ICMP Flood Attack Analysis Report

Ponnanna A H, 21CS02003

April 17, 2025

1 Methodology

The attack was conducted using a Python script implementing the following features:

1.1 Key Script Components

```
# Randomized TTL values (1-255)
   ttl_value = random.randint(1, 255)
   # Alternating packet sizes (64-1024 bytes)
   packet_size = random.randint(64, 1024)
   # IP spoofing from predefined pool
   spoofed_ip = random.choice(ip_pool)
   # Burst sending with random intervals
10
   interval = random.uniform(0.1, 1.0)
11
12
   time.sleep(interval)
13
   # Amplification calculation
14
   amplification_factor = total_data_sent / (total_packets * 64)
```

Listing 1: Core Attack Mechanisms

2 Results

2.1 System Resource Impact

Metric	Observation
CPU Utilization	$\rm i2\%$ increase (baseline 3% to 5%)
RAM Usage	Consistent at 512MB ± 15 MB
Process Priority	Nice value maintained at 0

2.2 Network Metrics

Parameter	Pre-Attack	During Attack
Bandwidth	12 Mbps	$24\text{-}36\mathrm{Mbps}$
Packet Rate	45 pps	$2200 \mathrm{pps}$
TCP Retransmits	0.1%	4.7%

• Total packets sent: 13,240

• Total data transmitted: 7.2MB

• Amplification factor: 8.46

3 Spoofed IP Pool

The attack utilized 15 spoofed source IP addresses:

192.168.1.100	172.16.0.10
192.168.1.101	172.16.0.11
192.168.1.102	172.16.0.12
192.168.1.103	172.16.0.13
192.168.1.104	172.16.0.14
10.0.0.5	172.16.0.15
10.0.0.6	172.16.0.16
10.0.0.7	

4 Code Analysis

4.1 Notable Features

- Asymmetric Bandwidth Usage: Achieved through random packet sizes (64-1024B) creating variable load
- TTL Randomization: Prevents simple TTL-based filtering
- Burst Pattern: 10-packet bursts with 100ms-1s delays evade simple rate limiting

4.2 Amplification Mechanism

The amplification factor of 8.46 was calculated using:

$$Amplification = \frac{TotalDataSent}{Packets \times MinPacketSize} = \frac{7.2MB}{13240 \times 64B}$$

5 Conclusion

The attack demonstrated:

- \bullet Effective bandwidth multiplication (2-3×) despite low resource usage
- \bullet Successful IP spoofing from 15-source pool
- Linear relationship between packet rate and bandwidth growth
- Significant amplification through variable packet sizing