Лекция 1. Красно-чёрные деревья

Даниил Михайлович Берлизов

Старший преподаватель Кафедры вычислительных систем СибГУТИ **E-mail:** sillyhat34@gmail.com

Курс «Структуры и алгоритмы обработки данных» Осенний семестр, 2021 г.

Список основной литературы

- Кормен Т. Х., Лейзерсон Ч. И., Ривест Р. Л., Штайн К. Алгоритмы: построение и анализ 3-е изд.
 - **—** М.: Вильямс, 2013
- Левитин А. В. Алгоритмы: введение в разработку и анализ. М.: Вильямс, 2006. 576 с.
- Ахо А. В., Хопкрофт Д., Ульман Д. Д. Структуры данных и алгоритмы. М.: Вильямс, 2001. 384 с.
- Курносов М. Г., Берлизов Д. М. Алгоритмы и структуры обработки информации (учебное пособие).
 - Новосибирск: Параллель, 2019. 211 с.

Двоичные деревья поиска

Двоичное дерево поиска (binary search tree, BST) — это двоичное дерево, в котором:

- каждый узел (node) имеет не более двух дочерних узлов (child nodes)
- каждый узел содержит ключ (key) и значение (value)
- ключи всех узлов левого поддерева меньше значения ключа родительского узла
- ключи всех узлов правого поддерева больше значения ключа родительского узла

Двоичные деревья поиска используются для реализации словарей (тар, associative array) и множеств (set)

Двоичные деревья поиска

Двоичные деревья поиска

- Операции над двоичным деревом имеют трудоёмкость,
 пропорциональную высоте *h* дерева
- В среднем случае высота дерева O(logn)
- В худшем случае элементы добавляются по возрастанию (убыванию)
 ключей дерево вырождается в список длины O(n)

bstree_add(1, value)
bstree_add(2, value)
bstree_add(3, value)
bstree_add(4, value)

Сбалансированные деревья поиска

Сбалансированное дерево поиска (self-balancing binary search tree) — дерево поиска, в котором высота поддеревьев любого узла различается не более, чем на заданную константу k

Сбалансированные деревья поиска:

- Красно-чёрные деревья (red-black trees)
- ABЛ-деревья (AVL trees)
- 2-3-деревья (2-3 trees)
- В-деревья (B-trees)
- AA trees
- ***** ...

Красно-чёрные деревья (red-black trees)

Автор: Rudolf Bayer

Technical University of Munich, Germany, 1972

В работе автора дерево названо «symmetric binary B-tree» В работе Р. Седжвика (1978) дано современное название «red-black tree»

- [1] Rudolf Bayer. Symmetric binary B-Trees: Data structure and maintenance algorithms // Acta Informatica. 1972. Vol. 1, No. 4 pp. 290-306.
- [2] Guibas L., Sedgewick R. A Dichromatic Framework for Balanced Trees // Proc. of the 19th Annual Symposium on Foundations of Computer Science, 1978. pp. 8-21.

Красно-чёрные деревья (red-black trees)

Операция	Средний случай (average case)	Худший случай (worst case)
Add(key, value)	O(logn)	O(logn)
Lookup(key)	O(logn)	O(logn)
Remove(key)	O(logn)	O(logn)
Min	O(logn)	O(logn)
Max	O(logn)	O(logn)

Сложность по памяти (space complexity): O(n)

Применение красно-чёрных деревьев

GNU libstdc++ (/usr/include/c++/bits)

```
std::map, std::multimap,
std::set, std::multiset
```

LLVM libc++

```
std::map, std::set
```

Java

java.util.TreeMap, java.util.TreeSet

Microsoft .NET 4.5 Framework Class Library SortedDictionary, SortedSet

Ядро Linux

https://www.kernel.org/doc/Documentation/rbtree.txt https://github.com/torvalds/linux/blob/master/tools/lib/rbtree.c

- CFS scheduler: процессы хранятся в rbtree
- Virtual memory areas (VMAs)
- High-resolution timer (organize outstanding timer requests)
- Ext3 filesystem tracks directory entries
- epoll file descriptors, cryptographic keys, ...

Красно-чёрные деревья

Красно-чёрное дерево (*red-black tree*, *RB-tree*) — это бинарное дерево поиска, для которого выполняются красно-чёрные свойства (red-black properties):

- 1. Каждый узел дерева является либо красным (red), либо чёрным (black)
- 2. Корень дерева является чёрным узлом
- 3. Каждый лист дерева (NULL) является чёрным узлом
- 4. У красного узла оба дочерних узла чёрные
- 5. У любого узла все пути от него до листьев, являющихся его потомками, содержат одинаковое количество чёрных узлов

Красно-чёрные деревья

- 1. Каждый узел дерева является либо красным (red), либо чёрным (black)
- 2. Корень дерева является чёрным узлом
- 3. Каждый лист дерева (NULL) является чёрным узлом
- 4. У красного узла оба дочерних узла чёрные
- 5. У любого узла все пути от него до листьев, являющихся его потомками, содержат одинаковое количество чёрных узлов

Красно-чёрные деревья

- Чёрная высота **bh(x)** узла (black height) это количество чёрных узлов на пути от узла х (не считая его) до листа
- Чёрная высота дерева это чёрная высота его корня.

