Big- M Method: LPP- Numerical Examples

Prof. M.P. Biswal

Department of Mathematics

IIT- Kharagpur E-Mail: mpbiswal@maths.iitkgp.ac.in

August 22, 2022

Numerical Example -b1: Condensed Tableau

$$\max : Z = x_1 + 3x_2 + x_3$$

Subject to

$$x_1 + x_2 + x_3 = 10$$

 $x_1 + 4x_2 + x_3 = 16$
 $x_1, x_2, x_3 > 0$

Numerical Example -b1:

$$\max: Z = x_1 + 3x_2 + x_3 - Ma_1 - Ma_2$$

Subject to

$$x_1 + x_2 + x_3 + a_1 = 10$$

 $x_1 + 4x_2 + x_3 + a_2 = 16$
 $x_1, x_2, x_3 \ge 0$

Artificial variables:

$$\textit{a}_1,\textit{a}_2 \geq 0$$

M is a large positive number.

Numerical Example -b1:

$$\max: Z = x_1 + 3x_2 + x_3 - M(a_1 + a_2)$$

Subject to

$$-x_1 - x_2 - x_3 + 10 = a_1$$
$$-x_1 - 4x_2 - x_3 + 16 = a_2$$
$$x_1, x_2, x_3 \ge 0$$

Artificial variables are Basic variables.

$$a_1, a_2 \geq 0$$

M is a large positive number.

Numerical Example -b1:

$$\max : Z = x_1 + 3x_2 + x_3 - M(26 - 2x_1 - 5x_2 - 2x_3)$$

$$= (1 + 2M)x_1 + (3 + 5M)x_2 + (1 + 2M)x_3 - 26M$$
Subject to
$$-x_1 - x_2 - x_3 + 10 = a_1$$

$$-x_1 - 4x_2 - x_3 + 16 = a_2$$

$$x_1, x_2, x_3 \ge 0$$

$$a_1, a_2 > 0$$

Numerical Example (b1):

Table 0:

$-x_1$	$-x_2$	$-x_3$	1	XB
1	1	1	10	$= a_1$
1	4*	1	16	$= a_2$
-(2M+1)	-(5M+3)*	-(2M+1)	-26M	= Z

$$x_1 = 0, x_2 = 0, x_3 = 0, Z = -26M$$

Numerical Example (b1):

Table 1:

$-x_1$	$-a_2$	$-x_3$	1	XB
3/4*	-1/4	3/4	6	$= a_1$
1/4	1/4	1/4	4	$= x_2$
-(3M+1)/4	(5M+3)/4	- (3M+1)/4	-6M+12	=Z

$$x_1 = 0, x_2 = 4, x_3 = 0, Z = -6M + 12$$

Table 2 and 3:

$-a_1$	$-a_2$	$-x_3$	1	XB
4/3	-1/3	1*	8	$= x_1$
-1/3	1/3	0	2	$= x_2$
M+1/3	M + 2/3	0*	14	=Z

Optimal Solution:

$$x_1^* = 8, x_2^* = 2, x_3^* = 0, Z^* = 14$$

$-a_1$	$-a_2$	$-x_1$	1	XB
4/3	-1/3	1	8	$= x_3$
-1/3	1/3	0	2	$= x_2$
M+1/3	M + 2/3	0	14	=Z

Alternate Optimal Solution:

$$x_1^* = 0, x_2^* = 2, x_3^* = 8, Z^* = 14$$

Big- M Method: Condensed Tableau

Trivial Example (b2):

$$\max : Z = x_1 + 3x_2$$

Subject to

$$x_1 + x_2 = 10$$

 $x_1 + 4x_2 = 16$
 $x_1, x_2 > 0$

Numerical Example (b2):

$$\max : Z = x_1 + 3x_2 - Ma_1 - Ma_2$$

Subject to

$$x_1 + x_2 + a_1 = 10$$

 $x_1 + 4x_2 + a_2 = 16$
 $x_1, x_2 \ge 0$

M: is a large positive number

Artificial variables (Basic variables):

$$\textit{a}_1,\textit{a}_2 \geq 0$$

Use M to drive out artificial variables

Numerical Example (b2):

$$\max : Z = x_1 + 3x_2 - Ma_1 - Ma_2$$
$$= x_1 + 3x_2 - M(a_1 + a_2)$$
$$= x_1(2M + 1) + x_2(5M + 3) - 26M$$

