

(19) BUNDESREPUBLIK **DEUTSCHLAND**

DEUTSCHES PATENT- UND **MARKENAMT**

Offenlegungsschrift

_® DE 101 05 416 A 1

② Aktenzeichen:

101 05 416.5

(22) Anmeldetag:

30. 1.2001

43 Offenlegungstag:

14. 8. 2002

(51) Int. Cl.⁷: H 01 F 27/06

H 05 K 3/30 H 01 F 27/32 H 01 F 17/04

(71) Anmelder:

Siemens AG, 80333 München, DE

(72) Erfinder:

Sehling, Norbert, Dipl.-Ing., 10551 Berlin, DE

56 Entgegenhaltungen:

DE 196 15 982 C1 DE 36 15 037 C2 DE 198 12 836 A1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- (54) Spule
- Die vorliegende Erfindung betrifft eine Spule mit einem Spulenaufnahmekörper und mindestens einer Wicklung und eine Leiterplatte mit einer Spule, die einen Spulenaufnahmekörper und mindestens eine Wicklung aufweist. Um beim Aufbringen der Spule auf einer Leiterplatte eine höhere mechanische Belastbarkeit der Verbindung zwischen der Spule und der Leiterplatte zu erreichen, ist der Spulenaufnahmekörper der erfindungsgemäßen Spule außen zumindest teilweise metallisiert, so dass er auf einer Leiterplatte verlötet werden kann.

Ferner betrifft die Erfindung ein Verfahren zur Herstellung einer Spule mit einem Spulenaufnahmekörper und mindestens einer Wicklung, wobei der Spulenaufnahmekörper der erfindungsgemäßen Spule außen zumindest teilweise metallisiert wird.

1010541641

Beschreibung

[0001] Elektrische Spulen weisen im allgemeinen einen Spulenaufnahmekörper und mindestens eine Wicklung auf. Unter einem Spulenaufnahmekörper soll diejenige Vorrichtung verstanden werden, die die Spule umfasst bzw. aufnimmt. Es kann sich dabei um einen handelsüblichen Spulenkörper handeln oder aber auch um einen nach außen abschließenden Spulenkern, wie beispielsweise einen Ferritkern mit entsprechenden Hohlräumen zur Aufnahme der 10 Spule.

[0002] In elektronischen Anordnungen sind oftmals derartige Spulen zu integrieren. Vielfach werden dabei die Spulen auf der Oberfläche von Leiterplatten montiert. Man spricht dann von sogenannten SMT-Bauteilen (Surface Mount 15 Technology – SMT).

[0003] Als solche befinden sich auf dem Markt bislang beispielsweise SMT-Drosseln des Herstellers Ferroxeube mit der Bezeichnung WBS2.5-5/4.8/10-4B1. Zur Befestigung auf einer Leiterplatte werden diese Drosseln an den 20 Enden einer Wicklung mit auf der Leiterplatte vorgesehenen Lötpads verlötet.

[0004] Eine Aufgabe der vorliegenden Erfindung war es, eine Spule bereitzustellen, die derart fest auf einer Leiterplatte montierbar ist, dass die Verbindung zwischen der 25 Spule und der Leiterplatte vergleichsweise hohen mechanischen Belastungen standhält.

[0005] Gelöst wird diese Aufgabe erfindungsgemäß durch eine Spule mit einem Spulenaufnahmekörper und mindestens einer Wicklung, wobei der Spulenaufnahmekörper außen zumindest teilweise metallisiert ist.

[0006] Im Rahmen der vorliegenden Erfindung werden als Äußeres des Spulenaufnahmekörpers all diejenigen Flächen des Spulenaufnahmekörpers verstanden, mit welcher der Spulenaufnahmekörper auf eine Unterlage aufgelegt werden 35 kann

[0007] Durch das Vorsehen von einer teilweisen Metallisierung des Äußeren des Spulenaufnahmekörpers ist es möglich die Spule nicht allein durch äußere Enden der Wicklung mit einer Leiterplatte zu verbinden, sondern durch 40 Aufsetzen der Spule mit einer eine metallisierte Fläche aufweisenden Außenseite des Spulenaufnahmekörpers auf der Leiterplatte auch den Spulenaufnahmekörper selbst unmittelbar mit der Leiterplatte durch Löten mechanisch zu verbinden. Je größer dabei die metallisierten Flächen gewählt 45 werden, desto fester kann die Spule auf einer Leiterplatte montiert werden, vorausgesetzt die Leiterplatte verfügt ebenfalls über entsprechend große Lötpads. Mechanische Belastungen können nur noch schwer zur Schädigung oder gar zum Ablösen der äußeren Enden der Wicklung führen, 50 da die Möglichkeit der zusätzlichen Verlötung des Spulenaufnahmekörpers mit der Leiterplatte eine festere Verbindung zwischen der Leiterplatte und der Spule realisierbar macht.

