

内容

1 三相电源与三相电路

相线关系

2 对称三相电路的分析

抽单相

3 不对称三相电路分析简介

4 三相电路的功率

三相功率的计算

本讲重难点

- Y接和 △接对称三相电路的相 线关系
- 对称三相电路的抽单相法
- 测量三相电路有功功率的两表法

三相电动势的产生

- 定子中放三个线圈
- 三线圈空间位置相间120°

首端	末端
Α	X
В	Y
С	Z

转子装有磁极并以 的角速度旋转。三个线圈中便产生三个单相正弦电动势。

三相交流发电机原理示意图

三相电动势的三角函数表示式

$$e_{A} = E_{m} \sin \omega t$$

$$e_{B} = E_{m} \sin(\omega t - 120^{\circ})$$

$$e_{C} = E_{m} \sin(\omega t - 240^{\circ})$$

$$= E_{m} \sin(\omega t + 120^{\circ})$$

三相电动势的特征:

大小相等, 频率相同, 相位互差120°

三相电动势波形图

三相电动势的相量表示式

$$\begin{cases} \dot{E}_{\rm A} = E \angle 0^{\circ} \\ \dot{E}_{\rm B} = E \angle -120^{\circ} \\ \dot{E}_{\rm C} = E \angle 120^{\circ} \end{cases}$$

$$\dot{E}_{A} + \dot{E}_{B} + \dot{E}_{C} = 0$$

1、三相电源与三相电路

(1) 对称三相电源

(2) 对称三相电源连接

星形联接(Y接)

三角形联接(Δ接)

名词介绍:

(1) 端线(火线、相线) (2) 中线(零线)

 $U_{
m BC}$

- (3) 三相三线制与三相四线制。
- (4) 线电流 \dot{I}_A , \dot{I}_B , \dot{I}_C
- (5) 线电压 \dot{U}_{AB} , \dot{U}_{BC} , \dot{U}_{CA}
- (6) 相电流
- (7) 相电压 \dot{U}_{A} , \dot{U}_{B} , \dot{U}_{C}

(3) 对称三相电源的相线关系

$$\dot{U}_{\mathrm{AB}} = \dot{U}_{\mathrm{AN}} - \dot{U}_{\mathrm{BN}} = \sqrt{3}U \angle 30^{\mathrm{o}}$$

$$\dot{U}_{\rm BC} = \dot{U}_{\rm BN} - \dot{U}_{\rm CN} = \sqrt{3}U \angle -90^{\circ}$$

$$\dot{U}_{\mathrm{CA}} = \dot{U}_{\mathrm{CN}} - \dot{U}_{\mathrm{AN}} = \sqrt{3}U \angle 150^{\circ}$$

设
$$\dot{U}_{\rm AN}$$
= $\dot{U}_{\rm A}$ = $U \angle 0^{\circ}$
 $\dot{U}_{\rm BN}$ = $\dot{U}_{\rm B}$ = $U \angle -120^{\circ}$
 $\dot{U}_{\rm CN}$ = $\dot{U}_{\rm C}$ = $U \angle 120^{\circ}$

- 线电压对称
- $U_{\rm L} = \sqrt{3}U_{\rm P}$
- 线电压相位领先对应相电压30°
- 线电流=相电流

(b) ∆接 (x与B相连)

设
$$\dot{U}_{\mathrm{A}} = U \angle 0^{\mathrm{o}}$$

$$\dot{U}_{\rm B} = U \angle -120^{\rm o}$$

$$\dot{U}_{\rm C} = U \angle 120^{\circ}$$

$$\dot{U}_{AB} = \dot{U}_{A} = U \angle 0^{\circ}$$

$$\dot{U}_{BC} = \dot{U}_{B} = U \angle -120^{\circ}$$

$$\dot{U}_{\rm CA} = \dot{U}_{\rm C} = U \angle 120^{\circ}$$

线电压=相电压

(4) 对称三相负载的相线关系

设
$$\dot{U}_{\mathrm{AN}} = \dot{U}_{\mathrm{A}} = U \angle 0^{\circ}$$
 $\dot{U}_{\mathrm{BN}} = \dot{U}_{\mathrm{B}} = U \angle -120^{\circ}$
 $\dot{U}_{\mathrm{CN}} = \dot{U}_{\mathrm{C}} = U \angle 120^{\circ}$

