Neural Networks Language Models

Philipp Koehn

14 April 2016

N-Gram Backoff Language Model

Previously, we approximated

$$p(W) = p(w_1, w_2, ..., w_n)$$

• ... by applying the chain rule

$$p(W) = \sum_{i} p(w_i|w_1, ..., w_{i-1})$$

• ... and limiting the history (Markov order)

$$p(w_i|w_1,...,w_{i-1}) \simeq p(w_i|w_{i-4},w_{i-3},w_{i-2},w_{i-1})$$

- Each $p(w_i|w_{i-4}, w_{i-3}, w_{i-2}, w_{i-1})$ may not have enough statistics to estimate
 - \rightarrow we back off to $p(w_i|w_{i-3},w_{i-2},w_{i-1})$, $p(w_i|w_{i-2},w_{i-1})$, etc., all the way to $p(w_i)$
 - exact details of backing off get complicated "interpolated Kneser-Ney"

Refinements

- A whole family of back-off schemes
- Skip-n gram models that may back off to $p(w_i|w_{i-2})$
- Class-based models $p(C(w_i)|C(w_{i-4}), C(w_{i-3}), C(w_{i-2}), C(w_{i-1}))$
- \Rightarrow We are wrestling here with
 - using as much relevant evidence as possible
 - pooling evidence between words

First Sketch

Representing Words

- Words are represented with a one-hot vector, e.g.,
 - dog = (0,0,0,0,1,0,0,0,0,....)
 - cat = (0,0,0,0,0,0,0,1,0,...)
 - eat = (0,1,0,0,0,0,0,0,0,...)
- That's a large vector!
- Remedies
 - limit to, say, 20,000 most frequent words, rest are OTHER
 - place words in \sqrt{n} classes, so each word is represented by
 - * 1 class label
 - * 1 word in class label

Word Classes for Two-Hot Representations

- WordNet classes
- Brown clusters
- Frequency binning
 - sort words by frequency
 - place them in order into classes
 - each class has same token count
 - → very frequent words have their own class
 - \rightarrow rare words share class with many other words
- Anything goes: assign words randomly to classes

Second Sketch

word embeddings

Add a Hidden Layer

- Map each word first into a lower-dimensional real-valued space
- Shared weight matrix *C*

Details (Bengio et al., 2003)

- Add direct connections from embedding layer to output layer
- Activation functions
 - input→embedding: none
 - embedding→hidden: tanh
 - hidden→output: softmax
- Training
 - loop through the entire corpus
 - update between predicted probabilities and 1-hot vector for output word

Word Embeddings

- By-product: embedding of word into continuous space
- Similar contexts → similar embedding
- Recall: distributional semantics

Word Embeddings

Word Embeddings

Are Word Embeddings Magic?

- Morphosyntactic regularities (Mikolov et al., 2013)
 - adjectives base form vs. comparative, e.g., good, better
 - nouns singular vs. plural, e.g., year, years
 - verbs present tense vs. past tense, e.g., see, saw
- Semantic regularities
 - clothing is to shirt as dish is to bowl
 - evaluated on human judgment data of semantic similarities

integration into machine translation systems

Reranking

- First decode without neural network language model (NNLM)
- Generate
 - n-best list
 - lattice
- Score candidates with NNLM
- Rerank (requires training of weight for NNLM)

Computations During Inference

Computations During Inference

Computations During Inference

Only Compute Score for Predicted Word?

- Proper probabilities require normalization
 - compute scores for all possible words
 - add them up
 - normalize (softmax)
- How can we get away with it?
 - we do not care a score is a score (Auli and Gao, 2014)
 - training regime that normalizes (Vaswani et al, 2013)
 - integrate normalization into objective function (Devlin et al., 2014)
- Class-based word representations may help
 - first predict class, normalize
 - then predict word, normalize
 - \rightarrow compute $2\sqrt{n}$ instead of n output node values

recurrent neural networks

Recurrent Neural Networks

- Start: predict second word from first
- Mystery layer with nodes all with value 1

Recurrent Neural Networks

Recurrent Neural Networks

Training

- Process first training example
- Update weights with back-propagation

Training

- Process second training example
- Update weights with back-propagation
- And so on...

