

FIGURE 1

ACTGCACCTCGGTTCTATCGATTGAATTCCCCGGGGATCCTCTAGAGATCCCTCGACCTCGA
CCCACCGCGTCCGGGCCGGAGCAGCACGGCCGCAGGACCTGGAGCTCCGGCTCGCTTCCCG
CAGCGCTACCCGCCATGCGCCTGCCGCCGGCGCTGGGCTCCTGCCGCTTCTGCTG
CTGCTGCCGCCGCCGGAGGCCAAGAAAGCCGACGCCCTGCCACCAGGTGCCGGGGCT
GGTGGACAAGTTAACCAAGGGATGGTGACACCGCAAAGAAGAACTTGGCGGGAAACA
CGGCTTGGAGGAAAAGACGCTGTCCAAGTACGAGTCCAGCGAGATTGCCCTGCTGGAGATC
CTGGAGGGCTGTGCGAGAGCAGCGACTTCGAATGCAATCAGATGCTAGAGGCGCAGGAGGA
GCACCTGGAGGCCTGGCTGCAGCTGAAGAGCGAATATCCTGACTTATTGAGTGGTTT
GTGTGAAGACACTGAAAGTGTGCTGCTCTCCAGGAACCTACGGTCCCAGTGTCTCGCATGC
CAGGGCGGATCCCAGAGGCCCTGCAGCGGAATGGCCACTGCAGCGGAGATGGAGCAGACA
GGCGACGGGTCCGCCGGTGCACATGGGTACCAGGGCCGCTGTGACTGACTGCATGG
ACGGCTACTTCAGCTCGCTCCGAACGAGACCCACAGCATCTGCACAGCCTGTGACGAGTCC
TGCAAGACGTGCTCGGCCTGACCAACAGAGACTGCAGCGAGTGTGAAGTGGCTGGTGCT
GGACGAGGGCGCCTGTGATGTGGACGAGTGTGCGGCCGAGCCGCCTCCCTGCAGCGCTG
CGCAGTTCTGTAAGAACGCCAACGGCTCCTACACGTGCGAAGAGTGTGACTCCAGCTGTG
GGCTGCACAGGGAAAGGCCAGGAAACTGTAAAGAGTGTATCTCTGGCTACGCGAGGGAGCA
CGGACAGTGTGCAAGATGTGGACGAGTGTCACTAGCAGAAAAAAACCTGTGAGGAAAAACG
AAAATGCTACAATACTCCAGGGAGCTACGTCTGTGTGCTGACGGCTTCGAAGAAACG
GAAGATGCCTGTGCGCCGGCAGAGGCTGAAGCCACAGAAGGAGAAAGCCGACACAGCT
GCCCTCCCGCAAGACCTGTAATTGTGCCGGACTTACCCCTTAAATTATTGAGAAGGATGTCC
CGTGGAAAATGTGCCCTGAGGATGCCGTCTCCTGCAGTGGACAGCGGGGGAGAGGCTGC
CTGCTCTCAACGGTTGATTCTCATTGTCCTTAAACAGCTGCATTCTGGTTGTTCTTA
AACAGACTTGTATATTTGATACAGTTCTTGTAATAAAATTGACCATTGTAGGTAATCAGG
AGGAAAAAAAGGGCGCCGCGACTCTAGAGTCGACCTGCAGAAGC
TTGGCCGCCATGGCCAACCTGTTATTGAGCTTATAATGGTTACAAATAAGCAATAGCA
TCACAAATTCAAAAGCATTTCAGTGCATTCTAGTTGTGGTTGTCACAAACTC
ATCAATGTATCTTATCATGTCGGATCGGAATTAAATTGGCGCAGCACCATGGCCTGAAAT
AACCTCTGAAAGAGGAACCTGGTAGGTACCTCTGAGGGCGAAAGAACCAAGCTGTGGAATG
TGTGTCAGTTAGGGTGTGAAAGTCCCCAGGCTCCAGCAGGCAGAAGTATGCAAGCATGC
ATCTCAATTAGTCAGCAACCCAGTTT

FIGURE 2

><subunit 1 of 1, 353 aa, 0 stop

><MW: 38192, pI: 4.53, NX(S/T): 2

MRLPRRAALGLPLLLLPPAPEAAKKPTPCHRGRGLVDKFNQGMVDTAKKNFGGGNTAEEKTLSKYESSEIRL
LEILEGLCESSDFECNQMLEAQEEHLEAWWLQLKSEYPDLFEWFCVKTLKVCCSPGTYGPDCLACQGGSQRPCSG
NGHCSDGSRQGDGSCRCHMGYQGPLCTDCMDGYFSSLRNEHTSIC_TACDESCKTCGTLNRDCGECEVGVLDE
GACVDVDECAAEP PCSAAQFCKNANGSYTCECDSSCVGCTGEGPGNC E C I S G Y A R E H G Q C A D V D E C S L A E K T
CVRKNENCYNTPGSYVCVCPDGFEETEDACVPPAEAEATEGESPTQLPSREDL

Signal peptide:

amino acids 1-24

N-glycosylation sites.

amino acids 190-194 and 251-255

Glycosaminoglycan attachment sites.

amino acids 149-153 and 155-159

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 26-30

Casein kinase II phosphorylation sites.

amino acids 58-62, 66-70, 86-90, 197-201, 210-214, 255-259, 295-299, 339-343
and 349-353

Tyrosine kinase phosphorylation site.

amino acids 303-310

N-myristoylation sites.

amino acids 44-50, 54-60, 55-61, 81-87, 150-156, 158-164, 164-170, 252-258 and
313-319

Aspartic acid and asparagine hydroxylation site.

amino acids 308-320

EGF-like domain cysteine pattern signature.

amino acids 166-178

Leucine zipper pattern.

amino acids 94-116

FIGURE 3

CAGGTCCAAC TGCACCTCGTTCTATGATTGAATTCCCCGGGATCCTCTAGAGATCCCTC
GACCTCGACCCACGCGTCCGCCAGGCCGGAGGCAGCGCAGCGCAGAGTATCTGACGGGCCAGCGTCTAAACGGGAACA
GCCCTGGCTGAGGGAGCTGCAGCGCAGCAGAGTATCTGACGGGCCAGGGTAGGTGCGTAGGTGCG
GCACGAGGAGTTTCCCGCAGCGAGGAGGAGCCTGTACCTATGGATCGATGCTCACCAAGGAAAGAGTACTCA
CTGGCCGCCGCTCTGGCTCTGGAGCATCCTCTGTGCCTGCTGGACTGCGGCCGGAGGC
CGGGCCGCCGAGGAGGAGAGCCTGTACCTATGGATCGATGCTCACCAAGGAAAGAGTACTCA
TAGGATTGAAGAAGATATCCTGATTGTTAGAGGGAAAATGGCACCTTTACACATGAT
TTCAGAAAAGCGAACAGAGAATGCCAGCTATTCTGTCAATATCCATTCCATGAATTTCAC
CTGGCAAGCTGCAGGGCAGGCAGAATACTTCTATGAATTCTGTCTTGCGCTCCCTGGATA
AAGGCATCATGGCAGATCCAACCGTCAATGTCCCTCTGCTGGAAACAGTGCTCACAAAGGCA
TCAGTTGTTCAAGTTGGTTCCATGTCTTGAAAACAGGATGGGTGGCAGCATTGAAGT
GGATGTGATTGTTATGAATTCTGAAGGCAACACCATTCTCAAACACCTCAAAATGCTATCT
TCTTTAAACATGTCAACAAAGCTGAGTGCCCAGGCAGGTGGCAAATGGAGGCTTTGTAAT
GAAAGACGCATCTGCAGTGTCCTGATGGGTTCCACGGACCTCACTGTGAGAAAGCCCTTG
TACCCACGATGTATGAATGGTGGACTTGTGACTCCTGGTTCTGCATCTGCCACCTG
GATTCTATGGAGTGAACTGTGACAAAGCAAACCTGCTCAACCACCTGCTTAAATGGAGGGACC
TGTTCTACCCCTGGAAAATGTATTGCCCTCAGGACTAGAGGGAGAGCAGTGTGAAATCAG
CAAATGCCACAACCTGCGAAATGGAGGTAAATGCATTGGTAAAGCAAATGTAAGTGT
CCAAAGGTTACCAGGGAGACCTCTGTTCAAAGCCTGCTGCGAGCCTGGCTGTGGTCACAT
GGAACCTGCCATGAACCCAACAAATGCCAATGTCAAGAAGGTTGGCATGGAAGACACTGCAA
TAAAAGGTACGAAGCCAGCCTCATACATGCCCTGAGGCCAGCAGGCCAGCTCAGGCAGC
ACACGCCCTCACTAAAAAGGCCAGGGAGCGGGATCCACCTGAATCCAATTACATCTGG
TGAACTCCGACATCTGAAACGTTTAAGTTACACCAAGTTCATAGCCTTGTAAACCTTCA
TGTGTTGAATGTTCAAATAATGTTCAATTACACTTAAGAATACTGGCCTGAATTATTAGCT
TCATTATAAAACTACTGAGCTGATATTACTCTCCTTTAAGTTCTAAGTACGTCTGTAG
CATGATGGTATAGATTCTTGTGCTTCAAGTGTAGTTGGCAGATATTCAAAATTACAATGCATTATGGT
TCAGGTTAAAATTTCAGTGTAGTTGGCAGATATTCAAAATTACAATGCATTATGGT
GTCTGGGGCAGGGAAACATCAGAAAGGTTAAATTGGGAAAAATGCGTAAGTCACAAGAAT
TTGGATGGTGCAGTTAATGTTGAAGTTACAGCATTCAAGATTATTGTCAAGATATTAGAT
GTTGTTACATTAAAAATTGCTCTAATTAAACTCTCAATAACAAATATTGGAC
TTACCAATTCCAGAGATTCACTGATTAAAAAAATTACACTGTGGTAGTGGCATTT
AAACAAATATAATATTCTAAACACAAATGAAATAGGGAAATAATGTATGAACCTTTGCAT
TGGCTTGAAGCAATATAATATTGAAACAAAACACAGCTCTACCTAATAACATTTTAT
ACTGTTGTATGTATAAAATAAAGGTGCTGCTTAGTTTTGGAAAAA
AAAAAAAAAAAAAAAAAAGGGCGGCCGCGACTCTAGAGTCGACCTGCAGAAGCTTGGC
CGCCATGGCCAAC TTGTTATTGCAGCTTATAATG

FIGURE 4

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA33094
><subunit 1 of 1, 379 aa, 0 stop
><MW: 41528, pI: 7.97, NX(S/T): 2
MARRSAFPAAALWLWSILLCLLRAEAGPPQEESLYLWIDAHQARVLIGFEEDILIVSEGK
MAPFTHDFRKAQQRMPAIPVNIHSMNFTWQAAGQAEYFYEFSLRSLDKGIMADPTVNVPPLL
GTVPHKASVVQVGFPCLGKQDGVAAFEVDVIVMNSEGNTILQTPQNAIFFKTCQQAECPGGC
RNGGFCNERRICECPDGFHGPCEKALCTPRCMNGGLCVTPGFCICPPGFYGVNCDKANCST
TCFNGGTCFYPGKICPPGLEGEQCEISKCPQPCRNGGKIGKSCKCSKGYQGDLCSPV
EPGCGAHGTCHEPNKCQCQEGWHGRHCNKRYEASLIHALRPAGAQLRQHTPSLKKAERRDP
PESNYIW

Signal peptide:

amino acids 1-28

N-glycosylation site.

amino acids 88-92, 245-249

Casein kinase II phosphorylation site.

amino acids 319-323

Tyrosine kinase phosphorylation site.

amino acids 370-378

N-myristoylation sites.

amino acids 184-190, 185-191, 189-195, 315-321

ATP/GTP-binding site motif A (P-loop).

amino acids 285-293

EGF-like domain cysteine pattern signature.

amino acids 198-210, 230-242, 262-274, 294-306, 326-338

FIGURE 5

CGGACGCGTGGCGTCCGGCGTCGCAGAGCAGGAGGCCAGGAGGCCAGCCTGGG
CCCCAGCCCACACCTCACCAAGGGCCAGGAGCCACCATGTGGCGATGTCCACTGGGGCTAC
TGCTGTTGCTGCCGCTGGCTGGCCACTTGGCTCTGGCTCGGGCAGCAGGGCTGAGGCCGG
GAGCTAGCACCGGGTCTGCACCTGCAGGGCATCCGGACGCGGGAGGCCGGTACTGCCAGGA
GCAGGACCTGTGCTGCCGCGGCCGTGCCAGCAGACTGTGCCCTGCCACTCGGGCAGGCCATCT
GTTACTGTGACCTCTCTGCAACCGCACGGCTCCGACTGCTGCCCTGACTTCTGGGACTTC
TGCCTCGGCGTGCCACCCCTTTCCCCGATCCAAGGATGTATGCATGGAGGTCGTATCTA
TCCAGTCTTGGAACGTACTGGACAACGTAACTGTAACCGTTGCACCTGCCAGGAGAACAGGCAGT
GGCATGGTGGATCCAGACATGATCAAAGCCATCAACCAGGGCAACTATGGCTGGCAGGCTGG
GAACCACAGCGCCTCTGGGGCATGACCCTGAGGGCATTGCTACCGCCTGGCACCA
TCCGCCATCTCCTCGGTATGAACATGCATGAAATTATAACAGTGTGAACCCAGGGGAG
GTGCTTCCCACAGCCTCGAGGCCTCTGAGAAAGTGGCCAACCTGATTGATGAGCCTTTGA
CCAAGGCAACTGTGCAGGCTCTGGGCCTCTCCACAGCAGCTGTGGCATCCGATCGTGTCT
CAATCCATTCTCTGGGACACATGACGCCGTCTGTGCCAGAACCTGCTGTCTTGAC
ACCCACCAGCAGCAGGGCTGCCGCGTGGCGTCTCGATGGTGCCTGGTGGTCTGCGTCG
CCGAGGGGTGGTGTCTGACCACTGCTACCCCTCTCGGGCGTGAAACGAGACGAGGCTGGCC
CTGCGCCCCCTGTATGATGCACAGCCGAGCCATGGTCGGGCAAGCGCCAGGCCACTGCC
CACTGCCAACAGCTATGTTAATAACAATGACATCTACAGGTCACTCCTGTCTACCGCCT
CGGCTCCAACGACAAGGAGATCATGAAGGAGCTGATGGAGAAATGGCCCTGTCCAAGCCCTCA
TGGAGGTGCATGAGGACTTCTCCTATAACAAGGGAGGCATCTACAGCCACAGCCAGTGAGC
CTTGGGAGGCCAGAGAGATACGCCGCATGGGACCCACTCAGTCAAGATCACAGGATGGGG
AGAGGAGACGCTGCCAGATGGAAGGACGCTAAATACTGGACTGCCAACTCCTGGGCC
CAGCCTGGGGCGAGAGGGCCACTTCCGCATCGTGCAGGCCGTCAATGAGTGCACATCGAG
AGCTTCGTGCTGGCGCTGGGCGCGTGGGATCCAGGCTAACGGCCGGGAGAGGCCCAATG
GGCGGTGACCCAGCCTGCCGACAGAGCCGGCGCAGGCCGGCAGGGCGCTAACGGCC
CCCAGCGCGGTTCCGCTGACGCAGGCCCGCTGGGAGGCCGGCAGGCAGACTGGCG
GAGCCCCAGACCTCCAGTGGGACGGGCAGGGCTGGCTGGGAAGAGCACAGCTGCAG
ATCCCAGGCCCTGGCGCCCCACTCAAGACTACCAAGCCAGGACACCTCAAGTCTCCAGC
CCCAATACCCACCCCAATCCGTATTCTTTTTTTTTAGACAGGGTCTTGCTCCG
TTGCCCAAGGTTGGAGTGCAGTGGCCATCAGGGCTACTGTAACCTCCGACTCCTGGTTCA
AGTACCCCTCCACCTCAGCCTCTCAAGTAGCTGGACTACAGGTGCACCACACCTGGC
TAATTTTGATTTTGTAAGAGGGGGTCTCACTGTGTTGCCAGGCTGGTTTCGAACCT
CCTGGGCTCAAGCGGTCCACCTGCCCTCCAAAGTGTGGATTGCAGGCATGAGGCC
ACTGCACCCAGCCCTGTATTCTTATTTCAGATATTATTTCTTCACTGTTAAAAA
TAAAACCAAAGTATTGATAAAAAAAAAAA

FIGURE 6

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA33223  
><subunit 1 of 1, 164 aa, 1 stop  
><MW: 18359, pI: 7.45, NX(S/T): 1  
MWRCPLGLLLLLPLAGHLALGAQQGRGRRELAPGLHLRGIRDAAGGRYCQEQLCCRGRADDC  
ALPYLGAICYCDLFCNRTVSDCCPDFWDFCLGVPPPFPIQGCMHGGRIYPVLGYWDNCNR  
CTCQENRQWHGGSRHDQSHQPGQLWLAGWEPQRLLGHDPG
```

N-glycosylation site.

amino acids 78-82, 161-165

Casein kinase II phosphorylation site.

amino acids 80-84, 117-121, 126-130, 169-173, 205-209, 296-300,
411-415

N-myristoylation site.

amino acids 21-27, 39-45, 44-50, 104-110, 160-164, 224-230,
269-275, 378-384, 442-448

Amidation site.

amino acids 26-30, 318-322

Eukaryotic thiol (cysteine) proteases histidine active site.

amino acids 398-409

FIGURE 7

AGGCTCCTGGCCCTTTCCACAGCAAGCTNTGCNATCCGATTGTTGTCTCAAATCCA
ATTCTCTTGGGACACATNACGCCGTCTTCCTTNGCCCCAGAACCTGCTGTCTTGACACCCAC
CAGCAGCAGGGCTGCCCGNTGGCGTCTCGATGGTGCCTGGTGGTTCCCTGCGTCGCCGAGG
GNTGGTGTCTGACCACTGCTACCCCTCTCGGGCGTGAACGAGACGAGGGCTGGCCCTGCGC
CCCCCTGTATGATGCACAGCCGAGCCATGGTCGGGGCAAGGCCAGGCCACTGCCACTGC
CCCAACAGCTATGTTAATAACAATGACATCTACCAGGTCACTCCTGTCTACGCCCTGGCTC
CAACGACAAGGAGATCATGAAGGAGCTGATGGAGAATGGCCCTGTCCAAGCCCTATGGAGG
TGCATGAGGACTTCTCCTATACAAGGGAGGCATCTACAGCCACAGCCAGTGAGCCTTGGG
AGGCCAGAGAGATAACGCCGGCATGGGACCCACTCAG

FIGURE 8

GCTGCTTGCCTGTTGATGGCAGGCTTGGCCCTGCAGCCAGGCAGTGCCTGCTGTGCTACT
CCTGCAAAGCCCAGGTGAGCAACGAGGACTGCCTGCAGGTGGAGAACTGCACCCAGCTGGGG
GAGCAGTGCTGGACC CGCGCATCCCGCGAGTTGGCCTCCTGACCGTCATCAGCAAAGGCTG
CAGCTTGAACTGCGTGGATGACTCACAGGACTACTACGTGGCAAGAAGAACATCACGTGCT
GTGACACCGACTTGTGCAACGCCAGCGGGGCCATGCCTGCAGCCGGCTGCCGCCATCCTT
GCGCTGCTCCCTGCACTCGGCCTGCTGCTCTGGGACCCGGCCAGCTATAGGCTCTGGGGGG
CCCCGCTGCAGCCCACACTGGGTGTGGTCCCCAGGCCTCTGTGCCACTCCTCACAGACCTG
GCCCAGTGGGAGCCTGTCCCTGGTTCTGAGGCACATCCTAACGCAAGTCTGACCATGTATGT
CTGCACCCCTGTCCCCCACCCCTGACCCCTCCATGGCCCTCTCCAGGACTCCCACCCGGCAGA
TCAGCTCTAGTGACACAGATCCGCCTGCAGATGGCCCTCCAACCCCTCTGCTGCTGTTTC
CATGGCCCAGCATTCTCCACCCCTTAACCCCTGTGCTCAGGCACCTCTCCCCCAGGAAGCCTT
CCCTGCCACCCCATCTATGACTTGAGCCAGGTCTGGTCCGTGGTGTCCCCCGCACCCAGCA
GGGGACAGGCACTCAGGAGGGCCCAGTAAAGGCTGAGATGAAGTGGACTGAGTAGAACTGGA
GGACAAGAGTCGACGTGAGTTCTGGAGTCTCCAGAGATGGGCCTGGAGGCCTGGAGGAA
GGGGCCAGGCCTCACATTGTTGGGCTCCCTGAATGGCAGCCTGAGCACAGCGTAGGCCCTT
AATAAACACCTGTTGGATAAGCCAAAAAAA

FIGURE 9

MTHRTTTWARRTSRAVTPTCATPAGPMPCSRLPPSLRCSLHSACCSGDPASYRLWGAPLQPT
LGVVPQASVPLLTDLAQWEPVLVPEAHPNASLTMYVCTPVPHPDPPMALSRTPTRQISSLSDT
DPPADGPSNPLCCCFFGPAFSTLNPLRHLFPQEAFPAHPIYDLSQVWSVVSPAPSRGQALRRAQ

Signal peptide:

amino acids 1-47

N-glycosylation site.

amino acids 31-35, 74-78, 84-88

Casein kinase II phosphorylation site.

amino acids 22-26, 76-80

N-myristoylation site.

amino acids 56-60

Amidation site.

amino acids 70-74

FIGURE 10

CCACCGCGTCCGAACCTCTCCAGCGATGGGAGCCGCCGCTGCTGCCAACCTCACTCTGT
GCTTACAGCTGCTGATTCTCTGCTGTCAAACACTCAGTACGTGAGGGACCAGGGGCCATGACC
GACCAGCTGAGCAGGGGGCAGATCCCGAGTACCAACTCTACAGCAGGACCAGTGGCAAGCA
CGTCAGGTCAACGGCGTCGCATCTCCGCCACCGCCGAGGACGGCAACAAGTTGCCAAGC
TCATAGTGGAGACGGACACGTTGGCAGCCGGTTCGCATCAAAGGGCTGAGAGTGAGAAG
TACATCTGTATGAACAAGAGGGCAAGCTCATCGGAAGCCCAGCGGAAGAGCAAAGACTG
CGTGGTCACGGAGATCGTGTGGAGAACAACTATAACGCCCTCCAGAACGCCGGCACGAGG
GCTGGTTCATGGCCTTCACCGGCAGGGCGGCCAGGCTTCCGCAGCCGCCAGAAC
CAGCGCGAGGCCCACTTCATCAAGCGCTCTACCAAGGCCAGCTGCCCTCCCCAACACGC
CGAGAACAGAAGCAGTCGAGTTGTGGCTCCGCCACCCGCCGACCAAGCGCACAC
GGCGGCCCAGCCCCCTACGTAGTCTGGAGGCAGGGGCAGCAGCCCCCTGGCCGCCTCCC
CACCCCTTCCCTTAAATCCAAGGACTGGCTGGGTGGCAGGGGAGCCAGATCCCC
GAGGGAGGACCCCTGAGGGCCCGAAGCATCCGAGCCCCAGCTGGGAAGGGCAGGCCGGTG
CCCCAGGGCGGCTGGCACAGTGCCCTCCGGACGGTGGCAGGCCCTGGAGAGGAAC
GAGTGTACCCGTATCTCAGGCCACCAGCCTGCGCCGCCCTCCAGCCGGCTCCTGAAGCC
CGCTGAAAGGTCACGACTGAAGGCCTTGCAGACAACCGTCTGGAGGTGGCTGTCCCTAAAA
TCTGCTTCTCGGATCTCCCTCAGTCTGCCCTCCAGCCCCAAACTCCTCCGGTAGACTGTA
GGAAGGGACTTTGTTGTTGTTGTTCAGGAAAAAAAGAAAGGGAGAGAGAGGAAAATAG
AGGGTTGTCCACTCCTCACATTCCACGACCCAGGCCTGCACCCACCCCCACTCCAGCCC
CGGAATAAAACCATTTCTGC

FIGURE 11

MGAARLLPNLTLCLQLLILCCQTQYVRDQGAMTDQLSRRQIREYQLYSRTSGKHVQVTGRRI
SATAEDGNKFAKLIVETDTFGSRVRIKGAESEKYICMNKRGKLIGKPSGSKDCVFTEIVLE
NNYTAFQNARHEGWFMAFTRQGRPRQASRSRQNQREAHFIKRLYQGQLPFPNHAEKQQQFEF
VGSAPTRRTKRTRRPQPLT

Signal peptide:

amino acids 1-22

N-glycosylation site.

amino acids 9-13, 126-130

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 60-64

Casein kinase II phosphorylation site.

amino acids 65-69

Tyrosine kinase phosphorylation site.

amino acids 39-48, 89-97

N-myristoylation site.

amino acids 69-75, 188-194

Amidation site.

amino acids 58-62

HBGF/FGF family signature.

amino acids 103-128

FIGURE 12

ACTTGCCATCACCTGTTGCCAGTGTGGAAAATTCTCCCTGTTGAATTTCACATGGAG
GACAGCAGCAAAGAGGGCAACACAGGCTGATAAGACCAGAGACAGCAGGGAGATTATTTAC
CATACGCCCTCAGGACGTTCCCTCTAGCTGGAGTTCTGGACTTCAACAGAACCCCATCCAGT
CATTGGATTTGCTGTTATTTTTCTTTCTTTCCCACCAATTGTATTTAT
TTCCGTACTTCAGAAATGGGCCTACAGACCACAAAGTGGCCAGCCATGGGCTTTCT
GAAGTCTGGCTTATCATTCCCTGGGGCTCTACTCACAGGTGTCACACTCCCTGGCCTGCC
CTAGTGTGTGCCGCTGCGACAGGAACCTTGTCTACTGTAATGAGCGAAGCTGACCTCAGTG
CCTCTGGGATCCCAGGGCGTAACCGTACTCTACCTCCACAACAACCAAATTAAATAATGC
TGGATTCCTGCAGAACTGCACAATGTACAGTCGGTGACACGGCTACCTGTATGGCAACC
AACTGGACGAATTCCCCATGAACCTTCCAAGAAATGTCAGAGTTCTCCATTGCAGGAAAC
AATATTCAAGACCAATTTCACGGCTGCTTGCCCCAGCTTGAAGCTTGAAGAGCTGCACCT
GGATGACAACCTCCATATCCACAGTGGGGTGGAAAGACGGGCTTCCGGAGGCTATTAGCC
TCAAATTGTTGTTTGTCTAAGAATCACCTGAGCAGTGTGCCTGTTGGCTTCCGTGGAC
TTGCAAGAGCTGAGAGTGGATGAAAATCGAATTGCTGTATATCCGACATGGCCTCCAGAA
TCTCACGAGCTTGGAGCGTCTTATTGTTGACGGAACCTCCTGACCAACAAAGGTATGCCG
AGGGCACCTTCAGCCATCTCACCAAGCTCAAGGAATTTCATTGTAATTGCTGTCC
CACCCCTCCTCCCGATCTCCAGGTACGCATCTGATCAGGCTCTATTGCAAGGACAACCAAGAT
AAACACATTCCCTTGACAGCCTCTCAAATCTCGTAAGCTGGAACGGCTGGATATATCCA
ACAACCAACTGCGGATGCTGACTCAAGGGTTTTGATAATCTCCAACCTGAAGCAGCTC
ACTGCTCGGAATAACCCCTGGTTTGACTGCAGTATTAAATGGGTACAGAATGGCTCAA
ATATATCCCTTCATCTCAACGTGCGGGTTCATGTGCCAAGGTCTGAACAAGTCCGGG
GGATGGCCGTCAAGGAATTAAATATGAATCTTGTCCCTGCCCACCGACCCCCGGCCTG
CCTCTCTCACCCAGCCCCAAGTACAGCTTCTCGACCAACTCAGCCTCCACCCCTCTAT
TCCAAACCTAGCAGAAGCTACAGCCTCCAACCTCCTACACATCGAAACTTCCCACGATT
CTGACTGGGATGGCAGAGAAAGAGTGAACCCACCTATTCTGAACGGATCCAGCTCTATC
CATTGTTGAATGATACTTCAAGTCAGCTGGCTCTCTCTTCAACCGTGATGGCATA
CAAACTCACATGGGTAAAATGGCCACAGTTAGTAGGGGGCATCGTCAGGAGCGCATAG
TCAGCGGTGAGAAGCAACACCTGAGCCTGGTTAACTTAGAGCCCCGATCCACCTATCGGATT
TGTTAGTGCCACTGGATGCTTTAACTACCGCGCGTAGAAGACACCATTGTTCAGAGGC
CACCAACCATGCCTCTATCTGAACAAACGGCAGCAACACAGCGTCCAGGCATGAGCAGACGA
CGTCCCACAGCATGGCTCCCCCTTCTGCTGGCGGGCTTGATGGGGGGCGGTGATATT
GTGCTGGTGGTCTTGCTCAGCGTCTTGTGCTGGCATATGCACAAAAGGGCGCTACACCTC
CCAGAAGTGGAAATACAACCGGGCCGGCGAAAGATGATTATTGCGAGGCAGGCACCAAGA
AGGACAACCTCCATCCTGGAGATGACAGAAACCAAGTTTCAAGATCGTCTCTAAATAACGAT
CAACTCCTAAAGGAGATTCAGACTGCAGCCATTACACCCCCAAATGGGGCATTAATTA
CACAGACTGCCATATCCCCAACACATGCGATACTGCAACAGCAGCGTGCCAGACCTGGAGC
ACTGCCATACTGACAGCCAGAGGCCAGCGTTATCAAGGCGGACAATTAGACTCTTGAGAA
CACACTCGTGTGTCACATAAAGACACGCAGATTACATTGATAAAATGTTACACAGATGCAT
TTGTCATTTGAATACTCTGTAATTACGGTGTACTATATAATGGGATTAAAAAGTG
CTATCTTCTATTCAAGTTAATTACAAACAGTTGTAACCTTGTCTTTAAATCTT

FIGURE 13

MGLQTTKWPShGAFFLKSLLIISLGLYSQVSLLACPSVCRCDRNFVYCNERSLTSVPLGIP
EGVTVLYLHNNQINNAGFPaelHNVQSVHTVYLYGNQLDEFPMNLPKNVRVLHLQENNIQTI
SRAALAQLLKLEELHLDNSISTVGVEDGAFREAIISLKLFLSKNHLSVPVGLPVDLQELR
VDENRIAVISDMAFQNLTSLERLIVDGNLLTNKGIAEGTFSHLTKEFSIVRNSLSHPPPD
LPGTHLIRLYLQDNQINHIPLTAFSNLRKLERLDISNNQLRMLTQGVFDNLSNLKQLTARN
PWFCDCSIKWVTEWLKYIPSSLNVRGFMCGPEQVRGMARVELNMNLLSCPTTPGLPLFTP
APSTASPTTQPPTLSIPNPSRSYTPPTSKLPTIPDWDGRERVTTPPISERIQLSIHFVND
TSIQVSWLSSLFTVMAYKLTWVKGHSLVGGIVQERIVSGEKQHLSLVNLEPRSTYRICLVPL
DAFNYRAVEDTICSEATTHASYLNNGNTASSHEQTTSHSMGSPFLLAGLIGGAVIFVLUVL
LSVFCWHMHKKGRYTSQWKYNRGRRKDDYCEAGTKKDNSILEMTETSFQIVSLNNNDQLLKG
DFRLQPIYTPNGGINYTDCHIPNNMRYCNSSVPDLEHCHT

Signal peptide:

amino acids 1-42

Transmembrane domain:

amino acids 542-561

N-glycosylation site.

amino acids 202-206, 298-302, 433-437, 521-525, 635-639, 649-653

Casein kinase II phosphorylation site.

amino acids 204-208, 407-411, 527-531, 593-597, 598-602, 651-655

Tyrosine kinase phosphorylation site.

amino acids 319-328

N-myristoylation site.

amino acids 2-8, 60-66, 149-155, 213-219, 220-226, 294-300,
522-528, 545-551, 633-639

Amidation site.

amino acids 581-585

Leucine zipper pattern.

amino acids 164-186

Phospholipase A2 aspartic acid active site.

amino acids 39-50

FIGURE 14

ACTTGGAGCAAGCGCGGCGGCGGAGACAGAGGCAGAGGCAGAAGCTGGGCTCCGTCCGCCTCCCACGAGCG
ATCCCCGAGGAGAGCCGCGGCCCTCGCGAGGCAGAGGCCAGGAGAACCCGGGTGGCTCGCCCCCTGCC
TCGCTTCCCAGGCCGGCGCTGCAGCCTTGCCCCCTCTGCTCGCCTTGAAAATGGAAAAGATGCTCGCAGGCT
GCTTCTGCTGATCCTCGACAGATCGCCTCCCTGCCAGGGCAGGGAGCGGTACAGTGGGAGGTCCATCT
CTAGGGCAGACAGCTCGGACCCACCCGCAGACGCCCTCTGGAGAGTCTGTGAGAACACAAGGGCAGACC
TGGTTTCATCATTGACAGCTCGCAGTGTCAACACCCATGACTATGCAAAGGTCAAGGGAGTTCATCGTGGACA
TCTTGCAATTCTGGACATTGGTCTGTGACAGTCCAGGAGTGGCCCTGCTCCAATATGGCAGCACTGTCAAGAATG
AGTTCTCCCTCAAGACCTCAAGAGGAAGTCCAGGGTGGAGCTGCTCAAGAGGATGCGGCATCTGTCCACGG
GCACCATGACTGGCTGGCATCCAGTATGCCCTGAAACATCGCATTCTCAGAACAGCAGAGGGGGCCGGCCCTGA
GGGAGAATGTGCCACGGGTATAATGATCGTACAGATGGGAGACCTCAGGACTCCGTGGCCAGGGTGGCTGCTA
AGGCACGGGACACGGGCATCTTAATCTTGCCATTGGTGTGGCCAGGTAGACTTCACACCTTGAAGTCCATTG
GGAGTGAGCCCCATGAGGACCATGTCTTCTTGTGGCAATTTCAGCCAGATTGAGACGCTGACCTCCGTGTCC
AGAAGAAGTTGTGCA CGGGCACATGTGCAGCACCCCTGGAGCATAACTGTGCCACTCTGCATCAACATCCCTG
GCTCATACTGCTGCAGGTGCAAACAAGGCTACATTCTCACTCGGATCAGACGACTTGCAGAATCCAGGATCTGT
GTGCCATGGAGGACCACAACGTGAGCAGCTGTGTGAATGTGCGGGCTCTCGTCTGCCAGTGCTACAGTG
GCTACGCCCTGGTGGAGGATGGGAAGAGGTGTGTGGCTGTGACTACTGTGCCCTAGAAAACCACGGATGTGAAC
ATGAGTGTGAAATGCTGATGGCTCTACCTTGCCAGTGCATGAAGGATTGCTCTTAACCCAGATGAAAAAA
CGTGACAAGGATCAACTACTGTGCACTGAACAAACCGGGCTGTGAGCATGAGTGCCTCAACATGGAGGAGAGCT
ACTACTGCCGCTGCCACCGTGGCTACACTCTGGACCCCAATGGAAAACCTGCAGCCAGTGACACTGTGCCAC
AGCAGGACCATGGCTGTGAGCAGCTGTGTGAACACCGAGGATTCTTCTCGTCTGCCAGTGCTCAGAAGGCTCC
TCATCAACGAGGACCTCAAGACCTGCTCCGGGTGGATTACTGCCCTGCTGAGTGACCATGGTTGTGAATACTCCT
GTGTCACATGGACAGATCTTGCTGTCAGTGTCTGAGGGACACGTGCTCCGCAGCGATGGGAAGACGTGTG
CAAAATTGGACTCTTGCTCTGGGGACCACGGTTGTGAACATTGTGTGAAGCAGTGAAGATTGTTGTGT
GCCAGTGCTTGAAGGTATATACTCCGTGAAGATGGAAAACCTGCAGAAGGAAGAGTGTCTGCCAAGCTATAG
ACCATGGCTGTGAACACATTGTGAACAGTGCAGACTCATACACGTGCGAGTGCTTGGAGGGATTCCGGCTCG
CTGAGGATGGGAACCGCTGCCGAAGGAAGGATGTCTGCAAATCAACCCACCATGGCTGCGAACACATTGTGTTA
ATAATTGGAAATTCTCATCTGCAAATGCTCAGAGGGATTGTTCTAGCTGAGGACGGAAGACGGTCAAGAAAT
GCACTGAAGGCCAATTGACCTGGCTTGTGATCGATGGATCCAAGAGTCTGGAGAAGAGAATTGAGGTCG
TGAAGCAGTTGTCACTGAAATTATAGATTCTTGACAAATTCCCCAAAGCCGCTCGAGTGGGCTGCTCCAGT
ATTCCACACAGGTCCACACAGAGTTCACTCTGAGAAACCTCAACTCAGCAAAGACATGAAAAAAGCCGTGGCCC
ACATGAAATACATGGGAAGGGCTTATGACTGGCTGCCCTGAAACACATGTTGAGAGAAGTTTACCCAAG
GAGAAGGGCCAGGCCCTTCCACAAGGGTGCCAGAGCAGCATTGTGTTACCGAGGACGGGCTCAGGATG
ACGTCCTGGAGGGCCAGTAAAGCCAAGGCCAATGGTATCACTATGTATGCTTGGGTAGGAAAGCCATTG
AGGAGGAACATACAAGAGATTGCCCTGAGCCCACAAACAAGCATCTTCTATGCCGAAGACTTCAGCACAATGG
ATGAGATAAGTAAAAACTCAAGAAAGGCATCTGTGAAGCTTAGAAGACTCCGATGGAAGACAGGACTCTCCAG
CAGGGAACTGCCAAAACGGTCCAACAGCCAACAGAACATCTGAGCCAGTCACCATATAATCCAAGACCTACTTT
CCTGTTCTAATTGCACTGCAACACAGATATCTGTTGAAGAAGACAATCTTACGGTCTACACAAAGCTTT
CCCATTCAACAAACCTCAGGAAGCCCTTGGAAAGAAAACACGATCAATGCAAATGTGAAAACCTTATAATGT
TCCAGAACCTGCAAACGAAGAAGTAAGAAAATTAAACACAGCGCTTAGAAGAAATGACACAGAGAACGGCC
TGGAAAATGCCCTGAGATAACAGATGAAGATTAGAAATCGCAGACACATTGAGTCATTGTATCACGGATTACAAT
GAACCGAGTGCAGAGGCCAAAGCTCAGGCTATTGTTAAATCAATAATGTTGAGTAAACAAATCAGTACTGA
GAAACCTGGTTGCCACAGAACAAAGACAAGAAGTATACTAACTTGTATAAATTATCTAGGAAAAAAATCCT
TCAGAATTCTAAGATGAATTACCAAGGTGAGAATGAATAAGCTATGCAAGGTATTGTAATATACTGTGGACAC
AACTGCTCTGCCCTCATCTGCCCTAGTGTGCAATCTCATTGACTATACGATAAAAGTTGCACAGTCTTACTT
CTGTAGAACACTGGCCATAGGAAATGCTGTTTTGTACTGGACTTACCTTGATATATGTATATGGATGTATG
CATAAAATCATAGGACATATGTACTTGTGGAACAAGTGGATTTTTATAACATATAAAATTCAACACTTCAG

FIGURE 15

MEKMLAGCFLLILGQIVLLPAEARERSGRSISRGRHARTHPOQTALLESSCENKRADLVFII
DSSRSVNTHDYAKVKEFIVDILQFLDIGPDVTRVGLLQYGSTVKNEFSLKTFRKSEVERAV
KMRHLSTGTMGLAIQYALNIAFSEAEGARPLRENVPRVIMIVTDGRPQDSVAEVAAKARD
TGILIFAIQVGQVDFNTLKSIGSEPHEDHVFLVANFSQIETLTSVFQKKLCTAHMCSTLEHN
CAHFCINIPGSYVCRCKQGYILNSDQTTCRIQDLCAMEDHNCEQLCVNPVGSFVCQCYSGYA
LAEDGKRCVAVDYCASENHGCEHECVNADGSYLCQCHEGFALNPDEKTCTRINYCALNKGPC
EHECVNMEESYYCRCHRGYTLDPNGKTCSRVDHCAQQDHGCEQLCLNTEDSFVCQCSEGFLI
NEDLKTCSRVDYCLLSDHGCEYSCVNMDRSFACQCPEGHVLRSRGKTCAKLDSCALGDHGCE
HSCVSSEDSFVCQCFCFGYILREDGKTCCRKDVCQAIDHGCEHICVNSDDSYTCECLEGFRRA
EDGKRCRRKDVKSTHHGCEHICVNNNGNSYICKCSEGFWLAEDGRRCKCTEGPIDLVFVID
GSKSLGEENFEVVVKQFVTGIIDSLTISPKAARVGLLQYSTQVHTEFTLRNFNSAKDMKKAVA
HMKYMGKGSMTGLALKHMERSFTQGEGARPLSTRVPRAAIVFTDGRAQDDVSEWASKAKAN
GITMYAVGVGKAIEELQEIASEPTNKHLFYAEDFSTMDEISEKLKKGICEALEDSDGRQDS
PAGELPKTVQQPTESEPVTINIQDLLSCSNFAVQHRYLFEEDNLLRSTQKLSHSTKPSGSPL
EEKHDQCKCENLIMFQNLANEEVRKLTQRLEEMTQRMEALENRLRYR

Signal peptide:

amino acids 1-23

N-glycosylation site.

amino acids 221-225

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 115-119, 606-610, 892-896

Casein kinase II phosphorylation site.

amino acids 49-53, 118-122, 149-153, 176-180, 223-227, 243-247,
401-405, 442-446, 501-505, 624-628, 673-677, 706-710, 780-784,
781-785, 819-823, 866-870

N-myristoylation site.

amino acids 133-139, 258-264, 299-305, 340-346, 453-459, 494-500,
639-645, 690-696, 752-758, 792-798

Amidation site.

amino acids 314-318, 560-564, 601-605

Aspartic acid and asparagine hydroxylation site.

amino acids 253-265, 294-306, 335-347, 376-388, 417-423, 458-464,
540-546, 581-587

FIGURE 16

GGAGCCGCCCTGGGTGTCAGCGGCTGGCTCCCGCGCACGCTCCGGCGTCGCAGCCTCG
GCACCTGCAGGTCCGTGCGTCCCGCGCTGGCGCCCTGACTCCGTCCCGCCAGGGAGGGC
CATGATTCCCTCCGGGCCCCCTGGTACCAACTTGCTGCCGTTTGTCTGGGCTGA
GTGCCCTCGCGCCCCCTCGCGGGCCAGCTGCAACTGCACCTGCCGCCAACCGGTTGCAG
GCGGTGGAGGGAGGGAAAGTGGTGCTTCCAGCGTGGTACACCTGCACGGGAGGTGTCTTC
ATCCCAGCCATGGGAGGTGCCCTTGATGTGGTTCTCAAACAGAAAGAAAAGGAGGATC
AGGTGTTGTCTACATCAATGGGTACAACAAGCAAACCTGGAGTATCCTGGTCTACTCC
ATGCCCTCCCGAACCTGTCCCTGCCGCTGGAGGGCTCCAGGAGAAAGACTCTGGCCCTA
CAGCTGCTCCGTGAATGTGCAAGACAAACAAGCAAATCTAGGGCCACAGCATAAAACCT
TAGAACTCAATGTACTGGTCCAGCTCCTCCATCCTGCCGTCTCCAGGGTGTGCCCAT
GTGGGGCAAACGTGACCCCTGAGCTGCCAGTCTCCAAGGAGTAAGCCGCTGTCCAATACCA
GTGGGATCGGCAGCTCCATCCTCCAGACTTCTTGACCAGCATTAGATGTCATCCGTG
GGTCTTAAGCCTACCAACCTTCGTCTCCATGGCTGGAGTCTATGTCTGCAAGGCCAC
AATGAGGTGGGCACTGCCAATGTAATGTGACGCTGGAAGTGAGCACAGGGCTGGAGCTGC
AGTGGTTGGAGCTGTTGGGTACCCCTGGTTGGACTGGGGTGTGGCTGGCTGGTCC
TCTTGTACCAACGCCGGCAAGGCCCTGGAGGAGCCAGCCAATGATATCAAGGAGGATGCC
ATTGCTCCCCGGACCCCTGCCCTGGCCAAGAGCTCAGACACAATCTCAAGAATGGGACCC
TTCCTCTGTACCTCCGCACGAGCCCTCCGGCCACCCATGCCCTCCAGGCCTGGTGCAT
TGACCCCCACGCCAGTCTCCAGCCAGGCCCTGCCCTCACCAAGACTGCCACGACAGAT
GGGCCACCCCTCAACCAATATCCCCATCCCTGGTGGGTTCTCCTCTGGCTTGAGCCG
CATGGGTGCTGTGCCTGTGATGGTGCCTGCCAGAGTCAGCTGGCTCTGGTAT**GATGAC**
CCCACCACTATTGGCTAAAGGATTGGGTCTCTCCTATAAGGGTCACCTCTAGCAC
AGAGGCCTGAGTCATGGAAAGAGTCACACTCCTGACCCCTAGTACTCTGCCAACCTCTC
TTTACTGTGGAAAACCATCTCAGTAAGACCTAAGTGTCCAGGAGACAGAAGGAGAAGAGGA
AGTGGATCTGGAATTGGGAGGAGCCTCCACCCACCCCTGACTCCTCCTTATGAAGCCAGCTG
CTGAAATTAGCTACTCACCAAGAGTGAGGGCAGAGACTTCCAGTCAGTGAGTCTCCAGGC
CCCCCTGATCTGTACCCACCCCTATCTAACACCACCCCTGGCTCCACTCCAGCTCCCTGT
ATTGATATAACCTGTCAAGCTGGCTGGTTAGGTTTACTGGGCAGAGGATAGGAAATCTC
TTATTAAAACATGAAATATGTGTTTTCAATTGCAAATTAAATAAGATAACATAA
TGTTGTATGAAAAA

FIGURE 17

MISLPGPLVTNLLRFLFLGLSALAPPSRAQLQLHL PANRLQAVEGGEVVLPAWYTLHGEVSS
SQPWEVPFVMWFFKQKEKEDQVLSYINGVTTSKPGVSLVYSMPSRNLSLRLEGHQEKDSGPY
SCSVNVQDKQGKSRGHSIKTLELNVLVPPAPPSCRLQGVPHVGANVTLSCQSPRSKP
AVQYQ WDRQLPSFQTFFAPALDVIRGSLSLTNLSSSMAGVYVCKAHNEVGT
AQCNVTLEVSTGPGAA VVAGAVVGT
LVGLGLLAGLVLLYHRRGKALEEPANDIKA
DAIA
PRTLPWP
KSSDTISKNGTL SSVTSARALRPPHGPPRPGALTPTPSLSSQALPSPRLPTTDGAHP
QP
ISPIPGGVSSSGLSR MGAVPVMVPAQS
QAGSLV

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 245-267

N-glycosylation site.

amino acids 108-112, 169-173, 213-217, 236-240, 307-311

N-myristoylation site.

amino acids 90-96, 167-173, 220-226, 231-237, 252-258, 256-262,
262-268, 308-314, 363-369, 364-370

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 164-175

FIGURE 18

CGCCACCACTGCGGCCACGCCA**ATGAAACGCCTCCGCTCCTAGGGTTTCCACTTG**
TTGAATTGTCCTATACTCAAAATTGCACCAAGACACCTGTCTCCAAATGAAAATGTGA
AATACGCAATGGAATTGAAGCCTGCTATTGCAACATGGGATTTCAGGAAATGGTGTACAA
TTTGTGAAGATGATAATGAATGTGAAATTAACTCAGTCCTGTGGAAAATGCTAATTGC
ACTAACACAGAAGGAAGTTATTATTGTATGTGTACCTGGCTCAGATCCAGCAGTAACCA
AGACAGGTTATCAATGATGGAACCGTCTGTATAGAAAATGTGAATGCAAACGCCATT
TAGATAATGTCTGTATAGCTGCAAATTAAATAAAAACCTTAACAAAAATCAGATCCATAAAA
GAACCTGTGGCTTGCTACAAGAAGTCTATAGAAATTCTGTGACAGATCTTCACCAACAGA
TATAATTACATATAGAAATTAGCTGAATCATCTTCATTACTAGGTTACAAGAACAAACA
CTATCTCAGCCAAGGACACCCCTTCTAACTCAACTCTTACTGAATTGAAAAACCGTGAAT
AATTTGTTCAAAGGGATACATTGTAGTTGGACAAGTTATCTGTGAATCATAGGAGAAC
ACATCTTACAAAACACTCATGCACACTGTTGAACAAGCTACTTTAAGGATATCCCAGAGCTTCC
AAAAGACCACAGAGTTGATACAAATTCAACGGATATAGCTCTCAAAGTTTCTTTGAT
TCATATAACATGAAACATATTCACTCCTCATATGAATATGGATGGAGACTACATAAATATA
TCCAAAGAGAAAAGCTGCATATGATTCAAATGGCAATGTTGAGTTGCATTTCATTTATATA
AGAGTATTGGCTTGTCTTCATCATCTGACAACCTTCTTATTGAAACCTCAAATTATGAT
AATTCTGAAGAGGGAGAAAGAGTCATATCTTCAGTAATTTCAGTCTCAATGAGCTCAAACCC
ACCCACATTATATGAACCTGAAAAAAATAACATTACATTAAGTCATCGAAAGGTACAGATA
GGTATAGGAGTCTATGTGATTGGAAATTACTCACCTGATACCATGAATGGCAGCTGGTCT
TCAGAGGGCTGTGAGCTGACATACTCAAATGAGACCCACACCTCATGCCGCTGTAATCACCT
GACACATTGCAATTGATGTCCTCTGGCCTTCATTGGTATTAAAGATTATAATATTC
TTACAAGGATCACTCAACTAGGAATAATTATTCACTGATTGCTTGCCATATGCATTTT
ACCTCTGGTCTTCAGTGAATTCAAAGCACCAGGACAACAATTCAACAAAATCTTGCTG
TAGCCTATTCTTGCTGAATTGTTCTTGTGGATCAATACAAATACTAATAAGCTCT
TCTGTTCAATCATTGCCGACTGCTACACTACTCTTTAGCTGCTTGCATGGATGTGC
ATTGAAGGCATACATCTCATGTTGTGGTGTCACTACAACAAAGGGATTGGCA
CAAGAATTTTATATCTTGCTATCTAACGCCAGCCGTGGTAGTTGGATTTCGGCAGCAC
TAGGATACAGATATTATGGACAACAAAGTATGTTGGCTTAGCACCGAAAACAACCTTATT
TGGAGTTTATAGGACCAAGCATGCCTAATCATTCTGTTAATCTCTGGCTTGGAGTCAT
CATATACAAAGTTTCGTACACTGCAGGGTTGAAACCAGAAGTTAGTTGCTTGAGAAC
TAAGGTCTTGTGCAAGAGGGAGCCCTCGCTCTCTGTTCTCGGCACCACCTGGATCTT
GGGGTTCTCCATGTTGTGCACGCATCAGGGTACAGCTTACCTCTCACAGTCAGCAATGC
TTTCAGGGGATGTTCATTTTATTCTGTGTTTATCTAGAAAGATTCAAGAAGAAT
ATTACAGATTGTTCAAAATGCCCCGTGTTGGATGTTAAGG**TAAACATAGAGAATG**
GTGGATAATTACAACGTGACAAAATAAAATTCCAAGCTGTGGATGACCAATGTATAAAA
TGACTCATCAAATTATCCAATTATTAACACTAGACAAAAGTATTAAATCAGTTTCT
GTTTATGCTATAGGAACGTGAGATAATAAGGAAAATTATGTATCATATAGATATACTATGT
TTTCTATGTGAAATAGTTCTGTCAAAATAGTATTGCAAGATATTGAAAGTAATTGGTT
CTCAGGAGTGTATCACTGCACCCAGGAAAGATTCTTCTAACACAGAGAAGTATATGAA
TGCTGTAAGGAAACCACTGGCTGATATTCTGTGACTCGTGTGCTTGAACACTAGTCC
CCTACCCACCTCGGTATGAGCTCATTACAGAAAGTGGAACATAAGAGAATGAAGGGCAGA
ATATCAAACAGTGAAAAGGAATGATAAGATGTATTGAAATGAACTGTTTCTGTAGAC
TAGCTGAGAAATTGTTGACATAAAAGAATTGAAGAAACACATTTCACCATTGAA
TTGTTCTGAACCTAAATGTCCACTAAAACAACCTAGACTCTGTTGCTAAATCTGTTCTT
TTCTAATATTCTAAAAAAAAAGGTTACCTCCACAAATTGAAAAA
AAAAAAAAAAAAAAAAAAAAAA

FIGURE 19

MKRLPLLVVFSTLLNCSYTQNCTKTPCLPNAKCEIRNGIEACYCNMGFSGNGVTICEDDNEC
GNLTQSCGENANCTNTEGSYYCMCVPGRSSSNQDRFITNDGTVCIENVANCHLDNV CIAA
NINKTLTKIRSIKEPVALLQEYVRNSVTDLSPTDIITYIEILAESSLLGYKNNTISAKDTL
SNSTLTFVKTVNNFVQRDTFVVWDKLSVNHRRTLTKLMHTVEQATLRIQSFFQKTTEFDT
NSTDIALKVFFFDSYNMKHIHPHMNMDGYINIFPKRKAAYDSNGNVAVAFLYYKSIGPLLS
SSDNFLLPQNYDNSEEERVISSVISVSMSSNPPTLYELEKITFTLSHRKVTDRYRSLCAF
WNYSPDTMNGWSSEGCELYSNETHSCRCNLTHFAILMSSGPSIGIKDYNILTRITQLG
IIISLICLAI CIFTFWFFSEIQSTRTTIHKNLCCSLFLAELVFLVGINTNTNKLFC SIIAGL
LHYFFLAFAFWMCIEGIHLYLIVVGVIYNKGFLHKNFYIFGYLSPA VVVGFS AALGYRYYGT
TKVCWLSTENNFIWSFIGPACLIILVNLLAFGVIIYKVFRHTAGLKPEVSCFENIRSCARGA
LALLFLLGTTWIFGV LHV VHASVVTAYLFTVSNAFQGMFIFLFLCVLSRKI QEEYYRLFKNV
PCCFGCLR

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 430-450, 465-486, 499-513, 535-549, 573-593, 619-636,
648-664

N-glycosylation site.

amino acids 15-19, 21-25, 64-68, 74-78, 127-131, 177-181,
188-192, 249-253, 381-385, 395-399

Glycosaminoglycan attachment site.

amino acids 49-53

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 360-364

Casein kinase II phosphorylation site.

amino acids 54-58, 68-72, 76-80, 94-98, 135-139, 150-154,
155-159, 161-165, 181-185, 190-194, 244-248, 310-314, 325-329,
346-350, 608-612

Tyrosine kinase phosphorylation site.

amino acids 36-44, 669-677, 670-678

N-myristoylation site.

amino acids 38-44, 50-56, 52-58, 80-86, 382-388, 388-394,
434-440, 480-486, 521-527

Aspartic acid and asparagine hydroxylation site.

amino acids 75-87

FIGURE 20

TGGAAACATATCCTCCCTCATATGAATATGGATGGAGACTACATAAATATATTCCAAAGNG
AAAAGCCGGCATATGGATTCAAATGCGAATGTTGCAGTGCATTTATATTATAAGAGTAT
TGGTCCCTTGCTTCATCATCTGACAACCTTCTTATTGAAACCTCAAAATTATGATAATTCT
GAAGAGGAGGAAAGAGTCATATCTCAGTAATTCAGTCTCAATGAGCTCAAACCCACCCAC
ATTATATGAACTTGAAAAATAACATTACATTAAGTCATCGAAAGGTACAGATAGGTATA
GGAGTCTATGTGGCATTTGGAATACTCACCTGATACCAGAATGGCAGCTGGTCTTCAGAG
GGCTGTGAGCTGACATACTCAAATGAGACCCACACCTCATGCCGCTGTAATCACCTGACACA
TTTGCAATTGATGTCCTCTGGCCTTCCATTGGTATTAAAGATTATAATATTCTTACAA
GGATCACTCAACTAGGAATAATTATTCACTGATTGTCTGCCATATGCATTTTACCTTC
TGGTTCTTCAGTGAAATTCAAAGCACCAGGA

FIGURE 21

GCTCCCAGCCAAGAACCTCGGGGCCGCTGCGCGGTGGGGAGGAGTTCCCCGAAACCCGGCCG
CTAAGCGAGGCCTCCTCCTCCCGAGATCCGAACGGCCTGGGCGGGTCACCCCGGCTGGGA
CAAGAAGCCGCCGCTGCCTGCCGGGCCGGGAGGGGGCTGGGCTGGGCGGGAGGCAG
GGTGTGAGTGGGTGTGTGCGGGGGCGGAGGCTTGATGCAATCCGATAAGAAATGCTCGGG
TGTCTTGGGCACCTACCGTGGGCCGTAAGGCCTACTATATAAGGCTGCCGGCCGGAG
CCGCCGCCGTAGAGCAGGAGCGCTCGCTCAGGATCTAGGGCACGACCATCCAACCC
GGCACTCACAGCCCCGAGCGCATCCCGTCGCCAGCCTCCGCACCCCCATGCCGG
AGCTGCGCCGAGAGCCCCAGGGAGGTGCCATGC GGAGCGGGTGTGTGGTCCACGTATGG
ATCCTGGCCGGCCTCTGGCTGGCGTGGCGCCGGCGCCCCCTGCCCTCTCGGACGCCGGGCC
CCACGTGCACTACGGCTGGGCGACCCCATCCGCCTGCCACCTGTACACCTCCGGCCCC
ACGGGCTCTCCAGCTGCTTCTGCCATCCGTGCCAGGGCGTGGACTGCCGCCGGG
CAGAGCGCGCACAGTTGCTGGAGATCAAGGCAGTCGCTCTGCCACCGTGGCATCAAGGG
CGTGCACACGGTGCACCTCTGCATGGCGCCGACGGCAAGATGCAGGGCTGCTTCAGT
ACTCGGAGGAAGACTGTGCTTCAGAGGAGGAGATCCGCCAGATGGCTACAATGTGTACCGA
TCCGAGAACGCCCTCCGGCTCCCTGAGCAGTGCCAAACAGCGGAGCTGTACAAGAA
CAGAGGCTTCTTCACTCTCATTCCGCCTGCCCCATGCTGCCCATGGTCCCAGAGGAGCCTG
AGGACCTCAGGGGCCACTTGAATCTGACATGTTCTTCGCCCTGGAGACCGACAGCATG
GACCCATTGGCTTGTCAACGGACTGGAGGCCGTGAGGAGTCCAGCTTGAGAAGTAACT
GAGACCATGCCGGCTTCACTGCTGCCAGGGCTGTGGTACCTGCAGCGTGGGGACG
TGCTTCTACAAGAACAGTCCCTGAGTCCACGTTCTGTTAGCTTAGGAAGAAACATCTAGAA
GTTGTACATATTCAAGAGTTCCATTGGCAGTGCCAGTTCTAGCCAATAGACTGTCTGAT
CATAAACATTGTAAGCCTGTAGCTGCCAGCTGCTGCCCTGGGCCCTATTCTGCTCCCTCGA
GGTTGCTGGACAAGCTGCTGCACTGCTCAGTTCTGCTGAATAACCTCCATCGATGGGAAC
TCACCTCCTTGGAAAATTCTTATGTCAAGCTGAAATTCTCTAATTCTCATCACTTC
CCCAGGAGCAGCCAGAACAGGAGTAGTTAATTCAAGAACAGGTGATCCACTCTGTA
AAACAGCAGGTAAATTCACTCAACCCATGTGGAATTGATCTATCTACTTCCAGGG
ACCATTGCCCTCCCAAATCCCTCCAGGCCAGAACACTGACTGGAGCAGGCATGGCCACCAG
GCTTCAGGAGTAGGGGAAGCCTGGAGCCCCACTCCAGGCCCTGGGACAACCTGAGAATTCCCC
CTGAGGCCAGTTCTGTCATGGATGCTGCTGAGAATAACTGCTGTCCGGTGCACCTGC
TTCCATCTCCAGGCCACCAGCCCTGCCCACCTCACATGCCCTCCCATGGATTGGGGCCT
CCCAGGCCCCCACCCTTATGTCAACCTGCACTCTGTTCAAAATCAGGAAAAGAAAAGAT
TTGAAGACCCCAAGTCTTGTCAATAACTGCTGTGAGCAGGGGGAGACCTAGAAC
CCTTCCCCAGCACTGGTTTCAACATGATATTATGAGTAATTATTTGATATGTACA
TCTCTTATTCTTACATTATTATGCCCAAATTATATTATGTATGTAAAGTGAGGTTG
TTTGTATATTAAAATGGAGTTGTTGT

FIGURE 22

MRSGCVVVHVWILAGLWLAVAGRPLAFSDAGPHVHYGWDPIRLRHLYTSGPHGLSSCFLRI
RADGVVDCARGQSAHSLLIEIKAVALRTVAIKGVHSVRYLCMGADGKMQGLLQYSEEDCAFEE
EIRPDGYNVYRSEKHLRVPVSLSSAKQRQLYKNRGFLPLSHFLPMLPMVPEEPEDLRGHLESD
MFSSPLETDSDMDPFGLVTGLEAVRSPSFEK

Signal peptide:

amino acids 1-22

Casein kinase II phosphorylation site.

amino acids 78-82, 116-120, 190-194, 204-208

N-myristoylation site.

amino acids 15-21, 54-60, 66-72, 201-207

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 48-59

FIGURE 23

CCCAGAAGTCAGGGCCCCGGCCTCCTGCCTGCCGCGGGACCCCTGACCTCCTCA
GAGCAGCCGGCTGCCGCCCCGGGAAGATGGCGAGGAGGAGCCACCGCTCCTGCTG
CTGCTGCCTACCTGGTGGTCGCCCTGGCTATCATAAGGCCTATGGGTTTCTGCCAAA
AGACCAACAAGTAGTCACAGCAGTAGAGTACCAAGAGGCTATTAGCCTGCAAAACCCAA
AGAAGACTGTTCTCCAGATTAGAGTGGAGAAACTGGGTGGAGTGTCCTTGTCTAC
TATCAACAGACTCTCAAGGTGATTTAAAAATCGAGCTGAGATGATAGATTCAATATCCG
GATCAAAATGTGACAAGAAGTGTGAGCTGGGGAAATATCGTTGTGAAGTTAGTGCCCCATCTG
AGCAAGGCCAAACCTGGAAGAGGATAACAGTCACACTGGAAAGTATTAGTGGCTCCAGCAGTT
CCATCATGTGAAGTACCCCTCTGCTCTGAGTGGAACTGTGGTAGAGCTACGATGTCAAGA
CAAAGAAGGAAATCCAGCTCTGAATAACACATGGTTAAGGATGGCATCCGTTGCTAGAAA
ATCCCAGACTTGGCTCCAAAGCACCAACAGCTCATACACAATGAATACAAAAACTGGAAC
CTGCAATTAAACTGTTCCAAACTGGACACTGGAGAATATTCTGTGAAGCCCGCAATT
TGTTGGATATCGCAGGTGTCTGGAAACGAATGCAAGTAGATGATCTAACATAAGTGGCA
TCATAGCAGCCGTAGTAGTTGTGGCCTAGTGATTCCGTTGTGGCCTGGTGTATGCTAT
GCTCAGAGGAAAGGCTACTTTCAAAAGAAACCTCCTCCAGAAGAGTAATTCTCATCTAA
AGCCACGACAATGAGTGAAATGTGCAGTGGCTCACGCCGTAAATCCCAGCACTTGGAAAGG
CCGGCGGGCGGATCACGAGGTCAAGGAGTTCTAGACCAGTCTGGCCAATATGGTGAACCC
CATCTCTACTAAAATACAAAAATTAGCTGGCATGGTGGCATGTGCCTGCAGTTCCAGCTGC
TTGGGAGACAGGAGAATCACTGAACCCGGAGGCGGAGGTTGCAGTGAGCTGAGATCACGC
CACTGCAGTCCAGCCTGGTAACAGAGCAAGATTCCATCTCAAAAATAAAATAATA
AATAAAATACTGGTTTACCTGTAGAATTCTTACAATAATAGCTTGATATT

FIGURE 24

MARRSRHLLLLLRLVVALGYHKAYGFSAPKDJQQVVTAVEYQEAILACKTPKTVSSRLE
WKKLGRSVSFVYYQQTLQGDFKNRAEMIDFNIRIKNVTRSDAGKYRCEVSAPSEQGQNLEED
TVTLEVLVAPAVPSCEVPSSALSGTVVELRCQDKEGNPAPEYTWFKDGI RLLENPRLGSQST
NSSYTMNTKTGTLQFNTVSKLDTGEYSCEARNSVGYRRCPGKRMQVDDLNISGIIAAVVVA
LVISVCGLGVCYAQRKGYFSKETSFQKSNSSSKATTMSENVQWLTPVIPALWKAAGGSRGQEF

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 130-144, 238-258

N-glycosylation site.

amino acids 98-102, 187-191, 236-240, 277-281

Casein kinase II phosphorylation site.

amino acids 39-43, 59-63, 100-104, 149-153, 205-209, 284-288

N-myristoylation site.

amino acids 182-188, 239-245, 255-261, 257-263, 305-311

Amidation site.

amino acids 226-230

FIGURE 25

GACATCGGAGGTGGCTAGCACTGAAACTGCTTTCAAGACGAGGAAGAGGGAGGAGAAAGAG
AAAGAAGAGGAAGATGTTGGCAACATTATTAAACATGCTCCACAGCCGGACCCCTGGCAT
CATGCTGCTATTCTGCAAATACTGAAGAAGCATGGATTAAATATTACTTCTAAATAA
ATGAATTACTCAATCTCCTATGACCACACTATACATACTCCACCTCAAAAAGTACATCAATA
TTATATCATTAAAGGAATAGTAACCTCTCTCCAATATGCATGACATTGGACAATG
