2019 CCPC Harbin Site Editorial

Prepared by Zhejiang University

2019年10月13日

A Artful Paintings

Shortest judge solution: 2161 Bytes.

设 f_i 表示前 i 个位置有多少个格子被涂黑,令 $x = f_n$,考虑差分约束系统建图:

- $f_{i-1} f_i \le 0$: $i \to i-1$, 边权为 0。
- $f_i f_{i-1} < 1$: $i 1 \to i$, 边权为 1.
- 对于每条第一类限制有 $f_{l-1} f_r \le -k$: $r \to l-1$, 边权为 -k.
- 对于每条第二类限制有 $f_r f_{l-1} \le -k + x$: $l-1 \to r$, 边权为 -k + x.
- $f_n f_0 \le x$: $0 \to n$, 边权为 x。
- $f_0 f_n \le -x$: $n \to 0$, 边权为 -x.

注意到 x 越大这些约束条件越容易满足,因此二分 x 的值然后 SPFA 判断是否存在负环即可,这样就得到了一个时间复杂度为 $O(nm\log n)$ 的算法。

考虑每一个环,设其边权和为 ax + b,那么有 $ax + b \ge 0$,即 $x \ge -\frac{b}{a}$ 。只要找到 $\frac{b}{a}$ 最小的环即可求出 x 的取值范围。这很类似于"边权平均数最小环"问题。回顾求平均数最小环的算法: 令 $g_{i,j}$ 为从 0 号点出发经过 i 条边到达 j 的最短路,则边权平均数最小值为:

$$ans = \min_{i=0}^{n} \left\{ \max_{j=0}^{n} \frac{g_{n+1,i} - g_{j,i}}{n+1-j} \right\}$$

对于这个问题也是类似的,去掉边权为 -x 的那条边,令 $g_{i,j}$ 为从 0 号点出发到达 j 的路 径中,a=i 时 b 的最小值,则不经过边权为 -x 的那条边的最小环为:

$$ans_1 = \min_{i=0}^{n} \left\{ \max_{j=0}^{n} \frac{g_{n+1,i} - g_{j,i}}{n+1-j} \right\}$$

而经过边权为 -x 的那条边的环一定是从 0 走到 n 的某条路径加上 -x 这条边,因此这种情况的最小环为:

$$ans_2 = \min_{i=2}^{n+1} \frac{g_{i,n}}{i-1}$$

最终 x 的最小可能值为 $-\min(ans_1, ans_2)$,假设求出了所有 $g_{i,j}$,那么通过上述式子计算答案显然是 $O(n^2)$ 的。

考虑如何计算 g,由 g_i 转移到 g_{i+1} 非常容易,只需要枚举边权包含 x 的边进行转移,而同层 g_i 内部边权不包含 x 的边的松弛则比较棘手。方便起见固定 i,设 h_i 表示 $g_{i,j}$ 。

首先从后往前递推: $h_i = \min(h_i, h_{i+1})$, 再从前往后递推: $h_i = \min(h_i, h_{i-1} + 1)$, 那么因 为剩下的边都是从大点连向小点的,所以 h_n 的值已经确定。按照 n 到 0 的顺序逐一确定每个 h_i 的值。在确定 h_i 的值时,只需要判断 h_i 是 $h_{i+1} - 1$ 还是 h_{i+1} ,这里有两种情况:

- $h_i = \min(h_i, h_{i+1})$, 可以 O(1) 确定。
- $h_i = \min(h_i, h_j + i j)$,其中 j < i,这是由后面往前松弛的边造成的。注意到 $h_n h_i$ 在 [0, n+1] 范围内,因此对于每种值使用数组计数即可轻松 O(1) 确定是否存在这样的 j 使得 $h_i = h_{i+1} 1$ 。

确定完 h_i 的值后,枚举所有从 i 出发的边,用 h_i-k 更新相应的 h_{l-1} 即可。这样我们就在 O(n(n+m)) 的时间内求出了 g。

最后我们得到了一个 O(n(n+m)) 的算法,但是因为考虑到难度较大以及 $O(nm\log n)$ 算法中的 SPFA 剪枝空间很大,所以允许 $O(nm\log n)$ 的算法通过。

B Binary Numbers

Shortest judge solution: 1108 Bytes.