对Y接法的对称电源讨论得 出的结论对Y接法的对称负 载一样成立。

$$\dot{U}_{\mathrm{AB}} = \dot{U}_{\mathrm{AN}} - \dot{U}_{\mathrm{BN}} = \sqrt{3}U \angle 30^{\mathrm{o}}$$

$$\dot{U}_{\mathrm{BC}} = \dot{U}_{\mathrm{BN}} - \dot{U}_{\mathrm{CN}} = \sqrt{3}U \angle -90^{\circ}$$

$$\dot{U}_{\mathrm{CA}} = \dot{U}_{\mathrm{CN}} - \dot{U}_{\mathrm{AN}} = \sqrt{3}U \angle 150^{\circ}$$

•
$$U_{\rm L} = \sqrt{3}U_{\rm P}$$

- 线电压相位领先对应相电压30°
- 线电流=相电流

线电流

$$\dot{I}_{A} = \dot{I}_{ab} - \dot{I}_{ca} = \sqrt{3} \, \dot{I}_{ab} \angle -30^{\circ}$$

$$\dot{I}_{B} = \dot{I}_{bc} - \dot{I}_{ab} = \sqrt{3} \, \dot{I}_{bc} \angle -30^{\circ}$$

$$\dot{I}_{C} = \dot{I}_{ca} - \dot{I}_{bc} = \sqrt{3} \, \dot{I}_{ca} \angle -30^{\circ}$$

线电压(即相电压)对称

$$\dot{I}_{\mathrm{ab}} = rac{\dot{U}_{\mathrm{ab}}}{Z} \quad \dot{I}_{\mathrm{bc}} = rac{\dot{U}_{\mathrm{bc}}}{Z} \quad \dot{I}_{\mathrm{ca}} = rac{\dot{U}_{\mathrm{ca}}}{Z}$$

相电流对称

$$\dot{I}_{ab} = I \angle 0^{\circ}$$
 $\dot{I}_{bc} = I \angle -120^{\circ}$ $\dot{I}_{ca} = I \angle 120^{\circ}$

(b) ∆接

$$\dot{I}_{A} = \dot{I}_{ab} - \dot{I}_{ca} = \sqrt{3} \, \dot{I}_{ab} \angle -30^{\circ}$$
 $\dot{I}_{B} = \dot{I}_{bc} - \dot{I}_{ab} = \sqrt{3} \, \dot{I}_{bc} \angle -30^{\circ}$
 $\dot{I}_{C} = \dot{I}_{ca} - \dot{I}_{bc} = \sqrt{3} \, \dot{I}_{ca} \angle -30^{\circ}$

- 线电流对称
- $I_{\rm L} = \sqrt{3}I_{\rm P}$
- 线电流落后对应相电流30°
- 线电压=相电压

(5) 三相电路

三相制电力系统:由三个频率相同、相位互差120°的正弦交流电源 供电的系统。

三相制优点: 见课后推送的补充材料

对称三相电路: 由对称三相电源和对称三相负载联接而成

对称三相负载:三相负载阻抗模相等,阻抗角相同

不对称 — 程度小(由系统保证) 不对称 — 情况很多

2 对称三相电路的分析

设:
$$\dot{U}_{\rm A} = U \angle 0^{\circ}$$

$$\dot{U}_{\rm B} = U \angle -120^{\circ}$$

$$\dot{U}_{\rm C} = U \angle +120^{\circ}$$

2 对称三相电路的分析

设:
$$\dot{U}_{\rm A} = U \angle 0^{\circ}$$

$$\dot{U}_{\rm B} = U \angle -120^{\circ}$$

$$\dot{U}_{\rm C} = U \angle +120^{\circ}$$

$$\left(\frac{3}{Z+Z_1} + \frac{1}{Z_N}\right)\dot{U}_{nN} = \frac{\dot{U}_A + \dot{U}_B + \dot{U}_C}{Z+Z_1} = 0$$

$$\dot{U}_{
m nN}=0$$

$$\dot{I}_{A} = \frac{\dot{U}_{A}}{Z + Z_{1}}$$
 $\dot{I}_{B} = \frac{\dot{U}_{B}}{Z + Z_{1}}$ $\dot{I}_{C} = \frac{\dot{U}_{C}}{Z + Z_{1}}$

