Measuring Treasury Debt and Market Depth

Dr. Andrew Keinsley

Weber State University

November, 2023

The Basics

- US fiscal debt has come back into sharp focus recently
 - COVID-19
 - Industrial policy
 - Inflation
 - Rising interest rates
- Traditional view of the UST market focuses on size, not depth

- Contributions
 - Simple sum of USTs is incorrect
 - Derivation of user cost of USTs
 - Creation of index to track true aggregate
 - Value of USTs directly impacts fiscal sustainability

USTs are Imperfect Substitutes

Literature

- Krishnamurthy and Vissing-Jorgensen (2012, 2013)
- Nagel (2016) :
- All: the various maturities/types of UTSs have different attributes/purposes

Findings

- Extension of Amihud and Mendelson (1991)
 - Match securities that mature within one day of each other
 - Regress YTM spreads against a variety of factors
- Bills are a liquidity hedge
- Bonds are a savings vehicle
- They should not be linearly aggregated

The User Cost of Treasury Securities

- A proper index number
 - Not the aggregate, itself
 - Tracks the aggregate nonparmetrically
 - Must be derived from optimization
- Standard single-period user cost

$$\eta_t = \frac{R_t - r_t}{1 + R_t}$$

- Barnett (1978)
- Opportunity cost of holding the asset

- Partial equilibrium model: household
 - Standard utility maximization
 - Short- and long-term bonds, and a benchmark asset
- Contribution
 - Deriving the single-period user cost of a long-term asset

The User Cost of Long-Term Treasury Securities

$$\eta_t^L = \frac{\mathbb{E}_t \left[\frac{\mu_{t+1}}{\mu_t} \frac{1}{\pi_{t+1}} \left\{ R_t^n - (1 - \delta) \gamma_{3,t+1} \Delta R_{t+1}^n - \left(r_t^{L,n} - (1 - \alpha) \gamma_{4,t+1} \Delta r_{t+1}^{L,n} \right) \right\} \right]}{\mathbb{E}_t \left[\frac{\mu_{t+1}}{\mu_t} \frac{1}{\pi_{t+1}} \left\{ 1 + R_t^n - (1 - \delta) \gamma_{3,t+1} \Delta R_{t+1}^n \right\} \right]}$$

- $\delta, \alpha \in (0, 1]$ are the maturity rates

Data and Baseline Result

- Center for Research in Securities Pricing (CRSP)
- CUSIP-level, monthly data on US Treasuries: 1977-2020
- 1-month ahead forward rates used for expected values
- Fisher-ideal index functional form
 - Securities separated by type
 - Then separated by quarters to maturity

Extracting the Monetary Services of Treasury Securities

 $\%\Delta(Quantity + Monetary Services)$

 $-\%\Delta(Quantity)$

 $= \%\Delta(\mathsf{Monetary\ Services})$

It's all Relative

- This index is a measure of the "depth" of the market
- More recent movements align with
 - Budget surpluses of the 1990s
 - European debt crisis of the 2010s
 - COVID-19 "dash for cash"

	Notes–Bills	Bonds–Notes	Bonds–Bills
Relative Bid-Ask Spread	0.4163** (0.173)	0.0981 (0.074)	-0.1424** (0.074)
Coupon Rate Spread	0.0210*** (0.001)	0.0170*** (0.005)	0.0076 (0.013)
10y-2y Spread	0.0234*** (0.003)	-0.0124*** (0.002)	-0.0484 (0.033)
Observations	2250	7430	78
R-Squared	0.207	0.505	0.399
F-statistic	99.48	207.2	20.19