

Úrad Priemyselného Vlastníctva Slovenskej Republiky

OSVEDČENIE

o práve prednosti

predseda

BEST AVAILABLE COPY

ÚRAD PRIEMYSELNÉHO VLASTNÍCTVA SLOVENSKEJ REPUBLIKY

potvrdzuje, že DUSLO, a. s., 92703 Šaľa, SK;

podal dňa 23. 12. 2003 patentovú prihlášku

značka spisu PP 1616-2003

a že pripojený opis a 0 výkresov sa zhodujú úplne s pôvodne podanými prílohami tejto prihlášky.

PATENTOVÁ PRIHLÁŠKA

Spôsob výroby a čistenia 2-merkaptobenztiazolu

Autori:

Križanovič Karol, Muntágová Ľubica

Oblast' techniky

Vynález sa týka výroby 2-merkaptobenztiazolu zo síry, sírouhlíka a anilínovej fázy z rafinácie 2-MBT a čistenia takto získaného surového produktu pomocou anilínu.

Doterajší stav techniky

2-MBT je základným členom skupiny benztiazolových urýchľovačov sírnej vulkanizácie nenasýtených kaučukov a zároveň je rozhodujúcou základnou surovinou pre priemyselnú výrobu ďalších významných benztiazolových urýchľovačov, ako sú N-cyklohexyl benztiazolsulfénamid, N-terc.butylbenztiazolsulfénamid, N,N-dicyklohexylbenz-tiazolsulfénamid, N-oxidietylénbenztiazolsulfénamid a i.

2-merkaptobenztiazol sa v priemyselnom meradle pripravuje tlakovou syntézou pri vysokej teplote priamo z anilínu, sírouhlíka a síry. Takto sa získa produkt, ktorého kvalita nevyhovuje kvalitatívnym požiadavkám pre aplikáciu a vo väčšine prípadov ani pre jeho následné spracovanie na sulfénamidové urýchľovače. Surový 2-MBT treba čistiť.

V súčasnosti sa využívajú na priemyselné čistenie 2-merkaptobenztiazolu nasledovné postupy:

Spôsob čistenia 2-MBT prezrážaním pomocou alkálií a minerálnych kyselín sa vyznačuje vysokou soľnosťou (v procese vzniká min. jeden mól anorganických solí na jeden mól 2-MBT), problémami so separáciou a následnou likvidáciou vo vode nerozpustných smolovitých látok a tiež nutnosťou vydestilovania niektorých definovaných látok prítomných v surovej tavenine (anilín, benztiazol, fenylizotiokyanatan) pomocou vodnej pary.

2-merkaptobenztiazol potrebnej čistoty sa priemyselne získava aj kryštalizáciou surovej taveniny vo vhodnom rozpúšťadle, ako sú niektoré chlórované alkány a alkény, toluén, nitrobenzén a i. Hlavnou nevýhodou uvedeného postupu je vysoký obsah 2-merkaptobenztiazolu v matečných lúhoch, vznikajúcich pri kryštalizácii, z ktorých sa produkt získava späť relatívne náročným postupom, ak sa majú znížiť straty na jeho výťažku. Nemenej závažným nedostatkom procesu je použitie ďalšej pomocnej východzej látky so všetkými s tým súvisiacimi nevýhodami. Kombinácia vyššie uvedených postupov, keď sa 2-merkaptobenztiazol extrahuje zriedeným vodným roztokom alkálií zo surovej taveniny, rozpustenej vo vhodnom rozpúšťadle, a následne sa vyzráža minerálnou kyselinou, snáď mierne vylepší technicko-ekologické ukazovatele procesu čistenia produktu, ale v zásade nerieši už vyššie uvedené nedostatky diskutovaných procesov.

