Lecture 6: Machine Learning

PCL II, CL, UZH April 6, 2016

Machine Learning

What is Machine Learning?

Machine Learning Definition

Machine Learning Definition

What does "learning from examples" mean?

Contents

- 1. Features
- 2. Machine Learning Types
 - a. Supervised Learning
 - b. Unsupervised Learning
- 3. Learning Algorithms
- 4. Evaluation
- 5. Machine Learning in Python
- 6. Practicalities

Features Defining Features

Problem: filter out spam

NO SPAM

From: "Patrick Meyer " < p.meyer@ifi.uzh.ch>

Subject: Submission of project note

Yes, let's talk about the overview after these holidays [...]

SPAM

From: ObyhYtatiz@bk.ru

Subject: Money

Hi Let me introduce Myself my name Loretta and I know the Secret of making money \$4844 if you WAnt to know the Secret follow this [...]

Features Feature extraction

Problem: filter out spam

NON-SPAM

From: "Patrick Meyer " < p.meyer@ifi.uzh.ch>

Subject: Submission of project note

Yes, let's talk about the overview after these holidays [...]

SPAM

From: ObyhYtatiz@bk.ru

Subject: Money

Hi Let me introduce Myself my name Loretta and I know the Secret of making money \$4844 if you WAnt to know the Secret follow this [...]

「…]

Features Types

- Numeric
 - o Discrete
 - Continuous
- Nominal
 - o binary (2 values)
 - N values
- Hybrid

Feature engineering. This is the most important/difficult part

Contents

- 1. Features
- 2. Machine Learning Types
 - a. Supervised Learning
 - b. Unsupervised Learning
- 3. Learning Algorithms
- 4. Evaluation
- 5. Machine Learning in Python
- 6. Practicalities

Machine Learning Types

- Supervised learning Labeled training data
- Unsupervised learning Unlabeled training data

Machine Learning Types Supervised Learning

Regression - continuous valued output

Machine Learning Types Supervised Learning

Classification - discrete valued output

Machine Learning Types Supervised Learning

- Regression predicts continuous valued output
- Classification predicts discrete valued output
 - Spam filtering (spam / non-spam)
 - \circ OCR (A / B / a / 0 / 1 / % / ...)
 - Word sense disambiguation (bank river_edge / bank institution / ...)
 - Document Classification (news/technical/law/...)

Machine Learning Types Unsupervised Learning

- Unsupervised learning Unlabeled training data
 - Clustering K-means algorithm

Contents

- 1. Features
- 2. Machine Learning Types
 - a. Supervised Learning
 - b. Unsupervised Learning
- 3. Learning Algorithms
- 4. Evaluation
- 5. Machine Learning in Python
- 6. Practicalities

Learning Algorithms

Learning Algorithms look for the hypothesis that generalizes best over a training set.

Learning Algorithms Naive Bayes Classifier

- It looks for the label that maximizes P(T | features)
 - 1. Compute prior probability to each label p(T')
 - 2. Combine the contribution of each feature with the prior probability:

$$T = \operatorname{argmax}_{T'} p(T') \times p(f_1 \mid T') \times p(f_2 \mid T') \times \dots$$

Learning search: analytical → MLE

Learning Algorithms Decision Trees

Learning Algorithms Decision Trees

- Learning: select feature that reduces total entropy the most
 - Entropy of a set:

$$H = -\sum_{output} p(output) \cdot \log p(output)$$

- Little variety entropy is low
- Mixed output values entropy is high
- Learning type: iterative

Learning Algorithms Decision Trees - Entropy


```
import math
def entropy(labels):
    freqdist = nltk.FreqDist(labels)
    probs = [freqdist.freq(l) for l in nltk.FreqDist(labels)]
    return -sum([p * math.log(p,2) for p in probs])
>>> print entropy(['male', 'male', 'male', 'male'])
0.0
>>> print entropy(['male', 'female', 'male', 'male'])
0.811278124459
>>> print entropy(['female', 'male', 'female', 'male'])
1.0
>>> print entropy(['female', 'female', 'male', 'female'])
0.811278124459
>>> print entropy(['female', 'female', 'female'])
0.0
```

