REVIEW-3

Analysing methods of Neural Text Generation to refine conversations

Team Members

Mihir Antwal
19BCE1641

Sam Methuselah 19BCE1698

Natural Language Generation task spectrum

Machine Translation Sentence Compression Abstract Summarization Story Generation ChitChat Dialogue

Less open-ended

Moslty world-level decisions

Neural LMs more successful

More open-ended

Requires high-level decisions

Neural LMs less successful

Natural Language Generation task spectrum

Machine Translation Sentence Compression Abstract Summarization Story Generation ChitChat Dialogue

Less open-ended

Moslty world-level decisions

Neural LMs more successful

Control is less important

More open-ended

Requires high-level decisions

Neural LMs less successful

Control is more important

Natural Language Generation task spectrum

Machine Translation Sentence Compression Abstract Summarization Story Generation ChitChat Dialogue

Less open-ended

Moslty world-level decisions

Neural LMs more successful

Control is less important

Eval is difficult

More open-ended

Requires high-level decisions

Neural LMs less successful

Control is more important

Eval is fiendish

Questions

By controlling multiple attributes of generated text and human-evaluating multiple aspects of conversational quality, we aim to answer the following:

- 1. How effectively can we control the different attributes?
- 2. How do the controllable attributes affect conversational quality aspects?
- 3. Can we use control to make a better chatbot overall?

PersonaChat task

Persona:

- I love to drink fancy tea.
- I have a big library at home.
- I'm a museum tour guide.
- I'm partly deaf.

Hello, how are you doing?

Nice! I'm not much of a music fan myself, but I do love to read.

Persona:

- I have two dogs.
- I like to work on vintage cars.
- My favorite music is country.
- I own two vintage Mustangs.

Great thanks, just listening to my favorite Johnny Cash album!

Me too! I just read a book about the history of the auto industry.

PersonaChat task

- The PersonaChat task was the focus of the NeurIPS 2018 ConvAI2 Competition.
 - Most successful teams built neural sequence generation systems. (Dinan et al 2019)
 - The winning team, Lost in Conversation, used a finetuned version of GPT.
- Our baseline model is a standard LSTM-based seq2seq architecture with attention.
 - It is pretrained on 2.5 million Twitter message/response pairs, then finetuned on PersonaChat.

Low-level controllable attributes

Repetition (n-gram overlap)

Specificity (normalized inverse document frequency)

Response-relatedness (cosine similarities of sentence embeddings)

Question-asking ('?' used in utterance)

Attributes we can control

Goal: Reduce repetition (within and across utterances)

Goal: Reduce genericness of responses (e.g. oh that's cool)

Goal: Respond more on-topic; don't ignore user

Goal: Find the optimal rate of question-asking

Low-level controllable attributes

Repetition (n-gram overlap)

Specificity (normalized inverse document frequency)

Response-relatedness (cosine similarities of sentence embeddings)

Question-asking ('?' used in utterance)

Human judgement of

conversational aspects

Low-level controllable attributes

Repetition (n-gram overlap)

Specificity (normalized inverse document frequency)

Response-relatedness (cosine similarities of sentence embeddings)

Question-asking ('?' used in utterance)

Human judgement of conversational aspects

Avoiding Repetition

Interestingness

Making sense

Fluency

Listening

Inquisitiveness

Quality Aspects

Human judgement of overall quality

Humanness

Is it a person or bot?

Engagingness

Is it enjoyable to talk to?

Control methods

We evaluate and compare two existing general-purpose control methods, using them to control all four controllable attributes.

- <u>Conditional Training (CT):</u> Train the model to generate response y, conditioned on the input x, and the desired output attribute z. (Kikuchi et al 2016, Peng et al 2018, Fan et al 2018)
- Weighted Decoding (WD): During decoding, increase/decrease the probability of generating words w in proportion to features f(w). (Ghazvininejad et al 2017, Baheti et al 2018)

Q1: How effectively can we control attributes?

Attributes: repetition, specificity, question-asking, response-relatedness

Conditional Training (CT):

- Requires sufficient training examples for the attribute (repetition).
- Ineffective at learning complex relationships between input and output (response-relatedness)
- Effective for: √ specificity,
 √ question-asking

Weighted Decoding (WD):

- Requires attribute to be defined at the word-level (questionasking)
- Effective for: ✓ repetition,
 ✓ response-relatedness,
 ✓ specificity

Controlling specificity (WD and CT)

Input: Yes, I'm studying law at the moment

Baseline Response: That sounds like a lot of fun!

