CSSS 512: Lab 1

Logistics & R Refresher

Agenda

1. Logistics

- ► Labs, Office Hours, Homeworks
- Goals and Expectations
- ▶ R, R Studio, R Markdown, LATEX

2. Time Series Data in R

- Unemployment in Maine
- Global Temperature
- ► Electricity, Beer, and Chocolate Production

3. Panel Data in R

- Democracy and Income
- Data wrangling

- 1. Lab Sessions: Fri, 1:00-2:20pm in Savery 117
 - Covers application of material from lecture using examples; clarification and extention of lecture material; Q & A for homeworks and lectures
 - Materials will be available on the course website
- 2. Office Hours: Tues, 3:00-4:20pm in Smith 220
 - Available for trouble shooting and specific questions about homework and lecture materials
- 3. Homeworks: 3-4 due every 2 weeks or so
 - ▶ Ideally, done using R or R Studio with write up in LATEX
 - Using R Studio with R Markdown is an easy way to do this
 - Many packages: tseries, forecast, lmtest, urca, quantmod, etc.

- 4. When this course is over, you should be able to do the following (and more):
 - Identify and understand time series dynamics: seasonality, deterministic trends, moving average processes, autoregressive processes
 - Distinguish between stationary and nonstationary time series, perform unit root tests, fit ARMA and ARIMA models, use cross validation for model assessment
 - Analyze multiple continuous time series using vector autoregression, perform cointegration tests, and estimate error correction models for cointegrated time series
 - ► Distinguish between random effects, fixed effects, and mixed effects and decide when each of these are appropriate
 - Understand Nickell bias and use an instrumental variable approach with GMM to address the issue
 - Perform multiple imputation and in-sample simulations for panel data

- 5. The course moves fast: you should be comfortable doing the following for the homework assignments and project
 - tidying and transforming data, especially time series and panel data
 - importing and exporting data sets
 - generating plots of your data and results
 - writing basic functions and loops for repeated procedures
- Fortunately, for those of you new to R, there are many resources to get you up to speed
 - Cowpertwait and Metcalfe (2009) download via UW library
 - Zuur et al. (2009)
 - Wickham and Groleman (2017)

- 6. Please make sure that you have R or R Studio installed on your computer
- 7. If you would like to learn how to use LATEX, this is a great opportunity to do so
 - An easy way to get introduced to this is to use R Markdown within R Studio
 - ▶ Make sure you have TeX installed, which you can find here
 - Make sure you have R Markdown installed using install.packages("rmarkdown")
 - lacktriangle Now in R Studio, choose File ightarrow New File ightarrow R Markdown

8. Using R Markdown

- Choose to compile your document as a PDF or HTML file and give it a title
- Now you will be given a template
- Embed your code within

```
```{r}
and
```

and write up your text outside

- ► Then press Knit and it will produce a PDF or HTML document with your code, R output, and text nicely formatted
- Please try to complete your homeworks in this way

# Questions

```
Acquire the data
Monthly unemployment in Maine from January 1996 to August 2006
www <- "http://students.washington.edu/dhyoo/Maine.dat"
Maine.month <- read.table(www, header = TRUE)

Attach the object and check its class
attach(Maine.month)
class(Maine.month)</pre>
```

```
[1] "data.frame"
```

```
#Monthly unemployment data
head(Maine.month)
```

```
unemploy
1 6.7
2 6.7
3 6.4
4 5.9
5 5.2
6 4.8
```

```
Create a time series object
help(ts)
Maine.month.ts <- ts(unemploy, start = c(1996, 1), freq = 12)
Maine.month.ts</pre>
```

```
1996 6.7 6.7 6.4 5.9 5.2 4.8 4.8 4.0 4.2 4.4 5.0 5.0 ## 1997 6.4 6.5 6.3 5.9 4.9 4.8 4.5 4.0 4.1 4.3 4.8 5.0 ## 1998 6.2 5.7 5.6 4.6 4.0 4.2 4.1 3.6 3.7 4.1 4.3 4.0 ## 1999 4.9 5.0 4.6 4.3 3.9 4.0 3.6 3.3 3.1 3.3 3.7 3.7 ## 2000 4.4 4.4 4.1 3.5 3.1 3.0 2.8 2.5 2.6 2.8 3.1 3.0 ## 2001 3.9 4.2 4.0 4.1 3.5 3.5 3.4 3.1 3.4 3.7 4.0 4.0 ## 2002 5.0 4.9 5.0 4.7 4.0 4.2 4.0 3.6 3.7 3.9 4.5 4.6 ## 2003 5.6 5.8 5.6 5.5 4.8 4.2 4.3 4.2 3.8 4.0 4.2 4.6 4.6 ## 2005 5.5 5.8 5.5 5.2 4.7 4.6 4.5 4.1 4.4 4.4 4.8 4.6 ## 2006 5.3 5.6 4.9 4.6 4.2 4.4 4.4 3.9
```

```
Find the mean unemployment per year
Maine.annual.ts <- aggregate(Maine.month.ts)/12
Maine.annual.ts

Time Series:
Start = 1996
End = 2005
Frequency = 1
[1] 5.258333 5.125000 4.508333 3.950000 3.275000 3.733333 4.341667
[8] 4.991667 4.616667 4.841667</pre>
```

```
Plot the time series. Intuitively, how would you describe the pattern of unemployment?
layout(1:2)
plot(Maine.month.ts, ylab="unemployed (%)")
plot(Maine.annual.ts, ylab="unemployed (%)")
```





```
Find unmployment rates for Feburary and August
Maine.Feb <- window(Maine.month.ts, start = c(1996,2), freq = TRUE)
Maine.Aug <- window(Maine.month.ts, start = c(1996,8), freq = TRUE)
Find ratio of mean unemployment in Feb and August versus grand mean
Feb.ratio <- mean(Maine.Feb) / mean(Maine.month.ts)</pre>
Aug.ratio <- mean(Maine.Aug) / mean(Maine.month.ts)</pre>
Maine.Feb
Time Series:
Start = 1996.083
End = 2006.083
Frequency = 1
[1] 6.7 6.5 5.7 5.0 4.4 4.2 4.9 5.8 5.6 5.8 5.6
Feb.ratio
[1] 1.222529
```

```
Aug.ratio
```

```
[1] 0.8163732
```

```
Acquire the data
www <- "http://students.washington.edu/dhyoo/global.dat"
Average global temperature from Univ. East Anglia and UK Met Office
Monthly from January 1856 to December 2005
Global <- scan(www)
```

- Create a time series object using the data that starts in Jan 1856 and ends in Dec 2005 with monthly observations.
- 2. Find the mean temperature for each year and save in a new time series object.
- 3. Plot the two objects.
- Observe global temperature from 1970 to 2005 using the window function and plot.

```
Create a time series object
Global.ts <- ts(Global, st = c(1856, 1), end = c(2005, 12), fr = 12)
head(Global.ts)</pre>
```

```
[1] -0.384 -0.457 -0.673 -0.344 -0.311 -0.071
```

```
Find the mean temperature for each year
Global.annual <- aggregate(Global.ts, FUN = mean)
head(Global.annual)</pre>
```

```
[1] -0.3812500 -0.4611667 -0.4153333 -0.2252500 -0.3697500 -0.4003333
```

```
Plot the time series.
How would you describe the pattern in global temperature?
plot(Global.ts)
```



plot(Global.annual)



```
Observe between 1970 and 2005 only
New.series <- window(Global.ts, start=c(1970, 1), end=c(2005, 12))
Express each month fractionally
New.time <- time(New.series)</pre>
```

```
How would you describe this pattern?
plot(New.series); abline(reg=lm(New.series ~ New.time))
```



# Multiple Time Series - Electricty, Beer, Chocolate Production

## [1] "data.frame"

```
Acquire the data
www <- "http://students.washington.edu/dhyoo/cbe.dat"
Electricity (millions of kWh), beer (Ml), and chocolate production (tonnes)
in Australia from January 1958 to December 1990
from the Australian Bureau of Statistics
CBE <- read.table(www, header=T)
CBE[1:4,]
 choc beer elec
1 1451 96.3 1497
2 2037 84.4 1463
3 2477 91.2 1648
4 2785 81.9 1595
class(CBE)
```

# Multiple Time Series - Electricty, Beer, Chocolate Production

```
Create separate time series objects for each
Elec.ts <- ts(CBE[, 3], start = 1958, freq = 12)
Beer.ts <- ts(CBE[, 2], start = 1958, freq = 12)
Choc.ts <- ts(CBE[, 1], start = 1958, freq = 12)</pre>
```

# Multiple Time Series - Electricty, Beer, Chocolate Production

plot(cbind(Elec.ts, Beer.ts, Choc.ts))



```
library(foreign)
library(tidyverse)
Loading tidyverse: ggplot2
Loading tidyverse: tibble
Loading tidyverse: tidyr
Loading tidyverse: readr
Loading tidyverse: purrr
Loading tidyverse: dplyr
Conflicts with tidy packages -----
filter(): dplyr, stats
lag(): dplyr, stats
library(ggplot2)
setwd("/Users/danielyoo/CSSS-POLS-512/Labs")
data<-read.csv("Lab1data.csv", header=T)</pre>
#Democracy and income data from 174 countries from 2000 to 2010
```

```
head(unique(data$country)) # observations on 174 countries
[1] Antigua and Barbuda Afghanistan Albania
[4] Algeria
 Andorra
 Angola
174 Levels: Afghanistan Albania Algeria Andorra ... Zimbabwe
head(tapply(data$country, data$Year, length))
2000 2001 2002 2003 2004 2005
174 174 174 174 174 174
head(tapply(data$Year, data$country, length))
```

