NOTES FOR REINFORCEMENT LEARNING

Yao Yao

realyao21002@gmail.com

1 Multi-arm Bandit: only one state

- ε-greedy. To find out the best arm by statistical analysis. At each step/round/time, choose the current best arm with probability (w.p.) (1 ε) (exploitation) or randomly choose an arm w.p. ε (exploration). However, there is always a gap in regret.
- Upper Confidence Bound (UCB) method. To find out the best arm by statistical analysis, too. At each step/round/time, without a probability, choose the largest 'potential' arm that optimize the value function added with a **Chernoff-Hoeffding bound term**. This is to enable the reward gap to approach 0.
- Gradient-bandit method. To decide a distribution for pulling arms. A naive version of policy gradient method.

Elements: *K*-arm bandit, with mean μ_1, \dots, μ_K , action $A_t \in \mathcal{A} = \{1, \dots, K\}$ and R_t . At each time step compute estimation of mean - using rewards accumulated **before time T**

$$Q_T(a) = \frac{\sum_{t=1}^{T-1} R_t \mathbf{1}_{A_t=a}}{N_T(a)}$$
, where $N_T(a) = \sum_{t=1}^{T-1} \mathbf{1}_{A_t=a}$.

1.1 ε -greedy

Randomly pick $A_t \sim U\{1, ..., K\}$ w.p. $\varepsilon \in (0, 1)$, or pick $A_t = argmax_{a \in \mathscr{A}} Q_T(a)$ w.p. $1 - \varepsilon$. In application - generate an R.V. $\sim U(0, 1)$ to ensure the exploration rate is $P(R.V. \le \varepsilon) = \varepsilon$.

: if $R.V. < \varepsilon$, randomly choose an arm.

There is an iteration in Q -

$$Q_{N+1} = \frac{(N-1) \cdot Q_N + R_N}{N} = Q_N + \frac{R_N - Q_N}{N},$$

where N+1 is the local time when **an arm** is being estimated, i.e. N is the last time an arm is pulled.

Bernoulli Bandit $r_i \sim Bernoulli(\mu_i)$

Define an R.V. $Y \sim U(0,1)$ and

$$X = \begin{cases} 1, & Y < \mu \\ 0, & Y \ge \mu \end{cases}$$

to ensure the reward of a Bernoulli arm is $r_i = 1$ w.p. μ_i

$$P(X = 1) = P(Y < \mu) = \mu, P(X = 0) = P(Y > \mu) = 1 - \mu.$$

Hyper Param Analysis

The larger ε , the more exploration, the faster it converges, but not necessarily converge to good solutions. The more exploitation, the more cumulative rewards, but the slower it converges. Empirical good choice $\varepsilon = 0.1$ or $\varepsilon = 0.05$.

```
A simple bandit algorithm

Initialize, for a=1 to K:

R \leftarrow \text{bandit}(a)
Q(a) \leftarrow R, N(a) \leftarrow 1.

Repeat forever:

A \leftarrow \begin{cases} \text{arg max } Q(a), & \text{w. p. } 1-\epsilon \\ \text{a random arm, w. p. } \epsilon \end{cases}
R \leftarrow \text{bandit}(A), \quad N(A) \leftarrow N(A) + 1
Q(A) \leftarrow Q(A) + \frac{1}{N(A)}(R - Q(A))

The high-lighted part: S_T = \frac{x_1 + \cdots x_{T-1}}{T-1}
\Rightarrow S_{T+1} = \frac{x_1 + \cdots + x_{T-1} + x_T}{T} = \frac{(T-1)S_T + x_T}{T} = S_T + \frac{1}{T}(x_T - S_T)
```

Figure 1: ε -greedy

1.2 Regret analysis: ε -greedy results in a gap

A measure of 'expected loss' compared to always pulling the optimal arm.

$$Regret(T) = T\mu^* - E[\Sigma_{k=1}^T R_{A_k}] = T\mu^* - E[\Sigma_{k=1}^T \mu_{A_k}] = T\mu^* - E[\Sigma_{a \in \mathcal{A}} N(a)\mu_a],$$

where $\mu^* = max_i\{\mu_i\}$, μ_{A_k} = estimated mean for arm A_k = some a, N(a) = #times arm a is pulled.

