Putting it all together

Ex1. Given the following functions, use the characteristics of polynomials and rational functions to describe its behavior and sketch the function

a)
$$f(x) = \frac{(x+1)^2(x-3)}{(x+3)^2(x-2)}$$

As $x\rightarrow$	$f(x) \rightarrow$
-3 ⁺	
-3-	
2+	
2-	
+∞	
-∞	

Page **37** of **49**

٦)	f(v) =	$\frac{(x+2)(x-3)}{(x+1)^2(x-3)}$
υj	1(A)	$(x+1)^2(x-2)$

As $x \rightarrow$	$f(x) \rightarrow$
− 1 ⁺	
-1-	
2+	
2-	
+∞	
$-\infty$	

Page **38** of **49**

o) f(y) -	$\frac{x^2 - 4x + 4}{x^2 + x - 20}$
$C_{j-1}(X_{j-1})$	$x^2 + x - 20$

As $x \rightarrow$	$f(x) \rightarrow$
+∞	
∞	

Ex.2 Write an equation for the function graphed

Ex. 3 Use the information below to sketch the function. \circ There is a horizontal asymptote at f(x) = 0.

- The Domain of the function is D: $\{x \neq 4, x \neq 3, x \in \mathbb{R}\}$
- $f(2) = \frac{3}{2}$
- f(1) = f(5) = 0, f(3) = undefined
- f(x) < 0 when x < 1, 3 < x < 4, 4 < x < 5
- f(x) > 0 when 1 < x < 3, x > 5

2.6 Practice

Match each equation form with one of the graphs

$$1. \ f(x) = \frac{x - A}{x - B}$$

$$2. g(x) = \frac{(x-A)^2}{x-B}$$

3.
$$h(x) = \frac{x-A}{(x-B)^2}$$

1.
$$f(x) = \frac{x-A}{x-B}$$
 2. $g(x) = \frac{(x-A)^2}{x-B}$ 3. $h(x) = \frac{x-A}{(x-B)^2}$ 4. $k(x) = \frac{(x-A)^2}{(x-B)^2}$

Answer questions 5-12 in separate sheet of paper.

For each function, find the intercepts, the asymptotes and end behaviour of function. Use that information to sketch a graph.

5.
$$p(x) = \frac{2x-3}{x+4}$$

6.
$$s(x) = \frac{4}{(x-2)^2}$$

7.
$$f(x) = \frac{3x^2 - 14x - 5}{3x^2 + 8x - 16}$$

8.
$$a(x) = \frac{x^2 + 2x - 3}{x^2 - 1}$$

9.
$$h(x) = \frac{2x^2 + x - 1}{x - 4}$$

10.
$$n(x) = \frac{3x^2 + 4x - 4}{x^3 - 4x^2}$$

11.
$$w(x) = \frac{(x-1)(x+3)(x-5)}{(x+2)^2(x-4)}$$

12.
$$m(x) = \frac{5-x}{2x^2+7x+3}$$

Write an equation for a rational function with the given characteristics.

Vertical asymptotes at x = 5 and x = -513. x- intercepts at (2,0) and (-1,0)

y- intercept at (0,4)

hole at (1,25/6)

Vertical asymptotes at x = -4 and x = -514.

x -intercepts at (4,0) and (-6,0)

Horizontal asymptote at y = 7

Vertical asymptote at x = -1 Oblique asymptote : y=x-515. Double zero at x = 2y-intercept (0,4)

18.Estimate the slope of the tangent to the graph of $f(x) = \frac{x}{x^2 - 4}$ at the point where x=3. Explain why there cannot be a tangent line at x=2.

19. The concentration, C, of a drug in the bloodstream t hours after the drug was taken orally is given by $C(t) = \frac{5t}{7+t^2}$ where c is measured in milligrams per litre.

- (a) Calculate the average rate of change in the drug's concentration during the first 2 h since ingestion.
- (b) Estimate the rate at which the concentration of the drug is changing after exactly 3 h.

