Introduction to Parallel and Distributed Systems

Stephane Genaud

September 8, 2015

Outline

Introduction on Use Cases

Broad fields of parallelism

Table of Contents

Introduction on Use Cases

Broad fields of parallelism

Use Case 1 - Fluid Simulation Visualization

Fluid Simulation

- In a fluid dynamics lab, visualization of fluid circulation.
- Need: from the numerical simulation data, render one particular instant of the simulation (10⁷ points, 8 GB data in RAM)

Use Case 1 - Car Model

- In the car industry, a R&D department works on CAD models.
- Need: compute the heat transfer from the engine to the rest of the vehicle on a 10⁸ cell mesh (100 GB of data in mesh).

Use Case 2 - Scene Rendering

- In the film industry, produce an animated cartoon based on digital images.
- Need: compute the scene rendering for 10⁵ images

Use Case 3 - RC5-72

Breaking a Ciphering Key

- Find the cryptographic key used to cipher a message.
- Need: scan all possible keys using brute force and find which one matches.
- See for example the RSA Secret-Key Challenge

Use-Case 4: Social Network

- Compute properties on the graph
- Need: Recommend a user new connections, i.e people he/she may know by transitivity. Do it for 10⁶ users.

Table of Contents

Introduction on Use Cases

Broad fields of parallelism

Multi Threaded

• key technologies: OpenMP - CUDA - OpenCL

architecture : single host

Message-passing

key technologies: MPI

 architecture: multi-hosts connected through fast network (clusters)

Bag-of-tasks

• key technologies: BOINC - Globus derivatives

 architecture: distributed hosts connected through LANs or WANs. Grids, Clouds, Internet Computing

MapReduce

• key technologies: Google MapReduce - Hadoop

 architecture: multi-hosts connected through fast network (clusters)