# Bellman-Ford algorithm

# Bellman-Ford algorithm

**No condition on weights**: for all edges (p, q),  $w(p, q) \in \mathbb{R}$ 

```
begin
      INIT;
     Q = V;
     for i=1 to |V|-1 do
           for each (q, r) \in E do
                 RELAX(q, r);
      for each (q, r) \in E do
           if d[q] + w(q, r) < d[r] then
                 return « negative cost cycle detected »
           else
                 return « minimum costs computed »
end
Time complexity: O(n \cdot m)
```

# Example 1



**Step 1:** relaxing all edges in the following order: (s,a)(s,c)(a,b)(a,c)(b,d)(c,a)(c,b)(c,d)(d,b)(d,s)

# Example 1 (cont)



**Step 2:** relaxing all edges in the following order: (s,a)(s,c)(a,b)(a,c)(b,d)(c,a)(c,b)(c,d)(d,b)(d,s)

# Example 1 (cont)



**Step 3:** relaxing all edges in the following order: (s,a)(s,c)(a,b)(a,c)(b,d)(c,a)(c,b)(c,d)(d,b)(d,s)

# Example 1 (cont)



**Step 4:** relaxing all edges in the following order: (s,a)(s,c)(a,b)(a,c)(b,d)(c,a)(c,b)(c,d)(d,b)(d,s)

relaxation still possible ⇒ cycle of negative cost

# Example 2





**Step 1:** relaxing all edges in the following order: (s,a)(s,c)(a,b)(a,c)(b,d)(c,a)(c,b)(c,d)(d,b)(d,s)

# Example 2 (cont)





**Step 2:** relaxing all edges in the following order:

$$(s,a)(s,c)(a,b)(a,c)(b,d)(c,a)(c,b)(c,d)(d,b)(d,s)$$

no more possible relaxation  $\Rightarrow$  costs correctly computed

# Why Bellman-Ford is correct?

because, if there is no negative-cost cycle, every node has a cycle-free shortest path with at most |V|-1 edges

$$((s_0, s_1), (s_1, s_2), ..., (s_{k-1}, s_k))$$
 with  $s_0 = s$  and  $s_k = t$ ,  $k \le |V| - 1$ 

At iteration i, we will relax (among other edges) ( $s_{i-1}$ ,  $s_i$ ). This guarantees the shortest path value for all nodes. No relaxation will be possible anymore.

If there exists a negative-cost cycle, one of the edges along the cycle must be possible to relax (prove).

# Shortest paths in Directed Acyclic Graphs

# Directed Acyclic Graph (DAG)

- Directed graph without cycles
- $\Rightarrow$  at least one node with indegree 0, and at least one with outdegree 0



## Shortest paths in Directed Acyclic Graphs

- $G = (V, E), w : E \rightarrow \mathbf{R}$  (possibly negative)
- ▶ Problem: given a node  $s \subseteq V$ , compute shortest paths from s to all other nodes reachable from s

### Shortest paths in Directed Acyclic Graphs

- $ightharpoonup G = (V, E), w : E \rightarrow \mathbf{R}$  (possibly negative)
- ▶ Problem: given a node  $s \subseteq V$ , compute shortest paths from s to all other nodes reachable from s



▶ main idea:  $d(y)=\min\{d(x_1)+w_1,d(x_2)+w_2,...,d(x_k)+w_k\}$ 

# Topological sort

linearly order vertices such that all edges go from smaller to larger



Topological sort can be done in time O(n + m) (iterative solution using a queue, solution based on DFS, ...)

# "Swipe-through" solution

- ▶ for all nodes t, assign  $d(t)=\infty$
- d(s) = 0
- starting from s, for all y in topological order

$$d(y)=min\{d(x_1)+w_1,d(x_2)+w_2,...,d(x_k)+w_k\}$$



Time: O(n + m)

# "Dijkstra-style" solution

- ▶ for all nodes t, assign  $d(t) = \infty$
- b d(s) = 0
- > starting from s, for all y in topological order for each edge (y,q), RELAX(y,q)



Time: O(n + m)

# Example



Topological order

c, s, a, b, d



# Computing shortest paths (Dijkstra-style)



Processing s



# Computing shortest paths (Dijkstra-style)

Processing a

Processing b





#### Source-to-destination search

Assume all edges have non-negative weight. How to search for a shortest path from s to t with Dijkstra's algorithm?

#### Source-to-destination search

Assume all edges have non-negative weight. How to search for a shortest path from s to t with Dijkstra's algorithm?

Early exit: Run Dijkstra's algorithm starting from s. Once t is extracted from Q, stop.



