Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

MAP UNIT TABLES

Subsections

Ecological Units of the Eastern United States First Approximation 1995

> Edited and integrated by James E. Keys, Jr., W. Henry McNab and Constance A. Carpenter, Forest Service.

MAP UNIT TABLES -- SUBSECTIONS

Ecological Units of the Eastern United States -- First Approximation

USDA Forest Service

Southern Region
Eastern Region
Northeastern Area State and Private Forestry
Northeastern and North Central Forest Experiment Stations
Southern Research Station
Washington Office

1995

CITATION

Keys, Jr., J.; Carpenter, C.; Hooks, S.; Koenig, F.; McNab, W.H.; Russell, W.; Smith, M.L. 1995. Ecological units of the eastern United States - first approximation (map and booklet of map unit tables), Atlanta, GA: U.S. Department of Agriculture, Forest Service. Presentation scale 1:3,500,000; colored. Also available on CD-ROM consisting of GIS coverage in ARCINFO format and map unit descriptions of subsections and sections.

> REGIONAL CONTACTS: James E. Keys, Jr.(404-347-7223) Southern Region, Atlanta Constance A. Carpenter..(603-868-5576) Northeastern Area, S&PF, Durham, NH

TABLE OF CONTENTS

Map Unit Tables -- Subsections Ecological Units of the Eastern United States -- First Approximation

INTRODUCTION Background. Development of the Information. Page 5 Suggestions for Data Base Users. CD-ROM organization for interested partners. Page 7 MAP UNIT TABLES. Selected Glossary. Selected References. Acknowledgements. Regional References. Page 73 Regional References. Page 76

MAP UNIT TABLES -- SUBSECTIONS Ecological Units of the Eastern United States -- First Approximation

INTRODUCTION

Background

The U.S. Forest Service, in participation with numerous individuals of federal and state agencies and non-governmental organizations, is preparing an ecological map and characterization data of the eastern United States. Ecological mapping and description follow the Forest Service's National Framework for Ecological Units (ECOMAP. 1993).

This subregional (subsection) presentation represents a status or first approximation of an effort to develop units which integrate, in an ecologically meaningful way, information from individual disciplines, single-purpose maps and existing regionalizations. This interdisciplinary approach highlighted the need for continued efforts to overcome geopolitical and administrative bias in primary data sources. Development of ecological units and descriptive data is an iterative process which will progress as additional information becomes available and from peer review and comments by users of this information.

This booklet contains a brief description of data used to differentiate and characterize ecological units at the subsection level, map unit tables for the map: Ecological Units of the Eastern United States -- First Approximation, selected references and glossary, acknowledgements, some additional references used by each Region of the Forest Service, and a list of scientific names of common vegetative species that comprise alliances used.

Development of the Information

The mapping and description of ecological units involved many people and disciplines at the federal and state level including non-governmental organizations. Mapping was compiled at scales of 1:500,000 and 1:1,000,000 by regional or state teams and recompiled at a scale of 1:1,000,000 for this publication.

Many national, regional and state sources of information were used in identifying ecological units. Some significant ones included: Quaternary Geologic Atlas of the United States, U.S. Geological Survey; State Soil Geographic Soil Database, Natural Resources Conservation Service; Ecoregions and Subregions, Environmental Protection Agency; Hammond's Classes of Land Surface Form, U.S. Geological Survey; State Natural Heritage Maps and Classifications; Physiographic Maps; Land Cover Types; and State Natural Habitat Regions and Vegetative Life Zones of Puerto Rico.

During map compilation at 1:1,000,000, regional and state teams followed steps that provided for integration of source information and fine-tuning of section, province, division and domain lines mapped in Ecoregions and Subregions of the United States. 1994. (Avers et al). In their consideration of aquatic systems during ecological mapping and description, compilers also used the Hierarchical Framework of Aquatic Ecological Units of North America (Maxwell, et. al.) and Cowardin's classification of wetlands and deep water habitats of the United States.

Each map unit is described by physical and biological components, or elements, that have a significant influence on ecological relationships, processes, and potential. In addition to physical and biological components, principal classes of land use are included to give insight into human utilization of land and water resources within ecological units. Following is an explanation of the information used to describe components associated with each map unit.

Subsection - Map unit identification symbol and name.

Geomorphology; Elevation - Geomorphology refers to the classification, description, nature, origin, and development of present landforms. Landform terminology and definitions generally follow those used in by Hammond (1970). Elevation is the range of altitudes occurring in the map unit.

Quaternary geology; Stratigraphy and lithology - Quaternary geology refers to the system of deposits corresponding to the second period of the Cenozoic era, following the Tertiary. It begins two to three million years ago and extends to the present and consists of recently formed, generally unconsolidated deposits such as glacial products, water and wind deposits, and deposits of volcanic origin. Stratigraphy is the arrangement of rocks as classified by geographic position and chronological order. Lithology is the description of rocks on the basis of such physical characteristics as manner of origin, composition and texture. The following abbreviations are used with this component:

Dev. - Devonian
Il. - Illinoian
Miss. - Mississippian
Paleo. - Paleozoic
Penn. - Pennsylvanian
Wis. - Wisconsinan

Soil taxa; Temperature and moisture regimes - Characteristics of soils are presented for each subsection by listing soil taxonomic units at the great group level in the Soil Taxonomy (USDA Soil Conservation Service 1992). Biological processes in the soil are controlled predominately by soil temperature and moisture. Temperature and moisture regimes are properties of the whole soil rather than specific horizons and are included to help characterize the soil environment of ecological units.

Climate - P(in) - The average annual precipitation in inches. If precipitation varies significantly across the ecological unit, the range is presented.

T(F.) - The average annual temperature in Fahrenheit. If temperature varies significantly across the ecological unit, the range is presented.

GS(d) - The average length of growing season (days). If the growing season varies significantly across the ecological unit, the range is presented. Growing season is the number of days when air temperature is above freezing.

Potential vegetation - Potential vegetation for terrestrial map units is approximated by the alliance level of The Nature Conservancy's draft regional community classifications being developed as a cross-walk of State Natural Heritage classifications by various regions for the eastern United States (Faber-Langendoen, D. 1993, Sneddon, L.; Anderson, M.; Metzler, K. 1994, Weakley, A.; and others. 1995). The common names for regional alliances shown in this table differ in format from region to region as they have not been standardized. The following abbreviations are used as suffixes with alliances for the Southeast Region of The Nature Conservancy:

FA - Forest Alliance

WA - Woodland Alliance

SWA - Sparse Woodland Alliance

SA - Shrubland Alliance

SSA - Sparse shrubland Alliance

DSA - Dwarf Shrubland Alliance

SDA - Sparse Dwarf Shrubland Alliance

HA - Herbaceous Alliance.

Information on potential fauna is provided for some aquatic ecological units and was obtained from The Encyclopedia of Geomorphology (Fairbridge, W.F. 1968). Assistance from state organizations is necessary to develop more useful information on potential for aquatic fauna.

Surface water characteristics - Relative occurrence and distinguishing characteristics of rivers, streams, lakes, and wetlands.

Human use - Major human use of the ecological unit that affects the potential of vegetation or fish.

Tables of the above attributes are also being provided with the map. This will allow for partners without a CD-ROM reader to immediately use the information. These tables are arranged by Section, and only the most predominant descriptors are listed under each categorical element. Where several descriptors are listed, they are arranged by decreasing importance or prevalence within a Subsection. The term "Reserved" is used to indicate that descriptive information has not been identified for a component. Omitted information may be supplied in successive CD-ROM and map updates.

Suggestions for Users

The USDA Forest Service is a charter member of a federal interagency and interdisciplinary approach to delineate and describe common ecological units of the United States. The map, supporting map unit tables, and CD-ROM information should be considered a draft of the current status of the Forest Service and participating federal and state agencies in ecological mapping at a scale of 1:1,000,000 in the eastern United States. Delineation of ecological units is a complex and interactive, iterative process that continually evolves as knowledge increases, and users are urged to participate in the improvement of the accuracy of the map and descriptive information.

INFORMATION AVAILABLE ON CD-ROM

Also available in limited quantities is a Compact Disc-Read Only Memory (CD-ROM) containing 1) an ARC file of the map: Ecological Units of the Eastern United States -- First Approximation with GIS coverage in ARCINFO format (Version 7.0), 2) imagery for use in association with the ARC file, and 3) descriptions of ecological units (an update of Sections is included). The CD-ROM is being provided to supplement the map and allow partners more flexibility in the use and review of the information.

For users who desire a CD-ROM of the map and map unit information, contact Jim Keys, Southern Region or Constance Carpenter, Northeastern Area, State and Private Forestry. Quantities are limited and will be distributed by request only. Data on the CD-ROM are arranged so that similar data types are under the following directory names:

ROOT Directory: Includes this file (README.1ST) and an ArcView 2.1 project file (EASTWIDE.APR) which is constructed to access data from the root directory of drive D. If the CD-ROM drive on your unit is other than D, you must redirect ArcView by answering all of the "where

is" questions properly or edit the project file replacing "d:" with the proper drive letter on your unit.

-COVERAGE: ArcINFO coverages of state boundaries, National Forest and Grassland boundaries, and the ecological unit boundaries are located in

this directory.

-IMAGES: There are four images with associated world files in this directory: shaded relief, color elevation, and images of the printed map,

one at scanned at 250 dpi and another version of the same file resampled to a resolution of 125 dpi.

-TEXT: The files in this directory include a narrative description of the ecological units in WordPerfect 4.2 and ASCII format, and

summary tables of this information in Microsoft Excell and dBase IV format.

-SECTIONS: This directory extends from the TEXT directory. The files in this directory provide narrative descriptions of each section along

with bibliography, glossary and principal compilers.

A README.TXT file is included in each directory with descriptions of the files found at that level.

In addition to data already provided in Map Unit Tables for subsections, the CD-ROM includes Major Land Resource Areas (MLRA) and EPA Ecoregions as well as potential fauna for some ecological units that are solely aquatic.

212A AROOSTOOK HILL AND LOWLANDS SECTION

			======	=====				
Geomorphology; Elevation	0	Soil taxa; Temp. & moisture regimes					Surface water characteristics	Human use
Open low mountains; 200-2500 ft.			36	39	109	Sugar Maple-Birch-Beech, Red Spruce-Balsam Fir Forest, Pine-Heath Woodland	Few lakes, ponds, rivers, numerous streams	Forestry Agricultur
Plains with high hills; 100-1000 ft.			38	40	110	Sugar Maple-Birch-Beech, Red Spruce-Balsam Fir Forest, N. Red Oak-White Pine Forest	Numerous lakes, rivers, streams, large wetlands	Forestry Agriculture
	212B MAIN	IE-NEW BRUNSWICK FOOTI	HILLS A	ND LOW	ILANDS	SECTION		
Low mountains; 200-1200 ft.	marine deposits; Pale- ozoic calcareous sand-	Haplorthods, Epiaquents;	41	42	131	Sugar Maple-Birch-Beech, Red Spruce-Balsam Fir Forest and Wetlands, N. Red Oak-White Pine Forest	Numerous large lakes, rivers and streams, few wet- lands	Forestry Agricultur
Open high hills; 100-800 ft.	marine silt-clay; Dev-	Haplorthods;	42	42	141	Sugar Maple-Birch-Beech, Red Spruce-Balsam Fir Forest, N. Red Oak-White Pine Forests, N. Cedar Limestone Woodland		
	2	212C FUNDY COASTAL AND) INTER	IOR SE	CTION			
 Open hills; 100-800 ft.					139	Fir, N. Red Oak-White Pine	and streams, few rivers; few, large	Forestry Agriculture Rural
Plains with hills: 100-300 ft.	Quaternary marine silt-clay, sandy loam till; Devonian gabbro diorite, monzonite diorite, quartz monzo- nite	Haplorthods, Epi- aquepts, Endoaquods, Borofolists; Frigid, udic, aquic	47	43	152		few lakes, ponds,	Rural Agricultur Recreation
_	Plains with high hills; 100-1200 ft. Open high hills; 100-800 ft. Plains with high hills; 100-800 ft.	Geomorphology; Elevation	Geomorphology; Quaternary geology; Soil taxa; Temp. & Elevation Stratig. & lithology moisture regimes Open low mountains; Wis. loamy-sandy loamy Haplorthods, Epiaquepts, conglomerate Fidoaquepts; Frigid, udic, aquic Plains with high Wis. loamy-sandy loamy Haplorthods; Frigid, udic, aquic Plains with high Wis. loamy-sandy loamy Haplorthods; Sandstone-limestone Frigid, udic, aquic 212B MAINE-NEW BRUNSWICK FOOTH Low mountains; Wis. sandy loam till, marine deposits; Pale-ozoic calcareous sandstone, limestone, pelite Frigid, udic, aquic Open high hills; Wis. loamy-sandy till, Epiaquents; Frigid, udic, aquic Open high hills; Wis. loamy-sandy till, Epiaquents, marine silt-clay; Devnian alkali feldspan stone, limestone, monzonite 212C FUNDY COASTAL AND 212C FUNDY COASTAL AND Plains with hills: Quaternary marine silt-clay, sandy loam till; Devonian alkali feldspan syenite-biotite granite Frigid, udic, aquic Plains with hills: Quaternary marine silt-clay, sandy loam till; Devonian gabbro diorite, monzonite frigid, udic, aquic Plains with hills: Quaternary marine silt-clay, sandy loam till; Devonian gabbro diorite, monzonite frigid, udic, aquic Frigid, udic, aquic	Geomorphology; Quaternary geology; Soil taxa; Temp. &C Elevation Stratig. & lithology moisture regimes P(in) Open low mountains; Wis. loamy-sandy loamy Haplorthods, 36 zoo-2500 ft. till; Paleozoic piaquepts, pelite-sandstone-conglomerate Frigid, udic, aquic Plains with high hills; till; Silurian pelite-Haplorthods; Sandstone-limestone Frigid, udic, aquic 212B MAINE-NEW BRUNSWICK FOOTHILLS A Low mountains; Wis. sandy loam till, Borofolists, 41 Low mountains; Wis. loamy-sandy till, Epiaquents; stone, limestone, pelite Frigid, udic, aquic Open high hills; Wis. loamy-sandy till, Epiaquents, 100-800 ft. Marine silt-clay; Devhaplorthods; 1100-800 ft. Missione, limestone, monzonite 212C FUNDY COASTAL AND INTER 212C FUNDY COASTAL AND INTER Plains with hills: Quaternary marine Silt-clay, sandy loam till; Devonian gabbro dire, monzonite Frigid, udic, aquic Giorite, monzonite Frigid, udic, aquic Frigid, udic, aquic Giorite, monzonite Frigid, udic, aquic Giorite, quartz monzo-	Geomorphology; Quaternary geology; Soil taxa; Temp. &Climate Elevation Stratig. & lithology moisture regimes P(in) T(F.) Open low mountains; Wis. loamy-sandy loamy Haplorthods, 36 39 till; Paleozoic pelite-sandstone-conglomerate Frigid, udic, aquic Stone, limestone, pelite Frigid, udic, aquic Stone, limestone, monzonite Frigid, udic, aquic Frigid, udic, aquic Stone, limestone, monzonite Frigid, udic, aquic Frigid, udic, aquic Frigid, udic, aquic Stone, limestone, monzonite Frigid, udic, aquic Fr	Geomorphology; Elevation Stratig. & lithology moisture regimes P(in) T(F.) Gs(d) Open low mountains; Wis. loamy-sandy loamy Haplorthods, 200-2500 ft. till; Paleozoic pelite-sandstone-conglomerate Endoaquepts; Frigid, udic, aquic Plains with high Wis. loamy-sandy loamy Haplorthods, 5 frigid, udic, aquic Plains with high Wis. loamy-sandy loamy Haplorthods; Frigid, udic, aquic 212B MAINE-NEW BRUNSWICK FOOTHILLS AND LOWLANDS Low mountains; Wis. sandy loam till, Borofolists, 41 42 131 marine deposits; Pale-ozoic calcareous sand-stone, limestone, pelite Frigid, udic, aquic Open high hills; Wis. loamy-sandy till, Epiaquents, stone, limestone, pelite Frigid, udic, aquic Open high hills; Wis. loamy-sandy till, Epiaquents, stone, limestone, monzonite 212C FUNDY COASTAL AND INTERIOR SECTION Open hills; Wis. loamy-sandy till, Epiaquents, stone, limestone, monzonite 212C FUNDY COASTAL AND INTERIOR SECTION Plains with hills: Ouaternary marine sitr-clay, sandy loam till; Devonian alkali feld-spar syenite-biotite granite sitr-clay, sandy loam till; Devonian gabbro diorite, monzonite frigid, udic, aquic Frigid, udic, aquic Plains with hills: Ouaternary marine sitr-clay, sandy loam till; Devonian gabbro diorite, monzonite frigid, udic, aquic Frigid, ud	Geomorphology; Elevation Quaternary geology; Stratig. & Lithology Geomorphology; Stratig. & Lithology Quaternary geology; Moisture regimes Plains with high Vis. Loamy-sandy Loamy Haplorthods; Frigid, udic, aquic Quaternary geology; Moisture regimes Quaternary geology; Moisture regimes Plain Xith loamy-sandy Loamy Haplorthods; Plain Alphorthods; Prigid, udic, aquic Quaternary geology; Moisture regimes Plain Xith loamy-sandy Loamy Haplorthods; Prigid, udic, aquic Quaternary geology; Moisture regimes Plain Xith light Plain Chaostope Red Princh Beech, Red Spruce-Balsam Fir Forest and Wetlands, N. Red Oak-White Pline Forest Quaternary geology; Moisture regimes Plains with hills: Quaternary marine sitr-clay, Dev- diagraphy Light Pline Forest, N. Red Oak-White Pline Forest, Plain Plai	Common lakes, ponds Common lakes, ponds

212D CENTRAL MAINE COASTAL AND EMBAYMENT SECTION

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes		Climate T(F.)	_	Potential Vegetation	Surface water characteristics	Human use
212Da Central Maine Embayment	Open low mountains; 100-1000 ft.		Haplorthods, Epiaquents;	39	44	125	Sugar Maple-Birch-Beech, Maritime Red Spruce-Balsam Fir, Oak-Hickory-Ash Dry Forest	Numerous rivers,	Forestry Agriculture Recreation
212Db Penobscot Bay Coast	Plains with hills; 100-500 ft.		Haplorthods, Epiaquents, Eutrocrepts; Frigid, udic, aquic	44	42	123	Sugar Maple-Birch-Beech, Maritime Red Spruce-Balsam Fir, Forests, Maritime Com- munities, Pitch Pine-Scrub Oak Communities		Rural Recreation
212Dc Casco Bay Coast	Plains with hills, drowned coastline; 100-500 ft.	Quaternary marine clay-silt, sandy till; Paleozoic granite, sulfidic pelite		48	45	143	Sugar Maple-Birch-Beech, Red Spruce-Balsam Fir Forest, Atlantic White Cedar Swamp	Coastal; few lakes, ponds, streams, or wetlands	
		212E	ST. LAWRENCE AND CHAP	MPLAIN	VALLE	Y SECT	ION		
212Ea St. Lawren- ce Glacial Marine Plain	Irregular plains;	Quaternary marine silt-clay-sand-gravel, sandy till; Paleozoic sandstone, carbonates	chrepts, Haplaquepts Borosaprists;		42.9	142	Sugar Maple-Birch-Beech Forest	St. Lawrence Sea- way; rivers, wet- lands, lakes, de- ranged drainage	Agriculture Forestry
212Eb St. Lawren- ce Till Plain	Plains with hills, ground moraine; 400-1200 ft.	Quaternary silty clay -silt-loamy till; Paleozoic sandstone, siltstone, dolostone	Ochraqualfs, Eutro- chrepts,Haplaquods, Haplorthods; Frigid, udic	35.9	43.0	124	Sugar Maple-Birch-Beech Forest, Red Maple-Black Ash Seepage Swamp	Moderate gradient midbranch streams	,
212Ec Champlain Glacial Lake and Marine Plains	Plains with hills; 100-1000 ft. (1287 ft.)	Quaternary marine- lake silt-clay, delta sand-gravel; Paleozoic metasedimentary	Hapludalfs,Eutrochr- epts,Ochraqualfs,Udi psamment; Mesic-fri- gid; udic-aquic	33	44	143	Sugar Maple-Birch-Beech Forest, Oak-Heath Dry Forest, Silver Maple Floodplain Forest	Lake Champlain; rivers, streams, wetlands, numerous lakes, ponds	Agriculture Forestry
212Ed Champlain Hills	Plains with high hills, ground mor- aine; 400-1900 ft.	Wis. loamy-sandy loamy till, delta sand-gra- vel; Paleo. dolomite- quartzite-slate-schist	chrept, Udipsamment, Haplaquepts; Frigid	35	45	144	Sugar Maple-Birch-Beech, Sugar Maple-Chinquapin Oak Forests, N. Talus Slope Woodland	Moderate gradient streams and rivers few lakes, ponds, wetlands	
212Ee St. Lawren- ce Glacial Lake Plain	Irregular plains; 300-800 ft.	Quaternary lake sand- gravel, sandy till; Proterozoic carbonate, Ordovician limestone	qualfs, Humaquepts,	36	45	142	Sugar Maple-Birch-Beech Forest, Red Maple-Black Ash Swamp	Low gradient streams, lakes, wetlands	Agriculture Forestry

212F NORTHERN GLACIATED ALLEGHENY PLATEAU SECTION

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	Gs(d)	Potential Vegetation	Surface water characteristics	Human use
	Plains with hills;		Fragiochrept, Dystro chrepts, Ochraqualf,		44	121	Oak-Hickory-Ash Dry	Dendritic, upper branch and head- water streams	Agriculture Forestry
212Fb Central Allegheny Plateau	Open high hills, ground moraine, valley fill; 700-2000 ft.	Wis. loamy solifluct- ion-till deposits, glaciofluvial, allu- vium; Dev. sedimentary	Fragiochrept, Dys- trochrept; Mesic, udic	38	45	135	Oak-Hickory-Ash Dry Forest Oak-Pine Dry Forest, Sugar Maple-Birch-Beech Forest	Extensive dendri- tic stream net- work	Agriculture Forestry
212Fc Eastern Allegheny Plateau	Open high hills; ground moraine; 1000-1600	Wis. thick loamy-sandy loam till, alluvium, glaciofluvial; Devon- ian sandstone, shale	Fragiochrept, Dys- trochrepts; Mesic- frigid, udic	46	47	147	Oak-Hickory-Ash Dry Forest Pin Oak-White Oak Flat- woods, Oak-Pitch Pine Woodland	Headwater streams, small reservoirs	,
212Fd Pocono Plateau	Broad, undulating upland surface, dissected margins 1200-2320 ft	Wis. sandy loamy till; Dev. sandstone, silt- stone, shale, conglome- rate, limestone, chert	ochrepts; Mesic,	40 44	48 50	160	Sugar Maple-Birch-Beech Forest, Oak-Hickory-Ash Dry Forest, Hemlock-Hardwood Ravine Forest	Degrading, head- water streams	Forestry Recreation
=======================================			G NORTHERN UNGLACIATE				\U ====================================	=======================================	
212Ga Allegheny High Plateau	Mature, dissected plateau, high hills 1000 to 2400 ft.	Pleistocene sandy clay colluvium, stratified sand-gravel in valleys Paleozoic sedimentary	Hapludults, Dystrochrepts;	33 43	43 59	80 126	Oak-Hickory-Ash Dry For- est, Sugar Maple-Birch- (Beech Forest, Oak-Pine- Dry Forest	Prominently incised dendritic pattern, many perennial streams	Oil/Gas, Recreation
212Gb Allegheny Deep Valleys	High hills, low mountains, deep valleys. 1300 to 3000 ft.	Pleistocene sandy clay colluvium, stratified sand-gravel in valleys Paleozoic sedimentary	Hapludults, Dystrochrepts;	30 44	45 55	99 170	Sugar Maple-Birch-Beech Forest, Oak-Hickory-Ash Dry Forest, Oak-Pine Dry Forest		Forestry Recreation Agriculture
			212H NORTHERN GREAT						
212Ha Gwinn/ 212Ha Gwinn/ Deerton Outwash and Sand Ridges	Outwash and sand ridges, smooth plains, open hills 600 - 1515 ft.	Wis. alluvial sand, sandy loam and rocky loamy till; Cambrian sandstone	Haplorthod; Fragior- thods, Psammaquents, Sideraquods, Histo- sols; Frigid, udic	27	38 41	100 140	Jack Pine Forest-Woodland, Black Spruce Swamp-Bog, White Cedar Swamp	Perennial streams- rivers common, few small lakes, Lake Huron	Forestry
212Hb West Green Bay Till Plain	Broad till plain 589-1432 ft.	Pleistocene; Paleozoic limestone- dolomite; Cambrian sandstone	Hapludalfs; Haplorthods; Fragiorthods; Frigid, udic	29 32	39 45	95 150	Hemlock-Sugar Maple Forest, White Pine-Hemlock Forest, White Cedar Swamp	Few small lakes; Common shallow wetlands & stream	Agricultur Forstry

212H NORTHERN GREAT LAKES SECTION (con't)

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology		P(in)	T(F.)	Gs(d)	Potential Vegetation	Surface water characteristics	Human use
212Hc Green Bay Clayey and Silty Lake Plain	Flat plain 580-898 ft.	Pleistocene; Silurian- Ordovician limestone- dolomite		31 32	44 45	120 180	Sugar Maple-Birch Forest, White Cedar Swamp, Bulrush-Cattail Marsh	Common drainage ditches	Agriculture Forestry
212Hd Manitowoc Till Plain	Flat to rolling plain 580 - 1008 ft.	Pleistocene; Silurian- Ordovician limestone- dolomite	Hapludalfs	31 34	44 47	120 180	Sugar Maple-Birch Forest, White Cedar Swamp, Bulrush-Cattail Marsh	Common drainage ditches	Agriculture Forestry
212He Door and Escanaba Peninsulas and Lake Plains	Flat lakebed & old lakeshore features 569 - 842 ft.	Pleistocene; Silurian -Ordovician limestone- dolomite		29 32	42 45	140 160	White Cedar Swamp, Wooded Dune-and-Swale Complex, Sugar Maple-Birch (Beech) Forest	Common streams; Few lakes	Forestry
212Hh Seney Sand Lake Plain	Irregular plains 600 - 969 ft.	Wis. lake sands; Ordovician-Silurian limestone-dolomite- shale	Histosols, Aquods, Aquents, Psamments, Haplorthods; Frigid, udic	28 30	40 42	100 130	Jack Pine Barrens, White Cedar-Tamarack Swamp, White (Red) Pine-Aspen Forest	Many streams, small and medium rivers	Forestry Preserve Residential
212Hi Grand Mar- Marais Sand End Moraine and Outwash	Open hills; irregular plains 602-1300 ft.	Wis. rocky loamy till, alluvium, lake, out- wash-eolian sands; Paleozoic sandstone- dolomite	Psamments, Boralfs, Haplorthods, Aquods, Histosols; Frigid, udic			100 140	White-Red Pine Forest, Jack Pine Barrens, Sugar Maple-Birch (Beech) Forest	Many small lakes and streams; few small and medium rivers. Lake Superior shoreline	Forestry Recreation Residential
212Hj St. Ignace Lake Plain	Irregular plains 563 - 962 ft.	Wis. lake sand-clay, rocky loamy till; Paleozoic limestone- dolomite-shale-gypsum	Boralfs, Aquepts, Histosols, Orthods, Aquods; Frigid, udic	28 30	40 43	130 140	White Pine-Hemlock Forest, White Cedar-Tamarack Swamps, Beach Ridge and Swale-and-Dune Complexes	Many small and medium lakes, few large lakes, few rivers. Lake Michigan shoreline	Forestry Recreation Residential Agriculture
212Hk Rudyard Clay Lake Plain	Irregular Plain 580 - 799 ft.	Wis. lake clay-sand, Ordovician limestone, dolomite-shale-gypsum	Boralfs, Aqualfs, Haplorthods, Aquods; Frigid, udic	28 29	41 42	120 140	Red Spruce-Balsam Fir- Aspen Forest, Bulrush-Cattail Marsh, Cedar-Tamarack Swamp	Many small and medium rivers and streams. Lake Superior and Lake Huron shoreline.	Agriculture Recreation Residential
212Hl Cheboygon Lake Plain	Flat lake plain; 553 - 1115 ft. carbonate and shale	Thin Wis. sandy lake deposits; Devonian s	Haplaquods, Hapla- quepts, Borosaprist; Frigid, udic	27 32	40 44	130 140	White Cedar Swamp, White Red-Pine Forest, Beach Ridge-and-Swale Complex	Large, extensive wetlands, Intermittent and perennial streams	Forestry Limestone mining, Agriculture
212Hm Harrisville Moraines	Rolling; moderately steep morains and drumlins; karst terrain; 580 - 1163 ft.	Wisconsinan till 0-500 feet thick; Devonian-Miss. shales and limestones	Haplorthods, Glossoboralfs, Udipsamments, Frigid, udic,	29 33	41 45	100 130	Sugar Maple-Birch (Beech) Forest, White Pine-Hemlock Forest, White Cedar Swamp	Several large lakes, Intermittent and perennial streams common	Forestry Agriculture

212H NORTHERN GREAT LAKES SECTION (con't)

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	Gs(d)	Potential Vegetation	Surface Water characteristics	Human use
212Hn Stutsman- ville Sand Ridges	Steep, broad,	Wis. calcareous sandy loam till, outwash sand-gravel, dune sand Devonian carbonates	Haplorthods, Udipsamments;	29 32	41 43	110 140	Hemlock-Sugar Maple Forest, White Cedar Swamp, Dunes	Intermittent and	Forestry Agriculture
212Ho Traverse City Drumlin Fields	Steep terminal moraines, drumlins; 580 - 1132 ft.		Haplorthods, Udipsamments, Glossoboralfs; Mesic, udic	29 33	42 44	110 150	Hemlock-Sugar Maple Forest, White Cedar Swamp	Lake Michigan bays, narrow in- land lakes, Inter- mittent-perennial streams common	Forested, Orchards, Pastures, Urban dev
212Hp Vanderbilt Moraines	Irregular plain, ground moraine, ice -molded features; 580-1420 ft.	Wis. calcareous sandy loam till, lake sand, alluvium, 100-800 ft.; Paleo. marine rocks	Haplorthods, Glossoboralfs, Udipsamments; Frigid, udic	29 34	41 44	70 120	Hemlock-Sugar Maple Forests, Sugar Maple-Birch (Beech) Forests, Jack Pine Barrens	Common intermit- tent-perennial streams, fast flowing rivers	Forested, Agricultural
212Hq Mio Outwash Plains	Rolling outwash plain; 741 - 1487 ft.	Wis. outwash-ice- contact sand-gravel, peat-muck, lake silt- clay; CarbonJurassic	Udipsamments, Hap- lorthods, Glossobor- alfs, Borosaprists; Frigid, udic	32 35	41 45	80 130	Jack Pine Barrens, Hemlock-Sugar Maple Forests,	Intermittent-per- ennial streams common, few large lakes, Au Sable R.	Forested, Minor Ag
212Hr Tawas Lake Plain	Flat lake plain 580 - 1009 ft.	Wis. lake sand-gravel- silt-clay, clayey till, 50-250 ft.; Car- bon. limestone-shale	quods, Glossudalfs,		44 46	120 140	Sugar Maple-Birch (Beech) Forests, Hemlock- Sugar Maple Forest, Jack Pine Barrens, Hardwood- Conifer Swamps	Common intermit perennial streams, large wetlands, few lakes	
212Hs Cadillac End Moraines	Steep terminal moraines; 847 - 1679 ft.	Wis. calc. sandy loamy till, outwash sand- gravel, 500-1000 ft.; Carboniferous marine	Udipsamments, Haplorthods, Eutroboralfs; Frigid, udic	32 36	41 44	90 140	Sugar Maple-Birch (Beech) Forest, White Pine-Oak Forest	Few lakes-wetlands Common intermit- tent-perennial streams	Forested, Agricultural
212Ht Big Rapids Loamy Moraines	Steep terminal moraines; 785 - 1517 ft.	Wis. loamy-sandy loamy till, 500-1000 ft.; Penn. marine, Jurassic "red beds"	Haplorthods,	33 36	42 46	90 140	Sugar Maple-Birch (Beech) Forest, White Pine-Oak Forest	Few lakes or wetlands. Intermittent and perennial streams	Forested, Agricultural
212Hu Newago Outwash and Ice Contact	Flat outwash plain; 626-1091 ft.	Wis. outwash sand- gravel, ice-contact deposits, calcareous sandy loamy till, 300- 600 ft.; Carboniferous	Haplorthods, Glossudalfs; Mesic, udic	32 34	44 46	120 140	White Pine-White Oak Forests, Jack Pine Barrens, Little Bluestem-Indiangrass Sand Prairie	Isolated kettle lakes, Intermit perennial, entrenched streams	Forestry Agriculture
212Hv Wellston Outwash and Ice Contact	Flat outwash and lake plain; 580-1116 ft.	Wis. outwash sand- gravel, lake sand, sandy till, alluvium, 300-600 ft.: Paleozoic marine sedimentary	Haplorthods, Glossudalfs; Mesic, udic	31 34	43 45	120 140	White Pine-Red Pine Forests, Sugar Maple- Birch (Beech) Forests	Isolated kettle lakes, Intermit perennial streams common, entrenched rivers	-

212H NORTHERN GREAT LAKES SECTION (con't)

	 Geomorphology;	Quaternary geology;	Soil taxa; Temp. &		Climat	e	Potential	Surface water	
Subsection	Elevation	Stratig. & lithology	moisture regimes	P(in)	T(F.)	Gs(d)	Vegetation	characteristics	Human use
212Hw Manistee Outwash and Lake Sands	Steep, narrow moraines and flat sandy lake plains; 580 - 1051 ft.	Wis. lake-dune sand, sandy loamy till, 400-700 ft.; Devonian- Mississippian marine rocks	Udipsamments, Haplorthods,	30 33	43 46	140 150	White Pine-Red Pine Forest, Sugar Maple- Birch (Beech) Forest, White Cedar Swamp	Few large lakes near Lake Mich. Intermittent and perennial streams common	Vineyards, Orchards, Forested, Agricultura Urban dev.
212Hx Hart Outwash and Lake Sands		Wis. calc. sandy-loamy -clayey till, outwash sand-gravel, dune sand, 400-700 ft.; Miss. limestone-shale	Haplorthods, Hapludalfs; Mesic, udic	31 34	45 47	140 150	White Pine-Red Pine Forests, Sugar Maple- Birch (Beech) Forest, White Cedar Swamp	Few large lakes near Lake Mich. Intermittent and perennial streams common	Vineyards, Orchards, Forested, Agricultura Urban dev.
212Hy Kalkaska Moraines	Morainal ridges and outwash plains; 744-1498 ft.	•	Udipsamments, Hap- lorthods, Glossobor- alfs, Borosaprists; Frigid, udic	31 34	41 44	80 130	Sugar Maple-Birch (Beech) Forest, White Pine-Oak Forest	Few large lakes, Intermittent- perennial streams common	Forested, Agricultura
	=======================================	;	212J SOUTHERN SUPERIO	R UPLA	NDS SE	CTION	=======================================		==========
212Ja Lake Superior Clay Plain	Level plains 602-1280 ft.	Wis. lake silt-clay- sand, sandy loamy- clayey till, outwash sand-gravel, peat- muck; Pre-Cambrian sedimentary deposits	Eutroboralfs, Gosso- boraquepts, Epiaquods; Frigid, udic	26 31	38 42	110 140	White Pine-Red Pine Forest, Aspen-Birch Forest, White Spruce- Balsam Fir-Aspen Forest	Many Streams; No Lakes; borders Lake Superior	Recreation Foresty Agriculture
212Jb Gogebic/ Penokee Iron Range	Thin till over bedrock 600 - 1806 ft.	Sandy loamy till, ice-contact-outwash- sand and gravel; Keweenawan basalt- conglomerates	Haplorthods, Fragiorthods; Frigid, udic	26 32	37 41	100 130	Sugar Maple-Basswood Forest, Hemlock- Sugar Maple Forest	Few lakes; Common perenial streams	Recreation forestry
= 212Jc Winegar Moraines	Ice stagnated features 1010 - 1860 ft.	Sandy-loamy-clayey till, outwash sand- gravel, peat-muck; Archean metamorphic- igneous rock	Fragiorthods, Haplorthods; Frigid, udic	28 33	37 41	87 128	Sugar Maple-Basswood Forest, Hemlock- Sugar Maple Forest	Poorly developed drainages; Common Kettle lakes	Forestry Recreation
212Jd St. Croix Moraine	End moraine 720-1436 ft.	Sandy-loamy till, ice contact-outwash- sand-gravel; Cambrian- sandstone-dolmonite	Glossoboralfs, Frag- iochrepts, Eutro- chrepts, Hapludalfs; Mesic, udic	28 29	41 44	87 128	Sugar Maple-Basswood Forest, Hemlock- Sugar Maple Forest, Aspen-Birch Forest	Common Lakes; Abundent Streams	Forestry Agriculture Pasture

212J SOUTHERN SUPERIOR UPLANDS (con't)

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes				Potential Vegetation	Surface water characteristics	Human use
 212Je Central/ Northwest Wisconsin Loess Plains	Silt capped, irregular plains 1020 - 1738 ft.	Sandy-loamy till, ice contact-outwash- sand-gravel, peat; Pre-Cambrian gneiss	Glossboralfs, Haplorthods; Frigid, udic	28 30	39 43	87 128	Sugar Maple-Basswood Forest, Hemlock- Sugar Maple Forest, Aspen-Birch Forest	Few Lakes; Many wetlands	Forestry Agriculture
212Jf Perkinstown End Moraine	Hummocky Hills & Depressions 968-1861 ft.	Sandy-Loamy till, outwash sand-gravel; Pre-Cambrian- intrusives	Glossoboralfs, Dystrochrepts; Frigid, udic	29 30	40 43	87 128	Hemlock-Sugar Maple Forest, Sugar Maple- Basswood Forest, White Pine-Hemlock Forest	Streams, wetlands	Forestry Recreation
212Jg Lincoln Formation Till Plain, Mixed Hardwoods	Irregular Till Plain 875-1477 ft.	Sandy-loamy till, outwash sand-gravel; Cambrian sandstone- shale dolmonite	Udipsamments, Hapludalfs; Frigid, udic	29 31	40 44	115 135	Hemlock-Sugar Maple Forest, White Pine-Red Pine Forests	Common small streams	Agricul ture
212Jh Neilsville Sandstone Plateau	Irregular Till Surface (shallow) 862-1282 ft.	Loamy till, peat, outwash sand; Cambrian sandstone	Hapludalfts, Quatzipsamments; Frigid, udic	30 31	43 44	115 135	Sugar Maple-Basswood Forest, White Pine-Red Pine Forests	No Lakes; Common Streams	Forestry Agriculture
212Ji Rib Mountain Rolling Ridges	Dissected Rolling to Steep Ridges 1062-1548 ft.	outwash sand-gravel, sandy-loamy till; Pre-Cambrian granite- quartzsite	Glossoboralfs, Hapludalfs; Frigid, udic	30 31	41 43	115 135	Hemlock-Sugar Maple Forest, White Pine- Red Pine Forest, Jack Pine Forests	No Lakes; Deeply Eroded Riverways	Forestry
212Jj Green Bay Lobe Stagnation Moraine	Hummocky to Irregular moraine 800-1808 ft.	Ice contact-outwash- sand-gravel, sandy- loamy-clayey till; Precambrian bedrock	Fragiochrepts, Eutrochrepts, Fragi- orthods, Hapludalfs; Frigid, udic	30 31	40 44	100 128	Hemlock-Sugar Maple Forest	Common small lakes; Headwaters	Forestry Agriculture
212Jk Spread Eagle /Dunbar Barrens	Irregular outwash plain & moraine 640-1593 ft.	Ice contact-outwash- sand-gravel, loamy- till; Precambrian- basalt, granite, other	Quatzipsamments, Frigid, udic	29 32	38 43	100 130	Jack Pine-Oak Forest, Jack Pine-Oak Barrens	Common Kettle Lakes; Large Streams	Forestry
212Jl Brule and Paint Rivers, Drumlinized Ground Moraine	Gently rolling, drumlins 1152-1851 ft.	Ice contact-outwash- sand-gravel, sandy- loamy till; Pre- cambrian basalt,- granite, others	Haplorthods, Eutrochrepts; Frigid, udic	29 33	38 42	87 128	Sugar Maple-Basswood Forest, Hemlock-Sugar Maple Forest	Common large lakes; & large streams	Foresty & Agriculture pasture

212J SOUTHERN SUPERIOR UPLANDS SECTION (con't)

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes		Climate T(F.)	_	Potential Vegetation	Surface water characteristics	Human use
212Jm Northern Highlands Pitted Outwash	Rolling to steep depressional sands 1440-1832 ft.	Sandy Loamy till, ice contact outwash- sand-gravel; Pre- cambrian mafic-felsic- metavolcanic- quartzsite	Udipsamments, Haplorthods; Frigid, udic	28 33	38 41	111 131	White Pine-Red Pine Forest, Sugar Maple- Basswood Forest	Common Kettle Lakes	Forestry
212Jn Baraga/ Keweenaw Coarse Rocky Till	Broad ground moraine, ridges; 600-1526 ft.	Wis. sandy-loamy- clayey till; Precambrian sandstone and shale	Fragiorthods, Eutroboralfs, Haplorthods; Frigid, udic	26 31	38 41	110 130	Hemlock-Sugar Maple Forest, Sugar Maple-Birch (Beech) Forests, White Cedar-Tamarack Swamps	Few lakes wetlands many small creeks, deep river gorges	
212Jo Ewen Dissected Lake Plain	Flat plain, dissected; 655-1509 ft.	Wis. reworked lake clayey-sandy sediments; Precambrian sandstone	Eutroboralfs, Haplaquepts, Glossoboralfs; Frigid, udic	27 31	38 41	110 120	Sugar Maple-Birch (Beech) Forests, White Pine Forests	No lakes; incised streams and some deep river gorges	Forestry Agriculture
212Jr Michigamme Highlands	Hills, low to high, rocky ridges, flat outwash plains 600-1890 ft.	Wis. loamy till; Precambrian sandstone	Fragiorthods, Haplorthods; Frigid, udic	27 33	37 41	75 150	Hemlock-Sugar Maple For- est, Sugar Maple-Birch (Beech) Forest, Black Spruce (Tamarack) Swamp	Bedrock lakes common throughout numerous streams and rivers	Forestry Recreation
212Js Lincoln Formation Till Plain, Hemlock Hardwoods	Dissected irregular till plain; 1181-1636 ft.	Wis. sandy loamy till- outwash sand-gravel, peat-muck; Cambrian- sandstone-shale- dolomite, Pre- cambrian gneiss	Glossoboralfs, Ochraqualfs, Glossaqualf; Frigid, udic	30 31	41 43	100 130	Sugar Maple-Hemlock Forest	Streams with a dendritic pattern	Agriculture
			212K Western Superio	R UPLAI	IDS SEC	CTION			
212Ka Bayfield Sand Plains	Flat to steep depressional sands 775 - 1437 ft.	Wis. ice-contact-out- wash sand; Cambrian quartzose glanconitic sandstone-silt	Haplorthods, Fluvaquents; Frigid, udic	27 28	39 43	120 140	Jack Pine Forests, White Pine-Red Pine Forests, Jack Pine Barrens	Few kettle lakes	Forestry Wildlife
212Kb Mille Lacs Uplands	Irregular ground moraine, ice-molded landscape; 734 - 1486 ft.	Wis. sandy loamy till; Cambrian-Cretaceous shale-sandstone, Archean granite	Udipsamments, Glos- soboralfs, Hemists, Dystrochrepts; Frigid, udic	25 29	39 43	97 135	White Pine-Oak Forest, White Pine-Red Pine Forest, Cedar-Tamarack Swamp	Few lakes, many wetlands	Forestry Wildlife

212L NORTHERN SUPERIOR UPLANDS SECTION

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes				Potential Vegetation	Surface water characteristics	Human use
======================================		Wis. non-calcareous loamy-sandy loamy till Proterozoic granite, gneiss,basalt,rhyolite	Dystrochrepts; Frigid, xeric, udic	24 37	=====: 35 38	90	Jack Pine Forest, White- Pine-Red Pine Forests, White Spruce-Balsam Fir- Aspen Forest		Forestry Wilderness Recreation
212Lb North Shore Highlands	Low mountains; 600 - 2015 ft.	Wis. sandy-clayey stony till; Precambri. basalt, igneous, anor- thosire, sedimentary			35 39	106 121	Sugar Maple-Birch, Aspen- Birch, White Pine-Red Pine, White Spruce-Balsam Fir Forests		Recreation Forestry
212Lc Laurentian Highlands	Plains with high hills 1300-1850 ft.	Wis. loamy-silty non- calcareous till; Precam. granite-gneiss -sedanorthosite	Dystrochrepts; Frigid, udic	26 27	37 40	106 121	White Pine-Red Pine Forest, Aspen- Birch Forest, Jack Pine Forest	Laurentian Divide, Perennial streams	,
212Ld Toimi Uplands	Plains with high hills 1350-1900 ft elev	Late Wisconsin loamy- sandy drift: Precam- brian	Dystrochrepts, Fragiochrepts; Frigid, udic	28	36	106 121	Aspen-Birch Forest, White Pine-Red Pine Forests, Tamarack-Black Spruce Swamps-Bogs	St.Louis River, Cloquet & Whiteface Rivers, perennial streams	Forestry Recreation
		=======================================	12M NORTHERN MINNESOTA	=====	=====				
212Ma Littlefork/		Wis. clayey lake sedi- ments, loamy till,	Boralfs, Hemists;	23 25	37 38	98 111	White-Red Pine Forests, Aspen-Birch Forest,	Undeveloped drainage networks;	Forestry
verilitation uptands	glaciated; 1100-1530 ft.	organic deposits; Precambrian gneiss	Frigid, acquic, udic				Black Spruce Swamp-Bog	Several rivers very few lakes	kecreation
212Mb Agassiz Lowlands	glaciated;	organic deposits;	udic Hemists, Aqualfs,	20 25	36 39	98 111	Black Spruce Swamp-Bog Black Spruce Bog, Leatherleaf Bog, Sedge Fen	very few lakes Extensive	Forestry Recreation
212Mb Agassiz Lowlands	glaciated; 1100-1530 ft. Flat, lake plain 1040 - 1474 ft.	organic deposits; Precambrian gneiss Wis. organic sediment, calcareous silty till; Precambrian gneiss	udic Hemists, Aqualfs, Aquents; Frigid, aquic, udic DRTHERN MINNESOTA DRIF	25 	39	111	Black Spruce Bog, Leatherleaf Bog, Sedge Fen	very few lakes Extensive ditching; some large lakes	Forestry Recreation
 212Mb Agassiz	glaciated; 1100-1530 ft. Flat, lake plain 1040 - 1474 ft.	organic deposits; Precambrian gneiss Wis. organic sediment, calcareous silty till; Precambrian gneiss	udic Hemists, Aqualfs, Aquents; Frigid, aquic, udic	25 FT & L/	39	111	Black Spruce Bog, Leatherleaf Bog, Sedge Fen	extensive ditching; some	Forestry Recreation

212N NORTHERN MINNESOTA DRIFT & LAKE PLAINS SECTION (con't)

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes			_	Potential Vegetation	Surface water characteristics	Human use
212Nc Pine Mor- aine and Outwash Plains	Hills, rolling plains, channels, end moraine; 1100-1940 ft.	Wis. till, outwash	Psamments, Aquents, Boralfs; Frigid, udic	22 26	38 42	121	Jack Pine Barrens, White- Pine-Red Pine Forests, Aspen-Birch Forest	Numerous Kettle lakes and few large rivers	Recreation Forestry
212Nd Tamarack Lowlands	Rolling to flat lake plains, beach ridges, ground mor- aine; 1180-1718 ft.		Ochrepts, Hemists, Aquents, Boralfs; Frigid, udic	25 27	37 41	104	Black Spruce Bog, White Cedar-Tamarack Swamps, Aspen-Birch Forest	No lakes, two rivers, and sever- al streams	Agriculture Forestry

2120 LAKE MICHIGAN SECTION

			2120 LAKE MICH		ECTION				
Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	 P(in	-Clima) T(F.	te)	· Potential) Vegetation	Surface water characteristics	Human use
2120a Lake Michi- gan and Islands	Lake plain-glacial	Lake clay and silt, Lake sand and gravel, Ground moraine under lake, Ground moraine (islands)	Frigid, Udic and Aquic (Islands)	27	34	28		Reserved	Navigation Fishery Recreation
2120b Green Bay	Lake plain-glacial ice scour; 148-581 ft.	Lake clay and silt, Moraine under water	Reserved		34	28		Reserved	Navigation Fishery Recreation
2120c Grand Traverse Bay	Lake plain-glacial ice scour; 148-581 ft.	Ground moraine under bay	Reserved		34	28		Reserved	Navigation Fishery Recreation
			212P LAKE HUI						
212Pa Lake Huron and Islands	Lake plain-glacial	Lake clay and silt; Lake sand and gravel	Frigid, Udic and Aquic (Islands)		34	28		Reserved	Navigation Fishery Recreation
212Pb Saginaw Bay	Lake plain-glacial ice scour; 148-581	Lake sand gravel; Lake clay and silt	Reserved		34	28		Reserved	Navigation Fishery Recreation
212Pc Manitoulin Island	Island till over bedrock; 180-984	Discontinuous sandy loamy till	Frigid, Udic and Aquic		36	32	Reserved	Reserved	Forestry Woodland Recreation
			M212A WHITE MOU			N			
M212Aa Interna- tional Boundary Plateau	Open high hills 1200-1800 ft.	Wis. loamy-sandy loam till; sand-gravel de- posits; Devonian pe- lite-sandstone	Haplorthods, Epiaquepts, Borofolists; Frigid,udic,aquic	38	38	108	Red Spruce-Balsam Fir, Su- gar Maple-Birch-Beech For- ests, N. White Cedar Swamp, Black Spruce Open Bog	Few, large rivers, common streams, and	Forestry Agriculture
M212Ab St. John Upland	Open high hills 1200-2300 ft.	Wis. sandy loam till, sand-gravel deposits, bedrock outcrops; Devonian pelite- sandstone	Haplorthods, Epiaquents, Borofolists; Frigid,udic,aquic	38	38	113	Red Spruce-Balsam Fir, Sugar Maple-Birch-Beech Foests, N. White Cedar Swamp, Alpine Communities, Black Spruce Barren	Numerous ponds and lakes;few, large wetlands;few,large rivers,streams common	Agriculture
M212Ac Maine Central Mountains	Low mountains 1000-3500 ft.	Wis. sandy till, out- wash sand-gravel, bed rock; Paleozoic gran- ite-pelite-sandstone	Haplorthods, Epiaquepts, Borofolists; Frigid,udic,aquic	40	40	123	Red Spruce-Balsam Fir, Sugar Maple-Birch-Beech Forests, Alpine Communi- ties, Pine-Heath Woodlands	Numerous ponds, lakes,streams,few rivers, wetlands	Forestry Rural Recreation

M212A WHITE MOUNTAIN SECTION (con't)

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	Gs(d)	Potential Vegetation	Surface water characteristics	Human use
M212Ad White Mountains	High mountains 1000-6000 ft.	Wis. sandy till, out- wash sand-gravel, bed- rock; Paleozoic gran- ite-tonalite-pelite	Haplorthods, Boro-	47	41	116	Red Spruce-Balsam Fir, Sugar Maple-Birch-Beech Forests, Alpine Communities	Common rivers and streams; few lakes and ponds; few, wetlands	Forestry Recreation Development
M212Ae Mahoosuc Rangely Lakes	High mountains 1200-1400 ft.	Wis. sandy loam till, outwash sand-gravel, bedrock: Devonian granite-grandiorite	Haplorthods, Cry- orthods, Borofolist; Frigid-Cryic, udic-aquic	38	40	115	Red Spruce-Balsam Fir, Sugar Maple-Birch-Beech Forests, Alpine Communities	Common lakes and ponds;common river and streams;few large wetlands	Forestry Recreation
M212Af Connecticut Lakes	Low mountains 1000-4000	Wis. sandy loam till; sand-gravel deposits, bedrock; Dev. sand- stone; Precam. gneiss	Haplorthods, Boro- hemists, Epiaquents; Frigid-Cryic, udic, aquic	41	39	107	Red Spruce-Balsam Fir, Sugar Maple-Birch-Beech Forests, Alpine Commun- ities, Calcareous Fens	Common lakes and ponds;few rivers and streams,few wetlands	Forestry Agriculture Recreation
M212Ag Western Maine Foothills	Low mountains 600-3000 ft.	Wis. sandy-loamy till, sand-gravel deposits; Paleozoic pelite-sand- stone, tonalite	Frigid, udic	44	42	125	Sugar Maple-Birch-Beech Forests, Red Spruce- Balsam Fir Forests	Few ponds,lakes, & wetlands, common streams and rivers	Rural
	=======================================		12B VERMONT-NEW HAMPS				M ====================================		
M212Ba - Vermont Piedmont	Open low mountains 500-2500 ft. (3348 ft.)	L. Wis. sandy loamy till; Paleozoic meta- sedimentary-limestone- intrusives, Proterozo- ic gneiss-amphibolite			42	114	Sugar Maple-Birch-Beech, N. Red Oak-Hardwood Mesic Forests, Red Spruce-Balsam Fir Forest, N. White Cedar Limestone Woodlands	Streams, small- medium rivers- small lakes com- mon, few large wetlands	Agriculture Forestry Quarrying Recreation
M212Bb Northern Connecticut River Valley	Open high hills 400-1200 ft.	Wis. lake silt-clay, kame gravel-sand-silt; Paleo.metasedimentary, crystalline limestone, acid intrusives	Fragiorthod; Mesic,	40	45	143	Sugar Maple-Birch-Beech Forest, Oak-Pine Dry Forest, Silver Maple Floodplain Forest	Connecticut River; large tributary mouths, impound- ments, reservoirs	Agriculture Urban
M212Bc Sunapee Uplands	Low Mountains 50-1600 ft.	Wis. sandy loam till, outwash sand-gravel, bedrock; Devonian metasedimentary rocks	Dystrochrepts, Haplorthods, Borohemists; Frigid, Mesic, udic	42	44	121	Sugar Maple-Birch-Beech Forest, N. Red Oak- Hardwood Mesic Forest, Red- Spruce-Balsam Fir Forest	Common ponds, lakes, and streams	Forestry Agriculture Recreation
M212Bd Hillsboro Inland Hills and Plains	Low Mountains 600-1800 ft.	Wis. sandy loam till, outwash sand-gravel; Paleozoic biotite gne- iss,granite, volcanics	Dystrochrepts; Frigid,udic	45	45	150	N. Red Oak-Hardwood Mesic Forest, Sugar Maple-Birch- Beech Forest, Oak-Pitch Pine Woodland	Numerous ponds, lakes and streams	Forestry Agriculture Recreation

M212C GREEN, TACONIC, BERKSHIRE MOUNTAIN SECTION

			=====					
High mountains, ice scoured 500-4000 ft.	L. Wis. sandy loamy till, Paleo metased. schist-phyllite, meta- volcanics, ultramafics	Haplorthods, Humaquepts, Cryorthods; Frigid, Cryic; udic	49	41	121	Red Spruce-Balsam Fir Forest, Sugar Maple-Birch- Beech Forest, Alpine Communities		
Low mountains, ice-scoured; 500-3500 ft.	-gravel; Paleo. meta-	chrept, Haplorthod, Udipsamment; Mesic-	42	45	135	Red Spruce-Balsam Fir Forest, Sugar Maple-Birch- Beech Forest, Oak-Hickory- Ash Dry Forests	Low-moderate grade rivers-streams, few ponds-lakes- large wetlands	Forestry Recreation Quarrying
Open low mountains, ice-scoured; 500-2500 ft.			48	45	143	Sugar Maple-Birch-Beech, Red Spruce-Balsam Fir For- ests, Oak-Hickory-Ash, Oak-Pine Dry Forests	Moderate-steep rivers-streams, few impoundments- large wetlands	Forestry Agricultur Recreation
Low mountains, ice-scoured; 1000-3500 ft.	L. Wis. sandy loamy till, PaleopCambrian quartzite-schist- gneiss, granite		48	45	143	Red Spruce-Balsam Fir, Sugar Maple-Birch-Beech Forests, Oak-Hickory-Ash Dry Forest	Deerfield River- impoundments, wet- lands common, high elev. ponds, strms	Forestry Recreation
		M212D ADIRONDACK M	OUNTAI	N SECT	ION			
	sandy till, outwash- lake deposits; Proter-	Haplaquods, Haplaquepts, Borosaprist;		42	125	Sugar Maple-Birch-Beech Forest, Red Spruce-Balsam Fir Forest, Red Spruce- Balsam Fir Swamp	Upper branches of rivers & streams; wetlands; several reservoirs	Forestry
Plains with hills, glaciated peneplain 800-1800 ft.	till, Precambrian	Haplorthod, Eutro- chrepts, Epiaquod; Frigid, mesic, udic	44	42	123	Oak-Hickory-Ash Dry Forest Forest, White Pine-Red Pine Forest		Forestry Beech lake
Open hills and high hills, glaciated peneplain, 1500-2500 ft.	outwash-delta deposits	Eutrochrept, Boro- saprist, Dystro-		40	108	Sugar Maple-Birch-Beech Forest, Red Spruce-Balsam Fir Forest, Red Spruce and Cedar Bogs	Deranged drainage; many chain lakes, streams, wetlands; reservoirs	Forestry
Open low mtns; glaciated; blockfaulted; 1600-3900 ft.	inwash-alluvial in-	Cryorthod, Haplaquoo		40	98	Red Spruce-Balsam Fir Forest, Sugar Maple-Birch- Beech Forest, Alpine Communities	Streams; lakes; wetlands; reser- voirs	Forestry
Open low mtns.; glaciated, blockfaulted; 400-2600 ft.	Wis. vartextured till, rock; Precam- brian gneisses-schist	chrept, Epiaquod;	39	43	140	Sugar Maple-Birch-Beech Forest, Red Spruce-Balsam Fir Forest, N. Talus Slope Woodland	Lake George, modified streams; lakes; wetlands; mod. dendritic	Forestry
	ice scoured 500-4000 ft. Low mountains, ice-scoured; 500-3500 ft. Open low mountains, ice-scoured; 500-2500 ft. Low mountains, ice-scoured; 1000-3500 ft. Plains with hills, glaciated peneplain 900-2518 ft. Plains with hills, glaciated peneplain 800-1800 ft. Open hills and high hills, glaciated peneplain, 1500-2500 ft. Open low mtns; glaciated; blockfaulted; 1609-3900 ft. Open low mtns: glaciated, blockfaulted;	till, Paleo metased. schist-phyllite, metavolcanics, ultramafics Low mountains, ice-scoured; till, ice-contact sand 500-3500 ft. gravel; Paleo. metasedimentary-limestone Open low mountains, L. Wis. sandy loamy till, Paleo. metasedimentary-limestone, pC amphibolite-gneiss Low mountains, L. Wis. sandy loamy till, Paleo. metasedimentary-limestone, pC amphibolite-gneiss Low mountains, L. Wis. sandy loamy till, PaleopCambrian quartzite-schist- gneiss, granite Plains with hills, Wis. coarse loamy- sandy till, outwash- lake deposits; Proter- ozoic gneisses-schist Plains with hills, Wis. variable-sandy glaciated peneplain sandy till, Precambrian gneisses-schist, calc- silicates-marble Open hills and high wis. varsandy till, outwash-delta deposits rock, alluvium; Precam gneiss, anorthosite Open low mtns; Wis. sandy-var. till, inwash-alluvial in- wash, rock, Precambrian gneisses, schist Open low mtns; Wis. vartextured till, rock; Precam- blockfaulted; wis. vartextured till, rock; Precam- brian gneisses-schist	ice scoured 500-4000 ft. schist-phyllite, meta-volcanics, ultramafics Low mountains, L. Wis. sandy loamy ice-scoured; fill, Paleo. meta-sedimentary-limestone sedimentary-limestone frigid, udic Open low mountains, L. Wis. sandy loamy ice-scoured; fill, Paleo. meta-sedimentary-limestone frigid, udic Open low mountains, L. Wis. sandy loamy ice-scoured; fill, Paleo. pCambrian quartzite-schist-gneiss, granite Low mountains, L. Wis. sandy loamy ice-scoured; fill, Paleo. pCambrian quartzite-schist-gneiss, granite M212D ADIRONDACK Mesic frigid, udic M22D ADIRONDACK Mesic frigid-Cryic; udic M22D ADIRONDACK Mesic frigid for meta-y-limestone, pC amphibolite-gneiss Low mountains, L. Wis. sandy loamy itell, Paleo. pCambrian quartzite-schist-gneiss, granite M212D ADIRONDACK Mesic frigid for meta-y-limestone, pC amphibolite-gneiss M212D ADIRONDACK Mesic frigid, udic M212D ADIRONDA	ice scoured till, Paleo metased, schist-phyllite, meta-volcanics, ultramafics Low mountains, L. Wis. sandy loamy till, ice-contact sand sedimentary-limestone of mentary-limestone, pc amphibolite-gneiss Low mountains, L. Wis. sandy loamy till, Paleo. metasedi-mentary-limestone, pc amphibolite-gneiss Low mountains, L. Wis. sandy loamy till, PaleopCambrian quods, Cryorthods; Frigid Cryic; udic mentary-limestone, pc amphibolite-gneiss Low mountains, L. Wis. sandy loamy till, PaleopCambrian quods, Cryorthods; Frigid-Cryic; udic gneiss, granite M212D ADIRONDACK MOUNTAIN Plains with hills, Wis. coarse loamy-glaciated peneplain sandy till, outwash-lake deposits; Proterozoic gneisses-schist coilicates-marble Open hills and high wis. varsandy till, outwash-delta deposits, protencok, alluvium; Precambrian gneisses-schist challenge in mentary-glaciated; inwash-alluvial ingenies, anorthosite challenge in mentary-glaciated, inwash-alluvial ingenies, schist and glaciated, till, rock; Precambria and glaciated, till, rock; Precambria till, rock; Precambria and glaciated, till, rock; Precambria till, rock; Precamb	ice scoured till, Paleo metased. schist-phyllite, meta-volcanics, ultramafics Low mountains, ce-scoured; till, ice-contact sand chrept, Haplorthod, 500-3500 ft. gravel; Paleo. meta-sedimentary-limestone frigid, udic Open low mountains, ce-scoured; till, Paleo. metasedi-mentary-limestone, pC amphibolite-gneiss Low mountains, ce-scoured; till, Paleo. pCambrian quods, Cryorthods; frigid-Cryic; udic gneiss, granite M212D ADIRONDACK MOUNTAIN SECTI Plains with hills, glaciated peneplain till, Precambrian gneisses-schist gneisses-schist gneisses-schist calcasticates-marble Open hills and high Wis. varsandy till, haplorthod, Epiaquod 45 do nutwash-delta deposits; Procession frigid, mesic, udic silicates-marble Open low mtns; glaciated; mash, rock, Precambria angeisses-schist chrept; Frigid, udic Open low mtns; glaciated; mash, rock, Precambria angeisses-schist chrept; Frigid, udic Open low mtns; glaciated; mash, rock, Precambria angeisses-schist chrept; Frigid, udic Open low mtns; Wis. vartextured till, rock, Precambria, glaciated, till, rock, Precambria, glaciated, brian gneisses-schist frigid, udic Town mountains, L. Wis. sandy loamy till, haplorthods; Frigid, udic Den low mtns; Wis. vartextured till, rock, Precambria glaciated, brian gneisses-schist frigid, udic	till, Paleo metased. schist-phyllite, metasch voltanics, ultramafics Low mountains, L. Wis. sandy loamy till, ice-contact sand chrept, Haplorthod, gravel; Paleo. metaschist-grigid, Udic Open low mountains, L. Wis. sandy loamy ice-scoured; till, Paleo. metaschist-grigid, udic Open low mountains, L. Wis. sandy loamy ice-scoured; till, Paleo. metaschist-gneiss Low mountains, L. Wis. sandy loamy ice-scoured; till, PaleopCambrian quods, Cryorthods; Frigid, 48 45 143 162-500-2500 ft. mentary-limestone, pC amphibolite-gneiss Low mountains, L. Wis. sandy loamy till, PaleopCambrian quods, Cryorthods; Frigid-Cryic; udic gneiss, granite M212D ADIRONDACK MOUNTAIN SECTION Plains with hills, Wis. coarse loamy-glaciated peneplain sandy till, outwash-lake deposits; Proterozoic gneisses-schist proterozoic gneisses-schist, calcsilicates-marble Open hills and high Wis. varsandy till, Haplorthod, Epiaquod; silicates-marble Open hills and high Wis. varsandy till, Haplorthod, Epiaquod; solutussh-delta deposits; Eurochrept, Bororock, alluvium; Precam saprist, Dystrock, Alluvium; Precambriah under the protection of th	ice scoured sitil, Paleo metased, solidary volcanics, ultramafics Low mountains, Low sandy loamy till, Paleo metased sedimentary-limestone communities Low mountains, Low sandy loamy till, paleo metased sedimentary-limestone communities Doen low mountains, Low sandy loamy till, paleo metased sedimentary-limestone communities Low mountains, Low sandy loamy till, paleo metased sedimentary-limestone communities Low mountains, Low sandy loamy till, paleo metased sedimentary-limestone, pc amphibolite-gneiss Low mountains, Low sandy loamy till, paleo metased sedimentary-limestone, pc amphibolite-gneiss Low mountains, Low sandy loamy till, paleo metased sedimentary-limestone, pc amphibolite-gneiss Low mountains, Low sandy loamy till, paleo metased sedimentary-limestone, pc amphibolite-gneiss Low mountains, Low sandy loamy till, paleo metased sedimentary-limestone, pc amphibolite-gneiss Low mountains, Low sandy loamy till, paleo metased sedimentary-limestone, pc amphibolite-gneiss Low mountains, Low sandy loamy till, paleo metased sedimentary-limestone, pc amphibolite-gneiss Low mountains, Low sandy loamy till, paleo metased sedimentary-limestone, pc amphibolite-gneiss Low mountains, Low sandy loamy till, paleo metased sedimentary-limestone, pc amphibolite-gneiss Low mountains, Low sandy loamy till, paleo metased sedimentary-limestone, pc amphibolite-gneiss sedimentary-limestone, pc amphi	ice scoured schist, palled metased. Son-4000 ft. schist; phyllite, meta-frigid, Cryic; udic Son-4000 ft. schist; phyllite, meta-frigid, schieble, sedimentary-limestone sedimentary-limestone sedimentary-limestone sedimentary-limestone sedimentary-limestone frigid, udic Son-2500 ft. sedimentary-limestone sedimentary-limestone frigid, udic Son-2500 ft. sedimentary-limestone sedimentary-limestone frigid, udic Son-2500 ft. sedimentary-limestone frigid, udic Son-2500 ft. sedimentary-limestone sedimentary-limestone frigid, udic Son-2500 ft. sedimentary-limestone frigid-cryic; udic Son-2500 ft. sedimentary-limestone, pc supplied sedimentary-limestone few ponds-lakes large wetlands low-matched, professionation, description, sedimentary-limestone, sedimentary-limestone few ponds-lakes large sedimentary-limestone, sedimentary-limestone, sedimentary-limestone, sedimentary-limestone, sedimentary-limestone, sedimentary-limestone few ponds-lakes large sedimentary-limestone, sedimentary

M212D ADIRONDACK MOUNTAIN SECTION (con't)

	M2	12D ADIRONDACK MOUNTA	IIN SEC	SITON (con't)			
Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	Gs(d)		Surface water characteristics	Human use
Open low and high	Vartextured Wis.till glaciofluvial valley	Haplorthod, Epiaquod Dystrochrept, Cryor-		40			Headwater streams; few small lakes; wetlands	
		M212E CATSKILL MOU	NTAINS	SECTIO				
Open low and high		ochrepts; Frigid,	60	41	124	Red Spruce-Balsam Fir	Headwater streams	Forestry
Open low mountains, ground moraine 100-3300 ft.	lake-ice-contact-out-	Dystrochrepts, Fragiochrepts; Frigid-Mesic, udic	42	45	125	Sugar Maple-Birch-Beech Forest, Oak-Hickory-Ash Dry Forest, Cedar Glades	Upper branch streams, some reservoirs, den- dritic	Forestry Agricultur
		M212F TUG HILL PL	ATEAU	SECTION	V			
	Late Wis. sandy loamy till; Ordovician sandstone	Fragiorthods, Fragiochrept; Frigid, udic	60	42	140	Sugar Maple-Birch-Beech Forest, Paper Birch-Red Spruce Transition Forest, Red Spruce-Balsam Fir Frst.	Headwater streams wetlands; de- ranged-radial drainage	Forestry
Irregular plains, ground moraine, glacial-fluvial; 600-1000 ft.	-contact-outwash sand-	thod, Dystrochrepts;	50	44	147	Sugar Maple-Birch-Beech, Paper Birch-Red Spruce Transition Forest, Red Ce- dar-White-Ash Woodland	Mainly streams; wetlands; de- Deranged drainage	Forestry Agricultur
	221A SOUTH	IFRN NEW ENGLAND COAST	 (A) HTI	IIS AND	PLATA	A SECTION		
				-=====	=====			
Glaciated irregular plain; 0-400 ft.	sandy till, ice contact	Epiaquepts,	45	50	184	Hemlock-white pine and N. Red Oak-white pine Forest, Maritime dune communities	Few small lakes - reservoirs;Small streams; Coastal inlets and bays.	Urban, Residentia Forest
	aine; Holocene dunes;	Udorthents,	46	49	168	Hemlock-white pine and oak-pine xeric Forest;	Small lakes-reser- voirs, streams; Coastal inlets-	Residentia Forest
	Elevation Open low and high mountains, glaciated; 1000-5344 ft. Open low and high mountains; 1000-4200 ft. Open low mountains, ground moraine 100-3300 ft. Irregular plains, ground moraine; 1000-2000 ft. Irregular plains, ground moraine, glacial-fluvial; 600-1000 ft. Glaciated irregular plain; 0-400 ft. Glaciated irregular plain, terminal mo-	Geomorphology; Elevation Open low and high mountains, glacial deciposits; Precambrian Anorthosite. Open low and high mountains; rock; Devonian continental shale-sandstone-conglomerate Open low mountains, lake-ice-contact-outwash deposits: Devonian continental sed. Tilted plateau, ground-stagnationend moraine; sandstone 1000-2000 ft. Irregular plains, ground moraine, glacial-fluvial; ground moraine, glacial-fluvial; ground ft. Glaciated irregular wis. marine silt-clay, sandy till, ice contact sand-gravel; Paleozoic sedimentary Glaciated irregular wis. outwash-kame morplain, terminal moaine; Holocene dunes;	Geomorphology; Stratig. & Lithology moisture regimes Open low and high mountains, glaciated; Anorthosite. Open low and high mountains; rock; Devonian continentals; rock; Devonian continentals and moraine lake-ice-contact-out-wash deposits; Devonian continental sed. Tilted plateau, ground-stagnation-end moraine; and continental sed. It lited plateau, ground-stagnation-end moraine, glacial-fluvial; gravel-silt; sandstone-shale State Wis. loamy till, postrochrept, Fragio-repts; and stone frigid, udic M212F TUG HILL PL M212F TUG HILL PL	Geomorphology; Quaternary geology; Soil taxa; Temp. & Stratig. & lithology moisture regimes P(in) Open low and high mountains, glaci- ated; glaciofluvial valley deposits; Precambrian thod, Borosaprist; Frigid-Cryic, udic M212E CATSKILL MOUNTAINS Open low and high mountains; rock; Devonian continental shale-sandstone- conglomerate Open low mountains, L.Wis. loamy till, ochrepts; Frigid, ental shale-sandstone- conglomerate Open low mountains, Lake-ice-contact-out- wash deposits: Devoni- an continental sed. udic M212F TUG HILL PLATEAU M212F TU	Geomorphology; Stratig. & Lithology moisture regimes Ptin T(F.) Open low and high mountains, glaciated; glaciofluvial valley deposits; Precambrian Anorthosite. M212E CATSKILL MOUNTAINS SECTION Open low and high mountains; rock; Devonian continental shale-sandstone-conglomerate wash deposits: Devonian continental sed. Open low mountains, L.Wis. loamy till, pround moraine lake-ice-contact-outwash sand-ordinarie; and continental sed. Tilted plateau, ground moraine; sandstone and moraine; sandstone shale sandstone shale shales sandstone for contact-outwash sandstone shale shales sandstone for contact-outwash sandstone shale shales sandstone for contact-outwash sandstone shale shales sandstone for ground moraine; shales sandstone shale shales sandstone for ground for contact-outwash sandstone shale shales sandstone for ground for shales sandstone shale shales sandstone for ground for ground for shales sandstone for ground for shales sandstone for ground for shales sandstone for ground for ground for shales sandstone for ground for g	Stratig. & Lithology moisture regimes P(in) T(F.) Gs(d)	Geomorphology; Elevation Geomorphology; Stratig. & Lithology moisture regimes Prin Tr.) Gscd Vegetation Open low and high mountains, glaciared, deposits; Precambrian tared; deposits; Devonian continiental sed. M212F TUG HILL PLATEAU SECTION M212F TUG HILL PLATEAU SE	Commorphology: Quaternary geology; Soil taxa; Tomp. &

221A SOUTHERN NEW ENGLAND COASTAL HILLS AND PLAIN SECTION (con't)

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	Gs(d)	Potential Vegetation	Surface water characteristics	Human use
		Wis. sandy till, ice- contact sand-gravel; Precambrian igneous granite, Paleozoic sedimentary	Dystrochrepts, Epiaquepts, Medisaprists; Mesic, udic	46	50	179	Hemlock-white pine and oak-heath dry Forest; maritime dune communities	Small streams - lakes; coastal bays-inlets	Forestry Development Agriculture
221Ad Southern New England Coastal Lowland	Glaciated irregular plain and hills; 0-600 ft.	Wis. sandy-loamy till ice contact-outwash sand-gravel; Precambrian igneous, gneiss-granite-schist	Dystrochrepts, Udorthents, Haplaquepts; Mesic, udic	47	50	172	Hemlock-white pine-oak and red oak-hardwood Forest; maritime dune communities	Few rivers, many small streams; coastal inlets	Forestry Agriculture Development
221Ae Hudson High- lands	Open high hills steep sided valleys; 1000-1500 ft.	Pleistocene coarse stoney loamy till, Precambrian gneiss- granite-schist	Dystrochrepts, Epiaquepts, Udorthents; Mesic, frigid, udic	46	50	165	Hemlock-white pine, red oak -white pine, and sugar maple-Chinquapin Oak Forests	Many glacial lakes, few large streams, reservoirs	Forests, agriculture, residential mining
221Af Lower Connecticut River Valley	Broad glacial valley - terraces; 100-1000 ft.	Quaternary kame delta sand-gravel, lake sed- iment, alluvium; Mes- ozoic sedimentary-vol- canic (arkose-basalt)	Epiaquepts, Udorthents;	46	49	160	Hemlock-white pine-oak, Sugar Maple-Birch-Beech Forest, White Pine-Red Pine Forest	Few lakes, many streams - small rivers	Agriculture Residential Forest
221Ag Southeast New England Coastal Hills and Plains	Glaciated irregular plain - open hills; 100-1200 ft.	Wis. sandy till; sand- gravel-silt in valleys Paleozoic intrusives, granite-schist-gneiss	Epiaquepts, Udorthents;	50	48	145	Hemlock-white pine-oak - Sugar Maple- Birch-Beech Forest	Many small lakes, few large	Forest Agriculture Residential
221Ah Worcester/ Monadnock Plateau	Glaciated plain - open high hills; 100-1400 ft.	Wis. sandy till; sand, gravel-silt in valleys Paleozoic intrusives, granite-schist-gneiss	Haplaquepts, Udorthents;	43	45	114	Hemlock-white pine-oak, Sugar Maple-Birch-Beech, Red Spruce Transition Forests	Many small lakes, Quabbin Reservoir, Many narrow valley streams	Residential
221Ai Gulf of Maine Coastal Plain	Glaciated plain - hills; 100-1400 ft.	Wis. sandy till; sand- gravel-silt in valleys Paleozoic intrusives, schist-granite-gneiss	Udorthents, Udipsamments;	44	48	156	Hemlock-white pine-oak, Sugar Maple-Birch-Beech, Red Oak-Hardwood Mesic Forests	Many small lakes, reservoirs, - streams	Forest Agriculture Residential
221Ak Gulf of Maine Coastal Lowland	Glaciated irregular plain, coastal dunes; 0-400 ft.	Quaternary marine silt -clay-peat; Paleozoic intrusive schist-gran- ite-gneiss,sedimentary	Udorthents, Sulfihemists;	44	47	147	Hemlock-white pine, N. oak -white pine Forest; Atlantic white cedar swamp Maritime dune communities	Coastal inlets - bays; many small streams	Forest Residientia Agriculture
221Al Sebago/ Ossipee Hills and Plain	Glaciated high hills - open low mtns; 100-2200 ft.	Wis. sandy till; out- wash sand-gravel; Pal- eozoic intrusive gran- ite-gneiss-schist	Dystrochrepts,	43	45	128	Hemlock-white pine-oak - Sugar Maple-Birch-Beech Forest, Red Maple-Red Spruce Swamp	Large lake - wet- land complexes; many streams	Forest Residential Agriculture

221A SOUTHERN NEW ENGLAND COASTAL HILLS AND PLAIN SECTION (con't)

=======================================			=======================================	=====	=====	=====		=======================================	=========
Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes			_	Potential Vegetation	Surface water characteristics	Human use
221Am Reading Prong	Broad uplands separated by nar- row valleys 350-1500 ft.	Pleistocene silty sand- -clay residuum, sand- silt-stone colluvium; Precambrian granite- gneiss	Fragiudults, Hapuldualfs;	45 50	50 54	155 170	Sugar Maple-Chinquapin Oak Forest, Oak-Heath Dry For- est, Sugar Maple-Birch- Beech, Oak-Pine Dry Forest	stream w/ rock bottoms in valleys	Agriculture Urban
			221B HUDSON VAL	LEY SE	CTION				
221Ba Hudson Limestone Valley	ciated, ice-molded,	Late Wis. loamy-sandy loamy till, ice-con- tact-delta deposites, lake silt-clay: Paleo- zoic limestone-shale	dalf, Dystrochrept Fragiochrept,	46	48	183	White Pine-Red Pine Forest Sugar Maple-Chinquapin Oak Forest, Sycamore-Box Elder Floodplain Forest	streams, deranged	Agriculture Forestry
221Bb Taconic Foothills	Foothills, glacia-, ted, ice-molded, 400-1000 ft.	Late Wis. loamy till, lake-ice-contact-out- wash: Ordovician shale -siltstone-graywacke	Fragiochrept, Eutrochrept;	36	45	131	Northern Hardwoods, Sugar Maple-Chinquapin Oak Forest, Talus Slope Woodland	Many headwater streams, some small lakes	Forestry Agriculture

221B HUDSON VALLEY SECTION (con't)

			2218 HUDSON VALLEY	SECTIO	N (con				
Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes			_	Potential Vegetation	Surface water characteristics	Human use
221Bc Hudson Glacial Lake Plains	Level to rolling glacial lake plain, dunes; 100-900 ft.	Quaternary lake silt- clay-sand-gravel, loamy till, alluvium; Ordovician shale-silts	Fragiochrept, Udi- psamment, Ochraqualf Hapludalf; Mesic, udic	41	48	159	Sugar Maple-Chinquapin Oak Forest, White Pine-Red Pine Forest	Hudson/Mohawk R confluence; streams, some lakes, wetlands	Agriculture Forestry Urban
221Bd Kittatinny- Shawangunk Ridges	, -	Wis. sandy loam till; Resistant sandstone & conglomerate	Dystrochrepts, Fragiudults, Hapludalfs; Mesic, udic	44 46	48 51	130 150	Oak-Heath Dry Forest, Su- gar Maple-Chinquapin Oak Forest, Ridgetop Pitch Pine Pine Barrens	Steep headwater streams	Forestry
			1D NORTHERN APPALACHI						
221Da Gettysburg Piedmont Lowland	Rolling hilly low- lands, 100-400 ft.	Silt-sand-clay residu- um; Triassic-Jurassic sandstone-silt-clay, conglomerates		45	51 54	165 180	Red Oak-Hardwood Mesic Forest, Oak-Heath Dry For- est, Red Maple-Black Ash Seepage Swamp	Meandering streams w/ well-defined floodplains	Agriculture Suburban
221Db Piedmont Upland	Broad, gently rolling hills and valleys 100 to 1220 ft.	Silty sand-silty clay residuum; Saprolite; Metamorphic-ultramafic schist-gneiss-granite	Ochrepts, Fluvaquents;	40 42	50 52	160 180	Oak-Heath Dry Forest, Oak-Pine Dry Forest esp. along Susquehanna, Serpen- tine Barrens	Mature dendritic patterns. Many farm impound- ments	Farming Forestry Industrial & Urban
221Dc Newark Piedmont	Gently rolling broad lowlands belt of high ridges 0-879 ft.	Wis. loamy till, glac- iofluvial deposits; Tr iassic-Jurassic silt- shale-conglomerates	iudults, Hapludalfs,		51 53	170 185	Oak-Heath Dry Forest, Su- gar Maple-Chinquapin Oak Forest, Red Maple-Black Ash Swamp, Freshwater Tidal Marsh	Large river drain- ing extensive wet lands, marshes, swamps and lakes	
			OUTHERN UNGLACIATED AL						
221Ea Pittsburgh Low Plateau	Dissected Plateau Northern Flushing Escarpment 650-1400 ft.	Fine-textured collu- vium; Paleozoic shale- limestone-sandstone- coal	Hapludalf, Dystro-	36	49 52	===== 138 170	Oak-Heath Dry Forest, Sugar Maple-Chinquapin Oak Forest, Hemlock-White Pine Forest	Perennial, narrow valleyed streams,	Forestry Agriculture Strip mines Development
221Eb Teays Plateau	Broad bottomlands, rivers, rolling hills; 800-1800 ft. 550-850 west	Colluvium, alluvium, Penn. shale-siltstone- sandstone-coal-lime- stone	Udifluvents, Fluvaquents, Hapludults; Mesic, udic		54	170 180	Oak heath Dry Forest, Red Maple-Ash Floodplain Swamp, Sugar Maple-Chin- quapin Oak Forest	Dendritic	Agriculture Industrial Development Mining
221Ec Ohio Valley Lowland	Highly dissected plateau, hill and valleys 540-1415 ft.	Clayey colluvium; Mesozoic sedimentary shale-sandstone-lime- stone-coal	Hapludalfs, Hapludults; Mesic, udic	39 41	50 55	156 182	Sugar Maple-Chinquapin Oak Forest, Oak-Heath Dry Forest, Hemlock-Hardwood Ravine Forest	Perennial streams, high stream densi- ty, dendritic drainage	

221E SOUTHERN UNGLACIATED ALLEGHENY PLATEAU SECTION

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes				Potential Vegetation	Surface water characteristics	Human use
221Ed East Hocking Plateau	Dissected Plateau 515-1340 ft	Colluvium, landslides; Penn. shale-siltstone- sandstone-coal,		37 42	50 56	156 182	Sugar Maple-Chinquapin Oak Forest, Oak-Heath Dry For- est, Red Maple-Black Ash Seepage Swamp	Incised perennial streams	Forestry Agriculture Mining
221Ee Unglaciated Muskingum Plateau	Dissected plateau, broad major valleys underfit streams 660-1400 ft.	WisHolocene loamy colluvium, landslide deposits; Penn. sand- stone-siltstone-coal	Hapludalfs, Dystrocrepts; Mesic, udic (ultic & typic)	36 40	49 52	145 166	Oak-Heath Dry Forest, Sugar Maple-Chinquapin Oak Forest	Underfit Major Streams	Agriculture Forestry Recreation Mining
221Ef West Hocking Plateau	Dissected plateau 500-1225 ft	Colluvium; Mesozoic sandstone- siltstone-shale-lime- stone-coal-clay	Hapludults, Dystrochrepts, Hapludalfs; Mesic, udic	36 42	51 56	148 177	Sugar Maple-Chinquapin Oak Forest, Hemlock-Hardwood Ravine Forest, Red Maple- Ash Floodplain Swamp	High perennial streams, major streams underfit	Forestry Agriculture Coal Mining
221Eg Lower Scioto River Plateau	High relief plateau 490-1340 ft.	Sandstone chip collu- vium, Devonian-Miss. shale-sandstone locally thick	Hapludults, Dystrochrepts; Mesic, udic	39 44	52 56	158 195	Sugar Maple-Chinquapin Oak Forest, Oak-heath Dry Forest, Hemlock Hardwood Ravine Forest	High stream density	Forestry Agriculture incl.tobacco
		221F W	ESTERN UNGLACIATED AL	LEGHEN	Y PLATI	EAU SE	CTION		
221Fa Allegheny Plateau	Drift-covered bedrock hills and valleys; 600-1505 ft	Late Wis. clay-loam till;	Epiaqualfs, Fragiudalfs; Mesic, aquic-udic	37 43	====== 48 51	145 168	Sugar Maple-Chinquapin Oak Forest, Oak-Heath Dry For- est, Ridgetop Pitch Pine Barrens, Calcareous Fens	High stream density, underfit streams	Forestry Agriculture
221Fb Grand River/ Pymatuning Lowlands	Low-relief lake plain, ground-end moraine; 650-1200 ft.	Wis. lake silt-clay, clay till; Paleozoic shale-sandstone	Epiaqualfs, Fragiaqualfs, Hapludalfs; Mesic, aquic,	37 42	48 50	141 164	Sugar Maple-Chinquapin Oak Forest, Hemlock Swamp forests	Underfit streams;	Forestry Agriculture
221Fc Akron Kames	Interlobate area of outwash, kames & moraines 900-1200 ft	Pleistocene till, out- wash; MissPenn. sandstone-shale	Hapludalf; Fragi- iudalfs,Medisaprist; Mesic, udic-aquic	36 41	49 50	150 169	Oak-Heath Dry Forest, Sugar Maple-Chinquapin Oak Forest, Sedge Meadow	Major rivers, natural lakes and bogs	Forestry Agriculture

221H NORTHERN CUMBERLAND PLATEAU SECTION

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	Gs(d)	Potential Vegetation	Surface water characteristics	Human use
221Ha Rugged Eastern Hills	Low and high mountains; 500-1000	Sandstone and shale- -clast loamy colluvium	Hapludults; Dystrochrepts; Mesic, Udic	46	55	175	Chestnut Oak FA, Chestnut Oak-Oak (White-S. Red- Black)-Hickory (Mockernut- Pignut) FA	Small and Medium intermittent and	Forestry Mining Recreation
221Hc Southwestern Escarpment	High hills; 500-1000 ft.	Holocene, Wisconsin sandstone and shale- clast loamy colluvium	Hapludults, Dystrochrepts; Mesic, udic	46	55	175	Chestnut Oak FA, Chestnut Oak - N. Red Oak - Hickory (Mockernut, Pignut, Shag- bark FA	Perennial streams common, medium rivers few	Forestry
221Hd Sequatchie Valley	Open low mountains; 1000-3000 ft.	Cenozoic cherty clay solution residuum, sandy clay decompos- ition residuum	Hapludults, Dystrochrepts; Mesic, udic	38 57	55 61	170 210	S. Red Oak - White Oak - (Post Oak) - Hickory (Pig- nut, Mockernut, Sand) FA	Sequatchie River and tributaries	Agriculture
221He Low Hills Belt	High hills; 300-1000 ft.	Holocene, Wisconsin sandstone and shale- clast loamy colluvium	Hapludults; Mesic, udic	46	55	175	White Oak - N. Red Oak - Hickory (Shagbark, Pignut, Mockernut) FA, Chestnut Oak FA	Perennial streams few to common, many small rivers	Agriculture
============			212I LAKE SUPER			=====			
									=========
212Ia Lake Super- ior and Islands	Lake plain- glacial ice scour	Lake clay and silt; 602 ft.	Frigid (Islands), udic	36	34	36		Black spruce swamp	Navigation Fishery
	glacial ice scour	,		36 25 26		36	White Spruce-Balsam Fir Forest, Aspen-Birch Forest, Black Spruce Swamp	swamp Few lakes,	
ior and Islands 2121b Isle Royale	glacial ice scour Thin till over bedrock. 600-1247 ft.	Wis. loamy till; Precambrian basaltic lavas-conglomerates	Haplorthods, Haplumbrepts; Frigid, udic	25 26 26	34 39 41 	CTION	Forest, Aspen-Birch Forest, Black Spruce Swamp	swamp Few lakes, wetlands, streams; surrounded by Lake Superior	Fishery Recreation
ior and Islands 2121b Isle Royale	glacial ice scour Thin till over bedrock. 600-1247 ft.	602 ft. Wis. loamy till; Precambrian basaltic	Haplorthods, Haplumbrepts; Frigid, udic	25 26 iD VALI	34 39 41 	CTION	Forest, Aspen-Birch Forest,	Few lakes, wetlands, streams; surrounded by Lake Superior Medium intermit- tent / perennial	Fishery Recreation
ior and Islands 212Ib Isle Royale	Thin till over bedrock. 600-1247 ft.	Wis. loamy till; Precambrian basaltic lavas-conglomerates Quaternary, Tertiary cherty clay solution	Haplorthods, Haplumbrepts; Frigid, udic 221J CENTRAL RIDGE AP Paleudults, Dystro- chrepts, Hapludalfs;	25 26 iD VALI	34 39 41 .EY SE(CTION ======	Forest, Aspen-Birch Forest, Black Spruce Swamp Shortleaf Pine - Pitch Pine - Chestnut Oak WA, Eastern	Few lakes, wetlands, streams; surrounded by Lake Superior Medium intermit- tent / perennial streams common	Fishery Recreation Agriculture

M221A NORTHERN RIDGE AND VALLEY SECTION

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	Gs(d)	Potential Vegetation	Surface water characteristics	Human use
M221Aa Ridge and Valley	Plains with low mountains; 1000-3000 ft.	Holocene, Wisconsin acid shale-chip loamy colluvium, quartzite- block and shale-chip loam colluvium	Dystrochrepts, Fragiudults; Mesic, udic	51 55	61 63	200 210	Chestnut Oak - Oak (White, S. Red, Black) - Hickory (Mockernut, Pignut) FA, Shortleaf Pine - Pitch Pine - Chestnut Oak WA	Intermittent and perennial streams common	Forestry
M221Ab Great Valley of Virginia		Quaternary, Tertiary cherty clay solution residuum, red clay solution residuum	Paleudults, Hapludults, rock outcrops; Mesic, udic	35 50	46 55	120 170	Chestnut Oak - Oak (White, S. Red, Black) - Hickory (Mockernut, Pignut) FA, Shortleaf Pine - Virginia Pine - (Pitch Pine) FA	Intermittent and perennial streams common	Agriculture Rural Forestry
M221Ac Northern Ridge & Valley	Long narrow ridges, broad-narrow valleys, karst; 300-3135 ft.	Loamy residuum, boul- dery colluvium; Paleo- zoic sedimentary- carbonates, anthracite	Fragiudult, Haplu- dults, Paleudult;	38 40	46 50	160	Oak-Heath Dry Forest, Oak- Pine Dry Forest, Red Cedar-White Ash Woodland	Headwater, peren intermit. streams, major rivers, trellis-dendritic	
M221Ad Northern Great Valley	Broad, moderately dissected valley, karstic southern half 140-1100 ft.	Cherty clay soln. residuum; Paleo. shale- sandstone-slate north, carbonates southeast	quepts, Hapludalfs, Paleuldults, Dystro-		48 52	160 180	Oak-Heath-Dry Forest, Chinquapin Oak Forest, Sycamore-Box Elder Floodplain Forest	Dendritic peren- nial-intermittent stream network, major rivers	Farming, Forestry Urban Development
			M221B ALLEGHENY MOU						
M221Ba Northern High Allegheny Mountains	Dissected plateau, ridge and valley features; 1000-4860 ft.	Sedimentary; Paleozoic sandstone-siltstone- shale-coal, Pennsyl- vanian limestone		45 55	55 61	140 150	Northern Hardwood Forest, Yellow Birch-Spruce Tran- sitional Forest, Oak-Heath Dry Forest	Dendritic-some trellis-like drainage networks	Forestry Recreation
M221Bb Western Allegheny Mountains	Wide ridges separ- ated by broad val- leys; elev.> to NW; 775-3210 ft.	Loamy colluvium; Penn- sylvanian sandstone- siltstone-shale-some limestone-coal	Dystrochrepts, Fragiudults; Mesic, udic	40 - 50	48 - 50	140- 160	Oak-Heath Dry Forest, Oak-Pine Dry Forest, Sycamore-Box Elder Flood- plain Forest	Dendritic; inter- mittent and parennial streams	Forestry Recreation Farming
M221Bc Southern High Allegheny Mountains	Rugged mountains Ridge tops mostly level; 2000-4600 ft.	Sedimentary, primarily Mississippian and Pennsylvanian	Dystrochrepts, Hapludults, Fragiudults; Mesic, udic	44 68	53	140	Northern Hardwood Forest, Ridgetop Pitch Pine-Scrub Oak Barrens, Yellow Birch- Spruce Transitional Forest	Dendritic	Forestry Recreation Mining Subsidence
M221Bd Eastern Allegheny Mountain and Valley	Ridge and valley in character; 700-1500 ft.	Sedimentary, Silurian and Devonian Shale	Dystrochrepts, Fragiudults; Mesic, udic	38 40	53	150 160	Oak-Heath Dry Forest, Oak-Pine Dry Forest, Ridgetop Pitch Pine-Scrub Oak Barrens	Trellis pattern	Forestry Recreation Pasture

M221B ALLEGHENY MOUNTAINS SECTION (con't)

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	Gs(d)	Potential Vegetation	Surface water characteristics	Human use
M221Be Western Allegheny Mountain and Valley	Eroded plateau	Sedimentary, Mississippian shale-limestone	Dystrochrepts, Hapludults, Fragiudults; Mesic, udic	35 48	48	150	Oak-Heath Dry Forest, Oak-Pine Dry Forest,		Agriculture Recreation
M221Bf Allegheny Mountain Plateau	Round-flat uplands, shallow-moderately- angular valleys; 880-2625 ft	Loamy colluvium; Mississippian-Pennsyl- vanian sandstone- siltstone-shale	Fragiudults; Mesic, udic	39 41	47 49	130 160	Northern Hardwood Forest, Oak-Heath Dry Forest	Dendritic drainage Perennial streams	,
			1C NORTHERN CUMBERLAN						• • • • • • • • • • • • • • • • • • • •
======================================	Low mountains; 1000-3000 ft.	Holocene sandstone and shale-clast loamy colluvium		46	55 55	175	Chestnut Oak - Oak (White, S. Red, Black) - Hickory (Mockernut, Pignut) FA, Sycamore - (Sweetgum, Yellow-poplar) FA	Intermittent and perennial streams common	Forestry
M221Cb Eastern Coal Fields	Low mountains; 1000-3000 ft.	colluvium	Dystrochrepts, Hapludults, Fragiudults, Strip Mines; Mesic, Udic	46	55	175	Chestnut Oak - Oak (White, S. Red, Black) - Hickory (Mockernut, Pignut) FA, Sycamore - (Sweetgum, Yellow-poplar) FA	Intermittent and perennial streams common	Forestry Mining
M221Cc Black Mountains	Low mountains; 1000-3000 ft.		Hapludults; Fragiudults; Dystrochrepts; Mesic, Udic	46	55	175	Chestnut Oak - Oak (White, S. Red, Black) - Hickory (Mockernut, Pignut) FA, White Oak - Mockernut Hic- kory (Pignut Hickory) FA		Forestry Mining
M221Cd (Milo Pyne's)	Low mountains; 1000-3000 ft.		Hapludults; Dystrochrepts; Mesic, Udic	46	55	175	Chestnut Oak - Oak (White, S. Red, Black) - Hickory (Mockernut, Pignut) FA, American Beech - White Oak FA	Intermittent and perennial streams common	Forestry Mining
M221Ce Pine and (The) Cumberland Mountain	Low mountains; 1000-3000 ft.		Hapludults; Dystrochrepts; Mesic, Udic	46	55	175	Chestnut Oak - N. Red Oak - Hickory (Mockernut, Pignut, Shagbark) FA, American Beech - White Oak FA Yellow-poplar) FA		Forestry Mining

M221D BLUE RIDGE MOUNTAINS SECTION

=======================================		=======================================		=====	=====	=====		=======================================	=========
Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes			_	Potential Vegetation	Surface water characteristics	Human use
M221Da Northern Blue Ridge Mountains	Open low mountains; 1000-4000 ft.	Holocene shale-chip loam colluvium with quartzite-clast mantle	Kanhapludults, Dystrochrepts; Mesic, udic	40 50	50 61	150 220	Chestnut Oak - Scarlet Oak- (Black Oak) FA	Intermittent and perennial streams common	Forestry Recreation
M221Db Central Blue Ridge Mountains	Low mountains; 1500-4000 ft.	Holocene sandy clay saprolite, mafic-boul- der loamy colluvium	Hapludalfs, Hapludults, Kanhapludults; Mesic, udic	40 50	50 61	150 220	Chestnut Oak - Scarlet Oak- (Black Oak) FA, Eastern White Pine - Oak (Scarlet, Chestnut) FA		Forestry Urban
M221Dc Southern Blue Ridge Mountains	Low mountains; 2000-5000 ft.	Holocene, Tertiary granitic-boulder col- luvium, silty/clayey sandy saprolite	Dystrochrepts, Kanhupludults, Hapludults; Mesic, udic	35 55	50 61	150 220	Chestnut Oak - Scarlet Oak- (Black Oak) FA, N. Red Oak FA, Red Spruce - Fraser Fir FA	common, few large	Forestry Recreation
M221Dd Metasedimentary Mountains	Low mountains; 2000-5000 ft.	Holocene granitic- boulder colluvium	Dystrochrepts, Kan- hapludults, Haplu- dults; Mesic, udic	40 50	50 61	150 220	Chestnut Oak FA, N. Red Oak FA, Red Spruce - Fraser Fir FA		,

222A OZARK HIGHLANDS SECTION

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes			-	Potential Vegetation	Surface Water characteristics	Human use
222Aa St. Francis Knobs and Basins	Steep, irregular hills; 400-1700 ft.	Sandy-silty saprolite; Precambrian, Cambrian igneous and sedimentary	Fragiudults, Hapludults, Hapludalfs; Mesic, udic	44	55	180 185	Little Bluestem Acid Glade Post-Blackjack Oak Wood- land, Black-Scarlet Oak Forest	Small rivers, perennial streams and shut-ins	Forestry Pasture
222Ab Central Plateau	Irregular plains; karst; 300-1600 ft.	Cherty clay residuum; Ordovician cherty dolomites, sandstones	Fragiudalfs, Hapludalfs, Paleudalfs; Mesic, udic	42 46	55	185 190	L.Bluestem-Indian Grass Prairie, Post-Blackjack Oak Woodland-Forest, Black-Scarlet Oak Forest	Intermittent headwater streams sinkholes & ponds	Pasture Forestry
222Ac Osage River Hills	Hills, entrenched valleys; karst; 600-1100 ft.	Cherty clay residuum; Ordovician cherty dolomites, sandstones	Hapludalfs, Paleudalfs, Fragiudalfs; Mesic, udic	41 43	55	190 195	Post-Blackjack Oak Wood- land-Forest, Black-White Oak Woodland-Forest, White Oak Forest	Dendritic spring- fed perennial strms; reservoirs	Recreation Pasture Forestry
222Ad Gasconade River Hills	Hills, entrenched valleys; karst; 600-1100 ft.	Cherty clay residuum; Ordovician cherty dolomites, sandstones	Hapludults, Paleudults, Fragiudults; Mesic, udic	41 43	55	190	Shortleaf Pine-Oak Wood- land-Forest, White-Black Oak Woodland-Forest, White Oak Forest	Dendritic spring- fed perennial strms; reservoirs	Forestry Recreation Pasture
222Ae Meramec River Hills	Hills, entrenched valleys; karst; 500-1300 ft.	Cherty clay residuum; Cambrian, Ordovician cherty dolomites	Paleudults, Hapludalfs, Fragiudalfs; Mesic, udic	41 43	55	180 190	Shortleaf Pine-Oak Wood- land-Forest, White-Black Oak-Woodland-Forest, White Oak Forest	Dendritic spring- fed perennial strms; ponds	Forestry Recreation Pasture Mining

222A OZARK HIGHLANDS SECTION (con't)

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)		_	Potential Potential Vegetation	Surface water characteristics	Human use
222Af Current River Hills	High hills with	Cherty clay residuum; Cambrian, Ordovician	Paleudalfs, Fragiudults, Paleudults; Mesic, udic	44	55	180 190	Shortleaf Pine-Oak Wood-	Dendritic, deeply entrenched spring -fed streams	Forestry Recreation Mining
222Ag White River Hills	Hills, entrenched valleys; karst 600-1600 ft.	Cherty clay residuum; Ordovician cherty dolomites	Hapludalfs, Paleudults, Hapludolls; Mesic, udic	43	56	190	Little Bluestem-Sideoats Alkaline Glade, Post- Blackjack Oak Woodland, White-Black Oak Forest	Dendritic, deeply entrenched strms now reservoirs	Recreation Pasture Forestry
222Ah Elk River Hills	Hills, entrenched valleys; karst; 900-1400 ft.	Cherty clay residuum; Miss. cherty lime- stones	Hapludalfs, Paleudults, Hapludolls; Mesic, udic	43	55	190	Post-Blackjack Oak Wood- land-Forest, Post-Black Oak Woodland-Forest, White-Black Oak Forest	Dendritic spring- fed perennial streams; ponds	Forestry Recreation Poultry
222Ai Prairie Ozark Border	Smooth plain; 800-1100 ft.	Cherty clay residuum; Ordovician, Missis- sippian cherty carbonates	Hapludolls, Hapludalfs, Paleudalfs; Mesic, udic	41	54	190 195	Big Bluestem-Indian Grass Prairie, Little Bluestem- Indian Grass Prairie, Post -Blackjack Oak Woodland	Intermittent headwater streams; ponds	Agriculture Pasture Industry Urban
222Aj Inner Ozark Border	Hills, entrenched valleys, karst; 500-1100 ft.	Cherty clay residuum; Ordovician cherty dolomites	Paleudults, Hapludalfs, Fragiudalfs; Mesic, udic	40	55	185 195	Little Bluestem-Sideoats Alkaline Glade, Post-Black jack Oak Woodland, White- Black Oak Woodland-Forest	Dendritic entrnch perennial streams; ponds	Pasture Agriculture Industry
222Ak Outer Ozark Border	Hills, entrenched valleys, karst; 400-900 ft.	Cherty, noncherty clay residuum; Paleozoic sedimentary rocks	Hapludalfs, Haplud- olls, Paleudalfs; Mesic, udic	40 46	55	190 195	White-Black Oak Woodland White Oak Forest Sugar Maple-Oak Forest	Dendritic entrnch perennial streams; ponds	Pasture Recreation Forestry
222Al Black River Ozark Border	Irregular plains & low hills, karst; 300-900 ft.	Cherty clay residuum; Ordovician sandstones and cherty dolomites	Fragiudults, Paleudults, Fragiudalfs; Mesic, thermic, udic	48	56	190 195	Shortleaf Pine-Oak Wood- land, Post-Blackjack Oak Woodland-Forest, Mixed Oak-Sweetgum Forest	Perennial streams local riverine wtlnds; reservoir	Forestry Pasture Recreation
222Am Springfield Plain	Smooth plain, karst; 800-1700 ft.	Cherty clay residuum; Mississippian lime- stones, some very cherty	Fragiudalfs, Fragiudults, Paleudalfs; Mesic, udic	43	55	190	Big Bluestem-Indian Grass Prairie, Little Bluestem- Indian Grass Prairie, Post -Blackjack Oak Woodland	Perennial spring- fed strms, ponds, sinkholes, reserv	Pasture Agriculture Recreation Urban
222An Springfield Plateau	Irregular plain, karst; 800-1400 ft.	Cherty clay residuum; Mississippian lime- stones, some very cherty	Fragiudults, Paleudults, Albaqualfs; Mesic, udic	43	55	190	Big Bluestem-Indian Grass Prairie, Post-Blackjack Oak Woodland, White-Black Oak Forest	Perennial spring- fed strms, ponds, sinkholes, reserv	Pasture Agriculture Recreation Urban

222A OZARK HIGHLANDS SECTION (con't)

	===========		======================================	32011	======	======			
Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	e Gs(d)	Potential Potential Vegetation	Surface water characteristics	Human use
222Ao Mississippi River Alluvial Plain	Alluvial plain; 340-400 ft.	Holocene silty and sandy alluvium Pleistocene outwash	Hapludolls, Udifluvents, Fluvaquents; Mesic, udic	40 46	55	190 195	Cottonwood-Willow Forest Green Ash-Elm-Hackberry Forest, Pin Oak (Swamp White Oak) Forest	Large flood-prone	Cropland Urban Industry
222Ap Missouri River Alluvial Plain	Alluvial plain; 400-570 ft.	Holocene silty and sandy alluvium; Pleistocene outwash	Hapludolls, Fluvaquents, Udifluvents; Mesic, udic	40	54	190	Cottonwood-Willow Forest Green Ash-Elm-Hackberry Forest, Pin Oak (Swamp White Oak) Forest	Large flood-prone engineered river; riverine wetlands	Agriculture
222Aq Illinois Ozarks	Dissected bluffs, karst; 350-1025 ft.	Quaternary loess, cherty clay residuum; Devonian, Mississip- pian cherty limestones	Hapludalfs, Ochraqualfs, Paleudalfs; Mesic, udic	39- 45	56- 60	182- 208	White Oak-Black Oak Forest, Shortleaf Pine- Oak Forest, Little Blue- stem Sideoats Grama glade, Beech-Sugar Maple Forest	Deeply incised, high-gradient streams; springs;	Forestry Mining Recreation
			222C UPPER GULF COAST	AL PL	AIN SEC	CTION			
222Ca Cretaceous Hills	Low rolling hills 400-580 ft	Quaternary loess; Cretaceous, Tertiary clay-sand-gravel; Mis- sissippian limestone	Hapludalfs, Fragi- udalfs, Dystro- chrepts; Thermic, mesic, udic	42 46	57 60	185 208	White Oak-Red Oak Forest, Southern Red Oak- Mixed Oak Forest, Post Oak- Mixed Oak Woodland-Barrens	creeks, inter- mittent streams, seep springs	Forestry Agriculture Quarrying
222Cb Northern Deep Loess Hills and Bluffs	Irregular plains; 100-300 ft.	Miocene-Holocene upland chert-pebble gravel and sand, al- luvial silt and sand	Fragiudalfs, Hapludalfs, Hapludults; Thermic, udic	45 60	61 68	200 280	S. Red Oak - White Oak - (Post Oak) - Hickory (Pig- nut, Mockernut, Sand) FA	Medium to large streams and rivers	Agriculture Forestry
222Cc Deep Loess Hills and Bluffs	Irregular plains; 100-300 ft.	Wisconsin, Illinois loess and loessial al- luvium; alluvial silt and sand Holocene		45 60	61 68	200 280	S. Red Oak - White Oak - (Post Oak) - Hickory (Pig- nut, Mockernut, Sand) FA, Sugar Maple - N. Red Oak - Bitter-nut Hickory FA	Medium intermit- tent / perennial stream, rivers	Agriculture Forestry
222Cd Clay Hills	Irregular plains; 100-300 ft.	Early Pleistocene to Miocene upland chert- pebble gravel and sand; fine sand decom. clayey residuum	Haplorthods, Fragiudalfs, Hapludults; Mesic, thermic, udic	45 60	61 68	200 280	S. Red Oak - White Oak - (Post Oak) - Hickory (Pig- nut, Mockernut, Sand) FA, Shortleaf Pine -Oak, White, S. Red, Post, Black) FA	Medium streams and rivers common	Agriculture Forestry
222Ce Northern Loessial Hills	Irregular plains; 100-300 ft.	Pleistocene, Miocene clayey fine sand de- composition residuum	Paleudults, Fragiudults, Hapludults; Thermic, udic	45 60	61 68	200 280	S. Red Oak - White Oak - (Post Oak) - Hickory (Pig- nut, Mockernut, Sand) FA, Sugar Maple - N. Red Oak - Bitter-nut Hickory FA	Medium intermit- tent / perennial streams common	Agriculture Forestry

222C UPPER GULF COASTAL PLAIN SECTION (con't)

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	Gs(d)	Potential Potential Vegetation	Surface water characteristics	Human use
222Cf Northern Pontotoc Ridge	Irregular plains; 100-300 ft.	Quaternary, Tertiary ferruginous sand de- composition residuum	Paleudults, Paleudalfs, Fragiudalfs; Thermic, udic	45 60	61 68	200 280	S. Red Oak - White Oak - (Post Oak) - Hickory (Pig- nut, Mockernut, Sand) FA, White Oak - Oak (Scarlet, Black, N. Red) - Hickory (Mockernut, Pignut, Shag- bark FA	Medium intermit- tent / perennial streams few	Forestry
222Cg Upper Loam Hills	Irregular plains; 100-300 ft.	Wisconsin, Illinoian clayey fine sand de- composition residuum, Holocene alluvial gravelly sand	Paleudults, Hapludults, Fluvaquents; Thermic, udic, aquic	45 60	61 68	200 280	S. Red Oak - White Oak - (Post Oak) - Hickory (Pig- nut, Mockernut, Sand) FA	Medium intermit- tent / perennial streams, rivers	Agriculture
222Ch Ohio and Cache River Alluvial Plain	Flat alluvial plain and low terraces 310-350 ft	Quaternary alluvial mud, sand, outwash sand, gravel; Cretac- eous, Tertiary clay, sand, gravel; Missis- sippian limestone	Udifluvents, Fluvaquents, Haplaquepts, Hapludalfs, Fragi- udalfs; Thermic, mesic, udic, aquic	42 45	57 60	185 208	Cypress-Tupelo Swamps, Pin Oak-Swamp White Oak Flatwoods, Watercup Oak- Sweetgum Forest	Rivers, creeks, oxbow lakes, ponds, sloughs, wetlands	Agriculture Forestry
	=======================================		INTERIOR LOW PLATEAU,				TION		
222Da Interior Western Coalfields	Irregular plains; 100-300 ft.	Holocene, Wisconsin loess, slackwater lake silt, clay, sand and gravel; sandy silty colluvium	Fragiudalfs;	46	57	185	S. Red Oak - White Oak - (Post Oak) - Hickory (Pig- nut, Mockernut, Sand) FA, Oak (Willow, Water, Laurel) FA	Small to medium intermittent and perennial streams	Forestry Mining
222Db Lower Ohio- Cache-Wabash Alluvial plains	Flat plains; 0-100 ft	Holocene alluvium; Pleistocene outwash; Late Paleozoic shale- sandstone	Hapludolls, Haplaquolls, Hapludalfs; Mesic, aquic-udic	44 46	55 57	179 200+	Oak-Sweetgum Bottomland Forests, Cypress-Tupelo Swamps, Bulrush-Cattail Marsh	Silt bottomed low gradient rivers and streams	Agriculture
222Dc Outer Western Coal Fields	Irregular plains; 100-300 ft.	Holocene, Wisconsin sandy silty and silty clayey sand colluvium; L. Wis slackwater lake silt, clay, gravel	Fragiudalfs; Hapludalfs; Mesic, udic	46	57	185	S. Red Oak - White Oak - (Post Oak) - HIckory (Pig- nut, Mockernut, Sand) FA, American Beech - Sugar Maple - (Yellow-poplar) FA	Small to medium intermittent and perennial streams	Forestry Mining
222Dd Marion Hills	Irregular plains; 300-500 ft.	Quaternary, Tertiary silty clayey sand col- luvium, cherty clay solution residuum	Fragiudalfs; Hapludalfs; Mesic and thermic, udic	46	57	185	Chestnut Oak - Oak (White, S. Red, Black) - Hickory (Mockernut, Pignut) FA, S. Red Oak - White Oak - (Post Oak) - HIckory (Pig- nut, Mockernut, Sand) FA	Perennial streams common	Agriculture

222D INTERIOR LOW PLATEAU, SHAWNEE HILLS SECTION (con't)

			=======================================			=====	=======		
Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	Gs(d)	Potential Vegetation	Surface water characteristics	Human use
222De Crawford Uplands	Open hills, 350-925 ft.	Holocene silty-sandy colluvium; Mississip- pian-Pennsylvanian sandstone-shale	Hapludalfs, Fragiudalfs, Hapludults; Mesic, udic	43 46	54 57	170	White Oak-Red Oak Forest, Beech-Maple Forest	Medium- to high- gradient peren- nial and intermit- tent streams	Forestry Agriculture
222Df Crawford Escarpment	Open high hills, bluffs; 400-1000 ft.	Holocene sand-silt- clay colluvium; Miss- issippian sandstone- shale-limestone	Fragiudalfs, Haplu- dalfs, Paleudalfs, Hapludults; Mesic, udic	44 47	52 53	175 190	White Oak-Red Oak Forest, Beech-Maple Forest	Medium- to high- gradient peren- nial & intermit- tent streams	Forestry
222Dg Southern Dripping Springs	Open hills; 300-500 ft.	Sandy silty colluvium; Silty clayey sand colluvium; Slackwater lake silt-clay-sand and gravel	Fragiudalfs; Hapludalfs; Mesic, udic	46	57	185	S. Red Oak - White Oak - (Post Oak) - Hickory (Pig- nut, Mockernut, Sand) FA, American Beech - Sugar Maple - (Yellow-poplar) FA	Medium to high gradient perennial and intermittent streams	Forestry Mining
222Dh Greater Shawnee Hills Hills	Rough hills, dis- sected cuestas, bluffs, minor karst; 450-1050 ft.	Quaternary loess; Penn. sandstone-shale, Miss. limestone	Hapludalfs, Fragiudalfs, Dystrochrepts; Mesic, udic	42 46	56 56	182 208	White Oak-Red Oak Forest, Post Oak-Blackjack Oak Forest, Blackjack Oak- Cedar Glades	deeply incised creeks and intermittent streams; springs	Forestry Recreation
222Di Lesser Shawnee Hills	Rolling hills, bluffs; karst 350-550 ft.	Quaternary loess; Mississippian sand- stone, shale, lime- stone	Hapludalfs, Fragiudalfs, Dystrochrepts; Mesic and thermic, udic	42 46	56 59	182 208	White Oak-Red Oak Forest, Post Oak-Blackjack Oak Forest, Blackjack Oak- Cedar Glades	mid to low grad- ient creeks and intermittent streams	Agriculture Forestry, Recreation
222Dj Northern Dripping Springs	Open hills; 300-500 ft.	Sandy silty colluvium; Silty clayey sand colluvium; Slackwater lake silt-clay-sand and gravel	Hapludalfs;	46	57	185	S. Red Oak - White Oak - (Post Oak) - Hickory (Pig- nut, Mockernut, Sand) FA, American Beech - Sugar Maple - (Yellow-poplar) FA	Medium to high gradient perennial and intermittent streams	Forestry Mining
222E INTERIOR LOW PLATEAU, HIGHLAND RIM SECTION									
Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	Climat T(F.)	e Gs(d)	Potential Vegetation	Surface water characteristics	Human use
222Ea Eastern Highland Rim	Irregular plains; 100-300 ft.	Quaternary and older Cenozoic, chert- fragment solution residuum	Paleudalfs; Paleudults; Hapludalfs; Mesic, udic	44 54	55 61	180 205	Chestnut Oak - Scarlet Oak- (Black Oak) FA, S. Red Oak- White Oak - (Post Oak) - Hickory (Pignut, Mockernut, Sand) FA	Perennial streams	

222E INTERIOR LOW PLATEAU, HIGHLAND RIM SECTION (con't)

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)) T(F.		Potential Vegetation	Surface water characteristics	Human use
222Eb Eastern Karst Plain	Open high hills; 500-1000 ft.	Quaternary cherty clay solution residuum; chert fragment solution residuum		44 54	55 61	180 205	S. Red Oak - White Oak - (Post Oak) - HIckory (Pig- nut, Mockernut, Sand) FA, American Beech - Sugar Maple - (Yellow-poplar) FA		Agriculture
			RIOR LOW PLATEAU, HIC						
Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in	-Clima	te	Potential Vegetation	Surface Water characteristics	Human use
222Ec Outer Nashville Basin	Open hills; 300-500 ft.	Cenozoic, Quaternary cherty silty clay, locally phosphatic solution residuum	Hapludults, Paleudults, Hapludalfs; Thermic, udic	50	57 61	192	White Oak - N. Red Oak - Hickory (Shagbark, Pignut, Mockernut) FA, American Beech - Sugar Maple - (Yellow-poplar) FA	Perennial streams few to common	Forestry Agriculture
222Ed Inner Nashville Basin	Plains with hills; 300-500 ft.	Cenozoic, Quaternary thin clayey solution residuum	Hapludalfs, Rendolls Hapludolls; Thermic, udic	50	48 55	140 160	White Oak - N. Red Oak - Hickory (Shagbark, Pignut, Mockernut) FA, Sugar Maple- Bitter-nut Hickory FA	Perennial streams few to common	Urban Agriculture
222Ee Highland Rim-Hilly and Rolling	Irregular plains; 100-300 ft.	Quaternary and older Cenozoic, chert- fragment solution residuum	Fragiudults; Paleudults; Thermic, udic	44 54	55 61	180 205	Chestnut Oak - Scarlet Oak- (Black Oak) FA, S. Red Oak- White Oak - (Post Oak) - Hickory (Pignut, Mockernut, Sand) FA	small to medium perennial streams	Forestry Agriculture
222Ef Tennessee- Gasper Valley	Irregular plains; 100-300 ft.	Cenozoic, Quaternary chert-fragment solu- tion residuum	Paleudults; Thermic, udic	36 55	55 61	170 210	Chestnut Oak - Scarlet Oak- (Black Oak) FA, S. Red Oak- White Oak - (Post Oak) - Hickory (Pignut, Mockernut, Sand) FA	small to medium perennial streams	Agriculture
222Eg Western Penneroyal Karst Plain	Open hills; 300-500 ft.	Quaternary and older Cenozoic chert-frag- ment solution resid- uum; cherty clay sol- ution residuum; cherty silty clay, phosphatic		44 54	55 61	180 205	S. Red Oak - White Oak (Post Oak) - Hickory (Pig- nut, Mockernut, Sand) FA, Big Bluestem - (Yellow Indian-grass) HA	Small to medium perennial streams common	Forestry

44 55

54 61

180

S. Red Oak - White Oak

Big Bluestem - (Yellow

Indian-grass) HA

nut, Mockernut, Sand) FA,

(Post Oak) - Hickory (Pig- medium and common-

Perennial streams Forestry

few to common

medium rivers

solution residuum

ment solution

residuum

residuum; chert frag-

Quaternary, Tertiary Paleudalfs;

cherty clay solution Thermic, udic

222Eh Penneroyal Irregular plains;

100-300 ft.

Karst Plain

222E INTERIOR LOW PLATEAU, HIGHLAND RIM SECTION (con't)

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes				Potential Vegetation	Surface water characteristics	Human use
222Ei Western Knobs	Open hills; 300-500 ft.	Holocene, Wisconsin shale-chip loamy col- luvium, cherty clay solution residuum- sandy clay decomp.	Paleudults, Dystrochrepts; Mesic,thermic, udic	===== 44 54	55 61	180 205	Chestnut Oak - Oak (White, S. Red, Black) - Hickory (Mockernut, Pignut) FA, Sugar Maple - N. Red Oak - Bitter-nut Hickory FA	Intermittent streams few to common	Forestry
222Ej Eastern Knobs Transition	Open hills; 300-500 ft.	Quaternary, Tertiary cherty clay solution and sandy clay decom- position residuum; shale chip loamy colluvium	Dystrochrepts; Eutrochrepts; Hapludults; Mesic, udic	46	55	175	Chestnut Oak - Oak (White, S. Red, Black) - Hickory (Mockernut, Pignut) FA, White Oak - N. Red Oak - Hickory (Shagbark, Pignut, Mockernut) FA	Small to medium intermittent streams common	Forestry
222Ek Mitchell Karst Plain	Irregular plain 100-500 ft	Thin discontinueous loess, silty-clayey residuum-colluvium; Paleozoic carbonates	Paleudalfs, Fragiudults, Argiudolls; Mesic, udic	43. 45	52 54	175 200	White Oak-Red Oak Forest, Little Bluestem-Sideoats Grama Glade, Beech-Maple Forest	Rocky high-medium grade perennial- intermit. streams, few in karst topo.	Mining,
222El Knobstone Escarpment	Open high hills 500-1000 ft	Thin discontinuous loess, silty-sandy colluvium: Paleozoic siltstone-shale	Fragiudalfs, Hapludalfs, Hapludults; Mesic, udic	43 44	54 55	173 190	Chestnut Oak-Mixed Oak Forest, Virginia Pine-Oak Forest, Beech-Maple Forest	Small intermittant and ephemeral high gradient streams	Forestry
222Em Brown County Hills	Open hills with considerable relief 100-500 ft	Thin discontineous loess, silty-clayey, colluvium: Paleozoic shale-siltstone	Fragiudalfs, Hapludalfs, Hapludults; Mesic, udic	41 43	52 53	170 180+	Upland Oak-Hickory Forest Beech-Maple Forest Chestnut Oak-Mixed Oak Forest	Medium to high gradient perennial and intermittant streams and low	Forestry Recreation
222En Kinniconick and Licking Knobs		Holocene, Wisconsin shale-chip loamy colluvium	Hapludults; Dystrochrepts; Hapludults; Mesic, udic	46	55	175	Chestnut Oak - Oak (White, S. Red, Black) - Hickory (Mockernut, Pignut) FA, White Oak - N. Red Oak - Hickory (Shagbark, Pignut, Mockernut) FA	Medium to high gradient inter- mittent and perennial streams	Forestry
222Eo The Cliffs	High hills; 500-1000 ft.	Quaternary, Tertiary sandstone, shale-clast loamy colluvium, shale -chip loamy colluvium, cherty clay solution	Hapludalfs; Hapludults;	46	55	175	Chestnut Oak - Oak (White, S. Red, Black) - Hickory (Mockernut, Pignut) FA, Chestnut Oak FA	Medium to high gradient inter- mittent and perennial streams	Forestry

222F INTERIOR LOW PLATEAU, BLUEGRASS SECTION

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	Gs(d)	Potential Vegetation	Surface water characteristics	Human use
222Fa Outer Bluegrass	Irregular plains, open hills; 100-500 ft.	Holocene carbonate- clast loamy colluvium	Hapludalfs,	44	55	180	White Oak - N. Red Oak - Hickory (Shagbark, Pignut, Mockernut) FA, American Beech - Sugar Maple - Yellow-poplar) FA	Intermittent and perennial streams common	Agriculture
222Fb Inner Bluegrass	Irregular plains, escarpments along rivers; 100-300 ft.	Quaternary and Terti- ary clay loam solution residuum		44	55	180	White Oak - N. Red Oak - Hickory (Shagbark, Pignut, Mockernut) FA, Sugar Maple- N. Red Oak - Bitter-nut Hickory FA		Agriculture
222Fc Western Bluegrass	Open hills, table- lands; 300-500 ft.	Holocene stony silty clay colluvium and alluvial sands	Hapludalfs, Dystro- chrepts, Fluva- quents; Mesic, udic	44	55	180	White Oak - N. Red Oak - Hickory (Shagbark-Pignut- Mcokernut) FA	Tributaries of Ohio River, oxbow lakes common	Agriculture Forestry
222Fd Northern Bluegrass	Irregular plains, dissected plateau; 400-925 ft.	Discontinuous loess, silty, clayey residuum; Paleozoic carbonates, shales	Hapludalfs, Paleudalfs, Argiudolls, Fragiudalfs; Mesic, udic	40 44	54 55	158 197	White Oak - N. Red Oak - Hickory (Shagbark, Pignut, Mockernut) FA, Big Bluestem-Indiangrass Prairie	Rocky, gravel, bottomed medium gradient perennial streams and rivers Ohio River, Ohio	Forestry Agriculture
222Fe Muscatatuck Flats and Valleys		Moderate loess cap, pre-Wis. loam, sandy till; Early Paleozoic shales, carbonates	Fragiudalfs, Fragiaqualfs, Hapludults; Mesic, udic, aquic	42 46	52 56	168 190	Beech-Maple Flatwoods, Mixed Mesophytic Forest,	Medium gradient streams on on valley slopes	Agriculture Forestry
222Ff S cottsburg Lowland	Irregular plains; 400-600 ft	Pleistocene loess, loam, sandy loam till; Early Paleozoic shales, carbonates	Udifluvents, Fluvaquents; Mesic, udic, aquic	41 44	52 54	168 190	Oak-Sweetgum Swamp, Cottonwood-Maple Forest	Low gradient silt- bottomed perennial streams, rivers, and wetlands brush river	Agriculture
		MAP UNIT TABLES: ECOLOGI	CAL UNITS OF THE EAS	TERN U	NITED S	STATES	FIRST APPROXIMATION		
		2220	CENTRAL TILL PLAINS	, OAK-	HICKORY	SECT	ION		
222Ga Effingham Plain	Flat to rolling plain, shallow alluvial valleys; 420-620	Pleistocene loamy till; Pennsylvanian shale-sandstone-coal	Hapludalfs, Epia- qualfs, Albaqualfs, Natraqualfs; Mesic, udic-aquic	36 41	54 56	172 190	Big Bluesten-Indiangrass Prairie, Bur Oak-Mixed Oak Savanna-Woodland, Post Oak Flatwood	Low gradient rivers and creeks	Agriculture Mining
222Gb Mount Vernon Hill Country	Rolling plains, alluvial valleys 390-600 ft.	Pleistocene loamy till, lake deposits; Pennsylvanian shale- sandstone-coal	Hapludalfs, Epia- qualfs, Fragiudalfs, Albaqualfs; Mesic, udic, aquic	39 43	55 57	180 198	Bur Oak-Mixed Oak Savanna- Woodland, Big Bluestem- Indiangrass Prairie, Post Oak Flatwood	Medium gradient rivers and creeks; oxbow lakes	Agriculture Forestry Mining

222G CENTRAL TILL PLAINS, OAK-HICKORY SECTION (con't)

=======================================				=====	======	=====	=======================================		
Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)		Gs(d)	Potential Vegetation	Surface water characteristics	Human use
222Gc Lower Wabash Alluvial Plain		Holocene alluvial sand -mud, Pleistocene outwash sand-gravel; Paleozoic sedimentary		40	55 58	180 195	Silver Maple Forest, Big Bluestem-Indiangrass Prairie, White Oak-Red Oak Forest	Low gradient rivers and creeks; oxbow lakes, sloughs	Agriculture Forestry Mining
222Gd Wabash Uplands	Dissected paleo- terraces; low bluffs 380-580 ft.	Pleistocene outwash sand and gravel; Pennsylvanian shale, sandstone, coal	Hapludalfs, Epiaqualfs; Mesic, udic, aquic	40 45	55 58	180 195	White Oak-Red Oak Forest, Big Bluestem-Indiangrass Prairie, Silver Maple Forest	Medium gradient creeks	Agriculture Mining
222Ge Southwest Indiana Glaciated Lowlands	Open low hills, paleodunes, strip mines 470-740 ft.	L.Wis. loamy till, loess, dune sand; Paleozoic shale-sand- stone	Hapludalfs, Fragiudalfs; Mesic, udic	41 46	52 56	175 200+	Big Bluestem-Indiangrass Prairie, Beech-Maple Flatwood	Low gradient small and large rivers, and small periennal streams	
			I CENTRAL TILL PLAINS,		H-MAPLE	SECTI			
222Ha Bluffton/ Ann Arbor Till Plains	Smooth plain, low morainal ridges, end-ground moraine 640-1032 ft.	Wis. clay, clay loam till, 100-150 ft.; Paleozoic shales, carbonates, sandstones	Hapludalfs,Epia- qualfs, Argiaqualfs, Argiudolls;	34	46 49	150 170	Pin Oak-Swamp White Oak Flatwoods, Beech-Maple Forest	Low gradient, per- ennial, headwater- intermit. streams common, few lakes	Agricultural Urban
222Hb Miami/ Scioto Plain/ Tipton Till Plain	Smooth plain, low hills; 530-1550 ft.	Wis. loamy till, thin loess, outwash Paleo- zoic, carbonates, shale	Hapludalfs, Epia- qualfs, Argiaqualfs, Argiaquolls; Mesic, udic	36 49	49 53	155 180	Pin Oak-Swamp White Oak Flatwoods, Beech-Maple Forest	Low gradient streams, small rivers	Agriculture Urban Residential
222Hc Little Miami Old Drift Plain	Smooth plain, ground moraine, 600-1340 ft.	Illinoian clay-loam till, loess; Paleozoic carbonates	Glossaqualfs, Fragi- iudalfs, Fragia- qualfs; Mesic, aquic, udic	40 43	53 54	167 175	Beech-Maple Forest, Pin Oak-Swamp White Oak Flatwoods	Low Stream density	Agriculture Forestry
222Hd Mad River Interlobate Plains		L.Wis. loamy till, outwash sand, gravel; Paleozoic carbonates	Hapludalfs, Argiaquolls, Endoaquolls; Mesic, udic, aquic	34 37	46 49	159 164	Beech-Maple Forest, White-Red Oak Forest	Abnormally cool main wet Prairie and Marsh	Agriculture Forestry
222He Darby Plains	Low relief, glacial drift 800-1210 ft	L.Wis. loamy till; Paleozoic carbonates	Argiaquolls, Epia- qualfs, Hapludalfs; Mesic, aquic, udic	37 41	50 52	161 170	White-Red Oak Forest Elm-Ash Swamp Forest, Cordgrass Wet Prairie	Low stream density	Forestry Agriculture

222H CENTRAL TILL PLAINS, BEECH-MAPLE SECTION (con't)

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	Gs(d)	Potential Vegetation	Surface water characteristics	Human use
	Dissected plain, river valley; 450-930 feet	Holocene alluvium; Pleistocene loamy till outwash, eolian sand, loess Paleozoic sedimentary	Hapludalfs,	40 44	49 56	165 190	Beech-Maple Forest, Silver Maple Forest, Pin Oak- Swamp White Oak Forest, Cliff & Ravine Communities	Medium gradient, clear, rocky periennial-inter-	Agriculture Forestry Recreation
			LAKE ERIE AND ONTAR		PLAIN	I SECT			
222Ia Lake Erie Plain	Irregular plain, 400-1000 ft.	Pleistocene lake silt- clay, wave plane till; Devonian limestone-shale	Hapludalfs, Epiaquepts; Mesic, udic, aquic	33 40	50 51	===== 148 168	No. Hardwood Forest, Oak- Hickory-Ash Dry Forest, Black Oak-White Oak Wood- land, Beechgrass Dune	Lake Erie, few streams	Forestry Fruit Agriculture
2221b Erie/ Ontario Lake Plain	Lowland plain, glacial; 400-1000 ft.	Late Wis. loamy-clayey till, lake silt, clay, swamp; Paleozoic carbonates, sandstone, shale	Hapluqualfs,	35	47	164	No. Hardwood Forest, Oak- Hickory-Ash Dry Forest, Chinquapin Oak Woodland, White Cedar Limestone Woodland	Lake Ontario, streams, wetlands, deranged drainage	Agriculture Urban
222Ic Eastern Ontario Till Plain	Irregular lowland plain; glacial; 400-1200 ft.	Late Wis. loamy, clayey till, lake silt clay, swamp, alluvium, outwash; Paleozoic dolomite	Hapludalfs, Medisaprists, Dystrochrepts, Ochraqualfs; Mesic, udic	36	47	158	Oak-Hickory-Ash Dry Forest Chinquapin Oak Woodland, No. Hardwood Forest, Inland Salt marsh	Erie Canal, Sene- ca & Cayuga Lakes, streams, wetland, dendritic	Development
222Id Cattaraugus /Finger Lakes and Moraine and Hills	ground-end moraine	Late Wis. loamy till, minor alluvium, kame deposits; Devonian limestone, sandstone, shale	Hapludalfs, Ochraqualfs; Mesic, udic	33	47	151	Oak-Pine Dry Forest Oak-Hickory-Ash Dry Forest, Northern Hardwood Forest	Deep post-glacial lakes, streams, wetlands	Agriculture Recreation Forestry
2221e Eastern Ontario Lake Plain	Irregular lowland, glaciated, ice-mold ed, drowned shore; 400-800 ft.	Late. Wis. lake silt, clay, sand, gravel, loamy till; Holocene swamp; Ordovician limestone, sedimentary	Fragiochrepts, Eutrochrepts, Medisaprist, Ochraqualf; Mesic, udic, aquic	41	46	173	Oak-Hickory-Ash Dry Forest, Northern Hardwood Forest, No. White Cedar Forest, Alvar Grassland	L.Ontario shore; Oneida Lake; low grade streams, lakes, wetlands	Agriculture Forestry
222If Maumee Lake Plain	Smooth glacial lake plain; 580-750 ft.	Pleistocene loamy, clayey lake sediments, (5-100 ft.); Silurian, Mississippian marine sediments		30 36	48 51	146 202	Red Maple-Black Ash Seep- age Swamp, No. Hardwood Forest, No. White Cedar Forest, Pine-Heath Woods	Low gradient steams, lakes	Agriculture Urban Forestry
2221g Lake Erie Sand Plain	Smooth plain, sand sheets, dune 580-750 ft.	L.Wis. lake sand, gravel, clay till; Paleozoic shales, carbonates	Endaquolls, Hapludalfs, Udipsamments; Mesic, udic	31 34	49 50	150 170	Oak-Hickory-Ash Dry For- est, Red Maple-Black Ash Seepage Swamp	Headwater streams, few rivers, wetlands	Agriculture Forestry Development

222J SOUTHEASTERN GREAT LAKES

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	Gs(d)	Potential Vegetation	Surface water characteristics	Human use
222Ja Southeast Lake Michigan Plains and Dunes	Flat plains and sand dunes 580-786 ft.	Holocene eolian sand; Wis. lake sand, gra- vel clay, silt, clay till; Paleozoic shale, carbonates	Haplaquolls, Hapludalfs, Argiudolls,	===== 32 35	 46 49	150 170	Beech-Maple Forest, Hemlock-Sugar Maple Forest, Beachgrass Dunes	Few kettle lakes extensive marshes, several large lakes	Agricultural
222Jb Southeast Lake Michigan Moraines	Irregular plains and open hills 580-927 ft.	Wis. clayey, loamy, sandy till; Devonian shale; Miss. marine sedimentary rocks	Haplaquolls, Hapludalfs, Arigudolls; Mesic, udic	33 36	45 49	150 170	Beech-Maple Forest, White Oak-Red Oak Forest, Red Maple Swamp	Kettle lakes and intermittent streams, common	Agricultural Horticulture
222Jc Iona Moraines	Flat to rolling plains, ground and end moraine; 583-1115 ft.	Wis. loamy till; Miss-Penn. marine sediments, Jurassic "red beds"	Hapludalfs, Argi- aquolls, Haplorthods Udipsamments; Mesic, udic	33 36	44 47	130 160	Beech-Maple Forest, White Oak-Red Oak Forest, Silver Maple Forest	Kettle lakes, in- termittent-peren- nial streams- wetlands, common	Agricultural
222Jd Saginaw Clay Lake and Till Plain	Flat lake plains; 580-831 ft.	Wis. lacustrine sand, silt, muck, peat; Dev. -Penns marine rock, Jurassic "red beds"	Haplaquents, Haplaquods; Mesic, udic	32 34	45 47	150 160	Black Ash-Red Maple Swamp, Bulrush-Cattail Marsh, Big Bluestem-Switchgrass Prairie	No natural lakes; Few large rivers, intermitperen. streams, wetlands	Agricultural
222Je Huron Clay Lake and Till Plain	Flat lake plains; 580-1011 ft.	Wis. lake silt, clay, sand, gravel; loam, clay, till; Miss. marine rocks	Haplaquents, Haplaquods; Mesic, udic	32 36	45 47	130 160	Hemlock-Sugar Maple For- est, Black Ash Swamp, Bul- rush-Cattail Marsh	Large wetlands, few intermittent- perennial streams	Agricultural
222Jf Lum Interlobate Moraine	Irregular plains; 720-978 ft.	Wis. loamy till, 0-300 ft. Devonian- Mississippian shale	Hapludalfs, Argiudolls; Mesic, udic	33 35	45 46	130 140	White Oak-Red Oak Forest, Tamarack Swamp, Bur Oak- Mixed Oak Savanna	Many kettle lakes, ponds, wetland complexes; inter- mittent-perennial streams	Agricultural
222Jg Jackson Interlobate Moraine	Irregular plains; 840-1199 ft.	Wis. sandy loam till, 0-300 ft., outwash sand, gravel; Devoni- an, Miss. sedimentary	Hapludalfs, Argiudolls; Mesic, udic	34 38	45 47	140- 150	Bur Oak-Mixed Oak Savanna, Big Bluestem-Indiangrass Prairie, Prairie Fen	Many kettle lakes- ponds, wetland complexes, head- water streams	Agriculture Urban
222Jh Kalamazoo/ Elkhart Moraines & Plains	Irregular plain, morainal ridges; 593-1140 ft.	Wis. loam, clay loam till, outwash sand, gravel; eolian sand; Paleozoic shale, carbonates	Hapludalfs, Histo- sols, Hapludolls, Argiudolls, Udipsa- ments; Mesic, udic	34 38	46 49	140 170	Little Bluestem-Indian- grass Sand Prairie, Black Oak Barrens, Big Bluestem-Indiangrass Prairie	Small periennial streams, kettle lakes	Agriculture
222Ji Steuben Interlobate Moraines	Irregular plain, few low hills, ice-molded; 912-1200 ft.	Wis. loamy till, out- wash sand-gravel; Pal- eozoic shale and car- bonates	dalfs, Argiaquolls,		47 48	150 165	White Oak-Red Oak Forest, Beech Maple Forest, Bulrush-Cattail, Sedge- Meadow, Sedge Fen	Numerous kettle lakes, wetlands, and perienial streams	Agriculture Recreation

222J SOUTHEASTERN GREAT LAKES (con't)

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes				Potential Vegetation	Surface water characteristics	Human use
222Jj Southeast Lake Michigan Plains and Dunes	Level plain, dunes; 100-300 ft.	L. Wis. lake clay, silt, sand, gravel, eolian dune sand; Paleozoic carbonates	Argiaquolls, Epiaqualfs, Argiudolls; Mesic, aquic, udic	37 37	50 51	175 180	White Oak-Red Oak Forest, Bur Oak-Mixed Oak Savanna, Little Bluestem-Indian grass Sand Prairie	Small rivers, shallow streams, many wetlands	Urban development

222K SOUTHWESTERN GREAT LAKES MORAINAL SECTION

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes			-	Potential Vegetation	Surface water characteristics	Human use
222Ka Central Wisconsin Sand Plain	Flat sand lake plain 740-1234 ft.	Wis. sandy outwash and lake sediments; Cambrian, sandstone Precambrian gneiss	Quatipsamments; Frigid, mesic, udic	31 33	43 46	120 150	Jack Pine-Oak Barrens; Tamarack Swamp, Sedge Meadow	Streams, no lakes	Wildlife Agriculture
222Kb Central Wisconsin Moraines and Outwash	Pitted outwash, hummucky moraines; 760-1253 ft.	Wis. sandy outwash, loamy till; Cambrian sandstone, Precambrian gneiss, granite	Hapludalts. Udipsamments; Mesic, udic	31 33	43 46	120 150	Northern Pin Oak Forest, Bur Oak Openings, Big Bluestem-Indiangrass Prairie	Common kettle lakes, ponds, wetland	Wildlife Agriculture Forestry
222Kc Lake Winne- bago Clay Plain	Flat till and lake plains; 740-1015 ft.	Wis. lake and reworked till; Ordovician dolomites	Udipsamments; Mesic, udic	32 33	44 45	143 150	Sugar Maple-Basswood Forest; Bur Oak Openings	Important water- ways exist	Agriculture
222Kd South Central Wisconsin Prairie and Savannah	Rolling to hilly, ground-recessional- end moraine; 740-1270 ft.	Wis. sandy outwash, loamy till, clayey lake deposits; Paleo- zoic carbonates-shale	Hapludalfs, Argiudolls; Mesic, udic	32 33	44 46	142 184	Bur Oak Openings, White Oak-Red Oak Forest	Common kettle lakes and rivers	Agriculture
222Ke Southern Green Bay Lobe	Irregular plain, ground-end moraine moraines, lake plain; 740-1194 ft.	Wis. calcareous loamy till, sandy outwash, clayey lake deposites; Paleozoic dolomites	Hapludalfs; Mesic, udic	32 34	44 47	142 184	Sugar Maple-Basswood Forest, Bur Oak Openings, White Oak-Black Oak Forest	Common lakes and streams	Agriculture
222Kf Geneva/ Darien Moraines and Till Plains	Irregular plain; ice-molded fea- tures, end moraine 693-1142 ft.	Wis. loess, calcareous loamy till, sandy out- wash; Paleozoic car- bonates-shale	Hapludalfs, Argiudolls, Medisaprists; Mesic, udic, aquic	33 35	44 48	142 184	Cordgrass Wet Prairie, Maple-Basswood Forest, White Oak-Black Oak Forest	Few lakes, creeks, and rivers	Agriculture Urban Recreation
222Kg Kenosha/ Lake Michigan Plain and Moraines	Irregular plain, rolling, ground moraine; 580-922 ft.	Wis. loess, loamy till, outwash, lake deposits; Paleozoic carbonates	Epiaqualfs, Argiud- olls, Hapludalfs, Endoaquolls; Mesic, udic	34 35	48 46	142 184	Big Bluestem-Indiangrass Prairie, Bur Oak Openings, Cordgrass Wet Prairie	No lakes, few rivers	Agriculture Urban Industry

222K SOUTHEASTERN GREAT LAKES MORAINAL SECTION (con't)

222Kh Rock River Old Drift Country	Irregular plain, moraines, outwash; 720-1140 ft.	Loess, Pre-Wis. till, Wis. outwash; Ordovi- cian dolomite	Argiudolls, Haplud- alfs, Endoaquolls, Hapludolls; Mesic, udic, aquic	34 35	46 48	150 160	Big Bluestem-Indiangrass Prairie, White Oak-Black Oak Forest, Maple-Basswood Forest	No lakes, numerous small creeks, some larger streams	Agriculture Recreation Urban Development
222Ki Chicago Lake Plain	Level plain with dunes; 590-670 ft.	Quaternary eolian sand and lacustrine clay, silt, muck, peat; Paleozoic carbonates	Argiudolls, Haplu- dalfs, Endoaquolls, Udipsamments; Mesic, aquic, udic		48 50	162 167	Cordgrass Wet Prairie, Bulrush-Cattail Marsh	Creeks, wetlands	Urban Industry Agricultue
222Km Valparaiso Moraine	Level to gently rolling; knob and kettles 100-300 ft.	Late Wisconsin clayey till; Paleozoic cabonates and shale	Ochraqualfs, Hapludalfs; Mesic, aquic, udic	40	49 50	160 175	White Oak-Black Oak Forest, Beech-Maple Forest, Big Bluestem- Indiangrass Prairie	Kettle lakes, small periennial streams	Agriculture Urban
			H CENTRAL U.S. DRIFTL			RPMENT			
222La Menominee Eroded Pre- Wisconsinan Till	Steep to Rolling rocky land 724-1258 ft.	Pleistocene; Cambrian sandstone, dolomite, and shale	Hapludalfs, Quatizpsamments; Frigid and mesic, udic	29 30	42 44	138 143	Bur Oak Openings, Big Bluestem-Indiangrass Prairie, Maple-Basswood Forest	No lakes	Agriculture Forestry
222Lb Melrose Oak Forest and Savannah	Hilly to Rolling slopes 652-1396 ft.	Pleistocene; Cambrian siltstone and sand- stone	Hapludalfs; Frigid and mesic, udic	30 33	43 46	135 140	Bur Oak Opening, Little Bluestem-Indiangrass Prairie, Maple-Basswood		Agriculture
222Lc Mississippi /Wisconsin River Ravines	Rolling to Steep valleys 600-1457 ft.	Pleistocene, alluvium sheetwash alluvium, loess, loamy till; Ordovician dolomite- limestone, sandstone	Hapludalfs; Mesic udic	29 34	43 48	140 160	Little Bluestem-Indian grass prairie, Sugar Maple-Basswood Forest, White Oak-Black Oak Forest	Mississippi River No lakes	Agriculture
222Ld Kickapoo/ Wisconsin River Ravines	Rolling to Very Steep valleys 675-1494 ft.	Pleistocene;Ordovician dolomite, shale; Cambrian sandstone	Hapludalfs; mesic, udic	32 33	44 47	138 150	Sugar Maple-Basswood Forest, Bur Oak Openings- Woodland, White Oak-Black Oak Forest	no lakes	Agriculture
222Le Mineral Point Prairie/ Savannah	Rolling hills, dissected ground moraine, bluffs 657-1284 ft.	Holocene cherty col- luvium, alluvium; Pleistocene loess; Paleozoic carbonates- shale, sandstone	Hapludalfs, Endoaqualfs, Eutrochrepts; mesic, udic, aquic	33 34	45 48	136 160	White Oak-Black Oak Forest, Big Bluestem- Indiangrass Prairie, Bur Oak Openings	medium gradient rivers and creeks	agriculture Recreation Forestry
222Lf Western Paleozoic Plateau	Gently to slightly sloping 683-1360 ft.	Pleistocene loamy- clayey till, colluvium sheetwash alluvium; Devonian limestone	Hapludalfs; mesic, udic	29 32	44 45	143 150	Little Bluestem-Indian grass Prairie, Bur Oak Openings, White Oak-Black Oak Forest	Major Rivers flow through	Forestry & Agriculture

222M MINNESOTA AND NORTHEAST IOWA MORAINAL SECTION

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes			_	Potential Vegetation	Surface water characteristics	Human use
222Ma Alexandria Moraine/Hardwood Hills	Irregular plains, stagnation-end moraines, 940-1658 ft.	Wis. loamy till and sandy outwash; Precambian granite; Cretaceous shale	Aquolls, Borolls, Udolls; Frigid, udic	22 27	39 43	122 140	Big Bluestem-Indiangrass Prairie, Bur Oak Openings- Woodland, Maple-Basswood Forest	Mississippi River, Many lakes, head- waters of many streams,	Agriculture Recreation
222Mb Big Woods Moraines	Irregular, hilly, stagnation and end moraines 685 - 1198 ft.	Wis. loamy till; Ordovician, Cambrian, Cretasceous sandstone, shale, dolomite	Udolls, Aquolls, Udalfs, Aqualfs; Mesic, udic	27 29	43 45	145 150	Maple-Basswood Forest, White Oak-Red Oak-Bur Oak Forest	Many lakes and wetlands	Agriculture Forestry
222Mc Anoka Sand Plain	Flat plain 680 - 1234 ft.	Wis. sandy outwash- lake plain; Paleozoic dolomite, sandstone, shale	Udipsamments; Frigid, udic	26 29	42 44	136 156	Black Oak-Northern Pin Oak Barrens, Tamarack Swamp, Cordgrass Wet Prairie	Few lakes; poorly developed drainage networks	
222Md Rosemont Baldwin Plains and Moraines	Irregular plain, end moraine 680 - 1299 ft.	Wis. loess capped bedrock and till; Ordovician and Devonian dolomite	Hapludolls, Haplualfs, Argiudolls; Mesic, udic	28 30	42 44	146 156	Bur Oak Openings-Woodland, Maple-Basswood Forest, Big Bluestem-Indiangrass Prairie	Few lakes, fairly well developed drainage pattern	Agriculture Urban
222Me Oak Savannah Till and Loess Plains	Irregular plain, stepped erosion surfaces, local Karst; 797-1440 ft.	Wis.loess-eolian sand, Pre-Ill.clay loam till alluvium; Paleozoic limestone-dolomite		29 31	44 46	146 156	Bur Oak-Mixed Oak Open- ings-Woodlands, Big Blue- stem-Indiangrass Prairie, Maple-Basswood Forest	Low gradient streams, few lakes	Agriculture

222N LAKE MODIFIED TILL SECTION

Subsection		Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes			-	Potential Vegetation	Surface water characteristics	Human use
222Na Aspen Parklands	plain, dunes, beach ridges;	• , ,	Haplaquolls, Calciaquolls; Frigid, udic	19 23	37 40	120	Aspen Parkland, Dogwood- Willow Swamp, Sedge Meadow, Big Bluestem- Indiangrass Prairie	Undeveloped drainage networks; flooding common; lakes rare	Agriculture

2220 MOHAWK AND BLACK RIVER VALLEY SECTION

2220a Mohawk U-shaped valley, Late Wis. loamy-clayey Hapludalfs, Ochra- 4 Valley ground moraine, till, beach-dune sand, qualfs,Dystrochrepts lake plain; lake sand-gravel; Mesic, udic 500-1200 ft. Ordovician shale	47 44	140	Oak-Hickory-Ash Dry Forest Northern Hardwoods, Pine- Heath Woodland, N. White Cedar Forest	•	Agriculture Urban
--	-------	-----	---	---	----------------------

2220 MOHAWK AND BLACK RIVER VALLEY SECTION (con't)

		2220 A	OUVAK WHO BEVOK KIAEM	AMPLE	. 1 SEC	110M (C	on· c)		
Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes				Potential Vegetation	Surface water characteristics	Human use
2220b Black River Valley	Broad valley, es- carpments, ground moraine; 800-1400 ft.	L. Wis. loamy till, coarse outwash-lake deposits, Holocene al- luvium;Paleo.limestone	chrept, Ochraqualf, Haplaquept; Frigid-	48	44	140	Oak-Hickory-Ash Dry Forest Northern Hardwoods, N. White Cedar Forest	Black River, streams,	Agriculture Forestry
			222P LAKE ONTA	RIO SE	CTION				
222Pa Lake Ontario Bays & Islands	Lake plain-glacial ice scour/island- till	Lake clay and silt; Discontinous lake silt and clay over bedrock (islands)		28	34				Navigation Fishery Recreation
			222Q LAKE ERI	E SECT	ION				
222Qa Lake Erie, Bays, & Islands	Lake plain-glacial ice scour/island till	Lake clay and silt; Lake clay-silt and gravel		28	34	<u>-</u>			Navigation Fishery Recreation
222Qb Lake St. Clair	Lake plain-glacial ice scour	Lake clay-silt-sand and gravel		28	34				Navigation Fishery Recreation
			M222A BOSTON MOUN	ITAINS	SECTI	ON ======	=======================================		:========
M222Aa Boston Mountains	Low mountains; 1000-3000 ft.	Holocene sandstone and shale-clast loamy colluvium	Hapludalts, Paleudults; Thermic, udic	45 52	57 63	180 205	S. Red Oak - White Oak (Post Oak) - Hickory (Pig- nut, Mockernut, Sand) FA	Perennial streams few to common	Forestry Recreation
M222Ab Boston Hills	High hills; 500-1000 ft.	Holocene sandstone, shale-clast loamy colluvium	Hapludults, Paleudults; Thermic, udic	45 52	57 63	180 205	White Oak - N. Red Oak - Hickory (Shagbark, Pignut, Mockernut) FA	Perennial streams few to common	Forestry Recreation

231A SOUTHERN APPALACHIAN PIEDMONT SECTION

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	Gs(d)	Potential Vegetation	Surface water characteristics	Human use
231Aa Midland Plateau Central Uplands	Irregular plains; 100-300 ft.	Quaternary, Cenozoic micaceous, clayey, sandy saprolite; un- differentiated; silty to clayey sandy and micaceous saprolite	Kanhapludults, Rhodudults; Thermic, udic	45 55	57 64	205 235	Chestnut Oak - Oak (White, S. Red, Black) - Hickory (Mockernut, Pignut) FA, White Oak - N. Red Oak - Hickory (Shagbark, Pignut, Mockernut) FA	Intermittent and	Agriculture Urban Forestry
231Ab Piedmont Ridge	Tablelands of moderate relief; 300-500 ft.	Quaternary, Cenozoic micaceous and silty to clayey sandy saprolite			57 64	205 235	Chestnut Oak - Oak (White, S. Red, Black) - Hickory (Mockernut, Pignut) FA	Intermittent and perennial streams few	Agriculture Forestry
231Ac Schist Plains	Tablelands with moderate relief; 300-500 ft.	Quaternary, Cenozoic micaceous sapolite; micaceous clayey and sandy saprolite, undifferentiated	Kanhapludults, Rhodudults; Thermic, udic	45 55	57 64	205 235	S. Red Oak - White Oak - (Post Oak) - Hickory (Pig- nut, Mockernut, Sand) FA, White Oak - N. Red Oak - Hickory (Shagbark, Pignut, Mockernut) FA	Intermittent and perennial streams few to common	Agriculture Forestry
231Ad Lower Foot Hills	Open high hills; 500-1000 ft.	Quaternary, Tertiary clayey saprolite, mi- caeous saprolite, silty to clayey sand saprolite, rock tors, joint block boulders	Kanhapludults; Thermic, udic	40 55	50 64	150 235	S. Red Oak - White Oak - (Post Oak) - Hickory (Pig- nut, Mockernut, Sand) FA, Chestnut Oak - N. Red Oak- Hickory (Shagbark, Pignut, Mockernut) FA	Intermittent and perennial streams few to common	Agriculture Forestry
231Ae Charlotte Belt	Irregular plains; 100-300 ft.	Quaternary, Tertiary silty to clayey sandy saprolite, undiffer- entiated, micaceous saprolite	Kanhapludults, Hapludults; Thermic, udic	45 55	57 64	205 235	White Oak - N. Red Oak - Hickory (Shagbark, Pignut, Mockernut FA, Pine (Short- leaf, Loblolly, Virginia) - Oak (White, N. Red) - Yellow-poplar FA	few to common	Forestry Agriculture
231Af Carolina Slate	Irregular plains; 100-300 ft.	Quaternary, Tertiary silty to clayey sap- rolite	Kanhapludults, Hapludults; Thermic, udic	45 55	57 64	205 235	White Oak - N. Red Oak - Hickory (Shagbark, Pignut, Mockernut FA, Pine (Short- leaf, Loblolly Virginia) - Oak (White, N. Red) - Yellow-poplar FA	Intermittent and perennial streams few to common	Forestry
231Ag Schist Hills	Open high hills; 500-1000 ft.	Quaternary, Tertiary micaeous, clayey, and sandy saprolite; undiferentiated, micaceous saprolite	Hapludults; Thermic, udic	40 50	50 61	150 220	S. Red Oak - White Oak - (Post Oak) - Hickory (Pig- nut, Mockernut, Sand) FA, Chestnut Oak - N. Red Oak - Hickory (Mockernut, Pignut, Shagbark) FA		Forestry

231A SOUTHERN APPALACHIAN PIEDMONT SECTION (con't)

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	Gs(d)	Potential Vegetation	Surface water characteristics	Human use
231Ah Granite Hills	Open hills; 300-500 ft.	Quaternary, Cenozoic silty to clayey sandy saprolite, rock tors and joint block boulders	Hapludults, Kanhapludults; Thermic, udic	45 55	57 64	205 235	White Oak - N. Red Oak - Hickory (Shagbark, Pignut, Mockernut) FA, Pine (Short- leaf, Loblolly, Virginia) - Oak (White, N. Red) - Yellow-poplar FA	Intermittent and perennial streams	Forestry
231Ai Opelika Plateau	Irregular plains; 100-300 ft.	Quaternary, Cenozoic argillaceous sapro- lite; silty to clayey sandy saprolite rock tors, block boulders	Rhodudlults, Kanhapludults; Thermic, udic	45 55	57 64	205 235	S. Red Oak - White Oak - (Post Oak) - Hickory (Pig- nut, Mockernut, Sand) FA, Shortleaf Pine - Oak (White S. Red, Post, Black) FA	Intermittent and perennial streams few to common	Forestry
231Aj Mica Rich Plateau	Irregular plains; 100-300 ft.	Quaternary, Tertiary micaceous clayey and sandy saprolite, ar- gillaceous saprolite, silty to clayey sandy saprolite, rock tors	Kanhapludults, small area of Rhoduduluts; Thermic, udic		57 64	205 235	Chestnut Oak - Oak (White, S. Red, Black) - Hickory (Mockernut, Pignut) FA, White Oak - N. Red Oak - Hickory (Shagbark, Pignut, Mockernut) FA	Intermittent and perennial streams few to common	Forestry
231Ak Lynchburg Belt	Irregular plains; 100-300 ft.	Quaternary, Tertiary silty to clayey saprolite	Kanhapludults, Hapludults; Thermic, udic	45 55	57 64	205 235	White Oak - Oak (Scarlet, Black, N. Red) - Hickory (Mockernut, Pignut, Shag- bark) FA, White Oak - N. Red Oak - Hickory (Shag- bark, Pignut, Mockernut) FA	Intermittent and perennial streams common	Forestry Agriculture
231Al Northern Piedmont	Plains with high hills; 500-1000 ft.	Quaternary, Tertiary sandy clay saprolite; red, clay to silty clay saprolite	Hapludults, Dystrochrepts; Mesic, udic	35 45	50 57	160 200	White Oak - Oak (Scarlet, Black, N. Red) - Hickory (Mockernut, Pignut, Shag- bark) FA, White Oak - N. Red Oak - Hickory (Shag- bark, Pignut, Mockernut) FA	Intermittent and perennial streams common	Forestry Agriculture
231Am Triassic Uplands	Irregular plains; 100-300 ft.	Quaternary, Tertiary sandy clayey saproli- tized gravel; mica- cous saprolite, silty to clayey sandy saprolite	Hapludalfs, Hapludults; Mesic,thermic, udic	45 55	57 64	205 235	White Oak - N. Red Oak - Hickory (Shagbark, Pignut, Mockernut) FA, Pine (Short- leaf, Loblolly, Virginia) - Oak (White, N. Red) - Yellow-poplar FA	Intermittent and perennial streams few	Forestry Agriculture
231An W. Coastal Plain-Piedmont Transition	Irregular plains; 100-300 ft.	Quaternary, Tertiary sand and clay decom- position residuum, silty to clayey sandy saprolite	Kanhapludults, Hapludults; Thermic, udic	40 60	61 68	200 280	S. Red Oak - White Oak - (Post Oak) - Hickory (Pig- nut, Mockernut, Sand) FA, Shortleaf Pine - Oak (White S. Red, Post, Black) FA	Intermittent and perennial streams	Forestry

231A SOUTHERN APPALACHIAN PIEDMONT SECTION (con')

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	Gs(d)	Potential Vegetation	Surface water characteristics	Human use
231Ao Southern Triassic Uplands	Irregular plains; 100-300 ft.	Quaternary red silty sand to silty clay de- composition residuum, silty to clayey sandy saprolite, rock tors	Hapludults;	===== 45 55	57 64	205 235	S. Red Oak - White Oak - (Post Oak) - Hickory (Pig- nut, Mockernut, Sand) FA, Shortleaf Pine - Oak (White S. Red, Post, Black) FA	Intermittent and perennial streams few to common	Forestry Agriculture
231Ap Triassic Basins	Tablelands; 300-500 ft.	Quaternary red silty clay decomposition residuum, clayey sap- rolite, rock tors	Hapludults, Hapludalfs, Dystrochrepts; Mesic, udic	45 50	50 57	160 200	White Oak - N. Red Oak - Hickory (Shagbark, Pignut, Mockernut) FA, Post Oak - Blackjack Oak FA	Intermittent and perennial streams few	Agriculture
			231B COASTAL PLAIN						
231Ba Black Belt	Open low hills; 100-300 ft.	Quaternary, Cenozoic dark-gray clay solution residuum	Hapludults, Eutrochrepts; Thermic, udic	48 56	===== 61 64	220 260	E. Redcedar - Little Blue- stem SWA, Post Oak - Black- jack Oak FA		Forestry
231Bb Interior Flatwoods	Irregular plains; 100-300 ft.	Quaternary, Cenozoic massive clay decompo- sition residuum	Paleudults, Eutrochrepts, Udorthets; Thermic, udic	48 56	61 64	220 260	S. Red Oak - White Oak (Post Oak) Hickory (Pignut, Mockernut, Sand) FA, Short- leaf Pine - Oak (White, S. Red, Post, Black) FA		Forestry
231Bc Upper Clay Hills	Irregular plains; 100-300 ft.	Quaternary, Cenozoic sand decomposition re- siduum; clayey sand and limonitic sandy decomposition residuum	Thermic, udic	40 60	61 68	200 280	S. Red Oak - White Oak (Post Oak) Hickory (Pignut, Mockernut, Sand) FA, Short- leaf Pine - Oak (White, S. Red, Post, Black) FA	Perennial streams few to common	Forestry
231Bd Upper Loam Hills	Open hills; 300-500 ft.	Quaternary, Cenozoic sand and chert-gravel sand decomposition residuum	Hapludults; Thermic, udic	40 60	61 68	200 280	Post Oak - Blackjack Oak FA, S. Red Oak - White Oak- (Post Oak) - Hickory (Pig- nut, Mockernut, Sand) FA		Forestry
231Be Transition Loam Hills	Open hills; 300-500 ft.	Quaternary, Cenozoic chert gravel and sand decomposition resid- uum, plastic-clay sol- ution residuum	Paleudults; Thermic, udic	40 60	61 68	200 280	S. Red Oak - White Oak - (Post Oak) - Hickory (Pig- nut, Mockernut, Sand) FA, Loblolly Pine - Oak (White, S. Red, Post) FA	Intermittent and perennial streams few to common	Agricul ture
231Bf Floodplains and Terraces	Irregular plains; 100-300 ft.	Holocene alluvial gravely sand	Fluvaquents, Hapludults; Thermic, aquic	48 56	61 64	220 260	Overcup Oak - Sweetgum FA, Green Ash - (American Elm)- Hackberry (Hackberry, Sugarberry) FA		Forestry

231B COASTAL PLAIN MIDDLE SECTION (con't)

=======================================				=====	=====	=====		=======================================	=========
Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	Gs(d)	Potential Vegetation ====================================	Surface water characteristics	Human use
231Bg Northern Loessial Hills	Irregular plains; 100-300 ft.	Quaternary clayey fine to medium sand decom- position residuum		40 60	61 68	200 260	S. Red Oak - White Oak - (Post Oak) - Hickory (Pig- nut, Mockernut, Sand) FA	Intermittent streams common, perennial few	Forestry
231Bh Deep Loess Hills and Bluffs	Irregular plains; 100-300 ft.	Quaternary, Cenozoic limonitic sandy decom- position residuum; colluvial loess	Hapludalfs, Fragiudalfs; Thermic, udic	45 60	61 68	200 280	White Oak - Mockernut Hic- kory - (Pignut Hickory) FA, Oak (Overcup, Texas) - Water Hickory FA		Forestry
231Bi Deep Loess Plains	Flat plains; 0-100 ft.	Quaternary, Cenozoic limonitic sandy and smectitic clay decom- position residuum	Fragidualfs; Thermic, udic	45 60	61 68	200 280	Shortleaf Pine - Oak (White S. Red, Post, Black) FA, Loblolly Pine - Oak (White, S. Red, Post) FA	streams common,	Forestry Agriculture
231Bj Jackson Hills	Open low hills; 100-300 ft.	Quaternary, Cenozoic smectitic clay decom- position residuum	Paleuderts, Hapludalfs; Thermic, udic	48 56	61 64	200 280	Shortleaf Pine - Oak (White S. Red, Post, Black) FA, S. Red Oak - White Oak - (Post Oak) - Black Hickory FA, *Post Oak - Blackjack Oak SWA	Intermittent and perennial streams few	Forestry
231Bk Southern Pontotoc Ridge	Irregular plains; 100-300 ft.	Quaternary, Cenozoic dark-gray clay solution residuum	Hapludults, Paleudults; Thermic, udic	48 56	61 64	220 260	White Oak - Oak (Scarlet, Black, N. Red) - Hickory (Mockernut, Pignut, Shagbark) FA	Intermittent and perennial streams few	Forestry
231Bl Jackson Prairie	Irregular plains; 100-300 ft.	Smectitic clay decomposition residiuum	Hapludalfs, Fragiudalfs Thermic, udic	48 56	61 64	220 260	White Oak - Mockernut Hickory - (Pignut Hickory) FA, E. Red Cedar-Little Bluestem SWA	Intermittent and perennial streams few to common	Agriculture Forestry
	.==========	2	31C SOUTHERN CUMBERLA	ND PLA	TEAU S	ECTION			
231Ca Shale Hills and Mountain		Quaternary, Cenozoic sandy decomposition residuum	Dystrochrepts, Hapludults; Thermic, udic	51 55	61 65	200 210	White Oak - Oak (Scarlet, Black, N. Red) - Hickory (Mockernut, Pignut, Shag- bark) FA, White Oak - N Red Oak - Hickory (Shagbark, Pignut, Mockernut) FA	Intermittent and perennial streams common	Forestry
231Cb Sandstone Plateau	Open hills; 300-500 ft.	Quaternary, Cenozoic sandy decomposition residuum	Hapludults, Dystrochrepts; Thermic, udic	51 55	61 63	200 210	White Oak - Oak (Scarlet, Black, N. Red) - Hickory (Mockernut, Pignut, Shag= bark) FA, White Oak - N Red Oak - Hickory (Shagbark, Pignut, Mockernut) FA	Intermittent and perennial streams common	Forestry

231C SOUTHERN CUMBERLAND PLATEAU SECTION (com't)

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	Gs(d)	Potential Vegetation	Surface water characteristics	Human use
231Cc Table Plateau	Tablelands with considerable relief; 500-1000 ft.	Quaternary, Cenozoic sandy decomposition residuum	Hapludults, Paleudults; Thermic, udic	36 55	55 61	170 210	White Oak - N. Red Oak - Hickory (Shagbark, Pignut, Mockernut) FA. E. Redcedar FA	Intermittent and perennial streams	Forestry
231Cd Sandstone Mountain	Tablelands and irregular plains; 500-1000 ft.	Quaternary plastic clay solution residuum with colluvial chert, cherty clay solution residuum	Dystrochrepts, Hapludults; Thermic, udic	51 55	61 63	200 210	Chestnut Oak - Scarlet Oak - (Black Oak) FA, White Oak - N. Red Oak - Hickory (Shagbark, Pignut, Mocker- nut) FA		Forestry
231Ce Moulton Valley	Irregular plains; 100-300 ft.	Chert fragment solution residuum	Paleudults, Thermic, udic	36 55	55 62	170 210	Chestnut Oak - Scarlet Oak - (Black Oak) FA Oak (Swamp Chestnut - Cherrybark - Shumard) FA	Intermittent and perennial streams and small rivers	Agriculture
231Cf Southern Cumberland Valley		Quaternary, Tertiary cherty clay solution residuum	Paleudults, Dystrochrepts; Thermic, udic	51 55	61 63	200 210	White Oak - N. Red Oak - Hickory (Shagbark, Pignut, Mockernut) FA, E. Redcedar FA	Tributaries of Willie Creek	Agriculture
231Cg Sequatchie Valley	Open hills, escarpment and valley sides; 300-500 ft.	Quaternary plastic clay solution residuum with colluvial chert	Paleudults, Hapludalfs; Thermic, udic	51 55	61 63	200 210	Chestnut Oak - Oak (White, S. Red, Black) - Hickory (Mockernut, Pignut) FA, Oak (Swamp Chestnut, Cherry- bark, Shumard) FA	perennial streams	Agriculture Forestry
			231D SOUTHERN RIDGE A	ND VAL	LEY SE	CTION			
231Da Chert Valley	Plains with hills, 300-500 ft.	Cenozoic, Quaternary cherty clay and cherty silty clay solution residuum	Paleudults; Thermic, udic	36 55	55 61	170 210	Chestnut Oak - Oak (White, S. Red, Black) - Hickory (Mockernut, Pignut) FA	Intermittent and perennial streams common	Forestry Agriculture
231Db Sandstone, Shale and Chert Ridge	Plains and hills; 300-500 ft.	Cenozoic, Quaternary sandy to clayey sand and sandy clay solu- tion residuum, and cherty clay solution residuum	Dystrochrepts, Paleudults; Thermic, udic	36 55	55 61	170 210	Chestnut Oak - Oak (White, S. Red, Black) - Hickory (Mockernut, Pignut) FA, White Oak - N. Red Oak - Hickory (Shagbark, Pignut, Mockernut) FA	Intermittent and perennial streams few	Forestry
231Dc Sandstone Ridge	Plains with hills; 300-500 ft.	Cenozoic, Quaternary sandy decomposition residuum	Dystrochrepts; Thermic, udic	51 55	52 61	200 210	Chestnut Oak - Oak (White, S. Red, Black) - Hickory (Mockernut, Pignut) FA, Longleaf Pine - Shortleaf	Intermittent and perennial streams few	Forestry

231D SOUTHERN RIDGE AND VALLEY SECTION (con't)

=======================================				=====	=====		=======================================	============	=========
Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes				Potential Vegetation	Surface water characteristics	Human use
							Pine - Loblolly Pine - Oak (Post, S. Red) FA		
231Dd Quartzite and Talladega Slate Ridge	Open high hills; 500-1000 ft.	Cenozoic, Quaternary micaceous saprolite; micaceous, clayey and sandy saprolite undif- ferentiated	·	36 55	55 61	170 210	Chestnut Oak - Oak (White, S. Red, Black) - Hickory (Mockernut, Pignut) FA	Intermittent and perennial streams few	Forestry
231De Shaley Limestone Valley	Plains with hills; 300-500 ft.	Cenozoic, Quaternary cherty clay solution residuum; clayey sand to sandy clay solu- tion resicuum	Paleudults; Thermic, udic	36 55	55 61	170 210	White Oak - Oak (Scarlet, Black, N. Red) - Hickory (Mockernut, Pignut, Shag- bark) FA, White Oak - N. Red Oak - Hickory (Shagbark Pignut, Mockernut) FA, Longleaf Pine - Shortleaf Pine - Loblolly Pine - Oak (Post, S. Red) FA	Intermittent and perennial streams few to common	Agriculture

231E MIDDLE COASTAL PLAINS, WESTERN SECTION

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes				Potential Vegetation	Surface water characteristics	Human use
231Ea South Central Arkansas	Irregular plains; 100-300 ft.	Quaternary, Tertiary limonitic sandy clas- tic residuum, clayey, fine to medium sand and fine sandy clay residuum	Hapludults, Glassaqualfs, Fragiudults; Thermic, udic	40 49	61 68	200 270	Shortleaf Pine - Oak (White, S. Red, Post, Black) FA, S. Red Oak - White Oak - (Post Oak) - Hickory (Pignut, Mocker- nut, Sand) FA	Perennial streams common, few lakes and wetlands	-
231Eb Southwester n Arkansas	Smooth plains; 100-300 ft.	Quaternary, Tertiary alluvial delta sand, silt and clay; limon- itic sandy decompo- sition residuum; allu- vial clay, silt, sand	Hapludults, Fragiudults; Thermic, udic	40 53	61 68	200 270	Shortleaf Pine - Oak (White, S. Red, Post, Black) FA, S. Red Oak - White Oak - (Post Oak) - Hickory (Pignut, Mocker- nut, Sand) FA	Small and medium perennial streams common	Agriculture Forestry
231Ec Ouachita Alluvial Valleys	Flat plains; 0-100 ft.	Holocene alluvial sand, silt, clay, and gravel	Glossaqualfs, Dystrochrepts; Thermic, aquic	40 53	61 68	200 270	Willow Oak - (Overcup Oak) FA, Oak (Swamp Chestnut, Cherrybark, Shumard) - Sweetgum FA	Ouachita River and tributaries, wet- lands common	-

231E MIDDLE COASTAL PLAINS, WESTERN SECTION (con't)

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes			_	Potential Vegetation	Surface water characteristics	Human use
231Ed Sabine Alluvial Valley	Flat plains; 0-100 ft.	Quaternary, Tertiary clayey sand decompo- sition residuum	Fluvaquents, Udifluvents; Thermic, udic,aquic	40 53	61 68	200 270	Green Ash - (American Elm) - Hackberry (Hackberry, Sugarberry) FA	Many medium to large perennial streams	Agriculture Forestry
231Ee Southern Oklahoma	Irregular plains; 100-300 ft.	Middle pleistocene fine sandy-silty clay decomposition residuum	Paleudalfs, Hapludalfs; Thermic, udic	40 53	61 68	200 270	Shortleaf Pine - Oak (White - S. Red-Post- Black) FA, Loblolly Pine -Oak (White-S. Red-Post) FA	Medium perennial streams commom	Agriculture Forestry
231Ef Piney Woods Transition	Irregular plains; 100-300 ft.	Quaternary, Tertiary massive clay decompo- sition residuum; limo- nitic sandy decompo- sition residuum	Paleudalfs; Thermic, udic	40 53	61 68	200 270	Shortleaf Pine - Oak (White, S. Red, Post, Black) FA, Loblolly Pine - Oak (White, S. Red, Post) FA	Perennial streams few to common	Agriculture Forestry
231Eg Sandhills	Irregular plains; 100-300 ft.	Quaternary, Tertiary quartz sand decompo- sition residuum; limo- nitic sandy decompo- sition residuum	Paleudults, Hapludults, Kandiudults; Thermic, udic	40 53	61 68	200 270	Shortleaf Pine - Oak (White, S. Red, Post, Black) FA, Loblolly Pine - Oak (White, S. Red, Post) FA	Medium perennial streams common	Agriculture Forestry
231Eh Southern Loam Hills	Irregular plains; 100-300 ft.	Pleistocene alluvial pebble, gravel, and sand; Quaternary, Ter- tiary massive clay de- composition residuum	Paleudalfs; Thermic, udic	40 53	61 68	200 270	S. Red Oak - White Oak - (Post Oak) - Hickory (Pig- nut, Mockernut, Sand) FA, White Oak - Mockernut Hic- kory - (Pignut Hickory) FA	Medium perennial streams common	Agriculture Forestry
231Ei Southwest Flatwoods	Irregular plains; 100-300 ft.	Pleistocene alluvial and colluvial sand, silt, gravel, and clay	Paleudalfs, Fragi- udalfs, Ochraqualfs; Thermic, udic, aquic		61 68	200 270	Loblolly Pine - Oak (Cherrybark, Basket, Shumard) FA, Loblolly Pine - Oak (White, S. Red, Post) FA	Perennial streams few, wetlands extensive	Forestry

231E MIDDLE COASTAL PLAINS, WESTERN SECTION (con't)

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	Gs(d)	Potential Vegetation	Surface water characteristics	Human use
231Ej South Central Arkansas Flatwoods	Irregular plains; 100-300 ft.	Quaternary, Tertiary quartz sand decompo- sition residuum; limo- nitic sandy decompo- sition residuum	Ochraquults, Paleaquults,	40 53	61 68	200 270	Loblolly Pine - Oak (White, S. Red, Post) FA, S. Red Oak - White Oak - (Post Oak) - Hickory (Pig- nut, Mockernut, Sand) FA	Perennial streams common, wetlands extensive	Agriculture Forestry
231Ek Southwestern Arkansas Blackland Prairie	Irregular plains; 100-300 ft.	Quaternary, Tertiary fine to medium sand and fine sandy clay decomposition residuum	Hapludalfs, Eutrochrepts; Thermic, udic	48 56	61 64	220 260	W. Red Oak - White Oak - (Post Oak) - Hickory (Pig- nut, Mockernut, Sand) FA, E. Redcedar - Oak (Post, Black, Blackjack) FA	Perennial streams few to common	Agriculture Forestry
231El Trinity Alluvial Valley	Flat plains; 100-300 ft.	Holocene alluvial sand, silt, clay and gravel	Haplaquolls, Haplaquepts; Thermic, aquic	40 53	61 68	200 270	Green Ash - (American Elm)- Hackberry (Hackberry, Su- garberry) FA, Oak (Willow, Water, Laurel) - Sweetgum FA	Trinity River and tributaries	Agriculture
231Em Red River Alluvial Plain	Irregular plains; 100-300 ft.	Sand-gravel-silt and clay decomposition residuum	Paleudalfs, Eutrochrepts, Udifluvents; Thermic, Udic and Aquic	40 53	61 68	200 270	(Basket, Cherrybark, Shumard) - Sweetgum FA, Green Ash - (American Elm)- Hackberry (Hackberry, Sug- arberry) FA	Red River and tributaries	Fishery Agriculture Forestry
231En East Texas Timberlands/ Cross Timbers	Irregular plains; 100-300 ft.	Quaternary, Tertiary Quatz sand decom- position residuum, limonitic sandy decomposition residuum	Paleudalfs; Thermic, udic	40 53	61 68	200 270	Shortleaf Pine - Oak (White-S. Red-Post-Black) FA, Loblolly Pine - Oak (White-S. Red-Post) FA	Reserved	Agriculture
		231F	EASTERN GULF PRAIRIE	S AND	MARSHE	S SECT	ION		
231Fa Gulf Coast Prairies	Flat plains; 0-165 ft.	Late Pleistocene delta silt, clay, and gravel		24 55	 68 70	280 320	Live Oak - Post Oak Wood- land Alliance, Little Bluestem - Indian-grass Herbaceous Alliance	Perennial streams common, extensive wetlands	Agriculture
231Fb Marshes and Inland Bays		Holocene freshwater, brackish, and saline marsh silt and clay	Haplaquolls, Fluvaquents,Udipsamments; Thermic, aquic		70 73	250 320	Saltmarsh Cordgrass Herba- ceous Alliance, Salt Grass Herbaceous Alliance	Perennial streams common, extensive wetlands	•

231G ARKANSAS VALLEY SECTION

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	Gs(d)	Potential Vegetation	Surface water characteristics	Human use
231Ga Eastern Arkansas Valley and Ridges	Plains with hills; 300-500 ft.	Quaternary, Tertiary sandy decomposition residuum; Holocene alluvial sand, silt.	Hapludults, Paleudults, Udifluvents; Thermic, udic	44 50	61 63	200 240	White Oak - N. Red Oak - Hickory (Shagbark, Pignut, Mockernut) FA, Shortleaf Pine, Oak (White, S. Red, Black) FA	Perennial streams common, Arkansas River and tribu- taries	Agriculture
231Gb Mount Magazine	Plains with low mountains; 1000-3000 ft.	Holocene, Wisconsin sandstone, shale clast loamy colluvium; Quat- ernary, Tertiary sandy decomposition residuum	Paleudults; Reserved	44 50	61 63	200 240	White Oak - N. Red Oak - Hickory (Shagbark, Pignut, Mockernut) FA, Shortleaf Pine - Oak (White, S. Red, Black) FA	Perennial streams few to common, few wetlands	
231Gc Western Arkansas Valley and Ridges	Plains with hills; 300-500 ft.	Quaternary, Tertiary sandy decomposition residuum; Holocene alluvial sand, silt, clay, gravel	Paleudalfs, Glossaqualfs, Fragiudults, Udifluvents; Thermic, udic	44 50	61 63	200 240	White Oak - N. Red Oak - Hickory (Shagbark, Pignut, Mockernut) FA, Little Blue- stem - Yellow Indian-grass FA		Forestry
			M231A OUACHITA MOU	INTAINS	SECTI	ON			
M231Aa Fourche Mountains	Open low mountains; 1,000-3,000 ft.	Holocene, Wisconsin sandstone and shale- clast loamy colluvium	Hapludults, Dystrochrepts; Thermic, udic	48 56	61 63	200 240	Shortleaf Pine -Oak (White, S. Red, Post, Black) FA, S. Red Oak - White Oak - (Post Oak) - Black Hickory FA	common, Fourche	Forestry
M231Ab West Central Ouachita Mountains	Open high hills; 500-1,000 ft.	Holocene, Wisconsin acid shale-chip clay- loam colluvium	Hapludults, Dystrochrepts; Thermic, udic	48 56	61 63	200 240	Shortleaf Pine -Oak (White, S. Red, Post, Black) FA, S. Red Oak - White Oak - (Post Oak) - Black Hickory FA	common, Ouachita	Forestry
M231Ac East Central Ouachita Mountains	Open high hills; 500-1,000 ft.	Holocene, Wisconsin chert fragment collu- vium, Quatzite boul- der colluvium	Hapludults, Dystrochrepts; Thermic, udic	48 56	61 63	200 240	Shortleaf Pine -Oak (White, S. Red, Post, Black) FA, S. Red Oak - White Oak - (Post Oak) - Black Hickory FA	common, few small	Forestry
M231Ad Athens Piedmont Plateau	Open high hills; 500-1,000 ft.	Holocene, Wisconsin acid chip clay-loam colluvium; bouldery sandy colluvium	Hapludults, Dystrochrepts; Thermic, udic	48 56	61 63	200 240	Shortleaf Pine -Oak (White, S. Red, Post, Black) FA, S. Red Oak - White Oak - (Post Oak) - Black History FA	common, very few	Forestry

232A MIDDLE ATLANTIC COASTAL PLAIN SECTION

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	Gs(d)	Potential Vegetation	Surface water characteristics	Human use
232Aa Long Island Coastal Lowland and Moraine	Coastl plain, re- worked end-ground moraine, kames; 0-400 feet	Wis. outwash-ice con- tact gravel-sand-silt, sandy-clayey till; Quat. dune-sedimentary	Dystrochrepts,	45	52	201	Hemlock-White Pine Forest, Pine Dry Forest, Maritime Dune Complexes	Few streams & lakes; coastal inlets & bays	Urban Residential Agriculture Forest
232Ab New Jersey Outer Coastal Plain	Low hills, broad valleys on a gently slopping coastal plain; 0-250 ft.	Unconsolidated Tert- iary sand-silt-clay; Marine estuarine sedi- ments	Hapludults, Quatz- ipsammants, Sulfaqu- ants; Aquic, Mesic, udic		51 54	180 225	Virginia Pine-So. Red Oak Forest, Atlantic White Ce- dar & Red Maple-Sweet Gum Swamps, Freshwater Tidal	Long sluggish streams in broad valleys, swamps, marshes, tidal cr	Forestry Agriculture Residential
232Ac New Jersey Inner Coastal Plain	Terraced lowlands rising to crest- like hills; 0-390 ft.	Unconsolidated mixture Cretaceaus sand-silt- clay-gravel, glacio- fluvial deposits	Hapludults, Quatz- ipsamments, Sulfaqu- ants; Mesic, udic	42 46	53 54	193 195	Oak-Beech-Holly Coastal Plain Forest, Red Maple- Sweet Gum Swamp, Freshwa- ter Tidal & Salt Marshes	Small streams, swamps, tidal creeks	Agriculture Urban Residential
232Ad Western Chesapeake Uplands	Well dissected, plain, fringed by low flat plain; 0-300 ft.	Loamy-sandy clay- clayey sand decompo- sition residuum;	Hapludults, Frag- iudults,Ochraquults; Mesic, udic, aquic	42 47	55	185 220	Virginia Pine-Southern Red Oak Forest, Cypress- Tupelo Swamp, Maritime Dune Complexes	Estuaries, beaches, low gradient streams	Agriculture Urban Recreation
232Ae Delaware Bay	Large embayed estuary with tidal inlet	Reserved	Reserved	Res.	Res.	Res.	Reserved	Reserved	Reserved
232Af Long Island Sound	Sound proglacial lake plain	Glaciofluvial deposits -sandy to clay	Reserved	Res.	Res.	Res.	Reserved	Reserved	Reserved
		2328	COASTAL PLAINS AND FL	ATWOOD	S, LOW	ER SEC	TION		
 232Ba Fragipan Loam Hills	Irregular plains; 100-300 ft.	Pliocene-Pleistocene sandy clay decompo- sition residuum; allu- vial pebble gravel and sand		40 60	61 68	200 280	S. Red Oak - White Oak - (Post Oak) - Hickory (Pig- nut, Mockernut, Sand) FA, Loblolly Pine - Oak (White, S. Red, Post) FA	Intermittent and perennial streams common	Forestry
232Bb Southern Loessial Plains	Irregular plains; 100-300 ft.	Pliocene-Pleistocene sandy clay decompo- sition residuum; allu- vial pebble gravel and sand	Fragiudults, Cryumbrepts; Thermic, udic	45 60	61 68	200 280	S. Red Oak - White Oak - (Post Oak) - Hickory (Pig- nut, Mockernut, Sand) FA, Loblolly Pine - Oak (White, S. Red, Post) FA	Intermittent and perennial streams common	Forestry
232Bc Cintronelle Plains	Irregular plains; 100-300 ft.	Pliocene-Pleistocene sandy clay decompo- sition residuum; allu- vial pebble gravel	Paleudults; Thermic, udic	40 60	61 68	200 280	Longleaf Pine (Wetland) WA, Water Tupelo - (Bald- cypress) FA	Intermittent and perennial streams common to many	Forestry

232B COASTAL PLAINS AND FLATWOODS, LOWER SECTION (con't)

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	Gs(d)	Potential Vegetation	Surface water characteristics	Human use
232Bd Southern Deep Loess Hills and Bluffs	Irregular plains; 100-300 ft.	Limonitic sandy decom- osition residuum; Colluvial and alluvial loess	Hapludalfs, Fragiudalfs	40 60	61 68	200 280	White Oak - Mockernut Hickory - (Pignut Hickory) FA	Intermittent and perennial streams common to many	Forestry
232Be Florida Northern Highlands	Flat plains; 0-100 ft.	Tertiary, Quaternary sandy carbonaceous clay and silty sand decomposition residuum	Paleudults; Thermic, udic	51 55	68 70	280 290	Longleaf Pine WA	Intermittent and perennial streams few to common	Forestry
232Bf Florida Central Highlands	Flat plains; 0-100 ft.	Pliocene, Pleistocene sand and clay decom- position residuum	Quatzipsamments, Paleudults; Hyperthermic, udic	50 55	70 73	290 350	Longleaf Pine WA, South Florida Slash Pine FA, *Sand Pine WA	Small lakes common to many	Orchards Urban
232Bg South Coastal Plains	Flat plains; 0-100 ft.	Pliocene, Pleistocene alluvial pebble gravel and sand		40 60	61 68	200 280	Longleaf Pine WA, South Florida Slash Pine - Longleaf Pine SWA	Intermittent and perennial streams common	Forestry
	Flat plains, much standing water; 0-100 ft.	Tertiary, Quaternary sand and clay decom- positon residuum	Kandiudults; Thermic, udic	40 60	61 68	200 280	Oak (Willow, Water, Laurel) - Sweetgum FA, S. Red Oak - White Oak - (Post Oak) - Hickory (Pignut, Mockernut, Sand) FA	perennial streams	Forestry
232Bi The Plains	Irregular plains; 100-300 ft.	Tertiary, Quaternary clayey sand and clay- ey sand solution re- siduum	Kandiudults; Thermic, udic	40 60	70 73	200 280	South Florida Slash Pine WA, S. Red Oak - White Oak- (Post Oak) - Hickory (Pig- nut, Mockernut, Sand) FA		Forestry
232Bj Southern Loam Hills	Irregular plains; 100-300 ft.	Tertiary, Quaternary alluvial pebble gravel and sand		40 60	61 68	200 280	Longleaf Pine WA	Intermittent and perennial streams many	Forestry Agriculture
232Bk Southern Clay Hills	Irregular plains; 100-300 ft.	Tertiary, Quaternary sandy clay decompo- sition residuum	Fragiudults, Kandiudults; Thermic, udic	40 62	61 68	200 280	S. Red Oak - White Oak - (Post Oak) - Hickory (Pig- nut, Mockernut, Sand) FA, Longleaf Pine - Shortleaf Pine - (Loblolly Pine) - Oak (Post, S. Red) FA	Intermittent and perennial streams common	Forestry Agriculture
232Bl Lower Loam and Clay Hills	Open hills; 300-500 ft.	Tertiary, Quaternary clayey sand, sandy clay and siliceous clay decomposition re- siduum	Hapludults, Paleudults, Kandiudults; Thermic, udic	40 60	61 68	200 280	White Oak - Mockernut Hic- kory - (Pignut Hickory) FA, S. Red Oak - White Oak - (Post Oak) - Hickory (Pig- nut, Mockernut, Sand) FA		Forestry Agriculture

232B COASTAL PLAINS AND FLATWOODS, LOWER SECTION (con't)

=======================================											
Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	Gs(d)	Potential Vegetation	Surface water characteristics	Human use		
232Bm Lower Clay Hills	Irregular plains; 100-300 ft.	Tertiary, Quaternary silty sand and clayey sand to sandy clay de- composition residuum	Paleudults, Hapludults,	40 60	61 68	200 280	White Oak - Mockernut Hickory - (Pignut Hickory) FA, S. Red Oak - White Oak - (Post Oak) - Hickory (Pignut, Mockernut, Sand) FA	Intermittent and	Forestry Agriculture		
232Bn Lower Loam Hills	Irregular plains; 100-300 ft.	Cenozoic, Quaternary clayey sand solution residuum with chert blocks; sand, sandy clay, clayey sand de- composition residuum	Kandiudults, Paleudults; Thermic, udic	40 60	61 68	200 280	Longleaf Pine - Shortleaf Pine - (Loblolly Pine) -Oak (Post, S. Red) FA, S. Red Oak - White Oak - (Post Oak) - Hickory (Pignut, Mockernut, Sand) FA	Intermittent and perennial streams common	Agriculture		
232Bo Border Sand Hills	Irregular plains; 100-300 ft.	Tertiary, Quaternary limonitic sandy decom- position residuum, al- luvial gravelly sand		40 60	61 68	200 280	Longleaf Pine - Bluejack Oak WA, Shortleaf Pine - Oak (White, S. Red, Post, Black) FA	Intermittent and perennial streams common	Forestry		
232Bp Wiregrass Plains	Flat plains, much standing water; 0-100 ft.	Tertiary, Quaternary clayey sand solution residuum with chert blocks	Kandiudults; Thermic, udic	40 60	61 68	200 280	S. Red Oak - White Oak - (Post Oak) - Hickory (Pig- nut, Mockernut, Sand) FA, Oak (Willow, Water, Laurel) Sweetgum FA	Intermittent and perennial streams few to common	Forestry		
232Bq Sand Hills	Irregular plains; 100-300 ft.	Tertiary, Quaternary sand, clayey silt, and sand decomposition re- siduum	Hapludults,	45 50	63 64	220 280	Longleaf Pine WA Pond Pine FA	Intermittent and perennial streams few to common	Forestry		
232Br Atlantic Southern Loam Hills	Smooth plains; 100-300 ft.	Tertiary, Quaternary sand and clay decom- position residuum, ma- rine sand, silt, clay	Kandiudults; Thermic, udic	40 60	61 68	200 280	Longleaf Pine - Shortleaf Pine - (Loblolly Pine) - Oak (Post, S. Red) FA Longleaf Pine (Upland) WA	Intermittent and perennial streams common to many	Forestry		
232Bs Floodplains and Terraces	Flat plains; 0-100 ft.	Holocene alluvial gravelly sand	Fluvaquents, Paleudults; Thermic, udic	40 60	61 68	200 280	Overcup Oak - Sweetgum FA, Water Tupelo - (Baldcypress) FA	Intermittent and perennial streams common to many	Agriculture Forestry Urban		
232Bt Delmarva Uplands	Dissected upland, low flat plains, marine, estuarine; 0-100 ft.	Sandy decomposition residuum	Dystrochrepts, Ochr- aquults, Hapludults; Mesic, udic		55 56	172 208	Virginia Pine-So. Red Oak Forest, Oak-Beech-Holly Coastal Plain Forest, Atlantic White Cedar Swamp	Mature streams, w/ wide flood plains & meander- ing channels	Agriculture Forestry Urban		

232B COASTAL PLAINS AND FLATWOODS, LOWER SECTION (con't)

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	Gs(d)	Potential Vegetation	Surface water characteristics	Human use
232Bu Southwestern Loam Hills		Tertiary, Quaternary sand and clay, and sandy clay and clayey sand decomposition re- siduum	Kandiudults, Paleudults; Thermic, udic	40 60	61 68	200 280	S. Red Oak - White Oak - (Post Oak) - Hickory (Pig- nut, Mockernut, Sand) FA, Loblolly Pine - Oak (White, S. Red, Post) FA	Few Carolina bays	Agriculture
232Bv Northern Loam Plains	Irregular plains; 100-300 ft.	Tertiary, Quaternary sand and clay, and sandy clay and clayey sand decomposition re- siduum	Kandiudults, Paleudults; Thermic, udic	40 61	61 68	200 280	S. Red Oak - White Oak - (Post Oak) - Hickory (Pig- nut, Mockernut, Sand) FA, Loblolly Pine - Oak (White, S. Red, Post) FA	Common to many Carolina bays,	Agriculture
232Bx Eastern Chesapeake Lowland	Fluvual plain, marine, estuarine 0-40 ft	Alluvial-estuarine sand-silt, saline marsh deposits	Normudults, Ochraquults; Thermic, aquic	43	55 56	172 208	Oak-Beech-Holly Coastal Plain Forest, Loblolly Pine-Water Oak Forest, Maritime Dune Complexes	Tidal Marsh, estuaries, low gradient streams	Agriculture Forestry Recreation
232Bz Delmarva Outer Coastal Plain, Bays, and Islands	Fluvial plain, marine, estuarine 0-60 ft	Marine sand-silt-clay, beach-near shore mar- ine-dune sand, saline marsh deposits		45 49	55 56	186	Virginia Pine-Southern Red Oak Forest, Oak-Beech-Hol- ly Coastal Plain Forest, Maritime Dune Complexes	Beaches, estuaries, low gradient streams	Agriculture Urban Recreation
		2	232C ATLANTIC COASTAL						
232Ca Upper Terraces	Flat plains; 0-100 ft.	Pleistocene marine silt, and clay, marine sand, beach marine	Paleuquults, Haplaquods, Kandiudults;	40 55	55 70	200 280	S. Red Oak - White Oak - (Post Oak) - Hickory (Pig-	Carolina bays and perennial streams	
		sand deposits	Thermic, aquic				nut, Mockernut, Sand) FA, Longleaf Pine WA	common	
232Cb Lower Terraces	Flat plains; 0-100 ft.	Pleistocene marine silt and clay; marine delta clay, silt, sand	Paleaquults, Ochraquults;	40 55	55 70	200 280		Carolina bays common	Urban Agriculture
		Pleistocene marine silt and clay; marine	Paleaquults, Ochraquults; Thermic, aquic				Longleaf Pine WA Water Tupelo - Baldcypress) FA	Carolina bays	Urban Agriculture
Terraces232Cc Okefenokee	0-100 ft. Flat plains;	Pleistocene marine silt and clay; marine delta clay, silt, sand Holocene alluvial sand	Paleaquults, Ochraquults; Thermic, aquic Haplaquods, Paleaquults;	55 40	70 55	280 200	Longleaf Pine WA Water Tupelo - Baldcypress) FA Longleaf Pine WA	Carolina bays common	Urban Agriculture Forestry Agriculture Fisheries

232C ATLANTIC COASTAL FLATWOODS SECTION (con't)

=======================================				======	=====	=====			========
Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	Gs(d)	Potential Vegetation	Surface water characteristics	Human use
232Cf Bacon Terraces	Flat plains; 0-100 ft.	Pliocene alluvial sand		40	55 70	200 280	Longleaf Pine WA, South Florida Slash Pine - Longleaf Pine SWA	Intermittent and perennial streams common	Forestry
232Cg Flatwoods Floodplains and Terraces	Flat plains; 0-100 ft.	Holocene alluvial gravelly sand and alluvial silt and clay		40 55	55 70	200 280	Water Tupelo - (Baldcy- press) FA, Oak (Willow, Wa- ter, Laurel) - Sweetgum FA	Flood plains of large rivers	Forestry
232Ch Tidal Area	Flat plains; 0-100 ft.	Quaternary marine sand, silt, and clay	Ochraquults, Umbraquults, Ochraqualfs; Thermic, aquic	45 50	55 75	200 300	Pond Pine - Atlantic White Cedar - Red Maple FA, Lob- lolly Bay - Pond Pine FA, Black Needle-rush HA	Rivers common	Recreation Agriculture
232Ci Pamlico and Albemarle Sounds and Barrier Islands	Large sounds and barrier islands; 0 ft.	Pleistocene alluvial and estuarine sand and silt	Hydraquents; Thermic, peraquic	45 50	55 75	200 300		Estuaries associated with large sounds	Fishery Recreation Navigation
232Cj Chesapeake Bay	Large embayed estuary with tidal inlet characteris- tics; 0 ft.	Pleistocene alluvial and estuarine sand and silt	Hydraquents; Thermic, peraquic	45 50	55 75	200 300		Estuaries assoc- iated with large bay	Fisheries Recreation Navigation
		2320	FLORIDA COASTAL LOWLA	-	ÆSTERN	I) SECT	I I ON		
232Da Immokalee Rise	Flat plains; 0-100 ft.	Tertiary, Quaternary Calcareous sand solu- tion residuum, swamp deposits	Haplaquods, Glassaqualfs; Hyperthermic, aquic	50 55	70 73	290 3 50	South Florida Slash Pine (Upland) WA, Tracy's Beak- sedge HA, Cabbage Palmetto - Saw Palmetto WA	Rivers and peren- nial streams common	Forestry Agriculture
232Db Gulf Coastal Lowlands	Flat plains; 0-100 ft.	Pleistocene beach and marine sand and sandy clay	Haplaquods, Ochraqualfs; Hyperthermic, aquic	51 60	70 73	290 365	Longleaf Pine - Sand Pine WA, South Florida Slash Pine WA	Intermittent and perennial streams common to many	Agriculture Mining
232Dc Gulf Coast Flatwoods-Bays and Barrier Islands	Flat plains with embayed esturaries and barrier islands; 0-100 ft.	Holocene, Wisconsin sandy carbonaceous clay solution residuum	Haplaquods, Paleaquults; Thermic, aquic	52 64	66 70	270 290	South Florida Slash Pine - Longleaf Pine SWA, Longleaf Pine WA	Estuaries assoc- iated with many bays	Forestry
232Dd Mobile Bay, Sounds, and Islands	Large embayed estuary with tidal inlet-sounds barrier islands 0 ft.	Holocene alluvial delta loam	Hydraquents; Thermic, peraquic	52 64	66 70	270 290	Saltmarsh Cordgrass HA, Salt Grass (Tidal) HA	Estuaries assoc- iated with Mobile Bay	Fishery Navigation Recreation

232D FLORIDA COASTAL LOWLANDS (WESTERN) SECTION (con't)

	:=========	<i></i>	IDA COASTAL LOWLANDS	:======	.KN/ 3L	=====	(con't) 		
Subsection	Geomorphology; Elevation		Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	Gs(d)	Potential Vegetation	Surface water characteristics	Human use
232De Florida Gulf Coastal Bays and Islands		Holocene alluvial delta loam	Hydraquents; Thermic, peraquic	51 60	70 73	290 365	Saltmarsh Cordgrass HA, Salt Grass (Tidal) HA	Tampa Bay, Char- lotte Harbor and Pine Island Sounds	Fisheries Navigation
			OUISIANA COAST PRAIR			IES SEC	ETION		
232Ea Gulf Coast Prairies	Flat plains; 0-100 ft.	Late Pleistocene delta deposits	Albaqualfs, Medisaprists; Thermic, aquic	24 55	 68 70	280 320	Live Oak - Post Oak WA, Little Bluestem - Indian- grass HA	Perennial streams common, extensive wetlands	•
232Eb Gulf Coast Marshes and Inland Bays	Flat plains-small embayed esturaries 0-100 ft.	Holocene saline-marsh deposit, freshwater marsh peat and clay	Medisaprists; Thermic, aquic	48 65	70	280 350	Saltmarsh Cordgrass HA, Salt Grass (Tidal) HA	Small lakes num- erous, extensive wetlands	Fisheries Agricultur
	Lake Plain-man made O ft.	Not applicable	Not applicable	52 64	66 70	270 290	Not applicable	Lacustrine assoc- iation	Fisheries Recreation
232Ed Gulf Coast Bays and Islands	Medium embayed esturaries and barrier islands	Not applicable	Not applicable	48 65	70	280 350	Gulf Cordgrass (Tidal) HA, Sawgrass Brackish-Tidal HA	Bays and lesser inlets with wet- lands	Fisheries Recreation
232Ee Lake Borgne/ Sounds and Islands	Shoreline lake- embayed esturaries and barrier islands; 0-100 ft.	Holocene beach and dune sand	Hydraquents, Medisaprists; Thermic, peraquic	48 65	70	280 350	Gulf Cordgrass (Tidal) HA, Sawgrass Brackish-Tidal HA	Esturine assoc- iated with common large bays	Fisheries Recreation
			STAL PLAINS AND FLATW				SECTION		
232Fa Southern Loam Hills	Irregular plains; 100-300 ft.	Massive clay decomposition residuum, Alluvial gravel, sand	Kandiudults;	40 60	===== 61 68	===== 200 280	Loblolly Pine - Oak (White, S. Red, Post) FA, S. Red Oak - White Oak - (Post Oak) - Hickory (Pignut, Mockernut, Sand) FA	Perennial streams common	Forestry
232Fb Southwest Flatwoods	Flat plains; 0-100 ft.	Middle Pleistocene alluvial sand, silt and clay	Glossaqualfs, Paleudults; Thermic, aquic	46 55	66 70	260 280	Longleaf Pine - S. Red Oak- Black Hickory WA, Loblolly Pine - Oak (White, S. Red, Post) FA	perennial streams	Forestry

232F COASTAL PLAINS AND FLATWOODS. WESTERN GULF SECTION (con't)

		Z32F COASTAL	PLAINS AND FLATWOODS,	WESTE	RN GUL	F SECT	10N (con't)		
Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	Gs(d)	Potential Vegetation	Surface water characteristics	Human use
232Fc Sabine Alluvial Valley	Flat plains; 0-100 ft.	Holocene alluvial gravelly sand; Late Pleistocene alluvial sand and silt	Fluvaquents, Udipluvents; Thermic, udic,aquic	40 53	61 68	200 270	Green Ash - (American Elm)- Hackberry (Hackberry, Su- garberry) FA, Oak (Willow, Water, Laurel) - Sweetgum FA	Perennial steams common	Forestry
232Fd Neches Alluvial Valley	Flat plains; 0-100 ft.	Holocene alluvial gravelly sand	Pelluderts, Haplaquepts; Thermic, udic,aquic	40 53	61 68	200 270	Green Ash - (American Elm)- Hackberry (Hackberry, Su- garberry) FA, Oak (Willow, Water, Laurel) - Sweetgum FA	Common to many large streams, few lakes	Forestry
232Fe Piney Woods Transition	Irregular plains; 100-300 ft.	Quaternary, Tertiary massive clay and lim- onitic sand decompo- sition residuum	Paleudalfs; Thermic, udic	40 53	61 68	200 270	Shortleaf Pine -Oak (White, S. Red, Post, Black) FA, Loblolly Pine - Oak (White, S. Red, Post, Black) FA	Perennial streams few to common	Forestry
			FLORIDA COASTAL LOWLA	-		-			
232Ga Eastern Beach and Lagoons	Flat plains-beach and lagoons; 0-100 ft.	Pleistocene beach and marine sand and lago- onal deposits		52 60	72 73	330 360	Sand Pine WA, South Florida Slash Pine WA		Urban
232Gb Eastern Beach and Dunes	Flat plains-beach and dunes; 0-100 ft.	Holocene beach and dune sand, swamp depo- sits and dune sand	Hyperthermic, aquic	51 60	70 73	290 365	Sand Pine WA, Live Oak (Titi) SA	Estuaries assoc- iated with rivers and lagoons	
Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes		Climat	e	Potential Vegetation	Surface water characteristics	Human use
232Gc Okeechobee Plain	Flat plains; 0-100 ft.	Pleistocene beach and marine sand, weathered and oxidized		51 60	70 73	290 365	South Florida Slash Pine WA, Saw Palmetto SSA	Intermittent and perennial streams few to common	Agriculture
232Gd Kissimmee River	Flat plains; 0-100 ft.	Pleistocene beach sand, weathered and oxidized	Haplaquods, Psammaquents; Hyperthermic, aquic	51 60	70 73	290 365	Saw Palmetto SSA, Sawgrass (Freshwater) HA	Intermittent and perennial streams few to common	Agriculture
			34A MISSISSIPPI ALLUV						
234Aa Southern Mississippi River Alluvial Plain	Alluvial plain; earthquakes; 240-340 ft.	Holocene clayey-silty -sandy alluvium; Pleistocene outwash		51	===== 58	200 230	Cottonwood-Willow Forest Oak-Sweetgum Forest Tupelo-Cypress Swamp- Forest	Mostly drained, parallel ditches; some wetlands	Cropland Forestry

234A MISSISSIPPI ALLUVIAL BASIN SECTION (con't)

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	Gs(d)	Potential Vegetation	Surface water characteristics	Human use
234Ab Crowley's Ridge	Isolated low ridge; 300-500 ft.	Pleistocene loess; Cretaceous-Tertiary non-marine sediments	Hapludalfs, Haplud- ults, Paleudult; Mesic, Thermic, udic		57	200	Post-Blackjack Oak Wood- land, Southern Red Oak- White Oak Forest, Beech- Maple Forest	Intermittent streams & gullies	Pasture
234Ac White and Black Rivers Alluvial Plain	Alluvial plain; 300-330 ft.	Holocene silty-sandy alluvium; Peistocene outwash	Glossaqualfs, Epi- aqualfs, Hapludalfs; Thermic, udic	50	57	200 210	Oak-Sweetgum Forest, Overcup Oak-Water Hickory Forest, Tupelo-Cypress Swamp-Forest	Drainage ditches, few natural channels; wetlands	Cropland
234Ad Baton Rouge Terrace	Flat plains; 0-100 ft.	Late Pleistocene delta deposits	Hapludalfs, Fragiu- dalfs, Glossaqualfs; Thermic, udic, aquic	60	61 68	200 280	Loblolly Pine - Oak (Cherrybark, Basket, Shumard) FA, Shortleaf Pine - Oak (White, S. Red, Post, Black) FA	Few streams and rivers, wetlands uncommon	Agriculture
234Ae Arkansas Grande Prairie	Irregular plains; 100-300 ft.	Late Pleistocene alluvial sand and silt	Albaqualfs, Fragiu- dalfs, Fragiaqualfs, Natrudalfs; Thermic, aquic,udic		61 68	200 280	Willow Oak - (Overcup Oak) FA, Bluestem - Switchgrass HA	Rivers and streams common; few small lakes and wetlands	Agriculture
234Af Atchafalaya Alluvial Plain	Flat plains; 0-100 ft.	Holocene alluvial clay and natural levee silt and clay	Haplaquepts, Hapludalfs; Thermic, aquic	45 65	57 70	200 340	Water Tupelo (Pond Cypress) FA, Overcup Oak - Sweetgum FA		Agriculture
234Ag Arkansas Alluvial Plain	Flat plains; 0-100 ft.	Holocene natural levee silt and clay	Hapluquepts, Hapludalfs, Ochraqualfs; Thermic, aquic	45 65	57 70	200 340	Overcup Oak - Sweetgum FA, Green Ash - (American Elm)- Hackberry (Hackberry, Su- garberry) FA	•	Agriculture
234Ah Macon Ridge	Flat plains; 80-325 ft.	Late Pleistocene alluvial gravel and sand	Fragiudalfs, Fragiqualfs, Glossaqualfs; Thermic, udic	45 65	61 68	200 280	S. Red Oak - White Oak - (Post) - Hickory (Pignut, Mockernut, Sand) FA, White Oak - Mockernut Hickory - (Pignut Hickory) FA	Perennial streams common, wetlands common	Agriculture Forestry
234Ai Red River Alluvial Plain	Flat plains; 0-100 ft.	Holocene natural levee silt and clay, allu- vial clay	Ustifluvents, Haplustolls, Udifluvents; Thermic, aquic	45 65	57 70	200 340	Oak (Swamp Chestnut, Cherrybark, Shumard) - Sweetgum FA, Green Ash - (American Elm) - Hackberry (Hackberry, Sugarberry) FA	Many perennial streams and rivers	Agriculture
234Aj Bastrop Ridge	Flat plains; 0-100 ft.	Late Pleistocene alluvial sand and silt	Fragiudalfs, Fragiaqualfs, Glossaqualfs; Thermic, udic	45 65	61 68	200 280	S. Red Oak - White Oak - (Post Oak) - Hickory (Pig- nut, Mockernut, Sand) FA, Shortleaf Pine - Oak (White, S. Red, Post, Black) FA	Few to common streams and wetlands	Agriculture Forestry

234A MISSISSIPPI ALLUVIAL BASIN SECTION (con't)

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	Climat T(F.)	e Gs(d)	Potential Vegetation	Surface water characteristics	Human use	
234Ak Opelousa Ridge	Flat plains; 0-100 ft.	Late Pleistocene delta deposit		45	61 68	200 280	Loblolly Pine - Oak (Cher- rybark, Basket, Shumard) FA, Oak (Cherrybark, Bas- ket, Shumard) - Sweetgum FA	Few to common perennial streams, wetlands uncommon	Agriculture	
234Al Teche Terrace	Flat plains; 0-100 ft.	Holocene alluvial clay	Ochraqualfs, Haplaquolls; Thermic, aquic	45 65	57 70	200 340	Oak (Basket, Cherrybark, Shumard) - Sweetgum FA, Green Ash - (American Elm)- Hackberry (Hackberry, Sugarberry) FA	Common to many perennial streams	Agriculture	
234Am St. Francis River Alluvial Plain	Flat plains; 0-660 ft.	Holocene alluvial clay, alluvial sand, silt, clay and gravel	Ochraqualfs, Hapludalfs, Haplaquepts; Thermic, aquic		57 70	200 340	Overcup Oak - Sweetgum FA, Green Ash - (American Elm)- Hackberry (Hackberry, Sugarberry) FA		Agriculture	
234An North Mississippi River Alluvial Plain	Flat plains; 0-650 ft.	Holocene alluvial clay	Ochraqualfs, Haplaquepts; Thermic, aquic	45 65	57 70	200 340	River Birch - (Sycamore) FA, Overcup Oak - Sweetgum FA	Mississippi River and tributaries, oxbow lakes	Agriculture	
			251A RED RIVER VA						=========	
251Aa Lake Agassiz Plain	Glacial lake plain 250-1150 ft.	Quaternary lake silt- clay-sand-gravel, clayey till; Proterozoic greenstone	quolls, Haploborolls; Frigid, aquic.		36 45	105 136	Big Bluesten-Indiangrass Prairie, Cordgrass Wet Prairie, Cottonwood-Willow Forest	Red River; wet- lands, streams	Agriculture	
251Ab Souris/ Agassiz Stratified Fan Deposits	Plains, glacial- fluvial, dunes, 300-400 ft.	Quaternary alluvial gravel-sand-silt, eo- lian sand; Proterozoic granite & greenstone	Epiaquolls, Calciaquolls; Frigid, aquic	18 19	45	135	N. Pine-Bur Oak Savanna, Sand Reed Prairie, Big Bluestem-Indiangrass Prairie	Streams	Agriculture	
		251B NOR	TH CENTRAL U.S. MORA	INAL &	TILL F	LAIN S	SECTION			
Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	Climat T(F.)	e Gs(d)	Potential Vegetation	Surface water characteristics	Human use	
251Ba Upper Minn- esota River/Des Moines Lobe	Gently rolling ground moraine; 746-1556 ft.	Wis.loamy-clayey till, outwash sand-gravel, lake sand-silt-clay Cretaceous sedimentary	Argiaquolls, Haplo- borolls, Natribor- olls; Frigid, udic		42 46	147 152	Big Bluestem-Indiangrass Prairie, Little Bluestem- Indiangrass Prairie, Bulrush-Cattail Marsh	Minnesota River, rivers-streams- lakes are common; deranged drainage	Agriculture	

251B NORTH CENTRAL U.S. MORAINAL & TILL PLAIN SECTION (con't)

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)		Gs(d)	Potential Vegetation	Surface water characteristics	Human use
251Bb Outer Coteau des Prairies		Late Wis. loamy till, ice contact-outwash sand-gravel;		25	43 46	145 150	Big Bluestem-Indiangrass Prairie, Little Bluestem- Indiangrass Prairie, Bulrush-Cattail Marsh	Big Sioux River; lakes, streams, wetlands	Agriculture
251Bc Inner Coteau des Prairies	Irregular plains; 1500-1700 ft.	Ill.loamy till, lake lake silt & clay; Cretaceous shale	Haploborolls, Argi- ustolls; Frigid, Mesic, Udic-Ustic	25 27	44 46	170	Big Bluestem-Indiangrass Prairie, Little Bluestem- Sideoats Grama Prairie, Green Ash-Elm-Hackberry Forest	Streams, lakes wetlands	Agriculture
251Bd Northwest Iowa Plains	Gently rolling hills and plains; 1300-1600 ft.	Pleistocene loess, loamy-clay loam till, outwash sand, lake silt-clay; Cret. sed.	Haplaquolls, Argiaquolls; Udifluvents; Mesicafrigid, udic	23 25	43 46	170 180	Big Bluestem-Indiangrass Prairie, Little Bluestem- Indiangrass Prairie, Bur Oak Woodland	Bi Sioux River, dendritic stream network	Agriculture
251Be Southern Des Moines Lobe	Irregular plain; 950-1300 ft.	Wis. loamy till, out- wash sand, colluvium, sheetwash alluvium, lake silt-clay;	Hapludolls, Hapla- quolls, Argiudolls; Mesic, udic	30	45	150	Big Bluestem-Indiangrass Prairie, Cordgrass Wet Prairie, Bur Oak Woodland	Des Moines River, dendritic stream network	Agriculture
251Bf Yankton Hills & Valleys	Irregular plain; 1300-1500 ft.	Wis. loamy till; Cretaceous chalk- limey shale-shale	Calciustolls, Usto- chrepts,Haplaquolls; Mesic, Ustic		40 48	150	Big Bluestem-Indiangrass Prairie, Little Bluestem- Indiangrass Prairie, Bur Oak Woodland	Streams	Agriculture
			1C CENTRAL DISSECTED	TILL P	LAINS S	SECTIO			
251Ca Deep Loess Hills	Steep-sided hills; 900-1200 ft.	Pleistocene deep loess -clay loam till; Penn. sedimentary		3 5	52	175 180	Little Bluestem-Side Oats Grama Prairie, Bur Oak Woodland-Savanna, Chinkapin Oak Woodland	Ephemeral streams high turbidity	
251Cb Loess Hills	Rolling low hills; 600-1200 ft.	Pleistocene loess, clay loam till; Penn. cyclic sedimentary	Hapludolls, Argiu- dolls, Hapludalfs; Mesic, udic	35 39	53	175 185	Big Bluestem-Indian Grass Prairie, Little Bluestem- Sideoats Grama Prairie, Bur Oak Woodland-Savanna	Intermit. & peren streams, many channelized, pond	Cropland Pasture Urban
251Cc Central Dissected Till and Loess Plain	Low hills, smooth plain; 640-1040 ft.	Pleistocene loess, eo- lian sand, loamy till; Penn. cyclic sedi-		35 39	53	175 185	Big Bluestem-Indian Grass Prairie, White Oak-Red Oak Forest, Bur Oak-Mixed Oak	Peren. streams, many channelized; riverine wetlands	Pasture cropland

251C CENTRAL DISSECTED TILL PLAINS SECTION (con't)

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	Gs(d)	Potential Vegetation	Surface water characteristics	Human use
251Cd Claypan Till Plain		Pleistocene till; Penn. cyclic sediment- ary rocks	Albaqualfs, Haplud-	38 39	53	185	Big Bluestem-Indian Grass Prairie, Little Bluestem- Sideoats Prairie, White Oak Dry Woodland	Peren. streams, many channelized; poor drainage	Cropland
251Ce West Mississippi River Hills	Low hills, few knobs; karst; 500-1000 ft.	Pleistocene till, loess; Ordovician- Miss. sedimentary	Hapludalfs, Paleudalfs; Mesic, udic	38 39	53	175 190	White-Black Oak Woodland White Oak Forest, Sugar Maple-Oak Forest	Entrenched peren. streams, ponds; reservoir	Pasture Agriculture Urban
251Cf Mississippi River and Illinois River Alluvial Plains		Quaternary alluvial sand-mud, outwash sand -gravel, lake silt- clay-muck; Paleozoic carbonates-shale			53	163 190	Cottonwood-Willow Forest, Pin Oak Forest, Cordgrass Wet Prairie	low gradient rivers, backwater lakes, oxbow lakes	Agriculture Industry Recreation
251Cg Missouri River Alluvial Plain	Alluvial plain 570-900 ft.	Holocene silty-sandy alluvium; Pleistocene outwash	Udifluvents, Endo- aquolls, Argiaquoll; Mesic, udic	35 39	53	175 190	Cottonwood-Willow Forest, Pin Oak Forest, Cordgrass Wet Prairie	Large flood-prone engineered river; riverine wetlands	Cropland
251Ch Southeast Iowa Rolling Loess Hills	Irregular plains, 650-1000 ft.	Wis. loess, Pre-Ill. loamy till, Wis. alluvium; Devonian- Miss. limestone	Argiudolls, Haplu- dolls, Haplaquolls; Mesic, udic	34	53	160 180	White Oak-Red Oak Forest, Big Bluestem-Indian Grass Prairie, Bur Oak-Mixed Oak Woodland-Savanna	Many steams, wet- lands, lakes, reservoirs	Agriculture
251Ci East Mississippi River Hills	Deeply dissected steep ridges, nar- row valleys, bluffs karst; 450-800 ft.	Pleistocene loess, loamy-sandy till; Miss. carbonates	Hapludalfs, Endoaqualfs, Eutrochrepts; Mesic, udic, aquic	33 37	49 54	168 189	White Oak-Black Oak Forest, Sugar Maple-Oak Forest, Little Bluestem- Indian Grass Hill Prairie	High gradient creeks, sinkhole ponds; springs	Agriculture, Forestry Recreation Mining
251Cj Galesburg Dissected Till Plain	Level to rolling plain with many ravines; 450-800 ft.	Pleistocene loess, loamy till; Cretace- ous gravels; Paleozoic shale, sandstone, coal, carbonates	Hapludalfs, Argiudolls, Epiaqualfs; Mesic, udic, aquic	34 36	49 54	168 188	Ash-Elm-Hackberry Forest, Sugar Maple-Oak Forest, Big Bluestem-Indian Grass Prairie	Rivers, creeks	Agriculture Quarrying & Mining
251Ck Carlinville Dissected Till Plain	Level to rolling plain with many ravines; 620-680 ft.	Pleistocene loamy till, loess; Penn. shale, sandstone, coal; Miss. carbonates	Hapludalfs, Epiaqualfs, Argiudolls; Mesic, udic, aquic	36 38	52 53	175 179	Ash-Elm-Hackberry Forest, Sugar Maple-Oak Forest, Big Bluestem-Indian Grass Prairie	Creeks	Agriculture Quarrying & Mining
251Cm Northeast Nebraska Rolling Hills	Irregular plains; 1300-1800 ft.	Pleistocene deep loess clay loam till; Cretaceous shale, chalk	Argiudolls, Haplustoll, Argiustoll; Mesic, udic, ustic	24	53	150	Big Bluestem-Indian Grass Prairie, Bur Oak Forest- Woodland, Little Bluestem- Sideoats Grama Prairie	Streams, dendritic drainage	Agriculture

251C CENTRAL DISSECTED TILL PLAINS SECTION (con't)

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	Gs(d)	Potential Vegetation	Surface water characteristics	Human use
251Cn Lower Platte Valley		Wis. alluvial silt, clay, sand, gravel;	Haplustolls, Udifluvents, Ustochrepts; Mesic, ustic	24	53 56	160 170	Cottonwood-Willow Forest- Woodland, Cordgrass Wet Prairie	Platte River, streams, dendritic drainage	Agriculture
251Co Yorke Plains	Smooth plains; 1400-1650 ft.	Pleistocene coarse al- luvium, clay loam till, Cretaceous sand- stone, shale	toll, Ustochrepts;	24 28	53	150	Big Bluestem-Indian Grass Prairie, But Oak Woodland- Savanna, Little Bluestem- Sideoats Grama Prairie	Streams	Agriculture
251Cp Pawnee City Seneca Rolling Hills	Irregular plains; 1300-1500 ft.	Pleistocene clay loam till, alluvium, collu- vium; Penn. shale, sandstone, limestone		32	53	180	Big Bluesten-Indian Grass Prairie, White Oak-Red Oak Forest, Cordgrass Prairie	Streams	Agriculture
251Cq Kansas River	Open hills; 950-1200 ft.	Pleistocene loess, clay loam till, sandy, silty clay residuum, alluvium; Penn. sed.	Argiustoll, Argiudoll; Mesic, thermic, udic	32 36	53 56	180	White Oak-Red Oak Forest, Big Bluestem-Indian Grass Prairie, Cordgrass Wet Prairie	Streams	Agriculture
			251D CENTRAL TILL						
251Da Green River Lowland	Flat plain with prominent low ridges (paleodunes) 600-850 feet	Pleistocene outwash, eolian sands; Penn.	Argiudolls Hapludolls Endoaquolls; Mesic, udic, aquic	32 34	47 49	161	Cordgrass Wet Prairie, Little Bluestem Sand Prairie, White Oak-Red Oak Forest	low gradient rivers and creeks	Agriculture Recreation
251Db Western Grand Prairie	Level to rolling plain; 500-870 feet	Pleistocene clayey till, loess; Pennsylvanian shale, sandstone, coal	Argiudolls, Endoaquolls, Hapludalfs; Mesic, udic, aquic	33 36	48 49	167 170	Big Bluestem-Indiangrass Prairie	low to medium gradient creeks	Agriculture Mining
251Dc Northern Grand Prairie	Rolling plain; 470-800 ft.	Pleistocene loamy san- dy till, lake silt, clay-muck; Penn. shale -sandstone, Paleozoic carbonates, sandstone	Endoaquolls, Hapludolls;	32 35	48 51	151 188	Big Bluestem-Indiangrass Prairie	low to medium gradient rivers and creeks	Agriculture
251Dd Eastern Grand Prairie	Rolling plains, Irregular plains; 500-760 feet	Wis. clayey-loamy till lake silt-clay-muck; Paleo. sandstone-	Argiudolls, Endoaquolls, Argiaquolls;	32 36	49 52	160 172	Big Bluestem-Indiangrass Prairie	low to medium gradient rivers and creeks	Agriculture

251D CENTRAL TILL PLAINS SECTION (con't)

				=====		=====			
Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	Gs(d)	Potential Vegetation	Surface water characteristics	Human use
251De Southern Grand Prairie	level to rolling plain; 690-790 feet	Pleistocene loamy till; Paleozoic sandstone, shale, carbonates	Argiudolls, Endoaquolls, Hapludalfs; Mesic, udic, aquic	32 39	50 52	159 180	Big Bluestem-Indiangrass Prairie	low to medium gradient rivers, lakes, prairie potholes	Agriculture
251Df Springfield Plains	Level to rolling plain, few bluffs; 500-700 feet	Holocene alluvium, Pleistocene till, lake -eolian silt-sand; Penn. sandstone-shale- coal	Hapludalfs;	34 37	52 54	169 194	Big Bluestem-Indiangrass Prairie	low to medium gradient rivers & creeks; lakes	Agriculture, Urban Mining
251Dg Kankakee Sands	Plains with hills, low dunes 620-890 ft.	Wis. beach-eolian sand outwash sand-gravel; Paleozoic shale-sand- stone-carbonates	Argiaquolls, Udi- psamments, Hapla- quolls, Hapludalfs; Mesic, aquic, udic	33 40	48 52	165 170	Cordgrass Wet Prairie, Bulrush-Cattail Marsh Bur Oak-Mixed Oak Savanna-Woodland	Extensive wetland, few low gradient streams	Agriculture Urban Industry
251Dh Kankakee Marsh	Smooth plain, 620-700 ft	Holocene alluvium; Wis outwash sand-gravel, lake sediments; Dev. carbonates-black shale	Udipsamments, Hapludalfs;	36 38	48 50	155 160	Bulrush-Cattail Marsh	Wetlands, river and tributaries	Agriculture
			251E OSAGE PLAI	INS SE	CTION				
251Ea Scarped Osage Plains	Irregular plains; 700-1100 ft.	Quaternary-Tertiary silt-clay residuum, alluvium; Penn. shales-limestones	Hapludalfs, Alba- qualf, Hapludolls; Mesic, thermic, udic	39	54	190	Little Bluestem-Sideoats Grama Prairie, Big Blue- stem-Indiangrass Prairie, Cordgrass Wet Prairie	Intermittent and Perennial streams, wetlands	Pasture Urban cropland
251Eb Cherokee Plain	Smooth plain; 700-1200 ft.	Quaternary-Tertiary clay-sandy clay resid- uum, alluvium; Penn. shales-sandstones	Argiudolls, Argi- aquolls, Hapludalfs; Thermic, udic	41	55	190	Little Bluestem-Sideoats Grama Prairie, Big Blue- stem-Indiangrass Prairie, Cordgrass Wet Prairie	Perennial meander ing streams; riverine wetlands	Pasture cropland
251Ec Central Tallgrass	Irregular plains; 100-300 ft.	Clayey silt to silty clay decomposition residuum	Haplustolls, Argiu- dolls, Hapludolls; Mesic, thermic	Res.	Res.	Res.	Post Oak-Blackjack Oak Forest-Woodland, Big Blue- stem-Indiangrass Prairie	Postrved	Reserved
251Ed Elk Prairie	Smooth plain; 700-1200 ft.	Pre-WisTertiary clayey silt-silty clay decomp. residuum; Penn. shale-sandstone	Udorthents, Haplu- dolls, Haplustolls; Thermic, udic	41	55	190	Little Bluestem-Sideoats Prairie, Big Bluestem- Indiangrass Prairie, Cordgrass Wet Prairie	Perennial meander ing streams; riverine wetlands	Pasture cropland

251F FLINT HILLS SECTION

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes			-	Potential Vegetation	Surface Water characteristics	Human use
251Fa Western Flint Hills	Smooth and irregular plains; 1500-1600 ft.	Pre-WisTertiary clay loam decomposition re- siduum; Permian red beds, shale-limestone	vents;	35	50 60	160 190	Big Bluestem-Indiangrass Prairie, Cordgrass Wet Prairie, Cottonwood-Willow Floodplain Forest	Few perennial streams, mainly headwater streams	Agriculutre
251Fb Eastern Flint Hills	Irregular plains and open hills; 950-1500 ft.	Pre-WisTertiary silty clay-cherty clay residuum, colluvium, alluvium; Permian sed.	dolls, Ustifluvents;	25 35	50 60	160 190	Big Bluestem-Indiangrass Prairie, Cordgrass Wet Prairie, Cottonwood-Willow Floodplain Forest	Whitewater-Cotton- wood-Neosho Rivers	Agriculture
251Fc Southern Flint Hills	Irregular plains and open hills; 950-1500 ft.	Silty clay-cherty clay residuum	Argiustolls, Hapludolls, Ustifluvents Mesic and Thermic, udic	30	55	175	Big Bluestem-Indiangrass HA, Cordgrass HA, Cotton- wood-Willow FA	Reserved	Agriculture
251Fd Glaciated Flint Hills	Irregular plains and open hills; 950-1500 ft.	Holocene-Pleistocene silty-clayey colluvi- um, clay loam till, alluvium; Permian sed.	Argiustoll, Argiu- doll; Mesic,thermic, Ustic-udic	25 35	50 60	160 190	Big Bluestem-Indiangrass Prairie, White Oak-Red Oak Forest, Cottonwood Floodplain Forest	Big Blue River, Kansas River upper branch, Tuttle Creek Reservoir	Agriculture

255A CROSS TIMBERS AND PRAIRIE SECTION

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes				Potential Vegetation	Surface water characteristics	Kuman use
255Aa Cross Timbers-Cherokee Prairies	Irregular plains; 100-300 ft.	Quaternary, Tertiary sandy decomposition residuum	Paleudolls, Alba- qualts, Argiudolls, Hapludolls; Thermic, aquic,udic	35 40	55 57	190 235	Little Bluestem-Yellow Indiangrass HA, Post Oak- Blackjack Oak SWA	Few small lakes and wetlands	Agriculture
255Ab Central Oklahoma Cross Timbers	Irregular plains; 100-300 ft.	Quaternary, Tertiary red clay loam decom- position with local gypsum rubble, alluv- ial sand, silt, clay	Haplustalfs, Ustochrepts, Paleustalfs, Ustifluvents; Thermic, ustic	24 35	59 63	190 240	Post Oak-Blackjack Oak SWA, Post Oak-Blackjack Oak WA, Little Bluestem-Yellow Indiangrass HA		Agriculture
255Ac Central Rolling Red Prairies	Irregular plains; 100-300 ft.	Quaternary, Tertiary sandy clay loam and sandy decomposition residuum	Paleustolls, Argiustolls, Haplustalfs; Thermic, ustic	24 35	57 64	190 230	Little Bluestem-Sideoats Grama HA, Little Bluestem- Yellow Indiangrass HA	Few lakes and wetlands	Agriculture

255A CROSS TIMBERS AND PRAIRIE SECTION (con't)

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	Gs(d)	Potential Vegetation	Surface water characteristics	Human use
255Ad Southern Oklahoma Grand Prairie	Irregular plains; 100-300 ft.	Holocene-Illinoian limestone-clast loamy and limestone and sandstone-clast loamy colluvium; Thermic, udic	Argiudolls, Pellusterts, Haplustolls, Argiustolls;	28 64	63	200 260	Big Bluestem-Switchgrass HA, Big Bluestem-Yellow Indiangrass HA	Few wetlands	Agriculture
255Ae Cross Timbers-Central Rolling Red Prairies	Plains with low mountains; 1000-3000 ft.	Quaternary, Tertiary sandy clay loam and fine sandy loam decom- position residuum	Haplustalfs, Usta- chrepts, Paleus- talfs, Ustifluvents; Thermic, ustic	24 35	59	190 240	Post Oak-Blackjack Oak - WA, Little Bluestem-Yellow Indiangrass HA	Perennial streams few to common	Agriculture
255Af Cross Timbers - Southern Oklahoma	Irregular plains; 100-300 ft.	Quaternary, Tertiary red clay loam with gypsum rubble and fine sandy silty clay decomposition residuum	Haplustalfs, Paleustalfs, Udifluvents; Thermic, udic	24 34	63 66	225 240	Post Oak-Blackjack Oak WA, Little Bluestem-Sideoats Grama HA	Perennial streams and wetlands few	Agriculture
255Ag Red River Alluvial Plain	Irregular plains; 100-300 ft.	Pleistocene alluvial gravel, sand, silt, and clay; Holocene, Wisconsin sand, silt, and gravel	Ustifluvents, Argiustolls; Thermic, udic,aquic	53- 64	64 68	200 270	Oak (Basket-Cherrybark- Shumard)-Sweetgum FA, Green Ash-(American Elm)- Hackberry (Hackberry-Sugar- berry) FA	Few lakes and wetlands	Agriculture
255Ah Texas Eastern Cross Timbers	Tablelands; 300-500 ft.	Quaternary, Tertiary stony calcareous clay residuum	Haplustalfs, Paleustalfs; Thermic, ustic	34 39	63 66	227 250	Post Oak - Blackjack Oak SWA, Post Oak - Blackjack Oak WA	Perennial streams common	Agriculture
255Ai Texas Grand Prairie	Tablelands, moderate relief; 300-500 ft.	Quaternary, Tertiary quartz sand solution residuum	Paleustalfs, Albaqualfs, Pelluderts; Thermic, ustic	28 40	63 70	200 260	Proscopis glandulosa SA, Little Bluestem - Yellow Indian-grass HA	Perennial streams common	Agriculture
255Aj Texas Western Cross Timbers	Tablelands, moderate relief; 300-500 ft.	Quaternary, Tertiary smectitic clay decom- position residuum; Illinoian pebbly sandy clay loam	Reserved; Thermic, ustic	24 27	63 66	225 240	Post Oak-Bkackjack Oak WA, Little Bluestem-Sideoats Grama HA	Perennial streams common	Agriculture
255Ak Southwestern Timbers	Tablelands, moderate relief; 300-500 ft.	Quartz sand decom- position residuum; Smectitic clay decom- position residuum	Paleustalfs; Thermic, udic	26	65	233	Post Oak - Blackjack Oak SWA, Proscopis glandulosa SA	Perennial streams common	Agriculture

255B BLACKLAND PRAIRIES SECTION

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)	T(F.)	Gs(d)	Potential Vegetation 	Surface Water characteristics	Human use
=========== 255Ba Blackland Prairie	Irregular plains;	Quaternary, Tertiary silty clay decompo- sition residuum	Pellusterts, Ochraqualfs, Chromusterts Paleustalfs; Thermic, ustic,aquic	30 45	63 70	230 280	Little Bluestem-Yellow Indiangrass HA, Big Blue- stem (Yellow Indiangrass) HA	Perennial streams, rivers common, few to common small lakes	
			255C OAK WOODS AND F			LION			
255Ca Texas Claypan Savannah	Irregular plains; 100-300 ft.	Quaternary, Tertiary massive clay, clayey sand decomposition residuum	Albaqualfs, Paleustalfs; Thermic, ustic	30 42	64 72	240 280	Post Oak - Blackjack Oak SWA, Post Oak - Blackjack Oak WA	Perennial streams common	
255Cb Reserved	Reserved	Reserved	Reserved	Res.	Res.	Res.	Reserved	Reserved	Reserved
255Cc Interior Savannah	Irregular plains; 100-300 ft.	Quaternary, Tertiary smetitic clay decom- position residuum	Paleustalfs, Haplustalfs; Thermic, ustic	30 42	64 72	240 280	Post Oak - Blackjack Oak WA, Post Oak - Blackjack Oak SWA	Perennial streams and lakes few	Agriculture
255Cd Interior Blackland Prairie	Irregular plains; 100-300 ft.	Quaternary, Tertiary limonitic sandy decom- positon residuum	Ochraqualfs, Pale- ustalfs,Pellusterts; Thermic, ustic	30 45	63 70	230 280	Little Bluestem - Indian- grass HA, Big Bluestem - (Indian-grass) HA	Perennial streams, rivers, and lakes few.	Agriculture
255Ce Trinity Alluvial Valley	Irregular plains; 100-300 ft.	Holocene alluvial gravelly sand	Haplaquolls, Haplaquepts; Thermic, udic	40 53	61 68	200 270	Green Ash - (American Elm)- Hackberry (Hackberry, Su- garberry) FA, Oak (Willow, Water, Laurel) Sweetgum FA	Reserved	Agriculture
255Cf Blackland Prairie	Irregular plains; 100-300 ft.	Quaternary, Tertiary massive clay and quartz sand decompo- sition residuum	Pellusterts, Chromusterts, Paleustalfs; Thermic, ustic,aquic	30- 45	63 70	230 280	Little Bluestem - Yellow Indian-grass HA, Post Oak - Blackjack Oak SWA	Perennial streams common to many	Agriculture
255Cg Southern Texas Claypan Savannah	Irregular plains; 100-300 ft.	Pleistocene, Pliocene alluvial pebble gravel and sand		30 42	64 72	240 280	Post Oak - Blackjack Oak SWA, Post Oak - Blackjack Oak WA	Perennial streams and rivers common	Agriculture
		2550	CENTRAL GULF PRAIRIE	S AND	MARSHE	S SECT	ION		
Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes	P(in)		Gs(d)	Potential Vegetation	Surface water characteristics	Human use
255Da Texas Coastal Prairies	Flat plains; 0-100 ft.	Late Pleistocene delta sand and silt, silt and clay, alluvium	Pelluderts, Albaqualfs, Argiaquolls;Thermic, hyperthermic, udic	25 5 5	68 70	280 320	Live Oak - Post Oak WA, Little Bluestem - Indian-grass HA	Perennial streams and rivers common	Agriculture

		255D CEN	TRAL GULF PRAIRIES AN	D MARS	HES SE	CTION	(con't)		
Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes				Potential Vegetation	Surface water characteristics	Human use
255Db Brazo and Brazonia Alluvial Valley	Flat plains, small	Late Pleistocene delta sand/silt, silt/clay; Holocene sand,silt, clay and gravel		25 55	68 70	280 320	Live Oak - Post Oak WA, Oak Fusiformis WA	Riverine and Lacustrine Assoc- iation, few rivers and streams	Agriculture
255Dc Marshes, Inland bays, and Barrier Islands	Flat plains, some land water covered; 0-100 ft.	Holocene lagoon, Late Pleistocene beach and near shore marine sand	Haplaquolls, Fluvaquents, Udipsaments;Thermic, hyperthermic, aquic	30 55	70 73	250 330	Saltmarsh Cordgrass HA, Salt Grass (Tidal) HA	Many perennial streams & rivers, Many bays and lagoons	Fisheries Recreation Agriculture
255Dd Sou. Texas Coastal Prairies and Savannah	Flat plains; 0-100 ft.	Middle Pleistocene alluvial sand, silt, clay and alluvium	Paleudalfs, Ochraqualfs; Thermic, udic	25 55	68 70	280 320	Post Oak - Blackjack Oak SWA, Little Bluestem - Gulf-dune Crown Grass HA	Perennial streams and rivers common	Agriculture
			411A EVERGLADI	ES SEC	TION				
411Aa Lake Okeechobee	Freshwater lake; 0-100 ft.	Holocene freshwater marsh peat and clay	Medisaprists, Hydraquents; Hyper- thermic, peraquents	50 64	72 77	230 365		Lacustrine bordered by palustrine	Fishery Recreation
411Ab Everglades	Flat plains; 0-100 ft.	Holocene freshwater marsh peat and clay	Medisaprists; Hyperthermic, aquic	50 64	72 77	330 365	Sawgrass HA, Spatter-dock (Tropical) HA, Gumbo Limbo- Florida Strangler Fig FA	Palustrine assoc- iated with swamps	Agriculture Water shed
411Ac Southern Slope	Flat plains; 0-50 ft.	Holocene algae and mud carbonate; lime- stone	Fluvaquents; Hyperthermic, aquic	50 64	72 77	330 365	Red Mangrove FA, Sawgrass HA, Poisonwood, Spanish Stopper FA	Estuarine associated with coastal marshes	Agriculture
411Ad Atlantic Coastal Ridge	Flat plains; 0-100 ft.	Pleistocene Miami oolitic limestone	Sulfahemist, Sulfaquents; Hyperthermic, aquic	50 64	72 74	330 365	South Florida Slash Pine WA, S. Hairgrass HA, Sawgrass (Freshwater) HA	Palustrine assoc- iated with upland flats	Urban Agriculture
411Ae Coastal Lowlands, Tidal Marshes and Bays	Flat plains-tidal marshes and embayed estuaries; 0-100 ft.	Holocene freshwater marsh peat and clay, mangrove swamp deposit	Sulfihemists; Hyperthermic, aquic	50 64	72 77	330 365	Red Mangrove FA, Sawgrass (Freshwater) HA, Saltwort DSA	Freshwater marshes common	Fisheries Recreation
411Af Big Cypress Spur	Flat plains; 0-100 ft.	Holocene algal and mud carbonate, calcareous sand solution residuum	Psammaquents;	50 64	72 77	330 365	Pondcypress (Tropical) WA, South Florida Slash Pine WA, Coastal Hair-grass HA	Swamps common	Agriculture Forestry
411Ag Florida Keys and Biscayne Bay	Flat plains and large embayed estuary; 0-66 ft.	Late to middle Pleistocene Key Largo Limestone	Troposaprists; Isohyperthermic, aquic	50 64	72 77	330 365		Swamps common, Biscayne Bay and tidal marshes	Fishery Navigation

M411A DRY HUMID MOUNTAINS SECTION

Subsection	Geomorphology; Elevation	Quaternary geology; Stratig. & lithology	Soil taxa; Temp. & moisture regimes				Potential Vegetation	Surface water characteristics	Human use
M411Aa Northern Karst Plain	Flat alluvial plains and terraces -karst limestone upland; 0-2297 ft.	Middle Tertiary to Recent chalky lime- stone and calcarenite overlain by deposits	Tropudalfs, Paleu- dults, Haplorthoxs;	65	 77	3 65	Uvilla FA, Mamey FA, Mangle Colorado FA	Reserved	Agriculture Forestry
M411Ab Interior Plateau	Plateau and mountains; 164-2963 ft.	Early Cretaceous to Early Tertiary vol- canic and plutonic	Tropohumults, Tro- pudults, Eutropepts;	75	76	365	Tabonuco-Motillo FA	Reserved	Agriculture Forestry
M411Ac Central Mountains	High mountains; 164-4396 ft.	Early Cretaceous to Early Tertiary vol- canic to plutonic	Tropohumults, Eutro- pepts;	85	75	365	Palma de Sierra FA Tabonuco-Motillo FA	Reserved	Forestry
M411Ad Southern Mountain Slopes	Southern mountain slopes; 164-1312 ft.	Early Cretaceous to Early Tertiary vol- canic to plutonic	Eutropepts, Haplu- dolls, Fluvaquents;	48	79	365	Tabonuco-Motillo FA	Reserved	Forestry
M411Ae Southern Karst Plain, Low- lands and Islands	Southern karst plain and lowlands; 0-1312 ft.	Middle Tertiary to Recent chalky lime- stone and calcarenite overlain by deposits	Ustropepts, Calcius- tolls, Haplustults;	36	79	365	Gumbolimbo WA, Sebucan- Erivo SA	Reserved	Undevel oped

APPENDIX

SELECTED GLOSSARY

ARCINFO FORMAT - A proprietary format for GIS data developed by ESRI, Redlands, California.

BIOLOGICAL COMPONENT - Living parts of ecosystems consisting of flora and fauna that respond and adapt to changes in the physical components and which help characterize the ecological potential of a classification unit.

ECOLOGICAL LAND CLASSIFICATION AND MAPPING - A hierarchical, multi-factor approach to categorizing and delineating, at different levels of resolution, areas of land and water having similar capabilities and potentials for management.

ECOLOGICAL UNIT - A mapped landscape unit designed to meet management objectives, comprised of one or more ecological types.

ECOLOGICAL TYPE - A category of land and/or water having a unique combination of biological potential, soil, landscape feature, and climate, and differing from other ecological types in its ability to produce organisms and respond to management.

ECOSYSTEM - A complete interacting system of organisms and their environment.

LANDSCAPE - A heterogeneous land area composed of a cluster of interacting ecosystems that is repeated in a similar form throughout, and can be viewed at one time from one place.

MULTI-FACTOR - Classification methodology whereby biological and physical components are evaluated simultaneously to arrive at the appropriate ecological potential of a map unit.

POTENTIAL VEGETATION - The biotic community that would be established if all successional sequences of its ecosystem were completed without additional human-caused disturbance under present environmental conditions.

SOIL GREAT GROUP - A category of soil classification where soils are placed together based on close similarities in kind, arrangement, and degree of expression of horizons: close similarities in soil moisture and temperature regimes: and similarities in base status.

SOIL MOISTURE REGIME - Classes of soil moisture that are based on the assumption that the soil supports whatever vegetation it is capable of supporting. Moisture regimes are defined in terms of the ground-water level and in terms of the absence or presence of water held at a tension of <15 bars in the moisture control section by periods of the year.

SOIL TEMPERATURE REGIME - The characteristic temperature regime of a soil that is described by the mean annual soil temperature, the average seasonal fluctuations from that mean, and the mean warm or cold seasonal soil-temperature gradient within the main root zone, which is the zone from a depth of 5 to 100 cm.

SUBSECTION - An ecological unit in the subregion planning and analysis scale of the National Hierarchical Framework corresponding to subdivisions of a Section into areas with similar surficial geology, lithology, geomorphic process, soil great groups, subregional climate, and potential vegetation.

SUBREGION - A scale of planning and analysis in the National Hierarchical Framework that has applicability for strategic, multi-forest, statewide, and multi-agency analysis and assessment. Subregions include Section and Subsection ecological units.

SELECTED REFERENCES

Cowardin, L.M.; Carter, V.; Golet, F.F.; LaRoe, E.T. 1979. Classification of wetlands and deepwater habitats of the United States. Washington, DC: U.S. Department of the Interior, U.S. Fish and Wildlife Service. 131 p.

ECOMAP. 1993. National hierarchical framework of ecological units. USDA Forest Service. Washington. DC. 20 p.

Faber-Langendoen, D. (Editor) 1993. Midwest regional community classification framework, 1995 Update. The Nature Conservancy, Midwest Heritage Task Force, Minneapolis, MN, USA 34 pp.

Fairbridge, R. W. 1968. The encyclopedia of geomorphology. Encyclopedia of earth sciences series, Vol. III. New York, NY. Reinhold Book Corporation. 1295 p.

Hammond, E.H. 1970. Classes of land-surface form (map). In National Atlas of the United States of America. Washington, DC: Geological Survey, U.S. Dep. Interior. Scale 1:7.500.000: colored.

Keys, Jr, J.E; McNab, W.H. Unpubl. Subsection mapping and description in the Southern Region of the Forest Service. Report on file, USDA Forest Service, Southern Region, Atlanta, GA. 6 p.

Maxwell, J.R. and others, 1995. A hierarchical framework of aquatic ecological units in North America, USDA Forest Service Gen. Tech. Rep. NC-176.

Smith, M.L.; Carpenter, C.A. (in press). Application of the USDA Forest Service national hierarchical framework of ecological units at the subregional level: The New England-New York example. Environmental Monitoring and Assessment.

Sneddon, L.; Anderson, M.; Metzler, K. 1994. A classification and description of terrestrial community alliances in The Nature Conservancy's Eastern Region. Boston, MA: The Nature Conservancy, Eastern Region. 124 p.

Weakley, A.; and others. 1995. A vegetation classification for the Southeastern United States. Chapel Hill, NC: The Nature Conservancy - Southeast Regional Office. 205 p.

USDA Soil Conservation Service, 1992, Keys to Soil Taxonomy, 5th edition, SMSS technical monograph No. 19, Blacksburg, VA: Pocahontas Press, Inc. 556 p.

US Geological Survey. (Date varies). Quaternary geologic maps of various 4 degree by 6 degree quadrangles of the United States. Miscellaneous Investigations Series, Map I-1420. Washington, DC: US Department of Interior, Geological Survey.

USDA Soil Conservation Service. 1981. Land resource regions and major land resource areas of the United States. Agric. Handb. No. 296. Washington, DC: U.S. Department of Agriculture, Soil Conservation Service. 156 p. [now Natural Resources Conservation Service].

ACKNOWLEDGEMENTS

Information in this table was developed by the combined efforts of many Forest Service personnel and other persons affiliated with federal and state governments, and non-governmental organizations.

REGIONAL COMPILATION AND COORDINATION

- -Constance Carpenter, Northeastern Area State and Private Forestry
- -Susan Hooks, Southern Region
- -Jim Keys, Southern Region
- -Henry McNab. Southern Research Station
- -Walter Russell, Washington D.C.

SUBREGIONAL COMPILATION AND COORDINATION

- -Mark Anderson, Ecologist, Eastern Regional Office of The Nature Conservancy
- -Don Faber-Langendoen, Ecologist, The Nature Conservancy Midwest Regional Office
- -James K. Jordan, Ecologist, Ottawa National Forest
- -Frank Koenig, USDA, Forest Service, Eastern Region
- -Karen Patterson, Ecologist, Southeast Regional Office of The Nature Conservancy
- -Marie-Louise Smith, Research Ecologist, Northeast Forest Experiment Station
- -Karen Sykes, Watershed Specialist, Northeastern Area State and Private Forestry
- -Alan Weakley, Ecologist, Southeast Regional Office of The Nature Conservancy

STATEWIDE DATA COMPILATION AND/OR COORDINATION

- CT: -Marie-Louise Smith, Research Ecologist, Northeast Forest Experiment Station,
- DE: -Jim Olsen, Forester, Delaware Forest Service
- IA: -Constance Carpenter, Hydrologist, Northeastern Areas State and Private Forestry
- IL: -Max Hutchinson, Ecologist, The Nature Conservancy:
 - -Andy Rorick, Geologist, Shawnee National Forest, Carbondale, Illinois
- IN: -Michael Homoya, Ecologist, Division of Nature Preserves, Department of Natural Resources, Indianapolis, IN
 - -Pat Merchant, Soil Scientist, Hoosier National Forest, Brownstown, IN
- KS: -Constance Carpenter, Hydrologist, Northeastern Areas State and Private Forestry, Durham, NH
- KY: -Julian Campbell, Kentucky Chapter, The Nature Conservancy
- MA: -Marie-Louise Smith, USFS Northeast Forest Experiment Station, Durham, NH
- MD: -Ken Jolly, Supervisor, Public Land Stewardship
 - -Jack Perdue, Forester, Program Development
- ME: -Stephen Fay, Soil Scientist, USFS, White Mountain National Forest
- MI: Joseph Gates, Soil Scientist, Huron-Manistee National Forest
 - -Eunice Padley, Eastern Regional Office
- MN: -Barbara Leuelling, Soil Scientist, Superior National Forest
 - -James Jordan, Ecologist, Ottawa National Forest
 - -Dave Shadis, Chippewa National Forest
- MO: -Timothy A. Nigh, Missouri Department of Conservation, Jefferson City, MO
 - -Walter A. Schroeder, Geographer, University of Missouri-Columbia
- ND: -Constance Carpenter, Hydrologist, Northeastern Areas State and Private Forestry
- NE: -Constance Carpenter, Hydrologist, Northeastern Areas State and Private Forestry, Durham, NH
- WI: -Leonard Kempf, Soil Scientist, Chequemegon National Forest,
 - -James Jordan, Soil Scientist, Ottawa National Forest
- NH: -Stephen Fay, Soil Scientist, USFS, White Mountain National Forest
- NJ: -Craig Coutros, Forester, New Jersey State Forest Service
- NY: -Constance Carpenter, Hydrologist, USFS, Northeastern Area, State and Private Forestry
- OH: -Scott Brockman, Geologist, Ohio Geologic Survey,
- PA: -Dan Devlin, Chief, Resource Planning, Pennsylvania Bureau of Forestry
- RI: -Marie-Louise Smith, USFS, Northeast Forest Experiment Station, Durham, NH
- TN: Joy Broach, Tennessee Department of Environment and Conservation

-Milo Pyne, Tennessee Department of Environment and Conservation

-Diane Burbank, Ecologist, USFS, Green Mountain and Finger Lakes National Forests Rutland, VI

WV: -Dr. Kenneth Carvell, Professor Forestry, ret., West Virginia University

-Thomas DeMeo, Ecologist, Monongahela National Forest

KY, VA, NC, TN, NC, SC, GA, PR, TX, OK: Jim Keys, Soil Scientist; Susan Hooks Ecologist; Henry McNab, Research Forester; Southern Region and Station FL, AL, MS, LA, AR: Jim Keys, Soil Scientist; Susan Hooks, Ecologist; Southern Region

ASSISTANT COMPILERS

VT:

- -Nancy Burt, Soil Scientist, Green Mountain National Forest
- -Sally Browning, Soil Scientist, Nantahala National Forest
- -Tom Collins, Geologist, Jefferson National Forest
- -Steve Croy, Ecologist, George Washington National Forest
- -Art Degaetano, Climatologist, Northeast Regional Climate Center;
- -Rob Evans, Ecologist, National Forests in Texas
- -Brian Fitch, Soil Scientist, Shawnee National Forest
- -Roger Fryar, Silviculturist, Cherokee National Forest
- -Julia Gibbons, Soil Scientist, Ozark National Forest
- -Art Goddard, National Forests in Alabama
- -Doug Hattersley, Geologist, Southern Region
- -Linda Houston, Geologist, Allegheny National Forest
- -Dave Lacy, Archaeologist, Green Mountain National Forest
- -Lance Lindwall, Forest Geologist, Huron-Manistee National Forest
- -William Moriarity, Soil Scientist, Allegheny National Forest
- -John Nesser, Regional Soil Scientist, Missoula, MT.
- -John Novosad, Soil Scientist, Kisatchie National Forest
- -Eunice Padley, Ecologist, USFS Eastern Regional Office
- -Bill Pell, Ouachita National Forest
- -Wendy Pistrang, Chattahoochee National Forest
- -Robert Maini, Environmental Scientist, University of New Hampshire-Durham
- -Lynda Richards, Ecologist, Mark Twain National Forest, Rolla, MO
- -Dick Rightmyer, Soil Scientist, Chattahoochee National Forest
- -Robin Roecker, Ecologist, Francis Marion and Sumter National Forests
- -Steve Roy, Fishery Biologist, Green Mountain and Finger Lakes National Forests
- -Bobby Scott, Soil Scientist, Cherokee National Forest
- -Steve Simon, Ecologist, National Forests in North Carolina
- -David Taylor, Ecologist, Daniel Boone National Forest
- -Linda Tracy, Geologist, Monongahela National Forest
- -Kenneth Vogt, Natural Resource Conservation Service, Columbia, MO
- -Jon Walker, Hydrologist, Daniel Boone National Forest
- -Linton Wright, Soil Scientist, Monongahela National Forest

It is impossible to properly thank all the folks from the various state, federal, and non-government organizations that have assisted in this project. The following list, organized subregionally, includes additional people that have provided continued assistance in unit development, technical review, and information gathering.

New England and New York States

- -Scott Anderson, Asst. State Soil Scientist, NY
- -Charles Cogbill, Ecologist, Plainfield, VI
- -Art Degaetano, Climatologist, Northeast Regional Climate Center, NY
- -Ken Desmaris, New Hampshire Division of Forests and Lands
- -Thomas Doake, Forester, Maine State Forest Service
- -Margaret Dochoda, Great Lakes Fishery Commission
- -Rick Enser, Ecologist, State Natural Heritage Programs, RI
- -Laura Falk, Planner, White Mountain National Forest, NH
- -John Gailbraith, Natural Resource Conservation Service, NY

-Susan Gawler, Ecologist, Maine State Natural Heritage Program -Tyrone Goddard, State Soil Scientist, Natural Resource Conservation Service, NY -Steve Gorley, Asst. State Soil Scientist, VT -Willis Hanna, Retired State Soil Scientist, Natural Resource Conservation, NY -Wayne Hoar, Soil Scientist, Natural Resource Conservation Service, ME -Steve Hundley, State Soil Scientist, Natural Resource Conservation Service, NH -Norm Kalloch, State Soil Scientist, Natural Resource Conservation Service, ME -Kippen Kolesinskas, State Soil Scientist, Natural Resource Conservation Service, CT -John Lanier. New Hampshire Fish and Game Department -Bill Leak, Research Silviculturist, Northeast Forest Experiment Station, NH -Jay Majowski, Forester, Vermont Department of Forests, Parks, and Recreation -Janet McMahon, Ecologist, The Maine Chapter of The Nature Conservancy -Kenneth Metzer, Ecologist, State Natural Heritage Program -Thomas Minor, New Hampshire Division of Forests and Lands -William Moriarity, Soil Scientist, Allegheny National Forest -Bill Moulton, Forester, Vermont Department of Forest, Parks, and Recreation -Sid Pilgrim, ret. State Soil Scientist, Natural Resource Conservation Service, NH -Bob Popp, Botanist, Vermont Nongame and Natural Heritage Program -David Publicover, Ecologist, Appalachian Mountain Club -Carol Reschke, Ecologist, New York Natural Heritage Program -Bill Rivers, Forester, Massachusettes Division of Forests and Parks -Clint Rumrill. New York Division of Lands and Forests -Dick Scanu, Asst. State Conservationist, Natural Resource Conservation Service -Greg Schmidt, New York Division of Lands and Forests -Dan Sperduto, Ecologist, New Hampshire Natural Heritage Programs: -Brian Stone, Vermont Department of Forests, Parks, and Recreation -Patricia Swain, Ecologist, Massachusettes Natural Heritage Programs: -William Taylor, Asst. State Soil Scientist, MA -Elizabeth Thompson, Ecologist, Vermont Nongame Natural Heritage Programs: -Tom Villars, Soil Scientist, Natural Resource Conservation Service, VT -Mariko Yamasaki, Wildlife Biologist, Northeast Forest Experiment Station

Mid Atlantic States

-Thomas Breden, Ecologist, New Jersey, Natural Heritage Program
-Charles Bier, Ecologist, Pennsylvania Natural Heritage Program
-Tony Davis, Ecologist, Pennsylvania Natural Heritage Program
-Randy Durner, Allegheny National Forest
-Dennis Hull, Geologist, Ohio Department of Natural Resources
-Louis Iverson, Research Ecologist, Northeast Forest Experiment Station
-Don Karas, Forester, Ohio Department of Natural Resources
-Julie Lundgren, Ecologist, Pennsylvania Natural Heritage Program
-Linda Tracy, Geologist, Monongahela National Forest
-Paul Trianosky, Ecologist, The Nature Conservancy
-Jeffrey Wagner, Ecologist, Pennsylvania Natural Heritage Program
-Bob Whipkey, Assistant Dep. Adm. Forester, WV Division of Forestry,

-Ashton Berdine, Ecologist, Maryland Natural Heritage Program

Lake States

- -Dennis Albert, Michigan Natural Features Inventory
- -Stu Behling, Geologist, Superior National Forest
- -Robert Berrisford, Hydrologist, Superior National Forest
- -Jeff Cardille, Land Information and Computer Graphic Facility, Univ of

Wisconsin-Madison

- -Dave Cleland, Ecologist, North Central Forest Experiment Station
- -Tom Crow, Project Leader, North Central Forest Experiment Station

- -Dan Hanson, Minnesota Department of Natural Resources
- -Brian Hargrave, Soil Scientist, Minnesota Department of Natural Resources
- -Dave Hoppe, Soil Scientist, Nicolet National Forest
- -George Host, Natural Resources Research Institure, Univ. of Minnesota
- -Dave Hvizdack, Area Soil Scientist, Natural Resource Conservation Service
- -Robert Kari, Soils Scientist, Superior National Forest
- -Joe Kovach, Wisconsin Department of Natural Resources
- -Dave Omernik, Area Soil Scientist, Natural Resource Conservation Service
- -Sherry Phillips, Soil Scientist, Superior National Forest
- -Dave Roberts, Soil Conservationist, Natural Resource Conservation Service
- -Kirsten Seleen, Hiawatha National Forest,
- -Janet Sibernagel, Hiawatha National Forest
- -Judith Sikes, Ottawa National Forest
- -John Wright, Wildlife Biologist, North Central Experiment Station
- -Darrell Zastrow, Wisconsin Department of Natural Resources

Iowa and Border States

- -Jerry Freeouf, Regional Soil Scientist, Lakewood, CO
- -Kelly Kindscher, Ecologist, Kansas Natural Heritage Program
- -John Pearson, Iowa Department of Natural Resources

Correlation of Geologic descriptions in the Eastern Region

-Andrew Rorick, Eastern Region Geologist, Shawnee National Forest

GIS/CARTOGRAPHY

- -Susan DeLost, Cartographer, Northeastern Area State and Private Forestry,
- -Harold R. Greenlee, Cartographer, Geometronics, Southern Region
- -Denzil D. "Mike" Hamby, Engineer, Geometronics, Southern Region, Forest Service
- -Thomas Luther, GIS analyst, Northeastern Area State and Private Forestry
- -Joe W. Stallings, Cartographer, Geometronics, Southern Region
- -John Wright, Wildlife Biologist, North Central Forest Experiment Station

NATIONAL COORDINATION OF CARTOGRAPHY AND MAP DESIGN

- -Robert G. Bailey, Geographer/Cartographer, Washington Office
- -Walter E. Russell, Soil Scientist, Washington Office

REGIONAL REFERENCES

SELECTED REFERENCES USED BY THE EASTERN REGION:

Albert, D. 1994. Regional Landscape Ecosystems of Michigan, Minnesota, and Wisconsin, A working map and classification (Fourth Revision: July 1994): Michigan Natural Features Inventory

Billings, M.P. 1956. The geology of New Hampshire: Part II - bedrock geology, Concord, NH: New Hampshire State Planning and Development Commission. 203 p.

Dickenson, N.R. 1979. A division of southern and western New York state into ecological zones. Federal Aid to Fish and Wildlife Restoration Project. W-162-R. 56 p.

Doll, C.G., W.M. Cady, J.B. Thompson, Jr., M.P. Billings. 1961. Centennial geologic map of Vermont. Vt. Geol. Surv. Faber-Langendoen, D. (Editor) 1993 Midwest Regional Community Classification Framework, 1995 Update. The Nature Conservancy, Midwest Heritage Task Forece, Minneapolis, MN, USA 34 pp.

Germain, C. and Hole, F.D. 1994. Natural regions of Wisconsin.

Griffin, G.E., Omernik, J.M., Pierson, S.M. Hargrave, B., 1993 Draft. The Upper Levels of an Ecological Classification System for Minnesota. State of

Minnesota, DNR Forestry.

Homoya, M.A., D.B. Abrell, J.R. Aldrich, T.W. Post. 1985. The Natural Regions of Indiana. Proceedings of the Indian Academy of Science. Vol. 94. Division of Nature Preserves, Department of Natural Resources, Indianapolis, IN p245-268.

Isachsen, Y.W., E. Landing, J.M. Lauber, L.V. Rickard, and W.B.Rogers, editors. 1991. Geology of New York a simplified account. New York State Museum/Geological Survey. The University of the State of New York, albany, NY 12230.

Jacobs, E.C. 1950. The physical feature of Vermont. Vt. St. Dev. Dept. and Vt. Geol. Surv. Montpelier, Vt. 169 p.

Linebeck, J.E., 1979, Quaternary deposits of Illinois: Illinois State Geological Survey Map, Scale 1:500,000.

McMahon, J.S. 1990. The biophysical regions of Maine: Patterns in the landscape and vegetation. Orono, ME: University of maine. 119 p. Thesis.

Omernik, J.M., Griffith, G.E., and Pierson, S.M., 1993. Ecoregion and Western Corn Belt Plains, Subregions of Iowa. map.

Prior, Jean C. 1991. Landforms of Iowa. University of Iowa Press, Iowa City, Iowa.

Rogers, W.B., Y.W. Isachsen, T.D. Mock, and R.E. Nyahay. 1990. New York State geological highway map. Educational leaflet 33. The University of the State of New York. The State Education Department, New York State Geological Survey, New York State Museum Cultural Education Center, Albany, NY 12230.

Schwegman, J.E. and others, 1973, Natural divisions of Illinois: Illinois Nature Preserves Commission, Rockford Illinois, Map 1:1,000,000, Report 32 p.

Sneddon, L.; Anderson, M., and Metzler, K. 1994. A classification and description of terrestrial community alliances in the Nature conservancy's Eastern Region. Boston, MA: The Nature Conservancy - Eastern Region. 124p.

Smith, M.L. and Carpenter, C. 1996. Application of the USDA Forest Service National Hierarchical Framework of Ecological Units at the Subregional Level: The New England-New York Example, Environmental Monitoring and Assessment. Vol 39, 187-198

Will, G.B., Stumvoll, R.D., Gotie, R.F., Smith, E.S., 1982. The ecological zones of Northern New York. New York Fish and Game Journal, Vol 29, No. 1 January, 25p.

Willman, H.B. and others, 1967, Geologic Map of Illinois: Illinois State Geological Survey Map, Scale 1:500,000.

Willman, H.B. and others, 1975, Handbook of Illinois stratigraphy: Illinois State Geological Survey Bulletin 95, 261 p.

SELECTED REFERENCES USED BY THE SOUTHERN REGION:

Campbell, J.J.N. 1989. Historical evidence of forest composition in the Bluegrass region of Kentucky. Seventh Central Hardwood Forest Conference. Carbondale, IL. p 231-246.

Cheshire, H.M. 1982. A physiographic system of forestland classification for North Carolina. Thesis. N.C. State University. 56 p.

Cowardin, L.M.; Carter, V.; Golet, F.F.; LaRoe, E.T. 1979. Classification of wetlands and deepwater habitats of the United States. Washington, DC: U.S. Department of the Interior, U.S. Fish and Wildlife Service. 131 p.

Evans, D.L.; Burns, P.Y.; Linnartzs, N.E.; Robinson, C.J. 1983. Forest habitat regions of Louisiana. Research Report No. 1. School of Forestry and Wildlife Management. Louisiana Agricultural Experiment Station. 23 p.

Hodgkins, E.J.; Golden, M.S.; Miller, W.F. 1979. Forest habitat regions and types on a photomorphic-physiographic basis: A guide to forest site classification in Alabama-Mississippi. Southern Coop Series No. 210. 64 p.

Myers, R.K.; Zahner, R. Jones, S.M. 1986. Forest habitat regions of South Carolina. Forest Research Series No. 42. Department of Forestry. Clemson University. 31 p.

Pehl, C.E.; Brim, R.L. 1985. Forest habit regions of Georgia, Landsat IV imagery. Special Publication 31. Georgia Agricultural Experiment Station. 12 p.

U.S. Department of Agriculture. 1981. Land resource regions and major land resource areas of the United States. Agricultural Handbook 296. Washington, DC: U.S. Department of Agriculture, Soil Conservation Service. 156 p.

Weakley, A.; and others. 1995. A vegetation classification for the Southeastern United States. Chapel Hill, NC: The Nature Conservancy - Southeast Regional Office. 205 p.

SCIENTIFIC NAMES/VEGETATIVE SPECIES

This list contains the scientific names of common vegetative species that comprise alliances of potential natural communities used in this table. Common names follow those used by Weakley and others (1995).

American Beech - Fagus grandifolia American Elm - Ulmus americana Ashe's Red-Cedar - Juniperus ashei Atlantic White Cedar - Chamaecyparis thyoides Bald Cypress - Taxodium distichum Bayahonda - Prosopis pallida Big Bluestem - Andropogon gerardii Bitter-nut Hickory - Carya cordiformis Black Oak - Quercus velutina Black Ash - Fraxinus nigra Black Hickory - Carva texana Blackjack Oak - Quercus marilandica Black Needlerush - Juncus roemerianus Cabbage Palmetto - Sabal palmetto Cherrybark Oak - Quercus pagoda Chestnut Oak (Rock Chestnut Oak) - Quercus prinus Chinquapin Oak - Quercus muehlenbergii Diamondleaf Oak - Quercus laurifolia Dildo - Pilosocerens rodvenii Dove Plum - Coccoloba diversifolia Eastern Juniper - Juniperus virginiana var. virginiana Frizo - Melocactus intortus Fraser Fir - Abies fraseri Green Ash - Fraxinus pennsylvanica Gulf Cordgrass - Spartina spartinae Gulf-Dune Paspalum - Paspalum monostachyam Gumbo Limbo - Bursera simaruba Hackberry - Celtis occidentalis Honey Mesquite - Prosopis glandulosa Little Bluestem - Schizachyrium scoparium Live Oak - Quercus virginiana Loblolly Bay - Gordonia lasianthus Loblolly Pine - Pinus taeda Longleaf Pine - Pinus palustris Mamey - Mammea americana Melon de Costa - Melocactus intortus Mockernut Hickory - Carya alba Montillo - Sloanea berteriana Northern Red Oak - Quercus rubra Overcup Oak - Quercus lyrata Oxhorn Bucida - Bucida buceras Palma de Sierra - Prestoea montana Pignut Hickory - Carya glabra Pitch Pine - Pinus rigida Pocosin Pine - Pinus serotina Poisonwood - Metopium toxiferum Pond Cypress - Taxodium ascendens Pond Pine - Pinus serotina

Post Oak - Quercus stellata

Red Mangrove - Rhizophora mangle Red Spruce - Picea rubens River Birch - Betula nigra Salt Grass - Distichlis spicata Saltmarsh Cordgrass - Spartina alterniflora Saltwort - Batis maritima Sand Hickory - Carya pallida Sand Pine - Pinus clausa Saw Palmetto - Serenoa repens Sawgrass - Cladium mariscus ssp. iamaicense Scarlet Oak - Quercus coccinea Sebucan - Pilosocerens rodvenii Shaqbark Hickory - Carva ovata Shumard Oak - Quercus shumardii Sierra Palm - Prestoea montana Slash Pine - Pinus elliottii var elliottii Southern hairgrass - Muhlengergia filipes Southern Red Oak - Quercus falcata South Florida Slash Pine - Pinus elliottii var. densa Shortleaf Pine - Pinus echinata Spanish Stopper - Eugenia foetida Strangler Fig - Ficus aurea Sugarberry - Celtis laevigata Sugar Maple - Acer saccharum Swamp Laurel Oak - Quercus laurifolia Swamp Ti-Ti - Cyrilla racemiflora Sweetgum - Liquidambar styraciflua Switchgrass - Panicum virgatum Tabonuco - Dacryodes excelsa Turk's Cap Cactus - Melocactus intortus Sycamore - Platanus occidentalis Tracy's Beaksedge - Rhynchospora tracyi Uvilla - Coccoloba diversifolia Virginia Pine - Pinus virginiana Water Oak - Quercus nigra Water Tupelo - Nyssa aquatica White Oak - Quercus alba White Pine - Pinus strobus Willow Oak - Quercus phellos Yaupon Holly - Ilex vomitoria Yellow Birch - Betula alleghaniensis Yellow Buckeye - Aesculus flava Yellow Indian-grass - Sorghastrum nutans Yellow Poplar - Liriodendron tulipifera Yellow Water Lily (Spatterdock) - Nuphar Lutea

