X	$\Delta_{0}^{x} + F_{1}^{x}q_{1} + F_{3}^{x}q_{3}$ + $\pm \sum_{ij} F_{ij}^{x} q_{i}q_{j}$	7 93a	7936
V = A(a')	7 939	1 + 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	7 932 935
A(a")	7 933	7932936	$\Delta_{0}^{A} + F_{1}^{A}q_{1} + F_{3}^{A}q_{3}$ $+ \frac{1}{2} \sum_{j=1}^{n} q_{1}q_{j}$ $- \frac{1}{2} \eta(q_{3}^{2}a - q_{3}^{2}b)$ $A(a'')$
	X	A(a')	A(a")

$$F_{33}^{X} = f_{33}^{X} + \frac{2\lambda^{2}}{(\Delta_{0}^{A} - \Delta_{0}^{X})}$$

$$F_{33}^{A} = f_{3a3a}^{A(a')} - \frac{2\lambda^{2}}{(\Delta_{0}^{A} - \Delta_{0}^{X})} - \gamma$$

290

$$\eta = \frac{1}{2} \left[f_{3a3a} - f_{3b3b} - \frac{2\lambda^2}{(\Lambda_0^A - \Lambda_0^{\times})} \right]$$

Eq (3)