第1章 c: 连续函数

数学系 梁卓滨

2019-2020 学年 I

Outline

1. 连续函数

2. 函数的间断点

3. 闭区间上连续函数的性质

We are here now...

1. 连续函数

2. 函数的间断点

3. 闭区间上连续函数的性质

定义 设
$$y = f(x)$$
 在 x_0 的某个邻域内有定义,如果

$$\lim_{x\to x_0} f(x) = f(x_0)$$

则称f(x)在点 x_0 处**连续**.

$$\lim_{x\to x_0} f(x) = f(x_0)$$

则称 f(x) 在点 x_0 处 连续.

注 简单地说,

$$\lim_{x\to x_0} f(x) = f(x_0)$$

则称 f(x) 在点 x_0 处 连续.

注 简单地说,

$$\lim_{x\to x_0} f(x) = f(x_0)$$

则称 f(x) 在点 x_0 处 **连续**.

注 简单地说,

$$\lim_{x\to x_0} f(x) = f(x_0)$$

则称 f(x) 在点 x_0 处 连续.

注 简单地说,

$$\lim_{x \to x_0} f(x) = f(x_0) \iff \lim_{x \to x_0} [f(x) - f(x_0)] = 0$$

则称 f(x) 在点 x_0 处 连续.

注 简单地说,

$$\lim_{x \to x_0} f(x) = f(x_0) \Leftrightarrow \lim_{x \to x_0} [f(x) - f(x_0)] = 0$$
$$\Leftrightarrow f(x) - f(x_0) \to 0 (\exists x - x_0 \to 0)$$

则称 f(x) 在点 x_0 处 连续.

注 简单地说,

$$\lim_{x \to x_0} f(x) = f(x_0) \Leftrightarrow \lim_{x \to x_0} [f(x) - f(x_0)] = 0$$

则称 f(x) 在点 x₀ 处**连续**.

$$\Leftrightarrow \underbrace{f(x) - f(x_0)}_{\Delta y} \to 0 \, (\stackrel{\text{def}}{=} \underbrace{x - x_0}_{\Delta x} \to 0)$$

注 简单地说,

$$\lim_{x \to x_0} f(x) = f(x_0) \Leftrightarrow \lim_{x \to x_0} [f(x) - f(x_0)] = 0$$

则称f(x) 在点 x_0 处**连续**.

$$\Leftrightarrow \underbrace{f(x) - f(x_0)}_{\Delta y} \to 0 \ (\underbrace{ \times - x_0}_{\Delta x} \to 0)$$

$$\Leftrightarrow \Delta y \to 0 \quad (\underbrace{ \times \Delta x}_{\Delta x} \to 0)$$

注 简单地说,

$$\lim_{x \to x_0} f(x) = f(x_0) \iff \lim_{x \to x_0} [f(x) - f(x_0)] = 0$$

则称 f(x) 在点 x₀ 处 **连续**.

$$\Leftrightarrow \underbrace{f(x) - f(x_0)}_{\Delta y} \to 0 \ (\underbrace{ \times - x_0}_{\Delta x} \to 0)$$

$$\Leftrightarrow \Delta y \to 0 \quad (\underbrace{ \times \Delta x}_{\Delta x} \to 0)$$

注 简单地说,

- 当 x 接近 x_0 时,f(x) 也接近 $f(x_0)$
- 当 x 是 x₀ 的微小改变时, f(x) 也是 f(x₀) 的微小改变

定义 设
$$y = f(x)$$
 定义在开区间 (a, b) 上, $x_0 \in (a, b)$. 如果
$$\lim_{x \to x_0} f(x) = f(x_0)$$

则称 f(x) 在点 x_0 处 连续.

定义 设
$$y = f(x)$$
 定义在开区间 (a, b) 上, $x_0 \in (a, b)$. 如果
$$\lim_{x \to x_0} f(x) = f(x_0)$$

则称 f(x) 在点 x_0 处 连续.

定义 设
$$y = f(x)$$
 定义在闭区间 $[a, b]$ 上.

定义 设 y = f(x) 定义在开区间 (a, b) 上, $x_0 \in (a, b)$. 如果

$$\lim_{x\to x_0} f(x) = f(x_0)$$

则称 f(x) 在点 x_0 处 连续.

定义 设 y = f(x) 定义在闭区间 [a, b] 上. 如果

$$f(a^+) = f(a)$$

则称 ƒ(x) 在左端点 α 处**连续** .

定义 设 y = f(x) 定义在开区间 (a, b) 上, $x_0 \in (a, b)$. 如果

$$\lim_{x\to x_0} f(x) = f(x_0)$$

则称f(x)在点 x_0 处**连续**.

定义 设 y = f(x) 定义在闭区间 [a, b] 上. 如果

$$f(a^+) = f(a)$$

则称 f(x) 在左端点 a 处**连续**. 如果

$$f(b^-) = f(b)$$

则称 f(x) 在右端点 b 处**连续**.

定义 设 y = f(x) 定义在开区间 (a, b) 上, $x_0 \in (a, b)$. 如果

$$\lim_{x\to x_0} f(x) = f(x_0)$$

则称f(x)在点 x_0 处**连续**.

定义 设 y = f(x) 定义在闭区间 [a, b] 上. 如果

$$f(a^+) = f(a)$$

则称f(x) 在左端点a处**连续**.如果

$$f(b^-) = f(b)$$

则称f(x)在右端点b处**连续**.

定义 如果 f(x) 在区间 I 的每一点都连续,则称 f(x) 在区间 I 上连续,或称 f(x) 是区间上的连续函数.

定义 设 y = f(x) 定义在开区间 (a, b) 上, $x_0 \in (a, b)$. 如果 $\lim_{x \to x_0} f(x) = f(x_0)$

则称f(x)在点 x_0 处**连续**.

定义 设
$$y = f(x)$$
 定义在闭区间 $[a, b]$ 上. 如果

$$f(a^+) = f(a)$$

则称 f(x) 在左端点 a 处**连续**. 如果

$$f(b^-) = f(b)$$

则称f(x)在右端点b处**连续**.

定义 如果 f(x) 在区间 I 的每一点都连续,则称 f(x) 在区间 I 上连续,或称 f(x) 是区间上的 连续函数.

注 连续函数的图形是一条连续不间断的曲线.

性质 设f和g是连续函数,则

- 四则运算 f+g, f-g, $f\cdot g$, $\frac{f}{g}$ 在其定义域内也还是连续函数.
- 假设复合函数 f[g(x)] 有意义,则该复合函数也是连续函数.

性质 设f和g是连续函数,则

- 四则运算 f+g, f-g, $f\cdot g$, $\frac{f}{g}$ 在其定义域内也还是连续函数.
- 假设复合函数 f[g(x)] 有意义,则该复合函数也是连续函数.

例 讨论 $y = \sin \frac{1}{x}$ 的连续性.

性质 设f和g是连续函数,则

- 四则运算 f+g, f-g, $f\cdot g$, $\frac{f}{g}$ 在其定义域内也还是连续函数.
- 假设复合函数 f[g(x)] 有意义,则该复合函数也是连续函数.

例 讨论 $y = \sin \frac{1}{x}$ 的连续性.

性质 设f和g是连续函数,则

- 四则运算f + g, f g, $f \cdot g$, $\frac{f}{g}$ 在其定义域内也还是连续函数.
- 假设复合函数 f[g(x)] 有意义,则该复合函数也是连续函数.

例 讨论 $y = \sin \frac{1}{x}$ 的连续性.

回忆 初等函数 指幂函数、指数函数、对数函数、(反)三角函数进过有限次的四则运算和复合所构成的函数.

性质 设f和g是连续函数,则

- 四则运算 f + g, f g, $f \cdot g$, $\frac{f}{g}$ 在其定义域内也还是连续函数.
- 假设复合函数 f[g(x)] 有意义,则该复合函数也是连续函数.

例 讨论 $y = \sin \frac{1}{x}$ 的连续性.

回忆 初等函数 指幂函数、指数函数、对数函数、(反)三角函数进过有限次的四则运算和复合所构成的函数.

性质 一切初等函数在其定义区间内都是连续.

 $\mathbf{F}(x) = \sqrt{x^2 - 2x + 5}$ 是初等函数,因此连续. 并且 x = 0 在 f(x) 的 定义域中,所以

$$\lim_{x \to 0} \sqrt{x^2 - 2x + 5} = f(0)$$

解 $f(x) = \sqrt{x^2 - 2x + 5}$ 是初等函数,因此连续. 并且 x = 0 在 f(x) 的 定义域中,所以

$$\lim_{x \to 0} \sqrt{x^2 - 2x + 5} = f(0) = \sqrt{5}.$$

解 $f(x) = \sqrt{x^2 - 2x + 5}$ 是初等函数,因此连续. 并且 x = 0 在 f(x) 的 定义域中,所以

$$\lim_{x \to 0} \sqrt{x^2 - 2x + 5} = f(0) = \sqrt{5}.$$

例2 求
$$\lim_{x \to \frac{\pi}{2}} (1+2x)^{\frac{3}{\sin x}}$$

例1 求
$$\lim_{x\to 0} \sqrt{x^2-2x+5}$$

 $\mathbf{p}(x) = \sqrt{x^2 - 2x + 5}$ 是初等函数,因此连续. 并且 x = 0 在 f(x) 的 定义域中,所以

$$\lim_{x \to 0} \sqrt{x^2 - 2x + 5} = f(0) = \sqrt{5}.$$

例 2 求
$$\lim_{x \to \frac{\pi}{2}} (1 + 2x)^{\frac{3}{\sin x}}$$

$$\mathbf{H} f(x) = (1 + 2x)^{\frac{3}{\sin x}}$$
 是初等函数,因此连续. 并且 $x = \frac{\pi}{2}$ 在 $f(x)$ 的定义域中,所以

$$\lim_{x \to \frac{\pi}{2}} (1 + 2x)^{\frac{3}{\sin x}} = f(\frac{\pi}{2})$$

例1 求
$$\lim_{x\to 0} \sqrt{x^2-2x+5}$$

 $\mathbf{p}(x) = \sqrt{x^2 - 2x + 5}$ 是初等函数,因此连续. 并且 x = 0 在 f(x) 的 定义域中,所以

$$\lim_{x \to 0} \sqrt{x^2 - 2x + 5} = f(0) = \sqrt{5}.$$

例2 求
$$\lim_{x \to \frac{\pi}{2}} (1 + 2x)^{\frac{3}{\sin x}}$$

$$\mathbf{H} f(x) = (1 + 2x)^{\frac{3}{\sin x}}$$
 是初等函数,因此连续. 并且 $x = \frac{\pi}{2}$ 在 $f(x)$ 的定义域中,所以

义域中, 所以

$$\lim_{x \to \frac{\pi}{2}} (1 + 2x)^{\frac{3}{\sin x}} = f(\frac{\pi}{2}) = (1 + \pi)^3.$$

例1 求
$$\lim_{x\to 0} \sqrt{x^2 - 2x + 5}$$

 $\mathbf{H} f(x) = \sqrt{x^2 - 2x + 5}$ 是初等函数,因此连续. 并且 x = 0 在 f(x) 的 定义域中,所以

$$\lim_{x \to 0} \sqrt{x^2 - 2x + 5} = f(0) = \sqrt{5}.$$

例2 求
$$\lim_{x \to \frac{\pi}{2}} (1 + 2x)^{\frac{3}{\sin x}}$$

$$\mathbf{F}(x) = (1+2x)^{\frac{3}{\sin x}}$$
 是初等函数,因此连续. 并且 $x = \frac{\pi}{2}$ 在 $f(x)$ 的定义域中,所以

$$\lim_{x \to \frac{\pi}{2}} (1 + 2x)^{\frac{3}{\sin x}} = f(\frac{\pi}{2}) = (1 + \pi)^3.$$

注
$$(1+2x)^{\frac{3}{\sin x}} = e^{\ln(1+2x)^{\frac{3}{\sin x}}} = e^{\frac{3}{\sin x}\ln(1+2x)}$$
是初等函数.

例1 求 $\lim_{x\to 0} \sqrt{x^2 - 2x + 5}$ $\mathbf{H} f(x) = \sqrt{x^2 - 2x + 5}$ 是初等函数,因此连续. 并且 x = 0 在 f(x) 的 定义域中,所以

 $\lim_{x \to 0} \sqrt{x^2 - 2x + 5} = f(0) = \sqrt{5}.$

例 2 求
$$\lim_{x \to \frac{\pi}{2}} (1 + 2x)^{\frac{3}{\sin x}}$$

$$\mathbf{f}(x) = (1+2x)^{\frac{3}{\sin x}}$$

 $\mathbf{F}(x) = (1+2x)^{\frac{3}{\sin x}}$ 是初等函数,因此连续. 并且 $x = \frac{\pi}{2}$ 在 f(x) 的定

$$\mathbf{H} f(x) = (1 + 2x) \frac{1}{\sin x}$$

义域中,所以

 $\lim_{x \to \frac{\pi}{2}} (1 + 2x)^{\frac{3}{\sin x}} = f(\frac{\pi}{2}) = (1 + \pi)^3.$

注
$$(1+2x)^{\frac{3}{\sin x}} = e^{\ln(1+2x)^{\frac{3}{\sin x}}} = e^{\frac{3}{\sin x}\ln(1+2x)}$$
 是初等函数.

例3 求 $\lim_{x\to 0} (1+2x)^{\frac{3}{\sin x}}$

例 3 求
$$\lim_{x\to 0} (1+2x)^{\frac{3}{\sin x}}$$

$$\lim_{x \to 0} (1 + 2x)^{\frac{3}{\sin x}} = \lim_{x \to 0} e^{\frac{3}{\sin x} \ln(1 + 2x)}$$

例 3 求
$$\lim_{x\to 0} (1+2x)^{\frac{3}{\sin x}}$$

$$\lim_{x \to 0} (1 + 2x)^{\frac{3}{\sin x}} = \lim_{x \to 0} e^{\frac{3}{\sin x} \ln(1 + 2x)}$$

$$\frac{s = \frac{3}{\sin x} \ln(1 + 2x)}{\lim e^{s}} \lim e^{s}$$

例3 求
$$\lim_{x\to 0} (1+2x)^{\frac{3}{\sin x}}$$

$$\lim_{x \to 0} (1 + 2x)^{\frac{3}{\sin x}} = \lim_{x \to 0} e^{\frac{3}{\sin x} \ln(1 + 2x)}$$

$$\frac{s = \frac{3}{\sin x} \ln(1 + 2x)}{\sin x} = \lim_{x \to 0} e^{\frac{3}{\sin x} \ln(1 + 2x)}$$

$$\lim_{x\to 0} \frac{3}{\sin x} \ln(1+2x)$$

例3 求
$$\lim_{x\to 0} (1+2x)^{\frac{3}{\sin x}}$$

$$\lim_{x \to 0} (1 + 2x)^{\frac{3}{\sin x}} = \lim_{x \to 0} e^{\frac{3}{\sin x} \ln(1 + 2x)}$$

$$= \frac{\sin x}{\sin x} \ln(1 + 2x) = \lim_{x \to 0} e^{\frac{3}{\sin x} \ln(1 + 2x)} = \lim_{x \to 0} e^{\frac{3}{\sin x} \ln(1 + 2x)}$$

$$\lim_{x \to 0} \frac{3}{\sin x} \ln(1 + 2x) = \lim_{x \to 0} 6 \cdot \frac{x}{\sin x} \cdot \frac{\ln(1 + 2x)}{2x}$$

例3 求
$$\lim_{x\to 0} (1+2x)^{\frac{3}{\sin x}}$$

$$\lim_{x \to 0} (1+2x)^{\frac{3}{\sin x}} = \lim_{x \to 0} e^{\frac{3}{\sin x} \ln(1+2x)}$$

$$= \frac{s = \frac{3}{\sin x} \ln(1+2x)}{\sin x} = \lim_{x \to 0} e^{\frac{3}{\sin x} \ln(1+2x)}$$

$$\lim_{x\to 0}\frac{\ln(1+2x)}{2x}$$

$$\lim_{x \to 0} \frac{3}{\sin x} \ln(1 + 2x) = \lim_{x \to 0} 6 \cdot \frac{x}{\sin x} \cdot \frac{\ln(1 + 2x)}{2x}$$

🎑 暨南大學

例3 求
$$\lim_{x\to 0} (1+2x)^{\frac{3}{\sin x}}$$

$$\lim_{x \to 0} (1+2x)^{\frac{3}{\sin x}} = \lim_{x \to 0} e^{\frac{3}{\sin x} \ln(1+2x)}$$

$$= \frac{s = \frac{3}{\sin x} \ln(1+2x)}{\sin x} = \lim_{x \to 0} e^{\frac{3}{\sin x} \ln(1+2x)}$$

$$\lim_{x \to 0} \frac{\ln(1+2x)}{2x} = \lim_{x \to 0} \ln(1+2x)^{\frac{1}{2x}}$$

$$\lim_{x \to 0} \frac{3}{\sin x} \ln(1 + 2x) = \lim_{x \to 0} 6 \cdot \frac{x}{\sin x} \cdot \frac{\ln(1 + 2x)}{2x}$$

暨南大学 ANAN UNIVERSITY

例3 求
$$\lim_{x\to 0} (1+2x)^{\frac{3}{\sin x}}$$

$$\lim_{x \to 0} (1 + 2x)^{\frac{3}{\sin x}} = \lim_{x \to 0} e^{\frac{3}{\sin x} \ln(1 + 2x)}$$

$$= \frac{s = \frac{3}{\sin x} \ln(1 + 2x)}{\sin x} = \lim_{x \to 0} e^{\frac{3}{\sin x} \ln(1 + 2x)}$$

$$\lim_{x \to 0} \frac{\ln(1+2x)}{2x} = \lim_{x \to 0} \ln(1+2x)^{\frac{1}{2x}}$$

$$\frac{t = (1+2x)^{\frac{1}{2x}}}{2x} = \lim_{x \to 0} \ln t$$

$$= \lim_{t=(1+2x)^{2x}} \lim_{t\to\infty} \ln t$$

$$\lim_{x \to 0} \frac{3}{\sin x} \ln(1 + 2x) = \lim_{x \to 0} 6 \cdot \frac{x}{\sin x} \cdot \frac{\ln(1 + 2x)}{2x}$$

暨南大學

例3 求
$$\lim_{x\to 0} (1+2x)^{\frac{3}{\sin x}}$$

$$\lim_{x \to 0} (1+2x)^{\frac{3}{\sin x}} = \lim_{x \to 0} e^{\frac{3}{\sin x} \ln(1+2x)}$$

$$= \frac{s = \frac{3}{\sin x} \ln(1+2x)}{\sin x} = \lim_{x \to 0} e^{\frac{3}{\sin x} \ln(1+2x)}$$

$$\lim_{x \to 0} \frac{\ln(1+2x)}{2x} = \lim_{x \to 0} \ln(1+2x)^{\frac{1}{2x}}$$

$$\frac{t = (1+2x)^{\frac{1}{2x}}}{t \to e(x \to 0)} \lim_{t \to e} \ln t$$

$$\lim_{x \to 0} \frac{3}{\sin x} \ln(1 + 2x) = \lim_{x \to 0} 6 \cdot \frac{x}{\sin x} \cdot \frac{\ln(1 + 2x)}{2x}$$

例3 求
$$\lim_{x\to 0} (1+2x)^{\frac{3}{\sin x}}$$

$$\lim_{x \to 0} (1+2x)^{\frac{3}{\sin x}} = \lim_{x \to 0} e^{\frac{3}{\sin x} \ln(1+2x)}$$

$$= \frac{s = \frac{3}{\sin x} \ln(1+2x)}{\sin x} = \lim_{x \to 0} e^{\frac{3}{\sin x} \ln(1+2x)}$$

$$\lim_{x \to 0} \frac{\ln(1+2x)}{2x} = \lim_{x \to 0} \ln(1+2x)^{\frac{1}{2x}}$$

$$\frac{\frac{t = (1+2x)^{\frac{1}{2x}}}{t \to e(x \to 0)}}{\lim_{x \to 0} \frac{3}{\sin x}} \lim_{t \to e} \ln t = \ln e$$

$$\lim_{x \to 0} \frac{3}{\sin x} \ln(1+2x) = \lim_{x \to 0} 6 \cdot \frac{x}{\sin x} \cdot \frac{\ln(1+2x)}{2x}$$

例3 求
$$\lim_{x\to 0} (1+2x)^{\frac{3}{\sin x}}$$

$$\lim_{x \to 0} (1+2x)^{\frac{3}{\sin x}} = \lim_{x \to 0} e^{\frac{3}{\sin x} \ln(1+2x)}$$

$$= \frac{s = \frac{3}{\sin x} \ln(1+2x)}{\sin x} = \lim_{x \to 0} e^{\frac{3}{\sin x} \ln(1+2x)}$$

$$\lim_{x \to 0} \frac{\ln(1+2x)}{2x} = \lim_{x \to 0} \ln(1+2x)^{\frac{1}{2x}}$$

$$\frac{t = (1+2x)^{\frac{1}{2x}}}{t \to e(x \to 0)} \lim_{t \to e} \ln t = \ln e = 1$$

$$\lim_{x \to 0} \frac{3}{\sin x} \ln(1+2x) = \lim_{x \to 0} 6 \cdot \frac{x}{\sin x} \cdot \frac{\ln(1+2x)}{2x}$$

例3 求
$$\lim_{x\to 0} (1+2x)^{\frac{3}{\sin x}}$$

$$\lim_{x \to 0} (1 + 2x)^{\frac{3}{\sin x}} = \lim_{x \to 0} e^{\frac{3}{\sin x} \ln(1 + 2x)}$$

$$\frac{s = \frac{3}{\sin x} \ln(1 + 2x)}{\sin x} = \lim_{x \to 0} e^{\frac{3}{\sin x}} \ln(1 + 2x)$$

$$\lim_{x \to 0} \frac{\ln(1+2x)}{2x} = \lim_{x \to 0} \ln(1+2x)^{\frac{1}{2x}}$$

$$\frac{t = (1+2x)^{\frac{1}{2x}}}{2x} \lim_{x \to 0} \ln t$$

$$\frac{t = (1+2x)^{\frac{1}{2x}}}{t \to e(x \to 0)} \lim_{t \to e} \ln t = \ln e = 1$$

$$\lim_{x \to 0} \frac{3}{\sin x} \ln(1 + 2x) = \lim_{x \to 0} 6 \cdot \frac{x}{\sin x} \cdot \frac{\ln(1 + 2x)}{2x} = 6$$

例3 求
$$\lim_{x\to 0} (1+2x)^{\frac{3}{\sin x}}$$

$$\lim_{x \to 0} (1 + 2x)^{\frac{3}{\sin x}} = \lim_{x \to 0} e^{\frac{3}{\sin x} \ln(1 + 2x)}$$

$$\frac{s = \frac{3}{\sin x} \ln(1 + 2x)}{s \to 6(x \to 0)} \lim_{s \to 6} e^{s}$$

$$\lim_{x \to 0} \frac{\ln(1+2x)}{2x} = \lim_{x \to 0} \ln(1+2x)^{\frac{1}{2x}}$$

$$\frac{t = (1+2x)^{\frac{1}{2x}}}{2x} = \lim_{x \to 0} \ln t$$

$$\frac{t=(1+2x)^{\frac{1}{2x}}}{t\to e(x\to 0)} \lim_{t\to e} \ln t = \ln e = 1$$

$$\lim_{x \to 0} \frac{3}{\sin x} \ln(1 + 2x) = \lim_{x \to 0} 6 \cdot \frac{x}{\sin x} \cdot \frac{\ln(1 + 2x)}{2x} = 6$$

