Section 7.3: Testing Statements (QUIZ)

Juan Patricio Carrizales Torres

April 025, 2022

Prove or disprove each of the following statements.

Problem 1. If n is a positive integer and s is an irrational number, then n/s is an irrational number.

Proof. Let $n \in \mathbb{N}$ and $s \in \mathbb{R}/\mathbb{Q}$. Since $n = \frac{n}{1}$, it follows that $n \in \mathbb{Q}$. Now, assume, to the contrary, that n/s = q for some rational number $q \neq 0$ since n > 0. Therefore, $n = s \cdot q$ is irrational, which leads to a contradiction. (Note that this implies that $s \in \mathbb{R}/\mathbb{Q} \iff s^{-1} \in \mathbb{R}/\mathbb{Q}$).

Problem 2. For every integer b, there exists a positive integer a such that $|a - b| \le 1$.

Proof. Let
$$b \in \mathbb{Z}$$
 and $a = |b| + 1$. Thus, $a \ge 1 > 0$ and $|a - |b|| = |1| = 1$.

Problem 3. If x and y are integers of the same parity, then xy and $(x+y)^2$ are of the same parity.

Solution 3. This statement is false. Let x and y be arbitrary odd integers. Therefore, xy is odd (multiplication of odd integers; refer to **Lemma ODD** in pdf of Section 7.2) and x+y is even (sum of two odd integers), which implies that $(x+y)^2$ is even. Hence, xy and $(x+y)^2$ are of opposite parity.

Problem 4. Let $a, b \in \mathbb{Z}$. If $6 \nmid ab$, then either (1) $2 \nmid a$ and $3 \nmid b$ or (2) $3 \nmid a$ and $2 \nmid b$.

Solution 4. This statement is false. Let a=3 and b=9. Then, ab=27 and $6 \nmid ab$. However, $3 \mid a$ and $3 \mid b$. Another example, let a=2 and b=4. Then, ab=8 and $6 \nmid ab$. However, $2 \mid a$ and $2 \mid b$.

This is so since $6 = 3 \cdot 2$. Therefore, for $6 \nmid ab$ to be true, it suffices that a and b are not divisible by either 2 or 3.

Problem 5. For every positive integer $n, 2^{2^n} \ge 4^{n!}$.

Solution 5. This statement is false. Let n = 4. Then $2^{2^4} = 2^{16} = 4^8$ and $4^{4!} = 4^{24}$. Thus, $4^8 < 4^{24}$ and so n = 4 represents a counterexample.

Problem 6. If A, B and C are sets, then $(A - B) \cup (A - C) = A - (B \cup C)$.

Solution 6. This statement is false. Let $A = \{1, 2\}, B = \emptyset$ and $C = \{1\}$. Then, $(A - B) \cup (A - C) = \{1, 2\} \cup \{2\} = A$ and $A - (B \cup C) = \{1, 2\} - \{2\} = \{1\} \neq A$. Therefore, these specific sets A, B and C represent a counterexample.

In general, let $C \subseteq A$ and $B = \emptyset$. Hence,

$$(A-B) \cup (A-C) = A \cup (A-C) = A$$

and

$$A - (B \cup C) = A - C = A \cap \overline{C} \subset A$$

since $C \subseteq A$.

Problem 7. Let $n \in \mathbb{N}$. If (n+1)(n+4) is odd, then $(n+1)(n+4)+3^n$ is odd.

Proof. Let $n \in \mathbb{N}$. Hence, n is either odd or even. If n is even, then (n+4) is even (same parity) and so (n+1)(n+4) is even. On the other hand, if n is odd, then (n+1) is even (same parity) and so (n+1)(n+4) is even. Therefore, there is no positive integer such that (n+1)(n+4) is odd and so the statement follows vacuously.

Curiously, if someone tried to prove the implication directly it would lead to a false conclusion. 3^n is odd (multiplication of n odd numbers **Theorem ODD**) and so $(n + 1)(n + 4) + 3^n$ is even (sum of numbers with same parity). One must understand that proof techniques deal with the deduction process but not guarantee that the premises are true. \square

Problem 8. (a) There exist distinct rational numbers a and b such that (a-1)(b-1)=1.

