Cours 5 - Les Systèmes experts

Table des matières

Introduction	5
I - Tâches d'un système expert	7
A. Résolution de problèmes difficiles	<i>7</i>
B. Autres tâches	<i>7</i>
C. Retombées directes attendues des systèmes experts	8
II - Architecture d'un système expert	9
A. Caractéristiques	9
B. Base de faits	11
C. Base de connaissances	12
1. Heuristiques	
D. Règles de production	
1. Définitions	
2. Exemples de règles	
4. Ordre 1	16
5. Intérêt	16
E. Moteur d'inférences	16
1. Algorithme de base	
2. Chaînage avant	
3. Chaînage arrière	
5. Amélioration du filtrage	23
6. Etape de décision	
7. Etape de déclenchement	25
III - Classification des systèmes experts	27

A. Diagnostic	27
B. Interprétation	27
C. Monitoring	29
D. Prédiction	31
E. Conception	32
F. Planification	32
G. Débogage & réparation	
H. Autres	33

Quand faire des systèmes experts ?

Quand on ne dispose pas d'autres solutions :

- Pas d'algorithme connu.
- · Pas d'approche mathématique.

Le contexte est favorable :

- · Quand le projet est économiquement viable
- Quand il existe une expertise humaine, c'est-à-dire une personne capable de faire les analyses et de prendre les décisions appropriées
- · Quand cette expertise est clairement disponible et apparaît formalisable
- Quand le domaine est bien délimité
- Quand les paramètres qualitatifs sont plus impor- tants que les paramètres quantitatifs

Résolution de problèmes difficiles	7
Autres tâches	7
Retombées directes attendues des systèmes experts	8

A. Résolution de problèmes difficiles

- Agir efficacement et rapidement
- Tirer des conclusions à partir de relations complexes
- Poser des questions
- Expliquer le raisonnement

Niveau d'intervention:

Remplacement d'un expert

- Pour automatiser une tâche routinière
- Par besoin d'une expertise dans un environ-nement hostile

Assistance à un expert

- · Pour gérer la complexité
- Pour améliorer la productivité

B. Autres tâches

Capturer et préserver le savoir-faire

Tâche de nos jours très importante

Rassembler et organiser une connaissance disséminée entre plusieurs experts

- Tâche difficile
- Problèmes liés à la multi-expertise

Aider à la diffusion des connaissances

- Proposer une même expertise sur divers sites simultanément
- Partager des connaissances

Exemple

Systèmes à vocation pédagogique

C. Retombées directes attendues des systèmes experts

- · Amélioration des décisions
- Amélioration de la qualité du travail
- · Amélioration du service rendu à l'utilisateur
- Réduction des coûts
- · Réduction des erreurs, augmentation de la fiabilité

C'est une alternative à l'expertise

Caractéristiques	9
Base de faits	11
Base de connaissances	12
Règles de production	13
Moteur d'inférences	16

ATTENTION! A partir de maintenant, S.E. veut dire:

Système Expert à Base de Règles.

Illustrant la notion de Système à Base de Règles ou SBR

A. Caractéristiques

Illustration

Architecture d'un système expert

Fondamental : La base de connaissances ou base de règles

- · Une mémoire à long terme
- Les règles en principe « en vrac »
- · Peut aussi contenir des faits "permanents"

Fondamental : La base de faits ou mémoire de travail

- Une mémoire à court terme
- · L'ensemble des "faits" relatifs au problème

Fondamental: Le moteur d'inférences

- Confronte les règles à la base de faits
- Système déductif chargé des inférences et de modifier dynamiquement la base de faits

Attention : Séparation des connaissances et du moteur d'inférences

- Le moteur d'inférences contrôle l'emploi de la connaissance
- Dissociation profitable au développement
- Accès à la connaissance plus aisé

Fondamental : Modularité de la connaissance :

- Possibilité de la décomposer en petites unités homogènes et indépendantes
- Facilite la modification des connaissances
- Permet une approche incrémentale

B. Base de faits

Définition

Contient au début d'une session un **ensemble d'informations** relatives au **cas considéré**, avant toute intervention du moteur d'inférences

- Des faits avérés (une liste de symptômes)
- Des faits à établir

Est ensuite enrichie au fur et à mesure de la résolution du problème :

- à la suite de déductions
- à la suite de questions

Faits = des propositions

Exemple

- « la température est de 39.5°C »
- « le réservoir d'essence est vide »

C. Base de connaissances

Objectifs

- Validité : consistance, cohérence, complétude
- Robustesse
- Efficacité
- · Comment les acquérir ?
- Comment les représenter ?
- Comment les organiser ?
- · Comment les valider ?
- Comment expliquer ?

