Зверева Е.Н., Лебедько Е.Г.

СБОРНИК ПРИМЕРОВ И ЗАДАЧ ПО ОСНОВАМ ТЕОРИИ ИНФОРМАЦИИ И КОДИРОВАНИЯ СООБЩЕНИЙ

Методические указания

Санкт-Петербург 2014

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Зверева Е.Н., Лебедько Е.Г.

СБОРНИК ПРИМЕРОВ И ЗАДАЧ ПО ОСНОВАМ ТЕОРИИ ИНФОРМАЦИИ И КОДИРОВАНИЯ СООБЩЕНИЙ

Методические указания

Санкт-Петербург 2014 Зверева Е.Н., Лебедько Е.Г. Сборник примеров и задач по основам теории информации и кодирования сообщений. – СПб: НИУ ИТМО, 2014. – 76 с.

В методических указаниях содержатся краткие теоретические сведения по разделам курса «Теория информации» и «Кодирование информации». В конце каждого параграфа приводится разбор решений типовых задач, предлагаются задачи для самостоятельной работы, и контрольные вопросы.

Рекомендовано к печати Ученым советом факультета оптико-информационных систем и технологий 14 января 2014г (протокол №1).

Настоящие методические указания представляют собой руководство для проведения практических занятий по курсу «Основы теории информации, кодирования и модуляции». Методические указания предназначены для студентов очной формы обучения по направлению подготовки 200400 и 200401 «Оптотехника», по профилю 200200.62 «Оптико-электронные приборы и системы».

В 2009 году Университет стал победителем многоэтапного конкурса, в результате которого определены 12 ведущих университетов России, которым присвоена категория «Национальный исследовательский университет». Министерством образования и науки Российской Федерации была утверждена программа его развития на 2009—2018 годы. В 2011 году Университет получил наименование «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

©Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, 2014

©Зверева Е.Н., Лебедько Е.Г., 2014

Содержание

Раздел 1. Основы теории информации	4
1.1 Элементы теории вероятностей в задачах теории информации	4
Задачи для самостоятельного решения	15
Контрольные вопросы	16
1.2 Информационная мера Шеннона	17
Задачи для самостоятельного решения	21
Контрольные вопросы	22
1.3 Условная энтропия и взаимная информация	22
Задачи для самостоятельного решения	31
Контрольные вопросы	32
1.4 Передача информации по каналу связи	32
Задачи для самостоятельного решения	39
Контрольные вопросы	41
Раздел 2. Основы кодирования сообщений	41
2.1 Метод Шенно-Фано	43
Задачи для самостоятельного решения	48
Контрольные вопросы	50
2.2 Метод Хаффмана	51
Задачи для самостоятельного решения	57
Контрольные вопросы	59
2.3 Помехоустойчивое кодирование	59
Задачи для самостоятельного решения	63
Контрольные вопросы	64
Приложение 1	65
Список литературы	66

Раздел 1. Основы теории информации

1.1 Элементы теории вероятностей в задачах теории информации

СЛУЧАЙНЫЕ СОБЫТИЯ. ВЕРОЯТНОСТЬ

Случайным событием называется всякий факт, который при осуществлении некоторых условий может произойти или не произойти.

События можно классифицировать следующим образом:

по возможности появления:

- -достоверные (события, которые в результате опыта непременно должны произойти);
- -невозможные (события, которые в результате опыта никогда не произойдут);
- -равновозможные (если ни одно из этих событий не является объективно более возможным, чем другое);
- -случайные (все другие события возможные, но не достоверные);

по совместности появления:

- -совместные (происходят одновременно);
- -несовместные (происходят не одновременно);

по взаимозависимости:

- -зависимые (события, при которых вероятность появления одного из них изменяет вероятность появления другого);
- -независимые (события, при которых вероятность появления одного из них не изменяет вероятность появления другого);

по сложности:

- -элементарные (события возможные, исключающие друг друга в результате одного испытания);
- -сложные (события, состоящие из других событий).

Полной группой называется совокупность единственно возможных событий испытания.

Противоположными называются два единственно возможных события, образующих полную группу.

Вероятностью события А называется число равное отношению числа исходов m, благоприятствующих появлению события, k числу всех равновозможных исходов n:

$$P(A) = \frac{m}{n}$$
.

Свойства вероятности события:

- 1. $0 \le P(A) \le 1$.
- 2. Если A событие невозможное, то P(A) = 0.
- 3. Если B событие достоверное, то P(B) = 1.

В теории вероятностей часто приходится встречаться с элементами комбинаторики.

Комбинаторика изучает способы подсчета числа элементов в различных множествах.

Основными понятиями являются: перестановки, сочетания, размещения.

Перестановками называют комбинации, состоящие из одних и тех же п различных элементов и различающиеся между собой только порядком расположения элементов.

Число перестановок из п элементов находится по формуле

$$P_n = n!,$$
 где $n! = 1 \cdot 2 \cdot 3 \cdot ... \cdot (n-1) \cdot n$.

(по определению 0!=1).

Размещениями из n элементов по k ($n \ge k$) называют комбинации, каждая из которых состоит из k элементов, взятых из n данных элементов, и отличающиеся между собой либо самими элементами, либо порядком их расположения.

Число размещений вычисляется по формуле

$$A_n^k = \frac{n!}{(n-k)!}$$

Сочетаниями из n элементов по k ($n \ge k$) называют комбинации, каждая из которых состоит из k элементов, взятых из n данных элементов и отличающиеся между собой хотя бы одним элементом.

Число сочетаний вычисляется по формуле

$$C_n^k = \frac{n!}{k!(n-k)!}$$

Существуют два основных правила применяемых при решении комбинаторных задач.

Правило суммы. Если некоторый объект А может быть выбран из некоторой совокупности объектов *т* способами, а объект В может быть

Правило произведения. Если объект A можно выбрать из некоторой совокупности m способами и после каждого такого выбора

объект В можно выбрать n способами, то пара объектов A и B в указанном порядке может быть выбрана $m \cdot n$ способами.

Расчеты вероятности сложного события A через вероятности более простых событий $A_1, A_2, \dots A_n$ базируются на использовании основных теорем теории вероятностей.

<u>Теорема сложения вероятностей.</u> Вероятность наступления одного из двух <u>несовместных</u> событий равна сумме их вероятностей, то есть:

$$P(A+B) = P(A) + P(B)$$
.

Следствие 1. Если события A, B, C образуют полную группу, то сумма их вероятностей равна 1.

Следствие 2. Сумма вероятностей двух противоположных событий A и \overline{A} равна 1.

Условной вероятностью события B называется вероятность наступления события B при условии, что событие A уже наступило. Обозначается: P(B/A) или $P_A(B)$.

<u>Теорема умножения вероятностей</u>. Вероятность совместного наступления событий A и B, равна произведению вероятности одного из них на условную вероятность другого:

$$P(AB) = P(A)P(B/A)$$
 или $P(AB) = P(B)P(A/B)$,

Следствие. Вероятность произведения двух независимых событий равна произведению их вероятностей:

$$P(AB) = P(A)P(B)$$
.

<u>Теорема сложения вероятностей для случая, когда события совместны.</u> Вероятность наступления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий, минус вероятность их совместного появления, то есть

$$P(A+B) = P(A) + P(B) - P(AB)$$
.

Объединение теорем сложения и умножения выражается в <u>формуле</u> <u>полной вероятности</u>

<u>Теорема.</u> Вероятность события A, которое может произойти при осуществлении одного из несовместных событий B_1 , B_2 , B_3 , ..., B_n , образующих полную группу, определяется формулой:

$$P(A) = P(B_1)P(A/B_1) + P(B_2)P(A/B_2) + ...$$

$$+ P(B_n)P(A/B_n) = \sum_{i=1}^{n} P(B_i)P(A/B_i)$$

$$= 1$$

<u>Замечание.</u> События $B_1, B_2, B_3, ..., B_n$ называются гипотезами.

При решении практических задач, когда событие A, появляющееся совместно с каким-либо из несовместных событий B_1 , B_2 , B_3 , ..., B_n , образующих полную группу, произошло и требуется произвести количественную переоценку вероятностей событий B_1 , B_2 , B_3 ,..., B_n применяются формулы Бейеса:

$$P(B_i/A) = \frac{P(B_i) \cdot P(A/B_i)}{\sum_{i=1}^{n} P(B_i) \cdot P(A/B_i)}$$

Пусть производится n последовательных независимых испытаний, в каждом из которых может появиться или не появиться событие A.

Вероятность появления события A в каждом испытании постоянна и равна p, а вероятность не появления обозначим через q: $P(\overline{A}) = 1$ - p = q. В случае небольшого числа испытаний вероятность того, что в п испытаниях это событие наступит ровно k раз рассчитывается по формуле Бернулли:

$$P_n(k) = C_n^k \cdot p^k \cdot q^{n-k},$$

где C_n^k — число сочетаний из n по k.

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ И ИХ ХАРАКТЕРИСТИКИ

Случайной величиной называется такая переменная величина, которая в результате опыта может принимать одно, заранее неизвестное значение ξ из известного множества значений X.

Случайная величина называется *дискретной* (прерывной), если множество ее возможных значений конечно или счётно.

Случайная величина называется **непрерывной**, если существует неотрицательная функция W(x) такая, что $F(x) = \int_{-x}^{x} W(t) dt$.

Например, число студентов на лекции – дискретная случайная величина, а продолжительность лекции - непрерывная случайная величина.

Случайные величины обозначаются заглавными буквами латинского алфавита X, Y, Z, а их возможные значения - соответствующими прописными буквами x_1 , x_2 ,..., x_n .

Законом распределения случайной величины называется соответствие, устанавливающее связь между возможными значениями случайных величин и их вероятностями.

Закон распределения может быть задан:

- -аналитически;
- -таблично;
- -графически.

Закон распределения дискретной случайной величины задаётся *рядом распределения*, т.е. таблицей

X	x_1	x_2 ,	•••	\mathcal{X}_n
P	p_1	p_2	•••	p_n

в которой x_1 , x_2 ,..., x_n — расположенные по возрастанию значения дискретной случайной величины X, а p_1 , p_2 , ..., p_n — соответствующие этим

значениям вероятности.
$$\sum_{k=1}^{n} p_{k} = 1$$
.

 Φ ункция распределения — это вероятность того, что случайная величина X примет значение, меньшее заданного значения x:

$$F(x) = P(X < x)$$
.

Свойства функции распределения:

- 1. $0 \le F(x) \le 1$;
- 2. F(x) неубывающая функция, т.е. если $x_1 < x_2$, то $F(x_1) \le F(x_2)$.
- 3. Вероятность попадания случайной величины в интервал (a, b) равна $P(a \le X < b) = F(b) F(a)$
- 4. Если все возможные значения случайной величины X находятся на интервале (a, b), то F(x)=0 при $x \le a$ и F(x)=1 при $x \ge b$;
- 5. $\lim_{x \to \infty} F(x) = 0$, $\lim_{x \to \infty} F(x) = 1$.

Функция распределения дискретной случайной величины представляет собой ступенчатую функцию со скачками в точках $x_1, x_2, ..., x_n$.

Непрерывная случайная величина задается в виде *функции плотности вероятностей*, которая является производной от функции распределения W(x) = F'(x) в точках непрерывности.

Функция распределения непрерывной случайной величины представляет собой непрерывную функцию.

Плотность вероятностей обладает следующими свойствами:

- 1. $W(x) \ge 0$;
- 2. Вероятность попадания непрерывной случайной величины в интервал (x_1, x_2) равна интегралу от плотности вероятностей в этих пределах:

$$P(x_2 \le X < x_1) = \int_{x_1}^{x_2} W(x) dx = F(x_2) - F(x_1);$$

$$3. \int_{-\infty}^{\infty} W(x) dx = 1.$$

Во многих случаях определить закон распределения случайной величины невозможно. В таких ситуациях охарактеризовать случайную величину можно с помощью некоторых постоянных величин (числовых характеристик) этого закона.

Математическое ожидание - это число, которое выражает *среднее значение* случайной величины с учетом распределения.

Для дискретных величин она вычисляется по формуле

$$M(X) = x_1 \cdot p_1 + x_2 \cdot p_2 + ... + x_n \cdot p_n = \sum_{i=1}^n x_i p_i$$

где $x_1, x_2,...,x_n$ – возможные значения случайной величины,

 $p_1, p_2, ..., p_n$. – их вероятности.

Для непрерывных случайных величин математическое ожидание - это число, которое определяется формулой

$$M(X) = \int_{-\infty}^{+\infty} xW(x)dx \text{ (сходится)}.$$

Свойства математического ожидания:

- M(C)=C (C=const);
- M(CX)=CM(X) (C=const);
- $M(X\pm Y)=M(X)\pm M(Y)$;
- M(XY)=M(X)M(Y) (для независимых случайных величин).

Характеристиками рассеивания возможных значений случайной величины вокруг математического ожидания являются *дисперсия и среднеквадратичное отклонение*.

Дисперсией случайной величины X называется величина равная математическому ожиданию квадрата отклонения

$$D(X) = M(X - M(X))^{2}.$$

При практических вычислениях используют формулу:

$$D(X) = M(X^2) - (M(X))^2$$
.

Для непрерывных случайных величин дисперсия вычисляется формулами:

$$D(X) = \int_{-\infty}^{+\infty} (x - M(X))^2 W(x) dx,$$

$$D(X) = \int_{-\infty}^{+\infty} x^2 W(x) dx - (M(X))^2.$$

Дисперсия характеризует *меру рассеивания* возможных значений случайной величины около ее математического ожидания. Из двух

величин с равными математическими ожиданиями та считается «лучшей», которая имеет меньший разброс.

Свойства дисперсии:

- D(C)=0 (C=const);
- $D(CX)=C^2D(X)$ (C=const);
- $D(X \pm Y) = D(X) + D(Y)$ (для независимых случайных величин).

Арифметический корень из дисперсии случайной величины называется *среднеквадратическим отклонением*:

$$\sigma_{x} = \sqrt{D(X)}$$
.

Основными законами распределения непрерывных случайных величин являются: нормальный, показательный, равномерный.

Нормальный закон распределения случайной величины задается плотностью распределения по формуле

$$W(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-a)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$

Числа $a \in R$ и $\sigma > 0$ называются параметрами нормального закона. Нормальный закон с такими параметрами обозначается $N(a,\sigma)$. В общем случае M(X) = a, $D(X) = \sigma^2$.

Показательный закон распределения случайной величины задается плотностью распределения по формуле

$$W(x) = \begin{cases} 0, & x < 0 \\ \alpha \cdot e^{-\alpha x}, & x \ge 0 \end{cases}$$

Числовые характеристики $M(X) = \frac{1}{\alpha}$, $D(X) = \frac{1}{\alpha^2}$.

Равномерный закон распределения случайной величины задается плотностью распределения по формуле

$$W(x) = \begin{cases} \frac{1}{b-a}, x \in [a,b] \\ 0, x \notin [a,b] \end{cases}$$

Числовые характеристики $M(X) = \frac{a+b}{2}$, $D(X) = \frac{(b-a)^2}{12}$.

Пример 1.

В последовательности из 6 двоичных символов имеется 3 единицы. При передаче данной последовательности сохраняется 3 символа, остальные теряются. Какова вероятность того, что среди сохранившихся будет не более 2 –х единиц?

Решение.

Пусть A – событие, состоящее в том, что среди двоичных символов будет не более 2-х единиц, т.е. 2 или 1, или ни одной. Тогда вероятность события A определяется как сумма:

$$P(A)=P(X \le 2)=P(X=2)+P(X=1)+P(X=0)$$

Вероятность каждого слагаемого можно рассчитать, используя гипергеометрическое распределение дискретной случайной величины

$$P(X=m) = \frac{C_M^m C_{N-M}^{n-m}}{C_N^n}$$

Общее число возможных комбинаций выбора символов равно числу сочетаний 3 из 6, т.е. C_6^3 .

Число благоприятных исходов для X=2 определяется как произведение $C_3^2\,C_3^1$, где первый сомножитель это число комбинаций выбора 2-х «единиц» из общего числа «единиц» в последовательности. Но с каждой такой комбинацией могут встретиться символы, не являющиеся «единицами». Число таких комбинаций будет C_3^1 . Поэтому искомая вероятность запишется в виде

$$P(X=2) = \frac{C_3^2 C_3^1}{C_6^3} = 0,45$$
 Аналогично для $P(X=1) = \frac{C_3^1 C_3^2}{C_6^3} = 0,45$ и $P(X=0) = \frac{C_3^0 C_3^3}{C_6^3} = 0,05$ Таким образом, $P(A)=0,95$.

Пример 2.

По каналу связи с помехами передается одна из двух команд управления в виде 11111 и 00000, вероятности передачи этих команд соответственно равны 0,7 и 0,3. Вероятность правильного приема каждого из символов 0 и 1 равна 0,6. Символы искажаются помехами независимо друг от друга. На выходе канала имеем кодовую комбинацию 10110. Определить какая комбинация была передана.

Решение.

Пусть событие А состоит в приеме комбинации 10110. Это событие может произойти в совокупности с событиями B_1 (передавалась комбинация 11111) и B_2 (передавалась комбинация 00000). При этом $P(B_1)=0,7,\ P(B_2)=0,3$.

Условная вероятность приема комбинации 10110 при условии, что передавалась команда 11111 равна

$$P(A/B_1)=P(1/1)\cdot P(0/1)\cdot P(1/1)\cdot P(1/1)\cdot P(0/1),$$

где
$$P(1/1)=0,6$$
, $P(0/1)=1-P(1/1)=0,4$

$$P(A/B_1)=0,6\cdot0,4\cdot0,6\cdot0,6\cdot0,4=0,035.$$

Условная вероятность приема комбинации 10110 при условии, что передавалась команда 00000 равна

$$P(A/B_2)=P(1/0)\cdot P(0/0)\cdot P(1/0)\cdot P(1/0)\cdot P(0/0)$$
,

где P(0/0)=0,6, P(1/0)=1-P(0/0)=0,4

$$P(A/B_2)=0,4\cdot0,6\cdot0,4\cdot0,4\cdot0,6=0,023.$$

По формуле полной вероятности $P(A)=P(B_1)P(A/B_1)+P(B_2)P(A/B_2)=$ =0,7·0,035+0,3·0,023=0,0314

По формуле Байеса
$$P(B_1/A) = \frac{P(B_1)P(A/B_1)}{P(A)} = \frac{0.7 \cdot 0.035}{0.0314} = 0.78,$$

$$P(B_2/A) = \frac{P(B_2)P(A/B_2)}{P(A)} = \frac{0.3 \cdot 0.023}{0.0314} = 0.22.$$

Сравнивая найденные результаты, заключаем, что более вероятна передача команды 11111.

