

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский госуларственный технический

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

Лабораторная работа № 6 Дисциплина: «Экономика программной инженерии»

Студент Овчинникова А. П.

Группа ИУ7-85Б

Вариант 15

Теоретическая часть

COnstructive COst MOdel (COCOMO – модель издержек разработки) – это алгоритмическая модель оценки стоимости разработки программного обеспечения. Модель COCOMO предназначена только для каскадной модели жизненного цикла.

СОСОМО состоит из иерархии трех последовательно детализируемых и уточняемых форм: обычной, промежуточной и встроенной.

Трудозатраты = $C_1 \cdot EAF \cdot (\text{размер})^{p_1}$

Время $= C_2 \cdot (\text{трудозатраты})^{p_2}$

Для обычного режима $C_1=3.2, p_1=1.05, C_2=2.5, p_1=0.38$. Для промежуточного режима $C_1=3.0, p_1=1.12, C_1=2.5, p_1=0.35$. Для встроенного режима $C_1=2.8, p_1=1.2, C_1=2.5, p_1=0.32$.

 $EAF = RELY \cdot DATA \cdot CPLX \cdot ACAP \cdot AEXP \cdot PCAP \cdot VEXP \cdot \\ LEXP \cdot TIME \cdot STOR \cdot VIRT \cdot TURN \cdot MODP \cdot TOOL \cdot SCED$

Компания разрабатывает программнуюсистему управления воздушным движением. Программа обрабатывает сигналы радара и ответчика и преобразовывает их в цифровые данные, позволяющие авиадиспетчерам назначать курсы, высоту и скорость полетов. Разработка ведется командой высококвалифицированных специалистов в рамках государственногоконтракта. Предполагаемый размер разрабатываемой системы 430000 строк кода. Система имеет высокие требования по надежности, жесткие ограничения на время выполнения и сроки разработки. Используется промежуточный режим модели.

Анализ влияния различных драйверов затрат на трудоемкость и длительность программного проекта

Влияние факторов RELY, DATA и CPLX на трудоемкость и время в базовом режиме модели представлено на рисунках 1 и 2 соответственно.

Влияние факторов RELY, DATA и CPLX на трудоемкость и время в промежуточном режиме модели представлено на рисунках 3 и 4 соответственно.

Влияние факторов RELY, DATA и CPLX на трудоемкость и время во встроенном режиме модели представлено на рисунках 5 и 6 соответственно. Исходя из приведенных графиков можно сделать вывод, что наибольшее влияние на трудоемкость и время проекта оказывает драйвер затрат CPLX во всех трех режимах модели.

Рис. 1: Влияние факторов RELY, DATA и CPLX на трудоемкость (базовая модель).

Рис. 2: Влияние факторов RELY, DATA и CPLX на время (базовая модель).

Рис. 3: Влияние факторов RELY, DATA и CPLX на трудоемкость (промежуточная модель).

Рис. 4: Влияние факторов RELY, DATA и CPLX на время (промежуточная модель).

Рис. 5: Влияние факторов RELY, DATA и CPLX на трудоемкость (встроенная модель).

Рис. 6: Влияние факторов RELY, DATA и CPLX на время (встроенная модель).

Исследуем влияние драйверов затрат на трудоемкость и сроки разработки при наличии более жестких ограничений на время выполнения (высокий уровень фактора ТІМЕ). Будем использовать базовую модель (рисунки 7 и 8). Из приведенных графиков видно, что при наличии более жестких ограничений на время выполнения драйвер затрат СРLХ также оказывает наибольшее влияние и на время реализации, и на трудоемкость.

Рис. 7: Влияние факторов RELY, DATA и CPLX на трудоемкость (встроенная модель).

Рис. 8: Влияние факторов RELY, DATA и CPLX на время при наличии более жестких ограничений на время выполнения(встроенная модель).

Анализ проекта по управлению воздушным движением

Настройки параметров проекта представлены на рисунке 9. В качестве языка программирования выберем C++. Декомпозиция работ по созданию ПО представлена на рисунке 10. Распределение работ и времени по стадиям жизненного цикла представлено на рисунке 11. Диаграмма привлечения сотрудников представлена на рисунке 12.

При оценке стоимости человеко-месяца равной 60000 рублей, бюджет проекта был предварительно оценен в 4 440 000 рублей.

Рис. 9: Настройки параметров проекта.

• 4.30.00 Dialog		
Декомпозиция работ по созданию ПО		
Вид деятельности	Бюджет (%)	Человеко-месяцы
Анализ требований	4	2.96
^В Проектирование продукта	12	8.88
Программирование	44	32.56
Тестирование	6	4.44
Верификация и аттестация	14	10.36
Канцелярия проекта	7	5.18
Управление конфигурацией и обеспечение качества	7	5.18
Создание руководств	6	4.44
Итого	100	74
Бюджет	4440000	

Рис. 10: Декомпозиция работ по созданию ПО.

	L++		
,l	Dialog		
Ï	Распределение работ и времени по стадиям жиз	ненного цикла	
4	Вид деятельности	Трудозатраты (%/человеко-месяцы)	Время (%/месяцы) и
11	Планирование и определение требований	8/1185	36/20
K'	Проектирование продукта	18/2665	36/20
ı	Детальное проектирование	25/3702	18/10
ı	Кодирование и тестирование отдельных модуле	й 26/3850	18/10
	Интеграция и тестирование	31/4589	28/14
	Итого	108/15991	136/74
IV.	Бюджет	4440000	
1	amminera) Ohend adicordin 100E (vicilo	льзование программных	ипструментов)

Рис. 11: Декомпозиция работ по созданию ПО.

Рис. 12: Численность команды проекта.

Заключение о применимости модели СОСОМО для решения поставленной задач

Использование методики СОСОМО позволяет дать первичную оценку проекта, используя только информацию о количестве строк кода (KLOC). Методика СОСОМО промежуточного и встроенного уровня требует значительных усилий на проведение предварительной оценки, а результаты оценки базового метода недостаточно точны. Поэтому применима только для средних и крупных проектов.

Кроме того, для коммерческих проектов метод СОСОМО приводит к завышенным значениям оценок. Поэтому метод СОСОМО применяется только к разработке технического программного обеспечения.

Однако стоит учитывать, что в настоящее время существует методика СОСОМО2, которая способна учитывать особенности конкретного ПО, такие как его интерфейс, данные и их движение внутри програмнного комплекса, а поэтому может дать более точную оценку трудозатрат и времени разработки проекта.