CSE 5243 INTRO. TO DATA MINING

Classification (Basic Concepts)

Yu Su, CSE@The Ohio State University

Classification: Basic Concepts

- Classification: Basic Concepts
- Decision Tree Induction
- Model Evaluation and Selection
- Practical Issues of Classification
- Bayes Classification Methods
- Techniques to Improve Classification Accuracy: Ensemble Methods

Summary

This class

Decision Tree Induction: An Example

- □ Training data set: Buys_computer
- ☐ The data set follows an example of Quinlan's ID3 (Playing Tennis)

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a top-down recursive divide-and-conquer manner
 - At start, all the training examples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - Examples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)
- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning—majority voting is employed for classifying the leaf
 - There are no samples left

Algorithm Outline

- Split (node, {data tuples})
 - A <= the best attribute for splitting the {data tuples}</p>
 - Decision attribute for this node <= A</p>
 - For each value of A, create new child node
 - For each child node / subset:
 - If one of the stopping conditions is satisfied: STOP
 - Else: Split (child_node, {subset})

Attribute Selection Measure: Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i , estimated by $|C_{i,D}|/|D|$
- □ Expected information (entropy) needed to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

□ Information needed (after using A to split D into v partitions) to classify D:

$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$$

☐ Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_A(D)$$

Attribute Selection: Information Gain

- Class P: buys_computer = "yes"
- □ Class N: buys_computer = "no"

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$$

$$Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2) = 0.694$$

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

$$Gain(income) = 0.029$$

$$Gain(student) = 0.151$$

$$Gain(credit_rating) = 0.048$$

Gain Ratio for Attribute Selection (C4.5)

- Information gain measure is biased towards attributes with a large number of values
- C4.5 (a successor of ID3) uses gain ratio to overcome the problem (normalization to information gain)

$$SplitInfo_{A}(D) = -\sum_{j=1}^{\nu} \frac{|D_{j}|}{|D|} \times \log_{2}(\frac{|D_{j}|}{|D|})$$

- The entropy of the partitioning, or the potential information generated by splitting *D* into *v* partitions.
- \Box GainRatio(A) = Gain(A)/SplitInfo(A) (normalizing Information Gain)

Splitting Based on Nominal Attributes

Multi-way split: Use as many partitions as distinct values.

 Binary split: Divides values into two subsets. Need to find optimal partitioning.

Measures of Node Impurity

□ Entropy:

$$H(Y) = -\sum_{i=1}^{m} p_i \log(p_i) \text{ where } p_i = P(Y = y_i)$$

- Higher entropy => higher uncertainty, higher node impurity
- Why entropy is used in information gain
- □ Gini Index

Misclassification error

Gini Index (CART, IBM IntelligentMiner)

- If a data set D contains examples from n classes, gini index, gini(D) is defined as $gini(D) = 1 \sum_{j=1}^{n} p_{j}^{2}$, where p_{j} is the relative frequency of class j in D
- If a data set D is split on A into two subsets D_1 and D_2 , the gini index after the split is defined as $gini_A(D) = \frac{|D_1|}{|D|}gini(D_1) + \frac{|D_2|}{|D|}gini(D_2)$
- Reduction in impurity:

$$\Delta gini(A) = gini(D) - gini_A(D)$$

□ The attribute provides the smallest $gini_A(D)$ (or, the largest reduction in impurity) is chosen to split the node.

Binary Attributes: Computing Gini Index

- Splits into two partitions
- Effect of weighing partitions:
 - Prefer Larger and Purer Partitions.

gini(D)=1-	$-\sum_{j=1}^{n} p$	ρ_j^2
------------	---------------------	------------

	Parent
C1	6
C2	6
Gini	= 0.500

$= 1 - (5/7)^2 - (2/7)^2$
= 0.408
Gini(N2)
$= 1 - (1/5)^2 - (4/5)^2$
= 0.320

Gini(N1)

	N1	N2	
C1	5	1	
C2	2	4	
Gini=0.371			

Categorical Attributes: Computing Gini Index

- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions

Multi-way split

	CarType				
	Family Sports Luxury				
C1	1	2	1		
C2	4 1 1				
Gini	0.393				

Two-way split (find best partition of values)

	CarType		
	{Sports, Luxury} {Family}		
C1	3	1	
C2	2 4		
Gini	0.400		

	CarType		
	{Sports}	{Family, Luxury}	
C1	2	2	
C2	1 5		
Gini	0.419		

Continuous Attributes: Computing Gini Index or Information Gain

- To discretize the attribute values
 - Use Binary Decisions based on one splitting value
- Several Choices for the splitting value
 - Number of possible splitting values = Number of distinct values -1
 - Typically, the midpoint between each pair of adjacent values is considered as a possible split point
 - $(a_i+a_{i+1})/2$ is the midpoint between the values of a_i and a_{i+1}
- Each splitting value has a count matrix associated with it
 - \square Class counts in each of the partitions, A < v and A \ge v
- Simple method to choose best v
 - For each v, scan the database to gather count matrix and compute its Gini index
 - Computationally Inefficient! Repetition of work.

