Advanced topics on Deep Learning

อ. ปรัชญ์ ปิยะวงศ์วิศาล

Pratch Piyawongwisal

Today

- Advanced topics on Deep Learning
 - Bias-Variance Tradeoff (Recap & In Deep Learning)
 - Dealing with overfitting: Regularization techniques
 - L2 Regularization
 - Dropout
 - Data Augmentation
 - Early Stopping
 - Batch Normalization
 - Vanishing Gradient Problem
 - Weight Initialization
 - Skip Connection
 - Optimization Schemes
 - Transfer Learning

Bias-Variance Tradeoff Recap

- Assuming true relationship is $Y = f(x) + \varepsilon$
 - where noise $\varepsilon \sim N(0, \sigma^2)$
- We want to make a model $\hat{f}(x; D)$ of f using D as the training samples
- Expected squared test error is $Err(x) = E_D[(Y \hat{f}(x))^2]$
- which can be decomposed as

$$Err(x) = \left(E_D[\hat{f}(x)] - f(x)\right)^2 + E_D\left[\left(\hat{f}(x) - E[\hat{f}(x)]\right)^2\right] + \sigma^2$$

Bias

Variance

Irreducible Error

Bias-Variance Tradeoff Recap

- ด้วยทฤษฎีทางสถิติ พบว่าเราสามารถแตก generalization error (expected test error) ของโมเดลออกเป็นจาก 3 แหล่ง ได้แก่
 - bias = ทำนายผิดเพราะ model มี assumption เกี่ยวกับข้อมูลที่ผิด เรียบง่ายไป (complexity ต่ำไป) ทำให้เกิดการ underfit (ภาพขวา)
 - variance = ทำนายผิดเพราะ model อ่อนไหวต่อ variation ในข้อมูลเกินไป จึงเกิด overfit (ภาพซ้าย)
 - irreducible error = ทำนายผิดเพราะ noise ในข้อมูลตามธรรมชาติ จะปรับโมเดลอย่างไรก็ลดไม่ได้

low bias © high variance ©

high bias ☺ low variance ☺

Bias-Variance Tradeoff

Learning curve

Accuracy vs Training size plot

High Bias

High Variance

Bias & Variance in practice

- How to check if our model has high variance/bias?
 - Ans: check errors on Train/Val sets

- Examples (assuming ~0% human error)
 - Train error 15%, Val error 16% → High Bias
 - Train error 1%, Val error 11% → High Variance
 - Train error 15%, Val error 30% → High Bias, High Variance
 - Train error 0.5%, Val error 1% → Low Bias, Low Variance

Bias & Variance in Deep Learning

- Basic recipe for fixing high bias/variance
 - 1. Fix high bias first
 - Try bigger networks (e.g. more layers, #neurons)
 - Train longer
 - 2. Fix high variance
 - More data
 - Regularization (L1/L2, dropout)
- In DL (vs traditional ML), Bias/Variance become less of a tradeoff
 - bigger network => reduce bias without hurting variance much (with proper regularization)
 - getting more data => reduce **variance** without hurting bias much

Regularization Techniques for NN

- Recap: Regularization helps reduce variance (overfitting)
- Methods
 - L1/L2 regularization
 - Dropout
 - Getting more data / Data Augmentation
 - Early stopping
 - Batch Normalization
 - Skipped connection

L2 Regularization

- (Recap) Cost function of NN:
 - $J(w^{[1]}, b^{[1]}, \dots, w^{[L]}, b^{[L]}) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$
 - ullet โดยที่ $w^{[l]}$ เป็น matrix ขนาด $(n^{[l-1]}, n^{[l]})$

L2 Regularization

- Cost function with L2 regularization
 - $J(w^{[1]}, b^{[1]}, ..., w^{[L]}, b^{[L]}) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} \sum_{l=1}^{L} ||w^{[l]}||_F^2$
 - โดยที่ λ คือ regularization parameter
 - ullet และ $ig\|w^{[l]}ig\|_F^2 = \sum_{i=1}^{n^{[l-1]}} \sum_{j=1}^{n^{[l]}} \left(w^{[l]}_{ij}
 ight)^2$ คือ Frobenius norm ของ $w^{[l]}$
- ดังนั้นใน Gradient Descent เราจะสามารถคำนวณ gradient ได้ดังนี้
 - $\frac{\partial J}{\partial w^{[l]}} =$ ค่าที่ได้จาก backprop $+\frac{\lambda}{m}w^{[l]}$
- ullet แล้วหากนำค่านี้ไป $\mathsf{update}\ w^{[l]}$ จะทำให้ค่าของ $w^{[l]}$ ค่อยๆ ลดลง
 - บางทีจึงเรียก L2 regularization ว่า "weight decay"

L2 Regularization & Overfitting

Dropout

- สุ่มทิ้งบาง neuron ใน<u>ขณะ train</u> ด้วยความน่าจะเป็น p
 - neuron ที่ถูกทิ้งจะถูกตัด incoming/outgoing links ออก
- ทำการสุ่มทิ้งใหม่ สำหรับ**ทุก ๆ** training sample
- ใน inference phase จะไม่ทำ dropout
 - มิฉะนั้นคำตอบจะไม่ deterministic

Why dropout?

