Algebra: Chapter 0 读书笔记

章小明

更新日期: 2025 年 1 月 2 日

目录

			2	
0	范畴论基础			
	0.1	基础概念	2	
	0.2	函子与自然变换	2	
1	群论	≥ (第一部分)	2	
	1.1	Grp 范畴	2	
	1.2	自由群	3	
	1.3	子群与商群	3	
	1.4	典范分解	5	
	1.5	群的作用	5	
	1.6	Sylow 定理	6	
	1.7	合成列与可解群	8	
2	环与	· 5模	10	
	2.1	Ring 范畴	10	
	2.2	理想与商环	11	
	2.3	主理想, 素理想与极大理想	12	
	2.4	<i>R</i> -模	13	
	2.5	R-Mod 中的基础概念	14	
	2.6		16	

前言

本笔记以 Paolo Aluffi 的 Algebra: Chapter 0 为蓝本,并参考了一些其它教材,基于本人的手写自学笔记总结而成,并不蕴含书的全部内容,其中对我而言较为简明或显然的部分被略过.

0 范畴论基础

本章旨在记录学习后面的代数内容所必要的范畴论基础内容,并不包含过多的范畴论知识.

0.1 基础概念

一个范畴 C 包含对象类 Obj(C) 与态射类 Mor(C). $\forall X, Y \in Obj(C)$ 存在态射集合 $Hom_{C}(X, Y)$, 其全体并即为 Mor(C). 态射满足:

- (1) $\operatorname{Hom}(X,X) = \operatorname{End}(X)$ 中均存在恒等元素 id_X .
- (2) 态射间存在复合,即存在复合映射 \circ : $\operatorname{Hom}(X,Y) \times \operatorname{Hom}(Y,Z) \to \operatorname{Hom}(X,Z), (f,g) \mapsto gf.$
- (3) 复合运算满足结合律.
- (4) 恒等元素 (关于复合) 为态射的左/右幺元.

若态射 f(关于复合) 满足左消去律 $f\alpha = f\alpha' \implies \alpha = \alpha'$, 则称 f 为单态射. 相应的右消去律则称为满态射. 若 $f \in \operatorname{Hom}(X,Y)$ 可逆 (即存在 $g \in \operatorname{Hom}(Y,X)$, $fg = \operatorname{id}_Y$, $gf = \operatorname{id}_X$) 则称 f 为同构. 需要注意的是, 在 Set 中有"单 + 满 = 同构", 但这在一般的范畴中并不成立.

另外由定义可知, $\operatorname{End}(X)$ 为幺半群且 $\operatorname{Aut}(X)$ 为群. 称所有态射都是同构的范畴为群胚/广群.

范畴 C 有子范畴 C', 若 $\mathrm{Obj}(\mathsf{C}') \subset \mathrm{Obj}(\mathsf{C})$ 且对于 $X, Y \in \mathrm{Obj}(\mathsf{C}')$ 都有 $\mathrm{Hom}_{\mathsf{C}'}(X, Y) \subset \mathrm{Hom}_{\mathsf{C}}(X, Y)$. 若后者为等号则为全子范畴.

最后我们给出反范畴 C^{op} , 其对象与 C 相同而 $Hom_{C^{op}}(X,Y) = Hom_{C}(Y,X)$, 且 $f \circ^{op} g = gf$.

0.2 函子与自然变换

函子 $F: C_1 \to C_2$ 表现为对象间的映射 $F: \mathrm{Obj}(C_1) \to \mathrm{Obj}(C_2)$ 与态射间的映射,后者表现为总有映射 $F: \mathrm{Hom}_{C_1}(X,Y) \to \mathrm{Hom}_{C_2}(FX,FY)$,其保持恒等 $\mathrm{id}_X \mapsto \mathrm{id}_{FX}$ 且保持态射间的复合运算(即关于复合运算 F 成为同态). 另外有其反函子 $F^{\mathrm{op}}: \mathsf{C}_1^{\mathrm{op}} \to \mathsf{C}_2^{\mathrm{op}}$,其保持对象间映射不变,而 $F^{\mathrm{op}}: \mathrm{Hom}_{\mathsf{C}_1^{\mathrm{op}}}(X,Y) \to \mathrm{Hom}_{\mathsf{C}_2^{\mathrm{op}}}(FX,FY)$,.

1 群论 (第一部分)

1.1 Grp 范畴

群的基本概念 让我们先从一句抽象废话来描述群的定义:

• 仅含一个对象的群胚 (groupoid)(其所有态射连带态射复合) 构成群. 更进一步的,Aut_C(X) 是群.

 $G\times G\xrightarrow{\varphi\times\varphi}H\times H$ 而群之间的同态等价于 Grp 上的态射,即使 $\downarrow^{m_G}\qquad \downarrow^{m_H}$ 交换的 $\varphi:G\to H$,这样的 φ 将群上的二元运 $G\xrightarrow{\varphi}H$

算 m_G 平移到另一个群上的 m_H , 是很自然的性质. 而这样的交换图给定了 Grp 中的态射, Grp 自然成为范畴.

积与余积 Grp 中的积 (切片范畴 $Grp_{G,H}$ 的终对象) 和余积 (余切片范畴 $Grp^{G,H}$ 的始对象) 成为群之间的直积 $G \times H$ 和自由积 $G \ast H$. 对于前者我们可以直接构造分量 (componentwise) 积运算 (g,h)(g',h') = (gg',hh') 的形式,后者在自由群中给出构造.

而 Ab 中的积和余积是等价的, 即成为群的直和 $G \oplus H$. 等价性的直接原因是对于任意 $\varphi: G \times H \to A$, 余积 定义要求 $\varphi(g,h) = \varphi_G(g)\varphi_H(h)$, 它成为同态需要交换. 但我暂且不知道更深刻的内涵.

最后, $\operatorname{Hom}_{\mathsf{Ab}}(G,H)$ 构成交换群 (态射的加法逐点定义), 此处交换性来源于 G 的交换性, 但构成群的良定性源于 H 的交换性, 因此在 H 是交换群时, $\operatorname{Hom}_{\mathsf{Grp}}(G,H)$ 和 $\operatorname{Hom}_{\mathsf{Set}}(A,H)=H^A$ 都构成群.

范畴中的群对象 范畴 C 若具有有限积和终对象 1, 则其中群对象指 C 中对象 G 连带态射 (二元运算) $m: G \times G \to G$, (幺元) $e: 1 \to G$ 和 (取逆) $\iota: G \to G$, 其满足结合律,(双边) 幺和 (双边) 逆:

从而可以看出, 群是 Set 中的群对象.

1.2 自由群

对于某集合 A,考虑由集合函数 $j:A\to G$ 作为对象的范畴 \mathcal{F}^A ,其中 G 为任意群,态射由其自然诱导,即 $j_1\to j_2$ 为满足 $j_2=j_1\circ\varphi$ 的群同态 $\varphi:G_1\to G_2$. 我们定义集合 A 生成的自由群 F(A) 为 \mathcal{F}^A 的始对象,即 $F(A) \xrightarrow{\exists ! \varphi} G$ 将定义中的 G 改为交换群,所得到的群即自由交换群 $F^{ab}(A)$.

从范畴论的观点来看, 自由群的泛性质使其构造仅差一个同构, 而 $A\mapsto F(A)$, Set \to Grp 给定了一个自由函子, 其是遗忘函子 For : Grp \to Set 的左伴随. 从这一观点 (或直接从泛性质和自由群的构造) 出发, 我们可以得到结果

$$F(A \sqcup B) = F(A) * F(B), F^{ab}(A \sqcup B) = F^{ab}(A) \oplus F^{ab}(B).$$

为了具体刻画 F(A), 我们给出其构造: 用 A 与 $A^{-1}(A)$ 的复制) 的无交并构造有限序列 (被称为词 word), 其全集为 W(A), 再用化简/消去的函数 R 将其相邻的互逆元素消去得到化简词, F(A) = R(W(A)). 以词的连接并化简作为 F(A) 上的运算, 因此可构造出群 F(A) 的具体形式, 而此时 $f: A \to F(A)$, $f: A \to F(A)$

容易看出 $F(\{*\}) = F^{ab}(\{*\}) = \mathbb{Z}$, 因此对于 $[n] = \{1, 2, \cdots, n\}$, $F^{ab}([n]) = \mathbb{Z}^{\oplus n} := \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} = \mathbb{Z}^n$. 而对于任意集合 A 和交换群 H, 我们定义 H^A 的子群 $H^{\oplus A} := \{\alpha : A \to H | Q有限个<math>\alpha(a) \neq e_H\}$. 事实上我们有 $F^{ab}(A) \cong \mathbb{Z}^{\oplus A}$, 这是因为前者的每个词仅含有限个元素,而后者也仅有限个元素/分量非零. 可以考虑 $j : A \to \mathbb{Z}^{\oplus A}$, $a \mapsto \chi_a$, 其中 $\chi_a \in \mathbb{Z}^{\oplus A} : x \mapsto [x = a]$ 是示性函数,因此 $\sum_{a \in A} m_a j(a) \mapsto \prod_{a \in A} a^{m_a}$ 成为上述同构.

1.3 子群与商群

子群与单同态 我们给出子群一个比较新奇的定义: 群 G 的子集 H 的嵌入映射 $i_H: H \to G$ 是群同态. 这与其一般的定义或 $ab^{-1} \in H$ 等价. 子群的任意交, 直和, 同态像与原像都是子群.

在范畴论视角下,群同态 $\varphi:G\to G'$ 的核具有某种泛性质: 考虑 Grp 的子范畴 \mathbf{C}_{φ} , 其对象为满足 $\varphi\circ\alpha=0$

的群同态 $\alpha: K \to G$, 则嵌入 $i: \ker \varphi \to G$ 是其终对象, 即

群中 $\ker \varphi$ 是最大的"的抽象废话式描述.

¹伴随我还没学过, 待补充.

另外, 群的单同态 ← 核平凡 ← 同态作为集合函数是单射. 但 Grp 与 Set 中的单同态 (前者是群单同态, 后者是单射) 不同, 尽管存在左逆蕴含单同态, 但 Set 中反之亦然, 而 Grp 中单同态不一定存在左逆.²

子集生成的子群 考虑群 G 中的 $A \subset G$,由泛性质可取出唯一的 $\varphi_A : F(A) \to G$,我们可以定义 A 生成的子群 $\langle A \rangle := \operatorname{im} \varphi_A < G.G$ 交换时取 $F^{ab}(A)$. ③该定义与其它定义等价,如 $\langle A \rangle = \bigcap_{A \subset H < G} H$ 或 $\langle A \rangle = \left\{ \prod_{a' \in A'} a' \middle| A' \subset A \right\}$. 若 A 有限,则称 $\langle A \rangle$ 为有限生成群,而由定义,这等价于存在满同态 $F([n]) \to G$. 这一结论也可迁移至交换群上.

商群 对于群 G 商去其上等价关系 \sim 所得到的结构, 我们有结论

- $[a]_{\sim}[b]_{\sim}=[ab]_{\sim}$ 给定了 G/\sim 上的群结构,等价于 $a\sim a'\implies ag\sim a'g, ga\sim ga'$. 而此时在满足 $a\sim a'\implies \varphi(a)=\varphi(a')$ 的同态 $\varphi:G\to G'$ 构成的范畴中,典范投影 $\pi:G\to G/\sim$ 成为其始对象.
- 若 $H \triangleleft G$ 且 $H < \ker \varphi$, 则 (由上泛性质) 有 π_H $\forall \varphi$

实际上商去 (同态给定的) 等价关系与商去 (正规) 子群并没有本质区别, 只有记号差异 $H=[e_G]_{\sim}$, 尽管同态给定的 等价关系内蕴的要求了 $[e_G]_{\sim}<\ker\varphi$. 而 G/H 的泛性质表明, 它是商去后最普适的, 最小的. 另外, 去掉 $H<\ker\varphi$ 则会导致等价关系不成立, 最小的商群成为 $G/\ker\varphi$.

这一结果也表明,对于每个同态都能取其核为正规子群,而对于每个正规子群都存在以其为核的同态,这表明核与正规子群之间有一定的等价联系.

