01204211 Discrete Mathematics Lecture 7a: Languages and regular expressions¹

Jittat Fakcharoenphol

August 20, 2024

What is computation?

Models of computations

Languages = specifications Sonth } natural language (NLP) > formal language P: PITA (USIIM) DIET pythm

A' 30 Input that invoid Thirthingon) {x | x 1] a and man; } { x | x 18 x 1 1 4 7 1 4 7 1 8 } {x: x it palindrome }

Formal definition: strings

Intuitively, a string is a *finite* sequence of symbols. However, to be able to formally prove properties of strings we need a precise definition.

Let a finite set Σ be the **alphabet**. (E.g., for bit strings, $\Sigma = \{0, 1\}$; for digits, $\Sigma = \{0, 1, \dots, 9\}$; for English string $\Sigma = \{a, b, \dots, z\}$.) The following is a recursive definition of strings.

Recursive definition of strings

A string w over alphabet Σ is either

- the empty string ε , or
- $a \cdot x$ where $a \in \Sigma$ and x is a string.

The set of all strings over alphabet Σ is denoted by Σ^* .

Review: more recursive definitions

Lengths

For a string w, let $\left|w\right|$ be the length of w defined as

$$|w| = \left\{ egin{array}{ll} 0 & \text{when } w = arepsilon \ 1 + |x| & \text{when } w = a \cdot x \end{array}
ight.$$

Concatenation

For strings w and z, the concatenation $w \cdot z$ is defiend recursively as

$$w \cdot z = \begin{cases} z & \text{when } w = \varepsilon \\ a \cdot (x \cdot z) & \text{when } w = a \cdot x \end{cases}$$

1011.112 = 1011 + 1112 Review: proving facts about strings 1/10 2) 011 2 = |1 |+ |112 Lemma 1 tw, x Met [x] For strings w and $|w \cdot x| = |w| + |x|$. $|(1 \cdot 5)^{-|x|}$ $|\xi - 11|^2 = |11|^3 = |0| + |11|^3$ Proof. A: Ass is by induction Us INDASO VOD WI > Induction hypothesis: Assume of Arusi may string y & 14/ < |W|, |yox|= 14/+1x1. -> Casel: W= E: An Indro concatenation W = x (50 W= € ல்ப் 1 (wex) = |x| = 0 + |x| = |w| + |x| -> Case 2:w = a-y Line unstring y 1w = x = [a . (y = x)] anders no concat = 1 + | y = x | (4 m m /-1) $\omega \circ x = \alpha \cdot (y \cdot x)$ = (1+ |41)+1x1 An induction a: Took | yox = |y|+|x| oright = |W|+|X| (minton |1)

Formal languages

A **formal language** is a set of strings over some finite alphabet Σ . Examples:

Careful...

empty language

These are different languages: $\emptyset, \{\varepsilon\}$

And $\underline{\varepsilon}$ is not a language.

Language of empty string

How to describe languages? — 'set' ro string. [x:]

> of

set n's string 1 shring { loveyou?}

Combining languages

If A and B are languages over alphabet Σ .

- ▶ Basic set operations: $A \cup B$ $A \cap B$, $\bar{A} = \Sigma^* \setminus A$.
- Concatenation: $(A \cdot B)$

B= { "retha", " pom", " ink " }

$$\varphi \cdot B = \varphi$$

$$\{ \varepsilon_3 \cdot B = B$$

Kleene closure or Kleene star:
$$A^*$$
.

String $\omega \in A^*$ &

(1)
$$\omega = \varepsilon$$

Also
$$A^+ = A \cdot A^*$$

"holl." . " setha" - "hell soth."

A.B= { x.y | x ∈ A, y ∈ B }

4*

□ ▶ ◀♬ ▶ ◀불 ▶ ◀불 ▶ ○ 호 · ∽ 약(

Examples string
$$\omega \in A^*$$
 in (1) $\omega = \varepsilon \leftarrow$

(2)
$$\omega = x \cdot y$$
 and $v \circ x \in A \text{ in } y \in A^*$

$$A = \{a, ab, c\}$$

Regular languages

Definition: regular languages

A language L is (regular) if and only if it satisfies one of the following conditions:

- L is empty;
- blue L contains one string (can be the empty string ε);
- ightharpoonup L is a <u>union</u> of two regular languages; ightharpoonup
- L is the concatenation of two regular languages; or
- ightharpoonup L is the Kleene closure of a regular language.

