H2 PHYSICS DEFINITIONS LIST

Term	Definition	
	SECTION I: MEASUREMENT	
	Chapter 1: Measurement	
Scalar	A scalar quantity is one which has <u>magnitude</u> but <u>no</u> <u>direction.</u>	
Vector	A vector is a quantity which has <u>direction as well as</u> magnitude.	
S	ECTION II: NEWTONIAN MECHANICS	
3.	Chapter 2: Kinematics	
Displacement, s	Total distance moved by an object <u>along a particular</u> direction.	
Speed	The rate of change of <u>distance</u> with respect to time.	
Velocity, v	The rate of change of <u>displacement</u> with respect to time.	
Acceleration, a	The rate of change of <u>velocity</u> with respect to time.	
Average speed/velocity	The <u>average rate</u> of change of distance/displacement with respect to time.	
Instantaneous Velocity	The rate of change of displacement with respect to time <u>at a particular time</u> .	
	Chapter 3: Dynamics	
Newton's First Law	A body continues in its state of rest or uniform motion in a	
	straight line unless a resultant external force acts on it.	
Newton's Second Law	The <u>rate of change of momentum</u> of a body is <u>proportional</u>	
	to the <u>resultant force</u> acting on it and occurs <u>in the direction</u>	
	of the force.	
Newton's Third Law	If body A exerts a force on body B, then body B exerts an equal but opposite force on body A.	
Linear Momentum	The product of the mass of an object and its velocity.	
Impulse	Impulse is the area under the force-time graph.	
Force, F	The rate of change of momentum.	
Principle of Conservation	The total momentum of a system remains constant	
of Momentum	provided no external resultant forces act on the system.	
	OR	
	The total momentum of an <u>isolated system</u> of bodies is	
	constant.	
Inertia	The <u>reluctance</u> of a body to start moving or to change its	
	motion once it has started.	
Equilibrium	When the <u>state</u> of an object remains <u>unchanged</u> even	
	though two or more forces are acting on it.	
Chapter 4: Forces		
Hooke's Law	The <u>force</u> needed to cause an extension/compression in a	
Hathwest H	spring is directly proportional to its extension/compression.	
Upthrust, U	It is the <u>upward force</u> acting on an object that is <u>partially or</u>	
Equilibrium	fully immersed in a fluid. (RJCPromo07)	
Equilibrium	A system is in equilibrium if there is <u>no resultant force</u> and	

	no resultant torque acting on it.
Centre of Gravity	The point at which all the weight of an object may be
control or crush,	considered to be acting as if the object were a particle.
Couple	A couple consists of a pair of parallel forces of equal
Coup.c	magnitude but opposite direction whose lines of action do
	not coincide.
Moment of a Force	The moment of a force about a point is the <u>product</u> of the
	force with the perpendicular distance of the force from that
	point.
Torque of a Couple, τ	The torque of a couple is the <u>product</u> of <u>one of the forces</u>
. ,	with the perpendicular separation between the couple.
Archimedes' Principle	An object immersed fully or partially in a fluid experiences a
	buoyant force equal in magnitude to the weight of the fluid
	displaced.
Centre of Mass	The point at which all of the mass of an object or system
	may be <u>considered to be concentrated</u> .
Principle of Flotation	An object floating in a fluid always displaces its own weight
	of fluid.
Rotational Equilibrium	A system is in rotational equilibrium if there is no resultant
	torque.
	Chapter 5: Work, Energy and Power
Work Done	The <u>product</u> of a <u>force and the displacement in the direction</u>
	of the force.
Power	Work done per unit time.
	Chapter 6: Motion in a Circle
Angular Velocity, ω	The <u>rate of change of angular displacement</u> with respect to
	time.
Centripetal Acceleration	Acceleration which is always perpendicular to the velocity
	and always <u>acts towards the centre</u> of the circular motion.
Uniform Circular Motion	The motion of an object moving in circular path at constant
	speed with constant angular velocity.
