

Classification

LOGISTIC REGRESSION

Application	Input (X)	Output (Y)
Spam filter	email	Spam? (0/1)
Speech recognition	Audio	Text transcripts
Machine translation	English	Hindi
Online advertising	Ad, user info	Click? (0/1)
Self-driving car	Image, radar info	Position of the car
Visual inspection	Image of PCB	Defect? (0/1)

Classification

- Class/Category
 - Binary (0/1)
 - Multi class

Image Negatives

Denote [0, L-1] intensity levels of the image.

Image negative is obtained by *s= L-1-r*

a b

FIGURE 3.4

(a) Original digital mammogram.

(b) Negative image obtained using the negative transformation in Eq. (3.2-1).

(Courtesy of G.E. Medical Systems.)

Classification (Tumor Malignant (1) or Benign (0)

Logistic regression (Sigmoid function)

Logistic regression (Sigmoid function)

$$g(z) = \frac{1}{1 + e^{-z}} \quad 0 < g(z) < 1$$

$$f_{\vec{v},b}(\vec{x}) = \rho(y=1|\vec{x}; \vec{w},b)$$

$$z = w \times + b$$

$$f_{\vec{v},b}(\vec{x}) = \rho(y=1|\vec{x}; \vec{w},b)$$

$$f_{\vec{v},b}(\vec{x}) = \rho(y=1|\vec{x}; \vec{w},b)$$

$$f_{\vec{v},b}(\vec{x}) = \rho(y=1|\vec{x}; \vec{w},b)$$

$$f_{\vec{v},b}(\vec{x}) = \rho(y=1|\vec{x}; \vec{w},b)$$

Logistic regression (Sigmoid function) 2

$$f_{\overrightarrow{J},b}(\overrightarrow{x}) = \gamma (\overrightarrow{J} \cdot \overrightarrow{x} + b) = \frac{1}{1 + e^{-(\overrightarrow{M} \cdot \overrightarrow{x} + b)}}$$

$$\rho(\gamma = 1 \mid x; \overrightarrow{J}, b) = 0.6$$

$$\rho(\gamma = 0 \mid x; \overrightarrow{J}, b) = 0.4$$

$$f_{\overrightarrow{J},b}(\overrightarrow{x}) \geq 0.5$$

$$\gamma es = \gamma \gamma = 1 \quad No \Rightarrow \gamma = 0$$

Decision Boundary
$$f_{v,b}(x) = g(z) - g(v_1x_1 + w_2x_2 + b)$$

Decision Boundary

$$Z = x_1^{\perp} + x_2^{\perp} - 1 = 0$$

 $x_1^2 + x_2^2 = 1$

