20

25

DESCRIPTION

SHEET BEAM-TYPE INSPECTION APPARATUS

TECHNICAL FIELD

半導体プロセスにおいて、デザインルールは100nmの時代を迎えようとしており、また生産形態はDRAMに代表される少品種大量生産からSOC(Silicon on chip)のように多品種少量生産へ移行しつつある。それに伴い、製造工程数が増加し、各工程毎の歩留まり向上は必須となり、プロセス起因の欠陥検査が重要になる。本発明は、半導体プロセスにおける各工程後のウェハの検査のためのシートビーム式検査装置に好適な荷電粒子線に関し、具体的には、電子線などの荷電粒子線を用いたシートビーム式検査装置並びに該検査装置を用いた半導体デバイス製造方法及び露光方法に関する。

BACKGROUND ART

半導体デバイスの高集積化、パターンの微細化に伴い、高分解能、高スループットの検査装置が要求されている。100nmデザインルールのウェハ基板の欠陥を調べるためには、100nm以下の分解能が必要であり、デバイスの高集積化による製造工程の増加により、検査量が増大するため、高スループットが要求されている。また、デバイスの多層化が進むにつれて、層間の配線をつなぐビアのコンタクト不良(電気的欠陥)を検出する機能も、検査装置に要求されている。現在は主に光方式の欠陥検査装置が使用されているが、分解能及び、コンタクト不良検査の点では、光方式の欠陥検査装置に代わって、電子線を用いた欠陥検査装置が今後、検査装置の主流になると予想される。ただし、電子線方式の欠陥検査装置にもスループットの点で光方式に劣るという弱点がある。

このため、高分解能、高スループット且つ電気的欠陥検出が可能な検査装置の 開発が要求されている。光方式での分解能は使用する光の波長の1/2が限界と

言われており、実用化されている可視光の例では 0.2 μ m程度である。一方、電子線を使用する方式では、走査型電子線方式 (SEM方式) が実用化されており、分解能は 0.1 μ m、検査時間は 2 0 c m ウェハの場合には 8 時間/枚である。電子線方式はまた、電気的欠陥(配線の断線、導通不良、ビアの導通不良等) も検査可能であることが大きな特徴である。しかし、検査時間は非常に遅く、検査速度の速い欠陥検査装置の開発が期待されている。

一般に、検査装置は高価でありまたスループットも他のプロセス装置に比べて低いために、現状では重要な工程の後、例えばエッチング、成膜またはСMP(化学機械研磨)平坦化処理後等に使用されている。ここで、電子線を用いた走査(SEM)方式の検査装置について説明すると、SEM方式の検査装置は電子線を細く絞って走査してライン状に試料を照射する。この電子線径が分解能に相当する。一方、ステージを電子線の走査方向に直角の方向に移動させることにより、平面状に観察領域を電子線で照射する。電子線の走査幅は一般に数 100μ mである。前記の細く絞られた電子線(これを一次電子線と呼ぶ)の照射により試料から発生した二次電子線を検出器、例えば、シンチレータとフォトマルチプライヤ(光電子増倍管)又は半導体方式の検出器(PINダイオード型)との組み合わせで検出する。照射位置の座標と二次電子線の量(信号強度)を合成して画像化し、記憶装置に記憶し、あるいはCRT(ブラウン管)上に画像を出力する。

20 以上はSEM(走査型電子顕微鏡)の原理であり、この方式で得られた画像から工程途中の半導体(通常はSi)ウェハの欠陥を検出する。スループットに相当する検査速度は一次電子線の量(電流値)、ビーム径、検出器の応答速度で決まる。ビーム径0.1μm(分解能と同じと考えてよい)、電流値100nA、検出器の応答速度100MHzが現在の最高値で、この場合での検査速度は20cm径のウェハ1枚あたり約8時間と言われている。

上で説明したSEM方式の検査装置では、上記の検査速度がほぼ限界と考えられており、更に高速にする、すなわちスループットを上げるためには新しい方式

が必要である。

1.3

M

4,

15

10

DISCLOSURE OF THE INVENTION

本発明は、シートビーム式検査装置に好適な電子線装置並びに該装置を用いた 5 半導体デバイス製造方法及び露光方法に関する。

本発明の第1の実施の形態は、写像投影方式の電子線装置を提供する。そのため、第1の実施の形態は、

特定幅を有する電子線を照射するビーム発生手段と、

前記荷電粒子線を検査対象となる基板表面に到達させる一次電子光学系と、

前記基板から発生した二次電子線を補足し画像処理系へ導く二次電子光学系と、前記基板を少なくとも一自由度の連続性をもって移送可能に保持するステージ

前記基板の検査室と、

前記検査室に基板を搬入出する基板搬送機構と、

前記基板の欠陥を検出する画像処理解析装置と、

前記検査室の除振機構と、

前記検査室の真空を保持する真空系と、

前記基板の欠陥位置を表示又は記憶する制御系と、

を具備することを特徴とする基板検査装置、基板検査方法およびこうした基板検 20 査装置を用いたデバイス製造方法、

を提供する。

本発明の第2の実施の形態は、電子線を検査対象に照射して前記検査対象を検 査する検査装置に好適な電子線装置および該電子線装置を用いたデバイス製造方 法を提供する。

25 本発明の第2の実施の形態は、

電子線源からの一次電子線を前記検査対象に照射し、前記一次電子線の照射により放出された二次電子線の像を投影する電子光学系及び前記電子光学系により

投影された二次電子線像を検出する検出器を有する電子光学装置と、

前記検査対象を保持して前記電子光学系に関して相対的に移動させるステージ装置と、

清浄気体を前記検査対象に流して前記検査対象への塵埃の付着を阻止するミニ 5 エンバイロメント装置と、

前記ステージ装置を収容しておりかつ真空雰囲気に制御可能になっているワーキングチャンバと、

前記ミニエンバイロメント装置と前記ワーキングチャンバとの間に配置されて はいて、それぞれ独立して真空雰囲気に制御可能になっている少なくとも二つのロ は 10 ボーディングチャンバと、

前記ミニエンバイロメント装置と前記ローディングチャンバの一つ内との間で前記検査対象を移送可能な搬送ユニット及び前記一つのローディングチャンバ内 と前記ステージ装置上との間で前記検査対象を移送可能な別の搬送ユニットを有 はするローダーと、を備え、

15 前記ワーキングチャンバ及びローディングチャンバが振動遮断装置を介して支持されるよう構成されている検査装置、

を提供する。

また、本発明の第2の実施の形態は、

電子線源からの一次電子線を前記検査対象に照射し、前記一次電子線の照射に より放出された二次電子線を減速電界型対物レンズで加速してその像を投影する 電子光学系、前記電子光学系により投影された二次電子線像を検出する検出器及 び前記減速電界型対物レンズと前記検査対象との間に配置されていて前記検査対 象の前記一次電子線の照射面における電界強度を制御する電極を有する電子光学 装置と、

25 前記検査対象を保持して前記電子光学系に関して相対的に移動させるステージ 装置と、

前記ステージ装置を収容しておりかつ真空雰囲気に制御可能になっているワー

25

キングチャンバと、

前記ワーキングチャンバ内の前記ステージ装置上に前記検査対象を供給するローダーと、

前記ワーキングチャンバ内に配置された前記検査対象に電子線を照射して前記検査対象の帯電むらを減少する、あるいは意図的に帯電させるプレチャージユニット及び前記検査対象に電位を印加する電位印加機構と、を備え、

前記ワーキングチャンバが振動遮断装置を介して支持された支持装置により支持されるよう構成されている検査装置、

を提供する。

上記検査装置においては、前記ローダーが、それぞれが独立して雰囲気制御可能になっている第1のローディングチャンバ及び第2のローディングチャンバと、前記検査対象を第1のローディングチャンバ内とその外部との間で搬送する第1の搬送ユニットと、前記第2のローディングチャンバに設けられていて前記検査対象を前記第1のローディングチャンバ内と前記ステージ装置上との間で搬送する第2の搬送ユニットとを備え、前記電子線装置が、更に、前記ローダーにより搬送される検査対象に清浄気体を流して塵埃の付着を阻止するための仕切られたミニエンバイロメント空間を更に備え、前記ローディングチャンバと前記ワーキングチャンバとが振動遮断装置を介して支持装置により支持されていてもよい。

また、上記検査装置において、更に、前記電子光学系に対する前記検査対象の位置決めのために前記検査対象の表面を観察してアライメントを制御するアライメント制御装置と、前記ステージ装置上の前記検査対象の座標を検出するレーザーで制定装置とを備え、前記アライメント制御装置により検査対象に存在するパターンを利用して検査対象の座標を決めてもよく、この場合、前記検査対象の位置合わせは、前記ミニエンバイロメント空間内で行われる粗位置合わせと、前記ステージ装置上で行われるXY方向の位置合わせ及び回転方向の位置合わせとを含んでいてもよい。

さらに、本発明の第2の実施の形態は、こうした検査装置を用いてプロセス途

5

中又はその後のウェハの欠陥を検出するデバイス製造方法をも提供する。

本発明の第3の実施の形態は、

複数の電子線源から放出された電子線を電子光学系を介して試料の面上に結像 させる電子線装置であって、

前記電子線源と前記電子光学系とを分離する仕切板を備えてなり、該仕切板が前記電子線を通過させるためのアスペクト比の大きい穴を有することを特徴とする電子線装置、

を提供する。

前記穴は、それぞれの前記電子線源に対して2個以上設けられ得る。それぞれの前記穴は、前記電子線源の光軸から外れた位置に形成されている。前記仕切板を剛性の高い材料で形成して、前記仕切板に対して前記電子線源及び前記電子光学系を取り付けることが好ましい。

また、本発明の第3の実施の形態は、上記電子線装置を用いて、プロセス途中のウェハの評価を行うデバイス製造方法をも提供する。

本発明の第4の実施の形態は、

静電レンズを含む静電光学系によって電子線を試料に入射させ、前記電子線の入射により前記試料から発生した二次電子線を検出してデータを形成し、前記データに基づいて前記試料を評価する評価装置において、

前記静電光学系内の電極を仕事関数が 5 e V以上の金属でコーティングしたこ
20 とを特徴とする評価装置、

を提供する。

この評価装置によれば、電極、又は、電極の一部を仕事関数が 5 e V以上の金属でコーティングしたので、電極から二次電子線が放出されることが少なく、電極間において放電が生じにくくなり、電極間の絶縁破壊が起きることが少なくなる。

前記静電光学系内の電極をコーティングする金属は、白金、又は、白金を主材料とする合金であることが好ましい。この場合、電極又は電極の一部を白金(仕

25

事関数:5.3 [eV])又は白金を主材料とする合金でコーティングすると、電極から二次電子線が放出される量が少なく、電極間において放電が生じにくくなり、電極間の絶縁破壊が起きることが少なくなる。また、試料が半導体ウェハであっても、半導体ウェハのパターン上に、電極にコーティングされた白金が付着することがあってもトランジスタを劣化させることもないので、半導体ウェハの検査に好適である。

本発明の第4の実施の形態は、

静電レンズを含む静電光学系によって電子線を試料に入射させ、前記電子線の入射により前記試料から発生した二次電子線を検出してデータを形成し、前記データに基づいて前記試料を評価する評価装置において、

前記静電レンズは、電位差のある少なくとも2つの電極と前記少なくとも2つ の電極の間にあって前記少なくとも2つの電極を支持する絶縁材料とを含み、

前記少なくとも2つの電極のうち少なくとも一方の電極は、前記少なくとも2つの電極間において最短の電極間距離となる第1の電極面と、前記第1の電極面よりも電極間距離が長い第2の電極面と、前記第1の電極面と前記第2の電極面との間に前記少なくとも2つの電極間方向の段差とを有し、

前記絶縁材料は、前記少なくとも2つの電極間において前記第2の電極面と他 方の電極の電極面を略垂直に支持し、前記絶縁材料の前記少なくとも2つの電極 間における最短沿面距離は、支持された電極部分における電極間距離と略同じ長 さであることを特徴とする評価装置、

をも提供する。

この評価装置によれば、沿面距離の長い絶縁材料によって電極を支持することによって、電極間の放電を、したがって電極間の絶縁破壊を生じにくくできる。 更に、少なくとも一方の電極の形状を、第1の電極面と第2の電極面とこれら電極面の間に段差を設けるようにすることによって、絶縁材料表面をヒダ形状等に加工することがなく、加工費用が安価になる。

また、絶縁材料の電極間における最短沿面距離は、支持された電極部分におけ

25

5

る電極間距離と略同じ長さであるので、電極間における絶縁材料表面にはほとん と凹凸部分が無く、絶縁材料からの放出ガスが多くなることも無い。よって、装 置のビーム通路の真空度を下げることもない。

前記静電光学系内の電極をコーティングする金属は、白金又は白金を主材料とする合金であることが好ましい。電極又は電極の一部を白金又は白金を主材料とする合金でコーティングすることにより、電極間において放電が、したがって電極間で絶縁破壊が生じることが少なくなる。また、試料が半導体ウェハであっても、半導体ウェハの表面上に、電極にコーティングされた白金が付着することがあってもデバイス性能を劣化させることもないので、半導体ウェハの検査に好適である。

さらに、本発明の第4の実施の形態は、

上記の評価装置を用いたデバイス製造方法であって、デバイス製造途中において前記評価装置を用いて前記試料であるところの半導体ウェハのパターンを評価することを特徴とするデバイス製造方法、

をも提供する。

このデバイス製造方法によれば、デバイス製造途中において評価装置を用いることによって、試料であるところの半導体ウェハのパターンを評価しても、静電光学系内の電極が絶縁破壊することなく評価することができる。

本発明の第5の実施の形態は、

一次光学系によって試料に一次電子線を照射し、試料から放出された二次電子線をE×B分離器で一次光学系から分離して二次光学系に導く電子線装置において、

二次電子線の上記E×B分離器の磁場による偏向量を電場による偏向量の2倍とし、且つ、前記磁場による偏向方向と前記電場による偏向方向とを逆としたことを特徴する電子線装置、

を提供する。

この電子線装置は、一次光学系によって一次電子線を試料に照射し、試料から

5

放出された二次電子線をE×B分離器で一次光学系から分離して二次光学系に導く電子線装置において、二次電子線のE×B分離器の磁場による偏向量を電場による偏向量の2倍且つ偏向方向を逆としたことを特徴とする。

本発明の第5の実施の形態は、

一次光学系によって一次電子線を試料に照射し、該試料から放出された二次電子線をE×B分離器により一次光学系から分離して二次光学系に導く電子線装置において、一次電子線の前記分離器の磁場による偏向量を電場による偏向量の2倍とし、且つ、前記磁場による偏向方向と前記電場による偏向方向とを逆としたことを特徴とする電子線装置、

をも提供する。

この電子線装置は、一次光学系によって試料に一次電子線を照射し、試料から放出された二次電子線をE×B分離器により一次光学系から分離して二次光学系に導く電子線装置において、E×B分離器による一次電子線の磁場による偏向量が電場による偏向量の2倍であり且つ偏向方向が逆であるようにしたことを特徴とする。

この場合、前記一次光学系によって複数のビームからなる一次電子線を形成して試料面を照射し、前記複数のビームからなる一次電子線の照射により前記試料から放出された二次電子線を複数の二次電子線検出器で検出することが好ましい。

上記の電子線装置は、欠陥検査装置、線幅測定装置、合わせ精度測定装置及び 高時間分解能の電位コントラスト測定装置のいずれにも使用可能である。

また、本発明の第5の実施の形態は、上記の電子線装置を用いてプロセス途中 の半導体デバイスを検査することを特徴とするデバイス製造方法をも提供する。 本発明の第6の実施の形態は、

電子線装置であって、

25 前記対物レンズの少なくとも3つの励起電圧に関して、前記第1の方向に平行なパターン・エッジを前記第2の方向に走査したときの二次電子線信号波形の立ち上がりを表す第1のデータと、前記第2の方向に平行なパターン・エッジを前

記第1の方向に走査したときの二次電子線信号波形の立ち上がりを表す第2のデータとを測定する測定手段と、

前記第1のデータと前記第2のデータとをそれぞれ二次式で近似し、それぞれの前記二次式の最小値を示す前記対物レンズの励起条件を求める手段と、

前記対物レンズを、求められた前記励起条件の代数平均に合せる手段と、

を具備したことを特徴とする電子線装置、

を提供する。

複数の上記電子線装置を、前記試料に対して配置し、前記複数の一次電子線の それぞれを、対応の前記対物レンズにより、同時に且つ前記試料の異なる場所に 集束させることも可能である。

更に、前記パターンが帯電している状態で、前記励起手段によって前記対物レンズを前記代数平均に等しい電圧で励起した後に非点収差を補正し、その後、前記パターンの評価を行う手段を備えることが好ましい。

また、本発明の第6の実施の形態は、

対物レンズを含む電子光学系により電子線を集束させ、パターンを前記電子線で走査することにより、該パターンの評価を行う電子線装置であって、

前記対物レンズは、アースに近い電圧が印加される第1の電極と、アースから遠い電圧が印加される第2の電極とを備え、

前記第1の電極に印加される電圧を変化させることによって、前記対物レンズ 20 の焦点距離を変化させることができ、

前記励起手段が、前記対物レンズの焦点距離を大きく変化させるために前記第2の電極に印加する電圧を変える手段と、前記焦点距離を短時間で変化させるために前記第1の電極に印加する電圧を変える手段とを備える

ことを特徴とする電子線装置、

25 を提供する。

本発明の第6の実施の形態は、上記の電子線装置を用いてプロセス途中の半導体ウェハの評価を行うことを特徴とするデバイス製造方法をも提供する。

25

5

本発明の第7の実施の形態は、

電子線を物質に照射することにより、該物質の加工、製造、観測及び検査のうち少なくともいずれかを実行する電子線装置であって、

物質に対する電子線の位置を定める機械構造体と、機械構造体の振動により力を受けるように該機械構造体に取り付けられた、圧電素子と、圧電素子に電気的に接続され、該圧電素子から出力された電気エネルギーを減衰させる、振動減衰用回路とを具備する電子線装置、

を提供する。

電子線を物質に照射して該物質の加工、製造、観測及び検査のうち少なくともいずれかを実行するとき、機械構造体に、その固有振動の共振周波数の振動成分を含む外力が加わると、該機械構造体は、その伝達関数で定まる共振倍率でこの振動成分を増幅させて振動する。この振動は上記圧電素子に力を加える。圧電素子は、機械構造体の振動エネルギーを電気エネルギーに変換して出力するが、振動減衰用回路がこの電気エネルギーを減衰させるため、圧電素子に加わる外力を相殺するように圧電素子は力を発生することになる。これにより、機械共振により発生する振動を相殺し、共振倍率を下げることが可能となる。

上記機械構造体は、電子線応用装置で問題となる振動を生じる部分若しくはその全体であり、電子線を位置決めする任意の機械的構造物である。例えば、電子線を物質に結像させるための光学系の光学部品、このような光学系を収容する鏡筒、物質を載置する支持台、或いは、電子線を物質に照射したことにより発生する二次的な電子線を検出器に結像させるための光学系の光学部品、このような光学系を収容する鏡筒、検出器を収容する鏡筒等である。

上記振動減衰用回路は、インダクタンスを持つ素子若しくは該素子の等価回路 としての誘導性手段を少なくとも備え、該誘導性手段は、静電容量を持つ圧電素 子と接続されて共振回路を形成する。該共振回路の共振周波数は、機械構造体の 共振周波数に実質的に一致するように、圧電素子の静電容量に対する誘導性手段 のインダクタンスが定められている。

5

更に、振動減衰用回路内に抵抗素子が備えられることが好ましい。この場合には、共振周波数において、圧電素子の容量性インピーダンスと誘導性手段のインピーダンスとは相殺され、共振回路のインピーダンスは、事実上、抵抗素子のみとなる。従って、共振時には、圧電素子から出力される電気エネルギーは、抵抗素子によりほぼ全部熱エネルギーとして消費される。

本発明の第7の実施の形態は、上記の電子線装置を用いて、半導体デバイスの加工及び製造、並びに、加工中又は完成品の半導体デバイスの観測及び検査のうち、少なくともいずれかを実行する工程を備えた半導体製造方法をも提供する。

本発明の第8の実施の形態によれば、ウェハを静電的に吸着保持する静電チャックは、ウェハの印加電圧が0ボルトから所定電圧まで時間とともに増大又は減少されるものであり、静電チャックは、基板、電極板及び絶縁層を重ねて成り、ウェハの印加電圧に連動する電圧が静電チャックの電極板に印加されることによりウェハとチャックの間に吸引力が発生する。この電極板は、電極板の中央部分と、周辺部分の一部から成る第1電極と電極板の残りの周辺部分から成る第2電極とに分割される。最初に第1電極に電圧が印加され、次にウェハを接地又は低電位とし、その後に第2電極に電圧が印加される。

本発明の第8の実施の形態によれば、ウェハと該ウェハを静電的に吸着保持する静電チャックとの組合わせにおいて、静電チャックは、基板、電極板及び絶縁層を重ねて成り、ウェハは、所定の抵抗及び接触子を介して電圧を印加され、接触子は、ウェハの裏面に先端が接触する針形状又はウェハの側面に刃先が接触するナイフエッジ形状である。

本発明の第8の実施の形態は、静電チャック又は組合わせを用いてウェハを吸 着保持するデバイス製造方法をも提供する。

本発明の第9の実施の形態は、

25 XYステージに試料を載置し、該試料を真空中で任意の位置に移動して試料面 に電子線を照射する装置において、

該XYステージには、静圧軸受けによる非接触支持機構と差動排気による真空

25

5

シール機構とを設け、

該試料面上の電子線が照射される箇所と、該XYステージの静圧軸受け支持部との間にコンダクタンスが小さくなる仕切りを設け、

電子線照射領域と静圧軸受け支持部との間に圧力差が生じるようにしたことを特徴とする電子線装置、

を提供する。

この第9の実施の形態によれば、試料を載置するXYステージの支持機構に静圧軸受けによる非接触支持機構を適用し、かつ静圧軸受けに使用する高圧ガスが真空チャンバ内にもれないように静圧軸受けの周囲に作動排気による真空シール機構を設けることによって、ステージ装置が真空内で高精度な位置決め性能を発揮することができ、更に、電子線照射位置との間にコンダクタンスを小さくする仕切りを形成することによって、ステージのスライド部が高圧ガス部から真空環境へ移動する度にスライド部表面に吸着していたガスが放出されても、電子線照射位置に該放出ガスが届きにくくなっているため、電子線照射位置の圧力が上昇しにくい。すなわち、上記の構成をとることによって、試料面上の電子線照射位置の真空度を安定させ、かつステージを高精度に駆動させることができるため、試料表面を汚染することなく、試料に対する電子線による処理を高精度に行うことができる。

前記仕切りは差動排気構造を内蔵することができる。この場合、静圧軸受け支持部と電子線照射領域との間に仕切りを設け、その仕切りの内部に真空排気経路を配置して差動排気機能を持たせるので、静圧軸受け支持部から放出されたガスが仕切りを通過して電子線照射領域側に通過することがほとんどできない。これによって電子線照射位置の真空度を更に安定させることができる。

前記仕切りはコールドトラップ機能を有していてもよい。この場合、一般に 10^{-7} Pa以上の圧力領域では、真空中の残留ガス及び材料表面から放出されるガスの主要成分は水分子である。したがって、水分子を効率的に排出することができれば高い真空度を安定して維持し易い。そこで、-100 \sim -200 \sim 程度

25

5

に冷却したコールドトラップを上記仕切り部に設ければ、静圧軸受け側で発生した放出ガスをコールドトラップで凍結捕集することができるので、電子線照射領域側に放出ガスが通過することが困難になり、電子線照射領域の真空度を安定に保ち易くなる。このコールドトラップは、水分子だけに有効なのではなく、清浄な真空の阻害要因である油類等の有機系ガス分子の除去にも有効であることは言うまでもない。

更に、前記仕切りは、電子線照射位置の近傍と、静圧軸受け近傍の2カ所に設けられてよい。この場合、コンダクタンスを小さくする仕切りを、電子線照射位置の近傍と静圧軸受けの近傍の2箇所に形成することになるので、真空チャンバ内が、電子線照射室、静圧軸受け室及びその中間室の3室に小さいコンダクタンスを介して分割された形になる。そして、それぞれの室の圧力を、低い順に電子線照射室、中間室、静圧軸受け室となるように真空排気系を構成する。このようにすることによって、静圧軸受け室において放出ガスによる圧力上昇が生じても、もともと圧力を高めに設定してある室なので圧力変動率としては低く抑えることができる。したがって、中間室への圧力変動は仕切りによって更に低く抑えられ、電子線照射室への圧力変動は、もう一段の仕切りによって更に低減され、圧力変動を実質的に問題ないレベルまで低減することが可能となる。

前記XYステージの静圧軸受けに供給されるガスは、ドライ窒素もしくは高純度の不活性ガスであることが好ましい。また、前記XYステージの、少なくとも静圧軸受けに面する部品表面に放出ガスを低減するための表面処理を施すことが好ましい。上記のように、静圧軸受け部において高圧ガス雰囲気に曝されたステージのスライド部には、その表面に高圧ガスに含まれるガス分子が吸着し、スライド部が真空環境に露出されると、吸着したガス分子が表面から離脱し放出ガスとなって真空度を悪化させる。そこで、真空度の悪化を抑えるためには、吸着するガス分子の量を減らすことと、吸着したガス分子を速やかに排気することが必要である。

このためには、静圧軸受けに供給する高圧ガスを十分に水分を除去したドライ

25

5

窒素もしくは高純度不活性ガス(例えば高純度の窒素ガス)にして、表面に吸着し易く脱離しにくいガス成分(有機物や水分等)を高圧ガスから除去することが有効である。窒素のような不活性ガスは、水分や有機物に比べて表面への吸着率が格段に低く、かつ表面からの脱離速度が格段に大きい。したがって、高圧ガスに、水分や有機物成分を極力除去した高純度不活性ガスを用いれば、スライド部が静圧軸受け部から真空環境に移動しても、放出ガス量が少なく、かつ放出ガス量の減衰も速いため真空度の悪化を小さくすることができる。このため、ステージが移動した時の圧力上昇を低く抑えることが可能になる。

また、ステージの構成部品、特にその中でも高圧ガス雰囲気と真空環境を往復する部品表面に対して、ガス分子との吸着エネルギーが低くなるような表面処理を施すことも有効である。表面処理としては、母材が金属の場合は、TiC(チタンカーバイド)、TiN(チタンナイトライド)、ニッケルメッキ、不動態化処理、電解研磨、複合電解研磨、ガラスピーズショット等が考えられ、母材がSiCセラミックの場合は、CVDによる緻密なSiC層のコーティング等が考えられる。このため、ステージが移動した時の圧力上昇を更に低く抑えることが可能である。

また、本発明の第9の実施の形態は、上記の電子線装置を用いて、半導体ウェハ表面の欠陥を検査するウェハ欠陥検査装置を提供する。これにより、ステージの位置決め性能が高精度で、かつ電子線の照射領域の真空度が安定した検査装置を実現することができるので、検査性能が高く、試料を汚染する恐れのない検査装置が提供される。

加えて、本発明の第9の実施の形態は、上記の電子線装置を用いて、半導体ウェハ表面又はレチクルに半導体デバイスの回路パターンを描画する露光装置をも提供する。これにより、ステージの位置決め性能が高精度で、かつ電子線照射領域の真空度が安定した露光装置を実現することができるので、露光精度が高く、試料を汚染する恐れのない露光装置を提供する。

更に、本発明の第9の実施の形態は、上記の電子線装置を用いて半導体を製造

5

試料表面に不活性ガス分子が吸着しても、差動排気機構或いは電子線照射領域の 高真空部に晒されれば速やかに試料表面から離脱するので、電子線照射領域の真 空度に対する影響を最小限に抑えることが可能になり、電子線による試料への処 理を安定化させることができる。

本発明の第10の実施の形態は、上記の電子線装置を用いて、半導体ウェハ表面の欠陥を検査するウェハ欠陥検査装置を提供する。これにより、ステージの位置決め性能が高精度で、かつ電子線の照射領域の真空度が安定した検査装置を安価に提供することができる。

本発明の第10の実施の形態は、上記の電子線装置を用いて、半導体ウェハ表面又はレチクルに半導体デバイスの回路パターンを描画する露光装置を提供する。これにより、ステージの位置決め性能が高精度で、かつ電子線照射領域の真空度が安定した露光装置を安価に提供することができる。

本発明の第10の実施の形態は、上記の電子線装置を用いて半導体を製造する半導体製造方法を提供する。これにより、ステージの位置決め性能が高精度で、かつ電子線照射領域の真空度が安定した装置によって半導体を製造することになるので、微細な半導体回路を形成できる。

本発明の第11の実施の形態は、

一次電子線を発生し、集束して試料上に走査させて照射させ、前記試料の電子線照射部分から放出された二次電子線を検出器で検出する光学系を複数個備えた電子線装置において、前記試料にリターディング電圧を印加するためのリターディング電圧印加装置と、前記試料に依存して最適なリターディング電圧を前記試料に印加する機能と、を備え、前記光学系は、一体の絶縁物を加工し、表面に金属コーティングして軸対称レンズとした少なくとも一つの軸対称レンズを備えて構成されていることを特徴とする電子線装置、

25 を提供する。

また、本発明の第11の実施の形態は、

一次電子線を発生し、集束して試料上に走査させて照射する一次光学系を有し、

25

5

する半導体製造方法をも提供する。これにより、ステージの位置決め性能が高精度で、かつ電子線照射領域の真空度が安定した装置によって半導体を製造することになるので、微細な半導体回路を形成できる。

本発明の第10の実施の形態は、

XYステージ上に載置された試料に電子線を照射する装置において、

該XYステージはハウジング内に収容されかつ静圧軸受けによりハウジングに 対して非接触で支持されており、

該ステージが収容されたハウジングは真空排気され、

該電子線装置の該試料面上に電子線を照射する部分の周囲には、試料面上の該電子線が照射される領域を排気する差動排気機構が設けられたことを特徴とする電子線装置、

を提供する。

これにより、真空チャンバ内に漏れ出た静圧軸受け用の高圧ガスは、まず真空チャンバに接続された真空排気用配管によって排気される。そして電子線が照射される領域を排気する差動排気機構を電子線を照射する部分の周囲に設けることによって、電子線照射領域の圧力を真空チャンバ内の圧力より大幅に減少させ、電子線による試料への処理が問題なく実施できる真空度を安定して達成することができる。すなわち、大気中で一般に用いられる静圧軸受け式のステージと同様の構造を持ったステージ(差動排気機構を持たない静圧軸受け支持のステージ)を使用して、ステージ上の試料に対して電子線による処理を安定に行うことができる。

前記XYステージの静圧軸受けに供給されるガスはドライ窒素もしくは高純度の不活性ガスであることが好ましい。このドライ窒素もしくは高純度不活性ガスは、該ステージを収納するハウジングから排気された後に加圧され、再び前記静圧軸受けに供給されることが好ましい。これにより、真空のハウジング内の残留ガス成分は高純度の不活性ガスとなるので、試料表面やハウジングにより形成される真空チャンバ内の構造物の表面を水分や油分等で汚染する恐れがない上に、

25

画像取得手段により取得された複数の被検査領域の画像と、記憶手段に記憶された基準画像とを比較することによって試料の欠陥を判断する欠陥判断手段と、 を具備することを特徴とする欠陥検査装置、

を提供する。ここで、検査対象となる試料は、欠陥を検出することができる任意 のものが選択可能であるが、本発明は、半導体ウェハを対象とするとき、優れた 効果を奏することができる。

この実施の形態においては、前記画像取得手段は、試料上で部分的に重なり合いながら互いから変位された複数の被検査領域の画像を各々取得し、前記欠陥判断手段歯、取得された複数の被検査領域の画像と、予め記憶された基準画像とを比較することによって試料の欠陥を判断するよう動作する。

このように、本発明の第12の実施の形態は、位置の異なる被検査領域の画像を複数取得できるようにしたので、基準画像と位置ずれの少ない被検査画像を後工程で選択的に利用することができ、位置ずれによる欠陥検出精度の低下を抑えることができる。その上、試料及び画像取得手段が、通常では検査パターンの一部が被検査画像領域から欠落するような位置関係にあったとしても、互いに位置をずらされた複数の被検査領域の画像が網羅するいずれかの領域には、全検査パターンが入る可能性はきわめて高いので、このようなパターンの一部欠落による欠陥検出の誤りを防止することができる。

前記比較手段は、例えば、取得された複数の被検査領域の各画像と基準画像との間でいわゆるマッチング演算を行い、複数の被検査領域のうち少なくとも1つの画像が基準画像と実質的に差が無かった場合、当該試料に欠陥無しと判断するよう動作する。逆に、全ての被検査領域の画像が基準画像と実質的な差があった場合、当該試料に欠陥有りと判断することで高精度に欠陥検出を行う。

