

数字微差压压力传感器

(型号: WPAS13)

使用说明书

版本号: 1.0 实施日期: 2024-03-18

郑州炜盛电子科技有限公司 Zhengzhou Winsen Electronic Technology Co., Ltd

以诚为本、信守承诺 创造完美、服务社会

声明

本说明书版权属郑州炜盛电子科技有限公司(以下称本公司)所有,未经书面许可,本 手册任何部分不得复制、翻译、存储于数据库或检索系统内,也不可以电子、翻拍、录音等 任何手段进行传播。

感谢您使用炜盛科技的系列产品。为使您更好的使用本公司产品,减少因使用不当造成的产品故障,使用前请务必仔细阅读本说明书并按照所建议的使用方法进行使用。如果用户不依照本说明书使用或擅自去除、拆解、更换传感器内部组件本,公司不承担榆次造成的任何损失。

您所购买产品的颜色、款式及尺寸以实物为准。

本公司兼承科技进步的理念,不断致力于产品改进和技术创新。因此,本公司保留任何产品改进而不预先通知的权力。使用本说明书时,请确认其属于有效版本。同时,本公司鼓励使用者根据其使用情况,探讨本产品更优化的使用方法。

请妥善保管本说明书,以便在您日后需要时能及时查阅并获得帮助。

郑州炜盛电子科技有限公司

WPAS13 数字微差压压力传感器

1.产品描述:

WPAS13 基于MEMS微差压硅压力传感器芯体和一个高分辨率 24 位 $\Delta \Sigma$ ADC,可对-500Pa $^{\sim}$ 500Pa 压力范围进行高精度测量。

WPAS13 具有低电压、超低功耗设计,适合于电池供电的微压监测系统、手持式流量计等。

该传感器采用SOP16封装,双气管结构。具有极低的零点温度系数(TCO)和灵敏度温度系数(TCS)。I2C数字接口输出可以方便和MCU配合使用。

2.特点:

- 量程范围: -500Pa~500Pa
- 数字接口: I2C
- 电流: 5.4 µ A @1Hz 采样率
- 补偿温度范围: -5~65℃
- 工作温度范围: -20~85° C
- 差压测量
- SOP16 封装
- RoHs 兼容、无卤

3. 应用:

- 医疗:睡眠呼吸暂停监控、氧合器、负压伤口治疗、气流监测仪、气体流量仪;
- 工业:暖通空调、气动仪表、压力开关、生物安全柜、气流测量、液位测量;

4. 技术参数:

除非特别声明,VDD=3.3V,T=25℃;

参数	符号	条件	最小	典型	最大	单位
压力 具和	TA	工作温度	-20	25	85	$^{\circ}$
压力量程	IA	补偿温度	-5		65	C
工作压力范围	Р		-500		500	Pa
供电电压	VDD		1.8		3.6	V
精度	ACC	-500Pa~500Pa @-5~65℃		TDB		%FS
分辨率				20		Bit
工作电流	IDD, LP	1Hz 数据输出速率,最 低压力、温度过采样率		5. 4		uA
峰值温度	Ipeak	压力测量时		760		uA
温度测量时的电流	IDDT			541		uA
待机电流	IDDSL	25℃		0. 1	0.3	uA
温度绝对精度	ΛТ	@25°C		± 0.5		$^{\circ}\! \mathbb{C}$
<u> </u>	AT	0~65℃		±1.0		$^{\circ}\!$
长期稳定性	ΔPstab	12 个月		± TBD		hPa
回流焊漂移			-0.5		+1	Pa
采样率	Fsample		157	182	TBD	Hz

Table 1 参数规格

5. 绝对最大额定值

参数	符号	条件	最小	最大	单位
电源电压	CDD		-0.3	3.6	V
所有引脚电压	VDDIO	所有引脚	-0.3	VDD+0.3	V
过压	Р		-5000	5000	Pa
储存温度	Tstor		-40	+150	$^{\circ}$ C
ESD 电压等级	ESD	人体释放模式		±2	kV

Table 2 绝对最大额定值

6. 工作过程:

6.1 产品简介

WPAS13 通过 I2C 接口可以直接和 MCU 连接通讯。温度和压力数据都必须用存储在非易失性存储器 (NVM)的系数进行补偿。这些系数是在工厂校准的时候写入的。

