Prova tipo A

	P4 de Álgebra Linear I – 2004.2	(29/11/04)	
Nome:_		Matrícula:	
Assinat	ura:	Turma:	

Duração: 1 hora 45 minutos

Questão	Valor	Nota	Revis.
1a	0.7		
1b	0.7		
1c	0.7		
2a	1.0		
2b	1.0		
2c	1.0		
2d	1.0		
2e	1.0		
3a	1.0		
3b	0.5		
4a	0.5		
4b	0.5		
4c	0.5		
Total	10.1		

Instruções

Respostas erradas terão nota zero

- Não é permitido usar calculadora. Mantenha o celular desligado. Escreva de forma clara e legível.
- É proibido desgrampear a prova e as folhas de rascunho. Prova com folhas faltando ou rasuradas terá nota zero.
- \bullet Entregar somente este caderno com as respostas. Faça os cálculos nas folhas de rascunho.
- <u>Verifique</u>, <u>revise</u> e <u>confira</u> cuidadosamente suas respostas.

1)

a) Considere o ponto Q = (2, 1, 3) e a reta r de equações paramétricas

$$r: (x, y, z) = (1, 4, 2) + t(1, -1, 2), \quad t \in \mathbb{R}.$$

Determine o ponto A de r mais próximo de Q.

b) Considere a reta s de equações paramétricas

$$s: (x, y, z) = (1, 2, 3) + t(2, 1, -2), \quad t \in \mathbb{R}.$$

Determine as equações cartesianas de um plano ρ paralelo ao eixo $\mathbb X$ e que contenha a reta s.

c) Considere as retas r_1 e r_2 de equações paramétricas

$$r_1 = (1+t, 1-t, 1+2t), t \in \mathbb{R};$$

 $r_2 = (2t, -1+t, 4-t), t \in \mathbb{R}.$

Caso as retas sejam reversas responda **reversas** e calcule a distância entre as retas. Caso as retas sejam concorrentes responda **concorrentes** e determine o ponto de interseção.

Respostas:

2) Considere a matriz N

$$N = \left(\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{array}\right).$$

- a) Determine os autovalores de N e suas multiplicidades.
- **b)** Determine uma base β de autovetores de N.
- c) Determine uma matriz D diagonal e uma matriz P tais que

$$N = P D P^t$$
.

d) Considere a matriz $M=N^{-1},$ a matriz inversa de N. Escreva M da forma

$$M = Q E Q^{-1},$$

onde E é uma matriz diagonal.

e) Considere a matriz

$$L = \left(\begin{array}{ccc} 111 & 11 & 1\\ 222 & 22 & 2\\ 333 & 33 & 3 \end{array}\right).$$

Determine os autovalores de L e suas multiplicidades.

Respostas:

a) autovalores:

$$\mathbf{b)} \qquad \beta = \{$$

c)

$$D = \begin{pmatrix} \\ \\ \\ \\ \end{pmatrix} \qquad P = \begin{pmatrix} \\ \\ \\ \\ \end{pmatrix}$$

d)

$$E = \begin{pmatrix} & & & \\ & & & \\ & & & \\ & & & \end{pmatrix} \qquad Q = \begin{pmatrix} & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{pmatrix}$$

e)

autovalores e multiplicidades:

3) Considere a reta r de \mathbb{R}^2 de equação cartesiana

$$r: x = 2y - 1$$

e o vetor v = (1, 1).

Considere a transformação afim T projeção na reta r na direção do vetor v, que associa ao vetor $w = \overline{OP}$ o vetor $T(w) = \overline{OQ}$, onde Q é a interseção da reta r e da reta s que contém o ponto P e é paralela ao vetor v = (1,1).

- (a) Determine a parte linear L_T de T.
- (b) Determine a forma matricial de T.

Respostas:

a)
$$[L_T] = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

$$\mathbf{b)} \qquad \begin{bmatrix} T \end{bmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} + \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix}$$

- 4) Considere os números 1/3, (-1/3), 2/3 e (-2/3).
- a) Utilizando só estes números escreva uma matriz R, 3×3 , que represente na base canônica uma rotação (de ângulo diferente de π).
- **b)** Determine o $\cos(\alpha)$ onde α é o ângulo de rotação de R.
- c) Determine a equação paramétrica do eixo de rotação de R.

Respostas:

a) $R = \begin{pmatrix} \\ \\ \end{pmatrix}$

 $\mathbf{b)} \qquad \qquad \cos(\alpha):$

c) eixo de rotação: