Relatividad y Gravitación

Teoría, algoritmos y problemas

Jorge I. Zuluaga Profesor titular de Física y Astronomía

Instituto de Física, Facultad de Ciencias Exactas y Naturales Universidad de Antioquia

1 de abril de 2020

Índice general

1.	Relatividad Especial			7		
	1.1.	Motivación	<u>1</u>	7		
	1.2.	Conceptos	básicos	7		
	1.3.		le homogeneidad e isotropía del espacio-tiempo	9		
	1.4.	La relatividad Newtoniana				
	1.5.	La relatividad Newtoniana				
	1.6.	Las transformaciones de Lorentz-Einstein				
	1.7.	Propiedades de las TLE				
		1.7.1.	Unidades luz	17		
		1.7.2.	La TLE como una rotación hiperbólica	17		
		1.7.3.	Las TLE y la notación de Einstein	19		
		1.7.4.	Las TLE generales	20		
		1.7.5.	El valor del factor de Lorentz-Einstein	21		
		1.7.6.	Mapas de la TLE	22		
	1.8.	Consecuen	cias de las TLE	24		
		1.8.1.	Transformación de los intervalos y el gradiente	25		
		1.8.2.	Dilatación temporal	27		
		1.8.3.	El postulado de los relojes	34		
		1.8.4.	Contracción de longitudes	35		
		1.8.5.	Adición de velocidades	37		
		1.8.6.	Transformación de aceleraciones	39		
	1.9.	El espacio-tiempo de Minkowski		39		
		1.9.1.	La norma de Minkowski	39		
		1.9.2.	Las variedades de Lorentz y la métrica de Minkowski	42		
		1.9.3.	Métrica y tipos de intervalos	45		
		1.9.4.	Métrica y tiempo propio	45		
		1.9.5.	Métrica, dilatación del tiempo y contracción de lon-			
			gitudes	46		
		1.9.6.	Vectores y cálculo en el espacio de Minkowski	47		
		1.9.7.	Minkowski y el postulado de los relojes	48		
		1.9.8.	Transformación general de cuadrivectores	49		
	1.10.	Óptica relativista		49		
		1.10.1.	Efecto Doppler relativista	50		
		1.10.2.	Aberración de la luz	51		
		1.10.3.	Enfoque relativista	52		
	1.11.	Cinemática	a relativistica	53		

4 Índice general

1.12.	1.11.1. 1.11.2. 1.11.3. 1.11.4. Mecánica ro 1.12.1. 1.12.2. 1.12.3. 1.12.4. 1.12.5. 1.12.6.	elativista Masa invariante Momentum relativista Energía cinética relativistica Energía total relativista Cuadrimomentum	54 56 60 61 61 61 63
	1.12.6. 1.12.7.	Magnitud del cuadrimomentum y la simetría gauge Cuadrimomentum en el espacio-tiempo	66 66
1.13.			68
Bibliografía			69

Índice de figuras

1.1.	Figura correspondiente al código 1.1	22
1.2.	Figura correspondiente al código 1.3	24
1.3.	Figura correspondiente al código 1.4	30
1.4.	Figura correspondiente al código 1.5.	32
1.5.	Contracción de longitudes	36
1.6.	Figura correspondiente al código 1.6	40
1.7.	Figura	51
1.8.	Figura correspondiente al código 1.7	55
1.9.	Figura correspondiente al código 1.8	59
1.10.	Figura correspondiente al código 1.9	67

6 Índice de figuras

Capítulo 1

Relatividad Especial

Resumen. Este capítulo esta dedicado a la Relatividad especial.

1.1. Motivación

¿Qué son las leyes de la física?. Son regularidades observadas (¿o reales?) en los fenómenos que vemos en el mundo. Estas regularidades se expresan normalmente como relaciones matemáticas entre cantidades observadas.

Tomen por ejemplo esta regularidad:

$$\vec{a} = \frac{\vec{F}}{m}$$

Siempre que un cuerpo de masa m (una propiedad intrínseca suya), es sometido a una "perturbación" (una fuerza \vec{F}), el cuerpo, sin importar el estado de movimiento en el que estaba, cambia su estado en una magnitud \vec{a} (aceleración).

Esta regularidad ha sido observada en los laboratorios en la Tierra (edificios). ¿Pero es válida en el resto del Universo y para todos los observadores?. Esta es la pregunta del millón de la física y el corazón de la relatividad.

Conjetura 1.1

Las leyes de la física son universales. Cualquiera sea la regularidad que llamemos *ley física* debe ser realmente universal, debe cumplirse en todas partes, a todas horas y con independencia de quién la registre. En caso contrario lo que tendríamos sería solo una regularidad contingente.

1.2. Conceptos básicos

Para abordar la pregunta básica de la sección anterior debemos primero introducir una serie de conceptos: Cantidad física. Las leyes físicas son patrones matemáticos entre números (y otras entidades matemáticas) que asociamos a los fenómenos. Piense por ejemplo en la velocidad. Es un número que asociamos al desplazamiento de un cuerpo en el tiempo. Para definir cualquier cantidad física se necesitan: patrones (comparación), una calibración (definir los ceros o puntos de referencia) e instrumentos (dispositivos que realicen la comparación).

Por ejempl para medir la posición (lugar) uso como partrón una varilla de longitud fija, mi calibración es el lugar que escojo como punto de partida y el instrumento de medida es la misma varilla. Para medir el tiempo (fecha) uso como patrón un fenómeno repetitivo, como calibración escojo el instante a partir del cuál contar las oscilaciones y el instrumento es un reloj.

Para obtener el *valor* de una cantidad física se pueden usar medios directos o indirectos. Preferimos los medios directos que implican la comparación de lo medido con el instrumento (el patrón y la calibración) **localmente**: es decir debemos poner el instrumento donde ocurre el fenómeno.

■ Espacio-tiempo. Es el escenario en el que ocurre el universo. Matemáticamente es un espacio geométrico en el que a todo lugar e instante se le asocian unas coordenadas:

$$[x^{\mu}]_{\mu=0,1,2,3}$$

esta será una notación que usaremos en lo sucesivo y que adoptará sentido más adelante.

- Evento. Es uno de los puntos del espacio-tiempo. Un evento físico es equivalente
- Observador. También llamado (de forma intercambiable) sistema de referencia. Un observador es una entidad que registra cualquier cantidad física que ocurre en el espacio-tiempo usando un conjunto (infinito) de instrumentos físicos, que usan el mismo patrón y calibración, distribuídos (idealmente) por todos los eventos del espacio-tiempo. El observador lleva un registro de todos los fenómenos sin importar que tan lejos estén del lugar espacial en el que se encuentre.

Existen un conjunto de leyes que fueron formuladas originalmente con la idea de universalidad que mencionamos antes. Son las leyes del movimiento de Newton:

- Ley de Inercia. En la ausencia de fuerzas (interacciones) el *estado de movimiento* se conserva.
- Ley de fuerza. La acción de una fuerza cambia el *estado de movimiento*.
- Ley de acción y reacción. El cambio en el estado de movimiento de un sistema A que interactúa con otro B, es igual en magnitud pero de sentido contrario, que el cambio de movimiento que experimenta B.

Sabemos que estas leyes de pueden resumir en una sola relación matemática. Si definimos la *cantidad de movimiento* o momento lineal $\vec{p} \equiv m\vec{v}$, entonces:

$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \vec{F}$$

Este conjunto de leyes se mantienen las mismas si se usan **observadores inerciales**.

Definición 1.1

observador inercial. Es un observador para el cuál sus registros muestran que la la ley de inercia es válida.

Registrar la validez de la ley de inercia no es experimentalmente fácil.

Proposición: Observadores con velocidad relativa constante. Si un observador O es por definición o demostración inercial, cualquier observador O' cuyo origen de coordenadas se mueva respecto al origen de coordenadas de O con velocidad \vec{u} constante, será también un observador inercial.

1.3. Principio de homogeneidad e isotropía del espacio-tiempo

Postulado 1.1

Principio de homogeneidad e isotropía del espacio-tiempo. Cualquier experimento que se realice en un sistema de referencia inercial tendrá exactamente el mismo resultado sin importar dónde se realice (homogeneidad) o en que tiempo se realice. Alrededor de todos los eventos del espacio-tiempo, los experimentos producen las mismas regularidades.

De acuerdo al principio de homogeneidad, todos los observadores inerciales que solo difieran por su origen en el espacio o por su origen en el tiempo registraran las mismas leyes de la física. Se puede probar que el principio de homogeneidad e isotropía es *equivalente* lógicamente al principio fundacional de la teoría de la relatividad.

Postulado 1.2

Principio de relatividad especial. Todas las leyes de la física deben ser iguales para todos los observadores inerciales.

1.4. La relatividad Newtoniana

Una cosa es decir que las leyes son las mismas y otra muy distinta es demostrar que lo son.

Las leyes son relaciones matemáticas entre cantidades físicas de modo que para demostrar su validez hay que probar que las relaciones son las mismas.

Definición 1.2

Covarianza de las leyes físicas. Llamamos *covarianza* de una ley física al hecho de que su forma matemática no se modifique independientemente de las transformaciones geométricas (cambios de sistemas de referencia o coordenadas) que se operen.

La pregunta es: dos observadores inerciales S y S' que miden cantidades físicas distintas m, \vec{v} , \vec{r} y \vec{F} (y las respectivas cantidades primadas), al describir las mismas regularidades llegaran a:

$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \vec{F}$$

$$\frac{\mathrm{d}\vec{p}'}{\mathrm{d}t'} = \vec{F}'$$

Para ello debemos *postular* (¿o deducir?) la relación entre las cantidades implicadas.

Definición: Transformaciones de Galileo-Newton. La siguiente es la relación entre las cantidades cinemáticas y dinámicas básicas entre dos observadores inerciales:

$$\begin{array}{rcl}
t' & = & t \\
m' & = & m \\
\vec{F}' & = & \vec{F} \\
\vec{r}' & = & \vec{r} - \vec{u}t
\end{array}$$

> donde \vec{u} es la velocidad relativa en el espacio entre los dos observadores.

Puede probarse que si las leyes de Newton son válidas en O también lo serán en O'.

1.5. El problema del electromagnetismo

Pero las leyes de la física no se restringen a la mecánica. También están las leyes de la termodinámica, la óptica, el electromagnetismo, la física nuclear, etc. ¿Son también estas leyes covariantes bajo las transformaciones de Galileo-Newton.

Tomemos el caso por ejemplo de dos leyes básicas del electromagnetismo:

La ley de Faraday (ley de inducción en el vacío):

$$\frac{1}{c}\frac{\partial}{\partial t}\int \vec{B} \cdot d\vec{S} = -\oint \vec{E} \cdot d\vec{l}$$
$$\frac{1}{c}\frac{\partial \vec{B}}{\partial t} = -\vec{\nabla} \times \vec{E}$$

La ley de Ampere-Maxwell (en el vacío y sin corrientes):

$$\frac{1}{c}\frac{\partial}{\partial t}\int \vec{E}\cdot d\vec{S} = -\oint \vec{B}\cdot d\vec{l}$$

$$\frac{1}{c}\frac{\partial \vec{E}}{\partial t} = -\vec{\nabla} \times \vec{B}$$

Verifiquemos si son las mismas bajo las transformaciones de Galileo-Newton:

1.6. Las transformaciones de Lorentz-Einstein

Como vemos las leyes del electromagnetismo no son covariantes bajor las TGN. ¿Qué está mal? ¿las transformaciones o las leyes del EM?. Supongamos que son las transformaciones.

Postulado 1.2

Covarianza manifiesta de las ecuaciones de Maxwell. Las ecuaciones de Maxwell son *manifiestamente* covariantes, es decir, la forma en la que fueron escritas originalmente por Maxwell es covariante para observadores inerciales.

Este postulado es fuerte en el sentido en el que da mucha confianza a un conjunto de ecuaciones que esencialmente se obtienen a partir de experimentos. Esta es una prueba de la confianza que tenían los Einstein en el electromagnetismo incluso sobre

Como ya vimos que las ecuaciones no son covariantes bajo las transformaciones de Galileo-Newton, debemos encontrar un conjunto nuevo de transformaciones con las cuales las ecuaciones de Maxwell si son covariantes. Para ello asumamos que existe una familia de transformaciones lineal más generales que relacionan las coordenadas.

$$t' = a_{tt}t + a_{tx}x \tag{1.1}$$

$$x' = a_{xt}t + a_{xx}x \tag{1.2}$$

(1.3)

donde los coeficientes a_{tt} , a_{tx} , a_{xx} , a_{xx} son cantidades que no dependen de la posición, ni del tiempo y a lo sumo pueden depender de la velocidad relativa u entre los sistemas coordenados:

$$a_{\mu\nu}=a_{\mu\nu}(u)$$

donde μ : t, x.

Nota

Las transformaciones entre sistemas inerciales son lineales. En principio las transformaciones entre las variables de dos sistemas de referencia podrían tener una forma funcional arbitraria:

$$\begin{array}{rcl}
t' & = & t'(t, x) \\
x' & = & x'(t, x)
\end{array}$$

sin embargo la definición misma de observador inercial, sumado al principio de homogeneidad e isotropía, restringen el número posible de funciones.

Por la definición de sistema de referencia inercial, debe cumplirse que si el observador O observa una partícula que se mueve con velocidad constante $v=\mathrm{d}x/\mathrm{d}t$ constante (no actúa ninguna fuerza sobre ella), también el observador O' debe medir $v'=\mathrm{d}x'/\mathrm{d}t'$ constante. Para calcular esta última cantidad primero podemos determinar los diferenciales:

$$dx' = dt \left(\frac{\partial x'}{\partial x} v + \frac{\partial x'}{\partial t} \right)$$
 (1.4)

$$dt' = dt \left(\frac{\partial t'}{\partial x} v + \frac{\partial t'}{\partial t} \right) \tag{1.5}$$

(1.6)

de donde se sigue que:

$$v' = \frac{\mathrm{d}x'}{\mathrm{d}t'} = \frac{v\partial x'/\partial x + \partial x'/\partial t}{v\partial t'/\partial t + \partial t'/\partial t}$$

de esta última expresión se ve que solo si las derivadas parciales respecto al espacio y el tiempo de las reglas de transformación son constantes, es decir, solo si las transformaciones son líneales, entonces v constante implicará v' constante y viceversa.

Sin necesidad de conocer la forma funcional de los coeficientes de las transformaciones generales, es posible encontrar algunas propiedades básicas que nos permiten simplificar mucho la búsqueda de sus valores. Así por ejemplo:

1. Por la definición misma de observador inercial sabemos que el origen del sistema O' esta localizado en x'=0 según su propio sistema de referencia, mientras que en el sistema O se encuentra ubicado en x=ut. Reemplazando estas dos condiciones en la Ec. (1.2) obtenemos:

$$0 = a_{xt}t + a_{xx}ut$$

Para t > 0 esta condición implica que $a_{xt} = -ua_{xx}$ con lo que la Ec. (1.2) se escribe:

$$x' = a_{xx}(-ut + x) \tag{1.7}$$

(1.8)

2. Un razonamiento similar pero aplicado al origen del sistema O para el cual x = 0 y x' = -ut' conduce a las condiciones:

$$t' = a_{tt}t$$

$$-ut' = -ua_{xx}t$$

Para t > 0, t' > 0 lo que implica: 1) $a_{tt} > 0$ y 2) dividiendo término a término las ecuaciones anteriores obtenemos:

$$a_{tt} = a_{xx} \equiv \gamma(u) > 0$$

donde hemos introducido la función $\gamma(u)$.