Subject to

$$-x_1 - x_2 + 10 = a_1$$
$$-x_1 - 4x_2 + 16 = a_2$$
$$x_1, x_2 \ge 0$$

Artifial variables (Basic variables):

$$a_1, a_2 \geq 0$$

Numerical Example (b2):

Table 0:

$-x_1$	$-x_2$	1	XB
1	1	10	$= a_1$
1	* 4	16	$= a_2$
-2M-1	-5M-3	-26M	=Z

$$x_1 = 0, x_2 = 0, Z = -26M$$

Numerical Example (b2):

Table 1:

$-x_1$	$-a_2$	1	XB
* 3/4	-1/4	6	$= a_1$
1/4	1/4	4	$= x_2$
-(3M+1)/4	(5M+3)/4	-6M+12	=Z

$$x_1 = 0, x_2 = 4, Z = -6M + 12$$

Numerical Example (b2):

Table 2:

$-a_1$	$-a_2$	1	XB
4/3	-1/3	8	$= x_1$
- 1/3	1/3	2	$= x_2$
M+1/3	M + 2/3	14	=Z

Optimal Solution:

$$x_1^* = 8, x_2^* = 2, Z^* = 14$$

Big- M Method: Condensed Tableau -New

Numerical Example (b3):

$$min : Z = x_1 + 3x_2$$

Subject to

$$x_1+x_2\geq 10$$

$$x_1+4x_2\geq 16$$

$$x_1, x_2 \geq 0$$

$$\max: -Z = -x_1 - 3x_2$$

Numerical Example (b3):

$$\max : -Z = -x_1 - 3x_2 - Ma_1 - Ma_2$$

Subject to

$$x_1 + x_2 - x_3 + a_1 = 10$$

 $x_1 + 4x_2 - x_4 + a_2 = 16$
 $x_1, x_2, x_3, x_4 \ge 0$

M: is a large positive number

Surplus variables : $x_3, x_4 \ge 0$ Artificial variables (Basic variables) :

$$a_1, a_2 \geq 0$$

Use M to drive out artificial variables

Numerical Example (b3):

$$\max : -Z = -x_1 - 3x_2 - Ma_1 - Ma_2$$

$$= -x_1 - 3x_2 - M(a_1 + a_2)$$

$$= x_1(2M - 1) + x_2(5M - 3) - x_3M - x_4M - 26M$$

Subject to

$$-x_1 - x_2 + x_3 + 10 = a_1$$

$$-x_1 - 4x_2 + x_4 + 16 = a_2$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Artificial variables (Basic variables):

$$a_1, a_2 \geq 0$$

Numerical Example (b3):

Table 0:

$-x_1$	$-x_2$	$-x_3$	$-x_4$	1	XB
1	1	-1	0	10	$= a_1$
1	* 4	0	-1	16	$= a_2$
-2M+1	-5M+3	М	М	-26M	=-Z

$$x_1 = 0, x_2 = 0, Z = 26M$$

Numerical Example (b3):

Table 1:

$-x_1$	$-a_2$	-x ₃	-x ₄	1	XB
* 3/4	-1/4	-1	1/4	6	$= a_1$
1/4	1/4	0	-1/4	4	$= x_2$
-(3M-1)/4	(5M-3)/4	М	-(M-3)/4	-6M-12	=- Z

$$x_1 = 0, x_2 = 4, Z = 6M + 12$$

Numerical Example (b3):

Table 2:

$-a_1$	$-a_2$	-x3	-X4	1	XB
4/3	-1/3	-4/3	1/3	8	$= x_1$
- 1/3	1/3	1/3	-1/3	2	$= x_2$
M-1/3	M-2/3	1/3	2/3	-14	=-Z

Optimal Solution:

$$x_1^* = 8, x_2^* = 2, Z^* = 14$$

Big-M Method: New Condensed Tableau

Numerical Example -4:

$$min: Z = x_1 + 3x_2 + x_3$$

Subject to

$$x_1 + x_2 + x_3 = 10$$

 $x_1 + 4x_2 + x_3 = 16$
 $x_1, x_2, x_3 > 0$

Numerical Example -4:

$$\max : -Z = -x_1 - 3x_2 - x_3 - Ma_1 - Ma_2$$

Subject to

$$x_1 + x_2 + x_3 + a_1 = 10$$

 $x_1 + 4x_2 + x_3 + a_2 = 16$
 $x_1, x_2, x_3 \ge 0$

Artificial variables:

$$a_1, a_2 \geq 0$$

Table 0:

Table 0.						
SIMP	CN	-1	-3	-1	b	
СВ	BV/NV	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	XB	
-M	a 1	1	1	1	10	
-M	a ₂	1	* 4	1	16	
*	-Z	-2M+1	- 5M+3	-2M+1	-26M	

$$x_1 = 0, x_2 = 0, x_3 = 0, Z = 26M$$

Table 1:

Table 1					
SIMP	CN	-1	-M	-1	b
СВ	BV/NV	<i>x</i> ₁	a ₂	<i>x</i> ₃	XB
-M	a 1	*3/4	-1/4	- 3/4	6
-3	x ₂	1/4	1/4	1/4	4
*	-Z	(-3M+1)/4	(5M-3)/4	(-3M+1)/4	-6M-12

$$x_1 = 0, x_2 = 4, x_3 = 0, Z = 6M + 12$$

Table 2:

Tubic 2					
SIMP	CN	-M	-M	-1	b
СВ	BV/NV	a 1	a ₂	<i>X</i> 3	XB
-1	<i>x</i> ₁	4/3	-1/3	1	8
-3	x ₂	-1/3	1/ 3	0	2
*	-Z	M-1/3	M-2/3	0*	-14

Optimal Solution:

$$x_1^* = 8, x_2^* = 2, x_3^* = 0, Z^* = 14$$

Alternate Optimal Solution:

$$x_1^* = 0, x_2^* = 2, x_3^* = 8, Z^* = 14$$

Numerical Example -5: Condensed Tableau

$$\max: Z = 4x_1 + 3x_2 + x_3$$

Subject to

$$x_1 + x_2 + x_3 = 10$$

 $x_1 + 4x_2 + x_3 = 16$
 $x_1, x_2, x_3 > 0$

Numerical Example -5:

$$\max: Z = 4x_1 + x_2 + x_3 - Ma_1 - Ma_2$$

Subject to

$$x_1 + x_2 + x_3 + a_1 = 10$$

 $x_1 + 4x_2 + x_3 + a_2 = 16$
 $x_1, x_2, x_3 \ge 0$

Artificial variables:

$$a_1, a_2 \geq 0$$

Table 0:

SIMP	CN	4	1	1	b
СВ	BV/NV	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	XB
-M	a 1	1	1	1	10
-M	a ₂	1	* 4	1	16
*	Z	-2M-4	- 5M-1	-2M-1	-26M

$$x_1 = 0, x_2 = 0, x_3 = 0, Z = -26M$$

Table 1:

Table 1					
SIMP	CN	4	-M	1	b
СВ	BV/NV	<i>x</i> ₁	a ₂	<i>x</i> ₃	XB
-M	a 1	*3/4	-1/4	- 3/4	6
1	x ₂	1/4	1/4	1/4	4
*	Z	(-3M-15)/4	(5M+1)/4	(-3M-3)/4	-6M+4

$$x_1 = 0, x_2 = 4, x_3 = 0, Z = -6M + 4$$

Table 2:

Tubic 2.							
SIMP	CN	-M	-M	1	b		
СВ	BV/NV	a 1	a ₂	<i>x</i> ₃	XB		
4	<i>x</i> ₁	4/3	-1/3	1	8		
1	x ₂	-1/3	1/3	0	2		
*	Z	M+5	M-1	3	34		

Optimal Solution:

$$x_1^* = 8, x_2^* = 2, x_3^* = 0, Z^* = 34$$

Numerical Example -6: Condensed Tableau

$$\min: Z = 2x_1 + 3x_2 + 5x_3$$

Subject to

$$x_1 + x_2 + x_3 = 6$$

 $3x_1 + 2x_2 + x_3 = 16$
 $x_1, x_2, x_3 \ge 0$

Numerical Example -6:

$$\max : -Z = -2x_1 - 3x_2 - 5x_3 - Ma_1 - Ma_2$$

Subject to

$$x_1 + x_2 + x_3 + a_1 = 6$$

 $3x_1 + 2x_2 + x_3 + a_2 = 16$
 $x_1, x_2, x_3 \ge 0$

Artificial variables:

$$a_1, a_2 \geq 0$$

Table 0:

Table 0.					
SIMP	CN	-2	-3	-5	b
СВ	BV/NV	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	XB
-M	a 1	1	1	1	6
-M	a ₂	*3	2	1	16
*	- Z	-4M+2	- 3M+3	-2M+ 5	-22M

$$x_1 = 0, x_2 = 0, x_3 = 0, Z = 22M$$

Table 1:

Table 1	•				
SIMP	CN	-M	-3	-5	b
СВ	BV/NV	a ₂	x ₂	<i>x</i> ₃	XB
-M	a ₁	-1/3	1/3	* 2/3	2/3
-2	<i>x</i> ₁	1/3	2/3	1/3	16/3
*	-Z	(4M-2)/3	(5-M)/3	(13-2M)/3	-(32+2M)/3

$$x_1 = 16/3, x_2 = 0, x_3 = 0, Z = (32 + 2M)/3$$

Table 2:

	SIMP	CN	-M	-3	-M	b
	СВ	BV/NV	a ₂	<i>x</i> ₂	a ₁	XB
:	-5	<i>X</i> ₃	-1/2	1/2	3/2	1
	-2	<i>x</i> ₁	1/2	1/2	- 1/2	5
	*	- Z	M+3/2	-1/2	M-13/2	-15

$$x_1 = 5, x_2 = 0, x_3 = 1, Z = 15$$

Table	3:
-------	----

SIMP	CN	-M	-5	-M	b
СВ	BV/NV	a ₂	<i>x</i> ₃	a ₁	XB
-3	x ₂	-1	2	3	2
-2	<i>x</i> ₁	1	-1	-2	4
*	- Z	M+1	1	M-5	-14

Optimal Solution:

$$x_1^* = 4, x_2^* = 2, x_3^* = 0, -Z^* = -14, Z^* = 14$$

Numerical Example -7: Condensed Tableau

$$\max: Z = 2x_1 + 3x_2 + 5x_3$$

Subject to

$$x_1 + x_2 + x_3 = 6$$

 $3x_1 + 2x_2 + x_3 = 16$
 $x_1, x_2, x_3 > 0$

Numerical Example -7:

$$\max: Z = 2x_1 + 3x_2 + 5x_3 - Ma_1 - Ma_2$$

Subject to

$$x_1 + x_2 + x_3 + a_1 = 6$$

 $3x_1 + 2x_2 + x_3 + a_2 = 16$
 $x_1, x_2, x_3 \ge 0$

Artificial variables:

$$a_1, a_2 \geq 0$$

Table 0:

SIMP	CN	2	3	5	b
СВ	BV/NV	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	XB
-M	a 1	1	1	1	6
-M	a ₂	*3	2	1	16
*	Z	-4M-2	- 3M-3	-2M-5	-22M

$$x_1 = 0, x_2 = 0, x_3 = 0, Z = -22M$$

Table 1:

Table 1					
SIMP	CN	-M	3	5	b
СВ	BV/NV	a ₂	<i>x</i> ₂	<i>x</i> ₃	XB
-M	a_1	-1/3	1/3	* 2/3	2/3
2	<i>x</i> ₁	1/3	2/3	1/3	16/3
*	Z	(4M+2)/3	(-5-M)/3	(-13-2M)/3	(32-2M)/3

$$x_1 = 16/3, x_2 = 0, x_3 = 0, Z = (32 - 2M)/3$$

Table	2:
-------	----

SIMP	CN	-M	3	-M	b
СВ	BV/NV	a ₂	x ₂	<i>a</i> ₁	XB
5	<i>x</i> ₃	-1/2	1/2	3/2	1
2	<i>x</i> ₁	1/2	1/2	- 1/2	5
*	Z	M-3/2	1/2	M+13/2	15

Optimal Solution:

$$x_1^* = 5, x_2^* = 0, x_3^* = 1, Z^* = 15$$

Numerical Example -8: Condensed Tableau

$$\min: Z = x_1 + 3x_2 + x_3$$

Subject to

$$x_1 + x_2 + x_3 \ge 10$$

 $x_1 + 4x_2 + x_3 \ge 16$
 $x_1, x_2, x_3 \ge 0$

Numerical Example 8:

$$\max : -Z = -x_1 - 3x_2 - x_3 - Ma_1 - Ma_2$$

Subject to

$$x_1 + x_2 + x_3 - x_4 + a_1 = 10$$

 $x_1 + 4x_2 + x_3 - x_5 + a_2 = 16$
 $x_1, x_2, x_3 \ge 0$

Surplus variables:

$$x_4, x_5 \geq 0$$

Artificial variables:

$$a_1, a_2 \geq 0$$

Table 0:

Table 0.							
SIMP	CN	-1	-3	-1	0	0	b
СВ	BV/NV	<i>x</i> ₁	x ₂	<i>x</i> ₃	<i>X</i> 4	<i>X</i> 5	XB
-M	a 1	1	1	1	-1	0	10
-M	a ₂	1	* 4	1	0	-1	16
*	- Z	-2M+1	- 5M+3	-2M+1	М	М	-26M

$$x_1 = 0, x_2 = 0, x_3 = 0, -Z = -26M$$

Table 1:

i abie	I.						
SIMP	CN	-1	-M	-1	0	0	b
СВ	BV/NV	<i>x</i> ₁	a ₂	<i>x</i> ₃	x ₄	<i>x</i> ₅	XB
-M	a ₁	*3/4	-1/4	- 3/4	-1	1/4	6
-3	<i>x</i> ₂	1/4	1/4	1/4	0	-1/4	4
*	-Z	(1-3M)/4	(5M-3)/4	(1 -3M)/4	М	(3-M)/4	-6M-12

$$x_1 = 0, x_2 = 4, x_3 = 0, Z = 6M + 12$$

Table 2:

Table 2							
SIMP	CN	-M	-M	-1	0	0	b
СВ	BV/NV	a 1	a ₂	<i>x</i> ₃	<i>X</i> ₄	<i>X</i> 5	XB
-1	<i>x</i> ₁	4/3	-1/3	1	-4/3	1/3	8
-3	<i>x</i> ₂	-1/3	1/ 3	0	1/3	-1/3	2
*	- Z	M-1/3	M-2/3	0*	1/3	2/3	-14

Optimal Solution:

$$x_1^* = 8, x_2^* = 2, x_3^* = 0, Z^* = 14,$$

Alternate Optimal Solution:

$$x_1^* = 0, x_2^* = 2, x_3^* = 8, Z^* = 14$$

Big M Method: Condensed and Extended Tableau

Numerical Example -1 : Practice Problem

$$\min: Z = 2x_1 + 3x_2 + x_3$$

Subject to

$$x_1 + x_2 + x_3 \ge 10$$

 $x_1 + 2x_2 + x_3 \ge 12$
 $x_1 + 4x_2 + x_3 \le 16$
 $x_1, x_2, x_3 \ge 0$

$$x_1^* = ***, x_2^* = ***, x_3^* = ***, Z^* = 12$$

Numerical Example -2: Practice Problem

$$\min: Z = x_1 + x_2 + x_3$$

Subject to

$$4x_1 + x_2 + x_3 \ge 20$$

$$x_1 + 3x_2 + x_3 \ge 12$$

$$x_1 + x_2 + 2x_3 \ge 10$$

$$x_1, x_2, x_3 \ge 0$$

$$x_1^* = ***, x_2^* = ***, x_3^* = ***, Z^* = 8$$

Numerical Example -3: Practice Problem

$$\min: Z = x_1 + 4x_2 + 4x_3$$

Subject to

$$x_1 + 2x_2 + x_3 \ge 16$$

 $x_1 + x_2 + 2x_3 \ge 14$
 $4x_1 + x_2 + x_3 \le 12$
 $x_1, x_2, x_3 \ge 0$

$$x_1^* = ***, x_2^* = ***, x_3^* = ***, Z^* = 39$$

Numerical Example -4: Practice Problem

$$\min: Z = x_1 + 6x_2 + 6x_3$$

Subject to

$$x_1 + 3x_2 + x_3 = 90$$

$$x_1 + x_2 + 3x_3 = 54$$

$$5x_1 + x_2 + x_3 \leq 45$$

$$x_1,x_2,x_3\geq 0$$

$$x_1^* = ***, x_2^* = ***, x_3^* = ***, Z^* = 212$$

Numerical Example -5: Practice Problem

$$\min: Z = x_1 + 4x_2 + 4x_3$$

Subject to

$$x_1 + 5x_2 + x_3 \ge 45$$

 $x_1 + x_2 + 5x_3 \ge 35$
 $2x_1 + x_2 + x_3 \le 25$
 $x_1, x_2, x_3 \ge 0$

Find Optimal Solution:

$$x_1^* = ***, x_2^* = ***, x_3^* = ***, Z^* = 51$$

Solve all the Practice Problems Using Two-Phase Simplex Method.