

でルスま大学 NORTHWESTERN POLYTECHNICAL UNIVERSITY

徐爽

西北工业大学

数学与统计学院 应用概率统计系

第三节 随机事件的概率

- 一、频率的定义与性质
- 二、概率的统计定义
- 三、古典概型
- **四、几何概型**
- 五、概率的公理化定义

西北工业大学概率统计教研室

概率论作为数学学科,可以且应该从公理开始建设,和几何、代数的思路一样。

The theory of probability as mathematical discipline can and should be developed from axioms in exactly the same way as Geometry and Algebra.

—— 安德雷·柯尔莫哥洛夫 (Andrey Kolmogorov) | 概率论公理化之父 | 1903 ~ 1987

伊藤清写的《柯尔莫哥洛夫的数学观与业绩》: "…当我得知苏联伟大的数学家,84岁的Kolmogorov教授于1987年10月20日离开人世时,我感到像是失去了支柱那样悲哀与孤寂。在我还是学生时(1937年)读了他的名著《概率论的基本概念》之后,便立志钻研概率论,并持续了50年之久。对于我来说,Kolmogorov就是我的数学基础。

西北工业大学概率统计教研室

随机现象

统计规律性

随机事件的概率

随机试验

客观存在,如何度量

一、频率的定义与性质

1. 定义

在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数 n_A 称为事件A发生的频数.比值 $\frac{n_A}{n}$ 称为事件A发生的频率,并记成 $f_n(A)$,即

$$f_n(A) = \frac{n_A}{n}$$

实例 将一枚硬币抛掷 100\200\300...\800次,记录观察正面出现的次数.

次数	第1次试验频率	第2次试验频率
100		
200		
300		
400		
500		
600		
700		
800		

实例 将一枚硬币抛掷 100\200\300...\800次,记录观察正面出现的次数.

结论:

- (1)频率 f具有随机波动性
- (2)随 n 的增大,频率 f 越来越稳定.

试验者	n	μ_n	f
德.摩根	2048	1061	0.5181
蒲丰	4040	2048	0.5069
费勒	10000	4979	0.4979
皮尔逊	12000	6019	0.5016
杰万斯	20480	10379	0.5068
罗曼. 诺夫斯基	80640	39699	0.4932

 $f_n \approx 0.5 = P(\overline{\mathbb{E}}\overline{\mathbb{m}})$

频率的稳定性

2. 频率的性质

$$f_n(A) = \frac{n_A}{n}$$

设A 是随机试验E 的任一事件,则

(1)
$$0 \le f_n(A) \le 1$$
;

(2)
$$f(\Omega) = 1$$
, $f(\emptyset) = 0$;

(3) 若 A_1, A_2, \dots, A_m 是两两互斥的事件,则

$$f(A_1 \cup A_2 \cup \cdots \cup A_m) = f_n(A_1) + f_n(A_2) + \cdots + f_n(A_m).$$

二、概率的统计定义

1.定义1.2

在随机试验中,若事件A出现的频率 $\frac{n_A}{n}$ 随着试验次数n的增加,趋于某一常数 p, $0 \le p \le 1$, 则定义事件A的概率为p, 记作P(A)。

- 2. 性质1.1 (概率统计定义的性质)
- (1) 对任一事件A,有 $0 \le P(A) \le 1$; 非负性
- (2) $P(\Omega) = 1, P(\emptyset) = 0;$

规范性

(3) 对于两两互斥的有限多个事件 A_1, A_2, \dots, A_m ,

$$P(A_1 + A_2 + \dots + A_m) = P(A_1) + P(A_2) + \dots + P(A_m).$$

有限可加性(证明略)

1° 概率的统计定义直观地描述了随机事

件发生的可能性大小,反映了概率的本质内容。

$$2^{\circ}$$
 $f_n(A) = \frac{n_A}{n}$ 与 $P(A)$ 的区别

 $f_n(A) = \frac{n_A}{n}$ 是一个随机数,它与随机试验有关;

而 P(A) 是一个确定的数!

当试验次数n很大时,有

频率 $f_n(A) \approx$ 概率P(A)

投篮的命中率?

$$f_n \approx 0.3 = P$$
(命中)

- 3° 概率统计定义的缺陷
- (1) 无法根据此定义计算某事件的概率..

需要作大量的试验,才能观察出 $f_n(A)$ 的稳定值。

(2) 在数学上不够严谨.

如何求P(A)?

三、古典概型

古典概型随机试验

1.古典概型定义

若随机试验E具有下列两个特征:

1) 有限性

样本空间Ω中,只有有限个样本点

$$\mathbb{P} \quad \Omega = \{\omega_1, \omega_2, \cdots, \omega_n\}.$$

2) 等可能性

 $\omega_1, \omega_2, \cdots, \omega_n$ 发生的可能性相等.

则称E所描述的概率模型为古典概型.

法国数学家 拉普拉斯 P.-S. Laplace (1749-1827)

2. 古典概型中概率的计算公式

定义1.3 设古典概型随机试验 E 的样本空间 Ω 由n 个样本点构成 A 为 E 的任意一个事件,且包含 n_A 个样本点,则事件 A 出现的概率记为:

$$P(A) = \frac{A \text{ 所包含样本点的个数}}{\Omega \text{所含样本点的总数}} = \frac{n_A}{n}$$

称此为古典概型的概率.

3.性质1.2(古典概型的概率性质)

设A 是随机试验E 的任一事件,则

(1)
$$0 \le P(A) \le 1$$
;

非负性

(2)
$$P(\Omega) = 1$$
, $P(\emptyset) = 0$;

规范性

(3) 若 A_1, A_2, \dots, A_m 是两两互不相容的事件,则

$$P(A_1 + A_2 + \dots + A_m) = P(A_1) + P(A_2) + \dots + P(A_m).$$

有限可加性

(证明略)

$$(n=2) \Rightarrow P(\Omega) = P(A) + P(\overline{A}) \Rightarrow P(A) = 1 - P(\overline{A}).$$

例1:已知5个产品中混有2个次品,现每次一个地逐个随机抽取检验.求

- (I) 恰好查三次就抽到2个次品的概率;
- (II) 不超过三次就抽到2个次品的概率.

解: (I) 恰好查三次就确定2次品

第1个次品前两次检验已查出,第2个次品在第 三次抽检中查到

Step1: 计算样本空间的样本数.

5个位置放2个次品: $C_5^2 = 10$ 种

Step2: 计算事件的样本数.

第3次必为次品,前2个位中取一放次品共 $C_2^1 = 2$ 种。

概率P=2/10=0.2。

(II) 不超过三次就确定2次品

Step2: 计算事件的样本数.

不超过三次的情况是在前三次检查中取放两次品,即 $C_3^2 = 3$ 种。

概率P = 3/10 = 0.3。

3. 常见的三种古典概型基本模型

(1) 摸球模型(有/无放回)

同类型的问题还有:

1) 中彩问题;

2) 抽签问题;

3) 分组问题;

- 4) 产品检验问题;
- 5) 鞋子配对问题;
- 6) 扑克牌花色问题;
- 7) 英文单词、书、报及电话号码等排列、组合问题.

3. 常见的三种古典概型基本模型

- (1) 摸球模型(有/无放回)
- (2) 分配模型(有/无序)

同类型的问题有:

- 1) 球在杯中的分配问题; (球→杯)
- 2) 生日问题; (人→日, N=365天)
- 3) 旅客下站问题; (旅客→站)
- 4) 印刷错误问题; (印刷错误→页)
- 5) 性别问题 (人→性别)

- (1) 摸球模型(有/无放回)
- (2) 分配模型(有/无序)
- (3) 随机取数模型(取后还原/不还原)

备用题

小结

假设条件

数学模型

随机事件的概率

② 🛛 的等可能性

古典概型

$$P(A) = \frac{n_A}{n}$$

四、几何概型

实例 P(特等奖) 💙

θ: 指针起止位置转过的绝对角度

$$\Omega = \left\{ \theta \in R \middle| 0 \le \theta \le 360 \right\}$$

数学模型

四、几何概型

几何概型随机试验

- 1. 定义1.4 若试验E具有下列两个特征:
 - 1)无限性: 样本空间 Ω 是 Ω 是 Ω 中的一个区域,包含 无穷多个样本点,每个样本点由区域 Ω 内 的点的随机位置所确定,即 $\Omega = \{\omega_1, \omega_2, ..., \omega_n ...\}$.
 - 2)等可能性:每个样本点落在Ω内几何度量

相同的子区域内等可能的,

则称E所描述的概率模型为几何概型。

西北工业大学概率统计教研室

注 1°:

几何空间	一维	二维	三维	•••
几何度量	长度	面积	体积	•••

注 2°

记录子弹落点位置 (x,θ) 观察乘客到达车站的时刻t 记录长度(x,y,a-x-y)

无限性 等可能性

几何概型随机试验

2.定义1.5(几何概率的定义)

对于随机试验E,以 $\mu(A)$ 表示事件A的几何度量, Ω 为样本空间. 若 $0<\mu(\Omega)<+\infty$,则对于任一事件A,其概率为 $P(A)=\frac{\mu(A)}{\mu(\Omega)}.$

一维

二维

三维

$$P(A) = \frac{A$$
的长度; $P(A) = \frac{A}{\Omega}$ 的面积; $P(A) = \frac{A}{\Omega}$ 的体积;

3.性质1.3(几何概型的概率性质)

(1) 对任一事件A,有 $0 \le p(A) \le 1$;

非负性

(2) $P(\Omega) = 1, P(\emptyset) = 0;$

规范性

(3) 对于可列多个两两互斥的事件 A_1, A_2, \cdots

$$P(A_1 + A_2 + \dots + A_m + \dots)$$

= $P(A_1) + P(A_2) + \dots + P(A_m) + \dots$

可列/完全可加性

(证明略)

区别与联系

$$A \to P(A)$$

有限性、等可能性

$$P(A) = \frac{n_A}{n}$$

离散

无限性、等可能性

$$P(A) = \frac{\mu(A)}{\mu(\Omega)}$$

连续

- 例2: 判断下列说法是否正确。
 - 口 若P(A) = P(B), 则 A = B。 不正确。反例: A = "硬币正面朝上", B = "反面朝上"。
 - 口 若P(A) = 0,则 $A = \emptyset$ 。 不正确。反例: 向区间[0,1]中随机投掷一个质点, A = "点落在0.1",则 $P(A) \neq 0$.
 - 口 若P(AB) = 0,则A, B互斥。 不正确。反例: A ="点落在0.1", B ="点落在0.1或0.2"。
 - □ 若P(A) = P(AB), 则 $A \subset B$ 。 不正确。反例: B = "点落在0.2".

例3

蒲丰投针试验

在平面上画有等距离的一些平行线,向 平面随机投掷长为平行线间距一半的的小针, 记录投针次数和针与平行线相交的次数。

 $\frac{2212}{704} \approx 3.142$

理论依据?

法国数学家、自然科学家 Georges Louis Leclere de Buffon (1707-1788)

《算术试验》

蒲丰投针试验」在平面上画有等距离a (a>0)的一些平

行线,向平面随机投一长为l(l < a)的针,试求针与平

行线相交的概率?

解:

假 设 M: 针的中心位置

x: M与最近一平行线的距离

 φ :针与平行线的夹角

位置: (x, φ)

则样本空间 Ω : $0 \le x \le \frac{a}{2}, \quad 0 \le \varphi \le \pi,$

西北工业大学概率统计教研室

样本空间 Ω :

$$0 \le x \le \frac{a}{2}, \quad 0 \le \varphi \le \pi,$$

无限性 ⇒ 等可能性 ⇒ 几何概型

设A="针与一平行线相交",则

$$A: \quad 0 \le x \le \frac{l}{2} \sin \varphi,$$

$$\therefore \underline{P(A)} = \frac{\mu(A)}{\mu(\Omega)} = \frac{S(A)}{S(\Omega)}$$

$$=\frac{\int_0^\pi \frac{l}{2} \sin \varphi d\varphi}{\frac{a}{2}\pi} = \frac{2l}{\pi a}.$$

蒲丰投针试验的意义

m: 针和平行线相交次数

n: 投针试验次数

$$f_n = \frac{m^n >> N}{n} \approx P(A) = \frac{2l}{a\pi}$$

$$\pi \approx \frac{2ln}{am}$$

历史上一些学者的计算结果(直线距离a=1)

试验者	时间	针长	投掷次数	相交次数	π的近似值
Wolf	1850	0.8	5000	2532	3.1596
Smith	1855	0.6	3204	1218	3.1554
De M 用几何概型 蒙特卡罗方法性数学问题!					
Fox	1884	0.75	1030	489	3.1595
Lazzerini	1901	0.83	3408	1808	3.1415929
Reina	1925	0.5419	2520	859	3.1795

解: Step1: 确定样本空间.

例4: 有一根长为L的木棒,将其任意折成三段,记事件A为"中间一段为三段中的最长者",求P(A).

$$\Omega = \{(x,y) | 0 \le x \le L, 0 \le x + y \le L, 0 \le y \le L\}$$

样本空间

$\Omega = \{(x,y) | 0 \le x \le L, 0 \le x + y \le L, 0 \le y \le L\}$ 样本空间

Step2:确定事件A对应的子区域.

事件A对应的子区域

$$\Omega_A = \left\{ (x,y) | 0 \le y \le L - 2x, 0 \le y \le \frac{L-x}{2} \right\}$$

样本空间

 $\Omega = \{(x,y)|0 \le x \le L, 0 \le x + y \le L, 0 \le y \le L\}$ 事件A对应的子区域

$$\Omega_A = \left\{ (x, y) | \mathbf{0} \le y \le L - 2x, \mathbf{0} \le y \le \frac{L - x}{2} \right\}$$

$$S_{\Omega_A} = \frac{1}{6}L^2$$

$$P(A) = \frac{1}{3}$$

