Inna Williams

Section 12.3

Check written problems

1.

Find the SVD of the following symmetric matrices by hand calculation, and describe geometrically the action of the matrix on the unit circle

$$A = \begin{vmatrix} \frac{3}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{3}{2} \end{vmatrix}$$

$$A := \begin{bmatrix} \frac{3}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{3}{2} \end{bmatrix} \tag{1}$$

$$\begin{bmatrix} -0.707106781186547 & 0.707106781186547 \\ 0.707106781186547 & 0.707106781186547 \end{bmatrix}$$

> $S := Matrix([[2, 0], [0, 1]]); U \cdot S \cdot Vt$

$$S := \left[\begin{array}{cc} 2 & 0 \\ 0 & 1 \end{array} \right]$$

$$\begin{bmatrix} 1.50000000000000 & -0.5000000000000 \\ -0.50000000000000 & 1.5000000000000 \end{bmatrix}$$
(3)

$$A := \begin{bmatrix} 6 & -2 \\ 8 & \frac{3}{2} \end{bmatrix}$$

 $A := Matrix\left(\left[\left[6, -2\right], \left[8, \frac{3}{2}\right]\right]\right)$

$$A := \begin{bmatrix} 6 & -2 \\ 8 & \frac{3}{2} \end{bmatrix} \tag{4}$$

 \rightarrow U, S, Vt := SingularValues(A, output = ['U', 'S', 'Vt'])

$$U, S, Vt := \begin{bmatrix} -0.600000000000000 & -0.8000000000000 \\ -0.8000000000000 & 0.6000000000000 \end{bmatrix}, \begin{bmatrix} 10. \\ 2.500000000000000 \end{bmatrix},$$

$$(5)$$

$$\begin{bmatrix} -1. & -0. \\ 0. & 1. \end{bmatrix}$$

 $S := Matrix([[10, 0], [0, 2.5]]); U \cdot S \cdot Vt$

$$S := \begin{bmatrix} 10 & 0 \\ 0 & 2.5 \end{bmatrix}$$

$$\begin{bmatrix} 6.00000000000000 & -2. \\ 8. & 1.5000000000000 \end{bmatrix}$$

$$(6)$$

different signs in the answer from wtitten problem Check if it is correct:

$$V := Matrix \left(\left[\left[\frac{3}{5}, \frac{4}{5} \right], \left[-\frac{4}{5}, \frac{3}{5} \right] \right] \right)$$

$$U := \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{bmatrix}$$

$$(7)$$

$$S := Matrix \left(\left[[10, 0], \left[0, \frac{5}{2} \right] \right] \right)$$

$$S := \begin{bmatrix} 10 & 0 \\ 0 & \frac{5}{2} \end{bmatrix} \tag{8}$$

> Vt := Matrix([[1, 0], [0, 1]])

$$Vt := \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \tag{9}$$

 $\rightarrow U \cdot S \cdot Vt$

$$\begin{bmatrix} 6 & 2 \\ -8 & \frac{3}{2} \end{bmatrix} \tag{10}$$

Both SVD from written and Maple give the same matrix $A = \begin{bmatrix} 6 & 2 \\ -8 & \frac{3}{2} \end{bmatrix}$

$$\begin{bmatrix} 6 & 2 \\ -8 & \frac{3}{2} \end{bmatrix} \tag{11}$$

Section 12.4

1. d

Use Matlab's svd command to find the best rank-one approximation of the following matrices

A := Matrix([[1, 5, 3], [2, -3, 2], [-3, 1, 1]])

$$A := \begin{bmatrix} 1 & 5 & 3 \\ 2 & -3 & 2 \\ -3 & 1 & 1 \end{bmatrix}$$
 (12)

V, S, Vt := SingularValues(A, output = ['U', 'S', 'Vt'])

$$U, S, Vt := \begin{bmatrix} 0.898402133395958 & 0.438966448173354 & -0.0134931126009142 \\ -0.361733436568794 & 0.757058495583138 & 0.544069255824593 \\ 0.249043224316024 & -0.483912070156827 & 0.838931809373570 \end{bmatrix},$$

$$(13)$$

6.26135133093290

4.17319797039996

2.52584603855312

-0.09138513117174770.9305106666381750.3546810638775360.815877816954797-0.1342508359328510.562423417766726-0.570957218714149-0.3407735499182840.746914481098267

> $U \cdot Srank_1 \cdot Vt$; $Srank_1 := DiagonalMatrix(S_{1..1}, 2, 3)$

```
\begin{bmatrix} -0.647227628489829 & 6.59026478739581 & 2.51199928150541 \\ 0.260600309808826 & -2.65351009400633 & -1.01143363197782 \\ -0.179415931322682 & 1.82686653419382 & 0.696343404908098 \end{bmatrix}
```

$$Srank_1 := \begin{bmatrix} 6.26135133093290 & 0. & 0. \\ 0. & 0. & 0. \end{bmatrix}$$
 (14)

$$Srank_1 := \begin{bmatrix} 6.26135133093290 & 0. & 0. \\ 0. & 0. & 0. & 0. \end{bmatrix}$$

$$Arank_1 := U \cdot Srank_1 \cdot Vt$$

$$Arank_1 := \begin{bmatrix} -0.514060681077674 & 5.23431920388754 & 1.99515596163644 \\ 0.206981851287708 & -2.10755095445190 & -0.803331376524436 \\ -0.142501141471856 & 1.45098913190237 & 0.553070896905676 \end{bmatrix}$$

$$(14)$$

Answer:

Best Rank one approximation:

-0.5140606810776739 5.23431920388754 1.995155961636438 $0.20698185128770794 \quad -2.107550954451898 \quad -0.8033313765244364$ -0.1425011414718564 1.4509891319023662 0.553070896905676

2. c

> $Srank_2 := DiagonalMatrix(S_{1..2}, 3, 3)$

$$Srank_2 := \begin{bmatrix} 6.26135133093290 & 0. & 0. \\ 0. & 4.17319797039996 & 0. \\ 0. & 0. & 0. \end{bmatrix}$$
 (16)

>
$$Srank_2 := Diagonal Matrix(S_{1..2}, 3, 3)$$

$$Srank_2 := \begin{bmatrix} 6.26135133093290 & 0. & 0. \\ 0. & 4.17319797039996 & 0. \\ 0. & 0. & 0. \end{bmatrix}$$
(16)
$$Arank_2 := U \cdot Srank_2 \cdot Vt$$

$$Arank_2 := \begin{bmatrix} 0.980540907270313 & 4.98838591773545 & 3.02545598456845 \\ 2.78462949310486 & -2.53169700115519 & 0.973563847714099 \\ -1.79013446672211 & 1.72210344170339 & -0.582721187100628 \end{bmatrix}$$
(17)

Best Rank 2 approximation is:

0.980540907270313 4.988385917735454 3.02545598456845482.784629493104856 -2.531697001155195 0.9735638477140988 $-1.790134466722111 \quad 1.7221034417033938 \quad -0.5827211871006 \\ 283$

Find the best least squares approximating plane for the following

```
three-dimensional vectors,
and the projections of the vectors onto the subspace:
 *************************
The best least square (12.4.2)
with(VectorCalculus):
> A := Matrix([[2,-1,7,1],[3,4,-2,1],[1,0,1,0]])
                                       A := \begin{bmatrix} 2 & -1 & 7 & 1 \\ 3 & 4 & -2 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}
                                                                                                                 (18)
> U, S, Vt := SingularValues(A, output = ['U', 'S', 'Vt'])

U, S, Vt := \begin{bmatrix} -0.932323094927223 & -0.313172844465256 & -0.180821503574287 \\ 0.334156944734542 & -0.937229798827319 & -0.0996967425534974 \\ -0.138248988969183 & -0.153372336748329 & 0.978449867581040 \end{bmatrix}
                                                                                                                 (19)
      7.76383316783266

5.14665168641866

0.484634873637294

, [[ -0.128857012121923, 0.292246217147758,
     -0.944485073856352, -0.0770452091463042],
     [-0.697814354065975, -0.667569239222174, -0.0915396415097822,
     -0.242954588629385],
     [0.655579385749605, -0.449751923553959, -0.181388457814040,
     -0.578823896890521],
     [0.258198889747161, -0.516397779494322, -0.258198889747161,
     0.774596669241483 ]]
> Srank_2 := DiagonalMatrix(S_{1..2}, 3, 4)
                 Srank\_2 := \begin{bmatrix} 7.76383316783266 & 0. & 0. & 0. \\ 0. & 5.14665168641866 & 0. & 0. \\ 0. & 0. & 0. & 0. \\ \end{bmatrix}
                                                                                                                 (20)
\rightarrow ARank 2 := U.Srank 2.Vt,
ARank 2 :=
                                                                                                                 (21)
     [2.05744999924839, -1.03941284340506, 6.98410449292397,
     0.949276268955153],
     [3.03167531334243, 3.97826955298687, -2.00876405872859, 0.972033244634240]
    [0.689130202735967, 0.213268281970857, 1.08601276112764, 0.274473040777796]]
> PlotVector([\langle A[1][1], A[2][1], A[3][1]\rangle, \langle A[1][2], A[2][2], A[3][2]\rangle,
        \langle A[1][3], A[2][3], A[3][3] \rangle, \langle A[1][4], A[2][4], A[3][4] \rangle,
        \langle ARank\_2[1][1], 0, 0 \rangle, \langle 0, ARank\_2[2][1], 0 \rangle, \langle color = [orange, blue, yellow, black, ]
        green, red]);
```


$$\rightarrow v1 := Vector(Column(ARank_2, 1)); v2 := Vector(Column(ARank_2, 2));$$

Vectors v1 and v2 are red and green -> they are projections (2 principal components) they are the best least square 2 dimentional subspace that is found by SVD according to the section 12.4.2 on the data matrix A.

The cross product of this 2 vectors will give the vecotr n orthogonal to v1 an v2 and the plane they make

_is below:

>
$$n := CrossProduct(v1, v2)$$

 $n := (-2.09498551801817)e_x + (-1.15507961008274)e_y + (11.3362529465249)e_z$ (23)

>
$$plane := -2.09498551801817 \cdot xI - 1.15507961008274 \cdot x2 + 11.3362529465249 \cdot x3 = 0$$

 $plane := -2.09498551801817 \cdot xI - 1.15507961008274 \cdot x2 + 11.3362529465249 \cdot x3 = 0$ (24)

Answer:

The best Plane is:

 $plane \coloneqq -2.09498551801817 \ xI - 1.15507961008274 \ x2 + 11.3362529465249 \ x3 = 0$ The projections are: