ROIL: Robust Offline Imitation Learning

Gersi Doko¹, Guang Yang², Daniel S. Brown², Marek Petrik¹

¹University of New Hampshire, ²University of Utah

Summary

Motivation

Learning from data in a robust offline way is important in many fields, like health care, robotics or finance.

Limitations of existing methods

Reliance on \hat{u}_e leads to covariate shift for off-policy datasets.

Inability to specify reliance on \hat{u}_e .

No guarantees of policy convergence to u_e even when every state is visited.

Our contributions

New algorithm for robust offline imitation learning.

Guaranteed convergence to the optimal policy for tabular domains.

Flexibility to define the reliance on \hat{u}_e .

Inverse Reinforcement Learning (IRL)

$$ho(\pi,r) = \lim_{T o \infty} \mathbb{E}^{\pi,p_0} [\sum_{t=0}^T \gamma^t r(ilde{s}_t,\pi(ilde{s}_t))] \ \pi^*_{\mathit{IRL}} = rg\min_{\pi \in \Pi} \max_{r \in \mathcal{R}}
ho(\hat{\pi}_e,r) -
ho(\pi,r)$$

 $\pi^*_{\mathit{ROIL}} = rg\min_{\pi \in \Pi} \max_{\pi_e \in \Pi} \max_{r \in \mathcal{R}}
ho(\pi_e, r) -
ho(\pi, r)$

Previous Work

LPAL

MILO

GAIL BROIL

Visual Representation of ROIL

ROIL LP

 $\min_{t \in \mathbb{R}, u \in \mathbb{R}^{S \times \mathcal{A}}} t$ $\text{s.t.} \qquad t \geq -u^{\mathsf{T}} \Phi w + \max_{v \in \Upsilon} v^{\mathsf{T}} \Phi w, \quad \forall \ w \in ext(\mathcal{W}),$ $u \in \Upsilon,$

Gridworld Results

Figure: On-policy and off-policy returns (respectively) for 40x40 Gridworld.

Regret Results

Figure: On-policy regret for 40x40 Gridworld.