WS 17/18
- Blatt 3 -

Dr. W. Spann F. Hänle, M. Oelker

Lineare Algebra für Informatiker und Statistiker

Aufgabe 9 (4 Punkte)

Sei M eine Menge und I eine nicht leere (Index)menge. A_i und B_i seien für jedes $i \in I$ ebenfalls Mengen.

(a) Zeigen Sie:

$$\left(\bigcap_{i\in I} A_i\right) \cup M = \bigcap_{i\in I} \left(A_i \cup M\right)$$

(b) Beantworten Sie (mit Begründung!), ob immer gilt

$$\left(\bigcap_{i\in I} A_i\right) \cup \left(\bigcap_{i\in I} B_i\right) = \bigcap_{i\in I} \left(A_i \cup B_i\right) .$$

Aufgabe 10 (4 Punkte)

Sei $f: X \to Y$ eine Abbildung. Zeigen Sie:

- (a) $\forall A, B \subset X : f(A \cup B) = f(A) \cup f(B)$
- (b) $\forall A, B \subset X : f(A \cap B) \subset f(A) \cap f(B)$
- (c) f injektiv $\iff \forall A, B \subset X : f(A \cap B) = f(A) \cap f(B)$. (Hinweis zum Beweis von " \iff ": Verwenden Sie einelementige Mengen A, B.)

Aufgabe 11 (4 Punkte)

Die Elemente der Gruppe S_3 seien folgendermaßen bezeichnet:

$$\rho_1 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \quad \rho_2 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \quad \rho_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix},
\tau_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \quad \tau_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \quad \tau_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}.$$

- (a) Stellen Sie die Verknüpfungstafel auf.
- (b) Zeigen Sie, daß die Gruppe nicht kommutativ ist.
- (c) Lösen Sie die Gleichungen $\rho_1 \circ \pi = \tau_3$ und $\sigma \circ \rho_3 = \tau_2$.

Aufgabe 12 (4 Punkte)

Zeigen Sie, dass $\mathbb{R} \times (\mathbb{R} \setminus \{0\})$ mit der Verknüpfung $(a_1, b_1) \circ (a_2, b_2) := (a_1 \cdot b_2 + a_2, b_1 \cdot b_2)$ eine *nicht* kommutative Gruppe ist.

Abgabe einzeln, zu zweit oder zu dritt: Dienstag, 21.11.2017 bis 10^{15} Uhr, Übungskasten vor der Bibliothek im 1. Stock