Variation instantanée, Variation globale

Maths Spécifiques

1 Variation instantanée

1.1 Introduction

Deux voitures parcourent le même trajet sur la même route. Elles partent en même temps et mettent toutes deux le même temps pour arriver à destination. Les deux courbes ci-dessous représentent les kilomètres parcourrus en fonction du temps.

Exercice. a) Quelle est la distance du trajet? En combien de temps ces deux voitures ont-elles parcourru ce trajet?

- b) Quelle voiture allait plus vite sur les 30 premières minutes? Pourquoi?
- c) Admettons qu'une troisième voiture parcourt le trajet, mais garde la même vitesse du début à la fin. Quelle est cette vitesse en $km h^{-1}$?
- d) Combien de kilomètres a parcourru la voiture 1 au bout de 30 minutes? Même question pour la voiture 2.
- e) Admettons qu'une quatrième voiture roule 30 minutes et parcourt la même distance que la voiture 2 au terme de ces 30 minutes, mais en gardant une vitesse constante durant tout le trajet. Quelle est cette vitesse?

On trace les trajets des voitures 3 et 4 des questions précédentes. Leur vitesse constante est donnée par la *pente* de la droite correspondante.

S'il est facile d'estimer la vitesse d'une voiture dont la vitesse est constante, il est plus difficile de le faire dans le cas où une voiture a une vitesse variable. Pourtant, les compteurs de nos voitures estiment facilement la vitesse à laquelle nous roulons.

Exercice. Sur le schema suivant, faire figurer le trajet d'une voiture...

- Arrivant au bout de la 20^e minute au même kilométrage que la voiture 2
- Arrivant au bout de la 40° minute au même kilométrage que la voiture 2
- Et roulant à vitesse constante entre la 20^e et la 40^e minute.

Quelle est la vitesse de la voiture entre 20 et 40 minutes?

1.2 Variation instantanée

Définition 1. Soit $f: I \to \mathbb{R}$ une fonction dont la courbe représentative est donnée C_f . Une droite est appelé sécante à C_f si elle coupe deux points distincts de la courbe.

Remarque. • *Une sécante à* C_f *ne peut pas être verticale.*

• Étant donné une sécante à C_f , il existe une fonction affine $x \mapsto ax + b$ dont la courbe représentative est exactement cette sécante.

Exercice. Soit $f: I \to \mathbb{R}$ une fonction, et une sécante d à C_f .

- a) Justifier que d passe par deux points de la forme $(x_1; f(x_1))$ et $(x_2; f(x_2))$ avec $x_1, x_2 \in I$.
- b) Soit $g: x \mapsto ax + b$ une fonction affine dont la courbe représentative est d. Justifier que sa pente vaut

$$a = \frac{f(x_1) - f(x_2)}{x_1 - x_2}$$

On suppose que $A(x_1; f(x_1))$ est fixé. Plus $B(x_2; f(x_2))$ est proche de A, plus la sécante à \mathcal{C}_f passant par A et B se rapproche d'une position limite. Cette droite limite est appelée tangente à la courbe \mathcal{C}_f passant par A.

Remarque. Quand elle existe, la tangente à la courbe C_f est unique.

Définition 2. Soit $f: I \to \mathbb{R}$ une fonction, et $a \in I$. On appelle nombre dérivé de f en a la pente de la tangente à C_f passant par A(a; f(a)).

Remarque. Pour calculer le nombre dérivé de f en a, on regarde vers quelle valeur le taux d'accroissement

$$\frac{f(a) - f(x)}{a - x}$$

se dirige quand x se rapproche de a.

2 Variation globale

2.1 Fonction dérivée

Définition 3. Soit f un fonction définie sur un intervalle I et admettant un nombre dérivé sur tout a appartenant à I. On dit que f est dérivable sur I.

Définition 4. Soit f une fonction définie sur un intervalle I et dérivable sur I. Alors on note f' la fonction définie sur I qui a tout nombre a dans I associe le nombre dérivé de f en a.

Remarque. • *Pour parler de la fonction dérivée de f, il faut avoir préalablement dit que f est dérivable.*

Exemple. 1. Soit $f: x \mapsto \frac{1}{2}x + 1$ définie sur \mathbb{R} . La fonction f admet un nombre dérivé en a, pour n'importe quel a appartenant à \mathbb{R} . Ce nombre dérivé est toujours $\frac{1}{2}$. On en déduit que la fonction dérivée de f, f', est la fonction telle que pour tout a

$$f'(a) = \frac{1}{2}.$$

2. Soit $g: x \mapsto x^2$ définie sur \mathbb{R} . La fonction g admet un nombre dérivé en a, pour n'importe quel a appartenant à \mathbb{R} . On en déduit que g est dérivable sur \mathbb{R} . La fonction dérivée de g, g', est la fonction définie sur \mathbb{R} et telle que

$$g'(x) = 2x$$

Proposition 1. Soit f une fonction définie sur I et dérivable sur I. Soit J un intervalle inclus dans I. Alors,

- f est croissante sur J si et seulement si f' est positive sur J.
- f est décroissante sur J si et seulement si f' est négative sur J.

Exemple. a) Soit $g: x \mapsto x^2$ définie sur \mathbb{R} . Pour quelles valeurs de x a-t-on $g'(x) \ge 0$? Et $g'(x) \le 0$?

b) Compléter le tableau de variations suivant.

x	$-\infty$	0	$+\infty$
Signe de g'		0	
Variations de g			