데이터 관리

Numpy 패키지에 대해서

Numpy 패키지:

- Numpy는 과학 계산과 데이터 다루기를 용이하게 해주는 패키지 이다.
- 고차원 배열을 객체로 제공하며 여러 관련 메서드를 제공한다.
- 이들 메서드의 연산 속도는 최적화 되어 있다 (빠르다).
- 연산의 벡터화 제공 → 코딩하기 편리하며 가독성 증대.

Numpy 배열과 파이썬의 리스트 사이의 차이점:

- Numpy 배열의 크기는 정해져 있다: 크기를 변경하는 경우 새로운 객체가 생성된다.
- Numpy 배열 개개 원소의 자료형은 일치되어 있어야 한다.
- 기존 파이썬 리스트가 제공하지 않는 많은 수학 연산을 기본적으로 제공한다.
- 다른 패키지에서도 Numpy 배열을 기초 자료형으로 사용한다.

Numpy 배열: 생성과 기본 특성

```
# 패키지를 가져와서 np 라고 부름.
In[1]: import numpy as np
                                               # 현재 설치된 Numpy의 버전.
In[2]: np.__version__
Out[2]: '1.11.3'
                                               # 리스트 사용하여 배열 생성.
In[3] : arr1 = np.array([1,3,5,7,9])
                                               # 튜플 사용하여 배열 생성.
In[4] : arr2 = np.array((1,3,5,7,9))
In[5]: type(arr1)
Out[5]: numpy.ndarray
In[6] : arr3 = arr1
In[7] : id(arr1)
Out[7]: 93269488L
In[8] : id(arr3)
                                               # arr1와 arr3은 메모리 공간 공유.
Out[8]: 93269488L
```

Numpy 배열: 생성과 기본 특성

```
In[9] : arr4 = arr1.copy() # 얕은 복사.
```

In[10] : id(arr1)

Out[10]: 93269488L

In[11] : id(arr4)

Out[11]: 93494048L# 완전히 다른 객체.

Numpy 배열: arange 함수

```
In[1]: np.arange(10)
                                                            # 0~9.
Out[1]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
In[2]: np.arange(10,20)
                                                            # 10~19.
Out[2]: array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19])
In[3] : np.arange(10, 20, 3)
                                                            # 10 \sim 19, step = 3.
Out[3]: array([10, 13, 16, 19])
In[4] : arr = np.arange(10)
In[5] : len(arr)
                                                            # 리스트의 경우와 같음.
Out[5]: 10
                                                            # 리스트의 경우에는 사용 불가능.
In[5] : arr.size
                                                            # Numpy 배열인 경우에만 가능.
Out[5]: 10
```

Numpy 배열: linspace 함수

In[1] : np.linspace(0, 10, 5) # 0과 10 사이 5개의 그릿.

Out[1]: array([0.0, 2.5, 5.0, 7.5, 10.0])

Numpy 배열: zeros 함수

```
In[1]: np.zeros(10)
Out[1]: array([0., 0., 0., 0., 0., 0., 0., 0., 0.])
                                                                 # 10개의 0.
In[2] : np.zeros((3,4))
Out[2]:
                                                                  #3 x 4 행렬.
array([[ 0., 0., 0., 0.],
    [0., 0., 0., 0.],
    [ 0., 0., 0., 0.]])
In[3] : np.zeros(5, dtype ='int64')
                                                                  # 자료형 명시.
Out[3]: array([0, 0, 0, 0, 0], dtype=int64)
In[4] : np.zeros(5, dtype ='int64').dtype
Out[4]: dtype('int64')
```

Numpy 배열: ones 함수

```
In[1]: arr = np.ones((2,3), dtype ='int_')
In[2]: arr
Out[2]:
array([[ 1, 1, 1],
      [ 1, 1, 1]])
In[3] : arr.dtype
Out[3] : dtype('int32')
In[4] : arr.astype('float32')
Out[4]:
array([[ 1., 1., 1.],
      [ 1., 1., 1.]], dtype=float32)
```

Numpy 배열: 원소의 자료형은 일치되어야 한다

```
# 숫자형과 불 원소 혼재.
In[1]: arr1 = np.array([111, 2.3, True, False, False])
In[2] : arr1
Out[2]: ([111., 2.3, 1., 0., 0.])
                                                             # 숫자형으로 자동 변환.
                                                             # 숫자형과 문자열 혼재.
In[3] : arr2 = np.array([111, 2.3, 'python', 'abc'])
In[4] : arr2
                                                             # 문자열로 자동 변환.
Out[4]: array(['111', '2.3', 'python', 'abc'],
       dtype='|S32')
In[5]: arr3 = np.array([111, True, 'abc'])
                                                             # 숫자형, 문자열, 불 원소 혼재.
In[6]: arr3
Out[6]: array(['111', 'True', 'abc'],
                                                             # 문자열로 자동 변환.
       dtype='|S32')
```

Numpy의 자료형:

자료형	설명
int8, int16, int32, int64, int_ uint8, uint16, uint32, uint64	정수.
float16, float32, float64, float128, float_	실수.
bool_	부울.
string_, unicode_	문자열.

