

Nuvem e Acesso Remoto

Paulo Ricardo Lisboa de Almeida

Um pouco de criptografia

Desejamos cifrar nossas mensagens.

Qualquer um que as intercepte não vai saber o que está escrito.

Para isso, utilizamos um algoritmo de cifragem.

Encriptação ou Cifragem

Encriptar (cifrar) uma mensagem a transforma em algo ilegível para quem não tem a chave de descriptografia.

Vantagens:

- Confidencialidade: a mensagem só pode ser lida pelos recipientes desejados.
- Integridade: é muito difícil modificar a mensagem sem que isso seja detectado.
- Não repúdio: é possível validar a autenticidade da mensagem (é difícil forjar que X enviou uma mensagem).

Desejamos cifrar a mensagem.

Transformar em algo que ninguém, exceto quem desejamos, possa ler.

Cifrar a mensagem é colocar ela em um "baú" antes de enviar. Fechamos o baú com uma chave.

Cifrar a mensagem é colocar ela em um "baú" antes de enviar. Fechamos o baú com uma **chave**.

Enviamos pela rede.

Mas e agora, como Bob vai abrir o Baú?

Primeira opção. Bob já tinha a chave, que passamos a ele em outra ocasião (e.g., em uma rede privada). O nome disso é **criptografia simétrica**.

Primeira opção. Bob já tinha a chave, que passamos a ele em outra ocasião (e.g., em uma rede privada). Funciona, mas muitas vezes não é prático. Precisamos primeiro estabelecer uma "rede privada".

Enviar a chave pela rede **não** é uma opção!

Vamos criar um "Baú" particularmente estranho.

Ele pode ser **fechado** com uma **chave azul**, mas só pode ser **aberto** com uma **chave vermelha**.

Bob tem as duas chaves.

Bob envia a **chave azul** para Alice.

A chave azul serve para fechar um baú, mas não o abre. Essa é a **chave pública**.

Bob envia a **chave azul** para Alice.

A chave azul serve para fechar um baú, mas não o abre. Essa é a **chave pública**.

Bob envia a **chave azul** para Alice.

A chave azul serve para fechar um baú, mas não o abre. Essa é a **chave pública**.

Alice usa a **chave pública** de Bob para cifrar a mensagem.

Alice usa a **chave pública** de Bob para cifrar a mensagem.

A mensagem **cifrada** é enviada para Bob.

A mensagem **cifrada** é enviada para Bob.

Bob é o único que tem a **chave vermelha**, capaz de abrir a mensagem. Chave **privada**.

Bob é o único que tem a **chave vermelha**, capaz de abrir a mensagem. Chave **privada**.

Essa forma de criptografia é chamada de:

Criptografia de chave pública, ou Criptografia assimétrica.

Existem duas chaves, uma **pública** e uma **privada**.

Essa forma de criptografia é chamada de:

Criptografia de chave pública, ou Criptografia assimétrica.

Existem duas chaves, uma **pública** e uma **privada**.

Essa é a ideia por trás de toda comunicação segura que você faz na internet: HTTPS, SSH, TLS, ...

As chaves públicas e privadas podem ser vistas como sequências numéricas.

Funções matemáticas são usadas para compor uma mensagem cifrada a partir de uma chave pública.

f(p,x)=c é uma função que cifra a mensagem x usando uma chave pública p, gerando a mensagem cifrada c.

As chaves públicas e privadas podem ser vistas como sequências numéricas.

Funções matemáticas são usadas para compor uma mensagem cifrada a partir de uma chave pública.

f(p,x)=c é uma função que cifra a mensagem x usando uma chave pública p, gerando a mensagem cifrada c.

g(r,c)=x é uma função que decifra a mensagem ${m C}$ de volta para ${m {\mathcal X}}$, usando a chave privada ${m {\mathcal X}}$

RSA

O algoritmo RSA - criado por, **R**on Rivest, Adi **S**hamir e Leonard **A**dleman é comumente usado para fazer a transmissão segura de dados.

Usa operações de módulo.

Exemplos:

 $10 \mod 3 = 1$

 $20 \mod 7 = 6$

RSA

O algoritmo possui duas fases:

- 1. Escolher as chaves pública e privada
- 2. Cifrar e decifrar as mensagens

1. Escolha dois números primos grandes, p e q.

Quanto maiores p e q:

- + Mais seguro.
- Computacionalmente mais caro cifrar/decifrar.

1. Escolha dois números primos grandes, p e q.

Quanto maiores p e q:

- + Mais seguro.
- Computacionalmente mais caro cifrar/decifrar.
- 2. Compute n = pq e z = (p 1)(q 1).

