

## M25&M26

# 兼容设计手册

## GSM/GPRS 系列

版本: M25&M26\_兼容设计手册\_V1.0

日期: 2019-01-11

状态: 受控文件



移远公司始终以为客户提供最及时、最全面的服务为宗旨,如需任何帮助,请随时联系我司上海总部,联系方式如下:

上海移远通信技术股份有限公司 上海市徐汇区虹梅路 1801 号宏业大厦 7 楼 邮编: 200233 电话: +86 21 51086236 邮箱: info@quectel.com

或联系我司当地办事处,详情请登录:

http://www.quectel.com/support/salesupport.aspx

如需技术支持或反馈我司技术文档中的问题,可随时登陆如下网址:

http://www.quectel.com/support/techsupport.aspx

或发送邮件至: Support@quectel.com

#### 前言

移远公司提供该文档内容用以支持其客户的产品设计。客户须按照文档中提供的规范,参数来设计其产品。由于客户操作不当而造成的人身伤害或财产损失,本公司不承担任何责任。在未声明前,移远公司有权对该文档规范进行更新。

#### 版权申明

本文档手册版权属于移远公司,任何人未经我公司允许复制转载该文档将承担法律责任。

版权所有 ©上海移远通信技术股份有限公司 2019, 保留一切权利。

Copyright © Quectel Wireless Solutions Co., Ltd. 2019.



## 文档历史

## 修订记录

| 版本  | 日期         | 作者  | 变更描述 |
|-----|------------|-----|------|
| 1.0 | 2019-01-11 | 王海权 | 初始版本 |



## 目录

| 文林 | 档历史           | 2  |
|----|---------------|----|
| 目表 | 录             | 3  |
| 表体 | 格索引           | 4  |
| 图片 | 片索引           | 5  |
| 1  | 引言            | 6  |
| 1  |               |    |
| 2  | 综述            | 7  |
|    | 2.1. 产品简介     | 7  |
|    | 2.2. 功能概述     | 8  |
|    | 2.3. 管脚分配     | 10 |
| 3  | 管脚描述          | 11 |
| 4  | 硬件参考设计        | 14 |
|    | 4.1. 供电电源     | 14 |
|    | 4.1.1. 模块工作电压 | 14 |
|    | 4.1.2. 减少电压跌落 | 15 |
|    | 4.1.3. 供电参考电路 | 15 |
|    | 4.2. 开机       | 16 |
|    | 4.3. 关机       | 17 |
|    | 4.4. 重启模块     | 18 |
|    | 4.5. 网络状态指示   | 19 |
|    | 4.6. (U)SIM接口 | 20 |
|    | 4.7. 串口       | 20 |
|    | 4.8. 模数转换接口   | 21 |
|    | 4.9. RF 接口    | 21 |
| 5  | 物理尺寸          | 23 |
|    | 5.1. 推荐兼容封装   | 23 |
|    | 5.2. 推荐钢网尺寸   | 24 |
|    | 5.3. 安装示意图    | 26 |
| 6  | 生产焊接与包装       | 27 |
|    | 6.1. 生产焊接     | 27 |
|    | 6.2. 包装       | 28 |
| 7  | 附录 A          | 30 |



## 表格索引

| 表 1: | 模块基本信息       | 7    |
|------|--------------|------|
| 表 2: | 主要性能参数       | 8    |
| 表 3: | I/O 参数定义     | 11   |
|      | 管脚对比         |      |
|      | 模块工作电压范围     |      |
| 表 6: | 模块 UART 接口区别 | . 20 |
| 表 7: | 推荐的炉温测试控制要求  | . 27 |
| 表 8: | 参考文档         | . 30 |
| 表 9: | 术语缩写         | . 30 |



## 图片索引

| 图 | 1:  | M25&M26 管脚分配         | 10 |
|---|-----|----------------------|----|
| 图 | 2:  | 模块发射时的电压电流波形图        | 15 |
| 图 | 3:  | VBAT 输入参考电路          | 15 |
| 图 | 4:  | 供电电源参考设计电路           | 16 |
| 图 | 5:  | 开集驱动控制 PWRKEY 开机参考电路 | 16 |
| 图 | 6:  | M25&M26 开机时序         | 17 |
| 图 | 7:  | M25 &M26 关机时序图       | 18 |
| 图 | 8:  | 重启时序图                | 19 |
| 图 | 9:  | NETLIGHT 参考设计电路      | 19 |
| 图 | 10: | 6-PIN (U)SIM 接口参考电路图 | 20 |
| 图 | 11: | 主串口电平转换参考电路          | 21 |
| 图 | 12: | RF 天线接口参考设计电路        | 22 |
| 图 | 13: | M25&M26 底视图          | 23 |
| 图 | 14: | M25&M26 推荐兼容封装       | 24 |
| 图 | 15: | M25 和 M26 钢网尺寸       | 25 |
| 图 | 16: | M25&M26 安装效果图        | 26 |
| 图 | 17: | 推荐的回流焊温度曲线           | 27 |
| 图 | 18: | 卷带尺寸(单位:毫米)          | 28 |
| 夂 | 19. | 卷盘尺寸(单位· 毫米)         | 20 |



## 1 引言

移远通信的 GSM/GPRS 模块 M25 与 M26 相互兼容。本文档主要描述了 M25 与 M26 之间的兼容设计。

## 2 综述

## 2.1. 产品简介

M25 和 M26 均是四频段的 GSM/GPRS 模块,支持 GSM850/EGSM900/DCS1800/PCS1900 频段。 M25 与 M26 采用兼容设计,用户可根据需求选择合适的产品作为终端应用。

表 1: 模块基本信息

| 模块  | 外观                                                                               | 封装          | 尺寸 (mm)           | 描述             |
|-----|----------------------------------------------------------------------------------|-------------|-------------------|----------------|
| M25 | M25 XX QX-XXXXX M25XX-XX-XX SN:XXXXXXXXXXXXX IME: XXXXXXXXXXXXXX CMIIT-ID:2018-0 | 44 个 LCC 管脚 | 17.7 × 15.8 × 2.4 | 四频 GSM/GPRS 模块 |
| M26 | M26 FB. OX-0000X M86B-03-TIS SHEXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX              | 44 个 LCC 管脚 | 17.7 × 15.8 × 2.3 | 四频 GSM/GPRS 模块 |



## 2.2. 功能概述

下表对比了 M25 和 M26 的主要性能参数。

### 表 2: 主要性能参数

| 功能        | M25                                                                                       | M26                                                                                       | 备注         |
|-----------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------|
| 供电        | 供电电压: 3.4V~4.3V<br>典型值: 4.0V                                                              | 供电电压: 3.3V~4.6V<br>典型值: 4.0V                                                              |            |
| 峰值电流      | 2.0A                                                                                      | 1.6A                                                                                      |            |
| 休眠耗流      | 1.2mA @DRX=5<br>1.1mA @DRX=9                                                              | 1.3mA @DRX=5<br>1.2mA @DRX=9                                                              |            |
| 频段        | 四频段:<br>GSM850/EGSM900/<br>DCS1800/PCS1900                                                | 四频段:<br>GSM850/EGSM900/<br>DCS1800/PCS1900                                                |            |
| 温度范围      | 正常工作温度: -35°C ~ +75°C <sup>1)</sup> 扩展温度: -40°C ~ +85°C <sup>2)</sup> 存储温度: -40°C ~ +90°C | 正常工作温度: -35°C ~ +75°C <sup>1)</sup> 扩展温度: -40°C ~ +85°C <sup>2)</sup> 存储温度: -40°C ~ +90°C |            |
| UART 接口   | 主申口:                                                                                      | 主申口:                                                                                      | 串口电平: 2.8V |
| (U)SIM 接口 | 1.8V/3.0V (U)SIM卡                                                                         | 1.8V/3.0V (U)SIM卡                                                                         |            |
| 音频接口      | 一路模拟音频输入<br>两路模拟音频输出                                                                      | 一路模拟音频输入<br>两路模拟音频输出                                                                      |            |



