product	length
(Haskell library functions) Sunday 30 th October, 2016	(Haskell library functions) Sunday 30 th October, 2016
reverse	insert
(Haskell library functions) Sunday 30 th October, 2016	(Haskell library functions) Sunday 30 th October, 2016
zip	drop
(Haskell library functions) Sunday 30 th October, 2016	(Haskell library functions) Sunday 30 th October, 2016
map (basic)	map (recursive)
(Haskell library functions) Sunday 30 th October, 2016	(Haskell library functions) Sunday 30 th October, 2016
filter	filter (recursive)
(Haskell library functions) Sunday 30 th October, 2016	(Haskell library functions) Sunday 30 th October, 2016

length $:: [a] \rightarrow Int$ product $:: Num \ a \Rightarrow [a] \rightarrow a$ length[] = 0product [] = 1 $length[_:xs] = 1 + length xs$ product(n:ns) = n*productnsreverse insert $:: Ord \ a \Rightarrow a \rightarrow [a] \rightarrow [a]$ $:: [a] \rightarrow [a]$ insert x [] reverse [] = [x]= [] $insert \ x \ (y:ys) \mid x \le y$ = x:y:ysreverse(x:xs) = reversexs + [x]| otherwise = y : insert x ys $:: Int \rightarrow [a] \rightarrow [a]$ $:: [a] \to [b] \to [(a,b)]$ drop zip drop 0 xs *zip* [] _ == [] == xsdrop(n+1)[]== [] *zip* _ [] == [] $drop(n+1)(\underline{\hspace{0.1cm}}:xs) == drop n xs$ zip(x:xs)(y:ys) == (x,y):zip xs ys $(a \rightarrow b) \rightarrow [a] \rightarrow [b]$ map :: $(a \rightarrow b) \rightarrow [a] \rightarrow [b]$ тар $map f xs == [f x | x \leftarrow xs]$ map f[] == []map f xs == f x : map f xs $(a \rightarrow Bool) \rightarrow [a] \rightarrow [a]$ filter *filter* :: $(a \rightarrow Bool) \rightarrow [a] \rightarrow [a]$ filter p [] $filter p xs == [x | x \leftarrow xs, p x]$ = filter $p(x:xs) \mid px$ == x : filter p xs| otherwise == filter p xs