

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA PROJETO DE CIRCUITOS FOTÔNICOS EM SILÍCIO

Atividade Final: Waveguide Crossing otimizado

Professor: Adolfo Fernandes Herbster

Discente: Erick Cândido Sousa

Matrícula: 120110361

Campina Grande – PB 17 de dezembro de 2024

Sumário

1	Obj	etivos	2	
2	Ativ	tividades		
	2.1	Documentos Base	2	
	2.2	Etapa 1: Construção da Estrutura Base	2	
	2.3	Etapa 2: Otimização 2D e 3D	3	
		2.3.1 Figura de Mérito (<i>FOM</i>)	3	
	2.4	Etapa 3 e 4: Resultados das Simulações e Otimização	4	
		2.4.1 Resultados para FDTD - 2D	2	
		2.4.2 Resultados para FDTD - 3D	(

1 Objetivos

- Moldar um guia de onda cruzado inicialmente não otimizado via API Python;
- utilizar a biblioteca *lumopt* para realizar a otimização da estrutura, pelos *solvers* FDTD 2D e 3D;
- simular as estruturas otimizadas e não otimizadas por meio da API Python;
- comparar a transmitância e perfis de campo elétrico entre as estruturas otimizadas e não otimizadas.

2 Atividades

2.1 Documentos Base

- O artigo base para o desenvolvimento do waveguide crossing foi obtido no site da Lumerical ANSYS [Ansys Lumerical]. Neste artigo é fornecido o GitHub com a biblioteca *lumopt* [Team] (para Python) e outros documentos necessários para dimensionar a estrutura.
- Na Figura 1, é descrito os passos tomados para a obtenção dos resultados. Vale ressaltar que as dimensões, índices dos materiais e comprimentos de onda fornecidos foram alterados para um ambiente mais próximo ao visto em atividades anteriores da capacitação.

Figura 1: Esquemático das atividades.

2.2 Etapa 1: Construção da Estrutura Base

• Os 4 guias de ondas são idênticos, sendo apenas espaçados e rotacionados um dos outros, com largura L=500nm e altura h=220nm. A distância entre as extremidades dos guias é $d=4\mu m$, de tal forma que seja possível posicionar um elemento quadrado de área $16\mu m^2$. A simulação é realizada na banda C de comunicação $(1530nm \le \lambda \le 1565nm)$. O material dos elementos guiantes é Si com índice de

- refração $n_{Si}=3,4784$ e o material na região de simulação é SiO_2 com índice de refração $n_{SiO_2}=1,4442$.
- Com o desenho base ajusta-se os monitores, alimentação e solver. A alimentação e monitores são inalterados do FDTD 2D e 3D, sendo a grande diferença o acréscimo de *z span* no FDTD 3D. Vale destacar que todo o processo de criação da estrutura base foi realizado pela API (*lumapi*).

2.3 Etapa 2: Otimização 2D e 3D

 A próxima etapa é ajustar o código para otimização. Na otimização é criado um polígono que conecta os quatro guias de onda. Com o decorrer das iteração a geometria do polígono é alterada de acordo com a quantidade de partições realizadas. Na Figura 2 é mostrada a geometria inicial não otimizada. Esse modelo inicial é utilizado tanto para o FDTD 2D, quanto 3D.

Figura 2: Geometria sem otimização.

• Destaca-se que, devido a simetria da estrutura, apenas ¹/₈ do polígono é criado, sendo espelhado o mesmo molde para as outras 7 seções, ou seja, o processo de otimização foca apenas em alterar essa fração do polígono. Vale destacar que esse algoritmo de otimização salva cada geometria, desde o modelo inicial até o final. Esses dois modelos serão utilizados para serem simulados e comparados.

