TABEL 1: FISIESE KONSTANTES

NAAM	SIMBOOL	WAARDE
Gravitasieversnelling	g	9,8 m⋅s ⁻²
Spoed van lig in 'n vakuum	С	$3.0 \times 10^8 \mathrm{m} \cdot \mathrm{s}^{-1}$
Planck se konstante	h	6,63 × 10 ⁻³⁴ J⋅s
Permittiwiteit vir vry ruimte	$\boldsymbol{\mathcal{E}}_0$	8,85 × 10 ⁻¹² F⋅m ⁻¹

TABEL 2: FORMULES

KRAG

$F_{net} = ma$	p = mv
$f_s^{maks} = \mu_s N$	$\boldsymbol{f}_k = \boldsymbol{\mu}_k \boldsymbol{N}$
$F_{net}\Delta t = \Delta p$ $\Delta p = mv_f - mv_i$	$F_g = mg$

ARBEID, ENERGIE EN DRYWING

$W = F\Delta x \cos \theta$	$U = mgh$ of $E_P = mgh$
$K = \frac{1}{2}mv^2$ of $E_k = \frac{1}{2}mv^2$	$\Delta K = K_f - K_i$ of $\Delta E_k = E_{kf} - E_{ki}$
$M_E = E_k + E_p$	$P = \frac{W}{\Delta t}$
$P_{gem} = Fv_{gem}$	$MA = \frac{Las}{Mag}$

ELASTISITEIT, VISKOSITEIT EN HIDROULIKA

$\sigma = \frac{F}{A}$	$\epsilon = \frac{\Delta L}{L}$
$\frac{\sigma}{\epsilon} = K$	$\frac{F_1}{A_1} = \frac{F_2}{A_2}$

ELEKTROSTATIKA

$c = \frac{k\epsilon_o A}{d}$ en $c = \frac{\epsilon_o A}{d}$	$E = \frac{V}{d}$
$C = \frac{Q}{V}$	

STROOMELEKTRISITEIT

$R = \frac{V}{I}$	$q = I \Delta t$
$W = VQ$ $W = VI\Delta t$ $W = I^{2}R\Delta t$ $W = \frac{V^{2}\Delta t}{R}$	$P = \frac{W}{\Delta t}$ $P = VI$ $P = I^{2}R$ $P = \frac{V^{2}}{R}$
$R_{s} = R_{1} + R_{2} + \dots$ $\frac{1}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \dots$	

ELEKTROMAGNETISME

$\phi = BA$	$\epsilon = -N\frac{\Delta \varphi}{\Delta t}$
$\frac{V_s}{V_p} = \frac{N_s}{N_p}$	

GOLWE, KLANK EN LIG

$v = f \lambda$	$T = \frac{1}{f}$
$E = hf$ of $E = h\frac{c}{\lambda}$	