Package 'orthogene'

September 16, 2021

```
Type Package
Title Interspecies gene mapping
Version 0.99.3
Description
      orthogene is an R package for easy mapping of orthologous genes across hundreds of species.
      It pulls up-to-date interspecies gene ortholog mappings across 700+ organisms.
      It also provides various utility functions to map common objects
      (e.g. data.frames, gene expression matrices, lists)
      onto 1:1 gene orthologs from any other species.
URL https://github.com/neurogenomics/orthogene
BugReports https://github.com/neurogenomics/orthogene/issues
License GPL-3
Depends R (>= 4.1)
VignetteBuilder knitr
biocViews Genetics, ComparativeGenomics, Preprocessing,
      Phylogenetics, Transcriptomics, GeneExpression
Imports dplyr,
      methods,
      stats,
      utils,
      Matrix,
     isonlite,
     homologene,
      gprofiler2,
      babelgene,
      data.table,
      parallel,
      ggplot2,
      ggpubr,
      patchwork,
      DelayedArray,
      DelayedMatrixStats,
      Matrix.utils,
      grr,
      repmis,
      GenomeInfoDbData
```

2 orthogene-package

Suggests remotes,		
knitr,		
BiocStyle,		
markdown,		
rmarkdown,		
here,		
testthat ($>= 3.0.0$)		
RoxygenNote 7.1.2		
Encoding UTF-8		
Config/testthat/edition		

R topics documented:

	orthogene-package	2
	aggregate_mapped_genes	3
	all_genes	4
	convert_orthologs	5
	exp_mouse	8
	exp_mouse_enst	8
	gprofiler_orgs	9
	map_genes	9
	map_orthologs	10
	map_species	12
	report_orthologs	13
Index		15

orthogene-package orthogene

orthogene: Interspecies gene mapping

Description

orthogene is an R package for easy mapping of orthologous genes across hundreds of species.

Details

It pulls up-to-date interspecies gene ortholog mappings across 700+ organisms. It also provides various utility functions to map common objects (e.g. data.frames, gene expression matrices, lists) onto 1:1 gene orthologs from any other species.

Author(s)

Maintainer: Brian Schilder <bri> der@alumni.brown.edu> (ORCID)

Source

- GitHub: Source code and Issues submission.
- Author Site: orthogene was created by Brian M. Schilder.

See Also

Useful links:

- https://github.com/neurogenomics/orthogene
- Report bugs at https://github.com/neurogenomics/orthogene/issues

```
aggregate_mapped_genes
```

Aggregate a gene matrix by gene symbols

Description

Map matrix rownames to standardised gene symbols, and then aggregate many-to-one rows into a new matrix.

Usage

```
aggregate_mapped_genes(
  gene_df,
  species = "human",
  FUN = "sum",
  method = c("monocle3", "stats", "delayedarray"),
  transpose = FALSE,
  gene_map = NULL,
  gene_map_col = "name",
  non121_strategy = "drop_output_species",
  as_sparse = TRUE,
  as_DelayedArray = FALSE,
  dropNA = TRUE,
  sort_rows = FALSE,
  verbose = TRUE
```

Arguments

gene_df Input matrix where row names are genes.

species Species to map against.

FUN Aggregation function (*DEFAULT:* "sum").

method Aggregation method.

transpose Transpose gene_df before mapping genes.

gene_map A user-supplied gene_map. If NULL (DEFAULT)), map_genes will be used to

create a gene_map.

gene_map_col Column in gene_map to aggregate gene_df by.

non121_strategy

How to handle genes that don't have 1:1 mappings between input_species:output_species. Options include:

4 all_genes

- "drop_both_species" or "dbs" or 1:
 Drop genes that have duplicate mappings in either the input_species or output_species
 (DEFAULT).
- "drop_input_species" or "dis" or 2:
 Only drop genes that have duplicate mappings in the input_species.
- "drop_output_species" or "dos" or 3:
 Only drop genes that have duplicate mappings in the output_species.
- "keep_both_species" or "kbs" or 4:
 Keep all genes regardless of whether they have duplicate mappings in either species.
- "keep_popular" or "kp" or 5: Return only the most "popular" interspecies ortholog mappings. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.
- "sum", "mean", "median", "min" or "max":