2.3.1 Figura de Mérito (FOM)

• O processo de otimização baseia-se na figura de mérito normalizada. Esta é uma métrica usada para avaliar a qualidade de uma solução em um processo de otimização, assim sendo possível quantificar o quão próximo o desempenho do modelo (simulado) está do desempenho ideal (geralmente uma transmissão ideal ou uma correspondência de modo desejada). A FOM mede a eficiência com que a luz é transmitida através do dispositivo, considerando a potência que é efetivamente propagada

no guia de ondas de saída. Além disso, leva em consideração o quanto um modo simulado se sobrepõe do modo fundamental. A equação abaixo mostra uma forma de modelar matematicamente a figura de mérito.

$$FOM = 1 - \frac{|T_{sim} - T_{target}|}{T_{target}}$$

Onde:

- T_{sim} é a transmitância simulada.
- T_{target} é a transmitância alvo (ideal).
- Quando se realiza uma otimização é necessário saber o que será otimizado. Dessa forma, com base no que se deseja alcançar, a figura de mérito é alterada.

2.4 Etapa 3 e 4: Resultados das Simulações e Otimização

• Na Figura 3 é ilustrada as geometrias finais obtidas do processo de otimização.

Figura 3: Geometrias otimizadas.

 Antes de realizar a simulação dessas estruturas, foi realizada a simulação do guia cruzado não otimizado.

2.4.1 Resultados para FDTD - 2D

 Na Figura 4 é ilustrado o perfil de campo elétrico, tanto em escala linear, quanto em (dB) para a estrutura não otimizada, utilizando solver FDTD 2D. Já na Figura 5 é ilustrada a transmitância para a mesma estrutura, em torno da banda C, para a mesma estrutura.

Figura 4: Perfil de Campo Elétrico.

Figura 5: Transmitância.

- Note pelo perfil de campo que não há um bom refinamento, condizendo com o que era esperado, visto que a estrutura não foi otimizada. Por outro lado, mesmo a estrutura não otimizada, não possui tanta perda quanto o que se esperava, visto uma queda de $T_{in}=0.99$ para $T_{out}=0.88$, aproximadamente, resultando em uma perda de inserção de IL=1.178(dB).
- Agora, na Figura 6 é ilustrado o mesmo perfil de campo elétrico, porém para a estrutura otimizada (Figura 3a), enquanto que na Figura 7 é ilustrada a transmitância, novamente em torno da banda C.

Figura 6: Perfil de Campo Elétrico.

Figura 7: Transmitância.

• Agora é possível notar um melhor confinamento quando comparado ao resultado anterior, apesar de também possuir perdas inerentes ao processo de otimização. Além disso, basicamente não há perda de inserção, visto que a diferença entre T_{in} e T_{out} está apenas na terceira casa decimal, pois, $T_{in}=0,999$ e $T_{out}=0,990$, aproximadamente, resultando em uma perda de inserção IL=0,090(dB).

2.4.2 Resultados para FDTD - 3D

 Na Figura 8 é ilustrado o perfil de campo elétrico, tanto em escala linear, quanto em (dB) para a estrutura não otimizada, utilizando solver FDTD 3D. Já na Figura 9 é ilustrada a transmitância para a mesma estrutura, em torno da banda C, para a mesma estrutura.

Figura 8: Perfil de Campo Elétrico.

Figura 9: Transmitância.

- Note um comportamento semelhante ao que foi visto para solver FDTD 2D. Nesse caso, é nítido na transmitância que a estrutura não otimizada possui uma perda de inserção bem maior, já que $T_{in}=0,98$ e $T_{out}=0,71$, aproximadamente, resultando em uma perda de inserção igual a 3,22(dB).
- Agora, na Figura 10 é ilustrado o mesmo perfil de campo elétrico, porém para a estrutura otimizada (Figura 3b), enquanto que na Figura 11 é ilustrada a transmitância, novamente em torno da banda C.

Figura 10: Perfil de Campo Elétrico.

Figura 11: Transmitância.

• Pode-se notar que o confinamento apresentou melhora significativa, bem como a transmitância. Enquanto que $T_{in}=0,99,\,T_{out}=0,95,$ aproximadamente, resultando em uma perda de inserção IL=0,412(dB).

Referências

Ansys Lumerical. **Inverse design of waveguide crossing**. (https://optics.ansys.com/hc/en-us/articles/360042305314-Inverse-design-of-waveguide-crossing). Acessado em: 16 dez. 2024.

TEAM, L. **LumOpt Documentation**. (https://lumopt.readthedocs.io/en/latest/install. html). Acessado em: 16 dez. 2024.