

Praktikum Ingenieurmäßige Software-Entwicklung

Palladio Component Model - Part IV (PCM)

Prof. Dr. R. H. Reussner (reussner@ipd.uka.de)
Lehrstuhl Software-Entwurf und –Qualität
Institut für Programmstrukturen und Datenorganisation (IPD)
Fakultät für Informatik, Universität Karlsruhe (TH)

Outline

1. Introduction

- a. Roles, Process Model, Example
- b. Solver (Simulation, Analytical Model)

2. Component Developer

- a. Repository
- b. Component, Interface, Data Types
- c. SEFF

3. Stochastic Expressions

- Constants, PMF, PDF, Parameter
 Characterisation
- b. Parametric Dependencies

Lecture 1

Lecture 2

Lecture 3

Outline

- 4. Software Architect
 - a) System (Composed Structure)
 - b) QoS Annotations on System Interfaces
- 5. System Deployer
 - a) Resource Types, Resource Environment
 - b) Allocation
- 6. Domain Expert
 - a. Usage Model
 - b. Parameter Characterisations
- 7. Solver, Result Interpretation
- 8. Comprehensive Case Study
- 9. Outlook

Lecture 4

Lecture 5

Software Architect

[http://commons.wikimedia.org/wiki/Image:Architect.png]

Software Architect: Tasks (1/2)

 Specifies an architecture (boxes and lines) from existing components and interfaces

 Specifies new components and interfaces

 Uses architectural styles and architectural patterns

 Analyses architectural specification and makes design decisions

Software Architect: Tasks (2/2)

 Conducts performance prediction based on architectural specification

 Delegates implementation tasks to component developers

 Guides the whole development process

CBSE Development Process

[Cheeseman2000, Koziolek2006a]

Specification Process

[Grunske2007]

Specification Process

System

- Models the component-based architecture to be analysed
- May include components from different repositories
- Provides an interface for users
- Excludes uninteresting services and connects to them via system required interfaces
- Is a prerequisite for the system deployer to allocate the components

System Specification

System Specification PCM Bench

QoS Annotation

- System Required Interfaces: connection to functionality not modelled in the system
- Example: web service, unknown component
- Execution time specification necessary

QoS Annotation

Performance Evaluation

Design alternatives changing performance

- More hardware
- Faster hardware
- Caching
- Resource Pooling
- Replication
- Load Balancing
- Compression
- Reducing communication overhead

- Reimpl. of a component
- Allocation
- Introduce parallel processing
- Use Performance Pattern

• ...

Outline

- 4. Software Architect
 - a) System (Composed Structure)
 - b) QoS Annotations on System Interfaces
- 5. System Deployer
 - a) Resource Types, Resource Environment
 - b) Allocation
- 6. Domain Expert
 - a. Usage Model
 - b. Parameter Characterisations
- 7. Solver, Result Interpretation
- 8. Comprehensive Case Study
- 9. Outlook

Lecture 4

Lecture 5

System Deployer

[http://www.dorsetforyou.com/]

System Deployer: Tasks

- Models the resource environment (e.g., middleware, OS, hardware)
- Models the allocation of components to resources
- Sets up the resource environment (e.g., installing application servers, configuring hardware)
- Deploys components on resources (e.g., writing deployment descriptors)
- Maintains the running system

Resource Types

- Abstract specification of resources (e.g. CPU, HD, Net)
- Why?
 - concrete resources (e.g. 2 GHz CPU, 20 MB/s HD, 1 Gbit/s Net) unknown during component specification and implementation
- Thus: component developers provide RDSEFF specifications referring to resource types
- Once the concrete resource environment is specified, timing values can be derived

Resource Types in PCM

Resource Environment

Processing Resources

- Model CPUs, Hard Disks, Networks, etc.
- Specify a processing rate for the resource demands of the RDSEFFs

- Example 1:
 - Processing rate (CPU): $3*10^9$ cycles/s = 3 Ghz
 - RDSEFF: Resource Demand = 1,5 * 10^9 cycles
 - →0,5 seconds execution time
- Example 2:
 - Processing rate (HD): 20 MB/s
 - RDSEFF: Resource Demand = 500 000 Byte
 - →0,025 seconds execution time

Passive Resources

- Model logical resources
 - Threads, Semaphores, Database connections, ...
- Are aquired or released in RDSEFFs
- Specify a maximum capacity
- Example:
 - Capacity (ThreadPool): 8
 - RDSEFF: AquireAction(ThreadPool)
 - →Afterwards: #available threads decreased by 1
 - RDSEFF: ReleaseAction(ThreadPool)
 - → Afterwards: #available threads increased by 1

Allocation

Allocation

Outline

- 4. Software Architect
 - a) System (Composed Structure)
 - b) QoS Annotations on System Interfaces
- 5. System Deployer
 - a) Resource Types, Resource Environment
 - b) Allocation
- 6. Domain Expert
 - a. Usage Model
 - b. Parameter Characterisations
- 7. Solver, Result Interpretation
- 8. Comprehensive Case Study
- 9. Outlook

Lecture 4

Lecture 5

Lessons Learned Today

- Software Architect
 - Specification of a system

- System Deployer
 - Resource Types
 - Specification of a resource environment
 - Specification of an allocation

Switch to Eclipse

