Quantizing neural networks Less bit to present data

Efficient Deep Learning - Session 2

Course organisation

Sessions

- Deep Learning and Transfer Learning,
- Quantization,
- 3 Pruning,
- 4 Factorization,
- Distillation,
- Operators and Architectures,
- 7 Embedded Software and Hardware for DL.
- 8 Presentations for challenge.

Course organisation

Sessions

- Deep Learning and Transfer Learning,
- 2 Quantization,
- Pruning,
- 4 Factorization,
- Distillation,
- Operators and Architectures,
- Embedded Software and Hardware for DL.
- 8 Presentations for challenge.

Today's Summary

- Objectives
- 2 Quantization : Basics
 - Floating Point
 - Integers, Fixed Point
 - Quantization
- 3 Quantization: Neural Networks
 - Quantization Post Training
 - Quantization Aware Training
- 4 Quantization in Pytorch

Plan

- Objectives
- 2 Quantization : Basics
 - Floating Point
 - Integers, Fixed Point
 - Quantization
- **3** Quantization: Neural Networks
 - Quantization Post Training
 - Quantization Aware Training
- 4 Quantization in Pytorch

- Reduce model size
 - Fewer bits → Reduced memory footprint
- Decrease memory access
 - GPU & CPU : reduce Cache usage
- Computational complexity

Table: Performance on the ImageNet dataset and complexities

Network	Alexnet	Inceptionv1	ResNet50	ResNet152
Top-5 error	16.4%	6.7%	5.25%	4.49%
Num. Weights	61M	7M	25.5M	63.75M
Num. MAC	724M	1.43G	3.9G	11.31G

- Reduce model size
 - Fewer bits → Reduced memory footprint
- Decrease memory access
 - GPU & CPU : reduce Cache usage
- Computational complexity

- Reduce model size
 - Fewer bits → Reduced memory footprint
- Decrease memory access
 - GPU & CPU : reduce Cache usage
- Computational complexity

- Reduce model size
 - Fewer bits → Reduced memory footprint
- Decrease memory access
 - GPU & CPU : reduce Cache usage
- Computational complexity

Figure 7.1: The area and energy cost for additions and multiplications at different precision, and memory accesses in a 45 nm process. The area and energy scale different for multiplication and addition. The energy consumption of data movement (red) is significantly higher than arithmetic operations (blue). (Figure adapted from [121].)

From: Sze, Vivienne, et al. "Efficient processing of deep neural networks." Synthesis Lectures on Computer Architecture

- Reduce model size
 - Fewer bits → Reduced memory footprint
- Decrease memory access
 - GPU & CPU : reduce Cache usage
- Computational complexity

Plan

- 1 Objectives
- 2 Quantization : Basics
 - Floating Point
 - Integers, Fixed Point
 - Quantization
- **3** Quantization: Neural Networks
 - Quantization Post Training
 - Quantization Aware Training
- 4 Quantization in Pytorch

- To add two FP numbers:
 - lacksquare Shift M according to E (int shift n_E bits)
 - Add M (int add n_M bits)
 - Normalize (0 < M < 1)
- To multiply two FP numbers:
 - Multiply M (int mult n_M bits)
 - Add E (int mult n_E bits)
 - Normalize (0 < M < 1)

Integers, fixed point

- Fixed point (-i)
- Short range
- Simple computation

Uniform and Non-Uniform Quantization

- Uniform quantization enables the use of integer on fixed-point hardware
- \blacksquare Non-uniform quantization requires a codebook lookup \to not straightforward for standard hardware (CPU, GPU)

Affine and Scale Quantization

(a) Affine quantization

(b) Scale quantization

- 2 kinds of uniform quantization
- Assymetric vs Symmetric

Scale Quantization

$$\operatorname{clip}(x,l,u) \begin{cases} l, & x < l \\ x, & l \leq x \leq u \\ u, & x > u \end{cases}$$

$$s = \frac{2^{b-1} - 1}{\alpha}$$

$$x_q = \text{quantize}(x,b,s) = \text{clip}(\text{round}(s\cdot x), -2^{b-1}+1, 2^{b-1}-1)$$

$$\hat{x} = \text{dequantize}(x_q,s) = \frac{1}{s}x_q$$

Scale Quantization

$$y_{ij} = \sum_{k=1}^{p} x_{ik} \cdot w_{kj} \approx$$

 $\sum_{k=1}^{p} \text{dequantize}(x_{q,ik}, s_{q,ik}) \cdot \text{dequantize}(w_{q,kj}, s_{w,kj}) =$

