Lyon PhD Course Actuarial Science

Chapter 7 - Dependence measurement, copulas and estimation

Professor: Etienne Marceau

May 16, 2017

CONTENTS

Contents

1	Mea	asuring Dependence	7
2	Con	cordance Measures	8
	2.1	Desirables properties	9
	2.2	Pearson's linear coefficient	11
	2.3	Measures of rank correlation and concordance	13

(c) E. Marceau, 2017

3	Spearman's Rho		
	3.1	Definition	15
	3.2	Spearman's rho and desirable properties	19
	3.3	Spearman's rho and comonotonicity	20
	3.4	Spearman's rho and countermonotonicity	22
	3.5	Spearman's rho and independence	24
	3.6	Spearman's rho and copula	26
	3.7	Spearman's rho and EFGM copula	28

	3.8	Copula and explicit expression for Spearman's rho	32
	3.9	Spearman's rho and alternative representation	33
	3.10	Additional remark	38
	3.11	Estimation of Spearman's rho	39
4	Ken	dall's tau	45
	4.1	Definition	45
	4.2	Kendall's tau and desirable properties	50

	6.1	Introduction	61
6	6 Estimation procedures and copulas		61
5	Con	cordance measures and independence	60
	4.6	Estimation of Kendall's tau	55
	4.5	Kendall's tau and survival copula	53
	4.4	Additional remark	52
	4.3	Kendall's tau and copulas	51

7	Cha	llenges for research in actuarial science	74
	6.4	Variant to Maximum Likelihood Estimation : IFM Method (Joe's method)	70
	6.3	Variant to Maximum Likelihood Estimation : Semi-parametric method	66
	6.2	Fully Maximum Likelihood Estimation	63

1 Measuring Dependence

The objective of the next sections is to measure the strength of the dependence relation between two random variables.

We consider two types of dependence measures :

- linear correlation
- rank correlation

Then, we discuss briefly about estimation procedures.

2 Concordance Measures

2.1 Desirables properties 2 CONCORDANCE MEASURES

2.1 Desirables properties

Let (X_1, X_2) be a pair of continuous rvs.

Let $\pi(X_1, X_2)$ be a concordance measure.

Axiom 1 The desirable properties for the dependence measure are :

- 1. Symetry: $\pi(X_1, X_2) = \pi(X_2, X_1)$;
- 2. Normalization: $-1 \le \pi(X_1, X_2) \le 1$;
- 3. Comonotonicity: $\pi(X_1, X_2) = 1$ if and if X_1 and X_2 sont comonotonic;
- 4. Countermonotonicity: $\pi(X_1, X_2) = -1$ if and if X_1 and X_2 sont countermonotonic ;

2.1 Desirables properties 2 CONCORDANCE MEASURES

5. Invariance: for every stricty monotone function $\phi : \mathbb{R} \to \mathbb{R}$, we have

$$\pi\left(\phi\left(X_{1}\right),X_{2}\right)=\left\{\begin{array}{l}\pi\left(X_{1},X_{2}\right)\text{, if }\phi\text{ is increasing}\\-\pi\left(X_{1},X_{2}\right)\text{, if }\phi\text{ is decreasing}\end{array}\right..$$

2.2 Pearson's linear coefficient 2 CONCORDANCE MEASURES

2.2 Pearson's linear coefficient

Let (X_1, X_2) be a pair of continuous rvs such that the expectation and the variance exist.

Pearson's linear coefficient is defined by

$$\rho_P(X_1, X_2) = \frac{\operatorname{Cov}(X_1, X_2)}{\sqrt{\operatorname{Var}(X_1)\operatorname{Var}(X_2)}}.$$

Properties #1, #2 are satisfied.

Properties #3, #4, #5 are not satisfied.

The marginals influence the value of $\rho_P(X_1, X_2)$.

2.2 Pearson's linear coefficient 2 CONCORDANCE MEASURES

It means that $\rho_P(X_1, X_2)$ does not only measure the dependence relation between X_1 and X_2 .

2.3 Measures of rank correlation and concordance

Let (X_1, X_2) be a pair of continuous rvs

Two main measures of rank correlation:

- Spearman's rho
- Kendall's tau

Since (X_1, X_2) is a couple of continuous rvs, there is exists a unique copula such that

$$F_{X_1,X_2}(x_1,x_2) = C(F_{X_1}(x_1),F_{X_2}(x_2)).$$

Nelsen (2009):

- the term "correlation measure" is more often used for Pearson's linear correlation coefficient;
- the terms "association measure" or "concordance measure" are used for Spearman's rho and Kendall's tau.

We do not treat measures of rank correlation for pair of discrete rvs.

3 Spearman's Rho

3.1 Definition

Spearman's rho is a rank measure.

It is also consider as a concordance meaure;

(Historical note: Charles Spearman was a colleague of Karl Pearson.)

Definition 2 Let (X_1, X_2) be a pair of continuous rvs. Spearman's rho is defined by

$$\rho_S(X_1, X_2) = \rho_P(F_{X_1}(X_1), F_{X_2}(X_2)).$$

3.1 Definition 3 SPEARMAN'S RHO

Spearman's rho measures the linear correlation between the marginal cdfs of the rvs X_1 and X_2 .

