

СОФИЙСКИ УНИВЕРСИТЕТ

"СВЕТИ КЛИМЕНТ ОХРИДСКИ"

Факултет по математика и информатика

Проект по Небесна механика

Изготвил: Илия Мачкърски

Специалност: Информационни системи

ФН:72034, Курс: 3-ти

Задача 1: Пресметнете координатите и скоростите на планетите в деня, в който сте родени

Орбитата на планетата зависи от 6 елемента (в задачата на Кеплер):

- а дължина на голямата полуос,
- **e** екцентрицитет,
- і наклонение на плоскостта на орбитата,
- I средна аномалия, (10 е средната аномалия в момента t0),
- $g + \theta$ дължина на перихелия,
- θ дължина на възела.

Пет от тези елементи са константи, единствено средната аномалия ${\bf I}$ е линейна функция на времето ${\bf t}$.

Допълнителен елемент е ексцентричната аномалия ${\bf u}$; в сила е уравнението на Кеплер

I = u - e.sin u

Ексцентрицитетът е характеризира сплеснатостта на елипсата:

$$e = \sqrt{1 - \frac{b^2}{a^2}} \in [0, 1)$$

, където **b** е дължината на малката полуос.

Връзката на елиптичните елементи с декартовите координати в

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos i & -\sin i \\ 0 & \sin i & \cos i \end{pmatrix} \begin{pmatrix} \cos g & -\sin g & 0 \\ \sin g & \cos g & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \\ 0 \end{pmatrix}$$

Кеплерови елементи и техните стойности

	Pluto		Neptune		Uranus		Saturn		Jupiter		Mars		EM Bary		Venus		Mercury	
-0.00031596	39.48211675	0.00026291	30.06992276	-0.00196176	19.18916464	-0.00125060	9.53667594	-0.00011607	5.20288700	0.00001847	1.52371034	0.00000562	1.00000261	0.00000390	0.72333566	0.00000037	0.38709927	AU, AU/Cy
0.00005170	0.24882730	0.00005105	0.00859048	-0.00004397	0.04725744	-0.00050991	0.05386179	-0.00013253	0.04838624	0.00007882	0.09339410	-0.00004392	0.01671123	-0.00004107	0.00677672	0.00001906	0.20563593	rad, rad/Cy
0.00004818	17.14001206	0.00035372	1.77004347	-0.00242939	0.77263783	0.00193609	2.48599187	-0.00183714	1.30439695	-0.00813131	1.84969142	-0.01294668	-0.00001531	-0.00078890	3.39467605	-0.00594749	7.00497902	I deg, deg/Cy
145.20780515	238.92903833	218.45945325	-55.12002969	428.48202785	313.23810451	1222.49362201	49.95424423	3034.74612775	34.39644051	19140.30268499	-4.55343205	35999.37244981	100.46457166	58517.81538729	181.97909950	149472.67411175	252.25032350	L deg, deg/Cy
-0.04062942	224.06891629	-0.32241464	44.96476227	0.40805281	170.95427630	-0.41897216	92.59887831	0.21252668	14.72847983	0.44441088	-23.94362959	0.32327364	102.93768193	0.00268329	131.60246718	0.16047689	77.45779628	long.peri. deg, deg/Cy
-0.01183482	110.30393684	-0.00508664	131.78422574	0.04240589	74.01692503	-0.28867794	113.66242448	0.20469106	100.47390909	-0.29257343	49.55953891	0.0	0.0	-0.27769418	76.67984255	-0.12534081	48.33076593	long.node. deg, deg/Cy

След това обръщаме ${f \theta}$, ${f g}$ + ${f \theta}$ в Радиани (*П/180)

Обръщаме **і** в градуси (*П/180)

Ст-тите на μ за планетите

	μ
Меркурий	1/6023600
Венера	1/408523
Земя	1/328900.5
Марс	1/3098708
Юпитер	1/1047.34
Сатурн	1/3497.8
Уран	1/22902.9
Нептун	1/19402
Плутон	1/135000000

 $\gamma = 1 + \mu$, където $\gamma = GmA$ е гравитационна константа

$$n = \sqrt{\frac{\gamma}{a^3}}$$

Величината \underline{n} наричаме $\underline{cpeдно\ движение;}$ То е момента на преминаване през перихелия на планета(начало на епоха). Връзката между средната и ексцентрична аномалии

I=u-e.sin(u) наричаме *уравнение на Кеплер.*

Въвеждаме t - времето от рождената дата до 2000г.

