

(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

(43) Date de la publication internationale 17 octobre 2002 (17.10.2002)

PCT

(10) Numéro de publication internationale WO 02/081741 A2

- (51) Classification internationale des brevets⁷: C12Q 1/68, 1/02, C12N 9/10, 15/12, A61K 38/45, 48/00, A01K 67/027, A61P 31/14
- (21) Numéro de la demande internationale :

PCT/FR02/01169

- (22) Date de dépôt international: 4 avril 2002 (04.04.2002)
- (25) Langue de dépôt :

français

(26) Langue de publication :

français

(30) Données relatives à la priorité : 01/04598 4 avril 2001 (04.04.2001)

(71) Déposants (pour tous les États désignés sauf US): IN-STITUT PASTEUR [FR/FR]; 28 rue du Docteur Roux, F-75724 Cedex 15 (FR). CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE - CNRS [FR/FR]; 3 rue

Michel-Ange, F-75794 PARIS Cedex 16 (FR).

- (72) Inventeurs; et
- (75) Inventeurs/Déposants (pour US seulement): GUENET, Jean-Louis [FR/FR]; 4 rue de l'Ecuyer, F-91160 LONGJUMEAU (FR). MASHIMO, Tomoji [JP/FR]; Maison du Japon, Cité Internationale de Paris, F-75690 PARIS Cedex 14 (FR). SIMON-CHAZOTTES, Dominique [FR/FR]; 51 rue du Général Leclerc, F-92130 ISSY-LES-MOULINEAUX (FR). MONTAGUTELLI, Xavier [FR/FR]; 14 rue de Chaumont, Le Bois Dieu, F-78125 HERMERAY (FR). FRENKIEL, Marie-Pascale [FR/FR]; 15 rue Chaptal, F-92300 LEVALLOIS (FR). DESPRES, Philippe [FR/FR]; 18 place de la Liberté, F-92250 LA GARENNE-COLOMBES (FR). DEUBEL,

Vincent [FR/FR]; 29 boulevard du Lycée, F-92170 VANVES (FR). BONHOMME, François [FR/FR]; Universite ded Sciences et Techniques du Languedoc, (Montpellier II)-UMR 5000, Bâtiment 13, Place Eugène Bataillon, F-34095 MONTPELLIER Cedex 5 (FR). LUCAS, Marianne [FR/FR]; La Mare au Curé, INA P-G, F-78850 THIERVAL-GRIGNON (FR).

- (74) Mandataires: CABINET ORES etc.; 6 avenue de Messine, F-75008 Paris (FR).
- (81) États désignés (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) États désignés (régional): brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet curopéen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Publiée:

 sans rapport de recherche internationale, sera republiée dès réception de ce rapport

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

7

(54) Title: USE OF PRODUCTS OF GENES OF THE 2'-5' OLIGOADENYLATE SYNTHETASE FAMILY (OAS) FOR SCREENING ANTIVIRAL AGENTS AND FOR DETECTING RESPONSIVENESS TO FLAVIVIRIDAE INFECTION

(54) Titre: UTILISATION DES PRODUITS DES GENES DE LA FAMILLE 2'-5' OLIGOADENYLATE SYNTHETASE (OAS) POUR LE CRIBLAGE D'ANTIVIRAUX ET LA DETECTION DE LA SENSIBILITE A L'INFECTION PAR LES FLAVIVIRIDAE

- (57) Abstract: The invention concerns the use of products of genes of the 2'-5' oligoadenylate synthetase family (OAS) for screening antiviral agents and for detecting responsiveness to infection by *Flavivirida*.
- (57) Abrégé: Utilisation des produits des gènes de la famille 2'-5' oligoadénylate synthétase (OAS) pour le criblage d'antiviraux et la détection de la sensibilité à l'infection par les Flaviviridae.

UTILISATION DES PRODUITS DES GENES DE LA FAMILLE 2'-5' OLIGOADENYLATE SYNTHETASE (OAS) POUR LE CRIBLAGE D'ANTIVIRAUX ET LA DETECTION DE LA SENSIBILITE A L'INFECTION PAR LES FLAVIVIRIDAE.

La présente invention est relative à l'utilisation des produits des gènes de la famille 2'-5' oligoadénylate synthétase (OAS) pour le criblage d'antiviraux et la détection de la sensibilité à l'infection par les *Flaviviridae*.

La famille des *Flaviviridae* regroupe les virus du genre flavivirus responsables de pathologies humaines graves telles que la dengue, la fièvre jaune, les encéphalites transmises par les tiques. l'encéphalite japonaise, l'encéphalite à West-Nile et les virus des hépatites C et G. Si les flavivirus sont susceptibles de provoquer une morbidité et une mortalité importantes chez l'homme, l'infection est généralement asymptomatique et seule une fraction des individus infectés développent une maladie grave.

Les flavivirus sont des petits virus enveloppés. Leur génome est une molécule d'ARN monocaténaire de polarité positive d'environ 11 000 bases. L'ARN génomique est associé à plusieurs copies de la protéine de capside C pour former la nucléocapside; elle est entourée d'une enveloppe virale constituée d'une double couche lipidique issue des membranes du réticulum endoplasmique (RE) dans lesquelles sont ancrées la protéine d'enveloppe E et la protéine de membrane M. L'ARN génomique des flavivirus contient un unique cadre de lecture ouvert d'environ 10500 nucléotides flanqué de deux courtes régions non codantes à ses extrémités 5' et 3'. Le génome est traduit en une polyprotéine d'environ 3400 acides aminés qui est le précurseur des protéines structurales C. prM (le précurseur intracellulaire de M) et E dans sa partie N-terminale et d'au moins sept protéines non structurales (NS) de NS1 à NS5 dans sa partie C-terminale.

De nombreux facteurs semblent intervenir dans la réaction d'un sujet à une infection virale : des facteurs viraux pourraient être responsables de la sévérité de la maladie, alors que la constitution génétique de l'hôte (humain ou mammifère non-humain) contribuerait à la sensibilité ou à la résistance à l'infection.

Des modèles murins ont permis d'établir l'existence d'une résistance

génétique à l'infection par les flavivirus. Il a été montré que certaines lignées de souris récemment dérivées de l'état sauvage et appartenant aux espèces *Mus musculus musculus* ou *Mus spretus* (Det. BSVR, BRVR, PRI, CASA/Rk et CAST/Ei) sont résistantes à l'infection par les flavivirus, alors que les lignées consanguines de laboratoire les plus courantes qui dérivent majoritairement de l'espèce *Mus musculus domesticus*. n'y résistent pas (Sangster et al., J.Virol., 1993, 67: 340-347).

La résistance est contrôlée par au moins un locus autosomal dénommé Flv, localisé sur le chromosome 5, chez la souris et trois allèles Flv^s , Flv^r et Flv^{mr} confèrent respectivement la sensibilité, la résistance et la résistance intermédiaire à l'infection par les flavivirus. En utilisant une souche du flavivirus de l'encéphalite de la Vallée de Murray et des souris issues du croisement retour de la lignée de souris résistante C3H/RV avec les lignées de souris sensibles C3/He ou BALB/c, le locus Flv a été localisé dans une région de 0,9 cM du chromosome 5, chez la souris, entre les marqueurs D5Mit68 et D5Mit242 (G.R. Shellam et al., Rev. Sci. Tech. Off. Epiz. 1998.17:231-248.).

En dépit de l'existence de ces modèles murins de résistance génétique à l'infection par les flavivirus, aucun gène cellulaire de mammifère impliqué dans la résistance à l'infection par les *Flaviviridae* n'a encore été identifié, de manière certaine au niveau moléculaire. C'est pourquoi les Inventeurs se sont donnés pour but de pourvoir à des outils, aptes à permettre d'évaluer la sensibilité de l'hôte (humain ou mammifère non-humain) dans certaines infections virales particulièrement graves pour l'homme comme celles provoquées par les *Flaviviridae*.

En utilisant un modèle expérimental mettant en œuvre une nouvelle souche neurovirulente et neuroinvasive du virus West-Nile particulièrement virulente, dont le génome présente la séquence SEQ ID NO: 1, et dénommée ci-après souche IS-98-ST1, et des lignées de souris résistantes dérivant de géniteurs sauvages appartenant à l'espèce *Mus musculus musculus* ou *Mus spretus*, croisées en retour avec les lignées sensibles de laboratoire BALB/c ou C57BL/6, les Inventeurs ont précisé la localisation du locus *Flv* dans un intervalle de 0,2 à 0,4 cM du chromosome 5 de souris, comprenant la famille des gènes 2'-5' oligoadénylate synthétase (OAS) et ils ont montré que c'est le gène OAS qui confère la résistance à l'infection par les *Flaviviridae*. Trois

isoformes de l'OAS -L1. L2 et L3- ont été décrites chez la souris (Genbank Data Library n° X55982 [L1]. X58077 [2] et M33863 [L3]). Leurs gènes présentent une forte homologie de séquence (plus de 80 %) (figure 1) avec celui de l'OAS p40/p46 humain (Genbank Data Library n° XM-007004 et XM-007005) (figure 2). On ne dispose que de peu d'informations sur les formes L1, L2 et L3 de l'OAS murin.

Le système 2-5A qui implique la famille des gènes OAS et la RNase L participe à la défense de l'hôte contre une infection virale (Castelli et al., Biomed. And Pharmacother., 1998, 52, 386-390). Le système 2-5A est une voie de dégradation des ARNs intracellulaire (pour revue, Rutherford et al., N.A.R., 1991, 9, 1917-1924). L'expression des gènes OAS est induite par les interférons (IFN). Les IFNs appartiennent à un groupe de cytokines qui induisent un état anti-viral dans beaucoup de lignées cellulaires (Goodbourn et al., J. Gene Virol., 2000, 81, 2341-2364). Les deux isoformes a/B composent les IFNs de type I: ils se fixent sur le même récepteur et provoquent des réponses similaires chez l'hôte. Les phagocytes mononucléés et les fibroblastes sont respectivement les principaux producteurs d'IFN-α et d'IFN-β mais certains types cellulaires peuvent produire les deux isoformes. L'infection virale d'une cellule hôte induit la production de l'IFN α/β qui par fixation sur les récepteurs kinases à tyrosine, présents à la surface cellulaire des cellules avoisinantes non infectées, va induire l'expression de plusieurs espèces protéiques qui seront déterminants dans les défenses anti-virales. Une perte de l'homéostasie calcique des cellules neuronales, notamment chez le rat. est aussi capable d'induire l'expression des gènes de la famille OAS (Paschen et al., Neuroscience Letters, 1999, 263, 109-112). Il a aussi été montré que la protéine C du virus de l'hépatite C active le promoteur de l'OAS p40/p46 chez l'homme (Naganuma et al., J. Virol., 2000, 74, 8744-8750).

La molécule OAS produite sous une forme latente devient active en interagissant avec une molécule d'ARN bicaténaire. L'OAS active va alors polymériser l'ATP en oligomères ppp[A2'p]nA[2-5A] qui vont interagir de façon allostérique avec la forme normalement latente de la RNase L (84 kda) pour l'activer. Le site catalytique de la RNase L est localisé dans sa région carboxy-terminale et des séquence répétées de type ankyrine, une région d'homologie aux protéines kinases et un domaine qui est

prédit former un doigt de zinc sont aussi retrouvés. La ribonucléase active dégrade les ARN monocaténaires en les clivant au niveau des motifs riches en UA et UU.

Au cours d'une infection virale, la RNase L clive les ARN cellulaires de types messagers et ribosomaux comme les ARN viraux monocaténaires, bloquant ainsi la progression du cycle réplicatif du virus. La RNase L joue aussi un rôle dans la régulation de l'expression des gènes des facteurs pro-apoptotiques tels que *Bax* et les caspases (Castelli *et al.*, Cell Death and Differentiation, 1998, 5, 313-320; Rush *et al.*, J. Interferon Cytokine Res.,2000, 20. 1091-1100).

Des facteurs capables de réguler la voie OAS ont été mis en évidence. Un inhibiteur de la RNase L murine a été identifié, RNase I. Cet inhibiteur a été montré moduler la répression du gène MyoD, un facteur de transcription spécifique aux cellules musculaires (Bisbal *et al.*, Mol. Cell Biol., 2000, 20, 4959-4969). La RNase I est aussi induite par le HIV de type 1 et participe ainsi à la diminution de la réponse antivirale de la cellule (Martinand *et al.*, J. Virol., 1999, 73, 290-296).

Trois domaines conservés ont été identifiés dans la 2'-5'- oligoadénylate synthétase : une boucle P suivie d'une séquence riche en asparagine dénommée boîte D et une région riche en lysine et en arginine dénommée région KR. Des mutants ponctuels de l'un de ces trois domaines de l'isoforme L1 murine (boucle P : : K67R, K67M, G62A et G63A; boîte D : D76N et D78N; domaine KR : K200R et K200M) ont une activité enzymatique très réduite ou complètement abolie (Yamamoto et al., J. Interferon Cytokine Res., 2000, 20 : 337-344).

Les Inventeurs ont mis en évidence des mutations dans la séquence nucléotidique des gènes OAS chez les souris sensibles à l'infection par les *Flaviviridae*; ces mutations inactivent le gène OAS.

Ces éléments ont conduit les Inventeurs à mettre au point un modèle adapté au criblage de molécules aptes à stimuler spécifiquement l'activité des gènes OAS et/ou à la détection des sujets sensibles à une infection par les virus de la famille des *Flaviviridue* et de ce fait mauvais répondeurs à un traitement à l'interféron; la mesure de l'activité 2'-5' OAS chez un individu ou un groupe d'individus représentatifs d'une population humaine permet d'évaluer le risque pour cet individu ou cette population à développer une forme grave de la maladie (forme aiguë mortelle pour les

arboviroses ou forme chronique pour l'hépatite C).

En conséquence, la présente invention a pour objet un procédé de criblage de molécules aptes à stimuler un gène de la famille OAS, caractérisé en ce qu'il comprend :

- la mise en culture de cellules, issues d'un mammifère non-humain Flv'/Flv' ou Flv'/Flv'.
- l'induction de l'expression des gènes OAS, par addition d'interféron α ou β ou par un stress calcique, notamment par addition d'EGTA,
 - la mise en contact desdites cellules avec la molécule à cribler, et
- la mesure de l'activité d'un gène OAS, par comparaison avec un échantillon témoin.

Ledit échantillon témoin est notamment constitué par des cellules de mammifères non-humain Flv^s/Flv^s.

Selon un mode de mise en œuvre avantageux dudit procédé, ledit mammifère non humain Flv'/Flv' est de préférence une lignée de souris résistantes dérivant de géniteurs sauvages appartenant à l'espèce Mus musculus musculus, ou Mus spretus; elles peuvent de manière encore plus préférée être croisées en retour avec des lignées murines sensibles de laboratoire telles que BALB/c ou C57BL/6, de façon à obtenir des lignées dites congéniques.

Ces lignées pourront être utilisées dans de multiples expériences destinées à analyser les mécanismes de défense de la souris contre les infections virales à *flavivirus* et notamment pour l'analyse de la physiopathogénie de l'infection au niveau cellulaire. Elles pourront aussi servir à la mise au point de thérapeutiques d'un genre nouveau, lorsque les expériences en question nécessiteront l'utilisation de lots homogènes d'animaux ayant tous la même constitution génétique, afin de comparer leur comportement après infection ou non. Ces animaux, qui par définition seront histocompatibles entre eux et avec l'autre congénique permettront de réaliser, si besoin est, des transferts cellulaires.

Selon un autre mode de mise en œuvre avantageux dudit procédé, ledit gène OAS est un gène autologue.

Selon un autre mode de mise en œuvre avantageux dudit procédé,

ledit gène OAS est un gène hétérologue.

Selon un autre mode de mise en œuvre avantageux dudit procédé, l'activité du gène OAS peut-être mesurée par détermination :

- de la quantité de transcrits OAS par des techniques classiques qui en elles-mêmes sont connues de l'homme du métier (*Northern-blot*, RT-PCR...),
- de la quantité de protéines 2'-5'OAS produites, par des techniques classiques qui en elles-mêmes sont connues de l'homme du métier (ELISA, RIA, radioimmunoprécipitation, *Western-blot..*),
- du niveau d'activité 2'-5'OAS, par des techniques classiques qui en elles- mêmes sont connues de l'homme du métier, telles que celles décrites dans Witt et al., J. Interferon Res., 1993, 13, 17-23 ou
- des séquences des ARNm ou de l'ADN génomique, issues des gènes de la famille OAS : mise en évidence éventuelle de l'une des mutations précitées.

La présente invention a également pour objet l'utilisation des molécules d'acides nucléiques, sélectionnées dans le groupe constitué par :

- a) les molécules d'ADN génomique de mammifère (humain ou nonhumain) correspondant à un *locus* de résistance à une infection par un *Flaviviridae*, lesquelles molécules sont constituées par un fragment de 0,2 à 0,4 cM incluant la famille des gènes OAS sauvages ou mutés,
 - b) les ADNc desdites molécules en a),
- c) les protéines codées par lesdites molécules en a) ou en b), pour le criblage de molécules antivirales destinées au traitement des infections par les virus de la famille des *Flaviviridae*.

Au sens de la présente invention, on entend par "gène muté" un gène présentant au moins une une substitution, une insertion ou une délétion d'au moins un nucléotide d'une région codante ou non-codante, par rapport à la séquence du gène sauvage.

Dans le cas où les gènes OAS sont des gènes sauvages, lesdits individus sont résistants à l'infection par un Flaviviridae, dans le cas où les gènes OAS

sont des gènes mutés. ils sont, de préférence, inactivés ; en conséquence, les individus porteurs desdites mutations sont sensibles à l'infection par lesdits virus.

Selon un mode de réalisation avantageux de ladite utilisation, les dites molécules sont, de préférence, des séquences d'ADN génomique des gènes de la famille OAS, les ADNc desdites séquences et les protéines correspondantes.

La présente invention a également pour objet une molécule d'ADN génomique de mammifère (humain ou non-humain) correspondant à un *locus* de résistance à une infection par un *Flaviviridae*, caractérisée en ce qu'elle est constituée par un fragment de 0.2 à 0.4 cM incluant un gène OAS inactivé codant pour une protéine présentant au moins une mutation dans la séquence d'ADNc correspondante, laquelle mutation est sélectionnée dans le groupe constitué par une délétion des nucléotides en positions 100 à 102, 221 à 232, 577 à 578 et une insertion d'un codon stop en positions 807-809, en référence à la séquence de l'ADNc de l'isoforme L3 de souris (GENBANK M33863. figure 3A à 3C); l'introduction d'un codon stop prématuré (figure 3B) est responsable de la production d'une protéine 2'-5' OAS tronquée inactive, délétée des résidus C-terminaux (acides aminés 258 à 367, en référence à la séquence de l'isoforme L3 de souris GENBANK AAA37116, figure 4).

Les mutations telles que définies ci-dessus sont présentent uniquement chez les souris sensibles à l'infection par les *Flaviviridae*; elles inactivent le gène OAS.

Selon un mode de réalisation avantageux de ladite molécule, elle comprend la séquence du marqueur *D5Mit368* du chromosome 5 de souris.

La présente invention a également pour objet l'utilisation d'un vecteur recombinant comprenant une molècule d'acide nucléique telle que définie cidessus pour le criblage de molécules antivirales destinées au traitement des infections par les virus de la famille des *Flaviviridae*.

La présente invention a également pour objet l'utilisation de cellules contenant un vecteur recombinant comprenant une molécule d'acide nucléique telle que définie ci-dessus pour le criblage de molécules antivirales destinées au traitement des infections par les virus de la famille des *Flaviviridae*.

La présente invention a également pour objet l'utilisation d'un

mammifère non-humain recombinant comprenant une molécule d'acide nucléique telle que définie ci-dessus pour le criblage de molécules antivirales destinées au traitement des infections par les virus de la famille des *Flaviviridae*.

La présente invention a également pour objet une molécule d'acide nucléique constituée par un ADNc ou une séquence d'ADN génomique issue d'un gène de la famille OAS comme médicament destiné au traitement des infections par les virus de la famille des *Flaviviridae*.

La présente invention a également pour objet une protéine codée par un ADNc ou une séquence d'ADN génomique issue d'un gène de la famille OAS comme médicament destiné au traitement des infections par les virus de la famille des Flaviviridae.

La présente invention a également pour objet un procédé d'évaluation de la sensibilité d'un individu à l'infection par un virus de la famille des *Flaviviridae* et/ou de sa réponse à un traitement par l'interféron, caractérisé en ce qu'il comprend :

- la mise en culture de cellules à partir d'un échantillon de cellules d'un individu,
- l'induction de l'expression des gènes OAS par addition d'interféron α ou β ou par un stress calcique, notamment par addition d'EGTA, et
- la mesure de l'activité d'un des gènes OAS, par comparaison avec un échantillon de cellules, obtenues à partir d'un sujet témoin résistant à l'infection.

L'évaluation est notamment utile pour évaluer la réponse vaccinale, en vue de mettre au point des souches atténuées plus efficaces.

La présente invention a également pour objet des réactifs utiles pour mettre en œuvre l'un des procédés tels que définis ci-dessus : criblage, évaluation ou détection.

Parmi ces réactifs, on peut citer :

- les amorces de séquences SEQ ID NO :5 à SEQ ID NO :22 et
- les sondes correspondant respectivement aux positions 257-707 du transcrit de l'isoforme L3 murine et aux positions 1379-1874 du transcrit de l'isoforme L2 murine (SEQ ID NO : 31-32).

L'activité du gene OAS peut-être mesurée par les techniques telles que définies ci-dessus.

La présente invention a également pour objet des cellules eucaryotes transformées, caractérisées en ce qu'elles comprennent une molécule d'acide nucléique de mammifère (humain ou non-humain), telle que définie ci-dessus.

Lesdites cellules sont, de préférence, obtenues par recombinaison homologue à l'aide d'un vecteur approprié, conformément à la technique décrite dans la demande EP 0 419 621 ou le brevet US 5,792 632.

La présente invention a, également pour objet des mammifères nonhumains transgéniques, caractérisés en ce qu'ils incluent au moins une copie d'une molécule d'acide nucléique, telle que définie ci-dessus.

De manière préférée, lesdits mammifères, notamment des souris, sont obtenus par injection *in ovo* (technique classique de Brister et al.) d'une molécule d'ADN selon l'invention contenant la région OAS provenant de souris sauvages., c'est-à-dire résistantes à l'infection.

La présente invention a également pour objet des mammifères nonhumains recombinants, caractérisés en ce qu'ils sont porteurs d'au moins un allèle du gène OAS inactivé.

