Bayesian Hypothesis Testing

Natalie Hunt

Objectives: answer the following:

- What is a prior, posterior, and likelihood?
- How do we apply Bayesian updating to A/B testing?
- What does the Beta distribution represent?
- What are some key differences between Bayesian and Frequentist Hypothesis Testing?

Review: frequentist p-values

• Remember the one-sentence definition of a p-value?

Review: frequentist p-values

• Remember the one-sentence definition of a p-value?

"The probability of observing data at least as extreme as the observation given the null hypothesis"

$$P(\text{data} \mid \text{null distribution})$$

$$P(y \mid \theta_0)$$

Wouldn't it be nice if, instead, we could give a probability of a parameter given the data?

galvanıze

Wouldn't it be nice...

Review: Bayesian Inference

Coin example

- y is a set of flips (heads or tails)
- \circ θ is the coin's probability of coming up heads for a single flip

Posteriors from yesterday's coin

galvanıze

Review: Bayesian Inference

Click-through rate

- y is a set of visits by unique users to a website, each of which either resulted in a click or not
- \circ θ is the probability of a click for a single visit
- Let's work with this example for the rest of the day

Bayesian Inference: Distributions

Posterio	$r \propto Lik$	kelihood	$\times Prior$

- We're going to model each of these terms with an appropriate distribution
- We'll see that it makes Bayesian updating easy and fun!
- ullet Our goal is to find an analytical form for the **posterior probability distribution** over all the possible values of the **true click-through rate** p

Likelihood function

galvanize

$$likelihood = P(y \mid p)$$

- y here represents a whole data set: "n visits with k clicks"
- **p** is the probability of a click for a single visitor

What is the form of the likelihood function?

$$likelihood = P(y \mid p)$$

• y here represents a whole data set: "n visits with k clicks"

Binomial distribution

$$P(k \mid p; n) = \binom{n}{k} p^k (1-p)^{n-k}$$

Bayesian Inference

Binomial

$$prior = P(p)$$

- We want to pick a distribution for p, so it must be defined over [0,1]
- Hmm...

galvanize

$$prior = P(p)$$

- We want to pick a distribution for p, so it must be defined over [0,1]
- Let's look at that binomial distribution again:

$$Binomial(k; n, p) = \binom{n}{k} p^k (1-p)^{n-k}$$

Can we make a distribution over p that has this same form?

galvanize

$$prior = P(p)$$

- We want to pick a distribution for p, so it must be defined over [0,1]
- Let's look at that binomial distribution again:

$$Binomial(k; n, p) = \binom{n}{k} p^k (1-p)^{n-k}$$

Can we make a distribution over p that has this same form?

$$the_moses_distribution(p; a, b) \sim p^a (1-p)^b$$

galvanize

$$prior = P(p)$$

- We want to pick a distribution for **p**, so it must be defined over [0,1]
- Let's look at that binomial distribution again:

$$Binomial(k; n, p) = \binom{n}{k} p^k (1-p)^{n-k}$$

Can we make a distribution over p that has this same form?

$$the_moses_distribution(p; a, b) \sim p^a (1-p)^b$$

• Oh someone already made this one: the Beta distribution

$$Beta(p; \alpha, \beta) = \frac{p^{\alpha - 1} (1 - p)^{\beta - 1}}{B(\alpha, \beta)}$$

Beta distribution

galvanıze

$$E[p] = \frac{\alpha}{\alpha + \beta}$$

$$Mode = \frac{\alpha - 1}{\alpha + \beta - 1}$$

- Our prior distribution
 is set by our choice
 of α and β
- $\alpha = \beta = 1$ is the uniform distribution

Bayesian Inference

Binomial

Beta

$$posterior = P(p \mid y) = P(p \mid n, k)$$

$$posterior \sim \binom{n}{k} p^{k} (1-p)^{n-k} \times \frac{p^{\alpha-1} (1-p)^{\beta-1}}{B(\alpha, \beta)}$$

$$posterior \sim p^{k} (1-p)^{n-k} \times p^{\alpha-1} (1-p)^{\beta-1}$$

$$posterior \sim p^{\alpha+k-1} (1-p)^{\beta+n-k-1}$$

$$posterior = Beta(p; \alpha + k, \beta + n - k)$$

The posterior is a beta distribution with parameters a+k and $\beta+n-k$ This means we can do all our Bayesian updates at once, instead of updating with one data point at a time!

Bayesian Inference

 $Posterior \propto Likelihood \times Prior$

Beta

Binomial

Beta

$Posterior \propto Likelihood \times Prior$

Beta

Binomial

Beta

 Conjugate priors are pairs of distribution families for (likelihood, prior) such that the posterior belongs to the same parametric family as the prior

Likelihood	Prior	Posterior
Normal	Normal	Normal
Poisson	Gamma	Gamma
Gamma	Gamma	Gamma
Binomial	Beta	Beta
Multinomial	Dirichlet	Dirichlet
Normal	Gamma	Gamma

In summary: ta-da! we have an easy Posterior

• If you start with the uniform distribution as a prior (which is the beta distribution with $\alpha=\beta=1$) then our posterior is a beta distribution with parameters

$$\alpha = 1 + k = 1 + (\text{# of successes})$$
$$\beta = 1 + n - k = 1 + (\text{# of failures})$$

$$Posterior = P(p \mid n, k) = Beta(p; \alpha, \beta) = \frac{p^{\alpha - 1} (1 - p)^{\beta - 1}}{B(\alpha, \beta)}$$

Example

 For example, if you had 24 trials with 3 successes, you'd have this distribution

Statements you can make with this distribution

- "The probability that the true CTR is less than 0.15 is 53%"
- "There is a 95% probability that the true CTR lies between 0.045 and 0.312"
 - o that's a credible interval

Bayesian A/B Testing

- Randomly send users to two versions of our site (A and B)
- Calculate/update the posterior distributions for each click through rate, p_A and p_B
- Say we end up with the two beta distributions on the right. How would you get the probability that p_A is greater than p_B?

Bayesian A/B Testing

We sample from each distribution and see how often p_A is greater than p_B

```
# let's draw values from those distribution models
sample_size = 10000
# model for A, fed with the right values
A_{sample} = stats.beta.rvs(1 + clicks_A,
                          1 + views_A - clicks_A,
                           size=sample_size)
# model for B, fed with the right values
B_sample = stats.beta.rvs(1 + clicks_B,
                          1 + views_B - clicks_B,
                           size=sample_size)
# let's find out the probability that A is better than B
print np.mean(A_sample > B_sample)
# we can also find the probability that p_A is larger than p_B by 0.05
print np.mean(A_{sample} > (B_{sample} + 0.05))
```

Frequentist A/B Testing

- Define a metric (e.g., click through rate), null & alternative hypotheses
- Set the study parameters (significance level, power, number of observations)
- Run the test, wait until it is done, then analyze results
- Report p-value, confidence interval
- Reject or fail to reject the null hypothesis

Bayesian A/B Testing

- Define a metric (e.g., click through rate)
- Define a prior distribution of the metric
- Run the test, continually monitoring results
- At any time calculate the probability that CTR_A > CTR_B