If regret \rightarrow 0, then

$$egin{aligned} Regret &= T\mu^* - E[\Sigma_{k=1}^T \mu_{A_k}]
ightarrow 0, \ AvgReward(T) &= rac{E[\Sigma_{k=1}^T \mu_{A_k}]}{T}
ightarrow \mu^*, \ rac{Regret(T)}{T} &= \mu^* - AvgReward(T)
ightarrow 0. \end{aligned}$$

In ε -greedy, assuming arm 10 as the true best

$$\begin{aligned} \textit{Regret} &= T \mu_{10} - \frac{9\varepsilon}{10} T \bar{\mu}_{\textit{other}} - \frac{10 - 9\varepsilon}{10} T \mu_{10} = \frac{9\varepsilon T}{10} (\mu_{10} - \bar{\mu}_{\textit{other}}), \\ \textit{AvgRegret}(T) &= \frac{\textit{Regret}(T)}{T} = \frac{9\varepsilon}{10} (\mu_{10} - \bar{\mu}_{\textit{other}}) > 0. \end{aligned}$$

There is a non-diminishing gap.

A Naive Approach

Introducing Chernoff-Hoeffding bound:

$$P(|Q_n(a) - \mu_a| \le \delta) \ge 1 - 2e^{-2n\delta^2},$$

where n is the number of times arm a is pulled, μ_a is the true mean reward of arm a.

Then the confidence interval $\mu_a \in [Q_n(a) - \delta, Q_n(a) + \delta]$ is what we focus on. Suppose the gap between the true best and the true second best is known as Δ . Let $1 - 2e^{-2n(\Delta/3)^2} \ge 1 - p$. then $n \ge \frac{9\ln(2/p)}{2\Lambda^2}$ would satisfies

$$\forall a \neq 10, Q_n(a) \leq \mu_a + \Delta/3 < \mu_{10} - \Delta/3 \leq Q_n(10)$$
 w.p. at least $1 - p$,

to ensure the true best arm 10 has the highest $Q_n(10)$ w.p. 1 - 10p. There are 10 inequalities, where any of them does not hold w.p.

 $P(\text{any does not hold}) = P(\{1\text{st does not hold}\} \cup \cdots \cup \{10\text{th does not hold}\}) \le 10p.$

Then the approach is **exploration-then-exploitation** - pull each time for n times, and then always choose the arm with best estimated reward for T - nk times. Note that

let
$$p = 1/T$$
, then $n = \left[\frac{9\ln(2T)}{2\Delta^2}\right]$.

Such approach has drawbacks that the user needs to know T as the number of trials, which also makes the exploration and exploitation completely separated and lack flexibility, and Δ as the gap.

1.3 The UCB Approach

This approach helps the Chernoff-Hoeffding bound inequality holds, to make the

$$\frac{\textit{Regret}(T)}{T} = \mu^* - \textit{AvgReward}(T) = O(1/\sqrt{T}) \rightarrow 0.$$

At each time step, choose an arm to maximize the **Upper Confidence Bound** of the previous confidence interval. Here the selected $\delta_t(a)$ varies at each time across arms, and is $\sqrt{\frac{2 \ln t}{N_t(a)}}$ such that

$$1 - 2e^{-2n\delta_t^2} = 1 - 1/t^4.$$

The larger the time t grows, the higher the probability that $Q_t(a) + \delta_t(a)$ provides a true upper

The UCB algorithm:

```
The UCB algorithm

Initialize t = 1, for a = 1 to K : R \leftarrow \text{bandit}(a)
Q(a) \leftarrow R, \quad N(a) \leftarrow 1.
Repeat forever:
t \leftarrow t + 1 \quad \text{Maximize} \quad \text{UCB}
A \leftarrow \operatorname{argmax}_{a} \left\{ Q(a) + c \sqrt{\frac{\ln t}{N(a)}} \right\}
R \leftarrow \operatorname{bandit}(A), \quad N(A) \leftarrow N(A) + 1
Q(A) \leftarrow Q(A) + \frac{1}{N(A)} (R - Q(A))
```

In each iteration, instead of picking the arm with largest sample average reward $Q_t(a)$, UCB algorithm optimistically picks the one with largest "potential"

$$\mu_a \le Q_t(a) + \sqrt{\frac{2 \ln t}{N_t(a)}}$$

Figure 2: The UCB approach

bound for the true mean μ_a , although δ_t is changing through time.