| PCM 接口 | 支持                                       | 支持                                       |
|--------|------------------------------------------|------------------------------------------|
| ADC 接口 | 支持 ADC*                                  | 支持 ADC                                   |
| BT     | 不支持                                      | 支持 BT 3.0                                |
| RTC    | Vonorm=3.1V<br>V <sub>I</sub> =3.0V~3.5V | Vonorm=2.8V<br>V <sub>I</sub> =1.5V~3.3V |
| 固件升级   | 通过调试串口升级                                 | 通过主串口升级                                  |

#### 备注

- 1. 1) 表示当模块工作在此温度范围时,模块的相关性能满足 3GPP 标准要求。
- 2. <sup>2)</sup> 表示当模块工作在此温度范围时,模块仍能保持正常工作状态,具备语音、短信、数据传输、紧急呼叫等功能,不会出现不可恢复的故障;射频频谱、网络基本不受影响,仅个别指标如输出功率等参数的值可能会超出 3GPP 标准的范围。当温度返回至正常工作温度范围时,模块的各项指标仍符合 3GPP 标准。
- 3. "\*"表示正在开发中。



## 2.3. 管脚分配

M25 与 M26 模块的管脚分配图如下:



图 1: M25&M26 管脚分配

#### 备注

- 1. 蓝色字体标示的是 M25 的管脚名称。
- 2. 红色字体标示的是 M26 的管脚名称。
- 3. 详细信息请参考文档 [1]和文档 [2]。
- 4. "\*"表示正在开发中。



## 3 管脚描述

该章节描述了 M25 与 M26 的管脚定义及比较。

表 3: I/O 参数定义

| 类型 | 描述   |
|----|------|
| Al | 模拟输入 |
| AO | 模拟输出 |
| DI | 数字输入 |
| DO | 数字输出 |
| Ю  | 双向端口 |
| PI | 电源输入 |
| РО | 电源输出 |

下表描述了 M25 和 M26 的管脚功能及电气特性对比:

表 4: 管脚对比

| 管脚号 | M25   |     |                  | M26   |     |            |  |
|-----|-------|-----|------------------|-------|-----|------------|--|
|     | 管脚名   | I/O | 描述               | 管脚名   | I/O | 描述         |  |
| 1   | AGND  |     | 音频模拟地            | AGND  |     | 音频模拟地      |  |
| 2   | SPK2P | АО  | 单端音频输出通道 2       | SPK2P | АО  | 单端音频输出通道 2 |  |
| 3   | MICP  | ΑI  | V 10 V 17 V 17 V | MICP  | Al  | V V        |  |
| 4   | MICN  | AI  | 差分音频输入通道         | MICN  | Al  | 差分音频输入通道   |  |
| 5   | SPK1P | АО  | 差分音频输出通道 1       | SPK1P | AO  | 差分音频输出通道 1 |  |



| 6  | SPK1N    | АО |                                 | SPK1N    | AO |                                 |
|----|----------|----|---------------------------------|----------|----|---------------------------------|
| 7  | PWRKEY   | DI | 拉低 PWRKEY 一<br>段规定时间来开机<br>或者关机 | PWRKEY   | DI | 拉低 PWRKEY 一<br>段规定时间来开机<br>或者关机 |
| 8  | AVDD     | РО | ADC 电路的参考电源                     | AVDD     | РО | ADC 电路的参考电源                     |
| 9  | ADC0*    | ΑI | 通用模数转换接口                        | ADC0     | Al | 通用模数转换接口                        |
| 10 | SIM_GND  |    | (U)SIM 卡专用地                     | SIM_GND  |    | (U)SIM 卡专用地                     |
| 11 | SIM_DATA | Ю  | (U)SIM 卡数据线                     | SIM_DATA | Ю  | (U)SIM 卡数据线                     |
| 12 | SIM_RST  | DO | (U)SIM 卡复位线                     | SIM_RST  | DO | (U)SIM 卡复位线                     |
| 13 | SIM_CLK  | DO | (U)SIM 卡时钟线                     | SIM_CLK  | DO | (U)SIM 卡时钟线                     |
| 14 | SIM_VDD  | РО | (U)SIM 卡供电电源                    | SIM_VDD  | РО | (U)SIM 卡供电电源                    |
| 15 | RESERVED | /  | /                               | RESERVED | 1  | /                               |
| 16 | NETLIGHT | DO | 网络状态指示                          | NETLIGHT | DO | 网络状态指示                          |
| 17 | RXD      | DI | 模块接收数据                          | RXD      | DI | 模块接收数据                          |
| 18 | TXD      | DO | 模块发送数据                          | TXD      | DO | 模块发送数据                          |
| 19 | DTR      | DI | DTE 准备就绪<br>/(U)SIM 卡检测         | DTR      | DI | DTE 准备就绪                        |
| 20 | RI       | DO | 模块输出振铃提示                        | RI       | DO | 模块输出振铃提示                        |
| 21 | DCD      | DO | 模块输出载波检测                        | DCD      | DO | 模块输出载波检测                        |
| 22 | CTS      | DO | 模块清除发送                          | CTS      | DO | 模块清除发送                          |
| 23 | RTS      | DI | DTE 请求发送数据                      | RTS      | DI | DTE 请求发送数据                      |
| 24 | VDD_EXT  | РО | 2.8V 电源输出,用于外<br>部电路供电。         | VDD_EXT  | РО | 2.8V 电源输出,用于夕<br>部电路供电。         |
| 25 | RFTXMON  | DO | RF 发射信号指示                       | RFTXMON  | DO | RF 发射信号指示                       |
| 26 | RESERVED | /  | /                               | BT_ANT   | Ю  | 蓝牙天线接口                          |
| 28 | RXD_AUX  | DI | 模块接收数据                          | RXD_AUX  | DI | 模块接收数据                          |
| 29 | TXD_AUX  | DO | 模块发送数据                          | TXD_AUX  | DO | 模块发送数据                          |
| 30 | PCM_CLK  | DO | PCM 时钟线                         | PCM_CLK  | DO | PCM 时钟线                         |



| 31                           | PCM_SYNC | DO | PCM 帧同步                         | PCM_SYNC | DO | PCM 帧同步                         |
|------------------------------|----------|----|---------------------------------|----------|----|---------------------------------|
| 32                           | PCM_IN   | DI | PCM 数据输入                        | PCM_IN   | DI | PCM 数据输入                        |
| 33                           | PCM_OUT  | DO | PCM 数据输出                        | PCM_OUT  | DO | PCM 数据输出                        |
| 35                           | RF_ANT   | Ю  | 射频天线接口                          | RF_ANT   | Ю  | 射频天线接口                          |
| 38                           | DBG_RXD  | DI | 模块接收数据                          | DBG_RXD  | DI | 模块接收数据                          |
| 39                           | DBG_TXD  | DO | 模块发送数据                          | DBG_TXD  | DO | 模块发送数据                          |
| 42                           | VBAT     | PI | 模块主电源:<br>VBAT=<br>3.4V~4.3V    | VBAT     | PI | 模块主电源:<br>VBAT=<br>3.3V~4.6V    |
| 43                           | VBAT     | PI | 模块主电源:<br>VBAT=<br>3.4V~4.3V    | VBAT     | PI | 模块主电源:<br>VBAT=<br>3.3V~4.6V    |
| 44                           | VRTC     | Ю  | 输入: RTC 时钟供电输出: 通过该管脚为备份电池或电容充电 | VRTC     | Ю  | 输入: RTC 时钟供电输出: 通过该管脚为备份电池或电容充电 |
| 27, 34,<br>36, 37,<br>40, 41 | GND      | /  | 地                               | GND      | /  | 地                               |