1. Escolha dois números primos grandes, p e q.

Quanto maiores p e q:

- + Mais seguro.
- Computacionalmente mais caro cifrar/decifrar.
- 2. Compute n = pq e z = (p 1)(q 1).
- 3. Escolha um número e < n, tal que $e \in z$ não possuem fatores comuns, exceto o 1.

1. Escolha dois números primos grandes, p e q.

Quanto maiores p e q:

- + Mais seguro.
- Computacionalmente mais caro cifrar/decifrar.
- 2. Compute n = pq e z = (p 1)(q 1).
- 3. Escolha um número e < n, tal que e e z não possuem fatores comuns, exceto o 1.
- 4. Encontre um número d, de forma que $ed 1 \mod z = 0$.

Ou, de outra forma, ed mod z = 1.

1. Escolha dois números primos grandes, p e q.

Quanto maiores p e q:

- + Mais seguro.
- Computacionalmente mais caro cifrar/decifrar.
- 2. Compute n = pq e z = (p 1)(q 1).
- 3. Escolha um número e < n, tal que $e \in z$ não possuem fatores comuns, exceto o 1.
- 4. Encontre um número d, de forma que $ed 1 \mod z = 0$.

Ou, de outra forma, ed mod z = 1.

- 5. As chaves são:
 - a. Chave pública: (n, e);
 - b. Chave privada: (n, d).

Cifrando e decifrando

Chave pública: (n, e);

Chave privada: (n, d).

Suponha um único caractere (ou um bloco de bits) *m*.

Cifrar: $c = m^e \mod n$

Decifrar: $m = c^d \mod n$

Um exemplo

```
Suponha p=5 e q =7.

n = pq = ?

z = (p - 1)(q - 1) = ?
```

Um exemplo

```
Suponha p=5 e q =7.

n = pq = 35

z = (p - 1)(q - 1) = 24

e = 5

d = 29 já que (5*29 - 1 mod 24) = 0
```

Chave pública (35,5).

Chave privada (35,29).

Cifrar

Chave pública (35,5).

Texto	m ^e	Cifrado c = m ^e mod n
D (3)	243	33
S (18)	1889568	23
B (1)	1	1
D (3)	243	33

Α	0
В	1
С	2
D	
Е	3 4
F	5
G	6
Н	7
I	8
J	9
J K	10
L M	11
M	12
N	13
0	14
Р	15
Q	16
R	17
S	18
S T	19
U	20
٧	21
V W	22
Χ	23
Υ	24
Z	25

Decifrar

Chave pública (35,5).

Texto	m ^e	Cifrado c = m ^e mod n
D (3)	243	33
S (18)	1889568	23
B(1)	1	1
D (3)	243	33

Chave privada (35,29).

Cifrado c = m ^e mod n	Decifrado m = c ^d mod n
33	D (3)
23	S (18)
1	B (1)
33	D (3)

)	
	4
	į
;	6
ł	-
	8
	Ç
(-
	-
1	-
ı	-
)	-
)	-
)	
· }	
•	
İ	•
,	2
/ 	2
,	,
`	-

25

Detalhes

Escolhemos p e q pequenos para simplificar as contas.

Em aplicações seguras, recomenda-se números primos com pelo menos 1024 bits.

A "segurança" está no fato de $n\bar{a}o$ existir um algoritmo conhecido eficiente para se fatorar um número n em seus primos p e q.

Ficou curioso?

Assista a esse vídeo:

How Quantum Computers Break The Internet... Starting Now https://youtu.be/-UrdExQWOcs

Veja uma discussão sobre o RSA, e a prova dele conseguir cifrar e decifrar mensagens em Kurose (2013).

A criptografia assimétrica (de chave pública e privada) é computacionalmente custosa.

A criptografia assimétrica (de chave pública e privada) é computacionalmente custosa.

O que geralmente se faz é:

1. Estabelecer um meio de comunicação seguro entre os pares através de uma criptografia assimétrica.

A criptografia assimétrica (de chave pública e privada) é computacionalmente custosa.

O que geralmente se faz é:

- 1. Estabelecer um meio de comunicação seguro entre os pares através de uma criptografia assimétrica.
- 2. Usar esse meio para trocar uma chave de criptografia **simétrica**.

A criptografia assimétrica (de chave pública e privada) é computacionalmente custosa.

O que geralmente se faz é:

- 1. Estabelecer um meio de comunicação seguro entre os pares através de uma criptografia assimétrica.
- 2. Usar esse meio para trocar uma chave de criptografia **simétrica**.
- 3. Usar criptografia simétrica para se comunicar.