Numpy 배열의 인덱싱과 슬라이싱:

```
In[1] : a = np.array([1, 2, 3, 4, 5]) # 1D 배열.

In[2] : a[:2]

Out[2]: array([1, 2])

In[3] : a[-1] # 끝에서 첫번째 원소.

Out[3]: 5

In[4] : a[:] # 전체!

Out[4]: array([1, 2, 3, 4, 5])
```

Numpy 배열의 인덱싱과 슬라이싱:

```
In[1] : a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) # 3 x 3 행렬.

In[2] : a[1] # 행 1.

Out[2]: array([4, 5, 6])

In[3] : a[-1] # 마지막에서 첫 번째 행.

Out[3]: array([7, 8, 9])

In[4] : a[:] # 전체!

Out[4]:

array([[1, 2, 3],
        [4, 5, 6],
        [7, 8, 9]])
```

Numpy 배열의 인덱싱과 슬라이싱:

```
In[5] : a[:2]
Out[5]:
array([[1, 2, 3],
    [4, 5, 6]])
In[6]: a[2][1]
Out[6]: 8
In[7] : a[2, 1]
Out[7]: 8
In[8] : a[[0, 2]]
Out[8]:
array([[1, 2, 3],
        [7, 8, 9]])
In[9] : a[1:, 1:]
Out[9]:
array([[5, 6],
       [8, 9]])
```

Numpy 배열의 모양:

```
In[5]: a.size # 원소의 갯수.
```

Out[5]: 9

In[6]: a.shape # 전체적인 모양(shape).

Out[6]: (3, 3)

In[7]: a.ndim # 디멘전 수.

Out[7]: 2

Numpy 배열의 모양:

```
In[1]: a = np.arange(15)
                                                  # 0~14. 전체 15개의 원소. 1D 배열.
                                                  # 3 x 5 모양의 2D 행렬로 바꾸어 보여줌. (비항구)
In[2] : a.reshape(3,5)
Out[2]:
array([[ 0, 1, 2, 3, 4],
    [5, 6, 7, 8, 9],
    [10, 11, 12, 13, 14]])
In[3]:a
Out[3]: array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
In[4] : a.shape = (3, 5)
                                                  # 3 x 5 모양의 2D 행렬로 바꾸어줌. (항구적)
In[5]:a
Out[5]:
array([[ 0, 1, 2, 3, 4],
    [5, 6, 7, 8, 9],
    [10, 11, 12, 13, 14]])
```

Numpy 배열의 모양 (주의):

```
In[1] : a = np.array([2,5,1,3])
In[2]: a.shape
Out[2]: (4, )
                                                    # rank 1 배열! 벡터는 아님.
In[3] : a = a.reshape(4,1)
                                                    # 이제는 컬럼 벡터.
In[4]:a
Out[3]:
array([ [2],
       [5],
       [1],
       [3]])
In[5]: a.shape
Out[5]: (4,1)
```

Numpy 배열 (주의):

```
In[1] : a = np.arange(10)
                                                 # 0~9. 전체 10개의 원소. 1D 배열.
                                                 # 2 x 5 모양의 2D 행렬.
In[2] : b = a.reshape(2,5)
In[3] : a[0] = -999
In[4]:b
Out[4]:
                                                # 메모리 공간 공유.
array([[ -999, 1, 2, 3, 4],
    [5, 6, 7, 8, 9]])
In[5] : c = a.reshape(2,5).copy()
                                                # 얕은 복사로 새로운 객체 만듬.
In[6] : c[0, 0] = 0
In[7]:a
Out[7]:
array([ -999, 1, 2, 3, 4, 5, 6, 7, 8, 9])
                                                # 메모리 공간이 다르므로 아무런 영향 없음.
```

Numpy 로직 배열 활용 필터링:

```
In[1]: arr = np.arange(100)
                                                     # 0~99.
                                                     # 로직배열. 5의 배수인 경우 True.
In[2] : arrMask = ((arr \% 5) == 0)
In[3] : arr[arrMask]
Out[3]:
array([0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80,
    85, 90, 95])
In[4]: arrMask = (((arr % 5) == 0) & (arr > 0)) # 로직배열. 0 이상의 5의 배수이면 True.
In[5] : arr[arrMask]
Out[5]:
array([ 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85,
    90, 95])
```

Numpy 배열의 확장:

```
In[1] : a = np.array([1, 2, 3])
In[2] : b = np.append(a, [4, 5, 6])
In[3] : b
Out[3]: array([1, 2, 3, 4, 5, 6])
```

```
      In[1]: a = np.array([[1, 2], [3, 4]])

      In[2]: b = np.append(a, [[9, 9]], axis=0)
      # 새로운 행으로 추가 (비항구적).

      In[3]: c = np.append(a, [[9], [9]], axis=1)
      # 새로운 열로 추가 (비항구적).
```

Numpy 배열의 삭제:

```
In[1]: a = np.array([[1, 2, 3],[4, 5, 6]])
In[2]: np.delete(a, 0)
                                                     # 원소 하나 삭제 (비항구적).
Out[2]: array([2, 3, 4, 5, 6])
In[3]: np.delete(a, (0, 2, 4))
Out[3]: array([2, 4, 6])
                                                    # 행 전체 삭제 (비항구적).
In[4]: np.delete(a, 0, axis = 0)
Out[4]: array([4, 5, 6])
In[5]: np.delete(a, 1, axis = 1)
                                                    # 열 전체 삭제 (비항구적).
Out[5]:
array([[1, 3],
    [4, 6]])
```

Numpy 배열의 연산

리스트 연산과 Numpy 배열의 연산 비교: '+' 연산자

```
In[1]: a = [1, 2, 3]
```

In[2] : b = [4, 5, 6]

In[3] : a + b

Out[3]: [1, 2, 3, 4, 5, 6]

리스트의 경우는 연결의 의미.

