Вариант №21

Исходные данные:

- число скоростей привода: Z = 14;
- структурная формула привода: $Z = 2(1 + 2 + 2 \cdot 2);$
- вид структуры: BII;
- знаменатель ряда геометрической прогрессии: $\phi = 1,41$;
- тип станка: внутришлифовальный. Принимаем станок модели 3А252.

Порядок выполнения работы

1. Полностью раскрыть структурную формулу с указанием характеристик передач, проверить условие о возможности применения данной формулы в приводе главного движения с определением диапазона регулирования последней переборной группы передач и рассчитать

возможное количество вариантов привода.

Структурная формула привода представляет собой сложенную структуру вида ВІІ, которую в общем виде имеет вид:

$$Z = Z^{O}(1 + Z' + Z' \cdot Z''),$$

где: Z^{O} – основная структура привода;

Z' и Z^{\parallel} - первая и вторая дополнительные структуры привода.

Основная, первая и втораяи дополнительные структуры состоят из одной группы передач $Z^O = P^O_1$, $Z^I = P^I_1$, $Z^I = P^I_1$. Тогда с учетом групп передач структурную формулу можно представить в виде:

$$Z = P^{O}(1 + P_{1} + P_{1} \cdot P_{1}) = 2(1 + 2 + 2 \cdot 2),$$

где: $P^{O} = 2 \cdot -$ основная группа передач;

 $P_1' = 2$ и $P_1'' = 2$ — перваяая группа первой и второй дополнительных структур соответственно.

Цифры 2 определяют соответственно количество передач в группе.

С учетом характеристик передач в группе структурная формула представляется как:

$$Z = P^{O}_{Xo}(1 + P^{I}_{1X1} + P^{I}_{1X1} \cdot P^{I}_{1X2}) = 2_{Xo} (1 + 2_{X1} + 2_{X1} \cdot 2_{X2}),$$

где: $x_0 = 1$ – характеристика первой основной группы передач;

 $x_1 = x_0 \cdot P_1^1 = 1 \cdot 2 = 2 -$ характеристика первой переборной группы передач;

 $x_2 = x_1 \cdot P_1^1 = 2 \cdot 2 = 4 - x$ арактеристика второй переборной группы передач

Таким образом с учетом групп и характеристик передач структурная формула имеет вид:

$$Z = P^{O}_{Xo}(1 + P^{I}_{1X1} + P^{I}_{1X1} \cdot P^{I}_{1X2}) = 2_{Xo}(1 + 2_{X1} + 2_{X1} \cdot 2_{X2}) = 2_{1}(1 + 2_{2} + 2_{2} \cdot 2_{4}),$$

Проверяем условие применяемости структурной формулы в приводе главного движения, которое записывается как: $R_{\text{Пi}} = \phi^{\text{Kmax}} \leq 8$,

где
$$K_{max} = x_2 = 4$$

Диапазон регулирования последней переборной группы передач (P^{\parallel}_{1} = 2_{4}) Равен $R_{\Pi i}$ = ϕ^{Kmax} = $1,41^{4}$ = 4 (Условие выполнено).

Определяем возможное количество вариантов привода:

$$B = B_{\text{кон.}} \cdot B_{\text{кин.}};$$

где: $B_{\text{кон}} = K! -$ количество конструктивных вариантов привода;

$$B_{\text{кин}} = \frac{K!}{m!}$$
 - количество кинематических вариантов привода.

Таким образом, общее количество вариантов привода рассчитывается по формуле:

$$B = \frac{(K!)^2}{m!}$$

Для структурной формулы $Z = 2_1 (1 + 2_2 + 2_2 \cdot 2_4)$ и структуры вида ВІІ общее количество вариантов привода определяется по формуле:

$$B = 12 \frac{(K^0!)^2}{m^0!} \frac{(K'!)^2}{m'!} \frac{(K''!)}{m''!};$$

где: к – число групп передач;

т – количество групп с одинаковым числом передач.

В нашем случае $K^0 = \hat{K}^{\parallel} = 1; K^{\parallel} = 1 \text{ m}^0 = m^{\parallel} = 1$

Таким образом:
$$B = 12 \frac{(1!)^2}{1!} \frac{(1!)^2}{1!} \frac{(1!)^2}{1!} = 12$$

2. С учетом заданной формулы нарисовать вид структуры и построить структурную сетку.

Структура вида ВІІ представляет собой сложенную структуру, состоящую из основной структуры \mathbf{Z}^{O} и двух дополнительных структур \mathbf{Z}^{I} и \mathbf{Z}^{I} . Особенность структуры ВІІ состоит в том, что основная структура \mathbf{Z}^{O} соединяется с выходным валом коробки скоростей (шпинделем) посредством муфты М (рис.1). Структура \mathbf{Z}^{I} может передавать движение от основной структуры на шпиндель самостоятельно, либо участвовать в совместной кинематической цепи со структурой \mathbf{Z}^{II} .

Рис. 1. Общий вид сложенной структуры вида ВІІ.

С учетом структурной формулы $Z=2_1$ (1 + $2_2+2_2\cdot 2_4$), $\phi=1,41$, вида структуры ВІІ и однонаправленности вращения шпинделя при передаче движения по различным кинематическим цепям, структура привода представлена на рис.2.

Структура привода (рис.2) состоит из 6-ти валов, муфты М, обеспечивающей соосносе соединение II и VI валов, четырех двухвенцовых подвижных блоков зубчатых колес ($P_1^{\ O}=2,\ P_1'=2$ и $P_1'=2$ и один двухвенцовый блок, состоящий из постоянных зубчатых передач $P_1'=2$ и один передающий движения по разным кинематическим цепям). В структуре дополнительно применены также вал IV и передача $P_1'=2$ и обеспечивающие

изменение направления вращения шпинделя при передаче движения по кинематической цепи \mathbb{Z}_3 .

