Kinematics

Some Slides/Images adapted from Marschner and Shirley and David Levin

Announcements

Marks out for A1-A4 and midterm

You know 48% of your final grade

Drop date is today

TAs are handling midterm remark requests this week

A6 due date moved to Sunday 26 July :)

Any Questions?

Animation and Kinematics

Today:

Animation in Computer Graphics Skinning for Mesh Deformation **Forward Kinematics Keyframe Animation**

Wednesday:

Keyframe Animation + Splines **Inverse Kinematics**

"Core" Areas of Computer Graphics

Modeling/Geometry

Rendering

Animation

Animation How does one make digital models move?

Motion Capture

Animation How does one make digital models move?

Physics Simulation

Animation How does one make digital models move?

"Draw" Important Poses, interpolate in-between

Key pose 4

How Can We Specify an Animation

Per-Vertex?

Bones

Skinning

Bone of length $\ell = 10$

Twisting around x axis: $\theta_1 = 0^{\circ}$

Twist-bend-twist: $(\theta_1, \theta_2, \theta_3) = (0^\circ, 0^\circ, 0^\circ)$

https://mathworld.wolfram.com/EulerAngles.html

Bones in the Rest Pose

T = Transformation

R = Rotation

t = translation

Posing a Bone

Forward Kinematics

Kinematics – study of motion without consideration of what causes that motion

Forward Kinematics – Generate motion by setting all the bone positions by hand

To do this we need a more rigourous understanding of how our bone motions are represented

We will express bone transformations incrementally from their parent

$$\mathbf{x} = T\hat{\mathbf{x}}$$

$$T = (R \quad \hat{t}) \in \mathbb{R}^{3 \times 4}$$

Forward Kinematics v Inverse Kinematics

Twist-bend-twist: $(\theta_1, \theta_2, \theta_3) = (0^\circ, 0^\circ, 0^\circ)$

The first rotation is by an angle φ about the z-axis using D.

$$A = BCD$$

The first rotation is by an angle φ about the z-axis using D.

The second rotation is by an angle θ about the x' axis using C.

$$A = BCD$$

$$A = BCD$$

The first rotation is by an angle φ about the z-axis using D.

The second rotation is by an angle $\theta \in [0, \pi]$ about the x' axis using C.

The third rotation is by an angle ψ about the z' axis using B.

$$A = BCD$$

$$\mathbf{x} = T\hat{\mathbf{x}}$$

$$T = (R \quad \hat{t}) \in \mathbb{R}^{3 \times 4}$$

$$T = (R \quad \hat{t}) \in \mathbb{R}^{3 \times 4}$$

Meed to determine $T_i \in \mathbb{R}^{3 \times 4}$

aggregate *relative* rotations

 $\bar{R_i} \in \mathbb{R}^{3 \times 3}$

Computed recursively!

$$T = (R \quad \hat{t}) \in \mathbb{R}^{3\times4}$$
 Need to determine $T_i \in \mathbb{R}^{3\times4}$? aggregate relative rotations $\bar{R}_i \in \mathbb{R}^{3\times3}$ Computed recursively!

$$T = (R \quad \hat{t}) \in \mathbb{R}^{3 \times 4}$$

Need to $T_i \in \mathbb{R}^{3 \times 4}$

aggregate *relative* rotations

 $\bar{R_i} \in \mathbb{R}^{3 \times 3}$

translate from canonical pose to rest pose

$$\hat{T}_i = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$0 \quad 0 \quad \mathbf{s}_{iz}$$

$$T = (R \quad \hat{t}) \in \mathbb{R}^{3 \times 4}$$

Need to $T_i \in \mathbb{R}^{3 \times 4}$

aggregate *relative* rotations

$$\bar{R_i} \in \mathbb{R}^{3 \times 3}$$

translate from canonical pose to rest pose
$$\hat{T}_i = egin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\hat{T}_i = \begin{vmatrix} 0 & 0 & 0 & \mathbf{s}_{ix} \\ 0 & 0 & 0 & \mathbf{s}_{iy} \\ 0 & 0 & 0 & \mathbf{s}_{iz} \end{vmatrix}$$

$$T = (R \quad \hat{t}) \in \mathbb{R}^{3 \times 4}$$

Need to determine $T_{m{i}}$

 $T_i \in \mathbb{R}^{3 \times 4}$

aggregate *relative* rotations

$$\bar{R_i} \in \mathbb{R}^{3 \times 3}$$
 ?

translate from canonical pose to rest pose

$$\hat{T}_i = \begin{bmatrix} 0 & 0 & 0 & \hat{\mathbf{s}}_{ij} \\ 0 & 0 & 0 & \hat{\mathbf{s}}_{ij} \end{bmatrix}$$

Order of operations

rotate 45 degrees then translate by 1

Order of operations

rotate 45 degrees then translate by 1

rotate 45 degrees then translate by 1

rotation matrices rotate about the origin!

rotate 45 degrees then translate by 1

rotation matrices rotate about the origin!

translate by 1 then rotate 45 degrees

translate by 1 then rotate 45 degrees

translate by 1 then rotate 45 degrees

Order matters!

$$T = (R \quad \hat{t}) \in \mathbb{R}^{3 \times 4}$$

Need to $T_i \in \mathbb{R}^{3 \times 4}$

aggregate *relative* rotations

$$\bar{R_i} \in \mathbb{R}^{3 \times 3}$$

translate from canonical pose to rest pose

Connecting Bones to Vertices

T = Transformation

R = Rotation

Rigid "Skinning"

Idea: Attach each vertex to a single bone

$$\mathbf{v}_j = \mathbf{T}_i \hat{\mathbf{v}}_j$$

Deformable Skinning

Rigid Skinning is fine for mechanical things, but for smoother deformations we need to try something else

Rather than attach each vertex to a single bone, we attach each vertex to multiple bones and *blend* their transformations

If this blending is linear in the transformations, we call it linear blend skinning.

Linear Blend Skinning

$$\mathbf{v}_j = \sum_{i=1}^{\text{\#bones}} w_{ij} \mathbf{T}_i \hat{\mathbf{v}}_j$$

Rigid vs Linear Blend Skinning

Weight Painting

Weight Painting

Weight Painting

Animation via Keyframing

We can pose objects now!

How do we generate an animation?

Specifying Keyframes

Time = 0

Time = 10s

Poses are generated by specifying rotations of bones

Each pose can be represented as

$$\left(t, \begin{bmatrix} heta_{i1} \\ heta_{i2} \\ heta_{i3} \end{bmatrix}\right)$$

Specifying Keyframes

??????????

Time = 10s

Time = 0

Specifying Keyframes Time = 0Time = 10sPose Space

Specifying Keyframes

https://en.wikipedia.org/wiki/Twelve basic principles of animation#Slow in and slow out https://www.youtube.com/watch?v=fQBFsTqbKhY

Interpolating Keyframes

 $\theta = \mathbf{c}(t)$ is a curve in the pose space

How could we construct such a curve from keyframes?

. . .

We'll cover this on Wednesday!

Done for Today