

تمرین سری ۴ – سیگنال ها و سیستم ها – دکتر عبدالله امیرخانی

۱- تبدیل فوریه هر یک از سیگنالهای زیر را حساب کنید.

A)
$$x(t) = [e^{-\alpha t} \cos(\omega_0 t)]u(t)$$
, $\alpha > 0$

B)
$$x(t) = \sum_{n=-\infty}^{+\infty} e^{-2|n|t} u(t)$$

$$C) x(t) = \begin{cases} 1 + \cos(\pi t) & ; |t| \le 1 \\ 0 & ; |t| > 1 \end{cases}$$

$$D) x(t) = \left[\frac{\sin(\pi t)}{\pi t} \right] \left[\frac{\sin(2\pi(t-1))}{\pi(t-1)} \right]$$

۲- سیگنال پیوسته در زمان مربوط به هریک از تبدیلهای فوریه زیر را بیابید

A)
$$X(j\omega) = \frac{2\sin(3(\omega-2\pi))}{\omega-2\pi}$$

B)
$$X(j\omega) = cos\left(4\omega + \frac{\pi}{3}\right)$$

٣- الف) تبديل فوريه سيگنال نشان داده شده را بيابيد

ب) تبدیل فوریه معکوس شکل نشان داده شده را بیابید.

الف) p(t) تبديل فوريه سيگنال متناوب $p(t)=\sum_{n=-\infty}^{\infty}a_ne^{jn\omega_0t}$ و X(t) با با $X(j\omega)$ با با ور بیابید. برا بر $y(t)=x(t)\;p(t)$ است. تبدیل فوریه سیگنال ایم ω_0 است. تبدیل فوریه سیگنال

است. طیف y(t) (یعنی $Y(j\omega)$) را به ازای

ب) فرض کنید $X(j\omega)$ به صورت

رسم کنید.
$$p(t) = \sum_{n=-\infty}^{\infty} \delta(t-\pi n)$$
 و $p(t) = \cos(\frac{t}{2})$

در زیر نشان داده شده است: x(t) میباشد که x(t) در زیر نشان داده شده است: $X(j\omega)$ -۵

. را بیابید. ج
$$\int_{-\infty}^{\infty} X(j\omega)d\omega$$
 (ج. بیابید. ب $X(j0)$ (ب. بیابید. بالید. بالید. بالید. بالید.

را بیابید.
$$\int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega$$
 (ه بیابید. $\int_{-\infty}^{\infty} X(j\omega) \frac{2\sin(\omega)}{\omega} \, e^{j2\omega} d\omega$ (ع

امتيازي:

۶- روشهای تحلیل فوریه را میتوان به سیگنالهای دارای دو متغیر مستقل تعمیم داد. این روشها نقش مهمی در برخی کاربردها مانند پردازش تصویر دارند. $\mathbf{x}(t_1,t_2)$ را سیگنالی با دو متغیر مستقل \mathbf{t}_1 , \mathbf{t}_2 فرض کنید. تبدیل فوریه دو بعدی $\mathbf{x}(t_1,t_2)$ به صورت زیر تعریف می شود:

$$X(j\omega_{1}, j\omega_{2}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(t_{1}, t_{2}) e^{-j(\omega_{1}t_{1} + \omega_{2}t_{2})} dt_{1} dt_{2}$$

الف) نشان دهید این انتگرال دوگانه را میتوان به صورت دو تبدیل فوریه یک بعدی متوالی ابتدا نسبت به t1 (با فرض ثابت بودن رد. t_2 و سیس نسبت به t_2 محاسبه کرد.

ب) با استفاده از نتیجه بند الف، عکس تبدیل یعنی $X(j\omega_1,j\omega_2)$ برحسب $X(t_1\,,\,t_2)$ را بیابید.