报告文档

1程序优化性说明

1.1 用户交互界面说明

程序采用 C# WinForm 框架进行开发,界面风格采用标准 Windows 应用程序,界面从上到下、从左到右依次为:标题栏、菜单栏、工具栏、数据展示区、报告预览区、状态栏。整个界面布局清晰,设计操作人性化。具体如图 1 程序界面所示。

图 1 程序界面

1.2 程序运行过程说明

(1) 点击【打开】,选择原始数据文件,点击【确定】后将读取数据并展示到界面。

图 2 打开数据文件

(2) 点击【计算】,程序将根据读取的文件进行电离层有延迟的计算,并生成报告预览。

图 3 计算成功

(3) 点击【保存】,选择保存文件路径,点击【确定】后程序将保存【报告预览区域】内容到文件。

图 4 保存报告

(4) 点击【退出】,经过二次确认后,程序退出。

1.3 程序运行结果

卫星号	高度角	方位角	L1(m)
G14	-69.062	243.085	0.000
G13	61.255	168.035	4.299
G20	34.970	279.013	6.421
G18	-7.763	254.987	0.000
G16	-18.760	358.336	0.000
G19	1.077	155.472	13.633
G23	-34.284	30.438	0.000
G02	58.858	88.957	4.247
G31	-40.326	301.769	0.000
G17	-19.029	149.514	0.000
G12	4.578	221.264	14.042

G15	34.731	207.259	6.558
G29	43.030	302.658	5.424
G07	6.190	55.388	8.445
G05	61.237	0.149	4.180
G25	5.456	254.814	13.518
G01	-61.399	146.249	0.000
G24	-8.409	192.150	0.000
G27	-50.382	353.645	0.000
G06	18.950	111.572	8.014
R14	0.234	75.085	8.688
R15	-3.261	112.430	0.000
R19	49.219	151.209	4.905
R20	70.409	331.279	3.982
R01	-72.146	162.803	0.000
R06	32.633	249.985	6.861
R05	62.208	336.253	4.187
R04	23.629	32.131	6.902
R21	17.654	330.793	8.590

2 程序规范性说明

2.1 程序功能与结构设计说明

计算

关于

帮助

退出

程序可以实现从文件读取数据到界面,计算电离层延迟改正量,保存报告等功能。具体功能按菜单栏列出见。

选项功能打开用户选择原始数据文件后读取文件数据
并展示到界面
用户选择保存路径后,保存报告内容到
文件打开数据文件夹如果用户打开过数据文件,则打开文件
所在文件夹,否则给出相应提示。
如果用户保存过报告文件,则打开文件
所在文件夹,否则给出相应提示。

表1程序功能

程序共设计有 MyData、MyFile、MySatellite、MyStation、MyTime 四个类,具体类的功能如所示。

电离层延迟改正计算

显示程序基本信息

打开帮助文档

用户经二次确认后退出程序

|--|

MyData	存放维持窗体运行的必要数据,例如
MyData	inFile 和 outFile
MyFile	读取数据到 MyData
MySatellite	存储单个卫星的信息,包括计算单个卫 星的高度角、方位角和电离层延迟函数
MyStation	存储单个测站的信息,包括测站的地心 坐标、大地坐标、观测的卫星列表
MyTime	存储时间信息

2.2 核心算法源码

1. 计算卫星高度角和方位角代码:

```
/// <summary>
/// 计算该卫星的高度角和方位角
/// </summary>
/// <param name="Station">测站</param>
public void CalELAZ(MyStation Station)
{
    //计算站心坐标
    double sb = Math.Sin(Station.Bp);
    double cb = Math.Cos(Station.Bp);
    double sl = Math.Sin(Station.Lp);
    double cl = Math.Cos(Station.Lp);
    double dx = this.Xs - Station.Xp;
    double dy = this.Ys - Station.Yp;
    double dz = this.Zs - Station.Zp;
    this.X = -sb * cl * dx - sb * sl * dy + cb * dz;
    this.Y = -sl * dx + cl * dy;
    this.Z = cb * cl * dx + cb * sl * dy + sb * dz;
    //计算卫星方位角 A
    this.AZ = Math.Atan2(this.Y, this.X) + (Y < 0 ? 1 : 0) * 2 * Math.PI;
    //计算高度角 E
    this.EL = Math.Atan(Z / Math.Sqrt(X * X + Y * Y));
}
```

2. 计算电离层延迟代码:

```
/// <summary>
/// 计算电离层延迟
/// </summary>
/// <param name="Station"></param>
/// <param name="H0"></param>
public void IonoDelay(MyStation Station, double H0 = 350)
```

```
{
           if (EL < 0)//高度角小于 0 没有延迟
               this.L1D = 0;
               this.L1T = 0;
               return;
           //穿刺点 IP 的坐标
           double psi = 0.0137 / (EL / Math.PI + 0.11) - 0.022;
           double phi = Station.Bp / Math.PI + psi * Math.Cos(AZ);
           if (phi > 0.416) phi = 0.416;
           else if (phi < -0.416) phi = -0.416;
           double lambda = Station.Lp / Math.PI + psi * Math.Sin(AZ) / Math.Cos(phi *
Math.PI);
           //穿刺点地磁纬度
           double phi_m = phi + 0.064 * Math.Cos((lambda - 1.617) * Math.PI);
           //克罗布歇模型改正
            double[] alpha = new double[] { 0.1397e-7, -0.7451e-8, -0.5960e-7, 0.1192e-
6 };
           double[] beta = new double[] { 0.1270e6, -0.1966e6, 0.6554e5, 0.2621e6 };
           double A1 = 5e-9;
           double A2 = alpha[0] + alpha[1] * phi_m + alpha[2] * phi_m * phi_m +
alpha[3] * phi_m * phi_m * phi_m;
           double A3 = 50400;
            double A4 = beta[0] + beta[1] * phi_m + beta[2] * phi_m * phi_m + beta[3] *
phi_m * phi_m * phi_m;
           A2 = A2 < 0 ? 0 : A2;
           A4 = A4 < 72000 ? 72000 : A4;
           double F = 1 + 16 * Math.Pow((0.53 - EL / Math.PI), 3);
           //计算当地时间
            double localHour = this.obsTime.hour + Station.Lp * 180 / Math.PI / 15;
           localHour = localHour > 24 ? localHour - 24 : localHour;
           double T = obsTime.hour * 3600.0 + obsTime.min * 60.0 + obsTime.sec;
            double t = 43200 * lambda + T;
            double flag = Math.Abs(2 * Math.PI * (t - A3)) / A4;
```

3. 读取数据文件代码:

```
/// <summary>
       /// 打开文件
       /// </summary>
       /// <param name="myData"></param>
       /// <returns></returns>
       public static bool OpenFile(MyData myData)
           OpenFileDialog ofd = new OpenFileDialog();
           ofd.Title = "请选择原始数据文件";
           ofd.Filter = "文本文件|*.txt|所有文件|*.*";
           if (ofd.ShowDialog() != DialogResult.OK) return false;
           myData.inFile = ofd.FileName;
           using (StreamReader sr = new StreamReader(myData.inFile))
               myData.Station
                                            MyStation(-2225669.7744,
                                                                      4998936.1598,
                                   new
3265908.9678, 30 * ToRad, 114 * ToRad);
               MyTime myTime = new MyTime();
               while (!sr.EndOfStream)
                   string Line = sr.ReadLine();
                   if (Line[0] == '*')//读取时间列
                       string[] Data = Line.Split(new char[] { ' ' },
StringSplitOptions.RemoveEmptyEntries);
                       myTime = new MyTime(Data[1], Data[2], Data[3], Data[4],
Data[5], Data[6]);
                   }
                   else
                   {
                       string PRN = Line.Substring(0, 3);
                       string X = Line.Substring(3, 14);
                       string Y = Line.Substring(17, 14);
                       string Z = Line.Substring(31, 14);
```

```
myData.Station.Sats.Add(new MySatellite(myTime, PRN, X, Y, Z));
}

return true;
}
```