Generacja sygnałów

- 1. Napisać skrypt *imp_prost.m* generujący impuls prostokątny o czasie trwania *N*, przesunięciu *c*, szerokości *b*. Wielkości te wyrażone są liczbą próbek (przykładowo *N*=100, *c*=50, *b*=20). **Uwaga:** Wykorzystać funkcje *zeros*, *ones*
- 2. Napisać skrypt sinus 1.m generujący sygnał sinusoidalnie zmienny o częstotliwości f [Hz], czasie trwania Td [s], częstotliwości próbkowania fp [Hz]. Na okoliczność testów przyjąć: f=10Hz, fp=100Hz, Td=1s.
- 3. Napisać skrypt sinus2.m generujący sygnał sinusoidalnie zmienny o częstotliwości f [Hz], czasie trwania wyrażonym liczbą próbek N, częstotliwości próbkowania fp [Hz]. Na okoliczność testów przyjąć: f=10Hz, fp=100Hz, N=200.
- 4. Częstotliwość chwilowa sygnału o liniowo narastającej częstotliwości ω_i od pewnej częstotliwości początkowej ω_0 z prędkością $k = \Delta \omega / \Delta T [rad/s^2]$ określona jest:

$$\frac{d\,\varphi}{dt} = \omega_i(t) = \omega_0 + kt$$

Wykazać, że sygnał dyskretny, którego częstotliwość chwilowa jest określona jak powyżej dany jest zależnością

$$x(n) = \sin\left(\omega_0 \frac{n}{f_p} + \frac{1}{2}k\left(\frac{n}{f_p}\right)^2 + \varphi_0\right).$$

Następnie, napisać skrypt $sinus_lin_mod.m$ generujący sygnał sinusoidalnie zmienny o <u>liniowo</u> narastającej częstotliwości z szybkością 50Hz/0.01s, liczba próbek N=200. Częstotliwość początkowa $f_0=50$ Hz, częstotliwość próbkowania $f_p=10$ kHz, faza początkowa $\phi_0=0$.

Uwaga: w podanym wzorze na x(n) współczynnik k, określający szybkość liniowego narastania częstotliwości, wyrażony jest w $[rad/s^2]$, zaś w zadaniu w $[1/s^2]$.

(krzywa: niebieska – sygnał o częstotliwości f_0 , zielona – sygnał x(n))

5. Częstotliwość chwilowa sygnału odstraja się od ω_0 o pewną wartość zwaną **dewiacją częstotliwości** Δ_{ω} w sposób sinusoidalnie zmienny z częstotliwością ω_m :

$$\omega_i(t) = \omega_0 + \Delta_\omega \sin(\omega_m t)$$

Wykazać, że sygnał o tak zmieniającej się częstotliwości chwilowej dany jest wzorem:

$$x(t) = \sin(\varphi(t)), \quad \varphi(t) = \omega_0 t - \frac{\Delta_{\omega}}{\omega_m} \cos(\omega_m t) + \frac{\Delta_{\omega}}{\omega_m} + \varphi(0)$$

Napisać skrypt $sinus_sin_mod.m$ generujący sygnał sinusoidalny z sinusoidalnie modulowaną częstotliwością i liczbie próbek N=800. Częstotliwość spoczynkowa $f_0=100$ Hz, dewiacja częstotliwości $\Delta_f=50$ Hz, częstotliwość sygnału modulującego $f_m=20$ Hz, częstotliwość próbkowania $f_p=10000$ Hz. Uwaga: w powyższym: $\Delta_\omega=2\pi\,\Delta_f$.

(krzywa: czarna – sygnał x(n), czerwona – sygnał modulujący o częstotliwości f_m)

6. Napisać skrypt $sinus_exp.m$ generujący sygnał sinusoidalnie zmienny o częstotliwości f=10Hz i wykładniczo malejącej amplitudzie, ze stałą czasową T=1s, czas trwania wygenerowanego sygnału Td=2 sekundy. Narysować styczną do obwiedni sygnału w punkcie t=0. Wykorzystać poniższe równania, dobrać częstotliwość próbkowania.

$$x(t) = A e^{-t/T} \sin(2\pi f t), \quad s(t) = A(1 - \frac{1}{T}t)$$

(krzywa: czarna – sygnał x(n), niebieska – obwiednia, czerwona – styczna)

7. Napisać skrypt *ddirac.m* rysujący przybliżenie impulsu Diraca (poprzez funkcję wykładniczą), wyznaczyć pole powierzchni pod wykresem impulsu. W zadaniu należy wykorzystać funkcję $\delta(t,\tau)$, pokazaną poniżej. Przy dyskretyzacji funkcji $\delta(t,\tau)$ przyjąć N=1000 jako liczbę próbek oraz $\tau=10^{-17}$. Dobrać krok dyskretyzacji osi czasu, tak by na wykresie uwidocznić fragment funkcji odpowiadający odcinkowi czasu t o długości ok $5\times\tau$ (patrz rysunek poniżej).

$$\delta(t,\tau) = \frac{1}{\tau} e^{-\pi t^2/\tau^2}$$

Ilustracja zasady całkowania numerycznego metodą prostokątów.

Funkcja aproksymująca $\delta(t,\tau)$ dla $\tau=4\times10^{-17}$ (zielona), $\tau=2\times10^{-17}$ (niebieska) oraz $\tau=10^{-17}$ (czerwona)