

Docket No. A03195

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE #4

In re application of)
Blättner et al.)

Serial No. 09/994,741)
Filed: 11/28/2001)

Examiner: Unknown)
Art Unit: 3722)

CERTIFICATE OF MAILING 37CFR 1.08

I hereby certify that this correspondence is being deposited, postage pre-paid, this day with the United States Postal Service as First Class Mail in an envelope addressed to Assistant Commissioner For Patents, Washington, D.C. 20231

March 26, 2002

Date of Deposit
Linda L. Armstrong
Name of Person Making Deposit
Linda L. Armstrong
Signature of Person Making Deposit
MARCH 26, 2002

For: **BINDING PROCESS FOR MANUFACTURING BROCHURES**

Hon. Assistant Commissioner For Patents
Washington, DC 20231

RECEIVED
APR 10 2002
TECHNOLOGY CENTER R3700

SUBMISSION OF PRIORITY PAPERS

Certified copies of the following priority documents are submitted herewith:

Application Number	Country (or IP Authority)	Day, Month, Year, of Filing
100 59 344.5	Germany	29. November 2000
101 41 811.6	Germany	27. August 2001
01126528.7	European Patent Office	14. November 2001

Applicants hereby restate and confirm their claim to priority in
the captioned application to all three of these foreign applications.

Respectfully submitted,

Kevin L. Leffel

Registration 37,379

Heidelberg Digital L.L.C.
2600 Manitou Road
Rochester, New York 14624
Telephone: (585) 512-8434
Fax: (585) 512-8065

BUNDESREPUBLIK DEUTSCHLAND

**Prioritätsbescheinigung über die Einreichung
einer Patentanmeldung**

Aktenzeichen: 100 59 344.5

Anmeldetag: 29. November 2000

Anmelder/Inhaber: Heidelberger Druckmaschinen Aktiengesellschaft,
Heidelberg, Neckar/DE

Bezeichnung: Verfahren zum Herstellen von Broschüren beliebiger
Formate und Dicken mittels Drahtkammbindung

IPC: B 42 B 5/10

**Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ur-
sprünglichen Unterlagen dieser Patentanmeldung.**

München, den 13. November 2001
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

Dzierzon

Verfahren zum Herstellen von Broschüren beliebiger Formate und Dicken mittels Drahtkammbindung

5 Beschreibung

Die Erfindung betrifft ein Verfahren zum Herstellen von Broschüren beliebiger Formate und Dicken mittels Drahtkammbindung, bei denen zum losen Verbinden einer aus mehreren blattförmigen Bedruckstoffen bestehenden Broschüre mindestens ein auf das jeweilige Format und Dicke der Broschüre abgestimmtes Drahtbindeelement auf Bedarf hergestellt und durch eine entlang eines Randes der Papierblätter versehene Lochungsreihe aufgenommen wird.

Verfahren zur Herstellung von Broschüren, die sogenannte Wire-OTM-Drahtbindeelemente (registrierte Handelsmarke) in verschiedenen Größen verwenden, sind beispielsweise aus den europäischen Patentanmeldungen 0 095 243-A1 und 0 095 245-B1, bekannt.

Wire-O-Drahtbindeelemente sind als parallel zueinander beabstandete Drahtschlaufen 44 mit einer Schlaufenlänge L, einem Schlaufenabstand A und einem Drahdurchmesser D, wie in Fig. 2 dargestellt, definiert und werden mittels geeigneter Schließvorrichtungen zu einem Wire-O-Ring geformt.

Die Bindeeinrichtungen zu den vorgenannten Patentanmeldungen sind dabei derart ausgestaltet, dass die Verarbeitung geformter Wire-O-Drahtbindeelemente mit verschiedenen Schlaufenabständen und -längen ermöglicht wird.

Generell besteht bei den genannten Vorrichtungen der Nachteil, dass zur Bindung von Broschüren unterschiedlicher Formate und Dicken die dafür notwendigen Drahtbindelemente in Form mehrerer bereits geformter Binndeelementevorräte, z.B. als Rollenmaterial oder als auf Bindelänge geschnittene Elemente, der Bindeeinrichtung zur Verfügung gestellt werden müssen. Um diese unterschiedlichen Broschürenformate und -dicken binden zu können, ist bereits eine beachtliche Anzahl an Vorräten notwendig. Außerdem sind bei einem Formatwechsel der herzustellenden Broschüren die zum Transport und die zur Verarbeitung geeigneten Vorrichtungen an die Anforderungen der unterschiedlichen

Drahtbindeelemente anzupassen. Diese Umrüstung erfordert aufwendige Konstruktionen der Transport- und Bindeeinrichtungen und macht das Bindeverfahren nur noch wirtschaftlich, wenn größere Stückzahlen einer Broschürendicke in einem Format hergestellt werden. Kleinere Auflagen sind daher unwirtschaftlich herzustellen und erfordern infolge

5 der Maschinenanpassung einen längeren Zeitaufwand.

