MATH FUNCTIONS

Python has a set of built-in math functions, including an extensive math module, that allows you to perform mathematical tasks on numbers.

Math Build in Functions

1. The min() and max() functions can be used to find the lowest or highest value in an iterable.

```
Example
```

```
x = min(5, 10, 25)
y = max(5, 10, 25)

print(x)

Output 5
print(y)

Output 25
```

2. The abs() function returns the absolute (positive) value of the specified number:

Example

$$x = abs(-7.25)$$

print(x) 7.25

3. The pow(x, y) function returns the value of x to the power of y (x y).

Example

$$x = pow(4, 3)$$

Return the value of 4 to the power of 3 (same as 4 * 4 * 4): print(x)

The Math Module

- Python has also a built-in module called math, which extends the list of mathematical functions.
- To use it, you must import the math module:

import math

- When you have imported the math module, you can start using methods and constants of the module.
- 4. The math.sqrt() method for example, returns the square root of a number:
- Example import mathx = math.sqrt(64)print(x)

5. The math.ceil() method rounds a number upwards to its nearest integer, and the math.floor() method rounds a number downwards to its nearest integer, and returns the result:

```
Example
```

```
import math
x = math.ceil(1.4)
y = math.floor(1.4)
print(x) # returns 2
print(y) # returns 1
```

6. The math.pi constant, returns the value of PI (3.14...):

print(area)

Write a python program to calculate the circumference of circle. Example import math radius = 2
x = math.pi
Area_of_circumference = 2*radius*x
print(Area_of_circumference)

Python Math Trigonometric Functions

- All the trigonometric functions are available in python math module, so you can easily calculate them using sin(), cos(), tan(), acos(), asin(), atan() etc functions.
- Also, you can convert angles from degree to radian and radian to degree. See the example code.

```
Example
# app.py
import math
angleInDegree = 90
angleInRadian = math.radians(angleInDegree)
```

```
print('The given angle is :', angleInRadian)
print('sin(x) is :', math.sin(angleInRadian))
print('cos(x) is :', math.cos(angleInRadian))
print('tan(x) is :', math.tan(angleInRadian))
```

```
krunal@Krunals-MacBook-Air: ~/Desktop/code/pyt

pyt python3 app.py
The given angle is: 1.5707963267948966
sin(x) is: 1.0
cos(x) is: 6.1232333995736766e-17
tan(x) is: 1.633123935319537e+16
pyt
```

Convert the mathematical expression into a valid python code.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

import math

b=5

a=3

C=5

- -b+(math.sqrt(b**2)-(4*a*c))/2*a
- -b-(math.sqrt(b**2)-(4*a*c))/2*a

Exercise

- \triangleright Write a python program to calculate the area of trapezium and display the output on the computer screen. Area = $\frac{1}{2}(a+b) \times b$
- Write a python program that calculate the area of sector and display your output on the computer screen. Area = $\frac{1}{2} \times r^2 \times \theta$ Take $\theta = 90$.
- > Write a python program that calculate the area of Triangle and display your output on the computer screen.

Area = $\frac{1}{2} \times b \times h$

b = base

h = vertical height

Transform the mathematical expression in a valid python code

$$a^2 + b^2 = c^2$$