## ECS 32B - Sorting Algorithms

Aaron Kaloti

UC Davis - Summer Session #2 2020



## Overview

#### Goal

• Much of this slide deck contains explanations about how to use many different algorithms and the worst-case analyses. The analysis is the important part, and sure enough, conceptual HW #4 and/or exam #3 will have you do more analysis about the differences between these algorithms.

#### Sorting Algorithms

- Comparison-based sorts (provably can't do better than  $\Theta(n \lg n)$ ):
  - Perform adjacent exchanges:
    - Bubble sort.
    - Selection sort.
    - Insertion sort.
  - o Shellsort.
  - Heapsort.
  - Mergesort.
  - Quicksort.
- Linear time sorts:
  - Bucket sort.
  - Radix sort.

Note on the spelling of the sorting algorithms: for some reason, certain sorts have a space in the name, and others don't, e.g. "Shellsort" vs. "Bucket sort". I used the conventional spellings for each.

# **Temporary Assumptions**

- All keys are integers.
- All keys are unique.

## Bubble Sort<sup>1</sup>

## Description

- Keep doing a pass through the input list until sorted.
- While doing a pass:
  - $\circ$  Swap A[i] and A[i+1] if A[i] > A[i+1].

## **Bubble Sort**

## Example



## **Bubble Sort**

#### Analysis

- Considered the worst reasonable sorting algorithm<sup>1</sup>.
- Worst-case time complexity:  $\Theta(n^2)$ .
  - Nested loops.
    - Outer loop: *n* iterations.
    - Inner loop: *n* iterations (per outer loop iteration).

## Selection Sort

### Description

- View list as two partitions:
  - 1. Sorted part.
    - Initially empty.
  - 2. (Potentially) unsorted part.
- Until partition #2 is empty, add its smallest element to partition #1.

## **Analysis**

- Usually better than bubble sort.
- Worst-case time complexity:  $\Theta(n^2)$ .
  - Nested loops.
    - Outer loop: *n* iterations.
    - Inner loop: n i iterations (per outer loop iteration), where i is outer loop index.

$$\circ \sum_{i=0}^{n-1} n - i = \sum_{i=1}^{n} i 
= 1 + 2 + 3 + ... + (n-2) + (n-1) + n 
= (n+1)\frac{n}{2} = \Theta(n^2).$$

#### Example



## **Insertion Sort**

### Description

- View list as two partitions:
  - 1. Sorted part.
    - Initially first element.
  - 2. (Potentially) unsorted part.
- Until partition #2 is empty, add its *first* element to partition #1.

#### **Analysis**

- Best quadratic time sort.
- Worst-case time complexity:  $\Theta(n^2)$ .
  - Nested loops.

#### Example



# Analyzing Adjacent Exchange Sorting Algorithms

• Includes: bubble sort, selection sort, insertion sort.

#### Lower Bound on Worst Case

- **inversion** (in a list A of numbers): any ordered pair (i,j) such that i < j, A[i] > A[j].
- Each swap of adjacent numbers removes *one* inversion.
- Max number of inversions:  $\binom{n}{2} = \frac{n!}{2!(n-2)!} = \frac{n(n-1)}{2} = \Theta(n^2) \Rightarrow$  any sorting algorithm that swaps adjacent elements (i.e. eliminates one inversion per swap) takes  $\Omega(n^2)$  time in worst case.

# Analyzing Adjacent Exchange Sorting Algorithms

#### Lower Bound on Average Case

- Assume all permutations of *n* elements are equally likely.
- Average number of inversions:  $\frac{n(n-1)}{4} = \Theta(n^2)$ .
  - Two ways to prove.
- $\Rightarrow$  any adjacent exchange sorting algorithm takes  $\Omega(n^2)$  time on average.

#### Proof #1: Weiss' Way

- Let  $A_r$  be A in reverse order.
- Each (i,j),  $1 \le i \le j \le n$  (n is list size) is an inversion in *one* of A and  $A_r$ .
- Total number of inversions in A and  $A_r$  is  $\frac{n(n-1)}{2}$ , so an average list has half this many, i.e.  $\frac{n(n-1)}{4}$ .

