Significato dei simboli

 \mathbb{R} insieme dei reali $\mathbb{R}_0 = \mathbb{R} - \{0\}$ insieme dei reali privati dello zero

 \mathbb{R}^+ insieme dei reali non negativi \mathbb{R}^- insieme dei reali non positivi

 \mathbb{R}_0^+ insieme dei reali positivi \mathbb{R}_0^- insieme dei reali negativi

 $\mathbb Q$ insieme dei razionali $\mathbb Z$ insieme dei numeri interi relativi

 \mathbb{N} insieme dei naturali $\mathbb{N}_0 = \mathbb{N} - \{0\}$

1. Proprietà degli insiemi in $\mathbb R$

Insiemi limitati - illimitati

Definizione

Un insieme E si dice **finito** se è vuoto oppure può essere posto in corrispondenza biunivoca con $\{1, 2, 3, ..., n\}$ per qualche $n \in \mathbb{N}$, altrimenti si dice che è **infinito**.

Definizione

L'insieme di numeri reali E si dice **limitato superiormente** se esiste un numero M tale che $\forall x \in E$ risulti $x \leq M$. Il numero M è detto un maggiorante di E

L'insieme di numeri reali E si dice **limitato inferiormente** se esiste un numero m tale che $\forall x \in E$ risulti $x \geq m$. Il numero m è detto un minorante di E.

L'insieme E su dice **limitato** se lo è tanto inferiormente quanto superiormente.

Un insieme non limitato si dice illimitato.

Esempi

L'insieme dei numeri reali negativi è limitato superiormente , sono maggioranti lo zero e tutti i reali positivi.

L'insieme E= $\{x>1; x\in\mathbb{R}\}$ è limitato inferiormente , sono minoranti $\$ tutti i reali minori o uguali di 1

L'insieme $E = \{1; 3; 7\}$ è finito e limitato

L'insieme $\mathsf{E} = \left\{ \frac{1}{n^2}; n \in N_0 \right\} = \left\{ 1; \frac{1}{4}; \frac{1}{9}; \frac{1}{16}; \dots \right\}$ è infinito e limitato

Intervalli - intorni

Definizione

Dati due numeri reali $a \in b \operatorname{con} a < b$, si definisce

a) **intervallo aperto** di estremi a e b e si indica con (a;b) l'insieme di tutti i numeri reali x tali che

b) **intervallo chiuso** di estremi a e b e si indica con [a;b] l'insieme di tutti i numeri reali x tali che

$$a \le x \le b$$

Il numero b-a è detto **ampiezza** dell'intervallo

Con [a;b) chiuso a sinistra e aperto a destra si indica l'insieme di tutti i numeri reali x tali che $a \le x < b$

Con (a; b] aperto a sinistra e chiuso a destra si indica l'insieme di tutti i numeri reali x tali che

$$a < x \le b$$

Se un insieme E è limitato è sempre possibile trovare un intervallo che contiene tutti gli elementi di E. Infatti detti $m \in M$ un minorante e un maggiorante di E , risulta, $\forall x \in E$, $m \le x \le M$.

Definizione

Si definisce **intorno** I_{x_0} del numero reale x_0 un qualsiasi intervallo aperto contenente x_0

Si dice **intorno destro** $I_{x_0}^+$ del punto $x_0 \in \mathbb{R}$ ogni intervallo del tipo $[x_0; x_0 + \delta)$, con $\delta \in \mathbb{R}_0^+$.

Si dice **intorno sinistro** $I_{x_0}^-$ del punto $x_0 \in \mathbb{R}$ ogni intervallo del tipo $(x_0 - \delta; x_0]$, con $\delta \in \mathbb{R}_0^+$.

Esempi

E' un intorno di 3 qualsiasi intervallo aperto che contiene 3, per esempio (1;4), $\left(\frac{5}{2}; \frac{10}{3}\right)$, mentre un intorno sinistro è (2;3], mentre un intorno destro è [3;5).

Punti interni, esterni, di frontiera di un insieme

Definizione

Sia E un insieme di numeri reali.

Il punto $x_0 \in E$ si dice **interno a** E se e solo se esiste un intorno di x_0 tutto contenuto in E.

Il punto $x_0 \notin E$ si dice **esterno** a E se esiste un intorno di x_0 non contenente alcun punto di E.

Il punto x_0 , appartenente o no a E, si dice **di frontiera** per E se e solo se ogni suo intorno contiene sia punti di E che punti non appartenenti a E.

L'insieme dei punti di frontiere di E viene indicato con ∂E

Esempi

1. Dato l'insieme E = (-3; 5]

tutti i punti dell'intervallo (-3; 5) sono interni,

tutti i punti dell'insieme $(-\infty; -3) \cup (5; +\infty)$ sono esterni

i punti -3 e 5 sono di frontiera, quindi $\partial E = \{-3, 5\}$

Estremo superiore, inferiore – Massimo, minimo

Definizione

Il numero reale Λ si dice **estremo superiore** dell'insieme E *limitato superiormente* se gode delle seguenti proprietà:

- a) tutti i numeri $x \in E$ sono minori o uguali di Λ ;
- b) fissato comunque un numero positivo \mathcal{E} nell'insieme E vi è almeno un numero $x > \Lambda \mathcal{E}$.

L'estremo superiore dell'insieme E limitato superiormente è il più piccolo fra i maggioranti di E.

Se l'estremo superiore Λ di E appartiene all'insieme allora si dice **massimo** di E:

$$\Lambda \in E \Rightarrow \Lambda = \max E$$

Definizione

Il numero reale λ si dice **estremo inferiore** dell'insieme E *limitato inferiormente* se gode delle seguenti proprietà:

- a) tutti i numeri $x \in E$ sono maggiori o uguali di λ ;
- b) fissato comunque un numero positivo ε ,nell'insieme E vi è almeno un numero $x < \lambda + \varepsilon$.

L'estremo inferiore dell'insieme E limitato inferiormente è il più grande fra i minoranti di E.

Se l'estremo inferiore λ di E appartiene all'insieme allora si dice **minimo** di E:

$$\lambda \in E \implies \lambda = \min E$$

Se l'insieme E è illimitato superiormente si pone per convenzione

$$\Lambda = +\infty$$

Se l'insieme E è illimitato inferiormente si pone per convenzione

$$\lambda = -\infty$$

Se l'insieme E è *limitato* esistono entrambi

$$infE = \lambda$$
 e $supE = \Lambda$

e risulta $\lambda \leq \Lambda$.

I due estremi sono uguali se E è formato da un solo numero.

Se E contiene più elementi allora l'intervallo $[\lambda; \Lambda]$ è il più piccolo intervallo chiuso che contiene tutti gli elementi di E.

Esempio

L'insieme $\mathsf{E} = \left\{ \frac{1}{n+1} + 1; n \in \mathbb{N} \right\}$ è limitato in quanto $\forall n \in \mathbb{N}$ $1 < \frac{1}{n+1} + 1 \le 2$;

 $\lambda = 1$ è l'estremo inferiore in quanto

a)
$$\forall n \in \mathbb{N}$$
 , $\frac{1}{n+1} + 1 > 1$

b) preso comunque un $\varepsilon > 0$, esiste un elemento di E minore di $1 + \varepsilon$, infatti si ha

$$\frac{1}{n+1} + 1 < 1 + \varepsilon \Longrightarrow \frac{1}{n+1} < \varepsilon \quad \forall n > \frac{1}{\varepsilon} - 1$$

 Λ =2 è l'elemento di E che si ottiene per n=0, quindi è **massimo**

Esercizi

Stabilire se i sequenti insiemi sono limitati superiormente e/o inferiormente, individuare l'estremo superiore Λ e inferiore λ , specificando se si tratta di massimi e minimi:

1.
$$E = \left\{ \frac{2}{n+2} - 3; n \in N \right\}$$

2.
$$E=\{2^{-n}+1; n \in N\}$$

3.
$$E = \{ \log(n+1); n \in N \}$$

4.
$$E=\{(-1)^n(n+1); n \in N\},$$

5.
$$E = \left\{ (-1)^{2n} \frac{1}{n^2 + 1}; n \in Z \right\}$$
 6. $E = \left\{ (1 + cosx); x \in \mathbb{R} \right\}$

6.
$$E = \{(1 + cos x); x \in \mathbb{R}\}$$

7. E=
$$\{3 - x^2; x \in \mathbb{R}\};$$

8.
$$E = \{-x|x|; x \in \mathbb{R}\};$$

9.
$$E = \{|x^4 - 1|; x \in [-1; 1]\}$$

10. E=
$$\left\{ \sin \left(\frac{\pi}{6} x \right); x \in [-1; 1] \right\}$$

11.
$$E=\{(3)^{-n+1}; n \in Z\}$$

11.
$$E=\{(3)^{-n+1}; n \in Z\}$$
 12. $E=\{(-1)^n(2n)^2; n \in N\}$

13.
$$E = \{-|x| + 3; x \in \mathbb{R}\};$$

13.
$$E = \{-|x| + 3; x \in \mathbb{R}\};$$
 14. $E = \{2^{(-1)^n}; n \in N\}$

15.
$$E = \left\{ arctg \sqrt{1 + \frac{2}{n+1}}; n \in \mathbb{N} \right\}$$
 16. $E = \{2logx - log(x+2) \le 0; x \in \mathbb{R} \}$

16. E=
$$\{2logx - log(x+2) \le 0; x \in \mathbb{R}\}$$

Punti di accumulazione

Definizione

Dato l'insieme E si dice che x_0 è punto di accumulazione di E se in ogni intorno di x_0 cade almeno un punto di E distinto da x_0 .

Vale il seguente teorema:

Teorema

Se x_0 è punto di accumulazione dell'insieme E allora in ogni suo intorno cadono infiniti punti di E.

Definizione

L'insieme dei punti di accumulazione dell'insieme E si dice derivato di E e si indica con

DE.

Teorema di Bolzano-Weierstrass

Un insieme limitato e contenente infiniti punti contiene ammette almeno un punto di accumulazione.

Si noti che un punto di accumulazione di E può appartenere o no all'insieme E.

Un punto $\,x_0\,$ dell'insieme E si $\,$ dice isolato se non è punto di accumulazione di E .

Se l'estremo superiore Λ dell'insieme E limitato superiormente non appartiene a E allora ne è punto di accumulazione.

Se l'estremo inferiore λ dell'insieme E limitato inferiormente non appartiene a E allora ne è punto di accumulazione.

Esempio

Sia E=
$$\left\{\frac{3n+1}{n+1}; n \in N\right\}$$
; poiché $\frac{3n+1}{n+1} = 3 - \frac{2}{n+1}$, si ha E= $\left\{1; 2; 3 - \frac{2}{3}; 3 - \frac{2}{4}; 3 - \frac{2}{5}; \dots; 3 - \frac{2}{n}; 3 - \frac{2}{n+1}; \dots\right\}$

Si osserva che tutti gli elementi di E sono punti isolati , dimostriamo che l'unico punto di accumulazione dell'insieme E è 3 che è anche estremo superiore.

Infatti in base alla definizione occorre dimostrare che preso un $\varepsilon>0~$ comunque piccolo, in ogni intorno di 3 , $(3-\varepsilon;3+\varepsilon)$, cadono infiniti punti di E.

La condizione

$$3 - \frac{2}{n+1} \in (3 - \varepsilon; 3 + \varepsilon)$$

Corrisponde alla disequazione:

$$3 - \varepsilon < 3 - \frac{2}{n+1} < 3 + \varepsilon \Longrightarrow -\varepsilon < \frac{2}{n+1} < \varepsilon$$

soddisfatta per ogni $n \in N$ tale che $n > \frac{2}{\varepsilon} - 1$; pertanto $\mathfrak{D}E = \{3\}$.

Esercizi

Determinare l'insieme $\mathfrak{D}E$ dei punti di accumulazione dell'insieme E:

17.
$$E=(-2; 3)$$

18.
$$E=(0;3) \cup (3;+\infty)$$

19.
$$E=\{(-3)^n; n \in N\},$$

20.
$$E = \left\{ (-1)^n \frac{1}{n+4}; n \in \mathbb{N} \right\}$$
 21. $E = \left\{ |x| < 2; x \in \mathbb{R} \right\}$ **22.** $E = \left\{ 2^{|x|} > 1; x \in \mathbb{R} \right\}$

