Kempe changes

Clément Legrand-Duchesne

ENS Rennes

June 15, 2021

Internship carried out from February 15 to July 28, under the supervision of Marthe Bonamy and Vincent Delecroix at LaBRI in Bordeaux

Clément Legrand 1 / 8

Kempe chain (1879)

Maximal bichromatic component in G

Kempe chain (1879)

Maximal bichromatic component in ${\it G}$

Kempe chain (1879)

Maximal bichromatic component in ${\it G}$

Kempe chain (1879)

Maximal bichromatic component in G

Motivation

Powerful tool

Vizing theorem: The edges of G can be colored with $\Delta(G)+1$ colors

Reconfiguration graph

- $V(R^k(G)) = k$ -colorings of G.
- $\bullet \ \alpha$ and β adjacent if $\alpha \longleftrightarrow_{\mathsf{Kempe}} \beta$

Clément Legrand Some context 3 / 8

Motivation

Powerful tool

Vizing theorem: The edges of G can be colored with $\Delta(G)+1$ colors

Reconfiguration graph

- $V(R^k(G)) = k$ -colorings of G.
- $\bullet \ \alpha \ \text{and} \ \beta \ \text{adjacent if} \ \alpha \xleftarrow[\text{Kempe}]{} \beta$

Reachability Are α and β Kempe-equivalent ?

Connectivity Is $R^k(G)$ connected ?

Diameter Estimate $diam(R^k(G))$?

Sampling coloring with a Markov chain

- What is the mixing time of the associated Markov chain ?
- Estimate the number of colorings

Clément Legrand Some context 3 /

k-degenerate graph

G is *k*-degenerate if there exists an elimination ordering of the vertices $v_1 \prec v_2 \cdots \prec v_n$:

$$\forall i, |N^+[v_i]| \leq k$$

- G has degree less than k implies G(k+1)-degenerate
- G not regular of degree less than k implies G k-degenerate

Clément Legrand Some context 4 /

Las Vergnas, Meyniel 1981

All ℓ -colorings of a k-degenerate graph are Kempe-equivalent for $\ell > k$.

Induction: Let α and β be two colorings of G Consider $G' = G \setminus \{v_1\}$

$$\alpha_{|G'} \underset{K}{\leadsto} \beta_{|G'}$$

V₁

G'

Lift sequence to G then recolor v_1

Las Vergnas, Meyniel 1981

All ℓ -colorings of a k-degenerate graph are Kempe-equivalent for $\ell > k$.

Induction: Let α and β be two colorings of G Consider $G' = G \setminus \{v_1\}$

$$\alpha_{|G'} \underset{K}{\leadsto} \beta_{|G'}$$

V1

G

Lift sequence to G then recolor v_1

Las Vergnas, Meyniel 1981

All ℓ -colorings of a k-degenerate graph are Kempe-equivalent for $\ell > k$.

Induction: Let α and β be two colorings of G Consider $G' = G \setminus \{v_1\}$

$$\alpha_{|G'} \underset{K}{\leadsto} \beta_{|G'}$$

G'

Lift sequence to G then recolor v_1

Natural question

What is the diameter of the reconfiguration graph in this setting ?

Clément Legrand Some context 5 / 8

Recoloring with Δ colors

Brooks' theorem

All graphs but cliques and odd cycles can be colored with Δ colors

Mohar conjecture 06

 $\forall k \geq \Delta, R^k(G)$ is connected

Feghali, Johnson, Paulusma 16

True for all 3-regular graphs but the 3-prism

True for all k-regular graphs with $k \ge 4$

Recoloring with Δ colors

Brooks' theorem

All graphs but cliques and odd cycles can be colored with Δ colors

Mohar conjecture 06

 $\forall k \geq \Delta, R^k(G)$ is connected

Feghali, Johnson, Paulusma 16

True for all 3-regular graphs but the 3-prism

True for all k-regular graphs with $k \ge 4$

Recoloring with Δ colors

Brooks' theorem

All graphs but cliques and odd cycles can be colored with Δ colors

Mohar conjecture 06

$$\forall k \geq \Delta, R^k(G)$$
 is connected

Feghali, Johnson, Paulusma 16

True for all 3-regular graphs but the 3-prism

Bonamy, Bousquet, Feghali, Johnson 19

True for all k-regular graphs with $k \ge 4$

Bonamy, Delecroix, L. 21+

 $R^k(G)$ has diameter $O(\Delta n^2)$ for $k \geq \Delta$

Other result

Treewidth

Parameter that measures how much a graph looks like a tree.

$$\mathsf{tw}(G) \le k \Rightarrow G$$
 is k -degenerate

Bonamy, Delecroix, L. 21

If G has treewidth tw, then $\forall k \geq \mathsf{tw} + 1, \mathsf{diam}(R^k(G)) = O(\mathsf{tw}\,n^2)$

What next?

- Diameter for k-degenerate graphs
- Sampling and mixing time
- Aproximate counting of the number of colorings
- Glauber dynamics: trivial Kempe changes

Recoloring version of Hadwiger conjecture

Graph minor

H is a minor of G is H can be obtained from G by deleting vertices and contracting along edges

Hadwiger conjecture 1943

For all graph G, with no K_t -minor, $\chi(G) \leq t-1$ True for $t \leq 6$

Las Vergnas and Meyniel conjectures 1981

If G has no K_t minor, $R^k(G)$ is connected for $k \ge t-1$ True for $t \le 9$

Bonamy, Delecroix, L., Narboni 21

 $\forall t, \forall \varepsilon, \exists G \text{ with a frozen } (\frac{3}{2} + \varepsilon)t\text{-coloring}$