

Motivation

Motivation: The choice of data is crucial for LMs

- Massive scaling of training data has been key factor towards the current LLM progress
- **Unequal utility** of data. Even **simple filtering** can already achieve **big performance improvements**
- Existing data curation methods unprincipled, mostly around heuristics and human intuition about data utility

Principled data-curation required to unlock **faster training** and **better** model **performance**

Data filtering improves LM performance

Our Setting: Data curation by mixing different domains

Problem Setup – Data Mixing:

- Training data from k domains (Wikipedia, Web, Code, etc.)
- For a fixed budget, how much of each domain to train on

Biggest Challenge – Runtime Overhead:

- No significant compute overhead in pretraining
- Mixture optimization on small proxy model, assuming scale invariance
- Focus on sample efficiency in training number of proxy models

Mixing proportions of different datasets for pretraining

Existing Mixture Optimization Approaches and their Pros & Cons

Name	Method	Pros & Cons
Online Mixing	 Data Mixing while training the production grade model Multi-Armed Bandit to model which domain to sample next token Domain perplexity as reward function 	 Negligible run-time overhead without pre-training proxy models Missing interpretability into overall optimal mixture
DoReMi	 Robust optimization minimizing worst case performance Reference model is pre-trained on some mixture Optimal mixture to minimize per-domain excess loss compared to reference 	 Only two proxy models required Optimization criterion promises good generalizability Identified mixture very sensitive to model architecture
Mixing Laws	 Formulate parametrized law to model performance as function of mixture weights Law-fitting based on limited number of evaluations Optimal mixture predicted as minimizer of law 	 Complexity reduction of search space bounded too law Risk of modelling errors in law, (example: BiMix not modelling any domain interactions)

Name	Method	Pros & Cons
Online Mixing	 Data Mixing while training the production grade model Multi-Armed Bandit to model which domain to sample next token Domain perplexity as reward function 	 Negligible run-time overhead without pre-training proxy models Missing interpretability into overall optimal mixture
DoReMi	Robust optimization minimizing worst case performance Reference model is pre-trained on some mixture	Only two proxy models required Optimization criterion promises good generalizability
	Optimal mixture to minimize per-domain excess loss compared to reference	Identified mixture very sensitive to model architecture
	Formulate parametrized law to model performance as	+ Complexity reduction of search

space bounded too law

Risk of modelling errors in law,

(example: BiMix not modelling any domain

Existing Mixture Optimization Approaches and their Pros & Cons

Mixing

Laws

function of mixture weights

Law-fitting based on limited number of evaluations

· Optimal mixture predicted as minimizer of law

Three key challenges to tackle for novel mixture optimization approach

- Compute Efficiency: Minimal overhead unlocked by high sample efficiency
- Flexibility: Reduced dependency on pre-defined functional shapes to prevent modelling errors
- Insight: Identified mixture must provide insight into the true quality/utility of each domain after training

Method: Bayesian Optimization for Data Mixing

BO is a Sequential Optimization Process Towards Finding Function Optimums

• All previous mixture weights x_i and performance value y_i collected in dataset

$$D_t = \{(y_i, x_i)\}_{i=0}^t$$

 Gaussian Process provides probability distribution of performance at each sampling point

$$g(x, y | D) = \Pr(f(x) = y | D)$$

- Acquisition function measures utility of next-weight x_{t+1}
- Tradeoff between exploitation of previous well performing mixtures and exploration of unknown mixture regions
- Maximizing acquisition function gives next mixture weight in smart way

BO has potential for high-sample efficiency, without systematic errors introduced by mixing laws

Existing function evaluations stored in dataset D_t

Acquisition function measures utility of next sampling point

Gaussian Process builds model of the function of interest

GP updated based on novel function evaluation

Existing function evaluations stored in dataset D_t

Gaussian Process builds model of the

Existing function evaluations stored in dataset Γ

Gaussian Process builds model of the

Existing function evaluations stored in dataset D_t

Gaussian Process builds model of the

Experiments

Experimental Setup

Data Sources

- **1. Books:** Book Texts
- 2. Common Crawl: Web Data
- 3. The Stack: Code Data
- **4. Pes20:** Academic Papers
- 5. Reddit: Social Media

Baselines

- 1. **Sobol:** Random Search
- **2. Uniform:** 20% uniform weighs
- 3. LLaMa: Weights reported
- **4. BiMix:** SOTA Mixing Law
- 5. MixLaws: SOTA Mixing Law

Model & Metric

- 25M parameters model size, trained Chinchilla optimal
- **64 trials** for each approach
- Average perplexity across all domains is optimization criterion¹

Function Evaluations over time give insight into BO Process

BO performance over trial iterations¹

- BO achieves significant improvement over initialization
- >35 trials required before proposing good mixture
- **Exploitation:** many optimum share similar weight-cluster

¹Colors visualize top 5 clusters of similar weights

BO is effective and outperforms all other baselines

Performance Comparison against benchmarks

[Values in avg. log perplexity]

- BO effective and identifies bestperforming mixture
- $\Delta 0.04$ improvement significant and larger than experiment variance of $\sigma < 0.02$
- No other approach capable to outperform random search
- MixLaws with major struggle to model true function shape leading to bad performance
- LLaMa weights worst. High focus on CC could be disadvantage in large model¹

Missing Scale Invariance Hinders Real World Application of BO

Scaling up same mixture from 25M model to 15M model [Values in avg. log perplexity]

- Assumption: Optimal mixture identified at small proxy model translates to larger production model
- Experiment: Optimal 25M parameter mixture worse than non-optimal mixture when training 125M model
- When scaling up uniform mixture switches from worst to best performing mixture

Limited usability of our method. More insight into scaling required to translate from proxy to production

Avg. Perplexity Criterion can Create Undesirable Optimization Incentives

Best BO mixture compared to best Sobol mixture per domain [Values in avg. log perplexity]

Goal of Data Selection:

- Create model that performs well on training domains
- Additional generalization to novel domains desirable

Limitations of Avg. Perplexity Criterion:

- Risk that model trades of domains to minimize overall loss
- Despite better overall, BO only outperforms Sobol on one domain

Conclusion

Conclusion: BO effective at identifying optimal mixtures at proxy model scale. Limitations currently prevent wide-scale adaptation

Result 1:

BO effective for optimizing mixtures of one architecture

- BO only approach capable of outperforming random search
- Sample efficiency expected from theory validated in practice
- No magic: Significant number of trials still required

Result 2:

Major limitations
prevent adaptation
of our (and other)
methods in reaworld

- Scale invariance assumption invalidated. Translating insights from proxy to production model difficult in practice
- Limitations of average performance criterion identified. High generalizability requires different optimization objective
- Not just our approach suffers from limitations
 - → More research required for principle data mixtures