## Best Available Copy



## PATENT ABSTRACTS OF JAPAN

(11)Publication number:

62-202051

(43) Date of publication of application: 05.09.1987

(51)Int.Cl.

C22C 38/32 C22C 38/00

G02B 6/44

(21)Application number : 61-041610

(71) Applicant: NIPPON STEEL CORP

OCEAN CABLE CO LTD

NANIWA SEITEI KK

(22)Date of filing:

28.02.1986

(72)Inventor: TAKAHASHI TOSHIHIKO

ASANO YOSHIYUKI KONO ROKURO NINOMIYA TAKASHI **FUNAKI YASUSHI** MOCHIZUKI KENICHI MURAO MASATSUGU **MURAO KAZUHIKO** 

#### (54) SPECIAL-FORM WIRE FOR SUBMARINE OPTICAL FIBER CABLE

#### (57)Abstract:

PURPOSE: To obtain a high-strength and long-size special-form wire for submarine optical fiber, by specifying the total amounts of C. Mn. and Cr among components and by providing such characteristics as having one or more weld zones in the direction of length, specific tensile strength, nearly fan-shaped sectional form, etc.

CONSTITUTION: A special-form steel for submarine optical fiber cable has a composition containing, by weight, 0.30W0.65% C, ≤1.0% Si, 0.2W1.5% Mn, ≤1.3% Cr, and 0.0005W0.3% of one or more kinds among 0.002W0.1% Al, 0.001W0.3% Nb, 0.001W0.3% V, and 0.0005W0.1% B and satisfying Mn+Cr=0.3W1.5% and satisfies an inequality and has such a condition as having one or more weld zones in the direction of length, a tensile strength of ≥126kgf/mm2, and a nearly fan-shaped form of section. Further, plural pieces of said segments are combined and optical fibers are put into the center of the above segments so as to form a circular section and, moreover, satin finish is applied to the surface. The special-form wire of this invention is capable of forming into the desired longsize product by means of welding, so that necessity of large unit weight in wire production can be obviated.

 $C \cdot q = C + \frac{1}{5} (M_0 + C_T) \ge 0.5.7$  %

#### LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the

examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

### (12) 特 許 公 報 (B2)

庁内整理番号

(11)特許出願公告番号

特公平7-65142

(24) (44)公告日 平成7年(1995)7月12日

(51) Int.Cl.6

識別記号

FΙ

技術表示箇所

C22C 38/00

301 Y

38/32

G02B 6/44

361

発明の数1(全 7 頁)

(21)出願番号

特顧昭61-41610

(22)出願日

昭和61年(1986) 2月28日

(65)公開番号

特開昭62-202051

(43)公開日

昭和62年(1987) 9月5日

(71)出願人 999999999

新日本製鐵株式会社

東京都千代田区大手町2丁目6番3号

(71)出願人 999999999

日本大洋海底電線株式会社

東京都渋谷区道玄坂1丁目16番10号

(71)出願人 999999999

浪速製釘株式会社

大阪府大阪市東区内安藤寺町通1-1-1

(72)発明者 高橋 稳彦

神奈川県相模原市淵野辺5-10-1 新日

本製鐵株式会社第二技術研究所内

(74)代理人 弁理士 茶野木 立夫

審査官 影山 秀一

最終頁に続く

#### (54)【発明の名称】 海底光フアイパーケープル用異形線

1

#### 【特許請求の範囲】

【請求項1】 重量比で、C:0.30~0.65%、Si≤1.0%、Mn:0.2~1.5%、Cr≤1.3%かつ(Mn+Cr):0.3~1.5%を含有しさらに、AI:0.002~0.1%、Ti:0.002~0.1%、Nb:0.001~0.3%、V:0.001~0.3%、B:0.005~0.1%の1種または2種以上を合計量で0.0005~0.3%合み、残部:Feおよび不可避的不純物からなるとともに、Ceq=C+1/5(Mn+Cr)/5≥0.57%を満足し、長さ方向において少なくとも1箇所の溶接部を有しかつ、溶接部を含む全長に亙ってフェライト・パーライト組織であって引張り強さが126kg f/mm²以上で、断面形状が略扇形をなし該略扇形が複数本組み合わされて光ファイバーを収容する円形中空断面を構成すべく構成されかつ、前記円形中空断面の半径方向に延在する面となる扇形状側面に深さ:0.00~0.03mmの凹凸からなる梨地表面を有することを特徴

2

とする海低光ファイバーケーブル用異形線。

#### 【発明の詳細な説明】

(産業上の利用分野)

本発明は海底光ファイバーケーブル用異形線に関するものである。

#### (従来の技術)

光フアイバーは、その低損失、細径、大容量、経済性などの優れた特性を活して、海底ケーブルに導入することが試みられている。第2図は海底ケーブルの断面構造の一例を示したものである。

この構造において、1は光フアイバーユニツト、2は光フアイバーユニツトを深海の海水圧(例えば8000mの深海では800気圧)から保護するために、扇形断面の異形線11、12、13が3本組合されて、構成されている耐圧層、3は光フアイバーケーブルのテンションメンバーで

あるピアノ線、4はピアノ線を固定している金属チューブ、5はプラスチツク等で形成されている絶縁層で、光フアイバーユニツトと耐圧層及び耐圧層と金属チューブの間には、光ケーブルに障害が生じたときに起る水走りを防止するためのコンパウンドが充填されている。この構造の特徴は、特公昭59-7361号公報に記載されているように、耐圧層2を構成する扇形の異形線にある。

方、海底ケーブルは障害を考慮して、接続凾の最適設置間隔が定められているが、現在約50~100kmに接続凾を設置するのが経済的とされている。しかしながら異形線用素材である線材の製造について検討してみると、現用鍛造設備及び加熱炉の能力の制約から大単重化を図つてみても、線材の単長は30,000mに限定される。

従つて、長距離の海底ケーブルの耐圧パイプ用素材としての線材には、前記の扇形の異形線をうる冷間加工性と、長尺化のための溶接性とを同時に満足させることが望まれる。そこでこのような加工性と溶接性とを同時に満足させ得るような鋼材としては、例えば特公昭59-22\*

$$Ceq = C + \frac{1}{5} (Win + Cr) \ge 0.57 \%$$

を満足し、長さ方向に少くとも1ケ所以上溶接部を有しかつ、溶接部を含む全長に亙ってフェライト・パーライト組織であって引張り強さが126kg/mm²以上で、断面形状が略扇形をなし該略扇形が複数本組み合わされて光ファイバーを収容する円形中空断面を構成すべく構成されかつ、前記円形中空断面の半径方向に延在する面となる扇形状側面に深さ:0.002~0.03mmの凹凸からなる梨地表面を有することを特徴とする海底光ファイバーケーブル用異形線である。

以下本発明について詳細に説明する。

(作用)

海底光フアイバー用ケーブルの耐圧パイプは引張強さ12 6Kg f/mm²以上、好ましくは130Kg f/mm²以上を要求される。鋼線の強度は素材の強度と冷間加工量によつて決るが、木発明者らの検討によると、例えば第2図に示した異形線11~13を製造するには、冷間加工率を85%以下に抑えることが、加工割れの発生を抑制する上で必要である。製品強度126Kg f/mm²を85%以下の冷間加工率で得るためには、素材の線材には70Kg f/mm²以上の引張強さが必要である。

又上記素材は溶接部の強度、靭性に優れていることが求められている。一般に溶接性はC量に比例して悪化の傾向にあるが、引張強さ70Kg f/mm²以上を満たすために、適量のCと可能な範囲でMnあるいはMnの一部をCrに置換して添加することが望ましい。

このように本発明においては強度、溶接性及び加工性を 満足するために、特定の成分元素を添加するものである が、以下に成分元素の添加範囲を上記のように限定した 理由を説明する。

Cは溶接性の点から低い方が望ましいが、0.3%未満で

\*774号公報ではTi、Bを含有し、Ceq0.55%以下の鋼を制御圧延して、55Kg f/mm²以上の引張強さを有する溶接性及び加工性の優れた線材が提案されている。

又特公昭59-29648号公報では、溶接性のすぐれた高強度鉄筋材が提案されている。しかしながらこれらの鋼材は、それらを冷間加工して得られる鋼線の強度が低く、海底ケーブルの耐圧パイプ用の異形線には供し得ない。(発明が解決しようとする問題点)

本発明は、溶接性及び冷間加工性に優れた長尺高張力鋼 10 線用の線材を用いて、強度の高い長尺の海底光フアイバ 一用異形線を提供することを目的とするものである。 (問題点を解決するための手段)

本発明は重量%でC0.30~0.65%、Si1.0%以下、Mn0.2~1.5%、Cr1.3%以下でMn+Cr0.3~1.5%、及びAI0.002~0.1%、Ti0.002~0.1%、Nb0.001~0.3%、V0.001~0.3%、B0.0005~0.1%の1種または2種以上を合計0.005~0.3%、残部Fe及び不可避不純物から成ると共に、

は70Kg f/mm<sup>2</sup>以上の強度は得られない。一方、0.65%超では溶接部の靭性、加工性が劣化するので、0.3%~0.65%とする。

Siはその固溶体硬化作用によつて線材を強化するために 添加されるが、1%を超えると靭性を劣化させるので1 %を上限とした。

Mnは溶接性への影響が少なく、強度を増加させる元素であり、可能な範囲で添加することが望ましい。Mn0.2%未満ではSを硫化物として固定することが出来ず、また70Kg f/mm²以上の強度を得ることもできない。一方1.5%超では線材の焼入性が高くなりすぎて、溶接部に熱処理後マルテンサイトが発生し、加工性を著しく劣化させることがあるので、0.2%~1.5%に添加範囲を限定した。

CrはMnと全く同じ作用を持つ元素で、Mnの一部と置換して添加することが出来るがMnとCrの合計量が1.5%を超えると、溶接部に熱処理後マルテンサイトが発生するので、Cr1.3%以下、Mn+Cr1.5%以下に添加量を限定した。

40 AI、Ti、Nb、V、Bはいずれもオーステナイト粒度の調整のために1種または2種以上添加されるが、AI0.002%未満、Ti0.002%未満、Nb0.001%未満、V0.001%未満、BO.0005%未満で、且つ1種または2種以上の合計が0.0005%未満では細粒化されないし、AIO.1%超、Ti 0.1%超、Nb0.3%超、V0.3%超、BO.1%超で且つ1種または2種以上の合計が、0.3%超では細粒化効果が飽和するばかりでなく、これらの元素の窒化物による脆化作用が顕著になるので、AIO.002~0.1%、Ti0.002~0.1%、Nb0.001~0.3%、V0.001~0.3%、BO.0005~0.1% で且つこれらの1種または2種以上の合計を0.0005~0.

3%に限定した。

P、Sはいずれも不純物としてみられるが、靱性の点からそれぞれ0.03%以下にすることが望ましい。またNは時効脆化を抑制するために0.01%以下に抑えることが望ましい。

線材の強度は

$$Ceq = C + \frac{1}{5} (Mn + Cr)$$

と、線材のオーステナイト域からの冷却速度によって決り、Ceqが高いほど、また冷却速度が高いほど強度は増加するが、本発明者らの検討によると、Ceqが0.57%以上ないといかに高速で冷却しても、70Kg f/mm²以上の強度を有するフエライト・バーライト鋼線材は得られないことが明らかになったので、Ceqを0.57%以上に限定した。これはCeqが0.57%より低い線材を強度を上げるために、高速冷却すると加工性に致命的なマルテンサイトが現われるためである。

本発明の異形線用線材は、常法により線材圧延されて調整冷却された後溶接されて長尺線材とされ、更に溶接部を熱処理して整粒された微細なフェライト・パーライト 組織とされ、更に冷間伸線または冷間圧延により所要サイズとされる。

線材の溶接は強加圧アツプセツト方式、TIG方式あるいはレーザー方式等を用い、格別限定されないが、例えば強加圧アツプセツト方式は、最初比較的低電流密度(~75A/mm²)で通電を開始する。継手が軟化し、初期加圧力にて変形を受けだすと同時に通電を停止し、いわゆる強加圧力(~50Kg/mm²)を加える。あとは加圧力と軟化部が追出されていつた後の抗力とのバランスで停止すると良い、

ここで溶接部は衝合部とその近傍の熱影響部は、AI 点以上に加熱された後急冷される。従つて溶接ままでは、溶接部のビツカース硬度が600以上のマルテンサイト組織となるので、著しく延性に欠ける。そこで線材から異形線への加工性を向上させるために、溶接部をオーステナイト域に加熱冷却する熱処理によつて、母材と同等の強度を有するフェライト・パーライト組織にするのがよい

即ち、本発明の異形線は、最終リダクションが80%以上に及ぶダイス引抜と、ロール平圧延とを受けて異形線とする場合が多いので、冷間加工性が要求される。このため本発明の線材の組織は、熱間圧延工程での調整冷却あるいは圧延後のバテンテイング処理によつて、全長に亘って整粒されたフエライト・パーライト組織にすることが好ましい。

光フアイバー用異形線は、例えば7mmの線材をダイス引 抜して4.3mmとし、ロールで平圧延して2.3mm厚の断面矩 形状線材とする。ついで略扇形にするためダイス引抜を 行い、第2図に示すように内径a3.0mm、外径b6.0mm、厚 みt1.5mmの異形線11~13をうることができる。

なお、異形線の本数としては、第1図及び第2図で円形 を3本の略扇形に分割した形状のものが示されている が、これにこだわるものではなく、耐圧層の大きさなど に応じて、複数本の分割扇形とすることができる。な お、工業的見地からは2~10木程度が望ましい。 第1図には、本発明の異形線を用いて製造された海底光 フアイバーケーブルの耐圧層の構造の一例を示した。図 において11、12、13は断面が扇形の異形線で、異形線13 の部分は一点鎖線で示されている。ここで異形線の外周 面21、内周面22及び側面23には、第1図に斑点により示 したように梨地加工が施されている。以下異形線の表面 が梨地状を有するように限定した理由を述べる。 海底光ケーブルに何らかの原因によつて障害が発生する と、第2図に示した光フアイバーユニツト1と耐圧層 2、あるいは耐圧層2と金属チューブ4の間の空隙部分 が走水路となり、水走り現象によつてケーブルの長い区 間で損傷が発生する。そこで、通常、このような空隙部 分には、コンパウンドを充填して水走りを防止するよう になされている。ここで第1図に示すように、異形線11 ~13の外周面21と内周面22に梨地加工が施されている と、コンパウンドとの間の摩擦係数が増し、水走り防止 性が向上する。

また、異形線11~13の側面23が梨地状に加工されている と、異形線を組み合せて耐圧層を構成したとき、異形線 相互の接合面の密着性が増し、耐圧層の構造安定性が増 す。

この梨地は深さ0.002~0.03mm程度の凹凸で、異形線製造工程の最終工程のロール表面を梨地加工すること、あるいは異形線の表面をショツトブラスト加工することな30 どによつて付与される。

また、この異形線は、Nによる時効が有効に作用する15 0℃以上で、且つ鋼線の軟化が顕著にならない500℃以下 の温度時効することが、耐力の増加に有効である。 (実施例)

第1表に線材の組成、Ceq、寸法、線材を溶接した手 改、線材を異形線に加工したときの加工性、異形線の強 度、梨地加工の有無、耐圧層を構成する異形線の数及び 異形線とコンパウンドとの間の摩擦係数を、梨地加工さ れていない異形線と、コンパウンドとの間の摩擦係数と の比で示した。

No. 1~8 が本発明例で、他は比較例である。この内本発明例のNo. 1~6 と比較例の比例のNo. 9については、圧延で梨地加工した。またNo. 7とNo. 8はショツトブラストで梨地加工した。梨地の深さは平均0.01mmであつた。
No. 1は本発明組成を満足し、Ceq0.64%、7.5mmの径で、強度82Kg f/mm²の線材を強加圧アツプセツト方式で溶接し、引続き異形線に加工した場合の結果で、断線トラブルもなく加工され、133Kg f/mm²の強度を有する異形線が得られた。またコンパウンドとの間の摩擦係数も1.750 倍とすぐれている。

-3-

No. 2は本発明組成で、且つCeq0. 65%、8. 7mmの径で73Kg f/mm²の強度を有する線材を、TIG方式で溶接し、その後異形線に加工した結果を示すもので、断線中割れを生ずることもなく、134Kg f/mm²の異形線を得ることができた。コンパウンドとの間の摩擦係数も2倍を超え極めてすぐれている。

No. 3は木発明組成を満足し、且つ0.59%のCeqと74Kg f/mm²の強度を有する8.1mmの線材を、同じく強加圧アツプセツト方式で溶接して異形線に加工したときの結果で、断線事故もなく、130Kg f/mm²の強度を有する異形線が得られた。コンバウンドの摩擦係数も1.6倍と大きくなっている。

No. 4は同じく本発明組成からなり、且つCeq0. 67%、7.0 mmの径で、84Kg f/mm²の強度を有する線材をレーザー方式で溶接し、異形加工したもので、130Kg f/mm²の異形線が得られた。コンパウンドとの摩擦係数も1.5倍に達し良好である。

No. 5は本発明組成からなり、Ceq0. 65%、9. 0mmの径で、76Kg f/mm<sup>2</sup>の強度の線材をTIG方式で溶接し、異形線に加工したもので、割れの発生もなく、140Kg f/mm<sup>2</sup>の強度を有する異形線が得られた。摩擦係数も1. 8倍と非常に大きい。

更にNo. 6は本発明組成から成り、且つCeq0. 72%、7. 6mm の径で93Kg f/mm²の線材を強加圧アツプセツト方式で溶接し、その後異形線に加工したもので、途中割れが生ずることもなく、150Kg f/mm²の強度の異形線を得ることができた。摩擦係数も2倍を超え極めてすぐれている。No. 7は本発明組成を満たし、且つCeq0. 60%で、8. 8mmの径で、86Kg f/mm²の強度の線材をレーザーで溶接し、その後異形線に加工したもので、155Kg f/mm²の異形線が得られた。コンパウンドとの摩擦係数も2倍に達している。

またNo.8は本発明組成から成るCeq0.75%、7.5mm、86Kg f/mm²の強度の線材を強加エアツブセツト方式で溶接し、異形線に加工した場合で、断線トラブルもなく、14 OKg f/mm²の異形線が得られた。摩擦係数も1.8倍と高い

No. 9~18は比較例で、No. 9はMnが本発明の下限を下回つているために、線材及び溶接部の強度が低く、126Kg f/mm²以上の強度の異形線を得ることが出来なかつた例、N 40 o. 10はSiが本発明の上限を上回つたために、加工性が著しく劣化し、異形線が得られなかつた例、No. 11はCが本発明の下限を下回つているために、線材及び溶接部の

強度が低く、126Kg f/mm²の製品強度に到達せず、且つ 梨地加工が施されていないため摩擦係数も増加しなかつ た例、No. 12と13はそれぞれAIとNbが本発明の上限を超 えているために、多量の窒化物が析出して加工性が劣化 し、異形線が得られなかつた例、No. 14は、CとCrが共 に本発明の上限を超えているために、溶接部に熱処理後 マルテンサイトが現われ、加工性が劣化し、異形線を得 ることが出来なかつた例、No. 15は、MnとCrは単独では 本発明内にあるが、その合計量が1.5%を超え、またTi 10 とBも本発明の上限を超えているために、加工性が劣化 し、異形線を得るに至らなかつた例、No. 16はC、Mn、C r単独では本発明内にあるが、Ceqが本発明の下限を下回 つたために、製品強度が126Kg f/mm²に達せず、且つ梨 地加工されていないために、摩擦係数が増加しなかつた 例、No. 17はMn、Si、Vがいずれも本発明の上限を超 え、またP、Sも0.03%を超えているために、加工性が 劣化し、異形線が得られなかつた例、No. 18はAI、Nb、 Bが夫々単独では本発明内にあるが、その合計量が本発 明の上限を超え、またNも0.0130%も含有されていたた 20 めに、途中で割れが生じ、異形線を得るに至らなかつた

択一成分に関する実施例を、第1表のNo.19~23に示す。

例である。

No. 19は、木発明の組成からなるCeq: 0. 62%、8. 0mm、75 kg f/mm²の強度の線材を強加圧アップセット方式で溶接 し、異形線に加工したものである。断線トラブルもな く、134Kg f/mm2の異形線が得られた。摩擦係数も1.4と 高い。No. 20は、本発明の組成からなるCeq: 0. 64%、8. 6 mm、80kg f/mm²の強度の線材を強加圧アップセット方式 で溶接し、異形線に加工したものである。145kg f/mm² の強度を有する摩擦係数の優れた異形線が得られた。N o. 21は、本発明の組成からなるCeq: 0. 65%、7. 8mm、80k g f/mm²の強度の線材をレーザ溶接した後、異形線に加 工して得られたものである。140kg f/mm²の強度を有す る摩擦係数の優れた異形線がトラブルを生じることなく 得られた。No. 22は、本発明の組成からなるCeq: 0. 68 %、8.5mm、79kg f/mm²の強度の線材をTIG溶接し、異形 線に加工したものである。140kg f/mm2の強度を有する 摩擦係数の優れた異形線が得られた。No. 23は、木発明 の組成からなるCeq:0.70%、8.9mm、88kg f/mm2の強度 の線材を強加圧アップセット方式で溶接し、異形線に加 工したものである。152kg f/mm2の強度を有し、摩擦係 数:2.0の優れた異形線が得られた。

第

1

表

10

| 試        |       | 組成(重量%) |      |       |           |       |       |        |       |       |       |               |        |                    |
|----------|-------|---------|------|-------|-----------|-------|-------|--------|-------|-------|-------|---------------|--------|--------------------|
| 験<br>No. | С     | Si      | Mn   | Cr    | Mn+<br>Cr | P     | S     | N      | A1    | Ti    | Nъ    | V             | В      | AI +Ti +Nb<br>+V+B |
| <u>1</u> | 0, 45 | 0, 26   | 0.99 |       | 0.99      | 0.009 | 0,003 | 0.0051 | 0.028 | _     | _     | · –           |        | 0.028              |
| 2        | 0.45  | 0,81    | 0,44 | 0.55  | 0.99      | 0.021 | 0.013 | 0.0031 | _     | 0.013 | _     | -             | 0.0022 | 0.0152             |
| 3        | 0.32  | 0, 45   | 0,51 | 0.85  | 1,36      | 0.013 | 0,003 | 0,0040 |       | _     | 0.156 | _             | _      | 0, 156             |
| <b>④</b> | 0,53  | 0,02    | 0,69 | _     | 0.69      | 0.007 | 0,006 | 0.0080 | 0.066 | 0.010 |       | _             | 0,0015 | 0.0775             |
| (B)      | 0.42  | 0.16    | 1.05 | 0, 10 | 1, 15     | 0,013 | 0,008 | 0.0055 | 0.019 | _     | _     | 0.130         | _      | 0.149              |
| <b>6</b> | 0.62  | 0.30    | 0,51 | _     | 0,51      | 0.008 | 0.004 | 0.0049 | 0.031 | _     | 0.014 | 0.030         | -      | 0,075              |
| 1        | 0.38  | 0, 52   | 0.76 | 0.36  | 1, 12     | 0.018 | 0,010 | 0,0072 | 0.045 | 0,012 | 0.013 | _             | 0,0008 | 0, 0708            |
| (8)      | 0.58  | 0, 24   | 0.33 | 0,53  | 0.86      | 0.010 | 0.004 | 0.0085 | 0.024 | 0.016 | 0.009 | 0.018         | 0.0030 | 0.0700             |
| 9        | 0,50  | 0, 36   | 0.18 | _     | 0.25      | 0.012 | 0.011 | 0.0056 | _     |       | 0.010 | 0.020         |        | 0.030              |
| 10       | 0.42  | 1,26    | 0,62 | 0,46  | 1,08      | 0.008 | 0.006 | 0.0069 | 0.021 | 0.010 |       | _             | 0.0012 | 0.0322             |
| 11       | 0, 25 | 0, 40   | 0,60 | 0.81  | 1,41      | 0.022 | 0.017 | 0,0040 | 0,026 | _     |       | _             | _      | 0,026              |
| 12       | 0,61  | 0.72    | 0.45 | 0.86  | 1.31      | 0.010 | 0,010 | 0.0090 | 0.118 | _     |       | 0.015         | _      | 0, 133             |
| 13       | 0.48  | 0, 35   | 0.70 | 0, 11 | 0.81      | 0.014 | 0,011 | 0.0050 | 0.009 | _     | 0.32  | 0.020         | _      | 0,349              |
| 14       | 0.72  | 0.03    | 0,32 | 1.35  | 1,62      | 0.009 | 0,010 | 0,0039 | 0.030 |       | _     | _             | 0.0009 | 0,309              |
| 15       | 0.40  | 0, 10   | 0,70 | 0.95  | 1,65      | 0.014 | 0.011 | 0.0044 | 0.020 | 0,127 | _     | _             | 0, 150 | 0, 297             |
| 16       | 0.32  | 0.25    | 0.45 | 0.15  | 0.60      | 0.016 | 0,008 | 0.0060 | 0.004 | 0.010 | 0.004 | 0.010         |        | 0.028              |
| 17       | 0,45  | 1, 25   | 1,64 |       | 1.64      | 0,036 | 0.032 | 0.0045 | 0.030 | _     | _     | 0.34          | -      | 0.370              |
| 18       | 0,62  | 0, 20   | 0,80 | 0,29  | 1,09      | 0,020 | 0,011 | 0.0130 | 0,083 | -     | 0,246 | _             | 0,0030 | 0, 329             |
| 19       | 0.46  | 0,30    | 0,65 | 0,15  | 0.80      | 0.005 | 0.004 | 0.0039 | 0.003 | 0.026 | _     | _             |        | 0.029              |
| 20       | 0,39  | 0.09    | 0.99 | 0,26  | 1.25      | 0,012 | 0,010 | 0.0021 | 0.087 | _     | _     | _             | 0.0019 | 0.087              |
| 2        | 0.50  | 0.26    | 0.45 | 0,30  | 0.75      | 0.010 | 0.009 | 0.0080 | 0.004 | _     | 0.030 | <del></del> · | -      | 0.034              |
| 2        | 0.48  | 0, 26   | 0.80 | 0.35  | 1, 15     | 0.011 | 0.009 | 0.0062 | 0.005 | _     | _     | 0.042         | _      | 0.047              |
| 23       | 0.52  | 0, 19   | 0.76 | 0,64  | 1,40      | 0.007 | 0,011 | 0,0070 | 0,006 |       | 0.018 | 0,026         |        | 0,050              |

|                      |      |             | 11        |           |              |      | •              | 12        |                      | -         |
|----------------------|------|-------------|-----------|-----------|--------------|------|----------------|-----------|----------------------|-----------|
| <br> 試<br> 験<br> No. | Сеч  | 線径          | 線材強度      | 溶接手段      | 溶接部強度        | 加工性  | 異形線強度          | 梨地の<br>有無 | 耐圧層を構<br>成する異形<br>線数 | 摩擦係<br>数比 |
| MIT                  | (%)  | (mm)        | (kgf/mm²) |           | (kg f / not) |      | (kg f ∕ ππੈ)   |           |                      |           |
| 1                    | 0.64 | 7.5         | 82        | 強加圧アップセット | 79           | 良    | 133            | 有         | 3                    | 1.7       |
| 2                    | 0.65 | 8.7         | 73        | TIG       | 76           | 良    | 1 <b>34</b>    | 有         | 2                    | 2.2       |
| 3                    | 0.59 | 8.1         | 74        | 強加圧アップセット | 72           | 良    | 130            | 有         | 6                    | 1.6       |
| <b>④</b>             | 0.67 | 7,0         | 84        | レーザー      | 82           | 良    | 130            | 有         | 8                    | 1,5       |
| (5)                  | 0.65 | 9.0         | 76        | TIG       | 76           | 良    | 140            | 有         | 4                    | 1.8       |
| 6                    | 0.72 | 7.6         | 93        | 強加圧アップセット | 90           | 良    | 150            | 有         | 3                    | 2.1       |
| 7                    | 0.60 | 8.8         | 86        | レーザー      | 89           | 良    | 155            | 有         | 3                    | 1.7       |
| 8                    | 0.75 | 7,5         | 86        | 強加圧アップセット | 87           | 良    | 140            | 有         | 2                    | 1,8       |
| 9                    | 0.54 | 7.8         | 65        | 強加圧アップセット | 62           | 良    | 123            | 有         | 6                    | 1.3       |
| 10                   | 0.64 | 8.0         | 77        | TIG       | 90           | 途中破断 | _              | _         | 3                    | _         |
| 11                   | 0,53 | <b>6.</b> 8 | 65        | 強加圧アップセット | 67           | 良    | 120            | 無         | 3                    | 1,0       |
| 12                   | 0.87 | 6, 3        | 90        | レーザー      | 89           | 途中破断 | _              | - '       | 12                   | -         |
| 13                   | 0.64 | 7.7         | 80        | 強加圧アップセット | 84           | 途中破断 | _              |           | 8                    |           |
| 14                   | 0.99 | 6.2         | 94        | 強加圧アップセット | 89           | 途中破断 | _              |           | 4                    | _         |
| 15                   | 0.73 | 7,6         | 82        | 強加圧アップセット | 85           | 途中破断 | . <del>-</del> | _         | 2                    | _         |
| 16                   | 0.44 | 9.0         | 60        | レーザー      | 61           | 良    | 123            | 無         | 8                    | 1,0       |
| 17                   | 0.78 | 7.2         | <b>79</b> | TIG       | 91           | 途中破断 | _              | _         | 6                    | _         |
| 18                   | 0.84 | 6.5         | 85        | 強加圧アップセット | 90           | 途中破断 | _              | _         | 3                    | _         |
| 19                   | 0.62 | 8,0         | 75        | 強加圧アップセット | 73           | 良    | 134            | 有         | 4                    | 1.4       |
| <b>29</b>            | 0.64 | 8,6         | 80        | 強加圧アップセット | 76           | 良    | 145            | 有         | 3                    | 1.9       |
| Ø                    | 0.65 | 7.8         | 80        | レーザー      | 77           | 良    | 140            | 有         | 6                    | 1.6       |
| <b>Ø</b>             | 0.68 | 8.5         | 79        | TIG       | 74           | 良    | 140            | 有         | 4                    | 2.0       |

#### 〇印は本発明例。

#### (発明の効果)

**②** 0.70 8.9

以上の実施例からも明らかな如く、本発明の異形線は溶 30 接によつて所望の長尺が得られ、線材製造を大単重にす る必要がないので、その工業的効果は大きい。

88

強加圧アップセット

#### 【図面の簡単な説明】

第1図は梨地加工された表面を有する本発明異形線によ つて製造された耐圧層の一例を示す斜視図、第2図は海 底光ケーブルの断面図である。

11、12、13……異形線

良

1……光フアイバーユニツト、2……耐圧層

3……ピアノ線、4……金属チユーブ

152

5 ……絶縁層、21……異形線外周面

22……異形線内周面、23……異形線側面

【第1図】



#### 【第2図】

有

3

2, 1



#### フロントページの続き

(72) 発明者 浅野 巌之

神奈川県相模原市淵野辺 5 - 10 - 1 新日木製鐵株式会社第二技術研究所内

(72) 発明者 河野 六郎

神奈川県相模原市淵野辺5-10-1 新日

本製鐵株式会社第二技術研究所內

(72)発明者 二ノ宮 敬

愛知県東海市東海町5-3 新日本製鐵株

式会社名占屋製鐵所內

(72) 発明者 船木 靖

東京都渋谷区道玄坂1-16-10 日本大洋

海底電線株式会社内

(72) 発明者 望月 研一

東京都渋谷区道玄坂1-16-10 日本大洋

海底電線株式会社内

(72) 発明者 村尾 雅嗣

大阪府大阪市東区内安藤寺町通1-1-1

浪速製釘株式会社内

(72) 発明者 村尾 和彦

大阪府大阪市東区内安藤寺町通1-1-1

浪速製釘株式会社内

(56)参考文献 特開 昭62-107045 (JP, A)

特開 昭58-39738 (JP, A)

特開 昭55-44591 (JP, A)

特開 昭54-79119 (JP, A)

特公 昭59-7361 (JP, B2)

特公 昭59-29648 (JP, B2)

| 第3部門 (4)            |        |       | IE       | 誤                                                                | 表                           | (平成8年11月27日発行)                                             |
|---------------------|--------|-------|----------|------------------------------------------------------------------|-----------------------------|------------------------------------------------------------|
| 特 <u></u> 許<br>公告番号 | ∄      | 類     | 識別<br>記号 | 個所                                                               | 恕                           | 正                                                          |
| 平 6- 37714<br>      | C25D   | 11/38 | 3 0 1    | 第4 欄33 行<br>第6 欄23 行<br>第7 欄33 行<br>第7 欄36 行<br>第8 欄33 ~<br>37 行 |                             | 連統鋳造材<br>電解クロム酸処理<br>詳細な見方<br>鋼中の<br>低減<br>冷延鋼板<br>溶接性を有する |
| 平 7- 15139          | C 22 F | 1./08 |          | 発明の名称<br>目次とも                                                    | 面像表示機器、音響機器導体<br>の製造方法      | 面像表示機器、音響機器導体<br>の製造法                                      |
| 平 7- 59721          | B 22 F | 9/30  |          | 第1編4行                                                            | 系内に                         | 系内の                                                        |
| <b>-¥</b> 7⋅ 65142  | C 22 C | 38/00 |          | 出願人住所<br>2 人目                                                    | 東京都渋谷区道玄坂 1 丁目16<br>番10号    | 来京都港区芝浦1丁目2番1<br>号                                         |
| ¥ 7- 81183          | C 23 C | 14/34 |          | 代理人                                                              | 代理人 弁理士 松村 修治 (外1名)         | 代理人 弁理士 流本 智之                                              |
| ¥ 7- 81195          | C 23 G | 1/06  |          | 出願人住所                                                            | 奈良県奈良市南京終町1丁目<br>25番地       | 大阪府大阪市北区西天満二丁<br>日4番4号                                     |
| 平 7- 88562          | C25C   | 8/46  |          | 第3 欄37~<br>38行<br>第4 欄29行<br>第5 欄19行                             |                             | メラミン<br>得るため<br>団塊状に                                       |
| 平 7- 88595          | C 25 B | 3/04  |          | 出願人住所                                                            | 兵庫県神戸市中央区御幸通 5<br>丁目 2 番15号 | 兵庫県神戸市中央区東川崎町<br>1丁目3番3号                                   |
| 平 7- 98991          | C 23 C | 14/34 |          | 出願人住所                                                            | 東京都新宿区西新宿2丁目3番1号            | 東京都港区赤坂 5 「日3 番 6<br>号                                     |
| ¥ 8- 3152           | C 23 F | 11/00 |          | 出願人住所                                                            | 東京都千代田区鍛冶町2丁目<br>2番2号       | 東京都中央区新川2丁月5番<br>2号                                        |
| ¥F 8− 6198          | C 25D  | 17/00 |          | 出願人住所                                                            | 神奈川県藤沢市石川1159番地             | 神奈川県藤沢市造藤2023番15                                           |
| ₩ 8- 16252          | C 22 C | 1/05  |          | 代理人                                                              | 代理人 弁理士 三宅 正夫<br>(外1名)      | 代理人 弁理士 三宅 正夫                                              |
| <b>平</b> 8- 1952?   | C 23 C | 16/50 |          | 代理人                                                              | 代理人 弁理士 小鍛 冶明<br>(外2名)      | 代理人 弁理士 掩本 智之<br>(外1名)                                     |
| 平 8- 26460          | C28C   | 16/18 |          | 出額人名称<br>目次とも                                                    | 日電アネルバ株式会社                  | アネルバ株式会社                                                   |

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

## IMAGES ARE BEST AVAILABLE COPY.

□ OTHER: \_\_\_\_\_

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.