Runge Function & Derivative — Joint Neural ApproximationTarget

$$f(x)=rac{1}{1+25x^2},\quad f'(x)=-rac{50x}{(1+25x^2)^2},\quad x\in[-1,1]$$

Method

Model 1-hidden-layer MLP (width H=96), smooth tanh-like activation ϕ with closed-form ϕ' , ϕ'' ; linear output.

Prediction/derivative

$$\hat{f}(x) = b_2 + \sum_j W_j^{[2]} \phi(W_j^{[1]} x + b_j^{[1]}), \ \hat{f}'(x) = \sum_j W_j^{[2]} \phi'(W_j^{[1]} x + b_j^{[1]}) W_j^{[1]}$$

Data 256 train points (uniform grid); 256 validation points (midpoints).

Loss
$$\mathcal{L} = MSE_f + \mu MSE_{f'}$$
 with $\mu = 3$.

Training: full-batch GD, lr =0.01 with step decays; 3000–3200 epochs.

> Results

Loss curves (val ≈ train throughout)

At representative epochs:

$Val\;MSE_{f'}$	$Train\;MSE_{f'}$	$Val\;MSE_f$	$Train\;MSE_f$	Val tot	Train tot	Epoch
1.2882	1.3014	0.1918	0.1960	4.056	4.100	1000
3.49e-2	3.48e-2	1.84e-4	1.84e-4	0.1048	0.1046	3000

What the plots show (qualitative)

 \hat{f} overlaps f on [-1,1] (errors $< 10^{-3}$ on average).

 \widehat{f}' captures the odd S-shape with small bias where curvature changes fastest.

Error to report (validation @ epoch 3000)

Function MSE: 1.84×10^{-4}

Derivative MSE: 3.49×10^{-2}

Discussion

Smooth ϕ + using ϕ' , ϕ'' in backprop lets the derivative term shape the hidden layer (avoids "constant derivative" failure of pure ReLU).

Train/val match closely → good generalization.

If needed to improve f' increase width to H=128, extend epochs with one more lr decay, or raise μ (e.g., $\mu=5$); Chebyshev-biased sampling can also reduce edge errors.