1320-Intermediate Programming University of Texas at Arlington

Lecture Overview

- Lecture
 - Trees
- Before We Code
 - Representing Binary Trees in Code
 - Recursion
 - Traversing a Binary Tree
- Sample Programs

LECTURE

- What is a tree?
 - A tree is a mathmatical abstraction

- In computer science, we actually create concrete representations of trees to use as data structures
 - Usually used when we want to represent data with hierarchical aspects
- We then implement the tree in our code
 - Remember, computer scientists are always trying to represent concepts in code

Our mathmatical abstraction closely resembles an actual tree

- Up until now, we have been holding data in a linear fashion
 - Physically linear (arrays)
 - Conceptually linear (linked lists)
- Trees allow us to encode data in a hierarchy
 - We can represent dependencies
 - We can represent decisions
 - Etc.
- On the following slides, I show examples of trees used to hold different types of information

Syntax tree

In linguistics, we can hold a sentence structure in a syntax tree. **Sample program**: break down meaning of a sentence (language processing).

Language Family Tree

We could also hold a whole language family in a language tree. *Sample program:* a linguist keeping track of all languages in the Indo European language family.

Classification tree

In biology, we can have a type of decision tree used to classify things. *Sample program*: enter characteristics of an object and the program will tell you what it is

Family tree

We can use a tree to trace our family history.

Sample program: you could build a website like ancestry.com to hold family information

Computer Directories/File Structures

The internal workings of your computer directories can be represented by a tree. **Actual**: when you type *cd*, you are changing directories (*cd usr* moves you from the *home* directory to the *usr* directory-assuming you're currently in the home directory)

Binary Trees

 A binary tree is simply a tree where every nonterminal node has two children

Notice we branch off into two every time

BEFORE WE CODE

Before We Code

- Representing binary trees in code
- Recursion
- Traversing your tree (going through the tree)
 - Pre-order
 - In-order
 - Post-order

SAMPLE PROGRAMS

Sample Programs

1. Go over binary tree (and traversing)