Raman Resonance Scattering: Depolarization Ratio for Benzene and Cr(CO)6 with Irreducible Tensor Method

Guangyi Zhang, Gerrity Lab Reed College Chemistry Department

Motivation

- Check assumptions from vibronic coupling
- Help with synthesizing inorganic materials

Resonance Raman Scattering

Excited Raman spectrum in C6D6 Solution

Depolarization Ratio

nuclear coordinates

Definition of Depolarization Ratio

$$\rho_l = \frac{I_\perp}{I_\parallel}$$

Kramers-Heisenberg Relation (Polarizability tensor elements):

$$\alpha_{\rho\sigma} \approx \frac{1}{hc} \frac{\langle \Psi_F | \mu_\rho | \Psi_E \rangle \langle \Psi_E | \mu_\sigma | \Psi_G \rangle}{\nu_{GE} - \nu_L + i\Gamma_E}$$

- **Invariants**: a^2 , γ^2 , δ^2 (explain invariants)
- **Depolarization Ratio Calculation**

$$\rho_l = \frac{I_{\perp}}{I_{\parallel}} = \frac{3\gamma^2 + 5\delta^2}{45a^2 + 4\gamma}$$

Make Use of Symmetry

D_{6h}	E	$2C_6$	$2C_3$	C_2	$3C_2'$	$3C_2''$	i	$2S_3$	$2S_6$	σ_h	$3\sigma_d$	$3\sigma_v$		
A_{1g}	1	1	1	1	1	1	1	1	1	1	1	1		$x^2 + y^2, z^2$
A_{2g}	1	1	1	1	1	1	1	1	1	1	1	— 1	R_z	
B_{1g}	1	-1	1	-1	1	— 1	1	— 1	1	— 1	1	-1		
B_{2g}	1	-1	1	—1	-1	1	1	-1	1	-1	-1	1		
E_{1g}	2	1	-1	-2	0	0	2	1	-1	-2	0	0	(R_x, R_y)	(xz, yz)
E_{2g}	•	-1	1	2	0	0	2	— 1	— 1	2	0	0		(x^2-y^2,xy)
A_{1u}	1	1	1	1	1	1	-1	-1	-1	— 1	-1	-1		
$A_{2\mu}$	1	1	1	1	-1	-1	-1	— 1	-1	-1	1	1	z	
$B_{1\mu}$	1	1	1	-1	1	-1	— 1	1	— 1	1	-1	1		
$B_{2\mu}$	1	— 1	1	-1	-1	1	1	1	— 1	1	1	-1		
E_{1u}	2	1	-1	-2	0	. 0	-2	— 1	1	2	0	0	(x, y)	
E_{2u}	2	—1	— 1	2	0	0	-2	1	1	-2	0	0		

- The **point group** (e.g. D_{6h}) defines the symmetry of a molecule geometrically.
- Quantum mechanical operators, coordinates, electronic state, vibrational mode transform as one (or linear combination) of the symmetry representations.
- Criteria for vanishing integrals

$$I = \int f_1 f_2 f_2 d\tau = 0?$$

Decompose direct product $\Gamma_{f_1} \otimes \Gamma_{f_2} \otimes \Gamma_{f_3} = \sum_i \Gamma_i$. If no $\Gamma_i = A_{1g}$ exists, then I = 0.

Decomposition of Direct Products

• Overtones: $(E_{2g})^2 = A_{1g} \oplus E_{2g}$ • Binary Combinations: $E_{2g} \otimes E_{2g} = A_{1g} \oplus A_{2g} \oplus E_{2g}$

• Overtones: $(T_{1u})^2 = (T_{2u})^2 = A_{1g} \oplus E_g \oplus T_{2g}$

Cr(CO)6

• Binary Combinations: $T_{1u} \otimes T_{1u} = T_{2u} \otimes T_{2u} = A_{1g} \oplus E_g \oplus T_{1g} \oplus T_{2g}$

• Binary Combinations:

• $T_{1u} \otimes T_{2u} = A_{2g} \oplus E_g \oplus T_{1g} \oplus T_{2g}$

Summary of Results

Benzene	$\left(E_{2g}\right)^2$	$E_{2g} \otimes E_{2g}$	$E_{2g} \otimes E_{2g}$ (omit A_{2g})		
B1u	7/16	3/4	7/16		
B2u	7/16	3/4	7/16		
Experiment (Stewart & Clark)	7/16		7/16		

We assume that the Reduced Matrix Elements (RME) for $\langle \phi_e || Q_j || \phi_f^{\Gamma} \rangle = \sqrt{\lambda(\Gamma)} \cdot \langle \phi_e || Q_j || \phi_f^{A_1} \rangle$.

Cr(CO)6	(t1u^2)	(t2u^2)	(t1u*t1u)	(t2u*t2u)	(t1u*t2u)
T1u	1/4	1/4	1/2	1/2	7/6
T2u	1/4	1/4	1/2	1/2	7/6
E2g	11/28	11/28	/	/	/
Experiment	/				

Vibronic Coupling

Selection rule: If M=0, then intensity of a spectral line depends on the (electric) transition is 0 (forbidden transition).

$$M = \langle \psi_g | \mu | \psi_e \rangle$$

- Born-Oppenheimer approximation: $\Psi_{\mathrm{tot}} = \psi_{ele}\phi_{nuc}$
- Forbidden transition to excited electronic state ψ_e

$$\alpha_{\rho\sigma} = \frac{1}{hc} \frac{\langle \phi_f | \langle \psi_f | \hat{\mu}_\rho | \psi_e \rangle | \phi_E \rangle \langle \phi_E | \langle \psi_e | \hat{\mu}_\sigma | \psi_g \rangle | \phi_G \rangle}{\nu_{GE} - \nu_L + i\Gamma_E} = 0$$

- **Breakdown of B-O approximation** Observation of forbidden electronic transition
 - **Herzberg-Teller Coupling** Electronic Hamiltonian operator to have some dependence on the vibration (Taylor expansion)

$$|\psi_e\rangle = |\psi_e^o\rangle + \sum_{s \neq r} \sum_k \frac{\left|\psi_s^o \left| \left(\frac{\partial \widehat{H}_e}{\partial Q_k}\right)^o \middle| \psi_r^o\right|}{E_r - E_s}|\psi_s^o|$$

Wigner-Eckart Theorem

 $\langle a\alpha | T_{\beta}^{b} | c\gamma \rangle = \langle a | | T^{b} | | c \rangle \lambda(a)^{-1/2} \langle b\beta c\gamma | a\alpha \rangle$

Following Work

- Reason for A2g not contributing to the intensity for Benzene combination bands.
- Relative Intensities for combination bands and overtones.

Acknowledgments

Thanks for Dr. Jane Galbraith Shell Raymond Student Research Fellowship to support my summer research in chemistry. I would like to thank Prof. Dan Gerrity for inspiring discussions and the freedom to explore things in research.

Literature Cited

- . L.D. Ziegler and B. Hudson. Resonance Raman scattering of benzene and benzene-d6 with 212.8 nm excitation. J. Chem. Phys., 74(2):982-992, 1981.
- 2. J.S. Griffith. The Irreducible Tensor Method for Molecular Symmetry Groups. Prentice-Hall, Inc., 1962.
- 3. L. Von Diezmann. The irreducible tensor method and dipoleforbidden resonance Raman scattering. Undergraduate thesis, Reed College, 2011.