Cours MOdélisation, Vérification et Expérimentations
Exercices (avec les corrections)
Structures partiellement ordonnées, treillis complets, points-fixes (I)
par Dominique Méry
7 mai 2025

Nous supposons que les opérations suivantes sont définies pour une collection $A_0, \ldots, A_i \ldots i \in \mathbb{N}$ de parties de l'ensemble E: $- \cup_{i \in \mathbb{N}} A_i = \{e \in E | \exists i \in \mathbb{N} : e \in A_i\}$ $- \cap_{i \in \mathbb{N}} A_i = \{e \in E | \forall i \in \mathbb{N} : e \in A_i\}$ Ces deux définitions sont correctes et légales. Elles définissent en compréhension deux ensembles.

Exercice 1 Montrer que les structures suivantes sont des structures partiellement ordonnées inductives :

Question 1.1 $(\mathbb{P}(E),\subseteq)$ avec E un ensemble quelconque.

Solution de la question 1.1 ...

La démonstration consiste à montrer que \varnothing est le plus petit élément de \mathbb{P} E pour l'ordre d'inclusion des parties d'un ensemble E quelconque. Puis, il faut montrer que l'union des parties d'une suite croissante de parties de E est une partie de E et est la plus grande partie de E contenant cette suite. Ces éléments sont déduits de la définition de la structure $\mathbb{P}(E)$.

Soit une suite croissante de parties $A_i, i \in 0..\infty$ de E. On définit trivialement $A = \bigcup_{i=0}^{i=\infty} A_i$. A est la borne supérieure de cette suite.

Fin 1.1

Question 1.2 (E^{\perp},\sqsubseteq) tel que

```
1. E^{\perp} = E \cup \perp (et \perp \notin E)
```

2. $\subseteq\subseteq E\times E$: soit $x\in E$ et $y\in E$ $x\subseteq y\Leftrightarrow (x=\bot\vee x=y)$

\leftarrow Solution de la question 1.2

Par construction, \bot est le plus petit élément de cette strure. De plus, si on considère une suite croissante de cette structure, nécessairement elle stagnera soit sur \bot soit sur un meme élément qui sera le plus grand élément de cette suite et la borne supérieure.

Fin 1.2

Question 1.3 Soient A et B deux ensembles. Montrer que la structure $(A \rightarrow B, \sqsubseteq)$ est une structure partiellement ordonnée inductive.

\leftarrow Solution de la question 1.3

Pour deux fonctions partielles f et g, $f \sqsubseteq g$ est défini par :

- *ои*
- $-- graph(f) \subseteq graph(g).$

La fonction $\perp_{A \to B}$ est le plus petit élément de cette structure et est la fonction définie nulle $part : DOM(\perp_{A \to B}) = \varnothing$.

Si $(f_i: i \in \mathbb{N})$ est une suite croissante de fonctions de cette structure, alors on peut définir la borne supérieure de cette suite f comme suit :

— $dom(f) = \bigcup_{i \in \mathbb{N}} dom(f_i)$

 $\forall x \in dom(f) : \exists i \in \mathbb{N} : x \in dom(f_i) \land f(x) = f_i(x)$

Le choix de i n'a pas d'importance et f est bien une fonction définie qui est la borne supérieure de cette suite. En effet, si $x \mapsto y1 \in f$ et $x \mapsto y2 \in f$, alors cela signifie que $f_i(x) = y1$ et $f_j(x) = y2$. Si on suppose que $i \leq j$, alors $f_i \sqsubseteq f_j$ selon la suite des fonctions f_k et dans ce cas, $f_i(x) = f_j(x)$. On en d'éduit que y1 = y2 et que f est une fonction partielle de $f_i(x)$ dans $f_i(x)$ et dans $f_i(x)$ et que $f_i(x)$ et que $f_i(x)$ et dans $f_i(x)$ et dans $f_i(x)$ et dans $f_i(x)$ et que $f_i(x)$ e

Fin 1.3

Exercice 2 On rappelle qu'une fonction continue au sens de la topologie de Scott est monotone croissante. Indiquer et montrer si les fonctionnelles suivantes sont monotones et/ou continues).

- 1. $(F_1(f))(x) =$ if $(\forall y \in \mathbb{Z}.f(y) = y)$ then f(x) else \bot
- 2. $(F_2(f))(x) = if x \notin dom(f)$ then 0 else \perp
- **3.** $(F_3(f))(x) =$ if x = 0 then 1 else f(x+1)

 \perp est une expression qui signifie que cést une valeur indéfinie.

