

UNIVERSITY INSTITUTEOF ENGINEERING

Bachelor of Engineering (Computer Science & Engineering)

Operating System (20CST/ITT-313)

Subject Coordinator: Er. Puneet kaur(E6913)

Introduction to Operating SystemFont size 24

DISCOVER . LEARN . EMPOWER

System Protection and Security

Cryptography as a Security Tool

- Broadest security tool available
 - Internal to a given computer, source and destination of messages can be known and protected
 - OS creates, manages, protects process IDs, communication ports
 - Source and destination of messages on network cannot be trusted without cryptography
 - Local network IP address?
 - Consider unauthorized host added
 - WAN / Internet how to establish authenticity
 - Not via IP address

Cryptography

- Means to constrain potential senders (sources) and / or receivers (destinations) of messages
 - Based on secrets (keys)
 - Enables
 - Confirmation of source
 - Receipt only by certain destination
 - Trust relationship between sender and receiver

Secure Communication over Insecure Medium

Encryption

- Encryption algorithm consists of
 - Set K of keys
 - Set *M* of Messages
 - Set C of ciphertexts (encrypted messages)
 - A function $E: K \to (M \to C)$. That is, for each $k \subseteq K$, E(k) is a function for generating ciphertexts from messages
 - Both E and E(k) for any k should be efficiently computable functions
 - − A function $D: K \to (C \to M)$. That is, for each $k \in K$, D(k) is a function for generating messages from ciphertexts
 - Both *D* and *D*(*k*) for any *k* should be efficiently computable functions
- An encryption algorithm must provide this essential property: Given a ciphertext $c \in C$, a computer can compute m such that E(k)(m) = c only if it possesses D(k)
 - Thus, a computer holding D(k) can decrypt ciphertexts to the plaintexts used to produce them, but a computer not holding D(k) cannot decrypt ciphertexts
 - Since ciphertexts are generally exposed (for example, sent on the network), it is important that it be infeasible to derive D(k) from the ciphertexts

Symmetric Encryption

- Same key used to encrypt and decrypt
 - E(k) can be derived from D(k), and vice versa
- DES is most commonly used symmetric block-encryption algorithm (created by US Govt)
 - Encrypts a block of data at a time
- Triple-DES considered more secure
- Advanced Encryption Standard (AES),
- RC4 is most common symmetric stream cipher, but known to have vulnerabilities
 - Encrypts/decrypts a stream of bytes (i.e., wireless transmission)
 - Key is a input to psuedo-random-bit generator
 - Generates an infinite keystream

Asymmetric Encryption

- Public-key encryption based on each user having two keys:
 - public key public key used to encrypt data
 - private key key known only to individual user used to decrypt data
- Must be an encryption scheme that can be made public without making it easy to figure out the decryption scheme
 - Most common is RSA block cipher
 - No efficient algorithm is known for finding the prime factors of a number which is product of two large prime numbers.

Asymmetric Encryption (Cont.)

- Formally, it is computationally infeasible to derive $D(k_d, N)$ from $E(k_e, N)$, and so $E(k_e, N)$ need not be kept secret and can be widely disseminated
 - $E(k_{\rho}, N)$ (or just k_{ρ}) is the public key
 - $D(k_d, N)$ (or just k_d) is the **private key**
 - N is the product of two large, randomly chosen prime numbers p and q (for example, p and q are 512 bits each)
 - Encryption algorithm is $E(k_e, N)(m) = m^{ke} \mod N$, where k_e satisfies $k_e k_d \mod (p-1)(q-1) = 1$
 - The decryption algorithm is then $D(k_d, N)(c) = c^{kd} \mod N$

Asymmetric Encryption Example

- For example, make p = 7 and q = 13
- We then calculate N = 7*13 = 91 and (p-1)(q-1) = 72
- We next select k_{ρ} relatively prime to 72 and < 72, yielding 5
- Finally, we calculate k_d such that $k_{\rho}k_d \mod 72 = 1$, yielding 29
- We now have our keys

 - Public key, $k_{e_i} N = 5,91$ Private key, k_{d_i} , N = 29,91
- Encrypting the message 69 with the public key results in the cyphertext 62
- Cyphertext can be decoded with the private key
 - Public key can be distributed in cleartext to anyone who wants to communicate with holder of public key

Encryption and Decryption using RSA Asymmetric Cryptography

Cryptography (Cont.)

- Note symmetric cryptography based on transformations, asymmetric based on mathematical functions
 - Asymmetric much more compute intensive
 - Typically not used for bulk data encryption

Video Links

https://www.edureka.co/blog/what-iscryptography/

https://book.cyberyozh.com/comprehe nsive-encryption-of-operating-system-o r-hard-disk-drive/

References

- https://www.unf.edu/public/cop4610/ree/Notes/PPT/PPT8E/CH15-OS8e.pdf
- https://www.tutorialspoint.com/operating_system/os_security.htm
- https://www.coursehero.com/file/19323929/Operating-System-Threats-and-Vulnerabilities/
- https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/15_Security.h
 tml
- https://devqa.io/security-threats-attack-vectors/
- https://www.geeksforgeeks.org/system-security/
- https://www.javatpoint.com/os-security-management