ه آموزشی : ریاضی یخ : ۱۳۹۴/۸/۲۱		نام و نام خانوادگی :
وقت : 🕻 دقيقه	دانشکده ریاضی	نام مدرس :
امتحان میان ترم درس : معادلات دیفرانسیل (۷ گروه هماهنگ)		
نیمسال (اول / گرم) ۱۳ ۹۵ – ۱۳ ۹۵		
توجه : از نوشتن با مداد خودداری نمایید. استفاده از ماشین حساب مجاز نیست.		
در طول امتحان به هیچ سوالی پاسخ داده نمی شود.		
		_
۱۵ نمره	ا را حل کنید. $(y + \sqrt{x^{Y} - y^{Y}}) dx - y$	xdyاسوال - معادله مرتبه اول -1
۱۵ نمرد	ل کنید :	سوال ۲ – معادله دیفرانسیل زیر را ح
	$(\forall x + \sin y^{T})dx + xy\cos y^{T}dy = \cdot$	
۱۵ نمر	ادله $y' = 1 - \frac{y}{x} + \frac{y^{T}}{x^{T}}$ است. تمام جوابهای آن را بیابید.	سوال ۳ – تابع $y_1=x$ یک جواب مع
۱۵ نمره	ونیهای $y = (x - c)^{T}$ را بیابید.	سوال۴ – مسیرهای قائم بر دسته من
•		
۲۰ نمره	وم زیر را به کمک روش ضرایب نامعین حل کنید : $y'' + \Upsilon y' + \Upsilon y = e^{-\Upsilon x} + \Im \Upsilon x$	سوال ۵ – معادله دیفرانسیل مرتبه د

موفق باشيد

پاسخ سوالات امتحان میان ترم درس معادلات دیفرانسیل (۷ گروه هماهنگ) نیمسال اول ۹۵-۱۳۹۴

جواب سوال ۱: معادله را به صورت $y' = \frac{y + \sqrt{x^{\mathsf{r}} - y^{\mathsf{r}}}}{x}$ مینویسیم. این معادله یک معادله همگن است. با تغییر متغیر

$$xu' = \sqrt{1-u^{\Upsilon}}$$
 و در نتیجه $u + xu' = \frac{xu + \sqrt{x^{\Upsilon} - x^{\Upsilon}u^{\Upsilon}}}{x}$: داریم $y = xu$

 $\int \frac{du}{\sqrt{1-u^{\Upsilon}}} = \int \frac{dx}{x}$ این معادله ، یک معادله جدایی پذیر است و داریم $\frac{du}{\sqrt{1-u^{\Upsilon}}} = \frac{dx}{x}$. اکنون با انتگرالگیری از طرفین داریم $y = x \sin(\ln x + c)$ و یا $y = x \sin(\ln x + c)$ و یا $y = x \sin(\ln x + c)$ و یا $y = x \sin(\ln x + c)$

 $M = x + \sin y$, $N = xy \cos y$ $\rightarrow M_y = xy \cos y$, $N_x = y \cos y$: داریم:

این معادله کامل نیست اما چون $\frac{M_y - N_x}{N} = \frac{y \cos y^{\mathsf{T}}}{xy \cos y^{\mathsf{T}}} = \frac{1}{x}$ مستقل از y است بنابر این یک عامل انتگرالساز یک متغیره بر

: و با ضرب این عامل انتگرالساز در طرفین معادله داریم $\mu = e^{\int \frac{1}{x} dx} = x$: دارد. داریم دارد.

 $(\forall x^{\mathsf{Y}} + x \sin y^{\mathsf{Y}}) dx + x^{\mathsf{Y}} y \cos y^{\mathsf{Y}} dy = \cdot$

 $\left(x^{\mathsf{r}} + \frac{1}{\mathsf{r}} x^{\mathsf{r}} \sin y^{\mathsf{r}} = c\right)$: که یک معادله کامل است و جواب آن عبارت است از

جواب سوال $y = x + \frac{1}{v}$ آن را حل می کنیم. با تغییر متغیر $y = x + \frac{1}{v}$

$$v' + \frac{1}{x}v = \frac{-1}{x^{7}}$$
 او در نتیجه $v' + \frac{1}{x^{7}v^{7}} = \frac{1}{x^{7}} + \frac{1}{x^{7}v^{7}} = \frac{1}{$

$$v = e^{-\int rac{dx}{x}} (c + \int rac{-1}{x^{\gamma}} e^{\int rac{dx}{x}} dx) = e^{-\ln x} (c + \int rac{-1}{x^{\gamma}} e^{\ln x} dx) = rac{1}{x} (c + \int rac{-1}{x} dx)$$
 : ڪه يک معادله خطى مرتبه اول است :

$$y = x + \frac{x}{c - \ln x}$$
: و داريم $v = \frac{c - \ln x}{x}$ و داريم $v = \frac{c - \ln x}{x}$