Question 2.1 $(F_1(f))(x) = \text{if } (\forall y \in \mathbb{Z}.f(y) = y) \text{ then } f(x) \text{ else } \bot$

Solution de la question 2.1

On utilise la suite croissante h_i de fonctions telles que $h_i(x) = \mathbf{if} \ x \leq i \mathbf{then} \ x \mathbf{ else} \perp \mathbf{fi}$. On montre que $F_1(Sup_1(h_i:i\in\mathbb{N}\})) \neq Sup_1(F_1(h_i):i\in\mathbb{N}\})$:

- $Sup_1(h_i : i \in \mathbb{N}) = Id$ où Id est l'identité de at dans \mathbb{N} .
- $-dom(F_1(h_i)) = \emptyset$

On a montré qu'elle n'est pas continue. On montre ensuite qu'elle est croisssante.

Fin 2.1

Question 2.2 $(F_2(f))(x) = \text{if } x \notin dom(f) \text{ then } 0 \text{ else } \bot$

On interprète F_2 sur le domaine suivante $(\mathbb{Z} \to \mathbb{Z}, \sqsubseteq_1)$. Le symbole \bot signifie que la fonction n'est pas définie au point considéré.

Soit la suite de fonctions h_i définies comme suit. On se donne un x tel que $h_k(x) \neq \bot$. On suppose que cette suute est croissante $(h_0 \sqsubseteq_1 h_1 \ldots \sqsubseteq_1 h_i \ldots$

Puisque $(\mathbb{Z} \to \mathbb{Z}, \sqsubseteq_1)$ est une structure partiellement ordonnée inductive (CPO), il existe une borne supérieure pour cette suite de fonctions notée $Sup_1(\{h_i: i \in \mathbb{N}\})$. $Sup_1(\{h_i: i \in \mathbb{N}\})(x) = h_k(x)$ et $F_2(Sup_1(h_i: i \in \mathbb{N}\})(x) = h_k(x)$ et $Sup_1(\{F_2(h_i): i \in \mathbb{N}\})(x)$ est défini par :

- 1. $\forall j < k.F_2(h_i)(x) = 0$
- 2. $\forall j \geq k.F_2(h_i)(x) = \bot$

On en déduit que $Sup_1(\{F_2(h_i): i \in \mathbb{N}\})(x) = Sup(\{0, \bot\}) = 0$.

Pour cette suite de fonctions h_k , $Sup_1(\{h_i : i \in \mathbb{N}\}) \neq F_2(Sup_1(\{h_i : i \in \mathbb{N}\}))$.

La fonction F_2 n'est pas continue pour la topologie de Scott.

Pour la croissance de cette fonction, on se donne deux fonctions f et g telles que pour une valeur x $f(x) = \bot$ et $g(x) \neq \bot$. Puis on applique F_2 , $F_2(f)(x) = 0$ et $F_2(g)(x) = \bot$. Donc $F_2(f)$ n'est pas plus petit que $F_2(g)$.

Donc F_2 n'est pas croissante.

Fin 2.2

Question 2.3 $(F_3(f))(x) = \text{if } x = 0 \text{ then } 1 \text{ else } f(x+1)$

Solution de la question 2.3 ■

On considère une suite croissante de fonctions $(h_k : k \in \mathbb{N})$ et on montre que $F_3(Sup_1(h_i : i \in \mathbb{N})) = Sup_3(F_3(h_i) : i \in \mathbb{N})$.

- La suite croissante $(h_k : k \in \mathbb{N})$ admet une borne supérieure notée h
- La suite $(F_3(h_k): k \in \mathbb{N})$ est croissante :
 - $-x = 0 : \forall k \in \mathbb{N} : (F_3(h_k)(0) = 1 = h(0).$
 - $x \neq 0$: $\forall k \in \mathbb{N}$: $x \in dom(h_k) \Rightarrow (F_3(h_k)(x) = h_k(x+1) = h(x+1))$ et en particulier, si $x \in dom(h_{k0})$, alors la propriété est vraie pour tputes les valeurs de k plus grande que k0 et en particulier $x \in dom(h)$.
- $(F_3(h_k): k \in \mathbb{N})$ admet une borne supéreieure notée g et elle vérifie la propriété $g \sqsubseteq F_3(h)$ puisque g est la borne supérieure de la suite $(F_3(h_k): k \in \mathbb{N})$
- dom(g) est l'union des domaines des fonctions $F_3(h_k)$ et dom(g) est l'union des domaines de h_k . g et $F_3(h)$ ont $m\tilde{A}^a$ me domaine de définition ety sont égales.

On en déduit que la fonction F_3 est continue pour la topologie de Scott.

