ML Homework Assignment - 3

Bharath Kumar Thulasidoss Roll No-2017035

1)

Relu on implemented neural network:

Test set score: 0.9715

Tanh on implemented neural network

Test set score: 0.9775

linear on implemented neural network

Test set score: 0.9259

Sigmoid on implemented neural network

Test set score: 0.9656

Relu sklearn:

Training set score: 0.999717 Test set score: 0.984100

Tanh sklearn:

Training set score: 1.000000 Test set score: 0.983300

Linear sklearn:

Training set score: 0.921933
Test set score: 0.910800

Sigmoid sklearn:

Training set score: 1.000000 Test set score: 0.978400

We can see that the inbuilt models perform better than the implemented models. This might be because of slight errors in implementation details. Also, this accuracy difference is quite negligible.

2) CNN

Training set confusion matrix										
[[5377		2	102	47	5	0	459	0	8	0]
[3	5924	1	51	5	1	15	0	0	0]
[61	4	5174	22	360	3	374	0	2	0]
[146	14	83	5411	133	0	210	0	3	0]
[6	7	310	104	5101	0	471	0	1	0]
[1	0	0	0	0	5958	0	19	5	17]
[601	2	272	58	258	1	4796	0	12	0]
[0	0	0	0	0	101	0	5714	9	176]
[26	1	7	2	9	0	28	0	5927	0]
[0	0	0	0	0	3	0	126	3	5868]]

Training set accuracy: 0.94

Testing set confusion matrix

```
[[816
          16 19
                  2
                        2 137
                                    8
                                        01
       0
   1 982
          1
                  1
                          2
                                    2
                                        01
Γ
              11
                        0
                                0
                        0 68
 [ 17
       0 836
               8
                  66
                                0
                                        0]
          12 906 22
                        0 27
 [ 28
       2
                                0
                                    3
                                        0]
                          74
   1
          77
              33 807
                        0
                                0
                                    8
                                        0]
 Γ
  1
       0
          0
              0
                  0 969
                           0
                              13
                                    0 171
[107
          58
              33
                   50
                        0 731
                                0
                                  19
       1
                                        1]
           0
               0
                    0
                        9
                            0 983
                                   0
                                        8 ]
   0
   2
           0
                2
                    1
                        4
                            2
                                4 983
 [
       1
                                        1]
   0
       0
           1
                0
                    0
                        3
                            0
                               58
                                    0 93811
```

Testing set accuracy: 0.8951

SVM:

Hinge loss error on training: 0.258 Hinge loss error on testing: 0.512

svm accuracy on test set is: 0.8132

 $[\ 1\ 231\ \ 1\ \ 20\ \ 8\ \ 0\ \ 0\ \ 0\ \ 1\ \ 0]$

[3 0 126 4 46 1 23 0 2 0]

[11 8 4 239 10 3 7 0 1 0]

[33 1 27 11 30 0 131 0 7 0] [0 0 0 0 0 18 0 220 0 12]

[0 0 3 4 4 10 0 3 245 2]

 $[\ 0 \ 0 \ 0 \ 0 \ 0 \ 4 \ 0 \ 7 \ 7 \ 249]]$

svm accuracy on train set is: 0.888 Confusion Matrix on train set is: [[464 2 1 14 6 0 7 0 1 0]

[2 443 3 23 8 0 0 0 0 0]

```
[ 2 1 385 6 70 0 30 0 1 0]

[ 10 10 4 450 15 0 7 0 0 0]

[ 4 2 48 13 431 1 20 0 2 0]

[ 0 0 0 0 0 458 0 18 5 7]

[ 44 1 39 15 45 0 350 0 0 0]

[ 0 0 0 0 0 16 0 482 1 18]

[ 1 0 1 3 1 7 2 1 480 3]

[ 0 0 0 0 0 2 0 16 1 497]]
```

The CNN performs a better classification than the SVM. This is mainly because the dully connected softmax layer is more complex than a normal SVM and hence performs better on complex datasets like these.