# From multiple degree-of-freedom to distributed systems: linear strings and sound synthesis

#### **Alberto Torin**

A.Torin@ed.ac.uk















### **Outline**

#### Multiple degree-of-freedom systems

- Equations of motion
- Simple example
- Normal modes and frequencies

#### Sound synthesis applications

- Modal approach
- Finite difference approach



# Multiple degree-of-freedom systems



# Mass-spring system with N DOFs

Consider an array of N masses connected by N+1 springs, as in the following figure.



We wish to calculate the equation of motion of the system and do some experiments with it.



### Deriving the equations of motion

Elegant approach by **Prof. Gilbert Strang**, available online at this link:

http://www.courses.com/massachusetts-institute-of-technology/computational-science-and-engineering-i/2 (http://www.courses.com/massachusetts-institute-of-technology/computational-science-and-engineering-i/2)



Start from the individual **positions of the masses**, link those to the **elongations of the springs**, which in turn give rise to **forces** determined by Hooke's law. Then, relate these to the **total force** acting on each mass and eventually to their **acceleration**.

Here's a diagram:

$$\vec{u} \to \vec{e} \to \vec{f} \to \vec{F} \to \ddot{\vec{u}}$$

Four steps, where each arrow is actually a matrix...



To start, consider 4 masses and 5 springs, but the argument can easily be generalised.



$$\vec{u} \rightarrow \vec{e} \rightarrow \vec{f} \rightarrow \vec{F} \rightarrow \ddot{\vec{u}}$$



# 1. Elongations of the springs, $\vec{u} \rightarrow \vec{e}$



- $e_1 = u_1$
- $e_2 = u_2 u_1$
- ...
- $e_5 = -u_4$



### 1. Elongations of the springs, $\vec{u} \rightarrow \vec{e}$

Putting everything in matrix form, one can write:

$$\begin{bmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \\ e_5 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} \implies \vec{e} = A\vec{u},$$

where the matrix A is rectangular (5x4).



# 2. Hooke's law, $\vec{e} \rightarrow \vec{f}$

Relate the elongations to the forces acting on the masses using Hooke's law: for each elongation  $e_i$ , a recall force  $f_i$  proportional to  $e_i$  is generated. Mathematically,

$$f_j = -k_j e_j,$$

where  $k_j$  is the stiffness constant of the j-th spring.



# 2. Hooke's law, $\vec{\mathbf{e}} \rightarrow \vec{\mathbf{f}}$

In matrix form, this becomes

$$\begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \end{bmatrix} = - \begin{bmatrix} k_1 & 0 & 0 & 0 & 0 \\ 0 & k_2 & 1 & 0 & 0 \\ 0 & 0 & k_3 & 0 & 0 \\ 0 & 0 & 0 & k_4 & 0 \\ 0 & 0 & 0 & 0 & k_5 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \\ e_5 \end{bmatrix} \implies \vec{f} = -C \vec{e}$$

where C is the diagonal square matrix (5x5) of the stiffness coefficients.



# 3. Resultant force, $\, \vec{f} \, o \, \vec{F} \,$



Calculate the total forces by summing the vectors of the individual spring forces acting on each mass.

- $F_1 = f_1 f_2$
- $F_2 = f_2 f_3$
- ...



# 3. Resultant force, $\vec{\mathbf{f}} \to \vec{\mathbf{F}}$

You can easily see where this is going once we move to matrix notation:

$$\begin{bmatrix} F_1 \\ F_2 \\ F_3 \\ F_4 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \end{bmatrix} \implies \vec{F} = A^T \vec{f}.$$

The interesting fact here is that the matrix we obtain is exactly the transpose of the elongation matrix A!