The larger the pull number $N_t(a)$ grows, the tighter the upper bound $Q_t(a) + \delta_t(a)$ is compared with the true mean μ_a . Because $\delta_t(a)$ would decrease, letting the upper bound be closer to μ_a .

In each iteration, instead of picking the arm with largest $Q_t(a)$, UCB alg optimistically picks the one with **the largest 'potential'**.

• Every arm will be pulled infinitely. $\delta_t(a)$ gets larger even if arm a is never pulled, then arm a will be pulled until its ucb becomes the largest.

- Pulled suboptimal arm will be played less frequently, because $N_t(a)$ gives a penalty in $\delta_t(a)$.
- Overestimate rarely pulled arms. In particular, if $N_t(a) = 0$, then its ucb = ∞ , making the unpulled arm pulled first. (However, in practice, we always initialize the first pulling of each arm.)

1.4 Gradient-Bandit

Direct optimization to optimize the distribution for pulling each arm. A naive version of the policy gradient method.

$$min_{\pi} - \Sigma_{a=1}^{K} \mu_{a} \pi_{a}$$
 $s.t.\pi \ge 0$
 $\Sigma_{a} \pi_{a} = 1$

Where, the objective is the negative expected reward when pulling arms according to the distribution π . To ensure $\pi_a \in [0,1]$, introduce a parameter θ_a for each arm and let

$$\pi_a(\theta) = \frac{exp(\theta_a)}{\sum_{b=1}^{K} exp(\theta_b)}.$$

The objective becomes $min_{\theta} \{ f(\theta) : -\sum_{a=1}^{K} \mu_a \pi_a(\theta) \}$.

In such method, we update the distribution using gradient descent, which utilize the unknown μ_a . Although this is unknown, we can still have an unbiased estimator of the gradient without knowing μ_a . Fortunately,

$$\frac{\partial f(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}_a} = \sum_{b \neq a}^K \mu_b \pi_a(\boldsymbol{\theta}) (\pi_b(\boldsymbol{\theta}) - 0) + \mu_a \pi_a(\boldsymbol{\theta}) (\pi_a(\boldsymbol{\theta}) - 1) = E_{b \sim \pi(\boldsymbol{\theta}), R = bandit(b)} [R \cdot (\pi_a(\boldsymbol{\theta}) - \mathbf{1_{b=a}})].$$

The estimator means that, when you pull an arm b, calculate the partial derivative using the expectation for each arm a.

Then, conduct gradient descent step for each $\theta_a^{t+1} = \theta_a^t - \eta_t R_b(\pi_a^t - \mathbf{1}_{\mathbf{a} = \mathbf{b}})$, where π_a^t is computed at the beginning of each iteration.

Gradient-bandit algorithm

```
The gradient-bandit algorithm

Initialize t=0, \theta^0 \in \mathbf{R}^K

Repeat forever:

Compute distribution \pi^t: \pi_a^t = \frac{\exp(\theta_a)}{\sum_{b=1}^K \exp(\theta_b)}, \forall a \in \{1, \cdots, K\}

Sample an arm A \sim \pi^t

Get reward R \leftarrow \text{bandit}(A)

For a=A, update: \theta_a^{t+1} = \theta_a^t - \eta_t R(\pi_A^t - 1)

For a \neq A, update: \theta_a^{t+1} = \theta_a^t - \eta_t R(\pi_A^t - 1)
```

Figure 3: Gradient Bandit

- Taking smaller steps will converge to higher final average reward, but with slower convergence speed.
- Better than ε -greedy.

Add base-line to improve GB

The base-line is

$$\bar{R}_T = \frac{\sum_{t=1}^T R_t}{T}$$
, to update baseline, $\bar{R}_{T+1} = \frac{\bar{R}_T \cdot T + R_{T+1}}{T+1} = \bar{R}_T + \frac{R_{T+1} - \bar{R}_T}{T+1}$.

