ECON 7201 Applied Econometrics

Assignment 1

Due Date

September 18, 2025 at the start of class

Directions

Answer all questions. Submit both a PDF and Quarto file to the nexus assignment portal.

1. Git and GitHub

- (a) Create a GitHub repository called **econ_3201** and connect it to RStudio.
- (b) Create a new R project in this newly created directory called **assignment_1**. (Note, you do not have to click "Create git repository" as the directory is contained in a git enabled directory, i.e., **econ_3201**).
- (c) Download the assignment PDF and Quarto file the **assignment 1** folder.
- (d) Commit and push the changes to your econ_3201 repository on GitHub.com.

2. LaTeX

LaTeX is useful for writing math equations and presents them in a neat and orderly way. To write in math mode, wrap your text in \$ for inline text use two \$s for display (i.e., centered on the page). Some very useful functions include:

• Fractions:\frac{}{}, e.g. $\frac{1}{2}$ gives $\frac{1}{2}$ and $\frac{1}{2}$ gives:

 $\frac{1}{2}$.

• Subscripts: _ gives a subscript, e.g. x_1 gives x_1 . To include more than one term in the subscript, the items in the subscript must be enclosed by {}. E.g. x_1 , 1} gives x_1 , 1. (Note that x_1 , 1\$ gives x_1 , 1)

• Exponents: $\hat{\ }$, e.g. x^2 gives x^2 . $\hat{\ }$ can also be used for superscripts in other math functions, including summations and integrals.

• Aligned: aligned neatly aligns multiple lines of an equation. Align is useful when writing multiple steps to solving an equation. To use it in Quarto, write \$\$\begin{aligned}...\end{aligned}. The & is used to mark the point where the lines should be aligned. Use \\ at the end of each line E.g. \$\$\begin{aligned}

gives

$$x = 3 + 5$$
$$= 8$$

• Summation: \searrow gives the summation sign, i.e. \sum . To include subscripts, use $_$ and to use superscripts use $\hat{\ }$, e.g. $\sum_{i=1}^n \hat{\ }$ gives $\sum_{i=1}^n$, which reads as the sum of iequals 1 to n.

• Integral: \int gives an integral, i.e. ∫. To place a lower limit use _ and to place an upper limit, use \hat{a}^{b} gives \int_{a}^{b} .

\$\alpha, \beta, \gamma, \Gamma, \delta, \Delta, \epsilon, \varepsilon, \zeta, \eta, \sigma, \Sigma, \theta, \vartheta, \Theta, \iota, \kappa, \lambda, \mu\$ gives $\alpha, \beta, \gamma, \Gamma, \delta, \Delta, \epsilon, \varepsilon, \zeta, \eta, \sigma, \Sigma, \theta, \vartheta, \Theta, \iota, \kappa, \lambda, \Lambda, \mu$. (See https://www.overleaf.com/learn/latex/List of Greek letters and math symbols

• Accents: \hat{}, \tilde{}, and \bar{}are examples of accents in math mode. E.g. \hat{Y} , \hat{Y} , and \hat{Y} gives \hat{Y} , \hat{Y} , and \hat{Y} , respectively.

• Text: To include text in your equation, i.e. non italicized text, use \text{}, e.g. x=2 if y=1 gives x=2 if y=1.

• Inequalities: Some mathematical expressions may be written as inequalities, rather than equations. For 'less than' and 'greater than', you can just use the symbol on your keyboard, i.e. < and >, respectively. For \le , use α and for \ge , use α . An important note is that after writing a command, put a space after the command before writing the next term, otherwise you may get an error. E.g. To write $a \le b$, write $a \le b$, write b\$, not $a\leq b$ \$.

Re-write the following equations in LaTeX.

(a)
$$E(Y) = y_1 p_1 + ... + y_k p_k = \sum_{i=1}^k y_i p_i$$

$$\begin{array}{l} \text{(a)} \ E(Y) = y_1 p_1 + \ldots + y_k p_k = \sum_{i=1}^k yipi \\ \text{(b)} \ \sigma_Y = Var(Y) = E[(Y - \mu_Y)^2] = \sum_{i=1}^k (Y_i - \mu_Y)^2 P_i \\ \text{(c)} \ \hat{\beta} = \frac{\sum_{i=1}^n (y - y_i)(x - x_i)}{\sum_{i=1}^n (x - x_i)^2} \end{array}$$

(c)
$$\hat{\beta} = \frac{\sum_{i=1}^{n} (y - y_i)(x - x_i)}{\sum_{i=1}^{n} (x - x_i)^2}$$

(d)
$$P(a \le Y \le b) = \int_a^b f_Y(y) dy$$

$$\begin{array}{ll} \text{(d)} \ \ P(a \leq Y \leq b) = \int_a^b f_Y(y) dy \\ \text{(e)} \ \ \hat{g}(x) = \frac{\frac{1}{nh} \sum_{i=1}^n y_i k(\frac{x_i - x}{h})}{\frac{1}{nh} \sum_{i=1}^n k(\frac{x_i - x}{h})} \end{array}$$

3. R

3.1. Assignment

Note: When creating variables based on equation, separate each element in the equation with the appropriate arithmetic symbol. E.g., to compute x(y-2) in R, you would have to type x*(y-2). x(y-2), with not arithmetic symbol between x and the left bracket would result in an error.

(a) In statistics, n is often used to denoted the sample size. Set the number of observations n = 1000.

n = (1000)

(b) Generate two random variables, $u_1 \sim U(0,1)$ and $u_2 \sim U(0,1)$ with n/2 = 500 observations. That is, create two variables that follow a uniform distribution between 0 and 1 that each have 500 observations. In R, we can create random uniform variables using the runif(k,min,max) function, where k is number of observations, min is the minimum value, and max is the maximum value. The default values for min and max are 0 and 1, respectively. Type ?runif into your console to learn more.

```
u1 \leftarrow runif(n/2,0,1)
u2 <- runif(n/2,0,1)
```

(c) Generate two variables z_1 and z_2 that take on the following values:

$$z_1 = \sqrt{-2\ln(u_1)} \times \cos(2\pi u_2)$$

and

$$z_1 = \sqrt{-2\ln(u_1)} \times \sin(2\pi u_2).$$

In R, $\sqrt{\ }$ is computed using sqrt(), ln is computed using log(), cos is computed using cos(), and sin is computed using sin().

```
z1 \leftarrow sqrt(-2*log(u1))*cos(2*pi*u2)
z2 \leftarrow sqrt(-2*log(u1))*sin(2*pi*u2)
```

(d) Generate a vector $z = [z_1, z_2]$

```
z \leftarrow \text{matrix}(z1\&z2, \text{ncol} = 2)
```

(e) Generate two variables μ (spelled mu) and σ (spelled sigma). Set $\mu = 5$ and $\sigma = 2$.

```
mu <-c(5)
sigma <-c(2)
```

(f) Generate a variable $x = \mu + \sigma \times z$

```
x <-c(mu + sigma *z)
```

(g) Calculate the mean of x, using mean() and the standard deviation of x using sd().

```
mean.x <-mean(x)
sd.mean <-sd(x)</pre>
```

(h) Use the following code to plot a histogram of x with the normal distribution curve.

```
hist(x,
    freq = FALSE,
    ylab = "Density",
    xlab = "x")

curve(dnorm(x, mean = mu, sd = sigma),
    col = "red", lwd = 2, add = TRUE)
```


Figure 1: Histogram of x

3.2. Data frames and Indexing

A data frame in R is a table-like data structure used to store data in rows and columns, similar to a spreadsheet or a database table. It is one of the most commonly used structures for storing datasets in R.

Table 1 displays the total health expenditure by use of funds in Canada from 1975 to 2022. The data is stored in the data.frame called df.

Table 1: Total health expenditure by use of funds, in millions of current dollars, Canada, 1975 to 2022 (Source: CIHI National Health Expenditure Trends)

Year	Hospitals	Physicians	Other Services	Dental	Vision	Other Professionals
1,975	$5,\!136.77$	1,813.15	796.62	56.40	35.86	46.72
1,976	5,977.68	2,041.52	999.08	69.81	40.65	53.92
1,977	$6,\!372.73$	$2,\!252.12$	1,175.16	83.70	44.86	60.54
1,978	6,861.92	$2,\!528.34$	1,367.51	103.96	51.91	75.52
1,979	$7,\!487.62$	2,804.48	$1,\!581.37$	143.83	57.99	88.88
1,980	$8,\!585.16$	$3,\!235.98$	1,821.48	194.94	67.23	104.90
1,981	$10,\!127.35$	3,775.12	$2,\!146.66$	278.44	78.74	126.67
1,982	$12,\!001.93$	$4,\!353.14$	$2,\!531.36$	270.04	91.13	143.01
1,983	$13,\!174.55$	4,973.30	2,794.37	260.66	105.68	163.99
1,984	13,936.30	$5,\!444.58$	2,923.26	266.74	117.66	181.02
1,985	14,737.75	5,962.06	3,066.46	275.52	130.42	214.58
1,986	15,937.05	$6,\!597.89$	2,982.43	287.16	146.05	260.66
1,987	$17,\!154.21$	$7,\!266.23$	$3{,}132.08$	286.27	157.30	276.36
1,988	$18,\!497.17$	$7,\!862.51$	$3,\!468.29$	311.35	180.78	296.02
1,989	$20,\!268.98$	$8,\!422.71$	$3,\!828.51$	350.27	205.62	341.53
1,990	$20,\!528.15$	9,090.92	$5,\!100.45$	371.70	235.89	379.81
1,991	21,783.23	10,014.44	$5,\!868.30$	387.93	265.51	442.89
1,992	$22,\!652.40$	$10,\!249.61$	$6,\!253.82$	394.80	262.22	470.54
1,993	$22,\!619.06$	$10,\!306.29$	$6,\!190.38$	407.31	229.69	460.64
1,994	$22,\!096.82$	$10,\!533.27$	$6,\!266.36$	418.63	221.20	429.23
1,995	$21,\!849.46$	$10,\!506.52$	$6,\!498.12$	408.13	197.12	427.63
1,996	21,997.29	$10,\!651.80$	$6,\!591.26$	373.98	196.90	426.18
1,997	$22,\!307.52$	$11,\!103.52$	$6,\!834.19$	365.18	215.12	448.14
1,998	$23,\!530.41$	$11,\!627.85$	$7,\!172.47$	352.30	204.66	481.07
1,999	24,751.97	$12,\!255.39$	$7,\!578.69$	380.04	219.28	523.72
2,000	26,950.76	13,045.53	$8,\!170.94$	397.63	230.47	577.24
2,001	$28,\!606.54$	$14,\!001.53$	8,784.35	406.72	247.80	559.25
2,002	$30,\!683.55$	14,939.47	$9,\!308.19$	421.57	239.86	521.36
2,003	32,903.18	16,084.37	$9,\!841.96$	409.33	244.00	526.93
2,004	$35,\!269.82$	17,084.00	$10,\!629.24$	425.19	250.30	530.73
2,005	$37,\!112.35$	$18,\!302.66$	$11,\!064.58$	450.38	223.05	469.67
2,006	39,704.71	19,743.14	$11,\!593.52$	504.41	231.54	482.76
2,007	$42,\!376.77$	$21,\!308.72$	$12,\!192.52$	541.84	239.84	541.96

Table 1: Total health expenditure by use of funds, in millions of current dollars, Canada, 1975 to 2022 (Source: CIHI National Health Expenditure Trends)

Year	Hospitals	Physicians	Other Services	Dental	Vision	Other Professionals
2,008	45,362.04	23,370.83	12,809.06	586.77	264.34	619.50
2,009	47,996.52	$25,\!249.61$	$13,\!578.95$	664.37	295.77	671.40
2,010	50,947.81	$27,\!107.23$	$14,\!316.45$	714.70	311.87	692.20
2,011	$52,\!126.35$	$28,\!813.05$	$15,\!324.80$	721.61	332.69	734.94
2,012	$53,\!299.96$	$29,\!801.63$	15,923.80	759.13	353.62	782.67
2,013	54,954.28	$31,\!202.28$	$16,\!386.15$	762.36	358.08	730.08
2,014	56,123.22	$32,\!490.79$	16,966.03	782.00	389.71	685.88
2,015	$57,\!352.33$	$33,\!886.08$	18,313.73	821.42	430.46	$1,\!179.18$
2,016	$58,\!168.97$	$35,\!283.98$	18,809.91	875.86	461.42	$1,\!355.90$
2,017	$60,\!356.12$	$36,\!490.87$	$19,\!665.65$	918.62	484.33	1,491.51
2,018	$62,\!896.86$	$37,\!494.64$	$20,\!548.31$	961.17	517.89	1,614.12
2,019	$65,\!034.33$	38,914.04	$21,\!446.58$	1,018.36	557.19	1,729.01
2,020	$67,\!221.53$	$37,\!288.46$	$23,\!675.08$	896.76	513.22	1,711.94
2,021	$69,\!663.71$	$41,\!479.50$	$25,\!678.66$	922.86	559.07	1,906.92
2,022	73,778.17	$44,\!195.30$	28,095.86	991.82	584.06	2,047.50

(a) Determine if there are any missing values for the variable Hospitals.

is.na(df\$Hospitals)

- [1] FALSE FALSE
- [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
- [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
- [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
- (b) Add a variable called "Total Other Services" to the data frame df, where

Total Other Services = Dental + Vision + Other Professional.

