

CS1699: Blockchain Technology and Cryptocurrency

3. Hash Pointers and Related Data Structures

Bill Laboon

What is a hash pointer?

- * Two parts:
 - * A pointer to some object or data set
 - * A cryptographic hash of that data or representation of that object

What good are hash pointers?

- * Regular pointers (or object references in Java) can tell you where data is
- * Hash pointers tell you that, plus let you verify that it has not been modified

Hash Pointer

Hash Pointer

SHA-256 hash of "THIS CLASS IS BAD" is fa862cdde7d6e7f63ac843e8380f319629a9d718d3482cf6624e1d956497ba99 - DOES NOT MATCH!

Example

See /sample_code/hash_pointer for Java code

Data Structures with Hash Pointers

- * Many data structures which use pointers/references can have their pointers/references replaced with hash pointers
- * This makes them tamper-resistant versions of the "naive" data structure

Linked List with Hash Pointers

A basic blockchain

Tamper-Resistant

Hash pointer of previous data includes both data in node AND hash of preceding node.

Tamper-Resistant

Strikethrough = modified data White = Valid hash pointer Red = Invalid hash pointer

Example

See /sample_code/basic_blockchain for Java code

Binary Tree with Hash Pointers

Merkle Root

Hashes of Hashes

Proving Membership with a Merkle Tree

Sorted Merkle Tree

Disproving Membership in a Sorted Merkle Tree

Why Merkle Trees?

- * Good access time
- Can just store Merkle root to verify entire tree
- Verify membership (or non-membership, for sorted Merkle trees) in O(log n) time

Where Are Merkle Trees Used in Bitcoin?

- * The Merkle root in a block is the Merkle root of all transactions in that block
- * Allows mining to be approximately equally difficult no matter how many transactions are included
 - * And thus incentivizes miners to add more transactions, so they get transaction fees!

Block #540822

Summary	
Number Of Transactions	3193
Output Total	10,219.4089608 BTC
Estimated Transaction Volume	789.12450391 BTC
Transaction Fees	0.15175297 BTC
Height	540822 (Main Chain)
Timestamp	2018-09-10 16:46:00
Received Time	2018-09-10 16:46:00

Hashes	
Hash	000000000000000000b26d77f0f823ccdd0e3b097b6c03b9789e43f90ed0ef2
Previous Block	00000000000000000023fc653842c9a7e4019f31a615a26b40fd5c59334f33fa
Next Block(s)	00000000000000000035213b4e39dabb4e596bf3503028587f9dab5a4c66f92
Merkle Root	6d03f773cb2f53d68eebf3f594ee27b5988a4c33251ba3d8241c17a441e551f1

Where Can't We Use Hash Pointers?

- Data structures without explicit pointers/references (e.g. arrays)
- Data structures which can include cycles
 - Cyclic structures = no starting point for hashes