Aus der DE 28 47 700-A1 ist ein Verfahren zum Herstellen einer Drahtbindung für Blöcke usw. bekannt, bei dem ein von einem Vorrat kontinuierlich abgezogener Draht durch Hin- und Herbiegen zu einem wellenförmigen Gebilde geformt wird, wobei das wellenförmige

10 Drahtgebilde anschließend quer zur Ebene der Wellen in eine C-förmige Gestalt gebogen wird. Zur Biegung werden Formrollen mit festgelegten Durchmessern verwendet, so dass nur Drahtbindeelemente mit nicht veränderbaren Schlaufenabständen und -längen herstellbar sind.

15 Es ist die Aufgabe der Erfindung, ein Verfahren und eine Vorrichtung zum Herstellen von Broschüren unterschiedlicher Formate und Dicken mittels Drahtkammbindung anzugeben, mit denen Drahtbindeelemente direkt im Bindeverfahren entsprechend ihres Bedarfs und des jeweiligen Formats und Dicke der zu bindenden Broschüren hergestellt werden können.

20 Die Aufgabe wird gemäß der Erfindung dadurch gelöst, dass mindestens ein auf das jeweilige Format und die jeweilige Dicke der Broschüre abgestimmtes Drahtbindelement (41) auf Bedarf und unmittelbar vor dem Bindevorgang hergestellt wird.

25 Dazu wird in einem ersten Schritt das Format und die Dicke der zu bindenden Broschüre ermittelt. Die Ermittlung von Format und Dicke und gegebenenfalls die Art der Lochung der zu bindenden Broschüre kann dabei durch Übergabe der Parameter aus vorangegangenen Geräten an die Elektronik (110) geschehen und / oder durch eine Sensorik, die Format und die Dicke und gegebenenfalls die Art der Lochung der zu bindenden Broschüre bestimmt und

30 an die Elektronik (110) übergibt.

In einem zweiten Schritt werden die Herstellungsparameter für das Drahtbindelement durch die Elektronik (110) festgelegt und in einem dritten Schritt das Drahtbindelement

mittels einander elektronisch und mechanisch verbundener Einrichtungen hergestellt,
durch:

- Zuführen eines Drahtes von mindestens einem eine Drahtrolle umfassenden Drahtvor-
rat zu einer Drahtbiegeeinrichtung;
- Biegen des Drahtes zu einem flachen schlaufenförmig ausgebildeten Drahtbinde-
element mittels der Drahtbiegeeinrichtung;
- Schneiden bzw. Ablängen des Drahtbindeelements mittels einer Schneideeinrichtung
und Zuführen des geschnittenen Drahtbindeelements zu einer Einkämmvorrichtung;
- Zuführen eines mit einer Lochung versehenen Staps blattförmiger Bedruckstoffe zur
Bindeeinrichtung durch Transportmittel;
- Einkämmen des Drahtbindeelements in die Lochungsreihe des Staps blattförmiger
Bedruckstoffe und anschließendes facettenartiges Biegen des Drahtbindeelements
mittels einer Biege- und Schließeinrichtung zu einer geschlossenen Inline-Wire-Loop
(IWL).

Das Verfahren zum Herstellen von Broschüren unterschiedlicher Formate und Dicken
mittels Drahtkammbindung bietet mehrere Vorteile. Es ist ein vollautomatisches Binden
von Broschüren mittels bei Bedarf herstellter Drahtbindelemente mit beliebiger
Schlaufenlänge L, Breite A und Drahtdurchmesser D, sowie in einer Schlaufenanzahl
möglich, die der maximal zu verarbeitenden Broschürenlänge entspricht. Eine Umrüstung
oder Anpassung der Vorrichtung zum Binden ist nicht erforderlich. Es ist möglich, eine
Bindung der Broschüre durch Einzelbindeelemente zu realisieren, die gleich oder
unterschiedlich voneinander beabstandet sind, wobei eine große Bindegeschwindigkeit
durch zeitgleiches Binden der Einzelemente erreicht wird. Deformationen der auf Bedarf
hergestellten Drahtbindeelemente werden durch die automatische Herstellung und des
Transports vermieden, so dass die Störanfälligkeit gegenüber herkömmlichen
Vorrichtungen drastisch reduziert ist.

