Computational practicum

Name: Mahmoud Mousatat

Group: BS20-01

Exact solution \\
\(\forall '= 35 - \times \forall '\forall '\ y-3y = xy3 So, this is Bernoulli equationa Let's solve! to First of all we zashould divide both parts by y's the make substitution

= y = -3y = -x

the make substitution

= y = -3 = -x

we get

= -x

Equation (1) is first-order non-homo linear ordinary differential equations,
So, first of all we need to solve complementate
equation, 3 2'-37 =0

$$\frac{z'}{3} = \frac{z}{2} e^{2x} C_{2} + \frac{c_{1}}{2} e^{2x}$$

$$\frac{z}{3} e^{2x} C_{2} + \frac{3}{3} C_{2} e^{2x} - 3 e^{2x} (z^{2} - x)$$

$$\frac{3}{3} C_{2} e^{2x} = -x$$

$$C_{2} = -\frac{2}{3} \int x e^{2x} dx = \frac{2}{3} \frac{\ln x + 1}{4}$$

$$C_{2} = -\frac{2}{3} \int x e^{2x} dx = \frac{2}{3} \frac{\ln x + 1}{4}$$

$$C_{3} = \frac{2x + 1}{6} + e^{2x} C_{3}$$

$$\frac{z}{3} = \frac{x}{3} + \frac{1}{6} +$$

Graphs

Graph of solutions

There are 4 lines represented different types of the solution:

- Exact solution;
- Approximate solution using Euler's method;
- Approximate solution using Improved Euler's method;
- Approximate solution using Runge Kutta method.

y-axis represents solution for given x with values $\in [0, 2.7*10^{43}]$.

Graph of local errors

There are local truncation errors (LTE) of each method.

Graph of total approximation error

There are changing LTE of each approximation method depending on the given step.

It calculates the maximum local error on the range [x0, X] for each number of steps on the range [n0, N] with step 1.

- *n*₀ starting number of steps
- *N* end number of steps

UML class diagram

Parts of the code

Project structure

```
project
- controller
   console_controller.py
  \vdash___init__.py
   ___main__.py // Starting point for the application
   ├── approximations // Folder for approximation functions
      - euler_method.py
      - improved_euler_method.py
       — errors // Folder for truncation error classes
      - exceptions // Custom exceptions
      incorrect_params_error.py
      └── model.py // Business logic
   └─ view
      - console_view.py
      css
          │ └─ style.css
          — img
     graph.png
      index.html
         └─ js
           - controller.js
            1 +-1-- --
  - README.md
  └─ Report.pdf // File with report
- requirements.txt
└─ tests // Folder for tests
   └─ model
      test_euler_method.py
      L tact ata ni
```

Run application (___main__.py)

```
if __name__ == '__main__':
    app = Application(model, view, controller)
    app.run()
```

Run graphical user interface (web_view.py)

```
def run(self) -> None:
    self._change_image({}, 1, callback_needed=False)
    eel.init('view/static')
    eel.start('index.html', size=(1000, 600))
```

Calculation of LTE (Ite.py)

```
arr = np.zeros(shape=steps, dtype=np.float64)
xi = x0

y_real = y0

for i, x in enumerate(np.linspace(x0, endpoint, steps)):
    if i == 0:
        continue

    y_approximate = approximation_method(xi, y_real, step)
    y_real = self.solution_function(x)

arr[i] = abs(y_real - y_approximate)
```

Plotting and saving a graph (web_view.py)

```
def _change_image(table: dict, page_number: int, callback_needed=True) -> None:
    for key in table.keys():
        if key == 'X':
           continue
        plt.plot(table['X'], table[key], label=key)
    if page_number == 1:
        plt.xlabel('x')
       plt.ylabel('y')
    elif page_number == 2:
        plt.xlabel('x')
        plt.ylabel('Error')
    elif page_number == 3:
       plt.xlabel('n')
        plt.ylabel('Error')
    if len(table) > 1:
        plt.legend()
```

Tests of the application

Code for testing local truncation error using 3 methods of approximation:

```
def setUp(self):
test func = lambda x: (x/3+1/6+np.exp(2*(x-1))*(2**(2/3)-1/2))**(3/2)
self.derivative_func = lambda x, y: 3 * y - x * (y ** (1/3))
euler method = EulerApproximation(self.derivative func) improved euler method = ImprovedEulerApproximation(self.derivative
runge_kutta_method = RungeKuttaApproximation(self.derivative_func)
    self.lte = LocalTruncationError(test_func)
def test euler(self):
    expected = np.array([0., 0.087150835, 0.13986887, 0.2441393, 0.48296002, 1.1715976], dtype=np.float32)
    val = self.lte(EulerApproximation(self.derivative_func), 1, 1.5, count=6)
    self.assertIs(type(val), np.ndarray)
    self.assertEqual(len(val), 6)
    self.assertEqual(len(val), len(expected))
    np.testing.assert array almost equal(val, expected)
def test improved euler(self):
    expected = np.array([0., 0.01368145, 0.023602538, 0.04599498, 0.106638946, 0.32514724], dtype=np.float32)
    \verb|val = self.lte(ImprovedEulerApproximation(self.derivative\_func), x0=1.0, endpoint=1.5, count=6, y0=2.0)|
    self.assertIs(type(val), np.ndarray)
    self.assertEqual(len(val), 6)
    self.assertEqual(len(val), len(expected))
    np.testing.assert array almost equal(val, expected)
```