CAATTGTGGCACTGGCACTTATTTCAGTGAAGAAAAACTTGTGGTTCTATGGCATTCA
TTTGACAAATGCAAGCATCTCCTATCAATCAGCTCTATTGAACTTACTAGCACTGACTG
TGGAATCCTAAGGGCCATTACATTCTGAAGAAGAAAGCTAAGATGAAGGACATGCCACT
CCGAATTCATGTGCTACTTGGCCTAGCTATCACTACACTAGTACAAGCTGTAGATAAAAAG
TGGATTGTCCACGGTTATGTACGTGAAATCAGGCCTGGTTACACCCAGATCCATTAT
ATGGAAGCATCTACAGTGGATTGTAATGATTAGGTCTTTAACCTCCCAGCCAGATTGCC
AGCTAACACACAGATTCTCTCCTACAGACTAACAAATATTGCAAAATTGAATACTCCACAG
ACTTTCCAGTAAACCTACTGGCCTGGATTATCTCAAAACAATTATCTCAGTCACCAAT
ATTAATGTAAGGAGATGCCTCAGCTCCTTCTGTGTACCTAGAGGAAACAAACTTACTGA
ACTGCCTGAAAATGCTGTCGAACACTACAAGAACTCTATATTAAATCACAACT
TGCTTCTACAATTTCACCTGGAGCCTTATTGGCCTACATAATCTTCTCGACTTCATCTC
AATTCAAATAGATTGCAGATGATCAACAGTAAGTGGTTGATGCTCTTCAAATCTAGAGAT
TCTGATGATTGGGAAAATCCAATTATCAGAACAGACATGAACTTTAACGCCTTATCA
ATCTTCGAGCCTGGTTATAGCTGGTATAAACCTCACAGAAATACCAGATAACGCCCTGGTT
GGACTGGAAAACCTAGAAAGCATCTCTTTACGATAACAGGCTTATTAAAGTACCCCATGT
TGCTCTCAAAAGTGTAAATCTCAAATTGGATCTAAATAAAATCCTATTAAATAGAA
TACGAAGGGGTGATTTAGCAATATGCTACACTAAAAGAGTTGGGATAAAATAATATGCCT
GAGCTGATTCCATCGATAGTCTGCTGTGGATAACCTGCCAGATTTAACAAAAATAGAAC
TACTAACAAACCTAGATTGTCTTACATTCCCCAATGCATTTCAGACTCCCCAAGCTGG
AATCACTCATGCTAACAGCAATGCTCTCAGTGCCTGTACCATGGTACCTGGTACTCTG
CCAAACCTCAAGGAAATCAGCATACACAGTAACCCCATCAGGTGTACTGTGTACCCGTTG
GATGAACATGAACAAAACCAACATTGGATTATGGAGCCAGATTCACTGTTTGCCTGGACC
CACCTGAATTCCAAGTCAGAACATGTTGGCAAGTGCATTTCAGGGACATGATGGAAATTG
CTCCCTTCTTATAGCTCTGAGAGCTTCTTCTAAATCTAAATGTAAGAGCTGGGAGCTATGT
TTCCTTCACTGTAGAGCTACTGCAGAACACAGCCTGAAATCTACTGGATAACACCTTCTG
GTCAAAACTCTGCCTAATACCCCTGACAGACAAGTTCTATGTCCTTCTGAGGGAACACTA
GATATAATGGCGTAACTCCCCAAGAAGGGGTTATATAACTTGTATAGCAACTAACCTAGT
TGGCGCTGACTTGAAGTCTGTTATGATCAAAGTGGATGGATCTTCCACAAGATAACAATG
GCTCTTGAATATTAAAATAAGAGATATTGGCCAATTCACTGGTGTGTTGCTGGAAAGCA
AGTTCTAAAATTCTCAAATCTAGTGTAAATGGACAGCCTTGTCAAGACTGAAAATTCTCA
TGCTGCGCAAAGTGCCTGAATACCACATGATGTCAGGTATATAATCTTACTCATCTGAATC
CATCAACTGAGTATAAAATTGTATTGATATTCCACCATCTACAGAAAAACAGAAAAAAA
TGTGTAATGTCACCACCAAGGTTGCACCCCTGATCAAAAAGAGTATGAAAAGAATAATAC
CACAAACACTTATGGCCTGTCTGGAGGCCTTCTGGGATTATTGGTGTGATATGTCTTATCA
GCTGCCCTCTCCAGAAATGAACCTGTGATGGTGACACAGCTATGTGAGGAATTACTTACAG
AAACCAACCTTGCATTAGGTGAGCTTATCCTCTGTATAAAATCTCTGGGAAGCAGGAAA
AGAAAAAAAGTACATCACTGAAAGTAAAGCAACTGTTAGGTTACCAACAAATATGTCT
AAAAACCACCAAGGAAACCTACTCCAAAAATGAAC

FIGURE 26

MKDMPLRIHVLLGLAITTLVQAVDKVDCPRLCTCEIRPWFTPRTSIYMEASTVDCNDLGLLT
FPARLPANTQILLQTNNIAKIEYSTDFPVNLTGDLDSQNNLSSVTNINVKKMPQLLSVYLE
ENKLTELPEKCLSELSNLQELYINHNLLSTISPGAFIGLHNLRLHLNSNRQLQMINSKWFDA
LPNLEILMIGENPIIRIKDMNFKPLINLRSLVIAGINLTEIPDNALVGLENLESISFYDNRL
IKVPHVALQKVNLKFSDLNKNPINRIRRGDFSNMLHLKELGINNMPELISIDSIAVDNLPD
LRKIEATNNPRLSYIHPNAFFRLPKLESMLMSNALSALYHTIESLPNLKEISIHSNPIRC
DCVIRWMNMNKTNIRFMEPDSDLFCVDPPEFQGQNVQVHFRDMMEICLPLIAPESFPSNLNV
EAGSYVSFHCRTAEPQPEIYWITPSGQKLLPNTLTDKFYVHSEGTLDINGVTPKEGGLYTC
IATNLVGADLKSVMIKVDGSFPQDNNGSLNIKIRDIQANSVLVSWKASSKILKSSVKWTAFV
KTENSHAAQSARI PSDVKVYNLTHLN PSTEYKICIDIPTIYQKNRKKCVNVTTKGLHPDQKE
YEKNNTTTLMACLGGLLGIIGVICLISCLSPEMNCDDGHSYVRNYLQKPTFALGELYPP LIN
LWEAGKEKSTSLKVKATVIGLPTNMS

Signal sequence:

amino acids 1-22

Transmembrane domain:

amino acids 633-650

N-glycosylation site.

amino acids 93-97, 103-107, 223-227, 382-386, 522-526, 579-583,
608-612, 624-628, 625-629

Casein kinase II phosphorylation site.

amino acids 51-55, 95-99, 242-246, 468-472, 487-491

Tyrosine kinase phosphorylation site.

amino acids 570-579

N-myristoylation site.

amino acids 13-19, 96-102, 158-164, 221-227, 352-358, 437-443,
491-497, 492-498, 634-640, 702-708

Cell attachment sequence.

amino acids 277-280

FIGURE 27

GCCCCGGACTGGCGCAAGGTGCCAAGCAAGGAAAGAAATAATGAAGAGACACATGTGTTAG
CTGCAGCCTTTGAAACACGCAAGAAGGAAATCAATAGTGTGGACAGGGCTGGAACCTTAC
CACGCTTGTGGAGTAGATGAGGAATGGGCTCGTATTATGCTGACATTCCAGCATGAATCT
GGTAGACCTGTGGTTAACCGTTCCCTCTCCATGTGTCTCCTCCTACAAAGTTGTTCTTA
TGATACTGTGCTTCATTCTGCCAGTATGTGTCCAAGGGCTGTCTTGTCTCCTCTGGG
GGTTAAATGTCACCTGTAGCAATGCAAATCTCAAGGAAATACCTAGAGATCTCCTCCTGA
AACAGTCTTACTGTATCTGGACTCCAATCAGATCACATCTATTCCAATGAAATTAAAGG
ACCTCCATCAACTGAGAGTTCTCAACCTGTCCAAAATGGCATTGAGTTATCGATGAGCAT
GCCTCAAAGGAGTAGCTGAAACCTTGCAGACTCTGGACTTGTCCGACAATCGGATTCAAAG
TGTGCACAAAATGCCTCAATAACCTGAAGGCCAGGCCAGAATTGCCAACAAACCCCTGGC
ACTGCGACTGTACTCTACAGCAAGTTCTGAGGAGCATGGCGTCCAATCATGAGACAGCCCAC
AACGTGATCTGTAAAACGTCCGTGTTGGATGAACATGCTGGCAGACCATTCTCAATGCTGC
CAACGACGCTGACCTTGTAACCTCCCTAAAAAAACTACCGATTATGCCATGCTGGTCACCA
TGTGCTGGTCACATGGTGTCTCATATGTGGTATATTATGTGAGGCAAAATCAGGAG
GATGCCGGAGACACCTCGAATACTTGAAATCCCTGCCAAGCAGGCAGAAGAAAGCAGATGA
ACCTGATGATATTAGCACTGTGGTAAGTGTCCAAACTGACTGTCAATTGAGAAAGAAAGAAA
GTAGTTGCATTGCAGTAGAAATAAGTGGTTACTTCTCCATCCATTGTAAACATTGAA
ACTTGTATTCAGTTTTGAATTATGCCACTGCTGAACCTTAACAAACACTACAACA
TAAATAATTGAGTTAGGTGATCCACCCCTTAATTGTACCCCCGATGGTATATTCTGAGT
AAGCTACTATCTGAACATTAGTTAGATCCATCTCACTATTAAATAATGAAATTATTTTTT
AATTAAAAGCAAATAAGCTTAACTTGAACCAGGGAAAAAAAAAAAAAAACA

FIGURE 28

MNLVDLWLTRSLSMCLLLQSFVLMILCFHSASMC PKGCLSSGGLNVTCSNANLKEIPRDL
PPETVLLYLDNSNQITSIPNEIFKDLHQLRVLNLSKNGIEFIDEHAFKGVAETLQTLDLSDNR
IQSVHKNAFNKLARARIANNPWHCDCTLQQVLRSMASNHETAHNVICKTSVLDEHAGRPFL
NAANDADLCNLPKKTTDYAMLVTMFGWFTMVISYVVYYVRQNQEDARRHLEYLKSLPSRQKK
ADEPDDISTVV

Signal sequence:

amino acids 1-33

Transmembrane domain:

amino acids 205-220

N-glycosylation site.

amino acids 47-51, 94-98

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 199-203

Casein kinase II phosphorylation site.

amino acids 162-166, 175-179

N-myristoylation site.

amino acids 37-43, 45-51, 110-116

FIGURE 29

ACCGAGCCGAGCGGACCGAAGGCAGCAGGGATTGCAGGTGAGCAAGAGGATGCTGGCGGG
GGCGTGAGGAGCATGCCAGCCCCCTCCTGGCCTGCTGGCAGCCCACCTCCTGCTGGTGCT
GGGCTCAGTGTCTGGCAGGCTGGCCACGGCTGCCGCCGCTGCGAGTGCTCCGCCAGG
ACCGCGCTGTGCTGCCACCGCAAGTGCTTGTGGCAGTCCCCGAGGGCATCCCCACCGAG
ACGCGCCTGCTGGACCTAGGCAAGAACGCATAAAACGCTCAACCAGGACGAGTTCGCCAG
CTTCCCGCACCTGGAGGAGCTGGAGCTAACGAGAACATCGTGAGCGCCGTGGAGGCCGG
CCTTCAACAACCTCTAACCTCCGGACGCTGGGTCTCCGCAGCAACGCCCTGAAGCTCATC
CCGCTAGGCGTCTTCACTGGCCTCAGCAACCTGACCAAGCAGGACATCAGCAGAAACAAGAT
CGTTATCCTACTGGACTACATGTTCAGGACCTGTACAACACTCAAGTCAGTGAGGTTGGCG
ACAATGACCTCGTCTACATCTCACCGCCTTCAGGGCCTCAACAGCCTGGAGCAGCTG
ACGCTGGAGAAATGCAACCTGACCTCCATCCCCACCGAGGGCGTGTCCCACCTGCACGCC
CATCGTCTGAGGCTCCGGCACCTAACATCAATGCCATCCGGACTACTCCTTAAGAGGC
TGTACCGACTCAAGGTCTGGAGATCTCCACTGGCCTACTTGGACACCATGACACCCAAC
TGCCTCTACGGCCTCAACCTGACGTCCCTGTCCATCACACACTGCAATCTGACCGCTGTGCC
CTACCTGGCCGTCCGCCACCTAGTCTATCTCCGCTTCCCTAACCTCTCCTACACCCCCATCA
GCACCATTGAGGGCTCCATGTTGCATGAGCTGCTCCGGCTGCAGGAGATCCAGCTGGTGGCG
GGGAGCTGGCGTGGAGCCCTATGCCTTCCGGCCTCAACTACCTGCGCGTGTCAA
TGTCTCTGGCAACCAGCTGACCAACACTGGAGGAATCAGTCTTCACTCGGTGGCAACCTGG
AGACACTCATCTGGACTCCAACCCGCTGGCCTGCGACTGTCGGCTCTGTGGGTGTTCCGG
CGCCGCTGGCGCTCAACTTCAACCGCAGCAGGCCACGTGCGGCCACGCCAGTTGTCCA
GGGCAAGGAGTTCAAGGACTTCCCTGATGTGCTACTGCCAACTACTCACCTGCCGCCGCG
CCCGCATCCGGGACCGCAAGGCCAGCAGGTGTTGGACGAGGGCACACGGTGCAGTT
GTGTGCCGGGCCGATGGCGACCCGCCGCCATCCTCTGGCTCTCACCCGAAAGCACCT
GGTCTCAGCCAAGAGCAATGGCGGCTCACAGTCTTCCCTGATGGCACGCTGGAGGTGCGCT
ACGCCAGGTACAGGACAACGGCACGTACCTGTGCATCGGGCAACGGGGGGCAACGAC
TCCATGCCGCCACCTGCATGTGCAGCTACTGCCGACTGGCCCCATCAGCCAAACAA
GACCTTCGCTTCATCTCAACCAGCCGGCGAGGGAGAGGCCAACAGCACCCGCCACTG
TGCCTTCCCTCGACATCAAGACCCTCATCATGCCACCACTGGCTTCTCTTTC
CTGGCGTGTCTCTGCCTGGTGTGCTGTTCTCTGGAGGCCGGCAAGGGCAACAC
AAAGCACAACATCGAGATCGAGTATGTGCCCGAAAGTCGGACGCAGGCATCAGCTCCGCC
ACGGCCCGCAAGTCAACATGAAGATGATATGAGGGCGGGCGGGGGCAGGGACCCCCG
GGCGGCCGGCAGGGGAAGGGCCTGGTCGCCACCTGCTCACTCTCCAGTCTTCCACCTC
CTCCCTACCCCTCTACACACGTTCTCTTCTCCCTCCGCCCTCGTCCCTGCTGCCCG
CCAGCCCTCACCACTGCCCTCTTCTACAGGACCTCAGAAGGCCAGACCTGGGACCCCA
CCTACACAGGGCATTGACAGACTGGAGTTGAAAGCCGACGAACCGACACGCCAGAGTC
ATAATTCAATAAAAAGTTACGAACCTTCTGTAACTTGGGTTCAATAATTATGGATTT
TATGAAAAACTTGAATAATAAAAAGAGAAAAAAACTAAAAAAAAAAAAAA

FIGURE 30

MQVKRMLAGGVRSMPSPLLACWQPI~~LLV~~LGSQLSGSATGCPPCECSAQDRAVLCHRKF
VAVPEGIPTETRLLDLGKNRIKTLNQDEFASFPHLEELNENIVSAVEPGAFNNLFNLRTL
GLRSNRLKLIPLGVFTGLSNLTQDISENKIVILLDYMFQDLYNLKSLEVGDNDLVYISHRA
FSGLNSLEQLTLEKCNLTSIPTEALSHLHGLIVLRLRHLNINAIRDYSFKRLYRLKVLEISH
WPYLDTMTPNCLYGLNLTSLSITHCNLTAVPYLAVRHLVYLRFNLNSYNPISTIEGSMLHEL
LRLQEIQLVGGQLAVVEPYAFRGLNYLRVLNVSGNQLTTLEESVFHSVGNNLETLILDSNPLA
CDCRLLWVFRRRWRLNFNRQQPTCATPEFVQGKEFKDFPDVLLPNYFTCRRARIRDRKAQQV
FVDEGHTVQFVCRADGDPPPAILWLSPRKHLVSAKSNGRLTVFPDGTLEVRYAQVQDNGTYL
CIAANAGGNDSMPAHLHVRSYSPDWPHQPNKTFAFISNQPGEGEANESTRATVPFPFDIKTLI
IATTMGFISFLGVVLFC~~L~~VLLFLWSRGKGNTKH~~N~~IIEYVPRKSDAGISSADAPRKFNMKMI

Signal sequence:

amino acids 1-41

Transmembrane domain:

amino acids 556-578

N-glycosylation site.

amino acids 144-148, 202-206, 264-268, 274-278, 293-297, 341-345,
492-496, 505-509, 526-530, 542-546

Casein kinase II phosphorylation site.

amino acids 49-53, 108-112, 146-150, 300-304, 348-352, 349-353,
607-611

Tyrosine kinase phosphorylation site.

amino acids 590-598

N-myristoylation site.

amino acids 10-16, 32-38, 37-43, 113-119, 125-131, 137-143,
262-268, 320-326, 344-350, 359-365, 493-499, 503-509, 605-611

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 32-43

FIGURE 31

CCACCGCGTCCGCACCTCGGCCCCGGGCTCCGAAGCGGCTCGGGGGGCCCTTCGGTCAAC
ATCGTAGTCCACCCCTCCCCATCCCCAGCCCCGGGATTCAAGGCTGCCAGCGCCCAGCC
AGGGAGCCGGCCGGGAAGCGCGATGGGGGCCAGCCGGCCTCGCTCCTGCTCCTGCTCCTGC
TGTCGCTGCTGGCGCCGGGGCAACCTCTCCCAGGACGACAGCCAGCCCTGG
ACATCTGATGAAACAGTGGTGGCTGGTGGCACCGTGGTGTCAAGTGCCAAGTGAAGATCA
CGAGGACTCATCCCTGCAATGGCTAACCTGCTCAGCAGACTCTACTTTGGGGAGAAGA
GAGCCCTCGAGATAATCGAATTCAAGCTGGTTACCTCTACGCCAACGAGCTCAGCATCAGC
ATCAGCAATGTGGCCCTGGCAGACGAGGGCGAGTACACCTGCTCAATCTCACTATGCCTGT
GCGAACTGCCAAGTCCCTCGTCACTGTGCTAGGAATTCCACAGAACGCCATCATCACTGGTT
ATAATCTCATTACGGGAAAAAGACACAGCCACCCCTAAACTGTCAGTCTTCTGGGAGCAAG
CCTGCAGCCGGCTCACCTGGAGAAAGGGTACCAAGAACTCCACGGAGAACCAACCCGCAT
ACAGGAAGATCCCAATGGTAAAACCTTCACTGTGAGCAGCTCGGTGACATTCCAGGTTACCC
GGGAGGATGATGGGGCGAGCATCGTGTGCTCTGTGAACCAGTAAAGGGAGCTGAC
AGATCCACCTCTCAACGCATTGAAGTTTATACACACCAACTGCGATGATTAGGCCAGACCC
TCCCCATCCTCGTGAGGGCCAGAACGCTTGTGCTACACTGTGAGGGTCGCGGAATCCAGTCC
CCCAGCAGTACCTATGGGAGAAGGAGGGCAGTGTGCCACCCCTGAAGATGACCCAGGAGAGT
GCCCTGATCTCCCTTCCCTAACAAAGAGTGAAGTGGCACCTACGGCTGCACAGCCACCA
CAACATGGGCAGCTACAAGGCCTACTACACCCCTCAATGTTAATGACCCAGTCCGGTGCCT
CCTCCTCCAGCACCTACCACGCCATCATCGTGGGATCGTGGCTTCATTGTCTCCTGCTG
CTCATCATGCTCATCTCCTGGCACTACTTGATCCGGCACAAAGGAACCTACCTGACACA
TGAGGCAAAGGCTCCGACGATGCTCCAGACGCGGACACGGCCATCATCAATGCAGAAGGCG
GGCAGTCAGGAGGGACACAAGGAATATTCATCTAGAGGCGCCTGCCACTCCTGC
GCCCCCCAGGGGCCCTGTGGGACTGCTGGGCCGTACCAACCCGGACTTGTACAGAGCAA
CCGCAGGGCCGCCCTCCGCTTGCTCCCCAGCCCACCCACCCCTGTACAGAAATGTCTGC
TTTGGGTGCGGTTTGTACTCGGTTGGAATGGGGAGGGAGGAGGGCGGGGGAGGGAGGG
TTGCCCTCAGCCCTTCCGTGGCTCTGCATTGGGTTATTATTATTGTAAACAATCC
CAAATCAAATCTGTCCTCAGGCTGGAGAGGCAGGAGCCCTGGGGTGAGAAAAGCAAAAAACA
AACAAAAAACAA

FIGURE 32

MGAPAASLLLLLFAACCWAPGGANLSQDDSQWPWTSDETVVAGGTVVLKCQVKDHEDSSLQW
SNPAQQTLYFGEKRALRDNRIQLVTSTPHELYSISISNVALADEGEYTCISIFTMPVRTAKSLV
TVLGIPQKPIITGYKSSLREKDTATLNCQSSGSKPAARLTWRKGDQELHGEPTRIQEDPNGK
TFTVSSSVTFQVTREDDGASIVCSVNHESLKGADRSTSQRIEVLYTPTAMIRPDPPHPREGQ
KLLLHCEGRGNPVPQQYLWEKEGSVPPLKMTQESALIFPFLNKSDSGTYGCTATSNMGSYKA
YYTLNVNDPSPVPSSSSTYHAIIGGIVAFIVFLLLIMLIFLGHYLIRHKGTYLTHEAKGSDD
APDADTAIINAEGGQSGGDDKKEYFI

Signal sequence:

amino acids 1-20

Transmembrane domain:

amino acids 331-352

N-glycosylation site.

amino acids 25-29, 290-294

Casein kinase II phosphorylation site.

amino acids 27-31, 35-39, 89-93, 141-145, 199-203, 388-392

N-myristoylation site.

amino acids 2-8, 23-29, 156-162, 218-224, 295-301, 298-304,
306-310, 334-340, 360-364, 385-389, 386-390

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 7-18

FIGURE 33

GGGGGTTAGGGAGGAAGGAATCCACCCCCACCCCCCAAACCCCTTCTCCTTCCTGG
CTTCGGACATTGGAGCACTAAATGAACCTGAAATTGTGTCTGTGGCGAGCAGGATGGTCGCTG
TTACTTTGTGATGAGATCGGGGATGAATTGCTCGTTAAAAATGCTGCTTGGATTCTGTT
GCTGGAGACGTCTTTGCTTGCCTGGAAACGTTACAGGGGACGTTGCAAAGAGAAGA
TCTGTTCTGCAATGAGATAGAAGGGGACCTACACGTAGACTGTGAAAAAAAAGGGCTTCACA
AGTCTGCAGCGTTCACTGCCCGACTTCCCAGTTACCATTATTCATGGCAATTC
CCTCACTCGACTTTCCATAATGAGTTGCTAACCTTATAATGCGGTTAGTTGCACATGG
AAAACAATGGCTGATGAAATCGTCCGGGGCTTTCTGGGCTGCAGCTGGTAAAAGG
CTGCACATCAACAAACAAGATCAAGTCTTTCGAAAGCAGACTTTCTGGGCTGGACGA
TCTGGAATATCTCCAGGCTGATTTAATTACGAGATATAGACCCGGGGCTTCCAGG
ACTTGAACAAGCTGGAGGTCTGGAGCAAATCCCTGGTATTGCGGAGATCCTGCTAGAGGATAACCCTT
GGGACTGCACCTGTGATCTGCTCTCCCTGAAAGAATGGCTGGAAAACATTCCAAGAATGCC
CTGATCGGCCGAGTGGTCTGCGAAGCCCCCACCAGACTGCAGGGTAAAGACCTCAATGAAAC
CACCGAACAGGACTTGTGTCCTTGAAAAACCGAGTGGATTCTAGTCTCCGGCCCGCCCTG
CCCAAGAACAGAGACCTTGCTCCTGGACCCCTGCCAACCTTCAAGACAAATGGCAAGAG
GATCATGCCACACCAGGGTCTGCTCCAAACGGAGGTACAAAGATCCCAGGCAACTGGCAGAT
CAAATCAGACCCACAGCAGCGATAGCGACGGTAGCTCCAGGAACAAACCTTAGCTAAC
GTTTACCCCTGCCCTGGGGCTGAGCTGCGACCACATCCCAGGGTGGTTAAAGATGAAC
TGCAACAAACAGGAACGTGAGCAGCTGGCTGATTGAAGCCAAGCTCTAACGTGCAGGA
GCTTTCTACGAGATAACAAGATCCACAGCATCCGAAAATCGCACTTGTGGATTACAAGA
ACCTCATTCTGTTGGATCTGGCAACAATAACATCGCTACTGTAGAGAACACACTTTCAAG
AACCTTTGGACCTCAGGTGGCTATACATGGATAGCAATTACCTGGACACGCTGTCCGGGA
GAAATTGCGGGGCTGCAAAACCTAGAGTACCTGAACGTGGAGTACAACGCTATCCAGCTCA
TCCTCCGGCACTTCAATGCCATGCCAAACTGAGGATCCTCATTCTCAACAAACACCTG
CTGAGGTCCCTGCCTGTGGACGTGTTGCTGGTCTCGCTCTAAACTCAGCCTGCACAA
CAATTACTCATGTACCTCCGGTGGCAGGGGTGCTGGACCAGTTAACCTCCATCATCCAGA
TAGACCTCCACGGAAACCCCTGGGAGTGCTCCTGCACAATTGTGCCTTCAAGCAGTGGGCA
GAACGCTGGGTTCCGAAGTGTGATGAGCGACCTCAAGTGTGAGACGCCGGTGAACCTCTT
TAGAAAGGATTTCATGCTCCTCTCCAATGACGAGATCTGCCCTCAGCTGTACGCTAGGATCT
CGCCCACGTTAACCTCGCACAGTAAAACAGCACTGGGTGGGGAGACCGGGACGCACTCC
AACTCCTACCTAGACACCAGCAGGGTGTCCATCTGGTGTGGTCCGGACTGCTGCTGGT
GTTTGTACCTCCGCCTCACCGTGGGGCATGCTCGTGTGTTATCCTGAGGAACCGAAAGC
GGTCCAAGAGACGAGATGCCAACCTCCCGCGTCCGAGATTAACTCCCTACAGACAGTCTGT
GAECTTCCCTACTGGCACAATGGGCTTACAACGAGATGGGCCCACAGAGTGTATGACTG
TGGCTCTCACTCGCTCTCAGACTAAGACCCCAACCCCAATAGGGAGGGCAGAGGGAAAGGG
ATACATCCTCCCCACCGCAGGCACCCGGGGCTGGAGGGCGTGTACCCAAATCCCCGCG
CCATCAGCCTGGATGGCATAAGTAGATAAAACTGTGAGCTCGCACAAACGAAAGGGCT
GACCCCTACTTAGCTCCCTCTTGAAACAAAGAGCAGACTGTGGAGAGCTGGAGAGCGCA
GCCAGCTCGCTTTGCTGAGAGGCCCTTTGACAGAAAGGCCAGCACGACCCCTGCTGGAAG
AACTGACAGTGCCCTGCCCTCGGCCCCGGGGCTGTGGGTTGGATGCCCGGTTCTATAC
ATATATACATATATCACATCTATATAGAGAGATAGATATCTATTTTCCCTGTGGATTAG
CCCCGTGATGGCTCCCTGTTGGCTACGCAGGGATGGCAGTTGCACGAAGGCATGAATGTAT
TGTAAATAAGTAACTTGACTTCTGAC

FIGURE 34

MLLWILLLETSLCFAAGNVTGVCCKEKCSCNEIEGDLHVDCEKKGFTSLQRFTAPTSQFYH
LFLHGNSLTRLFPNEFANFYNAVSLHMENNGLHEIVPGAFGLQLVKRLHINNNKIKSFRKQ
TFLGLDDLEYLQADFNLLRIDPGAFQDLNKLEVILINDNLISTLPANVFQYVPITHLDLRG
NRLKTLPLYEEVLEQIPIGIAEILLEDPWDCTCDLLSKEWLENIPKNALIGRVVCEAPTRLQ
GKDINETTEQDLCPLKNRVDSSLPPAPPQAEEFTAPGPLPTPKTNGQEDHATPGSAPNGGT
IPGNWQIKIRPTAAIATGSSRNKPLANSLPCPGGCSDHIPGSGLKMNCNNRNVSSLADLKP
KLSNVQELFLRDNIHSIRKSHFDYKNLILLLDGNNNIATVENNTFKNLLDLRWLYMDSNY
LDTLSREKFAGLQNLEYLNVEYNIAIQILPGTFNAMPKLRILILNNNLLRSLPVDVFAGVSL
SKLSLHNHYFMYLPVAGVLDQLTSIIQIDLHGNPWECSCTIVPFKQWAERLGSEVLMSDLKC
ETPVNFFRKDFMLLSNDEICPQLYARISPTLTSHSKNSTGLAETGTHNSYLDTSRVSISVL
VPGLLLVFVTSRAFTVGMLVFILENRKRSKRRDANSASEINSLQTVCDSYWHNGPYNADG
AHRVYDCGSHSLSD

Signal sequence:

amino acids 1-15

Transmembrane domain:

amino acids 618-638

N-glycosylation site.

amino acids 18-22, 253-257, 363-367, 416-420, 595-599, 655-659

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 122-126, 646-650

Casein kinase II phosphorylation site.

amino acids 30-34, 180-184, 222-226, 256-260, 366-370, 573-577,
608-612, 657-661, 666-670, 693-697

N-myristoylation site.

amino acids 17-23, 67-73, 100-106, 302-308, 328-334, 343-349,
354-360, 465-471, 493-499, 598-604, 603-609

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 337-348

FIGURE 35

AGTCGACTGCGTCCCTGTACCCGGGCCAGCTGTGTTCTGACCCCAGAATAACTCAGGGC
TGCACCGGGCCTGGCAGCGCTCCGCACACATTCTGTGCGGGCTAAGGGAAACTGTTGGC
CGCTGGGCCCGGGGGATTCTTGGCAGTTGGGGTCCGTGGGAGCGAGGGCGGAGGGG
AAGGGAGGGGAACCGGGTTGGGAAGCCAGCTGTAGAGGGCGGTGACCGCGCTCCAGACAC
AGCTCTGCGTCCTCGAGCGGACAGATCCAAGTTGGGAGCAGCTGTGCGTGCAGGGCCTCAG
AGAATGAGGCCGGCGTTCGCCCTGTGCCCTCTGGCAGGCCTCTGGCCCGGGCGG
CGGCGAACACCCCCACTGCCGACCGTGTGGCTGCTCGGCCCTGGGGCCTGCTACAGCCTGC
ACCAAGCTACCATGAAGCGGCAGGGCGGAGGAGGCTGCATCTGCGAGGTGGGGCGCTC
AGCACCGTGCCTGCAGCTCGCGCTGTGCTCGCGCTCCTGCGGGCAGGCCAGG
GCCCGGAGGGGCTCAAAGACCTGCTGTTCTGGTGCAGTGAGCGCAGGCCTTCCACT
GCACCCCTGGAGAACGAGCTTGCAGTGGGTGGAGGAGCCCCAACGCTCCTGCACC
GAAAGCGACACGCTGCAGTGGGTGGAGGAGATGCCACCTGC
GGTACTCCAGGCCACCGGTGGGTGAGCCCGCAGGCTGGAAGGAGATGCGATGCCACCTGC
GCGCCAACGGCTACCTGTGCAAGTACCAAGTTGAGGTCTGTGCTCGCCGCCCGGG
GCCGCCTCTAACTTGAGCTATCGCGCCCTTCCAGCTGCACAGCGCCCTGGACTTCAG
TCCACCTGGGACCGAGGTGAGTGCCTCTGCCGGGACAGCTCCGATCTCAGTTACTTGCA
TCGCGGACGAAATCGCGCTCGCTGGACAAACTCTCGGGCGATGTGTTGTGCCCTGCC
GGGAGGTACCTCCGTGCTGGCAAATGCGAGAGCTCCCTAACTGCCCTAGACGACTTGGGAGG
CTTGCCTGCGAATGTGCTACGGCTTGCAGCTGGGAAGGACGGCCGCTTGTGACCA
GTGGGGAGGACAGCCGACCCCTGGGGGACGGGGTGCCACCAGGCCCGCCGGCCACT
GCAACCAGCCCCGTGCCGAGAGAACATGGCAAATCAGGGTCGACGAGAACGACTGGGAGAGAC
ACCACTGTCCTGAACAAGACAATTCAAGTAACATCTATTCTGAGATTCTCGATGGGAT
CACAGAGCACGATGTCTACCCCTCAAATGTCCCTCAAGCCGAGTCAGGCCACTATCACC
CCATCAGGGAGCGTGATTCCAAGTTAATTCTACGACTCCTCTGCCACTCCTCAGGCTT
CGACTCCTCCTCTGCCGTGGTCTTCATATTGTGAGCACAGCAGTAGTAGTGTGTTGATCT
TGACCATGACAGTACTGGGCTTGTCAAGCTCTGCTTACGAAAGCCCTTCCAGCCA
AGGAAGGAGTCTATGGGCCGCCGGCTGGAGAGTGATCCTGAGCCGCTGCTTGGCTC
CAGTTCTGCACATTGCACAAACAATGGGTGAAAGTCGGGACTGTGATCTGCCGGACAGAG
CAGAGGGTGCCTTGTGGGGAGTCCCTTGGCTCTAGTGATGCATAGGGAAACAGGGGA
CATGGGCACTCCTGTGAACAGTTTCACTTTGATGAAACGGGAACCAAGAGGAACCTAC
TTGTGTAAGTACAATTCTGCAGAAATCCCCCTCCTCTAAATTCCCTTACTCCACTGAG
GAGCTAAATCAGAACACTGCACACTCCTCCCTGATGATAGAGGAAGTGGAAAGTGCCTTAGGA
TGGTGTGATAGTGGGGACCGGGTAGTGTGGGAGAGATATTCTTATGTTATTGGAGAA
TTTGGAGAAGTGATTGAACCTTCAAGACATTGGAAACAAATAGAACACAATATAATTACA
TTAAAAAATAATTCTACCAAAATGGAAAGGAAATGTTCTATGTTGTCAGGCTAGGAGTAT
ATTGGTTGAAATCCCAGGGAAAAAAATAAAAATAAAGGATTGTTGAT

FIGURE 36

MRPAFALCLLWQALWP GP GGG EHPTADRAGCSASGACYSLHHATMKRQAAEEACILRGGALS
TVRAGAELRAVLALLRAGPGP GGG SKDLLFWVALERRSHCTLENEPLRGFSWLSSDPGGLE
SDTLQWVEEPQRSCTARRCAVLQATGGVEPAGWKEMRCHLRANGYLCKYQFEVLCPAPRPGA
ASNLSYRAPFQLHSAALDFSPPGTEVSALCRGQLPISVTCIADEIGARWDKLSGDVLCPCPG
RYLRAGKCAELPNCLDDLGFFACECATGFELGKDGRSCVTSGEGQPTLGGTGVPTRRPPATA
TSPVPQRTWPIRVDEKLGETPLVPEQDNSVTSIPEIPRWGSQSTMSTLQMSLQAESKATITP
SGSVISKFNSTTSSATPQAFDSSSAVVFIFVSTAVVVLVILTMVLGLVKLCFHESPSSQPR
KESMGPPGLES DPEPAALGSSAHCTNNGVKVGDCDLRDRAEGALLAESPLGSSDA

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 399-418

N-glycosylation site.

amino acids 189-193, 381-385

Glycosaminoglycan attachment site.

amino acids 289-293

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 98-102, 434-438

Casein kinase II phosphorylation site.

amino acids 275-279, 288-292, 342-346, 445-449

N-myristoylation site.

amino acids 30-36, 35-41, 58-64, 59-65, 121-127, 151-157,
185-191, 209-215, 267-273, 350-356, 374-380, 453-459, 463-469,
477-483

Aspartic acid and asparagine hydroxylation site.

amino acids 262-274

FIGURE 37

CGGACGCGTGGGATTCAAGCAGTGGCCTGTGGCTGCCAGAGCAGCTCCTCAGGGGAAACTAAG
CGTCGAGTCAGACGGCACCATATAATGCCCTTAAAAGTGCCTCCGCCCTGCCGGCGTATC
CCCCGGCTACCTGGGCCCGCCCCCGCGCGGTGCGCGCTGAGAGGGAGCGCGCAGCGA
GGGCCGGTGTGAGCCAGCGCTGCCAGTGTGAGCGGGCGGTGAGCGCGGTGGTGCAGCGA
GGGGCGTGTGAGCCAGCGCTGCCAGTGTGAGCGGGCGGTGAGCGCGGTGGTGCAGCGA
GGGGCGCGAACGCCCTGGCGCCACTCTGCCCTGCTGCTGCCGCCACCCAGCTCTCGCGG
CAGCAGTCCCCAGAGAGACCTGTTTACATGTGGTGGCATTCTACTGGAGAGTCTGGATT
TATTGGCAGTGAAGGTTTCCCTGGAGTGACCCCTCAAATAGCAAATGTACTGGAAAATCA
CAGTTCCGAAGGAAAAGTAGTCGTTCTCAATTCCGATTCAAGACCTCGAGAGTGACAAC
CTGTGCCGCTATGACTTGTGGATGTGTACAATGCCATGCCATGCCAGCGCATTGGCCG
CTTCTGTGGCACTTCCGGCTGGAGCCCTGTGTCCAGTGGCAACAAGATGATGGTGCAGA
TGATTCTGATGCCAACACAGCTGGCAATGGCTCATGCCATGTTCTCCGCTGTAACCA
AACGAAAGAGGGGATCAGTATTGTGGAGGACTCCTGACAGACCTCCGGCTTTAAAAC
CCCCAAGTGGCCAGACCGGGATTACCCCTGCAAGGAGTCATTGTGTGGCACATTGAGCCC
CAAAGAATCAGCTTATAGAATTAAAGTTGAGAAGTTGATGTGGAGCGAGATAACTACTGC
CGATATGATTATGTGGCTGTGTTAATGCCGGGAAGTCAACGATGCTAGAAGAATTGGAAA
GTATTGTGGTGTAGTCCACCTGCGCCAATTGTGTCTGAGAGAAATGAACCTCTTATTCACT
TTTATCAGACTTAAGTTAACTGCAGATGGTTATTGGTCACTACATATTAGGCCAAA
AAACTGCCTACAACACAGAACAGCCTGTCACCACACATTCCCTGTAACCACGGGTTAAA
ACCCACCGTGGCCTGTGTCACACAAAAGTGTAGACGGACGGGACTCTGGAGGGCAATTATT
GTTCAAGTGACTTGTATTAGCCGGCACTGTTACACAAACATCACTCGCGATGGAGTTG
CACGCCACAGTCTGATCATCAACATCTACAAAGAGGGAAATTGGCGATTAGCAGCAGCGGG
CAAGAACATGAGTGCCAGGCTGACTGTCGTCTGCAAGCAGTGCCTCTCCTCAGAACAGGTC
TAAATTACATTATTATGGCCAAGTAGGTGAAGATGGCGAGGCAAATCATGCCAACAGC
TTTATCATGATGTTCAAGACCAAGAACATAGAACAGCTCTGGATGCCCTAAAAATAAGCAATG
TAAACTGAACTGTGTCATTAAAGCTGTATTCTGCCATTGCCCTTGAAGAGATCTATGTT
TCTCAGTAGAAAAAAACTTATAAAATTACATATTCTGAAAGAGGATCCGAAAGAGATGG
GACTGGTTGACTCTCACATGATGGAGGTATGAGGCCCTCGAGATAGCTGAGGGAAAGTTCT
TGCCTGCTGTCAAGAGGAGCAGCTATGATTGGAAACCTGCCGACTTAGTGCAGGTGATAGGA
AGCTAAAAGTGTCAAGCGTTGACAGCTGGAAAGCGTTATTATACATCTCTGTAAGGAT
ATTTTAGAATTGAGTTGTGTGAAGATGTCAAAAAAGATTAGAAGTGCATATTATAGT
GTTATTGTTCACCTCAAGCCTTGCCCTGAGGTGTTACAATCTGTCTGCAGTTCTA
AATCAATGCTTAATAAAATATTAAAGGAAAAAA

FIGURE 38

MRGANAWAPLCLLLAAATQLSRQQSPERPVFTCGGILTGESGFIGSEGFPGVYPPNSKCTWK
ITVPEGKVVVLNFRFIDLESDNLCRYDFVDVYNGHANGQRIGRFCGTFRPGALVSSGNKMMV
QMISDANTAGNGFMAMFSAAEPNERGDQYCGGLLDRPSGSFKTPNWPDYDYPAGVTCVWHIV
APKNQLIELKFEKFDVERDNYCRYDYVAVFNGGEVNDARRIGKYCGDSPAPIVSERNELLI
QFLSDLSLTADGFIGHYIFRPKKLPTTTEQPVTTFPVTTGLKPTVALCQQKCRTGTLEGN
YCSSDFVLAGTVITTITRD GSLHATVSIINIYKEGNLAIQQAGKNMSARLTVVCKQCPLLRR
GLNYIIMQVGEDGRGKIMPNSFIMMFKTKNQKLLDALKNKQC

Signal sequence:

amino acids 1-23

N-glycosylation site.

amino acids 355-359

Casein kinase II phosphorylation site.

amino acids 64-68, 142-146, 274-278

Tyrosine kinase phosphorylation site.

amino acids 199-208

N-myristoylation site.

amino acids 34-40, 35-41, 100-106, 113-119, 218-224, 289-295,
305-311, 309-315, 320-326, 330-336

Cell attachment sequence.

amino acids 149-152

FIGURE 39

CGGACGCGTGGCGGACGCGTGGCGCCACGGCGCCGCGGCTGGGCGGTGCTTCTT
CCTTCTCCGTGGCCTACGAGGGTCCCCAGCCTGGTAAAGATGGCCCCATGGCCCCGAAGG
GCCTAGTCCCAGCTGTGCTCTGGGCCTCAGCCTCTCCTCAACCTCCCAGGACCTATCTGG
CTCCAGCCCTCTCCACCTCCCCAGTCTTCTCCCCGCCTCAGCCCCATCCGTGTACACTG
CCGGGGACTGGTTGACAGCTTAACAAGGGCTGGAGAGAACCATCCGGGACAACCTTGAG
GTGGAAACACTGCCTGGGAGGAAGAGAATTGTCAAATACAAAGACAGTGAGACCCGCCTG
GTAGAGGTGCTGGAGGGTGTGCAGCAAGTCAGACTCGAGTGCCACCGCCTGGAGCT
GAGTGAGGAGCTGGTGGAGAGCTGGTGGTTACAAGCAGCAGGAGGCCGGACCTTTCC
AGTGGCTGTGCTCAGATTCCCTGAAGCTCTGCTGCCCGCAGGCACCTCGGGCCCTCTGC
CTTCCCTGTCTGGGGAACAGAGAGAGGCCCTGCGGTGGCTACGGCAGTGTGAAGGAGAAGG
GACACGAGGGGGCAGCGGCAGTGTGACTGCCAAGCCGGCTACGGGGTGAGGCCTGTGGCC
AGTGTGGCCTGGCTACTTGAGGCAGAACGCAACGCCAGCCATCTGGTATGTTGGCTTGT
TTTGGCCCTGTGCCGATGCTCAGGACCTGAGGAATCAAACGTGTTGCAATGCAAGAAGGG
CTGGGCCCTGCATCACCTCAAGTGTGAGACATTGATGAGTGTGGCACAGAGGGAGCCA
GTGGAGCTGACCAATTCTGCGTGAACACTGAGGGCTCCTATGAGTGCCGAGACTGTGCCAAG
GCCTGCCTAGGCTGCATGGGGCAGGCCAGGTGCTGTAAGAAGTGTAGCCCTGGCTATCA
GCAGGTGGCTCCAAGTGTCTCGATGTGGATGAGTGTGAGACAGAGGTGTGTCCGGAGAGA
ACAAGCAGTGTGAAAACACCGAGGGCGTTATCGCTGCATCTGTGCCGAGGGCTACAAGCAG
ATGGAAGGCATCTGTGTGAAGGAGCAGATCCAGAGTCAGCAGGCTTCTCAGAGATGAC
AGAAGACGAGTTGGTGGTGCAGCAGATGTTCTTGGCATCATCATCTGTGCACTGGCCA
CGCTGGCTGCTAAGGGCAGCTGGTGTACCCGCATCTCATTGGGCTGTGGCGGCCATG
ACTGGCTACTGGTTGTCAAGAGCAGTGCAGCGACTGGCTGGAGGGCTTCATCAAGGGCAGATA
ATCGCGGCCACCACCTGTAGGACCTCTCCCACCCACGCTGCCCGAGAGCTTGGCTGCC
TCCTGCTGGACACTCAGGACAGCTGGTTATTTGAGAGTGGGTAAGCACCCTACCTG
CCTTACAGAGCAGCCCAGGTACCCAGGCCGGCAGACAAGGCCCTGGGTAAAAAGTAGC
CCTGAAGGTGGATACCATGAGCTCTCACCTGGCGGGACTGGCAGGCTTCACAATGTGTGA
ATTTCAAAAGTTTCTTAATGGTGGCTGCTAGAGCTTGGCCCTGCTTAGGATTAGGTG
GTCCTCACAGGGTGGGCCATCACAGCTCCCTGCCAGCTGCATGCTGCCAGTTCTGT
TCTGTGTTCACACATCCCCACACCCATTGCCACTTATTATTCATCTCAGGAAATAAGA
AAGGTCTTGGAAAGTTAAAAAAAAAAAAAAAAAAAAAA

FIGURE 40

MAPWPPKGVLPAVLWGLSLFLNLPGPIWLQPSPPPQS PPPQPHPCHTCRGLVDSFNKGLER
TIRDNFGGGNTAWEENLSKYKDSETRLVEVLEGVCSKSDFECHRLLESELVESWWFHKQ
QEAPDLFQWLCSDSLKLCGPAGTFGPSCLPCCPGTERPCGGYGCCEGEGRGGSGHCDCQAG
YGGEACGQCGLGYFEAERNASHLVCACFGPCARCSGPPEESNCLQCKKGWALHHLKCVDIDE
CGTEGANCGADQFCVNTEGSYECRDCAKACLGCMGAGPGRCKCSPGYQQVGSKCLDVDECE
TEVCPGENKQCENTEGGYRCICAEGYKQMEGICVKEQIPESAGFFSEMTEDELVVLQQMFFG
IIICALATLAAKGDLVFTAIFIGAVAAMTGYWLSERSDRVLEGFIKGR

Signal sequence:

amino acids 1-29

Transmembrane domain:

amino acids 372-395

N-glycosylation site.

amino acids 79-83, 205-209

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 290-294

Casein kinase II phosphorylation site.

amino acids 63-67, 73-77, 99-103, 101-105, 222-226, 359-263

N-myristoylation site.

amino acids 8-14, 51-57, 59-65, 69-75, 70-76, 167-173, 173-179,
177-183, 188-194, 250-256, 253-259, 267-273, 280-286, 283-289,
326-332, 372-378, 395-401

Aspartic acid and asparagine hydroxylation site.

amino acids 321-333

EGF-like domain cysteine pattern signature.

amino acids 181-193

FIGURE 41

TGAGACCCTCCTGCAGCCTCTCAAGGGACAGCCCCACTCTGCCTCTTGCTCCTCCAGGGCA
GCACCATGCAGCCCCGTGGCTCTGCTGGCACTCTGGGTGTTGCCCTGGCCAGCCCCGGG
GCCGCCCTGACCAGGGAGCAGCTCCTGGCAGCCTGCTGCCAGCTGCAGCTCAAAGAGGT
GCCCACCCCTGGACAGGGCGACATGGAGGAGCTGGTCATCCCCACCCACGTGAGGGCCCAGT
ACGTGGCCCTGCTGCAGCGCAGCCACGGGACCGCTCCCGCGAAAGAGGTTAGCCAGAGC
TTCCGAGAGGTGGCCGGCAGGTTCTGGCGTTGGAGGCCAGCACACACCTGCTGGTGGTCGG
CATGGAGCAGCGCTGCCGCCAACAGCGAGCTGGTCAGGCCGTGCTGCCGTCTCCAGG
AGCCGGTCCCCAAGGCCGCGTGCACAGGCACGGCGGCTGTCCCCGCGCAGGCCCGGGCC
CGGGTGACCGTCGAGTGGCTGCGCGTCCCGACAGAGAGCGGCTGGAAGGCCTTCGACGTGACCGAGGCCGTGA
ACTTCTGGCAGCAGCTGAGCCGGCCCGGCAGCCGCTGCTGCTACAGGTGTCGGTCAGAGG
GAGCATCTGGGCCCGCTGGCGTCCGGCGCCACAAGCTGGTCCGCTTGCCCTCGCAGGGGGC
GCCAGCCGGCTTGGGAGCCCCAGCTGGAGCTGCACACCCCTGGACCTTGGGACTATGGAG
CTCAGGGCGACTGTGACCCCTGAAGCACCAATGACCGAGGGCACCCGCTGCTGCCGCCAGGAG
ATGTACATTGACCTGCAGGGATGAAGTGGGCCGAGAACTGGGTGCTGGAGCCCCCGGGCTT
CCTGGCTTATGAGTGTGGCACCTGCCGGCAGCCCCCGGAGGCCCTGGCCTTAAGTGGC
CGTTTCTGGGCCTCGACAGTCATGCCCTGGAGACTGACTCGCTGCCATGATCGTCAGC
ATCAAGGAGGGAGGCAGGACCAGGCCAGGTGGTCAGCCTGCCAACATGAGGGTGCAGAA
GTGCAGCTGTGCCTCGGATGGTGCCTCGTGCCAAGGAGGCTCAGCCATAGGCGCCTAGTG
TAGCCATCGAGGGACTTGACTTGTGTGTTCTGAAGTGGTGCAGGGTACCAAGGAGAGCTG
GCGATGACTGAACCTGCTGATGGACAAATGCTCTGTGCTCTAGTGAGCCCTGAATTGCTT