F(a,b) 其实就是把 a 和 b 看作二进制串求最长公共前缀 (LCP)。如果固定 i,假设 j < i,那么越小的 j 与 i 的 LCP 越短,同理 j > i 时越大的 j 与 i 的 LCP 越短。因此对于每一个区间,只需要满足如下两条限制:

- $LCP(a_i, l_i) \ge LCP(a_{i-1}, l_i)$
- $LCP(a_i, r_i) \ge LCP(a_{i+1}, r_i)$

动态规划,设 f[i][j][k] 表示考虑了前 i 组, $LCP(a_i, l_{i+1}) = j$, $LCP(a_i, r_i) = k$ 时的贡献和,枚举第 i 组选取哪个数作为 a_i ,那么暴力枚举 f[i-1][j] 里合法的 j 和 k 进行转移即可。期望时间复杂度为 $O(2^m m^2)$ 。

C Competition in Swiss-system

Shortest judge solution: 1928 Bytes.

注意到每个选手最多只会有 O(m) 个对手,所以暴力模拟的时间复杂度为 $O(nm^2)$,可以接受。

需要注意的是分数类的实现以及小心地约分使得分子分母不爆 long long。

分子不会大于分母,而分母不超过 $lcm(2m+1,2m+2,...,3m) \times 3 \times m \le lcm(33,34,...,48) \times 48$,所以可以使用 long long 存储。

D Driverless Car

Shortest judge solution: 4727 Bytes.

注意到一定存在合法路线,而且合法路线唯一,所以只需要计算那条路线的总长度。

点到线段的距离可以按照两根垂线把平面分成三个区域,两侧的区域是点到端点的距离,中间的区域是点到直线的距离。找出两条线段的两条垂线,以及矩形的四条边界,那么可以把矩形划分成若干个凸多边形区域,对于每个凸多边形分别求解。

在每个区域中,有三种情况:点到两点距离相等、点到两直线距离相等、点到某点以及到某直线距离相等。

对于第一种情况,只需要计算两点的垂直平分线与该凸多边形的交的长度。

对于第二种情况,只需要计算两直线的角平分线与该凸多边形的交的长度。注意特判直线 平行/重合等特殊情况,以及需要注意两条直线有两条角平分线。

对于第三种情况,对应的轨迹是以该点为焦点,直线为准线的抛物线。需要计算抛物线与该凸多边形的交的长度。一个比较简便的方法是先将坐标系旋转使得抛物线开口正向上,然后平移坐标系使得抛物线顶点为 (0,0),最后求出抛物线与凸多边形的每条边的交点的横坐标,按照 x 分段进行曲线积分。

E Exchanging Gifts

Shortest judge solution: 1384 Bytes.

首先 O(n) 递推求出每个序列的长度 len_i ,令 occ(x) 表示数字 x 在 s_n 中的出现次数。如果 $2\max\{occ(x)\} > len_n$,则答案为 $2(len_n - \max\{occ(x)\})$,否则答案为 len_n 。所以只要找到出现次数最多的数。

对于每个序列 i 维护两个信息: c_i 表示在序列 s_i 里可能的出现次数最多的数是谁, w_i 表示 c_i 的出现次数。那么合并两个序列的时候,如果它们的 c 相等,则将其 w 相加;如果它们的 c 不相等,则保留 w 较大的那个作为 c,并将 w 设置为它们的 w 的差值。

如此在 O(n) 的时间内可以递推求出 s_n 的信息,那么唯一可能的出现次数最多的数只能是 c_n ,在 O(n) 时间内递推计算出 c_n 的真实出现次数即可。

F Fixing Banners

Shortest judge solution: 580 Bytes.

签到题, 6! 枚举所有情况或者状压 DP 都可以通过。

G Game Store

Shortest judge solution: 846 Bytes.

如果 Bob 不能扔掉石子,那么这是 Nim-K 游戏的 K=2 的情况,先手必败当且仅当将每一堆石子的石子数看作二进制后,二进制每一位加起来的和都是 3 的倍数,即把每一堆石子的石子数看作 $O(\log a)$ 维的 01 向量后,这些向量在模 3 意义下的和为零向量。

因为每副道具都包含两包相同的石子,所以 Bob 可以选择将每种石子保留 0 份、1 份或者 2 份,这恰好对应模 3 的所有系数。因此 Alice 想要必胜,那么这些向量在模 3 意义下必须线性无关。

问题转化为动态维护权值和最大的线性无关向量组。维护 $O(\log a)$ 个向量,其中第 i 个向量为零向量或权值最大的第 i 位不为 0 的向量。每次加入新的向量时,遍历该向量中非 0 的位,如果那一位对应向量为空,则将该向量放在那个位置,否则将两个向量中权值较小的那一个向量拿出来继续往后消元。

数据范围比较大,因此需要使用位运算来加速模 3 意义下的加法,时间复杂度 $O(\frac{n\log^2 a}{w})$ 。

H Highway Buses

Shortest judge solution: 3380 Bytes.

因为每个车站的费用都是一次函数,而一次函数的和仍然是一次函数,所以最优解只可能 在第一天或者最后一天取到,分别对于这两天计算从1出发到达每个站点的最小花费即可。

注意到图连通且 $m \le n + 50$,那么可以将图看作一棵生成树上面多余不超过 51 条非树边。从 1 点开始 Dijkstra,每次从堆中取出 $dis_x + cost_x$ 最小的 x,并用 $dis_x + cost_x$ 去更新所有距离 x 不超过 f_i 条边的点。因为 Dijkstra 取出的 $dis_x + cost_x$ 单调不下降,所以每个点只有第一次被更新的时候才有用,可以考虑更新完后就将其删除。

对于生成树的部分,是经典树分治问题。把点分治的过程记录下来,每个分治结构按到重心的距离从小到大保存一个队列,枚举管辖x的 $O(\log n)$ 个分治结构,从对应的队列中不断消

费队首,总计 $O(n \log n)$ 。

对于非树边的部分,考虑路径经过某条非树边 (u,v) 的情况,那么一定经过了 u 点。令 u 点为关键点,则最多只有 51 个关键点。对于每个关键点 BFS 求出单源最短路,同样用队列保存,那么只需要枚举这不超过 51 个关键点,从对应的队列中不断消费队首即可,总计 O(51n)。总时间复杂度为 $O(n(51 + \log n))$ 。

I Interesting Permutation

Shortest judge solution: 543 Bytes.

首先特判 $h_1 \neq 0, h_i \geq n$ 以及 $h_i > h_{i+1}$ 的情况,这些情况都是无解。

然后依次考虑 h_2, h_3, \ldots, h_n 。如果 $h_i > h_{i-1}$,那么 a_i 既可以是前 i 个数的最大值,也可以是前 i 个数的最小值,将答案乘以 2,同时新增中间 $h_i - h_{i-1} - 1$ 个空位没填;如果 $h_i = h_{i-1}$,那么需要消耗一个空位,并将答案乘以空位数。

时间复杂度 O(n)。

J Justifying the Conjecture

Shortest judge solution: 235 Bytes.

当 $n \le 5$ 时无解,否则如果 n 是偶数,则可以分解成 2+ 一个偶数,如果 n 是奇数,则可以分解成 3+ 一个偶数。

K Keeping Rabbits

Shortest judge solution: 308 Bytes.

容易发现不管经过了多少天,概率分布都不会改变,所以令 sum 为所有 w 的和,则 $ans_i = w_i + \frac{w_i \times k}{sum}$ 。

L LRU Algorithm

Shortest judge solution: 863 Bytes.

令缓存无容量限制 $O(n^2)$ 模拟得出每一步后的 LRU 序列,那么对于每个询问只需要检查是否存在某一步后的 LRU 序列以该询问串作为前缀。

求出每个询问串的 Hash 值,那么每模拟一步后,O(n) 预处理出当前 LRU 序列每个前缀的 Hash 值,然后遍历所有询问判断即可。

时间复杂度 O(n(n+m))。

另一种方法是将询问串全部插入 Trie 中,每模拟一步后在 Trie 中找到对应前缀,并将沿途经过的前缀都标记为出现过。