#### Last time

- Spherical capacitor
- Energy density stored in a spherical capacitor
- Cylindrical capacitor and co-axial cable

#### This time

- Dielectrics
- Activity #7

#### General result

$$u = \frac{1}{2} \varepsilon_0 E^2$$

$$U = \frac{Q^2}{2C} = \frac{1}{2}CV^2 = \frac{1}{2}QV$$

#### Capacitance

$$C = \frac{Q}{V} = 4\pi\varepsilon_0 R$$

$$C = \frac{\varepsilon_0 A}{d}$$

$$C = \frac{4\pi\varepsilon_0 ab}{\left(b - a\right)}$$

$$\frac{C}{L} = \frac{2\pi\varepsilon_0}{\ln\left(r_b / r_a\right)}$$





## DIELECTRICS

Most capacitors have a non-conducting material, or a dielectric between their plates.

Placing a solid dielectric between the plates of a capacitor serves three functions:



- 1. It solves the mechanical problem of maintaining two large metal sheets at a very small separation without actual contact.
- 2. It increases the maximum potential difference between the capacitor plates.
- 3. It increases the capacitance of a capacitor.

$$Q = C_0 V_0$$

$$(a) V_0 = E_0 d$$

Vacuum  $V_0$ MILLIAN AND

Disconnected from the source (battery).

Q = constant

Electrometer © 2012 Pearson Education, Inc. (measures potential difference across plates)

(b) Q = CVDielectric



$$C > C_0$$

··· Adding the dielectric reduces the potential difference across the capacitor.

V = Ed

 $E < E_0$ 

The effect of the dielectric is to reduce the electric field magnitude from its initial value  $E_0$ .

THI MILLION

© 2012 Pearson Education, Inc.

## The microscopic picture

# Polar molecules have random orientations when there is no applied electric field.



$$\vec{E}_0 = 0$$

Molecular alignment of a polar dielectric in an external electric field gives rise to an induced surface charge density



Induced charge density by the applied field  $\sigma_i$ . Charge density on the plates  $\sigma$ .

$$\vec{E}_{\mathrm{Total}} = \vec{E}_0 - \vec{E}_i$$

Nonpolar molecules have their positive and negative charge centers at the same point.

The initial electric field inside this nonpolar dielectric slab is zero.



Molecular alignment of a non-polar dielectric in an external electric field also gives rise to surface charge density.

The positive and negative charge centers become separated slightly by the applied electric field.



## Molecular models

 the effect of an applied field on individual molecules.



 $\vec{E}_0 = 0$ 







(a) No dielectric



(b) Dielectric just inserted



(c) Induced charges create electric field



$$\begin{aligned} E_{in} &= E_0 - E_{diel} \\ E_{in} &< E_0 \end{aligned}$$

$$E_{in} < E_0$$

$$E_{in} = \frac{E_0}{\kappa}$$

Original electric field

Weaker field in dielectric due to induced (bound) charges

### The resultant field

$$\kappa = \frac{V_0}{V}$$

For a parallel plate capacitor

$$E = \frac{V}{d}$$

$$E_0 = \frac{V_0}{d}$$



For a given charge density  $\sigma$ , the induced charges on the dielectric's surfaces reduce the electric field between the plates.

$$E = \frac{E_0}{10}$$
 When Q is constant.

#### Using Guass's law:



For a given charge density  $\sigma$ , the induced charges on the dielectric's surfaces reduce the electric field between the plates.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

#### Using Guass's law:

$$\oint \vec{E} \cdot d\vec{A} = \frac{Q_{\text{Enclosed}}}{\varepsilon_0}$$

$$Ea = \frac{\sigma_{\text{net}}a}{\varepsilon_0}$$

$$Ea = \frac{(\sigma - \sigma_i)a}{\varepsilon_0}$$

$$E = \frac{\left(\sigma - \sigma_{i}\right)}{\varepsilon_{0}}$$

#### Also

$$E = \frac{E_0}{\kappa} = \frac{\frac{\sigma}{\varepsilon_0}}{\kappa} = \frac{\sigma}{\varepsilon_0 \kappa}$$



For a given charge density  $\sigma$ , the induced charges on the dielectric's surfaces reduce the electric field between the plates.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

$$E = \frac{\left(\sigma - \sigma_{i}\right)}{\varepsilon_{0}}$$

$$E = \frac{\sigma}{\mathcal{E}_0 \kappa}$$

$$\frac{\left(\sigma - \sigma_{i}\right)}{\varepsilon_{0}} = \frac{\sigma}{\varepsilon_{0}\kappa}$$

$$\sigma_i = \sigma \left( 1 - \frac{1}{\kappa} \right)$$

Induced surface charge density

The electric permittivity of the dielectric is defined to be  $\varepsilon = \varepsilon_0 \kappa$ 

Hence

$$E = \frac{\sigma}{\varepsilon}$$

#### Hence

#### With the dielectric

#### Without the dielectric

$$E = \frac{\sigma}{\varepsilon}$$

$$C = \kappa C_0$$

$$C = \varepsilon \frac{A}{d}$$

$$u = \frac{1}{2} \varepsilon E^2$$

$$E_0 = \frac{\sigma}{\mathcal{E}_0}$$

$$C_0 = \varepsilon_0 \frac{A}{d}$$

$$u = \frac{1}{2} \varepsilon_0 E_0^2$$

In all equations replace  $\varepsilon_0$  by  $\varepsilon$ .

## Table 24.1—Dielectric constants

**Table 24.1** Values of Dielectric Constant K at 20°C

| Material      | K       | Material           | K    |
|---------------|---------|--------------------|------|
| Vacuum        | 1       | Polyvinyl chloride | 3.18 |
| Air (1 atm)   | 1.00059 | Plexiglas          | 3.40 |
| Air (100 atm) | 1.0548  | Glass              | 5-10 |
| Teflon        | 2.1     | Neoprene           | 6.70 |
| Polyethylene  | 2.25    | Germanium          | 16   |
| Benzene       | 2.28    | Glycerin           | 42.5 |
| Mica          | 3–6     | Water              | 80.4 |
| Mylar         | 3.1     | Strontium titanate | 310  |

### Dielectric breakdown

• A very strong electrical field can exceed the strength of the dielectric to contain it. Table 24.2 at the bottom of the page lists some limits.



**Table 24.2** Dielectric Constant and Dielectric Strength of Some Insulating Materials

| Material      | Constant, K | $E_{\rm m}({ m V/m})$ |  |
|---------------|-------------|-----------------------|--|
| Polycarbonate | 2.8         | $3 \times 10^{7}$     |  |
| Polyester     | 3.3         | $6 \times 10^{7}$     |  |
| Polypropylene | 2.2         | $7 \times 10^{7}$     |  |
| Polystyrene   | 2.6         | $2 \times 10^{7}$     |  |
| Pyrex glass   | 4.7         | $1 \times 10^{7}$     |  |
| air           |             | $3\times10^6$         |  |

# Introduction of a slab with a dielectric constant κ between the plates