[0008] In einer bevorzugten Ausführungsform der Erfin- 55 dung wird eine Spule bereitgestellt, deren Spulenaufnahmekörper im Bereich der äußeren Enden der Wicklung metallisiert ist.

[0009] Durch die Metallisierung im Bereich der äußeren Enden der Wicklung werden beim Lötprozess, d. h. beim 60 Verbinden der Spule mit der Leiterplatte, außer den zwischen Lötpad der Leiterplatte und Spulenaufnahmekörper liegenden äußeren Enden der Wicklung automatisch auch die metallisierten Flächen des Spulenaufnahmekörpers vom Lötzinn umspült. Somit wird die Spule auch hier nicht mehr allein über die äußeren Enden der Wicklung auf der Leiterplatte befestigt, sondern auch mit den erfindungsgemäß vorgesehenen metallisierten Flächen nahe der äußeren Enden

der Wicklung. Die metallisierten Flächen müssen nicht in einem gesonderten Schritt verlötet werden, sondern die Verlötung kann gleichzeitig mit der der äußeren Enden der Wicklung erfolgen.

[0010] Ferner ist es denkbar, die metallisierten Flächen relativ zu den äußeren Enden der Wicklung so zu lokalisieren. dass beim Lötprozess über den Lötzinn eine leitende Verbindung zwischen den metallisierten Flächen und den äußeren Enden der Wicklung hergestellt wird. Ein Vorteil ist dabei darin zu sehen, dass beim Aufsetzen der Spule auf der Leiterplatte die äußeren Enden der Wicklung nicht mehr exakt oberhalb der entsprechenden Lötpads der Leiterplatte zu liegen kommen müssen. Es reicht aus, wenn die erfindungsgemäß vorgesehenen metallisierten Flächen auf dem Spulenaufnahmekörper oberhalb der Lötpads der Leiterplatten derart zu liegen kommen, dass beim Lötprozess eine Verlötung des Spulenaufnahmekörpers mit den entsprechenden Lötpads der Leiterplatte entsteht. Da die metallisierten Flächen aufgrund ihrer Metallisierung oberflächenleitend sind, stellen sie eine leitende Verbindung zwischen den Lötpads der Leiterplatte und den äußeren Enden der Wicklung her. Dadurch ist ein genaues Verlegen der äußeren Enden der Wicklung nur noch von untergeordneter Bedeutung. Auf diese Weise können bei der Befestigung von Spulen auf entsprechenden Leiterplatten Kosten, Zeit, Material und Arbeitsgänge eingespart werden.

[0011] Der Spulenaufnahmekörper kann aus Ferrit bestehen.

[0012] Eine weitere Aufgabe der Erfindung war es, eine Leiterplatte mit einer Spule vorzusehen, wobei die Spule derart fest auf der Leiterplatte montiert ist, dass die Verbindung zwischen der Leiterplatte und der Spule auch vergleichsweise hohen mechanischen Belastungen standhält. [0013] Gelöst wird diese Aufgabe durch eine Leiterplatte mit einer Spule mit einem Spulenaufnahmekörper, wobei der Spulenaufnahmekörper außen zumindest teilweise metallisiert ist und mit seinen metallisierten Flächen unmittelbar mit der Leiterplatte durch Löten mechanisch verbunden ist.

[0014] Die Spule weist dabei meist mindestens eine Wicklung auf. Diese Konstruktion weist, wie bereits erläutert, gegenüber herkömmlichen Konstruktionen von Leiterplatten mit Spulen eine wesentlich höhere mechanische Belastbarkeit auf. Aufgrund der unmittelbaren Verlötung zwischen der Leiterplatte und dem Spulenaufnahmekörper werden mechanische Belastungen weitestgehend abgeschirmt. Wird die Spule mit den äußeren Enden einer Wicklung auf der Leiterplatte verlötet, so kann es erfindungsgemäß kaum noch zu einer Schädigung der Lötstellen der äußeren Enden der Wicklung mit der Leiterplatte oder gar zum Ablösen der äußeren Enden der Wicklung von der Leiterplatte kommen. [0015] Die erfindungsgemäße Leiterplatte umfasst auch den Fall, dass ein Spulenkern, vorzugsweise ein Ferritkern, außen zumindest teilweise metallisiert ist, mit seinen metallisierten Flächen unmittelbar mit der Leiterplatte durch Löten mechanisch verbunden ist, aber keine Wicklung in seinem Innern aufweist, sondern auf eine Leitung der Leiterplatte aufgesetzt ist. Der Spulenkern übt auch in dieser Konstellation eine dämpfende Wirkung auf den Leiter aus, wenn dieser von Strom durchflossen wird. Die Metallisierung des Spulenkerns macht dabei erst eine mechanische Verbindung des Spulenkerns auf der Leiterplatte möglich.

