Aprendizaje profundo

REDES RECURRENTES

Gibran Fuentes-Pineda Noviembre 2020

Tareas uno a uno

Tareas uno a muchos

Imagen tomada de Amidi. Recurrent Neural Networks cheatsheet

Tareas muchos a uno

Tareas muchos a muchos

Tareas muchos a muchos con tiempos distintos

Redes recurrentes

· Redes con retro-alimentación en sus conexiones

Imagen tomada de Colah 2015 (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Elementos básicos

- 1. Entradas en cada instante de tiempo $t(\mathbf{x}^{[t+1]})$
- 2. Estados en cada instante de tiempo $t(\mathbf{h}^{[t+1]})$
- 3. Salidas en cada instante de tiempo $t(\mathbf{y}^{[t+1]})$

Tipos de retroalimentación

- 1. Salida anterior $(y^{[t]})$
- 2. Estado anterior $(\mathbf{h}^{[t]})$
- 3. Salida y estado anterior $(\mathbf{h}^{[t]} \text{ y } \mathbf{y}^{[t]})$

Celda recurrente básica

• Capa que procesa el estado anterior y la entrada actual para generar un nuevo estado y la salida

$$\begin{aligned} \mathbf{h}^{[t+1]} &= \phi(\mathbf{W}_{hh} \cdot \mathbf{h}^{[t]} + \mathbf{W}_{hx} \cdot \mathbf{x}^{[t+1]} + \mathbf{b}_h) \\ \hat{\mathbf{y}}^{[t+1]} &= \phi(\mathbf{W}_{yh} \cdot \mathbf{h}^{[t+1]} + \mathbf{b}_y) \end{aligned}$$

Celda recurrente básica: otra perspectiva

$$\mathbf{h}^{[t+1]} = \sigma \left(\mathbf{W}_h \cdot \underbrace{\left[\mathbf{h}^{[t]}, \mathbf{x}^{[t+1]}\right]}_{\text{Concatenation}} + \mathbf{b}_h \right)$$

Despliegue de celdas

• Una celda recurrente para una secuencia de *T* valores, se puede desplegar en *T* capas con parámetros idénticos

Red neuronal con celdas recurrentes

- Típicamente contiene celdas recurrentes en conjunto con otras capas
- La salida de una celda puede alimentar otras capas u otras celdas
- · Un clasificador simple

$$\begin{aligned} \mathbf{h}^{[t+1]} &= \sigma \left(\mathbf{W}_h \cdot \left[\mathbf{h}^{[t]}, \mathbf{x}^{[t+1]} \right] + \mathbf{b}_h \right) \\ \hat{\mathbf{y}}^{[t+1]} &= softmax \left(\mathbf{W}_{yh} \cdot \mathbf{h}^{[t+1]} + \mathbf{b}_y \right) \end{aligned}$$

Ejemplo: modelo de lenguaje a nivel símbolo

Imagen tomada de Karpathy 2015 (http://karpathy.github.io/2015/05/21/rnn-effectiveness/)

Modelando dependencias a corto plazo

- En teoría una red recurrente básica puede modelar dependencias a corto y largo plazo
 - Siegelmann y Sontag mostraron que las redes recurrentes son Turing completas¹

¹Siegelmann and Sontag. On The Computational Power Of Neural Nets, 1995.

El problema de la memoria a largo plazo

 En práctica es muy difícil entrenarlas para tareas con dependencias a largo plazo

Memorias a corto y largo plazo

 Agregan elementos internos a la celda básica que permiten capturar dependencias a corto y largo plazo

Imagen tomada de Colah 2015 (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

LSTM: salida de la capa anterior

 Agrega o elimina elementos del estado anterior de la celda C^[t] basado en transformación de la entrada actual x^[t+1] y el estado oculto anterior h^[t]

Imagen tomada de Colah 2015 (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

LSTM: compuerta de olvido

• Determina qué olvidar del estado de la celda $\mathbf{C}^{[t]}$ y en qué proporción a partir de la entrada actual $\mathbf{x}^{[t+1]}$ y estado oculto anterior $\mathbf{h}^{[t]}$

$$\mathbf{f}^{[t+1]} = \sigma\left(\mathbf{W}_f \cdot \left[\mathbf{h}^{[t]}, \mathbf{x}^{[t+1]}\right] + \mathbf{b}_f\right)$$

 $Imagen\ tomada\ de\ Colah\ 2015\ (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)$

