Math. - ES 1 - S1 - Algèbre

mardi03janvier2017- Durée $3\ h$

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

Exercice 1

Soit $n \in \mathbb{N}^*$. Pour toute matrice $A \in \mathcal{M}_n(\mathbb{R})$, on dit qu'une matrice R de $\mathcal{M}_n(\mathbb{R})$ est une racine carrée de A si $R^2 = A$. On note :

$$Rac(A) = \{ R \in \mathcal{M}_n(\mathbb{R}), R^2 = A \}$$

- 1. On suppose que $A \in \mathcal{M}_n(\mathbb{R})$ admet n valeurs propres réelles distinctes $\lambda_1 < \lambda_2 < ... < \lambda_n$.
 - a. Justifier l'existence d'une matrice $P \in GL_n(\mathbb{R})$ telle que $A = PDP^{-1}$, où $D = \operatorname{diag}(\lambda_1, \lambda_2, ..., \lambda_n)$, puis montrer que R est une racine carrée de A si, et seulement si la matrice $S = P^{-1}RP$ est une racine carrée de D.
 - **b.** Soit S une racine carrée de D.
 - i. Montrer que DS = SD.
 - ii. En déduire que S est diagonale. On note $S = \text{diag}(s_1, s_2, ..., s_n)$.
 - iii. Que vaut s_i^2 pour $i \in [1, n]$?
 - **c.** Expliciter les matrices de Rac(A) en fonction de P.
 - **d.** Application : Ecrire les racines carrées de $A = \begin{pmatrix} -2 & 4 & -2 \\ -1 & 3 & -1 \\ 2 & -2 & 2 \end{pmatrix}$.

Avec les notations précédentes, on explicitera P, mais on ne calculera pas P^{-1} .

- 2. On cherche les racines carrées de la matrice nulle.
 - **a.** Justifier que $Rac(0) \neq \emptyset$.

Soient $R \in \mathcal{M}_n(\mathbb{R})$ une racine carrée de la matrice nulle, et u l'endomorphisme de \mathbb{R}^n canoniquement associé à R. On note r le rang de u.

- **b.** Justifier que $\operatorname{Im}(u) \subset \operatorname{Ker}(u)$, et que $r \leq \frac{n}{2}$.
- **c.** On suppose u non nul, donc $r \geq 1$. Soit $(e_1, ..., e_r)$ une base de Im(u) que l'on complète avec $(e_{r+1}, ..., e_{n-r})$ pour former une base de Ker(u).

Pour $i \in [1, r]$, on note b_i un vecteur tel que $u(b_i) = e_i$.

Montrer que la famille $\mathcal{B} = (e_1, ..., e_{n-r}, b_1, ..., b_r)$ est une base de \mathbb{R}^n puis écrire la matrice de u dans cette base. On la note M_r .

- **d.** Déterminer les racines carrées dans $\mathcal{M}_n(\mathbb{R})$ de la matrice nulle.
- **3.** On cherche les racines carrées de la matrice unité I_n .
 - **a.** Justifier que $Rac(I_n) \neq \emptyset$.

Soit R une racine carrée de I_n .

- **b.** Justifier que R est inversible.
- \mathbf{c} . Montrer que R est semblable à une matrice diagonale, et l'expliciter.
- **d.** Déterminer $Rac(I_n)$.

T.S.V.P.

Exercice 2

Dans tout l'exercice, n désigne un entier naturel supérieur ou égal à 2.

PARTIE 1

Soit ψ l'application définie sur $\mathbb{R}_n[X]$ par :

$$\psi(P) = (X^2 - 1)P'' + 4XP' + 2P$$

- 1. Montrer que ψ est un endomorphisme de $\mathbb{R}_n[X]$.
- **2.** Donner la matrice de ψ dans la base canonique $\mathcal{B} = (1, X, ..., X^n)$ de $\mathbb{R}_n[X]$.
- **3. a.** Soit $k \in [0, n]$. Montrer qu'il existe un unique polynôme **unitaire** vérifiant $\psi(P) = (k+1)(k+2)P$, et qu'il est de degré k. On notera désormais P_k ce polynôme.
 - **b.** Déterminer P_0 et P_1 .
 - **c.** Pour $k \in [2, n]$, expliciter les coefficients de X^{k-1} et X^{k-2} dans P_k .

PARTIE 2

On note E l'ensemble des fonctions réelles continues sur [-1,1].

On identifiera le polynôme P de $\mathbb{R}[X]$ avec la fonction polynômiale $t\mapsto P(t)$ définie sur [-1,1].

Pour $(f,g) \in E^2$, on pose :

$$\varphi(f,g) = \int_{-1}^{1} f(t)g(t)(1-t^2)dt$$

1. Montrer que φ est un produit scalaire sur E.

On munit E de ce produit scalaire, et on note désormais (f|g) le produit scalaire de f et g.

2. Pour $f \in E$ de classe \mathcal{C}^2 , on pose $\psi(f) = \frac{\mathrm{d}^2((x^2-1)f(x))}{\mathrm{d}x^2}$, c'est à dire :

$$\psi(f): x \mapsto (x^2 - 1)f''(x) + 4xf'(x) + 2f(x)$$

- **a.** Montrer que si f et g sont deux fonctions de E de classe \mathcal{C}^2 , alors $(\psi(f)|g) = (f|\psi(g))$.
- **b.** Montrer que la famille de polynômes $\{P_0, P_1, ..., P_n\}$ établie dans la partie 1, est orthogonale.
- **3.** Montrer que pour tout $k \in [0, n], P_k$ est orthogonal à tout polynôme de degré strictement inférieur à k.
- **4.** Soit $k \in [2, n]$.
 - **a.** Montrer que le polynôme $P_k XP_{k-1}$ est de degré au plus k-1 et qu'il est orthogonal à tout polynôme de degré inférieur ou égal à k-3.
 - **b.** En déduire que $P_k XP_{k-1}$ peut s'écrire comme combinaison linéaire de P_{k-1} et P_{k-2} .
 - c. En utilisant le résultat établi à la question 3.c. de la partie 1, montrer que

$$P_k = XP_{k-1} - \frac{(k-1)(k+1)}{(2k-1)(2k+1)}P_{k-2}$$

.