# Consultes multitaula: JOIN's

## Objectius

- Escriure sentències SELECT per a accedir a les dades des d'una o més taules (inner JOIN)
- Visualitzar files d'una de les taules que no sortirien a una condició inner JOIN (amb outer JOIN)
- Combinar una taula amb si mateixa (self JOIN).

#### Obtenció de Dades de Múltiples Taules



```
        EMPNO
        DEPTNO
        LOC

        7839
        10
        NEW YORK

        7698
        30
        CHICAGO

        7782
        10
        NEW YORK

        7566
        20
        DALLAS

        7654
        30
        CHICAGO

        7499
        30
        CHICAGO

        14
        rows
        selected
```

# ¿Qué és JOIN?

Utilitzem la clàusula JOIN per a consultar dades que es troben en més d'una taula. És una reunió o composició de les files d'una taula amb les d'una altra.

```
SELECT taula1.columna1, taula2.columna2

FROM taula1 [INNER] JOIN taula2

ON taula1.clau_forana = taula2.clau_primaria;
```



Els diferents join els podem explicar a partir de les interseccions i unions dels conjunts de files de dues taules

## Tipus de Join

- Cross join
- [Inner] join ←
- Outer join
  - Left join
  - Right join
  - Full join
- Casos especials
  - Self join
  - Producte cartesià amb restricció

# Producte cartesià (cross join)

- Quan es fa una consulta multi-taula sense condició obtenim el producte cartesià.
- El producte cartesià el podem obtenir de forma explícita o implícita.
- És un join teòric, no té cap interès en la pràctica.

#### Generació d'un Producte Cartesià

#### EMP (14 files)

#### **DEPT (4 files)**

| EMPNO ENAME               | •.•.•. | DEPTNO                 |
|---------------------------|--------|------------------------|
| 7839 KING                 |        | <b>10</b> <sub>0</sub> |
| 7698 BLAKE                | •      | 3,0,                   |
| 7 <del>7934</del> MHLLEER | ·.·    | <b>1</b> %             |

| DEPTNO           | DNAME             | LQC <sub>C</sub>  |
|------------------|-------------------|-------------------|
| 10               | ACCOUNTING        |                   |
| 2 <u>0</u><br>30 | RESEARCH<br>SALES | DALLAS<br>CHICAGO |
| 440              | OFFERNITED S      | BOSTON            |

"Producte Cartesià: 14\*4 = 56 files"



# Com funciona un [inner] join?

JOIN només produeix les files que acompleixen la clàusula ON.



Aquestes dues files no tenen parella a l'altra taula, per tant no sortiran a la taula resultat

## Forma explícita i implícita de JOIN

• La forma explícita de JOIN és la que acabem de veure és la recomanada i és la que farem servir a classe:

```
SELECT *

FROM propietaris INNER JOIN gats

ON gats.propietari = propietaris.id;
```

 La forma implícita de JOIN, tot i que sigui estàndard ANSI se la deixarà de donar suport en alguns SGBDR i es considera deprecated però és bo reconèixer-la per si us la trobeu:

```
SELECT *

FROM propietaris, gats

WHERE gats.propietari = propietaris.id;
```

### Noms de Columna Ambigus

 Quan es realitza una consulta en la qual hi ha dos camps amb el mateix nom, el SGBD no pot resoldre l'ambigüitat i dona un error.

```
SELECT num_empl, vendes, oficines.*
FROM rep_vendes JOIN oficines
ON rep_vendes.oficina_rep = oficines.oficina;
...
ERROR: column reference "vendes" is ambiguous
```

• La solució és senzilla: estem obligats a fer ús del nom de la taula.

```
SELECT num_empl, rep_vendes.vendes, oficines.*
FROM rep_vendes JOIN oficines
ON rep_vendes.oficina_rep = oficines.oficina;
```

## Us d'Àlies de Taula

Ajuden a simplificar les consultes

```
SELECT emp.empno, emp.ename, emp.deptno,
dept.deptno, dept.loc
FROM emp JOIN dept
ON emp.deptno = dept.deptno;
```

```
SELECT e.empno, e.ename, e.deptno,
d.deptno, d.loc
FROM emp e JOIN dept d
ON e.deptno = d.deptno;
```

#### **Outer Joins**



No hi ha empleats al departament OPERATIONS

#### **Outer Join**

S'utilitza per afegir, al resultat, les files de la taula que vulguem (left, right o les dues) que NO acompleixen la condició del JOIN.

- Left join
- Rigth join\*
- Full join

```
SELECT taula1.columna1, taula2.columna2

FROM taula1 LEFT [OUTER] JOIN taula2

ON taula1.clau_forana = taula2.clau_primaria;
```

```
SELECT taula1.columna1, taula2.columna2

FROM taula1 RIGHT [OUTER] JOIN taula2

ON taula1.clau_forana = taula2.clau_primaria;
```

<sup>\*</sup> Un RIGHT JOIN sempre es pot expressar com un LEFT JOIN, És suficient canviar l'ordre de les taules, però quan hi ha més de dues taules podria resultar + còmode no canviar-ho.

## Ús d'Outer Joins

```
SELECT e.ename, d.deptno, d.dname
FROM emp e RIGHT JOIN dept d
ON e.deptno = d.deptno
ORDER BY e.deptno;
```

```
ENAME DEPTNO DNAME

KING 10 ACCOUNTING
CLARK 10 ACCOUNTING
...

40 OPERATIONS
15 rows selected.
```

Imposem que es mostri el departament 40 malgrat no acomplir la condició de join

## Exemple de LEFT JOIN

Tornant a l'exemple dels gatets i els seus propietaris



Un LEFT JOIN inclou totes les files de la taula de l'esquerra (LEFT), taula propietaris al nostre cas, tot i que la fila, o sigui el propietari, no aparegui en la taula de la DRETA, la taula de gats al nostre cas.

#### Self Joins:

Cas particular de JOIN: fem un join d'una taula amb si mateixa. La taula té una clau forana que fa referència a la pròpia taula.



«MGR a la taula EMP és igual a EMPNO a la taula CAP»

## Self join

Es combina la pròpia taula amb si mateixa

```
SELECT emp.ename Empleat, cap.ename Cap
FROM emp JOIN emp cap ON emp.mgr = cap.empno;
```

```
Empleat Cap

BLAKE KING

CLARK KING

JONES KING

MARTIN BLAKE

...

13 rows setected.
```

#### Producte cartesià amb restricció

#### **EMP**



#### **SALGRADE**

| GRADE | LOSAL | HISAL |
|-------|-------|-------|
| 1     | 700   | 1200  |
| 2     | 1201  | 1400  |
| 3     | 1401  | 2000  |
| 4     | 2001  | 3000  |
| 5     | 3001  | 9999  |

«el salari a la taula EMP, es una remuneració entre el salari més baix (LOSAL) i el salari més alt (HISAL) de la taula SALGRADE»

#### Producte cartesià amb restricció

```
SELECT e.ename, e.sal, s.grade
FROM emp e JOIN salgrade s
ON e.sal BETWEEN s.losal AND s.hisal;
```

| ENAME             | SAL  | GRADE |  |
|-------------------|------|-------|--|
|                   |      |       |  |
| JAMES             | 950  | 1     |  |
| SMITH             | 800  | 1     |  |
| ADAMS             | 1100 | 1     |  |
|                   |      |       |  |
| 14 rows selected. |      |       |  |