In[1]: a = np.array([1, 2, 3])

In[2] : b = np.array([4, 5, 6])

In[3] : a + b

Out[3]: array([5, 7, 9])

Numpy 배열인 경우에는 원소별 연산의 의미.

Numpy 배열의 연산

리스트 연산과 Numpy 배열의 연산 비교: '*' 연산자

```
In[1] : a = [1, 2, 3]
```

In[2] : 3 * a

리스트의 경우는 반복의 의미.

Out[2]: [1, 2, 3, 1, 2, 3, 1, 2, 3]

```
In[3] : b = np.array([1, 2, 3])
```

In[4] : 3 * b

Numpy 배열인 경우에는 원소별 연산의 의미.

Out[4]: array([3, 6, 9])

In[5] : np.array(3 * [1, 2, 3])

Out[5]: array([1, 2, 3, 1, 2, 3, 1, 2, 3])

In[6] : np.repeat(b, 3)

Out[6]: array([1, 1, 1, 2, 2, 2, 3, 3, 3])

Numpy 배열의 연산

Numpy 배열의 연산:

```
In[1] : a = np.array([1, 2, 3])
In[2] : b = np.array([4, 5, 6])
In[3] : a + b
Out[3]: array([5, 7, 9])
In[4] : b - a
Out[4]: array([3, 3, 3])
In[5] : a * b
Out[5]: array([4, 10, 18])
In[6] : 1.0*a / b
Out[6]: array([0.25, 0.4, 0.5])
```

Numpy 배열의 연산 : 벡터화

Numpy 연산의 벡터화 (universal function):

```
In[1] : x = np.array([0, 1, 2, 3])
In[2] : pow(10, x)
Out[2]: array([ 1,  10,  100,  1000])
In[3] : x**3
Out[3]: array([ 0,  1,  8, 27])
In[4] : np.sqrt(x)
Out[4]: array([ 0.,  1.,  1.41421356,  1.73205081])
In[5] : np.exp(x)
Out[5]: array([ 1. ,  2.71828183,  7.3890561 ,  20.08553692])
```

Numpy의 함수

Numpy가 제공하는 함수:

함수	설명
sin, cos, tan	삼각함수.
arcsin, arccos, arctan	역삼각함수.
round	소수점 이하 표기.
floor	작으면서 제일 가까운 정수.
ceil	크면서 제일 가까운 정수.
fix	0 방향으로 가장 가까운 정수.
prod	배열 원소들의 곱.
cumsum	누적합.
sum, mean, var, std, median	다양한 통계치.
exp, log	지수, 로그 함수.
unique	고유한 값.
min, max, argmax, argmin	최소, 최대값과 위치 함수.

```
In[1]: x = np.arange(1,11)
In[2] : x.sum()
Out[2]: 55
                                                             # 배열의 원소 합.
In[3] : x.mean()
                                                             # 평균.
Out[3]: 5.5
In[4] : x.std()
Out[4]: 2.87228
                                                             # 표준 편차.
In[5] : x.var()
                                                             # 분산.
Out[5]: 8.25
In[6] : x.cumsum()
Out[6]: array([1, 3, 6, 10, 15, 21, 28, 36, 44, 55], dtype=int32) # 누적 배열.
```

```
In[1] : x = np.arange(1,10)
                                                               # (3,-1) 는 (3,3)의 의미!
In[2] : x = x.reshape((3,-1))
In[3] : print(x)
Out[3]:
[[1 2 3]
 [4 5 6]
 [7 8 9]]
In[4] : print(x.mean(axis=0))
Out[4]:
[ 4. 5. 6.]
                                                               # 열의 평균.
In[5] : print(x.mean(axis=1))
Out[5]:
[ 2. 5. 8.]
                                                               # 행의 평균.
```

```
In[1]: np.random.seed(123)
                                                             # 0~9 사이 정수 랜덤으로 1000개.
In[2]: x = np.random.randint(10, size=1000)
In[3] : x.max()
Out[3]: 9
In[4] : x.min()
Out[4]: 0
In[5] : (x > 5).sum()
                                                             # True를 1로 집계.
Out[5]: 401
In[6]: np.unique(x)
                                                             # Unique한 값만 가져온다.
Out[6]:
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
                                                             # Unique한 값만 가져온다 (순수 파이썬).
In[7]: sorted(set(x))
Out[7]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
```

함수	설명
mean	평균.
var	분산.
std	표준편차.
sum	합.
cumsum	배열 원소들의 누적 합.
max, min	최대값, 최소값.
argmax, argmin	최대값, 최소값의 위치.

