

Convective mixing and nucleosynthesis in super-AGB stars

Christian Ritter

critter@uvic.ca

F. Herwig, P. A. Denissenkov, C. Fryer, R. Hirschi, S. Jones, NuGrid collaboration, M. Pignatari, Stou Sandalski, Paul Woodward

Outline

- Features of SAGB stars in NuGrid yield set
 - Hot dredge-up
 - Hot bottom burning
- i process & H ingestion in SAGB stars
- Rapidly accreting white dwarfs
 - Low or negative retention rate
 - H ingestion & I process
- Hybrid white dwarfs
 - Unusual SN Ia progenitors
 - Urca process

Set 1: astro-ph Pignatari13+, arxiv: 1307.6961

Set 1 extension

C. Ritter, S. Jones, M. Pignatari, F. Herwig, R. Hirschi, C. Fryer, N. Nishimura, P. A. Denissenkov & the NuGrid collaboration

- http://data.nugridstars.org
- Python tools to analyze and explore data
- Experimental: http://wendi.nugridstars.org
- up to 1000 isotopes
- 2000 grid zones
- 10⁵ models

+ stellar evolution data for each time step and mass zone

Hot-bottom burning (S)AGB stars

New CBM model for ¹³C pocket representing internal gravity-wave mixing

CBM for hot-DUP and hybrid post-processing

Hot dredge-up

- Hot dredge-up in massive and SAGB stars (Herwig 04, Goriely+ 04)
- Corrosive H-shell flame-like burning
- log L_H~ 5 ... 7 or more
- For $M > 3 ... 4M_{sun}$ and Z < 0.006
- H-burn and hot DUP increases with convective boundary mixing (CBM)

• CBM efficiency similar to what is needed for ¹³C pocket formation in low-mass AGB stars will lead to enelope ejections and termination of AGB determines core growth

Expect reduced
 CBM due to
 buoyancy feedback
 of hot-DUP burn

We reduce CBM at high mass and low Z!

Fate as ECSN or WD uncertain!

Hot dredge-up

Challenge of HBB yields

		Υ	Yields/Msun		5Msun at Z=0.0001		
	specie	This work	H04	K10	C15	_	
CNO	C-12	6.948E-04	4.587E-04	2.787E-03	1.274E-02		
	C-13	9.086E-05	4.372E-05	4.059E-04	1.856E-04	1	
	N-14	4.691E-03	1.680E-03	2.405E-02	3.405E-04	1	
	O-16	1.824E-04	3.008E-04	6.094E-04	9.350E-04	1	
. (Sr-88	8.969E-10			2.238E-08	3	
s process	Zr-90	1.520E-10			4.399E-09		
	Ba-136	2.236E-11	-11 1.029E-09)		
	Pb-208	1.465E-10			1.284E-08	3	
	C-12/C-13	7.65	10.49	6.87	68.64	H04: Herwig 04	
	C-12/O-16	3.81	1.52	4.5	13.63	K10: Karakas 10 C15: Cristallo+ 15	

Difference in CNO element predictions!

Time scales involved in HBB

Mixing and burning on same time scale! Need coupling of mixing and burning contrary to post-processing codes.

Post-processing of light and heavy species simultaneously: A hybrid approach

Resolve production of light elements!

Challenge of HBB yields

		Yields/Msun		5Msu	01	
	specie	This work	H04	K10	C15	_
	C-12	6.948E-04	4.587E-04	2.787E-03	1.274E-0	$\overline{2}$
CNO	C-13	9.086E-05	4.372E-05	4.059E-04	1.856E-0	4
	N-14	4.691E-03	1.680E-03	2.405E-02	3.405E-0	4
	O-16	1.824E-04	3.008E-04	6.094E-04	9.350E-0	4
. (Sr-88	8.969E-10			2.238E-0	8
s process	Zr-90	1.520E-10		4.399 E-09		
	Ba-136	2.236E-11	1.029 E-09			9
	Pb-208	1.465E-10			1.284E-0	8
		$3 $ $\boxed{7.65}$	10.49	6.87	68.64	— H04: Herwig 04
	C-12/O-16	3.81	1.52	4.5	13.63	K10: Karakas 10 C15: Cristallo +15

Prediction of light & heavy elements!

C/O surface ratio with hybrid post-processing

5Msun at **Z=0.01**

- Hybrid mode gives C/O surface ratio evolution of stars at low Z in agreement with MESA predictions
- But: When hybrid mode is turned off qualitative and quantitative different C/O evolution

Hot-bottom burning (S)AGB stars

New CBM model for ¹³C pocket representing internal gravity-wave mixing

CBM for hot-DUP and hybrid post-processing

New 2-zone exponential mixing model for the ¹³C pocket

- MESA implementation of 2zone convective boundary mixing (CBM)
- zone 1: motivated by hydrodynamic simulations (e.g. Herwig+ 06,07, Woodward+ 15) rapid decline of convective mixing efficiency across formal Schwarzschild boundary
- zone 2: motivated by theory of mixing due to internal gravity waves (Denissenkov & Tout 2003) shallow decline starting from low level in formally radiative layer

Battino, Pignatari, Ritter+ (2016, ApJ rev. requested)

New 2-zone exponential mixing model for the ¹³C pocket

- MESA implementation of 2zone convective boundary mixing (CBM)
- Comparison with internal gravity wave mixing profile from Denissenkov & Tout (2003)
- 2-zone exponential model parameters have been calibrated with stellar and pre-solar grain observables

Battino, Pignatari, Ritter+ (2016, ApJ rev. requested)

Observational hints of i process: CEMP-r/s stars

- I-process 1-zone model in good agreement with observed heavyelement signature
- Similar results for a good fraction of CEMP-r/s stars
- [hs/ls] ~ +1

More observational hints of i process

- Ba and La and their ratios observed in Open clusters (Mishenina+ 15)
- Low-Z Post-AGB stars in small and large Megallanic cloud, I process possibly common occurance at low-Z (Lugaro+ 15)
- Anomalous abundance in presolar grains (Jadhav+ 13, Fujya+ 13)
- Sakurai's object: Constraining iprocess simulations with observations: elemental, isotopic abundances, light-curve and more

The neutron source of the i process

i process nucleosynthesis path in the isotopic chart

- I-process 1zone model can explain some CEMPr/s stars (Dardalet+15)
- T, rho, C12
 typical for He burning plus 1
 to 5% H
- Nuclear physics challenge: involves many nuclear cross sections of unstable species

Bertolli+ 13, Denissenkov+, Herwig+ in prep.

What are the possible sites of i process?

Known sites:

- He-core flashes (e.g. Fujimoto 2000, Campbell+ 10)
- He-shell flashes (e.g Campbell+ 08, Iwamoto+ 04, Suda+ 10)
- VLTPs (Herwig+ 11)

New sites:

- SAGB stars (Jones+ 15)
- Rapidly accreting white dwarfs (Denissenkov+ in prep)

Super-AGB stars: evolution towards ECSN (?)

 Generally: DUP efficiency increases for low Z

 This makes it more difficult to reach Chandrasekhar mass!

Evolution torwards ECSN

- Strong dependents of lambda on mixing efficiency below the PDCZ
- Strong CBM at the bottom of the conv. envelope also leads to stronger TDUP.

If DUP lambda close to 1 or larger then there is no path to ECSN!

New site: I process in SAGB stars

- I process during dredgeout & TP-AGB phase of SAGB stars
- SAGB stars with 1e-5<Z<0.02 evolve torward exchange of material

1D fails to describe the HIF

Energy release violates hydrostatic equilibrium assumption.

Energy feedback not included in mixing length theory.

Need for 3D hydrodynamics!

Jones+ 15

Low-Z AGB star with 3D hydro

- 2Msun at Z=1e-5 in 1536³ resolution (Blue Waters)
- One hemisphere showing entrained Hrich gas
- Violent H burning: GOSH (Herwig+ 14, Woodward+ 15)

Sandalski+ 16, in prep.

Entrained H-rich material and vorticity for low-Z AGB

Rapidly accreting white dwarfs (RAWD): A new i-process site

Single degenerate channel for SNIa

- Stable H-shell burning but He-shell flashes! (Cassisi+98)
- First multi-He-flash **RAWD** simulations (Denissenkov+16,in prep.)

SD channel as a candidate for SNIa?

- 10% or less retention efficiency
- In some cases even negative retention rates

WD cannot explode as SNIa!

H-Ingestion flashes

Normal HIF Like in Sakurai & low-Z AGB stars (Herwig+11, Suda+10)

Multi-zone simulation of i process in RAWDs

 Rapidly accreting white dwarfs with i process:

iRAWDs

- Most i-process material is ejected into ISM due to low retention rate
- Estimates indicate first-peak iRAWD production to GCE similar to AGB contribution

What are Hybrid WD's?

- In SAGB stars with CBM the C-flame torwards center extinguishes
- C/O core left in center
- CONe "Hybrid" WD (Denissenkov+13, Chen+14)
- Study of hybrid WDs in wider parameter space by Farmer+15

Denissenkov+ 13

Observable implications

- 1% to serveral % of SNIA might be a hybrid WD (Meng+ 14, Kromer+ 15)
- Youngest predicted SNIa of 30Myrs due to hybrid progenitor (Wang+ 14)
- Off-center SNIa explosion simulations with hybrid WD progenitors (Kromer+ 15, Willcox+ in prep) favoring faint SNIax

Structure of acccreting Hybrid WD's

- Urca processes important for internal structure
- MLT not sufficient to describe Urca – convection interactions
- Need for reactive-convective
 3D hydrodynamics

Energy release due to Urca process

Denissenkov+ 15

Can we estimate the impact of different outcomes of the Urca-process?

Denissenkov+ 15

A wide variaty of possible SNIa progenitor structures

Large uncertainty affecting the progenitor model of SNIa!