Práctica N°3: Ley de Pouillet y Ley de Ohm

Objetivo

En esta práctica los estudiantes explorar tanto la Ley de Pouillet como la Ley de Ohm, para determinar las variables de las que depende la resistencia eléctrica (R) y cómo esta influye en el valor de la intensidad de corriente (I) que circula en un resistor al que se le aplica una diferencia de potencial (V).

Parte 1: Ley de Pouillet

En esta parte de la práctica se utilizará la simulación de la resistencia en un alambre del sitio:

https://phet.colorado.edu/es/simulation/resistance-in-a-wire

Ilustración 8: Aspecto de la simulación de PhET

La resistividad eléctrica " ρ " es una propiedad particular de cada material, la cual depende de factores como la estructura molecular del mismo y la temperatura, así un alambre cilíndrico de longitud "L" cuya área transversal es "A" tendrá una resistencia eléctrica "R" que viene dada por la relación:

$$R = \rho \frac{L}{A}$$

Esta ecuación se denomina Ley de Pouillet, y establece la dependencia de la resistencia eléctrica en términos de una propiedad derivada de las características microscópica del material y la geometría (en este caso regular) de un alambre.

Procedimiento de la parte 1

- 1. Familiarícese con la simulación, mueva los controles y observe qué sucede en cada caso y que información cambia cuando cambia alguno de los controles.
- 2. Fije un valor de resistividad y de L, para 10 valores de A complete la siguiente tabla:

ρ	=	L=	
#	A	R	
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			

3. Fije un valor de resistividad y de *A*, para 10 valores de *L* complete la siguiente tabla:

ρ	=	A=	
#	L	R	
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			

4. Fije un valor de A y de L, para 10 valores de ρ complete la siguiente tabla:

I	; <u> </u>	A=
#	ρ	R
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		

Parte 2: Ley de Ohm

En esta parte se utilizará la simulación en:

https://phet.colorado.edu/sims/html/ohms-law/latest/ohms-law_en.html

Ilustración 9: Simulación para estudiar la Ley de Ohm

Procedimiento de la parte 2

- 1. Analice la simulación y manipule los controles para conocer el funcionamiento de la misma. Observe qué valores cambian al manipular cada uno de los controles.
- 2. Fije un valor de R y varíe el voltaje anotando en cada caso el valor de I. complete la siguiente tabla:

R=		
#	V	I
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		

3. Fije un valor de *V* y varíe *R* de tal forma que complete la tabla siguiente:

V =		
#	R	I
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		

Para reporte (o artículo técnico)

Parte 1

- 1. Grafique cada una de las tablas de la parte 1.
- 2. ¿Qué puede concluir de cada una de ellas?
- 3. Qué puede concluir del conjunto?
- 4. Los valores de la resistividad en la simulación son ficticios, ¿cuál es el orden de magnitud de la resistividad de materiales comunes que se utilizan en la vida diaria?
- 5. Investigue una tabla de resistividades de al menos 10 materiales, incluyendo, hierro, oro, planta cobre.
- 6. En la simulación se supuso una temperatura constante, ¿en la realidad cómo afecta la temperatura a la resistencia eléctrica de un objeto? Explique.

Parte 2

- 7. Grafique cada una de las tablas de la parte 2.
- 8. ¿Qué puede concluir de cada una de ellas?
- 9. Qué puede concluir del conjunto?
- 10. ¿Qué condición debe cumplir un material para que sea considerado "óhmico"?
- 11. ¿Qué suposiciones se han hecho en esta simulación?
- 12. En qué sentido se relacionan estas dos simulaciones, ¿qué tienen en común? ¿cuál es la diferencia esencial? Explique.

Conclusiones

De acuerdo con los oabjetivos, procedimiento, análisis y resultados, escriba, de manera concisa, las conclusiones que puede inferir de todo lo anterior.