Пример 3.

По двоичному каналу связи с помехами передаются цифры 1 и 0 с вероятностями $p_1=p_2=0.5$. Вероятность перехода единицы в единицу и нуля в нуль соответственно равны p(1/1)=p, p(0/0)=q. Определить закон распределения вероятностей случайной величины X- однозначного числа, получаемого на приемной стороне.

Решение.

X=0 на приемной стороне можно получить при передаче нуля или единицы.

 $P(B_1) = 0.5$ — вероятность передать ноль, $P(B_2) = 0.5$ — вероятность передать единицу.

Используя формулу полной вероятности, получим вероятность события А $P(A)=P(X=0)=P(B_1)\cdot P(A/B_1)+P(B_2)P(A/B_2)=P(0)\cdot P(0/0)+P(1)\cdot P(0/1)=0,5\cdot q+0,5\cdot (1-p)=0,5(q+1-p),$ где P(0/1)=1-P(1/1)=1-p.

Аналогично X=1 на приемной стороне можно получить при передаче нуля или единицы.

Используя формулу полной вероятности, получим вероятность события С $P(C)=P(X=1)=P(B_1)\cdot P(A/B_1)+P(B_2)P(A/B_2)=P(1)\cdot P(1/1)+P(0)\cdot P(1/0)==0,5\cdot p+0,5\cdot (1-q)=0,5(p+1-q),$

где P(1/0)=1-P(0/0)=1-q.

Распределение вероятностей удобно представить в виде таблицы

X	0	1		
p_{i}	0,5(q+1-p)	0,5(p+1-q)		

Проверка: P(X=0)+P(X=1)=0,5(q+1-p)+0,5(p+1-q)=1

Пример 4.

Производится прием символов 0 и 1 до первого появления символа 1. Вероятность появления 1 при приеме p=0,4. Принимается не более четырех символов. Вычислить M(X), D(X), $\sigma(X)$ величины числа принятых символов.

Решение.

Вероятность появления 0 при приеме p=0,6.

Распределение вероятностей можно рассчитать следующим образом: P(X=1)=p(1)=0,4 — вероятность получить 1 при первом приеме,

 $P(X=2)=p(0)\cdot p(1)=0,6\cdot 0,4=0,24$ — вероятность получить 1 при втором приеме,

 $P(X=3)=p(0)\cdot p(0)\cdot p(1)=0,6\cdot 0,6\cdot 0,4=0,144$ - вероятность получить 1 при третьем приеме,

 $P(X=4)=p(0)\cdot p(0)\cdot p(0)\cdot p(0)\cdot p(0)\cdot p(0)\cdot p(0)\cdot p(0)\cdot p(0)=0,6\cdot 0,6\cdot 0,6\cdot 0,4+0,6^4=0,216$ вероятность получить 1 при четвертом приеме или вероятность получить четыре раза 0.

$$M(X) = \sum_{i=1}^{n} x_i p_i = 1 \cdot 0.4 + 2 \cdot 0.24 + 3 \cdot 0.144 + 4 \cdot 0.216 = 2.176$$

 $D(X) = M(X^2) - M^2(X) = 1 \cdot 0.4 + 4 \cdot 0.24 + 9 \cdot 0.144 + 16 \cdot 0.216 - 2.176^2 = 1.382$
 $\sigma(X) = \sqrt{D(X)} = 1.17$

Распределение вероятностей удобно представить в виде таблицы

X	1	2	3	4	
p_i	0,4	0,24	0,144	0,216	

Проверка: 0,4+0,24+0,144+0,216=1

Пример 5.

Функция распределения F(X) случайной величины X задана графиком (рис 1.1). Найти:

- 1) аналитическое выражение для функции распределения,
- 2) построить график плотности вероятностей W(x),
- 3) определить вероятность попадания случайной величины X в интервал (3,5;4,5).

Рис. 1.1 Функция распределения F(X) случайной величины X

Решение.

1) Из графика видно, что при $X \in [3; 5]$ функция распределения F(X) представляет собой отрезок прямой, проходящей через две точки с координатами (3,0) и (5,1). Используя уравнение прямой, проходящей через две точки $\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1}$, получим $\frac{x-3}{5-3} = \frac{y-0}{1-0}$. Откуда $F(X) = \frac{x-3}{2}$.

Следовательно,
$$F(x) = \begin{cases} 0 & x \le 3, \\ (x-3)/2 & \text{при } 3 < x \le 5, \\ 1 & x > 5. \end{cases}$$

2) W(x) = F'(x), поэтому

$$W(x) = \begin{cases} 0, & x \le 3, \\ 0,5, & 3 < x \le 5, \\ 0, & x > 5. \end{cases}$$

$$P(3,5 < X < 4,5) = F(4,5) - F(3,5) = \frac{4,5-3}{2} - \frac{3,5-3}{2} = 0,5$$

Или геометрически найденная вероятность - это площадь заштрихованной фигуры (рис. 1.2).

Рис. 1.2 График плотности вероятностей W(x)

Задачи для самостоятельного решения

1. Сообщения $\{x_1, x_2, x_3, x_4\}$ источника, заданного распределением вероятностей $\{p_1, p_2, p_3, p_4\}$, кодируются словами: $\{00\}, \{01\}, \{10\}, \{11\}$ соответственно. Необходимо найти вероятность появления единицы в первой позиции кодового слова при условии, что во второй позиции кодового слова появилась единица; вероятность появления нуля во второй позиции кодового слова при условии, что в первой позиции кодового слова появился нуль; вероятность появления сообщения x_2 при условии, что в первой позиции кодового слова появился нуль. Исходные данные:

$$P_1 = 0.2 + 0.005 \cdot N;$$

 $P_2 = 0.3 - 0.005 \cdot N;$
 $P_3 = 0.1 + 0.01 \cdot N;$
 $P_4 = 0.4 - 0.01 \cdot N.$

- 2. На любой из позиций двоичного кода может быть с равной вероятностью переданы «0» (отсутствие импульса) и «1» (импульс). Помехи преобразуют «1» в «0» с вероятностью 0,02 и «0» в «1» с вероятностью 0,04. Найти вероятность приема «0» на конкретной позиции кода. Определить вероятность того, что был передан «0», если принят «0».
- 3. По линии связи посылаются сигналы 1,0 с вероятностями $p_1 = 0.6$, $p_0 = 0.4$. Если посылается сигнал 1, то с вероятностями $r_{11} = 0.9$, $r_{10} = 0.1$ принимаются сигналы 1, 0. Если посылается сигнал 0, то с вероятностями $r_{01} = 0.3$, $r_{00} = 0.7$ принимаются сигналы 1, 0. Какова условная вероятность

того, что посылается сигнал 1 при условии, что принимается сигнал 1?

- 4. Вероятность искажения отдельного бита p=0,02, длина кодовой комбинации n=8. Найти вероятность безошибочной передачи всей комбинации, вероятность ошибки передачи, а также вероятности передачи с одной, двумя и тремя ошибками.
- 5. В двоичной системе связи под воздействием шума каждый из входных символов изменяет независимым образом свое значение с вероятностью (1-q). Четыре статистически независимых сообщения могут передаваться по системе с одинаковой вероятностью в виде кодовых векторов $x_1 = \{0,0\}; x_2 = \{0,1\}; \ x_3 = \{1,0\}; x_4 = \{1,1\}$. На выходе регистрируются сигналы: $y_1 = \{0,0\}; y_2 = \{0,1\}; \ y_3 = \{1,0\}; y_4 = \{1,1\}$. Определить распределение вероятностей входного алфавита P_x и выходного алфавита P_y .
- 6. По линии связи посылаются сигналы 1,0 с вероятностями $p_1 = 0.6$, $p_0 = 0.4$. Если посылается сигнал 1, то с вероятностями $r_{11} = 0.9$, $r_{10} = 0.1$ принимаются сигналы 1, 0. Если посылается сигнал 0, то с вероятностями $r_{01} = 0.3$, $r_{00} = 0.7$ принимаются сигналы 1, 0. Какова вероятность того, что принимается сигнал 1?
- 7. По линии связи посылаются сигналы 1,0 с вероятностями $p_1 = 0.6$, $p_0 = 0.4$. Если посылается сигнал 1, то с вероятностями $r_{11} = 0.9$, $r_{10} = 0.1$ принимаются сигналы 1, 0. Если посылается сигнал 0, то с вероятностями $r_{01} = 0.3$, $r_{00} = 0.7$ принимаются сигналы 1, 0. Какова вероятность того, что принимается сигнал 0?

Контрольные вопросы

- 1. Что называется событием?
- 2. Какие события называются противоположными, достоверными, невозможными?
- 3. Какие события составляют полную группу?
- 4. Какие события называются элементарными?
- 5. Сформулируйте классическое определение вероятности.
- 6. Что называется перестановками? Как они определяются?
- 7. Что называется сочетаниями? Как вычисляются сочетания?
- 8. Что называется размещениями? Как вычисляются размещения?
- 9. Что называется условной вероятностью?
- 10. Сформулируйте теорему умножения вероятностей.
- 11. Сформулируйте теорему сложения вероятностей.
- 12. Сформулируйте формулу Бернулли, когда она используется?

- 13. Как формулируется теорема о полной вероятности?
- 14. Как формулируется теорема Байеса?
- 15. Что называется случайной величиной?
- 16. Какие случайные величины называются дискретными, непрерывными?
- 17. Что называется законом распределения случайной величины?
- 18. Что называется функцией распределения случайных величин.
- 19. Перечислите свойства функции распределения.
- 20. Как определяется функция плотности вероятностей непрерывных случайных величин?
- 21.Перечислите свойства функции плотности распределения вероятностей.
- 22. Как вычисляется математическое ожидание для дискретных и непрерывных случайных величин?
- 23. Перечислите свойства математического ожидания.
- 24. Как вычисляется дисперсия и среднеквадратическое отклонение для дискретных и непрерывных случайных величин?
- 25. Перечислите свойства дисперсии.
- 26. Основные законы распределения.

1.2 Информационная мера Шеннона

КОЛИЧЕСТВО ИНФОРМАЦИИ И ИЗБЫТОЧНОСТЬ

Дискретные системы связи - системы, в которых как реализации сообщения, так и реализации сигнала представляют собой последовательности символов алфавита, содержащего конечное число элементарных символов.

Пусть ξ и η - случайные величины с множествами возможных значений $X=\{x_{_1},x_{_2},...,x_{_n}\},\ Y=\{y_{_1},y_{_2},...,y_{_m}\}.$

 ${\it Konuчecmso}$ ${\it uнформации}$ ${\it H}(\xi)$ при наблюдении случайной величины $\xi\in X=\{x_{_1},x_{_2},...,x_{_n}\}$ с распределением вероятностей ${\it P}=\{p_{_1},p_{_2},...,p_{_n}\}$ задается формулой Шеннона:

$$H(\xi) = \sum_{i=1}^{n} p_i \log 1/p_i.$$

Единицей измерения количества информации является бит, который представляет собой количество информации, получаемое при наблюдении случайной величины, имеющей два равновероятных значения.

При равномерном распределении $p_{_{1}} = p_{_{2}} = ... = p_{_{N}}$ количество информации задается формулой Хартли:

$$H(\xi) = \log_{\mathcal{N}} N$$
.

Справедливы следующие соотношения:

- 1) $0 \le H(\xi) \le \log_{\lambda} N$;
- 2) N = 2, $p_1 = p_2 = 0.5$, $H(\xi) = 1$;
- 3) $H(\xi,\eta) = H(\xi) + H(\eta)$, если ξ и η независимы.

Избыточностью называется $p = 1 - H(\xi) / \max H(\xi) = 1 - H(\xi) / \log_3 N$.

ЭНТРОПИЯ НЕПРЕРЫВНЫХ СООБЩЕНИЙ

Непрерывные системы передачи информации - системы, в которых как реализации сообщения, так и реализации сигнала на конечном временном интервале (0,T) представляют собой некоторые непрерывные функции времени.

Пусть x(t) - реализации непрерывного сообщения на входе какоголибо блока схемы связи, y(t) - реализация выходного сообщения (сигнала), W(x) - плотность вероятностей ансамбля входных сообщений, W(y) - плотность вероятностей ансамбля выходных сообщений

Формулы для энтропии H непрерывных сообщений получаются путем обобщения формул для энтропии дискретных сообщений. Если Δx - интервал квантования (точность измерения), то при достаточно малом Δx энтропия непрерывных сообщений

$$H(X) = -\int_{-\infty}^{\infty} W(x) \log W(x) dx - \log \Delta x \int_{-\infty}^{\infty} W(x) dx = H^{*}(X) - \log \Delta x =$$

$$= -\int_{-\infty}^{\infty} W(x) \log [W(x) \Delta x] dx,$$

где
$$H^*(X) = -\mathring{\int} W(x) \log W(x) dx$$
 - приведенная энтропия.

H(X) можно представить в компактной записи:

$$H(X) = M[-\log(W(x)\Delta x)]$$
 и $H^*(X) = M[-\log W(x)].$

По аналогии $H(Y) = -\int_{-\infty}^{\infty} W(y) \log W(y) dy$.

Пример 1.

Источник сообщений выдает символы из алфавита $A=\{a_i\}, i=\overline{1,4}$ с вероятностями $p_1=0,2; p_2=0,3; p_3=0,4; p_4=0,1$. Найти количество информации и избыточность.

Решение.

По формуле Шеннона
$$H(\xi) = \sum_{i=1}^{n} p_i \log 1/p_i$$
.
 $H(A) = -(0.2 \cdot \log 0.2 + 0.3 \cdot \log 0.3 + 0.4 \cdot \log 0.4 + 0.1 \cdot \log 0.1) = 1.86$ бит Избыточность $p = 1 - \frac{H(A)}{\log_2 4} = 1 - \frac{1.86}{2\log_2 2} = 0.07$

Пример 2.

Имеются два источника информации, алфавиты и распределения вероятностей которых заданы матрицами:

Определить, какой источник дает большее количество информации, если

1)
$$p_1 = p_2$$
; $q_1 = q_2 = q_3$;

2)
$$p_1 = q_1$$
; $p_2 = q_2 + q_3$;

Решение.

1) Для первого источника при равновероятном распределении воспользуемся формулой Хартли. Для $\xi \in X$ и $\eta \in Y$ имеем

$$H(\xi) = \log_2 2 = 1$$

 $H(\eta) = \log_2 3 > 1$ $H(\eta) > H(\xi)$.

Следовательно, источник с тремя символами дает большее количество информации.

2) Воспользуемся формулой Шеннона:

$$H(\xi) = \sum_{i=1}^{n} p_i \log 1/p_i.$$

с учетом условия задачи имеем $p_1 = q_1$; $p_2 = q_2 + q_3$;

$$H(\xi) = q_1 \log_2 1/q_1 + q_2 \log_2 1/(q_2 + q_3) + q_3 \log_2 1/(q_2 + q_3).$$

С другой стороны,

$$H(\eta) = q_1 \log_2 1/q_1 + q_2 \log_2 1/q_2 + q_3 \log_2 1/q_3$$
.

Сравним слагаемые $H(\xi)$ и $H(\eta)$.

Поскольку

$$\frac{1}{q_{_2}+q_{_3}} < \frac{1}{q_{_2}}, \quad \frac{1}{q_{_2}+q_{_3}} < \frac{1}{q_{_3}}, \text{ To } H(\xi) < H(\eta).$$

Пример 3.

Определить количество информации и энтропию сообщения из 5 букв, если число букв в алфавите равно 32 и все сообщения равновероятны.

Решение.

Общее число пятибуквенных сообщений равно $N=m^n$, $N=32^5$. Энтропия для равновероятных сообщений по формуле Хартли

$$H(\xi) = \log_{_2} N$$
 . $H = log_2 32^5 = 5log_2 2^5 = 25$ бит

Пример 4.

По линии связи передаются непрерывные амплитудномодулированные сигналы x(t), распределенные по нормальному закону с математическим ожиданием $m_x = 0$ и дисперсией $\sigma_x^2 = \sigma^2 = 8B^2$.

Определить энтропию H(X) сигнала при точности его измерения $\Delta x = 0.2B$.

Решение.

По условию плотность вероятностей сигнала x(t)

$$W(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-x^2/2\sigma^2},$$

$$H(X) = -\int_{-\infty}^{\infty} W(x) \log W(x) dx - \log \Delta x = -\frac{1}{\ln 2} \int_{-\infty}^{\infty} W(x) \ln W(x) dx - \log \Delta x =$$

$$-\frac{1}{\ln 2} \int_{-\infty}^{\infty} W(x) \left[\ln \frac{1}{\sigma \sqrt{2\pi}} - \frac{x^2}{2\sigma^2} \right] dx - \log \Delta x = -\frac{1}{\ln 2} \left(\ln \frac{1}{\sigma \sqrt{2\pi}} - \frac{1}{2} \right) - \log \Delta x =$$

$$= \frac{1}{\ln 2} \ln \sqrt{2\pi e \sigma^2} - \log \Delta x = \log \frac{\sqrt{2\pi e \sigma^2}}{\Delta x}.$$

Подставляя числовые значения, получаем

$$H(X) = \log \frac{\sqrt{2\pi e 8}}{0.2} \cong 5,87$$
 дв. ед.

Пример 5.

Определить полную энтропию системы X, состояние которой имеет экспоненциальное распределение.

Решение.

