

Project 04 Predict Dengue Cases

By Cui Cheng, Zi Ming, & Junny

O1 Background & Problem Statement

02 Models Approach

O3 Data
Collection &
EDA

04 Modelling

05 Cost-Benefit Analysis

Conclusion & Continuous
Improvements

01 **Background Problem** Statement

Background

- Dengue: A major health threat in Singapore with periodic outbreaks.
- NEA's response: 'Project Wolbachia'
- Challenge: Timing the implementation right due to factors like weather and operational challenges.
- NEA's Vector Biology and Control Division's role:
- Develop a predictive model for dengue cases for the next four months.
- Combine research with initiatives like Project Wolbachia for a dengue-safe Singapore.

Project Wolbachia

Effectiveness

Cost-effective at ≥ 40% intervention effectiveness.

DALYs

Cost-effectiveness improves over time.

Costs Averted (2010-2020):

- 40% effectiveness: US\$329.40M
- 80% effectiveness: US\$658.79M

Dengue fever remains a significant health concern in Singapore. While Project Wolbachia seeks to counter this through the release of Wolbachia-infected mosquitoes, it grapples with steep expenses. Our objective is to devise a predictive model that can anticipate dengue outbreaks and discern their patterns, thereby optimizing the budget for Project Wolbachia.

—Problem Statement

O2 Models Approach

Models

ARIMA	A class of model that captures a suite of different standard temporal structures in time series data
SARIMA	Extension of ARIMA that explicitly supports univariate time series data with a seasonal component
SARIMAX	Extends SARIMA to include external variables
Pycaret	A Python library for machine learning, offers an implementation of SARIMA

03 Data Collection & **EDA**

Weather Data

	Position		Period of Daily	Period of	Period of Mean	Period of Max and	Period of Mean	Period of Max
			Rain Records	30,60,120-Min Rain	Temperature	Min Temperature	Wind Speed	Wind Speed
				Records				
Station	Lat.(N)	Long. (E)						
Paya Lebar	1.3524	103.9007	Jan 1980-current	-	Sep 2017-current	Jan 1981-current	Jan 1981- current	Jan 2010-current
Tengah	1.3858	103.7114	Jan 1980-current	-	Aug 1986-current	Jan 1985-current	Jan 1985-current	Jan 2010-current
Changi	1.3678	103.9826	Jan 1981-current	Jan 2014-current	Jan 1982-current	Jan 1982-current	Jan 1983-current	Jan 1983-current
Seletar	1.4166	103.8654	Jan 1980-current	-	Aug 1986-current	Jan 1985-current	Jan 1985-current	Jan 2010-current

282,636 Rows from 64 Stations

605 Rows from 1 Station

http://www.weather.gov.sg/climate-historical-daily/

Dengue Data

Epidemiological Week	Disease	No. of Cases (No.)
2012-W01	Acute Viral hepatitis B	0
2012-W01	Acute Viral hepatitis C	0
2012-W01	Avian Influenza	0
2012-W01	Campylobacterenterosis	6
2012-W01	Chikungunya Fever	0

605 Rows of Dengue Fever and Dengue Hemorrhagic Fever

https://beta.data.gov.sg/datasets/508/view

Google Trends Data

'Insect Repellent'

Dengue Cluster Change

7th October 2021

Dengue Cluster Change 9th October 2021

Dengue & Other Diseases

correlation between dengue haemorrhagic fever & other diseases

```
dengue fever - 0.38
chikungunya fever - 0.33
measles - 0.17
zika virus infection - 0.022
```


Dengue & Weather

00 Features Correlating with Dengue Numbers 1.00 dengue fever -0.37 1 - 0.75 dhf -0.37 mean temperature -0.18 0.11 - 0.50 search dengue fever -0.09 0.056 - 0.25 maximum temperature -0.067 0.062 minimum temperature -0.032 0.056 - 0.00 search insect repellent -0.021 -0.0041 - -0.25 highest 30 min rainfall(mm) --0.018 0.095 - -0.50 highest 60 min rainfall (mm) --0.021 0.07 highest 120 min rainfall (mm) -0.052 -0.022-0.75weekly mean rainfall (mm) --0.038-0.058dengue fever dhf

Dengue x Temperature

Dengue & Google Trend: Dengue Fever

Dengue & Other Diseases

O4 MODELLING

Modelling

ARIMA/SARIMA/SARIMAX

Small sample size

AR: number of dengue case is influenced by number of dengue case in the past

- Immunity
- Infectious nature of dengue

MA: number of dengue cases is influenced by shocks to the system

- destruction/creation of mosquito habitat can be very random
- Chance occurrence to be bitten + show symptoms

