Indução e Recursão: Indução Matemática Fraca e Forte, Indução Estrutural, Algoritmos Recursivos

Área de Teoria DCC/UFMG

PAA: Revisão de Conceitos de Lógica Computacional

2022/02

Introdução

Indução e recursão: Introdução

- Indução e recursão são técnicas essenciais da Matemática Discreta e têm inúmeras aplicações em Ciência da Computação.
- Muitas afirmações matemáticas estabelecem que uma certa propriedade é satisfeita por todo inteiro positivo *n*:

 - 2 $n^3 n$ é divisível por 3.

se um conjunto tem n elementos, seu conjunto potência tem 2ⁿ elementos.

Aqui vamos ver uma técnica poderosa para demonstrar este tipo de resultado: a indução matemática.

Indução Matemática (Fraca)

Princípio da indução matemática: Intuição

- Imagine que você esteja diante de uma escada de infinitos degraus, e você se pergunta: "Será que eu consigo alcançar qualquer degrau dessa escada?"
- Você sabe que
 - 1. você consegue alcançar o primeiro degrau, e
 - se você alcançar um degrau qualquer, você consegue alcançar o próximo degrau.
- Usando as regras acima, você pode deduzir que:
 - você consegue alcançar o primeiro degrau: pela regra 1;
 - 2 você consegue alcançar o segundo degrau: pela regra 1, depois regra 2;
 - você consegue alcançar o terceiro degrau: regra 1, depois regra 2 por duas vezes;
 - 4
 - $oldsymbol{\circ}$ você consegue alcançar o n-ésimo degrau: regra 1, depois regra 2 por n-1 vezes.
- Logo, você pode concluir que pode alcançar todos os degraus da escada!

Princípio da indução matemática (fraca)

 Para mostrar que uma propriedade P(n) vale para todos os inteiros positivos n, uma demonstração que utilize o princípio da indução matemática (fraca) possui duas partes:

Demonstração por indução fraca:

Passo base: Demonstra-se P(1).

Passo indutivo: Demonstra-se que, para qualquer inteiro positivo k, se P(k) é verdadeiro, então P(k+1) é verdadeiro.

- A premissa do passo indutivo (P(k) é verdadeiro) é chamada de hipótese de indução ou I.H.
- O princípio da indução matemática pode ser expresso como uma regra de inferência sobre os números inteiros:

$$\left(\underbrace{P(1)}_{\mathsf{Passo base}} \land \underbrace{\forall k \in \mathbb{Z}^+ : (P(k) \to P(k+1))}_{\mathsf{Passo indutivo}}\right) \to \underbrace{\forall n \in \mathbb{Z}^+ : P(n)}_{\mathsf{Conclusão}}$$

• Exemplo 1 Se n é um inteiro positivo, então $1 + 2 + \cdots + n = n(n+1)/2$.

Demonstração. Seja P(n) a proposição "a soma dos n primeiros inteiros positivos é n(n+1)/2".

Passo base: P(1) é verdadeiro porque

$$1 = \frac{1(1+1)}{2}.$$

Passo indutivo: Assuma que P(k) seja verdadeiro para um inteiro positivo arbitrário k. Ou seja, a nossa hipótese de indução é de que, para um inteiro positivo k arbitrário:

$$1+2+\cdots+k=\frac{k(k+1)}{2}.$$

• Exemplo 1 (Continuação)

Sob a hipótese de indução, deve-se mostrar que P(k+1) é válido, ou seja:

$$1+2+\cdots+k+(k+1)=\frac{(k+1)[(k+1)+1]}{2}=\frac{(k+1)(k+2)}{2}.$$

Podemos, então, derivar

$$1 + 2 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$
 (pela I.H.)
$$= \frac{k(k+1) + 2(k+1)}{2}$$

$$= \frac{(k+1)(k+2)}{2},$$

de onde concluímos o passo indutivo.

Como concluímos com sucesso tanto o passo base quanto o passo indutivo, mostramos por indução que $\forall n \in \mathbb{Z}^+ : P(n)$, ou seja, que $1+2+\cdots+n=n(n+1)/2$ para todo inteiro positivo n.

• Exemplo 2 Desenvolva uma conjectura de uma fórmula equivalente à soma dos *n* primeiros inteiros ímpares.

Então, demonstre sua conjectura usando indução matemática.

Solução.

Vamos começar testando alguns exemplos com valores de n:

$$n = 1$$
: 1
 $n = 2$: $1 + 3 = 4$
 $n = 3$: $1 + 3 + 5 = 9$
 $n = 4$: $1 + 3 + 5 + 7 = 16$
 $n = 5$: $1 + 3 + 5 + 7 + 9 = 25$
...: $1 + 3 + 5 + 7 + 9 + 11 + 13 + ... = ?$

Qual padrão podemos tentar inferir a partir dos exemplos acima?

• Exemplo 2 (Continuação)

Assim, chegamos a uma conjectura razoável, que tentaremos demonstrar:

"A soma dos n primeiros inteiros positivos ímpares é n²."

Demonstração. Seja P(n) a proposição "A soma dos n primeiros inteiros positivos ímpares é n^2 ".

Passo base: P(1) é verdadeiro porque o primeiro inteiro positivo ímpar é 1, o que é igual a 1^2 .

Passo indutivo: Assuma que P(k) seja verdadeiro para um inteiro positivo arbitrário k.

