Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Modelowanie i identyfikacja

Sprawozdanie z projektu I, zadanie 32

Adam Sokołowski

Spis treści

1.	Wst	ęp	2
2.	Zadanie 1		3
	2.1. 2.2.	Wyznaczanie wzoru charakterystyki statycznej	3
3.	Zada	anie 2	5
	3.1.	Wyznaczanie charakterystyki statycznej zlinearyzowanej w dowolnym punkcie $ar{u}$	5
4.	Zada	anie 3	6
	4.1.	Zlinearyzowana charakterystyka statyczna na tle charakterystyki nieliniowej	6
5.	Zadanie 4		8
	5.1.	Reprezentacja graficzna dynamicznego modelu ciągłego	8
6.	Zadanie 5		9
	6.1. 6.2.	Równania dynamicznego modelu ciągłego zlinearyzowanego w punkcie pracy \bar{u} Reprezentacja graficzna dynamicznego modelu ciągłego zlinearyzowanego w punkcie	9
		pracy $ar{u}$	9
7.	Zadanie 6		10
	7.1.	Odpowiedzi skokowe modelu ciągłego w wersji nieliniowej i zlinearyzowanej dla $\bar{\boldsymbol{u}}{=}0.5$	10
	7.2.	Odpowiedzi skokowe modelu ciągłego w wersji nieliniowej i zlinearyzowanej dla $\bar{\pmb{u}}{=}0.0$	11
	7.3.	Odpowiedzi skokowe modelu ciągłego w wersji nieliniowej i zlinearyzowanej dla $\bar{\pmb{u}}{=}\text{-}0.5$.	13
8.	Zadanie 7		15
	8.1.	Równania dynamicznego modelu nieliniowego w wersji dyskretnej	15
	8.2.	Reprezentacja graficzna dynamicznego modelu nieliniowego w wersji dyskretnej	15
9.	Zadanie 8		16
	9.1.	Odpowiedzi skokowe modelu nieliniowego w wersji ciągłej i dyskretnej	16
10.Zadanie dodatkowe		18	
		Wyznaczenie transmitancji w punkcie \bar{u}	18
		linearyzacii $ar{u}$	18

1. Wstęp

Obiektem poniższych zadań jest nieliniowy ciągły model dynamiczny, który w przestrzeni stanu wygląda następująco:

$$\dot{x}_1(t) = -a_2 x_1(t) + x_2(t) \tag{1.1}$$

$$\dot{x}_2(t) = -a_1 x_1(t) + x_3(t) \tag{1.2}$$

$$\dot{x}_3(t) = -a_0 x_1(t) + b_0(\alpha_1 u(t) + \alpha_2 u^2(t) + \alpha_3 u^3(t) + \alpha_4 u^4(t))$$
(1.3)

$$y(t) = x_1(t) \tag{1.4}$$

gdzie: $a_0=0,000531632,\ a_1=0,0207337,\ a_2=0,254652,\ b_0=0,00122807,\ \alpha_1=-0,3,$ $\alpha_2=-0,55,\ \alpha_3=0,4,\ \alpha_4=0,21.$ Sygnał sterujący zmienia się w zakresie $-1\leqslant u\leqslant 1.$

2.1. Wyznaczanie wzoru charakterystyki statycznej

Wzór wyznaczony ręcznie poprzez przyrównanie \dot{x} do zera w równaniach 1.1-1.3 i przekształcenie otrzymanych wzorów w celu wyznaczenia y(u):

$$y(u) = \frac{b_0}{a_0} (\alpha_1 u + \alpha_2 u^2 + \alpha_3 u^3 + \alpha_4 u^4)$$
 (2.1)

Aby wyznaczyć wzór w MATLAB stworzono równania przestrzeni stanu (eq1, eq2, eq3, eq4), a następnie rozwiązano układ równań dla u jako argmuentu funkcji szukanej - y poleceniem solve. Kod z MATLAB:

```
syms x1 x2 x3 u y
eq1 = -a2*x1 + x2 == 0;
eq2 = -a1*x1 + x3 == 0;
eq3 = -a0*x1+b0*(alpha1*u+alpha2*u^2+alpha3*u^3+alpha4*u^4) == 0;
eq4 = y == x1;
vars = [x1,x2,x3,y];
eqns = [eq1, eq2, eq3, eq4];
sol = solve(eqns, vars);
yu = sol.y;
```

2.2. Rysunek charakterystyki statycznej

Rys. 2.1. Charakterystyka statyczna

Charakterystyka statyczna jest funkcją wielomianową, a jej argumenty przyjmują wartości z przedziału [-1,1], tak jak podano w treści zadania.

3.1. Wyznaczanie charakterystyki statycznej zlinearyzowanej w dowolnym punkcie \bar{u}

Do wyznaczenia charakterystyki statycznej zlinearyzowanej w skorzystano z poniższego wzoru do linearyzacji funkcji:

$$f(x) \approx f(\bar{x}) + \frac{dy(x)}{dx}|_{x=\bar{x}}(x-\bar{x}). \tag{3.1}$$

Otrzymany wzór na y(u) w postaci zlinearyzowanej wygląda następująco:

$$y(u) \approx \frac{b_0}{a_0} (\alpha_1 u(t) + \alpha_2 \bar{u}^2 + 2\alpha_2 \bar{u}(u(t) - \bar{u}) + \alpha_3 \bar{u}^3 + 3\alpha_3 \bar{u}^2(u(t) - \bar{u}) + \alpha_4 \bar{u}^4 + 4\alpha_4 \bar{u}^3(u(t) - \bar{u}))$$
(3.2)

Do otrzymania równania w MATLAB skorzystano z takich funkcji jak diff i subs:

```
% linearizing y(u) i u0 point
u0 = 0.5; % linearization point
dy_du = diff(yu);
yu_u0 = subs(yu, u0);
```

Wyznaczenie części: $f(\bar{x})$.

```
dyu_u0 = subs(dy_du, u0);
```

Wyznaczenie części: $\frac{dy(x)}{dx}|_{x=\bar{x}}(x-\bar{x}).$

```
lin_yu = yu_u0 + dyu_u0*(u-u0);
```

Końcowy wzór.

4.1. Zlinearyzowana charakterystyka statyczna na tle charakterystyki nieliniowej

Rys. 4.1. Charakterystyka statyczna dla u0=-0.5 na charakterystyce nieliniowej

Rys. 4.2. Charakterystyka statyczna dla u0=0.0 na charakterystyce nieliniowej

Rys. 4.3. Charakterystyka statyczna dla u
0=0.5 na charakterystyce nieliniowej $\,$

Na rysunkach 4.1, 4.2 i 4.3 widać, że przybliżanie funkcji nieliniowej jest sensowne jedynie w bliskim otoczeniu punktu linearyzacji, gdyż funkcja aproksymująca szybko zaczyna odbiegać od aproksymowanej. Punkty dobrano tak aby jeden był ujemy, sensownie oddalony od zera i od lewej granicy dziedziny, kolejny był na środku dziedziny, a trzeci był dodatni, oddalony od zera i prawego krańca dziedziny.

5.1. Reprezentacja graficzna dynamicznego modelu ciągłego

Rys. 5.1. Model ciagły w Simulink nieliniowy

Do zrealizowania reprezentacji graficznej użyto programu Simulink, w którym odtworzono wzory 1.1-1.4 przy użyciu bloków takich jak gain, step, integrator, add i fcn. Blok fcn wykorzystano do tego, aby wpisać w nim następującą część zadanego modelu: $(\alpha_1 u(t) + \alpha_2 u(t)^2 + \alpha_3 u(t)^3 + \alpha_4 u(t)^4)$.

6.1. Równania dynamicznego modelu ciągłego zlinearyzowanego w punkcie pracy \bar{u}

$$\dot{x}_1(t) = -a_2 x_1(t) + x_2(t) \tag{6.1}$$

$$\dot{x}_2(t) = -a_1 x_1(t) + x_3(t) \tag{6.2}$$

$$\dot{x}_3(t) = -a_0 x_1(t) + b_0 (\alpha_1 u(t) + \alpha_2 \bar{u}^2 + 2\alpha_2 \bar{u}(u(t) - \bar{u})$$
(6.3)

$$+\alpha_3 \bar{u}^3 + 3\alpha_3 \bar{u}^2 (u(t) - \bar{u}) + \alpha_4 \bar{u}^4 + 4\alpha_4 \bar{u}^3 (u(t) - \bar{u}))$$
(6.4)

$$y(t) = x_1(t) \tag{6.5}$$

Równania otrzymano przy użyciu wzoru 3.1 na części nieliniowej wzorów 1.1-1.4.

6.2. Reprezentacja graficzna dynamicznego modelu ciągłego zlinearyzowanego w punkcie pracy \bar{u}

Rys. 6.1. Model ciagły w Simulink liniowy

Reprezentację graficzną zrealizowano tak samo jak na Rys. 5.1. Jedyna różnica jest taka, że w bloku fcn zawarto następującą funkcję: $\alpha_1 u(t) + \alpha_2 \bar{u}^2 + 2\alpha_2 \bar{u}(u(t) - \bar{u}) + \alpha_3 \bar{u}^3 + 3\alpha_3 \bar{u}^2(u(t) - \bar{u}) + \alpha_4 \bar{u}^4 + 4\alpha_4 \bar{u}^3(u(t) - \bar{u})$.

7.1. Odpowiedzi skokowe modelu ciągłego w wersji nieliniowej i zlinearyzowanej dla $\bar{u}{=}0.5$

Rys. 7.1. Odpowiedzi skokowe dla skoku małego (0.1)

Rys. 7.2. Odpowiedzi skokowe dla skoku średniego $\left(0.6\right)$

Rys. 7.3. Odpowiedzi skokowe dla skoku dużego (1)

Odpowiedzi modelu zlinearyzowanego odbiegają od odpowiedzi nieliniowego na Rys. 7.1 i 7.3, natomiast na Rys. 7.2 prawie się nakładają. Wynika to z tego, że dla skoku średniego wybrany punkt linearyzacji dobrze aproksymuje funkcję nieliniową.

