

Informe Final - Grupo 28

Introducción

En este trabajo practico, se realizó un estudio, análisis y entrenamiento de modelos que permitieron llevar a cabo la predicción del valor de una variable, en nuestro caso se trató sobre la cancelación de la reserva.

El trabajo se dividió en cuatro partes:

- Primera Parte: Análisis Exploratorio y preprocesamiento de los datos del dataset provisto.
- II) Segunda Parte: Arboles de Decisión
- III) Tercera Parte: Ensambles
- IV) Cuarta Parte: Redes Neuronales

Exploración de Datos

En el checkpoint 1, se realizó un análisis exhaustivo sobre cada variable que se encuentra en el dataset y su influencia con la variable a predecir (en nuestro caso es is_canceled).

Datos Faltantes

Se encontraron en el dataset varias variables con valores nulos:

- Country: Esta variable presenta un porcentaje de 0.3569% de valores nulos. En este caso, decidimos reemplazar los valores nulos por su moda. En este caso es Portugal(PRT).
- Children: Solo hay 4 valores nulos en todo el dataset de esta variable.
 Tomamos la decisión de reemplazar esos datos nulos con 0.
- Agent: En este caso, existe un 12% de valores nulos en esta variable. En este caso, decidimos reemplazar los valores nulos por 0.
- Company: Esta variable tiene un alto porcentaje de valores nulos (95%), por esta razón decidimos eliminar esta columna del dataset.

Transformaciones

Se realizaron distintas transformaciones para poder entrenar los modelos:

- OneHotEncoding: Se transformo las variables categóricas en variables numéricas mediante la función de panda de dummies.
- StandardScaler: Se llevo todas las variables numéricas no binarias a una misma escala y así tener mejor resultados en nuestros modelos.

Aparte se realizó transformaciones en distintas variables para poder realizar los entrenamientos:

- Reserved_room_type: Se transformo las letras de las habitaciones en números.
- Arrival_date_month: Se transformo los nombres de los meses en su equivalente en números.
- Meal: Según el paper, la variable tenía cuatro diferentes categorías y había una de ellas que podía tomar dos nombres diferentes (undefined y SC). Se transformo en una sola categoría y todos los undefined se transformaron en SC.
- Country: Esta variable tenía muchos países diferentes pero el país Portugal era el más frecuente de ellos. Nosotros hicimos una transformación de ordenar los países por su frecuencia y tomamos los 20 países mas frecuentes y el resto de los países los catalogamos como 'other'.
- Previous_booking_not_canceled: Esta variable fue eliminada del dataset ya que no tenía una correlación fuerte con nuestro target.
- Assigned_room_type: Esta variable se elimina ya que que proporcionaba la misma información que reserved_room_type y lo encontramos redundante para nuestro entrenamiento.

Modelos

Árbol de decisión

Se realizo un entrenamiento optimizando los hiperparámetros utilizando el modelo de Random Search Cross Validation. Los parámetros que se utilizaron:

Folds: 10Splitter: best

Min_samples_split: 16Min_samples_leaf: 16

- Max_depth: 21

75.06 /95.58 Organización de Datos Dr. Ing. Rodríguez - 2°C 2023

- Criterio: entropy

- Class_weight: balanced

Nuestra métrica F1-Score: 0.8535

Modelo KNN

Hiperparámetros optimizados para KNN:

Weights: distanceN_neighbors: 9Metric: EuclideanAlgorithm: kd_tree

F1 Score: 0.8390

Modelo SVM

Hiperparámetros optimizados para SVN:

- C: 50

Gamma: 0.01Kernel: rbf

F1 Score: 0.8464

• Modelo Random Forest

Hiperparámetros optimizados para RF:

- criterion= 'entropy'
- min_samples_leaf=1
- min_samples_split=5
- n estimators=90

F1 Score: 0.882385

Modelo XGBoost

Hiperparámetros optimizados para XGBoost:

- max_depth=15
- learning_rate=0.1
- n_estimators=100
- subsambple=0.1
- colsample_bytree=0.8

- gamma=0.1

- objective="binary:logistic"

- random_state=42

F1 Score: 0.88

Cuadro de Resultados

Modelo	CHPN	F1-Test	Presicion Test	Recall Test	Accuracy	Kaggle
Arbol de Decision	2	0.8535	0.8508	0.8561	0.8469	0.8445
Random Forest	3	0.882385	0.887580537	0.8772507	0.880952	0.87611
XGBoosting	3	0.88	0.88	0.88	0.88	0.86796
Stacking	3	0.885583	0.882301656	0.888888	0.883076	0.87499
Voting	3	0.884365	0.886218302	0.882520	0.8825173	0.87487
Red Neuronal	4	0.853513	0.852185	0.854844	0.850184	0.84170

Conclusiones generales

En el análisis del trabajo desarrollado, hemos llegado a la conclusión que el mejor modelo para predecir nuestra variable de interés fue RandomForest, en el cual obtuvimos un F1 Score de 0.8823. Este modelo da valores altos con respecto a los otros estudiados y es un buen modelo para llevarlo a la práctica para obtener buenas predicciones de la variable target. Esto sucede porque hicimos un análisis profundo del dataset y analizamos todas sus variables en profundidad y así pudimos ajustar de la manera más correcta sus hiperparámetros y así llegar a un valor alto de métrica.

A medida que exploramos el dataset y analizamos sus variables, pudimos mejorar nuestras métricas. Por ejemplo, en el checkpoint 2 teníamos algunas columnas

75.06 /95.58 Organización de Datos Dr. Ing. Rodríguez - 2°C 2023

eliminadas y por esa razón la métrica nos daba bastante baja. Al volver analizar esas variables los resultados obtenidos mejoraron considerablemente.

Como primer modelo, se analizó el árbol de decisión y tuvo un resultado muy favorable. Es una buena aproximación utilizar este modelo ya que nos proporciona información valiosa sobre el dataset y la métrica es muy buena y es muy rápido de analizar y entrenar. Existe una diferencia entre las métricas de Random Forest (nuestro mejor modelo) y el árbol, pero es una buena aproximación.

Tareas Realizadas

Integrante	Promedio Semanal (hs)	
Cecilia Jurgens	20 horas semanales	
Martin Schipani	10-12 horas semanales	
Marilyn Nicole Soto	15 horas semanales	