Recall that

$$U_1 = F_{X_1}(X_1)$$

 $U_2 = F_{X_2}(X_2)$,

Then, we have

$$\rho_{S}(X_{1}, X_{2}) = \rho_{P}(F_{X_{1}}(X_{1}), F_{X_{2}}(X_{2}))$$

$$= \frac{E[U_{1}U_{2}] - E[U_{1}]E[U_{2}]}{\sqrt{\text{Var}(U_{1})\text{Var}(U_{2})}}$$
(1)

3.1 Definition 3 SPEARMAN'S RHO

Since

$$\sqrt{\operatorname{Var}(U_1)\operatorname{Var}(U_2)} = \frac{1}{12}$$

and

$$E[U_1]E[U_2] = \frac{1}{4},$$

we have

$$\rho_S(X_1, X_2) = 12 \left(E[U_1 U_2] - \frac{1}{4} \right).$$

Note that, if C is absolutely continuous with pdf c, then

$$E[U_1U_2] = \int_0^1 \int_0^1 u_1 u_2 c(u_1, u_2) du_1 du_2.$$

3.1 Definition 3 SPEARMAN'S RHO

Also, from the initial definition of the Spearman's rho and if F_{X_1,X_2} is absolutely continued with pdf f_{X_1,X_2} , we mention that

$$E[U_1U_2] = E[F_{X_1}(X_1)F_{X_2}(X_2)]$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F_{X_1}(x_1)F_{X_2}(x_2)f_{X_1,X_2}(x_1,x_2) dx_1 dx_2.$$

3.2 Spearman's rho and desirable properties

Spearman's rho satisfies the five desirable properties :

- Symetry
- Normalization
- Comonotonicity
- Countermonotonicity
- Invariance

It implies that Spearman's rho is a measure of concordance.

3.3 Spearman's rho and comonotonicity

Remark 3 If X_1 and X_2 sont comonotonic, then $\rho_S(X_1, X_2) = 1$.

Let X_1 and X_2 be two continuous comonotonic rvs.

Let $U \sim Unif(0,1)$.

Then, we have

$$F_{X_1}(X_1) = U_1 = U$$
 and $F_{X_2}(X_2) = U_2 = U$.

It follows that

$$E\left[U_1U_2\right] = E\left[U^2\right] = \frac{1}{3}$$

and

$$\rho_S(X_1, X_2) = 12\left(\frac{1}{3} - \frac{1}{4}\right) = 1.$$

3.4 Spearman's rho and countermonotonicity

Remark 4 If X_1 and X_2 sont countermonotonic, then $\rho_S(X_1, X_2) = -1$.

Let X_1 and X_2 be two continuous countermonotonic rvs.

Let $U \sim Unif(0,1)$.

Then, we have

$$F_{X_1}(X_1) = U_1 = U$$
 and $F_{X_2}(X_2) = U_2 = 1 - U$.

It follows that

$$E[U_1U_2] = E[U] - E[U^2] = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$$

and

$$\rho_S(X_1, X_2) = 12\left(\frac{1}{6} - \frac{1}{4}\right) = -1.$$

3.5 Spearman's rho and independence

Remark 5 If X_1 and X_2 sont independent, then $\rho_S(X_1, X_2) = 0$.

Let X_1 and X_2 be two continuous independent rvs.

Let $U_1 \sim Unif(0,1)$ and $U_2 \sim Unif(0,1)$ be independent rvs.

Then, we have

$$F_{X_1}(X_1) = U_1$$
 and $F_{X_2}(X_2) = U_2$

It follows that

$$E[U_1U_2] = E[U_1] E[U_2] = \frac{1}{4}$$

and

$$\rho_S(X_1, X_2) = 12\left(\frac{1}{4} - \frac{1}{4}\right) = 0.$$

3.6 Spearman's rho and copula 3 SPEARMAN'S RHO

3.6 Spearman's rho and copula

Using (??), the expression for Spearman's rho de Spearman can be written as follows :

$$\rho_S(X_1, X_2) = 12 \left(\int_0^1 \int_0^1 C(u_1, u_2) du_1 du_2 - \frac{1}{4} \right).$$

How do we get this result?

To simplify the presentation, assume that the copula C is absolutely continuous with cdf c.

Recall that

$$E[U_1U_2] = \int_0^1 \int_0^1 u_1 u_2 c(u_1, u_2) du_1 du_2.$$

With integration by parts, we have

$$E[U_1U_2] = \int_0^1 \int_0^1 C(u_1, u_2) du_1 du_2.$$

Then, we get the desired result with

$$\rho_{S}(X_{1}, X_{2}) = 12 \left(\int_{0}^{1} \int_{0}^{1} u_{1} u_{2} c(u_{1}, u_{2}) du_{1} du_{2} - \frac{1}{4} \right)$$

$$= 12 \left(\int_{0}^{1} \int_{0}^{1} C(u_{1}, u_{2}) du_{1} du_{2} - \frac{1}{4} \right)$$

