LIFLC – Logique classique CM3 – Logique propositionnelle

Licence informatique UCBL - Automne 2018-2019

https://liris.cnrs.fr/ecoquery/dokuwiki/doku.php?id=enseignement:logique: start

Formules propositionnelles

Ensemble infini dénombrable $\mathcal V$ de variables propositionnelles notées p,q,p',p_1,\dots

Ensemble des formules ${\cal F}$

Le plus petit ensemble stable par les règles suivantes

- Si $p \in \mathcal{V}$, p est une formule
- Si A est une formule, alors $(\neg A)$ est une formule
- Si A et B sont des formules, alors $(A \vee B)$, $(A \wedge B)$ et $(A \Rightarrow B)$ sont des formules

Abbréviations

Les parenthèses peuvent être omises dans certains cas Ordre de priorité croissante : \Rightarrow , \lor , \land and \neg

Exemple

$$p \lor q \Rightarrow \neg p \land r = ((p \lor q) \Rightarrow ((\neg p) \land r))$$

Arbre de Syntaxe Abstraite

Définition

Soit A une formule. ASA(A) est défini par :

- Si $p \in V$, ASA(p) = p
- $ASA(\neg B) = ASA(B)$

•
$$ASA(B \lozenge C) = ASA(B) ASA(C)$$

Avec $\lozenge \in \{ \lor, \land, \Rightarrow \}$

En anglais: AST: Abstract Syntax Tree

Exemple

Sémantique

2 Substitutions

Sémantique

Donner du sens à une formule?

→ on sait évaluer des expressions booléennes

X	$f_{\neg}(x)$
1	0
0	1

Х	У	$f_{\vee}(x,y)$	$f_{\wedge}(x,y)$	$f_{\Rightarrow}(x,y)$
1	1	1	1	1
1	0	1	0	0
0	1	1	0	1
0	0	0	0	1

Les formules contiennent des variables, pas des booléens

Interprétations et extensions aux formules

Donner une valeur booléennes aux variables

Interprétation de variables

Fonction $I: \mathcal{V} \to \mathcal{B}$

Extension naturelle aux formules :

Interprétation de formules

eval(A, I) définie par cas

également notée $[A]_I$

- si $p \in \mathcal{V}$, eval(p, I) = I(p)
- $eval(\neg B, I) = f_\neg(eval(B, I))$
- $eval(B \lor C) = f_{\lor}(eval(B, I), eval(C, I))$
- $eval(B \wedge C) = f_{\wedge}(\ eval(B, I), \ eval(C, I))$
- $eval(B \Rightarrow C) = f_{\Rightarrow}(eval(B, I), eval(C, I))$

Satisfiabilité - Validité

Modèle

Une interprétation I est un modèle d'une formule A, si eval(A, I) = 1.

On note $I \models A$.

Satisfiabilité

Une formule est satisfiable si elle admet un modèle.

Validité

Une formule est *valide* si toute interprétation est un modèle de cette formule.

On note $\models A$

Attention à la surcharge de notation

Satisfiabilité - Validité

Modèle

Une interprétation I est un modèle d'une formule A, si eval(A, I) = 1.

On note $I \models A$.

Satisfiabilité

Une formule est satisfiable si elle admet un modèle.

Validité

Une formule est *valide* si toute interprétation est un modèle de cette formule.

On note $\models A$

Attention à la surcharge de notation

SAT

Problème SAT

Consiste à déterminer si une formule est SATisfiable.

Pas d'algorithme connu ayant une complexité au pire exponentielle dans la taille de la formule.

Le problème est dit NP-Complet :

- Il existe un algorithme Non déterministe Polynomial (dans NP)
 - On peut vérifier si une interprétation est un modèle en temps polynomial dans la taille de la formule
- Il permet de répondre aux autres problèmes NP (NP-difficile)
 - En encodant l'entrée dans une formule avec un algorithme polynomial

Validité vs satisfiabilité

Théorème

Une formule A est valide si et seulement si $\neg A$ n'est pas satisfiable a.

a. on dit aussi insatisfiable

Équivalence de formule

Deux formules sont *équivalentes* si elles ont le même sens. Techniquement :

Équivalence

Deux formules A et B sont équivalentes (noté $A \equiv B$) si pour toute interprétation I:

$$eval(A, I) = eval(B, I)$$

Remarque:

 deux formules peuvent être différentes mais équivalentes (≡ n'est pas =)

Exemple

$$\neg p \lor q \equiv p \Rightarrow q$$

Conséquence logique

Définition

Un ensemble de formule A a pour conséquence logique une formule B (noté $A \models B$) si l'affirmation suivante est juste :

- Pour toute interprétation I telle que pour toute $A \in \mathcal{A}$, $I \models A$
- on a également $I \models B$

Remarque : on omet souvent les accolades lorsque ${\mathcal A}$ est donné en extension

Exemple

$$\neg p, q \models p \Rightarrow q$$

Théorème

 $A \equiv B$ si et seulement si $A \models B$ et $B \models A$

Complétude fonctionnelle

Théorème

Soit f une fonction booléenne à n arguments a. Il existe une formule A_f ayant pour variables $\{p_1, \dots, p_n\}$ telle que pour toute interprétation I:

$$eval(A_f, I) = f(I(p_1), ..., I(p_n))$$

a. i.e.
$$f:\mathcal{B}^n\to\mathcal{B}$$

On dit que $\{\lor, \land, \neg\}$ est fonctionnellement complet.

Sémantique

2 Substitutions

Substitutions

Définition

Une substitution est une fonction partielle $\sigma: \mathcal{V} \to \mathcal{F}$ dont le domaine est fini.

Notation en extension

Si $dom(\sigma) = \{p_1, ..., p_n\}$ et si $\sigma(p_i) = A_i$ pour $1 \le i \le n$, alors on note σ :

$$[p_1:=A_1,\ldots,p_n:=A_n]$$

Application d'une substitution

Définition

L'application de σ à A, notée $A\sigma$, est définie par :

- $p\sigma = \sigma(p)$ si $p \in dom(\sigma)$
- $p\sigma = p \text{ si } p \notin dom(\sigma)$
- $(\neg B)\sigma = (\neg (B\sigma))$
- $(B \lozenge C) \sigma = (B \sigma) \lozenge (C \sigma)$

 $\mathsf{avec}\ \lozenge \in \{\lor,\land,\Rightarrow\}$

Substitutions et sémantique

Théorème

Soit A et B deux formules et σ une substitution.

Si
$$A \equiv B$$
, alors $A\sigma \equiv B\sigma$

Théorème (Principe de substitution)

Soient A et B deux formules et $p \in V$.

Si
$$A \equiv B$$
, alors pour toute formule C , $C[p := A] \equiv C[p := B]$