TYPES OF SETS

1. EMPTY/NULL/VOID SET

A set which does not contain any element is called the empty set or the null set or the void set.

The empty set is denoted by the symbol \emptyset (phi). It is also written as $\{\}$.

Examples:

- (i) $\{x: x \in N, 2 < x < 3\} = \emptyset$
- (ii) $\{x: x \in \mathbb{N}, x^2 2 = 0\} = \emptyset$
- (iii) $\{x: x \text{ is an even prime number greater than 2}\} = \emptyset$

2. SINGLETON SET

A set which contains exactly one element is called the Singleton Set.

Examples:

- (i) $\{x: x \in \mathbb{N}, \ 4 < x < 6\} = \{5\}$
- (ii) $\{x: x \in \mathbb{N}, x^2 9 = 0\} = \{3\}$
- (iii) $\{x: x \text{ is an even prime number }\} = \{2\}$

3. FINITE AND INFINITE SETS

A set which is empty or contains of a definite number of elements, is called a finite set. On the other hand, a set which is not finite is called an infinite set.

Note:). The number of elements in a set A is denoted by n(A

Examples:

- (i) $A = \{x: x \text{ is a month of a year }\}$ [Finite set]
- (ii) $B = \{x: x \text{ is a natural number}\}$ [Infinite set]
- (iii) $C = \{x: x \text{ is a natural number less than } 50\}$ [Finite set]
- (iv) $D = \{x: x \text{ is a line parallel to the } y_axis\}$ [Infinite set]
- (v) $E = \{x: x \text{ is the number of hair on your head}\}$ [Finite set]
- (vi) $F = \{x: x \text{ is the number of tangents on a circle}\}$ [Infinite set]
- (vii) $G = \{x: x \text{ is a multiple of 5}\}$ [Infiinite set]

4. EQUAL SETS

Two sets A and B are said to be equal if every element of set A is in set B and every element of set B is in set A. If A and B are two equal sets, then we write A = B.

Examples:

PGT (MATHS)

(i)
$$A = \{a, b, c, d\}, B = \{c, b, a, d\}$$
 [$A = B$]

(ii)
$$A = \{2, 3, 5\}, B = \{x: x \text{ is a prime factor of } 30\}$$
 $[A = B]$

(iii)
$$A = \{A, S, M\}, B = \{x: x \text{ is a letter of the word "ASSAM"}\}$$
 $[A = B]$

(iv)
$$A = \{a, i, u, o, e\}, B = \{o, e, i, v, u\}$$
 [$A \neq B$]

iv)
$$A = \{2, 3\}, B = \{x: x \text{ is a solution of the equation } x^2 - 5x + 6 = 0\}$$
 [$A = B$]

5. EQUIVALENT SETS

Two finite sets A and B are said to be equivalent if they have the same number of elements.

i. e.
$$n(A) = n(B)$$

Examples:

- (i) $A = \{a, b, c, d\}$ and $B = \{2, 3, 5, 7\}$ are equivalent sets.
- (ii) $P = \{Mango, Apple, Banana\}, Q = \{Pen, Pencil, Book\}$ are equivalent sets.

SUBSETS

1. SUBSETS

If A and B are two sets such that every element of set A is also an element of B, we say that A is a subset of B and we write $A \subset B$.

i.e.
$$A \subset B \ if \ a \in A \Rightarrow a \in B$$

Remarks:

- If A ⊂ B and A ≠ B , then A is called a proper subset of B and B is called superset of A.
- 2. If $A \subset B$ and = B, then A is called an improper subset of B.
- 3. If $A \subset B$ and $B \subset A$, then A = B.
- 4. If A is not a subset of B, then we write, $A \not\subset B$.
- 5. Every set A is a subset of itself i.e. $A \subset A$
- 6. The empty set is \emptyset a subset of every set.

Examples:

(i)
$$A = \{1, 2, 3\}, B = \{1, 2, 3, 4, 5\}$$

Here, A is a proper subset of B as $A \subset B$ and $A \neq B$. Also B is the super set of A.

(ii)
$$A = \{1, 2, 3\}, B = \{2, 3, 1\}$$

Here, A is an improper subset of B as $A \subset B$ and A = B

(iii)
$$A = \{1, 2, 3\}, B = \{1, 2, 4, 5\}$$

Here, A is not a subset of B i.e. $A \not\subset B$ as $3 \in A$ but $3 \notin A$.

NUMBER OF SUBSETS

Set	No. of Elements	Subsets	No. of subsets	
Ø	0	Ø	1	$1 = 2^0$
{a}	1	Ø, {a}	2	$2 = 2^1$
{ <i>a</i> , <i>b</i> }	2	$\emptyset, \{a\}, \{b\}, \{a, b\}$	4	$4 = 2^2$
$\{a,b,c\}$	3	$\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{c, a\}, \{a, b, c\}$	8	$8 = 2^3$
$\{a,b,c,d\}$	4	\emptyset , $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{a,b\}$, $\{a,c\}$, $\{a,d\}$, $\{b,c\}$,	16	$16 = 2^4$
		${b,d},{c,d},{a,b,c},{a,b,d},{a,c,d},{b,c,d}$		
		$\{a,b,c,d\}$		

Conclusion: The number of subsets of the set containing n elements is 2^n

The number of subsets of the set containing n elements is 2^n

Example-1

Write all possible subsets of the set $\{1, 2, 3\}$. How many of these are proper sub sets? Solution:

Let
$$A = \{1, 2, 3\}$$

The possible subsets of the given set A are

$$\emptyset$$
, {1}, {2}, {3}, {1, 2}, {2, 3}, {3, 1}, {1, 2, 3}

Since, $\{1, 2, 3\}$ is an improper set of A.

 \therefore The total number of proper subsets of A is 7.