Educational Codeforces Round #2

Problem D - Area of Two Circle's Intersection

Prof. Edson Alves

Faculdade UnB Gama

Educational Codeforces Round

Circle's Intersection

#2 - Problem D: Area of Two

Problema

You are given two circles. Find the area of their intersection.

Entrada e saída

Input

The first line contains three integers $x_1, y_1, r_1 \ (-10^9 \le x_1, y_1 \le 10^9, 1 \le r_1 \le 10^9)$ - the position of the center and the radius of the first circle.

The second line contains three integers x_2,y_2,r_2 $(-10^9 \le x_2,y_2 \le 10^9,1 \le r_2 \le 10^9)$ - the position of the center and the radius of the second circle.

Output

Print the area of the intersection of the circles. The answer will be considered correct if the absolute or relative error doesn't exceed 10^{-6} .

2

Exemplo de entradas e saídas

Sample Input

0 0 4

6 0 4

0 0 5

11 0 5

Sample Output

 $7.\,25298806364175601379$

 $\tt 0.00000000000000000000000$

• É preciso tratar 3 casos especiais para a solução correta deste problema

- É preciso tratar 3 casos especiais para a solução correta deste problema
- No primeiro caso os círculos não tem interseção, isto é, a distância d entre os pontos $P=(x_1,y_1)$ e $Q=(x_2,y_2)$ é maior ou igual ao dobro da soma dos raios

- É preciso tratar 3 casos especiais para a solução correta deste problema
- No primeiro caso os círculos não tem interseção, isto é, a distância d entre os pontos $P=(x_1,y_1)$ e $Q=(x_2,y_2)$ é maior ou igual ao dobro da soma dos raios
- Assim, a área de interseção será igual a zero

- É preciso tratar 3 casos especiais para a solução correta deste problema
- No primeiro caso os círculos não tem interseção, isto é, a distância d entre os pontos $P=(x_1,y_1)$ e $Q=(x_2,y_2)$ é maior ou igual ao dobro da soma dos raios
- Assim, a área de interseção será igual a zero
- No segundo caso, um círculo contém o outro, isto é, $d \leq r_1 + r2$

- É preciso tratar 3 casos especiais para a solução correta deste problema
- No primeiro caso os círculos não tem interseção, isto é, a distância d entre os pontos $P=(x_1,y_1)$ e $Q=(x_2,y_2)$ é maior ou igual ao dobro da soma dos raios
- Assim, a área de interseção será igual a zero
- No segundo caso, um círculo contém o outro, isto é, $d \leq r_1 + r2$
- Logo a interseção terá a mesma área do círculo de menor raio

- É preciso tratar 3 casos especiais para a solução correta deste problema
- No primeiro caso os círculos não tem interseção, isto é, a distância d entre os pontos $P=(x_1,y_1)$ e $Q=(x_2,y_2)$ é maior ou igual ao dobro da soma dos raios
- Assim, a área de interseção será igual a zero
- No segundo caso, um círculo contém o outro, isto é, $d \leq r_1 + r_2$
- Logo a interseção terá a mesma área do círculo de menor raio
- No terceiro e último caso os dois círculos se tocam em exatamente dois pontos

- É preciso tratar 3 casos especiais para a solução correta deste problema
- No primeiro caso os círculos não tem interseção, isto é, a distância d entre os pontos $P=(x_1,y_1)$ e $Q=(x_2,y_2)$ é maior ou igual ao dobro da soma dos raios
- Assim, a área de interseção será igual a zero
- No segundo caso, um círculo contém o outro, isto é, $d \leq r_1 + r_2$
- Logo a interseção terá a mesma área do círculo de menor raio
- No terceiro e último caso os dois círculos se tocam em exatamente dois pontos
- A área será a soma dos segmentos definidos pelos triângulos formados pelos centros e dos pontos de interseção

```
1 #include <bits/stdc++.h>
₃ using namespace std;
4 using 11 = long long;
6 constexpr long double PI = acosl(-1.0);
8 long double intersection_area(long double r, long double R, long double d)
9 {
     auto angle = acosl((r*r + d*d - R*R)/(2*r*d)): // Lei dos cossenos
10
     auto sector = angle * r * r;
                                  // Setor de 2*angle
     auto T = r * r * cosl(angle) * sinl(angle): // Area do triângulo
13
     return sector - T:
14
15 }
```

```
17 void solve(ll X1, ll Y1, ll R1, ll X2, ll Y2, ll R2)
18 {
      // Não se interceptam ou se tocam em um único ponto
19
      auto dist2 = (X1 - X2)*(X1 - X2) + (Y1 - Y2)*(Y1 - Y2);
20
      if (dist2 >= (R1 + R2)*(R1 + R2))
22
          cout << "0.0000000000000000000000000\n";
24
25
          return:
26
      // O primeiro círculo será o de maior raio
28
      if (R2 > R1)
29
30
          swap(X1, X2);
31
          swap(Y1, Y2);
32
          swap(R1, R2);
34
```

```
// O menor está contido no maior: a resposta é a área do menor
36
      if (dist2 <= (R1 - R2)*(R1 - R2))</pre>
37
38
          cout.precision(20);
39
          cout << PI*R2*R2 << '\n';
          return:
41
42
43
      // Dois pontos de interseção
44
      auto d = sqrtl(dist2);
45
      auto A1 = intersection_area(R1, R2, d);
      auto A2 = intersection_area(R2, R1, d);
47
48
      cout.precision(20);
49
      cout << A1 + A2 << endl;
50
51 }
```