Полная энтропия системы X

$$H(X) = H^*(X) - \log_2 \Delta x,$$

$$H^*(X) = M[-\log W(x)] = M[-\log \alpha \cdot e^{-\alpha x}] = M[-\log_2 \alpha - \log_2 e^{-\alpha x}] =$$

$$= -\log_2 \alpha + M[\alpha x \cdot \log_2 e] = -\log_2 \alpha + \alpha \cdot \log_2 e \cdot M[x] =$$

$$= -\log \alpha + \alpha \cdot \log_2 e \cdot \frac{1}{\alpha} = \log_2 \frac{e}{\alpha},$$

$$H(X) = H^*(X) - \log_2 \Delta x = \log_2 \frac{e}{\alpha} - \log_2 \Delta x = \log_2 \frac{e}{\alpha \Delta x}.$$

Задачи для самостоятельного решения

- 1. Чему равно количество информации, если получили сообщение о выходе из строя одного из восьми станков в данном цехе?
- 2. Алфавит состоит из букв a, b, c, d. Вероятности появления букв равны соответственно 0,25; 0,25; 0,34; 0,16. Определить количество информации, приходящееся на символ сообщения, составленного с помощью такого алфавита.
- 3. Распределение вероятностей дискретной случайной величины имеет вид:

X	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
P	0,1	0,12	0,1	0,1	0,1	0,09	0,07	0,32

Определить число N значений случайной величины, при которых энтропия равномерного распределения равна энтропии заданного распределения.

- 4. В корзине лежат 32 шара, среди них 4 белых, а остальные черные. Сколько битов информации содержится в сообщении о том, что из корзины вытащили белый шар?
- 5. В алфавите некоторого языка всего две буквы. Каждое слово этого языка состоит из m букв. Известно, что можно составить 2048 различных слов. Сколько букв в каждом слове?
- 6. В алфавите племени БУМ всего 4 буквы (A, Y, M, Б), один знак препинания (.) и для разделения слов используется пробел. Подсчитали, что в популярном романе «МУБА» содержится 10000 знаков, из них: букв A-4000, букв Y-1000, букв M-2000, букв B-1500, точек -500, пробелов -1000. Найти энтропию книги.
- 7. Амперметр, класс точности которого равен 1, имеет шкалу от 1 до 5А. Допустимая погрешность $\Delta x = 0.05 \, A$. Найти энтропию показания прибора при условии, что любое показание в диапазоне равновероятно.
- 8. Состояние самолета характеризуется случайными величинами: высотой H; модулем скорости V и углом θ , определяющим направление полета. Высота самолета распределена с равномерной плотностью на участке (h_1, h_2) , скорость V по нормальному закону с математическим ожиданием ν_0 и среднеквадратическим отклонением σ_{ν} ; угол θ с равномерной плотностью на участке $(0, \pi)$. Величины H, V, θ независимы. Найти энтропию объединенной системы.

9. Определить значение энтропии H(x) по заданному аналитическому выражению плотности вероятностей W(x) для равномерного (прямоугольного) закона распределения

$$W(x) = \begin{cases} 0, & x \le a \\ \frac{1}{b-a}, & a < x \le b \\ 0, & x > b \end{cases}$$

10. Определить значение энтропии H(x) по заданному аналитическому выражению плотности вероятностей W(x) для закона распределения Симпсона:

$$W(x) = \begin{cases} 0, x \le a, \\ \frac{4(x-a)}{(b-a)^2}, a < x \le \frac{b+a}{2}, \\ -\frac{4(x-b)}{(b-a)^2}, \frac{a+b}{2} < x \le b, \\ 0, x > b. \end{cases}$$

Контрольные вопросы

- 1.Дать определение энтропии.
- 2.Запишите формулу Шеннона.
- 3. Запишите формулу Хартли.
- 4. Перечислите основные свойства энтропии.
- 5. Что является единицей измерения энтропии?
- 6. В каких случаях энтропия равна нулю?
- 7. При каких условиях энтропия принимает максимальное значение?
- 8. В чем состоит правило сложения энтропий для независимых источников?
- 9. Как определяется количество информации непрерывных сообщений? 10.Запишите формулу избыточности.

1.3 Условная энтропия и взаимная информация *ДИСКРЕТНЫЕ СИСТЕМЫ ПЕРЕДАЧИ ИНФОРМАЦИИ*

Условной энтропией величины Y при наблюдении величины X называется $H(Y/X) = \sum_{i=1}^{N} \sum_{j=1}^{M} p(x_i y_j) \log_2 \frac{1}{p(y_i/x_i)}$.

Справедливы соотношения:

$$H(X,Y) = H(X) + H(Y), \ H(X,Y) = \sum_{i=1}^{N} \sum_{j=1}^{M} p(x_i, y_j) \log_2 \frac{1}{p(x_i, y_j)},$$

Взаимная информация величин *X* и *Y* определяется из рисунка 1.3

Рис. 1.3 Взаимная информация источников сообщений

Это штриховая часть I(X,Y), показывающая какое (в среднем) количество информации содержит сообщение X о сообщении Y или наоборот сообщение Y о сообщении X.

$$I(X,Y) = H(X) - H(X/Y),$$

 $I(X,Y) = I(Y,X) = H(Y) - H(Y/X)$
 $I(X,Y) = H(X) + H(Y) - H(X,Y)$

Если X и Y независимы, то I(X,Y)=0,

Если X и Y полностью зависимы (содержат одну и ту же информацию), то I(X,Y) = H(X) = H(Y).

Справедливы следующие соотношения

$$I(X,Y) = \sum_{i=1}^{N} \sum_{j=1}^{M} p(x_i, y_j) \log_2 \frac{p(x_i, y_j)}{p(x_i)p(y_j)},$$

$$0 \le I(X,Y) \le H(X), \quad 0 \le I(X,Y) \le H(Y).$$

Понятие взаимной информации широко используется в теории передачи информации. Требования к взаимной информации различны в зависимости от того, с какой информацией работает потребитель. Например, если X и Y - это сообщения, публикуемые различными газетами, возможно большей суммарной то получения (совместной) информации, взаимная (то есть одинаковая в данном случае) информация должна быть минимальной. Если же Х и У- это сообщения на входе и на выходе канала связи с помехами, то для получения возможно большей информации ее получателем необходимо, чтобы взаимная информация была наибольшей. Тогда условная энтропия H(X/Y) – это потери информации в канале связи (ненадежность канала). Условная энтропия H(Y/X) – это информация о помехах (энтропия источника помех H(n)), поступающая в канал извне или создаваемая внутренними помехами в канале (рис 1.4).

При расчетах условной энтропии и взаимной информации удобно пользоваться следующими соотношениями теории вероятностей:

1) теорема умножения вероятностей $p(x_i, y_i) = p(x_i) p(y_i / x_i) = p(y_i) p(x_i / y_i)$;

2) формула полной вероятности
$$p(x_i) = \sum_{i=1}^{M} p(x_i, y_j);$$

$$p(y_{j}) = \sum_{i=1}^{N} p(x_{i}, y_{j});$$

3) формула Байеса
$$p(x_i/y_j) = \frac{p(x_i)p(y_j/x_i)}{p(y_j)} = \frac{p(x_i)p(y_j/x_i)}{\sum_{i=1}^{N} p(x_i)p(y_j/x_i)}.$$

Рис. 1.4 Энтропия объединения

Пусть x(t) - реализации непрерывного сообщения на входе какоголибо блока схемы связи, y(t)- реализация выходного сообщения (сигнала), $f_1(x)$ - одномерная плотность вероятностей ансамбля входных сообщений, $f_2(y)$ - одномерная плотность вероятностей ансамбля выходных сообщений, f(x,y) - совместная плотность вероятностей, f(y/x)- условная плотность вероятностей y при известном x. Тогда для количества информации I справедливы следующие соотношения:

$$I(x,y) = \log_2 \frac{f(x,y)}{f_1(x)f_2(y)} = \log_2 \frac{f(x/y)}{f_1(x)} = \log_2 \frac{f(y/x)}{f_2(y)} = I(x,y),$$

$$I(X,y) = \int\limits_X I(x,y) f(x/y) dx, \quad I(x,Y) = \int\limits_Y I(x,y) f(y/x) dy,$$

Выражение для *полной взаимной информации*, содержащейся в двух непрерывных системах X и Y будет определяться

$$I(X,Y) = \int_{Y} f_2(y)I(X,y) \, dy = \iint_{X,Y} f(x,y)I(x,y) \, dx \, dy =$$

$$= \iint\limits_{XY} f(x,y) \log_2 \frac{f(x,y)}{f_1(x)f_2(y)} dx dy = I(Y,X),$$

или, применяя знак математического ожидания

$$I_{Y \leftrightarrow X} = M \left[log_2 \frac{f(X, Y)}{f_1(X) f_2(Y)} \right]$$

$$I(X,y) \ge 0$$
, $I(x,Y) \ge 0$, $I(X,Y) \ge 0$.

Здесь I(x,y) - взаимная информация между каким-либо значением x входного и значением y выходного сообщений, I(X,y) и I(x,Y) - средние значения условной информации, I(X,Y) - полная средняя взаимная информация.

Условная энтропия определяется по формуле:

$$H(X/Y) = -\iint_{-\infty-\infty}^{\infty} f(x,y)\log f(x/y) dx dy,$$

$$H(Y/X) = -\iint_{-\infty-\infty}^{\infty} f(x,y)\log f(y/x) dx dy,$$

Можно представить в компактной записи

$$H(X/Y) = M[-log f(Y/X)] - log \Delta x$$

Когда X и Y статистически связаны между собой, то

$$H(X,Y) = H(X) + H(Y/X) = H(Y) + H(X/Y).$$

При независимых X и Y

$$H(X,Y) = H(X) + H(Y)$$
.

Полная средняя взаимная информация определяется формулой:

$$I(X,Y) = H(X) - H(X/Y) = H(Y) - H(Y/X).$$

Пример 1.

Дана матрица

$$P(X,Y) = \begin{vmatrix} \frac{1}{8} & \frac{1}{8} & \frac{1}{8} \\ \frac{1}{8} & 0 & \frac{1}{8} \\ \frac{1}{8} & \frac{1}{8} & \frac{1}{8} \end{vmatrix}, \quad x \in X, \ y \in Y$$

Определить: H(X), H(Y), H(X/Y), H(Y/X), H(X,Y), I(X,Y). **Решение.**

По формуле полной вероятности имеем:

$$P(x_1) = \sum_{j=1}^{3} p(x_1, y_j) = \frac{3}{8}, \quad P(x_2) = \frac{1}{4}, \quad P(x_3) = \frac{3}{8},$$

$$P(y_1) = \sum_{j=1}^{3} p(x_1, y_1) = \frac{3}{8}, \quad P(y_2) = \frac{1}{4}, \quad P(y_3) = \frac{3}{8}.$$

Следовательно,

$$H(X) = \sum_{i=1}^{3} p(x_i) \log_2 \frac{1}{p(x_i)} = 1,57;$$

$$H(Y) = \sum_{i=1}^{3} p(y_i) \log_2 \frac{1}{p(y_i)} = 1,57.$$

По теореме умножения $p(x_i/y_i) = \frac{p(x_i,y_i)}{p(y_i)}$

$$p(x_1/y_1) = \frac{1}{3}, \ p(x_1/y_2) = \frac{1}{2}, \ p(x_1/y_3) = \frac{1}{3},$$

$$p(x_2/y_1) = \frac{1}{3}, \ p(x_2/y_2) = 0, \ p(x_2/y_3) = \frac{1}{3},$$

 $p(x_3/y_1) = \frac{1}{3}, \ p(x_3/y_2) = \frac{1}{2}, \ p(x_3/y_3) = \frac{1}{2}.$

Следовательно,

$$H(X/Y) = \sum_{i=1}^{3} \sum_{j=1}^{3} p(x_i y_j) \log_2 \frac{1}{p(x_i/y_j)} = 1,43.$$

Аналогично H(Y/X) = 1,43;

Энтропия объединения:

$$H(X,Y) = H(X) + H(Y/X) = 1.57 + 1.43 = 3;$$

Взаимная информация величин Х и У:

$$I(X,Y) = H(X) - H(X/Y) = 0.14.$$

Пример 2.

Канал связи описан следующей канальной матрицей

$$P(Y/X) = \begin{pmatrix} 0.98 & 0.1 & 0.2 \\ 0.01 & 0.75 & 0.3 \\ 0.01 & 0.15 & 0.5 \end{pmatrix}$$

Найти:

- 1) Среднее количество информации, которое переносится одним символом сообщения, если вероятности появления символов источника сообщений равны $p(x_1) = 0.7$, $p(x_2) = 0.2$, $p(x_3) = 0.1$.
- 2) Чему равны информационные потери при передаче сообщения из 1000 символов алфавита x_1, x_2, x_3 ?
- 3) Чему равно количество принятой информации?

Решение.

1) Энтропия источника сообщений $H(X) = -\sum_{i=1}^n p_i \log p_i = -(0.7 \cdot \log 0.7 + 0.2 \cdot \log 0.2 + 0.1 \cdot \log 0.1) = 1.16 \ \mathrm{бит}$

2) Общая условная энтропия

$$H(Y/X) = \sum_{i=1}^{N} \sum_{j=1}^{M} p(x_i, y_j) \log_2 \frac{1}{p(y_j/x_i)} =$$

$$= \sum_{i=1}^{N} \sum_{j=1}^{M} p(x_i) \ p(y_j/x_i) \log_2 p(y_j/x_i)$$

$$\begin{split} H(Y/X) &= -0.7[(0.98 \cdot log_2 0.98 + 0.01 \cdot log_2 0.01 + 0.01 \cdot log_2 0.01) + \\ &+ 0.2(0.1 \cdot log_2 0.1 + 0.75 \cdot log_2 0.75 + 0.15 \cdot log_2 0.15) + 0.1(0.2 \cdot log_2 0.2 + 0.3 \cdot log_2 0.3 + 0.5 \cdot log_2 0.5)] = 0.473 \ \mathrm{бит} \end{split}$$

Потери в канале связи $\Delta I = k H(Y/X) = 1000 \cdot 0,473 = 473$ бит

3) Энтропия приемника $H(Y) = -\sum_{j=1}^{M} p(y_i) log_2 p(y_j)$

Используя формулу умножения $p(x,y) = p(x) \cdot p(y/x)$, осуществим переход к матрице

$$P(X,Y) = \begin{pmatrix} 0.7 \cdot 0.98 = 0.686 & 0.2 \cdot 0.1 = 0.02 & 0.1 \cdot 0.2 = 0.02 \\ 0.7 \cdot 0.01 = 0.007 & 0.2 \cdot 0.75 = 0.15 & 0.1 \cdot 0.3 = 0.03 \\ 0.7 \cdot 0.01 = 0.007 & 0.2 \cdot 0.15 = 0.03 & 0.1 \cdot 0.5 = 0.05 \end{pmatrix}$$

$$P(X,Y) = \begin{pmatrix} 0,686 & 0,02 & 0,02 \\ 0,007 & 0,007 & 0,03 \\ 0,007 & 0,03 & 0,05 \end{pmatrix}$$

Суммируя элементы строк, получим безусловные вероятности $p(y_j)$, Суммируя элементы столбцов, получим безусловные вероятности $p(x_i)$.

$$p(y_1) = 0.726, p(y_2) = 0.187, p(y_3) = 0.087.$$

$$H(Y) = -\sum_{i=1}^{M} p(y_i)log_2p(y_j) = 1,094$$
 бит

Среднее количество полученной информации

$$I = k(H(Y) - H(Y/X)) = 1000 \cdot (1,094 - 0,473) = 621$$
 бит

Пример 3.

Найти энтропию шума H(Y/X) в двоично-симметричном канале без памяти, если энтропия источника на входе канала H(X) = 3400 бит, энтропия ансамбля на выходе канала H(Y) = 6800 бит, ненадежность канала H(X/Y) = 700 бит.

Решение.

Взаимная информация источника сообщений

$$I(X,Y) = H(X) - H(X/Y) = H(Y) - H(Y/X).$$

$$I(X,Y) = H(X) - H(X/Y) = 3400 - 700 = 2700$$
 бит.

Энтропия шума H(Y/X) = H(Y) - I(X,Y) = 6800-2700 = 4100 бит.

Пример 4.

Принимаемый сигнал может иметь амплитуду A_1 (событие x_1) или A_2 (событие x_2), а также сдвиг фаз φ_1 (событие y_1) или φ_2 (событие y_2). Вероятности совместных событий имеют следующие значения: $p(x_1, y_1) = 0.73$, $p(x_1, y_2) = 0.21$, $p(x_2, y_1) = 0.02$, $p(x_2, y_2) = 0.04$. Вычислить

количество информации, получаемой о фазовом сдвиге сигнала, если станет известной его амплитуда.

Решение.

Среднее количество информации о фазовом сдвиге при известной амплитуде I(X,Y) = H(Y) - H(Y/X),

$$\begin{split} p(y_1) &= p(x_1,y_1) + p(x_2,y_1) = 0.73 + 0.02 = 0.75 \\ p(y_2) &= p(x_1,y_2) + p(x_2,y_2) = 0.21 + 0.04 = 0.25, \\ H(Y) &= -\sum_{j=1}^M p(y_i)log_2p(y_j) = -(0.75 \log_2 0.75 + 0.25 \log_2 0.25) = \\ &= 0.81 \text{ бит} \\ p(x_1) &= p(x_1,y_1) + p(x_1,y_2) = 0.73 + 0.21 = 0.94 \\ p(x_2) &= p(x_2,y_1) + p(x_2,y_2) = 0.02 + 0.04 = 0.06, \\ \Pio \text{ теореме умножения } p(y_j/x_i) &= \frac{p(x_i,y_j)}{p(x_i)} \\ p(y_1/x_1) &= \frac{0.73}{0.94} = 0.78, \quad p(y_2/x_1) = \frac{0.2}{0.94} = 0.22, \\ p(y_1/x_2) &= \frac{0.02}{0.06} = 0.33, \quad p(y_2/x_2) = \frac{0.04}{0.06} = 0.67, \\ H(Y/X) &= \sum_{i=1}^N \sum_{j=1}^M p(x_i,y_j)log_2 \frac{1}{p(y_j/x_i)} = \\ &= 0.73log_2 \frac{1}{0.78} + 0.21log_2 \frac{1}{0.22} + 0.02log_2 \frac{1}{0.33} + 0.04log_2 \frac{1}{0.67} \\ &= 0.776$$
 ит

Пример 5.

