

[†] СЪСТЕЗАТЕЛИ

МЕЖДУНАРОДНА ОЛИМПИАДА ПО МАТЕМАТИКА

Д-р М. Плюс

Поредната 57-а международна олимпиада по математика се проведе в Хонг Конг от 6 до 16 юли 2016 г. В нея взеха участие 602 ученици (531 момчета и 71 момичета) от 109 държави. Както обикновено, регламентът предвиждаше половината състезатели да получат медали, като златните, сребърните и бронзовите да са приблизително в отношение 1:2:3. Журито на олимпиадата в Хонг Конг разпредели общо 280 медала, от които 44 златни с граници от 29 до 42 точки вкл., 101 сребърни с граници от 22 до 28 точки вкл. и 135 бронзови с граници от 16 до 21 точки вкл. Българският отбор заслужи 3 сребърни и 3 бронзови медала, с което подобри слабите си представяния през последните години. Той беше в състав: Александър Чергански (СМГ "П. Хилендарски"), Виолета Найденова (СМГ "П. Хилендарски"), Даниел Атанасов (СМГ "П. Хилендарски"), Станислав Славов (СМГ "П. Хилендарски"), Атанас Динев (ПМГ "Н. Обрешков", Бургас) и Христо Папазов (Американски колеж). В отборното класиране по медали делим 22-26. място с Германия, Израел, Индонезия и Иран, а по точки сме на 18. място. Спечелените общо 132 точки не вдъхват особен оптимизъм, а по-скоро песимизъм, предвид високото и ниското ръководство, съставено съответно от доносници и некадърни марионетки. Победители в олимпиадата са шестима ученици, постигнали максималните 42 точки: трима от Южна Корея, двама от САЩ и един от Китай. Ето резултатите на нашите състезатели, както и класирането по държави.

Име	Място по	1	2	. 3	4	5	6	Общо	Медал
	точки	зад.	зад.	зад.	зад.	зад.	зад.	точки	
Александър Чергански	68 – 77	7	5	0	7	7	0	26	сребърен
Даниел Атанасов	68 – 77	7	1]	7	3	7	26	сребърен
Станислав Славов	68 – 77	7	3	0	7	2	7	26	сребърен
Виолета Найденова	184 – 205	7	3	0	7	2	0	19	бронзов
Атанас Динев	206 – 223	7	0	0	7	4	0	18	бронзов
Христо Папазов	224 – 252	7	1	2	7	0	0	17	бронзов
ОБЩО	18	42	13	3	42	18	14	132	

Място	Държава	Брой участници	Златни медали	Сребърни медали	Бронзови медали	Точки
1	САЩ	6	6	0	0	214
2	Република Корея	6	4.	2	0	207
3	Китай	6	4	2	0	204
4 ·	Сингапур	6	4	2	0	196
5	Тайван	6	3	3	0	175
6	КНДР	6	2	4	0	168
7–8	Великобритания	6	2	4	0	165
	Русия	6	4	1	1	165
9	Хонконг	6	3	2		161
10	кинопК	6	1	4	1	156
11 .	Виетнам	6	1	4	1	151
12-13	Канада	6	2	2	. 1	148
	Тайланд	6	2	2	1	148
14	Унгария	6	1	3	2	145
15–16	Бразилия	6	0	5	1	138
	Италия	6	1 .	3	0	-138
17	Филипини	6	. 2	2	0	133
18	България	6	0	3	3	132
19	Германия	6	0	3	3	131
20–21	Индонезия	6	0	5	0	130
	Румъния	6	0	5	1	130
22	Израел	6	0	3	3	127
23	Мексико	6 .	0	· 4	1	126
24	Иран	6	0	3	3	125
25–27	Австралия	6	0	2	4	124
•	Франция	6	0	3	2	124
	Перу	6	0	2	3	124
28	Казахстан	6	1	1	3	122
29	Турция	6	0	2	4	121
30-32	Украйна .	6	0	2	4	118
	Армения	6	0 .	1	4 .	118
	Хърватска	6	0	. 1	4	118
33	Монголия	. 6	0 ·	2	2	115
34	Индия	. 6	0	• 1	5	11:3
35–36	Беларус	6	0	1	4	112
	Бангладеш	6	0	1	3	112
37–38	Чехия	6 .	0	2	1	109
	Швеция	6	0	3	0	109
39	Макао	6	1	1	0	108
40	Сърбия	6	0 .	1	4	106
41	Саудитска Арабия	6	0	0	4	104
42	Полша	6 .	0	2	2	102
43	Швейцария	. 6	0	1	4	99
44	Холандия	6	0	0	3	98
45	Босна и Херцеговина	6	0	0	. 4	97

