Statistics and Machine Learning

Classification II: LDA, QDA, and k-nearest neighbor

Contents of Week 8

More models for tackling classification

- Review of Bayes rule
- Linear discriminant analysis (LDA)
- Quadratic discriminant analysis (QDA)
- K-nearest neighbor
- Lab session: predicting stock movement

Recommendation, spring break, mid-course survey

Recommendation, spring break, mid-course survey

• Coursera online course:

Recommendation, spring break, mid-course survey

- Coursera online course:
- Spring break: week 9 (03/15 03/21). Midterm 03/24 8:00 pm

Recommendation, spring break, mid-course survey

- Coursera online course:
- Spring break: week 9 (03/15 03/21). Midterm 03/24 8:00 pm
- Mid-course survey (1 point bonus)

Data set: default.csv
Default versus balance
10000 rows
9667 no, 333 yes

Data set: default.csv
Default versus balance
10000 rows
9667 no, 333 yes

Model: logistic function

$$f(x) = \frac{1}{1 + e^{-ax - b}}$$
X: balance

$$f>0.5$$
: $\hat{y}=1$, default

 $\mathbf{f} < \mathbf{0.5}$: $\hat{\mathbf{y}} = 0$, not default

Data set: default.csv
Default versus balance
10000 rows
9667 no, 333 yes

Model: logistic function $f(x) = \frac{1}{1 + e^{-ax-b}}$ X: balance $f>0.5: \hat{y} = 1, default$ $f<0.5: \hat{y} = 0, not default$

Loss function: cross entropy $L = \frac{1}{N} \sum_{n=1}^{N} \left[y \log f + (1-y) \log(1-f) \right]$

Data set: default.csv
Default versus balance
10000 rows
9667 no, 333 yes

Model: logistic function $f(x) = \frac{1}{1 + e^{-ax-b}}$ X: balance $f>0.5: \hat{y} = 1, \text{ default}$

 $\mathbf{f} < \mathbf{0.5}$: $\hat{\mathbf{y}} = 0$, not default

Loss function: cross entropy
$$L = \frac{1}{N} \sum_{n=1}^{N} \left[y \log f + (1-y) \log(1-f) \right]$$

Training accuracy:

confusion_matrix(y_train, pred_train).T

```
array([[4799, 119], [ 27, 55]])
```

Data set: default.csv
Default versus balance
10000 rows
9667 no, 333 yes

Model: logistic function $f(x) = \frac{1}{1 + e^{-ax-b}}$ X: balance $f>0.5: \hat{y} = 1, default$ $f<0.5: \hat{y} = 0, not default$

Loss function: cross entropy $L = \frac{1}{N} \sum_{n=1}^{N} \left[y \log f + (1 - y) \log(1 - f) \right]$

Check week 7 lab code

Data set: default.csv
Default versus balance
10000 rows
9667 no, 333 yes

Model: logistic function $f(x) = \frac{1}{1 + e^{-ax-b}}$ X: balance $f>0.5: \hat{y} = 1, \text{ default}$ $f<0.5: \hat{y} = 0, \text{ not default}$

Loss function: cross entropy
$$L = \frac{1}{N} \sum_{n=1}^{N} \left[y \log f + (1-y) \log(1-f) \right]$$

Check week 7 lab code

Data set: default.csv
Default versus balance
10000 rows
9667 no, 333 yes

Model: logistic function $f(x) = \frac{1}{1 + e^{-ax-b}}$ X: balance $f>0.5: \hat{y} = 1, default$ $f<0.5: \hat{y} = 0, not default$

Loss function: cross entropy
$$L = \frac{1}{N} \sum_{n=1}^{N} \left[y \log f + (1-y) \log(1-f) \right]$$

Check week 7 lab code

Test accuracy: (4813+53)/5000=97.3% confusion_matrix(y_test, pred_test).T array([[4813, 106], [28, 53]])