On obtient par exemple des souris *knock-out* pour l'ensemble des gènes OAS, par délétion desdits gènes par la technique cre-LoxP (voir Demande WO 97/06271)

Outre les dispositions qui précèdent, l'invention comprend encore d'autres dispositions, qui ressortiront de la description qui va suivre, qui se réfère à des exemples de mise en œuvre de l'objet de la présente invention, ave références aux dessins annexés dans lesquels :

- la figure 1 illustre la structure de la famille des gènes OAS murins,
- la figure 2 illustre la structure de la famille des gènes OAS humains
- la figure 3 (A. B et C) représente l'alignement de la séquence nucléotidique de l'ADNc des gènes OAS des souris sensibles à l'infection par les Flaviviridae (C57BL/6) et du gène OAS1 humain,
 - la figure 4 représente l'alignement de la séquence en acides

aminés des isoformes L1. L2 et L3 de la 2'-5' OAS des souris sensibles à l'infection par les *Flaviviridue* (C57BL/6) et de l'isoforme p40/p46 humaine,

- les figures 5A à 5E représentent la comparaison de la séquence en acides aminés des protéines virales de la souche IS-98-ST1 (SEQ ID NO: 2) et de la souche New York 1999 (NY99 : Genbank AF196835),
- la figure 6 représente la cinétique de mortalité et la cinétique d'apparition des anticorps sériques spécifiques chez les souris Flv³/Flv³ (BALB/c) infectées par la souche IS-98-ST1 du virus West-Nile (UFF : Unités Formant Foyer),
- la figure 7 représente la cinétique de propagation de la souche IS-98-ST1 dans le système nerveux central des souris sensibles (BALB/c),
- la figure 8 représente le protocole expérimental utilisé pour préciser la localisation du locus *Flv* sur le chromosome 5 de la souris et pour établir une lignée congénique BALB/c *Flv*′,
- la figure 9 représente la carte génétique du locus Flv, déterminée à partir des souris sensibles, issues du premier croisement en retour entre les lignées résistantes (MAI/Pas et MBT/Pas) et les lignées sensibles (C57BL/6 ou BALB/c). Les cases blanches représentent les allèles BALB/c ou C57Bl/6 et les cases noires représentent les allèles MAI/Pas ou MBT/Pas,
- la figure 10 représente les haplotypes autour du locus Flv déterminant la sensibilité ou la résistance aux Flaviviridae, issus du premier croisement en retour (BC1) entre les lignées résistantes (MAI/Pas et MBT/Pas) et les lignées sensibles (C57BL/6 et BALB/c). Les lignes grisées représentent les allèles (BALB/c ou C57BI/6) et les lignes noires représentent les allèles MAI/Pas ou MBT/Pas,
- la figure 11 représente la carte génétique et la carte physique du locus Flv et la position du gène OAS dans ce locus,
- la figure 12 représente la distribution des allèles *Flv* chez les souris résistantes et sensibles issues du premier croisement en retour (BC1) entre les lignées résistantes (MAI/Pas et MBT/Pas) et les lignées sensibles (C57BL/6 et BALB/c),
- la figure 13 représente la carte physique du clone BAC RP23-39M18 de souris sensibles (C57BL/6) sur laquelle figure la position des marqueurs de type microsatellite et STS ainsi que la position des gènes OAS murins,

- la figure 14 représente la cinétique d'apparition des antigènes viraux dans les cellules Neuro 2a et les neurones primaires de souris sensibles (BALB/c) infectées par le virus West-Nile (souche IS-98-ST1),
- la figure 15 représente la mort par nécrose des cellules Neuro 2a infectées par le virus West-Nile (souche IS-98-ST1) : m.i., multiplicité d'infection,
- la figure 16 représente l'activité antivirale de l'IFN-α sur les cellules Neuro 2a infectées par la souche IS-98-ST1 du virus West-Nile : UFF, Unités Formant Foyer, et
- la figure 17 représente les amorces utilisées pour la détection des mutations dans les séquences codantes de l'isoforme L1 des gènes OAS des souris sensibles C57BL6.

Exemple 1 : Matériels et méthodes

1) Souris mises en oeuvre

- lignées de souris consanguines sensibles Flv⁵/Flv⁵ C57BL6 et BALB/c (Janvier).
- lignées de souris résistantes (Flv'/Flv'), dérivées de souris sauvages appartenant à l'espèce Mus musculus musculus, MAI/Pas (capturées en Autriche dans la région d'Illmitz) et MBT/Pas (capturées en Bulgarie dans la région de General Toshevo), Mus spretus (SEG/Pas et STF/Pas) et Mus musculus domesticus (WMP/Pas) (F. Bonhomme et al., 1996, The laboratory mouse and its wild relatives, « Genetics variants and strains of the laboratory mouse », S.R.M.F. Lyon, S.D.M. Brown, Oxford University Press. Oxford, 1577-1596).

2) Virus

a) isolement, amplification, purification et titration

Le virus West-Nile (WN) a été obtenu à partir du système nerveux central d'une cigogne manifestant des troubles neuropathologiques sévères en septembre 1998, à Eilat (Israël). L'infection de cellule VERO par cet isolat est cytolytique et l'immunofluorescence indirecte avec un ascite de souris immun spécifique du virus West-Nile est positive à 100 %. Le virus produit sur cellules VERO a été récolté et amplifié sur cellules de moustiques AP61 Desprès et al., *Virology*, 1993, 196, 209-219).

Le passage 1 (ou P1) du virus WN sur cellules AP61 a été récolté 3 jours après l'infection ; il possède un titre de 2,5 x 10⁸ UFF/ml (Unité Formant Foyer) par la technique de titration sur cellules AP61 décrite dans Desprès et al. (*Virology*, 1993, 196, 209-219). L'inoculum P1 du virus WN sur cellules AP61 a été identifié comme la souche IS-98-ST1.

Un P2 a été obtenu, à partir de cellules AP61 infectées par la souche IS-98-ST1. P1 (titre: 6 x 10⁷ UFF/ml). L'inoculum P2 de IS-98-ST1 est utilisé pour les épreuves de sensibilité à l'infection virale chez les souris adultes.

Un inoculum viral P3 de la souche IS-98-ST1 avec un titre de 5 x 10⁷ UFF/ml a été produit sur cellules AP61. Une préparation virale hautement purifiée, obtenue selon le protocole de purification des flavivirions décrit dans Desprès et al. (*Virology*, 1993, 196, 209-219) a été obtenue à partir de 20 boites de 150 cm² de cellules AP61 récoltées 3 jours après l'infection par l'inoculum P3 du virus WN souche IS-98-ST1 (multiplicité d'infection de 0,4). La souche IS-98-ST1 purifiée en gradient de saccharose a un titre final de 2 x 10¹⁰ UFF/ml.

Les ARNs extraits de ce virus purifié sont utilisés pour amplifier les ADNc correspondant aux protéines virales C, prM et NS1.

b) Séquençage de l'ARN viral

Le génome viral a été extrait à partir du surnageant de culture des cellules VERO infectées de l'exemple 1 à l'aide du kit "QIAamp Viral RNA" (QIAGEN), en suivant les instructions du fabricant. 6 produits RT-PCR chevauchants ont été amplifiés à partir de ces ARNs en utilisant les amorces décrites par Lanciotti et al. (Science, 199, 286:2333-). Les extrémités 5' et 3' du génome viral ont été amplifiées à l'aide d'amorces synthétisées d'après la séquence de la souche WN-NY99 (Genbank n° AF202541). Les ADNc obtenus ont été purifiés par chromatographie échangeuse d'ions et précipités dans 2 volumes d'isopropanol. Ensuite les ADNc ont été séquencés sur les deux brins en utilisant le kit "Taq Dye Deoxy Terminator Cycle Sequencing" (PERKIN ELMER CORP./APPLIED BIOSYSTEM) et les amorces espacées de 400 paires de bases sur le génome viral (Lanciotti et al., précité). Le séquençage a été réalisé avec 0,2 pmoles d'ADNc purifié et 30 pmoles d'amorces, en suivant le protocole recommandé par le fabricant. L'alignement des séquences est

réalisé à l'aide du logiciel CLUSTAL W.

La séquence génomique complète de la souche IS-98-ST1 du virus West-Nile correspond à la séquence SEQ ID NO :1.

L'alignement des séquences en acides aminés de la souche IS-98-ST1 (Seq ID NO: 2) et de la souche NY99, présenté à la figure 5, montre que la souche IS-98-ST1 isolée en Israël en 1998 et la souche NY-99 isolée à New York en 1999 sont très proches (divergence de moins de 0,2% au niveau des séquences en acides aminés).

Cependant, les différences observées dans la souche IS-98-ST1, respectivement dans les protéines E (A₅₁), NS1 (N₁₇). NS2A (R₁₆₄), NS2B (G₈₂, E₈₃), NS3 (P₄₉₆, E₅₂₁) et NS5 (S₅₄. N₂₈₀, A₃₇₂) sont potentiellement responsables de la neurovirulence et des propriétés neuroinvasives observées avec cette souche et peuvent servir de marqueur de virulence du virus West-Nile.

3) Cellules

Des neurones primaires, des cellules endothéliales et des astrocytes du système nerveux central de souris sensibles homozygotes pour l'allèle *Flv*^{*} [Swiss ou BALB/c (Janvier)] et de souris résistantes homozygotes ou hétérozygotes pour l'allèle *Flv*^{*} sont isolés d'embryons de 14 jours. Les neurones primaires sont mis en culture en milieu Neuobasal (Gibco BRL) supplémenté avec 20% de facteur de différenciation B27, 20 mM de glutamine et 40 mg/l de gentamycine comme antibiotique.

Des cellules de neuroblastome murin Neuro 2a (10⁴ cellules/cm²) sont cultivées en Labtek à 8 chambres (Nunc) en milieu MEM (GIBCO BRL) supplémenté avec 10% de sérum de veau fœtal (EUROBIO) et 1% d'acides aminés non essentiels (GIBCO BRL).

Des cellules d'hépatome humain HepG2 (ATCC n° HB8065) sont cultivées dans les conditions classiques telles que décrites dans Marianneau et al., *J. Virol.*, 1996. 77, 2547-2554.

4) Produits

L'interféron α (INF α A/D) est fourni par la société Biosource (PHC4044) et l'EGTA par SIGMA.

Exemple 2 : Les souris de lignées sauvages et de lignées consanguines de labora-

.! . . .

14

toire se différencient par leur sensibilité à l'infection par la souche neuroinvasive IS-98-ST1 du virus West-Nile.

1) Les lignées de souris sensibles.

Des souris BALB/c âgées de 6 semaines sont inoculées par la voie intrapéritonéale avec 100 UFF de la souche IS-98-ST1 virus West-Nile (UFF:DL50 = 10), préparée comme décrit à l'exemple 1.

Ces souris meurent à 100% avec un temps moyen de mortalité de 9 ± 2 jours (figure 6).

La cinétique de propagation de la souche IS-98-ST1 dans le système nerveux central de la souris sensible (BALB/c) a été analysée à partir des extraits de cerveau des souris infectés titrés sur cellules AP61, selon la technique décrite dans Després et al. (*J. Virol.*, 1998, 72, 823-829), précité. Les résultats montrent que le virus est détecté dans le système nerveux central (SNC) murin au 5^{ème} jour de l'infection et la production virale est maximale au 7^{ème} jour (Figure 7). Au 9^{ème} jour de l'infection, le virus n'est plus détecté dans le SNC murin (Figure 7).

La réplication du virus WN dans le SNC et les organes périphériques des souris infectées par la souche IS-98-ST1 est également détectée par immuno-histologie, selon les protocoles classiques tels que décrits dans Després et al., 1998 (précité)et par hybridation *in situ*, selon les protocoles décrits à l'exemple 1.

Les anticorps sériques spécifiquement dirigés contre les protéines du virus WN sont titrés par ELISA selon le protocole décrit dans Després et al., 1993 (précité), en utilisant la souche IS-98-ST1 purifié sur gradient de saccharose telle que décrite à l'exemple 1, comme antigène. Les résultats montrent que les anticorps sériques apparaissent au 5^{ème} jour de l'infection et sont significativement détectés au 7^{ème} jour (figure 6).

2) Les souris de lignées résistantes.

Les souris des lignées SEG, WMP. STF et MAI qui dérivent de souris sauvages sont inoculées par la voie intrapéritonéale, avec 1000 UFF (100 DL50) de la souche IS-98-ST1 préparée selon le protocole décrit à l'exemple 1.

Contrairement aux souris de laboratoire qui sont sensibles à l'infection par la souche IS-98-ST1 et meurent en une dizaine de jours, ces souris

dérivant de souris sauvages sont résistantes à l'inoculation de la souche IS-98-ST1 et néanmoins permissives à la réplication de la souche IS-98-ST1. En effet, l'infection virale des souris dérivant de souris sauvages est asymptomatique bien que le virus se multiplie *in toto* comme le démontre la production d'anticorps sériques anti-WN à hauts titres; en ELISA. les titres des sérums à la dilution 1:100 pour 10⁶ UFF de virion purifié IS-98-ST1 sont supérieurs à 1 unité de D.O. à 450 nm.

Les souris résistantes à l'infection virale sont utilisées pour la production de sérums immuns spécifiquement dirigés contre les protéines de la souche IS-98-ST1 du virus WN. Trois semaines après inoculation du virus WN, les sérums prélevés de souris résistantes (0.045 ml par souris) sont mélangés, décomplémentés 30 min à 56°C puis dilués au 1:10 dans du DPBS* (V/V) supplémenté avec 0,2% (V/V) de Sérum Albumine bovine (Life Technologies) et 0,05% (P/V) d'azide de sodium. Les sérums dilués sont répartis en 0,2 ml et conservés à -20°C. Les sérums immuns dirigés contre la souche IS-98-ST1 sont utilisés aux dilutions finales de 1:500 pour l'immunofluorescence indirecte et au 1:1000 pour l'immunoprécipitation des protéines virales radiomarquées.

Exemple 3: Localisation du locus Flv dans une région de 0,2 à 0,4 cM du chromosome 5 de souris contenant le gène OAS.

1) Méthodes

a) Modèle d'analyse de la résistance à l'infection par les *Flaviviridae* (figure 8)

Des souris mâles des lignées résistantes MAI/Pas et MBT/Pas sont croisées avec des souris femelles des lignées sensibles C57BL/6 et BALB/c. Les souris mâles de la génération F1 sont croisées en retour avec des souris femelles des lignées résistantes C57BL/6 et BALB/c pour donner une génération de souris de premier de premier croisement en retour (BC1).

Des souris BC1 âgées de 5 semaines sont inoculées par voie intrapéritonéale avec la souche IS-98-ST1, préparée selon le protocole décrit à l'exemple 1, dans les conditions décrites à l'exemple 2.

Les animaux sont observés tous les jours et les taux de mortalité et de survie sont déterminés 14 jours après l'infection.

b) génotypage des allèles Flv

Les allèles Flv des individus BC1 ont été cartographiés par PCR génomique à l'aide d'amorces spécifiques de 16 microsatellites du chromosome 5 (Catalogue Research Genetics) entourant le locus Flv (figures 9-11), selon les techniques courantes de biologie moléculaire en utilisant les protocoles standards tels que ceux décrits dans Current Protocols in Molecular Biology (Frederick M. AUSUBEL, 2000, Wiley and son Inc. Library of Congress, USA).

2) Résultats

L'analyse de la distribution des allèles Flv chez les souris BC1 sensibles et résistantes à l'infection par la souche IS-98ST1 montre qu'un allèle Flv^r est suffisant pour conférer la résistance à l'infection (figure 12). Les résultats montrent également que dans ce modèle il existe une corrélation parfaite entre le phénotype résistant et la présence de l'allèle Flv^r et une corrélation presque parfaite entre le phénotype sensible et l'absence de l'allèle Flv^r (figure 12).

Le génotypage des allèles *Flv* montre que le locus *FLv* est localisé dans une région de 0,2 à 0,4 cM contenant le gène OAS1 (figures 9-11).

Exemple 4: Les souris sensibles à l'infection par les Flaviridae possèdent un gène OAS muté.

1) Méthodes

La séquence génomique du gène OAS des souris sensibles (C57BL/6) a été déterminée à partir de la séquence du clone BAC RP23-39M18 (figure 11) selon les techniques courantes de biologie moléculaire en utilisant les protocoles standards tels que ceux décrits dans *Current Protocols in Molecular Biology* (Frederick M. AUSUBEL, 2000, Wiley and son Inc, Library of Congress, USA).

Les ADNc de l'isoforme L1 du gène OAS murin ont été amplifiés par RT-PCR (kit Titan One Tube RT-PCR; Roche Biochemicals n° 1939 823) et séquencés par la technique de séquençage automatique (Automat) à l'aide des amorces suivantes (voir figure 17):

Exon 1

17

	F1 (SEQ ID NO:9) et R1 (SEQ ID NO:10) : produit d'amplification
de 258 pb	
	F1 (SEQ ID NO:9) et R2 (SEQ ID NO:11): produit d'amplification
de 396 pb	·
	Exon 2
	F2 (SEQ ID NO:12) et R3 (SEQ ID NO:13) : produit d'amplification
de 297 pb	
	F2 (SEQ ID NO:12) et R4 (SEQ ID NO:14) : produit d'amplification
de 515 pb	•
	Exon 3
	F3 (SEQ ID NO:15) et R5 (SEQ ID NO:16): produit d'amplification
de 288 pb	
	F3 (SEQ ID NO:15) et R6 (SEQ ID NO:17): produit d'amplification
de 501 pb	
	F4 (SEQ ID NO:18) et R5 (SEQ ID NO:16): produit d'amplification
de 112 pb	
	F4 (SEQ ID NO:18) et R6 (SEQ ID NO:17): produit d'amplification
de 325 pb	
	Exon 4
	F5 (SEQ ID NO:19) et R7 (SEQ ID NO:20): produit d'amplification
de 244 pb	Process ID NO 100 - Process ID NO 310 - and did the collisions
1. 4101.	F5 (SEQ ID NO:19) et R8 (SEQ ID NO:21): produit d'amplification
de 418 pb	FC (SEC ID NO.22) + B7 (SEC ID NO.20) - and vit d'annulification
J- 156L	F6 (SEQ ID NO:22) et R7 (SEQ ID NO:20): produit d'amplification
de 156 pb	E6 (SEO ID NO:22) at D8 (SEO ID NO:21) t produit d'amplification
do 240 b	F6 (SEQ ID NO:22) et R8 (SEQ ID NO:21): produit d'amplification
de 340 pb	2) Pácultata
	2) <u>Résultats</u>

L'alignement de la séquence de l'ADNc des isoformes L1, L2 et L3 du gène OAS des souris sensibles (C57BL/6) avec la séquence de l'ADNc de l'isoforme L1 humaine (figure 3A, 3B et 3C) montre que l'isoforme L1 des souris

sensibles possède 3 délétions (nucléotides 100 à 102, 221-232 ; 576-577) et un codon stop prématuré en phase, situé en position (807-809).

L'alignement des séquences en acides aminés des isoformes L1, L2 et L3 du gène OAS des souris sensibles (C57BL/6) avec la séquence de l'isoforme L1 humaine (figure 4) montre que l'isoforme L1 des souris sensibles correspond à une isoforme L1 tronquée de la région C-terminale. laquelle région C-terminale comprend la séquence conservée RPVILDPADPT qui est impliquée dans l'activité enzymatique de la 2'-5' OAS. De plus, l'isoforme L1 des souris C57BL/6 ne possède pas les 4 premiers acides aminés GSSG du domaine GSSGKGTTLRGRSDADLVVF qui sont impliqués dans l'activité enzymatique de la 2'-5' OAS.

Exemple 5 : Modèle cellulaire d'étude de l'activité des gènes OAS

1) <u>Infection de cultures primaires et de lignées cellulaires par la</u> souche IS-98-ST1 du virus West-Nile

- a) Matériels et méthodes
- a₁) cultures primaires

Des neurones primaires et des astrocytes du SNC de souris sensibles homozygotes pour l'allèle Flv⁵ (souris Swiss, Janvier) sont préparés selon les protocoles classiques tels que décrits à l'exemple 1. Les cellules sont infectées par la souche IS-98-ST1 à une multiplicité d'infection de 20 UFF par cellule (m.i. de 20). L'effet cytopathique est observé en microscopie optique, la production virale est analysée par titration sur cellules AP61 comme décrit précédemment à l'exemple 1 et l'expression des antigènes viraux est analysée par radioimmunoprécipitation à l'aide d'un sérum immun de souris anti-West-Nile, selon les protocoles classiques tels que décrits dans Duarte Dos Santos et al. (Virology, 2000, 274, 292-308).

Les résultats montrent que 80% des neurones en culture produisent les antigènes viraux :

- leur profil en gel de polyacrylamide-SDS est présenté à la figure 14A.
- la production virale est de $[3.0 \pm 1.5] \times 10^6$ UFF/ml après 20 h d'infection et de $[7.0 \pm 0.5] \times 10^7$ UFF/ml à 40 h.
 - les effets cytopathiques (ECPs) de type nécrotique sont observés

après 48 h d'infection virale.

En revanche, les astrocytes du SNC murin ne sont pas permissifs à la réplication du virus WN souche IS-98-ST1.

a₂) lignées cellulaires

Des cellules de neuroblastome murin Neuro 2a et des cellules d'hépatome humain HepG2, cultivées dans les conditions classiques telles que décrites dans Duarte Dos Santos et al. (précité) sont infectées à différentes multiplicité d'infection par le virus WN souche IS-98-ST1, préparé comme décrit à l'exemple 1. L'effet cytopathique est observé en microscopie optique, la production virale est analysée par titration sur cellules AP61 comme décrit précédemment à l'exemple 1 et l'expression des antigènes viraux est analysée par radioimmunoprécipitation à l'aide d'un sérum immun de souris anti-West-Nile, selon les protocoles classiques tels que décrits dans Duarte Dos Santos et al., précité.

Les résultats montrent que les cellules de neuroblastome murin Neuro 2a sont permissives à la réplication de la souche IS-98-ST1 du virus WN. Une m.i. de 4 est nécessaire pour infecter 80% des cellules Neuro 2a en monocouche. La production virale est de 10⁷ UFF/ml (m.i. de 4) après 40 h d'infection et la mort cellulaire par nécrose est massive (Figure 15). La cinétique de production des antigènes majeurs prM, E et NS1 à partir de la polyprotéine virale présentée dans la figure 4B. montre que le demi-temps de formation de la glycoprotéine d'enveloppe E est d'environ 30 min. La protéine E de la souche IS-98-ST1 semble ne posséder qu'un seul résidu N-glycanne (figure 14C).

Les résultats montrent également que les cellules d'hépatome humain HepG2 sont permissives à la réplication de la souche IS-98-ST1 du virus WN. A une m.i. de 10, la production virale est de $[2 \pm 1] \times 10^6$ UFF/ml après 48 h d'infection et les ECPs sont observés à partir de 72 h.

2) Analyse de l'effet de l'EGTA et de l'INFA sur la réplication du virus West-Nile et détection de l'activité des gènes OAS

a) Matériels et cellules :

L'interféron alpha (INFα A/D) est fourni par la société Biosource (PHC4044) et l'agent chélateur EGTA par Sigma..

Les cellules Neuro 2a sont cultivées en MEM supplémenté avec 10% de sérum de veau fœtal (SVF; Eurobio) et 1% d'acides aminés non essentiels (Gibco BRL). Les neurones primaires isolés d'embryons de 14 jours de souris BALB/c sont mis en culture en milieu Neurobasal (Gibco BRL) supplémenté avec 20% de facteur de différenciation B27. 20 mM de glutamine et de la gentamycine comme antibiotique.

b) Protocoles d'infection et de traitement des cellules neuronales par l'INF-α et l'EGTA :

- Infection par la souche IS-98-ST1 du virus WN:

Les cellules Neuro 2a (10⁴ cellules/cm²) cultivées en Labtek à 8 chambres (Nunc) sont infectées avec la souche virale avec une multiplicité d'infection de 4 (cycle unique de réplication) ou 0.1 (cycle réplicatif biphasique) Unités Formant Foyer (UFF; titre viral obtenu sur cellules de moustiques AP61) par cellule dans du MEM supplémenté avec 0.2% de sérum albumine pendant 90 min à 37°C. Les cellules infectées sont incubées avec du MEM à 2% SVF.

Les neurones primaires de souris BALB/c (# 2,5 10⁵ cellules/cm²) déposés sur Labtek à 8 chambres (Nunc) sont infectés avec la souche virale avec une multiplicité d'infection de 20 UFF par cellule dans du milieu Neuobasal avec 2% SFV pendant 90 min à 37°C. Les cellules infectées sont incubées avec du milieu Neuobasal avec 2% SFV et 20% B27.

- Traitement des cellules infectées par l'INF-α

Les tapis cellulaires sont lavés 3 fois avec du milieu non supplémenté puis traités avec 20 UI/ml (cellules Neuro 2a) ou 100 UI/ml (neurones primaires) d'INF-α qui sont additionnés dans le milieu de culture.

- Traitement des cellules infectées par l'EGTA

Les monocouches cellulaires sont lavées 3 fois avec du PBS déplété en calcium et magnésium (Gibco BRL) puis incubées dans une solution EGTA à 1 mM dans du PBS pendant 150 min à 37°C. Les cellules Neuro 2a sont ensuite incubées dans du MEM supplémenté avec 10% SVF et les neurones primaires dans du milieu Neurobasal avec 20% de B27.

- Préparation des sondes OAS murines

Les neurones primaires de souris BALB/c traités par 20 UI/ml d'INF-α pendant 12 h sont lysés par la solution de lyse du kit ATLASTM Pure Total RNA Labeling System (Clontech, # PT3231-1) et l'ARN total extrait est précipité avec 3 volumes d'éthanol 95% en présence de 0,2 M LiCl pendant 18 h à -20°C. Un aliquot de l'ARN total (0,5 μg) est utilisé comme matrice pour la synthèse par la technique RT-PCR (kit Titan One Tube RT-PCR; Roche Biochemicals n° 1939 823) des sondes OAS à l'aide des amorces OAS-1 à OAS-4 suivantes :

OAS-1: GTCAGACGCTGACCTGGTG (SEQ ID NO: 5, positions 257-275; transcrit L3. [M33863])

OAS-2: AGCTTCTCCTTACACAGTTGG (SEQ ID NO: 6, positions 686-707; transcrit L3. [M33863])

OAS-3: ACAGTGCAGGTGTGTGAGC (SEQ ID NO: 7, positions 1379-1398; transcrit L2, [X58077])

OAS-4: TCATGTCTCAGAAAGGAAAC (SEQ ID NO: 8, positions 1854-1874; transcrit L2, [X58077])

Le couple d'amorces OAS-1 et OAS-2 a été sélectionné afin d'amplifier une région de haute identité nucléotidique entre les 3 transcrits OAS (L1, L2 et L3) qui ont été identifiés chez la souris. Le couple d'amorces OAS-3 et OAS-4 a

WO 02/081741

été dessiné dans la région 5° non codante spécifique au transcrit L2. Les produits RT-PCR sont clonés à l'aide du TOPO TA cloning (Invitrogen).

