

# Lectures 13 & 14: Dataflow Analysis

# **Dataflow Analysis**

- · Compile-Time Reasoning About
- · Run-Time Values of Variables or Expressions
- · At Different Program Points
  - Which assignment statements produced value of variable at this point?
  - Which variables contain values that are no longer used after this program point?
  - What is the range of possible values of variable at this program point?

tin Rinard 2 6.035 ©MIT Fall 2000

#### **Program Representation**

- · Control Flow Graph
  - Nodes N statements of program
  - Edges E flow of control
    - pred(n) = set of all predecessors of n
    - succ(n) = set of all successors of n
  - Start node n<sub>0</sub>
  - Set of final nodes N<sub>final</sub>

6.035 @MIT Fall 2000

#### **Program Points**

- · One program point before each node
- One program point after each node
- Join point point with multiple predecessors
- Split point point with multiple successors

Martin Rinard 4 6.035 ©MIT Fall 2000

#### Basic Idea

- Information about program represented using values from algebraic structure called lattice
- Analysis produces lattice value for each program point
- Two flavors of analysis
  - Forward dataflow analysis
  - $\ Backward \ data flow \ analysis$

Martin Rinard 5 **6.035 ©MIT** Fall 2000

#### Forward Dataflow Analysis

- Analysis propagates values forward through control flow graph with flow of control
  - Each node has a transfer function f
    - $\bullet \ \ Input-value \ at \ program \ po \ int \ before \ no \ de$
    - Output new value at program point after node
  - Values flow from program points after predecessor nodes to program points before successor nodes
  - At join points, values are combined using a merge function
- · Canonical Example: Reaching Definitions

ttin Rinard 6 6.035 ©MIT Fall 2000

#### **Backward Dataflow Analysis**

- Analysis propagates values backward through control flow graph against flow of control
  - Each node has a transfer function f
    - Input value at program point after node
    - Output new value at program point before node
  - Values flow from program points before successor nodes to program points after predecessor nodes
  - At split points, values are combined using a merge function

6.035 @MIT Fall 2000

- Canonical Example: Live Variables

Mode Novel

#### **Partial Orders**

- Set P
- Partial order  $\leq$  such that  $\forall x,y,z \in P$

 $x \le x$  (reflexive)

 $-x \le y$  and  $y \le x$  implies x = y (asymmetric)

 $-x \le y$  and  $y \le z$  implies  $x \le z$  (transitive)

Martin Rinard 8 **6.035 ©MIT** Fall 2000

#### Upper Bounds

- If  $S \subseteq P$  then
  - -x∈ P is an upper bound of S if  $\forall y$ ∈ P. y ≤ x
  - $-x \in P$  is the least upper bound of S if
    - x is an upper bound of S, and
    - $x \le y$  for all upper bounds y of S
  - ∨ join, least upper bound, lub, supremum, sup
    - $\vee$  S is the least upper bound of S
    - $x \lor y$  is the least upper bound of  $\{x,y\}$

Martin Rinard 9 **6.035 ©MIT** Fall 2000

#### Lower Bounds

- If  $S \subseteq P$  then
  - -x∈ P is a lower bound of S if  $\forall y$ ∈ P. x ≤ y
  - $-x \in P$  is the greatest lower bound of S if
    - x is a lower bound of S, and
    - $y \le x$  for all lower bounds y of S
  - $\wedge$  meet, greatest lower bound, glb, infimum, inf
    - $\wedge$  S is the greatest lower bound of S
    - $x \wedge y$  is the greatest lower bound of  $\{x,y\}$

Martin Rinard 10 **6.035 ©MIT** Fall 2000

# Covering

- $x < y \text{ if } x \le y \text{ and } x \ne y$
- $\bullet$  x is covered by y (y covers x) if
  - -x < y, and
  - $-x \le z < y \text{ implies } x = z$
- Conceptually, x covers y if there are no elements between x and y

Martin Rinard 11 6.035 ©MIT Fall 2000

## Example

- $P = \{ 000, 001, 010, 011, 100, 101, 110, 111 \}$
- $x \le y$  if (x bitwise and y) = x