## 备注

- 1. 红色字体标示的管脚表示封装兼容但功能不同。
- 2. 黑色字体标示的管脚表示封装兼容且功能相同。
- 3. 预留的管脚和不使用的管脚请悬空。
- 4. "\*"表示正在开发中。

## 4 硬件参考设计

本章节描述了 M25 与 M26 主要功能的兼容设计。

### 4.1. 供电电源

### 4.1.1. 模块工作电压

下表为 M25 和 M26 模块的工作电压范围:

表 5: 模块工作电压范围

| 模块  | 电源管脚 | 条件          | 最小值 | 典型值 | 最大值 | 单位 |
|-----|------|-------------|-----|-----|-----|----|
| M25 | VBAT | 实际输入电压必须在范围 | 3.4 | 4.0 | 4.3 | V  |
| M26 | VBAT | 值内。         | 3.3 | 4.0 | 4.6 | V  |

考虑模块之间的兼容设计时,请确保模块输入电压最小不低于 3.4V,最大不超过 4.3V。即便当模块输入电源 VBAT 出现电压跌落时,也要确保 VBAT 电压大于模块最低工作电压值。

在最大发射功率等级下模块的峰值电流会达到 2.0A,这会引起 VBAT 端电压的跌落。为确保模块能够稳定正常工作,建议模块 VBAT 端的最大跌落电压不应超过 400mV。



图 2: 模块发射时的电压电流波形图

#### 4.1.2. 减少电压跌落

为保证 VBAT 电压不会跌落到 3.4V 以下,在靠近模块 VBAT 输入端,建议并联一个低 ESR(ESR=0.7Ω) 的 100uF 的钽电容,以及 100nF、33pF(0603 封装)、10pF(0603 封装)滤波电容,VBAT 输入端参考电路如下图所示。并且建议 VBAT 的 PCB 走线尽量短且足够宽,减小 VBAT 走线的等效阻抗,确保在最大发射功率时大电流下不会产生太大的电压跌落。建议 VBAT 走线宽度不少于 2mm,并且走线越长,线宽越宽。



图 3: VBAT 输入参考电路

#### 4.1.3. 供电参考电路

电源设计对模块的供电至关重要,必须选择能够提供至少 2A 电流能力的电源。若输入电压跟模块的供电电压的压差不是很大,建议选择 LDO 作为供电电源。若输入与输出之间存在比较大的压差,则使用开关电源转换器。

下图是+5V 供电的参考设计,该参考设计中,电源输出电压是 4.0V,负载电流峰值到 3A。为确保输出电源的稳定,建议在输出端预留一个稳压管,并且靠近模块 VBAT 管脚放置。建议选择反向击穿电压为5.1V,耗散功率为 1W 以上的稳压管。



图 4: 供电电源参考设计电路

## 4.2. 开机

M25 和 M26 模块正常开机方式都是通过 PWRKEY 管脚来开机。将 PWRKEY 置为低电平,大约 1.6s 后模块开机成功。推荐使用开集驱动电路来控制 PWRKEY 管脚。下图为参考电路:



图 5: 开集驱动控制 PWRKEY 开机参考电路

M25 与 M26 的开机时序对比图如下:



图 6: M25&M26 开机时序

#### 备注

- 1. 在使用拉低 PWRKEY 的方式进行 M25/M26 开机时,需等 VBAT 稳定一段时间以后(大于 100ms)后再拉低 PWRKEY 管脚,以保证 VBAT 电压稳定。
- 2. 蓝色标示的是 M25 的开机时序。
- 3. 黑色标示的是 M26 的开机时序。

