Econometrics I, Testing

Department of Economics Stanford University

September, 2008

Hypothesis Testing

- Null hypothesis H_0 . Alternative hypothesis H_A .
- Sample $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$.
- Rejection region: $R \in \mathbb{R}^n$ such that H_0 is rejected if $\mathbf{x} \in R$.
- Simple hypothesis; composite hypothesis.
 - Simple H_0 vs simple H_A ;
 - Simple H_0 vs Composite H_A ;
 - Composite H_0 vs Composite H_A .

Principle of testing (of finding R):

• Find a scalar statistic $t(\mathbf{x})$ such that under the null H_0 :

$$t(\mathbf{x}) \stackrel{p}{\longrightarrow} 0$$

while under the alternative H_A :

$$t(\mathbf{x}) \stackrel{p}{\longrightarrow} c > 0.$$

• Derive (asymptotic or exact) distribution of $t(\mathbf{x})$ under H_0 :

Under
$$H_0$$
: $P(a_n t(\mathbf{x}) \leq x) \stackrel{A}{\sim} F(x)$

where $a_n \to \infty$ when $n \to \infty$

- Reject H_0 if $a_n t(\mathbf{x})$ is larger than α th critical value of $F(\mathbf{x})$.
- Under H_A : $a_n t(\mathbf{x}) \to \infty$.

Trinity of tests

- Likelihood ratio test.
- Need to estimate model under both H_0 and H_A .
- Wald test.
- No need to estimate under H₀.
- Score function test.
- Only need to estimate under H_0 .

Properties of testings

- Type I error: error of rejecting H_0 when it is true.
- Size: probability of type I error (under H_0 by definition).

$$P\left(a_{n}t\left(\mathbf{x}\right)\geq F^{-1}\left(1-\alpha\right)\right)pprox lpha$$
 when H_{0} is true.

- Type II error: error of accepting H_0 when H_A is true.
- Power: probability of rejecting H_0 when H_A is true.
- Therefore, power = 1 P(type II error) = 1 β .
- Power of asymptotic test is usually 1:

$$P\left(a_{n}t\left(\mathbf{x}\right)\geq F^{-1}\left(1-\alpha\right)\right)\rightarrow1$$
 when H_{A} is true.

Consistent test. Local asymptotic power.

Simple null versus simple alternative

- Definition 9.2.2: Let (α_1, β_1) and (α_2, β_2) be the characteristics of two tests. The first test is better (more powerful) than the second test if $\alpha_1 \leq \alpha_2$ and $\beta_1 \leq \beta_2$ with a strict inequality holding for at least one of the \leq .
- Definition 9.2.4: R is the most powerful test of size α if $\alpha(R) = \alpha$ and for any test R_1 of size α , $\beta(R) \leq \beta(R_1)$. (It may not be unique.)
- Definition 9.5.2: R is the most powerful test of level α if $\alpha(R) \leq \alpha$ and for any test R_1 of level α (that is, such that $\alpha(R_1) \leq \alpha$, $\beta(R) \leq \beta(R_1)$.
- "level α " is needed with discrete sample when α (R) $\neq \alpha$ for all R. Not needed with randomized test.
- Randomized test: toss a coin before deciding which of R_1 and R_2 to use. Can achieve any desired α .

Likelihood Ratio Test

• simple H_0 versus simple H_1 : H_0 : $\theta = \theta_0$, H_1 : $\theta = \theta_1$, reject if

$$\frac{L(x|\theta_1)}{L(x|\theta_0)} > c \quad \text{or} \quad R = \{x : \frac{L(x|H_1)}{L(x|H_0)} > c\}$$

• Simple $H_0: \theta = \theta_0$, composite H_1 , for example, $H_1: \theta > \theta_0$,

$$LR = \frac{\sup_{\theta \in \Theta_0 \cup \Theta_1} L(x|\theta)}{L(x|\theta_0)} = \frac{L\left(X|\hat{\theta}_{MLE}\right)}{L(X|\theta_0)} \ge 1.$$

 $H_0 \cup H_1 = \{\theta : \theta \ge \theta_0\}$ parameter space, over which we calculate MLE.

• Composite H_0 , composite H_1 . Reject if

$$LR = \frac{\sup_{\theta \in \Theta_0 \cup \Theta_1} L(x|\theta)}{\sup_{\theta \in \Theta_0} L(x|\theta) > c}$$

use $H_0 \cup H_1$ for convenience because this is just unconstrained MLE.

