

William Stallings
Computer Organization
and Architecture
10th Edition

+ Chapter 10 Computer Arithmetic

Arithmetic & Logic Unit (ALU)

- Part of the computer that actually performs arithmetic and logical operations on data
- All of the other elements of the computer system are there mainly to bring data into the ALU for it to process and then to take the results back out
- Based on the use of simple digital logic devices that can store binary digits and perform simple Boolean logic operations

Figure 10.1 ALU Inputs and Outputs

Integer Representation

- In the binary number system arbitrary numbers can be represented with:
 - The digits zero and one
 - The minus sign (for negative numbers)
 - The period, or *radix point* (for numbers with a fractional component)
- For purposes of computer storage and processing we do not have the benefit of special symbols for the minus sign and radix point
- \bullet Only binary digits (0,1) may be used to represent numbers

Sign-Magnitude Representation

Table 10.1
Characteristics of Twos Complement Representation and Arithmetic

Range	-2_{n-1} through $2_{n-1}-1$	
Number of Representations of Zero	One	
Negation	Take the Boolean complement of each bit of the corresponding positive number, then add 1 to the resulting bit pattern viewed as an unsigned integer.	
Expansion of Bit Length	Add additional bit positions to the left and fill in with the value of the original sign bit.	
Overflow Rule	If two numbers with the same sign (both positive or both negative) are added, then overflow occurs if and only if the result has the opposite sign.	
Subtraction Rule	To subtract B from A , take the twos complement of B and add it to A .	

Table 10.2
Alternative Representations for 4-Bit Integers

Decimal Representation	Sign-Magnitude Representation	Twos Complement Representation	
+8	·—		
+7	0111	0111	
+6	0110	0110	
+5	0101	0101	
+4	0100	0100	
+3	0011	0011	
+2	0010	0010	
+1	0001	0001	
+0	0000	0000	
-0	1000	:	
-1	1001	1111	
-2	1010	1110	
-3	1011	1101	
-4	1100	1100	
-5	1101	1011	
-6	1110	1010	
-7	1111	1001	
-8	_	1000	

Range Extension

- Range of numbers that can be expressed is extended by increasing the bit length
- In sign-magnitude notation this is accomplished by moving the sign bit to the new leftmost position and fill in with zeros
- This procedure will not work for twos complement negative integers
 - Rule is to move the sign bit to the new leftmost position and fill in with copies of the sign bit
 - For positive numbers, fill in with zeros, and for negative numbers, fill in with ones
 - This is called sign extension

Fixed-Point Representation

The radix point (binary point) is fixed and assumed to be to the right of the rightmost digit

Programmer can use the same representation for binary fractions by scaling the numbers so that the binary point is implicitly positioned at some other location

Negation

- Twos complement operation
 - Take the Boolean complement of each bit of the integer (including the sign bit)
 - Treating the result as an unsigned binary integer, add 1

$$+18 = 00010010$$
 (twos complement)
bitwise complement = 11101101
 $\frac{+}{111011110} = -18$

■ The negative of the negative of that number is itself:

$$-18 = 11101110$$
 (twos complement)
bitwise complement = 00010001
 $\frac{+}{00010010} = +18$

+

Negation Special Case 1

00000000 (twos complement)

Bitwise complement =

11111111

Add 1 to LSB

+ 1

Result

100000000

Overflow is ignored, so:

$$-0 = 0$$

Negation Special Case 2

$$-128 = 10000000$$
 (two complement)

Bitwise complement = 01111111

Add 1 to LSB ± 1

Result 10000000

So:

-(-128) = -128 X

Monitor MSB (sign bit)

It should change during negation

MARKET STATE	
Decimal Representation	Twos Complement Representation
+8	_
+7	0111
+6	0110
+5	0101
+4	0100
+3	0011
+2	0010
+1	0001
+0	0000
-0	_
-1	1111
-2	1110
-3	1101
-4	1100
-5	1011
-6	1010
-7	1001
-8	1000

