Numbers in the Fibonacci Sequence Circuit PC/CP220 Project Phase II

Nicholas Sam 190148430 Fall 2020

Equations

Truth table of the Numbers in the Fibonacci Sequence Circuit

Number (n)	$a_2 a_1 a_0$	<i>n</i> th term in the Fibonacci Sequence	$b_3b_2b_1b_0$
0	000	0	0000
1	001	1	0001
2	010	1	0001
3	011	2	0010
4	100	3	0011
5	101	5	0101
6	110	8	1000
7	111	13	1101

Truth tables for each bit

a_2	a_1	a_0	b_3	b_2	b_1	b_0
0	0	0	0	0	0	0
0	0	1	0	0	0	1
0	1	0	0	0	0	1
0	1	1	0	0	1	0
1	0	0	0	0	1	1
1	0	1	0	1	0	1
1	1	0	1	0	0	0
1	1	1	1	1	0	1

A K-Map can be used to determine the simplest equation for each bit.

 b_3

b_3		a ₀	
		0	1
a_2a_1	00	0	0
	01	0	0
	11	1	1
	10	0	0

• a_2a_1 (a_0 is irrelevant)

$$\mathbf{b}_3 = \mathbf{a}_2 \mathbf{a}_1$$

 b_2

b_2		a_0	
		0	1
a_2a_1	00	0	0
	01	0	0
	11	0	1
	10	0	1

• $a_2 a_0$ (a_1 is irrelevant)

$$b_2 = a_2 a_0$$

 b_1

b_1	b_1		a ₀	
		0	1	
a_2a_1	00	0	0	
	01	0		
	11	0	0	
	10	1	0	

- $\bar{a}_2 a_1 a_0$

$$\mathbf{a}_2 \mathbf{\bar{a}}_1 \mathbf{\bar{a}}_0$$

$$\mathbf{b}_2 = \mathbf{\bar{a}}_2 \mathbf{a}_1 \mathbf{a}_0 + \mathbf{a}_2 \mathbf{\bar{a}}_1 \mathbf{\bar{a}}_0$$

 b_0

b_0		a ₀	
		0	1
a_2a_1	00	0	
	01	1	0
	11	0	
	10	(1	1

- $\bar{\mathbf{a}}_1 \mathbf{a}_0$ (\mathbf{a}_2 is irrelevant)
- $a_2\bar{a}_1$ (a_0 is irrelevant)
- $\bar{a}_1 a_0$ (a_2 is irrelevant)
- $\bar{a}_2 a_1 \bar{a}_0$

$$b_0 = \bar{a}_1 a_0 + a_2 \bar{a}_1 + \bar{a}_1 a_0 + \bar{a}_2 a_1 \bar{a}_0$$

```
(%i1) b3:a2 and a1;
(%o1) a2∧a1
(%i2) b3,a2=false,a1=false,a0=false;
        false
(\%02)
(%i3) b3,a2=false,a1=false,a0=true;
(%03)
        false
(%i4) b3,a2=false,a1=true,a0=false;
        false
(\%04)
(%i5) b3,a2=false,a1=true,a0=true;
        false
(\%05)
(%i6) b3,a2=true,a1=false,a0=false;
(%06)
        false
(%i7) b3,a2=true,a1=false,a0=true;
(\%07)
        false
(%i8) b3,a2=true,a1=true,a0=false;
         true
(\%08)
(%i9) b3,a2=true,a1=true,a0=true;
(%09)
         true
```

Matches the original truth table, therefore the equation is correct.

```
b_2
```

```
(%i1) b2:a2 and a0;
(%o1) a2∧a0
(%i2) b2,a2=false,a1=false,a0=false;
(%o2) false
(%i3) b2,a2=false,a1=false,a0=true;
(%o3) false
(%i4) b2,a2=false,a1=true,a0=false;
(%o4) false
(%i5) b2,a2=false,a1=true,a0=true;
(%o5) false
(%i6) b2,a2=true,a1=false,a0=false;
(%o6) false
(%i7) b2,a2=true,a1=false,a0=true;
(%o7) true
(%i8) b2,a2=true,a1=true,a0=false;
(%o8) false
(%i9) b2,a2=true,a1=true,a0=true;
(%o9) true
```

Matches the original truth table, therefore the equation is correct.

```
b_1
```

```
(%i1) b1:((not a2) and a1 and a0) or (a2 and (not a1) and (not a0));
(%o1) ¬a2\a1\a0\a2\¬a1\¬a0
(%i2) b1,a2=false,a1=false,a0=false;
(%o2) false
(%i3) b1,a2=false,a1=false,a0=true;
(%o3) false
(%i4) b1,a2=false,a1=true,a0=false;
(%o4) false
(%i5) b1,a2=false,a1=true,a0=true;
(%o5) true
(%i6) b1,a2=true,a1=false,a0=false;
(%o6) true
(%i7) b1,a2=true,a1=false,a0=true;
(%o7) false
(%i8) b1,a2=true,a1=true,a0=false;
(%08) false
(%i9) b1,a2=true,a1=true,a0=true;
(%09) false
```

Matches the original truth table, therefore the equation is correct.

b_0

```
(%i1) b0:((not a2) and a1 and (not a0)) or (a2 and (not a1)) or ((not a1) and a0) or (a2 and a0);
(%o1) ¬a2^a1^¬a0va2^¬a1v¬a1^a0va2^a0
(%i2) b0,a2=false,a1=false,a0=false;
(%o2) false
(%i3) b0,a2=false,a1=false,a0=true;
(%i4) b0,a2=false,a1=true,a0=false;
(%o4) true
(%i5) b0,a2=false,a1=true,a0=true;
(%o5) false
(%i6) b0,a2=true,a1=false,a0=false;
(%06) true
(%i7) b0,a2=true,a1=false,a0=true;
(%o7) true
(%i8) b0,a2=true,a1=true,a0=false;
(%08) false
(%i9) b0,a2=true,a1=true,a0=true;
(%o9) true
```

Matches the original truth table, therefore the equation is correct.

Summary

The equations of the output bits are:

- $b_3 = a_2 a_1$
- $\bullet \quad b_2 = a_2 a_0$
- $\bullet \quad b_1 = \bar{a}_2 a_1 a_0 + a_2 \bar{a}_1 \bar{a}_0$
- $b_0 = \bar{a}_2 a_1 \bar{a}_0 + \bar{a}_2 \bar{a}_1 + \bar{a}_1 a_0 + \bar{a}_2 a_0$

The equations were tested in Maxima, and were proven to be correct.