Neyman-pearson lemma

- In simple H₀ versus simple H₁ tests, the LR test is the most powerful test (of a given size),
- Bayes testing: loss matrix,

	State of Nature	
Decision	H_0	H_1
H_0	0	γ_2
H_1	γ_1	0

Bayesian expected loss

$$\phi(R) = \underbrace{\gamma_{1}\pi(H_{0})}_{\eta_{0}} P(\mathbf{x} \in R|H_{0}) + \underbrace{\gamma_{2}\pi(H_{1})}_{\eta_{1}} P(\mathbf{x} \in R^{c}|H_{1})$$

$$\equiv \eta_{0}\alpha(R) + \eta_{1}\beta(R)$$

$$= \eta_{0} \int_{\mathbf{x} \in R} f(\mathbf{x}|H_{0}) d\mathbf{x} + \eta_{1} \int_{\mathbf{x} \in R^{c}} f(\mathbf{x}|H_{1}) d\mathbf{x}.$$

• Optimal R that minimizes $\phi(R)$:

$$R_0 = \{\mathbf{x} : \eta_0 f(\mathbf{x}|H_0) \le \eta_1 f(\mathbf{x}|H_1)\} = \{\mathbf{x} : \frac{L(\mathbf{x}|H_1)}{L(\mathbf{x}|H_0)} > \frac{\eta_0}{\eta_1}\}$$

$$= \{ \mathbf{x} : \log L(\mathbf{x}|H_1) - \log L(\mathbf{x}|H_0) > \log \left(\frac{\eta_0}{\eta_1}\right) \}.$$

Likelihood ratio test minimizes Bayes risk.

- is also most powerful.
 - $\phi(R)$ is a linear combination of size and type II error.
 - $\phi(N)$ is a linear combination of size and type if error
- No R_1 s.t. $\alpha\left(R_1\right)=\alpha\left(R_0\right)$ and $\beta\left(R_1\right)<\beta\left(R_0\right)$.
- Otherwise $\phi(R_1) < \phi(R_0)$.
- Frequentist: pick η_0/η_1 for the desired size.

- Example. $H_0: \mu = \mu_0, H_A: \mu = \mu_1$. Assume $\mu_1 > \mu_0$.
- $\{X_t, t=1,...\}$ i.i.d. $N(\mu, \sigma^2)$. σ^2 known.
- Log likelihood ratio:

$$-\frac{1}{2\sigma^{2}}\sum_{t}(x_{t}-\mu_{1})^{2}+\frac{1}{2\sigma^{2}}\sum_{t}(x_{t}-\mu_{0})^{2}$$
$$=\frac{n(\mu_{1}-\mu_{0})}{\sigma^{2}}\bar{x}+c$$

• Best rejection region: $\bar{x} > d$ such that

$$P\left(\bar{x}>d|H_{0}\right)=\alpha.$$

• Note that d does not depend on the value of μ_1 , as long as

$$\mu_1 > \mu_0$$

Under the H₀:

 $P(\bar{x} > d|H_0) = P\left(\frac{\sqrt{n}(\bar{x} - \mu_0)}{\sigma} > \frac{\sqrt{n}(d - \mu_0)}{\sigma}\right)$

Solve for d.

 $=P\left(Z>\frac{\sqrt{n}\left(d-\mu_{0}\right)}{\sigma}\right)=1-\Phi\left(\frac{\sqrt{n}\left(d-\mu_{0}\right)}{\sigma}\right)=\alpha$

 $d = \Phi^{-1} (1 - \alpha) \frac{\sigma}{\sqrt{n}} + \mu_0$

- Simple Null vs Composite Alternative.
- $H_0: \theta = \theta_0$ against $H_1: \theta \in \Theta_1$.
 - Power function for a test R

$$Q(\theta) = P(\mathbf{x} \in R|\theta).$$

- $Q(\theta_0) = \alpha$. $Q(\theta_1) = 1 \beta$ for $\theta_1 \in \Theta_1$.
- Definition 9.4.2. R_1 is uniformly better than R_2 if $Q_1(\theta_0) = Q_2(\theta_0)$, $Q_1(\theta) \ge Q_2(\theta) \ \forall \theta \in \Theta_1$, and $Q_1(\theta_1) > Q_2(\theta_1)$ for at least one $\theta_1 \in \Theta_1$.
- Definition 9.4.3. A test R is uniformly most powerful (UMP) if it is uniformly weakly better than any other test with the same size (the same $Q(\theta_0)$).

