Entonces
$$AB = \begin{pmatrix} -3 & -15 \\ 10 & 26 \\ 13 & 32 \end{pmatrix}$$
. Ahora bien, usando la propiedad (*),

$$\begin{pmatrix} -3 \\ 10 \\ 13 \end{pmatrix} = 1 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + 2 \begin{pmatrix} -2 \\ 4 \\ 5 \end{pmatrix} = \text{una combinación lineal de las columnas de } A$$

V

$$\begin{pmatrix} -15 \\ 26 \\ 32 \end{pmatrix} = -1 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + 7 \begin{pmatrix} -2 \\ 4 \\ 5 \end{pmatrix} = \text{una combinación lineal de las columnas de } A.$$

Multiplicación de matrices por bloques

En ciertas situaciones es prudente manejar las matrices como bloques de matrices más pequeñas, llamadas **submatrices**, y después multiplicar bloque por bloque en lugar de componente por componente. La multiplicación en bloques es muy similar a la multiplicación normal de matrices.

Submatriz

EJEMPLO 2.2.8 Multiplicación por bloques

Considere el producto
$$AB = \begin{pmatrix} 1 & -1 & 2 & 4 \\ 2 & 0 & 4 & 5 \\ 1 & 1 & 2 & -3 \\ -2 & 3 & 5 & 0 \end{pmatrix} \begin{pmatrix} 1 & 4 & 3 \\ 2 & -1 & 0 \\ -3 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

El lector debe verificar que este producto esté definido. Ahora se realiza una partición de estas matrices mediante líneas punteadas.

$$AB = \begin{pmatrix} 1 & -1 & 2 & 4 \\ 2 & 0 & 4 & 5 \\ 1 & 1 & 2 & -3 \\ -2 & 3 & 5 & 0 \end{pmatrix} \begin{pmatrix} 1 & 4 & 3 \\ 2 & -1 & 0 \\ -3 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} = \begin{pmatrix} C & D \\ E & F \end{pmatrix} \begin{pmatrix} G & H \\ J & K \end{pmatrix}$$

Existen otras maneras de formar la partición. En este caso $C = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix}$, $K = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, y así su-

cesivamente. Si suponemos que todos los productos y las sumas de matrices están definidos, se puede multiplicar de manera normal para obtener

$$AB = \begin{pmatrix} C & D \\ E & F \end{pmatrix} \begin{pmatrix} G & H \\ J & K \end{pmatrix} = \begin{pmatrix} CG + DJ & CH + DK \\ EG + FJ & EH + FK \end{pmatrix}$$

Ahora

$$CG = \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 4 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} -1 & 5 \\ 2 & 8 \end{pmatrix}, \quad CG = \begin{pmatrix} 2 & 4 \\ 4 & 5 \end{pmatrix} \begin{pmatrix} -3 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -6 & 8 \\ -12 & 13 \end{pmatrix}$$

у

$$CG + DJ = \begin{pmatrix} -7 & 13 \\ -10 & 21 \end{pmatrix}.$$