Firm Bankruptcy with Fire Sales

Alex von Hafften

UW-Madison

April 4, 2023

- During some crises, government interventions aim to preserve distressed—and possibly insolvent—firms and reorganize their debt (e.g., PPP during COVID)
- In other crises, government policies encouraged firm liquidation (e.g., Takenaka Plan)
- What frictions distort private incentives of firms and banks to encourage policy intervention?
- Pecuniary fire-sale externality (Shleifer and Vishny, 1992)
 - Constrained agents sell their assets below discounted value of cashflows
 - More aggregate liquidations lower recoveries for all firms
 - Private agents do not internalize effect of their decisions on aggregates
- Goal: Add fire-sale externality into structural GE firm dynamics model w/ entry and exit

- During some crises, government interventions aim to preserve distressed—and possibly insolvent—firms and reorganize their debt (e.g., PPP during COVID)
- In other crises, government policies encouraged firm liquidation (e.g., Takenaka Plan)
- What frictions distort private incentives of firms and banks to encourage policy intervention?
- Pecuniary fire-sale externality (Shleifer and Vishny, 1992)
 - Constrained agents sell their assets below discounted value of cashflows
 - More aggregate liquidations lower recoveries for all firms
 - Private agents do not internalize effect of their decisions on aggregates
- Goal: Add fire-sale externality into structural GE firm dynamics model w/ entry and exit

- During some crises, government interventions aim to preserve distressed—and possibly insolvent—firms and reorganize their debt (e.g., PPP during COVID)
- In other crises, government policies encouraged firm liquidation (e.g., Takenaka Plan)
- What frictions distort private incentives of firms and banks to encourage policy intervention?
- Pecuniary fire-sale externality (Shleifer and Vishny, 1992)
 - Constrained agents sell their assets below discounted value of cashflows
 - More aggregate liquidations lower recoveries for all firms
 - Private agents do not internalize effect of their decisions on aggregates
- Goal: Add fire-sale externality into structural GE firm dynamics model w/ entry and exit

- During some crises, government interventions aim to preserve distressed—and possibly insolvent—firms and reorganize their debt (e.g., PPP during COVID)
- In other crises, government policies encouraged firm liquidation (e.g., Takenaka Plan)
- What frictions distort private incentives of firms and banks to encourage policy intervention?
- Pecuniary fire-sale externality (Shleifer and Vishny, 1992)
 - Constrained agents sell their assets below discounted value of cashflows
 - ► More aggregate liquidations lower recoveries for all firms
 - ▶ Private agents do not internalize effect of their decisions on aggregates
- Goal: Add fire-sale externality into structural GE firm dynamics model w/ entry and exit

- During some crises, government interventions aim to preserve distressed—and possibly insolvent—firms and reorganize their debt (e.g., PPP during COVID)
- In other crises, government policies encouraged firm liquidation (e.g., Takenaka Plan)
- What frictions distort private incentives of firms and banks to encourage policy intervention?
- Pecuniary fire-sale externality (Shleifer and Vishny, 1992)
 - Constrained agents sell their assets below discounted value of cashflows
 - More aggregate liquidations lower recoveries for all firms
 - ▶ Private agents do not internalize effect of their decisions on aggregates
- Goal: Add fire-sale externality into structural GE firm dynamics model w/ entry and exit

- During some crises, government interventions aim to preserve distressed—and possibly insolvent—firms and reorganize their debt (e.g., PPP during COVID)
- In other crises, government policies encouraged firm liquidation (e.g., Takenaka Plan)
- What frictions distort private incentives of firms and banks to encourage policy intervention?
- Pecuniary fire-sale externality (Shleifer and Vishny, 1992)
 - Constrained agents sell their assets below discounted value of cashflows
 - More aggregate liquidations lower recoveries for all firms
 - Private agents do not internalize effect of their decisions on aggregates
- Goal: Add fire-sale externality into structural GE firm dynamics model w/ entry and exit

- During some crises, government interventions aim to preserve distressed—and possibly insolvent—firms and reorganize their debt (e.g., PPP during COVID)
- In other crises, government policies encouraged firm liquidation (e.g., Takenaka Plan)
- What frictions distort private incentives of firms and banks to encourage policy intervention?
- Pecuniary fire-sale externality (Shleifer and Vishny, 1992)
 - Constrained agents sell their assets below discounted value of cashflows
 - ▶ More aggregate liquidations lower recoveries for all firms
 - Private agents do not internalize effect of their decisions on aggregates
- Goal: Add fire-sale externality into structural GE firm dynamics model w/ entry and exit

- During some crises, government interventions aim to preserve distressed—and possibly insolvent—firms and reorganize their debt (e.g., PPP during COVID)
- In other crises, government policies encouraged firm liquidation (e.g., Takenaka Plan)
- What frictions distort private incentives of firms and banks to encourage policy intervention?
- Pecuniary fire-sale externality (Shleifer and Vishny, 1992)
 - Constrained agents sell their assets below discounted value of cashflows
 - More aggregate liquidations lower recoveries for all firms
 - ▶ Private agents do not internalize effect of their decisions on aggregates
- Goal: Add fire-sale externality into structural GE firm dynamics model w/ entry and exit

- Antill and Clayton (2022) is pen-and-paper two-period model with fire-sale externality and collateral constraints for lenders and derive conditions when tax on liquidations is optimal
- Relative Contributions
 - Add rich firm dynamics model as supply side of liquidated capital
 - ▶ Bring to data ⇒ quantitative statements about optimal policy
- Corbae and D'Erasmo (2021) is GE firm dynamics model with endogenous entry and exit where firm choose Ch. 7 liquidation and Ch. 11 reorganization bankruptcy instead of repaying debt
 - ▶ In Ch. 7, capital is sold at "fire-sale" price $s_7 = 0.4$ (or "liquidation recovery rate")
 - \triangleright $s_7 = 0.4$ is estimate from bankruptcies in AZ and NY 1995-2001 (Bris et al., 2006)
 - \triangleright Lucas critique: s_7 does not change w/ aggregate quantity of liquidated capital K_7
- Relative Contributions
 - ightharpoons Endogenize $s_7 \implies$ market for liquidated capital with quantity K_7 and price s_7
 - Key new ingredient: What is elasticity of demand for liquidated capital

- Antill and Clayton (2022) is pen-and-paper two-period model with fire-sale externality and collateral constraints for lenders and derive conditions when tax on liquidations is optimal
- Relative Contributions:
 - Add rich firm dynamics model as supply side of liquidated capital
 - lacktriangleright Bring to data \implies quantitative statements about optimal policy
- Corbae and D'Erasmo (2021) is GE firm dynamics model with endogenous entry and exit where firm choose Ch. 7 liquidation and Ch. 11 reorganization bankruptcy instead of repaying debt
 - ▶ In Ch. 7, capital is sold at "fire-sale" price $s_7 = 0.4$ (or "liquidation recovery rate")
 - $> s_7 = 0.4$ is estimate from bankruptcies in AZ and NY 1995-2001 (Bris et al. 2006)
 - Lucas critique: 57 does not change w/ aggregate quantity of liquidated capital K7
- Relative Contributions:
 - ightharpoons Endogenize $s_7 \implies$ market for liquidated capital with quantity K_7 and price s_7
 - Key new ingredient: What is elasticity of demand for liquidated capital?

- Antill and Clayton (2022) is pen-and-paper two-period model with fire-sale externality and collateral constraints for lenders and derive conditions when tax on liquidations is optimal
- Relative Contributions:
 - ▶ Add rich firm dynamics model as supply side of liquidated capital
 - lacktriangleright Bring to data \implies quantitative statements about optimal policy
- Corbae and D'Erasmo (2021) is GE firm dynamics model with endogenous entry and exit where firm choose Ch. 7 liquidation and Ch. 11 reorganization bankruptcy instead of repaying debt
 - \blacktriangleright In Ch. 7, capital is sold at "fire-sale" price $s_7=0.4$ (or "liquidation recovery rate")
 - $> s_7 = 0.4$ is estimate from bankruptcies in AZ and NY 1995-2001 (Bris et al. 2006)
 - \blacktriangleright Lucas critique: 57 does not change w/aggregate quantity of liquidated capital K_2
- Relative Contributions:
 - ightharpoons Endogenize $s_7 \implies$ market for liquidated capital with quantity K_7 and price s_7
 - Key new ingredient: What is elasticity of demand for liquidated capital?

- Antill and Clayton (2022) is pen-and-paper two-period model with fire-sale externality and collateral constraints for lenders and derive conditions when tax on liquidations is optimal
- Relative Contributions:
 - ▶ Add rich firm dynamics model as supply side of liquidated capital
 - ▶ Bring to data ⇒ quantitative statements about optimal policy
- Corbae and D'Erasmo (2021) is GE firm dynamics model with endogenous entry and exit where firm choose Ch. 7 liquidation and Ch. 11 reorganization bankruptcy instead of repaying debt
 - \blacktriangleright In Ch. 7, capital is sold at "fire-sale" price $s_7=0.4$ (or "liquidation recovery rate")
 - \triangleright $s_7=0.4$ is estimate from bankruptcies in AZ and NY 1995-2001 (Bris et al. 2006)
 - \blacktriangleright Lucas critique: s₇ does not change w/aggregate quantity of liquidated capital K_7
- Relative Contributions:
 - ightharpoons Endogenize $s_7 \implies$ market for liquidated capital with quantity K_7 and price s_7
 - Key new ingredient: What is elasticity of demand for liquidated capital

- Antill and Clayton (2022) is pen-and-paper two-period model with fire-sale externality and collateral constraints for lenders and derive conditions when tax on liquidations is optimal
- Relative Contributions:
 - ► Add rich firm dynamics model as supply side of liquidated capital
 - lacktriangledown Bring to data \implies quantitative statements about optimal policy
- Corbae and D'Erasmo (2021) is GE firm dynamics model with endogenous entry and exit where firm choose Ch. 7 liquidation and Ch. 11 reorganization bankruptcy instead of repaying debt More
 - ▶ In Ch. 7, capital is sold at "fire-sale" price $s_7 = 0.4$ (or "liquidation recovery rate")
 - $ightharpoonup s_7 = 0.4$ is estimate from bankruptcies in AZ and NY 1995-2001 (Bris et al. 2006)
 - ▶ Lucas critique: s₇ does not change w/ aggregate quantity of liquidated capital K₇
- Relative Contributions:
 - \blacktriangleright Endogenize $s_7 \implies$ market for liquidated capital with quantity K_7 and price s_7
 - Key new ingredient: What is elasticity of demand for liquidated capital?

- Antill and Clayton (2022) is pen-and-paper two-period model with fire-sale externality and collateral constraints for lenders and derive conditions when tax on liquidations is optimal
- Relative Contributions:
 - ► Add rich firm dynamics model as supply side of liquidated capital
 - lacktriangledown Bring to data \implies quantitative statements about optimal policy
- Corbae and D'Erasmo (2021) is GE firm dynamics model with endogenous entry and exit where firm choose Ch. 7 liquidation and Ch. 11 reorganization bankruptcy instead of repaying debt More
 - ▶ In Ch. 7, capital is sold at "fire-sale" price $s_7 = 0.4$ (or "liquidation recovery rate")
 - $ightharpoonup s_7 = 0.4$ is estimate from bankruptcies in AZ and NY 1995-2001 (Bris et al., 2006)
 - ► Lucas critique: s₇ does not change w/ aggregate quantity of liquidated capital K₇
- Relative Contributions
 - \triangleright Endogenize $s_7 \implies$ market for liquidated capital with quantity K_7 and price s_7
 - Key new ingredient: What is elasticity of demand for liquidated capital?

- Antill and Clayton (2022) is pen-and-paper two-period model with fire-sale externality and collateral constraints for lenders and derive conditions when tax on liquidations is optimal
- Relative Contributions:
 - ► Add rich firm dynamics model as supply side of liquidated capital
 - ▶ Bring to data ⇒ quantitative statements about optimal policy
- Corbae and D'Erasmo (2021) is GE firm dynamics model with endogenous entry and exit where firm choose Ch. 7 liquidation and Ch. 11 reorganization bankruptcy instead of repaying debt More
 - ▶ In Ch. 7, capital is sold at "fire-sale" price $s_7 = 0.4$ (or "liquidation recovery rate")
 - $ightharpoonup s_7 = 0.4$ is estimate from bankruptcies in AZ and NY 1995-2001 (Bris et al. 2006)
 - ▶ Lucas critique: s₇ does not change w/ aggregate quantity of liquidated capital K₇
- Relative Contributions:
 - \triangleright Endogenize $s_7 \implies$ market for liquidated capital with quantity K_7 and price s_7
 - Key new ingredient: What is elasticity of demand for liquidated capital?

- Antill and Clayton (2022) is pen-and-paper two-period model with fire-sale externality and collateral constraints for lenders and derive conditions when tax on liquidations is optimal
- Relative Contributions:
 - ► Add rich firm dynamics model as supply side of liquidated capital
 - ▶ Bring to data ⇒ quantitative statements about optimal policy
- Corbae and D'Erasmo (2021) is GE firm dynamics model with endogenous entry and exit where firm choose Ch. 7 liquidation and Ch. 11 reorganization bankruptcy instead of repaying debt More
 - ▶ In Ch. 7, capital is sold at "fire-sale" price $s_7 = 0.4$ (or "liquidation recovery rate")
 - $s_7 = 0.4$ is estimate from bankruptcies in AZ and NY 1995-2001 (Bris et al, 2006)
 - ► Lucas critique: s₇ does not change w/ aggregate quantity of liquidated capital K₇
- Relative Contributions:
 - ightharpoonup Endogenize $s_7 \implies$ market for liquidated capital with quantity K_7 and price s_7
 - Key new ingredient: What is elasticity of demand for liquidated capital?

- Antill and Clayton (2022) is pen-and-paper two-period model with fire-sale externality and collateral constraints for lenders and derive conditions when tax on liquidations is optimal
- Relative Contributions:
 - ► Add rich firm dynamics model as supply side of liquidated capital
 - ▶ Bring to data ⇒ quantitative statements about optimal policy
- Corbae and D'Erasmo (2021) is GE firm dynamics model with endogenous entry and exit where firm choose Ch. 7 liquidation and Ch. 11 reorganization bankruptcy instead of repaying debt More
 - ▶ In Ch. 7, capital is sold at "fire-sale" price $s_7 = 0.4$ (or "liquidation recovery rate")
 - $ightharpoonup s_7 = 0.4$ is estimate from bankruptcies in AZ and NY 1995-2001 (Bris et al. 2006)
 - ightharpoonup Lucas critique: s_7 does not change w/ aggregate quantity of liquidated capital K_7
- Relative Contributions:
 - ▶ Endogenize $s_7 \implies$ market for liquidated capital with quantity K_7 and price s_7
 - ▶ Key new ingredient: What is elasticity of demand for liquidated capital?

- Antill and Clayton (2022) is pen-and-paper two-period model with fire-sale externality and collateral constraints for lenders and derive conditions when tax on liquidations is optimal
- Relative Contributions:
 - ► Add rich firm dynamics model as supply side of liquidated capital
 - ▶ Bring to data ⇒ quantitative statements about optimal policy
- Corbae and D'Erasmo (2021) is GE firm dynamics model with endogenous entry and exit where firm choose Ch. 7 liquidation and Ch. 11 reorganization bankruptcy instead of repaying debt More
 - ▶ In Ch. 7, capital is sold at "fire-sale" price $s_7 = 0.4$ (or "liquidation recovery rate")
 - $ightharpoonup s_7 = 0.4$ is estimate from bankruptcies in AZ and NY 1995-2001 (Bris et al. 2006)
 - ► Lucas critique: s₇ does not change w/ aggregate quantity of liquidated capital K₇
- Relative Contributions:
 - ▶ Endogenize $s_7 \implies$ market for liquidated capital with quantity K_7 and price s_7
 - ▶ Key new ingredient: What is elasticity of demand for liquidated capital?