本発明の第12の実施の形態においては、一次電子線を複数の被検査領域に 各々照射し、当該試料から二次電子線を放出させる電子照射手段を更に設け、画 像取得手段によって、複数の被検査領域から放出された二次電子線を検出するこ とにより、該複数の被検査領域の画像を順次取得するようにすることができる。

25

5

前記試料の電子線照射部分から放出された二次電子線を加速し、E×B分離器で前記一次光学系から分離して検出器で検出する電子線装置において、前記試料にリターディング電圧を印加するためのリターディング電圧印加装置と、前記試料のチャージアップ状態を調査するチャージアップ調査機能と、前記チャージアップ調査機能からのチャージアップ状態に関する情報に基づいて最適なリターディング電圧を決定し、それを前記試料に印加する機能又は最適な電子線電流に変更する機能と、を備えて構成されていることを特徴とする電子線装置、を提供する。

本発明の第11の実施の形態は、

電子線を試料に照射する光学系と、チャージアップ調査機能とを有し、前記チャージアップ調査機能は、前記試料に一次電子線が照射されて発生した二次電子線を検出して画像を形成したとき、前記試料の特定部分のパターン歪み或いはパターンボケを評価し、その結果パターン歪み或いはパターンボケが大きい場合をチャージアップが大きいと評価するように構成されていることを特徴とする電子線装置、

をも提供する。

前記チャージアップ調査機能は、試料に値が可変のリターディング電圧を印加可能であり、少なくとも二つのリターディング電圧を印加した状態で、試料のパターン密度が大きく変化している境界付近の画像形成を行い、上記画像をオペレータがパターン歪み或いはパターンボケを評価可能なように表示する装置を有していてもよい。

また、本発明の第11の実施の形態は、上記の電子線装置を用いてプロセス途中のウェハの欠陥を検出することを特徴とするデバイス製造方法を提供する。

本発明の第12の実施の形態は、

試料の欠陥を検査する欠陥検査装置であって、試料上で部分的に重なり合いながら互いから変位された複数の被検査領域の画像を各々取得する画像取得手段と、

基準画像を記憶する記憶手段と、

更に、上記電子照射手段は、一次電子を放出する粒子線源と、一次電子を偏向させる偏向手段とを備え、粒子線源から放出された一次電子線を偏向手段で偏向させることによって、該一次電子線を複数の被検査領域に順次照射することが好ましい。この場合においては、偏向手段により入力画像の位置を容易に変更できるので、高速に位置の異なる被検査画像を複数取得することができる。

本発明の第12の実施の形態は、上記した各態様の欠陥検査装置を用いて、加工中又は完成品のウェハの欠陥を検査する工程を含む半導体デバイス製造方法をも提供する。

BRIEF DESCRIPTION OF THE DRAWINGS

図1は、本発明に係る荷電粒子線装置の第1の実施の形態である検査装置の構成を概略的に示す図である。

図2の(a)は電子偏向系の平面図であり、(b)はその断面図である。

図3は、本発明による半導体デバイス製造方法の一つの実施の形態を示すフローチャートである。

図4の(a)は、図3のウェハプロセッシング工程の中核をなすリソグラフィー工程を示すフローチャートであり、(b)は、図3のウェハプロセッシング工程におけるウェハ検査工程を示すフローチャートである。

図5は、本発明に係る荷電粒子線装置の第2の実施の形態である検査装置の主 20 要構成要素を示す立面図であって、図6の線A-Aに沿って見た図である。

図6の(a)は、図5に示す検査装置の主要構成要素の平面図であって、図5の線B-Bに沿って見た図であり、図6の(b)は、図6の(a)に示す構成の変形例を示す図である。

図7は、図5のミニエンバイロメント装置を示す断面図であって、線C-Cに 25 沿って見た図である。

図 8 は、図 5 のローダハウジングを示す図であって、図 6 の(a)の線 D-D に沿って見た図である。

図 9 は、ウェハラックの拡大図であって、 [A] は側面図で、 [B] は [A] の線E-Eに沿って見た断面図である。

図10の[A]、[B]は、主ハウジングの支持方法の変形例を示す図である。

図11は、図5の検査装置における電子光学装置の概略構成を示す模式図である。

図12は、電位印加機構を示す図である。

図13は、電子線キャリブレーション機構を説明する図であって、 [A] は側面図であり、 [B] は平面図である。

図14は、ウェハのアライメント制御装置の概略説明図である。

図15は、本発明に係る荷電粒子線装置の第3の実施の形態の構成を概略的に示す断面図である。

図16は、本発明に係る荷電粒子線装置の第4の実施の形態である評価装置を模式的に示す構成図である。

図17は、金属別の絶縁破壊発生確率を示す表である。

図18は、電極の斜視図と断面図である。

図19は、図18に示す電極の一部断面図である。

図20は、図18に示す電極の上面図と断面図である。

図21は、図20に示す電極の要部拡大断面図である。

図22は、本発明に係る荷電粒子線装置の第5の実施の形態を概略的に示す図 20 である。

図23は、図22に示す電子線装置の構成を詳細に示す図である。

図24は、本発明に係る荷電粒子線装置の第6の実施の形態を概略的に示す図である。

図25の(a)は、対物レンズに印加する負電圧と電気信号の立上り幅との間 25 の関係を示すグラフであり、(b)は、電気信号の立上り幅を説明するための図 である。

図26は、本発明に係る荷電粒子線装置の第7実施の形態である電子線検査装

置の構成図である。

図27は、図26に示す電子線検査装置の機械構造体のブロックを概略的に示す図であって、(a)は電子線検査装置と座標軸との関係、(b)は鏡筒の固有振動、(c)は、この固有振動を相殺するようにアクチュエータを取り付けた場合の図を示す。

図28は、図26に示す電子線検査装置で用いられるアクチュエータ、振動減 衰用回路、並びに、形成された直列共振回路の等価回路の構成を示す概略図であ る。

図29は、図26に示す電子線検査装置の鏡筒の伝達関数を示すグラフである。 図30は、図26に示す電子線検査装置における、鏡筒の伝達関数、直列共振 回路の電気的周波数特性および総合伝達関数を示すグラフである。

図31は、本発明に係るウェハ検査方法を説明する図であって、(a)はパターン欠陥検出、(b)は線幅測定、(c)は電位コントラスト測定をそれぞれ示す。

図32は、本発明に係る電子線装置の第8の実施の形態における静電チャックの概略平面図であり、ウェハを取り除いて電極を見た平面図である。

図33は、図32の直線M-Mに沿う概略垂直断面図であり、ウェハを載置し電圧が印加されない状態を示す断面図である。

図34の(a) および(b) は、電極及びウェハへ印加される電圧のタイムチ 20 ャートである。

図35は、図32に示す静電チャックを使用した電子線装置の構成例を示すプロック図である。

図36は、従来の電子線装置の真空チャンバ及びXYステージを示す図であって、[A]が正面図で[B]が側面図である。

25 図37は、図36の差動排気機構を説明する図である。

図38は、本発明に係る荷電粒子線装置の第9の実施の形態における真空チャンバ及びXYステージを示す図であって、[A]が正面図で[B]が側面図であ

る。

図39は、本発明の第9の実施の形態に対する第1の変形例における真空チャンバ及びXYステージを示す図である。

図40は、本発明の第9の実施の形態に対する第2の変形例における真空チャ 5 ンバ及びXYステージを示す図である。

図41は、本発明の第9の実施の形態に対する第3の変形例における真空チャンバ及びXYステージを示す図である。

図42は、本発明の第9の実施の形態に対する第4の変形例における真空チャンバ及びXYステージを示す図である。

図43は、図38~図42に示される鏡筒内に設けられる光学系および検出系の一例を示す概略図である。

図44は、本発明に係る荷電粒子線装置の第10の実施の形態における真空チャンバ及びXYステージを示す図である。

図45は、図44に示す装置に設けられた差動排気機構の一例を示す図である。

図46は、図44に示す装置におけるガス循環配管系を示す図である。

図47は、本発明に係る荷電粒子線装置の第11の実施の形態における光学系の模式図である。

図48は、図47に示す電子線装置の鏡筒の配列状態を説明する図である。

図49は、チャージアップの評価場所と評価方法を説明する図である。

20 図 5 0 は、本発明に係る荷電粒子線装置の第 1 2 の実施の形態である欠陥検査 装置の概略構成図である。

図51は、図50の欠陥検査装置で取得される複数の被検査画像及び基準画像 の例を示す図である。

図52は、図50の欠陥検査装置におけるウェハ検査のメインルーチンの流れ 25 を示すフローチャートである。

図53は、図52における複数の被検査画像データ取得工程(ステップ190 4)のサブルーチンの詳細な流れを示すフローチャートである。

25

図54は、図52における比較工程(ステップ1908)のサブルーチンの詳細な流れを示すフローチャートである。

図55は、図50の欠陥検査装置の検出器の具体的構成例を示す図である。

図56は、半導体ウェハの表面上で部分的に重なり合いながら互いから位置が 5 ずらされた複数の被検査領域を概念的に示す図である。

BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明に係る荷電粒子線装置の各種の実施の形態を、電子線を用いる装置を例に取って説明する。いずれの実施の形態も、シートビーム式検査装置に用いるのに適している。

装置の全体構造に関する実施の形態(第1の実施の形態)

本発明に係る荷電粒子線装置の第1の実施の形態は、電子線を用いた写像投影 方式に関するもので、まず、写像投影方式について説明をする。

写像投影方式では、試料の観察領域を一次電子線で一括して照射し、すなわち、走査は行わずに一定の面積を照射し、照射された領域からの二次電子線をレンズ系により一括して検出器(マイクロチャンネルプレートと蛍光板との組み合わせ)上に二次電子線の画像として結像させる。この画像を二次元CCD(固体撮像素子)又はTDI-CCD(ラインイメージセンサ)により電気信号に変換し、CRT上に出力し又は記憶装置に蓄積する。この画像情報から試料ウェハ(工程途中の半導体(Si)ウェハ)の欠陥を検出する。CCDの場合、ステージの移動方向は短軸方向または長軸方向であり、移動はステップアンドリピート方式である。TDI-CCDの場合、ステージは積算方向に連続的に移動される。TDI-CCDでは画像を連続的に取得できるので、欠陥検査を連続で行う場合はTDI-CCDを使用する。分解能は結像光学系(二次光学系)の倍率と精度等で決まり、例えば0.05μmの分解能が得られている。この場合、分解能が0.1μmであり、電子線照射条件が200μm×50μmの領域に1.6μΑのとき、検査時間は20cmのウェハ1枚当たり1時間程度であり、SEM方式に比

25

5

べて 8 倍も速い。ここで使われている TD I - C C D の仕様は 2 0 4 8 画素(ピクセル)×5 1 2 段であり、ラインレートは 3 . 3 μ 秒(ライン周波数 3 0 0 k H z)である。この例の照射面積は TD I - C C D の仕様に合わせているが、照射対象物によって照射面積を変更することもある。

ここで、図1を用いて写像投影方式の主な機能の関係とその全体像について説明する。図1において、検査装置は一次コラム2001、二次コラム2002およびチャンバー2003を有している。一次コラム2001の内部には、電子銃2004が設けられており、電子銃2004から照射される電子線(一次電子線)の光軸上に一次光学系2005が配置される。また、チャンバー2003の内部には、ステージ2006が設置され、ステージ2006上には試料2007が載置される。

一方、二次コラム 2 0 0 2 の内部には、試料 2 0 0 7 から発生する二次電子線の光軸上に、カソードレンズ 2 0 0 8、開口アパーチャ(NA、Numerical Aperture) 2 0 0 9、ウィーンフィルタ(E×Bフィルタ) 2 0 1 0、第 2 レンズ 2 0 1 1、フィールドアパーチャ 2 0 1 2、第 3 レンズ 2 0 1 3、第 4 レンズ 2 0 1 4 および検出器 2 0 1 5 が配置される。なお、開口アパーチャ 2 0 0 9 は開口絞りに相当するもので、円形の穴が開いた金属製(Mo等)の薄板であり、その開口部が一次電子線の集束位置およびカソードレンズ 2 0 0 8 の焦点位置になるように配置されている。したがって、カソードレンズ 2 0 0 8 と開口アパーチャ 2 0 0 9 とは、テレセントリックな電子光学系を構成している。

検出器 2 0 1 5 の出力は、コントロールユニット 2 0 1 6 に入力され、コントロールユニット 2 0 1 6 の出力は C P U 2 0 1 7 に入力される。 C P U 2 0 1 7 の制御信号は、一次コラム制御ユニット 2 0 1 8、二次コラム制御ユニット 2 0 1 9 およびステージ駆動機構 2 0 2 0 に入力される。一次コラム制御ユニット 2 0 1 8 は、一次光学系 2 0 0 5 のレンズ電圧制御を行い、二次コラム制御ユニット 2 ト 2 0 1 9 は、カソードレンズ 2 0 0 8、第 2 レンズ 2 0 1 1 ~第 4 レンズ 2 0

25

5

14のレンズ電圧制御およびウィーンフィルタ2010に印加する電磁界制御を行う。

ステージ駆動機構2020は、ステージの位置情報をCPU2017に伝達する。また、一次コラム2001、二次コラム2002およびチャンバー2003は、真空排気系(不図示)と繋がっており、真空排気系のターボポンプにより排気されて、内部は真空状態を維持している。

電子銃 2004 から発せられた一次電子線は、一次光学系 2005 によってレンズ作用を受けながら、ウィーンフィルタ 2010 に入射する。電子銃のチップとしては、矩形陰極で大電流を取り出すことができる L_aB_6 を用いることが好ましい。

一次光学系2005は、回転軸非対称の四重極または八重極の静電(または電磁)レンズを使用する。これは、いわゆるシリンドリカルズレンズと同様にX軸、Y軸各々で集束と発散とを引き起こすことができる。このレンズを2段、3段で構成し、各レンズ条件を最適化することによって、照射電子線を損失することなく、試料面上の電子線照射領域を、任意の矩形状、または楕円形状に整形することができる。具体的には、静電レンズを用いる場合には4つの円柱ロッドが使用され、対向する電極同士(aとb、cとd)を等電位にし、且つ互いに逆の電圧特性が与えられる。なお、四重極レンズとして円柱形ではなく、静電偏向器で通常使用される円形板を4分割した形状のレンズを用いてもよい。この場合、レンズの小型化を図ることができる。

一次光学系2005を通過した一次電子線は、ウィーンフィルタ2010の偏向作用により軌道が曲げられる。ウィーンフィルタ2010は、後述するように、磁界と電界を互いに直交するよう発生することができる。いま、電界をE、磁界をB、電子の速度を V とすると、E = v Bのウィーン条件を満たす電子のみを直進させ、それ以外の電子の軌道を曲げる。一次電子線に対しては、磁界によるカ下と電界による力下とが発生してビーム軌道を曲げる。一方、二次電子線に対しては、上記の力下とが発生してビーム軌道を曲げる。一方、二次電子線に対しては、上記の力下とが発生してビーム軌道を曲げる。

25

5

電子線はそのまま直進する。

一次光学系2005のレンズ電圧は、一次電子線が開口アパーチャ2009の開口部で結像するように、予め設定されている。この開口アパーチャ2009は、装置内に散乱する余計な電子線が試料面に到達することを阻止し、試料2007のチャージアップや汚染を防ぐよう作用する。さらに、開口アパーチャ2009とカソードレンズ2008とはテレセントリックな電子光学系を構成しているので、カソードレンズ2008を透過した一次電子線は平行ビームになり、試料2007を均一且つ一様に照射する。すなわち、光学顕微鏡でいうケーラー照明が実現される。

一次電子線が試料2007に照射されると、試料2007のビーム照射面からは、二次電子線として、二次電子、反射電子または後方散乱電子が発生する。二次電子線は、カソードレンズ2008によるレンズ作用を受けながら、該レンズを透過する。カソードレンズ2008は3枚の電極で構成されている。一番下の電極は、試料2007側の電位との間で正の電界を形成し、電子(特に、指向性が小さい二次電子)を引き込み、効率よくレンズ内に導くように設計されている。レンズ作用は、カソードレンズ2008の1番目、2番目の電極に電圧を印加し、3番目の電極をゼロ電位にすることで行われる。

一方、開口アパーチャ2009は、カソードレンズ2008の焦点位置、すなわち試料2007からのバックフォーカス位置に配置されている。したがって、視野中心外(軸外)から出た電子線の光束も平行ビームとなり、この開口アパーチャ2009の中心位置を、けられが生じることなく通過する。なお、開口アパーチャ2009は、二次電子線に対しては、第2レンズ2011~第4レンズ2014のレンズ収差を抑える役割を果たしている。

開口アパーチャ2009を通過した二次電子線は、ウィーンフィルタ2010 の偏向作用を受けることなく、そのまま直進する。ウィーンフィルタ2010に 印加する電磁界を変えることで、二次電子線から、特定のエネルギーを持つ電子 (例えば二次電子、反射電子又は後方散乱電子)のみを検出器2015に導くこ

25

5

とができる。

二次電子線をカソードレンズ2008のみで結像させると、レンズ作用が強くなり収差が発生しやすい。そこで、第2レンズ2011と合わせて、1回の結像を行わせる。二次電子線は、カソードレンズ2008および第2レンズ2011により、フィールドアパーチャ2012上で中間結像を得る。この場合、通常、二次光学系として必要な拡大倍率が不足することが多いため、中間像を拡大するためのレンズとして、第3レンズ2013、第4レンズ2014を加えた構成にする。二次電子線は、第3レンズ2013、第4レンズ2014により拡大されて結像し、ここでは、合計3回結像する。なお、第3レンズ2013と第4レンズ2014とを合わせて1回(合計2回)結像させてもよい。

第2レンズ2011、第3レンズ2013および第4レンズ2014はすべて、ユニポテンシャルレンズまたはアインツェルレンズとよばれる回転軸対称型のレンズである。各レンズは3枚電極の構成で、通常は外側の2枚の電極をゼロ電位とし、中央の電極に印加する電圧でレンズ作用を行わせて制御する。また、中間の結像点には、フィールドアパーチャ2012が配置されている。フィールドアパーチャ2012は光学顕微鏡の視野絞りと同様に、視野を必要範囲に制限しているが、電子線の場合、余計なビームを後段の第3レンズ2013および第4レンズ2014と共に遮断して、検出器2015のチャージアップや汚染を防いでいる。なお、拡大倍率は、この第3レンズ2013および第4レンズ2014のレンズ条件(焦点距離)を変えることで設定される。

二次電子線は二次光学系により拡大投影され、検出器2015の検出面に結像する。検出器2015は、電子を増幅するマイクロチャンネルプレート(MCP)と、電子を光に変換する蛍光板と、真空系と外部との中継および光学像を伝達させるためのレンズやその他の光学素子と、撮像素子(CCD等)とから構成される。二次電子線はMCP検出面に結像し、増幅され、蛍光板によって光信号に変換され、撮像素子によって光電変換されて電気信号になる。

コントロールユニット2016は、検出器2015から試料の画像信号を読み

5

出し、CPU2017に伝達する。CPU2017は、画像信号からテンプレートマッチング等によってパターンの欠陥検査を実施する。ステージ2006は、ステージ駆動機構2020により、XY方向に移動可能となっている。CPU2017は、ステージ2006の位置を読み取り、ステージ駆動機構2020に駆動制御信号を出力し、ステージ2006を駆動させ、順次に画像の検出、検査を行う。

このように、この第1の実施形態における検査装置では、開口アパーチヤ2009とカソードレンズ2008とがテレセントリックな電子光学系を構成しているので、一次電子線を試料に均一に照射させることができる。すなわち、ケーラー照明を容易に実現することができる。さらに、二次電子線に対しては、試料2007からの全ての主光線がカソードレンズ2008に垂直に(レンズ光軸に平行に)入射し、開口アパーチャ2009を通過するので、周辺光がけられることがなく、試料周辺部の画像輝度が低下することがない。また、電子が有するエネルギーのばらつきによって結像位置が異なる、いわゆる倍率色収差が起こる(特に、二次電子線はエネルギーのばらつきが大きいため、倍率色収差が大きい)が、カソードレンズ2008の焦点位置に開口アパーチャ2009を配置したので、この倍率色収差を抑えることができる。

拡大倍率の変更は、開口アパーチャ2009の通過後に行われるので、第3レンズ2013、第4レンズ2014のレンズ条件の設定倍率を変えても、検出側での視野全面に均一な像が得られる。

なお、この実施の形態においては、むらのない均一な像を取得することができるが、通常、拡大倍率を高倍にすると、像の明るさが低下するという問題が生じる。これを改善するためには、二次光学系のレンズ条件を変えて拡大倍率を変更する際、それに伴って決まる試料面上の有効視野と試料面上に照射される電子線とが同一の大きさになるように、一次光学系のレンズ条件を設定するのがよい。すなわち、倍率を上げていけば、それに伴って視野が狭くなるが、それと同時に電子線の照射エネルギー密度を上げていくことで、二次光学系で拡大投影されて

25.

5

も、検出電子の信号密度は常に一定に保たれ、像の明るさは低下しない。

また、この第1の実施の形態の検査装置では、一次電子線の軌道を曲げ且つ二次電子線を直進させるためにウィーンフィルタ2010を用いたが、それに限定されるものではなく、一次電子線を直進させ且つ二次電子線の軌道を曲げるウィーンフィルタを用いてもよい。さらに、この実施の形態では、矩形陰極と四極子レンズとから矩形ビームを形成したが、それに限定されず、例えば円形ビームから矩形ビームや楕円形ビームを作り出してもよいし、円形ビームをスリットに通して矩形ビームを取り出してもよい。また、複数のビームを走査して全体に電子線が照射領域を均一に照射するようにしてもよい。このときの走査は複数ビームがそれぞれの決められた領域を任意に(但し照射量が均一になるように)すればよい。

ここで、電子線源としての電子銃について説明すると、この実施の形態においては、電子線源として熱電子線源を使用することができる。電子放出部(エミッタ)の材料は L_aB_6 である。しかし、高融点(高温での蒸気圧が低い)で仕事関数の小さい材料であれば、他の材料を使用することが可能である。先端を円錐形状にしたもの又は円錐の先端を切り落とした円錐台形状のものが好ましい。円錐台先端の直径は 100μ m程度である。他の方式としては電界放出型の電子線源あるいは熱電界放出型のものが使用可能であるが、この実施の形態のように比較的広い領域(例えば $100\times25\sim400\times100\mu$ m²)を大きな電流(1μ A程度)で照射する場合には、 L_aB_6 を用いた熱電子源が最適である。(SEM方式では一般に熱電界電子線源が使用されている)。

なお、熱電子線源は電子放出材を加熱することにより電子を放出する方式であり、熱電界放出電子線源とは、電子放出材に高電界をかけることにより電子を放出させ、更に電子線放出部を加熱することにより、電子放出を安定させた方式を 意味する。

図1を参照して説明したところから理解されるように、写像投影方式の主な構成要素の機能は次のとおりである。まず、一次電子光学系であるが、電子銃より

発せられる電子線をビーム状に形成し、ウェハ面を矩形または円形(楕円形)の電子線で照射させる部分を「一次電子光学系」と呼ぶ。一次電子光学系のレンズ条件を制御する事により、電子ビームのサイズや電流密度を制御できる。また、一次/二次電子光学系連結部に位置するウィーンフィルタにより、一次電子線はウェハに垂直に入射される。

こうした電子銃のL。B。カソードから放出された熱電子は、ウェーネルト、トリプルアノードレンズでガン絞り上にクロスオーバー像として結像される。照明視野絞りでレンズへの入射角を適正化した電子線を、一次系静電レンズを制御することによって回転非対称の形で開口アパーチャ絞り上に結像させ、その後、ウェハ面上に面照射する。一次系静電レンズの後段は3段4極子(QL)と、1段の開口収差補正用電極で構成される。4極子レンズはアライメント精度が厳しいといった制約はあるが、回転対称レンズに比べ、強い収束作用を持つ特徴があり、回転対称レンズの球面収差に相当する開口収差を開口収差補正電極に適切な電圧を印加することで補正を行うことができる。これにより、所定の領域に均一な面ビームを照射することができる。

次に、二次電子光学系であるが、一次電子線の照射によりウェハから発生される二次電子線を処理して得た二次元の二次電子画像を、対物レンズに相当する静電レンズ(CL、TL)により視野絞り位置で結像させ、後段のレンズ(PL)で拡大投影する、この結像投影光学系を「二次電子光学系」と呼ぶ。このとき、ウェハにはマイナスのバイアス電圧(減速電界電圧)が印加されている。減速電界は照射ビームに対して減速の効果を持ち、ウェハ(試料)のダメージを低減させるとともに、CLとウェハ間の電位差で試料面上から発生した二次電子線を加速し、色収差を低減させる効果を持つ。CLによって収束した電子はTLでFA上に結像され、その像をPLで拡大投影して二次電子線検出器(MCP)上に結像させる。二次電子光学系では、CL-TL間にNAを配置し、これを最適化することで、軸外収差低減が可能な光学系を構成している。

また、電子光学系の製造上の誤差や、ウィーンフィルタを通過することによっ

25

5

て発生する像の非点収差や異方性倍率を補正するため、静電8極子(STIG)を配置して補正を行い、軸ズレに対しては各レンズ間に配置した偏向器(OP)で補正を行うことが好ましい。これにより、視野内における均一な分解能での写像光学系が達成できる。

ウィーンフィルタ2010は、電極と磁極を直交方向に配置し、電界と磁界を 直交関係で生成する電磁プリズム光学系のユニットである。電磁界を選択的に与 えると、一方向からその場に入射する電子線は偏向され、その反対方向から入射 する電子線は直進させる。これは、電子が電界から受ける力と磁界から受ける力 とが相殺される条件(ウィーン条件)を作ることが可能だからであり、これによ り一次電子線は偏向されてウェハ上に垂直に照射され、二次電子線は検出器に向 けて直進することになる。

電子線偏向部としてのウィーンフィルタ2010の詳細な構造について、図2の(a)および(b)を用いて説明する。これらの図に示すように、電子線偏向部が生成する場は、上記の写像投影光学部の光軸に垂直な平面内において、電界と磁界とを直交させた構造、すなわちE×B構造となる。

ここで、電界は凹面状の曲面を持つ電極2030a、2030bにより発生される。電極2030a、2030bによって発生される電界は、それぞれ制御部2031a、2031bにより制御される。電界発生用の電極2030a、2030bと直交するように、電磁コイル2032a、2032bを配置することにより、磁界を発生させる。この場合、磁界の均一性を向上させるために、平行平板形状を有するポールピースを持たせて磁路を形成している。なお、電界発生用の電極2030a、2030bは点2034に関して対称であればよいが、同心円上にあるのでもよい。

図2の(b)は、図2の(a)における点2034を通って電極2030a、2030bに垂直な面における縦断面図であり、これを用いて電子線の挙動を説明する。照射された電子線2035a、2035bは、電極2030a、2030bが発生する電界と、電磁コイル2031a、2031bが発生する磁界とに

5

最後に、検出器について説明する。二次光学系で結像される、ウェハからの二次電子線の画像は、まずマイクロチャンネルプレート(MCP)で増幅されたのち、蛍光スクリーンにあたって光の像に変換される。MCPは、直径 $6\sim2.5~\mu$ m、長さ $0.2.4\sim1.0$ mという非常に細い導電性のガラスキャピラリを数百万本束ねて薄い板状に整形したもので、所定の電圧印加を行うことで、一本一本のキャピラリがそれぞれ独立した二次電子増幅器として働き、全体として二次電子増幅器を形成する。この検出器により光に変換された画像は、真空透過窓を介して大気中に置かれたFOP系でTDI-CCD上に1対1で投影される。

以上説明したところから理解されるとおり、第1の実施の形態である検査装置は、電子線を用いた検査装置のスループットを上げることができる。

図3は、本発明の第1の実施の形態を用いた、半導体デバイスの製造方法の一例を示しており、以下の主工程を含んでいる。

- (1) ウェハを製造するウェハ製造工程(又はウェハを準備するウェハ準備工程)
- (2) 露光に使用するマスクを製造するマスク製造工程(又はマスクを準備する 25 マスク準備工程)
 - (3) ウェハに必要な加工処理を行うウェハプロセッシング工程
 - (4) ウェハ上に形成されたチップを1個ずつ切り出し、動作可能にならしめる

チップ組立工程

(5) できたチップを検査するチップ検査工程。

上記のそれぞれの主工程は更に幾つかのサブ工程からなる。これらの主工程中の中で、半導体デバイスの性能に決定的な影響を及ぼすのが(3)のウェハプロセッシング工程である。この工程では、設計された回路パターンをウェハ上に順次積層し、メモリやMPUとして動作するチップを多数形成する。このウェハプロセッシング工程は以下の工程を含む。

- (A) 絶縁層となる誘電体薄膜や配線部、或いは電極部を形成する金属薄膜等を 形成する薄膜形成工程 (CVDやスパッタリング等を用いる)
 - (B) この薄膜層やウェハ基板を酸化する酸化工程
 - (C) 薄膜層やウェハ基板等を選択的に加工するためにマスク (レチクル) を用 いてレジストパターンを形成するリソグラフィー工程
 - (D) レジストパターンに従って薄膜層や基板を加工するエッチング工程(例えばドライエッチング技術を用いる)
 - (E) イオン・不純物注入拡散工程
 - (F) レジスト剥離工程
 - (G) 加工されたウェハを検査する検査工程。

なお、ウェハプロセッシング工程は必要な層数だけ繰り返し行い、設計通り動作 する半導体デバイスを製造する。

- 20 図4の(a)は、図3のウェハ・プロセッシング工程の中核をなすリソグラフィー工程(C)を示すフローチャートである。このリソグラフィー工程は以下の工程を含む。
 - (a) 前段の工程で回路パターンが形成されたウェハ上にレジストをコートする レジスト塗布工程
- 25 (b) レジストを露光する工程
 - (c) 露光されたレジストを現像してレジストパターンを得る現像工程
 - (d) 現像されたレジストパターンを安定化するためのアニール工程。

25

5

上記(G)の検査工程に対して本発明の欠陥検査装置を用いると、微細なパターンを有する半導体デバイスでも、スループット良く検査できるので、全数検査も可能となり、製品の歩留まりの向上、欠陥製品の出荷防止が可能となる。これについて、図4の(b)を用いて説明する。

一般に、電子線を用いた欠陥検査装置は高価であり、またスループットも他のプロセス装置に比べて低いために、こうした欠陥検査装置は、現状では、最も検査が必要と考えられている重要な工程(例えばエッチング、成膜又はCMP(化学機械研磨)平坦化処理等)の後に使用されている。そこで、検査されるウェハは大気搬送系及び真空搬送系を通して、超精密X-Yステージ上に位置合わせされた後、静電チャック機構等により固定され、以後、図4の(b)に示す手順に従って欠陥検査等が行われる。

図4の(b)において、はじめに、光学顕微鏡により、必要に応じて各ダイの位置確認や、各場所の高さ検出が行われ記憶される。光学顕微鏡はこの他に欠陥等の見たい所の光学顕微鏡像を取得し、電子線像との比較等にも使用される。次にウェハの種類(どの工程後か、ウェハのサイズは20cmか30cmか等)に応じたレシピの情報を装置に入力し、以下検査場所の指定、電子光学系の設定、検査条件の設定等を行なった後、画像取得を行ないながら、通常はリアルタイムで欠陥検査を行なう。セル同士の比較、ダイ比較等により、アルゴリズムを備えた高速の情報処理システムが検査を行い、必要に応じてCRT等への結果の出力やメモリへの記憶を行なう。

欠陥にはパーティクル欠陥、形状異常(パターン欠陥)、及び電気的(配線又はピア等の断線及び導通不良等)欠陥等が有り、これらを区別したり欠陥の大きさや、キラー欠陥(チップの使用が不可能になる重大な欠陥等)の分類を自動的にリアルタイムで行うことも出来る。

電気的欠陥の検出は電位コントラスト異状を検出することで達成される。例えば、導通不良の場所は電子線照射 (500e V程度)により通常は正に帯電し、コントラストが低下するので、正常な場所と区別することができる。この場合の

25

5

電子線照射手段とは、通常検査用の電子線照射手段以外に、電位差によるコントラストを際立たせるために別途設けた低電位(エネルギー)の電子線発生手段(熱電子発生、UV/光電子)をいう。検査対象領域に検査用の電子線を照射する前に、この低電位(エネルギー)の電子線を発生させ照射する。検査用の電子線を照射することにより試料を正に帯電させることができる写像投影方式の場合は、仕様によっては、低電位の電子線発生手段を別途設ける必要はない。また、ウェハ等の試料に基準電位に対して正又は負の電位を加えること等によって(素子の順方向又は逆方向により流れ易さが異なるために)生じるコントラストの違いからも、欠陥を検出することが可能である。こうした欠陥検査装置は線幅測定装置及び合わせ精度測定にも利用することができる。

