CH 107 Tutorial 6

Please solve these problems BEFORE the tutorial session

1. For water, it is experimentally determined that the H-O-H bond angle is 104.5°. Determine the coefficients of atomic orbitals of O that participate in hybridization (see schematic, lone pairs are in xz plane, not relevant).

- 2. a) Qualitatively plot the overlap integral, S_{AB} , as a function of inter-nuclear distance (R_{AB}) for the following LCAO-MOs (below).
 - b) Write the MOs (LCAO expressions) for bonding and anti-bonding situations for each.
 - c) Draw the MO pictures with appropriate signs and assign their symmetries (g/u).

- 3. Formulate the Hamiltonian for a triangular H_3 + molecular ion (equal H H bond lengths).
 - b) Write the LCAO expression for the lowest energy MO using the AOs of H. Sketch the contour plot of this MO and show signs.
 - a) What is the spin wavefunction of this molecule in the ground state?
 - b) Express the ground state wavefunction of this molecule as a single Slater determinant
- 4. Qualitatively draw the bonding and antibonding MOs formed due to overlap of two $\underline{2}s$ and $\underline{3}p_Z$ AOs. Assume the internuclear axis to be in z-direction. Show nodes and signs of MOs. Hint: Draw the wavefunctions centered on the two nuclei along $\pm z$ to find nodes!
- 5. Write the expressions for the delocalized σ bonding MOs of BeH_2^+ as linear combinations of valence AOss of appropriate symmetry. Do not invoke s-p mixing and consider +z to be the internuclear axis for this linear molecule.
 - a) Sketch the bonding MOs, show signs and nodes (if any), and assign symmetries (g/u).
 - b) How many lines/bands are expected in the entire photoelectron (PE) spectrum?
 - c) What are their relative intensities? (note that the molecule has +1 charge)