- มอง dropout เป็นการบังคับให้ neuron ไม่สามารถพึ่งแต่ input feature ใด feature หนึ่ง
 - จึงเกิดการ spread out ของค่า weight
 - และทำให้ค่า weight โดยรวมลดลง = มีผลคล้ายๆ L2 regularization

- ประโยชน์ของ Dropout
 - ช่วยลด overfitting
 - ช่วยให้ train เร็วขึ้น
 - ใช้หน่วยความจำในการ train น้อยลง
 - มีผลคล้ายๆ การทำ ensemble

Dropout Implementation

• Inverted dropout (ใช้ keep_prob แทน drop_prob)

Example dropout code for layer 3

```
d3 = np.random.rand(a3.shape[0], a3.shape[1]) < keep_prob
```

a3 = np.multiply(a3, d3)

a3 /= keep_prob

^{*} โค้ดบรรทัดสุดท้ายทำเพื่อไม่ให้ expectation ของ activation ใน layer ถัดไปเคลื่อน

Data Augmentation

- ปัญหา: ข้อมูล training set ที่เป็นรูปภาพ (CNN) ไม่มากพอ
- Solution: สังเคราะห์รูปภาพใหม่ๆ ขึ้นมาจากภาพที่มีอยู่ โดยการ transform ภาพ
 - Shift
 - Rotate
 - Scale
 - ปรับสภาพแสง
 - Brightness
 - Contrast
 - Saturation

Early Stopping

• หยุด train เมื่อ validation loss เริ่มสูงขึ้นเกิน threshold

Batch Normalization

- แทรก BN layer เข้าไปก่อนทุกๆ activation layer
- ทำการ zero-center ค่า output โดยใช้ mean, variance ของค่าใน batch นั้น
- ช่วยทำให้ **train** เร็วและเสถียรขึ้นด้วย
 - อธิบายยากว่าทำไม
 - intuition: ถ้า feature มี scale เดียวกันจะช่วยให้ cost function รูปร่างดีขึ้น optimize ง่ายขึ้น
- ควรทำ batchnorm ตอน inference ด้วย
- Paper: https://arxiv.org/abs/1502.03167

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
               Parameters to be learned: \gamma, \beta
Output: \{y_i = BN_{\gamma,\beta}(x_i)\}
   \mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i
                                                                           // mini-batch mean
   \sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2
                                                                     // mini-batch variance
    \widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}
                                                                                         // normalize
      y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)
                                                                               // scale and shift
```

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

Vanishing Gradient Problem

• ทบทวน: ใน Backpropagation ค่า gradient ของ loss จะถูกส่งย้อนจาก layer ปลายกลับ มายัง layer ต้น เพื่อ update ค่า weight ทั้งหมด

- ปัญหา <u>สำหรับ NN ที่ deep มากๆ</u>:
 - ในขณะที่ส่งย้อน ค่า gradient ลดลงอย่างมาก เข้าใกล้ 0 *
 - ถ้า gradient เป็น 0 จะทำให้ weight หยุดการ update
 - ทำให้การเรียนรู้หยุดชะงัก 😂

Solution

- ใช้ activation function ที่ไม่ saturate (ใช้ ReLU, Leaky ReLU, ELU แทน Sigmoid)
- เปลี่ยนวิธี weight initialization (ใช้วิธี Xavier หรือ He แทน random, หรือใช้ pre-trained network)
- ใส่ carry track หรือ skip connection ในโมเดล (LSTM, ResNet)

Better Optimization Schemes

- ปัญหา: SGD optimizer ใช้เวลา train นานและอาจได้คำตอบที่เป็น local minima
- Solution: เปลี่ยนไปใช้ optimizer ที่ดีกว่า เช่น
 - Momentum ใช้ momentum ทำให้หลุดจากหล่ม local minima
 - AdaGrad ค่อยๆ ลด (decay) learning rate ในทิศที่ชันที่สุด
 - RMSProp ปรับ AdaGrad ให้ไม่ decay แรงเกินไป
 - ADAM รวมข้อดีของ RMSProp กับ Momentum
- ในทางปฏิบัติให้ลองใช้ ADAM ไปเลย ไม่ก็ RMSProp

Transfer Learning

- ปัญหา: ต้องการนำโมเดลที่ **train** กับข้อมูล ทั่วไป ไปใช้กับงานที่เฉพาะเจาะจง
- Solution: Transfer Learning
 - นำ pre-trained weights ที่ train กับ ข้อมูลทั่วไปมาใช้เป็นจุดเริ่มต้น
 - ทำการ train กับข้อมูลชุดใหม่ที่เป็นงานเฉพาะ
 - ระหว่าง train ทำการ freeze layer แรกๆ แล้ว train เฉพาะ layer ท้ายๆ
 - ช่วยให้ **train** เร็วขึ้นมาก และทำนายได้แม่นยำ สูงขึ้นมาก