 When gene_df is a matrix and gene_output="rownames", these options
 will aggregate many-to-one gene mappings (input_species-to-output_species)
 after dropping any duplicate genes in the output_species.

as_sparse Convert aggregated matrix to sparse matrix. as_DelayedArray

Convert aggregated matrix to DelayedArray.

dropNA Drop genes assigned to NA in groupings. sort_rows Sort gene_df rows alphanumerically.

verbose Print messages.

Value

Aggregated matrix

Examples

```
data("exp_mouse")
X_agg <- aggregate_mapped_genes(gene_df = exp_mouse, species = "mouse")</pre>
```

all_genes

Get all genes

Description

Return all known genes from a given species.

```
all_genes(
   species,
   method = c("gprofiler", "homologene"),
   ensure_filter_nas = FALSE,
   verbose = TRUE,
   ...
)
```

convert_orthologs 5

Arguments

species Species to get all genes for. Will first be standardised with map_species.

R package to to use for gene mapping: "gprofiler" (slower but more species and genes) or "homologene" (faster but fewer species and genes).

ensure_filter_nas

Perform an extra check to remove genes that are NAs of any kind.

verbose Print messages.

Additional arguments to be passed to gconvert when method="gprofiler".

Details

References homologeneData or gconvert.

Value

Table with all gene symbols from the given species.

Examples

```
genome_mouse <- all_genes(species = "mouse")
genome_human <- all_genes(species = "human")</pre>
```

convert_orthologs

Map genes from one species to another

Description

Currently supports ortholog mapping between any pair of 700+ species. Use map_species to return a full list of available organisms.

```
convert_orthologs(
   gene_df,
   gene_input = "rownames",
   gene_output = "rownames",
   standardise_genes = FALSE,
   input_species,
   output_species = "human",
   method = c("gprofiler", "homologene", "babelgene"),
   drop_nonorths = TRUE,
   non121_strategy = "drop_both_species",
   mthreshold = Inf,
   as_sparse = FALSE,
   sort_rows = FALSE,
   verbose = TRUE,
   ...
)
```

6 convert_orthologs

Arguments

gene_df

Data object containing the genes (see gene_input for options on how the genes can be stored within the object).

Can be one of the following formats:

• matrix:

A sparse or dense matrix.

• data.frame:

A data.frame, data.table. or tibble.

• codelist:

A list or character vector.

Genes, transcripts, proteins, SNPs, or genomic ranges can be provided in any format (HGNC, Ensembl, RefSeq, UniProt, etc.) and will be automatically converted to gene symbols unless specified otherwise with the . . . arguments.

Note: If you set method="homologene", you must either supply genes in gene symbol format (e.g. "Sox2") OR set standardise_genes=TRUE.

gene_input

Which aspect of gene_df to get gene names from:

• "rownames":

From row names of data.frame/matrix.

• "colnames":

From column names of data.frame/matrix.

• <column name>:

From a column in gene_df, e.g. "gene_names".

gene_output

How to return genes. Options include:

• "rownames":

As row names of gene_df.

• "colnames":

As column names of gene_df.

• "columns":

As new columns "input_gene", "ortholog_gene" (and "input_gene_standard" if standardise_genes=TRUE) in gene_df.

• "dict":

As a dictionary (named list) where the names are input_gene and the values are ortholog_gene.

"dict_rev":

As a reversed dictionary (named list) where the names are ortholog_gene and the values are input_gene.

standardise_genes

If TRUE AND gene_output="columns", a new column "input gene standard" will be added to gene_df containing standardised HGNC symbols identified by gorth.

input_species

Name of the input species (e.g., "mouse", "fly"). Use map_species to return a full list of available species.

output_species Name of the output species (e.g. "human", "chicken"). Use map_species to return a full list of available species.

method

R package to to use for gene mapping:

convert_orthologs 7

- "gprofiler": Slower but more species and genes.
- "homologene": Faster but fewer species and genes.
- "babelgene": Faster but fewer species and genes. Also gives

(slower but more species and genes) or "homologene" (faster but fewer species and genes).

drop_nonorths
non121_strategy

Drop genes that don't have an ortholog in the $output_species$.