 $y' = {^{\mathsf{T}}}(x-c)^{^{\mathsf{T}}}$ داریم $y = (x-c)^{^{\mathsf{T}}}$ عادله : از معادله

.
$$y' = \mathsf{T} \sqrt[r]{y^\mathsf{T}}$$
 اکنون داریم $(y')^\mathsf{T} = \mathsf{TV} (x-c)^\mathsf{S} = \mathsf{TV} y^\mathsf{T}$: و در نتیجه

 $y' = \frac{-1}{r \sqrt[r]{v^r}}$ بنابر این معادله دیفرانسیل مسیرهای قائم دسته منحنیهای داده شده عبارت است از

$$\sqrt[\pi]{y^{\intercal}} dy = \frac{-dx}{r}$$
 : که یک معادله جدایی پذیر است یعنی داریم

$$\frac{\pi}{\Delta}y$$
 $\sqrt[q]{y^{\mathsf{T}}} = \frac{-1}{\pi}x + \frac{1}{\pi}c$ و در نتیجه $\int \sqrt[q]{y^{\mathsf{T}}} dy = \int \frac{-dx}{\pi}$ با انتگرالگیری از طرفین معادله داریم :

$$y^{\Delta} = \frac{17\Delta}{\sqrt{79}}(c-x)^{\mathrm{T}}$$
: و یا $y^{\Delta} = \frac{\Delta}{9}(c-x)$ و یا $y^{\Delta} = \frac{\Delta}{9}(c-x)$

پاسخ سوالات امتحان میان ترم درس معادلات دیفرانسیل (۷ گروه هماهنگ) دانشکده علوم ریاضی نيمسال اول ۹۵–۱۳۹۴

 $m^{r}+rm+r=\cdot$ معادله مشخصه آن، $y''+ry'+ry=\cdot$ معادله مشخصه آن، واحل می کنیم یعنی $y_h = Ae^{-x} + Be^{-7x}$: دو ریشه حقیقی $m_{\gamma} = -7$ و $m_{\gamma} = -7$ دارد و جواب همگن عبارت است از جواب خصوصی معادله را در دو مرحله محاسبه می کنیم. به ازای $y_{p_1}=cxe^{-\Upsilon x}$ در نظر می گیریم. به ازای خصوصی را به صورت $h_1(x)=e^{-\Upsilon x}$ $y'_{p_1} = (-7cx + c)e^{-7x}$, $y''_{p_7} = (6cx - 6c)e^{-7x}$ داریم $y_{p_1} = -xe^{-{^{\intercal}x}}$ یعنی c = -1 که نتیجه می دهد $y_{p_1}'' + {^{\intercal}y_{p_1}'} + {^{\intercal}y_{p_1}'} = -ce^{-{^{\intercal}x}} = e^{-{^{\intercal}x}}$ و به ازای $y_{p_{7}}=a\sin 7x+b\cos 7x$ و با توجه به جواب همگن، جواب خصوصی را به صورت $h_{7}(x)=\sin 7x$ در نظر $y'_{px} = 7a\cos 7x - 7b\sin 7x$ $y''_{px} = -6a\sin 7x - 6b\cos 7x$ می گیریم. داریم: و $y''_{p_{\Upsilon}} + \Upsilon y'_{p_{\Upsilon}} + \Upsilon y_{p_{\Upsilon}}' + \Upsilon y_{p_{\Upsilon}} = (-\Upsilon a - \mathcal{F}b)\sin \Upsilon x + (\mathcal{F}a - \Upsilon b)\cos \Upsilon x = \mathcal{F}\sin x$ و $y_{p\tau} = \frac{-1}{\Lambda} (\sin \Upsilon x + \Upsilon \cos \Upsilon x)$ و در نتیجه $a = \frac{-1}{\Lambda}$, $b = \frac{-\Upsilon}{\Lambda}$ يعنى $-\Upsilon a - 9b = \Upsilon$, $\theta = -\Upsilon b = 0$ $y_g = Ae^{-x} + Be^{-7x} - xe^{-7x} - \frac{1}{\Lambda}(\sin 7x + 7\cos 7x)$ و بالاخره جواب عمومی معادله عبارت است از

سيدرضا موسوى