

Home Page

Title Flage

Contents

Flage 6 of 56

Gio Back

Full Screen

Close

Quit

The Goal

- N points $\{x_1 ... x_N\}$ to be grouped into K clusters
- μ_j: prototype of the jth cluster (e.g., centre)
- such that the sum of squared distances of each data point to its closest vector μ_i is a minimum
- Vector Quantisation: μ_j: codebook vectors
- Objective Function (Distortion Measure):

$$J \stackrel{\triangle}{=} \sum_{i=1}^{N} \sum_{j=1}^{K} r_{ij} ||\mathbf{x}_i - \boldsymbol{\mu}_j||^2$$

- Binary Indicator variable $r_{ij} \stackrel{\triangle}{=} 1$: *i*th data point assigned to *j*th cluster, & $\stackrel{\triangle}{=} 0$, otherwise
- Find $\{r_{ij}\}$ & $\{\mu_i\}$ such that J is minimised

K-Means, EM-5

Copyright ©Sumantra Dutta Roy

5/32

4 E

One way to solve this: two phases, EM-framework Choose K initial cluster centres $\{\mu_i\}$

- 1. Fixed $\{\mu_i\}$, find assignment $\{r_{ij}\}$: Expectation
- 2. Keep $\{r_{ij}\}$ fixed, find $\{\mu_j\}$: Maximisation

REPEAT till convergence/fixed max# of iterations

Convergence: each step provably convergent!

• Expectation Step: $\{\mu_j\}$ fixed, minimise J wrt $\{r_{ij}\}$

$$J \stackrel{\triangle}{=} \sum_{i=1}^{N} \sum_{j=1}^{K} r_{ij} ||\mathbf{x}_{i} - \boldsymbol{\mu}_{j}||^{2}$$
 This is linear in $\{r_{ij}\}$. For \mathbf{x}_{i} , assign it to the closest cluster centre.

• Minimisation Step: $\{r_{ij}\}$ fixed, minimise J wrt $\{\mu_j\}$ $J \stackrel{\triangle}{=} \sum_{i=1}^N \sum_{j=1}^K r_{ij} ||\mathbf{x}_i - \boldsymbol{\mu}_j||^2$ This is quadratic in $\{\boldsymbol{\mu}_j\}$. $\frac{\partial J}{\partial \{\boldsymbol{\mu}_j\}} = 0 \implies \sum_{i=1}^N 0 + 0 + \dots + 2r_{ij}(\mathbf{x}_i - \{\boldsymbol{\mu}_j\}) + \dots = 0$ $\implies \sum_{i=1}^N r_{ij}(\mathbf{x}_i - \{\boldsymbol{\mu}_j\}) = 0 \implies \sum_{i=1}^N r_{ij}(\mathbf{x}_i - \{\boldsymbol{\mu}_j\})$

Sum of points in cluster j / # of points in cluster j = Mean of all points in cluster j!

ALGORITHM K-Means

INITIALISATION: Fix μ_j

- 1. [E-Step] $\{\mu_j\}$ (centres) fixed, find $\{r_{ij}\}$ (assignment) Assign points to closest cluster prototype $(J\downarrow)$
- 1. [M-Step] $\{r_{ij}\}$ (assignment) fixed, find $\{\mu_j\}$ (centres) Recompute cluster centres $(J\downarrow)$

REPEAT till no change in assign't/max iterations

K-Means, EM-7 Copyright ©Sumantra Dutta Roy 7/32

▶ Page 83 of 402 125% ✓ औ 🖾 ? Quit

K-Means: Some Points

- Could converge to a local min
- Initialisation: random subset of size K of the data points as the cluster prototypes
- E-Step: distance computations b/w every data point & every prototype vector O(KN)
- E-step: $\mathcal{O}(KN)$; M-Step: $\mathcal{O}(N)$ Can run for each $\binom{N}{K}$ start seeds, or a max. Run for few K
- Alternate formulation with distance threshold: online algo, works as data comes in
- Limitations: e.g., data in concentric circles

K-Means: Some Points

- Could converge to a local min
- Initialisation: random subset of size K of the data points as the cluster prototypes
- E-Step: distance computations b/w every data point & every prototype vector \(\mathcal{O}(KN) \)
- E-step: $\mathcal{O}(KN)$; M-Step: $\mathcal{O}(N)$ Can run for each $\binom{N}{K}$ start seeds, or a max. Run for few K
- Alternate formulation with distance threshold: online algo, works as data comes in
- Limitations: e.g., data in concentric circles
- Generalisation: prob/fuzzy assignment of {rii}

M-of-Gs: Curve-Fitting

- Almost any parameterised curve can be fitted to a bunch of points with an associated error cost
- Gaussian: computationally nice: 2 moments
 - any hump/bump:one Gaussian
 - const region: many closely-spaced Gaussians

1-G: bad fit as most prob region doesn't have many samples

2-G: better fit

K-Means, EM-10

Copyright ©Sumantra Dutta Roy

10/32