# Analyzing Adjacent Exchange Sorting Algorithms

## Lower Bound on Average Case

Proof #2: My Preferred Way

• Number of inversions between index *i* element and elements after.

| i     | Worst Case | Average       |
|-------|------------|---------------|
| 0     | n – 1      | <u>n-1</u>    |
| 1     | n – 2      | <u>n-2</u> 2  |
| 2     | n – 3      | <u>n-3</u>    |
| •••   |            |               |
| n – 3 | 2          | 1             |
| n – 2 | 1          | $\frac{1}{2}$ |
| n – 1 | 0          | 0             |

• Average number of inversions: 
$$\sum_{i=0}^{n-1} \frac{n-i-1}{2}$$
$$= \frac{n-1}{2} + \frac{n-2}{2} + \frac{n-3}{2} + \dots + 1 + \frac{1}{2} + 0$$
$$= \frac{n-1}{2} \cdot \frac{n}{2} = \frac{n(n-1)}{4}$$

## Shellsort

- Based on previous analysis: need to compare distant elements ⇒ can eliminate more than one inversion per exchange.
- a.k.a. diminishing increment sort.

## Description

- increment sequence:  $h_1, h_2, ..., h_t$ .
  - Any with  $h_1 = 1$  works.
- Steps:
  - 1. Start with greatest  $h_i \le n$ , where n is number of elements.
  - 2. " $h_i$ -sort" the list.
  - 3. Go to  $h_{i-1}$  and repeat #2. Repeat until after  $h_{i-1}$ -sort the list.

#### $h_k$ -Sorted

- All elements spaced  $h_k$  apart are sorted.
- Example (this list is 3-sorted):



## **Shellsort**

## Example

• Use Shell's increments<sup>1</sup>:  $h_t = \lfloor \frac{n}{2} \rfloor$  and  $h_k = \lfloor \frac{h_{k+1}}{2} \rfloor$ .



## Shellsort

## Worst-Case Time Complexity<sup>1</sup>

- Using Shell's increments:  $\Theta(n^2)$ .
- Using Hibbard's increments:  $\Theta(n^{3/2})$ .
  - Hibbard's increments:  $1, 3, 7, ..., 2^k 1$ .
- Many increments proposed by Sedgewick give  $O(n^{4/3})$ .

# Sorting Algorithm Characteristics

- in place: uses constant auxiliary space.
- **stable**: preserves relative order of equal values.

| Algorithm      | In place? | Stable? |
|----------------|-----------|---------|
| Bubble sort    | Yes       | Yes     |
| Selection sort | Yes       | No      |
| Insertion sort | Yes       | Yes     |
| Shellsort      | Yes       | No      |
| Heapsort       | Yes       | No      |
| Mergesort      | No        | Yes     |
| Quicksort      | No        | No      |

# Sorting Algorithm Characteristics

#### Stable vs. Unstable

• Stability is only relevant if sorting keys (of key-value pairs) and are duplicate keys.

Example: Insertion Sort vs. Selection Sort



## Heapsort

## Description

- Steps:
  - 1. Perform build heap operation on input list to create a min heap. ( $\Theta(n)$  time)
  - 2. Delete the min n times. ( $\Theta(n \lg n)$  time)
    - Ends up extracting the sorted list.

## Example

• Insertion order: 13, 18, 24, 17, 20.



• Extraction order: 13, 17, 18, 20, 24.

## Heapsort

## **Achieving Constant Auxiliary Space**

- Two modifications:
  - 1. Use *max heap* instead.
  - 2. When extract element, put at *end of list* (but don't treat it as part of the heap), i.e. swap max with element that would replace it, then percolate replacement down.

#### Example

• Insertion order: 13, 18, 24, 17, 20.



## Heapsort

## Analysis

- Worst-case time complexity:  $\Theta(n \lg n)$ .
- Auxiliary space:  $\Theta(1)$ .
- Slower than mergesort and quicksort (despite time complexity), but better auxiliary space than them.

## Description

- Is a divide-and-conquer algorithm<sup>1</sup>.
- Steps:
  - 1. *Divide* unsorted list into two equal halves.
  - 2. *Conquer*: recursively mergesort each half.
    - Can view base case as either (doesn't change runtime):
      - 1. 1 or 2 elements remain.
      - 2. 1 element remains.
  - 3. *Combine* two sorted halves into final sorted list.

#### Example #1



<sup>1.</sup> You'll see more of such algorithms in ECS 122A. Some may argue it should be called divide-conquer-and-combine, but that doesn't stick as well. 20 / 35

## Example #2



## **Analysis**

- Worst-case time complexity:  $\Theta(n \lg n)$ .
  - Can merge two halves in linear time.
  - ∘  $\Theta(n)$  work is done  $\Theta(\lg n)$  times.



