More Applications of The Pumping Lemma

1

The Pumping Lemma:

For infinite context-free language L there exists an integer m such that for any string $w \in L$, $|w| \ge m$ we can write w = uvxyz with lengths $|vxy| \le m$ and $|vy| \ge 1$ and it must be: $uv^i xy^i z \in L$, for all $i \ge 0$

,

Non-context free languages

$$\{a^n b^n c^n : n \ge 0\}$$
 $\{vv : v \in \{a,b\}\}$

Context-free languages

$$\{a^n b^n : n \ge 0\}$$
 $\{ww^R : w \in \{a, b\}^*\}$

2

Theorem: The language

$$L = \{vv : v \in \{a,b\}^*\}$$

is **not** context free

Proof: Use the Pumping Lemma

for context-free languages

$$L = \{vv : v \in \{a,b\}^*\}$$

Assume for contradiction that ${\cal L}$ is context-free

Since L is context-free and infinite we can apply the pumping lemma

5

$$L = \{vv : v \in \{a,b\}^*\}$$

Pumping Lemma gives a magic number $\,m\,$ such that:

Pick any string of $\,L\,$ with length at least $\,m\,$

we pick: $a^m b^m a^m b^m \in L$

$$L = \{vv : v \in \{a,b\}^*\}$$

We can write: $a^m b^m a^m b^m = uvxyz$

with lengths $|vxy| \le m$ and $|vy| \ge 1$

Pumping Lemma says:

$$uv^i x y^i z \in L$$
 for all $i \ge 0$

$$L = \{vv : v \in \{a,b\}^*\}$$

 $a^m b^m a^m b^m = uvxyz$ $|vxy| \le m$ $|vy| \ge 1$

We examine <u>all</u> the possible locations of string vxy in $a^mb^ma^mb^m$

R

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$\textbf{Case 1:} \quad vxy \quad \text{is within the first } a^m$$

$$v = a^{k_1} \quad y = a^{k_2} \qquad k_1 + k_2 \ge 1$$

$$m \quad m \quad m$$

$$a \dots a b \dots b a \dots a b \dots b$$

$$u vx y \qquad z$$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$\text{Case 1: } vxy \text{ is within the first } a^m$$

$$v = a^{k_1} \quad y = a^{k_2} \qquad k_1 + k_2 \ge 1$$

$$m + k_1 + k_2 \quad m \quad m$$

$$a \quad \dots \quad a \quad b \quad \dots \quad b \quad a \quad \dots \quad b$$

$$u \quad v^2 \quad x \quad y^2 \quad z$$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz$$
 $|vxy| \le m$ $|vy| \ge 1$

Case 1: vxy is within the first a^m

$$a^{m+k_1+k_2}b^ma^mb^m = uv^2xy^2z \notin L$$

$$k_1 + k_2 \ge 1$$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz$$
 $|vxy| \le m$ $|vy| \ge 1$

Case 1: vxy is within the first a^m

$$a^{m+k_1+k_2}b^ma^mb^m = uv^2xy^2z \notin L$$

However, from Pumping Lemma: $uv^2xy^2z \in L$

Contradiction!!!

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$\textbf{Case 2: } v \text{ is in the first } a^m$$

$$y \text{ is in the first } b^m$$

$$v = a^{k_1} \quad y = b^{k_2} \qquad k_1 + k_2 \ge 1$$

$$m \quad m \quad m$$

$$a \dots a b \dots b a \dots a b \dots b$$

$$u \quad v \quad x \quad y \quad z$$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$
Case 2: v is in the first a^m

Case 2:
$$v$$
 is in the first a^m y is in the first b^m

$$a^{m+k_1}b^{m+k_2}a^mb^m = uv^2xy^2z \notin L$$

$$k_1 + k_2 \ge 1$$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$
Case 2: v is in the first a^m

y is in the first b^m

$$a^{m+k_1}b^{m+k_2}a^mb^m = uv^2xy^2z \notin L$$

However, from Pumping Lemma: $uv^2xy^2z \in L$

Contradiction!!!

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 3: v overlaps the first $a^m b^m$ y is in the first b^m

$$a^{m}b^{k_{2}}a^{k_{1}}b^{m+k_{3}}a^{m}b^{m} = uv^{2}xy^{2}z \notin L$$

 $k_{1}, k_{2} \ge 1$

19

$$L = \{vv : v \in \{a, b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 3: v overlaps the first $a^m b^m$ y is in the first b^m

$$a^m b^{k_2} a^{k_1} b^{k_3} a^m b^m = u v^2 x y^2 z \notin L$$

However, from Pumping Lemma: $uv^2xy^2z \in L$

Contradiction!!!

0.9

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$\textbf{Case 4: } v \text{ in the first } a^m$$

$$y \text{ Overlaps the first } a^m b^m$$

$$Analysis \text{ is similar to case 3}$$

$$m \qquad m \qquad m$$

$$a \dots a b \dots b a \dots a b \dots b$$

$$u v x \qquad y \qquad z$$

More cases:
$$vxy$$
 overlaps $a^mb^ma^mb^m$ or $a^mb^ma^mb^m$

Analysis is similar to cases 2,3,4: $a^mb^ma^mb^m$

In all cases we obtained a contradiction

Therefore: The original assumption that

$$L = \{vv : v \in \{a,b\}^*\}$$

is context-free must be wrong

Conclusion: L is not context-free

25

Non-context free languages

$$\{a^n b^n c^n : n \ge 0\}$$
 $\{ww : w \in \{a, b\}\}$

$$\{a^{n!}: n \ge 0\}$$

Context-free languages

$$\{a^n b^n : n \ge 0\}$$
 $\{ww^R : w \in \{a, b\}^*\}$

Theorem: The language

$$L = \{a^{n!} : n \ge 0\}$$

is **not** context free

Proof: Use the Pumping Lemma

for context-free languages

27

$$L = \{a^{n!} : n \ge 0\}$$

Assume for contradiction that ${\cal L}$ is context-free

Since $\,L\,$ is context-free and infinite we can apply the pumping lemma

$$L = \{a^{n!} : n \ge 0\}$$

Pumping Lemma gives a magic number m such that:

Pick any string of $\,L\,$ with length at least $\,m\,$

we pick:
$$a^{m!} \in L$$

29

$$L = \{a^{n!} : n \ge 0\}$$

We can write: $a^{m!} = uvxyz$

with lengths $|vxy| \le m$ and $|vy| \ge 1$

Pumping Lemma says:

$$uv^i x y^i z \in L$$
 for all $i \ge 0$

$$L = \{a^{n!} : n \ge 0\}$$

$$a^{m!} = uvxyz$$
 $|vxy| \le m$ $|vy| \ge 1$

We examine <u>all</u> the possible locations of string vxy in $a^{m!}$

There is only one case to consider

31

$$L = \{a^{n!} : n \ge 0\}$$

$$a^{m!} = uvxyz$$
 $|vxy| \le m$ $|vy| \ge 1$

$$v = a^{k_1}$$
 $y = a^{k_2}$ $1 \le k_1 + k_2 \le m$

$$L = \{a^{n!} : n \ge 0\}$$

$$a^{m!} = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$m! + k_1 + k_2$$

$$a \qquad a$$

$$u \quad v^2 \quad x \quad y^2 \quad z$$

$$v = a^{k_1} \qquad y = a^{k_2} \qquad 1 \le k_1 + k_2 \le m$$

$$L = \{a^{n!} : n \ge 0\}$$

$$a^{m!} = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$a^{m!+k} = uv^2xy^2z$$

$$1 \le k \le m$$

$$L = \{a^{n!} : n \ge 0\}$$

$$a^{m!} = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$m! < m! + k < (m+1)!$$

$$a^{m!+k} = uv^2xy^2z \notin L$$

$$L = \{a^{n!} : n \ge 0\}$$

$$a^{m!} = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

However, from Pumping Lemma: $uv^2xy^2z \in L$

$$a^{m!+k} = uv^2xy^2z \notin L$$

Contradiction!!!