なお、検査試料の電気的欠陥を検査する方法としては、本来電気的に絶縁されている部分の電圧が、その部分が通電状態にある場合の電圧とは異なることを利用することもできる。それは、まず、検査試料に事前に電荷を補揺することで、本来電気的に絶縁されている部分の電圧と、本来電気的絶縁されている部分ではあるが何らかの原因で通電状態にある部分の電圧との間に電圧差を生じさせ、その後に、本発明に係る荷電粒子線装置から荷電粒子ビームを照射することにより、電圧差があるデータを取得し、この取得したデータを解析して、通電状態になっていることを検出する。

検査装置に関する実施の形態(第2の実施の形態)

本発明の第2の実施の形態は、電子線を用いて検査対象の表面に形成されたパターンの欠陥等を検査するのに適した電子線装置に関し、例えば、半導体製造工程におけるウェハの欠陥を検出する場合のように、電子線を検査対象に照射してその表面の性状に応じて変化する二次電子線を捕捉して画像データを形成し、その画像データに基づいて検査対象の表面に形成されたパターン等を高いスループットで検査する検査装置に好適な電子線装置、並びにそのような電子線装置を用いて歩留まり良くデバイスを製造するデバイス製造方法に関する。

電子線を用いてウェハなどの欠陥を検査する装置としては、既に市販されてい

5

る走査電子線顕微鏡(SEM)を用いた装置が知られている。この装置は細く絞った電子線を非常に間隔の小さいラスタ幅でラスタ走査を行い、走査に伴って検査対象から放出される二次電子線を二次電子線検出器で検出してSEM画像を形成し、そのSEM画像を異なるダイの同じ場所同志を比較して欠陥を抽出するものである。

しかし、従来においては電子線を使用した欠陥検査装置の全体的なシステムとして完成させた装置は未だ存在しなかった。

ところで、SEMを応用した欠陥検査装置では、ビーム寸法が小さく、当然画素寸法が小さく、ラスタ幅も小さいため、欠陥検査に多くの時間を必要としていた。また、高スループットにするため、ビーム電流を大きくすると絶縁物が表面にあるウェハでは帯電して良好なSEM像が得られない問題があった。

また、電子線を照射して検査する電子光学装置と、検査対象をその電子光学装置の照射位置までクリーンな状態で供給し、アライメントする他のサブシステムとの間の関連性を考慮した検査装置全体の構造については今までほとんど明らかにされていなかった。更に、検査対象となるウェハの大径化が進められ、サブシステムもそれに対応可能にする要請もでてきた。

本発明の第2の実施の形態は上記の問題点に鑑みて提案されたものであって、 電子線を用いた電子光学系を使用すると共に、その電子光学系と、装置を構成 するその他の構成機器との調和を図ってスループットを向上した電子線装置、

検査対象を蓄えるカセットと電子光学系に関して検査対象を位置決めするステージ装置との間で検査対象を搬送するローダー及びそれと関連する装置を改善して検査対象を効率的にかつ精度良く検査することを可能とする電子線装置、

SEMで問題のあった帯電の問題を解決して検査対象を精度良く検査可能な電子線装置、

25 上記の電子線装置を用いてウェハ等の検査対象の検査を行うことにより歩留ま りの良いデバイス製造方法、

を提供する。

25

5

以下、図面を参照して、本発明に係る荷電粒子線装置の第2の実施の形態である、検査対象として表面にパターンが形成された基板すなわちウェハを検査する 半導体検査装置の全体構造、動作および該半導体検査装置を用いたデバイス製造 方法を説明する。

図5および図6の(a)において、半導体検査装置1は、複数枚のウェハを収納したカセットを保持するカセットホルダ10と、ミニエンバイロメント装置20と、ワーキングチャンバを画成する主ハウジング30と、ミニエンバイロメント装置20と主ハウジング30との間に配置されていて、二つのローディングチャンバを画成するローダハウジング40と、ウェハをカセットホルダ10から主ハウジング30内に配置されたステージ装置50上に装填するローダー60と、真空ハウジングに取り付けられた電子光学装置70とを備え、それらは図5及び図6の(a)に示されるような位置関係で配置されている。半導体検査装置1は、更に、真空の主ハウジング30内に配置されたプレチャージユニット81と、ウェハに電位を印加する電位印加機構83(図12に図示)と、電子線キャリブレーション機構85(図13に図示)と、ステージ装置上でのウェハの位置決めを行うためのアライメント制御装置87を構成する光学顕微鏡871とを備えている。

カセットホルダ10は、複数枚(例えば25枚)のウェハが上下方向に平行に並べられた状態で収納されたカセット c (例えば、アシスト社製のSMIF、FOUPのようなクローズドカセット)を複数個(この実施の形態では2個)保持するようになっている。このカセットホルダとしては、カセットをロボット等により搬送してきて自動的にカセットホルダ10に装填する場合にはそれに適した構造のものを、また人手により装填する場合にはそれに適したオープンカセット構造のものをそれぞれ任意に選択して設置できるようになっている。カセットホルダ10は、この実施の形態では、自動的にカセット c が装填される形式であり、例えば昇降テーブル11と、その昇降テール11を上下移動させる昇降機構12とを備え、カセット c は昇降テーブル上に図6の(a)で鎖線図示の状態で自動

25

的にセット可能になっていて、セット後、図6の(a)で実線図示の状態に自動 的に回転されてミニエンバイロメント装置内の第1の搬送ユニットの回動軸線に 向けられる。また、昇降テーブル11は図5で鎖線図示の状態に降下される。こ のように、自動的に装填する場合に使用するカセットホルダ、或いは人手により 装填する場合に使用するカセットホルダはいずれも公知の構造のものを適宜使用 すれば良いので、その構造及び機能の詳細な説明は省略する。

図6の(b)は、カセットを自動装填するための機構の変形例を示しており、複数の300mmのウェハWを箱本体501の内側に固定した溝型ポケット(図示せず)に収納した状態で収容し、搬送や保管等を行うものである。このウェハ搬送箱28は、角筒状の箱本体501と、箱本体501の側面の開口部29に設けられてドア自動開閉装置に連絡され且つ機械により開閉可能なウェハ搬出入ドア502と、開口部29と反対側に位置しフィルタ類およびファンモータの着脱を行うために開口部29を覆う蓋体503と、ウェハWを保持するための溝型ポケット(図示せず)と、ULPAフィルタ505と、ケミカルフィルタ506と、ファンモータ507とから構成されている。この変形例においては、ローダー60のロボット式の第1の搬送ユニット612によりウェハWを出し入れする。

なお、カセットc内に収納される基板すなわちウェハは、検査を受けるウェハであり、そのような検査は、半導体製造工程中でウェハを処理するプロセスの後、若しくはプロセスの途中で行われる。具体的には、成膜工程、CMP、イオン注入等を受けた基板すなわちウェハ、表面に配線パターンが形成されたウェハ、又は配線パターンが未だに形成されていないウェハが、カセット内に収納される。カセットc内に収容されるウェハは多数枚上下方向に隔ててかつ平行に並べて配置されているため、任意の位置のウェハと後述する第1の搬送ユニットで保持できるように、第1の搬送ユニットのアームを上下移動できるようになっている。

図5ないし図7において、ミニエンバイロメント装置20は、雰囲気制御されるようになっているミニエンバイロメント空間21を画成するハウジング22と、ミニエンバイロメント空間21内で清浄空気のような気体を循環して雰囲気制御

25

5

するための気体循環装置 2 3 と、ミニエンバイロメント空間 2 1 内に供給された空気の一部を回収して排出する排出装置 2 4 と、ミニエンバイロメント空間 2 1 内に配設されていて検査対象としての基板すなわちウェハを粗位置決めするプリアライナー 2 5 とを備えている。

ハウジング22は、頂壁221、底壁222及び四周を囲む周壁223を有していてい、ミニエンバイロメント空間21を外部から遮断する構造になっている。ミニエンバイロメント空間を雰囲気制御するために、気体循環装置23は、図7に示されるように、ミニエンバイロメント空間21内において、頂壁221に取り付けられていて、気体(この実施の形態では空気)を清浄にして一つ又はそれ以上の気体吹き出し口(図示せず)を通して清浄空気を真下に向かって層流状に流す気体供給ユニット231と、ミニエンバイロメント空間内において底壁222の上に配置されていて、底に向かって流れ下った空気を回収する回収ダクト232と、回収ダクト232と気体供給ユニット231とを接続して回収された空気を気体供給ユニット231に戻す導管233とを備えている。

この実施の形態においては、気体供給ユニット231は供給する空気の約20%をハウジング22の外部から取り入れて清浄にするようになっているが、この外部から取り入れられる気体の割合は任意に選択可能である。気体供給ユニット231は、清浄空気をつくりだすための公知の構造のHEPA若しくはULPAフィルタを備えている。清浄空気の層流状の下方向の流れすなわちダウンフローは、主に、ミニエンバイロメント空間21内に配置された後述する第1の搬送ユニットによる搬送面を通して流れるように供給され、搬送ユニットにより発生する虞のある塵埃がウェハに付着するのを防止するようになっている。したがって、ダウンフローの噴出口は必ずしも図示のように頂壁に近い位置である必要はなく、搬送ユニットによる搬送面より上側にあればよい。また、ミニエンバイロメント空間全面に亘って流す必要もない。

なお、場合によっては、清浄空気としてイオン風を使用することによって清浄 度を確保することができる。また、ミニエンバイロメント空間内には清浄度を観

25

5

察するためのセンサを設け、清浄度が悪化したときに装置をシャットダウンする こともできる。

ハウジング22の周壁223のうちカセットホルダ10に隣接する部分には出入り口225が形成されている。出入り口225近傍には公知の構造のシャッタ装置を設けて出入り口225をミニエンバイロメント装置側から閉じるようにしてもよい。ウェハ近傍でつくる層流のダウンフローは、例えば0.3ないし0.4m/secの流速でよい。気体供給ユニットはミニエンバイロメント空間内でなくその外側に設けてもよい。

排出装置24は、前記搬送ユニットのウェハ搬送面より下側の位置で搬送ユニットの下部に配置された吸入ダクト241と、ハウジング22の外側に配置されたブロワー242と、吸入ダクト241とブロワー242とを接続する導管243と、を備えている。この排出装置24は、搬送ユニットの周囲を流れ下り搬送ユニットにより発生する可能性のある塵埃を含んだ気体を、吸入ダクト241により吸引し、導管243、244及びブロワー242を介してハウジング22の外側に排出する。この場合、ハウジング22の近くに引かれた排気管(図示せず)内に排出してもよい。

ミニエンバイロメント空間21内に配置されたアライナー25は、ウェハに形成されたオリエンテーションフラット(円形のウェハの外周に形成された平坦部分を言い、以下においてオリフラと呼ぶ)や、ウェハの外周縁に形成された一つ又はそれ以上のV型の切欠きすなわちノッチを光学的に或いは機械的に検出してウェハの軸線〇一〇の周りの回転方向の位置を約±1度の精度で予め位置決めしておくようになっている。プリアライナーは請求項に記載された発明の検査対象の座標を決める機構の一部を構成し、検査対象の粗位置決めを担当する。このプリアライナー自体は公知の構造のものでよいので、その構造、動作の説明は省略する。

なお、図示しないが、プリアライナーの下部にも排出装置用の回収ダクトを設 けて、プリアライナーから排出された塵埃を含んだ空気を外部に排出するように

25

5

してもよい。

図5及び図6の(a)において、ワーキングチャンバ31を画成する主ハウジング30は、ハウジング本体32を備え、そのハウジング本体32は、台フレーム36上に配置された振動遮断装置すなわち防振装置37の上に載せられたハウジング支持装置33によって支持されている。ハウジング支持装置33は矩形に組まれたフレーム構造体331を備えている。ハウジング本体32はフレーム構造体331上に配設固定されていて、フレーム構造体上に載せられた底壁321と、頂壁322と、底壁321及び頂壁322に接続されて四周を囲む周壁323とを備えていてワーキングチャンバ31を外部から隔離している。底壁321は、この実施の形態では、上に載置されるステージ装置等の機器による加重で歪みの発生しないように比較的肉厚の厚い鋼板で構成されているが、その他の構造にしてもよい。

この実施の形態において、ハウジング本体及びハウジング支持装置33は、剛構造に組み立てられていて、台フレーム36が設置されている床からの振動がこの剛構造に伝達されるのを防振装置37で阻止するようになっている。ハウジング本体32の周壁323のうち後述するローダハウジングに隣接する周壁にはウェハ出し入れ用の出入り口325が形成されている。なお、防振装置は、空気バネ、磁気軸受け等を有するアクティブ式のものでも、或いはこれらを有するパッシブ式のもよい。いずれも公知の構造のものでよいので、それ自体の構造及び機能の説明は省略する。ワーキングチャンバ31は公知の構造の真空装置(図示せず)により真空雰囲気に保たれるようになっている。

台フレーム36の下には装置全体の動作を制御する制御装置2が配置されており、この制御装置2は主にメインコントローラ、制御コントローラ、ステージコントローラから構成される。

メインコントローラにはマン-マシンインターフェースが備えられており、オペレータの操作はここを通して行われる(種々の指示/命令、レシピなどの入力、 検査スタートの指示、自動と手動検査モードの切り替え、手動検査モード時のと

25

5

きの必要な全てのコマンドの入力等)。その他、工場のホストコンピュータとのコミュニケーション、真空排気系の制御、ウェハ等の試料搬送、位置合わせの制御、他の制御コントローラやステージコントローラへのコマンドの伝達や情報の受け取り等もメインコントローラで行われる。また、光学顕微鏡からの画像信号の取得、ステージの変動信号を電子光学系にフィードバックさせて像の悪化を補正するステージ振動補正機能、試料観察位置のZ方向(二次光学系の軸方向)の変位を検出して電子光学系へフィードバックし、自動的に焦点を補正する自動焦点補正機能を備えている。電子光学系へのフィードバック信号等の授受およびステージからの信号の授受は、それぞれ制御コントローラ及びステージコントローラを介して行われる。

制御コントローラは主に電子光学系の制御(電子銃、レンズ、アライナー、ウィーンフィルタなどのための高精度電源の制御等)を担う。具体的には、倍率が変わったときにも常に一定の電子電流が照射領域に照射されるようにすること、各倍率に対応して各レンズ系やアライナーに印加する電圧を自動設定する等の、各オペレーションモードに対応した各レンズ系やアライナーへの自動電圧設定等の制御(連動制御)を行う。

ステージコントローラは主にステージの移動に関する制御を行い、精密なX方向およびY方向の μ mオーダーの移動(\pm 0.5 μ m程度の誤差)を可能にしている。また、ステージコントローラはステージの回転方向の制御(θ 制御)を誤差精度 \pm 0.3秒程度以内で行う。

図5、図6の(a)及び図8において、ローダハウジング40は、第1のローディングチャンバ41と第2のローディングチャンバ42とを画成するハウジング本体43を備えている。ハウジング本体43は底壁431と、頂壁432と、四周を囲む周壁433と、第1のローディングチャンバ41と第2のローディングチャンバ42とを仕切る仕切壁434とを有していて、両ローディングチャンバを外部から隔離できるようになっている。仕切壁434には両ローディングチャンバ間でウェハのやり取りを行うための開口すなわち出入り口435が形成さ

25

5

れている。また、周壁433のミニエンバイロメント装置及び主ハウジングに隣接した部分には出入り口436及び437が形成されている。このローダハウジング40のハウジング本体43は、ハウジング支持装置33のフレーム構造体331上に載置されてそれによって支持されている。したがって、このローダハウジング40にも床の振動が伝達されないようになっている。

ローダハウジング40の出入り口436とミニエンバイロメント装置のハウジング22の出入り口226とは整合されていて、そこにはミニエンバイロメント空間21と第1のローディングチャンバ41との連通を選択的に阻止するシャッタ装置27が設けられている。シャッタ装置27は、出入り口226及び436の周囲を囲んで側壁433と密に接触して固定されたシール材271、シール材271と協働して出入り口を介しての空気の流通を阻止する扉272と、その扉を動かす駆動装置273とを有している。また、ローダハウジング40の出入り口437とハウジング本体32の出入り口325とは整合されていて、そこには第2のローディングチャンバ42とワーキンググチャンバ31との連通を選択的に密封阻止するシャッタ装置45が設けられている。シャッタ装置45は、出入り口437及び325の周囲を囲んで側壁433及び323と密に接触してそれらに固定されたシール材451、シール材451と協働して出入り口を介しての空気の流通を阻止する扉452と、その扉を動かす駆動装置453とを有している。

更に、仕切壁434に形成された開口には、扉461によりそれを閉じて第1及び第2のローディングチャンバ間の連通を選択的に密封阻止するシャッタ装置 4 6 が設けられている。これらのシャッタ装置 2 7、45及び46は、閉じ状態にあるとき各チャンバを気密シールできるようになっている。これらのシャッタ装置は公知のものでよいので、その構造及び動作の詳細な説明は省略する。なお、ミニエンバイロメント装置 2 0 のハウジング 2 2 の支持方法とローダハウジングの支持方法が異なり、ミニエンバイロメント装置を介して床からの振動がローダハウジング4 0、主ハウジング3 0 に伝達されるのを防止するために、ハウジン

25

5

グ22とローダハウジング40との間には出入り口の周囲を気密に囲むように防 振用のクッション材を配置しておけば良い。

第1のローディングチャンバ41内には、複数(この実施の形態では2枚)のウェハを上下に隔てて水平の状態で支持するウェハラック47が配設されている。ウェハラック47は、図9に示されるように、矩形の基板471の四隅に互いに隔てて直立状態で固定された支柱472を備え、各支柱472にはそれぞれ2段の支持部473及び474が形成され、その支持部の上にウェハWの周縁を載せて保持するようになっている。そして後述する第1及び第2の搬送ユニットのアームの先端を隣接する支柱間からウェハに接近させてアームによりウェハを把持するようになっている。

ローディングチャンバ41及び42は、図示しない真空ポンプを含む公知の構造の真空排気系(図示せず)によって高真空状態(真空度としては $10^{-5}\sim10^{-6}$ Pa)に雰囲気制御され得るようになっている。この場合、第1のローディングチャンバ41を低真空チャンバとして低真空雰囲気に保ち、第2のローディングチャンバ42を高真空チャンバとして高真空雰囲気に保ち、ウェハの汚染防止を効果的に行うこともできる。このような構造を採用することによってローディングチャンバ内に収容されていて次に欠陥検査されるウェハをワーキングチャンバ内に遅滞なく搬送することができる。このようなローディングチャンバを採用することによって、後述するマルチピーム型電子線装置原理と共に、欠陥検査のスループットを向上させ、更に保管状態が高真空状態であることを要求される電子線源周辺の真空度を可能な限り高真空度状態にすることができる。

なお、真空排気系は真空ポンプ、真空バルブ、真空ゲージ、真空配管等から構成され、電子光学系、検出器部、試料室、ロードロック室を所定のシーケンスに従って真空排気を行うものである。各部において必要な真空度を達成するように真空バルブが制御される。このために、真空度のモニターを常時行い、異常時には、インターロック機能により隔離バルブ等の緊急制御を行って真空度を確保する。真空ポンプとしては、主排気にはターボ分子ポンプを、粗引き用としてはル

25

ーツ式のドライポンプを使用する。検査場所(電子線照射部)の圧力は 10^{-3} ~ 10^{-5} Pa、好ましくはその1 桁下の 10^{-4} ~ 10^{-6} Paが実用的である。

第1及び第2のローディングチャンバ41及び42は、それぞれ真空排気配管と不活性ガス(例えば乾燥純窒素)用のベント配管(それぞれ図示せず)が接続されている。これによって、各ローディングチャンバ内の大気圧状態は不活性ガスベント(不活性ガスを注入して不活性ガス以外の酸素ガス等が表面に付着するのを防止する)によって達成される。このような不活性ガスベントを行う装置自体は公知の構造のものでよいので、その詳細な説明は省略する。

なお、電子線を使用する本発明の検査装置において、後述する電子光学系の電子線源として使用される代表的な六硼化ランタン(LaB_6)等は一度熱電子線を放出する程度まで高温状態に加熱された場合には、酸素等に可能な限り接触させないことがその寿命を縮めないために肝要であるが、電子光学系が配置されているワーキングチャンバにウェハを搬入する前段階で上記のような雰囲気制御を行うことにより、より確実に実行できる。

ステージ装置 5 0 は、主ハウジング 3 0 の底壁 3 2 1 上に配置された固定テーブル 5 1 と、固定テーブル上で Y 方向(図 5 において紙面に垂直の方向)に移動する Y テーブル 5 2 と、 Y テーブル上で X 方向(図 3 において左右方向)に移動する X テーブル 5 3 と、 X テーブル上で回転可能な回転テーブル 5 4 と、回転テーブル 5 4 上に配置されたホルダ 5 5 とを備えている。そのホルダ 5 5 のウェハ載置面 5 5 1 上にウェハを解放可能に保持する。ホルダは、ウェハを機械的に或いは静電チャック方式で解放可能に把持できる公知の構造のものでよい。

ステージ装置 50 は、サーボモータ、エンコーダ及び各種のセンサ(図示せず)を用いて、上記のような複数のテーブルを動作させることにより、載置面 5 51 上でホルダに保持されたウェハを電子光学装置から照射される電子線に対してX方向、Y方向及びZ方向(図 5 において上下方向)に、更にウェハの支持面に鉛直な軸線の回り方向(θ 方向)に高い精度で位置決めできるようになっている。なお、Z方向の位置決めは、例えばホルダ上の載置面の位置を 2 Z方向に微調

5

整可能にしておけばよい。この場合、載置面の基準位置を微細径レーザによる位置測定装置(干渉計の原理を使用したレーザ干渉測距装置)によって検知し、その位置を図示しないフィードバック回路によって制御したり、それと共に或いはそれに代えてウェハのノッチ或いはオリフラの位置を測定してウェハの電子線に対する平面位置、回転位置を検知し、回転テーブルを微小角度制御可能なステッピングモータなどにより回転させて制御する。

ワーキングチャンバ内での塵埃の発生を極力防止するために、ステージ装置用のサーボモータ521、531及びエンコーダ522、532は、主ハウジング30の外側に配置されている。なお、ステージ装置50は、例えばステッパー等で使用されている公知の構造のもので良いので、その構造及び動作の詳細な説明は省略する。また、上記レーザ干渉測距装置も公知の構造のものでよいので、その構造、動作の詳細な説明は省略する。

電子線に対するウェハの回転位置やX、Y位置を予め後述する信号検出系或いは画像処理系に入力することで得られる信号の基準化を図ることもできる。更に、このホルダに設けられたウェハチャック機構は、ウェハをチャックするための電圧を静電チャックの電極に与えられるようになっていて、ウェハの外周部の3点(好ましくは周方向に等隔に隔てられた)を押さえて位置決めするようになっている。ウェハチャック機構は、二つの固定位置決めピンと、一つの押圧式クランクピンとを備えている。クランプピンは、自動チャック及び自動リリースを実現できるようになっており、かつ電圧印加の導通箇所を構成している。

なお、この実施の形態では図6の(a)で左右方向に移動するテーブルをXテーブルとし、上下方向に移動するテーブルをYテーブルとしたが、同図で左右方向に移動するテーブルをYテーブルとし、上下方向に移動するテーブルをXテーブルとしてもよい。

25 ローダー60は、ミニエンバイロメント装置20のハウジング22内に配置されたロボット式の第1の搬送ユニット61と、第2のローディングチャンバ42 内に配置されたロボット式の第2の搬送ユニット63とを備えている。

25

5

第1の搬送ユニット61は、駆動部611に関して軸線〇 $_1$ -〇 $_1$ の回りで回転可能になっている多節のアーム612を有している。多節のアームとしては任意の構造のものを使用できるが、この実施の形態では、互いに回動可能に取り付けられた三つの部分を有している。第1の搬送ユニット61のアーム612の一つの部分すなわち最も駆動部611側の第1の部分は、駆動部611内に設けられた公知の構造の駆動機構(図示せず)により回転可能な軸613に取り付けられている。アーム612は、軸613により軸線〇 $_1$ -〇 $_1$ の回りで回動できると共に、部分間の相対回転により全体として軸線〇 $_1$ -〇 $_1$ に関して半径方向に伸縮可能になっている。アーム612の軸613から最も離れた第3の部分の先端には、には公知の構造の機械式チャック又は静電チャック等のウェハを把持する把持装置616が設けられている。駆動部611は、公知の構造の昇降機構615により上下方向に移動可能になっている。

この第1の搬送ユニット61は、アーム612がカセットホルダに保持されたこのカセット c の内いずれか一方の方向M1又はM2に向かってアームが伸び、カセット c 内に収容されたウェハを1枚アームの上に載せ或いはアームの先端に取り付けたチャック(図示せず)により把持して取り出す。その後アームが縮み(図6の(a)に示す状態)、アームがプリアライナー25の方向M3に向かって伸長できる位置まで回転してその位置で停止する。するとアームが再び伸びてアームに保持されたウェハをプリアライナー25に載せる。プリアライナーから前記と逆にしてウェハを受け取った後はアームは更に回転し第2のローディングチャンバ41に向かって伸長できる位置(向きM4)で停止し、第2のローディングチャンバ41内のウェハ受け47にウェハを受け渡す。

なお、機械的にウェハを把持する場合にはウェハの周縁部(周縁から約5mmの範囲)を把持する。これはウェハには周縁部を除いて全面にデバイス(回路配線)が形成されており、この部分を把持するとデバイスの破壊、欠陥の発生を生じさせるからである。

第2の搬送ユニット63も第1の搬送ユニットと構造が基本的に同じであり、

5

ウェハの搬送をウェハラック 4 7 とステージ装置の載置面上との間で行う点での み相違するだけであるから、詳細な説明は省略する。

上記ローダー60では、第1及び第2の搬送ユニット61及び63は、カセットホルダに保持されたカセットからワーキングチャンバ31内に配置されたステージ装置50上への及びその逆のウェハの搬送をほぼ水平状態に保ったままで行い、搬送ユニットのアームが上下動するのは、単に、ウェハのカセットからの取り出し及びそれへの挿入、ウェハのウェハラックへの載置及びそこからの取り出し及びウェハのステージ装置への載置及びそこからの取り出しのときるだけである。したがって、大型のウェハ、例えば直径30cmのウェハの移動もスムースに行うことができる。

次にカセットホルダに支持されたカセットcからワーキングチャンバ31内に配置されたステージ装置50までへのウェハの搬送を順を追って説明する。

カセットホルダ10は、前述のように人手によりカセットをセットする場合にはそれに適した構造のものが、また自動的にカセットをセットする場合にはそれに適した構造のものが使用される。この実施の形態において、カセットcがカセットホルダ10の昇降テーブル11の上にセットされると、昇降テーブル11は昇降機構12によって降下されカセットcが出入り口225に整合される。

カセットが出入り口225に整合されると、カセットに設けられたカバー(図示せず)が開きまたカセット c とミニエンバイロメントの出入り口225との間には筒状の覆いが配置されてカセット内及びミニエンバイロメント空間内を外部から遮断する。これらの構造は公知のものであるから、その構造及び動作の詳細な説明は省略する。なお、ミニエンバイロメント装置20側に出入り口225を開閉するシャッタ装置が設けられている場合にはそのシャッタ装置が動作して出入り口225を開く。

25 一方、第1の搬送ユニット61のアーム612は方向M1又はM2のいずれかに向いた状態(この説明ではM1の方向)で停止しており、出入り口225が開くとアームが伸びて先端でカセット内に収容されているウェハのうち1枚を受け

25

5

取る。なお、アームと、カセットから取り出されるべきウェハとの上下方向の位置調整は、この実施の形態では第1の搬送ユニット61の駆動部611及びアーム612の上下移動で行うが、カセットホルダの昇降テーブルの上下動行っても或いはその両者で行ってもよい。

アーム612によるウェハの受け取りが完了すると、アームは縮み、シャッタ 装置を動作して出入り口を閉じ(シャッタ装置がある場合)、次にアーム612 は軸線〇1-〇1の回りで回動して方向M3に向けて伸長できる状態になる。する と、アームは伸びて先端に載せられ或いはチャックで把持されたウェハをプリアライナー25の上に載せ、そのプリアライナーによってウェハの回転方向の向き (ウェハ平面に垂直な中心軸線の回りの向き)を所定の範囲内に位置決めする。 位置決めが完了すると搬送ユニット61はアームの先端にプリアライナー25からウェハを受け取ったのちアームを縮ませ、方向M4に向けてアームを伸長できる姿勢になる。するとシャッタ装置27の扉272が動いて出入り口226及び436を開き、アーム612が伸びてウェハを第1のローディングチャンバ41内のウェハラック47の上段側又は下段側に載せる。なお、前記のようにシャッタ装置27が開いてウェハラック47にウェハが受け渡される前に、仕切壁434に形成された開口435はシャッタ装置46の扉461により気密状態で閉じられている。

上記第1の搬送ユニットによるウェハの搬送過程において、ミニエンバイロメント装置のハウジングの上に設けられた気体供給ユニット231からは清浄空気が層流状に流れ(ダウンフローとして)、搬送途中で塵埃がウェハの上面に付着するのを防止する。搬送ユニット周辺の空気の一部(この実施の形態では供給ユニットから供給される空気の約20%で主に汚れた空気)は排出装置24の吸入ダクト241から吸引されてハウジング外に排出される。残りの空気はハウジングの底部に設けられた回収ダクト232を介して回収され再び気体供給ユニット231に戻される。

ローダハウジング40の第1のローディングチャンバ41内のウェハラック4

25

7内に第1の搬送ユニット61によりウェハが載せられると、シャッタ装置27が閉じて、ローディングチャンバ41内を密閉する。すると、第1のローディングチャンバ41内には不活性ガスが充填されて空気が追い出された後、その不活性ガスも排出されてそのローディングチャンバ41内は真空雰囲気にされる。この第1のローディングチャンバの真空雰囲気は低真空度でよい。ローディングチャンバ41内の真空度がある程度得られると、シャッタ装置46が動作して扉461で密閉していた出入り口434を開き、第2の搬送ユニット63のアーム632が伸びて先端の把持装置でウェハ受け47から1枚のウェハを受け取る(先端の上に載せて或いは先端に取り付けられたチャックで把持して)。ウェハの受け取りが完了するとアームが縮み、シャッタ装置46が再び動作して扉461で出入り口435を閉じる。

なお、シャッタ装置46が開く前にアーム632は予めウェハラック47の方向N1に向けて伸長できる姿勢になる。また、前記のようにシャッタ装置46が開く前にシャッタ装置45の扉452で出入り口437、3-2-5を閉じていて、第2のローディングチャンバ42内とワーキングチャンバ31内との連通を気密状態で阻止しており、第2のローディングチャンバ42内は真空排気される。

シャッタ装置 46 が出入り口 435 を閉じると、第2 のローディングチャンバ内は再度真空排気され、第1 のローディングチャンバ内よりも高真空度で真空にされる。その間に、第2 の搬送ユニット61 のアームはワーキングチャンバ31 内のステージ装置 50 の方向に向いて伸長できる位置に回転される。一方ワーキングチャンバ31 内のステージ装置では、Y テーブル52 が、X テーブル53 の中心線 X_0 一 X_0 が第2 の搬送ユニット63 の回動軸線 O_2 一 O_2 を通る X 軸線 X_1 一 X_1 とほぼ一致する位置まで、図6 の(a)で上方に移動し、また、X テーブル53 は図6 の(a)で最も左側の位置に接近する位置まで移動し、この状態で待機している。

第2のローディングチャンバがワーキングチャンバの真空状態と略同じになると、シャッタ装置45の扉452が動いて出入り口437、325を開き、アー

5

ムが伸びてウェハを保持したアームの先端がワーキングチャンバ31内のステージ装置に接近する。そしてステージ装置50の載置面551上にウェハを載置する。ウェハの載置が完了するとアームが縮み、シャッタ装置45が出入り口437、325を閉じる。

以上は、カセットc内のウェハをステージ装置上に搬送するまでの動作に付いて説明したが、ステージ装置に載せられて処理が完了したウェハをステージ装置からカセットc内に戻すには前述と逆の動作を行って戻す。また、ウェハラック47に複数のウェハを載置しておくため、第2の搬送ユニットでウェハラックとステージ装置との間でウェハの搬送を行う間に、第1の搬送ユニットでカセットとウェハラックとの間でウェハの搬送を行うことができ、検査処理を効率良く行うことができる。

