National Computer Education Accreditation Council NCEAC

NCEAC.FORM.001-C

INSTITUTION National University of Computer and Emerging Sciences, Karachi Campus

PROGRAM (S) TO BE EVALUATED

BS (CS), Fall 2024

A. Course Description

(Fill out the following table for each course in your computer science curriculum. A filled out form should not be more than 2-3 pages.)

Course Code	EE-2003			
Course Title	Computer Organization and Assembly Language			
Credit Hours	3 + 1			
Prerequisites by Course(s) and Topics	ITC, DLD			
Assessment Instruments with Weights (homework, quizzes, midterms, final, programming assignments, lab work, etc.)	Midterms $15 \times 2 = 30 \text{ marks}$ Assignments 10 marks Quiz 10 marks Final Exam 50 marks			
Course Coordinator	Mr. Shoaib Rauf			
URL (if any)				
Current Catalog Description				
Textbook (or Laboratory Manual for Laboratory Courses)	Assembly Language for Intel Based Computers K.Irvine 6 th Edition MIPS Assembly Language Programming by Ed Jorgensen, Version 1.1.35 April 2018			
Reference Material	Computer organization and design: the hardware/software interface by David A. Patterson and John L. Hennessy Computer Organization & Embedded Systems Hamacher et al. 6 th Ed.			
Course Goals	 Programming Methodology of low-level languages How to access computer hardware directly Overview of a user-visible architecture (of Intel 80x86 processors) Intel 80x86 instruction set, assembler directives, macro, etc. How programs interact with the operating system for various services including memory management and input/output services How is it possible to interface high-level language and low-level language modules 			

National Computer Education Accreditation Council NCEAC

NCEAC.FORM.001-C

Topics Covered in the Course, with Number of Lectures on Each Topic (assume 15-week instruction and onehour lectures) Week 1: Introduction to Basic Concepts, Intel 80x86 Processor Architecture Basic microcomputer architecture

CLO₁

Week 2: Instruction execution cycle, memory management, input and output systems

CLO₁

Week 3: Assembly Language Fundamentals: Assembling, Linking and debugging, defining constants and variables, Real and Protected mode Addressing and Programming

CLO₂

Week 4: Data transfer and Arithmetic Instructions, Addressing Modes CLO2

Week 5: Operators and directives, Introduction to control transfer instructions, Arrays and loops, (Addressing modes Contd.) CLO2

Week 6: FIRST MID TERM EXAMINATION

Week 7: Procedures and Stack operations, Runtime stack, PUSH and POP instructions.

CLO₄

Week 8: Conditional Processing Boolean and comparison instruction, conditional jumps, conditional loop structures, high-level language constructs CLO2

Week 9: Conditional Processing (Contd.) Boolean and comparison instruction, conditional jumps, conditional loop instructions, high-level language constructs

CLO₂

Week 10: Integer Arithmetic

Shift & Rotate, Multiplication & Division instructions, Extended Addition & Subtraction

CLO₂

Week 11: SECOND MID TERM EXAM

Week 12: Advanced Procedures – Introduction and Examples:

Stack Frames, Recursion, INVOKE, ADDR, PROC, PROTO Directives CLO1,CLO2, **CLO4**

Week 13: String and Arrays

String primitive Instructions, Two dimensional array

CLO2

National Computer Education Accreditation Council NCEAC

NCEAC.FORM.001-C

	Week 14: Machine Language Translation Instruction Formats, encoding an Instruction Set and Modes of Addressing, Translation and Working of an Assembler, Map File and Memory Map CLO3 High level language Interfacing Introduction, .model directive, Inline Assembly Code, Procedures Linking to an external library CLO5 Week 15 and 16: MIPS Architecture and Assembly Programming; Introduction to MIPS Assembly CISC vs RISC ILP: Pipelining, Hazards CLO 1 and CLO2			
Laboratory Projects/Experiments	Lab manual available separately			
Programming Assignments Done in the Course	4 Assignments will	be given on the §	google classroom.	
Class Time Spent on (in credit hours)	Theory	Problem Analysis	Solution Design	Social and Ethical Issues
	20	15	15	5
Oral and Written Communications	Every student is recthan 10 pages.	quired to submit a	project along with its	report of not more

PLO	Program Learning Outcome (PLO) Statement		
02	Problem Analysis: Ability to identify, formulate, research literature, and analyze		
	complex engineering problems reaching substantiated conclusions using first		
	principles of mathematics, natural sciences and engineering sciences.		
05	Modern Tool Usage: Ability to create, select and apply appropriate techniques,		
	resources, and modern engineering and IT tools, including prediction and		
	modeling, to complex engineering activities, with an understanding of the		
	limitations.		

CLO	Course Learning Outcome (CLO)	Domain	Taxonomy Level	PLO	Tools
01	Illustrate micro-architectures of x86 and RISC processors	Cognitive	3	05	A1, Q1, M1, F
02	Create basic assembly code using different type of addressing modes in x86 & RISC ISAs to solve simple-moderate problems	Cognitive	4	02	A2, M1, F
03	Apply translation of machine instructions into binary code and visa versa.	Cognitive	5	05	A2, A3, Q1, M1, M2, F
04	Illustrate use of stack during a parametrized function/procedure call that uses local variables.	Cognitive	5	05	A3, M2, F
05	Justify need to use assembly code along with a high-level language code	Cognitive	5	05	Q2,A3, M2, F
Tool: $A = Assignment$, $Q = Quiz$, $M = Midterm$, $F = Final$					