Redes Neurais e Deep Learning

NORMALIZAÇÃO EM LOTE

Zenilton K. G. Patrocínio Jr zenilton@pucminas.br

"Você quer ativações gaussianas unitárias? Apenas faça-as assim."

[loffe & Szegedy, 2015]

"Você quer ativações gaussianas unitárias? Apenas faça-as assim."

[loffe & Szegedy, 2015]

Considere um lote de ativações em uma camada qualquer.

Para fazer com que cada dimensão se comporte como gaussiana unitária, aplica-se:

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

"Você quer ativações gaussianas unitárias? Apenas faça-as assim."

[loffe & Szegedy, 2015]

Considere um lote de ativações em uma camada qualquer.

Para fazer com que cada dimensão se comporte como gaussiana unitária, aplica-se:

$$\widehat{x}^{(k)} = \frac{x^{(k)} - \mathrm{E}[x^{(k)}]}{\sqrt{\mathrm{Var}[x^{(k)}]}} \longrightarrow \text{Esta \'e uma função diferenciável comum ...}$$

"Você quer ativações gaussianas unitárias? Apenas faça-as assim."

[loffe & Szegedy, 2015]

1. Calcular a média e a variância empírica para cada dimensão de forma independente

"Você quer ativações gaussianas unitárias? Apenas faça-as assim."

[loffe & Szegedy, 2015]

1. Calcular a média e a variância empírica para cada dimensão de forma independente

2. Normalizar

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

Solução!

Normalizar:

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

Solução!

Normalizar:

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{Var[x^{(k)}]}}$$

E, em seguida, permitir que a rede ajuste a saída para outro intervalo, se quiser:

$$y^{(k)} = \gamma^{(k)} \widehat{x}^{(k)} + \beta^{(k)}$$

em que $\gamma^{(k)}$ e $\beta^{(k)}$ devem ser aprendidos pela rede

Solução!

Normalizar:

$$\widehat{x}^{(k)} = \frac{x^{(k)} - \mathrm{E}[x^{(k)}]}{\sqrt{\mathrm{Var}[x^{(k)}]}}$$

E, em seguida, permitir que a rede ajuste a saída para outro intervalo, se quiser:

$$y^{(k)} = \gamma^{(k)} \widehat{x}^{(k)} + \beta^{(k)}$$

em que $\gamma^{(k)}$ e $\beta^{(k)}$ devem ser aprendidos pela rede

Observe que a rede poderia aprender, de modo que:

$$\gamma^{(k)} = \sqrt{\text{Var}[x^{(k)}]}$$
$$\beta^{(k)} = \text{E}[x^{(k)}]$$

$$\beta^{(k)} = \mathbf{E}[x^{(k)}]$$

e, assim, recuperar o mapeamento de identidade

$$\frac{\partial \ell}{\partial \widehat{x}_{i}} = \frac{\partial \ell}{\partial y_{i}} \cdot \gamma$$

$$\frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot (x_{i} - \mu_{\mathcal{B}}) \cdot \frac{-1}{2} (\sigma_{\mathcal{B}}^{2} + \epsilon)^{-3/2}$$

$$\frac{\partial \ell}{\partial \mu_{\mathcal{B}}} = \left(\sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot \frac{-1}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}}\right) + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} \cdot \frac{\sum_{i=1}^{m} -2(x_{i} - \mu_{\mathcal{B}})}{m}$$

$$\frac{\partial \ell}{\partial x_i} = \frac{\partial \ell}{\partial \widehat{x}_i} \cdot \frac{1}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^2} \cdot \frac{2(x_i - \mu_{\mathcal{B}})}{m} + \frac{\partial \ell}{\partial \mu_{\mathcal{B}}} \cdot \frac{1}{m}$$

$$\frac{\partial \ell}{\partial \gamma} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial y_i} \cdot \hat{x}_i$$

$$\frac{\partial \ell}{\partial \beta} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial y_i}$$

Não necessários diretamente, são subexpressões para os outros gradientes.

Considerar como "backprop" para \hat{x} , $\sigma_{\mathcal{B}}^2$, $\mu_{\mathcal{B}}$, que são internos a atualização do minibatch.

$$\frac{\partial \ell}{\partial \widehat{x}_{i}} = \frac{\partial \ell}{\partial y_{i}} \cdot \gamma$$

$$\frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot (x_{i} - \mu_{\mathcal{B}}) \cdot \frac{-1}{2} (\sigma_{\mathcal{B}}^{2} + \epsilon)^{-3/2}$$

$$\frac{\partial \ell}{\partial \mu_{\mathcal{B}}} = \left(\sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot \frac{-1}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}}\right) + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} \cdot \frac{\sum_{i=1}^{m} -2(x_{i} - \mu_{\mathcal{B}})}{m}$$

$$\frac{\partial \ell}{\partial x_i} = \frac{\partial \ell}{\partial \widehat{x}_i} \cdot \frac{1}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^2} \cdot \frac{2(x_i - \mu_{\mathcal{B}})}{m} + \frac{\partial \ell}{\partial \mu_{\mathcal{B}}} \cdot \frac{1}{m}$$

Gradientes para propagar para a camada de entrada

$$\frac{\partial \ell}{\partial \gamma} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial y_i} \cdot \widehat{x}_i$$
$$\frac{\partial \ell}{\partial \beta} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial y_i}$$

$$\frac{\partial \ell}{\partial \widehat{x}_{i}} = \frac{\partial \ell}{\partial y_{i}} \cdot \gamma$$

$$\frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot (x_{i} - \mu_{\mathcal{B}}) \cdot \frac{-1}{2} (\sigma_{\mathcal{B}}^{2} + \epsilon)^{-3/2}$$

$$\frac{\partial \ell}{\partial \mu_{\mathcal{B}}} = \left(\sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot \frac{-1}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}}\right) + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} \cdot \frac{\sum_{i=1}^{m} -2(x_{i} - \mu_{\mathcal{B}})}{m}$$

$$\frac{\partial \ell}{\partial x_{i}} = \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot \frac{1}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}} + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} \cdot \frac{2(x_{i} - \mu_{\mathcal{B}})}{m} + \frac{\partial \ell}{\partial \mu_{\mathcal{B}}} \cdot \frac{1}{m}$$

$$\frac{\partial \ell}{\partial \gamma} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial y_i} \cdot \hat{x}_i$$

$$\frac{\partial \ell}{\partial \beta} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial y_i}$$
Gradientes para os parâmetros $\gamma \in \beta$.

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
         Parameters to be learned: \gamma, \beta
Output: \{y_i = BN_{\gamma,\beta}(x_i)\}
                                            // mini-batch mean
                                     // mini-batch variance
                                                    // normalize
                                               // scale and shift
```

Melhora o fluxo gradiente através da rede

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
         Parameters to be learned: \gamma, \beta
Output: \{y_i = BN_{\gamma,\beta}(x_i)\}
                                            // mini-batch mean
                                       // mini-batch variance
                                                    // normalize
                                               // scale and shift
```

- Melhora o fluxo gradiente através da rede
- Permite taxas de aprendizagem mais altas

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
         Parameters to be learned: \gamma, \beta
Output: \{y_i = BN_{\gamma,\beta}(x_i)\}
                                             // mini-batch mean
                                         // mini-batch variance
                                                     // normalize
                                                // scale and shift
```

- Melhora o fluxo gradiente através da rede
- Permite taxas de aprendizagem mais altas
- Reduz a forte dependência da inicialização

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
         Parameters to be learned: \gamma, \beta
Output: \{y_i = BN_{\gamma,\beta}(x_i)\}
                                             // mini-batch mean
                                         // mini-batch variance
                                                     // normalize
                                                // scale and shift
```

- Melhora o fluxo gradiente através da rede
- Permite taxas de aprendizagem mais altas
- Reduz a forte dependência da inicialização
- Atua como uma forma de regularização diferente, reduzindo talvez a necessidade de *dropout*

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β

Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$
 // mini-batch mean

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$
 // mini-batch variance

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$
 // normalize

$$y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$$
 // scale and shift

- Melhora o fluxo gradiente através da rede
- Permite taxas de aprendizagem mais altas
- Reduz a forte dependência da inicialização
- Atua como uma forma de regularização diferente, reduzindo talvez a necessidade de dropout

Desnormalização!!

Aprende-se γ e β (mesmas dims que μ e σ^2)

Permite (se necessário) aprender o mapeamento identidade!

Nota: no momento do **teste**, a camada de normalização em lote funciona diferente:

- A média e a variância não são calculadas com base no lote

Nota: no momento do **teste**, a camada de normalização em lote funciona diferente:

- A média e a variância não são calculadas com base no lote
- Em vez disso, utiliza-se um único par fixo de média e variância empírica de ativações obtido durante o treinamento

Nota: no momento do **teste**, a camada de normalização em lote funciona diferente:

- A média e a variância não são calculadas com base no lote
- Em vez disso, utiliza-se um único par fixo de média e variância empírica de ativações obtido durante o treinamento
- Por exemplo, pode-se estimar o par durante o treinamento por meio de médias móveis

[Ba et al., 2016]

Insensível ao tamanho do lote

[Ba et al., 2016]

- Insensível ao tamanho do lote
- Ideal para aplicar no processamento de sequências

[Ba et al., 2016]

- Insensível ao tamanho do lote
- Ideal para aplicar no processamento de sequências
- Redes recorrentes e *transformers*

[Ba et al., 2016]

- Insensível ao tamanho do lote
- Ideal para aplicar no processamento de sequências
- Redes recorrentes e transformers

[Ulyanov et al., 2017]

Transferência de Estilo

[Ulyanov et al., 2017]

[Ulyanov et al., 2017]

Imagem

[Ulyanov et al., 2017]

[Ulyanov et al., 2017]

Group Normalization

[Wu & He, 2018]

Group Normalization

[Wu & He, 2018]

	BN	LN	IN	GN
val error	23.6	25.3	28.4	24.1
\triangle (vs. BN)	-	1.7	4.8	0.5

Group Normalization

[Wu & He, 2018]

batch size	32	16	8	4	2
BN	23.6	23.7	24.8	27.3	34.7
GN	24.1	24.2	24.0	24.2	24.1
\triangle	0.5	0.5	-0.8	-3.1	-10.6