```
Afghanistan Albania Algeria
11 11 11
Andorra Angola Antigua and Barbuda
11 11 11
```



#### Some wrangling exercises:

- Subset the data frame to show only country name and GDP per capita
- 2. Rearrange the columns of the data frame ascending by polity score
- Show only values of GDP per capita for South Africa from 2002 to 2008
- 4. Create a new variable that takes the first letter of the country and attaches it to the year of observation
- 5. Find the mean of GDP per capita for each year of observation

## 6 Antigua and Barbuda

```
library(tidvverse)
head(select(data, country, GDP.per.capita.PPP.current.international))
 country GDP.per.capita.PPP.current.international
1 Antigua and Barbuda
 12345.82
2 Antigua and Barbuda
 12654 92
3 Antigua and Barbuda
 12959 93
4 Antigua and Barbuda
 13699.04
5 Antigua and Barbuda
 14866 37
6 Antigua and Barbuda
 15791.64
head(data[, c(1,3)])
 country GDP.per.capita.PPP.current.international
1 Antigua and Barbuda
 12345.82
2 Antigua and Barbuda
 12654 92
 12959.93
3 Antigua and Barbuda
4 Antigua and Barbuda
 13699.04
5 Antigua and Barbuda
 14866.37
6 Antigua and Barbuda
 15791.64
head(data,frame(data$country, data$GDP.per.capita.PPP.current.international))
 data.country data.GDP.per.capita.PPP.current.international
1 Antigua and Barbuda
 12345.82
2 Antigua and Barbuda
 12654.92
3 Antigua and Barbuda
 12959 93
4 Antigua and Barbuda
 13699.04
5 Antigua and Barbuda
 14866.37
```

15791.64

#### head(arrange(data, polity2))

```
##
 country Year GDP.per.capita.PPP.current.international polity2
 Bhutan 2000
 2436.943
 -10
1
2 Bhutan 2001
 2587.442 -10
3 Bhutan 2002
 2775.398 -10
4 Bhutan 2003
 2984.397 -10
5 Bhutan 2004
 3219.421 -10
6
 Qatar 2000
 55053.515 -10
```

#### head(data[order(data\$polity2),])

```
##
 country Year GDP.per.capita.PPP.current.international polity2
166
 Bhutan 2000
 2436.943
 -10
167 Bhutan 2001
 2587.442
 -10
 2775.398
 -10
168 Bhutan 2002
169 Bhutan 2003
 2984.397
 -10
170 Bhutan 2004
 3219.421
 -10
1387 Qatar 2000
 55053.515
 -10
```

```
head(filter(data, country==c("South Africa"), Year>=2002 & Year<=2008))
 country Year GDP.per.capita.PPP.current.international polity2
1 South Africa 2002
 7244.218
2 South Africa 2003
 7522 254
3 South Africa 2004
 7992 767
4 South Africa 2005
 8596.831
5 South Africa 2006
 9269 283
6 South Africa 2007
 10002 543
head(subset(data, data$country==c("South Africa") & data$Year>=2002 & Year<=2008))
 country Year GDP.per.capita.PPP.current.international polity2
1444 South Africa 2002
 7244.218
1445 South Africa 2003
 7522,254
1446 South Africa 2004
 7992.767
1447 South Africa 2005
 8596 831
1448 South Africa 2006
 9269.283
1449 South Africa 2007
 10002.543
```

```
head(mutate(data, paste(substring(data$country, 1, 1), data$Year, sep="")))
```

```
##
 country Year GDP.per.capita.PPP.current.international
1 Antigua and Barbuda 2000
 12345.82
2 Antigua and Barbuda 2001
 12654.92
3 Antigua and Barbuda 2002
 12959.93
4 Antigua and Barbuda 2003
 13699.04
5 Antigua and Barbuda 2004
 14866.37
6 Antigua and Barbuda 2005
 15791.64
 polity2 paste(substring(data$country, 1, 1), data$Year, sep = "")
1
 A2000
2
 NA
 A2001
3
 NΑ
 A2002
4
 NΑ
 A2003
5
 NA
 A2004
6
 NA
 A2005
```

```
data%>%
 group_by(Year)%>%
 summarize(mean(GDP.per.capita.PPP.current.international, na.rm=T)
)
```

```
A tibble: 11 x 2
##
 Year `mean(GDP.per.capita.PPP.current.international, na.rm = T)`
##
 <int>
 <dbl>
##
 2000
 6184,662
##
 2001
 6358,006
##
 3 2002
 6560.959
##
 4
 2003
 6914.076
##
 2004
 7493.982
##
 2005
 8111.782
##
 2006
 8760.581
 2007
 9552.053
##
 8
##
 9
 2008
 9632.327
10
 2009
 9212.808
11
 2010
 NaN
```