$1 \quad Integral rechnung \ {}_{\bf \underline{8492}}$

1.1 Integrationsmethoden $_{S495ff}$

Linearität	$\int f(\alpha x + \beta) dx = \frac{1}{\alpha} \cdot F(\alpha x + \beta) + C$		
Partielle Integration	$\int_{a}^{b} u'(x) \cdot v(x) dx = \left[u(x) \cdot v(x) \right]_{a}^{b} - \int_{a}^{b} u(x) \cdot v'(x) dx$		
Weierstrass-Substitution	$t = \tan \frac{x}{2}$, $dx = \frac{2dt}{1+t^2}$ $\sin x = \frac{2t}{1+t^2}$ $\cos x = \frac{1-t^2}{1+t^2}$ $\int R(\sin(x), \cos(x)) dx$		
Allgemeine Substitution	$\int_{a}^{b} f(x)dx = \int_{g^{-1}(a)}^{g^{-1}(b)} f(g(t)) \cdot g'(t)dt \qquad t = g^{-1}(x) \qquad \boxed{\mathbf{x} = \mathbf{g}(\mathbf{t})} \Leftrightarrow^{d(\dots)} dx = g'(t) \cdot dt$		
Logarithmische Integration	$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + C \qquad (f(x) \neq 1) \qquad y'(x) \cdot dx = dy \to \text{allg. gültig}$		
Potenzregel	$\int f'(x) \cdot (f(x))^{\alpha} dx = \frac{f(x)^{\alpha+1}}{\alpha+1} + C \qquad (\alpha \neq -1)$		
Differentiation	$\int_{a}^{b} f'(t)dt = f(b) - f(a) \qquad \frac{d}{dx} \int_{1}^{x} f(t)dt = f(x)$		
Mittelwerte	linear: $\frac{1}{b-a} \int_{a}^{b} f(x) dx$ quadratisch: $\sqrt{\frac{1}{b-a} \int_{a}^{b} f(x) ^{2} dx }$		

$1.1.1 \quad \hbox{Einige unbestimmte Integrale $$\underline{\bf S1081ff}$}$

$1. \int dx = x + C$	22. $\int \frac{dx}{\sqrt{h^2 - a^2 y^2}} = \frac{1}{a} \arcsin \frac{a}{b} x + C, a \neq 0, b \neq 0, a^2 x^2 < b^2$
2. $\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, x \in \mathbb{R}^+, \alpha \in \mathbb{R} \setminus \{-1\}$	23. Die Integrale $\int \frac{dx}{X}$, $\int \sqrt{X} dx$, $\int \frac{dx}{\sqrt{x}}$ mit $X = ax^2 + 2bx + c$, $a \ne 0$ werden durch die
$3. \int_{X}^{1} dx = \ln x + C, x \neq 0$	Umformung $X = a\left(x + \frac{b}{a}\right)^2 + \left(c - \frac{b^2}{a}\right)$ und die Substitution $t = x + \frac{b}{a}$ in die Integrale
$4. \int e^x dx = e^x + C$	15. bis 22. transformiert.
5. $\int a^x dx = \frac{a^x}{\ln a} + C, a \in \mathbb{R}^+ \setminus \{1\}$	24. $\int \frac{x dx}{X} = \frac{1}{2a} \ln X - \frac{b}{a} \int \frac{dx}{X}, a \neq 0, X = ax^2 + 2bx + c$
$6. \int \sin x \mathrm{d}x = -\cos x + C$	25. $\int \sin^2 ax dx = \frac{x}{2} - \frac{1}{4a} \cdot \sin 2ax + C, a \neq 0$
$7. \int \cos x \mathrm{d}x = \sin x + C$	- x 1
8. $\int \frac{\mathrm{d}x}{\sin^2 x} = -\cot x + C, x \neq k\pi \text{ mit } k \in \mathbb{Z}$	26. $\int \cos^2 ax dx = \frac{x}{2} + \frac{1}{4a} \cdot \sin 2ax + C, a \neq 0$
9. $\int \frac{\mathrm{d}x}{\cos^2 x} = \tan x + C, x \neq \frac{\pi}{2} + k\pi \text{ mit } k \in \mathbb{Z}$	27. $\int \sin^n ax dx = -\frac{\sin^{n-1} ax \cdot \cos ax}{na} + \frac{n-1}{n} \int \sin^{n-2} ax dx, n \in \mathbb{N}, a \neq 0$
$10. \int \sinh x \mathrm{d}x = \cosh x + C$	$28. \int \cos^n ax dx = \frac{\cos^{n-1} ax \cdot \sin ax}{na} + \frac{n-1}{n} \int \cos^{n-2} ax dx, n \in \mathbb{N}, a \neq 0$
$11. \int \cosh x \mathrm{d}x = \sinh x + C$	$29. \int \frac{\mathrm{d}x}{\sin ax} = \frac{1}{a} \ln \left \tan \frac{ax}{2} \right + C, a \neq 0, x \neq k \frac{\pi}{a} \text{ mit } k \in \mathbb{Z}$
$12. \int \frac{\mathrm{d}x}{\sinh^2 x} = -\coth x + C, x \neq 0$	v i i
13. $\int \frac{dx}{\cosh^2 x} = \tanh x + C$	$-\frac{30.}{\cos ax} = \frac{1}{a} \ln \left \tan \left(\frac{ax}{2} + \frac{\pi}{4} \right) \right + C, a \neq 0, x \neq \frac{\pi}{2a} + k \frac{\pi}{a} \text{ mit } k \in \mathbb{Z}$
J ************************************	$-31. \int \tan ax \mathrm{d}x = -\frac{1}{a} \ln \cos ax + C, a \neq 0, x \neq \frac{\pi}{2a} + k\frac{\pi}{a} \text{mit } k \in \mathbb{Z}$
14. $\int \frac{dx}{ax+b} = \frac{1}{a} \ln ax+b + C, a \neq 0, x \neq -\frac{b}{a}$	32. $\int \cot ax dx = \frac{1}{a} \ln \sin ax + C$, $a \neq 0$, $x \neq k - mit k \in \mathbb{Z}$
15. $\int \frac{dx}{a^2 x^2 + b^2} = \frac{1}{ab} \arctan \frac{a}{b} x + C, a \neq 0, b \neq 0$	$a \qquad a$ $-33. \int x^n \sin ax dx = -\frac{x^n}{-} \cos ax + \frac{n}{-} \int x^{n-1} \cos ax dx, n \in \mathbb{N}, a \neq 0$
16. $\int \frac{dx}{a^2 x^2 - b^2} = \frac{1}{2ab} \ln \left \frac{ax - b}{ax + b} \right + C, a \neq 0, b \neq 0, x \neq \frac{b}{a}, x \neq -\frac{b}{a}$	u u
17. $\int \sqrt{a^2x^2 + b^2} dx = \frac{x}{2} \sqrt{a^2x^2 + b^2} + \frac{b^2}{2a} \ln(ax + \sqrt{a^2x^2 + b^2}) + C, a \neq 0, b \neq 0$	34. $\int x^n \cos ax dx = \frac{x^n}{a} \sin ax - \frac{n}{a} \int x^{n-1} \sin ax dx, n \in \mathbb{N}, a \neq 0$
	35. $\int x^n e^{ax} dx = \frac{1}{a} x^n e^{ax} - \frac{n}{a} \int x^{n-1} e^{ax} dx, n \in \mathbb{N}, a \neq 0$
18. $\int \sqrt{a^2 x^2 - b^2} dx = \frac{x}{2} \sqrt{a^2 x^2 - b^2} - \frac{b^2}{2a} \ln ax + \sqrt{a^2 x^2 - b^2} + C, a \neq 0, b \neq 0, a^2 x^2 \ge b^2$	36. $\int e^{ax} \sin bx dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx) + C, a \neq 0, b \neq 0$
19. $\int \sqrt{b^2 - a^2 x^2} dx = \frac{x}{2} \sqrt{b^2 - a^2 x^2} + \frac{b^2}{2a} \arcsin \frac{a}{b} x + C, a \neq 0, b \neq 0, a^2 x^2 \le b^2$	$-37. \int e^{ax} \cos bx dx = \frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx) + C, a \neq 0, b \neq 0$
20. $\int \frac{\mathrm{d}x}{\sqrt{a^2x^2 + b^2}} = \frac{1}{a}\ln(ax + \sqrt{a^2x^2 + b^2}) + C, a \neq 0, b \neq 0$	38. $\int \ln x dx = x(\ln x - 1) + C, x \in \mathbb{R}^+$
21. $\int \frac{\mathrm{dx}}{\sqrt{a^2 x^2 - b^2}} = \frac{1}{a} \ln ax + \sqrt{a^2 x^2 - b^2} + C, a \neq 0, b \neq 0 a^2 x^2 > b^2$	39. $\int x^{\alpha} \cdot \ln x dx = \frac{x^{\alpha+1}}{(\alpha+1)^2} \left[(\alpha+1) \ln x - 1 \right] + C, x \in \mathbb{R}^+, \alpha \in \mathbb{R} \setminus \{-1\}$
*	

1.2 Uneigentliche Integrale_{S518}

Uneigentliches Integral heisst, dass entweder eine **unbeschränkte Funktion** integriert wird, oder eine Funktion über einen **unbeschränkten Integrationsberech** integriert wird.

Für unbeschränkte Funktionen:

$$I = \int\limits_a^c f(x) dx = \lim_{t \uparrow b} \int\limits_a^t f(x) dx + \lim_{t \downarrow b} \int\limits_t^c f(x) dx$$

Für die unbeschränkte Integration:

Further three timeschmanker integration:
$$I = \int_{a}^{\infty} f(x)dx = \lim_{t \to \infty} \int_{a}^{t} f(x)dx;$$

$$I = \int_{-\infty}^{a} f(x)dx = \lim_{t \to -\infty} \int_{t}^{a} f(x)dx;$$

$$I = \int_{-\infty}^{\infty} f(x)dx = \lim_{t_1 \to -\infty} \lim_{t_2 \to \infty} \int_{t_1}^{a} f(x)dx + \int_{a}^{t_2} f(x)dx$$

1.2.1 Prinzip der Restfläche

Wenn $\lim_{t\to\infty}\int\limits_t^\infty f(x)dx=0$, dann konvergiert $\int\limits_a^\infty f(x)dx$ und umgekehrt.

1.2.2 Majorantenprinzip

Um nachzuweisen, ob eine Funktion $|f(x)| \ge 0$ absolut konvergiert, wird eine zweite Funktion $g(x) \ge |f(x)|$ (Majorante) gesucht. Konvergiert $\int\limits_a^\infty g(x)dx$, dann konvergiert auch $\int\limits_a^\infty |f(x)|dx$ und somit konvergiert auch $\int\limits_a^\infty f(x)dx$. $x \in [a,\infty[$

1.2.3 Minorantenprinzip

Um nachzuweisen, ob eine Funktion f(x) divergiert, wird eine zweite Funktion $0 \le g(x) \le f(x)$ (Minorante) gesucht. Divergiert $\int\limits_a^\infty g(x)dx$, dann divergiert auch $\int\limits_a^\infty f(x)dx$. $x \in [a,\infty[$

2 Anwendung der Differential- und Integralrechnung

2.1 Beschreibungungsvarianten

Funktion (explizit) Koordinatengleichung (implizit) Parameterform(Cartesisch) Polarform x
$$y = f(x)$$
 $F(x,y) = 0$ $f(x)$ $f(x,y) = 0$ $f(x)$ $f(x,y) = 0$ $f(x)$ $f(x)$

 \rightarrow Ordnung immer ohne $\sqrt{}$

2.2 Umrechnen diverser Systeme S49

Parameter	\Rightarrow explizit	$t = f(x); \ y = g(f(x))$			
Explizit	\Rightarrow Parameter	$\left(\begin{array}{c} x(t) \\ y(t) \end{array}\right) = \left(\begin{array}{c} t \\ g(t) \end{array}\right)$			
Ex- bzw. implizit	\Rightarrow Polar	Ersetze $x = r\cos(\varphi)$; $y = r\sin(\varphi)$; $x^2 + y^2 = r^2$			
Polar	\Rightarrow implizit	Ersetze $r\sin(\varphi) = y$; $r\cos(\varphi) = x$; $r = \sqrt{x^2 + y^2}$			
Polar	\Rightarrow Parameterform	$ \begin{pmatrix} x(\varphi) \\ y(\varphi) \end{pmatrix} = \begin{pmatrix} r(\varphi)\cos(\varphi) \\ r(\varphi)\sin(\varphi) \end{pmatrix} $			
Einzelner Punkt	\Rightarrow Polar	$r = \sqrt{x^2 + y^2}; \ \varphi = \begin{cases} \arctan(\frac{y}{x}) + \pi & x < 0 \\ \arctan(\frac{y}{x}) & x > 0 \\ \frac{\pi}{2} & x = 0; \ y > 0 \\ -\frac{\pi}{2} & x = 0; \ y < 0 \\ \text{unbestimmt} & x = y = 0 \end{cases}$			

2.3 $Kurvenarten_{S203ff}$

bei '+', Kurve auf linke Seite geöffnet bei '-', Kurve auf rechte Seite geöffnet bei bei Polarform

Kreis_{S203} Implizit: $(x - x_0)^2 + (y - y_0)^2 = r^2$ Bemerkung: Mittelpunkt (x_0, y_0) ; Radius r

 $r = \frac{p}{1 + \epsilon \cos(\varphi)}; \epsilon = 0$ Polarform:

Parameterform: $x = x_0 + R\cos(t), y = y_0 + R\sin(t)$

 p, ϵ :

Polarform:

Implizit:

Bemerkung:

 $\begin{array}{ll} \textbf{Hyperbel_{S206}} & \textbf{Parabel_{S209}} \\ (\frac{x}{a})^2 - (\frac{y}{b})^2 = 1; -(\frac{x}{a})^2 + (\frac{y}{b})^2 = 1 \\ \textbf{Achsenkreuz in } P(0,0) & \textbf{Parabeln mit Scheit} \\ r = \frac{p}{1 - \epsilon \cos(\varphi)}; \epsilon > 1_{(rechterHyperbelast)} & r = \frac{p}{1 - \epsilon \cos(\varphi)}; \epsilon = 1 \\ r = \frac{p}{1 + \epsilon \cos(\varphi)} \underset{(linkerHyperbelast)}{(linkerHyperbelast)} & x = \frac{t^2}{2p}, y = t \\ r = \frac{t^2}{2p}; y = t \\ r$ Polarform: Parameterform:

 $Ellipse_{S204}$

 $\frac{(x-x_0)^2}{(x-x_0)^2} + (\frac{y-y_0}{b})^2 = 1$ Mittelpunkt (x_0, y_0) ; Halbachsen a, b

 $r = \frac{p}{1+\epsilon\cos(\varphi)}; 0 < \epsilon < 1$ (rechter Brennpunkt) $x = a\cos(t), y = b\sin(t)$ um P(0,0)

 $y^2 = 2p(x - x_0)$ Parabeln mit Scheitelpunkt auf der vertikaler Achse

Kardioide/Herzk. S99

 $r = a(1 + \cos(\varphi))$

Lemniskate " ∞ " S101 $r = a\sqrt{2\cos(2\varphi)}$

Strophoide/harm. K. S96 $r = -a \frac{\cos(2\varphi)}{\cos(\varphi)}, (a > 0)$

2.4 Gleichungen, Mittelwertes 19ff, 509

Tangentengleichung Linearer Mittelwert Quadratischer Mittelwert Normalengleichung

$$y - y_0 = f'(x_0)(x - x_0) y - y_0 = -\frac{1}{f'(x_0)}(x - x_0) \bar{f} = \frac{1}{b-a} \int_a^b f(x) dx \bar{f} = \sqrt{\frac{1}{b-a} \int_a^b f(x)^2 dx}$$
$$\dot{x}_0(y - y_0) = \dot{y}_0(x - x_0)$$

2.5 Tangenten- & Normalenabschnitt, Subtangente & Subnormale S251ff

2.6 Abstandsformeln

Hessesche Normalform_{S200f. 224}

 $x \cdot \cos \varphi_0 + y \cdot \sin \varphi_0 = r_0$

Geradengleichung

 $y - y_0 = m(x - x_0)$

Abstand zum Ursprung

Berührung in n-ter Ordnung

Zwei explizit gegebene Kurven y = f(x) und y = g(x) berühren einander im Punkt P x_0, y_0 von der Ordnung n, wenn die Funktionswerte und die ersten n Ableitungen existieren und übereinstimmen.

$$f(x_0) = g(x_0); \ f'(x_0) = g'(x_0); \ f''(x_0) = g''(x_0); \ \dots; \ f^{(n)}(x_0) = g^{(n)}(x_0)$$
 $f^{(n+1)}(x_0) \neq g^{(n+1)}(x_0)$

2.8 Scheitel S256

Scheitelpunte sind Extremalwerte der Krümmungs- bzw. Krümmungsradiusfunktion. Falls bei $\kappa'(x)$ an der Stelle x_0 ein Vorzeichenwechsel besteht, existiert dort eine Extremalstelle. $\kappa'(x) = 0; \kappa''(x) \neq 0$

2.9 Wichtige Formeln_{S249ff}

Cartesisch Parameter		Polar
Anstieg einer Kurve, Ableitung, 2. Ableitung		
$y' = f'(x_o) y'' = f''(x_0)$	$y' = \frac{\dot{y}}{\dot{x}} y'' = \frac{\dot{x}\ddot{y} - \dot{y}\ddot{x}}{\dot{x}^3}$	$y' = \frac{r'(\varphi)\sin(\varphi) + r(\varphi)\cdot\cos(\varphi)}{r'(\varphi)\cos(\varphi) - r(\varphi)\cdot\sin(\varphi)}$

Bogenlänge S514

0 0 5014		
$s = \int_{a}^{b} \sqrt{1 + (f'(x))^2} dx$	$ s = \int_{1}^{t_2} \sqrt{\dot{x}^2(t) + \dot{y}^2(t)} dt$	$ s = \int_{0}^{\varphi_2} \sqrt{(r'(\varphi))^2 + (r(\varphi))^2} d\varphi$
a	ι_1	φ_1

Krümmung ebener Kurven S253

		$\kappa = \frac{f''(x)}{(\sqrt{1 + (f'(x))^2})^3}$	$\kappa = \frac{\dot{x}(t)\ddot{y}(t) - \dot{y}(t)\ddot{x}(t)}{(\sqrt{(\dot{x}(t))^2 + (\dot{y}(t))^2})^3}$	$\kappa = \frac{2(r'(\varphi))^2 - r(\varphi)r''(\varphi) + (r(\varphi))^2}{(\sqrt{(r'(\varphi))^2 + (r(\varphi))^2})^3}$
--	--	--	---	---

Konvex (Linkskurve): $\kappa \geq 0$ Streng konvex: $\kappa > 0$ Wendepunkt: $\kappa = 0$ Analog für konkav

Krümmungskreisradius S253 $r = |\frac{1}{n}|$

$r = \left \frac{(\sqrt{1 + (f'(x))^2})^3}{f''(x)} \right $	$r = \left \frac{(\sqrt{(\dot{x}(t))^2 + (\dot{y}(t))^2})^3}{\dot{x}(t)\ddot{y}(t) - \dot{y}(t)\ddot{x}(t)} \right $	$r = \left \frac{(\sqrt{(r'(\varphi))^2 + (r(\varphi))^2})^3}{2(r'(\varphi))^2 - r(\varphi)r''(\varphi) + (r(\varphi))^2} \right $
--	---	---

Flächeninhalt S513 um x-Achse / für y-Achse:
$$f(y)$$
 von y_0 bis y_1 integrieren
$$A = \int_a^b f(x)dx \qquad \qquad A = \frac{1}{2} \int_{t_1}^{t_2} [x(t)\dot{y}(t) - \dot{x}(t)y(t)]dt \qquad \qquad A = \frac{1}{2} \int_{\varphi_1}^{\varphi_2} (r(\varphi))^2 d\varphi$$

