PSALTer results panel

Wave operator and propagator

	1+	$W_{S^{\perp} \alpha \beta}$	${}^1{\mathcal T}^{\scriptscriptstyle \perp}{}_{\scriptscriptstyle lpha}$							1.W _s .t _α				$^{1}\mathcal{W}_{s}{}^{\parallelt}{}_{lpha}$		${}^{1}\mathcal{W}_{S}{}^{h}{}_{\alpha}$ ${}^{1}\mathcal{W}_{S}{}^{h}{}_{\alpha}$
$^{1^+}W_{s^{\perp}}\dagger^{\circ}$	αβ	$\frac{4}{a}$	0									0		0		0 0
$^1\mathcal{T}^{\scriptscriptstyle\perp}$ †	rα	0	$\frac{2^{k^2(4k^4(h_1-h_8)(h_1+h_8)+8k^2(2h_1+h_8)a_0+3a_0^2)}}{(2+k^2)^2a_0^{-2}(k^2(h_2-h_8)+3a_0)}$						2)	21	$\sqrt{\frac{2}{3}} k (2 k^4 (hh.8) $ (2)	$(2(h_{7}+h_{8})-a_{0})+3k^{2}(4(h_{7}+h_{8})-a_{0})a_{0}$ $(2(h_{7}+h_{8})-a_{0})+3k^{2}(4(h_{7}+h_{8})-a_{0})a_{0}$ $(2(h_{7}+h_{8})-a_{0})+3k^{2}(4(h_{7}+h_{8})-a_{0})$	3 a. ²)	$\frac{i \sqrt{\frac{10}{3}} k (2 k^2 (h_7 - h_8) + 3 a)}{(2 + k^2) a (k^2 (h_7 - h_8) + 3 a)}$.)	$\frac{2ik(12a_{_{0}}^{2}+3k^{2}a_{_{0}}^{}(12h_{_{7}}+4h_{_{8}}+a_{_{0}})+2k^{4}(h_{_{7}}-h_{_{8}})(4(h_{_{7}}+h_{_{8}})+a_{_{0}}))}{\sqrt{3}(2+k^{2})^{2}a_{_{0}}^{2}(k^{2}(h_{_{7}}-h_{_{8}})+3a_{_{0}})} \\ \frac{4i\sqrt{\frac{2}{3}}k(k^{2}(h_{_{7}}-h_{_{8}})-3a_{_{0}})}{(2+k^{2})a_{_{0}}(k^{2}(h_{_{7}}-h_{_{8}})+3a_{_{0}})}$
¹ Ws ^{⊥t} †	α	0	$\frac{2i\sqrt{\frac{2}{3}}k(-2k^4(h_2^{-}h_8^{-})(2(h_1^{-}+h_8^{-})-a_0^{-})+3a_0^{-2}+3k^2a_0^{-}(-4(h_1^{-}+h_8^{-})+a_0^{-})}{(2+k^2)^2a_0^{-2}(k^2(h_2^{-}+h_8^{-})+3a_0^{-})}$							$-\frac{4(13 a_0^{ 2} + 2 k^2 a_0 (-4 n_7 - 8 n_8 + 5 a_0) + k^4 (-4 n_7^{ 2} + 4 n_7 a_0 + (-2 n_8 + 6 a_0)}{3(2 + k^2)^2 a_0^{ 2} (k^2 (n_7 - n_8) + 3 a_0)}$				$\frac{2\sqrt{5}(5a_0+k^2)(2h_7-2h_8+k^2)}{3(2+k^2)a_0(k^2(h_7-h_8)+3a_0)}$	a.)) 2	$\frac{2\sqrt{2}(4 a_0^{\ 2} + k^2 a_0 (28 h_1^{\ } + 20 h_1^{\ } + a_0^{\ }) + k^4 (8 h_1^{\ 2} - 8 h_2^{\ 2} - 2 h_1^{\ } a_0^{\ } + 2 h_2^{\ } a_0^{\ } + a_0^{\ }))}{3(2 + k^2)^2 a_0^{\ } (k^2 (h_1^{\ } - h_2^{\ }) + 3 a_0^{\ })} = \frac{8(a_0^{\ } + k^2 (h_1^{\ } - h_2^{\ } + 2 a_0^{\ }))}{3(2 + k^2) a_0^{\ } (k^2 (h_1^{\ } - h_2^{\ }) + 3 a_0^{\ })}$
¹Ws ^t †	α	0	$-\frac{i\sqrt{\frac{10}{3}}k(2k^2(h_7-h_8)+3a_0)}{(2+k^2)a_0(k^2(h_7-h_8)+3a_0)}$								3($ \sqrt{5} \left(5 \begin{array}{c} a. + k^2 \left(2 h2 h. +a. \right) \\ 0 \end{array}\right) \\ (2 + k^2) a. \left(k^2 \left(hh. \right) + 3 a. \right) \\ 0 \\ 0 \\ 0 $		$\frac{4}{3a_0} - \frac{5}{3k^2 (n-h) + 9a_0}$	-	$-\frac{\sqrt{10}\left(-4 a_{.0} + k^2 \left(-4 h_{.7} + 4 h_{.8} + a_{.0}\right)\right)}{3 \left(2 + k^2\right) a_{.0} \left(k^2 \left(h_{.7} + h_{.8}\right) + 3 a_{.0}\right)} \qquad \qquad \frac{4 \sqrt{5} \left(k^2 \left(h_{.7} + h_{.8}\right) + a_{.0}\right)}{3 a_{.0} \left(k^2 \left(h_{.7} + h_{.8}\right) + 3 a_{.0}\right)}$
¹Ws ^{⊥h} †	α	0	$-\frac{2 i k(12 a_0^2+3 k^2 a_0^2 (12 h_1+4 h_1+a_0^2)+2 k^4 (h_1-h_1^2) (4 (h_1+h_1^2)+a_0^2)}{\sqrt{3} (2 + k^2)^2 a_0^2 (k^2 (h_1-h_1^2)+3 a_0^2)}$.+h.)+a.))	2 √2 (4	$a_0^2 + k^2 a_0 (28 h)$	$\begin{array}{c} +20 h. + a.) + k^4 (8 h.^2 - 8 h.^2 - 2 h. a. + 2 \\ 2 + k^2)^2 a.^2 (k^2 (h h.) + 3 a.) \end{array}$	2 h. a. +a. ²))	$\frac{\sqrt{10} \left(k^2 \left(4 h_7 - 4 h_8 - a_1\right) + 4}{3(2 + k^2) a_0 \left(k^2 \left(h_7 - h_8\right) + 3a_1\right)}$	a.) a.)	$\frac{2(32a_0^{2}+8k^2a_0^{}(10h_1^{}+2h_8^{}+a_0^{})+k^4(16h_1^{2}+8h_1^{}a_0^{}-(4h_8^{}+a_0^{})^2))}{3(2+k^2)^2a_0^{2}(k^2(h_1^{}+h_8^{})+3a_0^{})} \\ -\frac{8\sqrt{2}(5a_0^{}+k^2(-h_1^{}+h_8^{}+a_0^{}))}{3(2+k^2)a_0^{}(k^2(h_1^{}+h_8^{})+a_0^{})}$
¹W _s ∥h†	α	0	$-\frac{4 i \sqrt{\frac{2}{3}} k (k^2 (h_2 - h_2) - 3 a_0)}{(2 + k^2) a_0 (k^2 (h_2 - h_2) + 3 a_0)}$							$\frac{8(a_0 + k^2(h_1 - h_1 + 2a_0))}{3(2 + k^2)a_0(k^2(h_1 - h_1) + 3a_0)}$				$\frac{4\sqrt{5}(k^{2}(h,-h,)+a)}{3a_{0}(k^{2}(h,-h,)+3a_{0})}$		$\frac{8\sqrt{2}(k^{2}(h_{1}-h_{1}-a_{0})-5a_{0})}{3(2+k^{2})a_{0}(k^{2}(h_{1}-h_{1})+3a_{0})} \qquad \qquad \frac{4}{3}(\frac{5}{a_{0}}-\frac{16}{k^{2}(h_{1}-h_{1})+3a_{0}})$
¹⁻ A _S ⊪h †α	1 97 ₅ 1h †°	$^{1}\mathcal{A}_{S}^{}^{Ilt}+^{a}$	$^{1}\mathcal{A}_{S}^{\perp t}+^{a}$	$^{1}h^{\perp}+^{\alpha}$	$^{1^{+}}\mathcal{A}_{S}^{^{\perp}}+^{\alpha\beta}$		1, 1 ° × ° + ° + ° ° + ° ° ° ° ° ° ° ° ° ° °	+ 8 4.0	4 τ SM +0	0,+7-11+	٠٠٠٠ +	$S == \iiint \left(\frac{1}{4} \left(-2 a_{0} \mathcal{A}_{\alpha \chi \beta} \mathcal{S}\right)\right)$	$\mathcal{A}^{\alpha\beta\chi} + 2 a$	$\mathcal{A}_{\alpha}^{\alpha\beta}\mathcal{A}_{\beta\chi}^{\chi}$ +	$^{2}\mathcal{A}_{S}^{\parallel}+^{\alpha\beta\chi}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0	0	0	4 34 11 1						$0^{+}\mathcal{T}^{-1}$ $\frac{4 k^{2} (6 k^{2} (h_{1} + h_{1}) - a_{1})}{3 (4 + k^{2})^{2} a_{1}^{2}}$	20	$0 h^{lphaeta} \partial_eta \mathcal{G}$	$a_{\beta\chi}^{X} + 4 \mathcal{T}^{\alpha\beta} h_{\alpha\beta} + $ $a_{\alpha\chi}^{X} - 2 a_{0} h^{\alpha\beta}$	0	N = 4 = N		