Data set: default.csv
Default versus balance
10000 rows
9667 no, 333 yes

Model: logistic function
$$f(x) = \frac{1}{1 + e^{-ax-b}}$$

$$X: balance$$

$$f>0.5: \hat{y} = 1, default$$

$$f<0.5: \hat{y} = 0, not default$$

Loss function: cross entropy
$$L = \frac{1}{N} \sum_{n=1}^{N} \left[y \log f + (1-y) \log(1-f) \right]$$

Check week 7 lab code

Data set: default.csv
Default versus balance
10000 rows
9667 no, 333 yes

Data set: default.csv
Default versus balance
10000 rows
9667 no, 333 yes

Model: logistic function

$$f(x) = 0$$

X: balance

Always predict $\hat{y} = 0$, not default

Data set: default.csv
Default versus balance
10000 rows
9667 no, 333 yes

Model: logistic function

$$f(x) = 0$$

X: balance

Always predict $\hat{y} = 0$, not default

Loss function: cross entropy Don't care

Data set: default.csv
Default versus balance
10000 rows
9667 no, 333 yes

Model: logistic function

$$f(x) = 0$$

X: balance

Always predict $\hat{y} = 0$, not default

Loss function: cross entropy
Don't care

```
Training accuracy:
(4826+0)/5000=96.5%

np.count_nonzero(y_train == 0)

4826
```

Data set: default.csv
Default versus balance
10000 rows
9667 no, 333 yes

Model: logistic function

$$f(x) = 0$$

X: balance

Always predict $\hat{y} = 0$, not default

Loss function: cross entropy
Don't care

```
Training accuracy:
(4826+0)/5000=96.5%

np.count_nonzero(y_train == 0)

4826

Training accuracy (positive only):
0%
```

Data set: default.csv
Default versus balance
10000 rows
9667 no, 333 yes

Model: logistic function

$$f(x) = 0$$

X: balance

Always predict $\hat{y} = 0$, not default

Loss function: cross entropy
Don't care

```
Training accuracy:
(4826+0)/5000=96.5%

np.count_nonzero(y_train == 0)

4826

Training accuracy (positive only):
0%
```

Test accuracy:
(4841+0)/5000=96.8%

np.count_nonzero(y_test == 0)

4841

Data set: default.csv
Default versus balance
10000 rows
9667 no, 333 yes

Model: logistic function

$$f(x) = 0$$

X: balance

Always predict $\hat{y} = 0$, not default

Loss function: cross entropy Don't care

Training accuracy:
(4826+0)/5000=96.5%

np.count_nonzero(y_train == 0)

4826

Training accuracy (positive only):
0%

Test accuracy: (4841+0)/5000=96.8%np.count_nonzero(y_test == 0)

Test accuracy (positive only): 0%

X: get a positive/negative report Y: is/not a drug user Sensitivity: p(x=1|y=1) = 0.97Specificity: p(x=0|y=0)=0.95

Prior: p(y=1)=0.005

Question 1: p(y=1|x=1)

X: get a positive/negative report Y: is/not a drug user Sensitivity: p(x=1|y=1) = 0.97Specificity: p(x=0|y=0)=0.95

Prior: p(y=1)=0.005

Question 1: p(y=1|x=1)

$$p(y \mid x) = \frac{p(x \mid y)p(y)}{p(x)}$$

X: get a positive/negative report Y: is/not a drug user Sensitivity: p(x=1|y=1) = 0.97Specificity: p(x=0|y=0)=0.95

Prior: p(y=1)=0.005

Question 1: p(y=1|x=1)

$$p(y \mid x) = \frac{p(x \mid y)p(y)}{p(x)}$$

$$p(y = 1 \mid x = 1) = \frac{0.97 * 0.005}{0.97 * 0.005 + 0.05 * 0.995}$$

X: get a positive/negative report Y: is/not a drug user Sensitivity: p(x=1|y=1) = 0.97Specificity: p(x=0|y=0)=0.95

Prior: p(y=1)=0.005

Question 1: p(y=1|x=1)

$$p(y \mid x) = \frac{p(x \mid y)p(y)}{p(x)}$$

$$p(y = 1 \mid x = 1) = \frac{0.97 * 0.005}{0.97 * 0.005 + 0.05 * 0.995}$$

$$p(y = 0 \mid x = 0) = \frac{0.95 * 0.995}{0.95 * 0.995 + 0.03 * 0.005}$$

X: amount of balance

Y: default positive/negative

X: amount of balance

Y: default positive/negative

Distribution of balance: p(x|y=1)

Distribution of balance: p(x=o|y=o)

X: amount of balance Y: default positive/negative Distribution of balance: p(x|y=1)

Distribution of balance: p(x=o|y=o)

X: amount of balance Y: default positive/negative Distribution of balance: p(x|y=1)

Distribution of balance: p(x=o|y=o)

$$p(x | y = 0) = \frac{1}{\sqrt{2\pi\sigma_0}} e^{-(x-\mu_0)^2/2\sigma_0^2}$$

X: amount of balance Y: default positive/negative Distribution of balance: p(x|y=1)

Distribution of balance: p(x=o|y=o)

$$p(x | y = 0) = \frac{1}{\sqrt{2\pi\sigma_0}} e^{-(x-\mu_0)^2/2\sigma_0^2} \qquad p(x | y = 1) = \frac{1}{\sqrt{2\pi\sigma_1}} e^{-(x-\mu_1)^2/2\sigma_1^2}$$

$$p(x | y = 1) = \frac{1}{\sqrt{2\pi\sigma_1}} e^{-(x-\mu_1)^2/2\sigma_1^2}$$

X: amount of balance Y: default positive/negative Distribution of balance: p(x|y=1)

Distribution of balance: p(x=o|y=o)

$$p(x | y = 0) = \frac{1}{\sqrt{2\pi\sigma_0}} e^{-(x-\mu_0)^2/2\sigma_0^2} \qquad p(x | y = 1) = \frac{1}{\sqrt{2\pi\sigma_1}} e^{-(x-\mu_1)^2/2\sigma_1^2}$$

$$p(x | y = 1) = \frac{1}{\sqrt{2\pi\sigma_1}} e^{-(x-\mu_1)^2/2\sigma_1^2}$$

X: amount of balance Y: default positive/negative Distribution of balance: p(x|y=1)

Distribution of balance: p(x=o|y=o)

$$p(x | y = 0) = \frac{1}{\sqrt{2\pi\sigma_0}} e^{-(x-\mu_0)^2/2\sigma_0^2} \qquad p(x | y = 1) = \frac{1}{\sqrt{2\pi\sigma_1}} e^{-(x-\mu_1)^2/2\sigma_1^2}$$

$$p(x | y = 1) = \frac{1}{\sqrt{2\pi\sigma_1}} e^{-(x-\mu_1)^2/2\sigma_1^2}$$

X: amount of balance Y: default positive/negative Distribution of balance: p(x|y=1)

Distribution of balance: p(x=o|y=o)

$$p(x | y = 0) = \frac{1}{\sqrt{2\pi\sigma_0}} e^{-(x-\mu_0)^2/2\sigma_0^2} \qquad p(x | y = 1) = \frac{1}{\sqrt{2\pi\sigma_1}} e^{-(x-\mu_1)^2/2\sigma_1^2}$$

$$p(x | y = 1) = \frac{1}{\sqrt{2\pi\sigma_1}} e^{-(x-\mu_1)^2/2\sigma_1^2}$$

The chance a person is default given x balance:

The chance a person is not default given x balance:

The chance a person is default given x balance:

The chance a person is not default given x balance:

$$p(y = 1 | x) \propto p(x | y = 1)p(y = 1) = \mathbb{N}(x; \mu_1, \sigma_1^2) * \pi_1$$

Bayes rule applied to default data

The chance a person is default given x balance:

$$p(y = 1 | x) \propto p(x | y = 1)p(y = 1) = \mathbb{N}(x; \mu_1, \sigma_1^2) * \pi_1$$

The chance a person is not default given x balance:

$$p(y = 0 | x) \propto p(x | y = 0)p(y = 0) = \mathbb{N}(x; \mu_0, \sigma_0^2) * \pi_0$$

Linear Discriminant Analysis (LDA)