1. Heuristiques

Des connaissances opératoires

• Théorèmes, lois, algorithmes......

Définition : Heuristique :

Une heuristique est une connaissance privée fondée sur l'expérience qui, en restreignant l'espace de recherche, aide à résoudre plus efficacement le problème

Attention

- Par essence, une heuristique est susceptible d'échouer! Dans ce cas, on en utilise une autre
- L'emploi d'heuristiques n'est pas réservé aux seuls experts

Exemples d'heuristiques

Exemple : Diagnostic médical

Si le malade a une température élevée, s'il a mal à la tête et s'il a des vomissements,

alors penser à la possibilité d'une méningite

Exemple: Calcul de primitives

Si l'intégrande contient un terme f(x) compli- qué, alors essayer le changement de variable u=f(x)

Exemple: Au poker

Si la main est faible, si le total des mises n'est pas trop élevé, et si l'adversaire semble facile- ment bluffable,

alors miser fort pour tenter un bluff

2. Représentation

Représentation NE SIGNIFIE PAS Mémorisation !!!

- Pouvoir d'expression
- Capacité à faciliter l'accès à l'information
- Capacité à organiser l'information
- · Capacité à supporter un raisonnement

Approches

Opposition entre savoir comment / savoir quoi

Procédurale:

- modifications difficiles
- - connaissance peu accessible
- → déclarative

D. Règles de production

1. Définitions

Définition

- SI conditions ALORS action
- SI c1 et c2 et... ET cn ALORS A

Définition : Conditions :

- Encore appelées prémisses
- Testent l'appartenance de faits à la base de faits

Définition : Action

- A un effet sur la base de faits :
- ajout d'un fait
- suppression d'un fait
 - Ne modifie pas la base de règles

Complément

C'est la représentation privilégiée pour les heuristiques !

a) Différents types de règles

Méthode : Relation :

Si réservoir vide alors l'auto ne démarre pas

Méthode: Recommandation:

Si l'auto ne démarre pas alors prendre un taxi

Méthode : Directive :

• Si l'auto ne démarre pas & le système d'alimentation en essence est ok alors vérifier le système électrique

Méthode : Stratégie :

• Si l'auto ne démarre pas alors vérifier le système d'alimentation en essence puis le système électrique

Méthode : Heuristique :

Si l'auto ne démarre pas & l'auto est une Ford de 1962 alors vérifier le radiateur.

2. Exemples de règles

Exemple: Exemple 1

- R1 Si animal vole et animal pond des oeufs alors animal est un oiseau
- R2 Si animal a des plumes alors animal est un oiseau
- R3 Si animal est un oiseau et animal a un long cou et animal a de longues pattes alors animal est une autruche
- R4 Si animal a des mamelles alors mammifère
- R5 Si animal a des poils alors mammifère
- R6 Si animal mange de la viande alors carnivore
- R7 Si animal a des sabots alors ongulé
- R8 Si animal est un ongulé & rayures noires alors animal est un zèbre
- R9 Si animal est un félidé & tâches noires alors animal est un guépard

Etc

Exemple: Exemple 2

- R1 Si fleur et graine alors phanérogame
- R2 Si phanérogame et graine nue alors sapin
- R3 Si phanérogame et 1-cotylédone alors monocotylédone
- R4 Si phanérogame et 2-cotylédone alors dicotylédone
- R5 Si monocotylédone et rhizome alors muguet
- R6 Si dicotylédone alors anémone
- R7 Si monocotylédone et non rhizome alors lilas
- R8 Si feuilles et fleur alors cryptogame
- R9 Si cryptogame et non racine alors mousse
- R10 Si cryptogame et racine alors fougère
- R11 Si non feuilles et plante alors thallophyte
- R12 SI thallophyte et chlorophylle alors algue
- R13 Si thallophyte et non chlorophylle alors champignon
- R14 Si non feuilles et non fleur et non plante alors colibacille
 - SI une personne a une pneumonie ALORS elle a de la fièvre
 - 2) Jean a une pneumonie
 - 3) Jean a de la fièvre

Interprétation d'une règle de production

Modus ponens

A ⇒ B donc B

A

Modus tollens

 $A \Rightarrow B \quad donc \neg A$

 $\neg B$

Abduction, induction

Exemples

3. Ordre 0/0+

Représentation

« Le fait pour Mr. Lewis d'être né à Dallas lui permet d'obtenir la nationalité américaine »

Définition : Représentation en Ordre 0

• Un fait est une proposition, donc à valeur booléenne.

SI Lewis_né_à_Dallas ALORS Lewis américain

Définition : Représentation en Ordre 0+

Un fait est un couple (attribut, valeur): AV

SI lieu naissance = Dallas

ALORS nationalité = Usa

• Un fait est un triplet (objet-attribut-valeur) : OAV

SI (Lewis lieu_naissance Dallas)

ALORS (Lewis nationalité Usa)

4. Ordre 1

Définition : Représentation en Ordre 1

- Basée sur le calcul des prédicats.
- Permet de manipuler des variables (locales) en procédant par semiunification (cf. IAO2).
- Un fait est une expression symbolique sans variable.

SI (\$pers lieu naissance Dallas)

ALORS (\$pers nationalité américaine)

Méthode : Nouvelle généralisation

SI (\$pers lieu_naissance \$ville)

ET (\$ville pays Usa)

ALORS (\$pers nationalité américaine)

5. Intérêt

Intérêt proclamé des règles de production

Indépendance des règles entre elles

- Pas d'ordre instauré entre les règles
- Pas d'appel direct

Déclarativité

- Une règle est une assertion
- Ce formalisme n'oriente pas vers une méthode de résolution particulière

Mise à jour facilitée

Lisibilité accrue

Attention

Il convient en fait de pondérer "largement" ces dernières affirmations!

E. Moteur d'inférences

1. Algorithme de base

Algorithme Général

Définition : Algorithme :

Tant que la condition terminale n'est pas vérifiée Répéter le cycle de base

déroulement du cycle de base

1) Restriction (phase optionnelle)

Sélection d'ensembles de règles et de faits

2) Filtrage (pattern-matching)

Constitution du sous-ensemble des règles candidates, dit ensemble de conflits

« Une règle est candidate si son déclencheur s'apparie avec des éléments de BR »

3) Décision ou Résolution de conflits

Une règle est choisie selon une stratégie de contrôle

4) Déclenchement

La règle choisie est déclenchée et la base de faits en est modifiée

2. Chainage avant

Initialement, un but G et une base de faits BF. On réitère le cycle de base avec pour spécifications :

Pour chaque règle R:

· R candidate si chaque prémisse de R peut être appariée avec des faits de BF

- Déclenchement de R en ajoutant A à BF
- · Condition terminale: G dans BF

Complément : Caractéristiques

- Mise en œuvre assez aisée
- Nécessite beaucoup de données
- Risque de dispersion
- a) Algorithme de chaînage avant

DEBUT

- TANT QUE G n'est pas dans BF ET QU'IL existe dans BR une règle applicable FAIRE
 - Filtrage → E ensemble de conflits
 - Décision → R
 - BF ← BF \cup concl(R)
 - BR ← BR R
- FIN DU TANT QUE
- Si G appartient à BF ALORS

G est établi

SINON G n'est pas établi

FIN

algorithme de chainage avant

Exemple : Exemple 1 de chaînage avant

REGLE R1

SI animal vole ET animal pond des oeufs

ALORS animal est un oiseau

REGLE R2

SI animal a des plumes

ALORS animal est un oiseau

REGLE R3

SI animal est un oiseau ET animal a un long cou ET animal a de longues pattes ALORS animal est une autruche

FAIT F1: animal a des plumes

FAIT F2: animal a un long cou

FAIT F3: animal a de longues pattes

- CYCLE 1

R2 seule règle déclenchable. Donc R2 est choisie. Déclenchement de R2 : le fait F4 "animal est un oiseau" est ajouté à BF.

BF = { F1 ; F2 ; F3 ; F4 }

- CYCLE 2

R3 seule règle déclenchable. Donc R3 est choisie. Déclenchement de R3 : le fait F5 "animal est une autruche" est ajouté à BF.

BF = { F1 ; F2 ; F3 ; F4 ; F5 }

- CYCLE 3

Arrêt.

Exemple: Exemple 2 en chainage avant

R1 Bet Det $E \rightarrow F$

R2 Det $G \rightarrow A$

R3 Cet $F \rightarrow A$

R4 $C \rightarrow D$

R5 $D \rightarrow E$

R6 $A \rightarrow H$

R7 $B \rightarrow X$

R8 X et $C \rightarrow A$

BF

B Vrai

C Vrai

H?

Stratégie : choix de la première règle

B, C ___ B, C, D ___ B, C, D, E ___ B, C, D, E, F ___

BR

B, C, D, E, F, A ___ B, C, D, E, F, A, H

Stratégie : choix de la dernière règle

B, C ___ B, C, X ___ B, C, X, A ___ B, C, X, A, H

Exemple 2 de chainage avant

3. Chaînage arrière

Initialement, un but G et une base de faits BF. On réitère le cycle de base avec pour spécifications :

Pour chaque règle R:

- R candidate si A peut être apparié avec un but de BF
- Déclenchement de R : B et C sont de nou- veaux sous-buts à établir
- Condition terminale : décomposition de G en faits possible (succès) ou impossible (échec)

Complément : Caractéristiques

- Permet de focaliser le raisonnement
- - Permet de poser des questions utiles sur des faits demandables

Exemple : Exemple 1 en chainage arrière

REGLE R1

SI animal vole ET animal pond des oeufs

ALORS animal est un oiseau

REGLE R2

SI animal a des plumes

ALORS animal est un oiseau

REGLE R3

SI animal est un oiseau ET animal a un long cou ET animal a de longues pattes ALORS animal est une autruche

FAIT F1: animal a des plumes FAIT F2: animal a un long cou

FAIT F3: animal a de longues pattes

BUT: animal est une autruche

Exemple 1chainage arrière

Exemple : Exemple 2 chainage arrière

Stratégie : choix de la première règle

Exemple 2 de chainage arrière

4. Filtrage d'ordre 1

$$R: (a ?x b) (c ?x) \rightarrow \dots$$

- Recherche des appariements
 - Opération de mise en coïncidence (semiunification)
 - Exemple: (a d b) (a e c)
- Vérification des liaisons entres variables
 - Opération de jointure
 - Exemple:

```
BF = \{ (a \ d \ b); (c \ d) \} \rightarrow succes

BF_1 = \{ (a \ d \ b); (c \ f) \} \rightarrow échec
```

Filtrage en ordre 1

Exemple

```
R (pere ?x ?y) (frere ?z ?x) => (oncle ?z ?y)
BF { (pere jean luc) }
{ (frere paul jean) }
{ (frere marc jean) }
R est déclenchable deux fois
```


Complément

- Une même règle, associée à des substitutions différentes, peut être candidate plusieurs fois
- La phase de filtrage peut être très coûteuse!

5. Amélioration du filtrage

Il existe deux grandes méthodes de filtrage : la **méthode des filtres** et la **méthodes des réseaux**.

Méthode des filtres

« Réduire le nombre de règles de BC à soumettre au filtrage »

R1: A B →

R2: $B C \rightarrow \dots BF = \{A; C\}$

R3: C A →

Méthode des réseaux

- Redondance temporelle

- Redondance des conditions

Amélioration du filtrage

6. Etape de décision

a) I. Famille de structure de controles

Famille de structures de contrôle

Recherche exhaustive

- Déclenchement de toute règle déclenchable
- Type de contrôle bien adapté en cas de jugement pondéré (cf. Mycin) et d'univers de recherche faiblement combinatoire

Choix par évaluation

- Critères systématiques ou dynamiques, sur la priorité des règles ou des faits
 Contrôle heuristique ou raisonné
 - Des connaissances spécifiques sur le problème à traiter sont exploitées pour décider du choix de la règle à déclencher => métarègles
 - Solution élégante car la logique de contrôle devient elle-même transparente
 - b) II. Différents modes de décisions
 - i Décision en chaînage avant

Stratégies exhaustives :

 Largeur d'abord : on déclenche toutes les règles issues de l'ensemble de conflits

Stratégies systématiques :

- · La 1ère règle, la dernière règle
- Profondeur d'abord : choix d'une règle ayant pour prémisse le dernier fait établi,

Stratégies dynamiques :

• Choix d'une règle en fonction de l'intérêt de sa conclusion par rapport au but

Stratégies raisonnées : par métarègles

 « Si l'âge du patient est > 70 ans, alors il est préférable d'utiliser les règles relatives au traitement médical »

ii - Décision en chaînage arrière

Stratégies systématiques :

- Profondeur d'abord : très approprié
- Choix des derniers sous-buts développés
- Choix et essai des règles avec retour-en arrière si nécessaire (backtracking)

Stratégies raisonnées : par métarègles

Développement de préférence des sous-buts prometteurs

iii - Décision en chaînage mixte

- En avant : pour exploiter les faits connus ou inférés
- En arrière : pour focaliser sur les buts et poser les bonnes questions

7. Etape de déclenchement

Fonctionnement:

Méthode

Ajout de faits : le cas le plus fréquent

Parfois suppression de faits :

SI sur(B,A)

libre(B)

main-vide(robot)

ALORS Ajouter

- contient-main(robot,B)
- libre(A)
- main-pleine(robot)

Supprimer

- sur(B,A)
- libre(B)
- main-vide(robot)

Processus non monotone : abandon de la logique classique

Classification des systèmes experts

Diagnostic	27
Interprétation	27
Monitoring	29
Prédiction	31
Conception	32
Planification	32
Débogage & réparation	33
Autres	33

A. Diagnostic

Définition : Diagnostic

analyse de données afin d'en inférer des dysfonctionnements possibles

Exemple

Exemples: MYCIN, CADUCEUS,

De très nombreux systèmes experts, surtout dans les années quatre-vingt

B. Interprétation

Définition : Interprétation

Analyse d'observations ou de données de capteurs, pour en déterminer la signification

Exemple: Exemple 1: dendral

DENDRAL (1967)

Analyse automatique des spectrogrammes de masse

Aide à la prédiction des structures moléculaires

- Conçu à l'université de Stanford
- Tout d'abord écrit procéduralement
- Devenu ingérable : « apparaît alors la nécessité d'entrer en données le savoir des spécialistes »
- Réécriture heuristique en 1967

Exemple : Exemple 2 : Spectrogramme de masse

Spectrogramme de masse

SI il y a deux pics pour les masses X1 et X2

- -X1 + X2 = M + 28
- X1 28 est un pic élevé
- X2 28 est un pic élevé
- au moins un des pics X1 ou X2 est élevé

ALORS la molécule contient un pic cétone

Exemple: Exemple 3: Prospector

Prospector

Interprète des données géologiques de surface pour évaluer l'intérêt de prospections minières

- Développé au SRI (Stanford Institute Research), avec l'aide d'une dizaine d'experts
- A prédit la présence d'un gisement de molybdène important (Mt Tolman)
- Utilise différents modèles géologiques : pour l'uranium, le cuivre et le molybdène
- Utilise une structure combinant des règles (plus de 1000) et un réseau sémantique (calculs probabilistes)

C. Monitoring

Définition : MONITORING :

interprétation en continu des signaux, afin de déclencher une alarme dès que nécessaire

Exemple : Navex

Monitoring sur des données de radar qui permettent d'estimer la vitesse et la

position de la navette spatiale

Navex

D. Prédiction

Définition : Prédiction

Prévision d'événements, basée sur un modèle des événements passés

Exemple : Exemple : Plant

Prédiction des dégâts à attendre d'une invasion des coupes de maïs par un ver noir

Plant

E. Conception

Définition : Conception

mise au point de configurations qui satisfont un ensemble de contraintes

Exemple: Exemple: R1 / XCON

Configure les ordinateurs VAX de DEC en fonction des besoins des utilisateurs

- Problématique : des centaines de composants → problème extrêmement combinatoire
- Première approche : des programmes "conventionnels", aux résultats peu convaincants
- Deuxième approche : système expert, développé avec l'université de Carnegie Mellon
- - Le système XCON : à peu près 10000 règles, chaînage-avant,....

Exemple de fait :

RK611* (contrôleur de disque)

Class: UniBus module

Type: disk drive Supported: yes

Priority Level: buffered NPR

Transfer Rate: 212
Une règle de XCON:

If the most current active context is distributing Massbus devices

& there is a single port disk drive that has not been assigned to a Massbus

& there are no unassigned dual port disk drives

&

Then assign the disk drive to the Massbus

BILAN POUR XCON:

- Un des premiers systèmes experts (années quatre-vingt) à être commercialement réussi et rentable → Gain de plusieurs millions de dollars
- Utilisation en usine
- Une efficacité avérée
- → Temps de réponse divisé par 12
- → Meilleure qualité de service
- Réduction considérable du personnel technique dédié à cette tâche

F. Planification

Définition : Planification

Génération de séquences d'actions afin d'atteindre un but

Exemple: MOLGEN

- Domaine : biologie moléculaire
- Planification de processus chimiques dans le but d'analyser et de synthétiser de l'ADN
- Versions ultérieures : génération d'un plan de manipulations génétiques en vue de construire une entité biologique donnée

G. Débogage & réparation

Définition : Débogage & réparation

détection de fautes et proposition d'une procédure pour y remédier

Exemple : DELTA CATS

Identification de pannes et maintenance des locomotives Diesel

- L'expert fait défaut
- Développé par General Electric Company
- Capture des connaissances de l'unique expert
- Actions :

isole les défauts fait des requêtes fournit des informations guide le réparateur

H. Autres

Définition : Autres

calculs, synthèse de rapports, aide à l'enseignement, contrôle de système,

Exemple: MACSYMA (1970)

Calcul symbolique

- Conçu au MIT
- Vaste "culture" mathématique
- Développement en 100 a-h : 300000 lignes de code Lisp

Exemples:

- résolution d'équations différentielles
- recherche de primitives
- calcul matriciel
- algèbre vectoriel
- résolution de systèmes d'équations,...