Maths Eggenberg semestre 1 Conversion, changement de base

- Methode de la soustraction

1.
$$(78)_{10} = 64 + (78 - 64) = 64 + 8 + 6 = 64 + 8 + 4 + 2 = 2^6 + 2^3 + 2^2 + 2^4 = (1001110)_2$$

2.
$$(7904)_{10} = 2.60^2 + (7904 - 2.60^2) = 2.60^2 + 11.60' + (704 - 11.60') = 2.60^2 + 11.60' + 44.60^{\circ}$$

= $([02][11][44])_{60}$

- Methode de la division

1.
$$7904 / 60 = 131$$
 reste 44

131 / 60 = 2 reste 11

2 / 60 = 0 reste 2

 $(7904)_{10} = ([02][1][44])_{60}$

Exercice:

$$(07211403)_{23} = 7.23^3 + 21.23^2 + 13.23 + 3 = ([03][07][16][07])_{31}$$

Représentation des entrers signés

Complément en base 2

- · Si x > 0, 1er bit est 0, x s'écrit sur les n-1 bike restants
- · Si X < 0, 1er bit est 1, X s'écrit sur les n-1 bits restants

Notation: si x est exprimé en complément en base 2 on notera (x)₂n

Conversion simplifiée

Example:
$$(-72)_{10} = (?)_{\overline{2}8}$$

- 1. Convertir 72 en base 2: (01001000)2
- 2. Inverser les bits : (10110111)2
- 3. Apriler 1 : (10111000)2
- 4. Fin $: (-72)_{10} = (10111000)_{2}$

Reconversion en base 10

- · Si 1er bit =0 => convertir normalement
- · Si 1^{er} bit = $1 \Rightarrow x = -2^{n-1} + convertir le reste normalement$

Attention aux overflow

Example:
$$(5)_{10}$$
: $(0101)_{\frac{2}{2}}$ 8
+ $(5)_{10}$: + $(0101)_{\frac{2}{2}}$ 8

 $(10)_{10}$ \neq $(1010)_{\frac{2}{2}}$ 8

$$(1010)_{28} = -2^3 + (010)_2 = -2^3 + 2 = -6$$

Binaire à virgule on peut uniquemen travailler qu'avec des nombres à décimales finies

Représenter (13,625), en bose 2

Par tation nament:

$$13,625 = 8+4+1+\frac{1}{2}+\frac{0}{4}+\frac{1}{8}=(1101,101)_2$$

Par multiplication

$$(13)_{10} = 8 + 4 + 4 = (1101)_{2}$$

$$(0,625)_{10} = \frac{2 \cdot 0,625}{2} = \frac{1}{2},25 = \frac{1}{2} + \frac{0,25}{2}$$

$$\frac{2 \cdot 0,25}{2 \cdot 2} = \frac{0,5}{4} = \frac{0}{4} + \frac{0,5}{4}$$

$$\frac{2 \cdot 0,5}{2 \cdot 4} = \frac{1}{8} + 0$$

Nombres à virgule flottante Ecriture scientifique en base 10 ± x,y · 10² avec zeZ, y ∈ N, x ∈ {1...9}

Encodage en binaire $X_1 \dots X_8 \times_q \dots X_{31} \times_{31} \times_{31}$

 $X_q = X_{31}$: mantisse (en 32 bits: 23 bits, en 64 bits: 52 bits)

décalage: 127 décalage: 1023

$$(-1)^{\frac{1}{2}}$$
 $(2)^{(x,...x_8)}$ -127 $(1, x_q...x_{31})_2$

Exemples:

$$1 \left(1 \frac{1}{1} \frac{1}{1$$

(G,07) = (0 111 1011 GOO 111 01 00 10 1 00000) Float

PGDC et PPMC

Decomposition en
$$f$$
 acteur premier

 $68 = 2 \cdot 2 \cdot 17$
 $PADC = 2 \cdot 2 \cdot 2 = 4$
 $168 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 7$
 $PPMC = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 7 \cdot 17 = 2856$

complexité: O(n3) ou pire

Euclide:

Facile Facile

$$a \cdot b = pgdc(a,b) \cdot ppmc(a,b) \Rightarrow ppmc(a,b) = \frac{a \cdot b}{pgdc(a,b)}$$

Première pierre angulaire du RSA:

Theoreme de Bachet-Bézout:
Soit a,b
$$\in \mathbb{Z}^*$$
, $\exists x,y \in \mathbb{Z}$ t.q.
 $ax + by = pgdc(a,b)$

Euclide étendus

69	iter	r	9	X	y	iter		
initialisation (houjours)	0	168	C	1	40	2	168	68
La St	1	68	0				- 136 32	2
قع ل	1	00				_	32	
	2	32	2	1-2.0	0-2 1	3	68 N	32
		cpgd	C				68 L - 64	2
	3	(4)	2	[-2]	5		4	
	4	0	8	×		4	32	4
		7,5	TOP .			· ·	_ 32	8
x; =	×;-2-	- q - x	i-1				0	
y; =	y 1-2	- 9i · c)i-1					
6 =	GX +	by	= 169	8 -(-2) +6	8.5 = 4			

Exercice:

Trouver le pade (784, 138) avec Eudide étendus

ıler	C	q	X	y	
1	784	٥	1	C	
2	138	٥	G	1	
3	94	5	1	-5	le signe de
4	44	1	-1	6	
5	6	2	3	-17	{
6	2	7	-22	125) et signe (x) & signe (y)
7	0	3			
4 5	6	1 2 7		6	x et y change) à chaque tigne) et signe (x) = signe (y)

Theorie de l'arithmétique modulaire

L'opérateur modulo:

a mod $b = r = > \exists q \in \mathbb{Z} + q$. a + bq = r $avec : 0 \le r \le b - 1$

Example: $3 \mod 10 = 3$ 3 + 0.10 = 3 $33 \mod 10 = 3$ $33 + (-3) \cdot 10 = 3$ $-7 \mod 10 = 3$ $(-7) + 1 \cdot 10 = 3$

On dit que a et b sont congruent si:

a mod $n = b \mod n$ et on note: $a = b \mod n$

Quelques propriétées:

- 1. $a+b = a \mod n + b \mod n$
- 2. $a \cdot b = a \mod n \cdot b \mod n$