Due: August 16, 2024

- 1. Find all antiderivatives:
 - a) x^{5}
 - b) $9x^3 x + 3$
 - c) x
 - d) 1
 - e) \sqrt{x}
 - f) $\frac{1}{x^{10}}$
 - g) $\frac{5}{x}$
- 2. For the following exercises, find the antiderivative of the function for the provided endpoints, and compute the area under the curve on that interval.
 - a) $f(x) = x^2$; $1 \le x \le 3$, n = 4
 - b) $f(x) = x^3$; $1 \le x \le 3$, n = 5
 - c) $f(x) = x^3$; 0 < x < 1, n = 5
- 3. Calculate the following definite integrals:
 - a) $\int_1^1 x dx$
 - b) $\int_{1}^{2} 5 dx$
 - c) $\int_{1}^{2} 8x^{3} dx$
 - d) $\int_0^1 4e^{-3x} dx$
 - e) $\int_1^4 3\sqrt{x} dx$
 - f) $\int_0^5 e^{-2x} dx$
 - g) $\int_3^6 x^{-1} dx$
 - h) $\int_0^3 (x^3 + x 7) dx$
- 4. Bonus! We've talked a lot about linear regression in the last 2 weeks, and we know we can compute regression coefficients with $\beta = (X^T X)^{-1} X^T Y$ Given that X is the left hand side and Y the right, find β . Then use elementary row operations to solve the augmented matrix as given. What do you notice about the results from the regression and those from solving the linear system?

$$\left[\begin{array}{cc|c}3 & 4 & 2\\1 & 1 & 1\end{array}\right]$$