电源中点与负载中点等电位

- (1) 三个单相可单独计算
- $(2) \dot{I}_{A}$, \dot{I}_{B} , \dot{I}_{C} 对称

因此可只抽A相计算抽单相

■ 第17讲 | 2、对称三相电路的分析

已知对称三相电源的 线电压为380V,对称 负载 $Z = 100 \angle 30^{\circ}\Omega$ 求线电流。

解: 连接中线 N-n, 取A相为例计算

由对称性,得

设
$$\dot{U}_{AB} = 380 \angle 30^{\circ} \text{V}$$
 则 $\dot{U}_{AN} = 220 \angle 0^{\circ} \text{V}$

$$\dot{I}_{A} = \frac{\dot{U}_{AN}}{Z} = \frac{220 \angle 0^{\circ}}{100 \angle 30^{\circ}} = 2.2 \angle -30^{\circ} A$$

$$\dot{I}_{\rm B} = 2.2 \angle -150^{\rm o} \, {\rm A}$$

$$\dot{I}_{\rm C} = 2.2 \angle 90^{\rm o} \, {\rm A}$$

第17讲 | 2、对称三相电路的分析

已知对称三相电源的 线电压为380V,对称 负载 $Z = 100 \angle 30^{\circ}\Omega$ 求线电流。

解1 取A相求相电流 \dot{I}_{ab}

$$\dot{U}_{AB}$$
 \dot{U}_{AB}
 \dot{U}_{AB}
 \dot{U}_{AB}
 \dot{U}_{AB}

设 $\dot{U}_{AB} = 380 \angle 0^{\circ} \text{ V}$

$$\dot{I}_{ab} = \frac{U_{AB}}{Z} = \frac{380\angle 0^{\circ}}{100\angle 30^{\circ}} = 3.8\angle -30^{\circ} A$$

$$\dot{I}_{A} = \sqrt{3} \times 3.8 \angle -30^{\circ} -30^{\circ} = 6.58 \angle -60^{\circ} A$$

$$\dot{I}_{\rm B} = 6.58 \angle -180^{\circ} = -6.58 A$$

由对称性,得 $\dot{I}_{\rm C} = 6.58 \angle 60^{\circ} \, {\rm A}$

▶ 第17讲 2、对称三相电路的分析

解2 化为Y-Y

将△接电源用Y接电源替代,保证其线电压相等

将负载∆-Y变换

$$\dot{U}_{\rm BN} = \frac{1}{\sqrt{3}} \dot{U}_{\rm BC} \angle -30^{\rm o}$$

$$\dot{U}_{\rm CN} = \frac{1}{\sqrt{3}} \dot{U}_{\rm CA} \angle -30^{\circ}$$

连接中线N-n, 取A相为例计算

哪种方法好? 为什么?

例3 如图对称三相电路,电源线电压为380V, $|Z_1|$ =10 Ω , $\cos \varphi_1$ =0.6(滞后), Z_2 = $-{
m j}50\Omega$, $Z_{
m N}$ =1+ ${
m j}2\Omega$ 。求 $\dot{I}_{
m A}$

■ 第17讲 2、对称三相电路的分析

负载进行∆—Y变换

短路中线阻抗Zn

连接电源和负载中点

画A相计算电路

设 $\dot{U}_{AB} = 380 \angle 30^{\circ} \text{ V}$

$$\dot{U}_{\rm AN} = 220 \angle 0^{\rm o} \rm V$$

$$\dot{I}_{A} = 13.9 \angle -18.4^{\circ} A$$

其余课后计算

对称三相电路的一般计算方法

- 1) 将所有三相电源、负载都化为等值 Y 连接;
- 2) 连接各负载和电源中点,中线上若有阻抗则不计;
- 3) 画出 A 相计算电路, 求出 A 相的电压、电流;
- 4) 根据 △ 接、Y 接时线量、相量之间的关系和对称性,求出原电路其他相的电流、电压。