Continuous Attributes: Computing Gini Index or expected information requirement

First decide the splitting value to discretize the attribute:

- For efficient computation: for each attribute,
 - Step 1: Sort the attribute on values
 - Step 2: Linearly scan these values, each time updating the count matrix
 - Step 3: Computing Gini index and choose the split position that has the least Gini index

At each level of the decision tree, for attribute selection, (1) First, discretize a continuous attribute by deciding the splitting value; (2) Then, compare the discretized attribute with other attributes in terms of Gini Index reduction or Information Gain.

Classification: Basic Concepts

- □ Classification: Basic Concepts
- □ Decision Tree Induction
- □ Model Evaluation and Selection

- Practical Issues of Classification
- Bayes Classification Methods
- □ Techniques to Improve Classification Accuracy: Ensemble Methods
- Summary

Classifier Evaluation Metrics: Confusion Matrix

Confusion Matrix:

Actual class\Predicted class	C ₁	¬ C ₁
C_1	True Positives (TP)	False Negatives (FN)
¬ C ₁	False Positives (FP)	True Negatives (TN)

Example of Confusion Matrix:

Actual class\Predicted class	buy_computer = yes	buy_computer = no	Total
buy_computer = yes	6954	46	7000
buy_computer = no	412	2588	3000
Total	7366	2634	10000

- \Box Given m classes, an entry, $CM_{i,j}$ in a confusion matrix indicates # of tuples in class i that were labeled by the classifier as class j
 - May have extra rows/columns to provide totals

Classifier Evaluation Metrics: Accuracy, Error Rate

A\P	С	¬C	
С	TP	FN	Р
¬C	FP	TN	N
	P'	N'	All

 Classifier Accuracy, or recognition rate: percentage of test set tuples that are correctly classified

$$Accuracy = (TP + TN)/AII$$

Error rate: 1 - accuracy, or
Error rate = (FP + FN)/AII

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10

If a model predicts everything to be class 0, Accuracy is 9990/10000 = 99.9 %

Accuracy is misleading because model does not detect any class 1 example

Cost-Sensitive Measures

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) =
$$\frac{a}{a+b}$$

F-measure (F) =
$$\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$$

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

- Precision is biased towards C(Yes|Yes) & C(Yes|No)
- Recall is biased towards C(Yes|Yes) & C(No|Yes)
- F-measure is biased towards all except C(No|No)

Weighted Accuracy =
$$\frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

Evaluating Classifier Accuracy: Holdout & Cross-Validation Methods

Holdout method

- Given data is randomly partitioned into two independent sets
 - Training set (e.g., 2/3) for model construction
 - Test set (e.g., 1/3) for accuracy estimation
- Random sampling: a variation of holdout
 - Repeat holdout k times, accuracy = avg. of the accuracies obtained
- \Box Cross-validation (k-fold, where k = 10 is most popular)
 - \blacksquare Randomly partition the data into k mutually exclusive subsets, each approximately equal size
 - \blacksquare At *i*-th iteration, use D_i as test set and others as training set
 - Leave-one-out: k folds where k = # of tuples, for small sized data
 - *Stratified cross-validation*: folds are stratified so that class dist. in each fold is approx. the same as that in the initial data

ROC (Receiver Operating Characteristic) Curve

(False Positive Rate, True Positive Rate):

$$FPR = \frac{FP}{N}$$
 $TPR = \frac{TP}{P}$

- (0,0): declare everythingto be negative class
- (1,1): declare everything
 to be positive class
- □ (0,1): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class

Using ROC for Classification Model Comparison

- ROC (Receiver Operating Characteristics) curves: for visual comparison of classification models
- Originated from signal detection theory
- Shows the trade-off between the true positive rate and the false positive rate
- The area under the ROC curve is a measure of the accuracy of the model
- The closer to the diagonal line (i.e., the closer the area is to 0.5), the less accurate is the model

- Rank the test examples by prediction probability in descending order
- Gradually decreases the classification threshold from 1.0 to 0.0 and calculate the true positive and false positive rate along the way

				TPR = 0.0
$p \geq 1.0 \rightarrow Yes$	Input	Prebability of Prediction	Actual Class	FPR = 0.0
	x_1	0.95	Yes	
	x_2	0.85	Yes	
	x_3	0.75	No	
	x_4	0.65	Yes	
	x_5	0.4	No	
	x_6	0.3	No	

- Rank the test examples by prediction probability in descending order
- Gradually decreases the classification threshold from 1.0 to 0.0 and calculate the true positive and false positive rate along the way

	Input	Prebability of Prediction	Actual Class	TPR = 0.334
$p \geq 0.9 \rightarrow {\sf Yes}$	x_1	0.95	Yes	FPR = 0.0
	x_2	0.85	Yes	
	x_3	0.75	No	
	x_4	0.65	Yes	
	x_5	0.4	No	
	x_6	0.3	No	

