

King Saud University, department of Computer Science			Name:		
Theory of Computation - CSC 339		S	Student ID:		
Midterm exam – 25/2/2021 Section ID (or time):			Section ID (or time):		
Question 1					.6 points
For each of the following statements, circle either True or False. (No explanation needed.)					
a) If $S1 = \{a,b,c\}$ and $S2 = \{S1\}$. Then, $S1$ and $S2$ are equivalent.				True	<u>False</u>
b) If L_1 is regular and L_2 is regular. Then, $L_1 \cup L_2$ is regular.				<u>True</u>	False
c) If L_1 is regular and L_2 is regular. Then, $L_1 \circ L_2$ is not regular.				True	False
d) The class of regular languages is closed under the (kleene) star operation.				<u>True</u>	False
e) Every NFA can be converted into an equivalent DFA.				— <u>True</u>	False
f) There exists some regular expression that cannot be converted into DFA.				True	False
g) Any regular expression can be converted into an equivalent NFA, and vice versa.				<u>True</u>	False
h) Any context-free grammar (CFG) can be converted into an equivalent NFA.				True	False
i) Let $L = \{a^ib^k \mid i \neq k\}$. L is a regular language.				True	False
j) If string $w \in B$ passes the three conditions of the pumping lemma, then B must be regular.				True	False
k) All regular languages are context-free.				<u>True</u>	False
1) A CFG is said to be ambiguous if there are different parse trees for different strings.				True	False
Ouestion 2					5 points
& mesorom =					.e penies
For each of the following noted.	ng questions, <u>select exact</u>	t <u>ly one option</u> . As.	sume the alphabet Σ is $\{0,1\}$	unless oti	herwise
1) Which of the following	ing languages is regular?				
(a) $\{0^i1^i \mid i \ge 0\}$	(b) $\{0^i1^i \mid i=2\}$	(c) $\{0^i1^i0^i \mid i \geq 0\}$	(d) None of the menti	oned.	
2) Which of the following ends with 0}	ing regular expressions re	epresent the langu	$age L = \{w \mid w \text{ of an even length}\}$	ngth and	starts and
(a) $0 \Sigma^* \Sigma^* 0^*$	(b) 0 Σ Σ*0	$\underline{(c)\ 0(\Sigma\Sigma)*0}$	(d) All of the mention	ied.	

- 3) Consider a language L represented by the regular expression $\Sigma*011*$. Which of the following strings belongs to this language?
- (a) 0001
- (b) 000111
- (c) 1101
- (d) All mentioned strings $\in L$
- 4) When using the pumping lemma to prove non-regularity, we select a string w, and fragment it into three parts such that w = xyz. Which of these parts cannot be an empty string?
- (a) x

(b) y

(c) z

- (d) All of the mentioned
- 5) What regular expression is equivalent to the NFA on the right?
- (a) $1*(0 \cup 1)*110$
- (b) $1(0 \cup 1)*11*0$
- (c) $(1(0 \cup 1)*11*0)+$

(d) $(1(0 \cup 1)*11*0)*$

Answer each of the following questions about NFA N_1 .

a) (1.5 point) Assume $\Sigma = \{a,b\}$. What are Q, q_0 , and F for N_1 ?

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$q_0 = q_0$$

$$F = \{q_2, q_3\}$$

 N_1 q_0 a q_1 b q_2 b g_3 b

b) (2 point) Provide 2 example strings (of any length) that N_I will accept, and provide 2 other example strings that N_I will not accept.

Not accepted

$$wI = ab$$

$$w3 = aa$$

$$w2 = b$$

$$w4 = ba$$

c) (3.5 points) Convert N_1 into an equivalent regular expression. Show your work step by step, and write the final expression inside the designated box. You may use the back of this page for extra space.

Answer the following questions about language $L_1 = \{0^n 1^{2n} \mid n \ge 0\}$.

a) (1 point) Informally describe the language L_1 (i.e., what type of strings does it consist of?).

 L_1 consists of all strings that have a number of 0's followed by twice the number of 1's. The empty string is also a member of L_1 .

b) (2 points) List down the three conditions of the pumping lemma. And use the pumping lemma to prove that L_1 is not regular, and clearly state the length of the string you choose.

The three conditions of the pumping lemma are:

- (1) $xy^iz \in L_I$ for each $i \ge 0$
- (2) |v| > 0, and
- (3) $|xy| \le p$.

Proof:

We assume L_I is regular. Let $s = 0^p 1^{2p}$, where p is the pumping length. Then, |s| = 3p. Condition (3) of the pumping lemma tells us that $|xy| \le p$. By condition (2), we know that y can consist of only 0's. Let |y| = p. Now, if we pump the string such that |y| = p+1, then the new pumped string $sI = 0^{p+1} 1^{2p}$. Condition (1) tells us the new (pumped) string should $\in L_I$, but sI is not in the right form, and therefore $sI \notin L_I$. We have a contradiction; thus, L_I is not regular.

a) (3 points) Design a CFG G_1 that generates the same language that NFA N_1 (in question 3) recognizes.

 $A \rightarrow aB \mid bD$

 $B \rightarrow bC$

 $C \rightarrow aB \mid \epsilon$

 $D \rightarrow bD \mid \epsilon$

b) (*I point*) Provide the formal definition for G_I (without the rules set). (hint: it should consist of: V, Σ , and S)

$$V = \{A, B, C, D\}$$

$$\Sigma = \{a,b, \epsilon\}$$

$$S = A$$

c) (2 <u>bonus</u> points) Choose 1 string that is accepted by N_1 (from your answer to question 3-b), and use grammar G_1 to draw the parse tree for that string.

