Qualcomm[®] Hexagon[™] NPU Backend for Triton

TARGET PLATFORM AND ARCHITECTURE

Enable mapping for Edge AI and Cloud AI

Qualcomm[®] Hexagon[™] NPUs

- 4-way multi-threaded VLIW
- Hexagon Vector eXtensions (HVX)
- Vector registers and dedicated memory
- Tensor units

TRITON WORKFLOW FOR HEXAGON NPUS

Approach: Leverage upstream Triton and MLIR developments in addition to building downstream target-specific optimizations

- Built by extending an MLIR-based compiler developed for Hexagon NPUs
- Uses '<u>Triton shared middle-layer</u>' for doing Triton ? Linalg conversion

CURRENT STATE

- Hexagon Dialect handles optimizations for Hexagon NPUs
 - Multi-core multi-threaded parallelism
 - Vectorization
 - Mapping to tensor units
 - Memory optimizations

Successfully mapped key kernels such as matmul, flash attention, softmax, layer norm, and others, using this workflow

- ☐ Fine-tuning for performance
- Initial performance looking promising

PYTORCH WORKFLOW VIA TRITON NPU BACKEND

Hexagon NPU backend for Triton enables PyTorch mapping

Developing tools to enable the workflow in a developerfriendly Python environment

Thank you!