Assumption: $\sigma_0 = \sigma_1$

$$\delta_k(x) = x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\pi_k) \tag{4.13}$$

Linear Discriminant Analysis (LDA)

Assumption: $\sigma_0 = \sigma_1$

$$\delta_k(x) = x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$$
(4.13)

If $\delta_0(x) > \delta_1(x)$: prediction $\hat{y} = 0$

Linear Discriminant Analysis (LDA)

Assumption: $\sigma_0 = \sigma_1$

$$\delta_k(x) = x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$$
(4.13)

If $\delta_0(x) > \delta_1(x)$: prediction $\hat{y} = 0$

If $\delta_0(x) < \delta_1(x)$: prediction $\hat{y} = 1$

Assumption: $\sigma_0 \neq \sigma_1$

Assumption: $\sigma_0 \neq \sigma_1$

$$\delta_k(x) = -\frac{(x - \mu_k)^2}{2\sigma_k^2} - \log \sigma_k + \log \pi_k$$

Assumption: $\sigma_0 \neq \sigma_1$

$$\delta_k(x) = -\frac{(x - \mu_k)^2}{2\sigma_k^2} - \log \sigma_k + \log \pi_k$$

If $\delta_0(x) > \delta_1(x)$: prediction $\hat{y} = 0$

Assumption: $\sigma_0 \neq \sigma_1$

$$\delta_k(x) = -\frac{(x - \mu_k)^2}{2\sigma_k^2} - \log \sigma_k + \log \pi_k$$

If $\delta_0(x) > \delta_1(x)$: prediction $\hat{y} = 0$

If $\delta_0(x) < \delta_1(x)$: prediction $\hat{y} = 1$

If we split the 10000 data into 5000 training and 5000 test:

 μ_0 : the mean of balance of training data with y = 0

 σ_0^2 : variance of balance of training data with y = 0

If we split the 10000 data into 5000 training and 5000 test:

 μ_0 : the mean of balance of training data with y = 0

 μ_1 : the mean of balance of training data with y = 1

 σ_0^2 : variance of balance of training data with y = 0

If we split the 10000 data into 5000 training and 5000 test:

 μ_0 : the mean of balance of training data with y = 0

 σ_0^2 : variance of balance of training data with y = 0

 μ_1 : the mean of balance of training data with y = 1

 σ_1^2 : variance of balance of training data with y = 1

If we split the 10000 data into 5000 training and 5000 test:

 μ_0 : the mean of balance of training data with y = 0

 μ_1 : the mean of balance of training data with y = 1

 σ_0^2 : variance of balance of training data with y = 0

 σ_1^2 : variance of balance of training data with y = 1

Quiz: if we treat the first 5000 row in default.csv as training subset, what are the values of the above four parameters?

Please take notes

7. The table below provides a training data set containing six observations, three predictors, and one qualitative response variable.

Obs.	X_1	X_2	X_3	Y
1	0	3	0	Red
2	2	0	0	Red
3	0	1	3	Red
4	0	1	2	Green
5	-1	0	1	Green
6	1	1	1	Red

Suppose we wish to use this data set to make a prediction for Y when $X_1 = X_2 = X_3 = 0$ using K-nearest neighbors.

$$t=(0,0,0); ob1=(0,3,0)$$

Please take notes

7. The table below provides a training data set containing six observations, three predictors, and one qualitative response variable.

Obs.	X_1	X_2	X_3	Y
1	0	3	0	Red
2	2	0	0	Red
3	0	1	3	Red
4	0	1	2	Green
5	-1	0	1	Green
6	1	1	1	Red

Suppose we wish to use this data set to make a prediction for Y when $X_1 = X_2 = X_3 = 0$ using K-nearest neighbors.

$$t=(0,0,0); ob1=(0,3,0)$$

d(t,ob1)	d(t,ob2)	d(t,ob3)	d(t,ob4)	d(t,ob5)	d(t,ob6)
$\sqrt{0^2 + 3^2 + 0^2} = 3$	2	$\sqrt{10}$	5	2	3

Please take notes

7. The table below provides a training data set containing six observations, three predictors, and one qualitative response variable.

