ES2105 Earth Science Lab 1

23/08/2024

Earthquakes

SEISMOGRAPH STATION

Description	Magnitude
Great	8 and higher
Major	7 - 7.9
Strong	6 - 6.9
Moderate	5 - 5.9
Small	4 - 4.9
Minor	3 - 3.9
Microearthquakes	<3.0

P & S wave Travel-time Graph

Seismometer

3T-ESP series

6 series

Certimus

Internal Structure of the Earth

Moho Calculation

$$T_D(x) = x/\nu_0.$$

$$T_R^2(x) = x^2/\nu_0^2 + 4h_0^2/\nu_0^2$$
.

$$T_H(x) = x/\nu_1 + 2h_0(1/\nu_0^2 - 1/\nu_1^2)^{1/2}$$
:

$$x_c = 2h_0 \tan i_c$$

Moho Calculation

Refracted Ray Arrival Time, t

distance (m)

Vp/Vs Calculation

Arrival Time = Origin Time + Travel Time

$$T_P = T_0 + \frac{D}{V_P}$$
$$T_S = T_0 + \frac{D}{V_S}$$

$$T_S - T_P = D\left(\frac{1}{V_S} - \frac{1}{V_P}\right)$$

$$T_S - T_P = \frac{D}{V_P}\left(\frac{V_P}{V_S} - 1\right)$$

$$T_S - T_P = \left(\frac{V_P}{V_S} - 1\right) (T_P - T_0)$$

Wadati Diagram

Least Squares Fitting

$$a = \frac{\sum_{i=1}^{n} y_i \sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} x_i y_i}{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2}$$

$$b = \frac{n \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2}$$