LSTM: computerta de entrada

• Determina qué agregar al estado de la celda $\mathbf{C}^{[t]}$ y en qué proporción a partir de la entrada actual $\mathbf{x}^{[t+1]}$ y estado oculto anterior $\mathbf{h}^{[t]}$

$$\begin{split} & \mathbf{i}^{[t+1]} = \sigma \left(\mathbf{W}_i \cdot \left[\mathbf{h}^{[t]}, \mathbf{x}^{[t+1]} \right] + \mathbf{b}_i \right) \\ & \hat{\mathbf{C}}^{[t+1]} = \tanh \left(\mathbf{W}_C \cdot \left[\mathbf{h}^{[t]}, \mathbf{x}^{[t+1]} \right] + \mathbf{b}_C \right) \end{split}$$

LSTM: nuevo estado

• El nuevo estado de la celda se obtiene como una combinación de la salida de la compuerta de olvido $\mathbf{f}^{(t)}$ y las salidas $\mathbf{i}^{[t+1]}$ y $\tilde{\mathbf{C}}^{[t+1]}$ de la compuerta de entrada

$$C^{[t+1]} = f^{[t+1]} \odot C^{[t]} + i^{[t+1]} \odot \tilde{C}^{[t+1]}$$

donde ⊙ denota el producto de Hadamard

LSTM: computerta de salida

• El siguiente estado oculto $\mathbf{h}^{[t+1]}$ se obtiene como una combinación de la entrada actual $\mathbf{x}^{[t+1]}$, el estado oculto anterior $\mathbf{h}^{[t]}$ y el nuevo estado de la celda $\mathbf{C}^{[t+1]}$

$$\begin{split} o^{[t+1]} &= \sigma \left(W_o \cdot \left[h^{[t]}, x^{[t+1]} \right] + b_o \right) \\ h^{[t+1]} &= o^{[t+1]} \odot \tanh \left(C^{[t+1]} \right) \end{split}$$

Gated Recurrent Unit

· Combina compuertas de olvido y entrada en una sóla

$$\begin{split} \mathbf{z}^{[t+1]} &= \sigma \left(\mathbf{W}_{\mathbf{z}} \cdot \left[\mathbf{h}^{[t]}, \mathbf{x}^{[t+1]} \right] + \mathbf{b}_{\mathbf{z}} \right) \\ \mathbf{r}^{[t+1]} &= \sigma \left(\mathbf{W}_{\mathbf{r}} \cdot \left[\mathbf{h}^{[t]}, \mathbf{x}^{[t+1]} \right] + \mathbf{b}_{\mathbf{r}} \right) \\ \tilde{\mathbf{h}}^{[t+1]} &= \tanh \left(\mathbf{W}_{\mathbf{h}} \cdot \left[\mathbf{r}^{[t+1]} \odot \mathbf{h}^{[t]}, \mathbf{x}^{[t+1]} \right] + \mathbf{b}_{\mathbf{h}} \right) \\ \mathbf{h}^{[t+1]} &= \left(1 - \mathbf{z}^{[t+1]} \right) \odot \mathbf{h}^{[t]} + \mathbf{z}^{[t+1]} \odot \tilde{\mathbf{h}}^{[t+1]} \end{split}$$

Retropropagación en el tiempo

· Pérdida en el tiempo

$$\mathcal{L}\left(\hat{\mathbf{y}},\mathbf{y}\right) = \sum_{t=1}^{T} \mathcal{L}(\hat{\mathbf{y}}^{[t]},\mathbf{y}^{[t]})$$

Retropropagación

$$\frac{\partial \mathcal{L}^{[T]}}{\partial \theta} = \sum_{t=1}^{T} \frac{\partial \mathcal{L}^{[t]}}{\partial \theta}$$

$$\mathbf{a}_{t} \xrightarrow{\mathbf{x}_{t}} f \xrightarrow{\mathbf{x}_{t+1}} g \xrightarrow{\mathbf{y}_{t+1}} g$$

$$\mathbf{y} \text{ unfold through time } \mathbf{y}$$

$$\mathbf{a}_{t} \xrightarrow{\mathbf{x}_{t+1}} f_{1} \xrightarrow{\mathbf{x}_{t+1}} f_{2} \xrightarrow{\mathbf{x}_{t+2}} f_{3} \xrightarrow{\mathbf{x}_{t+3}} g \xrightarrow{\mathbf{y}_{t+3}} g$$

Redes recurrentes apiladas

RNR Bidireccional

Modelos secuencia a secuencia

Imagen derivada de https://www.tensorflow.org/tutorials/seq2seq