Nevýhodu rafinácie surového produktu pomocou ďalšieho rozpúšťadla eliminuje použitie suroviny na výrobu 2-merkaptobenztiazolu. Nečistoty sa odstraňujú tak, že sa na reakčný produkt extrakčne pôsobí sírouhlíkom, alebo emulziou sírouhlíka a vody. Tento postup je ilustrovaný patentmi US 2,090,233 a 3,030,373. Patent US 3,031,073 tiež podrobne popisuje čistenie taveniny emulziou voda/sírouhlík s prídavkom povrchovoaktívnej látky, ale aj kryštalizáciu surového produktu v 1,5 násobku sírouhlíka v autokláve pri 140 °C za tlaku počas 45 minút. Navyše nielenže využíva sírouhlík na kryštalizáciu, ale po zahustení matečných lúhov z rafinácie sa snaží využiť smolovité látky v nich obsiah-

nuté v ďalšej syntéze tak; že po doplnení ostatných surovín – anilínu a síry sa zmes predloží do tlakového reaktora. Proces sa opakuje celkovo dvakrát, pričom kvalita produktu s recyklom smôl klesá. Bez odoberania časti smôl z procesu dochádza k ich zakoncentrovaniu v systéme, čo spôsobuje zníženie kvalitatívnych ukazovateľov produktu, a preto nie je vhodný na výrobu sulfénamidových urýchľovačov.

Najnovší patent, využívajúci sírouhlíkovú rafináciu 2-merkaptobenztiazolu, v ktorej sa filtrát zároveň v procese recykluje, je DE 4,028,473 (US 5,367,082). Tavenina 2-merkaptobenztiazolu, získaná vo vsádzkovom reaktore obvyklým spôsobom sa čiastočne ochladí prídavkom sírouhlíka a pod tlakom reakciou vzniknutého sírovodíka sa ochladí na 25 °C. Po odtlakovaní sa produkt, prefiltruje a, premyje sírouhlíkom. Sírouhlíkové matečné lúhy a premývacie podiely sa za vákua zahustia a dávkujú sa spolu s príslušným množstvom anilínu a síry do reaktora.. Postupným opakovaním uvedeného spôsobu výťažok vzrastie na priemernú hodnotu 98,7%, pričom obsah účinnej látky a teplota topenia pozvoľne klesá. Autori síce v príkladoch priamo neudávajú odstraňovanie časti matečných lúhov zo systému, ale v popise vynálezu sa zmieňujú, že počet cyklov v podstate nie je limitovaný, ak sa v každom cykle odoberie malá časť matečného roztoku.

Napriek nesporným prednostiam rafinácie pomocou sírouhlíka sa aj tento proces vyznačuje zásadnými nedostatkami:

- nutnosť používať na kryštalizáciu tlakové aparáty
- nutnosť manipulovať v procese s veľkými množstvami (až 10 násobkami na 2-merkaptobenztiazol) ľahko zápalného a toxického sírouhlíka,
- zvýšená energetická náročnosť pri oddestilovaní sírouhlíka z filtrátov po kryštalizácii,
 t.j. pri zahusťovaní matečných lúhov na 10 až 15 % pôvodného objemu.

Francúzske patenty: FR 2,450,828 (CS 231 971), FR 2,565,977 (US 4,647,669) popisu-júce rafináciu 2-merkaptobenztiazolu v anilíne; uvádzajú možnosť recyklácie použitého rafinačného média po rafinácii, ale s tým, že sa zo systému odstráni za jednotku času toľko nečistôt, koľko ich do systému vstupuje spolu s reakčným produktom.