具体的には、第2の搬送ユニットのウェハラック47に、既に処理済みのウェハAと未処理のウェハBとがある場合、まず、ステージ装置50に未処理のウェハBを移動して処理を開始する。この処理中に、処理済みウェハAをアームによりステージ装置50からウェハラック47に移動し、未処理のウェハCを同じくアームによりウェハラック47から抜き出し、プリアライナで位置決めした後、ローディングチャンバ41のウェハラック47に移動する。このようにすることで、ウェハラック47の中は、ウェハBを処理している期間に、処理済みのウェハAを未処理のウェハCに置き換えることができる。

また、検査や評価を行うこのような装置の利用の仕方によっては、ステージ装置 50を複数台並列に置き、それぞれの装置に一つのウェハラック47からウェハを移動することにより、複数枚のウェハを同じに処理することができる。

図10は、主ハウジングの支持方法の変形例がで示されている。図10の [A] に示された変形例では、ハウジング支持装置33aを厚肉で矩形の鋼板3 31aで構成し、その鋼板の上にハウジング本体32aが載せられている。した がって、ハウジング本体32aの底壁321aは、前記実施の形態の底壁に比較 して薄い構造になっている。

25

5

図10の[B]に示された変形例では、ハウジング支持装置 3 3 bのフレーム構造体 3 3 6 bによりハウジング本体 3 2 b及びローダハウジング 4 0 bを吊り下げて状態で支持するようになっている。フレーム構造体 3 3 6 bに固定された複数の縦フレーム 3 3 7 bの下端は、ハウジング本体 3 2 bの底壁 3 2 1 bの四隅に固定され、その底壁により周壁及び頂壁を支持するようになっている。そして防振装置 3 7 bは、フレーム構造体 3 3 6 bと台フレーム 3 6 bとの間に配置されている。また、ローダハウジング 4 0 もフレーム構造体 3 3 6 に固定された吊り下げ部材 4 9 bによって吊り下げられている。ハウジング本体 3 2 bのこの図1 0 の [B]に示された変形例では、吊り下げ式に支えるので主ハウジング及びその中に設けられた各種機器全体の低重心化が可能である。上記変形例を含めて主ハウジング及びローダハウジングの支持方法では主ハウジング及びローダハウジングの支持方法では主ハウジング及びローダハウジングに床からの振動が伝わらないようになっている。

図示しない別の変形例では、主ハウジングのハウジング本外のみがハウジング 支持装置によって下から支えられ、ローダハウジングは隣接するミニエンバイロメント装置と同じ方法で床上に配置され得る。また、図示しない更に別の変形例では、主ハウジングのハウジング本体のみがフレーム構造体に吊り下げ式で支持され、ローダハウジングは隣接するミニエンバイロメント装置と同じ方法で床上 に配置され得る。

電子光学装置70は、ハウジング本体32に固定された鏡筒71を備え、その中には、図11に概略図示するような、一次電子光学系(以下単に一次光学系)74とを備える電子光学系と、検出系76とが設けられている。一次光学系72は、電子線を検査対象であるウェハWの表面に照射する光学系で、電子線を放出する電子線源721と、電子線源721から放出された一次電子線を集束する静電レンズからなるレンズ系722と、ウイーンフィルタ(すなわちE×B分離器又はE×Bフィルタ)723と、対物レンズ系724と、を備え、それらは、図11に示されるように電子線源721を最上部にして順に配置されている。この実施の形態の対物レンズ系724

25

5

を構成するレンズは減速電界型対物レンズである。この実施の形態では、電子線源721から放出される一次電子線の光軸は、検査対象であるウェハWに照射される照射光軸(ウェハの表面に垂直になっている)に関して斜めになっている。対物レンズ系724と検査対象であるウェハWとの間には電極725が配置されている。この電極725は一次電子線の照射光軸に関して軸対称の形状になっていて、電源726によって電圧制御されるようになっている。

二次光学系74は、ウィーンフィルタ723により一次光学系から分離された 二次電子線を通す静電レンズから成るレンズ系741を備えている。このレンズ 系741は二次電子線像を拡大する拡大レンズとして機能する。

検出系76は、レンズ系741の結像面に配置された検出器761及び画像処理部763を備えている。

次に、上記構成の電子光学装置70の動作に付いて説明する。

電子線源721から放出された一次電子線は、レンズ系722によって集束される。収束された一次電子線はE×B型偏向器723に入射され、ウェハWの表面に垂直に照射されるように偏向され、対物レンズ系724によってウェハWの表面上に結像される。

一次電子線の照射によってウェハから放出された二次電子線は、対物レンズ系724によって加速され、E×B型偏向器723に入射し、その偏向器を直進して二次光学系のレンズ系741により検出器761に導かれる。そして、その検出器761によって検出され、その検出信号が画像処理部763に送られる。

なお、この実施の形態において、対物レンズ系724は、10ないし20kVの高電圧が印加され、ウェハは設置されているものとする。

ここで、ウェハWにピアbがある場合に、電極725に与える電圧を-200 Vとすると、ウェハの電子線照射面の電界は、0~-0.1V/mm(-はウェハW側が高電位であることを示す)となった。この状態で、対物レンズ系724 とウェハWとの間に放電は発生せずに、ウェハWの欠陥検査は行えたが、二次電子線の検出効率が若干下がってしまう。したがって、電子線線を照射し二次電子

25.

線を検出する一連の動作を、例えば4回行い、得られた4回分の検出結果を累積 加算や平均化等の処理を施して所定の検出感度を得た。

また、ウェハにビアりがない場合に、電極725に与える電圧を+350Vとしても、対物レンズ系724とウェハとの間に放電は発生せずに、ウェハWの欠陥検査は行えた。この場合、電極725に与えた電圧によって二次電子線が集束され、対物レンズ724によっても更に集束されるので、検出器761における二次電子線の検出効率は向上した。よって、ウェハ欠陥装置としての処理も高速となり、高いスループットで検査が行えた。

プレチャージユニット81は、図5に示すように、ワーキングチャンバ31内で電子光学装置70の鏡筒71に隣接して配設されている。本検査装置では検査対象である基板すなわちウェハに電子線を走査して照射することによりウェハ表面に形成されたデバイスパターン等を検査する形式の装置であるから、電子線の照射により生じる二次電子線等の情報をウェハ表面の情報とするが、ウェハ材料、照射電子線のエネルギ等の条件によってウェハ表面が帯電(チャージアップ)することがある。更に、ウェハ表面でも強く帯電する箇所、弱い帯電箇所が生じる可能性がある。ウェハ表面の帯電量にむらがあると二次電子線情報もむらを生じ、正確な情報を得ることができない。

そこで、この実施の形態では、このむらを防止するために、電子線照射部811を有するプレチャージユニット81が設けられている。検査するウェハの所定の箇所に検査電子線を照射する前に、帯電むらをなくすためにこのプレチャージユニットの電子線照射部811から電子線を照射して帯電のむらを無くす。このウェハ表面のチャージアップは予め検出対称であるウェハ面の画像を形成し、その適像を評価することで検出し、その検出に基づいてプレチャージユニット81を動作させる。なお、このプレチャージユニットでは一次電子線をぼかして照射してもよい。

図12において、電位印加機構83は、ウェハから放出される二次電子線情報(二次電子線発生率)が、ウェハの電位に依存すると言う事実に基づいて、ウェ

5

ハを載置するステージの設置台に \pm 数 Vの電位を印加することにより二次電子線の発生を制御するものである。また、この電位印加機構は、照射電子線が当初有しているエネルギーを減速し、ウェハに $100\sim500e$ V程度の照射電子線エネルギーとするための用途も果たす。

電位印加機構83は、図12に示すように、ステージ装置50の載置面541 と電気的に接続された電圧印加装置831と、チャージアップ調査及び電圧決定 システム(以下調査及び決定システム)832とを備えている。調査及び決定シ ステム832は、電子光学装置70の検出系76の画像形成部763に電気的に 接続されたモニター833と、モニター833に接続されたオペレータ834と、 オペレータ834に接続されたCPU835とを備えている。CPU835は、 前記電圧印加装置831に信号を供給するようになっている。

上記電位印加機構は、検査対象であるウェハが帯電し難い電位を探し、その電 位を印加するように設計されている。

図13において、電子線キャリブレーション機構85は、前記回転テーブル上でウェハの載置面541の側部の複数箇所に設置された、ビーム電流測定用のそれぞれ複数のファラデーカップ851及び852を備えている。ファラデーカップ851は細いビーム用(約φ2μm)で、ファラデーカップ852太いビーム用(約φ30μm)である。細いビーム用のファラデーカップ851では回転テーブルをステップ送りすることで、ビームプロフィルを測定し。太いビーム用のファラデーカップ852ではビームの総電流量を計測する。ファラデーカップ851及び852は、上表面が載置面541上に載せられたウェハWの上表面と同じレベルになるように配置されている。このようにして電子線源から放出される一次電子線を常時監視する。これは、電子線源が常時一定の電子線を放出できるわけでなく、使用しているうちにその放出量が変化するためである。

25 アライメント制御装置87は、ステージ装置50を用いてウェハWを電子光学装置70に対して位置決めさせる装置であって、ウェハを光学顕微鏡871を用いた広視野観察による概略合わせ(電子光学系によるよりも倍率が低い測定)、

25

電子光学装置70の電子光学系を用いた高倍率合わせ、焦点調整、検査領域設定、パターンアライメント等の制御を行うようになっている。このように光学系を用いて低倍率でウェハを検査するのは、ウェハのパターンの検査を自動的に行うためには、電子線を用いた狭視野でウェハのパターンを観察してウェハアライメントを行う時に、電子線によりアライメントマークを容易に検出する必要があるからである。

光学顕微鏡871はハウジング内71に設けられ(ハウジング内で移動可能に設けられていてもよい)、光学顕微鏡を動作させるための光源(図示せず)もハウジング内に設けられている。また高倍率の観察を行う電子光学系は電子光学装置70の電子光学系(一次光学系72及び二次光学系74)を共用するものである。その構成を概略図示すれば、図12に示されるようになる。ウェハ上の被観察点を低倍率で観察するには、ステージ装置50のXステージ53をX方向に動がすことによってウェハの被観察点を光学顕微鏡の視野内に移動させる。光学顕微鏡871で広視野でウェハを視認してそのウェハ上の観察すべき位置をCCD872を介してモニタ873に表示させ、観察位置をおおよそ決定する。この場合光学顕微鏡の倍率を低倍率から高倍率に変化させていってもよい。

このようにして電子光学系による高倍率でウェハの観察点をモニタに表示させ

122 ı.[] ijij 10 "IJ 14 15

20

5

た後、公知の方法によりステージ装置50の回転テーブル54の回転中心に関す るウェハの回転方向の位置ずれすなわち電子光学系の光軸○₃-○₃に対するウェ ハの回転方向のずれ δ θ を検出し、また電子光学装置に関する所定のパターのX軸及びY軸方向の位置ずれを検出する。そしてその検出値並びに別途得られたウ ェハに設けられた検査マークのデータ或いはウェハのパターンの形状等に関する データに基づいてステージ装置50の動作を制御してウェハのアライメントを行 う。

以上、図5~図14を用いて説明した検査装置は、図3および図4の(a)、 (b) を参照して説明したデバイス製造方法における(G)のウェハ検査工程に 使用すると、微細なパターンを有する半導体デバイスであっても、スループット 良く検査を行うことができるので、全数検査も可能になり、製品の歩留まりを向 上させ、欠陥製品の出荷を防止することができる。これに関しては、図3および 図4の(a)、(b)に関する説明を援用することにし、ここでの説明は省略す る。

鏡筒に関する実施の形態(第3の実施の形態)

ここで、図15を用いて、本発明に係る電子線装置の第3の実施の形態である 電子線装置を説明する。この電子線装置は、最小線幅が0.1ミクロン以下のパ ターンを有するウェハ、マスク等の試料の評価や検査を高スループット、高信頼 性で行うのに適しており、デバイス製造に用いることができる。

マルチビームを使用する電子線装置は既に公知である。例えば、電子線源から 所定の径に収束された1個以上の電子線を放出させて被検査試料の表面に結像さ せ、被検査試料を移動させることによって該被検査試料の表面を電子線で走査し、 被検査試料から放出される二次電子線や反射電子線を複数の検出素子で検出して、 それらの検出素子の出力を同時に又は並列的に処理することにより、微細パター ンの評価時間を短縮するようにした電子線装置は公知である。 25

また、複数の電子線源から放出される電子線のスポット形状のバラツキを解消 して微細パターンの評価精度を高めるために、複数の一次電子線で被検査試料を

25

5

照射し、その結果放出された二次電子線や反射電子線を一次電子線毎に検出して、 一次電子線毎に電極電圧又は励磁電流を調節するようにした微細パターン評価装 置も公知である。

こうしたマルチビーム型の電子線装置にあっては、電子線源の部分とレンズ・偏向系とで、必要とされる真空度に相違がある。例えば、マルチエミッター型の又は熱電界放出型の電子線源においては、電子線源のカソードの近傍は、10⁻⁸ torrよりも良好な真空度にしないと安全に動作しないのに対して、レンズ・偏向系は、静電レンズや静電偏向器を用いた場合であっても、10⁻⁶ tor程度の真空度が達成されれば充分動作可能である。したがって、電子線装置の構成要素毎に、所定の真空度を維持しなければならないという問題があった。また、電子光学鏡筒内の電子線の光軸上に極めて多くのイオンが存在するため、

また、電子光字鏡筒内の電子線の光軸上に極めてタトのイスンが行出するため、正イオンが電子線源のカソードに衝突してカソードに穴を開けてしまうという問題もある。更に、マルチビーム且つマルチコラムの電子線装置を製造する場合、それぞれのコラムをどのように固定すべきかという問題に、明確な解答が出されていないのが実状である。

図15に示す電子線装置は、上記の問題を解決するために提案されたものであり、レンズ・偏向系の真空度が低いときにも電子線源部の真空度を高く保持し、もって、電子線源のカソードの破損を防止し、振動に強いという特徴を有する。

図15において、電子線装置はマルチビーム・マルチカラムの構造を有しており、鏡筒(図示せず)に両端が固定された厚い仕切板Sによって電子線源部Xと電子光学系Yとに分離される。電子線源部Xは、それぞれが円筒形をなし且つベローズ902によって相互に結合されている複数の電子線源室901を備え、それぞれの電子線源室901には、TFEカソード903及びショットキーシールド904を備えた熱電界放出型の電子線源905が設けられる。各電子線源905は高圧ケーブル906によって給電されてTEカソード903から電子線を放出する。なお、TFEはサーマル・フィールド・エミッション(thermal field emission)の略称である。

20

25

5

各電子線源室901はネジ907によって仕切板Sに固定される。このため、 仕切板Sは充分な剛性を持つように所定の厚みを持つことが必要であり、仕切板 Sの剛性が充分でない場合には、隣り合う電子線源室901の間に補強用のリブ を配置することが望ましい。なお、各電子線源室901は排気のためイオンポン プ(図示せず)と接続されている。

それぞれの電子線源 9050 T F E カソード 309 ングステン〈301〉又は〈100〉方位の面から放出された電子線が仕切板 S を全て通過することができるよう、仕切板 S には、各電子線源室 901 の電子線源 905 の光軸を中心とする円周上に所定の個数の、例えば 4 個の穴 908 が形成される。これらの穴 908 のそれぞれは、電子線源室の真空度を悪化させないよう大きなアスペクト比(穴の長さに対する穴の径の比)を有し、T F E カソード 903 から離れるにしたがって、径が大きくなるよう形成される。なお、それぞれの穴 908 は、下へ行くにしたがって光軸から離れる方へ斜めに形成されるのでもよい。なお、通常は、アスペクト比は 10 以上がよい。

一方、電子光学系 Y は、複数の電子線源室 9 0 1 から放出された複数の電子線でウェハ等の試料 W を照射するよう各電子線の形状を整形するために、各電子線源室 9 0 1 に対応して設置されたレンズ・偏向系 9 1 0 を有する。それぞれのレンズ・偏向系 9 1 0 は、対応する電子線源 9 0 5 からの電子線を通過させる例えば4個の穴 9 0 8 を囲むように仕切板 S にネジ 9 1 1 により固定された細長いパイプ 9 0 9 を備え、それぞれのパイプ 9 0 9 の内部に、所要のレンズ及び偏向器が配置され、仕切板 S の例えば 4 個の穴 9 0 8 を通過した電子線を整形して試料 W に垂直に入射させる。こうして、マルチカラムの電子光学系 Y が構成される。

このため、個々のレンズ・偏向系910は、パイプ909内に、コンデンサ・レンズ912、マルチ開口板913、縮小レンズ914、偏向器915及び対物レンズ916を順に設けるようにしている。コンデンサ・レンズ912は、仕切板Sに形成された穴908のそれぞれを通過した電子線を収束する。マルチ開口板913は、コンデンサ・レンズ912によって収束された電子線を通過させる

10 miles and the second of the

20

25

5

よう、パイプ909によって囲まれた仕切板Sの部分の穴908と同数の小孔を備えている。縮小レンズ914は、マルチ開口板913を通過した電子線のビーム寸法と間隔を縮小して偏向器915を通過させる。偏向器915は、縮小レンズ914によって縮小された電子線が試料上を走査するよう、電子線の進行方向を変更する。対物レンズ916は、偏向器915を通過した電子線を試料Wに合焦させる。

それぞれのパイプ909には排気穴917が設けられ、これによって、仕切板 Sと電子線源部Xと電子光学系Yとを収納する鏡筒(図示せず)の内部を真空に 保つためのポンプによって各パイプ909の内部も真空に保たれる。また、コンデンサ・レンズ912、マルチ開口板913、縮小レンズ914、偏向器915 及び対物レンズ916には、図15に点線で例示するリード線を介して、所要の 電圧が印加される。必要に応じて、コンデンサ・レンズ912、マルチ開口板913、縮小レンズ914、偏向器915及び対物レンズ916は、絶縁スペーサ 918を介してパイプ909の内壁に取り付けられる。

図15に示す電子線装置は、欠陥検査、線幅測定、合わせ精度測定、電位コントラスト測定、欠陥レビュー又はストロボSEMのための評価装置として、プロセス途中のウェハの評価を行うために、図3および図4の(a)、(b)を参照して説明した検査工程(G)において使用することができる。これに関しては、図3および図4の(a)、(b)に関する説明を援用することにし、ここでの説明は省略する。

電極の構造に関する実施の形態(第4の実施の形態)

本発明の第4の実施の形態は、電子線を試料に照射する静電レンズを用いた電子光学系において絶縁破壊を防止する電極構造を備える電子線装置、および該装置を用いてたデバイス製造方法に関する。

これまで、光学的に検査するだけでは十分な感度や解像度が得られないような 微細な試料の表面状態を検査する為に、電子線を利用した高感度、高解像度な電 子線装置を用いるための検討がなされている。

25

5

このような電子線装置は、電子線源によって電子線を放出し、静電レンズ等の 静電光学系によって、この放出された電子線を加速したり収束したりするなどし て検査対象である試料に入射させる。次に、電子線の入射によって試料から放出 される二次電子線を検出することによって、検出された二次電子線に対応する信 号を発生させ、この信号により例えば、試料のデータを形成する。この形成され たデータにより、試料の表面状態を検査する。

こうした電子線装置に用いられる静電レンズ等の静電レンズを用いた電子光学系には、電子線を加速したり収束するための電界を生成する電極が、電子線の光軸方向に多段に配設されている。これら電極には各々所定の電圧が印加され、こうして電極の電位差によって生ずる電界によって、電子線を加速したり、光軸上の所定の点に収束させるようにしている。

従来の電子線装置においては、電子線源から放出した電子線の一部が、静電レンズを用いた電子光学系における電界に係わらず電極に衝突する場合がある。この場合に、電子線が電極に衝突することにより、電極自体から二次電子線が放出される。この電極から放出される二次電子線の量は、電極の材料、又は、電極をコーティングしている材料によって変化する。この電極から放出される二次電子線が多くなると、この二次電子線は電極の電界によって加速され、装置内の残留ガスをイオン化し、このイオンが電極に衝突することによって、更に、電極から二次電子線が放出される。したがって、二次電子線が大量に放出されると、電極間において放電が生じ易くなり、電極間で絶縁破壊を起こす確率が増加してしまう。

例えば、電極がアルミニウムでコーティングされている場合と、金でコーティングされている場合とで、絶縁破壊の確率を比較すると、アルミニウムの場負の方が電極間の絶縁破壊の確率が若干高かった。アルミニウムは、仕事関数が4. 2 [eV]であり、金は、仕事関数は4. 9 [eV]である。ここで、仕事関数とは、金属にある1個の電子線を真空中に取り出すのに必要な最小のエネルギーである(単位:eV)。

20

25

5

また、電極が金でコーティングされている場合であって、更に、電子線装置の 試料が半導体ウェハである場合は、コーティングした金に電子線が衝突すること によって金がスパッタされ、半導体ウェハの表面に金が付着してしまう場合があ る。半導体表面に金が付着すると、後の熱工程で金がシリコン結晶中に拡散され トランジスタの性能を劣化させる。よってこの場合に、電子線装置は半導体ウェ ハの検査に適さない。

一方、静電レンズを用いた電子光学系の例えば、静電レンズにおいては、電極 間距離を短くすることによって焦点距離の短い静電レンズが得られる。焦点距離 が短いと、静電レンズの収差係数は小さくなり低収差となるので、静電レンズは 高分解能となり、評価装置の分解能が向上する。

また、静電レンズの電極間に与える電位差を大きくすることによっても、焦点距離の短い静電レンズとすることができる。よって、電極間距離を短くする場合と同様に、静電レンズは低収差で高分解能となり、電子線装置の分解能が向上する。したがって、電極間距離を短くして電極間の電位差大きくしてやれば、相乗的に静電レンズは低収差で高分解能とすることができる。しかし、電極間距離を短くして電極間の電位差大きくすると、電極間において放電が生じ易くなり、電極間で絶縁破壊を起こす確率が増加してしまうという問題がある。

従来、電極間の絶縁は、電極間に絶縁材料を挿入し、この絶縁材料によって電極を支持することによって、電極間の絶縁を保持していた。また、電極間の絶縁材料の最短沿面距離(絶縁表面長さ)を長くすることによって、絶縁材料表面の絶縁性能を高めていた。例えば、絶縁材料の表面を電極間方向のヒダ形状とすることによって、電極間における最短沿面距離を長くしていた。

しかしながら、一般に、絶縁材料表面の加工は、金属の加工に比べると加工が 困難で、加工費用が高価になってしまう。また、絶縁材料表面をヒダ形状等とす ると、絶縁材料の表面積が広くなってしまうので、電子線装置内が真空の場合は、 絶縁材料からの放出ガスが多くなる場合がある。よって、真空度の劣化を招き、 かえって電極間の耐圧が下がってしまう場合が多かった。

25

5

本発明の第4の実施の形態はこのような問題を解決するために提案されたものであり、以下、第4の実施の形態に係る、静電光学系の電極間の絶縁破壊を防止し得る電子線装置を、静電光学系を有する写像投影型評価装置に適用した場合について、その写像投影型評価装置の構成、動作および該装置を用いたデバイス製造方法を説明する。

図16において、写像投影型評価装置1000は、試料を照射する電子線が所定の放射面を持っており、電子線の照射によって試料から放射される二次電子線も所定の放射面を持っている。電子線源1001からは、二次元領域、例えば矩形の放射面をもつ電子線が放射され、静電レンズ系1002によって所定方向に偏向される。偏向された電子線は、斜め上方からE×B型偏向器1003に入射され、E×B型偏向器1003の電界と磁界が直交する場により、試料である半導体ウェハ1006の方向に偏向される(図16の実線)。

E×B型偏向器1003によって半導体ウェハ1006の方へ偏向された電子線は、静電対物レンス系1005内の電極に印加された電圧によって発生した電界により減速され、静電対物レンズ系1005によって半導体ウェハ1006に結像される。

次に、半導体ウェハ1006への電子線の照射によって発生した二次電子線は、静電対物レンズ系1005の電界によって検出器1008の方向に加速され(図16の点線)、E×B型偏向器1003に入射される。E×B型偏向器1003は、加速された二次電子線を静電中間レンズ系1007方向に向かわせ、次に、静電中間レンズ系1007によって二次電子線を検出器1008に入射させることによって二次電子線が検出される。検出器1008によって検出された二次電子線はデータに変換されて表示装置1009に送信され、表示装置1009に二次電子線の画像を表示し、半導体ウェハ1006のパターンを検査する。

次に、写像投影型評価装置1000における静電レンズ系1002、静電対物レンズ系1005、静電中間レンズ系1007およびE×B型偏向器1003の構成について詳細に説明する。電子線が通過する静電レンズ系1002、静電対

25

5

物レンズ系1005や、二次電子線が通過する静電中間レンズ系1007は、所定の電界を発生させる為の複数の電極を含んでいる。また、これら全ての電極の表面には、白金がコーティングされている。更に、E×B型偏向器1003の電極1004の表面も白金でコーティングされている。

ここで、図17を参照して、電極をコーティングする金属別における絶縁破壊 発生確率について説明する。尚、絶縁破壊発生率は、金属毎に相対的な大小関係 で表している。また、写像投影型評価装置において、電極をコーティングする金 属の種類を除く他の検査条件は同一とした。

まず、電極をコーティングした金属がアルミニウムの場合と、金の場合において、絶縁破壊が発生する確率を比較すると、金の場合の方が電極の絶縁破壊の発生確率が若干低かった。よって、金の場合の方が絶縁破壊の防止については効果があった。また更に、電極をコーティングした金属が金の場合と、白金の場合において、絶縁破壊が発生する確率を比較すると、白金の場合の方が電極の絶縁破壊の発生確率が更に低かった。

こヒで、各金属の仕事関数は、アルミニウムが4.2 [eV] であり、金が49 [eV]、白金は5.3 [eV] である。金属の仕事関数とは、金属にある1個の電子線を真空中に取り出すのに必要な最小のエネルギーである(単位:eV)。即ち、仕事関数の値が大きい程、電子線が取り出しにくいことになる。

よって、写像投影型評価装置1000において、電子線源1001から放射された電子線が電極に衝突した場合に、仕事関数の値が大きい金属(仕事関数の値が大きい金属を主材料とする合金をも含む)が電極にコーティングされていれば、電極から放出される二次電子線は少なくなるので、電極の絶縁破壊の発生確率も低下する。そのため、仕事関数が大きい金属であれば、或る程度良い。具体的には、電極にコーティングされる金属の仕事関数が5[eV〕であれば、電極の絶縁破壊の発生確率は低く抑えることができる。

また、この実施の形態のように、検査対象となる試料が半導体ウェハ1006であり、更に、電極にコーティングされる金属が金の場合であると、電子線が金

25

5

に衝突することによって、半導体ウェハ1006のパターン上に金が付着してしまうことがあった。よって、この実施の形態においては、電極にコーティングされる金属が白金であると、半導体ウェハ1006のパターン上に白金が付着することなく、また、白金が付着することがあってもデバイス性能を劣化させることもない。更に、電極の絶縁破壊の発生確率も低くすることができ、より好ましい。次に、図18と図19を参照して、電極の形状と構成の一例を説明する。図18において、電極1010とは、静電レンズ系1002、静電対物レンズ系1005および静電中間レンズ系1007に含まれる静電レンズの電極である。

電極1010は、電子線や二次電子線が通過することができる通過孔が略中央部にある円盤形状になっており、この実施の形態の写像投影型評価装置1000において、電極1010には、図示しない電源装置により所定の電圧が印加されている。

図19は電極1010の表面部の一部断面図である。なお、E×B型偏向器1003の電極1004の表面も電極1010の表面と同等の構成としてもよい。電極1010の材料は、ケイ素銅(シリコンブロンズ)1010aから構成され、必要な寸法形状に加工されたケイ素銅1010a上にチタン1010bを50nmの厚さになるようにスパッタ・コーティングし、更に、チタン1010b上に白金1010cを200nmの厚さになるようにスパッタ・コーティングを行って電極1010が形成される。

ここで、図20および図21を参照して、この実施の形態において、電極間の電位差が大きい場合の電極間の絶縁破壊を防止する電極構成について詳細に説明する。図20の電極1020、1022は、例えば、静電対物レンズ系1005に含まれている電極であり、上記のように電極には白金がコーティングされている。また、電極1020、1022には、図示しない電源装置により所定の電圧が印加されている。この実施の形態では、半導体ウェハ1006側の電極1022には高電圧、例えば15kVの電圧が印加され、電極1020には5kVの電圧が印加されている。

and string prints string all grows and strong prints prints are string prints and string string prints and string string prints are string prints and string prints are string

20

25

電子線や二次電子線が通過する通過孔1024は、電極1020、1022の中央部にあり)通過孔1024内は電極1020、1022の電位差によって電界が形成されている。この電界によって、電子線は減速し、且つ収束されて、半導体ウェハ1006に照射される。この時、電極間の電位差が大きいので、静電対物レンズ系1005は焦点距離の短い静電対物レンズとすることができる。よって、静電対物レンズ系1005は低収差で高分解能となる。

電極1020と1022との間には、絶縁スペーサ1026が挿入されており、 絶縁スペーサ1026は、電極1020、1022を略垂直に支持している。絶 縁スペーサ1026の電極間における最短沿面距離は、支持された電極部分にお ける電極間距離と略同じ長さである。即ち、電極間の絶縁スペーサ1026の表 面は、電極間方向においてヒダ状等になっておらず、ほぼ直線になっている。

電極1022は電極間において最短距離となっている第1の電極面1022bと、この第1の電極面1022bよりも電極間距離が長い第2の電極面1022c c と、第1の電極面1022bと第2の電極面1022c c との間にこれら2つの電極間方向の段差1022d (図21)を有している。絶縁スペーサ1026は電極1022を第2の電極面1022c で支持している。

電極1022をこのような形状にしたので、電極間の最短距離を所定の距離に保ちつつ、絶縁スペーサ1026の表面を電極間方向においてヒダ状等に加工することなく、絶縁スペーサ1026の最短沿面距離を電極間の最短距離より長くすることが可能となる。また、絶縁スペーサ1026の表面には、大きい電界が加わらないので、沿面放電も起こり難い構造とすることができる。

したがって、静電対物レンズ系1005を焦点距離の短い静電対物レンズとし、 且つ低収差で高分解能にすることができ、しかも、絶縁スペーサ1026の電極間の絶縁性能が低下しないので、電極間の絶縁破壊が防止できる。また、金属である電極1022に段差1022dを設けるように加工したので、絶縁スペーサ1026を加工するより加工費用が安価になる。加えて、電極間方向における絶縁スペーサ1026の表面にはほとんど凹凸部分が無く、絶縁スペーサ1026

25

5

からの放出ガスが多くなることも無い。更に、電極1020の通過孔1024の 開口端部1020aと、電極1022の通過孔1024の開口端部1022aと のコーナー部に曲率を持たせたので、両コーナー部に電界が集中することがなく なり、電極間の絶縁破壊がより防止できる。また更に、電極1022の段差10 22dの電極間側のコーナー部に曲率を持たせたので、コーナー部に電界が集中 することがなく、電極間の絶縁破壊がより防止できる。

なお、この第4の実施の形態では、電極1022に段差1022dを設けたが、電極1020にも電極1022方向に段差を設けるように加工してもよいし、電極1022に代えて、電極1020にのみ電極1022方向に段差を設けるように加工してもよい。また、静電対物レンズ系1005において、絶縁スペーサ1026が挿入された電極を説明したが、他の静電レンズ系において、電位差の大きい電極がある場合は、その静電レンズ系に適用することによって、電極間の絶縁破壊を防止することができる。

図16~図21を用いて説明した第4の実施の形態は、すでに図3および図4の (a)、(b)を参照して説明したデバイス製造方法における検査工程(G)に用いることによって、静電レンズ系の電極間で絶縁破壊が生じることなく半導体ウェハの評価を行うことが可能となる。これに関しては、図3および図4の (a)、(b)に関する説明を援用することにし、ここでの説明は省略する。

偏向に関する実施の形態(第5の実施の形態)

本発明の第5の実施の形態は、最小線幅が0.2マイクロメートル以下のパターンの欠陥検査、線幅測定、合わせ精度測定、つなぎ測定及び高時間分解能電位コントラスト測定等を高スループット、高信頼性で行なうことができる電子線装置および該装置を用いたデバイス製造方法に関する。

ウィーンフィルタを用いて、一次電子線と、それによって照射された試料から 放出された二次電子線とを分離するようにした電子線装置は公知である。例えば、 試料に垂直な光軸に対して所定の角度をなすように電子線源から一次電子線を放 出し、この一次電子線の進行方向をウィーンフィルタにより光軸に沿うよう偏向