6.2 功能描述

WPAS13 包含一个 MEMS 微差压硅压力传感器芯体和一个数字补偿信号调理芯片。其中调理芯片包含模拟前端放大、 24 位 $\Delta\Sigma$ ADC、控制单元、非易失存储器及 I2C 接口。 WPAS13 通过模拟前端放大和 AD 转换获得未补偿的压力和温度原始数据。各项校准系数存放在 NVM 内,用于零点、灵敏度、零点和灵敏度温度系数及线性等参数性能补偿。

Figure 1 WPAS13 框图

6.3 温度、压力测量

MCU 通过 I2C 接口启动温度和压力测量,采样完成后,芯片会自动进行补偿计算。在等待过程中,MCU 通过读取状态位,判断测量是否完成。测量完成后, MCU 通过 I2C 接口读取温度和压力的原始数据。

Figure 2 WPAS13 测量流程

以诚为本、信守承诺

6.4 测量时序

测量数据的输出速率(ODR)是由外接 MCU 控制的。测量由传感器收到的 I2C 命令决定。测量完毕后,传感器进入睡眠模式。测量数据可以通过 I2C 接口获取。

在动态测量中, ODR 可以达约每秒 100 次。对于 ODR 较高的应用,考虑到传感器自发热和热平 衡特性,建议设置恒定的 tdelay。这将有利于减少传感器和环境之间的无规律的热交换。建议的测量 时序如 Figure 3。

Figure 3 测量时序

注: 考虑到低功耗,可以每秒测量一次温度多次压力。

对于低 ODR 或基于主机同步的应用, tdelay 只要大于 0.5ms 即可。通过协调能量消耗、工作速度和精度来获得优化的结果。

6.5 电流消耗

电流消耗取决于 ODR 和过采样率设定。下列数据基于 1Hz ODR。给定 ODR 的实际电流消耗的计算,用给定的 ODR 乘于对应的 Table 3 值。

_ \ \\	压力	温度	I _{DD} [μΑ	i] @ 1Hz
过采样率设定	过采样率	过采样率	典型	最大
Ultra low power	×1	×4	5.4	8.2
Low power	×2	×4	6.4	9.7
Standard resolution	×4	×4	9.0	13.7
High resolution	×8	×4	14.1	21.4
Ultra high resolution	×16	×4	24.6	37.4
O2 Ultra high resolution*	×32	×4	45.1	68.6
O4 Ultra high resolution*	×64	×4	86.4	131.3

^{*} 在高ODR 动态测量中不建议使用 "O2/4 Ultra high resolution"模式。在这两种工作模式下,会表现出来明显的传感器自发热现象。建议采用 IIR 算法来满足这种高精度应用要求。

Table 3 电流消耗

以诚为本、信守承诺 创造完美、服务社会

6.6 测量时间

温度和压力的测量时间是由 osr_t 和 osr_p 过采样率决定的。下表显示了基于过采样率设置的典型的/最大的测量时间。最小频率是由最大测量时间决定的。

过采样率设定	测量时	间[ms]	测量频率[Hz]		
(压力或温度)	典型	最大	典型	最小	
×1	1.92	2.2	520.8	454.5	
×2	3.5	4.1	285.7	243.9	
×4	6.6	7.7	151.5	129.8	
×8	12.7	14.7	78.7	68.0	
×16	25.0	29.0	40.0	34.4	
×32	49.6	57.6	20.1	17.3	
×64	98.7	114.5	10.1	8.7	

Table 4 测量时间

6.7 噪声

选定的过采样率和 IIR 滤波系数决定温度和压力噪声。

典型压力 RMS 噪声 [Pa]					
过采样率	Off	2	4	8	16
Ultra low power	6.0	2.9	1.7	1.0	0.7
Low power	4.2	2.5	1.3	0.7	0.4
Standard resolution	3.5	1.5	1.0	0.5	0.3
High resolution	2.8	1.3	0.9	0.4	0.2
Ultra high resolution	2.2	1.2	0.7	0.3	0.2
O2 Ultra high	2.0	1.1	0.5	0.3	0.2
resolution	2.0	1.1	0.5	0.3	0.2
O4 Ultra high resolution	TBD	TBD	TBD	0.3	0.2

