13 Exercise solutions – Hidden Markov model

1. HMM probabilities

An HMM (hidden Markov model) is a probabilistic graphical model with three types of probabilities.

Transition probabilities:

	$L_{\rm t}$	$\mathrm{H_{t}}$
L_{t-1}	0.2	0.8
H_{t-1}	0.4	0.6

Emission probabilities:

	L	Н
Sunny	0.5	0.7
Rain	0.5	0.3

Initial transition probabilities:

$$(L, H) = (0.3, 0.7)$$

(a) Add the transition and emission probabilities to the graph.

(b) What are the joint probabilities for (Rain, Rain, Sunny) and (H, L, L)?

Solution:
$$p(H)p(Rain|H) \times p(L|H)p(Rain|L) \times p(L|L)p(Sunny|L)$$

= $0.7 \times 0.3 \times 0.4 \times 0.5 \times 0.2 \times 0.5 = 0.0042$

(c) What are the joint probabilities for (Sunny, Rain, Sunny) and (L, H, L)?

Solution:
$$p(L)p(Sunny|L) \times p(H|L)p(Rain|H) \times p(L|H)p(Sunny|L)$$

= $0.3 \times 0.5 \times 0.8 \times 0.3 \times 0.4 \times 0.5 = 0.0072$

2. HMM profile

A path of an HMM profile represents an alignment between an input sequence and the profile.

(a) Assume $Seq1 = q1 \ q2$ and its path is indicated with solid lines. Draw the alignment of Seq1 and the profile.

Solution:

Seq1: q1 q2 - - Profile: - - A1 A2

(b) Assume Seq2 = q1 q2 q3 q4 q5 q6 and its path is indicated with solid lines. Draw the alignment of Seq2 and the profile.

Solution:

Seq2: q1 q2 q3 q4 q5 q6 Profile: A1 - - A2 - -

3. The Viterbi algorithm

The Viterbi algorithm is a dynamic programming based method to find the optimal path of an HMM with hidden status.

(a) Find the optimal path when observed weather conditions are (Rain, Sunny).

	H	L
Rain	$0.5 \times 0.2 = 0.1$	$0.5 \times 0.6 = 0.3$
Sunny	(H) $0.1 \times 0.3 \times 0.8 = 0.024$	(H) $0.1 \times 0.7 \times 0.4 = 0.028$
	(L) $0.3 \times 0.7 \times 0.8 = 0.168$	(L) $0.3 \times 0.3 \times 0.4 = 0.036$

Solution: (L, H)

(b) Find the optimal path when observed weather conditions are (Sunny, Sunny, Rain).

	Н	L
Sunny	$0.5 \times 0.8 = 0.4$	$0.5 \times 0.4 = 0.2$
Sunny	(H) $0.4 \times 0.3 \times 0.8 = 0.096$	(H) $0.4 \times 0.7 \times 0.4 = 0.112$
	(L) $0.2 \times 0.7 \times 0.8 = 0.112$	(L) $0.2 \times 0.3 \times 0.4 = 0.024$
Rain	(H) $0.112 \times 0.3 \times 0.2 = 0.007$	(H) $0.112 \times 0.7 \times 0.6 = 0.047$
	(L) $0.112 \times 0.7 \times 0.2 = 0.016$	(L) $0.112 \times 0.3 \times 0.6 = 0.02$

Solution: (L, H, L)