Oct 26	
	Today's Plan:
1.	Lamsay Brolden
2.	Chamley- Judd result
3.	TDCE is not lo
	Toce allocation (given policy & The, It I to) is characterized by!
Ŋ	Normalize $p_0 = 1$: $P_t = \underbrace{p^t u'_c(t)}_{u'c(0)}$
2)	$\frac{u'n(t)}{u'c(t)} = f'n(t)(1-T_{nt})$
3)	u'e(t) = B We(t+1)[Pk(t+1)+1-8]
4)	
	$F_n' = \frac{\omega_t}{\rho_t}$
6)	$n_t = n_t^{\dagger}$
7)	$t_t = k_t^{\beta}$
8)	Ct + gt +xt = f(kt, nt)
a)	[PtCt+Ptxt] = E (rtkt (1- Tkt) +wtnt(+Tnt))
(0)	Law of motion for kt
	26+1= (1-8)k+ +x+

	Emplemental	cility Const	raint			
	Shrinking	Tue 10 c	nditions	la onc	constraint	
Bc:	E PtCt	tpt CKin	-(1-8)kt)= & (1~	· Int) went t	(1-Tkt)rekt
= X	Ptct = 5	(1- The) Wy 2 Kerl (-Pe	ent + (1	- Tko)rok	0+(1-6)	kopo +
_ //						
Cond 1	u'c (t)		= 0	from Fo	x (2 clas	res back)
Pt P	·' _c (0)					
from cond 2 b	3 :- 1 - Cnt) W	t = u'n $u'c(t)$	(t)) f'n (t)	£'n (t)	P L	
		= <u>u'n (t)</u> u'c (t)	pt <u>u'e</u> u'e	<u>(t)</u> .(0)		
	-	pt unl	to)			
(IC):-	stuc(t) et we (o)	pt u'n (u'c (<u>t)</u> n _t = (1-760) F'K(0))poko+(1-8)k	20 P ₀
<⇒	∞ t (u'elt	c)ce-wn (t		(1-8) k		20 to t

	TDCE allocation (given the FP) has to sodisty:
	jeasibility constraint: CE+XE+qE=F(KE, nt)
2)	law of motion: Keti = (1-8) ket xe
3)	Implementability
	£ βt (u'e(t)ct - u'n(t)nt)= 9+
	This gives us a set of allocation. For any of him you can find a fiscal policy for which govt. budget is satisfied.
	Conversely,
	If an allocation {ct, kt+1, xt, lt, nt } t=0 satisfies 1,23=3 F {pt, wt, rt } and { ? rkt, rnt } t=0 which
	TDCE where gort raises enough to finance Egt?
*	Ramark : g is given. The gort does not decide g.

Lamsey Problem:— Σ pt u (Ct, 1-nt) - max σο ξς,, lt, nt, xt, kt η 3 to s.t. $c_t + x_t + g_t = F(k_t, n_t)$ $\xrightarrow{\text{Same an}}$ $\xrightarrow{\text{SP}}$ Kt1 = (1-8) Kt1 XL = pt (u'c(t)ct - u'n (t)nt) = A - new (As we have a new conspaint now the soln to this may not be the same Nok: - The government spending does not go in consumer's utility of the all like gort is throwing away money in the ocean.

(That's so strange!) L = Ept u(ct, 1-nt) + A[A - = pt (uc(t)ct - Un (t)nt)/+ + 2 1 [F(kt, nt) - ct - xt - gt] + 2 nt[(1-8) kt + xt - kt L - 14 + 2 pt B (C+, n, 1) + = Ye [F(kt, nt) - ct - xt - qt] + = nt [(1-8)kt+xt-kt] $= \underbrace{\mathbb{E}}_{t} p^{t} \left[u \left(c_{t}, -n_{t} \right) - \lambda \left(u'_{c}(t) c_{t} - u'_{n}(t) n_{t} \right) \right]$ B(Ctint, A)

	FOC:-
c:	$\beta^{t} \mathcal{L}'_{c}(t) = \mathcal{C}_{t}$
и:	pt B'n (t) = Yt F'n (t)
x :	- Y _t + η _t =0
K _t	1: - M + M (1-6) + Y + (+ (+t)) =0
	$B'_n(t) = F'_n(t)$
	B'c (t)
	$\frac{n_t}{n} = f'_k(t+1) + 1 - S$
	Meri <u>B'c (t)</u> = F'k (t+1) + 1-8
	β β' _c (tt1)
	dssumption:
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	nt? — no ap a constant level
	chere is a paint to me
	stady state.
	(But it does not mean this is me only unique skady stak).

$$\frac{\beta_{k}(\infty)}{\beta_{n}(\infty)} = F_{n}(\infty)$$

$$\frac{1}{\beta_{n}(\infty)} = 1 - S + F_{k}(\infty)$$

$$\beta$$

$$TDCE \in \text{EMEN } \text{ Eq. (given } \text{Ff. } P_{nt.}, C_{et.}, q + 3)$$

$$w_{c}(t) = \beta w_{c}(t+1) \left[(1 - C_{k+1}) F_{k}(t+1) + 1 - S \right]$$

$$ds t \to \infty$$

$$\frac{u_{c}(\infty)}{\beta u_{c}(\infty)} = (1 - C_{k}) F_{k}(\infty) + 1 - S$$

$$\Rightarrow P_{k}(\infty) = 0$$

$$\Rightarrow P_{k}(\infty) = 0$$

	Concepts:	
١.	Concepts. Eurer Equation	