Geometría Básica. Septiembre 2015.

Duración 2 horas. No se permite ningún tipo de material.

Justificar concisa y razonadamente todas las respuestas.

Ejercicio 1. (3 puntos)

Definir homotecia de centro C y razón k.

Probar que la imagen del segmento [A, B] por la homotecia $\eta_{C,k}$ es el segmento $[\eta_{C,k}(A), \eta_{C,k}(B)]$.

Ejercicio 2. (4 puntos) Sea \mathcal{C} una circunferencia de centro O. Sean P, Q y P', Q' puntos en $\mathcal{C}, M = \text{medio}(P, Q)$ y M' = medio(P', Q'). Demostrar PQ = P'Q' si y solo si OM = OM'.

Ejercicio 3. (3 puntos). Sea \mathcal{P} un octaedro y C_1 , C_2 dos caras de \mathcal{P} de modo que tienen la arista [A, B] en común. Sean ρ_1 , ρ_2 dos rotaciones de ángulo $2\pi/3$ que son simetrías de \mathcal{P} , el eje de rotación de ρ_1 pasa por el centro de C_1 , el eje de rotación de ρ_2 pasa por el centro de C_2 y además $\rho_1(A) = \rho_2(A) = B$. Describir y clasificar la isometría $\rho_2 \circ \rho_1$.

SOLUCIONES

Ejercicio 1.

Definición 7.1, página 113 y Corolario 7.5, páginas 115-116, del Curso de Geometría Básica.

Ejercicio 2.

Supongamos que O, P y Q no están alineados.

En primer lugar se observa que O está en la mediatriz $m_{P,Q}$ del segmento [P,Q]. En efecto OP = OQ = r (radio de C) y $m_{P,Q} = \{X : d(X,P) = d(X,Q)\}$ (ver Corolario 2.30, página 41).

También $O \in m_{P',Q'}$.

Consideremos los triángulos $\triangle \{O, M, P\}$ y $\triangle \{O, M', P'\}$.

Tenemos que $\angle_{\triangle\{O,M,P\}}M=\angle_{\triangle\{O,M,P\}}M$ es recto, pués O está en $m_{P,Q}$ y en $m_{P',Q'}$.

Además $MP = \frac{1}{2}PQ$ y $M'P' = \frac{1}{2}P'Q'$, OP = OP' = r y al ser $\Delta\{O, M, P\}$ y $\Delta\{O, M', P'\}$ rectángulos por el teorema de Pitágoras:

$$OM = +\sqrt{r^2 - \frac{1}{4}PQ^2}$$

$$OM' = +\sqrt{r^2 - \frac{1}{4}P'Q'^2}$$

Entonces

$$OM = OM' \Longleftrightarrow + \sqrt{r^2 - \frac{1}{4}PQ^2} = + \sqrt{r^2 - \frac{1}{4}P'Q'^2} \Longleftrightarrow PQ = P'Q'$$

Si P y Q están alineados entonces o bien P=Q o son diametralmente opuestos y entonces PQ=2r. En ambos casos la demostración es inmediata. Por ejemplo si PQ=2r, entonces $PQ=P'Q'=2r \Leftrightarrow P,Q$ son diametralmente opuestos y P', Q' son diametralmente opuestos $\Leftrightarrow M=O, M'=O' \iff OM=OM'=0$.

Ejercicio 3.

Supongamos que la cara C_1 tiene por vértices A, B, E y la cara C_2 los vértices A, B, F.

En la figura de la página siguiente nombramos el resto de los vértices. Se tiene:

$$\rho_2 \circ \rho_1(A) = \rho_2(B) = F$$

$$\rho_2 \circ \rho_1(E) = \rho_2(A) = B$$

$$\rho_2 \circ \rho_1(B) = \rho_2(E) = H$$

$$\rho_2 \circ \rho_1(F) = \rho_2(H) = G
\rho_2 \circ \rho_1(G) = \rho_2(F) = A
\rho_2 \circ \rho_1(H) = \rho_2(G) = E$$

Entonces $\rho_2 \circ \rho_1$ es una rotación de ángulo $2\pi/3$ cuyo eje pasa por los centros de las caras $\Delta\{E,B,H\}$ y $\Delta\{A,F,G\}$.