作业 #2

(提交日期: 2023/10/24)

1. [2.1(2)(4)] 写出下列线性规划问题的对偶问题:

(1)
$$\max z = 2x_1 + 2x_2 - 5x_3 + 2x_4$$
 (2) $\min z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$ s.t.
$$\begin{cases} -2x_1 + x_2 - 3x_3 - 3x_4 = 5\\ 6x_1 + 5x_2 - x_3 + 5x_4 \ge 6\\ 10x_1 - 9x_2 + 6x_3 \le 12\\ x_1, x_3 \ge 0, x_2, x_4$$
 ± 20 s.t.
$$\begin{cases} \sum_{j=1}^{n} x_{ij} = a_i \ (i = 1, 2, ..., m)\\ \sum_{j=1}^{m} x_{ij} = b_j \ (j = 1, 2, ..., n)\\ x_{ij} \ge 0 \end{cases}$$

解: (1) 其对偶问题为:

min
$$w = 5y_1 + 6y_2 + 12y_3$$

$$\begin{cases}
-2y_1 + 6y_2 + 10y_3 \ge 2 \\
y_1 + 5y_2 - 9y_3 = 2 \\
-3y_1 - y_2 + 6y_3 \ge -5 \\
-3y_1 + 5y_2 = 2 \\
y_1$$
无约束, $y_2 \le 0$, $y_3 \ge 0$

(2) 其对偶问题为:

$$\max w = \sum_{i=1}^{m} a_{i} u_{i} + \sum_{j=1}^{n} b_{j} v_{j}$$
s.t. $u_{i} + v_{j} \le c_{ij} \ (i = 1, \dots, m; j = 1, \dots, n)$

2. **[2.2]** 设 $\mathbf{A} \in \mathfrak{R}^{m \times n}$, $\mathbf{b} \in \mathfrak{R}^m$, $\mathbf{c} \in \mathfrak{R}^n$, 已知线性规划的原问题为

$$\max \quad z = \mathbf{c}^T \mathbf{x}$$
s.t.
$$\begin{cases} \mathbf{A} \mathbf{x} \ge \mathbf{b} \\ \mathbf{x} \ge \mathbf{0} \end{cases}$$

- (1) 写出上述线性规划对应的对偶问题;
- (2) 如果 \mathbf{y}^* 为对偶问题的最优解,并且假设原问题约束条件右端项 \mathbf{b} 用 $\overline{\mathbf{b}}$ 替换之后其最优解为 $\overline{\mathbf{x}}$,试证明 $\mathbf{c}^T\overline{\mathbf{x}} \leq \overline{\mathbf{b}}^T\mathbf{y}^*$ 。

解: (1) 对偶问题为:

$$\min z = \mathbf{b}^T \mathbf{y}$$
s.t.
$$\begin{cases} \mathbf{A}^T \mathbf{y} \ge \mathbf{c} \\ \mathbf{v} \le \mathbf{0} \end{cases}$$

(2) 原问题 \mathbf{b} 被 $\overline{\mathbf{b}}$ 替换后对应的对偶问题变为:

$$\min z = \overline{\mathbf{b}}^T \mathbf{y}$$
s.t.
$$\begin{cases} \mathbf{A}^T \mathbf{y} \ge \mathbf{c} \\ \mathbf{y} \le \mathbf{0} \end{cases}$$

显然,可行域没有变化,故 \mathbf{y}^* 仍是新问题的对偶问题的可行解。又 $\overline{\mathbf{x}}$ 是新问题的可行解,由弱对偶性有: $\mathbf{c}^T\overline{\mathbf{x}} \leq \overline{\mathbf{b}}^T\mathbf{y}^*$ 。或者,

$$\overline{\mathbf{b}}^T \mathbf{y}^* \ge (\mathbf{A} \overline{\mathbf{x}})^T \mathbf{y}^* = \overline{\mathbf{x}}^T \mathbf{A}^T \mathbf{y}^* \ge \overline{\mathbf{x}}^T \mathbf{c} = \mathbf{c}^T \overline{\mathbf{x}} \ .$$

