冲刺 NOIP2015 模拟赛 3

(请选手务必仔细阅读本页内容)

一、题目概况

中文名称	神经网络	旅行路线	迷之阶梯	牛棚	
英文名称	sjwl	cardlxlx	ladder	bigbrn	
输入文件	sjwl.in	cardlxlx.in	ladder.in	bigbrn.in	
输出文件	sjwl.out	cardlxlx.out	xlx.out ladder.out		
测试点时限	1000 毫秒	1000 毫秒	1000 毫秒	1000 毫秒	
测试点数目	7	5	10	15	
测试点分值	15	20	10	7	
比较方式	全文比较				
题目类型	传统	传统	传统	传统	
内存上限	128 兆字节	128 兆字节	128 兆字节	128 兆字节	

二、提交源程序文件名

C	sjwl.c	cardlxlx.c	ladder.c	bigbrn.c
C++	sjwl.cpp	cardlxlx.cpp	ladder.cpp	bigbrn.cpp
Pascal	sjwl.pas	cardlxlx.pas	ladder.pas	bigbrn.pas

三、编译命令

С	gcc -Wall -std=c99 -DCONTEST -o foo src.c -lm
C++	g++ -Wall -std=c++11 -DCONTEST -o foo src.cpp -lm
Pascal	fpc -Mtp -v0 -dCONTEST -Sgic -Tlinux -ofoo src.pas -lm

注意事项:

- 1、需要为每个题目建立英文小写的子目录。
- 2、文件名(程序名和输入输出文件名)必须使用英文小写。
- 3、 C/C++中函数 main 的返回值类型必须是 int,程序正常结束时返回值必须是 0。
- 4、 评测时采用的机器配置为: Intel Pentium G2020 2.90 GHz \times 2 处理器,4GB 内存。上述时限以此配置为准。
- 5、特别提醒: 评测在 CentOS 6.7 x86_64 操作系统上进行,各语言的编译器版本如下: GCC 4.4.7, FPC 2.6.4。

1. 神经网络

【问题描述】

问题背景:

人工神经网络(Artificial Neural Network)是一种新兴的具有自我学习能力的计算系统,在模式识别、函数逼近及贷款风险评估等诸多领域有广泛的应用。对神经网络的研究一直是当今的热门方向,兰兰同 学在自学了一本神经网络的入门书籍后,提出了一个简化模型,他希望你能帮助他用程序检验这个神经网络模型的实用性。问题描述:

在兰兰的模型中,神经网络就是一张有向图,图中的节点称为神经元,而且两个神经

元之间至多有一条边相连,下图是一个神经元的例子:

神经元〔编号为 1) 图 中, X1—X3 是信息输入渠道, Y1 — Y2 是信息输出渠道, Ci 表示神经元目前的状态, U i 是阈值,可视为神经元的一个内在参数。神经元按一定的顺序排列,构成整个神经网络。在兰兰的模型之中,神经网络中的神经元分为几层; 称为输入层、输出层, 和若干个中间层。每层神经元只向下一层的神经元输出信息,只从上一层神经元接受信息。下图是一个简单的三层神经网络的例子。

兰兰规定, Ci 服从公式: (其中 n 是网络中所有神经元的数目)

$$C_i = \sum_{(j,i) \in E} W_{j,i} C_j - U_i$$

公 式中的 Wji (可能为负值)表示连接 j 号神经元和 i 号神经元的边的权值。当 Ci 大于 0 时,该神经元处于兴奋状态,否则就处于平静状态。当神经元处于兴奋状态时,下一秒它会向其他神经元传送信号,信号的强度为 Ci 。如此. 在输入层神经元被激发之后,整个网络系统就在信息传输的推动下进行运作。现在,给定一个神经网络,及当前输入层神经元的状态 (Ci),要求你的程序运算出最后网络输出层的状态。

【输入】

输入第一行是两个整 数 n ($1 \le n \le 200$)和 p 。接下来 n 行,每行两个整数,

第 i+1 行是神经元 i 最初状态和其阈值 (Ui),非输入层的神经元开始时状态必然为 0 。再下面 P 行,每行由两个整数 i , j 及一个整数 Wij ,表示连接神经元 i 、 j 的边权值为 Wij 。

【输出】

输出包含若干行,每行有两个整数,分别对应一个神经元的编号,及其最后的状态,两个整数间以空格分隔。 仅输出最后状态非零的输出层神经元状态,并且按照编号由小到大顺序输出! 若输出层的神经元最后状态均为 0 ,则输出 NULL 。

【输入输出样例】

Input	Output	
输入样例一:	输出样例一:	
5 6	3 1	
1 0	4 1	
1 0	5 1	
0 1		
0 1		
0 1		
1 3 1		
1 4 1		
1 5 1		
2 3 1		
2 4 1		
2 5 1		