Table 5 压力噪声

典型温度 RMS 噪声 [℃]					
Temperature oversampling IIR filter off					
oversampling ×4	0.007				
oversampling ×8	0.006				
oversampling ×16	0.005				
oversampling ×32	0.004				

Table 6 温度噪声

以诚为本、信守承诺

6.8 输出

WPAS13 数据输出包含原始温度数据和压力数据。 原始压力数据和温度数据需要转换成可读的压力值和温度值。

$$Pressure = \frac{Pmax - Pmin}{rmax - rmin} * (\frac{rawData}{2^{24}} * 100 - rmin) + Pmin$$

原始压力数据按照如下公式转换成可读的压力值:

式中:

Pmax, Pmin:可读压力值的最大值,最小值

rmax, rmin:可读压力值的最大值,最小值所对应的原始数据百分比值

RawData : 24bit 原始数据

Pressure:输出的可读压力值

本传感器的 Pmax, Pmin, rmax, rmin 设定值如 Table7:

设定数据	值
Pmax	1200 (kPa)
Pmin	100 (kPa)
rmax	100 (%)
rmin	0 (%)

Table 7 设定值

原始温度数据按照如下公式转换成可读的温度值:

$$Temperature [\ ^{\circ}C] = \frac{TempData}{2^{16}} * 190 - 40$$

数据输出速率 ODR、过采样率 OSR 及 IIR 滤波系数都能在传感器 C 代码驱动程序里面选择使用。推荐使用跃芯微提供的驱动程序。请联系跃芯微以获得驱动程序详细信息。

7. I2C 接口

I2C 从设备接口与飞利浦 I2C 规格兼容, 支持标准和快速模式。 SDA 和 SCL 这两个 PAD 都含有对 VDD 和对 GND 的 ESD 保护二极管电路。由于 SCL 不进行 I2C 协议中的时钟延展操作(clock stretching),所以 SCL 是高阻输入结构,并没有下拉能力。

传感器的 7 位地址是 1111000 (0x78)。

7.1 I2C 读状态

不管是传感器处在哪种读数据模式(RW = '1' ,地址 11110001),第一个输出的字节是状态字节。为读取传感器的状态, I2C 主设备要在状态字节后发送 NOACK 和 stop 条件,如 Figure 5。

Figure 4 I2C 读状态

状态字节提供传感器的工作状态信息。详细描述见 Table 8

状态位	含义	描述
Bit7	保留	恒为 0
Bit6	电源指示	"1" ADC 上电; "0" ADC 未上电
Bit5	忙碌指示	"1" 忙:传感器正在测量温度和压力,结果并为准备好。将不执行新
		的 I ² C 命令。
		"0" 空闲: 最近一个 I ² C 命令已经被执行,数据已经准备好。
Bit4	保留	恒为 0
Bit3	工作模式	"0" 待机
		"1"测试模式
Bit2	保留	恒为1
Bit1	保留	恒为 0
Bit0	保留	恒为 0

Table 8 状态字节

7.2 I2C 写测量命令

压力或温度的测量是在写模式下发送命令来触发的。主设备(MCU) 在写模式下发送从器件地址 (RW = '0', 地址 11110000), 然后发送命令字节最后由停止条件结束处理过程, 详见 Figure 6。

Figure 5 I2C 写命令

详细的 I2C 命令见 Table 9。

	测量命令		测量配置
	0xAC		出场默认配置
Bit7~4	Bit3(OSR_T)	Bit2~0(OSR_P)	用户指定配置
0xB	m	n	OSR_T:
1			m=0:4x
1			m=1:8x
1			OSR_P:
1			n=0:128x
1			n=1:64x
1			n=2:32x
1			n=3:16x
1			n=4:8x
1			n=5:4x
1			n=6:2x
1			n=7:1x
			例如: m=1, n=2, 则OSR_T=8x, OSR_P=32x, 测量命令=0xBA

Table 9 I2C 命令

7.3 I2C 读测量数据

压力或温度测量被 4.3 描述的 I2C 命令触发后,WPAS13 开始测量并把测量结果放在输出缓冲区。测量的时间由过采样率设定来决定,详见 Table 4。 I2C 命令触发且等待大于对应的测量时间后, I2C 主设备就可以读取压力和温度的原始数据。主设备也可以通过 I2C 定期检查从设备是在忙还是在闲的状态,若是从设备处于闲的状态,说明测量结果已经准备好,可以读取。

