

Photoassociation

Photoassociation – decay channels

Photoassociation properties

- Occurs at outer turning point of excited vibrational state
- Extremely inefficient for tightly bound states – tend to form "long-range molecules"
- Decay to a deeply bound state of the molecular ground state is unlikely
- Decay to two free atoms is accompanied by a large release of energy – trap loss

Detection methods

Trap loss spectroscopy – the number of atoms in a MOT decreases when the molecules are formed. Example below: Ca₂

Ion detection. Ionize the molecules and count the ions produced.

Rev. Mod. Phys. 78, 483 (2006)

Example: production of ultracold LiCs in the ground state

PRL 101, 103004 (2008)

- (a) Photoassociation into v=4 (500mW, 946nm)
- (b) Spontaneous decay into ground state
- (c) Two-photon resonant ionization

5000 ground state molecules per second

Photoassociation - advantages and limitations

- ✓ Molecules are formed at ultracold temperatures.
- ✓ Possible to reach the ground state (though difficult)
- X Limited to constituents that can be laser-cooled
- X High experimental complexity, particularly for heteronuclears
- X Production rate is usually very slow

Feshbach resonance

Reminder about s-wave scattering

- At ultracold temperatures, scattering is described by the s-wave scattering length, a
- All other partial waves are suppressed by the angular momentum barrier

Feshbach resonance

Reminder about level crossings

Atoms into molecules via a Feshbach resonance