No Linux, o par de chaves públicas e privadas geralmente fica no diretório /home/seu_usuario/.ssh

Entre nesse diretório:

cd /home/seu_usuario/.ssh

No Linux, o par de chaves públicas e privadas geralmente fica no diretório /home/seu_usuario/.ssh

Entre nesse diretório:

```
cd /home/seu_usuario/.ssh
```

Dentro do diretório devem existir os arquivos *id_rsa* e id_rsa.pub, **caso não existam**, você vai precisar gerar as chaves pública e privada.

```
ssh-keygen -t rsa
```

Quando perguntado, indique que você quer armazenar a chave no diretório padrão. Coloque uma senha quando perguntado.

O arquivo *id_rsa.pub* é sua **chave pública**.

Você pode compartilhar esse arquivo sem problemas.

Abra o arquivo e veja seu conteúdo:

cat id_rsa.pub

O arquivo *id_rsa.pub* é sua **chave pública**.

Você pode compartilhar esse arquivo sem problemas.

Abra o arquivo e veja seu conteúdo:

cat id_rsa.pub

O arquivo **id_rsa** é sua **chave privada**.

Nunca compartilhe esse arquivo.

Vamos criptografar uma mensagem.

Vamos usar o Openssl (só porque é mais fácil).

Crie um diretório vazio em um local qualquer, e abra um terminal apontando para esse diretório.

Crie um diretório vazio em um local qualquer, e abra um terminal apontando para esse diretório. Digite os comandos:

```
openssl genrsa -out chave_privada.pem 1024
openssl rsa -in chave_privada.pem -pubout -out chave_publica.pem
```

Crie um diretório vazio em um local qualquer, e abra um terminal apontando para esse diretório.

Digite os comandos:

```
openssl genrsa -out chave_privada.pem 1024
openssl rsa -in chave_privada.pem -pubout -out chave_publica.pem
```

Agora temos uma chave pública e privada que podemos usar com o Openssl.

Crie um arquivo txt qualquer.

Cifrar

```
openssl pkeyutl -encrypt -inkey chave_publica.pem -pubin -in SEU_ARQUIVO.txt -out encriptado
```

Decifrar

```
openssl pkeyutl -decrypt -inkey chave_privada.pem -in encriptado
```

Depois de cifrar sua mensagem, tente mudar qualquer coisa na mensagem cifrada, e depois decifrar.

Cifrar:

openssl rsautl -encrypt -inkey chave_publica.pem -pubin -in SEU_ARQUIVO.txt -out encriptado

Decifrar:

openssl rsautl -decrypt -inkey chave_privada.pem -in encriptado

Na criptografia assimétrica, na verdade, as chaves podem ser usadas de forma intercambiada.

Uma mensagem pode ser **cifrada** com a chave **pública**, e **decifrada** com a chave **privada**.

Na criptografia assimétrica, na verdade, as chaves podem ser usadas de forma intercambiada.

Uma mensagem pode ser cifrada com a chave pública, e decifrada com a chave privada.

Uma mensagem também pode ser **cifrada** com a chave **privada**, e **decifrada** com a chave **pública**.

Qualquer um podia abrir o baú no caminho e ver a mensagem. O que ganhamos com isso?

Se conseguimos decifrar a mensagem (abrir o baú) com a **chave pública** de Alice, significa que a mensagem realmente foi enviada por Alice.

É muito difícil forjar uma mensagem se passando por Alice.

Mensagem fake tentando se passar por Alice.

É muito difícil forjar uma mensagem se passando por Alice.

Mensagem fake tentando se passar por Alice.

Isso se chama **assinar uma mensagem**.

Dica

Para cifrar com a chave privada (e não com a pública) alguns parâmetros precisam ser modificados no openssl, como o uso da opção sign para assinar, e verify para abrir.

Crie uma mensagem, e a assine (cifre) com sua chave privada.

Abra (verifique) com a chave pública.

Assinar:

openssl pkeyutl -sign -inkey chave_privada.pem -in SEU_ARQUIVO.txt -out ASSINADO.bin

Verificar:

openssl pkeyutl -verify -pubin -inkey chave_publica.pem -sigfile ASSINADO.bin -in SEU_ARQUIVO.txt

Considere que Alice enviou a sua chave pública para Bob.

Considere que Alice enviou a sua chave pública para Bob.

Considere que Alice enviou a sua chave pública para Bob.

Como garantir que essa realmente é a chave pública de Alice?

Entidades "confiáveis" chamadas de *Certificate Authority* – CA (Autoridade de certificação).

