PROBLEM SET 2

Anthony Tam, CSC236

09/30/2016

Question 1: Prove if $7 \in F$, $w, v \in F$ then $u + v \in F$, and nothing else is in F. Use structural induction to prove that $\forall w \in F$, $w \mod 7 = 0$.

ANSWER: P(F): All elements of F are multiples of 7.

Base case: If there is only 1 element in the set F. This element must be 7 and 7 mod 7 = 0 \therefore the base case holds.

Induction: Let $u, w \in F$. We can assume $u \mod 7 = 0$ and $w \mod 7 = 0$ (IH). Since we know we have 2 multiples of 7, we can infer that:

a7 = u and b7 = w where $a, b \in \mathbb{R}$.

$$u + w = a7 + b7$$

$$u + w = (a + b)7$$

 \therefore We create another multiple of 7.

Q.E.D

Question 2a: Prove by complete induction that $\forall n \geq 1, f(n) \mod 7 = 3$.

$$f(n) = \begin{cases} 10, & if \mathbf{n} = \mathbf{1} \\ 24, & if \mathbf{n} = \mathbf{2} \\ (f(n-1))^2 + f(n-2) + 5, & if \mathbf{n} \ge 3 \end{cases}$$

ANSWER: P(n): $f(n) \mod 7 = 3 \ \forall \ n \in \mathbb{N}$.

Base case:

∴ Base case holds. Induction: IH. $\forall i \in \mathbb{N}$, $i \mod 7 = 3$

Find f(n + 1):

$$= ((f(n+1-1))^2 + f(n-1) + 5) \mod 7$$

$$= ((f(n))^2 \mod 7) + (f(n-1) \mod 7) + (5 \mod 7)$$

$$= 2 + 3 + 5$$

 $= 10 \mod 3$

= 3

 \therefore the statement holds for f(n + 1) QED.

Assignment № 2