Big Data, Machine Learning & Business Intelligence

Lab: Implementar la Regresión Logística en Lenguaje R

Objetivos

 Implementar el algoritmo de machine learning supervisado regresión logística utilizando el lenguaje R

Procedimiento

 Descargar el archivo framingham.csv, del repositorio GitHub del curso y copiarlo en C:/Data

2. Importa los datos de framingham.csv en un data frame, abre un archivo de script en R-Studio y ejecuta los siguientes comandos.

```
setwd("c:/Data")
ds = read.csv("framingham.csv")
str(ds)
```

3. Instala la librería caTools si es que esta aun no esta instalada.

```
install.packages("caTools")
```

4.	Carga la librería caTools y establece el valor de la semilla del proceso aleatorio.
	library(caTools) set.seed(1000)
5.	Divide el conjunto de datos en dos particiones una para entrenamiento y otra para pruebas, 70% y 30% respectivamente.
	<pre>split = sample.split(datos\$TenYearCHD, SplitRatio = 0.70) train = subset(datos, split == TRUE) test = subset(datos, split == FALSE) particiones=c(nrow(train),nrow(test)) particiones</pre>
6.	Crea el modelo de clasificación utilizando el algoritmo de regresión logística.
	$framing hamLog = glm(TenYearCHD ~., data = train, family = binomial(link = "logit")) \\ summary(framing hamLog)$
7.	Realiza a prueba de significancia del modelo.
	H_0 : El modelo no es significativo H_1 : El modelo es significativo.
	Se rechaza H_0 si $\infty > Valor P$
	alfa = with(framinghamLog,null.deviance-deviance) valor_P = with(framinghamLog,pchisq(alfa,df.null-df.residual,lower.tail = FALSE)) print(valor_P)
8.	¿El modelo es significativo?
9.	Calcula la exponencial de los coeficientes. Interpreta cada uno. ¿Qué variable influye más en tener una enfermedad cardiovascular? ¿Qué variables influyen en forma positiva y negativa respecto al objetivo?