特征子群 我们可以推广正规子群这一概念: 考虑群 G 的子群 H, 若 $\forall \varphi \in \text{Inn}(G)$ (或 Aut(G), End(G)), $\varphi(H) < H$, 则称 H 是 G 的正规子群 (或特征子群, 全特征子群). 全特征 \Longrightarrow 特征 \Longrightarrow 正规. 由上显然正规子群不具有传递性,但特征与全特征子群具有传递性. 此外,正规子群的特征子群仍为正规子群,即 $K < H \lhd G$, K 是 H 的特征子群,则 $K \lhd G$. ⁴而 $H \lhd G$ 且 G 有限,|H| 与 |G/H| 互素,则 H 是 G 的特征子群.

导群 群 G 的导群是以其全体交换子 $[g,h] = ghg^{-1}h^{-1}$ 生成的子群, 记为 G',[G,G] 或 G_{der} . 导群保序, 即 H < G 则 H' < G'. 对于群同态 $\varphi : G_1 \to G_2$, 显然有 $\varphi([g,h]) = [\varphi(g),\varphi(h)]$ 且 $\varphi(G'_1) < G'_2$. 由此可见 G' 是特征子群, 从而 $G' \lhd G$. 若令 $\varphi = \pi_{G'}$ 从而可见 G/G' 交换, 称之为 G 的 Abel 化. 对于 $N \lhd G,G/N$ 交换等价于 G' < N.

考虑群 G 到任意交换群 A 的群同态 $\alpha: G \to A$, 其构成范畴并自然诱导态射. 由 $\alpha(G') < A' = \{e\}$ 知 $G' < \ker \alpha$, 从而由商群的泛性质可见 $\pi: G \to G/G'$ 为该范畴的始对象.

在自由群上我们有如下结果: $F(A)/F(A)' \cong F^{ab}(A)$.67

²有反例 $\mathbb{Z}/3 \to S_3, k \mapsto (123)^k$.

³这其中有什么差异呢?我想交换应当成为所有普通的群的特例.但先前自由交换群是较为平凡的情形,而与一般的自由群有一些区别. 我想这里可能会有一些问题.

 $^{{}^4\}varphi_g: a \mapsto gag^{-1}, \varphi_g|_H \in \text{Inn}(H) \subset \text{Aut}(H), \varphi_g|_H(K) = gKg^{-1} \subset K$, 反向同理, 故 $gKg^{-1} = K$.

 $^{^5}$ 考虑 $\pi_H: G \to G/H, \forall \varphi \in \operatorname{Aut}(G), |\pi_H \circ \varphi(H)|$ 整除 $|\varphi(H)| = |H|$ 以及 $|\operatorname{im} \varphi| = |G/H|,$ 故 $\pi_H \circ \varphi(H) = H, \varphi(H) \subset H.$

 $^{^6}$ 考虑任意交换群 G 及集合函数 $j:A\to G$, 由 F(A) 的泛性质可得唯一群同态 $\varphi:F(A)\to G$, $a\mapsto j(a)$, 而核即 F(A) 中次数和为零的词, 显然 $F(A)'<\ker\varphi$, 故由商群泛性质知存在唯一同态 $F(A)/F(A)'\to G$, 故可构造 $j:A\to F(A)/F(A)'$, $a\mapsto aF(A)'$ 为始对象.

 $^{^{7}}$ 这表明包含函子 Ab → Grp 的左伴随是 Abel 化函子 $G \mapsto G/G'$. 此处需要更多说明.

1.4 典范分解

考虑在 Grp 中的典范分解8

$$G \xrightarrow{\varphi} G'$$

$$\downarrow_{\pi} \qquad \qquad \downarrow_{i} \qquad \text{其中 } \tilde{\varphi} \text{ 是商群关于 } \varphi \text{ 诱导的映射, 可以证明其为同构.}$$

$$G/\ker\varphi \xrightarrow{\tilde{\varphi}} \operatorname{im} \varphi$$

此即本节的出发点. 该同构也被称为群同构第一定理. 进一步我们有如下推论:

- 若 $H_1 \triangleleft G_1, H_2 \triangleleft G_2$ 则 $\frac{G_1 \times G_2}{H_1 \times H_2} \cong \frac{G_1}{H_1} \times \frac{G_2}{H_2}$. 9特例是 $(G_1 \times G_2)/G_1 \cong G_2$. • 对于满同态 $\varphi: G \to H$,有保序双射 $f: \{K < G | \ker \varphi < K\} \to \{J | J < H\}$, $K \mapsto \varphi(K)$,在此对应下正规
- 对于满同态 $\varphi: G \to H$,有保序双射 $f: \{K < G | \ker \varphi < K\} \to \{J | J < H\}$, $K \mapsto \varphi(K)$,在此对应下正规子群映成正规子群. ¹⁰若令 $\varphi = \pi_N: G \to G/N$, $N \triangleleft G$,则可见 G/N 的子群均为商群形式,且 $K \triangleleft G \iff K/N \triangleleft G/N$.
- (群同构第三定理) 若 H < N < G 且 $H \lhd G$, 则 $N \lhd G \iff \frac{N}{H} \lhd \frac{G}{H}$, 且此时有 $\frac{G/H}{N/H} \cong \frac{G}{N}$. 11
- (群同构第二定理) 若 K < G 且 $H \triangleleft G$, 则 $H \triangleleft HK < G$, $H \cap K < K$ 且 $\frac{HK}{H} \cong \frac{K}{H \cap K}$. 12

自由群的关系 群 G 的表示是指同构 $G \cong F(A)/R$ 或 $\rho: F(A) \to G$, $\ker \rho = R$ 是 (词的集合)"关系" $\mathcal{R} \subset F(A)$ 在 F(A) 中生成的正规子群. 记 $G = (A|\mathcal{R})$. 我们有 $F(A) = (A|\varnothing), D_{2n} = (x,y|x^2,y^2,(xy)^n)$. 最后, 由 "自由是遗忘的左伴随" 同样可知 $(A|\mathcal{R})*(A'|\mathcal{R}')=(A\sqcup A'|\mathcal{R}\sqcup\mathcal{R}')$.

满同态与 coker 在考虑子群与单同态时我们注意到嵌入 $i: \ker \varphi \to G$ 是 Grp 中范畴 C_{φ} 的终对象. 我们考虑其对偶形式 $C^{\varphi}: \mathrm{Obj}(C^{\varphi}) = \{\alpha: G' \to L | \alpha \circ \varphi = 0\}$, 其始对象即为 $\pi: G' \to \mathrm{coker} \, \varphi$. 综合两者我们有交换图:

若在 Ab 中由商群泛性质直接可得 $G'/\operatorname{im} \varphi \cong \operatorname{coker} \varphi$, 而在 Grp 中 $\operatorname{im} \varphi$ 不一定正规于 G', 因此由泛性质仅可得到 $\operatorname{coker} \varphi \cong G'/N, N$ 是 $\operatorname{im} \varphi$ 在 G' 中生成的正规子群, 即 G' 中包含 $\operatorname{im} \varphi$ 最小的正规子群.

最后, φ 是满射同态 $\iff \varphi$ 是满态射 \implies coker φ 平凡. 最后一个箭头的反向 需在 Ab 中成立. ¹³

1.5 群的作用

⁸典范分解的更多内容应在补充范畴论内容后继续补充. 参考什么样的范畴具有典范分解?

 $^{^{9}}$ 考虑 $\pi = \pi_1 \times \pi_2$ 即可.

 $^{^{10}}$ 容易验证 $K \mapsto \varphi^{-1}(K)$ 是 f 的逆, 保序显然. 此处应当注意到 $\ker \varphi < K \iff \varphi^{-1}(\varphi(K)) = K$. 最后 $K \triangleleft G \implies \varphi(K) < H$ 且 $J \triangleleft H \implies \varphi^{-1}(J) \triangleleft G$.

 $^{^{11}}$ \Longrightarrow 由商群泛性质考虑 $G/H \to G/N, \Longleftrightarrow$ 与同构考虑 $\pi_{N/H} \circ \pi_H : G \to G/H \to \frac{G/H}{N/H}$ 即可.

 $^{^{12}}$ 包含关系由考虑 π_H^{-1} 内的包含可得, 再取 $\varphi: K \to HK/H, k \mapsto Hk$ 可证.

 $^{^{13}}$ 反例是嵌入 $H = \{(1), (12)\} \hookrightarrow S_3$ 的 coker 平凡但非满射.

¹⁴此处以及下面的 G-Set 应当有函子背景, 未来需补全.

 $^{^{15}}$ 其在群作用视角下显然, 因为 G 到自身的左乘作用 $G \to \operatorname{Aut}_{\mathsf{Set}}(G) = S_G, a \mapsto \lambda_a$ 显然是忠实的.

群 G 在集合上的作用构成范畴 G-Set, 其对象是 (ρ, A) , 态射为函数 $\varphi: A \to A'$, 其满足

$$G \times A \xrightarrow{\operatorname{id}_{G} \times \varphi} G \times A'$$

$$\downarrow^{\rho} \qquad \qquad \downarrow^{\rho'}$$

$$A \xrightarrow{\varphi} A'$$

称 G-Set 中态射为 (G-) 等价的,即 $g\varphi(a) = \varphi(ga)$,而其中同构即等价双射. 我们有如下结果:G 在 A 上的可迁左作用在 G-Set 中同构于 G 在 $G/_LG_a(\forall a \in A)$ 上的左乘作用. 16 换言之在一般情形下,在每个轨道 $O_G(a)$ 上都有 $O_G(a) \simeq G/_LG_a$. 因此在 G 和轨道 O(a) 有限时,我们有 $|G| = |O(a)| \cdot |G_a|$,此即轨道-稳定子定理. 另外若将 G 视为左乘作用下的 G-集合,则显然有 $\operatorname{Aut}_{G\text{-Set}}(G) \cong G$.

共轭作用 考虑群 G 作用在有限集 S 上,定义作用的不动点集 $Z = \{a \in S | \forall g \in G, ga = a\}$, $a \in Z \iff G_a = G \iff O_a = \{a\}$. 我们有 $|S| = |Z| + \sum_{a \in A} [G:G_a]$,其中 $A \subset S$ 是 S 的轨道等价类中非平凡轨道的代表元,即 $a \in A$, $|O_a| > 1$. 这是通过计数得到的: 前项为平凡轨道的数量,后项为所有非平凡轨道中轨道元素数量之和.

考虑群 G 在自身上的共轭作用,此时的作用不动点集即中心 C(G),而稳定子即中心化子 $C_G(a)$,轨道即共轭类 $[a] = \{gag^{-1}|g \in G\}$. 显然 $C(G) = \bigcap_{a \in G} C_G(a), a \in C(G) \iff C_G(a) = G \iff [a] = \{a\}$. 实际上有 $G/C(G) \cong \operatorname{Inn}(G)$,且其循环时 G 交换. G 为共轭作用考虑上述公式可得类数公式: $G = G \cap G$ 是 $G \in G$ 是 G

再考虑群 G 在其幂集上的共轭作用,即 $\rho(g,A) = gAg^{-1} = \{gag^{-1}|a \in A\}$,应当注意到 $A \to gAg^{-1}, a \mapsto gag^{-1}$ 是双射. 此作用的稳定化子即正规化子 $N_G(A) = \{g \in G|gAg^{-1} = A\}$,而 $C_G(A) \subset N_G(A)$ 的每个点在作用下不变. 对于子群 H < G 有 $H \triangleleft N_G(H) < G$,且 $N_G(H)$ 是 G 中最大的使 H 正规于之的子群,即 $H \triangleleft K$ 则 $K < N_G(H)$,显然 $H \triangleleft G \iff N_G(H) = G$. 且由轨道-稳定子定理,H 的共轭子群数量为 $[G:N_G(H)]$.

事实上 $C_G(A) \triangleleft N_G(A)$, 且 $N_G(A)$ 在 A 上有共轭作用¹⁸, 作用核为 $C_G(A)$, 故 $N_G(A)/C_G(A)$ 同构于 S_A 的某子群. 对于 H < G, 该作用成为同态 $N_G(H) \rightarrow \operatorname{Aut}_{\mathsf{Grp}}(H)$, 即 $N_G(H)/C_G(H)$ 同构于 $\operatorname{Aut}(H)$ 的某子群, 此即 N/C 定理. 其在 H = G 时即为 $G/C(G) \cong \operatorname{Inn}(G)$, 而对于 $N < N_G(H)$ 在 H 上的共轭作用, 作用核为 $N \cap C_G(H)$.

p-群 p-群即阶为素数 p 幂的群. 由类数公式可知, 其在有限集 S 上作用时有 $|Z| \equiv |S| \mod p$, 故对于 G 在自身上的共轭作用有 $|G| \equiv |C(G)| \mod p$, 从而由 $|C(G)| \ge 1$ 可知, 非平凡 p-群必有非平凡中心. 若有限群 G 有 p-子群 H, 则考虑 H 在 G/LH 上的左乘作用, 可见 $Z = N_G(H)/H$, 即 $[N_G(H):H] \equiv [G:H] \mod p$.

 p^2 阶群总交换, 而 p^n 阶 p-群对 $m \in [n]$ 均有 p^m 阶正规子群. ¹⁹另外, 对于有限群 G 及 |G| 的最小素因子 p, 指数 p 的子群均正规, 而正规 p 阶子群均含于 C(G). ²⁰

1.6 Sylow 定理

Cauchy 定理 对于有限群 G 及 |G| 的素因子 p,G 中总有 p 阶元.

证明 (James McKay). 考虑 $S = \{(a_1, \dots, a_p) | a_i \in G, a_1 \dots a_p = e\}$, 由 a_p 由前元素唯一决定,故 $|S| = |G|^{p-1} \equiv 0 \mod p$. 令 \mathbb{Z}/p 循环作用于 S 上,即 $m(a_1, \dots, a_p) = (a_{m+1}, \dots, a_p, a_1, \dots, a_m) \in S$ (容易验证 ab = e 则 ba = e),显然该作用的稳定点 $Z = \{(a, \dots, a) | a \in G\}$,且有 $|Z| \equiv |S| \equiv 0 \mod p$,故有 $a^p = e, a \neq e$.

 $^{^{16}}$ 即考虑函数 $\varphi:G/H\to A,gH\mapsto ga,$ 易证其良定等价双射.

 $^{^{17}}$ 前者考虑 $g\mapsto (\varphi_g:a\mapsto gag^{-1})$,后者考虑 $\varphi_g=\varphi_a^n\implies gag^{-1}=a,a\in C(G)$,故内自同构均平凡.

¹⁸即群同态 $N_G(A) \to S_A, n \mapsto (a \mapsto nan^{-1})$

 $^{^{19}}$ 显然 C(G) 的阶为 $p^s, s \le n$, 故其 p^k 阶子群 $(0 \le k \le s)$ 均正规. 而考虑 p^m 阶正规子群 H, G/H 仍为 p-群, 故其有非平凡中心. 取其中 p 阶子群 N, 可见 $\pi_H^{-1}(N)$ 是 p^{m+1} 阶正规子群, 归纳可证.

 $^{^{20}(1)}$ 即 [G:H]=p,G 在 $G/_LH$ 上的左乘作用即 $\sigma:G\to S_p$,而 $\ker\sigma\subset H,|G/\ker\sigma|=[G:H][H:\ker\sigma]$,又有 $|G/\ker\sigma||\gcd(|G|,|S_p|)=p$,故 $[H:\ker\sigma]=1,H=\ker\sigma\lhd G.$ (2) 即有共轭作用 $\sigma:G\to \operatorname{Aut}_{\mathsf{Grp}}(H)\cong \mathbb{Z}/(p-1)$,其中 $\ker\sigma=C_G(H)$,故 $|G/\ker\sigma||\gcd(|G|,p-1)=1$,即 $G=C_G(H),H< G.$

故由此有推论:G 中 p 阶子群的数量 $N \equiv 1 \mod p$. 21 此处需要插入看似无关的引理: 若 G 中仅有一个子群 H 同构于某群 K, 则 $H \triangleleft G$. (共轭不变)

Sylow 第一定理 G 为有限群,则对 |G| 的任意素因子 p, G 总含 Sylow p-子群.G 中的 Sylow p-子群 P 即 P < G 为 p-群且 p 与 [G:P] 互素,即 G 中的极大 p-子群.换言之, $|G| = p^r m$, $|P| = p^r$, $\gcd(p,m) = 1$.

定理的等价 (由 p-群性质) 描述为:G 为 $p^n m$ 阶群 (p 为素数且与 m 互素), 则对 $k \in [n]$ 总有 p^k 阶子群, 且该子群是某个 p^{k+1} 阶子群的正规子群.

证明. 首先由 Cauchy 定理,G 中总含 p 阶子群. 下对 k 归纳证明: 若 H 是 G 的 p^k 阶子群 (k < n),则 $0 \equiv [G: H] \equiv [N_G(H): H] \mod p$,后项非 0 故 $N_G(H) \neq H$,且 $N_G(H)/H$ 也含 p 阶子群,记为 H_1/H ,其中 $H < H_1 < N_G(H)$,因此 $H \triangleleft H_1$, $|H_1| = |H| |H_1/H| = p^{k+1}$.

事实上对于有限交换群有更强的结论: 若 G 是有限交换群且 d|G| 则 G 有 d 阶子群. ²²

Sylow 第二定理 P 是有限群 G 中的 Sylow p-子群,H < G 是 p-子群, 则 H 在 P 的某个共轭中,即 $H < gPg^{-1}$. 特别的,G 的 Sylow p-子群间互相共轭.

证明. 令 H 左乘作用于 G/LP 上,作用不动点集的势 $|Z| \equiv [G:P] \not\equiv 0 \bmod p$,故有作用不动点 $aP, a^{-1}ha \in P(\forall h \in H), H < aPa^{-1}$.

事实上有限群 G 的全体 Sylow p-子群之交 $N=\bigcap_{g\in G}gPg^{-1}$ 是 G 中的极大正规 p-子群, 即任意 G 的正规 p-子群均含于 N 中. 换言之,在 G 的 $|G|/p^\alpha$ 阶同态像中 G/N 是终对象.

Sylow 第三定理 G 为有限群, $|G|=p^nm$, 其中 p 为素数且与 m 互素, 则 G 中的 Sylow p-子群数量 $N_p|m$ 且 $N_p\equiv 1 \bmod p$.

证明. 对任意 Sylow p-子群 P 有 $N_p = [G:N_G(P)]$, 且 $m = [G:P] = N_p[N_G(P):P]$, 而 $m = [G:P] \equiv [N_G(P):P]$ mod p, 因此 $mN_p \equiv m \mod p$, 而 $m \vdash p \subseteq m$, 故 $N_p \equiv 1 \mod p$.

Sylow 定理的应用

- 1. 单群即正规子群平凡 (仅有单位元或本身) 的群. 我们有如下命题:
 - mp^r 阶群 (1 < m < p, p) 为素数) 不为单群²³. 若 m 的模 $p \lesssim 1$ 因子仅有 1, 则该命题同样成立.
 - 非平凡交换单群有且仅有 Z/p,p 为素数.
 - G 为非平凡有限单群 \iff 其同态像平凡或同构于本身²⁴,从而非平凡群同态 $\varphi: G \to G'$ 总为单射.
 - 无平方因子群 (即素数平方不能整除阶) 均不是单群.²⁵
 - G 是有限单群且 H 是其指数为 N 的真子群, 则 |G||N!. ²⁶特别的, 令 P 是其 Sylow p-子群, $H = N_G(P)$, 则 $|G||N_p!$.
 - 延申阅读:Cole 与有限单群 (I)

 $^{^{21}}$ 通过计数有 |Z| = 1 + (p-1)N, 模 p 即得.

²²任取元素生成循环子群再不断商去可得任意素因子, 再如上考虑商群子群, 可得任意因子. 关键在于交换群的子群均正规.

 $^{^{23}}$ 由 Sylow 第三定理, $1+kp=N_p|m< p$, 因此 $k=0,N_p=1,$ 故 Sylow p-子群唯一, 故其正规, 从而非单.

²⁴由定义, 同态核仅有两种选择, 因此同态像也即如此.

 $^{^{25}}$ 参考Given 3 distinct primes p,q,r, then $|G|=pqr\implies G$ is not simple及Burnside's transfer theorem in group theory.

 $^{^{26}}$ 令 G 左乘作用于 $G/_LH\cong S_N$ 上, 由 G 单知作用核平凡, 故 |G||N!.

- 2. 对于 pq 阶群 G, 其中 p, q 均为素数且 p < q, 若 $q \not\equiv 1 \bmod p$, 则 G 为循环群. 27 反之, G 不交换则有 $N_p = q \equiv 1 \bmod p$
- 3. 若 p 为奇素数, 则 2p 阶非交换群 $G \cong D_{2p}$. 28

1.7 合成列与可解群

合成列 群 G 的次正规列 (subnormal series) 是指一列降序子群:

$$G = G_0 \rhd G_1 \rhd G_2 \rhd \cdots$$

其中 $G_i \neq G_{i+1}$, $G_i \triangleright G_{i+1}$, 称 G_i/G_{i+1} 为因子 (群). 若总有 $G_i \triangleleft G$, 则称之为正规列. ²⁹列的长度即严格嵌入 $G_i \leftrightarrow G_{i+1}$ 的数量, 也即非平凡因子的数量. 记群 G 的次正规列的最大长度 (若有限) 为 $\ell(G)$, 即 $G_{\ell(G)} = \{e\}$. $\ell(G) = 0$ 即 G 平凡, 而 $\ell(G) = 1$ 即 G 为单群.

次正规列的一步细化 (one-step refinement) 是指比原列仅多一项的次正规列, 次正规列的细化 (refinement) 即有限次一步细化所得次正规列, 若细化比原列长则称为真 (proper) 细化³⁰. 换言之, 称某列是另一列的细化, 若后者的项均出现在前者中. 此外, 次正规列之间等价是指次正规列的因子之间仅差一个置换相同 (同构).

对于 G 的有限长次正规列

$$G = G_0 \triangleright G_1 \triangleright G_2 \triangleright \cdots \triangleright G_n = \{e\}$$

若因子均为单群,则称之为合成列 (composition series); 若因子均交换 (循环),则称之为可解列 (solvable series)(循环列). 其中,G/N 为单群等价于 N 在 G 的所有真正规子群中极大,故称 N 为 G 的极大正规子群. 显然有限群均有合成列,且次正规列长 $\ell(G)$ 时为合成列.

Jordan-Hölder 定理 若群 G 有二合成列

$$G = G_0 \triangleright \underbrace{G_1 \triangleright \cdots \triangleright G_n = \{e\}}_{G_{\bullet}}, \qquad G = G'_0 \triangleright \underbrace{G'_1 \triangleright \cdots \triangleright G'_m = \{e\}}_{G'_{\bullet}}$$

则 m=n, 且两者等价. 换言之合成因子与合成列的选取无关, 即 G_i/G_{i+1} 与 G'_i/G'_{i+1} 间仅差一个置换.

证明. 我们对较短合成列的长度 n 归纳证明之. 显然 n=0,1 时命题已成立. 若命题在 < n 时成立, 且 $G_1=G_1'$,则两合成列可化为 G_{\bullet} 和 G_{\bullet}' ,其长度满足归纳假设, 从而命题得证. 故下设 $G_1 \neq G_1'$.

易证 $G_1 \leq G_1G_1' \triangleleft G$,而 G_1 是 G 的极大正规子群,故可知 $G = G_1G_1'$.设 $K = G_1 \cap G_1'$,考虑其任意合成列 (由下定理知存在) K_{\bullet} . 由 $G_1/K \cong G/G_1'$, $G_1/K \cong G/G_1'$ 知两者均为单群,故可得二合成列 $G \triangleright G_1(G_1') \triangleright K_{\bullet}$,其长度相同且因子间只差一个置换.

最后, 合成列 $G_1 \triangleright K_{\bullet}$ 与 G_{\bullet} 中较短列的长度满足归纳假设, 从而命题成立, 故 K_{\bullet} 长 n-2, 从而 $G_1' \triangleright K_{\bullet}$ 与 G_{\bullet}' 也满足归纳假设, 因此命题成立, 综上得证.