3.7 Spearman's rho and EFGM copula

Let $(U_1, U_2) \sim C_{\alpha}$ where

$$C_{\alpha}(u_1, u_2) = u_1 u_2 + \alpha u_1 u_2 (1 - u_1) (1 - u_2)$$

with

$$c(u_1, u_2) = 1 + \alpha (1 - 2u_1) (1 - 2u_2).$$

Then

$$E[U_{1}U_{2}] = \int_{0}^{1} \int_{0}^{1} u_{1}u_{2}c(u_{1}, u_{2}) du_{1}du_{2}$$

$$= \int_{0}^{1} \int_{0}^{1} u_{1}u_{2}(1 + \alpha(1 - 2u_{1})(1 - 2u_{2})) du_{1}du_{2}$$

$$= \int_{0}^{1} \int_{0}^{1} u_{1}u_{2}(1 + \alpha) du_{1}du_{2}$$

$$-\alpha \int_{0}^{1} \int_{0}^{1} 2u_{1}^{2}u_{2}du_{1}du_{2}$$

$$-\alpha \int_{0}^{1} \int_{0}^{1} u_{1}2u_{2}^{2}du_{1}du_{2}$$

$$+\alpha \int_{0}^{1} \int_{0}^{1} 2u_{1}^{2}2u_{2}^{2}du_{1}du_{2}$$

$$= (1 + \alpha)\left(\frac{1}{2} \times \frac{1}{2}\right) - \alpha\left(\frac{2}{3} \times \frac{1}{2}\right) - \alpha\left(\frac{1}{2} \times \frac{2}{3}\right) + \alpha\left(\frac{2}{3} \times \frac{2}{3}\right).$$

Finally, we get

$$E[U_1U_2] = \frac{1}{4} + \alpha \left(\frac{1}{4} - \frac{1}{3} - \frac{1}{3} + \frac{4}{9}\right)$$
$$= \frac{1}{4} + \alpha \left(\frac{1}{36}\right).$$

We conclude that

$$\rho_{S}(U_{1}, U_{2}) = 12 \left(\int_{0}^{1} \int_{0}^{1} u_{1} u_{2} c(u_{1}, u_{2}) du_{1} du_{2} - \frac{1}{4} \right)$$

$$= 12 \left(\frac{1}{4} + \alpha \frac{1}{36} - \frac{1}{4} \right)$$

$$= \frac{\alpha}{3}.$$

Then, for this copula, we observe

$$-\frac{1}{3} \le \rho_S(U_1, U_2) \le \frac{1}{3}.$$

Let (X_1, X_2) be a pair of continuous rvs with

$$F_{X_1,X_2}(x_1,x_2) = C(F_{X_1}(x_1),F_{X_2}(x_2)),$$

where C is the EFGM copula.

Then, for any marginals distribution for X_1 and X_2 ,

$$\rho_S(X_1, X_2) = \frac{\alpha}{3}$$

and

$$-\frac{1}{3} \le \rho_S(X_1, X_2) \le \frac{1}{3}.$$

3.8 Copula and explicit expression for Spearman's rho

Copula	$\rho_S(X_1,X_2)$
Clayton	_
Normal	$\frac{6}{\pi}$ arcsin (α)
Gumbel	_
Fréchet	$(\alpha - \beta)$
EFGM	$\frac{\alpha}{3}$
Marshall-Olkin	$rac{3lphaeta}{2lpha+eta-2lphaeta}$

3.9 Spearman's rho and alternative representation

Recall that

$$E[U_1U_2] = E[F_{X_1}(X_1)F_{X_2}(X_2)]$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F_{X_1}(x_1)F_{X_2}(x_2)f_{X_1,X_2}(x_1,x_2) dx_1 dx_2.$$

Integration by part leads to

$$E[U_1U_2] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F_{X_1}(x_1) F_{X_2}(x_2) f_{X_1,X_2}(x_1,x_2) dx_1 dx_2$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F_{X_1,X_2}(x_1,x_2) f_{X_1}(x_1) f_{X_2}(x_2) dx_1 dx_2.$$

Then, we have the following alternative representation for $\rho_S(X_1, X_2)$:

$$\rho_{S}(X_{1}, X_{2}) = 12 \left(E \left[F_{X_{1}}(X_{1}) F_{X2}(X_{2}) \right] - E \left[F_{X_{1}}(X_{1}) \right] E \left[F_{X_{2}}(X_{2}) \right] \right)$$

$$= 12 \left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F_{X_{1}, X_{2}}(x_{1}, x_{2}) f_{X_{1}}(x_{1}) f_{X_{2}}(x_{2}) dx_{1} dx_{2} - \left(\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}(x_{1}, x_{2}) - F_{X_{1}}(x_{1}) F_{X_{2}}(x_{2}) \right) f_{X_{1}}(x_{1}) f_{X_{2}}(x_{2}) dx_{1} dx_{2} \right)$$

$$= 12 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(F_{X_{1}, X_{2}}(x_{1}, x_{2}) - F_{X_{1}}(x_{1}) F_{X_{2}}(x_{2}) \right) f_{X_{1}}(x_{1}) f_{X_{2}}(x_{2}) dx_{1} dx_{2} dx_{2}$$

Frechet's upper and lower bounds:

• Let $\left(X_1^+,X_2^+\right)$ be a pair of continuous comonotonic rvs with $X_1^+\sim X_1$ and $X_2^+\sim X_2$ i.e.

$$F_{X_{1}^{+},X_{2}^{+}}(x_{1},x_{2}) = \min (F_{X_{1}}(x_{1}),F_{X_{2}}(x_{2}))$$

• Let $\left(X_1^-,X_2^-\right)$ be a pair of continuous countermonotonic rvs with $X_1^-\sim X_1$ and $X_2^-\sim X_2$ i.e.

$$F_{X_{1}^{-},X_{2}^{-}}(x_{1},x_{2}) = \max \left(F_{X_{1}}(x_{1}) + F_{X_{2}}(x_{2}) - 1;0\right)$$

We know that

$$F_{X_1^-,X_2^-}\left(x_1,x_2\right) \leq F_{X_1,X_2}\left(x_1,x_2\right) \leq F_{X_1^+,X_2^+}\left(x_1,x_2\right)$$
 for all $F_{X_1,X_2} \in \Gamma\left(F_{X_1},F_{X_2}\right)$.

