

Taki Eddine MEKHALFA

Taki-Eddine.MEKHALFA@inria.fr

Suppose you know that A and B are friends! What does this tell you?

=> They might have similar smoking habits!

Suppose you know that A and B are friends! What does this tell you?

=> They might have similar smoking habits! Is this useful to model smoking behaviors?

- => They might have similar smoking habits! Is this useful to model smoking behaviors?
- => Call it a **feature** then!

- => They might have similar smoking habits! Is this useful to model smoking behaviors?
- => Call it a **feature** then!
- => Need a way to represent interactions!

- => They might have similar smoking habits! Is this useful to model smoking behaviors?
- => Call it a **feature** then!
- => Need a way to represent interactions!
- => Use Graphs!

- => They might have similar smoking habits! Is this useful to model smoking behaviors?
- => Call it a **feature** then!
- => Need a way to represent interactions!
- => Use Graphs!

- => They might have similar smoking habits! Is this useful to model smoking behaviors?
- => Call it a **feature** then!
- => Need a way to represent interactions!
- => Use Graphs!

- => They might have similar smoking habits! Is this useful to model smoking behaviors?
- => Call it a **feature** then!
- => Need a way to represent interactions!
- => Use Graphs!

Suppose you know that A and B are friends! What does this tell you?

- => They might have similar smoking habits! Is this useful to model smoking behaviors?
- => Call it a **feature** then!
- => Need a way to represent interactions!
- => Use Graphs!

- => They might have similar smoking habits! Is this useful to model smoking behaviors?
- => Call it a **feature** then!
- => Need a way to represent interactions!
- => Use Graphs!
- => Need a way to represent independence!

Suppose you know that A and B are friends! What does this tell you?

- => They might have similar smoking habits! Is this useful to model smoking behaviors?
- => Call it a **feature** then!
- => Need a way to represent interactions!
- => Use Graphs!

Suppose you know that A and B are friends! What does this tell you?

- => They might have similar smoking habits! Is this useful to model smoking behaviors?
- => Call it a **feature** then!
- => Need a way to represent interactions!
- => Use Graphs!

Suppose you know that A and B are friends! What does this tell you?

- => They might have similar smoking habits! Is this useful to model smoking behaviors?
- => Call it a **feature** then!
- => Need a way to represent interactions!
- => Use Graphs!

- => They might have similar smoking habits! Is this useful to model smoking behaviors?
- => Call it a **feature** then!
- => Need a way to represent interactions!
- => Use Graphs!

ASSUMPTION: A given state of variables (we say a possible world) is more likely iff the overall compatibility is higher

How to define compatibility in our case?

How to define compatibility in our case?

$$\Psi_1(A,B) =$$

- 1 if A and B are friends and both smoke or both don't smoke
- 0.5 if A and B are are not friends
- 0 if A and B are friends and don't have same smoking habits

$$\Psi_1(A,B) =$$

- 1 if A and B are friends and both smoke or both don't smoke
- 0.5 if A and B are are not friends
- 0 if A and B are friends and don't have same smoking habits

Suppose that:

What world is most likely between the following two?:

$$\Psi_1(A,B) =$$

- 1 if A and B are friends and both smoke or both don't smoke
- 0.5 if A and B are are not friends
- 0 if A and B are friends and don't have same smoking habits

Suppose that:

What world is most likely between the following two?:

- 1. Smokes{ \triangle , \bigcirc } and Does not Smoke { \bigcirc , \bigcirc }
- 2. Smokes{ \triangle , \bigcirc } and Does not Smoke { \bigcirc }

$$\Psi_1(A,B) =$$

- 1 if A and B are friends and both smoke or both don't smoke
- 0.5 if A and B are are not friends
- 0 if A and B are friends and don't have same smoking habits

Suppose that:

What world is most likely between the following two?:

- 1. Smokes{A, B} and Does not Smoke {C, D}
- 2. Smokes{ A, C} and Does not Smoke { B, D}

$$\Psi_1(A,B) =$$

- 1 if A and B are friends and both smoke or both don't smoke
- 0.5 if A and B are are not friends
- 0 if A and B are friends and don't have same smoking habits

 $P(Smokes{A, B} and Does not Smoke {C, D})$

$$\Psi_1(A,B) =$$

- 1 if A and B are friends and both smoke or both don't smoke
- 0.5 if A and B are are not friends
- 0 if A and B are friends and don't have same smoking habits

 $P(Smokes{A, B} and Does not Smoke {C, D})$

 \mathbf{x} Ψ (Smokes{A, B} and Does not Smoke $\{C$, $\{D\}$)

$$\Psi_1(A,B) =$$

- 1 if A and B are friends and both smoke or both don't smoke
- 0.5 if A and B are are not friends
- 0 if A and B are friends and don't have same smoking habits

$$\Psi_1(A,B) =$$

- 1 if A and B are friends and both smoke or both don't smoke
- 0.5 if A and B are are not friends
- 0 if A and B are friends and don't have same smoking habits

$$\Psi_1(A,B) =$$

- 1 if A and B are friends and both smoke or both don't smoke
- 0.5 if A and B are are not friends
- 0 if A and B are friends and don't have same smoking habits

 $P(Smokes{A, C} and Does not Smoke {B, D})$

$$\Psi_1(A,B) =$$

- 1 if A and B are friends and both smoke or both don't smoke
- 0.5 if A and B are are not friends
- 0 if A and B are friends and don't have same smoking habits

 $P(Smokes{A, C} and Does not Smoke {B, D})$

 \mathbf{x} Ψ (Smokes{A, C} and Does not Smoke {B, D})

$$\Psi_1(A,B) =$$

- 1 if A and B are friends and both smoke or both don't smoke
- 0.5 if A and B are are not friends
- 0 if A and B are friends and don't have same smoking habits

$$\Psi_1(A,B) =$$

- 1 if A and B are friends and both smoke or both don't smoke
- 0.5 if A and B are are not friends
- 0 if A and B are friends and don't have same smoking habits

$$\Psi_1(A,B) =$$

- 1 if A and B are friends and both smoke or both don't smoke
- 0.5 if A and B are are not friends
- 0 if A and B are friends and don't have same smoking habits

 $P(Smokes{A, B} and Does not Smoke {C, D})$

IS ~7.4 times more likely $(\exp(2) = \exp(3) / \exp(1))$ than

 $P(Smokes{A, C} and Does not Smoke {B, D})$

- 1 if A and B are friends and both smoke or both don't smoke
- 0.5 if A and B are are not friends
- 0 if A and B are friends and don't have same smoking habits

$$\Psi_{1, \text{ friendship}}(A, B) =$$

- 1 if A and B are friends and both smoke or both don't smoke
- 0.5 if A and B are are not friends
- 0 if A and B are friends and don't have same smoking habits

$$\Psi_{1, \text{ couple}}$$
 (A, B) =

- 5 if \triangle and \bigcirc are couples and both smoke
- 0.5 if \triangle and \bigcirc are not couples
- 0 if A and B are couples and don't have same smoking habits

$$\Psi_{1, \text{ friendship}}(A, B) =$$

- 1 if A and B are friends and both smoke or both don't smoke
- 0.5 if A and B are are not friends
- 0 if A and B are friends and don't have same smoking habits

$$\Psi_{1, \text{ couple}}$$
 (A, B) =

- 5 if \triangle and \bigcirc are couples and both smoke
- 0.5 if \triangle and \bigcirc are not couples
- 0 if A and B are couples and don't have same smoking habits

$$\Psi_{1, \text{ friendship}}(A, B) =$$

- 1 if A and B are friends and both smoke or both don't smoke
- 0.5 if A and B are are not friends
- Oif A and B are friends and don't have same smoking habits

$$\Psi_{1, \text{ couple}}$$
 (A, B) =

- 5 if A and B are couples and both smoke
- 0.5 if A and B are not couples
- Oif A and B are couples and don't have same smoking habits

$$\Psi_1(A,B) = \Psi_{1, \text{ friendship}}(A,B) + \Psi_{1, \text{ couple}}(B)$$

Suppose I show you a biased coin:

with parameter θ where P(Head) = θ

I flip the coin 100 times in front of you, finally we get 30 heads and 70 tails.

Suppose I show you a biased coin:

with parameter θ where P(Head) = θ

I flip the coin 100 times in front of you, finally we get 30 heads and 70 tails.

Intuitively, what is an estimate for θ ?

Suppose I show you a biased coin:

with parameter Θ where $P(Head) = \Theta$

I flip the coin 100 times in front of you, finally we get 30 heads and 70 tails.

Intuitively, what is an estimate for Θ ?

$$\Rightarrow \Theta = 30 / 100 = 0.3$$

Suppose I show you a biased coin:

with parameter θ where P(Head) = θ

I flip the coin 100 times in front of you, finally we get 30 heads and 70 tails.