CCTCTGACAAGTTACCTCACCTAATTTGCTCTCAGGAATGAGAATCTTGGCCACTGGA
GAGCCCTGCTCAGTTCTCTATTCTACTGCACATATTCTAAGCACTTACAT
GTGGAGATACTGTAACCTGAGGGCAGAAAGCCANTGTGTCATTGTTACTTGTCCGTAC
TGGATCTGGCTAAAGTCCTCCACCACCACTCTGGACCTAACAGACCTGGGTTAAGTGTGGGT
TGTGCATCCCCAATCCAGATAATAAGACTTTGAAAACATGAATAAAACACATTATTCT
AAAA

FIGURE 42

MQPLWLCWALWVLPLASPGAAALTGEQLLGSLRLQLKEVPTLDRADMEELVIPTHVRAQYV
ALLQRSHGDRSRGKRFQSFRREVAGRFLALEASTHLLVFGMEQRLPPNSELVQAVLRLFQEP
VPKAALHRHGRLSPRSARARVTVEWLRVRDDGSNRTSLIDSRLVSVHESGWKAFDVTEAVNF
WQQLSRPRQPLLLQSVQREHLGPLASGAHKLVRFASQGAPAGLGEPQLELHTLDLGDYGAQ
GDCDPEAPMTEGTRCCRQEMYIDLQGMKWAENWVLEPPGFLAYECVGTCRQPPEALAFKWPF
LGPRQCIASETDSLPMIVSIKEGGRTRPQVVSLPNMRVQKCSCASDGALVPRRLQP

Signal sequence:

amino acids 1-18

N-glycosylation site.

amino acids 158-162

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 76-80

Casein kinase II phosphorylation site.

amino acids 68-72, 81-85, 161-165, 169-173, 319-323, 329-333

N-myristoylation site.

amino acids 19-25, 156-162, 225-231, 260-266, 274-280

Amidation site.

amino acids 74-78

TGF-beta family signature.

amino acids 282-298

FIGURE 43

GTCTGTTCCCAGGAGTCCTCGCGGCTGTTGTCAGTGGCCTGATCGCGATGGGACAAA
GGCGCAAGTCGAGAGGAAACTGTTGTCCTCTCATATTGGCGATCCTGTTGCTCCCTGG
CATTGGGCAGTGTACAGTGCACCTCTGAACCTGAAGTCAGAATTCTGAGAATAATCCT
GTGAAGTTGTCCTGTCCTACTCGGGCTTTCTTCTCCCCGTGGAGTGGAGTTGACCA
AGGAGACACCACCACTCGTTGCTATAATAACAAGATCACAGCTCCTATGAGGACCGGG
TGACCTTCTGCCAACCTGGTATCACCTCAAGTCCGTGACACGGGAAGACACTGGGACATAC
ACTTGTATGGTCTCTGAGGAAGGCGAACAGCTATGGGGAGGTCAAGGTCAAGCTCATCGT
GCTTGTGCCTCCATCCAAGCCTACAGTTAACATCCCCTCCTGCCACCATTGGGAACCGGG
CAGTGCTGACATGCTCAGAACAGATGGTCCCCACCTCTGAATAACACCTGGTCAAAGAT
GGGATAGTGTGCTACGAATCCAAAAGCACCCGTGCCTTCAGCAACTCTCCTATGTCT
GAATCCCACACAGGAGAGCTGGTCTTGATCCCCTGTCAAGCTCTGATAACTGGAGAACACA
GCTGTGAGGCACGGAATGGGTATGGGACACCCATGACTCAAATGCTGTGCGATGGAGCT
GTGGAGCGGAATGTGGGGTCATCGTGGCAGCCGTCTGTAACCCCTGATTCTCCTGGGAAT
CTTGGTTTTGGCATCTGGTTGCCTATAGCCGAGGCCACTTGACAGAACAAAGAAAGGGA
CTTCGAGTAAGAAGGTGATTACAGCCAGCCTAGTGCCGAAGTGAAGGAGAACCAAACAG
ACCTCGTCATTCTGGTGTGACCTGGTCGGCTACCGCCTATCATCTGCATTTGCCTTACT
CAGGTGCTACGGACTCTGGCCCTGATGTCTGTAGTTCACAGGATGCCATTGTCTTC
TACACCCCACAGGGCCCCCTACTTCTGGATGTGTTTAATAATGTCAGCTATGTGCC
ATCCTCCTTCATGCCCTCCCTCCCTTACCACTGCTGAGTGGCCTGGAACCTGTTAAA
GTGTTATTCCCCATTCTTGAGGGATCAGGAAGGAATCCTGGGTATGCCATTGACTTCCC
TTCTAAGTAGACAGCAAAATGGCGGGGTGCGAGGAATCTGCACTCAACTGCCACCTGGC
TGGCAGGGATCTTGAATAGGTATCTTGAGCTGGTTCTGGCTCTTCCTGTACTGAC
GACCAGGGCCAGCTGTTCTAGAGCGGAATTAGAGGCTAGAGCGGCTGAAATGGTTGTTGG
TGATGACACTGGGTCTTCCATCTCTGGGCCACTCTCTGTCTTCCATGGGAAGTG
CCACTGGATCCCTCTGCCCTGTCCCTGAATACAAGCTGACTGACATTGACTGTCTGT
GGAAAATGGGAGCTTGTGGAGAGCATAGTAAATTCAGAGAACCTGAAGCCAAAAG
GATTAAAACCGCTGCTCTAAAGAAAAGAAAATGGAGGCTGGCGCAGTGGCTACGCCTG
TAATCCCAGAGGCTGAGGCAGGCGGATCACCTGAGGTGGAGTTGGATCAGCCTGACCA
ACATGGAGAACCCCTACTGGAAATACAAAGTTAGCCAGGCATGGTGGTGCATGCCTGTAGTC
CCAGCTGCTCAGGAGCCTGGCAACAGAGCAAAACTCCAGCTCAAAAAAAA

FIGURE 44

MGTKAQVERKLLCLFILAILLCSLALGSVTVHSSEPEVRI PENNPVKLSCAYSGFSSPRVEW
KFDQGDTTRLVCYNNKITASYEDRVTFLPTGITFKSVTREDTGYTCMVSEEGGNSYGEVKV
KLIVLVPPSKPTVNIPSSATIGNRAVLTSEQDGSPPSEYTWFKDGI VMPTNPKSTRAFSNS
SYVLNPTTGEELVFDPLSASDTGEYSCEARNGYGTPMTSNAVRMEAVERNVGVIVAAVLVTLI
LLGILVFGIWFAYSRGHFDRTKKGTSSKKVIYSQPSARSEGFKQTSSFLV

Signal sequence:

amino acids 1-27

Transmembrane domain:

amino acids 238-255

N-glycosylation site.

amino acids 185-189

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 270-274

Casein kinase II phosphorylation site.

amino acids 34-38, 82-86, 100-104, 118-122, 152-156, 154-158,
193-197, 203-207, 287-291

N-myristoylation site.

amino acids 105-111, 116-122, 158-164, 219-225, 237-243, 256-262

FIGURE 45

CAGCGCGTGGCCGGCGCCGTGTTGGGACAGCATGAGCGGCGGTTGGATGGCGCAGGTTGGA
GCGTGGCGAACAGGGCTCTGGCCTGGCGCTGCTGCTGCTGCTCGGCCTCGGACTAGGCCT
GGAGGCCGCCGAGCCGCTTCCACCCGACCTCTGCCAGGCCAGGCCAGCTCAG
GCTCGTGCCACCCACCAAGTTCCAGTGCCGCACCAGTGGTTATGCGTGCCCCCACCTGG
CGCTGCGACAGGGACTTGGACTGCAGCGATGGCAGCGATGAGGAGGAGTGCAGGATTGAGCC
ATGTACCCAGAAAGGGCAATGCCAACCGCCCCCTGGCCTCCCCTGCCCTGCACCGCGTCA
GTGACTGCTCTGGGGAACTGACAAGAAACTGCGCAACTGCAGCCGCTGGCCTGCCTAGCA
GGCGAGCTCCGTTGCACGCTGAGCGATGACTGCATTCACTCACGTGGCGCTGCGACGGCCA
CCCAGACTGTCCCGACTCCAGCGACGAGCTCGGCTGTGGAACCAATGAGATCCTCCGGAAG
GGGATGCCACAACCATGGGGCCCCCTGTGACCCCTGGAGAGTGTACCTCTCAGGAATGCC
ACAACCATGGGGCCCCCTGTGACCCCTGGAGAGTGTCCCTCTGTCGGAATGCCACATCCTC
CTCTGCCGGAGACCAGTCTGGAAGCCAACTGCCTATGGGTTATTGCAGCTGCTGCGGTGC
TCAGTGCAAGCCTGGTCACCGCCACCCCTCCTCTTTGTCCTGGCTCCGAGCCAGGAGCGC
CTCCGCCACTGGGTTACTGGTGGCCATGAAGGAGTCCCTGCTGTCAGAACAGAACAGAC
CTCGCTGCCTGAGGACAAGCAACTGCCACCGTCACTCACGCCCTGGCGTAGCCGGACA
GGAGGAGAGCAGTGATGCGGATGGGTACCCGGGCACACCAGCCCTCAGAGACCTGAGTTCTT
CTGGCCACGTGGAACCTCGAACCCGAGCTCCTGCAGAAGTGGCCCTGGAGATTGAGGGTCCC
TGGACACTCCCTATGGAGATCCGGGGAGCTAGGATGGGAACCTGCCACAGCCAGAACAGAC
GGGCTGGCCCCAGGCAGCTCCAGGGGGTAGAACGCCCTGTGCTTAAGAACACTCCCTGCTG
CCCCGTCTGAGGGTGGCGATTAAAGTTGCTTC

FIGURE 46

MSGGWMAQVGAWRTGALGLALLLLGLGLGLEAAASPLSTPTSAQAAGPSSGSCPPTKFQCR
TSGLCVPLTWRCRDLDCCSDGSDEEECRIEPCTQKGQC PPPPGLPCPCTGVSDCSGGTDKKL
RNCSRLA CLAGELRCTL SDDCIPLTWRCDGHPDCPDSSDELCGGTNEILPEGDATTMGPPVT
LESVTSLRNATTM GPPVTLES VPSVGNATSSSAGDQSGSPTAYGVIAAAAVLSASLVTATLL
LLSWLRAQERLRPLGLLVAMKESLLLSEQKTSLP

Signal sequence:

amino acids 1-30

Transmembrane domain:

amino acids 230-246

N-glycosylation site.

amino acids 126-130, 195-199, 213-217

Casein kinase II phosphorylation site.

amino acids 84-88, 140-144, 161-165, 218-222

N-myristoylation site.

amino acids 3-9, 10-16, 26-32, 30-36, 112-118, 166-172, 212-218,
224-230, 230-236, 263-269

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 44-55

Leucine zipper pattern.

amino acids 17-39

FIGURE 47

CCACCGCGTCCGGCTCGCTCGCGCAGCGGCGGAGCAGAGGTGCACAGATGCC
GTTAGACTGGCGGGGGAGGAGGAGGAAGGAAGCTGCATGCATGAGACCCACAGA
CTCTTGCAAGCTGGATGCCCTCTGTGGATGAAAGATGTATCATGAAATGAACCCGAGCAATG
GAGATGGATTCTAGAGCAGCAGCAGCAGCAGCAACCTCAGTCCCCCAGAGACTCTG
GCCGTGATCCTGTGGTTTCAGCTGGCGCTGTGCTTCGCCCTGCACAGCTCACGGCGGGTT
CGATGACCTCAAGTGTGCTGACCCGGCATTCCGAGAATGGCTTCAGGACCCCCAGCG
GAGGGGTTTCTTGAGGCTCTGTAGCCGATTTCACTGCCAAGACGGATTCAAGCTGAAG
GGCGCTACAAAGAGACTGTGTTGAAGCATTAAATGGAACCCTAGGCTGGATCCAAGTGA
TAATTCCATCTGTGTGCAAGAAGATTGCCGTATCCCTCAAATCGAAGATGCTGAGATTATA
ACAAGACATATAGACATGGAGAGAACGTAATCATCACTTGTATGAAGGATTCAAGATCCGG
TACCCCGACCTACACAATATGGTTTCATTATGTCGCGATGATGGAACGTGGAATAATCTGCC
CATCTGTCAAGGCTGCCCTGAGACCTCTAGCCTTTCTAATGGCTATGTAAACATCTCTGAGC
TCCAGACCTCCTCCCGTGGGACTGTGATCTCCTATCGCTGCTTCCGGATTAAACTT
GATGGGTCTGCGTATCTGAGTGCTTACAAAACCTTATCTGGCGTCCAGCCCACCCGGTG
CCTTGCTCTGGAAGCCAAGTCTGTCCACTACCTCAAATGGTAGTCACGGAGATTCTGTCT
GCCACCCGCGGCCCTGTGAGCGCTACAACCACCGAACTGTGGTAGTTACTGCGATCCT
GGCTACAGCCTCACCAAGCGACTACAAGTACATCACCTGCCAGTATGGAGAGTGTTCTTC
TTATCAAGTCTACTGCATCAAATCAGAGCAAACGTGGCCAGCACCCATGAGACCCCTCTGA
CCACGTGGAAGATTGTGGCGTTCACGGCAACCAGTGTGCTGGTGCTGCTCGTCATC
CTGGCCAGGATGTTCCAGACCAAGTTCAAGGCCACTTCCCCCAGGGGCTCCCCGGAG
TTCCAGCAGTGACCCCTGACTTGTGGTAGACGGCGTGCCTCATGCCCTCTGTGGCCAG
ACGAAGCTGTGAGTGGCGCTTGAGTGCTTAGGCCCGGTACATGCCCTCTGTGGCCAG
GGCTGCCCTTACCGTGGACGACCAGAGCCCCCAGCATAACCCGGCTCAGGGACACGGA
CACAGGCCAGGGAGTCAGAAACCTGTGACAGCGTCTCAGGCTCTGAGCTGCTCCAAA
GTCTGTATTCACCTCCAGGTGCCAAGAGAGCACCCACCTGCTGGACAACCTGACATA
ATTGCCAGCACGGCAGAGGAGGTGGCATCCACCAGCCCAGGCATCCATGCCACTGGGT
GTTGTTCTAAGAAACTGATTGATTAAAAAATTCCAAAGTGTCTGAAGTGTCTTTCAA
ATACATGTTGATCTGTGGAGTTGATTCTTCTCTGGTTTAGACAAATGTAAACAA
AGCTCTGATCCTAAAATTGCTATGCTGATAGAGTGGTGAGGGCTGGAAGCTGATCAAGTC
CTGTTCTTCTTGACACAGACTGATTAAAATTAAAAGNAAAAAA

FIGURE 48

MYHGMNPSNGDGFLEQQQQQQPQSPQRLLAVILWFQLALCFGPAQLTGGFDDLQVCADPGI
PENGFRTPSGVFFEGSVARFHQCQDGFKLKGAHKRLCLHFNGTLGWI PSDNSICVQEDCRI
PQIEDAEIHNKTYRHGEKLIITCHEGFKIRYPDLHNMSLCRDDGTWNNLPICQGCLRPLAS
SNGYVNISELQTSFPVGTVISYRCFPGFKLDGSAYLECLQNLIWSSSPRCLALEAQVCPLP
PMVSHGDFVCHPRPCERYNHGTVEFYCDPGYSLTSDYKYITCQYGEWFPSYQVYCIKSEQT
WPSTHETLLTTWKIVAFATSVLLVLLVILARMFQTKFKAHFPPRGPPRSSSDPDFVVVD
GVPVMLPSYDEAVSGGLSALGPGYMASVGQGCPLPVDDQSPPAYPGSGDTDTGPGESETCDS
VSGSSELLQSLYSPPRCQESTHPASDNPDI IASTAEEVASTSPGIHHAHWVLFLRN

Signal sequence:

amino acids 1-41

Transmembrane domain:

amino acids 325-344

N-glycosylation site.

amino acids 104-108, 134-138, 192-196

Casein kinase II phosphorylation site.

amino acids 8-12, 146-150, 252-256, 270-274, 313-317, 362-366,
364-368, 380-384, 467-471, 468-472

N-myristoylation site.

amino acids 4-10, 61-67, 169-175, 203-209, 387-393, 418-424,
478-484

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 394-405

FIGURE 49

CCCACGCGTCCGCTCCGC~~CC~~CTCCCCCGCCTCCCGTGC~~GG~~TCCGTGGCCTAGAGA
TGCTGCTGCCCGGTTGCAGTTGTCGCGCACGCCTCTGCCCGCCAGCCGCTCCACCGCCGT
AGCGCCCGAGTGT~~GGGGGG~~CGCACCCGAGTCGGGCCATGAGGCCGGAACCGCC~~T~~ACAGG
CCGTGCTGCCGTGCTGGTGGGCTGCCGCCGACGGGTCGCC~~T~~GCTGAGT~~GC~~C
TCGGATTGGACCTCAGAGGAGGGCAGCCAGTCTGCCGGGAGGGACACAGAGGCC~~T~~TTGTTA
TAAAGTCATTACTTCATGATACTTCTGAAGACTGAAC~~TT~~GAGGAAGCCAAGAACGCCT
GCAGGAGGGATGGAGGCCAGCTAGTCAGCATCGAGTCTGAAGATGAACAGAAA~~CT~~GATAGAA
AAGTTCA~~T~~GGAAAACCTCTGCCATCTGATGGT~~GACTT~~CTGGATTGGCTCAGGAGGCGTGA
GGAGAAACAAAGCAATAGCACAGCCTGCCAGGAC~~CTT~~TATGCTGGACTGATGGCAGCATAT
CACAATTTAGGA~~A~~CTGGTATGTGGATGAGCCGT~~CCT~~GC~~GG~~CAGCGAGGTCTGCC~~T~~GGTCATG
TACCATCAGCCATCGGCACCCGCTGGCATCGGAGGCC~~CT~~ACATGTTCCAGT~~GGA~~ATGATGA
CCGGTGCAACATGAAGAACAA~~TT~~CATTGCAA~~AT~~ATTCTGATGAGAACACCAGCAGT~~CC~~TT
CTAGAGAAGCTGAAGGTGAGGAAACAGAGCTGACAACAC~~CT~~TACTTCCAGAAGAACACAG
GAAGAAGATGCCAAAAAAACATTAAAGAAAGTAGAGAACG~~CT~~GCCTGAATCTGCC~~T~~ACAT
CCTAATCCCCAGCATT~~CCC~~CTCTCCTCCT~~CC~~TTGTGGT~~CACCAC~~AGTTGTAT~~TT~~GGTT
GGATCTGTAGAAAAAGAAAACGGGAGCAGCCAGAC~~CC~~CTAGCACAAAGAACACACC~~ATC~~
TGGCC~~CT~~CTCCTCACCAGGAAACAGCCGGAC~~T~~AGAGGT~~T~~ACAAT~~TC~~CATAAGAAAACA
AAGCGAAGCTGACTTAGCTGAGACCCGGCCAGAC~~CT~~TGAAGAAT~~TT~~TCA~~CC~~GAGTGT~~TT~~
CGGGAGAAGCCACT~~CC~~CGATGACATGT~~CTT~~GT~~ACT~~ATGACAACATGGCTGTGAACCC~~ATC~~
GAAAGTGGTTGT~~GACT~~CTGGT~~GAGCGT~~GGAGAGT~~GG~~ATT~~GT~~GACCAATGAC~~AT~~TATGA
GTTCT~~CCC~~CAGAC~~AA~~ATGGGAGGAGTAAGGAGT~~CT~~GGATGGT~~GG~~AAAATGAAATATATG
GTTATTAGGACATATAAA~~AA~~ACTGAA~~AC~~TGACAACAA~~AT~~GGAAAAGAA~~AT~~GATAAGC~~AA~~ATC
CTCTTAT~~TT~~TCTATAAGGAAA~~AT~~ACACAGAAGGT~~T~~ATGAACAAGCTTAGATCAGGT~~CCT~~GT
GGATGAGCATGTGGT~~CCCC~~ACGAC~~CT~~C~~T~~GGAC~~CCCC~~ACGTT~~GG~~CTGTAT~~CCTT~~TAT
CCCAGCCAGTCATCCAGCTCGAC~~CT~~TATGAGAAGGT~~AC~~CTGCCAGGT~~CT~~GGCACATAGTA
GAGTCTCAATAATGTCACT~~GG~~TTGGTTGT~~T~~ATCTAAC~~TT~~TAAGGGACAGAGCTTAC~~CT~~G
GCAGTGATAAAAGATGGGCTGTGGAGCTGGAAAACCAC~~CT~~CTGTT~~TT~~CC~~T~~GCTCTATACAG
CAGCACATATTATCATACAGACAGAAA~~AT~~CCAGAAT~~TT~~CAAAGCCCACATATGGTAGCACAG
GTTGGC~~CT~~GTGCATGGCAATTCTCATATCTGTT~~TT~~CAAAGAATAAA~~AT~~CAAATAAAGA
GCAGGAAAAAA

FIGURE 50

MRPGTALQAVLLAVLLVGLRAATGRLLSASDLRGGQPVCRGQTQRPCYKVIYFHDTSRRL
NFEEAKEACRRDGGQLVSIESEDEQKLIEKFIENLLPSDGDFWIGLRRREEKQSNSTACQDL
YAWTDGSISQFRNWYVDEPSCGSEVCVVMYHQPSAPAGIGGPYMFQWNDDRCNMKNFICKY
SDEKPAVPSREAEGEETELTPVLPEETQEEDAKTFKESREAALNAYILIPSIPLLLL
VTTVVCWWICRKRKREQPDNSTKKQHTIWPSPHQGNSPDLEVYNVIRKQSEADLAETRPDL
KNISFRVCSGEATPDDMSCDYDNMAVNPSFGVTLVSVESGFVTNDIYEFSQDQMGRSKES
GWVENEIYGY

Signal sequence:

amino acids 1-21

Transmembrane domain:

amino acids 235-254

N-glycosylation site.

amino acids 117-121, 312-316

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 296-300

Casein kinase II phosphorylation site.

amino acids 28-32, 30-34, 83-87, 100-104, 214-218, 222-226,
299-303, 306-310, 323-327

N-myristoylation site.

amino acids 18-24, 37-43, 76-82, 146-152

FIGURE 51

GGGGTCTCCCTCAGGGCCGGGAGGCACAGCGGTCCCTGCTGAAGGGCTGGATGTACGC
ATCCGCAGGTTCCCGCGGACTTGGGGCGCCCGCTGAGCCCCGGCGCCCGAGAAGACTTGT
GTTTCGCTCCTGCAGCCTAACCCGGAGGGCAGCGAGGGCCTACCACCATGATCATGGTGT
GTTCAGCATGCGCTTGTGGACCCCAGTGGCGTCCCTGACCTCGCTGGCGTACTGCCCTGCACC
AGCGGCGGGTGGCCCTGGCCGAGCTGCAGGAGGCCGATGCCAGTGTCCGGTCACCGCAGC
CTGCTGAAGTTGAAAATGGTGCAGGT~~CGT~~GTTCGACACGGGGCTCGGAGTCCTCTCAAGCC
GCTCCCGCTGGAGGAGCAGGTAGAGTGGAACCCCCAGCTATTAGAGGTCCCACCCAAACTC
AGTTTGATTACACAGTCACCAATCTAGCTGGTGGTCCGAAACCATAATTCTCCTTACGACTCT
CAATACCATGAGACCACCC~~T~~GAAGGGGGCATGTTGCTGGCAGCTGACCAAGGTGGGCAT
GCAGCAAATGTTGCCTTGGGAGAGAGACTGAGGAAGAACTATGTGGAAAGACATTCCCTTC
TTTCACCAACCTCAACCCACAGGAGGT~~CTT~~ATT~~C~~GGTCCACTAACATTTCGGAATCTG
GAGTCCACCCGTTGTTGCTGGCTGGCTTTCCAGTGT~~C~~AGAAAGAAGGACCCATCATCAT
CCACACTGATGAAGCAGATT~~C~~AGAAGT~~CTT~~GTAT~~CC~~AACTACCAAAAGCTGCTGGAGCCTGA
GGCAGAGAACCAAGAGGCCGGAGGCAGACTGCCTCTTACAGCCAGGAATCTCAGAGGATTG
AAAAAGGTGAAGGACAGGATGGCATTGACAGTAGT~~G~~ATAAAAGTGGACTTCTTCATCCTCCT
GGACAACGTGGCTGCCGAGCAGGCACACAACCTCCAAAGCTGCCCATGCTGAAGAGATTG
CACGGATGATCGAACAGAGAGACTGTGGACACATCCTGTACATACTGCCAAGGAAGACAGG
GAAAGTCTTCAGATGGCAGTAGGCCATT~~C~~CCACATCCTAGAGAGCAAC~~T~~GCTGAAAGC
CATGGACTCTGCCACTGCCCGACAAGATCAGAAAGCTGTATCTATGCGGCTCATGATG
TGACCTTCATACCGCTTTAATGACCC~~T~~GGGATT~~TTT~~GACCACAAATGCCACCGTTGCT
GTTGACCTGACCATGGAAC~~TT~~TACCAGCACCTGGAAATCTAAGGAGTGGTTGTGCAGCTCTA
TTACCACGGGAAGGAGCAGGTGCCGAGAGGTTGCCCTGATGGCTCTGCCGCTGGACATGT
TCTTGAATGCCATGTCAGTTATACCTTAAGCCCAGAAAAATACCATGCACTCTGCTCTCAA
ACTCAGGTGATGGAAGTTGGAAATGAAGAGTAACTGATTATAAAAGCAGGATGTGTTGATT
TTAAAATAAGTGCCTTATACAATG

FIGURE 52

MITGVFSMRLWTPVGVLTSAYCLHQRRVALAELQEADGQCPVDRSLLKLKMVQVVFRHGAR
SPLKPLPLEEQVEWNPQLLEVPPQTQFDYTVTNLAGGPKPYSPYDSQYHETTLKGGMFAGQL
TKVGMQQMFALGERLRKNYVEDIPFLSPTFNQEVFIRSTNIFRNLESTRCLLAGLFQCQKE
GPIIIHTDEADSEVLYPNYQSCWSLRQRTRGRQTAISLQPGISEDLKKVKDRMGIDSSDKVD
FFILLDNVAEQAHLNPSCPMLKRFARMIEQRAVDTSLYILPKEDRESLQMAVGPFHLILES
NLLKAMDSATAPDKIRKLYLYAAHDVTFIPLLMTLGIFDHKWPPFAVDLTMEYLQHLESKEW
FVQLYYHGKEQVPRGCPDGLCPLDMFLNAMSVTLSPEKYHALCSQTQVMEVGNEE

Signal sequence:

amino acids 1-23

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 218-222

Casein kinase II phosphorylation site.

amino acids 87-91, 104-108, 320-324

Tyrosine kinase phosphorylation site.

amino acids 280-288

N-myristoylation site.

amino acids 15-21, 117-123, 118-124, 179-185, 240-246, 387-393

Amidation site.

amino acids 216-220

Leucine zipper pattern.

amino acids 10-32

Histidine acid phosphatases phosphohistidine signature.

amino acids 50-65

FIGURE 53

CTCCTCTAACATACTTGCAGCTAAACTAAATATTGCTGCTGGGGACCTCCTTAGCCT
TAAATTCAGCTCATCACCTCACCTGCCTGGTCATGGCTCTGCTATTCTCCTTGATCCTT
GCCATTTGCACCAGACCTGGATTCCCTAGCGTCTCCATCTGGAGTGC~~GG~~CTGGTGGGGGCCT
CCACCGCTGTGAAGGGCGGGTGGAGGTGGAACAGAAAGGCCAGTGGGGACC~~G~~TGTGATG
ACGGCTGGGACATTAAGGACGTGGCTGTGTTGTGCCGGAGCTGGCTGTGGAGCTGCCAGC
GGAACCCCTAGTGGTATTGTATGAGCCACCAGCAGAAAAAGAGCAAAGGT~~C~~TCATCCA
ATCAGTCAGTTGCACAGGAACAGAAGATA~~C~~ATTGGCTCAGTGTGAGCAAGAAGAAGTTATG
ATTGTTCACATGATGAAGATGCTGGGCATCGTGTGAGAACCCAGAGAGCTTTCTCCCCA
GTCCCAGAGGGTGT~~C~~AGGCTGGCTGACGGCCCTGGCATTGCAAGGGAC~~G~~CGT~~G~~GAAGT~~G~~A
GCACCAGAACCA~~G~~GTGGTACCGTGTGCCAGACAGGCTGGAGCCTCCGGCCGAAAGGTGG
TGTGCCGGCAGCTGGGATGTGGGAGGGCTGTACTGACTCAAAAACGCTGCAACAAGCATGCC
TATGGCCGAAAACCCATCTGGCTGAGCCAGATGT~~C~~ATGCTCAGGACGAGAAGCAACC~~T~~TC
GGATTGCC~~C~~TTCTGGGC~~C~~TTGGGGAAAGAACAC~~C~~TGCAACC~~A~~TGATGAAGACACGTGGTCG
AATGTGAAGATCC~~C~~TTGACTGAGACTAGTAGGAGGAGACAA~~C~~CTCTGCTCTGGCGACTG
GAGGTGCTGCACAAGGGCGTATGGGCTCTGTCTGTGATGACA~~A~~CTGGGAGAAAAGGAGGA
CCAGGTGGTATGCAAGCAACTGGGCTGTGGGAAGTCCCTCTCCCTC~~C~~TCAGAGACCGGA
AATGCTATGCC~~C~~CTGGGTTGGCCG~~C~~ATCTGGCTGGATAATGTC~~G~~TCAGGGAGGAG
CAGTCCCTGGAGCAGTGC~~C~~AGCACAGATT~~T~~GGGGTTTCACGACTGCACCCACCAGGAAGA
TGTGGCTGT~~C~~ATCTGCTCAGTGTAGGTGGGCATCATCTAATCTGTTGAGTGCCTGAATAGAA
GAAAAACACAGAACAGAACGGAGCATTACTGTCTACATGACTGCATGGGATGAACACTGATCT
TCTTCTGCC~~C~~TTGGACTGGACTTATACTTGGT~~G~~CCCTGATTCTCAGGC~~C~~TTCAGAGTTGG
ATCAGAACTTACAACATCAGGTCTAGTTCTCAGGCCATCAGACATAGTTGGA~~A~~CTACATCA
CCACCTTC~~C~~TATGTCTCCACATTGCACACAGCAGATTCCCAGC~~C~~CTCCATAATTGTGT~~T~~
CAACTACTAAATACATTCTCACACACACACACACACACACACACACACACATA
CACCA~~T~~TGTC~~C~~TGTTCTGAAAGAA~~C~~CTGACAAAATACAGATT~~T~~GGTACTGAAAGAGA
TTCTAGAGGAAC~~G~~GAATT~~T~~AAGGATAAATT~~T~~CTGAATTGGTTATGGGTTCTGAAATTG
GCTCTATAATCTAATTAGATATAAAATTCTGGTAAC~~T~~TATT~~T~~ACAATAATAAGATAGC~~A~~
TATGTGTT~~C~~AA

FIGURE 54

MALLFSLILAICTRPGFLASPSGVRLVGGHLRCEGRVEEQKGQWGTVCDDGWDIKDVAVL
RELGCGAASGTPSGILYEPPAEKEQKVLIQSVSCTGTEDTLAQCEQEEVYDCSHDEDAGASC
ENPESSFSPVPEGVRLADGPGHCKGRVEVKHQNQWYTVCQTGWSLRAAKVVCRQLGCGRAVL
TQKRCNKHAYGRKPIWLSQMCSGREATLQDCPSGPWGKNTCNHDEDTWVECEDPDFDLRLVG
GDNLCSGRLEVHKGVWGSVCDDNWGEKEDQVVCKQLGCGKSLSPSFRDRKCYGPGVGRIDL
DNVRCSGEEQSLEQCQHRFWGFHDCTHQEDVAVICSV

Signal sequence:

amino acids 1-15

Casein kinase II phosphorylation site.

amino acids 47-51, 97-101, 115-119, 209-213, 214-218, 234-238,
267-271, 294-298, 316-320, 336-340

N-myristoylation site.

amino acids 29-35, 43-49, 66-72, 68-74, 72-78, 98-104, 137-143,
180-186, 263-269, 286-292

Amidation site.

amino acids 196-200

Speract receptor repeated domain signature.

amino acids 29-67, 249-287

FIGURE 55

ACTGCACTCGGTTCTATCGATTGAATTCCCCGGGGATCCTCTAGAGATCCCTGACCTCGAC
CCACCGCGTCCCGGGACCGCGTGGCGGACCGCGTGGGCCGGCTACCAGGAAGAGTCTGCCGAAG
GTGAAGGCCATGGACTTCATCACCTCCACAGCCATCCTGCCCTGCTGTTGGCTGCCCTGGG
CGTCTCGGCCTCTTCCGGCTGCTGCAGTGGGTGCGCGGGAAAGGCCTACCTGCGGAATGCTG
TGGTGGTGATCACAGGCGCCACCTCAGGGCTGGCAAAGAATGTGAAAAGTCTTCTATGCT
GCGGGTGCTAAACTGGTGCTCTGTGGCCGGAAATGGTGGGCCCTAGAACAGCTCATCAGAGA
ACTTACCGCTTCTCATGCCACCAAGGTGCAGACACACAAGCCTTACTTGGTGACCTTCGACC
TCACAGACTCTGGGCCATAGTTGCAGCAGCTGAGATCCTGCAGTGCTTGGCTATGTC
GACATACTTGTCAACAATGCTGGATCAGCTACCGTGGTACCATCATGGACACACCACAGTGG
TGTGGACAAGAGGGTCATGGAGACAAACTACTTGGCCCAGTGCTCTAACGAAAGCACTCC
TGCCCTCCATGATCAAGAGGGAGGAAGGCCACATTGTCGCCATCAGCAGCATCCAGGGCAAG
ATGAGCATTCTTTGATCAGCATATGCAGCCTCCAAGCACGCAACCCAGGCTTCTTG
CTGTCTCGTGCCGAGATGGAACAGTATGAAATTGAGGTGACCGTCATCAGCCCCGGCTACA
TCCACACCAACCTCTGTAAATGCCATCACCGCGATGGATCTAGGTATGGAGTTATGGAC
ACCACACAGCCCAGGGCGAAGCCCTGTGGAGGTGGCCAGGATGTTCTGCTGCTGTGG
GAAGAAGAAGAAAGATGTGATCCTGGCTGACTTAAGCAGCTGCCTTGGCTGTTATCTTC
CTCTGGCTCCTGGCTCTTCAGCCTCATGGCCTCCAGGGCCAGAAAAGAGCGGAAATCC
AAGAACTCCTAGTACTCTGACCAGCCAGGGCAGGGCAGAGAACAGCAGCACTCTTAGGCTTGC
TTACTCTACAAGGGACAGTTGCATTGAGACTTTAATGGAGATTGCTCTACAAGTGG
AAAGACTGAAGAAACACATCTGTGCAGATCTGCTGGCAGAGGACAATAAAAACGACAACA
AGCTTCTCCCAGGGTGAGGGAAACACTTAAGGAATAATATGGAGCTGGGTTAACACT
AAAAACTAGAAATAAACATCTCAAACAGTAAAAAAAAAAAGGGCGGCCGCACTCTAG
AGTCGACCTGCAGAAGCTTGGCCGCCATGGCCCAACTTGGTTATTGCAGCTTATAATGGTTAC

FIGURE 56

MDFITSTAILPLLFGCLGVFGLFRLLQWVRGKAYLRNAVVTGATSGLGKECAKVFYAAGA
KLVLCGRNGGALEELIRELTASHATKVQTHKPYLVTFDLTDGAI
VAAAEEILQCFGYVDIL
VNNAGISYRGTIMDTTVVDKRVMETNYFGPVALTKALLPSMIKRRQGHIVAISSIQGKMSI
PFRSAYAASKHATQAFFDCLRAEMEQYEIEVTVISPGYIHTNLSVNAITADGSRYGVMDTTT
AQGRSPVEVAQDVLAAVGKKKDVLADLLPSLAVYLRTLAPGLFFSLMASRARKERKSNS

Signal sequence:

amino acids 1-21

Transmembrane domain:

amino acids 104-120, 278-292

N-glycosylation site.

amino acids 228-232

Glycosaminoglycan attachment site.

amino acids 47-51

Casein kinase II phosphorylation site.

amino acids 135-139, 139-143, 253-257

Tyrosine kinase phosphorylation site.

amino acids 145-153, 146-153

N-myristoylation site.

amino acids 44-50, 105-111, 238-244, 242-248, 291-297

Amidation site.

amino acids 265-269

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 6-17

FIGURE 57

CCACCGCGTCCGCTGGTGTAGATCGAGCAACCCTCTAAAAGCAGTTAGAGTGGTAAAAAA
AAAAAAAAAACACACCAAACGCTCGCAGCCACAAAAGGGATGAAATTCTCTGGACATCCTC
CTGCTTCTCCCGTTACTGATCGTCTGCTCCCTAGAGTCCTCGTGAAGCTTTATTCTAA
GAGGAGAAAATCAGTCACCGCGAAATCGTGCTGATTACAGGAGCTGGCATGGAATTGGGA
GACTCGACTGCCATGAATTGCTAAACTAAAAGCAAGCTGGTCTCTGGATAAATAAG
CATGGACTGGAGAACAGCTGCCAATGCAAGGACTGGTGCCAGGTTCATACCTTGT
GGTAGACTGCAGCAACCGAGAAGATATTACAGCTCTGCAAAGAAGGTGAAGGCAGAAATTG
GAGATGTTAGTATTTAGTAAATAATGCTGGTAGTCTATACATCAGATTGTTGCTACA
CAAGATCCTCAGATTGAAAAGACTTTGAAGTTAATGTACTTGCACATTCTGGACTACAAA
GGCATTCTCCTGCAATGACGAAGAATAACCACCATGGCCATATTGTCACTGTGGCTTCGGCAG
CTGGACATGTCTCGTCCCCTCTTACTGGCTACTGTTCAAGCAAGTTGCTGTTGGA
TTTCATAAAACTTGACAGATGAACTGGCTGCCTACAAATAACTGGAGTCAAAACACATG
TCTGTGTCCTAATTCGTAACACTGGCTTCATCAAAATCCAAGTACAAGTTGGACCCA
CTCTGGAACCTGAGGAAGTGGTAAACAGGCTGATGCATGGATTCTGACTGAGCAGAAGATG
ATTTTATTCCATCTCTATAGCTTTTAACAACATTGGAAAGGATCCTCCTGAGCGTTT
CCTGGCAGTTAAAACGAAAATCAGTGTAAAGTTGATGCAGTTATTGGATATAAAATGA
AAGCGCAAAGCACCTAGTTCTGAAAACTGATTACCAGGGTTAGGTTGATGTCATCTA
ATAGTGCAGAATTTAATGTTGAACTTCTGTTTTCTAATTATCCCCATTCTCAATA
TCATTTTGAGGCTTGGCAGTCTCATTACTACCAACTGTTCTTAGCCAAAAGCTGATT
ACATATGATATAAACAGAGAAACCTTAGAGGTGACTTAAGGAAAATGAAGAAAAAGAA
CCAAAATGACTTTATTAAAATAATTCCAAGATTATTGATGGCTCACCTGAAGGCTTGCAA
AATTGTACCATAACCGTTATTAAACATATATTTTATTGATTGACTAAATTGTT
ATAATTGTGTTCTTTCTGTTCTACATAAAATCAGAAACTCAAGCTCTCTAAATAAAA
TGAAGGACTATATCTAGGGTATTCAACAATGAATATCATGAACTCTCAATGGTAGGTT
ATCCTACCCATTGCCACTCTGTTCCTGAGAGATACCTCACATTCAATGCCAAACATTCT
GCACAGGGAAGCTAGAGGTGGATACACGTGTTGCAAGTATAAAAGCATCATGGGATTAAAG
GAGAATTGAGAGAATGTACCCACAAATGGCAGCAATAATAAATGGATCACACTTAAAAAAA
AA
AA

FIGURE 58

MKFLLDILLPLLIVCSLESFVKLFIPKRRKSVTGEIVLITGAGHGIGRLTAYEFAKLKSK
LVLWDINKHGLEETAAKCKGLGAKVHTFVVDCSNREDIYSSAKVKAEIGDVSI
LVNNAGVV
YTSDLFATQDPQIEKTFEVNVLAHFWTTKAFLPAMTKNNHGHIVTVASAAGHVS
VPFLLAYC
SSKFAAVGFHKTLTDELAALQITGVKTTCLCPNFVNTGFIKNPSTS
LGPTLEPEEVVNRLMH
GILTEQKMI FIPSSIAFLTTLERILPERFLAVLKRKISVKFDAVIGYKMKAQ

Signal sequence:

amino acids 1-19

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 30-34, 283-287

Casein kinase II phosphorylation site.

amino acids 52-56, 95-99, 198-202, 267-271

N-myristoylation site.

amino acids 43-49, 72-78, 122-128, 210-216

FIGURE 59

CCACCGCGTCCGGACCGTGGGCGACTAGTTAGATCGCGAGCGGCCGCCGCGCTC
AGGGAGGAGCACCGACTGCGCCGCACCCCTGAGAGA**ATG**TTGGTGCCTAGTGGAAAGGTGATTG
TTTCGCTGGTCTGTTGATGCCCTGGCCCTGTGATGGGCTGTTCGCTCCCTACAGAAGT
GTTTCCATGCCACCTAAGGGAGACTCAGGACAGCCATTTCCTCACCCCTTACATTGAAGC
TGGGAAGATCCAAAAGGAAGAGAATTGAGTTGGTCCGGCCCTTCCCAGGACTGAACATGA
AGAGTTATGCCGGCTCCTCACCGTGAATAAGACTTACAACAGCAACCTCTTCTGGTTC
TTCCCAGCTCAGATACAGCCAGAAGATGCCAGTAGTTCTCTGGCTACAGGGTGGGCCGGG
AGGTTCATCCATGTTGGACTCTTGGAACATGGCCTTATGTTGTCACAAGTAACATGA
CCTTGCCTGACAGAGACTTCCCTGGACCACAACGCTCTCCATGCTTACATTGACAATCCA
GTGGGCACAGGCTTCAGTTTACTGATGATAACCCACGGATATGCAGTCATGAGGACGATGT
AGCACGGGATTATACAGTGCACAAATTCAAGTTTCAGATATTCCTGAATATAAAAATA
ATGACTTTATGTCACTGGGAGTCTTATGCAGGGAAATATGTGCCAGCCATTGCACACCTC
ATCCATTCCCTCAACCCCTGTGAGAGAGGTGAAGATCAACCTGAACGGAATTGCTATTGGAGA
TGGATATTCTGATCCGAATCAATTATAGGGGCTATGCAGAAATTCTGTACCAAATTGGCT
TGTTGGATGAGAACAAAAAGTACTTCCAGAAGCAGTGCATGAATGCATAGAACACATC
AGGAAGCAGAACTGGTTGAGGCCTTGAAATACTGGATAAAACTACTAGATGGCAGCTAAC
AAAGTGCATCCTCTTACTTCCAGAATGTTACAGGATGTAGTAATTACTATAACTTTGCCTG
GCACGGAACCTGAGGATCAGCTTACTATGAAATTGGTCACTCCCAGAGGTGAGACAA
GCCATCCACGTGGGAATCAGACTTTAATGATGAACTATAGTTGAAAGTACTTGCAGA
AGATACAGTACAGTCAGTTAACCCATGGTTAAGTGAATCATGAATAATTAAAGGTTCTGA
TCTACAATGCCAAGTGGACATCATCGTGGCAGCTGCCCTGACAGAGCGCTCTGATGGC
ATGGACTGGAAAGGATCCCAGGAATACAAGAACGGAGAAAAAAAGTTGGAAGATCTTAA
ATCTGACAGTGAAGTGGCTGGTTACATCCGGCAAGCGGGTGACTTCCATCAGGTAAATTATTC
GAGGTGGAGGACATATTTACCTATGACCAGCCTCTGAGAGCTTTGACATGATTAATCGA
TTCATTTATGAAAAGGATGGATCCTTATGTTG**GATAAA**ACTACCTCCAAAAGAGAACAT
CAGAGGTTTCATTGCTGAAAAGAAAATCGAAAAACAGAAAATGTCATAGGAATAAAAAAA
TTATCTTTCATATCTGCAAGATTTTCTCATCAATAAAAATTATCCTGAAACAAGTGAGC
TTTGTTTTGGGGGAGATGTTACTACAAATTAAACATGAGTACATGAGTAAGAATTACA
TTATTTAACTAAAGGATGAAAGGTATGGATGATGTGACACTGAGACAAAGATGTATAATGA
AATTTCAGGGTCTTGAATAGGAAGTTTAATTCTTCTAAGAGTAAGTGAAGTGCAGTTG
TAACAAACAAAGCTGTAACATCTTCTGCCAATAACAGAAGTTGGCATGCCGTGAAGGT
GTTTGGAAATATTATGGATAAGAATAGCTCAATTATCCAAATAATGGATGAAGCTATAA
TAGTTTGGGAAAAGATTCTCAAATGTATAAAGTCTTAGAACAAAAGAATTCTTGAAATA
AAAATATTATATAAAAGTAAAAAAAAAA

FIGURE 60

MVGAMWKIVSLVLLMPGCDGLFRSLYRSVSMPKGDSQPLFLTPYIEAGKIQKGREL
VGPFPGNMKSYAGFLTVNKTYNSNLFFWFFPAQIQPEDAPVVLWLQGGPGGSSMFGLFVEH
GPYVVTSNMTLRDRDFPWTTLSMLYIDNPVGTGSFTDDTHGYAVNEDDVARDLYSALIQF
FQIFPEYKNNDFYVTGESYAGKYVPAIAHLIHSLNPVREVKINLNGIAIGDGYSDPESIIGG
YAEFLYQIGLLDEKQKKYFQKQCHECIEHIRKQNWFEAFFEILDKLLDGLTSDPSYFQNV
CSNYYNFLRCTEPEDQLYYVKFLSLPEVRQAIHVGNTFNDGTIVEKYLREDTVQSVKPWLT
EIMNNYKVLIYNGQLDIIVAAALTERSLMGMDWKGSQEYKKAEEKVWKIFKSDSEVAGYIRO
AGDFHQVIIRGGGHILPYDQPLRAFDMINRFIYGKGWDPYVG

Signal sequence:

amino acids 1-22

N-glycosylation site.

amino acids 81-85, 132-136, 307-311, 346-350

Casein kinase II phosphorylation site.

amino acids 134-138, 160-164, 240-244, 321-325, 334-338, 348-352,
353-357, 424-428

Tyrosine kinase phosphorylation site.

amino acids 423-432

N-myristoylation site.

amino acids 22-28, 110-116, 156-162, 232-238

Serine carboxypeptidases, serine active site.

amino acids 200-208

Crystallins beta and gamma 'Greek key' motif signature.

amino acids 375-391

FIGURE 61

CGAGGGCTTCGGCTCCGAATGGCACATGTGGGAATCCCAGTCTGTTGGCTACAACAT
TTTCCCTTCTAACAAAGTCTAACAGCTGTTAACAGCTAGTGATCAGGGGTTCTTCTT
GCTGGAGAAGAAAGGGCTGAGGGCAGAGCAGGGCACTCTCACTCAGGGTGACCAGCTCCTTG
CCTCTCTGTGGATAACAGAGCATGAGAAAGTGAAGAGATGCAGCGGAGTGAGGTGATGGAAG
TCTAAAATAGGAAGGAATTGTGTGCAATATCAGACTCTGGGAGCAGTTGACCTGGAGAGC
CTGGGGAGGGCCTGCCTAACAAAGCTTCAAAAAACAGGAGCAGTCCACTGGCTGGGAT
AAGACGTGCCGGTAGGATAGGAAAGACTGGTTAGTCCTAACATATCAAATTGACTGGCTGGG
TGAACCTAACAGCCTTTAACCTCTGGGAGATGAAAACGATGGCTAACGGGCCAGAAA
TAGAGATGCTTGTAAAATAAATTTAAAAAAGCAAGTATTATAGCATAAAGGCTAGA
GACCAAAATAGATAACAGGATTCCCTGAACATTCTAACAGAGGAGAAAGTATGTTAAAATA
GAAAAACCAAAATGCAGAAGGAGGAGACTCACAGAGCTAACACCAGGATGGGACCTGGGTC
AGGCCAGCCTCTTGCTCCTCCGGAAATTATTTGGTCTGACCACTCTGCCTTGTGTTT
GCAGAATCATGTGAGGGCAACCGGGGAAGGTGGAGCAGATGAGCACACACAGGAGCCGTCT
CCTCACCGCCGCCCTCTCAGCATGGAACAGAGGCAGCCCTGGCCCCGGCCCTGGAGGTGG
ACAGCCGCTCTGTGGCCTGCTCTCAGTGGCTGGGTGCTGCTGGCCCCCCCAGCAGCCGGC
ATGCCTCAGTTCAGCACCTTCACTCTGAGAAATCGTGAUTGGACCTTCAACCACCTGACCGT
CCACCAAGGGACGGGGCGTCTATGTGGGGCATCAACCGGGTCTATAAGCTGACAGGCA
ACCTGACCATCCAGGTGGCTATAAGACAGGGCCAGAAGAGGACAACAAGTCTCGTACCCG
CCCTCATCGTGAGCCCTGCAGCGAAGTGCTCACCTCACCAACATGTCAACAAAGCTGCT
CATCATTGACTACTCTGAGAACCGCCTGCTGGCCTGTGGAGCCTCTACCAGGGGTCTGCA
AGCTGCTGCCGCTGGATGACCTCTCATCCTGGTGGAGCCATCCCACAAGAAGGAGCACTAC
CTGTCAGTGTCAACAAGACGGGCACCATGTACGGGTGATTGTGCGCTCTGAGGGTGAGGA
TGGCAAGCTCTTCATGGCACGGCTGTGGATGGAAAGCAGGATTACTTCCGACCTGTCCA
GCCGGAAAGCTGCCCGAGACCCCTGAGTCCTCAGCCATGCTCGACTATGAGCTACACAGCGAT
TTTGTCTCTCTCATCAAGATCCCTCAGACACCCCTGGCCCTGGTCTCCCACTTGACAT
