Final Project Part 2: Project Presentation

Predicting Accident Outcomes in New York City

Purpose:

• Build a model that can accurately predict the outcome of a traffic accident and assists in the deployment of officers.

Methods:

- Clean and Prepare Data for classification algorithms.
- Tested four different classification algorithms.
- Compare based on Recall of each algorithm and tuned parameters for best performance.

Major Findings:

- Vast majority of accidents do not result in injury or death.
- There is a correlation between number of véhicles involved and injury or death.

Conclusion:

 The best performing algorithm, Naïve-Bayes Gaussian, still only managed a recall of 65%. This is not an accurate enough model to use with human lives.

Overview:

 The goal of this project is to accurately predict whether a traffic accident ends in injury or death using limited, observational data.

Compile and Explore Data Sources

- Used NYC

 Traffic
 incident data
 and NOAA
 Historical
 Weather
 Data.
- Found Traffic data to be quite messy

Clean Data

- Deleted columns with extraneous info
- Consolidated Vehicle types. i.e Pickup tRuck to pickup truck

Train Models

Trained four

different models KNN, GaussianNB, Random Forest, Decision Tree

Evaluate Models

Using grid search and cross validation to tune and evaluate models.

- Police spend a large portion of their time working traffic incidents.
- While budgets are tight, creative solutions are needed to help create more effective distribution of officers.
- Prioritizing accident response can allow departments to cut back on staff or utilize staff more effectively.

Source: https://www.nvtimes.com/2020/06/19/upshot/unrestpolice-time-violent-crime.html

TRAFFIC

NYPD rolls out pilot program on Staten Island, won't respond to every accident

METRO

NYPD will stop responding to 'non-injury' car crashes amid coronavirus crisis

By Olivia Bensimon and David Meyer April 3, 2020 | 1:53pm | Updated

- Develop a model that can accurately predict if an accident has resulted in harm.
- Use only observational data that would be available to a camera.
- Help 911 dispatchers and police departments effectively distribute resources and time

Machine Learning can be used to predict traffic accident outcomes with an accuracy and recall above 90%. Using publicly available data.

Data Cleaning

- Vehicle data contained thousands of misspellings, incomprehensible categories.
- Extended beyond the date range of the weather data.
- Descriptors of vehicles must be encoded so machine learning algorithms can understand

Data Cleaning

- Weather data two columns with over 60% of values missing.
- Converted Vehicle Code values to feature columns using One-Hot Encoding
 - No strong correlation found between vehicle type and injury or death.

Vehicle Type and Location	Correlation w/ Harm
Bicycle	0.47
Single Vehicle accident	0.201
Motorcycle	0.102
Sedan	0.086

Train Models

- Created target variable for Injury or Death in an accident.
- Data has a heavy imbalance towards no-harm incidents.
- Used Random undersampling to balance the dataset. Data shrunk from 896,000 to 332,000.

Train Models

Evaluate Models

- Metrics for evaluation:
 - Accuracy
 - Recall
 - Speed
- A bias towards False Positives is preferred.
 - Sending help with no injury vs. not sending help with injury.

Based on a first pass the Random Forest Classifier meets or criteria for preferring False Positives.

Evaluate Models

- Cross Validation, scoring based on each models recall.
 - Used to evaluate the performance of each model on subsets of the data set.

	Cross Validation Mean	Std
DecisionTreeClassifier	0.613694	0.002187
GaussianNB	0.658194	0.010651
RandomForestClassifier	0.610062	0.003773
KNeighborsClassifier	0.497710	0.002036

The Gaussian Naïve-Bayes Algorithm scores the highest. Still below our threshold of 90%.

- Algorithms selected:
 - Decision Tree
 - Gaussian Naïve-Bayes
 - K-Nearest Neighbors
 - Random Forest
- Classification algorithms build networks of similar instances in the data.
- Car accidents have many similar factors with different outcomes

- Best performing models:
 - GaussianNB
 - Recall: 66%
 - Accuracy: 63%
 - Random Forest Classifier:
 - Recall: 75%
 - Accuracy: 69%

Based on the outcomes of these models it is not possible to build a model with 90% recall and accuracy that can predict accident outcomes.

Goal:

- Prove that machine learning can create an accurate model for accident harm prediction. This was not successful
- Possible Reasons:
 - Data was lacking pertinent information.
 - Weather data needs to me more hyper local
 - Lack of standardization in reporting.

- Gather more precise data about motor vehicle collisions.
- Use real time traffic and weather reports to aid in model training.
- Eventually combine this with a network of cameras.

