Module 4

Operational Amplifier

Prepared by KMN

Contents

- Introduction
- OPAMP Symbol
- Internal block diagram
- Open-loop configuration
- Common mode rejection ratio
- OPAMP equivalent circuit
- OPAMP characteristics
- Closed-loop configuration

Contents

- Inverting Amplifier
- Non-inverting Amplifier
- Summing Amplifier Difference Amplifier
- Differentiator
- Integrator
- Tutorials

Reference book

 OPAMPS and Linear Integrated Circuits by Ramakanth Gayakwad

Introduction

- Operational Amplifier (OPAMP) is a very high gain amplifier fabricated on Integrated Circuit (IC)
- Finds application in
 - Audio amplifier
 - Signal generator
 - Signal filters
 - Biomedical Instrumentation
 - And numerous other applications

Introduction

- Advantages of OPAMP over transistor amplifier
 - Less power consumption
 - Costs less
 - More compact
 - More reliable
 - Higher gain can be obtained
 - Easy design

- If input is applied to non inverting input terminal, then output will be in-phase with input
- If input is applied to inverting input terminal, then output will be 180 degrees out of phase with input
- If inputs are applied to both terminals, then output will be proportional to difference between the two inputs

- Two DC power supplies (dual) are required
- Magnitudes of both may be same
- The other terminal of both power supplies are connected to common ground
- All input and output voltages are measured with reference to the common ground

Integrated Circuit

Internal Block Diagram

- Four stages can be identified –
- Input stage or differential amplifier stage can amplify difference between two input signals; Input resistance is very high;

Internal Block Diagram

- Intermediate stage (or stages) use direct coupling; provide very high gain
- Level shifter stage shifts the dc level of output voltage to zero (can be adjusted manually using two additional terminals)
- Output stage is a power amplifier stage; has very small output resistance; so output voltage is the same, no matter what is the value of load resistance connected to the output terminal

If $v_1 = 0$, then $v_o = -A_{OL}v_2$ Inverting amplifier If $v_2 = 0$, then $v_o = A_{OL}v_1$ Non-inverting amp

- A_{OL} is the open-loop voltage gain of OPAMP Its value is very high Typical value is 0.5 million
- So, even if input is in micro volts, output will be in volts
- ullet But output voltage cannot cross the value of power supply V_{CC}
- So, if input is in milli volts, output reaches saturation value $V_{sat} = V_{CC}$ (or V_{EE})

- If $v_1 = v_2$, then ideally output should be zero
- But in practical Op-Amp, output is

$$v_o = A_{cm} \left(\frac{v_1 + v_2}{2} \right)$$

Where, A_{CM} is the common-mode gain of Op-Amp

So, final gain equation is:

$$v_o = A_d(v_1 - v_2) + A_{cm} \left(\frac{v_1 + v_2}{2}\right)$$

$$v_o = A_d v_{id} + A_{cm} v_{icm}$$

- Common-mode rejection ratio
 - It is a measure of the ability of Op-Amp to reject the signals common to both input terminals (noise)
 - Defined as

$$CMRR = \frac{A_d}{A_{cm}}$$

$$(CMRR)_{dB} = 20 log_{10} \left(\frac{A_d}{A_{cm}}\right)$$

Problems

• An OPAMP has differential voltage gain of 100,000 and CMRR of 60 dB. If non inverting input voltage is 150 μ V and inverting input voltage is 140 μ V, calculate the output voltage of OPAMP

Ans: 1.01 V

For an OPAMP, when v1 is 0.5 mV and v2 is -0.5 mV, output voltage is 8 V. For the same OPAMP, when v1 = v2 = 1 mV, output voltage is 12 mV.
 Calculate the CMRR of the OPAMP