25

5

して一次電子線を試料に垂直に入射させ、試料から放出された二次電子線をウィーンフィルタによって一次電子線から分離して光軸に沿って進行させ、検出器に入射させる電子線装置が知られている。また、一次電子線を試料に対して垂直に入射させ、それによって試料から放出される二次電子線をE×B分離器によって一次電子線から分離して検出器に入力する電子線装置が知られている。

こうした従来の電子線装置においては、一次電子線のエネルギー幅が大きいと、一次電子線の持つエネルギーの大小に応じて、E×B分離器によって偏向される角度が相違し、それが原因で一次電子線に色収差が発生するため、一次電子線からなるビームを細く絞ることができないという問題があった。また、色収差の問題は、一次電子線の照射により試料から放出された二次電子線を光軸に沿って直線的に進行させて検出器に入射させる電子線装置においても生じる。試料から放出された二次電子線のエネルギー幅が広いと、二次電子線が二次光学系を通過する際に色収差を発生することになり、二次電子線の正確な検出に悪影響を及ぼしていた。

本発明の第5の実施の形態は、こうした従来の電子線装置の課題を解決するために提案されたものであり、一次電子線を細く絞って試料を走査する電子線装置において、ウィーンフィルタの色収差の影響を大幅に低減し、或いは、二次電子線の像を写像投影して検出する電子線装置において、二次電子線のエネルギー幅に起因する色収差を大幅に低減する手段を提供する。

また、本発明の第5の実施の形態は、このような色収差を低減した電子線装置を用いた欠陥検査装置等に好適である。更に、こうした欠陥検査装置等をデバイス製造方法に用いてプロセス途中のウェハの検査を行なうことができる。

図22において、試料に垂直な光軸Xに対して、電子線源を含む一次系と検出器を含む二次系とが互いに反対側に所定の角度をなして配置される。図22において、電子線源1101から放出された一次電子線1102は開口(図示せず)により長方形に整形され、レンズ1103、1104によって縮小されてウィーンフィルタ1105に入射する。このとき、一次電子線1102と光軸Xとのな

25

. 5

一次電子線1102の照射によって試料1108から放出された二次電子線1111はレンズ系1109、1110によって拡大された後、ウィーンフィルタ1105に入射し、その電極1106及び磁石1107の作用によって光軸Xから α 度だけ右へ、即ち光軸Xから遠ざかるように偏向される。ウィーンフィルタ1105によって一次電子線から分離された二次電子線1111はレンズ系112、1113を含む二次光学系によって拡大され、検出器1114上に結像する。検出器11140出力は画像処理装置1115で適宜の処理をされ、画像メモリ1116に蓄積される。

この第5の実施の形態においては、ウィーンフィルタ1105により生じる色収差は、二次電子線1111を処理する二次光学系においての方が問題となる。そこで、ウィーンフィルタ1105による色収差が二次電子線1111に対して及ぼす影響を解消するため、ウィーンフィルタ1105の静電偏向作用と電磁偏向作用が二次電子線を互いに逆の方向へ偏向させ、且つ、静電偏向作用が二次電子線を偏向する角度と電磁偏向作用が二次電子線を偏向させる角度との間に所定の関係を持たせるようにする。これにより、試料1108から放出されて光軸Xに沿って進行してきた二次電子線111は、光軸Xに関して一次電子線1102とは反対の方向に所定の角度だけ偏向され、しかも、そのときには二次電子線111の持つエネルギー幅による色収差を無視できる大きさにすることができる。

そこで、二次電子線1111がウィーンフィルタ1105に入射したとき、ウィーンフィルタ1105の電極1106は静電偏向作用により二次電子線1111を左へ、即ち光軸Xに近づくように角度 α だけ偏向させ、磁石1107は右へ、即ち光軸Xから遠ざかるように角度 2α だけ偏向させる。このとき、ウィーンフィルタ1105へ入射する二次電子線のビームエネルギーをV0とすると、V0よりも ΔV だけ小さいエネルギーを持つ二次電子線は、電極1106によって角度

 $\alpha / (1 - \triangle V / V \circ) = \beta$

だけ、光軸 X から左へ、即ち光軸 X に近づくように偏向されることになり、同時に、 V o よりも Δ V だけ小さいエネルギーを持つ二次電子線 1 1 1 1 は磁石 1 1 0 7 によって角度

 $2 \alpha / \{1 - (\triangle V / V \circ)\}^{1/2} = \gamma$

だけ、光軸Xに関して右へ、即ち光軸Xから遠ざかるように偏向される。第一次 近似では、

 $(1-\triangle V/V \circ)^{-1} = (1+\triangle V/V \circ)$ $(1-\triangle V/V \circ)^{-1} = (1+\triangle V/V \circ)^{-1}$

2 $\{1-(\triangle V/Vo)\}^{-1/2}=2$ $\{1+(1/2)(\triangle V/Vo)\}$ であるから、

 $\gamma-\beta=2\alpha\{1+(1/2)(\Delta V/Vo)\}-\alpha(1+\Delta V/Vo)=\alpha$ が成り立つ。換言すると、ウィーンフィルタ1105の静電偏向作用と電磁偏向作用との相殺により二次電子線のエネルギ幅に関する項が消去され、二次電子線 1111はウィーンフィルタ1105によって光軸 X に関して右へ、即ち光軸 X から遠ざかるように角度 α だけ偏向されるのみであるので、ウィーンフィルタ1105による色収差を無視することができる。

25 図23は、本発明の第5の実施の形態の構成を詳細に示す図である。同図において、電子線源1101から放出された一次電子線電子線1102はコンデンサレンズ1120によってブランキング開口板1121の開口に収束される。一次

25

. 5

電子線1102は開口板1121へ進行する前に多数の開口を有する開口板1122を通過し、これによって、所望の本数の細いビームを有するマルチビームとされる。マルチビーム化された一次電子線1102は、開口板1121を通過した後、縮小レンズ1123、1124によって所定寸法のビームへ縮小されて縮小像1122 を形成した後、ウィーンフィルタ1105に入る。このとき、一次電子線1102と光軸Xとのなす角度は α である。一次電子線1102はウィーンフィルタ1105によって角度 α だけ曲げられて試料1108に垂直な光軸Xに沿って進み、更に対物レンズ1125及び対称電極1126によって縮小されてから試料1108を照射する。

ウィーンフィルタ1105から出た一次電子線1102によって試料1108 を、開口板1122の開口の配列方向とは直角の方向(図4において、紙面に垂 直な方向)に走査するため、一次電子線1102の光路に沿って走査用電極11 27、1128が配置され、また、ブランキング時に一次電子線1102の進行 方向を正常な進行方向から逸らせて光路1129に沿って進行させるため、ブランキング偏向器1130、11131が設けられる。

試料 1108 は、一次電子線 1102 を構成する複数の細いビームのそれぞれによって照射された各個所から二次電子線 1111 を放出する。こうして放出されたマルチビームの二次電子線 1111 はウィーンフィルタ 1105 によって一次電子線から分離され、結像電子光学系 1132、 1133 によって拡大され、開口板 1122 の開口と対応する開口を有する開口板 1134 を通過してマルチ検出器 1135 に入射する。ここで、開口板 1122 と開口板 1134 は光軸の回りに 90 回転させた図を表示している。

この場合にも、ウィーンフィルタ1105に起因する色収差が一次電子線及び 二次電子線について問題となるが、二次光学系で発生する色収差は、マルチビー ムを構成する複数のビームの相互間隔を広げることにより影響を小さくすること ができる。

一方、ウィーンフィルタ1105による色収差が一次電子線1102に対して

及ぼす影響を解消するため、図23においては、ウィーンフィルタ1105の静電偏向作用と電磁偏向作用が一次電子線を互いに逆の方向へ偏向させ、且つ、静電偏向作用が一次電子線を偏向する角度と電磁偏向作用が一次電子線を偏向させる角度との間に所定の関係を持たせるようにする。これにより、電子線源1101から放出されて光軸Xに対して斜めに進行してきた一次電子線1102は、光軸Xに関して左へ、即ち光軸Xに近づくように所定の角度だけ偏向され、しかも、そのときには一次電子線1102の持つエネルギー幅の影響を無視することができる。

これを具体的に説明すると、ウィーンフィルタ1105は、一次電子線1102を電極1106の静電偏向作用により角度 α だけ右へ、即ち、光軸から遠ざかるように偏向し、磁石1107の電磁偏向作用により角度 2α だけ左へ、即ち、光軸Xに近づくように偏向する。その結果、ウィーンフィルタ1105に入射した一次電子線1102は、全体として左へ角度 α だけ偏向される。この場合には、一次電子線1102の持つエネルギー幅の影響を無視することができる。具体的には、一次電子線1102のエネルギー幅の広がりに起因する色収差は解消される。

数学的に説明すると、ウィーンフィルタ1105へ入射する二次電子線のビームエネルギーをVoとしたとき、Voよりも ΔV だけ小さいエネルギーを持つ一次電子線は、電極1106によって角度

 $20 \qquad \alpha / (1 - \triangle V / V \circ) = \delta$

だけ偏向される。この値は α より大きいので、余分に右へ、即ち光軸Xから遠ざかるように偏向されることになり、同時に、Voよりも Δ Vだけ小さいエネルギーを持つ一次電子線は磁石 1 1 0 7 によって角度

2 α (1 $-\Delta$ V / V o) $^{-1/2} = \theta$

25 だけ偏向される。この値は2αより大きいので、余分に左へ、即ち光軸Χに近づ くように偏向される。そこで、これらの角度の差として、

 $\theta - \delta = 2 \alpha \left(1 - \Delta V / V O\right)^{-1/2} - \alpha \left(1 - \Delta V / V O\right)^{-1}$

 $20 \cdot$

25

5

が求まる。△ⅤはVoに比べて極めて小さいので、第一次近似として、

 $(1-\triangle V/V \circ)^{-1/2} = (1+\triangle V/2 V \circ)$

が成り立つので、結局、

 $\theta - \delta = 2 \alpha (1 - \Delta V / 2 V o) - \alpha (1 - \Delta V / V o)$

 $= \alpha$

が成立する。こうして、一次電子線1102がウィーンフィルタ1105によって光軸Xに近づくように角度 α だけ偏向されるとき、一次電子線の持つエネルギー幅を無視することができるので、ウィーンフィルタ1105による色収差を解消することができる。

なお、二次光学系で発生する色収差は、一次電子線1102を構成する複数の ビームを一つの列上に配列し、これらのビームの配列方向と直角の方向にウィー ンフィルタ1105において偏向する場合には、ビームの配列方向とは直角な方 向に生じるので、色収差によって複数のビーム間のクロストークが増すことはな い。

図22及び図23を参照して説明した電子線装置は、欠陥検査装置、合わせ精度測定装置、線幅測定装置、高時間分解能電位コントラスト測定装置、欠陥レビュー装置、ストロボSEM装置等の各種の装置に適用することができる。また、第5の実施の形態の電子線装置は、プロセス途中のウェハの評価を行うために、

図3および図4の(a)、(b)において説明したデバイス製造方法における検査工程(G)において使用することができる。これに関しては、図3および図4の(a)、(b)に関する説明を援用することにし、ここでの説明は省略する。

以上、本発明の第5の実施の形態を説明したが、本発明はこうした実施の形態に限定されるものではない。例えば、試料1108の異なる位置を同時に照射できるよう、電子線源、一次光学系、二次光学系及び検出器からなる電子線照射・

検出系を複数系統設け、複数の電子線源から出た複数の一次電子線で試料を照射 し、試料から放出された複数の二次電子線を複数の検出器で受け取るようにして もよい。これにより、検査や測定に要する時間を大幅に短縮することができる。

25

5

対物レンズの駆動に関する実施の形態(第6の実施の形態)

本発明の第6の実施の形態は、0.1ミクロン以下の線幅を持つパターンの欠陥検査、CD測定、合わせ精度測定、高時間分解能での電位測定等の諸評価を高スループット、高精度且つ高信頼性で行うことができる電子線装置および該装置を用いたデバイス製造方法に関する。

半導体ウェハ等の試料の表面に形成されたパターンの評価を、電子線による走査の結果を用いて高精度で行う場合、試料の高さの変化を考慮することが必要である。これは、試料の高さにより、該試料の表面上のパターンと該パターンに電子線を集束させる対物レンズとの間の距離が変化して、合焦条件はずれにより解像度が低下してしまい、正確な評価ができないためである。

これを解消するため、試料面に対して斜めに光を入射させ、その反射光を利用して試料の高さを測定し、その測定結果を、電子線を試料に集束させるための電子光学系に帰還させて、電子光学系の構成要素に供給する電流や電圧を制御することにより、電子光学系の焦点合わせを行う電子線装置は公知である。

しかし、試料に対して斜めに光を入射させる方式においては、試料面と電子光学系の下面との間のスペースに、入射光を反射させるための、絶縁物を主体とする光学部品を配置しなければならない。このためには、試料面と電子光学系の下面との間の間隔を必要以上に大きく取る必要があるが、そうすると電子光学系の収差等の問題が無視し得なくなる。しかしながら、電子光学系の焦点合わせと電子光学系の収差等の問題の解消とを同時に行う手段がないのが実状であった。

また、電子光学系の焦点合わせは、試料面と電子光学系の下面との間の距離ばかりでなく、試料面上の帯電状態や、電子線の空間電荷効果をも考慮して行う必要があるので、電子光学系の焦点合わせに関係するパラメータを電子光学的に測定しないならば誤差が発生しかねない。

更に、電子光学系に含まれる磁気レンズの励磁電流を調整して焦点合わせを行う場合、この励磁電流を所定値に設定してから電子光学系の焦点距離が安定的に 定まるまでの時間、即ち整定時間を長く取ることが必要であるため、高速で焦点

25

合わせを行うことが困難であるという問題もあった。また、静電レンズの励起電 圧を変えて電子光学系の焦点合わせを行う場合、静電レンズに印加された高電圧 を変化させなければならないので、同様に、整定時間が長くかかるという問題が あった。

5 本発明の第6の実施の形態は、上記の問題点を解決するために、電子光学的に 且つ短時間で電子光学系の焦点合わせを行うことができる電子線装置及び該装置 を用いたデバイス製造方法を提供する。

図24は、本発明の第6の実施の形態の構成を概略的に示している。同図において、電子線源1201はアノード1202を備え、放出された一次電子線はアノード1202によって加速されて軸合わせ用偏向器1203、1204及び非点補正レンズ1205を経て開口板1206の小孔1207を通る。開口板1206を通過した一次電子線はコンデンサ・レンズ1208によって集束され、偏向器1209、1210を経てウィーン・フィルタ1211を通過した後、対物レンズ1212によって縮小され、軸対称電極1213を経て、ステージS上に載置された試料1214の表面に形成された例えば矩形の複数の回路パターンの一つの上に結像される。軸対称電極1213は、試料1214との間に殆どスペースがないよう配置される。ステージSは、一次電子線が偏向される第1の方向に対して直角な第2の方向に移動可能であり、このため、一次電子線の偏向とステージSの移動とにより回路パターンの走査が行われる。

一次電子線による走査の結果、試料1214上の一つの回路パターンから放出された二次電子線は、対物レンズ1212の電界によって引かれて加速され、ウィーン・フィルタ1211によって光軸しから逸れるように偏向されて一次電子線から分離される。こうして二次電子線は二次電子線検出部1085によって検出される。二次電子線検出部1215は、入射した二次電子線の強度を表す電気信号を出力する。この電気信号は、その対応の増幅器(図示せず)によって増幅された後、画像処理される。

コンデンサ・レンズ1208によって一次電子線を縮小するため、コンデン

25

5

サ・レンズ1208を構成する電極のそれぞれに対して、第1の電源1217から所要の電圧が印加される、一方、対物レンズ1212はユニポテンシャル・レンズであり、一次電子線を試料1214の表面に集束させるため、対物レンズ1212の中央電極には第2の電源1218から正の高電圧Voボルトが印加され、対物レンズ1212の上側電極及び下側電極には第3の電源1219から小さい電圧 $\pm \Delta V$ oボルトが印加される。

上で説明したように、電子線走査・検出系1220は、試料1214上のチップパターンの一つを走査し、走査の結果として試料1214から放出された二次電子線を検出して、その強度を表す電気信号を出力する。実際には、試料1214の表面に複数のチップパターンが形成されているので、電子線走査・検出系1220と同様の構成の電子線走査・検出系(図示せず)が、電子線走査・検出系1220と並列する形で、互いの距離が試料1214上のチップ寸法の整数倍の距離になるよう配置される。

電子線走査・検出系1220について更に説明すると、二次電子線検出部1215から出力された電気信号は2値化情報へ変換され、この2値化情報を画像データに変換する。この結果、試料1214の表面に形成された回路パターンの画像データが得られ、得られた画像データは適宜の記憶手段に蓄積されると共に、基準の回路パターンと比較される。これにより、試料1214上に形成された回路パターンの欠陥を検出することができる。

なお、試料1214上の或る回路パターンを表す画像データとの比較のための

5

基準の回路パターンは種々のものを使用することができ、例えば、当該画像データを生じる走査が行われた回路パターンを作製するためのCADデータから得られた画像データを用いることができる。

図24に示す電子線装置において、対物レンズ1212の上側電極及び下側電極に印加すべき電圧 $\pm \Delta V$ のの値は、CPU等の制御装置(図示せず)の制御下で以下のようにして決定される。まず、試料1214の表面に形成された任意の一つの回路パターン上に、一次電子線が偏向される第1の方向に平行なパターン・エッジと、この第1の方向に直角な第2の方向に平行なパターン・エッジとが存在する場所を、例えばパターン・データから読み出す。

20 上記の「電気信号の立上がり幅」は、図25の(b)に示すように、電圧±△ Voを或る値に固定した状態で、第1の方向に平行なパターン・エッジを第2の 方向に走査したときに測定される電気信号が、その最大値の12%から88%ま で変化するのに要する第2の方向での走査距離(単位ミクロン)である。

図25の(a)において、グラフAは電圧 Δ Voが $-\Delta$ Vo(x)で最小である、即ち、立上りがもっとも鋭いことを示しており、同様に、グラフBは電圧 Δ Voが $+\Delta$ Vo(y)で最小である、即ち、立上りが最も鋭いことを示している。したがって、対物レンズ1212の焦点条件、即ち、上側電極及び下側電極に印

_ 5

加する電圧 $\pm \triangle V$ oの値は、 $\{-\triangle V$ o(x) $+ \triangle V$ o(y)} / 2に設定することが好ましい。

実際には、電圧 $\pm \Delta V$ o は $0 \sim \pm 2$ 0 ボルトまでしか変化しないので、1 0 マイクロ秒という高速で対物レンズ 1 2 1 2 の整定を行うことができ、図 2 5 の (a) のグラフA及びBを取得するのに 1 5 0 マイクロ秒しか要しなかった。

また、曲線 A、 B を測定するのに、このように多くの測定を行う必要はなく、 図 2 5 の (a) に示すように、 $\pm \Delta V$ o の値として $-\Delta V$ (1)、 $+\Delta V$ (2)、 $+\Delta V$ (3)を設定して立ち上がり幅を測定し、双曲線で近似してグラフA、 B を求め、立上りの最小値 $+\Delta V$ o (y)、 $-\Delta V$ o (x)を求めてもよい。その 場合には、4 5 マイクロ秒程度で測定を行うことができる。

図25の(a)のA、Bは双曲線の形状をしている。立ち上がり幅をp(mm)、対物レンズ電圧 $\pm \triangle V$ o を q(ボルト)とすると、曲線A、Bはa、b及び c を定数として、

$$(p^{2}/a^{2}) - (q-c)^{2}/b^{2} = 1$$

と表せる。そこで、3つのqの値 q_1 、 q_2 、 q_3 とそれらに対応するpの値 p_1 、 p_2 、 p_3 を上式に代入すると、次の3つの式が得られる。

$$(p_1^2/a^2) - (q_1-c)^2/b^2 = 1$$
 (1)

$$(p_2^2/a^2) - (q_2-c)^2/b^2 = 1$$
 (2)

$$(p_3^2/a^2) - (q_3-c)^2/b^2 = 1$$
 (3)

これらの式(1)~(3)から a, b 及び c の値が算出され、 q=c のとき、最小値となる。即ち、立ち上がり幅が最小となる対物レンズ電圧 $-\Delta V$ o(x)を3つのレンズ条件で求めることができたことになる。全く同様にして、 $+\Delta V$ o(y)を求めることができる。

図25の(a)のグラフA、Bのように立上り幅がパターン・エッジを第1の 方向に走査したときと第2の方向に走査したときとで異なる場合が一般的である。 こうした場合には、例えば8極の非点補正レンズ1205に印加する電圧を調整 して、第1の方向及びそれに直角な第2の方向においてパターン・エッジを走査

. 5

したときの二次電子線検出部1215からの電気信号の立上りが更に小さくなる よう非点補正を行うことが必要である。

前述のとおり、電子線走査・検出系1220と同様の構成の電子線走査・検出系(図示せず)が、電子線走査・検出系1220と並列する形で、互いの距離が試料1214上のチップサイズの整数倍の距離になるよう配置され、それぞれの電子線走査・検出系において一次電子線が試料1214上に合焦するよう焦点合わせを行う必要があるが、こうした焦点合わせは略同時に行うことが可能であるので、スループット・バジェットは僅かな値でしかない。

この方法では、光学的な Z センサではなく、電子光学的な手段で合焦条件を求めているため、試料が帯電している場合にも正しい合焦条件が求められるという利点がある。

以上説明したように電子線走査・検出系における焦点合わせを行ってから、試料1214の評価を行うプロセスに移行する。本発明の第6の実施の形態を用いた欠陥検査装置を、図3および図4の(a)、(b)を参照して説明したデバイス製造方法における検査工程(G)に対して用いることにより、微細なパターンを有する半導体デバイスをも、スルプットよく検査することができるので、全数検査が可能となり、製品の歩留りを向上させ、欠陥製品の出荷防止が可能となる。これに関しては、図3および図4の(a)、(b)に関する説明を援用することにし、ここでの説明は省略する。

20 制振装置に関する実施の形態 (第7の実施の形態)

本発明の第7の実施の形態は、電子線を物質の目標位置に照射することにより、当該物質の加工、製造、観測及び検査のうち少なくともいずれかを実行する電子線装置に係り、より詳しくは、電子線を位置決めする機械構造体に生じる不要な機械的振動を減少させた電子線装置、その制振方法および該装置を用いた半導体デバイスの加工、製造、観測及び検査のうち少なくともいずれかを実行する工程を備えた半導体製造プロセスに関する。

一般に、電子線を用いて物質の微細な構造を観測する手法に、ウェハ等に形成

25

5

されたパターンの欠陥を検査する検査装置や走査型電子線顕微鏡(SEM)等が有るが、観測分解能がμm~数十nmであるため、外部からの振動を十分に除振して観測を行う必要がある。また、電子線を用いて露光を行う装置においても、電子線を偏向させ、目標位置に正確にビーム照射するためには、外部からの振動を十分に除振するための除振装置を用い、且つ、鏡筒部分の構造から生じる機械的共振によるふらつきを出来るだけ小さくするために、剛性を上げる必要がある。構造体の剛性を上げるためには、電子光学系による物理的な寸法制約があることから、小型化による剛性の向上は取りづらく、従って鏡筒部分の肉厚化、大型化等により剛性向上が成されることが多かった。しかし、この方法による剛性向上は、装置の重量化、形状制限、除振台の大型化などを含む設計上の自由度の拘束、並びに、経済的な面を含めて不利な面が多々有った。

本発明の第7の実施の形態は、上記事実に鑑み、ビームを位置決めする機械構造体の共振による不要な振動を、必ずしも機械構造体の剛性を向上させなくても、ビームの位置決めを高精度に維持できるよう適切に減衰可能とすることにより、設計上の制約の緩和、装置の小型軽量化、経済性の向上を実現させた電子線装置、および、該装置を半導体デバイスの製造工程に用いて効率良く製造、検査、加工、観測等を可能とする半導体製造プロセスを提供する。

図26は、本発明の第7の実施の形態を、電子線を用いて半導体ウェハの欠陥の検査を行う電子線検査装置に適用した場合の構成を示す。同図に示す電子線検査装置1301はいわゆる写像投影型であり、Aブロック及びこのAブロックから斜め上方に突出するBブロックの機械構造体を有する。Bブロック内には一次電子線を照射する一次電子線照射手段が配置され、Aブロック内には二次電子線を写像投影するための写像投影光学系と、二次電子線の強度を検出する撮像手段とが含まれる。Aブロックは、最下の固定台1330に連結される。

Bブロック内に配置された一次電子線照射手段は、一次電子線を放出、加速するためカソード及びアノードから構成された電子線源1301a、一次電子線を長方形に整形する長方形開口1302a、及び、一次電子線を縮小結像させる4

5

極子レンズ1302bを備える。Aブロックの下部には、縮小された一次電子線を電場E及び磁場Bの直交する場で半導体ウェハ1305に略垂直に当たるように偏向させるE×B偏向器1306、開口アパーチャ(NA)1307、及び、該開口アパーチャを通過した一次電子線をウェハ1305上に結像させる対物レンズ1308が配置される。

ここで、4極子レンズ1302bによって縮小された一次電子線は、E×B偏向器1306の偏向主面に例えば500 μ m×250 μ mの像を形成すると同時に開口アパーチャ1307に電子線源1301aのクロスオーバー像を形成し、ケーラー証明条件が満たされるようにしている。対物レンズ1308によって、ウェハ1305上には例えば100 μ m×50 μ mの像が形成され、当該領域が照明される。

ウェハ1305は、真空に排気可能な図示しない試料室内に配置され、且つ、X-Y水平面内を移動可能なステージ1304の上に配置されている。ここで、Aブロック及びBブロックと、XYZ直交座標系との関係を図27(a)に示す。X-Y水平面にウェハ面があり、Z軸は写像投影光学系の光軸に略平行となる。ステージ1304がウェハ1305を載置した状態でX-Y水平面内を移動することによって、ウェハ1305の検査面が一次電子線によって順次走査される。なお、ステージ1304は固定台1330の上に載置される。

Aブロックの上部に配置された写像投影光学系は、中間静電レンズ1309及び投影静電レンズ1311と、これらレンズの中間に配置された絞り1310と、を備える。一次電子線の照射によりウェハ1305から放出された二次電子線、反射電子線及び散乱電子線は、この写像投影光学系によって、所定の倍率(例えば200~300倍)で拡大投影され、後述するマルチチャンネルプレート1321の下面に結像される。

Aブロックの最上部に配置された撮像手段は、マルチチャンネルプレート1321と、蛍光スクリーン1322と、リレーレンズ1323と、撮像部1324とを備える。マルチチャンネルプレート1321は、プレート内に多数のチャン

25

5

ネルを備えており、静電レンズ1309及び1311によって結像された二次電子線が該チャンネル内を通過する間に、更に多数の電子線を生成させる。即ち、二次電子線を増幅させる。蛍光スクリーン1322は、増幅された二次電子線が照射されることにより、二次電子線の強度に応じた強さの蛍光を発する。即ち、二次電子線の強度が光の強度に変換される。リレーレンズ1323がこの蛍光を撮像部1324に導くように配置される。撮像部1324は、リレーレンズ1323がこの蛍光を撮像部1324に導くように配置される。撮像部1324は、リレーレンズ1323により導かれた光を電気信号に変換するための多数のCCD撮像素子から構成される。検出信号のS/N比を向上させるため、いわゆるTDI(Time Delay Integral)検出器を用いるのが好ましい。なお、一次電子線の照射によって、二次電子線だけでなく散乱電子線や反射電子線も発生するが、ここでは一括して二次電子線と称することにする。

ところで、Aプロック及びこれに連結されたBプロックの機械構造体からなる 鏡筒1346は、通常、一つ又はそれ以上の固有振動モードを有する。各固有振動モードの共振周波数及び共振方向は、形状、質量分布、サイズ、内部の機械の 配置形態等によって決定される。例えば、図27(b)に示すように、鏡筒13 46は、固有振動1388のモード1を少なくとも有する。このモード1において、鏡筒1346は、例えば略Y方向に沿って150Hzの周波数で揺れる。この場合の鏡筒の伝達関数の一例を図29に示す。図29では、横軸が周波数、縦軸が振動振幅Aの対数である。この伝達関数では、共振周波数150Hzにおいて共振倍率30dB(約30倍)のゲインを有する。従って、外部から微少な振動が加わった場合でも、その振動に150Hz近傍の周波数成分が含まれていると、その周波数成分はこの例では約30倍に増幅されて鏡筒を振動させる。この 結果、写像のボケ等の有害な事象を発生させる。

従来技術では、これを防止するため、鏡筒全体を除振台の上に載せて外部からの振動を除振するか、及び/又は、鏡筒の肉厚や構造を見直し、共振倍率を下げる等の大掛かりな対策を行っていた。

本発明の第7の実施の形態では、これを避けるため、図27 (c)に示すよう

25

5

に、振動1388を打ち消すように鏡筒に対し圧力振動1390を加えるアクチュエータ1325をAプロックの基部に設置する。このアクチュエータ1325は、図3に示すように、振動減衰用回路1327に電気的に接続されている。

アクチュエータ1325及び振動減衰用回路1327の概略構成を図28に示す。同図に示すように、アクチュエータ1325は、圧電効果を有する誘電体1351を電極1352a及び1352bで挟んでなる圧電素子1350と、該圧電素子1350を電極1352b側から支持するため固定台1330に固定された支持台1354とを有する。圧電素子1350は、鏡筒1346のAプロックと支持台1354との間に挟まれており、電極1352aは、Aプロックの外壁に、電極1352bは支持台1354に接着されている。これにより、圧電素子1350は、往復振動1388により、鏡筒1346が向かってくるときは正の圧力、鏡筒1346が遠ざかるときは負の圧力を受ける。圧電素子1350は、鏡筒1346が高かってくるときは正の圧力、鏡筒1346が高振動1388を抑制するため効果的な位置に設置される。例えば、振動1388の方向が、電極1352a及び1352bと直交するように配置されるのが好ましい。

f o' = $1 / \{2 \pi (LC)^{1/2}\}$

で表される。本発明では、直列共振回路の共振周波数 f_0 が鏡筒 1 3 4 6 の共振周波数 f_0 に略一致するように、各パラメータが設定される。即ち、与えられた圧電素子 1 3 5 0 の電気容量 C に対して、

 $f \circ = 1 / \{2 \pi (LC)^{-1/2}\}$

が成立するように、可変インダクタンス1358のインダクタンスLが調整され

25

5

る。実際には、圧電素子1350の容量Cは、機械的共振周波数に合わせて共振 回路を形成する上では小さく、このため非常に大きなインダクタンスLを必要と する場合が多いが、この場合には演算増幅器等を用いて等価的に大きなインダク タンスを形成することで共振回路を実現することができる。

また、直列共振回路の共振周波数成分のQ値が、図29に示す伝達関数においてピークを持つ共振成分のQ値に略一致するように、抵抗1356の値 R_D が選択される。このようにして作られた直列共振回路1360は、図29の参照番号1384により示される電気的周波数特性を有する。

図26に示す電子線検査装置1301は、制御部1316によって制御・管理される。制御部1316は、図26に例示されたように、汎用的なパーソナルコンピュータ等から構成することができる。このコンピュータは、所定のプログラムに従って各種制御、演算処理を実行する制御部本体1314と、本体1314の処理結果を表示するCRT1315と、オペレータが命令を入力するためのキーボードやマウス等の入力部1318とを備える、勿論、電子線検査装置専用のハードウェア、或いは、ワークステーションなどから制御部1316を構成してもよい。

制御部本体1314は、図示しないCPU、RAM、ROM、ハードディスク、ビデオ基板等の各種制御基板等から構成される。RAM若しくはハードディスクなどのメモリ上には、撮像部1324から受信した電気信号即ちウェハ1305の二次電子線画像のデジタル画像データを記憶するための二次電子線画像記憶領域1320が割り当てられている。また、ハードディスク上には、予め欠陥の存在しないウェハの基準画像データを記憶しておく基準画像記憶部1313が存在する。更に、ハードディスク上には、電子線検査装置全体を制御する制御プログラムの他、欠陥検出プログラム1319が格納されている。この欠陥検出プログラム1319は、ステージ1304のXY平面内の移動を制御すると共に、この間に撮像部1324から受信したデジタル画像データに関して加算等の各種演算処理を行い、その結果得られたデータから記憶領域1320上で二次電子線画像

25

5

を再構成する機能を有する。更に、この欠陥検出プログラム1319は、記憶領域1320上で構成された二次電子線画像データを読み出し、該画像データに基づき所定のアルゴリズムに従ってウェハ1305の欠陥を自動的に検出する。