## **Analysis**

- Auxiliary space:
  - Naive approach (keep copying to new list when combine):  $\Theta(n \lg n)$ .
  - Smarter approach (keep switching between two lists of length n while combining):  $\Theta(n)$ .



#### Description

- Worst-case time complexity:  $\Theta(n^2)$ .
- Average-case time complexity:  $\Theta(n \lg n)$ .
- In practice, faster than heapsort and mergesort.
- Also a divide-and-conquer algorithm.
- Steps:
  - 1. According to some rule, choose a pivot element v in list. *Divide* list into two halves, such that first half has elements less than v and second half has elements greater than v.
    - v is excluded from both halves. After this partioning, we know v is in final spot.
  - 2. *Conquer*: recursively quicksort each half.
    - Base case: 0 or 1 elements remain.
  - 3. Combine two sorted halves into final sorted list.
    - This phase is trivial compared to mergesort's.

## Example #1

• Pivot rule: choose first element in list.



## Example #1 (Continued)



## Possible Rules for Picking Pivot

- Bad ways:
  - o Choose first element.
  - o Choose larger of the first two distinct elements.
- Choose random pivot.
- *Best*: median-of-three partioning ⇒ choose median of first, center, and last element.

#### **Partioning**

• Careless partioning method can make algorithm wrong or inefficient (in time or space).

#### Suggested Strategy

- In place<sup>1</sup>.
- Steps<sup>2</sup>:
  - 1. Swap pivot with last element.
  - 2. Create two references/indices i and j. i starts at first element; j, at next-to-last element.
  - 3. While i is to the left of j, move i right until at element *not smaller* than the pivot, and move j left until at element *not larger* than the pivot.
  - 4. When i and j have stopped, if i is to the left of j, swap their elements and go back to #3. Stop once i and j cross.
  - 5. Swap element at i with the pivot.

- 1. Note that the quicksort algorithm as a whole isn't in place.
- 2. From section 7.7.2 of Weiss' book. Note that the previous example does not use this partioning strategy. How can you tell? 28 / 35

## **Partioning**

## Suggested Strategy: Example



# **Hybrid Sorting**

- Hybrid sorting uses combination of fast sorting algorithm and slow sorting algorithm.
  - Slow sorting algorithms (e.g. insertion sort) better for smaller inputs.

#### Introsort<sup>1</sup>

- **introsort**: starts with quicksort, then switches to heapsort after enough recursion, then switches to insertion sort when small number of elements.
- Often used in C++ standard library implementations.
- Worst-case time complexity is provably  $\Theta(n \lg n)$ .

#### Timsort<sup>2</sup>

- **timsort**: combines merge sort and insertion sort.
- Used in Python and Java.
- Worst-case time complexity is provably  $\Theta(n \lg n)$ .

<sup>1. &</sup>lt;a href="https://en.wikipedia.org/wiki/Introsort">https://en.wikipedia.org/wiki/Introsort</a>

# Analyzing Comparison-Based Sorting Algorithms

- Has been proven<sup>1</sup> that any sorting algorithm that only uses comparisons must perform  $\Omega(n \lg n)$  comparisons.
- To do better, need:
  - Non-comparison-based approach.
  - o Other information about the input.

1. See section 7.8 of Weiss' book.

## **Bucket Sort**

#### Description

- Input must be only positive integers less than or equal to m, i.e. we're assuming the range of integers is [1, m], where m is something we happen to know.
- Steps:
  - 1. Create list of integers (initialized to 0) called *count*.
  - 2. Read each integer. When read x, increment count[x].
  - 3. Scan *count*, printing out sorted list.

#### Worst-Case Time Complexity

- $\Theta(m+n)$  time.
- If  $m = \Theta(n)$ , then total is  $\Theta(n)$ .
  - $\circ$  This is a tough/strong assumption to make. It implies the range of the integers m is a function of the input size n.

## **Bucket Sort**

## Example



# Regarding Final Exam

- Student: "Aaron, do I have to know all of these?"
- Aaron: "Sort of."

## References / Further Reading

- We will not cover the following sorting algorithms that I previously suggested we might cover:
  - Other linear time sorts (e.g. radix/card sort, counting radix sort).
  - External sorting (on tape).
  - Bogosort. (This one is kind of a joke; look it up.)
- Chapter 7 of *Data Structures and Algorithm Analysis in C++* by Mark Allen Weiss (Fourth Edition).
- Sections 6.6 6.12 of *Problem Solving with Algorithms and Data Structures using Python* by Brad Miller and David Ranum.