

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé muni d'une sous-tribu de \mathcal{F} notée \mathcal{G} et $\{\mathcal{F}_t\}_{t\geq 0}$ une filtration sur Ω .

Exercice 1:

Soient F_1 et F_2 deux tribus. Montrer que:

- 1. $F_1 \cap F_2$ est une tribu.
- 2. En général, $F_1 \cup F_2$ n'est pas une tribu.

Exercice 2:

- 1. Si $X \in L^2$ et $\mathbb{E}(X|G) = Y$ et $\mathbb{E}(X^2|G) = Y^2$, montrer que X = Y.
- 2. Soient X, Y deux variables aléatoires telles que la variable aléatoire X Y est indépendante de G, d'espérance m et de variance σ^2 . On suppose que Y est G-mesurable.
 - (a) Calculer $\mathbb{E}(X Y|G)$.
 - (b) En déduire $\mathbb{E}(X|G)$.
 - (c) Calculer $\mathbb{E}((X-Y)^2|G)$.
 - (d) En déduire $\mathbb{E}(X^2|G)$.

Exercice 3:

Soient X_1, \ldots, X_n des variables aléatoires i.i.d. intégrables, et soit $S = \sum_{i=1}^n X_i$.

- 1. Calculer $\mathbb{E}[S|X_1]$.
- 2. Calculer $\mathbb{E}[X_1|S]$.

Exercice 4:

Soit $X = X_1 + X_2$. On suppose que X_1 est indépendante de G, que X_2 est G-mesurable, et que X_1 est gaussienne.

- 1. Calculer $\mathbb{E}[X|G]$ et Var(X|G).
- 2. Calculer $\mathbb{E}[e^{\lambda X}|G]$ pour un certain $\lambda \in \mathbb{R}$.

Exercice 5:

Soit X une variable aléatoire intégrable. Montrer que la famille $(\mathbb{E}[X|\mathcal{F}_t], t \geq 0)$ est une martingale.

Exercice 6:

Soit $(M_t, t \ge 0)$ une \mathcal{F}_t -martingale de carré intégrable (telle que $\mathbb{E}[M_t^2]$ soit finie, pour tout t).

- 1. Montrer que $\mathbb{E}[(M_t M_s)^2 | \mathcal{F}_s] = \mathbb{E}[M_t^2 | \mathcal{F}_s] M_s^2$ pour t > s.
- 2. Montrer que $\mathbb{E}[(M_t M_s)^2] = \mathbb{E}[M_t^2] \mathbb{E}[M_s^2]$ pour t > s.
- 3. Montrer que la fonction Φ définie par $\Phi(t) = \mathbb{E}[M_t^2]$ est croissante.

Exercice 7:

1. Montrer que si X est de carré intégrable, alors $X_t^2 - \mathbb{E}[X_t^2]$ est une martingale.

Exercice 8:

Soit (S_n) une marche aléatoire simple symétrique sur \mathbb{Z} , et $\mathcal{F}_n = \sigma(S_1, \ldots, S_n)$.

- 1. Montrer que (S_n) est une martingale pour la filtration (\mathcal{F}_n) .
- 2. Montrer que $(S_n^2 n)$ est une martingale pour la filtration (\mathcal{F}_n) .
- 3. Montrer que $(S_n^3 3nS_n)$ est une martingale pour la filtration (\mathcal{F}_n) .