 $^{^{27}}$ 由 Sylow 第三定理及条件有 $N_p=1$,即 p 阶子群 H 唯一 (正规). 考虑 G 在 H 上的共轭作用 $\gamma:G\to {\rm Aut}(H)\cong \mathbb{Z}/(p-1)$, $|\gamma(G)| |\gcd(pq,p-1)=1$,故 γ 平凡,H< C(G),考虑 G/C(G) 的阶从而循环,即 G 交换。取其中 p,q 阶元,乘积必为 pq 阶元,从而循环。 28 显然 $N_p=1$,令其为正规 p 阶子群 $\langle y \rangle$,可见 $G-\langle y \rangle$ 的元素均为 2 阶,任取之为 x,令 $xyx^{-1}=y^r$,而 $(y^r)^r=xy^rx^{-1}=x^2yx^{-2}=y$,从而 $y^{r^2-1}=e,p|(r^2-1)$ 即 p|(r-1) 或 p|(r+1),即 r=1 或 p-1. 前者则 xy=yx 可得 xy 阶 2p,矛盾。故可得 $x^2=y^p=xyxy=e$,此即 D_{2p} .

 $^{^{29}}$ 该定义在不同资料中略有不同. 此处降序与升序没有本质区别, 仅有下标差别, Chapter 0 与 Hungerford 均使用降序, 而互联网中多见升序. 此外, Chapter 0 中用正规列指 Hungerford 与该笔记中的次正规列, 而没有提到本文的正规列概念. 在 Hungerford 和维基百科中并没有要求 $G_i \neq G_{i+1}$, 但在使用该概念时常需令 G_{i+1} 严格嵌入 G_i , 故在此令两者不等没有本质区别. 最后, 在维基百科中要求子群链结束/开始于 $\{e\}$, 但同样没有本质问题.

³⁰在此定义中所有细化均为真细化, 因此我们将混用两概念.

该定理表明合成列若存在则几乎相同且互相等价, 从而可知 G 的合成列均长 $\ell(G)$, 但我们缺乏对存在性的证明. 另外, 上述证明中提到若 K 存在正合列, 则会有 $\ell(G) = n = 2 + (n-2) = \ell(G/K) + \ell(K)$. 为证明其存在性并推广该结论, 我们有如下定理

Schreier 定理 考虑群 G 及其正规子群 N,G 有合成列等价于 N 与 G/N 有合成列,此时 $\ell(G) = \ell(N) + \ell(G/N)$, 且 G 的合成因子包含 N 与 G/N 的合成因子.

证明. 一方面, 若 N 与 G/N 均有合成列

$$N \triangleright N_1 \triangleright \cdots \triangleright N_{\ell(N)} = \{e\}, \qquad G/N \triangleright G_1/N \triangleright \cdots \triangleright G_{\ell(G/N)}/N = \{N\}$$

则每个 G_i/N 均可对应到 G 的子群 G_i 上, 且同样有 $G_i \triangleright G_{i+1}, G_i/G_{i+1} \cong (G_i/N)/(G_{i+1}/N)$ 为单群, 从而可以构造 G 的合成列

$$G \triangleright G_1 \triangleright \cdots \triangleright G_{\ell(G/N)} = N \triangleright N_1 \triangleright \cdots \triangleright N_{\ell(N)} = \{e\}$$

并且长度与因子的命题同样得证.

另一方面, 若 G 有合成列

$$G_{\bullet}: G = G_0 \triangleright G_1 \triangleright \cdots \triangleright G_n = \{e\}$$

则可以构造关于 N 的子群链

$$N \cap G_{\bullet} : N = N \cap G \triangleright N \cap G_1 \triangleright \cdots \triangleright N \cap \{e\} = \{e\}$$

且 $G_i \cap N \triangleright G_{i+1} \cap N$. 考虑 $\pi: G_i \cap N \to G_i/G_{i+1}, a \mapsto aG_{i+1}, \ker \pi = G_{i+1} \cap N$,可以证明 $\operatorname{im} \pi \triangleleft G_i/G_{i+1}^{31}$,从 而由 G_i/G_{i+1} 是单群知 $\frac{G_i \cap N}{G_{i+1} \cap N}$ 平凡或同构于 G_i/G_{i+1} . 由此可见在删去子群链 $N \cap G_{\bullet}$ 中的重复项后,其成为 N 的合成列.

对于 G/N 的子群链可以类似构造:

$$\frac{G_{\bullet}}{N}: \frac{G}{N} \rhd \frac{G_1N}{N} \rhd \cdots \rhd \frac{\{e\}N}{N} = \{e_{G/N}\}$$

且 $G_iN/N
ightharpoonup G_{i+1}N/N$. 同样考虑 $\pi: G_i \to (G_iN)/(G_{i+1}N), a \mapsto aG_{i+1}N,$ 易见其为满射,且 $G_{i+1} < \ker \pi$,故可由商群的泛性质知有满射 $\varphi: G_i/G_{i+1} \to (G_iN)/(G_{i+1}N), \pi = \varphi \circ \pi_{G_{i+1}}$. 而 G_i/G_{i+1} 为单群,故 $\frac{G_iN/N}{G_{i+1}N/N} \cong \frac{G_iN}{G_{i+1}N}$ 平凡或同构于之. 同上可见也有 G/N 的合成列。最后由 N 与 G/N 的合成列同第一部分可证剩下命题. \Box

导出列与可解群 回忆导群相关知识, 群 G 的导出列 (derived series) 即子群链 $G \triangleright G' \triangleright G'' \triangleright \cdots$.³²若 G 交换, 则导出列仅为 $G \triangleright G' = \{e\}$; 若 G 为非交换单群, 则 $G = G' = G'' = \cdots$ 可解群 (solvable group) 即导出列终止于 $\{e\}$ 的群, 其等价于具有可解列.³³

对于有限群 G, 其可解 \iff 合成因子均循环 \iff 有循环列 \iff 有可解列. 34 由此知所有 p-群均可解. 结合 Schreier 定理知, 对于 $N \triangleleft G$, 有限群 G 可解 \iff N 与 G/N 可解. 此外, 可解群的子群也可解.

幂零群

 $^{^{31}}$ 即证 $\forall g \in G_i \forall a \in G_i \cap N, gag^{-1}G_{i+1} \in \text{im } \pi, \text{ 即 } gag^{-1} \in G_i \cap N.$ 显然 $gag^{-1} \in G_i, \text{ 而 } N \triangleleft G$ 从而 $gag^{-1} \in N$,故得证.

³²对于一般资料而言, 次正规列不要求相邻项不等, 故导出列是次正规列.

 $^{^{33}}$ 可解群的导出列显然邻项不等, 故即可解列; 若群有可解列 $G \triangleright G_1 \triangleright \cdots \triangleright G_n = \{e\}$, 则 G/G_1 循环可得 $G_1 > G'$, 同理 $G_2 > G'_1 > G''$, 故 $G_i > G^{(i)}$, $\{e\} > G^{(n)}$, 从而有可解列.

³⁴已知 (1) ←⇒ (4), 显然 (2) ⇒⇒ (3) ⇒⇒ (4), 仅证 (4) ⇒⇒ (2): 将可解列细化为合成列, 注意到交换单群仅有素数阶循环群.

2 环与模

2.1 Ring 范畴

环的基本概念 环 $(R, +, \cdot)$ 是交换群 (R, +, 0) 与幺半群 $(R, \cdot, 1)^{35}$ 关于分配律构成的代数结构.

整环是指无零因子 36 交换(含幺)环,除环是指非零元均可逆的环,即乘法群 $R*=R-\{0\}$,域是交换除环. 直观上可以认为域去除可逆性即为整环,而去除交换性即为除环. 它们之间有一定关系:整环 $^{\frac{7}{4}}$ 域有限或交换除环. 37

关于零因子(非零元之积为0)和正则元(乘法可逆元)38我们有如下结论(类似对另一边也有):

a不是左零因子 \iff a的左乘作用是 $R \to R$ 的单射

a是右正则元 \longleftrightarrow a的右乘作用是 $R \to R$ 的满射 \longleftrightarrow R = Ra

环 R 的中心 $C(R) = \{r \in R | \forall a \in R, ar = ra\}$ 是 R 的交换子环, 而 a 的中心化子 $C_R(a) = \{r \in R | ar = ra\}$ 是子环, 且 $C(R) = \bigcap_{a \in R} C_R(a)$. 除环的中心化子也是除环, 从而其中心是域.

幺半群环 给定环 R 和幺半群 M, 幺半群环 R[M] 的元素为 $r \cdot m (r \in R, m \in M)$ 的有限线性组合, 其间加法与乘法类似多项式环定义. 可见 $R[x] = R[\mathbb{N}], R[x, x^{-1}] = R[\mathbb{Z}].$

Ring **的泛对象** Ring 以全体 (含幺) 环为对象, 态射为保持加法交换群与乘法幺半群结构的映射/同态 (需 $1_R \mapsto 1_{R'}$). 其中终对象为零环 $\{0\}$, 始对象为 \mathbb{Z} (对每个环都有 $n \mapsto n1_R$).

由于对任意环 R 有唯一环同态 $\iota: \mathbb{Z} \to R, n \mapsto n1_R$, 其核 $\ker \iota = (\operatorname{char} R)\mathbb{Z}$, 我们据此定义环 R 的特征 $\operatorname{char} R \geq 0$. 换言之, $\operatorname{char} R \not = 1_R$ 在加法群中的阶 (若阶无限则特征为 0). 39 整环的特征仅有零或质数.

多项式环的泛性质 给定 $A = \{a_1, \dots, a_n\}$ 与任意交换环 R, 在以 $(j: A \to R, R)$ 为对象的范畴 (态射为诱导的环同态) 中, $(i: a_i \mapsto x_i, \mathbb{Z}[x_1, \dots, x_n])$ 为始对象. 详细来说,对于任意 $j: A \to R$,存在唯一的环同态 $\varphi: \mathbb{Z}[x_1, \dots, x_n] \to R$, $n \mapsto n1_R, x_i \mapsto j(x_i)$. 此处要求交换环是因为 R 中的乘法与多项式乘法不一致,因此需要令不定元的像 $\varphi(x_i) = j(a_i)$ 与任意同态像元素 $\varphi(n) = n1_R$ 交换,以使 φ 仍保持乘法运算从而成为环同态.

n=1 时,这一泛性质在任意 (含幺) 环上都存在⁴⁰. 更进一步的,对于给定环同态 $\alpha:R\to S$, 若有 $s\in S$ 与 $\alpha(r)(\forall r\in R)$ 交换,则 α 有唯一环同态延拓 $\bar{\alpha}:R[x]\to S, x\mapsto s$. ⁴¹由这一结果,我们对交换环上的多项式总有取值映射 $\bar{\alpha}:R[x]\mapsto R, f(x)\mapsto \sum_{i\geq 0}a_ir^i=f(r)$,其由上述 $\alpha=\mathrm{id}_R$ 导出. 换言之,多项式决定了一个多项式函数 $f:r\mapsto f(r)$.

单满态射与积 单态射的情形与 **Grp** 中相同: 对于环同态, 单同态 \iff 核平凡 \iff 单射. 同样也有类似的子环定义 (嵌入映射是单同态). 但对于满同态, 我们仅有: 满射 \implies 满同态, 其反例是嵌入 $\iota: \mathbb{Z} \to \mathbb{Q}$ 是满同态⁴²而非满射. 从而在 Ring 中"单 + 满 \iff 同构"但反向不成立.

³⁵大部分书都以后者为半群作环的定义,但由于关于环的大部分讨论都在含幺环上进行讨论,因此本书中环的定义使乘法半群含幺.另外,不一定含幺的环构成的范畴有时记作 Rng.

 $^{^{36}}$ 需要注意的是很多书以零因子为非零元素,但也有很多书认为 0 也是零因子. 但零因子 = 左零因子 \cup 右零因子.

³⁷整环有限交换时为域: 任意元素非零因子则左乘作用为单射, 而有限情况下容易看出其为满射, 这等价于任意元素为正则元 (即可逆). 有限除环为域: 即 Wedderburn 小定理, 后面待证.

 $^{^{38}}a$ 是左零因子 \iff $\exists b \neq 0, ab = 0; u$ 是左正则元 \iff $\exists v, uv = 1.$

 $^{^{39}}$ 对于不一定含幺的环 R, char $R = \min \{ n \ge 1 | \forall a \in R - \{0\}, na = 0 \} = R$ 中非零元的最大加法阶.