Hasse Diagram

- If y covers x
  - Line from y to x
  - y above x in diagram

Martin Rinard 12 **6.035 ©MIT** Fall 2000

#### Lattices

- If x ∧ y and x ∨ y exist for all x,y∈ P, then P is a lattice.
- If  $\land$ S and  $\lor$ S exist for all S  $\subseteq$  P, then P is a complete lattice.
- All finite lattices are complete
- Example of a lattice that is not complete
  - Integers I
  - For any  $x, y \in I$ ,  $x \lor y = max(x,y)$ ,  $x \land y = min(x,y)$
  - But  $\vee$  I and  $\wedge$  I do not exist
  - I  $\cup$  {+ $\infty$ ,- $\infty$ } is a complete lattice

Martin Rinard

6.035 ©MIT Fall 2000

## Top and Bottom

- Greatest element of P (if it exists) is top
- Least element of P (if it exists) is bottom ( $\perp$ )

Martin Rinard 14 **6.035 ©MIT** Fall 2000

#### Connection Between $\leq$ , $\wedge$ , and $\vee$

- The following 3 properties are equivalent:
  - x ≤ y
  - $x \lor y = y$
  - $-x \wedge y = x$
- · Will prove:
  - $-x \le y \text{ implies } x \lor y = y \text{ and } x \land y = x$
  - $-x \lor y = y \text{ implies } x \le y$
  - $-x \wedge y = x \text{ implies } x \leq y$
- By Transitivity,
  - $x \lor y = y \text{ implies } x \land y = x$
  - $-x \wedge y = x \text{ implies } x \vee y = y$

stin Rinard 15

#### Connecting Lemma Proofs

- Proof of  $x \le y$  implies  $x \lor y = y$ 
  - $-x \le y$  implies y is an upper bound of  $\{x,y\}$ .
  - Any upper bound z of  $\{x,y\}$  must satisfy  $y \le z$ .
  - So y is least upper bound of  $\{x,y\}$  and  $x \lor y = y$
- Proof of  $x \le y$  implies  $x \land y = x$ 
  - $-x \le y$  implies x is a lower bound of  $\{x,y\}$ .
  - Any lower bound z of  $\{x,y\}$  must satisfy  $z \le x$ .
  - So x is greatest lower bound of  $\{x,y\}$  and  $x \wedge y = x$

Martin Rinard 16 **6.035 ©MIT** Fall 2000

#### Connecting Lemma Proofs

- Proof of  $x \lor y = y$  implies  $x \le y$ 
  - y is an upper bound of  $\{x,y\}$  implies  $x \le y$
- Proof of  $x \land y = x$  implies  $x \le y$ 
  - -x is a lower bound of  $\{x,y\}$  implies  $x \le y$

....

## Lattices as Algebraic Structures

- Have defined  $\vee$  and  $\wedge$  in terms of  $\leq$
- Will now define  $\leq$  in terms of  $\vee$  and  $\wedge$ 
  - Start with ∨ and ∧ as arbitrary algebraic operations that satisfy associative, commutative, idempotence, and absorption laws
  - Will define ≤ using  $\vee$  and  $\wedge$
  - Will show that ≤ is a partial order

Martin Rinard 18 **6.035 ©MIT** Fall 2000

### Algebraic Properties of Lattices

Assume arbitrary operations  $\vee$  and  $\wedge$  such that

```
-(x \lor y) \lor z = x \lor (y \lor z) (associativity of \lor)
                                    (associativity of ∧)
-(x \wedge y) \wedge z = x \wedge (y \wedge z)
-x \lor y = y \lor x
                                    (commutativity of ∨)
                                    (commutativity of \land)
- x \wedge y = y \wedge x
                                    (idempotence of ∨)
- x \lor x = x
                                    (idempotence of \land)
-x\vee (x\wedge y)=x
                            (absorption of \vee over \wedge)
                            (absorption of \land over \lor)
- x \wedge (x \vee y) = x
```

#### Connection Between ∧ and ∨

- $x \lor y = y$  if and only if  $x \land y = x$
- Proof of  $x \lor y = y$  implies  $x = x \land y$

 $x = x \wedge (x \vee y)$ (by absorption)

 $= x \wedge y$ (by assumption)

• Proof of  $x \wedge y = x$  implies  $y = x \vee y$ 

 $y = y \lor (y \land x)$ (by absorption)

 $= y \vee (x \wedge y)$ (by commutativity)

(by assumption)  $= y \lor x$ 

(by commutativity)

 $= x \vee y$ 

6.035 ©MIT Fall 2000

## Properties of ≤

- Define  $x \le y$  if  $x \lor y = y$
- Proof of transitive property. Must show that  $x \lor y = y$  and  $y \lor z = z$  implies  $x \lor z = z$

 $x \lor z = x \lor (y \lor z)$  (by assumption)

=  $(x \lor y) \lor z$  (by associativity)

 $= y \lor z$ (by assumption)

(by assumption)

## Properties of ≤

• Proof of asymmetry property. Must show that

 $x \lor y = y$  and  $y \lor x = x$  implies x = y

(by assumption)

(by commutativity)

(by assumption)

• Proof of reflexivity property. Must show that

 $x \lor x = x$ 

 $x \lor x = x$ (by idempotence)

## Properties of ≤

- Induced operation ≤ agrees with original definitions of  $\vee$  and  $\wedge$ , i.e.,
  - $-x\vee y=\sup \{x,\,y\}$
  - $-x \wedge y = \inf \{x, y\}$

## Proof of $x \lor y = \sup \{x, y\}$

- Consider any upper bound u for x and y.
- Given  $x \lor u = u$  and  $y \lor u = u$ , must show  $x \lor y \le u$ , i.e.,  $(x \lor y) \lor u = u$

 $u = x \vee u$ 

(by assumption)

 $= x \lor (y \lor u)$ 

(by assumption)

 $=(x \lor y) \lor u$ 

(by associativity)

## Proof of $x \wedge y = \inf \{x, y\}$

- Consider any lower bound 1 for x and y.
- Given  $x \wedge l = 1$  and  $y \wedge l = 1$ , must show  $1 \leq x \wedge y$ , i.e.,  $(x \wedge y) \wedge l = 1$

$$\begin{split} &l = x \wedge l & \text{(by assumption)} \\ &= x \wedge (y \wedge l) & \text{(by assumption)} \\ &= (x \wedge y) \wedge l & \text{(by associativity)} \end{split}$$

Martin Rinard 25 **6.035 ©MIT** Fall 2000

#### Chains

- A set S is a chain if  $\forall x,y \in S$ .  $y \le x$  or  $x \le y$
- P has no infinite chains if every chain in P is finite
- P satisfies the ascending chain condition if for all sequences  $x_1 \le x_2 \le \dots$  there exists n such that  $x_n = x_{n+1} = \dots$

Martin Rinard 26 6.035 ©MIT Fall 2000

#### **Transfer Functions**

- Transfer function f: P→P for each node in control flow graph
- f models effect of the node on the program information

Most in Rinard 27 6 035 @MIT Fall 2000

#### **Transfer Functions**

Each dataflow analysis problem has a set F of transfer functions f:  $P \rightarrow P$ 

- Identity function  $i \in F$
- F must be closed under composition:  $\forall f,g \in F$ . the function  $h = \lambda x.f(g(x)) \in F$
- Each  $f \in F$  must be monotone:  $x \le y$  implies  $f(x) \le f(y)$
- Sometimes all  $f \in F$  are distributive:
  - $f(x \lor y) = f(x) \lor f(y)$

- Distributivity implies monotonicity

inard 28 **6.035 ©MIT** Fall 200

# Distributivity Implies Monotonicity

- · Proof of distributivity implies monotonicity
- Assume  $f(x \lor y) = f(x) \lor f(y)$
- Must show:  $x \lor y = y$  implies  $f(x) \lor f(y) = f(y)$   $f(y) = f(x \lor y)$  (by assumption)  $= f(x) \lor f(y)$  (by distributivity)

Martin Rinard 29 **6.035 ©MIT** Fall 2000

## **Putting Pieces Together**

- Forward Dataflow Analysis Framework
- Simulates execution of program forward with flow of control

Martin Rinard 30 6.035 ©MIT Fall 2000

#### Forward Dataflow Analysis

- Simulates execution of program forward with flow of control
- For each node n, have
  - in<sub>n</sub> value at program point before n
  - out<sub>n</sub> value at program point after n
  - $-f_n$  transfer function for n (given in, computes out,)
- · Require that solution satisfy
  - $\forall n. out_n = f_n(in_n)$
  - $\forall n \neq n_0$ .  $in_n = \vee \{ out_m . m in pred(n) \}$
  - $-in_{n0} = \bot$

Martin Rinard

6.0

### **Dataflow Equations**

• Result is a set of dataflow equations

$$\begin{split} out_n &:= f_n(in_n) \\ in_n &:= \vee \ \{ \ out_m \ . \ m \ in \ pred(n) \ \} \end{split}$$

• Conceptually separates analysis problem from program

n Rinard 32 **6.035 ©MIT** Fall 200

# Worklist Algorithm for Solving Forward Dataflow Equations

```
\begin{split} &\text{for each n do out}_n := f_n(\bot) \\ &\text{worklist} := N \\ &\text{while worklist} \neq \varnothing \text{ do} \\ &\text{remove a node n from worklist} \\ &\text{in}_n := \vee \left\{ \text{ out}_m \text{ . m in pred(n)} \right. \right\} \\ &\text{out}_n := f_n(\text{in}_n) \\ &\text{if out}_n \text{ changed then} \\ &\text{worklist} := \text{worklist} \cup \text{succ(n)} \end{split}
```

Martin Rinard

33

6.035 @MIT Fall 2000

## Correctness Argument

- · Why result satisfies dataflow equations
- Whenever process a node n, set  $out_n := f_n(in_n)$ Algorithm ensures that  $out_n = f_n(in_n)$
- Whenever out<sub>m</sub> changes, put succ(m) on worklist.
   Consider any node n ∈ succ(m). It will eventually come off worklist and algorithm will set

```
\begin{split} & in_n := \vee \; \{ \; out_m \; . \; m \; in \; pred(n) \; \} \\ & to \; ensure \; that \; in_n = \vee \; \{ \; out_m \; . \; m \; in \; pred(n) \; \} \end{split}
```

rtin Rinard 34 6.035 **©MIT** Fall 20

## **Termination Argument**

- Why does algorithm terminate?
- Sequence of values taken on by in<sub>n</sub> or out<sub>n</sub> is a chain. If values stop increasing, worklist empties and algorithm terminates.
- If lattice has ascending chain property, algorithm terminates
  - Algorithm terminates for finite lattices
  - For lattices without ascending chain property, use widening operator

Martin Rinard

35

.035 **©MIT** Fall 2000

#### Widening Operators

- Detect lattice values that may be part of infinitely ascending chain
- Artificially raise value to least upper bound of chain
- Example:
  - Lattice is set of all subsets of integers
  - Widening operator might raise all sets of size n or greater to TOP
  - Could be used to collect possible values taken on by variable during execution of program

tin Rinard 36 **6.035 ©MIT** Fall 2

#### **Reaching Definitions**

- P = powerset of set of all definitions in program (all subsets of set of definitions in program)
- $\vee = \cup$  (order is  $\subseteq$ )
- | = Ø
- F = all functions f of the form  $f(x) = a \cup (x-b)$ 
  - b is set of definitions that node kills
  - a is set of definitions that node generates
- General pattern for many transfer functions

 $- f(x) = GEN \cup (x\text{-}KILL)$ 

fartin Rinard 37 **6.035 ©MIT** Fall 2000

# Does Reaching Definitions Framework Satisfy Properties?

- - $-x \subseteq y$  and  $y \subseteq z$  implies  $x \subseteq z$  (associativity)
  - $-x \subseteq y$  and  $y \subseteq x$  implies y = x (asymmetry)
  - $-x \subseteq x$  (idempotence)
- F satisfies transfer function conditions
  - $-\lambda x.\emptyset \cup (x-\emptyset) = \lambda x.x \in F \text{ (identity)}$
  - Will show  $f(x \cup y) = f(x) \cup f(y)$  (distributivity)  $f(x) \cup f(y) = (a \cup (x - b)) \cup (a \cup (y - b))$   $= a \cup (x - b) \cup (y - b) = a \cup ((x \cup y) - b)$   $= f(x \cup y)$

n Rinard 38 6.035 ©MIT Fall 2000

# Does Reaching Definitions Framework Satisfy Properties?

- What about composition?
  - Given  $f_1(x) = a_1 \cup (x-b_1)$  and  $f_2(x) = a_2 \cup (x-b_2)$
  - Must show  $f_1(f_2(x))$  can be expressed as a  $\cup$  (x b)