Numpy 선형 대수학: dot 연산자

```
In[1] : x = np.array([1, 3, 5]) # 길이가 3인 배열.

In[2] : y = np.array([2, 4, 6]) # 길이가 3인 배열.

In[3] : x * y

Out[3]: array([2, 12, 30])

In[4] : np.sum(x*y)

Out[4]: 44 # 개개 원소를 서로 곱하고 누적을 구한 값.

In[5] : np.dot(x, y) # "벡터" x와 y 사이의 내적을 구한다.

Out[5]: 44

In[6] : x.dot(y) # "벡터" x와 y 사이의 내적을 구한다.

Out[6]: 44
```

Numpy 선형 대수학: dot 연산자

Numpy 선형 대수학: dot 연산자

```
# 길이가 3인 배열.
In[1] : x = np.array([1, 3, 5])
                                                  # 길이가 3인 배열.
In[2] : y = np.array([2, 4, 6])
                                                  # 열 벡터 = 3x1 행렬.
In[3] : x = x.reshape((3,1))
                                                  # 행 벡터 = 1x3 행렬.
In[4]: y = y.reshape((1,3))
                                                  # 행렬의 곱.
In[5] : y.dot(x)
                                                  # 하나의 원소를 갖는 행렬.
Out[5]: [[44]]
In[6] : y.dot(x)[0,0]
Out[6]: 44
In[7] : x.dot(y)
                                                  # 행렬의 곱.
Out[7]:
array([[ 2, 4, 6],
      [ 6, 12, 18],
      [10, 20, 30]])
```

Numpy 선형 대수학: 행렬 만들기

```
In[1] : np.zeros((2,3)) # 0을 원소로 하는 행렬.
Out[1]:
array([[ 0., 0., 0.],
       [ 0., 0., 0.]])
In[2] : np.ones((2,3)) # 1을 원소로 하는 행렬.
Out[2]:
array([[ 1., 1., 1.],
       [ 1., 1., 1.]])
```

Numpy 선형 대수학: 행렬 만들기

```
In[1] : np.random.seed(n) # 랜덤 시드 초기화 (n=seed).

In[2] : np.random.random((2,2)) # 0과 1사이 균등분포 랜덤 행렬. 튜플 두겹.

Out[2]:
array([[ 0.60050608,  0.0590288 ],
        [ 0.00072301,  0.72163516]])

In[3] : np.random.randn(2,2) # 정규분포 랜덤 행렬. 튜플 한겹.

Out[3]:
array([[-1.3059906 ,  0.98549986],
        [-0.97344165, -0.89474788]])
```

Numpy 선형 대수학: 행렬 만들기

```
In[1] : m = np.diag([1,2,3]) # 대각 행렬.

In[2] : m

Out[2]:
array([[1, 0, 0],
        [0, 2, 0],
        [0, 0, 3]])

In[3] : np.diag(m) # 행렬의 대각선상의 원소 배열.

Out[3]: array([1, 2, 3])
```

Numpy 선형 대수학: 행렬의 연산

```
In[1] : m1 = np.array([[1, 2, 3],[4, 5, 6]]) # 크기가 2 x 3인 행렬.

In[2] : m2 = np.array([[6, 5, 4],[3, 2, 1]]) # 크기가 2 x 3인 행렬.

In[3] : m1 + m2

Out[3]:
array([[7, 7, 7],
        [7, 7, 7]])

In[4] : m1 - m2

Out[4]:
array([[-5, -3, -1],
        [1, 3, 5]])
```

Numpy 선형 대수학: 행렬의 연산 (+, -)

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 1+5 & 2+6 \\ 3+7 & 4+8 \end{bmatrix} = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} - \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 1 - 5 & 2 - 6 \\ 3 - 7 & 4 - 8 \end{bmatrix} = \begin{bmatrix} -4 & -4 \\ -4 & -4 \end{bmatrix}$$

Numpy 선형 대수학: 행렬의 연산 (Numpy의 곱과 행렬 곱은 다름!!!)

```
In[5] : m1 * m2
Out[5]:
array([[ 6, 10, 12],
        [12, 10, 6]])
In[6] : np.dot(m1, m2)

ValueErrorTraceback (most recent call last) # 사이즈 오류 발생!
<ipython-input-263-321e200e8b3a> in <module>()
----> 1 np.dot(m1,m2)

ValueError: shapes (2,3) and (2,3) not aligned: 3 (dim 1) != 2 (dim 0)
```

Numpy 선형 대수학: 행렬의 연산 (* 와 dot의 비교)

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} * \begin{bmatrix} 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix} = \begin{bmatrix} 1 \times 7 & 2 \times 8 & 3 \times 9 \\ 4 \times 10 & 5 \times 11 & 6 \times 12 \end{bmatrix} = \begin{bmatrix} 7 & 16 & 27 \\ 40 & 55 & 72 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 7 & 8 & 9 \\ 4 & 5 & 6 & 10 & 11 & 12 \end{bmatrix} = [?????]$$

Numpy 선형 대수학: 행렬의 연산

```
In[7] : np.transpose(m2) # 2 x 3 행렬을 3 x 2로 변환 (전치 행렬).

Out[7]:
array([[6, 3],
        [5, 2],
        [4, 1]])

In[8] : np.dot(m1 , np.transpose(m2)) # 이제는 2 x 3 행렬과 3 x 2을 서로 곱할 수 있다.

Out[8]:
array([[28, 10], # 결과는 2 x 2 행렬.
        [73, 28]])
```

Numpy 선형 대수학: 행렬의 연산 (* 와 dot의 비교)

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \cdot \begin{bmatrix} 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}^{t}$$

$$= \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \cdot \begin{bmatrix} 7 & 10 \\ 8 & 11 \\ 9 & 12 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \times 7 + 2 \times 8 + 3 \times 9 & 1 \times 10 + 2 \times 11 + 3 \times 12 \\ 4 \times 7 + 5 \times 8 + 6 \times 9 & 4 \times 10 + 5 \times 11 + 6 \times 12 \end{bmatrix}$$

$$= \begin{bmatrix} 50 & 68 \\ 122 & 167 \end{bmatrix}$$

Numpy 선형 대수학: 행렬의 연산 (* 와 dot의 비교)