#### Better idea: bidirectional search

▶ Bidirectional search (idea): perform Dijkstra on G starting from s and on the reverse graph G<sup>R</sup> starting from t. Stop when these searches "meet" (to be defined)



#### Better idea: bidirectional search

▶ Bidirectional search (idea): perform Dijkstra on G starting from s and on the reverse graph G<sup>R</sup> starting from t. Stop when these searches "meet" (to be defined)



▶ Catch: if u is the first occurred node from  $F \cap B$ , the shortest path from s to t does may not pass through u!













# Correct stopping strategy

- initially set  $D_{min} = \infty$
- 2. when relaxing an edge  $(v,u), v \in F, u \in B$ , set  $D_{min} = \min\{D_{min}, d_f[v] + w(v,u) + d_b[u]\}$  (similar for backward search)
- 3. let  $top_f$ ,  $top_b$  be the minimum d-values of forward and backward priority queues respectively. Then if  $top_f + top_b \ge D_{min}$ , then stop

**Proof**: by contradiction

# To sum up

- ▶ **Breadth-first search** explores the whole graph and finds shortest paths to all nodes under assumption that all moves have equal cost. It uses a queue.
- Dijkstra's algorithm explores the whole graph and finds shortest paths to all nodes taking into account different move costs. It uses a priority queue
- ▶ **Bidirectional search** solves point-to-point shortest path problem by running two Dijkstra's

# Heuristics for point-to-point search

• (Greedy) Best-first search finds a path to a target node by exploring the frontier nodes that are estimated to be closer to the target (h(v): lower bound of min distance from v to target) <a href="https://www.youtube.com/watch?v=TdHbO3w68fY">https://www.youtube.com/watch?v=TdHbO3w68fY</a>

# Heuristics for point-to-point search

- (Greedy) Best-first search finds a path to a target node by exploring the frontier nodes that are estimated to be closer to the target (h(v): lower bound of min distance from v to target) <a href="https://www.youtube.com/watch?v=TdHbO3w68fY">https://www.youtube.com/watch?v=TdHbO3w68fY</a>
- ▶  $A^*$  search finds a path to a target node by exploring the frontier nodes that have the minimum sum of distance from the source (f(v)) and estimated distance to the target (h(v))

#### http://www.redblobgames.com/pathfinding/a-star/introduction.html

• more on heuristic search: Pearl, J. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley, 1984

# Example: 15 puzzle

https://medium.com/@prestonbjensen/solving-the-15-puzzle-e7e60a3d9782

- $\sim 10^{13}$  distinct states, exploring the tree of possible moves leads to  $\sim 10^{38}$  states
- possible functions h for best-first search:
  - I. number of tiles in incorrect positions
  - 2. sum of Manhattan distances (absolute horizontal distance + absolute vertical distance) of every tile to its correct location



# Example: 15 puzzle

https://medium.com/@prestonbjensen/solving-the-15-puzzle-e7e60a3d9782

- $\sim 10^{13}$  distinct states, exploring the tree of possible moves leads to  $\sim 10^{38}$  states
- possible functions h for best-first search:
  - I. number of tiles in incorrect positions



- 2. sum of Manhattan distances (absolute horizontal distance + absolute vertical distance) of every tile to its correct location
- second is better than first

| Solution Length |           |              |  |  |
|-----------------|-----------|--------------|--|--|
|                 | Manhattan | Number Wrong |  |  |
| mean            | 10.58     | 18.22        |  |  |
| 10th percentile | 10        | 10           |  |  |
| 50th percentile | 10        | 10           |  |  |
| 90th percentile | 10        | 36           |  |  |

| Explored States |           |              |  |  |
|-----------------|-----------|--------------|--|--|
|                 | Manhattan | Number Wrong |  |  |
| mean            | 27.71     | 580.1        |  |  |
| 10th percentile | 11        | 11           |  |  |
| 50th percentile | 11        | 14           |  |  |
| 90th percentile | 28        | 1076         |  |  |

# Example: 15 puzzle (cont)

https://medium.com/@prestonbjensen/solving-the-15-puzzle-e7e60a3d9782

- $\rightarrow$  A\*: g(v)+h(v) where
  - $\triangleright$  g(x): number of moves to state x
  - sum of Manhattan distances (as before)
- $\blacktriangleright$  best-first: h(v) only



▶ A\* is better than best-first

| Solution Lengths |    |                |  |  |
|------------------|----|----------------|--|--|
|                  | A* | Pure Heuristic |  |  |
| mean             | 22 | 59.66          |  |  |
| 10th percentile  | 17 | 23             |  |  |
| 50th percentile  | 23 | 52             |  |  |
| 90th percentile  | 25 | 111            |  |  |

|                 | •      |                |  |  |
|-----------------|--------|----------------|--|--|
| Explored States |        |                |  |  |
|                 | A*     | Pure Heuristic |  |  |
| mean            | 755.87 | 1240.35        |  |  |
| 10th percentile | 71.1   | 45.8           |  |  |
| 50th percentile | 350.5  | 664.5          |  |  |
| 90th percentile | 1738.2 | 3498.1         |  |  |