7.2. Odpowiedzi skokowe modelu ciągłego w wersji nieliniowej i zlinearyzowanej dla $\bar{u}{=}0.0$

Rys. 7.4. Odpowiedzi skokowe dla skoku małego (0.1)

Rys. 7.5. Odpowiedzi skokowe dla skoku średniego $\left(0.6\right)$

Rys. 7.6. Odpowiedzi skokowe dla skoku dużego (1)

Dla punktu linearyzacji równego 0. Odpowiedzi skokowe na Rys. 7.4-7.6 nie pokrywają się dla żadnego skoku, jednak cały czas zachowują podobny kształt.

7.3. Odpowiedzi skokowe modelu ciągłego w wersji nieliniowej i zlinearyzowanej dla $\bar{u}{=}{-}0.5$

Rys. 7.7. Odpowiedzi skokowe dla skoku małego (0.1)

Rys. 7.8. Odpowiedzi skokowe dla skoku średniego $\left(0.6\right)$

Rys. 7.9. Odpowiedzi skokowe dla skoku dużego (1)

Na Rys. 7.7 - 7.9 nastąpiło odwrócenie charakterystyki modelu zlienearyzowanego wynikające z tego, że punkt linearyzacji jest ujemny.

Widać również, że na Rys. 7.1-7.9 wartości, dla których odpowiedzi skokowe modelu nieliniowego się stabilizują odpowiadają wartościom charakterystyki statycznej dla danego skoku u.

8.1. Równania dynamicznego modelu nieliniowego w wersji dyskretnej

Do wyznaczenia równań skorzystano z metody Eulera opisanej wzorem:

$$\dot{x}_i(t) = \frac{x_i(k+1) - x_i(k)}{T},$$

gdzie T jest okresem próbkowania.

Równania modelu nieliniowego w wersji dyskretnej wyglądają następująco:

$$x_1(k+1) = (-a_2T + 1)x_1(t) + Tx_2(t)$$
(8.1)

$$x_2(k+1) = -a_1 x_1(k) + x_2(k) + x_3(k)$$
(8.2)

$$x_3(k+1) = -a_0 T x_1(k) + x_3(k) + b_0 T (\alpha_1 u(t) + \alpha_2 u^2(t) + \alpha_3 u^3(t) + \alpha_4 u^4(t))$$
(8.3)

$$y(k) = x_1(k) \tag{8.4}$$

8.2. Reprezentacja graficzna dynamicznego modelu nieliniowego w wersji dyskretnej

Rys. 8.1. Reprezentacja graficzna modelu dyskretnego w Simulink

Reprezentację graficzną zrealizowano tak samo jak na Rys. 5.1. Jedyna różnica jest taka, że zamiast bloków integratorużyto bloki Discrete-Time Integrator, w których jako sample time podano okres próbkowania.

9.1. Odpowiedzi skokowe modelu nieliniowego w wersji ciągłej i dyskretnej

Rys. 9.1. Odpowiedzi skokowe modelu nieliniowego i dyskretnego T=1s

Rys. 9.2. Odpowiedzi skokowe modelu nieliniowego i dyskretnego T=5s

Rys. 9.3. Odpowiedzi skokowe modelu nieliniowego i dyskretnego T=10s

Model dyskretny pokrywa się z modelem ciągłym dla małego czasu próbkowania, im większy czas próbkowania tym większe powstają odstępy miedzy charakterystkami modelu dyskretnego i ciągłego. Im mniejszy okres próbkowania tym mniejsze będą różnice między charakterystykami.

10. Zadanie dodatkowe

10.1. Wyznaczenie transmitancji w punkcie \bar{u}

Do wyznaczenia transmitancji użyto funkcji ss2tf, jako parametry podano macierze reprezentujące model w przestrzeni stanu, a część zlinearyzowaną zmodyfikowano usuwając tzw. "offset".

```
u0 = 0.5;
fun = alpha1 + 2*alpha2*u0 + 3*alpha3*u0^2 + 4*alpha4*u0^3;
A = [-a2 1 0; -a1 0 1; -a0 0 0];
B = [0; 0; b0*fun];
C = [1 0 0];
D = 0;
[NUM, DEN] = ss2tf(A, B, C, D);
```

10.2. Wyznaczenie wzmocnienia statycznego K_{stat} transmitancji w zależności od punktu linearyzacji \bar{u}

Współczynniki licznika i mianownika otrzymane w poprzednim podpunkcie zmieniono na funkcję transmitancji, a następnie obliczono wzmocnienie statyczne tej transitancji.

```
G = tf(NUM, DEN);
static_gain = dcgain(G);
```

- Wzmocnienie statyczne dla $\bar{u} = 0.5$ wynosiło -1.0280,
- Dla $\bar{u} = 0.0$ wynosiło -0.6930,
- Dla $\bar{u} = -0.5$ wynosiło 1.0280.

Patrząc na rysunki 4.1, 4.2, 4.3 można zauważyć, że wzmocnienie statyczne transmitancji jest nachyleniem zlinearyzowanej charakterystyki statycznej w danym punkcie \bar{u} .