[0016] Ferner war es eine Aufgabe der Erfindung ein Verfahren bereitzustellen, mit dessen Hilfe eine Spule hergestellt werden kann, die derart fest auf einer Leiterplatte montierbar ist, dass die Verbindung zwischen der Spule und der Leiterplatte vergleichsweise hohen mechanischen Belastungen standhält.

 4

[0017] Gelöst wird diese Aufgabe erfindungsgemäß durch ein Verfahren zur Herstellung einer Spute mit einem Sputenaufnahmekörper und mindestens einer Wicklung, wobei der Sputenaufnahmekörper außen zumindest teilweise metallisiert wird.

[0018] Vorzugsweise wird zur Erzeugung der metallisierten Flächen des Spulenaufnahmekörpers das entsprechende Metall aufgedampft. Um eine Metallisierung mit ausreichender Haftfestigkeit zu gewähren, wird der Spulenaufnahmekörper einer Vorbehandlung mit einem Plasma unterzogen, einem sogenannten Sputtering. Durch die Plasmavorbehandlung wird aufgrund der Befreiung der Oberfläche des Spulenaufnahmekörpers von Verunreinigungen und Kreation von geeigneten Oberflächenmodifikationen die Haftfestigkeit des Metalls verbessert.

[0019] In einer anderen bevorzugten Ausführungstorm des erfindungsgemäßen Verfahrens werden die zu metallisierenden Flächen des Spulenaufnahmekörpers galvanisch erzeugt.

[0020] Weitere Vorteile der Erfindung werden anhand der 20 folgenden Figuren aufgeführt. Es zeigen

[0021] Fig. 1 Schematische Ansicht auf die Unterseite einer Ausführungsform einer erfindungsgemäßen Spule, d. h. auf die Seite, mit welcher die Spule auf eine Leiterplatte aufgesetzt werden soll.

[0022] Fig. 2 Schematische Seitenansicht einer Ausführungsform einer erfindungsgemäßen Leiterplatte mit einer aufgesetzten Spule.

[0023] In Fig. 1 ist eine Ansicht auf die Unterseite einer Ausführungsform einer erfindungsgemäßen Spule 1, d. h. 30 auf die Seite, mit welcher die Spule 1 auf eine Leiterplatte 9 aufgesetzt werden soll, dargestellt. Ein Spulenaufnahmekörper 2, der vorzugsweise aus Ferrit besteht, weist in der Mitte eine längliche Ausbuchtung 3 auf, in welcher die an die Leiterplatte 9 anzuschließenden Enden 4 bzw. 5 der Wicklung 6 35 verlaufen. Somit sind die Enden 4 bzw. 5 der Wicklung 6 gut lokalisierbar und kommen somit beim Aufsetzen der Spule 1 auf die Leiterplatte 9 relativ einfach oberhalb von auf der Leierplatte 9 vorgesehene Lötpads 10 bzw. 11 zu liegen. Doch aufgrund erfindungsgemäß vorgesehener metalli- 40 sierter Flächen 7 bzw. 8 auf dem Spulenaufnahmekörper 2 ist ein sehr exaktes Aufsetzen der Spule 1 auf der Leiterplatte im dargestellten Fall nicht mehr von allzu großer Wichtigkeit. Im dargestellten Fall sind nämlich die metallisierten Flächen 7 bzw. 8 auf dem Spulenaufnahmekörper 2 45 relativ zu den äußeren Enden 4 bzw. 5 der Wicklung 6 derart lokalisiert, dass beim Lötprozess durch den Lötzinn eine leitende Verbindung zwischen den Flächen 7 bzw. 8 und den entsprechenden äußeren Enden 4 bzw. 5 der Wicklung 6 hergestellt wird. Im Falle, dass die Lötpads 10 bzw. 11 der Lei- 50 terplatte 9 nur mit den metallisierten Flächen 7 bzw. 8 des Spulenaufnahmekörpers 2 verlötet sind, ist aufgrund der Leitfähigkeit dieser Flächen 7 bzw. 8 eine leitende Verbindung von den Lötpads 10 bzw. 11 der Leiterplatte 9 zu den äußeren Enden 4 bzw. 5 der Wicklung 6 letztlich hergestellt, 55 da die äußeren Enden 4 bzw. 5 zumindest mit den Flächen 7 bzw. 8 verlötet sind. Der größte Vorteil der erfindungsgemäßen Spule 1 besteht jedoch in der Möglichkeit die Spule 1 aufgrund der zusätzlichen Verlötbarkeit der metallisierten Flächen 7 bzw. 8 des Spulenaufnahmekörpers 2 mit der Lei- 60 terplatte 9 derart fest auf der Leiterplatte 9 zu montieren, dass mechanische Belastungen aufgrund der großflächigeren Verlötung zwischen Spule 1 und Leiterplatte 9 nur noch schwer zu einer Schädigung der Lötstellen der äußeren Enden 4 bzw. 5 der Wicklung 6 oder gar zu einer Ablösung der- 65 selben führen können.

