Electric Circuits Exercises

 $GitHub: \ https://github.com/klaids$

Last Update on: 27/05/2021

Indice

1 DC CIRCUIT																1												
	1.1	DC-01																 										1
	1.2	DC-02																 										1
	1.3	DC-03																 										2
	1.4	DC-04																 										3
	1.5	DC-05																 										3
	1.6	DC-06																 										4
	1.7	DC-07																 										5
	1.8	DC-08																 										5
	1.9	DC-09							•																			6
2	\mathbf{AC}	CIRCU	J I T	7																								7
	2.1	AC-01																 										7
	2.2	AC-02																 										7
	2.3	AC-03																 										8
	2.4	AC-04																 										Ö

1 DC CIRCUIT

1.1 DC-01

Solution:

 $\begin{array}{l} I_{\rm R3}{=}8~A,~I_{\rm E3}{=}28~A,~I_{\rm R4}{=}25~A,~U_{\rm J4}{=}25~V\\ I_{\rm R1}{=}20~A,~U_{\rm C1}{=}40~V,~E_{\rm 2}{=}25~V,~U_{\rm J1}{=}85~V\\ P_{\rm R3}{=}320~W,~P_{\rm R4}{=}625~W,~P_{\rm E3}{=}1120~W,~P_{\rm J4}{=}125~W\\ W_{\rm C1}{=}0.16~J,~W_{\rm L1}{=}2~J,~P_{\rm J1}{=}1700~W \end{array}$

1.2 DC-02

$$R_1 = 1.5 \ \Omega$$
 $R_2 = 2.5 \ \Omega$ $R_3 = 4 \ \Omega$ $R_4 = 5 \ \Omega$ $R_5 = 8 \ \Omega$ $R_6 = 3.5 \ \Omega$ $J_1 = 5 \ A$ $E_3 = 100 \ V$ $E_4 = 50 \ V$ $P_{\rm J1} = 100 \ W$

Solution:

 $U_{\rm J1}=20$ V, $U_{\rm AD}=0$ V, $J_{\rm 6}=$ -55 A, $U_{\rm J6}=$ -392.5 V, $P_{\rm R3}=2500~{\rm W}$ $I_{\rm E4}=$ -30 A, $P_{\rm R4}=4500$ W, $P_{\rm J6}=21587.5$ W, $U_{\rm BC}=$ -200 V

1.3 DC-03

$$R_1 = 20~\Omega$$
 $R_2 = 40~\Omega$ $R_3 = 50~\Omega$ $R_4 = 20~\Omega$ $L = 10~mH$ $C = 20~\mu F$ $E_2 = -900~V$ $E_4 = 100~V$ $E_5 = 800~V$ $J_6 = 25~A$

Assuming $V_A = 0$, determine:

- V_B,V_C,V_D potentials.
- ullet The values of the stored energies W_L and W_C respectively from the inductor and capacitor.
- The value of the power P_{R_3} absorbed by resistor R_3 .

Solution:

$$J_{2} = \frac{E_{2}}{R_{2}} = -22,5 \ A \qquad G_{2} = \frac{1}{R_{2}} = 1/40 \ S$$

$$J_{4} = \frac{E_{4}}{R_{4}} = 5 \ A \qquad G_{4} = \frac{1}{R_{4}} = 1/20 \ S$$

$$\begin{cases} J_{6} + J_{2} = V_{B} \ (G_{1} + G_{2}) - V_{C}G_{2} \\ I_{E_{5}} - J_{2} = -V_{B}G_{2} + V_{C} \ (G_{2} + G_{3}) - V_{D}G_{3} \\ -J_{4} - J_{2} = -V_{C}G_{3} + V_{D} \ (G_{3} + G_{4}) \end{cases}$$

$$V_{C} - V_{A} = E_{5}$$

$$\begin{cases} V_{B} = \frac{J_{2} + J_{6} + E_{5}G_{2}}{G_{1} + G_{2}} = 300 \ V \\ V_{C} = E_{5} = 800 \ V \\ V_{D} = \frac{-J_{4} - J_{6} + E_{5}G_{3}}{G_{3} + G_{4}} = -200 \ V \\ I_{E_{5}} = J_{2} - V_{B}G_{2} + V_{C}(G_{2} + G_{3}) - V_{D}G_{3} = 10 \ A \end{cases}$$

$$U_{C} = E_{2} + (V_{C} - V_{B}) = -400 \ V$$

$$W_{C} = \frac{1}{2}CU_{C}^{2} = 1, 6 \ J$$

$$W_{L} = \frac{1}{2}LI_{L}^{2} = \frac{1}{2}LI_{E_{5}}^{2} = 0, 5 \ J$$

$$P_{R_{3}} = (V_{C} - V_{D})^{2} \ G_{3} = 20 \ \text{kW}$$

1.4 DC-04

Determine:

- \bullet E₁.
- P_{J1}, P_{E2}.
- $\bullet \ P_{R8}, \, P_{R9}.$

Solution:

$$\overline{E_{1} = 3 \text{ V}}, P_{J1} = 3510 \text{ W}, P_{E2} = 270 \text{ W}, P_{R8} 54 \text{ W}, P_{R9} = 36 \text{ W}$$

1.5 DC-05

$$R_1 = 2 \Omega$$
 $R_2 = 2 \Omega$ $R_3 = 5 \Omega$ $R_4 = 1 \Omega$ $R_5 = 2 \Omega$ $R_6 = 1 \Omega$ $E_3 = 80 V$ $J_1 = 40 A$ $J_4 = 10 A$ $P_{R2} = 0 W$

Determine:

- \bullet P_{R3} , P_{R4}
- P_{E3}, P_{J4}.
- \bullet E₂.
- \bullet P_{J1}.

Solution:

 $P_{R3} = 1280 \ W, \, P_{R4} = 2500 \ W, \, P_{E3} = 4480 \ W, \, P_{J4} = 500 \ W, \, E_2 = 50 \ V, \, P_{J1} = 6800 \ W$

1.6 DC-06

$$R_1 = 20~\Omega$$
 $R_2 = 30~\Omega$ $R_3 = 30~\Omega$ $R_4 = 30~\Omega$ $R_5 = 20~\Omega$ $R_6 = 12~\Omega$ $J_2 = 17.5~A$ $J_4 = 4~A$ $E_3 = 120~V$ $E_6 = -168~V$

Assuming $V_O = 0 V$, determine:

- $\bullet~V_{\rm A},\!V_{\rm B},\!V_{\rm C}$ potentials.
- $\bullet \ P_{J2}, \, P_{E3}, \, P_{J4}, \, P_{E6}.$

Solution:

 $V_{\rm A} =$ -90 V, $V_{\rm B} = 120$ V, $V_{\rm C} = 150$ V, $P_{\rm J2} = 1575$ W, $P_{\rm E3} = 3120$ W, $P_{\rm J4} =$ -480 W $P_{\rm E6} = 1932$ W.

1.7 DC-07

$$I_A = 20 \ A \quad P_{\mathrm{R2}} = 5120 \ W \quad R_2 = 20 \ \Omega \ R_3 = R_5 = R_1 \quad R_4 = R_6 = R_7 = 2R_1$$

 $\rm I_A$ when S1 open and S2 close. $\rm P_{R2}$ when S1 close and S2 open, $\bf determine$

- \bullet R₁.
- $\bullet~U_{\rm J}$ when both switches are open.
- \bullet $P_{R3}^{'}$ and $U_{j}^{'}$ when S1 close and S2 open.

Solution:

$$\overline{R_1 = 30} \,\Omega$$
, $U_J = -1600 \,V$, $P'_{R3} = 7680 \,W$, $U'_j = -800 \,V$.

1.8 DC-08

$$E_1 = 120 \ V$$
 $J_3 = 4 \ A$ $R_1 = 10 \ \Omega$
 $R_2 = 10 \ \Omega$ $R_3 = 20 \ \Omega$ $U_V = 60 \ V$

 U_V measured when S_1 opened. **Determine**:

- \bullet E₂.
- P_{E_1} , P_{E_2} and P_{J_3} when S_1 opened.
- U'_V when S_1 closed.
- P'_{E_1} , P'_{E_2} and P'_{J_3} when S_1 closed.

