

🗣 Los Angeles, CA | 🛘 424-330-8287 | 💌 me@arjunrana.com | 🌴 arjunrana.com | 🗗 github.com/arana89 | 🛅 linkedin.com/in/arjunrana1/

Summary.

A PhD physicist with experience in high performance computing, algorithm design and numerical simulation. Research background in imaging with a strong foundation in optimization and linear algebra. Highly motivated to build and operationalize machine learning pipelines that generate vital business insight and drive decision making.

Education

Ph.D., Physics Los Angeles, CA

University of California, Los Angeles

B.S., Physics/Economics RUTGERS UNIVERSITY

New Brunswick, NJ

May 2011

April 2021

Technical Skills

optimization, quantitative analysis, high performance computing (HPC), machine learning, data management, General

visualization

Languages Python, Matlab, C++

Linux/bash, TensorFlow, Keras, scikit-learn, SciPy, NumPy, Pandas, Docker, Git, Google Cloud Platform (GCP), Systems/Packages

Jupyter, Matplotlib, Globus, ParaView, Blender, SolidWorks

Experience

PhD Researcher

DEPT. OF PHYSICS & ASTRONOMY, UCLA

09/2015-04/2021

- · Advanced the understanding of magnetic nanomaterials through computational reconstruction of 3D experimental data
 - Led a multidisciplinary team through 2 intensive experiments at a national x-ray imaging facility
 - Designed a parallel 3D reconstruction algorithm to probe magnetism in structured materials and deployed it on the UCLA HPC to analyze experimental data (Matlab, HPC)
- · Extended the capability of computational imaging by creating reconstruction algorithm that can utilize broadband light sources
 - Devised a novel, GPU-acclerated algorithm with regularization techniques to remove aberrations induced by broadband light sources (Matlab, HPC)
 - Designed and built a tabletop broadband light diffraction experiment to provide benchmark data for reconstruction algorithms (Matlab, Labview, SolidWorks, C++)
- Presented research findings to peers and executive faculty at National Science Foundation (NSF) meetings
- · Redesigned software pipeline for capture and analysis of optical light diffraction data, improving reliability and ease of use
- Negotiated large (10+Tb) parallel data transfers between national lab and university HPCs (Globus, GridFTP)
- · Designed and fabricated a holder for cryogenic transport of transmission electron microscope samples (SolidWorks, 3d printing)
- Communicated scientific and technical concepts to undergraduate students while teaching a physics lab course at UCLA
- Managed a group of fellow graduate students as the lead teaching assistant for an undergraduate physics course

Projects

HoneyNet (arjunrana.com/projects/honeynet)

TENSORFLOW, KERAS, GCP, C++

- Implemented a regularized Generative Adversarial Network (GAN) to synthesize photorealistic images from a small training dataset
- Deployed a model on Google Compute Engine and accelerated training with GPU (TensorFlow, Keras, GCP)
- Utilized transfer learning and iterative data augmentation scheme to improve generator output
- Automated data pre-processing with facial-recognition CNN (dlib, C++)

MMA Gym Analysis (TBA)

PANDAS, SCIKIT-LEARN, JUPYTER, MATPLOTLIB

- A data-driven assessment of amateur mixed martial arts (MMA) gyms across California
- Generated and processed a dataframe of MMA bouts from scraped data (Pandas)
- Scraped thousands of datapoints from amateur MMA athletic commission website (Pandas, BeautifulSoup)
- Extracted features from raw data to assess overall gym quality
- Performed agglomerative text clustering to get accurate gym-wise statistics (scikit-learn, jellyfish)
- · Conveyed novel insight about gym quality through visualization (Matplotlib, folium, Google Maps API)