Package 'mtPRSFIMEL'

October 29, 2025

Type Package
Title Improving multi-trait polygenic risk score prediction using fine-mapping and ensemble learning
Version 0.1.0
Maintainer Song Zhai <zsviolet1993@gmail.com></zsviolet1993@gmail.com>
Description Construct multi-trait PRS (mtPRS) via performing fine-mapping and ensemble learning. Package is based on "Improving multi-trait polygenic risk score prediction using fine-mapping and ensemble learning" by Zhai, S., Guo, B., and Shen, J., 2025.
License GPL (>= 2)
Depends R (>= $4.0.0$)
Imports dplyr (>= 1.0.2), mvtnorm (>= 1.1.1), data.table (>= 1.13.2), Matrix (>= 1.2.18), glmnet (>= 4.0.2), stats (>= 4.0.3), ACAT (>= 0.91)
Suggests knitr, rmarkdown
VignetteBuilder knitr
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
NeedsCompilation yes
Author Song Zhai [aut, cre]
Repository CRAN
Calculate_PRS
Index

2 calculate_PRS

calculate_PRS	Calculate individual PRS for each trait based on refined effect size
	estimates from PolyPred

Description

Calculate individual PRS for each trait based on refined effect size estimates from PolyPred

Usage

```
calculate_PRS(K, base, pcut, G.target)
```

Arguments

K number of traits

base list of disease GWAS summary statistics of K traits from base cohort

pcut p-value cutoff

G. target genotype in target cohort

Details

calculate_PRS needs disease GWAS summary statistics from K traits, assuming the effect size estimates have been refined by PolyPred after fine-mapping

Value

a matrix of K individual PRSs

Author(s)

Song Zhai

References

Zhai, S., Guo, B., and Shen, J., 2025. Improving multi-trait polygenic risk score prediction using fine-mapping and ensemble learning.

Examples

calculate_weight 3

calculate_weight	Calculate weights by by performing principal component analysis
	(PCA) on genetic correlation matrix among traits

Description

Calculate weights by by performing principal component analysis (PCA) on genetic correlation matrix among traits

Usage

```
calculate_weight(K, corr, varcut)
```

Arguments

K number of traits

corr genetic correlation matrix

varcut variance cutoff

Details

Calculate weights by by performing principal component analysis (PCA) on genetic correlation matrix among traits

Value

a vector of weights

Author(s)

Song Zhai

References

Zhai, S., Guo, B., and Shen, J., 2025. Improving multi-trait polygenic risk score prediction using fine-mapping and ensemble learning.

Examples

```
\label{eq:data} \begin{array}{lll} \mbox{dat} <-\mbox{generate\_pgx\_data}(\mbox{structure} = "CS", \mbox{sparseness} = "no", \\ \mbox{rho\_DT} = \mbox{c}(0.5,0.5,0.5,0.5), \mbox{rho\_T} = 0.5, \mbox{rho\_E} = 0.5, \mbox{rho\_C} = 0.2, \\ \mbox{K=4, m=2000, pcausal=0.1, blocksize=100,} \\ \mbox{gamma=1, samplesize=700, h2\_base=0.3, h2\_target=0.3)} \\ \mbox{re} <-\mbox{calculate\_weight(K = 4, corr = dat$corr, varcut = 0.8)} \\ \mbox{hist(re$mtPRS)} \end{array}
```

4 generate_pgx_data

generate_pgx_data

Simulate PGx GWAS data for mtPRS analysis

Description

Simulate PGx GWAS data for mtPRS analysis

Usage

```
generate_pgx_data(
    structure = "CS",
    sparseness = "no",
    rho_DT,
    rho_E,
    rho_C,
    K = 4,
    m = 1000,
    pcausal = 0.1,
    blocksize = 100,
    gamma = 1,
    samplesize = 700,
    h2_base = 0.3,
    h2_target = 0.3
)
```

Arguments

structure	genetic correlation structure, either uniformly correlated (i.e., "CS" or "AR1") or clustered correlated ("clustered")
sparseness	effect sparsity, either "no" or "half" or "more"
rho_DT	effect correlations between traits in base cohort and the phenotype in target cohort
rho_T	genetic correlation among traits in base cohort
rho_E	correlation between prognostic and predictive effects in target cohort
rho_C	between-cluster correlation when the genetic correlation structure is clustered correlated
K	number of traits
m	number of SNPs
pcausal	proportion of causal SNPs
blocksize	LD block size (i.e., the number of SNPs in each LD block)
gamma	prognostic-to-predictive effect size ratio
samplesize	sample size of target cohort
h2_base	heritability in base cohort
h2_target	heritability in target cohort

mtPRS_FIMEL 5

Details

Simulate PGx GWAS data for mtPRS analysis

Value

a list of disease GWAS summary statistics in base cohort, individual-level data in validation and target cohorts, genetic correlation matrix among traits, and true effect sizes in base and target cohorts

Author(s)

Song Zhai

References

Zhai, S., Guo, B., and Shen, J., 2025. Improving multi-trait polygenic risk score prediction using fine-mapping and ensemble learning.

