6 Simplification of CFGs; Normal Forms

[Linz ch. 6]

For the study of CFL's, we put their CFG's into **normal forms**, e.g.

- Chomsky Normal Form (CNF), and
- Greibach Normal Form (GNF).

As a preliminary, we "simplify" the given CFG in 2 ways:

- (1) Removing λ -productions, and
- (2) removing unit productions.

Definition: Given a CFG G:

- (1) A λ -production of G has the form $A \to \lambda$
- (2) A unit production of G has the form $A \rightarrow B$ where A, B are non-terminals of G.

Theorem: $(\lambda \text{ and unit prod. elimination})$

For any CFG, G, there is a CFG, \widehat{G} , with no λ - or unit prods, s.t.

$$L(\widehat{G}) = L(G) \setminus {\lambda}.$$

Proof: Note: we cannot just **delete** such productions from G. Think of the grammars for:

•
$$\{a^nb^n \mid n \ge 0\}$$
: $S \rightarrow \lambda \mid aSb$

•
$$WN_{[]}$$
: $S \rightarrow \lambda | [S] | SS$

Instead we **repeatedly** do the following:

- (a) If $A \to \lambda$ and $B \to xAy$ are in G (and $xy \neq \lambda$), add $B \to xy$ to G.
- (b) (i) If $A \to B$ ($A \neq B$) and $B \to x$ are in G, add $A \to x$ to G.
 - (ii) If $A \rightarrow A$ is in G, just **remove** it!

We get a grammar G', where L(G') = L(G).

Now remove all λ - and unit prods.

We get a grammar
$$\widehat{G}$$
 where $L(\widehat{G}) = L(G) \setminus \{\lambda\}$.

Examples:

(1)
$$G$$
 is $S \to \lambda \mid aSb$, $L(G) = \{a^nb^n \mid n \ge 0\}$.

Then G' has productions:

$$S \to \lambda$$

$$S \to aSb$$

$$S \to ab.$$

So
$$L(G') = L(G)$$
.

Then \widehat{G} has productions:

$$S \to aSb$$
$$S \to ab$$

So

$$L(\widehat{G}) \ = \ L(G) \backslash \{\lambda\} \ = \ \{a^n b^n \mid n > 0\}.$$

(2) G is $WN_{[]}$, with productions

$$S \rightarrow \lambda$$

$$S \rightarrow [S]$$

$$S \rightarrow SS$$

To get G', add

$$S \rightarrow []$$

$$S \to S$$

(Added a unit production!)

To get \widehat{G} , remove λ and unit productions:

$$S \rightarrow [S]$$

$$S \to SS$$

$$S \rightarrow []$$

i.e.

$$S \rightarrow [\ S\]\ |\ SS\ |\ [\]$$

So

$$L(\widehat{G}) = L(G) \setminus {\lambda}.$$

$$6 - 4$$

Note:

The language L and $L\setminus\{\lambda\}$ have "essentially" the same structure, since:

- (a) If L is generated by a CFG G, then $L\setminus\{\lambda\}$ is generated by \widehat{G} .
- (b) If $L\setminus\{\lambda\}$ is generated by a CFG G, with productions P, then L is generated by G plus a new start terminal S_0 plus new prods $S_0 \to S \mid \lambda$.

Hence

$$L$$
 is a CFL $\iff L\setminus\{\lambda\}$ is a CFL.

- Q. Why do we want to eliminate λ and unit productions?
- A. With unit productions, there can be **loops** in derivations.

With λ -productions, long strings of non-terminals can be generated and then erased!

Without λ - or unit productions, every step in a derivation makes "**progress**" towards a terminal string.