Wt	NIDF	Weighted Decoding Response
-5.0	0.6%	Oh
0.0	17.1%	That sounds like a lot of fun!
3.0	18.3%	That sounds like a lot of fun. How
		long have you been studying?
7.0	38.5%	I majored in practising my
		spiritual full time philosophy test
10.0	71.9%	Oh wow! Merna jean isa paino yi
		hao hui bu acara sya gila []

More generic

More specific

	Input Baseli			
WD: Large range, but degenerate output at	Wt -5.0 0.0 3.0	NIDF 0.6% 17.1% 18.3%	Weighted Decoding Response Oh That sounds like a lot of fun! That sounds like a lot of fun. How long have you been studying?	More generic
the extremes	7.0	38.5%	I majored in practising my spiritual full time philosophy test	
	10.0	71.9%	Oh wow! Merna jean isa paino yi hao hui bu acara sya gila []	More specific
(\overline{z}	NIDF	Conditional Training Response	

CT: Smaller range, but generally wellformed output

z	NIDF	Conditional Training Response
0	16.8%	Sounds like you are a great person!
2	18.3%	So you are a law student?
4	18.4%	That sounds like a lot of fun
6	22.8%	That sounds like a rewarding job!
8	24.4%	That sounds like a rewarding career!

More generic

More specific

Controlling response-relatedness (WD)

Input: Do you go get coffee often

Baseline Response: *I do, when I am not playing the piano.*

Wt	Sim	Weighted Decoding Response	
-10.0	-0.05	I am a musician.	Less related
0.0	-0.02	I do, when I am not playing the piano.	LC55 / Ctatea
5.0	0.40	I do, usually at starbucks.	
8.0		Not usually, especially when you drink latte.	
11.0	0.72	Not often, usually with drinks,	
		espresso, latte, tea, etc.	More related

Output is degenerate when weight is too high

Q2: How does control affect human eval?

Reduce n-gram repetition to human level

Low-level controllable attributes

Repetition (n-gram overlap)

Specificity (normalized inverse document frequency)

Response-relatedness (cosine similarities of sentence embeddings)

Question-asking ('?' used in utterance)

Human judgement of conversational aspects

Avoiding Repetition

Interestingness

Making sense

Fluency

Listening

Inquisitiveness

Human judgement of overall quality

Humanness

Engagingness

Low-level controllable **Human judgement of** attributes conversational aspects **Avoiding Repetition** Repetition (n-gram overlap) **Human judgement of** Interestingness overall quality **Increase specificity** Specificity (normalized inverse (reduce genericness) document frequency) Humanness to human level Making sense Response-relatedness Engagingness Fluency sentence embeddings) Listening Question-asking ('?' used in utterance) Inquisitiveness

Low-level controllable **Human judgement of** conversational aspects attributes **Avoiding Repetition** Repetition (n-gram overlap) **Human judgement of** Interestingness overall quality Specificity (normalized inverse document frequency) Humanness Making sense Response-relatedness Engagingness Fluency (cosine similarities of sentence embeddings) Listening Question-asking ('?' used in utterance) Inquisitiveness

Increase response-

to last utterance)

relatedness (similarity

Q3: Can we make a better chatbot overall?

Yes! By controlling repetition, specificity and question-asking, we can achieve near-human engagingness (i.e. enjoyability) ratings.

However: On the humanness (i.e. Turing test) metric, the models are nowhere near human-level!

Engagingness vs Humanness

<u>Finding:</u> The bots are (almost) as engaging as humans, but they're clearly non-human.

Two conclusions:

- Engagingness ≠ Humanness. While both are frequently used as standalone overall quality metrics, our results show the importance of measuring more than one.
- 2. On this task, the human "engagingness" performance may be artificially low.
 - Turkers chatting for money are less engaging than people chatting for fun. This may be why the human-level engagingness scores are easy to match.

Conclusions

- 1. Control is a good idea for your neural sequence generation dialogue system.
- 2. Using simple control, we matched performance of GPT-based contest winner.
- 3. Don't repeat yourself. Don't be boring. Ask more questions.
- **4. Multi-turn phenomena** (repetition, question-asking frequency) are important so need **multi-turn eval** to detect them.
- 5. Engagingness ≠ Humanness, so think carefully about which to use.
- **6. Paid Turkers** are **not engaging conversationalists**, or good judges of engaging conversation. Humans chatting for fun may be better.

Problem: Manually finding the best combination of control settings is painful.

