

davidcorzo@ufm.edu (Sign out)

Home My Assignments

Grades

Communication

Calendar

My eBooks

5.4 & Aacute; rea, Desplazamiento y Distancia (Homework)

Due Date

DECEMBER 21 11:59 PM CST

Assignment Submission & Scoring

Assignment Submission

For this assignment, you submit answers by question parts. The number of submissions remaining for each question part only changes if you submit or change the answer.

Assignment Scoring

Your last submission is used for your score.

1. 2/2 points Previous Answers SCalcET8 5.3.045.

My Notes

Ask Your Teacher

Sketch the region enclosed by the given curves. (A graphing calculator is recommended.)

$$y = \sqrt{x}$$
, $y = 0$, $x = 9$

Calculate its area.

543

2. 2/2 points Previous Answers SCalcET8 5.3.047.

My Notes

Ask Your Teacher

Sketch the region enclosed by the given curves. (A graphing calculator is recommended.)

$$y = 4 - x^2$$
, $y = 0$

Calculate its area.

323

1/1 points Previous Answers SCalcET8 5.3.052. 3.

My Notes Ask Your Teacher

Use a graph to give a rough estimate of the area of the region that lies beneath the given curve. Then find the exact area.

$$y = \sec^2(x), \quad 0 \le x \le \pi/3$$

4.

2/2 points Previous Answers

SCalcET8 5.3.053.

My Notes

Ask Your Teacher

Evaluate the integral and interpret it as a difference of areas.

Illustrate with a sketch.

Need Help? Tall

Talk to a Tutor

5. 2/0 points Previous Answers SCalcET8 5.3.082.

My Notes

Ask Your Teacher

Let

$$f(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } 0 \le x \le 1 \\ 2 - x & \text{if } 1 < x \le 2 \\ 0 & \text{if } x > 2 \end{cases}$$

and

$$g(x) = \int_0^x f(t) dt.$$

(a) Find an expression for g(x) similar to the one for f(x).

(b) Sketch the graph of *f*.

Sketch the graph of g.

Where is g differentiable? (Enter your answer using interval notation.)

6. 2/0 points Previous Answers SCalcET8 5.3.084.

My Notes

Ask Your Teacher

The area labeled B is three times the area labeled A. Express b in terms of a.

Need Help?

Talk to a Tutor

7. 1/1 points Previous Answers SCalcET8 5.4.049.

My Notes

Ask Your Teacher

The area of the region that lies to the right of the *y*-axis and to the left of the parabola $x = 8y - y^2$ (the shaded region in the figure) is given by the integral $\int_0^8 (8y - y^2) dy$. (Turn your head clockwise and think of the region as lying below the curve $x = 8y - y^2$ from y = 0 to y = 8.) Find the area of the region.

SCalcET8 5.4.059. 2/0 points Previous Answers 8.

My Notes

Ask Your Teacher

The velocity function (in meters per second) is given for a particle moving along a line.

$$v(t) = 3t - 8, \quad 0 \le t \le 3$$

(a) Find the displacement.

(b) Find the distance traveled by the particle during the given time interval.

2/2 points Previous Answers SCalcET8 5.4.061. 9.

My Notes

Ask Your Teacher

The acceleration function (in m/s^2) and the initial velocity are given for a particle moving along a line.

$$a(t) = t + 8$$
, $v(0) = 6$, $0 \le t \le 10$

(a) Find the velocity at time t.

$$v(t) =$$

(b) Find the distance traveled during the given time interval.

Need Help? Watch It Talk to a Tutor 10. 1/1 points Previous Answers SCalcET8 5.4.063.

My Notes

Ask Your Teacher

The linear density of a rod of length 4 m is given by $\rho(x) = 8 + 4\sqrt{x}$ measured in kilograms per meter, where x is measured in meters from one end of the rod. Find the total mass of the rod.

160/3 v kg

11. 2/2 points Previous Answers SCalcET8 5.4.511.XP.

My Notes

Ask Your Teacher

The velocity function (in meters per second) is given for a particle moving along a line.

$$v(t) = t^2 - 2t - 15, \quad 1 \le t \le 7$$

(a) Find the displacement.

(b) Find the distance traveled by the particle during the given time interval.

Need Help? Talk to a Tutor

12. 4/3 points Previous Answers SCalcET8 5.4.AE.006.

My Notes

Ask Your Teacher

Video Example (1)

EXAMPLE 6 A particle moves along a line so that its velocity at time t is $v(t) = t^2 - t - 20$ (measured in meters per second).

- (a) Find the displacement of the particle during $3 \le t \le 10$.
- (b) Find the distance traveled during this time period.

SOLUTION

(a) By this equation, the displacement is

$$s(10) - s(3) = \int_{3}^{10} v(t) dt$$
$$= \int_{3}^{10} (t^{2} - t - 20) dt$$

This means that the particle moved approximately 138.83 meters to the right.

(b) Note that $v(t) = t^2 - t - 20 = (t - 5)(t + 4)$ and so $v(t) \le \sqrt{}$ 0 on the

interval [3, 5] and $v(t) \ge \checkmark \checkmark 0$ on [5, 10]. Thus, from this equation, the distance traveled is

$$\int_{3}^{10} |v(t)| dt = \int_{3}^{5} [-v(t)] dt + \int_{5}^{10} v(t) dt$$
$$= \int_{3}^{5} (-t^{2} + t + 20) dt + \int_{5}^{10} (t^{2} - t - 20) dt$$

Submit Assignment

Save Assignment Progress

<u>Home</u> <u>My Assignments</u>

Copyright 2019 Cengage Learning, Inc. All Rights Reserved