Mathematical Preliminaries: Brownian Motion

Shino Takayama
School of Economics
University of Queensland

Def: sigma-algebra

- * If Ω is a given set, then a σ -algebra $\mathcal F$ on Ω is a family $\mathcal F$ of subsets of Ω with the following properties:
- 1. $\emptyset \in \mathcal{F}$;
- 2. $F \in \mathcal{F} \Rightarrow F^C \in \mathcal{F}$;
- $A_1, A_2, \dots \in \mathcal{F} \Rightarrow A := \bigcup_{i=1}^n A_i \in \mathcal{F}$

The pair (Ω, \mathcal{F}) is called a <u>measureable space</u>.

Definition: Probability Space

- * A probability measure P on a measurable space (Ω, \mathcal{F}) is a function $P: \mathcal{F} \to [0,1]$ such that
- 1. $P(\emptyset) = 0$, $P(\Omega) = 1$;
- 2. if $A_1, A_2, \dots \in \mathcal{F}$ and $\{A_i\}_{i=1}^{\infty}$ is disjoin, then

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i).$$

The triple (Ω, \mathcal{F}, P) is called a probability space.

The smallest sigma-algebra

* A probability space is called a complete probability space if \mathcal{F} contains all subsets G of Ω with P-outer measure zero, i.e. with

$$P^*(G) := \inf\{P(F) : F \in \mathcal{F}, G \subset F\} = 0.$$

- * The subsets F of Ω which belong to $\mathcal F$ are called $\mathcal F$ -measurable.
- * Let

$$\mathcal{H}_{\mathcal{U}} = \bigcap \{\mathcal{H} : \mathcal{H} \text{ is } \sigma - \text{algebra of } \Omega, \mathcal{U} \subset \mathcal{H} \}$$
.

We call $\mathcal{H}_{\mathcal{U}}$ the σ -algebra generated by \mathcal{U} .

Random Variable and Expectation

* A random variable X is an \mathcal{F} -measurable function where

$$X:\Omega\to\Re^n$$

- * Every random variable induces a probability measure μ_X on \mathfrak{R}^n , defined by $\mu_X(B) = P(X^{-1}(B))$.
- * Then μ_X is called the distribution of X.
- * If $\int |X(\omega)| dP(\omega) < \infty$, then the number $E[X] := \int_{\Omega} |X(\omega)| dP(\omega) = \int_{\Re^n} x d\mu_X(x)$

is called the expectation of X with respect to P.

The L^p -spaces

If $X:\Omega \to \Re^n$ is a random variable and $p \in [1,\infty)$ is a constant, we define the L^p -norm of X denoted by $\|X\|_p$ as follows:

$$||X||_p = ||X||_{L^p(P)} = \left(\int_{\Omega} |X(\omega)|^p dP(\omega)\right)^{\frac{1}{p}}.$$

* If $p = \infty$, set

$$||X||_{\infty} = ||X||_{L^{\infty}(P)} = \sup\{|X(\omega)| : \omega \in \Omega\}.$$

* The corresponding L^p -spaces are defined by

$$L^{p}(P) = L^{p}(\Omega) = \{X : \Omega \to \mathfrak{R}^{n} \mid ||X||_{p} < \infty\}.$$

Independence

- * Two subsets $A, B \in \mathcal{F}$ are called independent if $P(A \cap B) = P(A) \cdot P(B)$.
- * A collection $\mathcal{A} = \{\mathcal{H}_i : i \in I\}$ of families \mathcal{H}_i of measurable sets is independent if

$$P(H_{i_1}\cap\cdots\cap H_{i_k})=P(H_{i_1})\cdots P(H_{i_k})$$
 for all choices of $H_{i_1}\in\mathcal{H}_{i_1},\cdots,H_{i_k}\in\mathcal{H}_{i_k}$ with different indices i_1,\cdots,i_k .

* A collection of random variables $\{X_i: i \in I\}$ is independent if the collection of generated σ -algebras \mathcal{H}_{X_i} is independent.

Stochastic Process

* A Stochastic process is a parametrized collection of random variables

$$\{X_t\}_{t\in T}$$

defined on a probability space (Ω, \mathcal{F}, P) and assuming values in \Re^n .

Kolmogorov's extension theorem

* For all $t_1, \dots, t_k \in T$, $k \in N$, let V_{t_1, \dots, t_k} be probability measures on \Re^{nk} s.t.