Solution:

$$\frac{\text{Solution:}}{E_2 = 100 \text{ V}, \, P_{\text{E}_1} = 240 \text{ W}, \, P_{\text{E}_2} = 200 \text{ W}, \, P_{\text{J}_3} = -240 \text{ W}, \, U_V^{'} = 40 \text{ V}, \, P_{E_1}^{'} = 240 \text{ W}}$$

$$P_{E_2}^{'} = 400 \text{ W}, \, P_{J_3}^{'} = -160 \text{ W}.$$

1.9 DC-09

The circuit is in steady state when S is in 1. The capacitor C_1 is charged to voltage V_{10} . Then the switch is switched to the position 2. **Determine**:

- The energy W_0 stored overall by the circuit.
- The voltage $V_2^{'}$ at the ends of C_1 when S is in position 2.
- The electric work \mathcal{L}_{R5} absorbed by resistor R_5 when S switched from 1 to 2.

Solution:

$$\overline{W_0 = 4.25} J, V_2' = -60 V, \mathcal{L}_{R5} = 2.43 J.$$

2 AC CIRCUIT

2.1 AC-01

$$j(t) = 30 \sin(100t + \frac{\pi}{4}) \quad e(t) = 300\sqrt{2} \sin(100t + \frac{\pi}{2}) \quad R_1 = R_3 = 10 \Omega$$

$$R_2 = 20 \Omega \qquad L_1 = 400 \ mH \qquad L_3 = 400 \ mH$$

$$C_2 = 500 \ \mu F \qquad C_3 = 250 \ \mu F$$

Determine:

- u(t)
- $P_{\rm j}$ and $Q_{\rm j}$
- $P_{\rm e}$ and $Q_{\rm e}$

Solution:

 $\overline{u(t) = 250\sqrt{2}} \sin(100t + 0.9273), P_{\rm j} = 5250 W, Q_{\rm j} = 750 var, P_{\rm e} = 1500 W$ $Q_{\rm e} = 3.3448 \cdot 10^{-13} var$

2.2 AC-02

$$L_1 = 10 \ mH$$
 $L_2 = 15 \ mH$ $L_3 = 15 \ mH$ $C = 25 \ \mu F$ $u_{\rm L_1}(t) = 320 \cdot \sin{(1000t + \frac{\pi}{4})}$ $I_A = 0 \ A$

Determine:

- $\bullet \ \dot{Z} = R + jX$
- Q_{L_2}
- j(t) and $u_i(t)$
- Q_{L_3}

Solution:

$$\dot{Z} = -25i, \ Q_{L_2} = 7680 \ var, \ j(t) = 12 \cdot \sin(1000t + \frac{3}{4}\pi), \ u_j(t) = 300 \cdot \sin(1000t + \frac{\pi}{4}), \ Q_{L_3} = 1080 \ var$$

2.3 AC-03

$$e_1(t) = 100 \sin(1000t)$$
 $j_2(t) = 8 \cos(1000t)$ $e_3(t) = 200 \sin(1000t)$
 $R_1 = 5 \Omega$ $R_3 = 10 \Omega$ $L_1 = 5 mH$
 $L_2 = 10 mH$ $C_3 = 100 \mu F$

Determine:

- P_{R_1} and P_{R_3}
- P_{E_1} , P_{J_2} and P_{E_3}
- $S_{\mathbf{J}_2}$
- $i_{e_3}(t)$

Solution:

 $P_{\rm R_1}=776~W,~P_{\rm R_3}=848~W,~P_{\rm E_1}=-920~W,~P_{\rm J_2}=704~W,~P_{\rm E_3}=1840~W,~S_{\rm J_2}=729.71~{\rm VA},~i_{\rm e_3}(t)=13.023~\sin{(1000t+0.043451)}$

2.4 AC-04

$$\begin{array}{ccc} e(t) = 100 \cdot \sqrt{2} \, \sin{(200t)} & j(t) = 10 \cdot \sqrt{2} \sin{(200t + \pi)} & R = 5 \, \, \Omega \\ L = 100 \, \, mH & C = 500 \, \, \mu F \end{array}$$

Determine:

- \bullet The indication of the voltmeter U_V
- \bullet P_{W}
- $u_{\rm j}(t)$
- $i_{\rm e}(t)$
- $P_{\rm j}$ and $Q_{\rm j}$

Solution:

$$U_V = 282.84 \ V, P_{\rm W} = 2000 \ W, u_{\rm j}(t) = 353.55 \cdot \sin{(200t + 0.9273)}, i_{\rm e}(t) = 31.623 \cdot \sin{(200t - 0.46365)} \\ P_{\rm j} = -1500 \ W, \ Q_{\rm j} = -2000 \ var$$