1. a) _	Pa	Pi	por Pa	7 (porpa)	po->p1	4	
7	1	1	1	0	1	1	
	1	0	0	1	0	0	
	0	1	0	1	1	1	
	0	0	0	1	1	1	

Como y 150 assume servye o valor lógico 1. Logo, y más é ums tautología

- Les prévadadina, entar p2 é verdodira ou 7p3 → p2 é verdodirs. Ors, 7p3 → p2 pode ser verdodirs sem p2 o ser : se p2 é verdodirs e p2 é falsa, entar 7p3 → p2 é verdodirs (e, consequentemente, y também).
- 2. a) Para a=-2, existe b=4 tel que a2=b. Logo,
 para esses realores de a e b a proposição (a2=b v a+b=0) é
 verdedeirs.

Pare a=2, consideranos b=4. Temos que a=b. Portante, (a2=b v a+b=0) i verdodeiro pare usos valores de a.b.

Para a=0, tomenos b=0. Como $a^2=b$, segue-se que $(a^2=b \vee a+b=0)$ i vadadoira, para una valores.

Para a=1, tomenos b=-1. Terros que a+b=0. Logo, (a=1, v a+b=0) é vadodeia pare enes valores.

Anim, priverdedurs fore or conjuntos A & B indicados.

3 Si mi imper, intão M=2K+1, para algum K e INo. Terros que

$$m^{2}+8m-1 = (2k+1)^{2}+8(2k+1)-1$$

$$= 4k^{2}+4k+1+16k+8-1$$

$$= 4(k^{2}+5k+2)$$

$$\in 14.$$

$$\log_{0}, \quad m^{2}+8m-1 \in \text{multiple de } 4$$

4,

a)
$$A \setminus B = \{x \mid x \in A \land x \notin B\}$$

= $\{\{1,3\}, 4\}$ (1 $\in A \land 1 \in B : \log_0, 1 \notin A \land B$)

2|x|+1=-3 = 2|x|=-4 impossire

 $2|x|+1=1 \Leftrightarrow 2|x|=0 \Leftrightarrow |x|=0 \Leftrightarrow x=0$

 $2|x|+1=3 \Leftrightarrow 2|x|=2 \Leftrightarrow |x|=1 \Leftrightarrow x=\pm 1$

Logo, C = {-1,0,1}

Anc= {1}.

Portanto, P(Anc) = {Ø, 23}.

c)
$$COB = \{-3, -1, 0, 1, 3\}$$

 $\{-1, 3\} \subseteq COB$ poin $-1 \in COB$ e $3 \in COB$

d) {1,3} ∈ A mas {1,3} & P(A) (pois {1,3} ⊆ A, UMS NOS que 3 \$ A). Logo, {1,3} \$ AN 8P(A).

(a)
$$A = C = \{1\}$$

 $B = \{2\}$

$$(4)$$
 $A = B = \{1\}$

(c) Not existen Tais conjuntos. Se BEC entaño Todos os elementos de B são elementos de C (i.e., $x \in B \rightarrow x \in C$). Seja $x \in A \cap C$.

Temos que

Arim, Ance AnB.

6.

a) A afin maços i falsa.

Para $A = \{1\}$, $B = \{3,4\}$ ($C = \{1,2\}$, temos

Para $A = \{1\}$, $B = \{3,4\}$ ($C = \{1,2\}$),

que $A \subseteq C$ (donde $A \subseteq C \cup B \subseteq C$ i vadadiis),

mas $A \cup B \not\equiv C$.

by Superhamos que A&B. fatoro, existe xeA tal que xeB.

x & B. Amim, existe xeA tal que xeB.

Logo, existe ne AOB, o que é impossível.

Assim, ACB.

$$A = \{2\}$$

$$(C \setminus A) \cap (A \cup B) = \{3\}$$

Logo, (CIA) M(AUB) + CIB « a afirmação i falsa

pág. 4.