Problem

Show that the collection of decidable languages is closed under the operation of

Aa. union.

- b. concatenation.
- c. star.
- d. complementation.
- e. intersection.

Step-by-step solution

Step 1 of 6

A language is said to be decidable if and only if some Turing machine decides it. The Turing machine is a decider if all braches halts on all inputs.

Comments (2)

Step 2 of 6

а

Let L_1 and L_2 be two decidable Languages. M_1 and M_2 be the Turing machines that decides L_1 and L_2 respectively.

There exists a Turing machine M ' such that, decides $L_1 \cup L_2$ i.e. $L(M') = L_1 \cup L_2$.

The description of $\,M^{\,\prime}\,$ is as follows:

M' =on input w:

- 1. Run M_1 on w. if M_1 accepts, then accept.
- 2. Else Run M_2 on w. If M_2 accepts, then $\it accept$
- 3. Else *reject*

 M^\prime Accepts w if either $\ ^{M_1}$ or $\ ^{M_2}$ accepts it. If both rejects, $\ M^\prime$ rejects.

Therefore, $\ L \left(M' \right) = L_{\rm l} \cup L_{\rm 2}$. The decidable languages are closed under union.

Comment

Step 3 of 6

b.

Let L_1 and L_2 be two decidable Languages. M_1 and M_2 be the Turing machines that decides L_1 and L_2 respectively.

There is a Turing machine M' such that, it decides concatenation of L_1 and L_2 i.e., $L(M') = L_1$ o L_2 .

The description of M' is as follows:

$$M' =$$
on input w :

- 1. Split w into two parts w_1, w_2 such that $w = w_1 w_2$
- 2. Run M_1 on W_1 . If M_1 rejected then **reject**.
- 3. Else run M_2 on W_2 . If M_2 rejected then **reject**.
- 4. Else accept

Try each possible cut of w. If first part is accepted by M_1 and the second part is accepted by M_2 then w is accepted by M'. Else, w does not belong to the concatenation of languages and is rejected.

Therefore, $L\left(M'\right) = L_1 o L_2$. The decidable languages are closed under concatenation. Comment Step 4 of 6 C. Let L be a Turing decidable Language and M be the Turing machine that decides L. There is a Turing machine M' such that, it decides star of L i.e., $L(M')=L^*$. The description of $\,M^{\,\prime}\,$ is as follows: M' = On input w: 1. Split w into n parts such that $w = w_1 w_2 ... w_n$ in different ways. 2. Run *M* on W_i for i = 1, 2, ...nIf *M* accepts each of these strings W_i , accept. 3. All cuts have been tried without success then reject. When w is cut into different substrings such that every string is accepted by M, then w belongs to the star of L and thus M' accepts w after finite number of steps, else w will be rejected. Since, there are finitely many possible cuts of w, M' will halt after finitely many steps. Therefore, $L(M') = L^*$. The decidable languages are closed under star. Comment **Step 5** of 6 d. For a Turing decidable language L, Turing machine decides language M then the complement is M' on input w. The description of M' is as follows: M' =on input w: 1. Accepts if M rejects 2. Else accept. Since M' does the opposite of what ever M does, it decides the complement of L. Therefore, decidable languages are closed under complementation. Comments (3) **Step 6** of 6 Let L_1 and L_2 be two Turing decidable Languages. M_1 and M_2 be the Turing machines that decides L_1 and L_2 respectively. There is a Turing machine M' such that, it decides intersection of L_1 and L_2 i.e., $L(M') = L_1 \cap L_2$. The description of M' is as follows: M' =on input w: 1. Run M_1 on w. if M_1 rejects then **reject**. 2. Else run M_2 on w. if M_2 rejects then reject. M' Accepts w if both M_1 and M_2 accept it. If either of them rejects then M' rejects w. Therefore, $L(M') = L_1 \cap L_2$. The decidable languages are closed under intersection.

Comments (2)