3. 给出线性规划问题:

max
$$z = x_1 + 2x_2 + x_3$$

s.t.
$$\begin{cases} x_1 + x_2 - x_3 \le 2 \\ x_1 - x_2 + x_3 = 1 \\ 2x_1 + x_2 + x_3 \ge 2 \\ x_1 \ge 0, x_2 \le 0, x_3$$
无约束

(1) 写出其对偶问题; (2) 利用对偶问题性质证明原问题目标函数值 $z \le 1$ 。

解: (1) 对偶问题为:

min
$$w = 2y_1 + y_2 + 2y_3$$

s.t.
$$\begin{cases} y_1 + y_2 + 2y_3 \ge 1 \\ y_1 - y_2 + y_3 \le 2 \\ -y_1 + y_2 + y_3 = 1 \\ y_1 \ge 0, y_2$$
无约束, $y_3 \le 0$

- (2) 因为 $Y = (0,1,0)^T$ 是对偶问题的一个可行解,其对应的目标函数值为 1,所以由弱对偶性,原问题的目标函数值 $z \le 1$ 。
- 4. 考虑如下线性规划问题:

min
$$z = 60x_1 + 40x_2 + 80x_3$$

s.t.
$$\begin{cases} 3x_1 + 2x_2 + x_3 \ge 2\\ 4x_1 + x_2 + 3x_3 \ge 4\\ 2x_1 + 2x_2 + 2x_3 \ge 3\\ x_1, x_2, x_3 \ge 0 \end{cases}$$

- (1) 用对偶单纯形法**求解原问题**;
- (2) 用单纯形法**求解其对偶问题**,并对比(1)与(2)中每步计算得到的结果。

解: (1) 其对偶问题为

$$\max w = 2y_1 + 4y_2 + 3y_3$$
s.t.
$$\begin{cases} 3y_1 + 4y_2 + 2y_3 \le 60 \\ 2y_1 + y_2 + 2y_3 \le 40 \\ y_1 + 3y_2 + 2y_3 \le 80 \\ y_1, y_2, y_3 \ge 0 \end{cases}$$

(2) 用对偶单纯形法求解原问题:

	$c_{_{j}}$		-60	-40	-80	0	0	0
c_{B}	x_{B}	b	x_1	x_2	x_3	x_4	x_5	x_6
0	x_4	-2	-3	-2	-1	1	0	0
0	x_5	-4	[-4]	-1	-3	0	1	0
0	x_6	-3	-2	-2	-2	0	0	1
	$c_j - z_j$	j	-60	-40	-80	0	0	0
0	x_4	1	0	-5/4	5/4	1	-3/4	0
-60	x_1	1	1	1/4	3/4	0	-1/4	0
0	x_6	-1	0	[-3/2]	-1/2	0	-1/2	1
	$c_j - z_j$	j	0	-25	-35	0	-15	0
0	x_4	11/6	0	0	5/3	1	-1/3	-5/6
-60	x_1	5/6	1	0	2/3	0	-1/3	1/6
-40	x_2	2/3	0	1	1/3	0	1/3	-2/3
	$c_j - z_j$	j	0	0	-80/3	0	-20/3	-50/3

(3) 用单纯形法求解其对偶问题:

	$c_{_{j}}$		2	4	3	0	0	0
c_{B}	\mathcal{Y}_{B}	b	\mathcal{Y}_1	\mathcal{Y}_2	\mathcal{Y}_3	${\cal Y}_4$	\mathcal{Y}_5	\mathcal{Y}_6
0	\mathcal{Y}_4	60	3	[4]	2	1	0	0
0	${\cal Y}_5$	40	2	1	2	0	1	0
0	${\mathcal Y}_6$	80	1	3	2	0	0	1
	$c_j - z_j$		2	4	3	0	0	0
4	\mathcal{Y}_2	15	3/4	1	1/2	1/4	0	0
0	\mathcal{Y}_5	25	5/4	0	[3/2]	-1/4	1	0
0	${\mathcal Y}_6$	35	-5/4	0	1/2	-3/4	0	1
	$c_j - z_j$	j	-1	0	1	-1	0	0
4	\mathcal{Y}_2	20/3	1/3	1	0	1/3	-1/3	0
3	\mathcal{Y}_3	50/3	5/6	0	1	-1/6	2/3	0
0	\mathcal{Y}_6	80/3	-5/3	0	0	-2/3	-1/3	1
	$c_j - z_j$	j	-11/6	0	0	-5/6	-2/3	0

(4)每次迭代的结果中,原问题的检验数行的相反数是对偶问题的可行解,原问题的变量对应于对偶问题的松弛变量。

5. **[2.6]** 已知线性规划问题 A 和 B 如下:

问题A 问题B
max
$$z = \sum_{j=1}^{n} c_{j}x_{j}$$
 影子价格
max $z = \sum_{j=1}^{n} c_{j}x_{j}$ 影子价格
s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{1j}x_{j} = b_{1} & y_{1} \\ \sum_{j=1}^{n} a_{2j}x_{j} = b_{2} & y_{2} \\ \sum_{j=1}^{n} a_{3j}x_{j} = b_{3} & y_{3} \\ x_{j} \geq 0 & (j = 1, \dots, n) \end{cases}$$
 s.t.
$$\begin{cases} \sum_{j=1}^{n} 3a_{1j}x_{j} = 3b_{1} & \hat{y}_{1} \\ \sum_{j=1}^{n} \frac{1}{3}a_{2j}x_{j} = \frac{1}{3}b_{2} & \hat{y}_{2} \\ \sum_{j=1}^{n} \left(a_{3j} + 3a_{1j}\right)x_{j} = b_{3} + 3b_{1} & \hat{y}_{3} \\ x_{j} \geq 0 & (j = 1, \dots, n) \end{cases}$$

- (1) 试写出 y_i 和 \hat{y}_i (i=1,2,3)的关系式。
- (2) 如果用 $x'_3 = \frac{1}{3}x_3$ 替换问题 A 中的 x_3 ,请问影子价格 y_i 是否有变化?
- 解: (1)问题B相当于对问题A左乘了矩阵 $P = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1/3 & 0 \\ 3 & 0 & 1 \end{bmatrix}$,因此由 $y^T = c_B^T B^{-1}$,

得:
$$\hat{y}^T = c_B^T (PB)^{-1} = c_B^T B^{-1} P^{-1} = y^T P^{-1}$$
, 即 $\hat{y}^T = y^T \begin{bmatrix} 1/3 & 0 & 0 \\ 0 & 3 & 0 \\ -1 & 0 & 1 \end{bmatrix}$ 。

展开:

$$\hat{y}_1 = \frac{1}{3}y_1 - y_3$$
, $\hat{y}_2 = 3y_2$, $\hat{y}_3 = y_3$

或者:

$$y_1 = 3\hat{y}_1 + 3\hat{y}_3$$
, $y_2 = \frac{1}{3}\hat{y}_2$, $y_3 = \hat{y}_3$

- (2) 没有变化。
- 6. [2.7] 先用单纯形法求解线性规划:

$$\max z = 2x_1 + 3x_2 + x_3$$
s.t.
$$\begin{cases} \frac{1}{3}x_1 + \frac{1}{3}x_2 + \frac{1}{3}x_3 \le 1\\ \frac{1}{3}x_1 + \frac{4}{3}x_2 + \frac{7}{3}x_3 \le 3\\ x_1, x_2, x_3 \ge 0 \end{cases}$$

再分析下列条件单独变化的情况下最优解的变化:

(1) 目标函数中变量 x, 的系数变为 6;

(2) 约束条件右端项由
$$\binom{1}{3}$$
变为 $\binom{2}{3}$;

(3) 增添一个新的约束 $x_1 + 2x_2 + x_3 \le 4$ 。

解: 最终单纯形表为:

		2	2 3 1		0	0	
$c_{_{\rm B}}$	X _B	b	x_1	x_2	x_3	X_4	x_5
2	x_1	1	1	0	-1	4	-1
3	x_2	2	0	1	2	-1	1
			0	0	-3	-5	-1

最优解为 $x^* = (1,2,0)^T$ 。

(1)
$$\sigma_3' = c_3 - c_B B^{-1} P_3 = 6 - (5,1) \binom{1/3}{7/3} = 2 > 0$$
, 需继续按单纯形计算。

			2	3	6	0	0
C _B	$\mathbf{X}_{\mathbf{B}}$	b	x_1	x_2	x_3	x_4	x_5
2	x_1	1	1	0	-1	4	-1
3	x_2	2	0	1	[2]	-1	1
			0	0	2	-5	-1
2	x_1	2	1	1/2	0	7/2	-1/2
6	x_3	1	0	1/2	1	-1/2	1/2
			0	-1	0	-4	-2

最优解变为 $x^* = (2,0,1)^T$ 。

(2) 由
$$\mathbf{B}^{-1}\mathbf{b} = \begin{pmatrix} 4 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 5 \\ 1 \end{pmatrix} \ge 0$$
,最优基不变。

(3) 将原最优解 $x^* = (1,2,0)^T$ 代入新增约束,得: $x_1 + 2x_2 + x_3 = 1 + 4 + 0 = 5 > 4$,所以新增约束起作用,需重新计算。

			2	3	1	0	0	0
C _B	X _B	b	x_1	x_2	x_3	x_4	x_5	x_6
2	x_1	1	1	0	-1	4	-1	0
3	x_2	2	0	1	2	-1	1	0
0	x_6	4	1	2	1	0	0	1
			0	0	-3	-5	-1	0
2	x_1	1	1	0	-1	4	-1	0
3	x_2	2	0	1	2	-1	1	0
0	x_6	-1	0	0	-2	-2	[-1]	1
			0	0	-3	-5	-1	0
2	x_1	2	1	0	1	6	0	-1
3	x_2	1	0	1	0	-3	0	1
0	x_5	1	0	0	2	2	1	-1
			0	0	-1	-3	0	-1

7. 已知某纺织厂生产三种针织产品,其下月的生产计划必须满足以下约束:

$$x_1 + x_2 + 2x_3 \le 12$$
$$2x_1 + 4x_2 + x_3 \le f$$
$$x_1, x_2, x_3 \ge 0$$

 x_1, x_2, x_3 是三种产品的产量,第一个约束是给定的设备工时约束,第二个约束是原料棉花的约束,取决于当月的棉花供应量 f 。假设三种产品的单位净利润分别为 2,3 和 3。请给出原料棉花的影子价格与其供应量 f 的关系 $\lambda_2(f)$,以及纺织厂总净利润与 f 的关系 z(f),并绘制 z(f) 的图。

解: (法1) 该问题的对偶问题为:

$$\min \quad w = 12\lambda_1 + f\lambda_2$$
s.t.
$$\begin{cases} \lambda_1 + 2\lambda_2 \ge 2\\ \lambda_1 + 4\lambda_2 \ge 3\\ 2\lambda_1 + \lambda_2 \ge 3\\ \lambda_1, \lambda_2 \ge 0 \end{cases}$$

f不同取值对应 λ_2 的关系如下:

图中阴影部分是可行域,红色线表示 $0 \le f \le 6$ 的情况,交点是(0,3),因此能得到 $\lambda_2 = 3$; 棕色线表示6 < f < 48的情况,交点是 $\left(\frac{9}{7}, \frac{3}{7}\right)$,因此能得到 $\lambda_2 = \frac{3}{7}$;蓝色线表示 $f \ge 48$ 的情况,交点是(3,0),因此能得到 $\lambda_2 = 0$ 。

1) 若
$$-\frac{12}{f} \ge -\frac{1}{4}$$
, 即 $f \ge 48$ 时, $\lambda_1(f) = 3$, $\lambda_2(f) = 0$;

2) 若
$$-2 < -\frac{12}{f} < -\frac{1}{4}$$
, 即 $6 < f < 48$ 时, $\lambda_1(f) = \frac{9}{7}$, $\lambda_2(f) = \frac{3}{7}$;

3) 若
$$-\frac{12}{f} \le -2$$
,即 $0 \le f \le 6$ 时, $\lambda_1(f) = 0$, $\lambda_2(f) = 3$ 。

$$z(f) = w(f) = \begin{cases} 36, & f \ge 48\\ \frac{3f + 108}{7} & 6 < f < 48\\ 3f & 0 \le f \le 6 \end{cases}$$