Proof. Consider some **nonzero** rational number r such that $|r| \neq 1$. Let $a = 1 + \frac{1}{r}$ and b = 1 + r. Then $a \neq b$ and

$$(a-1)(b-1) = \left(\left(1 + \frac{1}{r}\right) - 1\right)((1+r) - 1)$$
$$= \frac{1}{r} \cdot r = 1$$

(b) There exist distinct rational numbers a and b such that $\frac{1}{a} + \frac{1}{b} = 1$.

Proof. Let $a = \frac{3}{2}$ and b = 3. Then, $a \neq b$ and

$$a^{-1} + b^{-1} = \frac{2}{3} + \frac{1}{3} = 1.$$

Note that, $\frac{1}{a} + \frac{1}{b} = \frac{b+a}{ab} = 1$ implies b+a=ab. Therefore, 0=ab-b-a and so 1=1+ab-b-a. Thus,

$$1 = b(a-1) + 1 - a = b(a-1) - (a-1)$$

= $(b-1)(a-1)$,

which is the statement (a). Hence, (a) \iff (b) (They are logically equivalent).

Problem 9. Let $a, b, c \in \mathbb{Z}$. If every two of a, b and c are of the same parity, then a + b + c is even.

Solution 9. This statement is false. Let a, b and c be odd. Then, every two of a, b, c are of the same parity. Note that a + b is even (sum of two odd numbers). However, (a + b) + c is odd, since it is the sum of an even number with and odd one.

Problem 10. If n is a nonnegative integer, then 5 divides $2 \cdot 4^n + 3 \cdot 9^n$.

Proof. Note that

$$2 \cdot 4^{n} + 3 \cdot 9^{n} = 2 \cdot 2^{2n} + 3 \cdot 3^{2n}$$
$$= 2^{2n+1} + 3^{2n+1}.$$

Let $n \ge 0$. We proceed by induction. Since $2^1 + 3^1 = 2 + 3 = 5$, it follows that the result is true for n = 0. Assume that $5 \mid (2^{2k+1} + 3^{2k+1})$ for some $k \ge 0$. We show that $5 \mid (2^{2k+3} + 3^{2k+3})$. Note that $2^{2k+1} + 3^{2k+1} = 5c$ for some integer c and so $2^{2k+1} = 5c - 3^{2k+1}$. Therefore,

$$\begin{aligned} 2^{2k+3} + 3^{2k+3} &= 2^2 \cdot 2^{2k+1} + 3^2 \cdot 3^{2k+1} \\ &= 2^2 \left(5c - 3^{2k+1} \right) + 3^2 \cdot 3^{2k+1} \\ &= 2^2 \cdot 5c - 2^2 \cdot 3^{2k+1} + 3^2 \cdot 3^{2k+1} \\ &= 2^2 \cdot 5c + \left(3^2 - 2^2 \right) \cdot 3^{2k+1} \\ &= 2^2 \cdot 5c + 5 \cdot 3^{2k+1} = 5 \left(2^2c + 3^{2k+1} \right). \end{aligned}$$

Since $2^2c + 3^{2k+1}$ is an integer, it follows that $5 \mid (2^{2k+3} + 3^{2k+3})$. By the Principle of Mathematical Induction, if $n \geq 0$, then

$$5 \mid (2^{2n+1} + 3^{2n+1}).$$

An interesting observation is that both 2 and 3 are raised to the same odd power. Note that

$$2^{1} = 2$$
 $3^{1} = 3$
 $2^{3} = 8$ $3^{3} = 27$
 $2^{5} = 32$ $3^{5} = 243$
 $2^{7} = 128$ $3^{7} = 2187$
 $2^{9} = 512$ $3^{9} = 19,683$
 $2^{11} = 2048$ $3^{11} = 177,147$

Some type of pattern seems to hold for the last digits for both integers, namely, 8 and 2 alternate in 2 raised to an odd power, and 7 and 3 alternate in 3 raised to an odd power $n \ge 1$. If the power is the same for both, then either the last digits are 8 for 2^n and 7 for 3^n , or 2 for 2^n and 3 for 3^n . Note that their sum give a number that ends in 5, which is the last digit of $2^n + 3^n$.