# 4. Newton's law, $\, \vec{F} \, ightarrow \, \ddot{\vec{u}} \,$

Each resultant force  $F_j$  can be related to the acceleration  $\ddot{u}_j$  of the j-th mass via Newton's second law,

$$F_j = m_j \ddot{u}_j.$$



## 4. Newton's law, $\vec{\mathbf{F}} \rightarrow \ddot{\vec{\mathbf{u}}}$

In matrix form

$$\begin{bmatrix} F_1 \\ F_2 \\ F_3 \\ F_4 \end{bmatrix} = \begin{bmatrix} m_1 & 0 & 0 & 0 \\ 0 & m_2 & 1 & 0 \\ 0 & 0 & m_3 & 0 \\ 0 & 0 & 0 & m_4 \end{bmatrix} \begin{bmatrix} \ddot{u}_1 \\ \ddot{u}_2 \\ \ddot{u}_3 \\ \ddot{u}_4 \end{bmatrix} \implies \vec{F} = M\ddot{\vec{u}}.$$



# Putting it all together, $\vec{u} \to \vec{e} \to \vec{f} \to \vec{F} \to \ddot{\vec{u}}$

Combine all the previous steps backwards to get the equations of motion:

$$M\ddot{\vec{u}} = \vec{F} = A^T \vec{f} = -A^T C \vec{e} = -A^T C A \vec{u}.$$

We can rewrite this in a more familiar form as

$$M\ddot{\vec{u}} = -K\vec{u}, \qquad K \equiv A^T C A.$$



## A simple example

Suppose now that all the masses are equal as well as all springs. The above equation simplifies to

$$\ddot{\vec{u}} = -\omega^2 A^T A \vec{u}, \qquad \omega^2 = k/m.$$

So, accelerations and positions are related by the symmetric matrix  $A^TA$  ... but how does this matrix look like?



### $\mathbf{A}$ and $\mathbf{A}^{\mathbf{T}}$

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{bmatrix}, \quad A^T = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 & -1 \end{bmatrix}$$



#### Let's do the math in Matlab





The product of the two matrices  $A^TA$  is:

$$D = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}$$

The matrix D, or better its negative version, is particularly important in finite difference applications, as we will see shortly. For the moment, let's investigate the eigenvalues and eigenvectors.



## **Eigenvalues and eigenvectors**

Suppose we know that a solution of  $\ddot{\vec{u}} = -\omega^2 D\vec{u}$  can be written in this form:

$$\vec{u}(t) = \vec{U}\sin(\Omega t + \phi),$$

where  $\vec{U}$  is some constant vector,  $\Omega$  a non-negative frequency and  $\phi$  the phase.



Then, the differential equation becomes an eigenvector problem,

$$\Omega^2 \vec{U} = \omega^2 D \vec{U}.$$



### Do the calculations in Matlab

```
In [7]: [V,E] = eig(D)
Out[7]: V =
             0.3717
                      -0.6015
                                -0.6015
                                          -0.3717
             0.6015
                      -0.3717
                                 0.3717
                                           0.6015
             0.6015
                       0.3717
                                 0.3717
                                          -0.6015
             0.3717
                       0.6015
                                -0.6015
                                           0.3717
         E =
             0.3820
                       1.3820
                  0
                            0
                                 2.6180
                            0
                                           3.6180
```



#### Add extra immobile masses at the ends

Imagine that we have two extra masses,  $m_0$  and  $m_5$ , at the two ends of the system, held fixed by some invisible agent.

These correspond to the boundary conditions that we are implicitly applying to the array of masses.







# Plot the modal shapes



```
In [9]: for II=1:4
    subplot(2,2,II)
    plot(0:5, V(:,II), '.k', 'markersize', 22)
    title(['Mode n. ', num2str(II, '%d')])
    xlim([0, 5])
    end
```







The modes of this system look suspiciously similar to those of a linear string... Let's see what happens when we increase the number of masses.

First, however, we need a way to generalise the creation of the matrix D to N masses...



### Matlab function that creates **D**



### Test with N=10

```
In [11]: N = 10;
          D10 = createTridiag(N)
          D10 =
Out[11]:
                2
                     -1
                            0
              -1
                     2
                           -1
                                   0
                     -1
                            2
                                 -1
                           -1
                      0
                                  2
                                 -1
                                        -1
                                                    -1
                                              -1
                                                           -1
                                                    -1
                                                                 -1
                            0
                                  0
                                                            2
                                                                        0
                                   0
                                                     0
                                                           -1
                                                                  2
                                                                       -1
                            0
                                                                 -1
                            0
                                                            0
                                                                        2
```



### Array with 10 DOFs

Create the eigenvectors and add the fixed masses.

```
In [12]: [V10,E10] = eig(D10);
V10 = [zeros(1,N); V10; zeros(1,N)];
```

... then plot the modes!



```
In [13]: for II=1:4
    subplot(2,2,II)
    plot(0:N+1, V10(:,II), '.k', 'markersize', 22)
    title(['Mode n. ', num2str(II, '%d')])
    xlim([0, N+1])
    end
```





### Array with 50 DOFs

Again, create the matrix  ${\it D}$ , calculate the eigenvectors and add the fixed masses.

```
In [14]: N = 50;
D50 = createTridiag(N);
[V50,E50] = eig(D50);
V50 = [zeros(1,N); V50; zeros(1,N)];
```

... then plot the modes!



```
In [15]: for II=1:4
    subplot(2,2,II)
    plot(0:N+1, V50(:,II), '.k', 'markersize', 20)
    title(['Mode n. ', num2str(II, '%d')])
    xlim([0, N+1])
    end
```





### **Results**

The modal shapes are sinusoids with a period that is an integer multiple of L/2, where L is the string length.

### These are the modes of a linear string!

Confirm this by math calculation...

See <a href="http://www.physics.usu.edu/riffe/3750/lecture\_notes.htm">http://www.physics.usu.edu/riffe/3750/lecture\_notes.htm</a>, Lecture 5, for some help!



# Important comment

For a string, the vibration is transverse to the length of the string. In the case of the mass-spring system, the vibrations are along the chain of oscillators, as the next videos show.



















# Frequencies of vibration

From the eigenvalue equation  $\Omega^2 \vec{U} = \omega^2 D \vec{U}$ , the frequencies are given by

$$\frac{\Omega}{2\pi} = \frac{\omega}{2\pi} \sqrt{\operatorname{eig}(D)}.$$

#### Frequencies of a string

They are integer multiples of the frequency of the first mode... think of a guitar string!



#### Find eigenvalues for N=30 and N=50

```
In [20]: [V30, E30] = eig(createTridiag(30));
[V50, E50] = eig(createTridiag(50));
```

#### ... then normalise and sqrt

```
In [21]: ev30 = diag(E30); ev50 = diag(E50);
y30 = sqrt(ev30/ev30(1)); y50 = sqrt(ev50/ev50(1));
```



In [22]:

subplot(1,2,1), plot(y30,'.','markersize',20), hold on plot(y50,'.','markersize',20), plot(1:50, 'k'), xlim([0, 50]), hold off ylabel('\Omega/\Omega 1'), xlabel('Mode') legend('N=30', 'N=50', 'String', 'location', 'best') subplot(1,2,2), plot(y30,'.','markersize',20), hold on plot(y50,'.','markersize',20), plot(1:50, 'k'), xlim([0, 15]), hold off xlabel('Mode'), legend('N=30', 'N=50', 'String', 'location', 'best')





$$\Omega = \omega \sqrt{\operatorname{eig}(D)}, \qquad \Omega_1 = \text{fundamental}$$



# **Key points**

- Modal shapes are the same as those of a string (sinusoidal shapes)
- Frequencies of the oscillator system are "detuned" w.r.t. those of a string (difference dispersion relation)



# Sound synthesis applications



# **Sound synthesis**

- Diverse range of techniques (especially digital) to create sounds
  - Additive synthesis, Wavetable synthesis, AM and FM synthesis, etc.
  - Physical modelling



# Physical modelling

- Physical description of the instrument underlying the numerical algorithm
  - Lumped mass-spring networks (CORDIS-ANIMA by Cadoz et al.)
  - Modal synthesis (MOSAIC-Modalys at IRCAM, Paris)
  - Digital waveguides (J. Smith III, Stanford)
  - Time stepping methods



# Modal approach



### Back to the mass-spring system

The global solution to the equations of motion can be written as a linear combination of the solutions to the N eigenvalue problems for the system.

$$\vec{u}(t) = \sum_{1}^{N} A_j \vec{U}_j \sin(\Omega_j t + \phi_j)$$

It requires, therefore, N amplitudes and N phases to be specified, one for each of the N eigenmodes for the system.



