

SEQUENCE LISTING

<110> Tel Aviv University Future Technology Development L.P.
Gazith, Ehud

<120> PEPTIDES ANTIBODIES DIRECTED THEREAGAINST AND METHODS USING SAME
FOR DIAGNOSING AND TREATING AMYLOID-ASSOCIATED DISEASES

<130> 31230

<150> US 10/235,852
<151> 2002-09-06

<150> US 60/392,266
<151> 2002-07-01

<150> US 60/352,578
<151> 2002-07-31

<150> US 60/436,453
<151> 2002-12-27

<150> PCT/IL03/00079
<151> 2003-01-30

<150> US 10/901,243
<151> 2004-07-29

<150> US 60/483,180
<151> 2003-06-30

<150> US 60/514,974
<151> 2003-10-29

<150> PCT/IL2004/000577
<151> 2004-06-29

<160> 181

<170> PatentIn version 3.5

<210> 1
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 1

Asn Phe Gly Ala Ile Leu Ser Ser
1 5

<210> 2
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 2
Ala Phe Gly Ala Ile Leu Ser Ser
1 5

<210> 3
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 3
Asn Ala Gly Ala Ile Leu Ser Ser
1 5

<210> 4
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 4
Asn Phe Ala Ala Ile Leu Ser Ser
1 5

<210> 5
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 5
Asn Phe Gly Ala Ala Leu Ser Ser
1 5

<210> 6
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 6
Asn Phe Gly Ala Ile Ala Ser Ser
1 5

<210> 7
<211> 5
<212> PRT
<213> Artificial sequence

<220>
<223> Consensus sequence

<220>
<221> misc_feature
<222> (1)..(1)
<223> Any aromatic amino acid

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any amino acid, but glycine

<220>
<221> misc_feature
<222> (3)..(5)
<223> Any amino acid

<400> 7

Xaa Xaa Xaa Xaa Xaa
1 5

<210> 8
<211> 6
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 8

Ala Phe Gly Ala Ile Leu
1 5

<210> 9
<211> 6
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 9

Asn Ala Gly Ala Ile Leu
1 5

<210> 10
<211> 6
<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic peptide

<400> 10

Asn Phe Gly Ala Ala Leu

1 5

<210> 11

<211> 6

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic peptide

<400> 11

Asn Phe Gly Ala Ile Ala

1 5

<210> 12

<211> 6

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic peptide

<400> 12

Asn Phe Ala Ala Ile Leu

1 5

<210> 13

<211> 5

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic peptide

<400> 13

Phe Ala Ala Ile Leu

1 5

<210> 14

<211> 9

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic peptide

<400> 14

Asn Phe Leu Val His Ser Ser Asn Asn
1 5

<210> 15
<211> 7
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 15

Asn Phe Leu Val His Ser Ser
1 5

<210> 16
<211> 6
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 16

Phe Leu Val His Ser Ser
1 5

<210> 17
<211> 5
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 17

Asn Phe Leu Val His
1 5

<210> 18
<211> 5
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 18

Phe Leu Val His Ser
1 5

<210> 19

<211> 4
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 19

Phe Leu Val His
1

<210> 20
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 20

Asn Phe Gly Ser Val Gln Val Phe
1 5

<210> 21
<211> 6
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 21

Asn Phe Gly Ser Val Gln
1 5

<210> 22
<211> 5
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 22

Asn Phe Gly Ser Val
1 5

<210> 23
<211> 5
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 23
Phe Gly Ser Val Gln
1 5