Рис. 2. Структура привода вида ВІІ с учетом формулы $Z=2_1\ (1+2_2+2_2\cdot 2_4)$ и групп передач.

Таким образом, для получения 14 различных частот вращения в структуре привода необходимо реализовать 3 кинематические цепи: $Z = Z_1 + Z_2 + Z_3$,

где:
$$Z_1 = P_1^O \cdot (M) = 2_1 \cdot (M) = 2$$
 $Z_2 = P_1^O \cdot P_1^O \cdot i_{\Pi}^I = 2_1 \cdot 2_2 \cdot i_{\Pi}^I = 4$
 $Z_3 = P_1^O \cdot P_1^O \cdot i_{\Pi 1}^I \cdot i_{\Pi 2}^I \cdot P_1^I = 2_1 \cdot 2_2 \cdot i_{\Pi 1}^I \cdot i_{\Pi 2}^I \cdot 2_4 = 8$
Или $Z = Z_1 + Z_2 + Z_3 = 2 + 4 + 8 = 14$

Рис. 2. Структура привода вида BI с учетом формулы $Z=2_1$ ($i_\Pi+2_2+2_2\cdot 2_4$) и групп передач.

Структурная сетка для $Z = 2_1 (1 + 2_2 + 2_2 \cdot 2_4) = 14$ представлена на рис.3

Рис.3. Структурная сетка привода.

3. Самостоятельно задавшись по ГОСТ параметрами электродвигателя, а также Π_{min} частоты вращения выходного вала коробки скоростей, определить с учетом ϕ и Z промежуточные частоты вращения и Π_{max} . Построить график частот вращения с учетом кинематики заданного станка и определить передаточные отношения передач.

С учетом базового станка по ГОСТ 18391-81 задаемся параметрами электродвигателя привода главного движения:

- тип электродвигателя 4A200S4У3;
- мощность N = 4,5 кBT;
- частота вращения при номинальной мощности $n_{\scriptscriptstyle H} = 2560$ об/мин.

Принимая во внимание частоты вращения базового станка, а также ϕ =1,41 и Z=14 задаемся n_1 = n_{min} =100 об/мин. По Нормали станкостроения H11-1 получаем промежуточные и n_{max} частоты вращения шпинделя:

$n_1 = 100$ об/мин	n ₂ =140 об/мин	$n_3 = 200$ об/мин
$n_4 = 280$ об/мин	n ₅ =400 об/мин	n ₆ =5600 об/мин
n ₇ =8000 об/мин	$n_8 = 1120$ об/мин	n ₉ =1600 об/мин
n ₁₀ =2240 об/мин	n ₁₁ =3150 об/мин	n ₁₂ =4500 об/мин
n ₁₃ =6300 об/мин	$n_{14} = 9000$ об/мин	

Анализ кинематической схемы привода главного движения станка модели 3A252 (рис.4).

Станок предназначен для высокопроизводительного шлифования цилиндрических и конических сквозных и глухих отверстий, а также для торцового шлифования в условиях серийного и массового производства.

Шлифовальный круг, закрепленный на шпинделе IV приводится в движение эл.двигателем N=4,5 кВт через повышающую плоскоременную передачу со сменными шкивами. К станку прилагаются сменные шкивы диаметром $65,\ 95,\ 120$ и 225мм, что обеспечивает частоту вращения шлифовального круга n=3550...10000 об/мин.

Рис. 4 – Кинематическая схема станка мод. 3A252

При построении графика частот вращения (рис.5) и разработке кинематической схемы (рис.6) учтены особенности кинематики базового станка и разрабатываемой структуры. Для этого необходимо:

- дополнительно ввести: вал I^{\parallel} и ременную передачу , передающую движение на I входной вал коробки скоростей и обеспечивающие нормализованный ряд частот вращения шпинделя; вал IV и зубчатую передачу, необходимые для изменения направления вращения шпинделя;
- учесть также, что для $\phi = 1,41$ число допустимых интервалов может быть: понижающих 4, повышающих 2.

Рис. 5 – График частот вращения

По рис. 5 определяем передаточные отношения:

- ременной передачи: $i_p=D_1/D_2=4500/2560=1,76$. Приняв по базовому станку D1=225мм, получаем $D_2=D_1/i_p=225/1,76=127$ мм;
 - зубчатых передач по формуле $\mathbf{i} = \boldsymbol{\varphi}^{^{\pm \mathrm{m}}}$,

где: m – число повышений (+) или понижений (-) луча на графика частот вращения.

$$\begin{split} & \mathbf{i}_1 = \varphi^2 = 1,41^2; & \mathbf{i}_2 = \varphi = 1,41; & \mathbf{i}_3 = \varphi^0 = 1; & \mathbf{i}_4 = \varphi^{-2} = 1/1,41^2; & \mathbf{i}_5 = \varphi^{-2} = 1/1,41^2; \\ & \mathbf{i}_6 = \varphi^{-3} = 1/1,41^3; & \mathbf{i}_7 = \varphi^{-3} = 1/1,41^3; & \mathbf{i}_8 = \varphi^0 = 1; & \mathbf{i}_9 = \varphi^{-4} = 1/1,41^4; \end{split}$$

4. Разработать кинематическую схему привода главного движения (рисунок кинематической схемы базового станка приложить в контрольной работе).

