The Three Paradigms of HCI

MC750 - Construção de Interfaces Homem-Computador

Tiago Chedraoui Silva RA:082941

Universidade Estadual de Campinas

10 de março de 2011

Outline

Introduction

- Introduction
 - The Model and the Problem
 - The Integrated Approach
- Bad News: Hardness Results
 - Hardness of PP-Partitioning of Haplotype Matrices
 - As cinco transformações
- Good News: Tractability Results
 - Perfect Path Phylogenies
 - Tractability of PPP-Partitioning of Genotype Matrices

What is haplotyping and why is it important?

You hopefully know this after the previous three talks...

The Model and the Problem

Introduction

General formalization of haplotyping.

Inputs

- A genotype matrix G.
- The rows of the matrix are taxa / individuals.
- The columns of the matrix are SNP sites / characters.

Outputs

- A haplotype matrix H.
- Pairs of rows in H explain the rows of G.
- The haplotypes in H are biologically plausible.

Good News: Tractability Results

Introduction

Our formalization of haplotyping.

Inputs

- A genotype matrix G.
- The rows of the matrix are individuals / taxa.
- The columns of the matrix are SNP sites / characters.
- The problem is directed: one haplotype is known.
- The input is biallelic: there are only two homozygous states (0) and 1) and one heterozygous state (2).

Outputs

- A haplotype matrix H.
- Pairs of rows in H explain the rows of G.
- The haplotypes in H form a perfect phylogeny.

We can do perfect phylogeny haplotyping efficiently, but ...

- Data may be missing.
 - This makes the problem NP-complete . . .
 - even for very restricted cases.

Solutions:

- Additional assumption like the rich data hypothesis.
- No perfect phylogeny is possible.
 - This can be caused by chromosomal crossing-over effects.
 - This can be caused by incorrect data.
 - This can be caused by multiple mutations at the same sites.

Solutions:

- Look for phylogenetic networks.
- Correct data
- Find blocks where a perfect phylogeny is possible.

How blocks help in perfect phylogeny haplotyping.

- Partition the site set into overlapping contiguous blocks.
- Compute a perfect phylogeny for each block and combine them.
- Use dynamic programming for finding the partition.

Genotype matrix

no perfect phylogeny

How blocks help in perfect phylogeny haplotyping.

- Partition the site set into overlapping contiguous blocks.
- Compute a perfect phylogeny for each block and combine them.
- Use dynamic programming for finding the partition.

perfect phylogeny

How blocks help in perfect phylogeny haplotyping.

- Partition the site set into overlapping contiguous blocks.
- Compute a perfect phylogeny for each block and combine them.
- Use dynamic programming for finding the partition.

How blocks help in perfect phylogeny haplotyping.

- Partition the site set into overlapping contiguous blocks.
- Compute a perfect phylogeny for each block and combine them.
- Use dynamic programming for finding the partition.

Objective of the integrated approach.

- 1 Partition the site set into noncontiguous blocks.
- Compute a perfect phylogeny for each block and combine them.
- Compute partition while computing perfect phylogenies.

Genotype matrix

no perfect phylogeny

Objective of the integrated approach.

- Partition the site set into noncontiguous blocks.
- Compute a perfect phylogeny for each block and combine them.
- Compute partition while computing perfect phylogenies.

The formal computational problem.

We are interested in the computational complexity of the function χ_{PP} :

- It gets genotype matrices as input.
- It maps them to a number k.
- This number is minimal such that the sites can be covered by k sets, each admitting a perfect phylogeny.
 (We call this a pp-partition.)

Finding pp-partitions of haplotype matrices.

We start with a special case:

- The inputs M are already haplotype matrices.
- The inputs M do not allow a perfect phylogeny.
- What is $\chi_{PP}(M)$?

Example

No perfect phylogeny is possible.

M: 1 0 0 0

0 0 1 0

1 0 1 0

Hardness of PP-Partitioning of Haplotype Matrices

Finding pp-partitions of haplotype matrices.

