Matemática Discreta

Clase 19: Conceptos básicos sobre grafos

Federico Olmedo y Alejandro Hevia Departamento de Ciencias de la Computación Universidad de Chile

¿Por qué estudiar grafos?

Los grafos son estructuras que consisten en vértices y de arcos que conectan dichos vértices. Se utilizan para *modelar* y *resolver* problemas en un sinfin de disciplinas.

Sirven, por ejemplo, para representar:

- el esquema jerárquico de una empresa;
- una red de computadores;
- un árbol genealógico;
- la interacción entre científicos;
- una red de transporte.

¿Qué es un grafo?

Definición

Un grafo G=(V,E) está formado por un conjunto no vacío V de vértices o nodos, y un conjunto E de arcos o aristas. Cada arco $e \in E$ tiene asociado dos vértices (posiblemente iguales) en V, llamados los extremos del arco.

Notación: usaremos (v_1, v_2) para denotar al arco de extremos $v_1, v_2 \in V$.

Observación: según la definición anterior V y E pueden ser finitos o infinitos. Nosotros nos limitaremos al caso de **grafos finitos**, donde V y E son conjuntos finitos.

Clasificando arcos

- Un lazo o loop es un arco que conecta un vértice consigo mismo.
- Dos arcos se dicen paralelos si conectan el mismo par de vértices.
- Los arcos de un grafo pueden tener dirección o no.

Clasificando grafos

Nombre	Aristas	¿Permite aristas paralelas?	¿Permite lazos?
Grafo simple	no dirigidas	No	No
Multigrafo	no dirigidas	Si	No
Grafo	no dirigidas	Si	Si
Grafo dirigido simple	dirigidas	No	No
Multigrafo dirigido	dirigidas	Si	No
Grafo dirigido	dirigidas	Si	Si

- Simple significa sin lazos ni aristas paralelas.
- Multigrafo permite aristas paralelas.
- Grafo simple y multigrafo a secas se refiere a las versiones no-dirigidas.
 Para referirse a las versiones dirigidas, se le agrega el calificativo al final (grafo simple dirigido y multigrafo dirigido).

FIGURE 1 A Computer Network.

FIGURE 2 A Computer Network with Multiple Links between Data Centers.

FIGURE 3 A Computer Network with Diagnostic Links.

FIGURE 4 A Communications Network with One-Way Communications Links.

FIGURE 5 A Computer Network with Multiple One-Way Links.

Modelando la colaboración científica

Grafo de Erdős¹

- Cada autor es representado por un nodo;
- Dos autores están unidos por un arco sii tienen una publicación en conjunto.

 $^{^{1}}$ Paul Erdős fue uno de los matemáticos más relevantes del siglo XX. Es reconocido por sus diversas contribuciones en el área de matemática discreta y por su increíble registro de publicaciones: más de 1500 artículos, con más de 500 coautores distintos.

Modelando la colaboración científica

El número de Erdős de un autor representa su distancia en este grafo a Erdős. Al año 2006, teníamos:

Número de Erdős	Cantidad de científicos
1	504
2	6,593
3	33,605
4	83,642
5	87,760
6	40,014
7	11,591
8	3,146
9	819
10	244

Modelando la web

Podemos modelar a la web como un grafo donde

- cada nodo representa una página, y
- un arco (a, b) representa que la página a tiene un link a la página b

Características del grafo

- Tiene una estructura muy dinámica (cambia cada segundo)
- Actualmente tiene más de 3 billones de nodos y 20 billones de arcos
- La distancia entre cualquier par de nodos (grado de separación) suele ser pequeña: < 20.

Modelando la web

Terminología sobre grafos no dirigidos

- Dos nodos se dicen adyacentes sii existe un arco que los conecta.
- Un arco se dice incidente en un nodo sii el nodo es uno de sus extremos.
- El grado de un nodo v, notado deg(v), es el número de aristas que son incidentes en v. (Los lazos sobre v contribuyen en dos unidades.)
- Un nodo v se dice aislado sii deg(v) = 0.