CTTCTACATCTACGGCTTGTAGTGGGGCTTGTCTACTTCTCACTGTCCAGCCGAGA
CCCTGAGGGTGTGGCCATCAACTCCGCTGGAGACCTCTACACCTCACGCATCGTCCGG
CTCTGCAAGGATGACCCCAAGTCCACTCATACGTGTCCTGCCCTGGCTGCACCCGGC
CGGGGTGGAATACCGCCTCTGCAGGCTGCTTACCTGCCAACGCTGGGACTCACTGGCCC
AGGCCTCAATATCACCAAGCCAGGACGATGTACTCTTGCCATCTCTCAAAGGGCAGAAG
CAGTATCACCAACCGCCCGATGACTCTGCCCTGTGCTCCCTATCCGGGCATCAACTT
GCAGATCAAGGAGCGCCTGCAGTCTGCTACCAAGGGCAGGGCACCTGGAGCTCAACTGGC
TGCTGGGAAGGACGCCAGTGCACGAAGGCGCTGTCCCCATCGATGATAACTCTGTGGA
CTGGACATCAACCAGCCCTGGGAGGCTCAACTCCAGTGGAGGGCTGACCCCTGTACACCAC
CAGCAGGGACCGCATGACCTCTGTGGCCTCTACGTTACAACGGCTACAGCGTGGTTTG
TGGGGACTAAGAGTGGCAAGCTGAAAAAGGTAAGAGTCTATGAGTTCAGATGCTCCAATGCC
ATTCACCTCTCAGCAAAGAGTCCCTCTGGAAAGGTAGCTATTGGTGGAGATTTAACTATAG
GCAACTTATTTCTGGGAACAAAGGTGAAATGGGGAGGTAAGAAGGGTTAATTTGTG
ACTTAGCTCTAGCTACTCCAGCCATCAGTCATTGGTATGTAAGGAATGCAAGCGTA
TTCAATATTCCTAAACTTTAAGAAAAACTTTAAGAAGGTACATCTGCAAAAGCAAA

FIGURE 62

MGTLGQASLFAPPNYFWSDHSALCFAESCEGQPGKVEQMSTHRSRLLTAAPLSMEQRQPWP
RALEVDSRSVVLSSVVWVLLAPPAAGMPQFSTFHSENRDWTFNHLTVHQGTGAVYVGAINRV
YKLGNLTIQVAHKTGPEEDNKSRYPPLIVQPCSEVLTLTNNVNKLLIIDYSENRLLACGSL
YQGVCKLLRLDDLFLILVEPSHKKEHYLSSVNKTGTMGVIVRSEGEDGKLFIGTAVDGKQDY
FPTLSSRKLPKDPESSAMLDYELHSDFVSSLIKIPIPSDTLALVSHFDIFYIYGFASGGFVYFL
TVQPETPEGVAINSAGDLFYTSRIVRLCKDDPKFHSYVSLPFGCTRAGVEYRLLQAAYLAKP
GDSLQAQAFNITSQDDVLFAIFSKGQKQYHHPPDDSALCAFPIRAINLQIKERLQSCYQGEGN
LELNWLLGKDVQCTKAPVPIDDNFCGLDINQPLGGSTPVEGLTLYTTSRDRMTSVASYVYNG
YSVVFVGTKSGKLKKVRVYEFRCSNAIHLLSKESSLLEGSYWWRFNYRQLYFLGEQR

Signal sequence:

amino acids 1-32

Transmembrane domain:

amino acids 71-87

N-glycosylation site.

amino acids 130-134, 145-149, 217-221, 381-385

Casein kinase II phosphorylation site.

amino acids 139-143, 229-233, 240-244, 291-295, 324-328, 383-387,
384-388, 471-475, 481-485, 530-534

N-myristoylation site.

amino acids 220-226, 319-325, 353-359, 460-466, 503-509

FIGURE 63

AGGCTCCCGCGCGCGGCTGAGTGGACTGGAGTGGAAACCGGGTCCCCCGCCTTAGAGAACACCGCGATGACCA
CGTGGAGCCTCCGGCGGAGGCCGGCCCGCACCGCTGGACTCTGCTGCTGGTCCTGGGCTTCCTGGTGCCTCC
GCAGGCTGGACTGGAGCACCCCTGGTCCCTCTGCGGCTCCGCATCGACAGCTGGGCTGCAGGCCAAGGGCTGGA
ACTTCATGCTGGAGGATTCCACCTTCTGGATCTCGGGGCTCCATCCACTATTTCCGTGTGCCAGGGACTACT
GGAGGGACCGCTGCTGAAGATGAAGGCCTGGCTTGAAACACCCCTCACCACTATGTTCCGTGGAACCTGCATG
AGCCAGAAAGAGGCAAATTGACTTCTCTGGGAACCTGGACCTGGAGGCCCTCGCCTGATGGCCAGAGATCG
GGCTGTGGGTGATTCTGCGTCCAGGCCCTACATCTGCACTGAGATGGACCTGGGGCTTGCCAGCTGGCTAC
TCCAAGACCTGGCATGAGGCTGAGGACAACCTACAAGGGCTCACCGAAGCAGTGGACCTTATTGACCAC
TGATGCCAGGGTGGTGCACCTCCAGTACAAGCGTGGGGACCTATCATTGCCGTGCAGGTGGAGAATGAATATG
GTTCTATAATAAAAGACCCGCATACATGCCCTACGTCAAGAAGGCACTGGAGGCCGTCATTGTGGAACCTGC
TCCTGACTTCAGACAACAAAGGATGGCTGAGGAGGGATTGTCCAGGGACTCTGGCCACCATCAACTTGCACT
CAACACACGAGCTGCAGCTACTGACCACCTTCTCTCAACGTCAGGGACTCAGGCCAAGATGGTATGGAGT
ACTGGACGGGGTGGTTGACTCGTGGGAGGCCCTCACAAATCTGGATTCTCTGAGGGTTTGAACACCGTGT
CTGCCATTGTGGACGCCGCTCCATCAACCTCTACATGTTCCAGGGACCAACTTGGCTCATGAATG
GAGCCATGCACCTCCATGACTACAAGTCAGATGTCACCAGCTATGACTATGATGCTGTGCTGACAGAACGCCGCG
ATTACACGGCCAAGTACATGAAGCTCGAGACTTCTGGCTCCATCTCAGGCATCCCTCCCTCCCCCACCTG
ACCTCTTCCCAAGATGCCGTATGAGCCCTAACGCCAGTCTGTACCTGTCCTGTGGGACGCCCTCAAGTACC
TGGGGAGCCAATCAAGTCTGAAAAGCCATCAACATGGAGAACCTGCCAGTCATGGGGAAATGGACAGTCT
TCGGGTACATTCTCTATGAGACCAGCATCACCTCGTCTGGCATCCTCAGTGGCACGTGCATGATGGGGCAGG
TGTGTTGAACACAGTATCCATAGGATTCTGGACTACAAGACAACGAAGATTGCTGTCCCCCTGATCCAGGGTT
ACACCGTGTGAGGATCTGGTGGAGAATCGTGGGAGCTCAACTATGGGAGAATATTGATGACCAAGCGCAAAG
GCTTAATTGAAATCTCTATCTGAATGATTCAACCCCTGAAAAACTTCAGAATCTATAGCCTGGATATGAAGAAGA
GCTTCTTCAGAGGTTGCCCTGGACAAATGGNGTTCCCTCCAGAAACACCCACATTACCTGCTTCTTCTGG
GTAGCTTGTCCATCAGCTCCACGCCCTGTGACACCTTCTGAAGCTGGAGGGCTGGAGAAGGGGGTTGTATTCA
TCAATGCCAGAACCTTGACGTTACTGGAACATTGGACCCCAGAAGACGCTTACCTCCAGGTCCCTGGTTGA
GCAGCGGAATCAACCAGGTACCGTTTGAGGAGACGATGGGGCCCTGCATTACAGTCACGGAACCCCCC
ACCTGGCAGGAACCAGTACATTAAGTGAGCGGTGGCACCCCTCTGCTGGTGCCTGGGAGACTGCCGCTC
CTCTTGACACTGAAGCCTGGCTGCTGCCACCCCTCACTGCAAAAGCATCTCTTAAGTAGCAACCTCAGGG
ACTGGGGCTACAGTCTGCCCTGTCAGCTCAAACCCCTAAGCTGCAGGGAAAGGTGGATGGCTCTGGGCC
TGGCTTGTGATGATGGCTTCTACAGGCCCTGCTTGTGCCAGGCTGTCGGCTGTCTAGGGTGGAGC
AGCTAATCAGATGCCACGCCCTTGCCCTCAGAAAAAGTGTGAAACCGTGCCTTGCCACGGACGTACAGCCC
TGCAGCATCTGCTGGACTCAGCGTGCTTGTGCTGGTCTGGGAGGCTGGCACATCCCTCATGGCCCCAT
TTTATCCCCGAAATCCTGGGTGTGTCACCAGTGTAGAGGGTGGGAAGGGGTGTCTCACCTGAGCTGACTTTGTT
CTTCCCTCACACCTCTGAGCCTTCTGGGATTCTGGAAGGAACCTGGCGTGAAGAACATGTGACTTCCCCCTT
TCCCTCCCACTCGCTGCTTCCACAGGGTGACAGGCTGGGCTGGAGAACAGAAATCTCACCCCTGCGTCTTCC
CAAGTTAGCAGGTGCTCTGGTGTTCAGTGAGGAGGACATGTGAGTCCTGGCAGAACGCCATGGCCCATGTCTGCA
CATCCAGGGAGGAGGACAGAACGCCAGCTCACATGTGAGTCCTGGCAGAACGCCATGGCCCATGTCTGCAACATCC
AGGGAGGAGGACAGAACGCCAGCTCACATGTGAGTCCTGGCAGAACGCCATGGCCCATGTCTGCAACATCCAGGG
GGAGGACAGAACGCCAGCTCACATGTGAGTCCTGGCAGAACGCCATGGCCCATGTCTGCAACATCCAGGGAGGAGG
ACAGAACGCCAGCTCAGTGGCCCCGCTCCCCACCCCCCAGGCCAACAGCAGGGGAGGAGCACGCCCTCCTC
GAAGTGTGTCCAAGTCCGATTGAGCCTGTTCTGGGGCCAGCCAAACACCTGGCTTGGCTACTGCTCTGA
GTTGCAGTAAAGCTATAACCTGAATCACAA

FIGURE 64

MTTWSLRRR PARTL GLLL VVLGFLV LRR LDWSTLVPL RL RHRQL GLQAK GWN FM LED STFW
I FGGS I HYF RV PREY WR DR LL K MKAC GL NT LTT Y VP WNL HEP ERG K F D FSG NLD LEAF VL MA
AEI GLW VIL R PGP YIC S E M DL GGL P SW LL QD P GM RL RT TY KGF TEA VD LY FD HLM SRV VPL Q
Y KRGG PI I AV Q VEN EY GS Y NK DP AY MP YV KKA EDRG I VELL L TSDN K DGL SKG I V QGV LAT
IN LQ S T H E L Q L L T F L F NV Q GT Q PKM VM EY WT GWF D SW GG PHN I L DS SEV L KTV SAI VD AGS
S IN LY MF HG GT NF GFM NGAM HF HDY K SD V TS Y DY D A V L T E A G D Y T A K Y M K L R D F F G S I S G I P
L PPP P D L L P K M P Y E P L T P V L Y L S L W D A L K Y L G E P I K S E K P I N M E N L P V N G G N G Q S F G Y I L Y E
T S I T S S G I L S G H V H D R G Q V F V N T V S I G F L D Y K T T K I A V P L I Q G Y T V L R I L V E N R G R V N Y G E N
I DD Q R K G L I G N L Y L N D S P L K N F R I Y S L D M K K S F F Q R F G L D K W X S L P E T P T L P A F F L G S L S I S
S T P C D T F L K L E G W E K G V V F I N G Q N L G R Y W N I G P Q K T L Y L P G P W L S S G I N Q V I V F E E T M A G P A
L Q F T E T P H L G R N Q Y I K

Signal sequence:

amino acids 1-27

Casein kinase II phosphorylation site.

amino acids 141-118, 253-257, 340-344, 395-399, 540-544, 560-564

N-myristoylation site.

amino acids 146-152, 236-242, 240-246, 244-250, 287-293, 309-315,
320-326, 366-372, 423-429, 425-431, 441-447, 503-509, 580-586

FIGURE 65

GGGGACGCGGAGCTGAGAGGGCTCCGGCTAGCTAGGTAGGGGTGGACGGTCCCAGGACC
CTGGTGAGGGTTCTACTTGGCCTTCGGTGGGGTCAAGACGCAGGCACCTACGCCAAAGG
GGAGCAAAGCCGGCTCGGCCGAGGCCCCCAGGACCTCCATCTCCAATGTTGGAGGAATC
CGACACGTGACGGTCTGTCCGCCGTCTCAGACTAGAGGAGCGCTGTAAACGCCATGGCTCCC
AAGAAGCTGCTCGCTTCGTTCTGCTGAGTGGATAGGGTCATGACCGGTTCTCCTAGACGGGGCC
GGCAGACACTCGGTGTTCTGAGTGGATAGGGTCATGACCGGTTCTCCTAGACGGGGCC
CGTCCGCTATGTGCTGGCAGCCTGCACTACTTCGGTACCGCGGGTGCCTTGGGCCGAC
CGGCTTTGAAGATGCGATGGAGCGGCCTCAACGCCATACAGTTATGTGCCCTGGAACTA
CCACGAGCCACAGCCTGGGTCTATAACTTAATGGCAGCCGGACCTCATTGCCCTTCTGA
ATGAGGCAGCTCTAGCGAACCTGTTGGTCATACTGAGACCAGGACCTTACATCTGTGCAGAG
TGGGAGATGGGGGTCTCCCATCCTGGTCTCGAAAACCTGAAATTCTATCTAAGAACCTC
AGATCCAGACTTCCTGCCGAGTGGACTCCTGGTTCAAGGTCTGCTGCCAAGATATATC
CATGGCTTATCACAAATGGGGCAACATCATTAGCATTAGGTGGAGAATGAATATGGTAGC
TACAGAGCCTGTGACTCAGCTACATGAGGCACTTGGTCTGGCTCTCGTGCAGTGCAG
AGAAAAGATCTGCTCTCACACAGATGGGCCTGAAGGACTCAAGTGTGGCTCCCTCCGGG
GAECTATACCACTGTAGATTGGCCCAGCTGACAACATGACCAAAATCTTACCCCTGCTT
CGGAAGTATGAACCCCATGGGCCATTGGTAAACTCTGAGTACTACACAGGCTGGCTGGATTA
CTGGGCCAGAATCACTCCACACGGTCTGTGTCAGCTGTAACCAAAGGACTAGAGAACATGC
TCAAGTTGGGAGCCAGTGTGAACATGTACATGTTCCATGGAGGTACCAACTTGGATATTGG
AATGGTGCCATAAGAAGGGACGCTCCTCCGATTACTACCAGCTATGACTATGATGCACC
TATATCTGAAGCAGGGACCCCACACCTAACGCTTTTGCTCTCGAGATGTCATCAGCAAGT
TCCAGGAAGTTCCCTGGGACCTTACCTCCCCGAGCCCCAAGATGATGCTTGGACCTGTG
ACTCTGCACCTGGTGGCATTACTGGCTTCTAGACTTGCTTGGCCCGTGGGCCCAT
TCATTCAATCTGCCATGACCTTGGAGGCTGTCAAGCAGGACCATGGCTCATGTTGTACC
GAACCTATATGACCCATACCATTGGAGCCAACACCATTCTGGTGCCAAATAATGGAGTC
CATGACCGTGCCTATGTGATGGTGGATGGGTGTTCCAGGGTGTGGAGCAGAACATGG
AGACAAACTATTTTGACGGGAAACTGGGTCCAAACTGGATATCTGGTGGAGAACATGG
GGAGGCTCAGCTTGGGCTAACAGCAGTGAACAGCAGGCTGGAGGCAACCAATTCTG
GGCAAACAACTTACCCAGTGGATGATGTTCCCTCTGAAAATTGATAACCTTGTGAAGTG
GTGGTTCCCTCCAGTTGCCAAATGCCATATCCTCAAGCTCTTCTGGCCCCACATTCT
ACTCCAAAACATTCCAATTAGGCTCAGTTGGGACACATTCTATATCTACCTGGATGG
ACCAAGGGCCAAGTCTGGATCAATGGTTAACCTGGGCCGTACTGGACAAAGCAGGGCC
ACAACAGACCCCTCACGTGCCAAGATTCTGCTGTTCTAGGGAGCCCTAACAAAATA
CATTGCTGGAACTAGAAGATGTACCTCTCCAGCCCCAAGTCCAATTGGATAAGCCTATC
CTCAATAGCACTAGTACTTGCACAGGACACATATCAATTCCCTTCAGCTGATACACTGAG
TGCCTCTGAACCAATGGAGTTAAGTGGCACTGAAAGGTAGGCCGGCATGGTGGCTCATGC
CTGTAATCCCAGCACCTTGGGAGGCTGAGACGGGTGGATTACCTGAGGTCAAGGACTTCAAGA
CCAGCCTGGCCAACATGGTAAACCCCGTCTCCACTAAAAATAACAAAATTAGCCGGCGTG
ATGGTGGGCACCTCTAATCCCAGCTACTTGGGAGGCTGAGGGCAGGAGAATTGCTGAATCC
AGGAGGCAGAGGTTGCAGTGAGTGGAGGTTGTACCACTGCACTCCAGCCTGGCTGACAGTGA
GACACTCCATCTCAAAAAAAAAAA

FIGURE 66

MAPKKLSCLRSLLLPLSLTLLPQADTRSFVVDRGHDFLLDGAPFRYVGSLHYFRVPRVL
WADRLLKMRWSGLNAIQFYVPWNYHEPQPGVYNFNGSRDLIAFLNEAALANLLVILRPGPYI
CAEWEMGGLPSWLLRKPEIHLRTSDPDFLAAVDSWFKVLLPKIYPWLYHNGGNIISIQVE
YGSYRACDFSYMRHLAGLFRALLGEKILLFTTDGPEGLKCGSLRGLYTTVDFGPADNMTKIF
TLLRKYEPHGPLVNSEYYTGWLWQNHSTRSAVTKGLENMLKLGASVNMYMFHGGTNF
GYWNGADKKGRFLPITTSYDYDAPISEAGDPTPKLFALRDVISKFQEVPGLPPPSPKML
GPVTLHLVGHLLAFLDLLCPRGPIHSILPMTFEAVKQDHGFMLYRTYMTHTIFEPTFWVPN
NGVHDRAYVMVDGVFQGVVERNMRDKLFLTGKLGSKLDILVENMGRSLFGSNSSDFKGLLKP
PILGQTILTQWMMFPLKIDNLVKWWFPLQLPKWPYPQAPSGPTFYSKTFPILGSVGDTFLYL
PGWTKGQVWINGFNLGRYWTQOGPQQTLYVPRFLLFPRGALNKITLLELEDVPLQPQVQFLD
KPILNSTSTLHRTHINSLSADTLSASEPMELSGH

Signal sequence:

amino acids 1-27

N-glycosylation site.

amino acids 97-101, 243-247, 276-280, 486-490, 625-629

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 4-8

Casein kinase II phosphorylation site.

amino acids 148-152, 234-238, 327-331, 423-427, 469-473, 550-554,
603-607, 644-648

Tyrosine kinase phosphorylation site.

amino acids 191-198

N-myristoylation site.

amino acids 131-137, 176-182, 188-194, 203-209, 223-229, 227-233,
231-237, 274-280, 296-300, 307-313, 447-453, 484-490

FIGURE 67

GCTTGAAACACGTCTGCAAGCCCAAAGTTGAGCATCTGATTGGTTATGAGGTATTGAGTGC
ACCCACAATATGGCTTACATGTTGAAAAAGCTTCTCATCAGTTACATATCCATTATTTGTGT
TTATGGCTTATCTGCCTCTACACTCTTCTGGTTATTCAAGGATACTTGAAGGAATATT
CTTCGAAAAAGTCAGAGAAGAGAGCAGTTAGTGCACATTCCAGATGTCAAAAACGATTT
GCGTTCCCTTTCACATGGTAGACCAGTATGACCAGCTATATTCCAAGCGTTGGTGTGTT
CTTGTCAAGTTAGTGAACCTAGGGAAATTAGTTGAACCATGAGTGGACATTG
AAAAACTCAGGCAGCACATTCAACGCCAGGACAAGCAGGAGTTGCATCTGTTCATG
CTGTCGGGGGTGCCGATGCTGTCTTGACCTCACAGACCTGGATGTGCTAAAGCTTGAAC
AATTCCAGAAGCTAAAATTCTGCTAACAGATTCTCAAATGACTAACCTCCAAGAGCTCCACC
TCTGCCACTGCCCTGCAAAAGTTGAACAGACTGCTTTAGCTTCTCGCGATCACTTGAGA
TGCCTTCACGTGAAGTTCACTGATGTGGCTGAAATTCCCTGCCTGGGTGTATTGCTCAAAAA
CCTTCGAGAGTTGTACTTAATAGGCAATTGAACTCTGAAAACAATAAGATGATAGGACTTG
AATCTCTCCGAGAGTTGCCGACCTTAAGATTCTCACGTGAAGAGCAATTGACCAAAGTT
CCCTCCAACATTACAGATGTGGCTCCACATCTAACAAAGTTAGTCATTATAATGACGGCAC
TAAACTCTGGTACTGAACAGCCTTAAGAAAATGATGAATGTCGCTGAGCTGGAACCTCCAGA
ACTGTGAGCTAGAGAGAATCCCACATGCTATTTCAGCCTCTCTAACAGGAACGGAT
TTAAAGTCCAATAACATTGCACAATTGAGGAAATCATCAGTTCCAGCATTAAAACGACT
GACTTGTAAAATTATGGCATAACAAAATTGTTACTATTCCCTCCCTTATTACCCATGTCA
AAAACTTGGAGTCACTTATTCTCTAACACAACAGCTGAATCCTTACCAAGTGGCAGTATT
AGTTTACAGAAACTCAGATGCTTAGATGTGAGCTACAACAAACATTCAATGATTCCAATAGA
AATAGGATTGCTTCAGAACCTGCAGCATTGCATATCACTGGAACAAAGTGGACATTCTGC
CAAAACAATTGTTAAATGCATAAAAGTTGAGGACTTTGAATCTGGACAGAACTGCATCACC
TCACTCCCAGAGAAAGTTGGTCAGCTCTCCAGCTCAGCTGGAGCTGAAGGGAACTG
CTTGGACCGCCTGCCAGCCCAGCTGGCCAGTGTGGATGCTCAAGAAAAGCGGGTTGTG
TGGAAGATCACCTTTGATAACCTGCCACTCGAAGTCAAAGAGGCATTGAATCAAGACATA
AATATTCCCTTGCAAATGGATTTAACTAAGATAATATATGCACAGTGTGAGTGCAGGAAC
AACTCCTAGATTGCAAGTGCTCACGTACAAGTTATTACAAGATAATGCATTAGGAGTAG
ATACATCTTTAAAATAAAACAGAGAGGATGCATAGAAGGCTGATAGAAGACATAACTGAAT
GTTCAATGTTGAGGGTTTAAGTCATTCAACATTCAAGTAAATTGTTTTCTTTGGGG
AAAGGGAAGGAAAATTATAATCACTAATCTGGTTCTTTAAATTGTTGTAACCTGGAT
GCTGCCGCTACTGAATGTTACAAATTGCTGCCTGCTAAAGTAAATGATTAAATTGACATT
TTCTTACTAAAAAAAAAAAAAA

FIGURE 68

MAYMLKKLLISYISIICVYGFICLYTLFWLFRIPLKEYSFEKVREESSFSDIPDVKNDFAFL
LHMVDQYDQLYSKRGVFLSEVSENKLREISLNHEWTFEKLQRQHISRNAQDKQELHLFMLSG
VPDAVFDLTDLDVLKLELIPEAKIPAKISQMNTNLQELHLCHCPAKVEQTAFSFLRDHLRCLH
VKFTDVAEIPAWVYLLKNLRELYLIGNLNSENNKMIGLESLRELRLKILHVKSNLTKVPSN
ITDVAPHLTKLVIHNDGTKLLVLNSLKKMMNVAELELQNCELERIPHAIIFSLSNLQELDLKS
NNIRTIEEIISFQHLKRLTCLKLWHNKIVTISSITHVKNLESLYFSNNKLESLPVAVFSLQ
KLRCLDVSYNNISMPIEIGLLQNLQHLHITGNKVDILPKQLFKCIKLRTLNLGQNCITSLP
EKVGQLSQLTQLELKGNCNDRLPAQLGQCRMLKKSGLVVEDHLFDTLPLEVKEALNQDINIP
FANGI

Signal sequence:

amino acids 1-20

N-glycosylation site.

amino acids 241-245, 248-252, 383-387

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 326-330

Casein kinase II phosphorylation site.

amino acids 48-52, 133-137, 226-230, 315-319, 432-436, 444-448

Tyrosine kinase phosphorylation site.

amino acids 349-355, 375-381

N-myristoylation site.

amino acids 78-84, 124-130, 212-218, 392-398

FIGURE 69

CCACACGCGTCCGGCCTCTCTGGACTTTGCATTCCATTCCCTTTCATGACAAACTGACTTTTTATTC
TTTTTCCATCTCTGGGCCAGCTGGGATCCTAGGCCGCCGGAAAGACATTGTGTTTACACACATAAGGAT
CTGTGTTGGGTTCTTCTCCTCCCCTGACATTGGCATTGCTTAGTGGTGTGTTGGGAGGGAGACCACGTGG
GCTCAGTGCTTGCTGCACTTATCTGCCTAGGTACATCGAAGTCTTGACCTCCACAGTATTATGCCTGTC
ATCGCTGGTGTATCCTGGCGCTGCTCTGCTGATAGTTGTCGTCTGTCTTACTTCAAACACAAAC
GCGCTAAAAGCTGCAAAGAACCTGAAGCTGTCGTGAAAAACACAACCCAGACAAGGTGTGGTGGCCAAG
AACAGCCAGGCCAAAACCATTGCCACCGAGCTTGTCCCTGCCCTGCAGTGTGAGGATATAGAATGTGTGCC
AGTTTGATTCCCTGCCACCTTGCGACATAAATGAGGGCTCTGAGTTAGGAAAGGCTCCCTCTCAAAC
GCAGAGCCCTGAAGACTTCAATGATGTCATGAGGCCACCTGTTGTGATGTGCAGGCACAGAAGAAAGGCACAG
CTCCCCATCAGTTCATGAAAATAACTCAGTGCTGCTGGGAAACAGCTGCTGGAGATCCCTACAGAGAGCTTC
CACTGGGGGCAACCTTCCAGGAAGGAGTTGGGGAGAGAGAACCCCTACTGTGGGAATGCTGATAAAACCAAGTCA
CACAGCTGCTCTATTCTCACACAAATCTACCCCTTGCGTGGCTGAACTGACGTTCCCTGGAGGTGTCCAGAAA
GCTGATGTAACACAGAGCTATAAAAGCTGTCGGCTTAAGGCTGCCAGGCCCTGCCAAAATGGAGCTTGT
AGAAGGCTCATGCCATTGACCTCTTAATTCTCTGTTGGCGAGCTGACAATGGGGAGGCTGAAGGCAAT
GCAAGCTGCACAGTCAGTCTAGGGGTGCAAATATGGCAGAGACCCACAAAGCCATGATCTGCAACTCAATCCC
AGTGAGAACTGCACCTGGACAATAGAAAAGACAGAAAACAAAGCATCAGAATTATCTTCTATGTCCAGCTT
GATCCAGATGGAAGCTGTGAAAGTGAACATTAAGTCTTGACGGAACCTCCAGCAATGGCCTCTGCTAGGG
CAAGTCTGCAGTAAAAGACTATGTCCTGATTGAAATCATCAGTACATTGACGTTCAAATAGTTACT
GACTCAGCAAGAATTCAAAGAACTGTCCTTGTCTTACTACTTCTCTCTCCTAAACATCTCTATTCCAAACTGT
GGCGGTTACCTGGATACCTTGGAGGATCCTCACAGGCCCAATTACCCAAAGCCGATCCTGAGCTGGCTTAT
TGTGTTGGCACATACAAGTGGAGAAAAGATTACAAGATAAAACTAACTCAAAGAGATTTCCTAGAAAATAGAC
AAACAGTGCACATTGATTCTGCCATCTATGATGGCCCTCCACCAACTCTGGCTGATTGGACAAGTCTGT
GGCCGTGTGACTCCCACCTCGAACATCGTCATCAAACCTCTGACTGTCGTGTTGCTACAGATTATGCCAATTCT
TACCGGGATTCTGCTTCTACACCTCAATTATGCAAGAAAACATCAACACTACATCTTAACTTGTCTTCT
GACAGGATGAGAGTTATTATAAGCAAATCCTACCTAGAGGTTTAACTCTAATGGGAAATACTTGCACACTAAA
GACCCAACTTGCAGACCAAATTATCAAATGTTGGAATTCTGCTCCCTTAATGGATGTGGTACAATCAGA
AAGGTTAGAAGATCAGTCACATTACACCAATATAATCACCTTCTGACTCCTCAACTCTGAAGTGTACCC
CGTCAGAAACAACTCCAGATTATGTAAGTGTGAAATGGGACATAATTCTACAGTGGAGATAATATAACATAACA
GAAGATGATGTAATAACAAAGTCAAATGCACTGGGAAATATAACACCCAGCATGGCTTTGAATCCAATTCA
TTGAAAAGACTATACTTGAATCACCATATTATGTTGGAATTGAAACCAACTCTTGTCAAGTTAGTCTGCAC
ACCTCAGATCCAAATTGTTGTTCTGATACCTGACTGAGATGAAACTTGTAAAGGTGTATCCCTATTGGACACTATGGGAGA
TTCCAGTTAATGCCCTTAAATTCTGAGAAGTATGAGCTGTGTTCTGCACTGTAAGTTGATATGTGAT
AGCAGTGGACCAACCAGTCTGCTGCAATCAAGGTTGTCCTCCAGAAGCAACCGAGACATTCTCATATAATGG
AAAACAGATTCCATCATAGGACCCATTGCTGAAAAGGGATGCAAGTGCAAGTGGCAATTCAAGGATTTCAGCAT
GAAACACATGCCAGAAAACCTCAAACCCAGCCTTCAACAGTGTGCATCTGTTCTCATGGTTCTAGCTCTG
AATGTGGTACTGTAGCGACAATCACAGTGAGGCTTTGAAATCAACGGGAGACTACAAACACAGAAGCTG
CAGAACTATTAACTAACAGGTCCAACCTAAGTGAGACATGTTCTCCAGGATGCCAAAGGAAATGCTACCTCGT
GGCTACACATATTGAATAATGAGGAAGGGCTGAAAGTGACACACAGGCCCTGCATGAAAAAAA

FIGURE 70

MELVRRLMPLTLIILSCLAEALTMAEAEGNASCTVSLGGANMAETHKAMILQLNPSENCTWTI
ERPENKSIRIIIFSYVQLDPDGSCESENIKVFDGTSSNGPLLGVCSKNDYVPVFESSSSTLT
FQIVTDSARIQRTVFVFFSPNISIPNCGGYLDTLEGSFTSPNYPKPHPELAYCVWHIQV
EKDYKIKLNFKEIFLEIDKQCKFDLAIYDGPSTNSGLIGQVCRVTPTFESSNSLTVVLS
TDYANSYRGFSASYTSIYAENINTTSLTCSSDRMRVIISKSYLEAFNSNGNNLQLKDPTCRP
KLSNVVEFSVPLNGCGTIRKVEDQSITYTNIIITFSASSTSEVITRQKQLQIIVKCEMGNST
VEIIYITEDDVIQSQNALGKYNTSMALFESNSFEKTILESPYYVDLNQTLFVQVSLHTSDPN
LVVFLDTCRASPTDFASPTYDLIKSGCSRDETCKVYPLFGHYGRFQFNFKFLRSMSSVYL
QCKVLICDSSDHQSRCNQGCVRSRKDISSYWKTDIIGPIRLKRDRSASGNSGFQHETHA
EETPNQPFNSVHLFSFMVLALNVVTVATITVRHFVNQRADYKYQKLQNY

Signal sequence:

amino acids 1-24

Transmembrane domain:

amino acids 571-586

N-glycosylation site.

amino acids 29-33, 57-61, 67-71, 148-152, 271-275, 370-374,
394-398, 419-423

Casein kinase II phosphorylation site.

amino acids 22-26, 108-112, 289-293, 348-352, 371-375, 379-383,
408-412, 463-467, 520-524, 556-560

Tyrosine kinase phosphorylation site.

amino acids 172-180, 407-415, 407-416, 519-528

N-myristoylation site.

amino acids 28-34, 38-44, 83-89, 95-101, 104-110, 226-232

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 7-18

FIGURE 71

GACGGAAAGAACAGCGCTCCCGAGGCCGCGGGAGCCTGCAGAGAGGACAGCCGGCTGCGCCG
GGACATGCGGCCCCAGGAGCTCCCAGGCTCGCGTCTCGCTGCTGTGCTGCTGC
TGCTGCCGCCGCCGTGCCCTGCCACAGCGCCACGCCAGGGCAAGTCGGCATCTCATCCACTG
CTGGACGCCGCCAGCTGCCCGTGGTTGACCAGGCCAAGTCGGCATCTCATCCACTG
GGGAGTGTTCCTCGCCAGCTCGTAGCGAGTGGTCTGGGGTATTGGAAAAGGAAA
AGATACCGAAGTATGTGAATTATGAAAGATAATTACCCCTCTAGTTCAAATATGAAGAT
TTGGACCACTATTACAGCAAATTAAAAATGCAACAGTGGCAGATATTTCAGGC
CTCTGGTGCAAATACATTGTCTTAACCTCAAACATCATGAAGGCTTACCTTGTTGGGGT
CAGAATATTGTGGAACTGGAATGCCATAGATGAGGGGCCAAGAGGGACATTGTCAAGGAA
CTTGAGGTAGCCATTAGGAACAGAACTGACCTGCCTGGACTGTACTATTCCCTTTGA
ATGGTTTCATCCGCTTCCTGAGGATGAATCCAGTCATTCCATAAGCGGAATTTCAG
TTTCTAAGACATTGCCAGAGCTCTATGAGTTAGTGAACAACATCAGCCTGAGGTCTGTGG
TCGGATGGTACGGAGGGCACCGGATCAAACTGGAACAGCACAGGCTCTTGGCCTGGTT
ATATAATGAAAGCCCAGTCGGGGCACAGTAGTCACCAATGATCGTTGGGAGCTGGTAGCA
TCTGTAAGCATGGTGGCTTCTACCTGCAGTGATCGTTATAACCCAGGACATCTTGCCA
CATAAATGGAAAAGTCATGACAATAGACAAACTGTCCTGGGCTATAGGAGGAAGCTGG
AATCTCTGACTATCTTACAATTGAAGAATTGGTGAAGCAACTTGTAGAGACAGTTCATGTG
GAGGAAATCTTGATGAATATTGGGCCACACTAGATGGCACCATTCTGTAGTTTGAG
GAGCGACTGAGGCAAGTGGGCTGGCTAAAGTCATGGAGAGCTATTATGAAACCTA
TACCTGGCGATCCCAGAATGACACTGTCACCCAGATGTGTGGTACACATCCAAGCCTAAAG
AAAAATTAGTCTATGCCATTCTAAATGGGCCACATCAGGACAGCTGTTCTGGCCAT
CCCAAAGCTATTCTGGGGCAACAGAGGTGAAACTACTGGCCATGGACAGCCACTTAAC
GATTCTTGAGCAAATGGCATTATGGTAGAACTGCCACAGCTAACCAATTGATGC
CGTGTAAATGGGCTGGCTAGCCCTAACTATGTGATCTAAAGTGCAGCAGAGTGGCTG
ATGCTGCAAGTTATGCTAAGGCTAGGAACATCAGGTGTCTATAATTGTAGCACATGGAGA
AAGCAATGTAACGGATAAGAAAATTATGGCAGTTCCAGGCCCTTCCCTTCCCCTA
AATTCTAAATTACCCATGTAACCATTAACTCTCCAGTGCACCTTGCCATTAAAGTC
TCTTCACATTGATTGTTCCATGTGTGACTCAGAGGTGAGAATTTCACATTATAGTAG
CAAGGAATTGGTGGTATTATGGACCGAACTGAAAATTATGTTGAAGCCATATCCCCCATG
ATTATATAGTTATGCATCACTTAATATGGGATATTCTGGAAATGCATTGCTAGTCAT
TTTTTTGTGCCAACATCATAGAGTGTATTACAAAATCTAGATGGCATAGCTACTACA
CACCTAATGTGTATGGTATAGACTGTCCTAGGCTACAGACATATACAGCATGTTACTG
AATACTGTAGGCAATAGTAACAGTGGTATTGTATATCGAAACATATGGAAACATAGAGAAG
GTACAGTAAAATACTGTAAAATGGTGCACCTGTATAGGGCACTTACCCAGGAATGGAG
CTTACAGGACTGGAAGTTGCTCTGGGTGAGTCAGTGAGTGAATGTGAAGGCCTAGGACATTA
TTGAACACTGCCAGACGTTATAAAACTGTATGCTTAGGCTACACTACATTATAAAAAAAA
GTTTTCTTCTTCATTATAAACATAAGTGTACTGTAACTTACAAACGTTTAATT
TTTAAACCTTTGGCTTTGTAATAACACTTAGCTAAACATAAAACTCATTGTGCAA
ATGTAA

FIGURE 72

MRPQELPRLAFPLLLLLLPPPCPAHSATRFDPTWESLDARQLPAWFDQAKFGIFIHG
VFSVPSFGSEWFWWYQKEKIPKYVEFMKDNYPPSFKYEDFGPLFTA
KFFNANQWADIFQAS
GAKYIVLTSKHHEGFTLWGSEYSWNNAIDEGPKRDIVKELEVAIRNRTDLRFGLYYSLFEW
FHPLFLEDESSSFHKRQFPVSKTLPELYELVNNTQPEVLWSDGDGGAPDQYWNSTGFLAWLY
NESPVVRGTVVTNDRGAGSICKHGGFYTCSDRYNPGHLLPHKWENCMTIDKLSWGYRREAGI
SDYLTIEELVKQLVETVSCGGNLLMNIGPTLDGTISVVFEERLRQVGSWLKVNGEAIYETY
WRSQNDTVTPDVWYTSKPKEKLVYAIFLKWPTSGQLFLGHPKAILGATEVKLLGHQPLNW
SLEQNNGIMVELPQLTIHQMPCKWGWALALTNVI

Signal sequence:

amino acids 1-28

N-glycosylation site.

amino acids 171-175, 239-243, 377-381

Casein kinase II phosphorylation site.

amino acids 32-36, 182-186, 209-213, 227-231, 276-280, 315-319,
375-375

Tyrosine kinase phosphorylation site.

amino acids 361-369, 389-397

N-myristoylation site.

amino acids 143-149, 178-184, 255-261, 272-278, 428-434

Leucine zipper pattern.

amino acids 410-432

Alpha-L-fucosidase putative active site.

amino acids 283-295

FIGURE 73

AGCAGGGAAATCCGGATGTCTCGGTTATGAAGTGGAGCAGTGAGTGTGAGCCTAACATAGT
TCCAGAACTCTCCATCCGGACTAGTTATTGAGCATCTGCCTCTCATATCACCAAGTGGCCATC
TGAGGTGTTCCCTGGCTCTGAAGGGTAGGCACGATGCCAGGTGCTTCAGCCTGGTGTG
CTTCTCACTCCATCTGGACCACGAGGCTCTGGCCAAGGCTTTGCGTGAGAAGAGCT
TTCCATCCAGGTGTCATGCAGAATTATGGGGATCACCCCTGTGAGCAAAAGGCGAACCGC
AGCTGAATTTCACAGAAGCTAAGGAGGCCTGTAGGCTGCTGGACTAAGTTGGCCGGCAAG
GACCAAGTTGAAACAGCCTGAAAGCTAGCTTGAACATTCAGCTATGGCTGGGTGGAGA
TGGATTCGTGGTCATCTCTAGGATTAGCCCCAACCCCAAGTGTGGAAAAATGGGGTGGGTG
TCCTGATTTGGAAGGTTCCAGTGAGCCGACAGTTGCAGCTATTGTTACAACTCATCTGAT
ACTTGGACTAACCTGTCATTCCAGAAATTATCACCACCAAAGATCCCATAATTCAACACTCA
AACTGCAACACAAACAAACAGAATTATTGTCACTGACAGTACCTACTCGGTGGCATCCCCCT
ACTCTACAATACCTGCCCTACTACTACTCCTCCTGCTCCAGCTCCACTTCTATTCCACGG
AGAAAAAAATTGATTTGTGTCACAGAAGTTTATGAAAACAGCACCATGTCTACAGAAAC
TGAACCATTGTTGAAAATAAAGCAGCATTCAAGAATGAAGCTGCTGGGTTGGAGGTGTCC
CCACGGCTCTGCTAGTGCTCTCCTCTTGGTGTGAGCTGGCTTGGATTTC
TATGTCAAAAGGTATGTGAAGGCCTCCCTTACAAACAAGAATCAGCAGAAGGAAATGAT
CGAAACCAAAGTAGTAAAGGAGGAGAAGGCCAATGATAGCAACCTAATGAGGAATCAAAGA
AAACTGATAAAACCCAGAAGAGTCCAAGAGTCCAAGCAAAACTACCGTGGCATGCCCTGGAA
GCTGAAGTTTAGATGAGACAGAAATGAGGAGACACACCTGAGGCTGGTTCTTCATGCTCC
TTACCCCTGCCCTAGCTGGGAAATCAAAGGCCAAAGAACCAAAGAAGAAAGTCCACCCTT
GGTTCTTAACGGAAATCAGCTCAGGACTGCCATTGGACTATGGAGTGCACCAAAGAGAATGC
CCTTCTCCTTATTGTAACCCCTGTCTGGATCCTATCCTCCTACCTCCAAAGCTTCCCACGGCC
TTTCTAGCCTGGCTATGTCCTAATAATATCCCACGGAGAAAGGAGTTTGCAAAGTGCAA
GGACCTAAACATCTCATCAGTATCCAGTGGTAAAAGGCCCTGGCTGTGAGGCTAGG
TGGGTTGAAAGCCAAGGAGTCAGTGAGACCAAGGCTTCTACTGATTCCGAGCTCAGAC
CCTTCTCAGCTCTGAAAGAGAACACGTATCCCACCTGACATGTCCTCTGAGCCCGGTA
AGAGCAAAAGAATGGCAGAAAGTTAGCCCTGAAAGCCATGGAGATTCTCATAACTTGAG
ACCTAATCTCTGAAAGCTAAAATAAAGAAATAGAACAAAGGCTGAGGATACGACAGTACACT
GTCAGCAGGGACTGTAACACAGACAGGGTCAAAGTGTCTCTGAACACATTGAGTTGGA
ATCACTGTTAGAACACACACACTTACTTTCTGGTCTCTACCACTGCTGATATTTCT
AGGAAATATACTTTACAAGTAACAAAATAAAACTCTTATAAATTCTATTTTATCTGA
GTTACAGAAATGATTACTAAGGAAGATTACTCAGTAATTGTTAAAAGTAATAAAATTCA
ACAAACATTGCTGAATAGCTACTATATGTCAAGTGCTGTGCAAGGTATTACACTCTGTAAT
TGAATATTATCCTCAAAAATTGCACATAGTAGAACCGCTATCTGGGAAGCTATTTTCA
GTTTGATATTCTAGCTTATCTACTTCCAAACTAATTGTTATTGCTGAGACTAATCTT
ATTCAATTCTCTAATATGGCAACCATTATAACCTTAATTATTAAACATACCTAACAG
TACATTGTTACCTCTATATACCAAAGCACATTAAAAGGCCATTAACAAATGTATCACTA
GCCCTCCTTTCCAACAAGAAGGGACTGAGAGATGCAGAAATATTGTGACAAAAATTAA
AGCATTAGAAAACCTT

FIGURE 74

MARCFSLVLLLTSIWTTRLLVQ GSLRAEELSIQVSCRIMGITLVSKKANQQLNFTEAKEACR
LLGLSLAGKDQVETALKASFETCSYGVGDGFVVISRISP NPKCGKNGVGVLIW KVPVSRQF
AAYCYNSSDTWTNSCIPEIITTKDPIFNTQTATQTTEFIVSDSTYSVASPYSTIPAPTTTPP
APASTSIPRRKKLICVTEVFMETSTMSTETEPFVENKA AAFKNEAAGFGGVPTALLVLALLFF
GAAAGLGFCYVKRYVKA FPFTNKNQQKEMIETKVVKEEKANDSNPNEESKKTDKNPEESKSP
SKTTVRCLEAEV

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 235-254

N-glycosylation site.

amino acids 53-57, 130-134, 289-293

Casein kinase II phosphorylation site.

amino acids 145-149, 214-218

Tyrosine kinase phosphorylation site.

amino acids 79-88

N-myristoylation site.

amino acids 23-29, 65-71, 234-240, 235-239, 249-255, 253-259

FIGURE 75

AGATGGCGGTCTTGGCACCTCTAATTGCTCTCGTATTGGTGCACGACTTCACGATGG
CTGGCCAACCTTACTACCTCTGTCGGCCCTGCTCTGCTGCCTCCTACTCGTGAGGAA
ACTGCCGCCCTGCCACGGCTGCCACCCAACGCGAAGACGGTAACCGTGTGACTTTG
ACTGGAGAGAAGTGGAGATCCTGATGTTCTCAGTGCATTGTGATGATGAAGAACCGCAGA
TCCATCACTGTGGAGCAACATATAGGCAACATTTCATGTTAGTAAAGTGGCAAACACAAT
TCTTTCTTCCGCTTGGATATTGCATGGCCTACTTACATCACACTCTGCATAGTGTCC
TGATGACGTGCAAACCCCCCTATATATGGGCCCTGAGTATATCAAGTACTTCAATGATAAA
ACCATTGATGAGGAACTAGAACGGACAAGAGGGTCACTGGATTGTGGAGTTCTTGCAA
TTGGTCTAATGACTGCCAATCATTGCCCTATCTATGCTGACCTCTCCCTAAATACAAC
GTACAGGGCTAAATTGGGAAGGTGGATGTTGGACGCTACTGATGTTAGTACGGTAC
AAAGTGAGCACATCACCCTCACCAAGCAACTCCCTACCCCTGATCCTGTTCCAAGGTGGCAA
GGAGGCAATGCGCGGCCACAGATTGACAAGAAAGGACGGGCTGTCTCATGGACCTCTCG
AGGAGAATGTGATCCGAGAATTAACTTAAATGAGCTATACCAGCGGCCAAGAAACTATCA
AAGGCTGGAGACAATATCCCTGAGGAGCAGCCTGTGGCTCAACCCCCACCACAGTGTCA
TGGGAAAACAAGAAGGATAAATAAGATCCTCACTTGGCAGTGCTCCTCTCCTGTCAATT
CCAGGCTTTCCATAACCACAAGCCTGAGGCTGCAGCCTTNATTNATGTTCCCTTGG
CTGNGACTGGNTGGGCAGCATGCAGCTCTGATTAAAGAGGCATCTAGGAATTGTCAG
GCACCCTACAGGAAGGCCTGCCATGCTGTGCCACTGTTCACTGGAGCAAGAAAGAGATC
TCATAGGACGGAGGGGGAAATGGTTCCCTCCAAGCTGGTCAGTGTGTTACTGCTTATC
AGCTATTAGACATCTCCATGGTTCTCCATGAAACTCTGTGGTTCATCATTCCCTTAG
TTGACCTGCACAGCTGGTTAGACCTAGATTAAACCTAACGTAAGATGCTGGGTATAGAA
CGCTAAGAATTTCACCAAGGACTCTGCTTCTTAAGCCCTCTGGCTCGTTATGGTC
TTCATTAAAGTATAAGCCTAACCTGTCGCTAGTCCTAACGGAGAACCTTAACCACAAAG
TTTTTATCATTGAAGACAATTGAACAACCCCCCTATTGTGGGATTGAGAAGGGGTGAA
TAGAGGCTTGAGACTTCCTTGTGTGGTAGGACTTGGAGGAGAAATCCCTGGACTTCAC
TAACCCCTGACATACTCCCCACACCCAGTTGATGGCTTCCGTAATAAAAGATTGGGATT
TCCTTTG

FIGURE 76

MAVLAPLIALVYSVPRLSRWLAQPYYLLSALLSAAFLLVRKLPPCHGLPTQREDGNPCDFD
WREVEILMFLSAIVMMKNRRSITVEQHIGNIFMF SKVANTILFFRLDIRMGLLYITLCIVFL
MTCKPPLYMGPEYIKYFNDKTIDEELERDKRVTWIVEFFANWSNDCQSFAPIYADLSLKYNC
TGLNFKGKVDVGRYTDVSTRYKVSTSPLTKQLPTLILFQGGKEAMRRPQIDKKGRAVSWTFSE
ENVIREFNLNELYQRACKLSKAGDNIPEEQPVASTPTVSDGENKKDK

Signal sequence:

amino acids 1-48

Transmembrane domain:

amino acids 111-125

N-glycosylation site.

amino acids 165-169, 185-189

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 154-158, 265-269

Casein kinase II phosphorylation site.

amino acids 51-55, 145-149, 245-249, 286-290, 288-292

N-myristoylation site.

amino acids 188-194, 225-231

Myb DNA-binding domain repeat signature 1.

amino acids 244-253

FIGURE 77

GGACAGCTCGGGCCCCCGAGAGCTCTAGCCGTCGAGGAGCTGCCCTGGGACGTTGCCCTG
GGGCCCTGGCCGGTCACCCTGGCATGAGGAGATGGGCCTGTTGCTCCTGGTCCC
