Deep Learning

Alexander Panin, Andrey Ustyuzhanin, Alena Zarodnyuk

2021, LaSalle University

Recap of day3

KNN classification Random Forest Boosting, Bagging ROC curve, AUC X-validation Regularization **Decision Tree** Overfitting Loss function Purity of a leaf Accuracy/Recall/Precision Confusion Matrix **RMSE**

Linear Regression

Model:
$$x \longrightarrow wx +b \longrightarrow y$$

Objective function:
$$L = \frac{1}{N} \sum_i (y_i - y_i^{pred})^2$$

Optimization (exact): $w = (X^T \cdot X)^{-1} X^T y$

Linear Regression

Model:
$$x \longrightarrow wx +b \longrightarrow y$$
 pred

Objective function:
$$L = \frac{1}{N} \sum_i (y_i - y_i^{pred})^2$$

Optimization (iterative): $w_{i+1} := w_i - \alpha \cdot \frac{\partial L}{\partial w_i}$

Logistic Regression

$$X \longrightarrow wx +b \longrightarrow \frac{1}{2} \xrightarrow{0.5} p(y|x)$$

$$p(y|x) = \sigma(Wx + b) = \frac{1}{1 + e^{-(Wx+b)}}$$

Objective function?

Logistic Regression

Model: $X \longrightarrow wx + b \longrightarrow P(y)$

Objective function:

$$L = -\frac{1}{N} \sum_{i} y_i \cdot \log p(y|x_i) + (1 - y_i) \cdot \log(1 - p(y|x_i)))$$

Optimization(iterative): same as linear regression

Recap: Gradient Descent

Update:

$$w_{i+1} := w_i - \alpha \cdot \frac{\partial L}{\partial w_i}$$

- a learning rate a<<1
- L loss function

Nonlinear dependencies

How to learn that?

Feature extraction

Loss: same as linear/logistic regression

Model:

Training: $\underset{\theta_1}{argmin} L$

What if...

Features would tune to your problem automagically!

What do we want, exactly?

Model:

What do we want, exactly?

Model:

Joint training:

$$\underset{\theta_1,\theta_2}{argmin} \quad L$$

Okay, how do we extract features?

Model:

Model:

Model:

Output: $p(y|x) = \sigma(\sum_{i} w_{i}(\sum_{i} w_{i}^{h} x_{i} + b_{i}^{h}) + b_{j})$

Is it any better than logistic regression?

$$p(y|x) = \sigma(\sum_{j} w_{j}(\sum_{i} w_{i}^{h} x_{i} + b_{i}^{h}) + b_{j})$$

$$p(y|x) = \sigma(\sum_{i} [\sum_{j} w_{j} w_{i}^{h}] x_{i} + \sum_{i} b_{i}^{h} + b_{j})$$

$$\hat{w}_{i} = [\sum_{j} w_{j} w_{i}^{h}] x_{i}; \quad \hat{b} = \sum_{i} b_{i}^{h} + b_{j}$$

$$p(y|x) = \sigma(\sum_{i} \hat{w}_{i} x_{i} + \hat{b}_{i})$$

Add nonlinearity

Model:

Add nonlinearity

Model:

Add nonlinearity

•
$$f(a) = 1/(1+e^a)$$

• f(a) = tanh(a)

$$. f(a) = \max(0,a)$$

• f(a) = max(0,a)• $f(a) = log(1+e^a)$

a

Training the monster

Model:

Output:
$$p(y|x) = \sigma(\sum_{i} w_i \sigma(\sum_{i} w_i^h x_i + b_i^h) + b_j)$$

Training:

?!