Les ARN totaux de neurones primaires de souris BALB/c, non traités, traités avec l'INF-α ou l'EGTA ou infectés par le virus WN, en présence ou non d'INF-α ou d'EGTA, seront hybridés avec les sondes OAS en Northern blot.

- Activité anti-virale de l'INF-α sur le virus West-Nile

Après induction par l'IFN-α, trois transcrits des gènes OAS, L1, L2, L3 sont observés (Rutherford *et al.*, 1991). Le transcrit L3 est détecté dès 4 h post-induction, L2 est observé à 12 h post-induction et enfin L1 est observé après 18 h post-induction.

La concentration d'INF-α 20 IU/ml pour les cellules Neuro 2a n'altère pas la viabilité cellulaire sur 24 h.

Les cellules Neuro 2a infectées par le virus WN sont incubées avec l'INF-α (voir §2) d'une part dès le début de l'infection ou d'autre part après 5 h ou 10 h d'infection. Ces temps d'incubation avec l'IFN-α ont été sélectionnés en fonction d'une part des cinétiques de transcription des gènes OAS L1, L2 et L3 et d'autre part de la cinétique de réplication virale.

L'addition de l'IFN- α dès le début de l'infection virale réduit de 85% (m.i. de 4) le nombre total de cellules Neuro 2a positives en antigènes viraux par immunofluorescence indirecte à 24 h post-infection. L'addition de l'IFN- α à 5 h post-infection réduit de 65% (m.i. de 4) le nombre total de cellules Neuro 2a positives en antigènes viraux par immunofluorescence indirecte à 24 h post-infection. L'addition de l'IFN- α à 10 h post-infection réduit de 50% (m.i. de 4) le nombre total de cellules Neuro 2a positives en antigènes viraux par immunofluorescence indirecte à 24 h post-infection.

- Activité anti-virale de l'EGTA sur le virus West-Nile

L'incubation de neurones primaires de rat dans un milieu sans calcium supplémenté avec 1 mM de l'agent chélateur EGTA pendant 150 min provoque une augmentation de 350% du niveau transcriptionnel du (ou des) membres de la famille OAS.

Le pré-traitement des neurones primaires de souris BALB/c avec

1 mM EGTA pendant 2 h 30 (voir §3) réduit de 50% le nombre total de cellules positives en antigènes viraux par immunofluorescence indirecte à 24 h post-infection. Le traitement des neurones primaires de souris BALB/c avec 1 mM EGTA pendant 2 h 30 après 2 h d'infection réduit de 50% le nombre total de cellules positives en antigènes viraux par immunofluorescence indirecte à 24 h post-infection. Le traitement des neurones primaires de souris BALB/c avec 1 mM EGTA pendant 2 h 30 après 6 h d'infection réduit de 20% le nombre total de cellules positives en antigènes viraux par immunofluorescence indirecte à 24 h post-infection.

24

REVENDICATIONS

- l°) Procédé de criblage de molécules aptes à stimuler un gène de la famille OAS, caractérisé en ce qu'il comprend :
- la mise en culture de cellules, issues d'un mammifère non-humain Flv'/Flv' ou Flv'/Flvs.
- l'induction de l'expression des gènes OAS par addition d'interféron α ou β ou par un stress calcique, notamment par addition d'EGTA,
 - la mise en contact des cellules avec la molécule à cribler, et
- la mesure de l'activité d'un gène OAS, par comparaison avec un échantillon témoin.
- 2°) Procédé selon la revendication 1, caractérisé en ce que ledit mammifère non humain Flv'/Flv' est de préférence une lignée de souris résistantes dérivant de géniteurs sauvages appartenant à l'espèce Mus musculus musculus ou Mus spretus.
- 3°) Procédé selon la revendication 1 ou la revendication 2, caractérisé en ce que lesdites souris résistantes sont croisées en retour avec des lignées sensibles de laboratoire.
- 4°) Procédé selon la revendication 1 ou la revendication 2, caractérisé en ce que ledit gène OAS est sélectionné dans le groupe constitué par les gènes autologues et les gènes hétérologues.
- 5°) Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'activité du gène OAS peut-être mesurée à l'aide de l'une des méthodes suivantes : détermination de la quantité de transcrits OAS, détermination de la quantité de protéines 2'-5'OAS produites, détermination du niveau d'activité 2'-5'OAS ou détermination de la séquence des ARNm ou de l'ADN génomique issues des gènes de la famille OAS.
- 6°) Molécule d'ADN génomique de mammifère (humain ou nonhumain) correspondant à un *locus* de résistance à une infection par un *Flaviviridae*, caractérisée en ce qu'elle est constituée par un fragment de 0,2 à 0,4 cM incluant un gène OAS inactivé codant pour une protéine présentant au moins une mutation dans la séquence d'ADNc correspondante, laquelle mutation est sélectionnée dans le groupe

constitué par une délétion des nucléotides en positions 100 à 102, 221 à 232, 577 à 578 et une insertion d'un codon stop en positions 807-809, en référence à la séquence de l'ADNc de l'isoforme L3 de souris accessible sous le n° GENBANK M33863.

- 7°) Molécule d'acide nucléique selon la revendication 6, caractérisée en ce qu'elle comprend la séquence du marqueur *D5Mit368* du chromosome 5 de souris.
- 8°) Utilisation des molécules d'acides nucléiques sélectionnées dans le groupe constitué par:
- a) les molécules d'ADN génomique de mammifère (humain ou nonhumain) correspondant à un *locus* de résistance à une infection par un *Flaviviridae*, lesquelles molécules sont constituées par un fragment de 0,2 à 0,4 cM incluant la famille des gènes OAS sauvages ou mutés,
 - b) les ADNc desdites molécules en a),
- c) les protéines codées par lesdites molécules en a) ou en b),
 pour le criblage de molécules antivirales destinées au traitement des infections par les
 virus de la famille des *Flaviviridae*.
- 9°) Utilisation selon la revendication 8, caractérisée en ce que lesdites molécules sont des séquences d'ADN génomique des gènes de la famille OAS, les ADNc desdites séquences et les protéines correspondantes
- 10°) Utilisation d'un vecteur recombinant comprenant une molécule d'acide nucléique selon la revendication 6 ou la revendication 7 ou une molécule d'acide nucléique telle que définie dans les revendications 8 ou 9, pour le criblage de molécules antivirales destinées au traitement des infections par les virus de la famille des *Flaviviridae*.
- 11°) Utilisation de cellules contenant un vecteur recombinant comprenant une molécule d'acide nucléique selon la revendication 6 ou la revendication 7 ou une molécule d'acide nucléique telle que définie dans les revendications 8 ou 9, pour le criblage de molécules antivirales destinées au traitement des infections par les virus de la famille des *Flaviviridae*.
- 12°) Utilisation d'un mammifère non-humain recombinant comprenant une molécule d'acide nucléique selon la revendication 6 ou la revendication 7 ou

une molécule d'acide nucléique telle que définie dans les revendications 8 ou 9, pour le criblage de molécules antivirales destinées au traitement des infections par les virus de la famille des *Flaviviridae*.

- 13°) Molécule d'acide nucléique constituée par un ADNc ou une séquence d'ADN génomique issue d'un gène de la famille OAS comme médicament destiné au traitement des infections par les virus de la famille des *Flaviviridae*.
- 14°) Protéine codée par un ADNc ou une séquence d'ADN génomique issue d'un gène de la famille OAS comme médicament destiné au traitement des infections par les virus de la famille des *Flaviviridae*.
- 15°) Procédé d'évaluation de la sensibilité d'un individu à l'infection par un virus de la famille des *Flaviviridae* et/ou de sa réponse à un traitement par l'interféron, caractérisé en ce qu'il comprend :
- la mise en culture de cellules à partir d'un échantillon de cellules d'un individu.
- l'induction de l'expression des gènes OAS par addition d'interféron α ou β ou par un stress calcique, notamment par addition d'EGTA, et
- la mesure de l'activité d'un des gènes OAS, par comparaison avec un échantillon de cellules, obtenues à partir d'un sujet témoin résistant à l'infection.
- 16°) Réactifs utiles pour mettre en œuvre les procédés selon les revendications 1 à 5 ou 15, caractérisés en ce qu'ils sont sélectionnés dans le groupe constitué par les amorces de séquences SEQ ID NO:5 à 22 ainsi que les sondes correspondant respectivement aux positions 257-707 du transcrit de l'isoforme L3 murine et aux positions 1379-1874 du transcrit de l'isoforme L2 murine (SEQ ID NO: 31-32).
- 17°) Cellules eucaryotes transformées, caractérisées en ce qu'elles comprennent une molécule d'acide nucléique de mammifère selon la revendication 6 ou la revendication 7 ou bien un ADNc ou une protéine telles que définies dans les revendications 8 ou 9.
- 18°) Mammifères non-humains transgéniques, caractérisés en ce qu'ils incluent au moins une copie d'une molécule d'acide nucléique, selon la revendication 6 ou la revendication 7 ou une molécule d'acide nucléique telle que définie

dans les revendications 8 ou 9.

19°) Mammifères non-humains recombinants, caractérisés en ce qu'ils sont porteurs d'au moins un allèle du gène OAS inactivé.

FIGURE 1

Les genes de l'oligoadenylate synthétase (OAS) de la souris

2	*No. gène	Genbank	ESTs de souris	ARNm	JRF (taille)	ORF (taille) acides aminės Exon	Exon	taille de l'Exon
ີ ຄ	OAS1(L3)	M33863	AW542285 (>42)	1,7Kpb ^b	1104 pb	367ав	7	183, 289, 185, 233, 157, 27, 33
4	OAS1(L2)	X58077	Al449562 (>41)	2.2Kpb ^b	1104 pb	367aa		183, 288, 185, 233, 157, 27, 38
· o	OAS1(L1)	X55982	BF136699(>2)	1.7Kb, 4Kb	dd 657	2524в	4	180, 277, 185, 117
N	2 nouveau OAS1		AA794503+AA536884 (>4)	Ĵ.	1086pb	361ва	. o	163, 288, 197, 233, 154, 30
j	p540ASL	AF068835		3084 pb	1422pb	47388		ı

e le numéro des gènes OAS correspond à celui indiqué dans le clone BAC 39M18

b la taille de chaque ARNm est indiquée (Rutherford et al.)

La famille de l'oligoadénylate synthétase (OAS) humaine

1				67,
taille de l'Exon				(203), 283, 176, 7 (203), 283, 176, 242,148, 767,
Exon	မ မ	1 1	6	4 0
ORF (taille) acides aminés Exon	364аа (346аа) 400аа (346аа)	687aa (683aa) 727aa (683aa)	1087ав	254aa (219aa) 513aa (346aa)
ORF (taille)	1095pb 1203pb	2064pb 2184pb	3284pb	765pb
^b ARNm	1.6K pb 1.8Kpb	2.8, 3.9, 4.5Kpb 3.3Kpb	7Kb	1.8Kpb 2.0Kpb
Genbank	X02874	M87284	AF063613 (AF251351)	AF063612 1.8Kpb AF063611 2.0Kpb
	p40	p69 p71	p100	p30
gène	OAS1	OAS2	OAS3	OAS-RP
2	-	ო	N	•.