2. 旅行路线

【问题描述】

又到暑假了,住在城市 A 的 Car 想和朋友一起去城市 B 旅游。她知道每个城市都有四个飞机场,分别位于一个矩形的四个顶点上,同一个城市中两个机场之间有一条笔直的高速铁路,第 I 个城市中高速铁路了的单位里程价格为 Ti,任意两个不同城市的机场之间均有航线,所有航线单位里程的价格均为 t。

图例

那么 Car 应如何安排到城市 B 的路线才能尽可能的节省花费呢?她发现这并不是一个简单的问题,于是她来向你请教。

任务

找出一条从城市 A 到 B 的旅游路线,出发和到达城市中的机场可以任意选取,要求总的花费最少。 输出最小费用,小数点后保留 1 位。

【输入】

第一行为一个正整数 n(0 <= n <= 10),表示有 n 组测试数据。 每组的第一行有四个正整数 s,t,A,B。 $S \in (0,100]$ 。

接下来有 S 行,其中第 I 行均有 7 个正整数 xi1,yi1,xi2,yi2,xi3,yi3,Ti,这当中的(xi1,yi1),(xi2,yi2),(xi3,yi3)分别是第 I 个城市中任意三个机场的坐标,T I 为第 I 个城市高速铁路单位里程的价格。

【输出】

共有 n 行,每行一个数据对应测试数据。

【输入输出样例1】

Input	Output
1	47.5
3 10 1 3	
1 1 1 3 3 1 30	
2 5 4 7 5 2 1	
8 6 8 8 11 6 3	

3. 迷之阶梯

【问题描述】

在经过地球防卫小队的数学家连续多日的工作之后,外星人发的密码终于得以破解。它告诉我们在地球某一处的古老遗迹中,存在有对抗这次灾难的秘密道具。防卫小队立刻派出了一个直升机小分队,迅速赶到了这处遗迹。要进入遗迹,需要通过一段迷之阶梯。登上阶梯必须要按照它要求的方法,否则就无法登上阶梯。它要求的方法有以下三个限制:

- 1. 如果下一步阶梯的高度只比当前阶梯高 1,则可以直接登上。
- 2. 除了第一步阶梯外,都可以从当前阶梯退到前一步阶梯。
- 3. 当你连续退下 k 步后,你可以一次跳上不超过当前阶梯高度+2 $^{\prime}k$ 的阶梯。比如说你现在位于第 j 步阶梯,并且是从第 j+k 步阶梯退下来的,那么你可以跳到高度不超过当前阶梯高度+ $2^{\prime}k$ 的任何一步阶梯。跳跃这一次只算一次移动。

开始时我们在第一步阶梯。由于时间紧迫,我们需要用最少的移动次数登上迷之阶梯。 请你计算出最少的移动步数。

【输入】

第1行:一个整数 N,表示阶梯步数。

第2行:N个整数,依次为每层阶梯的高度,保证递增。

【输出】

一个整数,如果能登上阶梯,输出最小步数,否则输出-1。

【输入输出样例】

Input	Output
5	7
0 1 2 3 6	

【数据说明】

对于 50%的数据: 1≤N≤20。

对于 100%的数据: 1≤N≤200。 每步阶梯高度不超过 2^31-1。

要将指定块移入目标位置,必须先将空白块移入目标位置,空白块要移动到目标位置,必然是从位置(2,2)上与当前图中目标位置上的棋子交换位置,之后能与空白块交换位置的只有当前图中目标位置上的那个棋子,因此目标棋子永远无法走到它的目标位置,游戏无法完成。

4. 牛棚

【问题描述】

农夫约翰想要在他的正方形农场上建造一座正方形大牛棚。他讨厌在他的农场中砍树,想找一个能够让他在空旷无树的地方修建牛棚的地方。我们假定,他的农场划分成 N x N 的方格。输入数据中包括有树的方格的列表。你的任务是计算并输出,在他的农场中,不需要 砍树却能够修建的最大正方形牛棚。牛棚的边必须和水平轴或者垂直轴平行。

例子:

考虑下面的方格,它表示农夫约翰的农场,'!表示没有树的方格,'#'表示有树的方格

	1	2	3	4	5	6	7	8
1								
2		#				#		
3								
4								
5								
6			#					
7								
8								

最大的牛棚是 5 x 5 的,可以建造在方格右下角的两个位置其中一个。

【输入】

Line 1: 两个整数: N (1 <= N <= 1000), 农场的大小,和 T (1 <= T <= 10,000) 有树的方格的数量

Lines 2..T+1: 两个整数 (1 <= 整数 <= N), 有树格子的横纵坐标

【输出】

输出只由一行组成,约翰的牛棚的最大边长。

【输入输出样例】

Input	Output
8 3	5
2 2	
2 6	
6 3	

【数据说明】

N (1 <= N <= 1000)

1 <= T <= 10000