• Then, we have

$$\rho_{S}(X_{1}, X_{2}) = 12 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(F_{X_{1}, X_{2}}(x_{1}, x_{2}) - F_{X_{1}}(x_{1}) F_{X_{2}}(x_{2}) \right) f_{X_{1}}(x_{1})$$

$$\leq 12 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(F_{X_{1}^{+}, X_{2}^{+}}(x_{1}, x_{2}) - F_{X_{1}}(x_{1}) F_{X_{2}}(x_{2}) \right) f_{X_{1}}(x_{1})$$

$$= \rho_{S}\left(X_{1}^{+}, X_{2}^{+} \right) = 1$$

Also, we have

$$\rho_{S}(X_{1}, X_{2}) = 12 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(F_{X_{1}, X_{2}}(x_{1}, x_{2}) - F_{X_{1}}(x_{1}) F_{X_{2}}(x_{2}) \right) f_{X_{1}}(x_{1})$$

$$\geq 12 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(F_{X_{1}^{-}, X_{2}^{-}}(x_{1}, x_{2}) - F_{X_{1}}(x_{1}) F_{X_{2}}(x_{2}) \right) f_{X_{1}}(x_{1})$$

$$= \rho_{S}(X_{1}^{-}, X_{2}^{-}) = -1.$$

We conclude

$$-1 = \rho_S\left(X_1^-, X_2^-\right) \le \rho_S\left(X_1, X_2\right) \le \rho_S\left(X_1^+, X_2^+\right) = 1,$$
 for all $F_{X_1, X_2} \in \Gamma\left(F_{X_1}, F_{X_2}\right)$.

The transformation in (1) allows to take into account the ranks by eliminating the effect of the marginals (marginal cdfs).

• If the X_1 tends to increase when the rv X_2 increases, then Spearman's tho will take a positive value.

• If the X_1 tends to decrease when the rv X_2 increases, then Spearman's tho will take a negative value.

3.10 Additional remark 3 SPEARMAN'S RHO

3.10 Additional remark

If ϕ_1 , ϕ_2 are strictly monotone increasing functions, then

$$\rho_S(\phi_1(X_1),\phi_2(X_2)) = \rho_S(X_1,X_2).$$

If ϕ_1 , ϕ_2 are strictly monotone decreasing functions, then

$$\rho_S(\phi_1(X_1),\phi_2(X_2)) = \rho_S(X_1,X_2).$$

3.11 Estimation of Spearman's rho

Let $\underline{X} = (X_1, X_2)$ be a pair of continuous rvs with cdf F_{X_1, X_2} .

Let

$$\{(X_{1,j}, X_{2,j}), j = 1, 2, ..., n\}.$$

be a finite sequence of iid pairs of rvs where $\underline{X}_j = (X_{1,j}, X_{2,j}) \sim \underline{X} = (X_1, X_2)$.

Let

$$\{(x_{1,j}, x_{2,j}), j = 1, 2, ..., n\}$$

be the empirical observations of

$$\{(X_{1,j}, X_{2,j}), j = 1, 2, ..., n\}.$$

Notation : $\underline{x}_j = (x_{1,j}, x_{2,j})$

Definition: For a fixed $i \in \{1,2\}$, the rank of the observation $x_{i,j}$, denoted $rank\left(x_{i,j}\right)$, corresponds to its position ("rank") in the observations $\left\{x_{i,1},...,x_{i,n}\right\}$.

Empirical cdf:

$$F_{1,n}(x_{1,j}) = \frac{1}{n+1} \sum_{l=1}^{n} 1_{\{x_{1,j} \le x_{1,j}\}} = \frac{rank(x_{1,j})}{n+1}$$

and

$$F_{2,n}(x_{2,j}) = \frac{1}{n+1} \sum_{l=1}^{n} \mathbf{1}_{\{x_{2,j} \le x_{2,j}\}} = \frac{rank(x_{2,j})}{n+1}.$$

Then, we have the sequence of pairs of pseudo-observations:

$$\{(F_{1,n}(x_{1,j}), F_{1,n}(x_{2,j})), j = 1, 2, ..., n\}.$$

For i = 1, 2, the empirical means are

$$\widetilde{F}_{1} = \frac{1}{n} \sum_{l=1}^{n} F_{1,n} (x_{1,j})$$

$$= \frac{1}{n} \frac{1}{n+1} (1 + \dots + n)$$

$$= \frac{1}{n} \frac{1}{n+1} \frac{(n \times (n+1))}{2} = \frac{1}{2}$$

et

$$\widetilde{F}_{2} = \frac{1}{n} \sum_{l=1}^{n} F_{2,n} (x_{2,j})$$

$$= \frac{1}{n} \frac{1}{n+1} \frac{(n \times (n+1))}{2} = \frac{1}{2}.$$

The empirical variance is

$$\frac{1}{n} \sum_{j=1}^{n} \left(F_{1,n} \left(x_{1,j} \right) - \widetilde{F}_{1} \right)^{2}$$

and

$$\frac{1}{n}\sum_{j=1}^{n} \left(F_{2,n}\left(x_{1,j}\right) - \widetilde{F}_{2}\right)^{2}.$$

