K Kytölä & M Orlich

(Exercise sessions: 10.-11.2.2022) Hand-in due: Tue 15.2.2022 at 23:59

Denote by ℓ^1 the space of absolutely summable real-number sequences, i.e., the space whose elements are sequences $x = (x_j)_{j \in \mathbb{N}}$ such that $\sum_{j=1}^{\infty} |x_j| < \infty$. We consider it known that ℓ^1 becomes a normed space when equipped with the norm given by the formula $||x||_1 := \sum_{j=1}^{\infty} |x_j|$. Equip the space ℓ^1 with the metric induced by $||\cdot||_1$.

Note that a sequence $(x^{(n)})_{n\in\mathbb{N}}$ in ℓ^1 is a sequence of sequences: to each $n\in\mathbb{N}$ corresponds an absolutely summable sequence $x^{(n)}=(x_i^{(n)})_{i\in\mathbb{N}}$.

Fill-in-the-blanks 1. Complete the following proof.

Claim. Let $(x^{(m)})_{m\in\mathbb{N}}$ be a sequence in ℓ^1 . Assume:

- (A) for every $m \in \mathbb{N}$ we have $||x^{(m+1)} x^{(m)}||_1 \le 5^{-m}$;
- (B) for every $j \in \mathbb{N}$ the sequence $(x_j^{(m)})_{m \in \mathbb{N}}$ of the j:th coordinates converges to a limit $x_j = \lim_{m \to \infty} x_j^{(m)}$.

Then for every $m \in \mathbb{N}$ we have $\sum_{j=1}^{\infty} |x_j - x_j^{(m)}| \leq \frac{5}{4} 5^{-m}$.

Proof. For any k > m, we have "telescopic" cancellations in the sum $x^{(k)} - x^{(m)} = (x^{(k)} - x^{(k-1)}) + (x^{(k-1)} - x^{(k-2)}) + \dots + (x^{(m+1)} - x^{(m)})$ $= \sum_{r=m}^{k-1} (x^{(r+1)} - x^{(r)}).$

Using for the above sum we get

$$||x^{(k)} - x^{(m)}||_1 \le \sum_{r=m}^{k-1} ||x^{(r+1)} - x^{(r)}||_1 \le \sum_{r=m}^{k-1} 5^{-r} = \frac{5^{-m} - 5^{-k}}{4/5}.$$

For any $J \in \mathbb{N}$ we now get

$$\sum_{j=1}^{J} \left| x_j^{(k)} - x_j^{(m)} \right| \leq \|x^{(k)} - x^{(m)}\|_1 \leq \frac{5^{-m} - 5^{-k}}{4/5} \leq \frac{5}{4} 5^{-m}.$$

For every $j \in \mathbb{N}$, we have $\lim_{k \to \infty} |x_j^{(k)} - x_j^{(m)}| = |x_j - x_j^{(m)}|$, because and because the function

 $z\mapsto |z-x_j^{(m)}|$ is ______. Taking a finite sum, we get $\lim_{k\to\infty}\sum_{j=1}^J|x_j^{(k)}-x_j^{(m)}|=\sum_{j=1}^J|x_j-x_j^{(m)}|$. The preservation of bounds in the limit $k\to\infty$ then yields $\sum_{j=1}^J|x_j-x_j^{(m)}|\leq \frac{5}{4}\,5^{-m}$. From this, the preservation of bounds in the limit $J\to\infty$ yields the asserted inequality.

Fill-in-the-blanks 2. Complete the following proof.

Claim. The space ℓ^1 is complete.

Proof. To show completeness, we must prove that every Cauchy sequence converges in ℓ^1 . So let $(x^{(n)})_{n\in\mathbb{N}}$ be a Cauchy sequence in ℓ^1 .

Note that it suffices to prove that $(x^{(n)})_{n\in\mathbb{N}}$ has a convergent subsequence, because

Note also that for every $j \in \mathbb{N}$, the real-number sequence $(x_j^{(n)})_{j \in \mathbb{N}}$ is ________, because it is obtained from the Cauchy sequence $(x^{(n)})_{n \in \mathbb{N}}$ in ℓ^1 by applying the 1-Lipschitz function $\operatorname{pr}_j \colon \ell^1 \to \mathbb{R}$ which picks the j:th coordinate of an absolutely summable sequence. By completeness of _______, we then get that the limit $x_j = \lim_{n \to \infty} x_j^{(n)} \in$ _______ exists for every $j \in \mathbb{N}$. From these limits we form a sequence $x = (x_j)_{j \in \mathbb{N}}$.

Since $(x^{(n)})_{n\in\mathbb{N}}$ is Cauchy, for every $m\in\mathbb{N}$ we can choose a $n_m\in\mathbb{N}$ such that for all $k,l\geq n_m$ we have $||x^{(k)}-x^{(l)}||_1<5^{-m}$. Moreover, it is possible to choose these indices so that $n_1< n_2< n_3<\dots$ We will show that the subsequence $(x^{(n_m)})_{m\in\mathbb{N}}$ is convergent.

The subsequence satisfies the assumptions of Fill-in-the-blanks 1, so we get that for every $m \in \mathbb{N}$

$$(\star) \qquad \sum_{j=1}^{\infty} |x_j - x_j^{(n_m)}| \le \frac{5}{4} 5^{-m}.$$

This shows in particular that the sequence $x - x^{(n_m)} = (x_j - x_j^{(n_m)})_{j \in \mathbb{N}}$ is absolutely summable. The sequence x can be written as a sum $x = (x - x^{(n_m)}) + x^{(n_m)}$. Since both summands here belong to the vector space ______, this allows us to conclude the same for x.

Using the estimate (\star) we also get

$$0 \le \mathsf{d}(x, x^{(n_m)}) = \|x^{(n_m)} - x\|_1 = \sum_{j=1}^{\infty} |x_j^{(n_m)} - x_j| \le \frac{1}{4} 5^{-m}.$$

Since _____ = 0, by the squeeze theorem we get $\lim_{m\to\infty} \mathsf{d}(x,x^{(n_m)}) = 0$. From here we conclude that the subsequence $(x^{(n_m)})_{m\in\mathbb{N}}$ converges to x in ℓ^1 .