i k a 4 √6	i k a 0 √3	$-\frac{1}{4}i\sqrt{\frac{5}{6}}k$	1 k a 0 4 √6	0	0	$^{1}h^{\scriptscriptstyle \perp}_{\alpha}$	$\frac{4i\sqrt{2}k}{12a_0+3k^2a_0}$	$ \begin{array}{c} 10 & i & k \\ 12 & a & +3 & k^2 & a \\ 4 & i & \sqrt{2} & k \end{array} $	$\frac{8i k (6 k^2 (h_1 + h_1) - a_1)}{3 (4 + k^2)^2 a_1^2}$		4(2 k2	$a_{\stackrel{.}{0}}\ h^{lpha}_{a}\partial_{\chi}\mathcal{A}^{eta_{.}}$		$^{i\chi}_{\beta}$ - 2 $h_{\dot{8}}^{}\partial_{\beta}\mathcal{A}_{\chi}^{}^{}\delta_{\delta}$ $h_{\dot{7}}^{}\partial_{\chi}\mathcal{A}_{\beta}^{}\delta_{\delta}^{}\partial^{\chi}\mathcal{A}_{\alpha}^{}^{}\alpha_{\delta}^{}$ - $\partial_{\delta}\mathcal{A}_{\alpha}^{}\lambda_{\chi}^{}$ -	0	
$\frac{1}{12}$ (-2 $k^2 h$.	$\frac{2k^{2}h + 4}{7} = \frac{12\sqrt{2}}{12\sqrt{2}}$	a 1 √ 6 √	$\frac{1}{6} \left(-k^2 h \right)$	$-\frac{i k a}{4 \sqrt{6}}$	0	$^{1}\mathcal{A}_{S}{^{\scriptscriptstyle\perp}}^{t}_{\alpha}$	$ \begin{array}{c c} 4 & \sqrt{2} \\ & \sqrt{3} \\ & \sqrt{3} \end{array} $	25 13 k a.	0	$\frac{(2 k^{2} (h_{7} + h_{8}) + a_{6})}{k^{2} a^{2}}$						0.)
h. + a.)		$\binom{h}{8} + a$.)	$\frac{h_1}{7}$ -2 a_0	\ <u>0</u> 0°¢		s α	12 a 4			$ \begin{array}{c} 0^{+} \\ \hline 8i k (6 k^{2}) \\ \hline 3(4+i) \end{array} $	4 /	$\partial_{\delta}\mathcal{R}_{\beta \chi}^{\delta} +$	0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\frac{1}{12} \sqrt{5} (2 k^2)$	$\frac{1}{12}\sqrt{\frac{5}{2}}$ (:	$\frac{1}{6}$ (-5 k^2	$\frac{1}{6}\sqrt{5}$ ($\frac{1}{4}i$.1	$\frac{8\sqrt{2}}{12a.+3k^2a.}_{0}$	$\frac{20}{12a.+3k^2a.}$	$\frac{16(6 k^{2} (h_{7} + h_{8}) - a_{0})}{3(4 + k^{2})^{2} a_{0}^{2}}$	0	$\frac{0^{+}\mathcal{W}_{S}^{1}t}{8i k(6 k^{2} (h_{1} + h_{2}) a_{0})}{3(4 + k^{2})^{2} a_{0}^{2}}$	$4h_{\cdot}\partial^{x}\mathcal{R}^{\alpha\beta}_{\alpha}$ $t, x, y, z]dzdyd$				8.) a.) b.) a.) a.) a.) a.) a.) a.) a.) a.) a.) a.) a.) a.) a.) a.) a.) a.) a.) a.) a. a.