3. Si introducimos un tercer observador *O*" que se mueve con velocidad *-u* (en dirección del eje *x* respecto de *O*, el tiempo de eventos en el origen de coordenadas de *O* registrados por *O*" será:

$$t'' = \gamma(-u)t$$

Ahora bien, por la postulado de isotropía, un obervador que se dirige hacia +x y uno que se dirije hacia -x deben producir las mismas medidas de un evento en el lugar común x=0, es decir para este evento t''=t' y por lo tanto:

$$\gamma(-u) = \gamma(u)$$

Con estas propiedades, la transformación general de coordenadas entre observadores inerciales que satisfacen el postulado de homogeneidad e isotropía se pueden escribir como:

$$t' = \gamma(u)(t + bx) \tag{1.9}$$

$$x' = \gamma(u)(-ut + x) \tag{1.10}$$

(1.11)

donde hemos definido $b \equiv a_{tx}/\gamma$.

No es difícil mostrar que las derivadas parciales respecto a las variables espacio-temporales serán entonces:

$$\partial_t = \gamma (\partial_{t'} - u \partial_{x'}) \tag{1.12}$$

$$\partial_x = \gamma (b\partial_{t'} + \partial_{x'}) \tag{1.13}$$

$$\partial_{\nu} = \partial_{\nu'} \tag{1.14}$$

$$\partial_z = \partial_{z'} \tag{1.15}$$

El reto consiste en encontrar las cantidades γ y b de la transformación tal que las ecuaciones de Maxwell sean covariantes.

La componente z de la ley de Faraday:

$$\frac{1}{c}\partial_t \vec{B} = -\vec{\nabla} \times \vec{E}$$

es:

$$\frac{1}{c}\partial_t B_z = \partial_z E_x - \partial_x E_y \tag{1.16}$$

Escrita después de aplicar las transformaciones de las derivadas será:

$$\frac{1}{c}\gamma(\partial_{t'}-u\partial_{x'})B_z=\partial_z E_x-\gamma(b\partial_{t'}+\partial_{x'})E_y$$

reuniendo términos semejantes:

$$\frac{1}{c'}\partial_{t'}\left[\gamma\left(\frac{c'}{c}B_z + bcE_y\right)\right] = \partial_z E_x - \partial_{x'}\left[\gamma\left(E_y - \frac{u}{c}B_z\right)\right]$$

Para que la ley de Faraday sea covariante y la ecuación anterior tenga la misma forma que la Ec. (1.16) se debe cumplir que:

$$B_z' = \gamma \left(\frac{c'}{c}B_z + bcE_y\right) \tag{1.17}$$

$$E_y' = \gamma \left(E_y - \frac{u}{c} B_z \right) \tag{1.18}$$

Por otro lado, la componente y de la ley de Ampere-Maxwell:

$$\frac{1}{c}\partial_t \vec{E} = \vec{\nabla} \times \vec{B}$$

es:

$$\frac{1}{c}\partial_t E_y = \partial_y B_x - \partial_x B_z \tag{1.19}$$

Aplicando un procedimiento análogo obtenemos que para que esta ecuación sea covariante bajo la transformación lineal general definida antes, la regla de transformación de las componentes *z y y* de los campos debería ser:

$$B_z' = \gamma \left(B_z - \frac{u}{c} E_y \right) \tag{1.20}$$

$$E_y' = \gamma \left(\frac{c'}{c} E_y + bc B_z\right) \tag{1.21}$$

Es claro que para que las Ecs. (1.17),(1.18) y (1.20),(1.21) correspondan al mismo conjunto de ecuaciones, sin importar cuál es el valor de los campos se debe cumplir que:

$$c' = c$$

$$b = -\frac{u}{c^2}$$

De donde obtenemos nuestro primer resultado significativo:

Proposición 1.3

Invarianza de la velocidad de la luz. La velocidad de la luz medida por dos observadores inerciales diferentes es siempre la misma:

$$c = c'$$

Esta conclusión es muy interesante y contraintuitiva. La velocidad de propagación de la luz juega un papel central en la relatividad y en la física en general. Lograr que su valor sea una cantidad constante independiente del observador inercial es significativo. No era para menos puesto que sabemos que la cantidad en la teoría electromagnética deènde de dos constantes de la naturaleza:

$$c = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$$

En la versión original de la teoría presentada por los Einstein, la constancia de la velocidad de la luz aparece como una hipótesis sin ninguna justificación. La aproximación utilizada aquí, por lo menos, obtiene este resultado como consecuencia de la covarianza de las ecuaciones de Maxwell, es decir es un teorema que se deriva de un postulado muy razonable, a saber que las ecuaciones de Maxwell del electromagnetismo son *manifiestamente covariantes*.

Adicionalmente encontramos la manera como se relacionan las componentes y y z de los campos eléctrico y magnético:

$$B_z' = \gamma \left(B_z - \frac{u}{c} E_y \right) \tag{1.22}$$

$$E_y' = \gamma \left(E_y - \frac{u}{c} B_z \right) \tag{1.23}$$

Solo nos queda una cuestión por resolver: ¿cuánto vale γ ?.

La inversa de las transformaciones en las Ecs. (1.22) y (1.23) se puede obtener cambiando u por -u:

$$B_z = \gamma \left(B_z' + \frac{u}{c} E_y' \right) \tag{1.24}$$

$$E_y = \gamma \left(E_y' + \frac{u}{c} B_z' \right) \tag{1.25}$$

donde hemos usado el hecho que $\gamma(-u) = \gamma(u)$.

Las 4 ecuaciones anteriores son completamente independientes. Conociendo el valor de γ y u, podrían usarse para encontrar el valor de cualquier componente del campo en función de las demás. Pero una característica curiosa que tienen es que pueden usarse también para encontrar el valor de gamma.

Si reemplazamos el B_z de la Ec. (1.24) y el E_y de la Ec. (1.25) en la ecuación para B_z' (Ec. 1.22) obtenemos:

$$B_{z}' = \gamma \left[\gamma \left(B_{z}' + \frac{u}{c} E_{y}' \right) - \frac{u}{c} \gamma \left(E_{y}' + \frac{u}{c} B_{z}' \right) \right]$$

y reuniendo los términos comunes obtenemos:

$$\left[1 - \gamma^2 \left(1 - \frac{u^2}{c^2}\right)\right] B_z' = 0$$

Puesto que suponemos que esta relación es válida para cualquier campo magnético, entonces:

$$\gamma = \frac{1}{\sqrt{1 - u^2/c^2}}$$

Proposición 1.4

Transformaciones de Lorentz-Einstein (TLE). Las transformaciones de coordenadas que dejan covariantes las ecuaciones de Maxwell ante cambios de observador inercial con velocidad relativa $u_x = u$ son:

$$t' = \gamma (t - ux/c^2)$$

$$x' = \gamma (-ut + x)$$

$$y' = y$$

$$z' = z$$
(1.26)

donde:

$$\gamma \equiv \frac{1}{\sqrt{1 - u^2/c^2}}\tag{1.27}$$

se conocerá en lo sucesivo como el factor de Lorentz o factor de Einstein.

Una interesante consecuencia matemática de todo el razonamiento anterior es:

Proposición 1.5

La velocidad de la luz es la máxima velocidad relativa. Dado que $\gamma>0$ y es real, es fácil mostrar que siempre:

$$0 \le u < c$$

.

1.7. Propiedades de las TLE

Las transformaciones de Lorentz-Einstein juegan un papel central en el estudio de todas las propiedades del espacio-tiempo que se derivan de los postulados de la relatividad.

Postulado 1.6

Postulado de relatividad espacial. Todas las leyes de la física son covariantes bajo las transformaciones de Lorentz-Einstein.

1.7.1. Unidades luz

La característica más notable de las TLE es que combinan espacio y tiempo en un mismo conjunto de ecuaciones de transformación. Este hecho de entrada rompe con el tiempo absoluto de la física newtoniana.

Al hacerlo sin embargo crea el problema de que en una misma ecuación (y en otros contextos en la teoría) tengamos cantidades muy diferentes desde el punto de vista físico y dimensional como lo son el tiempo y el espacio.

Una manera de subsanar este inconveniente es midiendo una de estas cantidades con unidades análogas a la otra. En Astronomía estamos por ejemplo acostumbrado a medir las distancias con unidades de tiempo cuando decimos que la estrella más cercana esta a 4.2 años-luz (al) de distancia. Dada una cantidad x, medida en unidades de longitud, la cantidad equivalente medida en unidades de tiempo será:

$$x_L = \frac{x}{c}$$

donde $[x_L]$ =sl (segundos luz).

Menos frecuente es usar unidades de distancia para referirse al tiempo. De manera análoga a como medimos 1 segundo-luz (sl), podemos definir 1 metro-luz como el tiempo que le toma a la luz recorrer un metro. El tiempo t_L en metros luz se calcula como:

$$t_I = ct$$

En unidades luz, la velocidad (la rapidez o cualquier componente) es:

$$v_L = \frac{\mathrm{d}x_L}{\mathrm{d}t} = \frac{1}{c}\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{v}{c}$$

1.7.2. La TLE como una rotación hiperbólica

Las transformaciones de Lorentz en términos de cantidades escritas en unidades luz serán:

$$t' = \gamma (t - u_L x_L)$$

$$x'_L = \gamma (-u_L t + x_L)$$

o bien:

$$t'_{L} = \gamma (t_{L} - u_{L}x)$$

$$x' = \gamma (-u_{L}t_{L} + x)$$

En ambos casos podemos si definimos $u_L \equiv u/c$, que no es otra cosa que la rapidez medida en unidades luz, las TLE se pueden escribir de forma:

$$\left(\begin{array}{c}t'\\x'_L\end{array}\right) = \Lambda(u_L)\left(\begin{array}{c}t\\x_L\end{array}\right)$$

donde

$$\Lambda(u_L) \equiv \left(egin{array}{cc} \gamma & -\gamma u_L \ -\gamma u_L & \gamma \end{array}
ight)$$

$$y \gamma = (1 - u_L^2)^{-1/2}$$
.

Esta matriz tiene dos propiedades interesantes:

- 1. det $\Lambda = 1$ 2. $\Lambda(u_L)^{-1} = \Lambda(-u_L)$

Que son las mismas propiedades de las matrices de rotación:

$$R(\theta) \equiv \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

lo que sugiere que podemos considerarla como tal. Pero hay un inconveniente. Los signos de la diagonal de la matriz TLE no son contrarios. Pero hay una solución para ello y es usar una matriz de rotación hiperbólica:

$$R_h(\phi) \equiv \begin{pmatrix} \cosh \phi & \sinh \phi \\ \sinh \phi & \cosh \phi \end{pmatrix}$$

donde ϕ más que un ángulo, es un parámetro de rotación.

Si hacemos la identificación:

$$\cos \phi \equiv \gamma$$

es fácil probar que

$$\sin \phi = \gamma u_L$$

por lo que concluímos que la transformación que relaciona las coordenadas espacio-tiempo de dos observadores inerciales con velocidad relativa u_L es una rotación hiperbólica con parámetro $\cos \phi = \gamma(u_L)$.

Definición 1.3

Vector posición en el espacio-tiempo. Al vector:

$$x^{\mu} = \begin{pmatrix} t \\ x_L \\ y_L \\ z_L \end{pmatrix}$$

lo llamaremos el vector posición en el espacio-tiempo.

1.7.3. Las TLE y la notación de Einstein

Otra manera de escribir la TLE aprovechando que puede expresarse matricialmente es:

$$x'_{\mu} = \sum_{\nu} \Lambda_{\mu\nu} x_{\nu}$$

donde $\mu, \nu: 0(t), 1(x), 2(y), 3(z)$ y $\Lambda_{\mu\nu}$ son las componentes de la matriz de rotación.

Con lo común que será manipular expresiones como estas, estar escribiendo sumatorias por todas partes se hace muy incómodo. Para evitarlo Einstein invento una notación que se vale de una importante propiedad matemática.

Definición 1.4

componentes covariantes y contravariantes de un vector. Dado un espacio coordenado de 4 dimensiones, y un conjunto de 4 vectores \vec{e}_0 , \vec{e}_1 , \vec{e}_2 , \vec{e}_3 no paralelos entre sí (que llamaremos base). Cualquier vector \vec{v} en el espacio tiene asociados 4 números que llamamos sus componentes, definidos de la siguiente maneral:

1. Componentes contravariantes, $\vec{v}:(v^0,v^1,v^2,v^3)$, que son tales que:

$$\vec{v} = v^0 \vec{e}_0 + v^1 \vec{e}_1 + v^2 \vec{e}_2 + v^3 \vec{e}_3$$

Los llamamos *contravariantes* porque si un cambio de escala modifica las longitudes de \vec{e}_{μ} por un factor k, las componentes v^{μ} se modificaran por un factor 1/k (*contrario* a los vectores de base).

2. **Componentes covariantes**, \vec{v} : (v_0 , v_1 , v_2 , v_3), que son tales que:

$$v_0 = \vec{v} \cdot \vec{e}_0$$
, $v_1 = \vec{v} \cdot \vec{e}_1$, $v_2 = \vec{v} \cdot \vec{e}_2$, $v_3 = \vec{v} \cdot \vec{e}_3$

Los llamamos *covariantes* porque si un cambio de escala modifica las longitudes de \vec{e}_{μ} por un factor k, las componentes v^{μ} se modificaran por un factor k (*contrario* a los vectores de base).

Las componentes contravariantes y covariantes de un vector coinciden si: 1) El producto punto es el definido en el espacio euclidiano y 2) si los vectores de la base son ortogonales^a.

Nótese que en términos compactos cualquier vector se puede escribir en términos de sus componentes contravariantes como:

$$\vec{v} = \sum_{\mu} v^{\mu} \vec{e}_{\mu}$$

Para abreviar la expresión anterior usaremos en lo sucesivo la convención de

^aUn video con una explicación de la diferencia entre componentes contravariantes y covariantes puede encontrarse aquí: https://www.youtube.com/watch?v=CliW7kSxxWU

que cuándo en una suma, los índices se repiten (normalmente en posiciones covariantes y contravariantes) entonces, la sumatoria correspondiente al índice se puede eliminar. Al índice lo llamamos también un *índice mudo* y su nombre puede cambiarse a voluntad. Así:

$$\vec{v} = \sum_{\mu} v^{\mu} \vec{e}_{\mu} = v^{\mu} \vec{e}_{\mu} = v^{\nu} \vec{e}_{\nu}$$

En lo sucesivo y en un espíritu similar, usaremos la expresion v^{μ} para referirnos al vector \vec{v} mismo.

