This project is my implementation of train neural network parser using Penn Treebank data. Specifically, we use the encoder-decoder framework and attention mechanisms realized by <u>tensorflow/nmt</u>. On average, the program takes 8 hours to train on 40,000 train steps, including training and outputting predicted sentence structure of test file. The model recall is around 90%.

Code structure

- **preprocess_output.py** preprocess raw data and output them (input and output of vocab, train, dev, test) in the format that can be processed by tensorflow/nmt
- postprocess output.py postprocess the test output to compare with gold file by EVALB
- processor.py load data and contains some preprocess and postprocess method linearize_parse_tree() linearize tree
 ex. (S (NP (N I)) (VP (V sleep)) (...) → (S (NP N)NP (VP V)VP .)S postprocess() match output and origin sentence to
 (S (NP N)NP (VP V)VP .)S + I sleep. → (S (NP (N I)) (VP (V sleep)) (...))

Folder Structure

• nmt

nmt – folder contains nmt code tmp¹ – folder contains experiments result ex. luong, ba

data

train, dev, test – folders with gold data
preprocess – folder contains pre-processed data.
File: train.en, train.parse, dev.en, dev.parse, test.en, test.parse for training and predicting; gold_output_test for EVALB
postprocess – folder contains post-processed data of different models
ex. test_luong, test_ba

How to run?

Use attention = bahdanau for example

- 1. Get files ready python preprocess output.py (cd Proj4 folder)
- 2. Run nmt program in command line with different parameters (cd nmt folder)

```
CUDA_VISIBLE_DEVICES=0
```

python -m nmt.nmt

- --attention= bahdanau
- --src=en --tgt=parse
- --vocab prefix=../data/preprocess/vocab
- --train prefix=../data/preprocess/train
- --dev prefix=../data/preprocess/dev

¹ We didn't include this file in hand in files for they are too large. We upload different models' output.

- --test prefix=../data/preprocess/test
- --out dir=./tmp/ba
- --num train steps=40000
- --steps per stats=100
- --num layers=2
- --num units=128
- --dropout=0.2
- --metrics=bleu

where we can specify the model parameters, attention = luong, bahdanau; beam_width = 5, 10, 20; dropout = 0.2, 0.5, 0.8

- 3. Postprocess output test file python postprocess_output.py ba
- 4. **Evaluate model performance with EVALB** (cd EVALB folder) ./evalb -e 50000 ../data/preprocess/gold_output_test ../data/postprocess/test_ba

We store the output file in ./data/postprocess and named them by according model.

The best model is with parameter attention = luong, num_layers = 2, num_units = 128, num_train_steps = 40000, beam_width = 0, dropout = 0.5

Experiments

1. Attention mechanism

	Luong	bahdanau	No attention
Recall	90.56	89.00	71.54
Precision	92.72	90.41	72.69

Luong attention mechanism has higher accuracy. Both attention mechanism's accuracy is significantly higher than model with no attention.

parameters: num_layers = 2, num_units = 128, num_train_steps = 40000, beam_width = 0, dropout = 0.2

2. Reverse source input

	Reverse	No reverse
Recall	75.74	90.37
Precision	77.16	92.16

As we can see, reverse source input has much lower accuracy. It's not a good feature. parameters: attention: luong, num_layers = 2, num_units = 128, num_train_steps = 40000, beam width = 0, dropout = 0.2

3. Beam width

	5	10	20	0
Recall	88.46	90.93	87.54	90.56
Precision	89.32	91.51	89.88	92.72

We can see that when we do beam search, a width of 10 provides the best result. However, the best result is still than width = 0.

parameters: attention: luong, num_layers = 2, num_units = 128, num_train_steps = 40000, dropout = 0.2

4. Drop out

	0.2	0.5	0.8
Recall	90.37	91.27	85.58
Precision	92.16	91.41	88.95

As we can see, drop out ratio of 0.5 has highest accuracy, it avoids both overfitting and underfitting.

parameters: attention: luong, num_layers = 2, num_units = 128, num_train_steps = 40000, beam_width = 0

Above all, attention mechanism does help us in predicting sentences structures. Reverse source input doesn't help. Drop-out ratio of 0.5 increases accuracy. We run program on the server. However, we couldn't make it run with GPU, which accounts for long running time.