Submodular Optimization (236621) Spring 2022/2023

July 3, 2023

- 1. Prove or refute that the following set functions $f: 2^N \to \mathbb{R}_+$ are submodular.
 - (a) For every i = 1, ..., k let $g_i : 2^N \to \mathbb{R}_+$ be k submodular functions over N, and let $a_1, ..., a_k$ be k non-negative coefficients. For every $S \subseteq N$ define $f(S) = a_1g_1(S) + ... + a_kg_k(S)$.
 - (b) Let G = (V, E) be a directed graph, N = V, and g(S) is the number of directed edges $(u \to v) \in E$ such that $u \in S$ and $v \notin S$. Additionally, let $b \in \mathbb{N}$ be a given threshold. For every $S \subseteq V$ define $f(S) = \min\{g(S), b\}$.
 - (c) Let $g: 2^U \to \mathbb{R}_+$ be s submodular function over U. Choose the ground set N as follows $N = \{u : u \in U\} \cup \{u' : u \in U\}$, *i.e.*, N is the disjoint union of two independent copies of U. For every $S \subseteq N$ denote by $S_U \subseteq U$ the following set $\{u \in U : u \in S \text{ or } u' \in S\}$. Define $f(S) = g(S_U)$ for every $S \subseteq N$.
 - (d) Let $g: 2^N \to \mathbb{R}_+$ be a submodular function over N and let $T \subseteq N$. Define $f(S) = g((T \setminus S) \cup (S \setminus T))$ for every $S \subseteq N$, *i.e.*, f(S) equals g on the reflection of S with respect to T (all elements of S that are in T are swapped and elements of S outside of T are not swapped).
 - (e) Let G = (V, E) be an undirected graph equipped with non-negative edge weights $b : E \to \mathbb{R}_+$. For every vertex $u \in V$ denote by B(u) the total weight of edges touching u, i.e., $B(u) = \sum_{e=(u,v)\in E} b_e$. Let $\{\theta_u\}_{u\in V}$ be independent identically distributed uniform random variables in [0,1]. Given an initial $A_0 \subseteq V$ of infected vertices, consider the following dynamics which progresses in discrete steps: in the ith step let A_i be,

$$A_i = A_{i-1} \cup \left\{ u \notin A_{i-1} : \sum_{e=(u,v)\in E: v\in A_{i-1}} b_e \ge \theta_u B(u) \right\}.$$

Denote by i_{A_0} the step after which no new infected vertices are added, i.e., $A_{i_{A_0}} = A_{i_{A_0}+1} = A_{i_{A_0}+2} = \dots$ (note that i_{A_0} is a random variable whose distribution depends on the initial infected set A_0). Set the ground set N to be V and for every $S \subseteq V$ define $f(S) = \mathbb{E}[|A_{i_S}|]$.

Hint: prove that f is submodular.

- 2. Let $f: 2^N \to \mathbb{R}_+$ be a monotone submodular functions over a ground set N, and let $k \in \mathbb{N}$ be a cardinality bound. We are interested in solving: $\max\{f(S): S \subseteq N, |S| \le k\}$. The goal of this question is to obtain an algorithm that for every $\varepsilon > 0$ achieves an (almost) tight approximation of $1 1/e \varepsilon$ in running time of $O(n \ln(1/\varepsilon))$. Consider the following sampling based algorithm parameterized by $\varepsilon > 0$:
 - $S_0 \leftarrow \emptyset$.
 - For i = 1 to k do:

- Let $M_i \subseteq N$ be a uniformly random subset of size $\lceil \frac{n \ln(1/\varepsilon)}{k} \rceil$.
- u_i ← argmax $\{f(S_{i-1} \cup \{u\}) f(S_{i-1}) : u \in M_i\}$.
- $S_i \leftarrow S_{i-1} \cup \{u_i\}$.
- Return S_k .
- (a) Show that the running time of the algorithm is $O(n \ln(1/\epsilon))$.
- (b) Let S^* be some optimal solution to the problem. The current goal is to prove that for every iteration i = 1, ..., k the following holds:

$$\mathbb{E}\left[f(S_i) - f(S_{i-1})\right] \ge \frac{1-\varepsilon}{k} \left(f(S^*) - \mathbb{E}\left[f(S_{i-1})\right]\right). \quad (*)$$

Fix i and let v_1, \dots, v_k be the k elements of S^* sorted according to the marginal values:

$$f(S_{i-1} \cup \{v_1\}) - f(S_{i-1}) \ge \dots \ge f(S_{i-1} \cup \{v_k\}) - f(S_{i-1})$$
.

Let X_j be the indicator for the event that $M_i \cap \{v_1, \dots, v_j\} \neq \emptyset$. Follow the following steps to prove (*).

i. Prove that the following inequality always holds (note that S_{i-1} , X_j and u_i are random variables):

$$f(S_{i-1} \cup \{u_i\}) - f(S_{i-1}) \ge \sum_{j=1}^{k-1} X_j \left[\left(f(S_{i-1} \cup \{v_j\}) - f(S_{i-1}) \right) - \left(f(S_{i-1} \cup \{v_{j+1}\}) - f(S_{i-1}) \right) \right] + X_k \left(f(S_{i-1} \cup \{v_k\}) - f(S_{i-1}) \right)$$

- ii. Prove that: $\mathbb{E}[X_j] \ge 1 \left(1 \frac{\ln(1/\epsilon)}{k}\right)^j$ for every $j = 1, \dots, k$.
- iii. Prove (*).