- Rank the test examples by prediction probability in descending order
- Gradually decreases the classification threshold from 1.0 to 0.0 and calculate the true positive and false positive rate along the way

x_1 0.95 Yes $TPR =$	= 0.666
	= 0.0
<i>x</i> ₃ 0.75 No	
x_4 0.65 Yes	
x_5 0.4 No	
x ₆ 0.3 No	

- Rank the test examples by prediction probability in descending order
- Gradually decreases the classification threshold from 1.0 to 0.0 and calculate the true positive and false positive rate along the way

	Input	Prebability of Prediction	Actual Class	
	x_1	0.95	Yes	
	x_2	0.85	Yes	TPR = 0.666
$p \geq 0.7 \rightarrow Yes$	x_3	0.75	No	FPR = 0.334
	x_4	0.65	Yes	
	x_5	0.4	No	
	x_6	0.3	No	_

- Rank the test examples by prediction probability in descending order
- Gradually decreases the classification threshold from 1.0 to 0.0 and calculate the true positive and false positive rate along the way

	Input	Prebability of Prediction	Actual Class	
	x_1	0.95	Yes	
	x_2	0.85	Yes	
	x_3	0.75	No	TPR = 1.0
$p \geq 0.5 \rightarrow Yes$	x_4	0.65	Yes	FPR = 0.334
	x_5	0.4	No	
	x_6	0.3	No	_

- Rank the test examples by prediction probability in descending order
- Gradually decreases the classification threshold from 1.0 to 0.0 and calculate the true positive and false positive rate along the way

	Input	Prebability of Prediction	Actual Class	
	x_1	0.95	Yes	
	x_2	0.85	Yes	
	x_3	0.75	No	
	x_4	0.65	Yes	TPR = 1.0
5	x_5	0.4	No	FPR = 0.666
	x_6	0.3	No	

 $p \ge 0.4 \rightarrow \text{Yes}$

- Rank the test examples by prediction probability in descending order
- Gradually decreases the classification threshold from 1.0 to 0.0 and calculate the true positive and false positive rate along the way

Input	Prebability of Prediction	Actual Class
x_1	0.95	Yes
x_2	0.85	Yes
x_3	0.75	No
x_4	0.65	Yes
x_5	0.4	No
x_6	0.3	No

TPR = 1.0

FPR = 1.0

 $p \ge 0.3 \rightarrow \text{Yes}$

30

Using ROC for Classification Model Comparison

- No model consistently outperform the other
 - \bullet M_1 is better for small FPR
 - M₂ is better for large FPR
- Area Under the ROC curve
 - Ideal:
 - Area = 1
 - Random guess (diagonal line):
 - Area = 0.5

Quiz

Compute the accuracy, error rate, precision, recall, and F-measure based on the following confusion matrix:

Actual class\Predicted class	buy_computer = yes	buy_computer = no	Total
buy_computer = yes	6954	46	7000
buy_computer = no	412	2588	3000
Total	7366	2634	10000

Classification: Basic Concepts

- Classification: Basic Concepts
- □ Decision Tree Induction
- Model Evaluation and Selection
- □ Practical Issues of Classification

- Bayes Classification Methods
- □ Techniques to Improve Classification Accuracy: Ensemble Methods
- Summary

Underfitting and Overfitting

Underfitting: when model is too simple, both training and test errors are large

Overfitting due to Noise

Decision boundary is distorted by noise point

Overfitting due to Insufficient Examples

Lack of data points in the lower half of the diagram makes it difficult to predict correctly the class labels of that region

- Insufficient number of training records in the region causes the decision tree to predict the test examples using other training records that are irrelevant to the classification task

Notes on Overfitting

Overfitting results in decision trees that are more complex than necessary

 Training error no longer provides a good estimate of how well the tree will perform on previously unseen records

Need new ways for estimating errors

- \square Re-substitution errors: error on training (Σ e(t))
- \square Generalization errors: error on testing (Σ e'(t))

- \square Re-substitution errors: error on training (Σ e(t))
- \square Generalization errors: error on testing (Σ e'(t))
- Methods for estimating generalization errors:
 - \square Optimistic approach: e'(t) = e(t)

- \square Re-substitution errors: error on training (Σ e(t))
- oxdot Generalization errors: error on testing (Σ e'(t))
- Methods for estimating generalization errors:
 - \square Optimistic approach: e'(t) = e(t)
 - Pessimistic approach:
 - For each leaf node: e'(t) = (e(t)+0.5)
 - Total errors: $e'(T) = e(T) + N \times 0.5$ (N: number of leaf nodes)
 - For a tree with 30 leaf nodes and 10 errors on training (out of 1000 instances):

```
Training error = 10/1000 = 1\%
Generalization error = (10 + 30 \times 0.5)/1000 = 2.5\%
```

