1 Consider a problem instance that has three jobs with $l_1 = 1, l_2 = 2$ and $l_3 = 3$, and suppose they are scheduled in this order. What are the completion times of the three jobs in this schedule?

- 1. 1,2 and 3
- 2. 3, 5, and 6
- 3. 1, 3, and 6
- 4. 1, 4, and 6
- (3) is the correct answer.

$$\sum_{i=1}^{1} l_i = 1$$

$$\sum_{i=1}^{2} l_i = 3$$

$$\sum_{i=1}^{3} l_i = 6$$

- **2** (1) If all jobs lengths are identical, should we schedule smaller or larger-weight jobs earlier? (2) If all job weights are identical, should we schedule shorter or longer jobs earlier?
 - 1. larger/shorter
 - 2. smaller/shorter
 - 3. larger/longer
 - 4. smaller/longer
- (1) is correct. Our goal is to find the schedule σ such that it minimizes the completion time, that is $\overset{min}{\sigma} \sum_{j=1}^n w_j \cdot C_j(\sigma)$. We see that in the case that all job lengths are identical and we should schedule larger jobs first, the reason being the completion time of any job gets worst as time progresses so we should do the highest cost jobs first. In the case that all the weights are the same should do the shortest job first since we minimize the waiting for any other jobs to start.

.