Le contexte et le problème Estimateurs Estimation ponctuelle Intervalles de confiance ntervalles de confiances usuels

Estimation

Frédérique Leblanc

n observations d'un indicateur d'intérêt X (dosage d'un produit, indicateur physiologique, mesure d'un poids,...)

Données : $x_1, ..., x_n$

Modèle : les données sont un tirage d'un n-échantillon $X_1,...,X_n$ de X de loi dépendant d'un ou deux paramètres.

dans ce cours : deux modèles seront utilisés

- Modèle Normal $\mathcal{N}(\mu, \sigma^2)$ avec μ et (ou) σ inconnus
- Modèle de Bernoulli $\mathcal{B}(p)$ avec p inconnu

Le problème Proposer un ou plusieurs estimateurs du ou des paramètres inconnus du modèle en établir les propriétés pour choisir le meilleur estimateur.

Estimateur : Un estimateur de θ est une fonction connue de $X_1, ..., X_n$ qu'on notera T_n .

Ex : $T_n = \bar{X}_n$; $T'_n = min(X_i)$, $T''_n = X_1$,... estimateurs de $\mu = E(X)$

Qualités attendues d'un estimateur :

- Sans biais : $E(T_n) = \theta$ (retrouve en moyenne θ)
- De variabilité décroissante : de plus en plus précis si n augmente

$$V(T_n) \to 0$$
 si $n \to \infty$

- **Convergent** : sans biais et de variance tendant vers zéro avec *n*
- **Vocabulaire** : T_n calculé avec les données $x_1, ..., x_2$ produit une estimation de θ et est noté $\hat{\theta}$

- Moyenne $\mu = E(X) : \bar{X}_n$ est un estimateur sans biais et convergent de μ . On notera l'estimation sans biais obtenue $\hat{\mu} = \bar{x}_n$.
- Variance $\sigma^2 = V(X)$:

$$S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$$
 et $S_n'^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$

sont deux estimateurs de variance en O(1/n) tels que

$$E(S_n^2) = \frac{n-1}{n}\sigma^2 \text{ et } E(S_n'^2) = \sigma^2$$

On notera $\hat{\sigma^2} = s'^2$ pour l'estimation sans biais de σ^2 .

• **Proportion** $p: F_n = \bar{X}_n$ esb convergent pour p et l'estimation de p est $\hat{p} = \bar{x}_n = f_n$

Définition : On dira que $[T_1; T_2]$ est un intervalle de niveau de confiance $1 - \alpha$ pour θ si T_1 et T_2 ne dépendent que des X_i et si

$$P(\theta \in I) = 1 - \alpha$$

Outils de proba : la loi de l'estimateur de θ Loi des Estimateurs usuels : Pour X de loi $\mathcal{N}(\mu, \sigma^2)$

- \bar{X}_n suit une loi normale $\mathcal{N}(\mu, \sigma^2/n)$
- $nS_n^2/\sigma^2=(n-1)S_n'^2/\sigma^2$ suit une loi du Chi2 à n-1 degrés de liberté : \mathcal{X}_{n-1}^2
- Pour X de loi $\mathcal{B}(p)$; F_n suit approx. une $\mathcal{N}(p, p(1-p)/n)$

Modèle normal

• Moyenne μ :

si
$$\sigma^2$$
 connue :

$$I(\mu,\alpha,\sigma^2) = \left[\bar{X} - \frac{\sigma}{\sqrt{n}}u_{1-\alpha/2}, \bar{X} + \frac{\sigma}{\sqrt{n}}u_{1-\alpha/2}\right]$$

si σ^2 inconnue :

$$I(\mu,\alpha) = \left[\bar{X} - \frac{S'}{\sqrt{n}}t_{n-1,1-\alpha/2}, \bar{X} + \frac{S'}{\sqrt{n}}t_{n-1,1-\alpha/2}\right]$$

• Variance σ^2 pour μ inconnu :

$$J(\sigma^2,\alpha) = \left[\frac{\mathit{nS}^2}{\mathit{z}_{\mathit{n}-1,1-\alpha/2}},\frac{\mathit{nS}^2}{\mathit{z}_{\mathit{n}-1,\alpha/2}}\right]$$

Modèle de Bernoulli pour p : intervalle de niveau approximatif $1-\alpha$

$$I(p,\alpha) = \left[F_n - \frac{\sqrt{F_n(1-F_n)}}{\sqrt{n}}u_{1-\alpha/2}, F_n + \frac{\sqrt{F_n(1-F_n)}}{\sqrt{n}}u_{1-\alpha/2}\right]$$

à condition que np > 10 et n(1-p) > 10.