Solución Taller N°3 Álgebra (IME006)

Profesores: M. T. Alcalde, R. Benavides, C. Burgueño, M. Carrillo, F. Salazar, A. Sepúlveda.

13 de Mayo 2008.

Problema.

En $\mathbb Z$ se define la relación $\mathcal R$ de la siguiente forma

$$a\mathcal{R}b \Leftrightarrow a^2 + b^2 = 2k$$
, para algún $k \in \mathbb{Z}$.

- 1. Demuestre que \mathcal{R} es una relación de equivalencia.
- 2. Determine las clases de equivalencias del 0 y 1
- 3. Determine el conjunto cuociente \mathbb{Z}/\mathcal{R} .

Solución.

- 1. Debemos mostrar que \mathcal{R} es reflexiva, simétrica y transitiva. En efecto,
 - a) Reflexiva. $a\mathcal{R}a \Leftrightarrow a^2 + a^2 = 2k, k \in \mathbb{Z}$ es verdadera para $k = a^2$. Por tanto, \mathcal{R} es reflexiva.
 - b) Simetría. Si $a\mathcal{R}b$ entonces $a^2 + b^2 = 2k$, $k \in \mathbb{Z}$, es decir, $b^2 + a^2 = 2k$, $k \in \mathbb{Z}$, por tanto, $b\mathcal{R}a$. Concluimos que \mathcal{R} es simétrica.
 - c) Transitividad. Si $a\mathcal{R}b$ y $b\mathcal{R}c$ tenemos $a^2+b^2=2k$, $k\in\mathbb{Z}$ y $b^2+c^2=2t$, $t\in\mathbb{Z}$. De donde, $a^2+c^2=2\left(k+t-b^2\right)$, con $(k+t-b^2)\in\mathbb{Z}$. Es decir, \mathcal{R} es transitiva.

Por todo lo anterior, concluimos que \mathcal{R} es una relación de equivalencia.

- 2. Para las clases de equivalencias tenemos,
 - a) Clase del 0. $a\mathcal{R}0 \Leftrightarrow a^2 = 2k \text{ con } k \in \mathbb{Z}$, es decir, a^2 es un número par, lo que implica que a es par. Luego,

$$cl(0) = \{a \in \mathbb{Z} \mid a \text{ es par}\} = \{a \in \mathbb{Z} \mid a = 2t, t \in \mathbb{Z}\}\$$

b) Clase del 1.

 $a\mathcal{R}1\Leftrightarrow a^2=2k-1$ con $k\in\mathbb{Z},$ es decir, a^2 es un número impar, lo que implica que a es impar. Luego,

$$cl(1) = \{a \in \mathbb{Z} \mid a \text{ es impar}\} = \{a \in \mathbb{Z} \mid a = 2t - 1, t \in \mathbb{Z}\}\$$

3. Del punto anterior no es difícil ver que sólo hay dos clases de equivalencia, por tanto, el conjunto cuociente es,

$$\mathbb{Z}/\mathcal{R} = cl(0) \cup cl(1).$$