Comenzado en	Friday, 16 de June de 2023, 17:39
Estado	Terminados
Finalizado en	Friday, 16 de June de 2023, 17:59
Tiempo	19 mins 48 segundos
empleado	
Calificación	100.00 de un total de 100.00

Pregunta 1

Correcta

Puntúa 40.00 sobre 40.00

1. Si ϕ_1 es el flujo eléctrico en una superficie cuadrada plana con un vector de área $\vec{A}=3m^2\hat{\imath}+7m^2\hat{\jmath}$ en un campo eléctrico uniforme de $\vec{E}=(4\hat{\imath}-2\hat{\jmath})N/C$ y ϕ_2 es el flujo eléctrico en una superficie oval plana con un vector de área $\vec{A}=3m^2\hat{\imath}-7m^2\hat{\jmath}$ en un campo eléctrico uniforme de $\vec{E}=(4\hat{\imath}-2\hat{\jmath})N/C$ ¿cuáles son los valores correctos de los flujos eléctricos ϕ_1 y ϕ_2 en unidades SI?

Elija algún inciso: (escriba la letra del inciso que crea correcto ejemplo= d)

a)
$$\Phi_1 = +2$$
 b) $\Phi_1 = -2$ c) $\Phi_1 = -26$ $\Phi_2 = +26$ $\Phi_2 = +26$ b) $\Phi_1 = -26$ $\Phi_2 = +26$ e) $\Phi_1 = \Phi_2 = -26$

Respuesta: b

La respuesta correcta es: b

Pregunta 2

Correcta

Puntúa 30.00 sobre 30.00

Una carga puntual q = +1.00 nC se localiza en el centro de un cubo cuyo lado es de 10.0 cm. Determine el flujo eléctrico a través de una de las seis caras del cubo.

*Resultado con un decimal ejemplo: 13.3

Respuesta:

18.8

La respuesta correcta es: 18.8

Pregunta 3

Correcta

Puntúa 30.00 sobre 30.00

El flujo eléctrico en cierta región en el espacio está dado por $\vec{E}=(8\hat{\imath}+2y\hat{\jmath})N/C$, donde y está expresada en metros. ¿Cuál es la magnitud del flujo eléctrico (en $\frac{N}{c}m^2$) a través de la cara superior del cubo que se muestra en la figura?

C)54 d) 12 Solución: Se trata de una superficie plana, el flujo eléctrico a través de la cara superior del cubo está dado por: $\phi_E = \vec{E} \cdot \vec{A}$

El vector de área de la cara superior del cubo apunta en dirección $+\hat{j}$. (Recuerde que los vectores de área en superficies cerradas siempre son salientes a la superficie y perpendiculares a ésta). Por lo que:

$$\vec{A} = 9m^2\hat{j}$$

Colocar la letra del inciso que usted crea correcto

Respuesta:

Actividad 7 (16/06) ►