C1 Set Theory

Robin Adams

October 15, 2022

Chapter 1

The Foundations

1.1 Classes

We speak informally of *classes*. A class is determined by a unary predicate. We write $\{x : P(x)\}$ or $\{x \mid P(x)\}$ for the class determined by the predicate P(x).

We define what it means for an object a to be an *element* or *member* of the class \mathbf{A} , $a \in \mathbf{A}$, by: $a \in \{x : P(x)\}$ means P(a). In this case we also write $\mathbf{A} \ni a$, and say \mathbf{A} contains a.

We write $\{x \in \mathbf{A} : P(x)\}$ for $\{x : x \in \mathbf{A} \land P(x)\}$, and $\{t[x_1, ..., x_n] : P[x_1, ..., x_n]\}$ for $\{y : \exists x_1 \cdots \exists x_n (y = t[x_1, ..., x_n] \land P[x_1, ..., x_n])\}$.

Definition 1.1.1 (Equality of Classes). Two classes A and B are equal, A = B, iff they have exactly the same members.

Definition 1.1.2 (Subclass). A class **A** is a *subclass* of a class **B**, $\mathbf{A} \subseteq \mathbf{B}$, iff every member of **A** is a member of **B**. In this case we also write $\mathbf{B} \supseteq \mathbf{A}$, and say **B** *includes* **A** or **B** is a *superclass* of **A**.

We say **A** is a *proper* subclass of the class **B**, $\mathbf{A} \subset \mathbf{B}$, iff $\mathbf{A} \subseteq \mathbf{B}$ and $\mathbf{A} \neq \mathbf{B}$. In this case we also write $\mathbf{B} \supset \mathbf{A}$, and say \mathbf{B} properly includes \mathbf{A} or \mathbf{B} is a proper superclass of \mathbf{A} .

Definition 1.1.3 (Disjoint). Two classes ${\bf A}$ and ${\bf B}$ are *disjoint* iff they have no common members.

Definition 1.1.4 (Empty Class). The *empty class*, \emptyset , is $\{x : \bot\}$.

Definition 1.1.5 (Universal Class). The universal class V is the class $\{x : \top\}$.

Definition 1.1.6. For any objects a_1, \ldots, a_n , we write $\{a_1, \ldots, a_n\}$ for the class $\{x : x = a_1 \lor \cdots \lor x = a_n\}$.

A class of the form $\{a\}$ is called a *singleton*.

A class of the form $\{a, b\}$ is called a *pair class*.

Definition 1.1.7 (Union). The *union* of classes **A** and **B**, $\mathbf{A} \cup \mathbf{B}$, is the class $\{x : x \in \mathbf{A} \lor x \in \mathbf{B}\}.$

Definition 1.1.8 (Intersection). The *intersection* of classes **A** and **B**, $\mathbf{A} \cap \mathbf{B}$, is the class $\{x : x \in \mathbf{A} \land x \in \mathbf{B}\}$.

Definition 1.1.9 (Relative Complement). Given classes **A** and **B**, the *relative* complement $\mathbf{A} - \mathbf{B}$ is the class $\{x \in \mathbf{A} : x \notin \mathbf{B}\}.$

1.2 Primitive Notions

Let there be sets.

Let there be a binary relation called membership, \in .

1.3 The Axioms

Axiom 1.3.1 (Extensionality). If two sets have exactly the same members, then they are equal.

As a consequence of this axiom, we may identify a set A with the class $\{x:x\in A\}$. The use of the symbols \in and = is consistent.

Definition 1.3.2. We say that a class **A** is a set iff there exists a set A such that $A = \mathbf{A}$. That is, the class $\{x : P(x)\}$ is a set iff

$$\exists A. \forall x (x \in A \leftrightarrow P(x))$$
.

Otherwise, **A** is a proper class.

Definition 1.3.3 (Subset). If A is a set and **B** is a class, we say A is a *subset* of **B** iff $A \subseteq B$. If in addition B is a set, we say B is a *superset* of A.

If A is a set and **B** is a class, we say A is a *proper* subset of **B** iff $A \subset \mathbf{B}$. If in addition B is a set, we say B is a *proper* superset of A.

Axiom 1.3.4 (Replacement). For any property P(x,y), the following is an axiom:

Let A be a set. Assume that, for all $x \in A$, there is at most one y such that P(x,y). Then $\{y : \exists x \in A.P(x,y)\}$ is a set.

Definition 1.3.5 (Power Set). For any set A, the *power set* of A, $\mathcal{P}A$, is the class of all subsets of A.

Axiom 1.3.6 (Power Set). For any set A, the class PA is a set.

Definition 1.3.7 (Union). For any class of sets **A**, the *union* \bigcup **A** is the class $\{x : \exists A \in \mathbf{A}. x \in A\}.$

We write $\bigcup_{P[x_1,...,x_n]} t[x_1,...,x_n]$ for $\bigcup \{t[x_1,...,x_n]: P[x_1,...,x_n]\}.$

Axiom 1.3.8 (Union). For any set A, the union $\bigcup A$ is a set.

Axiom 1.3.9 (Regularity). For every nonempty set A, there exists $m \in A$ such that $m \cap A = \emptyset$.

Axiom 1.3.10 (Infinity). There exists a nonempty set A such that $\forall x \in A . \exists y \in A . x \subset y$.

1.4 Constructions of Sets

Theorem 1.4.1. For any class **A** and set B, if $\mathbf{A} \subseteq B$ then **A** is a set.

```
\langle 1 \rangle 1. Let: B be a set.
\langle 1 \rangle 2. (\forall x \in B) \forall y_1, y_2 ((x \in \mathbf{A} \land y_1 = x) \land (x \in \mathbf{A} \land y_2 = x) \Rightarrow y_1 = y_2)
\langle 1 \rangle 3. \{ y : \exists x (x \in \mathbf{A} \land y = x) \} is a set.
   Proof: By a Replacement Axiom.
\langle 1 \rangle 4. A is a set.
Theorem 1.4.2 (Empty Set). The empty class is a set, called the empty set.
\langle 1 \rangle 1. PICK a set a
   PROOF: By the Axiom of Infinity.
\langle 1 \rangle 2. \ \emptyset \subseteq a
\langle 1 \rangle 3. \emptyset is a set.
   PROOF: Theorem 1.4.1.
Theorem 1.4.3 (Pairing). For any setss a and b, the class \{a,b\} is a set, called
a pair set.
PROOF:Let P(x,y) be the formula (x = \emptyset \land y = a) \lor (x = \mathcal{P}\emptyset \land y = b). Then
we reason:
\langle 1 \rangle 1. Let: a and b be sets.
\langle 1 \rangle 2. \ (\forall x \in \mathcal{PP}\emptyset) \forall y_1 \forall y_2 (P(x,y_1) \land P(x,y_2) \Rightarrow y_1 = y_2)
    \langle 2 \rangle 1. \ \emptyset \neq \mathcal{P} \emptyset
       PROOF: Since \emptyset \in \mathcal{P}\emptyset and \emptyset \notin \emptyset.
\langle 1 \rangle 3. Let: A = \{ y : \exists x \in \mathcal{PP}\emptyset . P(x, y) \}
   PROOF: This is a set by a Replacement Axiom.
\langle 1 \rangle 4. \ A = \{a, b\}
    \langle 2 \rangle 1. \ a \in A
       PROOF: Since \emptyset \in \mathcal{PP}\emptyset.
   \langle 2 \rangle 2. \ b \in A
       Proof: Since \mathcal{P}\emptyset \in \mathcal{PP}\emptyset.
    \langle 2 \rangle 3. \ \forall x \in A(x = a \lor x = b)
Proposition 1.4.4. For any sets A and B, the class A \cup B is a set.
PROOF: It is \bigcup \{A, B\}. \square
Proposition Schema 1.4.5. For any objects a_1, \ldots, a_n, the class \{a_1, \ldots, a_n\}
is a set.
PROOF: By repeated application of the Pairing and Union axioms. \square
```

Proposition 1.4.6. For any set A and class B, the intersection $A \cap B$ is a set.

PROOF: By Theorem 1.4.1 since it is a subclass of A. \square

Proposition 1.4.7. For any set A and class \mathbf{B} , the relative complement $A - \mathbf{B}$ is a set.

PROOF: By Theorem 1.4.1 since it is a subclass of A. \square

Definition 1.4.8 (Intersection). For any class of sets **A**, the *intersection* \bigcap **A** is the class $\{x : \forall A \in \mathbf{A}. x \in A\}$.

We write $\bigcap_{P[x_1,...,x_n]} t[x_1,...,x_n]$ for $\bigcap \{t[x_1,...,x_n]: P[x_1,...,x_n]\}.$

Proposition 1.4.9. For any nonempty class of sets A, the class $\bigcap A$ is a set.

PROOF: Pick $A \in \mathbf{A}$. Then $\bigcap \mathbf{A} \subseteq A$ and the result follows by Theorem 1.4.1.

1.5 Basic Properties

Theorem 1.5.1. The universal class V is a proper class.

Proof:

- $\langle 1 \rangle 1$. Assume: **V** is a set.
- $\langle 1 \rangle 2$. Let: $R = \{x : x \notin x\}$
- $\langle 1 \rangle 3$. R is a set.

PROOF: By Theorem 1.4.1.

- $\langle 1 \rangle 4$. $R \in R$ if and only if $R \notin R$
- $\langle 1 \rangle$ 5. Q.E.D.

PROOF: This is a contradiction.

П

Theorem 1.5.2. No set is a member of itself.

PROOF: If $A \in A$ then there is no $m \in \{A\}$ such that $m \cap \{A\} = \emptyset$. \square

Theorem 1.5.3. There are no sets a and b with $a \in b$ and $b \in a$.

PROOF: If there were, then there would be no $m \in \{a, b\}$ such that $m \cap \{a, b\} = \emptyset$.

1.6 The Axiom of Choice

Definition 1.6.1 (Axiom of Choice). The *Axiom of Choice* is the statement: Let \mathcal{A} be a set such that (a) every member of \mathcal{A} is a nonempty set, and (b) any two distinct members of \mathcal{A} are disjoint. Then there exists a set C such that, for all $B \in \mathcal{A}$, we have $C \cap B$ is a singleton.

Chapter 2

Relations and Functions

2.1 Ordered Pairs

Theorem 2.1.1. There exists a predicate $\mathbf{Pair}(x, y, z)$ such that the following is a theorem:

```
1. \forall x, y \exists ! z. \mathbf{Pair}(x, y, z)
    2. \forall x, y, z, w, p.(\mathbf{Pair}(x, y, p) \land \mathbf{Pair}(z, w, p) \Rightarrow x = z \land y = w)
Let \mathbf{Pair}(x, y, z) be the predicate z = \{\{x\}, \{x, y\}\}. Proof:
\langle 1 \rangle 1. \ \forall x, y \exists ! z. \mathbf{Pair}(x, y, z)
\langle 1 \rangle 2. \forall a, b, c, d, p.(\mathbf{Pair}(a, b, p) \land \mathbf{Pair}(c, d, p) \Rightarrow x = z \land y = w)
    \langle 2 \rangle 1. Assume: \{\{a\}, \{a, b\}\} = \{\{c\}, \{c, d\}\}
    \langle 2 \rangle 2. a = c
       Proof: Since \{a\} = \bigcap (a, b) = \bigcap (c, d) = \{c\}.
    \langle 2 \rangle 3. \ \{a,b\} = \{c,d\}
       PROOF: \{a, b\} = \bigcup (a, b) = \bigcup (c, d) = \{c, d\}.
    \langle 2 \rangle 4. b = c or b = d
    \langle 2 \rangle5. Case: b = c
        \langle 3 \rangle 1. a=b
       \langle 3 \rangle 2. \ \{c,d\} = \{a\}
       \langle 3 \rangle 3. b=d
    \langle 2 \rangle 6. Case: b = d
       PROOF: We have a = c and b = d as required.
```

Pick a predicate $\mathbf{Pair}(x, y, z)$ such that the following is a theorem:

- 1. $\forall x, y \exists ! z. \mathbf{Pair}(x, y, z)$
- 2. $\forall x, y, z, w, p.(\mathbf{Pair}(x, y, p) \land \mathbf{Pair}(z, w, p) \Rightarrow x = z \land y = w)$

Definition 2.1.2 (Ordered Pair). For any objects a and b, the ordered pair (a, b) is the object such that $\mathbf{Pair}(a, b, (a, b))$. We call a its first coordinate and b its second coordinate.

Definition 2.1.3 (Cartesian Product). The *Cartesian product* of classes **A** and **B** is the class

$$\mathbf{A} \times \mathbf{B} = \{(x, y) : x \in \mathbf{A}, y \in \mathbf{B}\}$$
.

Theorem 2.1.4. For any sets A and B, the Cartesian product $A \times B$ is a set.

PROOF: By an Axiom of Replacement, for all $a \in A$, the class $B_a = \{(a, b) : b \in B\}$ is a set. Hence by an Axiom of Replacement, $\{B_a : a \in A\}$ is a set. Now $A \times B = \bigcup \{B_a : a \in A\}$.

2.2 Relations

Definition 2.2.1 (Relation). A *relation* is a class of ordered pairs. It is *small* iff it is a set.

When **R** is a relation, we write $x\mathbf{R}y$ for $(x,y) \in \mathbf{R}$.

Definition 2.2.2 (Domain). The *domain* of a class **R** is dom **R** = $\{x : \exists y . (x, y) \in \mathbf{R}\}.$

Definition 2.2.3 (Range). The *range* of a class **R** is ran $\mathbf{R} = \{y : \exists x.(x,y) \in \mathbf{R}\}.$

Definition 2.2.4 (Field). The *field* of a class **R** is fld $\mathbf{R} = \operatorname{dom} \mathbf{R} \cup \operatorname{ran} \mathbf{R}$.

Proposition 2.2.5. If R is a set then dom R, ran R and fld R are sets.

PROOF: Apply an Axiom of Replacement for dom R and ran R. \square

Definition 2.2.6 (Single-Rooted). A class **R** is *single-rooted* iff, for all $y \in \operatorname{ran} \mathbf{R}$, there is only one x such that $x\mathbf{R}y$.

Definition 2.2.7 (Inverse). The *inverse* of a class \mathbf{F} is the class $\mathbf{F}^{-1} = \{(y, x) \mid (x, y) \in \mathbf{F}\}.$

Definition 2.2.8 (Composition). The *composition* of classes **F** and **G** is the class $\mathbf{G} \circ \mathbf{F} = \{(x, z) \mid \exists y.(x, y) \in \mathbf{F} \land (y, z) \in \mathbf{G}\}.$

Definition 2.2.9 (Restriction). The *restriction* of the class **F** to the class **A** is the class **F A A A A A A A A A A A A A A A A A A A B A B**

Definition 2.2.10 (Image). The *image* of the class **A** under the class **F** is the class $\mathbf{F}(\mathbf{A}) = \{y : \exists x \in \mathbf{A}.(x,y) \in \mathbf{F}\}.$

Definition 2.2.11 (Reflexive). A binary relation **R** on **A** is *reflexive* on **A** if and only if $\forall x \in \mathbf{A}.x\mathbf{R}x$.

Definition 2.2.12 (Ireflexive). A binary relation **R** on **A** is *irreflexive* on **A** if and only if $\forall x \in \mathbf{A}. \neg x\mathbf{R}x$.

Definition 2.2.13 (Symmetric). A binary relation **R** is *symmetric* iff, whenever $x\mathbf{R}y$, then $y\mathbf{R}x$.

Definition 2.2.14 (Asymmetric). A binary relation **R** is *asymmetric* iff, whenever $x\mathbf{R}y$, then $\neg y\mathbf{R}x$.

Definition 2.2.15 (Antisymmetric). A binary relation **R** is *antisymmetric* iff, whenever x**R**y and y**R**x, then x = y.

Definition 2.2.16 (Transitive). A binary relation **R** is *transitive* iff, whenever $x\mathbf{R}y$ and $y\mathbf{R}z$, then $x\mathbf{R}z$.

Definition 2.2.17 (Minimal). Let R be a relation on D. An element $m \in D$ is R-minimal iff there is no $x \in D$ such that xRm.

Definition 2.2.18 (Maximal). Let R be a relation on D. An element $m \in D$ is R-maximal iff there is no $x \in D$ such that mRx.

Definition 2.2.19 (Least). Let R be a relation on D. An element $m \in D$ is least, smallest or the minimum iff $\forall x \in D.(mRx \vee m = x)$.

Definition 2.2.20 (Greatest). Let R be a relation on D. An element $m \in D$ is *greatest*, *largest* or the *maximum* iff $\forall x \in D(xRm \lor x = m)$.

2.3 *n*-ary Relations

Definition 2.3.1. Given objects a, b, c, define the *ordered triple* (a, b, c) to be ((a, b), c).

Define (a, b, c, d) = ((a, b, c), d), etc. Define the 1-tuple (a) to be a.

Definition 2.3.2 (n-ary Relation). Given a class A, an n-ary relation on A is a class of ordered n-tuples, all of whose components are in A.

2.4 Functions

Definition 2.4.1 (Function). A function is a relation \mathbf{F} such that, for all $x \in \text{dom } \mathbf{F}$, there is only one y such that $x\mathbf{F}y$. We call this unique y the value of \mathbf{F} at x and denote it by $\mathbf{F}(x)$.

We say **F** is a function *from* **A** *into* **B**, or **F** *maps* **A** into **B**, and write $\mathbf{F} : \mathbf{A} \to \mathbf{B}$, iff **F** is a function, dom $\mathbf{F} = \mathbf{A}$, and ran $\mathbf{F} \subseteq \mathbf{B}$.

If, in addition, ran $\mathbf{F} = \mathbf{B}$, we say \mathbf{F} is a function from \mathbf{A} onto \mathbf{B} .

Theorem 2.4.2. Let $\mathbf{F}, \mathbf{G} : \mathbf{A} \to \mathbf{B}$. If $\forall x \in \mathbf{A}.\mathbf{F}(x) = \mathbf{G}(x)$ then $\mathbf{F} = \mathbf{G}$.

Proof: Easy. \sqcup

Theorem 2.4.3. Assume that \mathbf{F} and \mathbf{G} are functions. Then $\mathbf{F} \circ \mathbf{G}$ is a function, its domain is $\{x \in \text{dom } \mathbf{G} : \mathbf{G}(x) \in \text{dom } \mathbf{F}\}$, and for x in its domain,

$$(\mathbf{F} \circ \mathbf{G})(x) = \mathbf{F}(\mathbf{G}(x)) .$$

Proof: Easy. \square

Definition 2.4.4 (One-to-one). A function F is *one-to-one* or an *injection* iff it is single-rooted.

Theorem 2.4.5. Let **F** be a one-to-one function. For $x \in \text{dom } \mathbf{F}$, $\mathbf{F}^{-1}(\mathbf{F}(x)) = x$.

Proof: Easy. \square

Theorem 2.4.6. Let **F** be a one-to-one function. For $y \in \operatorname{ran} \mathbf{F}$, $\mathbf{F}(\mathbf{F}^{-1}(y)) = y$.

Proof: Easy. \square

Definition 2.4.7 (Identity Function). For any class **A**, the *identity* function on **A** is $id_{\mathbf{A}} = \{(x, x) \mid x \in \mathbf{A}\}.$

Theorem 2.4.8. Let $F: A \to B$. Assume $A \neq \emptyset$. Then F has a left inverse (i.e. there exists $G: B \to A$ such that $G \circ F = \mathrm{id}_A$) if and only if F is one-to-one.

