

블록암호 (2)

2022년 9월 28일 수요일

정보보호

충남대학교 정보보호연구실 허강준

AES (Advanced Encryption Standard)

- AES (Advanced Encryption Standard)
 - DES를 대체하기 위한 차세대 암호 표준
 - 2001년 선정 (NIST-FIPS-197, ISO/IEC 18033-3)
 - 당시 경쟁자들
 - Rijndael → 최종 선정
 - MARS, RC6, Serpent, Twofish

https://dblp.org/db/conf/aes/index.html

AES (Advanced Encryption Standard)

- Rijndael 암호
 - Joan Daemen, Vincent Rijmen
 - 128비트 블록 크기, 128/192/256 비트 키 길이
 - SPN (Substitution-Permutation Network) 구조

Feistel vs SPN

- 블록암호를 이루는 알고리즘들…
 - Feistel Network
 - SPN (Substitution-Permutation Network)

Feistel vs SPN

• AES의 S-Box

	00	01	02	03	04	05	06	07	80	09	0a	0b	0с	0d	0e	(
00	63	7c	77	7b	f2	6b	6f	с5	30	01	67	2b	fe	d7	ab	7
10	ca	82	с9	7d	fa	59	47	f0	ad	d4	a2	af	9с	a4	72	c
20	b7	fd	93	26	36	3f	f7	сс	34	a5	e5	f1	71	d8	31	1
30	04	с7	23	с3	18	96	05	9a	07	12	80	e2	eb	27	b2	7
40	09	83	2c	1a	1b	6e	5a	a0	52	3b	d6	b3	29	e3	2f	8
50	53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4a	4c	58	c
60	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3с	9f	a
70	51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d
80	cd	0с	13	ес	5f	97	44	17	с4	a7	7e	3d	64	5d	19	7
90	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	0b	d
a0	e0	32	3a	0a	49	06	24	5с	c2	d3	ac	62	91	95	e4	7
b0	e7	с8	37	6d	8d	d5	4e	a9	6c	56	f4	ea	65	7a	ae	0
c0	ba	78	25	2e	1c	a6	b4	с6	e8	dd	74	1f	4b	bd	8b	8
d0	70	3е	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	9
e0	e1	f8	98	11	69	d9	8e	94	9b	1e	87	e9	се	55	28	d
f0	8c	a1	89	0d	bf	e6	42	68	41	99	2d	0f	b0	54	bb	1

							nvei	rse S	i-bo	K						
	00	01	02	03	04	05	06	07	08	09	0a	0b	0с	0d	0e	0f
00	52	09	6a	d5	30	36	a5	38	bf	40	a3	9e	81	f3	d7	fb
10	7c	e3	39	82	9b	2f	ff	87	34	8e	43	44	c4	de	e9	cb
20	54	7b	94	32	a6	c2	23	3d	ee	4c	95	0b	42	fa	с3	4e
30	08	2e	a1	66	28	d9	24	b2	76	5b	a2	49	6d	8b	d1	25
40	72	f8	f6	64	86	68	98	16	d4	a4	5c	СС	5d	65	b6	92
50	6с	70	48	50	fd	ed	b9	da	5e	15	46	57	a7	8d	9d	84
60	90	d8	ab	00	8c	bc	d3	0a	f 7	e4	58	05	b8	b3	45	06
70	d0	2c	1e	8f	ca	3f	0f	02	c1	af	bd	03	01	13	8a	6b
80	3a	91	11	41	4f	67	dc	ea	97	f2	cf	ce	f0	b4	e6	73
90	96	ac	74	22	e7	ad	35	85	e2	f9	37	e8	10	75	df	6e
a0	47	f1	1a	71	1d	29	c5	89	6f	b7	62	0e	aa	18	be	1b
b0	fc	56	3е	4b	c6	d2	79	20	9a	db	c0	fe	78	cd	5a	f4
c0	1f	dd	a8	33	88	07	c7	31	b1	12	10	59	27	80	ec	5f
d0	60	51	7f	a9	19	b5	4a	0d	2d	e5	7a	9f	93	с9	9с	ef
e0	a0	e0	3b	4d	ae	2a	f5	b0	с8	eb	bb	3с	83	53	99	61
f0	17	2b	04	7e	ba	77	d6	26	e1	69	14	63	55	21	0с	7d

AES-NI?