Eine bevorzugte Ausführungsform einer erfindungsgemäßen Vorrichtung wird unter
Erläuterung des erfindungsgemäßen Verfahrens im folgenden unter Bezugnahme auf die
Zeichnung im einzelnen näher beschrieben. Es zeigen in schematischer Darstellung:

Fig. 1 eine schematische Darstellung des erfindungsgemäßen Verfahrensablaufs und dessen Vorrichtungen zur Durchführung des Verfahrens;

5 Fig. 2 eine Darstellung eines Wire-O-Drahtbindeelements;

Fig. 3 eine Ausführungsform einer gebundenen Broschüre mit einem einzigen Drahtbindeelement,

10 Fig. 4 eine Ausführungsform einer gebundenen Broschüre mittels mehrerer Einzeldrahtbindeelemente;

Fig. 5 eine Ausführungsform einer gebundenen Broschüre mittels mehrerer in gleichen Abständen zueinander angeordneten Einzeldrahtbindeelementen;

15 Fig. 6 eine schematische Darstellung eines Drahtvorrats mit verschiedenen Drahtvorratsrollen;

Fig. 7 eine schematische Darstellung einer im erfindungsgemäßen Verfahren verwendeten Sicken-Biegeeinrichtung mit Transportvorrichtung zur Erzeugung von Sicken im Drahtbindelement;

20 In Fig. 1 weist eine mit 200 bezeichnete Vorrichtung zum Herstellen von Broschüren unterschiedlicher Formate und Dicken mehrere Einrichtungen zur Durchführung des erfindungsgemäßen Herstellungsverfahrens von Broschüren unterschiedlicher Formate und Dicken mittels Drahtkammbindung auf, die mit einer Elektronik 110 verbunden sind und von dieser gesteuert werden.

Wie in den Figuren 1 und 6 dargestellt, ist ein Drahtvorrat 20 mit Drahtvorratsrollen 21, 22, und 23 versehen, die jeweils Drähte (1) mit unterschiedlichen Drahtdurchmesser (z.B. 30 mit einem Durchmesser von 0,8 mm bis 1,2 mm) aufweisen. Zur Verwendung gelangen dabei Drähte, die sich durch unterschiedliche Farbgebungen unterscheiden und den vorgenannten Drahtdurchmessern zugeordnet werden können. Durch eine nicht näher dargestellte Drahtbiegevorrichtung 40 wird der Draht 1 in Schlaufenform gebracht, wobei die Schlaufenlänge L und der Schlaufenabstand A beliebig auf von der Steuerung 110

vorgegebenen Werte eingestellt werden können. Die Drahtbiegevorrichtung schneidet das entstandene Drahtbindeelement 41 nach Erreichen der von der Steuerelektronik 110 vorgegebenen Anzahl der Schlaufen ab.

5 Eine Transportvorrichtung 50 transportiert das Drahtbindeelement 41 zu einer nicht näher dargestellten Einkämmvorrichtung 80, die Teil einer Biege- und Schließvorrichtung 90 ist. Transportmittel 70, fördern einen Stapel blattförmiger Bedruckstoffe 11, die unbedruckt oder mittels eines Druckers ein- oder beidseitig bedruckt, gestapelt, durch eine Lochvorrichtung mit einer Lochungsreihe 12 versehen und anschließend ausgerichtet 10 worden sind, zu einer Biege- und Schließeinrichtung 90. Das Drahtbindeelement 41 wird mittels der Einkämmvorrichtung 80 in die Lochungsreihe 12 der gestapelten, ausgerichteten blattförmigen Bedruckstoffe 11 eingekämmt und mittels der Biege- und Schließeinrichtung 90 zu einem Wire-O geschlossen. Anschließend wird die gebundene Broschüre über eine Ausgabe 100 aus der Vorrichtung 200 ausgeführt und abgelegt.

