Polynomials (Problem Set)

Srijan Chattopadhyay

June 27, 2025

- (*) might require calculus knowledge. (*) are past ISI problems
- 1. Find all positive integers a, b such that each of the equations

$$x^2 - ax + b = 0$$
 and $x^2 - bx + a = 0$

has distinct positive integral roots.

- 2. f(x) is a degree 4 polynomial satisfying $f(n) = \frac{1}{n}$ for n = 1, 2, 3, 4, 5. If $f(0) = \frac{a}{b}$, (where a and b are co-prime positive integers), then what is a + b?
- 3. Find the number of real solutions of the equation:

$$(x-1)(x-3)(x-4)\dots(x-2025) = (x-2)(x-4)(x-6)\dots(x-2024)$$

4. Let a, b be the roots of the equation

$$x^2 - 10cx - 11d = 0$$

and those of

$$x^2 - 10ax - 11b = 0$$

are c, d. Then what is a + b + c + d? $(a \neq b \neq c \neq d)$

5. Let x_1, x_2, \ldots, x_n be complex numbers satisfying the equations

$$x_1 + x_2 + \dots + x_n = n$$

$$x_1^2 + x_2^2 + \dots + x_n^2 = n$$

$$x_1^3 + x_2^3 + \dots + x_n^3 = n$$

:

$$x_1^n + x_2^n + \dots + x_n^n = n$$

Then, prove that $x_i = 1 \quad \forall i = 1, 2, \dots, n$.

6. (*) Let P(x), Q(x) be distinct polynomials with real coefficients such that the sum of the coefficients of each of the polynomials is s. If

$$P(x)^3 - Q(x)^3 = P(x^3) - Q(x^3),$$

then prove that

- $P(x) Q(x) = (x-1)^a r(x)$ for some integer $a \ge 1$ and a polynomial r(x) with $r(1) \ne 0$.
- $s^2 = 3^{a-1}$, where a is as given in the previous.
- 7. $x_1^2 + px_1 + q = x_2, x_2^2 + px_2 + q = x_3, x_3^2 + px_3 + q = x_1$. Let p, q be real numbers with $\alpha < \beta$ be the roots of the equation $x^2 + (p-1)x + q = 0$. What is the maximum number of solutions of the system of the equations above where $x_1, x_2, x_3 \in [\alpha, \beta]$ is?

1

- 8. Consider all the numbers of the form $1 \pm \sqrt{2} \pm \sqrt{3} \pm \cdots \pm \sqrt{2024}$. Prove that when all of the numbers are multiplied, the product will belong to \mathbb{Z} .
- 9. $w, x, y, z \in \mathbb{N}, w^2 + x^2 + y^2 + z^2 = wxy + xyz + wxz + wyz$. Prove that there exists a solution (w_0, x_0, y_0, z_0) such that each of them is greater than 2025^{2025} . [Hint: Note that (1, 1, 1, 1) is a solution. Now, suppose (w^*, x^*, y^*, z^*) is a general solution. WLOG x^* be the minimum of them. So, fixing w^*, y^*, z^* , get another x. Then can you proceed similarly?]
- 10. $a, b, c \in \mathbb{R}$ such that (a+c)(a+b+c) < 0. Prove that $\left(\frac{b-c}{2}\right)^2 \ge a(a+b+c)$.
- 11. Let P(x) be a polynomial such that (x+1)P(x-1)=(x-1)P(x) for all $x \in \mathbb{R}$. Determine the maximum possible degree of P(x).
- 12. Show that the quadratic equation $x^2 + 7x 14(q^2 + 1) = 0, q \in \mathbb{Z}$ has no integer root.
- 13. (*)(*) Consider the equation $x^5 + x = 10$. Show that
 - (a) The equation has only one real root.
 - (b) The root lies between 1 and 2.
 - (c) This root must be irrational.
- 14. f(x) is a cubic polynomial $x^3 + ax^2 + bx + c$ such that f(x) = 0 has three distinct integral roots and f(g(x)) = 0 doesn't have any real roots, where $g(x) = x^2 + 2x 5$. Then find minimum value of a + b + c.
- 15. (*) $P(x) \in \mathbb{Z}[x], P(1) = 7$, and P(n) is prime for all $n \in \mathbb{N}$. Find P(2025).
- 16. $f, g \in \mathbb{R}[x]$. Also, we have $f(x^2 + x + 1) = f(x) \cdot g(x)$ for all $x \in \mathbb{R}$. Prove that deg(g) must be even.
- 17. Suppose a, b, c are distinct integers. $P(x) \in \mathbb{Z}[x]$. Also, we have P(a) = P(b) = P(c) = -1. Find all integer roots of P.
- 18. $0 < a \le b \le c \in \mathbb{R}$. Also, $a \le x \le y \le z \le c$, where $x, y, z \in \mathbb{R}$. It is given that a+b+c=x+y+z, and xyz=abc. Prove that a=x, b=y, c=z.
- 19. $a_1, a_2, \dots, a_{2025}$ are distinct reals. $P(x) \in \mathbb{R}[x]$. Degree of P is 2024. Given that P(1) = 2026, and $|P(a_i) P(a_j)| = |a_i a_j|$ for all $i, j \in \{1, \dots, 2025\}$. Find all such polynomials P.
- 20. $P(x) \in \mathbb{Z}[x]$. a, b, c distinct integers such that P(a) = b, P(b) = c, P(c) = a. Prove that such polynomials don't exist.
- 21. $a \in \mathbb{Z}, P(x) \in \mathbb{Z}[x]$ such that P(P(P(P(a)))) = a. Prove that P(P(a)) = a.
- 22. f is a polynomial such that $f(x) \in \mathbb{Z}[x]$ such that f(0), f(1) both are odd. Find all integer roots of f.
- 23. f is a polynomial such that $f(x) \in \mathbb{R}[x]$. f(1) = 3 and $f(x+1) = f(x) + 3x^2 + 3x + 1$. Find $f(\frac{1}{2})$.
- 24. f is a polynomial such that $f(x) \in \mathbb{R}[x]$. Degree of f is n. Also, $f(i) = \frac{i}{i+1}$ for $i = 0, 1, \dots, n$. Find f(n+1).
- 25. $P(x) = x^n + x^{n-1} + x^{n-2} + a_{n-3}x^{n-3} + \cdots + a_1x + a_0$ for $n \ge 3$. Can all roots of P be real?
- 26. $f(x) = x^n nx^{n-1} + \frac{n(n-1)}{2}x^{n-2} + a_{n-3}x^{n-3} + \dots + a_1x + a_0$. It is given that all roots of f are real. Find f.
- 27. If the sum of the real roots x to each of the equations

