# Migration ecology of a re-established trumpeter swan population

David W. Wolfson, Randall T. Knapik, Anna Buckardt Thomas, Laura J. Kearns, Brian W. Kiss, Taylo

# Supplemental Methods Description

Rule-based thresholds chosen:

- Minimum distance between 2 potential segments: 2 kilometers
- Minimum time difference between 2 potential change points: 2 days
- Minimum distance moved between breeding/capture location and the furthest segment in order to consider onset of fall migration: 100 kilometers
- Minimum distance moved between the furthest segment and the segment representing return to spring territory: 100 kilometers
- Maximum distance between the spring return segment and the breeding/capture territory in order to consider a spring migration arrival: 30 kilometers
- Latest date to be considered a fall migration onset / earliest date to be considered a spring return onset: **30 December**

## Supplemental Figures

# Migration Phenology Summary Statistics:

#### Autumn Departure

We estimated migration duration for all swans that traveled >100 km from the breeding/capture territory by 1 December.

Table 1: Table S1. Compiled migratures from 2019-2022.

| Total Swans Tracked | Number of Long-Distance Migrants | Number of Fall Departure Events A |
|---------------------|----------------------------------|-----------------------------------|
| 122                 | 71                               | 117                               |

Table 2: Table S2. Yearly summaries of migration phenodepartures from 2019-2022.

| Year | Total Swans | Tracked Number of Long-Distance Mig | rants Average Fall Departure Standa |
|------|-------------|-------------------------------------|-------------------------------------|
| 2019 | 17          | 7                                   | October 31                          |
| 2020 | 82          | 49                                  | November 02                         |
| 2021 | 86          | 38                                  | November 09                         |
| 2022 | 44          | 23                                  | November 17                         |



Figure 1: Figure S1. An overview of GPS telemetry data received from all collared IP trumpeter swans. Each line represents the period of data collection from a single collared swan. The grey regions indicate periods of collar deployment. The black lines are 1 January of each year. Number of deployments (including redeployments) by state/province are: Michigan (n=14), Minnesota (n=56), Manitoba (n=11), Iowa (n=12), Ohio (n=20), Wisconsin (n=9), and Arkansas (n=4).



Figure 2: Figure S2. ADD IN CAPTION FOR THE 2 FILTERING PLOTS HERE



Figure 3: Figure S3. Histogram of the maximum distance moved from the breeding/capture territory for each swan-year dataset.



Figure 4: Figure S4. Breeding/capture latitude versus extent of migration (furthest distance from breeding territory during the nonbreeding season) for 221 'swan-year' datasets representing annual migration cycles.

| Breeding Status | Total Swans | Tracked Number of Long-Distance Migrants | Number of Fall De |
|-----------------|-------------|------------------------------------------|-------------------|
| Breeder         | 70          | 36                                       | 68                |
| Non-Breeder     | 22          | 12                                       | 19                |
| Paired          | 21          | 14                                       | 19                |

# Spring Arrival

We estimated spring arrival for all swans that traveled >100km from the breeding/capture territory during the non-breeding season and then returned to within 10 km of their previous summer territory.

Table 4: Table S4. Compiled migration arrivals from 2020-2023.

| Total Swans Tracked | Number of Long-Distance M | Aigrants Number of Spring | ng Arrival Events A |
|---------------------|---------------------------|---------------------------|---------------------|
| 122                 | 51                        | 8                         | 34                  |

Table 5: Table S5. Yearly summaries of migration phenol spring arrivals from 2020-2023.

| Year | Total Swans Tracke | ed Number of Long-Distance Migrants | Average Spring Arrival Standar |
|------|--------------------|-------------------------------------|--------------------------------|
| 2020 | 17                 | 4                                   | March 02                       |
| 2021 | 82                 | 35                                  | March 03                       |
| 2022 | 86                 | 33                                  | March 06                       |
| 2023 | 44                 | 12                                  | March 02                       |

Table 6: Table S6. Spring a breeding status

| Breeding Status | Total Swans Tracked | Number of Long-Distance Migrants | Number of Spring |
|-----------------|---------------------|----------------------------------|------------------|
| Breeder         | 70                  | 29                               | 54               |
| Non-Breeder     | 22                  | 8                                | 10               |
| Paired          | 21                  | 8                                | 11               |

## **Migration Duration**

We estimated migration duration for all swans that traveled >100km from the breeding/capture territory during the non-breeding season and then returned to within 10 km of their previous summer territory. Migration duration represents the span of time absent from the breeding/capture territory during the non-breeding season, and is calculated by the difference in days between spring arrival and the previous year's

autumn departure.

Table 7: Table S7. Compiled duration of nonbreeding s swans from 2019-2023.

| Total Swans Tracked | Number of Long-Distance Migrants | Number of Annual Cycles Average 1 |
|---------------------|----------------------------------|-----------------------------------|
| 122                 | 49                               | 78                                |

Table 8: Table S8. Yearly summaries of duration of nonbreeding season from 2019-2020 until 2022-2023.

| Year | Total Swans | Tracked Number of Long-Distance Migrants | Average Duration of nonbreed |
|------|-------------|------------------------------------------|------------------------------|
| 2020 | 17          | 4                                        | 119                          |
| 2021 | 82          | 34                                       | 118                          |
| 2022 | 86          | 28                                       | 117                          |
| 2023 | 44          | 12                                       | 99                           |

Table 9: Table S9. Summaries by breeding status of duration nonbreeding season from 2019-2020 until 2022-2023.

| Breeding Status | Total Swans 7 | Tracked Number of Long-Distance Mi | igrants Average Duration of |
|-----------------|---------------|------------------------------------|-----------------------------|
| Breeder         | 70            | 29                                 |                             |
| Non-Breeder     | 22            | 8                                  |                             |
| Paired          | 21            | 8                                  |                             |