При разработке кинематической схемы привода главного движения (рис.6) применены:

- электродвигатель с аналогичными базовому станку техническими характеристиками и валом ${\rm I}',$ соединенным с входным валом ${\rm I}$ коробки скоростей ременной передачей;
 - реализованы высокие скорости частот вращения шпинделя;
- дополнительно введен IV вал и передача z_{16}/z_{17} , изменяющие направления частот вращения шпинделя;
- применено равномерное нагружение шпинделя от действующих нагрузок в зубчатых передачах.

Рис. 6. Кинематическая схема привода главного движения

5. Расчет чисел зубьев зубчатых передач и определение кинематической точности (погрешности) частот вращения цепи, в которую входит наиболее нагруженная группа передач.

Наиболее нагруженной группой передач является группа $P^{\parallel}_{1}=2_{4}$, которая входит в кинематическую цепь Z_{3} .

Для данной группы передач с передаточными отношениями:

$$i_8 = \frac{Z_{18}}{Z_{19}} = 1;$$
 $i_9 = \frac{Z_{20}}{Z_{21}} = 1/1,41^4$

Для данной группы передач расчет чисел зубьев колес производим при условии зацепления прямозубых цилиндрических зубчатых колес с одинаковым модулем в группе передач.

Представим передаточные отношения в виде простой дроби $i_x = \frac{f_x}{q_x}$:

$$i_8 = \frac{f_8}{q_8} = \frac{1}{1}; \quad i_9 = \frac{f_9}{q_9} \approx \frac{1}{4}$$

Определяем наименьшее кратное K для сумм (f_x+q_x) :

$$f_8 + q_8 = 1 + 1 = 2$$

$$f_9 + q_9 = 1 + 4 = 5$$

Таким образом К = 10

Определим E_{min} для зубчатой передачи с i_9 :

$$E_{min} = \frac{17(f_9 + q_9)}{K \cdot f_9} = \frac{17(1+4)}{10 \cdot 1} = 8,5$$
 Принимаем $E_{min} = 9$

Сумма чисел зубьев сопряженных колес:

$$2Z_0 = K \cdot E_{min} = 10.9 = 90$$

По Нормали H21-5 задавшись модулем зубчатых колес m=4мм получаем $2Z_o=90$, при этом межосевое расстояние между валами составляет $A_{V-VI}=180$ мм.

Определяем числа зубьев сопряженных колес:

$$Z_{18} = 2Z_{0} \frac{f_{8}}{f_{8} + q_{8}} = 90 \frac{1}{1+1} = 45$$

$$Z_{19} = 2Z_{0} \frac{q_{8}}{f_{8} + q_{8}} = 90 \frac{1}{1+1} = 45$$

$$Z_{20} = 2Z_{0} \frac{f_{9}}{f_{9} + q_{9}} = 90 \frac{1}{1+4} = 18$$

$$Z_{21} = 2Z_{0} \frac{q_{9}}{f_{9} + q_{9}} = 90 \frac{4}{1+4} = 72$$

Проверка:
$$Z_{18}+Z_{19}=Z_{20}+Z_{21}=2Z_{0}$$

 $45+45=18+72=90$

Расчет чисел зубьев остальных зубчатых передач выполняется с учетом Нормали H21-5 решая систему уравнений:

Расчет чисел зубьев зубчатой передачи между VI и VII валами:

Передача движения между валами обеспечивается постоянной зубчатой передачей $i_7=z_{16}/z_{17}=1/1,41^3$.Для обеспечения минимальных радиальных размеров коробки скоростей принимаем $z_{16}=20$. Тогда $z_{17}=1,41^3$ $z_{16}=1,41^3\cdot 20=56$. Сумма чисел зубьев сопряженных колес

$$2Z_o = Z_{16} + z_{17} = 20 + 56 = 76$$
. По H21-5 при m=3мм принимаем $2Z_o = 80$ ($A_{\text{IV-V}} = 120$ мм).

Перерасчет чисел зубьев:

$$\left\{ \begin{array}{l} Z_{16} + Z_{17} = 80 \\ Z_{16} = 1/1,41^{3} \end{array} \right\} \quad Z_{17} = 1,41^{3} \ Z_{16}; \quad Z_{16} + 1,41^{3} \ Z_{16} = 80; \quad Z_{16} = 21; \quad Z_{17} = 80 - 21 = 59 \\ \end{array}$$

Расчет чисел зубьев зубчатой передачи между III и IV валами:

Передача движения между валами обеспечивается постоянной зубчатой передачей $i_6=z_{14}/z_{15}=1/1,41^3$. Приняв методику расчета, представленную выше, имеем с учетом H21-5 при m=3мм, что $2Z_o=80$ ($A_{\text{III-IV}}=120$ мм). Т.О. получаем $z_{14}=21,\,z_{15}=59$.

Расчет чисел зубьев зубчатой передачи между III-VI:

Передача движения между валами обеспечивается постоянной зубчатой передачей $i_5=z_{12}/z_{13}=1/1,41^2$. Приняв $z_{12}=18$, получаем $z_{13}=1,41^2\cdot18=36$. Сумма чисел зубьев сопряженных колес $2Z_0=Z_{12}+z_{13}=18+36=54$. По H21-5 при m=3мм принимаем $2Z_0=60$ ($A_{\text{III-VI}}=90$ мм).