Centripetal Force	The <u>resultant perpendicular force</u> acting on an object
	moving in circular motion
Constitutional Field	Chapter 7: Gravitational Field
Gravitational Field	A gravitational field due to a body is a <u>region in space</u> in
	which another body placed in the region experiences a force
Newton's Law of	of attraction by the first body.
	Newton's law of gravitation states that the <u>force of</u>
Gravitation/Gravitational Force	<u>attraction between two point masses</u> is <u>directly</u> <u>proportional</u> to the <u>product of their masses</u> and <u>inversely</u>
IOICE	proportional to the square of their distance apart.
Gravitational Field	
Gravitational Field	The gravitational field strength at a point is the gravitational force per unit mass experienced by a mass placed at that
Gravitational Field Strength, g	force per unit mass experienced by a mass placed at that
Strength, g	force per unit mass experienced by a mass placed at that point.
	force per unit mass experienced by a mass placed at that

	that point without a change in kinetic energy. (RJCPromo07)
Gravitational Potential	The Gravitational Potential Energy of a mass is defined as
Energy	the work done by an external agent in bringing the mass
<i>57</i>	from infinity to its present location (without any change in
	KE).
	Chapter 8: Oscillations
Amplitude	The maximum displacement from the equilibrium position.
Period, T	The time taken to complete one cycle of oscillation.
Frequency, f	The <u>number of complete cycles per second</u> made by the
	oscillating object.
Simple Harmonic Motion	The motion of the body whose acceleration is directly
	proportional to its displacement from a fixed point
	(equilibrium position) and is always directed towards that
	fixed point.
Resonance	The tendency of a system to oscillate at <u>maximum</u>
	<u>amplitude</u> at its <u>natural frequency</u> .
Forced Oscillation	When the system is forced to oscillate at <u>a frequency other</u>
	than the natural frequency by a periodic external force.
Natural Frequency	The frequency of oscillation when a system <u>oscillates freely</u>
	without any external force applied.
Displacement, s	The <u>distance</u> of the oscillating object <u>from its equilibrium</u>
	position at any instant.
	SECTION III: THERMAL PHYSICS
	Chapter 9: Thermal Physics
Internal Energy	The <u>sum of the microscopic kinetic and potential energies</u> of
	the molecules that make up the system.
Thermal Equilibrium	When two objects in thermal contact cease to have any
Absolute Zero	exchange of heat.
Absolute Zero	The theoretical temperature at which the molecules of a
	I cubetance have the lowest energy and honce the cubetance
Kelvin, K	substance have the lowest energy and hence, the substance
Kelvili, K	has minimum internal energy.
	has <u>minimum internal energy</u> . The Kelvin is defined as <u>1/273.16</u> of the <u>temperature</u>
	has <u>minimum internal energy</u> . The Kelvin is defined as <u>1/273.16</u> of the <u>temperature</u> <u>difference</u> between <u>absolute zero</u> and the <u>triple point of</u>
Specific Heat Capacity, c	has <u>minimum internal energy</u> . The Kelvin is defined as <u>1/273.16</u> of the <u>temperature</u> <u>difference</u> between <u>absolute zero</u> and the <u>triple point of water.</u>
Specific Heat Capacity, c	has minimum internal energy. The Kelvin is defined as 1/273.16 of the temperature difference between absolute zero and the triple point of water. It is the quantity of heat required to raise the temperature
	has minimum internal energy. The Kelvin is defined as 1/273.16 of the temperature difference between absolute zero and the triple point of water. It is the quantity of heat required to raise the temperature of 1kg of the body by 1K.
Specific Heat Capacity, c Latent Heat	has minimum internal energy. The Kelvin is defined as 1/273.16 of the temperature difference between absolute zero and the triple point of water. It is the quantity of heat required to raise the temperature of 1kg of the body by 1K. It is the thermal energy required by matter for a change in
Latent Heat	has minimum internal energy. The Kelvin is defined as 1/273.16 of the temperature difference between absolute zero and the triple point of water. It is the quantity of heat required to raise the temperature of 1kg of the body by 1K. It is the thermal energy required by matter for a change in phase.
	has minimum internal energy. The Kelvin is defined as 1/273.16 of the temperature difference between absolute zero and the triple point of water. It is the quantity of heat required to raise the temperature of 1kg of the body by 1K. It is the thermal energy required by matter for a change in phase. It is the thermal energy required for 1kg of substance to
Latent Heat Specific Latent Heat of	has minimum internal energy. The Kelvin is defined as 1/273.16 of the temperature difference between absolute zero and the triple point of water. It is the quantity of heat required to raise the temperature of 1kg of the body by 1K. It is the thermal energy required by matter for a change in phase. It is the thermal energy required for 1kg of substance to change from the solid phase to the liquid phase without a
Latent Heat Specific Latent Heat of	has minimum internal energy. The Kelvin is defined as 1/273.16 of the temperature difference between absolute zero and the triple point of water. It is the quantity of heat required to raise the temperature of 1kg of the body by 1K. It is the thermal energy required by matter for a change in phase. It is the thermal energy required for 1kg of substance to
Latent Heat Specific Latent Heat of Fusion	has minimum internal energy. The Kelvin is defined as 1/273.16 of the temperature difference between absolute zero and the triple point of water. It is the quantity of heat required to raise the temperature of 1kg of the body by 1K. It is the thermal energy required by matter for a change in phase. It is the thermal energy required for 1kg of substance to change from the solid phase to the liquid phase without a change in temperature.
Latent Heat Specific Latent Heat of Fusion Specific Latent Heat of	has minimum internal energy. The Kelvin is defined as 1/273.16 of the temperature difference between absolute zero and the triple point of water. It is the quantity of heat required to raise the temperature of 1kg of the body by 1K. It is the thermal energy required by matter for a change in phase. It is the thermal energy required for 1kg of substance to change from the solid phase to the liquid phase without a change in temperature. It is the thermal energy required for 1kg of substance to
Latent Heat Specific Latent Heat of Fusion Specific Latent Heat of	has minimum internal energy. The Kelvin is defined as 1/273.16 of the temperature difference between absolute zero and the triple point of water. It is the quantity of heat required to raise the temperature of 1kg of the body by 1K. It is the thermal energy required by matter for a change in phase. It is the thermal energy required for 1kg of substance to change from the solid phase to the liquid phase without a change in temperature. It is the thermal energy required for 1kg of substance to change from the liquid phase to the gaseous phase without

	state of the system; the increase in the internal energy of a	
	system is <u>equal</u> to the <u>sum</u> of the <u>heat supplied to the</u>	
	system and the work done on the system.	
Triple Point of Water	The particular temperature and pressure at which the three	
	states of water can co-exist in equilibrium.	
Heat Capacity	The <u>quantity of heat</u> required to <u>raise the temperature</u> of	
• •	the body by 1K.	
Ideal Gas	A gas in which all collisions between the atoms and	
	molecules are <u>perfectly elastic</u> and which there are <u>no</u>	
	intermolecular attractive or repulsive forces.	
	SECTION IV: WAVES	
	Chapter 10: Wave Motion	
Wavelength, λ	The distance between corresponding points in successive	
Wavelength, W	<u>waveforms</u> , such as two successive crests or two successive	
	troughs.	
Intensity, I	The amount of energy incident per unit area per unit time.	
Phase		
FIIdSC	The stage of motion of the particle with respect to other	
Trongues Merco	particles in the same wave or another wave.	
Transverse Waves	A transverse wave is one in which particles of the medium	
	move in a direction <u>perpendicular</u> to the direction of travel	
	of the wave.	
Longitudinal Waves	A longitudinal wave is one in which particles of the medium	
	move in a direction <u>parallel</u> to the direction of travel of the	
	wave.	
Polarised Waves	All particles vibrate in the same plane at all times	
Electromagnetic	A self-propagating <u>transverse wave</u> in space with <u>electric</u>	
Radiation	and magnetic components.	
	Chapter 11: Superposition	
Principle of	The principle of superposition states that the <u>resultant</u>	
Superposition	displacement at any point is the vector sum of the individual	
	displacement due to each wave arriving at that point.	
	(RJCCT108)	
Diffraction	Diffraction is the bending of waves through an aperture or	
	around an obstacle.	
Interference	Interference is the <u>superposition</u> of two or more <u>coherent</u>	
	waves to give a resultant wave whose resultant amplitude is	
	given by the <u>principle of superposition</u> . (RJCNotes)	
	OR	
	Interference is the <u>superposition of waves</u> in the same	
	region and time so as	
	to form <u>regions of maxima</u> (bright) <u>and minima</u> (dark) due	
	to waves meeting	
	constructively and destructively respectively. (RJCPrelim07)	
Coherence	Sources having constant phase difference.	
	ECTION V: ELECTRICITY AND MAGNETISM	
Chapter 12: Electric Fields		

Electric Field Strength, E	The electric field strength at a point is defined as the force
	per unit charge acting on a small positive test charge placed
	at that point.
Coulomb's Law	The <u>force</u> between <u>two point charges</u> is <u>directly</u>
	proportional to the product of the charges and inversely
	proportional to the square of the distance between the
	charges.
Uniform Electric Field	Electric field strength is <u>equal in magnitude</u> and has the
	same direction at all points in the region.
Electric Potential, φ	The electric potential at a point in an electric field is the
	work done per unit charge in bringing a positive test charge
	from infinity to the point (without a change in kinetic
	energy).
	Chapter 13: Current of Electricity
Electric Current, I	The net amount of charge passing through a point per unit
0 1	time.
Coulomb, C	One coulomb is the quantity of electric charge that passes a
	given point in a circuit in <u>one second</u> when there is a
Detential Difference F	constant current of one ampere.
Potential Difference, E	The potential difference between two points in a circuit is
	the amount of electric energy that is converted to other
	forms of energy when a <u>unit charge</u> passes from one point to the other.
Volt, V	One volt is the potential difference between two points in a
Voit, V	circuit in which one joule of energy is converted when one
	coulomb of charge passes from one point to the other.
Resistance, R	The electrical resistance of a conductor is defined as the
nesistance, n	ratio of the p.d. across it to the current through it.
Ohm, Ω	One ohm is defined as the <u>resistance</u> of a conductor in
J, 32	which a <u>current of one ampere</u> passes through it when the
	p.d. across it is one volt.
Electromotive Force	The e.m.f. of a source is defined as the amount of energy
(e.m.f.)	converted from other forms to electrical energy when the
, ,	source drives a unit charge round a complete circuit.
Ampere, A	One coulomb per second.
	Chapter 15: Electromagnetism
Magnetic Flux Density, B	The flux density of a magnetic field is the force per unit
	length on a straight conductor carrying unit current placed
	perpendicularly to the field. (RJCCT208)
Tesla, T	The magnetic flux density of a magnetic field is one tesla if
	the <u>force</u> acting on <u>1m length</u> of a <u>conductor carrying 1A of</u>
	<u>current</u> placed <u>perpendicular</u> to the field is <u>1N</u> .
Electronvolt, eV	The electronvolt is the energy gained by an electron when it
	is <u>accelerated</u> through a <u>p.d. of one volt</u> .
_	
CI	mapter 16: Electromagnetic Induction Magnetic flux through a plane surface is the product of the

	area and the magnetic flux density that passes through the
	area perpendicularly.
Weber	One weber is the magnetic flux if a field of flux density one
	tesla exists at right angles to an area of one metre square.
Magnetic Flux Linkage, Φ	The magnetic flux linkage of a coil is the magnetic flux
Wagnetic Hax Linkage, \$\Psi\$	passing through each turn of the coil multiplied by the
	number of turns of the coil.
Faraday's Law	Whenever there is a change in magnetic flux linkage of a
raraday 3 Law	circuit or coil, an e.m.f. is induced in the circuit and the
	magnitude is directly proportional to the rate of change of
	magnetic flux linkage of the circuit or coil.
Lenz's Law	Lenz's Law states that the <u>direction of the induced current</u> is
Lenz S Law	such as to oppose the change in flux which causes it.
DNAC violes of on	Chapter 17: Alternating Current
RMS value of an	It is the value of the steady direct current which would
alternating current	dissipate heat at the same rate in a given resistance as the
Mean Power	alternating current.
