EXERCÍCIO 6.A

PROBLEMA:

CALCULAR A CARGA CRÍTICA DE FLAMBAGEM DO PILAR ABAIXO. COMPARAR COM RESULTADOS (CARGA E DEFORMADA) OBTIDOS NO EXERCÍCIO Ex5.A2.

DADOS:

E = 23.8GPav = 0.2

OBTER O PRIMEIRO MODO DE FLAMBAGEM DA ESTRUTURA E UTILIZÁ-LO PARA INSERIR DEFORMAÇÃO INICIAL NO PILAR.

REALIZAR NOVA ANÁLISE ESTÁTICA (AGORA COM O PILAR SUBMETIDO A IMPERFEIÇÕES GEOMÉTRICAS INICIAIS) E COMPUTAR OS DESLOCAMENTOS MÁXIMOS.

RECOMENDAÇÕES:

- 1. MODELAR O PILAR A PARTIR DE VOLUME;
- 2. UTILIZAR O ELEMENTO SOLID185;
- 3. UTILIZAR DIMENSÃO DO ELEMENTO IGUAL A L/50;
- 4. DETERMINAR MAGNITUDE DA IMPERFEIÇÃO GEOMÉTRICA IGUAL A L/500;
- 5. COMPARAR RESULTADOS OBTIDOS NAS SEGUINTES SITUAÇÕES:
 - 5.1. CARREGAMENTO APLICADO COMO PRESSÃO SOBRE A ÁREA;
 - 5.2. CARREGAMENTO APLICADO COMO FORÇA NOS NÓS;

CORTE AA

ESC.: 1/20 COTAS EM MILÍMETROS

MODELO ESQUEMÁTICO

<u>ELEVAÇÃO DO PILAR</u>

S/ ESC. COTAS EM MILÍMETROS

EXERCÍCIO 6.A

Flambagem e imperfeições iniciais em volume.

/prep7	Preprocessor	
UPGEOM, L/(500* DEFVAL),1, SETNUM , ' FILENAME ',RST	Modeling → Update Geom → Scaling factor = L/(500* DEFVAL) Load step = 1 Substep = SETNUM Filename, Extension, Directory = FILENAME → OK	
/solu	Solution	
ANTYPE,0	Analysis Type → New Analysis → Type of analysis = Static → OK	
NSUBST,100,0,0 OUTRES,ERASE OUTRES,ALL,ALL	Analysis Type → Sol'n Controls → Number of substeps = 100 Frequency = Write every substep → OK	
SOLVE	Solve → Current LS → OK	
/post1	General Postproc	
SET,LAST	Read Results → Last Set	
PLDISP	Plot Results → Deformed Shape → Items to be plotted = Def shape only → OK	
/post26	TimeHist Postpro	
NUMVAR,200 TopNd=NODE(0,5,0) NSOL,2,TopNd,U,X,'TopUX'	Add Data → Nodal Solution → DOF Solution → X-Component of displacement → Variable Name = TopUX → OK → [clicar em um nó da face carregada do pilar] → OK	
PLVAR,2	[Clicar na linha de 'TopUX'] → Graph Data 🔼	
FINISH	Finish	
[Repetir a solução do modelo com imperfeições geométricas ativando a teoria de grandes deslocamentos]		
[Traçar curva força-deslocamento desta solução]		
FINISH	Finish	

EXERCÍCIO 6.B

PROBLEMA:

ESTUDAR A SENSIBILIDADE ÀS IMPERFEIÇÕES GEOMÉTRICAS DAS CASCAS (SEÇÕES ESFÉRICAS) ABAIXO.

DADOS:

E = 30.7GPav = 0.2