次に、この実施の形態の作用を説明する。電子線源1301aから一次電子線を放出し、長方形開口1302a、4極子レンズ1302b、E×B偏向器1306及び対物レンズ1308を通して、セットされたウェハ1305表面上に照射する。上述のように、ウェハ1305上で例えば100 μ m×50 μ mの被検査領域が照明され、二次電子線が放出される。この二次電子線は、中間静電レンズ1309及び投影静電レンズ1311によってマルチチャンネルプレート1321の下面に拡大投影され、撮像部1324により撮像され、ウェハ1305上の投影された領域の二次電子線画像が得られる。ステージ1304を駆動してウェハ1305を所定幅毎にX-Y水平面内で逐次移動して上記手順を実行することにより、検査面全体の画像を得ることができる。

拡大された二次電子線画像を撮像している間に、鏡筒 1 3 4 6 に共振周波数 f $_0$ (1 5 0 H $_2$) の振動成分を含む外力が加わると、鏡筒 1 3 4 6 は、その伝達関数で定まる共振倍率(3 0 d B)でこの振動成分を増幅させて固有振動する。この振動 1 3 8 8 は、圧電素子 1 3 5 0 に正負の圧力を印加する。圧電素子 1 3 5 0 は、鏡筒 1 3 4 6 の振動エネルギーを一旦電気エネルギーに変換して出力する。圧電素子 1 3 5 0 の両電極 1 3 5 2 a、 1 3 5 2 bには、インダクタンス 1 3 5 8 (L) 及び抵抗 1 3 5 6 (R_p) が直列接続されて共振回路を形成しているため、共振周波数 f_0 において、圧電素子 1 3 5 0 の容量性インピーダンスと、インダクタンス 1 3 5 8 の誘導性インピーダンス Lとは相殺され、共振回路のインピーダンスは、事実上、抵抗 1 2 0 5 6 (1 8 1 8 1 9 のみとなる。従って、共振時には、圧電素子 1 3 5 0 から出力される電気エネルギーは、抵抗 1 3 5 6 (1 8 1 9 によりほぼ全部消費される。

かくして、鏡筒1346から圧電素子1350に加わる外力を相殺するように 圧電素子1350は力を発生することになり、機械共振により発生する振動13

 $25 \cdot$

5

88を相殺し、共振倍率を下げることができる。二次電子線は拡大写像されるため、振動による写像の揺らぎは更に大きなものとなるが、この実施の形態では、このような揺らぎに起因した写像のぼけを未然に防止することができる。

図30に示すように、機械構造体としての鏡筒1346の伝達関数1382 (図29に相当)の共振成分は、電気的周波数特性1384を持った直列共振回路1360の共振成分により相殺され、鏡筒1346は、全体として共振倍率の低い総合伝達関数1386を持つようになる。

以上のように、写像のぼけの無い良好な二次電子線画像が得られると、この実施の形態の電子線検査装置1301は、当該画像からウェハ1305の欠陥を検査する処理を行う。この欠陥検査処理として、いわゆるパターンマッチング法などを用いることができる。この方法では、基準画像記憶部1313から読み出した基準画像と、実際に検出された二次電子線画像とのマッチングを取って両者の類似度を表す距離値を演算する。この距離値が所定の閾値より小さい場合、類似度が高いと判断して「欠陥無し」と判定する。これに対し、該距離値が所定の閾値以上の場合、類似度が低いと判断して「欠陥有り」と判定する。欠陥有りと判定した場合、オペレータに警告表示してもよい。このとき、CRT1315の表示部に二次電子線画像1317を表示するようにしてもよい。なお、二次電子線画像の部分領域毎に上記パターンマッチング法を用いてもよい。

パターンマッチング法以外でも、例えば図31(a)~(c)に示す欠陥検査 方法がある。図31(a)には、1番目に検出されたダイの画像1331及び2 番目に検出された他のダイの画像1332が示されている。3番目に検出された 別のダイの画像が1番目の画像1331と同じか又は類似と判断されれば、2番目のダイ画像1332の1333の部分が欠陥を有すると判定され、欠陥部分を 検出できる。

図31(b)には、ウェハ上に形成されたパターンの線幅を測定する例が示されている。ウェハ上の実際のパターン1334を1335の方向に走査したときの実際の二次電子線の強度信号が1336であり、この信号が予め較正して定め

25

5

られたスレッショールドレベル1337を連続的に超える部分の幅1338をパターン1334の線幅として測定することができる。このように測定された線幅が所定の範囲内にない場合、当該パターンが欠陥を有すると判定することができる。

図31(c)には、ウェハ上に形成されたパターンの電位コントラストを測定する例が示されている。図26に示す構成において、ウェハ1305の上方に軸対称の電極1339を設け、例えばウェハ電位0Vに対して-10Vの電位を与えておく。このときの-2Vの等電位面は1340で示されるような形状とする。ここで、ウェハに形成されたパターン1341及び1342は、夫々-4Vと0Vの電位であるとする。この場合、パターン1341から放出された二次電子線は-2V等電位面1340で2eVの運動エネルギーに相当する上向きの速度を持っているので、このポテンシャル障壁1340を越え、軌道1343に示すように電極1339から脱出して検出器で検出される。一方、パターン1342から放出された二次電子線は-2Vの電位障壁を越えられず、軌道1344に示すようにウェハ面に追い戻されるので、検出されない。従って、パターン1341の検出画像は明るく、パターン1342の検出画像は暗くなる。かくして、電位コントラストが得られる。検出画像の明るさと電位とを予め較正しておけば、検出画像からパターンの電位を測定することができる。そして、この電位分布からパターンの欠陥部分を評価することができる。

以上説明したように、本発明の第7の実施の形態により得られた写像ぼけの無い良好な二次電子線画像に対して上記のような各測定を行うことにより、より高精度の欠陥検査が実現できる。

本発明の第7の実施の形態としてこれまで説明した電子線検査装置を、図3および図4の(a)、(b)を用いて説明したデバイス製造方法におけるウェハ検査工程(G)に用いた場合には、機械構造体の振動による検出画像の劣化を未然に防止できるので、効率良く高精度の検査が可能となり、欠陥製品の出荷防止が実現できる。これに関しては、図3および図4の(a)、(b)に関する説明を

25

5

援用することにし、ここでの説明は省略する。

なお、本発明の第7の実施の形態は、上で説明したもののみに限定されるものではなく本発明の要旨の範囲内で任意好適に変更可能である。例えば、機械的な共振周波数とモードは、必ずしも一つではなく、一般には複数発生するので、その場合には、必要個数のアクチュエータ1325を鏡筒の各要所に設置することで対応が可能となる。例えば、図27(b)に示す機械構造体ブロックAがY方向の振動1388だけではなくX方向の振動を有する場合、別個のアクチュエータをX方向の振動を相殺するように設置することができる。更に、BブロックやDブロックにも独立した固有振動がある場合、これらのブロックにもアクチュエータを設置してもよい。

振動減衰用回路1327は、直列共振回路1360と等価である必要はなく、機械的固有振動が同一振動方向に複数の共振周波数を持つ場合、当該回路の電気的周波数特性が複数の共振周波数を持つもので対抗することができる。

アクチュエータの設置箇所は、鏡筒だけではなく、ビーム位置を正確に位置付けるために必要な部品、例えばX-Yステージ1304、或いは、各種光学器械の光学部品に適用することも可能である。

第7の実施の形態の電子線検査装置の被検査試料として半導体ウェハ1305 を例に掲げたが、被検査試料はこれに限定されず、電子線によって欠陥を検出す ることができる任意のものが選択可能である。例えばウェハへの露光用パターン が形成されたマスク等をその検査対象とすることもできる。

更に、第7の実施の形態は、ビームを物質の目標位置に照射する電子線応用装置全般に適用することができる。この場合、当該物質の検査のみならず、その加工、製造及び観測の少なくともいずれかを行う装置にも適用範囲を広げることができる。当然、ここでいう物質の概念は、ウェハや上記したマスクのみならず、ビームにより、その検査、加工、製造及び観測のうち少なくともいずれかが可能となる任意の対象物である。デバイス製造方法も、同様に、半導体デバイスの製

造工程中の検査のみならず、半導体デバイスをビームで製造するプロセス自体に

25

いまま保持される問題があった。

5

も適用することができる。

なお、第7の実施の形態の電子線検査装置として、図26に示す構成を示したが、電子光学系等は任意好適に変更可能である。例えば、電子線検査装置1301の電子線照射手段は、ウェハ1305の表面に対して垂直上方から一次電子線を入射させる形式であるが、E×B偏向器1306を省略し、一次電子線をウェハ1305の表面に斜めに入射させるようにしてもよい。

ウェハの保持に関する実施の形態(第8の実施の形態)

本発明の第8の実施の形態は、電子線装置においてウェハを静電的に吸着保持する静電チャック、ウェハと静電チャックとの組合わせ、特に減速電界対物レンズを用いた電子線装置で使用可能な静電チャックとウェハとの組合わせ、ならびに、静電チャックとウェハとの組合わせを備える電子線装置を使用するデバイス製造方法に関する。

ウェハを静電的に吸着固定する公知の静電チャックにおいては、基板に配置される電極層を複数の互いに絶縁された電極により形成し、一方の電極から他方の電極へ向かって順次電圧を印可する電源装置を備える。また減速電界対物レンズを用いる電子線装置が公知である。

プロセス途中のウェハを減速電界対物レンズを用いる電子線装置で評価する場合、ウェハに負の高電圧を印加することが必要である。この場合、急激に負の高電圧を印加するとプロセス途中のデバイスが破壊されるおそれがあるので、電圧を徐々に印加することが必要である。

一方、大部分のウェハは、ウェハの側面及び裏面にSiO₂又は窒化膜等の絶縁膜を付着されるので、ウェハに0電位又は低い電位を与えようとするとき、電圧が印加されない問題があった。更に静電チャック側へ中央が凸に歪んだウェハは、比較的容易に吸着固定できるが、チャック側に中央が凹に歪んだウェハは、単極の静電チャックでは、周辺部のみがチャックされ、中央部はチャックされな

本発明の第8の実施の形態は、上記の問題点を解決するため、減速電界対物レ

10 mm and the second of the se

20

25

5

ンズで使用でき、側面及び裏面が絶縁膜で被覆され、チャック側に向かって中央が凹に歪んだウェハをチャック可能な静電チャック、ならびにウェハと静電チャックとの組合わせを提供するとともに、このような静電チャック又はウェハと静電チャックとの組合わせを用いてプロセス途中のウェハの評価を行うデバイス製造方法を提供する。

図32は、本発明の第8の実施の形態における静電チャック1410の平面図であり、ウェハを取り除いて電極板1412を見たものである。図33は、図32の静電チャックの線M-Mに沿う垂直方向の概略断面図であり、ウェハが載置され電圧が印加されない状態を示すものである。静電チャック1410は、図33に示すように、基板1405、電極板1412、絶縁層1404から成る積層構造を有する。電極板1412は、第1電極1401及び第2電極1402を含む。第1電極1401及び第2電極1402を含む。第1電極1401及び第2電極1402は、別々に電圧が印加できるように分離され、磁場中で渦電流を発生しないで高速で移動可能であるように、薄膜で形成される。

第1電極1401は、平面図において円形の電極板1412の中央部分及び周辺部分の一部から成り、第2電極1402は、電極板の残りの馬蹄形周辺部分から成る。電極板1412の上方に絶縁層1404が配置される。絶縁層1404は、厚さ1mmのサファイア基板により形成される。サファイアは、アルミナの単結晶であり、アルミナセラミックスの如き小孔が全くないので、絶縁破壊電圧が大きい。例えば、1mm厚のサファイア基板は、104V以上の電位差に十分耐えることができる。

ウェハ1403に対する電圧の印加は、ナイフエッジ状の金属部分を有する接触子1406を介してなされる。図33に示すように、2個の接触子1406がウェハ1403の側面に接触される。2個の接触子1406を用いる理由は、1個の接触子だけの場合、導通が取れなくなる恐れがあること、及びウェハ1403を片側へ押す力が生じるのを嫌ったからである。絶縁層1404を破壊して導通を取るのであるが、放電する時に粒子を飛散させる恐れがあるので、接触子1

25

5

406は、抵抗1414を介して電源1416に接続し大きい放電を生じないようにした。この抵抗1414は、大き過ぎると導通穴が形成されず、小さ過ぎると大きい放電が起り、パーティクルを飛散させるので、絶縁層1404毎に抵抗の許容値を決めた。

図 340 (a) は電圧印加のタイムチャートを示す。第 1 電極には、線 A で示すように、時刻 t=0 において、4k V が印加される。ウェハの中央部及び周辺部が共にチャックされた時刻 $t=t_0$ において、第 2 電極に、線 B で示すように 4k V が印加される。時刻 $t=t_1$ でウェハの電圧 C が少しずつ深くされ(下げられ)、時刻 $t=t_2$ で -4k V に達するように制御される。第 1 電極及び第 2 電極は、時刻 $t=t_1$ から時刻 $t=t_2$ において、少しずつ電圧が下げられ、時刻 $t=t_2$ で、0 V にされる。

チャックに吸着保持されたウェハの評価が終了した時刻 $t=t_3$ でウェハの電圧 Cが 0 V にされ、ウェハが外部へ取出される。

静電チャックが4k Vの電位差がなくても2k Vの電位差でもウェハを吸着保持する場合には、図34に1点鎖線で示すように、第1電極及び第2電極にそれぞれに2k Vの電圧A'、B'が印加される。ウェハに-4k Vが印加されるとき、第1電極及び第2電極にそれぞに、-2k Vが印加される。このようにして、電圧印加によって必要以上に電圧を絶縁層2104 に印加しないようにできるので、絶縁層の破壊を防止できる。

図35は、上で説明した静電チャックを備える電子線装置を示すブロック図である。電子線源1431から放出された電子線は、開口アパーチャ(NA)を決めるアノード1432の開口で不要なピームを除去され、コンデンサレンズ1437と対物レンズ1443で縮小され、-4kVを印加されたウェハ1403に結像されると共に、偏向器1438及び1442によりウェハ1403上を走査する。ウェハ1403から放出される二次電子線は、対物レンズ1443で集められ、E×B分離器1442で35°程度、右側へ曲げられ、二次電子線検出器1440で検出され、ウェハ上のSEM像が得られる。図35の電子線装置にお

25

5

いて、符号1433、1435は軸合わせ器具、1434は非点補正器具、1436は開口板、1441はシールド、1444は電極である。ウェハ1403の下方に、図33および図34で説明した静電チャックが配置される。

本発明の第8の実施の形態を、図3および図4の(a)、(b)で説明したデバイス製造方法における検査工程(G)に用いることにより、微細なパターンを有する半導体デバイスでもスループットよく検査でき、全数検査が可能になり、製品の歩留まり向上、欠陥製品の出荷防止が可能である。これに関しては、図3および図4の(a)、(b)に関する説明を援用することにし、ここでの説明は省略する。

なお、静電チャックに対して印加する電圧の増大又は減少の仕方は、図34の(a)に示すものに限られる訳ではない。例えば、図34の(b)に示すように指数関数的に変化する電圧であっても良い。要は、所定の電圧まで時間内に到達する電圧であれば、どのようなものであってもよい。

試料載置用のステージに関する実施の形態(第9の実施の形態)

本発明の第9の実施の形態は、XYステージ上に載置された試料に電子線を照 射する装置、その装置を利用した欠陥検査装置又は露光装置、および、それらの 装置を使用したデバイス製造方法に関する。

半導体ウェハ等の試料表面等に電子線を照射することによって、その試料表面上を半導体回路等のパターンで露光し若しくは試料表面上に形成されたパターンを検査する装置、或いは電子線を照射することによって試料に対して超精密加工を施す装置においては、試料を真空中で精度良く位置決めするステージが使用されている。

かかるステージに対して非常に高精度な位置決めが要求される場合には、ステージを静圧軸受けによって非接触支持する構造が採用されている。この場合、静圧軸受けから供給される高圧ガスが直接真空チャンバに排気されないように、高圧ガスを排気する差動排気機構を静圧軸受けの範囲に形成することによって、真空チャンバの真空度を維持している。

25

5

かかる従来技術によるステージの一例が図36に示されている。同図の構造において、真空チャンバCを構成するハウジング1508に、電子線を発生し試料に照射する電子線装置の鏡筒1501の先端部すなわち電子線照射部1502が取り付けられている。鏡筒内部は真空配管1510によって真空排気されており、チャンバCは真空配管1511によって真空排気されている。そして、電子線は鏡筒1501の先端部1502から、その下に置かれたウェハ等の試料Sに対して照射される。

試料Sは試料台1504に公知の方法により取り外し可能に保持されており、 試料台1504はXYステージ(以下単にステージ)1503のY方向可動部1 505の上面に取り付けられている。Y方向可動部1505には、ステージ15 03のX方向可動部1506のガイド面1506aと向かい合う面(図36の [A] において左右両面及び下面) に静圧軸受け1509が複数取り付けられて おり、この静圧軸受け1509の作用によりガイド面との間に微小隙間を維持し ながらY方向(図36の[B]で左右方向)に移動できる。さらに静圧軸受けの 周りには、静圧軸受けに供給される高圧ガスが真空チャンバCの内部にリークし ないように差動排気機構が設けられている。この様子を図37に示す。静圧軸受 け1509の周囲に二重に溝1518と1517が構成されており、これらの溝 は図示されていない真空配管と真空ポンプにより常時真空排気されている。この ような構造により、Y方向可動部1505は真空中を非接触状態で支持されY方 向に自在に移動することができるようになっている。これらの二重の溝1518 と1517は可動部1505の静圧軸受け1509が設けられている面にその静 圧軸受けを囲むようにして形成されている。なお、静圧軸受けの構造は公知のも ので良いので、その詳細な説明は省略する。

このY方向可動部1505を搭載しているX方向可動部1506は、図36からも明らかなように、上方に開口している凹形の形状を有していて、そのX方向可動部1506にもまったく同様の静圧軸受け及び溝が設けられていて、ステージ台1507に対して非接触で支持されており、X方向に自在に移動することが

できる。

これらのY方向可動部 1 5 0 5 と X 方向可動部 1 5 0 6 の移動を組み合わせることによって、試料 S を鏡筒の先端部すなわち電子線照射部 1 5 0 2 に関して水平方向任意の位置に移動させ、試料の所望の位置に電子線を照射することができる。

上記の静圧軸受けと差動排気機構を組み合わせたステージでは、ステージが移動する際に、静圧軸受け1509に対向するガイド面1506aや1507aは、静圧軸受け部の高圧ガス雰囲気とチャンバ内の真空環境の間を往復運動する。この時ガイド面では、高圧ガス雰囲気に曝されている間にガスが吸着し、真空環境に露出されると吸着していたガスが放出されるという状態が繰り返される。このためステージが移動する度に、チャンバC内の真空度が悪化するという現象が起こり、上述した電子線による露光や検査や加工等の処理が安定に行えなかった、試料が汚染されてしまうという問題があった。

こうした課題を解決するために、本発明の第9の実施の形態は、

真空度の低下を防止して電子線による検査や加工等の処理を安定して行える電子線装置、

静圧軸受けによる非接触支持機構と差動排気による真空シール機構を有し、電子線の照射領域と静圧軸受けの支持部との間に圧力差を発生させるようにした電子線装置、

20 静圧軸受けに面する部品表面から放出するガスを低減した電子線装置、

上記の電子線装置を用いて試料表面を検査する欠陥検査装置、或いは試料の表面にパターンを描画する露光装置、

上記のような電子線装置を用いて半導体デバイスを製造する半導体製造方法、を提供する。

25 以下、図を用いて、本発明の第9の実施の形態を説明する。図38において、 ステージ1503のY方向可動部1505の上面には+Y方向と-Y方向(図3 8の[B]で左右方向)に大きくほぼ水平に張り出した仕切り板1514が取り

25

5

付けられ、X方向可動部 1 5 0 6 の上面との間に常にコンダクタンスが小さい絞り部 1 5 5 0 が構成されるようになっている。また、X方向可動部 6 の上面にも同様の仕切り板 1 5 1 2 が $\pm X$ 方向(図 3 8 の [A] で左右方向)に張り出すように構成されており、ステージ台 1 5 0 7 の上面との間に常に絞り部 1 5 5 1 が形成されるようになっている。ステージ台 1 5 0 7 は、ハウジング 1 5 0 8 内において底壁の上に公知の方法で固定されている。

このため、試料台1504がどの位置に移動しても常に絞り部1550と1551が形成されるので、可動部1505及び1506の移動時にガイド面1506aや1507aからガスが放出されても、絞り部1550と1551によって放出ガスの移動が妨げられるため、電子線が照射される試料近傍の空間1524の圧力上昇を非常に小さく押さえることができる。

ステージの可動部1505の側面及び下面並びに可動部1506の下面には、静圧軸受け1509の周囲に、図37に示されるような差動排気用の溝が形成されていてこの溝によって真空排気されるため、絞り部1550、1551が形成されている場合は、ガイド面からの放出ガスはこれらの差動排気部によって主に排気されることになる。このため、ステージ内部の空間1513や1515の圧力は、チャンバC内の圧力よりも高い状態になっている。したがって、空間1513や1515を、差動排気溝1517や1518で排気するだけでなく、真空排気する箇所を別に設ければ空間1513や1515の圧力を下げることができ、試料近傍1524の圧力上昇を更に小さくすることができる。このための真空排気通路1511-1と1511-2とが設けられている。排気通路はステージ台1507およびハウジング1508を貫通してハウジング1508の外部に通じている。また、排気通路1511-2はX方向可動部1506の下面に開口している。

また、仕切り板1512及び1514を設置すると、チャンバCと仕切り板が 干渉しないようにチャンバを大きくする必要が生じるが、仕切り板を伸縮可能な 材料や構造にすることによってこの点を改善することが可能である。この実施の

25

5

形態においては、仕切り板をゴムで構成したり蛇腹状にして、その移動方向の端部を、仕切り板 1514 の場合はX 方向可動部 1506 に、仕切り板 1512 の場合はハウジング 1508 の内壁にそれぞれ固定する構成とする。

図39は、本発明の第9の実施の形態における第1の変形例を示している。この例においては、鏡筒の先端部すなわち電子線照射部1502の周囲に、試料Sの上面との間に絞り部ができるように円筒状の仕切り1516が構成される。このような構成では、XYステージからガスが放出されてチャンバC内の圧力が上昇しても、仕切りの内部1524は仕切り1516で仕切られており真空配管1510で排気されているので、チャンバC内と仕切りの内部1524との間に圧力差が生じ、仕切り内部の空間1524の圧力上昇を低く抑えられる。仕切り1516と試料面との隙間は、チャンバC内と照射部1502周辺の圧力をどの程度に維持するかによって変わるが、凡そ数十 μ mないし数mm程度が適当である。なお、仕切り1516内と真空配管とは公知の方法により連通されている。

また、電子線装置では、試料Sに数 k V程度の高電圧を印加することがあり、 導電性の材料を試料の近傍に設置すると放電を起こす恐れがある。この場合には、 仕切り 1 5 1 6 の材質をセラミックス等の絶縁物で構成すれば、試料Sと仕切り 1 5 1 6 との間で放電を起こすことがなくなる。

なお、試料S(ウェハ)の周囲に配置したリング部材1504-1は試料台1504に固定された板状の調整部品であり、ウェハのような試料の端部に電子線を照射する場合であっても、仕切り1516の先端部全周に亘って微小隙間1552が形成されるように、ウェハと同一の高さに設定されている。これによって、試料Sのどの位置に電子線が照射しても、仕切り1516の先端部には常に一定の微小隙間1552が形成され、鏡筒先端部周囲の空間1524の圧力を安定に保つことができる。

図40は、本発明の第9の実施の形態における第2の変形例を示している。鏡筒1501の電子線照射部2の周囲に差動排気構造を内蔵した仕切り1519が 設けられている。仕切り1519は円筒状の形状をしており、その内部に円周溝

25

5

1520が形成され、その円周溝からは上方に排気通路1521が延びている。その排気通路は内部空間1522を経由して真空配管1523に繋がれている。仕切り1519の下端は試料Sの上面との間に数十 μ mないし数mm程度の微小隙間を形成している。

このような構成では、ステージの移動に伴ってステージからガスが放出されてチャンバC内の圧力が上昇し先端部すなわち電子線照射部 1 5 0 2 にガスが流入しようとしても、仕切り 1 5 1 9 が試料 S との隙間を絞ってコンダクタンスを非常に小さくしているためガスは流入を邪魔され流入量は減少する。更に、流入したガスは、円周溝 1 5 2 0 から真空配管 1 5 2 3 へ排気されるため、電子線照射部 1 5 0 2 の周囲の空間 1 5 2 4 へ流入するガスはほとんどなくなり、電子線照射部 1 5 0 2 の圧力を所望の高真空のまま維持することができる。

図41は、本発明の第9の実施の形態における第3の変形例を示している。チャンバCと電子線照射部1502の周囲には仕切り1526が設けられ、電子線照射部1502をチャンバCから隔てている。この仕切り1526は、銅やアルミニュウム等の熱伝導性の良い材料からなる支持部材1529を介して冷凍機1530に連結されており、-100でないし-2000程度に冷却されている。部材1527は冷却されている仕切り1526と鏡筒の間の熱伝導を阻害するためのものであり、セラミックスや樹脂材等の熱伝導性の悪い材料から成っている。また、部材1528はセラミックス等の非絶縁体から成り、仕切り1526の下端に形成されて試料5と仕切り1526が放電することを防ぐ役割を持っている。

このような構成により、チャンバC内から電子線照射部に流入しようとするガス分子は、仕切り1526で流入を阻害される上、流入しても仕切り1526の表面に凍結捕集されてしまうため、電子線照射部1502のある空間1524の圧力を低く保つことができる。

なお、冷凍機としては、液体窒素による冷却や、He冷凍機、パルスチューブ 式冷凍機等の様様な冷凍機が使用できる。

図42は、本発明の第9の実施の形態における第4の変形例を示している。ス

25

テージ1503の両可動部には、図38に示したのと同様に仕切り板1512、1514が設けられており、試料台1504が任意の位置に移動しても、これらの仕切りによってステージ内の空間1513とチャンバ C内とが絞り1550、1551を介して仕切られる。更に、電子線照射部1502の周りには図39に示したのと同様の仕切り1516が形成されており、チャンバ C内と電子線照射部1502のある空間1524が絞り1552を介して仕切られている。このため、ステージ移動時、ステージに吸着しているガスが空間1513に放出されてこの部分の圧力を上昇させても、チャンバ Cの圧力上昇は低く抑えられ、空間1524の圧力を低い状態に保つことができる。また、仕切り1516に示したように差動排気機構を内蔵した仕切り1519としたり、図40に示したように冷凍機で冷却された仕切り1526とすることによって、空間1524を更に低い圧力で安定に維持することができるようになる。

図43は、第9の実施の形態による電子線装置の光学系及び検出系が模式的に示されている。光学系は鏡筒1501内に設けられるが、この光学系及び検出器はあくまでも例示であり、必要に応じて任意の光学系、検出器を使用できる。電子線装置の光学系1560は、電子線をステージ1503上に載置された試料Sに照射する一次光学系1561と、試料から放出された二次電子線が投入される二次光学系1571とを備えている。一次光学系1561は、電子線を放出する電子線源1562と、電子線源1562から放出された電子線を集束する2段の静電レンズからなるレンズ系1563、1564と、偏向器1565と、電子線をその光軸が対象の面に垂直になるように偏向するウイーンフィルタ1566と、2段の静電レンズからなるレンズ系1567、1568とを備え、それらは、図36に示されるように電子線源1562を最上部にして順に、電子線の光軸が試料Sの表面(試料面)に鉛直な線に対して傾斜して配置されている。ウィーンフィルタ1566は電極1566-1及び磁石1566-2を備えている。

二次光学系1571は試料Sから放出された二次電子線が投入される光学系で、

10 design of the second of the

20

25

5

一次光学系のウィーンフィルタ15660上側に配置された2段の静電レンズからなるレンズ系1572、1573を備えている。検出器1580は、二次光学系1571を介して送られた二次電子線を検出する。上記光学系1560及び検出器1580の各構成要素の構造及び機能は従来のものと同じであるから、それらについての詳細な説明は省略する。

電子線源1562から放出された電子線は、電子線源の正方形開口で整形され、 2段のレンズ系1563及び1564によって縮小され、偏光器1565で光軸 を調整されてウィーンフィルタ1566の偏向中心面に一辺が1.25mmの正 方形に結像される。ウィーンフィルタ1566は、試料の法線に垂直な平面内に おいて、電界と磁界とを直交させた構造となっており、電界、磁界、電子線のエ ネルギの関係が一定の条件を満たす時には電子線を直進させ、それ以外の時には これら電界、磁界及び電界のエネルギの相互の関係により所定方向に偏向される ようになっている。図23においては、電子線源からの電子線を試料Sに垂直に 入射させ、また試料から放出された二次電子線を検出器2280の方向に直進さ せるように設定されている。ウィーンフィルタ1566で偏向された成形ビーム はレンズ系1567、1568で1/5に縮小されて試料Sに投影される。試料 Sから放出されたパターン画像の情報を持った二次電子線はレンズ系1567、 1568及び1572、1573で拡大され、検出器1580で二次電子線画像 を形成する。この4段の拡大レンズは、レンズ系1567及び1568が対称タ ブレットレンズを形成し、レンズ系1572及び1573もやはり対称タブレッ トレンズを形成しているので無歪みレンズとなっている。

本発明の第9の実施の形態は、図3および図4の(a)、(b)を参照して説明したデバイス製造方法における検査工程(G)又は露光工程(c)に用いることにより、微細なパターンを高精度で安定して検査又は露光ができるので、製品の歩留まりの向上、欠陥製品の出荷防止が可能となる。これに関しては、図3および図4の(a)、(b)に関する説明を援用することにし、ここでの説明は省略する。

25

5

試料載置用のステージに関する実施の形態(第10の実施の形態)

本発明の第10の実施の形態は、XYステージ上に載置された試料に電子線を 照射する装置に関し、更に詳しくは、XYステージに差動排気機構を設けること なく鏡筒周りに差動排気機構を設けた電子線装置、その装置を利用した欠陥検査 装置又は露光装置、および、それらの装置を使用したデバイス製造方法に関する。

図36および図37を用いて既に説明したとおり、静圧軸受けと差動排気機構とを組み合わせた従来のXYステージにおいては、差動排気機構を設けたため、大気中で使用される静圧軸受け式ステージに比べて構造が複雑で大型になり、ステージとしての信頼性が低く、高コストになるという問題もある。なお、この実施の形態においても、従来技術の説明として、図36、図37およびそれらに関する既述を援用する。

本発明の第10の実施の形態は、上記の問題を解決するため、

XYステージの差動排気機構をなくして構造が簡単でコンパクト化が可能な電子線装置、

XYステージを収容しているハウジング内を真空排気すると共に該試料面上の電子線が照射される領域を排気する差動排気機構を設けた電子線装置、

上記の電子線装置を用いて試料表面を検査する欠陥検査装置、或いは試料の表面にパターンを描画する露光装置、

上記のような電子線装置を用いて半導体デバイスを製造する半導体製造方法、 20 を提供する。

なお、この第10の実施の形態において、用語「真空」は、当該技術分野にお ける通常の意味で使用される。

以下、図を用いて本発明の第10の実施の形態を説明する。図44において、電子線を試料に向かって照射する鏡筒1601の先端部すなわち電子線照射部1602が真空チャンバCを画成するハウジング1614に取り付けられている。鏡筒1601の直下には、XYステージ1603のX方向(図44において左右方向)の可動テーブル上に載置されている試料Sが配置されるようになっている。

2.5

5

この試料 S は高精度な X Y ステージ 1 6 0 3 によって、その試料面上の任意の位置に対して正確に電子線を照射させることができる。

XYステージ1603の台座1606はハウジング1614の底壁に固定され、 Y方向(図24において紙面に垂直の方向)に移動するYテーブル1605が台 座1606の上に載っている。Yテーブル1605の両側面(図24において左 右側面)には、台座1606に載置された一対のY方向ガイド1607a及び1 607bのソテーブルに面した側に形成された凹溝内に突出する突部が形成され ている。その凹溝はY方向ガイドのほぼ全長に亘ってY方向に伸びている。凹溝 内に突出する突部の上、下面及び側面には公知の構造の静圧軸受け1611a、 1609a、1611b、1609bがそれぞれ設けられ、これらの静圧軸受け を介して高圧ガスを吹き出すことにより、Υテーブル1605はΥ方向ガイド1 607a、1607bに対して非接触で支持され、Y方向に円滑に往復運動でき るようになっている。また、台座1606とYテーブル1605との間には、公 知の構造のリニアモータ1612が配置されており、Y方向の駆動をそのリニア モータで行うようになっている。Yテーブルには、高圧ガス供給用のフレキシブ ル配管1622によって高圧ガスが供給され、Υテーブル内に形成されたガス通 路(図示せず)を通じて上記静圧軸受け1609aないし1611a及び160 9 bないし1611bに対して高圧ガスが供給される。静圧軸受けに供給された 高圧ガスは、Y方向ガイドの対向する案内面との間に形成された数ミクロンから 数十ミクロンの隙間に噴出してΥテーブルを案内面に対してΧ方向とΖ方向(図 44において上下方向)に正確に位置決めする役割を果たす。

