2025 年广西普通高等教育专升本考试

模拟卷(2)答案及解析

一、单项选择题

1. 答案: B

解析: 因为 $y' = 12x^2 + \cos x - 0$,所以 $dy = (12x^2 + \cos x)dx$,代入x = 0得 $dy|_{x=0} = dx$ (因为 $\cos 0 = 1$)。

2. 答案: B

解析: $f(x) = \frac{(x-1)(x+1)}{x-1} = x + 1$ (当 $x \neq 1$ 时),x = 1为可去间断点。

3. 答案: A

解析: 设g(x) = f(x) - f(-x),因为g(-x) = f(-x) - f(x) == -g(x),所以g(x)是奇函数。

4. 答案: C

解析: 利用等价无穷小替换,原式= $\lim_{x\to 0} \frac{3x}{2x} = \frac{3}{2}$ 。

5. 答案: D

解析: 选项 A 中, $1-\cos x \sim \frac{1}{2}x^2$,是 x^2 的同阶无穷小; 选项 B 中, $x\ln(1+2x) \sim x$ · $2x = 2x^2$,与 x^2 为同阶无穷小; 选项 C, $\frac{1}{2}x$ 阶数低于 x^2 ,非等价; 而选项 D, $\sin x^2 \sim x^2$,满足等价无穷小定义。

6. 答案: C

解析:
$$f'(x) = \frac{2x}{x^2} = \frac{2}{x}$$
, $f''(x) = -\frac{2}{x^2}$

7. 答案: B

解析:根据不定积分的性质 $f'(x) = [\int \sin x \, \mathrm{d}x]' = \sin x$,所以 $f'(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}$ 。

8. 答案: B

解析:因为 $\sin 2x$ 为奇函数,而奇函数对称区间积分为零。

9. 答案: A

解析: $f'(x) = 3x^2 - 3$,可知驻点为 $x_{1,2} = \pm 1$,比较f(-2) = -2,f(-1) = 2,f(1) = -2,f(2) = 2,所以最大值为2。

10. 答案: D

解析:根据特征方程 $r^2-3r-4=0$ 得特征根 $r_{1,2}=-1,4$,所以通解为 $y=C_1\mathrm{e}^{-x}+C_2\mathrm{e}^{4x}$ 。

二、填空题

11. 答案: (2,+∞)

解析: 分母 $\sqrt{x^2-x-2}$ 要求 $x^2-x-2>0$,即x<-1或x>2。 另外 $\ln(x-1)$ 要求 x>1,综合得 x>2。

12. **答案:** $y = 2x + \frac{1}{3}$

解析: $f(1) = \frac{1}{3} + 2 - \ln 1 = \frac{7}{3}$, $f'(x) = x^2 + 2 - \frac{1}{x}$, f'(1) = 2, 切线方程为 $y - \frac{7}{3} = 2(x - 1)$ 。

13. **答案:** $y = 1 - \frac{3}{x}$

解析: 交换 x 和 y,解方程 $x = \frac{3}{1-y}$ 得反函数 $y = 1 - \frac{3}{x}$ 。

14. 答案: $\frac{3}{4}$

解析: 极限为 $\frac{0}{0}$ 型,使用洛必达法则,原式=. $\lim_{x\to 0}\frac{(\int_0^x 3t dt)'}{(2x^2)'}=\lim_{x\to 0}\frac{3x}{4x}=\frac{3}{4}$ (其中分子是变上限积分函数)。

三、计算题

15. **解**: $\lim_{x\to 0} \frac{x-\sin 3x}{\tan x}$ ($\frac{0}{0}$ 型,使用洛必达法则)

原式=
$$\lim_{x\to 0} \frac{1-3\cos 3x}{\sec^2 x} = \frac{1-3}{1} = -2.$$

16. **解**: $\lim_{x \to \infty} \left(1 - \frac{4}{x}\right)^{2x}$

原式=
$$\lim_{x\to\infty} \left[1+\left(-\frac{4}{x}\right)\right]^{-\frac{x}{4}\times(-8)} = e^{-8}.$$

17. **M**: $f'(x) = 2x(1-3x)^4 + x^2 \cdot 4(1-3x)^3 \cdot (-3)$

所以
$$f'(1) = 2(1)(-2)^4 + 1 \cdot 4(-2)^3 \cdot (-3) = 32 + 96 = 128$$

18. **解**: 函数的定义为($-\infty$, $+\infty$)

$$f'(x) = 6x^2 + 6x - 12 = 6(x+2)(x-1)$$

根据导数与单调性的关系,可知

增区间为 $(-\infty, -2)$ 和 $(1, +\infty)$,减区间为(-2, 1),

极大值为 f(-2) = 21, 极小值为 f(1) = -6。

19. **解**: 原式=
$$\int \frac{(x+4)-(x+3)}{(x+3)(x+4)} dx = \int \left(\frac{1}{x+3} - \frac{1}{x+4}\right) dx = \ln|x+3| - \ln|x+4| + C$$

20. **解**: 原式=
$$\int_{1}^{2} \frac{1}{3} (x^{3}) \ln x \, dx = \frac{1}{3} x^{3} \ln x \Big|_{1}^{2} - \int_{1}^{2} \frac{1}{3} x^{3} \cdot \frac{1}{x} \, dx = \frac{8}{3} \ln 2 - 0 - \frac{1}{3} \int_{1}^{2} x^{2} \, dx$$

$$= \frac{8}{3} \ln 2 - \frac{1}{3} \frac{x^3}{3} \Big|_{1}^{2} = \frac{8}{3} \ln 2 - \frac{1}{9} (8 - 1) = \frac{8}{3} \ln 2 - \frac{7}{9}$$

21. **解**: 分离变量: $(y^2 + 1)dy = e^x dx$

两边积分: $\int (y^2 + 1) dy = \int e^x dx$

所以方程的通解为 $\frac{1}{3}y^3 + y = e^x + C$

四、应用题

22. **解**: (1) 设底面半径为r米, 高为h米。由容积公式得:

$$V = \pi r^2 h = 108\pi$$

由此可知 $h = \frac{108}{r^2}$

考虑总造价,其由上下底和侧面组成,有

顶面和底面,
$$2 \times 12\pi r^2 = 24\pi r^2$$
 元

侧面:
$$6 \times 2\pi rh = 12\pi r \times \frac{108}{r^2} = \frac{1296\pi}{r}$$
元

所以,总造价函数为: $C(r) = 24\pi r^2 + \frac{1296\pi}{r} (r > 0)$.

(2) 因为
$$C'(r) = 48\pi r - \frac{1296\pi}{r^2}$$
 令 $C'(r) = 0$,得 $r = 3$,

又因为
$$C''(r) = 48\pi + \frac{2592\pi}{r^3} > 0$$
 (当 $r > 0$ 时)

故当半径 r=3 米时取得最小值。

此时高度
$$h = \frac{108}{3^2} = 12$$
 米

23. 解: (1) 解方程组:

$$\begin{cases} y = x^3 \\ y = 4x \end{cases}$$

 $\begin{cases} y = x^3 \\ y = 4x \end{cases}$ 得: $x_1 = 0$, $x_2 = -2$, $x_3 = 2$

因此交点为: (0,0)、(2,8)、(-2,-8).

(2) 由图像的对称性(见右图),

所求区域 D 的面积

$$S = 2 \int_0^2 (4x - x^3) dx = 2 \left[2x^2 - \frac{1}{4}x^4 \right]_0^2 = 2(8 - 4) = 8$$