 $^{^{40}}$ 任取 s 作为 j(a), 其总与其它像元素交换, 即 $s\varphi(n)=s(n1_R)=s(1+\cdots+1)=ns=\varphi(n)s$.

 $^{^{41}}$ 存在性容易构造,唯一性的重点在于 $\bar{\alpha}|_R$ 是否唯一,以使其与 $x\mapsto s$ 相容. 在 $\mathbb{Z}[x]$ 情形下其唯一性由 \mathbb{Z} 的泛性质保证,而在此处已固定 $\alpha=\bar{\alpha}|_R$,故仍唯一.

⁴²ℤ 到任意环的同态唯一, 故使 ℚ 到任意环的同态唯一, 从而有右消去律.

这一问题其实提示我们: 在一般的范畴中, 态射可能过多或过少, 因此可能导致满射态射比满态射要更多. 进一步的, 在具有泛对象的范畴中, 泛对象的性质也可能导致这一结果. 我们看到了 Set 和 Grp 中泛对象都是平凡的, 但 Ring 中的始对象不平凡导致满态射要更少.

对于环的积, 其与群的情形相同, 考虑分量运算的构造即可. 但对于余积, 我们需要在未来考虑张量积运算.

 $\operatorname{End}_{\mathsf{Ab}}(G)$ 考虑交换群的自同态集,其关于逐点加法和复合运算构成环. 事实上,我们有环同构 $\operatorname{End}_{\mathsf{Ab}}(\mathbb{Z}) \cong \mathbb{Z}^{43}$,以及类似的 $\operatorname{End}_{\mathsf{Ab}}(\mathbb{Z}/n) \cong \mathbb{Z}/n$. 更进一步,我们有 Cayley 定理的环版本: 对于任意环 R 中元素的左乘作用 λ_r : $a \mapsto ra, \lambda : R \to \operatorname{End}_{\mathsf{Ab}}(R), r \mapsto \lambda_r$ 给出了环单同态.

由于 \mathbb{Z} 上的环自同态与左乘作用完全一致,因此由 $\lambda: (\mathbb{Z}, +, \circ) \xrightarrow{\sim} \operatorname{End}_{\mathsf{Ab}}(\mathbb{Z}) \cong (\mathbb{Z}, +, \cdot)$ 知, $(\mathbb{Z}, +)$ 上的环 (在同构意义下) 仅有一种. 对于任意环 R,我们仅有更弱的结论: $C(\operatorname{End}_{\mathsf{Ab}}(R)) \cong C(R)^{44}$,从而对于交换环有 $C(\operatorname{End}_{\mathsf{Ab}}(R)) \cong R$.

2.2 理想与商环

环 R 的左理想是指 I < (R, +) 满足 $RI \subset I$, 即 $\forall r \in R \forall a \in I : ra \in I$. 类似定义右理想.(双边) 理想即同时为左理想与右理想. 含幺理想仅有 R 本身, 在不要求含幺的环定义中理想是子环, 而在本书定义中仅为子模. 称 R 的平凡理想为 $\{0\}$ 与 R 本身.

- 对于环同态 $\varphi: R \to S, I \lhd R, J \lhd S,$ 则 $\varphi^{-1}(J) \lhd R,$ 因此 $\ker \varphi \lhd R.$ 而 $\varphi(I) \lhd \operatorname{im} \varphi$ 但非 S 的理想.
- 理想 I_{α} 的 (有限) 和 $\sum_{\alpha \in A} = \left\{ \sum_{\alpha \in A} r_{\alpha} \middle| r_{\alpha} \in I_{\alpha}$ 仅有限非 $0 \right\}$ 和任意交 $\bigcap_{\alpha \in A} I_{\alpha}$ 仍为理想.
- 除环等价于仅有平凡 (即零环和本身) 的左/右理想, 而仅有平凡 (双边) 理想的环称为单环, 交换单环即域.
- 交换环 R 中全体幂零元构成理想 N, 称之为诣零根 (nilradical). 非交换环中其不存在.R/N 中不含非零幂零元, 称之为约化环.

若环 R 有理想 I, 其有商环 R/I^{45} , 其运算直接由 R 的运算导出, 且有环满同态 $\pi: R \to R/I, r \mapsto r + I$. 换言之, 环同态的核与理想的关系是与群的情况一致的: 每个核都是理想, 而每个理想都有自然投影使其成为核.

典范分解 基于上述内容, 我们有其与群的情形完全类似的泛性质与典范分解:

● 商环的泛性质:
$$I \triangleleft R, \varphi : R \rightarrow S, I \subset \ker \varphi$$
, 则有交换图

$$R/I \xrightarrow{\pi} \exists ! \tilde{\varphi} \qquad S$$

• 任意环同态
$$\varphi: R \to S$$
 总有典范分解

$$G \longrightarrow G$$

$$\downarrow^{\pi} \qquad \qquad i \qquad \text{其中 } \tilde{\varphi} \text{ 是由 } \varphi \text{ 诱导的同构}$$

$$G / \ker \varphi \stackrel{\tilde{\varphi}}{\longrightarrow} \operatorname{im} \varphi$$

因此我们也有完全类似的同构定理:

- $\operatorname{im} \varphi \cong R / \ker \varphi$.
- $u: \{J \triangleleft R | I < J\} \rightarrow \{J' \triangleleft R/I\}, J \mapsto J/I$ 是保 (包含) 序双射.
- $I \triangleleft R, I \subset J \triangleleft R$, 则 $J/I \triangleleft R/I$ 且 $\frac{R/I}{J/I} \cong \frac{R}{J}$. 考虑 $\varphi|_{I+\ker\varphi}$ 的典范分解,有特例 $\frac{R/\ker\varphi}{\varphi(I)} \cong \frac{R}{I+\ker\varphi}$.
- 第二同构定理略有不同: 若 $S < R, I \triangleleft R,$ 则 $I \triangleleft S + I < R, S \cap I \triangleleft S,$ 且有 $\frac{S}{S \cap I} \cong \overset{\grave{S} + I}{I}.$

 $^{^{43}}$ 考虑 $\varphi: \mathbb{Z} \to \operatorname{End}_{\mathsf{Ab}}(\mathbb{Z}), n \mapsto n\operatorname{id}_{\mathbb{Z}}, n\operatorname{id}_{\mathbb{Z}}: k \mapsto nk,$ 其有逆 $\alpha \mapsto \alpha(1)$.

 $^{^{44}\}alpha \in C(\operatorname{End}_{\mathsf{Ab}}(R)) \implies \alpha \circ \mu_r = \mu_r \circ \alpha \implies \alpha(r) = \alpha(1)r, \alpha = \lambda_{\alpha(1)},$ 因此可以验证 $C(\operatorname{End}_{\mathsf{Ab}}(R)) \to C(R), \alpha \mapsto \alpha(1)$ 成为 $\lambda|_{C(R)}$ 的逆.

 $^{^{45}}$ 商环的基础是加法交换群的商群,其良定下自动成为环,但为使商良定,换言之为使 π 成为环同态,I作为理想是充要的.

2.3 主理想,素理想与极大理想

主理想 a 的左右主理想为 Ra 和 aR, 定义 a 生成的主理想 $(a) = RaR = \left\{\sum_{i=1}^n r_i as_i \middle| r_i, s_i \in R\right\}$, 其等价定义为 R 中含 a 的最小理想 (或所有理想的交), 这一定义也可类似推广至子集上. 考虑 R 交换的情形, 此时 (a) = Ra = aR, 由于总有 $(a_{\alpha})_{\alpha \in A} = \sum_{\alpha \in A} (a_{\alpha})$, 故有有限生成理想 $(a_1, \cdots, a_n) = (a_1) + \cdots + (a_n) = \left\{\sum_{i=1}^n r_i a_i \middle| r_i \in R\right\}$, 基于此我们有同构 $\frac{R/(a)}{(\bar{b})} \cong \frac{R}{(a,b)}$, 其中 $\bar{b} = b + (a) \in R/(a)$. 另外我们对理想 $I_i(i \in [n])$ 有乘积理想 $I_1 \cdots I_n = \sum_{a_i \in I_i} (a_1 \cdots a_n) \subset \bigcap_{1 \le i \le n} I_i$. 若 R 交换时 $\sum_{i=1}^n I_i = R$, 或 $R/(I_1 \cdots I_n)$ 是约化环, 则乘积理想 = 交理想.

称交换环 R 是 Noether 环 (Noetherian ring), 若每个理想均有限生成, 称整环是主理想整环 (PID), 若每个理想都是主理想. 容易看出, \mathbb{Z} 是 PID, 且 $(n) = n\mathbb{Z}, (m, n) = (\gcd(m, n)),$ 但 $\mathbb{Z}[x]$ 不是, 因为 (2, x) 不能由一个元素生成.

对某些特别情况我们有更强的结果:

- $\varphi: R[x] \to R, g \mapsto g(a)$ 给出的 $R[x]/(x-a) \cong R$ 是环同构. 换言之即带余除法 f(x) = q(x)(x-a) + f(a).
- 对于 $f(x) = x^2 + 1$, 通过在 $R \oplus R$ 中定义乘法结构 $(a_0, a_1) \cdot (b_0, b_1) = (a_0b_0 a_1b_1, a_0b_1 + a_1b_0)$, 这使 $R \oplus R$ 成为环且上述加法群同态 φ 成为环同态, 故 $R[x]/(x^2 + 1) \cong R \oplus R$ 成为环同构.
- 对于 $R = \mathbb{R}$, 由此有 $\mathbb{R}[x]/(x^2+1) \cong \mathbb{C}$, 由下可说明 (x^2+1) 是 $\mathbb{R}[x]$ 的素 (极大) 理想.
- $\mathbb{Q}[t]/(t^2-d) \cong \mathbb{Q}(\sqrt{d}).$
- 交換环 R 上的多项式 $f_1, \dots, f_r \in R[x]$ 以及 $a \in R$ 有 $(f_1(x), \dots, f_r(x), x-a) = (f_1(a), \dots, f_r(a), x-a)^{47}$, 因此有 $\frac{R[x]}{(f_1(x), \dots, f_r(x), x-a)} \cong \frac{R}{(f_1(a), \dots, f_r(a))}$. 多元情况下也有 $\frac{R[x_1, \dots, x_n]}{(x_1 a_1, \dots, x_n a_n)} \cong R$.

素理想与极大理想 考虑环 R 中的真理想 I, 若 R 交换且 R/I 为整环 (即 $ab \in I \implies a \in I$ 或 $b \in I$) 则称 I 为素理想, 其全集即素谱 Spec R; 若 R/I 是单环 (R 交换时即域) 则称 I 为极大理想, 其等价于 R 中没有真包含 I 的真理想. 由定义, R 交换时有极大理想 \implies 素理想, 若此时 R/I 有限则两者等价. R 是整环 \iff (0) 是素理想, 而 R 是 PID 时, 极大理想 = 非零素理想. ⁴⁸另外对于交换环, 素理想的原像仍为素理想, 但极大理想没有该性质. ⁴⁹

对于 R[x], 上小节同构表明理想 (x-a) 是其素 (极大) 理想等价于 R 是整环 (域), 而 $(2,x) \triangleleft \mathbb{Z}[x]$ 是素理想, 因为其商环为 $\mathbb{Z}/2$. 对于 PID \mathbb{Z} 中理想 $(n) = n\mathbb{Z}, n$ 为素数 \iff (n) 为非零素 (即极大) 理想. 换言之,Spec $\mathbb{Z} = \{(p)|p$ 是质数或 $0\}$

对于域 \mathbb{k} , 由 $\mathbb{k}[x]$ 是 PID^{50} 知其中非零素理想等价于极大理想. 而对于代数闭域 $\mathbb{k}(\mathbb{D})$ $f \in \mathbb{k}[x]$ 的根均在 \mathbb{k}

 $^{^{46}}$ 即 $\forall g \in R[x]$ $\exists !q,r \in R[x]: g = fq + r$ 且 $\deg r < \deg g$. 存在性: 记 $d = \deg f$, 对于 $\deg g = n > d$ 可构造性的通过 $g = ax^{n-d}f + h, \deg h < \deg g$ 说明这样的操作可以降次,再归纳的用 f 除 h 可以最终得到余项 $r, \deg r < \deg f$,因此存在性得证. 唯一性: $fq_1 + r_1 = fq_2 + r_2 \implies f(q_1 - q_2) = r_1 - r_2$,比较次数说明两个差都是零,因此唯一.