- AES-NI (New Instructions)
 - CPU 자체에 탑재된 하드웨어 AES 명령어 → 굉장히 빠름!
 - 여러 CPU에서 지원
 - Intel: Sandy Bridge 이후부터 지원 (e.g. i5-2500)
 - AMD: Bulldozer 이후부터 지원

https://www.wolfssl.com/intels-extended-instructions-accelerate-aes-performance-amd-processors/

과제

- 블록암호를 이용한 암호 통신기 완성하기
- 이미 구현된 것들
 - 네트워크 코드 (소켓 등…)
 - 서버 (암호화 잘 되고 있는지…)
- 구현 해야 하는 것들
 - 입력 처리기 뒷단 → 메세지 송/수신 전에 해야하는 암호화 처리
 - AES 암복호화 코드 (직접구현 x, 라이브러리 사용!)
 - pyCryptodome: pip install pycryptodome

과제

• pyCryptodome를 이용한 AES-128 암호화 (ECB 모드)

```
from Crypto.Cipher import AES
from Crypto.Util.Padding import pad

BLOCK_SIZE = 16

text = pad(b'This is a plaintext', BLOCK_SIZE)
key = b'16byte-key-here!'
cipher = AES.new(key, AES.MODE_ECB)

ciphertext = cipher.encrypt(text)
print(ciphertext)
```

• pad가 없으면?

ValueError: Data must be aligned to block boundary in ECB mode

과제

• pyCryptodome를 이용한 AES-128 암호화 (ECB 모드)

```
from Crypto.Cipher import AES
from Crypto.Util.Padding import pad

# 암호화 전단계 생략...

ciphertext = cipher.encrypt(text) # 암호화 된 결과

plaintext = cipher.decrypt(ciphertext)
print( unpad(plaintext, BLOCK_SIZE) ) # This is a plaintext
```

• unpad가 없으면?

b'This is a plaintext\r\r\r\r\r\r\r\r\r\r\r\r\r'

이후 일정

주차	실습 주제	과제	날짜
1	오리엔테이션 & 썰풀기	과제를 위한 GitHub 설정	9/7
2	카이사르&비즈네르 암호	ENIGMA	9/14
3	XOR과 블록암호	Simplified DES 구현하기	9/21
4	여러가지 블록암호	블록암호를 이용하여 암호통신기 완성하기	9/28
5	블록암호 운용모드	S-DES-CBC, S-DES-ECB 구현하기	10/5
6	RSA	RSA 구현하기, 저강도 RSA 크랙하기	10/12
7	해시	암호통신기에 무결성 검증 기능 추가하기	10/19
8	중 간 고 시	나 (10/24)	공강
9	메세지 인증코드(MAC)	HMAC 구현하기	11/2
10	디지털 서명	사설인증서 생성 및 프로그램 코드 서명	11/9
11	하이브리드 암호	하이브리드 기반 암호 통신기	11/16
12	난수	시드값 추측을 이용한 암호문 크랙	11/23
13	블록체인과 머클 트리	머클트리 구현하기	11/30
14	TLS와 PGP(GPG)	GPG를 이용하여 암호 메일 보내기	12/7
15	기 말 고 시	\(\(\text{(12/12)}\)	종강

질문?

- 없으면 자리에서 일어나셔도 좋습니다:)
- 대학원 입학 문의는 언제나 환영
 - 블록체인, Web 3, 해킹 관심있거나 유경험자 우대

입학문의

- 류재철 교수님 (jcryou [at] cnu.ac.kr)
- 허강준 조교 (knowledge [at] o.cnu.ac.kr)