Лекция 21 от 15.02.2016

Инвариантность и обратимость

Пусть $\varphi \colon V \to V$ — линейный оператор, и е — базис в V.

Обозначение. $A(\varphi, e)$ — матрица линейного оператора φ в базисе e.

Если $e' = (e'_1, \dots, e'_n)$ — ещё один базис, причём $(e'_1, \dots, e'_n) = (e_1, \dots, e_n)C$, где C — матрица перехода, $A = A(\varphi, e)$ и $A' = A(\varphi, e')$. В прошлый раз мы доказали, что $A' = C^{-1}AC$.

Следствие. Величина $\det A$ не зависит от выбора базиса. Обозначение: $\det \varphi$.

Доказательство. Пусть A' — матрица φ в другом базисе. Тогда получается, что:

$$\det A' = \det \left(C^{-1}AC\right) = \det C^{-1} \det A \det C = \det A \det C \frac{1}{\det C} = \det A.$$

Заметим, что $\det A$ — инвариант самого φ .

Определение. Две матрицы $A', A \in M_n(F)$ называются подобными, если существует такая матрица $C \in M_n(F)$, $\det C \neq 0$, что $A' = C^{-1}AC$.

Замечание. Отношение подобия на M_n является отношением эквивалентности.

Предложение. Пусть $\varphi \in L(V)$. Тогда эти условия эквивалентны:

- 1. Ker $\varphi = \{0\}$;
- 2. Im $\varphi = V$;
- 3. φ обратим (то есть это биекция, изоморфизм);
- 4. $\det \varphi \neq 0$.

Доказательство.

- 1. \Leftrightarrow 2 следует из формулы dim $V = \dim \operatorname{Ker} \varphi + \dim \operatorname{Im} \varphi$.
- $2. \Leftrightarrow 3$ уже было.
- $3. \Leftrightarrow 4$ уже было.

Определение. Линейный оператор φ называется вырожденным, если $\det \varphi = 0$, и невырожденным, если $\det \varphi \neq 0$.

Определение. Подпространство $U \subset V$ называется инвариантным относительно φ (или φ -инвариантным), если $\varphi(U) \subset U$. То есть $\forall u \in U : \varphi(u) \in U$.

Пример.

1. $\{0\}, V$ — они инвариантны для любого φ .

- 2. Ker φ φ -инвариантно, φ (Ker φ) = $\{0\}$ \subset Ker φ
- 3. Im φ тоже φ -инвариантно, $\varphi(\operatorname{Im} \varphi) \subset \varphi(V) = \operatorname{Im} \varphi$.

Пусть $U \subset V - \varphi$ -инвариантное подпространство. Также пусть (e_1, \ldots, e_k) — базис в U. Дополним его до базиса $V \colon \mathbb{Q} = (e_1, \ldots, e_n)$.

$$\underbrace{A(\varphi,\,\mathbf{e})}_{ ext{Матрица c углом нулей}} = \begin{pmatrix} B & C \\ 0 & D \end{pmatrix}, \quad \text{где } B \in M_k$$

Это нетрудно понять, если учесть, что $\varphi(e_i) \in \langle e_1, \dots, e_k \rangle$, $i = 1, \dots, k$. Если $U = \operatorname{Ker} \varphi$, то B = 0. Если $U = \operatorname{Im} \varphi$, то D = 0.

Обратно, если матрица A имеет в базисе e такой вид, то $U = \langle e_1, \dots e_k \rangle$ — инвариантное подпространство.

Обобщение. Пусть $V = U \oplus W$, где U, W -инвариантные подпространства, $u \ (e_1, \dots, e_k) -$ базис W. Тогда $e = (e_1, \dots, e_n) -$ базис V.

$$A(\varphi, e) = \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix}$$

Обобщение.

$$A(\varphi, e) = \begin{pmatrix} * \ 0 \ 0 \dots 0 \\ 0 \ * 0 \dots 0 \\ 0 \ 0 \ * \dots 0 \\ \vdots \ \vdots \ \vdots \dots \vdots \\ 0 \ 0 \ 0 \dots * \end{pmatrix} k_1 \\ k_2 \\ k_3 \\ \vdots \\ k_s$$

3десь k_1, \ldots, k_s — размеры квадратных блоков блочно-диагональной матрицы. Матрица $A(\varphi, e)$ имеет такой вид тогда и только тогда, когда:

$$U_1 = \langle e_1, \dots, e_{k_1} \rangle$$

$$U_2 = \langle e_{k_1+1}, \dots, e_{k_2} \rangle$$

$$\vdots$$

$$U_{k_s} = \langle e_{n-k_s+1}, \dots, e_n \rangle$$

Предел мечтаний. Найти такой базис, в котором матрица линейного оператора была бы диагональной. Но такое возможно не всегда.

Собственные векторы и собственные значения

Пусть $\varphi \in L(V)$.

Определение. Ненулевой вектор $v \in V$ называется собственным для V, если $\varphi(v) = \lambda v$ для некоторго $\lambda \in F$. При этом число λ называется собственным значением линейного оператора φ , отвечающим собственному вектору v.

Предложение. Вектор $v \in V$, $v \neq 0$ — собственный вектор в V тогда и только тогда, когда линейная оболочка $\langle v \rangle$ является φ -инвариантным подпространством

Доказательство.

- [\Rightarrow] $\varphi(v) = \lambda v \Rightarrow \langle v \rangle = \{kv \mid k \in F\}$. Тогда $\varphi(kv) = \lambda kv \in \langle v \rangle$.
- $[\Leftarrow] \varphi(V) \in \langle v \rangle \Rightarrow \exists \lambda \in F : \varphi(v) = \lambda v.$

Пример. 1. $V = \mathbb{R}^2$, φ — ортогональная проекция на прямуую l.

$$\begin{aligned} 0 &\neq v \in l \Rightarrow \varphi(v) = 1 \cdot v, \ \lambda = 1 \\ 0 &\neq v \perp l \Rightarrow \varphi(v) = 0 = 0 \cdot v, \ \lambda = 1 \end{aligned}$$

- 2. Поворот на угол φ вокруг нуля на угол α .
 - $\alpha = 0 + 2\pi k$. Любой ненулевой вектор собственный. $\lambda = 1$.
 - $\alpha = \pi + 2\pi k$. Любой ненулевой вектор собственный. $\lambda = -1$.
 - $\alpha \neq \pi k$. Собственных векторов нет.
- 3. $V = P_n(F)$ многочлены степени $n, \varphi = \Delta \colon f \to f'$. Тогда $0 \neq f$ собственный вектор тогда, и только тогда, когда f = const.

Диагонализуемость

Определение. Линейный оператор φ называется диагонализуемым, если существует базис e в V такой, что $A(\varphi,e)$ диагональна.

Предложение (Критерий диагонализуемости). Отображение φ диагонализуемо тогда и только тогда, когда в V существует базис из собственных векторов.

Доказательство. Пусть е — базис V. Тогда $A = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$, что равносильно $\varphi(e_i) = \lambda_i e_i$. Это и означает, что все векторы собственные.

В примерах выше:

1. φ диагонализуем. $e_1 \in l$, $e_2 \perp l$. Тогда матрица примет вид $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

- 2. Если $\alpha=\pi k$, то φ диагонализуем ($\varphi=\operatorname{id}$ или $\varphi=-\operatorname{id}$). Не диагонализуем в других случаях.
- 3. φ диагонализуем тогда и только тогда, когда n=0. При n>0 собственных векторов **МАЛО**.

Собственное подпространство

Пусть $\varphi \in L(V)$, $\lambda \in F$.

Определение. Множество $V_{\lambda}(\varphi) = \{v \in V \mid \varphi(v) = \lambda V\}$ называется собственным подпространством линейного оператора, отвечающим собственному значению λ .

Упражнение. Доказать, что $V_{\lambda}(\varphi)$ — действительно подпространство.

Предложение. $V_{\lambda}(\varphi) = \operatorname{Ker}(\varphi - \lambda \operatorname{id}).$

Доказательство.

$$v \in V_{\lambda}(\varphi) \Leftrightarrow \varphi(v) = \lambda v \Leftrightarrow \varphi(v) - \lambda v = 0 \Leftrightarrow (\varphi - \lambda \mathrm{id})(v) = 0 \Leftrightarrow v \in \mathrm{Ker}(\varphi - \lambda \mathrm{id})$$

Следствие. Собственное подпространство $V_{\lambda}(\varphi) \neq \{0\}$ тогда и только тогда, когда $\det(\varphi - \lambda \mathrm{id}) = 0$.

Определение. Многочлен $\chi_{\varphi}(t)=(-1)^n\det(\varphi-t\mathrm{id})$ называется характеристическим.