and carboni

例 3 求
$$\lim_{x\to 0} (1+2x)^{\frac{3}{\sin x}}$$

$$\lim_{x \to 0} (1+2x)^{\frac{3}{\sin x}} = \lim_{x \to 0} e^{\frac{3}{\sin x} \ln(1+2x)}$$

$$\frac{s = \frac{3}{\sin x} \ln(1+2x)}{s \to 6(x \to 0)} \lim_{s \to 6} e^{s} = e^{6}.$$

$$\lim_{x \to 0} \frac{\ln(1+2x)}{2x} = \lim_{x \to 0} \ln(1+2x)^{\frac{1}{2x}}$$

$$\frac{t = (1+2x)^{\frac{1}{2x}}}{t \to e(x \to 0)} \lim_{t \to e} \ln t = \ln e = 1$$

$$\lim_{x \to 0} \frac{3}{\sin x} \ln(1 + 2x) = \lim_{x \to 0} 6 \cdot \frac{x}{\sin x} \cdot \frac{\ln(1 + 2x)}{2x} = 6$$

1c 连续函数

We are here now...

1. 连续函数

2. 函数的间断点

3. 闭区间上连续函数的性质

- $\lim_{x \to x_0} f(x)$ 存在,但 $\lim_{x \to x_0} f(x) \neq f(x_0)$.
- $\lim_{x\to x_0} f(x)$ 不存在

- $\lim_{x\to x_0} f(x)$ 存在,但 $\lim_{x\to x_0} f(x) \neq f(x_0)$. 这时称 x_0 为可去间断点
- $\lim_{x\to x_0} f(x)$ 不存在

- $\lim_{x \to x_0} f(x)$ 存在,但 $\lim_{x \to x_0} f(x) \neq f(x_0)$. 这时称 x_0 为可去间断点
- $\lim_{x\to x_0} f(x)$ 不存在
 - * $f(x_0^+)$ 和 $f(x_0^-)$ 均存在,但 $f(x_0^+) \neq f(x_0^-)$.
 - * $f(x_0^+)$ 和 $f(x_0^-)$ 至少有一个不存在.

- $\lim_{x \to x_0} f(x)$ 存在,但 $\lim_{x \to x_0} f(x) \neq f(x_0)$. 这时称 x_0 为可去间断点
- $\lim_{x \to x_0} f(x)$ 不存在
 - * $f(x_0^+)$ 和 $f(x_0^-)$ 均存在,但 $f(x_0^+) \neq f(x_0^-)$. 这时称 x_0 为跳跃间断点
 - * $f(x_0^+)$ 和 $f(x_0^-)$ 至少有一个不存在.

- $\lim_{x\to x_0} f(x)$ 存在,但 $\lim_{x\to x_0} f(x) \neq f(x_0)$. 这时称 x_0 为可去间断点
- $\lim_{x\to x_0} f(x)$ 不存在
 - * $f(x_0^+)$ 和 $f(x_0^-)$ 均存在,但 $f(x_0^+) \neq f(x_0^-)$. 这时称 x_0 为跳跃间断点
 - * $f(x_0^+)$ 和 $f(x_0^-)$ 至少有一个不存在. 这时称 x_0 为 第二类间断点

- $\lim_{x\to x_0} f(x)$ 存在,但 $\lim_{x\to x_0} f(x) \neq f(x_0)$. 这时称 x_0 为可去间断点
- $\lim_{x \to x_0} f(x)$ 不存在
 - * $f(x_0^+)$ 和 $f(x_0^-)$ 均存在,但 $f(x_0^+) \neq f(x_0^-)$. 这时称 x_0 为跳跃间断点
 - * $f(x_0^+)$ 和 $f(x_0^-)$ 至少有一个不存在. 这时称 x_0 为 第二类间断点

- $\lim_{x \to x_0} f(x)$ 存在,但 $\lim_{x \to x_0} f(x) \neq f(x_0)$. 这时称 x_0 为可去间断点
- $\lim_{x\to x_0} f(x)$ 不存在
 - * $f(x_0^+)$ 和 $f(x_0^-)$ 均存在,但 $f(x_0^+) \neq f(x_0^-)$. 这时称 x_0 为跳跃间断点
 - * $f(x_0^+)$ 和 $f(x_0^-)$ 至少有一个不存在. 这时称 x_0 为 第二类间断点

也就是, x_0 为间断点 \Leftrightarrow 不成立 " $\lim_{\substack{x \to x_0 \\ x \to x_0}} f(x) = f(x_0)$ ". 分以下几种情形:

- $\lim_{x\to x_0} f(x)$ 存在,但 $\lim_{x\to x_0} f(x) \neq f(x_0)$. 这时称 x_0 为可去间断点
- $\lim_{x\to x_0} f(x)$ 不存在

* $f(x_0^+)$ 和 $f(x_0^-)$ 均存在,但 $f(x_0^+) \neq f(x_0^-)$. 这时称 x_0 为跳跃间断点 * $f(x_0^+)$ 和 $f(x_0^-)$ 至少有一个不存在. 这时称 x_0 为 第二类间断点

$$f_1(x) = \begin{cases} x+1, & x \neq 1 \\ 1, & x = 1 \end{cases}, f_2(x) = \begin{cases} x-1, & x < 0 \\ 0, & x = 0, \\ x+1, & x > 0 \end{cases}, f_3(x) = \frac{1}{x}$$

$$f_1(x) = \begin{cases} x+1, & x \neq 1 \\ 1, & x = 1 \end{cases}, f_2(x) = \begin{cases} x-1, & x < 0 \\ 0, & x = 0 \\ x+1, & x > 0 \end{cases}, f_3(x) = \frac{1}{x}$$

解 (1) $\lim_{x \to 1} f_1(x)$

 $f_1(1),$

$$f_1(x) = \begin{cases} x+1, & x \neq 1 \\ 1, & x = 1 \end{cases}, f_2(x) = \begin{cases} x-1, & x < 0 \\ 0, & x = 0 \\ x+1, & x > 0 \end{cases}, f_3(x) = \frac{1}{x}$$

Proof:
$$\lim_{x \to 1} f_1(x) = \lim_{x \to 1} (x+1)$$
 $f_1(1)$,

$$f_1(x) = \begin{cases} x+1, & x \neq 1 \\ 1, & x = 1 \end{cases}, f_2(x) = \begin{cases} x-1, & x < 0 \\ 0, & x = 0 \\ x+1, & x > 0 \end{cases}, f_3(x) = \frac{1}{x}$$

M (1)
$$\lim_{x \to 1} f_1(x) = \lim_{x \to 1} (x+1) = 2$$
 $f_1(1)$,

$$f_1(x) = \begin{cases} x+1, & x \neq 1 \\ 1, & x = 1 \end{cases}, f_2(x) = \begin{cases} x-1, & x < 0 \\ 0, & x = 0 \\ x+1, & x > 0 \end{cases}, f_3(x) = \frac{1}{x}$$

M (1)
$$\lim_{x\to 1} f_1(x) = \lim_{x\to 1} (x+1) = 2 \neq f_1(1)$$
,

$$f_1(x) = \begin{cases} x+1, & x \neq 1 \\ 1, & x = 1 \end{cases}, f_2(x) = \begin{cases} x-1, & x < 0 \\ 0, & x = 0, \\ x+1, & x > 0 \end{cases}, f_3(x) = \frac{1}{x}$$

解 (1)
$$\lim_{x\to 1} f_1(x) = \lim_{x\to 1} (x+1) = 2 \neq f_1(1)$$
,故 $x=1$ 是可去间断点.

$$f_1(x) = \begin{cases} x+1, & x \neq 1 \\ 1, & x = 1 \end{cases}, f_2(x) = \begin{cases} x-1, & x < 0 \\ 0, & x = 0, \\ x+1, & x > 0 \end{cases}, f_3(x) = \frac{1}{x}$$

解 (1)
$$\lim_{x\to 1} f_1(x) = \lim_{x\to 1} (x+1) = 2 \neq f_1(1)$$
,故 $x=1$ 是可去间断点.

解 (1)
$$\lim_{x \to 1} f_1(x) = \lim_{x \to 1} (x+1) = 2 \neq f_1(1)$$
,故 $x = 1$ 是可 (2)
$$f_2(0^+) = f_2(0^-) =$$

$$f_1(x) = \begin{cases} x+1, & x \neq 1 \\ 1, & x = 1 \end{cases}, f_2(x) = \begin{cases} x-1, & x < 0 \\ 0, & x = 0 \\ x+1, & x > 0 \end{cases}, f_3(x) = \frac{1}{x}$$

解 (1)
$$\lim_{x\to 1} f_1(x) = \lim_{x\to 1} (x+1) = 2 \neq f_1(1)$$
,故 $x=1$ 是可去间断点.

(2)
$$f_2(0^+) = \lim_{x \to 0^+} f_2(x)$$
$$f_2(0^-) =$$

$$f_1(x) = \begin{cases} x+1, & x \neq 1 \\ 1, & x = 1 \end{cases}, f_2(x) = \begin{cases} x-1, & x < 0 \\ 0, & x = 0 \\ x+1, & x > 0 \end{cases}, f_3(x) = \frac{1}{x}$$

解 (1) $\lim_{x\to 1} f_1(x) = \lim_{x\to 1} (x+1) = 2 \neq f_1(1)$,故 x=1 是可去间断点.

(2)
$$f_2(0^+) = \lim_{x \to 0^+} f_2(x) = \lim_{x \to 0^+} (x+1)$$
$$f_2(0^-) =$$

$$f_1(x) = \begin{cases} x+1, & x \neq 1 \\ 1, & x = 1 \end{cases}, f_2(x) = \begin{cases} x-1, & x < 0 \\ 0, & x = 0 \\ x+1, & x > 0 \end{cases}, f_3(x) = \frac{1}{x}$$

解 (1)
$$\lim_{x\to 1} f_1(x) = \lim_{x\to 1} (x+1) = 2 \neq f_1(1)$$
,故 $x=1$ 是可去间断点.

(2)
$$f_2(0^+) = \lim_{x \to 0^+} f_2(x) = \lim_{x \to 0^+} (x+1) = 1$$
$$f_2(0^-) =$$

$$f_1(x) = \begin{cases} x+1, & x \neq 1 \\ 1, & x = 1 \end{cases}, f_2(x) = \begin{cases} x-1, & x < 0 \\ 0, & x = 0 \\ x+1, & x > 0 \end{cases}, f_3(x) = \frac{1}{x}$$

解 (1)
$$\lim_{x\to 1} f_1(x) = \lim_{x\to 1} (x+1) = 2 \neq f_1(1)$$
,故 $x=1$ 是可去间断点.

(2)
$$f_2(0^+) = \lim_{x \to 0^+} f_2(x) = \lim_{x \to 0^+} (x+1) = 1$$
$$f_2(0^-) = \lim_{x \to 0^-} f_2(x)$$

$$f_1(x) = \begin{cases} x+1, & x \neq 1 \\ 1, & x = 1 \end{cases}, f_2(x) = \begin{cases} x-1, & x < 0 \\ 0, & x = 0, \\ x+1, & x > 0 \end{cases}, f_3(x) = \frac{1}{x}$$

解 (1)
$$\lim_{x\to 1} f_1(x) = \lim_{x\to 1} (x+1) = 2 \neq f_1(1)$$
,故 $x=1$ 是可去间断点.

(2)
$$f_2(0^+) = \lim_{x \to 0^+} f_2(x) = \lim_{x \to 0^+} (x+1) = 1$$
$$f_2(0^-) = \lim_{x \to 0^-} f_2(x) = \lim_{x \to 0^-} (x-1)$$

$$f_1(x) = \begin{cases} x+1, & x \neq 1 \\ 1, & x = 1 \end{cases}, f_2(x) = \begin{cases} x-1, & x < 0 \\ 0, & x = 0, \\ x+1, & x > 0 \end{cases}, f_3(x) = \frac{1}{x}$$

解 (1)
$$\lim_{x\to 1} f_1(x) = \lim_{x\to 1} (x+1) = 2 \neq f_1(1)$$
,故 $x=1$ 是可去间断点.

