Deep Learning for NLP, part II Stanford ICME Summer workshop 2021

Instructor: **Afshine Amidi**

Teaching staff

Afshine, instructor Centrale Paris ('16), MIT ('17) Uber, Uber Eats, Google

Sam, TA Stanford ('21) Peerlift, Iris Labs

What is (approximately) your timezone?

Participant category

Have you attended the first part of the ICME Workshop NLP series?

Machine Learning

Linear Algebra

Anonymized quotes from feedback section

"Some context on evolution of NLP will be super helpful"

Anonymized quotes from feedback section

"Some context on evolution of NLP will be super helpful"

"Start from medium level and then go upwards to higher difficulty"

Anonymized quotes from feedback section

"Some context on evolution of NLP will be super helpful"

"Start from medium level and then go upwards to higher difficulty"

"Hope to get the **summary of the materials** (including additional articles/books) and **links to them** to have better understanding. Hope to **try BERT in practice** (in Python notebooks). [...]"

I am very interested in **hands on** experience. I hope this session will help to start running my first deep learning model.

"[...] My hope is we **dig into the code** and the **details** of running a program"

"Among the given topics, I am more interested in the application areas of **sentiment extraction**"

Logistics

Two half-days

- Wednesday 8/18, 8am 11am PT
- Friday 8/20, 8am 11am PT

• **Hands-on** format

- ~2/3 slides
- ~1/3 code via Colab

Questions

- Preferably ask questions via Ed
- Pause from time to time to answer questions
- After each break, dedicated time for Q&A

Homework between the 2 days

- Apply concepts in a practical use case
- Completely optional, but recommended

Deep Learning for NLP, part II

Stanford ICME Summer workshop 2021

Motivation and setup

Background

Transformers

BERT

Conclusion

NLP tasks overview

Classification

- Sentiment extraction
- Intent detection
- Language detection
- Topic modeling

"Multi"-classification

- Part of speech tagging
- Named entity recognition
- Dependency parsing
- Constituency parsing

Generation

- Machine translation
- Question answering
- Summarization
- Text generation

NLP task: Sentiment Extraction

Datasets

a Amazon reviews

Evaluation metrics

- Accuracy → % of observations that were correctly predicted?
- Precision → % of predicted positive that were correct?
- Recall → % of actually positive that were correct?
- F1 score → score that is a function of precision and recall

NLP task: Named Entity Recognition

Datasets

Annotated Reuters newspaper (CoNLL-2003, CoNLL++)

Evaluation metrics

- Accuracy
- Precision
- Recall
- F1 score

at a token level, per entity type

NLP task: Machine Translation

Datasets

Evaluation metrics

- BLEU → quality of text translated, similar to "precision"
- ROUGE → quality of text generated, similar to "recall"
- Perplexity → quantifies how 'surprised' the model is to see some words together

Standardized benchmark for NLP

GLUE: General Language Understanding Evaluation

Grammatical correctness

CoLA

Paraphrase

MRPC

Similarity

QQP, STS-B

Common sense

WNLI

Entailment

RTE, MNLI

Sentiment Extraction

SST-2

Question Answering

QNLI

Glue score

Disclaimer before starting: many abbreviations....

...but don't worry!

BERT, DistilBERT, ALBERT, T5, mT5, GPT

Transformer-based models

ACL, EMNLP, WMT, CoNLL

Conferences

MNLI, WNLI, C4, SQuAD, GLUE, MRPC

Datasets

LSTM, GRU, GloVe, ELMo, BPE, WP, SP

Some techniques

NER, PoS, MLM, NSP, MT, QA, NLG

Tasks

F1, PPL, ROUGE, BLEU, METEOR, EM

Metrics

Deep Learning for NLP, part II

Stanford ICME Summer workshop 2021

Motivation and setup

Background

Transformers

BERT

Conclusion

High-level timeline

1980s Recurrent neural networks (RNNs)

Long short-term memory (LSTM) 1997

Word2vec

Theoretical foundations

Transformers

Lots of data, growing -computing power Fast iterations on ideas

2013 2017

Word representations

Motivation

Naive (one-hot) encoding

$$soft = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad \langle teddy bear, book \rangle = 0$$
$$\langle teddy bear, soft \rangle = 0$$

Word representations

Motivation

Naive (one-hot) encoding

$$soft = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad \langle teddy bear, book \rangle = 0$$
$$\langle teddy bear, soft \rangle = 0$$

Learned embedding

$$soft = \begin{pmatrix} 0.95\\ 0.32\\ 0.01 \end{pmatrix}$$

 $soft = \begin{pmatrix} 0.95 \\ 0.32 \\ 0.01 \end{pmatrix} \quad \langle teddy bear, book \rangle \sim 0$ $\langle teddy bear, soft \rangle \sim 1$

Overview

- Neural network with a proxy task over billions of words worth of text
- Learns an embedding layer

Proxy tasks

CBOW (continuous bag of words)

Skip-gram

Architecture

output

hidden

input

size V

size d

size V

Example with left context window = 1

A cute teddy bear is reading

Example with left context window = 1

A cute teddy bear is reading

[1,0,0,0,0,0]

Example with left context window = 1

A cute teddy bear is reading

Example with left context window = 1

A cute teddy bear is reading

Example with left context window = 1

A cute teddy bear is reading

Example with left context window = 1

A cute teddy bear is reading

Example with left context window = 1

A cute teddy bear is reading

Example with left context window = 1

Example with left context window = 1

A cute teddy bear is reading

A cute teddy bear is reading

Example with left context window = 1

A cute teddy bear is reading

A cute teddy bear is reading

Example with left context window = 1

A cute teddy bear is reading

Overview

- First introduced in the 80s
- Class of neural networks where connections form a temporal sequence

General form

Α

Figures adapted from "VIP cheatsheets for Stanford's CS 230", Amidi. stanford.edu/"shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Long Short-Term Memory (LSTM)

Overview

- Introduced in "Long short-term memory" (1997)
- Uses a more structured approach in the cell's hidden state

General form

Summary of main methods (non-exhaustive list)

Method	Pros	Cons
Word2vec e.g. CBOW, Skip-gram	Very simple, yet powerfulIntuitive embeddings	 Word order does not count Embeddings not context aware
Recurrent Neural Networks e.g. traditional RNN, LSTM	 Word order matters State-of-the-art results 	 Vanishing gradient problem Embeddings not context aware Slow computations

Break + questions

Deep Learning for NLP, part II

Stanford ICME Summer workshop 2021

Motivation and setup

Background

Transformers

BERT

Conclusion

- Introduced in 2014
- Translation tasks had a real issue with long-term dependencies
- Seq2seq unable to "remember" what input sentence was saying

- Introduced in 2014
- Translation tasks had a real issue with long-term dependencies
- Seq2seq unable to "remember" what input sentence was saying

- Introduced in 2014
- Translation tasks had a real issue with long-term dependencies
- Seq2seq unable to "remember" what input sentence was saying

- Introduced in 2014
- Translation tasks had a real issue with long-term dependencies
- Seq2seq unable to "remember" what input sentence was saying

Overview of the Transformer

- Introduced in the 2017 paper "Attention is All You Need"
- Relies on the self-attention mechanism
- Encoder/decoder parts that are used in a lot of models
- State of the art results on machine translation tasks

Overview of the Transformer

- Introduced in the 2017 paper "Attention is All You Need"
- Relies on the self-attention mechanism
- Encoder/decoder parts that are used in a lot of models
- State of the art results on machine translation tasks.

Attention mechanism

Query, Key, Value

 Computationally efficient with matrices

softmax
$$\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

Transformer architecture

- Attention layer (MHA)
 - Self-attention (Encoder-Encoder, Decoder-Decoder)
 - Encoder-Decoder attention layer

Feed Forward Neural Network (FFNN)

Positional Encoding (PE)

Input

Overview

- Text is "tokenized"
- Learned embeddings for tokens

- V: vocabulary size
- d_model: embedding dimensions

... with a trick!

Positional encoding

Idea:

- From a convolutional seq2seq 2017 paper
- Add position information to inputs
- Can be either learned or hardcoded

Goal: let model understand relative input position

Encoder

Overview

- Encoder-Encoder attention / self-attention
- Feed Forward Neural Network
- Normalization layer

- N: layers stacked
- h: number of attention heads
- d_FF, d_key, d_value: sub-layer dimension
- d_model: embedding dimensions

Output "shifted right"

Overview

- Learned embeddings for output tokens
- In practice, will start with [BOS] during translation

- V: vocabulary size
- d_model: embedding dimensions

Decoder

Overview

- Decoder-Decoder attention / self-attention
- Encoder-Decoder attention
- Feed Forward Neural Network
- Normalization layer

- N: layers stacked
- h: number of attention heads
- d_FF, d_key, d_value: sub-layer dimension
- d_model: embedding dimensions

Output

Overview

- Linear projection
- Classification problem that outputs probability of belonging to a class, where class = word

- V: vocabulary size
- d_model: embedding dimensions

Stitching all the pieces together with an example

A cute teddy bear is reading.

Stitching all the pieces together with an example

A | cute | teddy bear | is

s | reading

•

[BOS] | A | G

cute | teddy bear

is

reading

. | | [£

[BOS]

Δ

cute

teddy bear

is

reading

| E

cute | teddy bear | is | r

reading

position-aware embedding

[BOS] A cute

te teddy bear

is reading

٠

position-aware embeddings matrix

[BOS]

Α

cute

teddy bear

is

reading

•

position-aware embeddings matrix

[BOS]

Α

cute

teddy bear

is

reading

.

encoder

position-aware embeddings matrix

 QK^T

QK^T

```
egin{array}{cccc} \left\langle q_{	ext{[BOS]}}, k_{	ext{[BOS]}} 
ight
angle & \left\langle q_{	ext{[BOS]}}, k_{	ext{A}} 
ight
angle & \left\langle q_{	ext{[BOS]}}, k_{	ext{cute}} 
ight
angle & \ldots \ & \left\langle q_{	ext{A}}, k_{	ext{[BOS]}} 
ight
angle & \left\langle q_{	ext{A}}, k_{	ext{A}} 
ight
angle & \ldots \ & \vdots & \vdots & \vdots \end{array}
```


$$\left\langle q_{\mathrm{[BOS]}}, k_{\mathrm{[BOS]}} \right\rangle v_{\mathrm{[BOS]}} + \left\langle q_{\mathrm{[BOS]}}, k_{\mathrm{A}} \right\rangle v_{\mathrm{A}} + \left\langle q_{\mathrm{[BOS]}}, k_{\mathrm{cute}} \right\rangle v_{\mathrm{cute}} + \dots$$

$$\langle q_{\rm A}, k_{\rm [BOS]} \rangle v_{\rm [BOS]} + \langle q_{\rm A}, k_{\rm A} \rangle v_{\rm A} + \langle q_{\rm A}, k_{\rm cute} \rangle v_{\rm cute} + \dots$$

 QK^TV

softmax $\left(\frac{QK^T}{\sqrt{d_k}}\right)V$

weighted average of values

with weights being a function of $\langle q,k
angle$

encoder

position-aware embeddings matrix

encoded embedding

ENCODER

A cute teddy bear is reading.

encoded embedding

ENCODER

A cute teddy bear is reading.

encoded embedding

ENCODER

A cute teddy bear is reading.

[BOS]

encoded embedding **ENCODER** decoder A cute teddy bear is reading. [BOS]

encoded embedding **ENCODER**

A cute teddy bear is reading.

decoder

[BOS]

encoded embedding **ENCODER Self-attention layer** A cute teddy bear

decoder

A cute teddy bear is reading.

[BOS]

[BOS]

encoded embedding **ENCODER**

A cute teddy bear is reading.

encoded embedding

ENCODER

A cute teddy bear is reading.

decoder

[BOS]

[BOS]

encoded embedding

ENCODER

A cute teddy bear is reading.

Feed forward network
Encoder - Decoder attention layer
Self-attention layer

[BOS]

encoded embedding

ENCODER

A cute teddy bear is reading.

Softmax layer	
Feed forward network	
Encoder - Decoder attention layer	
Self-attention layer	

[BOS]

encoded embedding **ENCODER**

A cute teddy bear is reading.

[0.001, 0.0003, ..., 0.4, ..., 0.002] Softmax layer Feed forward network **Encoder - Decoder** attention layer Self-attention layer

Un encoded embedding Softmax layer Feed forward network **ENCODER** decoder **Encoder - Decoder** attention layer **Self-attention layer** A cute teddy bear is reading. [BOS]

A cute teddy bear is reading.

See you on Friday!