

Puc. 4.

f(x)/g(x) при значения x, приближающихся к x_0 , если в этой точке числитель и знаменатель обращаются в нуль. Считаем f(x) и g(x) линейными вблизи точки x_0 , малые кусочки их графиков заменяем касательными к к графикам этих функций в точке x_0 . Таким образом, считаем, что

$$f(x)=f'(x_0)(x-x_0), g(x)=g'(x_0)(x-x_0).$$
 Тогда, если $g'(x_0)\neq 0$, то

$$\frac{f(x)}{g(x)} = \frac{f'(x_0)(x - x_0)}{g'(x_0)(x - x_0)} = \frac{f'(x_0)}{g'(x_0)}.$$

Надо понмить, что фактически это равеноство приближенное, но тем более точное, чем ближе x к x_0 . Мы получили правило, известное в математике как правило Лопиталя для раскрытия неопределенности типа 0/0.

На языке пределов это правило читается так: предел отношения $\frac{f(x)}{g(x)}$ при $x \to x_0$, если $f(x_0) = 0$ и $g(x_0) = 0$, равен отношению производных $f'(x_0)$ и $g'(x_0)$:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{f'(x_0)}{g'(x_0)} \quad (g'(x_0 \neq 0))$$

Пример 3. Составить таблицу значений функции

$$f(x) = \frac{2x^2 - x - \sin \pi x/2}{\sqrt{x} - \cos(1 - x)}$$

вблизи точки x=1.

Решение. Результаты вычислений на МК ВЗ-34 показаны в таблице 1. Применим правило Лопиталя

$$(2x^{2} - x - \sin \frac{\pi}{2}x)'|_{x=1} =$$

$$= (4x - 1 - \frac{\pi}{2}\cos \frac{\pi}{2}x)|_{x=1} = 4 - 1 = 3,$$

$$(\sqrt{x} - \cos(1 - x))'|_{x=1} =$$

Puc. 5

$$= (\frac{1}{2\sqrt{x}} - \sin(1-x))|_{x=1} = \frac{1}{2}.$$

Следовательно, при стремлении x к 1 значения f(x) приближаются к числу 3: (1/2)=6. ИЗ таблицы видно, что ошибки в вычислениях начинаются довольно далеко от предела точности МК - уже при x=1,0001.

Признак возрастания (убывания) функции на интервале

Теорема. Если в каждой точке интервала уголовой коэффициент (производная) к графику функция возрастает на этом интервале, а если меньше нуля то убывает.

Действительно, пусть угловой коэффициент касательной к графику функции больше нуля. Тогда касательная в лобой точке графика является поднимающейся прямой и, следовательно, лбой достаточно малый участок графика есть поднимающаяся линия. Интуитивно ясно, что график в целов есть поднимающаяся линия и, следовательно, функция возрастает. Аналогично, отрицательность производной во всех точках интервала влечет убывание функции на этом интервале.

Численное решение дифференциальных уравнений

Во многих случаях удается получить зависимость между велчинами, содержащую их производные, т.е. в виде дифференциального уравнения. Далеко не всегда уравнение удается разрешить, т.е. найти функции, являющиеся решением данного дифферен-

						1 иолици 1
\boldsymbol{x}	1,1	1,01	1,001	1,0001	1,00001	1,000001
f(x)	6,1762693	6,0196529	6.0039984	6,012024	6,1224489	7,5