Obs.	X_1	X_2	X_3	Y
1	0	3	0	Red
2	2	0	0	Red
3	0	1	3	Red
4	0	1	2	Green
5	-1	0	1	Green
6	1	1	1	Red

Suppose we wish to use this data set to make a prediction for Y when $X_1 = X_2 = X_3 = 0$ using K-nearest neighbors.

$$t=(0,0,0); ob1=(0,3,0)$$

d(t,ob1) d(t,ob2) d(t,ob3) d(t,ob4) d(t,ob5) d(t,ob6)
$$\sqrt{0^2+3^2+0^2} = 3$$
 2 $\sqrt{10}\sqrt{5}\sqrt{2}\sqrt{3}$

Please take notes

7. The table below provides a training data set containing six observations, three predictors, and one qualitative response variable.

Obs.	X_1	X_2	X_3	Y
1	0	3	0	Red
2	2	0	0	Red
3	0	1	3	Red
4	0	1	2	Green
5	-1	0	1	Green
6	1	1	1	Red

Suppose we wish to use this data set to make a prediction for Y when $X_1 = X_2 = X_3 = 0$ using K-nearest neighbors.

$$t=(0,0,0); ob1=(0,3,0)$$

Closest: ob.5 -> prediction = green

Please take notes

7. The table below provides a training data set containing six observations, three predictors, and one qualitative response variable.

Obs.	X_1	X_2	X_3	Y
1	0	3	0	Red
2	2	0	0	Red
3	0	1	3	Red
4	0	1	2	Green
5	-1	0	1	Green
6	1	1	1	Red

Suppose we wish to use this data set to make a prediction for Y when $X_1 = X_2 = X_3 = 0$ using K-nearest neighbors.

$$t=(0,0,0); ob1=(0,3,0)$$

When
$$k = 1$$
,

Closest: ob.5 -> prediction = green

When
$$k = 3$$
,

Please take notes

7. The table below provides a training data set containing six observations, three predictors, and one qualitative response variable.

Obs.	X_1	X_2	X_3	Y
1	0	3	0	Red
2	2	0	0	Red
3	0	1	3	Red
4	0	1	2	Green
5	-1	0	1	Green
6	1	1	1	Red

Suppose we wish to use this data set to make a prediction for Y when $X_1 = X_2 = X_3 = 0$ using K-nearest neighbors.

$$t=(0,0,0); ob1=(0,3,0)$$

When
$$k = 1$$
,

Closest: ob.5 -> prediction = green

When
$$k = 3$$
,

Closest: ob. 5, 6, 2 \rightarrow prediction = $(red^2 2 + green^4 1)/3 = red$

Lab session

Stock market data, predicting movement for next day

data = pd.read_csv('Smarket.csv')

data.head(10)

	Unnamed: 0	Year	Lag1	Lag2	Lag3	Lag4	Lag5	Volume	Today	Direction
0	1	2001	0.381	-0.192	-2.624	-1.055	5.010	1.1913	0.959	Up
1	2	2001	0.959	0.381	-0.192	-2.624	-1.055	1.2965	1.032	Up
2	3	2001	1.032	0.959	0.381	-0.192	-2.624	1.4112	-0.623	Down
3	4	2001	-0.623	1.032	0.959	0.381	-0.192	1.2760	0.614	Up
4	5	2001	0.614	-0.623	1.032	0.959	0.381	1.2057	0.213	Up
5	6	2001	0.213	0.614	-0.623	1.032	0.959	1.3491	1.392	Up
6	7	2001	1.392	0.213	0.614	-0.623	1.032	1.4450	-0.403	Down
7	8	2001	-0.403	1.392	0.213	0.614	-0.623	1.4078	0.027	Up
8	9	2001	0.027	-0.403	1.392	0.213	0.614	1.1640	1.303	Up
9	10	2001	1.303	0.027	-0.403	1.392	0.213	1.2326	0.287	Up

Using logistic regression, Lag1-5, volume, all data for training

Use 2001-2004 as training, 2005 as test

How to improve? LDA, QDA, k-nn. See Lab Code