- \square Re-substitution errors: error on training (Σ e(t))
- \square Generalization errors: error on testing (Σ e'(t))
- Methods for estimating generalization errors:
 - \square Optimistic approach: e'(t) = e(t)
 - Pessimistic approach:
 - For each leaf node: e'(t) = (e(t)+0.5)
 - Total errors: $e'(T) = e(T) + N \times 0.5$ (N: number of leaf nodes)
 - For a tree with 30 leaf nodes and 10 errors on training (out of 1000 instances):

 Training error = 10/1000 = 1%

 Generalization error = (10 + 30×0.5)/1000 = 2.5%
 - Reduced error pruning (REP):
 - uses validation data set to estimate generalization error

How to Address Overfitting

- □ Pre-Pruning (Early Stopping Rule)
 - Stop the algorithm before it becomes a fully-grown tree
 - Typical stopping conditions for a node:
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
 - More restrictive conditions:
 - Stop if number of instances is less than some user-specified threshold
 - Stop if class distribution of instances are independent of the available features (e.g., using χ^2 test)
 - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).

How to Address Overfitting...

□ Post-pruning

- Grow decision tree to its entirety
- Trim the nodes of the decision tree in a bottom-up fashion
- If generalization error improves after trimming, replace sub-tree by a leaf node.
- Class label of leaf node is determined from majority class of instances in the sub-tree

Post-Pruning

Example of Post-Pruning

Examples of Post-pruning

Optimistic error?

Don't prune for both cases

Pessimistic error?

Don't prune case 1, prune case 2

■ Reduced error pruning?

Depends on validation set

Occam's Razor

 Given two models of similar generalization errors, one should prefer the simpler model over the more complex model

 For complex models, there is a greater chance that it was fitted accidentally by errors in data

 Therefore, one should include model complexity when evaluating a model

Classification: Basic Concepts

- □ Classification: Basic Concepts
- □ Decision Tree Induction
- Model Evaluation and Selection
- Practical Issues of Classification
- Bayes Classification Methods

- □ Techniques to Improve Classification Accuracy: Ensemble Methods
- Summary

Bayesian Classification: Why?

- <u>A statistical classifier</u>: performs probabilistic prediction, i.e., predicts class membership probabilities
- Foundation: Based on Bayes' Theorem.
- Performance: A simple Bayesian classifier, naïve Bayesian classifier, has comparable performance with decision tree and selected neural network classifiers
- Incremental: Each training example can incrementally increase/decrease the probability that a hypothesis is correct prior knowledge can be combined with observed data
- Standard: Even when Bayesian methods are computationally intractable, they can provide a standard of optimal decision making against which other methods can be measured

- Bayes' Theorem:
 - Let X be a data sample ("evidence"): class label is unknown
 - Let H be a hypothesis that X belongs to class C
 - Classification is to determine $P(H \mid X)$, (i.e., posteriori probability): the probability that the hypothesis holds given the observed data sample X

$$P(H|\mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})} = P(\mathbf{X}|H) \times P(H)/P(\mathbf{X})$$

- Bayes' Theorem:
 - Let X be a data sample ("evidence"): class label is unknown
 - Let H be a hypothesis that X belongs to class C
 - Classification is to determine P(H | X), (i.e., posteriori probability): the probability that the hypothesis holds given the observed data sample X

$$P(H|\mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})} = P(\mathbf{X}|H) \times P(H)/P(\mathbf{X})$$

- P(H) (prior probability): the initial probability
 - E.g., X will buy computer, regardless of age, income, ...

- Bayes' Theorem:
 - Let X be a data sample ("evidence"): class label is unknown
 - Let H be a hypothesis that X belongs to class C
 - Classification is to determine P(H | X), (i.e., posteriori probability): the probability that the hypothesis holds given the observed data sample X

$$P(H|\mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})} = P(\mathbf{X}|H) \times P(H)/P(\mathbf{X})$$

- P(H) (prior probability): the initial probability
 - E.g., X will buy computer, regardless of age, income, ...
- P(X): probability that sample data is observed

- Bayes' Theorem:
 - □ Let X be a data sample ("evidence"): class label is unknown
 - Let H be a hypothesis that X belongs to class C
 - Classification is to determine $P(H \mid X)$, (i.e., posteriori probability): the probability that the hypothesis holds given the observed data sample X

$$P(H|\mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})} = P(\mathbf{X}|H) \times P(H)/P(\mathbf{X})$$

- P(H) (prior probability): the initial probability
 - E.g., X will buy computer, regardless of age, income, ...
- P(X): probability that sample data is observed
- \square P(X | H) (likelihood): the probability of observing the sample X, given that the hypothesis holds
 - E.g., Given that X will buy computer, the prob. that X is 31..40, medium income

Prediction Based on Bayes' Theorem

Given training data X, posteriori probability of a hypothesis H, P(H | X), follows the Bayes' theorem

$$P(H|\mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})} = P(\mathbf{X}|H) \times P(H)/P(\mathbf{X})$$

