SISTEMAS INFORMATICOS 1º DAW

ALUMNO: MATIAS PENNINO

TAREA: SISTEMAS OPERATIVOS Y SOFTWARE DE UN SISTEMA INFROMATICO

Actividad 1.- Sistemas operativos: Última versión, requisitos hardware, licencia y campos de aplicación.

Sistema operativo	Ultima	Requ	isitos d	e hardware	licencia	Dispositivos en
	versio n	procesador	ram	Espacio de almacenamiento		los que normalmente se usa
Windows 11	23h2	Intel 8 ^a generacion o ryzen 2000	4GB	64GB	ALUF	Computadoras de escritorio o portatiles
Ubuntu desktop LTS	22.04.	2GHZ dual-core o superior	4GB	25GB	LIBRE	Computadoras de escritorio o portatiles
IOS	17	.iphone	XS .ipl .iphone 11 Pro SE(2ª 12 .ipl Pro .ipl e 13 .ip mini .ip SE (3ªg 4 Plus	hone 12 mini hone 12 Pro Max hone 13 Pro hone 13 Pro Max en) .iphone 14 .iphone 14 Pro Max .iphone 15	ALUF	Smartphones de la marca apple
android	14	Google Tensor a 2,8GHz GPU Mali G78 MP10	8GB	128GB	PERMISIVA	Dispositivos mobiles, desde smartphones hasta tabletas

El dispositivo utilizado para los requisitos de android fue un Google pixel 6

Actividad 2.- Arquitectura interna de un sistema operativo.

ARQUITECTURA MONOLITICA: Es la arquitectura utilizada por los primeros S.O, consistia de un unico programa desarrollado con rutinas entrelazadas entre si. Ejemplo de SO: MAC OS

ARQUITECTURA MAQUINA VIRTUAL: Esta estructura se basa en la integracion de distintos S.O simulando ser maquinas diferentes. Estas maquinas son replicas de la maquina real y se puede ejecutar en cada una un S.O diferente, siendo el que sera mostrado al usuario. Ejemplo de SO: VMware

ARQUITECTURA MICROKERNEL: Este modelo distribuye las tareas en porciones de codigo modular y sencillas. El objetivo de esto es aislar del sistema los diferentes procesos a realizar. Ejemplo de SO: Windows Vista

Actividad 3.- Gestión de procesos.

3.1 Sabemos las siguientes características sobre un sistema operativo.

- 1.Utiliza el algoritmo de planificación de procesos **Round Robin con prioridades (se usan para ordenar cola).**
- 2.Necesita ejecutar una serie de procesos, cuyos instantes de llegada y tiempos que tardan en ejecutarse se representan en la siguiente tabla:

Proceso	Llegada	Tiempo de CPU	Prioridad
A	1	5	1
В	0	6	1
C	3	5	0
D	2	4	0

- 3.Los procesos se ejecutan en un sistema operativo ideal, es decir, en el que el sistema operativo no consume recursos de CPU.
- 4.Comenzamos a estudiar el sistema desde que entran nuestros procesos al sistema y considerando la Unidad de Tiempo 0 (UTO),
- 5.El quantum es 3.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
A		ļ		1	2	3				4	F5									
В	↓1	2	3				4	5	F6											
С				↓											1	2	3		4	F5
D			ļ									1	2	3				F4		

CP U	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1°	↓B	В	В	A	A	A	В	В	FB	A	FA	D	D	D	С	С	С	FD	С	С
2°		↓A	A	В	В	В	A	A	A	D	D	С	С	С	D	D	D	С		
3°			↓ D	D	D	D	D	D	D	С	С									
4°				↓ C	С	С	С	С	С											

ļ	Proceso ha llegado y está listo para ejecutarse en ese instante
F	Proceso termina en ese instante
#	Proceso se está ejecutando (# representa el instante de ejecución)
	Proceso está esperando en la cola de procesos listos

Respetando todas las restricciones dadas en el enunciado:

- 1.Completa la tabla anterior para las unidades de tiempo de la 0 a la ultima necesaria, estableciendo el proceso que se ejecutará en cada unidad de tiempo e indicando los instantes de llegada de cada proceso. Utiliza la nomenclatura y/o simbología que aparece en la leyenda.
- 2.Razona tu respuesta especificando el estado en el que se encuentra cada uno de los procesos para las unidades de tiempo de la 5 a la 10.

En el instante 5 se ejecuta A, y espera primero en la fila B por prioridad, luego esperan D y C. Desde el instante 6 al 8 se ejecuta B y sale de la fila, esperan A, D y C. En los instantes 9 y 10 se ejecuta A hasta que finaliza, y quedan en la cola D y C.