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} = 1 \times 4 + 2 \times 5 + 3 \times 6 = 32$$

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 \times 4 & 1 \times 5 & 1 \times 6 \\ 2 \times 4 & 2 \times 5 & 2 \times 6 \\ 3 \times 4 & 3 \times 5 & 3 \times 6 \end{bmatrix} = \begin{bmatrix} 4 & 5 & 6 \\ 8 & 10 & 12 \\ 12 & 15 & 18 \end{bmatrix}$$

Numpy 선형 대수학: 행렬의 연산 (스칼라와 행렬의 곱, 나누기)

```
In[1] : m = np.array([[1, 2],[3, 4]])
In[2] : 3 * m  # 스칼라와 핼렬의 곱.
Out[2]:
array([[3, 6],
       [9, 12]])
In[3] : m / 2.0  # 행렬을 스칼라로 나눔.
Out[3]:
array([[0.5, 1.0],
       [1.5, 2.0]])
```

Numpy 선형 대수학: 행렬의 연산 (스칼라와 행렬의 곱, 나누기)

$$3 \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 3 \times 1 & 3 \times 2 & 3 \times 3 \\ 3 \times 4 & 3 \times 5 & 3 \times 6 \end{bmatrix} = \begin{bmatrix} 3 & 6 & 9 \\ 12 & 15 & 18 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} / 2 = \begin{bmatrix} 1/2 & 2/2 & 3/2 \\ 4/2 & 5/2 & 6/2 \end{bmatrix} = \begin{bmatrix} 0.5 & 1.0 & 1.5 \\ 2.0 & 2.5 & 3.0 \end{bmatrix}$$

Numpy 선형 대수학: 역행렬

```
# 정사각형 shape의 행렬.
In[1] : m = np.array([[1, 2],[3, 4]])
                                                    # m의 역행렬.
In[2]: minv = np.linalg.inv(m)
In[3]: minv
Out[3]:
array([[-2. , 1. ],
    [ 1.5, -0.5]])
In[4] : mres = np.dot(m, minv)
                                                    # 행렬의 곱.
In[5] : np.round(mres,2)
Out[5]:
array([[1., 0.],
    [0., 1.]]
```

Numpy 선형 대수학: 역행렬

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} -2 & 1 \\ 1.5 & -0.5 \end{bmatrix} = \begin{bmatrix} -2+3 & 1-1 \\ -6+6 & 3-2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\uparrow \qquad \qquad \uparrow$$

$$A \qquad \qquad A^{-1} \qquad \qquad I$$
역행렬

연립 방정식:

1. m개의 방정식과 m원 일차 연립 방정식은 다음과 같다:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 \dots a_{1m}x_m = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 \dots a_{2m}x_m = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 \dots a_{1m}x_m = b_m$$

2. 행렬과 벡터를 사용해서 표기하면 다음과 같다:

$$Ax = b$$

3. 해(x)는 다음과 같이 구한다:

$$x = A^{-1} b$$

연립 방정식:

- 다음과 같이 두명의 작업자가 생산에 투입되는 상황을 가정해 본다:
- → x가 5시간 작업에 투입되고 y가 8시간 작업에 투입되니 생산량은 30이 된다:

$$5 x + 8 y = 30$$

→ x가 6시간 작업에 투입되고 y가 4시간 작업에 투입되니 생산량은 25이 된다:

$$6x + 4y = 25$$

→ 그러면 연립 일차 방정식은 다음과 같다:

$$5 x + 8 y = 30$$

$$6x + 4y = 25$$

→ 작업자들의 시간당 생산량을 구하라.

연립 방정식:

```
In[1] : A = np.array([[5, 8], [6, 4]])
                                                  # 정사각형 shape의 행렬.
In[2] : b = np.array([[30], [25]])
                                                  # A의 역행렬.
In[3]: Ainv = np.linalg.inv(A)
                                                  # 해.
In[4] : np.dot(Ainv,b)
Out[4]:
array([[ 2.85714286],
                                                  # x의 시간당 생산량.
                                                  # y의 시간당 생산량.
    [ 1.96428571]])
                                                  # Numpy의 linalg.solve 메서드를 사용해서 구함.
In[5] : np.linalg.solve(A, b)
Out[5]:
array([[ 2.85714286],
    [ 1.96428571]])
```

Pandas 패키지 : 데이터의 구조화

구조화 데이터 vs 비구조화 데이터:

- 비구조화 데이터: 스크레이핑 방법으로 내려받은 인터넷 데이터, 로그 파일, 등.
- 구조화 데이터: CSV 파일, 엑셀 파일, SQL 테이블, 등.

Pandas 패키지 : 특징

Pandas 패키지의 특징:

- Pandas 패키지는 Numpy 패키지를 바탕으로 만들어짐 ⇒ 함수의 호환성.
- Pandas는 Series와 DataFrame 객체를 다루는 목적으로 특화됨.
- 통계, 결측치 처리, 시각화 등 많은 기능이 있음.

