Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа <u>Р3110</u>	_К работе допущен				
Студент Назирджанов Н	_Работа выполнена				
Преподаватель <u>Сорокина Е.К</u>	Отчет прин <u>ят</u>				
-	горная работа № 1.04				
ИССЛЕДОВАНИЕ РАВНОУСКОРЕННОГО ВРАЩЕТЕЛЬНОГО ДВИЖЕНИЯ (МАЯТНИК ОБЕРБЕКА)					

1. Цель работы.

Проверка основного закона динамики вращения. Проверка зависимости момента инерции от положения масс относительно оси вращения.

2. Задачи, решаемые при выполнении работы.

- Исследовать вращательное движение тел
- Исследовать зависимость между угловой скоростью и моментом силы. Определить моменты инерции для разных положений утяжелителей
- Исследовать зависимость между расстоянием от оси вращения до утяжелителей и моментом инерции. Аналитически определить массу утяжелителя
- Рассчитать a груза, M силы натяжения нити, ε крестовины для каждой комбинации массы груза и положения утяжелителей на крестовине.
- Провести аппроксимацию МНК для искомых параметров $M_{\rm TP}$, I по уравнению $M=M_{\rm TD}+I\varepsilon$.
- Построить график зависимостей $M(\varepsilon)$ и проверить линейную зависимость для точек, полученных экспериментальным путём.
- Провести аппроксимацию МНК для искомых параметров 4mут, I0 по уравнению $I = I0 + 4m_{yr}R^2$, где R расстояние от центра крестовины до центра масс утяжелителей.
- Построить график зависимости $I(R_2)$ и проверить линейную зависимость для вычисленных точек, участвующих в аппроксимации.

3. Объект исследования.

- Маятник Обербека
- Равноускоренное вращательное движение
- Основной закон динамики вращения $M = I \cdot \varepsilon$, при I = const.

4. Метод экспериментального исследования.

Провести многократные косвенные и прямые измерения времени опускания грузов различных масс, связанных со ступицей крестовины, в зависимости от положения утяжелителей на осях крестовины.

5. Рабочие формулы и исходные данные.

$$a = \frac{2h}{t^2}$$
, где h — это расстояние, пройденное грузом за время t от начала движение

$$\varepsilon = \frac{2a}{d}$$
, где d — это диаметр ступицы

$$M = \frac{md}{2}(g-a),$$

$$I \varepsilon = M - M_{\text{тр}}$$
. , где I — момент инерции крестовины с утяжелителем

$$I = I_0 + 4m_{
m yr}R^2$$
 , где I – это момент инерции крестовины с утяжелителем, $M_{
m TP}$ – это момент силы трения, I_0 – это сумма моментов инерции стержней крестовины, момента инерции ступицы и собственных центральных моментов инерции утяжелителей

$$R = l_1 + (n-1)l_0 + \frac{1}{2}b$$

6. Измерительные приборы.

Nº п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер	Цифровой	0-12(c)	0,005 (c)
2	Линейка	Измерительный	0-700(мм)	0,5(мм)

7. Схема установки.

Бл — Блок Сп — спица Ст — ступица Кр — крестовина тут — утяжелитель т — груз

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Macca		Полож	ение утях	желителе	й груза	
груза, г	1.риска	2.риска	3.риска	4.риска	5.риска	6.риска
	4,5	5,53	6,53	7,62	8,63	9,75
267.0	4,12	5,65	6,72	7,63	8,53	9,53
267,0	4,19	5,5	6,72	7,66	8,57	9,72
	4,27	5,56	6,66	7,64	8,58	9,67
	3,03	3,97	4,6	5,69	6,15	6,94
487,0	3,28	4,03	4,78	5,38	6,07	6,97
467,0	3,16	4	4,75	5,44	6,15	7
	3,16	4	4,71	5,5	6,12	6,97
	2,59	3,37	3,87	4,4	5,15	5,81
707,0	2,66	3,16	4,16	4,47	5,13	5,69
707,0	2,63	3,31	3,78	4,65	5,03	5,81
	2,63	3,28	3,94	4,51	5,1	5,77
	2,28	2,85	3,47	3,96	4,34	5,06
927,0	2,34	2,91	3,22	3,81	4,38	5
941,0	2,36	2,91	3,47	3,79	4,5	4,81
	2,33	2,89	3,39	3,85	4,41	4,96

$$K_{ ext{Ctioдehta}}$$
 для $N=3=4,3$ $g=9,8191\pm0,0005$ м , $arepsilon=0,015\%$