(Рождена дата: 04.05.2001г. =>

Дни между 04.05.2001г и 01.01.2000 – 489 дни

$$t = 489 / 365.25 = 1.3388$$
)

От решението на задачата на Кеплер в декартови координати:

$$\begin{split} &l = \sqrt{\gamma} a^{-\frac{3}{2}} (T - To) \\ &=> l = n. \, (t(2\pi) - To) = u - e \, . sin(u) \\ &u = l + e. \, sin(l + e \, . sin(l) + e \, . sin(l))) \\ &r = \binom{x}{y} = Q. \, a. \, \left(cos(u) - e; sin(u); \, \sqrt{(1 - e^2; 0)} \right) \\ &v = Q. \, \frac{(-sin(u); cos(u).\sqrt{(1 - e^2; 0).a.n}}{1 - e. cos(u)} \end{split}$$

Където Q е от Основна формула на сферичната тригонометрия (<u>Теорема</u>. Всяка матрица Q SO(3,R) може да се представи аналитично във вида:

$$Q = \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos i & -\sin i \\ 0 & \sin i & \cos i \end{pmatrix} \begin{pmatrix} \cos g & -\sin g & 0 \\ \sin g & \cos g & 0 \\ 0 & 0 & 1 \end{pmatrix} =$$

$$\begin{array}{c} \text{Ротация на 5 \scalebox{1} - D} & \text{ротация на 5 \scalebox{1} - D} & \text{ротация на 5 \scalebox{1} - D} \\ \theta \text{ около оста OZ} & i \text{ около оста OX} & g \text{ около оста OZ} \\ = \begin{pmatrix} \cos\theta \cos g & -\sin\theta \sin g \cos i & -\cos\theta \sin g & -\sin\theta \cos g \cos i & \sin\theta \sin i \\ \sin\theta \cos g & +\cos\theta \sin g \cos i & -\sin\theta \sin g & +\cos\theta \cos g \cos i & -\cos\theta \sin i \\ \sin g \sin i & \cos g \sin i & \cos g \cos i & \cos\theta & \cos\theta & \cos\theta \\ \end{pmatrix}$$

където θ , $\mathbf{g} \in [0, 2\pi)$ и $\mathbf{i} \in [0, \pi]$)

Таблица за всяка планета:

	Меркурий	Венера	Земя	Марс	Юпитер	Сатурн	Уран	Нептун	Плутон
r	-0.0693	-0.2876	-0.7249	-0.7329	0.88684	4.0539	15.664	18.07	-8.461
	0.30352	-0.6652	-0.7004	-1.3335	5.00963	8.1285	-12.37	-24.07	-28.68
	0.03115	0.0075	0	-0.0099	-0.0405	-0.3027	-0.2488	0.0792	5.5169
v	-1.9215	1.0721	0.6793	0.74365	-0.4376	-0.3071	0.1399	0.1447	0.1787
	-0.3043	-0.4712	-0.7228	-0.3224	0.0969	0.14418	0.1687	0.1104	-0.0814
	0.15148	-0.0683	0	-0.0250	0.0093	0.00969	-0.0011	-0.005	-0.042
r	0.31289	0.72481	1.00807	1.52178	5.08768	9.0884	19.965	30.1	30.409
v	1.95139	1.1731	0.99196	0.81095	0.4484	0.3394	0.2192	0.1821	0.20109

Задача 2:Пресметнете елементите на Делоне и Поанкаре (от първи и втори вид) в деня, в който сте родени Елементите на Делоне – L, G, O, I, g, 0 се изразяват чрез орбиталните елементи:

Елементите на Делоне – L, G, Θ , I, g, θ се изразяват чрез орбиталните елементи:

- а дължина на голямата полуос,
- е ексцентрицитет,
- і наклонение на плоскостта на орбитата,
- I средна аномалия, (10 е средната аномалия в момента t0),
- $q + \theta$ дължина на перихелия,
- θ дължина на възела.

Както следва:

*(I,L), (G,g) и (Θ , θ) са спрегнати канонични променливи,

$$L=\mu\sqrt{\gamma.a}$$

$$G{=}\mu.\sqrt{\gamma.\,a(1-{\rm e}^2)}=\!L.\sqrt{(1{-}{\rm e}^2)}$$

$$\Theta$$
= μ. $\sqrt{\gamma$. a $(1 - e^2)$ cosi=G.cosi

Като при това \mathbf{I} , \mathbf{g} и $\mathbf{\theta}$ съвпадат и в двата случая.

Елементите на Делоне – **L,G, \Theta,I,g, \theta** са константи с хамилтони:

$$\hat{H} = - \mu^3 y^2$$

 $2L^2$

Обръщаме θ в радиани (*П/180)

Обръщаме і в градуси (*П/180)

То е момента на преминаване през перихелия на планета (начало на епоха).

$$l = \sqrt{\gamma}$$
. $a^{-\frac{3}{2}}(t-To)$

$$u - e.sin(u)$$

$$u = l + e.sin(l + e.sin(l) + e.sin(l)))$$

$$n = \sqrt{\frac{\gamma}{a^3}}$$

Въвеждаме t - времето от рождената дата до 2000г.

(Рождена дата: 04.05.2001г. =>

Дни между 04.05.2001г и 01.01.2000 – 489 дни

$$t = 489 / 365.25 = 1.3388$$
)

И чрез $\lambda = I + g + \theta$ (дължина на епохата) ще можем да изразим елементите от двете системи на Поанкаре, и по-точно:

Първа система от шест елемента, характеризираща орбитите на планетите:

$$\begin{pmatrix} L & L - G & G - \Theta \\ l + g + \theta & -g - \theta & -\theta \end{pmatrix}$$

И втората:

$$\begin{pmatrix} L & \xi := \sqrt{2(L-G)} \, \cos(g+\theta) & p := \sqrt{2(G-\Theta)} \, \cos(\theta) \\ \lambda := l + g + \theta & \eta := -\sqrt{2(L-G)} \, \sin(g+\theta) & q := -\sqrt{2(G-\Theta)} \, \sin(\theta) \end{pmatrix}$$

Елементи на Делоне:

	L	G	Θ	I	g	θ	н
Меркурий	1.0328e-07	1.0108e-07	1.0033e-07	37.991	0.5084	0.8435	-2.1449e-07
Венера	2.0814e-06	2.0814e-06	2.0777e-06	14.563	0.9586	1.3383	-1.6928e-06
Земя	3.0404e-06	3.0400e-06	3.0400e-06	8.3688	1.7966	0	-1.5202e-06
Марс	3.9826e-07	3.9654e-07	3.9633e-07	4.8140	-1.2829	0.8650	-1.0595e-07
Юпитер	2.1787e-03	2.1762e-03	2.1757e-03	1.0523	-1.4965	1.7536	-9.1860e-05
Сатурн	8.8298e-04	8.8174e-04	8.8091e-04	-0.4586	-0.3676	1.9838	-1.4995e-05
Уран	1.9127e-04	1.9106e-04	1.9104e-04	2.5834	1.6919	1.2918	-1.1377e-06
Нептун	2.8263e-04	2.8262e-04	2.8249e-04	-1.6958	-1.5153	2.3001	-8.5709e-07
Плутон	4.6544e-08	4.5090e-08	4.3088e-08	0.2933	1.9856	1.9252	-9.3807e-11

Първа система на Поанкаре:

	L	L-G	G-0	l + g +θ	-g-θ	-θ
Меркурий	1.0328e-07	2.1934e-09	7.5431e-10	39.343	-1.3519	-0.8435
Венера	2.0814e-06	3.7465e-11	3.6506e-09	16.859	-2.2969	-1.3383
Земя	3.0404e-06	3.8920e-10	0	10.165	-1.7966	0
Марс	3.9826e-07	1.7260e-09	2.0646e-10	4.3961	0.4179	-0.8650
Юпитер	2.1787e-03	2.5114e-06	5.6359e-07	1.3093	-0.2571	-1.7536
Сатурн	8.8298e-04	1.2410e-06	8.2918e-07	1.1575	-1.6161	-1.9838
Уран	1.9127e-04	2.1137e-07	1.7343e-08	5.5671	-2.9837	-1.2918
Нептун	2.8263e-04	9.0444e-09	1.3485e-07	-0.9110	-0.7848	-2.3001
Плутон	4.6544e-08	1.4540e-09	2.0026e-09	4.2040	-3.9107	-1.9252

