

Усунення шуму на зображеннях

Ольга Павлюк

Проблема шуму в зображеннях

Визначення Характеристики Існуючі алгоритми усунення шуму

Завдання магістерського дослідження

Алгоритм Curvelet Transform

Використан технології

Поточні результати

Висновки

Усунення шуму на зображеннях дослідження, розроблення алгоритмів та програмного забезпечення

Ольга Павлюк

Національний університет "Львівська політехніка", кафедра ПЗ

19 жовтня 2015 р.

Зміст

Усунення шуму на зображеннях

Ольга Павлюк

Проблема шум в зображеннях

Визначення Характеристикі Існуючі алгоритми усунення шуму

Завдання магістерського дослідження

Алгоритм Curvelet Transform

Використан технології

Поточні результат

Висновки

Проблема шуму в зображеннях

■ Визначення

Характеристики

■ Існуючі алгоритми усунення шуму

Завдання магістерського дослідження

Алгоритм Curvelet Transform

Використані технології

Поточні результати

Висновки

Проблема шуму на зображеннях

Усунення шуму на зображеннях

Ольга Павлюк

Проблема шуму в зображеннях

Визначення

Характеристики Існуючі алгоритми усунення шуму

магістерського дослідження

Алгоритм Curvelet Transform

Використані технології

Поточні результат

Висновки

Шум

випадкові, відсутні на реальному зображенні відхилення інтенсивності

Проблема шуму на зображеннях

Усунення шуму на зображеннях

Ольга Павлюк

Проблема шум в зображеннях

Визначення Характеристики

Характеристикі Існуючі алгоритми

Завдання

дослідження Алгоритм

Використан технології

Поточні

Висновки

Шум

випадкові, відсутні на реальному зображенні відхилення інтенсивності

Поширена проблема для цифрових зображень у багатьох галузях.

Виникає при недостатьому освітленні та високій ISO камери.

Проблема шуму на зображеннях

Усунення шуму на зображеннях

Визначення

Шум

випадкові, відсутні на реальному зображенні відхилення інтенсивності

Поширена проблема для цифрових зображень у багатьох галузях.

Виникає при недостатьому освітленні та високій ISO камери.

Формальний опис

v(i) = u(i) + n(i), де i - піксель зображення

v(i) - спостережене значення, u(i) - справжнє значення n(i) - значення шуму

Параметри оцінки алгоритмів

Усунення шуму на зображеннях

Ольга Павлюк

Проблема шуму в зображеннях

Характеристики Існуючі

алгоритми усунення шуму

Завдання магістерського дослідження

Алгоритм Curvelet Transform

Використан технології

Поточні результат

Висновки

1 автоматичні: Peak Signal-to-Noise Ratio

$$MSE = \frac{1}{MN} \sum_{m=1}^{M} \sum_{n=1}^{N} [f(m,n) - f'(m,n)]^{2}$$

$$PSNR = 10\log_{10} \frac{255^2}{MSE}$$

візуальна оцінка: вирішальний критерій вибору алгоритму

Існуючі методи усунення шуму

Усунення шуму на зображеннях

Існуючі алгоритми

усунення шуму

different image domains

алгоритми з патчами $O(n^2)$

алгоритми з вейвлетами O(n*log n)

Існуючі методи усунення шуму

Усунення шуму на зображеннях

Ольга Павлюн

Проблема шуму алгорит

Визначення Характеристики Існуючі алгоритми усунення шуму

Завдання магістерського дослідження

Алгоритм Curvelet Transform

Використан технології

Поточні результати

Зиснов

different image domains

алгоритми з патчами

дерево кластерів: нижча складність, нижча якість

алгоритми з вейвлетами

базові функції вейвлета: різна роздільна здатність

Вейвлет-алгоритми

Усунення шуму на зображеннях

Ольга Павлюк

Проблема шум в зображеннях

Визначення Характеристики Існуючі алгоритми усунення шуму

Завдання магістерського дослідження

Алгоритм Curvelet Transform

Використан технології

Поточні результати

Зисновки

 виконується рекурсивна декомпозиція сигналу до заданого рівня

- коефіцієнти аналізуються "знизу вверх"
- застосовується порогове відсікання (thresholding):

$$w(x) = \begin{cases} w(x), & \text{if } |w(x)| \ge \text{threshold} \\ 0, & \text{otherwise} \end{cases}$$

4 до отриманих коефіцієнтів застосовується зворотнє перетворення

Завдання магістерського дослідження

Усунення шуму на зображеннях

Ольга Павлюк

Проблема шум в зображеннях

Характеристин Існуючі алгоритми усунення шуму

Завдання магістерського дослідження

Алгоритм Curvelet Transform

Використантехнології

Поточні результати

Зиснови

Об'єкт

шум на зображеннях

Предмет

розробка алгоритму для усунення шуму, що працює в частотній області

Мета

розробити алгоритм з лінійно-логарифмічною складністю, який покращує існуючі методи усунення шуму (час роботи + візуальна оцінка)

Алгоритм Curvelet Transform

Усунення шуму на зображеннях

Ольга Павлюн

Проблема шум; в зображеннях

Визначення Характеристикі Існуючі алгоритми усунення шуму

магістерського дослідження

Алгоритм Curvelet Transform

Використані технології

Поточні результаті

Висновки

- 1 один з видів вейвлет-перетворення
- усуває шум вздовж кривих
- працює у частотній області
- 4 складається з кількох незалежних перетворень

Перетворення Фур'є (Fourier Transform)

