Formal Languages PDAs accept context-free languages

Theorem:

Context-Free
Languages
(Grammars)

Languages
Accepted by
PDAs

Proof - Step 1:

Convert any context-free grammar G to a PDA $\,M\,$ with: $\,L(G)=L(M)\,$

Proof - Step 2:

```
Context-Free
Languages
Accepted by
PDAs
```

Convert any PDA M to a context-free grammar G with: L(G) = L(M)

Proof - step 1
Converting

Context-Free Grammars
to
PDAs

Context-Free
Languages
(Grammars)

Languages
Accepted by
PDAs

Convert any context-free grammar G to a PDA M with: L(G) = L(M)

We will convert grammar G

to a PDA M such that:

M simulates leftmost derivations of G

Convert grammar G to PDA M

Grammar leftmost derivation

 $\Longrightarrow \cdots$

PDA computation Simulates grammar leftmost derivations

$$(q_0,\sigma_1\cdots\sigma_k\sigma_{k+1}\cdots\sigma_n,\$)$$

$$\succ (q_1, \sigma_1 \cdots \sigma_k \sigma_{k+1} \cdots \sigma_n, S\$)$$

$$\succ \cdots$$

$$\succ (q_1, \sigma_{k+1} \cdots \sigma_n, X_1 \cdots X_m \$)$$

$$\succ \cdots$$

$$\Rightarrow \sigma_1 \cdots \sigma_k \sigma_{k+1} \cdots \sigma_n \longrightarrow (q_2, \lambda, \$)$$

Leftmost variable

 $\Rightarrow \sigma_1 \cdots \sigma_k X_1 \cdots X_m$ —

Grammar

$$S \rightarrow aSTb$$

$$S \rightarrow b$$

$$T \rightarrow Ta$$

$$T \rightarrow \lambda$$

Example

<u>PDA</u>

$$\lambda$$
, $S \rightarrow aSTb$

$$\lambda, S \rightarrow b$$

$$\lambda, T \rightarrow Ta$$
 $a, a \rightarrow \lambda$

$$\lambda, T \rightarrow \lambda$$
 $b, b \rightarrow \lambda$

Grammar derivation

PDA computation

```
(q_0, abab,\$)
                                                  \succ (q_1, abab, S\$)
                                               \succ (q_1, bab, STb\$)
\Rightarrow aSTb
                                                 \succ (q_1, bab, bTb\$)
\Rightarrow abTb
                                                  \succ (q_1, ab, Tb\$)
\Rightarrow abTab
                                                   \succ (q_1, ab, Tab\$)
\Rightarrow abab
                                                   \succ (q_1, ab, ab\$)
                                                  \succ (q_1, b, b\$)
                                                   \succ (q_1, \lambda, \$)
```

Derivation:

Time 0

$$\lambda, S \rightarrow aSTb$$

$$\lambda, S \rightarrow b$$

$$\lambda, T \rightarrow Ta$$

$$\lambda, T \rightarrow \lambda$$

$$T \rightarrow Ta$$
 $a, a \rightarrow \lambda$

$$a, a \rightarrow A$$

$$b, b \rightarrow \lambda$$

Stack

Derivation: S

Derivation: $S \Rightarrow aSTb$ Input a $\lambda, S \rightarrow aSTb$ Time 2 $\lambda, S \rightarrow b$ Stack $\lambda, T \rightarrow Ta$ $(a, a \rightarrow \lambda)$ $\lambda, T \rightarrow \lambda$ $b, b \rightarrow \lambda$ λ , \$ \rightarrow \$ $\lambda, \lambda \to S$

Derivation: $S \Rightarrow aSTb \Rightarrow abTb$

$$\lambda$$
, $S \rightarrow aSTb$

$$\lambda, S \rightarrow b$$

$$\lambda, T \rightarrow Ta$$

$$\lambda, T \rightarrow \lambda$$

$$L, T \rightarrow Tc$$

$$b, b \rightarrow \lambda$$

 $a, a \rightarrow \lambda$

Stack

$$\lambda$$
, \$ \rightarrow \$

Derivation: $S \Rightarrow aSTb \Rightarrow abTb$

Derivation: $S \Rightarrow aSTb \Rightarrow abTb \Rightarrow abTab$

$$\lambda$$
, $S \rightarrow aSTb$

$$\lambda, S \rightarrow b$$

$$(\lambda, T \to Ta)$$

$$\lambda, T \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

 $a, a \rightarrow \lambda$

Stack

$$\lambda, \lambda \to S$$

In general, it can be shown that:

Grammar Ggenerates
string w

 $S \stackrel{*}{\Longrightarrow} w$

PDA M
accepts w

$$(q_0, w,\$) \succ (q_2, \lambda,\$)$$

Therefore
$$L(G) = L(M)$$

Therefore:

For any context-free language L there is a PDA that accepts L

Context-Free
Languages
(Grammars)

Languages
Accepted by
PDAs

Proof - step 2
Converting

PDAs
to
Context-Free Grammars

Context-Free
Languages
Accepted by
PDAs

Convert any PDA M to a context-free grammar G with: L(G) = L(M)

We will convert PDA $\,M\,$ to a context-free grammar $\,G\,$ such that:

G simulates computations of M with leftmost derivations

Some Necessary Modifications

If necessary, modify the PDA so that:

- 1. The stack is never empty during computation
- 2. It has a single accept state and empties the stack when it accepts a string
- 3. Has transitions without popping λ

1. Modify the PDA so that the stack is never empty during computation

$\begin{array}{c|c} \underline{Stack} \\ \hline & & \\ & & \\ \hline & & \\ & & \\ \hline &$

Introduce the new symbol # to mark the bottom of the stack

At the beginning insert # into the stack

Convert all transitions so that after popping \$ the automaton halts

2. Modify the PDA so that at end it empties stack and has a unique accept state

Empty stack

3. Modify the PDA so that it has no transitions popping λ :

$$q_{i} \xrightarrow{\sigma, \lambda \to y} q_{j}$$

$$q_{i} \xrightarrow{\sigma, \tau \to y\tau} q_{j}$$

$$\forall \tau \in \Gamma - \{\#\}$$

Example of a PDA in correct form:

(modifications are not necessary)

$$L(M) = \{w \in \{a,b\}^*: n_a(w) = n_b(w)\}$$

$$a, \$ \rightarrow 0\$$$
 $b, \$ \rightarrow 1\$$
 $a, 0 \rightarrow 00$ $b, 1 \rightarrow 11$
 $a, 1 \rightarrow \lambda$ $b, 0 \rightarrow \lambda$
 $\downarrow q_0$ $\lambda, \$ \rightarrow \lambda$ q_f

Grammar Construction

In grammar G:

Variables: A PDA stack symbols

Terminals: a PDA input symbols

Start Variable: \$ or # Stack bottom symbol

PDA transition

Grammar production

$$A \rightarrow a$$

PDA transition

Grammar production

$$A \rightarrow aB_1B_2\cdots B_m$$

Grammar leftmost derivation

PDA computation

Leftmost

variable

Example PDA:

$$a, \$ \rightarrow 0\$$$
 $b, \$ \rightarrow 1\$$

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$

$$a, 1 \rightarrow \lambda$$
 $b, 0 \rightarrow \lambda$

Grammar:

$$$\Rightarrow a0$$$
 $$\Rightarrow b1$$
 $0 \Rightarrow a00$ $1 \Rightarrow b11$
 $1 \Rightarrow a$ $0 \Rightarrow b$ $$\Rightarrow \lambda$

Grammar Leftmost derivation:

\$

 $\Rightarrow a0$ \$

 $\Rightarrow ab$ \$

 $\Rightarrow abb1$ \$

 $\Rightarrow abba$ \$

 $\Rightarrow abba$

PDA

Computation:

 $(q_0, abba,\$)$

 $\succ (q_0,bba,0\$)$

 $\succ (q_0,ba,\$)$

 $\succ (q_0, a, 1\$)$

 $\succ (q_0, \lambda, \$)$

 $\succ (q_f, \lambda, \lambda)$

$$\$ \implies a0\$$$

$$\$ \Rightarrow a0\$ \Rightarrow ab\$$$

$$$\Rightarrow a0$ \Rightarrow ab$ \Rightarrow abb1$$$

$$$\Rightarrow a0$ \Rightarrow ab$ \Rightarrow abb1$ abba$$$

$$$\Rightarrow a0$ \Rightarrow ab$ \Rightarrow abb1$$$
 $abba$ \Rightarrow abba$

Exercise □

However, this grammar conversion does not work for all PDAs:

$$a, \$ \rightarrow A\$$$
 $a, A \rightarrow A\$$
 $b, A \rightarrow \lambda$

$$q_0$$

$$b, A \rightarrow \lambda$$

$$q_1$$

$$\lambda, \$ \rightarrow \lambda$$

$$L(M) = \{a^n b^n : n \ge 1\}$$

$$a, \$ \rightarrow A\$$$
 $a, A \rightarrow A\$$
 $b, A \rightarrow \lambda$

$$\downarrow q_0$$

$$b, A \rightarrow \lambda$$

$$\downarrow q_1$$

$$\lambda, \$ \rightarrow \lambda$$

$$\downarrow q_f$$

Grammar:

$$$\Rightarrow aA$$$
 $A \rightarrow aA$$
 $$\Rightarrow \lambda$
 $A \rightarrow b$

Bad Derivation:

$$S \Rightarrow aA\$ \Rightarrow aaA\$ \Rightarrow aab\$ \Rightarrow aab \notin L(M)$$

Grammar:

$$$\Rightarrow aA$$$
 $A \rightarrow aA$$
 $$\Rightarrow \lambda$
 $A \rightarrow b$

What went wrong?

The Correct Grammar Construction

In grammar G:

PDA stack symbol

Variables: $(q_i A q_j)$ PDA states

Terminals: Input symbols of PDA

PDA transition

$$\begin{array}{c}
q \\
 \end{array}$$

$$\begin{array}{c}
A \\
 \end{array}$$

$$\begin{array}{c}
q_1 \\
 \end{array}$$

Grammar production

$$(qAq_1) \rightarrow a$$

PDA transition

Grammar production

$$(qAq_{m+1}) \rightarrow a(q_1B_1q_2)(q_2B_2q_3)\cdots(q_mB_mq_{m+1})$$

For all possible states $q_2,...,q_{m+1}$ in PDA

Stack bottom symbol \$ or # $(q_o Z q_f)$ Start Variable: Start state accept state

Example:

$$a, \$ \to 0\$ \qquad b, \$ \to 1\$$$

$$a, 0 \to 00 \qquad b, 1 \to 11$$

$$a, 1 \to \lambda \qquad b, 0 \to \lambda$$

$$\lambda, \$ \to \lambda \qquad q_f$$

Grammar production: $(q_0 1 q_0) \rightarrow a$

Example:

$$a, \$ \rightarrow 0\$ \qquad b, \$ \rightarrow 1\$$$

$$a, 0 \rightarrow 00 \qquad b, 1 \rightarrow 11$$

$$a, 1 \rightarrow \lambda \qquad b, 0 \rightarrow \lambda$$

$$-q_0 \qquad \lambda, \$ \rightarrow \lambda \qquad q_f$$
Grammar productions:
$$(q_0\$q_0) \rightarrow b(q_01q_0)(q_0\$q_0) \mid b(q_01q_f)(q_f\$q_0)$$

 $(q_0 \$q_f) \rightarrow b(q_0 1q_0)(q_0 \$q_f) | b(q_0 1q_f)(q_f \$q_f)$

58

Example:

Grammar production: $(q_0 \$ q_f) \rightarrow \lambda$

Resulting Grammar: $(q_0 \$ q_f)$: start variable

$$(q_0 \$ q_0) \rightarrow b(q_0 1 q_0)(q_0 \$ q_0) | b(q_0 1 q_f)(q_f \$ q_0)$$

$$(q_0 \$ q_f) \rightarrow b(q_0 1 q_0)(q_0 \$ q_f) | b(q_0 1 q_f)(q_f \$ q_f)$$

$$(q_0 1 q_0) \rightarrow b(q_0 1 q_0)(q_0 1 q_0) | b(q_0 1 q_f)(q_f 1 q_0)$$

$$(q_0 1 q_f) \rightarrow b(q_0 1 q_0)(q_0 1 q_f) | b(q_0 1 q_f)(q_f 1 q_f)$$

$$(q_0 \$ q_0) \rightarrow a(q_0 0 q_0)(q_0 \$ q_0) | a(q_0 0 q_f)(q_f \$ q_0)$$

$$(q_0 \$ q_f) \rightarrow a(q_0 0 q_0)(q_0 \$ q_f) | a(q_0 0 q_f)(q_f \$ q_f)$$

$$(q_00q_0) \rightarrow a(q_00q_0)(q_00q_0) | a(q_00q_f)(q_f0q_0)$$

 $(q_00q_f) \rightarrow a(q_00q_0)(q_00q_f) | a(q_00q_f)(q_f0q_f)$

$$(q_0 1 q_0) \rightarrow a$$
$$(q_0 0 q_0) \rightarrow b$$

$$(q_0 \$ q_f) \rightarrow \lambda$$

Grammar

Leftmost

derivation

$$(q_0 \$ q_f)$$

$$\Rightarrow a(q_0 0 q_0)(q_0 \$ q_f)$$

$$\Rightarrow ab(q_0 \$ q_f)$$

$$\Rightarrow abb(q_01q_0)(q_0\$q_f)$$

$$\Rightarrow abba(q_0 \$q_f)$$

$$\Rightarrow abba$$

PDA

computation

$$(q_0, abba,\$)$$

$$\succ (q_0,bba,0\$)$$

$$\succ (q_0,ba,\$)$$

$$\succ (q_0, a, 1\$)$$

$$\succ (q_0, \lambda, \$)$$

$$\succ (q_f, \lambda, \lambda)$$

Derivation: $(q_0 \$ q_f)$

Derivation: $(q_0 \$ q_f) \Longrightarrow a(q_0 0 q_0)(q_0 \$ q_f)$

Derivation: $(q_0 \$ q_f) \Longrightarrow a(q_0 0 q_0)(q_0 \$ q_f) \Longrightarrow ab(q_0 \$ q_f)$

Derivation:
$$(q_0 \$ q_f) \Rightarrow a(q_0 0 q_0)(q_0 \$ q_f) \Rightarrow ab(q_0 \$ q_f)$$

 $\Rightarrow abb(q_0 1 q_0)(q_0 \$ q_f) \Rightarrow abba(q_0 \$ q_f) \Rightarrow abba$

In general:

Grammar * $(q_iAq_j) \stackrel{*}{\Rightarrow} wB$ Only if $(q_i, w, A) \stackrel{*}{\succ} (q_j, \lambda, B)$

Thus:

Grammar generates w

$$(q_0\$q_f) \stackrel{*}{\Longrightarrow} w$$

$$(q_0, w,\$) \stackrel{*}{\succ} (q_f, \lambda, \lambda)$$

Therefore:

For any PDA there is a context-free grammar that accepts the same language

Context-Free
Languages
Languages
(Grammars)

Languages
Accepted by
PDAs