

Aula 11 - Máquina de estados finitos - Mealy e Moore

Circuitos Digitais - CRT 0384Prof. Rennan Dantas
Ciência da Computação

2020.1

Agenda

- Máquina de estados finitos;
- Máquina de Moore;
- Máquina de Mealy;
- Projeto de máquinas de estado;

Fundamentos

Máquina de estados finitos é o nome dado ao modelo genérico de circuitos sequenciais, como os contadores síncronos;

O comportamento destas máquinas depende do estado atual e das entradas externas.

O estado corresponde a um conjunto de variáveis binárias denominadas variáveis de estado, armazenadas no registrador de estados.

As saídas dependem do estado atual e possivelmente das entradas externas.

Modelo de Moore

Esquema do modelo de Moore:

Note que a saída depende somente do estado atual

Modelo de Mealy

Esquema do modelo de Mealy:

Saída depende do estado atual e das entradas externas

Procedimento para análise desses circuitos:

- Determinar as equações de excitação.
- Determinar as equações de estados e as equações das saídas.
- Construir as tabela de próximo estado e a tabela de saída.
- Desenhar o diagrama de transição de estados.

MEF: Modelo Matemático

Uma MEF é definida como uma quíntupla: $MEF(\Sigma,S,s_0,\delta,F)$ em que:

- Σ Alfabeto de entrada (conj. de símbolos)
- S Conjunto de estados
- s_0 Estado inicial ($s_0 \in S$)
- δ Função de transição de estados ($\delta:S_x \Sigma \rightarrow S$)
- F Conjunto de estados finais (possivelmente vazio)

Considere a seguinte máquina de estados, primeiramente, desconsiderando a linha pontilhada;

Como a saída depende somente dos estados atuais, a máquina em estudo é uma **máquina de Moore.**

Equações de excitação

Equações de estado

$$Q_0^* * = W \oplus Q_0$$

$$Q_1^* * = W' \square Q_1 + W \square (Q_0 \oplus Q_1)$$

Equação de saída

$$\circ \quad y = Q_0 \square Q_1$$

Utilizando as equações anteriores, obtemos:

Tabela de transição

Estado atual		Próximo estado			
		w = 0		w=1	
Q_1	Q_0	Q_1^*	Q_0^*	Q_1^*	Q_0^*
0	0	0	0	0	1
0	1	0	1	1	0
1	0	1	0	1	1
1	1	1	1	0	0

Tabela de saída

Esta	do atual	Saída	
Q_1	Q_0	у	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

Diagrama de estados:

Diagrama típico de máquina de Moore:

 As saídas são apresentadas juntamente com os estados e obedecem ao ciclo do clock, sofrendo alterações somente na borda de subida ou descida do clock

Diagrama de estados:

Diagrama típico de máquina de Moore:

- As entradas são apresentadas nos arcos de transição;
- De cada estado saem dois arcos, cada um representado os valores lógicos da entrada;
- Existência do estado inicial "reset"

Se considerarmos a linha pontilhada, a saída y passa a depender da entrada e, portanto, temos uma **máquina de Mealy.**

- Máquina de Mealy:
 - A equação da saída torna-se y = w □ Q₀ □ Q₁

e a sua tabela mostra a dependência das entradas:

Estado atual		Saída		
		w=0	w=1	
Q_1	Q_0	У	У	
0	0	0	0	
0	1	0	0	
1	0	0	0	
1	1	0	1	

Diagrama de estados:

Diagrama típico de máquina de Mealy:

 Nos arcos de transição são apresentadas as entradas e as saídas w/y.

Diagrama de estados:

Diagrama típico de máquina de Mealy:

- As saídas podem ser assíncronas, ou seja, podem alterar seus estados durante um período do clock, dependendo das mudanças no estado da entrada.
- presença do estado inicial "reset"

Diagrama de Tempo:

Note que y_{Mealy} sofre alteração durante o período do clock

Procedimento:

- Determinar quantos estados s\u00e3o necess\u00e1rios e selecionar um deles para estado inicial.
- Realizar a codificação dos estados, obtendo as variáveis de estado.
- Definir o tipo de flip-flop a ser utilizado.

Procedimento:

- Construir o diagrama de estados escolhendo um dos modelos (Moore ou Mealy) e determinando as condições para as transições entre estados.
- Construir a tabela do próximo estado, a tabela de excitações e a tabela das saídas.
- Sintetizar os circuitos combinacionais: lógica do próximo estado e saída.

EXEMPLO

- Deseja-se obter um circuito que realize uma contagem em código Gray em 3 bits:
 - o 000, 001, 011, 010, 110, 111, 101, 100
- Como implementar o circuito utilizando máquina de Moore e flip flops do tipo D?

EXEMPLO

 Passo 1: elaborar um diagrama de estados e sua tabela de transição:

utiliza-se a notação Q_n(t) para o estado presente/atual, e Q_n(t+1) para o estado futuro/próximo

	atual			próximo		
1	Q_2	Q_1	Q_0	Y_2	Y_1	Y_0
	0	0	0	0	0	1
	0	0	1	0	1	1
	0	1	1	0	1	0
	0	1	0	1	1	0
	1	1	0	1	1	1
Ì	1	1	1	1	0	1
Î	1	0	1	1	0	0
Ì	1	0	0	0	0	0

EXEMPLO

Passo 2:
 Determinar e
 otimizar as
 expressões
 lógicas de cada
 estado

EXEMPLO

 Passo 3: implementar o circuito utilizando os flip-flops

OBS: note que não há lógica que envolva as saídas simultaneamente aos estados, sendo, portanto, uma **máquina de Moore**.

EXEMPLO 2

Projete um contador **utilizando máquina de estados** para a seguinte sequência irregular de quatro estados: 001, 010, 101, 111 e, em seguida, volte ao estado inicial

OBS: utilizar modelo de Moore e FFs tipo D

EXEMPLO 2

1. Diagrama de estados

EXEMPLO 2

2. Tabela de Transição

atual			próximo		
Q_2	Q_1	Q_0	Y_2	Y_1	Y_0
0	0	1	0	1	0
0	1	0	1	0	1
1	0	1	1	1	1
1	1	1	0	0	1

EXEMPLO 2

3. Determinação e otimização de expressões

EXEMPLO 2

4. Implementação

EXEMPLO 3

Como implementar o exemplo anterior com máquina de Mealy?

Aula 11 - Máquina de estados finitos - Mealy e Moore

Circuitos Digitais - CRT 0384Prof. Rennan Dantas
Ciência da Computação

2020.1