### Create the eigenmodes

```
In [23]: [V50, E50] = eig(createTridiag(50));
V50 = [zeros(1,50); V50; zeros(1,50)];
```



```
In [24]: plot(V50(:,1), 0:N+1, 'k.', 'markersize', 20),
hold on, plot(V50(20,1), 19, 'r.', 'markersize', 25)
plot(V50(:,2)+0.5, 0:N+1, 'k.', 'markersize', 20), plot(V50(20,2)+0.5, 19, 'r.',
    'markersize', 25)
plot(V50(:,3)+1, 0:N+1, 'k.', 'markersize', 20), plot(V50(20,3)+1, 19, 'r.', 'markersize', 25)
plot(V50(:,4)+1.5, 0:N+1, 'k.', 'markersize', 20), plot(V50(20,4)+1.5, 19, 'r.',
    'markersize', 25)
plot([-0.3, 1.8], [19, 19], 'r')
axis off
```





## Sound in Matlab



How does the mass-spring system sound like?



## Create system matrix $\boldsymbol{D}$ and find the e.values

```
In [54]: [V50,E50] = eig(createTridiag(50));
ev50 = sqrt(diag(E50));
```



### Define $\omega$ , amplitudes and phases

```
In [55]: omega = 2*pi*440;
A = rand(50,1);
%A = (50:-1:1)'/50;
%A = (((1:50)-25).^2/25^2)';
phi = zeros(50,1);
```



```
In [56]: plot(A, '.', 'markersize', 20)
   title('Amplitudes for the various modes')
```





#### Select a point and create the oscillators

```
In [29]: pt = 23;
```

#### Create amplitudes for each point and individual sounds

```
In [60]: % Create the argument of sine function
  T = kron(omega*ev50, t) + kron(phi, ones(numel(t),1)');

Amps = V50(pt, :)'.*A;
  snd = sparse(diag(Amps)) * sin(T);
```



```
In [61]: plot(snd(1,1:2000))
    hold on, plot(snd(2,1:2000))
    plot(snd(3,1:2000)), plot(snd(4,1:2000))
    legend('1','2','3','4')
    title('Oscillation of the first four modes')
    hold off
```





# Plot the final signal

```
In [62]: plot(snd(1,1:2000) + snd(2,1:2000) + snd(3,1:2000) + snd(4,1:2000))
```





# Let's play!

In [44]: soundsc(sum(snd,1), 44100)

# Try the code yourself!

MDoF\_Modal.m available at: <a href="https://github.com/atorin/Dynamics3-Lecture">https://github.com/atorin/Dynamics3-Lecture</a>)



# Finite difference approach



### Discretise time

$$u(t) \longrightarrow u(nk) = u^n,$$

with n integer and k the time step.

## **Recursions**

Time differentiation becomes recursions: knowing  $u^n$  you can calculate  $u^{n+1}$ .



### Second difference

$$\ddot{u} \longrightarrow \frac{u^{n+1} - 2u^n + u^{n-1}}{k^2}$$

Notice the pattern (1, -2, 1)...

## Equation for the mass-spring system

$$M\frac{\vec{u}^{n+1} - 2\vec{u}^n + \vec{u}^{n-1}}{k^2} = -\omega^2 D\vec{u}^n$$



# Try the code yourself!

MDoF\_FD.m available at: <a href="https://github.com/atorin/Dynamics3-Lecture">https://github.com/atorin/Dynamics3-Lecture</a>)





# **Conclusions**

- We discussed a general method to find the equations of motion of a mass-spring system
- ullet We looked at the normal modes and frequencies in the case of large N, and compared them with those of a string
- We had some fun with basic sound synthesis techniques



# Thank you for your attention!

### **Alberto Torin**

A.Torin@ed.ac.uk

Slides and Codes on Github: <a href="http://github.com/atorin/Dynamics3-Lecture">http://github.com/atorin/Dynamics3-Lecture</a>)