Втора система на Поанкаре:

	L	ε	р	λ= I + g +θ	n	q
Меркурий	1.0328e-07	1.4384e-05	2.5823e-05	39.343	-6.4652e-05	-2.9014e-05
Венера	2.0814e-06	-5.7473e-06	1.9688e-05	16.859	-6.4729e-06	-8.3148e-05
Земя	3.0404e-06	-6.2462e-06	0	10.165	-2.7192e-05	0
Марс	3.9826e-07	5.3698e-05	1.3181e-05	4.3961	2.3844e-05	-1.5466e-05
Юпитер	2.1787e-03	2.1675e-03	-1.9299e-04	1.3093	-5.6977e-04	-1.0440e-03
Сатурн	8.8298e-04	-7.1412e-05	-5.1684e-04	1.1575	-1.5738e-03	-1.1795e-03
Уран	1.9127e-04	-6.4210e-04	5.1285e-05	5.5671	-1.0223e-04	-1.7904e-04
Нептун	2.8263e-04	9.5162e-05	-3.4604e-04	-0.9110	-9.5042e-05	-3.8724e-04
Плутон	4.6544e-08	-3.8747e-05	-2.1959e-05	4.2040	3.7507e-05	-5.9354e-05

Код:

```
Задача 1:
```

```
const multiplyMatrices = (a, b) => {
  let aNumRows = a.length, aNumCols = a[0].length,
      bNumRows = b.length, bNumCols = b[0].length,
      m = new Array(aNumRows);
  for (let r = 0; r < aNumRows; ++r) {
    m[r] = new Array(bNumCols);
    for (let c = 0; c < bNumCols; ++c) {
      m[r][c] = 0;
      for (let i = 0; i < aNumCols; ++i) {</pre>
        m[r][c] += a[r][i] * b[i][c];
      }
    }
  }
 return m;
}
const multiplyMatrixVector = (matrix, vector) => {
    let result = new Array(matrix.length);
    for (let i = 0; i < matrix.length; i++) {</pre>
        result[i] = 0;
        for (let j = 0; j < matrix[0].length; j++) {</pre>
            result[i] += matrix[i][j] * vector[j];
        }
    }
   return result;
}
const multiplyScalarVector = (vector, scalar) => {
    let result = new Array(vector.length);
    for (let i = 0; i < vector.length; i++) {</pre>
        result[i] = scalar * vector[i];
    }
    return result;
}
const normalizeVector = (v) => {
```

```
let sum = 0;
  for (let i = 0; i < v.length; i++) {</pre>
      sum += Math.pow(v[i], 2);
  return Math.sqrt(sum);
}
const solve = (a, e, i, L, w, Omega, miu, t) \Rightarrow {
  let tita = Omega * Math.PI / 180;
  let g = (w - Omega) * Math.PI / 180;
  i = i * Math.PI / 180;
  let Tita = [
      [Math.cos(tita), -Math.sin(tita), 0],
      [Math.sin(tita), Math.cos(tita), 0],
      [0, 0, 1]
  ];
  let I = [
      [1, 0, 0],
      [0, Math.cos(i), -Math.sin(i)],
      [0, Math.sin(i), Math.cos(i)]
  ];
  let G = [
      [Math.cos(g), -Math.sin(g), 0],
      [Math.sin(g), Math.cos(g), 0],
      [0, 0, 1]
  ];
  let Q = multiplyMatrices(multiplyMatrices(Tita, I), G);
  let gama = 1 + miu;
  let n = Math.sqrt(gama / Math.pow(a, 3));
  let to = ((w - L) / n) * Math.PI / 180;
  let 1 = n * (t * 2 * Math.PI - to);
  let u = 1 + e * Math.sin(1 + e * Math.sin(1 + e * Math.sin(1)));
  let r = multiplyMatrixVector(Q, [a * (Math.cos(u) - e), a *
Math.sin(u) * Math.sqrt(1 - Math.pow(e, 2)), 0]);
  let v = multiplyMatrixVector(Q, [-Math.sin(u), Math.cos(u) *
Math.sqrt(1 - Math.pow(e, 2)), 0]);
```

```
let scalar = (a * n) / (1 - e * Math.cos(u))
  v = multiplyScalarVector(v, scalar);
  console.log(r)
  console.log(v)
  console.log('Normed V = ' + normalizeVector(v));
  console.log('Normed R = ' + normalizeVector(r));
}
const planets = [
  [0.387, 0.205, 7.004, 252.250, 77.457, 48.330, 1/6023600],
  [0.723, 0.006, 3.394, 181.979, 131.602, 76.679, 1/408523],
                         100.464, 102.937, 0,
  [1,
           0.016, 0,
                                                1/328900.5],
  [1.523, 0.093, 1.849, -4.553, -23.943, 49.559, 1/3098708],
  [5.202, 0.048, 1.304, 34.396, 14.728, 100.473, 1/1047.34],
  [9.536, 0.053, 2.485, 49.954, 92.598, 113.662, 1/3497.8],
  [19.189, 0.047, 0.772, 313.238, 170.954, 74.016, 1/22902.9],
  [30.069, 0.008, 1.770, -55.120, 44.964, 131.784, 1/19402],
  [39.482, 0.248, 17.140, 238.929, 224.068, 110.303, 1/135000000]
1
const time = 489 / 365.25;
for(let i = 0; i < 1; i++) {</pre>
  console.log(`Planet ${i + 1}`)
  solve(planets[i][0], planets[i][1], planets[i][2], planets[i][3],
planets[i][4], planets[i][5], planets[i][6], time);
}
Задача 2:
const findElements = (a, e, i, L, w, Omega, myu, t) => {
   i = i * Math.PI/180;
   n = Math.sqrt(1 / a^3);
   to = ((w - L) / n) * Math.PI/180;
   gamma = 1 + myu;
   capL = myu * Math.sqrt(gamma*a)
   capG = capL * Math.sqrt(1 - e^2)
   capTheta = capG*Math.cos(i)
   1 = n * (t*2*Math.PI - to)
   g = (w - Omega) * Math.PI/180
   theta = Omega * Math.PI/180
```

```
H = -myu*gamma / (2*a)
   FirstPoincare11 = capL
   FirstPoincare12 = capL - capG
   FirstPoincare13 = capG - capTheta
   FirstPoincare21 = 1 + g + theta
   FirstPoincare22 = -g - theta
   FirstPoincare23 = -theta
  // # L
  SecondPoincare11 = FirstPoincare11
  // # E
   SecondPoincare12 = Math.sqrt(2 * (capL - capG)) * Math.cos(g +
theta)
  // # p
   SecondPoincare13 = Math.sqrt(2 * (capG - capTheta)) *
Math.cos(theta)
  // # \lambda = 1 + g + stheta
   SecondPoincare21 = FirstPoincare21
   SecondPoincare22 = -Math.sqrt(2 * (capL - capG)) * Math.sin(g +
theta)
  // # q
   SecondPoincare23 = -Math.sqrt(2 * (capG - capTheta)) *
Math.sin(theta)
   console.log(SecondPoincare11, SecondPoincare12, SecondPoincare13,
SecondPoincare21, SecondPoincare22, SecondPoincare23)
}
const planets = [
   [0.387, 0.205, 7.004, 252.250, 77.457, 48.330, 1/6023600],
   [0.723, 0.006, 3.394, 181.979, 131.602, 76.679, 1/408523],
                          100.464, 102.937, 0,
   [1,
          0.016, 0,
                                                  1/328900.5],
   [1.523, 0.093, 1.849, -4.553, -23.943, 49.559, 1/3098708],
   [5.202, 0.048, 1.304, 34.396, 14.728, 100.473, 1/1047.34],
   [9.536, 0.053, 2.485, 49.954, 92.598, 113.662, 1/3497.8],
```

```
[19.189, 0.047, 0.772, 313.238, 170.954, 74.016, 1/22902.9],
[30.069, 0.008, 1.770, -55.120, 44.964, 131.784, 1/19402],
[39.482, 0.248, 17.140, 238.929, 224.068, 110.303, 1/135000000]]

const time = 489 / 365.25;

for(let i = 0; i < 1; i++) {
   i = 0;
   console.log(`Planet ${i + 1}`)
   findElements(planets[i][0], planets[i][1], planets[i][2],
planets[i][3], planets[i][4], planets[i][5], planets[i][6], time);
   break;
}</pre>
```