6.046 Lecture 9 March 7,2013

(supplementary material to lecture slides)

Proof of (1)

· Suppose $A = (A_{ij})_{i,j \in \{1,\dots,n\}}$ where

 $A_{ij} = \mathbb{P}_r \left[V_{t+1} = j \mid V_t = i \right], \forall i,j, \forall t$

location at location at time t time t+1

· Claim: $\chi_{t+1} = \chi_t \cdot A$

distn' of ven distn' of ve

· Proof:

 $\frac{f:}{\forall j: \chi_{t+1}(j) = \mathbb{P}r[V_{t+1}=j] = \sum_{i=1}^{n} \mathbb{P}r[V_{t}=i] \cdot \mathbb{P}r[V_{t+1}=j|V_{t}=i]}$

i = 1 $X_{t}(i)$ $X_{t}(i)$

 $= \chi_t \cdot A \boxtimes$

Review: Eigenvalues/Eigenvectors; -Let A be a square matrix - Det: o l is an eigenvalue of A if $x \cdot A = \lambda \cdot x$ for some vector $0 \neq x \in \mathbb{R}^n$.

• x is called a left-eigenvector of A corresponding to eigenvalue λ Lazy Random Walk on a 4-Cycle: $A = \begin{pmatrix} 1/3 & 1/3 & 0 & 1/3 \\ 1/3 & 1/3 & 1/3 & 0 \\ 0 & 1/3 & 1/3 & 1/3 \\ 1/3 & 0 & 1/3 & 1/3 \end{pmatrix}$ eigenvalues $\lambda_1 = 1$, $\lambda_2 = \lambda_3 = 1/3$, $\lambda_4 = -1/3$ Claim: No matter what xo is , x+ → (1/4, 1/4, 1/4) as t→ ∞. Proof: • e1= (1/4, 1/4, 1/4) is a left-eigenvector corr. to 11

• By the Spectral theorem, because A is symmetric

there exist eigenvectors e2, e3, e4 corresponding to x2, x3, x4 respectively, so that {e1, e2, e3, e43

forms a basis for R4. · Hence xo can be expressed as a linear combination ot l1, l2, l3, l4. l.e. $X_0 = d_1 \cdot l_1 + a_2 \cdot l_2 + a_3 \cdot l_3 + d_4 \cdot l_4$ for some scalars diaz, az, az, a $\chi_t = \chi_o \cdot A^t =$ = $(a_1 \cdot e_1 + a_2 \cdot e_2 + a_3 \cdot e_3 + a_4 \cdot e_4) \cdot A^t =$ = $a_1 \cdot e_1 A^t + a_2 \cdot e_2 A^t + a_3 \cdot e_3 A^t + a_4 \cdot e_4 A^t$ = $a_1 \cdot e_1 A^{t-1} + a_2 \cdot e_2 A \cdot A^{t-1} + \cdots$ = a1 · 21 · e1 At-1 + a2 · 22 · 2 At-1 + ... = a1 · 21 · e1 + a2 /2 · e2 + a3 /3 · e3 + a4 /4 · e4 $\rightarrow \alpha_1 \cdot \bar{e}_1$, as $t \rightarrow \infty$ (be cause $|\lambda_2|, |\lambda_3|, |\lambda_4| < 1$) So $\chi_t \rightarrow \left(\frac{\alpha_1}{4}, \frac{a_1}{4}, \frac{a_1}{4}, \frac{a_1}{4}\right)$ as $t \rightarrow \infty$ 9: what may as be? A: The limit must be a distribution. So a,=1. chence $\chi_{t} \rightarrow (\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4})$ as $t \rightarrow \infty$

Note: Above proof works for all lazy random walks on undirected, connected graphs. Namely: i transition matrix A is symmetrix ii it has n real eigenvalues of which $\lambda_1 = 1$ rest satisfy $|\lambda_2|$, $|\lambda_3|$, ..., $|\lambda_n| < 1$. iii. be cause A is symmetric, eigenvectors
e1, e2, ..., en corresponding to these
ligen values form a basis
iv. hence starting distr' x6 can
be written as: $\chi_o = \sum_{i=1}^{\infty} a_i \cdot e_i$ V. So $X_t = X_0 A^t = \sum_{i=1}^n \alpha_i(e_i A^t)$ $= \underbrace{\xi}_{i} \operatorname{di}_{i} \operatorname{li}_{i} \operatorname{because}_{\lambda_{1}=1} \operatorname{and}_{\lambda_{2},|\lambda_{3}|,|\lambda_{1}|}$ $\Rightarrow as \ t \to \infty, \ \chi_{1} \to \alpha_{1} \cdot e_{1} \left(\frac{|\lambda_{2}|,|\lambda_{3}|,|\lambda_{1}|}{|\lambda_{2}|,|\lambda_{3}|,|\lambda_{1}|} \right)$ $\operatorname{are}_{1} = \underbrace{\xi}_{i} \operatorname{di}_{i} \operatorname{di}_{i} \operatorname{e}_{i} \operatorname{di}_{i} \operatorname{e}_{i} \operatorname{di}_{i} \operatorname{e}_{i}$ $\operatorname{are}_{1} = \underbrace{\xi}_{1} \operatorname{di}_{1} \operatorname{di}_{1} \operatorname{e}_{i}$ Vi. so $\chi_{\infty} = d_1 \cdot e_1$ for whatever d_1 makes this a distn?.

+	_	A			Λ																
	G Y	apl	l	6	lor	ino															
																			A		
		Co	ut:		G:	= ('	V, E	-)	gr	aph		Q	- {	1, 2,	,6	73	se t	o f	col	ors	
		60	al:	5	Dam	ple	, q	· u	. d .	r.	L	gal	Co	lor	ing	o f	K				
		~~				•					•	0		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							
													<u></u>		19	n (a c	BJB1 V C	, to	hat	-
														- N	ion t	W 0		acei	nt.	# (OV)	
															erti	ces	get	- #	e s	ame	
														(slo	۲	0				
		Der	wt.	l	64		\bigwedge	: t	he	m	aXI	, Mu	m	de	gre	e i	5 f	G			
															ď						
		Re	ma	rks:	•	ſ						0			4						
		Re			- Í J		$q \geq$	> 🛆	+1	* (a	le	gal	U	lor	ing	al	Lara	enta	rel	
							Y				to	L.	\times is	t		J	Ø				
														_							
					- j.	-	q.	- [7 ;	В	rook	, 	the	eore	m:						
							Y				~	\sim		~~)			
												ə İ	ナーハ	Λ,	2	the	gr	aph I	nas 1	a	L
														rut	O LOY	ING	/ J (Λ.	11)-	(Di	a s no que	1
													4	JV[]	٧١٧١	a	(4)	(1)	<u> </u>	y w	
												0	f 	<u> </u>	-2	s -					
														2	-col	oring		No	o del	Cucl	
						ſ								-	exi,	rts		7 100	0.000	cycl	ب
					-	}	q <	\bigwedge .	_ /	VP-	hai	d	70	te		i f	Δ-	color	inq	exis	た
							V									J			J		