(K1)
$$V_{t_{\sigma(1)},\cdots,t_{\sigma(k)}}(F_1\times\cdots\times F_k)=V_{t_1,\cdots,t_k}(F_{\sigma^{-1}(1)}\times\cdots\times F_{\sigma^{-1}(k)})$$
 for all permutations σ on $\{1,2,\cdots,k\}$ and
$$(\mathsf{K2})V_{t_1,\cdots,t_k}(F_1\times\cdots\times F_k)=V_{t_1,\cdots,t_k,t_{k+1},\cdots,t_{k+m}}(F_1\times\cdots\times F_k\times \underline{\mathfrak{R}}^n\times\cdots\times \underline{\mathfrak{R}}^n)$$
 For all $m\in \mathbf{N}$.

Then, there exists a probability space (Ω, \mathcal{F}, P) and a stochastic process $\{X_t\}$ on Ω with $X_t: \Omega \to \Re^n$ s.t.

$$V_{t_1,\dots,t_k}(F_1\times\dots\times F_k)=P[X_{t_1}\in F_1,\dots,X_{t_k}\in F_k]$$

for all $t_i \in T$, $k \in \mathbb{N}$, and all Borel sets F_i .

Construction of Brownian Motion

- * Specify a family $\{v_{t_1,\cdots,t_k}\}$ of probability measures satisfying (K1) and (K2).
- * Fix $x \in \Re^n$ and define

$$p(t, x, y) = (2\pi t)^{-n/2} \cdot \exp\left(-\frac{|x - y|^2}{2t}\right) \text{ for } y \in \Re^n, t > 0$$

* For $0 \le t_1 \le t_2 \le \dots \le t_k$, define a measure V_{t_1,\dots,t_k} on \Re^{nk} by

$$V_{t_1,\dots,t_k}(F_1 \times \dots \times F_k) =$$

$$= \int_{F_1 \times \cdots \times F_k} p(t_1, x, x_1) p(t_2 - t_1, x_1, x_2) \cdots p(t_k - t_{k-1}, x_{k-1}, x_k) dx_1 \cdots dx_k$$

Definition: Brownian motion

By Kolmogorov's theorem, there exists a probability space (Ω, \mathcal{F}, P) and a stochastic process $\{B_t\}_{t\geq 0}$ on Ω such that the finite-dimensional distributions of B_t is given by

$$P^{x}(B_{t_{1}} \in F_{1}, \dots, B_{t_{k}} \in F_{k}) =$$

$$= \int_{F_{1} \times \dots \times F_{k}} p(t_{1}, x, x_{1}) p(t_{2} - t_{1}, x_{1}, x_{2}) \dots p(t_{k} - t_{k-1}, x_{k-1}, x_{k}) dx_{1} \dots dx_{k}$$

- * Such a process is called Brownian motion starting at x.
- * Observe that $P^x(B_0 = x) = 1$.

Property 1: Brownian motion

- * B_t is a Gaussian process.
- * For all $0 \le t_1 \le \cdots \le t_k$, the random variable

$$Z = (B_{t_1}, \dots, B_{t_k}) \in \mathfrak{R}^{nk}$$

has a multi-normal distribution.

* There exists a vector $M \in \Re^{nk}$ and a non-negative definite matrix $C = [c_{im}] \in \Re^{nk \times nk}$ such that

$$E^{x}[\exp(i\sum_{j=1}^{nk}u_{j}Z_{j})] = \exp\left(-\frac{1}{2}\sum_{j,m}u_{j}c_{jm}u_{m} + i\sum_{j}u_{j}M_{j}\right)$$
for all $u = (u_{1}, \dots, u_{nk}) \in \Re^{nk}$.

Property 2: Brownian motion

- * B_t has independent increments.
- * $B_{t_1}, B_{t_2} B_{t_1}, \cdots, B_{t_k} B_{t_{k-1}}$ are independent for all $0 \le t_1 \le \cdots \le t_k$
- * So, $B_s B_t$ is independent of \mathcal{F}_t if s > t.

Property 3: Brownian motion

Suppose that $\{X_t\}$ and $\{Y_t\}$ are stochastic processes on (Ω, \mathcal{F}, P) . Then we say that $\{X_t\}$ is a version of (or a modification of) $\{Y_t\}$ if

$$P(\{\omega: X_t(\omega) = Y_t(\omega)\}) = 1$$
 for all t

* Kolmogorov's continuity theorem states that if the process $X = \{X_t\}_{t \geq 0}$ satisfies the condition such that for all T > 0, there exist positive constants α, β, D such that

 $E[|X_t-X_s|^\alpha] \leq D \cdot |t-s|^{1+\beta} \quad \text{for all } s,t \in [0,T] \ ,$ then there exists a continuous version of X .