When conducting gradient descent,

$$\theta_a^{t+1} = \theta_a^t - \eta_t (R_b - \bar{R}_{t+1}) (\pi_a^t - \mathbf{1}_{\mathbf{a} = \mathbf{b}})$$
, when choosing arm b.

Adding a baseline **does not change the unbiased-ness**.

- Ways to improve gradient-bandit
 - We can add a base-line to the gradient formula:

```
The gradient-bandit algorithm with base-line Initialize t=0, \theta^0 \in \mathbb{R}^K, \overline{R}=0 Repeat forever: Compute distribution \pi^t: \pi_a^t = \frac{\exp(\theta_a)}{\sum_{b=1}^K \exp(\theta_b)}, \forall a \in \{1, \cdots, K\} Sample an arm A \sim \pi^t Get reward R \leftarrow \text{bandit}(A) \overline{R} = R + (R - \overline{R})/(t+1) \overline{R} = \frac{\overline{R} \cdot t + \overline{R}}{t+1} = \overline{R} + \frac{R \cdot \overline{R}}{t+1} For a = A, update: \theta_a^{t+1} = \theta_a^t - \eta_t(R - \overline{R})(\pi_A^t - 1) For a \neq A, update: \theta_a^{t+1} = \theta_a^t - \eta_t(R - \overline{R})\pi_a^t t \leftarrow t+1
```

Figure 4: gradient bandit with baseline

$$\nabla f_B(\theta) = \nabla f(\theta)$$
, and $\Sigma_{a=1}^K \pi_a(\theta) = 1 \Rightarrow \Sigma_{a=1}^K \frac{\partial \pi_a(\theta)}{\partial \theta_a} = 0$.

Which means equally shifting the rewards of each arm by a constant *B* will not change the relative performance of the arms and will not change the gradients.

Adding an appropriate base-line will often improve the (overall) performance.

2 Markov Decision Process

The (finite) Markov Decision Process is written as

$$\mathcal{M}(\mathcal{S}, \mathcal{A}, r, \gamma, P)$$
.

2.1 MDP Elements

- State space \mathscr{S} s.t. $s \in \mathscr{S}$ is a set.
- Action space \mathscr{A} s.t. $a \in \mathscr{A}$. To distinguish between the action choice a and the real action \hat{a} .
- Reward function $r(\cdot,\cdot)$. Results from $s \in \mathscr{S}$ and $a \in \mathscr{A}$, E[R] = r(s,a) or simplified R = r(s,a).
- Transition probability P. A probability P(s'|s,a), so $s' \sim P(\cdot|s,a)$. For each action a, we can also write $P_a(s,s')$, so $s' \sim P_a(s,\cdot)$.

Discount factor γ ∈ (0,1). We generally don't expect a terminating state, then a discount
on future reward should be conducted. We would like to maximize the expected discounted
cumulative reward

$$E[\sum_{t=0}^{\infty} \gamma^t R_t]$$
 with $E[R_t|s_t, a_t] = r(s_t, a_t)$.

In most cases, γ is close to 1, e.g., $\gamma = 0.95$.

Policy π: S→ Δ_S is a mapping from the state space to a distribution over the action space. Under a policy π, the probability of an action a given a state s gives a ~ π(·|s). Given an initial state distribution ξ, we would like to find the optimal policy by maximizing

$$V^{\pi}(\xi) := E[\Sigma_{t=0}^{\infty} \gamma^t \cdot r(s_t, a_t) | s_0 \sim \xi, a_t \sim \pi(\cdot | s_t), s_{t+1} \sim P(\cdot | s_t, a_t)].$$

2.2 Estimating Cumulative Reward: Monte Carlo

Approach 1: generate random horizon, without computing γ

At each epoch, generate a random horizon H s.t. H = X - 1 with $X \sim Geom(1 - \gamma)$, then $P(H \ge k) = \gamma^k$. After that, sample a finite sequence $\{s_t, a_t, R_t\}_{t=0}^H$ and compute $\tilde{V}_{epoch} = \Sigma_{t=0}^H R_t$. After epochs, take the average $\bar{V} = \frac{1}{h} \Sigma_{epoch=1}^h \tilde{V}_{epoch}$.