Лемма. Красно-чёрное дерево с n внутренними узлами имеет высоту, не превышающую $2\log_2(n+1)$

Доказательство [CLRS, c. 342]

• Покажем по индукции, что любое поддерево с вершиной в узле x содержит не менее $2^{bh(x)}-1$ внутренних узлов

Базис индукции

• Если высота h узла x равна 0, то узел x — это лист (NULL), а его поддерево содержит не менее $2^{bh(x)} - 1 = 2^0 - 1 = 0$ внутренних узлов

Лемма. Красно-чёрное дерево с n внутренними узлами имеет высоту, не превышающую $2\log_2(n+1)$

Доказательство (продолжение)

Шаг индукции

- Рассмотрим узел x, который имеет положительную высоту h(x) внутренний узел с двумя потомками
- Каждый дочерний узел имеет черную высоту либо bh(x), либо bh(x) 1, в зависимости от его цвета

Лемма. Красно-чёрное дерево с n внутренними узлами имеет высоту, не превышающую $2\log_2(n+1)$

Доказательство (продолжение)

- Поскольку высота потомка x меньше высоты узла x, мы можем использовать предположение индукции и сделать вывод о том, что каждый потомок x имеет как минимум $2^{bh(x)-1}-1$ внутренних узлов
- Тогда все дерево с корнем в узле х содержит не менее

$$(2^{bh(x)-1}-1)+(2^{bh(x)-1}-1)+1=2^{bh(x)}-1$$

внутренних узлов.

Лемма. Красно-чёрное дерево с n внутренними узлами имеет высоту, не превышающую $2\log_2(n+1)$

Доказательство (окончание)

• Получили, что в дереве х число п внутренних узлов

$$n \ge 2^{bh(x)} - 1$$

• По свойству 4 как минимум половина узлов на пути от корня к листу чёрные, тогда

$$bh(x) \ge h(x) / 2$$

• Следовательно:

$$n \ge 2^{h(x)/2} - 1$$

 $\log_2(n+1) \ge h(x)/2$
 $h(x) \le 2\log_2(n+1)$

Структура узла красно-чёрного дерева

- *node.parent* указатель на родительский узел
- node.left указатель на левый дочерний узел
- node.right указатель на правый дочерний узел
- node.color цвет узла (RED, BLACK)
- **node.key** ключ
- *T.root* указатель на корень дерева

Структура узла красно-чёрного дерева

Для удобства будем считать, что все листья (узлы NULL) — это указатели на один и тот же ограничивающий узел чёрного цвета T.null (sentinel node)

Добавление узла в красно-чёрное дерево

- 1. Находим лист для вставки нового элемента
- 2. Создаем элемент и окрашиваем его в красный цвет

3. Перекрашиваем узлы и выполняем повороты

Добавили узел 4

Нарушено свойство 4 — красный узел 5 должен иметь два чёрных дочерних узла

Добавление узла в красно-чёрное дерево

```
function RBTree Add(T, key, value)
    tree = T.root
    while tree != null do
        if key < tree.key then</pre>
            tree = tree.left
        else if key > tree.key then
            tree = tree.right
        else
            return /* Ключ уже присутствует в дереве */
        end if
    end while
    node = CreateNode(key, value)
```

Добавление узла в красно-чёрное дерево

```
if T.root = NULL then
                           /* Пустое дерево */
        T.root = node
    else
        if key < tree.parent.key then</pre>
            tree.parent.left = node
        else
            tree.parent.right = node
        end if
    end if
    node.color = RED
    RBTree_Add_Fixup(T, node)
end function
```

Нарушение свойств красно-чёрного дерева

Какие свойства красно-чёрного дерева могут быть нарушены при добавлении нового узла?

- 1. Каждый узел является красным, либо чёрным
- 2. Корень дерева является чёрным
- 3. Каждый лист дерева (NULL) является чёрным
- 4. У красного узла оба дочерних узла являются чёрными
- 5. У любого узла все пути от него до листьев (его потомков) содержат одинаковое число чёрных узлов

Нарушение свойств красно-чёрного дерева

Какие свойства красно-чёрного дерева могут быть нарушены при добавлении нового узла?