Examples

```
dat <- generate_pgx_data(structure = "CS", sparseness = "no", rho_DT = c(0.5,0.5,0.5,0.5), rho_T = 0.5, rho_E = 0.5, rho_C = 0.2, K=4, m=2000, pcausal=0.1, blocksize=100, gamma=1, samplesize=700, h2_base=0.3, h2_target=0.3) plot(dat$truesize[,1]) print(dat$corr)
```

mtPRS_FIMEL

Construct mtPRS by performing ensemble learning

Description

Construct mtPRS by performing ensemble learning

Usage

```
mtPRS_FIMEL(
  base,
  target,
  validation,
  corr,
  pcut = 0.05,
  varcut = 0.8,
  K = 4,
  phenotype = "pgx"
)
```

6 mtPRS_ML

Arguments

base list of disease GWAS summary statistics of K traits

target data frame in target cohort, including Y, T (if the target cohort is from a PGx

study), and G

validation data frame from an independent validation cohort, including Y, T (if the valida-

tion cohort is from a PGx study), and G

corr genetic correlation matrix among K traits

pcut p-value cutoff for C+T method to construct individual stPRS varcut variance cutoff to choose top principal components (PCs)

K number of traits

phenotype indicator of phenotype in target cohort, either "dis" or "pgx"

Details

Construct mtPRS by performing ensemble learning

Value

a list of fitted model, stPRSs and mtPRSs, and mtPRS-FIMEL

Author(s)

Song Zhai

References

Zhai, S., Guo, B., and Shen, J., 2025. Improving multi-trait polygenic risk score prediction using fine-mapping and ensemble learning.

Examples

```
dat <- generate_pgx_data(structure = "CS", sparseness = "no",
rho_DT = c(0.5,0.5,0.5,0.5), rho_T = 0.5, rho_E = 0.5, rho_C = 0.2,
K=4, m=2000, pcausal=0.1, blocksize=100,
gamma=1, samplesize=700, h2_base=0.3, h2_target=0.3)
re <- mtPRS_FIMEL(dat$base, dat$target, dat$validation, dat$corr, pcut = 1, varcut = 0.8, K = 4, phenotype = "pg hist(re$slPRS_validation)</pre>
```

mtPRS_ML

Construct mtPRS by performing elastic net

Description

Construct mtPRS by performing elastic net

Usage

```
mtPRS_ML(base, target, validation, pcut = 0.05, K = 4, phenotype = "pgx")
```

mtPRS_PCA 7

Arguments

base list of disease GWAS summary statistics of K traits

target data frame in target cohort, including Y, T (if the target cohort is from a PGx

study), and G

validation data frame from an independent validation cohort, including Y, T (if the valida-

tion cohort is from a PGx study), and G

p-value cutoff for C+T method to construct individual stPRS

K number of traits

phenotype indicator of phenotype in target cohort, either "dis" or "pgx"

Details

Construct mtPRS by performing elastic net

Value

a list of fitted model, individual stPRSs, and mtPRS-ML

Author(s)

Song Zhai

References

Zhai, S., Guo, B., and Shen, J., 2025. Improving multi-trait polygenic risk score prediction using fine-mapping and ensemble learning.

Examples

mtPRS_PCA Construct mtPRS by performing PCA on genetic correlation matrix

among traits

Description

Construct mtPRS by performing PCA on genetic correlation matrix among traits

8 mtPRS_PCA

Usage

```
mtPRS_PCA(
  base,
  target,
  validation,
  corr,
  pcut = 0.05,
  varcut = 0.8,
  K = 4,
  phenotype = "pgx"
)
```

Arguments

base list of disease GWAS summary statistics of K traits

target data frame in target cohort, including Y, T (if the target cohort is from a PGx

study), and G

validation data frame from an independent validation cohort, including Y, T (if the valida-

tion cohort is from a PGx study), and G

corr genetic correlation matrix among K traits

p-value cutoff for C+T method to construct individual stPRS varcut variance cutoff to choose top principal components (PCs)

K number of traits

phenotype indicator of phenotype in target cohort, either "dis" or "pgx"

Details

Construct mtPRS by performing PCA on genetic correlation matrix among traits

Value

a list of weights, individual stPRSs, and mtPRS-PCA

Author(s)

Song Zhai

References

Zhai, S., Guo, B., and Shen, J., 2025. Improving multi-trait polygenic risk score prediction using fine-mapping and ensemble learning.

Examples

```
dat <- generate_pgx_data(structure = "CS", sparseness = "no",
rho_DT = c(0.5,0.5,0.5,0.5), rho_T = 0.5, rho_E = 0.5, rho_C = 0.2,
K=4, m=2000, pcausal=0.1, blocksize=100,
gamma=1, samplesize=700, h2_base=0.3, h2_target=0.3)
re <- mtPRS_PCA(dat$base, dat$target, dat$validation, dat$corr, pcut = 1, varcut = 0.8, K = 4, phenotype = "pgx"
hist(re$mtPRS_validation)</pre>
```

Index

```
calculate_PRS, 2
calculate_weight, 3
generate_pgx_data, 4
mtPRS_FIMEL, 5
mtPRS_ML, 6
mtPRS_PCA, 7
```