THE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH2241 Introduction to Mathematical Analysis

Tutorial 5

Compulsory problems:

1. Prove or disprove: $\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$ is a divergent series.

(*Hint*: Note that $2^n > n$ for any $n \in \mathbb{N}$.)

2. (Limit Comparison Test)

Let $\{a_n\}$ and $\{b_n\}$ be two sequences of positive terms and $\lim_{n\to\infty}\frac{a_n}{b_n}=L$ for some $L\geq 0$.

- (a) Prove that if L>0, then $\sum_{n=1}^\infty a_n$ converges $\iff \sum_{n=1}^\infty b_n$ converges.
- (b) Prove that if L=0 and if $\sum_{n=1}^{\infty}b_n$ converges, then $\sum_{n=1}^{\infty}a_n$ converges.
- (c) Give an example of sequences $\{a_n\}$ and $\{b_n\}$ of positive terms such that

$$\lim_{n\to\infty}\frac{a_n}{b_n}=0,\ \sum_{n=1}^\infty a_n \ \text{converges but}\ \sum_{n=1}^\infty b_n \ \text{diverges}.$$

- (d) Determine whether or not the series $\sum_{n=1}^{\infty} \frac{n^2+n-1}{27n^5-n^4+9n^3-2n+6}$ converges.
- 3. Prove that the series

$$\frac{1^2}{0!} + \frac{2^2}{1!} + \frac{3^2}{2!} + \frac{4^2}{3!} + \cdots$$

converges and find its sum.

(*Hint*: You may use the fact that
$$\sum_{n=0}^{\infty} \frac{1}{n!} = e$$
.)

4. Prove each of the following statements:

(a) If
$$\sum_{n=1}^{\infty} a_n$$
 converges, then $\sum_{n=1}^{\infty} \cos a_n$ diverges.

(b) If $\sum_{n=1}^{\infty} a_n$ converges absolutely, then $\sum_{n=1}^{\infty} \sin a_n$ converges absolutely.

1

5. Determine whether each of the following series converges absolutely, converges, or diverges.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+\sqrt{n}}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}n}{n+\sqrt{n}}$$

For self-studying:

6. (a) (Cauchy Condensation Test)

Let $\{a_n\}$ be a decreasing sequence with $a_n \geq 0$ for any $n \in \mathbb{N}$. Prove that

$$\sum_{n=1}^{\infty} a_n \text{ converges } \iff \sum_{n=0}^{\infty} 2^n a_{2^n} \text{ converges.}$$

- (b) Let p>0. Use the Cauchy Condensation Test to prove that the p-series $\sum_{n=1}^{\infty}\frac{1}{n^p}$ converges if and only if p>1.
- 7. Use the ϵ - δ definition of limit to prove that $\lim_{x \to c} \frac{1}{x} = \frac{1}{c}$ for any $c \in \mathbb{R} \setminus \{0\}$.