Model summary

	Manual	Pycaret autoARIMA
ARIMA	0.2530	
SARIMA	0.2502	0.250
SARIMAX	0.2382	0.188

00

Barely any improvement for SARIMA and SARIMAX

Fitting an ARIMA (p,d,q) model

Determining parameter d for I

Check stationarity of time series

Checking for stationarity/ Determining d:

ADF test: 0.01

- Reject HO: presence of a unit root

KPSS test: 0.0257

- Reject HO: time series is stationary

Caveat: ADF only tests for the presence of a single unit root;

Conclusion: need to take the first order difference

d = 1

ADF = 0.01 KPSS = 0.1

Determining p

Significant correlations at lag p = 2, 3, 9, 12

Determining q

Significant correlations at lag p = 2, 3, 4, 9, 12,

ARIMA(2,1,2)

Residual plot

Fitting SARIMA model:

Why SARIMA?

Accounts for seasonality in dengue cases

Climate Events

Temperature

Rainfall

Fitting SARIMA: determining m

11 peaks in 11 years

m = 52

determining **D**

ADF: 0.02 reject HO

KPS: 0.1 don't reject HO

D = 1

Determining P

Determining P

SARIMA 2,1,2 1, 0, 0, 52

SARIMA residuals

SARIMA X

exogenous factors introduced:

Other diseases transmitted by the vector mosquito

Climate data with lag of 2 weeks

Google Trends on 'Dengue Fever' and 'Insect repellent' topics

SARIMA X (1,1,2)(0,0,0)[52]

SARIMA X Residuals

Pycaret

SARIMA

SARIMAX Results ariable: **Model:** SARIMAX(1, 0, 0)x(0, 1, [1], 2)

SARIMA X

Model summary

	Manual	Pycaret autoARIMA
ARIMA	0.2530	
SARIMA	0.2502	0.250
SARIMAX	0.2382	0.188

00

Barely any improvement for SARIMA and SARIMAX

O5 Cost-Benefits Analysis

Project Wolbachia

22.7Million 2010USD Steady-State cost

Already 'cost effective' at 40% efficacy

NEA reported 60%-80% efficacy

Cost Concerns:

Equipment/Labor Cost

Suppression requires constant maintenance costs

Classification problem

Based on our forecasted dengue cases 4 months into the future,

Should/should not NEA implement project wolbachia?

TS Forecast -> Classification Yes Number of predicted dengue Prediction Model cases calls for Wolbachia implementation? No

Should have implemented:

Cost: 22.7 Million

Benefit: 55.93 Million (saved)

00

Should not have implemented:

Cost: 22.7Million

Should have implemented:

Cost: 55.93 Million

Should not have implemented:

Cost: N/A

We are interested in achieving a high prediction accuracy (1-MAPE)

80% Efficacy	Predicted Positive (action)	Predicted Negative (no action)
Actual Positive (Wolbachia implementation was required)	Gain: \$33.23 million TP	Loss: \$55.93 million FN
Actual Negative (Wolbachia implementation was not required)	Loss: \$22.7 million FP	No Change TN

Expected cost/benefit = (Probability of TP \times Gain if TP) + (Probability of FN \times Loss if FN) + (Probability of TN \times Gain if TN)

depend on how/when NEA deems Wolbachia implementation is required

Conclusion

Model that predicts with MAPE of 18% at 4 months notice

The National Environment Agency (NEA)

Project Wolbachia

Public Health Campaigns

Plan for fumigation

Ministry of Health:

Prepare healthcare facilities

Future Works

Explore other models

Dynamic Harmonic Regression

Random Forests

Collect more data:

Look into more correlated Data:

Try to find data at higher frequencies than weekly

Conclusion and Continuous Improvements

Model Accuracy

PyCaret SARIMAX MAPE: 0.18

Project Wolbachia Benefit

Anticipate, Intervene, Suppress

Implications

NATIONAL ENVIRONMENTAL AGENCY

- Early warning prevention measures
- Reduced medical costs, better health outcomes

MINISTRY OF HEALTH

- Prepare for patient surges
- Allocate funds and resources to dengue research & prevention.

Data Collection

- Expand Data Sources
- Data Frequency

Feedback Mechanism

- Real-time Feedback
- Error Analysis

Stakeholder Collaboration

- Collaborate with Healthcare Professionals
- Engage with MOH and NEA

Public Engagement

- Awareness Campaigns
- Public Feedback

Thanks

