

Trabajo práctico Nº1

Cálculo de confiabilidad de Sistemas Electrónicos

Materia: Tecnología Electrónica

Profesor: González Dondo, Diego

Integrantes:

Schamun Lucas Gabriel, 62378

Ponce Nicolás, 64725

Curso: 5R2

Circuito a analizar

Funcionamiento

Este es un circuito de protección de un amplificador de audio, para evitar el fallo total de los parlantes.

Por medio de un relé mecánico este circuito desconecta ambos parlantes simultáneamente si una tensión superior a lo normal se presenta en una o ambas vías de salida. Hasta el primer transistor C458 ambos canales son idénticos, por lo que se describirá uno solo.

La resistencia de 15K limita la corriente que ingresa al puente de diodos, el cual rectifica la alterna propia de una salida de audio. La resistencia de 100Ω pone a tierra la carga de cada canal.

El transistor C458 se comporta como una llave que cortocircuita cuando se presenta una anomalía en las salidas de audio. Este transistor carga el capacitor de 220µF y acciona el 3er. transistor C458 el cual a su vez acciona al transistor C1383 ó C1384 el cual actúa como driver de corriente para poder mover la bobina del relé (marcado con asterisco). Este relé accionará las llaves en serie con los parlantes de cada canal, las cuales están en su posición normalmente cerradas (sin corriente en el relé, las llaves cierran circuito dejando los parlantes conectados a las salidas).

De tal manera que este sistema de protección actuará desconectando los parlantes en caso de circular corriente por el relé.

Luego el diodo 1N4007 impide que, en caso de quitar corriente de la bobina, la tensión de rebote dañe el transistor.

Condiciones de funcionamiento:

- El circuito se alimenta de 12V
- El sistema no consume más de 100mA
- La bobina del relé será de 12V.
- Consideramos que se encuentra en un ambiente estático.
- La temperatura ambiente máxima se considera de 40 °C.

Análisis por estrés

Para este análisis se usó como referencia para el cálculo el MIL-HDBK-217F

Parámetros utilizados en cada componente:

Resistencias:

$$\lambda_p = \lambda_b * \pi Q * \pi E * \pi R$$

Capacitores:

$$A_p = A_b * \pi Q * \pi E * \pi CV$$

Transistores:

$$A_p = A_b * \pi T * \pi A * \pi R * \pi S * \pi Q * \pi E$$

Diodos:

$$\lambda_p = \lambda_b * \pi T * \pi S * \pi Q * \pi S * \pi E * \pi C$$

Relé:

$$\lambda_p = \lambda_b * \pi Q * \pi E * \pi C * \pi cyc * \pi L * \pi F$$

Donde:

- Ab :base failure rate
- πT :Temperature Factor
- πA: Application Factor
- πR: Power Rating Factor
- πS: Voltage Stress Factor
- πQ: Quality Factor
- πΕ: Enviroment Factor
- πC: Contact construction Factor
- πR: Resistance Factor (usado en resistencias)

πCV : capacitance factor
πcyc: Cycling Factor
πL: Load Stress Factor

πF: Application and Construccion Factor
λp: Cantidad de fallas en un millón de horas

dispositivo	λb 🔻	πT 🔻	πΑΨ	πR 🔻	πS 🔻	πQ▼	πΕ 🔻	πС 🔻	πR2 ▼	πCV	Псус	πLΨ	πF 🔻	λp indiv. 🔻	cantidad 🔻	λp total 🔻	Tiempo medio de falla 🔻
tr. C458	0,00074	8,1	0,7	0,55	0,21	5,5	1							0,002665382	(0,007996146	125060250
tr C1383	0,00074	8,1	0,7	1	0,21	5,5	1							0,004846149	1	0,004846149	206349412
1N4148	0,0038	46,4			0,054	5,5	1	1						0,05236704	8	0,41893632	2386997
1nN4007	0,0038	32			0,054	5,5	1	1						0,0361152	1	0,0361152	27689172
R15k	0,00031					15	1		1					0,00465	2	0,0093	107526881
R100	0,00026					15	1		1					0,0039	2	0,0078	128205128
R8K2	0,00045					15	1		1					0,00675	2	0,0135	74074074
R180k	0,00025					15	1		1,1					0,004125	1	0,004125	242424242
R47k	0,00025					15	1		1					0,00375	1	0,00375	266666666
cap 470µF	0,13					10	1			1,02				1,326	2	5,304	188536
cap 220µF	0,068					10	1			0,89				0,6052	1	0,6052	1652346
Relé 12v	0,0065					1,5	2	1,5			1	1,02	6	0,17901	1	0,17901	5586280
															total =	6,594578815	151639

