UFRGS

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA

Departamento de Matemática Pura e Aplicada

MAT01168 - Turma C - 2023/2

Prova da área I

1	2	3	4	5	Total

Nome:	Cartão:	

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas

- Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- $\bullet~$ Use notação matemática consistente.

Tabela do operador $\vec{\nabla}$:

f=f(x,y,z) e g=g(x,y,z) são funções escalares; $\vec{F}=\vec{F}(x,y,z)$ e $\vec{G}=\vec{G}(x,y,z)$ são funções vetoriais.

(x,y,z) e G = $G(x,y,z)$ sao iunções vetoriais.
$\vec{\nabla} \left(f + g \right) = \vec{\nabla} f + \vec{\nabla} g$
$\vec{\nabla} \cdot \left(\vec{F} + \vec{G} \right) = \vec{\nabla} \cdot \vec{F} + \vec{\nabla} \cdot \vec{G}$
$\vec{\nabla} \times \left(\vec{F} + \vec{G} \right) = \vec{\nabla} \times \vec{F} + \vec{\nabla} \times \vec{G}$
$\vec{\nabla}\left(fg\right) = f\vec{\nabla}g + g\vec{\nabla}f$
$\vec{\nabla} \cdot \left(f \vec{F} \right) = \left(\vec{\nabla} f \right) \cdot \vec{F} + f \left(\vec{\nabla} \cdot \vec{F} \right)$
$ec{ abla} imes\left(fec{F} ight)=ec{ abla}f imesec{F}+fec{ abla} imesec{F}$
$\vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2},$
onde $\vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ é o operador laplaciano
$ec{ abla} imes\left(ec{ abla}f ight)=0$
$\vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{F} \right) = 0$
$ec{ abla} imes\left(ec{ abla} imesec{F} ight)=ec{ abla}\left(ec{ abla}\cdotec{F} ight)-ec{ abla}^2ec{F}$
$\vec{\nabla} \cdot \left(\vec{F} \times \vec{G} \right) = \vec{G} \cdot \left(\vec{\nabla} \times \vec{F} \right) - \vec{F} \cdot \left(\vec{\nabla} \times \vec{G} \right)$
$ \vec{\nabla} \times \left(\vec{F} \times \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} - \vec{G} \left(\vec{\nabla} \cdot \vec{F} \right) - \\ - \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \vec{F} \left(\vec{\nabla} \cdot \vec{G} \right) $
$ \vec{\nabla} \left(\vec{F} \cdot \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} + \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \\ + \vec{F} \times \left(\vec{\nabla} \times \vec{G} \right) + \vec{G} \times \left(\vec{\nabla} \times \vec{F} \right) $
$\vec{\nabla} \varphi(r) = \varphi'(r)\hat{r}$

Curvatura, torção e aceleração:

Curvatura, torção e aceleração:				
Nome	Fórmula			
Vetor normal	$\vec{N} = \frac{\vec{r}'(t) \times \vec{r}''(t) \times \vec{r}'(t)}{\ \vec{r}'(t) \times \vec{r}''(t) \times \vec{r}'(t)\ }$			
Vetor binormal	$ec{B} = rac{ec{r}'(t) imes ec{r}''(t)}{\ ec{r}'(t) imes ec{r}''(t)\ }$			
Curvatura	$\kappa = \left\ \frac{d\vec{T}}{ds} \right\ = \left\ \frac{\frac{d\vec{T}}{dt}}{\frac{ds}{dt}} \right\ = \frac{\ \vec{r}'(t) \times \vec{r}''(t)\ }{\ \vec{r}'(t)\ ^3}$			
Torção	$\tau = -\frac{d\vec{B}}{ds} \cdot \vec{N} = \frac{(\vec{r}'(t) \times \vec{r}''(t)) \cdot \vec{r}'''(t)}{\ \vec{r}'(t) \times \vec{r}''(t)\ ^2}$			
Módulo da Torção	$ au = \left\ rac{dec{B}}{ds} ight\ = \left\ rac{rac{dec{B}}{dt}}{rac{ds}{dt}} ight\ $			
Aceleração normal	$a_N = \frac{\ \vec{a} \times \vec{v}\ }{v} = \frac{v^2}{\rho} = \kappa v^2$			
Aceleração tangencial	$a_T = \frac{\vec{a} \cdot \vec{v}}{v} = \frac{dv}{dt}$			

Equações de Frenet-Serret:

$\frac{d\vec{T}}{ds}$	=		$\kappa \vec{N}$	
$\frac{d\vec{N}}{ds}$	=	$-\kappa\vec{T}$		$+ au ec{B}$
$\frac{d\vec{B}}{ds}$	=		$-\tau \vec{N}$	

 \bullet Questão 1 (3.0 pontos) A curva produzida pelas equações paramétricas

$$x(t) = 30\cos(t) + 50\cos\left(\frac{3}{2}t\right), \qquad y(t) = 30\sin(t) - 50\sin\left(\frac{3}{2}t\right),$$

 $-2\pi \leq t \leq 2\pi,$ é chamada de Hipotrocoide. Em uma apresentação de drift, o desafio do piloto é descrever o movimento da curva acima mantendo a velocidade do carro constante. É sabido que o carro pode sair da trajetória ou rodar na pista se a aceleração normal exceder $47 \mathrm{m/s}^2.$

- a) (0.5 ponto) Sem calcular, marque sobre a curva o(s) ponto(s) crítico(s) onde o carro pode sair da trajetória com maior facilidade.
- b) (0.5 ponto) Calcule os vetores \vec{T} e \vec{N} no ponto t=0.
- c) (0.5 ponto) Calcule o ponto t no intervalo $\left(-\frac{\pi}{4},\frac{\pi}{4}\right)$ onde a curvatura é máxima. Assuma que a curva é simétrica pelo eixo x. Neste item, não é necessário calcular os pontos críticos derivando a função curvatura, mas justifique o resultado usando seus conhecimentos geométricos de curvatura, a simetria da figura ao lado e a expressão dada no enunciado.
- d) (1.0 ponto) Calcule a curvatura da curva dada no ponto do item c).
- e) (0.5 ponto) Calcule a velocidade máxima do carro para que o veículo não saia da trajetória no intervalo $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$.

a)

b) Dada a função vetorial

$$\vec{r}(t) = \left(30\cos(t) + 50\cos\left(\frac{3}{2}t\right)\right)\vec{i} + \left(30\sin(t) - 50\sin\left(\frac{3}{2}t\right)\right)\vec{j}$$

80

60

40

20

0

-20

-40

-60

-80

_i00

-50

ò

100

50

temos

$$\vec{r}'(t) = \left(-30\operatorname{sen}(t) - \frac{150}{2}\operatorname{sen}\left(\frac{3}{2}t\right)\right)\vec{i} + \left(30\operatorname{cos}(t) - \frac{150}{2}\operatorname{cos}\left(\frac{3}{2}t\right)\right)\vec{j}$$

Assim,

$$\vec{r}'(0) = \left(30 - \frac{150}{2}\right)\vec{j} = -\frac{90}{2}\vec{j} = -45\vec{j}.$$

Logo, $\vec{T}(0) = -\vec{j}$. Para calcular o vetor normal, procuramos vetores unitários ortogonais a \vec{j} no plano xy, que podem ser \vec{i} ou $-\vec{i}$. O ponto $\vec{r}(0) = 80\vec{i}$ está à direita de toda a curva, fazendo o vetor normal, que deve estar apontando para a parte interna da curva, ser $\vec{N}(0) = -\vec{i}$.

- c) Começamos observando que t=0 é o centro do intervalo $-\frac{\pi}{4} \le t \le \frac{\pi}{4}$ e, $\vec{r}(0)=80\vec{i}$. Assim, localizamos o pedaço da curva em questão. Logo, no intervalo $-\frac{\pi}{4} \le t \le \frac{\pi}{4}$, o ponto onde a componente x é a maior é exatamente onde a curvatura é máxima. Observe que a figura é simétrica neste ponto. Assim, $x=30\cos(t)+50\cos\left(\frac{3}{2}t\right)$ é máximo quando t=0.
- d) Agora, vamos calcular a segunda derivada: e

$$\vec{r}''(t) = \left(-30\cos(t) - \frac{450}{4}\cos\left(\frac{3}{2}t\right)\right)\vec{i} + \left(-30\sin(t) + \frac{450}{4}\sin\left(\frac{3}{2}t\right)\right)\vec{j}$$

Em t = 0, temos:

$$\vec{r}''(0) = \left(-30 - \frac{450}{4}\right)\vec{i} = -\frac{285}{2}\vec{i}$$

$$\vec{r}' \times \vec{r}'' = -\frac{45 \times 285}{2}\vec{k}$$

$$||\vec{r}'(0)|| = 45$$

$$||\vec{r}' \times \vec{r}''|| = \frac{45 \times 285}{2}$$

$$\kappa(0) = \frac{\frac{45 \times 285}{2}}{45^3} = \frac{285}{2 \times 45^2} = \frac{57}{810}$$

e) Como

$$a_N = v^2 \kappa$$

temos

$$v^2 = \frac{a_N}{\kappa} = 47 \frac{810}{57}$$

Logo,

$$v = \sqrt{\frac{38070}{57}} m/s$$

• Questão 2 (1.0 ponto) Calcule a função torção para a curva

$$\vec{r}(t) = \ln(t)\vec{i} + \frac{t^2}{2}\vec{j} + t\vec{k}, \qquad t > 0.$$

Solução: Calculamos as derivadas

$$\vec{r}'(t) = \frac{1}{t}\vec{i} + t\vec{j} + \vec{k},$$

$$\vec{r}''(t) = -\frac{1}{t^2}\vec{i} + \vec{j},$$

$$\vec{r}'''(t) = \frac{2}{t^3}\vec{i}.$$

Fazemos,

$$\begin{split} \vec{r}' \times \vec{r}'' &= \left| \begin{array}{ccc} \vec{i} & \vec{j} & \vec{k} \\ \frac{1}{t} & t & 1 \\ -\frac{1}{t^2} & 1 & 0 \end{array} \right| = -\vec{i} - \frac{1}{t^2} \vec{j} + \frac{2}{t} \vec{k}, \\ & \|\vec{r}' \times \vec{r}''\|^2 = 1 + \frac{1}{t^4} + \frac{4}{t^2} \\ & \vec{r}' \times \vec{r}'' \cdot \vec{r}''' = -\frac{2}{t^3}. \\ & \tau(t) = \frac{\vec{r}' \times \vec{r}'' \cdot \vec{r}'''}{\|\vec{r}'' \times \vec{r}''\|^2} = \frac{-\frac{2}{t^3}}{1 + \frac{1}{t^4} + \frac{4}{t^2}} = \frac{-2t}{t^4 + 1 + 4t^2}. \end{split}$$

• Questão 3 (2.0 pontos) Considere o campo conservativo

$$\vec{F} = (y-1)e^{x(y-1)}\vec{i} + xe^{x(y-1)}\vec{j} + 5\vec{k}$$

e a curva ${\cal C}$ dada pela parametrização

$$\vec{r} = t \sin\left(\frac{\pi}{2}t\right) \vec{i} + 2t \cos(2\pi t) \vec{j} + 3t \cos(4\pi t) \vec{k}, \qquad 0 \le t \le 2.$$

a) (1.0 ponto) Calcule o potencial.

b) (1.0 ponto) Calcule
$$\int_C \vec{F} \cdot d\vec{r}$$
.

Solução:

a) Observe que o potencial ϕ satisfaz

$$\frac{\partial \phi}{\partial x} = (y-1)e^{x(y-1)}.$$

Ou seja,

$$\phi = e^{x(y-1)} + C_1(y,z).$$

Derivamos com respeito a y agora:

$$\frac{\partial \phi}{\partial y} = xe^{x(y-1)} + \frac{\partial C_1(y,z)}{\partial y} = xe^{x(y-1)}.$$

Temos que

$$\frac{\partial C_1(y,z)}{\partial y} = 0.$$

Logo $C_1(y,z)=C_2(z)$, ou seja, $\phi=e^{x(y-1)}+C_2(z)$. Finalizamos comparando a última derivada:

$$\frac{\partial \phi}{\partial z} = \frac{\partial C_2(z)}{\partial z} = 5.$$

Concluímos que $C_2(z)=5z+C$, onde C é uma constante. Portanto, $\phi=e^{x(y-1)}+5z+C$.

b) Vamos calcular o potencial usando o teorema fundamental para integral de linhas. Como sabemos que a curva C começa no ponto $\vec{r}(0) = P0(0,0,0)$ e termina no ponto $\vec{r}(1) = P1(0,4,6)$, temos:

$$\int_C \vec{F} \cdot d\vec{r} = \phi(0, 4, 6) - \phi(0, 0, 0) = 1 + 30 - 1 = 30.$$

• Questão 4 (2.0 pontos) Considere o campo

$$\vec{F} = (4x^3 + y + e^z)\vec{i} + (4y^3 + x + z)\vec{j} + (4z^3 + e^x + e^y)\vec{k}$$

e a superfície fechada formada pelo hemisfério $z=\sqrt{4-x^2-y^2}$, limitada apenas ao primeiro octante, isto é, $x\geq 0,\,y\geq 0$ e $z\geq 0$, e os planos $x=0,\,y=0$, e z=0, orientada para fora.

- a) (0.5 ponto) Calcule $\vec{\nabla} \cdot \vec{F}$.
- b) (1.5 ponto) Calcule

$$\iint_{S} \vec{F} \cdot \vec{n} dS.$$

Solução:

- a) $\vec{\nabla} \cdot \vec{F} = 12x^2 + 12y^2 + 12z^2 = 12(x^2 + y^2 + z^2)$.
- b) Usando o teorema da divergência de Gauss, temos:

$$\begin{split} \iint_S \vec{F} \cdot \vec{n} dS &= \iiint_V \vec{\nabla} \cdot \vec{F} dV \\ &= \iiint_V 12(x^2 + y^2 + z^2) dV. \end{split}$$

Em coordenadas esféricas, temos $\rho^2=x^2+y^2+z^2$. Assim

$$\begin{split} \iint_{S} \vec{F} \cdot \vec{n} dS &= 12 \int_{0}^{\pi/2} \int_{0}^{\pi/2} \int_{0}^{2} \rho^{2} \rho^{2} \sin(\phi) d\rho d\phi d\theta \\ &= \frac{12\pi}{2} \int_{0}^{\pi/2} \left[\sin(\phi) \frac{\rho^{5}}{5} \right]_{0}^{2} d\phi \\ &= 6\pi \frac{32}{5} \left[-\cos(\phi) \right]_{0}^{\pi/2} \\ &= \frac{192\pi}{5} \left[0 - (-1) \right] = \frac{192\pi}{5}. \end{split}$$

• Questão 5 (2.0 pontos) Considere o campo

$$\vec{F} = (x - zy^2 + z)\vec{i} + (zx^2 + y - z)\vec{j} + (-x + y + z)\vec{k}$$

e a curva fechada formada pela poligonal formada pelos pontos $P_0=(0,0,3), P_1=(4,2,3)$ e $P_2=(4,0,3)$ no sentido $P_0\to P_1\to P_2\to P_0$.

- a) (0.5 ponto) Calcule $\vec{\nabla} \times \vec{F}$.
- b) (1.5 ponto) Calcule

$$\int_C \vec{F} \cdot d\vec{r}.$$

Solução:

a)

$$\vec{\nabla} \times \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x - zy^2 + z & zx^2 + y - z & -x + y + z \end{vmatrix}$$

$$= (1 - (x^2 - 1))\vec{i} + (1 - y^2 - (-1))\vec{j} + (2zx - (-2zy))\vec{k}$$

$$= (2 - x^2)\vec{i} + (2 - y^2)\vec{j} + 2z(x + y)\vec{k}.$$

b) Pelo teorema de Stokes, temos:

$$\int_{C} \vec{F} \cdot d\vec{r} = \iint_{S} \vec{\nabla} \times \vec{F} \cdot \vec{n} dS,$$

onde S é o plano z=3, limitado pelo triângulo do enunciado com orientação $\vec{n}=-\vec{k}$. Em z=3, temos

$$\vec{\nabla} \times \vec{F} = (2 - x^2)\vec{i} + (2 - y^2)\vec{j} + 6(x + y)\vec{k}..$$

Também, G = z - 3 e $\vec{\nabla}G = \vec{k}$. Assim,

$$\begin{split} \int_C \vec{F} \cdot d\vec{r} &= -6 \iint_S (x+y) dA \\ &= -6 \int_0^4 \int_0^{x/2} (x+y) dy dx \\ &= -6 \int_0^4 \left[(xy + \frac{y^2}{2}) \right]_0^{x/2} dx \\ &= -6 \int_0^4 \left[x \left(\frac{x}{2} \right) + \frac{\left(\frac{x}{2} \right)^2}{2} \right] dx \\ &= - \int_0^4 \frac{15x^2}{4} dx \\ &= - \left[\frac{15x^3}{12} \right]_0^4 \\ &= -80. \end{split}$$