Shiva Rama Krishna Reddy Velma. KUID# 2842942

Report:

We get the time for CPU and Map when we run the code.

• Without parallelizing:

Image pixel =
$$480 * 640$$

n_rows = 480 , n_cols = 640 , CPI = 9 , L = 171
n_{cycles} = N_{rows}(N_{cols} + L -1) = $480*(640 + 171 - 1) = 388,800$
P_A = 1 /CPI * T_{clock} (lets take T_{clock} = 4 ns)
= 1 / $9 * 4$ ns = $0.0278 * (10^9)$
= 27.8 MIPS

With parallelizing(delay queue):

Image pixel = 480 * 640
$$\begin{aligned} &n_rows = 480, \, n_cols = 640, \, CPI = 1, \, L = 168 \\ &n_{cycles} = N_{rows}(N_{cols} + L - 1) = 480*(640 + 168 - 1) = 387,360 \\ &P_B = 1/CPI * T_{clock}(\, lets \, take \, T_{clock} = 4ns) \\ &= 1/1 * 4ns = 0.25 * (10^9) \\ &= 250 \, MIPS \end{aligned}$$

• With parallelizing(Streaming):

Image pixel = 480 * 640
$$\begin{aligned} &n_rows = 480, \, n_cols = 640, \, CPI = 1, \, L = 141 \\ &n_{cycles} = N_{rows}(N_{cols} + L - 1) = 480*(640 + 141 - 1) = 374,400 \\ &P_C = 1/CPI * T_{clock} (lets take $T_{clock} = 4ns) \\ &= 1/1 * 4ns = 0.25 * (10^9) \\ &= 250 \, MIPS \end{aligned}$$$

• SpeedUp:

S= Performance_x / Performance_y = 250 / 27.8 = 8.9928

le; Stream = **9 X** faster than (without parallelizing)