Усунення шуму на зображеннях

Ольга Павлюн

Проблема шуму в зображеннях

Характеристик Існуючі алгоритми усунення шуму

Завдання магістерськог дослідження

Алгоритм Curvelet Transform

Використан технології

Поточні результат

Висновки

базовии метод для всіх алгоритмів, що працюють з частотами

сигнал можна представити у вигляді суми синусоід з різними амплітудами та зсувом

$$X_k = \sum_{n=0}^{N-1} x_n \cdot (\cos(-2\pi k \frac{n}{N}) + j\sin(-2\pi k \frac{n}{N})), \quad n \in \mathbb{Z}$$

Перетворення Фур'є (Fourier Transform)

Усунення шуму на зображеннях

Ольга Павлюі

Проблема шум в зображеннях

Характеристикі Існуючі алгоритми

Існуючі алгоритми усунення шум

магістерськог дослідження

Алгоритм Curvelet Transform

Використан технології

Поточні результат

Висновки

операція згортки (convolution) сигналу з фільтром довільноі довжини виконується за лініинии час

веивлет- фільтри теж можуть бути представлені у частотніи області за допомогою комплексних веивлетів

Перетворення Радона (Radon Transform)

Усунення шуму на зображеннях

Ольга Павлюк

Проблема шум в зображеннях

Характеристики Існуючі алгоритми

Завдання магістерського дослідження

Алгоритм Curvelet Transform

Використан технології

Поточні

Висновки

це інтегральне перетворення, яке для кожної прямої на зображенні ставить їй у відповідність суму пікселів зображення на цій прямій

Projection-Slice Theorem

 $f(\mathbf{r})$

Усунення шуму на зображеннях

Ольга Павлюк

Проблема шум в зображеннях

Визначення Характеристики Існуючі алгоритми усунення шуму

магістерського дослідження

Алгоритм Curvelet Transform

Використан технології

Поточні результат

Висновки

3в'язок між перетворенням Фур'є та перетворенням Радона projection p(x) $\frac{y}{\text{Fourier}}$ $\frac{k_y}{\text{Fourier}}$

F(k)

Ridglet Transform

Усунення шуму на зображеннях

Ольга Павлюк

Проблема шум в зображеннях

Характеристик Існуючі алгоритми усунення шуму

магістерськог дослідження

Алгоритм Curvelet Transform

Використан технології

Поточні результаті

Зисновки

Це вейвлет-перетворення, застосоване до ліній у

просторі Радона

Ridglet Transform

Усунення шуму на зображеннях

Алгоритм Curvelet Transform

Застосовано вейвлет Добеші D4 = [0.482962,0.836516, 0.224143, -0.129409], висока та низька частота обчислюються за формулами: high[v] = y[2*v]*D4[0] + y[2*v+1]*D4[1] +v[2*v+2]*D4[2] + v[2*v+3]*D4[3]low[v] = y[2*v]*D4[3] - y[2*v+1]*D4[2] +v[2*v+2]*D4[1] - v[2*v+3]*D4[0].Вейвлет-коефіцієнти з абсолютним значенням меншим за заданий поріг встановлюються в 0, потім застосовується обернене перетворення.

Frequency Grid Tiling

Усунення шуму на зображеннях

Ольга Павлюк

Проблема шум в зображеннях

Визначення

Характеристики Існуючі алгоритми усунення шуму

Завдання магістерськог дослідження

Алгоритм Curvelet Transform

Використантехнології

Поточні результат

Висновки

Ridgelet-перетворення до областей у полярній системі координат

Використані технологіі: C++ та OpenGL

Усунення шуму на зображеннях

Ольга Павлюн

Проблема шум в зображеннях

Характеристик Існуючі алгоритми усунення шуму

магістерського дослідження

Алгоритм Curvelet Transform

Використані технології

Поточні результаті

Виснов

Тереваги:

С++: швидкість обчислень + гнучка архітектура

GLSL: обчислення на GPU в десятки разів швидше

Недоліки:

GLSL: труднощі у відлагодженні програм

Приклад коду шейдера:

```
float see = c,xx = sign_sem, dif = cpx.y * sign_dif;
float re = (sum * dif)/2.0;
float re = sum + dif)/2.0;
float re = sum + dif)/2.0;
float re = sum - re;
return vec2(re, im);
}

you'd main()

float x = v_tex_coord.x, y = v_tex_coord.y;
vec2 dis_mod_256 = floor(texture20(s_texture2, vec2(x, 0)).xy * 255.5);
x = (dis_mod_256, v=25.0, + dis_mod_256.y + 0.5)/tex_width;
vec4 color = texture20(s_texture, decode(encode(vec2(x, y))));
gl_FragColor = color;
}
```


Діаграма класів Curvelet Transform

Усунення шуму на зображеннях

Ольга Павлюк

Проблема шуму в зображеннях

Визначення Характеристик Існуючі алгоритми усунення шуму

Завдання магістерськог дослідження

Алгоритм Curvelet

Використані технології

Поточні результать

Висновки

Поточні результати

Усунення шуму на зображеннях

Ольга Павлюк

Проблема шум в зображеннях

Характеристин Існуючі алгоритми

Завдання магістерського

Алгоритм Curvelet

Використан технології

Поточні результати

Висновки

Зашумлене зображення (зліва) та результат роботи алгоритму (справа)

Поточні результати

Усунення шуму на зображеннях

Поточні результати

Зашумлене зображення (зліва) та результат роботи алгоритму(справа)

Висновки

Усунення шуму на зображеннях

Ольга Павлю

Проблема шум в зображеннях

Характеристики Існуючі алгоритми усунення шуму

Завдання магістерськог дослідження

Алгоритм Curvelet Transform

Використан технології

Поточні результа

Висновки

- розроблено базову версію алгоритму Curvelet Transform
- буде покращено схему інтерполяції та обрано інший тип вейвлета
- 3 це допоможе досягнути вищої візуальної якості

Усунення шуму на зображеннях

Висновки

Дякую за увагу!