The above suggests defining the variable α so that $\xi = K\alpha$, so we have $\lambda = 2K\alpha$ and $w = X^{\top}\alpha$. Then we obtain the dual function as a function of α by substituting the above values of ξ, λ and w back in the Lagrangian and we get

$$G(\alpha) = K^{2} \alpha^{\top} \alpha + K \alpha^{\top} X X^{\top} \alpha - 2K \alpha^{\top} X X^{\top} \alpha - 2K^{2} \alpha^{\top} \alpha + 2K \alpha^{\top} y$$

= $-K \alpha^{\top} (X X^{\top} + K I_{m}) \alpha + 2K \alpha^{\top} y$.

This is a strictly concave function so by Theorem 40.13(4), its maximum is achieved iff $\nabla G_{\alpha} = 0$, that is,

$$2K(XX^{\top} + KI_m)\alpha = 2Ky,$$

which yields

$$\alpha = (XX^{\top} + KI_m)^{-1}y.$$

Putting everything together we obtain

$$\alpha = (XX^{\top} + KI_m)^{-1}y$$
$$w = X^{\top}\alpha$$
$$\xi = K\alpha,$$

which yields

$$w = X^{\top} (XX^{\top} + KI_m)^{-1} y. \tag{*_{wd}}$$

Earlier in $(*_{wp})$ we found that

$$w = (X^{\top}X + KI_n)^{-1}X^{\top}y,$$

and it is easy to check that

$$(X^{\top}X + KI_n)^{-1}X^{\top} = X^{\top}(XX^{\top} + KI_m)^{-1}.$$

If n < m it is cheaper to use the formula on the left-hand side, but if m < n it is cheaper to use the formula on the right-hand side.

55.2 Ridge Regression; Learning an Affine Function

It is easy to adapt the above method to learn an affine function $f(x) = x^{\top}w + b$ instead of a linear function $f(x) = x^{\top}w$, where $b \in \mathbb{R}$. We have the following optimization program

Program (RR3):

minimize
$$\xi^{\top}\xi + Kw^{\top}w$$

subject to $y - Xw - b\mathbf{1} = \xi$,