3.2 Sabemos las siguientes características sobre un sistema operativo.

- 1. Utiliza el algoritmo de planificación de procesos SRTF.
- 2.Necesita ejecutar una serie de procesos, cuyos instantes de llegada y tiempos que tardan en ejecutarse se representan en la siguiente tabla:

Proceso	Llegada	Tiempo de CPU
A	0	4
В	1	8
С	3	5
D	5	2
Е	8	1

- 3.Los procesos se ejecutan en un sistema operativo ideal, es decir, en el que el sistema operativo no consume recursos de CPU.
- 4.Comenzamos a estudiar el sistema desde que entran nuestros procesos al sistema y considerando la Unidad de Tiempo 0 (UT0),

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
A	↓1	2	3	F4																
В		ļ											1	2	3	4	5	6	7	F8
С				1	1			2		3	4	F5								
D						↓1	F2													
E									↓ F1											

CPU	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1°	↓A	A	A	FA	С	↓ D	FD	С	↓FE	С	С	FC	В	В	В	В	В	В	В	FB
2°		↓B	В	↓C	В	С	С	В	С	В	В	В								
3°				В		В	В		В											
4°																				

- ↓ Proceso ha llegado y está listo para ejecutarse en ese instante
- **F** Proceso termina en ese instante
- # Proceso se está ejecutando (# representa el instante de ejecución)

Proceso está esperando en la cola de procesos listos

Respetando todas las restricciones dadas en el enunciado:

- 1.Completa la tabla anterior para las unidades de tiempo de la 0 a la 19, estableciendo el proceso que se ejecutará en cada unidad de tiempo e indicando los instantes de llegada de cada proceso. Utiliza la nomenclatura y/o simbología que aparece en la leyenda.
- 2.Razona tu respuesta especificando el estado en el que se encuentra cada uno de los procesos para las unidades de tiempo de la 3 a la 9.

En el instante 3 se termina la ejecucion de A y quedan en cola C y B por orden de mas corto primero. En el instante 4 se ejecuta C. En el instante 5 entra D a la cola y se ejecuta hasta el instante 6 donde finaliza, dejando en cola C y B. En el instante 7 se ejecuta C. Al instante 8 entra E, se ejecuta, y sale de la cola. A partir del instante 9 se sigue ejecutando C.

Actividad 4.- Gestión de memoria.

Supón un sistema en el que la gestión de memoria se realiza siguiendo un esquema de asignación de particiones fijas o estáticas. La capacidad de la memoria es de 4000 KB, de los cuales 500 se encuentran ocupados por el sistema operativo, y el resto queda dividido en las siguientes particiones de memoria vacías al iniciar el sistema:

Todas las particiones comparten una única cola de procesos y se utiliza la asignación por "el mejor ajuste", de manera que cada proceso se asigna a la partición libre que mejor se ajuste a su tamaño. En la cola de procesos se encuentran los siguientes procesos, los cuales se ubicarán en memoria en el mismo orden que se muestran (primero A, luego B, etc.):

Proceso A: 380 KBProceso B: 900 KBProceso C: 500 KBProceso D: 600 KB

Ubica cada proceso donde le corresponda, muéstralo en una imagen, y contesta a las siguientes preguntas:

- 1.Indica en la imagen claramente en qué partición se ubicaría cada proceso.
- 2.Indica para la partición 3 si existe fragmentación. En caso afirmativo, indica de qué tipo y por cuánta cantidad.

3.Indica si se podría ubicar algún proceso más. En caso afirmativo, indica en qué partición se ubicaría y cuál sería su tamaño máximo.

En la particion 3 se produce una fragmentacion interna, el proceso D ocupa 600 KB de los 700 KB originales, quedando libres 100 KB.

Se podria ubicar un proceso mas, el cual se ubicaria en la particion 2 y no debe ser mayor a 800 KB

Actividad 5.- Estructuras de directorios y rutas.

Considera las siguientes estructuras de directorios para un equipo con SO Windows 10 (A) y uno con SO Lubuntu 22.04 (B):

Para el equipo con Windows (A), escribe las siguientes rutas:

- •Una ruta absoluta al directorio "Rufus".
- •Una ruta relativa al directorio "Vídeos", considerando que el directorio de trabajo/activo actual sea "Clonezilla".
- •NOTA: Las rutas en Windows **no** son sensibles a mayúsculas y minúsculas.

Para el equipo con Linux (B), escribe las siguientes rutas:

- •Una ruta absoluta al directorio "lubuntu".
- •Una ruta relativa al directorio "lib", considerando que el directorio de trabajo/activo actual sea "Downloads".
- •NOTA: Las rutas en Linux sí son sensibles a mayúsculas y minúsculas.

RUTA A "Rufus": C:\Users\Cristóbal\Downloads\Programas\Rufus

RUTA A "Vídeos": ..\..\Videos

RUTA A "lubuntu": /home/lubuntu

RUTA A "lib": ../../lib