Training the monster

Model:

Output:
$$p(y|x) = \sigma(\sum_{i} w_i \sigma(\sum_{i} w_i^h x_i + b_i^h) + b_j)$$

Training: gradient descent! $w_{i+1} := w_i - \alpha \cdot \frac{\partial L}{\partial w_i}$

• TL;DR: backprop = chain rule*

$$\frac{\partial f(g(x))}{\partial x} = \frac{\partial f(g(x))}{\partial g(x)} \cdot \frac{\partial g(x)}{\partial x}$$

• TL;DR: backprop = chain rule*

$$\frac{\partial f(g(x))}{\partial x} = \frac{\partial f(g(x))}{\partial g(x)} \cdot \frac{\partial g(x)}{\partial x}$$

* g and x can be vectors/vectors/tensors

$$\frac{\partial L}{\partial W_1} = \frac{\partial L}{\partial \sigma_2}$$

$$\frac{\partial L}{\partial W_1} = \frac{\partial L}{\partial \sigma_2} \cdot \frac{\partial \sigma_2}{\partial linear_2} \cdot$$

$$\frac{\partial L}{\partial W_1} = \frac{\partial L}{\partial \sigma_2} \cdot \frac{\partial \sigma_2}{\partial linear_2} \cdot \frac{\partial linear_2}{\partial \sigma_1} \cdot \frac{\partial linear_2}{\partial \sigma_1} \cdot \frac{\partial linear_2}{\partial \sigma_2} \cdot \frac{\partial linear_$$

Let's compute:

$$\frac{\partial L(X \times W + b)}{\partial X} = \frac{\partial L(X \times W + b)}{\partial [X \times W + b]} \times$$

What?

Variable shapes:

[batch size, features]
$$\frac{\partial L(X \times W + b)}{\partial X}$$

[batch size, features]

[features, outputs] [outputs] $\frac{\partial L(X\times W+b)}{\partial [X\times W+b]}$ [batch size, outputs]

Let's compute:

$$\frac{\partial L(X \times W + b)}{\partial X}$$

Hint: 1. figure out scalar case, 2. match shapes for matrices

$$\frac{\partial L(X\times W+b)}{\partial X} = \frac{\partial L(X\times W+b)}{\partial [X\times W+b]} \times$$

What?

Variable shapes:

[batch size, features]

$$\frac{\partial L(X \times W + b)}{\partial X}$$
[batch size, features]

[features, outputs] [outputs] $\partial L(X \times W + b)$ $\partial [X \times W + b]$ [batch size, outputs]

Let's compute:

$$\frac{\partial L(X \times W + b)}{\partial X} = \frac{\partial L(X \times W + b)}{\partial [X \times W + b]} \times W^{T}$$

Variable shapes:

Let's compute:

$$\frac{\partial L(X\times W+b)}{\partial W} = \label{eq:weights}$$
 What?

Variable shapes:

$$\begin{array}{ccc} X & & & & & & & & & & \\ [\text{batch size, features}] & & & & & & & & \\ \underline{\partial L(X\times W+b)} & & & & & & & \\ \underline{\partial L(X\times W+b)} & & & & & & \\ \underline{\partial L(X\times W+b)} & & & & & \\ \underline{\partial L(X\times W+b)} & & & & \\ \underline{\partial L(X\times W+b)} & & & \\ [\text{batch size, features}] & & & & \\ [\text{batch size, outputs}] & & & & \\ \end{array}$$

Let's compute:

$$\frac{\partial L(X\times W+b)}{\partial W} = X^T\times \frac{\partial L(X\times W+b)}{\partial [X\times W+b]}$$

Variable shapes:

[batch size, features] [features, out
$$\frac{\partial L(X \times W + b)}{\partial X}$$
 [batch size, features] $\frac{\partial D}{\partial X}$ [batch size, features]

[features, outputs] [outputs]
$$\frac{\partial L(X\times W+b)}{\partial [X\times W+b]}$$
 [batch size, outputs]

Cheat sheet for seminar

Gradient of
$$\sum_{i} \log p(y_i|x_i, w) = \sum_{i} \text{gradient log } p(y_i|x_i, w)$$

linear over X :
$$\frac{\partial L}{\partial [X \times W + b]} \times W^T$$

linear over W :
$$\frac{1}{\|X\|} \cdot X^T \times \frac{\partial L}{\partial [X \times W + b]}$$

sigmoid:
$$\frac{\partial L}{\partial \sigma(x)} \cdot [\sigma(x) \cdot (1 - \sigma(x))]$$
 Works for (scalar, vector)