 $^{^{47}}f_i(x) = q_i(x)(x-a) + f_i(a) \implies (f_i(x)) \subset (f_i(a), x-a)$ 以及 $(f_i(a)) \subset (f_i(x), x-a)$,同理易证等式,后面同构由上节定理.

 $^{^{48}}$ 前者由有限交换整环为域. 对于后者,考虑理想 $I=(a)\subset J=(b)$,由存在 c 使 a=bc,而由素知 $b\in(a)$ \implies I=J 或 $c\in(a)$ \implies c=da, a=bc=bda \implies bd=1, J=R.

 $^{^{49}}$ 反例为 ι : $\mathbb{Z} \hookrightarrow \mathbb{Q}$, 后者的极大理想仅有 (0).

 $^{^{50}}$ 考虑 $I \triangleleft \Bbbk[x]$ 中次数最小的首一多项式 f, 其唯一, 由带余除法的余项次数小于 $\deg f$ 可知 I 中多项式整除 f, 故 I = Rf = (f).

内), $\mathbb{k}[x]$ 的极大理想有且仅有 (x-c), $c \in \mathbb{k}^{51}$, 故可见 Spec $\mathbb{k}[x] = \{(x-c)|c \in \mathbb{k}\} \cup \{(0)\}$. 对于 $\mathbb{k} = \mathbb{C}$, 由此可见 $\mathbb{C}[x]$ 的非零素理想分布在一条复 "直线" 上, 这表明其 Krull 维数为 1. 交换环 R 的 (Krull) 维数 $\dim R$ 即素谱中的最大 (包含) 链长.

2.4 R-模

R-模 (E)R-模就是环 R 在交换群 M 上的 (E) 环作用,即环同态 $\sigma: R \to \operatorname{End}_{\mathsf{Ab}}(M)$,记 $\sigma(r)(m) = rm.^{52}$ 以此言之,左 R-模即加法交换群 M 连带环 R 与 M 间的运算 $\rho: R \times M \to M, (r,m) \mapsto rm$,其满足 M-线性 r(m+n) = rm + rn,R-线性 (r+s)m = rm + sm,(作用) 结合 (rs)m = r(sm),(作用) 含幺 1m = m. 所有交换群 M 都能对应到唯一的 \mathbb{Z} -模 M 上,由作用 σ 唯一.

R-模间的态射即保持交换群运算和 R-作用不变的同态⁵³,由此全体 R-模构成范畴 R-Mod,其中有零对象平凡模. 另外,R-Mod 中的双射态射自然成为同构. 易见 \mathbb{Z} -Mod 与 Ab 等价,且 $\operatorname{Hom}_{R\operatorname{-Mod}}(M,N) \subset \operatorname{Hom}_{\operatorname{Ab}}(M,N)^{54}.R$ 交换时 R-Mod 与 Ab 类似: $\operatorname{Hom}_{\operatorname{Ab}}(M,N)$ (关于复合)构成交换群,同样的 $\operatorname{Hom}_{R\operatorname{-Mod}}(M,N)$ 成为 R-模,且此时有模同构 $\operatorname{Hom}_R(R,M) \cong M$. 55 最后,若 $R = \mathbb{K}$ 为域,称模为 \mathbb{K} -向量空间,其构成范畴 \mathbb{K} -Vect,态射即线性映射.

R-代数 对于给定的环同态 $\alpha: R \to S$,可用同态 $\rho: R \times S \to S$, $(r,s) \mapsto \alpha(r)s$ 定义 (E) (E)

由上可见,R-代数 α (或 S) 即带有 R-模结构的环 S,R-代数间的态射即同时保持环与模结构的同态⁵⁷,由此构成范畴 R-Alg,其始对象即 R. 可见 \mathbb{Z} -Alg 与 Ring 等价⁵⁸. 环 R 交换时,复合运算使 $\iota: R \to \operatorname{End}_R(M), r \mapsto r \operatorname{id}_M$ 成为 R-代数. 另外,交换 R-代数同样构成范畴 R-CommAlg,其为交换环范畴上的余切片范畴 CommRing R. 交换环 R 上的多项式环 $R[x_1, \cdots, x_n]^{59}$ 是一个交换 R-代数.

子模与商模 R-模 M 的子模 N 也被自然定义:N 是 R-模且嵌入 $\iota:N\to M$ 是模同态. 换言之,N 是 M 的子群 且在 R-作用下封闭: $\forall r\in R \forall a\in N: ra\in N$. 可见 R 若作为自身的 R-模, 则其 (E) 子模即自身的 (E) 理想. 模同 态的核与像均为子模, 且子模的和与交均为子模. 若 $r\in C(R), I\lhd R$, 则 rM 与 $IM=\left\{\sum_{i=1}^n r_i m_i \middle| r_i\in I, m_i\in M\right\}$ 均为 M 的子模.

类似群与环, 商模也有泛性质与典范分解:

 $^{^{51}}$ 若 I=(x-c) 则 $\Bbbk[x]/I\cong \Bbbk$,即 I 是极大理想;若 I=(f) 是极大理想,则由代数闭域知 $f(x)=q(x)(x-c), I\subset (x-c)$,由极大知 I=(x-c).

 $^{^{52}}$ 需要注意的是,对于同样的 R 和 M 也可以有不同的环作用使之成为不同的模,因此应当认识到模本质上是一个环作用/环同态 σ 或 ρ , 其凭依的 R 和 M 都不是本质的模本身. 但为简便言还是通常称 M 为模,此时默认其上有一个 R-作用,而对不同的模也其上的作用不同.

 $^{^{53}}$ 即 $\varphi(m+n)=\varphi(m)+\varphi(n), \varphi(rm)=r\varphi(m),$ 其与 G-Set 中态射一致.

 $^{^{54}}$ 有时记 $\operatorname{Hom}_{R\text{-Mod}}$ 为 Hom_{R} .

 $^{^{55}}$ 交换性源于要求 $r\varphi(r'm) = r'[r\varphi(m)]$. 同构可以取 $m \mapsto (\lambda_m : 1_R \mapsto m)$.

 $^{^{56}}$ 出于语言简便, 有时也称 S 是一个 R-代数.

 $^{^{57}}$ 保持加法和乘法运算 $\varphi(s_1s_2) = \varphi(s_1)\varphi(s_2), \varphi(s_1+s_2) = \varphi(s_1) + \varphi(s_2),$ 保持幺元 $\varphi(1) = 1$, 保持 R-作用 $\varphi(rs) = r\varphi(s)$. 可见代数同态相当于保持 R-作用的环同态.

⁵⁸上见交换群与附加 Z-模结构的模等价, 而此处仅同时增加了环结构.

 $^{^{59}}$ 准确地说, 是嵌入 $\iota: R \to R[x_1, \cdots, x_n]$.

• $N \neq R$ -模 M 的子模,R-模同态 $\varphi: M \to P$ 满足 $N \subset \ker \varphi$, 则有唯一模同态 $\tilde{\varphi}: M/N \to P$ 使

是,核并不为某个子结构赋予更强的限制,在未来我们会看到,这是 R-Mod 作为 Ab-范畴所特有的性质.

• R-模同态也可以被典范分解为满射, 双射与单射的复合, 即

$$\begin{array}{ccc}
\downarrow^{\pi} & & i \\
M/\ker\varphi & \stackrel{\tilde{\varphi}}{\longrightarrow} & \operatorname{im}\varphi
\end{array}$$

以及由典范分解得来的模同构定理

- $\operatorname{im} \varphi \cong M / \ker \varphi$.
- $u: \{P < M | N < P\} \rightarrow \{P' \triangleleft M / N\}, P \mapsto P / N$ 是保 (包含) 序双射.

- 对于交换环 $R, I, J \triangleleft R$, 则有 R-模同构 $I \cdot (R/J) \cong (I+J)/J$

2.5 R-Mod 中的基础概念

积与纤维积 在 Ab-范畴 (如 Ab 或 R-Mod) 中积 (切片范畴的终对象) 与余积 (余切片范畴的始对象) 在任意情形 下均存在, 其中积总为直积 (分量积), 而余积总为直和 (或称弱直积, 即仅有限分量非零的积). 两者在有限情形下 等价, 而在无限情形下余积为积的子结构.Grp 不是 Ab-范畴, 因此其中余积为自由积.

对于以指标集 A 构造的 R-模 M 的积与余积, 其分别为 $M^A = \prod M$ 与 $M^{\oplus A}$. 尽管 $M^{\oplus A} < M^A$, 但在 R 交 换时有 $\operatorname{Hom}_R(R^{\oplus A},M)\cong M^A, \varphi\mapsto \{\varphi(a)\}_{a\in A},$ 其有限情形下即 $\operatorname{Hom}_R(R^n,R)\cong R^n,$ 此即对偶间的同构.

将上述(余)切片范畴改为纤维(fibered)形式,我们有纤维积(或拉回, pull-back)与纤维余积(或推出, pushout), 如下交换图所示: 给定 R-模 M, N, A 及模同态 μ, ν , 存在 R-模 $M \times_A N$ 与模同态 $\pi_M, \pi_N (M \oplus_A N, i_M, i_N)$ 使得对任意 R-模 P 及任意模同态 $\varphi_M, \varphi_N(f_M, f_N)$ 都有唯一模同态满足如下交换图.

可知 $M \times_A N = \{(m, n) \in M \times N | \mu(m) = \nu(n) \}, M \oplus_A N = (M \oplus N) / \{(\mu(a), -\nu(a)) \in M \oplus N | a \in A \}.$

核 R-Mod 中的核与余核也存在: 考虑模同态 $\varphi: M \to N$, 对于满足 $\varphi \circ \alpha = 0$ 的 模同态 $\alpha: P \to M$ 为对象的范畴, $\ker \varphi$ 为其终对象; 对于满足 $\beta \circ \varphi = 0$ 的模同态 $\beta: N \to Q$ 为对象的范畴, $\operatorname{coker} \varphi \cong N / \operatorname{im} \varphi$ 为其始对象. 需要注意的是, 这一定义 模式可以直接推广到更多范畴中. 对核与余核类似也有交换图:

在 R-Mod 中也有关于单满态射的等价关系: 单态射 \iff 核平凡 \iff 单射 态射; 满态射 ↔ 余核平凡 ↔ 满射态射. 这样的等价关系与 Ab 中完全一致, 这也是 Ab-范畴的一般性质. 另外, 尽管存在左 (右) 逆 ⇒ 单 (满) 态射, 但反之不 一定对. 在 R-Mod 中可以仅考虑 $\mathbb{Z} \to \mathbb{Z}, n \mapsto 2n$ 即可.

自由模与自由代数 类似自由群的定义,考虑集合 A 射到任意 R-模 M 上的集合函数 $f:A\to M$ 构成的范畴 (态

射容易诱导), 其中始对象 $j:A\to F^R(A)$ 即 A 生成的自由模, 即交换图

$$F^R(A) \xrightarrow{J:\varphi} M$$
 . 为了详细构造自由

模的结构, 我们对 R-模 N 与集合 A 定义直和 $N^{\oplus A}:=\{\alpha:A\to N|Q有限a\in Afa(a)\neq 0\}^{60}$, 其容易赋有 R-模 结构, 且有 $(R^{\oplus A_1})^{\oplus A_2}\cong R^{\oplus A_1\times A_2}$. 考虑 $j:A\to R^{\oplus A}, a\mapsto \chi_a$. 可以验证 j 即上述始对象, 故 $F^R(A)\cong R^{\oplus A}$. 特别地, 即 $F^R([n])\cong R^{\oplus n}=R^n$.

可类似定义自由交换 R-代数, 仅考虑 A = [n] 有限情形, 记 $R[A] = R[x_1, \cdots, x_n]$, 考虑函数 $j: A \to R[A]$, $i \mapsto x_i$, 其同样成为所定义范畴的始对象, 换言之 R[A] 即 A 生成的自由交换 R-代数. ⁶¹换言之,(有限不定元的) 多项式环即有限集生成的交换 R-代数, 也因此可见 $\mathbb{Z}[x_1, \cdots, x_n]$ 的泛性质实际是其在交换环范畴 CommRing(即 \mathbb{Z} -CommAlg) 中的自由对象.

