Product Summary

V _{(BR)DSS}	R _{DS(on)TYP}	l _D
200V	19mΩ@10V	70A

Feature

- Fast Switchin
- High density cell design for ultra low Rdson
- Excellent package for good heat dissipation
- 100% Single Pulse avalanche energy Test

Application

- Load switching
- PWM Application
- Power Management

Package

Circuit diagram

Marking

4227

: Product code : Week code.

Absolute maximum ratings (Ta=25°C,unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	200	V
Gate-Source Voltage	V _{GS}	±20	V
Drain Current-Continuous(Tc=25°C)	I _D	70	Α
Pulsed Drain Current	I _{DM}	280	Α
Maximum Power Dissipation(Tc=25°C)	P _D	330	W
Single pulse avalanche energy (1)	Eas	126	mJ
Thermal Resistance, Junction-to-Case ⁽²⁾	Rejc	0.38	°C/W
Operating Junction and Storage Temperature Range	T _J ,T _{STG}	-55 To 150	°C

Floctrical characteristics (Ta=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Static Characteristics	•				•	
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	200		-	>
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =160V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS},I_{D}=250\mu A$	3	4	5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =40A	-	19	24	mΩ
Dynamic Characteristics (4)						
Input Capacitance	C _{lss}		-	4711	_	
Output Capacitance	Coss	V _{DS} =25V,V _{GS} =0V, F=1.0MHz	-	469	-	PF
Reverse Transfer Capacitance	C _{rss}	1		97	-	
Switching Characteristics (4)						
Total Gate Charge	Qg		-	75	-	
Gate-Source Charge	Qgs	V_{DS} =100V, I_{D} =40A, V_{GS} =10V	-	47	-	nC
Gate-Drain Charge	Q_{gd}		-	23	-	
Turn-on Delay Time	t _{d(on)}		-	32	-	
Turn-on Rise Time	t _r	V _{DD} =100V,I _D =40A,	-	23	-	C
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10V, R_{G} =2.5 Ω	-	25	-	nS
Turn-Off Fall Time	t _f		-	31	-	
Drain-Source Diode Characteristics						
Diode Forward Voltage (3)	V _{SD}	V _{GS} =0V,I _S =1A	-	-	1.2	V
Reverse Recovery Time	Trr	T _J = 25°C, IF= 40A, VDD = 50V	-	101	-	ns
Reverse Recovery Charge	Qrr	di/dt = 100A/µs	-	433	-	nC

Notes:

- 1. E_{AS} condition : $Tj=25^{\circ}C$, $V_{DD}=50V$, $V_{G}=10V$,L=0.3mH, $Rg=25\Omega$
- Surface Mounted on FR4 Board, t ≤ 10 sec.
- Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- Guaranteed by design, not subject to production

Typical Characteristics

Typical Output Characteristics

Typical Transfer Characteristics

Typical Output Characteristics

Normalized On-Resistance vs. Temperature

Typical E_{PULSE} vs. Drain Current

Typical E_{PULSE} vs.Temperature

Typical Capacitance vs.Drain-to-Source Voltage

Typical Source-Drain Diode Forward Voltage

Typical Gate Charge vs.Gate-to-Source Voltage

Siliup Semiconductor

On-Resistance Vs. Gate Voltage

Threshold Voltage vs. Temperature

Maximum Avalanche Energy Vs. Temperature

Typical Repetitive peak Current vs. Case temperature

Maximum Effective Transient Thermal Impedance, Junction-to-Case

TO-220-3L-C Package Information

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min.	Max.	Min.	Max.
Α	4.400	4.600	0.173	0.181
A1	2.250	2.550	0.089	0.100
b	0.710	0.910	0.028	0.036
b1	1.170	1.370	0.046	0.054
С	0.330	0.650	0.013	0.026
c1	1.200	1.400	0.047	0.055
D	9.910	10.250	0.390	0.404
Е	8.950	9.750	0.352	0.384
E1	12.650	13.050	0.498	0.514
е	2.540 TYP.		0.100 TYP.	
e1	4.980	5.180	0.196	0.204
F	2.650	2.950	0.104	0.116
Н	7.900	8.100	0.311	0.319
h	0.000	0.300	0.000	0.012
L	12.900	13.400	0.508	0.528
L1	2.850	3.250	0.112	0.128
V	6.900 REF.		0.276 REF.	
Ф	3.400	3.800	0.134	0.150