

Study of ttH Kinematics with the CMS Experiment at the LHC

Student: Kristijonas Mikas Silius, Supervisor: Aurelijus Rinkevicius, Consultants: Darius Jurčiukonis, Nana Chychkalo

CMS EXPERIMENT

- CMS and ATLAS discover the Higgs boson in 2012.
- Particle collisions happen at the center.
- Consists of different layers to detect different particles.
- Shape of a cylinder.
- 14 000 tonnes.
- 100 m underground.

CMS SLICE

FINAL STATE ttH 2lss

- The study used generated ttH 2lss final state simulation data. Example Feynmann diagram shown [3].
- t, \bar{t} tops, W^{+/-} W bosons, q, \bar{q} quarks, v_l leptonic neutrinos.
- The highlighted parts indicate the same sign leptons (positively charged), that are the products of the W⁺ decays.
- This process is interesting because it allows to study the Yukawa coupling constant between Higgs and fermions.
- Any significant deviations from SM predictions might indicate new physics.

FULLY OFF-SHELL SIMULATION USED

- Partially off-shell and a fully off-shell simulation of ttH 2lss final state were generated.
- Presented graphs show the distribution of the pseudorapidity
 (η) of the second lepton for partially and fully off-shell
 processes respectively.
- Fully off-shell approach better represents real particle collision conditions.
- Therefore, fully off-shell simulation was used for further studies.

REGRESSION: HIGGS pT

- Regression: Regression analysis is a statistical method used to model the relationship between a dependent variable and one or more independent variables.
- Purpose: It helps in predicting the value of the dependent variable based on the values of the independent variables.

- Two neural networks were tested:
 - Nominal deep model
 - Alternative minimal model

Output node maps to Higgs pT

MODEL ARCHITECTURE

Deep network structure:

- Ist layer: 512 nodes, activation = ReLU;
- 2nd layer: 256 nodes, activation = SELU;
- 3rd layer: 128 nodes; activation = SELU;
- 4th layer: 64 nodes; activation = SELU;
- Final layer: I node, activation = ELU.

Deep network parameters:

- Training epochs = 100;
- Batch size = 128;
- Learning rate = 1e-4;
- doWeights = False;
- Custom loss function = MSEDeltaVar.

Minimal network structure:

- Ist hidden layer: 36 nodes, activations = SELU, SELU;
 - Partial increments of nodes from 33 to 36
- 2nd hidden layer: 8 nodes, activations = ReLU, SELU, ReLU, Linear;
 - Partial increments of nodes from 5 to 8
- Regression layer.

Minimal network parameters:

- Encoder epochs (hidden layer 1) = 100;
- Encoder epochs (hidden layer 2) = 100;
- Regressor epochs = 200;
- Learning rate (hidden layer I) = Ie-3;
- Learning rate (hidden layer 2) = 1e-5;
- Learning rate (regressor) = 1e-4;
- Batch size = 264.

TRAINING INPUTS

- Example input:
- ['Hreco_Lep0_pt', 'Hreco_Lep0_eta', 'Hreco_Lep0_phi', 'Hreco_Lep1_pt', 'Hreco_Lep1_eta', 'Hreco_Lep1_phi', 'Hreco_Jet0_pt', 'Hreco_Jet0_eta', 'Hreco_Jet0_phi', 'Hreco_Jet1_pt', 'Hreco_Jet1_eta', 'Hreco_Jet1_phi', 'Hreco_Jet2_pt', 'Hreco_Jet2_eta', 'Hreco_Jet2_phi', 'Hreco_Jet3_pt', 'Hreco_Jet3_eta', 'Hreco_Jet3_phi', 'Hreco_Jet4_pt', 'Hreco_Jet4_eta', 'Hreco_Jet4_phi', 'Hreco_Jet5_pt', 'Hreco_Jet5_eta', 'Hreco_Jet5_phi', 'Hreco_HadTop_pt', 'Hreco_HadTop_phi', 'Hreco_met', 'Hreco_met_phi']
- Green base inputs used everywhere, ordered leptons and hadTop
- Yellow individual Jets
- Light Blue MET
- Some cases include individual neutrino information, in grey:
- ['Hreco_met1_pT', 'Hreco_met2_pT', 'Hreco_met1_eta', 'Hreco_met2_eta', 'Hreco_met1_phi', 'Hreco_met2_phi', 'Hreco_met_phi']