Answer to Practice Questions

1. D

2.B

3. A

4.C

	Vertical	Horizontal	<i>y</i> -Intercept	<i>x</i> -intercept
	Asymptotes	Asymptote		
5.	x = -4	y = 2	(0,-3/4)	(3/2, 0)
6.	x = 2	y = 0	(0,1)	DNE
7.	$x = -4, 1\frac{1}{3}$	<i>y</i> = 1	(0, 5/16)	(-1/3, 0), (5,0)
8.	x = -1, hole at $x = 1$	y=1	(0,3)	(-3, 0)
9.	<i>x</i> = 4	none	(0, 1/4)	(-1, 0), (1/2, 0)

		y=2x (oblique)		
10.	x = 0, 4	y = 0	DNE	(-2, 0), (2/3, 0)
11.	x = -2, 4	y=1	(0, 15/16)	(1, 0), (-3, 0), (5, 0)
12.	$x = -3, \frac{-1}{2}$	y = 0	(0,5/3)	(5,0)

7.

13.
$$y = \frac{50(x-2)(x+1)(x-1)}{(x+5)(x-5)(x-1)}$$

14.
$$y = \frac{7(x-4)(x+6)}{(x+4)(x+5)}$$

15.
$$y = \frac{(x-2)^2}{x+1}$$

16.
$$y = \frac{(x-4)(x-2)}{(x-4)(x+1)}$$

16.
$$y = \frac{(x-4)(x-2)}{(x-4)(x+1)}$$
 17. $y = \frac{(x+3)(x-2)}{(x+1)(x-2)}$

- 18 . slope of tangent at x=3 is -0.52 , slope of tangent at x=2 is undefined.
- 19. a) AROC when $t \in [0,2]$ is 5/11.
 - b) IROC when t=3 is approximately -0.04.

1. Solve for $x \in R$.

a)
$$\frac{x^2 + 2x - 15}{x^2 + 7x} > 0$$

b)
$$\frac{x^2 + 5x - 10}{1 - x^2} \le 2$$

2. A closed-topped cylindrical tin can is to be made with a volume of 25π cm³. Determine the values of the radius that will produce a surface area no more than the area of a letter sized piece of paper measuring 190π cm².

Multiple Choice: Write the CAPITAL letter corresponding to the correct answer on the line provided.

- Given the function $f(x) = \frac{x^a + k}{x^b + m}$, a linear oblique asymptote will occur when: 1.
 - A) $a \ge b$

- B) b > a C) a b = 1 D) a b = 2
- none of the above
- Which of the following statements is **true** if f(x) is the reciprocal of a quadratic with x intercepts 2. at $x = \pm 4$ and a vertex of (0,8)?
 - A) f(x) has two vertical asymptotes
- B) $\frac{1}{f(x)}$ has a local maximum at $\left(0, \frac{1}{8}\right)$
- C) $\frac{1}{f(x)}$ has a local minimum at $\left(0, \frac{-1}{8}\right)$
- D) $\frac{1}{f(x)} > 0$ when $x \in (-\infty, \infty)$
- Given $f(x) = \frac{(6-2x)}{(x^2-4)(x-3)}$ which of the following is **true**? 3.
 - A) f(x) crosses at least one of its asymptotes B) f(x) has a hole at $\left(3, \frac{-2}{5}\right)$
 - C) f(x) has a horizontal asymptote at y = -2
- D) f(x) has 3 vertical asymptotes
- Which of the following functions has an asymptote that passes through the origin? 4.
 - A) $f(x) = \frac{x(x-4)(x-9)}{(x-8)(x-3)^2}$

