Fuch sian representations and beyond Fibration of domains of discontinuity. Maximal representations in $\text{Sp}(2n,\mathbb{R}),$ References

Geometric structures and representations of surface groups

Colin Davalo

Ruprecht-Karls-Universität Heidelberg

June 28, 2024

Fuchsian representations and beyond Fibration of domains of discontinuity. Maximal representations in $\operatorname{Sp}(2n,\mathbb{R})$. References

Fuchsian representations and beyond

Fibration of domains of discontinuity.

3 Maximal representations in $Sp(2n, \mathbb{R})$.

Fundamental group of a torus

One can obtain the torus by "folding" the euclidean plane.

$$T \simeq \mathbb{E}^2/\mathbb{Z}^2$$
.

Fundamental group of a torus

One can obtain the torus by "folding" the euclidean plane.

$$ho: \mathbb{Z}^2 o \mathsf{Isom}(\mathbb{E}^2),$$

$$T \simeq \mathbb{E}^2/\rho(\mathbb{Z}^2).$$

Representations of surface groups

One can obtain the closed oriented surface S_g of genus $g \ge 2$ by "folding" the *hyperbolic plane*.

$$S_g \simeq \mathbb{H}^2/\Gamma_g$$
.

Representations of surface groups

One can obtain the closed oriented surface S_g of genus $g \geqslant 2$ by "folding" the *hyperbolic plane*.

$$\rho: \Gamma_g \to \mathsf{Isom}(\mathbb{H}^2)$$
 Fuchsian, $S_g \simeq \mathbb{H}^2/\rho(\Gamma_g)$.

Properties of Fuchsian representations

Representations $\rho: \mathbb{Z}^2 \to \mathsf{Isom}(\mathbb{E}^2)$ can degenerate to non-discrete representations!

Fuchsian representations $\rho: \Gamma_g \to \mathsf{Isom}(\mathbb{H}^2)$ cannot degenerate to a non-discrete representation.

Properties of Fuchsian representations

Fuchsian representations $\rho: \Gamma_g \to \mathsf{Isom}(\mathbb{H}^2)$ cannot degenerate to non-discrete representations.

$$\mathcal{F}(\mathcal{S}_{\mathbf{g}}) \simeq \chi(\mathcal{S}_{\mathbf{g}}) \simeq \mathcal{T}(\mathcal{S}_{\mathbf{g}})$$
 Fricke space Character variety Teichmüller space

Space of hyperbolic structures on S_g .

$$\mathcal{F}(\mathcal{S}_{\mathbf{g}}) \simeq \chi(\mathcal{S}_{\mathbf{g}}) \simeq \mathcal{T}(\mathcal{S}_{\mathbf{g}})$$
 Fricke space Character variety Teichmüller space

Complex structures on S_g .

Fuchsian representations and beyond Fibration of domains of discontinuity. Maximal representations in $\operatorname{Sp}(2n,\mathbb{R})$. References

Teichmüller space

$$\mathcal{F}(S_g) \simeq \chi(S_g) \simeq \mathcal{T}(S_g)$$
 Fricke space Character variety Teichmüller space

Connected component of the space of representations $\rho: \Gamma_g \to SL(2,\mathbb{R}).$

Colin Davalo

$$\mathcal{F}(S_g) \simeq \chi(S_g) \simeq \mathcal{T}(S_g)$$
 Fricke space Character variety Teichmüller space

The point of view of character varieties can be generalized!

Higher rank Teichmüller spaces

Let G be a Lie group (group of matrices). One can construct some $\rho: \Gamma_g \to G$ using $\rho_0: \Gamma_g \to \mathsf{SL}(2,\mathbb{R})$ a Fuchisan representation, together with a representation:

$$\iota: \mathsf{SL}(2,\mathbb{R}) \to G.$$

Higher rank Teichmüller spaces

Let G be a Lie group (group of matrices). One can construct some $\rho: \Gamma_g \to G$ using $\rho_0: \Gamma_g \to \mathsf{SL}(2,\mathbb{R})$ a Fuchisan representation, together with a representation:

$$\iota: \mathsf{SL}(2,\mathbb{R}) \to G.$$

A connected component of $Hom(\Gamma_g, G)$ with only discrete and faithful representations is a higher rank Teichmüller component.

Examples of such components are *maximal components* and *Hitchin components*.