Works for any kind of x (scalar, vector, matrix, tensor)

Not actual neurons:)

 Neurons output in "spikes", not real numbers

- No one knows for sure how they "train"
- There are other cell types
 e.g. neuroglial cells

Connectionist phrasebook

- Layer a building block for NNs :
 - "Dense layer": f(x) = Wx+b
 - "Nonlinearity layer": $f(x) = \sigma(x)$
 - Input layer, output layer
 - A few more we gonna cover later

- Activation layer output
 - i.e. some intermediate signal in the NN
- Backpropagation a fancy word for "chain rule"

Connectionist phrasebook

"Train it via backprop!"

Connectionist phrasebook

How do we train it?

Potential caveats?

Problems with deep learning

Hardcore overfitting

No "golden standard" for architecture

Computationally heavy

Back to neural networks

Model:

Training:

see the demo

Gradient Descent

Update:

$$w_{i+1} := w_i - \alpha \cdot \frac{\partial L}{\partial w_i}$$

- a learning rate a<<1
- L loss function

Can we do better?

Newton-Raphson

Parameter update

$$w_{i+1} = w_i - \alpha \cdot H^{-1} \frac{\partial L}{\partial w_i}$$

Hessian: $\mathbf{H} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{\partial x_2 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$

Green: Gradient Descent **Red:** Newton-Raphson

Any drawbacks?

Newton-Raphson

Parameter update

$$w_{i+1} = w_i - \alpha \cdot H^{-1} \frac{\partial L}{\partial w_i}$$

Hessian: $\mathbf{H} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{\partial x_2 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_2^2} \end{bmatrix}$

Green: Gradient Descent **Red:** Newton-Raphson

Inverting H might be infeasible

Stochastic gradient descent

Approximate objective with samples

$$L = \frac{1}{N} \sum_{i} f(x_i, y_i, w) = E_{i \sim U(1,N)} f(x_i, y_i, w)$$

$$L \approx f(x_i, y_i, w)|_{i \sim U(1, N)}$$

Stochastic gradient descent

Approximate objective with samples

$$L = \frac{1}{N} \sum_{i} f(x_i, y_i, w) = \mathop{E}_{i \sim U(1, N)} f(x_i, y_i, w)$$

$$w_{i+1} = w_i - \alpha \cdot \frac{\partial \hat{L}}{\partial w}$$
 where $\hat{L} = f(x_i, y_i, w)|_{i \sim U(1, N)}$

SGD with momentum

Idea: average gradient over consecutive steps aka "add inertia"

$$w_0 := 0; \nu_0 := 0$$

$$\nu_{i+1} := \alpha \cdot \frac{\partial L}{\partial w} + \mu \cdot \nu_i$$

$$w_{i+1} := w_i - \nu_{i+1}$$

SGD with momentum

Idea: average gradient over consecutive steps aka "add inertia"

$$w_0 := 0; \nu_0 := 0$$

$$\nu_{i+1} := \alpha \cdot \frac{\partial L}{\partial w} + \mu \cdot \nu_i \quad \text{// reuse gradient from previous steps}$$

$$w_{i+1} := w_i - \nu_{i+1}$$

SGD with momentum

Idea: average gradient over consecutive steps (see this <u>demo</u>)

$$\nu_{i+1} := \alpha \cdot \frac{\partial L}{\partial w} + \mu \cdot \nu_i \qquad w_{i+1} := w_i - \nu_{i+1}$$

RMSProp

Idea: adapt learning rate to the slope of objective function large gradient = go slower, small gradient = go faster

$$w_0 := 0; ms_0 := 0$$

$$ms_{i+1} := \gamma \cdot ms_i + (1 - \gamma) \cdot ||\frac{\partial L}{\partial w}||$$

$$w_{i+1} := w_i - \frac{\alpha}{\sqrt{ms_{i+1} + \epsilon}} \frac{\partial L}{\partial w}$$