B) $f(x) = \frac{(x^2-4)(2x-9)}{(x)(2x-3)}$, $x \neq -1$

C) $f(x) = \frac{(x-6)(x+4)}{x^3-8}$

- D) Both B and C
- 5. Which of the following function(s) cross at least one of their asymptotes?
 - A) $f(x) = \frac{(x+1)(x+5)(2x-9)}{2x^2-7x-9}$
- B) $f(x) = \frac{1}{x^2 + 16}$
- C) $f(x) = \frac{x(x-4)(x-9)}{x^3 + 14x^2 + 57x + 73}$
- D) All of the above
- 6. Complete the table below given the following function $f(x) = \frac{-x(x-3)(x-4)}{(2x-8)(x+2)(x+5)}$

x-intercept(s), if any.	
I	
y-intercept, if any.	
Equation of vertical asymptote(s), if any.	
Equation of horizontal or oblique asymptote, if any.	

- 7. Determine the equation of the oblique asymptote given $f(x) = \frac{2x^2 + 9x 12}{x + 4}$
- 8. Create the equation of a function g(x) with the following properties:

B) x-intercept of
$$\frac{1}{4}$$
, y-intercept of $\frac{-1}{2}$, vertical asymptote of $x = \frac{-2}{3}$ and horizontal asymptote of $y = \frac{4}{3}$.

- 9. For the function, $g(x) = \frac{mx 3}{4 nx}$, find the values of m and n such that g(x) has a vertical asymptote when x = 6 and a horizontal asymptote at y = -3.
- 10. Sketch the graph of $f(x) = \frac{x^3 x^2 4x + 4}{x^2 + x 20}$
- 11. Determine any points of intersection for the function $f(x) = -x^2 5x 6$ and its reciprocal function. Leave answer(s) in exact form where necessary.
- 12. Given the graph of the rational function f(x) below solve $\frac{4x^2-20x}{f(x)} \ge 0$ Please note two things regarding f(x):
 - a) The y intercept is $\left(0, \frac{-5}{6}\right)$
 - b) f(x) crosses its horizontal asymptote at x = -2 and x = 5
 - c) The degree of the numerator of f(x) is 2 and the degree of the denominator of f(x) is 3.

13. Solve

a)
$$\frac{x^3 + 7x^2 + 12x}{x^2 + 9x + 20} \ge \frac{x+1}{x^2 - 3x - 4} - \frac{2x+5}{2x^2 - 3x - 20}$$

b)
$$\frac{x^3 + 2x^2 - 46x - 125}{(x^2 + 5x - 6)(x + 3)} \ge \frac{-1}{(x + 6)(x + 3)}$$

14. Determine the perimeter of the quadrilateral, rounded to the nearest tenth of a unit, created by the intersections of h(x) and its reciprocal graph f(x). Given: h(x) = -2(x+4)(x-6) and

$$f(x) = \frac{1}{-2x^2 + 4x + 48}$$
.

15. Describe what is known about the equation of a rational function with vertical asymptotes at x = 5 and Page 48 of 49

x = -3 and a horizontal asymptote of y = 0.

- 16. The concentration of a toxic chemical in a spring-fed lake is given by the equation $C(x) = \frac{60x}{x^2 + 3x + 6}$, where C is given in grams per litre and x is the time in days. Find the instantaneous rate of change at 4 days.
- 17. Sketch the graph of $y = \frac{x^3 6x^2 + 32}{x^3 x^2 4x + 4}$.
- 18. Use the information below to sketch the function.
 - There is a horizontal asymptote at f(x) = -2.
 - The Domain of the function is $D: \left\{ x \neq -3, x \neq 4, x \in \Re \right\}$
 - The range of the function is $R: \{y > -8, y \in \Re\}$
 - $\circ f(0) = \frac{28}{81}$
 - There is a hole at $(4, \frac{9}{40})$
 - One of the factors of the numerator is $(x^2 + 5x 6)$
 - f(x) > 0 when -6 < x < -3, -3 < x < 1, 1 < x < 4, 4 < x < 7
 - $\circ f(7) = 0$