Electroporación celular

Mauricio Alfonso

DC - FCEyN - UBA

17 de junio de 2014

- Una célula esférica de entre 10 y 50 µm de radio
- \bullet Dos electrodos que generan un pulso de 20 ms de entre 40 y 200 kV m $^{-1}$
- Se estudia la generación de poros en la membrana celular y el ingreso de H⁺, OH⁻, Na⁺ y Cl⁻ a la célula.

- Coordenadas cilíndricas (2D)
- Elementos cuadrilaterales
- Programa AutoMesh2D para generar mallas
- 2 mallas diferentes: una de 1930 elementos y otra de 7439 elementos

Potencial eléctrico:

$$\nabla \sigma_{elem} \cdot (\nabla \phi) = 0$$

Condiciones de borde de Dirichlet en los electrodos y Neumann en los otros bordes.

El potencial transmembrana (ITV) debería aproximarse a:

$$V^{\theta} = 1.5 E cos(\theta)$$

Capacitancia de la membrana: FALTA ESTO!!!!

Generación de poros (densidad):

$$\frac{\partial N}{\partial t} = \alpha_c e^{(V_m/V_{ep})^2} \left(1 - \frac{N}{N_0 e^{q(V_m/V_{ep})^2}} \right)$$

N es la densidad de poros en un determinado tiempo y posición de la membrana celular, α_c es el coeficiente de creación de poros, V_m es el potencial transmembrana, V_{ep} es el voltaje característico de electroporación, N_0 es la densidad de poros en equilibrio (cuando $V_m=0$) y q es una constante igual a $(r_m/r*)^2$, donde r_m es el radio de mínima energía para $V_m=0$ y r* es el radio mínimo de los poros.

La densidad depende del ángulo (no es constante en toda la superficie).

Radio de los poros:

$$\begin{split} \frac{\partial r}{\partial t} &= \frac{D}{kT} \left(\frac{V_m^2 F_{\text{max}}}{1 + r_h / (r + r_a)} + \frac{4\beta}{r} \left(\frac{r_*}{r} \right)^4 - 2\pi \gamma + 2\pi \sigma_{\text{eff}} r \right), \\ &\text{con } \sigma_{\text{eff}} = 2\sigma' - \frac{2\sigma' - \sigma_0}{(1 - A_p / A)^2} \end{split}$$

Se aplica a cada poro por separado. Modela como crece el radio de los poros, y como se vuelven a sellar si baja el ITV.

El primer término corresponde a la fuerza eléctrica inducida por el potencial transmembrana, el segundo a la repulsión estérica, el tercero a la tensión de línea que actúa en el perímetro del poro y el cuarto a la tensión superficial de la célula.

Donde r es el radio de un poro, D es el coeficiente de difusión para los poros, k es la constante de Boltzmann, T la temperatura absoluta, V_m el potencial transmembrana, F_{max} la máxima fuerza eléctrica para V_m de 1V, r_h y r_a son constantes usadas para la velocidad de advección, β es la energía de repulsión estérica, γ es la energía del perímetro de los poros, y $\sigma_{\rm eff}$ es la tensión efectiva de la membrana, σ' es la tensión de la interfase hidrocarburo-agua, σ_0 es la tensión de la bicapa sin poros, A_p es la suma de las áreas de todos los poros en la célula, y A es el área de la célula.

Transporte de especies: Nernst-Planck

$$\frac{\partial C_i}{\partial t} = \nabla \cdot \left(D_i \nabla C_i + D_i z_i \frac{F}{RT} C_i \nabla \phi \right)$$

 C_i es la concentración de la especie i, D_i el coeficiente de difusión de la especie i, z_i la valencia de la especie i, F la constante de Faraday, R la constante de los gases y T la temperatura.

Implementación

- Métodos de elementos finitos para potencial eléctrico (ecuación de Poisson) y transporte de especies
- Diferencias finitas para generación y evolución de poros
- Implementado en C++
- Librería Eigen para resolver sistemas de ecuaciones
- Descomposiciones Cholesky (para Poisson) y Bi-gradientes conjugados estabilizados (para transporte)
- OpenMP para acelerar llenado de matrices (Poisson) y resolución en transporte

- Android SDK¹
- Genymotion Android emulator²
- Eclipse plugins para ambas cosas.

https://developer.android.com/sdk/index.html

²http://www.genymotion.com

Information leakage / control

Descripción del malware

Animal es un malware de Android que busca fotos en la tarjeta SD de la vétima y las sube a un servidor.

