×

Week 7

9 試題

1 point

1 0

Which of the follows is not a valid sentence?

1 point

2。

Consider the following KB:

Constants: Alice, Bob, Oscar Sentences: $\forall x \exists y \exists z \text{ Eavesdrop}(x, y, z) \land \text{Talk}(y, z) \Rightarrow \text{Sniffer}(x)$

(a) What's the KB after UI?

O Eavesdrop(x, Alice, Bob) \land Talk(Alice, Bob) \Rightarrow Sniffer(x)

Eavesdrop(x, Alice, Oscar) \land Talk(Alice, Oscar) \Rightarrow Sniffer(x)

Eavesdrop(x, Bob, Oscar) \land Talk(Bob, Oscar) \Rightarrow Sniffer(x)

O Eavesdrop(x, y, z) \land Talk(Alice, Bob) \Rightarrow Sniffer(x)

Eavesdrop(x, y, z) \land Talk(Alice, Oscar) \Rightarrow Sniffer(x)

Eavesdrop(x, y, z) \land Talk(Bob, Oscar) \Rightarrow Sniffer(x)

Coursera | Online Courses From Top Universities. Join for Free | Coursera Eavesdrop(Alice, y, z) \land Talk(y, z) \Rightarrow Sniffer(Alice) Eavesdrop(Alice, y, z) \land Talk(y, z) \Rightarrow Sniffer(Bob) Eavesdrop(Bob, y, z) \land Talk(y, z) \Rightarrow Sniffer(Oscar) Eavesdrop(Alice, y, z) \land Talk(y, z) \Rightarrow Sniffer(Alice) Eavesdrop(Bob, y, z) \land Talk(y, z) \Rightarrow Sniffer(Bob) Eavesdrop(Oscar, y, z) \land Talk(y, z) \Rightarrow Sniffer(Oscar) 1 point 3。 (b) Corresponding to the above question, what's the KB after EI? Eavesdrop(x, C1, C2) \land Talk(C1, C2) \Rightarrow Sniffer(x) Eavesdrop(A, B, O) \land Talk(B, O) \Rightarrow Sniffer(A) Eavesdrop(Alice, C1, C2) \land Talk(y, z) \Rightarrow Sniffer(Alice) Eavesdrop(Alice, Bob, Oscar) \land Talk(Bob, Oscar) \Rightarrow Sniffer(Alice) point (c) Corresponding to the above question, is the original KB equal to the KB after UI? to the KB after UI and EI? After UI: No; after UI and EI: No After UI: Yes; after UI and EI: Yes After UI: No; after UI and EI: Yes After UI: Yes; after UI and EI: No

1 point

5。

Is the Forward chaining and the Backward chaining in First-Order definite clause sound and complete?

- O Forward: sound and complete; Backward: unsound and incomplete
- O Forward: sound and complete; Backward: sound but incomplete
- O Forward: sound but incomplete; Backward: sound and complete
- O Forward: sound and complete; Backward: sound and complete

1 point

6。

Why is Prolog unsound and incomplete?

- O Due to memory restriction and no occur check
- Because Prolog uses databases semantics instead of first-order semantics
- O Because when performing occur check, collision may occur
- O There are some bugs in Prolog

1 point

7。

Which of the following statement(s) is true?

1 poin	t
8。	
becom for hel	one who likes coding will be asked by some people to help. They will be welcomed (or become an 'errand boy' in the end), always being asked p". The first-order logic of the sentence is written below: $\forall x \ [\exists y \ Coding(x) \ delp(x, y)] \Rightarrow [\exists y \ Welcomed(x) \lor AskHelp(x, y)] Convert this sentence into which of the following clauses is in that CNF?(F(x) is a Skolem function)$
	[¬Welcomed(x) ∨ ¬AskHelp(x, F(x))]
	[$\neg Coding(x) \lor \neg AskHelp(x, y)$]
	[Welcomed(x) \vee AskHelp(x, F(x))]
	[¬Coding(x) ∨ AskHelp(x, y)]
1 poin	t
9。	
LiveIniis varia "bread curren that tri	ler the Horn KBs: SpeakChinese(FatherOf(x)) ⇒ SpeakChinese(x) Faiwan(x) ⇒ SpeakChinese(x) SpeakChinese(Li) LlveInTaiwan(Su) Where x able, Li, Su are constants, and FatherOf is a function. Suppose we use a lth-first" forward chaining algorithm, repeatedly adds consquences of it satisfied rules, and we use a "depth-first" backward chaining algorithm ies clauses in the order as the sentences list above about the KB. Which of lowing statement(s) is true?
	The forward chaining will infer the result SpeakChinese(Su)
	Given the query SpeakChinese(Su), The backward chaining will loop forever
	The forward chaining will infer the result LiveInTaiwan(Li)
	If the forward chaining can not infer a query, it does not mean it can

我(YIJHEN LIN)了解提交不是我自己完成的作業

If the backward chaining does not return True for a given query, then $% \left\{ 1,2,...,n\right\}$

not be intailed by the KB

it is not entailed by the KB

將永遠不會通過此

201.	Course Courses Trem Top Comversion Tot Tree Courses
	課程或導致我的 Coursera 帳號被關閉。 了解榮譽準則的更多信息
	6 試題 未回答
	提交測試