Proof:

- $\langle 1 \rangle 1$. If F is one-to-one then F has a left inverse.
 - $\langle 2 \rangle 1$. Assume: F is one-to-one.
 - $\langle 2 \rangle 2$. $F^{-1} : \operatorname{ran} F \to A$
 - $\langle 2 \rangle 3$. Pick $a \in A$
 - $\langle 2 \rangle 4$. Define $G: B \to A$ by:

$$G(x) = \begin{cases} F^{-1}(x) & \text{if } x \in \operatorname{ran} F \\ a & \text{if } x \in B - \operatorname{ran} F \end{cases}$$

- $\langle 2 \rangle 5. \ \forall x \in A.G(F(x)) = x$
- $\langle 1 \rangle 2$. If F has a left inverse then F is one-to-one.
 - $\langle 2 \rangle 1$. Assume: F has a left inverse G.
 - $\langle 2 \rangle 2$. Let: $x, y \in A$ with F(x) = F(y)
 - $\langle 2 \rangle 3. \ x = y$

PROOF: x = G(F(x)) = G(F(y)) = y.

Definition 2.4.9 (Binary Operation). A binary operation on a set A is a function from $A \times A$ into A.

Theorem 2.4.10. For any function $F: A \to B$, if F has a right inverse then F maps A onto B.

PROOF: If $H: B \to A$ is a right inverse, then for any y in B, we have y = F(H(y)). \square

2.5 Dependent Products

Definition 2.5.1. Let I be a set and H_i a set for all $i \in I$. Define

$$\prod_{i \in I} H_i = \{f : f \text{ is a function}, \text{dom } f = I, \forall i \in I. f(i) \in H_i \} .$$

2.6 The Axiom of Choice

Definition 2.6.1 (Choice Function). Let A be a set. A *choice function* for A is a function $F: \mathcal{P}A - \{\emptyset\} \to A$ such that $\forall X \in \mathcal{P}A - \{\emptyset\}.F(X) \in X$.

Theorem 2.6.2. The following are equivalent.

- 1. The Axiom of Choice.
- 2. Every set has a choice function.
- 3. For any relation R there exists a function $H \subseteq R$ with dom H = dom R.
- 4. (Multiplicative Axiom) For any set I and any function H with domain I, if $H(i) \neq \emptyset$ for all $i \in I$, then $\prod_{i \in I} H(i) \neq \emptyset$

PROOF:

- $\langle 1 \rangle 1. \ 1 \Rightarrow 2$
 - $\langle 2 \rangle 1$. Assume: the Axiom of Choice
 - $\langle 2 \rangle 2$. Let: A be a set.
 - $\langle 2 \rangle 3$. Let: $\mathcal{A} = \{ \{B\} \times B : B \in \mathcal{P}A \{\emptyset\} \}$
 - $\langle 2 \rangle 4$. PICK a set C such that $C \cap (\{B\} \times B)$ is a singleton for all $B \in \mathcal{P}A \{\emptyset\}$
 - $\langle 2 \rangle 5$. Let: $F = C \cap \bigcup A$
 - $\langle 2 \rangle 6$. $F: \mathcal{P}A \{\emptyset\} \to A$ is a function and $F(X) \in X$ for all X
- $\langle 1 \rangle 2. \ 2 \Rightarrow 3$
 - $\langle 2 \rangle 1$. Assume: 3
 - $\langle 2 \rangle 2$. Let: R be a relation
 - $\langle 2 \rangle 3$. Pick a choice function G for ran R
 - $\langle 2 \rangle 4$. Define $F : \operatorname{dom} R \to \operatorname{ran} R$ by F(x) = G(R(x))
 - $\langle 2 \rangle 5. \ F \subseteq R$
- $\langle 1 \rangle 3. \ 3 \Rightarrow 4$
 - $\langle 2 \rangle 1$. Assume: 2
 - $\langle 2 \rangle 2$. Let: I be a set.
 - $\langle 2 \rangle 3$. Let: H be a function with domain I.
 - $\langle 2 \rangle 4$. Assume: $H(i) \neq \emptyset$ for all $i \in I$.
 - $\langle 2 \rangle 5$. Let: $R = \{(i, x) : i \in I, x \in H(i)\}$
 - $\langle 2 \rangle$ 6. PICK a function $F \subseteq R$ with dom F = dom RPROVE: $F \in \prod_{i \in I} H(i)$

Proof: By $\langle 2 \rangle 1$.

 $\langle 2 \rangle 7$. dom H = I

PROOF: We have dom R = I since for all $i \in I$ there exists x such that $x \in H(i)$.

 $\langle 2 \rangle 8. \ \forall i \in I.F(i) \in H(i)$

PROOF: Since iRF(i).

 $\langle 1 \rangle 4. \ 4 \Rightarrow 1$

PROOF: Let \mathcal{A} be a set matching the two conditions. By the Multiplicative Axiom, pick a function $f \in \prod_{B \in \mathcal{A}} B$. Let $C = \operatorname{ran} f$. Then $C \cap B = \{f(B)\}$ for all $B \in \mathcal{A}$.

Theorem 2.6.3. The Axiom of Choice is equivalent to the statement: for any sets A and B and every function F that maps A onto B, F has a right inverse.

PROOF:

- $\langle 1 \rangle 1.$ If the Axiom of Choice is true and F maps A onto B then F has a right inverse.
 - $\langle 2 \rangle 1$. Assume: The Axiom of Choice
 - $\langle 2 \rangle 2$. Assume: F maps A onto B.
 - $\langle 2 \rangle$ 3. PICK a function H with $H \subseteq F^{-1}$ and dom $H = \text{dom } F^{-1}$ PROOF: By the Axiom of Choice.
 - $\langle 2 \rangle 4$. dom H = B

PROOF: dom $H = \text{dom } F^{-1} = \text{ran } F = B \text{ by } \langle 2 \rangle 2.$

- $\langle 2 \rangle 5$. For all $y \in B$ we have F(H(y)) = y
 - $\langle 3 \rangle 1$. Let: $y \in B$
 - $\langle 3 \rangle 2. \ (y, H(y)) \in F^{-1}$
 - $\langle 3 \rangle 3. \ F(H(y)) = y$
- $\langle 1 \rangle 2$. If, for any sets A and B, any function F from A onto B has a right inverse, then the Axiom of Choice is true.
 - $\langle 2 \rangle 1$. Assume: For any sets A and B, any function F from A onto B has a right inverse.
 - $\langle 2 \rangle 2$. Let: R be any relation.
 - $\langle 2 \rangle 3$. Let: $F: R \to \operatorname{dom} R$ be the function F(x,y) = x
 - $\langle 2 \rangle 4$. F maps R onto dom R
 - $\langle 2 \rangle$ 5. PICK a right inverse $G : \text{dom } R \to R \text{ to } F$.
 - $\langle 2 \rangle 6$. Let: $H = \{(x, y) : (x, (x, y)) \in G\}$
 - $\langle 2 \rangle$ 7. *H* is a function
 - $\langle 2 \rangle 8. \ H \subseteq R$
 - $\langle 2 \rangle 9$. dom H = dom R

П

2.7 Sets of Functions

Definition 2.7.1. Let A be a set and **B** be a class. Then \mathbf{B}^A is the class of all functions $A \to \mathbf{B}$.

Theorem 2.7.2. If A and B are sets then B^A is a set.

PROOF: Since it is a subset of $\mathcal{P}(A \times B)$. \square

2.8 Equivalence Relations

Definition 2.8.1 (Equivalence Relation). An equivalence relation on **A** is a binary relation on **A** that is reflexive on **A**, symmetric and transitive.

Theorem 2.8.2. If \mathbf{R} is a symmetric and transitive relation then \mathbf{R} is an equivalence relation on fld \mathbf{R} .

Proof:

- $\langle 1 \rangle 1$. Let: $x \in \operatorname{fld} \mathbf{R}$
- $\langle 1 \rangle 2$. PICK y such that either $x \mathbf{R} y$ or $y \mathbf{R} x$
- $\langle 1 \rangle 3$. $x \mathbf{R} y$ and $y \mathbf{R} x$

PROOF: Since \mathbf{R} is symmetric.

 $\langle 1 \rangle 4$. $x \mathbf{R} x$

Proof: Since \mathbf{R} is transitive.

Definition 2.8.3 (Equivalence Class). If **R** is an equivalence relation and $x \in \operatorname{fld} \mathbf{R}$, the *equivalence class* of x modulo **R** is

$$[x]_{\mathbf{R}} = \{t : x\mathbf{R}t\} .$$

Lemma 2.8.4. Assume that R is an equivalence relation on A and that x and y belong to A. Then

$$[x]_{\mathbf{R}} = [y]_{\mathbf{R}} \text{ iff } x\mathbf{R}y$$
.

Proof:

- $\langle 1 \rangle 1$. If $[x]_{\mathbf{R}} = [y]_{\mathbf{R}}$ then $x \mathbf{R} y$
 - $\langle 2 \rangle 1$. Assume: $[x]_{\mathbf{R}} = [y]_{\mathbf{R}}$
 - $\langle 2 \rangle 2. \ y \in [y]_{\mathbf{R}}$

PROOF: Since \mathbf{R} is reflexive on \mathbf{A} .

- $\langle 2 \rangle 3. \ y \in [x]_{\mathbf{R}}$
- $\langle 2 \rangle 4$. $x \mathbf{R} y$
- $\langle 1 \rangle 2$. If $x \mathbf{R} y$ then $[x]_{\mathbf{R}} = [y]_{\mathbf{R}}$
 - $\langle 2 \rangle 1$. Assume: $x \mathbf{R} y$
 - $\langle 2 \rangle 2$. $[y]_{\mathbf{R}} \subseteq [x]_{\mathbf{R}}$
 - $\langle 3 \rangle 1$. Let: $z \in [y]_{\mathbf{R}}$
 - $\langle 3 \rangle 2. \ y \mathbf{R} z$
 - $\langle 3 \rangle 3. \ x \mathbf{R} z$

PROOF: Since \mathbf{R} is transitive.

- $\langle 3 \rangle 4. \ z \in [x]_{\mathbf{R}}$
- $\langle 2 \rangle 3. \ y \mathbf{R} x$

PROOF: Since \mathbf{R} is symmetric.

 $\langle 2 \rangle 4. \ [x]_{\mathbf{R}} \subseteq [y]_{\mathbf{R}}$

PROOF: Similar.

Definition 2.8.5 (Partition). A partition of a set A is a set $P \subseteq \mathcal{P}A$ such that:

- \bullet Every member of P is nonempty.
- ullet Any two distinct members of P are disjoint.
- $A = \bigcup P$

Theorem 2.8.6. Let A be a set.

For any equivalence relation R on the set A, the set of all equivalence classes is a partition of A.

Conversely, for any partition P, there exists a unique equivalence relation \sim on A such that P is the set of all equivalence classes with respect to \sim , given by $x \sim y$ iff $\exists X \in P(x \in X \land y \in X)$.

Proof:

- $\langle 1 \rangle 1$. For every equivalence relation R on A, the set of equivalence classes forms a partition of A.
 - $\langle 2 \rangle 1$. Let: R be an equivalence relation on A.
 - $\langle 2 \rangle 2$. Every equivalence class is nonempty.

PROOF: For any $x \in A$ we have $x \in [x]_R$.

- $\langle 2 \rangle 3$. Any two distinct equivalence classes are disjoint.
 - $\langle 3 \rangle 1$. Let: $x, y \in A$
 - $\langle 3 \rangle 2$. Assume: $z \in [x]_R \cap [y]_R$ Prove: $[x]_R = [y]_R$
 - $\langle 3 \rangle 3$. xRy
 - $\langle 4 \rangle 1. \ xRz$
 - $\langle 4 \rangle 2$. yRz
 - $\langle 4 \rangle 3$. zRy

PROOF: By $\langle 4 \rangle 2$ and symmetry.

 $\langle 4 \rangle 4$. xRy

PROOF: By $\langle 4 \rangle 1$, $\langle 4 \rangle 3$ and transitivity.

 $\langle 3 \rangle 4$. $[x]_R = [y]_R$

PROOF: By Lemma 3N.

 $\langle 2 \rangle 4$. A is the union of all the equivalence classes.

PROOF: For any $x \in A$ we have $x \in [x]_R$.

- $\langle 1 \rangle$ 2. For any partition P, there exists a unique equivalence relation \sim on A such that P is the set of all equivalence classes with respect to \sim , given by $x \sim y$ iff $\exists X \in P(x \in X \land y \in X)$.
 - $\langle 2 \rangle 1$. Let: P be a partition of A.
 - $\langle 2 \rangle 2$. Let: $\sim = \{(x,y) \in A^2 : \exists X \in P(x \in X \land y \in X)\}$
 - $\langle 2 \rangle 3$. \sim is an equivalence relation on A.
 - $\langle 3 \rangle 1. \sim \text{ is reflexive.}$
 - $\langle 4 \rangle 1$. Let: $x \in A$
 - $\langle 4 \rangle 2$. There exists $X \in P$ such that $x \in X$

PROOF: Since $P = \bigcup A$

 $\langle 4 \rangle 3. \ x \sim x$

PROOF: Since $\exists X \in P(x \in X \land x \in X)$.

 $\langle 3 \rangle 2$. \sim is symmetric.

PROOF: From the definition of \sim .

- $\langle 3 \rangle 3$. \sim is transitive.
 - $\langle 4 \rangle 1$. Let: $x, y, z \in A$
 - $\langle 4 \rangle 2$. Assume: $x \sim y$ and $y \sim z$
 - $\langle 4 \rangle 3$. PICK $X, Y \in P$ such that $x \in X, y \in X, y \in Y$ and $z \in Y$

```
\langle 4 \rangle 4. X = Y
```

PROOF: Since the elements of P are pairwise disjoint.

- $\langle 4 \rangle 5. \ x \in X \text{ and } z \in X$
- $\langle 4 \rangle 6. \ x \sim z$
- $\langle 2 \rangle 4$. P is the set of \sim -equivalence classes.
 - $\langle 3 \rangle 1. \ \forall X \in P. \forall x \in X. X = [x]_{\sim}$
 - $\langle 4 \rangle 1$. Let: $X \in P$
 - $\langle 4 \rangle 2$. Let: $x \in X$
 - $\langle 4 \rangle 3. \ X \subseteq [x]_{\sim}$
 - $\langle 5 \rangle 1$. Let: $y \in X$
 - $\langle 5 \rangle 2$. $x \sim y$
 - $\langle 5 \rangle 3. \ y \in [x]_{\sim}$
 - $\langle 4 \rangle 4$. $[x]_{\sim} \subseteq X$
 - $\langle 5 \rangle 1$. Let: $y \in [x]_{\sim}$
 - $\langle 5 \rangle 2$. PICK $Y \in P$ such that $x \in Y$ and $y \in Y$
 - $\langle 5 \rangle 3. \ X = Y$

PROOF: Since $x \in X$, $x \in Y$ and the elements of P are pairwise disjoint.

- $\langle 5 \rangle 4. \ y \in X$
- $\langle 3 \rangle 2. \ \forall X \in P. \exists x \in A. X = [x]_{\sim}$
 - $\langle 4 \rangle 1$. Let: $X \in P$
 - $\langle 4 \rangle 2$. Pick $x \in X$

PROOF: Since the elements of P are nonempty.

- $\langle 4 \rangle 3. \ X = [x]_{\sim}$
 - Proof: From $\langle 3 \rangle 1$
- $\langle 3 \rangle 3. \ \forall x \in A.[x]_{\sim} \in P$
 - $\langle 4 \rangle 1$. Let: $x \in A$
 - $\langle 4 \rangle 2$. Pick $X \in P$ such that $x \in X$
 - $\langle 4 \rangle 3. \ X = [x]_{\sim}$
 - Proof: From $\langle 3 \rangle 1$
- $\langle 2 \rangle$ 5. For any equivalence relation R on A, if P is the set of R-equivalence classes, then $R = \sim$.
 - $\langle 3 \rangle 1$. Let: R be an equivalence relation on A
 - $\langle 3 \rangle 2$. Assume: P is the set of R-equivalence classes.
 - $\langle 3 \rangle 3$. $R \subseteq \sim$
 - $\langle 4 \rangle 1$. Let: xRy
 - $\langle 4 \rangle 2$. $[x]_R \in X$ and $x, y \in [x]_R$
 - $\langle 4 \rangle 3. \ x \sim y$
 - $\langle 3 \rangle 4. \sim \subseteq R$
 - $\langle 4 \rangle 1$. Let: $x \sim y$
 - $\langle 4 \rangle 2$. PICK $X \in P$ such that $x \in X$ and $y \in X$
 - $\langle 4 \rangle 3$. Pick $z \in A$ such that $X = [z]_R$
 - $\langle 4 \rangle 4$. zRx and zRy
- $\langle 4 \rangle 5. xRy$

Definition 2.8.7 (Quotient Set). If R is an equivalence relation on the set A, then the *quotient set* A/R is the set of all equivalence classes, and the *natural map* or *canonical map* $\phi: A \to A/R$ is defined by $\phi(x) = [x]_R$.

Theorem 2.8.8. Assume that R is an equivalence relation on A and that F: $A \to B$. Assume that F is compatible with R; that is, whenever xRy, then F(x) = F(y). Then there exists a unique $\overline{F}: A/R \to B$ such that $F = \overline{F} \circ \phi$.

PROOF: The unique such \overline{F} is $\{([x], F(x)) : x \in A\}$. \square

2.9 Well-Founded Relations

Definition 2.9.1 (Well Founded). A relation R on a class D is well-founded iff every nonempty subset of D has an R-minimal element.

Theorem 2.9.2 (Transfinite Induction). Let R be a well-founded relation on A. Let $B \subseteq A$. Assume that, for all $x \in A$, if $\forall y \in A(yRx \Rightarrow y \in B)$, then $x \in B$. Then B = A.

PROOF: If not, A - B has an R-minimal element a_0 , say. But then we have $\forall y.(yRa_0 \Rightarrow y \in B)$ and $a_0 \notin B$, which is a contradiction. \square

Theorem 2.9.3 (Transfinite Recursion Theorem Schema). For any property P(x, y, z) the following is a theorem:

Assume that \langle is a well-founded relation on A. Assume that $\forall x, y \exists ! z P(x, y, z)$. Then there exists a unique function F with domain A such that

$$\forall t \in A.P(F \upharpoonright \operatorname{seg} t, t, F(t))$$
.

Proof:

- $\langle 1 \rangle 1$. Given $t \in A$, let us say that a function v is P-constructed up to t iff $\operatorname{dom} v = \{x \in A : x \leq t\}$ and $\forall x \in \operatorname{dom} v. P(v \upharpoonright \operatorname{seg} x, x, v(x))$
- $\langle 1 \rangle$ 2. Let $t_1, t_2 \in A$ with $t_1 \leq t_2$. Let v_1 be a function that is P-constructed up to t_1 , and v_2 a function that is P-constructed up to t_2 . Then $\forall x \leq t_1.v_1(x) = v_2(x)$
 - $\langle 2 \rangle 1$. Let: $x \leq t_1$
 - $\langle 2 \rangle 2$. Assume: $\forall y < x. v_1(y) = v_2(y)$
 - $\langle 2 \rangle 3. \ v_1 \upharpoonright \operatorname{seg} x = v_2 \upharpoonright \operatorname{seg} x$
 - $\langle 2 \rangle 4$. $P(v_1 \upharpoonright \operatorname{seg} x, v_1(x))$
 - $\langle 2 \rangle 5$. $P(v_2 \upharpoonright \operatorname{seg} x, v_2(x))$
 - $\langle 2 \rangle 6. \ v_1(x) = v_2(x)$

PROOF: Since there is only one y such that $P(v_1 \upharpoonright \text{seg } x, x, y)$.

