IN 102 4 mars 2008

NOM:

n éléments?

 $\square \Theta(\log n)$,

□ diviser le problème,

Rattrapage

Prénom:

	 aucun document n'est autorisé. ce QCM aboutit à une note sur 50 points. La note finale sur 20 sera obtenue simplement en divisant la note sur 50 par 2,5. n'oubliez pas de remplir votre nom et votre prénom juste au dessus de ce cadre. 				
Chaque bonne réponse rapporte 1 point. Chaque mauvaise réponse enlève 1 point. Il n'y a qu'une seule bonne réponse par question. Ne répondez pas au hasard, la note totale peut être négative!					
1] I	aquelle de ces comp	olexités est la plus peti	te?		
	$\square \ \Theta(n^n)$	$\Box \ \Theta(n!)$	$\Box \ \Theta(2^{2^n})$	$\blacksquare \ \Theta(2^n)$	
2] Lequel de ces algorithmes de tri a la moins bonne complexité en moyenne?					
	☐ tri fusion,	\Box tri rapide,	■ tri par insertion,	\Box tri par tas.	
3] Lequel de ces algorithmes de tri a la meilleure complexité dans le pire cas?					
ı	tri fusion,	\Box tri rapide,	\Box tri par insertion,	□ tri à bulles.	
-	Lequel de ces algorit némoire)?	hmes de tri ne permet	pas de trier un tablea	au en place (sans réallouer	
ı	tri fusion,	□ tri rapide,	☐ tri par insertion,	□ tri à bulles.	

□ résoudre l	es sous-problèmes,	\square recombine	er les résultats.	
	faut déplacer 7 disque n faut-il en déplacer (au	•	•	
disques?	- \	, -	_	_
□ 8,	\Box 14,	■ 15,	\square 49.	

5] Quelle est la complexité (en moyenne) minimale d'un algorithme de tri par comparaisons de

6] Laquelle de ces étapes ne fait pas partie de la stratégie « diviser pour régner »?

 \blacksquare $\Theta(n \log n)$,

■ trier les sous-problèmes,

 $\square \Theta(n^2)$.

8] On veut appliquer	un algorithme de	tri rapides aux	ϵ entiers : $\{$	[1, 4, 8, 2, 9, 7, 3, 6]	$\{5,5\}$. Pour la
première étape du tri	, quel serait le mei	illeur choix de p	ivot?		

$\sqcup 1$,	l	Ш	9,
5 ,]		cela n'a pas d'importance.

 $\square \Theta(n)$,

	In calculant la complexité d'un algorithme récursif, on aboutit à la formule $T(n) = T(\frac{n}{2}) + 2$ et $T(0) = 1$. Quelle est la complexité $T(n)$ de cet algorithme?			
$\blacksquare \Theta(\log n),$	$\square \ \Theta(n),$	$\square \ \Theta(n^2),$		
10] Les lignes suivante	s affichent les élémen	ts de quelle ty	ype de structure?	
<pre>while (a != NULL cout << a->val a a = a->next; }</pre>				
$\hfill\Box$ un tableau,	■ une liste,	\Box un tas,	, \Box un arbres bina	ire.
11] Laquelle de ces str	uctures ne peut pas $\hat{\epsilon}$	etre programn	mée efficacement avec un table	au?
\Box une pile,	\Box un tas,	\square une file	e, une liste.	
12] Quelle est la compéléments?	plexité de la désalloc	ation (libérat	tion de la mémoire) d'une list	te de n
$\square \ \Theta(1),$	$\Box \ \Theta(\log n),$	$\blacksquare \ \Theta(n),$	$\square \ \Theta(n^2).$	
13] Laquelle de ces op éléments?	érations ne s'effectue	pas en temps	os constant sur une liste chaîne	ée de n
□ suppression de l' ■ accès à l'élément	ément en première po élément en première ; à la position $\frac{n}{2}$, ément à la position co	position,		
14] Quel devrait être e mots de 9 lettres?	environ la taille d'une	table à adres	ssage direct des définitions de t	tous les
$ \Box 26 \times 9, \Box 9^{26}, $		□ le nom ■ 26 ⁹ .	abre de mots français de 9 lettr	es,
15] Laquelle de ces im	plémentations d'un d	ictionnaire pr	ropose la recherche la plus lent	e?
□ table à adressag ■ table pour reche	,	_	pour recherche dichotomique, de hachage.	
16] Laquelle de ces opé	erations s'effectue touj	ours en temps	s constant dans une table de ha	chage?
\blacksquare insertion,	\square suppression,	\Box recherc	che, \Box aucune des tro	ois.
•	onction insert(v,L)		table de hachage tab dont la fe nent v dans la liste L. Laquelle	
☐ insert(clef,ta ☐ insert(h(x),ta			t(tab[clef],h(info)), t(x,tab[h(clef)]).	
18] On insère n éléme plissage ρ ?	nts dans une table de	e hachage de t	taille k . Quel est son facteur of	de rem-
	$\square \ \rho = n - k,$	$\square \ \rho = k -$	$-n, \qquad \Box \ \rho = n \times k.$	
19] Laquelle de ces aff	irmations concernant	des arbres es	st fausse?	
	e possède toujours au le toujours au moins u		;,	