ソテーブル上にはXテーブル1604がX方向(図44において左右方向)に移動可能に載置されている。Yテーブル1605上にはYテーブル用のY方向ガイド1607a、1607bと同じ構造の一対のX方向ガイド1608a、1608b(1608aのみ図示)がXテーブル1604を間に挟んで設けられている。X方向ガイドのXテーブルに面した側にも凹溝が形成され、Xテーブルの側部(X方向ガイドに面した側部)には凹溝内に突出する突部が形成されている。

その凹溝はX方向ガイドのほぼ全長に亘って伸びている。凹溝内に突出するX方向テーブル4の突部の上、下面及び側面には前記静圧軸受け1611a、1609a、1610a、1611b、1609b、1610bと同様の静圧軸受け (図示せず)が同様の配置で設けられている。Yテーブル1605とXテーブル1604との間には、公知の構造のリニアモータ1613が配置されており、XテーブルのX方向の駆動をそのリニアモータで行うようにしている。そして、Xテーブル1604にはフレキシブル配管1621によって高圧ガスが供給され、静圧軸受けに高圧ガスを供給するようになっている。この高圧ガスが静圧軸受けからX方向ガイドの案内面に対して噴出されることによって、Xテーブル1604がY方向ガイドに対して高精度に非接触で支持されている。真空チャンバCは公知の構造の真空ポンプ等に接続された真空配管1619、1620a、1620bによって排気されている。配管1620a、1620bの入口側(真空チャンバ内側)は台座1606を貫通してその上面において、XYステージ1603から高圧ガスが排出される位置の近くで開口しており、真空チャンバ内の圧力が静圧軸受けから噴出される自にガスにより上昇するのを極力防止している。

鏡筒1601の先端部すなわち電子線照射部1602の周囲には、差動排気機構1625が設けられ、真空チャンバC内の圧力が高くても電子線照射空間1630の圧力が十分低くなるようにしてある。すなわち、電子線照射部1602周囲に取り付けられた差動排気機構1625の環状部材1626は、その下面(試料S側の面)と試料との間で微少隙間(数ミクロンから数百ミクロン)1640が形成されるように、ハウジング1614に対して位置決めされており、その下面には環状溝1627が形成されている。環状溝1627は排気管1628により図示しない真空ポンプ等に接続されている。したがって、微少隙間1640は環状溝1627及び排気口1628を介して排気され、真空チャンバCから環状部材1626によって囲まれた空間1630内にガス分子が侵入しようとしても、排気されてしまう。これにより、電子線照射空間1630内の圧力を低く保つことができ、電子線を問題なく照射することができる。

25

5

この環状溝は、チャンバ内の圧力、電子線照射空間1630内の圧力によっては、二重構造或いは三重構造にしてもよい。

静圧軸受けに供給する高圧ガスは、一般にドライ窒素が使用される。しかしながら、可能ならば、更に高純度の不活性ガスにすることが好ましい。これは、水分や油分等の不純物がガス中に含まれると、これらの不純物分子が真空チャンバを画成するハウジングの内面やステージ構成部品の表面に付着して真空度を悪化させたり、試料表面に付着して電子線照射空間の真空度を悪化させてしまうからである。

なお、以上の説明において、試料Sは通常Xテーブル上に直接載置されるのでなく、試料を取り外し可能に保持したりXYステージ1603に対して微少な位置変更を行うなどの機能を持たせた試料台の上に載置されているが、試料台の有無及びその構造は本願発明の要旨には関係ないので、説明を簡素化するために省略されている。

以上に説明した電子線装置では、大気中で用いられる静圧軸受けのステージ機構をほぼそのまま使用できるので、露光装置等で用いられる大気用の高精度ステージと同等の高精度のXYステージを、ほぼ同等のコスト及び大きさで電子線装置用のXYステージに対して実現できる。

なお、以上説明した静圧ガイドの構造や配置及びアクチュエータ (リニアモータ) はあくまでも一実施例であり、大気中で使用可能な静圧ガイドやアクチュエータならば何でも適用できる。

次に、差動排気機構の環状部材1626及びそれに形成される環状溝の大きさの数値例を図45に示す。なお、この例では環状溝は1627a及び1627bの二重構造を有しており、それらは半径方向に隔てられている。静圧軸受けに供給される高圧ガスの流量は、通常おおよそ20L/min(大気圧換算)程度である。真空チャンバCを、内径50mmで長さ2mの真空配管を介して20000L/minの排気速度を有するドライポンプで排気すると仮定すると、真空チャンバ内の圧力は、約160Pa(約1.2Torr)となる。この時、差動排

気機構の環状部材1626及び環状溝等の寸法を、図45に示すようにすれば、電子線照射空間1630内の圧力を 10^{-4} Pa(10^{-6} Torr)にすることができる。

なお、差動排気機構は、電子線照射空間1630内の圧力を所定圧力に維持できるならば、その形状もこの実施の形態のような同心円上に限られず、矩形や多角形でもよい。さらに、全周ではなく周囲の一部に設けられてもよい。

図46は、図44に示す装置に対する配管系を示している。ハウジング161 4によって画成された真空チャンパCには、真空配管1674、1675を介してドライ真空ポンプ1653が接続されている。また、差動排気機構1625の環状溝1627は排気口1628に接続された真空配管1670を介して超高真空ポンプであるターボ分子ポンプ1651が接続されている。更に、鏡筒1601の内部は、排気口1618に接続された真空配管1671を介して、ターボ分子ポンプ1652が接続されている。これらのターボ分子ポンプ1651、1652は、真空配管1672、1673によってドライ真空ポンプ1653に接続されている。(本図では、ターボ分子ポンプの粗引きポンプと真空チャンバの真空排気用ポンプを1台のドライ真空ポンプで兼用したが、XYステージの静圧軸受けに供給する高圧ガスの流量、真空チャンバの容積や内表面積、真空配管の内径や長さに応じて、それらを別系統のドライ真空ポンプで排気する場合も考えられる。)

5

このように、静圧軸受けに供給された高純度不活性ガスはドライ真空ポンプに 集められて排出される。

一方、ドライ真空ポンプ1653の排気口は、配管1676を介して圧縮機1654に接続され、圧縮機2316の排気口は配管1677、1678、1679及びレギュレータ1661、1662を介してフレキシブル配管1621、1622に接続されている。このため、ドライ真空ポンプ1653から排出された高純度不活性ガスは、圧縮機1654によって再び加圧されレギュレータ1661、1662で適正な圧力に調整された後、再びXYテーブルの静圧軸受けに供給される。

なお、静圧軸受けに供給されるガスは上述したようにできるだけ高純度にし、水分や油分が極力含まれないようにする必要があるため、ターボ分子ポンプ、ドライポンプ及び圧縮機は、ガス流路に水分や油分が混入しないような構造であることが求められる。また、圧縮機の排出側配管1677の途中にコールドトラップやフィルタ等(1660)を設け、循環するガス中に混入した水分や油分等の不純物質をトラップして静圧軸受けに供給されないようにすることも有効である。

これによって、高純度不活性ガスを循環させて再利用できるので、高純度不活性ガスを節約でき、また、本装置が設置された部屋に不活性ガスをたれ流さないので、不活性ガスによる窒息等の事故が発生する恐れもなくすことができる。

なお、循環配管系には高純度不活性ガス供給系1663が接続されており、ガスの循環を始める際に、真空チャンバCや真空配管 $1670\sim1675$ 及び加圧側配管 $1676\sim1680$ を含む全ての循環系に高純度不活性ガスを満たす役割と、何らかの原因で循環するガスの流量が減少した際に不足分を供給する役割とを担っている。

また、ドライ真空ポンプ1653に大気圧以上まで圧縮する機能を持たせるこ 25 とによって、ドライ真空ポンプ1653と圧縮機1654を1台のポンプで兼ね させることも可能である。

更に、鏡筒の排気に用いる超高真空ポンプには、ターボ分子ポンプの代わりに

5

イオンポンプやゲッタポンプ等のポンプを使用することも可能である。ただし、 これらの溜込み式ポンプを用いた場合は、

この部分には循環配管系を構築することはできないことになる。また、ドライ真空ポンプの代わりに、ダイヤフラム式ドライポンプ等、他方式のドライポンプを 使用することももちろん可能である。

なお、図44~図46により説明した第10の実施の形態は、第9の実施の形態と同様に、図43において説明した光学系および検出系を備えている。この第10の実施の形態においては、図43に関する記述を援用することにする。また、第9の実施の形態において説明したとおり、本発明の第10の実施の形態も、図3および図4の(a)、(b)を参照して説明したデバイス製造方法における検査工程(G)又は露光工程(c)に用いることにより、微細なパターンを高精度で安定して検査又は露光ができるので、製品の歩留まりの向上、欠陥製品の出荷防止が可能となる。これに関しては、図3および図4の(a)、(b)に関する説明を援用することにし、ここでの説明は省略する。

光学系のレンズに関する実施の形態 (第11の実施の形態)

本発明の第11の実施の形態は、試料の表面に形成されたパターン等を評価する電子線装置及びその電子線装置を用いてプロセス途中又は終了後の試料の評価を行うデバイス製造方法に関し、詳しくは、最小線幅 0.1μ m以下のパターンを有する、試料上のデバイス等の欠陥検査、CD測定、電位コントラストの測定、高時間分解電位測定等の評価を高いスループットで且つ高い信頼性のもとで行える電子線装置及びそのような電子線装置を用いてプロセス途中又は終了後の試料の評価を行うデバイス製造方法に関するものである。

絶縁材料を含む試料を観察、評価する装置には種々の技術が報告されている。 このような技術の中で、走査電子線顕微鏡について言えば、一次ビームのビーム 電流、試料への吸収電流、照射装置からの反射電子線量、二次電子線放出量等を 測定してチャージアップ状態を評価するチャージアップ検知機能を有する装置が 公知である。

25

しかしながら、上記のごとき従来の走査電子線顕微鏡では細い電子線すなわち ビームで試料表面を走査するため、大面積を有する試料を評価すると、スループ ットが大幅に低下するという問題があった。また、前記公知のチャージアップ検 知機能では、各種電流を高い時間分解能で測定する必要があり、チャージアップ の状態をかならずしも正しく検出できなかった。

本発明の第11の実施の形態は、上記の問題点を解決するために、光学系のレンズの構造を改良することによって光学系のコンパクト化を図った電子線装置、スループットを向上させると共に、チャージアップ検知機能を向上させて評価の信頼性を向上した電子線装置、および、上記のような電子線装置を用いてプロセス途中又は後の試料の評価を、高い製造歩留まりで行えるデバイスの製造方法を提供する。

以下、図面を参照して、本発明に係る電子線装置の第11の実施の形態について説明する。図47において、電子線装置1701は、一次電子光学系(以下、単に一次光学系という)1710と、二次電子光学系(以下、単に二次光学系という)1720と、検出系1730とを備えている。一次光学系1710は、電子線をウェハ等の評価対象(以下試料と呼ぶ)Sの表面に照射する光学系であり、電子線すなわち電子線を放出する電子線源1711と、電子線源1711から放出された一次電子線を集束するコンデンサレンズ1712と、ウィーンフィルタ1715と、対物レンズ1716とを備え、それらは、図48に示されるように配置されている。なお、参照数字1714及び1717は一次電子線を軸合わせする軸合わせ装置、1718は一次電子線を走査する偏向器であり、1719は軸対称電極である。

二次光学系1720は一次光学系の光軸に関して傾斜した光軸に沿って配置される。二次光学系は、図47には示していないが、少なくとも一つのレンズを備えていてもよい。検出系1730は、検出器1731と、検出器1731に増幅器1732を介して接続された画像形成部1733とを備える。

試料Sは、XYステージ1740上のホルダ1741に公知の方法により着脱

25

可能に支持され、そのXYステージ1740により直交2軸方向(図47で左右 方向及び紙面に垂直の方向)に移動可能に支持されている。

電子線装置1701は、更に、ホルダ1741と電気的に接続されたリターディング電圧印加装置(以下、印加装置という)1750と、チャージアップ調査及びリターディング電圧決定システム(以下、調査及び決定システムという)1760とを備えている。調査及び決定システム1760は、画像形成部1733に電気的に接続されたモニタ1761と、モニタ1761に接続されたオペレータ1762と、オペレータ1762に接続されたCPU1763とを備えている。CPU1763は、印加装置1750並びに偏向器1717に信号を供給する。

この第11の実施の形態において、コンデンサレンズ1712と対物レンズ1 716は実質的に同じ構造になっているので、コンデンサレンズ1712を例に 取って詳しく説明する。静電軸対称レンズであるコンデンサレンズ1712は、 一体のセラミックスを削って軸方向断面が図47に示されるような形状に形成さ れている。すなわち、コンデンサレンズ1712は、セラミックス製の本体17 12-1を備えている。この本体1712-1は中心部に円形穴1712-2を 画成するように平面形状が環状に形成され、内周側が、図47において上下方向 (光軸に沿う方向) に隔てられた三つの板状部分1712-3ないし1712-5に仕切られている。セラミックス製本体1712-1の外周、特に、板状部分 1712-3ないし1712-5の周囲には金属のコーティング膜1712-6 ないし1712-8が施されている。これらのコーティング膜1712-6ない し1712-8はそれぞれ電極(上電極1712-6、中間電極1712-7及 び下電極1712-8)として機能し、コーティング膜すなわち上及び下電極1 712-6及び1712-8には接地側に近い電圧が印加され、真ん中のコーテ ィング膜すなわち中間電極1712-7には絶対値の大きい正又は負の高電圧が 本体1712-1に設けられた電極金具1712-9によって印加され、それに よってレンズの作用を行うようになっている。このようなレンズは、一体のセラ ミックスを削って同時に加工を行うため加工精度が良く、レンズ外径寸法を小さ

25

. 5

くできる。

この実施の形態における電子線装置では、レンズの外径寸法を小さくすることが可能になるので、電子線装置を収納している鏡筒の外径寸法も小さくできる。したがって径の大きなウェハのような試料に対しては、一枚の試料に対して複数の鏡筒を配置することが可能になる。例えば、レンズ外径(直径)を40mmにしたとすると、図48に示されるように、X方向に4個の鏡筒1702を並べたものをY方向に2列、合計で8個の鏡筒1702を一枚の試料に対して配置できる。そして、資料Sを保持しているステージ(図示せず)をY方向に連続移動させ、X方向に各鏡筒で走査して評価を行えば、1電子線のみを使用して評価する場合の7ないし8倍のスループットが得られる。

上記の電子線装置において、一次光学系1710の電子線源1711のカソード1711-1から放出された一次電子線すなわちビームは、アノード1711-2によって加速される。一次電子線によって作られる電子線源のクロスオーバ像は、コンデンサレンズ1712及び対物レンズ1716とで縮小されて50nm程度の細いビームにして試料S上に走査して照射される。この一次電子線による照射により試料から放出された二次電子線は軸対称電極1719に引かれて対物レンズ側に引かれるが、その軸対称電極1719より二次電子線を対物レンズ1716側に通したり或いは試料側に戻したりすることにより試料パターンの電位コントラストを得ることができる。

対物レンズを通過した二次電子線はウィーンフィルタ1715により一次光学系1710から分離されて二次電子光学系(以下単に二次光学系)1720に導入され、検出系1730の検出器1731によって検出される。検出器1731は、検出した二次電子線像をその強度を表す電気信号に変換する。こうして各検出器から出力された電気信号は対応する増幅器1732により増幅された後、画像形成部1733には、一次電子線を偏向させるための走査信号が更に供給されるので、画像形成部は試料Sの面を表す画像を表示する。この画像を基準パターンと

25

5

比較することにより、試料Sの欠陥を検出することができる。なお、この実施の 形態では単一の電子線を使用しているが、複数のビームを使用することにより、 スループットの向上という点では単ビームより良い場合がある。

画像形成部1733で変換された画像データは、調査及び決定装置1760の表示装置1761により画像として表示され、オペレータ1762により画像を評価する。オペレータ1762はこの実施の形態ではチャージアップ調査機能を実行する。またオペレータ1762は画像に基づいてチャージアップ状態を調査することができる。そして、その結果をCPU1763に入力し、リターディング電圧を最適な値に設定する。CPU1763は、この実施の形態では、リターディング電圧決定装置を構成する。

より具体的には、被評価試料のチャージアップの影響を受け易い場所すなわち 図49の [A] に示されるように、試料としてのウェハの表面に形成されたチップ1770のメモリーセル1771のコーナ部を評価した。すなわち、(1)コーナ部でのメモリーセル境界1772のパターン歪み量1773、1774を測定するか、或いは、(2)メモリーセルのコーナ部においてパターンを横切るように(矢印A1及びA2で示すように)走査した時に得た信号強度のコントラストを、図49の [B] において実線1775及び1777で表示して、チップの中心部においてパターンを矢印A3、A4に走査したときに得た信号強度のコントラスト1776及び1778(いずれも図49の [B] において破線で図示)と比較してもよい。

リターディング電圧印加装置1750に複数の値の電圧を与え、その都度、歪み量1773及び1774或いはコントラスト1775、1777及び1776、1778を測定し、歪み量1773及び1774が小さい方がチャージアップの影響は小さいと評価した。また、コーナ部でのコントラストの値1775、177が中心部でのコントラストの値に近い方がチャージアップの影響が小さいと評価した。

チャージアップの状態の良好なリターディング電圧が見出されたら、その値を

25

- 5

CPU1763を介して印加装置1750に与え、或いは最適なビーム電流の値が見出されたらそれらの値で試料すなわちウェハの評価を行う。

本発明の第11の実施の形態は、図3および図4の(a)、(b)を参照して説明したデバイス製造方法における検査工程(G)に用いることができる。これにより、微細なパターンを有する半導体デバイスでも、スループット良く検査することができるので、全数検査が可能となり、製品の歩留まりの向上、欠陥製品の出荷防止が可能となる。これに関しては、図3および図4の(a)、(b)に関する説明を援用することにし、ここでの説明は省略する。

欠陥検出に関する実施の形態 (第12の実施の形態)

本発明の第12の実施の形態は、半導体ウェハ等の試料の画像を予め用意された基準画像と比較することにより該試料の欠陥を検査するための欠陥検査装置及びこのような欠陥検査装置を用いて半導体デバイスを製造する半導体デバイス製造方法に関するものである。

従来、半導体ウェハ等の試料に一次電子線を照射することにより発生した二次電子線を検出することによって当該試料の欠陥を検査するための欠陥検査装置が、半導体製造プロセス等で利用されている。このような欠陥検査装置には、画像認識技術を応用して欠陥検査の自動化及び効率化を図った技術がある。この技術では、二次電子を検出することによって取得した試料表面の被検査領域のパターン画像データと、予め記憶した試料表面の基準画像データとをコンピュータによってマッチング演算し、その演算結果に基づいて、試料の欠陥の有無を自動的に判定する。

昨今では、特に半導体製造分野においては、パターンの高精細化が進み、微細な欠陥を検出する必要が高まってきている。このような状況下では、上記のような画像認識技術を応用した欠陥検査装置においても、認識精度の更なる向上が求められている。

しかしながら、上記従来技術では、一次電子線を試料表面の被検査領域に照射 して取得した二次電子線の画像と、予め用意された基準画像との間に位置ずれが

25

5

発生し、欠陥検出の精度を低下させるという問題があった。この位置ずれは、一次電子線の照射領域がウェハに対してずれ、検査パターンの一部が二次電子線の検出画像内から欠落するとき、特に大きな問題となり、単にマッチング領域を検出画像内で最適化する技術(特公平6-95340号公報参照)だけでは対処できない。これは、特に、高精細パターンの検査では致命的欠点となり得る。

本発明の第12の実施の形態は、こうした問題点を解決するために、被検査画像と基準画像との位置ずれによる欠陥検査精度の低下を防止した欠陥検査装置、および、半導体デバイスの製造プロセスにおいて、上記のような欠陥検査装置を用いて試料の欠陥検査を行うことにより、デバイス製品の歩留まりの向上及び欠陥製品の出荷防止を図った半導体製造方法を提供する。

図50は、本発明の第11の実施形態に係る欠陥検査装置の概略構成が示されている。この欠陥検査装置は、一次電子線を放出する電子線源1801、放出された一次電子線を偏向、成形させる静電レンズ1802、成形された一次電子線を電場E及び磁場Bの直交する場で半導体ウェハ1805に略垂直に当たるように偏向させるウィーンフィルタ1803、偏向された一次電子線をウェハ1805上に結像させる対物レンズ1810、真空に排気可能な図示しない試料室内に設けられ、ウェハ1805を載置した状態で水平面内を移動可能なステージ1804、一次電子線の照射によりウェハ1805から放出された二次電子線及び/又は反射電子線を所定の倍率で写像投影して結像させる写像投影系の静電レンズ21806、結像された像をウェハの二次電子線画像として検出する検出器1807、及び、装置全体を制御すると共に、検出器1807により検出された二次電子線画像に基づいてウェハ1805の欠陥を検出する処理を実行する制御部1816を備える。なお、二次電子線画像には、二次電子線による寄与ばかりでなく反射電子による寄与も含まれている。

また、対物レンズ1810とウェハ1805との間には、一次電子線のウェハ 1805への入射角度を電場等によって偏向させる偏向電極1811が介在され ている。この偏向電極1811には、該偏向電極の電場を制御する偏向制御器1

25

_ 5

812が接続されている。この偏向制御器1812は、制御部1816に接続され、制御部1816からの指令に応じた電場が偏向電極1811で生成されるように該偏向電極を制御する。なお、偏向制御器1812は、偏向電極1811に与える電圧を制御する電圧制御装置として構成することができる。

検出器1807は、静電レンズ1806によって結像された二次電子線画像を後処理可能な信号に変換することができる限り、任意の構成とすることができる。例えば、図55にその詳細を示すように、検出器1807は、マルチチャンネルプレート1850と、蛍光面1852と、リレーレンズ1854と、多数のCCD素子からなる撮像センサ1856とを備える。マルチチャンネルプレート1850は、プレート内に多数のチャンネルを備えており、静電レンズ1806によって結像された二次電子が該チャンネル内を通過する間に、更に多数の電子を生成させる。即ち、二次電子線を増幅させる。蛍光面1852は、増幅された二次電子線によって蛍光を発することにより二次電子線を光に変換する。リレーレンズ1854がこの蛍光をCCD撮像センサ1856に導き、CCD撮像センサ1856は、ウェハ1805表面上の二次電子の強度分布を素子毎の電気信号即ちデジタル画像データに変換して制御部1816に出力する。

制御部1816は、図50に例示されたように、汎用的なパーソナルコンピュータ等から構成することができる。このコンピュータは、所定のプログラムに従って各種制御、演算処理を実行する制御部本体1814と、本体1814の処理結果を表示するCRT1815と、オペレータが命令を入力するためのキーボードやマウス等の入力部1818とを備える、勿論、欠陥検査装置専用のハードウェア、或いは、ワークステーションなどから制御部18-16を構成してもよい。

制御部本体1814は、図示しないCPU、RAM、ROM、ハードディスク、ビデオ基板等の各種制御基板等から構成される。RAM若しくはハードディスクなどのメモリ上には、検出器1807から受信した電気信号即ちウェハ1805の二次電子線画像のデジタル画像データを記憶するための二次電子線画像記憶領域1808が割り当てられている。また、ハードディスク上には、予め欠陥の存

25

5

在しないウェハの基準画像データを記憶しておく基準画像記憶部1813が存在する。更に、ハードディスク上には、欠陥検査装置全体を制御する制御プログラムの他、記憶領域1808から二次電子線画像データを読み出し、該画像データに基づき所定のアルゴリズムに従ってウェハ1805の欠陥を自動的に検出する欠陥検出プログラム1809が格納されている。この欠陥検出プログラム1809は、詳細を更に後述するように、基準画像記憶部1813から読み出した基準画像と、実際に検出された二次電子線画像とのマッチングを取って欠陥部分を自動的に検出し、欠陥有りと判定した場合、オペレータに警告表示する機能を有する。このとき、CRT1815の表示部に二次過電流生成画像1817を表示するようにしてもよい。

次に、図50に示す欠陥検査装置の作用を図52~図54に示すフローチャートを例にして説明する。先ず、図52のメインルーチンの流れに示すように、検査対象となるウェハ1805をステージ1804の上にセットする(ステップ1900)。これは、図示しないローダーに多数格納されたウェハ1805を一枚毎に自動的にステージ1804にセットする形態であってもよい。

次に、ウェハ1805表面のXY平面上で部分的に重なり合いながら互いから変位された複数の被検査領域の画像を各々取得する(ステップ1904)。これら画像取得すべき複数の被検査領域とは、図56に示すように、例えばウェハ検査額1834上に、参照番号1832a、1832b、...、1832

k、...で示す矩形領域のことであり、これらは、ウェハの検査パターン1830の回りで、部分的に重なり合いながら位置がずらされていることがわかる。例えば、図51に示されたように、16個の被検査領域の画像1832(被検査画像)が取得される。ここで、図51に示す画像は、矩形の桝目が1画素(或いは、画素より大きいブロック単位でもよい)に相当し、このうち黒塗りの桝目がウェハ1805上のパターンの画像部分に相当する。このステップ1904の詳細は図53のフローチャートで後述する。

次に、ステップ1904で取得した複数の被検査領域の画像データを記憶部1

25

5

813に記憶された基準画像データと、各々比較照合し(図52のステップ1908)、上記複数の被検査領域により網羅されるウェハ検査面に欠陥が有るか否かが判定される。この工程では、いわゆる画像データ同士のマッチング処理を実行するが、その詳細については図54のフローチャートで後述する。

ステップ1908の比較結果より、上記複数の被検査領域により網羅されるウェハ検査面に欠陥が有ると判定された場合(ステップ1912肯定判定)、オペレータに欠陥の存在を警告する(ステップ1918)。警告の方法として、例えば、CRT1815の表示部に欠陥の存在を知らせるメッセージを表示したり、これと同時に欠陥の存在するパターンの拡大画像1817を表示してもよい。このような欠陥ウェハを直ちに試料室1803から取り出し、欠陥の無いウェハとは別の保管場所に格納してもよい(ステップ1919)。

ステップ1908の比較処理の結果、ウェハ1805に欠陥が無いと判定された場合(ステップ1912否定判定)、現在検査対象となっているウェハ1805について、検査すべき領域が未だ残っているか否かが判定される(ステップ1914)。検査すべき領域が残っている場合(ステップ1914肯定判定)、ステージ1804を駆動し、これから検査すべき他の領域が一次電子線の照射領域内に入るようにウェハ1805を移動させる(ステップ1916)。その後、ステップ1902に戻って当該他の検査領域に関して同様の処理を繰り返す。

検査すべき領域が残っていない場合(ステップ1914否定判定)、或いは、 欠陥ウェハの抜き取り工程(ステップ1919)の後、現在検査対象となっているウェハ1805が、最終のウェハであるか否か、即ち図示しないローダーに未 検査のウェハが残っていないか否かが判定される(ステップ1920)。最終のウェハでない場合(ステップ1920否定判定)、検査済みウェハを所定の格納 箇所に保管し、その代わりに新しい未検査のウェハをステージ1804にセット する(ステップ1922)。その後、ステップ1902に戻って当該ウェハに関 して同様の処理を繰り返す。最終のウェハであった場合(ステップ1920肯定 判定)、検査済みウェハを所定の格納箇所に保管し、全工程を終了する。

25

5

次に、ステップ1904の処理の流れを図53のフローチャートに従って説明する。図53では、先ず、画像番号iを初期値1にセットする(ステップ1930)。この画像番号は、複数の被検査領域画像の各々に順次付与された識別番号である。次に、セットされた画像番号iの被検査領域について画像位置(X_i , Y_i) を決定する(ステップ1932)。この画像位置は、被検査領域を画定させるための該領域内の特定位置、例えば該領域内の中心位置として定義される。現時点では、i=1であるから画像位置(X_i , Y_i)となり、これは例えば図16に示された被検査領域1832aの中心位置に該当する。全ての被検査画像領域の画像位置は予め定められており、例えば制御部1816のハードディスク上に記憶され、ステップ1932で読み出される。

次に、図50の偏向電極1811を通過する一次電子線がステップ1932で決定された画像位置(X_1 , Y_1)の被検査画像領域に照射されるように、偏向制御器1812が偏向電極1811に電位を加える(図53のステップ1934)。次に、電子線源2501から一次電子線を放出し、静電レンズ1802、ウィーンフィルタ1803、対物レンズ1810及び偏向電極1811を通して、セットされたウェハ1805の表面上に照射する(ステップ1936)。このとき、一次電子線は、偏向電極1811の作り出す電場によって偏向され、ウェハ検査表面1834上の画像位置(X_1 , Y_1)の被検査画像領域全体に亘って照射される。画像番号1=1の場合、被検査領域は1832aとなる。

一次電子線が照射された被検査領域からは二次電子線及び/又は反射電子線(以下、両者を総合して「二次電子線」という)が放出される。そこで、発生した二次電子線を拡大投影系の静電レンズ1806により所定の倍率で検出器1807に結像させる。検出器1807は、結像された二次電子線を検出し、検出素子毎の電気信号即ちデジタル画像データに変換出力する(ステップ1938)。そして、検出した画像番号iのデジタル画像データを二次電子線画像記憶領域1

次に、画像番号iを1だけインクリメントし(ステップ1942)、インクリ

808に転送する(ステップ1940)。

メントした画像番号(i+1)が一定値 i_{MAX} を越えているか否かを判定する (ステップ 1 9 4 4)。この i_{MAX} は、取得すべき被検査画像の数であり、図 5 1 の上述した例では、「1 6」である。

画像番号 i が一定値 i $_{MAX}$ を越えていない場合(ステップ1944否定判定)、再びステップ1932に戻り、インクリメントした画像番号(i + 1)について画像位置(X_{i+1} , Y_{i+1})を再び決定する。この画像位置は、前のルーチンで決定した画像位置(X_{i} , Y_{i})からX 方向及び/又はY 方向に所定距離(ΔX_{i} , ΔY_{i})だけ移動させた位置である。図 5 6 の例では、被検査領域は、(X_{1} , Y_{1})からY 方向にのみ移動した位置(X_{2} , Y_{2})となり、破線で示した矩形領域 1 8 3 2 b となる。なお、(ΔX_{i} , ΔY_{i})(i = 1 , 2 , . . . i $_{MAX}$)の値は、ウェハ検査面 1 8 3 4 のパターン 1 8 3 0 が検出器 1 8 0 7 の視野から実際に経験的にどれだけずれるかというデータと、被検査領域の数及び面積から適宜定めておくことができる。

そして、ステップ1932~1942の処理を i_{MAX} 個の被検査領域について順次繰り返し実行する。これらの被検査領域は、図56に示すように、k回移動した画像位置(X_k , Y_k)では被検査画像領域1832kとなるように、ウェハの検査面1834上で、部分的に重なり合いながら位置がずらされていく。このようにして、図51に例示した16個の被検査画像データが画像記憶領域1808に取得される。取得した複数の被検査領域の画像1832(被検査画像)は、図56に例示されたように、ウェハ検査面1834上のパターン1830の画像1830 a を部分的に若しくは完全に取り込んでいることがわかる。

一インクリメントした画像番号iがi_{MAX}を越えた場合(ステップ1944肯定 判定)、このサブルーチンをリターンして図52のメインルーチンの比較工程 (ステップ1908)に移行する。

25 なお、ステップ1940でメモリ転送された画像データは、検出器1807に より検出された各画素毎の二次電子の強度値(いわゆるベタデータ)からなるが、 後段の比較工程(図52のステップ1908)で基準画像とマッチング演算を行

25

5

うため、様々な演算処理を施した状態で記憶領域8に格納しておくことができる。このような演算処理には、例えば、画像データのサイズ及び/又は濃度を基準画像データのサイズ及び/又は濃度に一致させるための正規化処理や、所定画素数以下の孤立した画素群をノイズとして除去する処理などがある。更には、単純なベタデータではなく、高精細パターンの検出精度を低下させない範囲で検出パターンの特徴を抽出した特徴マトリクスにデータ圧縮変換しておいてもよい。このような特徴マトリクスとして、例えば、M×N画素からなる二次元の被検査領域を、m×n(m<M,n<N)ブロックに分割し、各ブロックに含まれる画素の二次電子線強度値の総和(若しくはこの総和値を被検査領域全体の総画素数で割った正規化値)を、各マトリックス成分としてなる、m×n特徴マトリックスなどがある。この場合、基準画像データもこれと同じ表現で記憶しておく。第11の実施形態でいう画像データとは、単なるベタデータは勿論のこと、このように任意のアルゴリズムで特徴抽出された画像データを包含する。