We obtained a contradiction

Therefore: The original assumption that

$$L = \{a^{n!} : n \ge 0\}$$

is context-free must be wrong

Conclusion: L is not context-free

39

Non-context free languages

$$\{a^n b^n c^n : n \ge 0\}$$
 $\{ww : w \in \{a, b\}\}$

$$\{a^{n^2}b^n: n \ge 0\}$$
 $\{a^{n!}: n \ge 0\}$

Context-free languages

$$\{a^n b^n : n \ge 0\}$$
 $\{ww^R : w \in \{a, b\}^*\}$

Theorem: The language

$$L = \{a^{n^2}b^n : n \ge 0\}$$

is **not** context free

Proof: Use the Pumping Lemma

for context-free languages

41

$$L = \{a^{n^2}b^n : n \ge 0\}$$

Assume for contradiction that ${\cal L}$ is context-free

Since L is context-free and infinite we can apply the pumping lemma

$$L = \{a^{n^2}b^n : n \ge 0\}$$

Pumping Lemma gives a magic number $\,m\,$ such that:

Pick any string of $\,L\,$ with length at least $\,m\,$

we pick:
$$a^{m^2}b^m \in L$$

43

$$L = \{a^{n^2}b^n : n \ge 0\}$$

We can write: $a^{m^2}b^m = uvxyz$

with lengths $|vxy| \le m$ and $|vy| \ge 1$

Pumping Lemma says:

$$uv^i x y^i z \in L$$
 for all $i \ge 0$

$$L = \{a^{n^2}b^n : n \ge 0\}$$

$$a^{m^2}b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

We examine all the possible locations

of string
$$vxy$$
 in $a^{m^2}b^m$

45

$$L = \{a^{n^2}b^n : n \ge 0\}$$

$$a^{m^2}b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Most complicated case: v is in a^m y is in b^m

$$L = \{a^{n^2}b^n : n \ge 0\}$$

$$a^{m^2}b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$v = a^{k_1} \qquad y = b^{k_2} \qquad 1 \le k_1 + k_2 \le m$$

$$a = m^2 \qquad m$$

$$a = m$$

$$L = \{a^{n^2}b^n : n \ge 0\}$$

$$a^{m^2}b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$\text{Most complicated sub-case: } k_1 \ne 0 \text{ and } k_2 \ne 0$$

$$v = a^{k_1} \qquad y = b^{k_2} \qquad 1 \le k_1 + k_2 \le m$$

$$a = a^{k_1} \qquad b = b^{k_2} \qquad a = b^{k_2}$$

$$L = \{a^{n^2}b^n : n \ge 0\}$$

$$a^{m^2}b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$\text{Most complicated sub-case: } k_1 \ne 0 \text{ and } k_2 \ne 0$$

$$v = a^{k_1} \qquad y = b^{k_2} \qquad 1 \le k_1 + k_2 \le m$$

$$m^2 - k_1 \qquad m - k_2$$

$$a \dots a b \dots b$$

$$u \qquad v^0 \qquad x \qquad y^0 \qquad z$$

$$L = \{a^{n^2}b^n : n \ge 0\}$$

$$a^{m^2}b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$
Most complicated sub-case: $k_1 \ne 0$ and $k_2 \ne 0$

$$v = a^{k_1} \qquad y = b^{k_2} \qquad 1 \le k_1 + k_2 \le m$$

$$a^{m^2 - k_1}b^{m - k_2} = uv^0xy^0z$$

$$L = \{a^{n^2}b^n : n \ge 0\}$$

$$a^{m^2}b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$m^2 - k_1 \ne (m - k_2)^2$$

$$a^{m^2 - k_1}b^{m - k_2} = uv^0 xy^0 z \quad \notin L$$

$$L = \{a^{n^2}b^n : n \ge 0\}$$

$$a^{m^2}b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

However, from Pumping Lemma: $uv^0xy^0z \in L$

$$a^{m^2-k_1}b^{m-k_2} = uv^0xy^0z \notin L$$

Contradiction!!!

53

When we examine the rest of the cases we also obtain a contradiction

In all cases we obtained a contradiction

Therefore: The original assumption that

$$L = \{a^{n^2}b^n : n \ge 0\}$$

is context-free must be wrong

Conclusion: L is not context-free