Величина	Значение	Погрешность	Единица измерения	Относительная погрешность
h	700	5	MM	0,7%
l_0	25,0	0,2	MM	0,8%
l_1	57,0	0,5	MM	0,9%
b	40,0	0,5	MM	1,3%
d (диаметр ступицы)	46,0	0,5	MM	1,1%
$m_{ m kapetkii}$	47,0	0,5	Г	1,1%
$m_{ m шайбы}$	220,0	0,5	Г	0,23%
$m_{ m rpy 3a Ha} { m крестовине}$	408,0	0,5	Г	1,2%

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов)

Macca		Полож	сение утях	желителе	й груза		
груза, кг	1.риска	2.риска	3.риска	4.риска	5.риска	6.риска	$a, \frac{n}{c^2}$
	0,0768	0,0453	0,0316	0,0240	0,0190	0,0150	$\varepsilon, \frac{pag.}{c^2}$
0.267	3,338	1,969	1,372	1,043	0,827	0,651	<i>М</i> , Н · м
0,267	0,060	0,060	0,060	0,060	0,060	0,060	t_{cp}, c
	4,27	5,56	6,66	7,64	8,58	9,67	$a, \frac{n}{c^2}$
	0,1402	0,0875	0,0631	0,0463	0,0374	0,0288	ε , $\frac{pa_{A}}{c^2}$
0.497	6,096	3,804	2,744	2,012	1,625	1,253	M , $H \cdot M$
0,487	0,108	0,109	0,109	0,109	0,110	0,110	t_{cp}, c
	3,16	4,00	4,71	5,50	6,12	6,97	$a, \frac{n}{c^2}$
	0,2024	0,1301	0,0902	0,0688	0,0538	0,0421	$\varepsilon, \frac{\text{pag.}}{c^2}$
0,707	8,800	5,658	3,921	2,993	2,340	1,828	$M, H \cdot M$
0,707	0,156	0,158	0,158	0,159	0,159	0,159	t _{cp} , c
	2,63	3,28	3,94	4,51	5,10	5,77	$a, \frac{c}{c^2}$
	0,2579	0,1676	0,1218	0,0945	0,0720	0,0569	$\varepsilon, \frac{pag.}{c^2}$
0.027	11,212	7,288	5,297	4,107	3,130	2,474	<i>М</i> , Н·м
0,927	0,204	0,206	0,207	0,207	0,208	0,208	$t_{\rm cp}, c$
	2,33	2,89	3,39	3,85	4,41	4,96	

Расчет $\ I\ и\ M_{\mbox{\tiny TP}}$ с помощью $\ MHK$

1 muoro	2 milara	3 nucka
1 риска	2 риска	э риска

	Е	Ei- Ecp	M	Mi- Mcp	Е	Ei- Ecp	M	Mi- Mcp	Е	Ei- Ecp	M	Mi- Mcp
	2,549	3,55 3	0,06	0,073	1,96 9	2,56 5	0,06	0,073	1,44 1	1,86 2	0,06	0,073
	4,732	1,37 0	0,10 9	0,024	3,78 5	0,74 8	0,10 9	0,024	2,57 7	0,72 6	0,10 9	0,024
	7,042	- 0,94 0	0,15 7	0,024	5,37 0	- 0,83 7	0,15 8	0,025	3,90 8	- 0,60 5	0,15 8	0,025
	10,08 6	- 3,98 4	0,20 4	0,072	7,01 0	- 2,47 7	0,20 6	0,073	5,28 6	- 1,98 3	0,20 7	0,073
срзна	6,102		0,13		4,53 4		0,13		3,30		0,13	
I	0,102	0,019			0,029		0,038					
Мтр		0,0					013				800	

