٠.	Student Name	•••	•••	 ***	 ***	•••	 **	••••
	Enrollment No)		 	 		 	

Mid-Term Examination - November 2023

programme: B. Tech (AI & DS, AI & ML, IIOT) Paper Code: AIDS-303/AIML-303 Time: 11/2 Hours

Semester: Fifth (September, 23 - January, 24)

Paper Name: Design and Analysis of Algorithm

Maximum Marks: 30

Note: Q. No. 1 is compulsory. Attempt any two questions from the remaining questions. Some questions have internal choice also. All questions carry equal marks. Only scientific calculator is allowed.

1(2)	Find the order of the function (Attempt any Five)			
1(b)	\downarrow Interest in $I(n) = \log(n!)$ in hig Objection	[2]		
1(0)	In Strassens' matrix multiplication, what is the formula to calculate the element present in the second row, first column of the product matrix?			
1(c)	Find the time complexity for algorithm to find the number of bits in binary representation of a decimal and the number of bits in binary	[2]		
1(d)				
	A machine needs a minimum of 200 seconds to sort 1024 elements by Quick Sort. Approximately what will be the minimum time required to sort 512 elements?	[2]		
1(e)	We have a list of pairs [("Ashwin", 69), ("Sumati", 87), ("Tanuja", 69), ("Brinda", 87), ("Shabana", 72), ("Vijay", 60)], where each pair consists of a student's name and his/her marks in a course. We sort these pairs in ascending order of marks. What will be the corresponding output to a stable sort?			
1(1)	Explain fractional knapsack problem.	[2]		
1(g)	Solve the recurrence $T(n) = 2T(n/2) + n^2$ using recurrence tree method.	[2]		
	Questions 2			
2(a)	(i) Solve the following recurrence relation using Master's theorem $T(n) = 2T(n/4) + n^{0.51}$	[5]		
	(ii) Calculate the time complexity for Towers of Hanoi. It consists of three pegs A, B and C. Move n disks from A to B, Never put a larger disk above a smaller one and C is transit peg.	[5]		
	OR			

2(b)	(i) Let r _n be the number of n-bit strings that do NOT contain two consecutive 1's. Find the recurrence relation for r _n ?				
	(ii) Compute the time complexity of insertion sort and perform the insertion sort to sort the following numbers [27, 19, 33, 15, 4]	[5]			
	Question 3				
3(a)	(i) Illustrate Djiskstra's Algorithm for finding the shortest path from A in the graph shown below: A 1 4 8 7 9	[5]			
	(ii) What is the optimal Huffman code for the following set of frequencies: a: 0.25, b: 0.1, c: 0.2, d: 0.15, e: 0.26, f: 0.04 OR	[5]			
3(b)	(i) Construct a minimum spanning tree using Prim's algorithm for the graph shown below:	[5]			
	A 16 D 5 E B 18 C 10				
	(ii) Perform the heap sort to sort the following numbers. 4, 10, 3, 5, 1	[5			