Ans: 56.48 dB

OPAMP equivalent circuit

OPAMP equivalent circuit

- Ideal OPAMP
 - Infinite differential mode gain
 - Zero common mode gain
 - Infinite CMRR
 - Infinite input resistance
 - Zero output resistance
 - Infinite bandwidth
 - Infinite slew rate
 - Zero input offset voltage
 - Zero input offset current
 - Zero output offset voltage

- Differential mode gain A_d
 - It is the factor by which the difference between the two input signals is amplified by the OPAMP
- Common mode gain A_{cm}
 - It is the factor by which the common mode input voltage is amplified by the OPAMP
- Common mode rejection ratio CMRR
 - Is the ratio of A_d to A_{cm} expressed in decibels

- Input resistance R_i
 - It is the equivalent resistance measured between the two input terminals of OPAMP
- Output resistance R_o
 - It is equivalent resistance measured between output terminal and ground
- Bandwidth
 - It is the range of frequency over which the gain of OPAMP is almost constant

- ullet Output offset voltage V_{oo}
 - It is the output voltage when both input voltages are zero
 - ullet Denoted as $\overline{V_{oo}}$
- ullet Input offset voltage V_{io}
 - It is the differential input voltage that must be applied at the input terminals in order to make output voltage equal to zero
 - $\bullet V_{io} = |v_1 v_2| \quad \text{for } v_o = 0$

- Input offset current I_{io}
 - It is the difference between the currents in the input terminals when both input voltages are zero
 - $I_{io} = |I_1 I_2|$ when $v_1 = v_2 = 0$
- Input bias current I_{ib}
 - It is the average of the currents in the input terminals when both input voltages are zero
 - $I_{ib} = (I_1 + I_2) / 2$ when $v_1 = v_2 = 0$

- Slew rate *SR*
 - It is the maximum rate of change of output voltage with respect to time
 - Slew rate has to be very high if OPAMP has to operate efficiently at high frequencies
- Supply voltage rejection ratio SVRR
 - It is the maximum rate at which input offset voltage of OPAMP changes with change in supply voltage

- Practical characteristics of 741C OPAMP
 - Differential mode gain is 200,000
 - CMRR is 90 dB
 - Input resistance is $2 M\Omega$
 - Output resistance is 75 Ω
 - Unity-gain Bandwidth is 1 MHz
 - Slew rate is 0.5 V / μs
 - Output offset voltage is 1 mV
 - Input offset current is 20 nA
 - Input bias current is 80 nA

Closed-loop configurations

- Open-loop voltage gain of OPAMP is very high; such high gain is not required in most applications
- In order to reduce gain, a part of output signal is fed back to the inverting input terminal (called negative feedback)
- Many other OPAMP characteristics are improvised with this

- Input is applied to inverting terminal
- Non inverting is grounded
- Feedback is given to inverting terminal through resistor R_F
- Assuming v_o is less than V_{CC} since A_d is very high, v_{id} should be very small; v_{id} taken as almost zero
- Current entering OPAMP input terminal is almost zero

$$i_1 = \frac{v_{in} - 0}{R_1} = \frac{v_{in}}{R_1}$$

$$i_2 = \frac{0 - v_o}{R_F} = \frac{-v_o}{R_F}$$

$$i_1 = i_2$$

$$\frac{v_{in}}{R_1} = \frac{-v_o}{R_E}$$

$$v_o = -v_{in} \frac{R_F}{R_1}$$

$$A_V = \frac{v_o}{v_{in}} = -\frac{R_F}{R_1}$$

- Input is applied to non inverting terminal
- Feedback is given to inverting terminal
- Output voltage will be in-phase with input voltage
- Here again, the following assumptions are made
 - Since A_d is very high, v_{id} should be very small; v_{id} taken as almost zero
 - Current entering OPAMP input terminal is almost zero

$$v_{id} = 0$$

$$i_1 = \frac{v_2}{R_1} = \frac{v_{in}}{R_1}$$

$$\frac{v_{in}}{R_1} = \frac{v_o - v_{in}}{R_F}$$

$$v_1 = v_2 = v_{in}$$

$$i_2 = \frac{v_o - v_2}{R_F} = \frac{v_o - v_{in}}{R_F}$$

$$i_1 = i_2$$

$$v_o = v_{in} \left(1 + \frac{R_F}{R_1} \right)$$

Problems

• For an inverting amplifier using OPAMP, R_1 =1K, R_F =100K, v_{in} =0.1sin(ωt). Find v_o .