3、不对称三相电路分析简介

(1) 有中线

1) 负载上的相电压仍为对称三相电压;

$$\dot{I}_{\mathrm{A}} = \frac{\dot{U}_{\mathrm{AN}}}{Z_{\mathrm{a}}}$$
 $\dot{I}_{\mathrm{B}} = \frac{\dot{U}_{\mathrm{BN}}}{Z_{\mathrm{b}}}$ $\dot{I}_{\mathrm{C}} = \frac{\dot{U}_{\mathrm{CN}}}{Z_{\mathrm{c}}}$

2) 由于三相负载不对称,则三相电流不对称;

$$\dot{I}_{\rm N'N} = \dot{I}_{\rm A} + \dot{I}_{\rm B} + \dot{I}_{\rm C} = \frac{\dot{U}_{\rm AN}}{Z_{\rm a}} + \frac{\dot{U}_{\rm BN}}{Z_{\rm b}} + \frac{\dot{U}_{\rm CN}}{Z_{\rm c}} \neq 0$$

3) 中线电流一般不为零。

各相可分别计算

不能只抽A相

三相负载Za、Zb、Zc不相同。 (2) 无中线

无法分别计算各相

节点电压法

$$\dot{U}_{\text{N'N}} = \frac{\dot{U}_{\text{AN}}/Z_{\text{a}} + \dot{U}_{\text{BN}}/Z_{\text{b}} + \dot{U}_{\text{CN}}/Z_{\text{c}}}{1/Z_{\text{a}} + 1/Z_{\text{b}} + 1/Z_{\text{c}}} \neq 0$$

负载各相电压:

相电压不对称

相量图以N为参考点,图中各点的电位由该点与N点的距离决定

负载中点与电源中点不重合,这个现象称为中点位移。

Ü_{N'N} 称为中点位移电压

例1 照明电路。

(1) 正常情况下,三相四线制,中线阻抗为零。

N' 在哪里?

(2) 假设中线断了(三相三线制), A相电灯没有接入电路(三相不对称)

灯泡未在额定电压下工作, 灯光昏暗。

位形图

N' 在哪里?

(3) 中线断了且A相短路

灯泡电压超过额定工作电压, 烧坏了。

N' 在哪里?

位形图

第17讲 | 3、不对称三相电路分析简介

例2 已知 $1/(\omega C)=R$,三相电源对称。

求: 灯泡承受的电压。

解

设
$$\dot{U}_{AN} = U \angle 0^{\circ} V$$
, $\dot{U}_{BN} = U \angle -120^{\circ} V$, $\dot{U}_{CN} = U \angle 120^{\circ} V$

$$\dot{U}_{\text{N'N}} = \frac{j\omega C \dot{U}_{\text{AN}} + \dot{U}_{\text{BN}} / R + \dot{U}_{\text{CN}} / R}{j\omega C + 1 / R + 1 / R} = \frac{j\dot{U}_{\text{AN}} + \dot{U}_{\text{BN}} + \dot{U}_{\text{CN}}}{2 + j1} \xrightarrow{-\dot{U}_{\text{AN}}}$$

$$= \frac{(-1+j)\dot{U}_{AN}}{2+j1} = 0.632\angle 108.4^{\circ} \dot{U}_{AN} = 0.632U\angle 108.4^{\circ} V$$

$$\dot{U}_{\rm BN'} = \dot{U}_{\rm BN} - \dot{U}_{\rm N'N} = U \angle -120^{\circ} - 0.632U \angle 108.4^{\circ} = 1.5U \angle -101.5^{\circ} \,\mathrm{V}$$

$$\dot{U}_{CN'} = \dot{U}_{CN} - \dot{U}_{N'N} = U \angle 120^{\circ} - 0.632U \angle 108.4^{\circ} = 0.4U \angle 138.4^{\circ} V$$

假设灯泡承载 1.5U 电压不会坏这个电路什么实际应用功能?

