

Modelos Matemáticos II

Grado en Matemáticas

Prueba de clase

27 de mayo de 2020

Apellidos:		Firma:
Nombre:	DMI	_
Nombre:	D.N.I. o pasaporte:	¬

Ejercicio 1 (1 punto). Razona si las siguientes afirmaciones son ciertas o no:

1. (0,5 puntos) Consideramos $\Omega:=(0,1)\times(0,1)\subseteq\mathbb{R}^d,\,X:=\mathcal{C}^2_{\rm c}(\Omega)$ y la aplicación $a:X\times X\to\mathbb{R}$ dada por

$$a(u,v) := \int_0^1 \int_0^1 \partial_x u(x,y) \partial_x v(x,y) \, \mathrm{d}x \, \mathrm{d}y$$

- a) La aplicación a es un producto escalar en X.
- b) El espacio X con la aplicación a es un espacio de Hilbert.
- 2. (0,25 puntos) Consideramos $\Phi(t,x)$ con $t>0, x\in\mathbb{R}$, solución fundamental de la ecuación del calor, y $g\in\mathcal{C}_c^\infty(\mathbb{R})$ con $\int_{-\infty}^\infty g(x)\,\mathrm{d}x=0$. Entonces

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Phi(t, x - y) g(y) \, \mathrm{d}y \, \mathrm{d}x = 0 \quad \text{para todo } t > 0.$$

3. (0,25 puntos) Consideramos $g \in \mathcal{C}_c^{\infty}(\mathbb{R})$, no negativa y con g(0) > 0. La solución u de la ecuación del calor vista en clase, con condición inicial u(0,x) = g(x) para $x \in \mathbb{R}$, cumple que u(t,x) > 0 para todo t > 0, $x \in \mathbb{R}$.

Ejercicio 2 (1 punto). Consideramos un dominio abierto y acotado $\Omega \subseteq \mathbb{R}^2$ con $|\Omega| = 1$ (medida de Lebesgue igual a 1), y el funcional

$$\mathcal{F}(u) := \int_{\Omega} |\nabla u(z)|^2 dz + \lambda \int_{\Omega} \int_{\Omega} (u(z) + 1)(u(w) + 2)J(z - w) dz dw,$$

donde $J \in \mathcal{C}_c(\mathbb{R}^2)$ es una función continua, no negativa, de soporte compacto, y tal que J(z) = J(-z) para todo $z \in \mathbb{R}^2$, y $\lambda \in \mathbb{R}$ es un parámetro. Encuentra un valor $\lambda_0 > 0$ (en función de J) tal que podamos asegurar que para $|\lambda| < \lambda_0$ el funcional \mathcal{F} alcanza un único mínimo en el espacio $H_0^1(\Omega)$.

Ejercicio 3 (1 punto). El siguiente modelo compuesto por 4 leyes de acción de masas es teórico y fue propuesto por investigadores (Prigogine Y Lefever '68) de Bruselas que le dieron el nombre de **Brusselator** (*Brussels oscillator*) ya que posee soluciones oscilantes en torno a un único estado estacionario.

$$A \xrightarrow{k_1} X$$
, $B + X \xrightarrow{k_2} Y + D$, $X + X + Y \xrightarrow{k_3} X + X + X$, $X \xrightarrow{k4} E$.

(a) Considera que las concentraciones de A, B, D y E (que puedes denotar respectivamente como a, b, d y e) son constantes y no nulas y, llamando x(t) e y(t) a las concentraciones respectivas de X e Y, en el instante de tiempo t, determina las ecuaciones que verifican (únicamente x(t) e y(t)).

(b) Determina las unidades de k_4 y de $\Omega = \sqrt{k_4/k_3}$ y realiza la siguiente adimensionalización de la ecuación: $\tau := k_4 t$ para el tiempo y $u(\tau) := \frac{x(t)}{\Omega}$ y $v(\tau) := \frac{y(t)}{\Omega}$ para las incógnitas, comprobando que el sistema resultante es:

$$\frac{du}{d\tau} = \gamma + u^2v - (\beta + 1)u, \quad \frac{dv}{d\tau} = \beta u - u^2v$$

Describe los parámetros γ y β en función de k1, k2, k3, k4, a y b y verifica que ambos son adimensionales.

- (c) Calcula el estado estacionario (es decir, la solución constante en tiempo) en función de γ y β .
- (d) ¿Es cierto que todas las soluciones convergen al estado estacionario cuando $t \to +\infty$? Justifica la respuesta. (Ayuda: puedes estudiar el Jacobiano del sistema)