Ans: $-10\sin(\omega t)$

• For a non inverting amplifier, R_1 =10K, R_F =100K. Calculate v_0 if v_i = 25 mV dc.

Ans: 275 mV dc

 An ac signal of rms value 2 mV needs to be amplified to 1.024 V rms, 180 degree phase shifted.
 Design a suitable amplifier choosing R₁=1.2K

Ans: Inv amplifier with $R_F = 614.4K$

Voltage Follower

- Special case of non inverting amplifier where R_F=0
- Voltage gain is unity. $v_o = v_{in}$
- Has very high input resistance and very low output resistance; Used as buffer for impedance matching

Summing Amplifier (Adder)

Summing Amplifier (Adder)

$$i_A = \frac{v_A}{R_A}$$
 $i_B = \frac{v_B}{R_B}$ $i_F = \frac{-v_o}{R_F}$

$$i_A + i_B = i_F$$

$$\frac{v_A}{R_A} + \frac{v_B}{R_B} = -\frac{v_o}{R_F}$$

$$v_o = -\left(v_A \frac{R_F}{R_A} + v_B \frac{R_F}{R_B}\right)$$

• If
$$R_A = R_B = R_F$$
, then $v_o = -(v_A + v_B)$

- The circuit is analyzed using superposition theorem
- Consider only v_1 to be present; v_2 =0 Now derive expression for output voltage v_{o1}
- Next consider only v_2 to be present; v_1 =0 Derive expression for output voltage v_{02}
- Actual output voltage $v_o = v_{o1} + v_{o2}$

$$v_{o1} = v_x \left(1 + \frac{R_F}{R_2} \right)$$
 $v_{o1} = \left(\frac{v_1 R_3}{R_1 + R_3} \right) \left(1 + \frac{R_F}{R_2} \right)$

$$v_{o2} = -v_2 \frac{R_F}{R_2}$$

$$v_o = v_{o1} + v_{o2} = \left(\frac{v_1 R_3}{R_1 + R_3}\right) \left(1 + \frac{R_F}{R_2}\right) - v_2 \frac{R_F}{R_2}$$

$$= v_1 - v_2 \quad \text{if } R_1 = R_2 = R_3 = R_F$$

Problems

- Design an OPAMP circuit such that output is given by v_0 =- $(0.5v_1+0.75v_2)$ where v_1 and v_2 are input voltages. Choose R_F =10K
- Design an OPAMP subtractor to have output given by $v_o = \frac{2}{3}v_1 v_2$ Choose $R_F = R_2 = 1K$
- Design an OPAMP adder/subtractor to get output voltage $v_o = -\frac{1}{2}v_1 + \frac{2}{3}v_2 v_3$

Integrator

Integrator

- Integrator is a circuit whose output is proportional to (negative) integral of the input signal with respect to time
- Feedback is given through capacitor to inverting terminal
- Since same current flows through R and C,

$$\frac{v_{in}}{R} = -C \frac{dv_o}{dt} \qquad v_o = \frac{-1}{RC} \int_0^t v_{in} dt$$

Integrator

Differentiator

Differentiator

- Differentiator is circuit whose output is proportional to (negative) differential of input voltage with respect to time
- Input is given through capacitor, feedback given through resistor to inv terminal

Since current through R and C are same,

$$C\frac{dv_{in}}{dt} = -\frac{v_o}{R} \qquad v_o = -RC\frac{dv_{in}}{dt}$$