$$\sum_{k=1}^{p} \frac{1}{s_{x,ik}} x_{q,ik} \cdot \frac{1}{s_{w,kj}} w_{q,kj}$$

And, in order to use integer multiplication, the scaling factor \boldsymbol{s} must be independent of k :

$$\frac{1}{s_{x,i} \cdot s_{w,j}} \sum_{k=1}^{p} x_{q,ik} \cdot w_{q,kj}$$

Plan

- Objectives
- 2 Quantization : Basics
 - Floating Point
 - Integers, Fixed Point
 - Quantization
- 3 Quantization : Neural Networks
 - Quantization Post Training
 - Quantization Aware Training
- 4 Quantization in Pytorch

Estimating the impact of quantization

Impact on weights

Signal-to-Quantization Noise Ratio metric.

 W_k : weight number index k in the set.

 \hat{W}_k : quantized weight index k in the set.

L: number of element in the set.

$$\mathrm{SQNR}(\hat{W}) = \frac{\sum_{k=0}^{L-1} |W_k|^2}{\sum_{k=0}^{L-1} \underbrace{|W_k - \hat{W}_k|^2}_{\mathrm{quantization error}}}$$

Generally expressed in dB: $SQNR_{dB} = 10log_{10}(SQNR)$

Impact on network performance

Directly measure the accuracy of the network. For instance: Top-1 or Top-5 errors.

Quantization Post Training: Weights

Start by considering weights with a few number of bits n. Quantize \to measure accuracy \to increase the number of bits and repeat.

Different weight sets can be considered

- Whole network,
- per layer,
- per neuron.

Finer sets segmentation \rightarrow better accuracy.

Depends on how weights are stored in hardware (parallel accesses).

Quantization Post Training: Activation

Start by considering activations with a few number of bits n. Quantize \to measure accuracy \to increase the number of bits and repeat.

Also different strategies

- Whole network,
- per layer,
- per neuron.

Finer sets segmentation \rightarrow better accuracy.

Depends on how activations are stored (parallel accesses).

Quantization Aware Training

- Quantize Forward
- Quantize Backward & Forward
- Weights
- Weights & Activations

Quantization Aware Training

- Quantize Forward
- Quantize Backward & Forward
- Weights
- Weights & Activations

- Quantization Aware Techniques yield way better accuracy
- Especially for extremely low-bit precision (2-3-4 bit precision)

Learned Step Size Quantization

- s quantizer step size
- lacksquare Q_P and Q_N , the number of positive and negative quantization levels

$$\bar{v} = \lfloor clip(v/s, -Q_N, Q_P) \rceil, \tag{1}$$

$$\hat{v} = \bar{v} \times s. \tag{2}$$

s is learned with:

$$\frac{\partial \hat{v}}{\partial s} = \begin{cases}
-v/s + \lfloor v/s \rceil & \text{if } -Q_N < v/s < Q_P \\
-Q_N & \text{if } v/s \le -Q_N \\
Q_P & \text{if } v/s \ge Q_P
\end{cases}$$
(3)

Learned Step Size Quantization - https://arxiv.org/pdf/1902.08153.pdf

Algorithm 1 SGD training with BinaryConnect. C is the cost function for minibatch and the functions binarize(w) and clip(w) specify how to binarize and clip weights. L is the number of layers.

Require: a minibatch of (inputs, targets), previous parameters w_{t-1} (weights) and b_{t-1} (biases), and learning rate η .

Ensure: updated parameters w_t and b_t .

1. Forward propagation:

 $w_b \leftarrow \text{binarize}(w_{t-1})$

For k = 1 to L, compute a_k knowing a_{k-1} , w_b and b_{t-1}

2. Backward propagation:

Initialize output layer's activations gradient $\frac{\partial C}{\partial a_L}$

For k=L to 2, compute $\frac{\partial C}{\partial a_{k-1}}$ knowing $\frac{\partial C}{\partial a_k}$ and w_b

