Title

D. Zack Garza

Saturday 9th May, 2020

Contents

1	Question 1	1
2	Question 2	1
3	Question 3	1
4	Question 4	2
5	Question 5	2

1 Question 1

Let G be a finite group with n distinct conjugacy classes. Let $g_1 \cdots g_n$ be representatives of the conjugacy classes of G.

Prove that if $g_ig_j = g_jg_i$ for all i, j then G is abelian.

2 Question 2

Let G be a group of order 105 and let P, Q, R be Sylow 3, 5, 7 subgroups respectively.

- (a) Prove that at least one of Q and R is normal in G.
- (b) Prove that G has a cyclic subgroup of order 35.
- (c) Prove that both Q and R are normal in G.
- (d) Prove that if P is normal in G then G is cyclic.

3 Question 3

Let R be a ring with the property that for every $a \in R, a^2 = a$.

- (a) Prove that R has characteristic 2.
- (b) Prove that R is commutative.

4 Question 4

Let F be a finite field with q elements.

Let n be a positive integer relatively prime to q and let ω be a primitive nth root of unity in an extension field of F.

Let $E = F[\omega]$ and let k = [E : F].

- (a) Prove that n divides $q^k 1$.
- (b) Let m be the order of q in $\mathbb{Z}/n\mathbb{Z}$. Prove that m divides k.
- (c) Prove that m = k.

5 Question 5

Let R be a ring and M an R-module.

Recall that the set of torsion elements in M is defined by

$$\mathrm{Tor}(m)=\{m\in M\ \Big|\ \exists r\in R,\ r\neq 0,\ rm=0\}.$$

- (a) Prove that if R is an integral domain, then Tor(M) is a submodule of M.
- (b) Give an example where Tor(M) is not a submodule of M.
- (c) If R has zero-divisors, prove that every non-zero R-module has non-zero torsion elements.