Getting Closure Question 1:

In lecture, we have shown that $A = \{a^n b^b | n \ge 0\}$ is not a regular language. Now, I will show the following language are not regular based on this and the closure property of regular language.

(i) $A_1 = \{a^nb^{n+1000}|n\geq 0\}$ Let $B_1 = \{a^{1000}|n\geq 0\}$, it's easy to see that B_1 is a regular language.(since it's finite)

 $A_1 \circ B_1 = A$ is not regular, therefore A_1 is not regular.

(ii) $A_2 = \{a^{2n+1}b^{2n+1}|n \ge 0\}$

Let $B_2 = \{a\}$ $B_3 = \{b\}$. Since B_2 and B_3 are finite, we know they are regular language.

If A_2 is regular, then so will be $A_2 \cup (B_2 \circ A_2 \circ B_2) = A$ due to closure of regular language.

Since A is not regular, we know that A_2 is not regular.

(iii) $A_3 = \{a^n b^m c^k | m, n, k \ge 0 \text{ and } n + m = k\}$

Let $B_4 = \{$ strings with less than or equal to 2 different characters $\}$

Clearly, B_4 is a regular language.

 $A_3 \cap B_4 = A$, therefore A_3 is not regular.

Question 2: Pump It Up

(i)
$$B_1 = \{a^{2^n} | n \ge 0\}$$

For all p > 0, choose let $w = a^{2^N}$ where $N = \lceil log_2 p \rceil + 1$

Since we have to divide this string into three pieces xyz, with |y| > 0 and $|xy| \le p$. We must have $2^N > p \ge |y| > 0$. If we pump y twice we will get a^{2^N+p} which is not in B_1 . Thus B_1 is not

regular.

(ii) $B_2 = \{a^n b^m \mid n, m \ge 0 \text{ and m is a multiple of n } \}$

For all p > 0 choose $w = a^p b^{kp}$ where k is an positive integer. Since we have to divide this string into three pieces xyz, with |y| > 0 and $|xy| \le p$. We have $y = a^n$ with $n \le p$

we pump it (k+1)p times, we get $a^{p+(k+1)pn}$ which is not in B_2 .

 ${\it regular\ expressions}$

- (i) $(aa \cup a \cup \epsilon)(b \cup ba \cup baa)^*$
- $(\mathrm{ii})((aa \cup bb)^* \cup (ab \cup ba)(aa \cup bb)^*(ab \cup ba))^*$