多元函数微分学

Didnelpsun

目录

1	基本概念			1
	1.1	复合函数		
		1.1.1	链式法则	1
		1.1.2	特殊值反代	1
2	二元函数			
	2.1	链式法	则	1
3	多元函数微分应用			
	3.1	空间曲线的切线与法平面		2
		3.1.1	参数方程	2
		3.1.2	交面式方程	2
	3.2	空间曲	I面的切平面与法线	3
		3.2.1	隐式	3
		3.2.2	显式	3

1 基本概念

1.1 复合函数

函数以复合函数形式 f(g(x,y)) 出现,函数的变量是一个整体。

1.1.1 链式法则

若是给出相应的不等式可以通过链式法则求出对应的表达式。

例题: 设 $u=u(\sqrt{x^2+y^2})$ $(r=\sqrt{x^2+y^2}>0)$ 有二阶连续的偏导数,且满足 $\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}-\frac{1}{x}\frac{\partial u}{\partial x}+u=x^2+y^2$,则求 $u(\sqrt{x^2+y^2})$ 。

解: 这个函数是复合函数 u=u(r) 和 $r=\sqrt{x^2+y^2}$ 而成。根据复合函数求导法则:

$$\begin{split} \frac{\partial u}{\partial x} &= \frac{\mathrm{d} u}{\mathrm{d} r} \frac{\partial r}{\partial x} = \frac{\mathrm{d} u}{\mathrm{d} r} \frac{x}{\sqrt{x^2 + y^2}} = \frac{\mathrm{d} u}{\mathrm{d} r} \frac{x}{r} \circ \\ \frac{\partial^2 u}{\partial x^2} &= \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\mathrm{d} u}{\mathrm{d} r} \frac{x}{r} \right) = \frac{x}{r} \cdot \frac{\partial}{\partial x} \left(\frac{\mathrm{d} u}{\mathrm{d} r} \right) + \frac{\mathrm{d} u}{\mathrm{d} r} \cdot \frac{\partial}{\partial x} \left(\frac{x}{r} \right) = \circ \end{split}$$

1.1.2 特殊值反代

若是给出的不等式后还给出对应的特殊值,可以直接代入然后反代求出函数,而不用链式法则。

例题: 设 $z = e^x + y^2 + f(x+y)$,且当 y = 0 时, $z = x^3$,则求 $\frac{\partial z}{\partial x}$ 。解: 已知 y = 0 时, $z = e^x + f(x) = x^3$,∴ $f(x) = x^3 - e^x$, $f(x+y) = (x+y)^3 - e^{x+y}$, $z = e^x + y^2 + (x+y)^3 - e^{x+y}$ 。
∴ $\frac{\partial z}{\partial x} = e^x + 3(x+y)^2 - e^{x+y}$ 。

2 二元函数

函数以 f(u,v) 的形式来出现,需要分别对其求偏导。

2.1 链式法则

例题: 设 $z = e^{xy} + f(x + y, xy)$, f(u, v) 有二阶连续偏导数,求 $\frac{\partial^2 z}{\partial x \partial y}$ 。解: 令 x + y 为 u, xy 为 v, f(u, v) 对 u 求导就是 f'_1 , 对 v 求导就是 f'_2 , 求 uv 依次求导就是 f''_{12} ,以此类推。

首先求一次偏导:
$$\frac{\partial z}{\partial x} = ye^{xy} + \frac{\partial f(u,v)}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial f(u,v)}{\partial v} \frac{\partial v}{\partial x} = ye^{xy} + f_1' + f_2'y$$
。

接着对 y 求偏导:
$$\frac{\partial^2 z}{\partial x \partial y} = e^{xy} + xye^{xy} + \frac{\partial f_1'}{\partial y} + \frac{\partial f_2' y}{\partial y} \circ$$

$$= e^{xy} + xye^{xy} + \frac{\partial f_1'}{\partial y} + \frac{\partial f_2'}{\partial y}y + f_2'\frac{\partial y}{\partial y} = e^{xy} + xye^{xy} + \frac{\partial f_1'}{\partial u}\frac{\partial u}{\partial y} + \frac{\partial f_1'}{\partial v}\frac{\partial v}{\partial y} +$$

$$\frac{\partial f_2'}{\partial u}\frac{\partial u}{\partial y}y + \frac{\partial f_2'}{\partial v}\frac{\partial v}{\partial y}y + f_2' = e^{xy} + xye^{xy} + f_{11}'' + f_{12}''x + f_{21}''y + f_{22}''xy + f_2' \circ$$
又 $f(u,v)$ 具有两阶连续偏导数,所以 $f_{12}'' = f_{21}'' \circ$

$$\mathbb{D} = e^{xy} + xye^{xy} + f_{11}'' + (x+y)f_{12}'' + xyf_{22}'' + f_2' \circ$$

3 多元函数微分应用

空间曲线的切线与法平面 3.1

3.1.1参数方程

设空间曲线 Γ 由参数方程 $\begin{cases} x = \phi(t) \\ y = \psi(t) \end{cases}$ 给出,其中 $\phi(t), \psi(t), \omega(t)$ 均可导, $z = \omega(t)$

 $P_0(x_0, y_0, z_0)$ 为 Ω 上的点,且当 $t = t_0$ 时, $\phi'(t_0)$, $\psi'(t_0)$, $\omega'(t_0)$ 均不为 0,则:

- 曲线 Γ 在点 $P_0(x_0, y_0, z_0)$ 处的切向量为 $\vec{\tau} = (\phi'(t_0), \psi'(t_0), \omega'(t_0))$ 。
- 曲线 Γ 在点 $P_0(x_0, y_0, z_0)$ 处的切线方程为 $\frac{x x_0}{\phi'(t_0)} = \frac{y y_0}{\psi'(t_0)} = \frac{z z_0}{\psi'(t_0)}$.
- 曲线 Γ 在点 $P_0(x_0, y_0, z_0)$ 处的法平面(过 P_0 且与切线垂直的平面)方程 为 $\phi'(t_0)(x-x_0)+\psi'(t_0)(y-y_0)+\omega'(t_0)(z-z_0)=0$ 。

3.1.2 交面式方程

设空间曲线 Γ 由交面方程 $\begin{cases} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{cases}$ 给出,则:

• 曲线
$$\Gamma$$
 在点 $P_0(x_0, y_0, z_0)$ 处的切向量为
$$\vec{\tau} = \begin{pmatrix} \begin{vmatrix} F_y' & F_z' \\ G_y' & G_z' \end{vmatrix}_{P_0}, \begin{vmatrix} F_z' & F_x' \\ G_z' & G_x' \end{vmatrix}_{P_0}, \begin{vmatrix} F_x' & F_y' \\ G_z' & G_x' \end{vmatrix}_{P_0}, \begin{vmatrix} F_x' & F_y' \\ G_z' & G_y' \end{vmatrix}_{P_0}$$
 \circ

• 聞致
$$T$$
 狂思 $F_0(x_0, y_0, z_0)$ 处的仍及为程为 $x - x_0$ $y - y_0$ $z - z_0$ 。 F'_y F'_z G'_y G'_z G'_z G'_z G'_x G'_y G_z G_z

• 曲线 Γ 在点 $P_0(x_0, y_0, z_0)$ 处的法平面方程为 $\begin{vmatrix} F'_y & F'_z \\ G'_y & G'_z \end{vmatrix}_{P_0} (x - x_0) + \begin{vmatrix} F'_z & F'_x \\ G'_z & G'_x \end{vmatrix}_{P_0} (y - y_0) + \begin{vmatrix} F'_x & F'_y \\ G'_x & G'_y \end{vmatrix}_{P_0} (z - z_0) = 0.$

3.2 空间曲面的切平面与法线

3.2.1 隐式

设空间曲面 Σ 由方程 F(x,y,z)=0 给出, $P_0(x_0,y_0,z_0)$ 是 Σ 上的点,则:

- 曲面 Σ 在点 $P_0(x_0, y_0, z_0)$ 处的法向量为 $\vec{n} = (F_x'(x_0, y_0, z_0), F_y'(x_0, y_0, z_0), F_z'(x_0, y_0, z_0))$ 且法线方程为 $\frac{x x_0}{F_x'(x_0, y_0, z_0)} = \frac{y y_0}{F_y'(x_0, y_0, z_0)} = \frac{z z_0}{F_z'(x_0, y_0, z_0)}.$
- 曲面 Σ 在点 $P_0(x_0, y_0, z_0)$ 处的切平面方程为 $F'_x(x_0, y_0, z_0)(x x_0) + F'_y(x_0, y_0, z_0)(y y_0) + F'_z(x_0, y_0, z_0)(z z_0) = 0$ 。

3.2.2 显式

设空间曲面 Σ 由方程 z = f(x,y) 给出,令 F(x,y,z) = f(x,y) - z,假定法向量的方向向下,即其余 z 轴正向所成的角为钝角,即 z 为-1,则:

- 曲面 Σ 在点 $P_0(x_0, y_0, z_0)$ 处的法向量为 $\vec{n} = (f'_x(x_0, y_0), f'_y(x_0, y_0), -1)$,且 法线方程为 $\frac{x x_0}{f'_x(x_0, y_0)} = \frac{y y_0}{f'_y(x_0, y_0)} = \frac{z z_0}{-1}$ 。
- 曲面 Σ 在点 $P_0(x_0, y_0, z_0)$ 处的切平面方程为 $f'_x(x_0, y_0)(x x_0) + f'_y(x_0, y_0)$ $(y y_0) (z z_0) = 0$ 。

若是反之成锐角,则将里面所有的-1都换成1。

若用 α , β , γ 表示曲面 z = f(x,y) 在点 (x_0,y_0,z_0) 处的法向量的方向角,并这里假定法向量的方向是向上的,即其余 z 轴正向所成的角 γ 为锐角,则法向量**方向余弦**为 $\cos \alpha = \frac{-f_x}{\sqrt{1+f_x^2+f_y^2}}$, $\cos \beta = \frac{-f_y}{\sqrt{1+f_x^2+f_y^2}}$, $\cos \gamma = \frac{1}{\sqrt{1+f_x^2+f_y^2}}$,其中 $f_x = f_x'(x_0,y_0)$, $f_y = f_y'(x_0,y_0)$ 。

例题: 设直线 L $\begin{cases} x+y+b=0 \\ x+ay-z-3=0 \end{cases}$ 在平面 π 上,而平面 π 与曲面 $z=x^2+y^2$ 相切于 (1,-2,5),求 ab 的值。

解: L 在 π 上且与曲面相切,则 π 为 L 的切平面。设曲面方程 $F(x,y,z)=x^2+y^2-z$ 。

曲面法向量为 $\vec{n}=\{F_x',F_y',F_z'\}=\{2x,2y,-1\}$,代入 (1,-2,5),则法向量为 $\{2,-4,-1\}$ 。

又点法式: $\pi: 2(x-1)-4(y+2)-(z-5)=0$,即 2x-4y-z-5=0。 联立直线方程,得到: (5+a)x+4b+ab-2=0,又 x 是任意的。 解得 a=-5,b=-2。