Development of a dynamic model for the emergence of Lassa fever in

West Africa

Draft Thesis November 2022

David Simons

November 2022

Contents

	Decl	aration	4
	Abst	tract	4
	Impa	act statement	4
	List	of Acronyms	4
	Defi	nitions used	4
	Ackı	nowledgements	4
	Cha	pter overview and collaborators	4
	The	sis output	4
1	Intr	roduction	4
	1.1	Zoonotic infectious diseases	5
	1.2	Global change and zoonoses	5
	1.3	Zoonoses discovery	5
	1.4	West Africa as a hotspot of zoonosis risk	5
	1.5	Rodent borne zoonoses	5
	1.6	Lassa fever: A case study of a rodent borne zoonosis in West Africa	5
		1.6.1 Lassa mammarenavirus and Lassa fever	5
		1.6.2 Lassa fever epidemiology	5
		1.6.3 Rodent hosts of Lassa mammarenavirus	5

		1.6.4	Predicting current and future Lassa fever risk	5			
	1.7	Aims	of the thesis	5			
		1.7.1	Predicting zoonotic spillover risk in a changing world	5			
2	Roc	odent trapping studies as an overlooked information source for understanding endemic					
	and	novel	zoonotic spillover	5			
	2.1	Pream	able	6			
	2.2	Abstra	act	6			
	2.3	Introd	luction	6			
	2.4	Metho	ods	6			
		2.4.1	Data sources	6			
		2.4.2	Host and pathogen trapping data	6			
	2.5	Analy	sis	6			
		2.5.1	What is the extent of spatial bias in the rodent trapping data?	6			
		2.5.2	Are rodent trapping derived host-pathogen associations present in a consolidated				
			zoonoses dataset?	6			
	2.6	Result	ts	6			
		2.6.1	What is the extent of spatial bias in the rodent trapping data?	6			
		2.6.2	Are rodent trapping derived host-pathogen associations present in a consolidated				
			zoonoses dataset?	6			
		2.6.3	What is the spatial extent of pathogen testing within a host's range?	6			
	2.7	Discus	ssion	6			
	2.8	Summ	nary	6			
3	Sma	all ma	mmal species community structures vary importantly by land-use type in a				
	Las	sa feve	er endemic region of Sierra Leone.	6			
	3.1	Pream	able	7			
	3.2	Abstra	act	7			
	3.3	Introd	luction	7			
	3.4	Metho	ods	7			
		3.4.1	Study area	7			
		3.4.2	Rodent sampling	7			
		3.4.3	Statistical analysis	7			
	3.5	Result	te	8			

		3.5.1 Rodent occurrence and species assemblage structure	8
		3.5.2 Estimating the effect of land use on species occurrence and richness $\dots \dots \dots$	8
		3.5.3 Co-occurrence of rodent species	8
	3.6	Discussion	8
	3.7	Summary	8
4	Rec	constructing rodent contact networks to understand potential routes of Lassa mam-	
	mai	renavirus transmission.	8
	4.1	Preamble	8
	4.2	Introduction	8
	4.3	Methods	8
		4.3.1 Study area	8
		4.3.2 Rodent sampling	8
		4.3.3 Lassa mammarenavirus serology	8
		4.3.4 Statistical analysis	8
	4.4	Results	8
		4.4.1 Lassa mammarenavirus serology	8
		4.4.2 Rodent contact networks	8
	4.5	Discussion	8
	4.6	Summary	8
5	Disc	cussion chapter.	9
	5.1	Contribution to understanding biases in currently available data	9
	5.2	Integrating species assemblages into the hazard of zoonotic pathogen spillover	9
	5.3	Understanding the epidemiology and risk of Lassa Fever	9
	5.4	Future directions	9

List of Figures

List of Tables

Declaration

Abstract

Impact statement

List of Acronyms

Definitions used

Acknowledgements

Chapter overview and collaborators

Thesis output

1 Introduction

Placeholder

- 1.1 Zoonotic infectious diseases
- 1.2 Global change and zoonoses
- 1.3 Zoonoses discovery
- 1.4 West Africa as a hotspot of zoonosis risk
- 1.5 Rodent borne zoonoses
- 1.6 Lassa fever: A case study of a rodent borne zoonosis in West Africa
- 1.6.1 Lassa mammarenavirus and Lassa fever
- 1.6.2 Lassa fever epidemiology
- 1.6.3 Rodent hosts of Lassa mammarenavirus
- 1.6.4 Predicting current and future Lassa fever risk
- 1.7 Aims of the thesis
- 1.7.1 Predicting zoonotic spillover risk in a changing world
- 2 Rodent trapping studies as an overlooked information source for understanding endemic and novel zoonotic spillover

Placeholder

- 2.1 Preamble
- 2.2 Abstract
- 2.3 Introduction
- 2.4 Methods
- 2.4.1 Data sources
- 2.4.2 Host and pathogen trapping data
- 2.5 Analysis
- 2.5.1 What is the extent of spatial bias in the rodent trapping data?
- 2.5.2 Are rodent trapping derived host-pathogen associations present in a consolidated zoonoses dataset?
- 2.6 Results
- 2.6.1 What is the extent of spatial bias in the rodent trapping data?
- 2.6.2 Are rodent trapping derived host-pathogen associations present in a consolidated zoonoses dataset?
- 2.6.3 What is the spatial extent of pathogen testing within a host's range?
- 2.7 Discussion
- 2.8 Summary
- 3 Small mammal species community structures vary importantly by land-use type in a Lassa fever endemic region of Sierra Leone.

Placeholder

- 3.1 Preamble
- 3.2 Abstract
- 3.3 Introduction
- 3.4 Methods
- 3.4.1 Study area
- 3.4.2 Rodent sampling
- 3.4.3 Statistical analysis
- ${\bf 3.4.3.1} \quad {\bf Rodent\ occurrence\ and\ species\ assemblage\ structure}$
- 3.4.3.2 Co-occurrence of rodent species

3.5 Results
3.5.1 Rodent occurrence and species assemblage structure
3.5.2 Estimating the effect of land use on species occurrence and richness
3.5.3 Co-occurrence of rodent species
3.6 Discussion
3.7 Summary
4 Reconstructing rodent contact networks to understand potentia
routes of $Lassa\ mammarenavirus$ transmission.
4.1 Preamble
4.2 Introduction
4.3 Methods
4.3.1 Study area
4.3.2 Rodent sampling
4.3.3 Lassa mammarenavirus serology
4.3.4 Statistical analysis
4.3.4.1 How does landuse-, species- and individual-level heterogeneity influence contact networks?
4.4 Results
4.4.1 Lassa mammarenavirus serology
4.4.2 Rodent contact networks
4.5 Discussion
4.6 Summary

- 5 Discussion chapter.
- 5.1 Contribution to understanding biases in currently available data
- 5.2 Integrating species assemblages into the hazard of zoonotic pathogen spillover
- 5.3 Understanding the epidemiology and risk of Lassa Fever
- 5.4 Future directions