 $\langle 2 \rangle$ 7. Q.E.D.

PROOF: By transfinite induction.

- $\langle 1 \rangle 3$. Let: $\mathcal{H} = \{v : \exists t \in A.v \text{ is } P\text{-constructed up to } t\}$
- $\langle 1 \rangle 4$. \mathcal{H} is a set.

PROOF: By a Replacement Axiom since, if v_1 and v_2 are both P-constructed up to t then $v_1 = v_2$ by $\langle 1 \rangle 2$.

```
\langle 1 \rangle 5. Let: F = \bigcup \mathcal{H}
\langle 1 \rangle 6. F is a function
    \langle 2 \rangle 1. Assume: tFx and tFy
    \langle 2 \rangle 2. PICK v_1, v_2 \in \mathcal{H} such that v_1(t) = x and v_2(t) = y
    \langle 2 \rangle 3. PICK t_1, t_2 \in A such that v_1 is P-constructed up to t_1 and v_2 is P-
              constructed up to t_2
    \langle 2 \rangle 4. Assume: w.l.o.g. t_1 \leq t_2
    \langle 2 \rangle 5. \ v_1(t) = v_2(t)
        Proof: By \langle 1 \rangle 2
    \langle 2 \rangle 6. \ x = y
\langle 1 \rangle 7. \ \forall x \in \text{dom } F.P(F \upharpoonright \text{seg } x, x, F(x))
    \langle 2 \rangle 1. Let: x \in \text{dom } F
    \langle 2 \rangle 2. Pick v \in \mathcal{H} such that x \in \text{dom } v
    \langle 2 \rangle 3. \ P(v \upharpoonright \operatorname{seg} x, x, v(x))
    \langle 2 \rangle 4. v \upharpoonright \operatorname{seg} x = F \upharpoonright \operatorname{seg} x
        Proof: \forall y < x.(y, v(y)) \in \bigcup \mathcal{H} = F
    \langle 2 \rangle 5. \ v(x) = F(x)
        PROOF: (x, v(x)) \in \bigcup \mathcal{H} = F
\langle 1 \rangle 8. dom F = A
    \langle 2 \rangle 1. Let: x \in A
    \langle 2 \rangle 2. Assume: \forall y < x.y \in \text{dom } F
    \langle 2 \rangle 3. Let: z be the object such that P(F \upharpoonright \operatorname{seg} x, z)
    \langle 2 \rangle 4. F \upharpoonright \operatorname{seg} x \cup \{(x,z)\} is P-constructed up to x
    \langle 2 \rangle 5. \ x \in \operatorname{dom} F
    \langle 2 \rangle 6. Q.E.D.
        PROOF: By transfinite induction, this proves \forall x \in A.x \in \text{dom } F.
\langle 1 \rangle 9. F is unique.
    \langle 2 \rangle 1. Let: G be a function with domain A such that \forall x \in A.P(G \upharpoonright \operatorname{seg} x, x, G(x))
              PROVE: \forall x \in A.F(x) = G(x)
    \langle 2 \rangle 2. Let: x \in A
    \langle 2 \rangle 3. Assume: \forall y < x. F(y) = G(y)
    \langle 2 \rangle 4. F \upharpoonright \operatorname{seg} x = G \upharpoonright \operatorname{seg} x
    \langle 2 \rangle 5. F(x) = G(x)
    \langle 2 \rangle 6. Q.E.D.
        PROOF: This completes the proof by transfinite induction.
```

2.10 Transitive Closure

Theorem 2.10.1. For any relation R on a set A, there exists a least transitive relation R^t such that $R \subseteq R^t$.

PROOF: Define R^t to be the intersection of all the transitive relations Q such that $R \subseteq Q$. \square

Theorem founded.	2.10.2.	The	transitive	closure	of a	well	-founded	relatio	n is	well-
PROOF: The element.		imal	element o	f a none	empty	set	B is also	the R	t-mi	nimal

Chapter 3

Order Theory

3.1 Partial Orders

Definition 3.1.1 (Strict Partial Order). A *strict partial order* is an irreflexive, transitive relation.

If < is a strict partial order, we write $x \le y$ for $x < y \lor x = y$.

Theorem 3.1.2. Assume that < is a partial order. Then for any x, y and z:

1. At most one of the three alternatives,

$$x < y, x = y, y < x,$$

can hold.

2.
$$x \le y \le x \Rightarrow x = y$$
.

Proof: Easy.

Proposition 3.1.3. If R is a partial ordering on D then so is R^{-1} .

Proof: Easy.

Definition 3.1.4 (Upper Bound). Let < be a partial order on A and $C \subseteq A$. An *upper bound* for C is an element $b \in A$ such that $\forall x \in C.x \leq b$.

Definition 3.1.5 (Least Upper Bound). Let < be a partial order on A and $C \subseteq A$. The *least upper bound* or *supremum* for C is the least element in the set of upper bounds for C.

Definition 3.1.6 (Lower Bound). Let < be a partial order on A and $C \subseteq A$. A *lower bound* for C is an element $b \in A$ such that $\forall x \in C.b \leq x$.

Definition 3.1.7 (Greatest Lower Bound). Let < be a partial order on A and $C \subseteq A$. The *greatest lower bound* or *infimum* for C is the greatest element in the set of lower bounds for C.

Definition 3.1.8 (Initial Segment). Let < be a partial order on A and $t \in A$. The *initial segment* up to t is

$$seg t = \{x \in A : x < t\}$$
.

Definition 3.1.9 (Isomorphism). Let A and B be posets. An *isomorphism* between A and B is a bijection f between A and B such that, for all $x, y \in A$, we have x < y if and only if f(x) < f(y).

Proposition 3.1.10. Isomorphism is an equivalence relation on the class of posets.

Proof: Easy.

Proposition 3.1.11. Let (A,<) be a poset and $B\subseteq A$. Then $<\cap B^2$ is a partial order on B.

Proof: Easy.

Theorem 3.1.12. Let R be a well-founded relation on A. The transitive closure of R is a partial order on A.

PROOF: It is well founded, hence irreflexive. \Box

3.2 Linear Orders

Definition 3.2.1 (Linear Ordering). Let A be a class. A *linear ordering* or *total ordering* on A is a relation R on A such that:

- R is transitive.
- **R** satisfies *trichotomy* on **A**; i.e. for any $x, y \in \mathbf{A}$, exactly one of

$$x\mathbf{R}y, x = y, y\mathbf{R}x$$

holds.

Theorem 3.2.2. Let R be a linear ordering on A.

- 1. There is no x such that $x\mathbf{R}x$.
- 2. For distinct x and y in A, either xRy or yRx.

PROOF: Immediate from trichotomy.

Definition 3.2.3 (Strictly Monotone Functions). Let A and B be linearly ordered sets. A function $f: A \to B$ is *strictly monotone* iff, for all $x, y \in A$, if x < y then f(x) < f(y).

Theorem 3.2.4. Let A and B be linearly ordered sets and $f: A \to B$ be strictly monotone. For all $x, y \in A$, if f(x) < f(y) then x < y.

PROOF: We have $f(x) \neq f(y)$ and $f(y) \not< f(x)$ by trichotomy, hence $x \neq y$ and $y \not< x$ since f is strictly monotone, hence x < y by trichotomy. \square

Theorem 3.2.5. Every strictly monotone function is injective.

PROOF: If f(x) = f(y), then we have $f(x) \not< f(y)$ and $f(y) \not< f(x)$ by trichotomy, hence $x \not< y$ and $y \not< x$ since f is strictly monotone, hence x = y by trichotomy. \square

Proposition 3.2.6. Let (A,<) be a linearly ordered set and $B\subseteq A$. Then $<\cap B^2$ is a linear order on B.

Proof: Easy.

Definition 3.2.7. Let A and B be disjoint linearly ordered sets. The *concatenation* of A and B, $A \oplus B$, is the set $A \cup B$ under the order given by: x < y iff

- $x, y \in A$ and x < y; or
- $x, y \in B$ and x < y; or
- $x \in A$ and $y \in B$.

It is easy to check this is a linear ordering.

Proposition 3.2.8.

$$A \oplus (B \oplus C) = (A \oplus B) \oplus C$$

Proof: Easy.

Proposition 3.2.9.

$$A \oplus \emptyset = \emptyset \oplus A = A$$

Proof: Easy. \square

Definition 3.2.10. Let A and B be linearly ordered sets. The *lexicographic order* on $A \times B$ is defined by: $(a_1, b_1) < (a_2, b_2)$ iff $a_1 < a_2$ or $(a_1 = a_2)$ and $a_1 < a_2$.

Proposition 3.2.11. These two orders on $A \times B \times C$ are equal:

- ullet lexicographic order formed from (lexicographic order on $A \times B$) and order on C
- ullet lexicographic order formed from order on A and (lexicographic order on $B \times C$)

Proof: Easy.

Proposition 3.2.12.

$$A \times 1 = 1 \times A = A$$

Proof: Easy.

Proposition 3.2.13. $A \times (B \oplus C) = (A \times B) \oplus (A \times C)$

Proof: Easy.

3.3 Well Orderings

Definition 3.3.1 (Well Ordering). A well ordering on a set A is a linear ordering on A such that every nonempty subset of A has a least element.

Theorem 3.3.2. Assume that < is a linear ordering on A. Assume that the only <-inductive subset of A is A itself. Then < is a well ordering on A.

Proof:

- $\langle 1 \rangle 1$. Assume: for a contradiction $B \subseteq A$ has no least element.
- $\langle 1 \rangle 2$. A B is <-inductive.
 - $\langle 2 \rangle 1$. Let: $t \in A$
 - $\langle 2 \rangle 2$. Assume: $\operatorname{seg} t \subseteq A B$
 - $\langle 2 \rangle 3. \ t \notin B$

PROOF: If it were, it would be the least element of B.

- $\langle 2 \rangle 4. \ t \in A B$
- $\langle 1 \rangle 3$. A B = A
- $\langle 1 \rangle 4. \ B = \emptyset$

Proposition 3.3.3. Let (A, <) be a well ordered set and $B \subseteq A$. Then $< \cap B^2$ is a well order on B.

Proof: Easy. \square

Theorem 3.3.4. Let A and B be well-ordered sets. Then one of the following holds:

- $A \cong B$
- $\exists b \in B.A \cong \operatorname{seg} b$
- $\exists a \in A. \operatorname{seg} a \cong B$

Proof:

- $\langle 1 \rangle 1$. PICKe that is not a member of A or B
- $\langle 1 \rangle 2$. Define $F: A \to B \cup \{e\}$ by:

$$F(t) = \begin{cases} \text{the least element of } B - F(\sec t) & \text{if } B - F(\sec t) \neq \emptyset \\ e & \text{if } B - F(\sec t) = \emptyset \end{cases}$$

- $\langle 1 \rangle 3$. Case: $e \in \operatorname{ran} F$
 - $\langle 2 \rangle 1$. Let: $a \in A$ be least such that $B F(\text{seg } a) = \emptyset$
 - $\langle 2 \rangle 2$. $F \upharpoonright \operatorname{seg} a : \operatorname{seg} a \cong B$
- $\langle 1 \rangle 4$. Case: ran F = B

PROOF: In this case $F: A \cong B$.

- $\langle 1 \rangle$ 5. Case: ran $F \subset B$
 - $\langle 2 \rangle 1$. Let: $b \in B$ be least such that $b \notin \operatorname{ran} F$
- $\langle 2 \rangle 2$. $F: A \cong \operatorname{seg} b$

Theorem 3.3.5. The concatenation of two well-orderings is a well ordering.
Proof: Easy. \square
Theorem 3.3.6. The lexicographic ordering on the product of two well-ordered sets is a well ordering.
Proof: Easy. \square

Chapter 4

Ordinal Numbers

Theorem 4.0.1. There exists a function **Ord** from the class of all well-ordered sets to **V** such that $\mathbf{Ord}(A) = \mathbf{Ord}(B)$ if and only if $A \cong B$.

Let $\mathbf{Ord}(x,y)$ be the proposition: x is a well-ordered set (A,R) and there exists a surjective function $E:A \twoheadrightarrow y$ such that, for all $t \in A$, we have $E(t) = \{E(s): s \in A, sRt\}$. We reason as follows:

Proof:

- $\langle 1 \rangle 1$. **Ord** is a function
 - $\langle 2 \rangle 1$. Assume: $\mathbf{Ord}((A,R),\alpha)$ and $\mathbf{Ord}((A,R),\beta)$
 - $\langle 2 \rangle 2$. PICK surjective functions $E_1: A \twoheadrightarrow \alpha$ and $E_2: A \twoheadrightarrow \beta$ such that, for all $t \in A$, we have $E_1(t) = \{E_1(s): sRt\}$ and $E_2(t) = \{E_2(s): sRt\}$
 - $\langle 2 \rangle 3. E_1 = E_2$

PROOF: Prove $E_1(t) = E_2(t)$ by R-induction on t.

- $\langle 2 \rangle 4. \ \alpha = \beta$
 - PROOF: We have $\alpha = \operatorname{ran} E_1 = \operatorname{ran} E_2 = \beta$.
- $\langle 1 \rangle 2$. dom **Ord** is the class of all well-ordered sets
 - $\langle 2 \rangle 1$. If $\mathbf{Ord}(x,y)$ then x is a well-ordered set.

PROOF: Immediate.

- $\langle 2 \rangle 2$. For any well-ordered set (A, R), there exists α such that $\mathbf{Ord}((A, R), \alpha)$
 - $\langle 3 \rangle 1$. Let: (A, R) be a well-ordered set.
 - $\langle 3 \rangle$ 2. Define the function $E: A \to \mathbf{V}$ by transfinite recursion by: $E(t) = \{E(s): sRt\}$
 - $\langle 3 \rangle 3$. Let: $\alpha = \operatorname{ran} E$
 - $\langle 3 \rangle 4$. $\mathbf{Ord}((A,R), \alpha)$
- $\langle 1 \rangle 3$. Given well-ordered sets A and B, we have $\mathbf{Ord}(A) = \mathbf{Ord}(B)$ if and only if $A \cong B$.
 - $\langle 2 \rangle 1$. Let: (A, R) and (B, S) be well-ordered sets.
 - $\langle 2 \rangle 2$. If $\mathbf{Ord}(A, R) = \mathbf{Ord}(B, S)$ then $(A, R) \cong (B, S)$
 - $\langle 3 \rangle 1$. Assume: $\mathbf{Ord}(A, R) = \mathbf{Ord}(B, S) = \alpha$, say
 - $\langle 3 \rangle 2$. Pick surjective function $E:(A,R) \rightarrow \alpha$ and $E':(B,S) \rightarrow \alpha$ such that $\forall t \in A.E(t) = \{E(s): sRt\}$ and $\forall t \in B.E'(t) = \{E'(s): sSt\}$

```
\langle 3 \rangle 3. E' is a bijection
          PROOF: If sSt then E'(s) \in E'(t) hence E'(s) \neq E'(t).
       \langle 3 \rangle 4. Define F: A \to B by F = E'^{-1} \circ E
       \langle 3 \rangle 5. For s, t \in A we have sRt iff F(s)SF(t)
          Proof:
                                        sRt \Leftrightarrow E(s) \in E(t)
                                               \Leftrightarrow E'^{-1}(E(s))SE'^{-1}(E(t))
   \langle 2 \rangle 3. If A \cong B then \mathbf{Ord}(A) = \mathbf{Ord}(B)
       \langle 3 \rangle 1. Let: F: (A,R) \cong (B,S)
       \langle 3 \rangle 2. Let: \alpha = \mathbf{Ord}(A, R)
       \langle 3 \rangle 3. Let: \beta = \mathbf{Ord}(B, S)
       \langle 3 \rangle 4. Pick a surjective function E: A \to \alpha such that \forall t \in A.E(t) =
                {E(s):sRt}
       \langle 3 \rangle5. PICK a surjective function E': B \to \beta such that \forall t \in B.E'(t) =
                \{E'(s): sSt\}
       \langle 3 \rangle 6. \ \forall t \in A.E(t) = E'(F(t))
          PROOF: By R-induction on t.
       \langle 3 \rangle 7. \ \alpha = \beta
          Proof: \alpha = \operatorname{ran} E = \operatorname{ran} E' = \beta
```

Theorem Schema 4.0.2. Given any predicates Ord(x, y) and Ord'(x, z), there exists a predicate F(y, z) such that the following is a theorem.

Assume \mathbf{Ord} and \mathbf{Ord}' are functions from the class of all well-ordered sets to \mathbf{V} such that, for all well-ordered sets A and B, $\mathbf{Ord}(A) = \mathbf{Ord}(B)$ if and only if $\mathbf{Ord}'(A) = \mathbf{Ord}'(B)$ if and only if $A \cong B$. Then \mathbf{F} is a bijection between \mathbf{ran} \mathbf{Ord} and \mathbf{ran} \mathbf{Ord}' such that $\mathbf{F} \circ \mathbf{Ord} = \mathbf{Ord}'$.

Take $\mathbf{F}(y,z)$ to be the predicate: There exists x such that $\mathbf{Ord}(x,y)$ and $\mathbf{Ord}'(x,z)$.

Proof:

- $\langle 1 \rangle 1$. **F** is a bijection between ran **Ord** and **Ord**'
 - $\langle 2 \rangle 1$. **F** is a function.
 - $\langle 3 \rangle 1$. Assume: $\mathbf{F}(y,z)$ and $\mathbf{F}(y,z')$
 - $\langle 3 \rangle 2$. Pick x such that $\mathbf{Ord}(x) = y$ and $\mathbf{Ord}'(x) = z$
 - $\langle 3 \rangle 3$. PICK x' such that $\mathbf{Ord}(x') = y$ and $\mathbf{Ord}'(x') = z'$
 - $\langle 3 \rangle 4. \ x \cong x'$
 - $\langle 3 \rangle 5.$ z = z'
 - $\langle 2 \rangle 2$. dom $\mathbf{F} = \operatorname{ran} \mathbf{Ord}$
 - $\langle 3 \rangle 1$. dom $\mathbf{F} \subseteq \operatorname{ran} \mathbf{Ord}$

PROOF: Immediate.

- $\langle 3 \rangle 2$. ran **Ord** \subseteq dom **F**
 - $\langle 4 \rangle 1$. Let: $y \in \operatorname{ran} \mathbf{Ord}$
 - $\langle 4 \rangle 2$. PICK x such that $\mathbf{Ord}(x) = y$
 - $\langle 4 \rangle 3. \ \mathbf{F}(y) = \mathbf{Ord}'(x)$
- $\langle 2 \rangle 3$. ran $\mathbf{F} = \operatorname{ran} \mathbf{Ord}'$

```
⟨3⟩1. ran \mathbf{F} \subseteq \operatorname{ran} \mathbf{Ord}'
PROOF: Immediate.
⟨3⟩2. ran \mathbf{Ord}' \subseteq \operatorname{ran} \mathbf{F}
⟨4⟩1. Let: z \in \operatorname{ran} \mathbf{Ord}'
⟨4⟩2. Pick x such that \mathbf{Ord}'(x) = z
⟨4⟩3. \mathbf{F}(\mathbf{Ord}(x)) = z
⟨2⟩4. \mathbf{F} is one-to-one.
⟨3⟩1. Assume: \mathbf{F}(y) = \mathbf{F}(y')
⟨3⟩2. Pick x and x' such that \mathbf{Ord}(x) = y, \mathbf{Ord}(x') = y', and \mathbf{Ord}'(x) = \mathbf{Ord}'(x') = \mathbf{F}(y)
⟨3⟩3. x \cong x'
⟨3⟩4. y = y'
⟨1⟩2. \mathbf{F} \circ \mathbf{Ord} = \mathbf{Ord}'
PROOF: Immediate.
```

Pick a function **Ord** such that dom **Ord** is the class of all well-ordered sets, and $\mathbf{Ord}(A) = \mathbf{Ord}(B)$ iff $A \cong B$.

