Introduction to Exploratory Spatial Data Analysis

Local Spatial Autocorrelation

Sergio Rey

School of Geographical Sciences and Urban Planning
Arizona State University

http://geodacenter.asu.edu/

Outline

- Principles
- Local Moran
- Gi Statistic

Global vs. Local Analysis

- Global Analysis
 - one statistic to summarize pattern
 - clustering
 - homogeneity
- Local Analysis
 - location-specific statistics
 - clusters
 - heterogeneity

LISA Definition

- Anselin (1995)
 - Local Spatial Statistic
 - indicate significant spatial autocorrelation for each location
- Local-Global Relation
 - sum of LISA proportional to a corresponding global indicator of spatial autocorrelation

LISA Forms of Global Statistics

- Every Decomposable Statistic
 - if global = a. [\sum_i component(i)]
 - then local = component(i)
- General Case: Local Gamma
 - $\Gamma = \sum_{i} (\sum_{j} w_{ij} a_{ij})$
 - local $\Gamma_i = \sum_j w_{ij} a_{ij}$
 - $\Gamma = \sum_i \Gamma_i$

Examples

- Local Moran
 - $\bullet I_i = m \sum_j w_{ij} y_j$
- Local Geary
 - $c_i = m \sum_j w_{ij} (y_i y_j)^2$
- Local Sokal
 - $s_i = m \sum_j w_{ij} |y_i y_j|$

Local Moran

Local Moran

- Local Moran Statistic
 - $I_i = (z_i / m_2) \sum_j w_{ij} z_j$
 - $m_2 = \sum_i z_i^2$ does not vary with i
 - $\sum_{i} I_{i} = \text{n.l link local-global}$
 - $I = \sum_{i} I_{i} / n$ global is mean of locals

Inference

- Analytical
 - equal probability assumption
 - normal approximation to statistic
 - poor in small samples: do not use
- Computational
 - conditional permutation
 - hold value at i fixed, permute others

LISA Significance MAP

- Locations with Significant Local Statistics
 - multiple comparison problem
 - sensitivity analysis to p-value
- Choropleth Map
 - shading by significance
 - non-significant locations not highlighted

Multiple Comparisons

- $\bullet \quad \alpha = 1 (1 \alpha_0)^{1/k}$
- α_o = overall (joint) significance level (e.g. 0.05)
- k = number of comparisons
- α = marginal significance level
- If k=48 and $\alpha_o = 0.05$

$$\alpha = 1 - (1 - 0.05)^{1/48} = 0.00107$$

LISA Significance Map for NC SIDS Rate

LISA Cluster Map

- Only the Significant Locations
 - matches significance map
- Types of Spatial Autocorrelation
 - spatial clusters
 - high-high (red), low-low (blue)
 - spatial outliers
 - high-low (light red), low-high (light blue)

LISA Cluster Map for NC SIDS Rate

LISA Box Plot

- Distribution of Local Statistics
 - global is related to average of locals
 - check for asymmetry
- Outliers
 - individual locations that may unduly influence the global statistic

LISA Box Plot with Outliers

Spatial Clusters and Spatial Outliers

- Spatial Outliers
 - individual locations
- Spatial Clusters
 - core of the cluster in LISA map
 - cluster itself also includes neighbors
 - use p < 0.001 to identify meaningful cluster cores and their neighbors

Spatial Cluster Cores and Neighbors

Caveats

- LISA Clusters and Hot Spots
 - suggest interesting locations
 - suggest significant spatial structure
 - do not explain
- Need to Account for Multivariate Relations
 - univariate spatial autocorrelation due to other covariates
 - scale mismatch

Gi Statistics

Distance Statistics

- Getis-Ord G_i and G_i*
 - contiguity as distance bands
 - focused: on a given location
 - one statistic for each location
- Not LISA in strict sense
 - does not add up to global

G Statistics

- G_i Statistic
 - $G_i = \sum_j w_{ij}(d)y_j / \sum_j y_j$
 - Note: denominator is constant over i
 - \bullet $w_{ii} = 0$
- G_i* Statistic
 - $G_i^* = \sum_j w_{ij}(d)y_j / \sum_j y_j$
 - same as G_i but $w_{ii} \neq 0$, i is included in the numerator

Interpretation

- Local Spatial Autocorrelation
- Positive
 - significant: clustering of high values
- Negative
 - significant: clustering of low values
- Inference
 - analytical: randomization assumption
 - computational: permutation

Visualization

Map of Significant Locations

