

Neural spike sorting using deep learning based approaches

János Szalma, Tamás Nagy Budapest University of Technology and Economics

Introduction

Standard method to spike detection and sorting

Neural spikes

- during neural activity, individual neurons are firing
- inter-neuron communication is accomplished via neurotransmitters
- this needs voltage change to propagate along the axon
- we can measure the voltage change

Spike detection

- the voltage is measured with external electrodes
- this method is prone to pick up environmental noise
- a single electrode can records the signals of multiple neurons
- detection: thresholding with the analysis of the event's surroundings is usually sufficient

Data

Dataset

- artificial neural spikes
- 2.4 million spikes
- 40 time points per spike
- five different waveforms

Preprocessing

- shifting labels
- bandpass filter (150-2500 Hz)

- spike detection
 - AdaBandFlt noise estimation
 - threshold based detection
- preliminary results -> too easy?

Classification

Classification with least data necessary

- 5 class classification
- validation: 5%
- test: 85%
- training: 0.1%-10%
- classifiers:
 - Logistic Regression
 - Random Forest
 - Convolutional Neural Network

Classification with least data necessary

- focus on CNN optimization
- Tree Parzen Estimation
- stride: 1, padding: same
- batch size: [128,256]
- optimizer : [adam,nadam]
- metrics
 - balanced accuracy score
 - o multiclass area under the roc curve

TABLE 1- CNN CLASSIFIER ARCHITECTURE

Hyperparameters	Layers		
	1D Convolutional	Dense1	Dense2
Filter	3-15	-	-
Kernel size	3,4,5	-	-
Kernel regularizer	None, 11, 11_12	None, 11, 11_12	None, 11, 11_12
Bias regularizer	None, 11, 11_12	None, 11, 11_12	None, 11, 11_12
Activation	Swish, sigmoid, relu	Swish, sigmoid, relu	Softmax
Output neurons	-	5	5

Hyperparameter optimization results

- Most parameters unimportant
- swish activation
- 13 filters
- no regularization

Classification results

- CNN needs at least 5% data
- LR shows worse performance
- RF best with small data size

Denoising with AutoEncoder networks

Noise

- detection can be accomplished even on noisy signal, but sorting requires denoising
- we added artificial random noise and trained an AE network on it

X-means and PCA-based sorting

About X-means

- similar to k-means, but tries to solve three main issues:
 - Poor scalability
 - The number of categories (k) has to be manually supplied in advance
 - Finishing prematurely because of local minima
- Runs like normal k-means, but occasionally splits centroids and evaluates the results

X-means: Extending K-means with Efficient Estimation of the Number of Clusters Dan Pelleg, Andrew Moore

Classification

- simple, classical method: determining key features and measures of the waveform
- PCA is better by definition
- X-means always found the maximum set cluster number
- 71.33% accuracy in 10 dimensional space
 - o A correct
 - B X-means guess

Conclusions

- 98.9% balanced classification accuracy
- RF is best with small training data
- AutoEncoder is suitable for denoising
- X-means can't be used to find k

- real data
- o lstm, rnn

