Programmation Stochastique avec Recours

P. Hénaff

Version: 05 mars 2024

Arbre de décision

Solution

Table 1: Optimal asset allocation at each node in the 3-period tree

Node	Stock	Bond	
1	41479	13521	
2	65095	2168	
3	36743	22368	
4	83840	0	
5	0	71429	
6	0	71429	
7	64000	0	

The excess or shortfall at horizon T for each scenario is displayed in Table \mathbb{Q} ref(tab:es).

Solution Stochastique vs Miope

Table 3: Expected Value vs. Recourse solutions of the asset allocation problem.

	EV solution		Recourse solution	
Scenario	Shortfall	Surplus	Shortfall	Surplus
1		27422		24800
2		11094		8870
3		11094		1429
4	2752			
5		11094		1429
6	2752			
7	2752			
8	14494		12160	

Lagrangien Augmenté

Algorithm 1: Augmented Lagrangian algorithm

```
Input : \rho, tol, k_{\text{max}} Output: x^*
```

1
$$k < -0$$
; $\lambda_k < -0$

2 while
$$k < k_{max}$$
 and $t > tol$ do

$$x_{k+1} < -\operatorname{argmin} \phi_k(x)$$

$$\lambda_{k+1} < -\lambda_k - \rho g(x_{k+1})$$

5
$$k < -k + 1$$

6
$$|t_1 < -||\lambda_{k+1} - \lambda_k||$$

7
$$|t_2 < -||g(x_{k+1})||$$

8
$$t < -t_1$$
 and t_2

9 end

Algo Progressive Hedging

Algorithm 2: Progressive Hedging algorithm

```
Input : \rho, tol, i_{max}
```

Output: x^*

- 1 i < -0; $\lambda_i < -0$; converged < -False
- 2 while $k < k_{max}$ and !converged do
- Solve the K subproblems ?? to obtain $x_k^{i+1}, k = 1, \dots, K$
- 4 Compute $\hat{x}^{i+1} = \sum_{k=1}^{K} \pi_k x_k^{i+1}$
- 5 Update the multipliers: $\lambda_k^{i+1} = \lambda_k^i \rho(x_k^{i+1} \hat{x}^{i+1})$
- 6 i < -i + 1
- 7 $|t_1 < -||\lambda^{i+1} \lambda^i|| < \mathsf{tol}_1$
- 8 $|t_2 < -||g^1(x^{i+1})| < \text{tol} < \text{tol}_2$
- 9 $|t_3| < -|g^2(x^{i+1})| < tol < tol_3$
- 10 converged $< -t_1$ and t_2 and t_3
- 11 end

First Example

Figure 1: Progressive Hedging Iterations

Second example: A 3-stage optimization problem

Warning: executing %dopar% sequentially: no parallel back

Figure 2: Progressive Hedging Iterations for the 3-stages asset allocation problem, showing the convergence of the first 4 variables.