MODELOS Y SIMULACIÓN

Tomás Licciardi Ingeniería en Informática 2024 1-

A) Material

Poliestireno expandido (ETS), debido a que este material es ligero y económico. También cuenta con buenas propiedades de aislamiento térmico.

B) Forma del recipiente

Recipiente cilíndrico de 1000cc de volumen

C) Propósito

El propósito que se elegirá es calentar el agua para infusiones porque todas las mañanas me tomo 1 taza de té

D) Fluido a calentar

Agua, ya que es el fluido que más utilizo en mi día a día.

E) Tiempo que se espera alcanzar la temperatura

El tiempo que se espera para alcanzar los 80° de temperatura es de 240 segundos (4 minutos)

F) Tensión de alimentación

Se utilizarán 220 Volts

G) Cálculo de la Resistencia

Se calcula la resistencia de la siguiente forma:

Sabiendo que:

$$Q = m \cdot c \cdot \Delta t$$

$$m = 1kg$$

$$c = \frac{4186 \ julios}{kg \ ^{\circ}C}$$

$$\Delta t = 80^{\circ}C - 20^{\circ}C = 60^{\circ}C$$

$$Q = \frac{1kg .4186J . 60^{\circ}C}{kg ^{\circ}C}$$

Potencia:

$$P = \frac{Q}{t} = \frac{251.160J}{240s} = 1046,5W$$

Intensidad de Corriente:

$$I = \frac{P}{V} = \frac{1046,5W}{220V} = 4,75A$$

Resistencia eléctrica:

$$R = \frac{V}{I} = \frac{220V}{4.75A} = 46,31\Omega$$

H) Temperatura inicial del fluido

La temperatura inicial es de 20° → 293,15° K

I) Temperatura del entorno

La temperatura del entorno es de 20° → 293,15° K

J) Aumentar la temperatura en un segundo

Sabiendo que:

$$Q = P.t \rightarrow Q = 1046.5W . 1s = 1046.5J$$

$$\Delta t = \frac{1046.5J}{1kg.\frac{4186J}{kg^{\circ}C}} = 0,25007 \,^{\circ}C$$

Como se puede observar se aumentan 0,25007°C por cada segundo que pasa. Logrando así que 0,25007°C . 240s alcanzan los 80°C respectivamente.

Características del recipiente

3-

Para el material se elige un espesor de 1mm, altura de 35cm y diámetro de 16cm Teniendo en cuenta que el Coeficiente de Conductividad Térmica del Telgopor es de $0,035\frac{W}{k}$

Superficie =
$$2 * \pi * \frac{diametro}{2} * (\frac{diametro}{2} + altura) = 0,2161m^2$$

Y la fórmula para calcular el calor perdido es:

Perdida de calor = cct
$$\cdot \frac{superficie}{espesor}$$
 = 0,035 $\frac{W}{k.m}$ * $\frac{0,0942m^2}{0,002m}$ = 7.5635 $\frac{W}{K}$

Luego tomamos en cuenta temperatura inicial, final y exterior.

Se utilizaron los siguientes casos:

4-

Temperatura inicial = 20

Temperatura final = 80

Temperatura exterior = 20

5-

A) Ingresando valores para una distribución uniforme de 5 valores de resistencias cercano en un **rango de 40-50.**

B) Ingresando valores para una distribución normal de 5 valores de temperaturas iniciales del agua con **Media 10, desvío estándar 5.**

C) Ingresando valores para una distribución uniforme de 8 valores de temperaturas exterior **entre -20 y 50 grados.**

D) Ingresando valores para una distribución normal de 5 valores de tensión de alimentación de **Media 220, Desviación estándar 40**

E) Simulaciones que contengan todas las familias de curvas previas.

6- Simulación de un fenómeno estocástico que tiene una probabilidad de ocurrencia de 1/300 en cada tick de tiempo. Con variables aleatorias, un descenso de temperatura entre -50 y 0 grados con una duración de entre 1 y 40 segundos.

