Lab 3

Zara Waheed

15th Feb 2022

Question 5.8

a)

```
set.seed(100)

x = rnorm(100)

y = x - 2*x^2 + rnorm(100)

n = 100 p = 2 Y = X - 2X^2 + \epsilon

b)

plot(x, y)
```


The equation is quadratic as can be seen from the plot and the approximate ranges of x and y are -2 to 2 and -8 to 2, respectively.

c)

```
df = data.frame(x, y)
set.seed(100)
# i) Y = B0 + B1*X + \epsilon
fit1 = glm(y \sim x)
cv.glm(df, fit1)$delta
## [1] 9.060636 9.056661
# ii) Y = B0 + B1*X + B2*X^2 + \epsilon
fit2 = glm(y \sim poly(x, 2))
cv.glm(df, fit2)$delta
## [1] 0.6511909 0.6509495
# iii) Y = B0 + B1*X + B2*X^2 + B3*X^3 + \epsilon
fit3 = glm(y \sim poly(x, 3))
cv.glm(df, fit3)$delta
## [1] 0.6665339 0.6661944
# iv) Y = B0 + B1*X + B2*X^2 + B3*X^3 + B4*X^4 + \epsilon
fit4 = glm(y \sim poly(x, 4))
cv.glm(df, fit4)$delta
## [1] 0.6671261 0.6667107
```

d)

```
set.seed(100)
# i) Y = B0 + B1*X + \epsilon
fit5 = glm(y \sim x)
cv.glm(df, fit5)$delta
## [1] 9.060636 9.056661
# ii) Y = B0 + B1*X + B2*X^2 + \epsilon
fit6 = glm(y \sim poly(x, 2))
cv.glm(df, fit6)$delta
## [1] 0.6511909 0.6509495
# iii) Y = B0 + B1*X + B2*X^2 + X^3 + X^4
fit7 = glm(y \sim poly(x, 3))
cv.glm(df, fit7)$delta
## [1] 0.6665339 0.6661944
# iv) Y = B0 + B1*X + B2*X^2 + B3*X^3 + B4*X^4 + \epsilon
fit8 = glm(y \sim poly(x, 4))
cv.glm(df, fit8)$delta
## [1] 0.6671261 0.6667107
```

The results are exactly the same as part c).

e)

Equation ii) had the lowest error rate, which could be because it is in quadratic form and is similar to the y equation.

f)

```
summary(fit1)
##
## Call:
## glm(formula = y \sim x)
##
## Deviance Residuals:
    Min 1Q Median 3Q
##
## -9.313 -1.212 1.125 1.968 3.439
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.0504 0.2908 -7.051 2.52e-10 ***
## x
               0.5450
                         0.2863 1.903 0.0599 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 8.456659)
##
##
      Null deviance: 859.39 on 99 degrees of freedom
## Residual deviance: 828.75 on 98 degrees of freedom
## AIC: 501.26
##
## Number of Fisher Scoring iterations: 2
```

Yes these results agree with the cross validation results.