Regular languages

	R IJU
Definition: regular languages	regular expression
A language L is $\operatorname{regular}$ if and only if it satisfies one of the	following conditions:
ightharpoonup L is empty;	0 R = 0
$ ightharpoonup L$ contains one string (can be the empty string ε);	· R +s a stm
ightharpoonup L is a union of two regular languages;	· R= X+4 12 12 12
lacktriangleq L is the concatenation of two regular languages; or	
lacksquare L is the Kleene closure of a regular language.	0 R = X + 1
	OR = X*

Einky, Epmi { E} U({ 1} • {0,13*}) U ({ 00} • {0,13* Examples U (fo113 . E0,13") U to13. {ink } U {taksin } U { prayut } {ink 3 · ({ pmju{hello}}) {0}* = {ε, 0,00,000, } = {0ⁿ | n≥0} bit string gristers bit strandin & Trilo 010 & regular $= \{ \varepsilon \} \cup \{ 1 \} \bullet \{ o_{i} | 3^{*} \} \cup \{ 0 \circ 3 \bullet \{ o_{i} | 3^{*} \}$ $\cup (\{ 0 | 1 \} \bullet \{ o_{i} | 3^{*} \}) \cup \{ 0 | 3 \}$

Regular expressions 6x2+ Let $\Sigma = \{0, 1\}$. Consider $((\{01\} \cup (\{1\} \cdot (\{0\} \cup \{10\}))) \cup (\{00\} \cdot (\{1\})^*)) \cdot ((\{0\} \cdot \{0\}) \cdot \{1\}))$ subexpression

Regular expressions

$$(0+1)^*$$

Regular language

$$((\{01\} \cup (\{1\} \boldsymbol{\cdot} (\{0\} \cup \{10\}))) \cup (\{00\} \boldsymbol{\cdot} (\{1\})^*)) \boldsymbol{\cdot} ((\{0\} \boldsymbol{\cdot} \{0\}) \boldsymbol{\cdot} \{1\})$$

is represented as

$$(01 + 1(0 + 10) + 00(1)^*)001$$

Regular expressions

- omit braces around one-string sets
- ▶ use + instead of ∪
- ▶ omit •
- ▶ follow the precedence: Kleene star operator (*) (implicitly), and +.

Remark:
$$+$$
 and \cdot are associative, i.e., $(A+B)+C=A+(B+C)$ and $(A \cdot B) \cdot C = A \cdot (B \cdot C)$.

Regular expressions: examples 1

Regular expressions: examples 2

All strings over $\{0,1\}$ except 010.

Subexpressions

นลานแบง.

Regex is everywhere

Proofs about regular expressions - structural induction

Induction Hypothess: Assume in Bride my subexpression X Case 1: $R = \phi$ Case 2: R Hushing (ase 3: R = X+4 IDL X & y il regex

Cuse 5: R = X* Ih X who regex

Proofs about regular expressions - structural induction

Every regular expression that does not use the symbol \emptyset represents a non-empty language.

Proof. ATTSOCT reg expression R at 11 it is now ϕ 4: Afthin R benus otton of the empty

Case 1: $R = \phi$ (road is all this indown χ This is a ϕ Case 2: R is string unon, as χ then soon of the empty χ

Case 3: R IJ4 unim rb 2 regular expression

2 regular expression X bor: Y of

Case 4: R 184 concat ro Xiv & riva R=X. Y

Now ver ex

Case 5: R = X* Jimons X river ver expunsions

Every regular expression that does not use the symbol \emptyset represents a non-empty language.

Proof.

Let R be a regular expression that does not use the symbol \emptyset . We prove by (structural) induction that R represents a non-empty language.

Every regular expression that does not use the symbol \emptyset represents a non-empty language.

Proof.

Let R be a regular expression that does not use the symbol \emptyset . We prove by (structural) induction that R represents a non-empty language.

Induction hypothesis: Every subexpression of R that does not use the symbol \emptyset represents a non-empty language.

Every regular expression that does not use the symbol \emptyset represents a non-empty language.

Proof.

Let R be a regular expression that does not use the symbol \emptyset . We prove by (structural) induction that R represents a non-empty language.

Induction hypothesis: Every subexpression of R that does not use the symbol \emptyset represents a non-empty language.

Case 1:
$$R = \emptyset$$
.

Every regular expression that does not use the symbol \emptyset represents a non-empty language.

Proof.

Let R be a regular expression that does not use the symbol \emptyset . We prove by (structural) induction that R represents a non-empty language.

Induction hypothesis: Every subexpression of R that does not use the symbol \emptyset represents a non-empty language.

Case 1: $R = \emptyset$.

Case 2: R is a single string.

R 4: או משת של אל היה ך באחנה של יוחון מילקום על ארטרת שנו אל אל היא או

Every regular expression that does not use the symbol (\emptyset) represents a non-empty language.

Proof.

Let R be a regular expression that does not use the symbol \emptyset . We prove by (structural) induction that R represents a non-empty language.

o Induction hypothesis: Every subexpression of R that does not use the symbol \emptyset represents a non-empty language.

Case 1: $R = \emptyset$.

Case 2: R is a single string.

R) langunge Allhuña R **Proof.** (cont.2/4)Case 3: R = S + T for some regular expressions S and T. bilco ATT R 722 symbol & , S 662; T 122 6 orv ATT I.H. S bbd: T link no ompty language bils an L(R) ida union voo non empty set, L(R) A: 184 non-empty-ors.

Proof. (cont.3/4)

Case 4: $R = S \cdot T$ for some regular expressions S and T.

BIRORATI R To'D' symbol & S bbe: T 100 0000

ATT I.H. S bbo: T link no empto language

Audo of sel(s), tel(T)

AIGO S.T A: Tain s.tel(s). L(T)

Audo s.tel(R) Audo R To'compty

Proof. (cont.4/4)

Case 5: $R = S^*$ for some regular expression S.

$$q_{10}d_{10} + \kappa + \kappa + \kappa = L(R^*) = L(R)$$
 $d_{10} + d_{10} + d_{$

Proof. (cont.4/4)

Case 5: $R = S^*$ for some regular expression S.

In every case, the language L(R) is non-empty.

Every regular expression that does not use the symbol \emptyset represents a non-empty language.

Every non-empty regular language is represented by a regular expression that does not use the symbol \emptyset .

Prof: afformen regular language L for boths on L in regular appression R of represent L.

QX' $L(\phi + 1)^* + \phi \cdot 2 \neq \emptyset$ $\Re(\mathcal{R}') = L(--)$

Every non-empty regular language is represented by a regular expression that does not Let R be a regular expression,

Every non-empty regular language is represented by a regular expression that does not use the symbol \emptyset .

Let R be a regular expression. We prove that if $L(R) \neq \emptyset$, then there exists a regular expression R' such that L(R) = L(R') and R' does not contain \emptyset .

Every non-empty regular language is represented by a regular expression that does not use the symbol \emptyset .

Let R be a regular expression. We prove that if $L(R) \neq \emptyset$, then there exists a regular expression R' such that L(R) = L(R') and R' does not contain \emptyset . We prove by induction. What should the induction hypothesis be?

I.H.: For every subexpression S of R, if $L(S) \neq \emptyset$, there exists an \emptyset -free regular expression S' such that L(S) = L(S').

I.H.: For every subexpression S of R, if $L(S) \neq \emptyset$, there exists an \emptyset -free regular expression S' such that L(S) = L(S').

I.H.: For every subexpression S of R, if $L(S) \neq \emptyset$, there exists an \emptyset -free regular expression S' such that L(S) = L(S').

What are the cases that we have to consider?

- $ightharpoonup R = \emptyset$
- ightharpoonup R is a single string.
- ightharpoonup R = S + T for some regular expressions S and T.
- $ightharpoonup R = S \cdot T$ for some regular expressions S and T.
- $ightharpoonup R = S^*$ for some regular expression S.

(E-ex1-6) For string w, the reversal w^R is defined recursively as follows:

$$w^R = \left\{ \begin{array}{ll} \varepsilon & \text{if } w = \varepsilon \\ x^R \cdot a & \text{if } w = \underbrace{ax} \text{ for some symbol } a \text{ and some string } x \end{array} \right.$$

e string $x = (49)^R \cdot 1 \cdot 1$ $(49)^R \cdot 2 \cdot 1 \cdot 1$

For a language L, the reversal of L is defined as

(4g.421)

$$\underline{L}^R = \{ w^R \mid \underline{w \in L} \}.$$

You may assume the following facts.

 $ightharpoonup L^* \cdot L^* = L^*$ for every language L.

 $(w^R)^R = w$ for every string w.

 $\qquad \qquad \blacktriangleright \ (x \cdot y)^R = y^R \cdot x^R \text{ for all strings } x \text{ and } y.$

Prove that if L is regular, LR is regular.

