

# **TE0820 TRM**

Revision v.75
Exported on 2019-02-18

Online version of this document:

https://wiki.trenz-electronic.de/display/PD/TE0820+TRM



# 1 Table of Contents

| 1    | Table of Contents               | 2  |
|------|---------------------------------|----|
| 2    | Table of Figures                | 4  |
| 3    | Table of Tables                 | 5  |
| 4    | Overview                        | 6  |
| 4.1  | Key Features                    | 6  |
| 4.2  | Block Diagram                   | 6  |
| 4.3  | Main Components                 | 8  |
| 4.4  | Initial Delivery State          | 8  |
| 5    | Boot Process                    | 10 |
| 6    | Signals, Interfaces and Pins    | 11 |
| 6.1  | Board to Board (B2B) I/Os       | 11 |
| 6.2  | MGT Lanes                       | 11 |
| 6.3  | JTAG Interface                  | 13 |
| 6.4  | System Controller CPLD I/O Pins | 13 |
| 6.5  | Default PS MIO Mapping          | 14 |
| 6.6  | Gigabit Ethernet                | 17 |
| 6.7  | USB Interface                   | 17 |
| 6.8  | I2C Interface                   | 18 |
| 7    | On-board Peripherals            | 19 |
| 7.1  | System Controller CPLD          | 19 |
| 7.2  | eMMC Flash Memory               | 19 |
| 7.3  | DDR4 Memory                     | 19 |
| 7.4  | Quad SPI Flash Memory           | 19 |
| 7.5  | Gigabit Ethernet PHY            | 19 |
| 7.6  | High-speed USB ULPI PHY         | 19 |
| 7.7  | MAC Address EEPROM              | 19 |
| 7.8  | Programmable Clock Generator    | 20 |
| 7.9  | Oscillators                     | 21 |
| 7.10 | On-board LEDs                   | 21 |
| 8    | Power and Power-on Sequence     | 22 |
| 8.1  | Power Supply                    | 22 |
| 8.2  | Power Consumption               | 22 |
| 8.3  | Power Distribution Dependencies | 22 |
| 8.4  | Power-On Sequence               | 24 |
| 8.5  | Power Rails                     | 25 |





| 8.6  | Bank Voltages                    | 25 |
|------|----------------------------------|----|
| 9    | Board to Board Connectors        | 27 |
| 9.1  | Connector Mating height          | 27 |
| 9.2  | Connector Speed Ratings          | 28 |
| 9.3  | Current Rating                   | 28 |
| 9.4  | Connector Mechanical Ratings     | 28 |
| 10   | Variants Currently In Production | 29 |
| 11   | Technical Specifications         | 30 |
| 11.1 | Absolute Maximum Ratings         | 30 |
| 11.2 | Recommended Operating Conditions | 30 |
| 11.3 | Physical Dimensions              | 31 |
| 12   | Revision History                 | 33 |
| 12.1 | Hardware Revision History        | 33 |
| 12.2 | Document Change History          | 33 |
| 13   | Disclaimer                       | 36 |
| 13.1 | Data privacy                     | 36 |
| 13.2 | Document Warranty                | 36 |
| 13.3 | Limitation of Liability          | 36 |
| 13.4 | Copyright Notice                 | 36 |
| 13.5 | Technology Licenses              | 36 |
| 13.6 | Environmental Protection         | 36 |
| 13.7 | REACH, RoHS and WEEE             | 36 |



# 2 Table of Figures

| Figure 1: Figure 1: TE0820-03 block diagram              | 7  |
|----------------------------------------------------------|----|
| Figure 2: Figure 2: TE0820-03 main components            | 8  |
| Figure 3: Figure 3: TE0820-03 Power Distribution Diagram | 23 |
| Figure 4: Figure 4: TE0820-03 Power-on Sequence Diagram  | 24 |
| Figure 5: Figure 5: Module physical dimensions drawing   | 32 |
| Figure 6: Figure 6: Module hardware revision number      | 33 |



# 3 Table of Tables

| Table 1: Connectors    | 27 |
|------------------------|----|
| Table 2: Speed rating. | 28 |

#### 4 Overview

The Trenz Electronic TE0820 is an industrial-grade 4 x 5 cm MPSoC SoM (System on Module) module integrating a Xilinx Zynq UltraScale+ with up to 4 GByte 32-Bit DDR4 SDRAM, max. 128 MByte SPI Boot Flash memory for configuration and operation and powerful switch-mode power supplies for all on-board voltages. A large number of configurable I/Os is provided via rugged high-speed stacking strips. All Trenz Electronic SoMs in 4 x 5 cm form factor are mechanically compatible.

**TE0820 TRM** 

Refer to http://trenz.org/te0820-info for the current online version of this manual and other available documentation.

#### 4.1 Key Features

- Xilinx Zynq UltraScale+ MPSoC (XCZU2CG / XCZU2EG, XCZU3CG / XCZU3EG or XCZU4CG / XCZU4EV)
  - Quad-core or dual-core Cortex-A53 64-bit ARM v8 application processing unit (APU) (depends on assembly variant CG,EG,EV)
  - Dual Cortex-R5 32-bit ARM v7 real-time processing unit (RPU)
  - Four high-speed serial I/O (HSSIO) interfaces supporting following protocols:
    - PCI Express<sup>®</sup> interface version 2.1 compliant
    - SATA 3.1 specification compliant interface
    - DisplayPort source-only interface with video resolution up to 4k x 2k
    - USB 3.0 specification compliant interface implementing a 5 Gbit/s line rate
    - 1 GB/s serial GMII interface
  - 132 x HP PL I/Os (3 banks)
  - 14 x PS MIOs (6 of the MIOs intended for SD card interface in default configuration)
  - · 4 x serial PS GTR transceivers
- 2 GByte DDR4 SDRAM, 32bit databus-width
- 128 MByte QSPI boot Flash in dual parallel mode
- 4 GByte eMMC
- Programmable quad PLL clock generator PLL for PS GTR clocks (optional external reference)
- Gigabit Ethernet transceiver PHY (Marvell Alaska 88E1512)
- MAC address serial EEPROM with EUI-48™ node identity (Microchip 24AA025E48)
- Hi-speed USB2 ULPI transceiver with full OTG support (Microchip USB3320C)
- Plug-on module with 2 x 100-pin and 1 x 60-pin high-speed hermaphroditic strips
- All power supplies on board
- Size: 50 x 40 mm

Additional assembly options are available for cost or performance optimization upon request.