4、三相电路的功率

(1) 对称三相电路的平均功率

一相负载的功率:
$$P_{\rm p} = U_{\rm P} I_{\rm P} \cos \varphi_{\rm P}$$
 phase

三相总功率:
$$P_3 = 3P_P = 3U_P I_P \cos \varphi_P$$

Y接:
$$U_{\rm L} = \sqrt{3}U_{\rm P}$$
, $I_{\rm L} = I_{\rm P}$

$$P_3 = 3 \cdot \frac{1}{\sqrt{3}} U_{\rm L} I_{\rm L} \cos \varphi_{\rm P} = \sqrt{3} U_{\rm L} I_{\rm L} \cos \varphi_{\rm P}$$

$$\Delta$$
接: $U_{\rm L} = U_{\rm P}, I_{\rm L} = \sqrt{3}I_{\rm P}$

$$P_3 = 3U_{\rm L} \cdot \frac{1}{\sqrt{3}} I_{\rm L} \cos \varphi_{\rm P} = \sqrt{3} U_{\rm L} I_{\rm L} \cos \varphi_{\rm P}$$

注意: pp 为相电压与相电流的相位差角 (Y接负载单相阻抗角)。

(2) 对称三相电路的无功功率

$$Q_3 = 3U_{\rm P}I_{\rm P}\sin\varphi_{\rm P} = \sqrt{3}U_{\rm L}I_{\rm L}\sin\varphi_{\rm P}$$

(3) 对称三相电路的复功率

$$\overline{S}_3 = 3\dot{U}_P \dot{I}_P^*$$

(4) 对称三相电路的瞬时功率

$$p = p_{\rm A} + p_{\rm B} + p_{\rm C} = 3U_{\rm p}I_{\rm p}\cos\varphi_{\rm p} = P$$

(5) 三相电路功率的测量 (可以不对称)

(a) 三表法:

$$P_{\mathbb{A}} = P_{\mathrm{A}} + P_{\mathrm{B}} + P_{\mathrm{C}}$$

若负载对称,则需一块表,读数乘以3。

如果是三相三线制怎么办?

若 W_1 的读数为 P_1 , W_2 的读数为 P_2 ,

则 $P_{\stackrel{.}{\bowtie}}=P_1+P_2$ 即为三相总功率。

证明: (设负载为Y接)

$$p_{\stackrel{}{\bowtie}} = u_{AN} i_{A} + u_{BN} i_{B} + u_{CN} i_{C}$$

$$i_{C} = -(i_{A} + i_{B})$$

$$p_{\not \boxminus} = (u_{\text{AN}} - u_{\text{CN}})i_{\text{A}} + (u_{\text{BN}} - u_{\text{CN}})i_{\text{B}}$$
$$= u_{\text{AC}}i_{\text{A}} + u_{\text{BC}}i_{\text{B}}$$

$P_{\Xi} = U_{AC}I_{A}\cos\varphi_{1} + U_{BC}I_{B}\cos\varphi_{2}$

 $\varphi_1: u_{AC}$ 领先 i_A 的相位角,

 φ_2 : u_{BC} 领先 i_B 的相位角。

注意:

- 1. 只有在 $i_A + i_B + i_C = 0$ 这个条件下,才能用二表法。二表法不能用于不对称三相四线制,但对称三相四线制可用。
- 2. 两块表读数的代数和为三相总功率, 单块表的单独读数无意义。
- 3. 按正确极性接线时,二表中可能有一个表的读数为负。
- 4. 两表法测三相功率的接线方式有三种。

例: $U_L = 380 \text{V}, Z_1 = 30 + \text{j}40\Omega$, 电动机 $P_M = 1700 \text{W}, \cos \varphi = 0.8$ (滞后)。

求: (1) 线电流和电源发出总功率;