- UMP tests often do not exist.
- Likelihood ratio test usually is UMP if UMP exists.
- Likelihood ratio test often used even without UMP.
- LR test: reject if

$$\log L(\theta_0) - \sup_{\theta \in \theta_0 \cup \Theta_1} \log L(\theta) < c.$$

• The second part is just the maximum likelihood estimator:

$$\log L\left(\hat{\theta}\right) = \sup_{\theta \in \theta_0 \cup \Theta_1} \log L\left(\theta\right).$$

• An admissible test is a test R_0 such that there is no other test R with the same size, where $PR(R|\theta) \geq PR(R_0|\theta)$ for all θ , and $PR(R|\theta) > PR(R_0|\theta)$ for some θ .

- Example. $H_0: \mu = \mu_0, H_A: \mu > \mu_0.$
- $\{X_t \sim N(\mu, \sigma^2)\}$ with σ^2 known.
- log likelihood ratio statistics:

$$LR = -\frac{1}{2\sigma^2} \sum_{x_t} (x_t - \mu_0)^2 - \sup_{\mu \ge \mu_0} -\frac{1}{2\sigma^2} \sum_{x_t} (x_t - \mu)^2$$
$$= -\frac{1}{2\sigma^2} n (\bar{x} - \mu_0)^2 + \inf_{\mu \ge \mu_0} \frac{1}{2\sigma^2} n (\bar{x} - \mu)^2.$$

- If $\bar{x} \leq \mu_0$, then $\inf_{\mu \geq \mu_0} \frac{1}{2\sigma^2} n (\bar{x} \mu)^2 = \frac{1}{2\sigma^2} n (\bar{x} \mu_0)^2$. LR = 0.
- Do not reject.
- If $\bar{x} > \mu_0$, inf = 0, $LR = -\frac{1}{2\pi^2} n (\bar{x} \mu_0)^2$, reject if $\bar{x} > d$.
- This test is UMP.

• Same test for simple $H_0: \mu=\mu_0$ versus $H_1: \mu=\mu_1$ for any $\mu_1>\mu_0$, same d as before. Reject if

$$ar{x}>d=\Phi^{-1}\left(1-lpha
ight)rac{\sigma}{\sqrt{n}}+\mu_0.$$

• Power function, for $\mu > \mu_0$,

$$Power(\mu) = P(\bar{x} > d|\mu) = P\left(\frac{\sqrt{n}(\bar{x} - \mu_0)}{\sigma} \ge \Phi^{-1}(1 - \alpha)|\mu\right)$$
$$= P\left(\frac{\sqrt{n}(\bar{x} - \mu)}{\sigma} \ge \Phi^{-1}(1 - \alpha) + \frac{\sqrt{n}(\mu_0 - \mu)}{\sigma}|\mu\right)$$
$$= P\left(Z \ge \Phi^{-1}(1 - \alpha) + \frac{\sqrt{n}(\mu_0 - \mu)}{\sigma}\right)$$

 $=1-\Phi\left(\Phi^{-1}\left(1-\alpha\right)+\frac{\sqrt{n\left(\mu_{0}-\mu\right)}}{\sigma}\right)$

Power $(\mu) \to 1$ as $n \to \infty$, or $\mu \to \infty$.

- Example: $H_0: \mu = \mu_0, H_A: \mu \neq \mu_0.$
- $\{X_t \sim N(\mu, \sigma^2)\}$ with σ^2 known.
- log likelihood ratio statistics:

$$LR = -\frac{1}{2\sigma^2} \sum_{\mu \neq \mu_0} (x_t - \mu_0)^2 - \sup_{\mu \neq \mu_0} -\frac{1}{2\sigma^2} \sum_{\mu \neq \mu_0} (x_t - \mu)^2$$

$$= -\frac{1}{2\sigma^2} n (\bar{x} - \mu_0)^2 + \inf_{\mu \neq \mu_0} \frac{1}{2\sigma^2} n (\bar{x} - \mu)^2$$

$$= -\frac{1}{2\sigma^2} n (\bar{x} - \mu_0)^2.$$

• Reject if $|\bar{x} - \mu_0| > d$ where

$$P(|\bar{x}-\mu_0|>d|H_0)=\alpha.$$

• Not a UMP test. Not Neyman-Pearson against, e.g. any $\mu>\mu_0$. But, UMP among tests that assign equal power to μ equidistant from μ_0 .

