Matroids And their Graphs

o.mcdonnell4@nuigalway.ie

19 January 2018

1 Cardinality of maximal independent sets

Theorem 1.1. Show that if \mathscr{I} is a non-empty hereditary set of subsets of a finite set E, then (E,\mathscr{I}) is a matroid if and only if, for all $X \subset E$, all maximal members of $\{I : I \in \mathscr{I} \text{ and } I \subset X\}$ have the same number of elements.

Proof: (\Longrightarrow) Let B_1, B_2 be maximal elements of $\{I : I \in \mathscr{I} \text{ and } I \subset X\}$ And assume $|B_1| < |B_2|$ Then since $B_1, B_2 \in \mathscr{I}$ There exists $e \in (B_2 \setminus B_1)$ such that $B_1 \cup \{e\} \in \mathscr{I}$ This contradicts our maximality of B_1 .

 \implies All maximal elements of the set $\{I:I\in\mathscr{I}\text{ and }I\subset X\}$ in our matroid M have the same cardinality.