Dans ce cas, d'après le théorème de Kleene, elle admet un plus petit point-fixe noté μF_3 . On peut montrer que la fonction $g(x) \cong \text{if } x \leq 0$ then 1 else undefined est un point-fixe de F_3 et donc que $\mu F_3 \subseteq g$. On montre ensuite que la fonction μF_3 a même domaine que g et on en déduit que $\mu F_3 = g$

Fin 2.3

Exercice 3 Déterminer les points-fixes des fonctionnelles suivantes et leur plus petit point-fixe, s'ils existent. On travaille dans \mathbb{Z} .

1. $F_1(f)(x) = 0$ then 1 else 0 et expliquer si le programme f1 a du sens et ce qu'il calcule :

Solution de la question 3.0 .

```
On considère une suite croissante de fonctions (h_k : k \in \mathbb{N}) et on montre que F_1(Sup_1(h_i : i \in \mathbb{N}\}) = Sup_3(F_1(h_i) : i \in \mathbb{N}\}). Une analyse conduit \tilde{\mathbf{A}} ces observations : 
— h_i(x) = 0 : F_1(h_i)(x) = 1.
— h_i(x) \neq 0 : F_1(h_i)(x) = 0.
```

Comme la suite des fonctions h_i est croissante, pour une valeur donn $\tilde{\mathbb{A}}$ ©e de x, la suite des fonctions h_i ont la $m\tilde{\mathbb{A}}$ me valeur en x. On en $d\tilde{\mathbb{A}}$ ©duit que les fonctions $F_1(h_i)$ sont $\tilde{\mathbb{A}}$ ©gales quand elles sont $d\tilde{\mathbb{A}}$ ©finies pour une valeur de x et donc que cette suite est une suite croissante qui admet un borne sup $\tilde{\mathbb{A}}$ ©rieuere. On en $d\tilde{\mathbb{A}}$ ©duit que la fonction F_1 est continue. D'apr $\tilde{\mathbb{A}}$ "s le th $\tilde{\mathbb{A}}$ ©or $\tilde{\mathbb{A}}$ " me de Kleene, F_1 admet un plus petit point-fixe $d\tilde{\mathbb{A}}$ ©fini selon la construction suivante :

```
\begin{array}{l} --F_1{}^0=\varnothing: la \ fonction \ d\tilde{\mathbb{A}} @ finie \ nulle \ part. \\ --F_1{}^{i+1}=\{x\mapsto y|F_1{}^i(x)=0 \land y=1 \lor F_1{}^i(x)\neq 0 \land y=0\} \\ --F_1{}^1=\{x\mapsto y|F_0{}^i(x)=0 \land y=1 \lor F_1{}^0(x)\neq 0 \land y=0\}=\varnothing \\ --F_1{}^2=\{x\mapsto y|F_1{}^i(x)=0 \land y=1 \lor F_1{}^1(x)\neq 0 \land y=0\}=\varnothing \\ --\dots \\ --F_1{}^i=\varnothing \end{array}
```

On en d \tilde{A} ©duit que le plus petit-point fixe existe et est la fonction d \tilde{A} ©finie nulle part. On peut d \tilde{A} ©finir la fonction C qui calcule la fonction ind \tilde{A} ©finie

Listing 1 – framac-mainf1.c

#include <stdio.h>

```
printf("....f1(%d)=%d \ ", num, val);
           return 0:
       }
       Puis on peut v\tilde{A}©rifier que cette fonction est ind\tilde{A}©finie en v\tilde{A}©rifiant le contrat suivant :
                                     Listing 2 – framac-f1.c
       /*@ requires \false;
         @ ensures \false;
       */
       int f1(int x)
       \{ if (f1(x) == 0) \}
            { return (1);
          else
            { return (0);
                                                                                          Fin 3.0
    2. F_2(f)(x) = if f(x) = 0 then 0 else 1
← Solution de la question 3.0
       Les trois fonctions suivantes sont des points-fixes de cette fonctionnelle :
       -f_0 = \lambda x.0
       -- f_1 = \lambda x.1
       --f_{\perp}=\varnothing
       On \operatorname{proc} \tilde{A} de comme pour l'exemple \operatorname{pr} \tilde{A} @ \operatorname{v} \tilde{A} @ \operatorname{dent}.
                                                                                          Fin 3.0
                                  Listing 3 – framac-mainf1.c
       #include <stdio.h>
       #include <math.h>
       int f2(int x)
       \{ if (f2(x) == 0) \}
            { return(0);
          else
            { return(1);
       int main()
          int val, num;
           printf("Enter_a_number:_");
           scanf("%d", &num);
           // Computes something ?
           val = f2(num);
           printf(".... f2(%d)=%d n", num, val);
```

 $\textit{Puis on peut v$\tilde{A}$} @ \textit{rifier que cette fonction est ind} \tilde{A} @ \textit{finie en v\tilde{A}} @ \textit{rifiant le contrat suivant}:$

Dominique Méry le 7 mai 2025 4

return 0;

}

Listing 4 – framac-f1.c /*@ requires \false; @ ensures \false; */ int f2(int x) { if (f2(x) == 0){ return (0); } else { return (1); } } 3. $F_3(f)(x) = if x = 0$ then 1 else f(x+1) \leftarrow Solution de la question 3.0D'aprÃ''s l'exercice précédent, F_3 est continue et donc admet un plus petit point-fixe définie par la suite des approximations suivantes: $F_0 = \emptyset$ $F_1 = \{0 \mapsto 1\}$ $F_2 = \{0 \mapsto 1, -1 \mapsto 1\}$ $F_3 = \{0 \mapsto 1, -1 \mapsto 1\}$ $F_4 = \{0 \mapsto 1, -1 \mapsto 1\}$

Listing 5 - f1.c

 $_{
m Fin}$ 3.0

On en d \tilde{A} ©duit que $\mu F_3 = \cup_{i \in \mathbb{N}} F^i$ et donc $\mu F_3 = \lambda x.if \ x \leq 0 \ then 1 \ fi$

```
#include <stdio.h>
#include <math.h>
int f1(int x)
\{ if (f1(x) == 0) \}
    { return(1);
    }
  else
    { return(0);
}
int main()
  int val, num;
   printf("Enter_a_number:_");
   scanf("%f", &num);
   // Computes something ?
   val = f1(num);
   printf("...._f1(%d)=%d\n", num, val);
   return 0;
}
                                Listing 6 - f2.c
```

#include <stdio.h>
#include <math.h>

```
int f2(int x)
\{ if (f2(x) == 0) \}
    { return(0);
    }
  else
    { return(1);
}
int main()
  int val,num;
   printf("Enter_a_number:_");
   scanf("%f", &num);
   // Computes something ?
   val = f2(num);
   printf("...._f(%d)=%d\n", num, val);
   return 0;
}
                                Listing 7 - f3.c
#include <stdio.h>
#include <math.h>
int f3(int x)
\{ if (x == 0) \}
    { return(1);
    }
  else
    { return(f3(x+1));
}
int main()
  int val,num;
   printf("Enter_a_number:_");
   scanf("%f", &num);
   // Computes something ?
   val = f3(num);
   printf("...,f2(\%d)=\%d n", num, val);
   return 0;
}
```

 $\textbf{1. Calculer } \tau(\varnothing)\text{, }\tau^2(\varnothing)=\tau(\tau(\varnothing))\text{, }\tau^3(\varnothing)\text{. En d\'eduire }\tau^i(\varnothing)\text{ et le d\'emontrer par r\'ecurrence.}$

 $(\tau(F))(x) \stackrel{\frown}{=} \text{ if } x = 0 \text{ then } 1 \text{ else } x \cdot F(x-1)$

Exercice 4 Soit $E = \mathbb{N} \to \mathbb{N}$, soit la fonctionnelle $\tau \in E \to E$ définie par :

2. En déduire le plus petit point fixe.

Question 4.1 Calculer $\tau(\varnothing)$, $\tau^2(\varnothing) = \tau(\tau(\varnothing))$, $\tau^3(\varnothing)$. En déduire $\tau^i(\varnothing)$ et le démontrer par récurrence.

\leftarrow Solution de la question 4.1

La structure partiellement ordonnée $(\mathbb{N} \to \mathbb{N}, \subseteq)$ où \subseteq est l'inclusion dénsembles, est une structure partiellement ordonnée complète (CPO).

- 1. $\tau^0 = \emptyset$
- 2. $\tau_1 = \tau(\emptyset) = \{0 \mapsto 1\}$
- 3. ..
- 4. $\tau_{i+1} = \tau(\tau^i) = \{0 \mapsto 1, i \mapsto i!\}$

On montre cela par récurrence.

Fin 4.1

Question 4.2 En déduire le plus petit point fixe.

\leftarrow Solution de la question 4.2

On en déduit que $\mu\tau = \{i \mapsto i! | i \in \mathbb{N}\}.$

Fin 4.2

Exercice 5 *Soit la fonctionnelle* $\tau \in (\int \rightarrow \int) \rightarrow (\int \rightarrow \int)$:

$$(F(f))(x) \stackrel{\widehat{=}}{=} \text{ if } x > 100 \text{ then } x-10 \text{ else } f(f(x+11))$$

Question 5.1 *Montrez que* $\mu F \sqsubseteq g$ *avec*

$$q(x) \stackrel{\frown}{=} \text{ if } x > 100 \text{ then } x-10 \text{ else } 91$$

Pour montrer que $\forall x.pppf(x) \sqsubseteq g(x)$ avec

$$g(x) \stackrel{\frown}{=} \text{ if } x > 100 \text{ then } x-10 \text{ else } 91$$

on utilise l'induction de point-fixe avec $P(f) = f \sqsubseteq g$.

P(f) est inclusif

Pour cela, on considère une chaine de fonctions de $\mathbb{Z} \to \mathbb{Z}$ notée $f_0, f_1, \ldots, f_i, \ldots$ dont la borne supérieure est f. On suppose que pour toutes les fonctions f_i , $P(f_i)$, Par définition de la borne supérieure, $f \sqsubseteq g$. OPn en déduit donc que P(f).

Application de l'induction de point-fixe

- $P(\bot):\bot\sqsubseteq g$.
- Supposons P(f) cést-à-dire $f \sqsubseteq g$ ou encore que f est égale à gf sur le même domaine. Montrons que P(F(f)) est vraie.

Cas 1: x > 100

$$F(f)(x) = x - 10 = g(x)$$

Cas 2: x < 100

$$F(f)(x) = f(f(x+11))$$
 et $x+11 \le 111$.

7

Fin 5.1

Question 5.2 Ecrire une fonction C calculant cette fonction et étudier sa correction.

\leftarrow Solution de la question 5.2 _

On peut utiliser mes contrats pour montrer l' \tilde{A} ©quivalence des deux fonctions calculant la fonction de MacCarthy mais avec une difficult \tilde{A} © pour montrer que les appels sont d \tilde{A} ©croissants et convergent.

```
Listing 8 – framac-mc91.c
```

```
/*@ ensures x>100 ==> \land result == x-10;
@ ensures \ x <= 100 ==> \ \ result == 91;
*/
int f1(int x)
\{ if (x > 100) \}
     { return(x-10);
  else
    { return(f1(f1(x+11)));
}
/*@ ensures x>100 ==> \land result == x-10;
@ ensures \ x <= 100 ==> \land result == 91;
*/
int f2(int x)
\{ if (x > 100) \}
    { return(x-10);
    }
  else
    { return (91);
/*@ ensures \land result == 1;
*/
int check(int x)
{ int val1, val2;
  val1 = f1(x);
  val2 = f2(x);
  if (val1 == val2)
```

```
{ return (1);
    };
 return (0);
                          Listing 9 – framac-mainmc91.c
#include <stdio.h>
#include <math.h>
int f1(int x)
\{ if (x > 100) \}
    { return(x-10);
  else
    { return(f1(f1(x+11)));
int f2(int x)
\{ if (x > 100) \}
    { return(x-10);
  else
    { return (91);
int check(int x)
{ int val1, val2;
  val1 = f1(x);
  val2 = f2(x);
  if (val1 == val2)
    { return(1);
  return (0);
int main()
  int val1, val2, val3, num;
   printf("Enter_a_number:_");
   scanf("%d", &num);
   // Computes the square root of num and stores in root.
   val1 = f1(num);
     val2 = f2(num);
     val3 = check(num);
     printf("Et\_le\_r\tilde{A}@sultat\_\_f1(%d)=%d\_et\_la\_v\tilde{A}@rification:\_%d\_et\_....%d\n", num,
   return 0;
```

Exercice 6 On considère une fonction f5 définie par le code C suivant :

Dominique Méry le 7 mai 2025

Fin 5.2

Question 6.1 Traduire cette définition en une définition fonctionnelle qui précisera le domaine du problème.

```
\mathcal{F}(f)(x) = \mathbf{if} \ (x == 0) \ \mathbf{then} \ 0 \ \mathbf{elseif} \ (x > 0) \ \mathbf{then} \ 2 - f(1 - x)) \ \mathbf{else} \ f(-x) \ \mathbf{fi}
                                    Listing 10 – framac-f5.c
/*@\ ensures\ x\ \%\ 2 == 0 ==> \land result == 0;
  @ ensures x \% 2 != 0 ==> \result == 2;
  @ assigns \nothing;
*/
int f5(int x)
\{ if (x==0) \}
     { return(0);}
  else
     \{ if (x > 0) \}
           \{return(2-f5(1-x));\}
        else
           {
             return(f5(-x));
}
                                 Listing 11 – framac-mainf5.c
#include <stdio.h>
\#include < math.h >
int f5(int x)
\{ if (x==0) \}
     { return(0);}
  else
     \{ if (x > 0) \}
           \{return(2-f5(1-x));\}
        else
           \{/* x < 0 */
             return(f5(-x));
}
```

```
int main()
{
  int val,num;
   printf("Enter a number: ");
   scanf("%d", &num);
   // Computes something ?
   val = f5(num);
   printf(".... f2(%d)=%d n", num, val);
   return 0;
Code Python
def f(n):
    if (n == 0):
        return 0
    else:
        if (n > 0):
            return 2 - f(1 - n)
        else:
            return f(-n)
print(f(6))
```

Question 6.2 Soient les définitions suivantes où \mathcal{F} désigne la fonctionnelle définie dans la question précédente :

```
 \begin{split} & - \mathcal{F}^{2n} = \{(p,v_p) | 0 \leq p < n \wedge v_p = g(p) \} \cup \{(p,v_p) | 0 > p \geq -(n-1) \wedge v_p = g(p) \} \cup \{(n,g(n)) \} \\ & - \mathcal{F}^{2n+1} = \{(p,v_p) | 0 \leq p < n \wedge v_p = g(p) \} \cup \{(p,v_p) | 0 > p \geq -(n-1) \wedge v_p = g(p) \} \cup \{(n,g(n)), (-n,g(-n)) \} \\ & \textit{Montrer qu'elles sont correctes en utilisant une récurrence.} \end{split}
```

Question 6.3 En déduire que $\mu \mathcal{F} = \mathcal{F}^0 \cup \mathcal{F}^1 \cup \mathcal{F}^2 \cup \mathcal{F}^3 \cup \ldots \cup \mathcal{F}^{2n} \cup \mathcal{F}^{2n+1} \ldots$

Question 6.4 *Montrer que, pour tout* $p \in \mathbb{N}$, $p \in \mathcal{F}^{2p} \cup \mathcal{F}^{2p+1}$

Question 6.5 Montrer que $\mu \mathcal{F}$ vérifie la propriété $\mu \mathcal{F} \sqsubseteq g$ où $g(x) = \mathbf{if}$ odd(x) then 2 else 0 fi

Question 6.6 En déduire que $\mu \mathcal{F} = g$.

```
Exercice 7 Soit la fonction définie comme suit : F(f)(x) = \begin{cases} & \text{if } x = p \text{ then } p \\ & \text{else if } x = q \text{ then } q \end{cases}
```

On suppose que p et q sont deux constantes non nulles entières positives distinctes et que F est une fonction partielle $(\in (\mathbb{Z} \to \mathbb{Z}) \longrightarrow (\mathbb{Z} \to \mathbb{Z}))$. On se place dans le cadre de la topologie de Scott sur léspace $(\mathbb{Z} \to \mathbb{Z}) \longrightarrow (\mathbb{Z} \to \mathbb{Z}), \sqsubseteq$) où $f \sqsubseteq g$ signifie que f est moins définie que g (ou $graph(f) \subseteq graph(g)$).

Question 7.1 Expliquez clairement pourquoi l'équation F(f) = f admet un plus petit pointfixe.

Question 7.2 *Ecrire une fonction C calculant le plus petit point-fixe* μF *de* F.

Question 7.3

- 1. Calculer $\mu F(p)$, $\mu F(q)$, $\mu F(-p)$, $\mu F(-q)$.
- 2. Calculer pour k entier naturel, $\mu F(-(k+1) \cdot p k \cdot q)$ et $\mu F(-(k+1) \cdot q k \cdot p)$

Question 7.4 Donnez une expression simplifiée de la fonction μF . Pour cela, on pourra utiliser la caractérisation de μF par le théorème du point-fixe pour les fonctions continues au sens de Scott.

Exercice 8 (invariant inductif)

On rappelle les définitions suivantes. Un modèle relationnel MS pour un système S est une structure

$$(Th(s,c), x, VALS, INIT(x), \{r_0, \ldots, r_n\})$$

оù

- Th(s,c) est une théorie définissant les ensembles, les constantes et les propriétés statiques de ces éléments.
- x est une liste de variables flexibles.
- VALS est un ensemble de valeurs possibles pour x.
- $\{r_0,\ldots,r_n\}$ est un ensemble fini de relations reliant les valeurs avant x et les valeurs
- INIT(x) définit lénsemble des valeurs initiales de x.

On note Next $\stackrel{def}{=} r_0 \lor ... \lor r_n$. Une propriété S est une propriété de sûreté pour le système S, si $\forall y, x \in \text{VALS}.Init(y) \land \text{NEXT}^*(y, x) \Rightarrow x \in S. \text{ On definit la fonction suivante } F \text{ sur } \mathcal{P}(\text{VALS}) \ \grave{a}$ $valeurs\ dans\ \mathcal{P}(Vals): F(X) = Init \cup Next[X]\ où\ Next[X]\ est\ l\'ensemble\ des\ \'etats\ accessibles\ \grave{a}$ partir de X par Next. On rappelle aussi que x peut être une variable ou une liste de variables; VALS est donc un ensemble de valeurs ou de tuples de valeures correspondant à x.

Question 8.1 *Montrer que* $(\mathcal{P}(VALS), \subseteq, \varnothing, \cup, \cap)$ *est un treillis complet.*

Solution de la guestion 8.1 ⇔

⊂ est la relation d'inclusion des parties de lénsemble VALS. La structure (P(VALS), ⊂) est évidemment une structure partiellement ordonnée. L'élément Ø est le plus petit élément de cette structure et VALS est le plus grand élément de cette structure. Enfin, pour toute famille de parties de VALS, notée $\{A_i|i\in I\}$, il existe un plus grand élément et un plus petit élément définis comme suit :

- $Sup(A_i|i \in I) = \bigcup_{i \in I} A_i$: union des parties.
- $Inf(A_i|i \in I) = \bigcap_{i \in I} A_i$: intersection des parties.

Fin 8.1

Question 8.2 *Montrer que F est croissante monotone.*

Solution de la question 8.2 .

Soient deux parties X et Y de VALS telles que $X \subseteq Y$. Soit x un élément de F(X). Supposons que x n'est pas éléments de Init. Alors il existe z tel quue $z \in X$ et Next(z,x). Puisque $z \in X$, alors $z \in Y$. On en déduit que $x \in F(Y)$. Nous avons montré que $\forall x.x \in F(X) \Rightarrow x \in F(Y)$ ou encore $F(X) \subseteq F(Y)$.

Fin 8.2

Question 8.3 *Montrer que* F *admet un plus petit point-fixe noté* μF .

\leftarrow Solution de la question 8.3

Puisque F est une fonction monotonte croisssante sur un treillis complet, d'après le théorème de Knaster-Tarski, il existe un plus petit point-fixe note μF pour F.

Fin 8.3

Question 8.4 *Montrer que* μF *est un invariant inductif de* F *et que cést le plus petit.*

Solution de la question 8.4 .

Puisque μF est le plus petit pint-fixe de F, il est, en particulier, un point-fixe et vérifie la relation suivante :

$$F(\mu F) = \mu F = Init \cup Next[\mu F] \tag{1}$$

- 1. $Init \subseteq \mu F$
- 2. $Next[\mu F] \subseteq \mu F$

Ces deux propriétés définissent exactement que μF est un invariant inductif. Si I est un autre invariant inductif, alors il vérifie aussi cette équation et par définition, μF est le plus petit ensemble satisfaisant cette propriété. Donc, $\mu F \subseteq I$.

Fin 8.4

Question 8.5 *Montrer que, pour toute propriété de sûreté* S, $\mu F \subseteq S$.

Solution de la question 8.5 .

Une propriété S est une propriété de sûreté pour un système caractérisé par le système de transition ci-dessus, si $\forall y, x \in \text{VALS}.Init(y) \land \text{NEXT}^{\star}(y, x) \Rightarrow x \in S.$ On peut noter que la formulation peut être changée comme suit sous une forme équivalente : $\forall x \in \text{VALS}.(\exists y.Init(y) \land \text{NEXT}^{\star}(y, x)) \Rightarrow x \in S.$ Soit lénsemble A suivant : $A = \{a | a \in \text{VALS}.(\exists y.Init(y) \land \text{NEXT}^{\star}(y, x))\}.$ Si S est une propriété de sûreté, alors $A \subseteq S.$ De plus, A vérifie la relation F(A) = A. Donc on en déduit que $\mu F \subseteq A$ puisque cést le plus petit point-fixe de F. On en déduit que si S est une propriété de sûreté, alors $\mu F \subseteq S.$

Fin 8.5

Question 8.6 On suppose que VALS est finie. Montrer qu'il existe un algorithme pour vérifier qu'une propriété S est une propriété de sûreté pour un système donné défini comme ci-dessus.