На вход приемного устройства воздействует колебание y(t) = x(t) + n(t), где сигнал x(t) и помеха n(t) - независимые гауссовские случайные процессы с нулевыми математическими ожиданиями и дисперсиями, равными соответственно σ_x^2 и σ_n^2

Определить:

- 1) количество взаимной информации I(x, y), которое содержится в каком-либо значении принятого колебания y(t) о значении сигнала x(t):
- 2) полную среднюю взаимную информацию I(X,Y).

I(Y,X) = H(Y) - H(Y/X) = 0.81 - 0.77 = 0.04 бит.

Решение.

По условию задачи y(t) представляет собой сумму независимых колебаний x(t) и n(t), которые имеют нормальные плотности вероятностей

$$f(x) = \frac{1}{\sigma_x \sqrt{2\pi}} exp\left(-\frac{x^2}{2\sigma_x^2}\right), \quad f(y) = \frac{1}{\sigma_y \sqrt{2\pi}} exp\left(-\frac{y^2}{2\sigma_y^2}\right),$$

$$\sigma_y^2 = \sigma_x^2 + \sigma_n^2.$$

$$f(y/x) = f(y-x) = \frac{1}{\sigma_n \sqrt{2\pi}} exp\left[-\frac{(y-x)^2}{2\sigma_n^2}\right] = \frac{1}{\sigma_n \sqrt{2\pi}} exp\left(-\frac{n^2}{2\sigma_n^2}\right) = \frac{1}{\sigma_n \sqrt{2\pi}} exp\left(-\frac{n^2}{2\sigma_n^2}\right)$$

=f(n).

1. Количество информации определяется по формуле

$$I(x,y) = \log_2 \frac{f(y/x)}{f(y)} = \frac{1}{\ln 2} \ln \frac{f(y/x)}{f(y)} = \frac{1}{\ln 2} \left[\ln \frac{1}{\sigma_n \sqrt{2\pi}} exp\left(-\frac{n^2}{2\sigma_n^2}\right) - \ln \frac{1}{\sigma_y \sqrt{2\pi}} exp\left(-\frac{y^2}{2\sigma_y^2}\right) \right] = \frac{1}{\ln 2} \ln \frac{\sqrt{\sigma_x^2 + \sigma_n^2}}{\sigma_n} + \frac{1}{\ln 2} \left[-\frac{n^2}{2\sigma_n^2} + \frac{y^2}{2(\sigma_x^2 + \sigma_n^2)} \right]$$

1. Полная средняя взаимная информация

$$I(X,Y) = \iint_{XY} f(x,y)I(x,y) \, dx \, dy = \iint_{XY} f(y/x)f(x)I(x,y) \, dx \, dy$$

$$\text{Или } I(X,Y) = M[I(x,y)] = M[\frac{1}{\ln 2}\ln\sqrt{1+\frac{\sigma_x^2}{\sigma_n^2}} + \frac{1}{\ln 2}\left(\frac{y^2}{2(\sigma_x^2+\sigma_n^2)} - \frac{n^2}{2\sigma_n^2}\right)] =$$

$$= M\Big[log_2\frac{\sqrt{\sigma_x^2+\sigma_n^2}}{\sigma_n}\Big] + \frac{1}{\ln 2}M\left[\frac{y^2}{2(\sigma_x^2+\sigma_n^2)} - \frac{n^2}{2\sigma_n^2}\right] = log_2\frac{\sqrt{\sigma_x^2+\sigma_n^2}}{\sigma_n} + \frac{1}{2\ln 2(\sigma_x^2+\sigma_y^2)} \cdot$$

$$\cdot M[y^2] - \frac{1}{2\ln 2\sigma_n^2}M[n^2] = log_2\frac{\sqrt{\sigma_x^2+\sigma_n^2}}{\sigma_n} + \frac{\sigma_y^2}{2\ln 2(\sigma_x^2+\sigma_n^2)} -$$

$$- \frac{\sigma_n^2}{2\ln 2\sigma_n^2} = log_2\frac{\sqrt{\sigma_x^2+\sigma_n^2}}{\sigma_n} + \frac{1}{\ln 2}\left[\frac{\sigma_x^2+\sigma_n^2}{2(\sigma_x^2+\sigma_n^2)} - \frac{\sigma_n^2}{2\sigma_n^2}\right] = \frac{1}{2}log_2\left(1+\frac{\sigma_x^2}{\sigma_n^2}\right)$$
 дв.ед.

Задачи для самостоятельного решения

- 1. В коробке находятся 16 игрушек, среди них 4 зайца, 2 медведя. Сколько битов информации содержится в сообщении о том, что из коробки достали игрушку зайца, а затем игрушку медведя, если выбор медведя осуществлялся при возвращением зайца в коробку?
- 2. Имеются две системы X и Y, объединенные в одну, вероятности состояний которых представлены следующей матрицей

$$P(X,Y) = \begin{pmatrix} 0.3 & 0 & 0 \\ 0.2 & 0.3 & 0.1 \\ 0 & 0.1 & 0 \end{pmatrix}$$

Определить полную условную энтропию.

- 3. Принимаемый сигнал может иметь амплитуду A_1 (событие x_1) или A_2 (событие x_2), а также сдвиг фаз φ_1 (событие y_1) или φ_2 (событие y_2). Вероятности совместных событий имеют следующие значения: $p(x_1, y_1) = 0.73$, $p(x_1, y_2) = 0.21$, $p(x_2, y_1) = 0.02$, $p(x_2, y_2) = 0.04$. Вычислить энтропию объединения зависимых событий.
- 4. На отрезке (0,1) выбираются случайным образом, независимо друг от друга, две точки U и V, каждая из них распределена на этом отрезке с равномерной плотностью. В результате опыта одна из точек легла правее, другая левее. Сколько информации о положении правой точки дает значение положения левой?
- 5.Вычислить энтропию источника сообщений, выдающего два символа 0 и 1 с вероятностями p(0)=3/4, p(1)=1/4 и условными вероятностями p(0/0)=2/3, p(1/0)=1/3, p(0/1)=1, p(1/1)=0.
- 6.Определить энтропию источника сообщений, если вероятности появления символов на входе приемника равны $p(b_1)=0.1$, $p(b_2)=0.3$, $p(b_3)=0.4$, $p(b_4)=0.2$, а канальная матрица имеет вид

$$P(a/b) = \begin{pmatrix} 0.99 & 0.02 & 0 & 0 \\ 0.01 & 0.98 & 0.01 & 0.01 \\ 0 & 0 & 0.98 & 0.02 \\ 0 & 0 & 0.01 & 0.97 \end{pmatrix}.$$

7. Определить энтропию источника сообщений, передаваемых по каналу связи, и состоящих из равновероятных символов, если влияние помех в канале описывается матрицей

$$P(y/x) = \begin{pmatrix} 0.96 & 0.04 & 0 \\ 0.03 & 0.95 & 0.02 \\ 0.02 & 0.04 & 0.94 \end{pmatrix}.$$

8.Определить энтропию приемника сообщений, если вероятности появления символов на входе источника сообщений равны $p(x_1) = 0.5$, $p(x_2) = 0.3$, $p(x_3) = 0.2$, а канальная матрица имеет вид

$$P(y/x) = \begin{pmatrix} 0.97 & 0.03 & 0\\ 0.01 & 0.98 & 0.01\\ 0 & 0.04 & 0.96 \end{pmatrix}.$$

9.По непрерывному каналу связи передается полезный сигнал x(t), представляющий собой нормальный случайный процесс с нулевым математическим ожиданием и дисперсией равной 4мВ. В канале присутствует независимый от сигнала гауссов шум n(t) с нулевым математическим ожиданием и дисперсией равной 1мВ. Определить дифференциальную энтропию входного сигнала, дифференциальную энтропию выходного сигнала.

Контрольные вопросы

- 1. Дать определение условной энтропии.
- 2. Сформулировать закон аддитивности энтропии в общем случае.
- 3. Какие формулы используются для расчета условной энтропии?
- 4. Какие формулы используются для расчета взаимной информации?
- 5. Как определяется полная средняя взаимная информация?
- 6. Что понимают под дискретными системами передачи информации?
- 7. Что понимают под непрерывными системами передачи информации?
- 8. Как определяется условная энтропия в непрерывной системе передачи информации?

1.4 Передача информации по каналу связи

Понятие энтропии, скорости выдачи информации источником, избыточность позволяют характеризовать свойства информационных систем. Однако для сравнения информационных систем такого описания недостаточно. Потребителя интересует не только передача данного количества информации, но и передача его в более короткий срок, не только хранение определенного количества, но и хранение с помощью минимального объема аппаратуры и т.д.

Пусть количество информации, которое передается по каналу связи за время T равно

$$I_T = H_T - H_T(Y/X).$$

Если передача длится T единиц времени, то ${\it ckopocmb}$ ${\it nepedavu}$ ${\it uhфopmauuu}$ составит

$$V = \frac{I_T}{T} = \frac{1}{T} (H_T(X) - H_T(X/Y)) = H(X) - Y(X/Y).$$

Это количество информации, приходящееся в среднем на одно сообщение.

Если в секунду передается n сообщений, то скорость передачи равна V = n(H(X) - H(X/Y)).

Пропускная способность канала есть максимально достижимая для данного канала скорость передачи информации

$$c = maxV = n(H(X) - H(X/Y))_{max} = n \cdot I(X,Y)_{max}$$

Скорость передачи может быть технической или информационной.

Под $\mathit{mexhuческой}\ V_T$ (скорость манипуляции) подразумевается число элементарных сигналов (символов), передаваемых в единицу времени

$$V_T = \frac{1}{\tau}$$
бод.

Информационная скорость или скорость передачи информации определяется средним количеством информации, которое передается в единицу времени

$$V = nH$$
 бит/сек.

Для равновероятных сообщений, составленных из равновероятных взаимно независимых символов

$$V = \frac{1}{\tau} logm.$$

Если символы не равновероятны

$$V = -\frac{1}{\tau} \sum_{i} p_i \log_2 p_i.$$

Если символы имеют разную длительность

$$V = -\frac{\sum_{i} p_{i} log_{2} p_{i}}{\sum_{i} \tau_{i} p_{i}}.$$

Выражение для пропускной способности характеризуется максимальной энтропией

$$c_{max} = \frac{H_{max}}{\tau}$$
 бит/сек.

Для двоичного кода

$$c_{max} = \frac{log_2 2}{\tau} = \frac{1}{\tau}$$
 бит/сек.

Пропускная способность является важной характеристикой каналов связи. Возникает вопрос: какова должна быть пропускная способность

канала, чтобы информация от источника X к приемнику Y поступала без задержек? Ответ дает теорема Шеннона.

1 Теорема Шеннона

Если имеется источник информации с энтропией H(X) и канал связи с пропускной способностью c, то если c > H(X), то всегда можно закодировать достаточно длинное сообщение таким образом, что оно будет передано без задержек. Если c < H(X), то передача информации без задержек невозможна.

В любом реальном канале всегда присутствуют помехи. Однако, если их уровень мал, то вероятность искажения равна нулю и можно считать, что все сигналы передаются неискаженными. В этом случае среднее количество информации, переносимое одним символом

$$I(X,Y) = I(Y,X) = H(X), H_{max} = log_2 m.$$

Следовательно, *пропускная способность канала без помех* за единицу времени

$$c = nlog_2m$$
,

Реальные каналы характеризуются тем, что в них всегда есть помехи. *Пропускная способность дискретного канала с помехами* вычисляется

$$c = n(H(Y) - H(Y / X))_{max}.$$

где $H(Y) = log_2 m$.

Для дискретного канала с помехами Шеннон дал вторую теорему.

2 Теорема Шеннона

Пусть имеется источник информации X, энтропия которого в единицу времени равна H(X), и канал с пропускной способностью c. Если H(X) > c, то при любом кодировании передача сообщений без задержек и искажений невозможна. Если H(X) < c, то любое достаточно длинное сообщение можно всегда закодировать так, что оно будет предано без задержек и искажений с вероятностью сколь угодно близкой к единице.

Пример 1.

На вход дискретного симметричного канала без памяти поступают двоичные символы $x_1=0$ и $x_2=1$ с априорными вероятностями $p(x_1)=0.85$ и $p(x_2)=0.15$. Переходные вероятности $p(y_j/x_i)$ в таком канале задаются соотношением

$$p(y_j/x_i) = \begin{cases} p, & j \neq i \\ 1-p, & j = i \end{cases}$$

где p = 0.05 - вероятность ошибки. Определить все апостериорные вероятности.

Решение.

Ситуация в канале характеризуется схемой

Так как p=0,05, то вероятность правильного приема q=1-0,05.

В таком канале каждый кодовый символ может быть принят с ошибочной вероятностью

$$p(y_1/x_2) = p(y_2/x_1) = p = 0.05.$$

Правильно переданная информация описывается

$$p(y_1/x_1) = p(y_2/x_2) = q = 0.95.$$

По формуле Байеса определим апостериорные вероятности

$$p(x_{i}/y_{j}) = \frac{p(x_{i})p(y_{j}/x_{i})}{p(y_{j})} = \frac{p(x_{i})p(y_{j}/x_{i})}{\sum_{i=1}^{N} p(x_{i})p(y_{j}/x_{i})}.$$

$$p(x_{1}/y_{1}) = \frac{p(x_{1})p(y_{1}/x_{1})}{p(x_{1})p(y_{1}/x_{1}) + p(x_{2})p(y_{1}/x_{2})} = \frac{0.85 \cdot 0.95}{0.85 \cdot 0.95 + 0.15 \cdot 0.05} = 0.991,$$

$$p(x_1/y_2) = \frac{p(x_1)p(y_2/x_1)}{p(x_1)p(y_2/x_1) + p(x_2)p(y_2/x_2)} = \frac{0.85 \cdot 0.05}{0.85 \cdot 0.05 + 0.15 \cdot 0.95} = 0.23,$$

$$p(x_2/y_1) = \frac{p(x_2)p(y_1/x_2)}{p(x_2)p(y_1/x_2) + p(x_1)p(y_1/x_1)} = \frac{0.15 \cdot 0.05}{0.15 \cdot 0.05 + 0.85 \cdot 0.95} = 0.009,$$

$$p(x_2/y_2) = \frac{p(x_2)p(y_2/x_2)}{p(x_2)p(y_2/x_2) + p(x_1)p(y_2/x_1)} = \frac{0.15 \cdot 0.95}{0.15 \cdot 0.95 + 0.85 \cdot 0.05} = 0.77.$$

Пример 2.

По каналу связи передается сообщение из ансамбля

$$X = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \\ 0.09 & 0.1 & 0.22 & 0.07 & 0.15 & 0.17 & 0.02 & 0.18 \end{pmatrix}$$

Средняя длительность передачи одного элемента сообщения в канале $\tau = 0.44$ мс. Шум в канале отсутствует. Определить пропускную способность канала и скорость передачи информации.

Решение.

Когда шум в канале отсутствует пропускная способность канала

$$c = V_T log m$$
, $V_T = \frac{1}{\tau} = \frac{1}{0.44 \cdot 10^{-3}} = 2273 \text{ c}^{-1}$.

Объем алфавита данного сообщения m=8

$$c = \frac{1}{0.44 \cdot 10^{-3}} \cdot log_2 8 = 6819$$
 бит/сек

Информационная скорость $V = I(X, Y) \cdot V_T$

$$I(X,Y) = H(X) - H(X/Y)$$

Так как шум в канале отсутствует, то H(X/Y) = 0, I(X,Y) = H(X). Определим энтропию заданного распределения

$$H(X) = \sum_{i=1}^{3} p(x_i) \log_2 \frac{1}{p(x_i)} = 0.09 \log_2 \frac{1}{0.09} + 0.1 \log_2 \frac{1}{0.1} + 0.09 \log_2 \frac{1}{0.09} = 0.09 \log_2 \frac{1}{0.09} 0.09 \log_2 \frac{1}{0.09} =$$

$$+0,22 \cdot log_2 \frac{1}{0,22} + 0,07 log_2 \frac{1}{0,07} + 0,15 log_2 \frac{1}{0,15} + 0,02 log_2 \frac{1}{0,02} \cdot$$

$$\cdot 0.18 log_2 \frac{1}{0.18} + 0.17 log_2 \frac{1}{0.17} = 2.44$$
 бит

$$V = 2,44 \cdot 2273 = 5546,12$$
 бит/сек

Пример 3.

Источник вырабатывает три сообщения с вероятностями: $p_1 = 0.1$; $p_2 = 0.2$; $p_3 = 0.7$. Сообщения независимы и передаются равномерным двоичным кодом (m=2) с длительностью символов равной 1мс. Определить скорость передачи информации по каналу связи без помех.

Решение.

$$H(X) = -\sum_{i=1}^{n} p_i \log_2 p_i = -(0.1 \log 0.1 + 0.2 \log 0.2 + 0.7 \log 0.7) = 1.16$$
 бит

Для передачи трех сообщений равномерным кодом необходимо два разряда, при этом длительность кодовой комбинации равна 2t.

Средняя скорость передачи сигнала

$$V_T = \frac{1}{2t} = 500$$
 бод,

Скорость передачи информации

$$V = V_T H(X) = 500 \cdot 1,16 = 580$$
 бит/сек.

Пример 4.

