INTRO TO ALGORITHM, CSE 241

PROFESSOR ZHANG

Homework 1

Peiyun(Seed) Zeng EN:437801

September 22, 2014

PROBLEM 1

Decide whether the following statement is True or False. You must justify your answer to receive full credit (if you think it is true, argue it; if you think it is false, give a counter example).

(a)
$$\mathbf{f}(\mathbf{n}) = \mathbf{O}(\mathbf{g}(\mathbf{n})) \wedge \mathbf{f}(\mathbf{n}) = \Omega(\mathbf{h}(\mathbf{n})) \longrightarrow \mathbf{g}(\mathbf{n}) = \theta(\mathbf{h}(\mathbf{n}))$$

Solution:

This is False. **Counter example:** $f(n) = n^2$; $g(n) = n^3$; h(n) = n. which apparently satisfies our constrain ($\mathbf{f}(\mathbf{n}) = \mathbf{O}(\mathbf{g}(\mathbf{n})) \wedge \mathbf{f}(\mathbf{n}) = \Omega(\mathbf{h}(\mathbf{n})) \longrightarrow \mathbf{g}(\mathbf{n}) = \theta(\mathbf{h}(\mathbf{n}))$. Yet, it *does not* follow that $g(n) = n^3 = \theta(h(n)) = \theta(n)$

PROFESSOR ZHANG

Homework 1

Peiyun(Seed) Zeng EN:437801

September 22, 2014

PROBLEM 2

(a)
$$T(n) = 7T(n/2) + n^3 * \log n + 10n * \log n$$

Solution:

Let's apply Master Method

- 1. $a = 7, b = 2 \longrightarrow x = \log_b a = \log_2 7 \approx 2.8$
- 2. $n^3 * \log n$ grows much faster $\rightarrow f(n) = n^3 * \log n + 10n * \log n = \Theta(n^3 * \log n) \rightarrow y = 3, k = 1$
- 3. $y > x \rightarrow$ This Corresponds to Case 3 The root Dominates since f(n) grows faster than x
- 4. So we can conclude: $T(n) = \Theta(f(n)) = \Theta(n^3 * \log n)$

Final Result:
$$T(n) = \Theta(f(n)) = \Theta(n^3 * \log n)$$

(b) $T(n) = 2T(n/8) + \sqrt[3]{n} + 10 \lg n$

Solution:

Let's apply Master Method for this one

- 1. $a = 2, b = 8 \rightarrow x = \log_b a = \log_8 2 = (1/3)$
- 2. $\sqrt[3]{n}$ grows significantly faster than $10 \lg n \to f(n) = \sqrt[3]{n} + 10 \lg n = \Theta(\sqrt[3]{n}) \to y = 1/3, k = 0$
- 3. This corresponds to Case 2– Roots has equal wight to the leaf since x grows roughly the rate as the leaf
- 4. **So we can conclude:** $T(n) = \Theta(n^x (\log n)^{(k+1)}) = n^{(1/3)} * \log n$

Final Result:
$$T(n) = \Theta(n^{x}(\log n)^{(k+1)}) = n^{(1/3)} * \log n$$

(c) $T(n) = 2T(\sqrt{n}) + \lg \lg n$

Solution:

Unfortunately, this cannot be directly solved by Master Method. Let's start from substitution r

1. Let $m = \lg n \equiv n = 2^m \rightarrow$ now substitute into the original equation

2.
$$T(2^m) = 2 * T(2^{m/2}) + \lg m$$
 (equation [1])

- 3. If we look at the equation, we realize m is our new variable
- 4. So now let $S(m) = 2 * S(m/2) + \lg m$ (equation [2], from equation[1])
- 5. equation [2] can be solved using **Master theorem**
- 6. $a = 2, b = 2, x = \log_2 2 = 1$
- 7. $f(n) = \lg m = \Theta(n^0 * (\log m)^1 \rightarrow y = 0, k = 1$ (Since Log function grows really slow, we ignore the differences between bases)
- 8. $x > y \rightarrow$ This corresponds to Case 1
- 9. So we can conclude from master theorem : $S(m) = \Theta(m^1) = \Theta(m) = \Theta(\lg n)$ (Substitute $m = \log n$ back)

Final Result: $T(n) = \lg n$

INTRO TO ALGORITHM, CSE 241

PROFESSOR ZHANG

Homework 1

Peiyun(Seed) Zeng EN:437801

September 22, 2014

Since I realized there is no extra credit for using latex. and i donot want to draw a tree using latex. Solution will be presented in handwritten (Next Page)
Welcome to the messy part of the story:) Good Luck