Le calcul de μF sur un treillis fini est le calcul de la suite $(F^i)_{i\in\mathbb{N}}$ définie comme suit :

 $-F^0 = \emptyset$

```
F^{i+1} = F(F_i), \forall i \in \mathbb{N}
```

Dans ce cas, on calcule la suite et la suite cumulée en les rangeant respectivement dans x et dans y. L'itération est bornée par Card(T), puisque dans le cas contraire, on pourrait construire une suite de valeurs $Next(x_0,x_1)\dots Next(x_i,x_{i+1})\dots Next(x_n,x_{n+1})$ où n est le cardinal de T avec des éléments tous distincts et cela n'est \hat{a} possible.

```
precondition : f \in T \longrightarrow T
postcondition : result = \mu.f
local variables : x, y \in T, i \in \mathbb{N}
\ell_0: \{x, y \in T\}
x := \bot;
y := \bot;
i := 0;
\ell_{11}:\{x,y\in T\wedge x=F^i\wedge y=\bigcup_{k=0;k=i}F^k\wedge i\leq Card(T)\wedge i=0\};
while i \leq Card(T) do
     \ell_1: \{x, y \in T \land x = F^i \land y = \bigcup_{k=0: k=i} F^k \land i \leq Card(T)\};
     x := f(x);
     \ell_2: \{x, y \in T \land x = F^{i+1} \land y = \bigcup_{k=0: k=i} F^k \land i \leq Card(T)\};
     \theta_3: \{x, y \in T \land x = F^{i+1} \land y = \bigcup_{k=0; k=i+1} F^k \land i \leq Card(T)\};
    \begin{array}{l} \iota = \iota + 1, \\ \ell_4 : \{x, y \in T \land x = F^i \land y = \bigcup_{k=0; k=i} F^k \land i \leq Card(T) + 1\}; \end{array}
\ell_5: \{x, y \in T \land x = F^i \land y = \bigcup_{k=0; k=i} F^k \land i = Card(T) + 1\};
result := y;
\ell_6: \{x, y \in T \land x = F^i \land y = \bigcup_{k=0: k=i} F^k \land i = Card(T) + 1 \land result = y\};
```

Algorithme 1: Calcul du point-fixe sur un treillis fini

Fin 8.6

Exercice 9

Question 9.1 Soit le petit programme suivant annoté mais incomplet.

```
/*@ requires z == exp1 ;
  ensures \result == exp2;
*/

int q2(int x, int y, int z){
    /*@ assert B(x,y,z) ; */
    x = y+1;
    /*@ assert A(x,y,z); */
    y = x + z;
    /*@ assert y == 3 + x ; */
    return y;
}
```

En utilisant l'opérateur wp, proposer des assertions pour A(x,y,z) et B(x,y,z) et des valeurs pour les expressions expr1 et expr2, afin que le contrat soit correct.

Question 9.2 Soit le petit programme suivant annoté mais incomplet.

```
/*@ requires A(x,y,z) ;
  ensures \result == 6 ;
*/

int q2(int x,int y, int z){
    /* @ assert B(x,y,z) ; */
    x = y+1;
    /* @ assert C(x,y,z); */
    y = x + z;
    /* @ assert D(x,y,z); */
    return y;
}
```

En utilisant l'opérateur wp, proposer des assertions pour A(x,y,z), B(x,y,z), C(x,y,z) et D(x,y,z), afin que le contrat soit correct.

Question 9.3 Soit le petit programme suivant annoté mais incomplet.

```
/*@ requires A;
ensures \result == 0;
   assigns \nothing;
*/

int f(int c) {
   int x = 49;
   int z = 2*c;
   int y = (2*c+1)*(2*c+1);
        //@ assert B;
        y= x+z+1;
        //@ assert x == 49 && z == 2*c && y == (c+1)*(c+1);
        return(0);
}
```

En utilisant l'opérateur wp, proposer des assertions pour A et B, afin que le contrat soit correct.

Question 9.4 Soit le petit programme suivant annoté mais incomplet.

```
/*@ requires A(x,y,z) ;
  ensures \result == 12 ;
*/

int q2(int x,int y, int z){
    /* @ assert B(x,y,z) ; */
    x = y+z;
    /* @ assert C(x,y,z); */
    y = x + 1;
    /* @ assert D(x,y,z); */
    return y;
}
```

En utilisant l'opérateur wp, proposer des assertions pour A(x,y,z), B(x,y,z), C(x,y,z) et D(x,y,z), afin que le contrat soit correct.

Question 9.5 Soit le petit programme suivant annoté mais incomplet.

```
33/*@ requires A;
ensures \result == 0;
  assigns \nothing;
*/

int f(int c) {
  int x = 49;
  int z = 2*c;
  int y = (2*c+1)*(2*c+1);
    //@ assert B;
    y= x+z+1;
    //@ assert x == 49 && z == 2*c && y == (c+1)*(c+1);
    return(0);
}
```

En utilisant l'opérateur wp, proposer des assertions pour A et B, afin que le contrat soit correct.