The estimator \tilde{V} is unbiased,

$$E[\tilde{V}] = E[\Sigma_{t=0}^{\infty} \mathbf{1}_{t \le H} R_t] = \Sigma_{t=0}^{\infty} P(H \ge t) E[R_t] = \Sigma_{t=0}^{\infty} \gamma^t E[R_t] = V^{\pi}(\xi).$$

Expected trajectory length is $E[H] + 1 = \frac{1}{1-\nu}$.

Alternative estimator: fixed horizon

Take a fixed horizon $H = [const \cdot \frac{ln(1/\varepsilon)}{1-\gamma}]$. Then sample a sequence $\{s_t, a_t, R_t\}_{t=0}^H$ and compute $\tilde{V} = \sum_{t=0}^H \gamma^t R_t$.

This estimator is biased, but the bias is very small:

$$|E[\tilde{V}] - V^{\pi}(\xi)| \le P(\varepsilon).$$

Complimentary knowledge on horizon H

There are two types of horizon, relatively for finite and infinite MDP:

$$H = \begin{cases} \text{terminating state,} & \text{finite MDP} \\ \tau, & \text{infinite MDP} \end{cases}$$

Fixed horizon may lead to an unexpected terminating state.

3 Value Functions

3.1 State Value Function

Definition

As the cumulative reward function is

$$V^{\pi}(\xi) = E_{s_0 \sim \xi, a_t \sim \pi(\cdot|s_t), s_{t+1} \sim P(\cdot|s_t, a_t)} \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t),$$

when the initial state s_0 is known and instead denoted by s, we can compute the state value function from such initial s.

$$V^{\pi}(s) = E_{a_t \sim \pi(\cdot|s_t), s_{t+1} \sim P(\cdot|s_t, a_t)} [\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) | s_0 = s].$$

Note that

$$V^{\pi}(\xi) = E_{s_0 \sim \xi}[V^{\pi}(s_0)].$$

Bellman Equation

$$V^{\pi}(s) = \sum_{a \in A} \pi(a|s) \sum_{s' \in S} P(s'|s,a) [r(s,a) + \gamma V^{\pi}(s')]$$

= $\sum_{a \in A} \pi(a|s) [r(s,a) + \sum_{s' \in S} P(s'|s,a) \gamma V^{\pi}(s')], \forall s.$

In expectation form,

$$V^{\pi}(s) = E_{a \sim \pi(\cdot|s), s' \sim P(\cdot|s, a)}[r(s, a) + \gamma V^{\pi}(s')], \forall s.$$

 $V^{\pi}(s)$ in Terms of $Q^{\pi}(s,a)$

$$V^{\pi}(s) = \sum_{a \in A} \pi(a|s) Q^{\pi}(s,a) = E_{a \sim \pi(\cdot|s)} Q^{\pi}(s,a).$$

3.2 State Action Value Function (Q Function)

Definition

$$Q^{\pi}(s,a) := E_{s_{t+1} \sim P(\cdot | s_t, a_t), a_t \sim \pi(\cdot | s_t)} [\Sigma_{t=0}^{\infty} \gamma^t r(s_t, a_t) | s_0 = s, a_0 = a], \forall s, a.$$

Bellman Equation

$$Q^{\pi}(s,a) = \sum_{s' \in S} P(s'|s,a) \sum_{a' \in A} \pi(a'|s') [r(s,a) + \gamma Q^{\pi}(s',a')]$$

= $r(s,a) + \sum_{s' \in S} \sum_{a' \in A} P(s'|s,a) \pi(a'|s') \gamma Q^{\pi}(s',a').$

In expectation form,

$$Q^{\pi}(s,a) = r(s,a) + \gamma E_{s' \sim P(\cdot|s,a), a' \sim \pi(\cdot|s')} [Q^{\pi}(s',a')].$$

 $Q^{\pi}(s,a)$ in Terms of $V^{\pi}(s)$

$$Q^{\pi}(s,a) = \sum_{s' \in S} P(s'|s,a) [r(s,a) + \gamma W^{\pi}(s')]$$

= $r(s,a) + \gamma E_{s' \sim P(\cdot|s,a)} [V^{\pi}(s')].$

3.3 Optimal Value Function

To obtain the optimal policy π^* , maximize the cumulative reward function

$$max_{\pi}V^{\pi}(\xi) := E_{\xi,\pi,P}[\Sigma_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t})].$$

The obtained π^* will simultaneously optimize all the value functions and Q functions. In such a policy,

$$\pi^*(a|s) = \begin{cases} 1, & a = a^*(s) \\ 0, & a \neq a^*(s) \end{cases}.$$

Where

$$a^* = \operatorname{argmax}_{a \in A} \{ Q^*(s, a) \} = \operatorname{argmax}_{a \in A} \{ r(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V^*(s') \}.$$

Optimal State Value Function

$$V^*(s) = \max_{a \in A} \{ r(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V^*(s') \} = \max_{a \in A} \{ Q^*(s, a) \}.$$

Optimal State Action Value Function

$$Q^{*}(s,a) = r(s,a) + \gamma \cdot \max_{a' \in A} \{ \sum_{s' \in S} P(s'|s,a) Q^{*}(s',a') \}$$

= $r(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) \cdot \max_{a' \in A} \{ Q^{*}(s',a') \}$

3.4 Notes on Solving the Optimal Policy

Note: Solving **Bellman Equations** for $V^*(s)$ or $Q^*(s,a)$ would derive the optimal policy π^* . However, how to solve those Bellman Equations depends on premise assumptions.

- If we assume known transitions and terminating state (i.e. with a horizon), we use dynamic programming, which problem is always called **planning**. This is the focus of section 4.
- If we meet with an infinite-horizon MDP without terminating state, we use value iteration or Q iteration.

4 Finite Horizon MDP: Dynamic Programming

The finite horizon maybe 1) time horizon, or 2) terminating state. (see 2.2)

Note: When setting up, invalid action will be presented by $reward = -\infty$. In practice, although all the states share the same action set, it is OK for different state to have different action sets.

4.1 Example: Grid World Navigation - Terminating State

- State s = (i, j) as the position.
- Action $a \in \{R, D\}$.
- Transition. The transition $s, a \to s'$ is deterministic, i.e. P(s'|s, a) = 1. Therefore, to simplify, use the transition mapping s' = trans(s, a). Note that

$$trans((i, j,), R) = (i, min\{4, j+1\}),$$

$$trans((i, j), D) = (min\{4, i+1\}, j).$$

Then it can be seen that state (4,4) is absorbing, which state once hit will not change forever.

• Reward r(s,a) should take the **penalty for invalid state** and take the **terminating state** into consideration.

$$r((i,j),R) = w[trans((i,j),R)] - \infty \cdot \mathbf{1}_{j=4},$$

$$r((i,j),D) = w[trans((i,j),D)] - \infty \cdot \mathbf{1}_{i=4}$$

(where w is the reward number on a grid (i, j)). For terminating state,

$$r((4,4),a) = 0, \forall a \in \{R,D\}.$$

Note: once hit the terminating state, the reward received afterwards would be 0 forever.

Solving Bellman Equations

In such a problem, the probability in the original Bellman Equations would be deterministic as 1 or 0, and we also set $\gamma = 1$ -

$$V^*(s) = \max_{a \in A} \{ r(s, a) + \gamma V^*(s') \}$$

= $\max_{a \in A} \{ r(s, a) + V^*(trans(s, a)) \}.$

In order to conduct **dynamic programming**, start from the terminating state (4,4) with $V^*(4,4) = 0$. Then, in the Bellman Equation above, the r(s,a) and the $V^*(s')$ are all known, enabling us to solve the previous state $V^*(s) = V^*(4,3)$ and $V^*(s) = V^*(3,4)$. Solving those equations yield the optimal policy -

$$\pi^*(a^*|s) = 1, \forall s.$$

Note: for some state, we would yield multiple optimal action a^* , then randomly choose one. In this example, $\pi^*(\cdot|1,1)$ can be any distribution, for R and D are equally optimal.

4.2 Time Horizon Instead of Terminating State

Horizon of t = H can be view as a special case of MDP with terminating state. **Time can be encoded** into the states, i.e., let $s = (\hat{s}, t) \sim S = \hat{S} \times N$ where $\hat{s} \in S$ and $t \in N$.

In the previous grid world example, state incorporating time is not necessary.

Remind: state incorporating into time information is always by default in many papers, which use π^t to embrace such.

Note: in such cases, all states with t = H are terminating states. Transitions become $P(\cdot|s_t, t, a_t)$. Also, take $\gamma = 1$, then the cumulative reward function will be

$$V^{\pi}(\xi) = E_{\xi,\pi,P}[\Sigma_{t=0}^{H-1} r(s_t, a_t)].$$

Maximizing the function above would yield an optimal policy that **depends on time** $a_t \sim \pi(\cdot|s_t,t)$. **Note:** whether taking the optimal policy or not,

$$V^{\pi}(\hat{s}, H) = V^{*}(\hat{s}, H) = 0, \forall \hat{s} \in \hat{S};$$

$$Q^{\pi}(\hat{s}, H, a) = Q^{*}(\hat{s}, H, a) = 0, \forall \hat{s} \in \hat{S}, a \in A.$$

Therefore, the Bellman Equations can be solved level by level, i.e., at each time step. Knowing

$$V^*(\hat{s}, H-1) = \max_{a \in A} \{ r(\hat{s}, a) + \gamma \sum_{\hat{s}' \in \hat{S}} P(\hat{s}' | \hat{s}, H-1, a) V^*(\hat{s}', H) \}.$$

To conduct the **dynamic programming**, also start from the terminating state, i.e., level H - $V^*(\hat{s}, H) = 0, \forall \hat{s} \in \hat{S}$. Then, assuming known reward function $r(\hat{s}, a)$ and transition probability $P(\hat{s}'|\hat{s}, H - 1, a)$, as well as the solved $V^*(\hat{s}', H)$, we can solve the previous level H - 1 states.

4.3 Example: Inventory Management - Time Horizon

• State s = (n, t) as the inventory **at end of** the month t. Assuming no inventory at the beginning of month 1, i.e., $s_0 = (0,0)$ as the initial state. Therefore, $S = \{(n,t) : n \in \{0,\ldots,4\}, t \in \{1,2,3,4\}\} \cup \{(0,0)\}.$

• Action $a \in \{0, ..., 5\}$ as the number of productions at the beginning of next moth. To satisfy the demand and capacity constraints,

$$a+n \ge d_{t+1}, a+n-d_{t+1} \le K = 4.$$

• Transition is also **deterministic**. Simply use s' = trans(s, a) as the transition mapping for t = 0, 1, 2, 3 (not considering transition for t = 4). Let

$$trans((n,t),a) = (proj_{[0,4]}(n+a-d_{t+1}),t+1)$$

• Reward r((n,t),a) in terms of $g = n + a - d_{t+1}$.

$$r((n,t),a) = -0.5 \times Proj_{[o,4]}(g) - 1 \times a - 3 \times \mathbf{1}_{a>0} - \infty \times \mathbf{1}_{g \notin [0,4]}.$$

to **minimize the total cost**, no revenue is considered, but a penalty for over-capacity inventory is imposed.

- Discount factor $\gamma = 1$ also.
- Time horizon H = 4.

4.4 Example: Coin Picking Game - nondeterministic transitions

- State s = (i, j) as the remaining coin from number i to number j. After each step two coins will be picked, therefore the number of remaining coins is even. $S = \{(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (1, 4), (2, 5), (3, 6), (1$
- Action $a \in \{L, R\}$.
- Transition is **not deterministic**. Consider from the terminating state:

$$P(O|O,a) = 1, \forall a;$$

$$P(O|(i,i+1),a) = 1, \forall a;$$

$$P((i+2,j)|(i,j),L) = P((i+1,j-1)|(i,j),L) = 0.5,$$

$$P((i,j-2)|(i,j),R) = P((i+1,j-1)|(i,j),R) = 0.5.$$

• Reward is the value of coin picked.

$$r(O,L) = r(O,R) = 0;$$

$$r((i,j),L) = v_i, r((i,j),R) = v_j.$$

The Bellman Equations with $\gamma = 1$

$$V^{*}(s) = \max_{a \in A} \{ r(s, a) + \sum_{s' \in S} P(s'|s, a) V^{*}(s') \}.$$

To conduct dynamic programming, start from the terminating state -

$$V^*(O) = 0.$$

Then for the previous states, solve all the $V^*(i, i+1)$.

