Deep Learning

Momentum-based Gradient Descent

Syed Irtaza Muzaffar

omentum RMSprop

So far ...

Neural Networks are universal approximators.

- ► Backpropagation allows computation of derivatives in hidden layers.
- Gradient descent finds weights corresponding to local minimum of loss surface.
- ▶ 1st- and 2nd-order variants of gradient descent can be faster and better.
- In this lecture:
 - Momentum-based first-order methods
 - Momentum
 - Nesterov Accelerated Gradient
 - RMSprop
 - ADAM

Momentum Updates

Basic idea

- Keep track of oscillating directions.
- Increase learning rate in directions that converge smoothly.
- Decrease learning rate in directions that overshoot and oscillate.

Steps

- 1. Compute gradient step $-\eta \nabla_{\mathbf{w}} L|_{\mathbf{w}^{\tau}}$ at the current location \mathbf{w}^{τ} .
- 2. Add the scaled previous step $\beta \Delta \mathbf{w}^{\tau}$ to obtain a running average of the step

$$\Delta \mathbf{w}^{\tau+1} = \beta \Delta \mathbf{w}^{\tau} - \eta |\nabla_{\mathbf{w}} L|_{\mathbf{w}^{\tau}}$$

Typically
$$\beta = 0.9$$
.

3. Update parameters by the running average of the step

$$\mathbf{w}^{\tau+1} = \mathbf{w}^{\tau} + \Delta \mathbf{w}^{\tau+1}$$

Basic idea

Momentum Updates

Keep track of oscillating directions. Increase learning rate in directions that converge smoothly.

Steps 1. Compute gradient step $-\eta \nabla_{\mathbf{w}} L|_{\mathbf{w}^{\tau}}$ at the current location $\underline{\mathbf{w}}^{\tau}$.

2. Add the scaled previous step $\beta \Delta \mathbf{w}^{\tau}$ to obtain a running average of the step $\underline{\Delta \mathbf{w}^{\tau+1}} = \beta \underline{\Delta \mathbf{w}}^{\tau} - \eta \nabla_{\mathbf{w}} L|_{\mathbf{w}^{\tau}}$

Typically $\beta = 0.9$. 3. Update parameters by the running average of the step

by the running average of the step
$$\mathbf{w}^{\tau+1} = \mathbf{w}^{\tau} + \Delta \mathbf{w}^{\tau+1}$$

Decrease learning rate in directions that overshoot and oscillate.

Why does momentum work?

- Directions that oscillate will cancel each other out in the running average.
 - So the running average will be small in magnitude.
- ► So the steps for oscillating directions will be smaller.
- Directions that are consistently converging will be reinforced.
 - So the running average will be large in magnitude.
 - So those directions will gain *momentum* by having larger and larger steps.

Same idea as momentum updates but with steps 1 and 2 swapped.

1. Extend the previous scaled step.

$$\hat{\mathbf{w}} = \mathbf{w}^{\tau} + \beta \Delta \mathbf{w}^{\tau}$$

2. Compute gradient step at resultant location $\hat{\mathbf{w}}$.

$$-\eta |\nabla_{\mathbf{w}} L|_{\hat{\mathbf{w}}}$$

3. Add previous scaled step and new gradient step to obtain the running average of the step

$$\Delta \mathbf{w}^{\tau+1} = \beta \Delta \mathbf{w}^{\tau} - \eta |\nabla_{\mathbf{w}} L|_{\hat{\mathbf{w}}}$$

4. Update parameters by the running average of the step

$$\mathbf{w}^{\tau+1} = \mathbf{w}^{\tau} + \Delta \mathbf{w}^{\tau+1}$$

Nesterov's method has been shown to converge faster than momentum updates.

lomentum Nesterov Momentum RMSprop ADAN

Momentum vs. Nesterov Momentum

 $\begin{tabular}{ll} Nesterov-Sometimes it is better to make a correction after making an error. \\ Source: Bhiksha Raj \end{tabular}$

Source: Bhiksha Raj

RMSprop

- Decouple each direction.
- We can compute the running average of the squared 1st-derivative in direction i as

$$\bar{v}_i^{\tau} = \gamma \bar{v}_i^{\tau-1} + (1 - \gamma) \left(\frac{\partial L}{\partial w_i} \right)^2$$

with initialization $\bar{v}_i^0 = 0$.