По каналу связи передаются сообщения, вероятности которых равны: $p(x_1) = 0.1$; $p(x_2) = 0.2$; $p(x_3) = 0.3$; $p(x_4) = 0.4$. Канальная матрица, определяющая потери информации в канале связи

$$P(Y/X) = \begin{pmatrix} 0.99 & 0.01 & 0 & 0 \\ 0.01 & 0.97 & 0.02 & 0 \\ 0 & 0.01 & 0.98 & 0.01 \\ 0 & 0 & 0.01 & 0.99 \end{pmatrix}$$

Определить:

- 1) энтропию источника информации H(X);
- 2) безусловную энтропию приемника информации H(Y);
- 3) общую условную энтропию H(Y / X);
- 4) скорость передачи информации, если время передачи одного символа первичного алфавита t=0,1мс;
- 5)потери информации в канале связи при передаче 500 символов алфавита; 6)среднее количество принятой информации;
- 7) пропускную способность канала связи.

Решение.

1) Энтропия источника сообщений

$$H(X) = -\sum_{i=1}^n p(x_i) \log_2 p(x_i) = -(0.1 \log_2 0.1 + 0.2 \log_2 0.2 + 0.3 \log_2 0.3 + 0.4 \log 0.4) = 1.8465$$
 бит

2) Вероятности появления символов на входе приемника рассчитываются

по формуле полной вероятности
$$p(y_j) = \sum_{i=1}^N p(x_i, y_j); \ p(y_1) = 0.1 \cdot 0.99 + 0.2 \cdot 0.01 = 0.101$$

$$p(y_2) = 0.1 \cdot 0.01 + 0.2 \cdot 0.97 + 0.3 \cdot 0.01 = 0.198$$

$$p(y_3) = 0.2 \cdot 0.02 + 0.3 \cdot 0.98 + 0.4 \cdot 0.01 = 0.302$$

$$p(y_4) = 0.3 \cdot 0.01 + 0.4 \cdot 0.99 = 0.399$$

Проверка: 0,101+0,198+0,302+0,399=1

Энтропия приемника

$$H(Y) = -\sum_{i=1}^{n} p(y_i) \log_2 p(y_i) = -(0.101 \log_2 0.101 + 0.198 \log_2 0.198 + 0.19$$

 $+0.302log_20.302+0.399log_20.399)=1.85$ бит

3) Общая условная энтропия

$$H(Y/X) = H(Y/X) = \sum_{i=1}^{N} \sum_{j=1}^{M} p(x_i y_j) \log_2 \frac{1}{p(y_j / x_i)}.$$

$$H(Y/X) = -(0.1(0.99 log_2 0.99 + 0.01 log_2 0.01) + 0.2(0.01 log_2 0.01 + 0.97 log_2 0.97 + 0.02 log_2 0.02) + 0.3(0.01 log_2 0.01 + 0.98 log_2 0.98 + 0.01 log_2 0.01) + 0.4(0.01 log_2 0.01 + 0.99 log_2 0.99)) = 0.132$$

4) Скорость передачи информации

$$V = V_T(H(X) - H(X/Y)) = V_T(H(Y) - H(Y/X)) =$$

$$= \frac{1,85 - 0,132}{0.0001} = 17,18 \text{ кбит/с};$$

5) Потери информации в канале связи

$$\Delta I = kH(Y/X) = 500 \cdot 0.132 = 66 \text{ бит};$$

- 6) Среднее количество принятой информации $I = k(H(Y) H(Y/X)) = 500 \cdot (1,85 0,132) = 859$ бит;
- 7) Пропускная способность канала связи

$$c = V(log_2m - H(Y/X)) = (2 - 0.132)/0.0001 = 17.18$$
 кбит.

Пример 5.

Определить скорость передачи по двоичному симметричному каналу связи при $\tau = 0.001$ с, если шумы в канале вносят ошибки таким образом, что в среднем четыре символа из 100 принимаются неверно (т.е. 1 вместо 0 и наоборот).

Решение.

Двоично симметричный канал можно представить схемой

Вероятность ошибки $p = \frac{4}{100}$

Составим таблицу вероятностей

$$p(x_0) = 0.5$$
, $p(y_0/x_0) = 0.96$
 $p(x_1) = 0.5$, $p(y_1/x_0) = 0.04$
 $p(y_0) = 0.5$, $p(y_0/x_1) = 0.04$
 $p(y_1) = 0.5$, $p(y_1/x_1) = 0.96$

Пропускная способность двоично симметричного канала

$$c = \frac{1}{\tau}(1+(1-p)log_2(1-p)+plog_2p) = 10^3(1+0.96log_20.96+0.04log_20.04) = 0.76\ кбит/c,$$

Задачи для самостоятельного решения

1. По каналу связи передается сообщение из ансамбля:

$$X = \begin{pmatrix} x_1 & x_2 & x_3 & x_3 \\ 0.34 & 0.46 & 0.16 & 0.04 \end{pmatrix}$$

Средняя длительность передачи одного элемента сообщения в канале $\tau = 0.2$ мс. Шум в канале отсутствует. Определить пропускную способность канала и скорость передачи информации.

2. Вероятности появления символов источника алфавита $p(x_1) = 0.5$, $p(x_2) = 0.25$, $p(x_3) = 0.125$, $p(x_4) = 0.125$. Между соседними символами имеются корреляционные связи, которые описываются матрицей вероятностей

$$\begin{pmatrix}
\frac{13}{16} & \frac{3}{16} & 0 & 0 \\
\frac{1}{8} & \frac{1}{2} & \frac{3}{8} & 0 \\
0 & 0 & 0 & 1 \\
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} & 0
\end{pmatrix}$$

Требуется определить избыточность источника при статистической независимости символов и избыточность при зависимости символов.

- 3.Первичный алфавит состоит из трех знаков с вероятностями $p_1 = 0.2$, $p_2 = 0.7$, $p_3 = 0.1$. Для передачи по каналу без помех использовался равномерный двоичный код. Частота тактового генератора 500 Гц. Какова пропускная способность канала и скорость передачи?
- 4.По каналу связи передается ансамбль трех символов с длительностью $\tau=0.01$ сек и частотой следования $F=\frac{1}{\tau}$. Источник сигналов имеет матрицу безусловных вероятностей

$$\begin{pmatrix} 0.4 \\ 0.3 \\ 0.3 \end{pmatrix}$$

Канал связи характеризуется при $p_1=0.01$, $p_2=0.02$, $p_3=0.97$ матрицей условных вероятностей

$$P(Y/X) = \begin{pmatrix} p_3 & p_2 & p_1 \\ p_1 & p_3 & p_2 \\ p_2 & p_1 & p_3 \end{pmatrix}$$

Определить пропускную способность канала. Сравнить производительность источника и пропускную способность канала.

- 5.По двоичному симметричному каналу связи с помехами передаются два символа с вероятностями $p(x_1) = 0.75$ и $p(x_2) = 0.25$. Изза наличия помех вероятность правильного приема каждого из сигналов уменьшается до 0,875. Длительность одного сигнала $\tau = 0.1$ сек. Требуется определить:
- 1) производительность и избыточность источника;
- 2) скорость передачи информации и пропускную способность канала связи.
- 6.Для передачи сообщений используется код, состоящий из трех символов, вероятности появления которых равны 0.8, 0.1 и 0.1. Корреляция между символами отсутствует. Определить избыточность кода.
- 7.Определить пропускную способность симметричного канала с матрицей условных вероятностей

$$P(Y/X) = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$$

Контрольные вопросы

- 1. Что называется технической скоростью?
- 2. Что называется информационной скоростью?
- 3. Как определяется информационная скорость для равновероятных сообщений?
- 4. Как определяется пропускная способность канала без помех?
- 5. Как определяется пропускная способность канала с помехами?
- 6. Сформулируйте 1-ю теорему Шеннона.
- 7. Сформулируйте 2-ю теорему Шеннона.

Раздел 2. Основы теории кодирования сообщений

ПРЕДСТАВЛЕНИЕ КОДОВ

Преобразование информации из одной формы представления (знаковой системы) в другую называется *кодированием*.

Все виды информации в компьютере кодируются на машинном языке в виде логических последовательностей 0 и 1.

Цифры двоичного кода можно рассматривать как два равновероятных состояния (события). Каждая двоичная цифра машинного кода несет информацию 1 бит. Две цифры несут информацию в 2 бита, три цифры — в 3 бита и т.д. Количество информации в битах равно количеству цифр двоичного машинного кода. Восемь последовательных бит составляют байт. В одном байте можно закодировать значение одного символа из 256 возможных ($256 = 2^8$). Более крупной единицей информации является килобайт (Кбайт), равный 1024 байтам ($1024 = 2^{10}$). Еще крупные единицы измерения данных: мегабайт, гигабайт, терабайт (1064 = 1064

Итак: 2^8 бит = 1 байт = 256 бит

 2^{10} бит = 1 Кбайт

 2^{20} бит = 1 Мбайт

 2^{30} бит = 1 Гбайт

 2^{40} бит = 1 Тбайт

Целые числа кодируются двоичным путём деления числа на два. Для кодирования нечисловой информации используется алгоритм: все возможные значения кодируемой информации нумеруются и эти номера кодируются с помощью двоичного кода.

Понятие *кодирование* означает преобразование информации в форму, удобную для передачи по определённому каналу связи.

Декодирование — восстановление принятого сообщения из кодированного вида в вид доступный для потребителя.

Одно и тоже сообщение можно закодировать различными способами. Необходимо найти *оптимальный способ* кодирования, при котором на передачу сообщения тратится минимальное время.

Если на передачу каждого элементарного символа (0 или 1) тратится одно и тоже время, то оптимальным будет такой код, при котором на передачу сообщения заданной длины будет затрачено минимальное количество символов.

Например, пусть имеются буквы русского алфавита а, б, в, г,...+ промежуток между словами (-). Если не различать ь и ъ (как принято в телеграфии), то получим 32 буквы. Требуется закодировать двоичным кодом буквы так, чтобы каждой букве соответствовала определенная комбинация символов 0 и 1 и, чтобы среднее число этих символов на букву текста было минимальным.

1-й вариант. Не меняя порядка букв, пронумеровав их от 0 до 31 и перевести их в двоичную систему счисления, получим следующий код:

```
a \sim 00000
```

 $6 \sim 00001$

 $B \sim 00010$

 $\Gamma \sim 00011$

....я ~ 11110

- **~** 11111

В этом коде на каждую букву тратится ровно пять элементарных символов. Является ли этот код оптимальным? Модно ли составить другой код, при котором на одну букву в среднем приходится меньше элементарных символов?

2 вариант. Так как одни буквы встречаются часто (a,o,e), а другие (щ,э,ф) редко, то часто встречающиеся буквы целесообразно закодировать меньшим числом символов, а реже встречающиеся – большим. Чтобы составить такой код нужно знать частоты букв русского алфавита (табл. 1).

Пользуясь такой таблицей, можно составить наиболее экономичный код на основе соображений, связанных с количеством информации. Код будет *самым* экономичным, когда каждый символ будет передавать максимальную информацию.

Рассмотрим элементарный символ, т.е. изображающий его сигнал, как физическую систему с двумя возможными состояниями 0 и 1. Информация, которую дает этот символ, равна энтропии системы и максимальна в случае, когда оба состояния равновероятны.

Основой оптимального кодирования будет требование: элементарные символы в закодированном тексте встречались в среднем одинаково часто.

Tr ~		1
Гаршина	// Татистицеские па	нные русского алфавита»
таолица .	. МСтатистические да	inibic pycckoi o angabina/

буква	частота	буква	частота	буква	частота
-	0,145	К	0,029	Ч	0,013
0	0,095	M	0,026	й	0,01
e	0,074	Д	0,026	X	0,009
a	0,064	П	0,024	ж	0,008
И	0,064	y	0,021	Ю	0,007
T	0,056	Я	0,019	Ш	0,006
Н	0,056	Ы	0,016	Щ	0,003
c	0,047	3	0,015	Э	0,003
p	0,041	ъ,ь	0,015	ф	0,002
В	0,039	б	0,015		
Л	0,036	Γ	0,014		

2.1 Метод Шенно-Фано

Метод Шенно-Фано соответствует требованию оптимального кодирования. Алгоритм построения кода Шенно-Фано состоит в том, что кодируемые символы (буквы) разделяются на две равновероятные подгруппы: для символов 1-й подгруппы на втором месте ставится 0, а для 2-й подгруппы -1 и т.д.

Берутся первые шесть букв (от - до τ). Сумма их вероятностей равна 0,498, на все остальные (от н до ϕ) приходится 0,502. Первые шесть букв будут иметь на первом месте 0, остальные 1.

Далее снова первая группа делится на две приблизительные равновероятные подгруппы: (от - до \mathbf{u}) и (от \mathbf{e} до \mathbf{t}) и т.д. Для всех букв первой подгруппы на втором месте ставится $\mathbf{0}$, а второй подгруппы - 1.

Процесс продолжается до тех пор, пока в каждом подразделении не окажется ровно одна буква, которая и будет закодирована определенным двоичным кодом.

Пример 1.

Построить таблицу кодов алфавита методом Шенно-Фано.

Записать двоичным кодом фразу «теория информации».

Решение.

Составим таблицу №2 кодов алфавита описанным ранее методом.

таблица №2 «Коды русского алфавита по методу Шенно-Фано»

буквы	вероят		<u> </u>		_	иволы		· J				
	ности	1-й	2-й	3-й	4-й	5-й	6-й	7-й	8-й	9-й	код	
-	0,145		0	0							000	
o	0,095		0	1							001	
e	0,074	0		0	0						0100	
a	0,064	U	1	U	1						0101	
И	0,064		1	1	0						0110	
T	0,056			1	1						0111	
Н	0,056			0	0						1000	
c	0,047			U	1						1001	
p	0,041		0		0	0					10100	
В	0,039		U	1	U	1					10101	
Л	0,036			1	1	0					10110	
К	0,028				1	1					10111	
M	0,026				0	0					11000	
Д	0,026					1					11001	
П	0,024			0		0					11010	
У	0,021					1	1	0	-			110110
Я	0,019							1	-			110111
Ы	0,016							0	0			
3	0,015				0		1				111001	
ъ,ь	0,015	1				1	0				111010	
б	0,015					1	1				111011	
Γ	0,014						0	-			111100	
Ч	0,013		1			0	1				111101	
й	0,01							0	-		1111100	
X	0,009			1			0	1	0		11111010	
ж	0,008							1	1		11111011	
Ю	0,007				1			0	0		11111100	
Ш	0,006				•	1		0	1	1	11111101	
Ц	0,003						_			0	111111100	
Щ	0,003						1		0	1	111111101	
· ·	0,003							1	_	0	111111110	
ф	0,002								1	1	1111111111	
	- ,			<u> </u>			<u> </u>	<u> </u>	<u> </u>		11111111	

Фраза «теория информации» будет выглядеть следующим образом:

10100 11000 0101 1111111100 0110 0110

Здесь нет необходимости отделять буквы специальным знаком.

Пример 2.

Декодировать сообщение методом Шенно-Фано, используя таблицу кодов из примера 1:

Решение.

«способ кодирования»

Случайные перестановки 0 и 1 недопустимы.

Для того, чтобы выяснить, является ли построенный код оптимальным, необходимо найти среднюю информацию, приходящуюся на один элементарный символ (0 или 1) и сравнить ее с максимально возможной информацией.

Определим среднюю информацию, содержащуюся в одной букве передаваемого текста, т.е. энтропия на одну букву

$$H(6) = -(0.145 \cdot log_2 0.145 + 0.95 \cdot log_2 0.95 + \dots + 0.002 \cdot log_2 0.002) = 4.42$$

Определим *среднее число элементарных символов на букву* как произведение количества символов кода на вероятность появления данной буквы

$$n_{\rm cp} = 3 \cdot 0.145 + 3 \cdot 0.095 + 4 \cdot 0.074 + \dots + 9 \cdot 0.002 = 4.45$$

Информация на один элементарный символ

$$I_{\rm cp} = \frac{{
m H(6)}}{n_{
m cp}} = \frac{4,42}{4,45} = 0,994$$
 дв. ед.

Таким образом, информация на один символ близка к своему верхнему пределу 1. Следовательно, построенный код в целом отвечает принципу оптимальности.

В случае кодирования простым двоичным кодом каждая буква изображается пятью двоичными знаками и информация на один символ

$$I_{\rm cp} = \frac{{\rm H(6)}}{n_{\rm cp}} = \frac{4,42}{5} = 0,884$$
 дв.ед.

Это меньше, чем при кодировании методом Шенно-Фано.

Однако, кодирование по «буквам» не является экономичным, так как между соседними буквами любого текста всегда есть зависимость. Например, после гласной буквы не может быть ь или ъ, после шипящих не может быть я или ю, после нескольких согласных следует гласная.

Известно, что при объединении зависимых систем суммарная энтропия меньше суммы энтропий отдельных систем. Следовательно, информация, передаваемая отрезком связанного текста, всегда меньше, чем информация на один символ, умноженная на число символов. Поэтому более экономичный код можно построить, если кодировать не каждую букву в отдельности, а целые «блоки» из букв. Например, «тся», «ает», «ние» и т. д.

Кодируемые блоки располагаются в порядке убывания частот и двоичное кодирование осуществляется по тому же принципу.

В ряде случаев разумно кодировать не на блоки букв, а целые куски текста. Например, «поздравляю новым годом желаю здоровья успехов в работе».

Пример 3.

Имеется алфавит символов и их вероятности, с которыми они встречаются в тексте. Построить таблицу кодов символов методом Шенно-Фано. Закодировать сообщение «вилка» и раскодировать заданную последовательность кодов.

a	В	Л	И	e	c	К
0,3	0,2	0,15	0,1	0,1	0,08	0,07

Решение. Составим таблицу кодов для символов алфавита

буква	вероятности	символы кода			код	
a	0,3	0	0			00
В	0,2	U	1			01
Л	0,15		0	0		100
И	0,1		0	1		101
e	0,1	1		0		110
c	0,08		1	1	0	1110
К	0.07			1	1	1111

Сообщению «вилка» соответствует выходная последовательность кодов 01101100111100.

Выходной последовательности кодов 100101111000 соответствует сообщение «лиса».

Пример 4.

Провести кодирование по методу Ш-Ф двухбуквенных комбинаций, когда алфавит состоит из двух букв A и B, имеющих вероятности P(A)=0,8 и P(B)=0,2. Каково среднее число символов на знак?