• But: no feedback to previous history

Back-Propagation Through Time

• After processing a few training examples, update through the unfolded recurrent neural network

Back-Propagation Through Time

- Carry out back-propagation though time (BPTT) after each training example
 - 5 time steps seems to be sufficient
 - network learns to store information for more than 5 time steps
- Or: update in mini-batches
 - process 10-20 training examples
 - update backwards through all examples
 - removes need for multiple steps for each training example

Integration into Decoder

• Recurrent neural networks depend on entire history

 \Rightarrow very bad for dynamic programming

long short term memory

Vanishing and Exploding Gradients

- Error is propagated to previous steps
- Updates consider
 - prediction at that time step
 - impact on future time steps
- Exploding gradient: propagated error dominates weight update
- Vanishing gradient: propagated error disappears
- \Rightarrow We want the proper balance

Other Problems with RNNs

- Hidden layer plays double duty
 - memory of the network
 - continuous space representation used to predict output words

- No clear mechanism to distinguish:
 - sometimes only recent context important
 - sometimes much earlier context important

Long Short Term Memory (LSTM)

- Design quite elaborate, although not very complicated to use
- Basic building block: **LSTM cell**
 - similar to a node in a hidden layer
 - but: has a explicit memory state
- Output and memory state change depends on gates
 - input gate: how much new input changes memory state
 - forget gate: how much of prior memory state is retained
 - **output gate**: how strongly memory state is passed on to next layer.
- Gates can be not just be open (1) and closed (0), but slightly ajar (e.g., 0.2)

LSTM Cell

LSTM Cell (Math)

Memory and output values at time step t

$$memory^{t} = gate_{input} \times input^{t} + gate_{forget} \times memory^{t-1}$$
$$output^{t} = gate_{output} \times memory^{t}$$

• Hidden node value h^t passed on to next layer applies activation function f

$$h^t = f(\mathsf{output}^t)$$

- Input computed as input to recurrent neural network node
 - given node values for prior layer $\vec{x}^t = (x_1^t, ..., x_X^t)$
 - given values for hidden layer from previous time step $\vec{h}^{t-1}=(h_1^{t-1},...,h_H^{t-1})$
 - input value is combination of matrix multiplication with weights w^x and w^h and activation function g

input^t =
$$g\left(\sum_{i=1}^{X} w_i^x x_i^t + \sum_{i=1}^{H} w_i^h h_i^{t-1}\right)$$

Values for Gates

- Gates are very important
- How do we compute their value?
 - \rightarrow with a neural network layer!
- For each gate $a \in (\text{input}, \text{forget}, \text{output})$
 - weight matrix W^{xa} to consider node values in previous layer \vec{x}^t
 - weight matrix W^{ha} to consider hidden layer \vec{h}^{t-1} at previous time step
 - weight matrix W^{ma} to consider memory at previous time step memory t^{t-1}
 - **–** activation function *h*

$$\mathsf{gate}_{a} = h\left(\sum_{i=1}^{X} w_{i}^{xa} x_{i}^{t} + \sum_{i=1}^{H} w_{i}^{ha} h_{i}^{t-1} + \sum_{i=1}^{H} w_{i}^{ma} \mathsf{memory}_{i}^{t-1}\right)$$

Training

- LSTM are trained the same way as recurrent neural networks
- Back-propagation through time
- This looks all very complex, but:
 - all the operations are still based on
 - * matrix multiplications
 - * differentiable activation functions
 - \rightarrow we can compute gradients for objective function with respect to all parameters
 - \rightarrow we can compute update functions

What is the Point?

- (a) wie wirksam die daraus resultierende strategie sein wird , hängt daher von der genauigkeit dieser annahmen ab Gloss: how effective the from-that resulting strategy be will, depends therefore on the accuracy of-these measures Translation: how effective the resulting strategy will be, therefore, depends on the accuracy of these measures
- (b) ... die lage versetzen werden , eine schlüsselrolle bei der eindämmung der regionalen ambitionen chinas zu spielen Gloss: ... the position place will, a key-role in the curbing of-the regional ambitions China's to play Translation: ... which will put him in a position to play a key role in curbing the regional ambitions of China
- (c) ... che fu insignito nel 1692 dall' Imperatore Leopoldo I del titolo di Nobile ... Gloss: ... who was awarded in 1962 by-the Emperor Leopold I of-the title of Noble Translation: ... who was awarded the title of Noble by Emperor Leopold I in 1962

(from Tran, Bisazza, Monz, 2016)

- Each node has memory $memory_i$ independent from current output h_i
- Memory may be carried through unchanged (gateⁱ_{input} = 0, gateⁱ_{memory} = 1)
- ⇒ can remember important features over long time span (capture long distance dependencies)
 - Simpler version of this idea by Cho et al. (2014): Gated Recurrent Unit (GRU)

Language Model Comparison: RNN vs LSTM8

(from Sundermeyer, Ney, Schlüter, IEEE TASLP 2015)