AUTOMATIC CONTROL THEORY

PGS. TS. Nguyễn H. Nam

Department of Automation Engineering School of Electrical and Electronic Engineering

Email: nam.nguyenhoai@hust.edu.vn

Website: https://sites.google.com/view/masc-lab

Office: E416-C7

Chapter 2 Fundamental of analysis and design for control system

- 2.1 Laplace transform
- 2.2 Properties of Laplace transform
- 2.3 Application

2.1. Phép biến đổi Laplace

Pierre Simon Laplace (1749–1827)

$$X(s) = \int_{0}^{\infty} x(t)e^{-st}dt$$

$$s = \sigma + j\omega, \qquad j^{2} = -1$$

• Condition for existence:

$$\int_0^\infty |x(t)|e^{-\sigma t}dt < \infty,$$
 with $\sigma = \sigma_c$

2.1 Laplace Transform

Pierre Simon Laplace (1749–1827)

$$X(s) = \int_{0}^{\infty} x(t)e^{-st}dt$$

$$s = \sigma + j\omega, \qquad j^{2} = -1$$

Example:

•
$$x(t) = 1(t) = \begin{cases} 1, & \text{if } t \ge 0 \\ 0, & \text{if } t < 0 \end{cases}$$

•
$$X(s) = \int_0^\infty x(t)e^{-st}dt = \frac{e^{-st}}{-s} \begin{vmatrix} \infty \\ 0 \end{vmatrix} = \frac{e^{-(\sigma+j\omega)t}}{-s} \begin{vmatrix} \infty \\ 0 \end{vmatrix} = \frac{1}{s}$$

• with $\sigma > 0$

2.1 Laplace Transform

Example:

• $x(t) = e^{-at}$

•
$$X(s) = \int_0^\infty x(t)e^{-st}dt = \frac{e^{-(s+a)t}}{-s} \Big|_0^\infty = \frac{1}{s+a}$$

with $\sigma > a$

2.1 Laplace Transform

• Tool in Matlab: laplace, ilaplace

- \Box Linearity: $L\{ax(t) + by(t)\} = aX(s) + bY(s)$
- \Box a, b: constant.
- \square Example: Find $L\{\sin(\omega t)\}, L\{\cos(\omega t)\}$

- \square Time shifting: $L\{x(t-T)\} = X(s)e^{-sT}$
- □ Example: $L\{1(t-2)-1(t-3)\}$

- \square Frequency shifting: $L\{x(t)e^{-\alpha t}\} = X(s + \alpha)$
- \square Example: $L\{\sin(2t)e^{-3t}\}$

- ☐ Differentiation: $y(t) = \frac{dx(t)}{dt}$ Y(s) = sX(s) - x(0)
- \square Example: $L\left\{\frac{d}{dt}(\sin(2t))e^{-t}\right\}$

Integration:
$$y(t) = \int_0^t x(\tau) d\tau$$

$$Y(s) = \frac{X(s)}{s}$$

$$L\{y(t)\} = \int_0^\infty \int_0^t x(\tau) d\tau e^{-st} dt.$$

- Let $u = \int_0^t x(\tau) d\tau$ and $dv = e^{-st} dt$.
- $\rightarrow du = x(t)dt$ and $v = \frac{e^{-st}}{-s}$

$$L\{y(t)\} = uv \bigg|_0^{\infty} - \int_0^{\infty} \frac{e^{-st}}{-s} x(t) dt = \frac{X(s)}{s}.$$

• Example: $L\{t\}$

12

 \square Differentiation in frequency: $y(t) = t^n x(t)$

$$Y(s) = (-1)^n \frac{d^n X(s)}{ds^n}$$

$$\frac{dX(s)}{ds} = \int_0^\infty -tx(t)e^{-st}dt = L\{-tx(t)\}$$

 \square Example: $L\{te^{-t}\}$

☐ Initial value:

$$x(0) = \lim_{s \to \infty} sX(s)$$

$$sX(s) - x(0) = \int_{0}^{\infty} \frac{dx(t)}{dt} e^{-st} dt = \int_{0}^{\infty} e^{-st} dx(t)$$

$$\lim_{s \to \infty} [sX(s) - x(0)] = 0$$

 \square Example: Find x(0) given $X(s) = \frac{1}{s+2}$

☐ Final value:

$$\chi(\infty) = \lim_{s \to 0} sX(s)$$

$$\lim_{s \to 0} [sX(s) - x(0)] = \lim_{s \to 0} \int_{0}^{\infty} e^{-st} dx(t) = x(\infty) - x(0)$$

 \square Example: Find $x(\infty)$ with $X(s) = \frac{1}{(s+1)(s+2)}$

Convolution:
$$x(t) * y(t) = \int_0^\infty x(\tau)y(t-\tau)d\tau$$

$$L\{x(t) * y(t)\} = X(s)Y(s)$$

$$X(s) = \int_0^\infty x(\tau)\tau d\tau$$

$$\rightarrow X(s)Y(s) = \int_0^\infty x(\tau)Y(s)e^{-s\tau}d\tau$$

$$= \int_{0}^{\infty} x(\tau) \int_{0}^{\infty} y(t-\tau) 1(t-\tau) e^{-st} dt d\tau$$

$$= \int_{0}^{\infty} \left[\int_{0}^{t} x(\tau)y(t-\tau)d\tau \right] e^{-st}dt = L\{x(t) * y(t)\}$$

• Example: $L\{1(t) * e^{-2t}\}$

$$x(t) = L^{-1}\{X(s)\}\$$

$$= \frac{1}{2\pi j} \int_{\sigma_1 - j\infty}^{\sigma_1 + j\infty} X(s) e^{st} ds$$

• Along the line $\sigma_1 + j\omega$, $-\infty < \omega < \infty$ with $\sigma_1 > \sigma_c$.

