Grafos

Hiroshi Nakamura

ifms.edu.br

Indice I

- Conceitos de Grafos
 - Definição de Grafo
 - Matriz de Adjacência
 - Lista de Adjacência
 - Conceitos

Definição de Grafo

Grafo

Um grafo G = (V(G), E(G)) ou G = (V, E) são dois conjuntos finitos, onde:

- V ou V(G) é o conjunto de vétices de um grafo, que não pode ser vazio para que exista um grafo.
- O E ou E(G) é o conjunto de arestas de um grafo.

Exemplo de Grafo

$$V = \{1, 2, 3, 4\}$$

 $E = \{(1,2), (2,3), (2,4), (3,4), (4,4)\}$

Dois vértices são adjacentes se houver uma aresta ligando eles.

Orientação de um Grafo

Grafo não direcionado

As aretas não possuem orientação em relação aos vértices. O movimento é livre entre os vértices.

Digrafo

A aresta possui um seta orientando o sentido possível do vértice origem para o destino.

Loop

Loop ou Laço

Ocorre quanto um vértice tem uma aresta que se relaciona com ele mesmo.

No exemplo da definição de grafo ocorre em (4,4).

Matriz de Adjacência

	1	2	3	4
1	0	1	0	0
2	1	0	1	1
3	0	1	0	1
4	0	1	1	1

Figura: Grafo

	1	2	3	4
1	0	1	0	0
2	0	0	1	1
3	0	0	0	1
4	0	0	0	1

Figura: Digrafo

Lista de Adjacência

Figura: Grafo

Figura: Digrafo

Arestas Paralelas

Arestas Paralelas

Em um grafo as arestas paralelas ou múltiplas acontecem quando há mais de uma aresta entre o mesmo par de vértices.

Grau de um vértice

Grau de um vértice

O grau de vértice é a quantidade arestas que incedem nele. É representado por d(v)

$$d(1) = 5$$

$$d(2) = 3$$

$$d(3) = 3$$

$$d(4) = 3$$

Grau de um máximo de um grafo

Grau de um máximo de um grafo

Dentro do grafo é o vértice que apresenta o maior grau. É representado por $\Delta(G)$

$$\Delta(\mathsf{G}) = 5$$

Grau de um mínimo de um grafo

Grau de um mínimo de um grafo

Dentro do grafo é o vértice que apresenta o menor grau. É representado por $\delta(\mathbf{G})$

$$\delta(G) = 3$$

Ordem

Ordem

É o número de vértices de um grafo.

Ordem(G) = 4

Grafo Simples

Grafo Simples

Não possui arestas paralelas e/ou laços.

Multigrafo

Multigrafo

Possui arestas paralelas e/ou laços.

Grafo Completo

Grafo Completo

É um grafo simples em que todo vértice é adjacente a todos os outros vértices. Representado por K_n , onde n é a ordem e m é a quantidade de arestas, tem a combinação m = $C(n,2) = \binom{n}{2} = \frac{n!}{(n-2)!2!}$, ou $m = \frac{n!}{(n-2)!2!}$

Grafo Regular

Grafo Regular

Todos os vértices tem o mesmo grau.

16 / 19

Isomorfismo

Isomorfismo

Dois grafos são isomorfos quando existe uma correspondência biunívoca entre os vértices de um e os vértices do outro, mantendo a relação de adjacência entre vértices e arestas.

Grafo Rotulado

Grafo Rotulado

Possui um rótulo associado a cada vértice

Grafo Ponderado

Grafo Ponderado

Possui valores(pesos) associados às arestas

