Data Compression

Seminar @ Wolfgang Goethe University Frankfurt Autor: Dr.-Ing. The Anh Vuong

© 2016 by Dr. The Anh Vuong, Bielefeld

Digital Signal Processing

Analog Signal

Digital Signal

Digitale Signalübertragungssystem - Quellen Codierung-

Zeitdiskrete Signal: Abtastung

Shar Funktion III (t) {=1 bei nT, sonst =0}

Spektrum des abgetasteten Signals

 f_g : Grenzfrequenz von x(t)

 f_A : Abtastfrequenz, $f_A = 1/T$

Spektrum des abgetasteten Signals

f_g: Grenzfrequenz von x(t)

 f_A : Abtastfrequenz, $f_A = 1/T$

Abtast Theorem $f_A = 2 f_g$

Abgestaste Signal

rekonsktruieren

Shar Funktion III (t) {=1 bei nT, sonst =0}

Linare Quantisierungskennlinie

Quantisierungskennlinie

- Lineare Quantisierung -

Binäre Codierung - nach der Quantisierung-

Originalwerte	Ersatzwerte x _q	Zahl q	Zuübertragende binäre Code
$g_o \le X[nT] \le g_1$	X _o	0	000
$g_1 \le X[nT] \le g_2$	X ₁	1	001
$g_3 \le X[nT] \le g_3$	X_2	2	010
$g_4 \le X[nT] \le g_4$	X_3	3	011
$g_4 \le X[nT] \le g_5$	X ₄	4	100
$g_5 \le X[nT] \le g_6$	X ₅	5	101
$g_6 \le X[nT] \le g_7$	X ₆	6	110
$g_7 \le X[nT] \le g_8$	X_7	7	111

Quellen Codierung

- PCM: Pulse Code Modulation -

Digitale Signalübertragungssystem - Quellen Codierung-

Redundanz Reduzierung

H: Entropie / H_v: verbundene Entropie

K_m: Mittle Codewortlänge

Quellen Codierung

- Optimale Codierung -

Quellen Codierung -Prädiktion Verfahren -

SENDER

Irrelevante Reduzierung

Data compression: a complex subject

E-Learning Simulator: VUONG-DCP
© 2017 by Dr. The Anh Vuong, Germany