NOM .	INITED DOCATION NO 44	MDCLO4000	Note .
NOM:	INTERROGATION N° 14	MPSI-2 19-20	Note :

Exercice 1

Embuscade et bras de levier

Un indien de masse m tend une embuscade à un convoi passant au fond d'un canyon. Il cherche à faire basculer au fond du canyon un rocher de masse $\mathbf{M}=\mathbf{200}$ kg. Il utilise un bâton de longueur \mathbf{d} appuyé au point \mathbf{O} sur un second rocher. Afin de faire basculer le rocher, il se suspend au bâton. On note $\mathbf{d_1}=\mathbf{50}$ cm la distance entre \mathbf{O} et le contact bâton/rocher, $\mathbf{d_2}=\mathbf{15}$ m la distance entre \mathbf{O} et le contact bâton/indien. On note $\mathbf{\alpha}=\mathbf{60}^\circ$ l'angle entre le bâton et l'horizontale.

- 1. Sous quelle condition sur les moments des différentes forces exercées sur le bâton le rocher se soulève-t-il ?
- 2. Quelle doit être la masse minimale m de l'indien pour que le rocher se soulève ? Quelle est alors la force exercée ?

Exercice 2

Soit un solide (S) mobile autour d'un axe fixe (Δ) passant par O, soumis à deux forces $\overrightarrow{F_1}$ et $\overrightarrow{F_2}$ de même norme, de même direction mais de sens et de point d'application différent.

1. Comment appelle-t-on un tel ensemble de forces ? Quelle relation vectorielle existe entre ces deux forces ?

Cas 1 : les deux forces sont situées de différents côtés de l'axe de rotation. Cas 2 : les deux forces sont situées du même côté de l'axe de rotation.

2. Donner dans chacun des cas l'expression du moment exercé par l'ensemble des deux forces sur le solide ?