Cryptography and Network Security Unit - III

Fourth Edition by William Stallings

Ratna Kumari Thassa
Assistant Professor
Dept of TSE

Outline

- Public-Key Cryptography
- RSA

Private-Key Cryptography

- traditional private/secret/single key cryptography uses one key
- shared by both sender and receiver
- if this key is disclosed communications are compromised
- also is symmetric, parties are equal
- hence does not protect sender from receiver forging a message & claiming is sent by sender

Public-Key Cryptography

- probably most significant advance in the 3000 year history of cryptography
- uses two keys a public & a private key
- asymmetric since parties are not equal
- uses clever application of number theoretic concepts to function
- complements rather than replaces private key crypto

Why Public-Key Cryptography?

- developed to address two key issues:
 - key distribution how to have secure communications in general without having to trust a KDC with your key
 - digital signatures how to verify a message comes intact from the claimed sender
- public invention due to Whitfield Diffie & Martin Hellman at Stanford Uni in 1976
 - known earlier in classified community

Public-Key Cryptography

- public-key/two-key/asymmetric cryptography involves the use of two keys:
 - a public-key, which may be known by anybody, and can be used to encrypt messages, and verify signatures
 - a private-key, known only to the recipient, used to decrypt messages, and sign (create) signatures
- is **asymmetric** because
 - those who encrypt messages or verify signatures cannot decrypt messages or create signatures

Public-Key Cryptography

Public-Key Characteristics

- Public-Key algorithms rely on two keys where:
 - it is computationally infeasible to find decryption key knowing only algorithm & encryption key
 - it is computationally easy to en/decrypt messages when the relevant (en/decrypt) key is known
 - either of the two related keys can be used for encryption,
 with the other used for decryption (for some algorithms)

Public-Key Cryptosystems

Public-Key Applications

- can classify uses into 3 categories:
 - encryption/decryption (provide secrecy)
 - digital signatures (provide authentication)
 - key exchange (of session keys)
- some algorithms are suitable for all uses, others are specific to one

Security of Public Key Schemes

- like private key schemes brute force exhaustive search attack is always theoretically possible
- but keys used are too large (>512bits)
- security relies on a large enough difference in difficulty between easy (en/decrypt) and hard (cryptanalyse) problems
- more generally the hard problem is known, but is made hard enough to be impractical to break
- requires the use of very large numbers
- hence is slow compared to private key schemes

RSA

- by Rivest, Shamir & Adleman of MIT in 1977
- best known & widely used public-key scheme
- uses large integers (eg. 1024 bits)
- security due to cost of factoring large numbers

RSA Key Setup

- each user generates a public/private key pair by:
- selecting two large primes at random p, q
- computing their system modulus n=p.q
 - note \emptyset (n) = (p-1) (q-1)
- selecting at random the encryption key e
 - where $1 \le \emptyset$ (n), $gcd(e,\emptyset(n)) = 1$
- solve following equation to find decryption key d
 - e.d=1 mod \emptyset (n) and $0 \le d \le n$
- publish their public encryption key: PU={e,n}
- keep secret private decryption key: PR={d,n}

RSA Use

- to encrypt a message M the sender:
 - obtains public key of recipient PU={e, n}
 - computes: $C = M^e \mod n$, where $0 \le M \le n$
- to decrypt the ciphertext C the owner:
 - uses their private key PR={d, n}
 - computes: $M = C^d \mod n$
- note that the message M must be smaller than the modulus n (block if needed)

Why RSA Works

- because of Euler's Theorem:
 - $-a^{g(n)} \mod n = 1$ where gcd(a, n) = 1
- in RSA have:
 - -n=p.q
 - $\emptyset (n) = (p-1) (q-1)$
 - carefully chose $e \& d to be inverses mod \varnothing (n)$
 - hence e.d= $1+k.\varnothing$ (n) for some k
- hence:

$$C^{d} = M^{e \cdot d} = M^{1+k \cdot \varnothing(n)} = M^{1} \cdot (M^{\varnothing(n)})^{k}$$

= $M^{1} \cdot (1)^{k} = M^{1} = M \mod n$

RSA Example - Key Setup

- 1. Select primes: p=17 & q=11
- **2.** Compute $n = pq = 17 \times 11 = 187$
- 3. Compute $\emptyset(n) = (p-1)(q-1) = 16 \times 10 = 160$
- 4. Select e: gcd(e, 160) = 1; choose e=7
- 5. Determine d: $de=1 \mod 160$ and d < 160Value is d=23 since 23x7=161=10x160+1
- 6. Publish public key $PU = \{7, 187\}$
- 7. Keep secret private key $PR = \{23, 187\}$

RSA Example - En/Decryption

- sample RSA encryption/decryption is:
- given message M = 88 (nb. 88 < 187)
- encryption:

$$C = 88^7 \mod 187 = 11$$

decryption:

```
M = 11^{23} \mod 187 = 88
```

Exponentiation

- can use the Square and Multiply Algorithm
- a fast, efficient algorithm for exponentiation
- concept is based on repeatedly squaring base
- and multiplying in the ones that are needed to compute the result
- look at binary representation of exponent
- only takes O(log₂ n) multiples for number n
 - $eg. 7^5 = 7^4.7^1 = 3.7 = 10 \mod 11$
 - $eg. 3^{129} = 3^{128}.3^1 = 5.3 = 4 \mod 11$

RSA Security

- possible approaches to attacking RSA are:
 - brute force key search (infeasible given size of numbers)
 - mathematical attacks (based on difficulty of computing ø(n), by factoring modulus n)
 - timing attacks (on running of decryption)
 - chosen ciphertext attacks (given properties of RSA)

Factoring Problem

- mathematical approach takes 3 forms:
 - factor n=p.q, hence compute $\emptyset(n)$ and then d
 - determine Ø (n) directly and compute d
 - find d directly

Key Management

- public-key encryption helps address key distribution problems
- have two aspects of this:
 - distribution of public keys
 - use of public-key encryption to distribute secret keys

Distribution of Public Keys

- can be considered as using one of:
 - public announcement
 - publicly available directory
 - public-key authority
 - public-key certificates

Public Announcement

- users distribute public keys to recipients or broadcast to community at large
 - eg. append PGP keys to email messages or post to news groups or email list
- major weakness is forgery
 - anyone can create a key claiming to be someone else and broadcast it
 - until forgery is discovered can masquerade as claimed user

Publicly Available Directory

- can obtain greater security by registering keys with a public directory
- directory must be trusted with properties:
 - contains {name,public-key} entries
 - participants register securely with directory
 - participants can replace key at any time
 - directory is periodically published
 - directory can be accessed electronically
- still vulnerable to tampering or forgery

Public-Key Authority

- improve security by tightening control over distribution of keys from directory
- has properties of directory
- and requires users to know public key for the directory
- then users interact with directory to obtain any desired public key securely
 - does require real-time access to directory when keys are needed

Public-Key Authority

Public-Key Certificates

- certificates allow key exchange without realtime access to public-key authority
- a certificate binds identity to public key
 - usually with other info such as period of validity,
 rights of use etc
- with all contents signed by a trusted Public-Key or Certificate Authority (CA)
- can be verified by anyone who knows the public-key authorities public-key

Public-Key Certificates

Public-Key Distribution of Secret Keys

- use previous methods to obtain public-key
- can use for secrecy or authentication
- but public-key algorithms are slow
- so usually want to use private-key encryption to protect message contents
- hence need a session key
- have several alternatives for negotiating a suitable session

Simple Secret Key Distribution

- proposed by Merkle in 1979
 - A generates a new temporary public key pair
 - A sends B the public key and their identity
 - B generates a session key K sends it to A encrypted using the supplied public key
 - A decrypts the session key and both use
- problem is that an opponent can intercept and impersonate both halves of protocol

Public-Key Distribution of Secret Keys

if have securely exchanged public-keys:

Hybrid Key Distribution

- retain use of private-key KDC
- shares secret master key with each user
- distributes session key using master key
- public-key used to distribute master keys
 - especially useful with widely distributed users
- rationale
 - performance
 - backward compatibility

Diffie-Hellman Key Exchange

- first public-key type scheme proposed
- by Diffie & Hellman in 1976 along with the exposition of public key concepts
 - note: now know that Williamson (UK CESG)
 secretly proposed the concept in 1970
- is a practical method for public exchange of a secret key
- used in a number of commercial products

Diffie-Hellman Key Exchange

- a public-key distribution scheme
 - cannot be used to exchange an arbitrary message
 - rather it can establish a common key
 - known only to the two participants
- value of key depends on the participants (and their private and public key information)
- based on exponentiation in a finite (Galois) field (modulo a prime or a polynomial) - easy
- security relies on the difficulty of computing discrete logarithms (similar to factoring) – hard

Diffie-Hellman Setup

- all users agree on global parameters:
 - large prime integer or polynomial q
 - a being a primitive root mod q
- each user (eg. A) generates their key
 - chooses a secret key (number): $x_A < q$
 - compute their public key: $y_A = a^{x_A} \mod q$
- each user makes public that key y_A

Diffie-Hellman Key Exchange

shared session key for users A & B is K_{AB}:

```
K_{AB} = a^{x_A \cdot x_B} \mod q
= y_A^{x_B} \mod q (which B can compute)
= y_B^{x_A} \mod q (which A can compute)
```

- K_{AB} is used as session key in private-key encryption scheme between Alice and Bob
- if Alice and Bob subsequently communicate, they will have the same key as before, unless they choose new public-keys
- attacker needs an x, must solve discrete log

Diffie-Hellman Example

- users Alice & Bob who wish to swap keys:
- agree on prime q=353 and a=3
- select random secret keys:
 - A chooses $x_A = 97$, B chooses $x_B = 233$
- compute respective public keys:
 - $-y_A = 3^{97} \mod 353 = 40$ (Alice)
 - $-y_B=3^{233} \mod 353 = 248$ (Bob)
- compute shared session key as:
 - $K_{AB} = y_B^{x_A} \mod 353 = 248^{97} = 160$ (Alice)
 - $K_{AB} = y_A^{x_B} \mod 353 = 40^{233} = 160$ (Bob)

Key Exchange Protocols

- users could create random private/public D-H keys each time they communicate
- users could create a known private/public D-H key and publish in a directory, then consulted and used to securely communicate with them
- both of these are vulnerable to a meet-in-the-Middle Attack
- authentication of the keys is needed

Elliptic Curve Cryptography

- majority of public-key crypto (RSA, D-H) use either integer or polynomial arithmetic with very large numbers/polynomials
- imposes a significant load in storing and processing keys and messages
- an alternative is to use elliptic curves
- offers same security with smaller bit sizes
- newer, but not as well analysed

Real Elliptic Curves

- an elliptic curve is defined by an equation in two variables x & y, with coefficients
- consider a cubic elliptic curve of form
 - $-y^2 = x^3 + ax + b$
 - where x,y,a,b are all real numbers
 - also define zero point O
- have addition operation for elliptic curve
 - geometrically sum of Q+R is reflection of intersection R

Real Elliptic Curve Example

Finite Elliptic Curves

- Elliptic curve cryptography uses curves whose variables & coefficients are finite
- have two families commonly used:
 - prime curves $E_p(a,b)$ defined over Z_p
 - use integers modulo a prime
 - best in software
 - binary curves \mathbb{E}_{2m} (a,b) defined over GF(2ⁿ)
 - use polynomials with binary coefficients
 - best in hardware

Elliptic Curve Cryptography

- ECC addition is analog of modulo multiply
- ECC repeated addition is analog of modulo exponentiation
- need "hard" problem equiv to discrete log
 - -Q=kP, where Q,P belong to a prime curve
 - is "easy" to compute Q given k,P
 - but "hard" to find k given Q,P
 - known as the elliptic curve logarithm problem
- Certicom example: E_{23} (9, 17)

ECC Diffie-Hellman

- can do key exchange analogous to D-H
- users select a suitable curve E_p (a,b)
- select base point $G = (x_1, y_1)$
 - with large order n s.t. nG=0
- A & B select private keys $n_A < n$, $n_B < n$
- compute public keys: $P_A = n_A G$, $P_B = n_B G$
- compute shared key: $K=n_AP_B$, $K=n_BP_A$
 - same since $K=n_An_BG$

ECC Encryption/Decryption

- several alternatives, will consider simplest
- must first encode any message M as a point on the elliptic curve $P_{\rm m}$
- select suitable curve & point G as in D-H
- each user chooses private key n_A<n
- and computes public key $P_A = n_A G$
- to encrypt $P_m : C_m = \{ kG, P_m + kP_b \}$, k random
- decrypt C_m compute:

$$P_{m}+kP_{b}-n_{B}(kG) = P_{m}+k(n_{B}G)-n_{B}(kG) = P_{m}$$

ECC Security

- relies on elliptic curve logarithm problem
- fastest method is "Pollard rho method"
- compared to factoring, can use much smaller key sizes than with RSA etc
- for equivalent key lengths computations are roughly equivalent
- hence for similar security ECC offers significant computational advantages

Comparable Key Sizes for Equivalent Security

Symmetric scheme (key size in bits)	ECC-based scheme (size of <i>n</i> in bits)	RSA/DSA (modulus size in bits)
56	112	512
80	160	1024
112	224	2048
128	256	3072
192	384	7680
256	512	15360

Summary

- have considered:
 - distribution of public keys
 - public-key distribution of secret keys
 - Diffie-Hellman key exchange
 - Elliptic Curve cryptography