Вопрос 8. Абсолютная и условная сходимость. Свойство абсолютно сходящихся рядов.

Рассмотрим произвольную числовую последовательность $U_1, U_2, ..., U_k, ...$ и образуем из нее бесконечную сумму вида

$$U_1 + U_2 + \dots + U_k + \dots = \sum_{k=1}^{\infty} U_k$$
 (1.1)

Сумма (1.1) называется *числовой ряд или просто ряд*. Сумма первых n членов ряда (1.1) называется n-я частичная сумма ряда S_n

$$S_n = U_1 + U_2 + \dots + U_n = \sum_{k=1}^n U_k$$
 (1.2)

Определение. Ряд (1.1) называется сходящимся, если сходится последовательность S_n частичных сумм (1.2) этого ряда. При этом предел S указанной последовательности S_n называется суммой ряда (1.1).

$$S = \sum_{k=1}^{n} U_k$$

Определение

Будем называть ряд $\sum\limits_{k=1}^{\infty}U_k$ (1) **абсолютно сходящимся**, если сходится ряд $\sum\limits_{k=1}^{\infty}|U_k|$ (2).

Теорема 1.

Если ряд сходится абсолютно, то сам ряд тоже сходится.

Доказательство.

Пусть $\sum_{k=1}^{\infty} |U_k|$ сходится. По теореме Коши: $\varepsilon > 0$ $\exists N(\varepsilon) : \forall n \geqslant N(\varepsilon) \Rightarrow |\sum_{k=n+1}^{n+p} |U_k| | < \varepsilon, \ \forall p > 0$ (p=1,2,...), берем модуль от самого ряда: $|\sum_{k=n+1}^{n+p} U_k| \leqslant \sum_{k=n+1}^{n+p} |U_k| < \varepsilon$ (модуль суммы = сумма модулей). Теорема доказана.

Формулировка теоремы Коши.

Для того чтобы ряд $\sum\limits_{k=1}^{\infty}U_k$ сходился, необходимо и достаточно, чтобы для $\forall \varepsilon>0$ нашелся номер N такой, что для $\forall n\geqslant N,$ и для натурального числа $\forall p(p=1,2,...)\mid \sum\limits_{k=n+1}^{n+p}U_k|<\varepsilon.$

Определение.

Ряд $\sum\limits_{k=1}^{\infty}U_{k}$ называется **условно сходящийся**, если этот ряд сходится, а ряд $\sum\limits_{k=1}^{\infty}|U_{k}|$ расходится.

Определение.

$$P$$
яд $(*)$ $\sum_{k=0}^{\infty} (-1)^k U_k = U_1 - U_2 + U_3 - U_4 + ...$ называется **знакопеременным.**

Пример

1.
$$U_n = \sum_{n=1}^{\infty} (-1)^n \left(\frac{2n+100}{3n+1}\right)^n$$

$$\sum_{n=1}^{\infty} |(-1)^n \left(\frac{2n+100}{3n+1}\right)^n| < \sum_{n=1}^{\infty} |(-1)^n| \left|\left(\frac{2n+100}{3n+1}\right)^n\right|$$

По Коши: $\lim_{n\to\infty} \sqrt[n]{(\frac{2n+100}{3n+1})^n} = \lim_{n\to\infty} \frac{2n+100}{3n+1} = \frac{2}{3} < 1$ - сходится $\Rightarrow U_n$ - абсолютно сходится.

2.
$$U_n = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + (-1)^{n+1} \frac{1}{n} + \dots$$

Решение: Составим ряд из модулей: $\sum_{n=1}^{\infty} \frac{1}{n}$ - это гармонический ряд, он расходится. Для исследования

на сходимость исходного знакочередующегося ряда применим признак Лейбница:

$$1 > \frac{1}{2} > \frac{1}{3} \dots > \frac{1}{n} > \dots$$
 - первое условие выполнено;

 $\lim_{n \to \infty} \frac{1}{n} = 0$ - второе условие выполнено.

Таким образом, по признаку Лейбница ряд сходится. Так как ряд из модулей расходится, а сам знакочередующийся ряд сходится, значит, он сходится **условно**.

Теорема Лейбница.

Если члены знакопеременного ряда монотонно убывают по абсолютной величине и стремятся κ нулю, т.е. 1. $U_{n+1} < U_n \, \forall n \, 2. \, U_n \to 0$ то ряд сходится.

Доказательство.

1) Построим последовательность частных сумм ряда (*) с четным индексом:

$$S_{2m} = U_1 - U_2 + U_3 - U_4 - \dots - U_{2m} = (U_1 - U_2) + (U_3 - U_4) + \dots + (U_{2m-1} - U_{2m}).$$

Т.к. \forall скобка в $S_{2m} > 0$, то S_{2m} возрастающая.

