Convolutional Generative Adversarial Networks with Binary Neurons for Polyphonic Music Generation

Hao-Wen Dong and Yi-Hsuan Yang

Research Center of IT Innovation, Academia Sinica

Outlines

- Introduction
- Binary Neurons
- Proposed Model
- Data
- Results
- Future Works

Source Code https://github.com/salu133445/bmusegan
https://salu133445.github.io/bmusegan/

MuseGAN

- can only generate real-valued predictions
- require postprocessing at test time
 (e.g., hard thresholding or Bernoulli sampling)

Naïve binarization methods can lead to overly-fragmented notes

• Real-valued predictions can lead to training difficulties of the discriminator

Decision boundaries to learn for the discriminator

Binary Neurons

Binary Neurons

- Neurons that output binary-valued predictions
- In this work, we consider
 - deterministic binary neurons (DBNs)

$$DBN(x) = \begin{cases} 1, & if \ \sigma(x) > 0.5 \\ 0, & otherwise \end{cases}$$

stochastic binary neurons (SBNs)

$$SBN(x) = \begin{cases} 1, & if \ z < \sigma(x) \\ 0, & otherwise \end{cases}, \quad z \sim U[0, 1]$$

Gradient Estimators

- Computing the exact gradients for binary neurons is intractable
- Straight-through (ST) estimator
 - treat BNs as identity functions in the backward pass

$$\frac{\partial BN(x)}{\partial x} = 1$$

- Sigmoid-adjusted ST estimator
 - treat BNs as <u>identity functions multiplied by the derivative of the sigmoid</u> function in the backward pass

$$\frac{\partial BN(x)}{\partial x} = \sigma(x)$$

Proposed Model

Generative Adversarial Networks

Generator

- One single input random vector
- Shared/private design
 - Different tracks have their own musical properties (e.g. textures, patterns, techniques)
 - Jointly all tracks follow a common, high-level musical idea

Refiner

- Refine the real-valued outputs of the generator into binary ones
- Composed of a number of *residual units*

Refiner

- Refine the real-valued outputs of the generator into binary ones
- Composed of a number of *residual units*

Discriminator

- **Shared/private design** (similar to the generator)
- Additional onset/offset stream and chroma stream

Two-stage Training

- First stage pretrain the *generator* and *discriminator*
- Second stage train the **refiner** and **discriminator** (with G fixed)

Data

Data Representation

- Multi-track piano-roll
- 8 tracks
 - Drums, Piano, Guitar, Bass, Ensemble, Reed, Synth Lead and Synth Pad

Training Data

- Lakh Pianoroll Dataset (LPD)
- 13746 four-bar phrases from 2291 songs (six for each)
 - Pick only songs in 4/4 time and with an alternative tag

Results

Qualitative Comparison

raw

pretrained (+BS)

pretrained (+HT)

proposed
(+SBNs)

proposed
(+DBNs)

Audio Samples

- proposed (+DBNs) fewer overly-fragmented notes; more out-of-scale notes
- proposed (+SBNs) more overly-fragmented notes; lots of artifacts

	Sample 1	Sample 2		Sample 1	Sample 2
pretrained (+BS)			proposed (+SBNs)		
pretrained (+HT)			More sampl	es available on	demo nage
proposed (+DBNs)			_	133445.github.ic	

Evaluation Metrics

Qualified note rate (QN)

$$\mathbf{QN} = \frac{\text{# of notes no shorter than 3 time steps (i.e., a 32th note)}}{\text{# of notes}}$$

Polyphonicity (PP)

$$\mathbf{PP} = \frac{\text{\# of time steps where more than two pitches are played}}{\text{\# of time steps}}$$

- Tonal distance (TD)
 - measure the distance between two chroma features in a tonal space

Comparisons of Training Strategies

- Two-stage training (proposed) [stage 1] pretrain G and D [stage 2] train R and D
- **Joint training** (*joint*) [stage 1] pretrain G and D [stage 2] train G, R and D
- End-to-end training (end-to-end) train G, R and D in one stage

	training	pretrained		proposed		joint		end-to-end	
	data	BS	HT	SBNs	DBNs	SBNs	DBNs	SBNs	DBNs
QN	0.88	0.67	0.72	0.42	<u>0.78</u>	0.18	0.55	0.67	0.28
PP	0.48	0.20	0.22	0.26	<u>0.45</u>	0.19	0.19	0.16	0.29
TD	0.96	0.98	1.00	0.99	0.87	<u>0.95</u>	1.00	1.40	1.10

(values closer to that of the training data is better; underline: closest; bold: top 3 closest)

Comparisons of Training Strategies

Comparisons of Training Strategies

End-to-end Models

 First attempt, to our best knowledge, to generate such high-dimensional data with binary neurons from scratch

SBNs DBNs

drum patterns

End-to-end Models

 First attempt, to our best knowledge, to generate such high-dimensional data with binary neurons from scratch

	31. 14 - 41.		1.5			e perfection as				I e e tat	1.:14
F				508 200 540	(3) (3) (3)	늴 -:	H E ye	JE JE		Ħ	-
			-1		a erefic	r =	FAILTE BY	een ye nj™	- 15E 86 E		e e e e e e e e e e e e e e e e e e e
bas	ss li	ne	· · · ·								
		स्त्राच्या स सम्राट्ट ज्यार			, -, =₹ [*] .	:=	= 9 · ² · K _{2 ·} → °			कुन्ने १ में जन्म	8 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	-		ż								

SBNs DBNs

Effects of the Discriminator Design

- **pretrained** *shared/private design* + *offset/onset stream* + *chroma stream*
- ablated shared/private design
- baseline only one shared discriminator

	training data	pretrained		ablated		baseline	
		BS	НТ	BS	HT	BS	HT
QN	0.88	0.67	0.72	0.61	0.64	0.35	0.37
PP	0.48	0.20	0.22	0.19	0.20	0.14	0.14
TD	0.96	0.98	1.00	1.00	1.00	1.30	1.40

Future Works

Summary

- A convolutional GAN for binary-valued multi-track piano-rolls
 - CNNs + residual units + binary neurons
 - Shared/private design in both the generator and discriminator (proved effective)
 - Onset/offset and chroma streams in the discriminator (proved effective)
 - Two-stage training (proved effective)
- Proposed model with deterministic binary neurons (DBNs) features fewer overlyfragmented notes as compared with existing methods.

Future Works

Tradeoff

- easy-to-train generator + hard-to-train discriminator
- hard-to-train generator + easy-to-train discriminator

Longer music

- RNNs (LSTMs or GRUs)
- How to generate high-level/long-term structure?

More tracks

- Symphony/orchestra compositions
- ∘ (hierarchical) sections → sub-sections → instruments

Thank you for your attention