IGURE 2

Résultat CLUSTALW

				-	
Séquence 1 : hO/	AS1_X02874_	1322 p	Ь		
Séquence 2 : L3_	M33863	1412 p			
Séquence 3 : L2	X58077	1413 pl			
Séquence 4 : L1		902 pl			
	W33702_	902 pi	•		
Alignement					
Séquences (3:4) a	lignées Scor	re : 79			
Séquences (1:2) a	lignées Scor	re : 59	•		
Séquences (2:3) a	lignées Scor	re : 97			
Séquences (1:3) al	lionées Sont	e : 58			
Séquences (2:4) al		e: 79			
Séquences (1:4) al		e:62			
				, .	
Groupe 1 : sequen		e : 26287			
Groupe 2 : sequen		e : 14385			
Groupe 3 : séquen	ces: 4 Score	e : 15936			
Score d'alignement	t 36139				
L3_M33863_(SEQIDN		ACCCAGGAAG	TCCAGACTTAG	CATGGAGCACGGAG	TCAGGAGCATCC
L2_X58077_(SEQIDN	0:24 CCAGGCTGGGAG	ACCEAGGAAG	TCACACTAG	CATGGAGCACGGAC	TCAGGAGCATCC
L1_M55982_(SEQIDNO	VIII ACCIGCIGCIGCIGC	AGAGG I AAAA	IUC I GUACCI AU	GA I GGAGCAGGA I C	TOLCHARDON
hOAS1_X02874_(SEC)IDNO:39) GAGGCAG I	icidii GCC	<i>(</i> CICICICICCI)	GICANIGATOGATO	TCAGAGATACCC
	•••		•		
L3_M33863_				CTCCTTCCCGACA	
LZ_X58077_	CAGCCTGGACGCT	GGACAAGTTC	ATAGAGGATTAC	CTCCTTCCCGACA	CCACCTTTGGTG
L1_M55982_				CTCCCGGACA	
hOAS1_X02874_	CAGCCAAATCTCT	GGACAAGTTC	ATTGAAGACTAT	CTCTTGCCAGACA	CGTGTTTCCGCA
		** *****			• •• •
L3_M33863_	CTGATGTCAAATC	AGCCGTCAAT	പ്രവേദ്യം	TTCCTGAAGGAGAG	TATGCTTCCAAG
L2_X58077_	CTGATGTCAAATCA				
L1_MSS93T	CTGACCTCAGAGA				
	TGCAAATCGACCAT				
h0AS1_X0Z374_	IUCAAICUACAI	oca i wo	I CATCIGIGG	I I CC I GAAGGAAAC	S SEEDE
				•••••	
	~~~~				10001110001
L3_M33863_	GTGCTGCCCACCCA	GIGGGILI	CCAAGGIGGIGG	MOGGIGGETECTE	AGGGAAAGGCA
L2_X58077_	GTGCTGCCCACCCA	GIGAGGGICT	CCAAGGTGGTGA	AGGGIGGCICCIC	AGGCAAAGGCA
L1_M55982_	GCCCCGTCCGCCGA				
hOAS1_X02874_	GTAGCTCCTACCCT	តតតតត	CCAAGGTGGTAA	ÄGGGTGGCTCCTC	AGGCAAGGGCA
-					*** ****
L3_M33863_	CCACACTCAAGGGCA	AGGTCAGACGO	TGACCTGGTGG	TGTTCCTTAACAAT	CTCACCAGCT
L2_X58077_	CCACACTCAAGGGCA	AGTCAGACGO	TGACCTGGTGG	TCTTCCTTAACAAT	CTCACCAGCT
L1_M55982_	CCGCGCTCAAGGGCA	GGTCAGACGC	TGACCTGGTGG	TGTTCCTTAACAAT	CTCACCAGCT
hOAS1_X0Z874_	CCACCCTCAGAGGCC				
110/03/	** * **** ***	JUJANIJIA. SBARB BB			******

L3_M33863_ L2_X58077_ L1_M55982_ HOAS1_X02874_ TTGAGGATCAGTTAAACCGACGGGGAGAGTTCATCAAGGAAATTAAGAAACAGCTGTACG
TTGAGGATCAGTTAAACCGACGGGGAGAGTTCATCAAGGAAATTAAGAAACAGCTGTACG
TTGAGGATCAGTTAAACCAACAGGGAGTGTTGATTAAGGAAATTAAGAAACAGCTGTGCG
TTCAGGATCAGTTAAATCGCCGGGGAGAGTTCATCCAGGAAATTAAGAGACAGCTGGAAG

L3_M33863_ L2_X58077_ L1_M55982_ h0AS1_X02874_ AGGTTCAGCATGAGAGACGTTTTAGAGTCAAGTTTGAGGTCCAGAGTTCATGGTGGCCCA AGGTTCAGCATGAGAGACGTTTTAGAGTCAAGTTTGAGGTCCAGAGTTCATGGTGGCCCA AGGTTCAGCATGAGAGACGTTGTGGAGTGAAGTTTGAGGTCCACAGTTTAAGGAGTCCCA CCTGTCAAAGAGAGAGAGCACTTTCCGTGAAGTTTGAGGTCCAGGCTCCACGCTGGGGCA

L3_M33863_ L2_X58077_ L1_M55982_ hOAS1_X02874_ 

L3_M33863_ L2_X58077_ L1_M55982_ hOAS1_X02874_	ATGTGCTGCCAGCCTTTGATGTCCTGGGTCATGTTAATACTTCCAGCAAGCCTGATCCCA ATGTGCTTCCAGCCTTTGATGTCCTGGGTCATGGTAGTATCAATAAGAAGCCTAATCCCT ATGTGCTGCCAGCCTATGATTTACTGGATCATCTTAACATCCTCAAGAAGCCTAACCAAC ATGTGCTGCCTGCCTTTGATGCCCTGGGTCAGTTGACTGGCAGCTATAAACCTAACCCCC
L3_M33863_ · L2_X58077_ L1_M55982_ h0AS1_X02874_	GAATCTATGCCATCCTCATCGAGGAATGTACCTCCCTGGGGAAGGATGGCGAGTTCTCTA TAATCTACACCATCCTCATCTGGGAATGTACCTCCCTGGGGAAGGATGGCGAGTTCTCTA AATTCTACGCCAATCTCATC-AGTGGCGTACCCGCCGGGAAGGAGGGCAAGTTATCGA AAATCTATGTCAAGCTCATCGAGGAGTGCACCGACCTGCAGAAAGAGGGCGAGTTCTCCA
L3_M33863_ L2_X58077_ L1_M55982_ h0AS1_X02874_	CCTGCTTCACGGAGCTCCAGCGGAACTTCCTGAAGCAGCGCCCAACCAA
L3_M33863_ L2_X58077_ L1_M55982_ h0AS1_X02874_	TCATCCGCCTGGTCAAGCACTGGTACCAACTGTGTAAGGAGAAGCTGGGGAAGCCATTGC TCATCCGCCTGGTCAAACACTGGTACCAACTGTGTAAGGAGAAGCTGGGGAAGCCACTGC TCATCCGCCTGGTCACGCACTGGTACCAACTGTGTAAGGAGAAGCTGGGGGACCCGCTGC TCATCCGCCTAGTCAAGCACTGGTACCAAAATTGTAAGAAGAAGCTTGGGAAGCTGC
L3_M33863_ L2_X58077_ L1_M55982_ h0AS1_X02874_	CTCCACAGTACGCCCTAGAGTTGCTCACTGTCTTTGCCTGGGAACAAGGGAATGGATGTT CCCCACAGTATGCCCTGGAGCTACTCACTGTCTATGCCTGGGAACAGGGGAATGGATGTA CCCCACAGTATGCCCTGGAGCTGCTCACACTCGATGCCTGGGAGTATGGGAGTCGAGTAA CACCTCAGTATGCCCTGGAGCTCCTGACGGTCTATGCTTGGGAGCGAGGGAGCATGAAAA
L3_M33863_ L2_X58077_ L1_M55982_ h0AS1_X02874_	ATGAGTTCAACACAGCCCAGGGCTTCCGGACCGTCTTGGAACTGGTCATCAATTATCAGC ATGAGTTCAACACAGCCCAGGGCTTCCGGACCGTCTTGGAACTGGTCATCAATTATCAGC CTAAATTCAACACAGCCCAGGGCTTCTGAACCGTCTTGGAACTGGTCACCAAGTACAAAC CACATTTCAACACAGCCCAAGGATTTCGGACGGTCTTGGAATTAGTCATAAACTACCAGC
L3_M33863_ L2_X58077_ L1_M55982_ hOAS1_X02874_	ATCTTCGAATCTACTGGACAAAGTATTATGACTTTCAACACCAGGAGGTCTCCAAATACC ATCTTCGAATCTACTGGACAAAGTATTATGACTTTCAACACAAGGAGGTCTCCAAATACC AGCTTCAAATCTACTGGACAAGTATTATGACTTTCAACACAAGAGGTCTCTGAATACC AACTCTGCATCTACTGGACAAAGTATTATGACTTTAAAAAACCCCATTATTGAAAAGTACC
L3_M33863_ L2_X58077_ L1_M55982_ h0AS1_X02874_	TGCACAGACAGCTCAGAAAAGCCAGGCCTGTGATCCTGGACCCAGCTGACCCAACAGGGA TGCACAGACAGCTCAGAAAAGCCAGGCCTGTGATCCTGGACCCAGCTGACCCGACAGGGA TGCACCAACAGCTCAAAAAAA TGAGAAGGCAGCTCACGAAACCCCAGGCCTGTGATCCTGGACCCGGCGGACCCTACAGGAA
L3_M33863 L2_X58077_ L1_M55982_ h0AS1_X02874	ATGTGGCCGGTGGGAACCCAGAGGGCTGGAGGCGGTTGGCTGAAGAGGCTGATGTGTGGC ATGTGGCTGGTGGGAACCCAGAGGGCTGGAGGCGGTTGGCTGAAGAGGCTGATGTGTGGC ACTTGGGTGGTGGAGACCCAAAGGGTTGGAGGCAGCTGGCACAAGAGGCTGAGGCCTGGC
L3_M33863_ L2_X58077_ L1_M55982_ h0A51_X02874_	TATGGTACCCATGTTTTATTAAAAAGGATGGTTCCCGAGTGAGCTCCTGGGATGTGCCGA TGTGGTACCCATGTTTTATGAAAAATGATGGTTCCCGAGTGAGCTCCTGGGATGTGCCGA TGAATTACCCATGCTTTAAGAATTGGGATGGGTCCCCAGTGAGCTCCTGGATTCTGCTGG
L3_M33863_ L2_X58077_ L1_M55982_ h0AS1_X02874_	CGGTGGTTCCTGTACCTTTTGAGCAGGTAGAAGAGAACTGGACATGTATCCTGCTGTGAG CGGTGGTTCCTGTACCTTTTGAGCAGGTGGAGGAGAACTGGACATGTATCCTGCTGTGAG 



L3_M33863_ L2_X58077_ L1_M55982_ h0AS1_X02874_	CACAGCAGCACCTGCCCAGGAGACTGCTGGTCAGGGGCATTTGCTGCTGCTGCAGGCCCCACAGCAGCACCTGCCCAGGAGACTGCTGGTCAGGGGCATTTGCTGCTGCTGCAGGCCCGCCAGGAGACCATTCTTTCCAAAGAACTTACCTCT-TGCCAAAGGCC
L3_M33863_ L2_X58077_ L1_M55982_ hOAS1_X02874_	CATGACCCAGTGAGGGAGGGCCCCACCTGGCATCAGACTCCGTGCTTCTGATGCCTGCC
L3_M33863_ L2_X58077_ L1_M55982_ h0AS1_X02874_	GCCATGTTTGACTCCTGTCCAATCACAGCCAGCCTTCCTCAACAGATTCAGAAGGAGAGG GCCATGTTTGACTCCTGTCCAATCACAGCCAGCCTTCCTCAACAGATTCAGAAGGAGAGG 
L3_M33863_ L2_X58077_ L1_M55982_ h0AS1_X02874_	AAAGAACACACGCTTGGTGTCCATCTGTCCACCTGTTGGAAGGTTCTGTCTG
L3_M33863_ L2_X58077_ L1_M55982_ h0AS1_X0Z874_	TGATCAACAATAAACCACAGCAGGTGCC-GTCA TGATCAACAATAAACCACAGCAGGTGCCCGTCA

FIGURE 3C

L1_MS598Z_

#### Résultat CLUSTALW

Séquence 1: hOAS1_X02874_ 364 aa 367 aa Séquence 2 : L3_M33863_ Séquence 3 : L2_X58077_ 367 aa Séquence 4 : L1_M55982_ 251 aa Alignement... Séquences (3:4) alignées Score: 66 Séquences (1:2) alignées Score: 67 Séquences (2:3) alignées Score: 95 Score: 66 Séquences (2:4) alignées Séquences (1:3) alignées Score: 67 Score: 58 Séquences (1:4) alignées Alignement... Score: 6013 Groupe 1 : séquences : 2 Score: 5336 Groupe 2 : séquences : 3 Score: 3306 Groupe 3 : séquences : 4 Score d'alignement 8114 L3_M33863_(SEOIDNO:24)MEHGLRSIPAWTLDKFIEDYLLPDTTFGADVKSAVNVVCDFLKERCFOGAAHPVRVSKVV L2_X58077_(SEQIDNO:26)MEHGLRSIPAWTLDKFIEDYLLPDTTFGADVKSAVNVVCDFLKERCFQGAAHPVRVSKVV HOAS1_X02874_(SEQIDNO:30)MANDLRNTPAKSLDKFIEDYLLPDTCFRMQIDHAIDIICGFLKERCFRGSSYPVCVSKVV L1_M55982_(SEQIDNO:28)MEQDLRSIPASKLDKFIEN-HLPDTSFCADLREVIDALCALLKDRSFRGPVRRMRASKGV KGGSSGKGTTLKGRSDADLVVFLNNLTSFEDQLNRRGEFIKEIKXQLYEVQHERRFRVKF KGGSSGKGTTLKGRSDADLVVFLNNLTSFEDQLNRRGEFIKEIKXQLYEVQHERRFRVKF L3_M33863_ L2_X58077_ hOAS1_X02874_ KGGSSGKGTTLRGRSDADLVVFLSPLTTFQDQLNRRGEFIQEIRRQLEACQRERALSVKF KG----KGTALKGRSDADLVVFLNNLTSFEDQLNQQGVLIKEIKKQLCEVQHERRCGVKF L1_M55982_ EVQSSWWPNARSLSFKLSAPHLHQEVEFDVLPAFDVLGHVNTSSKPDPRIYAILIEECTS EVQSSWWPNARSLSFKLSAPHLHQEVEFDVLPAFDVLGHGSINKKPNPLIYTILIWECTS L3_M33863_ L2_X58077_ EVQAPR#GNPRALSFVLSSLQLGEGVEFDVLPAFDALGQLTGSYKPNPQIYVKLIEECTD EVHSLRSPNSRALSFKLSAPDLLKEVKFDVLPAYDLLDHLNILKKPNQQFYANLISGVPhOAS:_X02374_ L1_M55982_ L3_M33863_ LGKDGEFSTCFTELQRNFLKQRPTKLKSLIRLVKHWYQLCKEKLGKPLPPQYALELLTVF LGKDGEFSTCFTELQRNFLKQRPTKLKSLIRLVKHWYQLCKEKLGKPLPPQYALELLTVY LZ_X58077_ LQKEGEFSTCFTELQRDFLKQRPTKLKSLIRLVKHMYQNCKXKLGK-LPPQYALELLTVY AGKEGKLSICFMGLQKYFLNCRPTKLKRLIRLVTHMYQLCKEKLGDPLPPQYALELLTLD HOAS1_X02874_ L1_M55982_ L3_M33863_ AWEQGNGCYEFNTAQGFRTVLELVINYQHLRIYWTKYYDFQHQEV5KYLHRQLRKARPVI L2_X58077_ **AWEQGNGCNEFNTAQGFRTVLELVINYQHLRIYWTKYYDFQHKEVSKYLHRQLRKARPVI** AWERGSMKTHFNTAQGFRTVLELVINYQQLCIYWTKYYDFKNPIIEKYLRRQLTKPRPVI hOAS1_X02874_ AWEYGSRVTKFNTAQGF------L1_M55982_ L3_M3863_ LDPADPTGNVAGGNPEGWRRLAEEADVWLWYPCFIKKDGSRVSSWDVPTVVPVPFEOVEE LDPADPTGNVAGGNPEGWRRLAEEADVWLWYPCFMKNDGSRVSSWDVPTVVPVPFEOVEE L2_X58077_ hOAS1_X02874_ LDPADPTGNLGGGDPKGWRQLAQEAEAWLNYPCFKNWDGSPVSSWILLVRPPASSLPFIP L1_M55982_ L3_M33863_ NWTCILL NWTCILL L2_X58077_ hOAS1_X02874_ APLHEA-

CI FLA	C MSKKPGGPGKSRAVNMLKRGMPRVLSLIGLKRAMLSLIDGKGPIRFVLAL MSKKPGGPGKSRAVNMLKRGMPRVLSLIGLKRAMLSLIDGKGPIRFVLAL
CI FLA	LAFFRFTAIAPTRAVLORWRÖVNKQTAMKHLLSFKKELGTLTSAINRRSS LAFFRFTAIAPTRAVLDRWRGVNKQTAMKHLLSFKKELGTLTSAINRRSS
CI	prm KokkrocktgiavmigliasvgavtlsnfQgkvmmtvnatdvtdvitipt
FLA	KQKKRGGKTGIAVMIGLIASVGAVTLSNFQGKVMMTVNATDVTDVITIPT
CI FLA	AAGKNLCIVRAMDVGYMCDDTITYECPVLSAGNDPEDIDCWCTKSAVYVR AAGKNLCIVRAMDVGYMCDDTITYECPVLSAGNDPEDIDCWCTKSAVYVR
	М
CI FLA	YGRCTKTRHSRRSRRSLTVQTHGESTLANKKGAWMDSTKATRYLVKTESW YGRCTKTRHSRRSRRSLTVQTHGESTLANKKGAWMDSTKATRYLVKTESW
CI FLA	ILRNPGYALVAAVIGWMLGSNTMQRVVFVVLLLLVAPAYSFNCLGMSNRD ILRNPGYALVAAVIGWMLGSNTMQRVVFVVLLLLVAPAYSFNCLGMSNRD
CI	FLEGVSGATWVDLVLEGDSCVTIMSKDKPTIDVKMMNMEAANLAEVRSYC
FLA	FLEGVSGATWVDLVLEGDSCVTIMSKDKPTIDVKMMNMEAVNLAEVRSYC
CI FLA	YLATVSDLSTKAACPTMGEAHNDKRADPAFVCRQGVVDRGWGNGCGLFGK YLATVSDLSTKAACPTMGEAHNDKRADPAFVCRQGVVDRGWGNGCGLFGK
CI FLA	GSIDTCAKFACSTKAIGRTILKENIKYEVAIFVHGPTTVESHGNYSTQVG GSIDTCAKFACSTKAIGRTILKENIKYEVAIFVHGPTTVESHGNYSTQVG
Cī FLA	ATQAGRFSITPAAPSYTLKLGEYGEVTVDCEPRSGIDTNAYYVMTVGTKT ATQAGRFSITPAAPSYTLKLGEYGEVTVDCEPRSGIDTNAYYVMTVGTKT
CI FLA	FLVHREWFMDLNLPWSSAGSTVWRNRETLMEFEEPHATKQSVIALGSQEG FLVHREWFMDLNLPWSSAGSTVWRNRETLMEFEEPHATKQSVIALGSQEG
CI	ALHQALAGAIPVEFSSNTVKLTSGHLKCRVKMEKLQLKGTTYGVCSKAFK
FLA	ALHQALAGAIPVEFSSNTVKLTSGHLKCRVKMEKLQLKGTTYGVCSKAFK
CI	FLGTPADTGHGTVVLELQYTGTDGPCKVPISSVASLNDLTPVGRLVTVNP
FLA	FLGTPADTGHGTVVLELQYTGTDGPCKVPISSVASLNDLTPVGRLVTVNP
CI	FVSVATANAKVLIELEPPFGDSYIVVGRGEQQINHHWHKSGSSIGKAFTT
FLA	FVSVATANAKVLIELEPPFGDSYIVVGRGEQQINHHWHKSGSSIGKAFTT

WO 02/081741



# 8/23

CI	TLKGAQRLAALGDTAWDFGSVGGVFTSVGKAVHQVFGGAFRSLFGGMSWI
FLA	TLKGAQRLAALGDTAWDFGSVGGVFTSVGKAVHQVFGGAFRSLFGGMSWI
CI FLA	NS1 TQGLLGALLLWMGINARDRSIALTFLAVGGVLLFLSVNVHADTGCAIDIS TQGLLGALLLWMGINARDRSIALTFLAVGGVLLFLSVNVHADTGCAIDIS
CI	RQELRCGNGVFIHNDVEAWMDRYKYYPETPQGLAKIIQKAHKEGVCGLRS
FLA	RQELRCGSGVFIHNDVEAWMDRYKYYPETPQGLAKIIQKAHKEGVCGLRS
CI	VSRLEHQMWEAVKDELNTLLKENGVDLSVVVEKQEGMYKSAPKRLTATTE
FLA	VSRLEHQMWEAVKDELNTLLKENGVDLSVVVEKQEGMYKSAPKRLTATTE
CI	KLEIGWKAWGKSILFAPELANNTFVVDGPETKECPTQNRAWNSLEVEDFG
FLA	KLEIGWKAWGKSILFAPELANNTFVVDGPETKECPTQNRAWNSLEVEDFG
CI	FGLTSTRMFLKVRESNTTECDSKIIGTAVKNNLAIHSDLSYWIESRLNDT
FLA	FGLTSTRMFLKVRESNTTECDSKIIGTAVKNNLAIHSDLSYWIESRLNDT
CI	WKLERAVLGEVKSCTWPETHTLWGDGILESDLIIPVTLAGPRSNHNRRPG
FLA	WKLERAVLGEVKSCTWPETHTLWGDGILESDLIIPVTLAGPRSNHNRRPG
CI	YKTQNQGPWDEGRVEIDFDYCPGTTVTLSESCGHRGPATRTTTESGKLIT
FLA	YKTQNQGPWDEGRVEIDFDYCPGTTVTLSESCGHRGPATRTTTESGKLIT
CI FLA	NS2A DWCCRSCTLPPLRYQTDSGCWYGMEIRPQRHDEKTLVQSQVNAYNADMID DWCCRSCTLPPLRYQTDSGCWYGMEIRPQRHDEKTLVQSQVNAYNADMID
CI	PFQLGLLVVFLATQEVLRKRWTAKISMPAILIALLVLVFGGITYTDVLRY
FLA	PFQLGLLVVFLATQEVLRKRWTAKISMPAILIALLVLVFGGITYTDVLRY
CI	VILVGAAFAESNSGGDVVHLALMATFKIQPVFMVASFLKARWTNQENILL
FLA	VILVGAAFAESNSGGDVVHLALMATFKIQPVFMVASFLKARWTNQENILL
CI	MLAAVFFQMAYHDARQILLWEIPDVLNSLAVAWMILRAITFTTTSNVVVP
FLA	MLAAVFFQMAYHDARQILLWEIPDVLNSLAVAWMILRAITFTTTSNVVVP
CI	LLALLTPRLRCLNLDVYRILLLMVGIGSLIREKRSAAAKKKGASLLCLAL
FLA	LLALLTPGLRCLNLDVYRILLLMVGIGSLIREKRSAAAKKKGASLLCLAL
CI FLA	NS2B ASTGLFNPMILAAGLIACDPNRKRGWPATEVMTAVGLMFAIVGGLAELDI ASTGLFNPMILAAGLIACDPNRKRGWPATEVMTAVGLMFAIVGGLAELDI
CI	DSMAIPMTIAGLMFAAFVISGKSTDMWIERTADISWESDAEITGSSERVD
FLA	DSMAIPMTIAGLMFAAFVISGKSTDMWIERTADISWESDAEITGSSERVD
CI	VRLDDGENFQLMNDPGAPWKIWMLRMVCLAISAYTPWAILPSVVGFWITL FIGURE 5B





	9/23
FLA	VRLDDDGNFQLMNDPGAPWKIWMLRMVCLAISAYTPWAILPSVVGFWITI
CI FLA	NS3 QYTKRGGVLWDTPSPKEYKKGDTTTGVYRIMTRGLLGSYQAGAGVMVEGV QYTKRGGVLWDTPSPKEYKKGDTTTGVYRIMTRGLLGSYQAGAGVMVEGV
CI	FHTLWHTTKGAALMSGEGRLDPYWGSVKEDRLCYGGPWKLQHKWNGQDEV
FLA	FHTLWHTTKGAALMSGEGRLDPYWGSVKEDRLCYGGPWKLQHKWNGQDEV
CI	QMIVVEPGKNVKNVQTKPGVFKTPEGEIGAVTLDFPTGTSGSPIVDKNGD
FLA	QMIVVEPGKNVKNVQTKPGVFKTPEGEIGAVTLDFPTGTSGSPIVDKNGD
CI	VIGLYGNGVIMPNGSYISAIVQGERMDEPIPAGFEPEMLRKKQITVLDLH
FLA	VIGLYGNGVIMPNGSYISAIVQGERMDEPIPAGFEPEMLRKKQITVLDLH
CI	PGAGKTRRILPQIIKEAINRRLRTAVLAPTRVVAAEMAEALRGLPIRYQT
FLA	PGAGKTRRILPQIIKEAINRRLRTAVLAPTRVVAAEMAEALRGLPIRYQT
CI	SAVPREHNGNEIVDVMCHATLTHRLMSPHRVPNYNLFVMDEAHFTDPASI
FLA	SAVPREHNGNEIVDVMCHATLTHRLMSPHRVPNYNLFVMDEAHFTDPASI
CI	AARGYISTKVELGEAAAIFMTAT?PGTSDPFPESNSPISDLQTEIPDRAW
FLA	AARGYISTKVELGEAAAIFMTAT?PGTSD?F?PESNSPISDLQTEIPDRAW
CI	NSGYEWITEYTGKTVWFVPSVKMGNEIALCLQRAGKKVVQLNRKSYETEY
FLA	NSGYEWITEYTGKTVWFVPSVKMGNEIALCLQRAGKKVVQLNRKSYETEY
CI	PKCKNDDWDFVITTDISEMGANFKASRVIDSRKSVKPTIITEGEGRVILG
FLA	PKCKNDDWDFVITTDISEMGANFKASRVIDSRKSVKPTIITEGEGRVILG
CI	EPSAVTAASAAQRRGRIGRNPSQVGDEYCYGGHTNEDDSNFAHWTEARIM
FLA	EPSAVTAASAAQRRGRIGRNPSQVGDEYCYGGHTNEDDSNFAHWTEARIM
CI	PDNINMPNGLIAQFYQPEREKVYTMEGEYRLRGEERKNFLELLRTADLPV
FLA	LDNINMPNGLIAQFYQPEREKVYTMDGEYRLRGEERKNFLELLRTADLPV
CI	WLAYKVAAAGVSYHDRRWCFDGPRTNTILEDNNEVEVITKLGERKILRPR
FLA	WLAYKVAAAGVSYHDRRWCFDGPRTNTILEDNNEVEVITKLGERKILRPR
CI FLA	NS4A WIDARVYSDHQALKAFKDFASGKRSQIGLIEVLGKMPEHFMGKTWEALDT WIDARVYSDHQALKAFKDFASGKRSQIGLIEVLGKMPEHFMGKTWEALDT
CI	MYVVATAEKGGRAHRMALEELPDALQTIALIALLSVMTMGVFFLLMQRKG
FLA	MYVVATAEKGGRAHRMALEELPDALQTIALIALLSVMTMGVFFLLMQRKG
CI	IGKIGLGGAVLGVATFFCWMAEVPGTKIAGMLLLSLLLMIVLIPEPEKQR





	10/ 23
FLA	IGKIGLGGAVLGVATFFCWMAEVPGTKIAGMLLLSLLLMIVLIPEPEKQR
CI FLA	NS49 SQTDNQLAVFLICVMTLVSAVAANEMGWLDKTKSDISSLFGQRIEVKENF SQTDNQLAVFLICVMTLVSAVAANEMGWLDKTKSDISSLFGQRIEVKENF
CI	SMGEFLLDLRPATAWSLYAVTTAVLTPLLXHLITSDYINTSLTSINVQAS
FLA	SMGEFLLDLRPATAWSLYAVTTAVLTPLLXHLITSDYINTSLTSINVQAS
CI	ALFTLARGFPFVDVGVSALLLAAGCWGQVTLTVTVTAATLLFCHYAYMVP
FLA	ALFTLARGFPFVDVGVSALLLAAGCWGQVTLTVTVTAATLLFCHYAYMVP
CI	GWQAEAMRSAQRRTAAGIMKNAVVDGIVATDVPELERTTPIMQKKVGQIM
FLA	GWQAEAMRSAQRRTAAGIMKNAVVDGIVATDVPELERTTPIMQKKVGQIM
CI	LILVSLAAVVVNPSVKTVREAGILITAAAVTLWENGASSVWNATTAIGLC
FLA	LILVSLAAVVVNPSVKTVREAGILITAAAVTLWENGASSVWNATTAIGLC
CI FLA	NS5 HIMRGGWLSCLSITWTLIKNMEKPGLKRGGAKGRTLGEVWKERLNQMTKE HIMRGGWLSCLSITWTLIKNMEKPGLKRGGAKGRTLGEVWKERLNQMTKE
CI	EFTRYRKEAIIEVDRSAAKHARKEGNVTGGHSVSRGTAKLRWLVERRFLE
FLA	EFTRYRKEAIIEVDRSAAKHARKEGNVTGGHPVSRGTAKLRWLVERRFLE
CI	PVGKVIDLGCGRGGWCYYMATQKRVQEVRGYTKGGPGHEEPQLVQSYGWN
FLA	PVGKVIDLGCGRGGWCYYMATQKRVQEVRGYTKGGPGHEEPQLVQSYGWN
CI	IVTMKSGVDVFYRPSECCDTLLCDIGESSSSAEVEEHRTIRVLEMVEDWL
FLA	IVTMKSGVDVFYRPSECCDTLLCDIGESSSSAEVEEHRTIRVLEMVEDWL
CI	HRGPREFCVKVLCPYMPKVIEKMELLQRRYGGGLVRNPLSRNSTHEMYWV
FLA	HRGPREFCVKVLCPYMPKVIEKMELLQRRYGGGLVRNPLSRNSTHEMYWV
CI	SRASGNVVHSVNMTSQVLLGRMEKRTWKGPQYEEDVNLGSGTRAVGKPLL
FLA	SRASGNVVHSVNMTSQVLLGRMEKRTWKGPQYEEDVNLGSGTRAVGKPLL
CI	NSDTSKINNRIERLRREYSSTWHHDENHPYRTWNYHGSYDVKPTGSASSL
FLA	NSDTSKIKNRIERLRREYSSTWHHDENHPYRTWNYHGSYDVKPTGSASSL
CI	VNGVVRLLSKPWDTITNVTTMAMTDTTPFGQQRVFKEKVDTKAPEPPEGA
FLA	VNGVVRLLSKPWDTITNVTTMAMTDTTPFGQQRVFKEKVDTKAPEPPEGV
CI	KYVLNETTNWLWAFLAREKRPRMCSREEFIRKVNSNAALGAMFEEQNQWR
FLA	KYVLNETTNWLWAFLAREKRPRMCSREEFIRKVNSNAALGAMFEEQNQWR
CI	SAREAVEDPKFWEMVDEEREAHLRGECHTCIYNMMGKREKKPGEFGKAKG

FIGURE 5D

· ·



	•
FLA	SAREAVEDPKFWEMVDEEREAHLRGECHTCIYNMMGKREKKPGEFGKAKG
CI	SRAIWFMWLGARFLEFEALGFLNEDHWLGRKNSGGGVEGLGLQKLGYILR
FLA	SRAIWFMWLGARFLEFEALGFLNEDHWLGRKNSGGGVEGLGLQKLGYILR
CI	EVGTRPGGKIYADDTAGWDTRITRADLENEAKVLELLDGEHRRLARAIIE
FLA	EVGTRPGGKIYADDTAGWDTRITRADLENEAKVLELLDGEHRRLARAIIE
CI	LTYRHKVVKVMRPAADGRTVMDVISREDQRGSGQVVTYALNTFTNLAVQL
FLA	LTYRHKVVKVMRPAADGRTVMDVISREDQRGSGQVVTYALNTFTNLAVQL
CI	VRMMEGEGVIGPDDVEKLTKGKGPKVRTWLFENGEERLSRMAVSGDDCVV
FLA	VRMMEGEGVIGPDDVEKLTKGKGPKVRTWLFENGEERLSRMAVSGDDCVV
CI	KPLDDRFATSLHFLNAMSKVRKDIQEWKPSTGWYDWQQVPFCSNHFTELI
FLA	KPLDDRFATSLHFLNAMSKVRKDIQEWKPSTGWYDWQQVPFCSNHFTELI
CI	MKDGRTLVVPCRGQDELVGRARISPGAGWNVRDTACLAKSYAQMWLLLYF
FLA	MKDGRTLVVPCRGQDELVGRARISPGAGWNVRDTACLAKSYAQMWLLLYF
CI FLA	HRRDLRLMANAICSAVPVNWVPTGRTTWSIHAGGEWMTTEDMLEVWNRVWHRRDLRLMANAICSAVPVNWVPTGRTTWSIHAGGEWMTTEDMLEVWNRVW
CI	IEENEWMEDKTPVEKWSDVPYSGKREDIWCGSLIGTRARATWAENIQVAI
FLA	IEENEWMEDKTPVEKWSDVPYSGKREDIWCGSLIGTRARATWAENIQVAI
CI	NQVRAIIGDEKYVDYMSSLKRYEDTTLVEDTVL
FLA	NQVRAIIGDEKYVDYMSSLKRYEDTTLVEDTVL



FIGURE 6



FIGURE 7

### Souris

Lignées consanguines de laboratoire :

BALB/c, C57BL/6, DDK, 129, C3H et DBA/1

→ sensibles à l'infection par le virus WN

Souris sauvages:

SEG/Pas (Mus spretus), MAI/Pas, MBT/Pas (Mus m. musculus)

→ résistantes à l'infection par le virus WN

## Génération de souris de premier croisement en retour (BC1)



Virus Injection du virus West Nile (WN)

Souris âgées de 5 semaines

Observation des souris pendant les 14 jours suivant l'infection

## Génotypage des allèles Flv

marqueurs flanquant le locus Flv sur le chromosome 5 de la souris

14/23



Lancus

D5Afit17

D5Afit134

D5Afit138

D5Afit1321

D5Afit321

D5Afit321

D5Afit321

D5Afit321

D5Afit321

D5Afit321

FIGURE 9

15/23

## Parents de la génération de premier croisement en retour (BC1)



FIGURE 10



Phénotype Flv*	Survivants	Morts	Total
Résistant (Flv ^r /Flv ^s )	108	0	108 (55%)
Sensible (Flv ^s /Flv ^s )	21	74	95 (45%)
Total	129 (66%)	74 (34%)	203

^{*} un allèle Flv est suffisant pour conférer la résistance

Figure 12









Contrôle

Souche IS-98-ST1 (m.i. de 4) 24 h d 'infection

FIGURE 15

## 4 UFF/cell.



Contrôle



INF-c: (20 UI/ml)

# 0,1 UFF/cell.



Contrôle



INF-α (10 UI/ml)

FIGURE 16



> Exon I

AGGCTTGGATGGGGAGGTACCTGTTCAGAAGCCCTAACGCCATTGGCTGCTCGGGCCTG
GATGATTTGCATATCCGCGCCCTTCCCGGGAAATGGAAACTGAAAGTCCCATTTCTGCTT
F1 (SEQIDNO:9)
CAGCCAGCCTAGGAGACACAGGACCTGCTGGCTGCAGAGGTAAAAGCTGGACCTAGGA
TGGAGCAGGATCTGAGGAGCATCCCGGCCTCGAAGCTTGATAAGTTCATAGAGAAC
CATCTCCCGGACACCAGCTTCTGTGCTGACCTCAGAGAAGTCATAGATGCCCTGTG
TGCTCTCCTGAAGGACAGATCCTTCCGGGGCCCCGTCCGCCGAATGAGGGCCTCT
(SEQIDNO:10)
AAAGGGGTCAAGGTGAGCCTTCCTCAGCCTGAGCTGGCCGAGATGAGGTGGGACAGG
RI
ACTTTCAGAAGCCAGGCTGCAACCCTGATCCCTCTTAATTCTGATCACAGCTGGCGA
TGGGTTCTTCCCCCCAAGTCCCACATCTGTATTGGAGAAGGAGCCTCAGCTACAGTTTAI
(SEQIDNO:11)
R2
GTTCCCCCACTCCCAGGCCATTCCATTTCAGAGTCGGGGAAACTGAGGCCCAGAATGGC

> Exon 3

- . \



### > Exon 4 (terminal)

FIGURE 17 (suite)

### LISTE DE SEQUENCES

<110> INSTITUT PASTEUR
 CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS)
 GUENET, Jean-Louis
 MASHIMO, Tomoji
 SIMON-CHAZOTTES, Dominique
 MONTAGUTELLI, Xavier
 FRENKIEL, Marie-Pascale
 DESPRES, Philippe
 DEUBEL, Vincent
 BONHOMME, François
 LUCAS, Marianne

<120> Utilisation des produits des gènes de la famille 2'-5' oligoadénylate synthétase (OAS) pour le criblage d'antiviraux et la détection de la sensibilité à l'infection par les Flaviviridae.

<130> F226/CAS92 PCT <140> <141> <160> 32 <170> PatentIn Ver. 2.1 <210> 1 <211> 11029 <212> ADN <213> Flavivirus sp. <220> <221> CDS <222> (97)..(10395) · agtagttege etgtgtgage tgacaaaett agtagtgttt gtgaggatta acaacaatta 60 acacagtgcg agctgtttct tagcacgaag atctcg atg tct aag aaa cca gga Met Ser Lys Lys Pro Gly 162 ggg ccc ggc aag agc cgg gct gtc aat atg cta aaa cgc gga atg ccc Gly Pro Gly Lys Ser Arg Ala Val Asn Met Leu Lys Arg Gly Met Pro cgc gtg ttg tcc ttg att gga ctg aag agg gct atg ttg agc ctg atc 210 Arg Val Leu Ser Leu Ile Gly Leu Lys Arg Ala Met Leu Ser Leu Ile 25 gac ggc aag ggg cca ata cga tit gtg ttg gct ctc ttg gcg ttc ttc · 258 Asp Gly Lys Gly Pro Ile Arg Phe Val Leu Ala Leu Leu Ala Phe Phe 40 agg ttc aca gca att gct ccg acc cga gca gtg ctg gat cga tgg aga Arg Phe Thr Ala Ile Ala Pro Thr Arg Ala Val Leu Asp Arg Trp Arg 60 55 ggt gtg aat aaa caa aca gcg atg aaa cac ctt ctg agt ttt aag aag 354 Gly Val Asn Lys Gln Thr Ala Met Lys His Leu Leu Ser Phe Lys Lys 75 80

WO 02/081741 PCT/FI 2/42

									2/4	Z						
gaa Glu	cta Leu	ggg Gly	acc Thr 90	ttg Leu	acc Thr	agt Ser	gct Ala	atc Ile 95	aat Asn	cgg Arg	cgg Arg	agc Ser	tca Ser 100	aaa Lys	caa Gln	402
aag Lys	aaa Lys	aga Arg 105	gga Gly	gga Gly	aag Lys	acc Thr	gga Gly 110	att Ile	gca Ala	gtc Val	atg Met	att Ile 115	ggc	ctg Leu	atc Ile	450
gcc Ala	agc Ser 120	gta Val	gga Gly	gca Ala	gtt Val	acc Thr 125	ctc Leu	tct Ser	aac Asn	ttc Phe	caa Gln 130	ggg Gly	aag Lys	gtg Val	atg Met	498
atg Met 135	acg Thr	gta Val	aat Asn	gct Ala	act Thr 140	gac Asp	gtc Val	aca Thr	gat Asp	gtc Val 145	atc Ile	acg Thr	att Ile	cca Pro	aca Thr 150	546
gct Ala	gct Ala	gga Gly	aag Lys	aac Asn 155	cta Leu	tgc Cys	att Ile	gtc Val	aga Arg 160	gca Ala	atg Met	gat Asp	gtg Val	gga Gly 165	tac Tyr	594
atg Met	tgc Cys	gat Asp	gat Asp 170	act Thr	atc Ile	act Thr	tat Tyr	gaa Glu 175	tgc Cys	cca Pro	gtg Val	ctg Leu	tcg Ser 180	gct Ala	ggt Gly	642
aat Asn	gat Asp	cca Pro 185	gaa Glu	gac Asp	atc Ile	gac Asp	tgt Cys 190	tgg Trp	tgc Cys	aca Thr	aag Lys	tca Ser 195	gca Ala	gtc Val	tac Tyr	690
gtc Val	agg Arg 200	tat Tyr	gga Gly	aga Arg	tgc Cys	acc Thr 205	aag Lys	aca Thr	cgc Arg	cac His	tca Ser 210	aga Arg	cgc Arg	agt Ser	cgg Arg	738
agg Arg 215	tca Ser	ctg Leu	aca Thr	gtg Val	cag Gln 220	aca Thr	cac His	gga Gly	gaa Glu	agc Ser 225	act Thr	cta Leu	gcg Ala	aac Asn	aag Lys 230	786
aag Lys	Gly Ggg	gct Ala	tgg Trp	atg Met 235	gac Asp	agc Ser	acc Thr	aag Lys	gcc Ala 240	aca Thr	agg Arg	tat Tyr	ttg Leu	gta Val 245	aaa Lys	834
aca Thr	gaa Glu	tca Ser	tgg Trp 250	atc Ile	ttg Leu	agg Arg	aac Asn	cct Pro 255	ġga Gly	tat Tyr	gcc Ala	ctg Leu	gtg Val 260	gca Ala	gcc Ala	882
gtc Val	att Ile	ggt Gly 265	tgg Trp	atg Met	ctt Leu	ggg Gly	agc Ser 270	aac Asn	acc Thr	atg Met	cag Gln	aga Arg 275	gtt Val	gtg Val	ttt Phe	930
gtc Val	gtg Val 280	cta Leu	ttg Leu	ctt Leu	ttg Leu	gtg Val 285	gcc Ala	cca Pro	gct Ala	tac Tyr	agc Ser 290	ttt Phe	aac Asn	tgc Cys	ctt Leu	978
gga Gly 295	atg Met	agc Ser	aac Asn	aga Arg	gac Asp 300	ttc Phe	ttg Leu	gaa Glu	gga Gly	gtg Val 305	tct Ser	gga Gly	gca Ala	aca Thr	tgg Trp 310	1026
gtg Val	gat Asp	ttg Leu	gtt Val	ctc Leu 315	gaa Glu	ggc Gly	gac Asp	agc Ser	tgc Cys 320	gtg Val	act Thr	atc Ile	atg Met	tct Ser 325	aag Lys	1074

 $x^{1} \rightarrow \infty$ 

						,		)							_	
	wo	02/08	1741						3/4	2					P	CT/FI
					gat Asp											1122
ctg Leu	gca Ala	gag Glu 345	gtc Val	cgc Arg	agt Ser	tat Tyr	tgc Cys 350	tat Tyr	ttg Leu	gct Ala	acc Thr	gtc Val 355	agc Ser	gat Asp	ctc Leu	1170
tcc Ser	acc Thr 360	aaa Lys	gct Ala	gcg Ala	tgc Cys	ccg Pro 365	acc Thr	atg Met	gga Gly	gaa Glu	gct Ala 370	cac His	aat Asn	gac Asp	aaa Lys	1218
cgt Arg 375	gct Ala	gac Asp	cca Pro	gct Ala	ttt Phe 380	gtg Val	tgc Cys	aga Arg	caa Gln	gga Gly 385	gtg Val	gtg Val	gac Asp	agg Arg	ggc Gly 390	1266
tgg Trp	ggc Gly	aac Asn	ggc Gly	tgc Cys 395	gga Gly	cta Leu	ttt Phe	ggc Gly	aaa Lys 400	gga Gly	agc Ser	att Ile	gac Asp	aca Thr 405	tgc Cys	1314
gcc Ala	aaa Lys	ttt Phe	gcc Ala 410	tgc Cys	tct Ser	acc Thr	aag Lys	gca Ala 415	ata Ile	gga Gly	aga Arg	acc Thr	atc Ile 420	ttg Leu	aaa Lys	1362
gag Glu	aat Asn	atc Ile 425	aag Lys	tac Tyr	gaa Glu	gtg Val	gcc Ala 430	att Ile	ttt Phe	gtc Val	cat His	gga Gly 435	cca Pro	act Thr	act Thr	1410
gtg Val	gag Glu 440	tcg Ser	cac His	gga Gly	aac Asn	tac Tyr 445	tcc Ser	aca Thr	cag Gln	gtt Val	gga Gly 450	gcc Ala	act Thr	cag Gln	gca Ala	1458
ggg Gly 455	aga Arg	ttc Phe	agc Ser	atc Ile	act Thr 460	cct Pro	gcg Ala	gcg Ala	cct Pro	tca Ser 465	tac Tyr	aca Thr	cta Leu	aag Lys	ctt Leu 470	1506
gga Gly	gaa Glu	tat Tyr	gga Gly	gag Glu 475	gtg Val	aca Thr	gtg Val	gac Asp	tgt Cys 480	gaa Glu	cca Pro	cgg Arg	tca Ser	ggg Gly 485	att Ile	1554
					tac Tyr											1602
gtc Val	cat His	cgt Arg 505	gag Glu	tgg Trp	ttc Phe	atg Met	gac Asp 510	ctc Leu	aac Asn	ctc Leu	cct Pro	tgg Trp 515	agc Ser	agt Ser	gct Ala	1650
gga Gly	agt Ser 520	act Thr	gtg Val	tgg Trp	agg Arg	aac Asn 525	aga Arg	gag Glu	acg Thr	tta Leu	atg Met 530	gag Glu	ttt Phe	gag Glu	gaa Glu	1698
cca Pro	cac His	gcc Ala	acg Thr	aag Lys	cag Gln	tct Ser	gtg Val	ata Ile	gca Ala	ttg Leu	ggc Gly	tca Ser	caa Gln	gag Glu	gga Gly	1746

Pro His Ala Thr Lys Gln 535 540 550 gct ctg cat caa gct ttg gct gga gcc att cct gtg gaa ttt tca agc Ala Leu His Gln Ala Leu Ala Gly Ala Ile Pro Val Glu Phe Ser Ser 555 560 565

	wo	02/08	31741						4/	42						PCT/Fi
										44						
		-	-	Leu	-	tcg Ser			-	-	_	_	-	Lys	_	1842
						gga Gly										1890
						ccc Pro 605										1938
						ggc										1986
						aac Asn										2034
						tca Ser										2082
						ttt Phe										2130
						cac His 685										2178
		-				acc Thr					-	-		-		2226
						gac Asp										2274
	-		-	-	-	cat His	_								_	2322
						tgg Trp										2370
_	-		-			aat Asn 765	_	-	-				-		-	2418
		•	-			gtt Val	-							-		2466

gct gac act ggg tgt gcc ata gac atc agc cgg caa gag ctg aga tgt 2514 Ala Asp Thr Gly Cys Ala Ile Asp Ile Ser Arg Gln Glu Leu Arg Cys 795 800 805



									٠, ٠	-						
					ata Ilė											2562
tac Tyr	aag Lys	tat Tyr 825	tac Tyr	cct Pro	gaa Glu	acg Thr	cca Pro 830	caa Gln	ggc Gly	cta Leu	gcc Ala	aag Lys 835	atc Ile	att Ile	cag Gln	2610
aaa Lys	gct Ala 840	cat His	aag Lys	gaa Glu	gga Gly	gtg Val 845	tgc Cys	ggt Gly	cta Leu	cga Arg	tca Ser 850	gtt Val	tcc Ser	aga Arg	ctg Leu	2658
					gaa Glu 860											2706
					gac Asp											2754
atg Met	tac Tyr	aag Lys	tca Ser 890	gca Ala	cct Pro	aaa Lys	cgc Arg	ctc Leu 895	acc Thr	gcc Ala	acc Thr	acg Thr	gaa Glu 900	aaa Lys	ttg Leu	2802
gaa Glu	att Ile	ggc Gly 905	tgg Trp	aag Lys	gcc Ala	tgg Trp	gga Gly 910	aag Lys	agt Ser	att Ile	tta Leu	ttt Phe 915	gca Ala	cca Pro	gaa Glu	2850
					ttt Phe											2898
					gct Ala 940											2946
ttt Phe	ggt Gly	ctc Leu	acc Thr	agc Ser 955	act Thr	cgg Arg	atg Met	ttc Phe	ctg Leu 960	aag Lys	gtc Val	aga Arg	gag Glu	agc Ser 965	aac Asn	2994
					tcg Ser											3042
ttg Leu	gcg Ala	atc Ile 985	cac His	agt Ser	gac Asp	ctg Leu	tcc Ser 990	tat Tyr	tgg Trp	att Ile	gaa Glu	agc Ser 995	agg Arg	ctc Leu	aat Asn	3090
Ásp					gaa Glu l					Gly						3138
	Trp			Thr	cat His 020				Gly					Glu		3186
			Ile		gtc Val			Ala					Asn			3234

. '



			6/42		
	ggg tac aag Gly Tyr Lys 1050				
cgg gta gag Arg Val Glu 1065	g att gac ttc n Ile Asp Phe	gat tac tgc Asp Tyr Cys 1070	Pro Gly Thr	acg gtc acc Thr Val Thr 1075	ctg 3330 Leu
agt gag ago Ser Glu Ser 1080	: tgc gga cac : Cys Gly His	cgt gga cct Arg Gly Pro 1085	gcc act cgc Ala Thr Arg 1090	acc acc aca Thr Thr Thr	gag 3378 Glu .
	ttg ata aca Leu Ile Thr 1100			Cys Thr Leu	
cca ctg cgc Pro Leu Arg	tac caa act Tyr Gln Thr 1115	Asp Ser Gly	tgt tgg tat Cys Trp Tyr 1120	ggt atg gag Gly Met Glu 1125	atc 3474 Ile
aga cca cag Arg Pro Gln	g aga cat gat Arg His Asp 1130	gaa aag acc Glu Lys Thr 1135	ctc gtg cag Leu Val Gln	tca caa gtg Ser Gln Val 1140	aat 3522 Asn
gct tat aat Ala Tyr Asn 1145	gct gat atg Ala Asp Met	att gac cct Ile Asp Pro 1150	Phe Gln Leu	ggc ctt ctg Gly Leu Leu 1155	gtc 3570 Val
gtg ttc ttg Val Phe Leu 1160	gcc acc cag Ala Thr Gln	gag gtc ctt Glu Val Leu 1165	cgc aag agg Arg Lys Arg 1170	tgg aca gcc Trp Thr Ala	aag 3618 Lys
	cca gct ata Pro Ala Ile 1180			Leu Val Phe	
ggc att act Gly Ile Thr	tac act gat Tyr Thr Asp 1195	Val Leu Arg	tat gtc atc Tyr Val Ile 1200	ttg gtg ggg Leu Val Gly 1205	gca 3714 Ala
Ala Phe Ala	gaa tot aat Glu Ser Asn 1210	tcg gga gga Ser Gly Gly 1215	gac gtg gta Asp Val Val	cac ttg gcg His Leu Ala 1220	ctc 3762 Leu
	ttc aag ata Phe Lys Ile		Phe Met Val		
aaa gcg aga Lys Ala Arg 1240	tgg acc aac Trp Thr Asn	cag gag aac Gln Glu Asn 1245	att ttg ttg Ile Leu Leu 1250	atg ttg gcg Met Leu Ala	gct 3858 Ala
	caa atg gct Gln Met Ala 1260			Ile Leu Leu	
gag atc cct Glu Ile Pro	gat gtg ttg Asp Val Leu 1275	Asn Ser Leu	gcg gta gct Ala Val Ala 1280	tgg atg ata Trp Met Ile 1285	ctg 3954 Leu

*,*! . . .

# WO 02/081741 PCT/F. 7/42

aga gcc ata aca ttc aca acg aca tca aat gtg gtc gtc ccg ct Arg Ala Ile Thr Phe Thr Thr Thr Ser Asn Val Val Pro Le 1290 1295 1300	
. gcc ctg cta aca ccc cgg ctg aga tgc ttg aat ctg gat gtg ta Ala Leu Leu Thr Pro Arg Leu Arg Cys Leu Asn Leu Asp Val Ty 1305 1310 1315	ac agg 4050 /r Arg
ata ctg ctg ttg atg gtc gga ata ggc agc ttg atc agg gag at Ile Leu Leu Met Val Gly Ile Gly Ser Leu Ile Arg Glu Ly 1320 1325 1330	ag agg 4098 /s Arg
agt gca gct gca aaa aag aaa gga gca agt ctg cta tgc ttg gc Ser Ala Ala Ala Lys Lys Lys Gly Ala Ser Leu Leu Cys Leu Al 1335 1340 1345	et cta 4146 .a Leu 1350
gcc tca aca gga ctt ttc aac ccc atg atc ctt gct gct gga ct Ala Ser Thr Gly Leu Phe Asn Pro Met Ile Leu Ala Ala Gly Le 1355 1360 136	eu Ile
gca tgt gat ccc aac cgt aaa cgc gga tgg ccc gca act gaa gt Ala Cys Asp Pro Asn Arg Lys Arg Gly Trp Pro Ala Thr Glu Va 1370 1375 1380	g atg 4242 al Met
aca gct gtc ggc cta atg ttt gcc atc gtc gga ggg ctg gca ga Thr Ala Val Gly Leu Met Phe Ala Ile Val Gly Gly Leu Ala Gl 1385 1390 1395	ig ctt 4290 .u Leu
gac att gac tcc atg gcc att cca atg act atc gcg ggg ctc at Asp ·Ile Asp Ser Met Ala Ile Pro Met Thr Ile Ala Gly Leu Me 1400 1405 1410	g ttt 4338 et Phe
gct gct ttc gtg att tct ggg aaa tca aca gat atg tgg att ga Ala Ala Phe Val Ile Ser Gly Lys Ser Thr Asp Met Trp Ile Gl 1415 1420 1425	ng aga 4386 Nu Arg 1430
acg gcg gac att tcc tgg gaa agt gat gca gaa att aca ggc tc Thr Ala Asp Ile Ser Trp Glu Ser Asp Ala Glu Ile Thr Gly Se 1435 1440 144	r Ser
gaa aga gtt gat gtt cgg ctt gat gat ggt gaa aac ttc cag ct Glu Arg Val Asp Val Arg Leu Asp Asp Gly Glu Asn Phe Gln Le 1450 1455 1460	c atg 4482 u Met
aat gat cca gga gca cct tgg aag ata tgg atg ctc aga atg gt Asn Asp Pro Gly Ala Pro Trp Lys Ile Trp Met Leu Arg Met Va 1465 1470 1475	c tgt 4530 l Cys
ctc gcg att agt gcg tac acc ccc tgg gca atc ttg ccc tca gt Leu Ala Ile Ser Ala Tyr Thr Pro Trp Ala Ile Leu Pro Ser Va 1480 1485 1490	a gtt 4578 l Val
gga ttt tgg ata act ctc caa tac aca aag aga gga ggt gtg tt Gly Phe Trp Ile Thr Leu Gln Tyr Thr Lys Arg Gly Gly Val Le 1495 1500 1505	g tgg 4626 u Trp 1510
gac act ccc tca cca aag gag tac aaa aag ggg gac acg acc ac Asp Thr Pro Ser Pro Lys Glu Tyr Lys Lys Gly Asp Thr Thr Th 1515 1520 152	r Gly

8/42

gtc tac ag Val Tyr Ar	g atc atg a g Ile Met T 1530	ct cgt ggg hr Arg Gly	ctg ctc Leu Leu 1535	ggc agt Gly Ser	tat caa gca Tyr Gln Ala 1540	gga 4722 Gly
gcg ggc gt Ala Gly Va 154	1 Met Val G	aa ggt gtt lu Gly Val 1550	Phe His	Thr Leu '	tgg cat aca Trp His Thr 555	aca 4770 Thr
aaa gga gc Lys Gly Al 1560	c gct ttg a a Ala Leu M	tg agc gga let Ser Gly 1565	gag ggc Glu Gly	cgc ctg o Arg Leu i 1570	gac cca tac Asp Pro Tyr	tgg 4818 Trp
ggc agt gt Gly Ser Va 1575	l Lys Glu A	at cga ctt sp Arg Leu 80	Cys Tyr	gga gga d Gly Gly 1 1585	ccc tgg aaa Pro Trp Lys	ttg 4866 Leu 1590
cag cac aa Gln His Ly	g tgg aac g s Trp Asn G 1595	gg cag gat ly Gln Asp	gag gtg Glu Val 1600	cag atg a Gln Met I	att gtg gtg Ile Val Val 1605	gaa 4914 Glu
cct ggc aa Pro Gly Ly	g aac gtt a s Asn Val L 1610	ys Asn Val	cag acg Gln Thr 1615	aaa cca q Lys Pro (	ggg gtg ttc Gly Val Phe 1620	aaa 4962 Lys
