TD 10 - Poussée d'une tuyère

On considère un réservoir de grande dimension, rempli d'un gaz parfait et idéal, et débouchant sur l'extérieur grâce à une tuyère convergente-divergente de section au col d'aire A^* et de section de sortie Σ_1 d'aire A_1 . La grande capacité du réservoir permet de supposer que la pression totale P_0 et la température T_0 restent constantes à l'intérieur de celui-ci, et que la vitesse du fluide y est nulle. L'écoulement dans la tuyère sera supposé permanent, monodimensionel et isentropique. On négligera les actions dues à la pesanteur.

On suppose que la pression P_0 est suffisante pour qu'il se forme dans la section de sortie Σ_1 de la tuyère un jet supersonique uniforme de nombre de Mach M_1 , de vitesse V_1 , de pression P_1 et de masse volumique ρ_1 .

1 - Soit $\vec{F_1}$ la résultante des actions exercées par le fluide contenu dans le réservoir et la tuyère sur les parois. En écrivant le bilan de quantité de mouvement, exprimer $\|\vec{F_1}\|$ en fonction de P_1 , V_1 , A_1 et ρ_1 . Montrer que l'on peut aussi écrire

$$\|\vec{F}_1\| = q_m V_1 \left(1 + \frac{1}{\gamma M_1^2}\right)$$

où q_m est le débit masse dans la tuyère.

- 2 En supposant que l'écoulement reste isentropique lorsque l'aire A_1 de la section Σ_1 croît, calculer la limite de $\|\vec{F}_1\|$ en fonction de P_0 , A^* , γ et r lorsque $A_1/A^* \to +\infty$.
- 3 La tuyère fonctionne maintenant en régime adapté, c'est-à-dire qu'il y a égalité de pression statique entre la section Σ_1 et l'extérieur : $P_1 = P_{ext}$. Calculer $M_1, q_m, T_1, \|\vec{F_1}\|$ et A_1 à l'aide des données ci-dessous.

pression génératrice : $40 \ bar$ $T_0 = 290 K$ $A^* = 1 cm^2$ température génératrice : section au col: