Algebra Qualifying Exam January 21, 1999

Instructions: You are given 10 problems from which you are to do 8. Please indicate those 8 problems which you would like to be graded by circling the problem numbers on the problem sheet. **Note:** All rings in this exam are associative and with 1 and all integral domains are commutative.

- 1. Let G be a finite abelian group.
 - (a) State what it means for G to be an elementary abelian p-group, where p is a prime number.
 - (b) If G is an elementary abelian p-group, explain fully in what sense can G be regarded as an \mathbb{F}_p -vector space, where \mathbb{F}_p is the field of p elements.
- 2. Let $G = \langle x, y \rangle$ be a finite group, where x, y are *involutions*. Prove that G has a normal subgroup of index 2. (Look at $H = \langle xy \rangle$.)
- 3. Let G be a group acting on the set Ω . Assume that $\omega \in \Omega$, set $H = \operatorname{Stab}_G(\omega)$, and assume that K is a subgroup of G acting transitively on Ω . Prove that G = KH.
- 4. Let R be a commutative ring and assume that M, M_1, M_2, \ldots, M_r are maximal ideals of R with $M_1 M_2 \cdots M_r \subseteq M$. Prove that for some $i, M_i = M$.
- 5. Let $R = \{\frac{a}{b} \in \mathbb{Q} | 2 \not| b\}$, a subring of the rational number field \mathbb{Q} . Show that R has a unique maximal ideal, and find it.
- 6. Let R be a ring and let M be an R-module. Assume that $M_1, M_2 \subseteq M$ with $M = M_1 \oplus M_2$. Prove or give a counterexample to the assertion: If $N \subseteq M$ is a submodule, then

$$N = N \cap M_1 \oplus N \cap M_2.$$

- 7. Let $\alpha = \sqrt{2 + \sqrt{2}} \in \mathbb{C}$. Given that $m_{\alpha,\mathbb{Q}}(x) = x^4 4x^2 + 2$, and that the roots of $f(x) = m_{\alpha,\mathbb{Q}}(x)$ are $\alpha = \alpha_1 = \sqrt{2 + \sqrt{2}}$, $\alpha_2 = \sqrt{2 + \sqrt{2}}$, $\alpha_3 = \sqrt{2 \sqrt{2}}$, $\alpha_4 = -\sqrt{2 \sqrt{2}}$, answer the following:
 - (a) Compute the degree of the splitting field \mathbb{K} over \mathbb{Q} of f(x).
 - (b) Show that the Galois group $Gal(\mathbb{K}/\mathbb{Q})$ is cyclic.
- 8. Let $\mathbb{F} = \mathbb{F}_q$ be the finite field of $q = p^r$ elements, where p is prime, and let $\mathbb{K} = \mathbb{F}_{q^3} \supseteq \mathbb{F}$. Say that elements $\alpha, \beta \in \mathbb{K}$ are equivalent if they have the same minimimal polynomial over \mathbb{F} . Clearly this is an equivalence relation on \mathbb{K} . Compute the number of equivalence classes in \mathbb{K} as a function of q. (Hint: this is extremely easy.)
- 9. Let $T: V \to V$ be a linear transformation on a finite dimensional vector space over the field \mathbb{F} . Suppose that T has the following invariant factors:

$$1+x$$
, $x^2(1+x)$, $x^2(1+x)(1+x+x^2)$.

Answer the following questions:

- (a) What is $\dim_{\mathbb{F}} V$?
- (b) Is T injective?
- (c) What is the minimal polynomial of T
- (d) Does T have a Jordan canonical form over \mathbb{F} with respect to an appropriate basis of V? (If this depends on the field give an example of a field \mathbb{F} , for which the answer is "yes," and find the Jordan canonical form.)
- 10. Let \mathbb{F} be a field. If V is a finite-dimensional \mathbb{F} -vector space and if $T:V\to V$ is a linear transformation, we have the notion of minimal polynomial $m_T(x)\in\mathbb{F}[x]$ of T. Likewise, if $\mathbb{K}\supseteq\mathbb{F}$ is a finite field extension, and if $\alpha\in\mathbb{K}$, then we also have the notion of minimal polynomial $m_{\alpha}(x)\in\mathbb{F}[x]$ of the field elements α . These notions of minimal polynomial share many similarities except that $m_{\alpha}(x)$ is always irreducible, whereas $m_T(x)$ need not be irreducible. Prove this.