1)p$$
.

Solving conjecture

Conclusions

* Bounds on exponential sums have direct application to linear cryptanalysis

Conclusions

- * Bounds on exponential sums have direct application to linear cryptanalysis
- * 3 different results...
 - * Deligne, 1974
 - * Denef and Loeser, 1991
 - ⋆ Rojas-León, 2006

Conclusions

- * Bounds on exponential sums have direct application to linear cryptanalysis
- * 3 different results... for 3 important constructions
 - * Deligne, 1974
 - * Denef and Loeser, 1991
 - ⋆ Rojas-León, 2006

Generalization of the Butterfly construction

3-round Feistel network

Generalization of the Flystel construction

$$\mathsf{F} \in \mathbb{F}_q[\mathsf{x}_1, \mathsf{x}_2], \ \exists C \in \mathbb{F}_q, \ \mathcal{L}_\mathsf{F} \leq C \times q$$

Conclusions

- * Bounds on exponential sums have direct application to linear cryptanalysis
- * 3 different results... for 3 important constructions

* Deligne, 1974

* Denef and Loeser, 1991

* Rojas-León, 2006

Generalization of the Butterfly construction

3-round Feistel network

Generalization of the Flystel construction

$$F \in \mathbb{F}_q[x_1, x_2], \ \exists C \in \mathbb{F}_q, \ \mathcal{L}_F \leq C \times q$$

* Solving conjecture on the linearity of the Flystel construction in Anemoi

Conclusions

- * Bounds on exponential sums have direct application to linear cryptanalysis
- * 3 different results... for 3 important constructions

* Deligne, 1974

* Denef and Loeser, 1991

* Rojas-León, 2006

Generalization of the Butterfly construction

3-round Feistel network

Generalization of the Flystel construction

$$\mathsf{F} \in \mathbb{F}_q[\mathsf{x}_1, \mathsf{x}_2], \ \exists C \in \mathbb{F}_q, \ \mathcal{L}_\mathsf{F} \leq C \times q$$

* Solving conjecture on the linearity of the Flystel construction in Anemoi

Contribute to the cryptanalysis efforts for AOP.

$$S(f) = \sum_{x \in \mathbb{F}_q^n} \chi(\mathsf{F}(x)) \, \psi(-x)$$

$$S(f) = \sum_{x \in \mathbb{F}_q^n} \chi(\mathsf{F}(x)) \, \psi(-x)$$

$$\downarrow \downarrow$$

Cohomological framework

$$|S(f)| = \left| \sum_{i=0}^{2n} (-1)^i \operatorname{Tr} \left(F \mid H_c^i(\mathbb{A}^n, \mathcal{L}) \right) \right|$$

Sum of traces of the Frobenius automorphism on ℓ -adic cohomology groups.

$$S(f) = \sum_{x \in \mathbb{F}_q^n} \chi(\mathsf{F}(x)) \, \psi(-x)$$

$$\downarrow \downarrow$$

Cohomological framework

$$|S(f)| = \left| \sum_{i=0}^{2n} (-1)^i \operatorname{Tr} (F \mid H_c^i(\mathbb{A}^n, \mathcal{L})) \right|$$

Sum of traces of the Frobenius automorphism on ℓ -adic cohomology groups.

Sum of traces of a linear map on a vector space of finite dimension.

$$S(f) = \sum_{x \in \mathbb{F}_q^n} \chi(\mathsf{F}(x)) \, \psi(-x)$$

$$\downarrow \downarrow$$

Cohomological framework

$$|S(f)| = \left| \sum_{i=0}^{2n} (-1)^i \operatorname{Tr}(F \mid H_c^i(\mathbb{A}^n, \mathcal{L})) \right|$$

Sum of traces of the Frobenius automorphism on ℓ-adic cohomology groups.

Sum of traces of a linear map on a vector space of finite dimension.

$$|S(f)| \le \kappa \sum_{i=0}^{2n} \dim H_c^i(\mathbb{A}^n, \mathcal{L})$$

$$|S(f)| \le \kappa \sum_{i=0}^{2n} \dim H_c^i(\mathbb{A}^n, \mathcal{L})$$

$$|S(f)| \le \kappa \sum_{i=0}^{2n} \dim H_c^i(\mathbb{A}^n, \mathcal{L})$$

Closed Butterfly (q = 11)

Closed Butterfly (q = 13)

$$|S(f)| \le \kappa \sum_{i=0}^{2n} \dim H_c^i(\mathbb{A}^n, \mathcal{L})$$

Open Butterfly (q = 11)

Open Butterfly (q = 13)

$$|S(f)| \le \kappa \sum_{i=0}^{2n} \dim H_c^i(\mathbb{A}^n, \mathcal{L})$$

Open Flystel (q = 11)

Open Flystel (q = 13)

* Can we provide detailed calculations of the cohomological spaces to refine bounds?

$$|S(f)| \le \kappa \sum_{i=0}^{2n} \dim H_c^i(\mathbb{A}^n, \mathcal{L})$$

* Can we generalize to other constructions?

