Web Science: Intro to InfoVis with R and Python

(Part 1 - InfoVis Principles)

CS 432/532 Old Dominion University

Many slides courtesy Tamara Munzner, <u>VAD minicourse</u>, June 2014
Based on Tamara Munzner, <u>Visualization Analysis and Design</u>, AK Peters / CRC Press, Oct 2014

Dataset and data types

→ Data and Dataset Types

- → Data Types
 - → Items → Attributes → Links → Positions → Grids
- → Dataset Availability
 - → Static → Dynamic

 •••••••

Attribute types

- → Attribute Types
 - → Categorical
 - $+ \bullet \blacksquare \blacktriangle$
- → Ordered
 - → Ordinal

→ Quantitative

Definitions: Marks and channels

- marks
 - geometric primitives
- channels
 - control appearance of marks
 - can redundantly code with multiple channels
- interactions
 - point marks only convey position; no area constraints
 - can be size and shape coded
 - line marks convey position and length
 - can only be size coded in 1D (width)
 - area marks fully constrained
 - cannot be size or shape coded

Color: Luminance, saturation, hue

- 3 channels
 - identity channel for categorical
 - hue
 - magnitude channels for ordered
 - luminance
 - saturation

Luminance Saturation

Visual encoding

1: vertical position

2: vertical position horizontal position

3: vertical position horizontal position color hue

4:
vertical position
horizontal position
color hue
size (area)
mark: point

mark: line

mark: point

mark: point

Channels: Expressiveness types and effectiveness rankings

Effectiveness and expressiveness principles

- effectiveness principle
 - –encode most important attributes with highest ranked channels

- expressiveness principle
 - -match channel and data characteristics

Discriminability: How many usable steps?

• linewidth: only a few

source: <u>Telecommunications Traffic Flow Map</u>

Separability vs. Integrality

Fully separable

2 groups each

Size

+ Hue (Color)

Some interference

2 groups each

Width

+ Height

Some/significant interference

3 groups total: integral area

Red

+ Green

Major interference

4 groups total: integral hue

Popout

- find the red dot
 - how long does it take?

Arrange tables

→ Express Values

→ Separate, Order, Align Regions

Web Science: Intro to InfoVis with R and Python

(Part 2 - Visualization Idioms)

CS 432/532 Old Dominion University

Many slides courtesy Tamara Munzner, <u>VAD minicourse</u>, June 2014
Based on Tamara Munzner, <u>Visualization Analysis and Design</u>, AK Peters / CRC Press, Oct 2014

Idiom: scatterplot

- express values
 - quantitative attributes
- no keys, only values
 - data
 - 2 quant attribs
 - mark: points
 - channels
 - horiz + vert position
 - tasks
 - find trends, outliers, distribution, correlation, clusters
 - scalability
 - hundreds of items

Express Values

source: [A layered grammar of graphics. Wickham. Journ. Computational and Graphical Statistics 19:1 (2010), 3-28.]

Idiom: bar chart

- one key, one value
 - data
 - 1 categ attrib, 1 quant attrib
 - mark: lines
 - channels: length to express quant value
 - spatial regions: one per mark
 - separated horizontally, aligned vertically
 - ordered by quant attrib
 - » by label (alphabetical), by length attrib (data-driven)
 - task
 - compare, lookup values
 - scalability
 - dozens to hundreds of levels for key attrib

Animal Type

Idiom: stacked bar chart

- one more key
 - data
 - 2 categ attrib, 1 quant attrib
 - mark: vertical stack of line marks
 - glyph: composite object, internal structure from multiple marks
 - channels
 - length and color hue
 - spatial regions: one per glyph
 - aligned: full glyph, lowest bar component
 - unaligned: other bar components
 - task
 - part-to-whole relationship
 - scalability
 - several to one dozen levels for stacked attrib

source: [Using Visualization to Understand the Behavior of Computer Systems. Bosch. Ph.D. thesis, Stanford Computer Science, 2001.]

Idiom: line chart

- one key, one value
 - data
 - 1 quant attrib, 1 ordered attrib
 - mark: points
 - line connection marks between them
 - channels
 - aligned vertical position
 - separated and ordered by key attrib into horizontal regions
 - task
 - find trend
 - connection marks emphasize ordering of items along key axis by explicitly showing relationship between one item and the next

Choosing bar vs line charts

- depends on type of key attrib
 - bar charts if categorical
 - line charts if ordered
- do not use line charts for categorical key attribs
 - violates expressiveness principle
 - implication of trend so strong that it overrides semantics!
 - "The more male a person is, the taller he/she is"

source: [Bars and Lines: A Study of Graphic Communication. Zacks and Tversky. Memory and Cognition 27:6 (1999), 1073–1079.]

Idiom: scatterplot matrix

- scatterplot matrix (SPLOM)
 - rectilinear axes, point mark
 - all possible pairs of axes
 - scalability
 - one dozen attribs
 - dozens to hundreds of items
 - task: correlation
 - positive correlation: diagonal low-to-high
 - negative correlation: diagonal high-to-low
 - uncorrelated

source: [Visualization Course Figures. McGuffin, 2014]

Idiom: histogram

- static item aggregation
- task: find distribution
- data: table
- derived data
 - new table: keys are bins, values are counts
- bin size crucial
 - pattern can change dramatically depending on discretization (bin size)

Idiom: boxplot

- static item aggregation
- task: find distribution
- data: table
- derived data
 - 5 quant attribs
 - median: central line
 - lower and upper quartile: boxes
 - lower upper fences: whiskers
 - values beyond which items are outliers
 - outliers beyond fence cutoffs explicitly shown

source: [40 years of boxplots. Wickham and Stryjewski. 2012]

Empirical CDF (ECDF)

- Expresses percentage of values <= x
- Never decreases
- Easy to spot median, quantiles

source: What, Why, and How to Read Empirical CDF

Interested in learning more?