$$2^{2x} - 2^{x+1} + 1 - \frac{1}{k^2} = 0$$

for k = 2, 3, ..., 2023 is N, what is 2^N ?

28. Let x, y, z be nonzero numbers, not necessarily real, such that

$$(x-y)^2 + (y-z)^2 + (z-x)^2 = 24yz$$

and

$$\frac{x^2}{yz} + \frac{y^2}{zx} + \frac{z^2}{xy} = 3.$$

Compute $\frac{x^2}{yz}$.

29. Suppose that p(x), q(x) are monic polynomials with nonnegative integer coefficients such that

$$\frac{1}{5x} \ge \frac{1}{q(x)} - \frac{1}{p(x)} \ge \frac{1}{3x^2}$$

for all integers $x \geq 2$. Compute the minimum possible value of $p(1) \cdot q(1)$.

30. Let the roots of

$$x^{2022} - 7x^{2021} + 8x^2 + 4x + 2$$

be $r_1, r_2, ..., r_{2022}$, the roots of

$$x^{2022} - 8x^{2021} + 27x^2 + 9x + 3$$

be $s_1, s_2, \ldots, s_{2022}$, and the roots of

$$x^{2022} - 9x^{2021} + 64x^2 + 16x + 4$$

be $t_1, t_2, \ldots, t_{2022}$. Compute the value of

$$\sum_{1 \leq i,j \leq 2022} r_i s_j + \sum_{1 \leq i,j \leq 2022} s_i t_j + \sum_{1 \leq i,j \leq 2022} t_i r_j.$$

31. Let $f^1(x) = x^3 - 3x$. Let $f^n(x) = f(f^{n-1}(x))$. Let \mathcal{R} be the set of roots of

$$\frac{f^{2022}(x)}{x}.$$

If

$$\sum_{r \in \mathcal{R}} \frac{1}{r^2} = \frac{a^b - c}{d}$$

for positive integers a, b, c, d, where b is as large as possible and c and d are relatively prime, find a + b + c + d.

32. Let x, y, z be positive real numbers with 1 < x < y < z such that

$$\log_x y + \log_y z + \log_z x = 8$$
, and

$$\log_x z + \log_z y + \log_y x = \frac{25}{2}.$$

The value of $\log_y z$ can then be written as $\frac{p+\sqrt{q}}{r}$ for positive integers p,q, and r such that q is not divisible by the square of any prime. Compute p+q+r.

33. Find the sum of all possible values of a such that there exists a non-zero complex number z such that the four roots, labeled r_1 through r_4 , of the polynomial

$$x^4 - 6ax^3 + (8a^2 + 5a)x^2 - 12a^2x + 4a^2$$

satisfy $|\Re(r_i)| = |r_i - z|$ for $1 \le i \le 4$. Note, for a complex number x, $\Re(x)$ denotes the real component of x.