Teorema de los saludos

Teorema de los saludos

Sea G = (V, E) un grafo no-dirigido. Se cumple que

$$2|E| = \sum_{v \in V} deg(v)$$

(El teorema sigue siendo válido si G es un multigrafo y/o contiene lazos)

Demostración

El resultado es inmediato ya que cada arista $e \in E$ aporta dos unidades a la suma $\sum_{v \in V} deg(v)$. (Puede probarse más formalmente haciendo inducción sobre el número de aristas del grafo.)

Ejercicio*: Demuestre el siguiente corolario del teorema de los saludos: todo grafo no-dirigido tiene un número par de nodos de grado impar.

Terminología sobre grafos dirigidos

- Dada la arista (u, v), decimos que u es su nodo inicial y v su nodo terminal.
- El grado de entrada del nodo v, notado degⁱⁿ(v), es el número de aristas que tienen a v como nodo terminal.
- El grado de salida del nodo v, notado deg^{out}(v), es el número de aristas que tienen a v como nodo inicial.

Lemma

Sea G = (V, E) un grafo dirigido. Se cumple que

$$\sum_{v \in V} deg^{in}(v) = \sum_{v \in V} deg^{out}(v) = |E|$$

Clases de grafos simples: Cliques

Un clique o grafo completo es un grafo simple que contiene exactamente una arista entre cada par de vértices (distintos). Usamos K_n para denotar al clique de $n \ge 1$ vértices.

Clases de grafos simples: Ciclos

Un ciclo de $n \geq 3$ vértices v_1, v_2, \ldots, v_n es aquel grafo simple que contiene las aristas $\{(v_1, v_2), (v_2, v_3), \ldots, (v_{n-1}, v_n), (v_n, v_1)\}$. Usamos C_n para denotar al ciclo de n vértices.

Un grafo G = (V, E) es bipartito sii V puede ser particionado en dos conjuntos V_1 y V_2 tal que cada arco del grafo conecta un nodo de V_1 con uno de V_2 .

Ejemplo: El ciclo C_6 es bipartito:

El ciclo C_5 no lo eso.

Ejercicio: Demostrar que el ciclo C_n es bipartito si y sólo si n es par.

Ejercicio*: Demostrar que el clique K_n no es bipartito para ningún $n \ge 3$.

Teorema

Un grafo simple es bipartito si y sólo si es posible asignar uno de dos colores diferentes a cada vértice del grafo, de tal forma que ningún par u, v de vértices adyacentes recibe el mismo color.

Demostración

- \Rightarrow Asuma primero que G=(V,E) es bipartito y que la partición de V que atestigua esto está dada por V_1 y V_2 . Pinte los vértices en V_1 de azul y los vértices en V_2 de rojo. Entonces ningún par de vértices adyacentes están pintados del mismo color.
- \Leftarrow Asuma que es posible pintar de rojo o azul cada vértice de G de tal forma que si dos nodos son adyacentes, entonces reciben colores distintos. Defina V_1 como el conjunto de nodos coloreados de azul y V_2 como el conjunto de nodos coloreados de rojo. Es claro que V_1 y V_2 representa una partición de V que atestigua que G es bipartito.

Teorema

Un grafo simple es bipartito si y sólo si es posible asignar uno de dos colores diferentes a cada vértice del grafo, de tal forma que ningún par u, v de vértices adyacentes recibe el mismo color.

Ejercicio: Use el teorema para determinar si los siguientes grafos son bipartitos:

Clases de grafos simples: Grafos bipartitos completos

Un grafo bipartito se dice además completo si existe un arco entre *cada* par de nodos (u, v) tal que $u \in V_1$ y $v \in V_2$. Usamos $K_{|V_1|,|V_2|}$ para denotar a dicho grafo.

Ejercicios

Ejercicio: Sea
$$G = (V, E)$$
 un grafo simple. Demuestre que

$$\min \left\{ deg(v) \mid v \in V \right\} \ \leq \ \frac{2 \left| E \right|}{\left| V \right|} \ \leq \ \max \left\{ deg(v) \mid v \in V \right\}$$

Ejercicio: Sea G = (V, E) un grafo bipartito simple. Demuestre que $|E| \le |V|^2/4$.