To determine d.

$$P\left(\left|\frac{\sqrt{n}(\bar{x}-\mu_0)}{\sigma}\right| \ge \frac{\sqrt{n}d}{\sigma}\right) = \alpha$$

$$d=\Phi^{-1}\left(1-\alpha/2\right)\frac{\sigma}{\sqrt{n}}.$$
 • Power function, as $n\to\infty$ or $|\mu|\to\infty.$

 $=1-\Phi\left(\frac{\sqrt{n(\mu_0-\mu)}}{\sigma}+\Phi^{-1}(1-\alpha/2)\right)$

 $+\Phi\left(\frac{\sqrt{n(\mu_0-\mu)}}{\sigma}-\Phi^{-1}(1-\alpha/2)\right)\to 1$

$$P(|\bar{x} - \mu_0| > d|\mu) = P(\bar{x} > \mu_0 + d|\mu) + P(\bar{x} < \mu_0 - d|\mu)$$

$$= P(\bar{x} - \mu > \mu_0 - \mu + d|\mu) + P(\bar{x} - \mu < \mu_0 - \mu + d|\mu)$$

$$=P\left(\frac{\sqrt{n}(\bar{x}-\mu)}{\sigma}>\frac{\sqrt{n}(\mu_0-\mu+d)}{\sigma}|\mu\right)$$

$$=\left(\sqrt{n}(\bar{x}-\mu), \sqrt{n}(\mu_0-\mu+d)\right)$$

$$= P\left(\frac{\sqrt{n}(x-\mu)}{\sigma} > \frac{\sqrt{n}(\mu_0 - \mu + d)}{\sigma}|\mu\right) + P\left(\frac{\sqrt{n}(\bar{x} - \mu)}{\sigma} < \frac{\sqrt{n}(\mu_0 - \mu - d)}{\sigma}|\mu\right)$$

 $+P\left(\frac{\sqrt{n}(\bar{x}-\mu)}{\sigma}<\frac{\sqrt{n}(\mu_0-\mu-d)}{\sigma}|\mu\right)$

- Composite H_0 vs Composite H_1 : UMP test may exist.
- Example: $X \sim N(\mu, 1), H_0: \mu \leq 0, H_1: \mu > 0.$
- Recall that $\alpha(R) = \sup_{\mu \in H_0} P(X \in R|\mu)$.
- The convention is not to use the "size function", but instead use the "least favorable null distribution".
- What if you reject if $X > \Phi^{-1}(1 \alpha)$. Then

 μ <0

$$lpha (R) = \sup_{\mu \le o} P(X > Z_{1-lpha} | \mu)$$

$$= \sup_{\mu \le 0} P(X - \mu > Z_{1-lpha} - \mu)$$

$$= \sup_{\mu \le 0} (1 - \Phi(Z_{1-lpha} - \mu)) = 1 - \Phi(Z_{1-lpha}) = lpha$$

• By definition, any test of size α for composite H_0 against composite H_1 will also have size at most α at the least favorable null $\mu=0$, and therefore the above test is UMP.

Same as the one sided test of H_0 : $\mu = 0$ against H_1 : $\mu > 0$.

- Wald tests: $H_0: \theta = \theta_0$. $H_A: \theta \neq \theta_0$.
- Typically $\sqrt{n}\left(\hat{\theta}-\theta\right) \stackrel{d}{\longrightarrow} N\left(0,\Sigma\right)$.
- Intend to reject if $\hat{\theta} \theta_0$ is sufficient large.
- What metric to use to measure distance $|\hat{\theta} \theta_0|$?
- Use quadratic norm:

$$a_n t\left(\mathbf{x}\right) = n \left(\hat{ heta} - heta_0
ight)' \hat{\Sigma}^{-1} \left(\hat{ heta} - heta_0
ight) \stackrel{d}{\longrightarrow} \chi^2_{\dim(heta)}.$$

- If $\hat{\theta}$ is MLE: $\Sigma = H^{-1}SH^{-1}$, and if the model is also correctly specified, $\Sigma = -H^{-1} = S^{-1}$.
- Why use this particular weighting matrix? So that limit has no nuisance parameters.

Theorem: Suppose X is a J-vector distributed as $N(\mu, \Sigma)$, then $(X - \mu)' \Sigma^{-1} (X - \mu) \sim \chi_J^2$.

Proof: Σ is symmetric and positive definite. So use an eigen value-function decomposition:

$$\Sigma = H \wedge H'$$

Λ is a diagonal matrix with positive characteris roots of Σ on the main diagonal. H is orthonormal: $HH' = I \Rightarrow H' = H^{-1}$. Let $\Sigma^{-1/2} = H\Lambda^{-1/2}H'$. Then

$$\Sigma^{-1/2} = H \Lambda^{-1/2} H \cdot \text{Then}$$

$$\Sigma^{-1/2} \Sigma^{-1/2} = H \Lambda^{-1/2} H' H \Lambda^{-1/2} H' = H \Lambda^{-1/2} \Lambda^{-1/2} H' = H \Lambda^{-1} H',$$

$$\Sigma^{-1} = (H \Lambda H')^{-1} = H'^{-1} \Lambda^{-1} H^{-1} = H \Lambda^{-1} H' = \Sigma^{-1/2} \Sigma^{-1/2}.$$

$$\Sigma^{-1/2} \Sigma \Sigma^{-1/2} = H \Lambda^{-1/2} H' H \Lambda H' H \Lambda^{-1/2} H' = H H' = I$$