(2) 用两表法测电动机负载的功率, 画接线图, 求两表读数。

第17讲 | 4、三相电路的功率

 $U_{\rm L} = 380 \text{V}, Z_1 = 30 + \text{j}40\Omega$,电动机 $P_{\rm M} = 1700 \text{W}, \cos \varphi = 0.8$ (滞后)。

解

(1) 设
$$\dot{U}_{AN} = 220 \angle 0^{\circ} \text{ V}$$

$$\dot{I}_{A1} = \frac{\dot{U}_{AN}}{Z_1} = \frac{220 \angle 0^{\circ}}{30 + j40} = 4.41 \angle -53.1^{\circ} \text{ A}$$

电动机负载:

$$P_{\rm M} = \sqrt{3}U_{\rm L}I_{\rm A2}\cos\varphi = 1700W$$

$$I_{A2} = \frac{P_{M}}{\sqrt{3}U_{L}\cos\varphi} = \frac{P_{M}}{\sqrt{3}\times380\times0.8} = 3.23A$$

$$\cos \varphi = 0.8$$
(滞后), $\varphi = 36.9^{\circ}$

$$\dot{I}_{A2} = 3.23 \angle -36.9^{\circ} \text{ A}$$

Y接模型单相阻抗角

A相电压电流相位差

$$\dot{U}_{\rm AN} = 220 \angle 0^{\circ} \text{ V}$$

$$\dot{I}_{A1} = 4.41 \angle -53.1^{\circ} \text{ A}$$

$$\dot{I}_{A2} = 3.23 \angle -36.9^{\circ} \text{ A}$$

总电流:

$$\dot{I}_{A} = \dot{I}_{A1} + \dot{I}_{A2}$$

= $4.41\angle -53.1^{\circ} +3.23\angle -36.9^{\circ} = 7.56\angle -46.2^{\circ} A$

$$P_{\mathbb{H}} = \sqrt{3}U_{L}I_{A}\cos\varphi_{P\mathbb{H}}$$
 $\varphi_{P\mathbb{H}} = \psi_{\dot{U}_{AN}} - \psi_{\dot{I}_{A}} = 46.2^{\circ}$
= $\sqrt{3} \times 380 \times 7.56 \times \cos 46.2^{\circ} = 3.44 \text{kW}$

(2) 两表的接法如图。

$$\dot{U}_{\rm AN} = 220 \angle 0^{\circ} \text{ V}$$

$$\dot{I}_{A2} = 3.23 \angle -36.9^{\circ} A$$

$$\dot{I}_{B2} = 3.23 \angle -156.9^{\circ} \text{A}$$

$$\dot{U}_{AB} = 380 \angle 30^{\circ} \text{V}$$

$$\dot{U}_{AC} = -\dot{U}_{CA} = -380 \angle 150^{\circ} \text{ V}$$

= $380 \angle -30^{\circ} \text{ V}$

$$\dot{U}_{\rm BC} = 380 \angle -90^{\circ} \,\rm V$$

(2) 两表的接法如图。

$$\dot{I}_{A2} = 3.23 \angle -36.9^{\circ} \text{ A}$$
 $\dot{I}_{B2} = 3.23 \angle -156.9^{\circ} \text{ A}$
 $\dot{U}_{AB} = 380 \angle 30^{\circ} \text{ V}$
 $\dot{U}_{AC} = -\dot{U}_{CA} = 380 \angle -30^{\circ} \text{ V}$
 $\dot{U}_{BC} = 380 \angle -90^{\circ} \text{ V}$

表
$$\mathbf{W}_1$$
的读数: $P_1 = U_{AC}I_{A2}\cos\varphi_1 = 380 \times 3.23\cos(-30^\circ + 36.9^\circ)$
= $380 \times 3.23\cos(6.9^\circ) = 1219 \mathbf{W}$ 1700 \mathbf{W}

表
$$\mathbf{W}_2$$
的读数: $P_2 = U_{BC}I_{B2}\cos\varphi_2 = 380 \times 3.23\cos(-90^\circ + 156.9^\circ)$
= $380 \times 3.23\cos(66.9^\circ) = 481 \mathbf{W}$