Filtrage d'images fréquentiel

Cours n°3

Qu'est-ce que la TF d'une image ?

Transformée de Fourier discrète bidimensionelle :

$$F[u,v] = \sum_{x=0}^{w-1} \sum_{v=0}^{h-1} f[x,y] e^{-2i\pi(ux+vy)/wh}$$

$$f[x,y] = \frac{1}{wh} \sum_{u=0}^{w-1} \sum_{v=0}^{h-1} F[u,v] e^{2i\pi(ux+vy)/wh}$$

Propriétés de la transformée de Fourier (1) :

$$F[u,v] = ||F[u,v]|| e^{i\varphi[u,v]}$$

PÉRIODICITÉ

$$F[u,v]=F[u+w,v+h]$$

SYMÉTRIE

Si F est la transformée de Fourier d'une fonction réelle f:

$$F[u,v] = \overline{F[-u,-v]}$$
 et donc : $||F[u,v]|| = ||F[-u,-v]||$ et $\varphi[u,v] = -\varphi[-u,-v]$

Source: Cours Manzanera, ENSTA

Propriétés de la transformée de Fourier (2) :

$$Si \begin{cases} f[x,y] \to F[u,v] \\ f_1[x,y] \to F_1[u,v] \\ f_2[x,y] \to F_2[u,v] \end{cases}$$

CORRESPONDANCE CONVOLUTION / PRODUIT

$$f_1[x,y]*f_2[x,y] \to F_1[u,v]\cdot F_2[u,v]$$

 $f_1[x,y]\cdot f_2[x,y] \to F_1[u,v]*F_2[u,v]$

DÉRIVATION

$$\frac{\partial f[x,y]}{\partial x} \to iuF[u,v] \text{ et } \frac{\partial f[x,y]}{\partial y} \to ivF[u,v]$$

LINEARITÉ

$$a \cdot f_1[x,y] + b \cdot f_2[x,y] \rightarrow a \cdot F_1[u,v] + b \cdot F_2[u,v]$$

TRANSLATIONS SPATIALES / FRÉQUENTIELLES

$$f[x-x',y-y'] \to F[u,v] \cdot e^{-2i\pi(ux'+vy')/wh}$$

$$f[x,y] \cdot e^{2i\pi(u'x+v'y)/wh} \to F[u-u',v-v']$$

THÉORÈME DE PARSEVAL

$$\sum_{x=0}^{w-1} \sum_{y=0}^{h-1} ||f[x,y]||^2 = \frac{1}{wh} \sum_{u=0}^{w-1} \sum_{v=0}^{h-1} ||F[u,v]||^2$$

Source: Cours Manzanera, ENSTA

Source: http://www.cs.unm.edu/~brayer/vision/fourier.html

Source: Cours Manzanera, ENSTA

Quel serait le gabarit d'un filtre passe-bas idéal ?

Source: cours A. Dieterlen, Université Haute-Alsace

Filtre passe-bas idéal

Chaîne de filtrage fréquentiel

■ Image (500x500) et son spectre

Rayons: 5, 15, 30, 80, 230

Puissance conservée : 92% → 99,5%

Source: Gonzalez & Wood

23

Application du filtre passe-bas idéal

Phénomène de Gibbs

Image Lena et application du passe-bas idéal

Source: http://www.cs.unm.edu/~brayer/vision/fourier.html

■ Filtre passe-bas de Butterworth

Fonction de transfert

Filtre passe-bas de Butterworth

Application du filtre passe-bas de Butterworth (ordre 2)

Filtrage passe-haut

Filtres idéal passe-haut

Butterworth

Gaussian

Application du filtre passe-haut idéal

Rayon 15

Rayon 30

Rayon 80

Application du filtre passe-haut de Butterworth (ordre 2)

Rayon 15

Rayon 30

Rayon 80

Références

- Cours B Nazarian, Imagerie numérique, Centre IRMf La Timone
- Cours R Zapata, Vision, LIRMM, Univ. Montpellier
- Cours C. Fernandez-Maloigne, Vision artificielle, IRCOM-SIC, Univ. Poitiers
- Cours S. Miguet, Techniques avancées en imagerie, LIRIS, Univ Lyon 2
- Cours A. Dieterlen, Traitement d'images