Решение.

комбинации букв	вероятность	Разбиение на подгруппы		одгруппы	код
AA	0,64	0			0
АБ	0,16		0		10
БА	0,16	1	1	0	110
ББ	0,04		1	1	111

$$n_{\rm cp} = 1 \cdot 0.64 + 2 \cdot 0.16 + 3 \cdot 0.16 + 3 \cdot 0.04 = 1.56$$

Пример 5.

Закодировать сообщение методом Шенно-Фано «Российская Система Высшего Технического Образования».

Решение.

Составляется алфавит кода и для каждого символа этого алфавита и определяется вес [количество повторений символа в сообщении].

P-2, O-5, C-7, И-4, Й-1, К-2, A-4, Я-2, Т-2, Е-4, М-1, В-2, Ы-1, Ш-1, Г-2, X-1, Н-2, Ч-1, Б-1, 3-1.

Алфавит ранжируется по убыванию веса символа.

С-7, О-5, И-4, А-4, Е-4, Р-2, К-2, Я-2, Т-2, В-2, Г-2, Н-2, Й-1, М-1, Ы-1, Ш-1, Х-1, Ч-1, Б-1, З-1.

Далее создается таблица №3 символов. Она делится на две группы таким образом, чтобы каждая из групп имела приблизительно одинаковую частоту по сумме символов. Первой группе устанавливается начало кода в 0, второй в 1.

Получаем код к каждой букве:

C	000	P	1000	Γ	11000	Ш	111010
О	001	К	1001	Н	11001	X	111011
И	010	R	1010	Й	11010	Ч	11110
A	0110	T	10110	M	11011	Б	111110
E	0111	В	10111	Ы	11100	3	111111

Используя полученную таблицу кодов, кодируется входной поток - каждый символ заменяется соответствующим кодом.

таблица №3 «Коды символов по методу Шенно-Фано»

буква	частота			СИМВОЈ	іы кода			код
		1-й	2-й	3-й	4-й	5-й	6-й	
c	7		0	0				000
O	5		U	1				001
И	4	0		0				010
a	4		1	1	0			0110
e	4			1	1			0111
p	2			0	0			1000
К	2			0	1			1001
Я	2		0		0			1010
T	2			1	4	0		10110
В	2				1	1		10111
Γ	2					0		11000
Н	2				0	1		11001
й	1	1		0		0		11010
M	1				1	1		11011
Ы	1					0		11100
Ш	1		1		0		0	111010
X	1					1	1	111011
Ч	1			1		0	1	11110
б	1				1	<u> </u>	0	111110
3	1				1	1	1	- 111111

Задачи для самостоятельного решения

- 1. Пусть алфавит источника содержит шесть элементов {A, Б, В, Γ , Д, E}, появляющихся с вероятностями P(A)=0,15, P(B)=0,1, P(B)=0,25, $P(\Gamma)$ =0,13, $P(\Pi)$ =0,25, P(E)=0,12. Найти энтропию такого источника, среднее число символов на одну букву при кодировании методом Ш-Ф.
- 2.Закодировать методом Шенно-Фано блоки «мы все учились понемногу чему-нибудь и как-нибудь».

блок	МЫ	все	учились	понемногу	чему	нибудь	И	как	-
вероятность	0,37	0,13	0,125	0,08	0.06	0,052	0,023	0,11	0,05

Каково среднее число символов на знак?

- 3.Сообщение состоит из последовательности букв A, B и C, вероятности которых не зависят от предыдущего сочетания букв и равны P(A)=0,7, P(B)=0,2, P(C)=0,1. Провести кодирование по алгоритму Шенно-Фано отдельных букв и двухбуквенных сочетаний. Сравнить коды по их эффективности и избыточности.
- 4.Закодировать сообщение методом Шенно-Фано «Теория информацииКодированияМодуляции».
- 5.Построить код Шенно-Фано для системы из семи букв: A, B, C, D, E, F, G, вероятности появления которых соответственно 0,1, 0,2, 0,05, 0,3, 0,05, 0,15, 0,15. Определить среднее количество разрядов на одну букву. Декодировать этим кодом последовательность:

10011101001000111110111101011111000.

- 6.Провести эффективное кодирование ансамбля из восьми знаков (m=8), используя метод Шенно-Фано.
- 7. Источник сообщений выдает целые значения x_i (i=1...12) случайной величины X, распределение которой подчиняется закону Пуассона с параметром $\alpha=3$. Закодировать сообщение методом Шенно-Фано. Определить: 1) Пригодность кода для передачи сообщений в смысле их однозначного кодирования; 2) На сколько код Шенно-Фано длиннее оптимального (в процентах).
- 8.Построить код Шенно-Фано двумя способами разбиения множества групп на подгруппы для символов источника сообщений появляющихся с вероятностями, заданными таблицей

буква	a_1	a_2	а	a_4	a_5	a_6	a_7	a_8
вероятность	0,04	0,1	0,2	0,11	0,16	0,22	0,02	0,15

1 способ: первая группа $p(a_6) + p(a_3) + p(a_5) = 0.58$, вторая группа $p(a_8) + p(a_4) + p(a_2) = 0.42$;

2 способ: первая группа $p(a_6) + p(a_3) = 0.42$, вторая группа $p(a_5) + p(a_8) + p(a_4) + p(a_2) + p(a_1) + p(a_7) = 0.58$;

Провести сравнительный анализ результатов решения двумя способами.

9.Построить оптимальный код сообщения, состоящего из: а) пяти равновероятных букв;

- b) шести равновероятных букв;
- с) семи равновероятных букв;
- d) восьми равновероятных букв.

Дать оценку эффективности построенных кодов. В каких случаях код, построенный для первичного алфавита с равновероятным появление букв, окажется самым эффективным?

Контрольные вопросы

- 1. Что понимают под кодированием сообщения?
- 2. Приведите примеры простейших кодовых сообщений.
- 3. Какие коды называются равномерными?
- 4. Что называется двоичным кодом?
- 5. Как можно закодировать четыре сообщения a,b,c,d, используя только два сигнала, 0 и 1?
- 6. Как строится код Шенно-Фано?
- 7. Как определяется число элементарных сигналов, приходящихся на одну букву сообщения?
- 8. Сформулировать основную теорему о кодировании.
- 9. Что называется декодирование сообщения?
- 10. Что называется блочным кодированием?
- 11. Представьте пример реализации блочного кодирования при построении оптимального неравномерного кода.

ЭФФЕКТИВНОЕ КОДИРОВАНИЕ

Эффективное или экономичное кодирование используется для уменьшения объемов информации на носителе-сигнале таким образом, чтобы устранить избыточность.

Для кодирования символов исходного алфавита используются двоичные коды переменной длины: чем больше частота символа, тем короче его код. Эффективность кода определяется средним числом двоичных разрядов для кодирования одного символа.

При эффективном кодировании существует предел сжатия, ниже которого не «спускается» ни один метод эффективного кодирования — иначе будет потеряна информация. Этот параметр определяется предельным значением двоичных разрядов возможного эффективного кода

$$l_{\rm np} = -\sum_{i=1}^n f_i log_2 f_i,$$

где *п*- мощность кодируемого алфавита,

 f_i - частота i-го символа кодируемого алфавита.

2.2 Метод Хаффмана

Это метод эффективного кодирования. Пусть имеются сообщения входного алфавита $A = \{x_1, x_2, ... x_n\}$ с соответствующими вероятностями их появления $p_1, p_2, ... p_n$. Тогда алгоритм кодирования Хаффмана состоит в следующем:

- 1. Сообщения располагаются в столбец в порядке убывания вероятностей их появления.
- 2. Два самых маловероятных сообщения объединяются в одно y, которое имеет вероятность равную сумме вероятностей события x_{n-1}, x_n , т. е. $p_{n-1} + p_n$. В результате получаются сообщения $x_1, x_2, \dots x_{n-2}, y$, вероятности которых $p_1, p_2, \dots p_{n-2}, p_{n-1} + p_n$.
- 3. Повторить шаги 1 и 2 до тех пор, пока не получится единственное сообщение, вероятность которого равна 1.
- Проводя линии, объединяющие сообщения образующие последовательности получится котором подмножества, дерево, отдельные сообщения являются концевыми узлами. Соответствующие им кодовые слова онжом определить, приписывая правым ветвям объединения символ 1, а левым -0 (или наоборот).

Пример 1.

Источник генерирует знак x_1 с вероятностью 0,8 и x_2 с вероятностью 0,2. Построить эффективные коды Шенно-Фано и Хаффмана для последовательностей из трех знаков $x_i x_j x_k$. Каково среднее число символов на знак? Сравнить с энтропией источника.

Решение.

Энтропия источника $H(X) = -(0.8 \cdot log_2 0.8 + 0.2 \cdot log_2 0.2) = 0.722$. Для наиболее наглядного сравнения энтропии источника со средним значением длины кодового обозначения рассмотрим всевозможные комбинации знаков.

Применим метод Шенно-Фано

знак	вероятность	код
x_1	0,8	1
x_2	0,2	0

Среднее количество символов в коде (или длина) $n_{\rm cp} = 1 \cdot 0.8 + 1 \cdot 0.2 = 1.$

Среднее число символов на знак $\frac{n_{\rm cp}}{1}=1$, что на 28% больше энтропии.

Построим код Шенно-Фано для всевозможных двух знаковых комбинаций.

комбинации	POPOGETI OCET	C	имволы кода	a	кон
знаков	вероятность	1-й	2-й	3-й	код
x_1x_1	0,64	1			1
x_1x_2	0,16		1		01
x_2x_1	0,16	0	0	1	001
x_2x_2	0,04		U	0	000

Среднее количество символов в коде (или длина)

$$n_{\rm cp} = 1 \cdot 0.64 + 2 \cdot 0.16 + 3 \cdot 0.16 + 3 \cdot 0.04 = 1.56,$$

Среднее число символов на знак $\frac{n_{cp}}{2} = 0.78$ (знаменатель означает из скольких знаков состоит одна комбинация), что на 8% больше энтропии.

Построим код Шенно-Фано для всевозможных трех знаковых комбинаций.

комбинации	DODOGETHO OTH	ородиности					кол
знаков	вероятность	1-й	2-й	3-й	4-й	5-й	код
$x_1x_1x_1$	0,512	1					1
$x_1x_1x_2$	0,128		1	1			011
$x_1x_2x_1$	0,128		1	0			010
$x_2x_1x_1$	0,128			1			001
$x_1x_2x_2$	0,032	0			1	1	00011
$x_2x_1x_2$	0,032		0	0	1	0	00010
$x_2 x_2 x_1$	0,032			0	0	1	00001
$x_2x_2x_2$	0,008				0	0	00000

Среднее количество символов в коде (или длина)

$$n_{\rm cp} = 1 \cdot 0.512 + 3 \cdot 0.384 + 3 \cdot 0.16 + 5 \cdot 0.104 = 2.184,$$

Среднее число символов на знак $\frac{n_{\rm cp}}{3} = 0.728$ (знаменатель означает из скольких знаков состоит одна комбинация), что на 0,8% больше энтропии.

Построим код Хаффмана для всевозможных трех знаковых комбинаций (рис. 2.1). Затем строим кодовое дерево (рис. 2.2) и составляем код комбинаций:

$$x_1 x_1 x_1$$
 1

$$x_1 x_1 x_2$$
 011

$$x_1 x_2 x_1$$
 010

$$x_2 x_1 x_1$$
 001

$$x_1 x_2 x_2$$
 00011

$$x_2 x_1 x_2 = 00010$$

$$x_2x_2x_1$$
 00001

$$x_2x_2x_2 00000$$

Коды Шенно-Фано и Хаффмана совпали.

0,032

 $x_2 x_2 x_2 \ [\ 00000]\ x_2 x_2 x_1 \ [00001]\ x_2 x_1 x_2 [00010]\ x_1 x_2 x_2 \ [00011]$

0

0,032

0,04

0,08

Рис. 2.2 Кодовое дерево

0

0,032

Среднее количество символов в коде (или длина) $n_{\rm cp}=1\cdot0.512+3\cdot0.384+3\cdot0.16+5\cdot0.104=2.184,$ Среднее число символов на знак $\frac{n_{\rm cp}}{3}=0.728,$ что на 0.8% больше энтропии.

Пример 2.Построить код Хаффмана для следующих данных:

A	В	С	D	Е	F	G	Н
0,25	0,22	0,13	0,11	0,1	0,09	0,07	0,03

Решение. >0,43 0,32 > 0,32 0,25 0,25 0,25 \boldsymbol{A} 0,25 0,25 0,22 0,22 0,22 В 0,22 0,22 0.21 >0,21 >0,19 0,19 0,13 0,13 0,13 0,13 0,11 0,11 0,11 D0,1 \boldsymbol{E} 0,1 0.1 0,09 H

На основании полученной таблицы можно построить кодовое дерево (рис.2.3).

Рис. 2.3 Кодовое дерево

Пример 3.

Пусть передалась следующая последовательность **1001110001.** Декодировать сообщение.

Решение.

ABCD.

Пример 4.

Сообщение X с символами x_1, x_2, x_3, x_4, x_5 передается по дискретному двоичному каналу с вероятностями $p(x_1) = 0,1$, $p(x_2) = 0,1$, $p(x_3) = 0,4$, $p(x_4) = 0,3$, $p(x_5) = 0,1$. Полоса пропускания канала обеспечивает возможность передачи двоичных символов длительностью $\tau = 10^{-4}$ сек. Требуется выбрать наилучший способ кодирования.

Решение.

Пропускная способность двоичного дискретного канала $c = \frac{1}{\tau} = 10000$ бит/сек.

1) Сообщение закодировано равномерным двоичным кодом.

X	P(X)	код
x_3	0,4	000
χ_4	0,4 0,3	001
x_3 x_4 x_1	0,1	010
x_2	0,1	011
x_5	0,1	111

Среднее количество символов в коде (или длина) $n_{\rm cp} = 3 \cdot 0.4 + 3 \cdot 0.3 + 3 \cdot 0.1 + 3 \cdot 0.1 + 3 \cdot 0.1 = 3,$ $\tau_{\rm cp} = n_{\rm cp} \cdot \tau = 3 \cdot 0.0001 = 0.0003,$

$$H(X) = -\sum_{i=1}^n p(x_i) \log_2 p(x_i) =$$
 = $-(0.4 \log_2 0.4 + 0.3 \log_2 0.3 + 3 \cdot 0.1 \log_2 0.1) = 2.046$ бит

$$V = \frac{H(X)}{\tau_{\rm cp}} = \frac{2,046}{0,0003} = 6820$$

2) Сообщение закодировано кодом Шенно-Фано.

X	P(X)	код
x_3	0,4	0
x_4	0,4 0,3 0,1	10
x_3 x_4 x_1	0,1	110
x_2	0,1	1110
x_5	0,1 0,1	1111

Среднее количество символов в коде (или длина)

$$n_{\rm cp} = 1 \cdot 0.4 + 2 \cdot 0.3 + 3 \cdot 0.1 + 4 \cdot 0.1 + 4 \cdot 0.1 = 2.1,$$

 $\tau_{\rm cp} = n_{\rm cp} \cdot \tau = 2.1 \cdot 0.0001 = 0.00021,$

$$V = \frac{H(X)}{\tau_{\rm cp}} = \frac{2,046}{0,00021} = 9742,86$$

3) Сообщение закодировано кодом Хаффмана.

X	P(X)	код
x_3	0,4	0
x_3 x_4	0,3	11
x_1	0,1	100
x_2	0,1	1011
x_5	0,1	1010

Среднее количество символов в коде (или длина)

$$n_{\rm cp} = 1 \cdot 0.4 + 2 \cdot 0.3 + 3 \cdot 0.1 + 4 \cdot 0.1 + 4 \cdot 0.1 = 2.1,$$

$$\tau_{\rm cp} = n_{\rm cp} \cdot \tau = 2.1 \cdot 0.0001 = 0.00021,$$

$$V = \frac{H(X)}{\tau_{\rm cp}} = \frac{2,046}{0,00021} = 9742,86$$

Самым медленным кодом оказался равномерный код V=6820 сим/сек, что в 1,43 раза меньше, чем при кодировании методом Шенно-Фано и Хаффмана.

Пример 5.

Закодировать методом Хаффмана слово «миссисипи».

Решение.

Рассчитаем частоту появления символов (вес) и составим таблицу.

Построим кодовое дерево (рис.2.4).

Рис. 2.4 Кодовое дерево

Таким образом закодированное слово «миссисипи» выглядит так: 10001111011010.

Длина закодированного слова – 16 бит.

Задачи для самостоятельного решения

1. Построить код Хаффмана для ансамбля сообщений $\{x_i\},\,i=1\dots 8$ с вероятностями

$$P(X) = \left\{ \frac{1}{4} \ \frac{1}{4} \ \frac{1}{8} \ \frac{1}{8} \ \frac{1}{16} \ \frac{1}{16} \ \frac{1}{16} \ \frac{1}{16} \right\}.$$

Определить характеристики кода.

2. Построить код Хаффмана для ансамбля сообщений $\{x_i\}$, $i=1\dots 5$ с вероятностями

$$P(X) = \{0,2 \ 0,2 \ 0,2 \ 0,2 \ 0,2 \}.$$

Определить характеристики эффективного кода.

3. Построить код Хаффмана для ансамбля сообщений $\{x_i\},\ i=1\dots 4$ с вероятностями

$$P(X) = \{0,45 \ 0,3 \ 0,15 \ 0,1 \}.$$

Определить характеристики кода и скорость передачи сообщений по каналу при условии, что длительность двоичного символа $\tau = 0.01$ сек бит⁻¹. Сравнить с обычным двоичным кодированием.

4. Ансамбль сообщений $\{x_i\}$, $i=1\dots 5$ задан вектор-строкой вероятностей

$$P(X) = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{8} & \frac{1}{16} & \frac{1}{16} \end{bmatrix}$$

Закодировать сообщение эффективным кодом Хаффмана и обычным двоичным кодом. Определить характеристики кодов и скорость передачи по каналу, при условии, что длительность двоичного символа $\tau = 0.01 {\rm cek} \cdot {\rm бит}^{-1}$.

5. Закодировать методом Хаффмана блоки «мы все учились понемногу чему-нибудь и как-нибудь».

блок	МЫ	все	учились	понемногу	чему	нибудь	И	как	-
вероятность	0,37	0,13	0,125	0,08	0.06	0,052	0,023	0,11	0,05

Каково среднее число символов на знак? Сравнить с ответом задачи №2, выполненной по методу Шенно-Фано.

6.Задан алфавит из трех символов с вероятностями 0,75, 0,1, 0,15. Произвести кодирование отдельных букв и двухбуквенных сочетаний по методу Хаффмана. Для полученных кодов найти средние длины и коэффициенты оптимальности.

7.Сообщение с символами x_1, x_2, x_3, x_4 передается по дискретному двоичному каналу с соответствующими вероятностями 0,1, 0,2, 0,2, 0,3. Полоса пропускания канала обеспечивает возможность передачи двоичных символов с длительностью $t=10^{-4}$ сек. Требуется выбрать наилучший способ кодирования и декодировать произвольное двоичное сообщение, определить скорость передачи информации при каждом из способов кодирования и сравнить ее с пропускной способностью канала.

- 8.Первичный алфавит состоит из букв A и B. Построить код по методу Хаффмана для передачи сообщений, если кодировать по одной, две, три буквы в блоке. Сравнить эффективность полученных кодов. Вероятности появления букв первичного алфавита имеют следующие значения: p(A) = 0.87, p(B) = 0.13.
- 9. Первичный алфавит состоит из букв A, B и C. Построить код по методу Хаффмана для передачи сообщений, если кодировать по одной, две, три буквы в блоке. Сравнить эффективность полученных кодов. Вероятности появления букв первичного алфавита имеют следующие значения: p(A) = 0.6, p(B) = 0.3, p(C) = 0.1.

Контрольные вопросы

- 1. Назначение и цели эффективного кодирования.
- 2.Поясните за счет чего, обеспечивается сжатие информации при применении эффективного кодирования.
- 3.Чем определяется минимальная длина кодовой комбинации при применении эффективного кодирования?
- 4. Какие проблемы возникают при разделении неравномерных кодовых комбинаций?
- 5. Объяснить принцип построения кода Хаффмана.
- 6. Какой код является самым выгодным?
- 7.За счет чего при эффективном кодировании уменьшается средняя длина кодовой комбинации?
- 8.До какого предела может уменьшится длина кодовой комбинации при эффективном кодировании?
- 9.При каком распределении букв первичного алфавита оптимальный неравномерный код оказывается самым эффективным?

2.3 Помехоустойчивое кодирование

Высокие требования к достоверности передачи, обработки и хранения информации диктуют необходимость такого кодирования информации, при котором обеспечивалось бы возможность обнаружения и исправления ошибок. Это достигается путем введения избыточности, которая позволяет выбрать передаваемые последовательности символов, чтобы они удовлетворяли дополнительным условиям, проверка которых на приемной стороне дает возможность обнаружить и исправить ошибки.

Коды, обладающие таким свойством, получили название *помехоустойчивые*. Они используются для обнаружения ошибок и для исправления ошибок (корректирующие коды).

Платой за помехоустойчивость является необходимость увеличения длины слов по сравнению с обычным кодом. Естественно, что введение дополнительных контрольных разрядов увеличивает затраты на хранение и передачу кодированной информации. При этом объем полезной информации остается неизменным.

Контрольные разряды не передают информацию и в этом смысле бесполезны. Относительное число контрольных разрядов называется избыточностью помехоустойчивого кода: $Q = \frac{n_{\rm k}}{n} \cdot 100\%$.

Корректирующие коды образуются путем добавления к исходной кодовой комбинации $n_{\rm K}$ контрольных (избыточных) символов. В итоге в линию передаются $n=n_{\rm W}+n_{\rm K}$ символов.

При передаче кода может быть искажен любой информационный символ или ни один.

В передаче информации контрольный разряд не участвует, так как является линейно зависимым от информационных. Код с контролем по четности позволяет обнаружить одиночные ошибки в блоках данных при передаче данных. Однако он не может обнаружить двукратные ошибки потому, что двукратная ошибка переводит кодовое слово через промежуток между допустимыми словами и превращает его в другое допустимое слово.

Если всего n символов, то с помощью контрольных символов, входящих в это число должно быть создано 2^{n_k} число комбинаций, чтобы свободно различать n+1 вариант. Поэтому $n_{\rm k}$ должно удовлетворять неравенству:

$$2^{n_k} \ge n+1, \ 2^n = 2^{n_k+n_{\text{H}}} = 2^{n_k} \cdot 2^{n_{\text{H}}}, \ 2^n \ge (n+1) \ 2^{n_{\text{H}}},$$

где 2^n — полное число комбинаций кода.

Число информационных символов кода, обнаруживающего и корректирующего одиночную ошибку равно:

$$2^{n_{\scriptscriptstyle \mathrm{H}}} \le \frac{2^n}{n+1}$$

Для вычисления основных параметров кода Хэмминга задается либо количество информационных символов, либо информационных комбинаций $N=2^{n_{\rm H}}$. Соотношения $n, n_{\rm K}$ и $n_{\rm H}$ представлены в таблице N=4.

Таблица №4 «Соотношения n, n_{κ} и n_{μ} ».

n	$n_{_{ m H}}$	$n_{\rm K}$
1	0	1
2	0	2
2 3	1	2
4		3
4 5 6 7	1 2 3 4 4 5 6 7	3
6	3	3
7	4	3
	4	
8 9	5	4 4 4
10	6	4
11	7	4
12		4
13	8 9	4 4
14	10	4
15	11	4 5
16	11	5

Для выбора проверочных позиций составляется таблица для ряда натуральных чисел в двоичном коде. Число ее строк $n=n_{\rm u}+n_{\rm K}$. Первой

строке соответствует проверочный коэффициент a_1 , второй a_2 и т.д. Затем выявляют проверочные позиции, выписывая коэффициенты по следующему принципу: в первую проверку входят коэффициенты, которые содержат единицу в младшем разряде $(a_1, a_3, a_5, a_7, a_{11}, \ldots)$, во вторую — во втором разряде $(a_2, a_3, a_6, a_7, a_{10}, a_{11}, \ldots)$, в третью — в третьем разряде и т.д.

 $0001 \ a_1$ $0010 \ a_2$ $0011 \ a_3$ $0100 \ a_4$ $0101 \ a_5$ $0110 \ a_6$ $0111 \ a_7$ $1000 \ a_8$ $1001 \ a_9$ $1010 \ a_{10}$ $1011 \ a_{11}$

Номера проверочных коэффициентов соответствуют номерам проверочных позиций. Составляется общая таблица №5 проверочных позиций кода Хэмминга.

Таблица №5 «Проверочные позиции кода Хэмминга».

N		N
провер-	проверочные позиции	контрольн.
ки		символа
1	1,3,5,7,9,11	1
2	2,3,6,7,10,11,14,15,18.19,22,24	2
3	4,5,6,7,12,13,14,15,20,21,22,23	4
4	8,9,10,11,12,13,14,15,24,25,26,27,28,29,30,31,40,41,42	8

Номера контрольных символов выбирают по закону $N=2^i$, i=0,1,2...n. Затем определяются значения контрольных коэффициентов (0 или 1) по правилу четности: сумма единиц на проверочных позициях должна быть четной. Если она четная, то значение контрольного коэффициента 0, в противном случае -1.

Пример 1.

Определить кодовое расстояние между комбинациями 100101100 и 110110101, используя правило четности.

Решение.

Просуммируем $100101100 \oplus 110110101 = 010011001$

Вес полученной суммы (количество единиц) равно 4, следовательно, кодовое расстояние d=4.

Пример 2.

Построить макет кода Хэмминга и определить значения корректирующих разрядов для кодовой комбинации (n_u =4) 0101.

Решение.

По таблице №4 минимальное число контрольных символов $n_{\rm K}=3$, а общее число символов $n=n_{\rm H}+n_{\rm K}=7$. По закону $N=2^i$, i=0,1,2...n определяются позиции проверочных символов: 1,2 и 4, остальные позиции занимают информационные символы.

Кодовая комбинация будет иметь вид:

$$C = _0 101.$$

Для определения значения корректирующих разрядов составляются уравнения:

$$a_1 = a_3 \oplus a_5 \oplus a_7 = 0 \oplus 1 \oplus 1 = 0$$

$$a_2 = a_3 \oplus a_6 \oplus a_7 = 0 \oplus 0 \oplus 1 = 1$$

$$a_4 = a_5 \oplus a_6 \oplus a_7 = 1 \oplus 0 \oplus 1 = 0$$

(знак

 обозначает сложение по правилу четности)

Следовательно, С=0100101.

Пример 3.

Пусть дана информационная последовательность 11001001. Преобразовать заданное информационное слово в код Хэмминга.

Решение.

Количество информационных символов n_u =8. По таблице №4 $n_{\rm K}$ = 4, а общее число символов n = $n_{\rm W}$ + $n_{\rm K}$ =12. По закону N= 2^i , i=0,1,2...n определяются позиции проверочных символов: 1,2,4 и 8, остальные позиции занимают информационные символы.

Следовательно, кодовая комбинация будет иметь вид:

$$C = _{-}1_{1}00_{1}00_{1}$$

Для определения значения проверочных символов составляются уравнения:

$$a_1 = a_3 \oplus a_5 \oplus a_7 \oplus a_9 \oplus a_{11} = 1 \oplus 1 \oplus 0 \oplus 1 \oplus 0 = 1$$

$$a_2 = a_3 \oplus a_6 \oplus a_7 \oplus a_{10} \oplus a_{11} = 1 \oplus 0 \oplus 0 \oplus 0 \oplus 0 = 1$$

$$a_4 = a_5 \oplus a_6 \oplus a_7 \oplus a_{12} = 1 \oplus 0 \oplus 0 \oplus 1 = 0$$

$$a_8 = a_9 \oplus a_{10} \oplus a_{11} \oplus a_{12} = 1 \oplus 0 \oplus 0 \oplus 1 = 0$$

Следовательно, С=111010001001.

Пример 4.

В результате передачи кодовой комбинации из предыдущего примера 3 принята кодовая комбинация C^* =110010001001, т.е. произошло искажение 3-го разряда. Обнаружить ошибку.

Решение.

Значения проверок равны:

$$E_1 = a_1 \oplus a_3 \oplus a_5 \oplus a_7 \oplus a_9 \oplus a_{11} = 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 = 1$$

$$E_2 = a_2 \oplus a_3 \oplus a_6 \oplus a_7 \oplus a_{10} \oplus a_{11} = 1 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 0 = 1$$

$$E_3 = a_4 \oplus a_5 \oplus a_6 \oplus a_7 \oplus a_{12} = 0 \oplus 1 \oplus 0 \oplus 0 \oplus 1 = 0$$

$$E_4 = a_8 \oplus a_9 \oplus a_{10} \oplus a_{11} \oplus a_{12} = 0 \oplus 1 \oplus 0 \oplus 0 \oplus 1 = 0$$

Тогда контрольное число (синдром) ошибки:

$$S=E_4E_3E_2E_1 = 0011_{(2)} = 3_{(10)}$$

Переход из двоичной системы счисления в десятичную:

$$1 \cdot 2^0 + 1 \cdot 2^1 + 0 \cdot 2^2 + 0 \cdot 2^3 = 3$$

Значение синдрома указывает, что в результате однократной ошибки искажен 3-й разряд принятой кодовой комбинации. Для исправления ошибки достаточно инвертировать искаженный разряд.

Пример 5.

В результате передачи кодовой комбинации из предыдущего примера 3 принята кодовая комбинация $C^*=101000001001$, т.е. произошло искажение 2-го и 5-го разрядов. Обнаружить ошибки.

Решение.

Значения проверок равны:

$$E_1 = a_1 \oplus a_3 \oplus a_5 \oplus a_7 \oplus a_9 \oplus a_{11} = 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 \oplus 0 = 1$$

$$E_2 = a_2 \oplus a_3 \oplus a_6 \oplus a_7 \oplus a_{10} \oplus a_{11} = 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 0 = 1$$

$$E_3 = a_4 \oplus a_5 \oplus a_6 \oplus a_7 \oplus a_{12} = 0 \oplus 0 \oplus 0 \oplus 0 \oplus 1 = 1$$

$$E_4 = a_8 \oplus a_9 \oplus a_{10} \oplus a_{11} \oplus a_{12} = 0 \oplus 1 \oplus 0 \oplus 0 \oplus 1 = 0$$

Тогда контрольное число (синдром) ошибки:

$$S=E_4E_3E_2E_1 = 0111_{(2)} = 7_{(10)}$$

Переход из двоичной системы счисления в десятичную:

$$1 \cdot 2^0 + 1 \cdot 2^1 + 1 \cdot 2^2 + 0 \cdot 2^3 = 7$$

Таким образом, при наличии двукратной ошибки декодирование дает номер разряда с ошибкой в позиции 7, в то время как ошибки произошли во 2-м и 5-м разрядах. В этом случае составляется расширенный код Хэмминга, путем добавления одного проверочного символа.

Задачи для самостоятельного решения

- 1.Сколько информационных символов содержится в коде, исправляющем одиночную ошибку при числе информационных комбинации N=32.
- 2.Определить избыточность корректирующего кода при общем числе кодовых комбинаций N=256.
 - 3. Перевести в десятичную систему двоичное число 100110.
- 4.Проссумировать коды по правилу четности: 010101100011

111110001100 000010001010.

- 5. Построить макет кода Хэмминга, определить значения корректирующих разрядов для кодовой комбинации 00101 кода Хаффмана.
- 6.Пользуясь кодом Хэмминга найти ошибку в сообщении 1111 1011 0010 1100 1101 1100 110.
- 7. Проверить верны ли кодовые слова, если они были созданы с помощью кода Хэмминга. Если нет, то найти исходные данные.
- -010101100011
- -1111110001100
- -000010001010
- 8.Дана последовательность 10011010. Закодировать кодом Хэмминга.
- 9.Закодировать сообщение «habr» кодом Хэмминга, имея следующее бинарное представление: h-01000100, a-00111101, b-0011110, r-01001000. (примечание. Исходное сообщение разбить на два блока по 16 бит)
- 10.Сообщение из предыдущей задачи 6 получено с ошибкой в 11-м бите. Найти ошибку.

Контрольные вопросы

- 1. Какие коды называются помехоустойчивыми?
- 2. Что называется избыточностью?
- 3. Как образуются корректирующие коды?
- 4. Объяснить методику построения кода Хэмминга.
- 5. Назовите основные параметры кода Хэмминга?
- 6.Как определить общее число элементов кодовых комбинаций кодов Хэмминга?
- 7. Как определить число проверочных и информационных элементов кода Хэмминга?
- 8. Как выбираются номера проверочных позиций кода Хэмминга?
- 9. По какому закону рассчитывают номера контрольных символов?
- 10. Объяснить правило четности.
- 11. Как происходит переход из двоичной системы счисления в десятичную?
- 12. Объяснить особенности кода Хэмминга.

значение функции $-P\log_2 P$

Таблица

P	$-P\log_2 P$						
	_		_		_		_
0.00	0.0000	0.26	0.5053	0.52	0.4906	0.78	0.2796
0.01	0.0664	0.27	0.5100	0.53	0.4854	0.79	0.2678
0.02	0.1129	0.28	0.5142	0.54	0.4800	0.80	0.2575
0.03	0.1517	0.29	0.5179	0.55	0.4744	0.81	0.2462
0.04	0.1857	0.30	0.5211	0.56	0.4684	0.82	0.2348
0.05	0.2161	0.31	0.5238	0.57	0.4623	0.83	0.2231
0.06	0.2435	0.32	0.5260	0.58	0.4558	0.84	0.2113
0.07	0.2686	0.33	0.5278	0.59	0.4491	0.85	0.1993
0.08	0.2915	0.34	0.5292	0.60	0.4422	0.86	0.1871
0.09	0.3127	0.35	0.5301	0.61	0.4350	0.87	0.1748
0.10	0.3322	0.36	0.5306	0.62	0.4276	0.88	0.1623
0.11	0.3503	0.37	0.5307	0.63	0.4199	0.89	0.1496
0.12	0.3671	0.38	0.5304	0.64	0.4121	0.90	0.1368
0.13	0.3826	0.39	0.5298	0.65	0.4040	0.91	0.1238
0.14	0.3971	0.40	0.5288	0.66	0.3957	0.92	0.1107
0.15	0.4105	0.41	0.5274	0.67	0.3871	0.93	0.0978
0.16	0.4230	0.42	0.5856	0.68	0.3784	0.94	0.0839
0.17	0.4346	0.43	0.5236	0.69	0.3694	0.95	0.0703
0.18	0.4453	0.44	0.5211	0.70	0.3602	0.06	0.0565
0.19	0.4552	0.45	0.5181	0.71	0.3508	0.97	0.0426
0.20	0.4644	0.46	0.5153	0.72	0.3412	0.98	0.0286
0.21	0.4728	0.47	0.5120	0.73	0.3314	0.99	0.0140
0.22	0.4806	0.48	0.5083	0.74	0.3215	1.00	0.0000
0.23	0.4877	0.49	0.5043	0.75	0.3113		
0.24	0.4941	0.50	0.5000	0.76	0.3009		
0.25	0.500	0.51	0.4954	0.77	0.2903		

СПИСОК ЛИТЕРАТУРЫ

- а) основная литература:
- 1. Лебедько Е.Г., Математические основы передачи информации. Ч.5: учеб. пособие для вузов.-СПб: СПбГУ ИТМО, 2010.-93 с.
- 2. Лебедько Е.Г., Теоретические основы передачи информации: СПб: Лань, 2011.-352с. Ил.- (Учебники для вузов. Специальная литература).
- б) дополнительная литература:
- 1. Таукчи В.М. Прикладная теория информации: конспект лекций ч.3- Л: ЛИТМО, 1976г. 150 экз.
- 2. Лукин С.Б., Тимофеев О.П. Элементы теории информации: методические указания Л: ЛИТМО, 1990г.-150 экз.
- 3. Лебедько Е.Г., Петров И.В. Введение в теорию информации: учебное пособие С-Пб:ГИТМО, 1995г. 100 экз.
- 4. Гуров И.П. Основы теории информации и передачи сигналов: учебное пособие С-Пб: БхВ, 2000г. 100 экз.
- 5. Дмитриев В.И. Прикладная теория информации: учебник для вузов М: Высшая школа, 1989г. 10 экз.

В 2009 году Университет стал победителем многоэтапного конкурса, в результате которого определены 12 ведущих университетов России, которым присвоена категория «Национальный исследовательский университет». Министерством образования и науки Российской Федерации была утверждена программа его развития на 2009—2018 годы. В 2011 году Университет получил наименование «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

КАФЕДРА ОПТИКО-ЭЛЕКТРОННЫХ ПРИБОРОВ И СИСТЕМ И ЕЕ НАУЧНО-ПЕДАГОГИЧЕСКАЯ ШКОЛА

Кафедра создавалась в 1937-38 годах и существовала под следующими названиями:

- с 1938 по 1958 год кафедра военных оптических приборов;
- с 1958 по 1967 год кафедра специальных оптических приборов;
- с 1967 по 1992 год кафедра оптико-электронных приборов;
- с 1992 года кафедра оптико-электронных приборов и систем.
 Кафедру возглавляли:
- с 1938 по 1942 год профессор К.Е. Солодилов;
- с 1942 по 1945 год профессор А.Н. Захарьевский (по совместительству);
- с 1945 по 1946 год профессор М.А. Резунов (по совместительству);
 - c 1947 по 1972 год профессор С.Т. Цуккерман;
- с 1972 по 1992 год заслуженный деятель науки и техники РСФСР, профессор Л.Ф. Порфирьев;
- с 1992 по 2007 год заслуженный деятель науки РФ, профессор Э.Д. Панков.
- с 2007 года по настоящее время почетный работник высшего профессионального образования, профессор В.В. Коротаев.

История кафедры началась в 1937-38 годах с организации в Ленинградском институте точной механики и оптики (ЛИТМО) кафедры военных оптических приборов. Первым заведующим кафедрой был К.Е. Солодилов, до этого возглавлявший Центральное конструкторское бюро (ЦКБ) Всесоюзного объединения оптико-механической промышленности (ВООМП). Преподавателями кафедры стали сотрудники этого ЦКБ - М.А. Резунов, М.Я. Кругер, С.Т. Цуккерман, В.А. Егоров, Б.М. Кулежнов.

В годы Великой Отечественной войны кафедра была эвакуирована в Черепаново, где обязанности заведующего кафедрой выполнял профессор А.И. Захарьевский. Преподавателями кафедры по состоянию на 01.04.1945 г были профессор Чулановский, доцент Кругер, ст. преподаватель Гриневич, ассистенты Дедюлин и Погарев. После возвращения в Ленинград кафедрой в 1945-46 годах по совместительству заведовал начальник конструкторского бюро (КБ) Государственного оптического института им. С.И. Вавилова (ГОИ) М.А. Резунов.

В начале 1947 года кафедру возглавил профессор С.Т. Цуккерман, который руководил ею до 1972 года. В 1958 году кафедра была реорганизована в кафедру специальных оптических приборов, а в 1967 году в кафедру оптико-электронных приборов (ОЭП).

Создание С.Т. Цуккерманом в предвоенные годы книги «Точные механизмы» (М.: Оборонгиз, 1941) является значительным вкладом в развитие отечественного точного приборостроения. С.Т. Цуккерман является автором более 120 научных работ и более 50 изобретений. В предвоенные, военные и послевоенные годы С.Т. Цуккерман работал над созданием прицельных устройств для зенитной и авиационной артиллерии. Он был одним из создателей серийного авиационного гироскопического прицела АСП с автоматической выработкой поправки на упреждение, который устанавливался на истребителях МиГ, а также механического ракурсного прицела для мелкокалиберной зенитной артиллерии, широко применяемого во время войны во Вьетнаме.

В 1958 г. при кафедре была организована отраслевая лаборатория «Специальные оптические приборы» с достаточно сильной группой конструкторов-разработчиков.

С.Т. Цуккерман и старший научный сотрудник А.С. Гридин руководили разработкой приборов управления по лучу (ПУЛ), предназначенных для управления движением различных подвижных объектов по прямой линии или по программе.

В начале 60-х годов старший научный сотрудник Г.Г. Ишанин занимался разработкой фотометрической аппаратуры, предназначенной для паспортизации оптико-электронных приборов и систем различного назначения.

Значительное влияние на содержание подготовки специалистов и научных исследований оказало привлечение к работе на кафедре выдающегося специалиста в области оптико-электронного приборостроения, члена-корреспондента Российской академии наук (РАН), Героя Социалистического Труда, лауреата Ленинской премии профессора М.М. Мирошникова, который, работая на кафедре ОЭП с 1969 года по 1976 год в должности профессора по совместительству, поставил и читал курс «Теория оптико-электронных приборов».

С 1972 года по 1992 год кафедрой ОЭП заведовал заслуженный деятель науки и техники РСФСР, профессор Л.Ф. Порфирьев, известный специалист в области автоматических ОЭПиС в комплексах навигации и управления авиационной и космической техникой. Соответственно тематика выполнения научно-исследовательских работ на кафедре приобрела новые направления, существенно увеличилось число тем, носящих поисковый фундаментальный характер. Были разработаны новый учебный план и программы учебных дисциплин.

- Л.Ф. Порфирьев является автором 19 учебников, учебных пособий и монографий, среди которых можно выделить такие как «Теория оптико-электронных приборов и систем» (Л.: Машиностроение, 1980), «Основы теории преобразования сигналов в оптико-электронных системах» (Л.: Машиностроение, 1989). Результаты его работ можно оценить как значительный вклад в разработку общей теории оптико-электронных систем.
- Л.Ф. Порфирьев как руководитель проводил достаточно жесткую кадровую политику, при которой на кафедре оставались работать только те сотрудники, которые отличались преданностью делу. При этом он оказывал всемерную поддержку сотрудникам кафедры по разработке ими различных направлений теории и практики оптико-электронного приборостроения. По результатам научно-исследовательских работ в этот период защитили диссертации на соискание ученой степени доктора технических наук Г.Н. Грязин (1983 г.), Е.Г. Лебедько (1985 г.), Э.Д. Панков (1986 г.), Г.Г. Ишанин (1988 г.), защищено много диссертаций на соискание ученой степени кандидата технических наук.

В этот период под руководством Э.Д. Панкова начали проводиться исследования по разработке новых оптико-электронных систем измерения взаимного положения разнесенных в пространстве объектов.

Г.Н. Грязин, перешедший на кафедру с радиотехнического факультета в конце 60-х годов, продолжил свои работы в области прикладного телевидения, в частности, по разработке систем наблюдения за быстродвижущимися объектами и быстропротекающими процессами.

С 1975 года заведующим отраслевой лабораторией стал старший научный сотрудник А.Н. Тимофеев, который продолжил исследования по разработке методов и средств контроля пространственного положения

объектов с помощью ОЭП с оптической равносигнальной зоной для машиностроения, энергетики, строительства, судостроения и железнодорожного транспорта.

С 1975 года, после увольнения в запас, из Ленинградской военной инженерной краснознаменной академии (ЛВИКА) им. А.Ф. Можайского на кафедру пришел работать в должности профессора С.П. Авдеев, известный специалист в области ОЭПиС космических аппаратов. Он поставил курсы и читал лекции по учебным дисциплинам «Оптико-электронные приборы», «Оптико-электронные приборы систем управления», «Оптико-электронные приборы для научных исследований».

Существенное влияние на содержание подготовки специалистов и научных исследований оказало привлечение к работе на кафедре лауреата Ленинской и Государственной премий профессора Б.А. Ермакова, известного специалиста в области физической оптики и оптико-электронного приборостроения. Б.А. Ермаков работал на кафедре ОЭП с 1979 года по 1992 год в должности профессора по совместительству и поставил курс «Оптико-электронные приборы с лазерами».

В 70-80 годах под руководством доцента Е.Г. Лебедько проводились исследования законов отражения лазерного излучения от нестационарных поверхностей и протяженных объектов, исследования в области теории идентификации объектов по их излучению в сложной фоновой ситуации. Создан комплекс для лазерной локации крупногабаритных морских объектов сложной конфигурации и водной поверхности. В этих работах принимали участие доценты О.П. Тимофеев и С.Б. Лукин.

В 70-90 годах под руководством Л.Ф. Порфирьева был разработан ряд астродатчиков, систем астроориентации и космической навигации (В.И. Калинчук, А.Л. Андреев, С.Н. Ярышев).

С 1992 г. заведующим кафедрой является заслуженный деятель науки Российской Федерации, профессор Э.Д. Панков. В 1992 году кафедра была переименована в кафедру оптико-электронных приборов и систем (ОЭПиС).

Под руководством Э.Д. Панкова в 70-90-х годах были проведены разработки ряда оптико-электронных приборов и систем специального и гражданского применения, нашедших практическое внедрение и способствующих научно-техническому прогрессу и укреплению обороноспособности нашей страны.

В частности, исследования и разработки в области линейных и угловых измерений позволили приступить к решению общей проблемы согласования отсчетных баз на нестационарно деформируемых объектах с помощью оптико-электронных систем.

В рамках указанной проблемы доцентом И.А. Коняхиным проводились исследования, результаты которых можно классифицировать

как разработку теории построения автоколлимационных систем с компонентами нарушенной типовой конфигурации.

В то же время доцентом В.В. Коротаевым разработан ряд поляризационных приборов и измерительных установок. Теоретическим результатом работ явилась разработка методологии анализа поляризационных свойств оптических систем изменяющейся ориентацией элементов. По результатам указанных работ В.В. Коротаев (в 1997 г.) и И.А. Коняхин (в 1998г.) защитили диссертации на соискание ученой степени доктора технических наук.

Применение многоэлементных приемников в системах пеленгации дало толчок развитию телевизионных систем технического зрения, измерительных телевизионных систем и систем обработки изображений. Результаты этих исследований были использованы доцентом А.Л. Андреевым при постановке учебных курсов «Оптико-электронные системы с ЭВМ», «Специализированные аппаратные и программные средства ОЭП», «Автоматизированные телевизионные вычислительные комплексы», а также доцентом С.Н. Ярышевым при постановке им в 1993 году учебной дисциплины «Видеотехника».

Указанные курсы обеспечиваются лабораторным практикумом на рабочих оснащенных персональными компьютерами, мест, базе объединенными в локальную сеть. Рабочие места оснащены аппаратными и программными средствами цифровой видеозаписи И изображений. этот период Г.Н. Грязиным были подготовлены В дисциплинам: «Телевизионные системы», «Прикладное телевидение и телевизионно-вычислительные комплексы» (совместно с А.Л. Андреевым).

На основе обобщения методик расчета оптико-электронных систем различного назначения и принципа действия в 1981 году были развернуты работы по созданию элементов систем автоматизированного проектирования ОЭП. За период с 1981 по 1987 год под руководством И.А. Коняхина были разработаны оригинальные пакеты прикладных программ расчета параметров систем измерения пространственного положения объектов.

Развитие компьютерной техники и программного обеспечения общего назначения позволило создать проблемно-ориентированное программное обеспечение поддержки проектирования ОЭП на системотехническом уровне.

По результатам научных работ сотрудниками кафедры ОЭПиС выпущено в свет 15 монографий, 11 учебников и учебных пособий. На кафедре подготовлено 14 докторов наук, а также более 110 кандидатов наук.

На разработки кафедры получены авторские свидетельства СССР и патенты Российской Федерации на более чем 200 изобретений.

Наибольший вклад в изобретательскую деятельность внес Э.Д. Панков - автор 123 изобретений, из которых 33 внедрены в промышленности.

При заявлении научно-педагогической школы «Оптико-электронное приборостроение» в 2009 году были сформулированы следующие основные научно-технические результаты, достигнутые в период с 1938 по 2009 годы:

- разработаны принципы построения военных оптико-механических приборов;
 - разработаны принципы построения точных механизмов;
- разработаны принципы построения оптико-электронных приборов с оптической равносигнальной зоной;
- систематизированы теоретические основы и принципы построения оптико-электронных приборов;
- разработаны методы описания импульсных сигналов,
 идентификации и классификации объектов в системах нестационарной лазерной локации;
- разработаны теория, принципы построения и методы расчета импульсных телевизионных систем наблюдения быстродвижущихся объектов;
- обнаружен термоупругий эффект в кристаллическом кварце и создан новый тип приемников оптического излучения;
- разработана теория построения автоколлимационных систем с компонентами нарушенной типовой конфигурации;
- разработана методология анализа поляризационных свойств оптических систем с изменяющейся ориентацией элементов;
- систематизированы теоретические основы и принципы построения измерительных систем на основе матричных фотопреобразователей;
- разработаны основы построения ОЭС согласования отсчетных баз на нестационарно деформируемых объектах.

Основоположники научной школы:

- Солодилов Константин Евгеньевич, заведующий кафедрой с 1938 г. по 1942 г., профессор;
- Цуккерман Семен Тобиасович, заведующий кафедрой с 1947 г. по 1972 г., профессор;
- Мирошников Михаил Михайлович, директор ГОИ, д.т.н., профессор, профессор кафедры ОЭП с 1967 г. по 1978 г.; член-корреспондент Российской Академии наук, Герой Социалистического Труда, лауреат Ленинской премии.
- Порфирьев Леонид Федорович, заведующий кафедрой с 1972 г. по 1992 г., д.т.н., профессор, Заслуженный деятель науки и техники РСФСР.

• С 2007 г. заведующим кафедрой является почетный работник высшего профессионального образования Российской Федерации, профессор В.В. Коротаев.

На кафедре была открыта подготовка по новой специализации инженеров «Оптико-электронные приборы и системы обработки видеоинформации» и новая магистерская программа «Оптико-электронные методы и средства обработки видеоинформации».

В 2007 году был создан научно-образовательный центр оптико-электронного приборостроения (НОЦ ОЭП).

Научно-образовательный центр оптико-электронного приборостроения выполняет научно-исследовательские опытноконструкторские созданию видеоинформационных работы ПО информационно-измерительных приборов различного назначения, высокоточных приборов для измерения линейных, угловых и других физических величин в промышленности, энергетике, на транспорте, а также систем технического зрения и обработки видеоинформации. К выполнению научно-исследовательских и опытно-конструкторских работ широко привлекаются студенты, аспиранты, молодые специалисты, молодые кандидаты наук. Научно-образовательный центр является активным участником Федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» на 2009-2013 годы.

Направления научных исследований кафедры ОЭПиС в 2007-2012 годах

Развитие теоретических основ и принципов построения оптико-электронных приборов и систем, в том числе:

- видеоинформационных измерительных систем;
- видеоинформационных систем наблюдения;
- видеоинформационных импульсных систем наблюдения быстродвижущихся объектов;
- комплексированных телевизионно-тепловизионных систем наблюдения,
- ОЭПиС обеспечения техносферной безопасности;
- ОЭПиС согласования отсчетных баз на нестационарно деформируемых объектах;
- автоколлимационных систем с компонентами нарушенной типовой конфигурации;
- ОЭПиС цветового и спектрального анализа объектов;
- фотометрических систем аттестации ОЭПиС, источников и приемников оптического излучения;
- систем лазерной локации с нестационарным облучением;
- ОЭС сепарации полезных ископаемых.

По результатам исследований в этот период на кафедре были защищены 14 диссертаций на соискание ученой степени кандидата технических наук.

Идет активное пополнение преподавательского состава молодыми кандидатами наук. В настоящее время на кафедре работает 7 кандидатов наук в возрасте до 35 лет.

Мы занимаемся разработкой оптико-электронных приборов и систем в целом:

- системотехническое проектирование,
- разработка (выбор) оптической системы,
- разработка конструкции,
- разработка (выбор) электроники и средств обработки информации,
- разработка программного обеспечения,
- сборка, юстировка, настройка и испытания.

Мы учим тому, что сами умеем делать!

По итогам конкурсов ведущих научно-педагогических коллективов СПб НИУ ИТМО 2007-2011 годов кафедра занимала призовые места.

С 2011 года подготовка бакалавров, магистров и специалистов на кафедре ОЭПиС осуществляется по Федеральным государственным образовательным стандартам третьего поколения (ФГОС).

Подготовка бакалавров по направлению:

<u>200400 «Оптотехника</u>» (профиль - <u>Оптико-электронные приборы и системы</u>). Срок обучения - 4 года

Подготовка магистров по направлению:

200400 Оптотехника.

Магистерские программы:

- <u>Оптико-электронные методы и средства обработки</u> видеоинформации
 - Оптико-электронные приборы и системы безопасности

Срок обучения – 2 года.

Подготовка инженеров по специальности:

200401 -Электронные и оптико-электронные приборы и системы специального назначения.

Специализация:

— <u>Оптико-электронные информационно-измерительные приборы и системы</u>. Срок обучения — 5,5 лет.

Подробная информация о кафедре ОЭПиС имеется на сайте кафедры:

http://oeps.ifmo.ru/

Зверева Е.Н., Лебедько Е.Г.

СБОРНИК ПРИМЕРОВ И ЗАДАЧ ПО ОСНОВАМ ТЕОРИИ ИНФОРМАЦИИ КОДИРОВАНИЯ СООБЩЕНИЙ

Методические указания

В авторской редакции Редакционно-издательский отдел НИУ ИТМО Зав. РИО

Подписано к печати

Заказ № Тираж

Отпечатано на ризографе

Лицензия ИД № 00408 от 05.11.99

Н.Ф. Гусарова

Зверева Е.Н., Лебедько Е.Г.

50 экз.

Редакционно-издательский отдел

Санкт-Петербургского национального исследовательского университета информационных технологий, механики и оптики 197101, Санкт-Петербург, Кронверкский пр., 49