En términos de la notación de Einstein y de las componentes contravariantes del vector posición en el espacio tiempo x^{μ} las TLE se pueden escribir como:

$$x^{\mu'} = \Lambda^{\mu'}_{\nu} x^{\nu}$$

aquí ν es un índice mudo y μ' es el índice de la ecuación.

Las componentes explícitas de la matriz $\Lambda_{\nu}^{\mu'}$ son, cuando la velocidad va en la dirección del eje x:

$$\Lambda_0^{0'} = \Lambda_1^{1'} = \gamma$$
 $\Lambda_2^{2'} = \Lambda_3^{3'} = 1$
 $\Lambda_1^{0'} = \Lambda_0^{1'} = -u_L \gamma$

1.7.4. Las TLE generales

Las transformaciones deducidas hasta aquí asumían que la velocidad relativa entre los sistemas de referencia inerciales iba en la dirección del eje x. Aunque siempre es posible hacer esa elección, puede ser también común que otras direcciones sean más importantes para definir nuestro sistema de coordenadas. Por tal razón tiene mucho interés escribir las TLE cuando \vec{u} es arbitraria.

Proposición 1.7

Transformaciones de Lorentz-Einstein vectoriales. Si dos sistemas de referencia O y O' tienen velocidad relativa \vec{u} , sus medidas de espacio y tiempo se relacionan a través de:

$$t' = \gamma \left(t - \vec{u}_L \cdot \vec{r}_L \right) \tag{1.28}$$

$$\vec{r}_L' = \vec{r}_L + \left(\frac{\gamma - 1}{u_L^2} \vec{u}_L \cdot \vec{r}_L - \gamma t\right) \vec{u}_L \tag{1.29}$$

Esta transformación general puede entenderse si se escribe $\vec{r}=r_{\parallel}\hat{u}+r_{\perp}\hat{v}$, donde $\hat{v}\cdot\hat{u}=0$. Remplazando, la transformación queda:

$$t' = \gamma \left(t - u_L r_{\parallel} \right)$$

$$r'_{\parallel} = r_{\parallel} + \left(\frac{\gamma - 1}{u_L^2} u_L r_{\parallel} - \gamma t \right) u_L$$

$$= \gamma \left(-u_L t + r_{\parallel} \right)$$

$$r'_{\perp} = r_{\perp}$$
(1.30)

que es exactamente la TLE original.

Es posible probar que las componentes de la matriz de rotación del TLE en el caso general son:

$$\Lambda_0^{0'} = \gamma \Lambda_i^{0'} = \Lambda_0^{i'} = -\gamma u_L^i \Lambda_j^{i'} = \delta_{ij} + (\gamma - 1) u_L^i u_L^j / u_L^2$$

1.7.5. El valor del factor de Lorentz-Einstein

Las TLE dependen del valor de u_L y del factor de Lorentz γ . Es importante familiarizarse con el valor de estas cantidades.

La primera propiedad importante es que $u_L < 1$ y por lo tanto $\gamma > 1$. Ahora bien para velocidades comunes (la velocidad de un vehículo, un avión, un planeta, incluso una estrella o una galaxia), $u_L \ll 1$. Por la misma razón entonces el factor se puede expandir usando el teorema del binomio:

$$\gamma = \frac{1}{\sqrt{1 - u_L^2}} = 1 + \frac{u_L^2}{2} + \mathcal{O}(u_L^3)$$

o lo que es lo mismo:

$$\gamma - 1 = \frac{u_L^2}{2} + \mathcal{O}(u_L^3)$$

A menudo es más fácil calcular $\gamma-1$ que γ mismo.

Un gráfico del factor de Lorentz como función de la fracción u_L se muestra en la figura abajo.

(Algoritmo 1.1)

```
from numpy import log10,sqrt,logspace
us=logspace(log10(1e-5),log10(0.9999),1000)
gammas=1/sqrt(1-us**2)-1
gamma_approx=us**2/2

import matplotlib.pyplot as plt
fig=plt.figure()
ax=fig.gca()

ax.plot(us,gammas,label='Exacto')
ax.plot(us,gamma_approx,label='Aprox. binomial')
```

```
ax.set_xscale("log")
ax.set_yscale("log")
ax.set_xlim((1e-5,1e0))
ax.set_ylim((1e-11,1e1))

ax.set_label(r"$\( \frac{1}{3} \)
ax.set_ylabel(r"\( \frac{1}{3} \)
ax.set_ylabel(r"\( \frac{1}{3} \)
ax.grid()

ver Figura 1.1
```


Figura 1.1: Figura correspondiente al código 1.1.

Nótese que la aproximación $\gamma=u_L^2/2$ es suficientemente buena (error relativo menor a 1 %) hasta $u_L\approx$ 0,2

1.7.6. Mapas de la TLE

¿Cómo se ven gráficamente las TLE?. Para mostrar cómo se ven la TLE podemos definir esta rutina general que permite el cálculo de $x^{\mu'}$ dados los valores de x^{μ} :

```
def Lambda_TLE(u):
    from numpy import zeros
    Lambda=zeros((4,4))

#Factor de Lorentz
    umag=(u[0]**2+u[1]**2+u[2]**2)**0.5
    gamma=(1-umag**2)**(-0.5)
#Lambda
```

```
Lambda[0,0]=gamma
Lambda[0,1:]=-u*gamma
Lambda[1:,0]=-u*gamma
for i in range(1,4):
    for j in range(1,4):
        dij=0
        if i==j:dij=1
        Lambda[i,j]=dij+(gamma-1)*u[i-1]*u[j-1]/umag**2
return Lambda
```

Construyamos por ejemplo una transformación sencilla escogiendo la velocidad en la dirección de x:

```
from numpy import array
  u=array([0.2,0.0,0.0])
  Lambda=Lambda_TLE(-u)
Lambda (u = [0.2 \ 0. \ 0.]) =
[[1.02062073 0.20412415 0.
                                               ]
                                     0.
                                               1
 [0.20412415 1.02062073 0.
                                     0.
 [0.
             0.
                        1.
                                     0.
 ГО.
             0.
                         0.
                                     1.
                                               11
```

Una manera de visualizar las transformaciones de Lorentz-Einstein es ver qué valor de t', x' toman eventos con valor de t o x constantes:

(Algoritmo 1.3)

```
#Escoge valores de x:
from numpy import linspace
xs=linspace(0,rmax,rmax+1,endpoint=True)
ts=linspace(0,rmax,rmax+1,endpoint=True)
#Calcula valores de t' y x' usando la matriz:
from numpy import zeros_like
tps=zeros_like(xs)
xps=zeros_like(xs)
from numpy import matmul
import matplotlib.pyplot as plt
fig=plt.figure(figsize=(5,5))
ax=fig.gca()
for t in xs:
    for i,x in enumerate(xs):
        tps[i],xps[i],yp,zp=matmul(Lambda,[t,x,0,0])
    ax.plot(tps,xps,'r-')
for x in xs:
    for i,t in enumerate(ts):
        tps[i],xps[i],yp,zp=matmul(Lambda,[t,x,0,0])
```

```
ax.plot(tps,xps,'r-')

#Decoración
ax.set_xticks(xs)
ax.set_yticks(xs)
ax.set_xlabel("$t$")
ax.set_ylabel("$x$")
ax.set_xlim((0,rmax))
ax.set_ylim((0,rmax))
ax.grid()
fig.tight_layout()
```


Figura 1.2: *Figura correspondiente al código* **1.3**.

1.8. Consecuencias de las TLE

Las TLE que introdujimos en las secciones anteriores no serían más que reglas matemáticas de transformación requeridas para juzgar si una ley física lo es realmente, sin mayores consecuencias en nuestro entendimiento del Universo. A excepción del resultado un poco sorprendente de que la velocidad de la luz es la

misma independiente del sistema de referencia en el que se la mida, las transformaciones no parecerían contener ninguna consecuencia física muy relevante. Sin embargo, cuando se examinan con cuidado, y esto fue justamente lo que hicieron Albert Einstein y Mileva Maric, se descubre que las transformaciones esconden algunos "secretos" bien guardados de la naturaleza del espacio-tiempo. Esencialmente, nos obligan a repensar la manera como pensamos en algunos de los conceptos más fundamentales de la física: el espacio, el tiempo, la simultaneidad, la causalidad, entre otros.

Hemos dicho que una de las ideas más importantes de fondo en la relatividad es que el Universo esta "sumergido" en un continuo espacio-temporal en el que coexisten aquí y allá, hoy, ayer, mañana. Todos los eventos del universo están reunidos en una sola entidad geométrica. Moverse dentro del espacio-tiempo tan solo implica una rotación de los ejes coordenados.

El gran reto de esta sección será mostrar como las propiedades del espaciotiempo se ven reflejadas en las cantidades que efectivamente medimos en los laboratorios.

1.8.1. Transformación de los intervalos y el gradiente

Si tomamos dos eventos en el espacio tiempo E_1 y E_2 con coordenadas x_1^{μ} : $(t_1, x_{1L}, y_{1L}, z_{1L})^{\mathrm{T}}$ y x_2^{μ} : $(t_2, x_{2L}, y_{2L}, z_{2L})^{\mathrm{T}}$, la *diferencia* entre sus coordenadas espacio-temporales, medida para dos observadores inerciales es de forma general igual a:

$$\Delta x^{\mu'} = \Lambda^{\mu'}_{\nu} \Delta x^{\nu}$$

donde hemos usado la convención de suma de Einstein (en el lado derecho de la ecuación hay una suma sobre el índice mudo ν que hemos obviado).

En la expresión anterior sabemos que $\Lambda^{\mu'}_{\nu}$ es la misma en todos los puntos del espacio-tiempo y por eso al calcular la diferencia entre las coordenadas de los eventos, no hemos cambiado esta cantidad.

Por otro lado las derivadas parciales respecto a cada coordenada se puede escribir como (ver Problemas al final del Capítulo):

$$\frac{\partial}{\partial x^{\mu'}} = \Lambda^{\nu}_{\mu'} \frac{\partial}{\partial x^{\nu}}$$

La forma matemática de la ecuación anterior (idéntica a la que define la TLE original) tiene una implicación más profunda de la que hemos mencionado. Una implicación que solo puede verse cuando se piensa el problema desde la perspectiva de las matemáticas. Notese que podemos escribir las componentes de la transformación de Lorentz-Einstein como:

$$\Lambda_{\nu}^{\mu'} \equiv \frac{\partial x^{\mu'}}{\partial x^{\nu}}$$

donde aquí $x^{\mu'}$ representa la función de transformación y no el valor de la coordenada. La inversa por su lado es:

$$\Lambda^{\nu}_{\mu'} \equiv \frac{\partial x^{\nu}}{\partial x^{\mu'}}$$

Usando estas expresiones las leyes de transformación para el vector posición, el intervalo y el gradiente se pueden escribir como:

$$x^{\mu'} = \frac{\partial x^{\mu'}}{\partial x^{\nu}} x^{\nu}$$
$$\Delta x^{\mu'} = \frac{\partial x^{\mu'}}{\partial x^{\nu}} \Delta x^{\nu}$$
$$\partial_{\mu'} = \frac{\partial x^{\nu}}{\partial x^{\mu'}} \partial_{\nu}$$

donde hemos usado la notación abreviada para la derivada parcial $\partial_{\mu} \equiv \partial/\partial x^{\mu}$.

Definición 1.5

Tensor covariante y contravariante. Una cantidad física A^{μ} , se conoce como un **tensor contravariante.** de rango 1, si al realizar un cambio de coordenadas $x^{\mu'} = x^{\mu'}(x^{\nu})$, la cantidad transforma obedeciendo la regla:

$$A^{\mu'} = \frac{\partial x^{\mu'}}{\partial x^{\nu}} A^{\nu}$$

En contraposición, un **tensor covariante** de rango 1 A_{μ} , es aquel que transforma de acuerdo con:

$$A_{\mu'} = \frac{\partial x^{\nu}}{\partial x^{\mu'}} A_{\nu}$$

Esta definición es general, sin importar el tipo de transformación de coordenadas que realicemos en el espacio-tiempo, sean estas las TLE o cualquier otra transformación.

De acuerdo con la definición anterior el vector posición x^{μ} , el intervalo Δx^{μ} son tensores contravariantes de rango 1 bajo las TLE, mientras que el gradiente ∂_{μ} es un tensor covariante de rango 1 bajo las mismas transformaciones.

En términos explícitos, podemos escribir los intervalos en la TLE simple como:

$$\Delta t' = \gamma \left(\Delta t - u_L \Delta x_L \right)$$

$$\Delta x'_L = \gamma \left(-u_L \Delta t + \Delta x_L \right)$$

$$\Delta y'_L = \Delta y_L$$

$$\Delta z'_L = \Delta z_L$$

o de forma más general:

$$\Delta t' = \gamma \left(\Delta t - \vec{u}_L \cdot \Delta \vec{r}_L \right) \tag{1.31}$$

$$\Delta \vec{r}_L' = \Delta \vec{r}_L + \left(\frac{\gamma - 1}{u_L^2} \vec{u}_L \cdot \Delta \vec{r}_L - \gamma \Delta t\right) \vec{u}_L \tag{1.32}$$

Y el gradiente:

$$\begin{aligned} & \partial_t' = \gamma \left(\partial_t + u_L \partial_{x_L} \right) \\ & \partial_{x_L'} = \gamma \left(u_L \partial_t + \partial_{x_L} \right) \\ & \partial_{y_L'} = \partial_{y_L} \\ & \partial_{z_I'} = \partial_{z_L} \end{aligned}$$

1.8.2. Dilatación temporal

Definición 1.6

Duración. La duración T de un fenómeno que comienza en un evento E_1 y termina en un evento E_2 es la diferencia entre las coordenadas temporales de los dos eventos:

$$T \equiv t_2 - t_1 = \Delta t$$

La *duración* es solo una parte de la diferencia que existe entre dos eventos. Durante la historia de la física esta cantidad ha tenido un papel central en la descripción de los fenómenos. En los *Principia* por ejemplo, Newton señala que este número solo difiere de un observador a otro por las unidades que utilizan para medir el tiempo, pero que en el fondo todos los observadores miden la misma cantidad y si usaran las mismas unidades, obtendrían el mismo resultado. Esta idea está intímamente ligada con el concepto *tiempo absoluto*, que era la *creencia* (que hoy sabemos es infundada) de que existe algo así como un tiempo registrado por los *relojes de dios* (una entidad sobrenatural hipotética que todo lo conoce) que es común a todos. El tiempo absoluto fue central en la filosofía y la física pre relativistica.

Por las transformaciones de Lorentz sabemos que la duración registrada por dos observadores inerciales es definitivamente distinta, incluso si usan las mismas unidades. Así por ejemplo, si la velocidad relativa entre los observadores es arbitraria \vec{u} :

$$T = \gamma \left(T' + \vec{u}_L \cdot \Delta \vec{r'}_L \right)$$

que es lo mismo que

$$T = \gamma \left(T' + u_L \Delta x' \right)$$

donde x' es la coordenada espacial en dirección de \vec{u} .