Watch Tamara Munzner's <u>D3 Unconference Keynote</u>, Nov 2015 (55 min)

Still interested?

Take CS 625 - Data Visualization covers most of Munzner's textbook

Still interested?

Take CS 725/825 - Information Visualization and Visual Analytics

more advanced visualizations, research-based, assumes knowledge of all material from
CS 625

Web Science: Intro to InfoVis with R and Python

(Part 3 - Charts with R)

CS 432/532
Old Dominion University

What is R?

- Software for statistical computing and graphics
- Free (GNU General Public Licence) implementation of the S programming language
- Based on a command line interface (various GUIs are available)
- Extensible through loadable libraries
- Available for multiple platforms including Linux, MacOS, Windows
- Well-documented with its own documentation format, similar to UNIX man pages

available at <u>The R Project for Statistical Computing</u> popular GUI: <u>RStudio</u>

ref: "An Incomplete R Tutorial", Martin Klein

R Resources

- The R Project main R website
 - R Documentation
- RStudio most popular GUI for R
 - Connect RStudio to Git and GitHub
- RStudio and R for Beginners
- <u>R for Data Science</u> tutorials from O'Reilly book
 - R TidyVerse packages helper packages for Data Science (used in "R for Data Science")
- "An Incomplete R Tutorial", by Martin Klein

R and Google Colab

```
Using R as a calculator:
     1 / 200 * 30
     (59 + 73 + 2) / 3
     sin(pi/2)
    0.15
     44.666666666667
Important: Variable assignment is done with <-, not with =
    x <- 3*4
    12
```

Note: There's no menu option to create an R notebook, so you have to create a notebook with certain options in the URL (see link below)

Create new Google Colab R notebook

(https://colab.research.google.com/notebook#create=true&language=r)

ggplot2

- How to make any plot in ggplot2? | ggplot2 Tutorial
 - basic getting started guide
- The Complete ggplot2 Tutorial Part1 | Introduction To ggplot2 (Full R code)
 - simple syntax explanation
 - scatterplot
- Top 50 ggplot2 Visualizations The Master List (With Full R Code)
 - code for 50 different types of charts
- <u>Data Visualization Cheat Sheet</u>
- A ggplot2 Tutorial for Beautiful Plotting in R and Beautiful plotting in R: A ggplot2 cheatsheet
 - examples on how to change a ton of options for customizing the look

ggplot2 Intro

```
library(ggplot2)
ggplot(diamonds) # if only the dataset is known.
ggplot(diamonds, aes(x=carat)) # if only X-axis is known. The Y-axis can be specified in r
espective geoms.
ggplot(diamonds, aes(x=carat, y=price)) # if both X and Y axes are fixed for all layers.
ggplot(diamonds, aes(x=carat, color=cut)) # Each category of the 'cut' variable will now h
ave a distinct color, once a geom is added.
```

ref: How to make any plot in ggplot2?

ggplot2 Intro

```
library(ggplot2)
gg <- ggplot(diamonds, aes(x=carat, y=price, color=cut)) + geom_point() + labs(title="Scatt
erplot", x="Carat", y="Price") # add axis lables and plot title.
print(gg)</pre>
```


ref: How to make any plot in ggplot2?

Web Science: Intro to InfoVis with R and Python

(Part 4 - Charts with Python)

CS 432/532
Old Dominion University

Ways to Plot Data in Python

Matplotlib

 most popular Python plotting library, similar to Matplot

Seaborn

high-level interface to Matplotlib

Plotly

 interactive, open-source, and browser-based graphing library, built on top of D3

Bokeh

 interactive visualization library for modern web browsers, outputs plots as HTML files

Altair

 declarative statistical visualization library for Python, based on Vega and Vega-Lite

Pygal

 focus on visual appearance, produces SVG plots

Pandas

 popular data science library for Python, visualization is wrapper around Matplotlib

ref: The 7 most popular ways to plot data in Python

Seaborn

Note: A couple updates to the Google Colab notebook have been made since the lecture video was recorded:

- distplot() is deprecated, so that has been replaced with histplot()
- Seaborn has added the ecdfplot() function, so I've added an example using that.

Objectives

- Distinguish between categorical and ordered attributes.
- Explain how marks and channels are related.
- Distinguish between the identity channel type and the magnitude channel type and indicate which channels belong to each type.
- Distinguish between the principles of expressiveness and effectiveness in visual encoding.
- List the channels for ordered attributes in order from most effective to least effective.
- Explain how the concepts of express, separate, order, and align all relate to arranging tabular data.
- Differentiate between line charts and bar charts and explain when each is appropriate.
- Explain how the boxplot idiom can characterize a distribution.
- Use R to create a bar chart, line chart, and scatterplot.
- Use Python charting libraries to create a bar chart, line chart, and scatterplot.