

CMOS 28FDSOI Varactor NMOS EG single, diff. ended report

Model documentation

Florence SONNERAT Cédric DURAND

October 2nd, 2017

Outline 2

- Devices presentation
- Varactor EG NMOS Single Ended (SE) Cross Section & Layout
- Varactor EG NMOS SE model performances
- Varactor EG NMOS diff. Cross Section & Layout
- Varactor EG NMOS diff. model performances
- Conclusion

Devices presentation 3

Devices name and maturity:

- Varactor single ended EG: cvar_eg, MAT. 30.
- Varactor differential ended EG: cvar_eg_diff, MAT. 30.

Silicon characteristics and measurements details:

- De-embedding technique: PAD-THRU.
- Single:
 - MPW C281608, Lot Q618020, wafer 8, die 71.
 - Measurements setup: 2 ports S parameters 100 MHz up to 110 GHz.
 - 3 temperatures have been measured: -40 °C, 25 °C and 125°C.

• Diff

- MPW C281348, Lot Q511109, wafer 13, die 60.
- Measurements setup: 4 ports S parameters 100 MHz up to 67 GHz.
- No temperature measurements available: coefficients will be inherited from the single model.

Devices presentation 4

Varactor MOS EG	Simulation with temperature	Worst case & Min/max	Pcell available	Model Si-based	
Cvar_eg	Yes	Yes	Yes	Yes, up to 110 GHz	
Cvar_eg_diff	Yes Yes		Yes	Yes, up to 67 GHz	

Best/worst case

- Statistical and Best/Worst case simulations are available
- The criteria is the capacitance. Best/Worst are constructed with DRM value and mapping on one wafer. So statistical simulations concern mainly observed variations on intrinsic serial capacitance and back-end variation extracted from DRM

Varactor NMOS EG SE layout 5

Layout varactor NMOS Single Ended

Equivalent circuit

Varactor NMOS EG SE parameters 6

Varactor NMOS EG single in CMOS 28FDSOI

Varactor MOS Cvar_eg	Cap. (F)	Gate Length (μm)	Gate Width (µm)	Nbfp	Ncell	Bias (V)	TR	Worst Case & Min/max
Min	20 f	0.048	1	1	1	-1.8	1.5	Yes
Max	10 p	2	10	50	10	1.8	3	

Model maturity vs DK

• Tentative: DK < 2.5

• Preliminary: 2.5 < DK 2.8

• Prod: since DK 0.9_RF_mmW

performances

SE Varactor measured and simulated

■ model □□ meas

life.augmented

-40 °C 25°C 125°C

Varactor EG, C=274 fF (w=10 μm, I=0,25 μm, Nbfp=3, Nbcell=4)

Varactor EG, C=262 fF (w=2 μm, l=1 μm, Nbfp=4, Nbcell=4)

S.E varactors Corners

Varactor EG, C=255 fF (w=5 μm, l=0,5 μm, Nbfp=12, Nbcell=1)

Varactor EG, C=131 fF (w=2 μm, l=0.5 μm, Nbfp=4, Nbcell=4)

Measurements come from 2 lots:

life.augmented

MPW C281348, Lot Q511109, wafer 13, die 34,48,68,72,100 MPW C281608, Lot Q618020, wafer 8, die 47, 71, 97

Varactor NMOS EG diff. layout

Varactor NMOS EG diff. parameters 10

Varactor NMOS EG diff, in CMOS28FDSOI

Varactor MOSEG diff	Cap. (F)	Gate Length (µm)	Gate Width (µm)	Nbfp	Ncell	Bias (V)	TR	Worst Case & Min/max
Min	20 f	0.049	1.5	1	1	-1.8	1.5	Voc
Max	10 p	2	10	50	5	1.8	3	Yes

Model maturity vs DK

• Tentative: DK < 2.8

Prod: since DK 0.9_RF_mmW

Diff. Varactor measured and simulated

Model: ---40 °C -- 25°C -- 125°C Mes: □□ 25°C performances

Varactor EG, C=362 fF (w=5 μm, I=0,83 μm, Nbfp=10, Nbcell=2)

Varactor EG, C=826 fF (w=10 μm, l=2 μm, Nbfp=10, Nbcell=1)

Diff. Varactor Corners 12

Varactor EG, C=371 fF (w=5 μm, I=0,83 μm, Nbfp=10, Nbcell=2)

Varactor EG, C=826 fF (w=10 μm, l=2 μm, Nbfp=10, Nbcell=1)

Measurements come from 2 lots:

MPW C281348, Lot Q511109, wafer 13, die 47, 60 MPW C281608, Lot Q618020, wafer 8, die 34, 61,96

- Cvar_eg model is MAT 30 (silicon-based).
- Cvar_eg_diff is MAT 30 (silicon-based).
- Frequency use recommendations:
 - We recommend not to use the varactors at frequencies higher than the frequency for which the varactor Q factors falls below 5. For higher frequencies, the model accuracy is decreased.
 - We better recommend varactors use at frequencies below 20GHz. Performances and model are limited at higher frequencies.
- Please note that when using Spectre (version 16.10.387) in Transient and PSS (Periodic Steady State) simulations, the frequency dependency of varactors resistances is ignored, i.e. only DC resistance (constant) is simulated.

