

## Tutorato 6 di AL310

Tutori: Luciana Longo e Sara Milliani

## 16 Dicembre 2016

- 1. (Secondo esonero 2002/2003) Descrivere gli elementi del gruppo di Galois del polinomio  $x^5 2$  mostrando che ha 20 elementi.
- 2. (Secondo esonero 2002/2003) Calcolare quanti sono i polinomi irriducibili (monici) di grado 6 e 8 su  $\mathbb{F}_2$ .
- 3. (Secondo esonero 2002/2003) Dopo aver enunciato il teorema di caratterizzazione per i numeri reali costruibili, si dimostri che  $\sqrt{1+\sqrt{3-\sqrt[8]{2}}}$  é costruibile, esibendone una costruzione nel senso della teoria dei campi. Dimostrare anche che  $\sqrt[5]{2}$  non é costruibile.
- 4. (**Secondo esonero 2004/2005**) Descrivere gli elementi del gruppo di Galois del polinomio  $(x^2 2)(x^2 3)(x^2 5)(x^2 30)$ .
- 5. (Secondo esonero 2006/2007) Determinare tutti i sottocampi del campo  $\mathbb{Q}(\xi_{17})$ .
- 6. (Secondo esonero 2006/2007) Dopo aver dimostrato che  $cos(\frac{\pi}{8})$  é costruibile, se ne determini esplicitamente una costruzione.
- 7. (**Appello 2002/2003**) Calcolare il gruppo di Galois del polinomio  $x^4 7$ .
- 8. (Appello 2002/2003) Fornire due esempi distinti di campi finiti  $\mathbb{F}_9$  con 9 elementi e costruire un isomorfismo tra i due.
- 9. (**Appello 2002/2003**) Definire la nozione di sottogruppo transitivo di  $\mathbb{S}_n$  ed elencare tutti i sottogruppi transitivi di  $\mathbb{S}_3$  e  $\mathbb{S}_4$ .
- 10. (**Secondo esonero 2009/2010**) Rispondere alle seguenti domande fornendo una giustificazione di una riga:
  - (a) È vero che il numero  $3 + \sqrt{\sqrt{2} + \sqrt{7} + \sqrt[4]{5}}$  é costruibile?

- (b) È vero che un qualsiasi polinomio di grado 5 con esattamente 3 radici reali ha gruppo di Galois isomorfo a  $\mathbb{S}_5$ ?
- 11. (**Appello 2002/2003**) Calcolare il grado del polinomio minimo su  $\mathbb{Q}$  di  $\xi_{13} + \xi_{13}^3 + \xi_{13}^9$ .
- 12. (Secondo esonero 2009/2010) Determinare il gruppo di Galois di  $x^4+3x^2+1\in\mathbb{Q}[x]$  e  $x^4+3x^2+1\in\mathbb{F}_2[x]$ .
- 13. (**Secondo esonero 2011/2012**) Sia  $E=\mathbb{Q}[\sqrt{3},\sqrt{5}]$  e sia  $\gamma:=\sqrt{3}+\sqrt{5}$  un elemento primitivo di E. Scrivere il polinomio minimo di  $\gamma$  su  $\mathbb{Q}$  e descrivere tutti i sottocampi di E.
- 14. (Secondo esonero 2006/2007) Calcolare il numero di elementi del campo di spezzamento del polinomio  $(x^{2^8}-x)(x^8+x^4+1)(x^{12}+x^4+1)(x^5+x) \in \mathbb{F}_2[x]$ .