Endlicher Stichprobenraum

- Stichprobenraum Ω mit
 - $-1 \leq |\Omega| < \infty$
 - jede Wahrscheinlichkeit positiv
 - Summe der Wahrscheinlichkeiten = 1
- Wahrscheinlichkeitsmaß

$$P(A) = \sum_{\omega_k \in A} p_k$$
 (insbesondere $P(\omega_k) = p_k$).

- $-(\Omega,P(\Omega),P)$ definiert Wahrscheinlichkeitsraum
- Probability Mass Function (PMF)
 - * Folge der Wahrscheinlichkeiten p_k
- Beispiele
 - Würfeln

Wir haben 2 Würfel und interessieren uns für die Summe der Augenzahlen. Wir setzen $\Omega=\{2,\ldots,12\}$. Bestimme die PMF für dieses Experiment.

*

$$P_2 = P \left(\text{Summe} = 2 \right) = \frac{1}{36}$$
 $P_3 = P \left(\text{Summe} = 3 \right) = \frac{2}{36} = \frac{1}{18}$

:

We = le Pe +

- PMF

Beispiel (PMF)

Sei $\Omega=\{1,2,3\}$. Es sei die PMF gegeben durch $p_k=c/k,\,k\in\Omega.$ Bestimme c.

$$P_{1}+P_{1}+P_{3}=1$$
 $\frac{C}{1}+\frac{C}{2}+\frac{C}{3}=1$

*

Abzählbarer Stichprobenraum

- Stichprobenraum Ω mit
 - $-1 \le |\Omega| \le$ abzählbar unendlich
 - jede Wahrscheinlichkeit positiv
 - Summe der Wahrscheinlichkeiten = 1
- Wahrscheinlichkeitsmaß

$$P(A) = \sum_{\omega_k \in A} p_k$$

- $(\Omega,P(\Omega),P)$ definiert Wahrscheinlichkeitsraum
- Beispiel

Wir interessieren uns für die Anzahl von Toren in einem Fußballspiel.

$$\quad \bullet \ \ \Omega = \{0,1,2,\ldots\} \ \text{und} \ \mathcal{A} = \mathcal{P}(\Omega).$$

▶ Was ist $p_k = P(|\mathsf{Tor}| = k)$? (Statistiken!)