Перерасчет чисел зубьев:

Расчет чисел зубьев зубчатой передачи между II - III валами:

Передача движений обеспечивается зубчатыми колесами двойного блока E_2 , который имеет: $E_3 = z_8/z_9 = 1$ и $E_4 = z_{10}/z_{11} = 1/1,41^2$. Учитывая, что для обеспечения работоспособности муфты M, необходимо выполнить соосность II и VI валов. Т.е. $E_{III-VI} = E_{II-III} = E_{II-III} = E_{II-III}$ при m=3мм по H21-5 имеем $E_4 = E_1$ имеем $E_5 = E_2$ имеем $E_6 = E_1$ имеем $E_6 = E_1$ имеем $E_6 = E_1$ имеем $E_6 = E_1$ имеем $E_6 = E_2$ имеем $E_6 = E_1$ имеем $E_1 = E_1$ имеем E_1

$$S_{III-VI} = A_{II-III} = 90$$
мм. Гогда при m=3мм по H21-5 имеем $2Z_0 = 60$.
$$\begin{cases} Z_8 + Z_9 = 60 \\ Z_8 = 1 \end{cases}$$
 $Z_8 = Z_9 = 30;$
$$\begin{cases} Z_{10} + Z_{11} = 60 \\ Z_{10} = 1/1,41^2 \end{cases}$$
 $Z_{11} = 1,41^2 Z_{10};$ $Z_{10} + 1,41^2 Z_{10} = 60;$ $Z_{10} = 20;$ $Z_{11} = 60-20=40$

Расчет чисел зубьев между I и II валами:

В передаче движения между валами участвуют блок зубчатых колес $Б_1$, имеющие : $i_1=z_4/z_5=1,41^2$ и $i_2=z_6/z_7=1,41$.

Приняв для i_1 , что z_5 =20, получаем z_4 =1,41 2 · z_5 =1,41 2 · 20=40.

Сумма чисел зубьев сопряженных колес $2Z_o = Z_4 + z_5 = 40 + 20 = 60$. По H21-5 при m=2,5мм принимаем $2Z_o = 60$ (A_{I-II}=75мм)

Определяем числа зубьев сопряженных колес:

$$\begin{cases} Z_4 + Z_5 = 60 \\ \frac{Z_4}{Z_5} = 1,41^2 \end{cases} \quad Z_4 = 1,41^2 \, Z_5; \quad Z_5 + 1,41^2 \, Z_5 = 60; \quad Z_5 = 20; \quad Z_4 = 60-20=40 \\ \begin{cases} Z_6 + Z_7 = 60 \\ \frac{Z_6}{Z_7} = 1,41 \end{cases} \quad Z_6 = 1,41 \, Z_7; \quad Z_7 + 1,41 \, Z_7 = 60; \quad Z_7 = 25; \quad Z_6 = 60-25=35 \end{cases}$$

Проверка:
$$Z_4+Z_5=Z_6+Z_7=2Z_0$$

 $40+20=35+25=60$

Для определения кинематической точности привода главного движения кинематических цепей, в состав которых входит наиболее нагруженная группа передач $P_1^{\parallel}=2_4$ (т.е. для кинематической цепи Z_3) необходимо составить уравнения кинематического баланса, определить действительные значения частот вращения шпинделя ($n_{1_{\rm H}}$... $n_{14_{\rm H}}$), вычислить величину погрешности по

формуле:
$$\Delta n_i = \frac{n_{_{iл}} - n_{_{iн}}}{n_{_{iн}}} \cdot 100\%$$
 и сравнить ее с допустимой $[\Delta n] = \pm 10(\varphi - 1) = \pm 10(1,41 - 1) = \pm 4,1\%$.

В рассматриваемой кинематической цепи в передаче движения участвуют ременная и зубчатые передачи, имеющие следующие передаточные отношения:

$$\begin{split} &\mathbf{i}_{\mathrm{p}} = \frac{225}{127}; \ \ \mathbf{i}_{1} = \frac{40}{20}; \ \ \mathbf{i}_{2} = \frac{35}{25}; \quad \mathbf{i}_{3} = \frac{30}{30}; \ \mathbf{i}_{4} = \frac{20}{40}; \quad \mathbf{i}_{6} = \frac{21}{59}; \quad \mathbf{i}_{7} = \frac{21}{59}; \quad \mathbf{i}_{8} = \frac{45}{45} \ \mathbf{i}_{9} = \frac{18}{72}; \\ &\mathbf{n}_{1} = 2560 \frac{225}{127} 0,9 \frac{35}{25} \frac{20}{40} \frac{21}{59} \frac{21}{59} \frac{18}{72} = 97,506/\text{мин} \qquad \Delta \mathbf{n}_{1} = \frac{97,5-100}{100} 100 = 2,5\% \\ &\mathbf{n}_{2} = 2560 \frac{225}{127} 0,9 \frac{40}{20} \frac{20}{40} \frac{21}{59} \frac{21}{59} \frac{18}{72} = 139,306/\text{мин} \qquad \Delta \mathbf{n}_{2} = \frac{139,3-140}{140} 100 = 0,5\% \\ &\mathbf{n}_{3} = 2560 \frac{225}{127} 0,9 \frac{35}{25} \frac{30}{30} \frac{21}{59} \frac{21}{59} \frac{18}{72} = 195,106/\text{мин} \qquad \Delta \mathbf{n}_{3} = \frac{195,1-200}{200} 100 = 2,5\% \end{split}$$

