IMAGE-BASED CHARACTER RETRIEVAL FROM MOVIES

Instructor PhD. Mai Tiến Dũng

Nguyễn Nguyên Khôi – 21521009 Đỗ Minh Khôi - 21521007

Table of Contents

1 Problem introduction

2 Methods

3 Experiment

4 Challenges

5 Demo

- Input/Output
- Applications

Input:

- A database (index) of a movie
- A set of query images of a character in that movie

Output:

• All shots in which the character appear

Constraint:

- Not a cartoon movie
- Query images must be cut from the movie

Requirements:

- The result must cover all true shots, including ones in which the person is not clear (faces are unable to detect, too much illumination, etc.)
- As many relevant shots retrieved as possible

Example: Like Me (2017)

• Input:

• Output:

Applications:

- Quickly rate a character's performance without watching the entire movie
- Plays a crucial role in key-event summarization task: retrieving important shots from a movie

2. Methods

- Person detection: YOLOv8
- Feature extraction:
 - o DINO v2
 - OpenAl CLIP
- Building index for each movie

Person detection: YOLOv8

YOLOv8-l (Jan 10, 2023 by Ultralytics):

- For person detection in frame
- Input: A single frame (RGB image)
- Output: bounding boxes of persons in frame
- No. of parameters: ~43.7M parameters

Feature extraction: DINOv2

DINOv2 (Maxime et al. 2023):

- A pre-trained visual model with different Vision Transformers architectures
- Learn visual features of images that can be used for various tasks: classification, semantic segmentation, instance retrieval, depth estimation, etc.
- Pre-training curated data: LVD-142M, comprised of ImageNet-22k, ImageNet-1k/train, Google Landmarks, Caltech-101/train, Food-101/train, etc + uncurated data
- Paper: DINOv2: Learning Robust Visual Features without Supervision

Feature extraction: DINOv2

dinov2-small:

- No. of parameters: ~ 22.1 million
- Embedding dimension: (257, 384), data type: float32
- This embedding is still quite large
 - → replace each column with its mean value
 - \rightarrow new embedding dimension: (1, 384)

Feature extraction: OpenCLIP

Contrastive Language-Image Pre-Training (CLIP) (Alec et al. 2021):

- Trained to understand images and text together
- Associate images with their textual descriptions
- Interpret many visual concepts in multiple languages
- Tasks: zero-shot classification, linking images to phrases without re-training
- Applications: image descriptions, image classification, content moderation, image searching, etc.

Feature extraction: OpenCLIP

clip-vit-base-patch16:

- ViT-B/16 Transformer as an image encoder (patch size=16x16)
- Masked self-attention Transformer as a text encoder
- Trained on publicly available image-caption data, crawled from various websites
- Paper: Learning Transferable Visual Models From Natural Language Supervision

Facebook AI Similarity Search (Faiss):

- Allows for efficient search of vectorized multimedia documents similar to a given set of vectorized query documents
- Vectors can be compared using L2 (Euclidean) distances or dot products
- Similarity: Lowest L2 or highest normalized dot product (cosine)
- Supports quantizing giant documents for smaller storage and faster search (e.g. HNSW, NSG)

Facebook AI Similarity Search:

$$L2(u,v) = \sqrt{\sum (ui - vi)^2}$$

with
$$u = (u1, u2, u3, ... um), v = (v1, v2, u3, ... um)$$

• Index: IndexFlatL2

Source: github.com/KhaLee2307/image-retrieval

On-line Stage

- Persons' info is stored in a .csv file
- Persons in all frames are represented as
 - feature vectors, stored in an array
- Each vector's position in the array is

recorded and shown in the "Person"

column

	Person	Shot	Scene	Full
	0	1	1	losing_ground-1-shot_1
	1	1	1	losing_ground-1-shot_1
3	2	1	1	losing_ground-1-shot_1
	3	1	1	losing_ground-1-shot_1
	4	1	1	losing_ground-1-shot_1
	5	1	1	losing_ground-1-shot_1
	6	1	1	losing_ground-1-shot_1
3	7	1	1	losing_ground-1-shot_1
	8	1	1	losing_ground-1-shot_1
,	9	1	1	losing_ground-1-shot_1
	10	1	1	losing_ground-1-shot_1
	11	1	1	losing_ground-1-shot_1
	12	1	1	losing_ground-1-shot_1
	13	1	1	losing_ground-1-shot_1
	1//	1	1	losing ground-1-shot 1

