Pergunta 1 Parcialmente Nota: 3,90 em 4,00 Seja dado o sistema de equações lineares:

A. x = b

a) Usando os valores iniciais x0, preencha a tabela calculando duas iterações pelo Método de Gauss-Jacobi.

As respostas são numéricas, em vírgula fixa com 5 casas decimais, sendo o (,) ponto o separador decimal.

b) Quanto à convergência do processo iterativo

O método converge porque em cada linha da matriz A, o módulo do elemento da diagonal principal é superior ao módulo da soma dos resta

Comentário: Passou para o moodle o valor errado.

Pergunta 2 Parcialmente correto Nota: 2,40 em 3,00 A equação diferencial de 1° ordem

$$\frac{dx}{dt} = \sin(ax) + \sin(bt)$$

Parâmetro:

foi integrada numericamente, usando o **Método de Runge-Kutta de 4º ordem**, tendo sido obtidos os resultados apresentados nas tabelas abaixo.

- a) Calcule os valores em falta na tabela.
- b) Calcule o valor do Quociente de Convergência para t = 1.5 20.478955 √
- c) Com base no Quociente de Convergência pedido na alínea anterior, qual o passo de integração que adoptaria?

Correto Nota: 4,00 em 4,00

O comprimento L do arco de uma curva de equação

$$y = f(x)$$

entre as abcissas x=a e x=b, é dado por:

$$L = \int_a^b \sqrt{1 + (y')^2} \, dx$$

Pretende-se determinar o comprimento da curva

$$y = e^{kx}$$

entre x=a e x=b, recorrendo aos métodos numéricos de Simpson e dos trapézios.

Partindo dos seguintes dados

k	а	ь	Passo de integração h
1.5	0	1	0.25

Preencha a tabela com os valores correctos:

	M. Trapézios	M. Simpson
h	0.25	0.25
h'	0.125	0.125
h"	0.0625	0.0625
Comprimento do arco L ₁ =I	3.68921	3.64747
Comprimento do arco L ₂ =I'	3.65765	3.64713
Comprimento do arco L ₃ =1"	3.64975	3.64711
Quociente de convergência QC	3.99180	15.79661
Erro estimado €	-0.00264	0.00000

As respostas são numéricas, em vírgula fixa com 5 casas decimais, sendo o (,) ponto o separador decimal

Pergunta 4
Parcialmente correto
Nota: 1,63 em 5,00

O comportamento de um dado reactor químico é modelado pelas equações diferenciais:

$$\begin{split} \frac{\frac{dC}{dt} &= -e^{\left(\frac{-\mathbf{b}}{T+273}\right)} \times C \\ \frac{dT}{dt} &= \mathbf{a} \times e^{\left(\frac{-\mathbf{b}}{T+273}\right)} \times C - \mathbf{b} \times (T-20) \end{split}$$

Usando os seguintes valores

t	C	T	a	b
tempo	concentração	temperatura	parâmetro operatório	parâmetro operatório
0	2.00000	20.00000	20.00000	0.50000

a) Calcule duas iterações da integração do modelo usando o **método de Euler**

iteração	t	C	T
0	o	2 ✓	20 🗸
1	0.2	1.600732	27.985361
2	0.4	1.281171	33.578037

b) Calcule duas iterações da integração do modelo usando o **método de Runge-Kutta de 4º ordem**

iteração	t	C	T
0	0	2✓	20 🗸
1	0.2	X	X
2	0.4	X	X

c) Calcule o quociente de convergência e o erro estimado para a concentração (C), usando como primeiros valores os obtidos com o método de Euler

h'	X	$C_{h'}$	X
h''	X	$C_{h''}$	X
		Quociente de convergência	X
		Erro estimado	X