Politechnika Warszawska Wydział Mechatroniki

Rozpoznawanie obiektów 3D na podstawie danych RGBD

Adam Kosiorek pod kierunkiem prof. dr hab. B. Siemiątkowskiej

Spis treści

Założenia i zakres pracy

Podejście Bag of Words

Projekt Aplikacji

Bazy danych

Wyniki i podsumowanie

Założenia

Założeniem pracy jest zbadanie zagadnienia klasyfikacji metodą Bag of Words obiektów 3D na podstawie zdjęć RGBD. Zdjęcia powinny byc reprezentowane w formie chmur punktów. Ponadto zakłada się, że:

- ► Analizowane dane pochodzą z kamery RGBD Microsoft Kinect
- Implementacja algorytmu w języku C++ z wykorzystaniem bibliotek OpenCV i/lub PointCloud Library
- ► Testy aplikacji na ogólnie dostępnej, naukowej bazie danych

Zakres pracy

- Przegląd istniejących rozwiązań dotyczących klasyfikacji obiektów na podstawie chmur punktów
- 2. Opracowanie algorytmu klasyfikacji obiektów na podstawie chmur punktów
- 3. Implementacja algorytmu w języku C++
- 4. Przeprowadzenie testów szybkości oraz skuteczności klasyfikacji
- 5. Opracowanie wniosków końcowych

Bag of Words - Wprowadzenie

This is a flower. The flower is red. I like flowers and red colour.

- Częstośc występowania słów
- Usunięcie gramatyki, kolejności słów
- Histogram jako forma pośrednia
- ▶ Wymaga utworzenia słownika
- Reprezentacja rzadka w przypadku dużego słownika
- Używany m. in. do znajdowania rozkładu tematów w obrazie

Bag of Words w obrazach

Grafika pochodzi z C. Tsai. Bag-of-words representation in image annotation: A review. ISN Artificial Intelligence, 2012.

- 1. Wykrycie punktów charakterystycznych
 - współrzędne (x, y) oraz skala obrazka
- 2. Opisanie otoczenia wykrytych punktów
 - opis jednoznaczny, zazwyczaj poprzez przestrzenny histogram gradientów
- 3. Budowanie słownika i kwantyzacja
 - punkty układają się w obszary, które można wykryć klasteryzacja
- 4. Klasyfikacja
 - klasyfikator uczący się Support Vector Machine, Modele graficzne, Boosting

Projekt Aplikacji

Architektura

- Główny obiekt Tagger3D zarządza całą aplikacja
- Fabryka odpowiedzialna za tworzenie innych obiektów, konfigurowana w czasie działania programu
- Każdy etap procesu BoW ma wydzielony interfejs - wzorzec projektowy Strategia
 - Detector, Descriptor itd.

Strategia

- Strategia umożliwia wymianę algorytmów w czasie działania programu, w sposób niewidzialny dla aplikacji
- Konfiguracja w pliku tekstowym
- Obiekt loUtils oparty o szablony obsługuje operacje wejścia/wyjścia

Berkely 3D Object Dataset

Rysunek: Obiekty z B3DO. Zdjęcia w oryginalnej jakości. a) kubek b) butelka c) książka d) klawiatura

- 78 kategorii obiektów
- Wiele obiektów na jednym zdjęciu
- Niska jakość zdjęć, wiele zdjęć niedoświetlonych, zaszumionych
- Obiekty przysłonięte
- Kolorowe zdjęcia i mapy głębi; Adnoacje w XML
- Skrypty w Pythonie i C++ do ekstrakcji pojedynczych obiektów i podziału na kategorie.
- Od 1 do 299 instancji w jednej kategorii
- ▶ Losowy wybór 8 kategorii tak, żeby było > 50 instancji w każdej kategorii

University of Tokyo Dataset

Rysunek: The Tokyo dataset: a) kosz b) rower c) pudełko d) wiadro e) wózek f) lodówka g) notebook h) drukarka i) skaner j) scena

- 10 kategorii
- 1 obiekt (oznaczony) na zdjęciu
- Mogą być obiekty nieoznaczone, których nie należy brać pod uwagę
- Zdjęcia dobrej jakości, dobrze naświetlone
- Wszystkie zdjęcia w kategorii to instancje jednego obiektu

- Skomplikowane sceny
- Małe różnice pomiędzy klasami obiektów
 - skaner i drukarka
 - koszyk i wiadro
- Dane w formie kolorowe: zdjęcie + plik .csv z absolutnymi współrzędnymi wszystkich pixeli
- Skrypty Python i C++ przeksztąłcenie do chmury punktów w formacie PCD

Porównanie algorytmów

Descriptor	Accuracy [%]										
	ISS3D	SIFT	Uniform Sampling								
FPFH	65.22	56.52	56.07								
PFH	59.32	54.83	59.50								
PFHRGB	63.35	52.34	53.27								

Porównanie algorytmów.