$ \begin{array}{rcl} & 1001 & = & -7 \\ & +0101 & = & 5 \\ & 1110 & = & -2 \end{array} $ $ \begin{array}{rcl} & (a)(-7)+(+5) \\ \end{array} $	$ \begin{array}{rcl} & 1100 & = & -4 \\ & + 0100 & = & 4 \\ & 10000 & = & 0 \end{array} $ $ \begin{array}{rcl} & (b)(-4)+(+4) & & & & \\ & & & & & \\ & & & & &$
$0011 = 3 \\ +0100 = 4 \\ 0111 = 7$ $(c)(+3)+(+4)$	$ 1100 = -4 \\ +1111 = -1 \\ 11011 = -5 $ $ (d)(-4)+(-1) $
0101 = 5 +0100 = 4 1001 = Overflow (e)(+5)+(+4)	1001 = -7 $+1010 = -6$ $10011 = Overflow$ $(f)(-7)+(-6)$

Figure 10.3 Addition of Numbers in Twos Complement Representation

OVERFLOW RULE:

If two numbers are added, and they are both positive or both negative, then overflow occurs if and only if the result has the opposite sign. Overflow

Rule

SUBTRACTION RULE:

To subtract one number (subtrahend) from another (minuend), take the twos complement (negation) of the subtrahend and add it to the minuend.

Subtraction

Rule

Figure 10.4 Subtraction of Numbers in Twos Complement Representation (M-S)

Figure 10.5 Geometric Depiction of Twos Complement Integers

SW = Switch (select addition or subtraction)

Figure 10.6 Block Diagram of Hardware for Addition and Subtraction

Figure 10.7 Multiplication of Unsigned Binary Integers

(a) Block Diagram

2.0						
9	U	A	Q	М		
j	0	0000	1101	1011	Initial Values	
	0	1011	1101	1011	Add \ First	
	0	0101	1110	1011	Shift ∫ Cycle	
2000	0	0010	1111	1011	Shift } Second Cycle	
	0	1101	1111	1011	Add & Third	
	0	0110	1111	1011	Shift \(\) Cycle	
	1	0001	1111	1011	Add & Fourth	
	0	1000	1111	1011	Shift \(\square\) Cycle	

(b) Example from Figure 9.7 (product in A, Q)

Figure 10.8 Hardware Implementation of Unsigned Binary Multiplication

Figure 10.9 Flowchart for Unsigned Binary Multiplication

Figure 10.10 Multiplication of Two Unsigned 4-Bit Integers Yielding an 8-Bit Result

(a) Unsigned integers

(b) Twos complement integers

Figure 10.11 Comparison of Multiplication of Unsigned and Twos Complement Integers

Figure 10.13 Example of Booth's Algorithm (7×3)

Figure 10.12 Booth's Algorithm for Twos Complement Multiplication

			NAME OF TAXABLE PARTY.	THE PERSON NAMED IN COLUMN	
	A	Q	Q_{-1}	M	
	0000	0011	0	0111	Initial Values
	1001	0011	0	0111	A ← A - M \ First
1	1100	1001	1	0111	shift \int Cycle
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1110	0100	1	0111	Second Shift Second
100 A 100 A	0101	0100	1	0111	$A \leftarrow A + M $ Third
1 35	0010	1010	0	0111	shift 5 Cycle
A	0001	0101	0	0111	Shift } Fourth Cycle

Figure 10.13 Example of Booth's Algorithm (7× 3)

(c)
$$(-7) \times (3) = (-21)$$
 (d) $(-7) \times (-3) = (21)$

Figure 10.14 Examples Using Booth's Algorithm

Figure 10.15 Example of Division of Unsigned Binary Integers

Figure 10.16 Flowchart for Unsigned Binary Division © 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

A	Q	
0000	0111	Initial value
0000 1101 1101	1110	Shift Use twos complement of 0011 for subtraction Subtract
0000	1110	Restore, set $Q_0 = 0$
0001 1101 1110	1100	Shift Subtract
0001	1100	Restore, set $Q_0 = 0$
0011 1101	1000	Shift
0000	1001	Subtract, set $Q_0 = 1$
0001 1101	0010	Shift
1110 0001	0010	Subtract Restore, set $Q_0 = 0$

Figure 10.17 Example of Restoring Twos Complement Division (7/3)