Note que o k-ésimo inteiro positivo ímpar é dado por 2k-1.

Logo, a hipótese de indução é:

$$1+3+5+\cdots+(2k-1)=k^2$$
.

| Exemplo 2 | (Continuação)

Queremos mostrar que $\forall k \in \mathbb{Z}^+ : (P(k) \to P(k+1))$, onde P(k+1) é:

$$1+3+\cdots+(2k-1)+(2(k+1)-1)=(k+1)^2.$$

Logo, podemos derivar

$$1+3+\cdots+(2k-1)+(2(k+1)-1)=k^2+(2(k+1)-1)$$
 (pela I.H.)
= k^2+2k+1
= $(k+1)^2$,

de onde concluímos o passo indutivo.

Como concluímos com sucesso o passo base e o passo indutivo, mostramos por indução que $\forall n \in \mathbb{Z}^+ : P(n)$, ou seja, que a soma dos n primeiros ímpares positivos é n^2 .

- No caso geral, podemos usar a indução para mostrar que uma propriedade vale para qualquer subconjunto $\{n \in \mathbb{Z} \mid n \geq n_0\}$ dos inteiros, em que $n_0 \in \mathbb{Z}$.
- Exemplo 3 Para todo inteiro $n \ge 4$, $2^n < n!$.

Demonstração. Seja P(n) a proposição " $2^n < n!$ ".

Passo base: P(4) é verdadeiro porque $2^4 = 16$ é menor que 4! = 24.

Passo indutivo: Assuma que P(k) seja verdadeiro para um inteiro positivo arbitrário k > 4, ou seja, a hipótese de indução é que, para um inteiro arbitrário k > 4,

$$2^k < k!$$
.

Sob esta hipótese, queremos mostrar P(k+1), ou seja,

$$2^{k+1} < (k+1)!$$

Exemplo 3 (Continuação)

Para isto, podemos derivar

$$2^{k+1} = 2(2^k)$$
 (pela I.H.) $< 2(k!)$ (já que $k \ge 4$) $= (k+1)!,$

de onde concluímos o passo indutivo.

Logo, por indução mostramos que $\forall n \in \mathbb{Z}, n \geq 4 : P(n)$, ou seja, que $2^n < n!$ para todo inteiro n > 4.

• Exemplo 4 Para todo inteiro não-negativo n, se um conjunto possui n elementos, então este conjunto possui 2^n subconjuntos.

Demonstração. Seja P(n) a proposição "todo conjunto de n elementos possui 2^n subconjuntos".

Passo base: P(0) é verdadeiro porque o único conjunto de 0 elementos é o conjunto vazio \emptyset , que possui somente $2^0=1$ subconjunto (ele mesmo).

Passo indutivo: Assuma que P(k) seja verdadeiro para um inteiro não-negativo arbitrário k, ou seja, a hipótese de indução é:

"Todo conjunto de k elementos possui 2^k subconjuntos."

Sob a I.H., queremos demonstrar P(k+1), ou seja, que

"Todo conjunto de k + 1 elementos possui 2^{k+1} subconjuntos."

• Exemplo 4 (Continuação)

Para mostrar isto, seja T um conjunto qualquer de k+1 elementos. Então é possível escrever T como $S \cup \{a\}$, onde

- a é um elemento qualquer de T;
- $S = T \{a\}$ e, portanto, |S| = k.

Note que os subconjuntos de $\mathcal T$ podem ser obtidos da seguinte forma.

Para cada subconjunto X de S, existem exatamente dois suconjuntos de T: o subconjunto X (em que a não aparece) e o subconjunto $X \cup \{a\}$ (em que a aparece). Logo o número de subconjuntos de T é o dobro do número de subconjuntos de S. Pela hipótese indutiva, S tem 2^k subconjuntos, logo T possui $2 \cdot 2^k = 2^{k+1}$ subconjuntos. Isto conclui o passo indutivo.

Logo, por indução mostramos que $\forall n \in \mathbb{N} : P(n)$, ou seja, que todo conjunto de n elementos possui 2^n subconjuntos.

Quando usar indução matemática

- O princípio da indução <u>pode</u> ser utilizado para <u>demonstrar propriedades</u> dos números inteiros (se elas forem verdadeiras).
- O princípio da indução não pode ser utilizado para descobrir propriedades dos números inteiros.

A propriedade geralmente é descoberta usando um outro método (talvez até tentativa e erro).

Uma vez que uma propriedade tenha sido conjecturada, a indução pode ser usada para demonstrá-la (caso a propriedade seja mesmo verdadeira).

Modelo de demonstração por indução matemática (fraca)

- 1. Expresse a afirmação a ser demonstrada na forma "para todo inteiro $n \ge b$, P(n)", onde b é um inteiro fixo.
- 2. Escreva "Passo base." e mostre que P(b) é verdadeiro, se certificando de que o valor correto de b foi utilizado. Isto conclui o passo base.
- 3. Escreva as palavras "Passo indutivo."
- 4. Escreva claramente a hipótese indutiva, na forma "Assuma que P(k) seja verdadeiro para um inteiro arbitrário fixo $k \ge b$."
- 5. Escreva o que precisa ser demonstrado sob a suposição de que a hipótese de indução é verdadeira. Ou seja, escreva o que P(k+1) significa.
- 6. Demonstre a afirmação P(k+1) utilizando o fato de que P(k) é verdadeiro. Certifique-se de que sua demonstração é válida para qualquer $k \geq b$.
- 7. Identifique claramente as conclusões do passo indutivo, e conclua-o escrevendo, por exemplo, "isto completa o passo de indução".
- 8. Completados o passo base e o passo indutivo, escreva a conclusão da demonstração: que, por indução matemática, P(n) é verdadeiro para todos os inteiros n > b.