Sistemas de referencia del Viajero y del Laboratorio. La elección de cuál es el observador primado y cuál es el no primado en relatividad es completamente arbitraria y simétrica. Esta idea esta en el corazón

Nota (Cont.)

mismo de los postulados de la teoría. Sin embargo, conceptualmente, la elección apropiada de uno u otro, puede llegar a ser muy importante para ilustrar las consecuencias de las TLE.

En lo sucesivo llamaremos al sistema primado **sistema de referencia del viajero**, **observador viajero** o simplemente el **Viajero** (con mayúscula inicial). Aunque la palabra viajero da a entender que tiene un estado de movimiento absoluto, esta elección simplemente refleja la importancia que daremos a las medidas del *Observador* que se define a continuación.

El observador no primado y al que llamaremos aquí el **sistema de referencia del observador** o simplemente **el Observador** (con mayúscula inicial), será cualquier sistema en el Universo donde se quiere saber el valor de aquellas cantidades físicas medidas por el Viajero, pero en términos de las coordenadas locales. A veces al Observador también se lo conoce como el Laboratorio.

Normalmente quién estudia un fenómeno en relatividad se considera así mismo el Observador, de modo que las etiquetas de Viajero y Observador pueden intercambiarse.

En lo sucesivo daremos las observaciones del Viajero (sistema primado), como fuente de muchos de los datos físicos primarios (en este sentido este observador se comporta como el experimentador que se pone en una situación incómoda para estudiar el mundo), hará que sea mucho más común usar las TLE inversas:

$$\Lambda^{\nu}_{u'}(u) = \Lambda^{\mu'}_{\nu}(-\vec{u})$$

en lugar de las transformaciones originales, es decir de aquellas que nos dan las observaciones del Observador en función de las del Viajero.

Entender esta última expresión no es fácil. En ella se combinan tiempos con intervalos espaciales $\Delta x'$ de una manera que no es común para nosotros en la física clásica. ¿Qué significa que la duración de un fenómeno para el Observador dependa no solo de su duración para el Viajero, sino de la ubación espacial de los eventos que lo limitan?. Es extraño, pero debemos tratar de entenderlo.

Podemos entender este resultado de dos maneras diferentes.

La primera es apelar a los *mapas de las transformaciones* que construimos en las secciones anteriores. Consideremos dos sistemas de coordenadas que tienen velocidad relativa $u_L = 0.3$:

```
from numpy import array
u=array([0.3,0,0])
```

Ahora tomemos dos fenómenos limitados por tres eventos E_0 y E_1 y E_2 con coordenadas para el viajero iguales a:

```
#Las coordenadas son: t', x', y', z'
EOp=array([0,0,0,0])
E1p=array([5,0,0,0])
E2p=array([5,2,0,0])
```

Los dos fenómenos que podemos llamar E_0E_1 y E_0E_2 empiezan en el mismo evento, E_0 . Los eventos 1 y 2 ocurren en el mismo instante en el futuro, pero en lugares diferentes en el laboratorio. E_2 ocurre además en el mismo lugar que el evento inicial E_0 .

Las coordenadas de los evento para el observador, se pueden calcular usando la matriz de la transformación de Lorentz, que podemos calcular con la rutina Lambda_TLE que introdujimos en una sección anterior:

```
from export import Lambda_TLE

#Calculamos la inversa porque queremos pasar de 0' a 0
Lambda=Lambda_TLE(-u)

#Aplicamos las transformaciones
from numpy import matmul
E0=matmul(Lambda,E0p)
E1=matmul(Lambda,E1p)
E2=matmul(Lambda,E2p)

E1 = [0. 0. 0. 0.]
E2 = [5.24142418 1.57242726 0. 0. ]
```

Como era de esperarse las coordenadas para los dos observadores difieren de forma no trivial.

En el siguiente algoritmo usamos la rutina mapa_TLE para mostrar la malla de valores constantes de t y x para los dos observadores inerciales. Allí representamos además la posición de los eventos

```
(Algoritmo 1.4)
from export import mapa_TLE
fig=mapa_TLE(*u)
ax=fig.gca()
ax.annotate("E0",xy=(E0[0],E0[1]),arrowprops={'fc':'k'});
ax.annotate("E1",xy=(E1[0],E1[1]),arrowprops={'fc':'k'});
ax.annotate("E2",xy=(E2[0],E2[1]),arrowprops={'fc':'k'});
ver Figura 1.3
```

Como vemos en el gráfico, la duración del fenómeno E_0E_1 que para el Viajero es 5, es mayor para el Observador (5.24). Por otro lado el fenómeno E_0E_1 que también dura 5 para el Viajer, pero que ocurre en lugares muy separados del espacio, tiene para el Observador una duración mucho mayor (5.87).

Tres cosas son claras sin embargo:

 $E3 = [5.87039509 \ 3.66899693 \ 0.$

Figura 1.3: Figura correspondiente al código 1.4.

- 1. Las duraciones de los eventos no son las mismas registradas por distintos observadores y esto contradice abiertamente nuestras intuiciones clásicas del tiempo.
- las duraciones son mayores para el Observador que para el Viajero. Este resultado se conoce de forma general en relatividad como dilatación del tiempo.
- 3. La duración relativa de los fenómenos depende del lugar del espacio en el que ocurran los eventos que los limitan.
- 4. La diferencia entre la duración para el Viajero y el Observador tiene un valor mínima si el fenómeno ocurre en reposo en el laboratorio (los eventos que lo limitan ocurren en el mismo lugar).

Este último resultado conduce a una importante definición en relatividad:

Definición: Duración propia. Llamamos **duración propia** (o **tiempo propio**) y la denotamos como T_0 a la duración que tiene un fenómeno en un sistema de referencia inercial en el cual sus eventos límite ocurren en el mismo del espacio.

En el ejemplo anterior la duración propia del fenómeno E_0E_1 es $T_0=5$ y es la que es medida por el Viajero, que es donde los dos eventos ocurren en el mismo lugar del espacio $\Delta x'=0$.

Sin embargo, la duración propia del fenómeno E_0E_2 no es 5 (la que mide el Viajero) ni 5.8 (la que mide el Observador). Para encontrar la duración propia de este fenómeno tendríamos que construir un sistema de referencia en el que E_0 y E_2 ocurrieran en el mismo lugar del espacio. Para ello, es claro de la figura anterior que el nuevo sistema de referencia debería tener una velocidad v mayor que la velocidad v del viajero.

En el gráfico abajo vemos que si nos montamos en un sistema de referencia con una velocidad $v_L = 3,7/5,9$, los dos eventos E_0 y E_2 ocurren en el mismo lugar del espacio:

(Algoritmo 1.5)

```
from export import mapa_TLE
v=array([3.7/5.9,0,0])
fig=mapa_TLE(*v)
ax=fig.gca()
ax.annotate("E0",xy=(E0[0],E0[1]),arrowprops={'fc':'k'});
ax.annotate("E1",xy=(E1[0],E1[1]),arrowprops={'fc':'k'});
ax.annotate("E2",xy=(E2[0],E2[1]),arrowprops={'fc':'k'});
ver Figura 1.4
```

La duración registrada por este nuevo sistema de referencia ahora si será la duración propia del fenómeno E_0E_2 , que como vemos es aún menor que 5. ¿Pero que es este esta velocidad $v_L=3.7/5.9$? Estas no es otra cosa que la velocidad obtenida dividiendo el desplazamiento en x, Δx_L y la duración T para el Observador:

$$v_L \equiv \frac{\Delta x_L}{T}$$

a la que llamaremos la velocidad asociada con el fenómeno.

Ahora la relación entre las duraciones estará dada por:

$$T = \gamma(v_L) (T' + v_L \Delta x')$$

= $\gamma(v_L) T_0$

puesto que en este sistema de referencia $\Delta x' = 0$.

Proposición 1.8

La duración propia es la mínima duración. La duración T de un fenómeno con una velocidad asociada v_L es:

$$T = \gamma(v_L)T_0$$

donde T_0 es su duración propia del fenómeno, $v_L = \Delta x_L/T$ es la velocidad asociada al fenómeno y $\gamma(v_L) = (1-v_L^2)^{-1/2}$. T es siempre mayor que la duración propia o en otras palabras *la duración propia es la mínima duración*

Figura 1.4: *Figura correspondiente al código* **1.5**.

Proposición 1.8 (Cont.)

que podemos asociar a un fenómeno.

Vemos en esta definición que el factor de Lorentz-Einstein, γ juega un papel muy importante porque nos da la razón entre la duración de un fenómeno y su duración propia:

$$\gamma = \frac{T}{T_0}$$

Nota

Gamas distintos. Es importante también entender que el γ que asociamos a un fenómeno, no es conceptualmente el mismo que el que usamos en las transformaciones de Lorentz. La razón más obvia es que el γ de un fenómeno, depende de una velocidad, la *velocidad asociada al fenómeno* que puede o no ser una velocidad real. En cambio el γ de las transformaciones de Lorentz esta asociado con la velocidad relati-

Nota (Cont.)

va entre dos sistemas de referencia muy reales. Las fórmulas son las mismas, el origen del factor es el mismo pero conceptualmente las dos cantidades son distintas.

Con todos estos elementos a la mano podemos finalmente formular este resultado:

Proposición 1.9

Dilatación del tiempo. La duración de un fenómeno es siempre mayor si se percibe el fenómeno en movimiento a si se lo hace en reposo.

Un ejemplo clásico de esto es la desintegración radioactiva de una partícula elemental. Si la partícula está en reposo respecto al Observador, su tiempo de decaimiento será el tiempo propio. En cambio si la partícula se mueve con velocidad constante v_L con respecto a él, su tiempo de decaimiento será mayor. Las partículas duran más en movimiento que en reposo.

En el apartado anterior definimos cantidades asociadas a los eventos extremos de un fenómeno (cuándo y dónde empieza y cuándo y dónde termina). Geométricamente siempre es posible trazar una línea recta entre dos fenómenos del espacio tiempo. Esta línea recta tiene un nombre muy específico en relatividad:

Definición 1.7

intervalo espacio-temporal. Dados dos eventos E_1 y E_2 , el intervalo espacio-temporal *S* entre ellos es el segmento de línea que los une.

¿Qué es físicamente el intervalo espacio-temporal? Como cada punto del segmento es en sí mismo un evento, el intervalo es un fenómeno también (una colección de eventos). ¿Qué relación guardan esos eventos?. He ahí el problema.

Comencemos por el caso más simple. Dos eventos que ocurren en el mismo lugar del espacio. En ese caso los puntos del intervalo corresponden a los eventos que le ocurren a un observador local que esta justamente en reposo en el lugar donde ocurren los eventos.

Consideremos ahora dos eventos que ocurren en lugares distintos del espacio pero tal que $\Delta x_L < t$. En este caso, siempre es posible encontrar un observador inercial tal que los dos eventos ocurran en el mismo lugar del espacio. Este intervalo y el anterior serán entonces conceptualmente equivalentes.

En los dos casos anteriores y por las definiciones anteriores, siempre es posible definir el tiempo propio entre los eventos. Es decir siempre podemos asociar al intervalo un tiempo. Es por eso que a estos intervalos los llamamos intervalos **temporaloides** (en inglés *time-like*).

Pero ¿qué pasa en el caso en el que $\Delta x_L > t$? En este caso, por las propiedades de las rotaciones definidas por las TLE, no habrá ningún observador para el cuál los eventos ocurran en el mismo lugar del espacio. Sin embargo si es posible encontrar un observador para el cuál los dos eventos ocurren el mismo momento del tiempo (son simultáneos). Están en lugares distintos del espacio pero son simultáneos para este observador. Por esta razón llamamos a estos **intervalos espacialoides** (en inglés *space-like*).

¿Y que pasa si $\Delta x_L = t$? Por definición este intervalo estará limitado por eventos en los que solo puede estar un rayo de luz (o cualquier otra onda que viaje a esa velocidad). Por esa razón a estos intervalos los llamamos **intevalos luminoides**.

Definición 1.8

línea de universo. La línea de universo de una partícula es la colección de todos los eventos en los que está la partícula al pasar el tiempo. Geométricamente, la línea de universo es la suma de intervalos microscópicos temporaloides entre puntos adyacentes de su trayectoria.

1.8.3. El postulado de los relojes

En las sección anterior existe una imprecisión. Definimos la duración propia entre dos eventos (separados por un intervalo temporaloide) como la duración medida por un observador en el que los eventos se registran en el mismo lugar del espacio. Sin embargo nunca específicamos el lugar de los eventos intermedios del fenómeno.

Así por ejemplo, si el fenómeno es el movimiento de una partícula en un sincrotrón, para el Observador el fenómeno "la partícula da una vuelta completa" esta limitado por eventos que ocurren en el mismo lugar del espacio. Podría uno decir que la duración propia del fenómeno es la que mide por tanto el observador. Pero podemos también preguntarnos ¿qué miden los relojes de la partícula?

Esta pregunta no tiene ninguna respuesta en el marco de la teoría tal y como ha sido formulada hasta ahora. La razón es sencilla. No existe ningún sistema de referencia inercial que podamos asociar a la partícula. Todos los resultados obtenidos hasta ahora solo aplican para este tipo de sistemas de referencia.

¿Qué hacer entonces?. Una construcción posible sería la de suponer que lo que observa la partícula (al menos en términos de la medida de duraciones) es la acumulación de los efectos observados por una infinidad de sistemas de referencia inerciales que instantáneamente se mueven con la velocidad (variable) v(t) de la partícula.

Podemos dividir la línea de universo de la partícula en intervalos temporaloides infinitesimales. La duración propia de cada subintervalo será:

$$d\tau = \frac{1}{\gamma}dt$$

donde por razones que veremos en un momento, hemos llamado d τ y dt y no d T_0 y dt, a las duraciones propia y medida del intervalo infinitesimal.

La construcción anterior se puede expresar matemáticamente diciendo que el tiempo propio asociado a la trayectoria de la partícula será:

$$T_0 = \int_0^t \mathrm{d}\tau$$

Pero esto, ¡no es más que una suposición!. Pero es una suposición tan importante que ha sido elevada a la altura de un postulado:

Postulado: Postulado de los relojes o hipótesis de los relojes. El tiempo propio medido por un observador que se mueve en una trayectoria espacial con velocidad variable $\vec{v}(t)$ (tiempo medido por relojes ideales transportador por el observador) entre dos eventos limitados por $t=t_1$ (inicio de la línea de universo) y $t=t_2$ es igual a:

$$\Delta \tau[v](t) = \int_0^t \sqrt{1 - v(t)^2/c^2} dt$$

Varias anotaciones:

- Representamos el tiempo propio como τ por que de la misma manera que t puede usarse como un parámetro para distinguir cada punto de la línea de universo, τ puede jugar también el mismo papel.
- La notación $\Delta \tau[v]$ indica que τ es un funcional de v(t). En términos físicos, por cada v(t) hay un τ diferente.
- La duración propia T_0 que habíamos definido antes entre dos eventos, es igual al tiempo propio $\tau(T)$ medido a lo largo del intervalo entre ellos:

$$\Delta au = \frac{1}{\gamma} \Delta t$$

que es la forma más común en la que se presenta este resultado.