Question 6.9

a)

```
data(College)
set.seed(1)
df1 <- sample(1:dim(College)[1], dim(College)[1] / 2)</pre>
df2 <- -df1
train <- College[df1, ]</pre>
test <- College[df2, ]</pre>
b)
fit9b <- lm(Apps ~ ., data = train)</pre>
pred.lm <- predict(fit9b, test)</pre>
mean((pred.lm - test$Apps)^2)
## [1] 1135758
set.seed(100)
train.mx <- model.matrix(Apps ~., data = train[ ,-1])</pre>
test.mx <- model.matrix(Apps ~., data = test[ ,-1])</pre>
cv.ridge <- cv.glmnet(train.mx, train$Apps, alpha = 0)</pre>
lambda.ridge <- cv.ridge$lambda.min</pre>
pred.ridge <- predict(cv.ridge, s = lambda.ridge, newx = test.mx)</pre>
mean((pred.ridge - test$Apps) ^2)
## [1] 1007688
lambda.ridge
## [1] 405.8404
d)
set.seed(1)
cv.lasso <- cv.glmnet(train.mx, train$Apps, alpha = 1)</pre>
lambda.lasso <- cv.lasso$lambda.min</pre>
lambda.lasso
## [1] 2.165848
pred.lasso <- predict(cv.lasso, s = lambda.lasso, newx = test.mx)</pre>
mean((pred.lasso - test$Apps) ^2)
## [1] 1140473
e)
pcr.fit <- pcr(Apps ~ ., data = train, scale = TRUE, validation = "CV")</pre>
summary(pcr.fit)
## Data: X dimension: 388 17
## Y dimension: 388 1
## Fit method: svdpc
```

```
## Number of components considered: 17
## VALIDATION: RMSEP
## Cross-validated using 10 random segments.
\#\# (Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps
                                                 2072

      4288
      4013
      2368
      2388

      4288
      4012
      2364
      2386

                                                          1926
## CV
                4288
## adjCV
                                                   2025
                                                             1907
                                                                      1893
         7 \text{ comps} 8 \text{ comps} 9 \text{ comps} 10 \text{ comps} 11 \text{ comps} 12 \text{ comps} 13 \text{ comps}
##
                                    1811
          1905
                  1907
1903
                            1868
                                                        1820
## CV
                                              1815
            1899
## adjCV
                              1862
                                        1799
                                                  1807
                                                            1812
                                                                      1801
         14 comps 15 comps 16 comps 17 comps
##
                              1312
                    1753
## CV
           1819
                                           1236
## adjCV
            1813
                       1725
                                 1298
                                           1225
##
## TRAINING: % variance explained
##
       1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps 8
comps
## X
          32.20
                  57.78
                           65.31
                                    70.99
                                             76.37
                                                      81.27
                                                                84.8
87.85
## Apps
          13.44
                  70.93
                           71.07
                                     79.87
                                             81.15
                                                      82.25
                                                                82.3
82.33
##
        9 comps 10 comps 11 comps 12 comps 13 comps 14 comps 15
comps
## X
          90.62
                   92.91
                             94.98
                                       96.74
                                                  97.79
                                                            98.72
99.42
## Apps
         83.38
                   84.76
                             84.80
                                       84.84
                                                 85.11 85.14
90.55
##
        16 comps 17 comps
          99.88 100.00
## X
## Apps
        93.42
                    93.89
validationplot(pcr.fit, val.type = "MSEP")
```

Apps


```
pred.pcr <- predict(pcr.fit, test.mx, ncomp = 5)
mean((pred.pcr - test$Apps)^2)
## [1] 1963819</pre>
```

f)

```
set.seed(100)
pls.fit <- plsr(Apps ~ ., data = train, scale = TRUE, validation = "CV")
summary(pls.fit)
## Data:
            X dimension: 388 17
## Y dimension: 388 1
## Fit method: kernelpls
## Number of components considered: 17
##
## VALIDATION: RMSEP
## Cross-validated using 10 random segments.
          (Intercept)
##
                       1 comps
                                2 comps 3 comps
                                                   4 comps
                                                             5 comps
                                                                      6 comps
## CV
                 4288
                           2213
                                    2023
                                             1772
                                                      1627
                                                                1457
                                                                         1332
## adjCV
                 4288
                           2208
                                    2016
                                             1759
                                                      1601
                                                                1438
                                                                         1316
##
          7 comps
                   8 comps
                             9 comps 10 comps 11 comps
                                                          12 comps
                                                                     13 comps
                                                    1259
## CV
             1293
                      1272
                                1264
                                          1258
                                                               1259
                                                                         1254
## adjCV
                                                               1247
                                                                         1243
             1280
                      1261
                                1253
                                          1247
                                                    1247
          14 comps 15 comps 16 comps 17 comps
##
```

```
## CV
              1252
                        1250
                                  1250
                                            1250
## adjCV
              1240
                        1239
                                  1238
                                            1238
##
## TRAINING: % variance explained
        1 comps 2 comps 3 comps
                                   4 comps 5 comps 6 comps 7 comps 8
comps
                    50.73
## X
           27.21
                             63.06
                                      65.52
                                               70.20
                                                        74.20
                                                                 78.62
80.81
## Apps
           75.39
                    81.24
                             86.97
                                      91.14
                                               92.62
                                                        93.43
                                                                 93.56
93.68
         9 comps
                 10 comps
                           11 comps
                                     12 comps 13 comps 14 comps 15
##
comps
                     87.17
                                         91.37
## X
          83.29
                               89.15
                                                   92.58
                                                             94.42
96.98
                     93.79
                               93.83
                                         93.86
                                                   93.88
## Apps
           93.76
                                                             93.89
93.89
##
         16 comps
                  17 comps
## X
            98.78
                    100.00
## Apps
            93.89
                     93.89
validationplot(pls.fit, val.type = "MSEP")
```