<210> 24
<211> 4
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 24

Gly Ser Val Gln
1

<210> 25
<211> 4
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 25

Phe Gly Ser Val
1

<210> 26
<211> 6
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 26

Asn Ala Gly Ser Val Gln
1 5

<210> 27
<211> 5
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 27

Asp Phe Asn Lys Phe
1 5

<210> 28
<211> 4
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 28

Phe Asn Lys Phe
1

<210> 29
<211> 4
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 29

Asp Phe Asn Lys
1

<210> 30
<211> 3
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 30

Asp Phe Asn
1

<210> 31
<211> 5
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 31

Asp Ala Asn Lys Phe
1 5

<210> 32
<211> 6
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 32

Leu Phe Asn Gln Thr Gly
1 5

<210> 33
<211> 6
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 33

Ser Phe Phe Ser Phe Leu
1 5

<210> 34
<211> 5
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 34

Phe Glu Asn Lys Phe
1 5

<210> 35
<211> 5
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 35

Ser Phe Asn Asn Gly
1 5

<210> 36
<211> 6
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 36

Leu Gln Asn Phe Thr Leu

1 5

<210> 37
<211> 6
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 37

Thr Leu Ile Phe Gly Gly
1 5

<210> 38
<211> 6
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 38

Arg Ala Leu Asp Phe Ala
1 5

<210> 39
<211> 6
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 39

Gly Leu Val Phe Val Ser
1 5

<210> 40
<211> 6
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 40

Gly Thr Phe Gln Ile Asn
1 5

<210> 41
<211> 6
<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic peptide

<400> 41

Ser Gly Ile Phe Thr Asn

1 5

<210> 42

<211> 5

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic peptide

<400> 42

Glu Arg Gly Phe Phe

1 5

<210> 43

<211> 6

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic peptide

<400> 43

Arg Asp Phe Leu Asp Arg

1 5

<210> 44

<211> 5

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic peptide

<400> 44

Ser Asn Phe Leu Asn

1 5

<210> 45

<211> 7

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic peptide

<400> 45

Asn Phe Leu Val His Pro Pro
1 5

<210> 46
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 46

Asn Phe Gly Ala Ile Leu Ser Ser
1 5

<210> 47
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 47

Asn Ile Gly Ala Ile Leu Ser Ser
1 5

<210> 48
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 48

Asn Leu Gly Ala Ile Leu Ser Ser
1 5

<210> 49
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 49

Asn Val Gly Ala Ile Leu Ser Ser
1 5

<210> 50

```

<211> 24
<212> DNA
<213> Artificial sequence

<220>
<223> Single strand DNA oligonucleotide

<400> 50
aatgcacaaca ccgcgcacctg cgcg 24

<210> 51
<211> 30
<212> DNA
<213> Artificial sequence

<220>
<223> Single strand DNA oligonucleotide

<400> 51
acccagcgcc tggcgaactt tctggtgcat 30

<210> 52
<211> 30
<212> DNA
<213> Artificial sequence

<220>
<223> Single strand DNA oligonucleotide

<400> 52
agcagcaaca actttggcgc gattctgagc 30

<210> 53
<211> 33
<212> DNA
<213> Artificial sequence

<220>
<223> Single strand DNA oligonucleotide

<400> 53
agcaccaacg tgggcagcaa cacctattaa tga 33

<210> 54
<211> 18
<212> DNA
<213> Artificial sequence

<220>
<223> Single strand DNA oligonucleotide

<400> 54
tcgttgtca taattact 18

<210> 55
<211> 30
<212> DNA

```

```

<213> Artificial sequence

<220>
<223> Single strand DNA oligonucleotide

<400> 55
ccgcgctaag actcgtcgtg cttgcacccg 30

<210> 56
<211> 33
<212> DNA
<213> Artificial sequence

<220>
<223> Single strand DNA oligonucleotide

<400> 56
cgcttggaaag accacgtatc gtcgttgtg aaa 33

<210> 57
<211> 36
<212> DNA
<213> Artificial sequence

<220>
<223> Single strand DNA oligonucleotide

<400> 57
tttacgttgtt ggcgcgtggac gcgctgggtc gcggac 36

<210> 58
<211> 114
<212> DNA
<213> Artificial sequence

<220>
<223> Modified IAPP cDNA for expression in bacteria

<400> 58
atgaaatgca acacccgcgac ctgcgcgcacc cagcgccctgg cgaactttct ggtgcatacg 60
agcaacaact ttggcgcgat tctgagcgc accaacgtgg gcagcaacac ctat 114

<210> 59
<211> 56
<212> DNA
<213> Artificial sequence

<220>
<223> Single strand DNA oligonucleotide

<400> 59
gggtttccat gggccatcac catcaccatc acgaaaaatg caacacccgcg acctgc 56

<210> 60
<211> 35
<212> DNA

```

<213> Artificial sequence
<220>
<223> Single strand DNA oligonucleotide
<400> 60
gggtttgcgg ccgctcatta ataggtgttg ctgcc

