Esercizi

9 - Geometria nel piano e nello spazio

Legenda:

😀 : Un gioco da ragazzə, dopo aver riletto gli appunti del corso

😕 : Ci devo pensare un po', ma posso arrivarci

🤯 : Non ci dormirò stanotte

- \blacksquare Esercizio 1. Siano $A=(1,1),\ B(1,3)$ e $C(1+\sqrt{3},4)$ tre punti del piano euclideo \mathbb{E}^2 .
 - (a) Mostrare che $A, B \in C$ non sono allineati.
 - (b) Determinare l'angolo $B\widehat{A}C$ tra i vettori \overrightarrow{AB} e \overrightarrow{AC} .
 - (c) Determinare l'area del triangolo ABC.
 - (d) Determinare le coordinate del punto D del piano tale che ABCD sia un parallelogramma.
 - (e) Mostrare che il parallelogramma trovato è un rombo.
- $igoplus \mathbf{Esercizio}\ \mathbf{2.}\ \mathrm{Sia}\ r_1\subseteq \mathbb{E}^2\ \mathrm{la}\ \mathrm{retta}\ \mathrm{passante}\ \mathrm{per}\ \mathrm{i}\ \mathrm{punti}\ P(0,-5)\ \mathrm{e}\ Q(-2,1).$
 - (a) Scrivere le equazioni parametriche e un'equazione cartesiana di r_1 .
 - (b) Sia r_2 la retta di equazioni parametriche

$$r_2: \left\{ \begin{array}{l} x = t+1 \\ y = 2t+3. \end{array} \right.$$

Determinare la posizione reciproca delle rette r_1 e r_2 . Se r_1 e r_2 sono incidenti, determinare il loro punto di intersezione e l'angolo $\theta \in [0, \frac{\pi}{2}]$ tra r_1 e r_2 .

- (c) Determinare le coordinate dei punti di r_2 distanti 1 dalla retta r_1 .
- $\stackrel{ extstyle e$

$$3X + 4Y + k = 0.$$

(a) Determinare il valore di $k \in \mathbb{R}$ corrispondente alla retta r_1 del fascio passante per il punto P(5, -5).

- (b) Determinare le equazioni parametriche della retta r_2 perpendicolare a r_1 e passante per il punto Q(1,1). Trovare le coordinate del punto di intersezione di r_1 e r_2 .
- (c) Determinare le equazioni delle rette parallele a r_1 a distanza 2 da r_1 .
- $\mathbf{\mathfrak{E}}$ **Esercizio 4.** Siano A(2,-3,1), B(0,1,1) e C(3,3,-1) tre punti dello spazio euclideo \mathbb{E}^3 .
 - (a) Determinare le equazioni parametriche e un'equazione cartesiana del piano π_1 che li contiene.
 - (b) Sia π_2 il piano di equazioni parametriche

$$\pi_2: \begin{cases}
 x = 2t + s + 3 \\
 y = t - s \\
 z = 2s - 2.
\end{cases}$$

Determinare la posizione reciproca di π_1 e π_2 . Se π_1 e π_2 sono paralleli calcolare la distanza tra π_1 e π_2 altrimenti trovare le equazioni parametriche e cartesiane della retta $r = \pi_1 \cap \pi_2$.

🤔 Esercizio 5. Sia $\pi \subseteq \mathbb{E}^3$ il piano di equazione cartesiana

$$\pi: x + z = 0$$

Determinare le equazioni cartesiane dei due piani π_1 e π_2 perpendicolari a π e a distanza 1 da O = (0,0,0).

- Esercizio 6.
 - (a) Determinare le equazioni parametriche della retta $r_1 \subseteq \mathbb{E}^3$ passante per il punto P(2,1,3) e parallela al vettore v=(-1,-1,1).
 - (b) Sia $r_2 \subseteq \mathbb{E}^3$ la retta di equazioni cartesiane

$$r_2: \left\{ \begin{array}{l} x-1=0\\ z-2=0. \end{array} \right.$$

Determinare la posizione reciproca di r_1 e r_2 . Se r_1 e r_2 sono incidenti, determinare il loro punto di intersezione.

- (c) Trovare le equazioni parametriche del piano π_1 passante per il punto Q(1,-1,-2) e parallelo alle rette r_1 e r_2 .
- (d) Determinare un'equazione cartesiana del piano π_2 contenente r_1 e passante per il punto A(1, -1, 6).

- (e) Sia $r_3 = \pi_1 \cap \pi_2$. Determinare la retta r_4 complanare alle rette r_1 e r_2 e tale che $r_3 \cap r_4 = \{(0, 2, -1)\}$
- **Esercizio 7.** Si considerino le rette seguenti al variare del parametro $k \in \mathbb{R}$:

$$r_1: \left\{ \begin{array}{l} kx - 8z = k \\ y = 1. \end{array} \right.$$
 $r_2: \left\{ \begin{array}{l} x - 2kz = 0 \\ y + (2-k)z = 0. \end{array} \right.$

- (a) Si studi, al variare di k, la posizione reciproca delle rette r_1 e r_2 , ovvero si determinino i valori di k per i quali le rette sono sghembe e quelli per i quali le rette sono complanari (in quest'ultimo caso precisare se le rette sono incidenti, parallele distinte o coincidenti).
- (b) Per i valori di k per cui le rette r_1 e r_2 sono incidenti si determini un'equazione cartesiana del piano π che contiene r_1 e r_2 .
- (c) Per k = 0 si determinino le equazioni parametriche di una retta ortogonale e incidente sia a r_1 che a r_2 .
- (d) Nel caso k=1 si determini l'equazione cartesiana di un piano parallelo a r_1 e a r_2 e passante per il punto P(2,1,0).