Мир "Нано"

Richard Smalley

Наноэлектроника для информационных систем

Получение Обработка Передача

информации

Аналоговая Цифровая

форма кодирования сигнала

Основной элемент -

электронный прибор с двумя устойчивыми электрическими состояниями

Элементы информационных систем

use законов поведения е как классических частиц -> kv эффектам

Гипотеза Louis de Broglie и постулаты квантовой механики

Состояние частицы описывается ВФ:

- I. полная информация
- 2. вероятностный смысл
- 3. условие нормировки
- 4. условия регулярности
- 5. принцип суперпозиции

Louis de Broglie

Werner Heisenberg

Max Born

Erwin Schrodinger

Albert Einstein

Уровень сложности элементарный

- 1. Определите длину волны (м) частицы с массой в 1 кг, движущейся со скоростью 1 м/с.
- 2. Определите длину волны (нм) свободного электрона, движущегося с энергией от 1 эВ до 10 000 эВ.
- 3. Определите длину волны (нм) электрона с эффективной массой $m_{e\!f\!f}=0.067m_0$ и энергией 54 мэВ.

Уровень сложности повышенный

- 4. Визуализируйте одномерную плоскую монохроматическую волну.
- 5. Визуализируйте волновой пакет с пояснением понятий фазовой и групповой скорости.

```
-70 MegaFon ♀
                    22:07
                                  1 ★ 65 % ■
>> hbar=1.0546e-34:
>> m0=0.911e-30;
>> eV2J=1.6e-19;
>> m=1:
>> m=1; v=1; lambda=2*pi*hbar/(m*v)
lambda =
   6.6262e-34
>> E=[1 1e4]; lambda=
(2*pi*hbar)/sqrt(2*m0*E*eV2J)
Error using /
Matrix dimensions must agree.
>> E=[1 1e4]; lambda=
(2*pi*hbar)./sqrt(2*m0*E*eV2J)
lambda =
   1.0e-08 *
    0.1227
              0.0012
>> meff=0.067*m0; E=54e-3; lambda=
(2*pi*hbar)./sqrt(2*meff*E*eV2J)
lambda =
   2.0403e-08
  >>
```


2. Волновые свойства частиц	61
2.1. Гипотеза де Бройля	61
2.2. Экспериментальные подтверждения гипотезы де Бройля	70
2.3. Соотношения неопределенностей	88
2.4. Применение микрочастиц для исследования	
структуры вещества	102
3. Основные постулаты квантовой механики	112
3.1. Волновая функция	113
3.2. Уравнение Шредингера	124
3.3. Вектор плотности потока вероятности	127
	132
3.5. Собственные функции и собственные значения операторов	140
3.6. Измерения физических величин в квантовых системах	148
3.7. Одновременное измерение разных физических величин	155
3.8. Матричная формулировка квантовой механики	164

Требования к оформлению текущего ДЗ

Текущее дз

Комплект

- 1. doc-файл
- т-файл
- 3. pdf-publish

X deadline 16.00

Комплект текущего ДЗ включает в себя:

1. doc-файл с отчетом (формулировка задачи, ее решение с пояснениями основных физических положений,

визуализация полученных результатов, выводы);

2. m-файл с комментариями;

3. pdf-publish.

Deadline выгрузки текущего ДЗ на OneDrive:

16.00 накануне следующего занятия.

Папка: Lxx_2021mmdd xx - номер занятия; mmdd - месяц и день занятия

