Structure of pHs BJTAMP

Antoine $Falaize^1$ and John Doe^2

 $^1\mathrm{Project\text{-}team}$ S3*, , STMS, IRCAM-CNRS-UPMC (UMR 9912), , 1 Place Igor-Stravinsky, 75004 Paris, France $^2\mathrm{Project\text{-}team}$ S3†, , STMS, IRCAM-CNRS-UPMC (UMR 9912), , 1 Place Igor-Stravinsky, 75004 Paris, France

June 12, 2016

1 System netlist

line	label	dictionary.component	nodes	parameters
ℓ_1	IN	electronics.source	('IN',)	{ type voltage
ℓ_2	Cin	electronics.capacitor	('IN', '5')	C ('Cin', 1e-05)
ℓ_3	Rbc	electronics.resistor	('5', '6')	R ('Rcd', 270000.0)
ℓ_4	ВЈТ	electronics.bjt	('5', '6', 'ref')	mu ('mu', 1.006) betaF ('betaF', 294.3) Vt ('Vt', 0.026) betaR ('betaR', 7.946) Rb ('Rb', 1) Rc ('Rc', 0.85) Is ('Is', 2.39e-14) Re ('Re', 0.4683)
ℓ_5	Rcd	electronics.resistor	('vcc', '6')	{ R ('Rcd', 1000.0)
ℓ_6	VCC	electronics.source	('vcc',)	$igl\{$ type voltage
ℓ_7	Cout	electronics.capacitor	('OUT', '6')	C ('Cout', 1e-05)
ℓ_8	OUT	electronics.source	('OUT',)	$ig\{$ type current

$$\dim(\mathbf{x}) = n_{\mathbf{x}} = 2;$$

$$\dim(\mathbf{w}) = n_{\mathbf{w}} = 7;$$

^{*}http://s3.ircam.fr †http://s3.ircam.fr

Figure 1: Graph of system BJTAMP.

$$\dim(\mathbf{y}) = n_{\mathbf{y}} = 3;$$

$$\dim(\mathbf{p}) = n_{\mathbf{p}} = 0;$$

2 System variables

State variable
$$\mathbf{x} = \begin{pmatrix} x_{\text{Cin}} \\ x_{\text{Cout}} \end{pmatrix}$$
;

Dissipation variable $\mathbf{w} = \begin{pmatrix} w_{\text{Rcd}} \\ w_{\text{BJTbe}} \\ w_{\text{BJTre}} \\ w_{\text{BJTrc}} \\ w_{\text{BJTrb}} \\ w_{\text{BJTrb}} \\ w_{\text{BJTrb}} \end{pmatrix}$;

Input
$$\mathbf{u} = \begin{pmatrix} u_{\text{IN}} \\ u_{\text{VCC}} \\ u_{\text{OUT}} \end{pmatrix};$$
Output $\mathbf{y} = \begin{pmatrix} y_{\text{IN}} \\ y_{\text{VCC}} \\ y_{\text{OUT}} \end{pmatrix};$

3 Constitutive relations

$$\text{Hamiltonian } \mathbb{H}(\mathbf{x}) = \frac{0.5}{\text{Cout}} \cdot x_{\text{Cout}}^2 + \frac{0.5}{\text{Cin}} \cdot x_{\text{Cin}}^2 \\ \text{Hamiltonian gradient } \nabla \mathbb{H}(\mathbf{x}) = \begin{pmatrix} \frac{1}{\text{Cin}} \cdot x_{\text{Cin}} \\ \frac{10}{\text{Cout}} \cdot x_{\text{Cout}} \end{pmatrix}; \\ \text{Hamiltonian gradient } \nabla \mathbb{H}(\mathbf{x}) = \begin{pmatrix} -\text{Is} \cdot \left(e^{\frac{w_{\text{BJTbc}}}{\text{Vt-mu}}} - 1\right) - 1.0 \cdot 10^{-9} \cdot w_{\text{BJTbc}} + \frac{1}{\text{betaf}} \cdot \left(\text{betaF} + 1\right) \cdot \left(\text{Is} \cdot \left(e^{\frac{w_{\text{BJTbc}}}{\text{Vt-mu}}} - 1\right) - 1.0 \cdot 10^{-9} \cdot w_{\text{BJTbc}} + \frac{1}{\text{betaf}} \cdot \left(\text{betaR} + 1\right) \cdot \left(\text{Is} \cdot \left(e^{\frac{w_{\text{BJTbc}}}{\text{Vt-mu}}} - 1\right) - 1.0 \cdot 10^{-9} \cdot w_{\text{BJTbc}} + \frac{1}{\text{betaf}} \cdot \left(\text{betaR} + 1\right) \cdot \left(\text{Is} \cdot \left(e^{\frac{w_{\text{BJTbc}}}{\text{Vt-mu}}} - 1\right) - 1.0 \cdot 10^{-9} \cdot w_{\text{BJTbc}} + \frac{1}{\text{betaf}} \cdot \left(\text{betaR} + 1\right) \cdot \left(\text{Is} \cdot \left(e^{\frac{w_{\text{BJTbc}}}{\text{Vt-mu}}} - 1\right) - \frac{1}{\text{betaf}} \cdot \left(\text{betaF} + 1\right) \cdot \left(\frac{1}{\text{Is}} \cdot \left(\frac{w_{\text{BJTbc}}}{\text{Vt-mu}} + 1.0 \cdot 10^{-9}\right) - \frac{1}{\text{betaf}} \cdot \left(\text{betaF} - 1\right) \cdot \left(\frac{1}{\text{betaF}} \cdot \left(\frac{w_{\text{BJTbc}}}{\text{Vt-mu}} - 1.0 \cdot 10^{-9}\right) - \frac{1}{\text{betaf}} \cdot \left(\text{betaF} - 1\right) \cdot \left(\frac{1}{\text{betaF}} \cdot \left(\frac{w_{\text{BJTbc}}}{\text{Vt-mu}} - 1.0 \cdot 10^{-9}\right) - \frac{1}{\text{betaf}} \cdot \left(\frac{1}{\text{betaF}} \cdot \left(\frac{w_{\text{BJTbc}}}{\text{Vt-mu}} - 1.0 \cdot 10^{-9}\right) - \frac{1}{\text{betaf}} \cdot \left(\frac{1}{\text{betaF}} \cdot \left(\frac{w_{\text{BJTbc}}}{\text{betaF}} - 1\right) - \frac{1}{\text{betaF}} \cdot \left(\frac{w_{\text{BJ$$

4 System parameters

4.1 Constant

parameter	value (SI)
betaF:	294.3
betaR:	7.946
Rb:	1
Rcd:	1000.0
Re:	0.4683
Vt:	0.026
Cin:	1e-05
mu:	1.006
Is:	2.39e-14
Cout:	1e-05
Rc:	0.85