And propose a general framework for arithmetization-oriented primitives?

* Can we provide detailed calculations of the cohomological spaces to refine bounds?

$$|S(f)| \le \kappa \sum_{i=0}^{2n} \dim H_c^i(\mathbb{A}^n, \mathcal{L})$$

* Can we generalize to other constructions?

And propose a general framework for arithmetization-oriented primitives?

More details at *ia.cr*/2024/1755

* Can we provide detailed calculations of the cohomological spaces to refine bounds?

$$|S(f)| \le \kappa \sum_{i=0}^{2n} \dim H_c^i(\mathbb{A}^n, \mathcal{L})$$

* Can we generalize to other constructions?

stap-zoo.com

And propose a general framework for arithmetization-oriented primitives?

More details at *ia.cr*/2024/1755

Thank you

Details on the bound

* Generalized Butterfly bound

$$\left| \textit{\textit{C}}_{\chi,\psi}^{\text{F}} \right| \leq \frac{1}{q} \begin{cases} (\deg \text{G} - 1)(\deg \text{H} - 1) & \text{if } \chi_1 = 1 \text{ or } \chi_2 = 1 \,, \\ (\max\{\deg \text{G}, \deg \text{H}\} - 1)^2 & \text{else} \,. \end{cases}$$

* 3-round Feistel bound

$$\label{eq:continuous} \left| \, C_{\chi,\psi}^{\mathsf{F}} \right| \leq \frac{1}{q} \begin{cases} ({ { \mathsf{d}}_1 - 1) ({ { \mathsf{d}}_2 - 1) } & \text{if } \psi_1 \neq 1 \text{ and } \chi_1 = 1 \, , \\ ({ { \mathsf{d}}_3 - 1) ({ { \mathsf{d}}_2 - 1) } & \text{if } \psi_1 = 1 \text{ and } \chi_1 \neq 1 \, , \\ ({ { \mathsf{d}}_1 - 1) ({ { \mathsf{d}}_3 - 1) } & \text{if } \psi_1 \chi_1 = 1 \, , \\ ({ { \mathsf{d}}_1 - 1) ({ { \mathsf{d}}_2 d_3 - 1) } & \text{else} \, . \end{cases}$$

* Generalized Flystel bound

$$\label{eq:continuous} \left|\, C_{\chi,\psi}^{\text{F}} \right| \leq \frac{1}{q} \begin{cases} (\text{deg G}-1)(\text{deg H}_2-1) & \text{if } \chi_1 = 1\,, \\ (\text{deg G}-1)(\text{deg H}_1-1) & \text{if } \chi_2 = 1\,, \\ (\text{deg H}_1-1)(\text{deg H}_2-1) & \text{if } \chi_1\chi_2 = 1\,, \\ (\text{deg G}-1)(\text{max}\{\text{deg H}_1,\text{deg H}_2\}-1) & \text{else}\,. \end{cases}$$

Linear trails for a Generalized Butterfly

(b)
$$\chi_2 = 1$$
.

Linear trails for a 3-round Feistel

(b)
$$\psi_1 = 1$$
 and $\chi_1 \neq 1$.

(c)
$$\psi_1 \chi_1 = 1$$
.

Linear trails for a Generalized Flystel

(a) $\chi_1 = 1$.

(b) $\chi_2 = 1$.

(c)
$$\chi_1 \chi_2 = 1$$
.

Bound on exponential sums

The trace of F on $H_c^i(\mathbb{A}^n,\mathcal{L})$ is the sum of its eigenvalues $\lambda_1,\lambda_2,\ldots$

$$\operatorname{Tr}(F \mid H_c^i(\mathbb{A}^n, \mathcal{L}) = \lambda_1 + \lambda_2 + \lambda_3 + \dots$$

Suppose that, $\forall i$, $|\lambda_i| \leq \kappa$, then

$$\left| \operatorname{Tr} \left(F \mid H_c^i(\mathbb{A}^n, \mathcal{L}) \right| \le \kappa \cdot \dim H_c^i(\mathbb{A}^n, \mathcal{L}) \right|$$

This gives an upper bound on S(f):

$$|S(f)| = \left| \sum_{i=0}^{2n} (-1)^i \operatorname{Tr}(F \mid H_c^i(\mathbb{A}^n, \mathcal{L})) \right|$$

$$\leq \kappa \sum_{i=0}^{2n} \dim H_c^i(\mathbb{A}^n, \mathcal{L})$$