

Departamento de Matemática da Universidade de Aveiro

Matemática Discreta 2020/2021 - UC 47166 (1ºAno/2ºSem)

Teste T3 Turma TP5/TP7 - Exemplo de Resolução

24/06/2021

Nome: NMec: Curso:

(5.0) 1. Resolva a seguinte relação de recorrência, justificando todos os passos:

$$a_n = a_{n-2} + n$$
, $n \ge 2$, $a_0 = 0$, $a_1 = 1$.

Resolução: A equação de recorrência dada é linear não homogénea, com solução geral

$$a_n = a_n^{(h)} + a_n^{(p)},$$

onde $a_n^{(h)}$ corresponde à solução da parte homogénea, $a_n - a_{n-2} = 0$, e $a_n^{(p)}$ é a solução particular associada a

$$a_n - a_{n-2} = f(n), \quad \text{com} \quad f(n) = n \ .$$
 (1)

Da parte homogénea resulta a equação característica:

$$x^{2} - 1 = 0 \Leftrightarrow (x - 1)(x + 1) = 0,$$

pelo que, 1 é raiz característica de multiplicidade m=1 e -1 é raiz característica de multiplicidade m=1. Assim,

$$a_n^{(h)} = C_1 + C_2(-1)^n,$$

onde C_1 e C_2 são constantes a determinar.

Como f(n)=n é um polinómio de grau k=1 e 1 é uma raíz característica com multiplicidade r=1 tem-se

$$a_n^{(p)} = A_0 n^r + A_1 n^{r+1} + \dots + A_k n^{r+k} = A_0 n + A_1 n^2.$$

Substituindo $a_n^{(p)}$ em (1), determinam-se as constantes A_0 e A_1 , vindo

$$A_0n + A_1n^2 - A_0(n-2) - A_1(n-2)^2 = n \Leftrightarrow A_0n + A_1n^2 - A_0(n-2) - A_1(n^2 - 4n + 4) = n$$

$$\Leftrightarrow 2A_0 + 4A_1n - 4A_1 = n \Leftrightarrow 2(A_0 - 2A_1) + 4A_1n = n \Leftrightarrow \begin{cases} A_0 = \frac{1}{2} \\ A_1 = \frac{1}{4}. \end{cases}$$

Assim,

$$a_n = C_1 + C_2(-1)^n + \frac{1}{2}n + \frac{1}{4}n^2,$$

e, atendendo às condições iniciais, $a_0 = 0$ e $a_1 = 1$, podem calcular-se as constantes C_1 e C_2 :

$$\begin{cases} a_0 = 0 \\ a_1 = 1 \end{cases} \Leftrightarrow \begin{cases} C_2 = -C_1 \\ 2C_1 = \frac{1}{4} \end{cases} \Leftrightarrow \begin{cases} C_2 = -\frac{1}{8} \\ C_1 = \frac{1}{8}. \end{cases}$$

Logo,

$$a_n = \frac{1}{8} - \frac{1}{8}(-1)^n + \frac{1}{2}n + \frac{1}{4}n^2, \quad n \ge 0.$$

Formulário:
$$\sum_{n=0}^{\infty}\alpha^nx^n=\frac{1}{1-\alpha x}\;,\qquad \sum_{n=0}^{\infty}\binom{n+m-1}{n}\alpha^nx^n=\frac{1}{(1-\alpha x)^m}\;.$$

(2.5) 2. Determine a sucessão $(b_n)_{n\geq 0}$ associada à função geradora $\mathcal{B}(x)=1+\frac{x}{1-x^2}$.

Resolução: Temos que
$$\frac{x}{1-x^2} = \frac{A}{1-x} + \frac{B}{1+x}$$
 \Leftrightarrow $\frac{x}{1-x^2} = \frac{A+Ax+B-Bx}{1-x^2}$ \Leftrightarrow $\begin{cases} A+B=0\\ A-B=1 \end{cases}$ \Leftrightarrow $\begin{cases} A=\frac{1}{2}\\ B=-\frac{1}{2} \end{cases}$.

Logo,
$$\mathcal{B}(x) = 1 + \frac{1}{2} \times \frac{1}{1-x} - \frac{1}{2} \times \frac{1}{1+x} = 1 + \frac{1}{2} \sum_{n=0}^{\infty} x^n - \frac{1}{2} \sum_{n=0}^{\infty} (-x)^n = 1 + \sum_{n=0}^{\infty} \frac{1}{2} (1 - (-1)^n) x^n.$$

A sucessão associada a $\mathcal{B}(x)$ é

$$b_0 = 1 + \frac{1}{2}((-1)^0 - 1) = 1$$
 e $b_n = \frac{1}{2}(1 - (-1)^n), n \ge 1.$