Pandas 패키지 : 시리즈

시리즈 (Series):

- 1차원 Numpy 배열과 유사하다.
- index라는 속성이 있어서 인덱싱 목적으로 사용된다.
- 벡터 연산도 지원한다.

Pandas 패키지 : 시리즈

Pandas 시리즈: 기초

```
In[1] : type(df)
                                                                       # 데이터 프레임 객체.
Out[1]: pandas.core.frame.dataFrame
In[2] : type(df.a)
Out[2]: pandas.core.series.Series
                                                                       # 시리즈 객체.
In[3]: my_data = np.array([220, 215, 93,64])
In[4]: eye = pd.Series(data=my_data, index=['Brown','Blue','Hazel','Green']) # 시리즈 생성.
In[5] : eye
Out[5]:
Brown 220
Blue 215
Hazel 93
Green 64
dtype: int32
```

데이터 프레임 (DataFrame):

- 행렬과도 유사한 2D 객체이다. 하지만 개개 열의 자료형이 서로 일치하지 않을수도 있다.
- CSV 파일, 엑셀 파일, SQL 테이블 등의 형식의 데이터를 담기에 적합하다.
- Pandas의 데이터 프레임에는 columns (열)과 index (행)의 속성이 있음.

Pandas 데이터 프레임 기초:

```
In[1] : import pandas as pd
                                               # 패키지를 불러옴.
In[2]: df = pd.read_csv('my_file.csv', header='infer', encoding='ISO-8859-1')
In[3] : type(df)
Out[3]: pandas.core.frame.dataFrame
In[4] : df.info()
                                               # 데이터 프레임의 구조.
                                               # 데이터 프레임의 상단 n 행 보여줌.
In[5]: df.head(n)
                                               # 데이터 프레임의 하단 n 행 보여줌
In[6] : df.tail(n)
In[7] : df.columns
                                               # 데이터 프레임의 헤더를 보여줌.
In[8] : df.columns = ['A', 'B', 'C',...]
                                               # 헤더의 이름을 바꾼다.
                                               # 헤더의 이름을 저장.
In[9]: header = df.columns
                                               # 값은 Numpy array로 별도 저장.
In[10]: X = np.array(df)
```

Pandas 데이터 프레임 슬라이싱:

```
# 컬럼 A를 뽑아서 보여줌.
In[11] : df.A
                                              # 컬럼 B를 뽑아서 보여줌.
In[12]: df.B
                                              # 컬럼 A와 B를 뽑아서 보여줌.
In[13] : df.loc[:, ['A','B']]
                                              # 컬럼 0과 1을 뽑아서 보여줌.
In[14] : df.iloc[:, [0,1]]
                                              # n번째 행을 보여줌.
In[15]: df.loc[n]
                                              # n번째 행을 보여줌.
In[16]: df.iloc[n]
                                              # n에서 m 번째 행을 보여줌.
In[17] : df.loc[n:m]
                                              # n에서 m-1 번째 행을 보여줌.
In[18]: df.iloc[n:m]
                                              # 컬럼 B와 C 를 제외한 나머지.
In[19] : df.drop(columns=['B','C'])
In[20] : df.loc[:, (header != 'B' ) & (header != 'C' )] # 컬럼 B와 C 를 제외한 나머지.
In[21] : df.loc[:, (header == 'A' ) | (header == 'B' )] # 컬럼 A와 B 를 뽑아서 보여줌.
```

Pandas 데이터 프레임 생성: 딕셔너리 사용

```
In[1]: data = { 'NAME': ['Jake', 'Jennifer', 'Paul', 'Andrew'], 'AGE': [24,21,25,19], 'GENDER':['M','F','M','M']}
In[2]: df = pd.DataFrame(data)
In[3]: df
Out[3]:
AGE GENDER
              NAME
0 24
        Μ
              Jake
1 21
        F Jennifer
2 25
             Paul
        Μ
3 19
         M Andrew
In[4] : df = pd.DataFrame(np.random.rand(10, 5), columns=['A', 'B', 'C', 'D', 'E']) # 랜덤 데이터 프레임.
```

Pandas 데이터 프레임 **조건부** 슬라이싱:

```
In[1] : df[ df.GENDER == 'M' ] # 성별이 M인 경우만 가져온다.
In[2] : df[ -(df.GENDER == 'M') ] # 성별이 M이 아닌 경우만 가져온다.
In[3] : df[ df.HEIGHT > 170 ] # 신장이 170 이상인 경우만 가져온다.
In[4] : df[ (df.HEIGHT > 170) & (df.HEIGHT < 180) ] # AND 조건의 조합.
In[5] : df[ (df.GENDER == 'M' ) & (df.HEIGHT < 180) ] # AND 조건의 조합.
In[6] : df[ (df.HEIGHT < 160) | (df.HEIGHT > 180) ] # OR 조건의 조합.
In[7] : df[ (df.GRADE == 1 ) | (df.GRADE == 4 ) ] # OR 조건의 조합.
In[8] : df[ (df.GENDER == 'M' ) & ((df.HEIGHT < 160) | (df.HEIGHT > 180) ) ] # AND 와 OR 조건의 조합.
```