Maximal representations in $\mathsf{Sp}(4,\mathbb{R})$

Take
$$\iota : \mathsf{SL}(2,\mathbb{R}) \to \mathsf{Sp}(4,\mathbb{R}) \subset \mathsf{SL}(4,\mathbb{R})$$
:

$$\iota(M) = \begin{pmatrix} M & 0 \\ 0 & M \end{pmatrix}.$$

One can obtain the unit tangent bundle over S_g by "folding" a domain of discontinuity inside the projective space (\mathbb{RP}^3) using $\iota \circ \rho_0$.

Maximal representations in $Sp(4, \mathbb{R})$

Take
$$\iota : \mathsf{SL}(2,\mathbb{R}) \to \mathsf{Sp}(4,\mathbb{R}) \subset \mathsf{SL}(4,\mathbb{R}) :$$

$$\iota(M) = \begin{pmatrix} M & 0 \\ 0 & M \end{pmatrix}.$$

One can obtain the unit tangent bundle over S_g by "folding" a domain of discontinuity inside the projective space (\mathbb{RP}^3) using $\iota \circ \rho_0$.

Maximal representations in $\mathsf{Sp}(4,\mathbb{R})$

Any deformation of ρ_0 into $\mathsf{Sp}(4,\mathbb{R})$ remains discrete and faithful.

For Anosov representations $\rho: \Gamma_g \to G$, Guichard-Wienhard and Kapovich-Leeb-Porti constructed domains of discontinuity Ω in some flag manifolds $\mathcal F$ that can be "folded" by ρ into compact manifolds $M=\Omega/\rho(\Gamma)$.

For Anosov representations $\rho: \Gamma_g \to G$, Guichard-Wienhard and Kapovich-Leeb-Porti constructed domains of discontinuity Ω in some flag manifolds $\mathcal F$ that can be "folded" by ρ into compact manifolds $M=\Omega/\rho(\Gamma)$.

Question

- What is M?
- How to characterize the structures obtained?

In many cases, M is a fiber bundle over S_g .

G semi-simple Lie group of non-compact type

$$\iota: \mathsf{SL}(2,\mathbb{R}) \to \mathsf{G}, \; \rho = \iota \circ \rho_0$$

 \mathbb{X} symmetric space $\mathcal{H} \subset \mathbb{X}$ totally geodesic

G semi-simple Lie group of non-compact type $\iota: \mathsf{SL}(2,\mathbb{R}) \to G, \ \rho = \iota \circ \rho_0$

 \mathbb{X} symmetric space $\mathcal{H} \subset \mathbb{X}$ totally geodesic Fix some $\omega \in \mathfrak{a}^*$ $\mathcal{F}_{\omega} \subset \mathbb{X}$ flag manifold.

G semi-simple Lie group of non-compact type $\iota: \mathsf{SL}(2,\mathbb{R}) \to G, \ \rho = \iota \circ \rho_0$

 $\Omega = \mathcal{F}_{\omega} \backslash K_{\Lambda}$ domain of discontinuity

Fibration of domain of discontinuity

 ${\mathcal H}$ totally geodesic copy of ${\mathbb H}^2$ preserved by ι and ρ .

Theorem (D.)

Suppose that \mathcal{H} is ω -regular. The nearest point projection to \mathcal{H} extends to a smooth fibration of a domain $\Omega \subset \mathcal{F}_{\omega}$.

Fibration of domain of discontinuity

 ${\mathcal H}$ totally geodesic copy of ${\mathbb H}^2$ preserved by ι and ρ .

Theorem (D.)

Suppose that \mathcal{H} is ω -regular. The nearest point projection to \mathcal{H} extends to a smooth fibration of a domain $\Omega \subset \mathcal{F}_{\omega}$.

The domain Ω is a domain of discontinuity constructed by (Kapovich, Leeb, and Porti, 2017), $M=\Omega/\rho(\Gamma_g)$ fibers over S_g .

Nearly geodesic immersions

The extension of the nearest point projection on \mathcal{F}_{ω} still works for ω -nearly geodesic immersions.

Nearly geodesic immersions

The extension of the nearest point projection on \mathcal{F}_{ω} still works for ω -nearly geodesic immersions.

Theorem (D.)

If $\rho: \Gamma_g \to G$ admits an equivariant ω -nearly geodesic immersion $u: \widetilde{S_g} \to \mathbb{X}$, then ρ is ω -undistorted, and hence Θ -Anosov for some Θ .