- 1. Каждый узел является красным, либо чёрным выполняется
- 2. Корень дерева является чёрным может быть нарушено
- 3. Каждый лист дерева (NULL) является чёрным выполняется
- 4. У красного узла оба дочерних узла являются чёрными может быть нарушено
- 5. У любого узла все пути от него до листьев (его потомков) содержат одинаковое число чёрных узлов
- выполняется (узел замещает чёрный NULL, но сам имеет два чёрных дочерних NULL)

- Возможны **6 случаев** нарушения свойства красно-чёрного дерева (3 из них симметричны другим)
- Восстановление свойств начинаем с нового элемента и продвигаемся вверх к корню дерева

Случай 1: «дядя» U (uncle) нового узла z — красный

- Узел z красный
- Дядя *U* узла *z* красный
- Узел P, корень левого поддерева своего родителя G красный

Случай 1: «дядя» U (uncle) нового узла z — красный

- Узел *z* красный
- Дядя *U* узла *z* красный
- Узел P, корень левого поддерева своего родителя G красный G

Перекрашиваем узлы:

- *P* чёрный (*z.p*)
- *U* чёрный (*z.p.p.right*)

Случай 2:

- Дядя *U* узла *z* чёрный
- Узел z, правый потомок P красный
- Родительский узел *Р* узла *z* красный
- УзелP корень левого поддерева своего родителя G

Нарушено свойство 4 у узла *Р*

Случай 2:

- Дядя *U* узла *z* чёрный
- Узел z, правый потомок P красный
- Родительский узел *P* узла *z* красный
- Узел *P* корень левого поддерева своего родителя *G*

Путём поворота дерева *P* влево переходим к **случаю 3**

Повороты красно-чёрного дерева

$$T_{LeftRotate} = T_{RightRotate} = O(1)$$

Повороты красно-чёрного дерева

```
function LeftRotate(x)
    y = x.right
    x.right = y.left
    if y.left != NULL then
        y.left.parent = x
    y.parent = x.parent
    if x = x.parent.left then
        x.parent.left = y
    else
        x.parent.right = y
    y.left = x
    x.parent = y
end function
```

```
function RightRotate(x)
   y = x.left
   x.left = y.right
   if y.right != NULL then
        y.right.parent = x
   y.parent = x.parent
   if x = x.parent.left then
        x.parent.left = y
   else
        x.parent.right = y
   y.right = x
   x.parent = y
end function
```

$$T_{LeftRotate} = T_{RightRotate} = O(1)$$

Случай 3:

- Дядя *U* узла *z* чёрный
- Узел z, левый потомок P красный
- Родительский узел *Р* узла *z* красный
- УзелP корень левого поддерева своего родителя G

Нарушено свойство 4 у узла *Р*

Случай 3:

- Дядя *U* узла *z* чёрный
- Узел z, левый потомок P красный
- Родительский узел *P* узла *z* красный
- Узел P корень левого поддерева своего родителя G

1. Перекрашиваем вершины:

- *P* чёрный
- *G* красный
- 2. Поворачиваем дерево G вправо

Случаи 4, 5 и 6 симметричны случаям 1, 2 и 3

- Узел *P* это корень *правого* поддерева своего родителя *G*
- Узел z красный
- Родительский узел *P* узла *z* красный
- Узел U чёрный или красный
- Узел *z левый* или правый дочерний элемент *P*


```
function RBTree Add Fixup(T, z)
   while z.parent.color = RED do
        if z.parent = z.parent.parent.left then
            /* z belongs to left subtree of G */
            y = z.parent.parent.right; /* Uncle */
            if y.color = RED then
                /* Case 1 */
                z.parent.color = BLACK
                v.color = BLACK
                z.parent.parent.color = RED
                z = z.parent.parent
            else
                if z = z.parent.right then
                    /* Case 2 --> Case 3 */
                    z = z.parent
                    RBTree RotateLeft(T, z)
                end if
```

```
/* Case 3 */
z.parent.color = BLACK
z.parent.parent.color = RED
RBTree_RotateRight(T, z.parent.parent)
end if
else
    /* z belongs to right subtree of G */
    /* ... */
end if
end while
T.root.color = BLACK
end function
T_AddFixup = O(logn)
```

- Цикл **while** повторно выполняется только в случае 1, указатель z перемещается вверх по дереву на 2 уровня. Количество итераций цикла в худшем случае O(logn).
- Никогда не выполняется больше двух поворотов (в случаях 2 и 3 цикл **while** завершает работу)

Дальнейшее чтение

- 1. Изучить алгоритм удаления узлов из красно-чёрного дерева [CLRS 3ed., с. 356]
- 2. Познакомиться с устройством АВЛ-деревьев:
 - Левитин А. В. Алгоритмы: введение в разработку и анализ. М.: Вильямс, 2006. 576 с. **(С. 267-271)**
 - Вирт Н. Алгоритмы и структуры данных. М.: Мир, 1989. 360 с. **(С. 272-286)**

ご清聴ありがとうございました!

Даниил Михайлович Берлизов

Старший преподаватель Кафедры вычислительных систем СибГУТИ **E-mail:** sillyhat34@gmail.com

Курс «Структуры и алгоритмы обработки данных» Осенний семестр, 2021 г.

bstree_add(4, value)

bstree_add(4, value)