데이터 테이블의 결합

이름	성별	나이
김철수	남	23
이민수	남	31
홍길동	남	28
임꺽정	남	36
사임당	여	30

직원이름	직책	시급
홍길동	직원	9000
이세종	직원	9500
대장금	과장	19000
사임당	과장	20000

데이터 테이블의 결합

이름	성별	나이
김철수	남	23
이민수	남	31
홍길동	남	28
임꺽정	남	36
사임당	여	30

직원이름	직책	시급
홍길동	직원	9000
이세종	직원	9500
대장금	과장	19000
사임당	과장	20000

데이터 테이블의 결합 : Inner Join

이름	성별	나이
김철수	남	23
이민수	남	31
홍길동	남	28
임꺽정	남	36
사임당	여	30

직원이름	직책	시급
홍길동	직원	9000
이세종	직원	9500
대장금	과장	19000
사임당	과장	20000

데이터 테이블의 결합: Inner Join

이름	성별	나이		직원이름	직책	시급
감철수	남	23		홍길동	직원	9000
이민수	나	31	 	이세종	직원	9500
홍길동	남	28	_	대장금	과장	19000
임꺽정	남	36		사임당	과장	20000
사임당	여	30	─		•	•

데이터 테이블의 결합: Inner Join

이름	성별	나이	직원이름	직책	시급
홍길동	남	28	홍길동	직원	9000
사임당	여	30	사임당	과장	20000

데이터 테이블의 결합 : Left Join

이름	성별	나이
김철수	남	23
이민수	남	31
홍길동	남	28
임꺽정	남	36
사임당	여	30

직원이름	직책	시급
홍길동	직원	9000
이세종	직원	9500
대장금	과장	19000
사임당	과장	20000

데이터 테이블의 결합 : Left Join

이름	성별	나이
김철수	남	23
이민수	남	31
홍길동	남	28
임꺽정	남	36
사임당	여	30

	직원이름	직책	시급	
	홍길동	직원	9000	
Ŧ	이세종	직원	9500	
ļ	대장금	과장	19000	
	사임당	과장	20000	

데이터 테이블의 결합 : Left Join

이름	성별	나이	직원이름	직책	시급
김철수	남	23			
이민수	남	31			
홍길동	남	28	홍길동	직원	9000
임꺽정	남	36			
사임당	여	30	사임당	과장	20000

데이터 테이블의 결합 : Right Join

이름	성별	나이
김철수	남	23
이민수	남	31
홍길동	남	28
임꺽정	남	36
사임당	여	30

직원이름	직책	시급	
홍길동	직원	9000	
이세종	직원	9500	
대장금	과장	19000	
사임당	과장	20000	

데이터 테이블의 결합 : Right Join

이름	성별	나이		직원이름	
 감철수	남	23	<u></u>	홍길동	
 이민수	납	31	<u> </u>	이세종	
홍길동	남	28		대장금	
 임꺽정	남	36	-	사임당	
사임당	여	30			

직원이름	직책	시급	
홍길동	직원	9000	
이세종	직원	9500	
대장금	과장	19000	
사임당	과장	20000	

데이터 테이블의 결합 : Right Join

이름	성별	나이	직원이름	직책	시급
홍길동	남	28	홍길동	직원	9000
			이세종	직원	9500
			대장금	과장	19000
사임당	여	30	사임당	과장	20000

데이터 테이블의 결합: Full Outer Join

조건: A.이름 = B.직원이름

이름	성별	나이
김철수	남	23
이민수	남	31
홍길동	남	28
임꺽정	남	36
사임당	여	30

직원이름	직책	시급
홍길동	직원	9000
이세종	직원	9500
대장금	과장	19000
사임당	과장	20000

데이터 테이블의 결합 : Full Outer Join

이름	성별	나이	직원이름	직책	시급
김철수	남	23			
이민수	남	31			
홍길동	남	28	홍길동	직원	9000
임꺽정	남	36			
사임당	여	30	사임당	과장	20000
			이세종	직원	9500
			대장금	과장	19000

데이터 테이블의 결합 : 정리

Inner Join

Left Join

Right Join

Full Outer Join

Pandas 패키지: 데이터 프레임

Pandas 데이터 프레임: 메서드로 제공되는 통계 함수

In[1] : df.sum(axis=0) # 개개 열을 따라서 더함.

In[2] : df.sum(axis=1) # 개개 행을 따라서 더함.

In[3] : df.mean(axis=0, skipna=False) # 열 평균을 구하는데 NA를 떨구지 않음.

In[4] : df.describe() # 사분위수 등 기술통계 요약을 보여줌.

In[5] : df.count(axis=0) # NA가 아닌 값의 갯수.

In[6] : df.A.corr(df.B) # A 컬럼과 B 컬럼 사이의 상관계수.

In[7] : df.corr() # 상관계수 **행렬**을 계산한다.

In[8] : df.corrwith(df.A) # A와 나머지 변수 사이의 상관계수.

Pandas 패키지: 데이터 프레임

Pandas 데이터 프레임: 결측치 NA관련 메서드

```
In[1] : df.isnull()# NA인 위치에는 True인 데이터 프레임.In[2] : (df.isnull()).sum(axis=0)# 컬럼 별 결측치의 갯수.In[3] : (df.isnull()).mean(axis=0)# 컬럼 별 결측치의 비중.In[4] : df.dropna(axis = 0)# NA가 포함된 행은 drop 한다.In[5] : df.dropna(axis = 1)# NA가 포함된 열은 drop 한다.In[6] : df.dropna(axis=0, thresh = 3)# 최소 3개 이상 정상값이 있는 행은 제외하고 drop.In[7] : df.fillna(value=0)# 결측치를 0으로 채워 넣는다.
```

Pandas 패키지 : 시각화

Pandas 데이터 프레임: 시각화

In[1] : df.plot(x = 'A', y = 'B')

In[2]: df.plot.scatter(x = 'A', y = 'B')

In[3] : my_cols_dict = {'setosa':'red', 'virginica':'green', 'versicolor':'blue'}

my_cols = df0['Species'].apply(lambda x: my_cols_dict[x])

pd.plotting.scatter_matrix(df, c=my_cols, marker='o', alpha=0.5)

plt.show()

A 대 B 라인 플롯.

