Kendall correlations and radar charts to include goals for and goals against in soccer rankings

Roy Cerqueti^{1,2} Raffaele Mattera¹ Valerio Ficcadenti³

¹Department of Social and Economic Sciences, Sapienza University of Rome, Italy

²GRANEM, University of Angers, France

³School of Business, London South Bank University, United Kingdom

July 17, 2024

Introduction

Record of mathematical victory is **5 rounds in advance**: Torino (1946-1947), Fiorentina (1955-1956), Inter (2006-2007 and 2023-2024), Juventus (2018-2019), and Napoli (2022-2023).

Round	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38
2023–24 Inter Milan	w	w	w	w	w	L	w	D	w	w	w	w	D	w	w	w	w	D	w	w	w	w	w	w	w	w	w	w	D	w	w	D	w	w	L	w	D	D
2022–23 SSC Napoli	w	w	D	D	w	w	w	w	w	W	w	w	W	w	w	L	W	W	w	w	w	w	w	w	L	W	w	L	w	D	w	D	D	w	L	w	D	W
2018–19 Juventus FC	w	w	W	w	w	w	w	w	D	w	w	w	w	w	w	w	w	D	w	w	w	D	w	w	w	w	w	L	w	w	w	L	w	D	D	L	D	L

Some literature

- Ausloos (2024) presents new ranking indicators for cyclists based on rank-size laws.
- ► Ficcadenti et al. (2023) and Ausloos (2014) view the **football** rankings as unified frameworks through a rank-size analysis.
- Sziklai et al. (2022), for an overview of tournaments' efficacy using Kendall correlation.
- Cerqueti et al. (2022) contains an application on football data to rank teams according to their goals.
- Ausloos et al. (2014) deals with the analysis of the structure of the rankings when considering UEFA and FIFA championships.

Our Objectives and Aims

We hypothesise a **novel scoring rule** that includes scored and conceded goals to determine the final ranking after competitions. We use it to determine the sensibility of the ranking to the **addition of performance-oriented ranking features**.

Methodology

This is a **four-step procedure** for achieving the *New Rankings*; let us look at it via football seasons.

- 1. Obtain unofficial rankings GF_r , GA_r
- 2. Compute the Kendall τ for all possible pairs of rankings
- 3.
- 4.

Correlation pairs

 GF_r vs GA_r Official Rank vs GF_r Official Rank vs GA_r

Methodology

This is a **four-step procedure** for achieving the *New Rankings*; let us look at it via football seasons.

- 1. Obtain unofficial rankings GF_r , GA_r
- 2. Compute the Kendall τ for all possible pairs of rankings
- Create radar charts and normalise the areas
- 4. **Detect rankings** with a target Kendall τ correlation (from the radar charts) using the official ranking \rightarrow *New Rankings*

Correlation pairs $GF_r \text{ vs } GA_r$ Official Rank vs GF_r Official Rank vs GA_r

Kendall au Correlation Analysis

The association between Official team Rankings and goal metrics-based rankings GF_r , GA_r is achieved through the Kendall τ_b variant, Kendall (1945).

$$\tau_b = \frac{P - Q}{\sqrt{(P + Q + T)(P + Q + U)}}\tag{1}$$

Where P and Q are the number of concordant and discordant pairs, respectively, and T and U are the number of ties only in x and y, respectively.

Normalisation:

$$\tau_{b;N} = \frac{\tau_b + 1}{2}$$

Mapping Correlations into Radar Charts

Mapping Correlations into Radar Charts

Given the vertices positioned at angles θ_1 , θ_2 , and θ_3 :

$$\begin{aligned} x_h &= \tau_{b;N}^{(h)} \cos(\theta_h) + \text{shift}_x \\ y_h &= \tau_{b;N}^{(h)} \sin(\theta_h) + \text{shift}_y \end{aligned}$$

The area (A) of the triangle is given by:

$$A = \frac{1}{2} |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)|$$
 (2)

The As mapped back into the τ_b correlation are used as target τ_b .

Finding the New Rankings

To discover alternative ranking systems that reflect football championships' dynamics, including GA and GF.

- 1. **Generate** permutations of the positions and **calculate** $\tau_b(Official\ Ranking, New\ Ranking)$.
- 2. **Identify the permutations** that match the target τ_b values.

Computational Problem

For a given number of teams, n, generate permutations to simulate various possible season outcomes. Compute Kendall τ_b for each permutation.

Figure: Variations in Kendall's $\tau_h^{(j)}$ correlation with permutation Index (j) for different sample sizes (n).

				D					
n	3	4	5	6	7	8	9	18	20
n!	6	24	120	720	5,040	40, 320	362, 880	6.402×10^{15}	2.432×10^{18}

Identifying Optimal Permutations

The procedure to identify optimal permutations:

- 1. Extract the target τ_b values from the geometric analysis (Areas).
- 2. Calculate the absolute difference between each τ_b target and the one resulting from j^{th} permutation.
- 3. Isolate permutations whose $\tau_b^{(j)}$ values are nearest to the target τ_b .

Data Summary

- ▶ Dataset includes Serie A seasons from 1930 to 2023.
- ▶ Metrics: Goals For (GF), Goals Against (GA), official rankings.

Figure: The different correlation analyses are reported over the seasons.

Results Overview - Areas time series

Figure: The areas calculated with Eq. (2). Each point represents a season.

Results Overview - τ_b distribution

Figure: Histogram of the resulting τ_b obtained from mapping the areas back to the [-1,1] correlation range - Italian Serie A history, 1930 - 2023.

Results Overview - Measure of instability?

Figure: 2023 season. The target correlation is $\tau_b=0.842962$ and the optimal correlation is $\tau_b^j=0.842105$ with $j\in\{0,\dots,362,880\}$, being 362,880 the number of permutation tested in this case, when the generated permutations are stored in lexicographic order.

Results Overview - Measure of instability?

Figure: The x-axis has ticks indicating that the correlation reported in the cells is calculated comparing the original series 1,2,...,n (y-axis) with the series where the first ('f.') or the last ('ll') k elements have been permuted, inverting their order.

Conclusion & Limitations

Conclusions:

- ightharpoonup Presentation of a **novel approach** that integrates geometric analysis and Kendall au
- Highlights the multifaceted nature of competitions and their ranking system
- ► Encourages reconsideration of conventional ranking systems thinking about the tail of the distribution of rankings

Limitations:

- Computational Complexity
- No single solution per each target correlation
- Generalizability, especially when more metrics are included

Future Research

- Potential to refine ranking methodologies and integrate existing tools for comparing tournaments, see Sum of Ranking Differences in Sziklai and Héberger (2020).
- **Extend** to other leagues and sports.
- Incorporate additional performance metrics, more axis on the spider chart.

Questions... ? Comments... ? Insults... ?

References I

- Ausloos, M., Cloots, R., Gadomski, A., & Vitanov, N. K. (2014). Ranking structures and rank–rank correlations of countries: The FIFA and UEFA cases. International Journal of Modern Physics C, 25(11), 1450060.
- Ausloos, M. (2014). Intrinsic classes in the Union of European Football Associations soccer team ranking. Central European Journal of Physics, 12, 773-779.
- Ausloos, M. (2024). Hierarchy selection: New team ranking indicators for cyclist multi-stage races. European Journal of Operational Research, 314(2), 807-816.
- Cerqueti, R., D'Urso, P., De Giovanni, L., Mattera, R., & Vitale, V. (2022). INGARCH-based fuzzy clustering of count time series with a football application. Machine Learning with Applications, 10, 100417.

References II

- Ficcadenti, V., Cerqueti, R., & Varde'i, C. H. (2023). A rank-size approach to analyse soccer competitions and teams: the case of the Italian football league "Serie A. Annals of Operations Research, 325(1), 85-113.
- Kendall, M. G. (1945). The treatment of ties in ranking problems. Biometrika 33(3), 239-251.
- Sziklai, B. R., Biró, P., & Csató, L. (2022). The efficacy of tournament designs. Computers & Operations Research, 144, 105821.
- Sziklai, B. R., & Héberger, K. (2020). Apportionment and districting by Sum of Ranking Differences. PloS One, 15(3), e0229209.