input_data_0

- ams02_all / pamela_all /ssn_smooth_plus: 上一步FFM_INTEG中的结果
- all_274: AMS01, CAPRICE, IMAX, LEAP, MASS 能量为0.274GeV的通量数据
- all_{fit_info} : 多个卫星线性回归的信息包括延迟后的黑子数 和 α
- bess_270: BESS 卫星0.270GeV的通量数据
- pam_275: PAMELA 0.275 GeV的通量数据
- *.txt:为原始卫星数据

mon_alpha_1

- $test_alpha.py$: 对 α 进行月平均处理;利用公式计算 α ; 画出 α , SSN 的信息; 保存到 $alpha_mon$ 文件
- output
 - \circ alpha_mon: 月平均后的 α 数据

ssn_flux_2

- man_data.py:
 - \circ 计算SSN的延迟数据,A>0,延迟5个月,A<0 延迟12个月
 - \circ 在A变号的前后18个月进行sigmod平滑处理
 - 。 计算线性拟合的结果
 - \bullet $\phi_0(SSN)$
 - \blacksquare B(SSN)
 - lacksquare Φ_{SSN}
 - $Flux(\Phi_{SSN}, 0.274)$
 - 保存到 output/info_test 文件

test LR 3

- test_LR.py: (PAMELA和AMS02)
 - \circ 读取延迟后的SSN数据,取 \log
 - ο 对α的数据做延迟 延迟时间为12个月
 - ∘ 计算A值
 - 。 以A的正负为界限做线性回归
 - LR_negative():返回A < 0的参数和截距
 - $LR_postive()$: 返回A > 0的参数和截距
 - 将上述两个函数的结果放到 LR_para 文件里,FUNC.py 下的同名函数会调取这个文件里的值,输入SSN, α 计算出回归结果

plot_Phi_4

- test_Phi.py: (1977.06—2020.01)
 - \circ 读取SSN的延迟数据
 - \circ 读取 α 的数据,计算12个月的延迟
 - 。 计算回归方程的结果 ϕ_{lr} : 按照A的不同,调取 FUNC.py 下不同的函数计算
 - \circ 计算 Φ_{lr} , $Flux_{lr}(0.274)$
 - \circ 对 $FLUX_{lr}$ 进行平滑处理
 - 。 保存上述结果到 info_test_lr 文件
 - \circ 画出线性拟合的 ϕ_c , Φ_c , 以及回归的 ϕ_{lr} , Φ_{lr}

plot_flux_5

- plot_data.py
 - 。 读取上述过程的数据结果画出画出:
 - IMP8和多个卫星在0.274GeV的通量数据
 - 线性拟合的通量结果Fluxc
 - 回归的通量结果Flux_{lr}