 $f_1(f_2(x)) = a_1 \cup ((a_2 \cup (x-b_2)) - b_1)$ =  $a_1 \cup ((a_2 - b_1) \cup ((x-b_2) - b_1))$ 

 $= (a_1 \cup (a_2 - b_1)) \cup ((x - b_2) - b_1))$   $= (a_1 \cup (a_2 - b_1)) \cup ((x - b_2) - b_1))$ 

 $= (a_1 \cup (a_2 - b_1)) \cup ((x - b_2) - b_1))$ =  $(a_1 \cup (a_2 - b_1)) \cup (x - (b_2 \cup b_1))$ 

- Let  $a = (a_1 \cup (a_2 - b_1))$  and  $b = b_2 \cup b_1$ 

- Then  $f_1(f_2(x)) = a \cup (x - b)$ 

fartin Rinard 39 **6.035 ©MIT** Fall 20

#### General Result

All GEN/KILL transfer function frameworks satisfy

- Identity
- Distributivity
- Composition

Properties

artin Rinard 40 **6.035 ©MIT** Fall 200

#### **Available Expressions**

- P = powerset of set of all expressions in program (all subsets of set of expressions)
- $\vee = \cap$  (order is  $\supseteq$ )
- $\perp = P$  (but  $in_{n0} = \emptyset$ )
- F = all functions f of the form  $f(x) = a \cup (x-b)$ 
  - b is set of expressions that node kills
  - a is set of expressions that node generates
- Another GEN/KILL analysis

Martin Rinard 41 **6.035 ©MIT** Fall 2000

#### Concept of Conservatism

- Reaching definitions use  $\cup$  as join
  - Optimizations must take into account all definitions that reach along ANY path
- - Optimization requires expression to reach along ALL paths
- Optimizations must conservatively take all possible executions into account. Structure of analysis varies according to way analysis used.

ttin Rinard 42 6.035 ©MIT Fall 2000

#### **Backward Dataflow Analysis**

- Simulates execution of program backward against the flow of control
- For each node n, have
  - in<sub>n</sub> value at program point before n
  - out<sub>n</sub> value at program point after n
  - f<sub>n</sub> transfer function for n (given out<sub>n</sub>, computes in<sub>n</sub>)
- · Require that solution satisfy
  - $\forall n. in_n = f_n(out_n)$
  - $\ \forall n \not \in \ N_{final}. \ out_n = \lor \ \{ \ in_m \ . \ m \ in \ succ(n) \ \}$
  - $\ \forall n \in \ N_{final} = out_n = \bot$

Martin Rinard

6.035 ©MI

# Worklist Algorithm for Solving Backward Dataflow Equations

```
\begin{split} &\text{for each n do in}_n := f_n(\bot) \\ &\text{worklist} := N \\ &\text{while worklist} \neq \varnothing \text{ do} \\ &\text{remove a node n from worklist} \\ &\text{out}_n := \vee \left\{ \text{ in}_m \text{ . m in succ(n)} \right\} \end{split}
```

 $in_n := f_n(out_n)$ 

if in<sub>n</sub> changed then

 $worklist := worklist \cup pred(n)$ 

inard 44 **6.035 ©MIT** Fall 2000

#### Live Variables

- P = powerset of set of all variables in program (all subsets of set of variables in program)
- $\vee = \cup$  (order is  $\subseteq$ )
- ⊥ = Q
- $F = all functions f of the form <math>f(x) = a \cup (x-b)$ 
  - b is set of variables that node kills
  - a is set of variables that node reads

Martin Rina

45

6.035 @MIT Fall 2

## Meaning of Dataflow Results

- Connection between executions of program and dataflow analysis results
- Each execution generates a trajectory of states:
  - $-s_0;s_1;...;s_k$ , where each  $s_i \in ST$
- Map current state  $\boldsymbol{s}_k$  to
  - Program point in, where execution located
  - Value x in dataflow lattice
- Require  $x \le in_n$

Martin Rinard

6.035 @MIT Fall 200

# Abstraction Function for Forward Dataflow Analysis

- Meaning of analysis results is given by an abstraction function AF:ST→P
- Require that for all states s AF(s) ≤ in<sub>n</sub>

where  $in_n$  is program point where the execution located in state s

artin Rinard 47

## Sign Analysis Example

- Sign analysis compute sign of each variable v
- Base Lattice: flat lattice on {-,0,+}



- Actual lattice records a value for each variable
  - Example element:  $[a \rightarrow +, b \rightarrow 0, c \rightarrow -]$

ard

6.035 @MIT Fall 2000

## Interpretation of Lattice Values

- If value of v in lattice is:
  - BOT: no information about sign of v
  - --: variable v is negative
  - 0: variable v is 0
  - +: variable v is positive
  - TOP: v may be positive or negative

Martin Rinard 49 **6.035 ©MIT** Fall 2000

#### Operation ⊗ on Lattice

| 8   | BOT | -   | 0 | +   | TOP |
|-----|-----|-----|---|-----|-----|
| BOT | BOT | -   | 0 | +   | TOP |
| -   | -   | +   | 0 | -   | TOP |
| 0   | 0   | 0   | 0 | 0   | 0   |
| +   | +   | -   | 0 | +   | TOP |
| TOP | TOP | TOP | 0 | TOP | TOP |

Mostin Rinard 50 6.035 CMIT Fall 2000

#### **Transfer Functions**

- If n of the form v = c
  - $-f_n(x) = x[v \rightarrow +]$  if c is positive
  - $-f_n(x) = x[v \rightarrow 0]$  if c is 0
  - $-f_n(x) = x[v \rightarrow -]$  if c is negative
- If n of the form  $v_1 = v_2 * v_3$ 
  - $f_n(x) = x[v \rightarrow x[v_2] \otimes x[v_3]]$

Martin Rinard 51 **6.035 ©MIT** Fall 2000

#### **Abstraction Function**

- AF(s)[v] = sign of v
  - $-AF([a\rightarrow 5, b\rightarrow 0, c\rightarrow -2]) = [a\rightarrow +, b\rightarrow 0, c\rightarrow -]$
- · Establishes meaning of the analysis results
  - If analysis says variable has a given sign
  - Always has that sign in actual execution
- Two sources of imprecision
  - Abstraction Imprecision concrete values (integers) abstracted as lattice values (-,0, and +)
  - Control Flow Imprecision one lattice value for all different possible flow of control possibilities

Martin Rinard 52 **6.035 ©MIT** Fall 2000

#### Imprecision Example

Abstraction Imprecision:  $[a \rightarrow 1] \text{ abstracted as } [a \rightarrow +] \qquad a = 1$   $[a \rightarrow +] \qquad b = -1 \qquad b = 1$   $[a \rightarrow +, b \rightarrow -] \qquad [a \rightarrow +, b \rightarrow +]$   $[a \rightarrow +, b \rightarrow TOP] \qquad c = a*b$ 

[b $\rightarrow$ TOP] summarizes results of all executions. In any execution state s, AF(s)[b] $\neq$ TOP

.035 ©MIT Fall 2000

# General Sources of Imprecision

- · Abstraction Imprecision
  - Lattice values less precise than execution values
  - Abstraction function throws away information
- Control Flow Imprecision
  - Analysis result has a single lattice value to summarize results of multiple concrete executions
  - Join operation ∨ moves up in lattice to combine values from different execution paths
  - Typically if  $x \le y$ , then x is more precise than y

Martin Rinard 54 **6.035 ©MIT** Fall 2000

## Why Have Imprecision

- Make analysis tractable
- · Conceptually infinite sets of values in execution
  - Typically abstracted by finite set of lattice values
- Execution may visit infinite set of states
  - Abstracted by computing joins of different paths

Martin Rinard 55 **6.035 ©MIT** Fall 2000

#### **Augmented Execution States**

- Abstraction functions for some analyses require augmented execution states
  - Reaching definitions: states are augmented with definition that created each value
  - Available expressions: states are augmented with expression for each value

artin Rinard 56 **6.035 ©MIT** Fall 2000

#### Meet Over Paths Solution

- What solution would be ideal for a forward dataflow analysis problem?
- Consider a path p = n<sub>0</sub>, n<sub>1</sub>, ..., n<sub>k</sub>, n to a node n
   (note that for all i n<sub>i</sub> ∈ pred(n<sub>i+1</sub>))
- The solution must take this path into account:  $f_n(\bot) = (f_k(f_{k-1}(...f_{n1}(f_{n0}(\bot))...)) \le in_n$
- So the solution must have the property that  $\vee \{f_p\left(\bot\right).\ p\ is\ a\ path\ to\ n\} \leq in_n$  and ideally

 $\vee \{f_p(\bot) : p \text{ is a path to n}\} = in_n$ 

rtin Rinard 57 **6.035 ©MIT** Fall 20

# Soundness Proof of Analysis Algorithm

- Property to prove:
  - For all paths p to n,  $f_p(\bot) \le in_n$
- Proof is by induction on length of p
  - Uses monotonicity of transfer functions
  - Uses following lemma
- Lemma:

Worklist algorithm produces a solution such that  $if \ n \in pred(m) \ then \ out_n \leq in_m$ 

tin Rinard 58 **6.035 ©MIT** Fall 2000

#### **Proof**

- Base case: p is of length 0
  - Then  $p = n_0$  and  $fp(\perp) = \perp = in_{n0}$
- Induction step:
  - Assume theorem for all paths of length k
  - Show for an arbitrary path p of length  $k\!+\!1$

Martin Rinard 59 **6.035 ©MIT** Fall 2000

#### **Induction Step Proof**

- $p = n_0, ..., n_k, n$
- Must show  $(f_k(f_{k-1}(...f_{n1}(f_{n0}(\bot))...)) \le in_n$ 
  - By induction  $(f_{k-1}(...f_{n1}(f_{n0}(\bot))...)) \le in_{nk}$
  - Appy  $f_k$  to both sides, by monotonicity we get  $(f_k(f_{k-1}(\dots f_{n1}(f_{n0}(\bot))\dots)) \le f_k(in_{nk}) = out_{nk}$
  - By lemma, out<sub>nk</sub> ≤ in<sub>n</sub>
  - By transitivity,  $(f_k(f_{k-1}(...f_{n1}(f_{n0}(\bot))...)) \le in_n$

Martin Rinard 60 **6.035 ⊗MIT** Fall 2000

## Distributivity

- Distributivity preserves precision
- If framework is distributive, then worklist algorithm produces the meet over paths solution
  - For all n:

$$\vee \{f_p(\bot) \cdot p \text{ is a path to } n\} = in_n$$

Martin Rinare

61

6.035 @MIT Fall 2000

## Lack of Distributivity Example

- Constant Calculator
- · Flat Lattice on Integers



Actual lattice records a value for each variable
 Example element: [a→3, b→2, c→5]

Martin Rinard

6.035 @MIT Fall 2000

#### **Transfer Functions**

- If n of the form v = c
  - $-f_n(x) = x[v \rightarrow c]$
- If n of the form  $v_1 = v_2 + v_3$ 
  - $f_n(x) = x[v \rightarrow x[v_2] + x[v_3]]$
- · Lack of distributivity
  - Consider transfer function f for c = a + b
  - $-\text{ f([a\rightarrow 3,b\rightarrow 2])} \vee \text{ f([a\rightarrow 2,b\rightarrow 3])} = [a\rightarrow TOP,b\rightarrow TOP,c\rightarrow 5]$
  - $-\begin{array}{ll} -f([a\rightarrow\!3,b\rightarrow\!2]\vee[a\rightarrow\!2,b\rightarrow\!3]) = f([a\rightarrow\!TOP,b\rightarrow\!TOP]) = \\ [a\rightarrow\!TOP,b\rightarrow\!TOP,c\rightarrow\!TOP] \end{array}$

Martin Rinar

63

6.035 **©MIT** Fall 2

# Lack of Distributivity Anomaly



# Modeling Values Using Lattices

- $P = 2^{I}$ 
  - (Powerset of integers, Set of all subsets of integers)
- Ordered under subset inclusion
  - $-x \le y \text{ if } x \subseteq y$

Martin Rinard

65

.035 ©MIT Fall 2000