How to handle genes that don't have 1:1 mappings between input_species:output_species. Options include:

- "drop_both_species" or "dbs" or 1:
 Drop genes that have duplicate mappings in either the input_species or output_species
 (DEFAULT).
- "drop_input_species" or "dis" or 2:
 Only drop genes that have duplicate mappings in the input_species.
- "drop_output_species" or "dos" or 3:
 Only drop genes that have duplicate mappings in the output_species.
- "keep_both_species" or "kbs" or 4:
 Keep all genes regardless of whether they have duplicate mappings in either species.
- "keep_popular" or "kp" or 5:

 Return only the most "popular" interspecies ortholog mappings. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.
- "sum", "mean", "median", "min" or "max":

 When gene_df is a matrix and gene_output="rownames", these options
 will aggregate many-to-one gene mappings (input_species-to-output_species)
 after dropping any duplicate genes in the output_species.

mthreshold

Maximum number of ortholog names per gene to show. Passed to gorth. Only used when method="gprofiler" (*DEFAULT*: Inf).

as_sparse

Convert gene_df to a sparse matrix. Only works if gene_df is one of the following classes:

- matrix
- Matrix
- data.frame
- data.table
- tibble

If gene_df is a sparse matrix to begin with, it will be returned as a sparse matrix (so long as gene_output= "rownames" or "colnames").

sort_rows

Sort gene_df rows alphanumerically.

verbose

Print messages.

. . .

Additional arguments to be passed to gorth or homologene.

NOTE: To return only the most "popular" interspecies ortholog mappings, supply mthreshold=1 here AND set method="gprofiler" above. This procedure tends to yield a greater number of returned genes but at the cost of many of them

8 exp_mouse_enst

not being true biological 1:1 orthologs.

For more details, please see here.

Value

```
gene_df with orthologs converted to the output_species.

Instead returned as a dictionary (named list) if gene_output="dict" or "dict_rev".
```

Examples

```
data("exp_mouse")
gene_df <- convert_orthologs(
    gene_df = exp_mouse,
    input_species = "mouse"
)</pre>
```

exp_mouse

Gene expression data: mouse

Description

Mean pseudobulk single-cell RNA-seq gene expression matrix.

Data originally comes from Zeisel et al., 2018 (Cell).

Usage

```
data("exp_mouse")
```

Format

sparse matrix

Source

```
Publication ctd <-ewceData::ctd() exp_mouse <-as(ctd[[1]]$mean_exp,"sparseMatrix") usethis::use_data
= TRUE)
```

exp_mouse_enst

Transcript expression data: mouse

Description

Mean pseudobulk single-cell RNA-seq Transcript expression matrix.

Data originally comes from Zeisel et al., 2018 (Cell).

```
data("exp_mouse_enst")
```

gprofiler_orgs 9

Format

sparse matrix

Source

```
Publication data("exp_mouse") mapped_genes <-map_genes(genes = rownames(exp_mouse)[seq(1,100)], target
= "ENST", species = "mouse", drop_na = FALSE) exp_mouse_enst <-exp_mouse[mapped_genes$input,]
rownames(exp_mouse_enst) <-mapped_genes$target all_nas <-orthogene:::find_all_nas(rownames(exp_mouse_mouse_enst <-exp_mouse_enst) <-mapped_genes$target all_nas,] exp_mouse_enst <-phenomix::add_noise(exp_mouse_enst)
usethis::use_data(exp_mouse_enst, overwrite = TRUE)</pre>
```

gprofiler_orgs

Reference organisms

Description

Organism for which gene references are available via gProfiler API. Used as a backup if API is not available.

Usage

```
gprofiler_orgs
```

Format

```
data.frame URL <-'https://biit.cs.ut.ee/gprofiler/api/util/organisms_list' gprofiler_orgs
<-jsonlite::fromJSON(URL) gprofiler_orgs <-dplyr::arrange(gprofiler_orgs,scientific_name)
usethis::use_data(gprofiler_orgs,overwrite = TRUE,internal=TRUE)</pre>
```

Source

gProfiler site

map_genes

Map genes

Description

Input a list of genes, transcripts, proteins, SNPs, or genomic ranges in any format (HGNC, Ensembl, RefSeq, UniProt, etc.) and return a table with standardised gene symbols (the "names" column).

```
map_genes(
  genes,
  species = "hsapiens",
  target = "ENSG",
  mthreshold = Inf,
  drop_na = FALSE,
  numeric_ns = "",
  verbose = TRUE
)
```

10 map_orthologs

Arguments

genes Gene list.

species Species to map against.

target target namespace.

mthreshold maximum number of results per initial alias to show. Shows all by default.

drop_na Drop all genes without mappings. Sets gprofiler2::gconvert(filter_

Drop all genes without mappings. Sets gprofiler2::gconvert(filter_na=) as well an additional round of more comprehensive NA filtering by **orthogene**.

namespace to use for fully numeric IDs (list of available namespaces).

verbose Print messages.

Details

numeric_ns

Uses gconvert. The exact contents of the output table will depend on target parameter. See ?gprofiler2::gconvert for more details.

Value

Table with standardised genes.

Examples

```
genes <- c(
    "Klf4", "Sox2", "TSPAN12", "NM_173007", "Q8BKT6",
    "ENSMUSG00000012396", "ENSMUSG00000074637"
)
mapped_genes <- map_genes(
    genes = genes,
    species = "mouse"
)</pre>
```

map_orthologs

Map orthologs

Description

Map orthologs from one species to another.

```
map_orthologs(
   genes,
   standardise_genes = FALSE,
   input_species,
   output_species = "human",
   method = c("gprofiler", "homologene"),
   mthreshold = Inf,
   verbose = TRUE,
   ...
)
```

map_orthologs 11

Arguments

genes

can be a mixture of any format (HGNC, Ensembl, RefSeq, UniProt, etc.) and will be automatically converted to standardised HGNC symbol format.

standardise_genes

If TRUE AND gene_output="columns", a new column "input_gene_standard" will be added to gene_df containing standardised HGNC symbols identified by

input_species

Name of the input species (e.g., "mouse", "fly"). Use map_species to return a full list of available species.

output_species Name of the output species (e.g. "human", "chicken"). Use map_species to return a full list of available species.

method

R package to to use for gene mapping:

- "gprofiler": Slower but more species and genes.
- "homologene": Faster but fewer species and genes.
- "babelgene": Faster but fewer species and genes. Also gives

(slower but more species and genes) or "homologene" (faster but fewer species and genes).

mthreshold

Maximum number of ortholog names per gene to show. Passed to gorth. Only used when method="gprofiler" (DEFAULT: Inf).

verbose

Print messages.

Additional arguments to be passed to gorth or homologene.

NOTE: To return only the most "popular" interspecies ortholog mappings, supply mthreshold=1 here AND set method="gprofiler" above. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.

For more details, please see here.

Details

map_orthologs() is a core function within convert_orthologs(), but does not have many of the extra checks, such as non121_strategy) and drop_nonorths.

Value

Ortholog map data. frame with at least the columns "input_gene" and "ortholog_gene".

Examples

```
data("exp_mouse")
gene_map <- map_orthologs(</pre>
    genes = rownames(exp_mouse),
    input_species = "mouse"
)
```

12 map_species

map_species

Standardise species names

Description

Search gprofiler database for species that match the input text string. Then translate to a standardised species ID.