- ▶ Root-mean-squared (RMS) value $\sqrt{\bar{v}_i^{\tau}} + \epsilon$ represents average magnitude of 1st-derivative for direction i.
 - High value indicates oscillating derivatives. So reduce learning rate.
 - Low value indicates flat region. So increase learning rate.
- So divide learning rate by this average before performing gradient descent.

$$w_i^{\tau} = w_i^{\tau - 1} - \frac{\eta}{\sqrt{\overline{v}_i^{\tau}} + \epsilon} \frac{\partial L}{\partial w_i}$$

Rprop

Multiplicatively increase learning rate when derivative retains its sign.

$$\eta \leftarrow \alpha \eta$$

Multiplicatively decrease learning rate when derivative oscillates.

$$\eta \leftarrow \beta \eta$$

RMSprop

Multiplicatively increase/decrease learning rate when average derivative magnitude decreases/increases.

$$\eta \leftarrow \frac{\eta_0}{\sqrt{\bar{v}} + \epsilon}$$

Fixed multiplicative factors α and β in Rprop are replaced by adaptive factor $\frac{1}{\sqrt{\bar{v}}+\epsilon}$ in RMSprop.

RMSprop+Momentum

- RMSprop uses the current derivative.
- ► ADAM¹ replaces current derivative by its running average.

$$ar{m}_i^{ au} = \delta ar{m}_i^{ au-1} + (1-\delta) rac{\partial L}{\partial w_i}$$

- Currently the most popular flavor of gradient descent.
- Statistics terminology:
 - Average of random variable x is also called its 1st statistical moment E[x]. Average of the square of a random variable is also called its 2nd uncentered
 - statistical moment $E[x^2]$.
 - Average of the square of a centered random variable is also called its 2nd statistical moment $E[(x - \mu)^2]$ or variance.

¹Kingma and Ba, 'ADAM: A Method for Stochastic Optimization'.

RMSprop+Momentum

- ▶ Initialize moments $\bar{m}_i^0 = 0$ and $\bar{v}_i^0 = 0$.
- ▶ Compute 1st moment and 2nd uncentered moment of derivative

$$egin{align} ar{m}_i^{ au} &= \delta ar{m}_i^{ au-1} + (1-\delta) rac{\partial L}{\partial w_i} \ ar{v}_i^{ au} &= \gamma ar{v}_i^{ au-1} + (1-\gamma) \left(rac{\partial L}{\partial w_i}
ight)^2 \ \end{aligned}$$

lacktriangle Correct for bias of initial moments (= 0) by scaling up in early iterations.

$$ar{m}_i^ au = rac{ar{m}_i^ au}{1-\delta^ au}$$
 and $ar{v}_i^ au = rac{ar{v}_i^ au}{1-\gamma^ au}$

► Perform update

$$w_i^{ au} = w_i^{ au-1} - rac{\eta}{\sqrt{ar{v}^T} + \epsilon} ar{m}_i^{ au}$$

Proposed hyperparameter values: $\eta=10^{-3}, \delta=0.9, \gamma=0.999, \epsilon=10^{-8}$.

Momentum RMSprop AD

Summary

► For complex and non-convex loss functions of deep networks, vanilla gradient descent can get stuck in poor local minima and saddle points.

- It can also converge very slowly.
- Different directions require different learning rates.
- ► Adaptive learning rates are very important.
- Most useful technique is to adapt learning rate based on recent trend of 1st-derivative.