Vizualization in R

Mikhail Stepanov

October 4, 2012

Basic stats and Necessity of Visualization

Summary statistics give us some sense of the data:

- Mean vs. Median.
- Standard deviation.
- Quartiles, Min/Max.
- Correlations between variables.

Visualization gives us a more holistic sense

Median, Quartile, Percentile

- ▶ In statistics, a percentile (or centile) is the value of a variable below which a certain percent of observations fall
 - e.g., the 20th percentile is the value (or score) below which 20 percent of the observations may be found
- ▶ 25th percentile is also known as the first quartile (Q1)
- ▶ 50th percentile as the median or second quartile (Q2)
- 75th percentile as the third quartile (Q3)

Why Visualize?

4 data sets, characterized by the following. Are they the same, or are they different?

Property	Values			
Mean of x in each case	9			
Exact variance of x in each case	10			
Exact mean of y in each case	7.5 (to 2 d.p)			
Variance of Y in each case	3.75 (to 2 d.p)			
Correlations between x and y in each case	0.816			
Linear regression line in each case	Y = 3.00 + 0.500x (to 2 d.p and 3 d.p resp.)			

	i							
	х '	У						
	10.00	8.04						
	8.00	6.95	ii					
	13.00	7.58	X	У				
	9.00	8.81	10.00	9.14				
	11.00	8.33	8.00	8.14				
	14.00	9.96	9.00	8.74 8.77	iii	i		
ı	6.00	7.24	11.00	9.26	×	У		
ı	4.00	4.26	14.00	8.10	10.00	7.46		
ı	12.00	10.84	6.00	6.13	8.00 13.00	6.77	iv	,
ı	7.00	4.82	4.00	3.10	9.00	12.74 7.11	×	У
ı	5.00	5.68	12.00	9.13	11.00	7.81	8.00	6.58
-	3.00	3.00	7.00	7.26	14.00	8.84	8.00	5.76
			5.00	4.74	6.00	6.08	8.00	7.71
					4.00	5.39	8.00	8.84
					12.00	8.15	8.00	8.47
					7.00	6.42	8.00	7.04
					5.00	5.73	8.00	5.25
							19.00	12.50
							8.00	5.56
							8.00	7.91
							8.00	6.89

Why Visualize?


```
>plot(s1)
>plot(lm(s1$y ~ s1$x))
```

Examining the Distribution of a Single Variable

Graphing a single variable

- plot(sort(.)) for low volume data
- hist(.) a histogram
- plot(density(.)) densityplot
 - A "continuous histogram"
- Example
 - Frequency table of household income

Examining the Distribution of a Single Variable

Graphing a single variable

- plot(sort(.)) for low volume da
- hist(.) a histogram
- plot(density(.)) densityplot
 - A "continuous histogram"
- Example
 - Frequency table of household income

Distribution log10(HouseHold Income)

One More Way to Examine Distribution

A sense of the data range

 If it's very wide, or very skewed, try computing the log

Outliers, anomalies

· Possibly evidence of dirty data

Shape of the Distribution

- · Unimodal? Bimodal?
- Skewed to left or right?
- · Approximately normal? Approximately lognormal?

Example - Distribution of purchase size (\$)

- Range from 0 to > \$10K, left skewed
- · Typical of monetary data
- Plotting log of data gives better sense of distribution
- Two purchasing distributions
 - ~ \$55
 - ~ \$2900

Evidence of Dirty Data

hist(age, breaks=100,
main="Accountholder age distribution",
xlab="age", col="gray")

Boxplot and Normal Distribution

Analyzing Relationship Between two Variables

How?

- Two Continuous Variables (or two discrete variables)
 - Scatterplots
 - ▶ LOESS (fit smoothed line to the data)
 - Linear models: graph the correlation
 - Binplots, hexbin plots
 - More legible color-based plots for high volume data
- Continuous vs. Discrete Variable
 - Jitter, Box and whisker plots, Dotplot or barchart

Example:

- Household income by region (ZIP1)
- Scatterplot with jitter, with box-and-whisker overlaid
- New England (0) and West Coast (9) have highest mean household income

Scatterplots and Correlation in Data

- Is there a relationship between the two variables?
 - Linear? Quadratic?
 - Exponential?
 - Try semi-log or log-log plots
 - Is it a cloud?
 - Round? Concentrated? Multiple Clusters?
- How?
 - Scatterplots
- Example
 - Red line: linear fit
 - Blue line: LOESS
 - Fairly linear relationship, but with wide variance


```
with(ds, {
plot(mcs ~ cesd) abline(lm(mcs ~ cesd), lcol="red")
lines(lowess(mcs ~ cesd), lcol="blue") })
```

Correlation and Pearson Correlation Coefficient

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$
1.0 0.8 0.4 0.0 -0.4 -0.8 -1.0

1.0 1.0 1.0 -1.0 -1.0 -1.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0

And one More About Scatterplots

<u>Scatterplot:</u> Overplotting makes it difficult to see structure

Hexbinplot: Now we see where the data is concentrated.

```
hexbinplot(log10(MeanHouseholdIncome) ~ MeanEducation,
data=zcta, trans = sqrt, inv = function(x) x^2, type=c("g", "r"))
```

Establishing Multiple Pairwise Relationship Between Variables

- Whv?
 - Examine many two-way relationships quickly
- How?
 - pairs(ds) can generate a plot of each pairs of variables
- Example
 - Iris Characteristics
 - Strong linear relationship between petal length and width
 - Petal dimensions discriminate species more strongly than sepal dimensions

Timeseries

What?

- Looking for ...
 - Data range
 - Trends
 - Seasonality

How?

- Use time series plot
- Example
- •International air travel (1949-1960)
- Upward trend: growth appears superlinear
- Seasonality
 - Peak air travel around Nov. with smaller peaks near Mar. and June

Data Exploration vs Data Presentation

Data Exploration:

This tells you what you need to know.

Presentation:

This tells the stakeholders what they need to know.