Usage

```
map_species(
  species = NULL,
  search_cols = c("display_name", "id", "scientific_name", "taxonomy_id"),
  output_format = c("id", "display_name", "scientific_name", "taxonomy_id", "version"),
  use_genomeinfodbdata = FALSE,
  use_local = TRUE,
  verbose = TRUE
)
```

Arguments

species Species query (e.g. "human", "homo sapiens", "hapiens", or 9606). If given a list, will iterate queries for each item. Set to NULL to return all species. search_cols Which columns to search for species substring in metadata API. output_format Which column to return. use_genomeinfodbdata Retrieve an additional 2+ million organisms from GenomeInfoDb::specData. NOTE: Not all of these organisms are available for gene/ortholog mapping. If TRUE default, map_species uses a locally stored version of the species metause_local data table instead of pulling directly from the gprofiler API. Local version may not be fully up to date, but should suffice for most use cases. verbose Print messages.

Value

Species ID of type output_format

Examples

```
ids <- map_species(species = c(
   "human", 9606, "mus musculus",
   "fly", "C elegans"
))</pre>
```

report_orthologs 13

report_orthologs

Report orthologs

Description

Identify the number of orthologous genes between two species.

Usage

```
report_orthologs(
  target_species = "mouse",
  reference_species = "human",
  standardise_genes = FALSE,
  method_all_genes = c("gprofiler", "homologene"),
  method_convert_orthologs = c("gprofiler", "homologene"),
  drop_nonorths = TRUE,
  non121_strategy = "drop_both_species",
  round_digits = 2,
  return_report = TRUE,
  verbose = TRUE,
  ...
)
```

Arguments

```
target_species Target species.
reference_species
```

Reference species.

standardise_genes

If TRUE AND gene_output="columns", a new column "input_gene_standard" will be added to gene_df containing standardised HGNC symbols identified by gorth.

method_all_genes

R package to to use in all_genes step: "gprofiler" (slower but more species and genes) or "homologene" (faster but fewer species and genes).

method_convert_orthologs

R package to to use in convert_orthologs step: "gprofiler" (slower but more species and genes) or "homologene" (faster but fewer species and genes).

drop_nonorths
non121_strategy

Drop genes that don't have an ortholog in the output_species.

How to handle genes that don't have 1:1 mappings between input_species:output_species. Options include:

- "drop_both_species" or "dbs" or 1:
 Drop genes that have duplicate mappings in either the input_species or output_species
 (DEFAULT).
- "drop_input_species" or "dis" or 2:
 Only drop genes that have duplicate mappings in the input_species.

14 report_orthologs

- "drop_output_species" or "dos" or 3:
 Only drop genes that have duplicate mappings in the output_species.
- "keep_both_species" or "kbs" or 4:
 Keep all genes regardless of whether they have duplicate mappings in either species.
- "keep_popular" or "kp" or 5:

 Return only the most "popular" interspecies ortholog mappings. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.
- "sum", "mean", "median", "min" or "max":

 When gene_df is a matrix and gene_output="rownames", these options
 will aggregate many-to-one gene mappings (input_species-to-output_species)
 after dropping any duplicate genes in the output_species.

round_digits

Number of digits to round to when printing percentages.

return_report

Return just the ortholog mapping between two species (FALSE) or return both the ortholog mapping as well a data. frame of the report statistics (TRUE).

verbose

Print messages.

. . .

Additional arguments to be passed to gorth or homologene.

NOTE: To return only the most "popular" interspecies ortholog mappings, supply mthreshold=1 here AND set method="gprofiler" above. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.

For more details, please see here.

Value

List of ortholog report statistics

Examples

```
orth_fly <- report_orthologs(
   target_species = "fly",
   reference_species = "human"
)</pre>
```

Index

```
* datasets
     exp_mouse, 8
     exp_mouse_enst, 8
     gprofiler_orgs, 9
aggregate_mapped_genes, 3
all_genes, 4, 13
convert\_orthologs, 5, 13
DelayedArray,4
exp\_mouse, 8
exp_mouse_enst, 8
gconvert, 5, 10
gorth, 6, 7, 11, 13, 14
{\tt gprofiler\_orgs}, {\color{red} 9}
homologene, 7, 11, 14
{\tt homologeneData}, {\tt 5}
map\_genes, 3, 9
map\_orthologs, 10
map_species, 5, 6, 11, 12, 12
orthogene (orthogene-package), 2
orthogene-package, 2
\verb|report_orthologs|, 13
```