CSCI 2824 - CU Boulder, 2019 Summer

Lecture 6: Rational Number Proofs, Divisibility

11 June 2019

Lecturer: J. Marcus Hughes

Content is borrowed from Susanna Epp's <u>Discrete Mathematics with Applications</u> and Andrew Altomare's notes.

1 Review

We learned about writing proofs. Let's practice with some ideas on rational numbers and divisibility.

2 Rational Number Proofs

What is a rational number? You may have heard it defined as a decimal that terminates or repeats in your early math days, but we are going to use a more formal definition.

Definition: Rational Number

A (real) number r is **rational** if, and only if, it can be expressed as a quotient of two integers with a nonzero denominator. A real number that is not rational is is **irrational**. More formally, if r is a real number, then

$$r$$
 is rational $\leftrightarrow \exists a,b \in \mathbb{Z}$ such that $r = \frac{a}{b}, b \neq 0$

What are some examples of rational numbers? Well integers are! Let's prove it.

Theorem 2.1. Every integer is a rational number

Proof. Let n be an arbitrary integer. Then $n = \frac{n}{1}$ so n is a rational number.

It's quite straight forward, but we are utilizing the idea of the generic particular. We do not specify what n is but show that for any arbitrary n we can make this argument. Seems pretty straight forward.

Now, try applying the same idea to show that any sum of rational numbers is rational.

Theorem 2.2. The sum of two rational numbers is rational.

Proof. Suppose r and s are rational numbers. Then, by the definition of rational, r=a/b and s=c/d for some $a,b,c,d\in\mathbb{Z}$ where $b\neq 0$ and $d\neq 0$. Thus,

$$r + s = \frac{a}{b} + \frac{c}{d}$$
$$= \frac{ad + bc}{bd}$$

Let p=ad+bc and q=bd. Then, p and q are integers because products and sums of integers are integers and because $a,b,c,d\in\mathbb{Z}$. Also $q\neq 0$ by the zero product property. Thus, $r+s=\frac{p}{q}$ where p and q are integers and $q\neq 0$. Therefore, r+s is rational by the definition of a rational number.

We can thus say that the rational numbers are closed under addition. Closed (in computer science lingo) means that performing that operation with a given input type always yields the same output type.

Can you show that any integer multiple of a rational number is rational? Is the product/quotient/difference of any two rational numbers also rational? What about the average?

3 Divisibility

Do you remember in elementary school when you talked about division? You knew that 12 wasn't divisible by 5 since it didn't go into it evenly. It may seem simplistic, but divisibility is a central idea in number theory; something so elementary is in advanced math! We can practice our proof writing skills in this domain too.

Definition: Divisible

If n and d are integers and $d \neq 0$ then, n is **dibisible by** d if, and only if, n equals d times some integer. The notation d|n is read "d divides n". Symbolically for $n, d \in \mathbb{Z}$ and $d \neq 0$:

$$d|n \leftrightarrow \exists k \in \mathbb{Z} \text{ such that } n = dk$$

We call a number the divides another number a divisor of it. What do we know about divisors.

Theorem 3.1. For all integers a and b, if a and b are positive and a|b, then $a \leq b$.

Proof. Suppose $a,b \in \mathbb{Z}^+$ and a|b. Then, $\exists k \in \mathbb{Z}$ such that b=ak. From algebra (Property T25 of Appendix A), k must be positive because both a and b are positive. Then, $1 \le k$ because every positive integer is greater than or equal to 1. Multiplying both sides by a gives $a \le ka = b$ because multiplying both sides of an inequality by a positive number preserves the inequality property (T20 in Appendix A). Thus a < b.

The above is a nice universal proof to know.

Theorem 3.2. The only divisors of 1 are 1 and -1.

Proof. Since $1 \times 1 = 1$ and (-1)(-1) = 1 both 1 and -1 are divisors of 1. Now suppose m is any integer that divides 1. Then $\exists n \in \mathbb{Z}$ such that 1 = mn. By Theorem T25 in Appendix A, either both m and n are positive or both m and n are negative. If both m and n are positive, then m is a positive integer divisor of 1. By Tthe previous theorem, $m \le 1$, and since the only positive integer that is less than or equal to 1 is 1 iteself, it follows that m = 1. On the other hand, if both m and n are negative, then by Theorem T12 in Appendix A, (-m)(-n) = mn = 1. In this case, -m is a positive integer divisor of 1, and so by the same reasoning -m = 1 and thus m = -1. Therefore, there are only two possibilities: either m = 1 or m = -1. So the only divisors of 1 are 1 and -1.

Theorem 3.3. For all integers a, b, and c if a divides b and b divides c, then a divides c.

Proof. Suppose a, b, and c are integers such that a divides b and b divides c. By definition of dividisibility $\exists r, s \in \mathbb{Z}$ such that b = ar and c = bs. Then,

$$c = bs$$

$$= (ar)s$$

$$= a(rs)$$

Let k = rs. Then, k is an integer since it is a product of integers and therefore c = ak. Thus, a divides c by definition of divisibility.

Theorem 3.4. Any integer n > 1 is divisible by a prime number.

Proof. Suppose n is an integer that is greater than 1. If n is prime, then n is divisible by itself, a prime number, and we are done. If n is not prime, then $n = r_0 s_0$ where r_0 and s_0 are integers and $1 < r_0 < n$ and $1 < s_0 < n$. It follows from the definition of divisibility that $r_0|n$. If r_0 is prime, then r_0 is a prime number that divides n and we are done. If r_0 is not prime, then, $r_0 = r_1 s_1$ where $r_1, s_1 \in \mathbb{Z}$ and $1 < r_1 < r_0$ and $1 < s_1 < r_0$. IT follows that $r_1|r_0$. But we already know that $r_0|n$. So by the previous proof $r_1|n$.

We may continue factoring in this way, until we find a prime factor. We must succeed in a finite number of steps because each new factor is both less than the previous one and greater than 1, and there are fewer than n integers strictly between 1 and n. Thus, we obtain a sequence $r_0, r_1, r_2, \ldots, r_k$ where $k \geq 0$, $1 < r_k < r_{k-1} < \ldots < r_2 < r_1 < r_0 < n$ and $r_i | n$ for each $i = 0, 1, \ldots, k$. The condition for termination is that r_k should be prime. Hence, r_k is a prime number that divides n.

Is the following statement true? For all integers a and b if a|b and b|a then a=b. No. find a counterexample with a=2 and b=-2.

A very powerful theorem is:

Theorem 3.5. Given any integer n > 1, there exists a positive integer k, distinct prime numbers p_1, p_2, \ldots, p_k and positive integers e_1, e_2, \ldots, e_k such that $n = p_1^{e_1} p_2^{e_2} \ldots p_k^{e_k}$ and any other expression for n as a product of prime numbers is identical to this, except, perhaps, for the order in which the factors are written. We call this the standard factored form of n when $p_1 < p_2 < \ldots < p_k$.

We will come back to proving this later.

References