Mean Power	The mean power dissipated by a resistive load is half the
Since idea AC/Valence	maximum power for a sinusoidal AC.
Sinusoidal AC/Voltage	Current/voltage varies periodically with time in magnitude
Destification of an AO	and direction.
Rectification of an AC	Conversion of <u>AC to DC</u> .
Half-wave Rectification	For half the cycle, the diode allows current to flow but for
	the <u>other half</u> of the cycle, the <u>current flow is very small</u> due
	to the <u>high resistance</u> of the diode being in <u>reverse bias</u> .
	SECTION VI: MODERN PHYSICS
Dhatadad & Effect	Chapter 18: Quantum Physics
Photoelectric Effect	The emission of electrons from a metal as a result of light
	with sufficiently short wavelength falling on it.
Work function, Φ	The work function of a material is defined as the minimum
	amount of energy required to remove a free electron from
Course of the absolute	the surface of a material
Square of the absolute	<u>Probability density</u> of finding the particle at a particular
magnitude of the Wave	point, at a particular time.
Function, \P ^2	A colored by the colored to the colored to the colored to
Potential Barrier	A potential barrier is a region within which the <u>potential</u>
	energy of the particle is much higher than immediately
	outside it.
Photon	A <u>quantum of electromagnetic energy.</u>
Ionisation Energy	The ionization energy of an atom is the minimum energy
	required to remove an electron completely from the atom.
Ionisation	The process of <u>creating charged particles</u> .
Transmission Coefficient	The <u>probability</u> of the particle being <u>transmitted</u> .
Reflection Coefficient	The <u>probability</u> of the particle being <u>reflected.</u>
Chapter 19: Lasers and Semiconductors	
Spontaneous Emission	A <u>photon</u> is <u>emitted by an atom randomly</u> and in <u>any</u>

	direction without any external stimulation.
Stimulated Emission	An incoming photon, whose energy is exactly equal to the
	excitation energy of the atom, induces the excited atom to
	fall to a lower energy level and releases a photon in the
	process. This photon released is similar to the one which
	induces its emission. The two photons are emitted at the
	same time and in the same direction.
Population Inversion	When there are more atoms in the excited state than in the
	ground state.
Intrinsic Semiconductor	A semiconductor without added impurities.
Extrinsic Semiconductor	A semiconductor with added impurities.
P-N Junction	A P-N Junction is a single semiconductor crystal that has
	been selectively doped so that one region is n-type material
	and the adjacent region is p-type material.
Stimulated Absorption	When an atom at a lower energy level absorbs a photon and
	moves to a higher energy level.
	Chapter 20: Nuclear Physics
Nucleon Number (Mass	The number of <u>nucleons</u> (protons and neutrons) in the
Number)	nucleus.
Proton Number (Atomic	The number of <u>protons</u> in the nucleus.
Number)	
Mass Defect	The <u>difference</u> between the <u>sum of the individual masses of</u>
	protons and neutrons and the mass of a nucleus.
Binding Energy	The amount of energy needed to split a nucleus into its
	individual nucleons.
Binding Energy per	Binding energy divided by the mass or nucleon number of
Nucleon	the nucleus.
Nuclear Fusion	Process by which nuclei with mass numbers lower than 56
	<u>combine</u> to form nuclei of <u>higher mass numbers</u> which are more stable.
Nuclear Fission	
INUCICAL FISSIUII	Process by which nuclei of mass numbers larger than 56 break up to form lighter nuclei which are more stable.
Activity, A	The <u>number of atoms</u> of a radioactive substance that <u>decay</u>
Activity, A	per unit time.
Decay constant	The probability of decay per nucleus per unit time.
Half life	Half life of a radioactive element is the time taken for a
Tight life	sample of atoms to decay to half their initial number.
Neutron Number	The number of neutrons in the nucleus.
Radioactivity	The spontaneous emission of α , β or γ radiation by a parent
	nucleus which results in itself being transformed into a
	completely different daughter nucleus.
	completely affective adaptives fractions.