Therefore

$$egin{aligned} \Sigma^{-1/2}\left(X-\mu
ight) &\sim N\left(0, \Sigma^{-1/2}\Sigma\Sigma^{-1/2}
ight) = N\left(0,I
ight) \ \left(\Sigma^{-1/2}\left(X-\mu
ight)
ight)'\left(\Sigma^{-1/2}\left(X-\mu
ight)
ight) &\sim \chi_J^2. \end{aligned}$$

- Wald test for linear combinations:

$$= (\hat{1} + \hat{1} + \hat{1}$$

• If
$$\sqrt{n}\left(\hat{\theta}-\theta\right) \stackrel{d}{\longrightarrow} N\left(0,\Sigma\right)$$
, then under the H_0 :

- $\sqrt{n}\left(A\hat{\theta}-b\right)=\sqrt{n}A\left(\hat{\theta}-\theta\right)\stackrel{d}{\longrightarrow}N\left(0,A\Sigma A'\right)$

- Quadratic norm based test statistic
- $n\left(A\hat{\theta}-b\right)'\left(A\hat{\Sigma}A'\right)^{-1}\left(A\hat{\theta}-b\right)$

 $= n \left(\hat{\theta} - \theta_0 \right)' A' \left(A \hat{\Sigma} A' \right)^{-1} A \left(\hat{\theta} - \theta_0 \right) \stackrel{d}{\longrightarrow} \chi^2_{\text{rows of } A}$ Not UMP.

- $H_0: A\theta = A\theta_0 = b$, $H_A: A\theta \neq A\theta_0 = b$.

· Wald test for nonlinear functions

$$\sqrt{n}\left(\hat{\theta} - \theta_0\right) \stackrel{d}{\longrightarrow} N\left(0, \Sigma\right)$$
 $H_0: g\left(\theta_0\right) = 0 \quad H_1: g\left(\theta_0\right) \neq 0.$

where $g(\theta) = (g_1(\theta), \dots, g_J(\theta))'$ is $J \times 1$

By the Delta method,

$$\sqrt{n}\left(\hat{g}\left(\hat{\theta}\right) - g\left(\theta_{0}\right)\right) \stackrel{d}{\longrightarrow} N\left(0, R\left(\theta_{0}\right) \Sigma R\left(\theta_{0}\right)'\right)$$

where the $J \times d_{\theta}$ matrix,

$$R\left(heta_{0}
ight)=rac{\partial g\left(heta_{0}
ight)}{\partial heta'}=\left[egin{array}{cccc} rac{\partial g_{1}\left(heta_{0}
ight)}{\partial heta_{1}} & \cdots & rac{\partial g_{1}\left(heta_{0}
ight)}{\partial heta_{d_{ heta}}} \ \cdots & \cdots & \cdots \ rac{\partial g_{J}\left(heta_{0}
ight)}{\partial heta_{d}} & \cdots & rac{\partial g_{J}\left(heta_{0}
ight)}{\partial heta_{d}} \end{array}
ight]$$

• Define $A = R(\theta_0) \Sigma R(\theta_0)'$. Under $H_0 : g(\theta_0) = 0$,

$$\sqrt{n}g\left(\hat{\theta}\right) \stackrel{d}{\longrightarrow} N\left(0,A\right)$$

• Let $A = H\Omega H'$. Define $A^{-1/2}H\Lambda^{-1/2}H'$.

$$\sqrt{n}A^{-1/2}g\left(\hat{\theta}\right)\stackrel{d}{\longrightarrow}N\left(0,A^{-1/2}AA^{-1/2}\right)=N\left(0,I\right)$$

by the continuous mapping theorem

$$\left(\sqrt{n}A^{-1/2}g\left(\hat{\theta}\right)\right)'\left(\sqrt{n}A^{-1/2}g\left(\hat{\theta}\right)\right) \stackrel{d}{\longrightarrow} \chi_J^2$$

Therefore,

$$W = ng\left(\hat{\theta}\right)'A^{-1}g\left(\hat{\theta}\right) \stackrel{d}{\longrightarrow} \chi_J^2$$

Reject if $W > \chi_{J,\alpha}^2$.

• Also need $\hat{A} \stackrel{p}{\longrightarrow} A$: $\hat{A} = R(\hat{\theta}) \Sigma R(\hat{\theta})$. Define

• Also need
$$A \longrightarrow A$$
: $A = R(\theta) \Sigma R(\theta)$. Define

Use a combination of Slutsky and CMT to show

 $\hat{W} \stackrel{d}{\longrightarrow} \chi^2$

 $\hat{W} = ng\left(\hat{ heta}
ight)'\hat{A}^{-1}g\left(\hat{ heta}
ight) \stackrel{d}{\longrightarrow} \chi_J^2$

• Asymptotic LR test: $H_0: \theta = \theta_0, H_A: \theta \neq \theta_0$.

 $\mathit{LR} = \log L\left(heta_0
ight) - \log L\left(\hat{ heta}_{\mathit{MLE}}
ight).$

$$2LR \xrightarrow{d} - \chi^2_{dim(a)}$$
.

One can prove that under H₀,

• Intuitival

• Intuitively,
$$2LR \approx \sqrt{n} \left(\hat{\theta}_{MLE} - \theta_0 \right)' \frac{1}{n} \frac{\partial^2 \log L(\theta)}{\partial \theta \partial \theta'} \sqrt{n} \left(\hat{\theta}_{MLE} - \theta_0 \right).$$

- Not UMP.
- Not longer χ^2 limit for multivariate inequality test.

• Note that $\frac{\partial \log L(\hat{\theta}_{MLE})}{\partial \theta} = 0$, use a second order Taylor expansion,

$$2LR = \left(\hat{\theta} - \theta_0\right)' \frac{\partial^2 \log L(\theta^*)}{\partial \theta \partial \theta'} \left(\hat{\theta} - \theta_0\right)$$

 $= \sqrt{n} \left(\hat{\theta} - \theta_0 \right)' \frac{1}{n} \frac{\partial^2 \log L \left(\theta^* \right)}{\partial \theta \partial \theta'} \sqrt{n} \left(\hat{\theta} - \theta_0 \right)$ Note that

$$\sqrt{n}\left(\hat{\theta}-\theta_0\right) \stackrel{d}{\longrightarrow} N\left(0,H^{-1}SH^{-1}\right) = N\left(0,-H^{-1}\right)$$
The 2nd equality holds if the model is correct.

 $\frac{1}{n} \frac{\partial^2 \log L(\theta^*)}{\partial \theta \partial \theta'} = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial^2 \log f(X_i | \theta^*)}{\partial \theta \partial \theta'}$ As $\hat{\theta} \xrightarrow{p} \theta_0$, $\theta^* \xrightarrow{p} \theta_0$.

 $\frac{1}{n}\sum_{i=1}^{n}\frac{\partial^{2}\log f\left(X_{i}|\theta^{*}\right)}{\partial\theta\partial\theta'}\stackrel{p}{\longrightarrow}E\frac{\partial^{2}\log f\left(X_{i}|\theta_{0}\right)}{\partial\theta\partial\theta'}\equiv H.$

The 2nd equality holds if the model is correct.
$$\frac{1}{n} \frac{\partial^2 \log L(\theta^*)}{\partial \theta \partial \theta'} = \frac{1}{n} \sum_{i=1}^n \frac{\partial^2 \log f(X_i | \theta^*)}{\partial \theta \partial \theta'}$$

• Therefore by Slutsky and CMT, when the model is correct, for $Z \sim N(0, -H^{-1})$:

$$2LR \xrightarrow{d} -Z'HZ = Z'\Sigma^{-1/2}\Sigma^{-1/2}Z \sim \chi^2_{dim(\theta)}$$

• If the model is misspecified (but the parameter is still consistent), then for $Z \sim N(0, H^{-1}SH^{-1})$,

$$2IR \xrightarrow{d} -7'H7$$

This is some kind of "weighted" chi-square, but no longer χ^2 . It can be simulated using consistent estimates \hat{H} and \hat{S} .

• More generally, for $\hat{\theta}$ the unconstrained MLE and $\bar{\theta}$ the constrained MLE:

 $LR = \frac{\sup_{\theta \in H_0 \cup H_1} L(X|\theta)}{\sup_{\theta \in H_0 \cup H_1} L(X|\theta)} = \frac{L(X|\hat{\theta})}{L(X|\bar{\theta})}.$

•
$$H_0: R\theta = \gamma$$
, versus, $H_0: R\theta \neq \gamma$, then
$$\hat{\theta} = \arg\max_{\theta \in \Theta} L(X|\theta)$$

$$\bar{\theta} = \arg\max_{\theta \in \Theta} L(X|\theta) \quad \text{subject to} \quad R\theta = \gamma.$$

Find c_{α} so that

$$P\left(R = \left(X : \frac{L\left(X|\hat{\theta}\right)}{L\left(X|\bar{\theta}\right)} > c_{\alpha}\right) | H_{0}\right) = \alpha.$$

Difficult to derive the exact finite sample distribution.

• It can be shown however, that as $n \to \infty$, under the H_0 :

$$2LR = 2\left[\log L\left(X_n|\hat{\theta}\right) - \log L\left(X_n|\bar{\theta}\right)\right] \stackrel{d}{\longrightarrow} \chi_{df=d_R}^2$$

The degree of freedom is the number of restrictions.

• Even more generally, $H_0: g(\theta) = 0$, $H_1: g(\theta) \neq 0$,

$$egin{aligned} \hat{ heta} &= rg\max_{ heta \in \Theta} L\left(X | heta
ight) \ ar{ heta} &= rg\max_{ heta \in \Theta} L\left(X | heta
ight) \quad ext{subject to} \quad g\left(heta
ight) = 0. \end{aligned}$$

It is still true that

$$2LR = 2\left[\log L\left(X_n|\hat{\theta}\right) - \log L\left(X_n|\bar{\theta}\right)\right] \stackrel{d}{\longrightarrow} \chi_{df=d_{\sigma}}^2$$

where d_g is the number of constraints in $g(\theta)$ as long as the $\frac{\partial g(\theta_0)}{\partial \theta}$ has full row rank.

- Asymptotic power.
- Under H_A , typically $a_n t(\mathbf{x}) \longrightarrow \infty$ w.p. $\to 1$.
- Asymptotic power is 1.
- These are called consistent tests.
- Local alternatives and local power.

• Local alternative, H_A : $\theta = \theta_0 + \frac{c}{\sqrt{n}}$.

• Under H_A , reject w.p. $\rightarrow 1$.

• Example: $H_0: \mu = \mu_0, H_A: \mu > \mu_0$. X_t is i.i.d such that

•
$$\{X_t \sim N(\mu, \sigma^2)\}$$
 with σ^2 known.

- It can be shown that \bar{X} is a sufficient statistic that contains all the information about μ
- Under the H_0 : $\bar{X} \sim N\left(0, \frac{\sigma^2}{n}\right)$.
- Reject if $\bar{x} > d$: $d = \frac{\sigma z_{\alpha}}{\sqrt{n}} + \mu_0$ for size α test, since

$$P\left(\frac{\bar{X}}{\sqrt{1/n}} > \frac{d}{\sqrt{1/n}}|H_0\right) = \alpha.$$

• Asymptotic power: for fixed $\mu_1 > \mu_0$, $P(\bar{x} > d|\mu_1) = P\left(\sqrt{n}\frac{\bar{x} - \mu_1}{\sigma} \ge z_{\alpha} + \sqrt{n}\frac{\mu_0 - \mu_1}{\sigma}\right)$

$$egin{align} P\left(ar{x} > d | \mu_1
ight) = & P\left(\sqrt{n} rac{ar{x} - \mu_1}{\sigma} \geq z_lpha + \sqrt{n} rac{\mu_0 - \mu_1}{\sigma}
ight) \ = & 1 - \Phi\left(z_lpha + rac{\mu_0 - \mu_1}{\sigma} \sqrt{n}
ight)
ightarrow 1 \end{split}$$

$$P(\bar{x} > d|\mu_1) \rightarrow \left\{ egin{array}{ll} 1 & ext{when } \mu_1
ightarrow \infty & ext{holding } n ext{ fixed.} \\ 1 & ext{when } n
ightarrow \infty & ext{holding } \mu > 0 ext{ fixed.} \end{array}
ight.$$

- Draw the shape of the power function when *n* increases.
- If $n = \infty$, there should be no Type II error. Implications:
- Why fix α ? Since Power $= 1 \Phi\left(Z_{1-\alpha} \sqrt{n}\mu\right)$, if you really believe in $n \to \infty$, you can choose $\alpha \to 0$, $Z_{1-\alpha} \to \infty$ in such a way that $Z_{1-\alpha} \sqrt{n}\mu \to -\infty$. Then both size $\to 0$ and Power $(\mu, n) \to 1$ as $n \to \infty$.
- Local power, for $\mu_1 = \mu_0 + \frac{c}{\sqrt{n}}$,

$$P\left(\bar{x} > d | \mu_1\right) = P\left(\sqrt{n} \frac{\bar{x} - \mu_1}{\sigma} \ge z_{\alpha} - \frac{c}{\sigma}\right)$$

 $\rightarrow 1 - \Phi\left(z_{\alpha} - \frac{c}{\sigma}\right) > \alpha.$

- P-value: probability of rejection if the observed test statistic is used as the critical value.
 - Test-statistic: $T = T(X_1, \ldots, X_n)$. Reject if T > c.

