FMI, Info, Anul I

Logică matematică și computațională

Seminar 7

(S7.1) Să se găsească toate modelele fiecăreia din mulțimile de formule:

- (i) $\Gamma = \{v_n \to v_{n+1} \mid n \in \mathbb{N}\};$
- (ii) $\Gamma = \{v_0\} \cup \{v_n \to v_{n+1} \mid 0 \le n \le 7\}.$

Demonstrație:

(i) Fie $e: V \to \{0,1\}$ şi $n \in \mathbb{N}$. Atunci $e \models v_n \to v_{n+1}$ dacă şi numai dacă $e^+(v_n \to v_{n+1}) = 1$ dacă şi numai dacă $e^+(v_n) \to e^+(v_{n+1}) = 1$ dacă şi numai dacă $e(v_n) \to e(v_{n+1}) = 1$ dacă şi numai dacă $e(v_n) \le e(v_{n+1})$. Prin urmare,

$$e \models \Gamma$$
 dacă și numai dacă pentru orice $n \in \mathbb{N}$, $e(v_n) \le e(v_{n+1})$ dacă și numai dacă $e(v_0) \le e(v_1) \le \ldots \le e(v_n) \le e(v_{n+1}) \le \ldots$ dacă și numai dacă $(e(v) = 0 \text{ pentru orice } v \in V)$ sau $(e(v) = 1 \text{ pentru orice } v \in V)$ sau (există $k \ge 1$ a.î. $e(v_i) = 0$ pentru orice $i < k$ și $e(v_i) = 1$ pentru orice $i > k$).

Definim $e^0: V \to \{0,1\}, \ e^0(v) = 0, \ e^1: V \to \{0,1\}, \ e^1(v) = 1$ și, pentru orice $k \geq 1$,

$$e_k : V \to \{0, 1\}, \quad e_k(v_n) = \begin{cases} 0 & \operatorname{dacă} n < k \\ 1 & \operatorname{dacă} n \ge k. \end{cases}$$

Atunci

$$Mod(\Gamma) = \{e_k \mid k \ge 1\} \cup \{e^0, e^1\}.$$

(ii) Fie $e: V \to \{0, 1\}$. Atunci

$$e \models \Gamma$$
 dacă și numai dacă $e \models v_0$ și $e \models v_n \rightarrow v_{n+1}$ pentru orice $0 \le n \le 7$ dacă și numai dacă $e(v_0) = 1$ și $e(v_0) \le e(v_1) \le \ldots \le e(v_7) \le e(v_8)$ dacă și numai dacă $e(v_n) = 1$ pentru orice $n \in \{0, 1, \ldots, 8\}$.

Aşadar,

$$Mod(\Gamma) = \{e: V \to \{0,1\} \mid e(v_n) = 1 \ \text{ pentru orice } 0 \le n \le 8\}.$$

(S7.2) Să se arate că

$$\{v_0, \neg v_0 \lor v_1 \lor v_2\} \vDash (v_3 \to v_2) \lor (\neg v_1 \to v_2)$$

Demonstraţie:

Fie $e: V \to \{0,1\}$ cu $e \models \{v_0, \neg v_0 \lor v_1 \lor v_2\}$. Atunci $e^+(v_0) = 1$ (deci $e(v_0) = 1$) şi $e^+(\neg v_0 \lor v_1 \lor v_2) = 1$. Aşadar,

$$1 = \neg e(v_0) \lor e(v_1) \lor e(v_2) = \neg 1 \lor e(v_1) \lor e(v_2) = 0 \lor e(v_1) \lor e(v_2) = e(v_1) \lor e(v_2).$$

Conform definiției lui \vee , avem că $v_1 \vee v_2 = \neg v_1 \rightarrow v_2$, deci

$$e^+(\neg v_1 \to v_2) = e^+(v_1 \lor v_2) = e(v_1) \lor e(v_2) = 1.$$

Prin urmare,

$$e^+((v_3 \to v_2) \lor (\neg v_1 \to v_2)) = e^+(v_3 \to v_2) \lor e^+(\neg v_1 \to v_2) = e^+(v_3 \to v_2) \lor 1 = 1,$$

adică $e \vDash (v_3 \to v_2) \lor (\neg v_1 \to v_2).$

(S7.3) Fie $\Gamma \cup \{\varphi, \psi\} \subseteq Form$. Să se demonstreze:

- (i) Dacă $\Gamma \vDash \varphi$ și $\Gamma \vDash \varphi \rightarrow \psi$, atunci $\Gamma \vDash \psi$.
- (ii) $\Gamma \cup \{\varphi\} \vDash \psi$ dacă și numai dacă $\Gamma \vDash \varphi \to \psi$.
- (iii) $\Gamma \vDash \varphi \land \psi$ dacă și numai dacă $\Gamma \vDash \varphi$ și $\Gamma \vDash \psi$.

Demonstraţie:

- (i) Fie e un model al lui Γ . Vrem să arătăm că e este model al lui ψ . Cum $\Gamma \vDash \varphi$ şi $\Gamma \vDash \varphi \to \psi$, avem $e \vDash \varphi$ şi $e \vDash \varphi \to \psi$. Atunci $e^+(\varphi) = 1$ şi $e^+(\varphi \to \psi) = 1$. Deoarece $e^+(\varphi \to \psi) = e^+(\varphi) \to e^+(\psi) = 1 \to e^+(\psi) = e^+(\psi)$, rezultă că $e^+(\psi) = 1$, adică $e \vDash \psi$.
- (ii) "⇒" Fie e un model al lui Γ . Vrem să arătăm că e este model al lui $\varphi \to \psi$. Avem două cazuri:

(a)
$$e^+(\varphi) = 0$$
. Atunci $e^+(\varphi \to \psi) = 0 \to e^+(\psi) = 1$, deci $e \vDash \varphi \to \psi$.

- (b) $e^+(\varphi) = 1$, deci $e \models \varphi$. Atunci $e \models \Gamma \cup \{\varphi\}$, şi prin urmare, $e \models \psi$, adică $e^+(\psi) = 1$. Rezultă că $e^+(\varphi \to \psi) = 1 \to 1 = 1$, deci $e \models \varphi \to \psi$.
- "\(\infty\)" Fie e un model al lui $\Gamma \cup \{\varphi\}$. Atunci $e^+(\varphi) = 1$ şi $e \models \Gamma$, deci, din ipoteză, $e^+(\varphi \to \psi) = 1$. Obţinem atunci, ca la (i), că $e^+(\psi) = 1$, adică $e \models \psi$.

(iii) $\Gamma \vDash \varphi \land \psi \iff \text{pentru orice model } e \text{ al lui } \Gamma, \text{ avem } e^+(\varphi \land \psi) = 1 \iff \text{pentru orice model } e \text{ al lui } \Gamma, \text{ avem } e^+(\varphi) = e^+(\psi) = 1 \iff \text{pentru orice model } e \text{ al lui } \Gamma, \text{ avem } e \vDash \varphi \text{ si } e \vDash \psi \iff \Gamma \vDash \varphi \text{ si } \Gamma \vDash \psi.$

Notație

Pentru orice mulțime Γ de formule și orice formulă φ , notăm

 $\Gamma \vDash_{fin} \varphi :\iff există o submulțime finită \Delta a lui \Gamma a.\hat{\imath}. \Delta \vDash \varphi.$

(S7.4) Să se arate că pentru orice mulțime de formule Γ și orice formulă φ avem că $\Gamma \vDash_{fin} \varphi$ dacă și numai dacă $\Gamma \cup \{\neg \varphi\}$ nu este finit satisfiabilă.

Demonstrație:

Avem întâi că $\Gamma \vDash_{fin} \varphi \iff \text{există } \Delta \subseteq \Gamma \text{ finită cu } \Delta \vDash \varphi \iff (\text{din Propoziția 1.33.(i)})$ există $\Delta \subseteq \Gamma \text{ finită cu } \Delta \cup \{\neg \varphi\} \text{ nesatisfiabilă (*).}$

Apoi, cum o mulţime finit satisfiabilă înseamnă o mulţime pentru care orice submulţime finită a sa e satisfiabilă, avem că $\Gamma \cup \{\neg \varphi\}$ nu e finit satisfiabilă \iff există $\Delta' \subseteq \Gamma \cup \{\neg \varphi\}$ finită astfel încât Δ' e nesatisfiabilă (**).

Noi vrem să arătăm că (*) este echivalent cu (**).

Pentru "(*) implică (**)", luăm $\Delta' := \Delta \cup \{\neg \varphi\}$, ce este, clar, o submulţime finită a lui $\Gamma \cup \{\neg \varphi\}$.

Pentru "(**) implică (*)", luăm $\Delta := \Delta' \cap \Gamma$. Clar, Δ este o submulțime finită a lui Γ . Rămâne de arătat că $\Delta \cup \{\neg \varphi\}$ e nesatisfiabilă. Cum $\Delta' \subseteq \Gamma \cup \{\neg \varphi\}$, avem:

$$\Delta' = \Delta' \cap (\Gamma \cup \{\neg \varphi\}) = (\Delta' \cap \Gamma) \cup (\Delta' \cap \{\neg \varphi\}) = \Delta \cup (\Delta' \cap \{\neg \varphi\}) \subseteq \Delta \cup \{\neg \varphi\}.$$

Cum Δ' e nesatisfiabilă, rezultă că și $\Delta \cup \{\neg \varphi\}$ e nesatisfiabilă.