测量数据输出见 Figure6:

Figure 6 I2C 读测量数据

以诚为本、信守承诺 创造完美、服务社会

输出原始数据说明,见 Table10。

数据字节	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5
定义	状态字节	PreData[23:16]	PreData[15:8]	PreData[7:0]	TempData[15:8]	TempData[7:0]
范例	0x04	0x59	0x18	0xA0	0x57	0x94
	数据有效	压力原始数据: (压力原始数据: 0x5918A0			¢5794

Table10 原始数据说明

7.4 I2C 从设备时序

Figure 7 I2C 时序图

Art C	₹ > 31.L	I ² C 标准模式		I ² C 快	** /*	
符号	参数	最小	最大	最小	最大	单位
f(SCL)	SCL clock frequency	0	100	0	400	kHz
tw(SCLL)	SCL clock low time	4.7		1.3		μs
tw(SCLH)	SCL clock high time	4.0		0.6		μs
t _{su} (SDA)	SDA setup time	250		100		ns
th(SDA)	SDA data hold time	0.09	3.45	0.02	0.9	μs

Table 11 I2C 时序

以诚为本、信守承诺 创造完美、服务社会

8. 引脚接线图

Figure 8 引脚定义俯视图

8.1 引脚定义

引脚	名称	I/0 类型	描述	连接
1	NC		不连接	不连接
2	NC		不连接	不连接
3	NC		不连接	不连接
4	NC		不连接	不连接
5	NC		不连接	不连接
6	GND	供电	接地	地
7	VDD	供电	电源	电源
8	NC		不连接	不连接
9	NC		不连接	不连接
10	SDA	输入/输出	串行数据输入输出	I2C 数据线
11	SCL	输入	时钟输入	I2C 时钟线
12	NC		不连接	不连接
13	NC		不连接	不连接
14	NC		不连接	不连接
15	NC		不连接	不连接
16	NC	`	不连接	不连接

Table 12 引脚描述

8.2 接线图

Figure 9 接线图

备注:

- 1、C1 建议值 100nF
- 2、上拉电阻 R1, R2 由接口时序和总线负载决定, 典型值为 $4.7~\mathrm{k}\Omega$ 。

9. 轮廓

传感器使用 16 脚 SOP 封装,双气管接头。详细尺寸如 figure 10。

Figure 10 俯视图、低视图、侧视图尺寸

10. 使用注意事项

A. 安装

请使用印刷板焊盘,以使产品能够充分地固定

B. 焊接

由于本传感器为热容量较小的小型构造,因此请尽量减少来自外部的热量的影响。否则可能会因热变形而造成破损,影响特性,并请使用非腐蚀性的松香型助焊剂,并注意不要让助焊剂进入内部。

1. 烙铁焊接

- ① 请使用温度在 260 ~300 ℃的电烙铁在 5 秒内完成作业;
- ② 在引脚上进行焊接的情况后,应放置一段时间后再使用;
- ③ 勤清洗电烙铁头,保持干净;
- 2. SMD 封装焊接

推荐使用回流焊焊接方式,设置条件如下表 Table 13:

过程点	数值
升温速率 (Ts _{max} to Tp)	3℃/秒 (最大值)
预热	
- 低温 (Ts _{min})	150°C
- 高温 (Ts _{max})	200°C
- 时间ts (ts _{min} to ts _{max})	60-180秒
维持过程	
- 温度 (T _L)	217℃
- 时间 (t _L)	60-150秒
- 峰值温度 (Tp)	260℃
- 峰值温度±5℃内维持时间(tp)	20-40秒
降温速率	6℃/秒 (最大值)
25℃到峰值温度时间 (t)	8分钟 (最大值)

Table 13 回流焊设置条件

Figure 11 回流焊温度变化趋势

- 3. 在引脚上施加过度的力,会引发变形,损害焊接性,因此请避免使传感器掉落, 或进行繁杂的使用。
- 4. 尽量保持 PCB 板的翘度相对于整个传感器在 0.05mm 以下。

郑州炜盛电子科技有限公司

地址: 郑州市高新技术开发区金梭路 299 号 电话:0371-60932955/60932966/60932977

传真: 0371-60932988 微信号: winsensor

 $\hbox{E-mail:} \verb|sales@winsensor.com|\\$

Http://www.winsensor.com