次に、ステップ1908の処理の流れを図54のフローチャートに従って説明する。先ず、制御部1816のCPUは、基準画像記憶部1813(図50)から基準画像データをRAM等のワーキングメモリ上に読み出す(ステップ1950)。この基準画像は、図51では参照番号1836で表される。そして、画像番号iを1にリセットし(ステップ1952)、記憶領域1808から画像番号iの被検査画像データをワーキングメモリ上に読み出す(ステップ1954)。

次に、読み出した基準画像データと、画像 i のデータとのマッチングを取って、両者間の距離値 D_i を算出する(ステップ 1 9 5 6)。この距離値 D_i は、基準画像と、被検査画像 i との間の類似度を表し、距離値が大きいほど基準画像と被検査画像との差異が大きいことを表している。この距離値 D_i として類似度を表す量であれば任意のものを採用することができる。例えば、画像データが $M\times N$ 画素からなる場合、各画素の二次電子線強度(又は特徴量)を $M\times N$ 次元空間の各位置ベクトル成分とみなし、この $M\times N$ 次元空間上における基準画像ベクトル及び画像 i ベクトル間のユークリッド距離又は相関係数を演算してもよい。勿論、

5

ユークリッド距離以外の距離、例えばいわゆる市街地距離等を演算することもできる。更には、画素数が大きい場合、演算量が膨大になるので、上記したようにm×n特徴ベクトルで表した画像データ同士の距離値を演算してもよい。

次に、算出した距離値D₁が所定の閾値Thより小さいか否かを判定する(ステップ1958)。この閾値Thは、基準画像と被検査画像との間の十分な一致を判定する際の基準として実験的に求められる。

距離値D,が所定の閾値Thより小さい場合(ステップ1958肯定判定)、 当該ウェハ1805の当該検査面1834には「欠陥無し」と判定し(ステップ1960)、本サブルーチンをリターンする。即ち、被検査画像のうち1つでも 基準画像と略一致したものがあれば、「欠陥無し」と判定する。このように全て の被検査画像とのマッチングを行う必要が無いので、高速判定が可能となる。図 51の例の場合、3行3列目の被検査画像が、基準画像に対して位置ずれが無く 略一致していることがわかる。

距離値 D_i が所定の閾値Th以上の場合(ステップ1958否定判定)、画像番号iを1だけインクリメントし(ステップ1962)、インクリメントした画像番号(i+1)が一定値 i_{MAX} を越えているか否かを判定する(ステップ1964)。画像番号iが一定値 i_{MAX} を越えていない場合(ステップ1964否定判定)、再びステップ1954に戻り、インクリメントした画像番号(i+1)について画像データを読み出し、同様の処理を繰り返す。

画像番号 i が一定値 i_{MAX} を越えた場合(ステップ 1 9 6 4 肯定判定)、当該ウェハ 1 8 0 5 の当該検査面 1 8 3 4 には「欠陥有り」と判定し(ステップ 1 9 6 6)、本サブルーチンをリターンする。即ち、被検査画像の全でが基準画像と略一致していなければ、「欠陥有り」と判定する。

本発明の第12の実施形態に係る欠陥検査装置は、図3および図4の(a)、

25 (b)を参照して説明したデバイス製造方法におけるウェハ検査工程(G)に用いることができる。この場合、微細なパターンを有する半導体デバイスでも、二次電子画像の像障害が無い状態で高精度に欠陥を検査できるので、製品の歩留り

25

を向上させ、欠陥製品の出荷を防止することが可能となる。これに関しては、図3および図4の(a)、(b)に関する説明を援用することにし、ここでの説明は省略する。

本発明の第12の実施の形態は、これまで説明した事項のみに限定されるものではなく任意に変更可能である。例えば、被検査試料として半導体ウェハ1805を例に掲げたが、本発明の被検査試料はこれに限定されず、電子線によって欠陥を検出することができる任意のものが選択可能である。例えばウェハへの露光用パターンが形成されたマスク等を検査対象とすることもできる。

また、本発明の第12の実施の形態は、試料の欠陥を検査可能な画像を取得できる任意の装置にも適用可能である。

更に、偏向電極1811は、対物レンズ1810とウェハ1805との間のみならず、一次電子線の照射領域を変更できる限り任意の位置に置くことができる。例えば、ウィーンフィルタ1803と対物レンズ1810との間、電子線源1801とウィーンフィルタ1803との間などがある。更には、ウィーンフィルタ1803が生成する場を制御することによって、その偏向方向を制御するようにしてもよい。即ち、ウィーンフィルタ1803に偏向電極1811の機能を兼用させてもよい。

また、第12の実施の形態では、画像データ同士のマッチングを取る際に、画素間のマッチング及び特徴ベクトル間のマッチングのいずれかとしたが、両者を組み合わせることもできる。例えば、最初、演算量の少ない特徴ベクトルで高速マッチングを行い、その結果、類似度の高い被検査画像については、より詳細な画素データでマッチングを行うという2段階の処理によって、高速化と精度とを両立させることができる。

また、本発明の第12の実施形態では、被検査画像の位置ずれを一次電子線の 照射領域の位置ずらしのみで対応したが、マッチング処理の前若しくはその間で 画像データ上で最適マッチング領域を検索する処理(例えば相関係数の高い領域 同士を検出してマッチングさせる)と本発明とを組み合わせることもできる。こ

25

5

れによれば、被検査画像の大きな位置ずれを本発明による一次電子線の照射領域の位置ずらしで対応すると共に、比較的小さな位置ずれを後段のデジタル画像処理で吸収することができるので、欠陥検出の精度を向上させることができる。

更に、欠陥検査用の電子線装置として図50の構成を示したが、電子光学系等は任意好適に変更可能である。例えば、図示された欠陥検査装置の電子線照射手段(1801、1802、1803)は、ウェハ1805の表面に対して垂直上方から一次電子線を入射させる形式であるが、ウィーンフィルタ1803を省略し、一次電子線をウェハ1805の表面に斜めに入射させるようにしてもよい。

また、図52のフローチャートによる処理も、図で説明したものに限定されない。例えば、ステップ1912で欠陥有りと判定された試料について、他の領域の欠陥検査は行わないことにしたが、全領域を網羅して欠陥を検出するように処理の流れを変更してもよい。また、一次電子線の照射領域を拡大し1回の照射で試料のほぼ全検査領域をカバーできれば、ステップ1914及びステップ1916を省略することができる。

以上、本発明の第1の実施の形態~第12の実施の形態を詳述したが、いずれの実施の形態においても、「所定電圧」という用語は、検査等の測定が行われる電圧を意味するものとする。

また、これまで説明した各種の実施の形態は荷電粒子線として電子線を用いているが、これに限られるものではなく、電子線以外の荷電粒子線や、電荷を持たない中性子線、レーザー光、電磁波等の非荷電粒子線をも使用することが可能である。

なお、本発明に係る荷電粒子線装置が作動すると、近接相互作用(表面近くでの粒子の帯電)により標的物質が浮遊して高圧領域に引きつけられるので、荷電粒子線の形成や偏向に使用される様々な電極には有機物質が堆積する。表面の帯電により徐々に堆積していく有機物質は荷電粒子線の形成や偏向機構に悪影響を及ぼすので、こうした堆積した有機物質は周期的に除去しなければならない。そこで、堆積した有機物質を周期的に除去するため、この有機物質の堆積する領域

の近傍の電極を利用して、真空中で水素、酸素またはフッ素及びそれらを含む代替物HF、 H_2O 、 C_MF_N 等のプラズマを作り出し、空間内のプラズマ電位を電極面にスパッタが生じる電位(数 kV、例えば $20V\sim 5kV$)に維持することで、有機物質のみを酸化、水素化、フッ素化により除去することが好ましい。

INDUSTRIAL APPLICABILITY

本発明は、第1の実施の形態から理解されるとおり、荷電粒子線を用いた検査 装置を提供することにより、従来に比べて格段にスループットを向上させること ができる。

本発明は、第2の実施の形態から理解されるとおり、

- 1. 荷電粒子線を用いた写像投影方式の検査装置の全体構成が得られ、高いスループットで検査対象を処理することができる。
- 2. ミニエンバイロメント空間内で検査対象に清浄気体を流して塵埃の付着を 防止すると共に清浄度を観察するセンサを設けることによりその空間内の塵埃を 監視しながら検査対象の検査を行うことができる。
- 3. ローディングチャンバ及びワーキングチャンバを一体的に振動防止装置を 介して支持したので外部の環境に影響されずにステージ装置への検査対象の供給 及び検査を行うことができる。
- 4. プレチャージユニットを設けているので、絶縁物でできたウェハも帯電に 20 よる影響を受けがたい、

等の格別の効果を奏することができる。

本発明は、第3の実施の形態から理解されるとおり、

- 1. 荷電粒子線源と電子光学系とを仕切板により分離するので、各部毎に独立に所要の真空度を達成することが可能である、
- 25 2. 荷電粒子線源と電子光学系とをコンダクタンスの小さい穴で結合するよう にしたので、荷電粒子線源と電子光学系との間の圧力差を大きく取ることが可能 である、

- 3. 仕切板には、それぞれの荷電粒子線源の光軸から離れた位置に穴が形成されるので、試料又は電子光学系の方から光軸上を正イオンが荷電粒子線源のカソードの方へ戻って来ても、この仕切板によって遮られるため、正イオンによってカソードが損傷されることがない、
- .5 等の格別の効果を奏する。

本発明は、第4の実施の形態から理解されるとおり、

- 1. 電極又は電極の一部を仕事関数が 5 e V以上の金属でコーティングしたので、電極から二次荷電粒子線が放出されることが少なく、電極間において放電が生じにくくなり、電極間で絶縁破壊されることが少なくなる、
- 2. 電極又は電極の一部を白金(仕事関数: 5、3 [eV]) 又は白金を主材料とする合金でコーティングしたので、電極から二次荷電粒子線が放出されることが少なく、電極間において放電が生じにくくなり、電極間で絶縁破壊されることが少なくなる、
- 3. 試料が半導体ウェハであっても、半導体ウェハのパターン上に、電極にコーティングされた白金が付着することがあってもデバイスの性能を劣化させることもないので、半導体ウェハの検査に好適である、
- 4. 絶縁材料によって電極を支持することによって、電極間の放電が、したがって電極間の絶縁破壊が生じにくい、
- 5. 少なくとも一方の電極の形状を、第1の電極面と第2の電極面と、これら 20. 電極面の間に段差を設けるようにすることによって、絶縁材料表面をヒダ形状等 に加工することがなく、加工費用が安価になる、
 - 6. 絶縁材料の電極間における最短沿面距離は、支持された電極部分における電極間距離と略同じ長さであるので、電極間における絶縁材料表面にはほとんと凹凸部分が無く、絶縁材料からの放出ガスが多くなることも無いので、装置のビーム通路の真空度を下げることもない、

等の格別の効果を奏する。

本発明は、第5の実施の形態から理解されるとおり、一次荷電粒子線又は二次

. 5

荷電粒子線のエネルギー分布によりE×B分離器で発生する色収差の影響を低減することができるという格別の効果を奏する。

本発明は、第6の実施の形態から理解されるとおり、

- 1. 試料面の高さを測定するための光学式センサを使用する必要がないので、対物レンズと試料との間を電子光学系のみで最適設計することが可能になる、
 - 2. 荷電粒子線走査・検出系の焦点合わせは低電圧の調整のみで可能であるので、整定時間を短縮することができる、即ち、短時間で焦点合わせを行うことができる、
 - 3. 必要に応じて、焦点合わせの操作の中で、非点補正をも短時間で行うことが可能である、
 - 4. プロセス途中の試料を短時間で評価することができることになるので、デバイス製造の歩留まりを向上させることができる、

という格別の効果を奏する。

本発明は、第7の実施の形態から理解されるとおり、

- 1.機械構造体の振動により力を受けるように該機械構造体に圧電素子を取り付け、該圧電素子から出力された電気エネルギーを減衰させる振動減衰用回路を該圧電素子に電気的に接続したので、ビームを位置決めする構造体の共振による不要な振動を、必ずしも構造体の剛性を向上させなくても、ビームの位置決めを高精度に維持できるよう適切に減衰可能となる、
- 20 2. したがってって、設計上の制約の緩和、装置の小型軽量化、経済性の向上を実現させることができる、
 - 3. 半導体デバイスの製造工程において、上記のような荷電粒子線装置を用いることにより、半導体デバイスの効率良い製造、検査、加工、観測等が可能となる、
- 25 という優れた効果を奏する。

本発明は、第8の実施の形態から理解されるとおり、

1. 静電チャック及びウェハと静電チャックの組合わせにより、ウェハの吸着

25

. 5

保持に必要な電圧がウェハの印加電圧に連動して印加されるので、ウェハの検査 が終了する迄確実にウェハを吸着保持することができる、

- 2. チャック側に中央が凹に歪んだウェハでも確実にウェハ前面が吸着保持される。更にまたウェハに形成される放電跡が必要最小限の大きさにされ、放電時のパーティクルの発生が極めて少ない、
- 3. 本発明の静電チャック及びウェハと静電チャックの組合わせをデバイス製造方法に使用することにより、ウェハが移動台の静電チャックに検査中確実に吸着保持され、微細なパターンを有する半導体デバイスでも高いスループットで検査可能となり、それ故全数検査が可能であり、製品の歩留まり向上、欠陥製品の出荷防止が可能である、

等の格別の効果を奏する。

本発明は、第9の実施の形態から理解されるとおり、

- 1. ステージ装置が真空内で高精度な位置決め性能を発揮することができ、更に、荷電粒子線照射位置の圧力が上昇しにくい。すなわち、試料に対する荷電粒子線による処理を高精度に行うことができる、
- 2. 静圧軸受け支持部から放出されたガスが仕切りを通過して荷電粒子線照射領域側に通過することがほとんどできない。これによって荷電粒子線照射位置の真空度を更に安定させることができる、
- 3. 荷電粒子線照射領域側に放出ガスが通過することが困難になり、荷電粒子線照射領域の真空度を安定に保ち易くなる、
 - 4. 真空チャンバ内が、荷電粒子線照射室、静圧軸受け室及びその中間室の3室に小さいコンダクタンスを介して分割された形になり、それぞれの室の圧力を、低い順に荷電粒子線照射室、中間室、静圧軸受け室となるように真空排気系を構成するので、中間室への圧力変動は仕切りによって更に低く抑えられ、荷電粒子線照射室への圧力変動は、もう一段の仕切りによって更に低減され、圧力変動を実質的に問題ないレベルまで低減することが可能となる、
 - 5. ステージが移動した時の圧力上昇を低く抑えることが可能になる。

. 5

- 6. ステージが移動した時の圧力上昇を更に低く抑えることが可能である、
- 7. ステージの位置決め性能が高精度で、かつ荷電粒子線の照射領域の真空度が安定した検査装置を実現することができるので、検査性能が高く、試料を汚染する恐れのない検査装置を提供することができる、
- 8. ステージの位置決め性能が高精度で、かつ荷電粒子線照射領域の真空度が安定した露光装置を実現することができるので、露光精度が高く、試料を汚染する恐れのない露光装置を提供することができる、
 - 9. ステージの位置決め性能が高精度で、かつ荷電粒子線照射領域の真空度が安定した装置によって半導体を製造することにより、微細な半導体回路を形成できる、

等の格別の効果を奏する。

本発明は、第10の実施の形態から理解されるとおり、

- 1. 大気中で一般に用いられる静圧軸受け式のステージと同様の構造を持ったステージ (差動排気機構を持たない静圧軸受け支持のステージ) を使用して、ステージ上の試料に対して荷電粒子線による処理を安定に行うことができる、
- 2. 荷電粒子線照射領域の真空度に対する影響を最小限に抑えることが可能になり、荷電粒子線による試料への処理を安定化させることができる、
- 3. ステージの位置決め性能が高精度で、かつ荷電粒子線の照射領域の真空度が安定した検査装置を安価に提供することができる、
- 20 4.ステージの位置決め性能が高精度で、かつ荷電粒子線照射領域の真空度が 安定した露光装置を安価に提供することができる、
 - 5. ステージの位置決め性能が高精度で、かつ荷電粒子線照射領域の真空度が安定した装置によって半導体を製造することにより、微細な半導体回路を形成できる、
- 25 等の格別の効果を奏する。

本発明は、第11の実施の形態から理解されるとおり、

1. スループットが光学系の数に比例した倍数に向上できる、

. 5

- 2. チャージアップ状態が最も少ない状態でウェハの評価が行われるので、信頼性の高い評価ができる、
- 3. チャージアップ性能を、各種の電流を測定して行うのでなく、実際の画像で評価しているので、より正しい評価結果が得られる、

等の格別の効果を奏する。

本発明は、第12の実施の形態から理解されるとおり、

- 1. 試料上で部分的に重なり合いながら互いから変位された複数の被検査領域の画像を各々取得し、これらの被検査領域の画像と基準画像とを比較することによって、試料の欠陥を検査するようにしたので、被検査画像と基準画像との位置ずれによる欠陥検査精度の低下を防止できる、
- 2. 上記のような欠陥検査装置を用いて試料の欠陥検査を行うようにしたので、 製品の歩留まりの向上及び欠陥製品の出荷防止が図れる、 という格別の効果を奏する。

20

25

CLAIMS

1. 検査対象物の検査室と、

5

前記検査室内に保持された前記検査対象物から二次荷電粒子を叩出すエネルギーを持つ荷電粒子又はイオン或いは電磁波を、所定幅のシート状の一次照射ビームとして射出するシートビーム発生装置と

該ビームを前記検査対象物に導き、前記検査対象物から発生する二次荷電粒子 束を捕捉し、画像処理系へ導く電子光学系と、

該二次荷電粒子束の投影により可視画像を形成する画像処理系と

を具備することを特徴とするシートビーム式検査装置。

- 15 章 2. 請求項1記載のシートビーム検査装置であって、前記検査対象物を保全し、 動前記検査室に搬入出する搬入出機構を更に具備することを特徴とするシートビー 量 量ム式検査装置。
 - 3. 請求項2記載のシートビーム検査装置であって、前記搬送機構は、

前記検査対象物に清浄気体を流し、塵埃の付着を防止するミニエンバイロメン 20 ト装置と、

該ミニエンバイロメント装置と前記検査室の間に配置され、個々に真空雰囲気 に制御可能な複数のローディングチャンバと、

該ローディングチャンバの1つと前記ミニエンバイロメント装置の間で検査対象物を搬送する第1の搬送ユニットと、

25 該ローディングチャンバの1つと前記検査室の間で前記検査対象物を搬送する 第2の搬送ユニットと、

前記検査室と前記ローディングチャンバを支持する振動遮断装置と、

を具備することを特徴とするシートビーム式検査装置。

4. 請求項1記載のシートピーム検査装置であって、前記検査室は、

前記検査対象物の振動を防ぐ除振装置と、

١, [

25

前記検査室内を真空に保持する真空装置と、

- を具備することを特徴とするシートビーム式検査装置。 5
 - 5. 請求項1記載のシートビーム検査装置であって、前記検査室は、前記検査 対象物の帯電むらを減少するプレチャージユニット及び/又は前記検査対象物に 電位を印加する電位印加装置を配備していることを特徴とするシートビーム式検 查装置。
- 6. 複数の線源から照射される荷電粒子又はイオン或いは電磁波を前記電子光 10 学系に導入する前段に配置される、該荷電粒子又はイオン或いは電磁波が透過可 能なアスペクト比の大きい孔隙を有する仕切板を備えた請求項1記載のシートビ Ü 一ム発生装置を具備することを特徴とするシートビーム式検査装置。
- 7. 請求項6記載のシートビーム式検査装置であって、前記孔隙は各線源に対 し複数設けられていることを特徴とするシートビーム式検査装置。 15
 - 8. 請求項7記載のシートビーム式検査装置であって、前記孔隙は前記線源の ₩ 照射軸から外れた位置に形成されていることを特徴とするシートビーム式検査装 置。
- 9. 請求項6記載のシートビーム式検査装置であって、前記仕切板は剛性の高 い材料で形成されていることを特徴とするシートピーム式検査装置。 20
 - 10. 請求項1記載のシートビーム式検査装置であって、静電レンズを含む電 子光学系を有することを特徴とするシートビーム式検査装置。
 - 11. 請求項10記載のシートビーム式検査装置であって、前記電子光学系内 の電極を仕事関数が5 e V以上の金属でコーティングしたことを特徴とするシー トビーム式検査装置。
 - 12. 請求項11記載のシートビーム式検査装置であって、前記金属が、プラ チナ或いはプラチナの合金であることを特徴とするシートビーム式検査装置。

13.請求項10記載のシートビーム式検査装置であって、

前記静電レンズは電位差のある複数の電極と該電極間に有って電極を保持する 絶縁材料を含み、少なくとも1つの電極は最短の電極間距離となる第1の電極面 と、該第1の電極面よりも長い電極間距離を有する第2の電極面を有すると共に 両電極間に段差を有し、

前記絶縁材料は前記第2の電極面と別の電極との間にあって各々を略垂直に支持し、

前記絶縁材料の電極間における最短沿面距離は前記支持された電極部分における電極間距離と略同長である

ことを特徴とするシートビーム式検査装置。

- 14. 請求項1記載のシートビーム式検査装置であって、前記検査対象から放出された二次荷電粒子線を一次照射ビームから分離するEXB分離器又はウイーンフィルタを有し、前記二次荷電粒子線の該EXB分離器又はウイーンフィルタの磁場による偏向量を電場による偏向量の2倍とし、且つ該磁場による偏向方向と電場による偏向方向を逆にしたことを特徴とするシートビーム式検査装置。
- 15.請求項1記載のシートビーム式検査装置であって、複数の一次照射ビームを前記検査対象物に照射して二次荷電粒子を放出させ、該二次荷電粒子を前記画像処理系に導く電子光学系を備えたとを特徴とするシートビーム式検査装置。
 - 16. 請求項1記載のシートビーム式検査装置であって、
- 20 対物レンズの励起電圧に関して、第1の方向に平行なパターン・エッジを第2 の方向に移動させた時の二次荷電粒子線信号波形の立上がりを示す第1のデータ と、前記第2の方向に平行なパターンエッジを前記第1の方向に移動した時の二 次荷電粒子線信号波形の立上がりを表す第2のデータとを測定する測定機構と
- 前記第1のデータと前記第2のデータとをそれぞれ二次式で近似し、各二次式 25 の最小値を示す前記対物レンズの励起条件を求めると共に前記対物レンズの前記 励起電圧を、求められた前記励起条件の代数平均に合せる制御手段と、

を具備した電子光学系を有することを特徴とするシートビーム式検査装置。

18. 請求項16記載のシートビーム式検査装置であって、

5

10(1)

1500 mad

15

20

前記対物レンズはアースに近い電圧が印加される第1の電極と、アースから遠 い電圧が印加される第2の電極とを備え、

第1の電極に印加される電圧を変化させることで前記対物レンズの焦点距離を変化させる機構と、前記第2の電極に印加する電圧を変え前記対物レンズの焦点距離を大きく変える機構と、前記第1の電極に印加する電圧を変え前記対物レンズの焦点距離を短時間に変える機構を有する制御機構を具備するシートビーム式検査装置。

- 19.請求項1記載のシートビーム式検査装置であって、前記検査対象に一次照射ビームを射出する位置を定める機械的構造体と、該機械構造体の振動により力を受ける圧電素子と、該圧電素子に電気的に接続され出力された電気エネルギーを減衰させるよう働く振動減衰用回路を具備することを特徴とするシートビーム式検査装置。
- 20.請求項19記載のシートビーム式検査装置であって、前記振動減衰用回路は、インダクタンスを持つ素子又は該素子の等価回路としての誘導性手段を備えると共に静電容量を持つ前記圧電素子と接続されて共振回路を形成し、該共振回路の共振周波数が、前記機械構造体の共振周波数に実質的に一致するように、前記圧電素子の静電容量に対する誘導性手段のインダクタンスが定められていることを特徴とするシートビーム式検査装置。
- 21. 請求項20記載のシートビーム式検査装置であって、前記振動減衰用回路内に、抵抗素子を更に備えたことを特徴とするシートビーム式検査装置。
- 22. 請求項2記載のシートビーム式検査装置であって、前記検査対象物を印 25 加電圧0から所定値まで増減可能として、該検査対象物の印加電圧に連動する電 圧が電極に印加され静電的に前記検査対象物を吸着保持する静電チャックを備え たことを特徴とするシートビーム式検査装置。

25

5

- 23.請求項22記載のシートビーム式検査装置であって、前記電極はその中央部分及び周辺部分の一部からなる第1電極と、残りの部分からなる第2電極とに分割され、最初に該第1電極に電圧を印加し、次に前記検査対象物を低電位乃至接地電位とし、その後、該第2電極に電圧が印可される静電チャックを備えたことを特徴とするシートビーム式検査装置。
- 24. 請求項22記載のシートビーム式検査装置であって、前記静電チャックは基板、電極、絶縁体を重層して構成され、前記検査対象物は所定の抵抗及び接触子を介して電圧を印加され、前記接触子は前記検査対象物の裏面に先端が接触する形状であることを特徴とするシートビーム式検査装置。
- 25.請求項1記載のシートビーム式検査装置であって、前記電子光学系に対する前記検査対象物の位置決めの為、該検査対象物の表面を観察してアライメントを制御するアライメント制御装置と、前記ステージ上の前記検査対象物の座標を検出するレーザ干渉式測距装置とを備え、前記アライメント制御装置により前記検査対象に存在するパターンを利用して該検査対象物の座標を決定するステージの制御機構を有することを特徴とするシートビーム式検査装置。
- 26.請求項1記載のシートビーム式検査装置であって、少なくとも前記電子光学系に対し2以上の自由度をもって前記検査対象物を保持するステージを有し、該ステージには静圧軸受による非接触指示機構と、差動排気による真空シール機構とを設け、前記検査対象物のビーム照射を受ける箇所と前記ステージの静圧軸受支持部との間にコンダクタンスが小さくなる仕切を設け、圧力差が生じるよう構成したとを特徴とするシートビーム式検査装置。
- 27.請求項26記載のシートビーム式検査装置であって、前記仕切が差動排気構造を内蔵していることを特徴とするシートビーム式検査装置。
- 28.請求項26記載のシートビーム式検査装置であって、前記仕切がコールドトラップ機能を内蔵していることを特徴とするシートビーム式検査装置。
 - 29.請求項26記載のシートビーム式検査装置であって、前記仕切がシートビーム発生装置近傍と静圧軸受近傍の少なくとも2ヶ所に設けられていることを

25

特徴とするシートビーム式検査装置。

- 30. 請求項26記載のシートビーム式検査装置であって、前記静圧軸受に供給されるガスがドライ窒素または、不活性ガスであることを特徴とするシートビーム式検査装置。
- 5 31. 請求項26記載のシートビーム式検査装置であって、前記静圧軸受に供給されるガスが前記ステージを収納するハウジングから排出された後、加圧され再度前記静圧軸受に供給されることを特徴とするシートビーム式検査装置。
 - 32.請求項26記載のシートビーム式検査装置であって、少なくとも前記静 圧軸受に面する部品表面に放出ガスを低減する表面処理を施したことを特徴とするシートビーム式検査装置。
 - 33. 請求項1記載のシートビーム式検査装置であって、前記検査対象物にリターディング電圧を印加するリターディング電圧印加装置と、最適なリターディング電圧を印加する制御機構とを備え、更に、絶縁物表面に金属コーティングしたレンズをもつ電子光学系を有することを特徴とするシートビーム式検査装置。
 - 34.請求項33記載のシートビーム式検査装置であって、前記レンズは一体の絶縁物を加工し軸対称レンズとしたことを特徴とするシートビーム式検査装置。
 - 35.請求項33記載のシートビーム式検査装置であって、前記最適なリターディング電圧を印加する制御機構は、前記検査対象物のチャージアップ状態を計るチャージアップ調査機能部と、該チャージアップ調査機能部の出力情報に基づき最適なリターディング電圧を決定し、該リターディング電圧を検査対象物に印可するか、又は最適なビーム電流に変更する機能部とを有してなることを特徴とするシートビーム式検査装置。
 - 36.請求項33記載のシートビーム式検査装置であって、前記チャージアップ調査機能部は、二次荷電粒子線を検出して画像を形成するに際し、前記検査対象物の特定部位のパターン歪み又はパターンボケの大きさに基づき該検査対象物のチャージアップ状態を評価することを特徴とするシートビーム式検査装置。
 - 37. 請求項33記載のシートビーム式検査装置であって、前記チャージアッ

プ調査機能部は、前記検査対象物にリターディング電圧を可変に印加可能で、複数のリターディング電圧を印可した情態下で該検査対象のパターン密度が大きく変化している境界付近の画像形成を行うことを特徴とするシートビーム式検査装置。

- 38. 請求項37記載のシートビーム式検査装置であって、前記形成された画像をオペレータが評価できるよう表示する画像表示装置を備えたことを特徴とするシートビーム式検査装置。
 - 39. 請求項1記載のシートピーム式検査装置であって、

前記検査対象物の複数の検査領域の画像を各々取得する画像取得手段と、

基準画像を記憶する手段とを有する画像処理系と、

該検査領域の画像と基準画像を比較することにより、前記検査対象物の状態を 判断する情報処理系と、

を備えたことを特徴とするシートビーム式検査装置。

- 40. 請求項39記載のシートビーム式検査装置であって、前記画像処理手段が取得する複数の検査領域の画像は、前記検査対象物上で部分的に重なり合いながら互いに変位されて取得されることを特徴とするシートビーム式検査装置。
- 41.請求項39記載のシートビーム式検査装置であって、前記画像処理系は、二次荷電粒子を検出して順次画像を取得するものであり、蛍光スクリーン及びマイクロチャンネルプレートを有することを特徴とするシートビーム式検査装置。
- 20 42. 請求項41記載のシートビーム式検査装置であって、前記画像処理系は、 固体撮像素子(CCD)カメラにより蛍光画像を取り込むことを特徴とするシートビーム式検査装置。
- - 44. 請求項1記載のシートビーム式検査装置であって、前記検査対象物がウェハ乃至半導体素子であり、その欠陥を検査することを特徴とするシートビーム

式検査装置。

- 45. 請求項44記載のシートビーム式検査装置であって、検査の標的が、回路配線の欠陥、線幅測定、合わせ精度測定、及び電位コントラスト測定から選ればれる少なくともとも1つであることを特徴とするシートビーム式検査装置。
- 46. ウェハ乃至半導体素子の評価を行う請求項1記載のシートビーム式検査装置を配備したことを特徴とするデバイス製造装置。
- 47. 請求項1記載のシートビーム式検査装置であって、前記荷電粒子線は電子線であることを特徴とするシートビーム式検査装置。
- 48. 請求項1記載のシートビーム式検査装置であって、二次荷電粒子を減速電界型対物レンズで加速する電子光学系と、その像を投影する画像処理系とを備えたことを特徴とするシートビーム式検査装置。
- 49. 請求項1記載のシートビーム式検査装置であって、前記シート状一次照射ビームに代えて、複数の線源から一次荷電粒子線を照射し、二次荷電粒子線を複数の検出器で検出することを特徴とするシートビーム式検査装置。
- 15 5 0. ウェハ乃至半導体素子の評価を行う請求項1記載のシートビーム式検査 装置によりウェハ乃至半導体素子の加工、製造、観測又は検査を行うことを特徴 とする半導体デバイス製造方法。
 - 51. 請求項1記載のシートビーム式検査装置により、ウェハまたはレチクルに半導体デバイスの回路パターンを描画することを特徴とする露光方法。

20

25

ABSTRACT

シートビーム式検査装置などの電子線装置は、電子線源からの一次電子線を検査対象に照射し、前記一次電子線の照射により放出された二次電子線の像を投影する電子光学系及び電子光学系により投影された二次電子線像を検出する検出器を有する。具体的には、電子線装置は、特定幅を有する電子線を照射するビーム発生手段2004と、該ビームを検査対象となる基板2006の表面に到達させる一次電子光学系2001と、基板2006から発生した二次電子を補足し画像処理系2015へ導く二次電子光学系2002と、基板2006を少なくとも一自由度の連続性をもって移送可能に保持するステージ2003と、基板2006の検査室と、該検査室に基板2006を搬入出する基板搬送機構と、基板2006の欠陥を検出する画像処理解析装置2015と、検査室の除振機構と、検査室の真空を保持する真空系と、基板2006の欠陥位置を表示又は記憶する制御系2017とを具備する。