Analyse II

Résumé: Équations différentielles ordinaires.

Définitions.

1. Une équation différentielle ordinaire est une expression

$$E(x, y(x), y'(x), \dots y^{(n)}(x)) = 0$$

où $E: \mathbb{R}^{n+2} \to \mathbb{R}$ une fonction donnée, $n \in \mathbb{N}_+$. On cherche un intervalle ouvert $I \subset \mathbb{R}$ et une fonction de classe C^n telle que l'équation soit satisfaite pour tout $x \in I$.

- 2. L'ordre de l'équation différentielle est l'ordre maximal de dérivée de y(x) qui apparaît dans l'équation.
- 3. La solution générale d'une équation différentielle est l'ensemble de toutes les solutions de l'équation.
- 4. Problème de Cauchy: résoudre l'équation $E(x, y(x), y'(x), \dots y^{(n)}(x)) = 0$ et trouver l'intervalle ouvert $I \subset \mathbb{R}$ et une fonction $y(x) : I \to \mathbb{R}$ de classe $C^n(I)$ telle que les conditions initiales $y(x_0) = a_0, y'(x_0) = b_0$, etc. sont satisfaites. Le nombre et caractère des conditions initiales dépend du type de l'équation.
- 5. La solution maximale du problème de Cauchy est la solution définie sur le plus grand intervalle possible.

Méthodes de résolution des certains types des équations différentielles.

1. Équation différentielle à variables séparées du premier ordre (EDVS):

$$f(y) \cdot y'(x) = g(x)$$

où $f:I\to\mathbb{R}$ est une fonction continue sur I, et $g:J\to\mathbb{R}$ est une fonction continue sur J.

2. (Existence et unicité d'une solution de EDVS avec la condition initiale donnée). Soit $f: I \to \mathbb{R}$ une fonction continue telle que $f(y) \neq 0$ sur I, et $g: J \to \mathbb{R}$ une fonction continue. Alors pour tout couple $x_0 \in J$, $b_0 \in I$, l'équation

$$f(y)y'(x) = g(x)$$

admet une solution $y: J' \to I$, $J' \subset J$ vérifiant les conditions initiales $y(x_0) = b_0$. Si $y_1: J_1 \to I$ et $y_2: J_2 \to I$ sont deux solutions telle que $y_1(x_0) = y_2(x_0) = b_0$, alors $y_1(x) = y_2(x)$ pour tout $x \in J_1 \cap J_2$.

3. Pour résoudre une EDVS:

$$\int f(y) \, dy = \int g(x) \, dx$$

où $\int g(x) dx$ est la primitive générale. La solution de cette équation pour y = y(x) donne la solution générale de l'EDVS.

4. Équation différentielle linéaire du priemier ordre (EDL1): Soit $I \subset \mathbb{R}$ un intervalle ouvert. Une équation

$$y'(x) + p(x) \cdot y(x) = f(x),$$

où $p, f: I \to \mathbb{R}$ sont des fonctions continues, est une équation différentielle linéaire du premier ordre.

5. Soit $I \subset \mathbb{R}$ un intervalle ouvert. Une équation

$$y'(x) + p(x) \cdot y(x) = 0,$$

où $p, f: I \to \mathbb{R}$ sont des fonctions continues, est une équation différentielle linéaire du premier ordre homogène.

6. Soit $y'(x) + p(x) \cdot y(x) = 0$ une EDL1 homogène. Alors la fonction $y: I \to \mathbb{R}$,

$$y(x) = Ce^{-P(x)}.$$

où P(x) est une primitive de p(x) sur I, est la solution générale de cette équation pour tout $C \in \mathbb{R}$.

7. Principe de superposition des solutions pour EDL1: Soit $I \subset \mathbb{R}$ intervalle ouvert, $p, f_1, f_2 : I \to \mathbb{R}$ des fonctions continues. Supposons que $v_1 : I \to \mathbb{R}$ et $v_2 : I \to \mathbb{R}$ sont des solutions des équations $y' + p(x)y = f_1(x)$ et $y' + p(x)y = f_2(x)$, respectivement. Alors la fonction

$$v(x) = v_1(x) + v_2(x)$$

est une solution particulière de l'équation $y' + p(x)y = f_1(x) + f_2(x)$.

8. Méthode de la variation des constantes pour EDL1: Une solution particulère de l'équation y' + p(x)y = f(x) est la fonction $v: I \to \mathbb{R}$:

$$v(x) = \left(\int f(x)e^{P(x)} dx \right) \cdot e^{-P(x)}$$

où P(x) est une primitive de p(x).

9. Solution générale de l'EDL1: Soient $f, p: I \to \mathbb{R}$ deux fonctions continues. Alors la solution générale de l'équation y'(x) + p(x)y(x) = f(x) est

$$v(x) = y_{\text{hom}}(x) + y_{\text{part}}(x) = Ce^{-P(x)} + \left(\int f(x)e^{P(x)} dx\right) \cdot e^{-P(x)},$$

où P(x) est une primitive de p(x).

10. Équation différentielle linéaire du second ordre (EDL2): Soit $I \subset \mathbb{R}$ un intervalle ouvert. Une équation différentielle de la forme

$$y''(x) + p(x)y'(x) + q(x)y(x) = f(x)$$

où $p,q,f:I\to\mathbb{R}$ sont des fonctions continues, est dite une équation différentielle linéaire du second ordre (EDL2).

2

11. Équation différentielle linéaire du second ordre homogène est une équation de la forme

$$y''(x) + p(x)y'(x) + q(x)y(x) = 0,$$

où $p, q: I \to \mathbb{R}$ sont des fonctions continues.

12. Équation différentielle linéaire du second ordre homogène à coefficients constants est une équation de la forme

$$y''(x) + py'(x) + qy(x) = 0,$$

où p, q sont des nombres réels.

13. Soit y''(x) + py'(x) + qy(x) = 0, une EDL2 (hom) à coefficients constants $p, q \in \mathbb{R}$, et supposons que a, b sont des solutions de l'équation caractéristique $\lambda^2 + p\lambda + q = 0$. Alors sa solution générale pour tout $x \in \mathbb{R}$ est

$$y(x) = \begin{bmatrix} C_1 e^{ax} + C_2 e^{bx}, & \text{si } a \neq b, \ a, b \in \mathbb{R}, \\ C_1 e^{ax} + C_2 x e^{ax}, & \text{si } a = b \in \mathbb{R}, \\ C_1 e^{\alpha x} \cos \beta x + C_2 e^{\alpha x} \sin \beta x, & \text{si } a = \alpha + i\beta = \bar{b} \notin \mathbb{R} \end{bmatrix}$$

pour tout couple $C_1, C_2 \in \mathbb{R}$.

- 14. Une EDL2 homogène admet une seule solution $y: I \to \mathbb{R}$ de classe C^2 telle que $y(x_0) = a_0$ et $y'(x_0) = b_0$ pour tout $x_0 \in I$, $a_0, b_0 \in \mathbb{R}$.
- 15. Deux solutions $y_1(x)$ et $y_2(x)$ d'une EDL2 homogène sur $I \subset \mathbb{R}$ sont dites linéairement indépendantes s'il n'existe pas de constante $c \in \mathbb{R}$ telle que $y_2(x) = cy_1(x)$ ou $y_1(x) = cy_2(x)$ pour tout $x \in I$.
- 16. Si $v_1: I \to \mathbb{R}$ est une solution de l'équation y''(x) + p(x)y'(x) + q(x)y(x) = 0 telle que $v_1(x) \neq 0$ pour tout $x \in I$, alors

$$v_2(x) = v_1(x) \cdot \int \frac{e^{-P(x)}}{v_1^2(x)} dx$$

est une solution linéairement indépendante, où P(x) est une primitive de p(x).

17. Si $v_1, v_2 : I \to \mathbb{R}$ sont deux fonctions dérivables sur $I \subset \mathbb{R}$, alors la fonction $W[v_1, v_2] : I \to \mathbb{R}$ définie par

$$W[v_1, v_2](x) = \det \begin{pmatrix} v_1(x) & v_2(x) \\ v_1'(x) & v_2'(x) \end{pmatrix} = v_1(x)v_2'(x) - v_2(x)v_1'(x)$$

est appelée le Wronskien de v_1 et v_2 .

- 18. Soient $v_1, v_2 : I \to \mathbb{R}$ deux solutions de l'équation y''(x) + p(x)y'(x) + q(x)y(x) = 0. Alors les fonctions $v_1(x)$ et $v_2(x)$ sont linéairement indépendantes si et seulement si $W[v_1, v_2] \neq 0$ pour tout $x \in I$.
- 19. Soient $v_1, v_2: I \to \mathbb{R}$ deux solutions linéairement indépendantes de l'EDL2 homogène. Alors la solution générale de cette équation est de la forme

$$v(x) = C_1 v_1(x) + C_2 v_2(x), C_1, C_2 \in \mathbb{R}, x \in I.$$

20. Méthode de la variation des constantes pour EDL2: Supposons que $v_1, v_2 : I \to \mathbb{R}$ sont deux solutions linéairement indépendantes de l'équation homogène y''(x) + p(x)y'(x) + q(x)y(x) = 0. Alors la fonction

$$v(x) = c_1(x)v_1(x) + c_2(x)v_2(x),$$

οù

$$c_1(x) = -\int \frac{f(x)v_2(x)}{W[v_1, v_2](x)} dx \qquad c_2(x) = \int \frac{f(x)v_1(x)}{W[v_1, v_2](x)} dx$$

(où on supprime les constantes), est une solution de l'équation complète y''(x)+p(x)y'(x)+q(x)y(x)=f(x).

21. Méthode des coefficients indéterminés pour EDL2 à coefficients constants I: Considérons l'équation

$$y''(x) + py'(x) + qy(x) = f(x), \qquad p, q \in \mathbb{R},$$

où $f(x) = e^{ax} P_n(x)$, $P_n(x)$ un polynôme de dégré n, et a un nombre réel. Alors

- (a) si $a \in \mathbb{R}$ n'est pas une solution de l'équation caractèristique $\lambda^2 + p\lambda + q = 0$, on utilise l'Ansatz $y(x) = e^{ax}T_n(x)$, où $T_n(x)$ est un polynôme inconnu de dégré n.
- (b) si $a \in \mathbb{R}$ est une solution de l'équation caractéristique $\lambda^2 + p\lambda + q = 0$ de multiplicité r (r = 1, 2), on utilise l'Ansatz $y(x) = x^r e^{ax} T_n(x)$, où $T_n(x)$ est un polynôme inconnu de dégré n.

Ensuite on remplace l'Ansatz dans l'équation différentielle pour obtenir les équations sur les coefficients indéterminés.

22. Méthode des coefficients indéterminés pour EDL2 à coefficients constants II: Considérons l'équation

$$y''(x) + py'(x) + qy(x) = f(x), p, q \in \mathbb{R},$$

où $f(x) = e^{ax}(\cos(bx)P_n(x) + \sin(bx)Q_m(x))$, $P_n(x)$ et $Q_m(x)$ des polynômes de degré n et m respectivement, et $a, b \in \mathbb{R}$. Alors

- (a) si $a \pm ib \in \mathbb{C}$ n'est pas une solution de l'équation caractèristique $\lambda^2 + p\lambda + q = 0$, on utilise l'Ansatz $y(x) = e^{ax}(T_N(x)\cos(bx) + S_N(x)\sin(bx))$, où $N = \max(n, m)$, $T_N(x)$ et $S_N(x)$ sont des polynômes inconnus de degré N.
- (b) si $a \pm ib \in \mathbb{C}$ est une solution de l'équation caractéristique $\lambda^2 + p\lambda + q = 0$, on utilise l'Ansatz $y(x) = xe^{ax}(T_N(x)\cos(bx) + S_N(x)\sin(bx))$, où $N = \max(n, m)$, $T_N(x)$ et $S_N(x)$ sont des polynômes inconnus de degré N.

Ensuite on remplace l'Ansatz dans l'équation différentielle pour obtenir les équations sur les coefficients indéterminés.

23. Principe de superposition des solutions pour EDL2: Soit $I \subset \mathbb{R}$ intervalle ouvert, p, q, f_1, f_2 : $I \to \mathbb{R}$ des fonctions continues. Supposons que $v_1 : I \to \mathbb{R}$ et $v_2 : I \to \mathbb{R}$ sont des solutions particulières des équations $y''(x) + p(x)y'(x) + q(x)y(x) = f_1(x)$ et $y''(x) + p(x)y'(x) + q(x)y(x) = f_2(x)$, respectivement. Alors la fonction $v : I \to \mathbb{R}$ définie par

$$v(x) = v_1(x) + v_2(x)$$

est une solution particulière de l'équation $y''(x) + p(x)y'(x) + q(x)y(x) = f_1(x) + f_2(x)$.