Intuitively, what is an estimate for Θ ?

$$\Rightarrow \Theta = 30 / 100 = 0.3$$

 $P(\text{data}; \theta) = P(30 \text{ heads and } 70 \text{ tails}; \theta) = P(30 \text{ heads}; \theta) \times P(70 \text{ tails}; \theta)$

Suppose I show you a biased coin:

with parameter θ where $P(Head) = \theta$

I flip the coin 100 times in front of you, finally we get 30 heads and 70 tails.

Intuitively, what is an estimate for Θ ?

$$\Rightarrow \Theta = 30 / 100 = 0.3$$

P(data;
$$\theta$$
) = P(30 heads and 70 tails; θ) = P(30 heads; θ) x P(70 tails; θ) = $\theta^{30}(1 - \theta)^{70}$

Suppose I show you a biased coin:

with parameter θ where P(Head) = θ

I flip the coin 100 times in front of you, finally we get 30 heads and 70 tails.

Intuitively, what is an estimate for θ ?

$$\Rightarrow \Theta = 30 / 100 = 0.3$$

 $P(data; \theta) = P(30 \text{ heads and } 70 \text{ tails}; \theta) = P(30 \text{ heads}; \theta) \times P(70 \text{ tails}; \theta)$

$$=\Theta^{30}(1-\Theta)^{70}$$

Maximizing $\theta^{30}(1-\theta)^{70}$ is equivalent to maximizing $\log(\theta^{30}(1-\theta)^{70}) =$

Suppose I show you a biased coin:

with parameter θ where P(Head) = θ

I flip the coin 100 times in front of you, finally we get 30 heads and 70 tails.

Intuitively, what is an estimate for Θ ?

$$\Rightarrow \Theta = 30 / 100 = 0.3$$

 $P(\text{data}; \theta) = P(30 \text{ heads and } 70 \text{ tails}; \theta) = P(30 \text{ heads}; \theta) \times P(70 \text{ tails}; \theta)$

$$=\Theta^{30}(1-\Theta)^{70}$$

Maximizing $\theta^{30}(1-\theta)^{70}$ is equivalent to maximizing $\log(\theta^{30}(1-\theta)^{70}) = 30\log(\theta) + 70\log(1-\theta)$

Suppose I show you a biased coin:

with parameter θ where P(Head) = θ

I flip the coin 100 times in front of you, finally we get 30 heads and 70 tails.

Intuitively, what is an estimate for θ ?

$$\Rightarrow \Theta = 30 / 100 = 0.3$$

 $P(data; \theta) = P(30 \text{ heads and } 70 \text{ tails}; \theta) = P(30 \text{ heads}; \theta) \times P(70 \text{ tails}; \theta)$

$$=\Theta^{30}(1-\Theta)^{70}$$

Maximizing $\theta^{30}(1-\theta)^{70}$ is equivalent to maximizing $\log(\theta^{30}(1-\theta)^{70}) = 30\log(\theta) + 70\log(1-\theta)$

Derivative => $30/\theta$ - $70/(1-\theta)$ => it hits zero when θ = 30/100

Y₁
PERS

Y₂

Y₃

Y₄

T₅

Jim X₁ bought X₂

Google X₃

in X₄

X₅

2021

 $\Psi_1(Y_5, Y_4, X_5) = \Theta_1$ if $Y_5 = 'DATE'$ and $Y_4 = 'OTHER'$ and X_5 is a number else 0.

 $\Psi_2(Y_3, X_3) = \Theta_2$ if $Y_3 = 'ORGA'$ and X_3 starts with a capital letter, else 0.

 $\Psi_3(Y_1, X_1, X_2) = \Theta_3$ if Y_1 = 'PERS' and X_1 belongs to a dictionary of names and X_2 is a verb

$$\Psi_4(Y_3, Y_2) = \Theta_4$$
 if $Y_2 = 'OTHER'$ and $Y_3 = 'ORGA'$

We are interested in modeling P(Y | X) and not P(Y,X) => CONDITIONAL

$$\Psi_4(Y_3, Y_2) = \Theta_4$$
 if $Y_2 = 'OTHER'$ and $Y_3 = 'ORGA'$

Conditional Random Fields

Take away points:

- Factor models are a pattern recognition machine learning model for structured prediction
- CRF's model P(Y | X) where X is always observable and does not care about
 P(X) or P(X | Y) => A discriminative model, can use complex features X and more
 efficient, BUT always needs complete features X => does not handle incomplete data
 very well
- We use linear chain CRF's (Every Y_t depends only on Y_{t-1} and Y_{t+1}) for sequential tasks such as NER, Speech to text, ...