35

<210> 61
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 61

Lys Cys Asn Thr Ala Thr Cys Ala Thr Gln
1 5 10

<210> 62
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 62

Cys Asn Thr Ala Thr Cys Ala Thr Gln Arg
1 5 10

<210> 63
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 63

Asn Thr Ala Thr Cys Ala Thr Gln Arg Leu
1 5 10

<210> 64
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 64

Thr Ala Thr Cys Ala Thr Gln Arg Leu Ala

1 5 10

<210> 65
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 65

Ala Thr Cys Ala Thr Gln Arg Leu Ala Asn
1 5 10

<210> 66
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 66

Thr Cys Ala Thr Gln Arg Leu Ala Asn Phe
1 5 10

<210> 67
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 67

Cys Ala Thr Gln Arg Leu Ala Asn Phe Leu
1 5 10

<210> 68
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 68

Ala Thr Gln Arg Leu Ala Asn Phe Leu Val
1 5 10

<210> 69
<211> 10
<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic peptide

<400> 69

Thr Gln Arg Leu Ala Asn Phe Leu Val His
1 5 10

<210> 70

<211> 10

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic peptide

<400> 70

Gln Arg Leu Ala Asn Phe Leu Val His Ser
1 5 10

<210> 71

<211> 10

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic peptide

<400> 71

Arg Leu Ala Asn Phe Leu Val His Ser Ser
1 5 10

<210> 72

<211> 10

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic peptide

<400> 72

Leu Ala Asn Phe Leu Val His Ser Ser Asn
1 5 10

<210> 73

<211> 10

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic peptide

<400> 73

Ala Asn Phe Leu Val His Ser Ser Asn Asn
1 5 10

<210> 74
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 74

Asn Phe Leu Val His Ser Ser Asn Asn Phe
1 5 10

<210> 75
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 75

Phe Leu Val His Ser Ser Asn Asn Phe Gly
1 5 10

<210> 76
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 76

Leu Val His Ser Ser Asn Asn Phe Gly Ala
1 5 10

<210> 77
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 77

Val His Ser Ser Asn Asn Phe Gly Ala Ile
1 5 10

<210> 78

<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 78

His Ser Ser Asn Asn Phe Gly Ala Ile Leu
1 5 10

<210> 79
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 79

Ser Ser Asn Asn Phe Gly Ala Ile Leu Ser
1 5 10

<210> 80
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 80

Ser Asn Asn Phe Gly Ala Ile Leu Ser Ser
1 5 10

<210> 81
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 81

Asn Asn Phe Gly Ala Ile Leu Ser Ser Thr
1 5 10

<210> 82
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 82

Asn Phe Gly Ala Ile Leu Ser Ser Thr Asn
1 5 10

<210> 83

<211> 10

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic peptide

<400> 83

Phe Gly Ala Ile Leu Ser Ser Thr Asn Val
1 5 10

<210> 84

<211> 10

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic peptide

<400> 84

Gly Ala Ile Leu Ser Ser Thr Asn Val Gly
1 5 10

<210> 85

<211> 10

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic peptide

<400> 85

Ala Ile Leu Ser Ser Thr Asn Val Gly Ser
1 5 10

<210> 86

<211> 10

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic peptide

<400> 86

Ile Leu Ser Ser Thr Asn Val Gly Ser Asn
1 5 10

<210> 87
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 87

Leu Ser Ser Thr Asn Val Gly Ser Asn Thr
1 5 10

<210> 88
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 88

Ser Ser Thr Asn Val Gly Ser Asn Thr Tyr
1 5 10

<210> 89
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 89

Asn Ala Gly Ala Ile Leu Ser Ser
1 5

<210> 90
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Peptide array consensus sequence

