Building A Model (Step-By-Step)

5 methods of building models:

- 1. All-in
- 2. Backward Elimination
- 3. Forward Selection
- 4. Bidirectional Elimination
- 5. Score Comparison

Stepwise Regression

"All-in" - cases:

- Prior knowledge; OR
- You have to; OR
- Preparing for Backward Elimination

Backward Elimination

STEP 1: Select a significance level to stay in the model (e.g. SL = 0.05)

STEP 2: Fit the full model with all possible predictors

STEP 3: Consider the predictor with the <u>highest</u> P-value. If P > SL, go to STEP 4, otherwise go to FIN

STEP 4: Remove the predictor

STEP 5: Fit model without this variable*

FIN: Your Model Is Ready

Forward Selection

STEP 1: Select a significance level to enter the model (e.g. SL = 0.05)

STEP 2: Fit all simple regression models $y \sim x_n$ Select the one with the lowest P-value

STEP 3: Keep this variable and fit all possible models with one extra predictor added to the one(s) you already have

STEP 4: Consider the predictor with the <u>lowest</u> P-value. If P < SL, go to STEP 3, otherwise go to FIN

FIN: Keep the previous model

Bidirectional Elimination

STEP 1: Select a significance level to enter and to stay in the model

STEP 2: Perform the next step of Forward Selection (new variables must have: P < SLENTER to enter)

STEP 3: Perform ALL steps of Backward Elimination (old variables must have P < SLSTAY to stay)

STEP 4: No new variables can enter and no old variables can exit

FIN: Your Model Is Ready

All Possible Models

STEP 1: Select a criterion of goodness of fit (e.g. Akaike criterion)

STEP 2: Construct All Possible Regression Models: 2^N-1 total combinations

STEP 3: Select the one with the best criterion

FIN: Your Model Is Ready

Example: 10 columns means 1,023 models