* If $B_t = (B_t^{(1)}, \dots, B_t^{(n)})$ is an n-dimensional Brownian motion, then the 1-dimensional processes $\{B_t^{(j)}\}_{t\geq 0}, 1\leq j\leq n$ are an independent 1-dimensional Brownian motion.

Variation process

* Let $X_t(\cdot): \Omega \to \Re$ be a continuous stochastic process. Then, for p > 0, the p's variation process of X_t , $\langle X, X \rangle_t^{(p)}$ is defined by (limit in probability)

$$\langle X, X \rangle_{t}^{(p)}(\omega) = \lim_{\Delta t_{k} \to 0} \sum_{t_{k} \le t} \left| X_{t_{k+1}}(\omega) - X_{t_{k+1}}(\omega) \right|^{p}$$

- * If p = 1, this process is called the <u>total variation process</u>.
- * If p = 2, this process is called the <u>quadratic variation</u> <u>process</u>.

The Ito Integral

Shino Takayama
School of Economics
University of Queensland

Construction of the Ito Integral

* Consider:

$$\frac{dN}{dt} = (r(t) + "noise")N(t)$$

* More generally:

$$\frac{dX}{dt} = b(t, X_t) + \sigma(t, X_t) \cdot "noise"$$

where b and σ are some given functions.

Case of 1-dimensional noise

* Let W_t be a stochastic process to represent the noise term. Then, we obtain:

$$\frac{dX}{dt} = b(t, X_t) + \sigma(t, X_t) \cdot W_t$$

- * We will try to rewrite the above equation.
- * Let's start with a discrete version.

Discrete Version

* A discrete version is:

$$X_{k+1} - X_k = b(t_k, X_k) \Delta t_k + \sigma(t_k, X_k) W_k \Delta t_k$$

where
$$X_j = X(t_j)$$
, $W_k = W_{t_k}$, $\Delta t_k = t_{k+1} - t_k$.

* Replace
$$W_k \Delta t_k$$
 by $\Delta B_k = B_{t_{k+1}} - B_{t_k}$

From discrete to continuous time

* Sum up and then we obtain:

$$X_k = X_0 + \sum_{j=0}^{k-1} b(t_j, X_j) \Delta t_j + \sum_{j=0}^{k-1} \sigma(t_j, X_j) \Delta B_j$$
 * If we can take $\Delta t_j \to 0$, then we obtain:

$$X_k = X_0 + \int_0^t b(s, X_s) ds + \int_0^t \sigma(s, X_s) dB_s$$

Lemma: The Ito isometry

* If $\phi(t,\omega)$ is bounded and elementary, then

$$E\left[\left(\int_{s}^{t} \phi(t,\omega)dB_{t}(\omega)\right)^{2}\right] = E\left[\int_{s}^{t} \phi(t,\omega)^{2}dt\right]$$

Proof – See Note

Definition: The Ito integral

* Let $f \in \mathcal{V}(S,T)$. Then the Ito integral of f from S to T is defined by

$$\int_{S}^{T} f(t,\omega)dB_{t}(\omega) = \lim_{n \to \infty} \int_{S}^{T} \phi_{n}(t,\omega)dB_{t}(\omega)$$

where $\{\phi_n\}$ is a sequence of elementary functions such that

$$E\left[\int_{S}^{T} (f(t,\omega) - \phi_{n}(t,\omega))^{2} dt\right] \to 0$$

as $n \to \infty$.

Theorem 3.2.5

* Let $f \in \mathcal{V}(S,T)$. There exists a *t*-continuous stochastic process J_t on (Ω,\mathcal{F},P) such that

$$P\bigg[J_t = \int_0^t f dB\bigg] = 1$$

for all t, $0 \le t \le T$

* Proof – See Note

Corollary 3.2.6

* Let $f \in \mathcal{V}(S,T)$ for all T. Then,

$$M_{t}(\omega) = \int_{0}^{t} f(s, \omega) dB_{s}$$

is a martingale w.r.t. \mathcal{F}_{t} and

$$P\left[\sup_{0\leq t\leq T}\left|M_{t}\right|\geq\lambda\right]\leq\frac{1}{\lambda^{2}}\cdot E\left[\int_{0}^{t}f(s,\omega)^{2}ds\right]$$

for all $\lambda, T > 0$