

General Certificate of Education

Mathematics 6360

MPC1 Pure Core 1

Mark Scheme

2006 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

M	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
A	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is for method and accuracy				
E	mark is for explanation				
$\sqrt{\text{or ft or F}}$	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
–x EE	deduct x marks for each error	G	graph		
NMS	no method shown	c	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC1

MPC1		ı		T
Q	Solution	Marks	Total	Comments
1(a)	$\left(\sqrt{5}\right)^2 + 2\sqrt{5} - 2\sqrt{5} - 4 = 1$	M1		Multiplying out or difference of two
			2	squares attempted
		A1	2	Full marks for correct answer /no working
(a)	[3.61		Title .
(b)	$\sqrt{8} = 2\sqrt{2} ; \sqrt{18} = 3\sqrt{2}$	M1		Either correct
	Answer = $5\sqrt{2}$	A1	2	Full marks for correct answer /no working
	Total		4	
2(a)(i)	$15 + 4k = 7 \Rightarrow 4k = -8 \Rightarrow k = -2$	B1	1	AG (condone verification or $y = -2$)
(ii)	$\frac{1}{2}(x_1 + x_2)$ or $\frac{1}{2}(y_1 + y_2)$	M1		
	$2^{(1)}$ $2^{(3)}$ $2^{(3)}$			
	Midpoint coordinates $\left(3, -\frac{1}{2}\right)$	A1	2	One coordinate correct implies M1
	(3, 2)	AI	2	One coordinate correct implies wit
	2 7			
(b)	Attempt at $\Delta y / \Delta x$ or $y = -\frac{3}{4}x + \frac{7}{4}$	M1		(Not x over y)(may use M instead of A/B)
	' '			
	Gradient $AB = -\frac{3}{4}$	A1	2	-0.75 etc any correct equivalent
	4		_	and the second of the second o
(c)(i)	$m_1 m_2 = -1$ used or stated	1		
(0)(1)	4	1		Follow through their gradient of AB from
	Hence gradient $AC = \frac{4}{3}$	A1√	2	part (b)
	3	711	2	purt (b)
	4			Follow through their gradient of AC from
(ii)	$y-1 = \frac{4}{3}(x-1)$ or $3y = 4x-1$ etc	B1√	1	part (c) (i) must be normal & (1,1) used
	3		_	First (c) (c) (-,-)
	3	M1		Putting $y = 0$ in their AC equation and
(iii)	$y = 0 \qquad \Rightarrow x - 1 = -\frac{3}{4}$	1411		attempting to find x
	$x = \frac{1}{4}$	A1	2	CSO. C has coordinates $\left(\frac{1}{4},0\right)$
	4	111	_	$\left(\begin{array}{c} 250. \text{ c has coordinates} \\ 4,0 \end{array}\right)$
	Total		10	
3(a)(i)	$(x-2)^2$	B1		p=2
	+ 5	B1	2	q=5
(ii)	Minimum point $(2, 5)$ or $x = 2$, $y = 5$	B2√	2	B1 for each coordinate correct or ft
				Alt method M1, A1 sketch,
				differentiation
(b)(i)	$12 - 2x = x^2 - 4x + 9$			Or $x^2 - 4x + 9 + 2x = 12$
	$\Rightarrow x^2 - 2x - 3 = 0$	B1	1	\mathbf{AG} (be convinced) (must have = 0)
				(
(ii)	(x-3)(x+1) = 0	M1		Attempt at factors or quadratic formula or
				one value spotted
	x=3, -1	A1		Both values correct & simplified
	Substitute one value of x to find y	M1		May substitute into equation for L or C
	Points are (3, 6) and (-1, 14)	A1	4	y-coordinates correct linked to x values
	Total		9	

MPC1 (cont)

MPC1 (cont		1		
Q	Solution	Marks	Total	Comments
4(a)	$(m+4)^2 = m^2 + 8m + 16$	B1		Condone $4m + 4m$
	$b^2 - 4ac = (m+4)^2 - 4(4m+1) = 0$	M1		$b^2 - 4ac$ (attempted and involving m's
	$m^2 + 8m + 16 - 16m - 4 = 0$			and no x's) or $b^2 - 4ac = 0$ stated
	$\Rightarrow m^2 - 8m + 12 = 0$	A1	3	AG (be convinced – all working correct- = 0 appearing more than right at the end)
(b)	(m-2)(m-6) = 0	M1		Attempt at factors or quadratic formula
	m=2, $m=6$	A1	2	SC B1 for 2 or 6 only without working
	Total		5	
5(a)	$(x-4)^2 + (y+3)^2$	B2		B1 for one term correct
	$(11+16+9=36)$ RHS = 6^2	B1	3	Condone 36
(b)(i)	Centre $(4, -3)$	B1√	1	Ft their a and b from part (a)
(ii)	Radius = 6	B1√	1	Ft their r from part (a)
(c)(i)	$CO^2 = (-4)^2 + 3^2$	M1		Accept + or – with numbers but must add
(0)(1)	CO = 5	A1√	2	Full marks for answer only
	CO – 3	AIV	2	Tun marks for answer only
(ii)	Considering CO and radius	M1		
	$CO < r \Rightarrow O$ is inside the circle	A1√	2	Ft outside circle when 'their $CO' > r$ or on the circle when 'their $CO' = r$ SC B1 \checkmark if no explanation given
	Total		9	
6(a)(i)	p(2) = 8 + 4 - 20 + 8	M1		Finding p(2) M0 long division
	$=0$, $\Rightarrow x-2$ is a factor	A1	2	Shown = 0 AND conclusion/statement about $x - 2$ being a factor
(ii)	Attempt at quadratic factor	M1		or factor theorem again for 2 nd factor
	$x^2 + 3x - 4$	A1		or $(x+4)$ or $(x-1)$ proved to be a factor
	p(x) = (x-2)(x+4)(x-1)	A1	3	(v - s) es (v - s) pro vou so es u succes
			2	
(b)	<i>y</i>	B1		Graph through (0,8) 8 marked
		B1√		Ft "their factors" 3 roots marked on x-axis
	-4 0 1 $2 \rightarrow x$	M1 A1	4	Cubic curve through their 3 points Correct including x- intercepts correct Condone max on y-axis etc or slightly wrong concavity at ends of graph
	Total		9	