<220>
<221> misc_feature
<222> (4)..(4)
<223> Any amino acid, but cysteine

<400> 90

Ser Asn Asn Xaa Gly Ala Ile Leu Ser Ser
1 5 10

<210> 91
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 91

Asn Ala Gly Ala Ile Leu Ser Ser
1 5

<210> 92
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 92

Asn Ala Gly Ala Ile Leu Ser Ser
1 5

<210> 93
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 93

Asn Asp Gly Ala Ile Leu Ser Ser
1 5

<210> 94
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 94

Asn Glu Gly Ala Ile Leu Ser Ser
1 5

<210> 95
<211> 8
<212> PRT
<213> Artificial sequence

<220>

<223> Synthetic peptide

<400> 95

Asn Phe Gly Ala Ile Leu Ser Ser

1 5

<210> 96

<211> 8

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic peptide

<400> 96

Asn Gly Gly Ala Ile Leu Ser Ser

1 5

<210> 97

<211> 8

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic peptide

<400> 97

Asn His Gly Ala Ile Leu Ser Ser

1 5

<210> 98

<211> 8

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic peptide

<400> 98

Asn Ile Gly Ala Ile Leu Ser Ser

1 5

<210> 99

<211> 8

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic peptide

<400> 99

Asn Lys Gly Ala Ile Leu Ser Ser

1 5

<210> 100
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 100

Asn Leu Gly Ala Ile Leu Ser Ser
1 5

<210> 101
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 101

Asn Met Gly Ala Ile Leu Ser Ser
1 5

<210> 102
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 102

Asn Asn Gly Ala Ile Leu Ser Ser
1 5

<210> 103
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 103

Asn Pro Gly Ala Ile Leu Ser Ser
1 5

<210> 104
<211> 8
<212> PRT

<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 104
Asn Gln Gly Ala Ile Leu Ser Ser
1 5

<210> 105
<211> 8
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 105
Asn Arg Gly Ala Ile Leu Ser Ser
1 5

<210> 106
<211> 8
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 106
Asn Ser Gly Ala Ile Leu Ser Ser
1 5

<210> 107
<211> 8
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 107
Asn Thr Gly Ala Ile Leu Ser Ser
1 5

<210> 108
<211> 8
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 108

Asn Val Gly Ala Ile Leu Ser Ser
1 5

<210> 109
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 109

Asn Trp Gly Ala Ile Leu Ser Ser
1 5

<210> 110
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 110

Asn Tyr Gly Ala Ile Leu Ser Ser
1 5

<210> 111
<211> 6
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 111

Asn Phe Gly Ala Ile Leu
1 5

<210> 112
<211> 3
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> misc_feature
<222> (1)..(3)
<223> D-Stereoisomer

<400> 112

Phe Phe Pro
1
.
<210> 113
<211> 4
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> misc_feature
<222> (1)..(1)
<223> D and L methyl alanine

<220>
<221> misc_feature
<222> (2)..(3)
<223> D-Stereoisomer

<220>
<221> misc_feature
<222> (4)..(4)
<223> D and L methyl alanine

<400> 113

Xaa Phe Asn Xaa
1

<210> 114
<211> 4
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> misc_feature
<222> (1)..(1)
<223> D and L methyl alanine

<220>
<221> misc_feature
<222> (4)..(4)
<223> D and L methyl alanine

<400> 114

Xaa Asn Phe Xaa
1

<210> 115
<211> 2

<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 115

Tyr Tyr
1

<210> 116
<211> 2
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> misc_feature
<222> (2)..(2)
<223> amidated amino acid

<400> 116

Tyr Tyr
1

<210> 117
<211> 3
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> misc_feature
<222> (1)..(1)
<223> D and L methyl alanine

<400> 117

Xaa Phe Phe
1

<210> 118
<211> 3
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>

```
<221> misc_feature
<222> (3)..(3)
<223> D and L methyl alanine
```

```
<400> 118
```

```
Asn Tyr Xaa
1
```

```
<210> 119
<211> 3
<212> PRT
<213> Artificial sequence
```

```
<220>
<223> Synthetic peptide
```

```
<400> 119
```

```
Asn Tyr Pro
1
```

```
<210> 120
<211> 3
<212> PRT
<213> Artificial sequence
```

```
<220>
<223> Synthetic peptide
```

```
<220>
<221> misc_feature
<222> (1)..(3)
<223> D-Stereoisomer
```

```
<400> 120
```

```
Asn Tyr Pro
1
```

```
<210> 121
<211> 2
<212> PRT
<213> Artificial sequence
```

```
<220>
<223> Synthetic peptide
```

```
<220>
<221> misc_feature
<222> (1)..(1)
<223> D-Stereoisomer
```

```
<220>
<221> misc_feature
<222> (2)..(2)
<223> D and L methyl alanine
```

<400> 121

Tyr Xaa
1

<210> 122
<211> 2
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> misc_feature
<222> (1)..(2)
<223> D-Stereoisomer

<400> 122

Pro Tyr
1

<210> 123
<211> 2
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> misc_feature
<222> (1)..(2)
<223> D-Stereoisomer