5 Infinite Horizon MDP: Value and Q Iterations

The infinite-horizon MDPs are without any terminating state (**transition dynamics are still known**), and the corresponding approach is value iteration and Q iteration.

Value iteration and Q iteration are iterations using Bellman equations and Bellman operators for

$$V^{\pi}(\cdot), V^{*}(\cdot), Q^{\pi}(\cdot), \text{ and } Q^{*}(\cdot).$$

Recall that solving V^* and Q^* would derive the optimal policy π^* .

5.1 Fixed-point problem of Bellman operators

Using Bellman operators, we try to solve fixed-point problems including

• Value iteration.

$$V^{\pi} = T^{\pi}V^{\pi}$$
 $V^* = T^*V^*,$ where $T: R^S \to R^S,$

and we can write the function for $[T^{\pi}V^{\pi}]_s$ and $[T^*V^*]_s$ as

$$\begin{split} [T^{\pi}V^{\pi}]_{s} &:= \Sigma_{a \in A} \pi(a|s) [r(s,a) + \gamma \Sigma_{s' \in S} P(s'|s,a) V_{s'}^{\pi}] = V_{s}^{\pi} \\ [T^{*}V^{*}]_{s} &:= \max_{a \in A} \{r(s,a) + \gamma \Sigma_{s' \in S} P(s'|s,a) V_{s'}^{*}\} = V_{s}^{*}. \end{split}$$

• Q iteration.

$$Q^{\pi} = T^{\pi}Q^{\pi}$$
 $Q^* = T^*Q^*,$ where $T: R^{S \times A} \to R^{S \times A}.$

and we can write the function for $[T^{\pi}Q^{\pi}]_{s,a}$ and $[T^{*}Q^{*}]_{s,a}$ as

$$[T^{\pi}Q^{\pi}]_{s,a} := r(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) \sum_{a' \in A} \pi(a'|s') Q_{s',a'}^{\pi} = Q_{s,a}^{\pi}$$
$$[T^{*}Q^{*}]_{s,a} := r(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) \max_{a' \in A} \{Q_{s'a'}^{*}\} = Q_{s,a}^{*}.$$

5.2 Fixed-point Solution: Contraction Property

Let $0 < \gamma < 1$, the mapping $f(\cdot)$ is a γ -contraction under the norm $||\cdot||$ if

$$||f(x) - f(y)|| \le \gamma ||x - y||, \forall x, y.$$

Subsequently, the solution to the fixed-point problem x = f(x) can be obtained by the **fixed-point** iteration.

Given the fixed-point problems of value and Q iterations, it can be proved that the Bellman operators are γ – **contraction** under the **infinity** norm, which is defined as $||x||_{\infty} := \max_i |x_i|$. Because they are γ – contraction, the iteration will converge to the true solutions.

$$||x^{t} - x^{*}|| = ||f(x^{t-1}) - f(x^{*})|| \le \gamma ||x^{t-1} - x^{*}|| \le \gamma^{2} ||x^{t-2} - x^{*}|| \dots \le \gamma^{t} ||x^{0} - x^{*}||,$$

$$\Rightarrow \lim_{t \to \infty} x^{t} = x^{*}.$$

Value Iteration

Start from arbitrary an $V^0\in\mathbf{R}^S$ and set t=0 Based the purpose, set $T=T^\pi$ or $T=T^*$

Repeat forever:

$$V^{t+1} = TV^t$$

$$t \leftarrow t + 1$$

Q Iteration

Start from arbitrary an $Q^0 \in \mathbf{R}^{S \times A}$ and set t=0 Based the purpose, set $T=T^\pi$ or $T=T^*$

Repeat forever:

$$Q^{t+1} = TQ^t$$

$$t \leftarrow t + 1$$