15 In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens wird nach der Herstellung des Drahtbindeelements 41 mittels einer Sicken-Biegeeinrichtung 60 Sicken 61 in die Mitte der Schlaufen S eingebracht. Die Sicken-Biegeeinrichtung 60 besteht, wie schematisch in Fig. 7 gezeigt, aus zwei horizontal verstellbaren Biegematrizen 62, 62' und 20 einem vertikal verfahrbaren Biegestempel 64 mit federndem Niederhalter 63. Die Biegematrizen sind durch nicht dargestellte Mittel zentrisch zum Biegestempel verschiebbar, um je nach Schlaufenlänge L unterschiedliche Sicken 61 biegen zu können. Das Einbringen der Sicken 61 mittig zur Schlaufenlänge L (siehe Fig. 2) erfolgt bevorzugt 25 schrittweise Schlaufe für Schlaufe durch einen entsprechenden Vortrieb in Transportrichtung der Drahttransportbahn 2 des die Zangen 51 tragenden Gehäuses 54. Zur Bestimmung der Schlaufenmitte dienen optische Randsensoren (nicht dargestellt), welche die exakte Lage der Drahtschlaufe in der Biegeeinrichtung 60 bestimmen. Die mittels Spindeln 52 geführten Zangen 51 sind durch als Schrittmotor ausgebildete Antriebe 53 quer zur Drahttransportbahn 2 transportierbar, wie schematisch in Fig. 7 durch den Pfeil X 30 dargestellt. Zur Verschiebung des Gehäuses 54 parallel zur Drahttransportbahn 2 weist dieses Führungsnu 55 auf, in denen am Gehäuse der Vorrichtung 200 befestigte Führungsstangen 56 eingreifen. Die Verschiebung parallel zur Drahttransportbahn 2 erfolgt mittels entsprechender Antriebe, die nicht dargestellt sind. Bei einem Korrekturbedarf der

Lage der Zangen 51 werden die als Schrittmotor ausgebildete Antriebe 53 der Spindeln 52 mittels der Steuerelektronik 110 entsprechend betätigt.

In einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens weist die Sicken-
5 Biegeeinrichtung 60 eine Anzahl von Biegestempel 64 mit entsprechenden Niederhaltern auf, die dem maximal zu bindenden Broschürenformat entsprechen.

Liste der Bezugszeichen

1	Draht
2	Drahttransportbahn
3	Drahtrichtmittel
10	Broschüre
11	Papierblätter
12	Lochung/Löcher
20	Drahtvorrat
21, 22, 23	Drahtrollen
21', 22', 23'	Greifzangen
30	Transportvorrichtung, angetriebenes Rollenpaar
40	Drahtbiegeeinrichtung
41	Drahtbindeelement
41'	Einzeldrahtbindeelemente
41"	Drahtteppich
50	Transportmittel
51	Zangen
52	Spindel
53	Antrieb, Schrittmotor
54	Gehäuse
55	Führungsnut
56	Führung
60	Sicken- Biegeeinrichtung
61	Sicke
62, 62'	Biegematrizen
63	Niederhalter
64	Biegestempel
70	Transportmittel für gelochte Papierblätter/Broschüre
80	Einkämmvorrichtung
90	Biege- und Schließeinrichtung
100	Ablage
110	Steuerelektronik
200	Vorrichtung zum Herstellen von Broschüren

A Schlaufenabstand
D Drahtdurchmesser
S Schlaufen
L Schlaufenlänge

Patentansprüche

1. Verfahren zum Herstellen von Broschüren (10) beliebiger Formate und Dicken mittels Drahtkammbindung, bei dem zum losen Verbinden einer aus mehreren blattförmigen Bedruckstoffen (1) bestehenden Broschüre ein Drahtbindeelement durch eine entlang eines Randes der blattförmigen Bedruckstoffe (11) versehene Lochungsreihe (12) aufgenommen wird,
dadurch gekennzeichnet,
dass mindestens ein auf das jeweilige Format und Dicke der Broschüre abgestimmtes Drahtbindeelement (41) auf Bedarf und unmittelbar vor dem Bindevorgang hergestellt wird.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass das herzustellende Drahtbindeelement (41) zusätzlich auf die jeweilige Lochungsreihe (12) abgestimmt wird.
3. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass es die folgenden Schritte umfasst:
 - a) Bestimmung von Format und Dicke der zu bindenden Broschüre und anschließende Festlegung der Herstellungsparameter für das entsprechende Drahtbindeelement durch die Elektronik (110);
 - b) Herstellen eines auf das jeweilige Format und Dicke der Broschüre abgestimmte Drahtbindeelements mittels miteinander elektronisch und mechanisch verbundener Einrichtungen (20, 30, 40, 50, 60, 70, 80, 90, 100, 110) durch
 - Zuführen eines Drahtes (1) von mindestens einem eine Drahtrolle (21, 22, 23) umfassenden Drahtvorrat (20) zu einer Drahtbiegeeinrichtung (40) durch Transportmittel (30);
 - Biegen des Drahtes zu einem flachen, schlaufenförmig ausgebildeten Drahtbindelement (41) mittels der Drahtbiegeeinrichtung (40);
 - Schneiden bzw. Ablängen des Drahtbindelements (41) mittels einer Schneideeinrichtung (4) und Zuführen des geschnittenen

Drahtbindeelements (41) zu einer Einkämmvorrichtung (80),

- Zuführen eines mit einer Lochung versehenen Stapels blattförmiger Bedruckstoffe zur Bindeeinrichtung (90);
- Einkämmen des Drahtbindeelements (41) in die Lochungsreihe (12) des Stapels blattförmiger Bedruckstoffe (11) und
- anschließendes facettenartiges Biegen des Drahtbindelements (41) mittels einer Biege- und Schließeinrichtung (90) zu einer geschlossenen Inline-Wire-Loop (IWL).

4. Verfahren nach einem der Ansprüche 1 bis 3,

dadurch gekennzeichnet,

dass eine Sicke (61) in jede Schlaufe (S) des Drahtbindelements (41) zentrisch zur Binderichtung mittels einer Sicken-Biegeeinrichtung (60) eingebracht wird.

5. Verfahren nach Anspruch 4,

dadurch gekennzeichnet,

dass das Einbringen der Sicken (61) in das Drahtbindelement (41) schrittweise Schlaufe (S) für Schlaufe (S) mittels eines einzigen Biegestempels (61) durchgeführt wird.

6. Verfahren nach einem der Ansprüche 1 bis 5,

dadurch gekennzeichnet,

dass die Drahtkammbindung durch ein einziges die gesamte Breite der Broschüre entsprechendes Drahtbindeelement (41) gebildet wird.

7. Verfahren nach einem der Ansprüche 1 bis 5,

dadurch gekennzeichnet,

dass die Drahtkammbindung mittels mehrerer über die Breite der Broschüre verteilter, und/oder unmittelbar benachbarter Einzeldrahtbindeelemente (41') durch Einbringen in die Lochungsreihe (12) erzeugt wird, wobei die Einzeldrahtbindeelemente (41') zum Binden der Broschüre zeitgleich in die Lochungsreihe eingekämmt werden.

8. Verfahren nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet,
dass die Herstellungsparameter des Drahtbindeelements (41) wie z.B.
Drahtdurchmesser, Drahtlänge, Durchmesser der zu einer geschlossenen Inline-Wire-Loop (IWL) geformten Drahtbindeelemente (40, 41') usw., mittels der Elektronik (110) ermittelt werden.

9. Verfahren nach Anspruch 7,
dadurch gekennzeichnet,
dass die maximal wählbare Anzahl von Einzeldrahtbindelementen (41') in Abhängigkeit vom Format der zu bindenden Broschüre festgelegt ist.

Zusammenfassung

Die Erfindung betrifft ein Verfahren zum Herstellen von Broschüren unterschiedlicher Formate und Dicken mittels Drahtkammbindung, mit denen Drahtbindeelemente direkt im

5 Binieverfahren entsprechend ihres Bedarfs und des jeweiligen gewählten Formats und Dicke der zu bindenden Broschüre hergestellt werden können. Das Verfahren ist gekennzeichnet durch die Schritte:

a) Bestimmung von Format und Dicke der zu bindenden Broschüre und anschließende Festlegung der Herstellungsparameter für das entsprechende Drahtbindeelement durch die Elektronik (110);

b) Herstellen eines auf das jeweilige Format und Dicke der Broschüre abgestimmte Drahtbindeelements mittels miteinander elektronisch und mechanisch verbundener Einrichtungen (20, 30, 40, 50, 60, 70, 80, 90, 100, 110) durch

15 - Zuführen eines Drahtes (1) von mindestens einem eine Drahtrolle (21, 22, 23) umfassenden Drahtvorrat (20) zu einer Drahtbiegeeinrichtung (40) durch Transportmittel (30);

- Biegen des Drahtes zu einem flachen, schlaufenförmig ausgebildeten Drahtbindeelement (41) mittels der Drahtbiegeeinrichtung (40);

20 - Schneiden bzw. Ablängen des Drahtbindeelements (41) mittels einer Schneideeinrichtung (4) und Zuführen des geschnittenen Drahtbindelements (41) zu einer Einkämmvorrichtung (80),

- Zuführen eines mit einer Lochung versehenen Staps blattförmiger Bedruckstoffe zur Bindeeinrichtung (90);

25 - Einkämmen des Drahtbindeelements (41) in die Lochungsreihe (12) des Staps blattförmiger Bedruckstoffe (11) und

- anschließendes facettenartiges Biegen des Drahtbindeelements (41) mittels einer Biege- und Schließeinrichtung (90) zu einer geschlossenen Inline-Wire-Loop (IWL).

30

(Figur 1)

Fig. 1

Fig.2

Fig.4

Fig.3

Fig. 5

Fig. 6

Fig. 7