Покажем, что S_{2m} ограниченная: представим S_{2m} в виде:

 $S_{2m} = U_1 - [(U_2 - U_3) + (U_4 - U_5) + ... + (U_{2m-1} - U_{2m})]$, каждая скобка положительна, поэтому если из U_1 вычесть каждую скобку(число), то получим число меньше U_1 , т.е. $S_{2m} < U_1$, $\forall m \Rightarrow S_{2m}$ возрастает, ограничена сверху $\Rightarrow \exists$ конечный предел, т.е. $\lim_{n \to \infty} S_{2m} = S$, причем $0 < S < U_1$.

2) < последовательность частных сумм ряда (*) с нечетным индексом:

 $S_{2m+1} = U_1 - U_2 + U_3 - \dots - U_{2m} + U_{2m+1} = S_{2m} + U_{2m+1}.$

Из условия (2): $\lim_{n\to\infty} U_{2m+1} = 0 \Rightarrow \lim_{n\to\infty} S_{2m+1} = \lim_{n\to\infty} (S_{2m} + U_{2m+1}) = \lim_{n\to\infty} S_{2m} + \lim_{n\to\infty} U_{2m+1} = S \Rightarrow \lim_{n\to\infty} S_n = S \Rightarrow$ ряд сходится и его сумма равна S. Теорема доказана.

Свойства абсолютно сходящихся рядов.

Теорема Дирихле.

Если ряд $\sum_{k=1}^{\infty} U_k$ (1) сходится абсолютно, то ряд $\sum_{k=1}^{\infty} U_k'$ (2), полученный перестановкой членов ряда (1), также сходится и имеет тот же предел.

Доказательство.

- 1) Пусть ряд состоит из положительных элементов.
- \triangleleft произвольную частичную сумму S_k' ряда (2), которая получена произвольной перестановкой ряда (1). Т.к. $U_1' = U_{n_1}, U_2' = U_{n_2}, ..., U_k' = U_{n_k}$, то, взяв $n' > \forall$ номера $n_k \Rightarrow S_k' < S_{n'} \Rightarrow S_k' < S \Rightarrow S'$ сходится, т.к. S_k' (частичная сумма) ограничена $\Rightarrow S' \leqslant S(*)$, но ряд S можно получить перестановкой ряда S', т.е. $S \leqslant S'(**)$, сопоставим (*) и (**), то получим S = S'.
- **2)** Пусть ряд произвольный и абсолютно сходится. Т.к. абсолютно сходящийся ряд $\sum |U_k|$ при \forall перестановке сходится, то по **теореме.1** сам ряд тоже сходится. Теорема доказана.

Почему к ПРОСТО сх-ся ряду теорема Дирихле не применима?

 Π отому что:

если мы не будем требовать АБСОЛЮТНУЮ сходимость, то ряд может быть каким угодно. Значит, ряд может получится УСЛОВНО сходящимся. а для условно сходящего ряда есть теорема Римана.

Если мы говорим, что ряд просто СХОДИТСЯ, то это просто общее понятие. Для общего

понятия есть критерий КОШИ - а этот критерий для практики неудобный.

Поэтому мы разделили ряды на те, у которых только неотрицательные члены, и те, у которых могут быть и отрицательные, и положительные члены.

Теорема Римана.

Eсли ряд условно сходится, то для \forall числа L \exists перестановка $S^{'}$, такая что $S^{'} o L$.

Доказательство.

Пусть P - положительные элементы ряда S, Q - абсолютные значения отрицательных элементов ряда $S \Rightarrow P$ и Q расходятся.

Докажем, что P и Q расходятся:

Пусть S_n частичная сумма ряда S, P_n и Q_n соответственно. $\Rightarrow S_n = P_n - Q_n$ и по условию, что ряд $\sum U_k \to S$, то $\lim_{n \to \infty} (P_n - Q_n) = S$, но т.к. радя $\sum U_k$ не сходится абсолютно, то $\lim_{n \to \infty} (P_n + Q_n) = +\infty \Rightarrow \lim_{n \to \infty} P_n = +\infty$, $\lim_{n \to \infty} Q_n = +\infty$. Доказали, что P и Q расходятся.

 $\stackrel{n\to\infty}{\lessdot} p_1+p_2+...+p_{k_1}>L$, добавим столько же отрицательных $q:p_1+...+p_{k_1}-q_1-q_2-...-q_{k_1}< L$, опять добавим столько же $p:p_1+...+p_{k_1}-q_1-...-q_{k_1}+p_{k_1+1}+...+p_{k_2}>L$ и т.д. В итоге получим бесконечный ряд, в котором будут все эти члены.

Докажем, что полученный ряд сходится к L:

Если брать элементы ряда из р и q ровно столько, чтобы выполнялось неравенство, то от L будет отличаться только на модуль последнего члена, т.к. модули последних членов бесконечно малые величины, то ряд $(p_1 + \ldots + p_{k_1}) - (q_1 + \ldots + q_{m_1}) + (p_{k_1+1} + \ldots + p_{k_2}) - (q_{m_1+1} + \ldots + q_{m_2}) + \ldots \to L$. Если $L=+\infty$, то можно набор положителльных чисел подчинить требованию, чтобы суммы последовательно становились > 1,2,3,... и т.д., а отрицательные члены помещать лишь по одному после каждой группы положительных. Для $L = -\infty$ аналогично. Теорема доказана.

