Differential Geometry Key Definitions

Johar M. Ashfaque

Definition 0.1 A submersion is a smooth map $f: \mathcal{M} \to \mathcal{N}$, where \mathcal{M} and \mathcal{N} are differentiable manifolds, such that the differential is surjective for every $x \in \mathcal{M}$.

Definition 0.2 A fibre bundle ξ is a quadruple $(E, \mathcal{M}, \mathcal{F}, \pi)$, where

- (i) E is called the *total space* of the fibre bundle;
- (ii) \mathcal{M} is called the *base* of the fibre bundle;
- (iii) \mathcal{F} is called the fibre;
- (iv) $\pi: E \to \mathcal{M}$ is a submersion with $\pi^{-1}(x) = \mathcal{F}$,

such that there exist an open covering $\{U_i\}$ of the base \mathcal{M} and diffeomorphisms $\phi_i : \pi^{-1}(U_i) \to U_i \times \mathcal{F}$ such that $\pi_1 \circ \phi_i = \pi$, where π_1 denotes the projection onto the first coordinate.

Let \mathcal{M} be a smooth manifold and let G be a Lie group.

Definition 0.3 A section of the fibre bundle is a differentiable map $\sigma : \mathcal{M} \to E$ such that $\pi \circ \sigma = id_{\mathcal{M}}$. The space of all sections of E is denoted by $\Gamma(E)$.

Definition 0.4 A cocycle of G in M is an open covering $\{U_i\}$ of M together with a family of differentiable maps $\gamma_{ij}: U_i \cap U_j \to G$ such that $\gamma_{ij} \cdot \gamma_{jk} = \gamma_{ik}$ for all i, j, k. In particular, $\gamma_{ii} = e$ the identity element in G.

Definition 0.5 A vector bundle of rank k over \mathcal{M} is a pair (E, π) , where E is a smooth manifold and $\pi: E \to \mathcal{M}$ is a submersion such that

- (i) each fibre $E_x = \pi^{-1}(x)$ has a structure of k-dimensional real vector space;
- (ii) for every $x \in \mathcal{M}$ there exists an open neighbourhood U of x such that $\pi^{-1}(U) \cong U \times V$, where V is a fibre of E.

Recall 0.6 A group G which has a smooth manifold structure such that the multiplication map $G \times G \to G$ and the inverse map $G \to G$ are smooth is called a *Lie group*.

Recall 0.7 A group action is called *free* if for all $m \in \mathcal{M}$, $gm = m \Rightarrow g = e$ where e is the identity element in G.

Recall 0.8 A group action is called *transitive* if for every pair of elements $x, y \in M$ there is a group element g such that gx = y.

Recall 0.9 A right group action of a Lie group G on a manifold M is a smooth map $M \times G \to M$, such that

- (i) $me = m, \forall m \in \mathcal{M}$;
- (ii) m(gh) = (mg)h, $\forall m \in \mathcal{M}, g, h \in G$.

Let G be a Lie group and let \mathcal{M} be a smooth manifold.

Definition 0.10 A G-principal bundle P is a fibre bundle P with a right group action of a Lie group G on the fibres such that $\pi(pg) = \pi(p)$ for all $p \in P$ and $g \in G$ and such that the action of G is free and transitive on the fibres.