	_		
NOM :	INTERROGATION N° 19	MPSI-2 19-20	Note:

Exercice 1

Le diagramme potentiel-pH du magnésium est tracé ci-dessous pour une concentration de travail C_0 = 1,0×10⁻² mol.L⁻¹. Les espèces du magnésium intervenant dans le diagramme sont Mg_(s), Mg²⁺ et $Mg(OH)_{2(s)}$.

- 1. Indiquer à quelle zone du diagramme correspondent chacune des espèces du magnésium considérées.
- 2. Déterminer le potentiel standard du couple Mg²⁺/Mg_(s) d'après le diagramme potentiel-pH.
- 3. Calculer le produit de solubilité K_s de l'hydroxyde de magnésium Mn(OH)_{2(s)}.

Exercice 2

Une mole de gaz parfait, placé dans une enceinte rigide de volume Vo, est initialement en contact avec un thermostat de température T₀. On le met en contact avec un autre thermostat de température T₁. On connait le coefficient de Laplace y du gaz.

- 2. Déterminer l'entropie échangée
- 3. Déterminer l'entropie créée.

Données:

Pour un gaz parfait :

Variables indépendantes T, V

 $\Delta S = \frac{nR}{\gamma - 1} ln\left(\frac{T_F}{T_0}\right) + nR ln\left(\frac{V_F}{V_0}\right)$ $\Delta S = \frac{\gamma nR}{\gamma - 1} ln\left(\frac{T_F}{T_0}\right) - nR ln\left(\frac{P_F}{P_0}\right)$ Variables indépendantes T, P