21.
$$E = \{|x| < 2; x \in \mathbb{R}\}$$

22. E=
$$\{2^{|x|} > 1; x \in \mathbb{R}\}$$

23. E=
$$\{x^2 - 2x > -1: x \in \mathbb{R}^n\}$$

24. E= {
$$|x|x^2 < 8$$
; $x \in \mathbb{R}$ }

23.
$$E = \{x^2 - 2x > -1; x \in \mathbb{R}\}$$
 24. $E = \{|x|x^2 < 8; x \in \mathbb{R}\}$ **25.** $E = \{(-2)^n sin\left(n\frac{\pi}{2}\right); n \in N\}$

Insiemi aperti - Insiemi chiusi

Definizione

Un insieme E si dice chiuso se

 $\mathfrak{D}\mathsf{E}\subseteq\mathsf{E}$

cioè o

- l'insieme non ha punti di accumulazione

oppure

- tutti i suoi punti di accumulazione appartengono all'insieme stesso.

Se $\mathfrak{D}E = E$ l'insieme E si dice **perfetto**.

Definizione

Un insieme si dice aperto se tutti i suoi punti sono punti interni .

Esistono insiemi che non sono né aperti né chiusi.

Teorema

Un insieme è chiuso se e solo se il suo complementare in $\mathbb R$ è un insieme aperto.

Esempi

1.L'intervallo chiuso E = [a; b] è un insieme chiuso in quanto contiene tutti i suoi punti di accumulazione, risulta $\mathfrak{D}E = [a; b]$

L'intervallo aperto (a; b) è aperto perchè formato solo da punti interni, risulta $\mathfrak{D}E = [a; b]$.

Gli intervalli E=[a;b) e E'=(a;b] sono insiemi né aperti né chiusi perché entrambi non contengono un estremo che è punto di accumulazione, risulta $\mathfrak{D}E = [a;b]$, $\mathfrak{D}E' = [a;b]$

L'insieme dei reali ℝ è un insieme sia aperto che chiuso; è aperto perchè formato solo da punti interni, è chiuso in quanto contiene tutti i suoi punti di accumulazione.

L'insieme vuoto \emptyset è sia aperto che chiuso; è aperto perchè il suo complementare $\mathbb R$ è chiuso, è chiuso in quanto non ha punti di accumulazione.

L'insieme \mathbb{R} e l'insieme vuoto \emptyset sono gli unici insiemi sia aperti che chiusi

L'insieme N dei naturali, l'insieme Z degli interi relativi non hanno punti di accumulazione, pertanto sono insiemi chiusi

Esercizi

Stabilire se i seguenti insiemi sono aperti , o chiusi o né aperti né chiusi oppure sia aperti che chiusi

26.E =
$$\{-2; -1; 3\}$$

26.
$$E = \{-2; -1; 3\}$$
 27. $E = [2; 4] \cup (4; 5]$ **28**. $E = [1; +\infty)$

28.
$$E = [1:+\infty)$$

29.
$$E=(-1;4)\cup(5;6)$$

29. E=
$$(-1;4) \cup (5;6)$$
 30. E= $\left\{ (-1)^n cos\left(n\frac{\pi}{2}\right); n \in N \right\}$ **31.** E= $\left\{ |x| \geq 3; x \in \mathbb{R} \right\}$

31.
$$E = \{|x| \ge 3; x \in \mathbb{R}\}$$

32. E=
$$\{3^{-|x|} > 0; x \in \mathbb{R}\}$$

33.
$$E = \{3^{(-1)^n}; n \in N\}$$

32.
$$E = \{3^{-|x|} > 0; x \in \mathbb{R}\}$$
 33. $E = \{3^{(-1)^n}; n \in \mathbb{N}\}$ **34.** $E = \{x^3 + x > 0; x \in \mathbb{R}\}$

35.
$$E = \{2^x + 1 < 0; x \in \mathbb{R}\}$$

Esercizi

Dei sequenti esercizi:

- stabilire se sono limitati o illimitati
- determinate estremo inferiore λ , estremo superiore Λ , eventuali massimo e minimo
- eventuali punti di accumulazione
- insieme derivato
- stabilire se l'insieme è chiuso

36.
$$A = \left\{ x \in \mathbb{R}, \ x = \left(\frac{2}{3}\right)^n, \ n \in \mathbb{N} \right\} \cup \{0\}$$

36.
$$A = \left\{ x \in \mathbb{R}, \ x = \left(\frac{2}{3}\right)^n, \ n \in \mathbb{N} \right\} \cup \{0\}$$
 37. $A = \left\{ x \in \mathbb{R}, \ x = \frac{2n+1}{1-n}, \ n \in \mathbb{N}, \ n \geq 2 \right\}$

38.
$$A = \{x \in \mathbb{R}, |4 - x| \le 1, \} \cap (4; 6]$$

38.
$$A = \{x \in \mathbb{R}, |4-x| \le 1, \} \cap (4; 6]$$
 39. $A = \{x \in \mathbb{R}, x = \frac{(-1)^n}{n+1}, n \in N_0\}$

40.
$$A = \{x \in \mathbb{R}, log(x-2) > 3 \}$$

41.
$$A = \{x \in \mathbb{R}, \sqrt{1-x} \le 2 \}$$

42. A =
$$\{x \in \mathbb{R}, -1 < \sqrt[3]{2-x} \le 3 \}$$

42.
$$A = \{x \in \mathbb{R}, -1 < \sqrt[3]{2-x} \le 3 \}$$
 43. $A = \{x \in \mathbb{R}, x = e^{-n} cosn, n \in \mathbb{N} \}$

44.
$$A = \left\{ x \in \mathbb{R}, \ x = \frac{2^n + 2^{-n}}{2}, n \in \mathbb{N} \right\}$$
 45. $A = \left\{ x \in \mathbb{R}, \ log(x^2 - 4) < 1 \right\}$

45. A =
$$\{x \in \mathbb{R}, log(x^2 - 4) < 1\}$$

Esercizi

Dei sequenti insiemi determinare:

- estremo inferiore λ , superiore Λ , eventuali massimo e minimo
- insieme dei punti isolati, dei punti interni, esterni, di frontiera
- stabilire se l'insieme è aperto, chiuso, né aperto né chiuso

46.
$$E = \{x \in \mathbb{R}, \ 0 < x + 1 \le 2\}$$
 47. $A = (0; 1) \cup \{2; 3\}$

47.
$$A = (0; 1) \cup \{2; 3\}$$

48.
$$E = \left\{ x \in \mathbb{R}, x = \frac{n^2 - 1}{n^2}, n \in \mathbb{N}_0 \right\}$$

Soluzioni

1.S. limitato, infatti
$$\forall n \in N$$
 risulta $-3 < \frac{2}{n+2} - 3 \le -2$, inoltre $\Lambda = -2 = \max$, $\lambda = -3$

2.S. limitato, infatti
$$\forall n \in N$$
 risulta $1 < 2^{-n} + 1 \le 2$; $\lambda = 1$; $\Lambda = 2 = \max$

3.S. limitato inferiormente ma non superiormente, infatti
$$\forall n \in \mathbb{N}$$
, $\log(n+1) \geq 0$;

$$\lambda = 0 = \min(E); \Lambda = +\infty$$

4. S. illimitato;
$$\lambda = -\infty$$
; $\Lambda = +\infty$

5.S. limitato,
$$\Lambda = 1 = \max$$
, estremo inferiore $\lambda = 0$

6.S. limitato
$$\Lambda = 2 = \max$$
, $\lambda = 0 = \min$

7.S. limitato superiormente ma non inferiormente:
$$\Lambda = 3 = \max$$
; $\lambda = -\infty$

8. S. illimitato
$$\Lambda = +\infty$$
 ; $\lambda = -\infty$

9. S. limitato,
$$\Lambda = 1 = \max$$
; $\lambda = 0 = \min$

10. S. limitato;
$$\Lambda = \frac{1}{2} = \max$$
; $\lambda = -\frac{1}{2} = \min$

11.S. limitato inferiormente ma non superiormente;
$$\Lambda = +\infty$$
; $\lambda = 0$

12.S. illimitato,
$$\Lambda = +\infty$$
 ; $\lambda = -\infty$

13.S. limitato superiormente, ma non inferiomente $\Lambda = +3$ = max; $\lambda = -\infty$

14.S. limitato;
$$\Lambda = 2 = \max$$
; $\lambda = \frac{1}{2} = \min$

15. S. limitato;
$$\Lambda = \frac{\pi}{3} = \max$$
; $\lambda = \frac{\pi}{4}$; 16. S. limitato, $\Lambda = 2 = \max$; $\lambda = 0$

