Assume you are appointed as a Data scientist in any international humanitarian NGO, after the recent funding programmes, have been able to raise around 120 million. Now thof the NGO callto choose how to use this money strategically and effectively. The significant issues that comes while making this conclusion are mostly related to choosing the countries that are in the direst need of aid. Your job is to classify the countries using some socio-economic and health factors that determine the overall development of the country. Then you need to suggest the countries which the CEO needs to focus on the most. Apply Principal component analysis, K-Means Clustering & Hierarchical Clustering.

```
In [3]: # Required Lib
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline
import seaborn as sns
```

```
In [4]: c_data = pd.read_csv('country.csv')
c_data.head()
```

Out[4]:

|   | country                   | child_mort | exports | health | imports | income | inflation | life_expec | total_fer | gdp  |
|---|---------------------------|------------|---------|--------|---------|--------|-----------|------------|-----------|------|
| 0 | Afghanistan               | 90.2       | 10.0    | 7.58   | 44.9    | 1610   | 9.44      | 56.2       | 5.82      | 55   |
| 1 | Albania                   | 16.6       | 28.0    | 6.55   | 48.6    | 9930   | 4.49      | 76.3       | 1.65      | 409  |
| 2 | Algeria                   | 27.3       | 38.4    | 4.17   | 31.4    | 12900  | 16.10     | 76.5       | 2.89      | 446  |
| 3 | Angola                    | 119.0      | 62.3    | 2.85   | 42.9    | 5900   | 22.40     | 60.1       | 6.16      | 353  |
| 4 | Antigua<br>and<br>Barbuda | 10.3       | 45.5    | 6.03   | 58.9    | 19100  | 1.44      | 76.8       | 2.13      | 1220 |

```
In [5]: c data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 167 entries, 0 to 166
        Data columns (total 10 columns):
         #
             Column
                         Non-Null Count Dtype
             ----
                          -----
         0
             country
                          167 non-null
                                          object
             child mort 167 non-null
                                          float64
         1
         2
                         167 non-null
                                          float64
             exports
         3
             health
                         167 non-null
                                          float64
         4
             imports
                         167 non-null
                                          float64
         5
                                          int64
             income
                         167 non-null
         6
             inflation
                         167 non-null
                                          float64
         7
             life expec 167 non-null
                                          float64
         8
             total_fer
                         167 non-null
                                          float64
         9
             gdpp
                         167 non-null
                                          int64
        dtypes: float64(7), int64(2), object(1)
        memory usage: 13.2+ KB
In [6]: # Checking for null values
        c_data.isnull().sum()
Out[6]: country
                       0
        child_mort
                       0
        exports
        health
        imports
        income
                      0
        inflation
                       0
        life expec
                       0
        total_fer
        gdpp
        dtype: int64
In [7]: c_data.columns
Out[7]: Index(['country', 'child_mort', 'exports', 'health', 'imports', 'income',
                'inflation', 'life_expec', 'total_fer', 'gdpp'],
              dtype='object')
```

```
In [8]: # Checking for outliers
        plt.figure(figsize=(20,20))
        plt.subplot(4,3,1)
        sns.boxplot(x = 'child_mort', data = c_data)
        plt.subplot(4,3,2)
        sns.boxplot(x = 'exports', data = c_data)
        plt.subplot(4,3,3)
        sns.boxplot(x = 'health', data = c_data)
        plt.subplot(4,3,4)
        sns.boxplot(x = 'imports', data = c_data)
        plt.subplot(4,3,5)
        sns.boxplot(x = 'income', data = c_data)
        plt.subplot(4,3,6)
        sns.boxplot(x = 'inflation', data = c_data)
        plt.subplot(4,3,7)
        sns.boxplot(x = 'life_expec', data = c_data)
        plt.subplot(4,3,8)
        sns.boxplot(x = 'total_fer', data = c_data)
        plt.subplot(4,3,9)
        sns.boxplot(x = 'gdpp', data = c_data)
```

Out[8]: <AxesSubplot:xlabel='gdpp'>



```
In [9]: # Checking the outliers using Z-Score
        from scipy import stats
        z = np.abs(stats.zscore(c data[['child mort', 'exports', 'health',
        'imports', 'income',
        'inflation', 'life_expec', 'total_fer', 'gdpp']]))
        print(z)
        print(np.where(z > 3))
            child mort
                                   health
                                           imports
                         exports
                                                      income
                                                             inflation
        0
              1.291532
                                 0.279088
                                          0.082455
                       1.138280
                                                    0.808245
                                                              0.157336
        1
              0.538949
                       0.479658
                                 0.097016
                                          0.070837
                                                    0.375369
                                                              0.312347
        2
              0.272833
                       0.099122
                                 0.966073
                                          0.641762
                                                    0.220844
                                                              0.789274
        3
              2.007808
                       0.775381
                                 1.448071
                                          0.165315
                                                    0.585043
                                                              1.387054
        4
              0.695634
                        0.160668
                                 0.286894
                                          0.497568
                                                    0.101732
                                                              0.601749
                   . . .
        162
              0.225578
                       0.200917
                                 0.571711
                                          0.240700
                                                    0.738527
                                                              0.489784
                                                    0.033542
        163
              0.526514
                       0.461363
                                 0.695862
                                          1.213499
                                                              3.616865
        164
              0.372315
                        1.130305
                                 0.008877
                                          1.380030
                                                    0.658404
                                                              0.409732
        165
              0.448417
                        0.406478
                                 0.597272
                                          0.517472
                                                    0.658924
                                                              1.500916
        166
              1.114951
                       0.150348
                                 0.338015
                                          0.662477
                                                    0.721358
                                                              0.590015
            life expec
                       total fer
                                      gdpp
        0
              1.619092
                         1.902882
                                  0.679180
        1
              0.647866
                         0.859973
                                  0.485623
        2
              0.670423
                         0.038404
                                  0.465376
        3
              1.179234
                         2.128151
                                  0.516268
        4
              0.704258
                         0.541946
                                  0.041817
                              . . .
        162
              0.852161
                         0.365754
                                  0.546913
        163
              0.546361
                         0.316678
                                  0.029323
        164
              0.286958
                         0.661206
                                  0.637754
        165
              0.344633
                         1.140944
                                  0.637754
        166
              2.092785
                         1.624609
                                  0.629546
        [167 rows x 9 columns]
        **************************
        (array([ 23, 66, 66, 82, 91, 91, 91, 98, 98, 112, 113, 114,
              123, 123, 132, 133, 133, 145, 159, 163], dtype=int64), array([4, 0, 6,
        4, 1, 3, 4, 8, 1, 3, 7, 5, 8, 4, 8, 0, 1, 3, 8, 2, 5],
```

dtype=int64))

### Out[10]:

|   | country                   | child_mort | exports | health | imports | income | inflation | life_expec | total_fer | gdp  |
|---|---------------------------|------------|---------|--------|---------|--------|-----------|------------|-----------|------|
| 0 | Afghanistan               | 90.2       | 10.0    | 7.58   | 44.9    | 1610   | 9.440     | 56.2       | 5.82      | 55   |
| 1 | Albania                   | 16.6       | 28.0    | 6.55   | 48.6    | 9930   | 4.490     | 76.3       | 1.65      | 409  |
| 2 | Algeria                   | 27.3       | 38.4    | 4.17   | 31.4    | 12900  | 16.100    | 76.5       | 2.89      | 446  |
| 3 | Angola                    | 119.0      | 62.3    | 2.85   | 42.9    | 5900   | 22.400    | 60.1       | 6.16      | 353  |
| 4 | Antigua<br>and<br>Barbuda | 10.3       | 45.5    | 6.03   | 58.9    | 19100  | 1.440     | 76.8       | 2.13      | 1220 |
| 5 | Argentina                 | 14.5       | 18.9    | 8.10   | 16.0    | 18700  | 20.900    | 75.8       | 2.37      | 1030 |
| 6 | Armenia                   | 18.1       | 20.8    | 4.40   | 45.3    | 6700   | 7.770     | 73.3       | 1.69      | 322  |
| 7 | Australia                 | 4.8        | 19.8    | 8.73   | 20.9    | 41400  | 1.160     | 82.0       | 1.93      | 5190 |
| 8 | Austria                   | 4.3        | 51.3    | 11.00  | 47.8    | 43200  | 0.873     | 80.5       | 1.44      | 4690 |
| 9 | Azerbaijan                | 39.2       | 54.3    | 5.88   | 20.7    | 16000  | 13.800    | 69.1       | 1.92      | 584  |
|   |                           |            |         |        |         |        |           |            |           |      |

```
In [11]: print('Shape of dataframe before outlier removal: ' +str(c_data.shape))
    print('Shape of dataframe after outlier removal: ' +str(c_data_outlier_removed
    x = c_data_outlier_removed.drop('country',axis=1)
    y = c_data_outlier_removed['country']
```

Shape of dataframe before outlier removal: (167, 10) Shape of dataframe after outlier removal: (153, 10)

```
In [12]: x.shape
Out[12]: (153, 9)
```

```
In [13]: y.shape
```

Out[13]: (153,)

```
In [14]: |# Principle Component Analaysis
         from sklearn.preprocessing import StandardScaler
         sc = StandardScaler()
         x scaled = sc.fit transform(x)
         x scaled
Out[14]: array([[ 1.46183636, -1.41330427, 0.31809414, ..., -1.73823548,
                  1.94438462, -0.72205486],
                [-0.56911214, -0.52600184, -0.08875965, ..., 0.71229884,
                 -0.88698624, -0.46758977],
                [-0.27385196, -0.01333821, -1.02886841, ..., 0.73668227,
                 -0.04504383, -0.44097058],
                [-0.3842296, 1.64295967, 0.02579142, ..., 0.32216403,
                 -0.6832905 , -0.66759343],
                [0.5263859, -0.42741268, -0.62991469, ..., -0.36057191,
                  1.16355093, -0.66759343],
                [1.26591606, -0.08235062, -0.34946208, ..., -2.25028743,
                  1.65921057, -0.65680187]])
In [15]: | x_scaled_dataframe = pd.DataFrame(x_scaled,columns=x.columns)
```

x\_scaled\_dataframe.head()

### Out[15]:

|   | child_mort | exports   | health    | imports   | income    | inflation | life_expec | total_fer | go     |
|---|------------|-----------|-----------|-----------|-----------|-----------|------------|-----------|--------|
| 0 | 1.461836   | -1.413304 | 0.318094  | -0.043800 | -0.954569 | 0.348785  | -1.738235  | 1.944385  | -0.722 |
| 1 | -0.569112  | -0.526002 | -0.088760 | 0.150114  | -0.331921 | -0.365865 | 0.712299   | -0.886986 | -0.467 |
| 2 | -0.273852  | -0.013338 | -1.028868 | -0.751321 | -0.109654 | 1.310315  | 0.736682   | -0.045044 | -0.440 |
| 3 | 2.256555   | 1.164802  | -1.550273 | -0.148618 | -0.633516 | 2.219869  | -1.262759  | 2.175240  | -0.507 |
| 4 | -0.742957  | 0.336653  | -0.294162 | 0.689927  | 0.354339  | -0.806205 | 0.773257   | -0.561073 | 0.115  |

```
In [16]: sns.heatmap(x_scaled_dataframe.corr())
```

### Out[16]: <AxesSubplot:>



```
In [17]: from sklearn.decomposition import PCA
    pca = PCA(random_state=42)
    pca.fit(x_scaled)
    PCA(random_state=42)
    pca.components_[0]
```

Out[17]: array([-0.42321972, 0.2036042, 0.21754201, 0.08290998, 0.41369318, -0.22650995, 0.42715413, -0.40550525, 0.39482635])

```
In [18]: pca.explained_variance_ratio_
```

Out[18]: array([0.47638387, 0.16902847, 0.13080614, 0.10179586, 0.06939066, 0.02084938, 0.01747184, 0.00883956, 0.00543422])

```
In [19]: var_cumsm = np.cumsum(pca.explained_variance_ratio_)
var_cumsm
```

Out[19]: array([0.47638387, 0.64541234, 0.77621848, 0.87801434, 0.94740499, 0.96825437, 0.98572622, 0.99456578, 1. ])

```
In [20]: fig = plt.figure(figsize=[12,8])
    plt.vlines(x=4, ymax=1, ymin=0, colors="r", linestyles="--")
    plt.hlines(y=0.95, xmax=30, xmin=0, colors="g", linestyles="--")
    plt.plot(var_cumsm)
    plt.ylabel("Cumulative variance explained")
    plt.show()
```



```
In [21]: # Performing PCA with 4 features
    from sklearn.decomposition import IncrementalPCA
    pca_end = IncrementalPCA(n_components=4)
    pca_end = pca_end.fit_transform(x_scaled)
    print(x.shape)
    print(pca_end.shape)

    (153, 9)
    (153, 4)
```

```
In [22]: corr = np.corrcoef(pca_end.T)
    corr.shape
```

Out[22]: (4, 4)

```
In [23]:
sns.heatmap(corr)
```

# Out[23]: <AxesSubplot:>



# In [24]: # Kmeans Clustering from sklearn.cluster import KMeans from sklearn.metrics import silhouette\_score kmeans = KMeans(n\_clusters=5, max\_iter=1000) kmeans.fit(pca\_end)

Out[24]: KMeans(max\_iter=1000, n\_clusters=5)

```
In [25]: wcss = []
range_n_clusters = [2, 3, 4, 5, 6, 7, 8]
for num_clusters in range_n_clusters:
    kmeans = KMeans(n_clusters=num_clusters, max_iter=1000)
    kmeans.fit(pca_end)
    wcss.append(kmeans.inertia_)
plt.plot(wcss)
```

Out[25]: [<matplotlib.lines.Line2D at 0x1ae59ed2dc0>]



```
In [ ]:
```

```
In [26]: # Shiloute Analysis
    range_n_clusters = [2, 3, 4, 5, 6, 7, 8]
    for num_clusters in range_n_clusters:
        # intialise kmeans
        kmeans = KMeans(n_clusters=num_clusters, max_iter=1000)
        kmeans.fit(pca_end)
        cluster_labels = kmeans.labels_
        # silhouette score
        silhouette_avg = silhouette_score(pca_end, cluster_labels)
        print("For n_clusters={0}, the silhouette score is {1}".format(num_clusters,
```

```
For n_clusters=2, the silhouette score is 0.3185783255391956
For n_clusters=3, the silhouette score is 0.3214159977534033
For n_clusters=4, the silhouette score is 0.3069208111507679
For n_clusters=5, the silhouette score is 0.29395007295356534
For n_clusters=6, the silhouette score is 0.30772683635772596
For n_clusters=7, the silhouette score is 0.2955666989197241
For n_clusters=8, the silhouette score is 0.2883747810973742
```

```
In [27]: kmeans = KMeans(n_clusters=4,max_iter=1000,random_state=42)
kmeans.fit(pca_end)
KMeans(max_iter=1000, n_clusters=4, random_state=42)
kmeans.labels_
```

```
Out[27]: array([1, 3, 0, 1, 3, 0, 0, 2, 2, 0, 2, 2, 0, 3, 3, 2, 3, 1, 3, 0, 3, 1, 0, 3, 1, 1, 3, 1, 1, 3, 1, 2, 3, 1, 1, 0, 0, 0, 1, 1, 1, 3, 1, 3, 2, 3, 2, 0, 0, 0, 0, 3, 1, 1, 3, 3, 2, 2, 0, 1, 3, 2, 1, 2, 3, 0, 1, 1, 3, 3, 2, 0, 0, 0, 0, 0, 2, 2, 2, 0, 2, 3, 0, 1, 1, 3, 1, 3, 3, 1, 1, 0, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 3, 0, 3, 3, 1, 1, 0, 1, 0, 2, 2, 0, 1, 3, 3, 0, 0, 3, 2, 3, 0, 1, 3, 0, 1, 3, 3, 3, 2, 3, 1, 2, 2, 0, 3, 1, 3, 2, 1, 1, 3, 1, 1, 3, 3, 0, 3, 1, 3, 2, 2, 0, 0, 3, 3, 1, 1])
```

```
In [28]: c_data_outlier_removed['K-Means_Cluster_ID'] = kmeans.labels_
```

C:\Users\91830\AppData\Local\Temp\ipykernel\_7892\2507830492.py:1: SettingWith
CopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row\_indexer,col\_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user\_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user\_guide/indexing.html#returning-a-view-versus-a-copy)

c\_data\_outlier\_removed['K-Means\_Cluster\_ID'] = kmeans.labels\_

```
In [29]: # Hierarchical Clustering
x_scaled_dataframe.head()
```

Out[29]:

|   | child_mort | exports   | health    | imports   | income    | inflation | life_expec | total_fer | gı     |
|---|------------|-----------|-----------|-----------|-----------|-----------|------------|-----------|--------|
| 0 | 1.461836   | -1.413304 | 0.318094  | -0.043800 | -0.954569 | 0.348785  | -1.738235  | 1.944385  | -0.722 |
| 1 | -0.569112  | -0.526002 | -0.088760 | 0.150114  | -0.331921 | -0.365865 | 0.712299   | -0.886986 | -0.467 |
| 2 | -0.273852  | -0.013338 | -1.028868 | -0.751321 | -0.109654 | 1.310315  | 0.736682   | -0.045044 | -0.440 |
| 3 | 2.256555   | 1.164802  | -1.550273 | -0.148618 | -0.633516 | 2.219869  | -1.262759  | 2.175240  | -0.507 |
| 4 | -0.742957  | 0.336653  | -0.294162 | 0.689927  | 0.354339  | -0.806205 | 0.773257   | -0.561073 | 0.115  |
| 4 |            |           |           |           |           |           |            |           | •      |

```
In [30]: from scipy.cluster.hierarchy import linkage
    from scipy.cluster.hierarchy import dendrogram
    from scipy.cluster.hierarchy import cut_tree
    sl_mergings = linkage(x_scaled_dataframe, method="single",
    metric='euclidean')
    dendrogram(sl_mergings)
    plt.show()
```



```
In [31]: cl_mergings = linkage(x_scaled_dataframe, method="complete",
    metric='euclidean')
    dendrogram(cl_mergings)
    plt.show()
```



```
In [32]: sl_cluster_labels = cut_tree(sl_mergings, n_clusters=4).reshape(-1, )
sl_cluster_labels
```

In [33]: # single linkage doesnot perform well
 cl\_cluster\_labels = cut\_tree(cl\_mergings, n\_clusters=4).reshape(-1, )
 cl\_cluster\_labels

In [34]: c\_data\_outlier\_removed["Hierarchical\_Cluster\_labels"] =cl\_cluster\_labels

C:\Users\91830\AppData\Local\Temp\ipykernel\_7892\1597811289.py:1: SettingWith
CopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row\_indexer,col\_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user\_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user\_guide/indexing.html#returning-a-view-versus-a-copy)

c data outlier removed["Hierarchical Cluster labels"] =cl cluster labels

```
In [35]: c_data_outlier_removed.head()
```

### Out[35]:

|   | country                   | child_mort | exports | health | imports | income | inflation | life_expec | total_fer | gdp  |
|---|---------------------------|------------|---------|--------|---------|--------|-----------|------------|-----------|------|
| 0 | Afghanistan               | 90.2       | 10.0    | 7.58   | 44.9    | 1610   | 9.44      | 56.2       | 5.82      | 55   |
| 1 | Albania                   | 16.6       | 28.0    | 6.55   | 48.6    | 9930   | 4.49      | 76.3       | 1.65      | 409  |
| 2 | Algeria                   | 27.3       | 38.4    | 4.17   | 31.4    | 12900  | 16.10     | 76.5       | 2.89      | 446  |
| 3 | Angola                    | 119.0      | 62.3    | 2.85   | 42.9    | 5900   | 22.40     | 60.1       | 6.16      | 353  |
| 4 | Antigua<br>and<br>Barbuda | 10.3       | 45.5    | 6.03   | 58.9    | 19100  | 1.44      | 76.8       | 2.13      | 1220 |

```
In [36]: plt.figure(figsize=(20,20))
         plt.subplot(3,2,1)
         sns.boxplot(x='K-Means_Cluster_ID', y='gdpp',
         data=c data outlier removed)
         plt.subplot(3,2,2)
         sns.boxplot(x='Hierarchical_Cluster_labels', y='gdpp',
         data=c data outlier removed)
         plt.subplot(3,2,3)
         sns.boxplot(x='K-Means_Cluster_ID', y='child_mort',
         data=c_data_outlier_removed)
         plt.subplot(3,2,4)
         sns.boxplot(x='Hierarchical_Cluster_labels', y='child_mort',
         data=c_data_outlier_removed)
         plt.subplot(3,2,5)
         sns.boxplot(x='K-Means_Cluster_ID', y='income',
         data=c_data_outlier_removed)
         plt.subplot(3,2,6)
         sns.boxplot(x='Hierarchical_Cluster_labels', y='income',
         data=c_data_outlier_removed)
```

Out[36]: <AxesSubplot:xlabel='Hierarchical\_Cluster\_labels', ylabel='income'>



In [37]: X\_pca\_final\_df =pd.DataFrame(pca\_end,columns=['PC1','PC2','PC3','PC4'])
X\_pca\_final\_df.head()

### Out[37]:

|   | PC1       | PC2       | PC3       | PC4       |
|---|-----------|-----------|-----------|-----------|
| 0 | -3.129112 | -0.530438 | 1.326366  | 0.592673  |
| 1 | 0.552498  | -0.242770 | -0.157737 | -1.362826 |
| 2 | -0.357008 | -0.461483 | -1.876976 | -0.109599 |
| 3 | -3.456355 | 1.213750  | -1.381585 | 2.217845  |
| 4 | 1.308078  | 0.615244  | -0.031004 | -0.713291 |

```
In [38]: X_pca_final_df['K_Means_Cluster_ID'] = kmeans.labels_
    X_pca_final_df['Hierarchical_Cluster_Labels'] = cl_cluster_labels
    X_pca_final_df.head()
```

## Out[38]:

|   | PC1       | PC2       | PC3       | PC4       | K_Means_Cluster_ID | Hierarchical_Cluster_Labels |
|---|-----------|-----------|-----------|-----------|--------------------|-----------------------------|
| 0 | -3.129112 | -0.530438 | 1.326366  | 0.592673  | 1                  | 0                           |
| 1 | 0.552498  | -0.242770 | -0.157737 | -1.362826 | 3                  | 1                           |
| 2 | -0.357008 | -0.461483 | -1.876976 | -0.109599 | 0                  | 0                           |
| 3 | -3.456355 | 1.213750  | -1.381585 | 2.217845  | 1                  | 1                           |
| 4 | 1.308078  | 0.615244  | -0.031004 | -0.713291 | 3                  | 1                           |

```
In [39]: plt.figure(figsize=(12,6))
    plt.subplot(1,2,1)
    sns.scatterplot(x='PC1',y='PC2',data=X_pca_final_df,hue='K_Means_Cluster_ID')
    plt.subplot(1,2,2)
    sns.scatterplot(x='PC1',y='PC2',data=X_pca_final_df,hue='Hierarchical_Cluster_
```

Out[39]: <AxesSubplot:xlabel='PC1', ylabel='PC2'>



In [40]: plt.figure(figsize=(12,6))
 plt.subplot(1,2,1)
 sns.scatterplot(x='gdpp',y='child\_mort',data=c\_data\_outlier\_removed,hue='K-Mea
 plt.subplot(1,2,2)
 sns.scatterplot(x='gdpp',y='child\_mort',data=c\_data\_outlier\_removed,hue='Hiera

Out[40]: <AxesSubplot:xlabel='gdpp', ylabel='child\_mort'>



In [41]: #Low gdpp corrsponds to low household income and hence higher child mortality
 plt.subplot(1,2,1)
 sns.scatterplot(x='gdpp',y='income',data=c\_data\_outlier\_removed,hue='K-Means\_C
 plt.subplot(1,2,2)
 sns.scatterplot(x='gdpp',y='income',data=c\_data\_outlier\_removed,hue='Hierarchi

Out[41]: <AxesSubplot:xlabel='gdpp', ylabel='income'>



In [42]: # We can observe a linear relationship between gdpp and income
 plt.subplot(1,2,1)
 sns.scatterplot(x='child\_mort',y='income',data=c\_data\_outlier\_removed,hue='K-M
 plt.subplot(1,2,2)
 sns.scatterplot(x='child\_mort',y='income',data=c\_data\_outlier\_removed,hue='Hie

Out[42]: <AxesSubplot:xlabel='child\_mort', ylabel='income'>



In [43]: K\_Means\_countries = c\_data\_outlier\_removed[c\_data\_outlier\_removed['K-Means\_Clu
K\_Means\_countries

# Out[43]:

|     | country                        | child_mort | exports | health | imports | income | inflation | life_expec | total_fer | ! |
|-----|--------------------------------|------------|---------|--------|---------|--------|-----------|------------|-----------|---|
| 0   | Afghanistan                    | 90.2       | 10.00   | 7.58   | 44.9    | 1610   | 9.440     | 56.2       | 5.82      |   |
| 3   | Angola                         | 119.0      | 62.30   | 2.85   | 42.9    | 5900   | 22.400    | 60.1       | 6.16      |   |
| 17  | Benin                          | 111.0      | 23.80   | 4.10   | 37.2    | 1820   | 0.885     | 61.8       | 5.36      |   |
| 21  | Botswana                       | 52.5       | 43.60   | 8.30   | 51.3    | 13300  | 8.920     | 57.1       | 2.88      |   |
| 25  | Burkina<br>Faso                | 116.0      | 19.20   | 6.74   | 29.6    | 1430   | 6.810     | 57.9       | 5.87      |   |
| 26  | Burundi                        | 93.6       | 8.92    | 11.60  | 39.2    | 764    | 12.300    | 57.7       | 6.26      |   |
| 28  | Cameroon                       | 108.0      | 22.20   | 5.13   | 27.0    | 2660   | 1.910     | 57.3       | 5.11      |   |
| 31  | Central<br>African<br>Republic | 149.0      | 11.80   | 3.98   | 26.5    | 888    | 2.010     | 47.5       | 5.21      |   |
| 32  | Chad                           | 150.0      | 36.80   | 4.53   | 43.5    | 1930   | 6.390     | 56.5       | 6.59      |   |
| 36  | Comoros                        | 88.2       | 16.50   | 4.51   | 51.7    | 1410   | 3.870     | 65.9       | 4.75      |   |
| 37  | Congo,<br>Dem. Rep.            | 116.0      | 41.10   | 7.91   | 49.6    | 609    | 20.800    | 57.5       | 6.54      |   |
| 38  | Congo, Rep.                    | 63.9       | 85.10   | 2.46   | 54.7    | 5190   | 20.700    | 60.4       | 4.95      |   |
| 40  | Cote d'Ivoire                  | 111.0      | 50.60   | 5.30   | 43.3    | 2690   | 5.390     | 56.3       | 5.27      |   |
| 49  | Equatorial<br>Guinea           | 111.0      | 85.80   | 4.48   | 58.9    | 33700  | 24.900    | 60.9       | 5.21      | 1 |
| 50  | Eritrea                        | 55.2       | 4.79    | 2.66   | 23.3    | 1420   | 11.600    | 61.7       | 4.61      |   |
| 56  | Gambia                         | 80.3       | 23.80   | 5.69   | 42.7    | 1660   | 4.300     | 65.5       | 5.71      |   |
| 59  | Ghana                          | 74.7       | 29.50   | 5.22   | 45.9    | 3060   | 16.600    | 62.2       | 4.27      |   |
| 63  | Guinea                         | 109.0      | 30.30   | 4.93   | 43.2    | 1190   | 16.100    | 58.0       | 5.34      |   |
| 64  | Guinea-<br>Bissau              | 114.0      | 14.90   | 8.50   | 35.2    | 1390   | 2.970     | 55.6       | 5.05      |   |
| 80  | Kenya                          | 62.2       | 20.70   | 4.75   | 33.6    | 2480   | 2.090     | 62.8       | 4.37      |   |
| 81  | Kiribati                       | 62.7       | 13.30   | 11.30  | 79.9    | 1730   | 1.520     | 60.7       | 3.84      |   |
| 84  | Lao                            | 78.9       | 35.40   | 4.47   | 49.3    | 3980   | 9.200     | 63.8       | 3.15      |   |
| 87  | Lesotho                        | 99.7       | 39.40   | 11.10  | 101.0   | 2380   | 4.150     | 46.5       | 3.30      |   |
| 88  | Liberia                        | 89.3       | 19.10   | 11.80  | 92.6    | 700    | 5.470     | 60.8       | 5.02      |   |
| 93  | Madagascar                     | 62.2       | 25.00   | 3.77   | 43.0    | 1390   | 8.790     | 60.8       | 4.60      |   |
| 94  | Malawi                         | 90.5       | 22.80   | 6.59   | 34.9    | 1030   | 12.100    | 53.1       | 5.31      |   |
| 97  | Mali                           | 137.0      | 22.80   | 4.98   | 35.1    | 1870   | 4.370     | 59.5       | 6.55      |   |
| 99  | Mauritania                     | 97.4       | 50.70   | 4.41   | 61.2    | 3320   | 18.900    | 68.2       | 4.98      |   |
| 106 | Mozambique                     | 101.0      | 31.50   | 5.21   | 46.2    | 918    | 7.640     | 54.5       | 5.56      |   |
| 108 | Namibia                        | 56.0       | 47.80   | 6.78   | 60.7    | 8460   | 3.560     | 58.6       | 3.60      |   |
| 116 | Pakistan                       | 92.1       | 13.50   | 2.20   | 19.4    | 4280   | 10.900    | 65.3       | 3.85      |   |
| 126 | Rwanda                         | 63.6       | 12.00   | 10.50  | 30.0    | 1350   | 2.610     | 64.6       | 4.51      |   |

|     | country      | child_mort | exports | health | imports | income | inflation | life_expec | total_fer | ! |
|-----|--------------|------------|---------|--------|---------|--------|-----------|------------|-----------|---|
| 129 | Senegal      | 66.8       | 24.90   | 5.66   | 40.3    | 2180   | 1.850     | 64.0       | 5.06      | _ |
| 137 | South Africa | 53.7       | 28.60   | 8.94   | 27.4    | 12000  | 6.350     | 54.3       | 2.59      |   |
| 142 | Sudan        | 76.7       | 19.70   | 6.32   | 17.2    | 3370   | 19.600    | 66.3       | 4.88      |   |
| 146 | Tajikistan   | 52.4       | 14.90   | 5.98   | 58.6    | 2110   | 12.500    | 69.6       | 3.51      |   |
| 147 | Tanzania     | 71.9       | 18.70   | 6.01   | 29.1    | 2090   | 9.250     | 59.3       | 5.43      |   |
| 149 | Timor-Leste  | 62.6       | 2.20    | 9.12   | 27.8    | 1850   | 26.500    | 71.1       | 6.23      |   |
| 150 | Togo         | 90.3       | 40.20   | 7.65   | 57.3    | 1210   | 1.180     | 58.7       | 4.87      |   |
| 155 | Uganda       | 81.0       | 17.10   | 9.01   | 28.6    | 1540   | 10.600    | 56.8       | 6.15      |   |
| 165 | Yemen        | 56.3       | 30.00   | 5.18   | 34.4    | 4480   | 23.600    | 67.5       | 4.67      |   |
| 166 | Zambia       | 83.1       | 37.00   | 5.89   | 30.9    | 3280   | 14.000    | 52.0       | 5.40      |   |
|     |              |            |         |        |         |        |           |            |           |   |
| 4   |              |            |         |        |         |        |           |            | 1         |   |

In [44]: Hirarchical\_countries =c\_data\_outlier\_removed[c\_data\_outlier\_removed['Hierarch
Hirarchical\_countries

# Out[44]:

|     | country                        | child_mort | exports | health | imports | income | inflation | life_expec | total_fer | ! |
|-----|--------------------------------|------------|---------|--------|---------|--------|-----------|------------|-----------|---|
| 0   | Afghanistan                    | 90.2       | 10.000  | 7.58   | 44.9000 | 1610   | 9.440     | 56.2       | 5.82      | _ |
| 2   | Algeria                        | 27.3       | 38.400  | 4.17   | 31.4000 | 12900  | 16.100    | 76.5       | 2.89      |   |
| 5   | Argentina                      | 14.5       | 18.900  | 8.10   | 16.0000 | 18700  | 20.900    | 75.8       | 2.37      | 1 |
| 17  | Benin                          | 111.0      | 23.800  | 4.10   | 37.2000 | 1820   | 0.885     | 61.8       | 5.36      |   |
| 25  | Burkina<br>Faso                | 116.0      | 19.200  | 6.74   | 29.6000 | 1430   | 6.810     | 57.9       | 5.87      |   |
| 26  | Burundi                        | 93.6       | 8.920   | 11.60  | 39.2000 | 764    | 12.300    | 57.7       | 6.26      |   |
| 28  | Cameroon                       | 108.0      | 22.200  | 5.13   | 27.0000 | 2660   | 1.910     | 57.3       | 5.11      |   |
| 31  | Central<br>African<br>Republic | 149.0      | 11.800  | 3.98   | 26.5000 | 888    | 2.010     | 47.5       | 5.21      |   |
| 32  | Chad                           | 150.0      | 36.800  | 4.53   | 43.5000 | 1930   | 6.390     | 56.5       | 6.59      |   |
| 36  | Comoros                        | 88.2       | 16.500  | 4.51   | 51.7000 | 1410   | 3.870     | 65.9       | 4.75      |   |
| 37  | Congo,<br>Dem. Rep.            | 116.0      | 41.100  | 7.91   | 49.6000 | 609    | 20.800    | 57.5       | 6.54      |   |
| 40  | Cote d'Ivoire                  | 111.0      | 50.600  | 5.30   | 43.3000 | 2690   | 5.390     | 56.3       | 5.27      |   |
| 50  | Eritrea                        | 55.2       | 4.790   | 2.66   | 23.3000 | 1420   | 11.600    | 61.7       | 4.61      |   |
| 55  | Gabon                          | 63.7       | 57.700  | 3.50   | 18.9000 | 15400  | 16.600    | 62.9       | 4.08      |   |
| 56  | Gambia                         | 80.3       | 23.800  | 5.69   | 42.7000 | 1660   | 4.300     | 65.5       | 5.71      |   |
| 59  | Ghana                          | 74.7       | 29.500  | 5.22   | 45.9000 | 3060   | 16.600    | 62.2       | 4.27      |   |
| 63  | Guinea                         | 109.0      | 30.300  | 4.93   | 43.2000 | 1190   | 16.100    | 58.0       | 5.34      |   |
| 64  | Guinea-<br>Bissau              | 114.0      | 14.900  | 8.50   | 35.2000 | 1390   | 2.970     | 55.6       | 5.05      |   |
| 70  | Indonesia                      | 33.3       | 24.300  | 2.61   | 22.4000 | 8430   | 15.300    | 69.9       | 2.48      |   |
| 71  | Iran                           | 19.3       | 24.400  | 5.60   | 19.4000 | 17400  | 15.900    | 74.5       | 1.76      |   |
| 72  | Iraq                           | 36.9       | 39.400  | 8.41   | 34.1000 | 12700  | 16.600    | 67.2       | 4.56      |   |
| 79  | Kazakhstan                     | 21.5       | 44.200  | 4.29   | 29.9000 | 20100  | 19.500    | 68.4       | 2.60      |   |
| 80  | Kenya                          | 62.2       | 20.700  | 4.75   | 33.6000 | 2480   | 2.090     | 62.8       | 4.37      |   |
| 93  | Madagascar                     | 62.2       | 25.000  | 3.77   | 43.0000 | 1390   | 8.790     | 60.8       | 4.60      |   |
| 94  | Malawi                         | 90.5       | 22.800  | 6.59   | 34.9000 | 1030   | 12.100    | 53.1       | 5.31      |   |
| 97  | Mali                           | 137.0      | 22.800  | 4.98   | 35.1000 | 1870   | 4.370     | 59.5       | 6.55      |   |
| 106 | Mozambique                     | 101.0      | 31.500  | 5.21   | 46.2000 | 918    | 7.640     | 54.5       | 5.56      |   |
| 107 | Myanmar                        | 64.4       | 0.109   | 1.97   | 0.0659  | 3720   | 7.040     | 66.8       | 2.41      |   |
| 109 | Nepal                          | 47.0       | 9.580   | 5.25   | 36.4000 | 1990   | 15.100    | 68.3       | 2.61      |   |
| 116 | Pakistan                       | 92.1       | 13.500  | 2.20   | 19.4000 | 4280   | 10.900    | 65.3       | 3.85      |   |
| 125 | Russia                         | 10.0       | 29.200  | 5.08   | 21.1000 | 23100  | 14.200    | 69.2       | 1.57      | 1 |
| 126 | Rwanda                         | 63.6       | 12.000  | 10.50  | 30.0000 | 1350   | 2.610     | 64.6       | 4.51      |   |

|          |      | country                           | child_mort | exports | health  | imports | income | inflation | life_expec | total_fer | !           |
|----------|------|-----------------------------------|------------|---------|---------|---------|--------|-----------|------------|-----------|-------------|
|          | 129  | Senegal                           | 66.8       | 24.900  | 5.66    | 40.3000 | 2180   | 1.850     | 64.0       | 5.06      | _           |
|          | 140  | Sri Lanka                         | 11.2       | 19.600  | 2.94    | 26.8000 | 8560   | 22.800    | 74.4       | 2.20      |             |
|          | 142  | Sudan                             | 76.7       | 19.700  | 6.32    | 17.2000 | 3370   | 19.600    | 66.3       | 4.88      |             |
|          | 147  | Tanzania                          | 71.9       | 18.700  | 6.01    | 29.1000 | 2090   | 9.250     | 59.3       | 5.43      |             |
|          | 149  | Timor-Leste                       | 62.6       | 2.200   | 9.12    | 27.8000 | 1850   | 26.500    | 71.1       | 6.23      |             |
|          | 150  | Togo                              | 90.3       | 40.200  | 7.65    | 57.3000 | 1210   | 1.180     | 58.7       | 4.87      |             |
|          | 155  | Uganda                            | 81.0       | 17.100  | 9.01    | 28.6000 | 1540   | 10.600    | 56.8       | 6.15      |             |
|          | 161  | Uzbekistan                        | 36.3       | 31.700  | 5.81    | 28.5000 | 4240   | 16.500    | 68.8       | 2.34      |             |
|          | 165  | Yemen                             | 56.3       | 30.000  | 5.18    | 34.4000 | 4480   | 23.600    | 67.5       | 4.67      |             |
|          | 166  | Zambia                            | 83.1       | 37.000  | 5.89    | 30.9000 | 3280   | 14.000    | 52.0       | 5.40      |             |
|          |      |                                   |            |         |         |         |        |           |            |           |             |
|          | 4    |                                   |            |         |         |         |        |           |            | )         | <b>&gt;</b> |
| In [45]: | 'inf | on_countriectation', 'erarchical_ | life_expe  | c', 'to | tal_fer |         |        | _         |            |           | · '         |
|          | 4    |                                   |            |         |         |         |        |           |            | •         |             |

```
In [46]: common_countries.columns
```

In [47]: common\_countries[['country', 'child\_mort', 'income', 'gdpp']]

Out[47]:

|    | country                  | child_mort | income | gdpp |
|----|--------------------------|------------|--------|------|
| 0  | Afghanistan              | 90.2       | 1610   | 553  |
| 1  | Benin                    | 111.0      | 1820   | 758  |
| 2  | Burkina Faso             | 116.0      | 1430   | 575  |
| 3  | Burundi                  | 93.6       | 764    | 231  |
| 4  | Cameroon                 | 108.0      | 2660   | 1310 |
| 5  | Central African Republic | 149.0      | 888    | 446  |
| 6  | Chad                     | 150.0      | 1930   | 897  |
| 7  | Comoros                  | 88.2       | 1410   | 769  |
| 8  | Congo, Dem. Rep.         | 116.0      | 609    | 334  |
| 9  | Cote d'Ivoire            | 111.0      | 2690   | 1220 |
| 10 | Eritrea                  | 55.2       | 1420   | 482  |
| 11 | Gambia                   | 80.3       | 1660   | 562  |
| 12 | Ghana                    | 74.7       | 3060   | 1310 |
| 13 | Guinea                   | 109.0      | 1190   | 648  |
| 14 | Guinea-Bissau            | 114.0      | 1390   | 547  |
| 15 | Kenya                    | 62.2       | 2480   | 967  |
| 16 | Madagascar               | 62.2       | 1390   | 413  |
| 17 | Malawi                   | 90.5       | 1030   | 459  |
| 18 | Mali                     | 137.0      | 1870   | 708  |
| 19 | Mozambique               | 101.0      | 918    | 419  |
| 20 | Pakistan                 | 92.1       | 4280   | 1040 |
| 21 | Rwanda                   | 63.6       | 1350   | 563  |
| 22 | Senegal                  | 66.8       | 2180   | 1000 |
| 23 | Sudan                    | 76.7       | 3370   | 1480 |
| 24 | Tanzania                 | 71.9       | 2090   | 702  |
| 25 | Timor-Leste              | 62.6       | 1850   | 3600 |
| 26 | Togo                     | 90.3       | 1210   | 488  |
| 27 | Uganda                   | 81.0       | 1540   | 595  |
| 28 | Yemen                    | 56.3       | 4480   | 1310 |
| 29 | Zambia                   | 83.1       | 3280   | 1460 |

In [50]: ## dataframe with dereasing child mortality rate and increasing income
 common\_countries\_final = common\_countries[['country',
 'child\_mort','income','gdpp']].sort\_values(['child\_mort','income'],ascending=[
 common\_countries\_final

### Out[50]:

|    | country                  | child_mort | income | gdpp |
|----|--------------------------|------------|--------|------|
| 6  | Chad                     | 150.0      | 1930   | 897  |
| 5  | Central African Republic | 149.0      | 888    | 446  |
| 18 | Mali                     | 137.0      | 1870   | 708  |
| 8  | Congo, Dem. Rep.         | 116.0      | 609    | 334  |
| 2  | Burkina Faso             | 116.0      | 1430   | 575  |
| 14 | Guinea-Bissau            | 114.0      | 1390   | 547  |
| 1  | Benin                    | 111.0      | 1820   | 758  |
| 9  | Cote d'Ivoire            | 111.0      | 2690   | 1220 |
| 13 | Guinea                   | 109.0      | 1190   | 648  |
| 4  | Cameroon                 | 108.0      | 2660   | 1310 |
| 19 | Mozambique               | 101.0      | 918    | 419  |
| 3  | Burundi                  | 93.6       | 764    | 231  |
| 20 | Pakistan                 | 92.1       | 4280   | 1040 |
| 17 | Malawi                   | 90.5       | 1030   | 459  |
| 26 | Togo                     | 90.3       | 1210   | 488  |
| 0  | Afghanistan              | 90.2       | 1610   | 553  |
| 7  | Comoros                  | 88.2       | 1410   | 769  |
| 29 | Zambia                   | 83.1       | 3280   | 1460 |
| 27 | Uganda                   | 81.0       | 1540   | 595  |
| 11 | Gambia                   | 80.3       | 1660   | 562  |
| 23 | Sudan                    | 76.7       | 3370   | 1480 |
| 12 | Ghana                    | 74.7       | 3060   | 1310 |
| 24 | Tanzania                 | 71.9       | 2090   | 702  |
| 22 | Senegal                  | 66.8       | 2180   | 1000 |
| 21 | Rwanda                   | 63.6       | 1350   | 563  |
| 25 | Timor-Leste              | 62.6       | 1850   | 3600 |
| 16 | Madagascar               | 62.2       | 1390   | 413  |
| 15 | Kenya                    | 62.2       | 2480   | 967  |
| 28 | Yemen                    | 56.3       | 4480   | 1310 |
| 10 | Eritrea                  | 55.2       | 1420   | 482  |

### Out[51]:

|   | country                  | child_mort | income | gdpp |
|---|--------------------------|------------|--------|------|
| 0 | Central African Republic | 149.0      | 888    | 446  |
| 1 | Congo, Dem. Rep.         | 116.0      | 609    | 334  |
| 2 | Guinea                   | 109.0      | 1190   | 648  |
| 3 | Mozambique               | 101.0      | 918    | 419  |
| 4 | Burundi                  | 93.6       | 764    | 231  |
| 5 | Malawi                   | 90.5       | 1030   | 459  |

| In [ ]: | #Countries th | nat are in  | direst need  | for aid | 1.Central | African | Republic | 2.Congo, |
|---------|---------------|-------------|--------------|---------|-----------|---------|----------|----------|
|         | #3.Mozambique | 2 4.Burundi | . 5.Malawi 6 | .Guinea |           |         |          |          |

| In [ ]: |  |
|---------|--|
|---------|--|

In [ ]:

In [ ]: