Team #15

Sara Carter · Sophie Jack · Ben Eber · Spyridon Mazis · Chris Witherspoon

Matrix of Resposibility:

First stage prop. (columns) - Second stage prop. (rows)	LOX/LCH4	LOX/LH2	LOX/RP1	Solid	Storables
LOX/LCH4	Ben	Ben	Ben	Ben	Ben
LOX/LH2	Sara	Sara	Sara	Sara	Sara
LOX/RP1	Spyros	Spyros	Spyros	Spyros	Spyros
Solid	Sophie	Sophie	Sophie	Sophie	Sophie
Storables	Chris	Chris	Chris	Chris	Chris

Full Graph of Results

Top Mass/Cost Results

Trade Study and Conclusion

- From the data, the LOX/LH₂ + LOX/LH₂ combination was most optimized for mass and cost
 - Minimum Mass: [2582 (t), \$B2025: 14.53]
 - Minimum Cost: [2650 (t), \$B2025: 14.31]
- H₂ is temperamental
 - It needs cryogenic cooling, the technology for which is not available
- Higher I_{sp} in electric, but provides low thrust
 - Isp doesn't paint a full picture of how to get a launch vehicle from the ground into space
 - Future analyses will paint a fuller picture by deriving m from T2
- Our analysis is dependent on consistent **δ** = 0.08, this might not be reflective of actual performance

Driving "top" results

- The Isp of the first stage seems to be a strong driving force.
 - The higher the initial Isp the lower the cost and minimum mass
- In accordance with what we have learned in lecture, the higher the lsp, the higher the force per kg provided
- The Isp of the second stage also makes an impact on the minimum cost and mass as a two stage rocket uses all of its resources.
 - The second stage Isp seems to be the deciding factor if, within the subsect of the first Isp, the launch vehicle will be at the top or bottom mass/cost for the group.
- Looking at the ΔV equation, I_{sp} directly correlates to its value

$$\Delta V_{i} = -V_{e,i}*In(m_{f,i}/m_{in,i}) | I_{sp}*g_{o}=$$