Wpływ rozmiaru słownika na skuteczność klasyfikacji.

- Wstępna selekcja algorytmów na podstawie przegladu literatury
- Rodzina deskryptorów PFH uzyskuje najlepsze wyniki w dopasowywaniu chmur punktów:

PFH Algorytm bazowy, 125 wymiarów FPFH Algorytm przybliżony, 33 wymiary PFHRGB Algorytm uwzględnia kolor, 250 wymiarów

- Detektory:
- SIFT Najlepszy algorytm 2D
 ISS Najlepsze wyniki w
 dopasowywaniu chmur punktów
 US Najprostszy, równomierna siatka
 punktów
- Optymalny rozmiar słownika

Wyniki B3DO

Assigned to category Category	dno	book	sofa	chair	table	bottle	monitor	keyboard	Entries per class	Accuracy [%]
cup	59	0	0	0	0	5	0	0	64	92.19
book	17	14	0	0	0	7	0	2	40	35.00
sofa	0	0	17	3	1	0	0	0	21	80.95
chair	0	0	2	14	4	0	2	0	22	63.64
table	0	0	0	0	31	0	0	0	31	100.00
bottle	34	0	0	0	0	30	2	0	66	45.45
monitor	7	1	0	2	0	10	30	1	51	58.82
keyboard	8	4	0	0	0	0	0	15	27	55.56

Wynik: 65.22% Wyniki na bazie B3DO, detektor ISS, ekstraktor FPFH, słownik o wielkości 1500 słów.

- Im lepiej rozdzielone kategorie obiektów, tym wyższa wyniki
- Najwyższy wynik: stół, 100%
- Niskie wyniki wynikają bezpośrednio z podobieństwa między klasami:
 - książka, 35%, mylona z filiżanką i butelką
 - butelka, 45%, mylona z filiżanką

Wyniki Tokyo

Assigned to category Category	xoq	cart	notebook	scene	scanner	basket	bucket	freezer	bicycle	printer	Entries per class	Averages [%]
box	11	0	2	0	0	0	0	0	0	0	13	84.62
cart	0	0	1	0	0	0	3	0	0	0	4	0.00
notebook	6	0	3	1	0	0	1	0	1	0	12	25.00
scene	0	2	2	4	0	0	1	0	1	0	10	40.00
scanner	2	0	0	0	0	0	0	0	0	0	2	0.00
basket	1	0	0	1	0	2	7	1	1	0	13	15.38
bucket	3	0	0	0	0	0	22	1	0	0	26	84.62
freezer	0	0	2	0	0	0	1	1	0	1	5	20.00
bicycle	1	0	0	0	0	0	1	0	33	0	35	94.29
printer	0	0	0	0	0	0	1	0	1	0	2	0.00
											Average	62.30

Wynik: 62.30% Wyniki na bazie Tokyo, detektor ISS, ekstraktor PFH, słownik o wielkości 3000 słów.

- Wyraźna zależność między ilością instancji w danej klasie i skutecznością klasyfikacji
- Najwyższy wynik: rower, 94%, największa ilośc obiektów
- Najniższe wyniki przy klasach, w których są odpowiednio 4, 2 i 2 obiekty:
 - wózek. 0%
 - skaner, 0%
 - drukarka, 0%
- ▶ Notebook jest mylon z pudełkiem
- Wiadro jest mylone z pudełkiem
- Kosz jest mylony z wiadrem

Podsumowanie

- Uzyskane wyniki na bazach B3DO i TOKYO są odpowiednio 5.21 i 6.23 razy lepsze od kategoryzacji losowej (odpowiednio 12.5% i 10%)
- Zrealizowano wszystkie założenia projektowe
- Wystąpiły następujące problemy
 - W zasadzie brak baz danych nadających się do zadania klasyfikacji obiektów na podstawie danych RGBD
 - Bardzo wymagające przetwarzanie chmur punktów ze względu na brak jakiejkolwiek struktury
 - Najlepsze algorytmy dostępne są tylko do 2D, brak możliwości ich prostego uogólnienia do 3D
- Możliwości poprawy skuteczności i/lub szybkości działania aplikacji:
 - Przeniesienie obliczeń do domeny 2D; RGB i D jako niezależne obrazy + złożenie wyników klasyfikacii
 - Trening klasyfikatorów na znacznie większych bazach danych
 - Przeniesienie obliczeń na GPU