Maximal representations

Take $\iota : \mathsf{SL}(2,\mathbb{R}) \to \mathsf{Sp}(2n,\mathbb{R}) \subset \mathsf{SL}(2n,\mathbb{R})$.

$$\iota(M) = \begin{pmatrix} M & 0 & & \\ 0 & M & & \\ & & \ddots & & \end{pmatrix}.$$

For ρ_0 Fuchsian, every deformation of $\iota \circ \rho_0$ is maximal.

Theorem (Burger et al., 2005)

Maximal representations are discrete, faithful and $\{n\}$ -Anosov.

Maximal representations

Take $\iota : \mathsf{SL}(2,\mathbb{R}) \to \mathsf{Sp}(2n,\mathbb{R}) \subset \mathsf{SL}(2n,\mathbb{R})$.

$$\iota(M) = \begin{pmatrix} M & 0 & & \\ 0 & M & & \\ & & \ddots & & \end{pmatrix}.$$

For ρ_0 Fuchsian, every deformation of $\iota \circ \rho_0$ is maximal.

Theorem (Burger et al., 2005)

Maximal representations are discrete, faithful and $\{n\}$ -Anosov.

Theorem (D.)

If n=2, the deformations of $\iota \circ \rho_0$ are never $\{1\}$ -Anosov.

Fitting immersions

Let \mathcal{X} be the *projective model* for the symmetric space of $SL(2n, \mathbb{R})$, and \mathbb{X}_{Sp} be the symmetric space of $Sp(2n, \mathbb{R})$.

Fuch sian representations and beyond Fibration of domains of discontinuity. $\mathsf{Maximal}$ representations in $\mathsf{Sp}(2n,\mathbb{R})$. References

Fitting immersions

Let \mathcal{X} be the *projective model* for the symmetric space of $SL(2n, \mathbb{R})$, and \mathbb{X}_{Sp} be the symmetric space of $Sp(2n, \mathbb{R})$.

Definition

A fitting map is a map into the space of codimension 2 projective subspaces, locally defining a fibration of $\overline{\mathcal{X}}$.

Characterization of maximal representations

Nearly geodesic immersions define some fitting maps. But not all fitting maps can be constructed this way.

Characterization of maximal representations

Nearly geodesic immersions define some fitting maps. But not all fitting maps can be constructed this way.

Theorem (D.)

A representation $\rho: \Gamma_g \to \operatorname{Sp}(2n,\mathbb{R})$ is maximal if and only if it admits an equivariant continuous fitting map with "maximal fibers" that admits a "fitting flow".

Characterization of maximal representations

Nearly geodesic immersions define some fitting maps. But not all fitting maps can be constructed this way.

Theorem (D.)

A representation $\rho: \Gamma_g \to \operatorname{Sp}(2n,\mathbb{R})$ is maximal if and only if it admits an equivariant continuous fitting map with "maximal fibers" that admits a "fitting flow".

These define a fibration of a domain of discontinuity in projective space by *pencils of quadrics*.

Fuch sian representations and beyond Fibration of domains of discontinuity. Maximal representations in $Sp(2n, \mathbb{R})$. References

Thank you for your attention!

References 1

- Burger, Marc et al. (2005). "Maximal representations of surface groups: symplectic Anosov structures". In: Pure Appl. Math. Q. 1.3, Special Issue: In memory of Armand Borel. Part 2, pp. 543-590. ISSN: 1558-8599. DOI: 10.4310/PAMQ.2005.v1.n3.a5. URL: https://doi.org/10.4310/PAMQ.2005.v1.n3.a5.
 - Choi, Suhyoung and William M. Goldman (2005). "The deformation spaces of convex RP2-structures on 2-orbifolds". In: Amer. J. Math. 127.5, pp. 1019-1102. ISSN: 0002-9327. URL: http://muse.jhu.edu/journals/american_journal_of_mathematics/v127/127.5choi.pdf.

References II

Guichard, Olivier and Anna Wienhard (2012). "Anosov representations: domains of discontinuity and applications". In: Invent. Math. 190.2, pp. 357-438. ISSN: 0020-9910. DOI: 10.1007/s00222-012-0382-7. URL: https://doi.org/10.1007/s00222-012-0382-7.