- Informally, this can be viewed as posteriori = likelihood x prior/evidence
- Predicts **X** belongs to C_i iff the probability $P(C_i \mid \mathbf{X})$ is the highest among all the $P(C_k \mid \mathbf{X})$ for all the k classes
- Practical difficulty: It requires initial knowledge of many probabilities, involving significant computational cost

Classification Is to Derive the Maximum Posteriori

- Let D be a training set of tuples and their associated class labels, and each tuple is represented by an n-dimensional attribute vector $\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$
- \square Suppose there are m classes C_1 , C_2 , ..., C_m .
- □ Classification is to derive the maximum posteriori, i.e., the maximal $P(C_i \mid \mathbf{X})$

Classification Is to Derive the Maximum Posteriori

- Let D be a training set of tuples and their associated class labels, and each tuple is represented by an n-dimensional attribute vector $\mathbf{X} = (x_1, x_2, ..., x_n)$
- \square Suppose there are m classes $C_1, C_2, ..., C_m$.
- \Box Classification is to derive the maximum posteriori, i.e., the maximal $P(C_i \mid X)$
- □ This can be derived from Bayes' theorem

$$P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$$

Since P(X) is constant for all classes, only

$$P(C_i|\mathbf{X}) = P(\mathbf{X}|C_i)P(C_i)$$

needs to be maximized

Naïve Bayes Classifier

A simplified assumption: attributes are conditionally independent (i.e., no dependence relation between attributes):

$$P(\mathbf{X} \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i) = P(x_1 \mid C_i) \times P(x_2 \mid C_i) \times ... \times P(x_n \mid C_i)$$

 This greatly reduces the computation cost: Only counts the class distribution

Naïve Bayes Classifier

A simplified assumption: attributes are conditionally independent (i.e., no dependence relation between attributes):

$$P(\mathbf{X} \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i) = P(x_1 \mid C_i) \times P(x_2 \mid C_i) \times ... \times P(x_n \mid C_i)$$

- This greatly reduces the computation cost: Only counts the class distribution
- □ If A_k is categorical, $P(x_k | C_i)$ is the # of tuples in C_i having value x_k for A_k divided by $|C_{i,D}|$ (# of tuples of C_i in D)

Naïve Bayes Classifier

A simplified assumption: attributes are conditionally independent (i.e., no dependence relation between attributes):

$$P(\mathbf{X} | C_i) = \prod_{k=1}^{n} P(x_k | C_i) = P(x_1 | C_i) \times P(x_2 | C_i) \times ... \times P(x_n | C_i)$$

 \square If A_k is continous-valued, $P(x_k | C_i)$ is usually computed based on Gaussian distribution with a mean μ and standard deviation σ

$$g(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

and $P(x_k | C_i)$ is

$$P(x_k | C_i) = g(x_k, \mu_{C_i}, \sigma_{C_i})$$

Naïve Bayes Classifier: Training Dataset

Class:

C1:buys_computer = 'yes'

C2:buys_computer = 'no'

Data to be classified:

X = (age <= 30, Income = medium,

Student = yes, Credit_rating = Fair)

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

□ $P(C_i)$: $P(buys_computer = "yes") = 9/14 = 0.643$ $P(buys_computer = "no") = 5/14 = 0.357$

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

- □ $P(C_i)$: $P(buys_computer = "yes") = 9/14 = 0.643$ $P(buys_computer = "no") = 5/14 = 0.357$
- \Box Compute $P(X | C_i)$ for each class, where,

$$X = (age \le 30, Income = medium, Student = yes, Credit_rating = Fair)$$

$$P(age = "<=30" | buys_computer = "yes") = 2/9 = 0.222$$

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

```
P(C<sub>i</sub>): P(buys_computer = "yes") = 9/14 = 0.643
P(buys_computer = "no") = 5/14 = 0.357
```

 \Box Compute $P(X | C_i)$ for each class, where,

```
X = (age <=30, Income = medium, Student = yes, Credit_rating = Fair)
```

```
P(age = "<=30" | buys_computer = "yes") = 2/9 = 0.222

P(age = "<= 30" | buys_computer = "no") = 3/5 = 0.6

P(income = "medium" | buys_computer = "yes") = 4/9 = 0.444

P(income = "medium" | buys_computer = "no") = 2/5 = 0.4

P(student = "yes" | buys_computer = "yes) = 6/9 = 0.667

P(student = "yes" | buys_computer = "no") = 1/5 = 0.2

P(credit_rating = "fair" | buys_computer = "yes") = 6/9 = 0.667

P(credit_rating = "fair" | buys_computer = "no") = 2/5 = 0.4
```