Os componentes da rede confiam no CA.

O CA assina a chave de Alice. Bob usa a chave pública do CA para verificar se essa realmente é a chave de Alice.

Os CAs cobram para assinar as chaves.

Se você tem um site, por exemplo, vai precisar comprar um certificado de algum CA.

Exemplo de CA - Geotrust.

		Gerenciador de Atualizações	0	
Arquivo	Editar Exibir Aju	da		
₹ Limpar	Selecionar Tudo	C Atualizar Instalar Atualizações		
Tipo	Buscar Atualizações	Nome	Nova versão	
	~	ca-certificates Certificados CA comuns	20211016~20.04.1	
		ffmpeg Ferramentas para transcodificar, fazer fluxo e reproduzir arquivos multimídia	7:4.2.7-0ubuntu0.1	
Descriç	ão Pacotes Regis	 stro de alterações		
Descriç	ao Facotes Regis	su o de atterações		
2 atualizações selecionadas (9 MB)				

SSH

SSH - Secure Shell.

Protocolo cliente/servidor criptografado para logins remotos seguros em redes inseguras.

Execução de comandos remotos.

Acesso a Shell remoto.

Transferência de arquivos.

••

SSH

SSH - Secure Shell.

Protocolo cliente/servidor criptografado para logins remotos seguros em redes inseguras.

Execução de comandos remotos.

Acesso a Shell remoto.

Transferência de arquivos.

•••

Uma das implementações mais comuns do protocolo é o OpenSSH, incluso por padrão na maioria das distribuições Linux.

SSH

A comunicação geralmente é feita de forma similar à estudada no começo da aula, usando criptografia assimétrica.

O SSH suporta vários tipos de comunicação.

Formato básico:

ssh Nome_Usuario@endereço

Para opções, veja man ssh

Conecte via SSH na máquina macalan do departamento de informática.

ssh seu_usuario@ssh.inf.ufpr.br

Ou se você estiver em uma rede interna do DInf:

ssh seu_usuario@macalan

Para fechar a conexão, você pode usar o comando exit, ou então teclar Control+D.

Você também pode enviar comandos via SSH.

O SSH vai abrir a conexão, enviar o comando para a máquina remota, exibir o resultado, e fechar a conexão.

Veja o espaço disponível para o seu usuário nos servidores do DInf.

ssh seu_usuario@ssh.inf.ufpr.br "quota -s"

Conecte via SSH na máquina Macalan novamente, mas agora use o parâmetro -v para mostrar informações de debug. Dê uma olhada nas informações.

ssh -v seu_usuario@ssh.inf.ufpr.br

Transferindo Arquivos

O OpenSSH possui em sua suíte de aplicativos softwares para transferência segura de arquivos.

O **scp** (Secure File Copy) pode ser usado para este fim.

Sintaxe similar ao comando cp (copy).

Comando básico:

scp ARQUIVO nome_usuario@servidor:diretorio_destino

Crie um arquivo qualquer em seu computador.

Transfira esse arquivo para a sua *home* no servidor Macalan.

scp ARQUIVO nome_usuario@ssh.inf.ufpr.br:diretorio_destino

Dicas

Senhas de usuário em um banco de dados **nunca devem ser criptografadas**.

Por exemplo: o Twitter (espero) não guarda suas senhas diretamente em seu banco de dados, e também não guarda as senhas criptografadas.

Para isso, deve-se usar um **Hash Seguro**, e **armazenar o hash da senha**. Veja na literatura.

Dicas

No Windows, você pode usar o Putty para fazer uma conexão SSH. www.chiark.greenend.org.uk/-sgtatham/putty/latest.html

Computação em nuvem:

Alugar poder computacional de um parque compartilhado de computadores.

Parques computacionais são comumente chamados de *data centers*.

O poder computacional é acessível a partir da internet.

Pagamento pelo uso.

Curiosidade - Data Centers do Google

www.google.com/about/datacenters/locations

Curiosidade - Data Centers do Google

Eemshaven, Holanda – www.google.com/about/datacenters/locations/eemshaven

Virtualização

Os conceitos chave da computação em nuvem são a conexão remota, e a virtualização.

Conexão remota: comunicar com computadores através de uma rede (e.g., a Internet).

Virtualização: compartimentar os recursos computacionais de uma máquina, criando uma **máquina virtual**. Os recursos virtuais são de uso exclusivo de um usuário. Mas múltiplos recursos virtuais podem estar em uma única máquina física.

Virtualização

Alguns serviços de nuvem

Amazon Web Services (AWS);

Google Cloud Platform;

Microsoft Azure;

Locaweb;

IBM Softlayer;

•••

Categorias Básicas

- Infrastructure-as-a-Service laaS.
- Platform-as-a-Service PaaS.
- Software-as-a-Service SaaS.

Infrastructure-as-a-Service – IaaS

Os usuários solicitam um computador com determinada configuração.

CPU, memória, armazenamento, largura de banda, ...

O usuário é responsável por configurar e manter a máquina.

Instalar S.O., softwares de usuário, softwares de gerência, ...

É como alugar um computador físico.

Obs.: geralmente o computador não é realmente físico, mas sim uma Máquina Virtual (VM).

Infrastructure-as-a-Service - IaaS

Os usuários solicitam um computador com determinada configuração.

CPU, memória, armazenamento, largura de banda, ...

O usuário é responsável por configurar e manter a máquina.

Instalar S.O., softwares de usuário, softwares de gerência, ...

É como alugar um computador físico.

Obs.: geralmente o computador não é realmente físico, mas sim uma Máquina Virtual (VM).

Se o computador não for uma Máquina Virtual, geralmente você verá o termo Bare Metal. Não é uma máquina virtual, mas o "Metal Puro".

Platform-as-a-Service - PaaS

O usuário requisita um determinado pacote de aplicativos.

Banco de dados, servidor de aplicação, gerenciador de aplicação, ...

O vendedor do serviço instala os softwares em seus servidores, e libera para o usuário.

O usuário utiliza os softwares para implantar sua aplicação.

Por exemplo: executar uma página PHP em um servidor apache.

O usuário é responsável pelo código da aplicação final.

Os demais itens são de responsabilidade do vendedor.

Hardware, sistema operacional, softwares contratados (e.g., banco de dados, servidor de aplicação, ...)

Software-as-a-Service – SaaS

Tudo é gerenciado pelo vendedor.

Hardware e software.

O cliente especifica o software que deseja, e o vendedor o mantém, dando ao usuário alguma forma de acesso.

Exemplos: Office 365 e aplicações do Google Drive.

Quais são as suas responsabilidades

Camada	Local	laaS	PaaS	SaaS
Aplicação	✓	✓	✓	
Bancos de Dados	✓	✓	✓	
Sistema Operacional	1	✓	✓	
Rede, armazenamento e servidores virtuais	1	✓		
Plataforma de virtualização (e.g., VMware)	✓			
Servidores Físicos	1			
Armazenamento Físico	1			
Redes Físicas	✓			
Energia	1			
Espaço e refrigeração	1			

Snyder et al (2017).

Cobrança

Geralmente a cobrança envolve:

```
Recursos de CPU;
```

Recursos de GPU;

Uso de internet - Largura de banda (MiB/s) e quantidade (GiB) utilizada;

Armazenamento (GiBs utilizados de "disco").

Cobrança

Geralmente a cobrança envolve:

```
Recursos de CPU;
```

Recursos de GPU:

Uso de internet - Largura de banda (MiB/s) e quantidade (GiB) utilizada;

Armazenamento (GiBs utilizados de "disco").

Você pode contratar, por exemplo, uma quantidade fixa por mês, ou então fazer sob demanda.

Sob demanda: conforme mais recursos são gastos, mais são contratados automaticamente.

Pode sair caro.

Para aprender mais...

Veja esses vídeos sobre a história e alguns detalhes de implementação relacionados a segurança:

Chaves Públicas e Privadas: youtu.be/GSIDS_lvRv4

Um pouco sobre TLS: youtu.be/OTLDTodL7Lc

Para aprender mais...

Veja esses vídeos sobre a história e alguns detalhes de implementação relacionados a segurança:

Como uma conexão TLS é estabelecida: youtu.be/86cQJOMMses

Ideia do algoritmo Diffie-Hellman para troca de chaves públicas e Privadas youtu.be/NmM9HA2MQGI

Exercícios

- 1. Replique todos os comandos dados nos slides.
- 2. Instale o VirtualBox ou similar em sua máquina. Coloque um ou mais sistemas operacionais Linux para ser executado no VirtualBox como máquinas virtuais.
- 3. Resolva os exercícios disponibilizados no Moodle.

Bibliografia

Snyder et al. UNIX and Linux System Administration Handbook. 5a ed. 2017.

Kurose, , Ross. Redes de computadores e a internet: uma abordagem top-down. 2013.

Tanenbaum, Bos. Sistemas operacionais modernos. 4a ed. 2016.

Licença

Esta obra está licenciada com uma Licença <u>Creative Commons Atribuição 4.0 Internacional.</u>