aca cct gad Thr Pro Gla 162	u Gly Glu I	tc ggg gcc le Gly Ala 1630	gtg act Val Thr	Leu Asp 1	ttc ccc act Phe Pro Thr 635	gga 5010 Gly
aca tca gg Thr Ser Gl 1640	c tca cca a y Ser Pro I	ta gtg gac le Val Asp 1645	aaa aac Lys Asn	ggt gat g Gly Asp V 1650	gtg att ggg Val Ile Gly	ctt 5058 Leu
tat ggc aar Tyr Gly Ass 1655	t gga gtc a n Gly Val I 16	le Met Pro	Asn Gly	tca tac a Ser Tyr 1 1665	ata agc gcg [le Ser Ala	ata 5106 Ile 1670
gtg cag ggg Val Gln Gl	t gaa agg a y Glu Arg M 1675	tg gat gag et Asp Glu	cca atc Pro Ile 1680	cca gcc q Pro Ala (	gga ttc gaa Gly Phe Glu 1685	cct 5154 Pro
gag atg cto Glu Met Lev	g agg aaa a u Arg Lys L 1690	ys Gln Ile	act gta Thr Val 1695	ctg gat c Leu Asp I	ctc cat ccc Leu His Pro 1700	ggc 5202 Gly
gcc ggt aaa Ala Gly Lys 170	s Thr Arg A	gg att ctg rg Ile Leu 1710	cca cag Pro Gln	Ile Ile I	aaa gag gcc Lys Glu Ala 715	ata 5250 Ile
aac aga aga .Asn Arg Arg 1720	a ctg aga a g Leu Arg T	ca gcc gtg hr Ala Val 1725	cta gca Leu Ala	cca acc a Pro Thr A 1730	agg gtt gtg Arg Val Val	gct 5298 Ala
gct gag ato Ala Glu Met 1735	g gct gaa g t Ala Glu A . 17	la Leu Arg	Gly Leu	ccc atc c Pro Ile A .745	gg tac cag Arg Tyr Gln	aca 5346 Thr 1750
					ytt gat gtc Val Asp Val 1765	

WO 02/081741

									7/-	**						
-		Ála					Arg	ctg Leu 1775	_			His		Val	-	5442
	Tyr					Met		gag Glu			Phe					5490
Ser		Āla			Gly			tcc Ser		Lys						5538
	Ala			Phe				acc Thr	Pro					Asp		5586
			Ser					tcc Ser					Glu			5634
		Āla					Tyr	gaa Glu 1855				Glu				5682
_	Thr	_				Pro	_	gtc Val	-	-	Gly				-	5730
Leu	-			-	Ala		_	aaa Lys	-	Val		_		-	_	5778
	Tyr			Glu				tgt Cys	Lys					Asp		5826
_			Thr	_			-			_			Lys		agc Ser ·	5874
		Ile	-	-		_	Ser	gtg Val 935				Ile			-	5922
	Glu					Leu		gaa Glu			Ala					5970
Ser					Arg			atc Ile		Arg						6018
	Āsp			Cys				cac His	Thr					Ser		6066
			Trp					atc Ile 2					Ile			6114

*!* 



10

WO 02/081741

		Gly					Phe	tac Tyr 2015				Arg				6162
tat Tyr	Thr	atg Met 2025	gag Glu	ggg Gly	gaa Glu	Tyr	cgg Arg 2030	ctc Leu	aga Arg	gga Gly	Glu	gag Glu 2035	agg Arg	aaa Lys	aac Asn	6210
Phe	ctg Leu 2040	gaa Glu	ctg Leu	ttg Leu	Arg	act Thr 2045	gca Ala	gat Asp	ctg Leu	Pro	gtt Val 2050	tgg Trp	ctg Leu	gct Ala	tac Tyr	6258
aag Lys 205	Val	gca Ala	gcg Ala	Ala	gga Gly 2060	gtg Val	tca Ser	tac Tyr	His	gac Asp 2065	cgg Arg	agg Arg	tgg Trp	Cys	ttt Phe 2070	6306
			Arg					tta Leu 2					Glu			6354
gtc Val	atc Ile	Thr	aag Lys 2090	ctt Leu	ggt Gly	gaa Glu	Arg	aag Lys 2095	att Ile	ctg Leu	agg Arg	Pro	cgc Arg 2100	tgg Trp	att Ile	6402
gac Asp	Ala	agg Arg 2105	gtg Val	tac Tyr	tcg Ser	Asp	cac His 2110	cag Gln	gca Ala	cta Leu	Lys	gcg Ala 2115	ttc Phe	aag Lys	gac Asp	6450
Phe	gcc Ala 2120	tcg Ser	gga Gly	aaa Lys	Arg	tct Ser 2125	cag Gln	ata Ile	ggg Gly	Leu	att Ile 2130	gag Glu	gtt Val	ctg Leu	gga Gly	6498
	Met			His				aag Lys	Thr					Asp		6546
			Val					aaa Lys 2					His			6594
		Glu					Ala	ctt Leu 2175				Ala				6642
tta Leu	Leu	agt Ser 2185	gtg Val	atg Met	acc Thr	Met	gga Gly 190	gta Val	ttc Phe	ttc Phe	Leu	ctc Leu 195	atg Met	cag Gln	cgg Arg	6690
Lys	ggc Gly 2200	att Ile	gga Gly	aag Lys	Ile	ggt Gly 205	ttg Leu	gga Gly	ggc Gly	Ala	gtc Val 2210	ttg Leu	gga Gly	gtc Val	gcg Ala	6738
acc Thr 2215	Phe	ttc Phe	tgt Cys	Trp	atg Met 220	gct Ala	gaa Glu	gtt Val	Pro	gga Gly 225	acg Thr	aag Lys	atc Ile	Ala	gga Gly 230	6786
atg Met	ttg Leu	ctg Leu	Leu	tcc Ser 235	ctt Leu	ctc Leu	ttg Leu	atg Met 2	att Ile 240	gtg Val	cta Leu	att Ile	Pro	gag Glu 245	cca Pro	6834

, !



									11/	42						
		Gln			cag Gln		Asp					Val				6882
-	Val	-			gtg Val	Ser	-		_		Asn					6930
Leu					agt Ser					Leu						6978
gag Glu 2295	Val	aag Lys	gag Glu	Asn	ttc Phe 2300	agc Ser	atg Met	gga Gly	Glu	ttt Phe 2305	ctt Leu	ctg Leu	gac Asp	Leu	agg Arg 2310	7026
ccg Pro	gca Ala	aca Thr	Ala	tgg Trp 2315	tca Ser	ctg Leu	tac Tyr	Ala	gtg Val 2320	aca Thr	aca Thr	gcg Ala	Val	ctc Leu 2325	act Thr	7074
		Leu			ttg Leu		Thr					Asn				7122
	Ser				cag Gln	Ala					Thr					7170
Phe	ccc Pro	ttc Phe	gtc Val	gat Asp	gtt Val 2	gga Gly 2365	gtg Val	tcg Ser	gct Ala	Leu	ctg Leu 2370	cta Leu	gca Ala	gcc Ala	gga Gly	7218
tgc Cys 2375	Trp	gga Gly	caa Gln	Val	acc Thr 2380	ctc Leu	acc Thr	gtt Val	Thr	gta Val 2385	aca Thr	gcg Ala	gca Ala	Thr	ctc Leu 2390	7266
ctt Leu	ttt Phe	tgc Cys	His	tat Tyr 395	gcc Ala	tac Tyr	atg Met	Val	CCC Pro	ggt Gly	tgg Trp	caa Gln	Ala	gag Glu 2405	gca Ala	7314
atg Met	cgc Arg	Ser	gcc Ala 2410	cag Gln	cgg Arg	cgg Arg	Thr	gcg Ala 2415	gcc Ala	gga Gly	atc Ile	Met	aaa Lys 2420	aac Asn	gct Ala	7362
gta Val	Val	gat Asp 2425	ggc Gly	atc Ile	gtg Val	Ala	acg Thr 2430	gac Asp	gtc Val	cca Pro	Glu	tta Leu 2435	gag Glu	cgc Arg	acc Thr	7410
Thr					aag Lys 2					Ile						7458
tct Ser 2455	Leu	gct Ala	gca Ala	Val	gta Val 2460	ģtg Val	aac Asn	ccg Pro	Ser	gtg Val 465	aag Lys	aca Thr	gta Val	Arg	gaa Glu !470	7506
gcc Ala	gga Gly	att Ile	Leu	atc Ile 475	acg Thr	gcc Ala	gca Ala	Ala	gcg Val 480	acg Thr	ctt Leu	tgg Trp	Glu	aat Asn 485	gga Gly	7554

,!

		12/42	101111
gca agc tct gtt tgg Ala Ser Ser Val Trp 2490	aac gca aca act g Asn Ala Thr Thr A 2495	gcc atc gga ctc tgc Lla Ile Gly Leu Cys 2500	His Ile
atg cgt ggg ggt tgg Met Arg Gly Gly Trp 2505	ttg tca tgt cta t Leu Ser Cys Leu S 2510	cc ata aca tgg aca Ser Ile Thr Trp Thr 2515	ctc ata 7650 Leu Ile
aag aac atg gaa aaa Lys Asn Met Glu Lys 2520			
acc ttg gga gag gtt Thr Leu Gly Glu Val 2535	tgg aaa gaa aga c Trp Lys Glu Arg I 2540	etc aac cag atg aca Leu Asn Gln Met Thr 2545	aaa gaa 7746 Lys Glu 2550
gag ttc act agg tac Glu Phe Thr Arg Tyr 2555	Arg Lys Glu Ala I	le Ile Glu Val Asp	
gcg gca aaa cac gcc Ala Ala Lys His Ala 2570			
gtc tct agg ggc aca Val Ser Arg Gly Thr 2585			
ctc gaa ccg gtc gga Leu Glu Pro Val Gly 2600			
tgg tgt tac tat atg Trp Cys Tyr Tyr Met 2615			
tac aca aag ggc ggt Tyr Thr Lys Gly Gly 2635		lu Pro Gln Leu Val	
tat gga tgg aac att Tyr Gly Trp Asn Ile 2650	Val Thr Met Lys S		Phe Tyr
aga cct tct gag tgt Arg Pro Ser Glu Cys 2665			
tcg tca agt gct gag Ser Ser Ser Ala Glu 2680			
atg gtt gag gac tgg Met Val Glu Asp Trp 2695			
gtg ctc tgc ccc tac Val Leu Cys Pro Tyr 2715		le Glu Lys Met Glu	

 $i^{2}\rightarrow$ 





caa Gln	cgc Arg	Arg	tat Tyr 2730	ggg Gly	ggg Gly	gga Gly	Leu	gtc Val 2735	aga Arg	aac Asn	cca Pro	Leu	tca Ser 2740	cgg Arg	aat Asn	8322
tcc Ser	Thr	cac His 2745	gag Glu	atg Met	tat Tyr	Trp	gtg Val 2750	agt Ser	cga Arg	gct Ala	Ser	ggc Gly 2755	aat Asn	gtg Val	gta Val	8370
His	tca Ser 2760	gtg Val	aat Asn	atg Met	Thr	agc Ser 2765	cag Gln	gtg Val	ctc Leu	Leu	[.] gga Gly 2770	aga Arg	atg Met	gaa Glu	aaa Lys	8418
agg Arg 277	Thr	tgg Trp	aag Lys	Gly	ccc Pro 2780	caa Gln	tac Tyr	gag Glu	Glu	gat Asp 2785	gta Val	aac Asn	ttg Leu	Gly	agc Ser 2790	8466
gga Gly	acc Thr	agg Arg	gcg Ala	gtg Val 2795	gga Gly	aaa Lys	ccc Pro	Leu	ctc Leu 2800	aac Asn	tca Ser	gac Asp	Thr	agt Ser 2805	aaa Lys	8514
atc Ile	aac Asn	Asn	agg Arg 2810	att Ile	gaa Glu	cga Arg	Leu	agg Arg 2815	cgt Arg	gag Glu	tac Tyr	Ser	tcg Ser 2820	acg Thr	tgg Trp	8562
cac His	His	gat Asp 2825	gag Glu	aac Asn	cac His	Pro	tat Tyr 2830	aga Arg	acc Thr	tgg Trp	Asn	tat Tyr 2835	cac His	ggc Gly	agt Ser	8610
Tyr	gat Asp 2840	gtg Val	aag Lys	ccc Pro	Thr	ggc Gly 2845	tcc Ser	gcc Ala	agt Ser	Ser	ctg Leu 2850	gtc Val	aat Asn	gga Gly	gtg Val	8658
gtc Val 2855	Arg	ctc Leu	ctc Leu	Ser	aaa Lys 2860	cca Pro	tgg Trp	gac Asp	Thr	atc Ile 865	acg Thr	aat Asn	gtt Val	Thr	acc Thr 2870	8706
atg Met	gcc Ala	atg Met	act Thr 2	gac Asp 875	act Thr	act Thr	ccc Pro	Phe	ggg Gly 880	cag Gln	cag Gln	cga Arg	Val	ttc Phe 2885	aaa Lys	8754
		Val	gac Asp 2890				Pro					Gly				8802
gtg Val	Leu	aac Asn 2905	gag Glu	acc Thr	acc Thr	Asn	tgg Trp 910	ttg Leu	tgg Trp	gcg Ala	Phe	ttg Leu 1915	gcc Ala	aga Arg	gaa Glu	8850
Lys	cgt Arg 920	ccc Pro	aga Arg	atg Met	Cys	tct Ser 1925	cga Arg	gag Glu	gaa Glu	Phe	ata Ile 930	aga Arg	aag Lys	gtc Val	aac Asn	8898
	Asn		gct Ala	Leu					Glu					Trp		8946
			gaa Glu 2					Pro					Met			8994

,!



## PCT/F. 1169

## 14/42

		Arg					Arg					Thr		att Ile		9042
	Met					Glu					Glu			aag Lys		9090
Lys	gga Gly 3000	agc Ser	aga Arg	gcc Ala	Ile	tgg Trp 3005	ttc Phe	atg Met	tgg Trp	Leu	gga Gly 3010	gct Ala	cgc Arg	ttt Phe	ctg Leu	9138
	Phe			Leu					Glu					gga Gly		9186
			ĞÎy					Gly					Lys	ctg Leu 3045		9234
		Leu					Thr					Lys		tat Tyr		9282
gat Asp	Asp	aca Thr 3065	gct Ala	ggc Gly	tgg Trp	Asp	acc Thr 3070	cgc Arg	atc Ile	acg Thr	Arg	gct Ala 3075	gac Asp	ttg Leu	gaa Glu	9330
Asn	gaa Glu 3080	gct Ala	aag Lys	gtg Val	Leu	gag Glu 3085	ctg Leu	ctt Leu	gat Asp	Gly	gaa Glu 3090	cat His	cgg Arg	cgt Arg	ctt Leu	9378
gcc Ala 3095	Arg	gcc Ala	atc Ile	Ile	gag Glu 3100	ctc Leu	acc Thr	tat Tyr	Arg	cac His 3105	aaa Lys	gtt Val	gtg Val	aaa Lys	gtg Val 3110	9426
			Ala					Thr					Ile	tcc Ser 3125		9474
		Gln					Gln					Ala		aac Asn		9522
	Thr					Gln					Met			gaa Glu		9570
Val	att Ile 160	ggc Gly	cca Pro	gat Asp	Asp	gtg Val 8165	gag Glu	aaa Lys	ctc Leu	Thr	aaa Lys 3170	ggg Gly	aaa Lys	gga Gly	ccc Pro	9618
aaa Lys 3175	Val	agg Arg	acc Thr	Trp	ctg Leu 180	ttt Phe	gag Glu	aat Asn	Gly	gaa Glu 8185	gaa Glu	aga Arg	ctc Leu	agc Ser 3	cgc Arg 190	9666
atg Met	gct Ala	gtc Val	Ser	gga Gly 195	gat Asp	gac Asp	tgt Cys	Val	gta Val 200	aag Lys	ccc Pro	ctg Leu	Asp	gat Asp 205	cgc Arg	9714

,:

										-						
		Thr					Leu					Lys		cgc Arg		9762
gac Asp	Ile	caa Gln 3225	gag Glu	tgg Trp	aaa Lys	Pro	tca Ser 3230	act Thr	gga Gly	tgg Trp	Tyr	gat Asp 3235	tgg Trp	cag Gln	cag Gln	9810
Val	cca Pro 3240	ttt Phe	tgc Cys	tca Ser	Asn	cat His 3245	ttc Phe	act Thr	gaa Glu	Leu	atc Ile 3250	atg Met	aaa Lys	gat Asp	gga Gly	9858
	Thr			Val					Gln					ggc Gly		9906
			Ser					Trp					Thr	gct Ala 3285		9954
		Lys					Met					Tyr		cac His		10002
	Asp					Ala					Ser			cct Pro		10050
Asn					Gly					Ser				gga Gly		10098
	Trp			Thr					Glu					gtt Val		10146
			Asn					Asp					Glu	aaa Lys 3365		10194
-	_	Val					Lys	_		-		Trp	_	ggc Gly	-	10242
	Ile					Arg					Glu			cag Gln		10290
Ála					Arg					Asp				gtg Val		10338
	Met			Leu					Asp					gag Glu 3		10386
	gta Val	ctg Leu	taga	tatt	ta a	tcaa	ttgt	a aa	taga	caat	ata	agta	tgc			10435

ataaaagtgt agttttatag tagtatttag tggtgttagt gtaaatagtt aagaaaattt 10495

*;*!

WO 02/081741 PCT/FS 16/42

tgaggagaaa gtcaggccgg gaagttcccg ccaccggaag ttgagtagac ggtgctgcct 10555 gcgactcaac cccaggagga ctgggtgaac aaagccgcga agtgatccat gtaagccctc 10615 agaaccgtct cggaaggagg accccacatg ttgtaacttc aaagcccaat gtcagaccac 10675 gctacggcgt gctactctgc ggagagtgca gtctgcgata gtgccccaagg aggactgggt 10735 taacaaaggc aaaccaacgc cccacgggc cctagccccg gtaatggtgt taaccagggc 10795 gaaaggacta gaggttagag gagaccccgc ggtttaaagt gcacggccca gcctgactga 10855 agctgtaggt caggggaagg actagaggt agtggagacc ccgtgccaca aaacaccaca 10915 acaaaacagc atattgacac ctgggataga ctaggagacc ttctgctctg cacaaccagc 10975 cacacggcac agtgcccga caatggtgc tggtggtgcg agaacacagg atct 11029

<210> 2

<211> 3433

<212> PRT

<213> Flavivirus sp.

<400> 2

Met Ser Lys Lys Pro Gly Gly Pro Gly Lys Ser Arg Ala Val Asn Met
1 5 10 15

Leu Lys Arg Gly Met Pro Arg Val Leu Ser Leu Ile Gly Leu Lys Arg
20 25 30

Ala Met Leu Ser Leu Ile Asp Gly Lys Gly Pro Ile Arg Phe Val Leu 35 40 45

Ala Leu Leu Ala Phe Phe Arg Phe Thr Ala Ile Ala Pro Thr Arg Ala 50 60

Val Leu Asp Arg Trp Arg Gly Val Asn Lys Gln Thr Ala Met Lys His 65 70 75 80

Leu Leu Ser Phe Lys Lys Glu Leu Gly Thr Leu Thr Ser Ala Ile Asn 85 90 95

Arg Arg Ser Ser Lys Gln Lys Lys Arg Gly Gly Lys Thr Gly Ile Ala 100 105 110

Val Met Ile Gly Leu Ile Ala Ser Val Gly Ala Val Thr Leu Ser Asn 115 120 125

Phe Gln Gly Lys Val Met Met Thr Val Asn Ala Thr Asp Val Thr Asp 130 135 140

Val Ile Thr Ile Pro Thr Ala Ala Gly Lys Asn Leu Cys Ile Val Arg 145 150 155 160

Ala Met Asp Val Gly Tyr Met Cys Asp Asp Thr Ile Thr Tyr Glu Cys 165 170 175

Pro Val Leu Ser Ala Gly Asn Asp Pro Glu Asp Ile Asp Cys Trp Cys 180 185 190

# PCT/

Thr Lys Ser Ala Val Tyr Val Arg Tyr Gly Arg Cys Thr Lys Thr Arg

WO 02/081741

His Ser Arg Arg Ser Arg Ser Leu Thr Val Gln Thr His Gly Glu 210 225 220

Ser Thr Leu Ala Asn Lys Lys Gly Ala Trp Met Asp Ser Thr Lys Ala 225 230 235 240

Thr Arg Tyr Leu Val Lys Thr Glu Ser Trp Ile Leu Arg Asn Pro Gly 245 250 255

Tyr Ala Leu Val Ala Ala Val Ile Gly Trp Met Leu Gly Ser Asn Thr 260 265 270

Met Gln Arg Val Val Phe Val Val Leu Leu Leu Val Ala Pro Ala 275 280 285

Tyr Ser Phe Asn Cys Leu Gly Met Ser Asn Arg Asp Phe Leu Glu Gly 290 295 300

Val Ser Gly Ala Thr Trp Val Asp Leu Val Leu Glu Gly Asp Ser Cys 305 310 315 320

Val Thr Ile Met Ser Lys Asp Lys Pro Thr Ile Asp Val Lys Met Met 325 330 335

Asn Met Glu Ala Ala Asn Leu Ala Glu Val Arg Ser Tyr Cys Tyr Leu 340 345 350

Ala Thr Val Ser Asp Leu Ser Thr Lys Ala Ala Cys Pro Thr Met Gly 355 360 365

Glu Ala His Asn Asp Lys Arg Ala Asp Pro Ala Phe Val Cys Arg Gln 370 375 380

Gly Val Val Asp Arg Gly Trp Gly Asn Gly Cys Gly Leu Phe Gly Lys 385 390 395 400

Gly Ser Ile Asp Thr Cys Ala Lys Phe Ala Cys Ser Thr Lys Ala Ile 405 410 415

Gly Arg Thr Ile Leu Lys Glu Asn Ile Lys Tyr Glu Val Ala Ile Phe 420 425 430

Val Gly Ala Thr Gln Ala Gly Arg Phe Ser Ile Thr Pro Ala Ala Pro 450 455 460

Ser Tyr Thr Leu Lys Leu Gly Glu Tyr Gly Glu Val Thr Val Asp Cys 465 470 475 480

Glu Pro Arg Ser Gly Ile Asp Thr Asn Ala Tyr Tyr Val Met Thr Val 485 490 495

Gly Thr Lys Thr Phe Leu Val His Arg Glu Trp Phe Met Asp Leu Asn 500 505 510





Leu	Pro	Trp 515		Ser	Ala	Gly	Ser 520	Thr	Val	Trp	Arg	Asn 525	Arg	Glu	Thr
Leu	Met 530	Glu	Phe	Glu	Glu	Pro 535	His	Ala	Thr	Lys	Gln 540	Ser	Val	Ile	Ala
Leu 545	Gly	Ser	Gln	Glu	Gly 550	Ala	Leu	His	Gln	Ala 555		Ala	Gly	Ala	Ile 560
Pro	Val	Glu	Phe	Ser 565	Ser	Asn	Thr	Val	Lys 570	Leu	Thr	Ser	Gly	His 575	Leu
Lys	Cys	Arg	Val 580	Lys	Met	Glu	Lys	Leu 585	Gln	Leu	Lys	Gly	Thr 590	Thr	Tyr
Gly	Val	Cys 595	Ser	Lys	Ala	Phe	Lys 600	Phe	Leu	Gly	Thr	Pro 605	Ala	Asp	Thr
	610	-				615					620				Gly
625					630					635					640
		_		645					650		Val			655	
Ala	Asn	Ala	Lys 660	Val	Leu	Ile	Glu	Leu 665	Glu	Pro	Pro	Phe	Gly 670	Asp	Ser
Tyr	Ile	Val 675	Val	Gly	Arg	Gly	Glu 680	Gln	Gln	Ile	Asn	His 685	His	Trp	His
Lys	Ser 690	Gly	Ser	Ser	Ile	Gly 695	Lys	Ala	Phe	Thr	Thr 700	Thr	Leu	Lys	Gly
Ala 705	Gln	Arg	Leu	Ala	Ala 710	Leu	Gly	Asp	Thr	Ala 715	Trp	Asp	Phe	Gly	Ser 720
Val	Gly	Gly	Val	Phe 725	Thr	Ser	Val	Gly	Lys 730	Ala	Val	His	Gln	Val 735	Phe
Gly	Gly	Ala	Phe 740	Arg	Ser	Leu	Phe	Gly 745	Gly	Met	Ser	Trp	Ile 750	Thr	Gln
Gly	Leu	Leu 755	Gly	Ala	Leu	Leu	Leu 760	Trp	Met	Gly	Ile	Asn 765	Ala	Arg	Asp
Arg	Ser 770	Ile	Ala	Leu	Thr	Phe 775	Leu	Ala	Val	Gly	Gly 780	Val	Leu	Leu	Phe
Leu 785	Ser	Val	Asn	Val	His 790	Ala	Asp	Thr	Gly	Cys 795	Ala	Ile	Asp	Ile	Ser 800
Arg	Gln	Glu	Leu	Arg 805	Суѕ	Gly	Asn	Gly	Val 810	Phe	Ile	His	Asn	Asp 815	Val
Glu	Ala	Trp	Met 820	Asp	Arg	Tyr	Lys	Tyr 825	Tyr	Pro	Glu	Thr	Pro 830	Gln	Gly

,'

## _____

WO 02/081741

Leu Ala Lys Ile Ile Gln Lys Ala His Lys Glu Gly Val Cys Gly Leu 835

Arg Ser Val Ser Arg Leu Glu His Gln Met Trp Glu Ala Val Lys Asp 850

Glu Leu Asn Thr Leu Leu Lys Glu Asn Gly Val Asp Leu Ser Val Val

Val Glu Lys Gln Glu Gly Met Tyr Lys Ser Ala Pro Lys Arg Leu Thr 885 890 895

Ala Thr Thr Glu Lys Leu Glu Ile Gly Trp Lys Ala Trp Gly Lys Ser 900 905 910

Ile Leu Phe Ala Pro Glu Leu Ala Asn Asn Thr Phe Val Val Asp Gly 915 920 925