The empirical estimator of $\rho_S\left(X_1,X_2\right)$ is defined by $\widehat{\rho}_S\left(X_1,X_2\right)$ where

$$\widehat{\rho}_{S}\left(X_{1},X_{2}\right)=\widehat{\rho}_{P}\left(F_{1,n}\left(X_{1}\right),F_{2,n}\left(X_{2}\right)\right).$$

We have

$$\widehat{\rho}_{S}(X_{1}, X_{2}) = \widehat{\rho}_{P}\left(F_{1,n}(X_{1}), F_{2,n}(X_{2})\right).$$

$$= \frac{\frac{1}{n}\sum_{j=1}^{n}\left(F_{1,n}\left(x_{1,j}\right) - \widetilde{F}_{,1}\right)\left(F_{2,n}\left(x_{2,j}\right) - \widetilde{F}_{2}\right)}{\sqrt{\frac{1}{n}\sum_{j=1}^{n}\left(F_{1,n}\left(x_{1,j}\right) - \widetilde{F}_{1}\right)^{2}\frac{1}{n}\sum_{j=1}^{n}\left(F_{2,n}\left(x_{1,j}\right) - \widetilde{F}_{2}\right)^{2}}}$$

$$= \frac{\sum_{j=1}^{n}\left(F_{1,n}\left(x_{1,j}\right) - \frac{1}{2}\right)\left(F_{2,n}\left(x_{2,j}\right) - \frac{1}{2}\right)}{\sqrt{\sum_{j=1}^{n}\left(F_{1,n}\left(x_{1,j}\right) - \frac{1}{2}\right)^{2}\sum_{j=1}^{n}\left(F_{2,n}\left(x_{1,j}\right) - \frac{1}{2}\right)^{2}}}$$

$$= \frac{\sum_{j=1}^{n}\left(\frac{rank(x_{1,j})}{n+1} - \frac{1}{2}\right)\left(\frac{rank(x_{1,j})}{n+1} - \frac{1}{2}\right)}{\sqrt{\sum_{j=1}^{n}\left(F_{1,n}\left(x_{1,j}\right) - \frac{1}{2}\right)^{2}\sum_{j=1}^{n}\left(F_{2,n}\left(x_{1,j}\right) - \frac{1}{2}\right)^{2}}}$$

Rearranging the terms, we obtain

$$\widehat{\rho}_{S}\left(X_{1}, X_{2}\right) = \frac{12}{n\left(n+1\right) \times \left(n-1\right)} \times \sum_{j=1}^{n} rank\left(x_{1,j}\right) rank\left(x_{2,j}\right) - 3\frac{n+1}{n-1}$$

(see e.g. Favre et Genest (2007) for the details).

4 Kendall's tau

4.1 Definition

Kendall's tau is a measure of concordance between the rvs continuous X_1 and X_2 .

Kendall's tau is a probability:

$$\tau(X_1, X_2) = \Pr(\text{concordance}) - \Pr(\text{discordance}).$$

Definition 6 Let (X_1, X_2) be a pair of continuous rvs with cdf F_{X_1, X_2} . For the definition, we introduce (X_1', X_2') which is a pair of continuous rvs where

 (X_1',X_2') and (X_1,X_2) are independent and $(X_1',X_2') \sim (X_1,X_2)$. Kendall's tau is defined by

$$\tau\left(X_1,X_2\right)=\Pr\left(\left(X_1-X_1'\right)\left(X_2-X_2'\right)>0\right)-\Pr\left(\left(X_1-X_1'\right)\left(X_2-X_2'\right)<0\right).$$

Interpretation:

• In class.

Note that

$$\Pr\left(\left(X_1-X_1'\right)\left(X_2-X_2'\right)<0\right)=1-\Pr\left(\left(X_1-X_1'\right)\left(X_2-X_2'\right)>0\right).$$

The expression for $\tau(X_1, X_2)$ becomes

$$\tau(X_1, X_2) = 2 \Pr((X_1 - X_1')(X_2 - X_2') > 0) - 1.$$

Also, we have

$$\Pr\left(\left(X_{1}-X_{1}'\right)\left(X_{2}-X_{2}'\right)>0\right)=\Pr\left(X_{1}>X_{1}',X_{2}>X_{2}'\right)+\Pr\left(X_{1}\leq X_{1}',X_{2}\leq X_{2}'\right)+\Pr\left(X_{1}\leq X_{2}',X_{2}\leq X_{2}'\right)+\Pr\left(X_{2}\leq X_{2}',X_{2}'\right)+\Pr\left(X_{2}\leq X_{2}',X_{2}'\right)+\Pr\left(X_{2}\leq$$

Since the rvs are continous, we have

$$\Pr(X_1 > X_1', X_2 > X_2') = \Pr(U_1 > U_1', U_2 > U_2')$$

and

$$\Pr\left(X_1 \leq X_1', X_2 \leq X_2'\right) = \Pr\left(U_1 \leq U_1', U_2 \leq U_2'\right).$$

We have

$$\Pr\left(U_{1} \leq U_{1}', U_{2} \leq U_{2}'\right) = \int_{0}^{1} \int_{0}^{1} \Pr\left(U_{1} \leq U_{1}', U_{2} \leq U_{2}' | U_{1}' = u_{1}, U_{2}' = u_{2}\right) dC \left(u_{1}, u_{2}\right)$$

$$= \int_{0}^{1} \int_{0}^{1} \Pr\left(U_{1} \leq u_{1}, U_{2} \leq u_{2}\right) dC \left(u_{1}, u_{2}\right)$$

$$= \int_{0}^{1} \int_{0}^{1} C \left(u_{1}, u_{2}\right) dC \left(u_{1}, u_{2}\right).$$

Also, we ahve and

$$\Pr\left(U_{1} > U_{1}', U_{2} > U_{2}'\right) = \Pr\left(U_{1}' \leq U_{1}, U_{2}' \leq U_{2}\right)$$
$$= \int_{0}^{1} \int_{0}^{1} C\left(u_{1}, u_{2}\right) dC\left(u_{1}, u_{2}\right)$$

We conclude

$$\tau(X_1, X_2) = 4 \int_0^1 \int_0^1 C(u_1, u_2) dC(u_1, u_2) - 1$$

= $4E[C(U_1, U_2)] - 1.$

If the copula C is absolutely continuous with pdf c, we have

$$\tau(X_1, X_2) = 4 \int_0^1 \int_0^1 C(u_1, u_2) dC(u_1, u_2) - 1$$

$$= 4E[C(U_1, U_2)] - 1$$

$$= 4 \int_0^1 \int_0^1 C(u_1, u_2) c(u_1, u_2) du_1 du_2 - 1.$$

4.2 Kendall's tau and desirable properties

Kendall's tau satisfies the five desirable properties :

- Symetry
- Normalization
- Comonotonicity
- Countermonotonicity
- Invariance

It implies that Kendall's tau is a measure of concordance.

4.3 Kendall's tau and copulas 4 KENDALL'S TAU

4.3 Kendall's tau and copulas

Copula	$\tau(X_1,X_2)$
Clayton	$\frac{\alpha}{\alpha+2}$
Normale	$\frac{2}{\pi}$ arcsin (α)
Gumbel	$\frac{\alpha-1}{\alpha}$
Fréchet	$\frac{(\alpha-\beta)(\alpha+\beta+2)}{3}$
EFGM	$\frac{2\alpha}{9}$
Marshall-Olkin	$\frac{\alpha\beta}{\alpha+\beta-\alpha\beta}$

4.4 Additional remark 4 KENDALL'S TAU

4.4 Additional remark

If ϕ_1 , ϕ_2 are strictly monotone increasing functions, then

$$\tau (\phi_1(X_1), \phi_2(X_2)) = \tau (X_1, X_2)$$

If ϕ_1 , ϕ_2 are strictly monotone decreasing functions, then

$$\tau (\phi_1(X_1), \phi_2(X_2)) = \tau (X_1, X_2)$$

4.5 Kendall's tau and survival copula

Kendall's tau and Spearman's rho for a specific copula are identical to those associated to the corresponding survival copulas.

Let
$$(U_1, U_2) \sim C$$
.

Then, we define (V_1, V_2) where

$$V_1 = 1 - U_1$$

 $V_2 = 1 - U_2$

We know that the copula for (V_1, V_2) is the survival copula \widehat{C} associated to C i.e.

$$F_{V_1,V_2}(u_1,u_2) = \widehat{C}(u_1,u_2).$$

Since V_1 and V_2 correspond to the strictly decreasing transformation of U_1 and U_2 , it follows

$$\rho_S(V_1, V_2) = \rho_S(U_1, U_2)$$
.

4.6 Estimation of Kendall's tau

We compare all $\binom{n}{2}=\frac{n(n-1)}{2}$ non-repeating combination of pairs of the following sequence of observations :

$$\{(x_{1,j},x_{2,j}), j=1,2,...,n\}.$$

Let $\left(x_{1,j},x_{2,j}\right)$ and $\left(x_{1,k},x_{2,k}\right)$ be two pairs :

• The pairs are concordant if

$$x_{1,j} > x_{1,k}$$
 et $x_{2,j} > x_{2,k}$

or

$$x_{1,j} < x_{1,k}$$
 et $x_{2,j} < x_{2,k}$.

• The pairs are discordant if

$$x_{1,j} > x_{1,k}$$
 et $x_{2,j} < x_{2,k}$

or

$$x_{1,j} < x_{1,k}$$
 et $x_{2,j} > x_{2,k}$.