- Antill and Clayton (2022) is pen-and-paper two-period model with fire-sale externality and collateral constraints for lenders and derive conditions when tax on liquidations is optimal
- Relative Contributions:
 - ► Add rich firm dynamics model as supply side of liquidated capital
 - ▶ Bring to data ⇒ quantitative statements about optimal policy
- Corbae and D'Erasmo (2021) is GE firm dynamics model with endogenous entry and exit where firm choose Ch. 7 liquidation and Ch. 11 reorganization bankruptcy instead of repaying debt More
 - ▶ In Ch. 7, capital is sold at "fire-sale" price $s_7 = 0.4$ (or "liquidation recovery rate")
 - $ightharpoonup s_7 = 0.4$ is estimate from bankruptcies in AZ and NY 1995-2001 (Bris et al. 2006)
 - ► Lucas critique: s₇ does not change w/ aggregate quantity of liquidated capital K₇
- Relative Contributions:
 - ▶ Endogenize $s_7 \implies$ market for liquidated capital with quantity K_7 and price s_7
 - ▶ Key new ingredient: What is elasticity of demand for liquidated capital?

- Trade-off theory (Myers, 1984): interest is tax deductible but debt raises probability of bankruptcy
- Investment period (t = 1) and production/default/repayment period (t = 2) (no discounting)
- Three agents: Firms, lenders, and liquidators (all risk neutral)
- Firm has project w/ initial cost small κ and stochastic return $v \sim U(0,1)$ realized at t=2
- \bullet κ is small enough so project is NPV positive and project is irreversible for firm
- Firm borrows w/ noncontingent defaultable discount bonds w/ face value b, pays proportional corporate income tax τ , and enjoys tax rebate on interest
- If firm defaults, firm walks away and gets zero and lender pay deadweight cost of bankruptcy c_7 and sell project to liquidators at price s_7

- Trade-off theory (Myers, 1984): interest is tax deductible but debt raises probability of bankruptcy
- Investment period (t = 1) and production/default/repayment period (t = 2) (no discounting)
- Three agents: Firms, lenders, and liquidators (all risk neutral)
- Firm has project w/ initial cost small κ and stochastic return $v \sim U(0,1)$ realized at t=2
- \bullet κ is small enough so project is NPV positive and project is irreversible for firm
- Firm borrows w/ noncontingent defaultable discount bonds w/ face value b, pays proportional corporate income tax τ , and enjoys tax rebate on interest
- If firm defaults, firm walks away and gets zero and lender pay deadweight cost of bankruptcy c_7 and sell project to liquidators at price s_7

- Trade-off theory (Myers, 1984): interest is tax deductible but debt raises probability of bankruptcy
- Investment period (t = 1) and production/default/repayment period (t = 2) (no discounting)
- Three agents: Firms, lenders, and liquidators (all risk neutral)
- Firm has project w/ initial cost small κ and stochastic return $v \sim U(0,1)$ realized at t=2
- \bullet κ is small enough so project is NPV positive and project is irreversible for firm
- Firm borrows w/ noncontingent defaultable discount bonds w/ face value b, pays proportional corporate income tax τ , and enjoys tax rebate on interest
- If firm defaults, firm walks away and gets zero and lender pay deadweight cost of bankruptcy c_7 and sell project to liquidators at price s_7

- Trade-off theory (Myers, 1984): interest is tax deductible but debt raises probability of bankruptcy
- Investment period (t = 1) and production/default/repayment period (t = 2) (no discounting)
- Three agents: Firms, lenders, and liquidators (all risk neutral)
- ullet Firm has project w/ initial cost small κ and stochastic return $v \sim U(0,1)$ realized at t=2
- \bullet κ is small enough so project is NPV positive and project is irreversible for firm
- Firm borrows w/ noncontingent defaultable discount bonds w/ face value b, pays proportional corporate income tax τ , and enjoys tax rebate on interest
- If firm defaults, firm walks away and gets zero and lender pay deadweight cost of bankruptcy c_7 and sell project to liquidators at price s_7

- Trade-off theory (Myers, 1984): interest is tax deductible but debt raises probability of bankruptcy
- Investment period (t = 1) and production/default/repayment period (t = 2) (no discounting)
- Three agents: Firms, lenders, and liquidators (all risk neutral)
- ullet Firm has project w/ initial cost small κ and stochastic return $v \sim U(0,1)$ realized at t=2
- ullet is small enough so project is NPV positive and project is irreversible for firm
- Firm borrows w/ noncontingent defaultable discount bonds w/ face value b, pays proportional corporate income tax τ , and enjoys tax rebate on interest
- If firm defaults, firm walks away and gets zero and lender pay deadweight cost of bankruptcy c_7 and sell project to liquidators at price s_7

- Trade-off theory (Myers, 1984): interest is tax deductible but debt raises probability of bankruptcy
- Investment period (t = 1) and production/default/repayment period (t = 2) (no discounting)
- Three agents: Firms, lenders, and liquidators (all risk neutral)
- ullet Firm has project w/ initial cost small κ and stochastic return $v \sim U(0,1)$ realized at t=2
- \bullet κ is small enough so project is NPV positive and project is irreversible for firm
- Firm borrows w/ noncontingent defaultable discount bonds w/ face value b, pays proportional corporate income tax τ , and enjoys tax rebate on interest
- If firm defaults, firm walks away and gets zero and lender pay deadweight cost of bankruptcy c₇
 and sell project to liquidators at price s₇

- Trade-off theory (Myers, 1984): interest is tax deductible but debt raises probability of bankruptcy
- Investment period (t = 1) and production/default/repayment period (t = 2) (no discounting)
- Three agents: Firms, lenders, and liquidators (all risk neutral)
- ullet Firm has project w/ initial cost small κ and stochastic return $v \sim U(0,1)$ realized at t=2
- \bullet κ is small enough so project is NPV positive and project is irreversible for firm
- Firm borrows w/ noncontingent defaultable discount bonds w/ face value b, pays proportional corporate income tax τ , and enjoys tax rebate on interest
- If firm defaults, firm walks away and gets zero and lender pay deadweight cost of bankruptcy c_7 and sell project to liquidators at price s_7

Firm Problem

• In period 2, firm defaults iff

$$\underbrace{(1-\tau)(v-b)}_{\text{no default pay-off}} < \underbrace{0}_{\text{default pay-off}} \implies v < b$$

• In period 1, firm continuation value is

$$E_v[V(v,b)] = E_v[(1-\tau)(v-b)^+] = (1-\tau) \left[\underbrace{\frac{1}{2}}_{\text{expected project return}} - \underbrace{\frac{b^2}{2}}_{\text{option value of default}} \right]$$

• In period 1, firm borrows b at price q(b) and gets tax rebate on interest

$$\sum_{b,l} \underbrace{E_v[V(v,b)]}_{\text{continuation value}} - \underbrace{I}_{\text{equity investment}}$$

$$\text{.t. } \kappa = \underbrace{q(b)b}_{\text{barrowing}} + I$$

Firm Problem

• In period 2, firm defaults iff

$$\underbrace{(1-\tau)(v-b)}_{\text{no default pay-off}} < \underbrace{0}_{\text{default pay-off}} \implies v < b$$

• In period 1, firm continuation value is

$$E_v[V(v,b)] = E_v[(1- au)(v-b)^+] = (1- au) \left[\underbrace{rac{1}{2}}_{ ext{expected project return}} - \underbrace{rac{b}_{ ext{repayment}}}_{ ext{option value of default}} + \underbrace{rac{b^2}{2}}_{ ext{option value of default}}
ight]$$

• In period 1, firm borrows b at price q(b) and gets tax rebate on interest

Firm Problem

• In period 2, firm defaults iff

$$\underbrace{(1-\tau)(v-b)}_{\text{no default pay-off}} < \underbrace{0}_{\text{default pay-off}} \implies v < b$$

• In period 1, firm continuation value is

$$E_v[V(v,b)] = E_v[(1- au)(v-b)^+] = (1- au) \left[\underbrace{rac{1}{2}}_{ ext{expected project return}} - \underbrace{rac{b}_{ ext{repayment}}}_{ ext{option value of default}} + \underbrace{rac{b^2}{2}}_{ ext{option value of default}}
ight]$$

• In period 1, firm borrows b at price q(b) and gets tax rebate on interest

$$\max_{b,l} \underbrace{E_{v}[V(v,b)]}_{\text{continuation value}} - \underbrace{I}_{\text{equity investment}}$$
s.t. $\kappa = \underbrace{q(b)b}_{\text{borrowing}} + I$

In period 1, firms face menu of bond prices pinned down by lender profit condition

$$0 = \underbrace{-q(b; s_7)b}_{\text{loan}} + Pr(\text{firm default}) \underbrace{(s_7 - c_7)}_{\text{liquidation value}} + Pr(\text{no firm default}) \underbrace{b}_{\text{repayment}}$$

$$\implies q(b, s_7) = Pr(v < b) \frac{s_7 - c_7}{b} + Pr(v > b)$$

$$\Rightarrow q(b, s_7) = Pr(v < b) + Pr(v > b)$$

$$= b \frac{s_7 - c_7}{b} + (1 - b)$$

$$= \underbrace{1 - b}_{\text{probability of not default}} + \underbrace{s_7}_{\text{collateral}} - \underbrace{c_7}_{\text{deadweight loss of liquidation}}$$

- Combining firm and lender problems $\implies b(s_7) = \frac{\tau + s_7 c_7}{1 + \tau}$
- Aggregate capital liquidated is equal to default threshold, which equals $b(s_7)$

$$K_7^s(s_7) = \int_0^{b(s_7)} 1 dv = b(s_7) = \frac{\tau + s_7 - c_7}{1 + \tau}$$

In period 1, firms face menu of bond prices pinned down by lender profit condition

$$0 = \underbrace{-q(b; s_7)b}_{\text{loan}} + Pr(\text{firm default}) \underbrace{(s_7 - c_7)}_{\text{liquidation value}} + Pr(\text{no firm default}) \underbrace{b}_{\text{repayment}}$$

$$\implies q(b, s_7) = Pr(v < b) \frac{s_7 - c_7}{b} + Pr(v > b)$$

$$= b \frac{s_7 - c_7}{b} + (1 - b)$$

$$= \underbrace{1 - b}_{\text{probability of not default}} + \underbrace{s_7}_{\text{collateral}} - \underbrace{c_7}_{\text{deadweight loss of liquidation}}$$

- Combining firm and lender problems $\implies b(s_7) = rac{ au + s_7 c_7}{1 + au}$
- Aggregate capital liquidated is equal to default threshold, which equals $b(s_7)$

$$K_7^s(s_7) = \int_0^{b(s_7)} 1 dv = b(s_7) = \frac{\tau + s_7 - c_7}{1 + \tau}$$

In period 1, firms face menu of bond prices pinned down by lender profit condition

$$0 = \underbrace{-q(b; s_7)b}_{\text{loan}} + Pr(\text{firm default}) \underbrace{(s_7 - c_7)}_{\text{liquidation value}} + Pr(\text{no firm default}) \underbrace{b}_{\text{repayment}}$$

$$\implies q(b, s_7) = Pr(v < b) \frac{s_7 - c_7}{b} + Pr(v > b)$$

$$= b \frac{s_7 - c_7}{b} + (1 - b)$$

$$= 1 - b + s_7 - c_7$$

- Combining firm and lender problems $\implies b(s_7) = \frac{\tau + s_7 c_7}{1 + \tau}$
- Aggregate capital liquidated is equal to default threshold, which equals $b(s_7)$

$$K_7^s(s_7) = \int_0^{b(s_7)} 1 dv = b(s_7) = \frac{\tau + s_7 - c_7}{1 + \tau}$$

probability of not default collateral deadweight loss of liquidation

• In period 1, firms face menu of bond prices pinned down by lender profit condition

$$0 = \underbrace{-q(b; s_7)b}_{\text{loan}} + Pr(\text{firm default}) \underbrace{(s_7 - c_7)}_{\text{liquidation value}} + Pr(\text{no firm default}) \underbrace{b}_{\text{repayment}}$$

$$\implies q(b, s_7) = Pr(v < b) \frac{s_7 - c_7}{b} + Pr(v > b)$$

$$= b \frac{s_7 - c_7}{b} + (1 - b)$$

$$= \underbrace{1 - b}_{\text{probability of not default}} + \underbrace{s_7}_{\text{collateral}} - \underbrace{c_7}_{\text{deadweight loss of liquidation}}$$

- Combining firm and lender problems $\implies b(s_7) = \frac{\tau + s_7 c_7}{1 + \sigma}$
- Aggregate capital liquidated is equal to default threshold, which equals $b(s_7)$

$$K_7^s(s_7) = \int_0^{b(s_7)} 1 dv = b(s_7) = \frac{\tau + s_7 - c_7}{1 + \tau}$$

Liquidators

 Project is irreversible to firm but liquidators have technology to convert project capital into final good (Antill and Clayton, 2022)

$$f_7(k_7) = B \frac{k_7^{1-\xi_7}}{1-\xi_7}$$

- Liquidator use project capital in own production process, so tech. does not depend on realization of v (Eisfeldt and Rampini, 2006)
- Liquidators buy liquidated capital at price s₇ following inverse demand

$$s_7^d(K_7^s) = B(K_7^s)^{-\xi_7}$$

so ξ_7 is elasticity of demand for liquidated capital

• Market clearing $K_7^d(s_7) = K_7^s(s_7)$

Liquidators

 Project is irreversible to firm but liquidators have technology to convert project capital into final good (Antill and Clayton, 2022)

$$f_7(k_7) = B \frac{k_7^{1-\xi_7}}{1-\xi_7}$$

- Liquidator use project capital in own production process, so tech. does not depend on realization of v (Eisfeldt and Rampini, 2006)
- Liquidators buy liquidated capital at price s₇ following inverse demand

$$s_7^d(K_7^s) = B(K_7^s)^{-\xi_7}$$

so ξ_7 is elasticity of demand for liquidated capital

• Market clearing $K_7^d(s_7) = K_7^s(s_7)$

Liquidators

 Project is irreversible to firm but liquidators have technology to convert project capital into final good (Antill and Clayton, 2022)

$$f_7(k_7) = B \frac{k_7^{1-\xi_7}}{1-\xi_7}$$

- Liquidator use project capital in own production process, so tech. does not depend on realization of v (Eisfeldt and Rampini, 2006)
- Liquidators buy liquidated capital at price s₇ following inverse demand

$$s_7^d(K_7^s) = B(K_7^s)^{-\xi_7}$$

so ξ_7 is elasticity of demand for liquidated capital

• Market clearing $K_7^d(s_7) = K_7^s(s_7)$

Liquidators

 Project is irreversible to firm but liquidators have technology to convert project capital into final good (Antill and Clayton, 2022)

$$f_7(k_7) = B \frac{k_7^{1-\xi_7}}{1-\xi_7}$$

- Liquidator use project capital in own production process, so tech. does not depend on realization of v (Eisfeldt and Rampini, 2006)
- Liquidators buy liquidated capital at price s₇ following inverse demand

$$s_7^d(K_7^s) = B(K_7^s)^{-\xi_7}$$

so ξ_7 is elasticity of demand for liquidated capital

• Market clearing $K_7^d(s_7) = K_7^s(s_7)$

<ロト <個ト < ≣ト < ≣ト を目 のQで

Market for Liquidated Capital

Liquidated Capital (K_7)

