Basics of Parameter Estimation in Probabilistic Models

CS698X: Topics in Probabilistic Modeling and Inference Piyush Rai

Two Fundamental Rules

- Keep in mind these two simple rules of probability: sum rule and product rule
- \blacksquare Assume two random variables a and b

$$p(a) = \sum_{b} p(a,b)$$
 (sum rule)
$$p(a,b) = p(a)p(b|a) = p(b)p(a|b)$$
 (product rule)

- Note: For continuous r.v.'s, sum replaced by integral: $p(a) = \int p(a,b)db$
- Bayes rule can be easily obtained from the above two rules
- \blacksquare Assuming b is continuous, the Bayes rule is

$$p(b|a) = \frac{p(b)p(a|b)}{p(a)} = \frac{p(b)p(a|b)}{\int p(a,b)db} = \frac{p(b)p(a|b)}{\int p(b)p(a|b)db}$$

Probabilistic modeling and inference is about consistently applying these two rules

Probabilistic Modeling

- Assume data $\mathbf{X} = \{x_n\}_{n=1}^N$ generated from a prob distribution with params θ $x_n \sim p(x|\theta,m)$ n=1,2,...,N
- $p(x|\theta,m)$ is also known as the likelihood (a function of the parameters θ)
- Assume a prior distribution $p(\theta|m)$ on the parameters θ
- Note: Here *m* collectively denotes "all other stuff" about the model, e.g.,
 - An "index" for the type of model being considered (e.g., "Gaussian", "Student-t", etc)
 - Any other (hyper) parameters of the likelihood/prior
- lacktriangle Note: Usually we will omit the explicit use of m in the notation
 - In some situations (e.g., when doing model comparison/selection), we will use it explicitly
- Note: For some models, the likelihood is not defined explicitly using a probability distribution but implicitly† via a probabilistic simulation process

Probabilistic Modeling

- The prior $p(\theta|m)$ plays an important role in probabilistic/Bayesian modeling
 - Reflects our prior beliefs about possible parameter values before seeing the data

- Can be "subjective" or "objective" (also a topic of debate, which we won't get into)
- Subjective: Prior (our beliefs) derived from past experiments
- Objective: Prior represents "neutral knowledge" (e.g., uniform, vague prior)
- Can also be seen as a regularizer (connection with non-probabilistic view)
- The goal of probabilistic modeling is usually one or more of the following
 - Infer the unknowns/parameters θ given data \mathbf{X} (to summarize/understand the data)
 - Use the inferred quantities to make predictions

Parameter Estimation/Inference

Can infer params by computing posterior distribution (fully Bayesian inference)

$$p(\theta|\mathbf{X},m) = \frac{p(\mathbf{X}|\theta,m)p(\theta|m)}{p(\mathbf{X}|m)} = \frac{p(\mathbf{X}|\theta,m)p(\theta|m)}{\int p(\mathbf{X}|\theta,m)p(\theta|m)d\theta} = \frac{\text{likelihood} \times \text{prior}}{\text{marginal likelihood}}$$

- Marginal likelihood is another very important quantity (more on it later)
 - Probability of data after integrating out some/all of the unknowns from the likelihood
 - p(X|m) above is the likelihood obtained after integrating out θ from the likelihood $p(X|\theta,m)$
 - Not always available in closed form (the key reason why full posterior is often hard to compute)
- Cheaper alternative to fully Bayesian inference: Point Estimation of the parameters
 - Find the single "best" estimate of the unknowns

Point Estimation

Recall that the posterior is

$$p(\theta|\mathbf{X},m) = \frac{p(\mathbf{X}|\theta,m)p(\theta|m)}{p(\mathbf{X}|m)}$$

In some problems as we will see, hybrid inference is also possible/desirable — infer full posterior for some parameters and point estimate for others

- Point estimation typically done via one of the following two approaches
 - Maximum likelihood (ML) estimation: Find θ for which observed data has largest probability

$$\hat{\theta}_{ML} = \underset{\theta}{\operatorname{argmax}} \log p(\mathbf{X}|\theta)$$

■ Maximum a posteriori (MAP) estimation: Find θ that has the <u>largest posterior probability</u>

$$\hat{\theta}_{MAP} = \underset{\theta}{\operatorname{argmax}} \log p(\theta | \mathbf{X}) = \underset{\theta}{\operatorname{argmax}} [\log p(\mathbf{X} | \theta) + \log p(\theta)]$$

- MAP is just like MLE but information from the prior is also incorporated
 - Thus MAP is like regularized MLE (thus helps prevent overfitting)

CS698X: TPMI

"Reading" the Posterior Distribution

- lacktriangle Posterior provides us a holistic view about $m{ heta}$ given observed data
- lacktriangle A simple unimodal posterior for a scalar parameter heta might look something like

- lacktriangledown Various types of estimates regarding $m{ heta}$ can be obtained from the posterior, e.g.,
 - Mode of the posterior (same as the MAP estimate)
 - Mean and median of the posterior
 - Variance/spread of the posterior (uncertainty in our estimate of the parameters)
 - Any quantile (say $0 < \alpha < 1$ quantile) of the posterior, e.g., θ_* s.t. $p(\theta \le \theta_*) = \alpha$
 - Various types of intervals/regions

"Reading" the Posterior Distribution

Also defined for multi-modal posteriors

■ $100(1-\alpha)\%$ Credible Interval: Region in which $1-\alpha$ fraction of posterior's mass resides

$$C_{\alpha}(\mathbf{X}) = (\ell, u) : p(\ell \leq \theta \leq u | \mathbf{X}) = 1 - \alpha$$

Computing central interval or HPD usually requires inverting CDFs

- Credible Interval is not unique (there can be many $100(1 \alpha)\%$ intervals)
- Central Interval is a symmetrized version of Credible Interval ($\alpha/2$ mass on each tail)
- Another useful interval: The (1α) Highest Probability Density (HPD) region

$$\mathcal{C}_{lpha}(\mathbf{X}) = \{\theta : p(\theta|\mathbf{X}) \geq p^*\}$$
 s.t. $1 - \alpha = \int_{\theta: p(\theta|\mathbf{X}) \geq p^*} p(\theta|\mathbf{X}) d\theta$

S698X: TPM

Using Posterior for Making Predictions

- Posterior can be used to compute the posterior predictive distribution (PPD)
- PPD is essentially our test time prediction using the learned model.
- lacktriangle The PPD of a new observation $oldsymbol{x}_*$ given previous observations

Prediction by averaging over the posterior distribution of the unknowns parameters

$$p(\mathbf{x}_*|\mathbf{X},m) = \int p(\mathbf{x}_*,\theta|\mathbf{X},m) d\theta = \int p(\mathbf{x}_*|\theta,\mathbf{X},m) p(\theta|\mathbf{X},m) d\theta$$

Just a simple example. The actual form of PPD (e.g., what we are predicting and what we condition on, etc) will depend on the problem.

Assuming observations are i.i.d. given θ

$$= \int p(\mathbf{x}_*|\theta, m) p(\theta|\mathbf{X}, m) d\theta$$

This integral is only rarely tractable

- lacktriangle Computing PPD requires doing a posterior-weighted averaging over all values of heta
- A crude approximation: Instead of PPD, just use a plug-in predictive

However, this ignores all the uncertainty about θ

$$p(x_*|\mathbf{X},m) pprox p(x_*|\hat{\theta},m)$$
 Here $\hat{\theta}$ is the ML or MAP estimate of the parameters

- Plug-in pred. is the same as PPD with $p(\theta | \mathbf{X}, m)$ approximated by a point mass at $\hat{\theta}$
 - If we are using plug-in predictive, we are not really being Bayesian!

CS698X: TPMI

Marginal Likelihood

■ Recall the Bayes rule for computing the posterior

$$p(\theta|\mathbf{X},m) = \frac{p(\mathbf{X}|\theta,m)p(\theta|m)}{p(\mathbf{X}|m)} = \frac{p(\mathbf{X}|\theta,m)p(\theta|m)}{\int p(\mathbf{X}|\theta,m)p(\theta|m)d\theta} = \frac{\text{likelihood} \times \text{prior}}{\text{marginal likelihood}}$$

- The denominator in the Bayes rule is the marginal likelihood (a.k.a. "model evidence")
- Marginal lik. is the same as expected likelihood (exp. under the prior distribution) since

$$p(\mathbf{X}|m) = \int p(\mathbf{X}|\theta, m) p(\theta|m) d\theta = \mathbb{E}_{p(\theta|m)}[p(\mathbf{X}|\theta, m)]$$

- For a good model m, we would expect marg. lik. to be large (most θ 's will be good)
 - \blacksquare Can thus compare two models m and m' by comparing the respective marg. lik.

This doesn't require a separate validation set unlike cross-validation

CS698X: TPMI

Model Selection and Model Averaging

- Marginal likelihood is hard-to-compute (due to integral) but a very useful quantity
- It can be used for doing model selection
 - Choose model $m \in \{1,2,...,M\}$ that has largest posterior probability

Then, for prediction, we can report the PPD $p(x_*|X, \widehat{m})$ of the best model \widehat{m}

$$\hat{m} = \arg\max_{m} p(m|\mathbf{X}) = \arg\max_{m} \frac{p(\mathbf{X}|m)p(m)}{p(\mathbf{X})} = \arg\max_{m} p(\mathbf{X}|m)p(m)$$

That is, simply comparing

- Note: If all models are equally likely a priori then $\hat{m} = \arg\max_{m} p(\mathbf{X}|m)^{\frac{1}{2}}$ the marginal likelihoods
- Note: If m denotes a hyperparam, then $\hat{m} = \arg\max_{m} p(X|m)$ is the optimal hyperparameter
 - Called MLE-II for <u>hyperparameter estimation</u> (find hyperparams that maximize the marginal prob. of data)
- Using the model posterior $p(m|\mathbf{X})$, we can even average over models

Called Bayesian Model Averaging (BMA)
$$p(\mathbf{x}_*|\mathbf{X}) = \sum_{m=1}^{M} p(\mathbf{x}_*|\mathbf{X}, m)p(m|\mathbf{X})$$
Posterior probability of

Posterior based averaging over all models m =1,2,...,M and all possible param of each model

 \bigcap Posterior probability of model m

■ Since $p(x_*|X,m) = \int p(x_*|\theta,m)p(\theta|X,m)d\theta$ BMA is like double averaging to make prediction

Coming Up Next

- Some simple examples of parameter estimation in probabilistic models
 - Estimating the bias of a coin given previous outcomes of tosses from a Bernoulli model
 - Estimating the mean of a Gaussian given observations from a Gaussian model

