

Dementia Severity Prediction Across Multiple Levels using ML Algorithms

Presentation Overview

- Introduction
- Problem statement
- Business Understanding of the Predictive
 Model
- Dataset Explanation
- Dataset Preparation
- Exploratory Data Analysis
- Models of Decision
- Modeling Process
- Best Model Selection
- Future Scope

INTRODUCTION

Global Impact of Dementia

Dementia is a prevalent and impactful condition, affecting millions of individuals worldwide.

Recognizing Dementia

Common symptoms include memory loss, difficulty in communication, impaired judgment,

Diagnostic Complexity

Diagnosing dementia can be challenging, and there is currently no single definitive test.

Clinical Approach to Diagnosis

Healthcare professionals rely Melding Clinical, Medical, and Cognitive Assessments

Problem Statement

Develop a predictive model to estimate dementia severity using clinical data. Recognizing the significant number of undiagnosed cases, there's a critical need to utilize machine learning algorithms for early detection. Simplify complex profiles to facilitate early intervention and support in healthcare settings.

Business Understanding of the Predictive Model

Early Intervention & Treatment Planning

This contributes to improved patient outcomes and enhances the quality of dementia care.

Enhanced Diagnosis Precision

Reliable diagnostic tools reduce the likelihood of misdiagnoses, providing a more precise understanding of an individual's cognitive health status

Resource Optimization

Efficient allocation of resources allows healthcare providers to focus on specific interventions tailored to individual patient needs

Dataset Overview

Oasis Cross-Sectional Studies dataset provided

by

Open Access Series of Imaging Studies (OASIS)

Dataset Explanation

Identification and Demographics

- •**ID**: Unique identifier for each record or patient.
- •M/F: Gender of the patients (Male or Female).
- •Age: Age of the patients.

Educational and Socioeconomic Factors

- •Educ: Level of education of the patients.
- •**SES**: Socioeconomic status of the patients.

Dataset Explanation

Cognitive Assessment Scores

•MMSE: Mini Mental State
Examination score is a
brief and widely used
cognitive screening tool to
assess various aspects of
cognitive function

Neuroimaging Measures

- eTIV: Estimated Total Intracranial Volume
- **nWBV**: Normalized Whole Brain Volume
- ASF: Atlas Scaling Factor

Dataset Explanation

Dominant Hand Information

 Hand: Represents the dominant hand of the patients (Right or Left)

Dementia Severity Target

 CDR: Clinical Dementia Rating, the target variable indicating the severity of dementia

Dataset Preparation

Data Collection Data Cleaning Data Transformation Gather diverse MRI scans Normalize/standardize Address missing values and clinical data from and outliers to ensure data numerical features for sources like the **OASIS** integrity and prevent bias in consistent model training. public archive to cover the model varying levels of dementia severity.

Dataset Preparation

Data Splitting Data Encoding Handling Imbalanced Data Divide the dataset into Convert categorical variables Mitigate imbalances in training, validation, and using methods like one-hot dementia severity distribution testing sets for effective encoding or label encoding through techniques like model evaluation. for machine learning oversampling or compatibility. undersampling.

Exploratory Data Analysis

Age Distribution across CDR Categories 50 40 0.5 1.0 2.0 0.0 CDR

Histogram

Box Plot

Exploratory Data Analysis

Correlation Matrix

Scatter Plot

Model's of Decision

Modeling Process

Data Preprocessing

Exploratory Data Analysis

Data Scaling and Splitting

- Load data from a CSV file.
- Handle missing values by replacing them with the mean of the respective column.
- Encode categorical variables into numerical values.

- Identify dependent and independent variables.
- Analyze the correlation between different variables.
- Visualize positive and negative relationships using plots.

- <u>Random Forest Classifie</u>i
 - Scale features using StandardScaler to standardize the dataset's features onto unit scale (mean = 0 and variance = 1).
 - Split the data into a training set (80%) and a testing set (20%).

Modeling Process

Model Selection and Training

Model Evaluation

Data Scaling and Splitting

- Select models for the task:
 Linear Regression,
 Decision Tree Classifier
- Train each model using the fit() function on the scaled training data.

- For Linear Regression:
 Calculate Mean Squared Error (MSE).
- For Decision Tree Classifier:
 Calculate accuracy and generate a classification report.

- Evaluate the results of each model.
- Classify predicted values into various levels.
- Determine the best model based on evaluation metrics (MSE, accuracy, classification report).

Findings in Linear Regression

Mean Squared Error (MSE)

MSE of 0.0556 suggests a **precise fit, aligning model** predictions closely with actual values.

Coefficients Interpretation

'Age' coefficient at -0.000692 indicates a slight negative correlation with Clinical Dementia Rating (CDR)

Intercept Value

Intercept at **5.1449 represents** the predicted **CDR when all features are zero.**

Protective Factors

Negative coefficients for 'Educ', 'SES', 'MMSE', 'eTIV', 'nWBV', 'ASF' suggest potential shields against dementia.

Findings in Linear Regression

Drawbacks in Linear Regression

Assumption of Linearity

Impact: Limits the model's ability to capture non-linear patterns in the data.

Sensitivity to Outliers

Impact: Outliers can disproportionately influence the model, affecting predictions.

Findings in Decision Tree Classifier

Model Accuracy

77% accuracy in predicting dementia severity class showcases reliable performance

Recall Challenges

Challenges arise with low recalls, especially for "Mild Dementia"

(14%) and none for "Moderate

Dementia," revealing limitations in identifying these cases.

Precision and Recall

Class-specific precision (e.g., 0.93 for CDR=0) and recall (e.g., 0.83 for CDR=0) provide detailed insights into model efficacy.

Support Analysis

Examining the support column reveals the actual occurrences of each class in the test set, providing additional context for model performance

Findings in Decision Tree Classifier

Drawbacks in Decision Tree Classifier

Prone to Overfitting

Impact: Captures noise
in the data, reducing
the model's
generalizability to new,
unseen data.

Lack of Interpretability for Complex Trees

Impact: Difficulty in understanding and explaining intricate decision-making processes.

Conclusion of Findings Evaluation of models

Linear Regression

A low MSE of 0**.0556** indicating a strong fit

Decision Tree Classifier

77% accuracy showcases reliable dementia severity class prediction performance.

Best Model Selection

Decision Tree Classifier

Given the likely non-linear relationships in healthcare data, the **Decision Tree Classifier** is more suitable for predicting dementia severity in our use case.

Future Scope

Collaboration with healthcare professionals to integrate advanced features positions the model for real-world impact.

Incorporating **longitudinal data** contributes to **ongoing advancements** in personalized medicine.

TEAM MEMBERS AND ROLES

ADTA 5340 GROUP NO: 16

Vishnu Pasula

Data Visualization and exploratory data analysis

Chandana Vemula

Data preprocessing and Model evaluation

Vamshikrishna Thallapelli

Data Algorithms applications and prediction analysis