ATIVIDADE

1.Construa as matrizes A e B abaixo no R e conclua as operações pedidas.

$$A = \left[\begin{array}{cc} 0 & 1 & 3 \\ 1 & 2 & 1 \\ 1 & 1 & 4 \end{array} \right]$$

$$B = \left[\begin{array}{ccc} 0 & 1 & 2 \\ 0 & 4 & 2 \\ 7 & 0 & 1 \end{array} \right]$$

$$A)A^2 - B^t - (A + B) * (A - B), (considereA^2 = A * A)$$

B)
$$A - 1B + B - 1A$$

C)
$$det(A) * A + (det(B) * A)^t$$

#####2)constua os 2 vetores a seguir usando comandos do r e em seguida faça as seguinte operações.

$$X = (1,2,3,4,5,6,7,8,9,10,11,10,9,8,7,6,5,4,3,2,1)$$
$$Z = (1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,5,5,6)$$

a)

$$\frac{X}{Z} * Z - \sqrt{Z} * X^{t} * y, (.y = X * Z)$$

b)

$$X^2 * Z^t - y$$

C)Os valores divisiveis por 2 em X e Z.

- D)Use argumentos para retomar a soma dos elementos do vetor X e Z, os seus maximos e minimos, suas raizes e medias.
- 3. Crie um dataframe contendo os nomes de 10 indivíduos empregados. Para cada um, inclua as variáveis **Sexo** (M ou F), **Nível Escolar** (Fundamental, Médio ou Superior) e suas respectivas **rendas mensais**. Em seguida, opere no R para responder às seguintes perguntas:

Qual é a renda média dos indivíduos que possuem Nível Fundamental, dos que possuem Nível Médio e dos que possuem Nível Superior?

Qual é a renda média dos indivíduos que possuem Sexo Feminino e dos que possuem Sexo Masculino?

Qual é a renda média dos indivíduos do Sexo Feminino que possuem Nível Superior? E a dos indivíduos do Sexo Masculino que possuem Nível Superior?

4. A tabela abaixo contém a distribuição de probabilidade conjunta das variáveis **X** e **Y**:

X	Y					
	1	2	3	4		
1	0,1	0,05	0,02	0,07		
2	0,08	0,05	0,1	0,19		
3	0,1	0,2	0,04	0		

Reproduza a tabela no R no formato **data.frame**, encontre as distribuições marginais de X e de Y (somando os valores das linhas e das colunas) e em seguida, adicione à tabela uma nova linha **P.y** correspondente às probabilidades de Y **P(Y=yi)** e uma nova coluna **P.x** correspondente às probabilidades de X **P(X=xi)**. Não esqueça de incluir como último elemento da nova linha/coluna o total da soma das probabilidades marginais (1).

Exemplo:

X		$P(X=x_i)$			
	0	1	2	3	
0	0,20	0,20	0,14	0,06	0,60
1	0,15	0,08	0,04	0,03	0,30
2	0,05	0,02	0,02	0,01	0,10
P(Y=y _j)	0,40	0,30	0,20	0,10	1,00