上述之所以要求代数交换,是为了不定元之间互相交换,而 R-Alg 中的自由对象包含不交换多项式环 $R\langle A\rangle$,其同构于一个(基于 A 生成的自由幺半群的)幺半群环,由 A 中所有有限长字符串构造.

综上我有一个问题:

• 为什么同样对于一个集合 A, 其生成的自由 R-模仅是以 A 中元素为下标的直和 (即弱直积) $R^{\oplus A}$, 而生成的自由交换 R-代数则为以 A 中元素为不定元的多项式环? 准确的说, 为什么是多项式环结构?

在此我给出我的回答:

- 对于自由群与自由交换群,它们都是被 *A* 中元素 "生成" 的群,且生成的方式是取元素构造字符串,只是交换情形下字符串退化成元素的直和,字符串连接也成为分量运算.
- 模结构实际上即向量空间的退化,即数域退化成环,因此模仍保留大量向量空间的性质. 另一方面,R-模与 (加法) 交换群的本质区别在于 R-作用,即 $r \in R$ 作用于 $m \in M$ 可以得到 $rm \in M$,这可以被看做某种"数乘".
- 综上可见, 自由模是环的直和并不令人意外: 一方面, 模是带有 R-作用的交换群, 因此自由交换群 $\mathbb{Z}^{\oplus A}$ (元素为 $\sum_{a\in A}m_aa$, $m_a\in\mathbb{Z}$) 加上 R-作用自然可以成为 $R^{\oplus A}$ (元素为 $\sum_{a\in A}r_aa$, $r_a\in R$). 另一方面, 集合 "生成"的向量空间即以其为基底的向量空间,其退化为模时自然带有其分量结构,即 $R^{\oplus A}$.
- 交换 *R*-代数可以视为具有交换环结构的 *R*-模. 限于所学, 下仅讨论 *A* 有限情形. *A* 中元素在带有环 (乘法) 的结构中生成, 其可被视作某种不定元, 且应当自然具有幂次与元素间的 (交换) 积. 而加法与 *R*-作用能自然定义加法和 *R* 系数, 这些已经自然地给出了多项式, 且其次数总有限 (否则不良定).

子集生成的子模和子代数 生成子模可类似群定义: 考虑 R-模 M 及其子集 A, 上节诱导了唯一模同态 φ_A : $R^{\oplus A} \to M$, 其像即 A(作为 R-模) 生成的子模 $\langle A \rangle = \operatorname{im} \varphi_A = \left\{ \sum_{a \in A} r_a a \middle| Q \neq R a \in A \neq r_a \neq 0 \right\}$, 它也是 M 中含 A 最小子模. 有限生成模即模可由此被有限集生成, 有限生成模 M 的子模 N 不一定有限生成⁶², 但 N 与 M/N 为有限生成模时 M 也是 (证明同下). 另外, 有限生成模的同态像也是有限生成模.

可类似定义生成子代数及有限生成代数. 对于 R-代数 S, 其可被视为作为模有限生成或作为代数有限生成, 我们分别称之为 S is finite 与 S is of finite type. 作为有限生成模时 $S \cong R^{\oplus n}/M$, 而作为有限生成代数时 $S \cong R[x_1, \dots, x_n]/I.S$ 作为有限生成 R-模 $\implies S$ 作为有限生成 R-代数. ⁶³

 $^{^{60}}$ 实际上此处 A 即指标集,也可将该直和中的元素记作 $\{n_a\}_{a\in A}$ 或 $\sum_{a\in A}n_aa$,其中仅有限个 $n_a\neq 0$,而这与映射定义完全相同. 这也是上节余积定义的构造形式.

⁶¹始对象中的唯一性可直接验证,也可考虑多项式环的泛性质进行唯一延拓.

 $^{^{62}}$ 如无穷不定元多项式环 $\mathbb{Z}[x_1,x_2,\cdots]$,其是自身的有限生成子模,但其理想 (即子模) (x_1,x_2,\cdots) 并非有限生成.

 $^{^{63}}R[x]$ 是有限生成 R-代数, 但非有限生成 R-模.

Noether 模 称一个 R-模是 Noether 模 (Noetherian module), 若其所有子模均作为 R-模有限生成. 64 若 R 是 Noether 环, 可见其即为 Noether R-模. Noether 模的同态像也是 Noether 模. 对于子模 N < M, M 是 Noether 模 $\iff N$ 和 M/N 都是 Noether 模. 65 若 R 是 Noether 环, 则有限生成 R-模 M 是 Noether R-模. 66

单模与循环模 称 R-模 M 为单模 (或不可约模),若 M 仅有平凡子模. 我们有 Schur 引理: 单模间的非零同态仅有同构,因此单模的自同态环 $\operatorname{End}_R(M)$ 是除环. 67 称 (左)R-模 M 是循环模,若 $M = \langle m \rangle = Rm, m \in M$. 单模都是循环模. 68 循环模的商模也都是循环模. 69 模 M 是循环模等价于 $M \cong R/I$,其中 I 是 R 的 (左) 理想 70 ,且此时对 R-模 N 有 $\operatorname{Hom}_R(M,N) = \{n \in N | In = 0\}^{71}$,由此可知 $\operatorname{Hom}_{Ab}(\mathbb{Z}/a,\mathbb{Z}/b) \cong \mathbb{Z}/\gcd(a,b)$.

2.6 链复形与同调

链复形与正合列 R-模的链复形 (chain complex) 是指一列 R-模与 R-模同态:

$$\cdots \xrightarrow{d_{i+2}} M_{i+1} \xrightarrow{d_{i+1}} M_i \xrightarrow{d_i} M_{i-1} \xrightarrow{d_{i-1}} \cdots$$

其满足 $d_i \circ d_{i+1} = 0$, 换言之即 $\operatorname{im} d_{i+1} \subset \ker d_i$. 常记一列链复形为 $(M_{\bullet}, d_{\bullet})$ (或仅 M_{\bullet}), 且下标随箭头减小. 称同态 d_i 为边界或微分, 其也常被记为 d^n , ∂_n . 称链复形在 M_i 处正合, 若 $\operatorname{im} d_{i+1} = \ker d_i$, 正合列 (exact sequence) 即每处正合的链复形. 短正合列即形如

$$0 \longrightarrow L \stackrel{\alpha}{\longrightarrow} M \stackrel{\beta}{\longrightarrow} N \longrightarrow 0$$

的正合列, 其等价于 α 是单同态且 β 是满同态. 由 $\operatorname{im}\alpha = \ker\beta$ 可见 $N \cong M/\operatorname{im}\alpha \cong M/L$. 由此可见, 对于每个 模同态 $\varphi: M \to M'$ 可以诱导短正合列

$$0 \longrightarrow \ker \varphi \xrightarrow{i} M \xrightarrow{\varphi} \operatorname{im} \varphi \longrightarrow 0 \qquad \text{if} \qquad 0 \longrightarrow \ker \varphi \xrightarrow{i} M \xrightarrow{\varphi} M' \xrightarrow{\pi} \operatorname{coker} \varphi \longrightarrow 0$$

应当注意到,我们可以将每条正合列视作一系列短正合列:

 $^{^{64}}$ 需要注意的是,考虑 Noether 模时需要注意其所凭依的环 R,我们认为一个 R-模是 Noether 模时,同样将与其相关的模看作 R-模.

 $^{^{65} \}Longrightarrow : M/N = \pi_N(M)$ 显然同样是 Noether 模, 因 N 的子模也是 M 的子模, 故 N 也是 Noether 模. \iff : 考虑 P < M, 注意到 $P \cap N$ 有限生成且 $P/(P \cap N) \cong (P+N)/N < M/N$, 因此 $P/(P \cap N)$ 有限生成,故 P 有限生成,即得证.

 $^{^{66}}$ 注意到 M 是某个 $R^{\oplus n}$ 的同态像, 而 $R^{\oplus n}$ 是 Noether 模, 可由上句归纳证明.

⁶⁷注意到同态核与像均为子模, 同态非零则仅有同构情形, 从而自同态均为自同构.

⁶⁸若单模有多个生成元, 可由此给出非平凡子模.

 $^{^{69}}N < M = Rm, \pi_N : M \to N, N = R\pi_N(m).$

 $^{^{70} \}Longrightarrow : \varphi_M : R \to \langle m \rangle, 1 \mapsto m$ 是满模同态, 故可取 $I = \ker \varphi_M. \longleftarrow : 若 \varphi : R/I \to M$ 是同构, 取 $m_0 = \varphi(1+I), \forall m \in M \exists ! r + I : m = \varphi(r+I) = rm_0$, 故 $M = \langle m_0 \rangle$.

⁷¹注意到 $\varphi \in \operatorname{Hom}_R(R/I, N)$ 由 $n_0 = \varphi(1+I) \in \operatorname{RHS}$ 确定, 且需满足 $in_0 = 0, i \in I$ 以确保良定.

分裂正合列 称一个正合列是分裂 (split) 的, 若其满足以下交换图 (即一系列同构):

$$0 \longrightarrow L \xrightarrow{\alpha} M \xrightarrow{\beta} N \longrightarrow 0$$

$$\downarrow^{\sim} \qquad \downarrow^{\sim} \qquad \downarrow^{\sim}$$

$$0 \longrightarrow M_1 \xrightarrow{i_1} M_1 \oplus M_2 \xrightarrow{\pi_2} M_2 \longrightarrow 0$$

分裂正合列可以解答问题 "什么样的同态有左 (右) 逆?" 考虑 R-模同态 $\varphi: M \to N$, 我们有:

- φ 有左逆 \iff 有分裂正合列 $0 \longrightarrow M \stackrel{\varphi}{\longrightarrow} N \longrightarrow \operatorname{coker} \varphi \longrightarrow 0$, 此时称 φ 为分裂单同态.
- φ 有右逆 \iff 有分裂正合列 $0 \longrightarrow \ker \varphi \longrightarrow M \stackrel{\varphi}{\longrightarrow} N \longrightarrow 0$, 此时称 φ 为分裂满同态.

仅证第一个命题, 第二个类似.

 $\leftarrow :$ 正合列分裂即 $\varphi \in M$ 到 $M \oplus M'$ 的嵌入, 因此有左逆 $\psi = \pi_M, \psi \varphi = \mathrm{id}_M.$

 \Longrightarrow : 令 φ 左逆为 ψ : $N \to M$, 考虑同态 $M \oplus \ker \psi \to N$, $(m,k) \mapsto \varphi(m) + k$, 其逆为 $n \mapsto (\psi(n), n - \varphi\psi(n))$, 故其为同构, 即 $M \oplus \ker \psi \cong N$, 且由此有 φ : $m \mapsto \varphi(m) \leftrightarrow (m,0)$, 此即嵌入 $i_M: M \mapsto M \oplus \ker \psi$. 最后,coker $\varphi \to \ker \psi$ 也有同构 $n + \operatorname{im} \varphi \mapsto n - \varphi\psi(n)$, 因此正合列分裂. 有下图所示:

$$0 \longrightarrow \underset{m}{M} \xrightarrow{\varphi} \underset{n=\varphi(m)}{N} \longrightarrow \underset{n+\operatorname{im}\varphi}{\operatorname{coker}} \varphi \longrightarrow 0$$

$$\downarrow^{\operatorname{id}_{M}} \qquad \qquad \downarrow \sim \qquad \qquad \downarrow \sim$$

$$0 \longrightarrow \underset{m}{M} \xrightarrow{i_{M}} \underset{(\psi(n), n-\varphi\psi(n))=(m,0)}{M} \longrightarrow \underset{n-\varphi\psi(n)}{\ker \psi} \longrightarrow 0$$

同调与蛇形引理 对链复形

$$M_{\bullet}: \cdots \xrightarrow{d_{i+2}} M_{i+1} \xrightarrow{d_{i+1}} M_i \xrightarrow{d_i} M_{i-1} \xrightarrow{d_{i-1}} \cdots$$

可定义其同调 (模) $H_i(M_{\bullet}) = \ker d_i / \operatorname{im} d_{i+1}$, 可见 $H_i(M_{\bullet}) = 0 \iff M_i$ 处正合. 对于链复形

$$M_{\bullet}: 0 \longrightarrow M_1 \stackrel{\varphi}{\longrightarrow} M_0 \longrightarrow 0$$

可见 $H_1(M_{\bullet}) \cong \ker \varphi, H_0(M_{\bullet}) \cong \operatorname{coker} \varphi$. 若其正合则同调平凡, 即 φ 是同构.