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

- P(C_i): P(buys_computer = "yes") = 9/14 = 0.643P(buys_computer = "no") = 5/14 = 0.357
- \Box Compute $P(Xi | C_i)$ for each class

```
P(age = "<=30" | buys_computer = "yes") = 2/9 = 0.222

P(age = "<= 30" | buys_computer = "no") = 3/5 = 0.6

P(income = "medium" | buys_computer = "yes") = 4/9 = 0.444

P(income = "medium" | buys_computer = "no") = 2/5 = 0.4

P(student = "yes" | buys_computer = "yes) = 6/9 = 0.667

P(student = "yes" | buys_computer = "no") = 1/5 = 0.2

P(credit_rating = "fair" | buys_computer = "yes") = 6/9 = 0.667

P(credit_rating = "fair" | buys_computer = "no") = 2/5 = 0.4
```

(m.				
age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

X = (age <= 30, income = medium, student = yes, credit_rating = fair)</p>

```
P(X | C<sub>i</sub>) : P(X | buys_computer = "yes") = P(age = "<=30" | buys_computer = "yes")* P(income = "medium" | buys_computer = "yes") * P(student = "yes" | buys_computer = "yes) * P(credit_rating = "fair" | buys_computer = "yes")
```

- P(C_i): P(buys_computer = "yes") = 9/14 = 0.643P(buys_computer = "no") = 5/14 = 0.357
- \Box Compute $P(Xi | C_i)$ for each class

```
P(age = "<=30" | buys_computer = "yes") = 2/9 = 0.222

P(age = "<= 30" | buys_computer = "no") = 3/5 = 0.6

P(income = "medium" | buys_computer = "yes") = 4/9 = 0.444

P(income = "medium" | buys_computer = "no") = 2/5 = 0.4

P(student = "yes" | buys_computer = "yes) = 6/9 = 0.667

P(student = "yes" | buys_computer = "no") = 1/5 = 0.2

P(credit_rating = "fair" | buys_computer = "yes") = 6/9 = 0.667

P(credit_rating = "fair" | buys_computer = "no") = 2/5 = 0.4
```

200	income	ctudont	crodit rating	buys computer
age		Student		buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

X = (age <= 30, income = medium, student = yes, credit_rating = fair)</p>

```
P(X | C_i): P(X | buys\_computer = "yes") = P(age = "<=30" | buys\_computer = "yes")* <math>P(income = "medium" | buys\_computer = "yes") * <math>P(student = "yes" | buys\_computer = "yes") * <math>P(credit\_rating = "fair" | buys\_computer = "yes") = 0.222 \times 0.444 \times 0.667 \times 0.667 = 0.044
```

- P(C_i): P(buys_computer = "yes") = 9/14 = 0.643P(buys_computer = "no") = 5/14 = 0.357
- \Box Compute $P(X_i | C_i)$ for each class

```
P(age = "<=30" | buys_computer = "yes") = 2/9 = 0.222

P(age = "<= 30" | buys_computer = "no") = 3/5 = 0.6

P(income = "medium" | buys_computer = "yes") = 4/9 = 0.444

P(income = "medium" | buys_computer = "no") = 2/5 = 0.4

P(student = "yes" | buys_computer = "yes) = 6/9 = 0.667

P(student = "yes" | buys_computer = "no") = 1/5 = 0.2

P(credit_rating = "fair" | buys_computer = "yes") = 6/9 = 0.667

P(credit_rating = "fair" | buys_computer = "no") = 2/5 = 0.4
```

```
income student credit rating buys computer
                         fair
<=30
        high
                   no
                                            no
<=30
        high
                         lexcellent
                                            no
31...40
        high
                         fair
                   no
                                           yes
>40
        medium
                         fair
                                           yes
>40
                         fair
        llow
                   ves
                                           ves
>40
                         excellent
31...40
        llow
                         excellent
                                           yes
<=30
        medium
                   no
                         lfair
                                           no
<=30
        llow
                         fair
                   yes
                                           yes
                         fair
>40
        medium
                                           yes
        medium
                         excellent
<=30
                                           yes
31...40 | medium
                         lexcellent
                                           yes
                    no
31...40 high
                         lfair
                   yes
                                           yes
        lmedium
                         excellent
                                            no
```

X = (age <= 30, income = medium, student = yes, credit_rating = fair)</p>

```
P(X | buys_computer = "yes") = P(age = "<=30" | buys_computer = "yes")* P(income = "medium" | buys_computer = "yes") * P(student = "yes" | buys_computer = "yes) * P(credit_rating = "fair" | buys_computer = "yes") = 0.222 \times 0.444 \times 0.667 \times 0.667 = 0.044
P(X | buys_computer = "no") = 0.6 \times 0.4 \times 0.2 \times 0.4 = 0.019
```

- P(C_i): P(buys_computer = "yes") = 9/14 = 0.643P(buys_computer = "no") = 5/14 = 0.357
- Compute $P(Xi | C_i)$ for each class $P(age = "<=30" | buys_computer = "yes") = 2/9 = 0.222$ $P(age = "<=30" | buys_computer = "no") = 3/5 = 0.6$ $P(income = "medium" | buys_computer = "yes") = 4/9 = 0.444$ $P(income = "medium" | buys_computer = "no") = 2/5 = 0.4$ $P(student = "yes" | buys_computer = "yes) = 6/9 = 0.667$ $P(student = "yes" | buys_computer = "no") = 1/5 = 0.2$ $P(credit_rating = "fair" | buys_computer = "yes") = 6/9 = 0.667$ $P(credit_rating = "fair" | buys_computer = "no") = 2/5 = 0.4$