TTGCTCCTGCTGCCGGCTCCTACGGACTGCCCTCTACAACGGCTTACTACTCCAACAG
CGCCAACGACCAGAACCTAGGCAACGGTCATGGCAAAGACCTCCTTAATGGAGTGAAGCTGG
TGGTGGAGACACCCGAGGGAGACCCCTGTTACCTACCAAGGGGCCAGTGTGATCCTGCCCTGC
CGCTACCGCTACGAGCCGGCCCTGGTCTCCCCGGCGTGTGCGTGTCAAATGGTGGAAAGCT
GTCGGAGAACGGGCCAGAGAAGGACGTGCTGGTGGCCATGGGCTGAGGCACCGCTCCT
TTGGGACTACCAAGGCCGCGTGCACCTGGCAGGACAAAGACCATGACGTCTCGCTGGAG
ATCCAGGATCTCGGGCTGGAGGACTATGGCGTTACCGCTGTGAGGTATTGACGGCTGGAA
GGATGAAAGCGGTCTGGTGGAGCTGGAGCTGCGGGGTGTTCTTACCAAGTCCCCCA
ACGGCGCTACCAAGTTCAACTTCCACGAGGGCCAGCAGGTCTGTGCAGAGCAGGCTGCC
GTGGCCTCCTTGAGCAGCTCTCCGGGCTGGAGGAGGGCTGGACTGGTGCACCGGG
CTGGCTGCAGGATGCTACGGTGCAGTACCCCATCATGTTGCCCGGCAGCCCTGCC
CAGGCCTGGCACCTGGCGTGCAGCTACGGCCCCGCCACGCCCTGCACCGCTATGAT
GTATTCTGCTTCGCTACTGCCCTCAAGGGCGGGTGTACTACCTGGAGCACCCGTAGAAGCT
GACGCTGACAGAGGCAAGGGAGGCCTGCCAGGAAGATGATGCCACGATGCCAAGGTGGAC
AGCTTTGCCGCTGGAAGTTCACTGGCCTGGACCGCTGCGACGCTGGCTGGCTGGCAGAT
GGCAGCGTCCGCTACCCGTGGTTCACCCGATCCTAAGTGTGGCCCCAGAGCCTGGG
CCGAAGCTTGCTTCCCCGACCCGAGAGCCGTTGTACGGTGTACTGCTACCGCCAGC
ACTAGGACCTGGGCCCTCCCGCCATTCCCTGCGCATTCCCTACTGGCTGTATTATTGAGTGGTT
CGTTTCCCTGTGGGTTGGAGCCATTAACTGTTTATACTTCTCAATTAAATTCT
TTAACATTTTACTATTTTGAAAGCAAACAGAACCCATGCCCTCCCTTGCTCCTG
GATGCCCACTCCAGGAATCATGCTTGCTCCCTGGCCATTGCGGTTGTGGCTTCTG
GAGGGTCCCGCCATCCAGGCTGGCTCCCTCCCTTAAGGAGGTTGGGCCAGAGTGGC
GGTGGCCTGTCTAGAATGCCGCCGGAGTCCGGCATGGTGGCACAGTTCTCCCTGCC
CAGCCTGGGGAAAGAAGAGGGCCTGGGGCTCCGGAGCTGGCTTGCGCTCTCCTGCC
CACCTCTACTTCTGTGAAGCCGCTGACCCAGTCTGCCACTGAGGGCTAGGGCTGGAA
GCCAGTTCTAGGCTCAGGCGAAATCTGAGGGAAGGAAGAAACTCCCCCTCCCCGTTCC
TCCCTCTCGGTTCAAAGAATCTGTTGTTGTCATTGTTCTCCTGTTCCCTGTGTGG
GGAGGGGCCCTCAGGTGTGTACTTGGACAATAATGGTGCTATGACTGCCCTGGCAA
AA
AA

FIGURE 78

MGLLLVPLLLPGSYGLPYNGFYYNSANDQNLGNHGKDLLNGVKLVVETPEETLFTYQ
GASVILPCRYRYEPALVSPRRVRVKWWKLENGAPEKDVLVAIGLRHRSFGDYQGRVHLRQD
KEHDVSLEIQDLRLEDYGRYRCEVIDGLEDESGLVELELRGVVFQSPNGRYQFNFHEGQQ
VCAEQAAVVASFEQLFRAWEEGLDWCNAGWLQDATVQYPIMLPRQPCGGPGLAPGVRSYGP
HRRLHRYDVFCFATALKGRVYYLEHPEKLTLTEAREACQEDDATIAKVGQLFAAWKFHGLDR
CDAGWLADGSVRYPVVHPHPNCGPPEPGVRSFGFPDPQSRLYGVYCYRQH

Signal sequence:

amino acids 1-17

Casein kinase II phosphorylation site.

amino acids 29-33, 53-57, 111-115, 278-282

Tyrosine kinase phosphorylation site.

amino acids 137-145

N-myristoylation site.

amino acids 36-42, 184-190, 208-214, 237-243, 297-303, 307-313

FIGURE 79

GGAGAGCGGAGCGAAGCTGGATAACAGGGACCG**TG**GATGTGGCGACCATCAGTTCTGCTGC
TTCTGTTGCTACTGAGGCACGGGGCCAGGGGAAGCCATCCCCAGACGCAGGCCCTCATGGC
CAGGGGAGGGTGCACCAGGGCCCTGAGCGACGCTCCCCATGATGACGCCACGGAA
CTTCCAGTACGACCATGAGGCTTCCTGGACGGAAAGTGGCAAGGAATTGACCAACTCA
CCCCAGAGGAAAGCCAGGCCGTCTGGGCGGATCGTGGACCGCATGGACCGCGGGGGAC
GGCGACGGCTGGGTGTCGCTGGCGAGCTCGCGCTGGATCGCGCACACGCAGCAGCGA
CATACGGACTCGGTGAGCGCGCCTGGACACGTACGACACGGACCGCGACGGCGTGTGG
GTTGGGAGGAGCTCGCAACGCCACCTATGCCACTACGCGCCGGTGAAGAATTGAC
GTGGAGGATGCAGAGACCTACAAAAGATGCTGGCTCGGACGAGCGGGCTTCCGGTGGC
CGACCAGGATGGGACTCGATGCCACTCGAGAGGAGCTGACAGCCTCCTGCACCCCGAGG
AGTCCCTCACATGCGGACATCGTATTGCTGAAACCCCTGGAGGACCTGGACAGAAACAAA
GATGGCTATGTCCAGGTGGAGGAGTACATCGGGATCTGTACTCAGCCGAGCCTGGGAGGA
GGAGCCGGCGTGGGTGCAGACGGAGAGGCAGCAGTCCGGACTTCCGGATCTGAACAAGG
ATGGGCACCTGGATGGAGTGAGGTGGCCACTGGGTGCTGCCCTGCCAGGACCGAGCCC
CTGGTGGAAAGCCAACCACCTGCTGCACGAGAGCGACACGGACAAGGATGGCGGCTGAGCAA
AGCGGAAATCCTGGTAATTGGAACATGTTGTGGCAGTCAGGCCACCAACTATGGCGAGG
ACCTGACCCGGCACCAAGATGAGCT**TG**AGCACCAGCGCACCTGCCACAGCCTCAGAGGCCCG
CACAAATGACCGGAGGAGGGCCGCTGTTCTGGCCCTCCCTGTCCAGGGCCCGAGGAG
GCAGATGCAGTCCCAGGCATCCTCTGCCCTGGCTCTCAGGGACCCCTGGGTGGCTTC
TGTCCCTGTACACCCCCAACCCAGGGAGGGCTGTCATAGTCCCAGAGGATAAGCAATAC
CTATTCTGACTGAGTCTCCAGCCCAGACCCAGGGACCCCTGGCCCAAGCTCAGCTCTAA
GAACCGCCCCAACCCCTCCAGCTCAAATCTGAGCCTCCACCACATAGACTGAAACTCCCCT
GGCCCCAGCCCTCTCTGCCTGGCCTGGACACCTCCTCTGCCAGGAGGAATAA
AAGCCAGGCCGGACCTTGAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAA

FIGURE 80

MMWRPSVLLLLLRLHGAQGKPSPDAGPHGQGRVHQAAPLSDAPHDDAHGNFQYDHEAFLGR
EVAKEFDQLTPEESQARLGRIVDRMDRAGDGDWVSLAELRAWIAHTQQRHIRDSVSAAWDT
YDTDGRVGWEELRNATYGHYAPGEFHDVEDAETYKKMLARDERRFRVADQDGDSMATRE
ELTAFLHPEEFPHMRDIVIAETLEDLDRNKGYVQVEEYIADLYSAEPGEEEPAWVQTERQQ
FRDFRDLNKDGHLDGSEVGHVLPPAQDQPLVEANHLLHESDTDKDGRLSKAEILGNWNMFV
GSQATNYGEDLTRHHDEL

Signal sequence:

amino acids 1-20

N-glycosylation site.

amino acids 140-144

Casein kinase II phosphorylation site.

amino acids 72-76, 98-102, 127-131, 184-188, 208-212, 289-293,
291-295, 298-302

N-myristoylation site.

amino acids 263-269, 311-317

Endoplasmic reticulum targeting sequence.

amino acids 325-330

FIGURE 81

GGGGCCTTGCCTCCGCACTGGCGCAGCCGGTGGATCTGAGCAGGTGCGGAGCCCCGG
GCGGCGGCGCGGGTGCAGGGATCCCTGACGCCTCTGCCCTGTTCTTGCTGCTCCCAG
CCTGTCGTCGTTGGCGCCCCGCCTCCCGCGGTGCAGGGTTGCACACCGATCCTG
GGCTTCGCTCGATTGCCGCCAGGCGCCTCCAGACCTAGAGGGCGCTGGCCTGGAGCAG
CGGGTCGCTGTGTCCTCTCCCTCGGCCGCCGGGATCCGAAGGGTGCAGGGCTCT
GAGGAGGTGACGCCGGGCTCCGCACCCCTGGCCTGCCGCATTCTCCCTCTCCAG
GTGTGAGCAGCCTATCAGTCACCATTGTCGCAGCCTGGATCCCGCTCTGGCCTCGGTGTG
TGTCTGCTGCTGCCGGGCCGCCAGCGAGGGAGCCGCTCCATTGCTATCACATG
TTTACAGAGGCTTGACATCAGGAAAGAGAAAGCAGATGTCTCTGCCAGGGGCTGCC
CTCTGAGGAATTCTCTGTATGGAACATAGTATATGCTTCTGTATCGAGCATATGTGGG
GCTGCTGTCCACAGGGAGTAATCAGCAACTCAGGGGACCTGTACGAGTCTATAGCCTACC
TGGTCGAGAAAATATTCTCAGTAGATGCCAATGGCATCCAGTCTCAAATGCTTCTAGAT
GGTCTGCTCTTCACAGTAACTAAAGGCAAAGTAGTACACAGGAGGCCACAGGACAAGCA
GTGTCCACAGCACATCCACCAACAGGTAAACGACTAAAGAAAACACCCGAGAAGAAAATGG
CAATAAAGATTGTAAGCAGACATTGCATTCTGATTGATGGAAGCTTAATATTGGCAGC
GCCGATTAATTACAGAAGAATTGTTGGAAAAGTGGCTCTAATGTTGGAAATTGGAACA
GAAGGACCACATGTGGCCTTCAAGCCAGTGAACATCCAAAATAGAATTTACTTGAA
AAACTTACATCAGCAAAGATGTTGTTGCCATAAGGAAGTAGGTTCAGAGGGGTA
ATTCCAATACAGGAAAAGCCTGAAGCATACTGCTCAGAAATTCTCACGGTAGATGCTGGA
GTAAGAAAAGGGATCCCCAAAGTGGTGGTGGTATTATTGATGGTGGCCTCTGATGACAT
CGAGGAAGCAGGCATTGTGGCAGAGAGTTGGTGTCAATGTATTATAGTTCTGTGGCCA
AGCCTATCCCTGAAGAACTGGGATGTTCAGGATGTCACATTGTTGACAAGGCTGCTGT
CGGAATAATGGCTTCTCTTACACATGCCAATGGTTGGCACCACAAAATACGTAAA
GCCTCTGGTACAGAAGCTGTGCACTCATGAACAAATGATGTGCAGCAAGACCTGTTATAACT
CAGTGAACATTGCCTTCTAATTGATGGCTCCAGCAGTGGAGATAGCAATTCCGCCTC
ATGCTGAAATTGTTCCAACATAGCCAAGACTTTGAAATCTGGACATTGGTCCAAGAT
AGCTGCTGTACAGTTACTTATGATCAGCGCACGGAGTTCACTGACTATAGCACCA
AAGAGAATGTCCTAGCTGTCACTCAGAAACATCCGCTATATGAGTGGTGGAACAGCTACTGGT
GATGCCATTCTTCACTGTTAGAAATGTGTTGCCCTATAAGGGAGAGCCCCAACAGAA
CTTCCTAGTAATTGTCACAGATGGCAGTCCTATGATGATGTCACAGGCCCTGCAGCTGCTG
CACATGATGCAGGAATCACTATCTCTGTTGGTGTGGCTTGGCACCTCTGGATGACCTG
AAAGATATGGCTTCTAAACCGAAGGAGTCTCACGCTTCTTACAAGAGAGTTCACAGGATT
AGAACCAATTGTTCTGATGTCATCAGAGGCATTGTAGAGATTCTTACAATCCCAGCAAT
AATGGTAACATTGACAACTGAAAGAAAAAGTACAAGGGGATCCAGTGTGAAATTGTATT
CTCATAATACTGAAATGCTTACTGATAGAATCAGATACAAAATATTAGTATGTCAAC
AGCCATTAGGCAAATAAGCACTCCTTAAAGCCGCTGCCCTGGTTACAATTACAGTGT
ACTTTGTTAAAACACTGCTGAGGCTTCATAATCATGGCTTCAAGAAACTCAGGAAAGAGGA
GATAATGTGGATTAAAACCTTAAGAGTTCTAACCATGCCTACTAAATGTACAGATATGCAAA
TTCCATAGCTCAATAAAAGAATCTGATACTTAGACCAAAAAAAA

FIGURE 82

MSAAWIPALGLVCLLLLPGPAGSEAAPIAITCFTRGLDIRKEKADVLCPGGCPLLEFSVY
GNIVYASVSSICGAAVHRGVISNSGGPVRVYSLPGRENYSSVDANGIQSQMLSRWSASFTVT
KGKSSTQEATGQAVSTAHPPTGKRLKKTPEKKTGNKDKADIAFLIDGSFNIGQRRFNLQKN
FVGKVALMLGIGTEGPHVGLVQASEHPKIEFYLNFTSAKDVLFAIKEVGFRGGNSNTGKAL
KHTAQKFFTVDAGVRKGIPKVVVFIDGWPSSDIEEAGIVAREFGVNVFIVSVAKPIPEELG
MVQDVTFVDKAVCRNNGFFSYHMPNWFGTTKYVKPLVQKLCTHEQMMCSKTCYNSVNIAFLI
DGSSSVGDSNFRLMLEFVSNIAKTFEISDIGAKIAAVQFTYDQRTEFSFTDYSTKENVLA
RNIRYMSGGTATGDAISFTVRNVFGPIRESPNKNFLVIVTDQSYDDVQGPAAAHDAGITI
FSVGVAWAPLDDLKDMASKPKESHAFFTREFTGLEPIVSDVIRGICRDFLESQQ

Signal sequence:

amino acids 1-24

N-glycosylation site.

amino acids 100-104, 221-225

Casein kinase II phosphorylation site.

amino acids 102-106, 129-133, 224-228, 316-320, 377-381, 420-424,
425-429, 478-482, 528-532

N-myristoylation site.

amino acids 10-16, 23-29, 81-87, 135-141, 158-164, 205-211,
239-245, 240-246, 261-267, 403-409, 442-448, 443-449

Amidation site.

amino acids 145-149

FIGURE 83

CGCCCGCGCTCCCGCACCGCGGCCGCCACCGCGCCGCTCCGCATCTGCACCCGCAGCCC
GGCGGCCTCCGGCGGGAGCGAGCAGATCCAGTCCGGGCCGCAGCGCAACTCGGTCCAGTCG
GGGCGCGGCTGCGGGCGCAGAGCGGAGATGCAGCGGCTGGGCCACCCCTGCTGTGCCTGC
TGCTGGCGGGCGGCGGTCCCCACGGCCCCCGCGCCGCTCCGACGGCGACCTCGGCTCCAGTC
AAGCCCGGCCGGCTCTCAGCTACCCGAGGAGGACACGCAGCACAAATTGCGCAGCGGGTGAAGAGATGGAGG
GGTGAGGAAGTGTGGAGGACACGCAGCACAAATTGCGCAGCGGGTGAAGAGATGGAGG
CAGAAGAACGCTGCTAAAGCATCATCAGAAGTGAACCTGGCAAACACTACCTCCCAGCTAT
ACAATGAGACCAACACAGACACGAAGGTTGAAATAATACCATCCATGTGCACCGAGAAAT
TCACAAGATAACCAACAACCAGACTGGACAAATGGTCTTTCAGAGACAGTTATCACATCTG
TGGGAGACGAAGAACGGCAGAAGGAGCCACGAGTGCATCATCGACGAGGACTGTGGGCCAGC
ATGTAAGTGCAGTTGCCAGCTCCAGTACACCTGCCAGCCATGCCGGGCCAGAGGATGCT
CTGCACCCGGGACAGTGAGTGCTGTGGAGACCAGCAGCTGTGTCTGGGTCACTGCACCAAAA
TGGCCACCAGGGGAGCAATGGGACCATCTGTGACAACCAGAGGGACTGCCAGCCGGGCTG
TGCTGTGCCTCCAGAGAGGGCTGCTGTTCCCTGTGTGCACACCCCTGCCGTGGAGGGCGA
GCTTGCCATGACCCGCCAGCGGCTCTGGACCTCATCACCTGGAGCTAGAGCCTGATG
GAGCCTTGGACCGATGCCCTTGCCAGTGGCCTCCTCTGCCAGCCCCACAGCCACAGCCTG
GTGTATGTGTGCAAGCCACCTCGTGGGGAGCCGTGACCAAGATGGGAGATCCTGCTGCC
CAGAGAGGTCCCCGATGAGTATGAAGTTGCCAGCTTCATGGAGGAGGTGCGCCAGGAGCTGG
AGGACCTGGAGAGGAGCCTGACTGAAGAGATGGCGCTGGGGAGCCTGCCGTGCCGCGCT
GCACTGCTGGAGGGAAAGAGATT**TAGATCTGGACCAGGCTGTGGTAGATGTGCAATAGAA**
ATAGCTAATTATTCCCCAGGTGTGCTTAGGCGTGGCTGACCAGGCTTCTTACA
TCTTCTTCCCAGTAAGTTCCCCTCTGGCTTGACAGCATGAGGTGTTGCAATTGTTCA
TCCCCCAGGCTGTTCTCCAGGCTTCACAGTCTGGCTTGGAGAGTCAGGCAGGGTTAAC
TGCAGGAGCAGTTGCCACCCCTGTCCAGATTATTGGCTGCTTGCCTTACCAAGTTGGCAG
ACAGCCGTTGTTCTACATGGCTTGATAATTGTTGAGGGGAGGAGATGGAAACAATGTGG
AGTCTCCCTGATTGGTTGGGAAATGTGGAGAAGAGTGCCTGCTTGCAAAACATCAA
CCTGGCAAAATGCAACAAATGAATTTCACCGCAGTTCTTCCATGGGCTAGGTAAGCTG
TGCCTTCAGCTGTTGAGATGAAATGTTCTGTCACCCGCATTACATGTGTTATTCA
AGCAGTGTGCTCAGCTCCTACCTCTGTGCCAGGGCAGCATTTCATATCCAAGATCAATT
CCTCTCTCAGCACAGCCTGGGGAGGGGTCAATTGTTCTCCTCGCCATCAGGGATCTCAGAG
GCTCAGAGACTGCAAGCTGCTGCCAAGTCACACAGCTAGTGAAGACAGAGCAGTTCAT
CTGGTTGTGACTCTAACGCTCAGTGTCTCTCCACTACCCACACCAGCCTTGGTGCCACCAA
AAGTGCTCCCCAAAAGGAAGGAGAATGGGATTTTCTTGAGGCATGCACATCTGAAATTAG
GTCAAACATTCTCACATCCCTCTAAAGTAAACTACTGTTAGGAACAGCAGTGTCTCAC
AGTGTGGGGCAGCGTCCCTCTAATGAAGACAATGATATTGACACTGTCCTCTTGGCAGT
TGCATTAGTAACCTTGAAAGGTATATGACTGAGCGTAGCATAACAGGTTAACCTGCAGAAACA
GTACTTAGGTAATTGTAGGGCGAGGATTATAAATGAAATTGCAAACATTCACTTAGCAGCAAC
TGAAGACAATTATCAACCACGTGGAGAAAATCAAACCGAGCAGGGCTGTGTGAAACATGGTT
GTAATTATGCGACTGCGAACACTGAACCTACGCCACTCCACAAATGATGTTTCAAGGTGTC
TGGACTGTTGCCACCATGTATTGATCCAGAGTTCTTAAAGTTAAAGTTGACATGATTGTA
TAAGCATGTTCTTGAGTTAAATTATGTATAAACATAAGTTGCATTAGAAATCAAGC
ATAAATCACTCAACTGCAAAAAAAAAAAAAAA

FIGURE 84

MQRLGATLLCLLLAAAVPTAPAPAPTATSAPVKPGPALSYPQEEATLNEMFREVEELMEDTQ
HKLRSAVEEMEAEEAAKASSEVNLPPSYHNETNTDTKVGNNTIHVHREIHKITNNQTG
QMVFSETVITSVGDEEGRRSHECIIDEDCGPSMYCQFASFQYTCQPCRGQRMLCTRSECCG
DQLCVWGHCTKMATRGSNGTICDNQRDCQPGLCCAFQRGLFPVCTPLPVEGELCHDPASRL
LDLITWELEPDGALDRCPCASGLLCQPHSHSLVYVCKPTFVGSRDQDGEILLPREVPDEYEV
GSFMEEVROELEDLERSLTEEMALGEPAAAAALLGGEI

Signal sequence:

amino acids 1-19

N-glycosylation site.

amino acids 96-100, 106-110, 121-125, 204-208

Casein kinase II phosphorylation site.

amino acids 46-50, 67-71, 98-102, 135-139, 206-210, 312-316,
327-331

N-myristoylation site.

amino acids 202-208, 217-223

Amidation site.

amino acids 140-144

FIGURE 85

AAGGAGGCTGGGAGGAAAGAGGTAAGAAAGGTTAGAGAACCTACCTCACATCTCTGGGCTCAGAAGGACTCTG
AAGATAACAATAATTTCAGCCCATCCACTCTCCTTCCCTCCAAACACACATGTGCATGTACACACACATACA
CACACATACACCTTCTCCTTCACTGAAGACTCACAGTCACTCACTCTGTGAGCAGGGTCATAGAAAAGGACAC
TAAAGCCTTAAGGCAGGGCTGGCATTACCTCTGCAGCTCCTTGGCTTGAGTCAGGAAACATGGGAGGG
CCAGGCACGGTACTCACACCTGTAATCCCAGCATTGGGAGACCGAGGTGAGCAGATCACTTGAGGTCAGGAG
TTCGAGGACAGGCTGGCAGGAAACATGGAGAAACCCCCATCTACTAAAAAATACAAAAATTAGCCAGGAGTGGTGGC
AGGTGCCTGTAATCCCAGCTACTCAGGTGGCTGAGCAGGAGAATCGCTGAAATCCAGGAGGGAGGATGCCAGT
CAGCTGAGTGCACCGCTGCACTCCAGCCTGGGTGACAGAAATGAGACTCTGTCTCAAACAAACAAACACGGGAGGA
GGGTAGATACTGCTTCTGCAACCTCTTAACCTCTGCACTCTCTTCCAGGGCTGCCCCCTGATGGGGCTG
GCAATGACTGAGCAGGCCAGGAGAACAGGAAGAGAAGGCAAGAGAAGGATATTGAGGAGGGCAAGAAGTGA
GTGAGAATGACTGCCCTGGGAGGGTCTGGGGCCTGGCAGGGTTGCTGACCCCTACCCCTGCAAAACACA
AAGAGCAGGACTCCAGACTCTCCTGTGAATGGTCCCCCTGCCCCCTGAGCTCACCATGAGGCTTCTCGTGGCCCC
ACTCTTGCTAGCTGGGTTGGCTGGTGCCTGCACTGTGCCCCGGTACCCCTGGCATGTTCCCTGCCCCCTCA
GTGTGCCTGCCAGATCCGGCCCTGGTATACGCCCCGCTGCTTACCGCGAGGCTACCAACTGTGGACTGCAATGA
CCTATTCTGACGGCAGTCCCCCGGCACTCCCCGAGCACACAGACCCCTGCTGAGGAGCAACAGCATTGT
CCGTGTGGACCAGAGTGAAGCTGGGCTACCTGGCCAATCTCACAGAGCTGGACCTGTCCCCAGAACAGCTTTGGA
TGCCCCAGACTGTGATTTCATGCCCTGCCCCAGCTGCTGAGCCTGCACCTAGAGGAGAACCGAGCTGACCGGCT
GGAGGACCACAGCTTGCAAGGCTGGCAGCCTACAGGAACACTATCTCAACCACAACCAGCTTACCGCATCGC
CCCCAGGGCTTTCTGGCTCAGCAACTTGCTGCGGCTGCACCTCAACTCCAACCTCTGAGGGCCATTGACAG
CCGCTGGTTGAAATGCTGCCAACTGGAGATACTCATGATTGGGGCAACAAGGTAGATGCCATCCTGGACAT
GAACCTCCGGCCCTGGCCAACCTGCGTAGCCTGGTCTAGCAGGATGAACCTGCGGGAGATCTCGACTATGC
CCTGGAGGGCTGCAAAGCCTGGAGAGCCTCTCCTTCTATGACAACCAGCTGCCCGGGTGCAGGCGGGCACT
GGAACAGGTGCCGGCTCAAGTCTTAGACCTCAACAAGAACCCGCTCCAGCGGGTAGGGCCGGGGACTTGC
CAACATGCTGACCTTAAGGAGCTGGACTGAACAACATGGAGGAGCTGGTCTCCATGACAAGTTGCCCTGGT
GAACCTCCCCGAGCTGACCAAGCTGGACATACCAATAACCCACGGCTGTCTTCTATCACCCCCCGGCCTTCA
CCACCTCCCCAGATGGAGAACCTCATGCTCAACAACACGCTCTCAGTGCCTTGCAACAGCAGCGGTGGAGTC
CCTGCCCAACCTGCAAGGAGGTAGGTCTCCACGGCAACCCATCCGCTGTGACTGTGATCCGCTGGGCAATGC
CACGGGCAACCGTGTCCGCTTACAGCGGCAATCCACCTGTGCGGAGGCTCCGGACCTCCAGCGCCTCCC
GGTCCGTGAGGTGCCCTTCCGGGAGATGACGGACACTGTTGCCCTCATCTCCCCACGAAGCTTCCCCCAAG
CCTCCAGGTAGCCAGTGGAGAGAGCATGGTGTGCAATTGCCGGCACTGGCCAACCCGAACCCGAGATCTACTG
GGTCACTCCAGCTGGCTTCGACTGACACCTGCCATGCAGGAGGTACCGGGTAGCCCTGTGAGGAGACAC
GGAGCTGCGGAGGGTACAGCAGAACAGGAGGGCTATACACCTGTGTTGGCCAGAACCTGGTGGGGCTGACAC
TAAGACGGTTAGTGTGGTGTGGCGCTGCTCTCCAGCCAGGAGGGAGGAAGGACAGGGCTGGAGCTCCG
GGTGCAGGAGAACCCACCCCTACACATCTGCTATCTGGTCAACCCACCAACAGTGTCCACCAACCTCAC
CTGGTCAGTGCCTCCCTCCGGGCCAGGGGCCACAGCTGGCCCTGCCTGGGGAAACCCACAGCTA
CAACATTACCCGCTCTTCAGGCCACGGAGTACTGGGCTGCCATGCAAGTGGCTTGCTGATGCCACACCA
GTTGGCTTGTATGGGCCAGGACAAAGAGGGCACTTCTGCCACAGAGCCTAGGGGATGTCCTGGGCTCAT
TGCCATCCTGGCTCGCTGCTCTCCAGCTGGCAGCTGGCTAGGGCCCACCTTGGCACAGGCCAACCCAGGAA
GGGTGTGGTGGGAGGGGCCCTCCAGCCTGGCTTCTGGGCTGGAGTGCCTTGCTGGGGTTGT
GTCTGCTCCCTCGTCTGCCCTGGAAATCCAGGGAGGAAGCTGCCAGATCTCAGAAGGGAGACACTGTTGCC
ACCATTGTCTAAAATTCTTGAAGCTCAGCTGTTCTCAGCAGTAGAGAAATCACTAGGACTACTTTACAAA
AGAGAACAGTCTGGGCCAGATGCCCTGCCAGGAAGGGACATGGACCCACGTGCTGAGGGCTGGCAGCTGGC
CAAGACAGATGGGGCTTGTGGCCCTGGGGTCTGCTGCAGCCTGAAAAAGTTGCCCTACCTCTAGGGTCA
CCTCTGCTGCCATTCTGAGGAACATCTCAAGGAACAGGGAGGACTTTGGCTAGAGCCTCTGCCCTCCCATCTT
CTCTGCTGCCATTCTGAGGAACATCTCAAGGAACAGGGAGGACTTTGGCTAGAGCCTCTGCCCTCCCATCTT
TCTTCTCTGTACAGTCTCAGTTGCTGCTCTGTGCTCTGGCTCCCTGGCAAGGGCTGAAGGGAGGGCACTCCATCTCAC
CTCGGGGGCTGCCCTCAATGTGGGAGTGACCCAGCCAGATCTGAAGGACATTGGGAGAGGGATGCCAGGAA
CGCCTCATCTCAGCAGCTGGCTGGCATTCCGAAGCTGACTTTCTATAGGCAATTGTACCTTGTGGAGAA
ATGTGTCACCTCCCCAACCCGATTCACTCTTCTCTGTAAAAAATAAAATAAAATAACAAATAAAA
AAAA

FIGURE 86

MRLLVAPLLLAWVAGATATVPVVPWHVPCPPQCACQIRPWYTPRSSYREATTVDNDLFLTA
VPPALPAGTQTLLLQSNSIVRVDQSELGYLANLTELDSQNSFSDARDCDFHALPQLLSLHL
EENQLTRLEDHSFAGLASLQEELYLNHNQLYRIAPRAFSGLSNLLRLHLNSNLLRAIDSRWFE
MLPNLEILMIGGNKVDAILDMNFRPLANLRSILLAGMNLREISDYALEGLQSLSESLSFYDNQ
LARVPRALEQVPGKFLDLNKNPLQRVGPGDFANMLHLKELGLNNMEELVSIDKFALVNLP
ELTKLDITNNPRLSFIHPRAFHHLQPQMELMLNNNALSAHQQTVESLPNLQEVGLHGNPIR
CDCVIRWANATGTRVRFIEPQSTLCAEPPDQLQRLPVREVPFREMTDHCLPLISPRSFPPSLQ
VASGESMVLHCRALAEPEPEIYWVTPAGLRLTPAHAGRRYRVYPEGTLELRRVTAAEAGLYT
CVAQNLVGADETKTVSVVGRALLQPGRDEGQGLELRVQETHPYHILLSWTPNNTVSTNLTW
SSASSLRGQGATALARLPRGTHSYNITRLLQATEYWACLQVAFADAHTQLACVWARTKEATS
CHRALGDRPGLIAILALAVALLLAAGLA AHLTGQPRKGVGGRPLPPAWAFWGWSAPSVRVV
SAPLVLPWNPGRKLPRSSEGETLLPPLSQNS

Signal sequence:

amino acids 1-18

Transmembrane domain:

amino acids 629-648

N-glycosylation site.

amino acids 94-98, 381-385, 555-559, 583-587

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 485-489

Casein kinase II phosphorylation site.

amino acids 46-50, 51-55, 96-100, 104-108, 130-134, 142-146,
243-247, 313-317, 488-492, 700-704

Tyrosine kinase phosphorylation site.

amino acids 532-540

N-myristoylation site.

amino acids 15-21, 493-499, 566-572

Amidation site.

amino acids 470-474, 660-664, 692-696

FIGURE 87

GCAAGCCAAGGGCCTGTTGAGAAGGTGAAGAAGTCCGGACCCATGTGGAGGAGGGGACATTGTGTACCGCCT
CTACATGCGGCAGACCATCATCAAGGTGATCAAGTTCATCCTCATCATCTGCTACACCGCTACTACGTGCACAA
CATCAAGTTGACGTGGACTGCACCGTGGACATTGAGAGCCTGACGGGCTACCGCACCTACCGCTGTGCCAACCC
CCTGCCACACTCTTCAGATCCTGGCGTCTTCTACATCAGCTAGTCATCTCTACGGCCTCATCTGCATGTA
CACACTGTGGTGGATGCTACGGCCTCCCTCAAGAAGTACTCGTTGAGTCGATCCGTGAGGAGAGCAGCTACAG
CGACATCCCCGACGTCAAGAACGACTTCGCCTCATGCTGCACCTCATTGACCAATACGACCCGCTACTCCAA
GCGCTTCGCGCTTCTGCGGAGGTGAGTGAGAACAGCTGCGCAGCTGAACCTCAACAACGAGTGGACGCT
GGACAAGCTCCGGCAGCGCCTACCAAGAACCGCAGGACAAGCTGGAGCTGCACCTGTCAGTGGCAT
CCCTGACACTGTGTTGACCTGGTGCAGCTGGAGGTCTCAAGCTGGAGCTGATCCCCGACGTGACCATCCGCC
CAGCATTGCCCAGCTCACGGGCTCAAGGAGCTGTGGCTCTACCAACACAGCGCCAAGATTGAAGCGCCTGCC
GGCCTTCTGCGCAGAACCTCGGGCGCTGCACATCAAGTTCACCGACATCAAGGAGATCCCGCTGTGGATCTA
TAGCTGAAAGACACTGGAGGAGCTGACCTGACGGGCAACCTGAGCGGGAGAACAAACCGCTACATCGTCATCGA
CGGGCTCGGGGAGCTCAAACGCCCTCAAGGTGCTGGGCTCAAGAGAACCTAAGCAAGCTGCCACAGGTGGTAC
AGATGTGGCGTGCACCTGAGACTGAGCTGGAGCTGATCCGCTGCACCTGGAGCGCATCCCCACTCCATTTCA
CCACAAACCTGCAAGGAGATTGACCTCAAGGACAACAACCTCAAGAACCATCGAGGAGATCATCAGCTTCCAGC
GCACCGCCTCACCGCTTAAGCTGTGGTACAACCACATCGCCTACATCCCCATCCAGATCGGCAACCTCACAA
CCTGGAGCGCCTCTACCTGAAACCGCAACAAGATCGAGAACGATCCCCACCCAGCTCTTCTACTGCC
CTACCTGGACCTCAGCCACAACAACCTGACCTTCTCCCTGCCGACATCGGCTCTGCAAGAACCTCCAGAACCT
AGCCATCACGGCAACCGGATCGAGACGCTCCCTCCGGAGCTTCCAGTGCAGGAGCTGAGCGAGATCGAGCTGCC
GGGCAACAAACGTGCTGCAGTCAGTCACTGCCCTCCAGGGTGGCGAGCTGACCAACCTGACGCAAGATCGAGCTGCC
CAACCGCTGGAGTGCCTGCTGTGGAGCTGGCGAGTGCCTCAAGCGCAGCGCTTGGTGGAGGA
GGACCTGTTCAACACACTGCCACCCGAGGTGAAGGAGCGGCTGTGGAGGGCTGACAAGGAGCAGGCGTAGGCC
GCCGCCAGCACAGCAAGCAGCAGGAGCTGCCAGTCCTCAGGCCGGAGGGGAGGCCCTAGCTTCTCC
AACTCCGGACAGCCAGGACAGCCTCGCGCTGGCAGGAGCCTGGGCCGCTGTGAGTCAGGCCAGAGCAGA
GGACAGTATCTGTGGGCTGGCCCTTTCTCCCTGAGACTCACGTCCCCAGGGCAAGTGTCTGTGGAGGAG
AGCAAGTCTCAAGAGCGCAGTATTGGATAATCAGGGTCTCCTCCCTGGAGGGCAGCTCTGCC
CTGCCACCAGAGGTCTGGACCCCTCACTTAGTTCTGGTATTATTTCTCCATCTCC
AGATAACTTATACATTCCAAGAAAGTTGAGCCAGATGGAAGGTGTTCAAGGAAAGGTGGCTGCC
TTGCTCTTATTAGCGATGCCGCCGGCAATTAAACCCACCTGGACTTCAGCAGAGTGGCTGCC
CCATGGGACGGTCAACCGCAGTGCCTGGCTGGCTCTGCCGCTGCCAGGGAGAGCAGGCC
AAGGCCAGGCCCTGGAGCTGCCCTTCAGTTTGCGAGTTAGTTTGTTGGTATT
AAACAATTAAAAAAAGCTTGGAAATGGATGGTTGGTATTAAAAGAAAAAAACTTAAAAAA
AAAAGACACTAACGCCAGTGAAGTGGAGTCTCAGGGCAGGGTGGCAGTTCCCTTGAGCAAAGCAGGCC
TGAACGTGTTCCCTTCCCTGGCGCAGGGTGCAGGGTGTCTTCCGGATCTGGTGTACCTGGTCCAGGAGTT
CTATTGTTCCCTGGGAGGGAGGTTTTGTTGTTGTTGGTTTTTGTTGGTGTCTTGTGTTCTTCTC
ATGTGTCTTGGCAGGCACTCATTCTGTGGCTGCGCCAGAGGAATGTTCTGGAGCTGCC
ACTCGGGTTGGCTAATCCCCGGATGAACCGTGCCTCATTGCACCTCCCTCGCCTGCC
CGCACAGTGTTAAGGAGCCAAGAGGAGCCACTCGCCAGACTTGTGTTCCCCACCTCC
CCAGTGCCACCGCTGGCCTCCGCTGCTTCCATGCCCTGCGCACCTGGCTTCA
GAGGCTGGTGGGAATGGGAGGTGGCCCTGGAGGGCAGGCGTGGTCCAAGGCC
CTGGAGTGCACACAGCCAGTGCACCTGGTGGCTGGAAGCCAACCTGTTAGAT
AGAAGGGTCCCCGCTTAGATCAATCACGTGGACACTAAGGCACGTTAGAGTCTTGTCT
CCATCCGTCTGTCGTCCTTGTGTTCTGCGTGTGTCATTGGATATAATCCT
CCTCTGACAACCATGAAGAAAAATCCGTTACATGTGGGTCTGAACCTGT
TAGACTCGGTACAGTATCAAATAAA
ATCTATAACAGAAAAAA

FIGURE 88

MRQTIIKVIKFILIIICYTVYYVHNIKFDVDCTVDIESLTGYRTYRCAHPLATLFKILASFYI
SLVIFYGLICMYTLWWMLRRSLKKYSFESIREESSYSDIPDVKNDFAFMLHLIDQYDPLYSK
RFAVFLSEVSENKLRLQLNLNEWTLDKLRQRLTKNAQDKLELHLFMLSGIPDTVFVLVELEV
LKLELI PDVTIPPSIAQLTGLKELWLYHTAAKIEAPALAFLRENLRALHIKFDTIKEIPLWI
YSLKTLEELHLTGNLSAENNRYIVIDGLRELKRLKVLRLKSNLSPQVVTDVGVHLQKLSI
NNEGTKLIVLNSLKKMANLTELELIRCDLERIPHISIFSLHNLQEIDLKDNNLKTIEEIISFQ
HLHRLTCLKLWYNHIAYIPIQIGNLTNERLYLNRNKIEKIPTQLFYCRKLRYLDLSHNNLT
FLPADIGLLQNLQNLAITANRIETLPPELFQCRKLRALHGNVLQSLPSRVGELTNLTQIE
LRGNRLECLPVELGECPLLKRSGLVVEEDLFNTLPPEVKERLWRADKEQA

Transmembrane domain:

amino acids 51-75 (type II)

N-glycosylation site.

amino acids 262-266, 290-294, 328-332, 396-400, 432-436, 491-495

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 85-89

Casein kinase II phosphorylation site.

amino acids 91-95, 97-101, 177-181, 253-257, 330-334, 364-368,
398-402, 493-497

N-myristoylation site.

amino acids 173-179, 261-267, 395-401, 441-447

FIGURE 89

GCCTGTTGCTGATGCTGCCGTGCGGTACTTGTCATGGAGCTGGCACTGCGGCGCTCTCCCGT
CCCGCGGTGGTTGCTGCTGCTGCCGCTGCTGGCCTGAACGCAGGAGCTGTCAATTGACT
GGCCCACAGAGGAGGGCAAGGAAGTATGGGATTATGTGACGGTCCGCAAGGATGCCTACATG
TTCTGGTGGCTCTATTATGCCACCAACTCCTGCAAGAACTTCTCAGAACTGCCCTGGTCAT
GTGGCTTCAGGGCGGTCCAGGCAGGTTCTAGCACTGGATTTGGAAACTTGAGGAAATTGGGC
CCCTTGACAGTGATCTCAAACCACGGAAAACCACCTGGCTCCAGGCTGCCAGTCTCCTATT
GTGGATAATCCCGTGGGCACTGGGTTCAGTTATGTGAATGGTAGTGGTGCCTATGCCAAGGA
CCTGGCTATGGTGGCTTCAGACATGATGGTTCTCCTGAAGACCTTCTTCAGTTGCCACAAAG
AATTCCAGACAGTTCCATTCTACATTTCTCAGAGTCTATGGAGGAAAAATGGCAGCTGGC
ATTGGTCTAGAGCTTATAAGGCCATTCAAGCGAGGGACCATCAAGTGCAACTTGGGGGG
TGCCTGGGTGATT CCTGGATCTCCCTGTTGATT CGGTGCTCTCCTGGGGACCTTACCTGT
ACAGCATGTCTCTCGAACACAAAGGTCTGGCAGAGGTGTCTAAGGGTGCAGAGCAAGTA
CTGAATGCCGTAAATAAGGGCTCTACAGAGAGGCCACAGAGCTGTGGGGAAAGCAGAAAT
GATCATTGAACAGAACACAGATGGGTGAACCTCTATAACATCTTAACACTAAAGCACTCCCA
CGTCTACAATGGAGTCAGTCAGATTACACAGAGCCACCTAGTTGTCTTGTCAAGC
CACGTGAGACACCTACAACGAGATGCCCTAACGCCAGCTCATGAATGGCCCCATCAGAAAGAA
GCTAAAATTATTCTGAGGATCAATCCTGGGAGGCCAGGCTACCAACGTCTTGTGAACA
TGGAGGAGGACTTCATGAAGCCAGTCATTAGCATTGTGGACGAGTTGCTGGAGGCAGGGATC
AACGTGACGGTGTATAATGGACAGCTGGATCTCATCGTAGATACCATGGGTCAAGGAGGC
GGTGCAGAAACTGAAGTGGCCAGAACTGCCCTAAATTCAAGTCAGCTGAAGTGGAAAGGCC
ACAGTGAACCTAAATCTTGGAAACATCTGCTTTGTCAAGTCCTACAAGAACCTTGCTTTC
TACTGGATTCTGAAAGCTGGTCATATGGTCCCTCTGACCAAGGGACATGGCTCTGAAGAT
GATGAGACTGGTGAECTCAGCAAGAATAGGATGGATGGGCTGGAGATGAGCTGGTTGGC
TGGGGCACAGAGCTGAGCTGAGGCCGCTGAAGCTGTAGGAAGGCCATTCTCCCTGTATCT
AACTGGGGCTGTGATCAAGAACAGGTTCTGACCAAGCTCTGCAGAGGATAAAATCATTGTCT
GGAGGCAATTGGAAATTATTCTGCTTCTAAAAACCTAAGATTTTAAAAAATTGAT
TTGTTTGATCAAAATAAGGATGATAATAGATATTAA

FIGURE 90

MELALRRSPVPRWLLLPLLLGLNAGAVIDWPTEEGKEVWDYVTVRKDAYMFWWLYYATNSC
KNFSELPLVMWLQGGPGGSSTGFGNFEEIGPLSDLKPRKTTWLQAASLLFVDNPVGTGFSY
VNGSGAYAKDLAMVASDMMVLLKTFFSCHKEFQTVPFYIFSESYGGKMAAGIGLELYKAIQR
GTIKCNFAGVALGDSWISPVDVLSWGPYLYSMSLLEDKGLAEVSKVAEQVLNAVNKGLYRE
ATELGKAEMIIEQNTDGVNFYNILTKSTPTSTMESSLEFTQSHLVCLCQRHVRHLQRDALS
QLMNGPIRKKLKIIIPEDQSWGGQATNVFVNMEEDFMKPVISIVDELLEAGINVTVYNGQLDL
IVDTMGQEAWVRKLKWPELPKFSQLWKALYSDPKSLETSAFVKSYKNLAFYWILKAGHMVP
SDQGDMALKMMRLVTQQE

Signal sequence:

amino acids 1-25

N-glycosylation site.

amino acids 64-68, 126-130, 362-366

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 101-105

Casein kinase II phosphorylation site.

amino acids 204-208, 220-224, 280-284, 284-288, 351-355, 449-453

N-myristoylation site.

amino acids 22-28, 76-82, 79-85, 80-86, 119-125, 169-175,
187-193, 195-201, 331-337, 332-338, 360-366

FIGURE 91

GGCCGCGGGAGAGGAGGCCATGGCGCGCGCGGGCGCTGCTGCTGGCGCTGCTGGCTC
GGGCTGGACTCAGGAAGCCGGAGTCGCAGGAGGCGGCCGTTATCAGGACCATGCGGCCGA
CGGGTCATCACGTGCGCATCGTGGGTGGAGAGGACGCCGAACTCGGGCGTTGGCCGTGGCA
GGGGAGCCTGCGCCTGTGGGATTCCCACGTATGCGGAGTGAGCCTGCTCAGCCACCGCTGGG
CACTCACGGCGGCGCACTGCTTGAAACCTATAGACCTTAGTGATCCCTCCGGGTGGATG
GTCCAGTTGGCCAGCTGACTTCCATGCCATCCTCTGGAGCCTGCAGGCCTACTACACCCG
TTACTTCGTATCGAATATCTATCTGAGCCCTCGCTACCTGGGGATTCAACCTATGACATTG
CCTTGGTGAAGCTGTCTGCACCTGTCACCTACACTAAACACATCCAGCCCATCTGTCTCCAG
GCCTCCACATTGAGTTGAGAACCGGACAGACTGCTGGGTGACTGGCTGGGGTACATCAA
AGAGGATGAGGCACTGCCATCTCCCCACACCCTCCAGGAAGTTCAGGTGCCATCATAAACAA
ACTCTATGTGCAACCACCTCTCCTCAAGTACAGTTCGCAAGGACATCTTGGAGACATG
GTTTGTGCTGGCAACGCCAAGGCGGGAGGATGCCTGCTCGGTGACTCAGGTGGACCCTT
GGCCTGTAACAAGAATGGACTGTGGTATCAGATTGGAGTCGTGAGCTGGGGAGTGGCTGTG
GTCGCCCAATCGGCCGGTGTCACCAATATCAGCCACCATTGAGTGGATCCAGAAG
CTGATGGCCCAGAGTGGCATGTCCCAGCCAGACCCCTCCTGGCCACTACTCTTTCCCTCT
TCTCTGGCTCTCCACTCCTGGGCGGTCTGAGCCTACCTGAGCCCATGCAGCCTGGGC
CACTGCCAAGTCAGGCCCTGGTTCTCTGTCTTGTAAAACACATTCCAGTTGA
TGCCTTGCAGGGCATTCTCAAAAAAAAAAAAAAAA

1000 900 800 700 600 500 400 300 200 100

FIGURE 92

MGARGALLLALLLARAGLRKPESQEAAPLSGPCGRRVITSRIVGGEDAELGRWPQGSLRLW
DSHVCGVSLLSHRWALTAACFETYSDELSDPSGWMVQFGQLTSMPSFWSLQAYYTRYFVSNI
YLSPRYLGNSPYDIALVKLSAPVTYTKHIQPICLQASTFEFENRTDCWVTGWGYIKEDEALP
SPHTLQEJVQVAIINNSMCNHLFLKYSFRKDIFGDMVCAGNAQGGKDACFGDSGGPLACNKNG
LWYQIGVVSWGVGCGRPNRPGVYTNIHHFEWIQKLMAQSGMSQPDPSWPLLFFPLLWALPL
LGPV

Signal sequence:

amino acids 1-18

N-glycosylation site.

amino acids 167-171, 200-204, 273-277

Casein kinase II phosphorylation site.

amino acids 86-90, 134-138, 161-165, 190-194, 291-295

N-myristoylation site.

amino acids 2-8, 44-50, 101-107, 225-231, 229-235, 239-245,
259-265, 269-275

Amidation site.

amino acids 33-37

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 252-263,

Serine proteases, trypsin family, histidine active site.

amino acids 78-84

FIGURE 93

CCCCACGCGTCCGGACGCGTGGGAAGGGCAGAATGGGACTCCAAGCCTGCCTCTAGGGCT
CTTGCCCTCATCCTCTGGCAAATGCAGTTACAGCCGGAGCCGACCAGCGAGGACGC
TGCCCCCAGGCTGGGTGCCCCCTGGGCGTGCAGGACCCCTGAGGAAGAGCTGAGTCACCTT
GCCCTGAGACAGCAGAATGTGAAAGACTCTCGGAGCTGGTGCAGGCTGTGAGGATCCCAG
CTCTCCTCAATAACGGAAAATACCTGACCCCTAGAGAATGTGGCTATCTGGTGGAGGCCATTCC
CACTGACCCCTCCACACGGTGCAGGGAAATGGCTCTTGGCAGCCGGAGCCAGAAGTGCATTCT
GTGATCACACAGGACTTCTGACTTGCTGGCTGAGCATTGACAAGCAGAGCTGCTGCTCCC
TGGGGCTGAGTTCATCACTATGTGGGAGGACCTACGGAAACCATGTTGTAAGGTCCCCAC
ATCCCTACCAGCTTCACAGGCCTTGGCCCCCATGTGGACTTGTGGGGGACTGCACCGT
TTTCCCCAACATCATCCCTGAGGCAACGTCCTGAGCCGAGGTGACAGGGACTGTAGGCCT
GCATCTGGGTAACCCCTGTGATCCGTAAGCGATAACAACCTGACCTACAAGACGTGG
GCTCTGGCACCAGCAATAACAGCCAAGCCTGTGCCAGTTCCCTGGAGCAGTATTCCATGAC
TCAGACCTGGCTCAGTTCATGCGCCTTCGGTGGCAACTTGACATCAGGCATCAGTAGC
CCGTGTGGTGGACAACAGGGCCGGGGCCGGGATTGAGGCCAGTCTAGATGTGCAGT
ACCTGATGAGTGCTGGTGCACATCTCCACCTGGGTCTACAGTAGCCCTGGCCGGCATGAG
GGACAGGAGCCCTTCCTGCAGTGGCTCATGCTGCTCAGTAATGAGTCAGCCCTGCCACATGT
GCATACTGTGAGCTATGGAGATGATGAGGACTCCCTCAGCAGCCCTACATCCAGCGGGTCA
ACACTGAGCTCATGAAGGCTGCCCTGGGTCTCACCCCTGCTCTCGCCTCAGGTGACAGT
GGGGCCGGGTGTTGGCTGTCTGGAAAGACACCAAGTTCCGCCCTACCTTCCCTGCCCTCCAG