Пример.

$$\sum_{k=1}^{\infty} \left(\frac{1}{2k-1} - \frac{1}{2k}\right) = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{2k-1} - \frac{1}{2k}\right) + \dots (1)$$
В результате перестановки членов получим ряд:
$$\left(1 - \frac{1}{2} - \frac{1}{4}\right) + \left(\frac{1}{3} - \frac{1}{6} - \frac{1}{8}\right) + \dots + \left(\frac{1}{2k-1} - \frac{1}{4k-2} - \frac{1}{4k}\right) + \dots (2)$$

$$(1 - \frac{1}{2} - \frac{1}{4}) + (\frac{1}{3} - \frac{1}{6} - \frac{1}{8}) + \dots + (\frac{1}{2k-1} - \frac{1}{4k-2} - \frac{1}{4k}) + \dots$$
 (2)

Пусть S_n и S'_n - частичные суммы ряда (1) и (2) соответственно. Можем записать:

$$S_{3n}^{'} = \sum_{k=1}^{n} \left(\frac{1}{2k-1} - \frac{1}{4k-2} - \frac{1}{4k} \right) = \sum_{k=1}^{n} \left(\frac{1}{4k-2} - \frac{1}{4k} \right) = \frac{1}{2} \sum_{k=1}^{n} \left(\frac{1}{2k-1} - \frac{1}{2k} \right) = \frac{1}{2} S_{2n} \Rightarrow$$

$$S'_{3n} = \frac{1}{2}S_{2n} \ (3)$$

Далее:

$$S'_{3n-1} = \frac{1}{2}S_{2n} + \frac{1}{4n} (4)$$

$$S'_{3n-2} = S'_{3n-1} + \frac{1}{4n-2} (5)$$

Поскольку $\lim_{n\to\infty} S_{2n} = S$, то из формул (3), (4), (5) получим:

$$\lim_{n \to \infty} S'_{3n} = \frac{1}{2}S, \lim_{n \to \infty} S'_{3n-1} = \frac{1}{2}S, \lim_{n \to \infty} S'_{3n-2} = \frac{1}{2}S$$

Таким образом ряд (2) сходится и имеет сумму, равную $\frac{1}{2}S$.

Доп.материал:

Критерий Коши. Для сходимости ряда (1.1), необходимо и достаточно, чтобы для $\forall \varepsilon > 0 \exists N(\varepsilon)$ такое, что при n > Np > 0, np — было выполнено неравенство:

$$|S_{n+p} - S_n| = |\sum_{k=n+1}^{n+p} U_k| < \varepsilon$$

В частности, если ряд сходится, то $\lim_{n\to\infty}U_n=0$.

Признак Даламбера. Если $U_n>0 (\mathrm{n=1,2,...})\lim_{n\to\infty}\frac{U_{n+1}}{U_n}=q,$ то

- 1. при q < 1 ряд (1.1) cx-ся
- 2. при q>1 ряд расх-ся

Признак Коши. Если $U_n \geq 0 \ (\mathrm{n=1,2,...})$ и $\lim_{n \to \infty} \sqrt[n]{U_n} = q$, то

- 1. при q < 1 ряд cx-ся
- 2. при q>1 ряд расх-ся

Признак Раабе. Если
$$U_n \geq 0 \ (\mathrm{n}{=}1,\!2,\!...)$$
 и $\lim_{n \to \infty} n * (\frac{U_n}{U_{n+1}} - 1) = p$, то

1. при p>1 ряд сх-ся 2. при p<1 ряд расх-ся

Признак Гаусса. Если
$$U_n>0$$
 (n=1,2,...) и $\frac{U_n}{U_{n+1}}=\lambda+\frac{\mu}{n}+\frac{\Theta_n}{n^{1+\varepsilon}},$ где $|\Theta_n|< C$ и $\varepsilon>0,$ то

- 1. при $\lambda > 1$ ряд сх-ся
- 2. при $\lambda < 1$ ряд расх-ся
- 3. при $\lambda=1$ ряд сх-ся, если $\mu>1$ и ряд ряд расх-ся, если $\mu\leqslant 1$.

Признак Абеля. Ряд
$$\sum\limits_{n=1}^{\infty}U_{n}V_{n}$$
 сх-ся, если

- 1. ряд $\sum_{n=1}^{\infty} U_n$ сх-ся
- 2. числа $\stackrel{n-1}{V}_n$ образуют монотонную и ограниченную последовательность.

Определение. Функция f(x) называется неубывающей [невозрастающей] на множестве $\{x\}$, если для любых $x_1, x_2 \in \{x\}$ таких, что $x_1 < x_2$, справедливо неравенство $f(x_1) \leqslant f(x_2)$ [$f(x_1) \geqslant (x_2)$]