Conociendo los valores de λp , se obtiene el tiempo medio de falla para cada componente y para el sistema completo:

El tiempo medio de falla del sistema completo es de 151.639 horas.

Análisis por cuenta de partes

En este método se analiza el ámbito de aplicación y la calidad del componente, el resultado final tendrá en cuenta todos los componentes del sistema.

La fórmula general es:

$$\lambda_{Pequi} = \sum_{1}^{n} iN_{i} * (\lambda_{g} * \pi_{Q})i$$

Donde

 λ_{Pequi} : Probabilidad de falla del equipo.

 λ_g : Tasa de falla de parte genérica.

 π_{O} : Factor de calidad de parte genérica.

 N_i : Cantidad de partes genéricas.

n: Cantidad de distintas partes genéricas.

Resistencias:

$$\lambda_{Pres} = N_i * (\lambda_g * \pi_Q)$$

$$\lambda_{Pres} = 8 * (0,00050 * 15) = 0,06$$

$$MTFB = \frac{1}{\lambda_{Pres}} = \frac{1}{0.06} = 16.666.666,67 \ horas$$

Diodos:

$$\lambda_{Pdi} = N_i * (\lambda_g * \pi_Q)$$

$$\lambda_{Pdi} = 9 * (0.0036 * 5.5) = 0.1782$$

$$MTFB = \frac{1}{\lambda_{Pdi}} = \frac{1}{0,1782} = 5.611.672,278 \ horas$$

Transistores:

$$\lambda_{Ptr} = N_i * (\lambda_a * \pi_O)$$

$$\lambda_{Ptr} = 4 * (0,00015 * 5,5) = 0,0033$$

$$MTFB = \frac{1}{\lambda_{Ptr}} = \frac{1}{0.0033} = 303.030.303 \ horas$$

Capacitores:

$$\lambda_{Pc} = N_i * (\lambda_g * \pi_Q)$$

$$\lambda_{PC} = 5 * (0.024 * 10) = 1.2$$

$$MTFB = \frac{1}{\lambda_{PC}} = \frac{1}{1,2} = 833.333.333 \ horas$$

Relé:

$$\lambda_{Pr} = N_i * (\lambda_g * \pi_Q)$$

$$\lambda_{Pr} = 1 * (0.13 * 1.5) = 0.195$$

$$MTFB = \frac{1}{\lambda_{Pr}} = \frac{1}{0.195} = 5.128.205,128 horas$$

Resultado final:

$$\lambda_{Total} = \lambda_{Pres} + \lambda_{Pdi} + \lambda_{Ptr} + \lambda_{Pc} + \lambda_{Pr}$$

$$\lambda_{Total} = 0.06 + 0.1782 + 0.0033 + 1.2 + 0.195$$

$$\lambda_{Total} = 1,6365$$

 $MTBF = 611.060,189 \ horas$

Análisis de modo de falla:

En este método se analizan los posibles modos en que puede fallar el dispositivo y cuál será el impacto en el circuito. Se utiliza para esto el MIL-HDBK-338.