46	Австрия	6	0	0	3	89
47	Португалия	6	0	0	1	88
48	Сирия	6	0	0	3	87
49	Испания	6	0	0	2	86
50-51	Литва	6	0	0	3	84
	Гърция	6	0	0	2	84
52	Белгия	6	0	0	3	82
53	Нова Зеландия	6	0	1	1	81
54	Азербайджан	6	0	0	1	79
55	Словакия	6	0	0	2	78
56	Малайзия	6	0	0	2	77
57	Аржентина	6	0	0	2	75
58	Южна Африка	6	0	0	1	73
59–60	Грузия	6	0	. 0	1	69
	Коста Рика	6	0	0	2	69
61	Естония	6	0	0	1	67
62	Таджикистан	6	0	0	0	66
63-65	Кипър	6	0	1	0	65
	Молдова	5	0	0	1	65
	Словения	6	0	0	0	65
66-67	Колумбия	6	0	0	2	63
	Шри Ланка	6	0	0	1	63
68	Салвадор	5	0	0	1	60
69–70	Албания	6	0 .	0	1	58
	Туркменистан	6	0	0	0	58
71–72	Финландия	6	0	0	0	55
	Парагвай	6 .	0	0	2	55
73	Македония	6	0	0	0	53
. 74	Латвия	6	0	0	0	52
75	Ирландия	6	0	0	0	51
76	Тунис	6	0	0	0	50
77–78	Косово	6	0	0	1	47
	Узбекистан	6	0	0	1	47
79	Мароко	6	0	0	1	46
80	Никарагуа	5	0	0	1	45
81	Дания	6	0	0	0	44
82	Алжир	4	0	0	0	41
83	Еквадор	6	0	0	0	38
84–85	Киргизстан	6	0	0	0	34
	Норвегия	6	0	0	0	34
86	Венесуела	3	0	0	1	29
87	Пуерто Рико	2	0	0	1	27
88-89	Черна гора	2	0	1	0	24
	Нигерия	6	0	0	0	24
90	Исландия	6	0	0	0	23
91–92	Чили	3 .	0	0	0	18

93	Уругвай	1	0	0	1	17
94	Тринидад и Тобаго	4	0	0	0	15
95	Люксембург	. 3	0	0	0	14
96–97	Камбоджа	6	0	0	0	13
	Мианмар	6	0	0	0	13
98	Уганда	6	0	0	0	12
99	Кения	6	0	0	0	11
100-101	Хондурас	2	0	0	0	10
	Мадагаскар	5	0	0	0	10
102	Ямайка	1	0	0	0	9
103	Ботсвана	6	0	0	0	7
104-105	Египет	5	0	0	0	5
	Гана	3	0	0	0	5
106	Танзания	2	0	0	Q	3
107-108	Ирак	5	0	0	0	2
	Лихтенщайн	1	0	0	0	2
109	Лаос	6	0	0	0	0

Ето задачите от 57-ата международна олимпиада по математика:

Първи ден, 11 юли 2016 г.

Време за работа 4 часа и 30 мин. Всяка задача се оценява със 7 точки.

Задача 1. Даден е триъгълник BCF с прав ъгъл при върха B. Нека A е точката върху правата CF, за която FA = FB и F лежи между A и C. Точката D е избрана така, че DA = DC и AC е ъглополовящата на $\angle DAB$. Точката E е избрана така, че EA = ED и AD е ъглополовящата на $\angle EAC$. Нека M е средата на CF, а X е точката, за която AMXE е успоредник (където $AM \parallel EX$ и $AE \parallel MX$). Да се докаже, че правите BD, FX и ME се пресичат в една точка.

(предложена от Белгия)

Решение: Да забележим, че $\Delta FAB \sim \Delta DAC \sim \Delta EAD$, откъдето следва, че $\Delta FAD \sim \Delta BAC$. Лесно получаваме, че $\angle DFC + \angle DCF = \angle BAF + \angle ACB + \angle DCF = 90^{\circ}$. Оттук следва, че D лежи на описаната окръжност около ΔBCF (с център M). От друга страна, F е център на вписаната окръжност около ΔABD , защото $\Delta BB = MF$. Заключаваме, че M лежи на описаната окръжност около ΔADB . По-нататък:

Задача 2. Да се намерят всички естествени числа n, за които всяка клетка на таблица с размери $n \times n$ може да бъде запълнена с една от буквите I, M и O по такъв начин, че:

- \bullet във всеки ред и всяка колона една трета от елементите са I, една трета са M и една трета са O;
- във всеки диагонал, ако броят елементи в диагонала е кратен на 3, то една трета от елементите са I, една трета са M и една трета са O.

Забележа: Редовете и колоните на таблица с размери $n \times n$ са номерирани с числата от 1 до n по обичайния начин. Така, на всяка клетка отговаря двойка естествени числа (i,j), $1 \le i,j \le n$. За n > 1, таблицата има точно 4n - 2 диагонала от два типа. Диагонал от първия тип се състои от всички клетки (i,j), за които i+j е константа, а диагонал от втория тип се състои от всички клетки (i,j), за които i-j е константа.