$$\begin{array}{ll} \mathbf{n_4} = 2560 \frac{225}{127} 0,9 \frac{40}{20} \frac{30}{30} \frac{21}{59} \frac{21}{59} \frac{18}{72} = 278,706/\text{мин} \qquad \Delta \mathbf{n_4} = \frac{278,7-280}{280} 100 = 0,5\% \\ \mathbf{n_5} = 2560 \frac{225}{127} 0,9 \frac{35}{25} \frac{20}{40} \frac{21}{59} \frac{21}{45} = 39006/\text{мин} \qquad \Delta \mathbf{n_5} = \frac{390-400}{400} 100 = 2,5\% \\ \mathbf{n_6} = 2560 \frac{225}{127} 0,9 \frac{40}{20} \frac{20}{40} \frac{21}{59} \frac{21}{59} \frac{45}{45} = 55706/\text{мин} \qquad \Delta \mathbf{n_6} = \frac{557-560}{560} 100 = 0,5\% \\ \mathbf{n_7} = 2560 \frac{225}{127} 0,9 \frac{35}{25} \frac{30}{30} \frac{21}{59} \frac{21}{59} \frac{45}{45} = 78006/\text{мин} \qquad \Delta \mathbf{n_7} = \frac{780-800}{800} 100 = 2,5\% \end{array}$$

Величина погрешности находится в пределах допустимой, что указывает на то, что кинематическая точность цепей обеспечена.

6. Рассчитать мощность и крутящий момент на валах привода, предварительно рассчитать диаметры валов.

Расчет мощности на валах привода главного движения производится по формулам:

- для I вала: $N_I = N_{дB} \cdot \eta_p$, кВт,

Где $\eta_p = 0.97$ - кпд ременной передачи.

 $N_1 = 4.5 \cdot 0.97 = 4.36 \text{ kBt}.$

- для зубчатых передач: $N_{_{\mathrm{i}}} = N_{_{\mathrm{i-1}}} \cdot \eta_{_{\scriptscriptstyle 3}} \cdot \eta^{^2}{_{\scriptscriptstyle n}},$ [кВт]

где: η₃=0,97 – КПД зубчатой передачи;

 $\eta_{\rm n}\!\!=\!\!0,\!99-{\rm K}\Pi{\rm \square}$ подшипников качения.

Учитывая, что $\eta_{_3} \cdot \eta_{_1} = 0.97 \cdot 0.99^2 = 0.95$, получаем $N_{_i} = 0.95 \cdot N_{_{i-1}}$, [кВг]

$$N_{II} = 0.95 \cdot N_{I} = 0.95 \cdot 4.36 = 4.14 \text{ kBT}$$

$$N_{III} = 0.95 \cdot N_{II} = 0.95 \cdot 4.14 = 3.94$$

$$N_{IV} = 0.95 \cdot N_{III} = 0.95 \cdot 3.94 = 3.74 \text{ kBT}$$

$$N_{_{\mathrm{IV}}} = 0.95 \cdot N_{_{\mathrm{IV}}} = 0.95 \cdot 3.74 = 3.56 \,\mathrm{kBt}$$

$$N_{_{\mathrm{VI}}} = 0.95 \cdot N_{_{\mathrm{V}}} = 0.95 \cdot 3.56 = 3.38 \, \mathrm{kBT}$$

Максимальные крутящие моменты на валах привода определяются по формулам:

- на I валу коробки скоростей: $M_{_{\rm I}} = \frac{M_{_{_{\rm ДВ.}}}}{i_{_{\rm p}}} 0,97,$ нм ;

где: $M_{_{\mathrm{ДB.}}} = \frac{N_{_{\mathrm{ДB.}}} \cdot 10^3 \cdot 60}{2 \cdot \pi \cdot \mathrm{n}_{_{\mathrm{H}}}} = \frac{4.5 \cdot 10^3 \cdot 60}{2 \cdot 3.14 \cdot 2560} = 16.8 \,\mathrm{HM}$ — крутящий момент на валу электродвигателя.

$$M_{I} = \frac{16.8}{1.76}0.97 = 9.3 \text{HM}$$

- на последующих валах:
$$M_{_{\rm I}}=\frac{M_{_{\rm i-1}}}{i_{_{\rm min}}}\eta_{_3}\cdot\eta^2{_{_{\rm II}}}=\frac{M_{_{\rm i-1}}}{i_{_{\rm min}}}0,95$$
 нм
$$M_{_{\rm II}}=\frac{M_{_{\rm I}}}{i_{_2}}0,95=9,3\cdot0,95/1,41=6,2$$
 нм
$$M_{_{\rm III}}=\frac{M_{_{\rm II}}}{i_{_4}}0,95=6,2\cdot1,41^2\cdot0,95=11,8$$
 нм
$$M_{_{\rm IV}}=\frac{M_{_{\rm III}}}{i_{_6}}0,95=11,8\cdot1,41^3\cdot0,95=31,4$$
 нм
$$M_{_{\rm VI}}=\frac{M_{_{\rm IV}}}{i_{_6}}0,95=83,5\cdot1,41^4\cdot0,95=314$$
 нм
$$M_{_{\rm VI}}=\frac{M_{_{\rm IV}}}{i_{_6}}0,95=83,5\cdot1,41^4\cdot0,95=314$$
 нм

Предварительное определение диаметров валов:

$$d_{i} = \sqrt[3]{\frac{M_{i} \cdot 10^{3}}{0.2 \cdot \lceil \tau \rceil}}, \text{ MM}$$

где: $[\tau]=18...23$ МПа — допускаемое напряжение материала вала на кручение. Принимаем $[\tau]=20$ МПа. Учитывая постоянную данной формулы

$$(\frac{10^3}{0,2\cdot [\tau]} = \frac{10^3}{0,2\cdot 20} = 250)$$
, окончательно получаем: $d_i = \sqrt[3]{M_i \cdot 250}$,