Apps


```
pred.pls <- predict(pls.fit, test.mx, ncomp = 10)
mean((pred.pls - test$Apps) ^2)
## [1] 1181808</pre>
```

```
g)
```

```
# Calculate R^2 for all models
test.avg <- mean(test$Apps)</pre>
lm <- 1- mean((pred.lm - test$Apps)^2) / mean((test.avg - test$Apps)^2)
ridge <- 1- mean((pred.ridge - test$Apps)^2) / mean((test.avg -</pre>
test$Apps)^2)
lasso <- 1- mean((pred.lasso - test$Apps)^2) / mean((test.avg -</pre>
test$Apps)^2)
pcr <- 1- mean((pred.pcr - test$Apps)^2) / mean((test.avg - test$Apps)^2)</pre>
pls <- 1- mean((pred.pls - test$Apps)^2) / mean((test.avg - test$Apps)^2)
lm
## [1] 0.9015413
ridge
## [1] 0.9126437
lasso
## [1] 0.9011326
pcr
## [1] 0.8297569
pls
## [1] 0.8975493
```

All of the models are fairly accurate except PCR

Question 6.10

a)

```
set.seed(100)

p = 20
n = 1000
x = matrix(rnorm(n*p),n,p)
B = rnorm(p)
B[c(2,3,8,9,10,15,20)] = 0
e = rnorm(n)
y = x %*% B + e

b)

data <- data.frame(x, y)
#train = sample(seq(1000),100,replace=F)
train <- data[1:100,]
test <- data[101:1000,]</pre>
c)

subset = regsubsets(y~.,train, nvmax=p)
plot(summary(subset)$rss/100)
```


d)

```
test.mx <- model.matrix(y ~., test, nvmax = 20)
errors <- rep(NA, 20)
for (i in 1:20) {
  coef <- coef(subset, id = i)
   pred <- test.mx[, names(coef)] %*%coef
  errors[i] <- mean((pred - test[,21])^2)
}
plot(errors, xlab = "Variables", ylab = "MSE", type = "b", pch = 20)
axis(1, at = seq(1, 20, 1))</pre>
```



```
e)
```

```
which.min(errors)
## [1] 10
```

f)

```
coef(subset, which.min(errors))
## (Intercept) X1 X6 X11 X12 X13
## -0.06800658 -0.45731970 1.84058033 0.75763718 0.44049339 -2.48741657
## X14 X16 X17 X18 X19
## -0.49962102 1.62658317 0.66224111 0.94966314 -3.10397368
```

$\mathbf{g})$

```
errors <- rep(NA, 20)
x_colname <- colnames(x, do.NULL = FALSE, prefix = "X")
for (i in 1:20) {
  coeff <- coef(subset, id = i)</pre>
```

```
errors[i] <- sqrt(sum((B[x_colname %in% names(coeff)] - coeff[names(coeff) %in% x_colname])^2) + sum(B[!(x_colname %in% names(coeff))])^2) } plot(errors, xlab = "variables", ylab = "MSE", type = "b", pch = 19) axis(1, at = seq(1, 20, 1))
```


The plot shows a drop in the coefficient error.