Optimization algorithms inspired by nature

Mr.sc. Marko Čupić Zagreb, June 2., 2011.

Introduction

- Emerging intelligence
- Optimization problems
- Genetic algorithm
- Ant colony optimization

Emerging intelligence

- Emerging intelligence
- Optimization problems
- Genetic algorithm
- Ant colony optimization

Introduction: Evolution

Introduction: Evolution

Evolution

(OR is it?)

Introduction: Flock of birds

Introduction: Bea swarm

Area of 50 m2, depth of 8m

Ant mound, path...

Introduction: School of fish

Introduction: conclusions

Dumb parts, properly connected into a swarm, yield smart results.

Kevin Kelly
New Rules for the New Economy
Sep 1997

Introduction: conclusions

The whole is greater than

the sum of the parts.

- Emerging intelligence
- Optimization problems
- Genetic algorithm
- Ant colony optimization

- Optimization: the procedure of finding the best solution of a problem, the solution with the lowest price
- Typically:
 - Continuous variables
 - Combinatorial problems

- State space search:
 - Find a path from S_0 to S_F
 - The solution is the **path** (e.g. 3x3 jigsaw puzzle!)
- CSP: Constraint Satisfaction Problem
 - A kind of state space search where the path from S_0 to S_F is not important. The solution is the final state itself.

- CSP: Constraint Satisfaction Problem
 - Constraints that must be satisfied are defined
 - A criterion function to optimize is given

- We've seen ways to tackle combinatorial problems
 - State space search algorithms
 - Breadth first search
 - Depth first search
 - A*
 - •
- Unfortunately, often not applicable to real problems

- The traveling salesman problem
 - Coordinates of n cities on the map are given
 - Find the shortest tour through all cities
 - Mathematically: find the shortest
 Hamiltonian cycle in the graph
 - NP hard problem (factorial complexity)

Traveling salesman problem

- Traveling salesman problem
 - 12 cities, 12 sec
 - 13 cities, 2.5 min
 - 14 cities, 0.5h
 - 15 cities, 7.6h
 - 16 cities, 4.7 days
 - ...
 - 500 cities, ????

- Other problems
 - Scheduling unscheduled students into groups for classes
 - Midterm timetable creation
 - Lab assignments timetable creation
- Enumerating all possibilities?
 - It would take much much more time than the age of the universe

- Heuristics
 - Algorithms that find sufficiently good solutions, usually do not guarantee optimality, and have low computational complexity (polynomial)
 - They can be
 - Construction based
 - Local search based

- Heuristics
 - Contruction based
 - Build the solution incrementally
 - Local search algorithms
 - Start with a completed solution and try to incrementally make it better

- Metaheuristics
 - A set of algorithmic concepts used to define heuristic methods applicable to a wide set of problems
 - A heuristic guiding problem specific heuristics

- Metaheuristics
 - Simulated annealing
 - Taboo search
 - Evolutionary algorithms
 - Ant colony optimization
 - Swarm optimization
 - Artificial imunological systems

- ...

A problem ©

- "No free lunch" Theorem, Wolpert & Macready, 1995, 1997:
 - All algorithms seeking an optimum of a goal function behave identically with respect to any performance measure, when considered averaged over all possible goal functions

• • •

A problem ©

- "No free lunch" Theorem, Wolpert & Macready, 1995, 1997:
 - Specifically, if algoritm A is better than algorithm B on some goal functions, then, roughly speaking, there must be exactly that many different goal functions on which B is better than A.

- Emerging intelligence
- Optimization problems
- Genetic algorithm
- Ant colony optimization

- Evolution as inspiration
- Population based algorithms
- Darwins theory about the origin of species

- Main settings: Darwin
 - Fertility of species there are always more descendants than required
 - Size of the population is roughly constant
 - Food supply is limited
 - For species that reproduce sexually there are no identical individuals, there are variations
 - Most of an individuals specific variations is passed on to its descendants

32

- Example problem $f(x) = 10 + x^2 10 \cdot \cos(2 \cdot \pi \cdot x)$
 - Find x for which f(x) is minimal

- How does GA work?
 - There is a population of chromosomes
 - Each chromosome represents one solution to the problem
 - Each solution has a fitness
 - In our example fitness and f(x) are opposite → higher f(x) means lower fitness

- Implemention
 - From the current generation we iteratively create the next one
 - We select individuals that have a higher probability of creating better solutions
 - They are combined using the crossover operator
 - Resulting individuals are mutated using the mutation operator

Flowchart

- Roles
 - Selection → selectional pressure → speed of convergence
 - Crossover

 searching the neighbourhood of parents
 - Mutation → getting out of local optima,
 big jumps in the solution space

- - A sequence of binary digits interpreted as a solution (value of a variable)
 - Three bit chromosome: 000, 001, ..., 111
 - Assuming we are observing a real variable from the interval [-2, 2], then:
 000=-2, 001=-1.43, ..., 111=2
 - What is the number of bits for a given precision?

- Binary chromosome
 - A more complex example
 - Solution for a function of three variables x, y, z

- Crossover with one breaking point
 - Two parents are chosen
 - A breaking point is randomly chosen
 - Crossover is performed

- Other types of crossover
 - Crossover with one breaking point
 - Crossover with n breaking points
 - Uniform crossover

– ...

- Mutation operator
 - Mutation probability is given
 - Each bit is flipped with that probability

- Can introduce a huge change!

- Selection of parents
 - Proportional selection Roulette-wheel selection
 - More fitness of an individual means higher chances in the selection process

$$probSel(i) = \frac{fit(i)}{\sum_{j=1}^{n} fit(j)}$$

Selection of parents – proportional

selection

$$len(i) = \frac{fit(i)}{\sum_{j=1}^{n} fit(j)}$$


```
P = create initial population (POP SIZE)
evaluate (P)
repeat until done:
  new population P' = \emptyset
  repeat while size (P') < POP SIZE
    select R1 and R2 from P
    \{D1, D2\} = crossover(R1, R2)
    mutate D1, mutate D2
    add D1 and D2 into P'
  end repeat
  P = P'
  evaluate (P)
end repeat
```


- Emerging intelligence
- Optimization problems
- Genetic algorithm
- Ant colony optimization

- Ants exhibit interesting behavior
 - They successfully find the shortest path to food sources

Experiments

- Explanation
 - While moving ants leave a feromon trail behind
 - An ant moves randomly, but it is more likely to go in the direction where the feromon trail is stronger

- Directly applicable to problems described by graphs
- E.g. From 1, possible next are 2,3,4

$$\tau_0 = konst$$

$$p_{ij}^k = egin{cases} rac{ au_{ij}^lpha}{\sum_{l \in N_i^k} au_{il}^lpha} & ext{if } j \in N_i^k \ 0, & ext{if } j
otin N_i^k \end{cases}$$

- Ant System algorithm
 - Using heuristic information has additional benefits on performance

Ant System algorithm

```
repeat until not done
  repeat for each ant
    create solution
    evaluate solution
  end repeat
  evaporate pheromons
  repeat for all or some ants
    update pheromons
  end repeat
end repeat
```

- Procedure: Create solution
 - An ant starts from a node
 - With respect to the probabilities, a next node is chosen, then another, and so on until the ant reaches the last node

Uz α =1, β =2:

$$p(4\rightarrow 3)=11.9\%$$

$$p(4\rightarrow 6)=23.7\%$$

$$p(4\rightarrow7)=64,4\%$$

- Procedure: Evaluate_solution
 - Calculates the total path length
 - Moving from one node to another is usually associated with a cost (cities → distance)

- Procedure: Evaporate_pheromons
 - Lowers pheromon trails on all edges by an amount

$$\tau_{ij} \leftarrow \tau_{ij} \cdot (1 - \rho)$$

- Geometric progression!
- Very costly(graph has many edges)

- Procedura: Update pheromons
 - Funkcija za odabranog mrava dodaje nove feromonske tragove iznosa:

$$\Delta \tau_{ij}^{k} = \begin{cases} 1/C^{k}, & \text{if edge } i - j \text{ is on the path of ant } k \\ 0, & \text{otherwise} \end{cases}$$

– Novo stanje je tada:

$$\tau_{ij} \leftarrow \tau_{ij} + \sum_{k=1}^{m} \Delta \tau_{ij}^{k}$$

Conclusion

- Algorithms inspired by nature a very vivid area of research!
- Methods that can efficiently tackle problems that were previously unsolvable
- New algorithms emerging (e.g. Bee Colony Optimization, Intelligent Water Drops, ...)

Links

Video about an ant colony
 http://www.inquisitr.com/14238/holy-crap-billions-of-ants-in-one-colony/

Links

- Materials
 http://java.zemris.fer.hr/nastava/ui/
- Implementations
 http://java.zemris.fer.hr/nastava/ui/ev
 oAlg.zip

