Energy:
$$KE = \frac{1}{2} mv^2$$
, $PE_g = mgh$, $PE_k = \frac{1}{2} k x^2$
 $OE = other energy$, $W_{mc} = Fd \cos O$

(onservation of energy:

 $OE + KE + PE = constant$, W_{mc}
 $OE_f + KE_f + PE_f = OE_i + KE_i + PE_j + W_{mc}$

chemical mechanical energy

* Power: $P = W$, $1 Watt = 1W = 1 \frac{J}{s}$

L. rate at which work is done, at which energy is used

 $V = V = 10^m/s$ $M = 60 kg$
 $V = V = 10^m/s$ $M = 60 kg$
 $V = V = 10^m/s^2$ $V = 0000 M$
 $V = 00$

Momentum:
$$\vec{p} = m \vec{v}$$
 (kinematics, nothing to do with causes of motion)

units: $kg = N \cdot s$
 $N = kg = N \cdot s$

why? useful in describing collisions

** Connection with force

 $\vec{F} = m\vec{a} = m \Delta \vec{v} = m \nabla \vec{p} - m \vec{v};$
 $= p \cdot \vec{f} = \Delta \vec{p}$
 $\Delta t = \Delta t$

Newton's 2nd law: $\vec{F} = \Delta \vec{p}$

Olynamics linematic (causes) (effects)

** Make in Details of \vec{f} are unknown

 $\vec{F}_{avg} \cdot \Delta t = \Delta \vec{p} = \vec{I} = myulse$, units $N \cdot s$
 $\vec{F}_{avg} \cdot \vec{f}_{avg} = \vec{f}_{avg} \cdot \Delta t = \Delta \vec{p} = (\vec{v}_{g} \cdot \vec{q}_{g} m - \vec{v}_{g})$

i) What is the impulse?

i) What is the force from the ground on the ball if impact last for
$$0.02s$$
?

i) $\vec{I} = \Delta \vec{p} = p \vec{p} \cdot \vec{$

