Lecture Two - Partial Derivatives

Section 2.1 – Graphs and Level Curves

Definitions

Suppose D is a set of n-tuples of real numbers $(x_1, x_2, ..., x_n)$. A **real-valued function** f on D is a rule that assigns a unique (single) real number

$$w = f(x_1, x_2, ..., x_n)$$

To each element in D. The set D is the function's **domain**. The set of w-values taken on by f is the function's **range**. The symbol w is the **dependent variable** of f, and f is said to be a function of the n **independent variables** x_1 to x_n . We also call the x_j 's the function's **input variables** and call w the function's **output variable**.

Domains and Ranges

Functions of two variables

Function	Domain	Range
$z = \sqrt{y - x^2}$	$y \ge x^2$	$[0, \infty)$
$z = \frac{1}{xy}$	$xy \neq 0$	$(-\infty, 0) \cup (0, \infty)$
$z = \sin xy$	Entire plane	[-1, 1]

Functions of three variables

Function	Domain	Range
$w = \sqrt{x^2 + y^2 + z^2}$	Entire plane	$[0, \infty)$
$w = \frac{1}{x^2 + y^2 + z^2}$	$(x, y, z) \neq (0, 0, 0)$	$(0, \infty)$
$w = xy \ln z$	$Half - space \ z > 0$	$(-\infty, \infty)$

Functions of Two Variables

Definitions

A point (x_0, y_0) in a region (set) R in the xy-plane is an *interior point* of R if it is the center of a disk of positive radius that lies entirely in R. A point (x_0, y_0) is a *boundary point* of R if every disk centered at (x_0, y_0) contains points that lie outside of R as well as points that lie in R. (The boundary point itself need not belong to R.)

The interior points of a region, as a set, make up the **interior** of the region. The region's boundary points make up its *boundary*. A region is *open* if it consists entirely of interior points. A region is *closed* if it contains all its boundary points.

Definitions

A region in the plane is *bounded* if it lies inside a disk of fixed radius. A region is *unbounded* if it is not bounded.

Graphs, Level Curves, and contours of Functions of two Variables

Definitions

The set of points in the plane where a function f(x, y) = c is called a *level curve* of f. The set of all points (x, y, f(x, y)) in space, for (x, y) in the domain of f, is called the *graph* of f. The graph of f is also called the *surface* z = f(x, y)

Example

Graph $f(x, y) = 100 - x^2 - y^2$ and plot the level curves f(x, y) = 0, f(x, y) = 51, and f(x, y) = 75 in the domain of f in the plane.

Solution

The domain of f is the entire xy-plane, and the range of f is the set of real numbers less than or equal to 100.

The graph is the paraboloid $z = 100 - x^2 - y^2$, the positive portion of which is shown in the picture.

At
$$f(x, y) = 0 \implies x^2 + y^2 = 100$$

Which is the circle of radius 10 centered at the origin (level curve).

At
$$f(x, y) = 51 \implies x^2 + y^2 = 49$$

Which is the circle of radius 7 centered at the origin.

At
$$f(x, y) = 75 \implies x^2 + y^2 = 25$$

Which is the circle of radius 5 centered at the origin.

If $x^2 + y^2 > 100$, then the values of f(x, y) are negative.

The contour curve $f(x, y) = 100 - x^2 - y^2 = 75$ is the circle $x^2 + y^2 = 25$ in the plane z = 75.

The level curve $f(x, y) = 100 - x^2 - y^2 = 75$ is the circle $x^2 + y^2 = 25$ in the xy-plane.

Functions of Three Variables

Definition

The set of points (x, y, z) in space where a function of three independent variables has a constant value f(x, y, z) = c is called a *level surface* of f.

Example

Describe the level surfaces of the function

$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$$

Solution

The value of f is the distance from the origin to the point (x, y, z).

Each surface $\sqrt{x^2 + y^2 + z^2} = c$ (>0), is a sphere of radius c centered at the origin.

Definitions

A point (x_0, y_0, z_0) in a region \mathbf{R} in space is an *interior point* of \mathbf{R} if it is the center of a solid ball that lies entirely in \mathbf{R} . A point (x_0, y_0, z_0) is a *boundary point* of \mathbf{R} if every solid ball centered at (x_0, y_0, z_0) contains points that lie outside of \mathbf{R} as well as that lie inside \mathbf{R} . The *interior* of \mathbf{R} is the set of interior points of \mathbf{R} . The *boundary* of \mathbf{R} is the set of boundary points of \mathbf{R} .

A region is *open* if it consists entirely of interior points. A region is *closed* if it contains its entire boundary.

Example

The temperature w beneath the Earth's surface is a function of the depth x beneath the surface and the time t of the year. If we measure x in feet and t as the number of days elapsed from the expected date of the yearly highest surface temperature, we can model the variation in temperature with the function

$$w = \cos\left(1.7 \times 10^{-2} t - 0.2x\right) e^{-0.2x}$$

The temperature at 9 ft is scaled to vary from +1 to -1, so that the variation at x ft. can be interpreted as a fraction of the variation at the surface.

- Find the specific values for $f(x, y, z) = \frac{x y}{v^2 + z^2}$ 1.

 - a) f(3,-1,2) b) $f(1, \frac{1}{2}, -\frac{1}{4})$ c) $f(0, -\frac{1}{3}, 0)$ d) f(2, 2, 100)

- Find the specific values for $f(x, y, z) = \sqrt{49 x^2 y^2 z^2}$ 2.

- a) f(0, 0, 0) b) f(2, -3, 6) c) f(-1, 2, 3) d) $f\left(\frac{4}{\sqrt{2}}, \frac{5}{\sqrt{2}}, \frac{6}{\sqrt{2}}\right)$

Find and sketch the domain for each function

- $f(x,y) = \sqrt{y-x-2}$ 3.
- $f(x,y) = \ln(x^2 + y^2 4)$
- $f(x,y) = \frac{\sin(xy)}{x^2 + y^2 25}$
- $f(x,y) = \ln(xy + x y 1)$ 6.
- $f(x,y) = \sqrt{(x^2-4)(y^2-9)}$

- 8. $f(x, y) = \frac{1}{x^2 + y^2}$
- 9. $f(x, y) = \ln xy$
- **10.** $f(x, y) = \sqrt{x y^2}$
- **11.** $f(x, y) = \tan(x + y)$

Find and sketch the level curves f(x, y) = c on the same set of coordinate axes for the given values of c, we refer to these level curves as a contour map.

- f(x,y) = x + y 1, c = -3, -2, -1, 0, 1, 2, 3
- $f(x,y) = x^2 + y^2$, c = 0, 1, 4, 9, 16, 25
- **14.** For the function: $f(x, y) = 4x^2 + 9y^2$:
 - a) Find the function's domain
 - b) Find the function's range
 - c) Find the function's level curves
 - d) Find the boundary of the function's domain
 - e) Determine if the domain is an open region, a closed region, or neither
 - f) Decide if the domain is bounded or unbounded
- For the function: f(x, y) = xy:
 - a) Find the function's domain
 - b) Find the function's range
 - c) Find the function's level curves

- d) Find the boundary of the function's domain
- e) Determine if the domain is an open region, a closed region, or neither
- f) Decide if the domain is bounded or unbounded
- **16.** For the function: $f(x,y) = e^{-(x^2 + y^2)}$:
 - a) Find the function's domain
 - b) Find the function's range
 - c) Find the function's level curves
 - d) Find the boundary of the function's domain
 - e) Determine if the domain is an open region, a closed region, or neither
 - f) Decide if the domain is bounded or unbounded
- **17.** For the function: $f(x, y) = \ln(9 x^2 y^2)$:
 - a) Find the function's domain
 - b) Find the function's range
 - c) Find the function's level curves
 - d) Find the boundary of the function's domain
 - e) Determine if the domain is an open region, a closed region, or neither
 - f) Decide if the domain is bounded or unbounded
- **18.** Find an equation for $f(x, y) = 16 x^2 y^2$ and sketch the graph of the level curve of the function f(x, y) that passes through the point $(2\sqrt{2}, \sqrt{2})$
- 19. Find an equation for $f(x,y) = \frac{2y-x}{x+y+1}$ and sketch the graph of the level curve of the function f(x,y) that passes through the point (-1, 1)

9

Sketch a typical level surface for the function

20.
$$f(x, y, z) = x^2 + y^2 + z^2$$

22.
$$f(x, y, z) = y^2 + z^2$$

21.
$$f(x, y, z) = \ln(x^2 + y^2 + z^2)$$

23.
$$f(x, y, z) = z - x^2 - y^2$$