3. Experiment

- Dataset: TRECVID_MSUM_2022
- Metrics: precision & recall

Dataset: TRECVID_MSUM_2022:

Movie	No. scenes	No. shots	No. frames
Like Me	28	870	22440
Memphis	47	259	21650
Losing Ground	40	302	22600
Liberty Kid	56	1048	31803
Calloused Hands	58	965	26774

Dataset: TRECVID_MSUM_2022:

• frames_5fps:

losing_ground-2shot_2-frame_0.j pg

losing_ground-2shot_2-frame_1.j pg

losing_ground-2shot_2-frame_2.j pg

losing_ground-2shot_2-frame_3.j pg

losing_ground-2shot_2-frame_4.j pg

• All frames → All persons → feature vectors (DINOv2 or CLIP) → saved to an array → saved to an index, all persons stored in a {movie_name}_{db}.csv file

Dataset: TRECVID_MSUM_2022:

Query images for Losing Ground:

Sara:

sara_1.png

sara_2.png

sara_3.png

sara_4.png

sara_5.png

Images → persons → feature vectors (DINOv2 or CLIP) → saved to an array

Ground truth: example of Sara in Losing Ground:

1	Scene	Shot	Full
2	1	1	losing_ground-1-shot_1
3	1	3	losing_ground-1-shot_3
4	1	5	losing_ground-1-shot_5
5	1	7	losing_ground-1-shot_7
6	1	9	losing_ground-1-shot_9
7	1	10	losing_ground-1-shot_10
8	1	12	losing_ground-1-shot_12
9	1	14	losing_ground-1-shot_14
10	1	16	losing_ground-1-shot_16
11	1	17	losing_ground-1-shot_17
12	1	18	losing_ground-1-shot_18
13	2	1	losing_ground-2-shot_1
14	2	2	losing_ground-2-shot_2
15	2	3	losing_ground-2-shot_3
16	2	4	losing_ground-2-shot_4
17	2	5	losing_ground-2-shot_5
18	2	6	losing_ground-2-shot_6
19	2	7	losing_ground-2-shot_7
20	2	Я	losing ground-2-shot 8

• Metrics:

• Precision:
$$\frac{number\ of\ true\ retrieved\ shots}{number\ of\ retrieved\ shots}$$

$$\cdot \quad \text{Recall} = \frac{\text{number of true retrieved shots}}{\text{number of relevant shots}}$$

 $_{\circ}$ $k=\mathrm{top}$ number of most relevant persons in the movie

Experiment on Kiya and Burt in Like Me:

• Kiya:

• Burt:

Experiment on Memphis (Willis) and Losing Ground (Sara):

• Memphis:

• Losing Ground:

Experiment on Derrick in Liberty Kid:

• Derrick:

Experiment on Debbie and Byrd in Calloused Hands:

• Debbie:

• Byrd:

DINOv2

DINOv2

4. Challenges

Challenges

• A lot of frames in which the character does not have a clear appearance (too much illumination, blur, deformed face, masked face, etc.)

• Character's info in the query set may be not enough (lack of images)

• Retrieving shots relevant to a specific query image

→ Low precision and low recall

5. Demo

References:

[1] Hugging face: dinov2-small

[2] Hugging face: openai-clip-vit-base-patch16

[3] Faiss: A library for efficient similarity search

[4] Image similarity with DINOv2 and Faiss