3. Parameter update:

Compute $\frac{\partial C}{\partial w_b}$ and $\frac{\partial C}{db_{t-1}}$ knowing $\frac{\partial C}{\partial a_k}$ and a_{k-1}

$$w_t \leftarrow \text{clip}(w_{t-1} - \eta \frac{\partial C}{\partial w_b})$$

$$b_t \leftarrow b_{t-1} - \eta \frac{\partial C}{\partial b_{t-1}}$$

Courbariaux, Matthieu, Yoshua Bengio, and Jean-Pierre David. "Binaryconnect: Training deep neural networks with binary weights during propagations." Advances in neural information processing systems. 2015.

https://arxiv.org/pdf/1511.00363.pdf

1. Forward propagation:

 $w_b \leftarrow \text{binarize}(w_{t-1})$ For k=1 to L, compute a_k knowing a_{k-1} , w_b and b_{t-1}

1. Forward propagation:

$$w_b \leftarrow \text{binarize}(w_{t-1})$$

1. Forward propagation:

 $w_b \leftarrow \text{binarize}(w_{t-1})$ For k=1 to L, compute a_k knowing a_{k-1} , w_b and b_{t-1}

2. Backward propagation:

Initialize output layer's activations gradient $\frac{\partial C}{\partial a_L}$ For k=L to 2, compute $\frac{\partial C}{\partial a_{k-1}}$ knowing $\frac{\partial C}{\partial a_k}$ and w_b

3. Parameter update:

Compute $\frac{\partial C}{\partial w_b}$ and $\frac{\partial C}{db_{t-1}}$ knowing $\frac{\partial C}{\partial a_k}$ and a_{k-1} $w_t \leftarrow \text{clip}(w_{t-1} - \eta \frac{\partial C}{\partial w_b})$ $b_t \leftarrow b_{t-1} - \eta \frac{\partial C}{\partial b_{t-1}}$

Binarization: Stochastic vs Deterministic

Deterministic

$$w_b = \begin{cases} +1, & \text{if } w \ge 0 \\ -1, & \text{otherwise} \end{cases}$$

Stochastic

$$w_b = \begin{cases} +1, & \text{with probability } p = \sigma(w) \\ -1, & \text{with probability } 1-p \end{cases}$$

avec

$$\sigma(x) = \operatorname{clip}(\frac{x+1}{2}, 0, 1) = \max(0, \min(1, \frac{x+1}{2}))$$

Binarization: Stochastic vs Deterministic

Deterministic

$$w_b = \begin{cases} +1, & \text{if } w \ge 0 \\ -1, & \text{otherwise} \end{cases}$$

Stochastic

$$w_b = \begin{cases} +1, & \text{with probability } p = \sigma(w) \\ -1, & \text{with probability } 1-p \end{cases}$$

avec

$$\sigma(x)=\operatorname{clip}(\frac{x+1}{2},0,1)=\max(0,\min(1,\frac{x+1}{2}))$$

Quantization while Learning - Binary Weighted network (XNOR-NET)

Rastegari, Mohammad, et al. "Xnor-net: Imagenet classification using binary convolutional neural networks." European conference on computer vision. Springer, Cham, 2016. https://arxiv.org/pdf/1603.05279.pdf

Quantization while Learning - Binary Weighted network (XNOR-NET)

	Net work Variations	Operations used in Convolution	Memory Saving (Inference)	Computation Saving (Inference)	Accuracy on ImageNet (AlexNet)
Standard Convolution	Real-Value Inputs 0.11 - 0.21 0.34	+,-,×	1x	1x	%56.7
Binary Weight	Real-Value Inputs 0.11 - 0.21 0.34 0.25 0.61 0.52 Binary Weights 1 - 1 1 4 1 1	+,-	~32x	~2x	%56.8
BinaryWeight Binary Input (XNOR-Net)	Binary Inputs 1 -11 Binary Weights 1 -11 2 1 1	XNOR , bitcount	~32x	~58x	%44.2

Rastegari, Mohammad, et al. "Xnor-net: Imagenet classification using binary convolutional neural networks." European conference on computer vision. Springer, Cham, 2016. https://arxiv.org/pdf/1603.05279.pdf

Plan

- Objectives
- 2 Quantization : Basics
 - Floating Point
 - Integers, Fixed Point
 - Quantization
- 3 Quantization : Neural Networks
 - Quantization Post Training
 - Quantization Aware Training
- 4 Quantization in Pytorch

Quantization in Pytorch

- Dynamic Quantization
- Static Quantization
- Quantization Aware Training

https:

//pytorch.org/blog/introduction-to-quantization-on-pytorch/