$2 k^2 h_1 + a_1$	$(-2 k^2 h. + a.)$	$\frac{2}{7}h_{1}+2a_{1}$	$(k^2h + a)$	$\sqrt{\frac{5}{6}} k \frac{a}{0}$	0	$^{1}\mathcal{A}_{S}^{\parallelt}_{\alpha}$	0	0	$\frac{20}{3(4+k^2)a.}$	21 V 3 k a	$0^{+}W_{S}^{\parallel}$ $\frac{10 i k}{3(4+k^{2})a_{0}}$	$\begin{array}{c c} 3 \cdot W_{s} \ _{\alpha\beta\chi} & \begin{array}{c} 3 \cdot W_{s} \ _{\alpha\beta\chi} \\ & \ddots \\ & \ddots \\ & & \end{array}$ $\begin{array}{c c} FW_{s} \ + {}^{\alpha\beta\chi} & \begin{array}{c} -\frac{2}{a} \\ & \ddots \\ & & \end{array}$			4 ₀	
	12	$\frac{1}{12}\sqrt{\frac{5}{2}}$		1 k a 0 8 √3	0		0	0	$\frac{8 \sqrt{2}}{3(4+k^2)a}$	$4i\sqrt{\frac{2}{3}}$ ka	$0^{+}W_{S}^{\perp h}$ $\frac{4i\sqrt{2}k}{3(4+k^{2})a_{0}}$	2 0 0	$\begin{array}{c} 3 \mathcal{A}_{S} \parallel \\ 3 \mathcal{A}_{S} \parallel \\ \alpha \beta \chi \end{array}$			
$\frac{k^2 h - 2a}{8} \frac{6 \sqrt{2}}{6}$	$(-k^2h$	(-2)	2 k² h. 12 \			$^{1}\mathcal{A}_{\mathrm{S}}{^{\perp \mathrm{h}}}_{a}$,	0. h.	$0^{+}h^{\perp}$ $0^{+}h^{\parallel}$		⁰⁺ Æ _s ∥			rityform		Covariantform Multiplicities
	$\frac{1}{12} \left(-k^2 h_1 + a_1 \right)$	$(-2k^2h + a)$	+a.			μ	$^{0^{+}}h^{\perp}$ †	0	0	0	$\frac{i k a}{4}$	i k a 0 8 √2		$t + 2 i 0^+ \mathcal{T}^\perp == 0$	2	$\partial_{\beta}\partial_{\alpha}\mathcal{T}^{\alpha\beta} = \partial_{\alpha}\partial_{\beta}\partial_{\alpha}\mathcal{W}^{\alpha\beta\chi} $ 1
		$-a_{.})\frac{1}{12}$					^{0,+} h∥†	0	0 0		$-\frac{i k a}{4 \sqrt{3}}$	$\frac{5 i k a}{8 \sqrt{6}}$	2 k 1 W	$s^{\pm n\alpha} + k \stackrel{1}{\cdot} W_s^{\pm t\alpha} + 6 i$	$^1\mathcal{T}^{_\perp}$	${}^{\alpha} == 0 \ 2 \ \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{T}^{\beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} W^{\beta \alpha \chi} == $ $2 \ \partial_{\chi} \partial^{\chi} \partial_{\beta} \mathcal{T}^{\alpha \beta} + \partial_{\delta} \partial_{\chi} \partial_{\beta} \partial^{\alpha} W^{\beta \chi \delta} $ 3
$\frac{6\sqrt{2}}{\frac{1}{12}}(-2k^2h, -c)$	*	5	$\frac{1}{12}$ (-2			1	⁰⁺ Æs ^{⊥t} †	0	0 0		$\frac{a}{2}$	$\frac{a_0}{4\sqrt{2}}$	Total ex	pected gauge genera	ators:	: 4
	$\frac{k^2 h - 2a}{8 0}$	$2 k^2 h$	$\frac{1}{2} \left(-2 k^2 h + \frac{1}{8} \right)$	1 k a 0 4 √6	0	E.	$^{0^+}\mathcal{R}_{S}{}^{\parallel}\dagger$	$-\frac{1}{4}\tilde{l} k$	$ \begin{array}{c c} a & \frac{i & k & a}{0} \\ 0 & 4 & \sqrt{3} \end{array} $	a. 0 2	$-\frac{2}{3}k^2(h_1+h_2)$	_				

 $\frac{2 k^2 (h_7 + h_1) + 3 a_0}{12 \sqrt{2}} \frac{1}{12} (-7 k^2 (h_7 + h_1) - 3 a_0)$

Massive and massless spectra

Unitarity conditions

$$h. \in \mathbb{R} \&\& a. < 0 \&\& h. < h.$$