Pro Glu Thr Lys Glu Cys Pro Thr Gln Asn Arg Ala Trp Asn Ser Leu 930 935 940

Glu Val Glu Asp Phe Gly Phe Gly Leu Thr Ser Thr Arg Met Phe Leu 945 950 955 960

Lys Val Arg Glu Ser Asn Thr Thr Glu Cys Asp Ser Lys Ile Ile Gly 965 970 975

Thr Ala Val Lys Asn Asn Leu Ala Ile His Ser Asp Leu Ser Tyr Trp 980 985 990

Ile Glu Ser Arg Leu Asn Asp Thr Trp Lys Leu Glu Arg Ala Val Leu 995 1000 1005

Gly Glu Val Lys Ser Cys Thr Trp Pro Glu Thr His Thr Leu Trp Gly 1010 1015 1020

Asp Gly Ile Leu Glu Ser Asp Leu Ile Ile Pro Val Thr Leu Ala Gly 025 1030 1035 1040

Pro Arg Ser Asn His Asn Arg Arg Pro Gly Tyr Lys Thr Gln Asn Gln 1045 1050 1055

Gly Pro Trp Asp Glu Gly Arg Val Glu Ile Asp Phe Asp Tyr Cys Pro 1060 1065 1070

Gly Thr Thr Val Thr Leu Ser Glu Ser Cys Gly His Arg Gly Pro Ala 1075 1080 1085

Thr Arg Thr Thr Glu Ser Gly Lys Leu Ile Thr Asp Trp Cys Cys 1090 1095 1100

Arg Ser Cys Thr Leu Pro Pro Leu Arg Tyr Gln Thr Asp Ser Gly Cys 105 1110 1115 1120

Trp Tyr Gly Met Glu Ile Arg Pro Gln Arg His Asp Glu Lys Thr Leu 1125 1130 1135

Val Gln Ser Gln Val Asn Ala Tyr Asn Ala Asp Met Ile Asp Pro Phe 1140 1145 1150

Gln Leu Gly Leu Leu Val Val Phe Leu Ala Thr Gln Glu Val Leu Arg 1155 1160 1165

WO 02/081741

Lys Arg Trp Thr Ala Lys Ile Ser Met Pro Ala Ile Leu Ile Ala Leu 1170 1175 1180

Leu Val Leu Val Phe Gly Gly Ile Thr Tyr Thr Asp Val Leu Arg Tyr 185 1190 1195 1200

Val Ile Leu Val Gly Ala Ala Phe Ala Glu Ser Asn Ser Gly Gly Asp 1205 1210 1215

Val Val His Leu Ala Leu Met Ala Thr Phe Lys Ile Gln Pro Val Phe 1220 1225 1230

Met Val Ala Ser Phe Leu Lys Ala Arg Trp Thr Asn Gln Glu Asn Ile 1235 1240 1245

Leu Leu Met Leu Ala Ala Val Phe Phe Gln Met Ala Tyr His Asp Ala 1250 1255 1260

Arg Gln Ile Leu Leu Trp Glu Ile Pro Asp Val Leu Asn Ser Leu Ala 265 1270 1275 1280

Val Ala Trp Met Ile Leu Arg Ala Ile Thr Phe Thr Thr Ser Asn 1285 1290 1295

Val Val Pro Leu Leu Ala Leu Leu Thr Pro Arg Leu Arg Cys Leu 1300 1305 1310

Asn Leu Asp Val Tyr Arg Ile Leu Leu Leu Met Val Gly Ile Gly Ser 1315 1320 1325

Leu Ile Arg Glu Lys Arg Ser Ala Ala Ala Lys Lys Gly Ala Ser 1330 1335 1340

Leu Leu Cys Leu Ala Leu Ala Ser Thr Gly Leu Phe Asn Pro Met Ile 345 1350 1355 1360

Leu Ala Ala Gly Leu Ile Ala Cys Asp Pro Asn Arg Lys Arg Gly Trp 1365 1370 1375

Pro Ala Thr Glu Val Met Thr Ala Val Gly Leu Met Phe Ala Ile Val 1380 1385 1390

Gly Gly Leu Ala Glu Leu Asp Ile Asp Ser Met Ala Ile Pro Met Thr 1395 1400 1405

Ile Ala Gly Leu Met Phe Ala Ala Phe Val Ile Ser Gly Lys Ser Thr 1410 1415 1420

Asp Met Trp Ile Glu Arg Thr Ala Asp Ile Ser Trp Glu Ser Asp Ala 425 1430 1435 1440

Glu Ile Thr Gly Ser Ser Glu Arg Val Asp Val Arg Leu Asp Asp Gly 1445 1450 1455

Glu Asn Phe Gln Leu Met Asn Asp Pro Gly Ala Pro Trp Lys Ile Trp 1460 1465 1470

:! ·



### 21/42

- Met Leu Arg Met Val Cys Leu Ala Ile Ser Ala Tyr Thr Pro Trp Ala 1475 1480 1485
- Ile Leu Pro Ser Val Val Gly Phe Trp Ile Thr Leu Gln Tyr Thr Lys 1490 1495 1500
- Arg Gly Gly Val Leu Trp Asp Thr Pro Ser Pro Lys Glu Tyr Lys Lys 505 1510 1515 1520
- Gly Asp Thr Thr Gly Val Tyr Arg Ile Met Thr Arg Gly Leu Leu 1525 1530 1535
- Gly Ser Tyr Gln Ala Gly Ala Gly Val Met Val Glu Gly Val Phe His 1540 1545 1550
- Thr Leu Trp His Thr Thr Lys Gly Ala Ala Leu Met Ser Gly Glu Gly 1555 1560 1565
- Arg Leu Asp Pro Tyr Trp Gly Ser Val Lys Glu Asp Arg Leu Cys Tyr 1570 1575 1580
- Gly Gly Pro Trp Lys Leu Gln His Lys Trp Asn Gly Gln Asp Glu Val 585 1590 1595 1600
- Gln Met Ile Val Val Glu Pro Gly Lys Asn Val Lys Asn Val Gln Thr 1605 1610 1615
- Lys Pro Gly Val Phe Lys Thr Pro Glu Gly Glu Ile Gly Ala Val Thr 1620 1630
- Leu Asp Phe Pro Thr Gly Thr Ser Gly Ser Pro Ile Val Asp Lys Asn 1635 1640 1645
- Gly Asp Val Ile Gly Leu Tyr Gly Asn Gly Val Ile Met Pro Asn Gly 1650 1660
- Ser Tyr Ile Ser Ala Ile Val Gln Gly Glu Arg Met Asp Glu Pro Ile 665 1670 1675 1680
- Pro Ala Gly Phe Glu Pro Glu Met Leu Arg Lys Lys Gln Ile Thr Val 1685 1690 1695
- Leu Asp Leu His Pro Gly Ala Gly Lys Thr Arg Arg Ile Leu Pro Gln 1700 1705 1710
- Ile Ile Lys Glu Ala Ile Asn Arg Arg Leu Arg Thr Ala Val Leu Ala 1715 1720 1725
- Pro Thr Arg Val Val Ala Ala Glu Met Ala Glu Ala Leu Arg Gly Leu 1730 1735 1740
- Pro Ile Arg Tyr Gln Thr Ser Ala Val Pro Arg Glu His Asn Gly Asn 745 1750 1755 1760
- Glu Ile Val Asp Val Met Cys His Ala Thr Leu Thr His Arg Leu Met 1765 1770 1775
- Ser Pro His Arg Val Pro Asn Tyr Asn Leu Phe Val Met Asp Glu Ala 1780 1785 1790



His Phe Thr Asp Pro Ala Ser Ile Ala Ala Arg Gly Tyr Ile Ser Thr 1795 1800 1805

WO 02/081741

Lys Val Glu Leu Gly Glu Ala Ala Ala Ile Phe Met Thr Ala Thr Pro 1810 1815 1820

Pro Gly Thr Ser Asp Pro Phe Pro Glu Ser Asn Ser Pro Ile Ser Asp 825 1830 1835 1840

Leu Gln Thr Glu Ile Pro Asp Arg Ala Trp Asn Ser Gly Tyr Glu Trp 1845 1850 1855

Ile Thr Glu Tyr Thr Gly Lys Thr Val Trp Phe Val Pro Ser Val Lys 1860 1865 1870

Met Gly Asn Glu Ile Ala Leu Cys Leu Gln Arg Ala Gly Lys Lys Val 1875 1880 1885

Val Gln Leu Asn Arg Lys Ser Tyr Glu Thr Glu Tyr Pro Lys Cys Lys 1890 1895 1900

Asn Asp Asp Trp Asp Phe Val Ile Thr Thr Asp Ile Ser Glu Met Gly 905 1910 1915 1920

Ala Asn Phe Lys Ala Ser Arg Val Ile Asp Ser Arg Lys Ser Val Lys 1925 1930 1935

Pro Thr Ile Ile Thr Glu Gly Glu Gly Arg Val Ile Leu Gly Glu Pro 1940 1945 1950

Arg Asn Pro Ser Gln Val Gly Asp Glu Tyr Cys Tyr Gly Gly His Thr 1970 1975 1980

Asn Glu Asp Asp Ser Asn Phe Ala His Trp Thr Glu Ala Arg Ile Met 985 1990 1995 2000

Pro Asp Asn Ile Asn Met Pro Asn Gly Leu Ile Ala Gln Phe Tyr Gln 2005 2010 2015

Pro Glu Arg Glu Lys Val Tyr Thr Met Glu Gly Glu Tyr Arg Leu Arg 2020 2025 2030

Gly Glu Glu Arg Lys Asn Phe Leu Glu Leu Leu Arg Thr Ala Asp Leu 2035 2040 2045

Pro Val Trp Leu Ala Tyr Lys Val Ala Ala Ala Gly Val Ser Tyr His 2050 2055 2060

Asp Arg Arg Trp Cys Phe Asp Gly Pro Arg Thr Asn Thr Ile Leu Glu 065 2070 2075 2080

Asp Asn Asn Glu Val Glu Val Ile Thr Lys Leu Gly Glu Arg Lys Ile 2085 2090 2095

Leu Arg Pro Arg Trp Ile Asp Ala Arg Val Tyr Ser Asp His Gln Ala 2100 2105 2110



## 23/42

- Leu Lys Ala Phe Lys Asp Phe Ala Ser Gly Lys Arg Ser Gln Ile Gly 2115 2120 2125
- Leu Ile Glu Val Leu Gly Lys Met Pro Glu His Phe Met Gly Lys Thr 2130 2135 2140
- Trp Glu Ala Leu Asp Thr Met Tyr Val Val Ala Thr Ala Glu Lys Gly 145 2150 2155 2160
- Gly Arg Ala His Arg Met Ala Leu Glu Glu Leu Pro Asp Ala Leu Gln 2165 2170 2175
- Thr Ile Ala Leu Ile Ala Leu Leu Ser Val Met Thr Met Gly Val Phe 2180 2185 2190
- Phe Leu Leu Met Gln Arg Lys Gly Ile Gly Lys Ile Gly Leu Gly Gly 2195 2200 2205
- Ala Val Leu Gly Val Ala Thr Phe Phe Cys Trp Met Ala Glu Val Pro 2210 2215 2220
- Gly Thr Lys Ile Ala Gly Met Leu Leu Ser Leu Leu Leu Met Ile 225 2230 2235 2240
- Val Leu Ile Pro Glu Pro Glu Lys Gln Arg Ser Gln Thr Asp Asn Gln 2245 2250 2255
- Leu Ala Val Phe Leu Ile Cys Val Met Thr Leu Val Ser Ala Val Ala 2260 2265 2270
- Ala Asn Glu Met Gly Trp Leu Asp Lys Thr Lys Ser Asp Ile Ser Ser 2275 2280 2285
- Leu Phe Gly Gln Arg Ile Glu Val Lys Glu Asn Phe Ser Met Gly Glu 2290 2295 2300
- Phe Leu Leu Asp Leu Arg Pro Ala Thr Ala Trp Ser Leu Tyr Ala Val
- Thr Thr Ala Val Leu Thr Pro Leu Leu Lys His Leu Ile Thr Ser Asp 2325 2330 2335
- Tyr Ile Asn Thr Ser Leu Thr Ser Ile Asn Val Gln Ala Ser Ala Leu 2340 2345 2350
- Phe Thr Leu Ala Arg Gly Phe Pro Phe Val Asp Val Gly Val Ser Ala 2355 2360 2365
- Leu Leu Leu Ala Ala Gly Cys Trp Gly Gln Val Thr Leu Thr Val Thr 2370 2375 2380
- Val Thr Ala Ala Thr Leu Leu Phe Cys His Tyr Ala Tyr Met Val Pro 385 2390 2395 2400
- Gly Trp Gln Ala Glu Ala Met Arg Ser Ala Gln Arg Arg Thr Ala Ala 2405 2410 2415
- Gly Ile Met Lys Asn Ala Val Val Asp Gly Ile Val Ala Thr Asp Val 2420 2425 2430

## ____

WO 02/081741



24/42

- Pro Glu Leu Glu Arg Thr Thr Pro Ile Met Gln Lys Lys Val Gly Gln 2435 2440 2445
- Ile Met Leu Ile Leu Val Ser Leu Ala Ala Val Val Val Asn Pro Ser 2450 2455 2460
- Val Lys Thr Val Arg Glu Ala Gly Ile Leu Ile Thr Ala Ala Ala Val 465 2470 2475 2480
- Thr Leu Trp Glu Asn Gly Ala Ser Ser Val Trp Asn Ala Thr Thr Ala 2485 2490 2495
- Ile Gly Leu Cys His Ile Met Arg Gly Gly Trp Leu Ser Cys Leu Ser 2500 2505 2510
- Ile Thr Trp Thr Leu Ile Lys Asn Met Glu Lys Pro Gly Leu Lys Arg 2515 2520 2525
- Gly Gly Ala Lys Gly Arg Thr Leu Gly Glu Val Trp Lys Glu Arg Leu 2530 2540
- Asn Gln Met Thr Lys Glu Glu Phe Thr Arg Tyr Arg Lys Glu Ala Ile 545 2550 2555 2560
- Ile Glu Val Asp Arg Ser Ala Ala Lys His Ala Arg Lys Glu Gly Asn 2565 2570 2575
- Val Thr Gly Gly His Ser Val Ser Arg Gly Thr Ala Lys Leu Arg Trp 2580 2585 2590
- Leu Val Glu Arg Arg Phe Leu Glu Pro Val Gly Lys Val Ile Asp Leu 2595 2600 2605
- Gly Cys Gly Arg Gly Gly Trp Cys Tyr Tyr Met Ala Thr Gln Lys Arg 2610 2615 2620
- Val Gln Glu Val Arg Gly Tyr Thr Lys Gly Gly Pro Gly His Glu Glu 625 2630 2635 2640
- Pro Gln Leu Val Gln Ser Tyr Gly Trp Asn Ile Val Thr Met Lys Ser 2645 2650 2655
- Gly Val Asp Val Phe Tyr Arg Pro Ser Glu Cys Cys Asp Thr Leu Leu 2660 2665 2670
- Cys Asp Ile Gly Glu Ser Ser Ser Ser Ala Glu Val Glu His Arg 2675 2680 2685
- Thr Ile Arg Val Leu Glu Met Val Glu Asp Trp Leu His Arg Gly Pro 2690 2695 2700
- Arg Glu Phe Cys Val Lys Val Leu Cys Pro Tyr Met Pro Lys Val Ile 705 2710 2715 2720
- Glu Lys Met Glu Leu Gln Arg Arg Tyr Gly Gly Gly Leu Val Arg 2725 2730 2735
- Asn Pro Leu Ser Arg Asn Ser Thr His Glu Met Tyr Trp Val Ser Arg 2740 2745 2750



### 25/42

- Ala Ser Gly Asn Val Val His Ser Val Asn Met Thr Ser Gln Val Leu 2755 2760 2765
- Leu Gly Arg Met Glu Lys Arg Thr Trp Lys Gly Pro Gln Tyr Glu Glu 2770 2775 2780
- Asp Val Asn Leu Gly Ser Gly Thr Arg Ala Val Gly Lys Pro Leu Leu 785 2790 2795 2800
- Asn Ser Asp Thr Ser Lys Ile Asn Asn Arg Ile Glu Arg Leu Arg Arg 2805 2810 2815
- Glu Tyr Ser Ser Thr Trp His His Asp Glu Asn His Pro Tyr Arg Thr 2820 2825 2830
- Trp Asn Tyr His Gly Ser Tyr Asp Val Lys Pro Thr Gly Ser Ala Ser 2835 2840 2845
- Ser Leu Val Asn Gly Val Val Arg Leu Leu Ser Lys Pro Trp Asp Thr 2850 2855 2860
- Ile Thr Asn Val Thr Thr Met Ala Met Thr Asp Thr Thr Pro Phe Gly 865 2870 2875 2880
- Gln Gln Arg Val Phe Lys Glu Lys Val Asp Thr Lys Ala Pro Glu Pro 2885 2890 2895
- Pro Glu Gly Ala Lys Tyr Val Leu Asn Glu Thr Thr Asn Trp Leu Trp 2900 2905 2910
- Ala Phe Leu Ala Arg Glu Lys Arg Pro Arg Met Cys Ser Arg Glu Glu 2915 2920 2925
- Phe Ile Arg Lys Val Asn Ser Asn Ala Ala Leu Gly Ala Met Phe Glu 2930 2935 2940
- Glu Gln Asn Gln Trp Arg Ser Ala Arg Glu Ala Val Glu Asp Pro Lys
- Phe Trp Glu Met Val Asp Glu Glu Arg Glu Ala His Leu Arg Gly Glu 2965 2970 2975
- Cys His Thr Cys Ile Tyr Asn Met Met Gly Lys Arg Glu Lys Lys Pro 2980 2985 2990
- Gly Glu Phe Gly Lys Ala Lys Gly Ser Arg Ala Ile Trp Phe Met Trp 2995 3000 3005
- Leu Gly Ala Arg Phe Leu Glu Phe Glu Ala Leu Gly Phe Leu Asn Glu 3010 3015 3020
- Asp His Trp Leu Gly Arg Lys Asn Ser Gly Gly Gly Val Glu Gly Leu 025 3030 3035 3040
- Gly Leu Gln Lys Leu Gly Tyr Ile Leu Arg Glu Val Gly Thr Arg Pro 3045 3050 3055
- Gly Gly Lys Ile Tyr Ala Asp Asp Thr Ala Gly Trp Asp Thr Arg Ile  $3060 \hspace{1cm} 3065 \hspace{1cm} 3070$

٠,:

- Thr Arg Ala Asp Leu Glu Asn Glu Ala Lys Val Leu Glu Leu Leu Asp 3075 3080 3085
- Gly Glu His Arg Arg Leu Ala Arg Ala Ile Ile Glu Leu Thr Tyr Arg 3090 3095 3100
- His Lys Val Val Lys Val Met Arg Pro Ala Ala Asp Gly Arg Thr Val 105 3110 3115 3120
- Met Asp Val Ile Ser Arg Glu Asp Gln Arg Gly Ser Gly Gln Val Val 3125 3130 3135
- Thr Tyr Ala Leu Asn Thr Phe Thr Asn Leu Ala Val Gln Leu Val Arg 3140 3145 3150
- Met Met Glu Gly Glu Gly Val Ile Gly Pro Asp Asp Val Glu Lys Leu 3155 3160 3165
- Thr Lys Gly Lys Gly Pro Lys Val Arg Thr Trp Leu Phe Glu Asn Gly 3170 3175 3180
- Glu Glu Arg Leu Ser Arg Met Ala Val Ser Gly Asp Asp Cys Val Val 185 3190 3195 3200
- Lys Pro Leu Asp Asp Arg Phe Ala Thr Ser Leu His Phe Leu Asn Ala 3205 3210 . 3215
- Met Ser Lys Val Arg Lys Asp Ile Gln Glu Trp Lys Pro Ser Thr Gly 3220 3225 3230
- Trp Tyr Asp Trp Gln Gln Val Pro Phe Cys Ser Asn His Phe Thr Glu 3235 3240 3245
- Leu Ile Met Lys Asp Gly Arg Thr Leu Val Val Pro Cys Arg Gly Gln 3250 3255 3260
- Asp Glu Leu Val Gly Arg Ala Arg Ile Ser Pro Gly Ala Gly Trp Asn 265 3270 3275 3280
- Val Arg Asp Thr Ala Cys Leu Ala Lys Ser Tyr Ala Gln Met Trp Leu 3285 3290 3295
- Leu Leu Tyr Phe His Arg Arg Asp Leu Arg Leu Met Ala Asn Ala Ile 3300 3305 3310
- Cys Ser Ala Val Pro Val Asn Trp Val Pro Thr Gly Arg Thr Thr Trp 3315 3320 3325
- Ser Ile His Ala Gly Gly Glu Trp Met Thr Thr Glu Asp Met Leu Glu 3330 3340
- Val Trp Asn Arg Val Trp Ile Glu Glu Asn Glu Trp Met Glu Asp Lys 345 3350 3355 3360
- Thr Pro Val Glu Lys Trp Ser Asp Val Pro Tyr Ser Gly Lys Arg Glu 3365 3370 3375
- Asp Ile Trp Cys Gly Ser Leu Ile Gly Thr Arg Ala Arg Ala Thr Trp 3380 3385 3390



Ala Glu Asn Ile Gln Val Ala Ile Asn Gln Val Arg Ala Ile Ile Gly 3400 Asp Glu Lys Tyr Val Asp Tyr Met Ser Ser Leu Lys Arg Tyr Glu Asp 3410 3415 Thr Thr Leu Val Glu Asp Thr Val Leu 3430 <210> 3 <400> 000 <210> 4 <400> 000 <210> 5 <211> 19 <212> ADN <213> Séquence artificielle <223> Description de la séquence artificielle:amorce <400> 5 gtcagacgct gacctggtg 19 <210> 6 <211> 21 <212> ADN <213> Séquence artificielle <223> Description de la séquence artificielle:amorce agetteteet tacacagttg g 21 <210> 7 <211> 19 <212> ADN <213> Séquence artificielle <223> Description de la séquence artificielle:amorce <400> 7 19 acagtgcagg tgtgtgagc <210> 8 <211> 20 <212> ADN -<213> Séquence artificielle

<

WO 02/081741 28/42 <223> Description de la séquence artificielle:amorce <400> 8 20 tcatgtctca gaaaggaaac <210> 9 <211> 21 <212> ADN <213> Séquence artificielle <223> Description de la séquence artificielle: amorce <400> 9 21 ctggctgcag aggtaaaagc t <210> 10 <211> 22 <212> ADN <213> Séquence artificielle <223> Description de la séquence artificielle:amorce <400> 10 22 tcaggacagg gtggagtaga gc <210> 11 <211> 22 <212> ADN <213> Séquence artificielle <223> Description de la séquence artificielle:amorce <400> 11 22 gtaccggacc ctcacccctt gt <210> 12 <211> 22 <212> ADN <213> Séquence artificielle

<210> 13 <211> 21 <212> ADN <213> Séquence artificielle

gctccatcca tccaaccatc ca

<400> 12

<223> Description de la séquence artificielle:amorce

,'

22

	PCT/FR. 1169
29/42	

	2)142	
<220> <223>	Description de la séquence artificielle:amorce	
<400>		
gagtt	tgaag tgaggtgttg c	21
<210>		
<211>		
<212> <213>	ADN Séquence artificielle	
<220>		
	Description de la séquence artificielle:amorce	
<400>		
ttctc	ttgtg gatgcgttgt g	21
<210>		
<211>		
<212>		
	Séquence artificielle	
<220> <223>	Description de la séquence artificielle: amorce	
<400>		
tgggta	atatg cggagcgatg c	21
<210>		
<211><212>		
	Séquence artificielle	
·2205		
<220> <223>	Description de la séquence artificielle:amorce	
400>		
gtcga	aacca accegetgte a	21
210>	17	
211>	21	
212>		
213>	Séquence artificielle	
220>	Description de la séguence artificielle amorce	
	Description de la séquence artificielle:amorce	
400>		21
ctacc	tcac acggaatcta c	21
210>		
211>		•
212>	AUN	

<213> Séquence artificielle

WO 02/081741

WO 02/081741		PCT/FR
	30/42	
<220> <223> Description de	la séquence artificielle:amo	rce
<400> 18 ttctacgcca atctcatcag	ı t	21
<210> 19 <211> 21 <212> ADN <213> Séquence artifi	cielle	
<220> <223> Description de	la séquence artificielle:amor	rce
<400> 19 acacagtgtc catctcaacc	: a	21
<210> 20 <211> 21 <212> ADN <213> Séquence artifi	cielle	