A 대 B 산점도.

Species 유형을 컬러로 <mark>번역</mark>.

산점도 행렬.

Pandas 패키지: 멀티 인덱스

Pandas 멀티 인덱스:

```
In[1] : my_header = ['a','b','c']
    my_index_out = ['G1']*3 + ['G2']*3
    my_index_in = [1,2,3]*2
    my_index_zipped = list(zip(my_index_out, my_index_in)) # 두 개의 리스트 기반으로 튜플 생성.
    my_index = pd.MultiIndex.from_tuples(my_index_zipped)
    df = pd.DataFrame(data=np.random.randn(6,3),index=my_index,columns=my_header)

In[2] : df
```

Out[2]:

		a	b	С
G1	1	0.708643	1.526325	-0.522276
	2	-0.112115	0.366355	-0.127317
	3	-0.020839	0.023037	0.167214
G2	1	-1.300622	-0.310416	-0.840097
	2	0.088279	-1.596302	1.367721
	3	-0.998479	-0.476471	-2.038437

Pandas 패키지 : 그루핑 후 연산

그루핑 후 연산:

В

Name: height, dtype: float64

```
In[1] : df.groupby('gender').mean()
                                                     # 성별 모든 변수의 개개 평균.
In[2] : df.groupby('gender')['height'].mean()
                                                     # 성별 신장 평균.
                                                     # 성별 신장, 체중 평균.
In[3] : df.groupby('gender')[['height','weight']].mean()
                                                     # 성별 신장 통계적 요약.
In[4] : df.groupby('gender')['height'].describe()
In[5] : df.groupby(['gender','bloodtype'])['height'].mean()
                                                     # 멀티 인덱싱된 시리즈!!
Out[5]:
       gender
                bloodtype
                             172.450000
                             170.100000
                AΒ
                             158,200000
                В
                             164.433333
                             165.700000
       Μ
                             181.050000
                AΒ
```

174.550000

166.200000

Pandas 패키지: apply 메서드

apply 메서드:

```
In[1]: df['height'].apply(lambda x: x/100)
                                                      # 람다함수와의 조합 즐겨 사용.
Out[1]:
             1.653
       0
             1.701
             1.750
             1.821
             1.680
            1.620
            1.552
            1.769
            1.785
            1.761
            1.671
       10
            1.800
       11
            1.622
       12
       13
            1.761
            1.582
       14
            1.686
       15
       16
             1.692
       Name: height, dtype: float64
```

Pandas 패키지 : 정렬

정렬:

```
In[1] : df.sort_values(by='bloodtype')
```

In[2] : df.sort_values(by='bloodtype', ascending=False)

In[3] : df.sort_values(by=['bloodtype','gender'])

Pandas 패키지: 명복형 변수 요약

명목형 변수 요약:

```
In[1] : df['bloodtype'].unique()
                                                        # 고유한 값 (유형).
Out[1]:
array(['O', 'AB', 'B', 'A'], dtype=object)
In[2] : df['bloodtype'].nunique()
                                                        # 유형의 가지수.
Out[2]:
4
In[3] : df['bloodtype'].value_counts()
                                                        # 도수 분포표.
Out[3]:
05
B 5
A 4
AB 3
Name: bloodtype, dtype: int64
```

피보팅:

```
In[1]: # A,B의 값으로 인덱스, C의 값으로 컬럼, 실제 셀에 들어가는 값은 E의 평균.
# aggregate(E ~ A+B+C, data=df, mean)과 유사 (R).
pd.pivot_table(df, index=['A','B'], columns='C', values='E')
```

Out[1]:

	С	large	small
Α	В		
bar	one	6.0	8.0
	two	9.0	9.0
foo	one	4.5	2.0
	two	NaN	5.5

피보팅:

```
In[2]: # A,B의 값으로 인덱스, C의 값으로 컬럼, 실제 셀에 들어가는 값은 E의 중양값.
# aggregate(E ~ A+B+C, data=df, median)과 유사 (R).
pd.pivot_table(df, index=['A','B'], columns='C', values='E', aggfunc=np.median, fill_value=0)
Out[2]:
```

		С	large	small
	Α	В		
Ī	bar	one	6.0	8.0
		two	9.0	9.0
	foo	one	4.5	2.0
		two	0.0	5.5

피보팅:

```
In[3] : # D, E의 그룹평균.

# aggregate( cbind(D, E) ~ A+B, data=df, mean)과 유사 (R).

# df.groupby(['A','B'])[['D','E']].mean()과 동일 (Python, Pandas).

pd.pivot_table(df, index=['A','B'], values=['D','E'], aggfunc=np.mean)

Out[3]:

D E
```

A B bar one 4.500000 7.000000 two 6.500000 9.000000 foo one 1.666667 3.666667 two 3.000000 5.500000

피보팅: