TTIC 31110 Speech Technologies

April 30, 2020

Questions from last time: Continuous speech recognition with HMMs

Most basic model: String together word HMMs to make sentence HMM, using a grammar (Note: Start and end states of these word HMMs are non-emitting)

Word HMMs

Grammar

Full HMM

Questions from last time: Continuous speech recognition with HMMs

What is this grammar?

- A representation of all allowed sequences of words in the language (and optionally their probabilities)
- Allowed sequences are those that can be produced by traversing edges from the start state to the end state (in this case, these are the same single state)
- In this case, all transitions (edges) are equally probable

Questions from last time: How does state tying affect EM training?

Recall: The Baum-Welch algorithm

• E step: Compute the *expected counts*

$$\sum_{t=1}^{T} \gamma_t(i) = \text{ expected count of state } i$$

$$\sum_{t=1}^{T-1} \gamma_t(i) = \text{ expected count of transitions from state } i$$

$$\sum_{t=1}^{T-1} \xi_t(i,j) = \text{ expected count of transitions from } i \text{ to } j$$

Questions from last time: How does state tying affect EM training?

Recall: The Baum-Welch algorithm M step

$$\hat{a}_{ij} = \frac{\text{expected-count}(i \to j)}{\text{expected-count}(\text{transitions from } i)} = \frac{\sum\limits_{t=1}^{T-1} \xi_t(i,j)}{\sum\limits_{t=1}^{T-1} \gamma_t(i)}$$

$$\hat{b}_i(k) = \frac{\text{expected-count}(v_k \text{ in state } i)}{\text{expected-count}(i)} = \frac{\displaystyle\sum_{t=1,o_t=v_k}^T \gamma_t(i)}{\displaystyle\sum_{t=1}^T \gamma_t(i)}$$

$$\hat{\pi}_i$$
 = expected-count $(q_1 = i) = \gamma_1(i)$

Questions from last time: How does state tying affect EM training?

E step (computation of expected counts)

Counts are computed together for all tied states, e.g. if states
 i and j are tied:

$$\frac{1}{2} \left(\sum_{t=1}^{T} \gamma_t(i) + \sum_{t=1}^{T} \gamma_t(j) \right) = \text{ expected count of state } i \text{ or } j$$

M step

Unaffected!

Questions from last time: How do we represent the state transition matrix for very large models?

- The state transition matrix is typically very sparse
- \bullet Usually, only transitions allowed are to self with probability p or next with probability 1-p
- So, we need only store each state's self-transition probability

Questions from last time: Where does supervised training come in?

HMM training with Baum-Welch is unsupervised, so how do we used labeled training sets?

Training an ASR system is more than just training a single HMM

- Typically, we have one HMM per word or phone label
- Supervised training: Spoken utterances with corresponding label sequences
- Start/end times of each label may or may not be given
- If start/end times are given, then the problem becomes one of training each of the word/phone HMMs on the collection of segments corresponding to that label
- If start/end times are not given:
 - Estimate the start and end times (do forced alignment more on this later)
 - Consider these to be additional latent variables in the EM algorithm (rarely done)

Recap: Continuous ASR with the Viterbi algorithm

Recognition = finding the most probable word string \mathbf{w}^* given the acoustic observations

$$\begin{aligned} \mathbf{O} \colon \mathbf{w}^* &= \operatorname*{argmax}_{\mathbf{w}} p(\mathbf{w}|\mathbf{O}) \\ \text{From Bayes' rule, } p(\mathbf{w}|\mathbf{O}) &= \frac{p(\mathbf{O}|\mathbf{w})p(\mathbf{w})}{p(\mathbf{O})}. \end{aligned}$$
 Therefore,

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmax}} p(\mathbf{w}|\mathbf{O})$$
$$= \underset{\mathbf{w}}{\operatorname{argmax}} p(\mathbf{O}|\mathbf{w})p(\mathbf{w})$$

- The "whole-sentence" HMM gives $p(\mathbf{O}|\mathbf{w})$, the acoustic model
- $p(\mathbf{w})$ is the language model

Recap: Continuous ASR with the Viterbi algorithm

Summing over all possible state sequences \mathbf{q} for the word string \mathbf{w} :

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmax}} p(\mathbf{O}|\mathbf{w}) p(\mathbf{w})$$
$$= \underset{\mathbf{w}}{\operatorname{argmax}} \sum_{\mathbf{q}} p(\mathbf{O}|\mathbf{q}, \mathbf{w}) p(\mathbf{q}|\mathbf{w}) p(\mathbf{w})$$

- $p(\mathbf{O}|\mathbf{q}, \mathbf{w})$ is given by the observation (emission) distribution
- ullet $p(\mathbf{q}|\mathbf{w})$ is given by the state transition probabilities
- Viterbi approximation: Assume there is a single most probable state sequence \mathbf{q}^* such that all other \mathbf{q} contribute a negligible amount to the sum. Then

$$\mathbf{w}^* = \operatorname*{argmax} p(\mathbf{O}|\mathbf{q}^*, \mathbf{w}) p(\mathbf{q}^*|\mathbf{w}) p(\mathbf{w})$$

 \bullet So we can maximize jointly over w and $q\colon$

$$\mathbf{w}^*, \mathbf{q}^* = \operatorname*{argmax}_{\mathbf{w}, \mathbf{q}} p(\mathbf{O}|\mathbf{q}, \mathbf{w}) p(\mathbf{q}|\mathbf{w}) p(\mathbf{w})$$

Recap: Continuous ASR with the Viterbi algorithm

- To do continuous speech recognition, we can string together word HMMs according to a grammar or language model
- (Will get back to language modeling later)
- We will find the best state sequence using the Viterbi algorithm, and output the corresponding word string

Questions from last time: Isn't it unnatural to chop up speech into distinct segments?

- As we've discussed, speech doesn't have sharp divisions between one word and the next, or one phone and the next
- Transitions from one sound/word to the next are often gradual
- When we run Viterbi, we make a decision about when each state/HMM start and end
- This is not great! Some solutions:
 - Some older work modified Viterbi to sum over multiple possible paths with slightly different start/end times – much slower, and not too much gained in performance (so the "distinct segment assumption" wasn't hurting HMMs too badly)
 - Newer neural models allow for fuzzier (or no) decisions about start and end times, e.g. neural encoder-decoders and connectionist temporal classification (CTC)
 - We'll discuss the latter in the coming weeks

The need for subword units

Whole-word HMMs have some problems

- Cannot model unseen words, or even words seen too few times in training data
- Number of parameters is proportional to the vocabulary size
- (Note: The more parameters, the more data needed; rule of thumb: ∼10 data points per parameter)
- ⇒ Whole-word models mainly restricted to small-vocabulary tasks

Subword units

- In the same way that sentences can be composed of whole-word HMMs, words can be composed of sub-word HMMs
- Units are then shared among words

Type of units	Approximate $\#$ (in English)
words	>100,000
phones	50
diphones	2,000
triphones	10,000
syllables	5,000

 Number of parameters now proportional to the number of sub-word units, not number of words

Baseforms

- Each word can be represented as a sequence of phonemes, the word's baseform dogs —> d ao g z
- Some words may need more than one baseform the → dh ah, dh iy either → iy dh er, ay dh er
- Each word's baseform(s) can be looked up in a dictionary
- All words in training and test data must be in the dictionary, or else we get them wrong
- Typically, baseform dictionaries are written by hand → prone to errors, inconsistencies, disagreements among linguists, ...

The need for context-dependent units

- Recall: phonemes have variants (allophones)
 - Aspirated and un-aspirated stops: pin vs. spin
 - Allophones of /t/: too vs. stew vs. butter vs. but (the last with "unreleased" /t/)
- Phonemes are also influenced by surrounding context due to co-articulation, e.g. due to articulatory inertia
 - keep, geese (front /k/, /g/) vs. coop, goose (back /k/, /g/)

The need for context-dependent units: Example

The need for context-dependent units: Example (2)

Triphones: Context-dependent phone models

- Model each phoneme in the context of its left and right neighbor: k-iy+p triphone is /iy/ in the context of a preceding /k/ and following /p/ (not a model of the sequence /k iy p/)
- Build separate HMM for each triphone
- ~ 50 phonemes $\Rightarrow 50^3$ triphones!
- Not all triphones are possible (e.g., k-1+p is not)
- ullet Still, $\sim 10,000$ are possible and some are very rare
- Solution: tying!

A comparison of model sizes

- Consider continuous-density HMMs where state observation distribution is Gaussian mixture model (GMM)
- Assume 10 diagonal Gaussians per state and 39-dimensional MFCC vectors
- Context-independent (CI) phone models
 - ~ 50 phonemes with ~ 3 states each $\Rightarrow \sim 150$ GMMs
 - 10 Gaussians per GMM $\Rightarrow \sim 1500$ Gaussians
 - 39 dimensions per Gaussian, each requiring a mean and variance $\Rightarrow \sim 120,000$ parameters
 - ullet Manageable with ~ 3 hours of speech training data
- Context-dependent (CD) triphone models
 - $\sim 10,000$ triphones with ~ 3 states each $\Rightarrow \sim 30,000$ GMMs $\Rightarrow \sim 300,000$ Gaussians $\Rightarrow \sim 24,000,000$ parameters $\Rightarrow \sim 600$ hours of speech?
 - Actually... since some of the triphones are extremely rare, this may still not be enough!

Tying via agglomerative (bottom-up) clustering

- Cluster triphones (or individual triphone states) into "sufficiently similar" groups
- Start with each triphone/state in cluster by itself, then iterate:
 - Find "closest" pair of clusters
 - Merge them into single cluster
- Until some convergence criterion
 - Distance between closest clusters is above some threshold
 - Number of data points in each cluster is above some threshold
- Different clusterings based on distance measure:
 - a and b are individual triphones, A and B are clusters
 - $\mathcal{D}(a,b)$ is some distance function between triphones
 - Single-linkage: $\mathcal{D}(A, B) = \min_{a \in A, b \in B} \mathcal{D}(a, b)$
 - Complete-linkage: $\mathcal{D}(A,B) = \max_{a \in A, b \in B} \mathcal{D}(a,b)$

Bottom-up vs. top-down clustering

- Agglomerative clustering is limited to the case where we have some examples of each item
- In the case of triphones, many may be unseen!
- Agglomerative clustering therefore tends not to be used for tying triphones
- But still used for other tasks, e.g. automatic discovery of speech units
- Alternative: top-down clustering, via decision trees

Decision tree triphone clustering

Decision tree construction

- Start with all frames for a given phone in a single node (the root)
- Find the best "question" for partitioning the data at a given node into two classes
- Repeat for each node
- Stop when there is insufficient data at each node, or when the best question isn't helpful enough

Details: What questions shall we ask?

- Typically involve identities of previous/following phones
- Or other attributes (e.g. phonetic features) of previous/following phones: voicing, nasality, place of articulation, manner of articulation, etc.
- In principle, can ask about any subset of the features that are relevant at the current node
 - Is the following phone in {aa, k, l} and the previous phone voiced, fricated, or nasal?
 - That's a lot of questions! $\left(\sum_{j} \binom{\#\text{features}}{j}\right)$
- In practice, use smaller set of pre-determined questions
 - Create in advance a list of "reasonable" questions
 - In principle, questions (and therefore tree splits) can be n-ary; in practice, binary

When to stop?

- Cross-validation: Measure likelihood with different tree sizes on a held-out data set, choose the tree that maximizes likelihood on held-out data
- In practice, simple heuristics are often used:
 - ullet Data at node has fewer than threshold T samples
 - Best question does not improve likelihood significantly (note: best question should always improve likelihood somewhat!)

Where does the data come from?

- In general, we don't have phonetic labels for each frame of training data
- One solution: Automatically align the data given some "simple" initial model, e.g. monophone-based recognizer
- Optionally, iterate: Once we have a better triphone model, re-align training data and re-build DT

Other issues in sub-word modeling

Pronunciation modeling

- Pronunciations often don't match the dictionary (dialects, non-native accents, conversational speech)
- New words (e.g. names) how to get their baseforms?
- One idea: Apply letter-to-sound DTs
- More modern idea: Learn a neural "grapheme-to-phoneme" (G2P) model

Language-specific issues beyond English

- Some languages have more predictable mapping from orthography to sounds: Spanish, French, German, Korean, ...
 - \Rightarrow pronouncing dictionaries virtually unnecessary!
- Some languages have less regular mapping from orthography to sounds, e.g. Mandarin Chinese
- ... or even an ambiguous mapping, e.g. Arabic, Hebrew

Hybrid generative/discriminative models

- Generative models are models of the data generation process $p(\mathbf{O}, \mathbf{w}) = p(\mathbf{O}|\mathbf{w})p(\mathbf{w})$
- Recognition is "inversion" of generation, $\mathbf{w}^* = \operatorname{argmax}_{\mathbf{w}} p(\mathbf{w}|\mathbf{O}) = \operatorname{argmax}_{\mathbf{w}} p(\mathbf{O}|\mathbf{w}) p(\mathbf{w})$
- Discriminative approaches attempt to solve the task more directly, e.g. by modeling $p(\mathbf{w}|\mathbf{O})$ directly or even minimizing the intended error rate directly
- Main motivation for hybrid models:
 - Discriminative models are good! Let's use them!
 - Discriminative models for sequences are hard! (More later)
 - Let's combine discriminative frame classifiers with generative sequence models

Hybrid generative/discriminative models

Typical approach:

- **1** Train a frame-based discriminative classifier of sub-word units (e.g. phones, phone states, triphone states) given some labeled training data, $c^* = f_c(\mathbf{o})$, where c is the class and \mathbf{o} is a frame feature vector
- **2** The output is a posterior probability $p(c|\mathbf{o})$
- 3 Convert $p(c|\mathbf{o})$ to something like an observation model (a "likelihood"): $p(\mathbf{o}|c) \propto \frac{p(c|\mathbf{o})}{p(c)}$
- 4 Use the result in place of the observation model in an HMM

Hybrid generative/discriminative models

- Most popular type of frame classifier by far: neural network
- Long line of research on hybrid HMM/NN models by groups at ICSI Berkeley, IDIAP, and elsewhere (e.g., Bourlard and Morgan 1994)
- Motivations for using NNs:
 - For right choice of NNs and training criterion, the output gives an estimate of the class posterior probabilities $p(c|\mathbf{o})$
 - NNs are "universal function approximators": Whatever the optimal classifier function $f_c(\mathbf{o})$ is, there is some neural network that approximates it arbitrarily well (under mild assumptions)
- Main other (distant) competitor for frame classification:
 Support vector machines

Linear classifiers

Let's start with a binary linear classifier (change of notation $\mathbf{o} \longrightarrow \mathbf{x}$):

$$f(\mathbf{x}) = 1, \ \mathbf{w} \cdot \mathbf{x} > 0$$

= 0, otherwise

 Can add an extra dimension to the input x which is always 1, to induce a "bias"

Linear classifiers: Learning weights with the perceptron algorithm [Rosenblatt 1957]

- 1 Initialize the weights w
- 2 At each iteration t, retrieve an example input \mathbf{x}_j in a training set, with corresponding output y_j :
 - Compute the output $f(\mathbf{x}_i)$ using the current weights
 - Update the weights: for all nodes $0 \le i \le n$,

$$w_i(t+1) = w_i(t) + \alpha(y_j - f(\mathbf{x}_j))x_{j,i}$$

Repeat step 2 until the average error $\frac{1}{t}\sum_{j=1}^t |\hat{y}_j - f(\mathbf{x}_j)|$ is less than some threshold, or until some maximum iteration number t

This does gradient descent on the perceptron loss $\sum_{j} \max(0, -\mathbf{y}_{j}\mathbf{w} \cdot \mathbf{x}_{j})$

Nonlinear classifiers

What if the classification boundary between classes is not linear? Add nonlinearity:

$$f(\mathbf{x}) = 1, \ \sigma(\mathbf{w} \cdot \mathbf{x}) > \tau$$

= 0, otherwise

Examples:

- Heaviside (step, threshold): $\sigma(z) = 0, z < 0; 1, \text{ otherwise}$
- Logistic sigmoid: $\sigma(z) = \frac{1}{1+e^{-z}}$
- Hyperbolic tangent: $\sigma(z) = \tanh(z)$

Multilayer perceptrons (MLP)

What if the nonlinear perceptron is still not enough to represent the decision boundary? Add more layers:

- Each node i in each layer l now outputs $y_i^l = \sigma(\mathbf{w}_i^l \cdot \mathbf{y}_i^{l-1} + b_i^l)$ (with bias b now explicit)
- Or writing each layer's output as a vector: $\mathbf{y}^l = \sigma_l(\mathbf{W}_l\mathbf{y}^{l-1} + \mathbf{b}^l)$, where σ is applied element-wise
- ullet Final output: $\mathbf{y} = \mathbf{y}^L$ for an L-layer network

Example decision boundaries

Here the activation functions are all threshold functions:

Multi-class outputs

We've also expanded from a single output node to multiple nodes, to allow for more than a single class

Typical activation function: Softmax $y_i = \frac{\exp(z_i)}{\sum_{j=1}^n \exp(z_j)}$ where $z_i = \mathbf{w}_i \cdot \mathbf{x} + b_i$ (Note: layer indexing dropped; \mathbf{x} refers to the input of the current layer)

Feedforward neural networks

More generally, a feedforward neural network (NN, or DNN) is any vector function $f(\mathbf{x})$ of a vector input \mathbf{x} that can be written as a composition of the layers we've defined:

$$f(\mathbf{x}) = \mathbf{y}^{L}$$

$$\mathbf{y}^{l} = \sigma_{l}(\mathbf{W}_{l}\mathbf{y}^{l-1} + \mathbf{b}^{l})$$

$$\mathbf{y}^{0} = \mathbf{x}$$

Training neural networks

The parameters are learned to minimize some loss, or measure of badness of the outputs

- A NN is an MLP if it is trained with perceptron loss (though often MLP is used to refer to any feedforward NN)
- Other losses (per training example):
 - Squared loss: $\mathcal{L}_{SE} = \sum_{i} (y_i \hat{y}_i)^2$
 - Cross-entropy loss (log loss): $\mathcal{L}_{CE} = \sum_{i} \hat{y}_{i} \log y_{i}$ (typical for multi-class classification)
- Total loss is the sum of the loss over all training examples

Training neural networks (2)

To minimize loss \mathcal{L} , we typically use gradient descent:

$$w(t+1) = w(t) - \eta \frac{\partial \mathcal{L}}{\partial w}$$

- ullet w is any single weight
- η is a user-defined learning rate (set, e.g., by tuning on held-out data or via some rule of thumb)
- \mathcal{L} is computed for 1 training example, a training subset (minibatch), or the full training set (a batch)
- If a single example or a minibatch is used, then this is stochastic gradient descent
- Gradient can be computed via the chain rule; this is called backpropagation
- Fortunately, for typical losses, the gradients are similar and simple for all weights
- ... and we often don't have to compute them as there are excellent toolkits to do it for us

When is it enough complexity?

- In theory*, one hidden layer is sufficient to approximate any output function arbitrarily well
- In practice**, multiple hidden layers can be very helpful
- * In theory, theory is the same as practice; in practice, it is almost never the case
- ** "In practice" = it may be much easier to learn parameters with multiple hidden layers***
- *** There is some theory to this practice too

More activation functions

Examples:

• ReLU: $\sigma(z) = \max(0, z)$

• Softsign: $\sigma(z) = \frac{z}{1+|z|}$

• Softplus: $\sigma(z) = \log(1 + e^z)$