[0024] Fig. 2 zeigt eine Ausführungsform einer erfindungsgemäßen Leiterplatte 9 mit einer Spule 1. Auf der Lei-

terplatte 9 sind hier zwei Lötpads 10 und 11 vorgeschen, die sowohl mit den äußeren Enden 4 bzw. 5 der Wicklung 6 wie auch mit den metallisierten Flächen 7 bzw. 8 des Spulenaufnahmekörpers 2 verlötet sind. Die Ausdehnung der Lötpads 10 bzw. 11 auf der Leiterplatte 9 ist vorzugsweise so gewählt, dass die Spule 1 über die jeweilige gesamte Ausdehnung der metallisierten Flächen 7 bzw. 8 auf der Leiterplatte 9 verlötet werden kann. Dadurch wird eine maximale Festigkeit erreicht. Die metallisierten Flächen 7 bzw. 8 des Spulenaufnahmekörpers 2 können sich irgendwo auf der Außenseite des Spulenaufnahmekörpers 2 befinden, mit welcher die Spule 1 auf die Leiterplatte 9 aufgelegt wird. Die metallisierten Flächen 7 bzw. 8 müssen nicht zwingend, wie hier dargestellt, im Bereich der äußeren Enden 4 bzw. 5 der Wicklung 6 liegen. Eine erhöhte mechanische Belastbarkeit der Verbindung zwischen Spule 1 und Leiterplatte 9 wird unabhängig davon erreicht. Der Vorteil die metallisierten Flächen 7 bzw. 8 im Bereich der äußeren Enden 4 bzw. 5 wie hier dargestellt vorzusehen ist, wie bereits erwähnt, darin zu sehen, dass es beim Aufsetzen der Spule 1 auf die Leiterplatte 9 nur noch wenig darauf ankommt, die äußeren Enden 4 bzw. 5 der Wicklung 6 mit den Lötpads 10 bzw. 11 der Leiterplatte 9 zu verlöten. Beim Lötprozess werden bei dieser bevorzugten Anordnung die gesamten metallisierten Flächen 7 bzw. 8 vom Lötzinn umspült und damit auch die zwischen Leiterplatte 9 und Spulenaufnahmekörper 2 liegenden äußeren Enden 4 bzw. 5. Es ist somit eine leitende Verbindung zwischen den Enden 4 bzw. 5 der Wicklung 6 und den metallisierten Flächen 7 bzw. 8 hergestellt. Sind nun nur die metallisierten Flächen 7 bzw. 8 mit der Leiterplatte 9 verlötet, so sind mittelbar dadurch auch die äußeren Enden 4 bzw. 5 mit der Leiterplatte 9 leitend verbunden.

Patentansprüche

- 1. Spule mit einem Spulenaufnahmekörper (2) und mindestens einer Wicklung (6), dadurch gekennzeichnet, dass der Spulenaufnahmekörper (2) außen zumindest teilweise metallisiert ist.
- 2. Spule nach Anspruch 1. dadurch gekennzeichnet, dass der Spulenaufnahmekörper (2) im Bereich von äußeren Enden (4, 5) der Wicklung (6) metallisiert ist.
- 3. Leiterplatte (9) mit einer Spule (1) mit einem Spulenaufnahmekörper (2) dadurch gekennzeichnet, dass der Spulenaufnahmekörper (2) außen zumindest teilweise metallisiert ist und mit seinen metallisierten Flächen (7, 8)unmittelbar mit der Leiterplatte (9) durch Löten mechanisch verbunden ist.
- 4. Verfahren zur Herstellung einer Spule mit einem Spulenaufnahmekörper (2) und mindestens einer Wicklung (6), dadurch gekennzeichnet, dass der Spulenaufnahmekörper (2) außen zumindest teilweise metallisiert wird.
- 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Metallisierung mit einem lötbaren Metall oder einer lötbaren Metalllegierung vorgenommen wird
- 6. Verfahren nach Anspruch 4 oder 5. dadurch gekennzeichnet, dass die Metallisierung durch Aufdampfen vorgenommen wird.
- 7. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Metallisierung galvanisch vorgenommen wird.

Hierzu 1 Seite(n) Zeichnungen