Punti di accumulazione

17. S.
$$\mathfrak{D}E = [-2; 3]$$

18. S .
$$\mathfrak{D}E = [0; +\infty)$$

19. S.
$$\mathfrak{D}E = \emptyset$$

20.S.
$$\mathfrak{D}E = \{0\};$$

21. S.
$$\mathfrak{D}E = [-2; 2];$$

22. S.
$$\mathfrak{D}E = \mathbb{R}$$

23. S.
$$\mathfrak{D}E = \mathbb{R}$$

24.S.
$$\mathfrak{D}E = [-2; 2];$$

25. S.
$$\mathfrak{D}E = \emptyset$$

Insiemi aperti - Insiemi chiusi

26.S. Chiuso

27.S. chiuso

28. S. Chiuso

29. S. aperto

30. S. chiuso

31. S. chiuso

32.S. sia aperto che chiuso

33. S. chiuso

34. S. aperto

35. S. sia aperto che chiuso

- **36.** S. A limitato ; minA = 0 , $\Lambda = maxA = 1$; punto di accumulazione x = 0, $\mathcal{D}A = \{0\}$; chiuso;
- **37.** S. A limitato, $\lambda = \min A = -5$, $\Lambda = \sup A = -2$, punto di accumulazione x = -2, $\mathcal{D}A \{-2\}$; né chiuso né aperto;
- **38. S.** insieme limitato aperto a sinistra A= (4; 5], $\lambda = \inf A = 4$, $\Lambda = \max A = 5$, $\mathcal{D}A = [4; 5]$; né chiuso né aperto
- **39. S.** insieme limitato, $\lambda = \min A = -\frac{1}{2}$, $\Lambda = \max A = \frac{1}{3}$, punto di accumulazione x = 0, $\mathcal{D}A = \{0\}$; né chiuso né aperto
- **40. S.** insieme limitato inferiormente $A=(2+e^3;+\infty)$, , $\lambda=\inf A=2+e^3$, $\Lambda=\sup A=+\infty$, $\mathcal{D}A=[2+e^3;+\infty)$; aperto
- **41. S.** insieme chiuso e limitato A = [-3; 1], $\lambda = \min A = -3$, $\Lambda = \max A = 1$, $\mathcal{D}A = [-3; 1]$, $A \stackrel{.}{e}$ perfetto;
- **42. S.** intervallo chiuso a sinistra e aperto a destra A = [-25; 3), $\lambda = \min A = -25$, $\Lambda = \sup A = 3$, $\mathcal{D}A = [-25; 3]$;
- **43. S.** insieme limitato, $\lambda = \min A = e^{-2}cos2$, $\Lambda = \max A = 1$, $\mathcal{D}A = \{0\}$; né chiuso né aperto
- **44. S.** insieme illimitato superiormente, λ = **min** A = 1, Λ = **sup** A = $+\infty$, \mathcal{D} A = \emptyset , A è chiuso;
- **45. S.** insieme limitato A = $(-\sqrt{e+4}; -2) \cup (2; \sqrt{e+4})$, $\lambda = \inf A \sqrt{e+4}$, $\Lambda = \sup A = \sqrt{e+4}$;
- **46. S.** $\lambda = infE = -1$, $\Lambda = maxE = 1$, IntE = (-1; 1) , $EstE = (-\infty; -1) \cup (1; +\infty)$, $\partial E = \{-1; 1\}$, $\mathfrak{D}E = [-1; 1]$, né aperto né chiuso;

47. S. $\lambda = infA = 0$, $\Lambda = maxA = 3$, intA = (0;1) , $punti isolati \ di \ A = \{2;3\}$, $EstA = (-\infty;0) \cup (1;2) \cup (2;3) \cup (3;+\infty)$, $\partial A = \{1;2;3\}$, $\mathfrak{D}A = [0;1]$; né chiuso né aperto **48. S.** $\lambda = infE = 0 = minE$, $\Lambda = supE = 1$, $IntE = \emptyset$, $punti isolati \ di \ E = E$,

 $EstE = \mathbb{R} - E$, $\partial E = E \cup \{1\}$, $\mathfrak{D}E = \{1\}$, né aperto né chiuso.