To add a newly created variable to a data frame use the syntax dataframe\$varname <- expression.

df\$"Total_Other_Services" <- sum(df\$'Other.Professionals..Dental'+ df\$'Other.Professionals..."
str(df)</pre>

```
48 obs. of 8 variables:
'data.frame':
$ Year
                      : int
                             1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 ...
$ Hospitals
                            5137 5978 6373 6862 7488 ...
                      : num
$ Physicians
                             1813 2042 2252 2528 2804 ...
                      : num
$ Other Services
                      : num
                            797 999 1175 1368 1581 ...
$ Dental
                             56.4 69.8 83.7 104 143.8 ...
                      : num
$ Vision
                             35.9 40.6 44.9 51.9 58 ...
                      : num
$ Other Professionals : num
                             46.7 53.9 60.5 75.5 88.9 ...
$ Total_Other_Services: int 00000000000...
```

- (c) Are there any years for which Total Other Professionals
- (d) Another way to add a variable to a data frame is to simply create a new data frame and append the new variable to it. Note: we can use the same data frame name. I.e., df<-data.frame(df,newvarname = newvar). Add the variable "Prescription Drugs" to the df data frame using the append method, where presricption drugs is named "Prescribed.Drugs" in the cihi data.frame.

```
df <-data.frame(df,df2 = "Prescribed Drugs")</pre>
```

(a) Using a single R command, determine the expenditure on hospitals in 1983.

```
sum(df$hospitals, df$year == 1983)
```

[1] 0

(a) Using a singe R command, list the expenditures by year for 2012-2022.

```
list(df$year >= 2012 & df$year < 2023)
```

[[1]] logical(0)

3.3 Other useful R commands.

Load the mpg dataset from the ggplot2 package using mpg <-ggplot2::mpg. (Be sure to install the gglot2 package before you start.)

```
install.packages("ggplot2")
```

The following package(s) will be installed:

- ggplot2 [4.0.0]

These packages will be installed into "C:/Users/chris/Desktop/Econometrics 2025 7201/Assignm $4.4/x86_64-w64-mingw32$ ".

- # Installing packages ------
- Installing ggplot2 ... OK [linked from cache]

Successfully installed 1 package in 38 milliseconds.

```
mpg <- ggplot2::mpg</pre>
```

(a) Subset the data to include only observations from 2008. Search ?subset in the console.(a) Calculate the maximum and minimum miles per gallon in city limits (cty). Seach ?min in the console.

```
mpg_2008 <- subset(mpg, year == 2008)
mpg_2008.min <- min(mpg_2008$cty)
mpg_2008.max <- max(mpg_2008$cty)</pre>
```

(b) Estimate the average miles per gallon within city limits for cars produced in 2008 using the formula

Average mpg =
$$\frac{\sum_{i=1}^{n} \operatorname{cty}_{i}}{n}.$$

Recall that n is the number of observations. Search ?length in the console.

```
avg_city2008.mpg <- c(sum(mpg_2008$cty)/length(mpg_2008$cty))</pre>
```

(c) Estimate the average miles per gallon within city limits for cars produced in 2008 using the mean() function.

```
mean_cty.mpg2008 <- c(mean(mpg_2008$cty))
```

(d) Create a variable called compact, which takes a value of 1 if the vehichle is a compact and 0 otherwise. Search ?ifelse in the console.

```
compact <- ifelse(mpg$class == "compact",1,0)</pre>
```

(e) Estimate the average miles per gallon within city limits for compact cars. (You may use whichever method you prefer).

```
compact.subset <- subset(mpg, compact==1)
compact_mpg.mean <-mean(compact.subset$cty)</pre>
```

(f) Create a simple scatter plot with city mpg (cty) on the x-axis and highway mpg (hwy) on the y-axis. Search ?plot and choose "Generic X-Y Plotting".

```
x <-c(mpg$cty)
y <-c(mpg$hwy)
plot(x, y, main = "Scatter Plot Mpg of various cars class within City-Limits", xlab = "x", y</pre>
```

Scatter Plot Mpg of various cars class within City-Limits

(i) Change the x-axis label using the option `xlab = "City MPG"` and change the y-axis label using the option `ylab = "Highway MPG"`.

Scatter Plot Mpg of various cars class within City-Limits

(ii) Add the caption "City Versus Highway Fuel Efficiency (MPG)"

plot(x, y, main = "City Versus Highway Fuel Efficiency (MPG)", xlab = "City MPG", ylab = "Highway Fuel Efficiency", xlab = "City MPG", ylab = "City MPG", ylab = "Highway Fuel Efficiency", xlab = "City MPG", ylab = "Highway Fuel Efficiency", xlab = "City MPG", ylab = "Highway Fuel Efficiency", xlab = "City MPG", ylab = "Highway Fuel Efficiency", xlab = "City MPG", ylab = "Highway Fuel Efficiency", xlab = "City MPG", ylab = "Ci

City Versus Highway Fuel Efficiency (MPG)

(iii) Cross reference the figure and add the text "Figure 1 shows the fuel efficiency for ci

```
?plot
```

starting httpd help server ... done

```
plot(x, y, main = "City Versus Highway Fuel Efficiency (MPG)", xlab =
"City MPG", ylab = "Highway MPG", col="blue", sub="Figure 1 shows the
fuel efficiency for city driving versus highway driving")
```

City Versus Highway Fuel Efficiency (MPG)

Figurally \$\text{MP} &s the fuel efficiency for city driving versus highway driving}