

M54/74HC4020 M54/74HC4040

HC4020 14 STAGE BINARY COUNTER HC4040 12 STAGE BINARY COUNTER

- HIGH SPEED
- $f_{MAX} = 73 \text{ MHz} (TYP.) \text{ at } V_{CC} = 5 \text{ V}$
- LOW POWER DISSIPATION $I_{CC} = 4 \mu A \text{ (MAX.)}$ at $T_A = 25 \, ^{\circ}\text{C}$
- HIGH NOISE IMMUNITY

 V_{NIH} = V_{NIL} = 28 % V_{CC} (MIN.)
- OUTPUT DRIVE CAPABILITÝ 10 LSTTL LOADS
- SYMMETRICAL OUTPUT IMPEDANCE | IOH | = IOL = 4 mA (MIN.)
- BALANCED PROPAGATION DELAYS tplh = tphl
- WIDE OPERATING VOLTAGE RANGE V_{CC} (OPR) = 2 V to 6 V
- PIN AND FUNCTION COMPATIBLE WITH 4020B/4040B

DESCRIPTION

The M54/74HC4020/HC4040 are high speed CMOS 14/12-STAGE BINARY COUNTER fabricated in silicon gate C²MOS technology. They have the same high speed performance of LSTTL combined with true CMOS low consumption.

A clear input is used to reset the counter to the all low level state. A high level on CLEAR accomplishes the reset function. A negative transition on the CLOCK input increments the counter by one.

For HC4020 twelve kind od divided output are provided; 1st and 4th stage to 14th stage.

The maximum division available at last stage is $1/16384 \times f_{IN}$ at clock.

For HC4040 each division stage has an output; the final frequency is 1/4096 x f_{IN}.

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

PIN CONNECTION (top view)

March 1993 1/13

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION (HC4020)

PIN No	SYMBOL	NAME AND FUNCTION
9, 7, 6, 5, 3, 2, 4, 13, 12, 14, 15, 1	Q1, Q4 to Q14	Parallel Outputs
10	CLOCK	Clock Input (LOW to HIGH, edge triggered)
11	CLEAR	Reset Inputs
8	GND	Ground (0V)
16	V _{CC}	Positive Supply Voltage

PIN DESCRIPTION (HC4040)

PIN No	SYMBOL	NAME AND FUNCTION
9, 7, 6, 5, 3, 2, 4, 13, 12, 14, 15, 1	Q1 to Q12	Parallel Outputs
10	CLOCK	Clock Input (LOW to HIGH, edge triggered)
11	CLEAR	Reset Inputs
8	GND	Ground (0V)
16	Vcc	Positive Supply Voltage

IEC LOGIC SYMBOLS

TRUTH TABLE

CLOCK	CLEAR	OUTPUT STATE
X	Н	ALL OUTPUTS = "L"
	L	NO CHANGE
_	L	ADVANCE TO NEXT STATE

LOGIC DIAGRAM (HC4020)

LOGIC DIAGRAM (HC4040)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
lıĸ	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
lo	DC Output Source Sink Current Per Output Pin	± 25	mA
Icc or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
P_{D}	Power Dissipation	500 (*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. (*) 500 mW: \cong 65 °C derate to 300 mW by 10mW/°C: 65 °C to 85 °C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit	
Vcc	Supply Voltage		2 to 6	V
VI	Input Voltage		0 to V _{CC}	V
Vo	Output Voltage		0 to V _{CC}	V
T _{op}	Operating Temperature: M54HC Series M74HC Series		-55 to +125 -40 to +85	၀ိ ၀
t _r , t _f	Input Rise and Fall Time	V _{CC} = 2 V	0 to 1000	ns
		V _{CC} = 4.5 V	0 to 500	
		V _{CC} = 6 V	0 to 400	

DC SPECIFICATIONS

		Test Conditions		Value								
Symbol Parameter	Parameter	Vcc (V)				_A = 25 ^c C and 7			85 °C HC		125 °C HC	Unit
		(۷)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V_{IH}	High Level Input	2.0			1.5			1.5		1.5		
	Voltage	4.5			3.15			3.15		3.15		V
		6.0			4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0					0.5		0.5		0.5	
	Voltage	4.5					1.35		1.35		1.35	V
		6.0					1.8		1.8		1.8	
V_{OH}	High Level	2.0	Vı =		1.9	2.0		1.9		1.9		
	Output Voltage	4.5	VIH		4.4	4.5		4.4		4.4		.,
		6.0	or		5.9	6.0		5.9		5.9		V
		4.5	V _{IL}	I _O =-4.0 mA	4.18	4.31		4.13		4.10		
		6.0		I _O =-5.2 mA	5.68	5.8		5.63		5.60		
V_{OL}	Low Level Output	2.0	V _I =			0.0	0.1		0.1		0.1	
	Voltage	4.5	V _{IH}	I _O = 20 μA		0.0	0.1		0.1		0.1	
		6.0	or			0.0	0.1		0.1		0.1	V
		4.5	VIL	I _O = 4.0 mA		0.17	0.26		0.33		0.40	
		6.0		I _O = 5.2 mA		0.18	0.26		0.33		0.40	
lı	Input Leakage Current	6.0	V _I = V _{CC} or GND				±0.1		±1		±1	μΑ
I _{CC}	Quiescent Supply Current	6.0	V _I = '	V _{CC} or GND			4		40		80	μΑ