## 4.2 Block Diagram





Figure 1: Figure 1: TE0820-03 block diagram



#### 4.3 Main Components



**TE0820 TRM** 

Figure 2: Figure 2: TE0820-03 main components

- 1. Xilinx Zyng UltraScale+ MPSoC, U1
- 2. 1.8V, 512 Mbit QSPI flash memory, U7
- 3. 1.8V, 512 Mbit QSPI flash memory, U17
- 4. 8 Gbit (512 x 16) DDR4 SDRAM, U2
- 5. 8 Gbit (512 x 16) DDR4 SDRAM, U3
- 6. Marvell Alaska 88E1512 integrated 10/100/1000 Mbps energy efficient ethernet transceiver, U8
- 7. 6A PowerSoC DC-DC converter (PL\_VCCINT, 0.85V), U5
- 8. B2B connector Samtec Razor Beam™ LSHM-150, JM1
- 9. B2B connector Samtec Razor Beam™ LSHM-150, JM2
- 10. B2B connector Samtec Razor Beam™ LSHM-130, JM3
- 11. 4 GByte eMMC memory, U6
- 12. Lattice Semiconductor MachXO2 System Controller CPLD, U21
- 13. I<sup>2</sup>C programmable, any frequency, any output quad clock generator, U10
- 14. Highly integrated full featured hi-speed USB 2.0 ULPI transceiver, U18
- 15. LED D1(Red) Done Pin
- 16. LED D2 (Green) CPLD Status, User LED
- 17. LED D3 (Red) PS Error
- 18. LED D4 (Green) PS Error Status

## 4.4 Initial Delivery State

| Storage Device Name | Content               | Notes                                            |
|---------------------|-----------------------|--------------------------------------------------|
| SPI Flash OTP Area  | Empty, not programmed | Except serial number programmed by flash vendor. |





| Storage Device Name       | Content                 | Notes                                   |
|---------------------------|-------------------------|-----------------------------------------|
| SPI Flash Quad Enable bit | Programmed              | -                                       |
| SPI Flash main array      | Not programmed          | -                                       |
| eFUSE USER                | Not programmed          | -                                       |
| eFUSE Security            | Not programmed          | -                                       |
| Si5338 OTP NVM            | Not programmed          | -                                       |
| CPLD (LCMXO2-256HC)       | SC0820-02 QSPI Firmware | See Boot Process (see page 10) section. |

TE0820 TRM

**Table 1:** Initial delivery state of programmable devices on the module



## **5 Boot Process**

Two different firmware versions are available, one with the QSPI boot option and other with the SD Card boot option.

| B2B JM1 MODE<br>Pin | Default CPLD<br>Firmware | QSPI Firmware<br>Version | SD Card Firmware<br>Version |
|---------------------|--------------------------|--------------------------|-----------------------------|
| Low                 | SD                       | JTAG                     | Boot from SD Card           |
| High                | Flash                    | Boot from Flash          | JTAG                        |

Table 2: Boot mode pin description

For more information refer to the TE0820 CPLD - BootMode<sup>1</sup> section.

<sup>1</sup> https://wiki.trenz-electronic.de/display/PD/TE0820-REV01\_REV02+CPLD#TE0820-REV01\_REV02CPLD-BootMode



# 6 Signals, Interfaces and Pins

# 6.1 Board to Board (B2B) I/Os

Zynq MPSoC's I/O banks signals connected to the B2B connectors:

| Bank | Туре    | B2B<br>Connector | I/O Signal Count     | Voltage | Notes            |
|------|---------|------------------|----------------------|---------|------------------|
| 64   | HP      | JM2              | 48                   | User    | Max voltage 1.8V |
| 64   | НР      | JM2              | 2                    | User    | Max voltage 1.8V |
| 65   | HP      | JM2              | 18                   | User    | Max voltage 1.8V |
| 65   | HP      | JM3              | 16                   | User    | Max voltage 1.8V |
| 66   | НР      | JM1              | 48                   | User    | Max voltage 1.8V |
| 500  | MIO     | JM1              | 8                    | 1.8V    | -                |
| 501  | MIO     | JM1              | 6                    | 3.3V    | -                |
| 505  | GTR     | JM3              | 4 lanes              | -       | -                |
| 505  | GTR CLK | JM3              | 1 differential input | -       | -                |

**Table 3:** General overview of board to board I/O signals

For detailed information about the pin-out, please refer to the Pin-out table<sup>2</sup>.

#### 6.2 MGT Lanes

The Xilinx Zynq UltraScale+ device used on the TE0820 module has 4 GTR transceivers. All 4 are wired directly to B2B connector JM3. MGT (Multi Gigabit Transceiver) lane consists of one transmit and one receive (TX/RX) differential pairs, four signals total per one MGT lane. Following table lists lane number, FPGA bank number, transceiver type, signal schematic name, board-to-board pin connection and FPGA pins connection:

<sup>2</sup> https://shop.trenz-electronic.de/Download/?path=Trenz\_Electronic/Pinout



| Lane | Bank | Туре | Signal<br>Name                                                                                 | B2B Pin                                                                                          | FPGA Pin                                                                                                                           |
|------|------|------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 0    | 505  | GTR  | <ul> <li>B505_RX0 _P</li> <li>B505_RX0 _N</li> <li>B505_TX0 _P</li> <li>B505_TX0 _N</li> </ul> | <ul> <li>JM3-2</li> <li>JM3-2</li> <li>JM3-2</li> <li>JM3-2</li> <li>JM3-2</li> <li>7</li> </ul> | <ul> <li>PS_MGTRRXP0_505, F27</li> <li>PS_MGTRRXN0_505, F28</li> <li>PS_MGTRTXP0_505, E25</li> <li>PS_MGTRTXN0_505, E26</li> </ul> |
| 1    | 505  | GTR  | <ul> <li>B505_RX1 _P</li> <li>B505_RX1 _N</li> <li>B505_TX1 _P</li> <li>B505_TX1 _N</li> </ul> | <ul> <li>JM3-2</li> <li>JM3-2</li> <li>JM3-1</li> <li>JM3-2</li> <li>JM3-2</li> </ul>            | <ul> <li>PS_MGTRRXP1_505, D27</li> <li>PS_MGTRRXN1_505, D28</li> <li>PS_MGTRTXP1_505, D23</li> <li>PS_MGTRTXN1_505, D24</li> </ul> |
| 2    | 505  | GTR  | <ul> <li>B505_RX2 _P</li> <li>B505_RX2 _N</li> <li>B505_TX2 _P</li> <li>B505_TX2 _N</li> </ul> | <ul> <li>JM3-1</li> <li>JM3-1</li> <li>JM3-1</li> <li>JM3-1</li> <li>JM3-1</li> <li>5</li> </ul> | <ul> <li>PS_MGTRRXP0_505, B27</li> <li>PS_MGTRRXN0_505, B28</li> <li>PS_MGTRTXP0_505, C25</li> <li>PS_MGTRTXN0_505, C26</li> </ul> |
| 3    | 505  | GTR  | <ul> <li>B505_RX3 _P</li> <li>B505_RX3 _N</li> <li>B505_TX3 _P</li> <li>B505_TX3 _N</li> </ul> | <ul> <li>JM3-8</li> <li>JM3-1</li> <li>0</li> <li>JM3-7</li> <li>JM3-9</li> </ul>                | <ul> <li>PS_MGTRRXP1_505, A25</li> <li>PS_MGTRRXN1_505, A26</li> <li>PS_MGTRTXP1_505, B23</li> <li>PS_MGTRTXN1_505, B24</li> </ul> |

Table 4: MGT lanes

There are 3 clock sources for the GTR transceivers. B505\_CLK0 is connected directly to B2B connector JM3, so the clock can be provided by the carrier board. Clocks B505\_CLK1 and B505\_CLK3 are provided by the on-board clock generator (U10). As there are no capacitive coupling of the data and clock lines that are connected to the connectors, these may be required on the user's PCB depending on the application.

| Clock signal    | Bank | Source         | FPGA Pin                   | Notes                         |
|-----------------|------|----------------|----------------------------|-------------------------------|
| B505_CLK0_<br>P | 505  | B2B,<br>JM3-31 | PS_MGTREFCLK0P_505,<br>F23 | Supplied by the carrier board |



| Clock signal    | Bank | Source         | FPGA Pin                   | Notes                         |
|-----------------|------|----------------|----------------------------|-------------------------------|
| B505_CLK0_<br>N | 505  | B2B,<br>JM3-33 | PS_MGTREFCLK0N_505,<br>F24 | Supplied by the carrier board |
| B505_CLK1_<br>P | 505  | U10, CLK2A     | PS_MGTREFCLK1P_505,<br>E21 | On-board Si5338A              |
| B505_CLK1_<br>N | 505  | U10, CLK2B     | PS_MGTREFCLK1N_505,<br>E22 | On-board Si5338A              |
| B505_CLK2_<br>P | 505  | N/A            | PS_MGTREFCLK2P_505,<br>C21 | Not connected                 |
| B505_CLK2_<br>N | 505  | N/A            | PS_MGTREFCLK2N_505,<br>C22 | Not connected                 |
| B505_CLK3_<br>P | 505  | U10, CLK1A     | PS_MGTREFCLK3P_505,<br>A21 | On-board Si5338A              |
| B505_CLK3_<br>N | 505  | U10, CLK1B     | PS_MGTREFCLK3N_505,<br>A22 | On-board Si5338A              |

Table 5: MGT reference clock sources

#### 6.3 JTAG Interface

JTAG access to the Xilinx Zynq-7000 is provided through B2B connector JM2.

| JTAG Signal | B2B Connector Pin |
|-------------|-------------------|
| TMS         | JM2-93            |
| TDI         | JM2-95            |
| TDO         | JM2-97            |
| тск         | JM2-99            |

**Table 6:** JTAG interface signals

Pin 89 JTAGEN of B2B connector JM1 is used to control which device is accessible via JTAG. If set to low or grounded, JTAG interface will be routed to the Xilinx Zynq MPSoC. If pulled high, JTAG interface will be routed to the System Controller CPLD.

## 6.4 System Controller CPLD I/O Pins

Special purpose pins are connected to System Controller CPLD and have following default configuration:



Revision: v.75



| Pin<br>Name | Mode   | Function        | Default Configuration                                                                             |
|-------------|--------|-----------------|---------------------------------------------------------------------------------------------------|
| EN1         | Input  | Power<br>Enable | No hard wired function on PCB. When forced low, PGOOD goes low without effect on power management |
| PGOOD       | Output | Power Good      | Only indirect used for power status, see CPLD description                                         |
| NOSEQ       | -      | -               | No used for Power sequencing, see CPLD description                                                |
| RESIN       | Input  | Reset           | Active low reset, gated to POR_B                                                                  |
| JTAGEN      | Input  | JTAG Select     | Low for normal operation, high for CPLD JTAG access                                               |

**Table 7:** System Controller CPLD special purpose pins.

#### See also

- 4 x 5 SoM Integration Guide<sup>3</sup>
- TE0820 CPLD<sup>4</sup>
- TE0820-REV01\_REV02 CPLD<sup>5</sup>

# 6.5 Default PS MIO Mapping

| PS MIO | Function | B2B Pin | Connecte<br>d to   | PS MIO | Function | B2B Pin | Connecte<br>d to     |
|--------|----------|---------|--------------------|--------|----------|---------|----------------------|
| 0      | SPI0     | -       | U7-B2,<br>CLK      | 4045   | -        | -       | Not<br>connecte<br>d |
| 1      | SPI0     | -       | U7-D2,<br>DO/IO1   | 46     | SD       | JM1-17  | B2B,<br>SD_DAT3      |
| 2      | SPI0     | -       | U7-C4,<br>WP/IO2   | 47     | SD       | JM1-19  | B2B,<br>SD_DAT2      |
| 3      | SPI0     | -       | U7-D4,<br>HOLD/IO3 | 48     | SD       | JM1-21  | B2B,<br>SD_DAT1      |

<sup>3</sup>https://wiki.trenz-electronic.de/display/PD/

<sup>4+</sup>x+5+SoM+Integration+Guide#id-4x5SoMIntegrationGuide-4x5SoMIntegrationGuide-4x5ModuleControllerIOs

<sup>4</sup> https://wiki.trenz-electronic.de/display/PD/TE0820+CPLD

<sup>5</sup> https://wiki.trenz-electronic.de/display/PD/TE0820-REV01\_REV02+CPLD