1.8.4. Contracción de longitudes

De la misma manera que podemos definir la duración de un fenómeno (una colección de intervalos temporaloides), se puede definir la longitud de un objeto (una colección de intervalos espacialoides).

Pensemos por ejemplo en una regla de 30 cm sobre una mesa. En un momento dado (un valor específico del tiempo) los eventos que definen el estado de los extremos de la regla, están naturalmente separados por intervalos espacialoides. Imaginemos que la regla rotará 180 grados. ¿Cómo se define la longitud de la regla? Ciertamente pensar en la longitud simplemente como la diferencia entre las posiciones espaciales de dos eventos cualquiera en los extremos no es adecuado. Uno podría definir como evento 1 "centímetro cero de la regla al principio" y el evento 2 "centrimetro 30 de la regla al final". Si se hiciera así la regla mediría 0 centímetros (porque después de la rotación en 180 grados el centímetro 30 quedaría en la misma posición que el centímetro 0).

Para definir la longitud de un objeto se debe tomar la posición espacial de sus extremos (de cualquier sección transversal) en el mismo tiempo.

Definición 1.9

Longitud de un objeto. Dado un *objeto* que esta limitado en un instante dado, por eventos espacialoides, definimos la longitud instantánea del objeto en una cierta dirección, como la diferencia entre las coordenadas espaciales en esa dirección de eventos que en el sistema de referencia ocurren simultáneamente.

¿Es la longitud de una regla transportada por el Viajero igual para el Viajero y el observador?. Los eventos E_1 y E_2 de nuestro ejemplo anterior satisfacen la condición de ser eventos espacialoides para ambos observadores.

Para el viajero la longitud de un objeto limitado por ellos será:

Lp=E2p[1]-E1p[1]

L (Viajero) = 2

El problema es que la longitud medida por el Observador no puede obtenerse de estos dos eventos puesto que en sus sistema de referencia ellos no son simultáneos. Para encontrar la longitud en este sistema, hay que encontrar un evento E_2 que sea para el observador simultáneo a E_1 . Veamos esto gráficamente:

Figura 1.5: Contracción de longitudes.

Por inspección en la figura se ve que al identificar ese evento, la diferencia de coordenadas será menor en el sistema de referencia del observador:

¿Cuál es esa diferencia?. Podemos usar las transformaciones de Lorentz para encontrarla. Para ello usemos:

$$\Delta x' = \gamma (-u_L \Delta t + \Delta x)$$

La separación espacial entre dos eventos que estén en los extremos de la regla, **siempre** será L_0 para el Viajero. Para el Observador la separación entre esos eventos solo será la longitud L si los eventos son tales que $\Delta t = 0$. De la anterior relación obtenemos entonces que:

$$L_0 = \gamma(-u_L 0 + L)$$

o bien

$$L_0 = \gamma L$$

Proposición 1.10

Contracción de Longitudes. La longitud de un objeto que se mueve, medida en la dirección de movimiento es siempre menor que su longitud medida en reposo:

$$L = \frac{1}{\gamma}L_0$$

1.8.5. Adición de velocidades

Una de las consecuencias más sonadas de las TLE es la manera como transforman las velocidades. De acuerdo con las Transformaciones de Galileo-Newton, si una partícula tiene una velocidad \vec{v}' para un Viajero que se mueve con velocidad relativa \vec{u} respecto a un Observador, su velocidad \vec{v} para el Observador será simplemente:

$$\vec{v} = \vec{u} + \vec{v}'$$

¿Qué pasa en el caso de la relatividad?. Para calcular la manera como se relacionan escojamos un sistema de ejes coincidentes (eje x en dirección de \vec{u}) y notemos que transcurrido un intervalo de tiempo infinitesimal dt' en el sistema de referencia del Viajero, el tiempo y las posiciones en los tres ejes medidas por el Viajero y el observador cambiarán de acuerdo con:

$$dt = \gamma (dt' + u_L dx'_L)$$

$$dx_L = \gamma (u_L dt + dx_L)$$

$$dy_L = dy'_L$$

$$dz_L = dz'_L$$

La velocidad instantánea se define como $d\vec{v}_L/dt$, de modo que dividiendo término a término los intervalos infinitesimales de espacio obtenemos:

$$v_{x} = \frac{u_{L} + v'_{xL}}{1 + u_{L}v'_{xL}}$$

$$v_{y} = \frac{1}{\gamma} \frac{v'_{yL}}{1 + u_{L}v'_{xL}}$$

$$v_{z} = \frac{1}{\gamma} \frac{v_{zL}}{1 + u_{L}v'_{xL}}$$

o si definimos:

$$D \equiv \frac{1}{1 + u_L v'_{\gamma L}}$$

entonces:

$$egin{aligned} v_x &= D(u_L + v_{xL}') \ v_y &= rac{D}{\gamma} v_{yL}' \ v_z &= rac{D}{\gamma} v_{zL}' \end{aligned}$$

Nótese que si \vec{v}' : (1,0,0) (un rayo de luz) entonces:

$$D = \frac{1}{1 + u_L}$$

y la velocidad medida por el observador será:

$$v_{xL} = \frac{1}{1 + u_I}(u_L + 1) = 1$$

Es decir, la teoría desarrollada es autoconsistente, en tanto la velocidad de un rayo de luz será la misma sin importar el observador.

Usando las transformaciones generales de Lorentz-Einstein es posible generalizar la ley de adición de velocidades relativistas como:

$$v_{\parallel L} = D(u_L + v'_{\parallel L})$$

$$v_{\perp L} = \frac{D}{\gamma} v'_{\perp L}$$
(1.33)

donde

$$D \equiv \frac{1}{1 + \vec{u}_L \cdot \vec{v}_L'}$$

1.8.6. Transformación de aceleraciones

Un procedimiento similar pero mucho más laborioso algebraicamente conduce al resultado:

$$a_{\parallel L} = \frac{D^3}{\gamma^3} a'_{\parallel L}$$

$$a_{\perp L} = \frac{D^3}{\gamma^2} \left[a'_{\perp L} + (\vec{v}'_L \cdot \vec{u}_L a'_{\perp L} - \vec{a}'_L \cdot \vec{u}_L v'_{\perp L}) \right]$$
(1.34)

En este último caso, nótese que si $\vec{v}' = 0$ (la partícula se encuentra en reposo respecto al Viajero), la tramsformación para la componente perpendicular de la aceleración se reduce a:

$$a_{\perp L}^0 = \frac{D^3}{\gamma^2} a_{\perp L}^{\prime 0}$$

donde el superíndice 0 indica que es la aceleración calculada para la partícula en reposo en el sistema del viajero.

1.9. El espacio-tiempo de Minkowski

Una forma poderosa de sintetizar todos los resultados anteriores fue presentada en un artículo en 1908 por Herman Minkowski quién había sido profesor de Albert Einstein en la Universidad. Al principio Einstein considero esta formulación de la teoría especial de la relatividad una curiosidad matemática. Esto fue hasta que en 1912 y después de 5 largos años de esfuerzos en la búsqueda de una *generalización* de la teoría, Einstein descubrió que la mejor manera de describir matemáticamente la relatividad era usando la aproximación geométrica de Minkowski.

1.9.1. La norma de Minkowski

Hasta ahora hemos usado los diagramas de espacio-tiempo como una *mera* herramienta gráfica para representar las TLE y sus consecuencias. Sin embargo es posible concebir los puntos en estos *diagramas* como formando un espacio geométrico con propiedades más generales.

Considere por ejemplo la situación representada con el siguiente algoritmo:

(Algoritmo 1.6)

```
from export import mapa_TLE
fig=mapa_TLE(ux=0.3,ngrid=20,nticks=20)
```

```
ax=fig.gca()
ax.plot([3,9],[3,7],'k-',lw=5)
ax=fig.gca()

ver Figura 1.6
```


Figura 1.6: *Figura correspondiente al código* **1.6**.

Vemos allí un intervalo espacio temporal (línea negra). Podemos usar las TLE o el mismo gráfico para encontrar las coordenadas espacio-temporales de los eventos que limitan el intervalo:

```
from numpy import array
#0bservador
E1=array([3,3,0,0])
E2=array([9,7,0,0])
#Viajero
Ep1=array([2.25,2.25,0,0])
Ep2=array([7.25,4.5,0,0])
```

Como vemos las cooredanadas espacio-temporales son muy diferentes al aplicar una transformación hiperbólica en el espacio-tiempo, lo que era de esperarse por las TLE. Si pensamos ahora el problema desde un punto de vista geométrico y

miramos el gráfico nos damos cuenta que hay una propiedad del intervalo que no puede ser distinta a pesar de la rotación hiperbólica. Esa propiedad es la *longitud* del intervalo. Pero, ¿cuánto vale esa longitud?.

Si usamos la *fórmula clásica* de la longitud (también llamada *norma euclidiana*), la distancia en el espacio-tiemp Δs entre los eventos sería:

$$\Delta s_{\mathrm{L,Euclidiana}}^2 = \Delta t^2 + \Delta x_L^2 + \Delta y_L^2 + \Delta z_L^2$$

obtenemos:

```
#0bservador
Ds2=(E2[0]-E1[0])**2+\
    (E2[1]-E1[1])**2+\
    (E2[2]-E1[2])**2+\
    (E2[3]-E1[3])**2

#Viajero
Dsp2=(Ep2[0]-Ep1[0])**2+\
    (Ep2[1]-Ep1[1])**2+\
    (Ep2[2]-Ep1[2])**2+\
    (Ep2[3]-Ep1[3])**2
```

Ds^2 euclidiana (Observador) = 52 Ds^2 euclidian (Viajero) = 30.0625

Como vemos las distancias calculadas entre los dos eventos no son las mismas. Este hecho es ciertamente preocupante puesto que una propiedad que debería ser obviamente la misma resulta relativa.

Nota

Unidades de ds. Como vemos las unidades de la amétrica ds son las mismas unidades que escojamos usar para t o para x. En la elección que hemos hecho en este libro, es decir, en unidades luz en el que el tiempo se mide en segundos y las distancias en segundos-luz, la métrica se escribe $\mathrm{d}s_L$ tiene unidades de tiempo.

Herman Minkowski encontró la solución a este problema, mostrando que la norma en el espacio-tiempo debía ser distinta:

$$\Delta s_{\mathrm{L,Minkowski}}^2 = \Delta t^2 - (\Delta x_L^2 + \Delta y_L^2 + \Delta z_L^2)$$

¿Por qué el signo menos?. Comprobémoslo numéricamente:

```
#Ubservador
Ds2=(E2[0]-E1[0])**2-\
    ((E2[1]-E1[1])**2+\
    (E2[2]-E1[2])**2+\
    (E2[3]-E1[3])**2)
#Viajero
Dsp2=(Ep2[0]-Ep1[0])**2-\
```

```
((Ep2[1]-Ep1[1])**2+\
(Ep2[2]-Ep1[2])**2+\
(Ep2[3]-Ep1[3])**2)
```

Ds euclidiana (Observador) = 20 Ds euclidian (Viajero) = 19.9375

El signo menos garantiza que efectivamente la distancia entre los eventos sea la misma (aproximadamente) en nuestro ejemplo sencillo.

Proposición 1.11

Norma de Minkowski. La distancia entre dos eventos infinitesimalmente cercanos en el espacio-tiempo en un sistema de referencia inercial es:

$$\mathrm{d}s_I^2 = \mathrm{d}t^2 - \mathrm{d}l_I^2$$

donde $\mathrm{d}l_L$ es la norma euclidiana que en coordenadas cartesianas $\mathrm{d}l_L=\sqrt{\mathrm{d}x_L^2+\mathrm{d}y_L^2+\mathrm{d}z_L^2}.$

Es fácil mostrar que la norma de Minkowski es invariante bajo transformaciones de Lorentz-Einstein, que es el objetivo que perseguíamos (ver Problemas al final del capítulo).

1.9.2. Las variedades de Lorentz y la métrica de Minkowski

Hay una sutil diferencia entre lo que llamamos una *norma*, que es la manera como definimos la magnitud de los vectores en un espacio vectorial (en este caso, el vector desplazamiento en el espacio-tiempo $\mathrm{d}x^{\mu}$) y un concepto geométrico más general, el concepto de *métrica*.

Para introducir este concepto es necesario primero introducir una serie de definiciones matemáticas generales que usaremos a lo largo del texto:

Definición 1.10

Espacio métrico o espacio normado. Un espacio métrico es un conjunto X sobre el que podemos definir una *función bilineal g* entre los elementos del espacio:

$$g: X \times X \to \mathbb{R}^3$$

que cumple:

- 1. Es positiva: $g(p,q) \ge 0$.
- 2. Es simétrica: g(p,q) = g(q,p).
- 3. No es degenerada: g(p,q) = 0 si p = q.

Donde p y q son elementos del conjunto X. A la función g se la llama función distancia o **métrica**.

Definición 1.10 (Cont.)

La binealidad de la métrica se expresa mediante las propiedades:

1.
$$g(\lambda p_1 + p_2, q) = \lambda g(p_1, q) + g(p_2, q)$$

2.
$$g(p, \lambda q_1 + q_2) = \lambda g(p, q_1) + g(p, q_2)$$

El espacio métrico mejor conocido es el espacio euclidiano \mathbb{R}^3 , cuyos elements podemos denotar como $p:(x_p,y_p,z_p)$ y que tiene métrica:

$$g(p,q) = (x_p - x_q)^2 + (y_p - y_q)^2 + (z_p - z_q)^2$$

Los conceptos de espacio métrico y métrica se pueden generalizar para construir un conjunto de definiciones que se presentan a continuación de manera *intuitiva* (definiciones más rigurosas pueden encontrarse en textos de geometría diferencial):

Definición 1.11

Conceptos de Variedad. Una variedad. es una estructura matemática (un conjunto y unas reglas para definir la distancia entre los puntos, es decir, una métrica), que en terminos intuitivos generaliza a n-dimensiones los conceptos de curva (1-variedad) y superficie (2-variedad). El espacio euclidiano \mathbb{R}^3 es una 3-variedad (*trivariedad*). El espacio-tiempo es una 4-variedad (*cuadrivariedad*).

Una **variedad diferenciable** es aquella sobre la que podemos definir funciones (campos escalares, campos vectoriales y campos tensoriales) y la operación de derivación. Es decir, sobre una variedad diferenciable se pueden definir y realizar las operaciones propias del cálculo. Así mismo, y usando el mismo cálculo, sobre una variedad diferenciable se puede definir el concepto de longitud de arco.

Alrededor de cada punto de una variedad diferenciable se puede definir un **espacio tangente** que es una variedad euclidiana que comparte con la variedad original un solo punto. Así por ejemplo: sobre la superficie de una esfera (2-variedad) podemos definir un plano tangente.

Una **variedad de Riemann** es una variedad diferenciable que localmente es *similar* (homeomórfica) al espacio euclidiano. Un ejemplo de una variedad de Riemann es la superficie de una esfera (2-variedad) que tiene una métrica muy específica. Localmente esta superficie es *similar* a un plano (2-variedad).

Una **pseudo variedad de Riemann** es una variedad diferenciable en la que la función métrica no necesariamente satisface la condición de ser positiva. Localmente una pseudo variedad de Riemann no es *similar* al espacio ecuclidiano, sino al que se conoce como el espacio pseudo euclidiano, que es aquel en el que la función métrica se escribe de forma general como:

Definición 1.11 (Cont.)

$$g(p,q) = (p_1 - q_1)^2 + \dots + (p_k - q_k)^2 + \dots - (p_{k+1} - q_{k+1})^2 + \dots - (p_N - q_N)^2$$

Nótese que esta métrica es prácticamente idéntica a la métrica euclidiana, excepto por el signo menos de los últimos términos. Se dice que esta métrica tiene signatura (signature): (k, N-k)

Una **variedad de Lorentz** es una pseudo variedad de Riemann con una métrica (forma bilineal cuadrática) son *signatura* (1,N-1).

De acuerdo con estas definiciones podemos decir que lo que encuentra Minkowski al demostrar que la norma es la que definimos antes es que el espaciotiempo es una variedad diferenciable pseudo euclidiana con signatura (1,3) y métrica (en el sistema de coordenadas cartesianas):

$$g(x^{\mu}, x^{\mu} + dx^{\mu}) = dt^2 - dx_L^2 - dy_L^2 - dz_L^2$$

En el sistema de coordenadas cilíndricas, la **métrica de Minkowski** será:

$$g(x^{\mu}, x^{\mu} + dx^{\mu}) = dt^2 - dr_L^2 - r^2 d\theta_L^2 - dz_L^2$$

Si usaramos un sistema de coordenadas generalizado y no necesariamente ortogonal, la métrica podría escribirse de forma general como:

$$g(x^{\mu}, x^{\mu} + \mathrm{d}x^{\mu}) = g_{\mu\nu} dx^{\mu} dx^{\nu}$$

donde $g_{\mu\nu}(x^{\alpha})$ son cantidades que en general dependen de la posición en el espacio (como lo vemos en la métrica de Minkowski escrita en coordenadas polares y que se conocen como coeficientes métricos.

Por comodidad usaremos la notación:

$$ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$$

En el caso del espacio-tiempo de un observador inercial los coeficientes métricos *en coordenadas cartesianas* son:

$$g_{\mu\nu} = \eta_{\mu\nu} \equiv \left(egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & -1 & 0 & 0 \ 0 & 0 & -1 & 0 \ 0 & 0 & 0 & -1 \end{array}
ight)$$

Proposición 1.12

La métrica es un tensor. La métrica $g_{\mu\nu}$ es un campo tensorial covariante de segundo orden, es decir, al hacer un cambio de coordenadas $x^{\mu'}(x^{\nu})$ la métrica transforma como:

$$g_{\mu'\nu'} = \frac{\partial x^{\alpha}}{\partial x^{\mu'}} \frac{\partial x^{\beta}}{\partial x^{\nu'}} g_{\alpha\beta}$$

El espacio-tiempo entonces es una variedad diferenciable pseudo-euclidiana con una métrica de signatura (1,3), que llamamos de forma más específica en el contexto de la física, la métrica de Minkowski. Pero más allá de lo rimbombante que estas afirmaciones pueda sonar ¿qué implicaciones tiene todo esto para la relatividad en particular y para la física en general?.

1.9.3. Métrica y tipos de intervalos

Usando la métrica de Minskowski podemos definir los tipos de intervalos así:

■ Intervalo temporaloide. Este tipo de intervalos se definieron como aquellos en los que se puede encontrar un sistema de referencia en el que los eventos límite ocurran en el mismo lugar del espacio. En otros términos, son intervalos para los cuales se puede encontrar una partícula física que viaje entre ellos. Como sabemos que las partículas viajan con velocidad $u_L < 1$ entonces $\mathrm{d} l_L^2 < \mathrm{d} t^2$ y por lo tanto:

$$ds^2 > 0$$

■ Intervalo espacialoide. Este tipo de intervalos se definieron como aquellos en los que no se puede encontrar un sistema de referencia en el que los eventos límite ocurran en el mismo lugar del espacio. En otros términos, son intervalos para los cuales no existe una partícula física que viaje entre ellos. Como sabemos que las partículas viajan con velocidad $u_L < 1$ entonces $\mathrm{d}l_L^2 > \mathrm{d}t^2$ y por lo tanto:

$$ds^2 < 0$$

■ Intervalo luminoide. Este tipo de intervalos se definieron como aquellos en los que no se puede encontrar un sistema de referencia en el que los eventos límite ocurran en el mismo lugar del espacio, y tampoco en el mismo lugar del tiempo (eventos simultáneos). Solo es posible encontrar rayos de luz que viajen entre ellos, es decir: $\mathrm{d}l_L^2 = \mathrm{d}t^2$ y por lo tanto:

$$ds^2 = 0$$

1.9.4. Métrica y tiempo propio

En un sistema de referencia en el que dos eventos (con un intervalo temporaloide) separados en el sistema de referencia del Observador por una distancia $d\vec{r}_L$, ocurren en el mismo lugar del espacio, la distancia espacio-temporal es simplemente:

$$\mathrm{d}s_L^2 = \mathrm{d}\tau^2 - 0^2$$

o bien

$$ds_L = d\tau$$

donde hemos usado de una vez τ para representar el hecho de que en este sistema de referencia y como se explico en sesiones anteriores, este tiempo es el tiempo propio entre los eventos.

Dada la invarianza de la métrica para todos los observadores podemos concluir que **en el caso de intervalos temporaloides y en unidades luz** la métrica (la distancia espacio-temporal entre eventos) no es otra cosa que el tiempo propio entre esos eventos.

Si por el contrario tenemos eventos espacialoides, podemos siempre encontrar un sistema de referencia en el que los eventos límite ocurren en el mismo momento del tiempo, es decir su separación esta relacionada es con la distancia propia entre esos eventos:

$$ds_L^2 = 0^2 - d\lambda_L^2$$

que se podría escribir como:

$$\sqrt{-\mathrm{d}s_L^2} = \lambda_L$$

Dada la invarianza de la métrica para todos los observadores podemos concluir que **en el caso de intervalos espacialoides y en unidades luz** la métrica (la distancia espacio-temporal entre eventos) esta relacionada con la distancia propia entre esos eventos.

1.9.5. Métrica, dilatación del tiempo y contracción de longitudes

Con las definiciones del aparte anterior se puede entender de forma inmediata la dilatación del tiempo y la contracción de longitudes.

Consideremos por ejemplo un fenómeno limitado por dos eventos y un intervalo temporaloide. La distancia entre los eventos será:

$$d\tau^2 = dt^2 - dl_L^2$$

donde de una vez hemos usado el hecho que $ds_L^2 = d\tau^2$.

Si reconocemos que $\mathrm{d}l_L/\mathrm{d}t=v_L$ es simplemente la velocidad del Viajero, llegamos a la relación conocida:

$$d\tau = \frac{1}{\gamma}dt$$

es decir, la dilatación del tiempo es la manifestación directa de la métrica de Minkowski.

El caso de la contracción de longitudes es un poco más truculento. Para definir la longitud de un objeto que esta en reposo para el Viajero, es necesario tomar dos eventos asociados al objeto que ocurren simultáneamente en el sistema del Observador. Para estos dos eventos la distancia medida en los dos sistemas de referencia serán:

$$-\mathrm{d}x_L^2 = \mathrm{d}t'^2 - \mathrm{d}\lambda^2$$

Aquí hay que tener en cuentra que en el sistema del viajero los dos eventos no ocurren simultáneamente sino que ocurren separados por un tiempo $dt' = u_L d\lambda$, de allí que:

$$\mathrm{d}x_L = \frac{1}{\gamma} \mathrm{d}\lambda$$

que ya habíamos obtenido.

1.9.6. Vectores y cálculo en el espacio de Minkowski

Posiblemente la más importante de las consecuencias de la *geometrización* de la relatividad, es la idea de que las leyes de la física pueden escribirse en términos de vectores y tensores en el espacio-tiempo y al hacerlo tener la covariancia que esperamos de ellas de acuerdo con el **postulado de relatividad**. Veamos porque.

En el espacio métrico de Minkowski, el vector prototipo es el vector intervalo. Este vector transforma de acuerdo con las TLE como:

$$\mathrm{d}x^{\mu'} = \frac{\partial x^{\mu'}}{\partial x^{\nu}} \mathrm{d}x^{\nu}$$

Habíamos explicado antes que esta transformación es el equivalente a una rotación hiperbólica en el espacio-tiempo. Savemos que este vector que transforma de esta manera tiene una propiedad geométria, su norma, que es invariante bajo TLE:

$$ds^{2} = |dx^{\mu}|^{2} = dt^{2} - dx_{L}^{2} - dy_{L}^{2} - dz_{L}^{2}$$

Podríamos generalizar este resultado para decir que cualquier otro vector que transforme de la manera en la que lo hace el vector intervalo tiene la misma propiedad. Así si una cantidad A^{μ} : (A^0, A^1, A^2, A^3) es tal que:

$$A^{\mu'} = \frac{\partial x^{\mu'}}{\partial x^{\nu}} A^{\nu}$$

entonces

$$|A^{\mu}|^2 = (A^0)^2 - (A^1)^2 - (A^2)^2 - (A^3)^2$$

Una manera más interesante de generalizar lo que sabemos de vectores en el espacio euclidiano a vectores en el espacio de Minkowski es introducir el producto punto o producto interior, que para el vector prototipo (el vector desplazamiento es:

$$ds^2 = dx^{\mu} \cdot dx^{\nu} \equiv g_{\mu\nu} dx^{\mu} dx^{\nu}$$

y que se puede generalizar para cualquier par de vectores como:

$$A^{\mu} \cdot B^{\nu} \equiv g_{\mu\nu} A^{\mu} B^{\nu}$$

o en términos explícitos:

$$A^{\mu} \cdot B^{\nu} = A^{0}B^{0} - (A_{L}^{1}B_{L}^{1} + A_{L}^{2}B_{L}^{2} + A_{L}^{2}B_{L}^{2})$$

La suma de vectores y la multiplicación por un escalar están igualmente definidas en el espacio de Minkowski.

Como sucede en el espacio euclidiano cualquier expresión matemática que escribamos en términos vectoriales, así por ejemplo

$$\vec{A} + \lambda \vec{B}$$

definirá en sí misma un vector, que transforma como el vector desplazamiento y por lo tando es covariante bajo las TLE.

El **postulado de relatividad** o postulado de covariancia de las leyes de la naturaleza se puede formular ahora como una proposición:

Proposición 1.13

Leyes físicas y tensores. Todas las leyes físicas que se expresan en términos de cuadrivectores o tensores de rango superior son covariantes.

Podemos definir una función escalar de variable real f(s) como es usual (usaremos s como letra para la variable independiente en lugar de x), una función tensorial de variable real $F^{\mu}(s)$ o $g_{\mu\nu}(s)$, una función escalar o tensorial de variable cuadrivectorial (normalmente de la cuadriposición) $f(x^{\mu})$ o $F^{\mu}(x^{\mu})$ o $g_{\mu\nu}(x^{\mu})$.

Los conceptos regulares del cálculo también están definidos, tales como la derivación:

$$\frac{\mathrm{d}}{\mathrm{d}s}x^{\mu}(s):\left(\frac{\mathrm{d}}{\mathrm{d}s}t(s),\frac{\mathrm{d}}{\mathrm{d}s}\vec{r}_{L}(s),\right)$$

donde $x^{\mu}(s)$ describe por ejemplo una línea de universo en el espacio-tiempo y s puede entenderse como un parámetro que distingue cada punto en el espacio.

La integración:

$$F(s) = \int_0^s f(s') ds'$$

o bien

$$W = \int_0^s F^{\mu}(s') \cdot \mathrm{d}x^{\mu}(s')$$

1.9.7. Minkowski y el postulado de los relojes

De la misma manera que definimos cualquier integral podemos definir la integral de línea fundamental:

$$\tau = \int_0^{s'} \mathrm{d}s$$

donde los ds son temporaloides. Esta es s la longitud de una curva arbitraria en el espacio tiempo.

Por el postulado de los relojes esta integral es también el tiempo propio de esa línea de universo.

1.9.8. Transformación general de cuadrivectores

Hemos visto que cualquier cantidad que transforme como

$$A^{\mu'} = \frac{\partial x^{\mu'}}{\partial x^{\nu}} A^{\nu}$$

es un cuadrivector.

En secciones anteriores habíamos visto una forma general de las transformaciones de Lorentz-Einstein para el cuadrivector posición x^{μ} : (t, \vec{r}_L) :

$$t' = \gamma \left(t - \vec{u}_L \cdot \vec{r}_L \right) \tag{1.35}$$

$$\vec{r}_L' = \vec{r}_L + \left(\frac{\gamma - 1}{u_L^2} \vec{u}_L \cdot \vec{r}_L - \gamma t\right) \vec{u}_L \tag{1.36}$$

Estas relaciones pueden extenderse a cualquier cuadrivector $A^{\mu}:(A^{0},\vec{A})$:

$$A^{0'} = \gamma \left(A^0 - \vec{u}_L \cdot \vec{A}_L \right) \tag{1.37}$$

$$\vec{A}_L' = \vec{A}_L + \left(\frac{\gamma - 1}{u_L^2} \vec{u}_L \cdot \vec{A}_L - \gamma A^0\right) \vec{u}_L \tag{1.38}$$

1.10. Óptica relativista

Para entender la manera en la que las propiedades de la luz transforman de un observador inercial a otro en relatividad especial (óptica relativista). Consideremos el hecho de que cualquier onda monocromática se puede describir en el espaciotiempo usando el cuadrivector de propagación:

$$k_L^{\mu}: \frac{2\pi}{\lambda}(1,\hat{k})$$

donde \hat{k} es la dirección de propagación de la onda y λ es la longitud de onda. La relación de dispersión de la onda en el vacío será:

$$\lambda \nu = c$$

donde ν es la frecuencia.

Esta cantidad debe transformar como lo hace cualquier cuadrivector:

$$k^0 = \gamma \left(k^{0'} + \vec{u}_L \cdot \vec{k'}_L \right) \tag{1.39}$$

$$\vec{k}_L = \vec{k'}_L + \left(\frac{\gamma - 1}{u_L^2} \vec{u}_L \cdot \vec{k'}_L + \gamma k^{0'}\right) \vec{u}_L \tag{1.40}$$

1.10.1. Efecto Doppler relativista

Supongamos que emitimos una onda monocromática en dirección de x (la misma dirección de la velocidad relativa entre los sistemas). En este caso:

$$k^{\mu}:\frac{2\pi}{\lambda}(1,1,0,0)$$

La ecuación de transformación de la componente temporal del cuadrivector de propagación será:

$$\frac{2\pi}{\lambda} = \gamma \left(\frac{2\pi}{\lambda'} + u_L \frac{2\pi}{\lambda'} \right)$$

De donde obtenemos:

$$\frac{1}{\lambda} = \frac{1}{\lambda'} \frac{1 + u_L}{\sqrt{1 - u_L^2}}$$

Si identificamos $\lambda_{\rm em}=\lambda'$ y $\lambda_{\rm obs}=\lambda$, entonces:

$$\lambda_{\rm obs} = \lambda_{\rm em} \sqrt{\frac{1 - u_L}{1 + u_L}}$$

Nótese que si $u_L \ll 1$ y usamos el teorema del binomio para expandir el factor en el radical en el lado derecho:

$$\lambda_{\rm obs} = \lambda_{\rm em} (1 - \frac{1}{2}u_L + \ldots)(1 - \frac{1}{2}u_L + \ldots)$$

conservando solo los términos lineales en u_L obtenemos:

$$\lambda_{\rm obs} \approx \lambda_{\rm em} (1 - u_L)$$

que se puede escribir como:

$$\frac{\lambda_{\rm em} - \lambda_{\rm obs}}{\lambda_{\rm em}} \approx u_L$$

De aquí identificamos el corrimiento al rojo clásico:

$$z = u_L$$

1.10.2. Aberración de la luz

Figura 1.7: Figura

Veámos ahora que pasa con un rayo de luz emitido en una dirección diferente de \vec{u}_L . En este caso la transformación de las componentes espaciales del vector de propagación será:

$$k^{0} = \gamma \left(k^{0'} + \vec{u}_{L} \cdot \vec{k'}_{L} \right) \tag{1.41}$$

$$\vec{k}_{L} = \vec{k'}_{L} + \left(\frac{\gamma - 1}{u_{L}^{2}} \vec{u}_{L} \cdot \vec{k'}_{L} + \gamma k^{0'}\right) \vec{u}_{L}$$
 (1.42)

Identificando $k^0=2\pi/\lambda$ y $\vec{k}_L=2\pi/\lambda\hat{k}$ y dividiendo la segunda ecuación por la primera, obtenemos:

$$\hat{k} = \frac{\hat{k}' + \left(\frac{\gamma - 1}{u_L^2} \vec{u}_L \cdot \hat{k}' + \gamma\right) \vec{u}_L}{\gamma (1 + \vec{u}_L \cdot \hat{k}')}$$

Consideremos ahora el caso particular en el que \hat{k} se encuentra sobre el plano x-y y se puede parametrizar como:

$$\hat{k} = \cos \theta \hat{e}_x + \sin \theta \hat{e}_y
\hat{k}' = \cos \theta' \hat{e}_x + \sin \theta' \hat{e}_y$$

La componente temporal queda:

$$\frac{1}{\lambda_{\rm obs}} = \frac{1}{\lambda_{\rm obs}} \gamma (1 + u_L \cos \theta')$$

De aquí se obtiene que si $\theta' = 0$ se reproduce la fórmula del efecto Doppler. Pero hay un resultado más interesante que se obtiene si $\theta' = \pi/2$. En este caso:

$$\lambda_{\rm obs}^{\perp} = \frac{1}{\gamma} \lambda_{\rm em}$$

que se conoce como el efecto Doppler transversal.

Al reemplazar \hat{k} y \hat{k}' en la ley de transformación obtenemos:

$$\cos \theta = \frac{\cos \theta' + u_L}{1 + u_L \cos \theta'} \tag{1.43}$$

$$\cos \theta = \frac{\cos \theta' + u_L}{1 + u_L \cos \theta'}$$

$$\sin \theta = \frac{\sin \theta'}{\gamma (1 + u_L \cos \theta')}$$
(1.43)

que puede probarse cumplen $\sin^2 \theta + \cos^2 \theta = 1$

¿Qué pasa cuando $\cos \theta' = 0$?. En este caso en el sistema del Observador se ve:

$$\cos \theta = u_L$$

Es decir, la luz que debería llegar al observador de la vertical aparece en un ángulo muy pequeño desviada respecto a esa vertical. A este fenómeno se lo llama aberración de la luz.

1.10.3. Enfoque relativista

Imagine que desde una fuente astrofísica que se mueve con velocidad \vec{u}_L repecto al observador, emite radiación en todas las direcciones. ¿En qué direcciones se verá venir la radiación? ¿cómo se distribuye la potencia de la radiación de la fuente?

Si la emisión es isotrópica una cuarta parte de la radiación se emitirá entre $\theta'=0$ y $\theta'=\pi/2$. Sin embargo, en el sistema de referencia del observador esa misma energía se emitirá entre $\theta = 0$ y $\theta = \theta_b < \pi/2$ donde θ_b se conoce como el ángulo de enfoque y es igual a:

$$\cos \theta_h = u_L$$

o bien:

$$\theta_b = \cos^{-1} u_L$$

Es posible mostrar que para $\gamma \gg 1$ el ángulo de enfoque es:

$$\theta_b pprox rac{1}{\gamma}$$

Para visualizar el efecto de enfoque relativista vea la figura interactiva en la versión electrónica del libro¹.

1.11. Cinemática relativistica

Usando lo que vimos en la sección anterior, podemos reconstruir una cinemática en el espacio-tiempo.

1.11.1. Cuadrivelocidad

Definimos la cuadrivelocidad media de una partícula que se mueve entre dos eventos separados por un intervalo temporaloide como:

$$\bar{U_L}^{\mu} = \frac{\Delta x_L^{\mu}}{\Delta \tau}$$

donde $\Delta \tau$ es el tiempo propio entre los eventos.

Usando el mismo método de la mecánica convencional podemos extender este concepto al de cuadrivelocidad instantánea:

$$U^{\mu} = \lim_{\Delta \tau \to 0} \frac{\Delta x_L^{\mu}}{\Delta \tau} = \frac{\mathrm{d} x_L^{\mu}}{\mathrm{d} \tau}$$

En términos de componentes explícitas:

$$U_L^{\mu}:\left(\frac{\mathrm{d}t}{\mathrm{d} au},\frac{\mathrm{d}\vec{r}_L}{\mathrm{d} au}\right)$$

Usando el hecho que d $au=\mathrm{d}t/\gamma$, donde $\gamma=(1-v_L^2)^{1/2}$ con:

$$\vec{v}_L = \frac{\mathrm{d}x_L^{\mu}}{\mathrm{d}t}$$

la cuadrivelocidad queda:

$$U_L^{\mu}: \gamma(1, \vec{v}_L)$$

Proposición 1.14

Cuadrirapidez. Todas las partículas del universo ($v_L < 1$) tienen siempre cuadrirapidez unitaria:

$$|U_L^{\mu}|=1$$

Naturalmente esto es en unidades luz. En unidades convencionales la cuadrirapidez sería igual a c.

¹http://github.com/seap-udea/Relatividad-Zuluaga

Un gráfico de todas las cuadrivelocidades de todas las partículas en el universo son:

```
%matplotlib inline
```

(Algoritmo 1.7)

```
from numpy import linspace
vl=linspace(0,0.95)
gamma=1/(1-v1**2)**0.5
U0=gamma
Ux=gamma*vl
import matplotlib.pyplot as plt
fig=plt.figure(figsize=(5,5))
ax=fig.gca()
ax.plot(U0,Ux)
ax.set_xlim((0,3))
ax.set_ylim((0,3))
ax.plot([0,3],[0,3],'k--')
ax.set_xlabel("$U_L^0$")
ax.set_ylabel("$U_{L}^{x}$")
fig.tight_layout()
                                                                 ver Figura 1.8
```

Nótese que en realidad si incluímos las 3 dimensiones espaciales todas las cuadrivelocidades del universo estarían en un hiper-hiperboloide de revolución:

$$1 = U_L^0 - (U_L^1)^2 - (U_L^2)^2 - (U_L^3)^2$$

Si fijas el valor de $U_L^0=\gamma$, los puntos satisfacen:

$$v_x^2 + v_y^2 + v_z^2 = 1$$

que son puntos sobre una esfera.

1.11.2. Cuadriaceleración

De la misma manera que definimos la cuadrivelocidad promedio, podemos definir la cuadriaceleración promedio:

$$\bar{A_L}^{\mu} = \frac{\Delta U_L^{\mu}}{\Delta \tau}$$

La aceleración instantánea sería:

$$A_L^{\mu} = \lim_{\Delta \tau \to 0} \frac{\Delta U_L^{\mu}}{\Delta \tau} = \frac{\mathrm{d} U_L^{\mu}}{\mathrm{d} \tau}$$

Usando d $\tau={\rm d}t/\gamma$, donde $\gamma=(1-v_L^2)^{1/2}$ obtenemos (ver Problemas al final del capítulo):

Figura 1.8: Figura correspondiente al código 1.7.

$$A_L^\mu:\gamma^4(\vec{a}_L\cdot\vec{v}_L,\vec{a}_L)$$

naturalmente aquí $\vec{a}_L \cdot \vec{v}_L$ es el producto punto euclidiano convencional.

Viola

Nota

De unidades luz a unidades convencionales. Si en un problema dado obtenemos el desplazamiento, la velocidad (cuadrivelocidad) o la acelaración (cuadriaceleración) en unidades luz, podemos volver a obtener las unidades originales como:

$$\begin{array}{rcl} \Delta \vec{r} & = & c \Delta \vec{r}_L \\ \vec{v} & = & c \vec{v}_L \\ \vec{a} & = & c \vec{a}_L \end{array}$$

Con estas transformaciones, la cuadriaceleración se puede escribir como:

Nótese que si $\vec{v}_L = \vec{o}$ entonces:

$$A_L^{\mu}:(0,\vec{\alpha}_L)$$

de donde vemos que el módulo cuadrado de la cuadriaceleración es espacialoide:

$$|A_I^{\mu}|^2 = -\alpha_I^2$$

Dado que esta cantidad es invariante (la misma para el Observador y el viajero) llamamos a α_L la aceleración propia de la partícula.

Proposición 1.15

La relación entre la cuadriaceleración y la cuadrivelocidad. La cuadrivelocidad y la cuadriaceleración son perpendiculares:

$$A^{\mu} \cdot U^{\nu} = 0$$

1.11.3. Movimiento con cuadriaceleración constante

En un movimiento en el cuál tanto la velocidad como la aceleración dependen del tiempo $\vec{v}(t)$ y $\vec{a}(t)$, siempre es posible encontrar un sistema de referencia inercial que se mueve instantáneamente con velocidad $\vec{v}(t)$ tal que la aceleración del cuerpo es la aceleración propia.

Podemos modelar lo que pasa a una partícula que se mueve de una manera tal que su aceleración propia α_L es constante. En este caso se cumple que:

$$(A_L^0)^2 - (A_L^x)^2 = \alpha_L^2$$

Para saber cuánto valen las componentes de la cuadriaceleración en un momento dado pormos escribir su relación con las componentes de cuadrivelocidad:

$$A_L^0 U_L^0 - A_L^x U_L^x = 0$$

Por otro lado las componentes de la cuadrivelocidad satisfacen:

$$(U_L^0)^2 - (U_L^x)^2 = 0$$

Eliminando obtenemos las ecuaciones:

$$A_L^0 = \alpha_L U_L^x$$

$$A_L^x = \alpha_L U_L^0$$
 (1.45)

Si derivamos la segunda ecuación respecto del tiempo propio, obtenemos:

$$\frac{\mathrm{d}A_L^x}{\mathrm{d}\tau} = \alpha_L A_L^0 = \alpha_L^2 U_L^x$$

donde hemos usado primero el hecho que $\mathrm{d}U_L^0/\mathrm{d}\tau=A_L^0$ y luego la primera ecuación. Esta ecuación se puede escribir como:

$$\frac{\mathrm{d}^2 U_L^x}{\mathrm{d}\tau^2} = \alpha_L^2 U_L^x$$

Que tiene como solución general:

$$U_L^x = A \exp(\alpha_L \tau) + B \exp(-\alpha_L \tau)$$

Asumiendo que $U_L^x(0)=0$ y $\mathrm{d}U_L^x(0)/\mathrm{d}\tau=\alpha_L$ obtenemos la solución para la componente x de la cuadrivelocidad:

$$U_L^x = \sinh(\alpha_L \tau)$$

Si reconocemos que $U_L^x = \gamma v_{Lx}$ y despejamos la velocidad obtenemos:

$$v_{Lx} = \tanh(\alpha_L \tau)$$

Si integramos ahora U_L^x obtenemos para x_L :

$$x_L(\tau) = \frac{1}{\alpha_L} \cosh(\alpha_L \tau) + k$$

donde k es una constante. Adumiendo que $x_L(0)=0$ la solución para la posición es:

$$x_L(\tau) = \frac{1}{\alpha_L} [\cosh(\alpha_L \tau) - 1]$$

Queda un problema por resolver. Estamos describiendo el movimiento de la partícula en el sistema de referencia del observador donde el tiempo es t. ¿Cómo se relacionan t con τ ?. Nos olvidamos que hay una ecuación diferencial para τ que viene dada por $U_L^0 = \mathrm{d}t/\mathrm{d}\tau$. Si usamos la ecuación:

$$A_L^x = \alpha_L U_L^0$$

y tenemos en cuenta que $A_L^x=\mathrm{d}U_L^x/\mathrm{d}\tau=\alpha_L\cosh(\alpha_L\tau)$, la ecuación para t queda:

$$\frac{\mathrm{d}t}{\mathrm{d}\tau} = \cosh(\alpha_L \tau)$$

que se resuelve trivialmente con condición inicial t(0) = 0 como:

$$t = \frac{1}{\alpha_L} \sinh(\alpha_L \tau)$$

Proposición: trayectoria de una partícula con aceleración propia constante. Si una partícula tiene aceleración propia constante α_L su posición y velocidad son iguales a:

$$t(\tau) = \frac{1}{\alpha_L} \sinh(\alpha_L \tau) \tag{1.46}$$

$$x_L(\tau) = \frac{1}{\alpha_L} [\cosh(\alpha_L \tau) - 1] \tag{1.47}$$

$$v_{Lx}(\tau) = \tanh(\alpha_L \tau) \tag{1.48}$$

Usando esta solución podemos graficar en el espacio tiempo la trayectoria de la partícula:

(Algoritmo 1.8)

```
#Cuadriaceleración propia constante
alphaL=0.02
#Tiempos propios
taus=linspace(0,100,1000)
#Solución
from numpy import sinh,cosh,tanh
ts=(1/alphaL)*sinh(alphaL*taus)
xLs=(1/alphaL)*(cosh(alphaL*taus)-1)
vLs=tanh(alphaL*taus)
#Gráfico
fig=plt.figure(figsize=(5,5))
ax=fig.gca()
ax.plot(ts,xLs)
#Decoración
rang=xLs.max()
ax.set_xlim(0,rang)
ax.set_ylim(0,rang)
ax.plot([0,rang],[0,rang],'k--')
ax.set_xlabel("$t$");
ax.set_ylabel("$x_L$");
ax.grid();
                                                                ver Figura 1.9
```

Una prueba muy importante de todo resultado en relatividad es verificar que coincida con el resultado Newtoniano en el límite de velocidades muy pequeñas.

Si usamos la expansión en series de potencias para las funciones sinh, cosh y tanh:

Figura 1.9: Figura correspondiente al código 1.8.

$$\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$$
 (1.49)

$$cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots$$
(1.50)

$$tanh x = x - \frac{x^3}{3} + \frac{2x^5}{15} + \cdots$$
(1.51)

(1.52)

y descartamos términos de orden superior en $\alpha_L \tau$ obtenemos:

$$t \approx \tau$$
 (1.53)

$$v_{Lx} \approx \alpha_L \tau$$
 (1.54)

$$v_{Lx} \approx \alpha_L \tau$$
 (1.54)
 $x_L \approx \alpha_L \frac{\tau^2}{2}$ (1.55)

que coincide con las ecuaciones clásicas.

1.11.4. Ejemplo: una nave interestelar

Uno de los más grandes sueños de exploración de la humanidad ha sido viajar a otras estrellas. Para hacerlo un diseño posible es el de construir una nave capaz de sostener una aceleración constante igual a la aceleración de la gravedad en la Tierra (para simular justamente los efectos de la gravedad), en unidades luz $\alpha_L = g/c$. ¿Cuánto le tomaría a una nave así, ir hasta Alpha Centauri situada en $x_L = 4$ años-luz?

Para encontrar la solución a este problema basta que despejemos τ de la ecuación de la posición:

$$\tau = \frac{1}{\alpha_L} \cosh^{-1}(\alpha_L x_L + 1)$$

El manejo de las unidades aquí debe ser cuidadoso. Nótese que $[\alpha_L] = T$ y $[x_L] = 1/T$, de modo que una vez se escogen las unidades de α_L quedan fijas las unidades de x_L .

$$\alpha_L = \frac{g}{c} = \frac{9.8 \text{ m/s}^2}{3 \times 10^8 \text{ m/s}} = 3.27 \times 10^{-8} \text{ s}^{-1}$$

En este caso las unidades de x_L deben ser segundos(-luz).

```
#Velocidad de la luz
c = 3e8 \# m/s
#Aceleración
alphaL=9.8/3e8 #1/s-l
#Distancia a recorrer
year=365.25*86400 # segundos
xL=4*year \#s-l
#Tiempo propio
from numpy import arccosh
tau=arccosh(alphaL*xL+1)/alphaL #s
#Tiempo coordenado
from numpy import sinh
t=(1/alphaL)*sinh(alphaL*tau) #s
#Velocidad al llegar
from numpy import sinh
vL=tanh(alphaL*tau) # u.l.
```

```
print(f"alpha_L = {alphaL} 1/s-l")
print(f"x_L = {xL} s-l")
print(f"alpha_L x_L = {alphaL*xL}")
print(f"tau = {tau} s = {tau/year} años")
print(f"t = {t} s = {t/year} años")
print(f"v_L = {vL} = {vL*c} m/s")
```

1.12. Mecánica relativista 61

Para ver las figuras interactivas busque la versión electrónica del libro².

1.12. Mecánica relativista

Hemos visto:

- Las transformaciones de Galileo-Newton no mantienen las ecuaciones de Maxwell covariantes.
- Para mantener las ecuaciones de Maxwell covariantes deben usarse las transformaciones de Lorentz-Einstein (TLE).
- Las TLE y sus conscuencias demuestran que la física debe hacerse en el espacio-tiempo de cuatro dimensiones y las cantidades físicas deben representarse como tensores (que transforman como las TLE) y las leyes como ecuaciones tensoriales.

¿Cómo se escriben las leyes de la mecánica en términos tensoriales? (en términos de invariantes). Llamaremos a la mecánica así construída **mecánica relativista**.

1.12.1. Masa invariante

El primer concepto central a la meánica relativista es el de **masa invariante**. Llamaremos así a la masa que asignamos a una partícula en un sistema de referencia que en un instante dado se mueve con la misma velocidad instantánea que ella. La masa invariante también se podría llamar **masa propia** siguiendo la convención semántica que habíamos usado hasta ahora.

Consideramos que esta es una cantidad verdaderamente escalar en el contexto del espacio-tiempo y por lo tanto que es una cantidad invariante, es decir, todos los observadores inerciales coincidiran en el valor de esta cantidad.

1.12.2. Momentum relativista

Si queremos formular una teoría mecánica relativista (covariante) debemos expresar todas las cantidades en términos de cuadrivectores y tensores.

El momentum newtoniano:

$$\vec{p} = m\vec{v} = m\frac{\mathrm{d}\vec{r}}{\mathrm{d}t}$$

claramente no es ni un cuadrivector, ni parte de él. La razón básica es que esta cantidad no transforma como dx^{μ} que es nuestro cuadrivector prototipo.

Si definimos el momentum como:

²http://github.com/seap-udea/Relatividad-Zuluaga

$$\vec{p} \equiv m \frac{\mathrm{d}\vec{r}}{\mathrm{d}\tau}$$

dado que m y d τ son invariantes, las componentes de este vector serán parte de un verdadero cuadrivector.

Definición 1.12

Momentum relativista. Una partícula que se mueve con velocidad \vec{v} tiene un momento relativista:

$$\vec{p} \equiv \gamma(v) m \vec{v}$$

Nótese que el momentum relativista coincide con el momentum clásico para $v \ll c$.

De aquí podemos postular:

Postulado 1.3

Conservación del momentum relativista. El momentum relativista total de un sistema aislado se mantiene constante. Es decir, en ausencia de fuerzas externas:

$$\frac{\mathrm{d}}{\mathrm{d}\tau}\left(\sum\vec{p}_{i}\right)=\frac{\mathrm{d}}{\mathrm{d}\tau}\left(\sum\gamma(v_{i})m_{i}\vec{v}_{i}\right)=0$$

Este postulado ha sido probado experimentalmente en incontables experimentos realizados en aceleradores de partículas.

Nota: unidades luz de la masa y el momentum. Como hemos venido trabajando en unidades luz todas las cantidades cinemáticas, es interesante preguntarse por cuáles son las unidades del momentm. Tal y como es definido el momentum en unidades convencionales y el momentum en unidades luz se relacionaran como:

$$\vec{p}_L = c\vec{p}$$

A velocidades intermedias y conservando los términos de orden v_L^3 la magnitud del momentum relativista es:

$$p_L \approx mv_L + \frac{1}{2}mv_L^3$$

Este segundo término no se conocía en el mundo clásico.

En el algoritmo abajo mostramos el momentum relativista de una partícula como función de su velocidad.

1.12. Mecánica relativista 63

1.12.3. Energía cinética relativistica

El momentum relativista nos sirve para definir otras cantidades útiles. En mecánica clásica el teorema del trabajo y la energía establece que:

$$K = \int_0^{\vec{r}} \vec{F} \cdot d\vec{r}$$

En esta expresión d \vec{r} es parte de un cuadrivector, pero la fuerza clásica \vec{F} no lo es.

Una forma más conveniente de escribir esta expresión clásicamente es identificando

$$\vec{F} \cdot d\vec{r} = \vec{v} \cdot d\vec{p}$$

Escribiendo la energía cinética de este modo:

$$K = \int \vec{v} \cdot d\vec{p}$$

Postulado 1.4

Postulado de la energía cinética. La energía cinética relativista (covariante) se relaciona con el momnetum relativista como:

$$k \equiv \int_0^{\vec{v}} \vec{v} \cdot d\vec{p}$$

o en unidades luz:

$$k_L \equiv \int_0^{\vec{v}_L} \vec{v}_L \cdot \mathrm{d}\vec{p}_L$$

¿Cómo se expresa la energía cinética explícitamente como función de la velocidad?. En la mecánica Newtoniana sabemos que:

$$K = \frac{1}{2}mv^2$$

Nota: energía cinética en unidades luz. Por la definición de la energía cinética relativista, la relación entre esta cantidad expresada en unidades luz y la misma cantidad expresada en unidades convencionales es:

$$k = c^2 k_L$$

Realizando la integral de la energía cinética por partes:

$$k_L = \int_0^{ec{v}_L} ec{v}_L \cdot m \; \mathrm{d} \left(rac{ec{v}_L}{\sqrt{1 - v_L^2}}
ight)$$

Integrando por partes obtenemos:

$$k_L = (\gamma - 1)m$$

o en unidades convencionales

$$k = (\gamma - 1)mc^2$$

Expandiendo $\gamma - 1$:

$$k_L \approx \frac{1}{2} m v_L^2$$

que coincide con lo que sabemos en mecánica Newtoniana.

1.12.4. Energía total relativista

Una manera de escribir la energía cinética es:

$$k_L = \gamma m - m$$

o en unidades convencionales:

$$k = \gamma(v)mc^2 - \gamma(0)mc^2$$

donde hemos usado el hecho de que $\gamma(0) = 1$.

Estas dos expresiones dan la idea de que cuando sobre una partícula se realiza un trabajo (igual a k) una cantidad asociada con la partícula cambia de valor. No importa la naturaleza del trabajo realizado, siempre esa cantidad cambia de valor. La cantidad es:

$$E = \gamma mc^2$$

o en unidades luz:

$$E_L = \gamma m$$

¿Qué tiene de especial esta cantidad?. Puede mostrarse (ver Problemas al final del capítulo) que esta cantidad se conserva.

1.16

Proposición. Conservación de la energía total relativista. Dado un sistema aislado formado por partículas de masas invariantes $\{m_i\}$ que se mueven con velocidades instantáneas $\{\vec{v}_i\}$ que pueden cambiar en el tiempo como resultado de su mutua interacción, entonces la cantidad:

$$E \equiv \sum_{i} (k_i + m_i c^2) = \sum_{i} \gamma(v_i) m_i c^2$$

es constante. Llamaermos a E la energía total del sistema.

1.12. Mecánica relativista 65

1.16 (Cont.)

En unidades luz:

$$E_L \equiv \sum_i \gamma(v_{Li}) m_i$$

1.12.5. Cuadrimomentum

Hasta ahora todas las cantidades mecánicas definidas son cantidades vectoriales (trivectores) o escalares. Sin embargo para formular leyes físicas covariantes, estas deben escribirse rigurosamente en términos de tensores.

Existe una poderosa simetría en relatividad que emerge de las relaciones anteriores.

Nótese que hemos postulado y demostrado la conservación de dos cantidades claves:

- Momentum relativista: $\vec{p}_L = \gamma m \vec{v}_L$
- Energía relativista: $E_L = \gamma m$

¿Podrían estas dos cantidades usarse para definir una única cantidad conservada en 4 dimensiones?. Es fácil ver que si definimos la cantidad:

$$P_L^\mu:(E_L,\vec p_L)$$

las componentes de esta cantidad serán conservadas y por lo tanto la cantidad cuadrivectorial será conservada también.

En términos de la masa invariante y la velocidad la cantidad se escribe:

$$P_L^{\mu}: m\gamma(1, \vec{v}_L)$$

pero identificamos aquí a la cuadrivelocidad U_L^{μ} : $\gamma(1, \vec{v}_L)$ y por lo tanto podemos escribir:

$$P_L^{\mu} = mU_L^{\mu}$$

Proposición: Conservación del cuadrimomentum. Si en un sistema aislado definimos el cuadrimomentum como:

$$P_L^{\mu} \equiv \sum_i m_i U_{iL}^{\mu}$$

entonces esta cantidad se mantiene constante. El cuadrimomentum de cada partícula tiene componentes:

$$P_{iL}^{\mu}:(E_{iL},\vec{p}_{iL})$$

o en unidades convencionales:

$$P_i^{\mu}:(E/c,\vec{p}_i)$$

1.12.6. Magnitud del cuadrimomentum y la simetría gauge

¿Cuál era la simetría de la que hablabamos antes?. La magnitud del cuadrimomentum es por definición:

$$|P_L^{\mu}|^2 = |mU_L^{\mu}|^2 = m^2$$

y por componentes:

$$|P_L^{\mu}|^2 = E_L^2 - p_L^2$$

De aquí se sigue la relación fundamental:

$$m^2 = E_I^2 - p_I^2$$

Esta relación es increíble porque abre la posibilidad para que las partículas tengan masa nula. Si

$$E_L = p_L$$

o lo que es lo mismo, en unidades convencionales:

$$E/c^2 = p/c$$

o bien

$$E = pc$$

entonces la partícula tendrá masa nula.

Esta última relación es conocida en el electromagnetismo y es la relación entre la energía y el momentum transportado por una onda electromagnética. Es decir, podemos asociar a las ondas electromagnéticas masa nula. En la moderna teoría cuántica de campos a esta condición se la llama **simetría gauge**.

1.12.7. Cuadrimomentum en el espacio-tiempo

La relación entre la masa, la energía y el momentum, muestra una propiedad muy interesante en el espacio-tiempo. Si construimos un espacio con coordenadas E_L y p_{xL} (espacio energía-momentum) entonces la ecuación de la masa indica que no importa el estado de movimiento en el que se encuentre una partícula siempre estará sobre una hipérbola en este espacio.

Si usamos el hecho:

$$E_L^2 = m^2 + p_L^2$$

podemos hacer una gráfica del lugar geométrico del cuadrimomentum en el espacio energía-momentum para distintas velocidades.

(Algoritmo 1.9)

```
#Masa de la partícula
m=1 # kg
#Momenta y energías
from numpy import linspace, sqrt
pLs=linspace(0,3)
ELs=sqrt(m**2+pLs**2)
#Gráfico
import matplotlib.pyplot as plt
fig=plt.figure()
ax=fig.gca()
ax.plot(ELs,pLs)
#Decoración
rang=ELs.max()
ax.set_xlim((0,rang))
ax.set_ylim((0,rang))
ax.plot([0,rang],[0,rang],'k--')
ax.set_xlabel("$E_L$");
ax.set_ylabel("$p_{xL}$");
ax.grid();
fig.tight_layout();
                                                               ver Figura 1.10
```


Figura 1.10: Figura correspondiente al código 1.9.

1.13. Problemas Seleccionados

1. **Demostración de las derivadas**. Demostrar que las derivadas parciales respecto a las coordenadas del espacio-tiempo transforman como:

$$\frac{\partial}{\partial x^{\mu'}} = \Lambda^{\nu}_{\mu'} \frac{\partial}{\partial x^{\nu}}$$

Invariancia de la norma de Minkowski. Demostrar que la norma de Minkowski:

$$ds^2 = dt^2 - dx_L^2 - dy_L^2 - dz_L^2$$

es invariante bajo transformaciones de Lorentz-Einstein.

3. **Invariancia de la norma de Minkowski**. Demostrar que la métrica $g_{\mu\nu}$ definida como:

$$ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$$

dond ds^2 es un invariante, es un tensor covariante de rango 2.

Bibliografía