考虑两正合列, 其间有对应同态:

我们有蛇形引理,即存在正合列⁷²

$$0 \longrightarrow \ker \lambda \longrightarrow \ker \mu \longrightarrow \ker \nu \xrightarrow{\delta} \operatorname{coker} \lambda \longrightarrow \operatorname{coker} \mu \longrightarrow \operatorname{coker} \nu \longrightarrow 0$$

或

$$0 \longrightarrow H_1(L_{\bullet}) \longrightarrow H_1(M_{\bullet}) \longrightarrow H_1(N_{\bullet})$$

$$\delta$$

$$H_0(L_{\bullet}) \longrightarrow H_0(M_{\bullet}) \longrightarrow H_0(N_{\bullet}) \longrightarrow 0$$

 $^{^{72}}$ 若不今 α_1 , β_0 分别为单射与满射, 即去掉交换图左上角与右下角的 0, 则结论也需去掉正合列两端的 0. 这是蛇形引理更一般的版本.

蛇形引理的证明即对如上交换图的阐释.

- 1. 首先应注意到图中横纵列均为正合列. 仅需考虑第一行与第四行的正合性. 由 α_1 单与 β_0 满知 $\ker \lambda$ 与 $\operatorname{coker} \nu$ 处正合.
 - 对于 $\ker \mu$ 处,即证 $\alpha_1(\ker \lambda) = \ker \mu \cap \ker \beta_1 = \ker \mu \cap \operatorname{im} \alpha_1$. \subset : $\forall a \in \ker \lambda, \alpha_1(a) \in \operatorname{im} \alpha_1, \, \perp \mu \alpha_1(a) = \alpha_0 \lambda(a) = 0, \alpha_1(a) \in \ker \mu$. \supset : $\forall b \in \ker \mu \cap \operatorname{im} \alpha_1 \exists a \in L_1, b = \alpha_1(a), \mu(b) = \mu \alpha_1(a) = \alpha_0 \lambda(a) = 0, \, \perp \alpha_0 \mu \in \ker \lambda$.
 - 对于 $\operatorname{coker} \mu$ 处,由 $\alpha_0(\operatorname{im} \lambda) \subset \operatorname{im} \mu$ 知 $\bar{\alpha}_0: a + \operatorname{im} \lambda \mapsto \alpha_0(a) + \operatorname{im} \mu$ 良定, $\bar{\beta}_0$ 同理.即证 $\bar{\alpha}_0(\operatorname{coker} \lambda) = \ker \bar{\beta}_0$. \subset : $\forall a + \operatorname{im} \lambda \in \operatorname{coker} \lambda$, $\bar{\beta}_0 \bar{\alpha}_0(a + \operatorname{im} \lambda) = \beta_0 \alpha_0(a) + \operatorname{im} \nu = \operatorname{im} \nu$,因此 $\bar{\alpha}_0(a + \operatorname{im} \lambda) \in \ker \bar{\beta}_0$. \supset : $\forall b + \operatorname{im} \mu \in \ker \bar{\beta}_0$, $\beta_0(b) \in \operatorname{im} \nu$,故 $\exists c \in N_1, \nu(c) = \beta_0(b)$,又由 β_1 满知 $\exists d \in M_1, c = \beta_1(d)$,因此 $\beta_0(b) = \nu \beta_1(d) = \beta_0 \mu(d)$, $b \mu(d) \in \ker \beta_0 = \operatorname{im} \alpha_0$. 因此 $\exists a \in L_0, \alpha_0(a) = b \mu(d)$, $\bar{\alpha}_0(a + \operatorname{im} \lambda) = b + \operatorname{im} \mu$.

故该两处正合, 因此得证.

- 2. $\delta: \ker \nu \to \operatorname{coker} \lambda, a \mapsto \alpha_0^{-1} \mu \beta_1^{-1}(a) + \operatorname{im} \lambda$ 的定义. 如图: $\forall a \in \ker \nu$, 其在嵌入至 N_1 中后由 β_1 满知有原像 $b \in M_1, a = \beta_1(b)$. 由 $\beta_0 \mu(b) = \nu \beta_1(b) = \nu$ (a) = 0 知 $\mu(b) \in \ker \beta_0 = \operatorname{im} \alpha_0$, 故有 $c \in L_0, \mu(b) = \alpha_0(c)$. 最后令 $\delta(a) = c + \operatorname{im} \lambda$ 即可. 对于其良定性,首先由 α_0 单知关于 b 的 c 唯一,而考虑 a 的不同原像 $b, b' \in M_1, b b' \in \ker \beta_1 = \operatorname{im} \alpha_1$,即有 $g \in L_1, b b' = \alpha_1(g), \mu(b b') = \mu \alpha_1(g) = \alpha_0 \lambda(g)$,即 $c c' = \lambda(g)$,故可知不同的原像 b 仍使 δ 的像 $c + \operatorname{im} \lambda$ 不变.
- 3. 最后说明 $\ker \nu$ 与 $\operatorname{coker} \lambda$ 处正合.
 - 对于 $\ker \nu$, 即证 $\beta_1(\ker \mu) = \ker \delta. \subset \forall a \in \ker \mu, \delta \beta_1(a) = \alpha_0^{-1}\mu(a) + \operatorname{im} \lambda = \operatorname{im} \lambda. \supset \forall a \in \ker \delta, \delta(a) = \operatorname{im} \lambda,$ $\alpha_0^{-1}\mu\beta_1^{-1}(a) \in \operatorname{im} \lambda$, $\forall a \in \ker \lambda, \beta_1(a) = \alpha_0\lambda(b) = \mu\alpha_1(b), \beta_1^{-1}(a) - \alpha_1(b) \in \ker \mu, \beta_1(\beta_1^{-1}(a) - \alpha_1(b)) = a.$
 - 对于 coker λ , 即证 im $\delta = \ker \bar{\alpha}_0$. \subset : $\forall a \in \ker \nu, \bar{\alpha}_0 \delta(a) = \mu \beta_1^{-1}(a) + \operatorname{im} \mu = \operatorname{im} \mu$. \supset : $\forall c + \operatorname{im} \lambda \in \ker \bar{\alpha}_0, \alpha_0(c) \in \operatorname{im} \mu$, 即 $\exists b \in M_1, \alpha_0(c) = \mu(b)$,故有 $a = \beta_1(b), \nu(a) = \beta_0 \mu(b) = \beta_0 \alpha_0(c) = 0, a \in \ker \nu$,由 δ 定义知 $\delta(a) = c + \operatorname{im} \lambda$.

蛇形引理有直接推论: 若 μ 满且 ν 单,则 λ 满且 ν 是同构. 73 以及短五引理: λ , ν 均为同构,则 μ 也是同构. 由此可见分裂正合列的定义中, $M \cong M_1 \oplus M_2$ 的同构可由其它两同构推出.

正合列的应用

• 若有正合列

$$\cdots \longrightarrow L \longrightarrow M \longrightarrow N \longrightarrow \cdots$$

且 L, N 是 Noether 模, 则 M 也是.⁷⁴

● 对于 *R*-模 *L*, *M*, *N*, *P* 有正合列

$$0 \longrightarrow L \xrightarrow{\alpha} M \xrightarrow{\beta} N \longrightarrow 0$$

 $^{^{73}}$ 此条件下即仅有 $0 \longrightarrow \ker \lambda \longrightarrow \ker \mu \longrightarrow 0$ $\underset{\ker \nu}{\longrightarrow} coker \lambda \longrightarrow 0$ $\underset{\operatorname{coker} \mu}{\longrightarrow} coker \nu \longrightarrow 0$, 从而结论显然.

 $^{^{74}}$ 注意到 $N \cong M/L$ 及 Noether 模的等价条件.

其可诱导 (交换群,R 交换时则为模) 正合列⁷⁵

$$0 \longrightarrow \operatorname{Hom}_R(N,P) \stackrel{\varphi \mapsto \varphi \beta}{\longrightarrow} \operatorname{Hom}_R(M,P) \stackrel{\psi \mapsto \psi \alpha}{\longrightarrow} \operatorname{Hom}_R(L,P)$$

而原正合列分裂时, 该诱导的正合列末尾有 \longrightarrow 0, 即最右端同态为满射. 而 N 为自由模时, 原正合列分裂. ⁷⁶ • 四引理 (four-lemma) 与五引理 (five-lemma): 考虑如下交换图, 其中横行均为正合列.

四引理即 $(1)\alpha$ 满且 β , δ 单,则 γ 单; $(2)\epsilon$ 单且 β , δ 满,则 γ 满. 77 (其均不涉及第五个态射) 五引理即其直接推论: β , δ 同构, α 满且 ϵ 单,则 γ 同构.

• 九引理 (nine-lemma): 考虑如下交换图, 其中横行均为正合列.

则 (1) 左端两列或右端两列正合,则剩下一列也正合;(2) 若左右两列正合,则 α 单且 β 满,而中间列为链复形时则同样正合;(3) 中间列为链复形时其它列也是,此时任意两列正合时剩下一列也正合. 其对一般链复形也成立.

 $^{^{75}}$ 首先证明 $a:\varphi\mapsto\varphi\beta$ 是单射,仅需考虑 $\varphi\beta=0=0$ \Longrightarrow $\varphi=0$. 对于 $\mathrm{Hom}_R(M,P)$ 处的正合,即证 $\mathrm{im}\,a=\ker b$,一方面 $\psi\in\mathrm{im}\,a,b(\psi)=\psi\alpha=\varphi\beta\alpha=0$,另一方面由 $N\cong\mathrm{coker}\,\alpha$ 的泛性质,对任意 $\psi\in\ker b$ 有唯一 $\varphi,a(\varphi)=\varphi\beta=\psi$.

 $^{^{76}}$ 即证此时 β 有右逆即可使正合列分裂. 由 $N=R^{\oplus A}$ 考虑 $\beta(m_a)=a, m_a$ 总存在 (但不唯一), 故可构造 $\sigma:N\to M, n=\sum_{a\in A}r_aa\mapsto$

 $[\]sum_{a} r_a m_a, \beta \circ \sigma = \mathrm{id}_N$, 故有右逆.σ 的良定源于 N 自由, 即 $n \in N$ 可被分解为 a 的唯一线性组合.

 $^{^{77}(1)}$ 考虑 $c_1 \in C_1, \gamma(c_1) = 0$, 则 $g_2\gamma(c_1) = \delta f_2(c_1) = 0$, 由 δ 单知 $c_1 \in \ker f_2 = \operatorname{im} f_3$, 故有 $b_1 \in B_1, c_1 = f_3(b_1), g_3\beta(b_1) = 0$. 故 $\beta(b_1) \in \ker g_3 = \operatorname{im} g_4$, 故有 $a_1 \in A_1, \beta f_4(a_1) = g_4\alpha(a_1) = \beta(b_1)$, 由 β 单知 $f_4(a_1) = b_1, c_1 = f_4f_3(a_1) = 0$, 故 γ 单.

⁽²⁾ 对 $c_0 \in C_0$ 有 $d_1 \in D_1$, $\delta(d_1) = g_2(c_0)$, 而 $\epsilon f_1(d_1) = g_1 \delta(d_1) = g_1 g_2(c_0) = 0$, 由 ϵ 单知 $d_1 \in \ker f_1 = \operatorname{im} f_2$, 故有 $c_1 \in C_1$, $f_2(c_1) = d_1$, 即 $g_2(c_0) = \delta(d_1) = \delta f_2(c_1) = g_2 \gamma(c_1)$, $c_0 - \gamma(c_1) \in \ker g_2 = \operatorname{im} g_3$, 故有 $b_1 \in B_1$, $c_0 - \gamma(c_1) = g_3 \beta(b_1) = \gamma f_3(b_1)$, $c_0 = \gamma(c_1 + f_3(b_1)) \in \operatorname{im} \gamma$.