Definition 4.0.3 (Ordinal Number). The class **On** of *ordinal numbers* is ran **Ord**.

Definition 4.0.4 (Well-ordered by Epsilon). A set A is well-ordered by epsilon iff $\{(x,y): x,y \in A, x \in y\}$ is a well ordering on A.

Definition 4.0.5 (Transitive Set). A set A is a *transitive set* iff every member of a member of A is a member of A.

Theorem 4.0.6. A set is an ordinal number if and only if it is a transitive set that is well-ordered by epsilon.

Proof:

 $\langle 1 \rangle 1$. Every ordinal number is a transitive set.

PROOF: Lemma ??.

 $\langle 1 \rangle 2$. Every ordinal number is well-ordered by epsilon.

PROOF: Corollary ??.

 $\langle 2 \rangle 3. \ \forall x \in \alpha. E(x) = x$

- $\langle 1 \rangle 3$. Every transitive set that is well-ordered by epsilon is an ordinal number.
 - $\langle 2 \rangle$ 1. Let: α be a transitive set well-ordered by epsilon.
 - $\langle 2 \rangle 2$. Let: β be the epsilon-image of (α, \in) with $E: \alpha \cong \beta$ the canonical isomorphism.

```
Theorem 4.0.7. Every member of an ordinal number is an ordinal number.
\langle 1 \rangle 1. Let: \alpha be an ordinal number.
\langle 1 \rangle 2. Let: \beta \in \alpha
\langle 1 \rangle 3. \beta is a transitive set.
   \langle 2 \rangle 1. Let: x \in y \in \beta
   \langle 2 \rangle 2. \ y \in \alpha
       PROOF: Since \alpha is a transitive set.
    \langle 2 \rangle 3. \ x \in \alpha
       PROOF: Since \alpha is a transitive set.
   \langle 2 \rangle 4. \ x \in \beta
       PROOF: Since \alpha is a partially ordered by epsilon.
\langle 1 \rangle 4. \beta is well-ordered by epsilon.
   PROOF: Since \{(x,y): x,y \in \beta, x \in y\} is the restriction of \{(x,y): x,y \in \beta\}
   \alpha, x \in y} to \beta.
\langle 1 \rangle 5. \beta is an ordinal number.
   PROOF: Theorem 4.0.6.
Proposition 4.0.8. The class of ordinals is well-ordered by epsilon.
Proof:
\langle 1 \rangle 1. For any ordinals \alpha, \beta, \gamma, if \alpha \in \beta \in \gamma then \alpha \in \gamma.
   PROOF: Since \gamma is a transitive set (Lemma ??).
\langle 1 \rangle 2. For any ordinal \alpha we have \alpha \notin \alpha.
   PROOF: Since \alpha is well-ordered by epsilon.
\langle 1 \rangle 3. For any ordinals \alpha, \beta, exactly one of \alpha \in \beta, \beta \in \alpha, \alpha = \beta holds.
    \langle 2 \rangle 1. Let: \alpha, \beta be ordinals.
   \langle 2 \rangle 2. Either \alpha \cong \beta or \exists \gamma \in \beta. \alpha \cong \gamma or \exists \gamma \in \alpha. \gamma \cong \alpha
       PROOF: Theorem 3.3.4.
   \langle 2 \rangle 3. Either \alpha = \beta or \exists \gamma \in \beta . \alpha = \gamma or \exists \gamma \in \alpha . \gamma = \alpha
       Proof: Since any ordinal is its own epsilon-image, and isomorphic well-
       orderings have equal epsilon-images.
\langle 1 \rangle 4. Any nonempty set of ordinals has a least element.
   \langle 2 \rangle 1. Let: A be a nonempy set of ordinals.
   \langle 2 \rangle 2. Pick \alpha \in A
   \langle 2 \rangle 3. Case: A \cap \alpha = \emptyset
       PROOF: In this case, \alpha is least in A.
   \langle 2 \rangle 4. Case: A \cap \alpha \neq \emptyset
       PROOF: In this case, the least element of A \cap \alpha is the least element in A.
```

Corollary 4.0.8.1. Any transitive set of ordinal numbers is an ordinal number.

Corollary 4.0.8.2. \emptyset is an ordinal number.

 $\langle 2 \rangle 4$. $\alpha = \beta$

We write 0 for \emptyset considered as an ordinal number.

Definition 4.0.9 (Successor). The *successor* of a set a is the set $a^+ = a \cup \{a\}$.

Corollary 4.0.9.1. The successor of an ordinal number is an ordinal number.

Corollary 4.0.9.2. For any set A of ordinal numbers, the set $\bigcup A$ is an ordinal number.

Theorem 4.0.10 (Burali-Forti). The class of ordinal numbers is not a set.

PROOF:

- $\langle 1 \rangle 1$. Assume: for a contradiction the class **On** is a set.
- $\langle 1 \rangle 2$. **On** is an ordinal number.

PROOF: Corollary 4.0.8.1.

- $\langle 1 \rangle 3$. On \in On
- $\langle 1 \rangle 4$. Q.E.D.

PROOF: This contradicts Lemma ??.

Theorem 4.0.11 (Hartogs). For any set A, there exists an ordinal not dominated by A.

Proof:

- $\langle 1 \rangle 1$. Let: A be a set.
- $\langle 1 \rangle 2$. Let: $\alpha = \{ \beta : \beta \text{ is an ordinal }, \beta \preccurlyeq A \}.$
- $\langle 1 \rangle 3$. Let: $W = \{(B, <) : B \subseteq A, < \text{ is a well ordering on } B\}$
- $\langle 1 \rangle 4. \ \forall \beta \in \alpha. \exists (B, <) \in W. \beta \text{ is the epsilon-image of } (B, <)$
 - $\langle 2 \rangle 1$. Let: $\beta \in \alpha$
 - $\langle 2 \rangle 2$. Pick an injection $f: \beta \to A$
 - $\langle 2 \rangle 3$. Define < on $f(\beta)$ by: $f(\gamma) < f(\delta)$ iff $\gamma \in \delta$
 - $\langle 2 \rangle 4$. < well orders $f(\beta)$
 - $\langle 2 \rangle 5$. β is the epsilon-image of $(f(\beta), <)$ with f^{-1} the canonical isomorphism.
- $\langle 1 \rangle 5$. α is a set.

PROOF: By a Replacement Axiom applied to W.

- $\langle 1 \rangle 6$. α is an ordinal.
 - $\langle 2 \rangle 1$. α is a transitive set.
 - $\langle 3 \rangle 1$. Let: $\beta \in \gamma \in \alpha$
 - $\langle 3 \rangle 2. \ \beta \subseteq \gamma \preccurlyeq A$
 - $\langle 3 \rangle 3. \ \beta \preccurlyeq A$
 - $\langle 3 \rangle 4. \ \beta \in \alpha$
 - $\langle 2 \rangle 2$. Q.E.D.

Proof: By Corollary 4.0.8.1.

 $\langle 1 \rangle 7. \ \alpha \not \leq A$

PROOF: Because $\alpha \notin \alpha$.

П

Theorem 4.0.12. The following statements are equivalent:

1. The Axiom of Choice

- 2. Well-Ordering Theorem For any set A, there exists a well ordering on A.
- 3. **Zorn's Lemma** Let A be a set such that, for every chain $B \subseteq A$, we have $\bigcup \mathcal{B} \in \mathcal{A}$. Then \mathcal{A} has a maximal element.

- $\langle 1 \rangle 1$. If the Axiom of Choice is true then the Well-Ordering Theorem is true.
 - $\langle 2 \rangle 1$. Assume: The Axiom of Choice
 - $\langle 2 \rangle 2$. Let: A be any set.
 - $\langle 2 \rangle 3$. PICK an ordinal α not dominated by A.
 - $\langle 2 \rangle 4$. Pick an object e such that $e \notin A$.
 - $\langle 2 \rangle$ 5. PICK a choice function $G : \mathcal{P}A \{\emptyset\} \to A$ for A.

$$\langle 2 \rangle 6. \text{ Define the function } F: \alpha \to A \cup \{e\} \text{ by transfinite recursion thus:}$$

$$F(\gamma) = \begin{cases} G(A - \{F(\delta) : \delta < \gamma\}) & \text{if } A - \{F(\delta) : \delta < \gamma\} \neq \emptyset \\ e & \text{if } A - \{F(\delta) : \delta < \gamma\} = \emptyset \end{cases}$$

- $\langle 2 \rangle 7$. Let: δ be least such that $F(\delta) = e$
 - PROOF: There is such a δ , otherwise F would be a bijection between α and A.
- $\langle 2 \rangle 8$. $F \upharpoonright \delta$ is a bijection between δ and A
- $\langle 2 \rangle 9$. Define $\langle \text{ on } A \text{ by: } F(\gamma) \langle F(\beta) \text{ iff } \gamma \in \beta \text{ for } \gamma, \beta \in \delta$
- $\langle 2 \rangle 10$. < is a well ordering on A.
- $\langle 1 \rangle 2$. If the Well-Ordering Theorem is true then Zorn's Lemma is true.
 - $\langle 2 \rangle 1$. Assume: The Well-Ordering Theorem
 - $\langle 2 \rangle 2$. Let: \mathcal{A} be a set that is closed under unions of chains.
 - $\langle 2 \rangle 3$. Pick a well ordering \langle on \mathcal{A}

$$\langle 2 \rangle$$
4. Define the function $F: \mathcal{A} \to 2$ by transfinite recursion thus:
$$F(A) = \begin{cases} 1 & \text{if } \forall B < A.F(B) = 1 \Rightarrow B \subseteq A \\ 0 & \text{otherwise} \end{cases}$$

- $\langle 2 \rangle$ 5. Let: $\mathcal{C} = \{ A \in \mathcal{A} : F(A) = 1 \}$
- $\langle 2 \rangle 6$. C is a chain.
 - $\langle 3 \rangle 1$. Let: $A, B \in \mathcal{C}$
 - $\langle 3 \rangle 2$. Assume: w.l.o.g. A < B
 - $\langle 3 \rangle 3. \ F(A) = 1$
 - $\langle 3 \rangle 4$. F(B) = 1
 - $\langle 3 \rangle 5$. $A \subseteq B$
- $\langle 2 \rangle 7$. $\bigcup \mathcal{C} \in \mathcal{A}$
 - Proof: By $\langle 2 \rangle 2$.
- $\langle 2 \rangle 8$. $\bigcup \mathcal{C}$ is maximal in \mathcal{A}
 - $\langle 3 \rangle 1$. Assume: $\bigcup \mathcal{C} \subseteq D \in \mathcal{A}$
 - $\langle 3 \rangle 2. \ \forall B < D.F(B) = 1 \Rightarrow B \subseteq D$

PROOF: If F(B) = 1 then $B \in \mathcal{C}$ so $B \subseteq \bigcup \mathcal{C} \subseteq D$.

- $\langle 3 \rangle 3. \ F(D) = 1$
- $\langle 3 \rangle 4. \ D \in \mathcal{C}$
- $\langle 3 \rangle 5.$ $D = \bigcup \mathcal{C}$

- $\langle 1 \rangle 3$. If Zorn's Lemma is true then the Axiom of Choice is true.
 - $\langle 2 \rangle 1$. Assume: Zorn's Lemma
 - $\langle 2 \rangle 2$. Let: R be a relation.
 - $\langle 2 \rangle 3$. Let: \mathcal{A} be the set of all functions that are subsets of R.
 - $\langle 2 \rangle 4$. For any chain $\mathcal{B} \subseteq \mathcal{A}$ we have $\bigcup \mathcal{B} \in \mathcal{A}$
 - $\langle 2 \rangle$ 5. Pick $F \in \mathcal{A}$ maximal.
 - $\langle 2 \rangle 6$. dom F = dom R

Corollary 4.0.12.1 (Numeration Theorem (Choice)). Any set is equinumerous to some ordinal number.

Theorem 4.0.13 (Transfinite Recursion). Let $F: V \to V$. Then there exists a function $G: On \to V$ such that

$$\forall \alpha \in \mathbf{On}.\mathbf{G}(\alpha) = \mathbf{F}(\mathbf{G} \upharpoonright \alpha)$$
.

PROOF: Define $\mathbf{G} = \{(\alpha, y) : \exists f : \alpha^+ \to \mathbf{V}. \forall \beta \in \alpha^+. f(\beta) = \mathbf{F}(f \upharpoonright \beta)\}.$

Definition 4.0.14 (Continuous). A function $\mathbf{F} : \mathbf{On} \to \mathbf{On}$ is *continuous* iff $\mathbf{F}(\lambda) = \bigcup_{\beta \in \lambda} \mathbf{F}(\beta)$ for every limit ordinal λ .

Theorem 4.0.15. Let $\mathbf{F} : \mathbf{On} \to \mathbf{On}$ be continuous. Suppose $\forall \alpha \in \mathbf{On}.\mathbf{F}(\alpha) < \mathbf{F}(\alpha+1)$. Then \mathbf{F} is strictly monotone.

PROOF:

П

- $\langle 1 \rangle 1$. Let: $P(\beta)$ be the statement: $\forall \alpha < \beta . \mathbf{F}(\alpha) < \mathbf{F}(\beta)$
- $\langle 1 \rangle 2$. P(0)

PROOF: Vacuous.

- $\langle 1 \rangle 3. \ \forall \beta \in \mathbf{On}.P(\beta) \Rightarrow P(\beta^+)$
 - PROOF: For $\alpha < \beta^+$ we have $\mathbf{F}(\alpha) \leq \mathbf{F}(\beta) < \mathbf{F}(\beta^+)$.
- $\langle 1 \rangle 4$. For every limit ordinal λ , if $\forall \beta < \lambda . P(\beta)$ then $P(\lambda)$

PROOF: For $\alpha < \lambda$ we have $\mathbf{F}(\alpha) < \mathbf{F}(\alpha^+) \leq \mathbf{F}(\lambda)$.

Definition 4.0.16 (Normal). A function $F: \mathbf{On} \to \mathbf{On}$ is *normal* iff it is strictly monotone and continuous.

Theorem 4.0.17. Let $\mathbf{F}: \mathbf{On} \to \mathbf{On}$ be normal. Let $t_0 \leq \beta$. Then there exists a greatest γ such that $\mathbf{F}(\gamma) \leq \beta$.

Proof:

- $\langle 1 \rangle 1$. Let: $\gamma = \{ \alpha \in \mathbf{On} : \mathbf{F}(\alpha) \leq \beta \}$
- $\langle 1 \rangle 2$. γ is an ordinal.
 - $\langle 2 \rangle 1$. γ is a set.

PROOF: We have $\alpha \leq \mathbf{F}(\alpha)$ for all α , so $\gamma \subseteq \beta$.

 $\langle 2 \rangle 2$. γ is a transitive set.

PROOF: If $\alpha < \alpha'$ and $\mathbf{F}(\alpha') \leq \beta$ then $\mathbf{F}(\alpha) < \beta$ by monotonicity.

 $\langle 1 \rangle 3. \ \gamma \neq 0$

PROOF: By hypothesis.

 $\langle 1 \rangle 4$. Case: γ is a successor ordinal.

PROOF: Let $\gamma = \alpha^+$. Then α is greatest such that $\mathbf{F}(\alpha) \leq \beta$.

 $\langle 1 \rangle$ 5. Case: γ is a limit ordinal.

PROOF: This is impossible since then $\mathbf{F}(\gamma) = \bigcup_{\alpha \in \gamma} \mathbf{F}(\alpha) \leq \beta$ and so $\gamma \in \gamma$.

Theorem 4.0.18. Let $\mathbf{F}: \mathbf{On} \to \mathbf{On}$ be normal. Let S be a nonempty set of ordinals. Then $\mathbf{F}(\sup S) = \sup \mathbf{F}(S)$.

Proof:

 $\langle 1 \rangle 1$. $\mathbf{F}(\sup S) \ge \sup \mathbf{F}(S)$

PROOF: By monotonicity.

 $\langle 1 \rangle 2$. $\mathbf{F}(\sup S) \leq \sup \mathbf{F}(S)$

 $\langle 2 \rangle 1$. Case: $\sup S \in S$

PROOF: Immediate.

 $\langle 2 \rangle 2$. Case: $\sup S \notin S$

 $\langle 3 \rangle 1$. sup S is a limit ordinal.

 $\langle 3 \rangle 2$. $\mathbf{F}(\sup S) = \sup \{ \mathbf{F}(\beta) : \beta < \sup S \}$

 $\langle 3 \rangle 3. \ \forall \beta < \sup S.\mathbf{F}(\beta) \le \sup \mathbf{F}(S)$

Theorem 4.0.19 (Veblen Fixed-Point Theorem (1907)). A normal operation on ordinals has arbitrarily large fixed points.

That is, let $\mathbf{F}: \mathbf{On} \to \mathbf{On}$ be normal. For all $\alpha \in \mathbf{On}$, there exists $\beta \geq \alpha$ such that $\mathbf{F}(\beta) = \beta$.

PROOF: Let
$$\beta=\sup_{n\in\omega}F^n(\alpha)$$
. Then $\alpha\leq\beta$ using monotonicity, and
$$F(\beta)=\sup_{n\in\omega}F^{n+1}(\alpha)$$

$$=\beta$$

Definition 4.0.20 (Addition). The *sum* of two ordinal numbers is the ordinal number of their concatenation.

Theorem 4.0.21. Addition is associative.

Proof: Easy.

Theorem 4.0.22.

$$\alpha + 0 = 0 + \alpha = \alpha$$

Proof: Easy.

Theorem 4.0.23.

$$\alpha + \beta^+ = (\alpha + \beta)^+$$

Proof: Easy.

Theorem 4.0.24. For λ a limit ordinal, $\alpha + \lambda = \sup_{\beta < \lambda} (\alpha + \beta)$.

PROOF: Easy. \square **Theorem 4.0.25.** For any ordinal α , the function that maps β to $\alpha + \beta$ is normal.

Proof: Easy. \square

Corollary 4.0.25.1.

$$\beta < \gamma \Leftrightarrow \alpha + \beta < \alpha + \gamma$$

Corollary 4.0.25.2. If $\alpha + \beta = \alpha + \gamma$ then $\beta = \gamma$.

Theorem 4.0.26. If $\beta \leq \gamma$ then $\beta + \alpha \leq \gamma + \alpha$.

PROOF: Transfinite induction on α . \square

Theorem 4.0.27 (Subtraction Theorem). If $\alpha \leq \beta$ then there exists a unique ordinal γ such that $\alpha + \gamma = \beta$.

PROOF: Let γ be greatest such that $\alpha + \gamma \leq \beta$. \square

Definition 4.0.28 (Multiplication). The *product* of two ordinal numbers α and β is the ordinal number of $\alpha \times \beta$ under the lexicographic ordering.

Theorem 4.0.29. Multiplication is associative.

Proof: Easy. \square

Theorem 4.0.30.

$$\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$$

Proof: Easy.

Theorem 4.0.31.

$$\alpha 1 = 1\alpha = \alpha$$

Proof: Easy. \square

Theorem 4.0.32.

$$\alpha 0 = 0\alpha = 0$$

Proof: Easy.