| 4    | SPI0 | - | U7-D3, DI/<br>IO0    | 49 | SD      | JM1-23 | B2B,<br>SD_DAT0         |
|------|------|---|----------------------|----|---------|--------|-------------------------|
| 5    | SPI0 | - | U7-C2, CS            | 50 | SD      | JM1-25 | B2B,<br>SD_CMD          |
| 6    | N/A  | - | Not<br>connecte<br>d | 51 | SD      | JM1-27 | B2B,<br>SD_CLK          |
| 7    | SPI1 | - | U17-C2,<br>CS        | 52 | USB_PHY | -      | U18-31,<br>OTG-DIR      |
| 8    | SPI1 | - | U17-D3,<br>DI/IO0    | 53 | USB_PHY | -      | U18-31,<br>OTG-DIR      |
| 9    | SPI1 | - | U17-D2,<br>DO/IO1    | 54 | USB_PHY | -      | U18-5,<br>OTG-<br>DATA2 |
| 10   | SPI1 | - | U17-C4,<br>WP/IO2    | 55 | USB_PHY | -      | U18-2,<br>OTG-NXT       |
| 11   | SPI1 | - | U17-D4,<br>HOLD/IO3  | 56 | USB_PHY | -      | U18-3,<br>OTG-<br>DATA0 |
| 12   | SPI1 | - | U17-B2,<br>CLK       | 57 | USB_PHY | -      | U18-4,<br>OTG-<br>DATA1 |
| 1320 | еММС | - | U6, MMC-<br>D0D7     | 58 | USB_PHY | -      | U18-29,<br>OTG-STP      |
| 21   | еММС | - | U6, MMC-<br>CMD      | 59 | USB_PHY | -      | U18-6,<br>OTG-<br>DATA3 |
| 22   | еММС | - | U6, MMC-<br>CLKR     | 60 | USB_PHY | -      | U18-7,<br>OTG-<br>DATA4 |
| 23   | еММС | - | U6, MMC-<br>RST      | 61 | USB_PHY | -      | U18-9,<br>OTG-<br>DATA5 |

TE0820 TRM



| 24   | ETH     | -      | U8, ETH-<br>RST                     | 62   | USB_PHY | -  | U18-10,<br>OTG-<br>DATA6  |
|------|---------|--------|-------------------------------------|------|---------|----|---------------------------|
| 25   | USB_PHY | -      | U18, OTG-<br>RST                    | 63   | USB_PHY | -  | U18-13,<br>OTG-<br>DATA7  |
| 26   | MIO     | JM1-95 | B2B, as<br>PJTAG<br>MIO<br>possible | 64   | ETH     | -  | U8-53,<br>ETH-TXCK        |
| 27   | MIO     | JM1-93 | B2B, as<br>PJTAG<br>MIO<br>possible | 6566 | ЕТН     | -  | U8-5051,<br>ETH-<br>TXD01 |
| 28   | MIO     | JM1-99 | B2B, as<br>PJTAG<br>MIO<br>possible | 6768 | ETH     | -  | U8-5455,<br>ETH-<br>TXD23 |
| 29   | MIO     | JM1-99 | B2B, as<br>PJTAG<br>MIO<br>possible | 69   | ЕТН     | -  | U8-56,<br>ETH-<br>TXCTL   |
| 30   | MIO     | JM1-92 | B2B<br>(UART RX)                    | 70   | ETH     | -  | U8-46,<br>ETH-RXCK        |
| 31   | MIO     | JM1-85 | B2B<br>(UART TX)                    | 7172 | ETH     | -  | U8-4445,<br>ETH-<br>RXD01 |
| 32   | MIO     | JM1-91 | B2B                                 | 7374 | ETH     | -  | U8-4748,<br>ETH-<br>RXD23 |
| 33   | MIO     | JM1-87 | B2B                                 | 75   | ETH     | ,- | U8-43,<br>ETH-<br>RXCTL   |
| 3437 | -       | -      | Not<br>connecte<br>d                | 76   | ETH     | -  | U8-7,<br>ETH-MDC          |



| 38 | I <sup>2</sup> C | - | U10-12,<br>SCL | 77 | ETH | - | U8-8,<br>ETH-MDIO |
|----|------------------|---|----------------|----|-----|---|-------------------|
| 39 | I <sup>2</sup> C | - | U10-19,<br>SDA | -  | -   | - | -                 |

Table 8: TE0820-03 PS MIO mapping

## 6.6 Gigabit Ethernet

On-board Gigabit Ethernet PHY is provided with Marvell Alaska 88E1512 chip. The Ethernet PHY RGMII interface is connected to the Zynq Ethernet0 PS GEM0. I/O voltage is fixed at 1.8V for HSTL signaling. SGMII (SFP copper or fiber) can be used directly with the Ethernet PHY, as the SGMII pins are available on the B2B connector JM3. The reference clock input of the PHY is supplied from an on-board 25MHz oscillator (U11), the 125MHz output clock is left unconnected.

#### **Ethernet PHY connection**

| PHY Pin      | ZYNQ PS         | ZYNQ PL | Notes                                                         |
|--------------|-----------------|---------|---------------------------------------------------------------|
| MDC/<br>MDIO | MIO76,<br>MIO77 | -       | -                                                             |
| LED0         | -               | K8      | Can be routed via PL to any free PL I/O pin in B2B connector. |
| LED1         | -               | -       | CPLD pin 17.                                                  |
| LED2         | -               | -       | Not connected.                                                |
| CONFIG       | -               | -       | Wired to the 1.8V.                                            |
| RESETn       | MIO24           | -       | -                                                             |
| RGMII        | MIO64MIO7<br>5  | -       | _                                                             |
| SGMII        | -               | -       | Routed to the B2B connector JM3.                              |

Table 9: General overview of the Gigabit Ethernet PHY signals

#### 6.7 USB Interface

USB PHY is provided by Microchip USB3320. The ULPI interface is connected to the Zynq PS USB0. I/O voltage is fixed at 1.8V. Reference clock input for the USB PHY is supplied by the on-board 25.000000 MHz oscillator (U15).

#### **USB PHY connection**



| PHY Pin    | ZYNQ Pin | B2B Name            | Notes                                                                                          |
|------------|----------|---------------------|------------------------------------------------------------------------------------------------|
| ULPI       | MIO5263  | -                   | Zynq USB0 MIO pins are connected to the USB PHY.                                               |
| REFCLK     | -        | -                   | 52.000000 MHz from on-board oscillator (U14).                                                  |
| REFSEL[02] | -        | -                   | Reference clock frequency select, all set to GND selects 52.000000 MHz.                        |
| RESETB     | MIO25    | -                   | Active low reset.                                                                              |
| CLKOUT     | MIO52    | -                   | Connected to 1.8V, selects reference clock operation mode.                                     |
| DP, DM     | -        | OTG_D_P,<br>OTG_D_N | USB data lines routed to B2B connector JM3 pins 47 and 49.                                     |
| CPEN       | -        | VBUS_V_EN           | External USB power switch active high enable signal, routed to JM3 pin 17.                     |
| VBUS       | -        | USB_VBUS            | Connect to USB VBUS via a series of resistors, see reference schematics, routed to JM3 pin 55. |
| ID         | -        | OTG_ID              | For an A-device connect to ground, for a B-device left floating. routed from JM3 pin 23.       |

**Table 10:** General overview of the USB PHY signals.

#### 6.8 I2C Interface

On-board  $I^2C$  devices are connected to MIO38 (SCL) and MIO39 (SDA) which are configured as  $I^2C1$  by default. Addresses for on-board  $I^2C$  slave devices are listed in the table below:

| I2C Device  | I2C Address | Notes |
|-------------|-------------|-------|
| Si5338A PLL | 0x70        | -     |
| EEPROM      | 0x50        | -     |

**Table 11:** Address table of the I<sup>2</sup>C bus slave devices.

TE0820 TRM Revision: v.75

## 7 On-board Peripherals

#### 7.1 System Controller CPLD

The System Controller CPLD (U21) is provided by Lattice Semiconductor LCMXO2-256HC (MachXO2 product family). It is the central system management unit with module specific firmware installed to monitor and control various signals of the FPGA, on-board peripherals, I/O interfaces and module as a whole.

