

Decision Trees

Decision Trees. Information Criteria.

Fourth Machine Learning in High Energy Physics Summer School, MLHEP 2018, August 6-12

Alexey Artemov^{1,2}

¹ Skoltech ² National Research University Higher School of Economics

Lecture overview

> Decision Trees

Decision trees

Decision making at a bank

Decision tree formalism

- \rightarrow Decision tree is a binary tree V
- > Internal nodes $u \in V$: predicates $\beta_u : \mathbb{X} \to \{0, 1\}$
- \rightarrow Leafs $v \in V$: predictions x
- \rightarrow Algorithm $h(\mathbf{x})$ starts at $u=u_0$
 - \rightarrow Compute $b = \beta_u(\mathbf{x})$
 - \rightarrow If b = 0, $u \leftarrow \text{LeftChild}(u)$
 - \rightarrow If b = 1, $u \leftarrow \text{RightChild}(u)$
 - \rightarrow If u is a leaf, return b
- \rightarrow In practice: $\beta_u(\mathbf{x}; j, t) = [\mathbf{x}_j < t]$

Greedy tree learning for binary classification

- \rightarrow Input: training set $X^{\ell} = \left\{ (\mathbf{x}_i, y_i) \right\}_{i=1}^{\ell}$
 - 1. Greedily split X^{ℓ} into R_1 and R_2 :

$$R_1(j,t) = \{\mathbf{x} \in X^{\ell} | \mathbf{x}_j < t\}, \qquad R_2(j,t) = \{\mathbf{x} \in X^{\ell} | \mathbf{x}_j > t\}$$
 optimizing a given loss: $Q(X^{\ell},j,t) \to \min_{(j,t)}$

- 2. Create internal node u corresponding to the predicate $[\mathbf{x}_j < t]$
- 3. If a stopping criterion is satisfied for u, declare it a leaf, setting some $c_u \in \mathbb{Y}$ as leaf prediction
- 4. If not, repeat 1-2 for $R_1(j,t)$ and $R_2(j,t)$
- \rightarrow Output: a decision tree V

Greedy tree learning for binary classification

Greedy tree learning for binary classification

With decision trees, overfitting is extra-easy!

Design choices for learning a decision tree classifier

- > Type of predicate in internal nodes
- \rightarrow The loss function $Q(X^{\ell}, j, t)$
- > The stopping criterion
- > Hacks: missing values, pruning, etc.

> CART, C4.5, ID3

The loss function $Q(X^{\ell}, j, t)$

- $\rightarrow R_m$: the subset of X^{ℓ} at step m
- \rightarrow With the current split, let $R_l \subseteq R_m$ go left and $R_l \subseteq R_m$ go right
- > Choose predicate to optimize

$$Q(R_m, j, t) = H(R_m) - \frac{|R_l|}{|R_m|} H(R_l) - \frac{|R_r|}{|R_m|} H(R_r) \to \max$$

- $\rightarrow H(R)$: impurity criterion
- > Generally $H(R) = \min_{c \in \mathbb{Y}} \frac{1}{|R|} \sum_{(\mathbf{x}_i, y_i) \in R} L(y_i, c)$

The idea: maximize purity

12

Examples of information criteria

> Regression:

$$H(R) = \min_{c \in \mathbb{Y}} |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} (y_i - c)^2$$

- \rightarrow Sum of squared residuals minimized by $c=|R|^{-1}\sum_{(\mathbf{x}_i,y_i)\in R}y_j$
- > Impurity ≡ variance of the target
- > Classification:
 - \rightarrow Let $p_k = |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} [y_i = k]$ (share of y_i 's equal to k)
 - \rightarrow Miss rate: $H(R) = \min_{c \in \mathbb{Y}} |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} [y_i \neq c]$

Minimizing miss rate $1 - p_{k_*}$,

Gini index
$$\sum_{k=1}^{K} p_k (1-p_k),$$
 Cross-entropy $-\sum_{k=1}^{K} p_k \log p_k$

Stopping rules for decision tree learning

- > Significantly impacts learning performance
- > Multiple choices available:
 - > Maximum tree depth
 - > Minimum number of objects in leaf
 - > Maximum number of leafs in tree
 - > Stop if all objects fall into same leaf
 - Constrain quality improvement
 (stop when improvement gains drop below s%)
- > Typically selected via exhaustive search and cross-validation

Decision tree pruning

- > Learn a large tree (effectively overfit the training set)
- ightarrow Detect overfitting via K-fold cross-validation
- > Optimize structure by removing least important nodes

Conclusion

> Decision trees: intuitive and interpretable, yet prone to overfitting