Volumen S514 um x-Achse / für y-Achse:
$$f(y)$$
 von y_0 bis y_1 integrieren / Nur 1.Hälfte der Kurve integrieren!
$$V = \pi \int_a^b (f(x))^2 dx \qquad \qquad V = \pi \left| \int_{t_1}^{t_2} (y(t))^2 \dot{x}(t) dt \right| \qquad \qquad V = \pi \left| \int_{\varphi_1}^{\varphi_2} r^2(\varphi) \sin^2 \varphi [r'(\varphi) \cos(\varphi) - r(\varphi) \sin(\varphi)] d\varphi \right|$$

Oberflächeninhalt S514 um x-Achse / für y-Achse:
$$f(y)$$
 von y_0 bis y_1 integrieren / Nur 1.Hälfte der Kurve integrieren!
$$O = 2\pi \int_a^b |f(x)| \sqrt{1 + (f'(x))^2} dx \qquad O = 2\pi \int_{t_1}^{t_2} |y(t)| \sqrt{\dot{x}^2(t) + (\dot{y}^2(t))} dt \qquad O = 2\pi \int_{\varphi_1}^{\varphi_2} |r(\varphi) \sin \varphi| \sqrt{(r'(\varphi))^2 + (r(\varphi))^2} d\varphi$$

 $\sin \varphi = \text{Drehung um Polgerade} \qquad \cos y = \text{Drehung um y-Achse} \ (f = \frac{\pi}{2}) \qquad \to \text{siehe Fläche}$ Polar:

Krümmungskreismittelpunkt

$$x_c = x - \frac{\frac{dy}{dx}[1 + (\frac{dy}{dx})^2]}{\frac{d^2y}{dx^2}}$$

$$x_c = x - \frac{\dot{y}(\dot{x}^2 + \dot{y}^2)}{\dot{x}\ddot{y} - \ddot{x}\dot{y}}$$

$$x_c = x - \frac{\dot{y}(\dot{x}^2 + \dot{y}^2)}{\dot{x}\ddot{y} - \ddot{x}\dot{y}}$$

$$x_c = r \cdot \cos\varphi - \frac{(r^2 + r'^2)(r \cdot \cos\varphi + r' \cdot \sin\varphi)}{r^2 + 2r'^2 - r \cdot r''}$$

$$y_c = y + \frac{\dot{x}(\dot{x}^2 + \dot{y}^2)}{\frac{d^2y}{dx^2}}$$

$$y_c = y + \frac{\dot{x}(\dot{x}^2 + \dot{y}^2)}{\dot{x}\ddot{y} - \ddot{x}\dot{y}}$$

$$y_c = r \cdot \sin\varphi - \frac{(r^2 + r'^2)(r \cdot \sin\varphi - r' \cdot \cos\varphi)}{r^2 + 2r'^2 - r \cdot r''}$$

2.10 Evolute

Evolute = Σ Krümmungskreiszentren $\begin{pmatrix} x_c \\ y_c \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \frac{1}{\kappa} \overrightarrow{n}$

Orthogonaltrajektorien

Die orthogonalen Trajektorien schneiden alle Kurven der gegebenen Kurvenschar y = f(x, c) (c bestimmen) im rechten Winkel. Die DGL F(x, y, y') der Kurve bestimmen(y') ableiten, c einsetzen, wenn möglich für f(x,c)=y), anschliessend y' durch $-\frac{1}{y'}$ ersetzen. \Rightarrow ergibt die DGL der orthogonalen Trajektorien. Die Kreise sind Orthogonaltrajektorien der Hyperbeln und umgekehrt. $\frac{r'}{r} = f(\varphi, r)$ orthogonal $\frac{r'}{r} = -\frac{1}{f(\varphi, r)}$

3 Reihen_{S469, 1073}

3.1 Zahlenreihen_{S470}

 $s_n = \sum_{k=1}^n a_k$ ist eine (unendliche) Reihe. Sie ist die Folge von Partialsummen einer bestehenden Folge a_n .

3.1.1 Konvergenz, Divergenz_{S471}

Konvergiert die Reihe $\langle s_n \rangle$ gegen die Summe $s = \sum_{k=1}^{\infty} a_k$ so ist sie konvergent. Existiert der GW nicht, so ist sie divergent.

3.1.2 Konvergenzkriterien_{S462}

3.1.2.1 Cauchy-Kriterium

Wenn zu jedem $\varepsilon > 0$ ein Index n_0 existiert, so dass für alle $m > n > n_0$ gilt: $\left| \sum_{k=n}^{m} a_k \right| < \varepsilon$, dann konvergiert die Reihe, ansonsten divergiert sie.

$3.1.2.2 \quad \lim = 0$

Wenn die Reihe $\sum_{n=1}^{\infty} a_n$ konvergent ist, so ist $\lim_{n\to\infty} a_n = 0$.

Aber NICHT UMGEKEHRT!

3.1.2.3 Divergenz

Ist $< a_n >$ divergent oder ist $\lim_{n \to \infty} a_n \neq 0$, so ist die Reihe $\sum_{n=1}^{\infty} a_n$ divergent.

3.1.2.4 Majorantenkriterium \$478

Ist die Reihe $\sum\limits_{n=1}^{\infty}c_n$ konvergent, so konvergiert auch die Reihe $\sum\limits_{n=1}^{\infty}|a_n|$ und somit auch $\sum\limits_{n=1}^{\infty}a_n$ für $|a_n|\leq c_n$ (absolut). Dies gilt auch für $|a_n|\leq c_n$ erst ab einer Stelle $n_0\in\mathbb{N}$. $\sum\limits_{n=1}^{m}a_k\leq |\sum\limits_{n=1}^{m}a_k|\leq \sum\limits_{n=1}^{m}|a_k|\leq \sum\limits_{n=1}^{m}c_n$

3.1.2.5 Minorantenkriterium

Ist die Reihe $\sum_{n=1}^{\infty} d_n$ gegen $+\infty$ divergent, so gilt dies auch für die Reihe $\sum_{n=1}^{\infty} a_n$ bei $a_n \ge d_n$. Dies gilt auch für $a_n \ge d_n$ erst ab einer Stelle $n_0 \in \mathbb{N}$.

Reziprokkriterium	$s = \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ ist konvergent für $\alpha > 1$ und divergent für $\alpha \le 1$.			
${\bf Quotientenkriterium_{S473}}$	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = \alpha \text{ der Reihe } \sum_{n=1}^{\infty} a_n \qquad \qquad \alpha < 1 \text{ (aboslut) konvergent}$			
$ m Wurzelkriterium_{S473}$	$\lim_{n \to \infty} \sqrt[n]{ a_n } = \alpha \text{ der Reihe } \sum_{n=1}^{\infty} a_n$ $\alpha = 1 \text{ keine Aussage!}$			
	$\alpha > 1$ divergent			
Integralkriterium _{S474}	$\int_{1}^{\infty} f(x)dx \text{ konvergent} \Leftrightarrow \sum_{n=1}^{\infty} f(n) \text{ konvergent.}$			
	Gilt nur, wenn f auf $[1,\infty)$ definiert und monoton fallend $(f'(x) \leq 0)$ ist.			
	Zudem muss $f(x) \ge 0$ für alle $x \in [1, \infty)$ sein.			
Leibniz-Kriterium _{S475}	Die alternierende Reihe $\sum_{n=1}^{\infty} a_n$ ist konvergent, wenn die Folge $< a_n >$ eine monoton			
	fallende Nullfolge $(\lim_{n\to\infty} a_n = 0)$ ist. Monotonie mittels Verhältnis $(\left \frac{a_{n+1}}{a_n}\right)$, Differenz			
	$(a_{n+1} - a_n \le a_{n+1})$ oder vollständiger Induktion beweisen.			

3.1.2.6 Abschätzung Restglied einer alternierenden konvergenten Reihes471

$$|R_n| = |s - s_n| \le |a_{n+1}|$$

Bedingte und Absolute Konvergenzs₄₇₄

Eine Reihe $\sum_{n=1}^{\infty} a_n$ heisst **absolut konvergent**, wenn die Reihe $\sum_{n=1}^{\infty} |a_n|$ konvergent ist.

Bedingt Konvergent: Eine Reihe hat durch Umordnen einen anderen Grenzwert oder wird divergent (somit

nicht absolut konvergent).

Unbedingt Konvergent: Durch Umordnen ändert sich der Grenzwert nicht.

3.1.4 Produkt von absolut konvergenten Reihens475

Gegeben sei:
$$\sum a_n = a$$
, $\sum b_n = b$, $\sum c_n = (\sum a_n) \cdot (\sum b_n) = c$ so ist $c_n = \sum a_k b_{n-k+1}$ und $c = a \cdot b$

3.1.5 Fehlerformel

$$|s_n - s| \le |a_{n+1}|$$

Potenzreihen_{S481}

3.2.0.1 Definition_{S432}

Die Reihe $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ heisst Potenzreihe mit Entwicklungspunkt x_0 und Koeffizienten a_n .

Geometrische Reihe
$$_{\mathbf{S19}}$$
 $a \cdot \sum\limits_{n=0}^{\infty} q^n = \frac{a}{1-q}$ $(|q| < 1)$ Beidseitiges \int \Rightarrow $a \cdot \sum\limits_{n=1}^{\infty} \frac{q^n}{n} = -a \cdot \ln |1-q|$ Binominalreihe $_{\mathbf{S12}}$ $\sum\limits_{n=0}^{\infty} \binom{\alpha}{n} x^n = (1+x)^{\alpha}$ $x \in (-1,1)$ Binominalkoeff. $\binom{n}{k} = \frac{n!}{(n-k)!k!}$ Taylor-Reihe $_{\mathbf{S483}}$ $\sum\limits_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} \cdot (x-x_0)^n$ Taylor-Reihe von f bezüglich der Stelle x_0 E-Funktion $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^{\infty} \frac{1}{k!} = 1 + \frac{1}{1} + \frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{1 \cdot 2 \cdot 3 \cdot 4} + \cdots$ $e^x = \sum\limits_{n=0}^{\infty} \frac{1}{n!} \cdot x^n$ für $x_0 = 0$

Konvergenz_{S481} 3.2.1

Gegeben sei die Potenzreihe $\sum_{n=0}^{\infty} a_n x^n \text{ mit } \lim_{n \to \infty} \sqrt[n]{|a_n|} = a \text{ oder } \lim_{n \to \infty} |\frac{a_{n+1}}{a_n}| = a$ Für a=0 ist die Potenzreihe für alle $x \in \mathbb{R}$ absolut konvergent. Für a>0 ist die Potenzreihe für alle x mit $\begin{cases} |x| < \frac{1}{q} = r \Rightarrow \text{ absolut konvergent.} \\ |x| > \frac{1}{q} = r \Rightarrow \text{ divergent.} \end{cases}$

Ist die Folge $\langle \sqrt[n]{|a_n|} \rangle$ nicht beschränkt, so ist die Potenzreihe nur für x=0 konvergent.

3.2.2 Abel's Theorem

$$\sum_{n=0}^{\infty} a_n \cdot r^n \text{ konvergent} = \lim_{x \uparrow r} f(x) \text{ (= Summe der Reihe)}$$

Konvergenzradius_{S481}

Jeder Potenzreihe kann ein Konvergenzradius r zugeordnet werden. Wobei gilt $r = \frac{1}{a}$ mit $a = \lim_{n \to \infty} \sqrt[n]{|a_n|}$.

Für a=0 gilt $r=\infty$. Wenn a nicht exisitiert (Folge divergent) ist r=0.

Berechnung mittels Quotientenkriterium: $r = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}}$

Differentiation

Alle Potenzreihen mit einem $\rho > 0$ sind für alle $x \in (-\rho, \rho)$ beliebig oft (gliedweise) differenzierbar. Der Potenzradius ρ ist bei allen Ableitungen gleich demjenigen der Ursprungsfunktion. $\rho_f = \rho_{f^{(i)}}$.

$$f(x) = \sum_{n=0}^{\infty} a_n x^n \qquad f'(x) = \sum_{n=1}^{\infty} n \cdot a_n x^{n-1} \qquad f''(x) = \sum_{n=2}^{\infty} n(n-1) \cdot a_n x^{n-2} \qquad f^{(i)}(x) = \sum_{n=i}^{\infty} n(n-1) \cdot \dots \cdot (n-i+1) \cdot a_n x^{n-i}$$

Bemerkung: Startwert (n=0) nur erhöhen, wenn bei x^n , n negativ werden würde!

3.2.5 Integration

3.2.5.1 Unbestimmtes Integral

$$\textstyle \int \sum_{n=0}^{\infty} a_n x^n dx = \sum_{n=0}^{\infty} a_n \int x^n dx = \sum_{n=0}^{\infty} \frac{a_n}{n+1} \cdot x^{n+1} \qquad \text{ für alle } x \in (-\rho,\rho).$$

3.2.5.2 Bestimmtes Integral

$$\int\limits_0^x \sum\limits_{n=0}^\infty a_n t^n dt = \sum\limits_{n=0}^\infty \tfrac{a_n}{n+1} \cdot x^{n+1} \qquad \text{ für alle } x \in (-\rho,\rho).$$

3.3 einige Reihen

Funktion	Potenzreihenentwicklung	Konvergenzbereich
$(1+x)^{\alpha}$ mit $\alpha \in \mathbb{R}^{1}$)	$\sum_{n=0}^{\infty} {\alpha \choose n} x^n = 1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!} x^2 + \cdots$	x < 1
sin x	$\sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - + \cdots$	x < ∞
cos x	$\sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - + \cdots$	x < ∞
tan x	$x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \frac{17}{315}x^7 + \frac{62}{2835}x^9 + \cdots$	$ x < \frac{\pi}{2}$
arcsin x	$\sum_{n=0}^{\infty} (-1)^n \binom{-\frac{1}{2}}{n} \frac{x^{2n+1}}{2n+1} = x + \frac{1}{2} \cdot \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{x^5}{5} + \cdots$	$ x \leq 1$
arccos x	$\frac{\pi}{2} - \sum_{n=0}^{\infty} (-1)^n \binom{-\frac{1}{2}}{n} \frac{x^{2n+1}}{2n+1} = \frac{\pi}{2} - \left(x + \frac{1}{2} \cdot \frac{x^3}{3} + \cdots\right)$	$ x \leq 1$
arctan x	$\sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - + \cdots$	$ x \leq 1$
e ^x	$\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$	$ x < \infty$
ln(1+x)	$\sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{n+1}}{n+1} = x - \frac{x^2}{2} + \frac{x^3}{3} - + \cdots$	$-1 < x \le 1$
$ \ln \frac{1+x}{1-x} $	$2 \cdot \sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1} = 2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \cdots\right)$	x < 1
sinh x	$\sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$	x < ∞
cosh x	$\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots$	x < ∞
arsinh x	$\sum_{n=0}^{\infty} {\binom{-\frac{1}{2}}{n}} \frac{x^{2n+1}}{2n+1} = x - \frac{1}{2} \cdot \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{x^5}{5} - + \cdots$	x < 1
artanh x	$\sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1} = x + \frac{x^3}{3} + \frac{x^5}{5} + \cdots$	x < 1

1) Ist $\alpha \in \mathbb{N}_0$, so hat die Reihe nur endlich viele (nämlich $\alpha + 1$) Glieder, da dann $\binom{\alpha}{\alpha + k} = 0$ für alle $k \in \mathbb{N}$ ist.

Leibniz-Reihe:
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \ldots + = \frac{\Pi}{4}$$

$$\sum_{n=1}^{\infty} \frac{1}{n} \to \text{ist divergent}$$

 $\sum\limits_{n=1}^{\infty}\frac{1}{n^2}\to \text{absolut konvergent gegen 1 (beweisen mit Integralkriterium)}$

3.4 Grenzwerte von Reihen

$\lim_{n \to \infty} (1 + \frac{x}{n})^n = e^x$	$\lim_{n \to \infty} (\sqrt[n]{a}) = 1 \ (a > 0 \ \text{und const.})$	$\lim_{n \to \infty} (\sqrt[n]{n}) = 1$	$\lim_{n \to \infty} (\sqrt[n]{n^a}) = 1 \ (a \text{ const.})$
$\lim_{n \to \infty} (\sqrt[n]{ p(n) }) = 1 \ (p(n) \neq 0)$	$\lim_{n \to \infty} \left(\frac{K}{n!} \right) = 0 \ (K \text{ const.})$	$\lim_{n \to \infty} (\sqrt[n]{n!}) = +\infty$	$\lim_{n \to \infty} \left(\sqrt[n]{\frac{K^n}{n!}} \right) = 0 \ (K > 0 \text{ und const.})$
$\lim_{n \to \infty} \left(\frac{n}{\sqrt[n]{n!}} \right) = e$			

4 Differentialgleichungen_{S552}

4.1 Lösen von Differentialgleichungen 1.Ordnung

4.1.1 Picard-Lindelöf

Die Funktion $f(x, u, u_1, ..., u_{n-1})$ sei in einer Umgebung der Stelle $(x_0, y_0, y_1, ..., y_{n-1}) \in \mathbf{R}^{n+1}$ stetig und besitzt dort stetige partielle Ableitungen nach $u, u_1, ..., u_{n-1}$ dann existiert in einer geeigneten Umgebung des Anfangspunktes x_0 genau eine Lösung des Anfangswertproblems

 $y^{(n)} = f(x, y, y', ..., y^{(n-1)})$ mit $y(x_0) = y_0, y'(x_0) = y_1, ..., y^{(n-1)}(x_0) = y_{n-1}$

 $\frac{\partial f}{\partial y}$... $\frac{\partial f}{\partial f^{(n-1)}}$ endlich beschränkt \Rightarrow eindeutige Lösbarkeit

4.1.2 Trennung von Variabeln / Separation S554

Form: y' = f(x)g(y) Vorgehen: $\frac{y'}{g(y)} = f(x)$, nun ist die DGL beidseitig nach x integrierbar (dy = y'(x)dx): $\int \frac{1}{g(y)} dy = \int f(x) dx$

4.1.3 Lineartermsubstitution/separierte Lösungs554

Form: y' = f(ax + by + c) Vorgehen: 1. Substitution: z = ax + by + c z' = a + by' = a + bf(z) $\int_{x_0}^x \frac{z'}{a + bf(z)} d\tilde{x} = \int 1 d\tilde{x} \Rightarrow \int_{z_0}^z \frac{1}{a + bf(\tilde{z})} d\tilde{z} = \int_{x_0}^x 1 d\tilde{x} \qquad [d\tilde{z} = \underbrace{(a + by')}_{z'} d\tilde{x}]$

4.1.4 Gleichgradigkeit_{S554}

Form: $y' = f(\frac{y}{x})$ Vorgehen: 1. Substitution: $z = \frac{y}{x}$ $z' = \frac{1}{x}(f(z) - z)$ y' = f(z) dz = y'(x)dx

4.1.5 Lineare Differentialgleichungen 1. Ordnung S555

Form: $y' + f(x)y = \underbrace{g(x)}_{\text{Störglied}}$ Vorgehen: $y = e^{-\int f(x)dx}(k + \int g(x)e^{\int f(x)dx}dx)$ $(k \in \mathbf{R})$

4.2 Lineare Differentialgleichung 2. Ordnung mit konstanten Koeffizienten S573

Form: $y'' + a_1 \cdot y' + a_0 \cdot y = f(x)$ Störglied: f(x) Inhomogene Differentialgleichung: $f(x) \neq 0$

4.2.1 Allgemeine Lösung einer homogenen DGL: Y_H

 $\begin{array}{ll} (D>0) & \text{Falls } \lambda_1 \neq \lambda_2 \text{ und } \lambda_{1,2} \in R: \\ (D=0) & \text{Falls } \lambda_1 = \lambda_2 \text{ und } \lambda_{1,2} \in R: \\ (D<0) & \text{Falls } \lambda_{1} = \lambda_2 \text{ und } \lambda_{1,2} \in R: \\ (D<0) & \text{Falls } \lambda_{1,2} = -\frac{a_1}{2} \pm j\alpha: \\ \end{array} \qquad \begin{array}{ll} Y_H = Ae^{\lambda_1 x} + Be^{\lambda_2 x} \\ Y_H = e^{\lambda_1 x} (A + B \cdot x) \\ Y_H = e^{-\frac{1}{2}a_1 x} (A\cos(\alpha x) + B\sin(\alpha x)) \\ \end{array} \qquad \begin{array}{ll} \text{starke D\"{a}mpfung} \\ \text{schwache D\"{a}mpfung} \\ \text{Schwingfall} \end{array}$

Eigenfrequenz: $\omega = \alpha = \frac{\sqrt{|a_1^2 - 4a_0|}}{2}$ Dämpfung: $|\delta| = |\lambda|$

Allgemeine Lösung einer inhomogenen DGL: $y = Y_H + y_P$ 4.2.2

4.2.3 Grundlöseverfahren einer inhomogenen DGL:

Homogene DGL: $g(x) = Y_H$ mit den Anfangsbedingungen $g(x_0) = 0$; $g'(x_0) = 1$. Wenn möglich $x_0 = 0$.

$$y_P(x) = \int_{x_0}^{x} g(x + x_0 - t) \cdot f(t)dt$$

Vorgehen bei einer inh. DGL mit Störgliedtabelle:

Alle Schritte werden anhand diesem Beispiel erklärt: $y'' + 3y' + 2y = 3e^{-2x}$

- 1. Y_H mit λ_1 und λ_2 berechnen $y'' + 3y' + 2y = 0 \Rightarrow \lambda^2 + 3\lambda + 2 = 0 \Rightarrow \lambda_1 = -1 \text{ und } \lambda_2 = -2 \Rightarrow Y_H = Ae^{-x} + Be^{-2x} \Rightarrow Y_{H1} = Ae^{-x} \text{ und } Y_{H2} = Be^{-2c}$
- 2. Anhand der Störglied Tabelle y_p bestimmen $y_p = Ae^{-2x}$
- 3. Testen ob $y_p(x) = Y_{H1}$ oder $y_p(x) = Y_{H2}$ ist. Falls Bedingung(en) zutreffen: $y_p(x) = y_p(x) * x^{\text{Anzahl zutreffende Bedingungen}}$ $y_p(x) = Y_{H2} \Rightarrow y_p(x) = Ae^{-2x}x$
- 4. y_p ableiten und in die DGL einsetzen $y_p' = (-2Ax + A)e^{-2x} \text{ und } y_p'' = (4Ax - 4A)e^{-2x} \Rightarrow (4Ax - 4A)e^{-2x} + 3(-2Ax + A)e^{-2x} + 2Axe^{-2x} = 3e^{-2x}$
- 5. Gleichung kürzen und nach x-Potenzen ordnen $(4A - 6A + 2A)xe^{-2x} + (3A - 4A)e^{-2x} = 3e^{-2x}$
- 6. Koeffizienten bestimmen: (3A - 4A) = 3

$$(3A-4A)=3$$
 $(3A-4A)$ kommt 3 mal in $g(x)$ vor $(4A-6A+2A)=0$ $(4A-6A+2A)$ kommt 0 mal in $g(x)$ vor $A=-3$

- 7. Koeffizienten in y_p einsetzen $y_p = -3e^{-2x}$
- 8. Wenn das Störglied f(x) aus mehreren Teilen besteht (z.B. $x^2e^x + x$), Störglied auseinander nehmen und in zwei Teile x^2e^x und x unterteilen und Schritt 3 - 6 wiederholen
- 9. $y = Y_H + y_{p1} + y_{p2} + \dots$

4.2.4.1 Störgliedtabelle

Störglied $g(x)$	Ansatz y_p
k (Konstante)	A
x^n $p_n(x) = b_n * x^n + \dots + b_1 * x + b_0$	$A_n * x^n + \dots + A_1 * x + A_0$
$k*e^{m*x}$	$A * e^{m*x}$
$k * cos(b * x)$ $k * sin(b * x)$ $k_1 * cos(b * x) + k_2 * sin(b * x)$	$A*\cos(b*x) + B*\sin(b*x)$
$ k * e^{m*x} * cos(b * x) k * e^{m*x} * sin(b * x) e^{m*x} * (k_1 * cos(b * x) + k_2 * sin(b * x) $	$e^{m*x}*(A*cos(b*x) + B*sin(b*x))$
$k * cosh(b * x)$ $k * sinh(b * x)$ $k_1 * cosh(b * x) + k_2 * sinh(b * x)$	A*cosh(b*x) + B*sinh(b*x)
$ k * e^{m*x} * cosh(b * x) k * e^{m*x} * sinh(b * x) e^{m*x} * (k_1 * cosh(b * x) + k_2 * sinh(b * x) $	$e^{m*x}*(A*cohs(b*x)+B*sinh(b*x))$
$k*x*e^{mx}$	$(A*x+B)*e^{m*x}$
$p_n(x) * e^{m*x}$	$(A_n * x^n + \dots + A_1 * x + A_0) * e^{mx}$
$x * (k_1 * cos(b * x) + k_2 * sin(b * x))$	$(A_1 * x + B_1) * cos(b * x) + (A_2 * x + B_2) * sin(b * x)$
$x * e^{mx} * (k_1 * cos(b * x) + k_2 * sin(b * x))$	$e^{mx} * ((A_1 * x + B_1) * cos(b * x) + (A_2 * x + B_2) * sin(b * x))$
$x * (k_1 * cosh(b * x) + k_2 * sinh(b * x))$	$(A_1 * x + B_1) * cosh(b * x) + (A_2 * x + B_2) * sinh(b * x)$
$x * e^{mx} * (k_1 * cosh(b * x) + k_2 * sinh(b * x))$	$e^{mx} * ((A_1 * x + B_1) * cosh(b * x) + (A_2 * x + B_2) * sinh(b * x))$

4.2.5 Superpositionsprinzip

$$f(x) = c_1 f_1(x) + c_2 f_2(x)$$

$$y_1 \text{ ist spezielle L\"osung der DGL} \qquad \qquad y_1'' + a_1 \cdot y_1' + a_0 \cdot y_1 = c_1 f_1(x)$$

$$y_2 \text{ ist spezielle L\"osung der DGL} \qquad \qquad y_2'' + a_1 \cdot y_2' + a_0 \cdot y_2 = c_2 f_2(x)$$

$$\text{dann ist:} \qquad \qquad y_P = c_1 y_1 + c_2 y_2$$

4.3 Lineare Differentialgleichung n. Ordnung mit konstanten Koeffizienten S554

Form:
$$\sum_{k=0}^{n} a_k y^{(k)} = y^{(n)} + a_{n-1} \cdot y^{(n-1)} + \ldots + a_0 \cdot y = f(x)$$

4.3.1 n-verschiedene Homogene Lösungen

Fall a: r reelle Lösungen
$$\lambda_1$$
: $y_1 = e^{\lambda_1 x}, \ y_2 = x e^{\lambda_1 x}, \dots, y_r = x^{r-1} e^{\lambda_1 x}$ Starke Dämpfung / Kriechfall Fall b: k komplexe Lösungen $\lambda_2 = \alpha + j\beta$: $y_1 = e^{\alpha x} \cos(\beta x), \dots, \ y_k = e^{\alpha x} x^{k-1} \cos(\beta x)$ Schwache Dämpfung / $y_{k+1} = e^{\alpha x} \sin(\beta x), \dots, \ y_{2k} = e^{\alpha x} x^{k-1} \sin(\beta x)$ Schwingfall $Y_H = Ay_1 + By_2 + Cy_3 + \dots + Ny_n$

4.3.2 Allgemeinste Lösung des partikulären Teils:

$$\sum_{k=0}^{n} a_k y^{(k)} = \underbrace{e^{\alpha x} (p_{m1}(x) \cos(\beta x) + q_{m2}(x) \sin(\beta x))}_{\text{St\"{o}rglied}} \qquad \lambda \text{ aus Homogenl\"{o}sung}$$

Unterscheide die Lösungen des charakteristischen Polynoms (λ): mit m = max(m1, m2) Fall a: $\alpha + j\beta \neq \lambda$, so ist $y_P = e^{\alpha x}(r_m(x)\cos(\beta x) + s_m(x)\sin(\beta x))$ Fall b: $\alpha + j\beta$ ist u-fache Lösung von λ , so ist $y_P = e^{\alpha x}x^u(r_m(x)\cos(\beta x) + s_m(x)\sin(\beta x))$ u-fache Resonanz

4.3.3 Grundlöseverfahren

$$\begin{pmatrix} g(x_0) = & 0 & = & Ay_1(x_0) + By_2(x_0) + \ldots + Ny_n(x_0) \\ g'(x_0) = & 0 & = & Ay_1'(x_0) + By_2'(x_0) + \ldots + Ny_n'(x_0) \\ \vdots & \vdots & & & & \text{ergibt } c_1, \ldots, c_n \text{ für } \\ g^{(n-1)}(x_0) = & 1 & = & Ay_1^{(n-1)}(x_0) + By_2^{(n-1)}(x_0) + \ldots + Ny_n^{(n-1)}(x_0) \end{pmatrix} \qquad \text{ergibt } c_1, \ldots, c_n \text{ für } \\ y_P(x) = \int_{x_0}^x g(x + x_0 - t) f(t) dt$$

4.3.4 Anfangswertproblem

$$y(x_0) = y_0$$
 $y'(x_0) = y_1$ $y''(x_0) = y_2$... $y^{(n-1)}(x_0) = y_{n-1}$

4.4 Lineare Differentialgleichungssysteme erster Ordnung mit konstanten Koeffizienten

Anordnung beachten! Gesuchte Grösse immer zu oberst (in diesem Fall ist die gesuchte Grösse x)

4.5 Faltung _{S802}

$$f(x) = \int_{0}^{x} f_1(x-t)f_2(t)dt$$
 Schreibweise $f = f_1 * f_2$

5 Formeln + Theorie aus An1E

5.1 Trigonometrie

$$\sin^2(b) + \cos^2(b) = 1$$
 $\tan(b) = \frac{\sin(b)}{\cos(b)}$

5.1.1 Funktionswerte für Winkelargumente

deg	rad	sin	cos	tan
0 °	0	0	1	0
30 °	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
45 °	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60 °	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$

deg	rad	sin	cos	
90°	$\frac{\pi}{2}$	1	0	
120 °	$\frac{2\pi}{3}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	
135 °	$\frac{3\pi}{4}$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	
150 °	$\frac{5\pi}{6}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	

deg	rad	sin	cos	deg	rad	sin	cos
180 °	π	0	-1	270 °	$\frac{3\pi}{2}$	-1	0
210 °	$\frac{7\pi}{6}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	300 °	$\frac{5\pi}{3}$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
225 °	$\frac{5\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	315 °	$\frac{7\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
240 °	$\frac{4\pi}{3}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	330 °	$\frac{11\pi}{6}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$

5.1.2 Periodizität

$$\cos(a+k\cdot 2\pi) = \cos(a)$$
 $\sin(a+k\cdot 2\pi) = \sin(a)$ $(k \in \mathbb{Z})$

5.1.3 Quadrantenbeziehungen

$$\begin{array}{ll} \sin(-a) = -\sin(a) & \cos(-a) = \cos(a) \\ \sin(\pi - a) = \sin(a) & \cos(\pi - a) = -\cos(a) \\ \sin(\pi + a) = -\sin(a) & \cos(\pi + a) = -\cos(a) \\ \sin\left(\frac{\pi}{2} - a\right) = \sin\left(\frac{\pi}{2} + a\right) = \cos(a) & \cos\left(\frac{\pi}{2} - a\right) = -\cos\left(\frac{\pi}{2} + a\right) = \sin(a) \end{array}$$

5.1.4 Additions theoreme

$$\sin(a \pm b) = \sin(a) \cdot \cos(b) \pm \cos(a) \cdot \sin(b)$$

$$\cos(a \pm b) = \cos(a) \cdot \cos(b) \mp \sin(a) \cdot \sin(b)$$

$$\tan(a \pm b) = \frac{\tan(a) \pm \tan(b)}{1 \mp \tan(a) \cdot \tan(b)}$$

5.1.5 Doppel- und Halbwinkel

$$\sin(2a) = 2\sin(a)\cos(a)$$

$$\cos(2a) = \cos^2(a) - \sin^2(a) = 2\cos^2(a) - 1 = 1 - 2\sin^2(a)$$

$$\cos^2\left(\frac{a}{2}\right) = \frac{1+\cos(a)}{2} \qquad \sin^2\left(\frac{a}{2}\right) = \frac{1-\cos(a)}{2}$$

5.1.6 Produkte

$$\sin(a)\sin(b) = \frac{1}{2}(\cos(a-b) - \cos(a+b))$$

$$\cos(a)\cos(b) = \frac{1}{2}(\cos(a-b) + \cos(a+b))$$

$$\sin(a)\cos(b) = \frac{1}{2}(\sin(a-b) + \sin(a+b))$$

5.1.7 Summe und Differenz

$$\sin(a) + \sin(b) = 2 \cdot \sin\left(\frac{a+b}{2}\right) \cdot \cos\left(\frac{a-b}{2}\right)$$

$$\sin(a) - \sin(b) = 2 \cdot \sin\left(\frac{a-b}{2}\right) \cdot \cos\left(\frac{a+b}{2}\right)$$

$$\cos(a) + \cos(b) = 2 \cdot \cos\left(\frac{a+b}{2}\right) \cdot \cos\left(\frac{a-b}{2}\right)$$

$$\cos(a) - \cos(b) = -2 \cdot \sin\left(\frac{a+b}{2}\right) \cdot \cos\left(\frac{a-b}{2}\right)$$

$$\tan(a) \pm \tan(b) = \frac{\sin(a \pm b)}{\cos(a)\cos(b)}$$