$d_{1^{i}} = \sqrt[3]{16,8 \cdot 250} = 16,1 \text{MM}$	Принимаем	$d_{_{\rm I^{ }}}=20{\rm mm}$
$d_1 = \sqrt[3]{9.3 \cdot 250} = 13.2 \text{ MM}$	Принимаем	$d_{\rm I} = 15$ MM
$d_{II} = \sqrt[3]{6,2 \cdot 250} = 11,6$ MM	Принимаем	$d_{II} = 15 \text{MM}$
$d_{III} = \sqrt[3]{11,8 \cdot 250} = 14,3MM$	Принимаем	$d_{III} = 15 \text{MM}$
$d_{IV^{\parallel}} = \sqrt[3]{31.4 \cdot 250} = 19.8 \text{MM}$	Принимаем	$d_{_{\rm IV^{ }}}=20{\rm MM}$
$d_V = \sqrt[3]{83,5 \cdot 250} = 27,5 \text{MM}$	Принимаем	$d_{v} = 30 \text{MM}$
$d_{VI} = \sqrt[3]{314 \cdot 250} = 42,8 \text{MM}$	Принимаем	$d_{VI} = 45 \text{MM}$

Для V и VI валов наиболее нагруженной группы передач с учетом базового станка выбираем подшипники качения по ГОСТ 8338-75:

- для V вала : шарикоподшипник радиальный однорядный 306: внутренний диаметр d=30мм, наружный диаметр D=72мм, ширина B=19мм;
- для VI вала : сдвоенный шарикоподшипник радиальный однорядный 309: внутренний диаметр d=45мм, наружный диаметр D=100мм, ширина B=25мм;

7. Рассчитать геометрические параметры зубчатых колес и межосевое расстояние между валами.

Геометрические параметры зубчатых колес определяются по формулам(мм):

- делительный диаметр $d = m \cdot z$;
- диаметр вершин зубьев $d_a = d + 2m(1+x)$;
- диаметр впадин зубьев d_f =d-2m(1,25-x);
- ширина зубчатого колеса $\mathbf{B}_1 = \psi_{\mathbf{a}} \cdot \mathbf{A}_{;} \quad \psi_{\mathbf{a}} = 0,12;$
- ширина шестерни $\mathbf{B}_2 = 1,12 \cdot \mathbf{B}_1$

Коэффициент смещения для прямозубых зубчатых колес x=0 Результаты расчета сведены в таблицы 1 и 2.

Таблица 1

Геометрические параметры зубчатых колес наиболее нагруженной группы передач

Колесо/	Расчетные параметры					
/ Шестерня	m,	Z	d,	d _a ,	$d_{f,}$	В,
	MM		MM	MM	MM	MM
$egin{array}{cccccccccccccccccccccccccccccccccccc$	4	45/45	180/180	188/188	170/170	25/28
$egin{pmatrix} \mathbf{Z}_{20} \ \mathbf{Z}_{21} \ \end{pmatrix}$	4	18/72	72/ /288	80/ 296	62/278	25/28

Делительные диаметры зубчатых колес привода

Парамет	z_4	Z ₆ /	Z ₈ /	Z ₁₀ /	$\mathbf{z}_{12}/\mathbf{z}_{13}$	Z ₁₄ /	Z ₁₆ /	
ры	$/Z_5$	$/\mathbf{Z}_7$	$/\mathbf{Z}_9$	$/z_{11}$	/ 213	/ Z ₁₅	/ Z ₁₇	
					_			
m, mm	2,5				3			
Z	$\frac{40}{20}$	$\frac{35}{25}$	30/30	$\frac{20}{40}$	$\frac{20}{40}$	21/59	$\frac{21}{59}$	
	100	87,5	90	60	60	63	63	
d vor								
d, mm	50	62,5	90	120	120	177	177	

Расчет межосевых расстояний:

$$A = \frac{\sum Z \cdot m}{2}, MM$$

 $A_{n-1} = принимаетс я конструктивно$

$$A_{\text{II-II}} = \frac{60 \cdot 2,5}{2} = 75 \text{ MM} \qquad A_{\text{II-III}} = \frac{60 \cdot 3,0}{2} = 90 \text{ MM}$$

$$A_{\text{III-IV}} = \frac{80 \cdot 3,0}{2} = 120 \text{ MM} \qquad A_{\text{III-VI}} = \frac{60 \cdot 3}{2} = 90 \text{ MM} \qquad A_{\text{IV-V}} = \frac{80 \cdot 3}{2} = 120 \text{ MM}$$

Расчет межосевого расстояния между V-VI валами наиболее нагруженной группы передач производится из условия контактной прочности зубчатых колес:

$$A_{\text{V-VI}} = \left(\frac{1}{i_9} + 1\right) \sqrt[3]{\left[\frac{340000}{\left[\sigma_{\text{K}}\right] \cdot 1/i_9}\right)^2 \cdot \frac{1}{\psi_a} \cdot \frac{\kappa \cdot N}{n}} \text{ , [cm],}$$

где: $[\sigma_{\kappa}] = 5880 \text{ кгс/см}^2 - допускаемое напряжение контактной прочности$ зубчатого колеса;

 ψ_a =0,12...0,15 — коэффициент ширины венца колеса;

$$\kappa = 1,3...1,5$$
 — коэффициент нагрузки.
$$A_{\text{V-VI}} = (4+1)\sqrt[3]{\left(\frac{340000}{5880\cdot 4}\right)^2 \cdot \frac{1}{0,12} \cdot \frac{1,3\cdot 3,38}{100}} = 21 \text{ cm} = 210 \text{ mm}.$$

Учитывая, что по условиям контактной прочности зубатого колеса межосевое расстояние между валами V-VI наиболее нагруженной группы передач допускается до 210 мм, принимаем ранее рассчитанное $A_{V-VI}=180$ мм.

