Biomimicry of Bacterial Foraging for Distributed Optimization and Control

Kevin M. Passino¹ Presented by: Alexander Van de Kleut²

> ¹The Ohio State University Electrical and Computer Engineering

²University of Waterloo Centre for Theoretical Neuroscience

IEEE Control Systems Magazine, 2002

Table of Contents

About the Author

2 Foraging

3 Biological and Computational Model

About the Author

About the Author

Biomimicry and control KM Passino	of bacterial foraging for distributed optimization	3023
EEE control systems magazine 22 (3), 52-67, 2002		
V Gazi, KM Pa	llysis of swarms ssino ons on automatic control 48 (4), 692-697, 2003	1125
networks JT Spooner, K	tive control using fuzzy systems and neural M Passino ons on Fuzzy Systems 4 (3), 339-359, 1996	728

Foraging

Foraging

- searching for nutrients
- avoiding noxious stimuli (toxins, predators, etc)

Social Foraging

- increases likelihood of finding nutrients
- better detection and protection from noxious stimuli
- gains can offset cost of food competition

How can we view foraging as an Optimization Process?

• We have some parameters θ and a loss function $J(\theta)$ that we want to minimize

How can we view foraging as an Optimization Process?

- We have some parameters θ and a loss function $J(\theta)$ that we want to minimize
- \bullet θ can represent the position of an organism in its environment

How can we view foraging as an Optimization Process?

- We have some parameters θ and a loss function $J(\theta)$ that we want to minimize
- \bullet θ can represent the position of an organism in its environment
- J can represent the concentration of nutrients and noxious stimuli
 - \triangleright smaller values of J = more nutrients, less noxious stimuli
 - \blacktriangleright higher values of J= more noxious stimuli, less nutrients

How can we view foraging as an Optimization Process?

- We have some parameters θ and a loss function $J(\theta)$ that we want to minimize
- θ can represent the position of an organism in its environment
- ullet J can represent the concentration of nutrients and noxious stimuli
 - \triangleright smaller values of J= more nutrients, less noxious stimuli
 - \blacktriangleright higher values of J= more noxious stimuli, less nutrients
- In general, J and θ can be arbitrary
 - $\theta \in \mathbb{R}^p$
 - $J: \mathbb{R}^p \to \mathbb{R}$

• Model organism

- Model organism
 - ► Highly studied

- Model organism
 - ► Highly studied
 - \blacktriangleright Well-characterized for aging behaviour

- Model organism
 - ► Highly studied
 - ▶ Well-characterized foraging behaviour
 - ▶ Probably won't feel bad about simplifying its behaviour

- Model organism
 - ▶ Highly studied
 - ▶ Well-characterized foraging behaviour
 - Probably won't feel bad about simplifying its behaviour
- Social organism

- Model organism
 - ▶ Highly studied
 - Well-characterized foraging behaviour
 - ▶ Probably won't feel bad about simplifying its behaviour
- Social organism
 - Secretes signals to attract others nearby

- Model organism
 - Highly studied
 - Well-characterized foraging behaviour
 - Probably won't feel bad about simplifying its behaviour
- Social organism
 - Secretes signals to attract others nearby
 - ► Encourages "swarming" or "clumping"

E. coli Behaviour

- Swims using left-handed helical flagella ("propellers")
 - ► Tumble: flagella all rotate clockwise → pull on cell in all directions → random movement
 - Run: flagella all rotate counterclockwise → flagella form a bundle
 → push on cell in one direction → directed movement

E. coli Behaviour

- If during a tumble *E. coli* swims down a nutrient concentration gradient:
 - ▶ Prolongs time spent on a run
 - Continues moving in the same direction
- Otherwise:
 - ► Tends to switch to a tumble (search for more)
 - Moves randomly which searching for more nutrient gradients to exploit
- Call a tumble followed by a run a "chemotaxis step"

Algorithm for a Single Bacterium

- 1: **for** $j \leftarrow 1 \dots N_c$ **do**: 2: $\phi \sim \mathcal{U}$ 3: $\theta \leftarrow \theta + c\phi$ 4: **while** $J(\theta + c\phi) < J(\theta)$ **do**: 5: $\theta \leftarrow \theta + c\phi$
 - θ : p-dimensional vector (randomly initialized)
 - N_c : number of chemotaxis steps
 - $\phi \sim \mathcal{U}$: a random unit vector
 - c: a step-size

Loss Function to Optimize

Results of Single Bacterium

Algorithm for a Colony

```
1: for j \leftarrow 1 \dots N_c do:

2: for i \leftarrow 1 \dots S do:

3: \phi \sim \mathcal{U}

4: \theta_i \leftarrow \theta_i + c_i \phi

5: while J(\theta_i + c_i \phi) + J_{cc}(\theta_i + c_i \phi) < J(\theta_i) + J_{cc}(\theta_i) do:

6: \theta_i \leftarrow \theta_i + c_i \phi
```

- θ_i : ith p-dimensional vector (randomly initialized)
- N_c : number of chemotaxis steps
- S: number of bacteria in the colony
- $\phi \sim \mathcal{U}$: a random unit vector

J_{cc} and swarming behaviour

- E. coli do social foraging
- ullet Secrete a substance to indicate to attract nearby $E.\ coli$ and encourage swarming
- Strength of signal diffuses over space
- Use gaussian distribution to model this

$$J_{cc}(\theta) = \sum_{i=1}^{S} -d_{\text{attract}} \exp\left(-w_{\text{attract}}(\theta - \theta_i)^T (\theta - \theta_i)\right) + h_{\text{repellant}} \exp\left(-w_{\text{repellant}}(\theta - \theta_i)^T (\theta - \theta_i)\right)$$

J_{cc} and swarming behaviour