(2.5) 3. Considere o problema de determinar o número de maneiras de distribuir n melões por 5 caixas, de modo que nenhuma das caixas fique vazia e numa dessas caixas se tenha um número de melões que seja múltiplo de 5, para $n \in \mathbb{N}$. Mostre que, a solução do problema pode ser obtida a partir da função geradora:

$$\mathcal{F}(x) = \frac{x^9}{(1-x)^4 (1-x^5)} \ .$$

Resolução: A solução do problema é dada pelo coeficiente de x^i x^j x^k x^l x^m , com $i=5,10,15,\ldots$ (número de melões positivo e múltiplo de 5) $j,k,l,m=1,2,3,\ldots$ (nenhuma caixa fica vazia), tal que, i+j+k+l+m=n, resultante do desenvolvimento da função geradora

$$\mathcal{F}(x) = (x^5 + x^{10} + x^{15} + \dots) (x + x^2 + x^3 + \dots)^4,$$

ou seja

$$\mathcal{F}(x) = x^5 \left(1 + x^5 + x^{10} + \ldots \right) x^4 \left(1 + x + x^2 + \ldots \right)^4 \Leftrightarrow \mathcal{F}(x) = x^5 \left(1 + (x^5)^1 + (x^5)^2 + \ldots \right) x^4 \frac{1}{(1-x)^4}$$
$$\Leftrightarrow \mathcal{F}(x) = x^9 \frac{1}{1-x^5} \frac{1}{(1-x)^4}.$$

E, portanto,

$$\mathcal{F}(x) = \frac{x^9}{(1-x^5)(1-x)^4} ,$$

tal como se pretendia mostrar.

4. Considere os grafos $G_i = (V(G_i), E(G_i))$, para i = 1, 2, ..., 13, representados na figura seguinte:

(3.5) 4.(a) Indique dois grafos da mesma ordem que sejam bipartidos e isomorfos. Justifique devidamente.

Resolução: G_5 e G_6 são ambos grafos simples 3-regulares de ordem 6. G_5 e G_6 são bipartidos porque não têm ciclos de comprimento ímpar (apenas de comprimento 4 e 6). De acordo com a numeração dos vértices destes grafos (acima na figura) é possível obter as seguintes bipartições dos conjuntos dos seus vértices, de modo a que as arestas unem apenas vértices de subconjuntos distintos:

$$G_5 = (X, Y, E(G_5)), \quad X = \{a, c, e\}, \ Y = \{b, d, f\}, \quad \text{com} \quad V(G_5) = X \cup Y,$$

 $G_6 = (W, Z, E(G_6)), \quad W = \{1, 2, 3\}, \ Z = \{4, 5, 6\}, \quad \text{com} \quad V(G_6) = W \cup Z.$

Existe uma bijeção $\phi: V(G_5) \mapsto V(G_6)$, com $\phi(a) = 1$, $\phi(b) = 4$, $\phi(c) = 2$, $\phi(d) = 5$, $\phi(e) = 3$ e $\phi(f) = 6$, tal que, para $x, y \in V(G_5)$, xy é uma aresta de G_5 se e só se $\phi(x)\phi(y)$ é uma aresta de G_6 . Logo ϕ é um isomorfismo dos grafos G_5 e G_6 e estes grafos são isomorfos, isto é, $G_5 \cong G_6$.

(1.5) 4.(b) Numere os vértices do grafo representado por G_{12} e escreva a matriz de adjacência desse grafo.

Resolução:

5. Considere o grafo H = (V(H), E(H)), com $V(H) = \{a, b, c, d, e, f\}$, definido pela matriz de custos:

$$W = \begin{pmatrix} 0 & \infty & 3 & 4 & \infty & \infty \\ \infty & 0 & 6 & 8 & 10 & \infty \\ 3 & 6 & 0 & \infty & \infty & 18 \\ 4 & 8 & \infty & 0 & 20 & \infty \\ \infty & 10 & \infty & 20 & 0 & 30 \\ \infty & \infty & 18 & \infty & 30 & 0 \end{pmatrix}.$$

(1.5) 5.(a) Represente o grafo H com indicação do custo associado em cada uma das arestas.

Resolução: O grafo H com os custos nas arestas é

(3.5) 5.(b) Aplicando o algoritmo de Dijkstra, determine o caminho de custo mínimo entre os vértices a e f do grafo H representado na alínea anterior, indicando também qual é esse custo.

Resolução: Aplicamos o algoritmo de Dijkstra, começando pelo vértice z=a e parando quando o vértice z=f se torna definitivo:

Iteração	a	b	c	d	e	f	z
0	(0, -)	$(\infty, -)$	$(\infty, -)$	$(\infty, -)$	$(\infty, -)$	$(\infty, -)$	a
1	×	$(\infty, -)$	$(3, \mathbf{a})$	$(4, \mathbf{a})$	$(\infty, -)$	$(\infty, -)$	c
2	×	$(9, \mathbf{c})$	×	$(4, \mathbf{a})$	$(\infty, -)$	(21, c)	d
3	×	$(9, \mathbf{c})$	×	×	(24, d)	$({f 21},{f c})$	b
4	×	×	×	×	$(19, \mathbf{b})$	$({f 21},{f c})$	e
5	×	×	×	×	×	(21, c)	f

Concluímos que o caminho de custo mínimo entre os vértices a e f é P=a,c,f, com custo 21.