	4 p	иска			5 p	иска			6 p	иска	
Е	Ei- Ecp	M	Mi- Mcp	Е	Ei- Ecp	M	Mi- Mcp	Е	Ei- Ecp	M	Mi- Mcp
1,04	1,49 6	0,06	0,074	0,82 7	1,15 4	0,06	0,074	0,65	0,90 1	0,06	0,074
2,01	0,52 7	0,10 9	0,024	1,62 5	0,35 6	0,11	0,024	1,25 3	0,29 9	0,11	0,025
2,99	- 0,45 4	0,15 9	0,025	2,34 0	- 0,36 0	0,15	0,025	1,82 8	- 0,27 7	0,15 9	0,025
4,10 7	- 1,56 8	0,20 7	0,073	3,13 0	- 1,15 0	0,20	- 0,074	2,47 4	- 0,92 3	0,20 8	- 0,074
2,53		0,13		1,98 1		0,13		1,55		0,13	
	0,0	048		0,065			0,082				
	0,0	012			0,0	006			0,0	800	

$$I = \frac{\sum_{i=1}^{n=4} (\varepsilon_{cp} - \varepsilon_i) (M_{cp} - M_i)}{\sum_{i=1}^{n=4} (\varepsilon - \varepsilon_i)^2}$$
$$M_{Tp} = M_{cp} - I \cdot \varepsilon_{cp}$$

Расчет $4 M_{yT}$ и I_0 с помощью МНК

N (кол-	D(vs)	D^2(x)	T	R^2 _{cp} - R^2 _i	I _{cp} -I _i	di
во ри-	R(M)	R^2(м)	I	$\mathbf{K} \mathcal{L}_1$		

сок)						
1						-
1	0,077	0,00593	0,018	0,015	0,028	0,0004
2	0,102	0,01040	0,027	0,011	0,019	0,0005
3	0,127	0,01613	0,038	0,005	0,008	0,0011
1						-
4	0,152	0,02310	0,048	-0,002	-0,001	0,0019
5	0,177	0,03133	0,065	-0,010	-0,019	0,0006
6	0,202	0,04080	0,082	-0,020	-0,036	0,0001
срзнач		0,021	0,046			

$$R = l_1 + (n-1)l_0 + \frac{1}{2}b$$

$$R = 0.057 + (1 - 1) \cdot 0.025 + 0.5 \cdot 0.04 = 0.077 \text{ M}$$

$$4M_{yr}=1,8$$
 кг

$$I_0=0.0076 \text{ kg/m}^2$$

10. Расчет погрешностей измерений (для прямых и косвенных)

Расчет погрешности прямых измерений для первых $t_{cp}, a_{груза}, M_{сила \ нат \ нит}, E_{кре}$

$$\Delta t_{\rm cp} = 0.5c$$
 $\varepsilon_{\rm tcp} = 11.8 \%$

а=0,0768 м/с
2
 М=0,06 Н*т ε =3,34 рад/с 2

$$\Delta a = 0.019 \text{ m/c}^2$$
 (24,4 %)

$$\Delta \varepsilon = 0.85 \text{ рад/c}^2 \quad (25.5 \%)$$

$$\Delta$$
M=0,016 H*m (25,9 %)

11.Графики

График 1

График 2

12. Окончательные результаты.

• Первые значения ускорения груза, угловое ускорение крестовины и момент силы:

=
$$(76.8 \pm 19)$$
 мм/ c^2 , $\alpha = 95\%$
= (3.34 ± 0.85) рад/ c^2 , $\alpha = 95\%$
= (60 ± 16) мН·м, $\alpha = 95\%$

• Определённые параметры в $I = I_0 + 4 m_{yT} R^2$ при помощи МНК:

$$I_0 = (7.6 \pm 3) \ \Gamma \cdot M^2, \quad \alpha = 95\%$$
 $m_{yT} = (450 \pm 35) \ \Gamma, \qquad \alpha = 95\%$

- 13. Выводы и анализ результатов работы.
- Основной закон движения удалось проверить, и он выполняется. (Все точки на График 1 лежат на соответствующих прямых).
- Противоречий в зависимости момента инерции положения масс относительно оси вращения не найдено. Точки лежат на прямой. (см. График 2) Заявленное значение mгруза на крестовине = $(408,0\pm0,5)$ г почти попадает в найденное при аппроксимации значение mут = (450 ± 35) г.
 - 14. Дополнительные задания.

15. Выполнение дополнительных заданий.