Nr.	Formula
	Dezvoltare in Serie Fourier
1.	$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$
	Serii cu π
2.	$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$
3.	$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$
4.	$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$
5.	$\int_{-a}^{a} f(x) dx =$
	$\begin{cases} 2 \int_{0}^{a} f(x) dx \Rightarrow f(x) - para, \\ 0 \Rightarrow f(x) \text{ impara.} \end{cases}$
6.	$\sin n\pi = 0$
7.	$\cos n\pi = -1$
8.	$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$
	Serii cu l
9.	$a_0 = \frac{1}{l} \int_{-l}^{l} f(x) dx$
10.	$a_n = -\frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx$
11.	$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx$
	Prelungire serie para / de cos
12.	$x \in [-l; 0]; f(x) = f(-x)$