Princípio da indução matemática (fraca): Erros comuns

- Como em qualquer outra técnica de demonstração, o princípio da indução matemática deve ser usado com cautela para evitar erros.
- Em particular, para que a demonstração por indução esteja correta é preciso demonstrar ambos o passo base e o passo indutivo.

Se um dos dois passos não for demonstrado, o resultado não está garantido!

Exemplo 5 Imagine que tenhamos a conjectura de que o predicado P(n) definido como " 10^n é múltiplo de 7" é verdadeiro para todo $n \in \mathbb{N}$.

Se quisermos demonstrar esta afirmação por indução:

- a) É possível demonstrar o passo indutivo?
- b) É possível demonstrar o passo base?
- c) A demonstração por indução pode ser concluída com sucesso?

Princípio da indução matemática (fraca): Erros comuns

Exemplo 5 (Continuação)

Solução.

a) Vamos começar pelo passo indutivo.

Passo indutivo: Assuma como hipótese indutiva que P(k) seja verdadeiro para um inteiro $k \ge 0$ arbitrário, ou seja, que 10^k é divisível por 7. Sob a I.H., queremos mostrar que P(k+1) também deve ser verdadeiro, ou seja, que 10^{k+1} é divisível por 7.

> Se 10^k é divisível por 7, então existe um inteiro r tal que que $10^k = 7r$.

Logo podemos derivar

$$10^{k+1} = 10 \cdot 10^k$$

= $10 \cdot 7r$ (pela I.H.)
= $7(10r)$

e, portanto, 10^{k+1} é divisível por 7, o que conclui o passo indutivo com sucesso.

Princípio da indução matemática (fraca): Erros comuns

- Exemplo 5 (Continuação)
 - b) Agora olharemos o passo base.

Passo base: Queremos mostrar P(0), ou seja, que $10^0 = 1$ é divisível por 7. Mas isso é claramente falso.

Logo o passo base não é válido.

c) Por fim concluímos que a demonstração por indução não foi completada com sucesso, pois, apesar de o passo indutivo ter sido demonstrado, o passo base não foi.

(Na verdade, o predicado P(n) é falso para todo $n \in \mathbb{N}!$)

Indução Matemática (Forte)

Princípio da indução matemática (forte): Introdução

 O princípio de indução que vimos até agora é conhecido como o princípio da indução matemática fraca:

$$\left(\underbrace{P(1)}_{\mathsf{Passo base}} \land \underbrace{\forall k \in \mathbb{Z}^+ : (P(k) \to P(k+1))}_{\mathsf{Passo indutivo}}\right) \to \underbrace{\forall n \in \mathbb{Z}^+ : P(n)}_{\mathsf{Conclusão}}$$

Ele recebe este nome de indução "fraca" porque a hipótese de indução (I.H.) do passo indutivo é apenas que P(k) seja verdadeiro para algum k.

- Às vezes é complicado usar a indução fraca para demonstrar um resultado, e podemos recorrer ao **princípio da indução matemática forte**.
 - Neste princípio, a hipótese de indução do passo indutivo é de que P(j) é válido para todo $1 \le j \le k$.

Princípio da indução matemática (forte)

 Para mostrar que uma propriedade P(n) vale para todos os inteiros positivos n, uma demonstração que utilize princípio da indução matemática (forte) possui duas partes:

Demonstração por indução forte:

Passo base: Demonstra-se P(1);

Passo indutivo: Demonstra-se que, para qualquer inteiro positivo k, se P(j) é verdadeiro para todo $1 \le j \le k$, então P(k+1) é verdadeiro.

- A **hipótese de indução** ou **I.H.** da indução forte é $P(1) \wedge P(2) \wedge ... \wedge P(k)$ são todos verdadeiros.
- O princípio da indução matemática forte pode ser expresso como uma regra de inferência sobre os números inteiros:

$$\left(\underbrace{\underbrace{P(1)}_{\mathsf{Passo base}}} \land \underbrace{\forall k \in \mathbb{Z}^+ : (P(1) \land P(2) \land \ldots \land P(k) \rightarrow P(k+1))}_{\mathsf{Passo indutivo}}\right) \rightarrow \underbrace{\forall n \in \mathbb{Z}^+ : P(n)}_{\mathsf{Conclusão}}$$

Princípio da indução matemática forte: Intuição

- Imagine que você esteja diante de uma escada de infinitos degraus, e você novamente se pergunta: "Será que eu consigo alcançar qualquer degrau dessa escada?"
- Mas, desta vez, você sabe que:
 - 1. você consegue alcançar o primeiro degrau e também o segundo degrau, e
 - 2. se você alcançar um degrau qualquer, você consegue alcançar dois degraus acima (ou seja, você pode subir degraus de dois em dois).
- Você consegue usar a indução fraca para verificar que conseguimos alcançar qualquer degrau dessa escada?

