

Equipo 8 Dulce Ximena Cid Sanabria Diego Alejandro Rincón Pacheco José Alejandro Lagos Martinez

PLANTEAMIENTO DEL PROBLEMA

- Los analistas de las empresas buscan medir la eficiencia de dichas instituciones y poder compararlas con otras.
- Se debe escoger un mismo método o técnica para poder hacer la comparación
- El problema consiste en evaluar la eficiencia relativa de una serie de instituciones que cuentan con el manejo de múltiples parámetros de entrada y salida. La respuesta a este problema representó la formulación matemática DEA, en su variante CCR.

MODELO DEA-CCR

El Análisis por Envoltura de Datos (DEA) es una metodología basada en modelos de programación lineal, propuesta en 1978 por Charnes, Cooper y Rhodes, para estudiar la eficiencia relativa de una serie de unidades de decisión (DMUs).

Es una técnica no-paramétrica, determinista, que recurre a la programación matemática.

Esta metodología busca establecer qué DMUs de una muestra determinan la superficie envolvente o frontera de producción eficiente. La distancia radial de una DMUs hacia la frontera provee la medida de su eficiencia

VENTAJAS DEL MODELO

- → Permite considerar modelos con múltiples entradas y salidas, expresadas en distintas unidades de medida.
- → No necesita parámetros estimados de antemano, por lo cual tiene la ventaja de evitar que existan factores subjetivos haciendo que haya una reducción en los errores que se pudieran cometer

MODELO DEA-CCR

Variables de decisión:

 $u_r \leftarrow$ ponderación asignada al output r; r=1,2,..,s

 v_j \leftarrow ponderación asignada al input j; j=1,2,...,m

Función Objetivo:

$$Max \quad \Theta = \frac{\sum_{r=1}^{S} u_r y_{r0}}{\sum_{i=1}^{m} v_i x_{i0}}$$

y_{r0}←cantidad de output r producido por la DMU evaluada

x_{i0}←cantidad de input i consumido por la DMU evaluada

MODELO DEA-CCR

Restricciones:

$$\frac{\sum_{r=1}^{s} u_r y_{rj}}{\sum_{i=1}^{m} v_i x_{ij}} \le 1; j=1...n$$

$$u_r v_j \ge 0$$
; $r = 1... s$; $i=1... m$.

 y_{rj} —cantidad de output r producido por la DMU j

x_{ij}←cantidad de input i consumido por la DMU j

MODELO DEA-CCR en PL

$$\max_{u_r, v_i} z = \sum_{r=1}^{s} u_r y_{r0} \quad \leftarrow \text{output ponderado}$$
s.a
$$\sum_{r=1}^{s} u_r y_{rj} - \sum_{i=1}^{m} v_i x_{ij} \leq 0 \; ; \; j=1...n$$

$$\sum_{i=1}^{m} v_i x_{i0} = 1 \quad \leftarrow \text{input ponderado}$$

$$u_r v_i \geq 0; \quad r = 1... \; s; \; i=1... \; m.$$

Ejemplo

Considere un número de cadenas de Banco. Para cada cadena de bancos tenemos cantidades de insumos (input) y cantidades de productos (output). Dichos datos son:

Cadenas	Transacciones Personales	Transacciones de Negocio	Número de Staff
Croydon	125	50	18
Dorking	44	20	16
Redhill	80	55	17
Reigate	23	12	11

INPUT: Número de Staff

OUTPUT: Transacciones Personales y transacciones de Negocio

Modelado

 $\mathbf{U}_{Personales}$, $\mathbf{V}_{Negocios}$, \mathbf{V}_{Staff} son los respectivos pesos de los productos (input) e insumos (output)

¿Cómo se obtendría la eficiencia de cada DMU (cadena de banco)?

$$E_{Croydon} = (125 U_{Personales} + 50 U_{Negocios}) / 18 V_{Staff}$$

$$E_{Dorking} = (44 U_{Personales} + 20 U_{Negocios}) / 16 V_{Staff}$$

$$E_{\text{Redhill}} = (80 \text{ U}_{\text{Personales}} + 55 \text{ U}_{\text{Negocios}}) / 17 \text{ V}_{\text{Staff}}$$

$$E_{\text{Reigate}} = (23 \text{ U}_{\text{Personales}} + 12 \text{ U}_{\text{Negocios}}) / 11 \text{ V}_{\text{Staff}}$$

Si queremos encontrar la máxima eficiencia para Dorking, tenemos que hacer lo siguiente:

Max z =
$$(44 U_{Personales} + 20 U_{Negocios}) / 16 V_{Staff}$$

Sujeto a

 $V_{Staff} >= 0$

$$\begin{array}{l} 16 \; V_{Staff} = 1 \\ 0 <= (125 \; U_{Personales} + 50 \; U_{Negocios}) \, / \, 18 \; V_{Staff} & <= 1 \\ 0 <= (44 \; U_{Personales} + 20 \; U_{Negocios}) \, / \, 16 \; V_{Staff} & <= 1 \\ 0 <= (80 \; U_{Personales} + 55 \; U_{Negocios}) \, / \, 17 \; V_{Staff} & <= 1 \\ 0 <= (23 \; U_{Personales} + 12 \; U_{Negocios}) \, / \, 11 \; V_{Staff} & <= 1 \\ U_{Personales} >= 0 \\ U_{Negocios} >= 0 \end{array}$$

Simplificando el modelo quedaría de la siguiente manera

Max z = 44
$$U_{Personales}$$
 + 20 $U_{Negocios}$

Sujeto a

$$16 \ V_{Staff} = 1$$

$$(125 \ U_{Personales} + 50 \ U_{Negocios}) - 18 \ V_{Staff} <= 0$$

$$(44 \ U_{Personales} + 20 \ U_{Negocios}) - 16 \ V_{Staff} <= 0$$

$$(80 \ U_{Personales} + 55 \ U_{Negocios}) - 17 \ V_{Staff} <= 0$$

$$(23 \ U_{Personales} + 12 \ U_{Negocios}) - 11 \ V_{Staff} <= 0$$

$$U_{Personales} >= 0$$

$$U_{Negocios} >= 0$$

$$V_{Staff} >= 0$$

Resolviendo en Solver

Para poder hacer uso de la herramienta solver, es necesario acomodar los datos en ua tabla como se presenta a continuación

	Personales	Negocio	Staff	Ponderado Output	Ponderado Input	Eficiencia	Output - Input
Croydon	125	50	18	175.00	18.00	9.72	157.00
Dorking	44	20	16	64.00	16.00	4.00	48.00
Redhill	80	55	17	135.00	17.00	7.94	118.00
Reigate	23	12	11	35.00	11.00	3.18	24.00

Deso	1	1	1
Peso	1	1	1

Añadiendo las restricciones en solver...

								Parámetros de Solver
	Personal	Negocio	Staff	Ponderado Output		Eficiencia	Output - Input	
Croydon	125	50	18	1.13	1.13	1.00	0.00	
Dorking	44	20	16	0.43	1.00	0.43	-0.57	Establecer objetivo: \$F\$5
Redhill	80	55	17	1.06	1.06	1.00	0.00	Para: Máx Mín Valor de: 0
Reigate	23	12	11	0.25	0.69	0.36	-0.44	Value of Max
								Cambiando las celdas de variables:
Peso	0.00304348	0.0148913	0.0625					SC\$9:SE\$9
								Sujeto a las restricciones:
								\$C\$9:\$E\$9 >= 0 \$G\$5 = 1
								\$I\$4:\$I\$7 <= 0 <u>C</u> ambiar
								<u>E</u> liminar
								<u>R</u> establecer
								∑argar/Gua Cargar/Gua
								Convertir variables sin restricciones en no negativas
								Método de resolución:
								Método de resolución Seleccione el motor GRG Nonlinear para problemas de Solver no lineales suavizados. Seleccione el r LP Simplex para problemas de Solver lineales, y seleccione el motor Evolutionary para problemas de no suavizados.
								<u>A</u> yuda <u>R</u> esolver Ce

BIBLIOGRAFÍA

- Londoño Sierra, L.J. & Giraldo Pérez, Y.E. (2009). Análisis Envolvente de Datos DEA-: Una aplicación al sector de telecomunicaciones de países de medianos
 ingresos. Ecos de Economía, 13(28),53-73.[fecha de Consulta 23 de Abril de 2021].
 ISSN: 1657-4206. Disponible en:
 https://www.redalyc.org/articulo.oa?id=329027278002
- Morales M. (2014). Análisis de Eficiencia de los Departamentos de la Empresa Transportes Oro S.A.S. Mediante el Data Envelopment Analysis . [fecha de Consulta 23 de Abril de 2021] Disponible en: https://repository.unilibre.edu.co/bitstream/handle/10901/17187/AN%C3%81LISIS%2 0DE%20%20EFICIENCIA%20DE%20LOS%20DEPARTAMENTOS%20DE%20LA%20EM PRESA%20.pdf?sequence=1&isAllowed=y
- J E Beasley(n/d). Data envelopment analysis [fecha de Consulta 23 de Abril de 2021] Disponible en:
 http://people.brunel.ac.uk/~mastjjb/jeb/or/dea.html#:~:text=Examples%20of%20such%20units%20to,)%2C%20schools%20and%20university%20departments