<400> 123

Tyr Pro
1

<210> 124
<211> 6
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 124

Ala Asn Phe Leu Val His
1 5

<210> 125

<211> 6
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> misc_feature
<222> (1)..(1)
<223> D and L methyl alanine

<220>
<221> misc_feature
<222> (4)..(4)
<223> D and L methyl alanine

<400> 125

Xaa Asn Phe Xaa Val His
1 5

<210> 126
<211> 5
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 126

Ala Asn Phe Leu Val
1 5

<210> 127
<211> 5
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> misc_feature
<222> (1)..(1)
<223> D and L methyl alanine

<220>
<221> misc_feature
<222> (4)..(4)
<223> D and L methyl alanine

<400> 127

Xaa Asn Phe Xaa Val
1 5

<210> 128
<211> 3
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> misc_feature
<222> (1)..(3)
<223> D-Stereoisomer

<400> 128

Phe Phe Pro
1

<210> 129
<211> 4
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> misc_feature
<222> (1)..(1)
<223> Alpha-aminoisobutyric acid (Aib)

<220>
<221> misc_feature
<222> (2)..(3)
<223> D-Stereoisomer

<220>
<221> misc_feature
<222> (4)..(4)
<223> Alpha-aminoisobutyric acid (Aib)

<400> 129

Xaa Phe Asn Xaa
1

<210> 130
<211> 3
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> misc_feature

```

<222>  (1)..(3)
<223>  D-Stereoisomer

<400>  130

Phe Asn Pro
1

<210>  131
<211>  4
<212>  PRT
<213>  Artificial sequence

<220>
<223>  Synthetic peptide

<220>
<221>  misc_feature
<222>  (1)..(1)
<223>  Alpha-aminoisobutyric acid (Aib)

<220>
<221>  misc_feature
<222>  (4)..(4)
<223>  Alpha-aminoisobutyric acid (Aib)

<400>  131

Xaa Asn Phe Xaa
1

<210>  132
<211>  6
<212>  PRT
<213>  Artificial sequence

<220>
<223>  Synthetic peptide

<220>
<221>  misc_feature
<222>  (1)..(1)
<223>  Alpha-aminoisobutyric acid (Aib)

<220>
<221>  misc_feature
<222>  (4)..(4)
<223>  Alpha-aminoisobutyric acid (Aib)

<400>  132

Gln Lys Leu Val Phe Phe
1                      5

<210>  133
<211>  2
<212>  PRT

```

<213> Artificial sequence

<220>

<223> Synthetic peptide

<400> 133

Tyr Tyr

1

<210> 134

<211> 4

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic peptide

<400> 134

Asn Tyr Tyr Pro

1

<210> 135

<211> 3

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic peptide

<220>

<221> misc_feature

<222> (3)..(3)

<223> Alpha-aminoisobutyric acid (Aib)

<400> 135

Tyr Tyr Xaa

1

<210> 136

<211> 3

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic peptide

<220>

<221> misc_feature

<222> (1)..(1)

<223> Alpha-aminoisobutyric acid (Aib)

<400> 136

Xaa Tyr Tyr

1

<210> 137
<211> 4
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> misc_feature
<222> (1)..(1)
<223> Alpha-aminoisobutyric acid (Aib)

<220>
<221> misc_feature
<222> (4)..(4)
<223> Alpha-aminoisobutyric acid (Aib)

<400> 137

Xaa Tyr Tyr Xaa
1

<210> 138
<211> 4
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> misc_feature
<222> (1)..(1)
<223> D-Stereoisomer

<220>
<221> misc_feature
<222> (4)..(4)
<223> D-Stereoisomer

<400> 138

Asn Tyr Tyr Pro
1

<210> 139
<211> 3
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 139

Pro Tyr Tyr
1

<210> 140
<211> 3
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 140

Tyr Tyr Pro
1

<210> 141
<211> 4
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 141

Pro Tyr Tyr Pro
1

<210> 142
<211> 2
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> misc_feature
<222> (1)...(2)
<223> D-Stereoisomer

<400> 142

Tyr Tyr
1

<210> 143
<211> 2
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

```
<220>
<221> misc_feature
<222> (2)..(2)
<223> Alpha-aminoisobutyric acid (Aib)
```

```
<400> 143
```

```
Pro Xaa
1
```

```
<210> 144
<211> 2
<212> PRT
<213> Artificial sequence
```

```
<220>
<223> Synthetic peptide
```

```
<220>
<221> misc_feature
<222> (1)..(2)
<223> D-Stereoisomer
```

```
<400> 144
```

```
Phe Pro
1
```

```
<210> 145
<211> 2
<212> PRT
<213> Artificial sequence
```

```
<220>
<223> Synthetic peptide
```

```
<220>
<221> misc_feature
<222> (1)..(1)
<223> D-Stereoisomer
```

```
<220>
<221> misc_feature
<222> (2)..(2)
<223> Alpha-aminoisobutyric acid (Aib)
```

```
<400> 145
```

```
Trp Xaa
1
```

```
<210> 146
<211> 2
<212> PRT
<213> Artificial sequence
```

```
<220>
```

```
<223> Synthetic peptide

<220>
<221> misc_feature
<222> (1)..(2)
<223> D-Stereoisomer

<400> 146

Trp Pro
1

<210> 147
<211> 2
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> misc_feature
<222> (1)..(1)
<223> D-Stereoisomer

<400> 147

Phe Pro
1

<210> 148
<211> 2
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> misc_feature
<222> (2)..(2)
<223> D-Stereoisomer

<400> 148

Pro Phe
1

<210> 149
<211> 3
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide
```

```
<220>
<221> misc_feature
<222> (1)..(2)
<223> D-Stereoisomer

<220>
<221> misc_feature
<222> (3)..(3)
<223> Alpha-aminoisobutyric acid (Aib)
```

```
<400> 149
```

```
Cys Trp Xaa
1
```

```
<210> 150
<211> 3
<212> PRT
<213> Artificial sequence
```

```
<220>
<223> Synthetic peptide
```

```
<220>
<221> misc_feature
<222> (2)..(2)
<223> D-Stereoisomer
```

```
<220>
<221> misc_feature
<222> (3)..(3)
<223> Alpha-aminoisobutyric acid (Aib)
```

```
<400> 150
```

```
Cys Trp Xaa
1
```

```
<210> 151
<211> 5
<212> PRT
<213> Artificial sequence
```

```
<220>
<223> Synthetic peptide
```

```
<400> 151
```

```
Asp Ala Asn Lys Ala
1 5
```

```
<210> 152
<211> 37
<212> PRT
<213> Artificial sequence
```

```
<220>
```

<223> Rodent IAPP derived amino acid sequence

<400> 152

Lys Cys Asn Thr Ala Thr Cys Ala Thr Gln Arg Leu Ala Asn Phe Leu
1 5 10 15

Val Arg Ser Ser Asn Asn Leu Gly Pro Val Leu Pro Pro Thr Asn Val
20 25 30

Gly Ser Asn Thr Tyr
35

<210> 153

<211> 37

<212> PRT

<213> Artificial sequence

<220>

<223> Human IAPP derived amino acid sequence

<400> 153

Lys Cys Asn Thr Ala Thr Cys Ala Thr Gln Arg Leu Ala Asn Phe Leu
1 5 10 15

Val His Ser Ser Asn Asn Phe Gly Ala Ile Leu Ser Ser Thr Asn Val
20 25 30

Gly Ser Asn Thr Tyr
35

<210> 154

<211> 7

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic peptide

<400> 154

Asn Phe Gly Ser Val Gln Phe
1 5

<210> 155

<211> 8

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic peptide

<400> 155

Asn Phe Gly Ser Val Gln Phe Val
1 5

<210> 156
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 156

Asn Phe Gly Ser Val Gln Phe Ala
1 5

<210> 157
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> misc_feature
<222> (1)..(1)
<223> Alpha-aminoisobutyric acid (Aib)

<220>
<221> misc_feature
<222> (4)..(4)
<223> Alpha-aminoisobutyric acid (Aib)

<400> 157

Xaa Asn Phe Xaa Val His Ser Ser
1 5

<210> 158
<211> 32
<212> PRT
<213> Artificial sequence

<220>
<223> Human Calcitonin derived amino acid sequence

<400> 158

Cys Gly Asn Leu Ser Thr Cys Met Leu Gly Thr Tyr Thr Gln Asp Phe
1 5 10 15

Asn Lys Phe His Thr Phe Pro Gln Thr Ala Ile Gly Val Gly Ala Pro
20 25 30

<210> 159

<211> 4
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 159

Gly Ala Ile Leu
1

<210> 160
<211> 5
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 160

Lys Leu Val Phe Phe
1 5

<210> 161
<211> 7
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 161

Lys Leu Val Phe Phe Ala Glu
1 5

<210> 162
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 162

Asn Phe Gly Ser Val Gln Phe Val
1 5

<210> 163
<211> 7
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

```

<400> 163
Gly Asn Asn Gln Gln Asn Tyr
1 5

<210> 164
<211> 38
<212> PRT
<213> Artificial sequence

<220>
<223> WT hIAPP expressed by the synthetic gene

<400> 164
Met Lys Cys Asn Thr Ala Thr Cys Ala Thr Gln Arg Leu Ala Met Phe
1 5 10 15

Leu Val His Ser Ser Asn Asn Phe Gly Ala Ile Leu Ser Ser Thr Asn
20 25 30

Val Gly Ser Asn Thr Tyr
35

<210> 165
<211> 114
<212> DNA
<213> Artificial sequence

<220>
<223> WT hIAPP coding synthetic gene

<400> 165
atgaaatgca acactgccac atgtgcaacc cagcgctgg caaattttt agttcattcc 60
agcaacaact ttggtgccat tctctcatct accaacgtgg gatccaatac atat 114

<210> 166
<211> 114
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Human IAPP coding sequence

<400> 166
atgaaatgca acaccgcgac ctgcgcgacc cagcgctgg cgaactttct ggtgcatagc 60
agcaacaact ttggcgcgat tctgagcagc accaacgtgg gcagcaacac ctat 114

<210> 167
<211> 12
<212> DNA

```

```

<213> Artificial sequence

<220>
<223> Factor Xa cleavage site coding sequence positioned downstream to
      the MBP tag in pMAL-c2X IAPP vector

<400> 167
atcgagggtta gg                                12

<210> 168
<211> 30
<212> DNA
<213> Artificial sequence

<220>
<223> NCOI restriction site followed by a 6XHis tag coding sequence and
      a V8 protease cleavage site cloned downstream to the MBP tag in
      the pMAL-c2X IAPP vector

<400> 168
accatgggcc atcaccatca ccatcacgaa                                30

<210> 169
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 169

Thr Gln Arg Leu Ala Asn Phe Leu Val Glu
1                      5                      10

<210> 170
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 170

Gln Arg Leu Ala Asn Phe Leu Val Glu Ser
1                      5                      10

<210> 171
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 171

```

Arg Leu Ala Asn Phe Leu Val Glu Ser Ser
1 5 10

<210> 172
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 172

Leu Ala Asn Phe Leu Val Glu Ser Ser Asn
1 5 10

<210> 173
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 173

Ala Asn Phe Leu Val Glu Ser Ser Asn Asn
1 5 10

<210> 174
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 174

Asn Phe Leu Val Glu Ser Ser Asn Asn Phe
1 5 10

<210> 175
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 175

Phe Leu Val Glu Ser Ser Asn Asn Phe Gly
1 5 10

<210> 176
<211> 10

<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 176

Leu Val Glu Ser Ser Asn Asn Phe Gly Ala
1 5 10

<210> 177
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 177

Val Glu Ser Ser Asn Asn Phe Gly Ala Ile
1 5 10

<210> 178
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 178

Glu Ser Ser Asn Asn Phe Gly Ala Ile Leu
1 5 10

<210> 179
<211> 32
<212> PRT
<213> Artificial sequence

<220>
<223> Partial amino acid sequence of human Calcitonin

<400> 179

Cys Gly Asn Leu Ser Thr Cys Met Leu Gly Thr Tyr Thr Gln Asp Phe
1 5 10 15

Asn Lys Phe His Thr Phe Pro Gln Thr Ala Ile Gly Val Gly Ala Pro
20 25 30

<210> 180
<211> 4
<212> PRT
<213> Artificial sequence

<220>
<223> Factor Xa cleavage site coded downstream to the MBP tag in the
pMAL-c2X IAPP vector

<400> 180

Ile Glu Gly Arg
1

<210> 181
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Amino acid sequence coded by the NCOI restriction site followed
by a 6XHis tag and a V8 protease cleavage site.

<400> 181

Thr Met Gly His His His His His Glu
1 5 10