Theorem 4.0.33.

$$\alpha\beta^+ = \alpha\beta + \alpha$$

Proof: Easy. \square

Theorem 4.0.34. For λ a limit ordinal, $\alpha\lambda = \sup_{\beta < \lambda} (\alpha\beta)$.

Proof: Easy.

Theorem 4.0.35. For any ordinal $\alpha > 0$, the function that maps β to $\alpha\beta$ is normal.

Proof: Easy. \square

Corollary 4.0.35.1. For $\alpha > 0$ we have

$$\beta < \gamma \Leftrightarrow \alpha \beta < \alpha \gamma$$

Corollary 4.0.35.2. For $\alpha > 0$, if $\alpha \beta = \alpha \gamma$ then $\beta = \gamma$.

Theorem 4.0.36. *If* $\beta \leq \gamma$ *then* $\beta \alpha \leq \gamma \alpha$.

PROOF: Transfinite induction on α .

Theorem 4.0.37 (Division Theorem). Let $\delta \neq 0$. For any α , there exist unique ordinals β , γ such that $\alpha = \delta\beta + \gamma$ and $\gamma < \delta$.

PROOF: Let β be largest such that $\delta\beta \leq \alpha$, and let γ be as given by the Subtraction Theorem. \square

PROOF: Let γ be greatest such that $\alpha + \gamma \leq \beta$. \square

Definition 4.0.38 (Exponentiation). Define α^{β} by transfinite recursion thus:

$$\alpha^{0} = 1$$

$$\alpha^{\beta^{+}} = \alpha^{\beta} \alpha$$

$$\alpha^{\lambda} = \sup_{\beta < \lambda} \alpha^{\beta}$$

for λ a limit ordinal.

Theorem 4.0.39. For $\alpha > 1$, the function that maps β to α^{β} is normal.

Proof: Easy. \square

Corollary 4.0.39.1. For $\alpha > 1$ we have

$$\beta < \gamma \Leftrightarrow \alpha^{\beta} < \alpha^{\gamma}$$

Corollary 4.0.39.2. For $\alpha > 1$, if $\alpha^{\beta} = \alpha^{\gamma}$ then $\beta = \gamma$.

Theorem 4.0.40. If $\beta \leq \gamma$ then $\beta^{\alpha} \leq \gamma^{\alpha}$.

PROOF: Transfinite induction on α .

Theorem 4.0.41 (Logarithm Theorem). Let $\alpha \neq 0$ and $\beta > 1$. Then there exist unique ordinals γ , δ , ρ such that $\alpha = \beta^{\gamma} \delta + \rho$, $0 < \delta < \beta$ and $\rho < \beta^{\gamma}$.

PROOF: Let γ be greatest such that $\beta^{\gamma} \leq \alpha$, and then apply the Division Theorem. \square

Theorem 4.0.42.

$$\alpha^{\beta+\gamma} = \alpha^{\beta}\alpha^{\gamma}$$

PROOF: Transfinite induction on γ . \square

Theorem 4.0.43.

$$\alpha^{\beta\gamma} = (\alpha^\beta)^\gamma$$

PROOF: Transfinite induction on γ . \square

Chapter 5

Natural Numbers

5.1 Natural Numbers

Definition 5.1.1 (Peano System). A *Peano system* is a triple $\langle N, S, 0 \rangle$ consisting of a set N, a function $S: N \to N$ and an element $0 \in N$ such that:

- 1. $0 \notin \operatorname{ran} S$
- 2. S is one-to-one
- 3. Any subset $A \subseteq N$ that contains 0 and is closed under S equals N.

We call 0 zero and S(x) the successor of x.

Theorem 5.1.2. *In any Peano system, every element is either 0 or a successor.*

PROOF: The set of elements that are either 0 or a successor contains 0 and is closed under successor. \Box

Theorem 5.1.3 (Iteration Theorem). Let (N, S, 0) be any Peano system. Let W be a set, $c \in W$ and $g : W \to W$. Then there exists a unique function $F : N \to W$ such that F(0) = c and $\forall x \in N.F(S(x)) = g(F(x))$.

Proof:

- $\langle 1 \rangle 1$. S is a well-founded relation.
 - $\langle 2 \rangle 1$. Let: $A \subseteq N$
 - $\langle 2 \rangle 2$. Assume: A has no S-minimal element Prove: $A=\emptyset$
 - $\langle 2 \rangle 3. \ 0 \in N A$

PROOF: Otherwise 0 would be an S-minimal element of A.

 $\langle 2 \rangle 4. \ \forall x \in N - A.S(x) \in N - A$

PROOF: Otherwise S(x) would be an S-minimal element of A.

 $\langle 2 \rangle 5. \ N - A = N$

Proof: By induction.

 $\langle 1 \rangle 2$. Q.E.D.

PROOF: By Transfinite Recursion.

Definition 5.1.4 (Inductive). A class **A** is *inductive* iff $\emptyset \in \mathbf{A}$ and $\forall a \in \mathbf{A}.a^+ \in \mathbf{A}$.

Definition 5.1.5 (Natural Number). A *natural number* is a set that belongs to every inductive set.

We write ω for the class of all natural numbers.

Theorem 5.1.6. The class ω is a set.

PROOF: Pick an inductive set I (by the Axiom of Infinity), then apply a Subset Axiom to I. \Box

Theorem 5.1.7. The set ω is inductive, and is a subset of every inductive set.

Proof: Easy.

Corollary 5.1.7.1 (Proof by Induction). Any inductive subclass of ω is equal to ω .

Theorem 5.1.8. Every natural number except 0 is the successor of some natural number.

Proof: Easy proof by induction. \square

Theorem 5.1.9. For any transitive set a, $\bigcup (a^+) = a$.

Proof:

$$\bigcup (a^{+}) = \bigcup (a \cup \{a\})$$

$$= \bigcup a \cup \bigcup \{a\}$$

$$= \bigcup a \cup a$$

$$= a$$

since $\bigcup a \subseteq a$. \square

Theorem 5.1.10. Every natural number is a transitive set.

Proof:

 $\langle 1 \rangle 1$. 0 is a transitive set.

Proof: Vacuous.

- $\langle 1 \rangle 2.$ For any natural number n, if n is a transitive set then n^+ is a transitive set.
 - $\langle 2 \rangle 1$. Let: n be a natural number that is a transitive set.
 - $\langle 2 \rangle 2. \ \bigcup (n^+) \subseteq n^+$

PROOF: Theorem 5.1.9.

П

Theorem 5.1.11. $\langle \omega, \sigma, 0 \rangle$ is a Peano system, where $0 = \emptyset$ and $\sigma = \{\langle n, n^+ \rangle : n \in \omega \}$.

Proof:

 $\langle 1 \rangle 1$. $0 \notin \operatorname{ran} \sigma$

PROOF: For any $n \in \omega$ we have $0 \neq n^+$ since $n \in n^+$ and $n \notin 0$.

 $\langle 1 \rangle 2$. σ is one-to-one.

PROOF: If $m^+ = n^+$ then $m = \bigcup (m^+) = \bigcup (n^+) = n$ using Theorems 5.1.9 and 5.1.10.

 $\langle 1 \rangle$ 3. Any subset $A \subseteq \omega$ that contains 0 and is closed under σ equals ω .

Theorem 5.1.12. The set ω is a transitive set.

Proof:

- $\langle 1 \rangle 1$. For every natural number n we have $\forall m \in n$. m is a natural number.
 - $\langle 2 \rangle 1$. $\forall m \in \mathbb{0}$. m is a natural number.

Proof: Vacuous.

 $\langle 2 \rangle 2$. If n is a natural number and $\forall m \in n$. m is a natural number, then $\forall m \in n^+$. m is a natural number.

PROOF: Since if $m \in n^+$ we have either $m \in n$ or m = n, and m is a natural number in either case.

Theorem 5.1.13. Let (N, S, e) be a Peano system. Then $(\omega, \sigma, 0)$ is isomorphic to (N, S, e), i.e. there is a function h mapping ω one-to-one onto N in a way that preserves the successor operation

$$h(\sigma(n)) = S(h(n))$$

and the zero element

$$h(0) = e .$$

Proof:

 $\langle 1 \rangle 1$. There exists a function h that satisfies those two conditions.

PROOF: By the Recursion Theorem.

- $\langle 1 \rangle 2$. For all $m, n \in \omega$, if $m \neq n$ then $h(m) \neq h(n)$
 - $\langle 2 \rangle 1$. For all $n \in \omega$, if $n \neq 0$ then $h(n) \neq h(0)$
 - $\langle 3 \rangle 1$. Let: $n \in \omega$
 - $\langle 3 \rangle 2$. Assume: $n \neq 0$
 - $\langle 3 \rangle 3$. Pick p such that $n = p^+$
 - $\langle 3 \rangle 4$. $h(n) \neq h(0)$

PROOF: $h(n) = S(h(p)) \neq e = h(0)$.

- $\langle 2 \rangle 2$. For all $m \in \omega$, if $\forall n (m \neq n \Rightarrow h(m) \neq h(n))$ then $\forall n (m^+ \neq n \Rightarrow h(m^+) \neq h(n))$
 - $\langle 3 \rangle 1$. Let: $m \in \omega$
 - $\langle 3 \rangle 2$. Assume: $\forall n (m \neq n \Rightarrow h(m) \neq h(n))$
 - $\langle 3 \rangle 3$. Let: $n \in \omega$
 - $\langle 3 \rangle 4$. Assume: $m^+ \neq n$ Prove: $h(m^+) \neq h(n)$
 - $\langle 3 \rangle 5$. Case: n = 0

Proof: $h(m^+) = S(h(m)) \neq e = h(n)$ $\langle 3 \rangle 6$. Case: $n = p^+$ $\langle 4 \rangle 1$. $m \neq p$ $\langle 4 \rangle 2$. $h(m) \neq h(p)$ $\langle 4 \rangle 3$. $S(h(m)) \neq S(h(p))$ $\langle 4 \rangle 4$. $h(m^+) \neq h(p^+)$ $\langle 1 \rangle 3$. For all $x \in N$, there exists $n \in \omega$ such that h(n) = x Proof: An easy induction on x.

Theorem 5.1.14 (Choice). Let R be a relation on A. Then R is well founded iff there does not exist any function $f: \omega \to A$ such that f(n+1)Rf(n) for all

$n \in \omega$. Proof:

 $\langle 1 \rangle 1$. If R is well founded then there does not exist any function $f : \omega \to A$ such that f(n+1)Rf(n) for all $n \in \omega$.

PROOF: If there is such a function f then ran f is a nonempty subset of A with no R-minimal element.

- $\langle 1 \rangle 2$. If there does not exist any function $f : \omega \to A$ such that f(n+1)Rf(n) for all $n \in \omega$ then R is well founded.
 - $\langle 2 \rangle$ 1. Let: $X \subseteq A$ be a nonempty subset of A with no R-minimal element. Prove: There exists a function $f: \omega \to A$ such that f(n+1) < f(n) for all $n \in \omega$
 - $\langle 2 \rangle 2$. Pick $a_0 \in X$
 - $\langle 2 \rangle 3. \ \forall x \in X. \exists y \in X. yRx$
 - $\langle 2 \rangle 4$. PICK a function $g: X \to X$ such that $\forall x \in X.g(x)Rx$ PROOF: By the Axiom of Choice.
 - $\langle 2 \rangle$ 5. Define $f : \omega \to A$ recursively by:

$$f(0) = a_0$$
$$f(n^+) = g(f(n))$$

Alternative proof for Theorem 2.10.1 Define $f: \omega \to \mathcal{P}A^2$ by f(0) = R and $f(n^+) = f(n) \circ R$. Define $R^t = \bigcup_{n \in \omega} f(n)$.

Theorem 5.1.15. For any set A, there exists the smallest transitive set B such that $A \subseteq B$.

Proof: Define $f: \omega \to \mathbf{V}$ by

$$f(0) = A$$

$$f(n^+) = f(n) \cup \bigcup f(n)$$

Then $\bigcup_n f(n)$ is the smallest transitive set that includes A. \square

Definition 5.1.16 (Transitive Closure). The *transitive closure* of a set A is the least transitive set that includes A.

Theorem 5.1.17. Addition on natural numbers is commutative.

Theorem 5.1.18. Multiplication on natural numbers is commutative.

5.2 Finite Sets

Definition 5.2.1 (Finite). A set is *finite* iff it is equinumerous with a natural number. Otherwise it is infinite.

Theorem 5.2.2. No natural number is equinumerous with a proper subset of itself.

Proof:

 $\langle 1 \rangle 1$. Any injective function $f: 0 \to 0$ has range 0.

PROOF: Since the only such function is \emptyset .

- $\langle 1 \rangle 2$. For any natural number n, if every injective function $f: n \to n$ has range n, then every injective function $f: n^+ \to n^+$ has range n^+ .
 - $\langle 2 \rangle 1$. Let: $n \in \omega$
 - $\langle 2 \rangle 2$. Assume: Every injective function $f: n \to n$ has range n.
 - $\langle 2 \rangle 3$. Let: $f: n^+ \to n^+$ be injective.
 - $\langle 2 \rangle 4$. Define $g: n \to n$ by

$$g(k) = \begin{cases} f(k) & \text{if } f(k) \in n \\ f(n) & \text{if } f(k) = n \end{cases}$$

PROOF: If $k \in n$ and f(k) = n then $f(n) \in n$ since f is injective.

- $\langle 2 \rangle 5$. g is injective.
 - $\langle 3 \rangle 1$. Let: $i, j \in n$
 - $\langle 3 \rangle 2$. Assume: g(i) = g(j)
 - $\langle 3 \rangle 3$. Case: $f(i) \in n, f(j) \in n$

PROOF: Then f(i) = f(j) so i = j

 $\langle 3 \rangle 4$. Case: $f(i) \in n, f(j) \notin n$

PROOF: Then f(i) = f(n) which is impossible as f is injective.

 $\langle 3 \rangle$ 5. Case: $f(i) \notin n, f(j) \in n$

PROOF: Then f(n) = f(j) which is impossible as f is injective.

 $\langle 3 \rangle 6$. Case: $f(i) \notin n, f(j) \notin n$

PROOF: Then f(i) = f(j) = n so i = j.

 $\langle 2 \rangle 6$. ran q = n

Proof: By $\langle 2 \rangle 2$.

- $\langle 2 \rangle 7$. ran $f = n^+$
 - $\langle 3 \rangle 1. \ \forall k \in n.k \in \text{ran } f$

PROOF: Since ran $g \subseteq \operatorname{ran} f$.

- $\langle 3 \rangle 2$. $n \in \operatorname{ran} f$
 - $\langle 4 \rangle 1$. Case: $f(n) \in n$
 - $\langle 5 \rangle 1$. PICK k such that g(k) = f(n)
 - $\langle 5 \rangle 2$. f(k) = n
 - $\langle 4 \rangle 2$. Case: f(n) = n

PROOF: Then $n \in \operatorname{ran} f$.

Corollary 5.2.2.1. No finite set is equinumerous with a proper subset of itself.

Corollary 5.2.2. The set ω is infinite.

PROOF: Since the function that maps n to n+1 is a bijection between ω and the proper subset $\omega-\{0\}$. \square

Corollary 5.2.2.3. Every finite set is equinumerous with a unique natural number

Lemma 5.2.3. Let n be a natural number and $C \subseteq n$. Then there exists $m \in n$ such that $C \approx m$.

Proof:

- $\langle 1 \rangle 1.$ For all $C \subseteq 0,$ there exists $m \underline{\in} 0$ such that $C \approx m.$
 - PROOF: In this case $C = \emptyset$ and so $C \approx 0$.
- $\langle 1 \rangle 2$. Let $n \in \omega$. Assume that, for all $C \subseteq n$, there exists $m \subseteq n$ such that $C \approx m$. Let $C \subseteq n^+$. Then there exists $m \in n^+$ such that $C \approx m$.
 - $\langle 2 \rangle 1$. Let: $n \in \omega$
 - $\langle 2 \rangle 2$. Assume: For all $C \subseteq n$, there exists $m \in n$ such that $C \approx m$.
 - $\langle 2 \rangle 3$. Let: $C \subseteq n^+$
 - $\langle 2 \rangle 4$. Case: $n \in C$
 - $\langle 3 \rangle 1$. Pick $m \subseteq n$ such that $C \{n\} \approx m$
 - $\langle 3 \rangle 2$. $C \approx m^+$
 - $\langle 2 \rangle$ 5. Case: $n \notin C$

PROOF: Then $C \subseteq n$ so $C \approx m$ for some $m \subseteq n$.

Corollary 5.2.3.1. Any subset of a finite set is finite.

Chapter 6

Cardinal Numbers

6.1 Cardinal Numbers

Definition 6.1.1 (Cardinality (Choice)). For any set A, define the *cardinal number* of A, |A|, to be the least ordinal that is equinumerous with A. **Theorem 6.1.2.** For any sets A and B, |A| = |B| if and only if $A \approx B$.

Proof: Easy. \square

Theorem 6.1.3. For any finite set A, |A| is the natural number such that $A \approx |A|$.

Proof: Immediate from definitions. \square

Definition 6.1.4. We write \aleph_0 for $|\omega|$.

6.2 Cardinal Arithmetic

Definition 6.2.1 (Addition). Let κ and λ be any cardinal numbers. Then $\kappa + \lambda = |K \cup L|$, where K and L are any disjoint sets of cardinality κ and λ respectively.

To show this is well-defined, we must prove that, if $K_1 \approx K_2$, $L_1 \approx L_2$, and $K_1 \cap L_1 = K_2 \cap L_2 = \emptyset$, then $K_1 \cup L_1 \approx K_2 \cup L_2$.

PROOF: Easy.

Lemma 6.2.2. For any cardinal number κ we have $\kappa + 0 = \kappa$.

PROOF: Since for any set K we have $K \cup \emptyset = K$.

Lemma 6.2.3. For any natural number n we have $n + \aleph_0 = \aleph_0$.

Proof: Easy.

Lemma 6.2.4.

$$\aleph_0 + \aleph_0 = \aleph_0$$

PROOF: Define $f:(\omega\times\{0\})\cup(\omega\times\{1\})\to\omega$ by f(n,0)=2n and f(n,1)=2n+1. Then f is a bijection. \square

Theorem 6.2.5.

$$\kappa + \lambda = \lambda + \kappa$$

Proof: Easy.

Theorem 6.2.6.

$$\kappa + (\lambda + \mu) = (\kappa + \lambda) + \mu$$

Proof: Easy. \square

Definition 6.2.7 (Multiplication). Let κ and λ be any cardinal numbers. Then $\kappa \lambda = |K \times L|$, where K and L are any sets of cardinality κ and λ respectively.

It is easy to prove this well-defined.

Lemma 6.2.8. For any cardinal number κ we have $\kappa 0 = 0$.

PROOF: For any set K we have $K \times \emptyset = \emptyset$. \square

Lemma 6.2.9. For any natural number n we have $n\aleph_0 = \aleph_0$.

PROOF: Induction on n using Lemma 6.2.4. \square

Lemma 6.2.10.

$$\aleph_0\aleph_0=\aleph_0$$

PROOF: Define $f: \omega \times \omega \to \omega$ by $f(m,n) = 2^m(2n+1) - 1$. Then f is a bijection. \square

Lemma 6.2.11.

$$\kappa 1 = \kappa$$

Proof: Easy. \square

Theorem 6.2.12.

$$\kappa\lambda=\lambda\kappa$$

Proof: Easy.

Theorem 6.2.13.

$$\kappa(\lambda\mu) = (\kappa\lambda)\mu$$

Proof: Easy.

Theorem 6.2.14.

$$\kappa(\lambda + \mu) = \kappa\lambda + \kappa\mu$$

Proof: Easy.

Definition 6.2.15 (Exponentiation). Let κ and λ be any cardinal numbers. Then $\kappa^{\lambda} = |K^L|$, where K and L are any sets of cardinality κ and λ respectively.

It is easy to prove this well-defined.

Theorem 6.2.16. For any cardinal κ , $\kappa^0 = 1$.

PROOF: For any set K, there is only one function $\emptyset \to K$, namely \emptyset . \square

Theorem 6.2.17. For any non-zero cardinal κ , we have $0^{\kappa} = 0$.

PROOF: For any nonempty set K, there is no function $K \to \emptyset$. \square

Theorem 6.2.18. For any set A, $|PA| = 2^{|A|}$.

PROOF: Define the bijection $f: \mathcal{P}A \to 2^A$ by f(S)(a) = 1 if $a \in S$, 0 if $a \notin S$.

Corollary 6.2.18.1. For any cardinal κ , we have $\kappa \neq 2^{\kappa}$.

Theorem 6.2.19.

$$\kappa^{\lambda+\mu} = \kappa^{\lambda}\kappa^{\mu}$$

Proof: Easy.

Theorem 6.2.20.

$$(\kappa\lambda)^{\mu} = \kappa^{\mu}\lambda^{\mu}$$

Proof: Easy. \square

Theorem 6.2.21.

$$(\kappa^{\lambda})^{\mu} = \kappa^{\lambda\mu}$$

Proof: Easy.

Lemma 6.2.22. The union of a set of cardinal numbers is a cardinal number.

Proof:

- $\langle 1 \rangle 1$. Let: A be a set of cardinal numbers.
- $\langle 1 \rangle 2$. Let: $\alpha \in \bigcup A$
- $\langle 1 \rangle 3$. PICK $\kappa \in A$ such that $\alpha \in \kappa$
- $\langle 1 \rangle 4. \ \alpha \prec \kappa$
- $\langle 1 \rangle 5. \ \alpha \prec \bigcup A$

6.3 Alephs

Definition 6.3.1. Define the cardinal number \aleph_{α} for every ordinal α by transfinite recursion thus: \aleph_{α} is the least infinite cardinal different from \aleph_{β} for every $\beta < \alpha$.

Theorem 6.3.2. If $\alpha < \beta$ then $\aleph_{\alpha} < \aleph_{\beta}$.

PROOF: By minimality of \aleph_{α} . \square

Theorem 6.3.3. Every infinite cardinal is of the form \aleph_{α} for some α .

Proof:

- $\langle 1 \rangle 1$. Let: κ be an infinite cardinal
- $\langle 1 \rangle 2$. Assume: for every infinite cardinal $\lambda < \kappa$, there exists α such that $\lambda = \aleph_{\alpha}$
- $\langle 1 \rangle 3$. Let: $\alpha = \{ \beta : \aleph_{\beta} < \kappa \}$
- $\langle 1 \rangle 4$. α is a set.

PROOF: The mapping $\beta \mapsto \aleph_{\beta}$ is an injection $\alpha \to \kappa$.

- $\langle 1 \rangle 5$. α is a transitive set.
- $\langle 1 \rangle 6$. α is an ordinal.
- $\langle 1 \rangle 7$. \aleph_{α} is the least infinite cardinal different from \aleph_{β} for all β such that $\aleph_{\beta} < \kappa$.
- $\langle 1 \rangle 8$. \aleph_{α} is the least infinite cardinal different from λ for every infinite cardinal $\lambda < \kappa$.

PROOF: By $\langle 1 \rangle 2$.

 $\langle 1 \rangle 9. \ \aleph_{\alpha} = \kappa$

6.4 Arithmetic

Lemma 6.4.1. For any natural numbers m and n, we have $m+n^+=(m+n)^+$.

Proof: Easy.

Corollary 6.4.1.1. The union of two finite sets is finite.

Lemma 6.4.2. For any natural numbers m and n we have $mn^+ = mn + m$.

Proof: Easy. \square

Corollary 6.4.2.1. The Cartesian product of two finite sets is finite.

Lemma 6.4.3. For any natural numbers m and n we have $m^{n^+} = m^n m$.

Proof: Easy.

Corollary 6.4.3.1. If A and B are finite sets then A^B is finite.

6.5 Ordering on the Natural Numbers

Lemma 6.5.1. For any natural numbers m and n, $m \in n$ if and only if $m^+ \in n^+$.

Proof:

- $\langle 1 \rangle 1. \ \forall m, n \in \omega (m \in n \Rightarrow m^+ \in n^+)$
 - $\langle 2 \rangle 1. \ \forall m \in \omega (m \in 0 \Rightarrow m^+ \in 0^+)$

Proof: Vacuous.

 $\langle 2 \rangle 2$. For all $n \in \omega$, if $\forall m \in n.m^+ \in n^+$ then $\forall m \in n^+.m^+ \in n^{++}$

```
\langle 3 \rangle 1. Let: n \in \omega
        \langle 3 \rangle 2. Assume: \forall m \in n.m^+ \in n^+
        \langle 3 \rangle 3. Let: m \in n^+
        \langle 3 \rangle 4. Case: m \in n
            \langle 4 \rangle 1. \ m^+ \in n^+
               Proof: By \langle 3 \rangle 2
            \langle 4 \rangle 2. \ m^+ \in n^{++}
        \langle 3 \rangle 5. Case: m = n
            PROOF: m^{+} = n^{+} \in n^{++}
\langle 1 \rangle 2. \ \forall m, n \in \omega(m^+ \in n^+ \Rightarrow m \in n)
    \langle 2 \rangle 1. Let: m, n \in \omega
    \langle 2 \rangle 2. Assume: m^+ \in n^+
    \langle 2 \rangle 3. \ m \in m^+
    \langle 2 \rangle 4. m^+ \in n or m^+ = n
    \langle 2 \rangle 5. \ m \in n
        PROOF: If m^+ \in n this follows because n is transitive (Theorem 5.1.10).
```

Lemma 6.5.2. For any natural number n we have $n \notin n$.

```
Proof:
```

- $\langle 1 \rangle 1. \ 0 \notin 0$
- $\langle 1 \rangle 2$. For all $n \in \omega$, if $n \notin n$ then $n^+ \notin n^+$
 - $\langle 2 \rangle 1$. Let: $n \in \omega$
 - $\langle 2 \rangle 2$. Assume: $n^+ \in n^+$ Prove: $n \in n$
 - $\langle 2 \rangle 3$. $n^+ \in n$ or $n^+ = n$
 - $\langle 2 \rangle 4. \ n \in n^+$
 - $\langle 2 \rangle 5. \ n \in n$

PROOF: If $n^+ \in n$ this follows because n is transitive (Theorem 5.1.10).

Theorem 6.5.3 (Trichotomy Law for ω). For any natural numbers m and n, exactly one of

$$m \in n, m = n, n \in m$$

holds.

Proof:

 $\langle 1 \rangle 1$. For any $m, n \in \omega$, at most one of $m \in n$, m = n, $n \in m$ holds.

PROOF: If $m \in n$ and m = n then $m \in m$ contradicting Lemma 6.5.2.

If $m \in n$ and $n \in m$ then $m \in m$ by Theorem 5.1.10, contradicting Lemma 6.5.2.

- $\langle 1 \rangle 2$. For any $m, n \in \omega$, at least one of $m \in n$, m = n, $n \in m$ holds.
 - $\langle 2 \rangle 1$. For all $n \in \omega$, either $0 \in n$ or 0 = n
 - $\langle 3 \rangle 1. \ 0 = 0$
 - $\langle 3 \rangle 2$. For all $n \in \omega$, if $0 \in n$ or 0 = n then $0 \in n^+$

- $\langle 2 \rangle 2$. For all $m \in \omega$, if $\forall n \in \omega (m \in n \lor m = n \lor n \in m)$ then $\forall n \in \omega (m^+ \in n \lor m^+ = n \lor n \in m^+)$
 - $\langle 3 \rangle 1$. Let: $m \in \omega$
 - $\langle 3 \rangle 2$. Assume: $\forall n \in \omega (m \in n \lor m = n \lor n \in m)$
 - $\langle 3 \rangle 3$. Let: $n \in \omega$
 - $\langle 3 \rangle 4$. Case: $m \in n$

PROOF: Then $m \in n^+$

 $\langle 3 \rangle 5$. Case: m = n

PROOF: Then $m \in n^+$

 $\langle 3 \rangle 6$. Case: $n \in m$

PROOF: Then $n^+ \in m^+$ by Lemma 6.5.1 so $n^+ \in m$ or $n^+ = m$.

Corollary 6.5.3.1. The relation \in is a linear ordering on ω .

Corollary 6.5.3.2. For any natural numbers m and n,

$$m \in n \Leftrightarrow m \subset n$$
.

Proof:

- $\langle 1 \rangle 1$. Let: $m, n \in \omega$
- $\langle 1 \rangle 2$. If $m \in n$ then $m \subset n$.
 - $\langle 2 \rangle 1$. Assume: $m \in n$
 - $\langle 2 \rangle 2$. $m \subseteq n$

PROOF: Theorem 5.1.10.

 $\langle 2 \rangle 3. \ m \neq n$

Proof: Lemma 6.5.2.

 $\langle 1 \rangle 3$. If $m \subset n$ then $m \in n$.

PROOF: We have $m \neq n$ and $n \notin m$ by $\langle 1 \rangle 2$, hence $m \in n$ by trichotomy.

Theorem 6.5.4. For any natural number p, the function that maps n to n+p is strictly monotone. For any natural numbers m, n and p, we have $m \in n$ if and only if $m+p \in n+p$.

PROOF: We prove that $m \in n \Rightarrow m+p \in n+p$. This is an easy induction on p using Lemma 6.5.1. \square

Theorem 6.5.5. For any non-zero natural number p, the function that maps n to np is strictly monotone.

PROOF: Easy induction on p using Theorem 6.5.4. \square

Theorem 6.5.6 (Strong Induction). Let A be a subset of ω and suppose that, for all $n \in \omega$, we have

$$(\forall m < n.m \in A) \Rightarrow n \in A$$
.

Then $A = \omega$.

PROOF: Prove $\forall n \in \omega. \forall m < n.m \in A$ by induction on n. \square

Theorem 6.5.7 (Well-Ordering of ω). The ordering < on ω is a well-ordering.

PROOF: If A is a subset of ω with no least element, we prove $\forall n \in \omega. n \notin A$ by strong induction on n. \square

Lemma 6.5.8. For any natural numbers m and n, we have $m \in n$ if and only if there exists a natural number p such that $n = m + p^+$.

Proof:

- $\langle 1 \rangle 1$. For all m, p, we have $m \in m + p^+$ PROOF: $m = m + 0 \in m + p^+$
- $\langle 1 \rangle 2$. For all m, n, if $m \in n$ then there exists p such that $n = m + p^+$
 - $\langle 2 \rangle 1$. For all m, if $m \in 0$ then there exists p such that $0 = m + p^+$ PROOF: Vacuous.
 - $\langle 2 \rangle 2.$ For all $n \in \omega,$ if $\forall m \in n. \exists p \in \omega. n = m+p^+$ then $\forall m \in n^+. \exists p \in \omega. n^+ = m+p^+$
 - $\langle 3 \rangle 1$. Let: $n \in \omega$
 - $\langle 3 \rangle 2$. Assume: $\forall m \in n. \exists p \in \omega. n = m + p^+$
 - $\langle 3 \rangle 3$. Let: $m \in n^+$
 - $\langle 3 \rangle 4$. Case: $m \in n$
 - $\langle 4 \rangle 1$. Pick p such that $n = m + p^+$
 - $\langle 4 \rangle 2. \ n^+ = m + p^{++}$
 - $\langle 3 \rangle 5$. Case: m = n

PROOF: $n^{+} = m + 0^{+}$

-

Lemma 6.5.9. For natural numbers m, n, p and q, if $m \in n$ and $p \in q$ then $mp + nq \in mq + np$.

- $\langle 1 \rangle 1$. PICK natural numbers a and b such that $n=m+a^+$ and $q=p+b^+$ PROOF: Lemma 6.5.8.
- $\langle 1 \rangle 2$. $mp + nq = mq + np + (a^+ + b)^+$
- $\langle 1 \rangle 3. \ mp + nq \in mq + np$

PROOF: Lemma 6.5.8.

Chapter 7

Integers

7.1 The Integers

Theorem 7.1.1. The relation \sim is an equivalence relation on $\omega \times \omega$, where $(m,n) \sim (p,q)$ iff m+q=n+p.

Proof:

 $\langle 1 \rangle 1$. The relation \sim is reflexive on ω^2

PROOF: For any m, n, we have m+n=m+n and so $(m,n)\sim (m,n)$.

 $\langle 1 \rangle 2$. The relation \sim is symmetric.

PROOF: If m + q = n + p then p + n = q + m.

 $\langle 1 \rangle 3$. The relation \sim is transitive.

 $\langle 2 \rangle 1$. Assume: $(m,n) \sim (p,q) \sim (r,s)$

 $\langle 2 \rangle 2$. m+q=n+p

 $\langle 2 \rangle 3. \ p+s=q+r$

 $\langle 2 \rangle 4$. m + p + q + s = n + p + q + r

 $\langle 2 \rangle 5$. m+s=n+r

PROOF: By cancellation of addition in ω .

٦

Definition 7.1.2. The set \mathbb{Z} of *integers* is the quotient set $(\omega \times \omega)/\sim$.

Lemma 7.1.3. If $(m,n) \sim (m',n')$ and $(p,q) \sim (p',q')$ then $(m+p,n+q) \sim (m'+p',n'+q')$.

PROOF: Assume m+n'=m'+n and p+q'=p'+q. Then m+p+n'+q'=m'+p'+n+q. \square

Definition 7.1.4 (Addition). Addition + on \mathbb{Z} is the binary operation such that

$$[(m,n)] + [(p,q)] = [(m+p,n+q)]$$

Theorem 7.1.5. Addition on \mathbb{Z} is commutative.

PROOF: From the definition. \square

Theorem 7.1.6. Addition on \mathbb{Z} is associtative.
Proof: Easy. \square
Definition 7.1.7 (Zero). The zero in the integers is $0 = [(0,0)]$.
Theorem 7.1.8. For any integer a we have $a + 0 = 0$.
Proof: Easy. \square
Theorem 7.1.9. For any integer a , there exists an integer b such that $a+b=0$.
PROOF: If $a = [(m, n)]$ take $b = [(n, m)]$. \square
Lemma 7.1.10. If $(m,n) \sim (m',n')$ and $(p,q) \sim (p',q')$ then $(mp+nq,mq+np) \sim (m'p'+n'q',m'q'+n'p')$.
PROOF: $ \langle 1 \rangle 1. \text{ Assume: } m+n'=m'+n \text{ and } p+q'=p'+q \\ \langle 1 \rangle 2. mp+n'p=m'p+np \\ \langle 1 \rangle 3. m'q+nq=mq+n'q \\ \langle 1 \rangle 4. mp+mq'=mp'+mq \\ \langle 1 \rangle 5. n'p'+n'q=n'p+n'q' \\ \langle 1 \rangle 6. mp+n'p+m'q+nq+mp+mq'+n'p'+n'q=m'p+np+mq+n'q+mp'+mq+n'p+n'q' \\ \langle 1 \rangle 7. mp+nq+m'q'+n'p'=mq+np+m'p'+n'q' \\ \square $
Definition 7.1.11 (Multiplication). <i>Multiplication</i> \cdot is the binary operation on \mathbb{Z} such that $[(m,n)][(p,q)] = [(mp+nq,mq+np)]$
Theorem 7.1.12. Multiplication is commutative.
Proof: Easy. \square
Theorem 7.1.13. Multiplication is associative.
Proof: Easy. \square
Theorem 7.1.14. Multiplication is distributive over addition.
Proof: Easy. \square
Definition 7.1.15. The integer one is $1 = [(1,0)]$.
Theorem 7.1.16. For any integer a we have $a1 = a$.
Proof: Easy. \square
Theorem 7.1.17. $0 \neq 1$
Proof: Easy. \square

Lemma 7.1.18. If $(m, n) \sim (m', n')$ and $(p, q) \sim (p', q')$ then $m + q \in p + n$ iff $m' + q' \in p' + n'$.

Proof:

$$m+q \in p+n \Leftrightarrow m+q+n'+q' \in p+n+n'+q'$$

$$\Leftrightarrow m'+n+q+q' \in p'+n+n'+q$$

$$\Leftrightarrow m'+q' \in p'+n'$$

Definition 7.1.19 (Ordering). The ordering < on \mathbb{Z} is defined by: [(m,n)] < [(p,q)] iff $m+q \in n+p$.

Theorem 7.1.20. The relation < is a linear ordering on \mathbb{Z} .

Proof:

- $\langle 1 \rangle 1$. < is transitive.
 - (2)1. Assume: [(m,n)] < [(p,q)] and [(p,q)] < [(r,s)]
 - $\langle 2 \rangle 2$. $m+q \in n+p$ and $p+s \in q+r$
 - $\langle 2 \rangle 3$. $m+q+s \in n+p+s$
 - $\langle 2 \rangle 4$. $n+p+s \in n+q+r$
 - $\langle 2 \rangle 5$. $m+q+s \in n+q+r$
 - $\langle 2 \rangle 6. \ m+s \in n+r$
- $\langle 1 \rangle 2$. < satisfies trichotomy.

PROOF: From trichotomy on ω .

Theorem 7.1.21. For any integers a, b and c, we have a < b iff a + c < b + c.

PROOF: An easy consequence of the corresponding property in ω .

Corollary 7.1.21.1. *If* a + c = b + c *then* a = b.

Theorem 7.1.22. If 0 < c, then the function that maps an integer a to ac is strictly monotone.

Proof:

- $\langle 1 \rangle 1$. Let: a, b and c be integers.
- $\langle 1 \rangle 2$. Assume: 0 < c and a < b
- $\langle 1 \rangle 3$. Let: a = [(m, n)]
- $\langle 1 \rangle 4$. Let: b = [(p,q)]
- $\langle 1 \rangle 5$. Let: c = [(r, s)]
- $\langle 1 \rangle 6. \ s \in r$
- $\langle 1 \rangle 7$. $m+q \in p+n$
- $\langle 1 \rangle 8. \ (m+q)r + (p+n)s \in (m+q)s + (p+n)r$

PROOF: Lemma 6.5.9.

 $\langle 1 \rangle 9. \ ac < bc$

Lemma 7.1.23. For integers a and b, a(-b) = -(ab)

PROOF: This follows from the fact that ab + a(-b) = a(b + (-b)) = a0 = 0. \square

Theorem 7.1.24. For integers a, b and c, if a < b and c < 0 then ac > bc.

PROOF: We have 0 < -c so a(-c) < b(-c) hence -(ac) < -(bc) so bc < ac. \square

Theorem 7.1.25. For any integers a and b, if ab = 0 then a = 0 or b = 0.

PROOF: We prove if $a \neq 0$ and $b \neq 0$ then $ab \neq 0$.

If a > 0 and b > 0 then ab > 0. Similarly for the other four cases. \square

Theorem 7.1.26. If ac = bc and $c \neq 0$ then a = b.

PROOF: We have (a-b)c=0 so a-b=0 hence a=b. \square

Definition 7.1.27 (Positive). An integer a is positive iff 0 < a.

