Table 8
Third-order groups and their contributions along with sample assignments

	Group	Example	$T_{\mathrm{m}3k}$	$T_{\mathrm{b}3k}$	T_{c3k}	P_{c3k}	V_{c3k}	$G_{\mathrm{f}3k}$	$H_{\mathrm{f}3k}$	$H_{\mathrm{fus}3k}$
1	$HOOC-(CH_n)_m-COOH (m > 2, n \text{ in } 02)$	1,5-Pentanedioic acid (1)	-1.5257	1.6498	-1.6986	0.001544	-3.72	-4.708	-6.572	-7.583
2	NH_n -(CH_n) _m -COOH ($m > 2$, n in 02)	4-Aminobutyric acid (1)	11.2271	****	****	****	*****	****	*****	****
3	$NH_2-(CH_n)_m-OH (m > 2, n \text{ in } 02)$	4-Aminobutanol (1)	0.7732	1.0750	0.4950	0.000728	-23.74	3.079	4.171	-4.840
4	$OH-(CH_n)_m-OH (m > 2, n \text{ in } 02)$	1,9-Nonanediol (1)	0.6674	0.7193	0.1725	-0.000327	-0.84	7.536	5.411	-0.272
5	$OH-(CH_n)_k-O-(CH_n)_m-OH(m, k > 0; p, n \text{ in } 02)$	Dipropylene glycol (1)	-0.1073	1.1867	6.6872	0.001937	1.44	-8.397	-8.651	1.661
6	OH- $(CH_p)_k$ -S- $(CH_n)_m$ -OH $(m, k > 0; p, n \text{ in } 02)$	2,2'-Diethyl-dihydroxy sulfide (1)	-1.3891	****	2.6769	0.003792	-1.62	10.194	8.164	-3.479
7	OH- $(CH_p)_k$ -NHx- $(CH_n)_m$ -OH $(m, k > 0; p, n, x \text{ in } 02)$	Diethanolamine (1)	-0.0781	0.2991	****	0.003254	-0.69	1.662	1.753	0.301
8	$CH_p-O-(CH_n)_m-OH (m > 2; n, p \text{ in } 02)$	Butoxypropanol (1)	****	-0.4605	****	****	****	****	****	****
9	NH_2 -(CH_n) _m - NH_2 ($m > 2$; n in 02)	1,5-Diaminopentane (1)	-0.0604	0.0060	-4.3195	0.006734	6.69	4.100	0.371	5.666
10	NH_k -(CH_n) _m - NH_2 ($m > 2$; k in 01; n in 02)	N,N-dimethylpropylenediamine (1)	-1.1888	-0.1819	****	****	****	****	****	****
11	$SH-(CH_n)_m-SH (m > 2; n \text{ in } 02)$	1,5-Pentanedithiol (1)	0.6669	0.4516	****	****	****	****	****	****
12	$NC-(CH_n)_m-CN \ (m>2)$	Glutaronitrile (1)	-0.3798	1.3440	0.0834	-0.011090	-36.89	-7.035	7.782	-0.607
13	$COO-(CH_n)_m-OOC \ (m > 2; n \text{ in } 02)$	Glyceryl tridodecanoate (1)	-2.6542	****	****	****	****	****	****	****
14	aC-(CH _n =CH _m) _{cyc} (fused rings) $(n, m \text{ in } 01)$	Indene (1), Acenaphtylene (2)	0.2479	-0.3741	-0.0185	0.000851	-8.87	-1.601	2.689	-2.703
15	aC–aC (different rings)	Biphenylene (2), Biphenyl (1)	1.1395	-0.4961	6.1894	-0.040100	-26.26	-4.459	-4.558	-0.385
16	aC-CH _{n,cyc} (different rings) (n in 01)	Cyclohexylbenzene (1)	0.0570	-0.4574	-0.2474	-0.005826	-8.55	-5.267	-5.914	-0.442
17	aC-CH _{n,cvc} (fused rings) (n in 01)	Tetralin (2), Indane (2)	-0.5640	-0.1736	0.5060	-0.003746	-11.56	-4.203	-4.863	-0.143
18	aC-(CH _n) _m -aC (different rings) $(m > 1; n \text{ in } 02)$	Bibenzyl (1)	1.9902	0.3138	3.0321	0.003007	9.73	1.318	0.084	5.377
19	aC- $(CH_n)_m$ -CH _{cyc} (different rings) ($m > 0$; n in 02)	1-Cyclopentyl-3-phenylpropane (1)	****	0.5928	****	****	****	****	****	****
20	CH _{cvc} -Ch _{cvc} (different rings)	Cyclohexylcyclohexane (1)	0.5460	0.4387	2.1761	0.002745	7.72	-67.517	-66.870	****
21	CH _{cvc} -(CH _n) _m -CH _{cvc} (different rings) $(m > 0; n \text{ in } 02)$	1,2-Dicyclohexylethane (1)	0.4497	0.5632	*****	****	****	****	****	****
22	CH multiring	Hexahydroindan (2), Decalin (2)	0.6647	0.1415	0.4963	-0.000985	-3.33	****	*****	0.223
23	C multiring	Spiropentane (1)	0.0792	*****	*****	****	****	****	****	****
24	aC-CH _m -aC (different rings) (m in 02)	Diphenylmethane (1)	0.6457	0.2391	0.1174	-0.002673	-4.67	-0.729	0.866	-0.958
25	aC-(CH _m =CH _n)-aC (different rings) (m , n in 02)	1,2-Diphenylethylene (1)	0.9608	0.7192	0.7039	-0.002673	14.31	-0.702	-2.291	3.275
26	$(CH_m = C)_{cyc} - CH = CH - (C = CH_n)_{cyc}$ (different rings)	1,2-Furanyl ethene (1)	16.2235	*****	*****	*****	*****	****	*****	****
27	$(CH_m = C)_{cyc} = CH = CH_n)_{cyc}$ (different rings) $(CH_m = C)_{cyc} = CH_p = (C = CH_n)_{cyc}$ (different rings)	Difuranyl methane (1)	16.8558	*****	****	****	****	****	****	****
28	aC-CO-aC (different rings)	Benzophenone (1)	-1.0394	1.0171	-0.2678	-0.001837	-7.05	11.125	7.108	-4.091
20 29	aC-CH _m -CO-aC (different rings) (m in 02)	Benzyl phenone (1)	-0.4486	0.9674	*****	-0.001057 *****	-7.0 <i>5</i>	*****	*****	****
30	aC-CO-(C=CH _n) _{cyc} (different rings) (n in 01)	Phenyl-2-furanyl-methanone (1)	-0.4480 -0.1376	0.3074	****	****	****	****	****	****
31	aC-CO-CO-aC (different rings) (h in 01)	Diphenylethanedione (1)	0.4361	0.1120	****	****	*****	****	****	-3.687
32	aC-CO _{cvc} (fused rings)	Phenolphthalein (1)	3.6847	0.5031	****	****	*****	****	****	2.047
32 33	aC-CO-(CH _n) _m -CO-aC (different rings) $(m > 0; n \text{ in } 02)$	1,4-Diphenyl-1,4-butanedione (1)	4.9038	*****	****	****	****	****	****	7.327
34	aC-CO- $CH_{n,cvc}$ (different rings) ($n > 0$, $n = 02$)	Cyclohexyl phenyl methanone (1)	-7.0038	****	****	****	****	****	****	****
35	aC-CO-NH _n -aC (different rings) (n in 01)	N-phenyl benzamide (1)	5.9653	****	****	****	****	****	****	2.510
35 36	aC-NH _n -aC (different rings) $(n \text{ in } 01)$ aC-NH _n CONH _m -aC (different rings) $(n, m \text{ in } 01)$	N,N'-diphenylurea (1)	1.5629	****	****	****	****	****	****	0.018
30 37	aC-CO- N_{cyc} (different rings) (n, m in 01)	N-phenonyl-piperidine (1)	-9.1856	****	*****	****	****	****	****	****
38	3. V	Dibenzothiophene (2)	0.2612	0.2242	3.5541	0.004600	12.60	8.333	9.212	-0.784
39	aC–S _{cyc} (fused rings) aC–S–aC (different rings)	Diphenyl sulfide (1)	-1.8403	0.2242	*****	*****	*****	****	9.212 ****	-U.764 ****
39 40	`		0.0393	*****	****	****	****	****	****	****
	aC-PO _n -aC (different rings) (n in 04)	Triphenylphosphate (3)			****	****	****	****	*****	
41	aC-SO _n -aC (different rings) (n in 14)	Diphenyl sulfone (1)	0.9514 3.4983	-0.0850 1.1457	3.5541	0.017201	0.44	-2.221	-16.080	-2.485
42	aC-NH _{n,cyc} (fused rings) $(n \text{ in } 01)$	Carbazole (2)		0.5768	0.9519	0.017201	1.42	-2.221 -0.596	-16.080 -1.994	1.934
43	aC-NH-aC (different rings)	Diphenylamine (1)	-0.3048		0.9519	0.008484 *****	1.42	-0.596 *****	-1.994 *****	1.934
44	aC-(C=N) _{cyc} (different rings)	Phenyl-3-pyrazole (1)	-1.3060	-0.5335	****	****	****	****	****	
45	$aC-(N=CH_n)_{cyc}$ (fused rings) (n in 01)	Benzoxazole (1)	-4.9289	-5.2736 *****	****	****	****	****	****	-0.599 ****
46	$aC-(CH_n=N)_{cvc}$ (fused rings) (n in 01)	Benzoisoxazole (1)	-10.1007	****	*****	****	*****	****	*****	****