(2)
$$f_2(0^+) = \lim_{x \to 0^+} f_2(x) = \lim_{x \to 0^+} (x+1) = 1$$
$$f_2(0^-) = \lim_{x \to 0^-} f_2(x) = \lim_{x \to 0^-} (x-1) = -1$$

$$f_1(x) = \begin{cases} x+1, & x \neq 1 \\ 1, & x = 1 \end{cases}, f_2(x) = \begin{cases} x-1, & x < 0 \\ 0, & x = 0, \\ x+1, & x > 0 \end{cases}, f_3(x) = \frac{1}{x}$$

解 (1) $\lim_{x\to 1} f_1(x) = \lim_{x\to 1} (x+1) = 2 \neq f_1(1)$,故 x=1 是可去间断点.

(2)
$$f_2(0^+) = \lim_{x \to 0^+} f_2(x) = \lim_{x \to 0^+} (x+1) = 1$$
$$f_2(0^-) = \lim_{x \to 0^-} f_2(x) = \lim_{x \to 0^-} (x-1) = -1$$

两者不等,所以x = 0是跳跃间断点.

$$f_1(x) = \begin{cases} x+1, & x \neq 1 \\ 1, & x = 1 \end{cases}, f_2(x) = \begin{cases} x-1, & x < 0 \\ 0, & x = 0, \\ x+1, & x > 0 \end{cases}, f_3(x) = \frac{1}{x}$$

 \mathbf{H} (1) $\lim_{x\to 1} f_1(x) = \lim_{x\to 1} (x+1) = 2 \neq f_1(1)$,故 x=1 是可去间断点.

(2)
$$f_2(0^+) = \lim_{x \to 0^+} f_2(x) = \lim_{x \to 0^+} (x+1) = 1$$
$$f_2(0^-) = \lim_{x \to 0^-} f_2(x) = \lim_{x \to 0^-} (x-1) = -1$$

两者不等,所以x = 0是跳跃间断点.

(3) $f_3(0^+)$, $f_3(0^-)$ 均不存在,故 x = 0 为第二类间断点.

例 指出下列函数的间断点,并判别类型:

$$f_1(x) = \begin{cases} x+1, & x \neq 1 \\ 1, & x = 1 \end{cases}, f_2(x) = \begin{cases} x-1, & x < 0 \\ 0, & x = 0, \\ x+1, & x > 0 \end{cases}, f_3(x) = \frac{1}{x}$$

解 (1) $\lim_{x\to 1} f_1(x) = \lim_{x\to 1} (x+1) = 2 \neq f_1(1)$,故 x=1 是可去间断点.

(2)
$$f_2(0^+) = \lim_{x \to 0^+} f_2(x) = \lim_{x \to 0^+} (x+1) = 1$$
$$f_2(0^-) = \lim_{x \to 0^-} f_2(x) = \lim_{x \to 0^-} (x-1) = -1$$

两者不等,所以x = 0是跳跃间断点.

(3) $f_3(0^+)$, $f_3(0^-)$ 均不存在,故 x = 0 为第二类间断点. 因为 $f_3(0^+)$, $f_3(0^-)$ 为 ∞ ,所以 x = 0 还是无穷间断点.

例 指出下列函数的间断点,并判别类型:

$$f_1(x) = \begin{cases} x+1, & x \neq 1 \\ 1, & x = 1 \end{cases}, f_2(x) = \begin{cases} x-1, & x < 0 \\ 0, & x = 0, \\ x+1, & x > 0 \end{cases}, f_3(x) = \frac{1}{x}$$

 \mathbf{K} (1) $\lim_{x\to 1} f_1(x) = \lim_{x\to 1} (x+1) = 2 \neq f_1(1)$,故 x=1 是可去间断点.

(2)
$$f_2(0^+) = \lim_{x \to 0^+} f_2(x) = \lim_{x \to 0^+} (x+1) = 1$$
$$f_2(0^-) = \lim_{x \to 0^-} f_2(x) = \lim_{x \to 0^-} (x-1) = -1$$

两者不等,所以x = 0是跳跃间断点.

(3) $f_3(0^+)$, $f_3(0^-)$ 均不存在,故 x = 0 为第二类间断点. 因为 $f_3(0^+)$, $f_3(0^-)$ 为 ∞ ,所以 x = 0 还是无穷间断点.

(4) $f_3(0^+)$, $f_3(0^-)$ 均不存在,故 x = 0 为第二类间断点.

例 指出下列函数的间断点,并判别类型:

$$f_1(x) = \begin{cases} x+1, & x \neq 1 \\ 1, & x = 1 \end{cases}, f_2(x) = \begin{cases} x-1, & x < 0 \\ 0, & x = 0 \\ x+1, & x > 0 \end{cases}, f_3(x) = \frac{1}{x}$$

 \mathbf{H} (1) $\lim_{x\to 1} f_1(x) = \lim_{x\to 1} (x+1) = 2 \neq f_1(1)$,故 x=1 是可去间断点.

$$f_2(0^+) = \lim_{x \to 0^+} f_2(x) = \lim_{x \to 0^+} (x+1) = 1$$

$$f_2(0^-) = \lim_{x \to 0^-} f_2(x) = \lim_{x \to 0^-} (x-1) = -1$$

两者不等,所以 x = 0 是跳跃间断点.

(3) $f_3(0^+)$, $f_3(0^-)$ 均不存在,故 x = 0 为第二类间断点. 因为 $f_3(0^+)$, $f_3(0^-)$ 为 ∞ ,所以 x = 0 还是无穷间断点.

(4) $f_3(0^+)$, $f_3(0^-)$ 均不存在,故 x = 0 为第二类间断点. 进一步可知是震荡间断点.

型 E あた。

(2)

We are here now...

1. 连续函数

2. 函数的间断点

3. 闭区间上连续函数的性质

注 定理中"闭区间 [a, b]"不能换成"开区间 (a, b)",否则结论不再成立.

注 定理中"闭区间 [a, b]"不能换成"开区间 (a, b)",否则结论不再成立. 例如:

• $f(x) = \tan x$ 在 $(-\frac{\pi}{2}, \frac{\pi}{2})$ 上连续,为无界函数,取不到最大最小值.

注 定理中"闭区间 [a, b]"不能换成"开区间 (a, b)",否则结论不再成立. 例如:

- $f(x) = \tan x$ 在 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 上连续,为无界函数,取不到最大最小值.
- f(x) = x 在 (-1, 1) 上取不到最大最小值.

例 1 证明方程 $x^3 - 3x^2 + 1 = 0$ 在区间 (-1, 0),(0, 1),(1, 3) 内各有一个实根.

例1 证明方程 $x^3 - 3x^2 + 1 = 0$ 在区间 (-1, 0),(0, 1),(1, 3) 内各有一个实根.

证明 $f(x) = x^3 - 3x^2 + 1$ 是闭区间 [-1, 0] 上的连续函数, f(-1) < 0 < f(0),所以 f(x) 在开区间 (-1, 0) 内有实数解.

例1 证明方程 $x^3 - 3x^2 + 1 = 0$ 在区间 (-1, 0),(0, 1),(1, 3) 内各有一个实根.

证明 $f(x) = x^3 - 3x^2 + 1$ 是闭区间 [-1, 0] 上的连续函数, f(-1) < 0 < f(0),所以 f(x) 在开区间 (-1, 0) 内有实数解. 其它情形证明类似.

例1 证明方程 $x^3 - 3x^2 + 1 = 0$ 在区间 (-1, 0),(0, 1),(1, 3) 内各有一个实根.

证明 $f(x) = x^3 - 3x^2 + 1$ 是闭区间 [-1, 0] 上的连续函数, f(-1) < 0 < f(0),所以 f(x) 在开区间 (-1, 0) 内有实数解. 其它情形证明类似.

例 2 证明方程 $3\sin x = x + 1$ 有一个实数解.

例 2 证明方程 $3\sin x = x + 1$ 有一个实数解.

例2 证明方程 $3\sin x = x + 1$ 有一个实数解.

证明 令 $f(x) = x + 1 - 3 \sin x$,则 f(-3) < 0 < f(0),并且 f(x) 是闭 区间 [-3, 0] 上的连续函数,所以 f(x) 在开区间 (-3, 0) 内有实数解.

连续函数介值定理 是 f(x) 在闭区间 [a, b] 上连续,且 f(a) = A 和 f(b) = B 不相等,则对于 A = B 之间的任何数 C,在开区间内 (a, b) 至 少存在一点 E,使得 E0.

连续函数介值定理 是 f(x) 在闭区间 [a, b] 上连续,且 f(a) = A 和 f(b) = B 不相等,则对于 A = B 之间的任何数 C,在开区间内 (a, b) 至 少存在一点 E,使得 f(E) = C.

<u>注</u> C介于A与B之间指: A < C < B或者B < C < A.

连续函数介值定理 是 f(x) 在闭区间 [a, b] 上连续,且 f(a) = A 和 f(b) = B 不相等,则对于 A = B 之间的任何数 C,在开区间内 (a, b) 至 少存在一点 E,使得 f(E) = C.

<u>注</u> C介于A与B之间指: A < C < B或者B < C < A.

证明 不妨设 A < C < B.

$$\Leftrightarrow g(x) = f(x) - C,$$

连续函数介值定理 是 f(x) 在闭区间 [a, b] 上连续,且 f(a) = A 和 f(b) = B 不相等,则对于 A = B 之间的任何数 C,在开区间内 (a, b) 至 少存在一点 E,使得 f(E) = C.

注 C介于 A 与 B 之间指: A < C < B 或者 B < C < A.

证明 不妨设 A < C < B.

令 g(x) = f(x) - C,则 g(a) < 0 < g(b),且 g 是闭区间 [A, B] 上的 连续函数.

连续函数介值定理 是 f(x) 在闭区间 [a, b] 上连续,且 f(a) = A 和 f(b) = B 不相等,则对于 A = B 之间的任何数 C,在开区间内 (a, b) 至 少存在一点 ξ ,使得 $f(\xi) = C$.

注 C介于 A 与 B 之间指: A < C < B 或者 B < C < A.

证明 不妨设 A < C < B.

令 g(x) = f(x) - C,则 g(a) < 0 < g(b),且 g 是闭区间 [A, B] 上的 连续函数.

所以由零点定理可知,q(x) 在开区间 (a,b) 内有实数解.

1c 连续函数

连续函数介值定理 是 f(x) 在闭区间 [a, b] 上连续,且 f(a) = A 和 f(b) = B 不相等,则对于 A = B 之间的任何数 C,在开区间内 (a, b) 至 少存在一点 ξ ,使得 $f(\xi) = C$.

注 C介于 A 与 B 之间指: A < C < B 或者 B < C < A.

证明 不妨设 A < C < B.

令 g(x) = f(x) - C,则 g(a) < 0 < g(b),且 g 是闭区间 [A, B] 上的 连续函数.

所以由零点定理可知,q(x) 在开区间 (a,b) 内有实数解.

也就是, $\exists \xi \in (a, b)$,使得 $0 = g(\xi)$

1c连续函数 13/13 < ▷ △ ▽

连续函数介值定理 是 f(x) 在闭区间 [a, b] 上连续,且 f(a) = A 和 f(b) = B 不相等,则对于 A = B 之间的任何数 C,在开区间内 (a, b) 至 少存在一点 ξ ,使得 $f(\xi) = C$.

注 C介于 A 与 B 之间指: A < C < B 或者 B < C < A.

证明 不妨设 A < C < B.

令 g(x) = f(x) - C,则 g(a) < 0 < g(b),且 g 是闭区间 [A, B] 上的 连续函数.

所以由零点定理可知,q(x) 在开区间 (a,b) 内有实数解.

也就是, $\exists \xi \in (a, b)$,使得 $0 = g(\xi) = f(\xi) - C$.

1c连续函数 13/13 < ▷ △ ▽