RMSProp

Idea: adapt learning rate to the slope of objective function large gradient = go slower, small gradient = go faster

$$w_0 := 0; ms_0 := 0$$
 moving average norm^2
$$ms_{i+1} := \gamma \cdot ms_i + (1-\gamma) \cdot ||\frac{\partial L}{\partial w}||$$

$$w_{i+1} := w_i - \frac{\alpha}{\sqrt{ms_{i+1} + \epsilon}} \frac{\partial L}{\partial w}$$

Adam

Idea: combine momentum and rmsprop in one method the "default" optimizer, see the paper for details

$$w_0 := 0; ms_0 := 0$$
 moving average norm^2 $ms_{i+1} := \gamma \cdot ms_i + (1-\gamma) \cdot ||\frac{\partial L}{\partial w}||$

TL;DR stochastic optimization

Tips & tricks

- Adam works fine out of the box
- One can usually beat adam with tuned sgd+momentum Tuning may take long
- Everyone has his favorite optimizer :)

Stuff we won't cover

First order

- Adam flavors: NAdam, Adamax, QHAdam
- · Adagrad, Radagrad, Adadelta alternative adaptive Ir

Approx second order

- BFGS, L-BFGS
 - . K-FAC

Initialization, symmetry problem

Initialize with zeros W := 0

What will the first step look like?

Initialization, symmetry problem

- Break the symmetry!
- Initialize with random numbers!

W := N(0,0.01)?

W := U(-0.1,0.1)?

read more

Nuff said

Let's go implement that!

And now let's differentiate

- near state-of-the-art in image classification
- 5+ types of layers
- parallel branches with independent losses
- few hundred megabytes of weights

And now let's differentiate

- near state-of-the-art in image classification
- 5+ types of layers
- parallel branches with independent losses
- few hundred megabytes of weights

- near state-of-the-art in image classification
- 5+ types of layers
- parallel branches with independent losses
- few hundred megabytes of weights

Core idea: helps you define and train neural nets

Core idea: helps you define and train neural nets

- Layer-based frameworks:
 - Same idea as in our hand-made neural net

- Layer-based frameworks:
 - Same idea as in our hand-made neural net
 - this one http://bit.ly/2w9kAHm


```
name: "LeNet"
layer {
 name: "conv1"
 type: "Convolution"
 bottom: "data"
 top: "conv1"
 param {Ir mult: 1}
 param {lr mult: 2}
 convolution_param {
  num output: 20
  kernel size: 5
  stride: 1
  weight filler {
   type: "xavier"
  }}}
           130 lines
```

Caffe

You define model in config file by stacking layers (left)

Then run train script:

```
caffe train -solver
examples/mnist/lenet_solver.proto
txt
```

```
name: "LeNet"
layer {
 name: "conv1"
 type: "Convolution"
 bottom: "data"
 top: "conv1"
 param {Ir mult: 1}
 param {lr mult: 2}
 convolution_param {
  num output: 20
  kernel size: 5
  stride: 1
  weight filler {
   type: "xavier"
  }}}
           130 lines
```

Caffe

- + Easy to deploy (C++)
- + A lot of pre-trained models (model zoo)
- Model as protobuf
- Hard to build new layers
- Hard to debug

Still used for computer vision

Computation graphs

What does your CPU do when you write this?

```
a = x * y

b = a + z

c = np.sum(b)
```

Computation graphs

$$a = x * y$$

 $b = a + z$
 $c = np.sum(b)$

Idea: let's define this graph explicitly!

Computation graphs

- + Automatic gradients!
- + Easy to build new layers
- + We can optimize the Graph
- Graph is static during training
- Need time to compile/optimize
- Hard to debug

Dynamic graphs

. Chainer, DyNet, Pytorch

A graph is created on the fly

from torch.autograd import Variable

```
x = Variable(torch.randn(1, 10))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W x = Variable(torch.randn(20, 10))
```


Dynamic graphs

Chainer, DyNet, Pytorch

- + Can change graph on the fly
- + Can get value of any tensor at any time (easy debugging)
- Hard to optimize graphs (especially large graphs)
- Still early development

Researchers love these!

Dynamic graphs

I've been using PyTorch a few months now and I've never felt better. I have more energy. My skin is clearer. My eye sight has improved.

Researchers love them!