• Let
$$F(\cdot)$$
 be the CDF of T under the null H_0 .

Pvalue = 1 - F(T)

• Reject if T > c, or if Pvalue $< \alpha$.

P(Pvalue < x) = P(1 - F(T) < x) = P(F(T) > 1 - x)

 $=P(T>F-1(1-x))=1-F(F^{-1}(1-x))=1-(1-x)=x.$

- Relation between Testing and Confidence Set
- Confidence Set: a set S such that

$$P(\theta_0 \in S) \left\{ \begin{array}{l} = 1 - \alpha \\ \rightarrow 1 - \alpha \end{array} \right.$$

- Any test of $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$ can be converted into a confidence set.
- Consider a test statistic $T(X, \theta_0)$. Reject if $T(X, \theta_0) > C_{\theta_0, \alpha}$. Let

$$S = \{ \text{set of } \theta_0 \text{ that can not be rejected by the above test.} \}.$$

Then

$$P_{\theta_0}(\theta_0 \in S) = P_{\theta_0}(T(X, \theta_0) < C_{\theta_0, \alpha}) = 1 - \alpha.$$

For example, in the Binary case, $\frac{\sqrt{n(\hat{p}-p)}}{\sqrt{\hat{p}(1-\hat{p})}} \stackrel{d}{\longrightarrow} N(0,1)$

$$\frac{}{\sqrt{\hat{p}\left(1-\hat{p}\right)}} \longrightarrow N\left(0,1\right)$$
 If we test: $H_0: p=\bar{p} \quad H_1: p
eq \bar{p}$. Reject if

$$H_0$$

$$T_1$$

$$abla_1 = \Gamma_1 \left(\hat{p} \right)$$

$$T_{\circ}$$

This implies two confidence sets:

$$T_2$$

$$|\sqrt{\hat{p}(1-\hat{p})}|$$

$$T_{2}(\hat{p},\bar{p}) = \left|\frac{\sqrt{n}(\hat{p}-\bar{p})}{\sqrt{\bar{p}(1-\bar{p})}}\right| > Z_{1-\alpha/2}$$

$$\frac{p-p}{1-p}$$

 $S_1 = \left\{ \bar{p} \text{ such that } \left| \frac{\sqrt{n} \left(\hat{p} - \bar{p} \right)}{\sqrt{n} \left(1 - \bar{p} \right)} \right| < Z_{1 - \alpha/2} \right\}$

lies two confidence sets:
$$S_1 = \left\{ \bar{p} \quad \text{such that} \quad \left| \frac{\sqrt{n} \left(\hat{p} - \bar{p} \right)}{\sqrt{\hat{p} \left(1 - \hat{p} \right)}} \right| < Z_{1 - \alpha/2} \right\}$$

$$T_{1}\left(\hat{p},\bar{p}\right) = \left|\frac{\sqrt{n\left(\hat{p}-\bar{p}\right)}}{\sqrt{\hat{p}\left(1-\hat{p}\right)}}\right| > Z_{1-\alpha/2}$$

$$rac{\sqrt{n}\left(\hat{p}-p
ight)}{\sqrt{\hat{p}\left(1-\hat{p}
ight)}}\stackrel{d}{\longrightarrow}N\left(0,1
ight).$$

- Exact finite sample pivotal test.
- The T-statistic is finite sample pivotal if X_i is a known location scale family.
- Suppose $X_i \sim \frac{1}{\sigma} f\left(\frac{X_i \mu}{\sigma}\right)$. So that $X_i = \mu + \sigma Z_i$, where $Z_i \sim f\left(\cdot\right)$ and $f\left(\cdot\right)$ is known. Then

$$T = \frac{\sqrt{n}\left(\bar{X} - \mu\right)}{\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}\left(X_{i} - \bar{X}\right)^{2}}} = \frac{\sqrt{n}\left(\bar{Z}\right)}{\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}\left(Z_{i} - \bar{Z}\right)^{2}}}$$

- This distribution can be simulated as long as you know $f(\cdot)$. It is pivotal since it is free of nuisance parameters.
- In general the T-statistic is asymptotically pivotal.

$$T \stackrel{d}{\longrightarrow} N(0,1)$$
.