CCCCTATGTCACCACAGTGGAGGCACATCCTCCAGGAACCTTCCTCATCACAAATGAAA
TTGTTGACTATATCAGTGGTGGCTTCAGCAATGTGTTCCACGGCCTTCATACCAGGAG
GAAGCTGTAACGAAGTTCTGAGCTAGCCCCCACCTGCCACCATCCAGTTACTTCAATGC
CAGTGGCCGTGCCTACCCAGATGTGGCTGCACTTCTGATGGCTACTGGGTGGTCAGCAACA
GAGTGCCATTCCATGGGTGTCGGAACCTCGCCTCTACTCCAGTGGTTGGGGGATCCTA
TCCTGATCAATGAGCACAGGATCCTAGTGGCCCCCCCTTGGCTTCTCAACCCAAG
GCTCTACCAGCAGCATGGGCAGGTCTTTGATGTAACCGTGGCTGCCATGAGTCCTGTC
TGGATGAAGAGGTTAGAGGGCCAGGGTTCTGCTCTGGCTGGCTGGATCCTGTAACAGGC
TGGGGAACACCAACTCCCAGTTGCTGAAGACTCTACTCAACCCCTGACCCCTTCCTATC
AGGAGAGATGGCTTGTCCCCCTGCCCTGAAGCTGGCAGTTCAAGTCCCTTATTCTGCCCTGTTG
GAAGCCCTGCTGAACCCCTCAACTATTGACTGCTGCAGACAGCTTATCTCCCTAACCCCTGAAA
TGCTGTGAGCTTGACTTCAACCCCTACCATGCTCCATCATACTCAGGTCTCCCTACT
CCTGCCCTAGATTCTCAATAAGATGCTGTAACTAGCATTTTGATGCTCTCCCTCCGC
ATCTCATCTTCTCTTCAATCAGGCTTTCCAAGGGTTGTATACAGACTCTGTGCACCA
TTCACTGATATTCACTCCCAATTCACTGCAAGGAGACCTCTACTGTCACCGTTACTCT
TTCCTACCCCTGACATCCAGAAACAATGGCCTCCAGTGCATACTTCTCAATCTTGTGTTATG
GCCTTCCATCATAGTTGCCACTCCCTCTCCTTACTTAGCTTCCAGGTCTTAACCTCTG
ACTACTCTTGTCTTCTCTCATCAATTCTGCTTCTCATGGAATGCTGACCTTCATTG
TCCATTGTAGATTTGCTCTCAGTTACTCATTGCCCCCTGGAACAAATCACTGACA
TCTACAACCATTACCATCTCACTAAATAAGACTTCTATCCAATAATGATTGATAACCTCAA
TGTAAAAAA

FIGURE 94

MGLQACLLGLFALILSGKCSYSPEPDQRRTLPPGWVSLGRADPEEELSLTFALRQQNVERLS
ELVQAVSDPSSPQYGKYLTLENVADLVRPSPLTLHTVQKWLLAAGAQKCHSVITQDFLTCWL
SIRQAELLPGAEFHYYVGGPTETHVVRSPHPYQLPQALAPHVDFVGGLHRFPPTSSLRQRP
EPQVTGTVGLHLGVTPSVIRKRYNLTSQDVSGTSNNSQACAQFLEQYFHDSDLAQFMRLFG
GNFAHQASVARVVGQQGRGRAGIEASLDVQYIAMSAGANISTWVYSSPGRHEGQEPMFLQWML
LSNESALPHVHTVSYGDDEDSLSSAYIQRVNTELMKAAARGLTLFASGDSGAGCWSVSGRH
QFRPTFPASSPYVTTVGGTSFQEPFLITNEIVDYISGGGFSNVFPRPSYQEEAVTKFLSSSP
HLPSSYFNASGRAYPDVAALSDGYWVVSNRVPIPWVSGTSASTPVFGGILSLINEHRILSG
RPPLGFLNPRLYQQHGAGLFDVTRGCHECLDEEVEGQGFCSGPGWDPVTGWGTPTSQLC

Signal sequence:

amino acids 1-16

N-glycosylation site.

amino acids 210-214, 222-226, 286-290, 313-317, 443-447

Glycosaminoglycan attachment site.

amino acids 361-365, 408-412, 538-542

Casein kinase II phosphorylation site.

amino acids 212-216, 324-328, 392-396, 420-424, 525-529

N-myristoylation site.

amino acids 2-8, 107-113, 195-201, 199-205, 217-223, 219-225,
248-254, 270-276, 284-290, 409-415, 410-416, 473-479, 482-488,
521-527, 533-539, 549-555

FIGURE 95

GGCGCGCGCTCTCTCCGGGCCACACCTGTCTGAGCGGCGAGCGAGCCGGCCGGC
GGGCTGCTCGCGCGAACAGTGCTCGCATGGCAGGGATTCCAGGGCTCCTCTCCTCTC
TTCTTCTGCTCTGTGCTGTTGGCAAGTGAGCCCTACAGTGCCCCCTGAAACCCACTTG
GCCTGCATAACCGCCTCCCTGCGTCTGCCCCAGTCTACCCCTCAATTAGCCAAGCCAGACT
TTGGAGCCGAAGCAAATTAGAAGTATCTTCATGTGGACCCCAGTGTCTAAGGGAACCT
CCACTGCCCACTTACGAAGAGGCCAAGCAATATCTGTCTTATGAAACGCTCTATGCCAATGG
CAGCCGCACAGAGACGCAGGTGGCATCTACATCCTCAGCAGTAGTGGAGATGGGCCAAC
ACCGAGACTCAGGGTCTTCAGGAAAGTCTCGAAGGAAGCGGCAGATTATGGCTATGACAGC
AGGTTCAGCATTGGAGGGACTTCCTGCTCAACTACCCTTCTCAACATCAGTGAAGTT
ATCCACGGGCTGCACCGCACCCCTGGTGGCAGAGAACGATGTCTCACAGCTGCCACTGCA
TACACGATGGAAAAACCTATGTGAAAGGAACCCAGAACGACTCCACTTCAGCCATGCCAGCAGATGAA
AAGTTAAAGATGGTGGTCGAGGGCCAACGACTCCACTTCAGCCATGCCAGCAGATGAA
ATTCAGTGGATCCGGGTGAAACGCACCCATGTGCCAAGGGTGGATCAAGGGCAATGCCA
ATGACATCGGCATGGATTATGATTATGCCCTCCTGGAACCTAAAAAGCCCCACAAGAGAAAA
TTTATGAAGATTGGGGTGAGCCCTCGCTAACGAGCTGCCAGGGCAGAATTCAACTTCTC
TGGTTATGACAATGACCGACCAGGCAATTGGTGTATCGCTTCTGTGACGTCAAAGACGAGA
CCTATGACTTGCTCTACAGCAATGCGATGCCAGCCAGGGCCAGCGGGTCTGGGTCTAT
GTGAGGATGTGGAAGAGACAGCAGCAGAACGTTGAGCGAAAAATTATTGGCATTTCAGG
GCACCAAGTGGGTGGACATGAATGGTCCCCACAGGATTCAACGTGGCTGTCAAATCACTC
CTCTCAAATATGCCAGATTGCTATTGGATTAAAGGAAACTACCTGGATTGTAGGGAGGG
TGACACAGTGTCCCTGGCAGCAATTAAGGGCTTCAATTGTTCTTATTTAGGAGAGGCC
AAATTGTTTGTCAATTGGCGTGCACACGTGTGTGTGTGTGTGTGTAAAGGTGT
CTTATAATCTTACCTATTCTACAATTGCAAGATGACTGGCTTACTATTGAAAATG
GTTTGTGTATCATATCATATCATTAAAGCAGTTGAAGGCATACTTTGCATAGAAATAA
AAAAAAACTGATTGGGCAATGAGGAATATTGACAATTAAGTTAATCTCACGTTTG
CAAACTTGATTTATTCATCTGAACATTGTTCAAAGATTATTAATATTAAATATTGGCATA
CAAGAGATATGAAAAAAAAAAAAAA

FIGURE 96

MAGIPGLLFLLFFLCAVGQVSPYSAPWKPTWPAYRLPVVLPQSTLNLA
KPDFGAEAKLEVS
SSCGPQCHKGTPLPTYEEAKQYLSYETLYANGSRTETQVGIYILSSSGDGAQHRD
SGSSGKS
RRKRQIYGYDSRFSIFGKDFLLNYPFSTSVKLSTGCTGTLVAEKHVLTA
AHCIDHGKTYVKG
TQKLRVGFLKPKFKDGGRGANDSTSAMPEQMFKQWIRVKRTHVPKG
WIKGNA
NDIGMDYDYA
LLELKPKH
RKFMKIGVSPPAKQLPGGRIHFSGYDNDRPGNLVYRFCDV
KDETYDLYQQCD
AQPGASGSGVYVRMWKRQQQKWERKIIGIFSGHQWDMNGSPQDFNV
AVRITPLKYAQICYW
IKGNYLDCREG

Signal sequence:

amino acids 1-19

N-glycosylation site.

amino acids 93-97, 207-211

Glycosaminoglycan attachment site.

amino acids 109-113, 316-320

Casein kinase II phosphorylation site.

amino acids 77-81, 95-99, 108-112, 280-284, 351-355

N-myristoylation site.

amino acids 159-165, 162-168, 202-208, 205-211, 314-320, 338-344

Serine proteases, trypsin family, histidine active site.

amino acids 171-177

FIGURE 97

GCATGCCCTGGGTCTCGAGCCTGCTGCCTGCTCCCCGCCCCACCAGCCATGGTGGTTT
CTGGAGCGCCCCCAGCCCTGGGTGGGGCTGTCTCGCACCTCACCTCCCTGCTGCTGCTG
GCGTCGACAGCCATCCTCAATGCGGCCAGGATACCTGTTCCCCAGCCTGTGGAAAGCCCCA
GCAGCTGAACC GGTTGTGGCGGGCGAGGACAGCACTGACAGCGAGTGGCCCTGGATCGTGA
GCATCCAGAAGAATGGGACCCACC ACTGCGCAGGTTCTGCTCACCA GCGCTGGGTGATC
ACTGCTGCCCACTGTTCAAGGACAACCTGAACAAACCATACTGTTCTGCTGCTGCTGGG
GGCCTGGCAGCTGGGAACCCCTGGCTCTGGTCCCAGAAGGTGGGTGTTGCCTGGGTGGAGC
CCCACCTGTGTATTCTGGAAAGGAAGGTGCCTGTGCAGACATTGCCCTGGTGCGTCTCGAG
CGCTCCATACAGTTCTCAGAGCGGGCCTGCCATCTGCCCTACCTGATGCCCTATCCACCT
CCCTCCAAACACCCACTGCTGGATCTCAGGCTGGGGAGCATCCAAGATGGAGTCCCTTGC
CCCACCTCAGACCCCTGCAGAACAGCTGAAGGTTCTATCATCGACTCGGAAGTCTGCAGCCAT
CTGTACTGGCGGGAGCAGGACAGGGACCCATCACTGAGGACATGCTGTGCCGGCTACTT
GGAGGGGGAGCGGGATGCTTGTCTGGCGACTCCGGGGCCCCCTATGTGCCAGGTGGACG
GCGCCTGGCTGCTGGCCGGCATCATCAGCTGGGCGAGGGCTGTGCCAGCGAACAGGCC
GGGGTCTACATCAGCCTCTGCGCACCGCTCTGGTGGAGAAGATCGTCAAGGGGTGCA
GCTCCGGCGCGCTCAGGGGGTGGGCCCTCAGGGCACCGAGCCAGGGCTCTGGGCCG
CCGCGCGCTCCTAGGGCGCAGCGGGACGCGGGCTGGATCTGAAAGGCGGCCAGATCCACA
TCTGGATCTGGATCTGCGCGGCCTCGGCGGTTCCCCCGCCGTAAATAGGCTCATCTACC
TCTACCTCTGGGGGCCGGACGGCTGCGGAAAGGAAACCCCTCCCCGACCCGCCGAC
GGCCTCAGGCCCCCTCCAAGGCATCAGGCCCGCCAACGGCCTCATGTCCCCGCCCCAC
GACTTCCGGCCCCGCCCGGGCCCCAGCGCTTTGTATATAATGTTAATGATTTTAT
AGGTATTTGTAACCCTGCCACATATCTTATTATTCCCTCCAATTCAATAATTATTATT
CTCCAAAAAAA

FIGURE 98

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA43318
><subunit 1 of 1, 317 aa, 1 stop
><MW: 33732, pI: 7.90, NX(S/T): 1
MVVSGAPPALGGGCLGTFTSLLLLASTAILNAARI PVPPACGKPQQLNRVVGGEDSTDSEWP
WIVSIQKNGTHHCAGSLLTSRWVITAHCFKDNLNKPYLFVLLGAWQLGNPGSRSQKVGVVA
WVEPHPVYSWKEGACADIALVRLERSIQFSERVLPICLPDASIHLPPNTHCWISGWGSIQDG
VPLPHPQTLQKLKVPIIDSEVC SHLYWRGAGQGPITEDMLCAGYLEGERDACLGDGGPLMC
QVDGAWLLAGII SWGEGCAERNRPGVYISLSAHRSWEKIVQGVQLRGRAQGGGALRAPSQG
SGAAARS

Signal sequence:

amino acids 1-32

N-glycosylation site.

amino acids 62-66, 96-100, 214-218, 382-386, 409-413, 455-459,
628-632, 669-673, 845-849, 927-931, 939-943, 956-960

Glycosaminoglycan attachment site.

amino acids 826-830

Casein kinase II phosphorylation site.

amino acids 17-21, 39-43, 120-124, 203-207, 254-258, 264-268,
314-318, 323-327, 347-351, 464-468, 548-552, 632-636, 649-653,
671-675, 739-743, 783-787, 803-807, 847-851, 943-947, 958-962,
1013-1017, 1019-1023, 1021-1025

Tyrosine kinase phosphorylation site.

amino acids 607-615

N-myristoylation site.

amino acids 179-185, 197-203, 320-326, 367-373, 453-459, 528-534,
612-618, 623-629, 714-720, 873-879

FIGURE 99

GACGGCTGGCCACCATGCACGGCTCCTGCAGTTCCCTGATGCTCTGCTGCCGCTACTGCTA
CTGCTGGTGGCCACCACAGGGCCCAGTGGAGCCCTCACAGATGAGGAGAAACGTTGATGGT
GGAGCTGCACAACCTCTACCGGGCCCAGGTATCCCCGACGGCCTCAGACATGCTCACATGA
GATGGGACGAGGAGCTGGCCGCCTCGCCAAGGCCTACGCACGGCAGTGCCTGGGGCAC
AACAAAGGAGCGCGGGCGCCGCGAGAATCTGTTGCCATCACAGACGAGGGCATGGACGT
GCCGCTGGCCATGGAGGAGTGGCACCAACGAGCGTGAGCACTACAACCTCAGGCCGCCACCT
GCAGCCCAGGCCAGATGTGCGGCCACTACACGCAGGTGGTATGGCCAAGACAGAGAGGATC
GGCTGTGGTCCCCACTTCTGTGAGAAGCTCCAGGGTGGTGGAGGAGACCAACATCGAATTACT
GGTGTGCAACTATGAGCCTCCGGGAACGTGAAGGGAAACGGCCCTACCAGGAGGGACTC
CGTGCTCCCAATGTCCCTCTGGCTACCACTGCAAGAACTCCCTCTGTGAACCCATCGGAAGC
CCGGAAGATGCTCAGGATTTGCCTTACCTGGTAAC TGAGGCCCCATCCTCCGGCGACTGA
AGCATCAGACTCTAGGAAAATGGGTACTCCTTCTCCCTAGCAACGGGGATTCCGGCTTTCT
TGGTAACAGAGGTCTCAGGCTCCCTGGCAACCAAGGCTCTGCCTGCTGTGGAAACCCAGGCC
CCAACTTCTTAGCAACGAAAGACCCGCCCTCCATGGCAACAGAGGCTCCACCTGCGTAAC
AACTGAGGTCCCTCCATTGGCAGCTCACAGCCTGCCCTCCTGGATGAGGAGCCAGTTA
CCTTCCCCAAATCGACCCATGTTCTATCCAAAATCAGCAGACAAAGTGACAGACAAAACA
AAAGTGCCCTCTAGGAGCCCAGAGAACTCTGGACCCCAAGATGTCCCTGACAGGGCAAG
GGAACTCCTACCCATGCCAGGAGGAGGCTGAGGCTGAGGCTGAGTTGCCCTCCAGTG
AGGTCTTGGCCTCAGTTTCCAGCCCAGGACAAGCCAGGTGAGCTGCAGGCCACACTGGAC
CACACGGGGCACACCTCCTCCAAGTCCCTGCCAATTCCCCAATACCTCTGCCACCGCTAA
TGCCACGGGTGGCGTGCCTGGCTCTGCAGTCGTCTGCCAGGTGCAGAGGGCCCTGACA
AGCCTAGCGTTGTGTCAAGGCTGAACCTGGCCCTGGTCATGTGTGGGGCCCTCCCTGGGA
CTACTGCTCCTGCCTCCTCTGGTGTGGCTGGAATCTTCTTGAATGGGATACCAACTCAAAGGG
TGAAGAGGTCACTGTCCTCTGTCACTTCCCCACCCCTGTCCCCAGGCCCTAAACAAGATA
CTTCTTGGTTAAGGCCCTCCGGAAAGGAAAGGCTACGGGCATGTGCCCTCATCACACCCTCC
ATCCTGGAGGCACAAGGCCTGGCTGGCTGCGAGCTCAGGAGGCCCTGAGGACTGCACACC
GGGCCACACCTCCTGCCCTCCCTGAGTCCTGGGGTGGAGGATTGAGGGAGCT
CACTGCCTACCTGGCCTGGGCTGTCTGCCACACAGCATGTGCCTCTCCCTGAGTGCCTG
TGTAGCTGGGATGGGATTCCCTAGGGCAGATGAAGGACAAGCCCCACTGGAGTGGGTTC
TTTGAGTGGGGAGGCAGGGACGAGGAAGTAACCTGACTCTCCAATAAAACCT
GTCCAACCTGTGAAA

FIGURE 100

MHGSCSFLMLLPLLLLVATTGPVGALTDEEKRLMVELHNLYRAQVSPTASDMLHMRWDEE
LAAFAKAYARQCVWGHNKERGRRGENLFAITDEGMVDPLAMEEWHHEREHYNLSAATCSPGQ
MCGHYTQVVWAKTERIGCGSHFCEKLQGVEETNIELLVCNYEPPGNVKGKRPYQEGETPCSQC
PSGYHCKNSLCEPIGSPEADAQDLPYLVTTEAPSFRATEASDSRKMGTPSSLATGIPAFLVTEV
SGSLATKALPAVETQAPTSLATKDPPSMATEAPPCVTTEVPSILAAGHSILPSLDEEPVTFPKS
THVPIPKSADKVTDKTKVPSRSPENSIDPKMSLTGARELLPHAQEEAEAEELPPSSEVLAS
VFPAQDKPGELQATLDHTGHTSSKSLPNFPNTSATANATGGRALALQSSLPGAEGPDKPSVV
SGLNSGPGHVWGPLLGLLLPPLVLAGIF

Signal sequence:

amino acids 1-22

N-glycosylation site.

amino acids 114-118, 403-407, 409-413

Glycosaminoglycan attachment site.

amino acids 439-443

Casein kinase II phosphorylation site.

amino acids 29-33, 50-54, 156-160, 195-199, 202-206, 299-303

N-myristoylation site.

amino acids 123-129, 143-149, 152-158, 169-175, 180-186, 231-237,
250-256

Amidation site.

amino acids 82-86, 172-176

Peroxidases proximal heme-ligand signature.

amino acids 287-298

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7 signature 1.

amino acids 127-138

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7 signature 2.

amino acids 160-172

FIGURE 101

GTAACGTGAGTCAGGCTTTCATGGGAAGCCCCCTCAACAGAACCGGACTTAAGTCACAACAGATTATCTTCAAGTTATGGTGGACGT
ACTTCTGTTCTCCCTGCTTACATTAGCAGACGGACTTAAGTCACAACAGATTATCTTCA
CAAGGCAAGTCCATGAGCCACCTTCAAAGCCTCGAGAAGTGAACACTGAACAACAAATGAATTGGAGACCATTCC
AAATCTGGGACCAAGTCTCGGCAAATATTACACTTCTCCTGGCTGGAAACAGGATTGTTGAAATACTCCCTGA
ACATCTGAAAGAGTTCACTCCCTGAAACTTGGACCTAGCAGAACAAATATTCAAGAGCTCCAAACTGCATT
TCCAGCCCTACAGCTCAAATATCTGTATCTCACAGAACCGAGTCACATCAATGGAACCTGGTATTTGACAA
TTTGCCAACACACTCCTGTAAAGCTGAACAGGAACCGAATCTCAGCTATCCCACCCAAAGATGTTAAACT
GCCCAACTGCAACATCTGAATTGAACCGAAACAAGATTAAAGTAGATGGACTGACATTCCAAGGCCTGG
TGCTCTGAAAGTCTGAAATGCAAAGAAATGGAGTAACGAAACTATGGATGGAGCTTTGGGGCTGAGCAA
CATGAAATTTGAGCTGGACCATAACAAACCTAACAGAGATTACCAAAGGCTGGCTTACGGCTTGCTGATGCT
GCAGGAACCTCATCTCAGCCAAAATGCCATCACAGGATCAGCCCTGATGCCCTGGAGTTCTGCCAGAACGCTCAG
TGAGCTGGACCTAACCTCAATCACTTCAAGGTTAGATGATTCAAGCTTCTGGCCTAAGCTTAACAAATAC
ACTGCACATTGGAAACAAACAGTCAGCTACATTGCTGATTGCTGCTTCCGGGGCTTCCAGTTAAAGACTTT
GGAGTGAAGAACATGAAATTCTCGGACTATTGAGACATGAATGGTCTTCTCTGGGCTTGACAAACTGAG
GCGACTGATACTCCAAGGAAATCGGATCCGTCTTAACTAAAAAGCCTTACTGGTTGGATGCAATTGGAGCA
TCTAGACCTGAGTGAACACGCAATCATGTTACAAGGCAATGCATTTCACAAATGAAGAAACTGCAACAAATT
GCATTAAATACATCAAGCTTTGCGATTGCCAGCTAAATGCCATCAGCTTGGGGGGAAACAAACTT
TCAGAGCTTGAAATGCCAGTTGCTGCTTCCAGCTTAAAGGAAAGAACGATTGGCTGTTAGCCCAGA
TGGCTTGTGTGATGATTTCACAAACCCAGATCACGGTCAGCCAGAACACAGTCGGCAATAAAAGGTT
CAATTGAGTTCATCTGCTCAGCTGCCAGCAGTCAGTATTCCAAATGACTTTGCTTGGAAAAAAAGACAATGA
ACTACTGCATGATGCTGAAATGGAAATTATGACACACCTCCGGGCCAAGGTTGGCGAGGTGATGGAGTATACCAC
CATCCTCGGCTGCGAGGTGGAATTGCCAGTGAGGGAAATATCAGTGTGTCATCTCAATCACTTTGGTC
ATCCTACTCTGCAAAGCCAAGCTTACAGTAAATATGCTTCCCTCATTCAACAGACCCCCATGGATCTCACC
CCGAGCTGGGGCATGGCACGCTGGAGTGCTGCTGCTGGGGCACCCAGCCCCCAGATAGCCTGGCAGAAC
TGGGGGACAGACTTCCAGCTGCACGGGAGAGACGCATGCATGTGATGCCGAGGATGACGTGTTTATCGT
GGATGTGAAGATAGAGGACATTGGGTATACAGCTGCACAGCTCAGAACAGTGCAGGAAGTATTCAAGCAAATGC
AACTCTGACTGCTAGAACACCATCATTTCAGGCCACTGTTGGACCGAAGTGAACCAAGGGAGAACAGC
CGTCTACAGTGCATTGCTGGAGGAAGGCCCTCCCTAAACTGAACCTGGACCAAAGATGATAGCCCATTGGTGG
AACCGAGAGGCACTTTTGAGCAGGCAATCAGCTTCTGATTATTGAGACTCAGATGTCAGTGTGCTGGAA
ATACACATGTGAGATGCTAACACCCCTGGCACTGAGAGAGGAAACGTGCGCCTCAGTGTGATCCCCACTCCA
CTGCGACTCCCCCTCAGATGACAGCCCCATCGTTAGACGATGACGGATGGGCCACTGTGGGTGTCGATCATAG
CGTGGTTGCTGTGGGGCACGTCACTCGTGTGGGTGATCATACACACACAAGGCGGAGGAATGAAGA
TTGCAGCATTACCAACACAGATGAGACCAACTGCCAGAGATATTCTAGTTATTGTCATCTCAGGAACGTT
AGCTGACAGGCAGGATGGTACGTGTTCAAGAAAGTGGAAAGCCACACCAGTTGTCACATCTCAGGTGCTGG
ATTTTCTTACACACATGACAGTAGTGGACCTGCCATTGACAATAGCAGTGAAGCTGATGTGGAGCTGC
CACAGATCTGTTCTTGCGTTTGGGATCCACAGGCCCTATGTATTGAAAGGAAATGTGATGGCTCAGA
TCCTTGTAAACATATCATACAGGTTGCACTGCCAGAACAGTAAATGGACCAACTATGAGGCCAGTT
CATAAAGAAAAAGGAGTGCCTACCCATGTTCTCATCCTCAGAAGAACCTGCCAGGGAGCTCAGTAATATATC
GTGGCCTTCACATGTGAGGAAGCTACTAACACTAGTTACTCTCACAAATGAAGGACCTGGAATGAAAATCTGTG
TCTAAACAAGTCTCTTAAAGTTAGTTAGTGCACATCCAGGCCAGGGCTGGTGCCTCGAGTAATTCTTATGG
TACCTTGGAAAAGCTCTCAGGAGACCTCACCTAGATGCTTATTCAAGCTTGGACAGCCATCAGATTGTGAGCC
AAGAGCCTTTATTGAAAGCTCATCTTCCCAAGACTTGGACTCTGGGTGAGAGGAAGATGGAAAGAAAGGAC
AGATTTCAGGAAGAAAATCACATTGTACCTTAAACAGACTTTAGAAAATACAGGACTCCAAATTTCAGTC
TTATGACTGGACACATAGACTGAATGAGACCAAGGAAAAGCTTAACACATACACTCACAGTGAACCTTATT
AAAGAGAGAAATCTTATGTTAAATGGAGTTATGAATTAAAGGATAAAATGCTTATTATACAGAT
GAACCAAATACAAAAGTTATGAAAATTAAACTGGGAATGATGCTCATATAAGAATACCTTTAAACTA
TTTTTAACTTGTGTTATGAAAAAGTATCTACGTAATTAAATGATATAATCATGATTATTTATGTATT
TTATAATGCCAGATTCTTTATGAAAATGAGTTACTAAAGCATTAAATAACCTGCCCTGACCATT
TTAAATAGAAGTTACTTCATTATTTGCACATTATTAATAAAATGTGCAATTGAA

FIGURE 102

MVDVLLLFSLCLLFHISRPDLHNRLSFIKASSMSHLQLSLREVKLNNNELETIPNLGPVSAN
ITLLSLAGRIVEILPEHLKEFQSLETLDLSSNNISELQTAFPALQLKYLYLNSNRVTSMEP
GYFDNLANTLLVLKLNRRNRIASAIPPKMFKLPQLQHLELNRNKIKNVDGLTFQGLGALKSLKM
QRNGVTKLMGAFWGLSNMEILQLDHNNLTEITKGWLGYLLMLQELHLSQNAINRISPDAWE
FCQKLSLEDDLTFNHLSRLDDSSFLGLSLLNTLHIGNNRVSYIADCAFRLSSLKTLDLKNNE
ISWTIEDMNGAFSGLDKLRRLILQGNRIRSITKKAFTGLDALEHLDLSDNAIMSLQGNAFSQ
MKKLQQLHLNTSSLLCDCQLKWLPOWVAENNQSFVNASCAPQLLKGRSIFAVSPDGFVCD
DFPKPQITVQPETQSAIKGSNLSFICSAASSSDSPMTFAWKKDNELLHDAEMENYAHLRAQG
GEVMEYTTILRLREVEFASEGKYQCVISNHFGSSYSVAKLTVNMLPSFTKTPMDLTIRAGA
MARLECAAVGHPAPQIAWQKDGTDFFPAARERRMHVMPEDDVFIVDVKIEDIGVYSCTAQN
SAGSISANATLTVLETPSFLRPLLDRVTKGETAVLQCIAGGSPPPKNWTKDDSPPLVVTER
HFFAAGNQLLIIVDSDVSDAGKYTCMSNTLGERGNVRLSVIPTPTCDSPQM TAPS LDDDG
WATVGVIIIAVVCVVGTSLVWVVIYHTRRRNEDCSITNTDETNL PAD I P SYL SS Q GT LAD
RQDG YVSSESGSHHQFVTSSGAGFFLPQHDSSGTCHIDNSSEADVEAATD LFLCPFLGSTGP
MYLKGNVYGS DP FETYHTG C PDPRTVLM DHYE PSYIKK KECYPC SHP SEES CERS FSN ISW
PSHVRKLLNTSYSHNEGPGMKNLCLNKSSLDFSANPEPASVASSNSFMGTFGKALRRPHLDA
YSSFGQPSDCQPR AFYLKAHSSPDLD SGSEEDGKERTDFQEENHICTFKQTLEN YRTPNFQS
YDLDT

Signal sequence:

amino acids 1-19

Transmembrane domain:

amino acids 746-765

N-glycosylation site.

amino acids 62-66, 96-100, 214-220, 382-386, 409-413, 455-459,
628-632, 669-673, 845-849, 927-931, 939-943, 956-960

Glycosaminoglycan attachment site.

amino acids 826-830

Casein kinase II phosphorylation site.

amino acids 17-21, 39-43, 120-124, 203-207, 254-258, 264-268,
314-318, 323-327, 347-351, 464-468, 548-552, 632-636, 649-653,
671-675, 739-743, 783-787, 803-807, 847-851, 943-947, 958-962,
1013-1017, 1019-1023, 1021-1025

Tyrosine kinase phosphorylation site.

amino acids 607-615

N-myristoylation site.

amino acids 179-185, 197-203, 320-326, 367-373, 453-459, 528-534,
612-618, 623-629, 714-720, 873-879

FIGURE 103

GGGGAGAGGAATTGACCATGTAAAAGGAGACTTTTTGGTGGTGGCTGGCTTGCACAAATG
AAGGATGCAGGACGCAGCTTCTCTGGAACCGAACGCAATGGATAAAACTGATTGTGCAAGAGAGAAGGAAGAAC
GAAGCTTTCTGTGAGCCCTGGATCTAACACAAATGTGTATATGTGCACACAGGGAGCATTCAAGAATGAAA
TAAACCAGAGTAGACCCGCGGGGTTGGTGTGTTCTGACATAAATAATCTTAAAGCAGCTGTTCCCCCTCC
CCACCCCCAAAAAAAGGATGATTGAAATGAAGAACCGAGGATTCAAAGAAAAAGTATGTTCTTTTCTC
TATAAAGGAGAAAGTGAGGCCAAGGAGATATTTGGAATGAAAGTTGGGCTTTTAGTAAAGTAAGAAACT
GGTGTGGTGGTGTTCCTTCTTTGAATTCCCACAAGAGGAGAGGAAATTAAATAACATCTGCAAAGAAA
TTTCAGAGAAGAAAAGTTGACCGCGCAGATTGAGGCATTGATTGGGGAGAGAACACCAGCAGAGCACAGTTGGA
TTTGTGCTATGTTGACTAAAATTGACGGATAATTGCAAGTGGATTTCATCAACCTCCTTTTTAAAT
TTTATTCCCTTGGTATCAAGATCATCGCTTCTCTTCTTAAACCACCTGGATTCCATCTGGATGTTGCT
GTGATCAGTCTGAAATACAACACTGTTGAATTCCAGAAGGACCAACACCAGATAAATTATGAATGTTGAACAAGAT
GACCTTACATCCACAGCAGATAATGATAGGTCTAGGTTAACAGGGCCATTGACCCCTGCTTGTGGTGT
GCTGGCTCTCAACTCTGTGGTGGCTGGCTGGTGGGGCTCAGACCTGCCCTCTGTGCTCTGAGCAA
CCAGTTCAAGGTGATTGTGTCGGAAAAACCTCGCTGAGGTTCCGGATGGCATCTCCACCAACACAGGCT
GCTGAACCTCCATGAGAACCAAATCCAGATCATCAAAGTGAACAGCTCAAGCACTTGAGGCATTGAAATCCT
ACAGTTGAGTAGGAACCATATCAGAACCATATTGAAATTGGGGCTTCAATGGTCTGGCAACCTCAACACTCTGGA
ACTCTTGACAATCGTCTACTACCACATCCCAGTGGAGCTTTGATACTTGTCTAAACTGAAGGAGCTCTGTT
GCGAAACAACCCATTGAAAGCATCCCTTCTTATGCTTTAACAGAATTCCCTTTGCGCCGACTAGACTTAGG
GGAATTGAAAAGACTTCATACATCTCAGAAGGTGCCTTGAAGGTCTGTCCAACCTGAGGTATTGAAACCTTGC
CATGTGCAACCTCGGGAAATCCCTAACCTCACACCGCTCATAAAACTAGATGAGCTGGATCTTCTGGGAAATCA
TTTATCTGCCATCAGGCTGGCTTTCCAGGGTTGATGCACCTCAAAACTGTGGATGATACAGTCCCAGAT
TCAAGTGATTGAACGGAATGCCATTGACAACCTTCAGTCACTAGTGGAGATCAACCTGGCACACAATAATCTAAC
ATTACTGCCTCATGACCTTCACTCCCTGATCATCTAGAGCGATACATTACATCACACCCCTGGAAACTG
TAACGTGACATACTGTGGCTCAGCTGGGATAAAAGACATGGCCCCCTGAACACAGCTGTTGTGCCGGTG
TAACACTCCTCCAATCTAAAGGGAGGTACATTGGAGAGCTGACCAGAATTACTTCACATGCTATGCTCCGGT
GATTGTGGAGCCCCCTGCAGACCTCAATGTCAGTGAAGGCATGGCAGCTGAGCTGAAATGTCGGCCTCCACATC
CCTGACATCTGATCTGGATTACTCCAAATGGAACAGTCATGACACATGGGCGTACAAAGTGC GGATAGCTGT
GCTCAGTGTGGTACGTTAAATTCAAAATGTAACCTGTGCAAGATACAGGCATGTACACATGTATGGTGAGTAA
TTCCGTTGGAAACTACTGCTTCAGCCACCTGAGGATGTCAGCAACCCTACTCCTTCTCTTACTTTTCA
AACCGTCACAGTAGAGACTATGGAACCGCTCAGGATGAGGACGGACACAGATAACAAATGTGGGCCCCACTCC
AGTGGTCAGTGGAGACCAATGTGACCCCTCTCACACCAACAGAGCACAGGGCGACAGAGAAAACCTT
CACCATCCCAGTGAATGATATAAACAGTGGATCCCAGGAATTGATGAGGTCTGAAGACTACAAAATCATCAT
TGGGTGTTTGTGCCATCACACTCATGGCTGCAGTGATGCTGGTCTTACAAAGATGAGGAAGCAGCACCA
TCGGCAAAACCATCACGCCAACAGGACTGTTGAAATTATTAAATGTGGATGATGAGATTACGGGAGACACACC
CATGGAAAGCCACCTGCCATGCCGTCTATGAGCATGAGCACCTAAATCACTATAACTCATCAAATCTCCCTT
CAACCAACAAACAGTTAACACAATAATTCAATACACAGTTCACTGATGCAACCGTTATTGATCCGAATGAA
CTCTAAAGACAATGTACAAGAGACTCAAATCTAAACATTACAGAGTTACAAAAAAACAAACAATCAAAAAAAA
GACAGTTATTAAAAATGACACAAATGACTGGCTAAATCTACTGTTCAAAAAGTGTCTTACAAAAAAACAA
AAAAGAAAAGAAATTATTATTAAAGCAGACAAAA

FIGURE 104

MLNKMTLHPQQIMIGPRFNRALFDPLLVLLALQLLVAGLVRAQTCPSVCSCSNQFSKVIC
VRKNLREVPDGISTNTRLLNLHENQIQIIKVNSFKHLRHLEILQLSRNHIRTIEIGAFNGLA
NLNTLELFDNRLTTIPNGAFVYLSKLKELWLRLNNPIESIPSYAFNRIPSLRRLDLGELKRLS
YISEGAFEGLSNLRYLNLCNLREIPNLTPLIKLDELDLSGNHLSAIRPGSFQGLMHLQKL
WMIQSQIQVIERNAFDNLQSLVEINLAHNNLTLLPHDLFTPLHHLERIHLHHNPWCNCNDIL
WLSWWIKDMAPSNTACCARCNTPPNLKGRYIGELDQNYFTCYAPVIVEPPADLNTEGMAAE
LKCRASTSLTSVSWITPNGTVMTHGAYKVRIAVLSDGTLNFTNVTQDTGMYTCMVNSVGN
TTASATLNVTAATTPFSYFSTVTETMEPSQDEARTTDNNVGPTPVVDWETTNVTTSLTPQ
STRSTEKTFTIPVTDINSGIPGIDEVMKTTKIIIGCFVAITLMAAVMLVIFYKMRKQHHRQN
HHAPTRTVEIINVDEITGDTPMESHLPMPAIEHEHLNHYN SYKSPFNHTTVNTINSIHSS
VHEPLLIRMN SKDNVQETQI

Signal sequence:

amino acids 1-44

Transmembrane domain:

amino acids 523-543

N-glycosylation site.

amino acids 278-282, 364-368, 390-394, 412-416, 415-419, 434-438,
442-446, 488-492, 606-610

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 183-187

Casein kinase II phosphorylation site.

amino acids 268-272, 417-421, 465-469, 579-583, 620-624

N-myristoylation site.

amino acids 40-46, 73-79, 118-124, 191-197, 228-234, 237-243,
391-397, 422-428, 433-439, 531-537

FIGURE 105

AGCCGACGCTGCTCAAGCTGCAACTCTGTTGCAGTTGGCAGTTCTTTCGGTTCCCTCTGCTGTTGGGGCA
TGAAAGGGCTTCGCCCGGGAGTAAAAGAAGGAATTGACCGGGAGCGCGAGGGAGGAGCGCGCACCGCACCG
GAGGGCGGGCGTGCACCTCGGCTGGAGTTGTGCCGGGCCCCAGCGCGCCGGCTGGAGCTGGTAGA
GACCTAGGCCGCTGGACCGCGATGAGCGCGCCGAGCCTCCGTGCCGCCGGGGTTGGGAGCTGGTAGA
GCGGTGCTGGGGCGCGCTGGCCGCTCGACAGCGGGCGTGCAGGGAACTCGGGCAGCCCTCTGGGAGCTGGTAGA
GAGCGCCCAGTCCCCACTACCTGCCGCTGCCCTGGGGACCTGCTGGACTGCACTGTAAGCGGCTAGCGCTCTT
CCCGAGCCACTCCCGTCTGGTGCCTGGACTTAAGTCACAACAGATTATCTTCATCAAGGCAAGTCC
ATGAGCCACCTCAAGCCTCGAGAACAGTGAACACAATGAATTGGAGACCAATTCAAATCTGGGACCA
GTCTCGGAAATATTACACTTCTCTTGGCTGAAACAGGATTGTGAAGAAATACTCCCTGAACATCTGAAAGAG
TTTCAGTCCCTGAAACTTGGACCTTAGCAGCAACAAATATTCAAGGCTCAGCAGCTCCAAACTGCAATTCCAGCCCTACAG
CTCAAATATCTGTATCTCAACAGCAACCGAGTCACATCAATGGAACTGGGTTAGTGAACATTGGGAAACACA
CTCCTGTGTTAAAGCTGAACAGGAACCGAATCTCAGCTATCCCACCCAAGATGTTAAACTGCCCCAACTGCAA
CATCTGAATTGAACCGAAACAAGATTAAAAATGTAGATGGACTGACATTCCAAGGCTTGGTGCCTGAAAGTCT
CTGAAAATGCAAAGAAATGGAGTAACGAAACTTATGGATGGAGCTTTGGGGCTGAGCAACATGGAAATTG
CAGCTGGACCATAACACCTAACAGAGATTACCAAAGGCTGGCTTACGGCTGCTGATGCTGCAGGAACATTCA
CTCAGCCAAATGCCATCAACAGGATCAGCCCTGATGCTGGAGTTCTGCCAGAAGCTCAGTGAGCTGGACCTA
ACTTCATCAACTTATCAAGGTTAGATGATTCAAGCTTCTGGCCTAAGCTTACTAAATACACTGCACATTGG
AAACAACAGAGTCAGCTACATTGCTGATTGTGCCCTCCGGGGCTTCCAGTTAAAGACTTGGATCTGAAGAAC
AATGAAATTCTCTGGACTATTGAAGACATGAATGGTCTTCTGGGCTTGACAAACTGAGGCGACTGATACTC
CAAGGAAATCGGATCGTTCTATTACTAAAAAGCCTTCACTGGTTGGATGCATTGGAGCATAGACCTGAGT
GACAACGCAATCATGTCTTACAAGGCAATGCATTTCACAAATGAAGAAACTGCAACAAATTGCAATTAAATACA
TCAAGCCTTTGTGCATTGCCAGCTAAATGGCTCCCACAGTGGTGGCGAAAACAATTTCAGAGCTTGT
AATGCCAGTTGTGCCATCCTCAGCTGCTAAAGGAAGAACGATTGGTCTGTTAGCCAGATGGCTTGT
GATGATTTCCAAACCCAGATCACGGTTAGCCAGAAACACAGTCGGCAATAAAAGGTTCAATTGAGTT
ATCTGCTCAGCTGCCAGCAGCAGTGATTCCCCAATGACTTTGCTTGGAAAAAGACAATGAACACTGCATGAT
GCTGAAATGGAAAATTATGCACACCTCCGGGCCCCAAGGTGGCGAGGTGATGGAGTATACCACCATCCTCGGCTG
CGCGAGGTGGAATTGCCAGTGAGGGAAATATCAGTGTGTCATCTCCAATCACTTGCTTCACTCTGTC
AAAGCCAAGCTTACGTAATATGCTTCCCTCATTCCAAGACCCCCATGGATCTCACCATCCGAGCTGGGCC
ATGGCACGCTGGAGTGCTGCTGGGCAcccAGCCCCAGATAGCCTGGCAGAAGGATGGGGCACAGAC
TTCCAGCTGCCAGGGAGAGACGCATGCTGATGCCAGGATGAGCTTCTTCTGGAATGTGAAGATA
GAGGACATTGGGTATACAGCTGCACAGCTCAGAACAGTGCAAGGAAGTATTCAGCAATGCAACTCTGACTGTC
CTAGAAACACCATCATTGCGGCCACTGTTGGACCGAACTGTAACCAAGGGAGAAACAGCCCTCACAGTGC
ATTGCTGGAGGAAGGCCCTCCCCCTAAACTGAACTGGACCAAGATGATAGCCATTGGTGGTAACCGAGAGGCAC
TTTTTGCAAGCAGGCAATCAGCTCTGATTATTGTGGACTCAGATGCTGAGCTGGAAATACACATGTGAG
ATGCTAAACACCTTGGCACTGAGAGAGGAAACGTGCCCTCAGTGTGATCCCCACTCCAACCTGCGACTCCCT
CAGATGACAGCCCCATCGTTAGACGATGACGGATGGGCCACTGTGGGTGCTGATCATAGCCGGTTGT
GTGGGGCACGTCACTCGTGTGGGTGATCATATAACCACACAAGCGGAGGAATGAAGGATGGCAGCATTACC
AACACAGATGAGACCAACTGCCAGCAGATTCCCTAGTTATTGTCATCTCAGGGAACGTTAGCTGACAGGCAG
GATGGGTACGTGCTTCAAGAAAGTGAAGGCCACCAAGCTTGTACATCTCAGGTGCTGGATTTCCTTACCA
CAACATGACAGTAGTGGACCTGCCATATTGACAATAGCAGTGAAAGCTGATGTGAAGCTGCCACAGATCTGTC
CTTGTGCTGTTGGGATCCACAGGCCCTATGTATTGAAGGGAAATGTGTATGGCTCAGATCCTTGTAAACA
TATCATAACAGGTTGCACTGCCAGCAGAAACAGTTAATGGACCACTATGAGCCAGTTACATAAAAGAAAAG
GAGTGTACCCATGTTCTCATCCTCAGAAGAATCTGCGAACGGAGCTTCAGTAATATATCGTGGCCTCACAT
GTGAGGAAGCTACTTAAACACTAGTTACTCTCACAATGAAGGACCTGGAAATGAAAAATCTGTGCTAAACAAGTCC
TCTTAGTTTGTGCAATCCAGAGGCCAGCGTGGCTGCTCGAGTAATTCTTCTATGGTACCTTGGAAAAA
GCTCTCAGGAGACCTCACCTAGATGCCATTCAAGCTTGGACGCCATCAGATTGTCAAGGCAAGAGCCTTAT
TTGAAAGCTCATTCTCCCGAGACTGGACTCTGGGTCAAGGAGAAGGGAAAGAAAGGAGAGGAGATTTTCA
GAAAATCACATTGTACCTTAAACAGACTTAGAAAACAGCTTAACATACACCTCAAGTGAACTTTTATTAAAGAGAGGAGAAT
ACATAGACTGAATGAGACCAAGGAAAAGCTTAACATACACCTCAAGTGAACTTTTATTAAAGAGAGGAGAAT
CTTATGCAAAAAGTATCTTACGTAATTAAATGATGCTCATATAAGAATACCTTTTAAACTATTTTAACTT
AAAAAGTTATGAAATTTTATACTGGGAATGATGCTCATATAAGAATACCTTTTAAACTATTTTAACTT
TTTATGCAAAAAGTATCTTACGTAATTAAATGATGATTATTATGTTATGTTATAATGCCAGA
TTCTTTTATGAAAATGAGTTACTAAAGCATTAAATAACCTGCCCTGTACCATTTTAAATAGAAGTT
ACTCATTATATTGCACATTATAATAATGTGCAATTGAAAAAAAAAAAAAA

FIGURE 106

MSAPSLRARAAGLGLLLCAVLGRAGRSDSGGRGELGQPSGVAAERPCTTCRCLGDLDCSR
KRLARLPEPLPSWVARLDLSHNRLSFIKASSMSHLQLSREVKLNNELETIPNLGPVSANIT
LLSLAGNRIVEILPEHLKEFQSLETLDLSSNNISELQTAFPALQLKYLYLNSNRVTSMEPGY
FDNLANTLLVLKLNRRNRIISAIPPKMFKLPQLQHLELNRNKIKNVDGLTFQGLGALKSLKMQR
NGVTKLMGAFWGGLSNMEILQLDHNNLTEITKGWLGYGLLMLQELHLSQNAINRISPDAWEFC
QKLSELDLTNFNHLRLDDSSFLGLSLLNLTIGHNNRVSYIADCAFRLGSSLKTLDLNNEIS
WTIEDMNGAFSGLDKLRRRILQGNRIRSITKKAFTGLDALEHLDLSDNAIMSLQGNAFSQMK
KLQLQHLNTSSLCDCKWLPPQWVAENNQSFVNASCAPQLLKGRSIFAVSPDGVCDDF
PKPQITVQPETQSAIKGSNLSFICSAASSSDPMTFAWKKDNELLHDAEMENYAHLRAQGGE
VMEYTTILRLREVEFASEGKYQCVISNHFGSSYSVKAKLTVNMLPSFTKTPMDLTIRAGAMA
RLECAAVGHPPAQIAWQKDGGTDFPAARERRMHVMPEDDVFFIVDVKIEDIGVYSCTAQNSA
GSISANATLTVLETPSFLRPLLDRVTKGETAVLQCIAGGSPPPMLNWTKDDSPLVTERHF
FAAGNQLLIIVDSDVSDAGKYTCMSNTLGTERGNVRSLVIPTPTCDSPQMTAPSLLDDGWA
TVGVVIIAVVCCVVGTSLVWWVIIYHTRRRNEDCSITNTDETNLPADIPSYLSSQGTLADRO
DGYVSSESGSHHQFVTSSGAGFFLPQHDSSGTCHIDNSSEADVEAATDLFLCPFLGSTGPMY
LKGNVYGSDPFETYHTGSPDPRTVLMHDYEPSYIKKKECYPCHPSEESCRSFSNISWPS
HVRKLLNTSYSHNEGPGMKNLCLNKSSLDFSANPEPASVASSNSFMGTFGKALRRPHLDAYS
SFGQPSDCQPRAFYLAHSSPDLDGSEEDGKERTDFQEENHICTFKQTLENYRTPNFQSYLDLT

Signal sequence:

amino acids 1-27

Transmembrane domain:

amino acids 808-828

N-glycosylation site.

amino acids 122-126, 156-160, 274-278, 442-446, 469-473, 515-519,
688-692, 729-733, 905-909, 987-991, 999-1003, 1016-1020

Glycosaminoglycan attachment site.

amino acids 886-890

Casein kinase II phosphorylation site.

amino acids 99-103, 180-184, 263-267, 314-318, 324-328, 374-378,
383-387, 407-411, 524-528, 608-612, 692-696, 709-713, 731-735,
799-803, 843-847, 863-867, 907-911, 1003-1007, 1018-1022,
1073-1077, 1079-1083, 1081-1085

Tyrosine kinase phosphorylation site.

amino acids 667-675

N-myristoylation site.

amino acids 14-20, 36-42, 239-245, 257-263, 380-386, 427-433,
513-519, 588-594, 672-678, 683-687, 774-780, 933-939

Leucine zipper pattern.

amino acids 58-80, 65-87

FIGURE 107