Property	f(t)	F(s)	f(t)	F(s)
Linearity	$a_1 f_1(t) + a_2 f_2(t)$	$a_1F_1(s) + a_2F_2(s)$	$\delta(t)$	1
Scaling	f(at)	$\frac{1}{a}F\left(\frac{s}{a}\right)$	u(t)	$\frac{1}{s}$
Time shift	f(t-a)u(t-a)	$e^{-as}F(s)$	e^{-at}	1
Frequency shift	$e^{-at}f(t)$	F(s+a)		s + a
Time differentiation	$\frac{df}{dt}$	$sF(s) - f(0^-)$	t	$\frac{1}{s^2}$
	$\frac{df}{dt}$ $\frac{d^2f}{dt^2}$	$s^2F(s) - sf(0^-) - f'(0^-)$	t ⁿ	$\frac{n!}{s^{n+1}}$
	$\frac{dt^2}{dt^3}$	$s^3F(s) - s^2f(0^-) - sf'(0^-)$	te^{-at}	$\frac{1}{(s+a)^2}$
		$-f''(0^{-})$ $s^{n}F(s) - s^{n-1}f(0^{-}) - s^{n-2}f'(0^{-})$	$t^n e^{-at}$	$\frac{n!}{(s+a)^{n+1}}$
	$\frac{d^n f}{dt^n}$	$-\cdots-f^{(n-1)}(0^-)$	$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$
Time integration	$\int_0^{} f(x) dx$	$\frac{1}{s}F(s)$	$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$
Frequency differentiation	tf(t)	$-\frac{d}{ds}F(s)$	$\sin(\omega t + \theta)$	$\frac{s\sin\theta + \omega\cos\theta}{s^2 + \omega^2}$
Frequency integration	$\frac{f(t)}{t}$	$\int_{s} F(s) ds$	$\cos(\omega t + \theta)$	$\frac{s\cos\theta - \omega\sin\theta}{s^2 + \omega^2}$
Time periodicity	f(t) = f(t + nT)	$\frac{F_1(s)}{1-e^{-sT}}$	$e^{-at}\sin\omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$
Initial value	f(0)	$\lim_{s\to\infty} sF(s)$	-	$(s+a)+\omega$ s+a
Final value	$f(\infty)$	$\lim_{s \to 0} sF(s)$	$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$
Convolution	$f_1(t)*f_2(t)$	$F_1(s)F_2(s)$	*Defined for $t \ge 0$; $f(t) = 0$, for $t < 0$.	

*Defined for $t \ge 0$; f(t) = 0, for t < 0.

a) Simple poles:

$$X(s) = \frac{N(s)}{(s+p_1)(s+p_2)...(s+p_n)}$$

Assume $p_i \neq p_j$ with all $i \neq j$.

$$X(s) = \frac{k_1}{s+p_1} + \frac{k_2}{s+p_2} + \dots + \frac{k_n}{s+p_n}$$

$$k_i = X(s)(s+p_i) \bigg|_{s = -p_i}$$

$$x(t) = (k_1 e^{-p_1 t} + k_2 e^{-p_2 t} + \dots + k_n e^{-p_n t}) 1(t)$$

b) Repeated poles:

$$X(s) = X_1(s) + \frac{k_1}{s+p} + \frac{k_2}{(s+p)^2} + \dots + \frac{k_n}{(s+p)^n}$$

 $X_1(s)$ does not have a pole at s = -p.

$$k_{n-m} = \frac{1}{m!} \frac{d^m}{ds^m} [X(s)(s+p)^n] \Big|_{s = -p}$$

$$L^{-1} \left\{ \frac{1}{(s+a)^n} \right\} = \frac{t^{n-1}e^{-at}}{(n-1)!} u(t)$$

$$x(t) = \left[x_1(t) + \sum_{i=1}^n k_i \frac{t^{i-1}e^{-pt}}{(i-1)!} \right] 1(t)$$

c) Complex poles:

$$X(s) = X_1(s) + \frac{A_1s + A_2}{s^2 + as + b}$$

 $X_1(s)$ does not have the same complex poles.

$$s^2 + as + b = (s + \alpha)^2 + \beta^2$$

$$A_1s + A_2 = A_1(s + \alpha) + B_1\beta$$

$$x(t) = [x_1(t) + (A_1 cos(\beta t) + B_1 sin(\beta t))e^{-\alpha t}]1(t)$$

Differential equation with constant coefficients

First order DE:

$$\dot{x} + ax = by$$

Differential equation with constant coefficients

Second-order DE:

$$\ddot{x} + a\dot{x} + bx = cy$$