MPC1 (cont)

MPC1 (cont	Solution	Marks	Total	Comments
	dV	M1	Total	One term correct unsimplified
7(a)(1)	$\frac{\mathrm{d}V}{\mathrm{d}t} = 2t^5 - 8t^3 + 6t$	A1		Further term correct unsimplified
	d <i>t</i>	A1	3	All correct unsimplified (no + c etc)
(**)	d^2V	M1		One term FT correct unsimplified
(11)	$\frac{d^2V}{dt^2} = 10t^4 - 24t^2 + 6$	A1	2	CSO . All correct simplified
	\mathbf{u}_{i}			1
(b)	Substitute $t = 2$ into their $\frac{dV}{dt}$	M1		
	Substitute $t = 2$ into their $\frac{dV}{dt}$ (= 64 - 64 + 12) = 12	A1	2	CSO . Rate of change of volume is
	(-04-04+12)-12	711		$12\text{m}^3\text{ s}^{-1}$
	.117			
(c)(i)	$t = 1 \Rightarrow \frac{\mathrm{d}V}{\mathrm{d}t} = 2 - 8 + 6$	M1		Or putting their $\frac{dV}{dt} = 0$
	$\mathrm{d}t$			u_{i}
	$= 0 \Rightarrow$ Stationary value	A1	2	CSO. Shown to = 0 AND statement
				(If solving equation must obtain $t = 1$)
(ii)	$t=1 \Rightarrow \frac{\mathrm{d}^2 V}{\mathrm{d}t^2} = -8$	M1		Sub $t = 1$ into their second derivative or
	a_{t}			equivalent full test.
	Maximum value	A1√	2	Ft if their test implies minimum
	Total		11	
8(a)	$y_D = 3 + 1 = 4$ or $y_C = 12 - 8 = 4$	M1		Attempt at either y coordinate
	Area $ABCD = 3 \times 4 = 12$	A1	2	
(b)(i)	$x^3 - \frac{x^4}{4}$ (+C)	M1		Increase one power by 1
	4 (+ C)	A1	2	One term correct unsimplified
		A 1	3	All correct unsimplified (condone no +C)
(ii)	Sub limits –1 and 2 into their (b) (i) ans	M1		May use both $-1, 0$ and $0, 2$ instead
	$[8-4] - \left[-1 - \frac{1}{4} \right] = 5\frac{1}{4}$	A1		
	$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $			
	Shaded area = "their" (rectangle– integral)	M1		Alt method: difference of two integrals
	$=12-5\frac{1}{4}=6\frac{3}{4}$		_	999
	4 4	A1	4	CSO. Attempted M2, A2
, <u></u>		,		
(c)(i)	$\frac{dy}{dx} = 6x - 3x^2$	M1	2	One term correct
	uλ	A1	2	All correct (no +C etc)
(ii)	When $x = 1$, $y = 2$ when $x = 1$,	B1		May be implied by correct tgt equation
	$\frac{dy}{dx}$ = 3 as 'their' grad of tgt	M1 ^		Et their desirective when we 1
	uλ	M1√	2	Ft their derivative when $x = 1$
	Tangent is $y-2=3(x-1)$	A1	3	Any correct form $y = 3x - 1$ etc
				W 1
(iii)	Decreasing when $\frac{dy}{dx} = 6x - 3x^2 < 0$	M1		Watch no fudging here!! May work
				backwards in proof.
	$3(2x-x^2) < 0 \Rightarrow x^2 - 2x > 0$	A1	2	AG (be convinced no step incorrect)
(d)	Two critical points 0 and 2	M1		Marked on diagram or in solution
	x > 2, $x < 0$ ONLY	A1	2	or M1 A0 for $0 < x < 2$ or $0 > x > 2$
				SC B1 for $x > 2$ (or $x < 0$)
	Total		18	`
	TOTAL		75	