Hint: use Chebyshev's sum inequality, which states that for $a_1 \ge ... \ge a_n$ and $b_1 \ge ... \ge b_n$ the following holds:

$$\frac{1}{n}\sum_{\ell=1}^n a_\ell b_\ell \ge \left(\frac{1}{n}\sum_{\ell=1}^n a_\ell\right) \left(\frac{1}{n}\sum_{\ell=1}^n b_\ell\right).$$

- (c) Assuming $\varepsilon \leq 1 1/e$ solve (*) and prove that $\mathbb{E}[f(S_k)] \geq (1 1/e \varepsilon) f(S^*)$.
- 3. Let $f: 2^N \to \mathbb{R}_+$ be a submodular function, which is not necessarily monotone, over ground set N. Let M = (N, I) be a partition matroid of rank k where $N = N_1 \cup N_2 \cup ... \cup N_k$ is the partition of the ground set N that is associated with the matroid. We are interested in solving max $\{f(S): S \subseteq N, S \in I\}$. The goal of this question is obtaining a fast combinatorial algorithm that achieves an approximation of 1/4 for the problem. Consider the following algorithm that is parameterized by $t \in \mathbb{N}$, which indicates how many iterations it performs:
 - $S_0 \leftarrow \emptyset$ and $J_0 \leftarrow \emptyset$.
 - for i = 1 to t do:
 - $\forall j = 1, \dots, k: u_j^i \leftarrow \operatorname{argmax} \left\{ f(S_{i-1} \cup \{u\}) f(S_{i-1}) : u \in N_j \right\}.$
 - Let j_i be a uniformly random number from $\{1, ..., k\}$.
 - S_i ← S_{i-1} and J_i ← J_{i-1} .

- if $j_i \notin J_{i-1}$ then:
 - * $J_i \leftarrow J_i \cup \{j_i\}.$
 - * if $f(S_{i-1} \cup \{u_{j_i}^i\}) f(S_{i-1}) \ge 0$ then: $S_i \leftarrow S_i \cup \{u_{j_i}^i\}$.
- return S_t .
- (a) Show that $S_i \in I$ for every i = 1, ..., t.
- (b) For every $S \in I$ denote by O_S the best feasible completion of S, *i.e.*,

$$O_S = \operatorname{argmax} \{ f(S \cup T) : T \subseteq N \setminus S, S \cup T \in I \}.$$

Prove that for every i = 1, ..., t:

$$\mathbb{E}\left[f(S_i)\right] \geq \left(1 - \frac{1}{k}\right) \mathbb{E}\left[f(S_{i-1})\right] + \frac{1}{k} \mathbb{E}\left[f(S_{i-1} \cup O_{S_{i-1}})\right].$$

(c) Prove that for every i - 1, ..., t:

$$\mathbb{E}\left[f(S_i \cup O_{S_i})\right] \ge \left(1 - \frac{2}{k}\right) \mathbb{E}\left[f(S_{i-1} \cup O_{S_{i-1}})\right].$$

(d) Solve the above recursive formula and prove that for every i = 1, ..., t:

$$\mathbb{E}\left[f(S_i)\right] \ge \left(\left(1 - \frac{1}{k}\right)^i - \left(1 - \frac{2}{k}\right)^i\right) f(S^*).$$

Here S^* is some optimal solution to the problem.

Hint: note that without loss of generality $O_{\emptyset} = S^*$.

- (e) Show that there is a choice of $t \in \mathbb{N}$ such that $\mathbb{E}[f(S_t)] \ge 1/4 \cdot f(S^*)$.
- 4. Prove the following properties of continuous extensions of submodular functions.
 - (a) Recall that the concave closure $f^+:[0,1]^N\to\mathbb{R}_+$ of a set function $f:2^N\to\mathbb{R}_+$ is defined as follows:

$$f^{+}(\mathbf{x}) \triangleq \max\{\sum_{S \subseteq N} \alpha_{S} f(S) : \sum_{S \subseteq N} \alpha_{S} = 1, \alpha_{S} \geq 0 \ \forall S \subseteq N, \sum_{S \subseteq N} \alpha_{S} \mathbf{1}_{S} = \mathbf{x}\} \quad \ \forall \mathbf{x} \in [0, 1]^{N}$$

Prove that there exists $\mathbf{x} \in [0,1]^N$ for which it is NP-hard to compute $f^+(\mathbf{x})$ assuming f is submodular.

Hint: reduce from the Max-Cut problem.

(b) Let $F: [0,1]^N \to \mathbb{R}_+$ be the multilinear extensions of a submodular set function $f: 2^N \to \mathbb{R}_+$. Prove that for every $\mathbf{x} \in [0,1]^N$ and non-negative direction vector $\mathbf{d} \in \mathbb{R}_+^N$, *i.e.*, $d_i \ge 0$ for every $i \in N$, the function $g(s) \triangleq F(\mathbf{x} + s\mathbf{d})$ is concave in s (here $s \in \mathbb{R}$).