We start with a special case:

- The inputs M are already haplotype matrices.
- The inputs M do not allow a perfect phylogeny.
- What is $\chi_{PP}(M)$?

Perfect phylogeny Perfect phylogeny $\chi_{PP}(M) = 2.$

Bad news about pp-partitions of haplotype matrices.

Theorem

Introduction

Finding optimal pp-partition of haplotype matrices is equivalent to finding optimal graph colorings.

Proof sketch for first direction.

- \bigcirc Let G be a graph.
- Build a matrix with a column for each vertex of G.
- For each edge of G add four rows inducing the submatrix $\begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$.
- The submatrix enforces that the columns lie in different perfect phylogenies.

Implications for pp-partitions of haplotype matrices.

Corollary

If $\chi_{PP}(M) = 2$ for a haplotype matrix M, we can find an optimal pp-partition in polynomial time.

Corollary

Computing χ_{PP} for haplotype matrices is

- NP-hard.
- not fixed-parameter tractable, unless P = NP,
- very hard to approximate.

Finding pp-partitions of genotype matrices.

Now comes the general case:

- The inputs M are genotype matrices.
- The inputs M do not allow a perfect phylogeny.
- What is $\chi_{PP}(M)$?

The end of interface stability

The growth of techno-dependency

The growth in hyperconnectivity

- Habilidade das novas ferramentas de melhorar a eficiência e ganhar tempo
- Mas, há um aumento no consumo de tempo devido a presença digital

The end of the ephemeral

Bad news about pp-partitions of haplotype matrices.

Theorem

Finding optimal pp-partition of genotype matrices is at least as hard as finding optimal colorings of 3-uniform hypergraphs.

Proof sketch.

- \bigcirc Let G be a 3-uniform hypergraph.
- Build a matrix with a column for each vertex of G.
- \odot For each hyperedge of G add four rows inducing the submatrix $\begin{pmatrix} 2 & 2 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.
- The submatrix enforces that the three columns do not all lie in the same perfect phylogeny.

Good News: Tractability Results

Introduction

Implications for pp-partitions of genotype matrices.

Corollary

Even if we know $\chi_{PP}(M) = 2$ for a genotype matrix M, finding a pp-partition of any fixed size is still

- NP-hard.
- not fixed-parameter tractable, unless P = NP,
- very hard to approximate.

Good News: Tractability Results

Introduction

Automatic optimal pp-partitioning is hopeless, but...

- The hardness results are worst-case results for highly artificial inputs
- Real biological data might have special properties that make the problem tractable.
- One such property is that perfect phylogenies are often perfect path phylogenies:
 - In HapMap data, in 70% of the blocks where a perfect phylogeny is possible a perfect path phylogeny is also possible.

Perfect Path Phylogenies

Introduction

Example of a perfect path phylogeny.

Genotype matrix

	2	2	2	
G:	0	2	0	
	2	0	0	
	^	^	0	

Haplotype matrix

	Α	В	C	
	1	0	0	
	0	1	1	
	0	0	0	
:	0	1	0	
	0	0	0	
	1	0	0	
	0	0	0	
	0	1	1	

Perfect path phylogeny

The modified formal computational problem.

We are interested in the computational complexity of the function χ_{PPP} :

- It gets genotype matrices as input.
- It maps them to a number k.
- This number is minimal such that the sites can be covered by k sets, each admitting a perfect path phylogeny. (We call this a ppp-partition.)

Tractability of PPP-Partitioning of Genotype Matrices

Good news about ppp-partitions of genotype matrices.

Theorem

Introduction

Optimal ppp-partitions of genotype matrices can be computed in polynomial time.

Algorithm

- Build the following partial order:
 - Can one column be above the other in a phylogeny?
 - Can the columns be the two children of the root of a perfect path phylogeny?
- Cover the partial order with as few compatible chain pairs as possible.
 - For this, a maximal matching in a special graph needs to be computed.

Summary

- Finding optimal pp-partitions is intractable.
- It is even intractable to find a pp-partition when just two noncontiguous blocks are known to suffice.
- For perfect path phylogenies, optimal partitions can be computed in polynomial time.