## 4.3. 关机

M25 和 M26 可以发送 AT+QPOWD=1 关机或者拉低 PWRKEY 管脚一段时间(T≈1.2s)关机。

关机时序图如下图所示:



图 7: M25 & M26 关机时序图

### 备注

- 1. 蓝色标示的是 M25 的关机时序。
- 2. 黑色标示的是 M26 的关机时序。

## 4.4. 重启模块

M25 和 M26 正常关机之后, 拉低 PWRKEY 一段时间可以重启模块。关闭模块后建议等待至少 500ms, 用于模块内部 LDO 放电。重启时序图如下图所示:



图 8: 重启时序图

## 4.5. 网络状态指示

M25 和 M26 的 NETLIGHT 管脚信号可以用来指示模块的网络状态,参考设计如下:



图 9: NETLIGHT 参考设计电路

## 4.6. (U)SIM接口

M25 和 M26 的(U)SIM 卡接口相互兼容,均支持 1.8V/3.0V 的(U)SIM 卡。兼容设计参考电路如下图所示:



图 10: 6-pin (U)SIM 接口参考电路图

## 4.7. 串口

M25 的固件升级串口是调试串口, M26 的固件升级串口是主串口, 串口电压域均为 2.8V。

表 6: 模块 UART 接口区别

| 模块  | 固件升级 | 固件升级波特率   | 备注          |
|-----|------|-----------|-------------|
| M25 | 调试串口 | 921600bps | 兼容设计必须预留调试串 |
| M26 | 主串口  | 115200bps | 口测试点。       |

3.3V 电平情况下的电平匹配电路参考设计如下。如果 MCU/ARM 是 3V 的电平,则根据分压原则,将电阻 5.6K 要改为 10K。



图 11: 主串口电平转换参考电路

#### 备注

强烈建议当主机系统电平是 3V 或者 3.3V 时,在模块和主机的串口连接上加入分压电路以使电平匹配。对于更高的电压系统之间的电平匹配,需要在模块和主机之间增加电平转换芯片。

### 4.8. 模数转换接口

M25 和 M26 外部各提供了一路 10 位模数转换接口来采集电压值:

- M25 的 ADC0\*电压采集范围是 0~1.8V;
- M26 的 ADC0 电压采集范围是 0~2.8V。

#### 备注

"\*"表示正在开发中。

## 4.9. RF 接口

M25 和 M26 的天线接口 RF\_ANT 管脚是兼容的,接口阻抗为  $50\Omega$ 。为了能够更好地调试射频性能,建议预留 π 型匹配电路,且 π 型匹配器件(R1/C1/C2)应靠近天线放置。其中 C1、C2 默认不贴,只贴  $0\Omega$  电阻 R1。天线连接参考电路如下图所示:



图 12: RF 天线接口参考设计电路

## 5 物理尺寸

本章节主要介绍了 M25 和 M26 模块的推荐封装及钢网设计。所有的尺寸单位为毫米; 所有未标注公差的尺寸, 公差为±0.05mm。

## 5.1. 推荐兼容封装

M25 与 M26 的底视图如下图所示:



图 13: M25&M26 底视图

M25&M26 兼容封装如下图所示:



图 14: M25&M26 推荐兼容封装

### 备注

- 1. 保证 PCB 板上模块和其他元器件之间距离至少 3mm。
- 2. 上图两个半径 1.75mm 的圆形为对应模块的 RF 测试点,需要做禁铺处理,且不能走线。

## 5.2. 推荐钢网尺寸

M25 和 M26 模块焊盘部分对应的钢网厚度推荐为 0.15mm~0.18mm,详细信息请参考*文档 [3]*。 推荐钢网尺寸如下图所示:



图 15: M25 和 M26 钢网尺寸



## 5.3. 安装示意图

M25 与 M26 安装效果图如下所示:



图 16: M25&M26 安装效果图

## 6 生产焊接与包装

## 6.1. 生产焊接

用印刷刮板在网板上印刷锡膏,使锡膏通过网板开口漏印到 PCB 上,印刷刮板力度需调整合适。为保证模块印膏质量,M25 和 M26 模块焊盘部分对应的钢网厚度推荐为 0.15mm~0.18mm。详细信息请参考文档 [3]。

推荐的回流焊温度为 240℃~245℃,最高不能超过 245℃。为避免模块因反复受热而损坏,强烈推荐客户在完成 PCB 板第一面的回流焊之后再贴模块。推荐的回流焊温度曲线图如下所示:



图 17: 推荐的回流焊温度曲线

#### 表 7: 推荐的炉温测试控制要求

| 项目             | 推荐值               |
|----------------|-------------------|
| 吸热区(Soak Zone) |                   |
| 最大升温斜率         | 1°C/sec ~ 3°C/sec |



| 恒温时间(A和B之间的时间: 150°C~200°C期间) | 60 sec ~ 120 sec  |
|-------------------------------|-------------------|
| 回流焊区(Reflow Zone)             |                   |
| 最大升温斜率                        | 2°C/sec ~ 3°C/sec |
| 回流时间(D: 超过 220°C 的期间)         | 40 sec ~ 60 sec   |
| 最高温度                          | 240°C ~ 245°C     |
| 冷却降温斜率                        | 1°C/sec ~ 4°C/sec |
| 回流次数                          |                   |
| 最大回流次数                        | 1 次               |

#### 备注

- 1. 在生产焊接或者其他可能直接接触移远通信模块的过程中,不得使用任何有机溶剂(如酒精,异丙醇, 丙酮,三氯乙烯等)擦拭模块屏蔽罩;否则可能会造成屏蔽罩生锈。
- 2. 移远通信洋白铜镭雕屏蔽罩可满足: 12 小时中性盐雾测试后,镭雕信息清晰可辨识,二维码可扫描 (可能会有白色锈蚀)。

## 6.2. 包装

M25 和 M26 模块用卷带包装,并用真空密封袋将其封装。

每个卷带包含 250 个模块, 卷带直径 330 毫米, 具体规格如下:



图 18: 卷带尺寸(单位:毫米)



图 19: 卷盘尺寸 (单位: 毫米)

# 7 附录 A

### 表 8:参考文档

| 序号  | 文档名称               | 备注           |
|-----|--------------------|--------------|
| [1] | Quectel_M25_硬件设计手册 | M25 硬件设计手册   |
| [2] | Quectel_M26_硬件设计手册 | M26 硬件设计手册   |
| [3] | 移远通信模块贴片应用指导       | 移远通信模块贴片应用指导 |

### 表 9: 术语缩写

| 术语   | 描述                                      |
|------|-----------------------------------------|
| ADC  | Analog-to-Digital Converter             |
| ВТ   | Bluetooth                               |
| CTS  | Clear to send                           |
| DCD  | Data Carrier Detect                     |
| DCS  | Digital Communication System            |
| DRX  | Discontinuous Reception                 |
| DTR  | Date Terminal Ready                     |
| EGSM | Extended Global System for Mobile       |
| GPRS | General Packet Radio Service            |
| GSM  | Global System for Mobile Communications |
| LCC  | Leadless Chip Carriers                  |
| MIC  | Microphone                              |
| РСВ  | Printed Circuit Board                   |
|      |                                         |



| PCM    | Pulse Code Modulation                         |
|--------|-----------------------------------------------|
| PCS    | Personal Communication System                 |
| RF     | Radio Frequency                               |
| RI     | Ring Indicator                                |
| RTC    | Real Time Clock                               |
| RTS    | Require To Send                               |
| RXD    | Receive Direction                             |
| SPK    | Speaker                                       |
| TXD    | Transmitting Direction                        |
| UART   | Universal Asynchronous Receiver & Transmitter |
| (U)SIM | (Universal) Subscriber Identity Module        |
| Vonorm | Normal Output Voltage Value                   |
|        |                                               |