Решить неравенство $\cos\left(\frac{x}{4}-1\right) \leqslant -\frac{\sqrt{2}}{2}$. Задача 4

Обозначим $\frac{x}{4}-1=y$. Решая неравенство $\cos y \leqslant -\frac{\sqrt{2}}{2}$

Puc. 83

$$\frac{3\pi}{4}+2\pi n\leqslant y\leqslant \frac{5\pi}{4}+2\pi n,\ n\in \mathbf{Z}.$$

Заменяя $y = \frac{x}{4} - 1$, получаем

$$\frac{3\pi}{4} + 2\pi n \leq \frac{x}{4} - 1 \leq \frac{5\pi}{4} + 2\pi n,$$

откуда

$$1 + \frac{3\pi}{4} + 2\pi n \leq \frac{x}{4} \leq 1 + \frac{5\pi}{4} + 2\pi n,$$

$$4 + 3\pi + 8\pi n \leq x \leq 4 + 5\pi + 8\pi n,$$

 $n \in \mathbb{Z}.$

$$4 + 3\pi + 8\pi n \le x \le 4 + 5\pi + 8\pi n, n \in \mathbb{Z}. \triangleleft$$

Упражнения

Решить неравенство (648-654).

648 1)
$$\cos x \ge \frac{\sqrt{2}}{2}$$
;

2)
$$\cos x < \frac{\sqrt{3}}{2};$$

3)
$$\cos x > -\frac{\sqrt{3}}{2}$$

3)
$$\cos x > -\frac{\sqrt{3}}{2}$$
; 4) $\cos x \le -\frac{\sqrt{2}}{2}$.

649 1)
$$\cos x \le \sqrt{3}$$
; 2) $\cos x < -2$; 3) $\cos x \ge 1$; 4) $\cos x \le -1$.

$$\cos x < -2;$$

3)
$$\cos x \ge 1$$
;

4)
$$\cos x \leq -1$$
.

650 1)
$$\sin x > \frac{1}{2}$$
;

2)
$$\cos x < -2$$
;

3)
$$\cos x \ge 1$$
;

1)
$$\sin x > \frac{1}{2}$$
; 2) $\sin x \le \frac{\sqrt{2}}{2}$; 3) $\sin x \le -\frac{\sqrt{2}}{2}$; 4) $\sin x > -\frac{\sqrt{3}}{2}$.

1)
$$\sin x \ge -\sqrt{2}$$
;

2)
$$\sin x > 1$$
;

3)
$$\sin x \leq -1$$
;

4)
$$\sin x \ge 1$$
.

652 1)
$$\sqrt{2} \cos 2x \le 1$$
;

2)
$$2 \sin 3x > -1$$
;

3)
$$\sin\left(x+\frac{\pi}{4}\right) \leqslant \frac{\sqrt{2}}{2}$$
;

4)
$$\cos\left(x-\frac{\pi}{6}\right) \geqslant \frac{\sqrt{3}}{2}$$
.

653 1)
$$\cos\left(\frac{x}{3} + 2\right) \ge \frac{1}{2}$$
;

$$2) \sin\left(\frac{x}{4}-3\right)<-\frac{\sqrt{2}}{2}.$$

654 1)
$$\sin^2 x + 2 \sin x > 0$$
;

2)
$$\cos^2 x - \cos x < 0$$
.