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_f = t_f = 6 \text{ ns}$)

		Test Conditions			Value						
Symbol Parameter		Vcc			A = 25 C C and 7			85 °C HC		125 °C HC	Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH}	Output Transition	2.0			30	75		95		110	
t _{THL}	t _{THL} Time	4.5			8	15		19		22	ns
		6.0			7	13		16		19	
t _{PLH}	Propagation	2.0			20	50		65		75	
t _{PHL}	Delay Time	4.5			5	10		13		15	ns
	(Qn - Qn+1)	6.0			4	9		11		13	
t _{PLH}	Propagation	2.0			76	145		180		220	
t_{PHL}	Delay Time	4.5	for HC4020		21	29		36		44	ns
	(CLOCK Q1)	6.0			18	25		31		38	
t _{PLH}	Propagation	2.0			48	145		180		220	
t_{PHL}	Delay Time	4.5	for HC4040		17	29		36		44	ns
	(CLOCK Q1)	6.0			13	25		31		38	
t _{PHL}	Propagation	2.0			60	140		175		210	
	Delay Time	4.5	for HC4020		18	28		35		42	ns
(CLEAR - Qn)	6.0			15	24		30		36		
t _{PHL}	Delay Time	2.0			56	140		175		210	
		4.5	for HC4040		18	28		35		42	ns
(CLEAR - Qn)	6.0			15	24		30		36		
f _{MAX}	Maximum Clock	2.0		6.0	15		4.8		4		
	Frequency	4.5		30	65		24		20		MHz
		6.0		35	70		28		24		
t _{W(H)}	Minimum Pulse	2.0			40	75		95		110	
t _{W(L)}	Width	4.5			8	15		19		22	ns
	(CLOCK)	6.0			7	13		16		19	
t _{W(H)}	Minimum Pulse	2.0			32	75		95		110	
(,	Width	4.5	for HC4020		8	15		19		22	ns
	(CLEAR)	6.0			7	13		16		19	
t _{W(H)}	Minimum Pulse	2.0			70	175		220		265	
	Width	4.5	for HC4040		19	35		44		53	ns
	(CLEAR)	6.0			16	30		37		45	
t _{REM}	Minimum	2.0				0		0		0	
	Removal Time	4.5	for HC4020			0		0		0	ns
		6.0				0		0		0	
t _{REM}	EM Minimum	2.0				25		30		40	
	Removal Time	4.5	for HC4040			5		6		8	ns
		6.0				5		5		7	
C _{IN}	Input Capacitance				5	10		10			pF
C _{PD} (*)	Power Dissipation Capacitance				34						pF

^(*) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC}(opr) = C_{PD} \bullet V_{CC} \bullet f_{IN} + I_{CC}/2$ (per FLIP/FLOP)

SWITCHING CHARACTERISTICS TEST WAVEFORM

TEST CIRCUIT Icc (Opr.)

SGS-THOMSON

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm		inch				
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
a1	0.51			0.020				
В	0.77		1.65	0.030		0.065		
b		0.5			0.020			
b1		0.25			0.010			
D			20			0.787		
E		8.5			0.335			
е		2.54			0.100			
e3		17.78			0.700			
F			7.1			0.280		
I			5.1			0.201		
L		3.3			0.130			
Z			1.27			0.050		

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm		inch			
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α			20			0.787	
В			7			0.276	
D		3.3			0.130		
Е	0.38			0.015			
e3		17.78			0.700		
F	2.29		2.79	0.090		0.110	
G	0.4		0.55	0.016		0.022	
Н	1.17		1.52	0.046		0.060	
L	0.22		0.31	0.009		0.012	
М	0.51		1.27	0.020		0.050	
N			10.3			0.406	
Р	7.8		8.05	0.307		0.317	
Q			5.08			0.200	

SO16 (Narrow) MECHANICAL DATA

DIM.		mm		inch				
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
Α			1.75			0.068		
a1	0.1		0.2	0.004		0.007		
a2			1.65			0.064		
b	0.35		0.46	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.019			
c1			45°	(typ.)				
D	9.8		10	0.385		0.393		
Е	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		8.89			0.350			
F	3.8		4.0	0.149		0.157		
G	4.6		5.3	0.181		0.208		
L	0.5		1.27	0.019		0.050		
М			0.62			0.024		
S			8° (ı	max.)				

PLCC20 MECHANICAL DATA

DIM.		mm		inch			
Diiii.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	9.78		10.03	0.385		0.395	
В	8.89		9.04	0.350		0.356	
D	4.2		4.57	0.165		0.180	
d1		2.54			0.100		
d2		0.56			0.022		
E	7.37		8.38	0.290		0.330	
е		1.27			0.050		
e3		5.08			0.200		
F		0.38			0.015		
G			0.101			0.004	
М		1.27			0.050		
M1		1.14			0.045		

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

