# CS601: Software Development for Scientific Computing

Autumn 2021

Week13:

Hierarchical Methods (FMM) and Sparse Matrices

#### Course Progress..

- Last week
  - Tree-based codes (hierarchical methods)
    - Barnes-Hut
    - Fast Multipole Method (FMM)

- This week
  - FMM
  - Sparse matrices and
  - PA4 discussion

### FMM Algorithm

- 1. Build the quadtree containing all the points.
- Traverse the quadtree from bottom to top, computing Outer(n) for each square n in the tree.
- 3. Traverse the quadtree from top to bottom, computing Inner(n) for each square in the tree.
- 4. For each leaf, add the contributions of nearest neighbors and particles in the leaf to Inner(n)

what is Outer(n) and Inner(n)?

#### Well Separated Regions

 Compute the influence of all particles in source region (B) on every particle in target region (A)

(assumption: A and B are well-separated)



• At each point  $p_i$  in A, compute potential:

$$\Phi(x_i, y_i) = \sum_{p_j \in B} m_i \log |p_i - p_j|$$

$$i = 1 \text{ to } N_A, \quad j = 1 \text{ to } N_B$$

• Cost:  $O(N_A N_B)$ 

#### Well Separated Regions

 Compute the influence of all particles in source region (B) on every particle in target region (A)

$$\Phi(x_{p_i}, y_{p_i}) = \sum_{p_j \in B} m_i \log |p_i - p_j|, p_i \in A$$



#### Applying the 3-step Approximation

 In N-body simulation every point serves as source as well as target.

How to identify source and target (boxes A and B in previous slide) i.e. well-separated regions?

Hierarchical decomposition

Level-0 decomposition



Level-1 decomposition



No well-separated boxes

Level-2 decomposition

| N1 | N2 | N3 | A1 |
|----|----|----|----|
| N4 | В  | N5 | A2 |
| N6 | N7 | N8 | A3 |
| A7 | A6 | A5 | A4 |

Well-separated from B

Can approximate the influence of points in B on points in Ai s

What do we do about **B**'s influence on Ni s?

Level-3 decomposition





Influence of points in Bi s on those in Ai s already computed at the previous level (level-2)

#### Level-3 decomposition

| n1<br>n3 | n2<br>n4 |                 | n6<br>n8   | -N  | 3   |   | 1  |
|----------|----------|-----------------|------------|-----|-----|---|----|
| n13      | n14      | B1 <sub>F</sub> | <b>B</b> 2 | N   | n27 | Δ | 2  |
| n15      | n16      | B3              | B4         |     | n26 |   | ~_ |
| n17      | n18      | N               | 7          | N   | n25 | ^ | 5  |
| n19      | n20      | n21             | n22        | n23 | n24 |   | S  |
| A        | 7        | A               | 6          | A   | 5   | Α | 4  |



Influence of points in Bi s on those in Ai s already computed at the previous level (level-2)



Well-separated from B4
Influence of B4's points on nx's
points can be approximated

nx's constitute the <u>interaction list</u> for B4. What is the max size of interaction list? i.e. max number of nx s that we can have for any Bi?

Level-3 decomposition





Influence of points in Bi s on those in Ai s already computed at the previous level (level-2)



Well-separated from B4
Influence of B4's points on nx's
points can be approximated

What do we do about **B4**'s influence on its neighbors (white/unshaded boxes)?

Level-4 decomposition



Any unshaded box outside can be the *target* for computing the influence of points in (source)

## Computing Potential for Well-Separated Regions

```
1. for level L=2 to last_level
2. for each Box B at level L
3. iList = GetInteractionList(B)
4. for each well-separated box A in iList

//Compute potential
5. potential = m_B \log |C_A - C_B|

//Accumulate potential
6. \Phi(x_{C_A}, y_{C_A}) +=potential
```

# Computing Potential for Well-Separated Regions

```
1. for level L=2 to last_level
2. for each Box B at level L
3. iList = GetInteractionList(B)
4. for each well-separated box A in iList

//Compute potential
5. potential = m_B \log |C_A - C_B|

//Accumulate potential
6. \Phi(x_{C_A}, y_{C_A}) +=potential
```

**Prereqs:** we need  $m_B$ ,  $C_A$ ,  $C_B$  details. (step 0)

#### 2. Assigning Potential to Points

- for each Box A at level L=0 to last\_level
- 2.  $\Phi_{p_i} = \Phi_{p_i} + \Phi_{C_A}$  (where  $p_i \in A$  and  $C_A$  is A's CM)

# 3. Assigning Potential to Points (last level)

- for each Box B at last\_level
- 2.  $\Phi_{p_i} = \Phi_{p_i} + \sum_{p_j \in Neighbors(B)} m_B \log |p_i p_j|$  (where  $p_i \in B$ )

#### 0. Computing Prereqs

- for each Box B at level L=0 to last\_level
- $2. m_B = \sum_{p_j \in B} m_j$
- 3.  $//similarly compute C_B$

## Total Cost (steps 0 + 1 + 2 + 3)

$$O(N \log N) + O(N) + O(N \log N) + O(N)$$

Can we do better?

### 0'. Computing Prereqs

• Traverse the tree bottom up instead of top-down for each Box B starting from last\_level to L=0 if B is a leaf box  $m_B = \sum_{p_j \in B} m_j$  else  $m_B = m_{B_1} + m_{B_2} + m_{B_3} + m_{B_4} //B_1 - B_4 \text{ are children of B}$ 

#### 2'. Assigning Potential to Points

- 1. for each Box A at level L=0 to last\_level
- 2. if A is a leaf box

$$\Phi_{p_i} = \Phi_{p_i} + \Phi_{C_A}$$
 (where  $p_i \in A$  and  $C_A$  is A's CM)

else

$$\Phi_{A_1} = \Phi_{A_1} + \Phi_A$$
 $\Phi_{A_2} = \Phi_{A_2} + \Phi_A$ 
 $\Phi_{A_3} = \Phi_{A_3} + \Phi_A$ 
 $\Phi_{A_4} = \Phi_{A_4} + \Phi_A$ 
//A<sub>1</sub>-A<sub>4</sub> are children of A

## Total Cost (steps 0' + 1 + 2' + 3)

$$O(N) + O(N) + O(N) + O(N)$$

**Problem:** low accuracy if source (A) and target (B) are not far away from each other

**Solution:** more accurate representations for  $m_B$  and  $\Phi(x_{C_A}, y_{C_A})$ 

- Like a Taylor series expansion that is accurate when  $x^2 + y^2$  is large (x, y) are cartesian coordinates of the point)
- For a quadtree box B centered at  $(x_{C_B}, y_{C_B})$ , we compute and store the terms:  $\{m_B, \alpha_1, \alpha_2, \dots, \alpha_p, z_{C_B}\}$



$$\alpha_j = \sum_{i=1}^{N_B} m_i \left( \frac{z_i^j}{j} \right)$$

$$z_i$$
means $|z_i| = |(x_i, y_i)|$ 

We approximate the potential at point z due to B by:



$$\Phi(x_z, y_z) = m_B \log(z - C_B) + \frac{\alpha_1}{z - C_B} + \frac{\alpha_2}{(z - C_B)^2} + \frac{\alpha_p}{(z - C_B)^p}$$

Because  $\{m_B, \alpha_1, \alpha_2, \dots, \alpha_p, z_{C_B}\}$  is used to compute potential outside B, it is called outer expansion

- Similarly, we have the <u>inner expansion</u>  $\{m_B, \beta_1, \beta_2, \dots, \beta_p, z_{C_B}\}$  for computing the potential inside the Box due to all other points outside the box
- Computing outer expansions starts from leaf nodes and proceeds upwards in the tree.
- Computing inner expansions starts from root node and proceeds downwards in the tree.

## 3-Step Approximation (accurate)



#### FMM Algorithm

- 1. Build the quadtree containing all the points.
- Traverse the quadtree from bottom to top, computing Outer(n) for each square n in the tree.
- 3. Traverse the quadtree from top to bottom, computing Inner(n) for each square in the tree.
- 4. For each leaf, add the contributions of nearest neighbors and particles in the leaf to Inner(n)

- How to obtain the expression for alpha, beta?
- What is the value of p?
- How to compute alpha and beta?

• Further reading:

https://people.eecs.berkeley.edu/~demmel/cs267/lecture27/lecture27.html