Fig. 1 – Un arbre binaire.

20] Dans l'arbre de la	Fig. 1, le nœud 5	est:	
■ une feuille,	\Box un nœud int	erne, \square une racine,	\square aucun des trois.
21] Un parcours de l' puis 10 est un parcour		qui traite les nœuds da	ans l'ordre 1, 2, 3, 4, 5, 6, 7, 8, 9
\square préfixe,	\Box infixe,	\square postfixe,	■ en largeur.
22] Un parcours de l'apuis 7 est un parcours		qui traite les nœuds dar	ns l'ordre 8, 4, 9, 2, 5, 1, 10, 6, 3
\square préfixe,	\blacksquare infixe,	\square postfixe,	\Box en largeur.
23] Un parcours de l'apuis 1 est un parcours		qui traite les nœuds dar	ns l'ordre 8, 9, 4, 5, 2, 10, 6, 7, 3
\square préfixe,	\Box infixe,	postfixe,	\Box en largeur.
24] Dans un arbre bir	aire de recherche,	le nœud contenant la plu	us grande clef :
\square est la racine, \square est une feuille,		□ est un nœud ir ■ peut être les tr	
25] Laquelle de ces tr	ois affirmations est	fausse?	
□ un tas est un ar □ un tas est un ar ■ un tas est un ar □ les trois sont jus	bre équilibré, bre binaire de rech	erche,	
26] Dans un tas, la cl	ef du fils droit d'un	n nœud X est toujours	
□ plus petite que□ plus grande que■ plus petite que□ aucun de trois.	la clef du fils gauc		
27] Pour insérer un él	ément dans un tas	:	
■ on l'insère à la f □ on cherche sa pl	fin du tas et on le f lace et on l'y insère	descendre à sa place, l'ait remonter à sa place, e en déplaçant le nœud p que lui, et on l'insère con	
28] Pour une impléme représente pas un tas l		le tas avec un tableau, le	equel des tableaux suivants ne
$ \Box \ \ $	0 15		

29] Quelle propriété d'un arbre <i>n'est pas t</i>	toujours conservée par une rotation?
■ son nombre de feuilles,□ son nombre de nœuds,	\square son nombre de racines, \square son nombre d'arêtes.
<u>-</u>	quilibrage d'un arbre AVL, deux nœuds sont utilisés sens puis dans l'autre. Ces deux nœuds sont :
□ un nœud puis son fils,□ un nœud puis son frère,	■ un nœud puis son père,□ deux nœuds quelconques.
31] Parmi les arbres binaires de recherche	suivants, lequel n'est pas un arbre AVL?
9	5) 7
32] Parmi ces quatre types d'arbres, leque	el ne désigne pas un arbre binaire équilibré?
□ le tas,□ l'arbre rouge/noir,	■ l'arbre 2-3, □ l'arbre AVL.
33] On considère un graphe orienté posséde se représentation par liste de successeurs?	ant a arcs et s sommets. Quel espace mémoire occupe
$\Box \ \Theta(a) \qquad \qquad \Box \ \Theta(s^2)$	$\blacksquare \ \Theta(a+s) \qquad \qquad \Box \ \Theta(a\times s)$
Fig. 2 –	2 Un graphe orienté.
34] Quelle est la matrice d'adjacence du g	graphe de la Fig. 2?
$\square \begin{pmatrix} 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$ $\blacksquare \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{pmatrix}$	$ \Box \begin{pmatrix} 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{pmatrix} $ $ \Box \begin{pmatrix} 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} $
35] Quelle est la longueur du plus court c	ycle du graphe de la Fig. 2?
$\blacksquare 2, \qquad \Box 4,$	\square 5, \square il est sans cycle.
36] Parmi les quatre tableaux de pères suiv de la Fig. 2 par un arbre?	zants, lequel correspond à un recouvrement du graphe
	■ [4 5 2 3 - □ [2 - 2 3 2]

