${\bf Angewand te\ Integrale}$

Fläche zwischen Funktionen

f oberhalb g	g und f schneiden sich, x_i Schnittpunkte	Mantelfläche
$A = \int_{a}^{b} f(x)dx - \int_{a}^{b} g(x)dx$	$A = \left \int_{a}^{x_1} (f - g)(x) dx \right + \left \int_{x_1}^{x_2} (f - g)(x) dx \right + \dots$	$M_x = 2\pi \times \int_a^b f(x) \times \sqrt{1 + (f'(x))^2} dx$

Rotation um die X-Achse (Volumen)	Volumen bei Querfläche	Bogenlänge
$V_x = \pi \int_a^b f(x)^2 dx$	$V = \int_{a}^{b} Q(x)dx$	$S = \int_a^b \sqrt{1 + (f'(x))^2} dx$

Schwerpunkt einer Fläche	Schw. e. Fl. zwischen $g(x)$ und $f(x)$, $g(x) \leq f(x)$ in I	Schwerpunkt eines Rotationskörpers
$S_x = \frac{\int_a^b x \times f(x) dx}{A}$	$S_x = \frac{\int_a^b x \times (f(x) - g(x)) dx}{F}$	$S_x = \frac{\pi \int_a^b x \times f^2(x) dx}{V}$
$S_y = \frac{\frac{1}{2} \int_a^b f(x)^{2dx}}{A}$	$S_y = \frac{\frac{1}{2} \int_a^b (f^2(x) - g^2(x)) dx}{F}$	$S_y = 0, S_z = 0$
$A = \int_{a}^{b} f(x)dx$	$F = \int_{a}^{b} (f(x) - g(x))dx$	$V = \pi \int_{a}^{b} f^{2}(x)dx$

1