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

- X = (age <= 30, income = medium, student = yes, credit_rating = fair)</p>
- $P(X | C_i)$: $P(X | buys_computer = "yes") = 0.222 x 0.444 x 0.667 x 0.667 = 0.044 P(X | buys_computer = "no") = 0.6 x 0.4 x 0.2 x 0.4 = 0.019$

$$P(X | C_i)*P(C_i): P(X | buys_computer = "yes") * P(buys_computer = "yes") = 0.028$$

 $P(X | buys_computer = "no") * P(buys_computer = "no") = 0.007$

- P(C_i): P(buys_computer = "yes") = 9/14 = 0.643P(buys_computer = "no") = 5/14 = 0.357
- Compute P(Xi | C_i) for each class

 P(age = "<=30" | buys_computer = "yes") = 2/9 = 0.222

 P(age = "<= 30" | buys_computer = "no") = 3/5 = 0.6

 P(income = "medium" | buys_computer = "yes") = 4/9 = 0.444

 P(income = "medium" | buys_computer = "no") = 2/5 = 0.4

 P(student = "yes" | buys_computer = "yes) = 6/9 = 0.667

 P(student = "yes" | buys_computer = "no") = 1/5 = 0.2

 P(credit_rating = "fair" | buys_computer = "yes") = 6/9 = 0.667

 P(credit_rating = "fair" | buys_computer = "no") = 2/5 = 0.4

```
income student credit rating buys computer
                         fair
<=30
        high
                    no
                                            no
<=30
        high
                         lexcellent
                                            no
31...40
        high
                         fair
                    no
                                           yes
>40
        medium
                         fair
                                           yes
>40
                         fair
                   ves
                                           ves
>40
                         excellent
31...40
        llow
                         excellent
                                           yes
<=30
        medium
                    no
                         lfair
                                            no
<=30
                         fair
        llow
                   ves
                                           yes
>40
                         fair
        medium
                                           yes
<=30
        medium
                         excellent
                                           yes
31...40
        lmedium
                         lexcellent
                                           yes
                    no
31...40
        high
                         lfair
                   yes
                                           yes
        medium
                         excellent
                                            no
```

```
X = (age <= 30, income = medium, student = yes, credit_rating = fair)</p>
```

$$P(X \mid C_i)$$
: $P(X \mid buys_computer = "yes") = 0.222 x 0.444 x 0.667 x 0.667 = 0.044 P(X \mid buys_computer = "no") = 0.6 x 0.4 x 0.2 x 0.4 = 0.019$

```
P(X | C_i)*P(C_i): P(X | buys\_computer = "yes") * P(buys\_computer = "yes") = 0.028

P(X | buys\_computer = "no") * P(buys\_computer = "no") = 0.007
```

Since Red > Blue here, X belongs to class ("buys_computer = yes")

Avoiding the Zero-Probability Problem

Naïve Bayesian prediction requires each conditional prob. To be non-zero.
 Otherwise, the predicted prob. will be zero

$$P(X \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i)$$

- Ex. Assume a dataset with 1000 tuples, income=low (0), income= medium (990), and income = high (10)
- Use Laplacian correction (or Laplacian estimator)
 - Adding 1 to each case

Prob(income = low) =
$$1/1003$$

Prob(income = medium) = $991/1003$
Prob(income = high) = $11/1003$

■ The "corrected" prob. estimates are close to their "uncorrected" counterparts

Naïve Bayes Classifier: Comments

- Advantages
 - Easy to implement
 - Good results obtained in most of the cases
- Disadvantages
 - Assumption: class conditional independence, therefore loss of accuracy
 - Practically, dependencies exist among variables
 - E.g., hospitals: patients: Profile: age, family history, etc.

 Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc.
 - Dependencies among these cannot be modeled by Naïve Bayes Classifier
- □ How to deal with these dependencies? Bayesian Belief Networks (Chapter 9)

Classification: Basic Concepts

- Classification: Basic Concepts
- Decision Tree Induction
- Model Evaluation and Selection
- Practical Issues of Classification
- Bayes Classification Methods
- □ Techniques to Improve Classification Accuracy: Ensemble Methods

Summary

Ensemble Methods: Increasing the Accuracy

- Ensemble methods
 - Use a combination of models to increase accuracy
 - □ Combine a series of k learned models, M_1 , M_2 , ..., M_k , with the aim of creating an improved model M^*

Ensemble Methods: Increasing the Accuracy

- Ensemble methods
 - Use a combination of models to increase accuracy
 - □ Combine a series of k learned models, M_1 , M_2 , ..., M_k , with the aim of creating an improved model M^*
- Popular ensemble methods
 - Bagging: averaging the prediction over a collection of classifiers
 - Boosting: weighted vote with a collection of classifiers
 - Random forests: Imagine that each of the classifiers in the ensemble is a decision tree classifier so that the collection of classifiers is a "forest"

Classification of Class-Imbalanced Data Sets

- Class-imbalance problem: Rare positive example but numerous negative ones, e.g., medical diagnosis, fraud, oil-spill, fault, etc.
- Traditional methods assume a balanced distribution of classes and equal error costs: not suitable for class-imbalanced data
- Typical methods in two-class classification:
 - Oversampling: re-sampling of data from positive class
 - □ **Under-sampling**: randomly eliminate tuples from negative class
 - Threshold-moving: move the decision threshold so that the rare class tuples are easier to classify, and hence, smaller chance of costly false negative errors
 - **Ensemble techniques:** Ensemble multiple classifiers
- Still difficult for class imbalance problem on multiclass tasks

Backup Slides

Other Issues

Data Fragmentation

Search Strategy

Expressiveness

Data Fragmentation

Number of instances gets smaller as you traverse down the tree

Number of instances at the leaf nodes could be too small to make any statistically significant decision

Search Strategy

- Finding an optimal decision tree is NP-hard
- The algorithm presented so far uses a greedy, top-down, recursive partitioning strategy to induce a reasonable solution
- Other strategies?
 - Bottom-up
 - Bi-directional

Expressiveness

- Decision tree provides expressive representation for learning discretevalued function
 - But they do not generalize well to certain types of Boolean functions
 - Example: XOR or Parity functions (example in book)
- Not expressive enough for modeling continuous variables
 - Particularly when test condition involves only a single attribute at-a-time

Expressiveness: Oblique Decision Trees

- Test condition may involve multiple attributes
- More expressive representation
- Finding optimal test condition is computationally expensive
- Needs multi-dimensional discretization

Bagging: Boostrap Aggregation

- Analogy: Diagnosis based on multiple doctors' majority vote
- Training
 - □ Given a set D of d tuples, at each iteration i, a training set D_i of d tuples is sampled with replacement from D (i.e., bootstrap)
 - A classifier model M_i is learned for each training set D_i
- Classification: classify an unknown sample X
 - Each classifier M_i returns its class prediction
 - The bagged classifier M* counts the votes and assigns the class with the most votes to X
- Prediction: can be applied to the prediction of continuous values by taking the average value of each prediction for a given test tuple
- Accuracy: Proved improved accuracy in prediction
 - Often significantly better than a single classifier derived from D
 - For noise data: not considerably worse, more robust

Boosting

- Analogy: Consult several doctors, based on a combination of weighted diagnoses weight assigned based on the previous diagnosis accuracy
- How boosting works?
 - Weights are assigned to each training tuple
 - A series of k classifiers is iteratively learned
 - After a classifier M_i is learned, the weights are updated to allow the subsequent classifier, M_{i+1} , to pay more attention to the training tuples that were misclassified by M_i
 - The final M* combines the votes of each individual classifier, where the weight of each classifier's vote is a function of its accuracy
- Boosting algorithm can be extended for numeric prediction
- Comparing with bagging: Boosting tends to have greater accuracy, but it also risks overfitting the model to misclassified data

Adaboost (Freund and Schapire, 1997)

- Given a set of d class-labeled tuples, $(X_1, y_1), \ldots, (X_d, y_d)$
- Initially, all the weights of tuples are set the same (1/d)
- Generate k classifiers in k rounds. At round i,
 - Tuples from D are sampled (with replacement) to form a training set D_i of the same size
 - Each tuple's chance of being selected is based on its weight
 - A classification model M_i is derived from D_i
 - Its error rate is calculated using D_i as a test set
 - If a tuple is misclassified, its weight is increased, o.w. it is decreased
- Error rate: err(X_i) is the misclassification error of tuple X_i. Classifier M_i error rate is the sum of the weights of the misclassified tuples:

$$error(M_i) = \sum_j w_j \times err(\mathbf{X_j})$$

The weight of classifier M_i 's vote is $\log \frac{1 - error(M_i)}{error(M_i)}$

Random Forest (Breiman 2001)

- Random Forest:
 - Each classifier in the ensemble is a decision tree classifier and is generated using a random selection of attributes at each node to determine the split
 - During classification, each tree votes and the most popular class is returned
- Two Methods to construct Random Forest:
 - Forest-RI (random input selection): Randomly select, at each node, F attributes as candidates for the split at the node. The CART methodology is used to grow the trees to maximum size
 - Forest-RC (random linear combinations): Creates new attributes (or features) that are a linear combination of the existing attributes (reduces the correlation between individual classifiers)
- Comparable in accuracy to Adaboost, but more robust to errors and outliers
- Insensitive to the number of attributes selected for consideration at each split, and faster than bagging or boosting