CAAAACTTGCCTCGCGGAGAGGCCAGCTGACTTGAATGGAAGGAGCCCAGGCCGGAGCGCAGCTGAGAC
TGGGGGAGCGCGTTCCGGCCTGTGGGCGCCTCGGCCGGGGCGCAGCAGGAAGGGGAAGCTGTGGTCTGCC
CTGCTCCACGAGGCGCCACTGGTGTGAACCAGGGAGAGCCCCCTGGTGGTCCCGTCCCCTATCCCTCTTATATA
GAAACCTTCCACACTGGGAAGGCAGCGCGAGGAGGGCTCATGGTGAGCAAGGAGGCCGGCTGATCTGCAG
GCGCACAGCATTGGAGTTACAGATTTACAGATACCAAATGGAAGGCAGGGAGGCAGAACAGCCTGCCCTGGT
TCCATCAGCCCTGGCGCCAGGCGCAGCTGACTCGGCACCCCTGCAGGCACCATGGCCAGAGGCCGGGTGCTGC
TGCTCCTGCTGCTGCGCCACAGCTGCACCTGGGACCTGTGCTTGCGTGGAGGAGGCCAGGATTTGGCCGAA
GTGGCGGCCACAGCCTGAGCCCCGAAGAGAACGAATTGCGGAGGAGGCCGGTGTGACTGAGCCCTGAGG
AGCCCCGGCTGGCCAGCCGGTCAGCTGCCCGAGACTGTGCTGTTCCAGGAGGGCGTGTGGACTGTG
GCGGTATTGACCTGCGTGAAGTCCCCGGGGACCTGCCTGAGCACACCAACCCATCTCTGCAGAACAAACCAGC
TGGAAAAGATCTACCCCTGAGGAGCTCTCCGGCTGCACCCGGCTGGAGAACACTGAACCTGCAAAACAACCGCCTGA
CTTCCCAGGGCTCCCAGAGAACGGCTTGAGCATCTGACCAACCTCAATTACCTGTACTTGGCCAATAACAAGC
TGACCTTGGCACCCGCTCTGCCAAACCCCTGATCAGTGTGCTGCCAACTATCTCACCAAGATCT
ATGGGCTCACCTTGGCAGAACGCAAACCTGAGGTCTGTGACTCTGCACAAACAAGCTGGCAGACGCCGGC
TGCCGGACAAACATGTCACCGCTCAGCAACCTGAGGTCTCATCCTGTCCAGCAACTTCCCTGCCACGTGC
CCAAGCACCTGCCCTGTCACAGCTCAAGCTGCACCTCAAGAACAAACAGCTGGAGAACAGATCCCCGGGGCCT
TCAGCGAGCTGAGCAGCTGCGAGCTATACTGCAGAACAAACTACCTGACTGACGAGGGCCTGGAACAGAGA
CTTCTGGAAGCTCTCCAGCCTGGAGTACCTGGATCTGTCAGCAACAACCTGTCTCGGGTCCCAGCTGGCTGC
CGCGCAGCCTGGTGTGCTGCACCTGGAGAACAGCCATCCGGAGCGTGGACCGAATGTGCTGACCCCCATCC
GCAGCCTGGAGTACCTGCTGTCACAGCAACCAGCTGCCGGAGCAGGGCATCCACCCACTGGCCTCCAGGGCC
TCAAGCGGTTGACACGGTGCACCTGTACAACAAACCGCTGGAGGCCGTGCCAGTGGCCTGCCCTCGCCGCGTGC
GCACCCCTCATGATCCTGCACAAACAGATCACAGGCAATTGGCCGGAAGACTTGGCACCACCTACTTCTGGAGG
AGCTAACCTCAGCTACAACCGCATCACCAGCCCACAGGTGACCCGACGCCCTCCGCAAGCTGCCCTGCTGC
GCTCGCTGGACCTGTCGGCAACCAGCTGCACACGCTGCCACCTGGGCTGCCATGGCTGAAATGTCCATGTGCTGAAGG
TCAAGCGCAATGAGCTGGTGCCTTGGCACAGAGGGCGCTGGCGGATGGCTCAGCTGCGTGAAGCTGTACCTCA
CCAGCAACCGACTGCGCAGCCCTGGGCCCCGTGCCCTGGTGGACCTGCCCATCTGCAGCTGCTGGACA
TCGCCGGAAATCAGCTCACAGAGATCCCCGAGGGCTCCCCGAGTCACCTGAGTACCTGTACCTGCAGAACACA
AGATTAGTGCCTGGCCCGCAATGCTTCGACTCCACGCCAACCTCAAGGGATCTTCTCAGGTTAACAAAGC
TGGCTGTGGCTCCGGTGGACAGTGCCTTCCGGAGGCTGAAGCACCTGCAGGTCTTGGACATTGAAGGCAACT
TAGAGTTGGTGCACATTTCAAGGACCGTGGCCCTGGGAAGGAAAGGAGGAGGAGGAAGAGGAGGAGGAGG
AGGAAGAGGAAACAAAGATAGTGCACAGGTGATGCAGATGTGACCTAGGATGATGGACCGCCGACTCTTTCTGC
AGCACACGCCCTGTGTGCTGTGAGCCCCCACTCTGCCGTGCTCACACAGACACACCCAGCTGCACACATGAGGCA
TCCCACATGACACAGGGCTGACACAGCTCATATCCCCACCCCTTCCACGGCGTGTCCCACGGCCAGACACATGC
ACACACATCACACCCCTCAAACACCCAGCTCAGCCACACACAACACTACCCCTCCAAACCAACACAGTCTGTACAC
CCCCACTACCGCTGCCACGCCCTGTAATCATGCAGGGAAAGGGCTGCCCTGCCACACACAGGCACCC
TTCCCTCCCCCTGCTGACATGTGATGCGTATGCATACACACACACACATGCACAAAGTCATGTGCGAA
CAGCCCTCCAAAGCCTATGCCACAGACAGCTTGTGCCAGGAAATCAGCCATAGCAGCTGCCGTCTGCC
GTCCATCTGTCGCTCCGTTCCCTGGAGAACACACAAGGGTATCCATGCTGTGGCCAGGTGCCCTGCCACCCCT
GGAACCTACAAAAGCTGGTTTATTCTTCCATCTATGGGGACAGGAGCCCTCAGGACTGTGGCTGGCC
TGGCCCAACCTGCTCCAGGTGCTGGGAGTCAGTCACCTGCTAAGAGTCCCTCCCTGCCACGCCCTGGCAGGACA
CAGGCACCTTCCAATGGCAAGCCAGTGGAGGAGGAGGCCCTGGGTGCTGTGGGGCTTGGGG
CAGGAGTGAAGCAGAGGTGATGGGCTGGCTGAGCCAGGGAGGAAGGACCCAGCTGCACCTAGGAGACACCTT
GTTCTCAGGCCTGTGGGGAAAGTCCGGTGCCTTATTCTTATTCTTCTAAGGAAAAAAATGATAAAAAT
CTCAAAGCTGATTTCTTGTATAGAAAACATAATAAAAGCATTATCCCTATCCCTGCAAAAAAA

FIGURE 108

MEGEEAEQPAWFHQWPWRPGASDSAPPAGTMAQSRVLLLLLPPQLHLGPVLAVRAPGFGRS
GGHSLSPPEENEFAEEEPLVLSPEEPGPGPAAVSCP RD CACS QEGVVDCGGIDLREFPGDLP
EHTNHLSLQNNQLEKIYPEELSRLHRLETNLQNNRLTSRGLPEKA FEHLTNLYLYLANNK
LTLAPRFLPNALISVDFAANYLTKIYGLTFGQKPNLRSVYLHN NKLA DAGLPDNMFNGSSNV
EV LILSSNFLRHVPKHLPPALYKLHLKNNKLEKIPPGAFSELSSLRELYLQNNYLTDEGLDN
ETFWKLSSLEYLDLSSNNLSRVPA GLPRSLVLLHLEKNAIRSDANVLTPIRSLEYLLLHSN
QLREQGIHPLAFQGLKRLHTVHLYNNALERVPSGLP RRVRTLMILHNQITGIGREDFATTYF
LEELNLSYNRITS PQVHRDAFRKLRLRSLDLSGNRLHTLPPGLPRNVHVLKVKRNEALA
RGALAGMAQLRELYLTSNRLRSRALGPRAWDLAHLQ LLDIAGNQLTEIPEGLPESLEYLYL
QNNKISAVPANA FDSTPNLK GIFLRFNKLAVGSVVDSA FRRLKHLQVLDIEGNLEFGDISKD
RGRLGKEKEEEEEEEEEEETR

Signal sequence:

amino acids 1-48

N-glycosylation site.

amino acids 243-247, 310-314, 328-332, 439-443

Casein kinase II phosphorylation site.

amino acids 68-72, 84-88, 246-250, 292-296, 317-321, 591-595

N-myristoylation site.

amino acids 19-25, 107-113, 213-219, 217-223, 236-242, 335-341,
477-483, 498-502, 539-545, 548-554

Leucine zipper pattern.

amino acids 116-138, 251-273, 258-280, 322-344, 464-486, 471-493,
535-557

FIGURE 109

FIGURE 110

MDFLLALVLVSSLYLQAAAEDGRWPRQIVSSIGLCRYGGRIDCCWGWARQSWGQCQPVCQP
RCKHGE CIGPNKCKCHPGYAGKTCNQDLNECGLKPRPCKHRCMNTYGSYKCYCLNGYMLMPD
GSCSSALTCSMANCQYGCDVVKGQIRCQCPSPGLHLAPDGRTCDVDECATGRASCPRFRCQ
VNTFGSYICKCHKGFDLMIIGGKYQCHDIDECSLGQYQCSSFARCYNVRGSYKCKCKEGYQG
DGLTCVYIPKVMIEPSGPIHPKGNGTILKGDTGNNNWIPDVGSTWWPPKTPYIIPPIITNRP
TSKPTTRPTPKPTPIPTPPPPPPLPTELRTPLPPTPERPTTGLTTIAPAASTPPGGITVDN
RVQTDPQKPRGDVFSLVHSCNFDHGLCGWIKEKDNDLHWEPIRDAGGQYLTVSAAKAPGG
KAARLVLPLGLRGMHSGDLCLSFRHKVTGLHSGTLQVFVRKHGAHGAALWGRNGGHGWRQTQI
TLRGADIKSESQR

Signal sequence:

amino acids 1-17

N-glycosylation site.

amino acids 273-277

Casein kinase II phosphorylation site.

amino acids 166-170, 345-349

Tyrosine kinase phosphorylation site.

amino acids 199-206

N-myristoylation site.

amino acids 109-115, 125-131, 147-153, 191-197, 221-227, 236-242,
421-427, 433-439, 462-468, 476-482

Aspartic acid and asparagine hydroxylation site.

amino acids 104-116, 186-198, 231-243

Cell attachment sequence.

amino acids 382-385

EGF-like domain cysteine pattern signature.

amino acids 75-87

FIGURE 111

CTTCTTGAAAAGGATTATCACCTGATCAGGTTCTCTGCATTGCCCTTAGATTGTGA
AATGTGGCTCAAGGTCTTCACAACTTCCCTTGC~~A~~ACAGGTGCTGCTCGGGCTGA
AGGTGACAGTGC~~C~~ATCACACACTGTCCATGGCGTCAGAGGT~~C~~AGGCCCTACCTACCCGTC
CACTATGGCTTCCACACTCCAGCATCAGACATCCAGATCATATGGCTATTGAGAGACCCA
ACAATGCCAAATACTTACTGGGCTGTGAATAAGTCTGTGGTCTGACTTGAATACC
AACACAAGTCACCATGATGCCACCCATGCATCTGCTTATCAACCCACTGCAGTCCCT
GATGAAGGCAATTACATCGTGAAGGTCAACATT~~C~~AGGAAATGGA~~A~~CTCTATCTGCCAGTCA
GAAGATA~~C~~ACAAGTCACGGTTGATGATCCTGT~~C~~ACAAAGCCAGTGGTG~~C~~AGATT~~C~~ATCCTCCCT
CTGGGCTGTGGAGTATGTGGGAACATGACCC~~T~~GACATGCCATGTGG~~A~~GGGGCACTCGG
CTAGCTTACCAATGGCTAAAAAATGGGAGACCTGT~~C~~ACACCAGCTCCACCTACTCCTTTC
TCCCCAAAACAATACCTTCATATTGCTCCAGTAACCAAGGAAGACATTGGAAATTACAGCT
GCCTGGTGAGGAACCC~~T~~GTCAGTGAATGGAAAGT~~G~~ATATCATTATGCC~~C~~ATCATATATTAT
GGACCTTATGGACTTCAGTGAATTCTGATAAAAGGGCTAAAGTAGGGGAAGT~~G~~TTACTGT
TGACCTTGGAGAGGCCATCCTATTGATTGTTCTGCTGATTCTCATCCCCCAACACCTACT
CCTGGATTAGGAGGACTGACAATACTACATATCATTAAGCATGGGC~~T~~CGCTTAGAAGTT
GCATCTGAGAAAGTAGCCCAGAAGACAATGGACTATGTGTGCTGCTTACAACAACATAAC
CGGCAGGCAAGATGAAACTCATT~~T~~CACAGTTATCATCACTCCGTAGGACTGGAGAAGCTG
CACAGAAAGAAAATCATTGTCACCTTAGCAAGTATAACTGGAATATCACTATT~~T~~TGATT
ATATCCATGTGCTTCTCTTCTATGGAAAAAATATCAACCC~~T~~ACAAAGTTATAAAACAGAA
ACTAGAAGGCAGGCCAGAAACAGAATACAGGAAAGCTCAAACATTTCAGGCCATGAAGATG
CTCTGGATGACTCGGAATATATGAATTGTTGCTTCCAGATGTTCTGGT~~G~~TTCCAGG
ATTCCAAGCAGGTCTGTTCCAGCCTCTGATTG~~T~~TGTATGGGCAAGATTGCACAGTACAGT
GTATGAAGTTATT~~C~~AGCACATCC~~T~~GCCAGCAGCAAGACC~~T~~CCAGAGTGAACTT~~C~~ATGG
GCTAAACAGTACATT~~C~~GAGTGAAGAAATTCTGAAGAAACATT~~T~~AAGGAAAACAGTGGAAAAGT
ATATTAA~~T~~CTGGAATCAGTGAAGAAACCAGGACCAACACCTCTACTCATTATT~~C~~TTACA
TGCAGAA~~T~~AGAGGCATTATGCAAATTGA~~A~~CTGCAGGTTT~~C~~AGCATATA~~C~~ACAATGT~~C~~TT
GTGCAACAGAAAACATGTTGGGAAATATT~~C~~CTCAGTGGAGAGTCGTTCTCATGCTGACGG
GGAGAACGAAAGTGACAGGGTT~~C~~CATAAGTTGTATGAA~~A~~ATCTACAAACCTCA
ATTAGTTCTACTCTACACTTC~~A~~CTATCATCAACACTGAGACTATCCTG~~T~~TCACCTACAAA
TGTGGAAACTTTACATTGTTG~~C~~ATT~~T~~T~~C~~AGCAGACTTTGTTTATTAAATT~~T~~TATTAGTG
TTAAGAATGCTAAATT~~T~~TATGTTCAATT~~T~~TATT~~C~~AAATT~~T~~TCTATCTTGTATTGTACAA
CAAAGTAATAAGGATGGTTGT~~C~~ACAAAAAA~~A~~CTATGCCTCTCTTTTTCAATCACC
AGTAGTATT~~T~~TGAGAAGACTTGTGAACACTTAAGGAAATGACTATTAAAGT~~C~~TTATT~~T~~T
TTTTTTCAAGGAAAGATGGATTCAAATAATTATTCTGTTTGT~~T~~TTAAAAA~~A~~AAAAA

FIGURE 112

MWLKVTTFLSFATGACSGLKVTVPSPHTVHGVRGQALYLPVHYGFHTPASDIQI IWLFERPH
TMPKYLLGSVNKSVPDLEYQHKFTMMPNASLLINPLQFPDEGNYIVKVNIQGNGLTLSASQ
KIQVTVDPPVTKPVVQIHPPSGAVEYVGNMTLTCHEGGTRLAYQWLKNGRPVHTSSTYSFS
PQNNTLHIAPVTKEDIGNYSCLVRNPVSEMESDIIMPIIYYGPYGLQVNSDKGLKVGEVFTV
DLGEAILFDCSADSHPPNTYSWIRTDNTTYIIKHGPRLEVASEKVAQKTMDYVCCAYNNIT
GRQDETHFTVIITSVGLEKLAQKGKSLSPLASITGISLFLIISMCLLFLWKKYQPYKVIKQK
LEGRPETEYRKAQTFSGHEDALDDFGIYEFVAFPDVSGVSRIPSRSVPASDCVSGQDLHSTV
YEVIQHIPAQQQDHPE

Signal sequence:

amino acids 1-18

Transmembrane domain:

amino acids 341-359

N-glycosylation site.

amino acids 73-77, 92-96, 117-121, 153-157, 189-193, 204-208,
276-280, 308-312

Casein kinase II phosphorylation site.

amino acids 129-133, 198-202, 214-218, 388-392, 426-430, 433-437

Tyrosine kinase phosphorylation site.

amino acids 272-280

N-myristoylation site.

amino acids 15-21, 19-25, 118-124, 163-167, 203-209, 231-237,
239-245

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 7-18

FIGURE 113

GCAAGCGGCGAAATGGCGCCCTCCGGGAGTCTGCAGTTCCCCTGGCAGTCCTGGTGTGTT
GCTTGGGGTGCTCCCTGGACGCACGGCGGGAGCAACGTTCGCGTCATCACGGACGAGA
ACTGGAGAGAAACTGCTGGAAAGGAGACTGGATGATAGAATTTATGCCCGTGGTGCCTGCT
TGTCAAAATCTCAACCGGATGGAAAGTTGCTGAATGGGAGAAGATCTTGAGGTTAA
TATTGCGAAAGTAGATGTCACAGAGCAGCCAGGACTGAGTGGACGGTTATCATAACTGCTC
TTCCTACTATTATCATTGTAAGATGGTGAATTAGGCCTATCAGGGTCCAAGGACTAAG
AAGGACTTCATAAAACTTATAAGTGATAAAGAGTGGAAAGAGTATTGAGCCGTTCATCATG
GTTGGTCCAGGTTCTGTTCTGATGAGTAGTATGTCAGCACTCTTCAGCTATCTATGTGGA
TCAGGACGTGCCATAACTACTTTATTGAAGACCTGGATTGCCAGTGTGGGATCATATACT
GTTTTGCTTAGCAACTCTGTTCCGGACTGTTATTAGGACTCTGTATGATATTGTGGC
AGATTGCCTTGTCCCTCAAAAAGGCCAGACCCACAGCCATACCCATACCCCTCAAAAAAAT
TATTATCAGAACTGCACAACCTTGAAAAAAAGTGGAGGAGGAACAAGAGGCGGATGAAGAA
GATGTTCAGAAGAAGAGCTGAAAGTAAAGAAGGAACAAACAAAGACTTCCACAGAATGC
CATAAAGACAACGCTCTGGGTCCATCATTGCCACAGATAAATCCTAGTTAAATTTATAG
TTATCTTAATATTATGATTTGATAAAACAGAACAGATTGATCATTGTTGGTTGAAGTG
AACTGTGACTTTTGAAATTGCAAGGTTCAGTCTAGATTGTCATTAAATTGAAGAGTCTA
CATTCAGAACATAAAAGCACTAGGTATACAAGTTGAAATATGATTTAAGCACAGTATGATG
GTTAAATAGTTCTAATTTGAAAAATCGTGCCAAGCAATAAGATTATGATATTGT
TTAATAATAACCTATTCAAGTCTGAGTTTGAAAATTACATTCCCAAGTATTGCATTAT
TGAGGTATTTAAGAAGATTTTAGAGAAAATTCTCATTTGATATAATTTCTCTG
TTCACTGTGAAAAAAAGAAGATTTCCATAAATGGGAAGTTGCCATTGTCTCAAG
AAATGTGTTCACTGACATTCGGGTTTTTAGAGGTATTCAGTTCTACACA
ATTTTTAGGTATGCAACTAAAAAACTACCTTACATTAATTACAGTTCTACACA
TGGTAATACAGGATATGCTACTGATTAGGAAGTTTAAGTTCATGGTATTCTCTTGATTC
CAACAAAGTTGATTCTCTGTATTTTCTTACTACTATGGTTACTTTTTATTTT
CAAATTGGATGATAATTCTGGAAACATTTTTATGTTAGAAACAGTTTTTTTGTT
GTTCAAACGTGAAGTTACTGAGAGATCCATCAAATTGAACAACTGTTGTAATTAAAAATT
TTGGCCACTTTTCAGATTTCATCATTCTGCTGAACTTCAACTGAAATTGTTTTT
TTCTTTGGATGTAAGGTGAACTTCCCTGATTTTGCTGATGTGAAAAGCCTGGT
TTTACATTTTGAAATTCAAAGAAGCTTAATATAAAAGTTGCATTCTACTCAGGAAAAAAG
CACTTCTTGTAATGCTTAAATGTATTTTGCCTCATATACAGAAAGTTCTTAATTGAT
TTTACAGTCTGTAATGCTGATTTTAAATAAACATTTTTATTTTTAAAGACAA
ACTTCATATTATCCCTGTTCTTGACTGGTAATATTGTGGGATTTCAGGTAAAA
GTCAGTAGGATGGAAACATTTAGTGATTTTTACTCTTAAAGAGCTAGAATACATAGTTT
CACTTAAAGAAGGGGAAATCAAAATACAATGAATCAACTGACCCATTACGTAGTAGAC
AATTCTGTAATGCCCTTCTTCTAGGCTGTGCTGTGTAATCCATTAGATTTACAG
TATCGTAATACAAGTTCTTAAAGCCCTTCCTTTAGAAATTAAATATTGACCATT
AAAGAGTTGGATGTACTGTATTGATGCCTTAGAAAAAATCTAAGCACAAATAAACTT
CTTAACCACTTCATTAAAGCTGAAAAAAAAAA

FIGURE 114

MAPSGSLAVPLAVLVLLLWGAPWTHGRRSNVRVITDENWRELLEGDWMIEFYAPWCPACQNL
QPEWESFAEWGEDLEVNIAKVDVTEQPGLSGRFIITALPTIYHCKDGEFRRYQGPRTKKDFI
NFISDKEWKSIEPVSSWFGPGSVLMSSMSALFQLSMWIRTCHNYFIEDLGLPVWGSYTVFAL
ATLFSGLLLGLCMIFVADCLCPSKRRRPQPYPPSKLLSESAQPLKKVEEEQEADEEDVSE
EEAESKEGTNKDFPQNAIRQRSLGPSLATDKS

Signal sequence:

amino acids 1-26

Transmembrane domain:

amino acids 182-201

Casein kinase II phosphorylation site.

amino acids 68-72, 119-123, 128-132, 247-251, 257-261

Tyrosine kinase phosphorylation site.

amino acids 107-115

N-myristoylation site.

amino acids 20-26, 192-198

Amidation site.

amino acids 25-29

FIGURE 115

GCGAGTGTCCAGCTCGGGAGACCCGTGATAATTGTTAACTAATTCAACAAACGGGACCCTT
CTGTGTGCCAGAAACCGCAAGCAGTTGCTAACCCAGTGGACAGGGGATTGGAAGAGCGGG
AAGGTCTGGCCCAGAGCAGTGTGACACTTCCTCTGTGACCTGAAACTCTGGGTGTCTGC
ATTGCTGATGGCTGGTTGGTGTCTGAGCTGTGCAGGCCAATTCTCACCTCTATTG
GGCACATGACTGACCTGATTATGCAGAGAAAGAGCTGGTGCAGTCTCTGAAAGAGTACATC
CTTGTGGAGGAAGCCAAGCTTCCAAGATTAAGAGCTGGCCAACAAAATGGAAGCCTTGAC
TAGCAAGTCAGCTGCTGATGCTGAGGGTACCTGGCTCACCTGTGAATGCCTACAAACTGG
TGAAGCGGCTAACACACAGACTGGCCTGCGCTGGAGGACCTTGTCTGCAGGACTCAGCTGCA
GGTTTATGCCAACCTCTGTGCAGCGGCAGTTCTCCCCACTGATGAGGACGAGATAGG
AGCTGCCAACAGCCCTGATGAGACTTCAGGACACATACAGGCTGGACCCAGGCACAATTCCA
GAGGGAACTTCAGGAACCAAGTACAGGCAATGCTGAGTGTGGATGACTGCTTGGATG
GGCGCTCGGCCTACAATGAAGGGACTATTATCATACGGTGTGTGGATGGAGCAGGTGCT
AAAGCAGCTGATGCCGGGGAGGAGGCCACCAACCAAGTCACAGGTGCTGGACTACCTCA
GCTATGCTGCTTCCAGTTGGGTGATCTGCACCCTGGAGCTCACCGCCGCTGCTC
TCCCTGACCCAAGCCACGAACGAGCTGGAGGGAATCTGGTACTTGTAGCAGTTATTGGA
GGAAGAGAGAAAAAACGTTAACAAATCAGACAGAAGCTGAGCTAGCAACCCAGAAGGCA
TCTATGAGAGGCCTGGACTACCTGCCTGAGAGGGATGTTACGAGAGCCTGTGCTGG
GAGGGTGTCAAACGTACGCTCATGGCTTCTGAGACAGAAGAGGCTTCTGTAGGTACCA
CAGGGCCCCACAGCTGCTCATTGCCCTCAAAGAGGAGGACGAGTGGACAGCCGCACA
TCGTCAGGTACTACGATGTCATGTCTGATGAGGAAATCGAGAGGATCAAGGAGATCGCAAAA
CCTAAACTTGACGAGCCACCGTTGATCCAAGACAGGAGTCTCACTGTCGCCAGCTA
CCGGGTTTCAAAGCTCCTGGCTAGAGGAAGATGATGACCTGTTGTGGCCGAGTAAATC
GTCGGATGCAGCATATCACAGGGTTAACAGTAAAGACTGCAGAATTGTTACAGGTTGCAAAT
TATGGAGTGGGAGGACAGTATGAACCGCACTCGACTTCTCTAGGCAGCTTGTACAGCGG
CCTCAAAACAGAGGGAAATAGGTTAGCGACGTTCTTAACATGAGTGTAGAAGCTG
GTGGTGCACCGTCTCCCTGATCTGGGGCTGCAATTGGCTAAGAAGGGTACAGCTGT
TTCTGGTACAACCTCTTGCAGGGAGGAGGAAAGGTGACTACCGAACAGACATGCTGCTGCC
TGTGCTTGTGGCTGCAAGTGGTCTCCAATAAGGTTCCATGAACGAGGACAGGAGTTCT
TGAGACCTTGTGGATCAACAGAAGTTGACTTGACCATCCTTCTGTCTCCCTCCTGGTC
CTTCAGCCCATGTCACAGTGCACAGACACCTTGTATGTTCTTGTATGTTCTATCAGGCT
GATTTTGGAGAAATGAATGTTGTCTGGAGCAGAGGGAGACCATACTAGGGCGACTCCTGT
GTGACTGAAGTCCCAGCCCTTCATTAGCCTGTGCCATCCCTGGCCCCAAGGCTAGGATCA
AAGTGGCTGAGCAGAGTTAGCTGTCTAGCGCCTAGCAAGGTGCCCTTGTACCTCAGGTGTT
TTAGGTGTGAGATGTTCACTGAAACCAAGTTCTGATACCTGTTACATGTTGTTTAT
GGCATTCTATCTATTGTGGCTTACCAAAAAAATGTCCCTACCAGAAAAAA

FIGURE 116

MKLWVSALLMAWFGVLSCVQAEFFTSIGHMTDLIYAEKELVQSLKEYILVEEAKLSIKSWA
NKMEALTSKSAADAEGYLAHPVNAYKLVKRLNTDWPALEDLVLQDSAAGFIANLSVQRQFFP
TDEDEIGAAKALMRLQDTYRLDPGTISRGEELPGTKYQAMLSVDDCFGMGRSAYNEGYYHTV
LWMEQVLKQLDAGEEATTKSQVLDYLSYAVFQLGDLHRALELTRRLSLDPSHERAGGNLR
YFEQLLEEREKTLTNQTEAELATPEGIYERPVDFYLPERDVYESLCRGEVKLTPRRQKRLF
CRYHHGNRAPQLLIAPFKEEDEWDSPHIVRYVDVMSDEEIERIKEIAKPKLARATVRDPKTG
VLTVASYRVSKSSWLEEDDDPVVARVNRMQHITGLTVKTAELLQVANYGVGGQYEPHFDFS
RRPFDSGLKTEGNRLATFLNYMSDVEAGGATVFPLGAAIWPKGTAVFWYNLLRSGEDYR
TRHAACPVLVGCKWSNKWFHERGQEFLRPCGSTEVD

Signal sequence:

amino acids 1-17

N-glycosylation site.

amino acids 115-119, 264-268

Glycosaminoglycan attachment site.

amino acids 490-494

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 477-481

Casein kinase II phosphorylation site.

amino acids 43-47, 72-76, 125-129, 151-155, 165-169, 266-270,
346-350, 365-369, 385-389, 457-461, 530-534

Tyrosine kinase phosphorylation site.

amino acids 71-80, 489-496

N-myristoylation site.

amino acids 14-20, 131-137, 171-177, 446-452

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 8-19

Leucine zipper pattern.

amino acids 213-235

FIGURE 117

GCAGTATTGAGTTTACTCCTCCTTTAGTGGAAAGACAGACATAATCCCAGTGTGAGTGAAATTGATTGT
TTCATTTATTACCGTTGGCTGGGGTTAGTTCCGACACCTTCACAGTTGAAGAGCAGGCCAGAAGGAGTTGTA
AGACAGGACAATCTTCTTGGGGATGCTGGTCTGGAAAGCCAGCAGGGCCTTGCCTGTCTTGGCCTCATGACCC
CAGGTCTCTGGTAAACACTGAAAGCCTACTACTGGCCTGGTCCCCATCAATCCATTGATCCTTGAGGCTGTGCC
CCTGGGCACCCACCTGGCAGGGCTACCACCATGCGACTGAGCTCCCTGTTGGCTCTGCTGCCAGCGCTTC
CCCTCATCTTAGGGCTGCTCTGGGGTGCAGCCTGAGCCTCTGCGGGTTCTGGATCCAGGGGAGGGAGAAG
ATCCCTGTGTGGAGGCTGTAGGGGAGCGAGGAGGCCACAGAATCCAGATTGAGAGCTCGGCTAGACCAAAGTG
ATGAAGACTTCAAACCCCGATTGCCCCACTACAGGGACCCACAAGCCTACAAGAAGGTGTCAGGACTC
GGTACATCCAGACAGAGCTGGGCTCCCGTGAGCGGTTGCTGGTGGCTGCACCTCCCAGCTACACTGTC
CTTTGGCGTGGCTGTGAACCGTACGGTGGCCCACCTCCCTCGGTTACTCTACTTCACTGGGAGCGGGGG
CCCGGGCTCCAGCAGGGATGCGAGGGTGTCTCATGGGATGAGCGGCCGCTGGCTCATGTCAGAGACCCCTGC
GCCACCTTACACACACTTGGGGCCGACTACGACTGGTCTTCATCATGCAAGGATGACACATATGTGCAGGCC
CCCGCTGGCAGCCCTGCTGGCACCTCAGCATCAACCAAGACCTGTACTTAGGCCGGCAGAGGAGTTCAATTG
GCGCAGGCAGCAGGGGGTACTGTCTAGTGCATGGGGCTTGGCTACCTGTTGTCACGGAGTCTCCTGCTTC
GGCCACATCTGGATGGCTGCCAGGGAGACATTCTCAGTCCCCTGCTGACGAGTGGCTTGGACGCTGCCCTCATTTG
ACTCTCTGGCGTGGCTGTCTCACAGCACCAGGGCAGCAGTATGCTCATTTGAACCTGGCCAAAATAGGG
ACCTGAGAAGGAAGGGAGCTGGCTTCTGAGTGCCTTCCGGTGCACCTGTCATCCGAAGGTACCCCTCATGT
ACCGGCTCCACAAACGCTTCAGCGCTCTGGAGTTGGAGCGGCTTACAGTGAATAGAACAACTGCAAGGCTCAGA
TCCGGAACCTGACCGTGTGACCCCCGAAGGGGAGGCAAGGGCTGAGCTGGCCGTTGGCTCCCTGCTCCTTCA
CACACACACTCGCTTGGAGGTGCTGGCTGGACTACTTCACAGAGCAGCACACCTCTCCTGTCAGATGGG
CTCCAAGTGCCACTACAGGGGGTAGCAGGGCGACGGTGGTGTAGCGTGGAGACTGCCCTGGAGCAGCTCA
ATCGCGCTATCAGCCCCGCTGCCTCCAGAAGCAGCGACTGCTCAACGGTATCGCGCTTCGACCCAGCAC
GGGCATGGAGTACACCCCTGGACCTGCTTGGAAATGTTGACACAGCGTGGCACCGGGGGCCCTGGCTCGCA
GGTCAGCCTGCTGCCACTGAGCCGGTGGAAATCCTACCTATGCCCTATGTCACTGAGGCCACCGAGTGC
AGCTGGTGTGCCACTCTGGTGGCTGAAGCTGCTGCAGCCCCGGTTCTCGAGGGCTTGCAGCCAATGTCC
TGGAGCCACGAGAACATGCTTGTGCTACCCCTGTTGCTGGTCTACGGGCCACGAGAACGGTGGCCGGAGCTCCAG
ACCCATTCTGGGTGAAGGCTGCAGCAGGGAGTTAGAGCGACGGTACCCCTGGACGAGGCTGGCTGGCTCG
CTGTGCGAGCAGAGGCCCTTCCCAGGTGCGACTCATGGACGTGGTCTGAAGAACAGCACCCTGTGGACACTCTCT
TCTTCTTACCAACCGTGTGGACAAGGCCCTGGCCGAAGTCTCAACGCTGTGCGATGAATGCCATCTGCT
GGCAGGCCCTTCTCAGTCCATTCCAGGAGTTCAATCCCTGCCCTGTCAACCACAGAGATCACCCCCAGGGCCCC
CGGGGGCTGGCCCTGACCCCCCTCCCTGGTGTGCTACCCCTCCGGGGCTCCTATAGGGGGAGATTG
ACCGGCAGGCTTGTGGAGGGCTGCTTACACGCTGACTACCTGGCGGCCGAGCCGGCTGGCAGGTGAAC
TGGCAGGCCAGGAAGAGGAGGAAGCCCTGGAGGGGGCTGGAGGGTGTGGATGTTCTCGGCTTCAGGGCTCC
ACCTCTTCGGCCGTAGAGCCAGGGCTGGTGCAGAACGTTCTCCCTGCCAGACTGAGGCCACGGCTCAGTGAAG
AACTCTACCAACCGCTGCCCTCAGAACCTGGAGGGCTAGGGGCCGTGCCAGCTGGCTATGGCTCTTGT
AGCAGGAGCAGGCCATAGCACTTAGCCCGCTGGGGCCCTAACCTCATACCTTGTCTGCCAGCC
CCAGGAAGGGCAAGGCAAGATGGTGGACAGATAGAGAATTGTTGCTGTATTTTAAATATGAAAATGTTATTAA
ACATGCTTCTGCC

FIGURE 118

MRLSSLLALLRPALPLILGLSLGCSLSLLRVSWIQGEGEDPCVEAVGERGGPQNPDSRARLD
QSDEDFKPRIVPYYRDPNPKVVKLTRYIQTTELGSRERLLVAVLTSRATLSTLAVAVNRTV
AHHFPRLLYFTGQRGARAPAGMQVVSHGDERPAWLMSETLRHLHFGADYDWFFIMQDDTY
VQAPRLAALAGHLSINQDLYLGRAEEFIGAGEQARYCHGGFGYLLSRSLRLRPHLDGCRG
DILSARPDEWLGRCLIDSLGVGCVSQHQGQQYRSFELAKNRDPEKEGSSAFLSAFAVHPVSE
GTLMYRLHKRFSALELERAYSEIEQLQAQIRNLTVLTPGEAGLSWPVGLPAPFTPNSRFEV
LGWDYFTEQHTFSCADGAPKCPHQASRADVGDALETALEQLNRRYQPRLRFQKQRLLNGYR
RFDPARGMEYTL DLL ECVTQRGHRRALARRVSLLRPLSRVEILPMPYVTEATRVQLVLPPLL
VAEAAAAPAFLEAFAAVNLEPREHALLTLLL VYGPREGGRGAPDPFLGVKA AAAE LERRYPG
TRLAWLAVRAEAPSQVRLMDVSKKHPVDTLFFLTTVWTRPGPEVLRCRMNAISGWQAFFP
VHFQEFPALSPQRSPPGPPGAGPDPPSPPGADPSRGAPIGGRFDRQASAEGCFYNADYLAA
RARLAGELAGQEEEALEGLEVMDFVFLRFSGLHLFRAVEPGLVQKFSLRDCSPRLSEELYHR
CRLSNLEGLGGRAQLAMALFEQEQANST

Signal sequence:

amino acids 1-15

Transmembrane domain:

amino acids 489-507

N-glycosylation site.

amino acids 121-125, 342-346

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 319-323, 464-468

Casein kinase II phosphorylation site.

amino acids 64-68, 150-154, 322-326, 331-337, 368-372, 385-389,
399-403, 409-413, 473-477, 729-733, 748-752

Tyrosine kinase phosphorylation site.

amino acids 736-743

N-myristoylation site.

amino acids 19-25, 23-29, 136-142, 397-403, 441-447, 544-550,
558-564, 651-657, 657-663, 672-678

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 14-25

Cell attachment sequence.

amino acids 247-250

FIGURE 119

CGGAGTGGTGCACGTGAGAGGAAACCGTGCACGGCTGCCTTCCTGTCCCCAAGCC
GTTCTAGACGCGGGAAAAATGCTTCTGAAAGCAGCTCCTTTGAAGGGTGTGATGCTTGG
AACCATTTCTGTGCTTGATCACTATGCTAGGACACATTAGGATTGGCATGGAAATAGAA
TGCACCACCATGAGCATCATCACCTACAAGCTCTAACAAAGAAGATATCTGAAAATTCA
GAGGATGAGCGATGGAGCTCAGTAAGAGCTTCGAGTATACTGTATTATCCTTGTAAAACC
CAAAGATGTGAGTCTTGGGCTGCAGTAAAGGAGACTGGACAAACACTGTGACAAAGCAG
AGTTCTCAGTTCTGAAAATGTTAAAGTGTGAGTCAATTAAATGGACACAAATGACATG
TGGTTAATGATGAGAAAAGCTTACAAATACGCCCTTGATAAGTATAGAGACCAATACAAC
GTTCTCCTGCACGCCCACTACGTTGCTATCATTGAAAACCTAAAGTATTTTGTAA
AAAAGGATCCATCACAGCCTTCTATCTAGGCCACACTATAAAATCTGGAGACCTTGAATAT
GTGGGTATGGAAGGAGGAATTGTCTTAAGTGTAGAATCAATGAAAAGACTAACAGCCTCT
CAATATCCCAGAAAAGTGTCTGAACAGGGAGGGATGATTGGAAGATATCTGAAGATAAAC
AGCTAGCAGTTGCCTGAAATATGCTGGAGTATTGCAAGAAATGCAGAAGATGCTGATGGA
AAAGATGTATTAATACCAAATCTGTTGGCTTCTATTAAAGAGGCAATGACTTACACCC
CAACCAGGTAGTAGAAGGCTTGTTCAGATATGGCTTACTTTAATGGACTGACTCCAA
ATCAGATGCATGTGATGTATGGGTATACCGCCTAGGGCATTGGCATTTCAAT
GATGCATTGGTTTCTTACCTCAAATGGTCTGACAATGACTGAGAAGTGGTAGAAAAGCG
TGAATATGATCTTGTATAGGACGTGTGTCATTATTGTAGTAGTAACATATCCAA
TACAGCTGTATGTTCTTTCTTTCTAATTGGTGGCACTGGTATAACCACACATTAAAG
TCAGTAGTACATTTAAATGAGGGTGGTTTTCTTAAAACACATGAACATTGAAATG
TGTGGAAAGAAGTGTGTTAAGAATAATAATTGCAAATAAACTATTAATAAAATTATAT
GTGATAAAATTCTAAATTATGAACATTAGAAATCTGTGGGGCACATATTGCTGATTGGTT
AAAAAAATTAAACAGGTCTTAGCGTTCAAGATATGCAAATGATATCTCTAGTTGTGAATT
TGTGATTAAAGTAAAACCTTGTGTTCCCTTACTTCTAATACGTATTGATTGTTCT
AAGCCTCCCCAAGTTCCAATGGATTGCTTCTCAAAATGTACAACTAAGCAACTAAAGAAA
ATTAAAGTGAAAGTTGAAAAT

FIGURE 120

MLSESSSFLKGVMLGSIFCALITMLGHIRIGHGNRMHHHEHHHLQAPNKEDILKISEDERME
LSKSFRVYCIILVKPKDVSLWAAVKETWTKHCDKAFFSSENVKFESINMDTNMDWLMMRK
AYKYAFDKYRDQYNWFFLARPTTFAIENLYFLLKKDPSQPFYLGHТИKSGDLEYVGMEGG
IVLSVESMKRLNSLLNIPEKCPEQGGMIWKISEDKQLAVCLKYAGVFAENAEDADGKDVFNT
KSVGLSIKEAMTYHPNQVVEGCCSDMAVTFNGLTPNQMHVMMYGVYRLRAFGHI FNDALVFL
PPNGSDND

Signal sequence:

amino acids 1-33

N-glycosylation site.

amino acids 121-125, 342-346

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 319-323, 464-468

Casein kinase II phosphorylation site.

amino acids 64-132, 150-154, 322-326, 331-335, 368-372, 385-389,
399-403, 409-413, 473-477, 729-733, 748-752

Tyrosine kinase phosphorylation site.

amino acids 736-743

N-myristoylation site.

amino acids 19-25, 23-29, 136-142, 397-403, 441-447, 544-550,
558-564, 651-657, 657-663, 672-672

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 14-25

Cell attachment sequence.

amino acids 247-250

FIGURE 121

FIGURE 122

MNSSKSSETQCTERGCFSSQMFLWTVAGIPILFLSACFITRCVVTFRIFQTCDEKKFQLPEN
FTELSCNYGSGSVKNCCPLNWEYFQSSCYFFSTDТИSWALSLKNCSAMGAHLVVINSQEEQ
EFLSYKKPKMREFFIGLSDQVVEGQWQWVDGTPLTKSLSFWDVGEPNNIATLEDCATMRDSS
NPRQNWNDVTCFLNYFRICEMVGINPLNKGKSL

Signal sequence:

amino acids 1-42

N-glycosylation site.

amino acids 2-6, 62-66, 107-111

Casein kinase II phosphorylation site.

amino acids 51-55, 120-124, 163-167, 175-179, 181-185

N-myristoylation site.

amino acids 15-21, 74-80, 155-161

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 27-38

FIGURE 123

GGGACTACAAGCCGCGCCGCTGCCGCTGGCCCCCTCAGCAACCCCTGACATGGCGCTGAGGCAGGCCACCGCGAC
TCCGGCTCTGCGCTCGGCTGCCTGACTTCTTCCGTGCTGCTGCTTTCAAGGGCTGCCTGATAGGGGCTGTAAATC
TCAAATCCAGCAATCGAACCCCAGTGGTACAGGAATTGAAAGTGTGGAACTGTCTTGATCATTACGGATTGCG
AGACAAGTGACCCAGGATCGAGTGGAAAGAAAATTCAAGATGAACAAACCACATATGTGTTTTGACAACAAAA
TTCAGGGAGACTTGGCGGGCTGAGAAATACTGGGAAAGACATCCCTGAAGATCTGGAATGTGACACGGAGAG
ACTCAGCCCTTATCGCTGTGAGGCTGCTGCAAATGACCGAAGGAATTGATGAGATTGTGATCGAGTAA
CTGTGCAAGTGAAGCCAGTGCACCCCTGTCTGTAGAGTGGCAAGGCTGTACCAAGTAGGCAAGATGGCAACACTGC
ACTGCCAGGAGAGTGAGGGCCACCCCCGGCCTCACTACAGCTGGTATCGCAATGATGTACCACTGCCACGGATT
CCAGAGCCAATCCCAGATTGCAATTCTTCCACTTAAACTCTGAAACAGGCACTTGGTGTCACTGCTG
TTCACAAGGACGACTCTGGGCAGTACTACTGCAATTGCTTCAATGACGCAGGCTCAGCCAGGTGTAGGAGCAGG
AGATGGAAGTCTATGACCTGAACATTGGCGGAATTATTGGGGGGTCTGGTGTCTGCTGTACTGGCCCTGA
TCACGTTGGGCATCTGCTGTGATCACAGACGGCTACTTCATCAACAATAACAGGATGGAGAAAGTTACAAGA
ACCCAGGAAACAGATGGAGTTAACTACATCCGCACTGACGAGGGCCACTTCAGACACAAGTCATCGTTG
TGATCT**G**A GACCCCGGGTGTGGCTGAGAGCGCACAGAGCGCAGTGCACATACCTCTGCTAGAAAACCTCTGCTAA
GGCAGCGAGAGCTGATGCACTCGGACAGAGCTAGCAGACTCATTCAGAAGCTTCTGTTGGCAAAGTTGACCA
CTACTCTTCTTACTCTAACAGCCACATGAATAGAAGAATTTCCTCAAGATGGACCCGGTAAATAACCAAA
GGAAGCGAAACTGGGTGCGTCACTGAGTTGGTCTTAATCTGTTCTGGCTGATTCCCGATGAGTATTAGG
GTGATCTTAAAGAGTTGCTCACGTAACGCCCCTGCTGGCCCTGTGAAGCAGCATGTTACCACTGGTCGTT
CAGCAGCCACGACAGCACCATGTGAGATGGCGAGGTGGCTGGACAGCACCAGCAGCGCATCCGGGGAAACCA
GAAAAGGCTTCTTACACAGCAGCCTTACTTCATGGCCACAGACACCACCGCAGTTCTTAAAGGCTCTG
TGATGGTGTGAGTGTCCATTGAGGAGAGCTTTGGATCAGCATTTGTTAAACAAACCAAAATCAGGAAG
GTAAATTGGTTGCTGAAAGGGATCTGCTGAGGAACCTGCTGTCCAACAGGGTGTCAAGGATTTAAGGAAA
ACCTCGTCTTAGGCTAACGTCTGAAATGGTACTGAAATATGTTTCTATGGGTCTGTTATTAAACCAAA
TACATCTAAATTGGTCAAGGATGTATTGATTATTGAAAAGAAAATTCTATTAAACTGTAATATATTGT
CATACAATGTTAAATAACCTATTGGTAAAGGTTCAACTTAAGGTTAGAAGTCTCAAGCTACTAGTGTAAAT
TGGAAAATATCAATAATTAGTATTGTTACCAAGGAATCCTCATGGAAGTTACTGTGATGTTCTTTCT
CACACAAGTTTAGCCTTTTCAACAGGAAACTCATACTGTCTACACATCAGACCATAGTTGCTTAGGAAACCTT
TAAAATTCAGTTAACGCAATGTTGAAATCAGTTGCATCTCTTCAAAAGAAACCTCTCAGGTTAGCTTGA
GCCTCTCCTGAGATGACTAGGACAGTCTGTACCCAGAGGCCACCCAGAACGCCTCAGATGTACATACAGATG
CCAGTCAGCTCTGGGGTGCAGGCCAGGGCCGGCGCTAGCTCACTGTCCTGCTGCTGCCAGGAGGCC
GCCATCCTGGCCCTGGCAGTGGCTGTGCTCCAGTGAGCTTACTCACGTGCCCTGCTCATCCAGCACAGC
TCTCAGGTGGGACTGCAGGGACACTGGTGTCTCCATGCTAGCGTCCCAGCTTGGCTCTGTAACAGACCT
TTTGTTATGGATGGCTCAAAAATAGGGCCCAATGCTATTGTTAAAGTTGTTAATTATTGTT
AAGATTGCTAAGGCCAAGGCAATTGCAAAATCAAGTCTGCAAGTACAATAACATTAAAAGAAAATGGAT
CCCACGTGTTCTTGCACAGAGAAAGCACCCAGGCCACAGGCTCTGCTGCAATTCAAAACAAACCATGAT
GGAGTGGCGGCCAGTCCAGCCTTTAAAGAACGTCAGGTGGAGCAGCCAGGTGAAAGGCTGGGGAGGAAAG
TGAAAAGCCTGAATCAAAGCAGTTCTAATTGACTTTCAATTTCATCCGCCGAGACACTGCTCCATT
TGTGGGGGACATTGCAACATCACTCAGAAGCCTGTTCTCAAGAGCAGGTGTTCTCAGCCTCACATGCC
GCCGTGCTGGACTCAGGACTGAAGTGTGAAAGCAAGGAGCTGCTGAGAAGGAGCACTCCACTGTGCTGG
GAATGGCTCTCAACTCACCTGCTTTCAGCTTCAAGTGTCTGGTTTATACTTGCAGCTTTTT
AATTGCATACATGAGACTGTGTTGACTTTTTAGTTATGTGAAACACTTGCCGCAGGCCGCTGGCAGAGGCA
GGAAATGCTCCAGCAGTGGCTCAGTGCTCCCTGGTGTGCTGCATGGCATCTGGATGCTAGCATGCAAGTTC
CCTCCATCATTGCCACCTGGTAGAGAGGGATGGCTCCCCACCCCTCAGCCTGGGATTACGCTCCAGCCTC
TCTTGGTTGTCAAGTGTAGGGTAGCCTTATTGCCCCCTTCTTACCCCTAAACCTTCTACACTAGTGC
TGGGAACCAGGTCTGAAAAGTAGAGAGAAGTGAAGTAGAGTCTGGGAAGTAGCTGCCTATAACTGAGACTAGA
CGGAAAAGGAATACTCGTGTATTAAAGATATGAATGTGACTCAAGACTCGAGGCCGATACGAGGCTGTGATTCT
GCCTTGGATGGATGTTGCTGTACACAGATGCTACAGACTTGTACTAACACACCGTAATTGGCATTGTTAAC
CTCATTATAAAAGCTTCAAAAAACCCA