Video Game Sentiment Analysis

<u>Intro</u>

- Sentiment analysis can play a huge part in connecting a company to their audience
- By extracting sentiment from sources such as texts, posts, comments, etc huge amounts of valuable feedback can be attained without relying traditional numerically scored reviews

The Dataset

- The data set was a (283983, 6) data set taken from Kaggle and the columns of interest were:
 - 'Userscore' which contains numeric review scores
 - 'Comment' which contains the text for each review
- The response variable, 'Userscore', was converted to the classes ['Negative', 'Neutral', 'Positive']

The Dataset

- Exploring the frequency of the top 20 bigrams suggest that the topic of these comments commonly involve:
 - Single player and open world game types
 - Gameplay and voice acting in games

Data Cleaning

- The text was processed by:
 - removing punctuation and stopwords
 - stemming words to their root words
 - vectorizing each word into frequency columns

• The resulting dataframe contained 400000+ columns

Data Cleaning

- There were 3 methods used for dimension reduction:
 - Filtering the columns by frequency: results in a dataframe with 283983 rows and 1460 columns
 - Singular value decomposition: results in a dataframe with 283983 rows and 6 columns
 - Clustering: results in a dataframe with 283983 rows and 42 columns

Models Applied

- 4 types of predictive models were tested:
 - KNN Classification
 - Gaussian Naive Bayes'
 - Support Vector Classification
 - Neural Network
- Each model was run with up to 3 dataframes; one for each dimension reduction method
- All models were tested with a 80/20 test-train split

KNN Classifier Metrics

KNN with Frequency Filtered Dataframe				KNN with SVD Dataframe					
	precision	recall	f1-score	support		precision	recall	f1-score	support
Negative	0.614665	0.022265	0.042973	17696	Negative	0.604553	0.681284	0.640629	17696
Neutral	0.441989	0.019141	0.036693	16718	Neutral	0.468793	0.329764	0.387176	16718
Positive	0.397803	0.985298	0.566776	22378	Positive	0.616142	0.690812	0.651344	22378
accuracy	0.400813	0.400813	0.400813	0.400813	accuracy	0.581561	0.581561	0.581561	0.581561
macro_avg	0.484819	0.342235	0.215481	56792	macro_avg	0.563163	0.567287	0.559716	56792
weighted_avg	0.478383	0.400813	0.247521	56792	weighted_avg	0.569155	0.581561	0.570242	56792

KNN with Clustered Dataframe						
	precision	recall	f1-score	support		
Negative	0.498493	0.738189	0.595112	17696		
Neutral	0.445102	0.197871	0.273954	16718		
Positive	0.593392	0.613996	0.603518	22378		
accuracy	0.530198	0.530198	0.530198	0.530198		
macro_avg	0.512329	0.516685	0.490862	56792		
weighted_avg	0.52017	0.530198	0.503884	56792		

Gaussian Naive Bayes' Metrics

GNB with SVD Dataframe				GNB with Clustered Dataframe					
	precision	recall	f1-score	support		precision	recall	f1-score	support
Negative	0.462539	0.862059	0.602048	17696	Negative	0.444407	0.82691	0.578117	17696
Neutral	0.418567	0.247039	0.310702	16718	Neutral	0.387075	0.243989	0.29931	16718
Positive	0.698795	0.435428	0.536534	22378	Positive	0.667817	0.397712	0.49853	22378
accuracy	0.512907	0.512907	0.512907	0.512907	accuracy	0.486195	0.486195	0.486195	0.486195
macro_avg	0.526634	0.514842	0.483095	56792	macro_avg	0.499767	0.489537	0.458652	56792
weighted_avg	0.542688	0.512907	0.490469	56792	weighted_avg	0.515562	0.486195	0.464684	56792

Support Vector Classifier Metrics

SVC with SVD Dataframe							
	precision	recall	f1-score	support			
Negative	0.562066	0.731295	0.635609	17696			
Neutral	0.483527	0.186984	0.26968	16718			
Positive	0.594074	0.724819	0.652966	22378			
accuracy	0.568513	0.568513	0.568513	0.568513			
macro_avg	0.546555	0.547699	0.519418	56792			
weighted_avg	0.551558	0.568513	0.534729	56792			

SVC with Clustered Dataframe							
	precision	recall	f1-score	support			
Negative	0.519477	0.746044	0.61248	17696			
Neutral	0.479084	0.180165	0.261856	16718			
Positive	0.60165	0.674591	0.636036	22378			
accuracy	0.55131	0.55131	0.55131	0.55131			
macro_avg	0.533404	0.5336	0.503457	56792			
weighted_avg	0.539965	0.55131	0.518548	56792			

Neural Network Metrics

NN with Filtered Frequency DF					
	Loss	Accuracy			
Epoch 1	8.0	0.64			
Epoch 2	0.68	0.7			
Epoch 3	0.6	0.74			
Epoch 4	0.52	0.78			
Validation	0.74	0.68			

NN with SVD DF					
	Loss	Accuracy			
Epoch 1	1.04	0.48			
Epoch 2	0.91	0.56			
Epoch 3	0.91	0.57			
Epoch 4	0.91	0.57			
Validation	0.9	0.58			

NN with Clustered DF						
	Loss	Accuracy				
Epoch 1	0.99	0.52				
Epoch 2	0.93	0.55				
Epoch 3	0.56	0.56				
Epoch 4	0.92	0.56				
Validation	0.92	0.56				

Conclusion

- The accuracy of most of the models tested seemed relatively similar ranging from around .48 to .57
- The best model was a neural network trained on a frequency filtered DF scoring an accuracy of .68
- Overall, the best model tested during this project performs significantly better than randomly guessing but is still far from reliable