8. Разработать эскизную компоновку коробки скоростей.

При разработке эскизной компоновки свертки коробки скоростей привода главного движения применены формулы и выполнены следующие расчеты:

- толщина корпуса: $\delta = 0.025 \cdot A + 3 = 0.025 \cdot 180 + 3 = 7.5 \,\mathrm{MM}$;
- расстояние от торца зубчатого колеса до внутренней стенки корпуса:

$$a = (1,0...1,2)\delta = 1,2 \cdot 7,5 = 9 \text{ MM}$$

- расстояние от наибольшего диаметра колеса до смежного вала: $c \geq 0.4\delta = 0.4 \cdot 7.5 = 3 \, \text{мм}$
- минимальное расстояние между торцами соседних зубчатых колес: $e = (0,4...0,6) \delta = 0,6 \cdot 7,5 = 4,5 \, \text{мм}$
- расстояние от венца зубчатого колеса до днища корпуса: $b \ge 3\delta = 3 \cdot 7, 5 = 22,5 \, \text{мм}$
- толщина крышки: $\delta_1 = (0,7...0,8)\delta = 0,8 \cdot 7,5 = 6,0$ мм

Рис. 7. Эскизная компоновка свертки коробки скоростей.

9. Уточненный расчет наиболее нагруженного вала.

Наиболее нагруженным валов в последней переборной группе передач (наиболее нагруженной группе передач) коробки скоростей является VI вал, передающий крутящий момент $M_{\kappa p}=314$ нм зубчатой передачей $z_{20}/z_{21}=18/72$.

Этот крутящий момент расходуется на преодоление сил резания. Принимаем P_z =1000н, P_x = P_y =0,3·1000=300н.

Схема нагружения VI вала и эпюры моментов, действующие на него, представлены на рис.8. Компоновочные размеры, осевое и радиальное размещение зубчатых колес на валах наиболее нагруженной группы передач, а также расстояние между опорами определены из рис.9.

Условные обозначения, принятые в расчете и на рис.8:

- $R_A^{\ \Gamma}$, F_t , F_r $R_B^{\ \Gamma}$, P_y силы и реакции, действующие в горизонтальной плоскости;
- плоскости; $R_A^{\ B}$, F_r , $R_B^{\ B}$, P_z силы и реакции, действующие в вертикальной плоскости.

Определяем силы, действующие в зубчатом зацеплении:

$$F_{t} = \frac{2M_{sp}}{D_{21}} = \frac{2 \cdot 314}{0,288} = 2180 \,\mathrm{H}$$

$$F_r = F_t \cdot tg \alpha = 2180 \cdot 0,364 = 794 \text{ H};$$

Определяем реакции в опорах:

- горизонтальная плоскость:

$$\begin{split} \sum M_{_{\rm A}} &= 0 \qquad -F_{_{\rm t}} \cdot 0.355 - R_{_{\rm B}}{}^{\Gamma} \cdot 0.44 + P_{_{\rm y}} \cdot 0.15 = 0 \\ R_{_{\rm B}}{}^{\Gamma} &= \frac{-F_{_{\rm t}} \cdot 0.355 + P_{_{\rm y}} \cdot 0.59}{0.44} = \frac{-2180 \cdot 0.355 + 300 \cdot 0.59}{0.44} = -1357 \, \mathrm{H} \\ \sum M_{_{\rm B}} &= 0 \qquad R_{_{\rm A}}{}^{\Gamma} \cdot 0.44 + F_{_{\rm t}} \cdot 0.085 + P_{_{\rm y}} \cdot 0.15 = 0 \\ R_{_{\rm A}}{}^{\Gamma} &= -\frac{F_{_{\rm t}} \cdot 0.085 + P_{_{\rm y}} \cdot 0.15}{0.44} = -\frac{2180 \cdot 0.085 + 300 \cdot 0.15}{0.44} = -522 \, \mathrm{H} \end{split}$$

- вертикальная плоскость:

$$\begin{split} \sum M_{_{\rm A}} &= 0 \qquad -F_{_{\rm r}} \cdot 0,355 - R_{_{\rm B}}{}^{\rm B} \cdot 0,44 + P_{_{\rm z}} \cdot 0,59 = 0 \\ R_{_{\rm B}}{}^{\rm B} &= \frac{-F_{_{\rm r}} \cdot 0,355 + P_{_{\rm z}} \cdot 0,59}{0,44} = \frac{-794 \cdot 0,355 + 1000 \cdot 0,59}{0,44} = 700 \, {\rm H} \\ \sum M_{_{\rm B}} &= 0 \qquad R_{_{\rm A}}{}^{\rm B} \cdot 0,44 + F_{_{\rm r}} \cdot 0,085 + P_{_{\rm z}} \cdot 0,15 = 0 \\ R_{_{\rm A}}{}^{\rm B} &= \frac{-F_{_{\rm r}} \cdot 0,085 - P_{_{\rm z}} \cdot 0.15}{0,44} = \frac{-794 \cdot 0,085 - 1000 \cdot 0,15}{0,44} = -493 \, {\rm H} \end{split}$$

