Deep Learning Frameworks

A short tutorial

Introduction

Requirements and Recommendations

- Which OS to use?
- Windows vs Linux

Pre-Requisites

Introduction

- Why?
- Automatic Differentiation

Introduction

- The elements of a good framework
- Popular Frameworks:
 - Caffe
 - Tensorflow
 - Theano
 - PyTorch
 - CNTK

Frameworks we will be discussing

- Caffe
- Tensorflow

Caffe

- Developed by UC Berkeley Machine Learning Lab
- github repository: https://github.com/BVLC/caffe

Diving in...

- Installation
- Working Principle

TIP: Always execute commands from Caffe's root directory.

Installing Caffe be like ...

He said: "I will just install Caffe and I will come back"

I'm still waiting for him

Continued ...

Setting up Data pipeline

- Beginners Nightmare
- Tips to get around

Basic Structure of a Caffe Model

Caffe uses protocol buffers for the definition of the required files,

- Solver
- Network Definition
 - The relationship between momentum, learning rate and the weight update can be defined as,

$$Vt+1=\mu Vt-\alpha \nabla L(Wt)$$

Putting it all together ...

Start Training

Basic Structure of a Caffe Model

Caffe uses protocol buffers for the definition of the required files,

Solver

Network Definition

- The relationship between momentum, learning rate and the weight update can be defined as,

$$V_t + 1 = \mu V_t - \alpha \nabla L(W_t)$$

- $-\mu$ is the momentum.
- $-\alpha$ Is the learning rate.

Debugging ...

Visualizing Architectures

- From,\$CAFFE_ROOT execute,
- python draw_net.py /path/to/architecture /path/to/output.png

Babysit training

Tensorflow

- What's different?
- Caffe vs Tensorflow
- Design Philosophy

Introduction

Installation

- Way easier than caffe.
- Create a virtual environment
- Pip install tensorflow
- For the gpu version,
 - Pip install tensorflow-gpu

Goals ...

- Tensors
- Graphs
- Sessions

Tensors

- A generalization of vectors and matrices
- Tensors can have any number of dimensions
 - tf.rank(tensor)
- Tensors can be evaluated for debugging
 - tf.eval
 - Usage: nameoftensor.eval()

Graphs

Nodes

- An operation is essentially a node

Defining a node

- a = tf.constant(5)
- -b = tf.constant(2)
- -c = tf.constant(3)
- d = tf.multiply(a,b)
- e = tf.add(c,b)
- f = tf.subtract(d,e)

Graphs

Sessions

- Session is basically a runtime context
- A graph is static and just lies there in the memory until we execute it
 - sess = tf.Session()
 - outs = sess.run(f)
 - sess.close()

See you after break ...