pour les sommets non v	risités, gris pour c	eux en cours de visite et	nets en trois couleurs : blanc noir pour ceux déjà visités. our le parcours en largeur?
\Box blancs,	gris,	\Box noirs,	\square gris ou noirs.
38] Qu'est-ce que <i>ne pe</i>	ermet pas de faire	un parcours en profonde	eur d'un graphe?
 □ détecter des cycle □ construire un rece ■ trouver un plus c □ faire du tri topole 	ouvrement du gra ourt chemin entre	= :	
39] Le tri topologique d	d'un graphe perme	et:	
\Box de passer d'une r	ches interdépenda eprésentation de g	ntes dans le bon ordre,	nets.
40] Quel est le nombre	maximum d'arcs	que peut posséder un gra	aphe orienté à 8 sommets?
\Box 16,	\Box 56,	■ 64,	\square 256.
	ansitive, l'ensemble	-	beaucoup de choses dans un ins Quelle est sa complexité
$\Box \ \Theta(n\log n),$	$\square \ \Theta(n^2),$	$\blacksquare \Theta(n^3),$	$\square \ \Theta(n^4).$
•	(dans le pire cas)	de la recherche d'un mo	à chaque position du texte, tif de taille m dans un texte
$\square \ \Theta(m),$	$\square \ \Theta(n),$	$\blacksquare \ \Theta(n\times m),$	$\square \ \Theta(n^m),$
•	· -	= ``	pire cas) de la recherche d'un construction de l'automate)?
$\square \ \Theta(m),$	$\blacksquare \ \Theta(n),$	$\square \ \Theta(n \times m),$	$\square \ \Theta(n^m),$
44] Combien d'états co dans un texte de taille <i>n</i>	=	nate fini utilisé pour reco	nnaître un motif de taille m
$\square \ m,$	$\blacksquare m+1,$	$\square \ n,$	$\square m+n.$
	FIG. 3 -	- Un automate fini.	
45] Quel est le langage $\Box ab(bb)^*a^*,$	reconnu par l'aut $\Box \ a(bab)^*b,$	omate de la Fig. 3? $ \blacksquare ab(a bb)^*, $	$\Box \ a(bab bb)^*ba^*.$

46] Laquelle de ces structures de dor file de priorité?	nnées utiliseriez-vous pour implémenter efficacement une
□ une liste, ■ un tas,	\Box une table de hachage, \Box un graphe.
nouveaux entiers et en supprimer en	une structure de donnée de façon à pouvoir ajouter de temps $\Theta(\log n)$. On veut aussi pouvoir chercher le plus pané en temps $\Theta(\log n)$ dans le pire cas. Quelle structure
\square une liste, \square un tas,	□ une table de hachage,■ un arbre AVL.
48] On suppose que l'on a accès en te alors la structure la plus efficace pour	emps constant à une mémoire de taille infinie. Quelle est l'implémentation d'un dictionnaire?
■ une table à adressage direct,□ une table de hachage,	\Box un arbre binaire de recherche équilibré, \Box une liste de mots.
49] L'algorithme de Rabin-Karp est u	ıtilisé pour :
□ l'équilibrage d'arbres,■ la recherche de motif,	□ le parcours de graphe,□ l'allocation dynamique de mémoire.
50] Laquelle de ces opérations a la c meilleur algorithme possible)?	omplexité dans le pire cas la plus petite (en utilisant le
□ trier un tableau de n entiers, □ rechercher un élément et le sup □ trouver tous les successeurs d'u ■ calculer la puissance n -ième d'u	n sommet d'un graphe à n sommets,