See also TE0820 System Controller CPLD page<sup>6</sup>.

#### 7.2 eMMC Flash Memory

eMMC Flash memory device(U6) is connected to the ZynqMP PS MIO bank 500 pins MIO13..MIO23. eMMC chips MTFC4GACAJCN-4M IT (FLASH - NAND Speicher-IC 32 Gb (4 G x 8) MMC ) is used.

#### 7.3 DDR4 Memory

By default TE0820-03 module has two 16-bit wide Samsung K4A8G165WB DDR4 SDRAM chips arranged into 32-bit wide memory bus providing total of 2 GBytes of on-board RAM. Different memory sizes are available optionally.

#### 7.4 Quad SPI Flash Memory

Two quad SPI compatible serial bus flash N25Q512A memory chips are provided for FPGA configuration file storage. After configuration completes the remaining free memory can be used for application data storage. All four SPI data lines are connected to the FPGA allowing x1, x2 or x4 data bus widths to be used. The maximum data transfer rate depends on the bus width and clock frequency.

## 7.5 Gigabit Ethernet PHY

On-board Gigabit Ethernet PHY (U8) is provided with Marvell Alaska 88E1512 IC (U8). The Ethernet PHY RGMII interface is connected to the ZynqMP Ethernet3 PS GEM3. I/O voltage is fixed at 1.8V for HSTL signaling. The reference clock input of the PHY is supplied from an on-board 25.000000 MHz oscillator (U21).

## 7.6 High-speed USB ULPI PHY

Hi-speed USB ULPI PHY (U32) is provided with USB3320 from Microchip. The ULPI interface is connected to the Zynq PS USB0 via MIO28..39, bank 501 (see also section). The I/O voltage is fixed at 1.8V and PHY reference clock input is supplied from the on-board 52.000000 MHz oscillator (U33).

#### 7.7 MAC Address EEPROM

A Microchip 24AA025E48 serial EEPROM (U25) contains a globally unique 48-bit node address, which is compatible with EUI-48(TM) specification. The device is organized as two blocks of 128 x 8-bit memory. One of the blocks stores

<sup>6</sup> https://wiki.trenz-electronic.de/display/PD/TE0820+CPLD



the 48-bit node address and is write protected, the other block is available for application use. It is accessible over  $I^2C$  bus with slave device address 0x50.

#### 7.8 Programmable Clock Generator

There is a Silicon Labs  $I^2C$  programmable clock generator Si5338A (U10) chip on the module. It's output frequencies can be programmed using the  $I^2C$  bus address 0x70 or 0x71. Default address is 0x70, IN4/I2C\_LSB pin must be set to high for address 0x71.

A 25.000000 MHz oscillator is connected to the pin IN3 and is used to generate the output clocks. The oscillator has its output enable pin permanently connected to 1.8V power rail, thus making output frequency available as soon as 1.8V is present. Three of the Si5338 clock outputs are connected to the FPGA. One is connected to a logic bank and the other two are connected to the GTR banks. It is possible to use the clocks connected to the GTR bank in the user's logic design. This is achieved by instantiating a IBUFDSGTE buffer in the design.

Once running, the frequency and other parameters can be changed by programming the device using the  $I^2C$  bus connected between the FPGA (master) and clock generator (slave). For this, proper  $I^2C$  bus logic has to be implemented in FPGA.

| Signal   | Frequency     | Notes                                                                                     |
|----------|---------------|-------------------------------------------------------------------------------------------|
| IN1/IN2  | user          | External clock signal supply from B2B connector JM3, pins JM3-32/JM3-34                   |
| IN3      | 25.000000 MHz | Fixed input clock signal from reference clock generator SiT8008BI-73-18S-25.000000E (U11) |
| IN4      | -             | LSB of the default I <sup>2</sup> C address, wired to ground mean address is 0x70         |
| IN5      | -             | Not connected                                                                             |
| IN6      | -             | Wired to ground                                                                           |
| CLK0 A/B | -             | Bank 65 clock input, pins K9 and J9                                                       |
| CLK1 A/B | -             | MGT reference clock 3 to FPGA Bank 505 PS<br>GTR                                          |
| CLK2 A/B | -             | MGT reference clock 1 to FPGA Bank 505 PS<br>GTR                                          |
| CLK3 A/B | -             | Not connected                                                                             |

Table 12: General overview of the on-board quad clock generator I/O signals



# 7.9 Oscillators

The module has following reference clock signals provided by on-board oscillators and external source from carrier board:

| Clock Source                        | Schematic<br>Name | Frequency        | Clock Destination                                                |
|-------------------------------------|-------------------|------------------|------------------------------------------------------------------|
| SiTime SiT8008BI<br>oscillator, U21 | PS_CLK            | 33.333333<br>MHz | Zynq MPSoC U1,pin R16                                            |
| SiTime SiT8008BI<br>oscillator, U21 | -                 | 25.000000<br>MHz | Quad PLL clock generator U10, pin 3, and Ethernet PHY U8, pin 34 |

Table 13: Reference clock signals

## 7.10 On-board LEDs

| LED | Color | Connected to                         | Description and Notes                                              |
|-----|-------|--------------------------------------|--------------------------------------------------------------------|
| D1  | Red   | PS Config bank<br>503                | Reflects inverted DONE signal when FPGA configuration is completed |
| D2  | Green | System<br>Controller CPLD,<br>bank 3 | Exact function is defined by SC CPLD firmware                      |
| D3  | Red   | PS Config bank<br>503                | Reflects Zynq MPSoC control signal 'ERR_OUT'                       |
| D4  | Green | PS Config bank<br>503                | Reflects Zynq MPSoC control signal 'ERR_STATUS'                    |

Table 14: On-board LEDs



## 8 Power and Power-on Sequence

#### 8.1 Power Supply

Power supply with minimum current capability of 3A for system startup is recommended.

#### 8.2 Power Consumption

| Power Input | Typical Current |
|-------------|-----------------|
| VIN         | TBD*            |
| 3.3VIN      | TBD*            |

Table 15: Power consumption

Single 3.3V power supply with minimum current capability of 4A for system startup is recommended.

For the lowest power consumption and highest efficiency of the on-board DC-DC regulators it is recommended to power the module from one single 3.3V supply. All input power supplies should have a nominal value of 3.3V. Although the input power supplies can be powered up in any order, it is recommended to power them up simultaneously.



To avoid any damage to the module, check for stabilized on-board voltages should be carried out (i.e. power good and enable signals) before powering up any Zynq's I/O bank voltages VCCO\_x. All I/Os should be tri-stated during power-on sequence.

## 8.3 Power Distribution Dependencies

<sup>\*</sup> TBD - To Be Determined soon with reference design setup.



**TE0820 TRM** 

Figure 3: Figure 3: TE0820-03 Power Distribution Diagram



Revision: v.75



See also Xilinx datasheet DS925 for additional information. User should also check related base board documentation when intending base board design for TE0820 module.

#### 8.4 Power-On Sequence

The TE0820 SoM meets the recommended criteria to power up the Xilinx Zynq chip properly by keeping a specific sequence of enabling the on-board DC-DC converters dedicated to the particular functional units of the Zynq chip and powering up the on-board voltages.

Following diagram clarifies the sequence of enabling the particular on-board voltages, which will power-up in descending order as listed in the blocks of the diagram:



Figure 4: Figure 4: TE0820-03 Power-on Sequence Diagram

For highest efficiency of the on-board DC-DC regulators, it is recommended to use one 3.3V power source for both VIN and 3.3VIN power rails. Although VIN and 3.3VIN can be powered up in any order, it is recommended to power them up simultaneously.

It is important that all carrier board I/Os are 3-stated at power-on until System Controller CPLD sets PGOOD signal high (B2B connector JM1, pin 30), or 3.3V is present on B2B connector JM2 pins 10 and 12, indicating that all on-module voltages have become stable and module is properly powered up.

See Xilinx datasheet DS925 for additional information. User should also check related carrier board documentation when choosing carrier board design for TE0715 module.



## 8.5 Power Rails

| Power Rail Name on<br>B2B Connector | JM1 Pins | JM2 Pins   | Direction | Notes                                                                      |
|-------------------------------------|----------|------------|-----------|----------------------------------------------------------------------------|
| VIN                                 | 1, 3, 5  | 2, 4, 6, 8 | Input     | Supply voltage from the carrier board                                      |
| 3.3V                                | -        | 10, 12     | Output    | Internal 3.3V voltage<br>level                                             |
| 3.3VIN                              | 13, 15   | -          | Input     | Supply voltage from the carrier board                                      |
| 1.8V                                | 39       | -          | Output    | Internal 1.8V voltage<br>level                                             |
| JTAG VREF                           | -        | 91         | Output    | JTAG reference voltage.<br>Attention: Net name on<br>schematic is "3.3VIN" |
| VCCO_64                             | -        | 7, 9       | Input     | High performance I/O bank voltage                                          |
| VCCO_65                             | -        | 5          | Input     | High performance I/O bank voltage                                          |
| VCCO_66                             | 9, 11    | -          | Input     | High performance I/O bank voltage                                          |

**Table 16:** TE0820-03 power rails

# 8.6 Bank Voltages

| Bank      | Name on Schematic | Voltage | Range            |
|-----------|-------------------|---------|------------------|
| 64 HP     | VCCO_64           | User    | HP: 1.0V to 1.8V |
| 65 HP     | VCCO_65           | User    | HP: 1.0V to 1.8V |
| 66 HP     | VCCO_66           | User    | HP: 1.0V to 1.8V |
| 500 PSMIO | VCCO_PSIO0_500    | 1.8V    | -                |
| 501 PSMIO | VCCO_PSIO1_501    | 3.3V    | -                |





| Bank         | Name on Schematic | Voltage | Range |
|--------------|-------------------|---------|-------|
| 502 PSMIO    | VCCO_PSIO2_502    | 1.8V    | -     |
| 503 PSCONFIG | VCCO_PSIO3_503    | 1.8V    | -     |
| 504 PSDDR    | VCCO_PSDDR_504    | 1.2V    | -     |

Table 17: TE0820-03 I/O bank voltages

See Xilinx Zynq UltraScale+ datasheet DS925 for the voltage ranges allowed.



#### 9 Board to Board Connectors



These connectors are hermaphroditic. Odd pin numbers on the module are connected to even pin numbers on the baseboard and vice versa.

4 x 5 modules use two or three Samtec Razor Beam LSHM connectors<sup>7</sup> on the bottom side.

- 2 x REF-189016-02 (compatible to LSHM-150-04.0-L-DV-A-S-K-TR), (100 pins, "50" per row)
- 1 x REF-189017-02 (compatible to LSHM-130-04.0-L-DV-A-S-K-TR), (60 pins, "30" per row) (depending on module)

## 9.1 Connector Mating height

When using the same type on baseboard, the mating height is 8mm. Other mating heights are possible by using connectors with a different height

| Order number | Connector on baseboard          | compatible to                   | Mating<br>height |
|--------------|---------------------------------|---------------------------------|------------------|
| 23836        | REF-189016-01                   | LSHM-150-02.5-L-DV-A-S-K-<br>TR | 6.5 mm           |
|              | LSHM-150-03.0-L-DV-A-S-K-<br>TR | LSHM-150-03.0-L-DV-A-S-K-<br>TR | 7.0 mm           |
| 23838        | REF-189016-02                   | LSHM-150-04.0-L-DV-A-S-K-<br>TR | 8.0 mm           |
|              | LSHM-150-06.0-L-DV-A-S-K-<br>TR | LSHM-150-06.0-L-DV-A-S-K-<br>TR | 10.0mm           |
| 26125        | REF-189017-01                   | LSHM-130-02.5-L-DV-A-S-K-<br>TR | 6.5 mm           |
|              | LSHM-130-03.0-L-DV-A-S-K-<br>TR | LSHM-130-03.0-L-DV-A-S-K-<br>TR | 7.0 mm           |
| 24903        | REF-189017-02                   | LSHM-130-04.0-L-DV-A-S-K-<br>TR | 8.0 mm           |
|              | LSHM-130-06.0-L-DV-A-S-K-<br>TR | LSHM-130-06.0-L-DV-A-S-K-<br>TR | 10.0mm           |

#### Table 1: Connectors.

The module can be manufactured using other connectors upon request.

<sup>7</sup> https://www.samtec.com/technical-specifications/Default.aspx?SeriesMaster=LSHM



# 9.2 Connector Speed Ratings

The LSHM connector speed rating depends on the stacking height; please see the following table:

| Stacking height     | Speed rating       |
|---------------------|--------------------|
| 12 mm, Single-Ended | 7.5 GHz / 15 Gbps  |
| 12 mm, Differential | 6.5 GHz / 13 Gbps  |
| 5 mm, Single-Ended  | 11.5 GHz / 23 Gbps |
| 5 mm, Differential  | 7.0 GHz / 14 Gbps  |

Table 2: Speed rating.

## 9.3 Current Rating

Current rating of Samtec Razor Beam™ LSHM B2B connectors is 2.0A per pin (2 adjacent pins powered).

## 9.4 Connector Mechanical Ratings

- Shock: 100G, 6 ms Sine
- Vibration: 7.5G random, 2 hours per axis, 3 axes total



# 10 Variants Currently In Production

| Trenz shop TE0820         | overview page            |
|---------------------------|--------------------------|
| English page <sup>8</sup> | German page <sup>9</sup> |

<sup>8</sup> https://shop.trenz-electronic.de/en/Products/Trenz-Electronic/TE08XX-Zynq-UltraScale/TE0820-Zynq-UltraScale/9 https://shop.trenz-electronic.de/de/Produkte/Trenz-Electronic/TE08XX-Zynq-UltraScale/TE0820-Zynq-UltraScale/



# 11 Technical Specifications

# 11.1 Absolute Maximum Ratings

| Parameter                                      | Min   | Max              | Units | Notes                                      |
|------------------------------------------------|-------|------------------|-------|--------------------------------------------|
| VIN supply voltage                             | -0.3  | 7                | V     | See EN6347QI and TPS82085SIL datasheets    |
| 3.3VIN supply voltage                          | -0.1  | 3.630            | V     | Xilinx DS925 and<br>TPS27082L datasheet    |
| PS I/O supply voltage,<br>VCCO_PSIO            | -0.5  | 3.630            | V     | Xilinx document DS925                      |
| PS I/O input voltage                           | -0.5  | VCCO_PSIO + 0.55 | V     | Xilinx document DS925                      |
| HP I/O bank supply voltage, VCCO               | -0.5  | 2.0              | V     | Xilinx document DS925                      |
| HP I/O bank input voltage                      | -0.55 | VCCO + 0.55      | V     | Xilinx document DS925                      |
| PS GTR reference clocks absolute input voltage | -0.5  | 1.1              | V     | Xilinx document DS925                      |
| PS GTR absolute input voltage                  | -0.5  | 1.1              | V     | Xilinx document DS925                      |
| Voltage on SC CPLD pins                        | -0.5  | 3.75             | V     | Lattice Semiconductor<br>MachXO2 datasheet |
| Storage temperature                            | -40   | +85              | °C    | See eMMC datasheet                         |

Table 18: Module absolute maximum ratings

# 11.2 Recommended Operating Conditions

| Parameter             | Min | Max   | Units | Notes                                       |
|-----------------------|-----|-------|-------|---------------------------------------------|
| VIN supply voltage    | 3.3 | 6     | V     | See TPS82085S datasheet                     |
| 3.3VIN supply voltage | 3.3 | 3.465 | V     | See LCMXO2-256HC, Xilinx<br>DS925 datasheet |



| Parameter                         | Min   | Max              | Units | Notes                                                              |
|-----------------------------------|-------|------------------|-------|--------------------------------------------------------------------|
| PS I/O supply voltage, VCCO_PSIO  | 1.710 | 3.465            | V     | Xilinx document DS925                                              |
| PS I/O input voltage              | -0.20 | VCCO_PSIO + 0.20 | V     | Xilinx document DS925                                              |
| HP I/O banks supply voltage, VCCO | 0.950 | 1.9              | V     | Xilinx document DS925                                              |
| HP I/O banks input voltage        | -0.20 | VCCO + 0.20      | V     | Xilinx document DS925                                              |
| Voltage on SC CPLD pins           | -0.3  | 3.6              | V     | Lattice Semiconductor<br>MachXO2 datasheet                         |
| Operating Temperature<br>Range    | 0     | 85               | °C    | Xilinx document DS925,<br>extended grade Zynq<br>temperarure range |

**Table 19:** Recommended operating conditions

Module operating temperature range depends also on customer design and cooling solution. Please contact us for options.



⚠ See Xilinx datasheet DS925 for more information about absolute maximum and recommended operating ratings for the Zynq UltraScale+ chips.

## 11.3 Physical Dimensions

- Module size: 50 mm × 40 mm. Please download the assembly diagram for exact numbers.
- Mating height with standard connectors: 8 mm
- PCB thickness: 1.6 mm
- Highest part on PCB: approximately 5 mm. Please download the step model for exact numbers.

All dimensions are shown in millimeters.

TE0820 TRM Revision: v.75



Figure 5: Figure 5: Module physical dimensions drawing





Revision: v.75



# 12 Revision History

## 12.1 Hardware Revision History

| Date       | Revision | Notes                             | PCN Link                       | Documentati<br>on Link  |
|------------|----------|-----------------------------------|--------------------------------|-------------------------|
| -          | 03       | current available module revision | -                              | TE0820-03 <sup>10</sup> |
| 2017-08-17 | 02       |                                   | PCN-201711<br>17 <sup>11</sup> | TE0820-02 <sup>12</sup> |
| 2016-12-23 | 01       | Prototype only                    | -                              | TE0820-01 <sup>13</sup> |

Table 20: Hardware revision history table



Figure 6: Figure 6: Module hardware revision number

## 12.2 Document Change History

| Date       | Revision        | Contributors                       | Description                  |
|------------|-----------------|------------------------------------|------------------------------|
| 2018-12-14 | 75 (see page 6) | Martin<br>Rohrmüller <sup>14</sup> | Corrected EEPROM I2C Address |

<sup>10</sup> https://shop.trenz-electronic.de/Download/?path=Trenz\_Electronic/Modules\_and\_Module\_Carriers/4x5/TE0820/REV03 11 https://wiki.trenz-electronic.de/display/PD/PCN-20171117+TE0820-02+SPI+Flash+Change

<sup>12</sup> https://shop.trenz-electronic.de/Download/?path=Trenz\_Electronic/Modules\_and\_Module\_Carriers/4x5/TE0820/REV02

 $<sup>13\</sup> https://shop.trenz-electronic.de/Download/?path=Trenz\_Electronic/Modules\_and\_Module\_Carriers/4x5/TE0820/REV01\\ 14\ https://wiki.trenz-electronic.de/display/~m.rohrmueller$ 







| Date       | Revision | Contributors  | Description                                                                                                                                                                                                                                                                                               |
|------------|----------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12.11.2018 | v.74     | John Hartfiel | update boot section                                                                                                                                                                                                                                                                                       |
| 30.08.2018 | v.73     | John Hartfiel | <ul> <li>typo correction</li> <li>update CPLD section</li> <li>add LEDs to component list</li> <li>add 3D picture of REV03 instead of REV01 picture</li> </ul>                                                                                                                                            |
| 12.07.2018 | v.69     | Ali Naseri    | Update PCB Rev03                                                                                                                                                                                                                                                                                          |
| 11.06.2018 | v.61     | John Hartfiel | <ul> <li>Rework chapter currently available products</li> <li>add PJTAG note to MIOtable</li> </ul>                                                                                                                                                                                                       |
| 2018-03-12 | v.54     |               | Correction Power Rail Section                                                                                                                                                                                                                                                                             |
| 2017-11-20 | v.51     | John Hartfiel | Correction Default MIO Configuration Table                                                                                                                                                                                                                                                                |
| 2017-11-10 | v.50     | John Hartfiel | Replace B2B connector section                                                                                                                                                                                                                                                                             |
| 2017-10-18 | v.49     | John Hartfiel | add eMMC section                                                                                                                                                                                                                                                                                          |
| 2017-09-25 | v.48     | John Hartfiel | <ul> <li>Correction in the "Board to Board (B2B) I/Os" section</li> <li>Update in the "Variants Currently In Production" section</li> </ul>                                                                                                                                                               |
| 2017-09-18 | v.47     | John Hartfiel | Update PS MIO table                                                                                                                                                                                                                                                                                       |
| 2017-08-30 | v.46     | Jan Kumann    | MGT lanes section added.                                                                                                                                                                                                                                                                                  |
| 2017-08-24 | v.36     | John Hartfiel | Correction in the "Key Features" section.                                                                                                                                                                                                                                                                 |
| 2017-08-21 | v.34     | John Hartfiel | "Initial delivery state" section updated.                                                                                                                                                                                                                                                                 |
| 2017-08-21 | v.33     | Jan Kumann    | <ul> <li>HW revision 02 block diagram added.</li> <li>Power distribution and power-on sequence diagram added.</li> <li>System Controller CPLD and DDR4 SDRAM sections added.</li> <li>TRM update to the template revision 1.6</li> <li>Weight section removed.</li> <li>Few minor corrections.</li> </ul> |





| Date       | Revision | Contributors  | Description                                                                                                                                                                                                                                                                                |
|------------|----------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2017-08-18 | v.7      | John Hartfiel | <ul> <li>Style changes</li> <li>Updated "Boot Mode", "HW Revision History", "Variants Currently In Production" sections</li> <li>Correction of MIO SD Pin-out, System Controller chapter</li> <li>Update and new sub-sections on "On Board Peripherals and Interfaces" sections</li> </ul> |
| 2017-08-07 | v.5      | Jan Kumann    | Initial version                                                                                                                                                                                                                                                                            |

Table 21: Document change history



#### 13 Disclaimer

#### 13.1 Data privacy

Please also note our data protection declaration at https://www.trenz-electronic.de/en/Data-protection-Privacy

#### 13.2 Document Warranty

The material contained in this document is provided "as is" and is subject to being changed at any time without notice. Trenz Electronic does not warrant the accuracy and completeness of the materials in this document. Further, to the maximum extent permitted by applicable law, Trenz Electronic disclaims all warranties, either express or implied, with regard to this document and any information contained herein, including but not limited to the implied warranties of merchantability, fitness for a particular purpose or non infringement of intellectual property. Trenz Electronic shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein.

#### 13.3 Limitation of Liability

In no event will Trenz Electronic, its suppliers, or other third parties mentioned in this document be liable for any damages whatsoever (including, without limitation, those resulting from lost profits, lost data or business interruption) arising out of the use, inability to use, or the results of use of this document, any documents linked to this document, or the materials or information contained at any or all such documents. If your use of the materials or information from this document results in the need for servicing, repair or correction of equipment or data, you assume all costs thereof.

## 13.4 Copyright Notice

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Trenz Electronic.

## 13.5 Technology Licenses

The hardware / firmware / software described in this document are furnished under a license and may be used / modified / copied only in accordance with the terms of such license.

#### 13.6 Environmental Protection

To confront directly with the responsibility toward the environment, the global community and eventually also oneself. Such a resolution should be integral part not only of everybody's life. Also enterprises shall be conscious of their social responsibility and contribute to the preservation of our common living space. That is why Trenz Electronic invests in the protection of our Environment.

## 13.7 REACH, RoHS and WEEE

#### **REACH**



TE0820 TRM Revision: v.75

Trenz Electronic is a manufacturer and a distributor of electronic products. It is therefore a so called downstream user in the sense of REACH<sup>15</sup>. The products we supply to you are solely non-chemical products (goods). Moreover and under normal and reasonably foreseeable circumstances of application, the goods supplied to you shall not release any substance. For that, Trenz Electronic is obliged to neither register nor to provide safety data sheet. According to present knowledge and to best of our knowledge, no SVHC (Substances of Very High Concern) on the Candidate List<sup>16</sup> are contained in our products. Furthermore, we will immediately and unsolicited inform our customers in compliance with REACH - Article 33 if any substance present in our goods (above a concentration of 0,1 % weight by weight) will be classified as SVHC by the European Chemicals Agency (ECHA)<sup>17</sup>.

#### **RoHS**

Trenz Electronic GmbH herewith declares that all its products are developed, manufactured and distributed RoHS compliant.

#### WEEE

Information for users within the European Union in accordance with Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE).

Users of electrical and electronic equipment in private households are required not to dispose of waste electrical and electronic equipment as unsorted municipal waste and to collect such waste electrical and electronic equipment separately. By the 13 August 2005, Member States shall have ensured that systems are set up allowing final holders and distributors to return waste electrical and electronic equipment at least free of charge. Member States shall ensure the availability and accessibility of the necessary collection facilities. Separate collection is the precondition to ensure specific treatment and recycling of waste electrical and electronic equipment and is necessary to achieve the chosen level of protection of human health and the environment in the European Union. Consumers have to actively contribute to the success of such collection and the return of waste electrical and electronic equipment. Presence of hazardous substances in electrical and electronic equipment results in potential effects on the environment and human health. The symbol consisting of the crossed-out wheeled bin indicates separate collection for waste electrical and electronic equipment.

Trenz Electronic is registered under WEEE-Reg.-Nr. DE97922676.

**2018-09-18** 

**6** 02.09.2017

<sup>15</sup> http://guidance.echa.europa.eu/

<sup>16</sup> https://echa.europa.eu/candidate-list-table

<sup>17</sup> http://www.echa.europa.eu/