A Practical Introduction to Data Science

Part 8

Machine Learning Operations

Course Agenda

1.	Introduction to Data Science
II.	Business and Data Understanding
III.	Introduction to Supervised Learning
IV.	Advanced Supervised Learning
V.	Unsupervised Learning
VI.	Time Series Analysis
VII.	Deep Learning
VIII.	Machine Learning Operations

Review of the ML Lifecycle

Ways of working

- Business Collaboration
- Experimentation
- Iterative Process

Key Considerations

- Data Quality
- Generalization
- Data Leakage
- Business Impact

Source: Cross-industry standard process for data mining - Wikipedia

Machine Learning Operations

Phases:

- 1. Pre-deployment
- 2. Deployment
- 3. Post-deployment

Pre-Deployment

- 1. Data Engineering Pipeline
 - Reliable Data Ingestion
- 2. Model Development
 - A. Experimentation
 - Notebooks
 - Experimentation Tracking (e.g. MLflow)
 - Version Control (Git)
 - B. Machine Learning Pipeline
 - Directed Acyclic Graph (DAG)
 - Clean and Modular Code
 - Containerization
 - Automation
 - Reproducibility
 - Scalability

Source: Intro to Vertex Pipelines

Deployment

- 1. Rollout Strategy
- 2. Machine Learning Pipeline
- 3. Model Serving
 - Model Registry
 - Endpoints
- 4. Continuous Deployment
 - Environments: dev, test, prod
 - Stages: build, test, deploy

Local / Vertex
Al Workbench

ML Pipeline Development Gitlab CI/CD

Run Deployment Pipeline Google Artifact Registry

Containerized ML Pipeline

Vertex Al Pipelines

> Run Training Pipeline

- 1. Model-based decisions (actions)
- 2. Monitoring
 - ML Pipeline
 - Business
 - Model Performance Backtesting
 - Concept Drift and Data Drift
 - Business Impact
- 3. Retraining
 - Regular or performance driven

- 1. Model-based decisions (actions)
- 2. Monitoring
 - ML Pipeline
 - Business
 - Model Performance Backtesting
 - Concept Drift and Data Drift
 - Business Impact
- 3. Retraining
 - Regular or performance driven

- Failures
- Runtime
- Input data
 - Availability and Format
 - Quality (missing values, duplicates)
 - Volume
- Output Volume and Quality

- 1. Model-based decisions (actions)
- 2. Monitoring
 - ML Pipeline
 - Business
 - Model Performance Backtesting
 - Concept Drift and Data Drift
 - Business Impact
- 3. Retraining
 - Regular or performance driven

- Portfolio Size
- Business Targets
- Profit and Loss

- 1. Model-based decisions (actions)
- 2. Monitoring
 - ML Pipeline
 - Business
 - Model Performance Backtesting
 - Concept Drift and Data Drift
 - Business Impact
- 3. Retraining
 - Regular or performance driven

- Stability and Drop in Performance
- Model Calibration
- Underperforming Segments
- Bias and Fairness

- 1. Model-based decisions (actions)
- 2. Monitoring
 - ML Pipeline
 - Business
 - Model Performance Backtesting
 - Concept Drift and Data Drift
 - Business Impact
- 3. Retraining
 - Regular or performance driven

- 1. Model-based decisions (actions)
- 2. Monitoring
 - ML Pipeline
 - Business
 - Model Performance Backtesting
 - Concept Drift and Data Drift
 - Business Impact
- 3. Retraining
 - Regular or performance driven

- 1. Model-based decisions (actions)
- 2. Monitoring
 - ML Pipeline
 - Business
 - Model Performance Backtesting
 - Concept Drift and Data Drift
 - Business Impact
- 3. Retraining
 - Regular or performance driven

- A good model is not enough
 - Business decision, timing, target group
 - A/B testing
- Feedback Loops:
 - Predictions/actions may influence results and future samples
 - Backtesting and future modelling may be affected
 - Healed customers
 - Self-fulfilling prophecies
 - Altered distributions (e.g. excluded segments)
 - Action tracking
- External Factors
 - Environment, competitors etc.

Steps

- 1. Model-based decisions (actions)
- 2. Monitoring
 - ML Pipeline
 - Business
 - Model Performance Backtesting
 - Concept Drift and Data Drift
 - Business Impact

3. Retraining

Regular or performance driven

MLOps Tools

Tracking	Model Registry	ML Pipeline	CI/CD	Other
☐ MLflow	■ MLflow	☐ Airflow	☐ Gitlab CI/CD	□ Docker
□ W&B	□ Vertex AI	☐ Kubeflow	☐ Github Actions	☐ Kubernetes
	☐ SageMaker	□ Vertex AI	☐ Jenkins	☐ FastAPI

Read more about MLOps:

- ML Ops: Machine Learning Operations
- The Post Deployment Data Science Blog by nannyML

What we have covered

l.	Introduction to Data Science
II.	Business and Data Understanding
III.	Introduction to Supervised Learning
IV.	Advanced Supervised Learning
V.	Unsupervised Learning
VI.	Time Series Analysis
VII.	Deep Learning
VIII.	Machine Learning Operations

Free Online Resources

- Making Friends with Machine Learning: The Entire Course
- StatQuest with Josh Starmer
- User Guides and Tutorials e.g. <u>scikit-learn</u>
- 3Blue1Brown Neural networks
- Andrej Karpathy Deep Dive into LLMs like ChatGPT
- Lecture series from top universities and other tutorials on YouTube
 - Stanford CS229 I Machine Learning I Building Large Language Models (LLMs)
 - MIT Deep Learning

Books

Thank you for your attention!

Your feedback would be much appreciated:

Any Questions?