		probabilidad de		
componente	modo de falla	modo (α)	λ	λ modo falla
Cap 470	short	0,53	1,326	0,70278
	open	0,35	1,326	0,4641
	electrolyte leak	0,1	1,326	0,1326
	decrease	0,02		
	incapacitance	0,02	1,326	0,02652
Cap 470	short	0,53	1,326	0,70278
	open	0,35	1,326	0,4641
	electrolyte leak	0,1	1,326	0,1326
	decrease	0,02		
	incapacitance	0,02	1,326	0,02652
cap 220	short	0,53	0,6052	0,320756
	open	0,35	0,6052	0,21182
	electrolyte leak	0,1	0,6052	0,06052
	decrease	0,02		
	incapacitance	0,02	0,6052	0,012104
tr. C458	short	0,73	0,00266538	0,001945729
	open	0,27	0,00266538	0,000719653
tr C1383	short	0,73	0,00484615	0,003537689
	open	0,27	0,00484615	0,00130846
1N4148	short	0,51	0,05236704	0,02670719
	open	0,29	0,05236704	0,015186442
	change of value	0,2	0,05236704	0,010473408
1nN4007	short	0,51	0,0361152	0,018418752
	open	0,29	0,0361152	0,010473408
	change of value	0,2	0,0361152	0,00722304
R15k	change of value	0,66	0,00465	0,003069
	open	0,31	0,00465	0,0014415
	short	0,03	0,00465	0,0001395
R100	change of value	0,66	0,0039	0,002574
	open	0,31	0,0039	0,001209
	short	0,03	0,0039	0,000117
R8K2	change of value	0,66	0,00675	0,004455
	open	0,31	0,00675	0,0020925
	short	0,03	0,00675	0,0002025
R180k	change of value	0,66	0,004125	0,0027225
	open	0,31	0,004125	0,00127875
	short	0,03	0,004125	0,00012375
R47k	change of value	0,66	0,00375	0,002475
	open	0,31	0,00375	0,0011625
	short	0,03	0,00375	0,0001125
REL	fails to trip	0,55	0,17901	0,0984555
	spurous trip	0,26	0,17901	0,0465426
	short	0,19	0,17901	0,0340119

Árbol de fallas:

Se toma como misión del sistema la protección de los parlantes, por lo cual, se analizará las fallas teniendo en cuenta si el relé está permanentemente energizado o si no es excitado en ningún momento aunque exista una condición en la que debe funcionar.

Contactos relé abiertos

Relé desactivado permanentemente.

Análisis crítico de los modos de falla:

Para este análisis evaluamos el sistema teniendo en cuenta como peor consecuencia el que no funcione correctamente el relé, ya que sería una perdida en la misión del circuito, que es proteger parlantes.

Tipo componente	componente	▼ modo de falla ▼	probabilidad de modo (α 🔻	λ	λ modo fall 🔻	Severida 🔻	Ocurrencia 🔻	BETA ¬
capacitores	Cap 470	short	0,53	1,326	0,70278	IV	Α	0,9
		open	0,35	1,326	0,4641	IV	Α	0,1
		electrolyte leak	0,1	1,326	0,1326	IV	В	0
		decrease incapacitance	0,02	1,326	0,02652	IV	С	0
	Cap 470	short	0,53	1,326	0,70278	IV	Α	0,9
		open	0,35	1,326	0,4641	IV	Α	0,1
		electrolyte leak	0,1	1,326	0,1326	IV	В	0
		decrease incapacitance	0,02	1,326	0,02652	IV	С	0
	cap 220	short	0,53	0,6052	0,320756	IV	Α	0,5
		open	0,35	0,6052	0,21182	IV	Α	0,5
		electrolyte leak	0,1	0,6052	0,06052	IV	С	0
		decrease incapacitance	0,02	0,6052	0,012104	IV	С	0
transistores	tr. C458	short	0,73	0,00266538	0,001945729	111	D	0
		open	0,27	0,00266538	0,000719653	П	D	1
	tr C1383	short	0,73	0,00484615	0,003537689	III	D	0
		open	0,27	0,00484615	0,00130846	П	D	1
Diodos	1N4148	short	0,51	0,05236704	0,02670719	III	С	0,5
		open	0,29	0,05236704	0,015186442	III	С	0,5
		change of value	0,2	0,05236704	0,010473408	IV	С	0
	1nN4007	short	0,51	0,0361152	0,018418752	П	С	0,9
		open	0,29	0,0361152	0,010473408	III	С	0,1
		change of value	0,2	0,0361152	0,00722304	IV	D	0
Resistencias	R15k	change of value	0,66	0,00465	0,003069	III	D	0
		open	0,31	0,00465	0,0014415	Ш	D	0,8
		short	0,03	0,00465	0,0001395	IV	Е	0,2
	R100	change of value	0,66	0,0039	0,002574	IV	D	0
		open	0,31	0,0039	0,001209	III	D	0,8
		short	0,03	0,0039	0,000117	IV	Е	0,2
	R8K2	change of value	0,66	0,00675	0,004455	IV	D	0
		open	0,31	0,00675	0,0020925	IV	D	0,5
		short	0,03	0,00675	0,0002025	III	E	0,5
	R180k	change of value	0,66	0,004125	0,0027225	IV	D	0
		open	0,31	0,004125	0,00127875	Ш	D	0,7
		short	0,03	0,004125	0,00012375	IV	E	0,3
	R47k	change of value	0,66	0,00375	0,002475	IV	D	0
		open	0,31	0,00375	0,0011625	IV	D	0,9
		short	0,03	0,00375	0,0001125	III	Е	0,1
Relé	REL	fails to trip	0,55	0,17901	0,0984555	П	С	0,8
		spurous trip	0,26	0,17901	0,0465426	IV	С	0,2
		short	0,19	0,17901	0,0340119	IV	С	0

Severidad:

Categoría I: Catastrófico

oUna falla que puede causar la pérdida total del sistema.

Categoría II: Importante

°Una falla que puede causar lesiones graves, importantes daños materiales o daños en el sistema principal que traduzca en la pérdida de la misión.

Categoría III: Marginal

°Puede causar lesiones leves, de menor importancia, daños materiales, que se traducirían en un retraso o pérdida de disponibilidad del sistema.

Categoría IV: Menor

°Falla mínima que solo provocaría

Probabilidad de ocurrencia:

Nivel A: Frecuente

Probabilidad Superior a 0,20

Nivel B: Razonablemente Probable

°Probabilidad Mayor a 0,10 y menor a 0,20

Nivel C: Ocasional

Probabilidad Mayor a 0,01 y menor a 0,10

Nivel D: Remota

°Probabilidad Mayor a 0,001 y menor a 0,01

Nivel E: Improbable

°Probabilidad menor a 0,001

Numero crítico del modo de falla

El numero critico de falla determina por si mismo la peligrosidad de un modo de falla determinado.

$$C_m = \beta * \alpha * \lambda_p * t$$

Donde:

• λ_p :probabilidad de falla total (MBTF)

• β : probabilidad de perdida de función

• α : probabilidad de modo de falla.

• t: tiempo de funcionamiento requerido.

Para el valor de alfa se tuvo en cuenta aquel cuyo porcentaje de modo de falla era mayor en cada componente. El tiempo de funcionamiento requerido es de 12 meses (8760.01 horas) que es generalmente tomado para garantías. El valor de beta se obtiene de la siguiente tabla, analizando la posición y función de cada componente en el circuito.

EFECTO DE FALLA	VALOR de β
PERDIDA SEGURA	1.00
PROBABLE PERDIDA	>0.10 a <1.00
POSIBLE PERDIDA	>0 a < 0.10
SIN EFECTO	0

En la siguiente tabla se muestra calculado el valor del número crítico:

ipo componente	▼ componente	▼ modo de falla ▼	probabilidad de modo (α 🔻	λ	λ modo fall ▼	Severidac▼	Ocurrencia ▼	BETA	▼ Cm ▼
capacitores	Cap 470	short	0,53	1,326	0,70278	IV	А	0,9	5540,72385
		open	0,35	1,326	0,4641	IV	Α	0,1	406,552064
		electrolyte leak	0,1	1,326	0,1326	IV	В	0	C
		decrease incapacitance	0,02	1,326	0,02652	IV	С	0	(
	Cap 470	short	0,53	1,326	0,70278	IV	Α	0,9	5540,72385
		open	0,35	1,326	0,4641	IV	Α	0,1	406,552064
		electrolyte leak	0,1	1,326	0,1326	IV	В	0	(
		decrease incapacitance	0,02	1,326	0,02652	IV	С	0	(
	cap 220	short	0,53	0,6052	0,320756	IV	Α	0,5	1404,91288
		open	0,35	0,6052	0,21182	IV	Α	0,5	927,772659
		electrolyte leak	0,1	0,6052	0,06052	IV	С	0	(
		decrease incapacitance	0,02	0,6052	0,012104	IV	С	0	(
transistores	tr. C458	short	0,73	0,00266538	0,001945729	III	D	0	(
		open	0,27	0,00266538	0,000719653	H H	D	1	6,30416858
	tr C1383	short	0,73	0,00484615	0,003537689	III	D	0	(
		open	0,27	0,00484615	0,00130846	П	D	1	11,4621247
Diodos	1N4148	short	0,51	0,05236704	0,02670719	III	С	0,5	116,977627
		open	0,29	0,05236704	0,015186442	III	С	0,5	66,5166901
		change of value	0,2	0,05236704	0,010473408	IV	С	0	C
	1nN4007	short	0,51	0,0361152	0,018418752	П	С	0,9	145,213607
		open	0,29	0,0361152	0,010473408	III	С	0,1	9,17471588
		change of value	0,2	0,0361152	0,00722304	IV	D	0	(
Resistencias	R15k	change of value	0,66	0,00465	0,003069	III	D	0	(
		open	0,31	0,00465	0,0014415	III	D	0,8	10,1020435
		short	0,03	0,00465	0,0001395	IV	Е	0,2	0,24440428
	R100	change of value	0,66	0,0039	0,002574	IV	D	0	(
		open	0,31	0,0039	0,001209	III	D	0,8	8,47268167
		short	0,03	0,0039	0,000117	IV	Е	0,2	0,20498423
	R8K2	change of value	0,66	0,00675	0,004455	IV	D	0	(
		open	0,31	0,00675	0,0020925	IV	D	0,5	9,16516046
		short	0,03	0,00675	0,0002025	III	Е	0,5	0,88695101
	R180k	change of value	0,66	0,004125	0,0027225	IV	D	0	(
		open	0,31	0,004125	0,00127875	III	D	0,7	7,84130395
		short	0,03	0,004125	0,00012375	IV	E	0,3	0,32521537
	R47k	change of value	0,66	0,00375	0,002475	IV	D	0	()
		open	0,31	0,00375	0,0011625	IV	D	0,9	9,16516046
		short	0,03	0,00375	0,00011025	III	E	0,1	0,09855013
Relé	REL	fails to trip	0,55	0,17901	0,0984555	11	C	0,1	689,976932
				0,17901	0,0465426	IV	C	0,2	81,5427283
		spurous trip	0,26	() 1/9(1)					

Matriz de criticidad:

	Nivel	Cap470			
	A	Cap 170			
₹		Capzzo			
NC N	Nivel				
ZEI	В				
URF	Nivel		1N4148	RELÉ	
100	С			1nN4007	
PROBABILIDAD DE OCURRENCIA	Nivel	R100	tr. C458		
Q	D	R8K2	tr C1383		
IDA		R180k	R15k		
BIL		R47k			
BA	Nivel				
RO	Α				
_		Categoría	Categoría	Categoría	Categoría
		IV	III	П	1
			SEVER	RIDAD	

Conclusión:

En este trabajo, en el cual se realizó un análisis de confiabilidad sobre un determinado sistema, se puso en práctica conceptos y métodos aprendidos en los contenidos desarrollados en la cátedra. Tales son: análisis por estrés, por cuenta partes, análisis por modo de falla y criticidad.

Debido a que el circuito analizado es un circuito de protección, no solo debimos analizar el circuito aislado, sino poner importancia al entorno en el cual se encuentra. Por lo tanto, nuestro estudio se centró en poner fuera de peligro al equipo de audio al cual protege.