Отделение лингвистики, 2014-15 уч. год

Линейная алгебра и математический анализ

Асимптотическое поведение функций и О-символика (конспект)

Ю. Г. Кудряшов, И. В. Щуров, А. М. Изосимов

1 Скорость роста функций и о-малые на бесконечности

Пусть имеются два алгоритма решения некоторой задачи — например, обработки текста. Скорость работы алгоритма зависит от входных данных — будем считать, что в нашем случае она определяется длиной текста n. Допустим, один алгоритм совершает 100'000n операций, а другой — $100n^2$ операций. Какой алгоритм лучше?

Если мы возьмем маленькие n, конечно, 100'000n будет больше $100n^2$, и первый алгоритм будет работать дольше. Но если нам предстоит обрабатывать длинные тексты, где n может быть очень велико (больше 1000), второй алгоритм станет работать медленнее: $100n^2 > 100'000n$ при n > 1000.

Допустим, мы улучшим второй алгоритм, таким образом, чтобы он работал в 100 раз быстрее: тратил всего n^2 операций. (Или возьмём более мощный компьютер, который работает в 100 раз быстрее, и будем запускать наш алгоритм на нём.) Изменит ли это принципиально ситуацию? Нет, потому что если n>10000, первый алгоритм вновь будет работать быстрее.

Нетрудно видеть, что аналогичный ответ мы получим, какими бы ни были коэффициенты при n и n^2 . Дело в том, что при любых фиксированных C_1 , $C_2 > 0$ для больших n функция $C_1 n^2$ растёт много быстрее, чем $C_2 n$. Как можно сформулировать это в более строгих терминах?

Пусть время работы первого алгоритма равно $f(n) = C_1 n$, а время работы второго равно $g(n) = C_2 n^2$. Можно рассмотреть пределы f(n) и g(n) при $n \to \infty$. Очевидно, что оба предела равны бесконечности (поскольку функции монотонно растут и выбирая достаточно большое n их можно сделать сколь угодно большими):

$$\lim_{n \to \infty} f(n) = +\infty$$
$$\lim_{n \to \infty} g(n) = +\infty$$

Однако скорость роста у функций разная. Если взять достаточно большое n, можно добиться того, чтобы g(n) было больше, чем f(n) во сколь угодно много раз. Иными словами, отношение g(n)/f(n) можно сделать сколь угодно большим, и, более того, оно стремится к бесконечности:

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{C_1 n^2}{C_2 n} = \lim_{n \to \infty} \frac{C_1}{C_2} n = +\infty.$$

Когда математик говорит, что функция g(n) растёт много быстрее, чем функция f(n), он подразумевает именно это.

Можно рассмотреть обратное отношение f(n)/g(n). По свойству пределов, если

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \infty,$$

то

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \tag{1}$$

Рис. 1: Функция $y=n^2$ растёт быстрее при $n\to\infty$ чем любая функция вида y=Cn, каким бы ни было выбрано C

Иными словами, если g(n) растёт много быстрее, чем f(n), то f(n) растёт много медленнее, чем g(n).

Определение 1. Если для функция f(n) и g(n) выполняется равенство (1), говорят, что функция f(n) есть o-малое от g(n) при $n \to \infty$. Записывают:

$$f(n) = o(q(n))$$
 при $n \to \infty$.

Например, $100'000n = o(n^2)$ при $n \to \infty$, поскольку

$$\lim_{n \to \infty} \frac{100'000n}{n^2} = \lim_{n \to \infty} \frac{100'000}{n} = 0.$$

2 О-большое на бесконечности

Допустим, у нас снова есть два алгоритма обработки текста, и время работы первого описывается функцией g(n)=5n, а время работы второго — функцией f(n)=10n+100. Очевидно, первый алгоритм работает быстрее. Насколько существенно? Если я пользуюсь вторым алгоритмом, а конкурирующая лаборатория — первым, то я могу просто взять более быстрый компьютер — скажем, работающий в 5 раз быстрее — и получить время работы $f_1(n)=\frac{1}{5}(10n+100)=2n+20$. Если нам приходится обрабатывать длинные тексты, и n велико (в данном случае достаточно, чтобы n было больше 6), то $2n+20 \le 5n$, и теперь я буду справляться с задачами быстрее, чем конкуренты. Можно записать это чуть иначе:

$$10n + 100 \le 5 \times 5n \tag{2}$$

или

$$f(n) \le 5g(n) \tag{3}$$

Это означает, что наши алгоритмы работают примерно одинаково быстро — если n достаточно велико, разницу в количестве операций алгоритма можно компенсировать использованием более быстрого компьютера. (Заметье, в предыдущем разделе никакая разница в скоростях компьютеров не могла компенсировать тот факт, что алгоритм, решающий задачу за $C_1 n^2$ операций, будет для больших n работать дольше, чем тот, который выполняет задачу за $C_2 n$ операций.)

 Φ ормально мы могли бы записать, что предел отношения f и g сейчас равен не бесконечности, а какой-то конечной величине:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{10n + 100}{5n} = \lim_{n \to \infty} \frac{10 + 100/n}{5} = 2$$

Тот факт, что предел отношения равен конечной величине, означает, что функции растут «примерно одинаково быстро»: одна быстрее другой в конечное число раз. Этот предел, однако, может не существовать, и чаще пользуются следующим понятием.

Определение 2. Говорят, что функция f(n) есть O-большое от функции g(n) при $n \to \infty$, если найдётся такое C > 0 и найдётся такой номер N > 0, что для всех n > N,

$$|f(n)| \le C|g(n)|$$

. Записывают: f(n) = O(g(n)).

Так, например, выше мы показали (см. (2) и (3)), что 10n + 100 = O(5n) при $n \to \infty$.

Замечание 1. Со знаком «равенства» здесь надо быть аккуратным — это не «настоящее» равенство, это просто условное обозначение, используемое, чтобы сказать, что функция в левой части обладает некоторым свойством. Например, из того факта, что $f_1(n) = O(g(n))$ и $f_2(n) = O(g(n))$ совсем не следует, что $f_1(n) = f_2(n)$.

Теорема 1. Если предел отношения f(n)/g(n) при $n \to \infty$ конечен, то f(n) = O(g(n)) при $n \to \infty$.

Зачастую вычислить предел отношения проще, чем доказывать соответствующий факт по определению 2, однако этот предел может и не существовать. Например, $x \sin x = O(x)$ при $x \to \infty$, хотя предела отношения не существует.

3 о-малое и О-большое в конечных точках

Иногда нас интересует поведение функций не на бесконечности, а в окрестности какой-то точки. Например, рассмотрим функции g(x) = x, $f(x) = x^2$. При $x \to 0$, они обе стремятся к нулю. Однако, очевидно, что f(x) стремится к нулю «много быстрее», чем g(x).

Действительно,

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{x^2}{x} = \lim_{x \to 0} x = 0.$$

Определение 3. Если $\lim_{x\to a} \frac{f(x)}{g(x)} = 0$, то говорят, что f(x) = o(g(x)) при $x\to a$.

Рис. 2: Функция $y=x^2$ стремится к нулю много быстрее, чем y=x при $x\to 0$

Понятие O-большого в конечной точке определяется по аналогии с определением 2

Определение 4. Говорят, что функция f(x) есть O-большое от функции g(x) при $x \to a$, если найдётся такое C > 0, что в некоторой окрестности точки a,

$$|f(x)| \le C|g(x)|$$

при $x \neq a$. Записывают: f(n) = O(g(n)).

Теорема 2. Если предел отношения |f(x)|/|g(x)| при $x \to a$ конечен, то f(x) = O(g(x)) при $x \to a$.

Например, $x + x^2 = O(x)$ при $x \to 0$, поскольку

$$\lim_{x \to 0} \frac{x + x^2}{x} = \lim_{x \to 0} 1 + x = 1.$$