Princípio da indução matemática forte: Intuição

• Vamos tentar responder à pergunta usando indução forte.

Vamos chamar de P(n) a proposição "Eu consigo alcançar o n-ésimo degrau da escada".

Passo base: P(1) é verdadeiro porque eu consigo alcançar o primeiro degrau. O mesmo vale para P(2).

Passo indutivo: Assumamos como hipótese de indução que para um $k \geq 2$, as proposições $P(1), P(2), \ldots, P(k)$ são todas verdadeiras. Queremos mostrar que P(k+1) também é verdadeiro, ou seja, que podemos alcançar também o (k+1)-ésimo degrau.

Para ver que podemos alcançar o degrau k+1, note que pela I.H. alcançamos todos os degraus entre 1 e k (para $k \geq 2$), e, em particular, o degrau k-1. Como alcançamos k-1 e a regra 2 diz que uma vez que tenhamos alcançado um degrau podemos alcançar dois degraus acima, podemos alcançar o degrau k+1. E assim termina o passo indutivo.

Dessa forma, a demonstração por indução forte está completa.

• Exemplo 6 Toda postagem de 12 centavos ou mais pode ser feita usando apenas selos de 4 centavos e selos de 5 centavos.

Demonstração. Seja P(n) a proposição "qualquer postagem de n centavos pode ser feita usando apenas selos de 4 centavos e selos de 5 centavos".

Passo base: Vamos precisar de quatro casos base:

- P(12) é verdadeiro porque podemos usar três selos de 4 centavos;
- P(13) é verdadeiro porque podemos usar dois selos de 4 centavos e um selo de 5 centavos;
- P(14) é verdadeiro porque podemos usar um selos de 4 centavos e dois selos de 5 centavos; e
- P(15) é verdadeiro porque podemos usar 3 selos de 5 centavos;

Isto completa o passo base.

• Exemplo 6 (Continuação)

Passo indutivo: A hipótese de indução é que P(j) é verdadeiro para $12 \le j \le k$, onde k é um inteiro $k \ge 15$. Ou seja, a I.H. é que toda postagem de valores entre 12 centavos e k centavos pode ser feita usando selos de 4 e 5 centavos apenas.

Para completar o passo indutivo, vamos mostrar que, sob a I.H., P(k+1) é verdadeiro, ou seja, que uma postagem de k+1 centavos pode ser feita usando-se apenas selos de 4 e 5 centavos.

Pela I.H., P(k-3) é verdadeiro porque $k-3 \ge 12$ e para todo $12 \le j \le k$ temos P(j) verdadeiro. Logo, existe uma maneira de postar k-3 centavos usando apenas selos de 4 e 5 centavos. Para postar k+1 centavos, basta acrescentar à postagem possível para k-3 centavos um selo de 4 centavos.

Isto concluímos o passo indutivo e a demonstração.

Definições Recursivas e Indução Estrutural

Recursão: Introdução

 Algumas vezes não é fácil definir um objeto explicitamente, mas é relativamente mais fácil definí-lo em termos de si próprio.

Por exemplo:

- Definição dos números naturais em termos de números naturais:
 - 0 é um número natural:
 - o sucessor de um número natural é um número natural.
- A definição de um objeto em termos de si próprio é chamada definição recursiva.
- A recursão é muito utilizada para definir, por exemplo:
 - funções,

conjuntos, e

sequências,

algoritmos.

 Uma definição recursiva de uma função com domínio nos números inteiros não-negativos tem duas partes:

Definição recursiva de função:

Passo base: Especifica-se o valor da função em 0.

Passo recursivo: Especifica-se uma regra para encontrar o valor da função em um inteiro qualquer baseada no valor da função em inteiros menores.

• Lembre-se de que uma função f(n) dos inteiros não-negativos para os reais é equivalente a uma sequência

$$a_0, \quad a_1, \quad a_2, \quad \ldots,$$

onde a_i é um número real para cada inteiro não-negativo i.

Logo, definir uma sequência a_0, a_1, a_2, \ldots de números reais de forma recursiva é equivalente a definir uma função recursiva dos inteiros não-negativos para os reais.

• Exemplo 7 Encontre uma definição recursiva para a função fatorial f(n) = n!, e compute f(5) usando sua definição.

Solução. Uma definição recursiva para f(n) = n! é:

$$\begin{cases} f(0) = 1, \\ f(n) = n \cdot f(n-1), & n \ge 1 \end{cases}$$

Podemos então calcular f(5) como:

$$f(5) = 5 \cdot f(4)$$

$$= 5 \cdot (4 \cdot f(3))$$

$$= 5 \cdot (4 \cdot (3 \cdot f(2)))$$

$$= 5 \cdot (4 \cdot (3 \cdot (2 \cdot f(1))))$$

$$= 5 \cdot (4 \cdot (3 \cdot (2 \cdot (1 \cdot f(0)))))$$

$$= 5 \cdot (4 \cdot (3 \cdot (2 \cdot (1 \cdot 1)))))$$

$$= 120.$$

• Exemplo 8 Seja a um real não-nulo qualquer. Encontre uma definição recursiva para a função $f(n) = a^n$, tendo como domínio os naturais, e compute f(3) usando sua definição.

Solução. Uma definição recursiva para $f(n) = a^n$ é:

$$\begin{cases} f(0) = 1, \\ f(n) = a \cdot f(n-1), & n \ge 1 \end{cases}$$

Podemos então calcular f(3) como:

$$f(3) = a \cdot f(2)$$

$$= a \cdot (a \cdot f(1))$$

$$= a \cdot (a \cdot (a \cdot f(0)))$$

$$= a \cdot (a \cdot (a \cdot 1))$$

$$= a^{3}.$$

Exemplo 9 Outros exemplos de definições recursivas:

Somatório:
$$\begin{cases} \sum_{i=1}^0 a_i = 0 \\ \sum_{i=1}^n a_i = \left(\sum_{i=1}^{n-1} a_i\right) + a_n, \quad n \geq 1 \end{cases}$$

Produtório:
$$\begin{cases} \prod_{i=1}^{0} a_i = 1\\ \prod_{i=1}^{n} a_i = \left(\prod_{i=1}^{n-1} a_i\right) \cdot a_n, \quad n \geq 1 \end{cases}$$

União:
$$\begin{cases} \bigcup_{i=1}^0 A_i = \emptyset \\ \bigcup_{i=1}^n A_i = \left(\bigcup_{i=1}^{n-1} A_i\right) \cup A_n, \quad n \geq 1 \end{cases}$$

Interseção:
$$\begin{cases} \bigcap_{i=1}^{0} A_i = U, & \text{(onde } U \text{ \'e o conjunto universo)} \\ \bigcap_{i=1}^{n} A_i = \left(\bigcap_{i=1}^{n-1} A_i\right) \cap A_n, & n \geq 1 \end{cases}$$

• Exemplo 10 A sequência de Fibonacci é aquela em que os dois primeiros termos são 0 e 1, e cada termo seguinte é a soma dos dois anteriores:

$$0, 1, 1, 2, 3, 5, 8, 13, \dots$$

Esta seguência pode ser definida recursivamente como:

$$\begin{cases} f(0) = 0, \\ f(1) = 1, \\ f(n) = f(n-1) + f(n-2), & \text{para } n \ge 2. \end{cases}$$

Para calcular f(5) podemos fazer:

$$f(2) = f(1) + f(0) = 1 + 0 = 1,$$

$$f(3) = f(2) + f(1) = 1 + 1 = 2,$$

$$f(4) = f(3) + f(2) = 2 + 1 = 3,$$

$$f(5) = f(4) + f(3) = 3 + 2 = 5.$$

Definição recursiva de conjuntos e estruturas

• Uma definição recursiva de um conjunto tem duas partes:

Definição recursiva de conjunto:

Passo base: Especifica-se uma coleção inicial de objetos pertencente ao conjunto.

Passo recursivo: Especificam-se regras para formar novos elementos a partir dos elementos já pertencentes ao conjunto.

 A definição recursiva de conjuntos também depende da seguinte regra, frequentemente implícita:

Regra de exclusão: elementos que não podem ser gerados a partir da aplicação do passo base e instâncias do passo indutivo não pertencem ao conjunto.

Definição recursiva de conjuntos e estruturas

• Exemplo 11 Seja o conjunto S definido como:

$$\begin{cases} 3 \in \mathcal{S}, \\ \text{se } x \in \mathcal{S} \text{ e } y \in \mathcal{S}, \text{ então } x + y \in \mathcal{S}. \end{cases}$$

Então, é verdade que:

- $6 \in S$? Sim, porque $3 \in S$ e 3 + 3 = 6,
- ullet 9 \in S? Sim, porque 3 \in S e 6 \in S e 3 + 6 = 9,
- ullet 12 \in S? Sim, porque 3 \in S e 9 \in S e 3 + 9 = 12,
- $7 \in S$? Não, pela regra de exclusão.

O conjunto S é o conjunto dos múltiplos positivos de 3.

Definição recursiva de conjuntos e estruturas

- Muitos problemas lidam com cadeias, ou strings, formadas a partir de um alfabeto.
- O conjunto Σ^* de **cadeias** sobre um alfabeto Σ pode ser definido recursivamente como:

Passo base: $\lambda \in \Sigma^*$ (onde λ representa a cadeia vazia, sem símbolo algum).

Passo recursivo: Se $w \in \Sigma^*$ e $x \in \Sigma$ então $wx \in \Sigma^*$ (onde wx representa a cadeia formada pelo símbolo x concatenado ao final do prefixo w).

Definição recursiva de conjuntos e estruturas

• Exemplo 12 Seja o alfabeto $\Sigma = \{0, 1\}$. Qual o conjunto de cadeias Σ^* que pode ser formado a partir de Σ ?

Solução.

Sabemos que:

- $\lambda \in \Sigma^*$ pelo passo base;
- $0 \in \Sigma^*$ porque $\lambda \in \Sigma^*$, $0 \in \Sigma$, e podemos juntar $\lambda 0 = 0$;
- $1 \in \Sigma^*$ porque $\lambda \in \Sigma^*$, $1 \in \Sigma$, e podemos juntar $\lambda 1 = 1$;
- $00 \in \Sigma^*$ porque $0 \in \Sigma^*$, $0 \in \Sigma$, e podemos juntar 00;
- $01 \in \Sigma^*$ porque $0 \in \Sigma^*$, $1 \in \Sigma$, e podemos juntar 01;
- $011 \in \Sigma^*$ porque $01 \in \Sigma^*$, $1 \in \Sigma$, e podemos juntar 011;
- ...

De fato, Σ^* é o conjunto de todas as cadeias binárias.

Definição recursiva de árvores

- Para o próximo exemplo, vamos precisar de alguns conceitos úteis.
- Um grafo G = (V, E) é formado por:
 - um conjunto V de vértices ou nodos, e
 - um conjunto E de arestas, em que cada aresta é um par ordenado (v_i, v_j) indicando que os vértices $v_i, v_j \in V$ estão conectados.
- Um ciclo em um grafo é um caminho de arestas consecutivas que começa e termina no mesmo vértice.
- Um vértice interno está conectado a pelo menos 2 outros vértices do grafo.
- Uma folha é um vértice conectado a no máximo um outro vértice.

• Por exemplo, no grafo abaixo:

- Vértices são representados por círculos e arestas por linhas conectando vértices.
- Existe um ciclo começando no vértice c e passando por g, h, f, até voltar em c.
- Os vértices a, b, c, f, g, h são vértices internos.
- Os vértice d, e são folhas.

Definição recursiva de árvores

Exemplo 13 Uma árvore é um grafo sem ciclos. Uma árvore binária
 completa é uma árvore em que cada vértice, com exceção das folhas, possui exatamente dois vértices filhos.

Uma árvore binária completa pode ser definida recursivamente como:

Passo base: Um vértice isolado é uma árvore binária completa.

Passo recursivo: Se T_1 e T_2 são árvores binárias completas disjuntas com raízes r_1 e r_2 , respectivamente, então pode-se formar uma nova árvore binária completa ao se conectar um vértice r (não presente em T_1 ou T_2 , que chamaremos de raiz) através de uma aresta a r_1 e outra aresta a r_2 .

Definição recursiva de árvores

• Exemplo 13 (Continuação)

Exemplo de construção recursiva de árvores binárias completas:

Indução estrutural

- Se um conjunto tem uma definição recursiva, é possível demonstrar propriedades dos elementos deste conjunto através de indução.
- A indução estrutural é uma maneira de mostrar que se:
 - 1. os elementos iniciais do conjunto (passo base) satisfazem uma certa propriedade, e
 - 2. as regras de construção de novos elementos (passo indutivo) preservam esta propriedade,

então todos os elementos do conjunto satisfazem a propriedade.

Indução estrutural

• Uma demonstração por indução estrutural tem duas partes:

Demonstração por indução estrutural:

Passo base: Mostra-se que a propriedade é verdadeira para todos os elementos especificados no passo base da definição recursiva.

Passo indutivo: Mostra-se que se a propriedade é verdadeira para cada um dos elementos usados para se construírem novos elementos, então a propriedade também é verdadeira para estes novos elementos.

• A **hipótese de indução** é de que a propriedade é verdadeira para cada um dos elementos usados para construírem-se novos elementos.

• Exemplo 14 | Seja o conjunto *S* definido recursivamente como:

$$\begin{cases} 3 \in S, \\ x, y \in S \to x + y \in S. \end{cases}$$

Mostre que todos os elementos de S são divisíveis por 3.

Demonstração. Seja P(x) a proposição "x é divisível por 3".

Passo base: O único elemento da base é 3, e P(3) é verdadeiro porque 3 é divisível por 3 (uma vez que $3 = 3 \cdot 1$ e $1 \in \mathbb{Z}$).

• Exemplo 14 (Continuação)

Passo indutivo: Assuma que P(x) e P(y) são verdadeiros para dois elementos x e y em A. Ou seja, a I.H. é que os x e y de S são ambos divisíveis por S.

A regra recursiva diz que podemos usar x e y para incluir o elemento x+y em S, logo que mostrar que P(x+y) também é verdadeiro.

Para isto, note que se x e y são divisíveis por 3, então existem $k', k'' \in \mathbb{N}$ tais que x = 3k' e y = 3k''. Nesse caso, podemos derivar:

$$x + y = 3k' + 3k'' = 3(k' + k''),$$

de onde concluímos que x + y também é divisível por 3. Isto conclui o passo indutivo.

Como concluímos com sucesso o passo base e o passo indutivo, a demonstração por indução estrutural está concluída.

- Para o próximo exemplo, vamos introduzir mais alguns conceitos sobre árvores binárias completas.
- A altura h(T) de uma árvore binária completa T é definida recursivamente como:

$$h(T) = \begin{cases} 0, & \text{se o único vértice da árvore binária} \\ & \text{completa } T \text{ \'e a pr\'opria raiz;} \end{cases}$$

$$1 + \max(h(T_1), h(T_2)), & \text{se a \'arvore bin\'aria completa } T \\ & \text{\'e formada por uma raiz conectada} \\ & \text{a duas sub-\'arvores } T_1 \text{ e } T_2. \end{cases}$$

 O número de vértices n(T) de uma árvore binária completa T é definido recursivamente como:

$$n(T) = \begin{cases} 1, & \text{se o unico vertice da arvore binaria} \\ & \text{completa } T \text{ ea propria raiz} \end{cases}$$

$$1 + n(T_1) + n(T_2), & \text{se a arvore binaria completa } T \\ & \text{e formada por uma raiz conectada} \\ & \text{a duas sub-arvores } T_1 \text{ e } T_2. \end{cases}$$

ullet Exemplo 15 Mostre em uma árvore binária completa T, temos

$$n(T) \leq 2^{h(T)+1} - 1$$
.

