Advanced Bayesian modeling

Joachim Vandekerckhove

$$X = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 1 & 5 \end{bmatrix}$$

$$X = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 1 & 5 \end{bmatrix}$$

Sum of sums:

$$\sum_{r=1}^{2} \left(\sum_{c=1}^{3} x_{rc} \right) = \sum_{c=1}^{3} \left(\sum_{r=1}^{2} x_{rc} \right)$$

$$X = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 1 & 5 \end{bmatrix}$$

Sum of sums:

$$\sum_{r=1}^{2} \left(\sum_{c=1}^{3} x_{rc} \right) = \sum_{c=1}^{3} \left(\sum_{r=1}^{2} x_{rc} \right)$$

Sum of products vs. product of sums:

$$\sum_{r=1}^{2} \left(\prod_{c=1}^{3} x_{rc} \right) \neq \prod_{c=1}^{2} \left(\sum_{r=1}^{3} x_{rc} \right)$$

In general, order of operations matters:

$$f \circ g(x) \neq g \circ f(x)$$

Estimating parameters is an operation

In science, we often want to make statements about averages.

Estimating parameters is an operation

In science, we often want to make statements about averages.

Estimating model parameters from data is an operation:

$$\hat{\theta} = f(x)$$

Estimating parameters is an operation

In science, we often want to make statements about averages.

Estimating model parameters from data is an operation:

$$\hat{\theta} = f(x)$$

Do we want the average model parameters of the data or the model parameters of the average data?

$$\overline{f(x)} \neq f\left(\overline{x}\right)$$

The "average" learning curve looks nothing like the person-specific learning curve!