TRAINING INPUTS

Matching training variables to ones used by ttH analysis group

Current:

- ['Hreco_Lep0_pt', 'Hreco_Lep0_eta', 'Hreco_Lep0_phi', 'Hreco_Lep1_pt', 'Hreco_Lep1_eta', 'Hreco_Lep1_phi', 'Hreco_HadTop_pt', 'Hreco_HadTop_pt', 'Hreco_HadTop_pt', 'Hreco_Jets_plus_Lep_pt', 'Hreco_Jets_plus_Lep_eta', 'Hreco_Jets_plus_Lep_phi', 'Hreco_More5_Jets_pt', 'Hreco_More5_Jets_eta', 'Hreco_More5_Jets_phi', 'Hreco_All5_Jets_pt', 'Hreco_All5_Jets_phi', 'Hreco_met_phi']
- Used in multilepton analysis:
- ['Hreco_Lep0_pt', 'Hreco_Lep0_eta', 'Hreco_Lep0_phi', 'Hreco_Lep1_pt', 'Hreco_Lep1_eta', 'Hreco_Lep1_phi', 'Hreco_HadTop_pt', 'Hreco_HadTop_eta', 'Hreco_HadTop_phi', 'Hreco_TopScore', 'Hreco_met', 'Hreco_Jets_plus_Lep_pt', 'Hreco_Jets_plus_Lep_phi', 'Hreco_More5_Jets_pt', 'Hreco_More5_Jets_pt', 'Hreco_More5_Jets_eta', 'Hreco_More5_Jets_phi', 'Hreco_More5_Jets_phi', 'Hreco_More5_Jets_phi']
- Purple grouped jets or jets + lep
- TopScore did not replicate during current training

Comparing best deep model and best minimal model results

Deep model input variable testing

I0k events: Lep_*, HadTop_*, met, <a

IMPORTANCE OF COMBINED met_phi

- Removing combined met_phi made loss function diverge (NaN)
- Combined met_phi was kept in studies
- Applies when both neutrinos kinematic data is used

CONCLUSIONS

- Minimal NN is designed for the full MC simulation.
- Nominal deep model showed a better performance than the minimal network while using gen MC:
 - Individual neutrino kinematics improves model performance, but individual jet kinematics is more significant
 - Having full and separate individual jet kinematic data improves the regression.
- Near-perfect regression is possible using the full generator data.

REFERENCES

- [1] T. Sakuma, 3D SketchUp images of the CMS detector, CMS, 2016. https://cds.cern.ch/record/2628527
- [2] D. Barney, CMS Slice, 2015.
- [3] G.Aad, B.Abbott, J.Abdallah, O.Abdinov, and Aben, Search for the associated production of the higgs boson with a top quark pair in multilepton final states with the atlas detector, Physics Letters B, Oct. 2015, 749, 519–541.
- [4] Sahraei, Amir & Chamorro, Alejandro & Kraft, Philipp & Breuer, Lutz. (2021). Application of Machine Learning Models to Predict Maximum Event Water Fractions in Streamflow. Frontiers in Water. 3. 652100. 10.3389/frwa.2021.652100.

Backup

Backup 1: tth procesas

- Atliktame tyrime simuliuojamas ttH
 procesas, dešinėje pateiktos jo
 esminės Feynmano diagramos.
- top -t, anti-top $-\bar{t}$.
- Viršuje matomos ttH susidarymo proceso diagramos.
- Žemiau tik tt̄ susidarymo diagramos.
- Šis procesas svarbus Higss'o bozono tyrimuose, nes leidžia matuoti Yukawa sąryšio konstatą tarp Higgs ir fermionų.
- Vertės nuokrypis gali indikuoti naują fiziką neapibrėžtą standartinio modelio.

Backup 2: Pagrindiniai MC generacijos parametrai

- Monte Carlo įvykių generatorius MadGraph5_aMC@NLO:
 - MG versija v3.5.3;
 - Įvykių skaičius n_{events} = 10 000;
 - Masės centro energija \sqrt{s} = 13.6 TeV;
 - ebeam1 = 6800 GeV;
 - ebeam2 = 6800 GeV.

MadGraph