Полные реакции в опорах:

$$R_A = \sqrt{\left(R_A^{\ \Gamma}\right)^2 + \left(R_A^{\ B}\right)^2} = \sqrt{522^2 + 493^2} = 718 \,\mathrm{H}$$
 $R_B = \sqrt{\left(R_B^{\ \Gamma}\right)^2 + \left(R_B^{\ B}\right)^2} = \sqrt{1357^2 + 700^2} = 1527 \,\mathrm{H}$

Изгибающие моменты:

- в горизонтальной плоскости:

$$\begin{aligned} \mathbf{M_{u}}^{\mathrm{C}} &= \mathbf{R_{A}}^{\mathrm{\Gamma}} \cdot 0,355 = -522 \cdot 0,355 = -185 \text{ нм} \\ \mathbf{M_{u}}^{\mathrm{B}} &= \mathbf{R_{A}}^{\mathrm{\Gamma}} \cdot 0,44 + \mathbf{F_{t}} \cdot 0,085 = -522 \cdot 0,44 + 2180 \cdot 0,085 = -44 \text{ нм} \\ \mathbf{M_{u}}^{\mathrm{D}} &= \mathbf{R_{A}}^{\mathrm{\Gamma}} \cdot 0,59 + \mathbf{F_{t}} \cdot 0,235 + \mathbf{R_{B}}^{\mathrm{\Gamma}} \cdot 0,15 = -522 \cdot 0,59 + 2180 \cdot 0,235 - 1357 \cdot 0,15 = 0 \text{ нм} \\ &- \mathbf{B} \text{ вертикальной плоскости:} \end{aligned}$$

$$M_{_{\mathrm{H}}}{^{\mathrm{C}}} = \sqrt{185^2 + 175^2} = 254 \, \mathrm{HM}$$

$$M_{_{
m H}}^{^{\ \ B}} = \sqrt{44^2 + 150^2} = 156 \, {
m hm}$$

Эквивалентные моменты:

$$M_{3KB}^{C} = \sqrt{(M_{H}^{C})^2 + M_{KP}^2} = \sqrt{254^2 + 314^2} = 403 \text{ HM}$$

$$M_{
m 9KB}^{B} = \sqrt{\left(\!M_{_{
m M}}^{}\!\right)^{\!2} + M_{_{
m KP}}^{2}} = \sqrt{156^2 + 314^2} = 350\,{
m hm}$$

Определяем диаметр III вала:

 $d_{\text{VI}} = \sqrt[3]{\frac{M_{\text{ЭКВ}}}{0.1 \cdot \left[\sigma_{-1}\right]_{\text{M}}}},$ где: $\left[\sigma_{-1}\right]_{\text{M}} = 5 \cdot 10^7 \, \frac{\text{H}}{\text{M}^2}$ - допускаемое напряжение материала вала

$$d_{vI} = \sqrt[3]{\frac{403}{0.1 \cdot 5 \cdot 10^7}} = 0.043 \text{ m} = 43 \text{ mm}$$

Принимаем ранее рассчитанный диаметр VI вала $d_{VI} = 45 \ \text{мм}$

Рис. 8. Схема нагружения VI вала и эпюры моментов

10. Разработать компоновочную схему наиболее нагруженной группы передач.

Рис. 9. Компоновочная схема развертки наиболее нагруженной группы передач

11. Разработать механизм управления перемещением блока зубчатых колес наиболее нагруженной группы передач и рассчитать угол поворота рукоятки управления

Двойной блок $Б_4$, находящийся на V валу перемещается от поворота рукоятки 1 (рис.10,а). закрепленной на оси 2. Перемещение блока обеспечивается рычагом 3

Т.к. рукоятка осуществляет непосредственное управление перемещением блока, то при заданной длине рычага 3 (R=150мм) определяем угол поворота из тригонометрических преобразований (см.рис.10.б).

Длина перемещения блока составляет L=l+2·25,

где 1=45мм – длина блока (см.рис.9)

Тогда L=45+2·25=95мм.

Таким образом угол поворота рукоятки, определяемый по формуле:

 $\sin \frac{\alpha}{2} = \frac{L}{2R} = \frac{95}{2 \cdot 150} = 0,3166$ равен: $\alpha/2 = 18,46^{\circ}$, или полный угол поворота $\alpha = 36^{\circ}55^{\circ}$.

 Рис. 10 Схема механизма управления перемещением блока ${\rm F}_5$

12. Начертить сборочный чертеж развертки наиболее нагруженной группы передач.

Рис. 11 Сборочный чертеж наиболее нагруженной группы передач

ЛИТЕРАТУРА

- 1. Тарзиманов Г.А. Проектирование металлорежущих станков. 3-е изд. М.: Машиностроение, 1980. 288с.
- 2. Пуш В.Э. Конструирование металлорежущих станков. М.: Машиностроение, 1977.- 385c.
- 3. Проников А.С. Расчет и конструирование металлорежущих станков. М.: Высшая школа, 1967.- 450с.
- 4. Тепинкичиев В.К. Металлорежущие станки. М.: Машиностроение, 1972.- 464c.
- 5. Кочергин А.И. Конструирование и расчет металлорежущих станков и станочных комплексов, Курсовое проектирование: Учеб. Пособие для вузов. Мн.: Высш. Шк, 1991.-282с.
- 6. Свирщевский Ю.И. Расчет и конструирование коробок скоростей и подач. Мн. Высш. Шк., 1976.-590с.
- 7. Лепший А.П.. Михайлов М.И. Практическое пособие к лабораторным и практическим занятиям по теме: «Расчет кинематики и изучение конструкции привода главного движения универсальных станков» по курсу «Конструирование станков» для студентов спец. Т.03.01.00.-Гомель: ГГТУ, 1998.-37с. (№2322).