We compare :

- $(x_{1,1}, x_{2,1})$ with $(x_{1,j}, x_{2,j})$, for j = 2, ..., n; $(x_{1,2}, x_{2,2})$ with $(x_{1,j}, x_{2,j})$, for j = 3, ..., n; $(x_{1,3}, x_{2,3})$ with $(x_{1,j}, x_{2,j})$, for j = 4, ..., n;

- $(x_{1,n-1}, x_{2,n-1})$ with $(x_{1,n}, x_{2,n})$.
- $\bullet \Rightarrow \binom{n}{2} = \text{number of comparisons.}$

Definitions:

- c_n = number of concordant pairs ;
- $d_n = \text{nombre de paires concordantes.}$

The empirical estimator of Kendall's tau is

$$\widehat{ au}(X_1,X_2) = \frac{\text{number of concordant pairs - number of disconcordant pairs}}{\text{total number of comparisons}}$$

$$= \frac{c_n - d_n}{\binom{n}{2}}.$$

If all pairs are concordant, then

$$c_n = \binom{n}{2}$$

and

$$d_n = 0$$

which leads to

$$\widehat{\tau}\left(X_{1},X_{2}\right)=1.$$

If all pairs are disconcordant, then

$$c_n = 0$$

and

$$d_n = \binom{n}{2}$$

which leads to

$$\widehat{\tau}(X_1, X_2) = -1.$$

The following representation is frequently used:

$$\widehat{\tau}(X_1, X_2) = \frac{\sum_{j=1}^{n-1} \sum_{k=j+1}^{n} sign((x_{1,j} - x_{1,k})(x_{2,j} - x_{2,k}))}{\binom{n}{2}},$$

where

$$sign\left(a
ight) = \left\{ egin{array}{ll} -1 &, a < 0 \ 1 &, a > 0 \end{array}
ight.$$

5 Concordance measures and independence

If the continuous rvs X_1 and X_2 are independent, then $\tau(X_1, X_2) = 0$ and $\rho_S(X_1, X_2) = 0$.

However, if $\tau(X_1, X_2) = 0$ or $\rho_S(X_1, X_2) = 0$, it does not imply that the rvs X_1 and X_2 independent.

6 Estimation procedures and copulas

6.1 Introduction

Let $\underline{X} = (X_1, X_2)$ be a pair of continuous rvs with cdf

$$F_{X_1,X_2}(x_1,x_2) = C(F_{X_1}(x_1),F_{X_2}(x_2)).$$

Let

$$\{(X_{1,j}, X_{2,j}), j = 1, 2, ..., n\}.$$

be a finite sequence of iid pairs of rvs where $\underline{X}_j = (X_{1,j}, X_{2,j}) \sim \underline{X} = (X_1, X_2)$.

Let

$$\{(x_{1,j}, x_{2,j}), j = 1, 2, ..., n\}$$

be the empirical observations of

$$\{(X_{1,j}, X_{2,j}), j = 1, 2, ..., n\}.$$

Notation: $\underline{x}_j = (x_{1,j}, x_{2,j})$

6.2 Fully Maximum Likelihood Estimation

Notations:

- ullet $\underline{ heta}_i = ig(heta_{i,1},..., heta_{i,n_i}ig)$, i=1,2 ;
- $\alpha =$ dependence parameter (sometimes there are 2 ou 3 parameters, even more);
- $\underline{\theta} = (\alpha, \underline{\theta}_1, \underline{\theta}_2)$
- number of parameters = $n_1 + n_2 + 1$
- $F_{X_i}(x; \underline{\theta}_i)$
- $f_{X_i}(x;\underline{\theta_i})$
- $F_{X_1,X_2}(x_1,x_2;\underline{\theta})$
- $f_{X_1,X_2}(x_1,x_2;\underline{\theta})$

Note:

•
$$F_{X_1,X_2}(x_1,x_2;\underline{\theta}) = C(F_{X_1}(x_1;\underline{\theta}_1),F_{X_2}(x_2;\underline{\theta}_2);\alpha)$$

•
$$f_{X_1,X_2}(x_1,x_2;\underline{\theta}) = c\left(F_{X_1}(x_1;\underline{\theta}_1),F_{X_2}(x_2;\underline{\theta}_2);\alpha\right) \times f_{X_1}(x_1;\underline{\theta}_1) \times f_{X_2}(x_2;\underline{\theta}_2)$$

Likelihood function:

$$L\left(\underline{\theta}\right) = \prod_{j=1}^{n} f_{X_{1},X_{2}}\left(x_{1,j},x_{2,j};\underline{\theta}\right)$$

Log-likelihood function:

$$l\left(\underline{\theta}\right) = \sum_{j=1}^{n} \ln\left(f_{X_{1},X_{2}}\left(x_{1,j},x_{2,j};\underline{\theta}\right)\right)$$

ML estimator of $\underline{\theta}$ is $\widehat{\underline{\theta}}^{ML}$ where

$$\widehat{ heta}^{ML} = \mathsf{arg}\,\mathsf{max}\left(l\left(heta
ight)
ight)$$

Remark: It can become very difficult to perform.

6.3 Variant to Maximum Likelihood Estimation : Semiparametric method

The method relies on the first part of Sklar's theorem.

We have the set of pairs of observations:

$$\{(x_{1,j}, x_{2,j}), j = 1, 2, ..., n\}$$

Notation: $\underline{x}_j = (x_{1,j}, x_{2,j})$

We define the sequence of pairs of pseudo-observations :

$$\{(u_{1,j}, u_{2,j}), j = 1, 2, ..., n\}$$

where

$$(u_{1,j}, u_{2,j}) = (F_{1,n}(x_{1,j}), F_{2,n}(x_{2,j})), j = 1, 2, ..., n.$$

Step 1 : Estimate the marginal cdf of X_i , for each i=1,2, separately. (Find the appropriate cdf of X_i)

Step 2: Use the sequence of pairs of pseudo-observations:

$$\{(u_{1,j}, u_{2,j}), j = 1, 2, ..., n\}$$

to estimate the copula itself. (find the appropriate copula)

Notations:

$$ullet$$
 $\underline{ heta}_i = ig(heta_{i,1},..., heta_{i,n_i}ig)$, $i=1,2$;

- $\alpha =$ dependence parameter (sometimes there are 2 ou 3 parameters, even more);
- $\underline{\theta} = (\alpha, \underline{\theta}_1, \underline{\theta}_2)$
- number of parameters = $n_1 + n_2 + 1$
- $F_{X_i}(x; \underline{\theta_i})$
- $f_{X_i}(x; \underline{\theta}_i)$
- $F_{X_1,X_2}(x_1,x_2;\underline{\theta})$
- $f_{X_1,X_2}(x_1,x_2;\underline{\theta})$

Note:

- $F_{X_1,X_2}(x_1,x_2;\underline{\theta}) = C(F_{X_1}(x_1;\underline{\theta}_1),F_{X_2}(x_2;\underline{\theta}_2);\alpha)$
- $f_{X_1,X_2}(x_1,x_2;\underline{\theta}) = c\left(F_{X_1}(x_1;\underline{\theta}_1),F_{X_2}(x_2;\underline{\theta}_2);\alpha\right) \times f_{X_1}(x_1;\underline{\theta}_1) \times f_{X_2}(x_2;\underline{\theta}_2)$

Likelihood function:

$$L(\alpha) = \prod_{j=1}^{n} c\left(u_{1,j}, u_{2,j}; \alpha\right)$$

Log-likelihood function:

$$l(\alpha) = \sum_{j=1}^{n} \ln \left(c\left(u_{1,j}, u_{2,j}; \alpha\right) \right)$$

ML estimator of α is $\hat{\alpha}^{ML}$ where

$$\widehat{\alpha}^{ML} = \arg\max\left(l\left(\alpha\right)\right)$$

Remark: It can become very difficult to perform.

6.4 Variant to Maximum Likelihood Estimation: IFM Method (Joe's method)

The method relies on the first part of Sklar's theorem.

We have the set of pairs of observations:

$$\{(x_{1,j}, x_{2,j}), j = 1, 2, ..., n\}$$

Notation: $\underline{x}_j = (x_{1,j}, x_{2,j})$

We define the sequence of pairs of pseudo-observations :

$$\{(u_{1,j}, u_{2,j}), j = 1, 2, ..., n\}$$

where

$$\left(u_{1,j},u_{2,j}\right)=\left(F_{X_1}\left(x_{1,j};\underline{\theta}_1^{MV}\right),F_{X_2}\left(x_{2,j};\underline{\theta}_2^{MV}\right)\right),j=1,2,...,n.$$

Step 1: Estimate the marginal cdf of X_i , for each i=1,2, separately. (Find the appropriate cdf of X_i)

Step 2: Use the sequence of pairs of pseudo-observations:

$$\{(u_{1,j}, u_{2,j}), j = 1, 2, ..., n\}$$

to estimate the copula itself. (find the appropriate copula)

Notations:

$$ullet$$
 $\underline{ heta}_i = ig(heta_{i,1},..., heta_{i,n_i}ig)$, $i=1,2$;

- $\alpha =$ dependence parameter (sometimes there are 2 ou 3 parameters, even more);
- $\underline{\theta} = (\alpha, \underline{\theta}_1, \underline{\theta}_2)$
- number of parameters = $n_1 + n_2 + 1$
- $F_{X_i}(x; \underline{\theta_i})$
- $f_{X_i}(x;\underline{\theta_i})$
- $F_{X_1,X_2}(x_1,x_2;\underline{\theta})$
- $f_{X_1,X_2}(x_1,x_2;\underline{\theta})$

Note:

- $F_{X_1,X_2}(x_1,x_2;\underline{\theta}) = C(F_{X_1}(x_1;\underline{\theta}_1),F_{X_2}(x_2;\underline{\theta}_2);\alpha)$
- $f_{X_1,X_2}(x_1,x_2;\underline{\theta}) = c\left(F_{X_1}(x_1;\underline{\theta}_1),F_{X_2}(x_2;\underline{\theta}_2);\alpha\right) \times f_{X_1}(x_1;\underline{\theta}_1) \times f_{X_2}(x_2;\underline{\theta}_2)$

Likelihood function:

$$L(\alpha) = \prod_{j=1}^{n} c\left(u_{1,j}, u_{2,j}; \alpha\right)$$

Log-likelihood function:

$$l(\alpha) = \sum_{j=1}^{n} \ln \left(c\left(u_{1,j}, u_{2,j}; \alpha\right) \right)$$

ML estimator of α is $\hat{\alpha}^{ML}$ where

$$\widehat{\alpha}^{ML} = \arg\max\left(l\left(\alpha\right)\right)$$

Remark: It can become very difficult to perform.

7 Challenges for research in actuarial science

- Advanced statistical methods for copulas.
- A lot of research is going on this topic.
- Important challenge: how do we estimate the parameters of a copula when the number of rvs is large ?
- Selection of the appropriate copula is also very challenging.
- Important impact on the distribution of the sum of the rvs.