Unsupervised Learning

KASHTANOVA VICTORIYA INRIA, EPIONE

Machine learning methods

Hierarchical (Agglomerative) clustering

- 1. Start by assigning each item to a cluster, so that if you have N items, you now have N clusters, each containing just one item.
- 2. Find the closest (most similar) pair of clusters and merge them into a single cluster, so that now you have one fewer cluster.
- 3. Continue the process until all items are clustered into a single cluster of size N.

Linkage Metrics:

- **Single-linkage** (by closest item)
- **Complete-linkage** (all items closer then in another cluster)
- Average-linkage (by closest average)

	BOS	NY	CHI	DEN	SF	SEA
BOS	0	206	963	1949	3095	2979
NY		0	802	1771	2934	2815
CHI			0	966	2142	2013
DEN				0	1235	1307
SF					0	808
SEA						0

	BOS	NY	CHI	DEN	SF	SEA
BOS	0	206	963	1949	3095	2979
NY		0	802	1771	2934	2815
CHI			0	966	2142	2013
DEN				0	1235	1307
SF					0	808
SEA						0

{Boston} {New-York} {Chicago} {Denver} {San Francisco} {Seattle}

	BOS	NY	CHI	DEN	SF	SEA
BOS	0	206	963	1949	3095	2979
NY		0	802	1771	2934	2815
CHI			0	966	2142	2013
DEN				0	1235	1307
SF					0	808
SEA						0

{Boston} {New-York} {Chicago} {Denver} {San Francisco} {Seattle} {Boston, New-York} {Chicago} {Denver} {San Francisco} {Seattle}

	BOS	NY	CHI	DEN	SF	SEA
BOS	0	206	963	1949	3095	2979
NY		0	802	1771	2934	2815
CHI			0	966	2142	2013
DEN				0	1235	1307
SF					0	808
SEA						0

{Boston}	{New-York}	{Chicago}	{Denver}	{San Francisco}	{Seattle}
{Boston, Ne	ew-York}	{Chicago}	{Denver}	{San Francisco}	{Seattle}
{Boston, Ne	w-York, Chicago}		{Denver}	{San Francisco}	{Seattle}

	BOS	NY	CHI	DEN	SF	SEA
BOS	0	206	963	1949	3095	2979
NY		0	802	1771	2934	2815
CHI			0	966	2142	2013
DEN				0	1235	1307
SF					0	808
SEA						0

{Boston}	{New-York}	{Chicago}	{Denver}	{San Francisco}	{Seattle}
{Boston, Ne	w-York}	{Chicago}	{Denver}	{San Francisco}	{Seattle}
{Boston, Ne	w-York, Chicago}		{Denver}	{San Francisco}	{Seattle}
{B	oston, New-York, C	hicago}	{Denver}	{San Francisco, Seattle	2}

	BOS	NY	CHI	DEN	SF	SEA
BOS	0	206	963	1949	3095	2979
NY		0	802	1771	2934	2815
CHI			0	966	2142	2013
DEN				0	1235	1307
SF					0	808
SEA						0

{Boston, New-York, Chicago} {Denver} {San Francisco, Seattle}

{Boston, New-York, Chicago, Denver} {San Francisco, Seattle} OR {Boston, New-York, Chicago} {Denver, San Francisco, Seattle}

(Single linkage)

(Complete linkage)

	BOS	NY	CHI	DEN	SF	SEA
BOS	0	206	963	1949	3095	2979
NY		0	802	1771	2934	2815
CHI			0	966	2142	2013
DEN				0	1235	1307
SF					0	808
SEA						0

{Boston, New-York, Chicago} {De

{Denver} {San Francisco, Seattle}

{Boston, New-York, Chicago, Denver} {San Francisco, Seattle} OR {Boston, New-York, Chicago} {Denver, San Francisco, Seattle}

(Single linkage)

(Complete linkage)

{Boston, New-York, Chicago, Denver, San Francisco, Seattle}

Hierarchical clustering: Advantages & Drawbacks

- Deterministic
- Flexible with respect to linkage criteria
- Can select number of clusters using dendogram

• Slow (Naïve algorithm has n^3 complexity)

K-means method

K-means algorithm is the most popular and yet simplest of all the clustering algorithms.

Algorithm:

- 1. Select the number of clusters k that you think is the optimal number.
- 2. Initialize k points as "centroids" randomly within the space of our data.
- 3. Attribute each observation to its closest centroid.
- 4. Update the centroids to the center of all the attributed set of observations.
- 5. Repeat steps 3 and 4 a fixed number of times or until all of the centroids are stable (i.e. no longer change in step 4).

K-means method : Example

K-means method: Initial centroids

K-means method: 1st iteration

K-means method: 2nd iteration

K-means method: 3d iteration

K-means method: 4th iteration

K-means method: 5th iteration

K-means method : Advantages & Drawbacks

- Simple
- Fast

- Gets only local optimas
- Result can depend upon initial centroids
- Choosing the "wrong" k can lead to strange results

K-means method: Bad initialisation

K-means method: Bad initialisation

K-means method: Bad initialisation

Gaussian mixture method

- The model of a mixture of Gaussian distributions assumes that our data is a mixture of multidimensional Gaussian distributions with certain parameters.
- Uses an expectation—maximization approach which qualitatively does the following:
 - 1. Choose starting guesses for the location and shape
 - 2. Repeat until converged:
 - a) E-step: for each point, find weights encoding the probability of membership in each cluster
 - b) M-step: for each cluster, update its location, normalization, and shape based on all data points, making use of the weights
- The result of this is that each cluster is associated not with a hardedged sphere, but with a smooth Gaussian model.

Gaussian mixture method: Advantages & Drawbacks

- General case of K-means
- Flexible in terms of cluster covariance
- Can work successfully with mixed distributions

- Gets only local optimas
- Not very successful for data with complex geometry

Gaussian mixture method: Examples

Model evaluation methods

Accuracy metrics

Internal:

(not imply the knowledge about the true labels of the objects)

Silhouette

External:

(true labels of objects are known)

- Adjusted Rand Index (ARI)
- Adjusted Mutual Information (AMI)
- Homogeneity
- Completeness
- V-measure

Accuracy dependence on hyper-parameters curve

For example:

For K-means method, we can use like a internal metric the sum of squared distances between the observations and their centroids:

$$J(C) = \sum_{k=1}^K \sum_{i \,\in\, C_k} ||x_i - \mu_k|| o \min_C,$$

Dimensionality reduction methods

Principal Component Analysis (PCA)

- PCA is a very flexible tool and allows analysis of datasets that may contain, for example, multicollinearity, missing values, categorical data, and imprecise measurements.
- The goal is to extract the important information from the data and to express this information as a set of summary indices called principal components.
- Statistically, PCA finds lines, planes and hyper-planes in the K-dimensional space that approximate the data as well as possible in the least squares sense. A line or plane that is the least squares approximation of a set of data points makes the variance of the coordinates on the line or plane as large as possible.

Data points in 3D

Mean centering:

- 1. Calulate mean
- 2. Subtract of the averages (mean in the center of coordinates)

Principal components calculation

Result: Two principal components define a model plane

Sources

- MIT course "Introduction to Computational Thinking and Data Science" (Prof. Eric Grimson, Prof. John Guttag)
- Open Machine Learning Course (by Yury Kashnitsky, mlcourse.ai)
- YouTube lections "Algorithms and Concepts" (by CodeEmporium)