<220> <223> Description de	la séquence artificielle:amor	rce
<400> 20 aaccactggt caaggttctg	С	21
<210> 21 <211> 23 <212> ADN <213> Séquence artific	cielle	
<220> <223> Description de	la séquence artificielle:amor	rce
<400> 21 acaaccacgt ccataagtct	ctg	23
<210> 22 <211> 21 <212> ADN <213> Séquence artific	cielle	
<220> <223> Description de 2	la séquence artificielle:amor	ce
<400> 22 gcctttctct tctcagtgta	a	21
<210> 23 <211> 1412 <212> ADN <213> Mus musculus		

<213> Mus musculus



## 31/42

	0> 1> C 2> (		. (11	39)												
	0> 2 ggct		agac	ccag	ga a	gctc	caga	c tt	-	-				ctc Leu 5		53
_			-	tgg Trp	_	_	-	-				-		Leu		101
ccc Pro	gac Asp	acc Thr 25	acc Thr	ttt Phe	ggt Gly	gct Ala	gat Asp 30	gtc Val	aaa Lys	tca Ser	gcc Ala	gtc Val 35	aat Asn	gtc Val	gtg Val	149
				aag Lys												197
	Val			gtg Val												245
				tca Ser 75												293
	_			gat Asp	_			_						_	_	341
				ctg Leu												389
				cag Gln												437
				gcc Ala												485
				gat Asp 155												533
				tat Tyr												581
_	_			ttc Phe			_		_			_				629
_	_	-	-	cca Pro		_	_	-	-			_	_	-	-	677

; **!** 

					tgt Cys 220											725
cag Gln	tac Tyr	gcc Ala	cta Leu	gag Glu 235	ttg Leu	ctc Leu	act Thr	gtc Val	ttt Phe 240	gcc Ala	tgg Trp	gaa Glu	caa Gln	ggg Gly 245	aat Asn	773
					aac Asn											821
					cag Gln											869
gac Asp	ttt Phe 280	caa Gln	cac His	cag Gln	gag Glu	gtc Val 285	tcc Ser	aaa Lys	tac Tyr	ctg Leu	cac His 290	aga Arg	cag Gln	ctc Leu	aga Arg	917
aaa Lys 295	gcc Ala	agg Arg	cct Pro	gtg Val	atc Ile 300	ctg Leu	gac Asp	cca Pro	gct Ala	gac Asp 305	cca Pro	aca Thr	ggg Gly	aat Asn	gtg Val 310	965
gcc Ala	ggt Gly	ggg Gly	aac Asn	cca Pro 315	gag Glu	ggc Gly	tgg Trp	agg Arg	cgg Arg 320	ttg Leu	gct Ala	gaa Glu	gag Glu	gct Ala 325	gat Asp	1013
					cca Pro											1061
					ccg Pro											1109
					tgt Cys				tga	gcac	agca	igc a	ccto	jecea	ıg	1159
gaga	ctgo	tg g	tcag	gggc	a tt	tgct	gctc	: tgc	tgca	iggc	ccat	gaco	ca ç	gtgag	ıggagg	1219
gccc	cacc	tg g	cato	agac	t cc	gtgo	ttct	gat	gcct	gcc	agcc	atgt	tt ç	acto	ctgtc	1279
caat	caca	gc c	agco	ttcc	t ca	acag	atto	aga	agga	gag	gaaa	gaac	ac a	cgct	tggtg	1339
tcca	tctg	tc c	acct	gttg	g aa	ggtt	ctgt	ctg	acaa	agt	ctga	tcaa	ica a	taaa	ccaca	1399
gcag	gtgc	cg t	ca													1412

<210> 24 <211> 367 <212> PRT

<213> Mus musculus

<400> 24 Met Glu His Gly Leu Arg Ser Ile Pro Ala Trp Thr Leu Asp Lys Phe 1 5 10 15



33/42

Ile	Glu	Asp	Туг 20		Leu	Pro	Asp	Thr 25		Phe	Gly	' Ala	Asp 30		Lys
Ser	Ala	Val 35		Val	Val	Cys	Asp 40		Leu	Lys	Glu	Arg 45	_	Phe	Gln
Gly	Ala 50		His	Pro	Val	Arg 55		Ser	Lys	Val	Val 60	-	Gly	Gly	Ser
Ser 65	_	Lys	Gly	Thr	Thr 70	Leu	Lys	Gly	Arg	Ser 75	Asp	Ala	Asp	Leu	Val 80
Val	Phe	Leu	Asn	Asn 85	Leu	Thr	Ser	Phe	Glu 90		Gln	Leu	Asn	Arg 95	Arg
Gly	Glu	Phe	Ile 100	Lys	Glu	Ile	Lys	Lys 105	Gln	Leu	Tyr	Glu	Val 110	Gln	His
Glu	Arg	Arg 115	Phe	Arg	Val	Lys	Phe 120	Glu	Val	Gln	Ser	Ser 125	Trp	Trp	Pro
Asn	Ala 130	Arg	Ser	Leu	Ser	Phe 135	Lys	Leu	Ser	Ala	Pro 140	His	Leu	His	Gln
Glu 145	Val	Glu	Phe	Asp	Val 150	Leu	Pro	Ala	Phe	Asp 155	Val	Leu	Gly	His	Val 160
Asn	Thr	Ser	Ser	Lys 165	Pro	Asp	Pro	Arg	Ile 170	Tyr	Ala	Ile	Leu	Ile 175	Glu
Glu	Cys	Thr	Ser 180	Leu	Gly	Lys	Asp	Gly 185	Glu	Phe	Ser	Thr	Cys 190	Phe	Thr
Glu	Leu	Gln 195	Arg	Asn	Phe	Leu	Lys 200	Gln	Arg	Pro	Thr	Lys 205	Leu	Lys	Ser
Leu	Ile 210	Arg	Leu	Val	Lys	His 215	Trp	Tyr	Gln	Leu	Cys 220	Lys	Glu	Lys	Leu
Gly 225	Lys	Pro	Leu	Pro	Pro 230	Gln	Tyr	Ala	Leu	Glu 235	Leu	Leu	Thr	Val	Phe 240
Ala	Trp	Glu	Gln	Gly 245	Asn	Gly	Cys	Tyr	Glu 250	Phe	Asn	Thr	Ala	Gln 255	Gly
Phe	Arg	Thr	Val 260	Leu	Glu	Leu	Val	Ile 265	Asn	Tyr	Gln	His	Leu 270	Arg	Ile
Tyr	Trp	Thr 275	Lys	Tyr	Tyr	Asp	Phe 280	Gln	His	Gln	Glu	Val 285	Ser	Lys	Tyr
Leu	His 290	Arg	Gln	Leu	Arg	Lys 295	Ala	Arg	Pro	Val	Ile 300	Leu	Asp	Pro	Ala
Asp 305	Pro	Thr	Gly	Asn	Val 310	Ala	Gly	Gly	Asn	Pro 315	Glu	Gly	Trp	Arg	Arg 320
Leu	Ala	Glu	Glu	Ala 325	Asp	Val	Trp	Leu	Trp 330	Tyr	Pro	Cys	Phe	Ile 335	Lys

٠, '





	wo	02/08	1741				,								]	PCT/FR
									34/	42						
Lys	Asp	Gly	Ser 340	Arg	Val	Ser	Ser	Trp 345		Val	Pro	Thr	Val 350	Val	Pro	
Val	Pro	Phe 355	Glu	Gln	Val	Glu	Glu 360	Asn	Trp	Thr	Cys	Ile 365	Leu	Leu		
<21: <21: <21: <22: <22:	)> L> C	413 DN us mi														
<400	)> 2:				ga aq	gete	cagad	c tta				cac ( His (				53
		cca Pro	-	Trp	_	_	-	-			-	-				101
	-	acc Thr 25				-	-	-			-	-		-	-	149
-	-	ttc Phe	_	_		_	_				_	-				197

110	rap	25	1111	2110	GIY	AIG	30	Vai	цуз	561	AIG	35	AJII	vai	Va.	
						aga Arg 45										197
	_		_			aag Lys										245
	-				_	gct Ala	-	-								293
						tta Leu										341

	-		-	-		Glu	-	-			-	-		aga Arg	-	389
					Ser					Asn				ctg Leu		437
ttc	aag	cta	agc	qcc	ccc	cat	ctg	cat	cag	gag	ata	gag	ttt	gat	gtg	485

Phe Lys Leu Ser Ala Pro His Leu His Gln Glu Val Glu Phe Asp Val

WO 02/081741 PCT/FR 116:

	wo	02/08	31741						35/-	42					PC	T/FR
•		-	ttt Phe	-	-	•			-	Asn			-	-		533
-		_	atc Ile 170		_					-	-			_		581
			gag Glu													629
			cgc Arg													677
			caa Gln													725
			cta Leu													773
			gag Glu 250													821
-	_		aat Asn		_			-					_			869
			cac His													917
			cct Pro													965
			aac Asn													1013
			tgg Trp 330													1061
			gat Asp													1109
			tgg Trp						tga	gcac	agca	gc a	cctg	ccca	g	1159
gaga	ctgo	tg g	ıtcag	gggc	a tt	tgct	gctc	tgc	tgca	ggc	ccat	gacc	ca g	tgag	ggagg	1219

gcccacctg gcatcagact ccgtgcttct gatgcctgcc agccatgttt gactcctgtc 1279







caatcacage cageetteet caacagatte agaaggagag gaaagaacae aegettggtg 1339
tecatetgte cacetgttgg aaggttetgt etgacaaagt etgateaaca ataaaceaca 1399
geaggtgeee gtea 1413

<210> 26 <211> 367 <212> PRT <213> Mus musculus <400> 26 Met Glu His Gly Leu Arg Ser Ile Pro Ala Trp Thr Leu Asp Lys Phe Ile Glu Asp Tyr Leu Leu Pro Asp Thr Thr Phe Gly Ala Asp Val Lys Ser Ala Val Asn Val Val Cys Asp Phe Leu Lys Glu Arg Cys Phe Gln Gly Ala Ala His Pro Val Arg Val Ser Lys Val Val Lys Gly Gly Ser Ser Gly Lys Gly Thr Thr Leu Lys Gly Arg Ser Asp Ala Asp Leu Val Val Phe Leu Asn Asn Leu Thr Ser Phe Glu Asp Gln Leu Asn Arg Arg . 90 Gly Glu Phe Ile Lys Glu Ile Lys Lys Gln Leu Tyr Glu Val Gln His Glu Arg Arg Phe Arg Val Lys Phe Glu Val Gln Ser Ser Trp Trp Pro Asn Ala Arg Ser Leu Ser Phe Lys Leu Ser Ala Pro His Leu His Gln 135 Glu Val Glu Phe Asp Val Leu Pro Ala Phe Asp Val Leu Gly His Val 150 155 Asn Thr Ser Ser Lys Pro Asp Pro Arg Ile Tyr Ala Ile Leu Ile Glu Glu Cys Thr Ser Leu Gly Lys Asp Gly Glu Phe Ser Thr Cys Phe Thr

Gly Lys Pro Leu Pro Pro Gln Tyr Ala Leu Glu Leu Leu Thr Val Phe 225 230 235 240

Ala Trp Glu Gln Gly Asn Gly Cys Tyr Glu Phe Asn Thr Ala Gln Gly

Glu Leu Gln Arg Asn Phe Leu Lys Gln Arg Pro Thr Lys Leu Lys Ser

Leu Ile Arg Leu Val Lys His Trp Tyr Gln Leu Cys Lys Glu Lys Leu



	Arg	Thr	Val 260		Glu	Leu	Val	Ile 265		Tyr	Gln	His	Leu 270	Arg	Ile	
Tyr	Trp	Thr 275	Lys	Tyr	Tyr	Asp	Phe 280	Gln	His	Gln	Glu	Val 285	Ser	Lys	Tyr	
Leu	His 290	Arg	Gln	Leu	Arg	Lys 295	Ala	Arg	Pro	Val	Ile 300	Leu	Asp	Pro	Ala	
Asp 305		Thr	Gly	Asn	Val 310	Ala	Gly	Gly	Asn	Pro 315	Glu	Gly	Trp	Arg	Arg 320	
Leu	Ala	Glu	Glu	Ala 325	Asp	Val	Trp	Leu	Trp 330	Tyr	Pro	Cys	Phe	Ile 335	Lys	
Lys	Asp	Gly	Ser 340	Arg	Val	Ser	Ser	Trp 345	Asp	Val	Pro	Thr	Val 350	Val	Pro	
Val	Pro	Phe 355	Glu	Gln	Val	Glu	Glu 360	Asn	Trp	Thr	Cys	Ile 365	Leu	Leu		
<21: <21: <21: <22: <22:	)> L> CI	02 DN us mu OS														
		3n	(/9)	1)												
< 400	)> 2		(79] :gcaç		a aa	agct	ggad	: cta		itg g Met 0	_		-	-		53
<400 acct	)> 2 gcto	7	gcaç gcc	gaggt tcg	aag	ctt	gat	aag	ttc	et 0 1 ata	slu G gag	aac	Asp I	eu A 5 ctc	arg	53
<400 acct agc Ser	)> 2 gcto atc Ile	7 ggc t ccg	gcc Ala 10	gaggt tcg Ser tgt	aag Lys gct	ctt Leu gac	gat Asp	aag Lys 15	ttc Phe	let 0 1 ata Ile	gag Glu ata	aac Asn gat	cat His 20	ctc Leu ctg	ccg Pro	
agc ser gac Asp	atc Ile acc Thr	ggc t ccg Pro agc Ser	gcc Ala 10 ttc Phe	tcg Ser tgt Cys	aag Lys gct Ala	ctt Leu gac Asp	gat Asp ctc Leu 30	aag Lys 15 aga Arg	ttc Phe gaa Glu	Met 0 1 ata Ile gtc Val	gag Glu ata Ile	aac Asn gat Asp 35	cat His 20 gcc Ala	ctc Leu ctg Leu	ccg Pro tgt Cys	101
<400 acct agc Ser gac Asp gct Ala	atc Ile acc Thr ctc Leu 40	ccg Pro agc Ser 25	gcc Ala 10 ttc Phe aag Lys	gaggt . tcg Ser tgt Cys gac Asp	aag Lys gct Ala aga Arg	ctt Leu gac Asp tcc Ser 45	gat Asp ctc Leu 30 ttc Phe	aag Lys 15 aga Arg cgg Arg	ttc Phe gaa Glu ggc Gly	Met 0 1 ata Ile gtc Val ccc Pro	gag Glu ata Ile gtc Val 50	aac Asn gat Asp 35 cgc Arg	cat His 20 gcc Ala cga Arg	ctc Leu ctg Leu atg Met	ccg Pro tgt Cys agg Arg	101
agc Ser gac Asp gct Ala gcc Ala 55	atc Ile acc Thr ctc Leu 40 tct Ser	ccg Pro agc Ser 25 ctg Leu	gcc Ala 10 ttc Phe aag Lys ggg Gly	gaggt . tcg Ser tgt Cys gac Asp gtc Val	aag Lys gct Ala aga Arg aag Lys 60	ctt Leu gac Asp tcc Ser 45 ggc Gly	gat Asp ctc Leu 30 ttc Phe	aag Lys 15 aga Arg cgg Arg	ttc Phe gaa Glu ggc Gly acc Thr	Met 0 1 ata Ile gtc Val ccc Pro gcg Ala 65 ctc	gag Glu ata Ile gtc Val 50 ctc Leu	aac Asn gat Asp 35 cgc Arg Lys	cat His 20 gcc Ala cga Arg	eu F 5 ctc Leu ctg Leu atg Met agg gag	ccg Pro tgt Cys agg Arg	101 149 197





					gag Glu											389
					aac Asn											437
					gag Glu 140											485
	-	-			aac Asn			_	_							533
					ggc Gly											581
	-		_		ctt Leu	-	-			_		_	_			629
-	_	_	-		atc Ile	-	-	-	_					_	-	677
					gac Asp 220											725
					tgg Trp											773
	•		ggc Gly 250		tga	accg	tctt	gg a	acto	gtca	ic ca	agta	caaa	1		821
cago	ttca	aa t	ctac	tgga	c ag	tgta	ttat	gac	tttc	aac	acca	ggag	igt c	tcca	aatac	881
ctgc	acag	ac a	gctc	agaa	a a											902
<211 <212	> 28 > 25 > PR > Mu	1 T	scul	us												
<400			<b>7</b>	T	N	C	Tla	Dwa	ת א	Co	T	T a.s.	۸	T	Db -	
Met 1	GIU	OTU	нѕр	Leu 5	Arg	ser	116	LIO	10	ser	Իሕ2	ren	мзр	15	rne	
Ile	Glu	Asn	His 20	Leu	Pro	Asp	Thr	Ser 25	Phe	Cys	Ala	Asp	Leu 30	Arg	Glu	
Val	Ile	Asp 35	Ala	Leu	Cys	Ala	Leu 40	Leu	Lys	Asp	Arg	Ser 45	Phe	Arg	Gly	

, t



						•				371.	42					
	Pro	Val 50	Arg	Arg	Met	Arg	Ala 55	Ser	Lys	Gly	Vāl	Lys 60	Gly	Lys	Gly	Thr
	Ala 65	Leu	Lys	Gly	Arg	Ser 70	Asp	Ala	Asp	Leu	Val 75	Val	Phe	Leu	Asn	Asn 80
	Leu	Thr	Ser	Phe	Glu 85	Asp	Gln	Leu	Asn	Gln 90	Gln	Gly	Val	Leu	Ile 95	Lys
	Glu	Ile	Lys	Lys 100	Gln	Leu	Cys	Glu	Val 105	Gln	His	Glu	Arg	Arg 110	Cys	Gly
	Val	Lys	Phe 115	Glu	Val	His	Ser	Leu 120	Arg	Ser	Pro	Asn	Ser 125	Arg	Ala	Leu
	Ser	Phe 130	Lys	Leu	Ser	Ala	Pro 135	qsA	Leu	Leu	Lys	Glu 140	Val	Lys	Phe	Asp
	Val 145	Leu	Pro	Ala	Tyr	Asp 150	Leu	Leu	Asp	His	Leu 155	Asn	Ile	Leu ·	Lys	Lys 160
	Pro	Asn	Gln	Gln	Phe 165	Tyr	Ala	Asn	Leu	Ile 170	Ser	Gly	Val	Pro	Ala 175	Gly
	Lys	Glu	Gly	Lys 180	Leu	Ser	Ile	Cys	Phe 185	Met	Gly	Leu	Gln	Lys 190	Tyr	Phe
	Leu	Asn	Cys 195	Arg	Pro	Thr	Lys	Leu 200	Lys	Arg	Leu	Ile	Arg 205	Leu	Val	Thr
	His	Trp 210	Tyr	Gln	Leu	Cys	Lys 215	Glu	Lys	Leu	Gly	Asp 220	Pro	Leu	Pro	Pro
	Gln 225	Tyr	Ala	Leu	Glu	Leu 230	Leu	Thr	Leu	Asp	Ala 235	Trp	Glu	Tyr	Gly	Ser 240
	Arg	Val	Thr	Lys	Phe 245	Asn	Thr	Ala	Gln	Gly 250	Phe					
<210> 29																

<210> 29 <211> 1322 <212> ADN <213> Homo sapiens <220> <221> CDS <222> (34)..(1128) <400> 29

gaggcagttc tgttgccact ctctctcctg tca atg atg gat ctc aga aat acc 54

Met Met Asp Leu Arg Asn Thr

1 5

cca gcc aaa tct ctg gac aag ttc att gaa gac tat ctc ttg cca gac 102 Pro Ala Lys Ser Leu Asp Lys Phe Ile Glu Asp Tyr Leu Leu Pro Asp

:' ·





acg Thr	tgt Cys 25	ttc Phe	cgc Arg	atg Met	caa Gln	atc Ile 30	aac Asn	cat His	gcc Ala	att Ile	gac Asp 35	atc Ile	atc Ile	tgt Cys	ggg Gly	150
ttc Phe 40	ctg Leu	aag Lys	gaa Glu	agg Arg	tgc Cys 45	ttc Phe	cga Arg	ggt Gly	agc Ser	tcc Ser 50	tac Tyr	cct Pro	gtg Val	tgt Cys	gtg Val 55	198
tcc Ser	aag Lys	gtg Val	gta Val	aag Lys 60	ggt Gly	ggc Gly	tcc Ser	tca Ser	ggc Gly 65	aag Lys	·ggc Gly	acc Thr	acc Thr	ctc Leu 70	aga Arg	246
		tct Ser														294
		gat Asp 90														342
		ctg Leu														390
		cag Gln														438
		tcg Ser														486
		gat Asp														534
		tat Tyr 170														582
		ttc Phe														630
		ccc Pro														678
		aat Asn	-	-	_	_			-	-			_		_	726
		ctc Leu														774
		aac Asn 250														822

 $\mathcal{A}^{k}$ 

# WO 02/081741 41/42

aac tac cag caa ctc tgc atc tac tgg aca aag tat tat gad ttt aaa Asn Tyr Gln Gln Leu Cys Ile Tyr Trp Thr Lys Tyr Tyr Asp Phe Lys 270 265 275 aac ccc att att gaa aag tac ctg aga agg cag ctc acg aaa ccc acg Asn Pro Ile Ile Glu Lys Tyr Leu Arg Arg Gln Leu Thr Lys Pro Thr 290 285 cct gtg atc ctg gac ccg gcg gac cct aca gga aac ttg ggt gga 966 Pro Val Ile Leu Asp Pro Ala Asp Pro Thr Gly Asn Leu Gly Gly 300 305 1014 gac cca aag cgt tgg agg cag ctg gca caa gag gct gag gcc tgg ctg Asp Pro Lys Arg Trp Arg Gln Leu Ala Gln Glu Ala Glu Ala Trp Leu aat tac cca tgc ttt aag aat tgg gat ggg tcc cca gtg agc tcc tgg 1062 Asn Tyr Pro Cys Phe Lys Asn Trp Asp Gly Ser Pro Val Ser Ser Trp 335 att ctg ctg gtg aga cct cct gct tcc tcc ctg cca ttc atc cct gcc 1110 Ile Leu Leu Val Arg Pro Pro Ala Ser Ser Leu Pro Phe Ile Pro Ala 350 355 cct ctc cat gaa gct tga gacatatagc tggagaccat tctttccaaa 1158 Pro Leu His Glu Ala qaacttacct cttqccaaaq qccatttata ttcatataqt qacaqqctqt qctccatatt 1218 ttacagtcat tttggtcaca atcgagggtt tctggaattt tcacatccct tgtccagaat 1278 tcattcccct aagagtaata ataaataatc tctaacacca aaaa 1322 <210> 30 <211> 364 <212> PRT <213> Homo sapiens <400> 30 Met Met Asp Leu Arg Asn Thr Pro Ala Lys Ser Leu Asp Lys Phe Ile Glu Asp Tyr Leu Leu Pro Asp Thr Cys Phe Arg Met Gln Ile Asn His Ala Ile Asp Ile Ile Cys Gly Phe Leu Lys Glu Arg Cys Phe Arg Gly Ser Ser Tyr Pro Val Cys Val Ser Lys Val Val Lys Gly Gly Ser Ser Gly Lys Gly Thr Thr Leu Arg Gly Arg Ser Asp Ala Asp Leu Val Val Phe Leu Ser Pro Leu Thr Thr Phe Gln Asp Gln Leu Asn Arg Arg Gly

Glu Phe Ile Gln Glu Ile Arg Arg Gln Leu Glu Ala Cys Gln Arg Glu

105

100





Arg	Ala	Phe 115		Val	Ŀys	Phe	Glu 120	Val	Gln	Ala	Pro	Arg 125	Trp	Gly	Asn
Pro	Arg 130	Ala	Leu	Ser	Phe	Val 135	Leu	Ser	Ser	Leu	Gln 140	Leu	Gly	Glu	Gly
Val 145	Glu	Phe	Asp	Val	Leu 150	Pro	Ala	Phe	Asp	Ala 155	Leu	Gly	Gln	Leu	Thr 160
Gly	Ser	Tyr	Lys	Pro 165	Asn	Pro	Gln	Ile	Tyr 170	Val	Lys	Leu	Ile	Glu 175	Glu
Cys	Thr	Asp	Leu 180	Gln	Lys	Glu	Gly	Glu 185	Phe	Ser	Thr	Cys	Phe 190	Thr	Glu
Leu	Gln	Arg 195	Asp	Phe	Leu	Lys	Gln 200	Arg	Pro	Thr	Lys	Leu 205	Lys	Ser	Leu
Ile	Arg 210	Leu	Val	Lys	His	Trp 215	Tyr	Gln	Asn	Cys	Lys 220	Lys	Lys	Leu	Gly
Lys 225	Leu	Pro	Pro	Gln	Tyr 230	Ala	Leu	Glu	Leu	Leu 235	Thr	Val	Tyr	Ala	Trp 240
Glu	Arg	Gly	Ser	Met 245	Lys	Thr	His	Phe		Thr	Ala	Gln	Gly	Phe 255	Arg
Thr	Val	Leu	Glu 260	Leu	Val	Ile	Asn	Tyr 265	Gln	Gln	Leu	Cys	Ile 270	Tyr	Trp
Thr	Lys	Tyr 275	Tyr	Asp	Phe	Lys	Asn 280	Pro	Ile	Ile	Glu	Lys 285	Tyr	Leu	Arg
Arg	Gln 290	Leu	Thr	Lys	Pro	Thr 295	Pro	Val	Ile	Leu	Asp 300	Pro	Ala	Asp	Pro
Thr 305	Gly	Asn	Leu	Gly	Gly 310	Gly	Asp	Pro	Lys	Arg 315	Trp	Arg	Gln	Leu	Ala 320
Gln	Glu	Ala	Glu	Ala 325	Trp	Leu	Asn	Tyr	Pro 330	Cys	Phe	Lys	Asn	Trp 335	Asp
Gly	Ser	Pro	Val 340	Ser	Ser	Trp	Ile	Leu 345	Leu	Val	Arg	Pro	Pro 350	Ala	Ser

<210> 31

<211> 450

<212> ADN

<213> Séquence artificielle

355

<220>

<223> Description de la séquence artificielle:sonde

Ser Leu Pro Phe Ile Pro Ala Pro Leu His Glu Ala

360

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
BLURRED OR ILLEGIBLE TEXT OR DRAWING	
✓ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
OTHER:	

# IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.