(法 2, 也可使用单纯形法解对偶问题)原问题标准型:

$$\max z = 2x_1 + 3x_2 + 3x_3$$

$$s. t.\begin{cases} x_1 + x_2 + 2x_3 + x_4 = 12\\ 2x_1 + 4x_2 + x_3 + x_5 = f\\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

用单纯形表求解:

	c_j			3	3	0	0
c_B	X_B	b	<i>X</i> ₁	X_2	<i>X</i> ₃	X_4	<i>X</i> ₅
0	X_4	12	1	1	2	1	0
0	X_5	f	1	4	1	0	1
			2	3	3	0	0

 $(1)0 \le f < 48$ 时

	c_{j}			3	3	0	0
c_B	X_B	b	X_1	X_2	<i>X</i> ₃	X_4	<i>X</i> ₅
0	X_4	$12\frac{f}{4}$	1/2	0	7/4	1	-1/4
3	<i>X</i> ₂	$\frac{f}{4}$	1/2	1	1/4	0	1/4
			1/2	0	9/4	0	-3/4

a)0 ≤ *f* ≤ 6时

	c_j			3	3	0	0
c_B	X_B	b	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	X_4	<i>X</i> ₅
0	X_4	12-2 <i>f</i>	-3	-7	0	1	-2
3	<i>X</i> ₃	f	2	4	1	0	1
			-4	-9	0	0	-3

此时最优解为 (0, 0, f) $z_{max} = 3f$ $y_2 = 0*(-2) + 3*1 = 3$

b)6 < f < 48时

	c_{j}			3	3	0	0
c_B	X_B	b	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	X_4	<i>X</i> ₅
3	<i>X</i> ₃	$\frac{48-f}{7}$	2/7	0	1	4/7	-1/7
3	<i>X</i> ₂	$\frac{2f-12}{4}$	3/7	1	0	-1/7	2/7
			-1/7	0	0	-9/7	-3/7

此时 $z_{max} = (3f + 108)/7, y_2 = 3 * (-1/7) + 3 * 2/7 = 3/7$

$(2)f \ge 48$ 时

	c_{j}		2	3	3	0	0
c_B	X_B	b	<i>X</i> ₁	X_2	<i>X</i> ₃	X_4	<i>X</i> ₅
3	<i>X</i> ₂	12	1	1	2	1	0
0	<i>X</i> ₅	f - 48	-2	0	-7	-4	1
			-1	0	-3	-3	0

此时 $z_{max} = 36$, $y_2 = 3*0+0*1=0$

综上:

$$\lambda_2(f) = \begin{cases} 3, & 0 \le f \le 6\\ \frac{3}{7}, & 6 < f < 48\\ 0, & f \ge 48 \end{cases}$$

总净利润:

$$z(f) = w(f) = \begin{cases} 36, & f \ge 48\\ \frac{3f + 108}{7} & 6 < f < 48\\ \frac{3f}{3f} & 0 \le f \le 6 \end{cases}$$

纺织厂总净利润与f的关系如下:

8. 本章课件 PPT 最后一个练习的最后一问: (6) 若生产产品 A 的工艺发生改变, 生产产品 A 对甲, 乙原材料的需求分别为 2, 2, 单位产品的利润不变。问最优生产方案如何变化?

AP:
$$\overline{p}_1' = B^{-1}\overline{p}_1 = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
, $\overline{\sigma}_1' = c_1 - c_B B^{-1}\overline{p}_1 = 5 - (5 \ 8) \begin{pmatrix} 2 \\ 0 \end{pmatrix} = -5$

	c_{j}		5	8	6	0	0
$c_{\scriptscriptstyle m B}$	x_{B}	b	x_1'	x_2	x_3	x_4	x_5
5	x_1'	4	2	0	0	2	-1
8	x_2	8	0	1	1	-1	1
	$c_j - z$	j	-5	0	-2	-2	-3
5	x_1'	2	1	0	0	1	-1/2
8	x_2	8	0	1	1	-1	1
	$c_j - z$	j	0	0	-2	3	-11/2
0	x_4	2	1	0	0	1	-1/2
8	x_2	10	1	1	1	0	1/2
	$c_j - z$	j	-5	0	-2	0	-7/2

最优解为 $(0, 10, 0)^T$, z = 80。