Решение: Нека n=3k. Да наречем един диагонал $\partial o \delta b p$, ако броят на клетките в него е кратен на 3. Ще казваме, че една клетка е *късметлийска*, ако се намира в два добри диагонала. Ще казваме още, че една клетка е *некъсметлийска*, ако изобщо не се намира в добър диагонал. Ако t късметлийски клетки съдържат едно I, то ще има точно $2k^2-t$ букви I в некъсметлийски и следователно има k^2+t букви I в некъсметлийски клетки. Сега да

преброим буквите I, които се намират в редове и стълбове с номера, равни на 2 по модул 3 (възможно и двете, като в този случай буквите се броят два пъти). Общата бройка по предположение е $2k^2$. От друга страна, лесно се проверява, че клетките в тези редове и стълбове са само късметлийски или некъсметлийски. Броят на буквите I в тези клетки е $k^2 + 3t$. Заключаваме, че $t = \frac{k}{2}$ и k е кратно на 3. Конструкцията е директна. На

	0			0	
0	×	0	0	×	0
	0			0	
	0			0	
0	×	0	0	×	0
	0			0	

диаграмата са показани късметлийските клетки (Х) и некъсметлийските (о).

Задача 3. В равнината е даден изпъкнал многоъгълник $P = A_1 A_2 ... A_k$. Върховете $A_1, A_2, ..., A_k$ имат целочислени координати и лежат на една окръжност. Нека S е лицето на P. Дадено е такова нечетно естествено число n та, че квадратите на дължините на страните на P са цели числа, които се делят на n. Да се докаже, че 2S е цяло число, което се дели на n.

(предложена от Русия)

Втори ден, 12 юли 2016 г.

Време за работа 4 часа и 30 мин. Всяка задача се оценява със 7 точки.

Задача 4. Множество от естествени числа се нарича *ароматно*, ако съдържа поне два елемента и всеки от неговите елементи има общ прост делител с поне един от останалите елементи. Нека $P(n) = n^2 + n + 1$. Да се намери минималното възможно естествено число b, за което съществува цяло неотрицателно число a така, че множеството

$$\{P(a+1), P(a+2), ..., P(a+b)\}$$

е ароматно.

Решение:

Лема. Ако $x \equiv n, n^2 \pmod{P(n)}$, то $P(x) \equiv 0 \pmod{P(n)}$.

Доказателство: Ако $x \equiv n \pmod{P(n)}$, твърдението е очевидно. Ако $x \equiv n^2 \pmod{P(n)}$, то $P(x) = n^4 + n^2 + 1 = (n^4 + n^3 + n^2) - (n^3 + n^2 + n) + (n^2 + n + 1) \equiv 0 \pmod{n^2 + n + 1} \equiv 0 \pmod{P(n)}$. Така, $n \equiv 1 \pmod{3} \Rightarrow P(n) \equiv 0 \pmod{3}$; $n \equiv 2, 4 \pmod{7} \Rightarrow P(n) \equiv 0 \pmod{7}$; $n \equiv 3, 9 \pmod{13} \Rightarrow P(n) \equiv 0 \pmod{13}$; $n \equiv 7, 49 \pmod{57} \Rightarrow P(n) \equiv 0 \pmod{57}$; $n \equiv 7, 11 \pmod{9} \Rightarrow P(n) \equiv 0 \pmod{19}$.

Сега лесно следва, съществува 6 последователни P(n): $n \equiv 7 \pmod{19}$, $n+1 \equiv 2 \pmod{7}$, $n+2 \equiv 1 \pmod{3}$, $n+3 \equiv 4 \pmod{7}$ и т.н. Решения съществуват при $a \equiv 196 \pmod{399}$. Ако $b \leq 5$, решения няма. Отговорът на задачата е 6.

$$(x-1)(x-2)\cdots(x-2016) = (x-1)(x-2)\cdots(x-2016)$$

с по 2016 линейни множителя от всяка страна. Да се намери минималната възможна стойност на k, за която е възможно да се изтрият точно k от всичките 4032 линейни множителя така, че да остане поне по един множител от всяка страна и полученото уравнение да няма реални корени.

Задача 6. Дадени $n \ge 2$ отсечки в равнината така, че всеки две се пресичат във вътрешна точка и никои три не се пресичат в една точка. За всяка отсечка Джеф трябва да избере единия й край и да постави в него жаба, обърната с лице към другия край. След това Джеф пляска с ръце n-1 пъти. Всеки път, когато Джеф пляска с ръце, всяка жаба веднага скача напред в следващата пресечна точка по своята отсечка. Жабите никога не променят посоката на движението си. Джеф желае да разположи жабите така, че да няма момент, в който някои две от тях да се окажат едновременно в една и съща пресечна точка.

- (a) Да се докаже, че Джеф винаги може да изпълни желанието си, ако n е нечетно.
- (б) Да се докаже, че Джеф няма как да изпълни желанието си, ако n е четно.