- 34. Suppose that the polynomial $x^2 + ax + b$ has the property such that if s is a root, then $s^2 6$ is a root. What is the largest possible value of a + b?
- 35. Suppose f(x) is a monic quadratic polynomial such that there exists an increasing arithmetic sequence $z_1 < z_2 < z_3 < z_4$ where $|f(z_1)| = |f(z_2)| = |f(z_3)| = |f(z_4)| = 2020$. Compute the absolute difference of the two roots of f(z).
- 36. (*)(*) Let a, b, c be three real numbers which are roots of a cubic polynomial, and satisfy a+b+c=6 and ab+bc+ca=9. Suppose a < b < c. Show that

$$0 < a < 1 < b < 3 < c < 4$$
.

37. (*) Let $a_0, a_1, \ldots, a_{19} \in \mathbb{R}$ and

$$P(x) = x^{20} + \sum_{i=0}^{19} a_i x^i, x \in \mathbb{R}.$$

If P(x) = P(-x) for all $x \in \mathbb{R}$, and

$$P(k) = k^2,$$

for $k = 0, 1, 2, \dots, 9$. Find P(x).

38. (*) Let c be a fixed real number. Show that a root of the equation

$$x(x+1)(x+2)\cdots(x+2009) = c$$

can have multiplicity at most 2. Determine the number of values of c for which the equation has a root of multiplicity 2.

- 39. (*) Let P(X) be a polynomial with integer coefficients of degree d > 0.
 - (a) If α and β are two integers such that $P(\alpha) = 1$ and $P(\beta) = -1$, then prove that $|\beta \alpha|$ divides 2.
 - (b) Prove that the number of distinct integer roots of $P^2(x) 1$ is at d + 2.
- 40. (*) We are given $a, b, c \in \mathbb{R}$ and a polynomial $f(x) = x^3 + ax^2 + bx + c$ such that all roots (real or complex) of f(x) have same absolute value. Show that a = 0 iff b = 0.
- 41. (*) Let f(x) be a polynomial with integer co-efficients. Assume that 3 divides the value f(n) for each integer n. Prove that when f(x) is divided by $x^3 x$, the remainder is of the form 3r(x) where r(x) is a polynomial with integer coefficients.
- 42. (*) Let $f(x) = ax^2 + bx + c$ where a, b, c are real numbers. Suppose $f(-1), f(0), f(1) \in [-1, 1]$. Prove that $|f(x)| \leq \frac{3}{2}$ for all $x \in [-1, 1]$.
- 43. (*) Suppose that P(x) is a polynomial with real coefficients, such that for some positive real numbers c and d, and for all natural numbers n, we have $c|n|^3 \le |P(n)| \le d|n|^3$. Prove that P(x) has a real zero.
- 44. (*) If a polynomial P with integer coefficients has three distinct integer zeroes, then show that $P(n) \neq 1$ for any integer n.
- 45. (*) Let $P: \mathbb{R} \to \mathbb{R}$ be a polynomial such that P(X) = X has no real solution. Prove that P(P(X)) = X has no real solution.
- 46. (*) Let a, b, c be nonzero real numbers such that $a + b + c \neq 0$. Assume that

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{a+b+c}$$

Show that for any odd integer k,

$$\frac{1}{a^k} + \frac{1}{b^k} + \frac{1}{c^k} = \frac{1}{a^k + b^k + c^k}.$$

- 47. (*) Let k, n and r be positive integers.
 - (a) Let $Q(x) = x^k + a_1 x^{k+1} + \dots + a_n x^{k+n}$ be a polynomial with real coefficients. Show that the function $\frac{Q(x)}{x^k}$ is strictly positive for all real x satisfying

$$0 < |x| < \frac{1}{1 + \sum_{i=1}^{n} |a_i|}$$

- (b) Let $P(x) = b_0 + b_1 x + \cdots + b_r x^r$ be a non zero polynomial with real coefficients. Let m be the smallest number such that $b_m \neq 0$. Prove that the graph of y = P(x) cuts the x-axis at the origin (i.e., P changes signs at x = 0) if and only if m is an odd integer.
- 48. (*) Consider the polynomial $ax^3 + bx^2 + cx + d$ where a, b, c, d are integers such that ad is odd and bc is even. Prove that not all of its roots are rational.
- 49. (*) If $P(x) = x^n + a_1 x^{n-1} + ... + a_{n-1}$ be a polynomial with real coefficients and $a_1^2 < a_2$ then prove that not all roots of P(x) are real.
- 50. (*) Let $p(x) = x^7 + x^6 + b_5 x^5 + \cdots + b_0$ and $q(x) = x^5 + c_4 x^4 + \cdots + c_0$. If p(i) = q(i) for $i = 1, 2, 3, \dots, 6$. Show that there exists a negative integer r such that p(r) = q(r).