Contents

- 1. Features
- 2. Machine Learning Types
 - a. Supervised Learning
 - b. Unsupervised Learning
- 3. Learning Algorithms
- 4. Evaluation
- 5. Machine Learning in Python
- 6. Practicalities

Evaluation Split Data

Data splitting

- Training data set $\approx 80\%$
- Development (or tuning) data set $\approx 10\%$
- Testing (or evaluation) data set $\approx 10\%$

Cross validation

- Divide corpus into *N* subsets (folds)
 - 10-fold cross validation

Evaluation

Accuracy

- Percentage of things right.
- Be careful with unbalanced corpus

Precison and Recall

System	Actual target	Actual ¬target
selected	tp	fp
¬selected	fn	tn

precision =
$$tp/(tp+fp)$$
 recall = $tp/(tp+fn)$

Evaluation Confusion Matrix

Each cell [i,j] indicates how often label j was predicted when the correct label was i

						N		v	N
	n n		J		N				
			/*:	. s		В	P		
NN	<11.8%>	0.0%		0.2%		0.0%		0.3%	0.0%
IN	0.0%	<9.0%>				0.0%			
AT			<8.6%>		5.4.5				
JJ	1.7%			<3.9%>	(a)			0.0%	0.0%
					<4.8%>				
NNS	1.5%					<3.2%>			0.0%
,			1.5				<4.4%>		
VB	0.9%			0.0%			-	<2.4%>	
NP	1.0%	3		0.0%					<1.8%>

[NLTK book, chapter 6]

Evaluation Possible Problems

Contents

- 1. Features
- 2. Machine Learning Types
 - a. Supervised Learning
 - b. Unsupervised Learning
- 3. Learning Algorithms
- 4. Evaluation
- 5. Machine Learning in Python
- 6. Practicalities

ML in Python Name genders

#data set

```
from nltk.corpus import names
import random

raw_male_names = names.words('male.txt') # ['Aamir', 'Aaron',
    raw_female_names = names.words('female.txt') # ['Abagael', 'Abagail',
    labeled_male_names = [(name, 'male') for name in raw_male_names]
    labeled_female_names = [(name, 'female') for name in raw_female_names]

name_set = labeled_male_names + labeled_female_names
random.shuffle(name_set)

#[('Nissy', 'female'), ('Warren', 'male'), ('Olivie', 'female'),...
```

ML in Python Name genders


```
def generate features(name):
"""function to generate features from an input name"""
   return {'last letter': name[-1], 'len': len(name) }
#extracting features
feature set = [(gender features(n), g) for (n,g) in name set]
#training set, test set
train set, test set = feature set[500:], feature set[:500]
#train the classifier
classifier = nltk.NaiveBayesClassifier.train(train set)
#apply the classifier
classifier.classify(gender features('Neo'))
#'male'
classifier.classify(gender features('Trinity'))
#'female'
#classifier accuracy on the test set
print nltk.classify.accuracy(classifier, test set) #0.758
```

Contents

- 1. Features
- 2. Machine Learning Types
 - a. Supervised Learning
 - b. Unsupervised Learning
- 3. Learning Algorithms
- 4. Evaluation
- 5. Machine Learning in Python
- 6. Practicalities

Practicalities

- 1. Get data Usually the more the better
- 2. What features can be useful for learning?
 - a. If too many features Feature Selection
- 3. Choose an algorithm
 - a. Labeled or unlabeled data
 - b. Regression or Classification
 - c. [...]
- 4. 80% Training, 10% Evaluation, 10% Testing
 - a. if data set is large Just pick Ev. and Test data randomly
 - b. Otherwise, 10-fold cross validation

References

- → In Python
 - nltk.NaiveBayesClassifier
 - NLTK book, sections 6.1, 6.5
 - nltk.classify.decisiontree.
 DecisionTreeClassifier
 - NLTK book, section 6.4
 - nltk.classify.maxent.MaxentClassifier
 - NLTK book, chapter 6
- → Learning tool (algorithms not specially efficient)
 - Weka http://www.cs.waikato.ac.nz/ml/weka/

Lecture 6: Machine Learning

PCL II, CL, UZH April 6, 2016