- ullet At beginning of t=2, aggregate state ω is also realized w/ probability π_ω
- Firm idiosyncratic project return $v \sim U(0,1)$ is scaled by A^{ω} , so supply of liquidated capital is

$$K_7^s(s_7;\omega) = \frac{b(s_7)}{A_\omega}$$

where
$$b(s_7) = [(1+ au)\sum_{\hat{\omega}} rac{\pi_{\hat{\omega}}}{A_{\hat{\omega}}}]^{-1}\sum_{\hat{\omega}} \pi_{\hat{\omega}} [rac{ au A_{\hat{\omega}} + s_7 - c_7}{A_{\hat{\omega}}}]$$

$$s_7^d(K_7^s) = B_\omega(K_7^s)^{-\xi}$$

- Simplification:
 - Partition into high and low states $\omega \in \Omega_L$ and $\omega \in \Omega_H$ where $\Omega_H \cap \Omega_L = \emptyset$
 - $\triangleright B_{\omega} = B_L \forall \omega \in \Omega_L \text{ and } B_{\omega} = B_H \forall \omega \in \Omega_H$

- ullet At beginning of t=2, aggregate state ω is also realized w/ probability π_ω
- Firm idiosyncratic project return $v \sim U(0,1)$ is scaled by A^{ω} , so supply of liquidated capital is

$$K_7^s(s_7;\omega)=rac{b(s_7)}{A_\omega}$$

where
$$b(s_7) = [(1+\tau)\sum_{\hat{\omega}} \frac{\pi_{\hat{\omega}}}{A_{\hat{\omega}}}]^{-1} \sum_{\hat{\omega}} \pi_{\hat{\omega}} [\frac{\tau A_{\hat{\omega}} + s_7 - c_7}{A_{\hat{\omega}}}]$$

$$s_7^d(K_7^s) = B_\omega(K_7^s)^{-\xi_7}$$

- Simplification:
 - Partition into high and low states $\omega \in \Omega_L$ and $\omega \in \Omega_H$ where $\Omega_H \cap \Omega_L = \emptyset$
 - $\triangleright B_{\omega} = B_{I} \forall \omega \in \Omega_{I} \text{ and } B_{\omega} = B_{H} \forall \omega \in \Omega_{H}$

- ullet At beginning of t=2, aggregate state ω is also realized w/ probability π_ω
- Firm idiosyncratic project return $v \sim U(0,1)$ is scaled by A^{ω} , so supply of liquidated capital is

$$K_7^s(s_7;\omega)=rac{b(s_7)}{A_\omega}$$

where
$$b(s_7) = [(1+\tau)\sum_{\hat{\omega}} \frac{\pi_{\hat{\omega}}}{A_{\hat{\omega}}}]^{-1} \sum_{\hat{\omega}} \pi_{\hat{\omega}} [\frac{\tau A_{\hat{\omega}} + s_7 - c_7}{A_{\hat{\omega}}}]$$

$$s_7^d(K_7^s) = B_\omega(K_7^s)^{-\xi_7}$$

- Simplification:
 - Partition into high and low states $\omega \in \Omega_L$ and $\omega \in \Omega_H$ where $\Omega_H \cap \Omega_L = \emptyset$
 - $\blacktriangleright B_{\omega} = B_L \forall \omega \in \Omega_L \text{ and } B_{\omega} = B_H \forall \omega \in \Omega_H$

- ullet At beginning of t=2, aggregate state ω is also realized w/ probability π_{ω}
- Firm idiosyncratic project return $v \sim U(0,1)$ is scaled by A^{ω} , so supply of liquidated capital is

$$K_7^s(s_7;\omega)=rac{b(s_7)}{A_\omega}$$

where
$$b(s_7) = [(1+\tau)\sum_{\hat{\omega}} \frac{\pi_{\hat{\omega}}}{A_{\hat{\omega}}}]^{-1} \sum_{\hat{\omega}} \pi_{\hat{\omega}} [\frac{\tau A_{\hat{\omega}} + s_7 - c_7}{A_{\hat{\omega}}}]$$

$$s_7^d(K_7^s) = B_\omega(K_7^s)^{-\xi_7}$$

- Simplification:
 - ▶ Partition into high and low states $\omega \in \Omega_L$ and $\omega \in \Omega_H$ where $\Omega_H \cap \Omega_L = \emptyset$
 - $\triangleright B_{\omega} = B_L \forall \omega \in \Omega_L \text{ and } B_{\omega} = B_H \forall \omega \in \Omega_H$

- ullet At beginning of t=2, aggregate state ω is also realized w/ probability π_ω
- Firm idiosyncratic project return $v \sim U(0,1)$ is scaled by A^{ω} , so supply of liquidated capital is

$$K_7^s(s_7;\omega)=rac{b(s_7)}{A_\omega}$$

where
$$b(s_7) = [(1+\tau)\sum_{\hat{\omega}} \frac{\pi_{\hat{\omega}}}{A_{\hat{\omega}}}]^{-1} \sum_{\hat{\omega}} \pi_{\hat{\omega}} [\frac{\tau A_{\hat{\omega}} + s_7 - c_7}{A_{\hat{\omega}}}]$$

$$s_7^d(K_7^s) = B_\omega(K_7^s)^{-\xi_7}$$

- Simplification:
 - ▶ Partition into high and low states $\omega \in \Omega_L$ and $\omega \in \Omega_H$ where $\Omega_H \cap \Omega_L = \emptyset$
 - $\triangleright B_{\omega} = B_L \forall \omega \in \Omega_L \text{ and } B_{\omega} = B_H \forall \omega \in \Omega_H$

- ullet At beginning of t= 2, aggregate state ω is also realized w/ probability π_ω
- Firm idiosyncratic project return $v \sim U(0,1)$ is scaled by A^{ω} , so supply of liquidated capital is

$$K_7^s(s_7;\omega)=rac{b(s_7)}{A_\omega}$$

where
$$b(s_7) = [(1+\tau)\sum_{\hat{\omega}} \frac{\pi_{\hat{\omega}}}{A_{\hat{\omega}}}]^{-1} \sum_{\hat{\omega}} \pi_{\hat{\omega}} [\frac{\tau A_{\hat{\omega}} + s_7 - c_7}{A_{\hat{\omega}}}]$$

$$s_7^d(K_7^s) = B_\omega(K_7^s)^{-\xi_7}$$

- Simplification:
 - ▶ Partition into high and low states $\omega \in \Omega_L$ and $\omega \in \Omega_H$ where $\Omega_H \cap \Omega_L = \emptyset$
 - $B_{\omega} = B_L \forall \omega \in \Omega_L$ and $B_{\omega} = B_H \forall \omega \in \Omega_H$

Market for Liquidated Capital w/ Supply Shocks

Liquidated Capital (K_7)

Market for Liquidated Capital w/ Supply and Demand Shocks

Liquidated Capital (K_7)

- Reduced-form semi-estimate of elasticity of demand for liquidated capital
- Data: Large public firm bankruptcies between 1979-2022
- Approach: Regress proxy for s_7 on proxy for K_7 , firm controls, and recession dummy
- ullet Finding: Recovery rates are lower when more assets are liquidated w/ semi-elasticity pprox 0.25
- ullet Interpretation: \$1 billion \uparrow in aggregate liquidated capital $\iff \%0.25\downarrow$ in recovery rate
- Today's experiment is demonstration of concept w/ unaddressed confounding factors:
 - Not random sample with only large public bankruptcies
 - Recession dummy captures both demand and supply shocks
 - ▶ No valid instruments to disentangle shocks to demand and supply

- Reduced-form semi-estimate of elasticity of demand for liquidated capital
- Data: Large public firm bankruptcies between 1979-2022
- Approach: Regress proxy for s_7 on proxy for K_7 , firm controls, and recession dummy
- \bullet Finding: Recovery rates are lower when more assets are liquidated w/ semi-elasticity ≈ 0.25
- Interpretation: \$1 billion \uparrow in aggregate liquidated capital \iff %0.25 \downarrow in recovery rate
- Today's experiment is demonstration of concept w/ unaddressed confounding factors:
 - Not random sample with only large public bankruptcies
 - Recession dummy captures both demand and supply shocks
 - No valid instruments to disentangle shocks to demand and supply

- Reduced-form semi-estimate of elasticity of demand for liquidated capital
- Data: Large public firm bankruptcies between 1979-2022
- Approach: Regress proxy for s_7 on proxy for K_7 , firm controls, and recession dummy
- ullet Finding: Recovery rates are lower when more assets are liquidated w/ semi-elasticity pprox 0.25
- Interpretation: 1 billion \uparrow in aggregate liquidated capital $\iff \%0.25 \downarrow$ in recovery rate
- Today's experiment is demonstration of concept w/ unaddressed confounding factors:
 - Not random sample with only large public bankruptcies
 - Recession dummy captures both demand and supply shocks
 - ▶ No valid instruments to disentangle shocks to demand and supply

- Reduced-form semi-estimate of elasticity of demand for liquidated capital
- Data: Large public firm bankruptcies between 1979-2022
- Approach: Regress proxy for s_7 on proxy for K_7 , firm controls, and recession dummy
- ullet Finding: Recovery rates are lower when more assets are liquidated w/ semi-elasticity pprox 0.25
- ullet Interpretation: \$ 1 billion \uparrow in aggregate liquidated capital $\iff \$ 0.25 \downarrow$ in recovery rate
- Today's experiment is demonstration of concept w/ unaddressed confounding factors
 - Not random sample with only large public bankruptcies
 - Recession dummy captures both demand and supply shocks
 - No valid instruments to disentangle shocks to demand and supply

- Reduced-form semi-estimate of elasticity of demand for liquidated capital
- Data: Large public firm bankruptcies between 1979-2022
- Approach: Regress proxy for s_7 on proxy for K_7 , firm controls, and recession dummy
- ullet Finding: Recovery rates are lower when more assets are liquidated w/ semi-elasticity pprox 0.25
- ullet Interpretation: 1 billion \uparrow in aggregate liquidated capital $\iff \%0.25\downarrow$ in recovery rate
- Today's experiment is demonstration of concept w/ unaddressed confounding factors:
 - Not random sample with only large public bankruptcies
 - Recession dummy captures both demand and supply shocks
 - No valid instruments to disentangle shocks to demand and supply

- Reduced-form semi-estimate of elasticity of demand for liquidated capital
- Data: Large public firm bankruptcies between 1979-2022
- Approach: Regress proxy for s_7 on proxy for K_7 , firm controls, and recession dummy
- ullet Finding: Recovery rates are lower when more assets are liquidated w/ semi-elasticity pprox 0.25
- ullet Interpretation: 1 billion \uparrow in aggregate liquidated capital $\iff \%0.25\downarrow$ in recovery rate
- Today's experiment is demonstration of concept w/ unaddressed confounding factors:
 - ▶ Not random sample with only large public bankruptcies
 - ▶ Recession dummy captures both demand and supply shocks
 - ▶ No valid instruments to disentangle shocks to demand and supply

- Reduced-form semi-estimate of elasticity of demand for liquidated capital
- Data: Large public firm bankruptcies between 1979-2022
- Approach: Regress proxy for s_7 on proxy for K_7 , firm controls, and recession dummy
- ullet Finding: Recovery rates are lower when more assets are liquidated w/ semi-elasticity pprox 0.25
- ullet Interpretation: 1 billion \uparrow in aggregate liquidated capital $\iff \%0.25\downarrow$ in recovery rate
- Today's experiment is demonstration of concept w/ unaddressed confounding factors:
 - ▶ Not random sample with only large public bankruptcies
 - ▶ Recession dummy captures both demand and supply shocks
 - ▶ No valid instruments to disentangle shocks to demand and supply

- Reduced-form semi-estimate of elasticity of demand for liquidated capital
- Data: Large public firm bankruptcies between 1979-2022
- Approach: Regress proxy for s_7 on proxy for K_7 , firm controls, and recession dummy
- ullet Finding: Recovery rates are lower when more assets are liquidated w/ semi-elasticity pprox 0.25
- ullet Interpretation: \$1 billion \uparrow in aggregate liquidated capital $\iff \%0.25\downarrow$ in recovery rate
- Today's experiment is demonstration of concept w/ unaddressed confounding factors:
 - ▶ Not random sample with only large public bankruptcies
 - ► Recession dummy captures both demand and supply shocks
 - ▶ No valid instruments to disentangle shocks to demand and supply

- Reduced-form semi-estimate of elasticity of demand for liquidated capital
- Data: Large public firm bankruptcies between 1979-2022
- Approach: Regress proxy for s_7 on proxy for K_7 , firm controls, and recession dummy
- ullet Finding: Recovery rates are lower when more assets are liquidated w/ semi-elasticity pprox 0.25
- ullet Interpretation: 1 billion \uparrow in aggregate liquidated capital $\iff \%0.25\downarrow$ in recovery rate
- Today's experiment is demonstration of concept w/ unaddressed confounding factors:
 - Not random sample with only large public bankruptcies
 - ► Recession dummy captures both demand and supply shocks
 - ▶ No valid instruments to disentangle shocks to demand and supply

• Florida-UCLA-LoPucki Bankruptcy Research Database

- Comprehensive dataset on bankruptcies of public large firms between 1979 and 2022
- "Large" means assets of \$100 million in 1980 dollars (\$314 million in current dollars) or more
- 1,218 observations in total. Throwing out service and finance sectors \implies 903 observations
- Proxy for s7:
 - $ilde{s}_7 = rac{ ext{Distributions to (Unsecured and Secured) Creditors and Equity-Holder} + ext{Bankruptcy Fees}}{ ext{Assets Quarter Before Bankruptcy}}$
- Proxy for K₇:
 - $\tilde{K}_7 = {\sf sum}$ of assets of other firms liquidated 30 to 1 day before disposal date

- Florida-UCLA-LoPucki Bankruptcy Research Database
- Comprehensive dataset on bankruptcies of public large firms between 1979 and 2022
- "Large" means assets of \$100 million in 1980 dollars (\$314 million in current dollars) or more
- 1,218 observations in total. Throwing out service and finance sectors \implies 903 observations
- Proxy for s₇:
 - $\tilde{s}_7 = rac{ ext{Distributions to (Unsecured and Secured) Creditors and Equity-Holder} + ext{Bankruptcy Fees}}{ ext{Assets Quarter Before Bankruptcy}}$
- Proxy for K_7 :
 - $ilde{K}_7=$ sum of assets of other firms liquidated 30 to 1 day before disposal date

- Florida-UCLA-LoPucki Bankruptcy Research Database
- Comprehensive dataset on bankruptcies of public large firms between 1979 and 2022
- "Large" means assets of \$100 million in 1980 dollars (\$314 million in current dollars) or more
- 1,218 observations in total. Throwing out service and finance sectors \implies 903 observations
- Proxy for s₇:
 - $\tilde{s}_7 = rac{ ext{Distributions to (Unsecured and Secured) Creditors and Equity-Holder} + ext{Bankruptcy Fees}}{ ext{Assets Quarter Before Bankruptcy}}$
- \bullet Proxy for K_7 :
 - $\tilde{K}_7 = {\sf sum}$ of assets of other firms liquidated 30 to 1 day before disposal date

- Florida-UCLA-LoPucki Bankruptcy Research Database
- Comprehensive dataset on bankruptcies of public large firms between 1979 and 2022
- "Large" means assets of \$100 million in 1980 dollars (\$314 million in current dollars) or more
- Proxy for s₇:
 - $\tilde{s}_7 = rac{ ext{Distributions to (Unsecured and Secured) Creditors and Equity-Holder} + ext{Bankruptcy Fees}}{ ext{Assets Quarter Before Bankruptcy}}$
- Proxy for K_7 :
 - $\ddot{K}_7 = \text{sum of assets of other firms liquidated } 30 \text{ to } 1 \text{ day before disposal date}$

- Florida-UCLA-LoPucki Bankruptcy Research Database
- Comprehensive dataset on bankruptcies of public large firms between 1979 and 2022
- "Large" means assets of \$100 million in 1980 dollars (\$314 million in current dollars) or more
- Proxy for s₇:
 - $ilde{s}_7 = rac{ ext{Distributions to (Unsecured and Secured) Creditors and Equity-Holder} + ext{Bankruptcy Fees} \\ ext{Assets Quarter Before Bankruptcy}$
- Proxy for K_7 :
 - $\ddot{K}_7 = \text{sum of assets of other firms liquidated } 30 \text{ to } 1 \text{ day before disposal date}$

- Florida-UCLA-LoPucki Bankruptcy Research Database
- Comprehensive dataset on bankruptcies of public large firms between 1979 and 2022
- "Large" means assets of \$100 million in 1980 dollars (\$314 million in current dollars) or more
- Proxy for s_7 : More

$$\tilde{\mathfrak{s}}_7 = \frac{\text{Distributions to (Unsecured and Secured) Creditors and Equity-Holder} + \text{Bankruptcy Fees}}{\text{Assets Quarter Before Bankruptcy}}$$

• Proxy for K_7 : More

 $ilde{K}_7 = {\sf sum}$ of assets of other firms liquidated 30 to 1 day before disposal date

- Florida-UCLA-LoPucki Bankruptcy Research Database
- Comprehensive dataset on bankruptcies of public large firms between 1979 and 2022
- "Large" means assets of \$100 million in 1980 dollars (\$314 million in current dollars) or more
- 1,218 observations in total. Throwing out service and finance sectors \implies 903 observations More
- Proxy for s_7 : More

 $\tilde{\mathfrak{s}}_7 = \frac{\text{Distributions to (Unsecured and Secured) Creditors and Equity-Holder} + \text{Bankruptcy Fees}}{\text{Assets Quarter Before Bankruptcy}}$

• Proxy for K_7 : More

 $ilde{K}_7 = {\sf sum}$ of assets of other firms liquidated 30 to 1 day before disposal date

Min.	0.00
1st Qu.	0.23
Median	0.38
Mean	0.47
3rd Qu.	0.66
Max.	2.03

- ullet Few observations \Longrightarrow use both recoveries from liquidations and reorganization
- \circ \tilde{s}_7 distribution is relatively spread out
- For six reorganizations, proxy is larger than one

Min.	0.00
1st Qu.	0.23
Median	0.38
Mean	0.47
3rd Qu.	0.66
Max.	2.03

- ullet Few observations \Longrightarrow use both recoveries from liquidations and reorganization
- \tilde{s}_7 distribution is relatively spread out
- For six reorganizations, proxy is larger than one

Min.	0.00
1st Qu.	0.23
Median	0.38
Mean	0.47
3rd Qu.	0.66
Max.	2.03

- ullet Few observations \Longrightarrow use both recoveries from liquidations and reorganization
- \tilde{s}_7 distribution is relatively spread out
- For six reorganizations, proxy is larger than one

Min.	0.00
1st Qu.	0.00
Median	0.09
Mean	0.28
3rd Qu.	0.33
Max.	4.52

- 47 out of 98 bankruptcies were not preceded by any liquidations
- ullet Elasticities drop zeros \Longrightarrow estimates are insignificant \Longrightarrow focus on semi-elasticities

Min.	0.00
1st Qu.	0.00
Median	0.09
Mean	0.28
3rd Qu.	0.33
Max.	4.52

- 47 out of 98 bankruptcies were not preceded by any liquidations
- ullet Elasticities drop zeros \Longrightarrow estimates are insignificant \Longrightarrow focus on semi-elasticities

• More aggregate liquidations correlates with lower liquidation recoveries

Regression Specification

• Run the following regression

$$\log(\tilde{s}_7) = \xi_7 \tilde{K}_7 + \alpha \mathbb{1}\{\text{Bankruptcy is Liquidation}\} + \beta \mathbb{1}\{\text{Disposal during Recession}\} + \gamma' X + \varepsilon$$
 where X includes following firm characteristics 1 quarter before filing for bankruptcy

- ▶ 1-digit SIC code
- ► Return on assets (= EBIT / assets)
- ► Leverage (= liabilities / assets)
- ▶ log(no. of employees)
- Prepackaged bankruptcy dummy

Regression Specification

• Run the following regression

$$\log(\tilde{s}_7) = \xi_7 \tilde{K}_7 + \alpha \mathbb{1}\{\text{Bankruptcy is Liquidation}\} + \beta \mathbb{1}\{\text{Disposal during Recession}\} + \gamma' X + \varepsilon$$

where X includes following firm characteristics 1 quarter before filing for bankruptcy

- ▶ 1-digit SIC code
- ▶ Return on assets (= EBIT / assets)
- ► Leverage (= liabilities / assets)
- ▶ log(no. of employees)
- Prepackaged bankruptcy dummy

Regression Specification

Run the following regression

$$\log(\tilde{s}_7) = \xi_7 \tilde{K}_7 + \alpha \mathbb{1}\{\text{Bankruptcy is Liquidation}\} + \beta \mathbb{1}\{\text{Disposal during Recession}\} + \gamma' X + \varepsilon$$

where X includes following firm characteristics 1 quarter before filing for bankruptcy

- ▶ 1-digit SIC code
- Return on assets (= EBIT / assets)
- ► Leverage (= liabilities / assets)
- ▶ log(no. of employees)
- Prepackaged bankruptcy dummy

Regression Specification

• Run the following regression

$$\log(\tilde{s}_7) = \xi_7 \tilde{K}_7 + \alpha \mathbb{1}\{\text{Bankruptcy is Liquidation}\} + \beta \mathbb{1}\{\text{Disposal during Recession}\} + \gamma' X + \varepsilon$$

where X includes following firm characteristics 1 quarter before filing for bankruptcy

- ▶ 1-digit SIC code
- Return on assets (= EBIT / assets)
- Leverage (= liabilities / assets)
- ▶ log(no. of employees)
- Prepackaged bankruptcy dummy

Regression Specification

Run the following regression

$$\log(\tilde{s}_7) = \xi_7 \tilde{K}_7 + \alpha \mathbb{1}\{\text{Bankruptcy is Liquidation}\} + \beta \mathbb{1}\{\text{Disposal during Recession}\} + \gamma' X + \varepsilon$$

where X includes following firm characteristics 1 quarter before filing for bankruptcy

- ▶ 1-digit SIC code
- Return on assets (= EBIT / assets)
- Leverage (= liabilities / assets)
- ► log(no. of employees)
- Prepackaged bankruptcy dummy

Regression Specification

Run the following regression

$$\log(\tilde{s}_7) = \xi_7 \tilde{K}_7 + \alpha \mathbb{1}\{\text{Bankruptcy is Liquidation}\} + \beta \mathbb{1}\{\text{Disposal during Recession}\} + \gamma' X + \varepsilon$$

where X includes following firm characteristics 1 quarter before filing for bankruptcy

- ▶ 1-digit SIC code
- Return on assets (= EBIT / assets)
- Leverage (= liabilities / assets)
- ► log(no. of employees)
- Prepackaged bankruptcy dummy

Table: Liquidation Recovery Proxy vs. Aggregate Liquidation Proxy

Dependent variable: log(Liquidation Recovery Proxy)			
-0.288* (0.158)	-0.226 (0.172)	-0.309* (0.158)	-0.227 (0.172)
	-0.217 (0.260)		-0.244 (0.262)
		-0.683 (0.485)	-0.559 (0.599)
No	Yes	No	Yes
98 0.023	98 0.143	98 0.033	98 0.141
	(1) -0.288* (0.158) No 98	log(Liquidation (1) (2) -0.288* -0.226 (0.158) (0.172) -0.217 (0.260) No Yes 98 98	log(Liquidation Recovery Pro (1) (2) (3) -0.288* -0.226 -0.309* (0.158) (0.172) (0.158) -0.217 (0.260) -0.683 (0.485) No Yes No 98 98 98

Note:

ullet $\hat{\xi}_7$ is significantly negative; liquidation recovery proxy seems lower in recession Full Table

^{*}p<0.1; **p<0.05; ***p<0.01

- ① Different windows for aggregate liquidations proxy (90 days, 60 days, 30 days, 7 days before) More

- ► Tighter windows ⇒ more zeros ⇒ larger standard errors
- ► Estimates generally decrease in magnitude w/ window length

- 1 Different windows for aggregate liquidations proxy (90 days, 60 days, 30 days, 7 days before) More

- ightharpoonup Tighter windows \implies more zeros \implies larger standard errors
- ► Estimates generally decrease in magnitude w/ window length

- 1 Different windows for aggregate liquidations proxy (90 days, 60 days, 30 days, 7 days before) More

- ightharpoonup Tighter windows \implies more zeros \implies larger standard errors
- ► Estimates generally decrease in magnitude w/ window length

- 1 Different windows for aggregate liquidations proxy (90 days, 60 days, 30 days, 7 days before) More

- ightharpoonup Tighter windows \implies more zeros \implies larger standard errors
- ► Estimates generally decrease in magnitude w/ window length
- Oifferent windows for aggregate liquidations proxy (90 days, 60 days, 30 days, 7 days after)
 - Similar pattern to windows before disposal date

- 1 Different windows for aggregate liquidations proxy (90 days, 60 days, 30 days, 7 days before) More

- ightharpoonup Tighter windows \implies more zeros \implies larger standard errors
- ► Estimates generally decrease in magnitude w/ window length
- Different windows for aggregate liquidations proxy (90 days, 60 days, 30 days, 7 days after)
 - Similar pattern to windows before disposal date

- 1 Different windows for aggregate liquidations proxy (90 days, 60 days, 30 days, 7 days before) More

- ightharpoonup Tighter windows \implies more zeros \implies larger standard errors
- ► Estimates generally decrease in magnitude w/ window length
- Different windows for aggregate liquidations proxy (90 days, 60 days, 30 days, 7 days after)
 - Similar pattern to windows before disposal date
- Counting liquidations only within same sector More and different sectors More
 - More zeros $\implies \hat{\mathcal{E}}_7$ point estimates are similar w/larger standard errors

- 1 Different windows for aggregate liquidations proxy (90 days, 60 days, 30 days, 7 days before) More

- ightharpoonup Tighter windows \implies more zeros \implies larger standard errors
- ► Estimates generally decrease in magnitude w/ window length
- Different windows for aggregate liquidations proxy (90 days, 60 days, 30 days, 7 days after)
 - Similar pattern to windows before disposal date
- Counting liquidations only within same sector More and different sectors More
 - More zeros $\implies \hat{\xi}_7$ point estimates are similar w/ larger standard errors

- Different windows for aggregate liquidations proxy (90 days, 60 days, 30 days, 7 days before)

- ightharpoonup Tighter windows \implies more zeros \implies larger standard errors
- ► Estimates generally decrease in magnitude w/ window length
- Different windows for aggregate liquidations proxy (90 days, 60 days, 30 days, 7 days after)
 - Similar pattern to windows before disposal date
- Counting liquidations only within same sector More and different sectors More
 - More zeros $\implies \hat{\xi}_7$ point estimates are similar w/ larger standard errors
- Calendar-month-level observations More
 - ▶ Regress mean recovery rate on sum of liquidated assets in calendar month
 - \triangleright $\hat{\mathcal{E}}$ estimates are significant and similar magnitude to firm-level regressions

- Different windows for aggregate liquidations proxy (90 days, 60 days, 30 days, 7 days before)

- ightharpoonup Tighter windows \implies more zeros \implies larger standard errors
- ► Estimates generally decrease in magnitude w/ window length
- Different windows for aggregate liquidations proxy (90 days, 60 days, 30 days, 7 days after)
 - Similar pattern to windows before disposal date
- Counting liquidations only within same sector More and different sectors More
 - More zeros $\implies \hat{\xi}_7$ point estimates are similar w/ larger standard errors
- Calendar-month-level observations More
 - Regress mean recovery rate on sum of liquidated assets in calendar month
 - \triangleright $\hat{\mathcal{E}}$ estimates are significant and similar magnitude to firm-level regressions

- Different windows for aggregate liquidations proxy (90 days, 60 days, 30 days, 7 days before)

- ightharpoonup Tighter windows \implies more zeros \implies larger standard errors
- ► Estimates generally decrease in magnitude w/ window length
- Different windows for aggregate liquidations proxy (90 days, 60 days, 30 days, 7 days after)
 - Similar pattern to windows before disposal date
- Counting liquidations only within same sector More and different sectors More
 - More zeros $\implies \hat{\xi}_7$ point estimates are similar w/ larger standard errors
- Calendar-month-level observations More
 - Regress mean recovery rate on sum of liquidated assets in calendar month
 - \triangleright $\hat{\mathcal{E}}$ estimates are significant and similar magnitude to firm-level regressions

- Different windows for aggregate liquidations proxy (90 days, 60 days, 30 days, 7 days before)

- ightharpoonup Tighter windows \implies more zeros \implies larger standard errors
- ► Estimates generally decrease in magnitude w/ window length
- Different windows for aggregate liquidations proxy (90 days, 60 days, 30 days, 7 days after)
 - Similar pattern to windows before disposal date
- Counting liquidations only within same sector More and different sectors More
 - More zeros $\implies \hat{\xi}_7$ point estimates are similar w/ larger standard errors
- Calendar-month-level observations More
 - Regress mean recovery rate on sum of liquidated assets in calendar month
 - \triangleright $\hat{\mathcal{E}}$ estimates are significant and similar magnitude to firm-level regressions
- 6 Calendar-quarter-level More
 - ► Smaller and insignificant like firm-level 90-day regressions

- Different windows for aggregate liquidations proxy (90 days, 60 days, 30 days, 7 days before)

- ightharpoonup Tighter windows \implies more zeros \implies larger standard errors
- ► Estimates generally decrease in magnitude w/ window length
- Different windows for aggregate liquidations proxy (90 days, 60 days, 30 days, 7 days after)
 - Similar pattern to windows before disposal date
- Counting liquidations only within same sector More and different sectors More
 - More zeros $\implies \hat{\xi}_7$ point estimates are similar w/ larger standard errors
- Calendar-month-level observations More
 - Regress mean recovery rate on sum of liquidated assets in calendar month
 - \triangleright $\hat{\mathcal{E}}$ estimates are significant and similar magnitude to firm-level regressions
- 6 Calendar-quarter-level More
 - ► Smaller and insignificant like firm-level 90-day regressions

Data is serious limitation

- ► Federal Judicial Center Bankruptcy data is universe of bankruptcy filings 2007-present (but no proxies for liquidation recovery)
- Compustat has flags of bankruptcy/liquidation, but only public firms and no recoveries
- Quarterly Financial Reports (census) for balance sheets info about private firms
- ► Scrape?
- ullet Improve identification strategy \Longrightarrow Granular Instrumental Variables (Gabiax and Koijen, 2022)
 - ▶ Markets with "large" agents
 - Idiosyncratic shocks to large agents change prices \(\ightarrow \) aggregate shocks
 - ▶ Idiosyncratic shocks to large agents are valid instruments

- Data is serious limitation
 - ► Federal Judicial Center Bankruptcy data is universe of bankruptcy filings 2007-present (but no proxies for liquidation recovery)
 - Compustat has flags of bankruptcy/liquidation, but only public firms and no recoveries
 - Quarterly Financial Reports (census) for balance sheets info about private firms
 - ► Scrape?
- ullet Improve identification strategy \Longrightarrow Granular Instrumental Variables (Gabiax and Koijen, 2022)
 - Markets with "large" agents
 - Idiosyncratic shocks to large agents change prices \(\Rightarrow\) aggregate shocks
 - Idiosyncratic shocks to large agents are valid instruments

- Data is serious limitation
 - ► Federal Judicial Center Bankruptcy data is universe of bankruptcy filings 2007-present (but no proxies for liquidation recovery)
 - ► Compustat has flags of bankruptcy/liquidation, but only public firms and no recoveries
 - Quarterly Financial Reports (census) for balance sheets info about private firms
 - ► Scrape?
- ullet Improve identification strategy \Longrightarrow Granular Instrumental Variables (Gabiax and Koijen, 2022)
 - ► Markets with "large" agents
 - Idiosyncratic shocks to large agents change prices aggregate shocks.
 - Idiosyncratic shocks to large agents are valid instruments

- Data is serious limitation
 - ► Federal Judicial Center Bankruptcy data is universe of bankruptcy filings 2007-present (but no proxies for liquidation recovery)
 - ► Compustat has flags of bankruptcy/liquidation, but only public firms and no recoveries
 - Quarterly Financial Reports (census) for balance sheets info about private firms
 - ► Scrape?
- ullet Improve identification strategy \Longrightarrow Granular Instrumental Variables (Gabiax and Koijen, 2022)
 - ► Markets with "large" agents
 - Idiosyncratic shocks to large agents change prices aggregate shocks
 - Idiosyncratic shocks to large agents are valid instruments

- Data is serious limitation
 - ► Federal Judicial Center Bankruptcy data is universe of bankruptcy filings 2007-present (but no proxies for liquidation recovery)
 - Compustat has flags of bankruptcy/liquidation, but only public firms and no recoveries
 - Quarterly Financial Reports (census) for balance sheets info about private firms
 - Scrape?
- ullet Improve identification strategy \Longrightarrow Granular Instrumental Variables (Gabiax and Koijen, 2022)
 - Markets with "large" agents
 - Idiosyncratic shocks to large agents change prices aggregate shocks
 - Idiosyncratic shocks to large agents are valid instruments

- Data is serious limitation
 - ► Federal Judicial Center Bankruptcy data is universe of bankruptcy filings 2007-present (but no proxies for liquidation recovery)
 - ► Compustat has flags of bankruptcy/liquidation, but only public firms and no recoveries
 - Quarterly Financial Reports (census) for balance sheets info about private firms
 - Scrape?
- ullet Improve identification strategy \Longrightarrow Granular Instrumental Variables (Gabiax and Koijen, 2022)
 - Markets with "large" agents
 - ▶ Idiosyncratic shocks to large agents change prices ⇒ aggregate shocks
 - ▶ Idiosyncratic shocks to large agents are valid instruments

- Data is serious limitation
 - ► Federal Judicial Center Bankruptcy data is universe of bankruptcy filings 2007-present (but no proxies for liquidation recovery)
 - ► Compustat has flags of bankruptcy/liquidation, but only public firms and no recoveries
 - Quarterly Financial Reports (census) for balance sheets info about private firms
 - Scrape?
- ullet Improve identification strategy \Longrightarrow Granular Instrumental Variables (Gabiax and Koijen, 2022)
 - Markets with "large" agents
 - ▶ Idiosyncratic shocks to large agents change prices ⇒ aggregate shocks
 - ▶ Idiosyncratic shocks to large agents are valid instruments

- Data is serious limitation
 - ► Federal Judicial Center Bankruptcy data is universe of bankruptcy filings 2007-present (but no proxies for liquidation recovery)
 - ► Compustat has flags of bankruptcy/liquidation, but only public firms and no recoveries
 - Quarterly Financial Reports (census) for balance sheets info about private firms
 - Scrape?
- ullet Improve identification strategy \Longrightarrow Granular Instrumental Variables (Gabiax and Koijen, 2022)
 - Markets with "large" agents
 - ▶ Idiosyncratic shocks to large agents change prices ⇒ aggregate shocks
 - ▶ Idiosyncratic shocks to large agents are valid instruments

- Data is serious limitation
 - ► Federal Judicial Center Bankruptcy data is universe of bankruptcy filings 2007-present (but no proxies for liquidation recovery)
 - Compustat has flags of bankruptcy/liquidation, but only public firms and no recoveries
 - Quarterly Financial Reports (census) for balance sheets info about private firms
 - Scrape?
- ullet Improve identification strategy \Longrightarrow Granular Instrumental Variables (Gabiax and Koijen, 2022)
 - Markets with "large" agents
 - ▶ Idiosyncratic shocks to large agents change prices ⇒ aggregate shocks
 - ▶ Idiosyncratic shocks to large agents are valid instruments

• Used capital is different from new capital

- ▶ Mergers and acquisitions as used capital reallocation (Javonovic and Rousseau, 2001)
- ► Cost of reallocation over business cycle countercyclical (Eisfeldt and Rampini, 2006)
- Why are there fire-sales? Why distressed agents sell assets trade below par value?
 - Misallocation to less productive agents (Shleifer and Vishny, 1992)
 - Specificity and thin markets (Ramey and Shapiro, 2001) (Acharya et al, 2007)
 - Asymmetric information and lemons problem (Kurlat, 2016)
 - Quality and deferred maintenance (Franks et al, 2022)
- Theory of fire sales determine normative implications (Davila and Korinek, 2018) (Kurlat, 2022)
 - Distributive pecuniary externalities are ambiguous in genera
 - Collateral pecuniary externalities lead to over-investing
 - Asymmetric information lead to under-investing

- Used capital is different from new capital
 - ▶ Mergers and acquisitions as used capital reallocation (Javonovic and Rousseau, 2001)
 - ▶ Cost of reallocation over business cycle countercyclical (Eisfeldt and Rampini, 2006)
- Why are there fire-sales? Why distressed agents sell assets trade below par value?
 - Misallocation to less productive agents (Shleifer and Vishny, 1992)
 - Specificity and thin markets (Ramey and Shapiro, 2001) (Acharya et al, 2007)
 - Asymmetric information and lemons problem (Kurlat, 2016)
 - Quality and deferred maintenance (Franks et al, 2022)
- Theory of fire sales determine normative implications (Davila and Korinek, 2018) (Kurlat, 2022)
 - Distributive pecuniary externalities are ambiguous in general
 - Collateral pecuniary externalities lead to over-investing
 - Asymmetric information lead to under-investing

- Used capital is different from new capital
 - Mergers and acquisitions as used capital reallocation (Javonovic and Rousseau, 2001)
 - ▶ Cost of reallocation over business cycle countercyclical (Eisfeldt and Rampini, 2006)
- Why are there fire-sales? Why distressed agents sell assets trade below par value?
 - Misallocation to less productive agents (Shleifer and Vishny, 1992)
 - Specificity and thin markets (Ramey and Shapiro, 2001) (Acharya et al., 2007)
 - Asymmetric information and lemons problem (Kurlat, 2016)
 - Quality and deferred maintenance (Franks et al. 2022).
- Theory of fire sales determine normative implications (Davila and Korinek, 2018) (Kurlat, 2022)
 - Distributive pecuniary externalities are ambiguous in general
 - Collateral pecuniary externalities lead to over-investing
 - Asymmetric information lead to under-investing

- Used capital is different from new capital
 - Mergers and acquisitions as used capital reallocation (Javonovic and Rousseau, 2001)
 - Cost of reallocation over business cycle countercyclical (Eisfeldt and Rampini, 2006)
- Why are there fire-sales? Why distressed agents sell assets trade below par value?
 - ▶ Misallocation to less productive agents (Shleifer and Vishny, 1992)
 - ▶ Specificity and thin markets (Ramey and Shapiro, 2001) (Acharya et al, 2007)
 - ► Asymmetric information and lemons problem (Kurlat, 2016)
 - Quality and deferred maintenance (Franks et al, 2022)
- Theory of fire sales determine normative implications (Davila and Korinek, 2018) (Kurlat, 2022)
 - Distributive pecuniary externalities are ambiguous in general
 - Collateral pecuniary externalities lead to over-investing
 - Asymmetric information lead to under-investing

- Used capital is different from new capital
 - Mergers and acquisitions as used capital reallocation (Javonovic and Rousseau, 2001)
 - Cost of reallocation over business cycle countercyclical (Eisfeldt and Rampini, 2006)
- Why are there fire-sales? Why distressed agents sell assets trade below par value?
 - ▶ Misallocation to less productive agents (Shleifer and Vishny, 1992)
 - ▶ Specificity and thin markets (Ramey and Shapiro, 2001) (Acharya et al, 2007)
 - ► Asymmetric information and lemons problem (Kurlat, 2016)
 - Quality and deferred maintenance (Franks et al, 2022)
- Theory of fire sales determine normative implications (Davila and Korinek, 2018) (Kurlat, 2022)
 - Distributive pecuniary externalities are ambiguous in general
 - Collateral pecuniary externalities lead to over-investing
 - Asymmetric information lead to under-investing

- Used capital is different from new capital
 - Mergers and acquisitions as used capital reallocation (Javonovic and Rousseau, 2001)
 - ▶ Cost of reallocation over business cycle countercyclical (Eisfeldt and Rampini, 2006)
- Why are there fire-sales? Why distressed agents sell assets trade below par value?
 - Misallocation to less productive agents (Shleifer and Vishny, 1992)
 - ▶ Specificity and thin markets (Ramey and Shapiro, 2001) (Acharya et al, 2007)
 - ► Asymmetric information and lemons problem (Kurlat, 2016)
 - Quality and deferred maintenance (Franks et al, 2022)
- Theory of fire sales determine normative implications (Davila and Korinek, 2018) (Kurlat, 2022)
 - Distributive pecuniary externalities are ambiguous in general
 - Collateral pecuniary externalities lead to over-investing
 - Asymmetric information lead to under-investing

- Used capital is different from new capital
 - Mergers and acquisitions as used capital reallocation (Javonovic and Rousseau, 2001)
 - ▶ Cost of reallocation over business cycle countercyclical (Eisfeldt and Rampini, 2006)
- Why are there fire-sales? Why distressed agents sell assets trade below par value?
 - Misallocation to less productive agents (Shleifer and Vishny, 1992)
 - ► Specificity and thin markets (Ramey and Shapiro, 2001) (Acharya et al, 2007)
 - Asymmetric information and lemons problem (Kurlat, 2016)
 - Quality and deferred maintenance (Franks et al, 2022)
- Theory of fire sales determine normative implications (Davila and Korinek, 2018) (Kurlat, 2022)
 - Distributive pecuniary externalities are ambiguous in general
 - Collateral pecuniary externalities lead to over-investing
 - Asymmetric information lead to under-investing

- Used capital is different from new capital
 - Mergers and acquisitions as used capital reallocation (Javonovic and Rousseau, 2001)
 - ▶ Cost of reallocation over business cycle countercyclical (Eisfeldt and Rampini, 2006)
- Why are there fire-sales? Why distressed agents sell assets trade below par value?
 - Misallocation to less productive agents (Shleifer and Vishny, 1992)
 - ► Specificity and thin markets (Ramey and Shapiro, 2001) (Acharya et al, 2007)
 - Asymmetric information and lemons problem (Kurlat, 2016)
 - Quality and deferred maintenance (Franks et al, 2022)
- Theory of fire sales determine normative implications (Davila and Korinek, 2018) (Kurlat, 2022)
 - Distributive pecuniary externalities are ambiguous in general
 - Collateral pecuniary externalities lead to over-investing
 - Asymmetric information lead to under-investing

- Used capital is different from new capital
 - Mergers and acquisitions as used capital reallocation (Javonovic and Rousseau, 2001)
 - Cost of reallocation over business cycle countercyclical (Eisfeldt and Rampini, 2006)
- Why are there fire-sales? Why distressed agents sell assets trade below par value?
 - Misallocation to less productive agents (Shleifer and Vishny, 1992)
 - ► Specificity and thin markets (Ramey and Shapiro, 2001) (Acharya et al, 2007)
 - Asymmetric information and lemons problem (Kurlat, 2016)
 - Quality and deferred maintenance (Franks et al, 2022)
- Theory of fire sales determine normative implications (Davila and Korinek, 2018) (Kurlat, 2022)
 - ▶ Distributive pecuniary externalities are ambiguous in general
 - ► Collateral pecuniary externalities lead to over-investing
 - Asymmetric information lead to under-investing

- Used capital is different from new capital
 - Mergers and acquisitions as used capital reallocation (Javonovic and Rousseau, 2001)
 - Cost of reallocation over business cycle countercyclical (Eisfeldt and Rampini, 2006)
- Why are there fire-sales? Why distressed agents sell assets trade below par value?
 - Misallocation to less productive agents (Shleifer and Vishny, 1992)
 - ► Specificity and thin markets (Ramey and Shapiro, 2001) (Acharya et al, 2007)
 - Asymmetric information and lemons problem (Kurlat, 2016)
 - Quality and deferred maintenance (Franks et al, 2022)
- Theory of fire sales determine normative implications (Davila and Korinek, 2018) (Kurlat, 2022)
 - ▶ Distributive pecuniary externalities are ambiguous in general
 - ► Collateral pecuniary externalities lead to over-investing
 - Asymmetric information lead to under-investing

- Used capital is different from new capital
 - Mergers and acquisitions as used capital reallocation (Javonovic and Rousseau, 2001)
 - Cost of reallocation over business cycle countercyclical (Eisfeldt and Rampini, 2006)
- Why are there fire-sales? Why distressed agents sell assets trade below par value?
 - Misallocation to less productive agents (Shleifer and Vishny, 1992)
 - ► Specificity and thin markets (Ramey and Shapiro, 2001) (Acharya et al, 2007)
 - Asymmetric information and lemons problem (Kurlat, 2016)
 - Quality and deferred maintenance (Franks et al, 2022)
- Theory of fire sales determine normative implications (Davila and Korinek, 2018) (Kurlat, 2022)
 - ▶ Distributive pecuniary externalities are ambiguous in general
 - Collateral pecuniary externalities lead to over-investing
 - Asymmetric information lead to under-investing

- Used capital is different from new capital
 - Mergers and acquisitions as used capital reallocation (Javonovic and Rousseau, 2001)
 - Cost of reallocation over business cycle countercyclical (Eisfeldt and Rampini, 2006)
- Why are there fire-sales? Why distressed agents sell assets trade below par value?
 - ▶ Misallocation to less productive agents (Shleifer and Vishny, 1992)
 - ► Specificity and thin markets (Ramey and Shapiro, 2001) (Acharya et al, 2007)
 - Asymmetric information and lemons problem (Kurlat, 2016)
 - Quality and deferred maintenance (Franks et al, 2022)
- Theory of fire sales determine normative implications (Davila and Korinek, 2018) (Kurlat, 2022)
 - ▶ Distributive pecuniary externalities are ambiguous in general
 - Collateral pecuniary externalities lead to over-investing
 - Asymmetric information lead to under-investing

- Recovery rates in corporate bonds issued by public firms
 - ▶ Recovery rates and default rates negative correlated (Altman et al, 2005)
 - ▶ Recovery rates lower when industry of defaulted firm is in distress (Acharya et al, 2007)
 - ▶ Recovery rates are uncertain and pricing implies recovery risk premium (Schlafer et al, 2014)
- Campbell distress puzzle (Campbell et al, 2008) (Chen et al, 2022)
 - Distressed firm stocks are risky (high volatility and betas) but average returns are low

- Recovery rates in corporate bonds issued by public firms
 - Recovery rates and default rates negative correlated (Altman et al, 2005)
 - ▶ Recovery rates lower when industry of defaulted firm is in distress (Acharya et al, 2007)
 - ▶ Recovery rates are uncertain and pricing implies recovery risk premium (Schlafer et al, 2014)
- Campbell distress puzzle (Campbell et al, 2008) (Chen et al, 2022)
 - $\, ilde{}\,\,$ Distressed firm stocks are risky (high volatility and betas) but average returns are low

- Recovery rates in corporate bonds issued by public firms
 - Recovery rates and default rates negative correlated (Altman et al, 2005)
 - ▶ Recovery rates lower when industry of defaulted firm is in distress (Acharya et al, 2007)
 - ▶ Recovery rates are uncertain and pricing implies recovery risk premium (Schlafer et al, 2014
- Campbell distress puzzle (Campbell et al, 2008) (Chen et al, 2022)
 - $\, ilde{}\,\,$ Distressed firm stocks are risky (high volatility and betas) but average returns are low

- Recovery rates in corporate bonds issued by public firms
 - Recovery rates and default rates negative correlated (Altman et al, 2005)
 - ▶ Recovery rates lower when industry of defaulted firm is in distress (Acharya et al, 2007)
 - ▶ Recovery rates are uncertain and pricing implies recovery risk premium (Schlafer et al, 2014)
- Campbell distress puzzle (Campbell et al, 2008) (Chen et al, 2022)
 - $\, ilde{}\,\,$ Distressed firm stocks are risky (high volatility and betas) but average returns are low

- Recovery rates in corporate bonds issued by public firms
 - Recovery rates and default rates negative correlated (Altman et al, 2005)
 - ▶ Recovery rates lower when industry of defaulted firm is in distress (Acharya et al, 2007)
 - ▶ Recovery rates are uncertain and pricing implies recovery risk premium (Schlafer et al, 2014)
- Campbell distress puzzle (Campbell et al, 2008) (Chen et al, 2022)
 - Distressed firm stocks are risky (high volatility and betas) but average returns are low

- Recovery rates in corporate bonds issued by public firms
 - Recovery rates and default rates negative correlated (Altman et al, 2005)
 - ▶ Recovery rates lower when industry of defaulted firm is in distress (Acharya et al, 2007)
 - ▶ Recovery rates are uncertain and pricing implies recovery risk premium (Schlafer et al, 2014)
- Campbell distress puzzle (Campbell et al, 2008) (Chen et al, 2022)
 - ▶ Distressed firm stocks are risky (high volatility and betas) but average returns are low

Appendix

3 Corbae and D'Erasmo (2021)

4 Data

- ullet Firms produce with capital k and labor with productivity z following idiosyncratic exogeneous Markov transition G
- ullet Firms can borrow using one-period noncontingent defaultable discount bonds b>0
 - * Bonds are noncontingent in the sense that prices depend on k', b', and z but not z' nterest is tax deductible \implies tax advantage of debt
- ullet Firms can also retain earnings (with b < 0) and issue costly equity or pay dividends
- Firms can exit or default on debt and go either through Ch. 7 liquidation or Ch. 11 reorganization
- Firms maximize expected value of dividend stream
- What breaks MM? Bankruptcy costs, taxes, and transaction costs (i.e., costly equity issuance)

- ullet Firms produce with capital k and labor with productivity z following idiosyncratic exogeneous Markov transition G
- ullet Firms can borrow using one-period noncontingent defaultable discount bonds b>0
 - ▶ Bonds are noncontingent in the sense that prices depend on k', b', and z but not z'

Interest is tax deductible \implies tax advantage of debt

- Firms can also retain earnings (with b < 0) and issue costly equity or pay dividends
- Firms can exit or default on debt and go either through Ch. 7 liquidation or Ch. 11 reorganization
- Firms maximize expected value of dividend stream
- What breaks MM? Bankruptcy costs, taxes, and transaction costs (i.e., costly equity issuance)

- ullet Firms produce with capital k and labor with productivity z following idiosyncratic exogeneous Markov transition G
- ullet Firms can borrow using one-period noncontingent defaultable discount bonds b>0
 - ▶ Bonds are noncontingent in the sense that prices depend on k', b', and z but not z' Interest is tax deductible \implies tax advantage of debt
- ullet Firms can also retain earnings (with b < 0) and issue costly equity or pay dividends
- Firms can exit or default on debt and go either through Ch. 7 liquidation or Ch. 11 reorganization
- Firms maximize expected value of dividend stream
- What breaks MM? Bankruptcy costs, taxes, and transaction costs (i.e., costly equity issuance)

- ullet Firms produce with capital k and labor with productivity z following idiosyncratic exogeneous Markov transition G
- ullet Firms can borrow using one-period noncontingent defaultable discount bonds b>0
 - ▶ Bonds are noncontingent in the sense that prices depend on k', b', and z but not z'Interest is tax deductible \implies tax advantage of debt
- ullet Firms can also retain earnings (with b < 0) and issue costly equity or pay dividends
- Firms can exit or default on debt and go either through Ch. 7 liquidation or Ch. 11 reorganization
- Firms maximize expected value of dividend stream
- What breaks MM? Bankruptcy costs, taxes, and transaction costs (i.e., costly equity issuance)

- ullet Firms produce with capital k and labor with productivity z following idiosyncratic exogeneous Markov transition G
- ullet Firms can borrow using one-period noncontingent defaultable discount bonds b>0
 - ▶ Bonds are noncontingent in the sense that prices depend on k', b', and z but not z'Interest is tax deductible \implies tax advantage of debt
- ullet Firms can also retain earnings (with b < 0) and issue costly equity or pay dividends
- Firms can exit or default on debt and go either through Ch. 7 liquidation or Ch. 11 reorganization
- Firms maximize expected value of dividend stream
- What breaks MM? Bankruptcy costs, taxes, and transaction costs (i.e., costly equity issuance)

- ullet Firms produce with capital k and labor with productivity z following idiosyncratic exogeneous Markov transition G
- ullet Firms can borrow using one-period noncontingent defaultable discount bonds b>0
 - ▶ Bonds are noncontingent in the sense that prices depend on k', b', and z but not z'Interest is tax deductible \implies tax advantage of debt
- ullet Firms can also retain earnings (with b < 0) and issue costly equity or pay dividends
- Firms can exit or default on debt and go either through Ch. 7 liquidation or Ch. 11 reorganization
- Firms maximize expected value of dividend stream
- What breaks MM? Bankruptcy costs, taxes, and transaction costs (i.e., costly equity issuance)

- ullet Firms produce with capital k and labor with productivity z following idiosyncratic exogeneous Markov transition G
- ullet Firms can borrow using one-period noncontingent defaultable discount bonds b>0
 - ▶ Bonds are noncontingent in the sense that prices depend on k', b', and z but not z'Interest is tax deductible \implies tax advantage of debt
- ullet Firms can also retain earnings (with b < 0) and issue costly equity or pay dividends
- Firms can exit or default on debt and go either through Ch. 7 liquidation or Ch. 11 reorganization
- Firms maximize expected value of dividend stream
- What breaks MM? Bankruptcy costs, taxes, and transaction costs (i.e., costly equity issuance)

- Given bond prices, wages, and taxes, we can solve for firm decisions including
 - \land $\Lambda(b', k', z)$ is probability of default of firm z that chooses b' and k'
 - \triangleright $D_7(k,b)$ is set of z given k and b that choose Ch. 7 liquidation
 - \triangleright $D_{11}(k, b)$ is set of z given k and b that choose Ch. 11 reorganization
- In Ch. 7 liquidation, capital is liquidated at fire-sale price s_7 , productivity-specific bankruptcy costs $c_7(z)$ are paid, and lenders are paid up to the face value of the bond b'

$$R(b', k', z; s_7) = \begin{cases} 0 & \text{if } s_7 k' - c_7(z) < 0 \\ s_7 k' - c_7(z) & \text{if } 0 \le s_7 k' - c_7(z) < b' \\ b' & \text{if } b' \le s_7 k' - c_7(z) \end{cases}$$

Importantly, in CD (2021), $s_7 = 0.4$ is fixed parameter so it does not change w/ counterfactuals

• In Ch. 11 reorganization, firms and lenders Nash bargain over amount of debt to repay \implies bargain problem engenders lender repayment fraction of $\phi(z',k',b')$

- Given bond prices, wages, and taxes, we can solve for firm decisions including
 - $ightharpoonup \Lambda(b', k', z)$ is probability of default of firm z that chooses b' and k'
 - \triangleright $D_7(k, b)$ is set of z given k and b that choose Ch. 7 liquidation
 - \triangleright $D_{11}(k, b)$ is set of z given k and b that choose Ch. 11 reorganization
- In Ch. 7 liquidation, capital is liquidated at fire-sale price s_7 , productivity-specific bankruptcy costs $c_7(z)$ are paid, and lenders are paid up to the face value of the bond b'

$$R(b', k', z; s_7) = \begin{cases} 0 & \text{if } s_7 k' - c_7(z) < 0 \\ s_7 k' - c_7(z) & \text{if } 0 \le s_7 k' - c_7(z) < b' \\ b' & \text{if } b' \le s_7 k' - c_7(z) \end{cases}$$

Importantly, in CD (2021), $s_7 = 0.4$ is fixed parameter so it does not change w/ counterfactuals

• In Ch. 11 reorganization, firms and lenders Nash bargain over amount of debt to repay \implies bargain problem engenders lender repayment fraction of $\phi(z',k',b')$

- Given bond prices, wages, and taxes, we can solve for firm decisions including
 - $ightharpoonup \Lambda(b', k', z)$ is probability of default of firm z that chooses b' and k'
 - ▶ $D_7(k, b)$ is set of z given k and b that choose Ch. 7 liquidation
 - \triangleright $D_{11}(k, b)$ is set of z given k and b that choose Ch. 11 reorganization
- In Ch. 7 liquidation, capital is liquidated at fire-sale price s_7 , productivity-specific bankruptcy costs $c_7(z)$ are paid, and lenders are paid up to the face value of the bond b'

$$R(b', k', z; s_7) = \begin{cases} 0 & \text{if } s_7 k' - c_7(z) < 0 \\ s_7 k' - c_7(z) & \text{if } 0 \le s_7 k' - c_7(z) < b' \\ b' & \text{if } b' \le s_7 k' - c_7(z) \end{cases}$$

Importantly, in CD (2021), $s_7 = 0.4$ is fixed parameter so it does not change w/ counterfactuals

• In Ch. 11 reorganization, firms and lenders Nash bargain over amount of debt to repay \implies bargain problem engenders lender repayment fraction of $\phi(z',k',b')$

- Given bond prices, wages, and taxes, we can solve for firm decisions including
 - $ightharpoonup \Lambda(b', k', z)$ is probability of default of firm z that chooses b' and k'
 - ▶ $D_7(k, b)$ is set of z given k and b that choose Ch. 7 liquidation
 - ▶ $D_{11}(k, b)$ is set of z given k and b that choose Ch. 11 reorganization
- In Ch. 7 liquidation, capital is liquidated at fire-sale price s_7 , productivity-specific bankruptcy costs $c_7(z)$ are paid, and lenders are paid up to the face value of the bond b'

$$R(b', k', z; s_7) = \begin{cases} 0 & \text{if } s_7 k' - c_7(z) < 0 \\ s_7 k' - c_7(z) & \text{if } 0 \le s_7 k' - c_7(z) < b' \\ b' & \text{if } b' \le s_7 k' - c_7(z) \end{cases}$$

Importantly, in CD (2021), $s_7 = 0.4$ is fixed parameter so it does not change w/ counterfactuals

• In Ch. 11 reorganization, firms and lenders Nash bargain over amount of debt to repay \implies bargain problem engenders lender repayment fraction of $\phi(z',k',b')$

- Given bond prices, wages, and taxes, we can solve for firm decisions including
 - $ightharpoonup \Lambda(b', k', z)$ is probability of default of firm z that chooses b' and k'
 - ▶ $D_7(k, b)$ is set of z given k and b that choose Ch. 7 liquidation
 - ▶ $D_{11}(k, b)$ is set of z given k and b that choose Ch. 11 reorganization
- In Ch. 7 liquidation, capital is liquidated at fire-sale price s_7 , productivity-specific bankruptcy costs $c_7(z)$ are paid, and lenders are paid up to the face value of the bond b'

$$R(b', k', z; s_7) = \begin{cases} 0 & \text{if } s_7 k' - c_7(z) < 0 \\ s_7 k' - c_7(z) & \text{if } 0 \le s_7 k' - c_7(z) < b' \\ b' & \text{if } b' \le s_7 k' - c_7(z) \end{cases}$$

Importantly, in CD (2021), $s_7 = 0.4$ is fixed parameter so it does not change w/ counterfactuals

• In Ch. 11 reorganization, firms and lenders Nash bargain over amount of debt to repay \implies bargain problem engenders lender repayment fraction of $\phi(z', k', b')$

- Given bond prices, wages, and taxes, we can solve for firm decisions including
 - $ightharpoonup \Lambda(b', k', z)$ is probability of default of firm z that chooses b' and k'
 - ▶ $D_7(k, b)$ is set of z given k and b that choose Ch. 7 liquidation
 - ▶ $D_{11}(k, b)$ is set of z given k and b that choose Ch. 11 reorganization
- In Ch. 7 liquidation, capital is liquidated at fire-sale price s_7 , productivity-specific bankruptcy costs $c_7(z)$ are paid, and lenders are paid up to the face value of the bond b'

$$R(b', k', z; s_7) = \begin{cases} 0 & \text{if } s_7 k' - c_7(z) < 0 \\ s_7 k' - c_7(z) & \text{if } 0 \le s_7 k' - c_7(z) < b' \\ b' & \text{if } b' \le s_7 k' - c_7(z) \end{cases}$$

Importantly, in CD (2021), $s_7 = 0.4$ is fixed parameter so it does not change w/ counterfactuals

• In Ch. 11 reorganization, firms and lenders Nash bargain over amount of debt to repay \implies bargain problem engenders lender repayment fraction of $\phi(z', k', b')$

How is debt priced in CD (2021)?

Bonds are priced (bond-by-bond) using condition that lender in expectation makes zero profit

$$0 = \Omega(b',k',z) \equiv \underbrace{-q(b',k',z)b'}_{\text{loan}} + \underbrace{\frac{1}{1+r}[1-\Lambda(b',k',z)]b'}_{\text{expected repayment}} \\ + \underbrace{\frac{1}{1+r}R(b',k',z;s_7)\sum_{z'\in D_7(k',b')}G(z'|z)}_{\text{expected recovery from Ch. 7 liquidations}} + \underbrace{\frac{1}{1+r}\sum_{z'\in D_{11}(k',b')}\phi(z',k',b')b'G(z'|z)}_{\text{expected recovery from Ch. 11 reorganizations}}$$

where r is risk-free rate

• Computation: Guess $q \Longrightarrow$ solve firm and bargaining problems (i.e., $\Lambda, D_7, D_{11}, \phi$) \Longrightarrow update guess of q using lender zero-profit condition

How is debt priced in CD (2021)?

Bonds are priced (bond-by-bond) using condition that lender in expectation makes zero profit

$$0 = \Omega(b',k',z) \equiv \underbrace{-q(b',k',z)b'}_{\text{loan}} + \underbrace{\frac{1}{1+r}[1-\Lambda(b',k',z)]b'}_{\text{expected repayment}} \\ + \underbrace{\frac{1}{1+r}R(b',k',z;s_7)}_{z'\in D_7(k',b')}\underbrace{\frac{G(z'|z)}{1+r}}_{\text{expected recovery from Ch. 7 liquidations}} \underbrace{\frac{1}{1+r}\sum_{z'\in D_{11}(k',b')}\phi(z',k',b')b'G(z'|z)}_{\text{expected recovery from Ch. 11 reorganizations}}$$

where r is risk-free rate

• Computation: Guess $q \Longrightarrow$ solve firm and bargaining problems (i.e., $\Lambda, D_7, D_{11}, \phi$) \Longrightarrow update guess of q using lender zero-profit condition

Computation

- Computation boils down to adding an extra outer loop:
 - ► Guess *s*₇
 - Guess $q \implies$ Solve firm and bargaining problems (i.e., $\Lambda, D_7, D_{11}, \phi$) \implies Update guess of q using lender zero-profit condition

Update guess of s₇ based on clearing condition for liquidated capital market

Computation

- Computation boils down to adding an extra outer loop:
 - ► Guess *s*₇
 - * Guess $q \Longrightarrow$ Solve firm and bargaining problems (i.e., $\Lambda, D_7, D_{11}, \phi$) \Longrightarrow Update guess of q using lender zero-profit condition

Update guess of s₇ based on clearing condition for liquidated capital market

Computation

- Computation boils down to adding an extra outer loop:
 - ▶ Guess *s*₇
 - ★ Guess $q \implies$ Solve firm and bargaining problems (i.e., $\Lambda, D_7, D_{11}, \phi$) \implies Update guess of q using lender zero-profit condition

Update guess of s₇ based on clearing condition for liquidated capital market

Appendix

3 Corbae and D'Erasmo (2021)

4 Data

Chapter	Company Liquidated in Bankruptcy?	No. Obs	% of Sample
7	Liquidated	3	0.3
11	Liquidated	211	23.4
11	Reorganized	689	76.3

- **Problem:** Dataset focuses on large firms \implies Ch. 11 are over represented compared to Ch. 7.
- For comparison, Ch. 11 accounts for 80 percent of all public firm bankruptcies (CD, 2021)
- Solution: Some firms who filed for Ch. 11 didn't emerge from bankruptcy and were liquidated
- Thus, classify bankruptcies as
 - "Liquidations" as firms who either filed for Ch. 7 or filed for Ch. 11 but did not emerge
 - "Reorganizations" as firms who filed for Ch. 11 and emerged
- Reorganizations are larger, more levered, and more profitable before bankruptcy than liquidations (consistent sample of all public firms from CD, 2021)

Chapter	Company Liquidated in Bankruptcy?	No. Obs	% of Sample
7	Liquidated	3	0.3
11	Liquidated	211	23.4
11	Reorganized	689	76.3

- Problem: Dataset focuses on large firms \implies Ch. 11 are over represented compared to Ch. 7.
- For comparison, Ch. 11 accounts for 80 percent of all public firm bankruptcies (CD, 2021)
- Solution: Some firms who filed for Ch. 11 didn't emerge from bankruptcy and were liquidated
- Thus, classify bankruptcies as
 - "Liquidations" as firms who either filed for Ch. 7 or filed for Ch. 11 but did not emerge
 - "Reorganizations" as firms who filed for Ch. 11 and emerged
- Reorganizations are larger, more levered, and more profitable before bankruptcy than liquidations (consistent sample of all public firms from CD, 2021)

Chapter	Company Liquidated in Bankruptcy?	No. Obs	% of Sample
7	Liquidated	3	0.3
11	Liquidated	211	23.4
11	Reorganized	689	76.3

- Problem: Dataset focuses on large firms \implies Ch. 11 are over represented compared to Ch. 7.
- For comparison, Ch. 11 accounts for 80 percent of all public firm bankruptcies (CD, 2021)
- Solution: Some firms who filed for Ch. 11 didn't emerge from bankruptcy and were liquidated
- Thus, classify bankruptcies as
 - "Liquidations" as firms who either filed for Ch. 7 or filed for Ch. 11 but did not emerge
 - "Reorganizations" as firms who filed for Ch. 11 and emerged
- Reorganizations are larger, more levered, and more profitable before bankruptcy than liquidations (consistent sample of all public firms from CD, 2021)

Chapter	Company Liquidated in Bankruptcy?	No. Obs	% of Sample
7	Liquidated	3	0.3
11	Liquidated	211	23.4
11	Reorganized	689	76.3

- Problem: Dataset focuses on large firms \implies Ch. 11 are over represented compared to Ch. 7.
- For comparison, Ch. 11 accounts for 80 percent of all public firm bankruptcies (CD, 2021)
- Solution: Some firms who filed for Ch. 11 didn't emerge from bankruptcy and were liquidated
- Thus, classify bankruptcies as
 - "Liquidations" as firms who either filed for Ch. 7 or filed for Ch. 11 but did not emerge
 - "Reorganizations" as firms who filed for Ch. 11 and emerged
- Reorganizations are larger, more levered, and more profitable before bankruptcy than liquidations (consistent sample of all public firms from CD, 2021) More

Chapter	Company Liquidated in Bankruptcy?	No. Obs	% of Sample
7	Liquidated	3	0.3
11	Liquidated	211	23.4
11	Reorganized	689	76.3

- Problem: Dataset focuses on large firms \implies Ch. 11 are over represented compared to Ch. 7.
- For comparison, Ch. 11 accounts for 80 percent of all public firm bankruptcies (CD, 2021)
- Solution: Some firms who filed for Ch. 11 didn't emerge from bankruptcy and were liquidated
- Thus, classify bankruptcies as
 - "Liquidations" as firms who either filed for Ch. 7 or filed for Ch. 11 but did not emerge
 - "Reorganizations" as firms who filed for Ch. 11 and emerged
- Reorganizations are larger, more levered, and more profitable before bankruptcy than liquidations (consistent sample of all public firms from CD, 2021) More

Chapter	Company Liquidated in Bankruptcy?	No. Obs	% of Sample
7	Liquidated	3	0.3
11	Liquidated	211	23.4
11	Reorganized	689	76.3

- Problem: Dataset focuses on large firms \implies Ch. 11 are over represented compared to Ch. 7.
- For comparison, Ch. 11 accounts for 80 percent of all public firm bankruptcies (CD, 2021)
- Solution: Some firms who filed for Ch. 11 didn't emerge from bankruptcy and were liquidated
- Thus, classify bankruptcies as
 - "Liquidations" as firms who either filed for Ch. 7 or filed for Ch. 11 but did not emerge
 - "Reorganizations" as firms who filed for Ch. 11 and emerged
- Reorganizations are larger, more levered, and more profitable before bankruptcy than liquidations (consistent sample of all public firms from CD, 2021) More

Chapter	Company Liquidated in Bankruptcy?	No. Obs	% of Sample
7	Liquidated	3	0.3
11	Liquidated	211	23.4
11	Reorganized	689	76.3

- Problem: Dataset focuses on large firms \implies Ch. 11 are over represented compared to Ch. 7.
- For comparison, Ch. 11 accounts for 80 percent of all public firm bankruptcies (CD, 2021)
- Solution: Some firms who filed for Ch. 11 didn't emerge from bankruptcy and were liquidated
- Thus, classify bankruptcies as
 - "Liquidations" as firms who either filed for Ch. 7 or filed for Ch. 11 but did not emerge
 - "Reorganizations" as firms who filed for Ch. 11 and emerged
- Reorganizations are larger, more levered, and more profitable before bankruptcy than liquidations (consistent sample of all public firms from CD, 2021)

Constructing Proxy for Liquidation Recovery Rate \tilde{s}_7

- Problem: Data do not have the direct measure of proceeds from liquidating a firm
- Solution: Use distributions to creditors and equity-holders over assets in quarter before bankruptcy filing

$$ilde{\mathbf{s}}_{7} = \frac{ \text{Unsecured and Secured Creditor Distribution} + \text{Equity-holder Distribution} + \text{Legal Fees} }{ \text{Assets in Quarter Before Bankruptcy} }$$

• **Problem:** This proxy is missing for a lot of observations

Bankruptcy Type	Has Proxy?	No. Obs	% of Sample
Liquidated	No	193	21.4
Liquidated	Yes	21	2.3
Reorganized	No	612	67.8
Reorganized	Yes	77	8.5

- Coverage better for 1980s and 2000s, but largely missing for most observations in 1990s More
- Solution: Include observations of both bankruptcy types in regressions w/ dummy for liquidiated

Constructing Proxy for Liquidation Recovery Rate \tilde{s}_7

- Problem: Data do not have the direct measure of proceeds from liquidating a firm
- Solution: Use distributions to creditors and equity-holders over assets in quarter before bankruptcy filing

$$\tilde{s}_7 = \frac{\text{Unsecured and Secured Creditor Distribution} + \text{Equity-holder Distribution} + \text{Legal Fees}}{\text{Assets in Quarter Before Bankruptcy}}$$

• **Problem:** This proxy is missing for a lot of observations

Bankruptcy Type	Has Proxy?	No. Obs	% of Sample
Liquidated	No	193	21.4
Liquidated	Yes	21	2.3
Reorganized	No	612	67.8
Reorganized	Yes	77	8.5

- Coverage better for 1980s and 2000s, but largely missing for most observations in 1990s More
- Solution: Include observations of both bankruptcy types in regressions w/ dummy for liquidiated

Constructing Proxy for Liquidation Recovery Rate \tilde{s}_7

- Problem: Data do not have the direct measure of proceeds from liquidating a firm
- Solution: Use distributions to creditors and equity-holders over assets in quarter before bankruptcy filing

$$\tilde{\mathfrak{s}}_7 = \frac{\text{Unsecured and Secured Creditor Distribution} + \mathsf{Equity}\text{-holder Distribution} + \mathsf{Legal Fees}}{\mathsf{Assets in Quarter Before Bankruptcy}}$$

• **Problem:** This proxy is missing for a lot of observations

Bankruptcy Type	Has Proxy?	No. Obs	% of Sample
Liquidated	No	193	21.4
Liquidated	Yes	21	2.3
Reorganized	No	612	67.8
Reorganized	Yes	77	8.5

- Coverage better for 1980s and 2000s, but largely missing for most observations in 1990s [More
- Solution: Include observations of both bankruptcy types in regressions w/ dummy for liquidiated

Constructing Proxy for Liquidation Recovery Rate \tilde{s}_7

- Problem: Data do not have the direct measure of proceeds from liquidating a firm
- Solution: Use distributions to creditors and equity-holders over assets in quarter before bankruptcy filing

$$\tilde{\mathfrak{s}}_7 = \frac{\text{Unsecured and Secured Creditor Distribution} + \mathsf{Equity}\text{-holder Distribution} + \mathsf{Legal Fees}}{\mathsf{Assets in Quarter Before Bankruptcy}}$$

• **Problem:** This proxy is missing for a lot of observations

Bankruptcy Type	Has Proxy?	No. Obs	% of Sample
Liquidated	No	193	21.4
Liquidated	Yes	21	2.3
Reorganized	No	612	67.8
Reorganized	Yes	77	8.5

- Coverage better for 1980s and 2000s, but largely missing for most observations in 1990s More
- Solution: Include observations of both bankruptcy types in regressions w/ dummy for liquidiated

Constructing Proxy for Liquidation Recovery Rate \tilde{s}_7

- Problem: Data do not have the direct measure of proceeds from liquidating a firm
- Solution: Use distributions to creditors and equity-holders over assets in quarter before bankruptcy filing

$$\tilde{\mathfrak{s}}_7 = \frac{\text{Unsecured and Secured Creditor Distribution} + \mathsf{Equity}\text{-holder Distribution} + \mathsf{Legal Fees}}{\mathsf{Assets in Quarter Before Bankruptcy}}$$

• **Problem:** This proxy is missing for a lot of observations

Bankruptcy Type	Has Proxy?	No. Obs	% of Sample
Liquidated	No	193	21.4
Liquidated	Yes	21	2.3
Reorganized	No	612	67.8
Reorganized	Yes	77	8.5

- Coverage better for 1980s and 2000s, but largely missing for most observations in 1990s More
- Solution: Include observations of both bankruptcy types in regressions w/ dummy for liquidiated

• Recap about data:

- ▶ 98 observations have proxy for liquidation recovery (*dataset A*)
- ▶ 214 observations of liquidations (*dataset B*)
- For each observation with proxy for liquidation recovery (from dataset A)
 - Look at disposal date
 - Subset liquidations (in dataset B) with disposal dates between 30 and 1 days before
 - Sum assets from 1 quarter before of this subset
- Proxy measures assets of other liquidated firms in prior 30 days

- Recap about data:
 - ▶ 98 observations have proxy for liquidation recovery (*dataset A*)
 - ▶ 214 observations of liquidations (dataset B)
- For each observation with proxy for liquidation recovery (from dataset A)
 - Look at disposal date
 - Subset liquidations (in dataset B) with disposal dates between 30 and 1 days before
 - Sum assets from 1 quarter before of this subset
- Proxy measures assets of other liquidated firms in prior 30 days

- Recap about data:
 - ▶ 98 observations have proxy for liquidation recovery (*dataset A*)
 - ▶ 214 observations of liquidations (dataset B)
- For each observation with proxy for liquidation recovery (from dataset A)
 - Look at disposal date
 - Subset liquidations (in dataset B) with disposal dates between 30 and 1 days befor
 - Sum assets from 1 quarter before of this subset
- Proxy measures assets of other liquidated firms in prior 30 days

- Recap about data:
 - ▶ 98 observations have proxy for liquidation recovery (*dataset A*)
 - ▶ 214 observations of liquidations (dataset B)
- For each observation with proxy for liquidation recovery (from dataset A)
 - Look at disposal date
 - Subset liquidations (in dataset B) with disposal dates between 30 and 1 days before
 - Sum assets from 1 quarter before of this subset
- Proxy measures assets of other liquidated firms in prior 30 days

- Recap about data:
 - ▶ 98 observations have proxy for liquidation recovery (*dataset A*)
 - ▶ 214 observations of liquidations (dataset B)
- For each observation with proxy for liquidation recovery (from dataset A)
 - Look at disposal date
 - Subset liquidations (in dataset B) with disposal dates between 30 and 1 days before
 - Sum assets from 1 quarter before of this subset
- Proxy measures assets of other liquidated firms in prior 30 days

- Recap about data:
 - ▶ 98 observations have proxy for liquidation recovery (*dataset A*)
 - ▶ 214 observations of liquidations (dataset B)
- For each observation with proxy for liquidation recovery (from dataset A)
 - Look at disposal date
 - ▶ Subset liquidations (in *dataset B*) with disposal dates between 30 and 1 days before
 - Sum assets from 1 quarter before of this subset
- Proxy measures assets of other liquidated firms in prior 30 days

- Recap about data:
 - ▶ 98 observations have proxy for liquidation recovery (*dataset A*)
 - ▶ 214 observations of liquidations (dataset B)
- For each observation with proxy for liquidation recovery (from dataset A)
 - Look at disposal date
 - ▶ Subset liquidations (in *dataset B*) with disposal dates between 30 and 1 days before
 - ▶ Sum assets from 1 quarter before of this subset
- Proxy measures assets of other liquidated firms in prior 30 days

- Recap about data:
 - ▶ 98 observations have proxy for liquidation recovery (*dataset A*)
 - ▶ 214 observations of liquidations (dataset B)
- For each observation with proxy for liquidation recovery (from dataset A)
 - Look at disposal date
 - ▶ Subset liquidations (in *dataset B*) with disposal dates between 30 and 1 days before
 - ▶ Sum assets from 1 quarter before of this subset
- Proxy measures assets of other liquidated firms in prior 30 days

Table: Firm Characteristics and Bankruptcy Type (Probit Coefficient Estimates)

		Dependen	nt variable:			
		Liquidation = 1				
	(1)	(2)	(3)	(4)		
Recession	0.066 (0.189)	-0.006 (0.191)	-0.132 (0.194)	-0.040 (0.198)		
roa	-0.482*** (0.175)	-0.503***(0.169)	-0.548****(0.178)	-0.515***(0.190)		
leverage	-0.755***(0.149)	-0.774***(0.148)	-0.623***(0.149)	-0.593***(0.151)		
log(EmplBefore)	-0.032 (0.031)					
log(AssetsBefore)		-0.188****(0.046)	-0.161^{***} (0.047)	-0.164****(0.048)		
Prepackagednot applicable		, ,	4.987 (83.192)	5.292 (132.743)		
Prepackagedprenegotiated			-0.649****(0.137)	-0.633****(0.139)		
Prepackagedprepackaged			-1.188****(0.225)	-1.174***(0.227)		
sicB: Mining			, ,	4.762 (127.338)		
sicC: Construction				4.330 (127.338)		
sicD: Manufacturing				4.617 (127.338)		
sicE: Transportation, Communications, Electric, Gas				4.759 (127.338)		
sicF: Wholesale Trade				4.842 (127.338)		
sicG: Retail Trade				4.955 (127.338)		
Constant	0.241 (0.271)	1.260*** (0.342)	1.143*** (0.343)	-3.606 (127.338)		
Observations	880	882	882	882		
Log Likelihood	-467.566	-459.655	-429.729	-424.785		
Akaike Inf. Crit.	945.131	929.310	875.459	877.570		

Note:

*p<0.1; **p<0.05; ***p<0.01

• Reorganizations tend to be larger, more profitable, and more levered than liquidations (Back)

Table: Firm Characteristics and Missing Liquidation Recovery (Probit Coefficient Estimates)

		Dependent	variable:		
		Missing Liquidation Recovery			
	(1)	(2)	(3)	(4)	
Recession	0.250 (0.254)	0.249 (0.255)	0.286 (0.255)	0.453* (0.270)	
Liquidated	0.048 (0.138)	0.064 (0.138)	0.112 (0.142)	0.069 (0.145)	
roa	-0.662*(0.393)	-0.784** (0.389)	-0.744*(0.386)	-0.420(0.378)	
leverage	-0.014(0.114)	-0.005(0.107)	-0.041 (0.107)	-0.012(0.112)	
log(EmplBefore)	-0.056(0.038)				
log(AssetsBefore)		0.026 (0.051)	0.020 (0.051)	0.014 (0.054)	
Prepackagednot applicable			3.748 (133.411)	3.887 (131.983)	
Prepackagedprenegotiated			0.257* (0.153)	0.244 (0.157)	
Prepackagedprepackaged			0.206 (0.187)	0.143 (0.193)	
sicB: Mining				1.503* (0.800)	
sicC: Construction				1.543* (0.898)	
sicD: Manufacturing				0.846 (0.773)	
sicE: Transportation, Communications, Electric, Gas				1.106 (0.782)	
sicF: Wholesale Trade				1.029 (0.812)	
sicG: Retail Trade				1.406* (0.789)	
Constant	1.627*** (0.338)	0.989*** (0.377)	0.978*** (0.377)	-0.052 (0.850)	
Observations	880	882	882	882	
Log Likelihood	-302.427	-303.572	-301.544	-292.092	
Akaike Inf. Crit.	616.853	619.143	621.087	614.185	

Note:

*p<0.1; **p<0.05; ***p<0.01

• More likely to miss liquidation recovery rate for less profitable firms and from a few sectors (Back)

Table: Liquidation Recovery Proxy vs. Aggregate Liquidation Proxy

		Dependent	variable:	
		log(Liquidation R	ecovery Proxy)	
	(1)	(2)	(3)	(4)
aggregate_liquidations	-0.288* (0.158)	-0.226 (0.172)	-0.309* (0.158)	-0.227 (0.172)
Liquidated		-0.217(0.260)		-0.244(0.262)
sicB: Mining		0.011 (0.991)		-0.474(1.119)
sicC: Construction		0.237 (1.306)		-0.327(1.439)
sicD: Manufacturing		-0.440(0.920)		-0.948(1.069)
sicE: Transportation, Communications, Electric, Gas		-0.225(0.930)		-0.763(1.095)
sicF: Wholesale Trade		-0.449(0.991)		-0.978(1.143)
sicG: Retail Trade		-0.429(0.978)		-0.961(1.132)
roa		0.715 (0.637)		0.450 (0.698)
leverage		0.261 (0.174)		0.279 (0.175)
log(EmplBefore)		0.234*** (0.087)		0.227** (0.087)
Prepackagedprenegotiated		0.435 (0.278)		0.433 (0.278)
Prepackagedprepackaged		0.851** (0.335)		0.806** (0.338)
Recession			-0.683 (0.485)	-0.559(0.599)
Constant	-1.015*** (0.106)	-2.952*** (1.066)	-0.981*** (0.108)	-2.370*(1.235)
Observations	98	98	98	98
Adjusted R ²	0.023	0.143	0.033	0.141

Note:

*p<0.1; **p<0.05; ***p<0.01

 $\bullet \ \ \, \underline{\mathsf{More}} \ \, \mathsf{levered}, \ \, \mathsf{larger} \ \, \mathsf{firms} \ \, \mathsf{w}/ \ \, \mathsf{pre-negotiated} \ \, \mathsf{bankruptcy} \ \, \Longleftrightarrow \ \, \mathsf{higher} \ \, \mathsf{liquidation} \ \, \mathsf{recovery} \ \, \mathsf{rates}$

Table: Liquidation Recovery Proxy vs. Aggregate Liquidation Proxy (No Outliers)

		Dependent variable: log(Liquidation Recovery Proxy)		
	log(
	(1)	(2)	(3)	(4)
Aggregate Liquidation Proxy (1980 billions of dollars)	-0.575 (0.434)	-0.579 (0.485)	-0.673 (0.436)	-0.628 (0.488)
Liquidated		0.113 (0.270)		0.090 (0.271)
Recession			-0.663 (0.443)	-0.568 (0.566)
Firm Controls?	No	Yes	No	Yes
Observations	86	86	86	86
Adjusted R ²	0.009	0.094	0.023	0.094
Note:		*p<0.1:	**p<0.05; *	***p<0.01

• Drop obs w/ \tilde{s}_7 over 1 and \tilde{K}_7 over 1 billion $\implies \hat{\xi}$ is insignificant but larger (Back)

Table: Different Windows Before Disposal Date

	Dependent variable:				
		log(Liquidation Recovery Proxy)			
	(1)	(2)	(3)	(4)	
Aggregate Liquidation Proxy over 90 Days	-0.147 (0.109)				
Aggregate Liquidation Proxy over 60 Days	, ,	-0.160(0.142)			
Aggregate Liquidation Proxy over 30 Days		, ,	-0.227(0.172)		
Aggregate Liquidation Proxy over 7 Days			, ,	-0.124 (0.183	
Recession	-0.637(0.602)	-0.612(0.603)	-0.559(0.599)	-0.544 (0.603)	
Liquidated	-0.254 (0.258)	-0.268(0.262)	-0.244(0.262)	-0.334 (0.255	
Firm Controls	Yes	Yes	Yes	Yes	
Number of Zeros	24	36	47	62	
Observations	98	98	98	98	
Adjusted R ²	0.142	0.136	0.141	0.128	

Note:

*p<0.1; **p<0.05; ***p<0.01

- Tighter windows have more zeros \implies larger standard errors
- Coefficient estimate larger for tighter windows (Back)

Table: Different Windows Before Disposal Date

	Dependent variable: log(Liquidation Recovery Proxy)			
	(1)	(2)	(3)	(4)
Aggregate Liquidation Proxy over 90 Days	-0.147 (0.109)			
Aggregate Liquidation Proxy over 60 Days	, ,	-0.160(0.142)		
Aggregate Liquidation Proxy over 30 Days		, ,	-0.227(0.172)	
Aggregate Liquidation Proxy over 7 Days			, ,	-0.124 (0.183
Recession	-0.637(0.602)	-0.612(0.603)	-0.559(0.599)	-0.544(0.603)
Liquidated	-0.254(0.258)	-0.268(0.262)	-0.244(0.262)	-0.334 (0.255
Firm Controls	Yes	Yes	Yes	Yes
Number of Zeros	24	36	47	62
Observations	98	98	98	98
Adjusted R ²	0.142	0.136	0.141	0.128

Note:

*p<0.1; **p<0.05; ***p<0.01

- ullet Tighter windows have more zeros \Longrightarrow larger standard errors
- Coefficient estimate larger for tighter windows (Back)

Table: Different Windows After Disposal Date

	Dependent variable:				
		log(Liquidation Recovery Proxy)			
	(1)	(2)	(3)	(4)	
Aggregate Liquidation Proxy over 90 Days	-0.156 (0.102)				
log(Aggregate Liquidation Proxy over 60 Days)	, ,	-0.133(0.133)			
log(Aggregate Liquidation Proxy over 30 Days)		, ,	-0.111(0.164)		
log(Aggregate Liquidation Proxy over 7 Days)			, ,	-0.098 (0.188	
Recession	-0.593(0.597)	-0.569(0.601)	-0.566 (0.604)	-0.539(0.605)	
Liquidated	-0.222(0.261)	-0.295(0.257)	-0.319(0.265)	-0.330 (0.272	
Firm Controls	Yes	Yes	Yes	Yes	
Number of Zeros	23	30	46	64	
Observations	98	98	98	98	
Adjusted R ²	0.147	0.134	0.128	0.126	

Note: *p<0.1; **p<0.05; ***p<0.01

- Tighter windows have more zeros \implies larger standard errors
- Coefficient estimate larger for tighter windows (Back)

Table: Different Windows After Disposal Date

	Dependent variable:			
	log(Liquidation Recovery Proxy)			
	(1)	(2)	(3)	(4)
Aggregate Liquidation Proxy over 90 Days	-0.156(0.102)			
og(Aggregate Liquidation Proxy over 60 Days)	, ,	-0.133(0.133)		
og(Aggregate Liquidation Proxy over 30 Days)			-0.111(0.164)	
og(Aggregate Liquidation Proxy over 7 Days)			, ,	-0.098 (0.188
Recession	-0.593(0.597)	-0.569(0.601)	-0.566 (0.604)	-0.539(0.605)
Liquidated	-0.222(0.261)	-0.295(0.257)	-0.319(0.265)	-0.330 (0.272
Firm Controls	Yes	Yes	Yes	Yes
Number of Zeros	23	30	46	64
Observations	98	98	98	98
Adjusted R ²	0.147	0.134	0.128	0.126

*p<0.1; **p<0.05; ***p<0.01

- Tighter windows have more zeros ⇒ larger standard errors
- Coefficient estimate larger for tighter windows (Back)

Observations by Sector

1-Digit SIC Code	Count - Recovery Proxies	Count - Liquidations
A: Agricultural Production Crops	1	3
B: Mining	5	131
C: Construction	1	23
D: Manufacturing	57	362
E: Transportation, Communications, Electric, Gas	20	197
F: Wholesale Trade	5	40
G: Retail Trade	9	147

- Majority of firms are in manufacturing; then transportation, then retail trade
- These sectors are relatively capital intensive (Back)

Observations by Sector

1-Digit SIC Code	Count - Recovery Proxies	Count - Liquidations
A: Agricultural Production Crops	1	3
B: Mining	5	131
C: Construction	1	23
D: Manufacturing	57	362
E: Transportation, Communications, Electric, Gas	20	197
F: Wholesale Trade	5	40
G: Retail Trade	9	147

- Majority of firms are in manufacturing; then transportation, then retail trade
- These sectors are relatively capital intensive (Back)

• More liquidations in same sector does not correlate with lower liquidation recoveries

Table: Liquidation Recovery Proxy vs. Aggregate Liquidation Proxy in Same Sector

		Dependent variable:		
	log(log(Liquidation Recovery Proxy)		
	(1)	(2)	(3)	(4)
Aggregate Liquidation Proxy (1980 billions of dollars)	-0.055 (0.146)	-0.026 (0.159)	-0.072 (0.146)	-0.029 (0.159)
Liquidated		-0.357 (0.255)		-0.382 (0.257)
Recession			-0.616 (0.494)	-0.556 (0.605)
Firm Controls?	No	Yes	No	Yes
Observations Adjusted R ²	98 -0.009	98 0.125	98 -0.003	98 0.124
Note:	·	*p<0.1;	**p<0.05; *	***p<0.01

• Smaller coefficients and insignificant (Back)

• More liquidations in different sector correlates with lower liquidation recoveries (Back)

Table: Liquidation Recovery Proxy vs. Aggregate Liquidation Proxy in Different Sector

	Dependent variable: log(Liquidation Recovery Proxy)			
	(1)	(2)	(3)	(4)
Aggregate Liquidation Proxy	-0.371** (0.163)	-0.296* (0.167)	-0.403** (0.164)	-0.324* (0.168)
Liquidated		-0.260 (0.238)		-0.285 (0.239)
Recession			-0.742 (0.481)	-0.713 (0.598)
Firm Controls?	No	Yes	No	Yes
Observations Adjusted R^2	98 0.041	98 0.156	98 0.055	98 0.161
Note:		*p<0	0.1; **p<0.05;	***p<0.01

• Larger magnitude than baseline results (Back)

40 > 40 > 45 > 45 > 51 990

• More liquidated assets in a month correlates with lower average liquidation recovery (Back)

Table: Calendar Month Level

	Dependent variable: log(Liquidation Recovery Proxy	
	(1)	(2)
Aggregate Liquidation Proxy	-0.287** (0.137)	-0.307** (0.135)
recession		-0.745* (0.402)
Constant	-0.951*** (0.099)	-0.905*** (0.101)
Observations Adjusted R ²	74 0.045	74 0.076
Note:	*p<0.1; **p<0.05; ***p<0.01	

• Magnitude of coefficients similar to baseline results (Back)

• At quarter-level, correlation between liquidated assets and average liquidation recovery basically zero (similar to firm-level results) Back

Table: Calendar Quarter Level

	Dependent variable: log(Liquidation Recovery Proxy	
	(1)	(2)
Aggregate Liquidation Proxy	-0.516 (1.374)	$-0.707 \ (1.381)$
recession		-0.511 (0.461)
Constant	-1.072*** (0.129)	-1.031*** (0.134)
Observations Adjusted R ²	50 -0.018	50 -0.013
Note:	*p<0.1; **p<0.05; ***p<0.01	

• Similar to firm-level 90-day-window results (Back)