Patent FR 2,450,828 (CS 231 971) spočíva v tom, že tavenina surového produktu s obsahom 83,25 % MBT, 2,75 % anilínu, 5 % BT a 9 % smôl sa rozpustí v 2,5 násobku použitého - zahusteného anilínu (s obsahom 50,7 % anilínu + 1,24 % BT + 18,8 % MBT + 29,25 % vedľajších látok) z predchádzajúcich čistiacich operácií. Po ochladení produkt kryštalizuje, prefiltruje sa a niekoľkokrát premyje temer s trojnásobkom anilínu. Po odstránení premývacieho anilínu z koláča sa získa produkt s obsahom účinnej látky 98,9 % a výťažkom až 97,6 % na vstupný MBT v tavenine surového produktu. Anilínové filtráty sa zahustia na predchádzajúci objem a použijú v ďalšej čistiacej operácii, proces sa opakuje s ďalšou várkou taveniny. Pre udržanie rovnováhy nečistôt a produktu, odvádza sa zo systému cca 9 % matečných lúhov z primárnej filtrácie ešte pred zmiešaním s premývacím anilínom a zahustením na požadovaný objem. Z oddeleného zvyšku sa oddestiluje anilín s benztiazolom a vrátia sa do kryštalizácie; nedestilujúci zvyšok (s obsahom smôl a MBT) sa zo systému môže odstrániť, čiastočne alebo úplne recyklovať do reaktora.

Popísaný spôsob rafinácie vyššie uvedených francúzskych patentov má niekoľko nevýhod, ktoré sťažujú až znemožňujú ich úspešné uplatnenie v praxi:

- vyžaduje zahustiť kryštalizačné filtráty a premývací anilín na pôvodný objem, t.j. zahustenie na 1/3, čo je energeticky náročné a vystavuje anilín a látky rozpustené v rafinačnom médiu neustálemu tepelnému namáhaniu, ktoré môže prispievať k ďalšej tvorbe smôl.
- premývanie filtračného koláča čistým anilínom vedie k rozpúšťaniu produktu, t.j. k stratám na výťažku. Rozpúšťanie produktu vytvára kanáliky vo vrstve filtračného koláča, nehomogénny koláč má za následok nedokonalé premytie 2-MBT od zvyškov smôl a zníženie obsahu účinnej látky v produkte. V podobných prípadoch je lepšie filtračný koláč rozplaviť v kvapalnom médiu a opätovne filtrovať produkt.
- napriek deklarovanému odstraňovaniu 9 % filtrátu z kryštalizácie sa v systéme bude kumulovať benztiazol, pretože sa z neho oddestilované prchavé podiely (anilín a benztiazol) vracajú naspäť do rafinačného prosesu, čo len zhorší rafináciu.
- úplný recykel destilačného zvyšku do reaktora, namiesto jeho odstránenia z procesu znamená vrátenie všetkých odobratých smôl späť do systému, ich akumuláciu a znemožnenie rafinácie surového produktu.

Patent FR 2,565,977 (US 4,647,669) vychádza z rovnakého princípu, líši sa len spôsobom izolácie čistého produktu a jeho sušenia. Sú to patenty bez recirkulácie použitých anilínových filtrátov do reaktora na výrobu 2-merkaptobenztiazolu. Na udržanie rafinačnej schopnosti systému by malo stačiť odstrániť vypočítateľné množstvo použitého filtrátu, ale v skutočnosti to nefunguje. Autori sa v patente zmienili aj o možnej recirkulácii destilačného zvyšku cez reaktor (získaného z odobratého množstva filtrátu), ale nie je to bližšie popísané v príkladoch.

Teraz sme zistili, že recykel väčšieho množstva anilínových matečných lúhov z rafinácie priamo do reaktora (namiesto čistého anilínu) - pri súčasnom odobratí definovaného množstva týchto lúhov zo systému – nevplýva na kvalitu surového produktu získaného z reaktora, ale ani na kvalitu produktu získaného jeho rafináciou v anilíne, ktorá sa počas viacnásobných opakovaní udržiava na úrovni viac než 98 % účinnej látky, a to bez nutnosti zahusťovať anilínové matečné lúhy.

Tavenina surového 2-merkaptobenztiazolu priamo z reaktora obsahuje okrem benztiazolu aj ďalšie definované chemické zlúčeniny, medziprodukty reakcie, napr. tio-karbanilid, anilidobenztiazol, tiež nezreagované suroviny – anilín a síru. Skutočný obsah smôl (nedefinovaných látok) je nižší ako 9 %. Všetky vymenované látky, obsiahnuté v matečných lúhoch z rafinácie, môžu pri vrátení do reaktora konvertovať na produkt, resp. udržujú chemickú rovnováhu v prospech produktu, potláčajú vedľajšie reakcie a zvyšujú výťažok procesu. Je pre proces výhodné ich v čo najväčšej miere recyklovať do reaktora.

Pracovné podmienky vo vsádzkovom, alebo trubkovom reaktore (teplota, tlak, reakčný čas), ktorý sa používa na prípravu surového 2-merkaptobenztiazolu z anilínových

filtrátov sa pritom nelíšia od bežných podmienok syntézy 2-merkaptobenztiazolu z čistých surovín. Pri rafinácii surového produktu sa dá premývanie filtračného koláča po kryštalizácii anilínom nahradiť roztokom anilínu a čistého 2-MBT, ktorý nerozpúšťa produkt a nevytvárajú sa kanáliky vo filtračnom koláči. Filtračný koláč je homogénny a nečistoty sa rovnomerne vymyjú v celom priereze koláča. Koláč nie je potrebné rozplavovať a znova filtrovať. Takto sa jednoduchším spôsobom získa čistý produkt porovnateľnej kvality.

Cieľom spôsobu podľa predloženého vynálezu je vylúčiť potrebu odstraňovania hydrochlorid amínu filtráciou, kryštalizáciu z petroléteru, ako aj získať konečný produkt vo vyššej kvalite a výťažku.

Podstata vynálezu

Surový produkt z tlakového reaktora sa v prvej várke rozpustí v hmotnostne dvojnásobnom množstve čistého anilínu. Ochladením sa z roztoku vylúčia kryštály 2-merkaptobenztiazolu , ktoré sa oddelia, filtrát z kryštalizácie (F_K) sa použije v ďalšej várke. Získaný koláč predčisteného produktu sa rozsuspenduje v minimálnom množstve čerstvého anilínu a zo suspenzie sa odfiltruje čistý produkt. Filtrát z rozplavovania (F_R) sa tiež recykluje nasadením do následnej kryštalizácie. V ďalšej várke sa do reaktora na prípravu 2-merkaptobenztiazolu predloží cca 1/3 F_K a doplní sa vzhľadom na obsah anilínu sírou a sírouhlíkom. Získaná tavenina surového produktu sa rozpustí vo zvyšku asi 2/3 F_K z predchádzajúcej várky a doplní celým množstvom F_R tiež z predchádzajúcej várky a prípadne aj anilínom. Po kryštalizácii sa koláč rozplaví v čistom, resp. v regenerovanom anilíne, alebo vo vhodnom filtráte. Anilín vstupuje do procesu protiprúdne: najprv dočistí v operácii rozplavovania kryštalizovaný produkt, potom filtrát z rozplavovania vstupuje do kryštalizácie surového produktu a nakoniec sa filtrát z kryštalizácie dávkuje do syntézneho reaktora 2-merkaptobenztiazolu. Po viacnásobnom recykle sa zloženie systému ustáli.

Príklady uskutočnenia vynálezu

Nasledujúce príklady bližšie objasňujú, ale neobmedzujú podstatu vynálezu. Všetky príklady popisujú priebeh procesu po ustálení do rovnovážneho stavu niekoľkými predchádzajúcimi recirkuláciami.

Príklad 1

100 g anilínového filtrátu z kryštalizácie (s obsahom 78 % anilínu, 9,5 % 2-merkaptobenztiazolu) sa nasadí do tlakového 300 ml reaktora spolu s 27 g síry, 67 g sírouhlíka a 9 g prchavých podielov z predchádzajúceho prefukovania taveniny (s obsahom 30 % anilínu a 65 % benztiazolu). Za obvyklých podmienok pre túto syntézu (220-300°C/60-110 atm) sa pripraví tavenina surového produktu. Reaktor sa po reakcii ochladí na 180 - 200 °C a obsah reaktora sa pri 200 °C prefúka prúdom dusíka, ktorý odstráni prchavé podiely. Získa sa 162,3 g prefúkanej taveniny s obsahom 91,0 % MBT, 2,0 % ben-

ztiazolu, 1,5 % síry, 0,9 % anilidobenztiazolu 0,1 % tiokarbanilidu, 0,07 % 2-metyl benzotiazolu a 4,43 % smôl, ktorá sa v nasledujúcej operácii rozpustí v zmesi 222 g filtrátu z predchádzajúcej kryštalizácie a 200 g filtrátu z predchádzajúceho rozplavovania. Po ochladení sa vykryštalizovaný produkt odfiltruje, z filtrátu sa oddelí 5 % mimo proces, 100 g do ďalšej násady reaktora a zvyšok filtrátu do nasledujúcej kryštalizácie. Mokrý koláč sa rozplaví v 91 g čistého anilínu, znovu odfiltruje, zbaví anilínu a vysuší. Filtrát z rozplavovania, pozostávajúci v podstate len z anilínu a produktu, sa použije v nasledujúcej kryštalizácii. Získa sa 136,9 g produktu s obsahom účinnej látky 98,2 %, t.j. 91 %-ný výťažok na 2-merkaptobenztiazol v tavenine.

Príklad 2

(Porovnávací)

Návažky sú identické, ako v príklade 1, množstvo získanej prefúkanej taveniny a podmienky kryštalizácie sú rovnaké ako v príklade 1, len mokrý koláč sa nerozplaví v čistom anilíne, ale premyje priamo na filtri s 91 g anilínu a vysuší. Premývací filtrát sa vracia do procesu. Získa sa 139,9 g 96,3 %-ného produktu.

Príklad 3

20 g anilínu, 80 g anilínového filtrátu z kryštalizácie so zložením ako v príklade 1 (78 % anilínu, 9,5 % 2-merkaptobenztiazolu) sa nasadí do reaktora spolu s 28 g síry, 71 g sírouhlíka a 9 g BT z prefukovania. Reaktor sa vyhreje na pracovnú teplotu, po reakcii sa ochladí na 180 - 200 °C, cez redukčný ventil sa vypustí nahromadený sírovodík a obsah reaktora sa pri 200 °C evakuuje. Za zníženého tlaku 20 Torr a teploty 200 °C oddestilujú z taveniny prchavé podiely. Získa sa 161 g taveniny s obsahom 92,2 % MBT 1,8 % BT, 1,3 % síry, 0,7 % ABT, 0,1 % TKA, 0,05 % 2-metyl benzotiazolu a 3,85 % neidentifikovaných látok. Tavenina sa rozpustí v zmesi 222 g filtrátu z predchádzajúcej kryštalizácie a 200 g filtrátu z predchádzajúcej rafinácie. Po ochladení sa vykryštalizovaný MBT odfiltruje, z filtrátu sa oddelí 20 % mimo proces, 80 g do ďalšej násady reaktora a zvyšok do nasledujúcej kryštalizácie. Mokrý koláč sa rozplaví v 115 g čistého anilínu, znovu odfiltruje, zbaví anilínu a vysuší. Filtrát z rozplavovania sa použije v nasledujúcej kryštalizácii. Získa sa 129,2 g produktu s čistotou 99,4 %, t.j. 86,5 %-ný výťažok na 2-merkaptobenztiazol v tavenine.

Priklad 4

Do rúrkového reaktora s priemerom 5 mm a dĺžkou 15 m (V=294,5 mL) s redukčným ventilom na konci sa dávkuje hodinovou rýchlosťou 83 g anilínového filtrátu o zložení ako v príklade 1, ďalej 22,5 g síry, 56 g sírouhlíka a 8 g BT z prefukovania (spolu 169,5 g). Retenčný čas bol 1 hodina 44 minút. Za obvyklých podmienok pre túto syntézu (250-300°C/80-110 atm) sa získa tavenina surového merkaptobenzotiazolu, ktorá sa po odplynení sírovodíka prefúka dusíkom pri 200 °C. Po 1 hod a 12 min sa získa 162 g prefúkanej taveniny s obsahom 91,2 % MBT a ďalším zložením podobným surovému produktu z príkladu č. 1. Rafinuje sa identicky, ako v príklade č.1, získa sa 136,5 g produktu s čistotou 98,5 %.

Priklad 5

Návažky surovín a recirkulovaných médií do reaktora sú identické, ako v príklade 1, rovnaké je aj množstvo získanej prefúkanej taveniny a podmienky kryštalizácie. Mokrý koláč sa po filtrácii nerozplaví v čistom anilíne, ale premyje priamo na filtri s 91 g nasýteného roztoku čistého 2-merkaptobenztiazolu v anilíne a vysuší. Premývací filtrát sa vracia do procesu. Získa sa 146,9 g produktu s čistotou 97,8 %, t.j. 97,3 %-ný výťažok rafinácie vzhľadom na vstupujúci 2-merkaptobenztiazol.

PATENTOVÉ NÁROKY

- 1. Spôsob prípravy 2-merkaptobenztiazolu vyznačujúci sa tým, že využíva ako surovinu v syntéznom reaktore anilínový filtrát z kryštalizácie surového produktu, alebo jeho zmes s čistým anilínom,
- Spôsob prípravy 2-merkaptobenztiazolu podľa bodu 1, vyznačujúci sa tým, že na udržanie stabilného zloženia prúdov počas recyklácií stačí zo systému odoberať 5-20 % primárnych filtrátov z kryštalizácie surového produktu,
- 3. Spôsob čistenia surového 2-merkaptobenztiazolu pomocou anilínu, vyznačujúci sa tým, že pozostáva z dvoch stupňov kryštalizácie a filtrácie následného rozplavovania a filtrácie,
- 4. Spôsob čistenia surového 2-merkaptobenztiazolu podľa bodu 3, vyznačujúci sa tým, že surový produkt sa kryštalizuje z použitého anilínového filtrátu z predchádzajúcej kryštalizácie, z použitého anilínového filtrátu z rozplavovania filtračného koláča, z čistého anilínu, alebo ich kombinácie,
- 5. Spôsob čistenia surového 2-merkaptobenztiazolu pomocou anilínu, podľa bodov 3 a 4 vyznačujúci sa tým, že rozplavovanie sa deje v čistom anilíne, v použitom filtráte z rozplavovania, v roztoku 2-merkaptobenztiazolu v anilíne, alebo ich zmesi,
- 6. Spôsob čistenia surového 2-merkaptobenztiazolu podľa bodu 4 a 5, vyznačujúci sa tým, že rozplavovanie anilínového koláča po kryštalizácii je možné nahradiť jeho premývaním priamo na filtri/odstredivke roztokom 2-merkaptobenztiazolu v anilíne,
- 7. Spôsob čistenia surového 2-merkaptobenztiazolu podľa bodu 6, vyznačujúci sa tým, že na premytie koláča po kryštalizácii je možné s výhodou použiť nasýtený roztok 2-merkaptobenztiazolu v anilíne pri danej teplote,
- 8. Spôsob prípravy 2-merkaptobenztiazolu a čistenia surového 2-merkaptobenztiazolu podľa bodu 1, 2, 3, 4, 5, 6 a 7 vyznačujúci sa tým, že anilínové filtráty z kryštalizácie a rozplavovania nie je potrebné zahusťovať.

Koniec dokumenta

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/SK04/000018

International filing date:

23 December 2004 (23.12.2004)

Document type:

Certified copy of priority document

Document details:

Country/Office: SK

Number:

PP 1616-2003

Filing date:

23 December 2003 (23.12.2003)

Date of receipt at the International Bureau: 25 January 2005 (25.01.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

