Homework 06

1. (改编自 COD_CH, P337, 5.2)

现对一个64位存储器进行访问,表 1_1 的第一列是以字地址形式给出的访问地址顺序。(假设字的大小为64位)

- 1) 假设存储器的 Cache 共有 16 个基本块,每个块大小为 1 个字。请参考表 1_1 的形式,给出这些访问地址在 Cache 中对应的:二进制字地址、索引、标签和访问的命中情况。
- 2) 假设存储器的 Cache 共有 8 个基本块,每个块大小为 2 个字。请参考表 $1_{-}1$ 的形式,给出这些访问地址在 Cache 中对应的:二进制字地址、索引、标签和访问的命中情况。

(Cache 最初为空,替换策略采用 LRU,索引、标签给出二进制形式即可)

Word Address	Binary	index		Tag		Hit/Miss	
	Address	(1)	(2)	u)	12)	<u>(1)</u>	12)
0x03	0000001	0011	190	0000	0000	M	M
0xb4	1011 0 100	9100	010	lon	lon	M	m
0x2b	1010 1011	1011	101	pplo	9010	M	M
0x02	0000 0010	0010	001	4000	4000	M	Н
0xbf	1011 1111	1111	111	1011	1011	M	M
0x58	0 101 1000	1000	100	0)01	0)01	M	M
0xbe	1011 1110	1110	111	1011	[61]	M	Н
0x0e	0000 1110	1110	111	0000	0000	M	M
0xb5	1011 0101	0101	b10	1011	1011	M	Н
0x2c	0010 1100	1100	110	1010	1010	M	M
0xba	1011 1019	1010	101	lon	1011	M	M
0xfd	1111 1101	1101	110	1111	1111	M	M

表 1_1

2. (改编自 COD_CH, P339, 5.7)

考虑以下的程序和 Cache 行为:

毎 1000 条指令的			数据 Cache	块大小	
数据读次数			失效率	(字节)	
250	100	0.30%	2%	64	

*存储器位宽为 32-bit, 带宽单位采用: bytes/cycle

- 1) 假设一个带有写直达、写分配 Cache 的 CPU 实现了 2 的 CPI,那么 RAM 和 Cache 之间的读写带宽(用每个周期的字节数进行测量)是多少?(假设每个失效会生成一个块的请求)
- 2) 对于一个写回、写分配 Cache 来说,假设替换出的数据 Cache 块中有 30% 是脏块,那么为了实现 CPI 为 2,读写带宽需要达到多少?
- 1) 读带宽: 0.5×64×0.003+ 4×0.5×0.02×64+ 16×0.5×0.02×64=0.32 byteslayde 写带宽: 0.5×0.1×4=0.2 byteslayde
- 2) 读篇: 即 0.32 bytes leyde
- 3. 写常見: の5×1の25+の1)×のロコ×4×の3=0、0672 byte)cycle.

假设 CPU 执行某段程序时,共访问 Cache 命中 2000 次,访问主存 50 次。已知 Cache 存取周期为 50ns,主存存取周期为 200ns。求 Cache—主存系统的 命中率和平均访问时间。

A+ \$: 2000+to 20976

平均溶间时间: <u>\$548 ns</u>

4. (改编自 COD_CH, P341, 5.12)

多级 Cache 是一种重要的技术,可以克服在一级 Cache 提供的有限空间的同时仍然保持速度。考虑具有一下参数的处理器:

无内存停顿 的基本CPI	处理器速度	主存访问 时间	每条指令的 L1 Cache 失效率	L2 直接映射 Cache 速度	L2 直接映射 Cache 全局失效率	L2 八路组 相联 Cache 速度	L2 八路组 相联 <i>Cache</i> 全局失效率
1.5	2GHz	100ns	7%	$12\ cycles$	3.5%	$28\ cycles$	1.5%

- $^*L1\ Cache$ 失效率是针对每条指令而言的。假设 $L1\ Cache$ 的总失效数量(包括指令和数据)为总指令数的 7%
- 1) 分别计算在下列情况下的处理器 CPI:
- 仅有 L1 Cache
- 使用 L2 直接映射 Cache
- 使用 L2 八路组相联 Cache
- 2) 假设处理器采用 L2 直接映射 Cache,设计人员希望添加一个 L3 Cache,该 Cache 访问时间为 50 个时钟周期,并且具有 13% 的失效率,请计算此处理器的 CPI。
- 3) 在较老的处理器中,例如 $Intel\ Pentium$ 或 $Alpha\ 21264$, $L2\ Cache$ 在主处理器和 $L1\ Cache$ 的外部(位于不同芯片上)。虽然这种做法使得大型 $L2\ Cache$ 成为可能,但是访问 $L2\ Cache$ 的延迟也变得很高,并且因为 $L2\ Cache$ 以较低的频率运行,所以带宽通常也很低。假设 512KiB 的片外 $L2\ Cache$ 的失效率为 4%,如果每增加一个额外的 512KiB 片外 $L2\ Cache$ 能够降低 0.7% 的失效率,并且片外 $L2\ Cache$ 的总访问时间为 $50\$ 个时钟周期,那么片外 $L2\ Cache$ 容量必须多大才能与第一问列出的 $L2\$ 直接映射 Cache 的性能相匹配?

(項 4 Cache: 1.5+0107×200=15.5.

~L2直接映射: 1.5+ 0.0]×(12+ 0.035×200) = 2.83

、L21、路组联: 1·5+ 0·07×(12+0·35×(28+0·015×200))= 3·67

- 2) 1.5+ 0.0] x (12+ 0.035x (Jot 0.13 x 200)) = 2.526 Z
 - 3) 15+ 0.0] x (50+200x) < 2.83 x<-0.155
 - 二、没有满风条件的卷叠.