Numerical Linear Algebra

Kevin Corcoran

February 12, 2022

Contents

2:	2: Assignment 2								
1	Part 1 1.1 Output for Trace, Gaussian Elimination, LU decomposition and								
	1.1	-	*		, -	1			
	Two norm of Error in solution to $AX = B$					4			
2	Part 2								
	2.1				ric matrix	5			
	2.2					6			
	2.3	_		-	ositive definite matrix	6			
	2.4	2.4.1	•		rix	6			
		2.4.1 $2.4.2$			$\mathbf{A_{12}}$ after \mathbf{n} steps of Gaussian	6			
		2.4.2				6			
	2.5	Ax =	7						
		2.5.1	=			7			
2.5.2 Compare storage and number of floating point operations									
2: Assignment 2									
5							Wed 02 Feb 2022 20:27		
1	P	art 1	L						
1.1	1.1 Output for Trace, Gaussian Elimination, LU decomposition and Two norm of Error in solution to $\mathbf{A}\mathbf{X} = \mathbf{B}$								
A									
	4	х	4						
	2	.0000	1.0000	1.0000	0.0000				
	4	.0000	3.0000	3.0000	1.0000				
	8	.0000	7.0000	9.0000	5.0000				
	6	.0000	7.0000	9.0000	8.0000				

Trace of A

```
22.000000000000000
Norm column:
  10.954451150103322
Norm column:
                        2
  10.392304845413264
Norm column:
                        3
  13.114877048604001
Norm column:
                        4
  9.4868329805051381
В
   4 x
    3.0000
             0.0000
                          1.0000
                                   0.9000
                                               2.1000
                                                          3.1416
    6.0000
             -2.0000
                         1.0000
                                  10.4000
                                            -491.2000
                                                          -4.7124
   10.0000
              2.0000
                         0.0000
                                   -20.2000
                                              0.1200
                                                           2.2440
             10.0000
                         -5.0000
                                   -5.1200
    1.0000
                                             -51.3000
                                                          2.3562
matrix A after gauss
     х
    8.0000
              7.0000
                         9.0000
                                    5.0000
    0.0000
               1.7500
                         2.2500
                                    4.2500
    0.0000
               0.0000
                         -0.8571
                                    -0.2857
    0.0000
               0.0000
                         0.0000
                                    0.6667
matrix B after gauss
   4 x
                                  -20.2000
   10.0000
             2.0000
                         0.0000
                                              0.1200
                                                          2.2440
   -6.5000
              8.5000
                         -5.0000
                                   10.0300
                                             -51.3900
                                                          0.6732
   -0.8571
             -0.5714
                         -0.4286
                                    23.3657
                                            -505.9429
                                                         -5.6420
   -2.0000
              3.3333
                         -1.0000
                                    2.4600
                                             148.6933
                                                          4.7498
F
solution X to AX = B
   4 x
             6
   -0.0000
              3.5000
                         0.2500
                                   -2.0050
                                             360.2700
                                                         10.6309
   1.0000
             -6.0000
                         -0.5000
                                    33.4000 -1234.3600
                                                         -22.3277
```

-28.4900

3.6900

515.9200

223.0400

1.0000

-1.5000

2.0000

-3.0000

-1.0000

5.0000

4.2075

7.1247

Error Matrix

4	x	6				
-0.	0000	0.0000	-0.0000	-0.0000	-0.0000	0.0000
0.	0000	0.0000	0.0000	-0.0000	-0.0000	0.0000
0.	0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000
0.	0000	0.0000	0.0000	-0.0000	-0.0000	0.0000

Two norm of columns of error matrix

Norm column: 1
2.6645352591003757E-015
Norm column: 2
2.5727487310015434E-015
Norm column: 3
9.0153937873535153E-015
Norm column: 4
2.9913803108461275E-013
Norm column: 5
3.6757338276243205E-013
Norm column: 6
7.3777640556099254E-015

A before LU

4 x 1.0000 2.0000 1.0000 0.0000 4.0000 3.0000 3.0000 1.0000 8.0000 7.0000 7.0000 9.0000 5.0000 6.0000 9.0000 8.0000

A after LU

4 x 7.0000 9.0000 8.0000 5.0000 0.7500 1.7500 2.2500 4.2500 -0.2857 0.5000 -0.8571 -0.2857 0.2500 -0.4286 0.3333 0.6667

Permutation vector

4 3 4 2 1

1 PART 1

3

Solution AX = B using LU decomposition:

4	X	6				
-0	.0000	3.5000	0.2500	-2.0050	360.2700	10.6309
1	.0000	-6.0000	-0.5000	33.4000	-1234.3600	-22.3277
2	.0000	-1.0000	1.0000	-28.4900	515.9200	4.2075
-3	.0000	5.0000	-1.5000	3.6900	223.0400	7.1247

Two norm of error matrix using LU decomposition

Norm column: 1
8.8817841970012523E-016
Norm column: 2
3.6620534388177900E-015
Norm column: 3
1.8322380275993532E-014
Norm column: 4
2.1609931492617831E-013
Norm column: 5
3.8138914537411967E-013
Norm column: 6
7.3777640556099254E-015

1.2 Plane Equation

The equation of a plane can be solved for a, b, c, d using the points A(1, 2, 3), B(-3, 2, 5), and $C(\pi, e, -\sqrt{2})$, by solving the following equation for

$$a + 2b + 3c + d = 0$$
$$-3a + 2b + 5c + d = 0$$
$$\pi a + eb - \sqrt{2}c + d = 0$$

matrix after gauss

3	Х	4		
3.	1416	2.7183	-1.4142	1.0000
0.	0000	4.5958	3.6495	1.9549
0.	0000	0.0000	2.5491	0.1990

2 Part 2

2.1 Schur decomposition of a symmetric matrix

If $A \in \mathbb{C}^{m \times m}$, then there exists a unitary matrix Q and an upper triangular matrix U such that $A = QUQ^*$.

If A is (real) symmetric then

$$A = QUQ^T = QU^TQ^T = A^T.$$

This implies

$$U = U^T$$
.

and the only way this can happen is if U=D is diagonal, so the Schur decomposition implies that A is orthogonally diagonalizable

$$A = QDQ^T.$$

where the columns of Q form an eigenbasis for A, and Q^T is the change of basis matrix that transforms A into a diagonal matrix D of eigenvalues of A.

2.2 Stability of Gaussian elimination

Consider

$$\begin{pmatrix} 1 & 1 \\ \varepsilon & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

Multiply the last row by c so that $c\varepsilon\gg 1$, then swapping row one with row two. The augmented system becomes

$$\begin{pmatrix} c\varepsilon & c & c \\ 1 & 1 & 2 \end{pmatrix}.$$

the elimination step

$$\begin{pmatrix} c\varepsilon & c & c \\ 0 & 1-\frac{1}{\varepsilon} & 2-\frac{1}{\varepsilon} \end{pmatrix}.$$

which is numerically equivalent to

$$\begin{pmatrix} c\varepsilon & c & c \\ 0 & -\varepsilon^{-1} & \varepsilon^{-1} \end{pmatrix}.$$

and leads to the incorrect solution

$$y = \frac{-\varepsilon^{-1}}{-\varepsilon^{-1}} = 1$$
 $x = \frac{1-1}{\varepsilon} = 0.$

The issue partial pivoting hoped to correct was reintroduced by scaling the row with a smaller pivot.

2.3 Diagonal entries of a symmetric positive definite matrix

If A is symmetric positive definite then for all v

$$v^T A v > 0.$$

Considering the standard basis vectors e_i

$$e_i^T A e_i = a_{ij}$$
.

Since any vector v can be written as a linear combination of these basis vectors

$$v = v_1 e_1 + \dots + v_n e_n.$$

then

$$v^T A v = \sum_{j=1}^n a_{jj} v_j^2 > 0.$$

implies $a_{jj} > 0$

2.4 LU decomposition of a block matrix

2.4.1 Verify the formula

$$\begin{pmatrix} I & 0 \\ -A_{21}A_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ -A_{21}A_{11}^{-1}A_{11} + A_{21} & -A_{21}A_{11}^{-1}A_{12} + A_{22} \end{pmatrix}$$
$$= \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} - A_{21}A_{11}^{-1}A_{12} \end{pmatrix}$$

2.4.2 Show $D=A_{22}-A_{21}A_{11}^{-1}A_{12}$ after n steps of Gaussian elimination

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \Rightarrow \begin{pmatrix} A_{11} & C \\ 0 & D \end{pmatrix}.$$

First defining the matrix R_i as the matrix that contains the negation of the i^{th} row of A_{21} and zeros everywhere else. Then performing n steps of Gaussian elimination on A using block elementary matrices

$$E_i = \begin{pmatrix} I & 0 \\ R_i A_{11}^{-1} & I \end{pmatrix}.$$

eliminates the block matrix A_{21}

$$E_n \dots E_1 A = \begin{pmatrix} I & 0 \\ R_n A_{11}^{-1} & I \end{pmatrix} \dots \begin{pmatrix} I & 0 \\ R_1 A_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & C \\ 0 & D \end{pmatrix}$$

where

$$E_n \dots E_1 = \begin{pmatrix} I & 0 \\ R_n A_{11}^{-1} & I \end{pmatrix} \dots \begin{pmatrix} I & 0 \\ R_1 A_{11}^{-1} & I \end{pmatrix}$$
$$= \begin{pmatrix} I & 0 \\ R_n A_{11}^{-1} + \dots + R_1 A_{11}^{-1} & I \end{pmatrix}$$
$$= \begin{pmatrix} I & 0 \\ (R_n + \dots + R_1) A_{11}^{-1} & I \end{pmatrix}$$
$$= \begin{pmatrix} I & 0 \\ -A_{21} A_{11}^{-1} & I \end{pmatrix}$$

which is exactly what we used to verify the formula in (2.4.1)

2.5 Ax = b complex valued

2.5.1 Modify problem

Decompose $A = A_1 + iA_2$ and $b = b_1 + ib_2$ then

$$Ax = b$$
$$(A_1 + iA_2)x = b_1 + ib_2$$

equating the real and imaginary parts this is equivalent to solving

$$A_1 x_1 = b_1 \qquad A_2 x_2 = b_2.$$

where $x_1 = \text{Re}(x)$, $x_2 = \text{Im}(x)$, and both systems are real

2.5.2 Compare storage and number of floating point operations

Consider complex numbers a_{ij}/a_{jj} used in Gaussian elimination

$$\frac{a_{ij}}{a_{jj}} = \frac{(a,b)}{(c,d)} = \frac{(ac+bd, -ad+bc)}{c^2+d^2}.$$

this introduces 6 multiplications and 3 additions, compared to just 1 operation if they were real. The storage requirements for the complex case Ax = b is the same as for the two systems $A_1x_1 = b_1$ and $A_2x_2 = b_2$.