Permisos requeridos

El único permiso que requiere es acceso a internet (android.permission.INTERNET).

Information leakage / control

Cómo funciona?

- Abre una actividad^a que busca archivos de imágenes en los directorios DCIM/Camera, Pictures y Downloads de la tarjeta SD del celular.
- 2 Lanza conexiones HTTP sobre las que se envían los archivos a nuestro servidor (Servercito).
- La dirección de Servercito está hardcodeada en el código y las imágenes se convierten a base64 y se mandan usando los parámetros de url de un POST HTTP.

//developer.android.com/reference/android/app/Activity.html

ahttp:

Information leakage / control

- (Sinatra rb) restfull
- 0
- distribuible
- facil de mantener
- extensible
- Operaciones GET y POST
 - obtener contactos, fotos, etc
 - pushear comandos
 - dormirse, despertarse ?

Information leakage / control

Problemas que encontramos

Intentamos en principio subir las fotos en base 64 a pastebin y poner una "clave" como nombre de las subidas, para poder encontrarlas con facilidad de manera anónima sin tener que exponer la dirección de nuestro servidor, pero nos encontramos con 2 limitaciones importantes de pastebin:

- Un límite de tamaño de 0.5 MB nos limita a fotos muy chicas o a achicar las fotos existentes
- Un límite de 10 subidas por día.

Information leakage / control

Mejoras aún no implementadas

- Camuflar la aplicación para que aparente ser bien intencionada. Actualmente solo muestra una pantalla en blanco. → Podríamos simular que se produjo un error y la aplicación no funciona, mientras sigue subiendo las fotos en segundo plano.
- Si la víctima no está conectado a una red wi-fi → quedarse esperando y subir las fotos cuando sí lo esté (en segundo plano).
- Buscar imágenes en todo el árbol de directorios, no sólo las carpetas típicas de fotos (la víctima podría guardarlas en cualquier lado.)

Descripción del malware

Animalazo es un malware de Android que roba los contactos de la vétima y los sube a un servidor.

Permisos requeridos

El único permiso que requiere es acceso de lectura a la los contactos (android.permission.READ_CONTACTS).

Cómo funciona?

- Una aplicación inofensiva invita al usuario a pelear por salvar a los animales, mostrando dos perritos corriendo.
- 2 Cuando el usuario hace click en el botón para "ayudar":
 - Se leen los contactos y se encodean en base64.
 - se crea un Intent^a que abre un browser como si se estuviese visitando una página.
 - Se hace un GET a un server controlado por el atacante, enviando por los parámetros del GET los contactos encodeados (hay limitaciones de tamaño)
 - El server malicioso responde con un Redirect (302) a google, como si nada hubiera pasado.

ahttp:

Problemas que encontramos

A veces la aplicación no enviaba los contactos, pensamos que tenia cacheada la URL del Intent. Después nos dimos cuenta que los distintos estados de la aplicación eran relevantes: onCreate(), onStart(), onResume(). Afinando mejor pudimos entender cual era el problema.

Mejoras aún no implementadas

 Limitacion en el tamaño de los URIs utilizados para extraer la información. Aunque no está definido este límite de manera explícita en el RFC2616^a hay limitaciones en las implementaciones.

ahttp://www.faqs.org/rfcs/rfc2616.html

Descripción del malware

Animal Keyboard es un teclado de Android que ofrece un tab de emoticones para incentivar a los usuarios a instalarlo. No tiene ningún permiso extra, por lo que por sí solo es inofensivo. Al combinarse con la instalación de la aplicación FunWithAnimals, ambas actúan como keylogger mediante IPC.

Permisos requeridos

- android.permission.BIND_INPUT_METHOD para el teclado (como cualquier otro)
- android.permission.INTERNET para FunWithAnimals.
 Al registrar un teclado nuevo, Android advierte que éste podría