

 $000 \\ 001$

Figure 1: Train loss and test loss for different dynamic dimensions

Figure 2: Comparison of prediction performance between SKOLR and KooPA on Duffing dynamical systems.

Koopman Operator Eigenvalues: traffic

Figure 3: Koopman operator eigenvalue analysis for SKOLR on the Traffic dataset

Table 1: Scaling up forecast horizon: $(T_t, T_t) = (24, 48)$ for ILI and $(T_t, T_t) = (48, 144)$ for others. Koopa and SKOLR conducts vanilla rolling forecast and Koopa OA has operator adaptation.

			ILI ECL DF -5.406) (ADF -8.483)		Traffic (ADF -15.046)		Weather (ADF -26.661)			
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
Koopa (T_tr)	0.226	0.300	1.621	0.800	0.130	0.234	0.415	0.274	0.126	0.168
Koopa(T_te) Error(+ %)	0.437	0.429 43%	2.836 75%	1.065 33%	0.199 53%	0.298 27%	0.709 71%	0.437 59%	0.237 88%	0.276 64%
Koopa OA(T_te) Error(+ %)	0.372 65%	0.404 35%	2.427 50%	0.907 13%	0.182 40%	0.271 16%	0.699 68%	0.426 55%	0.225 79%	0.264 57%
SKOLR (T_tr)	0.238	0.306	1.556	0.760	0.137	0.229	0.400	0.258	0.131	0.170
SKOLR (T_te) Error(+ %)	0.393	0.402 31%	2.392 54%	0.958 26%	0.204 49%	0.289 26%	0.612 53%	0.383 48%	0.222 69%	0.257 51%

Table 2: Effect of hidden layer count on forecasting performance (MSE) with dimension 256 and 2 branches

Hidden Layer	ETTh1	ETTh2	ETTm1	ETTm2
1	0.333	0.238	0.280	0.134
2	0.337	0.253	0.281	0.136
3	0.339	0.239	0.283	0.135
4	0.344	0.254	0.294	0.137

Table 3: Effect of segment length on forecasting performance (MSE) with dimension 256 and 2 branches

Segment Length	Traffic	ETTm2	Weather	ECL
L/8	0.400	0.133	0.132	0.137
L/6	0.400	0.134	0.131	0.137
L/3	0.401	0.134	0.129	0.137
L/2	0.399	0.135	0.130	0.135

Table 4: Model Efficiency and Performance Comparison for Different Datasets with T=96. Parameters (Params) are measured in millions (M), GPU memory (GPU) in MiB, computation time per epoch in seconds (s) on NVIDIA V100 GPU with batch size 32.

(a) Traffic Dataset

Model	Params (M)	GPU(MiB)	Time (s)	MSE
Autoformer	14.914	18.811	51.0	0.668
iTransformer	6.405	62.710	126.0	0.388
PatchTST	3.755	22.132	1042.0	0.413
MICN	236.151	32.310	84.0	0.511
TimesNet	30.170	111.998	6563.0	0.611
DLinear	0.009	12.861	7.7	0.485
Koopa	5.429	50.335	25.5	0.401
SKOLR	1.479	5.915	216.0	0.368

(c) ETTh1 Dataset

Model	Params (M)	GPU (MiB)	Time (s)	MSE
Autoformer	10.536	16.523	29.5	0.634
iTransformer	0.237	27.245	4.1	0.393
PatchTST	3.752	22.018	8.5	0.372
MICN	252.001	65.974	21.1	0.406
TimesNet	0.605	26.053	22.1	0.411
DLinear	0.140	26.440	0.6	0.379
Koopa	0.135	31.951	10.1	0.371
SKOLR	0.429	1.717	2.8	0.371

(b) Electricity Dataset

Model	Params (M)	GPU(MiB)	Time (s)	MSE
Autoformer	11.214	17.373	68.7	0.182
iTransformer	4.957	86.478	58.6	0.134
PatchTST	6.904	73.517	1231.0	0.143
MICN	6.635	32.668	18.0	0.165
TimesNet	15.037	33.435	11351.0	0.170
DLinear	0.019	76.016	6.8	0.153
Koopa	4.076	31.067	33.1	0.136
SKOLR	1.541	6.163	99.1	0.132

(d) ETTm2 Dataset

Model	Params (M)	GPU(MiB)	Time (s)	MSE
Autoformer	10.536	14.599	152.6	0.241
iTransformer	0.237	27.245	13.1	0.177
PatchTST	10.056	39.910	980.0	0.171
MICN	252.001	65.974	84.2	0.197
TimesNet	1.192	34.783	113.0	0.187
DLinear	18.291	9.312	1.9	0.172
Koopa	0.135	31.951	48.2	0.171
SKOLR	0.429	1.717	12.6	0.171

Table 5: Ablation study comparing SKOLR with versions without structure and without spectral encoder

Detecat	Т	SKO	OLR	w/o St	ructure	w/o Spectr	al Encoder
Dataset	1	MSE	MAE	MSE	MAE	MSE	MAE
	48	0.137	0.229	0.148	0.238	0.149	0.238
ECL	96	0.132	0.225	0.135	0.228	0.133	0.227
ECL	144	0.143	0.236	0.146	0.241	0.142	0.235
	192	0.149	0.244	0.150	0.245	0.148	0.243
	48	0.400	0.258	0.395	0.255	0.397	0.257
Traffic	96	0.368	0.248	0.367	0.249	0.369	0.249
Hanne	144	0.375	0.255	0.375	0.255	0.375	0.255
	192	0.377	0.256	0.378	0.256	0.377	0.256
	48	0.131	0.170	0.134	0.173	0.134	0.172
Weather	96	0.154	0.202	<u>0.157</u>	0.203	0.158	0.202
weather	144	0.172	0.220	0.177	0.225	<u>0.175</u>	0.221
	192	0.193	0.241	0.195	0.242	0.197	0.244
	48	0.280	0.330	0.284	0.334	0.282	0.332
ETTm1	96	0.287	0.340	0.292	0.343	0.291	0.342
EIIIII	144	0.313	0.361	0.325	0.365	0.319	0.361
	192	0.328	0.373	0.332	0.372	0.332	0.372
	48	0.134	0.228	0.135	0.229	0.162	0.259
ETTm2	96	<u>0.171</u>	0.255	0.174	0.259	0.169	0.253
LITIIIZ	144	0.209	0.283	0.206	0.280	0.209	0.282
	192	0.241	0.304	0.241	0.305	0.230	0.299
	48	0.333	0.373	0.338	0.377	0.336	0.374
ETTh1	96	0.371	0.398	0.387	0.408	0.373	0.399
LIIII	144	0.405	0.417	0.414	0.423	<u>0.410</u>	0.420
	192	0.422	0.432	0.409	0.421	<u>0.413</u>	0.422
	48	0.238	0.306	0.233	0.304	0.239	0.305
ETTh2	96	0.299	0.352	<u>0.301</u>	0.350	0.303	0.350
E11112	144	0.335	0.377	0.341	0.382	0.337	0.381
	192	0.365	0.397	0.370	0.398	0.370	0.401
	24	1.556	0.760	1.795	0.842	1.522	0.741
ILI	36	1.462	0.728	1.990	0.889	<u>1.496</u>	<u>0.734</u>
ILI	48	1.537	0.798	1.875	0.909	<u>1.571</u>	<u>0.810</u>
	60	2.187	0.995	2.407	1.056	<u>2.263</u>	0.999

Table 6: Model performance across different datasets with mean \pm standard deviation for MSE and MAE metrics.

Dataset	Models	MSE	MAE
	48	0.137 ± 0.0003	0.229 ± 0.0003
ECL	96	0.132 ± 0.0005	0.225 ± 0.0004
ECL	144	0.143 ± 0.0001	0.236 ± 0.0001
	192	0.149 ± 0.0001	0.244 ± 0.0001
	48	0.400 ± 0.0003	0.258 ± 0.0040
Traffic	96	0.368 ± 0.0007	0.248 ± 0.0007
Hanne	144	0.375 ± 0.0003	0.255 ± 0.0002
	192	0.377 ± 0.0003	0.256 ± 0.0002
	48	0.131 ± 0.0009	0.170 ± 0.0008
Weather	96	0.154 ± 0.0015	0.202 ± 0.0015
Weather	144	0.172 ± 0.0009	0.220 ± 0.0006
	192	0.193 ± 0.0004	0.241 ± 0.0005
	48	0.280 ± 0.0013	0.330 ± 0.0015
ETTm1	96	0.287 ± 0.0003	0.340 ± 0.0001
EIIMI	144	0.313 ± 0.0020	0.361 ± 0.0023
	192	0.328 ± 0.0019	0.373 ± 0.0018
	48	0.134 ± 0.0011	0.228 ± 0.0007
ETTm2	96	0.171 ± 0.0015	0.255 ± 0.0013
LITHE	144	0.209 ± 0.0014	0.283 ± 0.0014
	192	0.241 ± 0.0013	0.304 ± 0.0015
	48	0.333 ± 0.0009	0.373 ± 0.0007
ETTh1	96	0.371 ± 0.0011	0.398 ± 0.0008
LIIII	144	0.405 ± 0.0019	0.417 ± 0.0020
	192	0.422 ± 0.0030	0.432 ± 0.0034
	48	0.238 ± 0.0012	0.306 ± 0.0004
ETTh2	96	0.299 ± 0.0034	0.352 ± 0.0042
LIIIL	144	0.335 ± 0.0042	0.377 ± 0.0048
	192	0.365 ± 0.0033	0.397 ± 0.0040
	24	1.556 ± 0.0213	0.760 ± 0.0159
ILI	36	1.462 ± 0.0711	0.728 ± 0.0676
11./1	48	1.537 ± 0.0038	0.798 ± 0.0030
	60	2.187 ± 0.0435	0.995 ± 0.0498

Table 7: Performance comparison of LRU (Orieto et al. (2023)) and SKOLR on non-linear dynamical systems (NLDS)

	SKO)LR	Koo	oPA	LI	RU
Dataset	MSE	MAE	MSE	MAE	MSE	MAE
Pendulum Duffing Lotka-Volterra Lorenz '63	0.0001 0.0047 0.0018 0.9740	0.0083 0.0518 0.0354 0.7941	0.0039 0.0365 0.0178 1.0937	0.0470 0.1479 0.1050 0.8325	0.0572 0.0573 0.2058 1.1905	0.0242 0.5970 0.3779 0.8932

Table 8: Comparison of Models for short-term prediction. Best results and second best results are highlighted in **red** and **blue** respectively.

M4	Metric	SKOLR	KooPA	N-HiTS	N-BEATS	PatchTST	TimesNet	DLinear	MICN	KNF	FiLM	Autoformer
Year	sMAPE MASE OWA	13.291 2.996 0.784	$\frac{13.352}{2.997}$ 0.786	13.371 3.025 0.790	13.466 3.059 0.797	13.517 3.031 0.795	13.394 3.004 0.787	13.866 3.006 0.802	14.532 3.359 0.867	13.986 3.029 0.804	14.012 3.071 0.815	14.786 3.349 0.874
Quarter	sMAPE MASE OWA	9.986 1.166 0.878	10.159 1.189 0.895	10.454 1.219 0.919	$\frac{10.074}{1.163} \\ \underline{0.881}$	10.847 1.315 0.972	10.101 1.183 0.890	10.689 1.294 0.957	11.395 1.379 1.020	10.343 1.202 0.965	10.758 1.306 0.905	12.125 1.483 1.091
Month	sMAPE MASE OWA	12.536 0.921 0.867	$\frac{12.730}{\begin{array}{c} 0.953 \\ \hline 0.901 \end{array}}$	12.794 0.960 0.895	12.801 0.955 <u>0.893</u>	14.584 1.169 1.055	12.866 0.964 0.894	13.372 1.014 0.940	13.829 1.082 0.988	12.894 1.023 0.985	13.377 1.021 0.944	15.530 1.277 1.139
Others	sMAPE MASE OWA	4.652 3.233 0.999	4.861 3.124 1.004	4.696 3.130 0.988	5.008 3.443 1.070	6.184 4.818 1.140	4.982 3.323 1.048	4.894 3.358 1.044	6.151 4.263 1.319	4.753 3.138 1.019	5.259 3.608 1.122	5.841 4.308 1.294
Average	sMAPE MASE OWA	11.704 1.572 0.843	$\frac{11.863}{\frac{1.595}{0.858}}$	11.960 1.606 0.861	11.910 1.613 0.862	13.022 1.814 0.954	11.930 1.597 0.867	12.418 1.656 0.891	13.023 1.836 0.960	12.126 1.641 0.874	12.489 1.690 0.902	14.057 1.954 1.029