Demonstração. Vamos demonstrar esta desigualdade usando indução estrutural.

Passo base: Para uma árvore binária completa T consistindo apenas num vértice raiz, note que, por definição: n(T) = 1 e h(T) = 0, logo a desigualdade é satisfeita pois

$$n(T)=1 \; ,$$
 e $2^{h(T)+1}-1=2^{0+1}-1=1 \; ,$

e, portanto,

$$n(T) \leq 2^{h(T)+1} - 1$$
.

• Exemplo 15 (Continuação)

Passo indutivo: A nossa hipótese de indução é que temos

$$n(T_1) \leq 2^{h(T_1)+1} - 1$$
 , e $n(T_2) \leq 2^{h(T_2)+1} - 1$

sempre que T_1 e T_2 forem árvores binárias completas.

Assuma que T é uma árvore binária completa tendo T_1 e T_2 como sub-árvores imediatas.

As fórmulas recursivas de n(T) e h(T) determinam que

$$n(T) = 1 + n(T_1) + n(T_2)$$
, e $h(T) = 1 + \max(h(T_1), h(T_2))$.

• Exemplo 15 (Continuação)

Assim, podemos computar:

$$n(T) = \qquad \qquad (\text{def. recursiva de } n(T)) \\ 1 + n(T_1) + n(T_2) \leq \qquad (\text{hipótese de indução}) \\ 1 + (2^{h(T_1)+1} - 1) + (2^{h(T_2)+1} - 1) \leq \qquad (\text{reorganizando}) \\ (2^{h(T_1)+1} + 2^{h(T_2)+1}) - 1 \leq \qquad (*) \\ 2 \cdot \max(2^{h(T_1)+1}, 2^{h(T_2)+1}) - 1 = \qquad (\max(2^x, 2^y) = 2^{\max(x,y)}) \\ 2 \cdot 2^{\max(h(T_1)+1, h(T_2)+1)} - 1 = \qquad (\max(x+1, y+1) = \max(x, y)+1) \\ 2 \cdot 2^{\max(h(T_1), h(T_2))+1} - 1 = \qquad (\text{def. recursiva de } h(T)) \\ 2 \cdot 2^{h(T)} - 1 = \qquad (\text{manipulação algébrica}) \\ 2^{h(T)+1} - 1$$

onde o passo (*) vale porque a soma de dois termos é sempre menor ou igual a duas vezes o maior termo.

Algoritmos Recursivos

Algoritmo recursivos: Introdução

- Às vezes podemos reduzir a solução de um problema com um conjunto particular de valores de entrada para a solução do mesmo problema com valores de entrada menores.
- Quando tal redução pode ser feita, a solução para o problema original pode ser encontrada via uma sequência de reduções, até que o problema tenha sido reduzido a algum caso inicial para o qual a solução é conhecida.
- Veremos que algoritmos que reduzem sucessivamente um problema ao mesmo problema entradas menores são usadas para resolver uma grande variedade de problemas.

Tais algoritmos são chamados de <u>recursivos</u>.

- Um **algoritmo recursivo** é um algoritmo que resolve um problema reduzindo este problema a uma instância do mesmo problema com entradas menores.
- A seguir vamos ver vários exemplos de algoritmos recursivos.

• Exemplo 16 Dê um algoritmo recursivo para computar n!, onde n é um número inteiro não-negativo.

Solução. Para construir um algoritmo recursivo que encontre n!, onde $n \notin$ um inteiro não-negativo, podemos nos basear na definição recursiva de n!:

$$n! = \begin{cases} n \cdot (n-1)!, & \text{se } n > 0 \\ 1, & \text{se } n = 0 \end{cases}$$

Esta definição diz que para encontrar n! para um inteiro particular n, podemos usar a etapa recursiva repetidamente vezes, em cada vez substituindo um valor da função fatorial pelo valor da função fatorial no próximo inteiro menor.

Fazemos isso até atingir o passo base, em que o inteiro a ser computado é 0, e podemos inserir o valor conhecido de 0! = 1.

• Exemplo 16 (Continuação)

Um pseudo-código para um algoritmo recursivo para a função fatorial é o seguinte.

```
procedure factorial(n): nonnegative integer) if n = 0 then return 1 else return n \cdot factorial(n-1) {output is n!}
```

Exemplo de execução do algoritmo para o valor de entrada n = 4:

Função	Chamada recursiva	Valor de retorno
factorial(4)	4·factorial(3)	24
factorial(3)	3.factorial(2)	6
factorial(2)	2·factorial(1)	2
factorial(1)	1.factorial(0)	1
factorial(0)		1

• Exemplo 17 Dê um algoritmo recursivo para calcular a^n , onde a é um número real diferente de zero e n é um inteiro não-negativo.

Solução. Para construir um algoritmo recursivo que encontre a^n , onde a é um real diferente de zero e n é um inteiro não-negativo, podemos nos basear na definição recursiva de a^n :

$$an = \begin{cases} a \cdot a^{n-1}, & \text{se } n > 0\\ 1, & \text{se } n = 0 \end{cases}$$

Esta definição diz que para encontrar a^n para valores particulares de a e n, podemos usar a etapa recursiva repetidamente vezes, em cada vez substituindo um valor da função de exponenciação pelo valor da função de exponenciação com um expoente sendo o próximo inteiro menor.

Fazemos isso até atingir o passo base, em que o valor a ser computado é a^0 , e podemos inserir o valor conhecido de $a^0 = 1$.

• Exemplo 17 (Continuação)

Um pseudo-código para um algoritmo recursivo para a função de exponenciação é o seguinte.

```
procedure power(a: nonzero real number, n: nonnegative integer) if n = 0 then return 1 else return a \cdot power(a, n - 1) {output is a^n}
```

Exemplo de execução do algoritmo para o valor de entrada a=2, n=4:

Função	Chamada recursiva	Valor de retorno
power(2,4)	2 · power(2,3)	16
power(2,3)	2 · power(2,2)	8
power(2,2)	2 · power(2,1)	4
power(2,1)	2 · power(2,0)	2
power(2,0)		1

- Exemplo 18 Dada uma sequência $L = a_1, a_2, ..., a_n$ de de inteiros positivos em ordem crescente e um elemento arbitrário x, uma **pesquisa binária** do elemento x em L funciona assim:
 - **①** Compare o elemento x a ser pesquisado com o termo do meio da sequência, ou seja, o termo $a_{\lfloor (n+1)/2 \rfloor}$.
 - lacktriangle Se x for igual a este termo, retorne a localização deste termo no sequência.
 - Caso contrário:
 - lacktriangle faça uma nova pesquisa binária na primeira metade da sequência original se x for menor que o termo do meio; ou
 - $oldsymbol{0}$ faça uma nova pesquisa binária na segunda metade da sequência original se x for maior que o termo do meio; ou
 - o retorne 0 se não há mais elementos a serem pesquisados.

Expresse a pesquisa binária como um algoritmo recursivo.

Exemplo 18 (Continuação)

Solução. Um pseudo-código para um algoritmo recursivo para a função de pesquisa binária é o seguinte.

```
procedure binary search(i, j, x: integers, 1 \le i \le j \le n)
m := \lfloor (i+j)/2 \rfloor
if x = a_m then
return m
else if (x < a_m and i < m) then
return binary search(i, m - 1, x)
else if (x > a_m and j > m) then
return binary search(m + 1, j, x)
else return 0
{output is location of x in a_1, a_2, \dots, a_n if it appears; otherwise it is 0}
```

• Exemplo 18 (Continuação)

Exemplo de execução do algoritmo de pesquisa binária para os valores de entrada

$$i = 1,$$
 $j = 12,$ $x = 20,$

na lista ordenada

$$a_1 = 1$$
, $a_2 = 5$, $a_3 = 8$, $a_4 = 10$, $a_5 = 12$, $a_6 = 15$, $a_7 = 17$, $a_8 = 20$, $a_9 = 23$, $a_{10} = 25$, $a_{11} = 28$, $a_{12} = 30$:

Função	Chamada recursiva	Valor de retorno
bin_search(1,12,20)	bin_search(7,12,20)	8
bin_search(7,12,20)	bin_search(7,8,20)	8
bin_search(7,8,20)	bin_search(8,8,20)	8
bin_search(8,8,20)		8

• Exemplo 18 (Continuação)

Exemplo de execução do algoritmo de pesquisa binária para os valores de entrada

$$i = 1,$$
 $j = 12,$ $x = 7,$

na lista ordenada

$$a_1 = 1$$
, $a_2 = 5$, $a_3 = 8$, $a_4 = 10$, $a_5 = 12$, $a_6 = 15$, $a_7 = 17$, $a_8 = 20$, $a_9 = 23$, $a_{10} = 25$, $a_{11} = 28$, $a_{12} = 30$:

Função	Chamada recursiva	Valor de retorno
bin_search(1,12,7)	bin_search(1,5,7)	0
bin_search(1,5,7)	bin_search(1,2,7)	0
bin_search(1,2,7)	bin_search(2,2,7)	0
bin_search(2,2,7)		0

Demonstrando a correção de algoritmos recursivos

- Podemos usar a indução matemática para demonstre a correção de algoritmos recursivos.
- Exemplo 19 Demonstre que o algoritmo recursivo que provemos em um exemplo anterior para calcular a exponenciação de um número real com expoente inteiro não-negativo está correto.

Solução. Vamos usar indução matemática no expoente *n*.

Passo base: Se n=0 nosso algoritmo recursivo nos diz que power(a,0)=1, o que está correto porque $a^0=1$ para qualquer número real a.

Demonstrando a correção de algoritmos recursivos

• Exemplo 19 (Continuação)

Passo indutivo: A hipótese de indução é que o algoritmo recursivo computa o valor correto da potência para um inteiro arbitrário, ou seja, que $power(a,k)=a^k$ para qualquer valor real $a\neq 0$ e um inteiro não-negativo arbitrário k.

Temos que mostrar que se a hipótese de indução é verdadeira, então o algoritmo computa a resposta correta para k+1, ou seja, teremos $power(a, k+1) = a^{k+1}$.

Note que como k é um inteiro positivo, o algoritmo faz $power(a, k + 1) = a \cdot power(a, k)$.

Como pela hipótese de indução temos $power(a, k) = a^k$, concluímos que $power(a, k + 1) = a \cdot a^k = a^{k+1}$, e o algoritmo também está correto para k + 1.