Theorem 7.1.28. Define $E: \omega \to \mathbb{Z}$ by E(n) = [(n,0)]. Then E maps ω one-to-one into \mathbb{Z} , and:

- 1. E(m+n) = E(m) + E(n)
- 2. E(mn) = E(m)E(n)
- 3. $m \in n$ if and only if E(m) < E(n).

Proof: Routine calculations. \square

Lemma 7.1.29. For any positive integer a and integer b, there exists a natural number k such that b < ak.

PROOF: Take k = |b| + 1. \square

Chapter 8

Cardinal Numbers

8.1 Equinumerosity

Definition 8.1.1 (Equinumerous). Two sets A and B are equinumerous, $A \approx B$, iff there exists a bijection between them.

Theorem 8.1.2. Equinumerosity is an equivalence relation on the class of sets.

Proof: Easy.

Theorem 8.1.3 (Cantor 1873). No set is equinumerous with its power set.

Proof:

```
\begin{split} \langle 1 \rangle 1. \text{ Let: } g: A \to \mathcal{P}A \\ \text{Prove: } g \text{ is not surjective.} \\ \langle 1 \rangle 2. \text{ Let: } B = \{x \in A: x \notin g(x)\} \\ \langle 1 \rangle 3. \ \forall x \in A.g(x) \neq B \\ \text{Proof: Because } x \in B \text{ iff } x \notin g(x). \\ \sqcap \end{split}
```

8.2 Ordering Cardinal Numbers

Definition 8.2.1 (Dominated). A set A is dominated by a set B, $A \leq B$, iff there exists an injection $f: A \to B$.

Lemma 8.2.2. Domination is a preorder on the class of sets.

Proof: Easy. \square

Lemma 8.2.3. *If* $A \subseteq B$ *then* $A \preceq B$.

PROOF: The inclusion from A to B is an injection. \Box

Lemma 8.2.4. If $A \leq B$, $A \approx A'$ and $B \approx B'$ then $A' \leq B'$.

Proof: Easy.

Definition 8.2.5. Given cardinal numbers κ and λ , we write $\kappa \leq \lambda$ iff $K \leq L$, where K is any set of cardinality κ and L is any set of cardinality λ .

We write $\kappa < \lambda$ iff $\kappa \leq \lambda$ and $\kappa \neq \lambda$.

Theorem 8.2.6 (Schröder-Bernstein). If $A \leq B$ and $B \leq A$ then $A \approx B$.

Proof:

- $\langle 1 \rangle 1$. Let: $f: A \to B$ and $g: B \to A$ be one-to-one.
- $\langle 1 \rangle 2$. Define the sequence of sets $C_n \subseteq A$ by:

$$C_0 = A - \operatorname{ran} g$$

$$C_{n+1} = g(f(C_n))$$

 $\langle 1 \rangle 3$. Define $h: A \to B$ by

$$h(x) = \begin{cases} f(x) & \text{if } \exists n \in \mathbb{N}. x \in C_n \\ g^{-1}(x) & \text{otherwise} \end{cases}$$

- $\langle 1 \rangle 4$. h is injective.
 - $\langle 2 \rangle 1$. Let: $x, y \in A$
 - $\langle 2 \rangle 2$. Assume: h(x) = h(y)
 - $\langle 2 \rangle 3$. Case: $x \in C_m, y \in C_n$

PROOF: We have f(x) = f(y) so x = y

 $\langle 2 \rangle 4$. Case: $x \in C_m, y \notin \bigcup_n C_n$

PROOF: This case is impossible because we would have y = g(f(x)) and so $y \in C_{m+1}$.

 $\langle 2 \rangle 5$. Case: $x, y \notin \bigcup_n C_n$

PROOF: We have $g^{-1}(x) = g^{-1}(y)$ so x = y.

- $\langle 1 \rangle 5$. h is surjective.
 - $\langle 2 \rangle 1$. Let: $y \in B$
 - $\langle 2 \rangle 2$. Assume: $y \notin f(C_n)$ for all n
 - $\langle 2 \rangle 3.$ $g(y) \notin C_n$ for all n
 - $\langle 2 \rangle 4. \ \ y = h(g(y))$

Corollary 8.2.6.1. The relation \leq is a partial order on the class of cardinal

Theorem 8.2.7. Let κ , λ and μ be cardinal numbers.

- 1. $\kappa < \lambda \Rightarrow \kappa + \mu < \lambda + \mu$
- 2. $\kappa \leq \lambda \Rightarrow \kappa \mu \leq \lambda \mu$
- 3. $\kappa \leq \lambda \Rightarrow \kappa^{\mu} \leq \lambda^{\mu}$
- 4. $\kappa \leq \lambda \Rightarrow \mu^{\kappa} \leq \mu^{\lambda}$ if κ and μ are not both zero.

PROOF: Parts 1-3 are easy. For part 4:

Let $|K| = \kappa$, $|L| = \lambda$ and $|M| = \mu$ with $K \subseteq L$.

If $M = \emptyset$ then $\kappa \neq 0$ so $\mu^{\kappa} = 0 \leq \mu^{\lambda}$.

Otherwise, pick $a \in M$. Define $\Phi: M^K \to M^L$ by:

$$\Phi(f)(x) = \begin{cases} f(x) & \text{if } x \in K \\ a & \text{if } x \notin K \end{cases}$$

Then Φ is an injection.

Theorem 8.2.8 (Cardinal Comparability). The Axiom of Choice is equivalent to the statement: for any sets C and D, either $C \leq D$ or $D \leq C$.

Proof:

- (1)1. If Zorn's Lemma then Cardinal Comparability.
 - $\langle 2 \rangle 1$. Assume: Zorn's Lemma
 - $\langle 2 \rangle 2$. Let: C and D be sets.
 - $\langle 2 \rangle 3$. Let: $\mathcal A$ be the set of all injective functions f with dom $f \subseteq C$ and $\operatorname{ran} f \subseteq D$
 - $\langle 2 \rangle 4$. For every chain $\mathcal{B} \subseteq \mathcal{A}$ we have $\bigcup \mathcal{B} \in \mathcal{A}$
 - $\langle 2 \rangle$ 5. Let: $f \in \mathcal{A}$ be maximal
 - $\langle 2 \rangle 6$. dom f = C or ran f = D
- $\langle 2 \rangle 7$. f is an injective function $C \to D$ or f^{-1} is an injective function $D \to C$
- $\langle 1 \rangle 2$. If Cardinal Comparability then the Well-Ordering Theorem.
 - $\langle 2 \rangle 1$. Assume: Cardinal Comparability
 - $\langle 2 \rangle 2$. Let: A be any set
 - $\langle 2 \rangle 3$. Pick an ordinal α not dominated by A PROOF: Hartogs' Theorem.
 - $\langle 2 \rangle 4$. $A \leq \alpha$
 - $\langle 2 \rangle$ 5. Pick an injective function $f: A \to \alpha$
 - $\langle 2 \rangle 6$. Define < on A by: x < y iff $f(x) \in f(y)$
 - $\langle 2 \rangle 7$. < is a well ordering on A.

Theorem 8.2.9 (Choice). For any infinite set A, we have $\omega \leq A$.

Proof:

- $\langle 1 \rangle 1$. Let: A be an infinite set.
- $\langle 1 \rangle 2$. PICK a choice function F for A
- $\langle 1 \rangle 3$. Define $f: \omega \to A$ by recursion by: $f(n) = F(A \{f(0), f(1), \dots, f(n-1)\})$ PROOF: $A - \{f(0), f(1), \dots, f(n-1)\}$ is nonempty because A is infinite. $\langle 1 \rangle 4$. f is injective.

Corollary 8.2.9.1 (Choice). For any infinite cardinal κ we have $\aleph_0 \leq \kappa$.

Corollary 8.2.9.2 (Choice). A set is infinite iff it is equinumerous to a proper subset of itself.

Proposition 8.2.10 (Choice). If there exists a surjection $A \to B$ then $B \leq A$.

PROOF: Any surjection $A \to B$ has a right inverse which is an injection $B \to A$.

8.3 Countable Sets

Definition 8.3.1 (Countable). A set is *countable* iff it is dominated by ω .

Proposition 8.3.2. Any subset of a countable set is countable.

Proof: Easy.

The union of two countable sets is countable.

PROOF: Because $\aleph_0 + \aleph_0 = \aleph_0$

Proposition 8.3.3. The product of two countable sets is countable.

PROOF: Because $\aleph_0 \aleph_0 = \aleph_0$. \square

Proposition 8.3.4 (Choice). For any infinite set A, the set $\mathcal{P}A$ is uncountable.

PROOF: If $|A| > \aleph_0$ then $|\mathcal{P}A| > 2^{\aleph_0}$. \square

Theorem 8.3.5 (Choice). A countable union of countable sets is countable.

Proof:

- $\langle 1 \rangle 1$. Let: \mathcal{A} be a countable set of countable sets.
- $\langle 1 \rangle 2$. Assume: w.l.o.g. $\mathcal{A} \neq \emptyset$ and $\emptyset \notin \mathcal{A}$
- $\langle 1 \rangle 3$. Pick a surjection $G: \omega \to A$
- $\langle 1 \rangle 4$. PICK a function F with domain ω such that, for all m, F(m) is a surjection $\omega \to G(m)$

PROOF: By the Axiom of Choice.

- $\langle 1 \rangle$ 5. Define $f: \omega \times \omega \to \bigcup A$ by f(m,n) = F(m)(n)
- $\langle 1 \rangle 6$. f is surjective.
- $\langle 1 \rangle 7$. $A \leq \omega \times \omega$

8.4 Arithmetic of Infinite Cardinals

Lemma 8.4.1 (Choice). For any infinite cardinal κ we have $\kappa \cdot \kappa = \kappa$.

Proof:

- $\langle 1 \rangle 1$. Let: κ be an infinite cardinal.
- $\langle 1 \rangle 2$. Let: B be a set of cardinality κ .
- (1)3. Let: $\mathcal{H} = \{f : f = \emptyset \text{ or for some infinite } A \subseteq B, f \text{ is a bijection between } A \times A \text{ and } A\}$
- $\langle 1 \rangle 4$. For any chain $\mathcal{C} \subseteq \mathcal{H}$, we have $\bigcup \mathcal{C} \in \mathcal{H}$
 - $\langle 2 \rangle 1$. Let: $\mathcal{C} \subseteq \mathcal{H}$ be a chain.
 - $\langle 2 \rangle 2$. Assume: w.l.o.g. \mathcal{C} has a nonempty element.

PROOF: Otherwise $\bigcup \mathcal{C} = \emptyset \in \mathcal{H}$.

- $\langle 2 \rangle 3$. $\bigcup \mathcal{C}$ is an injective function.
- $\langle 2 \rangle 4$. Let: $A = \operatorname{ran} \bigcup \mathcal{C}$
- $\langle 2 \rangle 5$. A is infinite.
- $\langle 2 \rangle 6$. $\bigcup \mathcal{C}$ is a bijection between $A \times A$ and A.

```
\langle 3 \rangle 1. Let: a_1, a_2 \in A
```

- $\langle 3 \rangle 2$. PICK $f_1, f_2 \in \mathcal{C}$ such that $a_1 \in \operatorname{ran} f_1$ and $a_2 \in \operatorname{ran} f_2$
- $\langle 3 \rangle 3$. Assume: w.l.o.g. $f_1 \subseteq f_2$
- $\langle 3 \rangle 4$. $\langle a_1, a_2 \rangle \in \text{dom } f_2$
- $\langle 3 \rangle 5. \ \langle a_1, a_2 \rangle \in \operatorname{dom} \bigcup \mathcal{C}$
- $\langle 1 \rangle$ 5. Pick a maximal $f_0 \in \mathcal{H}$

PROOF: Zorn's Lemma.

 $\langle 1 \rangle 6. \ f_0 \neq \emptyset$

PROOF: B has a countable subset A, say, and $A \times A \approx A$.

- $\langle 1 \rangle$ 7. Pick $A_0 \subseteq B$ infinite such that f_0 is a bijection between $A_0 \times A_0$ and A_0 .
- $\langle 1 \rangle 8$. Let: $\lambda = |A_0|$
- $\langle 1 \rangle 9$. λ is infinite
- $\langle 1 \rangle 10. \ \lambda = \lambda \cdot \lambda$
- $\langle 1 \rangle 11. \ \lambda = \kappa$
 - $\langle 2 \rangle 1. |B A_0| < \lambda$
 - $\langle 3 \rangle 1$. Assume: for a contradiction $\lambda \leq |B A_0|$
 - $\langle 3 \rangle 2$. Pick $D \subseteq B A_0$ with $|D| = \lambda$
 - $\langle 3 \rangle 3. \ (A_0 \cup D) \times (A_0 \cup D) = (A_0 \times A_0) \cup (A_0 \times D) \cup (D \times A_0) \cup (D \times D)$
 - $\langle 3 \rangle 4$. $f_0: A_0 \times A_0 \approx A_0$
 - $\langle 3 \rangle 5. \ |(A_0 \times D) \cup (D \times A_0) \cup (D \times D)| = \lambda$

Proof:

$$\begin{split} |(A_0 \times D) \cup (D \times A_0) \cup (D \times D)| &= \lambda \cdot \lambda + \lambda \cdot \lambda + \lambda \cdot \lambda \\ &= \lambda + \lambda + \lambda \qquad (\langle 1 \rangle 10) \\ &= 3 \cdot \lambda \\ &\leq \lambda \cdot \lambda \\ &= \lambda \qquad (\langle 1 \rangle 10) \end{split}$$

- $\langle 3 \rangle$ 6. PICK a bijection $g: (A_0 \times D) \cup (D \times A_0) \cup (D \times D) \approx D$
- $\langle 3 \rangle 7. \ f_0 \cup g : (A_0 \cup D) \times (A_0 \cup D) \approx A_0 \cup D$
- $\langle 3 \rangle 8$. Q.E.D.

PROOF: This contradicts the maximality of f_0 .

 $\langle 2 \rangle 2$. $\lambda = \kappa$

Proof:

$$\begin{split} \kappa &= |B| \\ &= |A_0| + |B - A_0| \\ &\leq \lambda + \lambda \\ &= 2 \cdot \lambda \\ &\leq \lambda \cdot \lambda \\ &= \lambda \\ &\leq \kappa \end{split}$$

Corollary 8.4.1.1 (Absorption Law of Cardinal Arithmetic (Choice)). Let κ and λ be cardinal numbers, the larger of which is infinite and the smaller of

which is nonzero. Then

$$\kappa + \lambda = \kappa \cdot \lambda = \max(\kappa, \lambda)$$
.

Proof:

 $\langle 1 \rangle 1.$ Assume: w.l.o.g. $\kappa \leq \lambda$

$$\langle 1 \rangle 2$$
. $\kappa + \lambda = \lambda$

Proof:

$$\begin{split} \lambda &\leq \kappa + \lambda \\ &\leq \lambda + \lambda \\ &= 2 \cdot \lambda \\ &\leq \lambda \cdot \lambda \\ &= \lambda \end{split}$$

 $\langle 1 \rangle 3. \ \kappa \cdot \lambda = \lambda$

Proof:

$$\lambda = 1 \cdot \lambda$$

$$\leq \kappa \cdot \lambda$$

$$\leq \lambda \cdot \lambda$$

$$= \lambda$$

8.5 Rank

Definition 8.5.1. Define the set V_{α} for every ordinal α by transfinite recursion thus:

$$V_{\alpha} = \bigcup \{ \mathcal{P}V_{\beta} : \beta \in \alpha \} .$$

Lemma 8.5.2. For any ordinal α , V_{α} is a transitive set.

Proof:

 $\langle 1 \rangle 1$. Let: α be an ordinal.

 $\langle 1 \rangle 2$. Let: $x \in y \in V_{\alpha}$

 $\langle 1 \rangle 3$. PICK $\beta \in \alpha$ such that $y \in \mathcal{P}V_{\beta}$

 $\langle 1 \rangle 4. \ x \in V_{\beta}$

 $\langle 1 \rangle 5$. PICK $\gamma \in \beta$ such that $x \in \mathcal{P}V_{\gamma}$

 $\langle 1 \rangle 6. \ \gamma \in \alpha \text{ and } x \in \mathcal{P}V_{\gamma}$

 $\langle 1 \rangle 7. \ x \in V_{\alpha}$

Theorem 8.5.3. For ordinals $\beta \in \alpha$ we have $V_{\beta} \subseteq V_{\alpha}$.

Proof:

$$V_{\beta} = \bigcup_{\gamma \in \beta} \mathcal{P}V_{\gamma}$$

$$\subseteq \bigcup_{\gamma \in \alpha} \mathcal{P}V_{\gamma}$$

$$= V_{\alpha}$$

Theorem 8.5.4.

$$V_0 = \emptyset$$

Proof: Immediate from definitions. \square

Theorem 8.5.5. For any ordinal α , $V_{\alpha^+} = \mathcal{P}V_{\alpha}$.

Proof:

$$V_{\alpha^{+}} = \bigcup_{\beta \leq \alpha} \mathcal{P}V_{\beta}$$
$$= \mathcal{P}V_{\beta}$$

by Theorem 8.5.3. \square

Theorem 8.5.6. For λ a limit ordinal, $V_{\lambda} = \bigcup_{\beta < \lambda} V_{\beta}$.

Proof:

$$V_{\lambda} = \bigcup_{\beta < \lambda} \mathcal{P}V_{\beta}$$
$$= \bigcup_{\beta < \lambda} V_{\beta^{+}}$$
$$= \bigcup_{\beta < \lambda} V_{\beta}$$

since $\beta < \lambda$ iff $\beta^+ < \lambda$. \square

Definition 8.5.7 (Grounded, Rank). A set A is grounded iff $\exists \alpha. A \subseteq V_{\alpha}$. The rank of a grounded set A, rank A, is then the least ordinal α such that $A \subseteq V_{\alpha}$.

Theorem 8.5.8. If A is grounded and $a \in A$ then a is grounded and rank $a < \operatorname{rank} A$.

PROOF: We have $a \in A \subseteq V_{\text{rank }A}$. So $a \in \mathcal{P}V_{\alpha}$ for some $\alpha < \text{rank }A$, i.e. $a \subseteq V_{\alpha}$ for some $\alpha < \text{rank }A$, as required.

Theorem 8.5.9. If every member of A is grounded then A is grounded and

$$\operatorname{rank} A = \sup_{a \in A} (\operatorname{rank} a)^+ .$$

Proof:

 $\langle 1 \rangle 1$. Let: $\alpha = \sup_{a \in A} (\operatorname{rank} a)^+$

 $\langle 1 \rangle 2$. $A \subseteq V_{\alpha}$

```
\langle 2 \rangle 1. Let: a \in A
```

$$\langle 2 \rangle 2$$
. $a \subseteq V_{\operatorname{rank} a}$

$$\langle 2 \rangle 3. \ a \in V_{(\operatorname{rank} a)^+}$$

$$\langle 2 \rangle 4. \ a \in V_{\alpha}$$

$$\langle 1 \rangle 3$$
. If $A \subseteq V_{\beta}$ then $\alpha \leq \beta$

$$\langle 2 \rangle 1$$
. Assume: $A \subseteq V_{\beta}$

$$\langle 2 \rangle 2. \ \forall a \in A.a \in V_{\beta}$$

$$\langle 2 \rangle 3. \ \forall a \in A. \exists \gamma < \beta. a \subseteq V_{\gamma}$$

$$\langle 2 \rangle 4. \ \forall a \in A. \exists \gamma < \beta. \, \text{rank} \, a \leq \gamma$$

$$\langle 2 \rangle 5. \ \forall a \in A. \operatorname{rank} a < \beta$$

$$\langle 2 \rangle 6. \ \forall a \in A. (\operatorname{rank} a)^+ \leq \beta$$

$$\langle 2 \rangle 7. \ \alpha \leq \beta$$

Theorem 8.5.10. Every set is grounded.

Proof:

 $\langle 1 \rangle 1$. Assume: for a contradiction c is not grounded.

 $\langle 1 \rangle 2$. Let: B be the transitive closure of $\{c\}$.

 $\langle 1 \rangle 3$. Let: $A = \{x \in B : x \text{ is not grounded}\}$

 $\langle 1 \rangle 4$. Pick $m \in A$ such that $m \cap A = \emptyset$

PROOF: By the Axiom of Regularity.

 $\langle 1 \rangle$ 5. Every member of m is grounded.

PROOF: Every member of m is in B by transitivity but not in A.

 $\langle 1 \rangle 6$. m is grounded.

PROOF: Theorem 8.5.9.

 $\langle 1 \rangle$ 7. Q.E.D.

PROOF: This contradicts the fact that $m \in A$.

П

Theorem 8.5.11. Let A be any set and A^t its transitive closure. Let M^t be the transitive closure of the relation $\{\langle x,y\rangle:x\in y\in A^t\}$. Define $E:A^t\to \mathbf{V}$ by transfinite recursion thus:

$$E(a) = \{ E(x) : xM^t a \} \qquad (a \in A^t) .$$

Then $E(a) = \operatorname{rank} a$ for all $a \in A^t$, and $\operatorname{ran} E = \operatorname{rank} A$.

Proof:

 $\langle 1 \rangle 1$. M^t is well-founded

PROOF: Theorem 2.10.2.

 $\langle 1 \rangle 2. \ \forall a \in A^t. \operatorname{rank} a = \{\operatorname{rank} x : xM^ta\}$

 $\langle 2 \rangle 1. \ \forall x, a \in A^t.xM^ta \Rightarrow \operatorname{rank} x < \operatorname{rank} a$

PROOF: Theorem 8.5.8.

 $\langle 2 \rangle 2$. $\forall x \in A^t . \forall \alpha < \operatorname{rank} a . \exists x M^t a . \alpha = \operatorname{rank} x$

 $\langle 3 \rangle 1$. Let: $a \in A^t$

 $\langle 3 \rangle 2$. Assume: $\forall b M^t a. \forall \alpha < \operatorname{rank} b. \exists x M^t b. \alpha = \operatorname{rank} x$

 $\langle 3 \rangle 3$. Let: $\alpha < \operatorname{rank} a$

```
\langle 3 \rangle 4. \text{ Pick } b \in a \text{ such that } \alpha \leq \operatorname{rank} b Proof: Theorem 8.5.9. \langle 3 \rangle 5. \text{ CASE: } \alpha < \operatorname{rank} b \langle 4 \rangle 1. \text{ Pick } xM^tb \text{ such that } \alpha = \operatorname{rank} x Proof: By \langle 3 \rangle 2 \langle 4 \rangle 2. xM^ta \langle 3 \rangle 6. \text{ CASE: } \alpha = \operatorname{rank} b Proof: We have bM^ta \text{ and } \alpha = \operatorname{rank} b \text{ as required.} \langle 3 \rangle 7. \text{ Q.E.D.} Proof: This concludes the proof by transfinite induction over M^t \ (\langle 1 \rangle 1). \langle 1 \rangle 3. \ \forall a \in A^t.E(a) = \operatorname{rank} a Proof: By transfinite induction on a. \langle 1 \rangle 4. \ \operatorname{ran} E = \operatorname{rank} A Proof: From \langle 1 \rangle 3 \text{ substituting } \{A\} \text{ for } A.
```

8.6 Models of Set Theory

Theorem 8.6.1. For any limit ordinal $\lambda > \omega$, we have V_{λ} is a model of Zermelo set theory.

Proof: Easy. \square

Theorem 8.6.2 (Choice). For any ordinal α , we have V_{α} is a model of the Axiom of Choice.

Proof: Easy.

Lemma 8.6.3 (Choice). There exists a well-ordered structure in $V_{\omega 2}$ whose ordinal number is not in $V_{\omega 2}$.

PROOF: Pick an uncountable set $S \in V_{\omega_2}$. Pick a well-ordering R on S. Then $\langle S, R \rangle \in V_{\omega_2}$ but its ordinal is not, because every ordinal in V_{ω_2} is $< \omega_2$ hence countable. \square

Corollary 8.6.3.1 (Choice). The set $V_{\omega 2}$ is not a model of ZFC.

Corollary 8.6.3.2. The Replacement Axioms are not provable from the Zermelo axioms.

8.7 Cofinality

Definition 8.7.1 (Cofinal). Let λ be a limit ordinal and S a set of smaller ordinals. Then S is *cofinal* in λ iff $\lambda = \sup S$.

Definition 8.7.2 (Cofinality). The *cofinality* of a limit ordinal λ , cf λ , is the least cardinal κ such that λ is the limit of κ smaller ordinals.

We also define cf 0 = 0 and cf $\alpha^+ = 1$.

Definition 8.7.3 (Regular Cardinal). A cardinal κ is regular iff cf $\kappa = \kappa$; otherwise κ is singular.

Theorem 8.7.4. For every ordinal α , the cardinal $\aleph_{\alpha+1}$ is regular.

PROOF: If S is a set of fewer than $\aleph_{\alpha+1}$ smaller ordinals then $\forall \beta \in S. |\beta| \leq \aleph_{\alpha}$ and so

$$|\bigcup S| \leq |S| \cdot \aleph_\alpha \leq \aleph_\alpha \cdot \aleph_\alpha = \aleph_\alpha \ . \Box$$

Theorem 8.7.5. For every limit ordinal λ , we have cf $\aleph_{\lambda} = \operatorname{cf} \lambda$.

Proof:

- $\langle 1 \rangle 1$. Let: λ be a limit ordinal.
- $\langle 1 \rangle 2$. cf $\aleph_{\lambda} \leq \operatorname{cf} \lambda$
 - $\langle 2 \rangle 1$. PICK a set S with $|S| = \operatorname{cf} \lambda$ and $\bigcup S = \lambda$
 - $\langle 2 \rangle 2$. $\aleph_{\lambda} = \sup_{\alpha \in S} \aleph_{\alpha}$

PROOF: Theorem 4.0.18.

- $\langle 1 \rangle 3$. cf $\lambda \leq$ cf \aleph_{λ}
 - $\langle 2 \rangle 1.$ Let: A be a set of smaller ordinals such that $\aleph_\lambda = \sup A$ Prove: cf $\lambda \leq |A|$
 - $\langle 2 \rangle 2. \ \text{Let:} \ B = \{ \gamma \in \lambda : \exists \alpha \in A. |\alpha| = \aleph_{\gamma} \}$
 - $\langle 2 \rangle 3. |B| \leq |A|$
 - $\langle 2 \rangle 4$. sup $B = \lambda$
 - $\langle 3 \rangle 1. \ \forall \alpha \in A.\alpha \in \aleph_{\sup B+1}$
 - $\langle 4 \rangle 1$. Let: $\alpha \in A$
 - $\langle 4 \rangle 2$. $|\alpha| \leq \aleph_{\sup B}$
 - $\langle 4 \rangle 3. \ \alpha \in \aleph_{\sup B+1}$
 - $\langle 3 \rangle 2$. $\lambda \in \sup B + 1$
 - $\langle 4 \rangle 1. \ \aleph_{\lambda} \leq \aleph_{\sup B+1}$
 - $\langle 3 \rangle 3$. $\lambda = \sup B$
 - $\langle 4 \rangle 1$. $\lambda \leq \sup B$

PROOF: From $\langle 3 \rangle 2$ since λ is a limit ordinal.

 $\langle 4 \rangle 2$. sup $B \leq \lambda$

PROOF: From $\langle 2 \rangle 2$.

Definition 8.7.6 (Weakly Inaccessible). An ordinal λ is weakly inaccessible iff \aleph_{λ} is regular.

Lemma 8.7.7. Let f be an α -sequence of ordinals. Then there exists an increasing β -sequence g for some $\beta \leq \alpha$ such that $\sup \operatorname{ran} f = \sup \operatorname{ran} g$.

Proof:

- $\langle 1 \rangle 1$. Let: h be the sequence defined by transfinite recursion thus: h_{ξ} is the least γ such that $\forall \delta < \xi. f_{h_{\delta}} < f_{\gamma}$ if any such γ exists; otherwise the sequence halts.
- $\langle 1 \rangle 2$. Let: $\beta = \text{dom } h$
- $\langle 1 \rangle 3.$ $g_{\xi} = f_{h_{\xi}}$ for $\xi < \beta$

```
\langle 1 \rangle 4. sup ran g \leq \sup \operatorname{ran} f
     PROOF: Since g is a subsequence of f.
 \langle 1 \rangle 5. sup ran f \leq \sup \operatorname{ran} g
     \langle 2 \rangle 1. \ \forall \xi < \beta. \forall \delta \le h_{\xi}. f_{\delta} \le g_{\xi}
          \langle 3 \rangle 1. Let: \xi < \beta
          \langle 3 \rangle 2. Let: \delta \leq h_{\xi}
          \langle 3 \rangle 3. \ f_{\delta} \leq f_{h_{\xi}}
               \langle 4 \rangle 1. Assume: \delta < h_{\xi}
               \langle 4 \rangle 2. Pick \alpha < \xi such that f_{delta} \leq f_{h\alpha}
              \langle 4 \rangle 3. \ f_{\delta} \leq f_{h_{\alpha}} \leq f_{h_{\xi}}
     \langle 3 \rangle 4. f_{h_{\xi}} = g_{\xi}
\langle 2 \rangle 2. \forall \xi < \beta . f_{\xi} \le g_{\xi}
     \langle 2 \rangle 3. Case: \beta = \alpha
         PROOF: Then sup ran f \leq \sup \operatorname{ran} g immediately.
     \langle 2 \rangle 4. Case: \beta < \alpha
          \langle 3 \rangle 1. There is no \gamma such that g_{\delta} < f_{\gamma} for all \delta < \beta
              PROOF: This is the condition for the sequence h to halt.
          \langle 3 \rangle 2. For all \gamma, there exists \delta such that f_{\gamma} < g_{\delta}
          \langle 3 \rangle 3. sup ran f \leq \sup \operatorname{ran} g
```

Theorem 8.7.8. Let λ be a limit ordinal. Then there exists an increasing (cf λ)-sequence of ordinals that converges to λ .

Proof:

- (1)1. PICK a set S with $|S| = \operatorname{cf} \lambda$ and $\lambda = \sup S$
- $\langle 1 \rangle 2$. Pick a bijection $f : \text{cf } \lambda \approx S$
- $\langle 1 \rangle$ 3. PICK an increasing β -sequence converging to λ with $\beta \leq$ cf λ PROOF: Lemma 8.7.7.
- $\langle 1 \rangle 4$. $\beta = \operatorname{cf} \lambda$

PROOF: By leastness of cf λ .

Corollary 8.7.8.1. For any limit ordinal λ , we have cf λ is the least ordinal α such that there exists an increasing α -sequence of ordinals $< \lambda$ that converges to λ .

Theorem 8.7.9. For any ordinal λ , we have cf λ is a regular cardinal.

Proof:

- $\langle 1 \rangle 1$. Assume: w.l.o.g. λ is a limit ordinal.
- $\langle 1 \rangle 2$. PICK an increasing cf λ -sequence f of ordinals $\langle \lambda \rangle$ that converges to λ .
- $\langle 1 \rangle 3$. Let: S be a set of ordinals < cf λ such that cf $\lambda = \sup S$.
- $\langle 1 \rangle 4$. f(S) is cofinal in λ
 - $\langle 2 \rangle 1$. Let: $\alpha < \lambda$
 - $\langle 2 \rangle 2$. Pick $\beta < \operatorname{cf} \lambda$ such that $\alpha < f(\beta) < \lambda$

PROOF: Since f converges to λ .

 $\langle 2 \rangle 3$. PICK $\gamma \in S$ such that $\beta < \gamma$

```
PROOF: Since \sup S = \operatorname{cf} \lambda. \langle 2 \rangle 4. \alpha < f(\gamma) \in f(S) \langle 1 \rangle 5. \operatorname{cf} \lambda \leq |S| PROOF: We have \operatorname{cf} \lambda \leq |f(S)| = |S| \langle 1 \rangle 6. \operatorname{cf} \operatorname{cf} \lambda = \operatorname{cf} \lambda
```

Theorem 8.7.10. Let λ be an infinite cardinal. Then cf λ is the least cardinal κ such that λ can be decomposed as the union of κ sets each with cardinality $< \lambda$.

Proof:

 $\langle 1 \rangle 1$. λ can be decomposed as the union of cf λ sets each with cardinality $\langle \lambda \rangle$ PROOF: Since λ is the union of a set of cf λ smaller ordinals.

Theorem 8.7.11 (König's Theorem (Choice)). For any infinite cardinal κ we have $\kappa < \text{cf } 2^{\kappa}$

Proof:

```
\langle 1 \rangle 1. Assume: for a contradiction of 2^{\kappa} \leq \kappa
```

 $\langle 1 \rangle 2$. PICK a set S with $|S| = 2^{\kappa}$

(1)3. PICK a κ -sequence of sets A_{ξ} with $S^{\kappa} = \bigcup_{\xi < \kappa} A_{\xi}$ and $\forall \xi < \kappa. |A_{\xi}| < 2^{\kappa}$ PROOF: Since $|S^{\kappa}| = 2^{\kappa}$

 $\begin{array}{l} \langle 1 \rangle 4. \ \, \forall \xi < \kappa. \{g(\xi): g \in A_\xi\} \subset S \\ \text{Proof: Since } |\{g(\xi): g \in A_\xi\}| \leq |A_\xi| < 2^{\kappa} \end{array}$

 $\langle 1 \rangle$ 5. For all $\xi < \kappa$, PICK $s_{\xi} \in S - \{g(\xi) : g \in A_{\xi}\}$

 $\langle 1 \rangle 6. \ s \in S^{\kappa}$

 $\langle 1 \rangle 7. \ \forall \xi < \kappa.s \notin A_{\xi}$

 $\langle 1 \rangle 8$. Q.E.D.

PROOF: This contradicts $\langle 1 \rangle 3$.

Corollary 8.7.11.1. $2^{\aleph_0} \neq \aleph_{\omega}$

PROOF: Since cf $\aleph_{\omega} = \aleph_0$ and cf $2^{\aleph_0} > \aleph_0$. \square

8.8 **Inaccessible Cardinals**

Definition 8.8.1 (Inaccessible Cardinal). A cardinal κ is *inaccessible* iff:

- $\kappa > \aleph_0$
- For every cardinal $\lambda < \kappa$ we have $2^{\lambda} < \kappa$
- κ is regular.

Lemma 8.8.2. For any ordinal α and limit ordinal λ ,

$$V_{\alpha+\lambda} = \bigcup_{\delta < \lambda} V_{\alpha+\delta}$$

Proof:

 $\begin{array}{l} \langle 1 \rangle 1. \ V_{\alpha+\lambda} = \bigcup_{\delta < \lambda} V_{\alpha+\delta} \\ \langle 2 \rangle 1. \ \text{Let:} \ x \in V_{\alpha+\lambda} \end{array}$

 $\langle 2 \rangle 2$. Pick $\beta < \alpha + \lambda$ such that $x \in V_{\beta}$

 $\langle 2 \rangle 3$. Case: $\beta < \alpha$

PROOF: Then $x \in V_{\alpha+0}$.

 $\langle 2 \rangle 4$. Case: $\alpha \leq \beta$

 $\langle 3 \rangle$ 1. Let: δ be the ordinal such that $\beta = \alpha + \delta$

 $\langle 3 \rangle 2$. $x \in V_{\alpha+\delta}$ and $\delta < \lambda$

$$\langle 1 \rangle 2. \bigcup_{\delta < \lambda} V_{\alpha + \delta} \subseteq V_{\alpha + \lambda}$$

Lemma 8.8.3. For any ordinal α we have $|V_{\omega+\alpha}| = \beth_{\alpha}$.

Proof:

 $\langle 1 \rangle 1. |V_{\omega}| = \beth_0$

PROOF: Since V_{ω} is the union of an ω -sequence of finite sets of increasing size.

 $\langle 1 \rangle 2$. For any ordinal α , if $|V_{\omega+\alpha}| = \beth_{\alpha}$ then $|V_{\omega+\alpha^+}| = \beth_{\alpha^+}$

 $\langle 1 \rangle 3$. For any limit ordinal λ , if $\forall \alpha < \lambda . |V_{\omega+\alpha}| = \beth_{\alpha}$ then $|V_{\omega+\lambda}| = \beth_{\lambda}$

 $\langle 2 \rangle$ 1. Let: λ be a limit ordinal.

 $\langle 2 \rangle 2$. Assume: $\forall \alpha < \lambda . |V_{\omega + \alpha}| = \beth_{\alpha}$

 $\langle 2 \rangle 3. |V_{\omega+\lambda}| \geq \beth_{\lambda}$

Proof:

$$|V_{\omega+\lambda}| = |\bigcup_{\delta < \lambda} V_{\omega+\delta}|$$

$$\geq \sup_{\delta < \lambda} |V_{\omega+\delta}|$$

$$= \sup_{\delta < \lambda} \beth_{\delta}$$

$$= \beth_{\lambda}$$
(Lemma 8.8.2)

$$\langle 2 \rangle 4$$
. $\beth_{\lambda} \leq |V_{\omega+\lambda}|$ PROOF:

$$|V_{\omega+\lambda}| = |\bigcup_{\delta < \lambda} V_{\omega+\delta}|$$

$$\leq |\lambda| \cdot \beth_{\lambda}$$

$$\leq \beth_{\lambda} \cdot \beth_{\lambda}$$

$$= \beth_{\lambda}$$

Lemma 8.8.4. Let κ be an inaccessible cardinal. For any ordinal $\alpha < \kappa$, we have $\beth_{\alpha} < \kappa$.

Proof:

 $\langle 1 \rangle 1$. $\beth_0 < \kappa$

PROOF: By definition of inaccessible.

 $\langle 1 \rangle 2$. If $\beth_{\alpha} < \kappa$ then $\beth_{\alpha^+} < \kappa$ PROOF: $\beth_{\alpha^+} = 2^{\beth_{\alpha}} < \kappa$

PROOF: $\beth_{\alpha^+} = 2^{-\alpha} < \kappa$ \(\lambda\)\(\lambda\). If \(\lambda\) is a limit ordinal, \(\lambda < \kappa\) and \(\forall \alpha < \lambda\). \(\J_{\alpha} < \kappa\) then \(\J_{\alpha} < \kappa\)

PROOF: Since $\beth_{\lambda} = \sup_{\alpha < \lambda} \beth_{\alpha}$ is the supremum of fewer than κ smaller ordinals.

Lemma 8.8.5. Let κ be an inaccessible cardinal. For all $A \in V_{\kappa}$ we have $|A| < \kappa$.

PROOF: Pick $\alpha < \kappa$ such that $A \subseteq V_{\alpha}$. Then $|A| \leq |V_{\alpha}| \leq \beth_{\alpha} < \kappa$. \square

Theorem 8.8.6. If κ is an inaccessible cardinal then V_{κ} is a model of ZF.

Proof: Easy. \square