2D heat equation

Aditya Bhandari

May 2024

The following equation is the heat equation in two dimensions

$$\frac{\partial u}{\partial t} = \alpha \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$
$$u(t, x, y) \quad t \in [0, 1]$$
$$u(t, x, 0) = u(t, 0, y) = 1$$
$$u(0, x, y) = \delta_{x0} + \delta_{x1}$$
$$x \in [0, 1] \quad y \in [0, 1]$$

$$\Rightarrow \frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} = \alpha \{ \frac{u_{i+1,j}^{n+1} + u_{i+1,j}^n - 2(u_{i,j}^{n+1} + u_{i,j}^n) + u_{i-1,j}^{n+1} + u_{i-1,j}^n}{2(\Delta x)^2} + \frac{u_{i,j+1}^{n+1} + u_{i,j+1}^n - 2(u_{i,j}^{n+1} + u_{i,j}^n) + u_{i,j-1}^{n+1} + u_{i,j-1}^n}{2(\Delta y)^2} \}$$

$$r_x = \frac{\alpha \Delta t}{(\Delta x)^2} , \quad r_y = \frac{\alpha \Delta t}{(\Delta y)^2}$$

$$\Rightarrow u_{i,j}^{n+1} - u_{i,j}^n = \frac{r_x}{2} \{u_{i+1,j}^{n+1} + u_{i+1,j}^n - 2(u_{i,j}^{n+1} + u_{i,j}^n) + u_{i-1,j}^{n+1} + u_{i-1,j}^n\} + \frac{r_y}{2} \{u_{i,j+1}^{n+1} + u_{i,j+1}^n - 2(u_{i,j}^{n+1} + u_{i,j}^n) + u_{i,j-1}^{n+1} + u_{i,j-1}^n\} \}$$

$$\Rightarrow u_{i-1,j}^{n+1} \{\frac{-r_x}{2}\} + u_{i,j-1}^{n+1} \{\frac{-r_y}{2}\} + u_{i,j}^{n+1} \{1 + r_x + r_y\} + u_{i,j+1}^{n+1} \{\frac{-r_y}{2}\} + u_{i+1,j}^n \{\frac{-r_x}{2}\} = d_{i,j}^n$$

$$where, \quad d_{i,j}^n = u_{i-1,j}^n \{\frac{r_x}{2}\} + u_{i,j-1}^n \{\frac{r_y}{2}\} + u_{i,j-1}^n \{1 - r_x - r_y\} + u_{i,j+1}^n \{\frac{r_y}{2}\} + u_{i+1,j}^n \{\frac{r_x}{2}\} \}$$

$$\Rightarrow au_{i-1,j}^{n+1} + bu_{i,j-1}^{n+1} + cu_{i,j}^{n+1} + bu_{i,j+1}^{n+1} + au_{i+1,j}^{n+1} = d_{i,j}^n$$

$$where, a = \frac{-r_x}{2}$$

$$b = \frac{-r_y}{2}$$

$$c = 1 + r_x + r_y$$

When the x-axis, y-axis, and time t are divided into p,q, and td divisions respectively. Note that for boundary points aka for values of form $u_{i,q}^{n+1}$ the value after c is not b but replaced by 0 instead. Similarly, for boundary points aka for values of form $u_{k,0}^{n+1}$ the value before c is not b but replaced by 0 instead.

Γ	3	b	0	0	0	0	0	0	0				0	0	a	0	0	0	0	0	0	0				0	$\begin{bmatrix} 0 \end{bmatrix}$	$u_{0,0}^{n+1}$]	$\int d_{0,0}^n$	
l	5	c	b	0	0	0	0	0	0				0	0	0	a	0	0	0	0	0	0				0	0	$u_{0,1}^{n+1}$		$d_{0,1}^n$	
)	b	c	b	0	0	0	0	0				0	0	0	0	a	0	0	0	0	0				0	0	$u_{0,2}^{n+1}$		$d_{0,2}^n$	
.																							•								
.				•			•			•	•												•		•		.	•			
)	0			0	b	c	0	0	0	0	0			0	0	0	a	0	0	0	0	•		0	0	0	$u_{0,q}^{n+1}$		$d_{0,q}^n$	
	ı	0	0			0	0	c	b	0	0	0	0			0	0	0	a	0	0	0	0			0	0	$u_{1,0}^{n+1}$		$d_{1,0}^n$	
)	a	0	0			0	b	c	b	0	0	0	0			0	0	0	a	0	0	0			0	0	$u_{1,1}^{n+1}$		$d_{1,1}^n$	
()	0	a	0	0			0	b	c	b	0	0	0	0			0	0	0	a	0	0			0	0	$u_{1,2}^{n+1}$	_	$d_{1,2}^n$	
				•							•	•											•						=		
.				•			•			•	•												•				.	.			
()	0	0	0	0			0	0	a	0	0	0	0			0	b	c	0	0	0	0	0		0	a	$u_{p-1,q}^{n+1}$		$d_{p-1,q}^n$	
)	0	0	0	0			0	0	0	a	0	0	0	0			0	0	c	b	0	0	0	0		0	$u_{p,0}^{n+1}$		$d_{p,0}^n$	
											•																.				
.				•			•			•	•												•		•		.				
)	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0	0	a	0		0	b	c	b	0	$u_{p,q-2}^{n+1}$		$d_{p,q-2}^n$	
)	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0	0	0	a	0	•	0	b	c	b	$u_{p,q-1}^{n+1}$		$d_{p,q-1}^n$	
)	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0	0	0	0	a	0		0	b	c	$u_{p,q}^{n+1}$		$d_{p,q}^n$	

$ \begin{bmatrix} c & b & 0 & 0 & 0 & a & 0 & 0 & 0 & 0 & 0 & 0$	$\lceil d_{0,0}^n \rceil$
$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$	1 ' 1
$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} d_{0,1}^n \\ m \end{vmatrix}$
$ u ^{n+1}$	$d_{0,2}^n$
$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{0,3}^n$
$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{0,4}^n$
	$d_{0,5}^n$
$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{1,0}^n$
$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{1,1}^n$
$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{1,2}^n$
$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{1,3}^n$
$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{1,4}^n$
$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{1,5}^n$
$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{2,0}^n$
$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{2,1}^n$
$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{2,2}^n$
$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{2,3}^n$
$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{2,4}^n$
$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{2,5}^n$
$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{3,0}^n$
$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{3,1}^n$
$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{3,2}^n$
$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{3,3}^n$
$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{3,4}^n$
$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{3,5}^n$
$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{4,0}^n$
$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{4,1}^n$
$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{4,2}^n$
$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{4,3}^n$
$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{4,4}^n$
$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{4,5}^n$
$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{5,0}^n$
$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{5,1}^n$
$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{5,2}^n$
$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{5,3}^n$
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$d_{5,4}^n$
$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{5,5}^n$
$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	Г ,]

ALGORITHM

- 1) Start
- 2) Define p,q, and td divisions of x,y, and t respectively.
- 3) Define α which is thermal diffusivity.
- 4) Define ti,tf, xi, xf, yi, and yf where i stands for initial and f stands for final.
- 5) Set $dx = \frac{xf xi}{p}$ and x(n) = xi + n.dx
- 6) Set $dy = \frac{yf yi}{q}$ and y(n) = yi + n.dy
- 7) Set $dt = \frac{tf ti}{td}$ and t(n) = ti + n.dt
- 8) Set $rx = \frac{\alpha dt}{(dx)^2}$, $ry = \frac{\alpha dt}{(du)^2}$
- 9) set al= $\frac{-rx}{2}$, bl= $\frac{-ry}{2}$, cl= 1+rx+ry
- 10) Define a zero matrix of dimensions p+1 x q+1 x td+1 of name fs.
- 11) Set i=2 and repeat steps 12-15 till i < q+1
- 12) Set j=2 and repeat steps 13,14 till $j \le p+1$
- 13) set $fs(i,j,1) = \sin(\pi x(j-1)).\sin(\pi y(i-1))$
- 14) j=j+1
- 15) i=i+1
- 16) Set ptr=q+2
- 17) Define zero matrix ls of dimensions $(p+1,q+1) \times (p+1,q+1)$
- 18) Set ls(1,1)=cl, ls(1,2)=bl and ls(1,q+2)=al
- 19) Set r=2 and repeat steps 20-24 till r <= (p+1).(q+1)-1
- 20) Set ls(r,r-1)=bl, ls(r,r)=cl, ls(r,r+1)=bl
- 21) if $ptr \le (p+1) \cdot (q+1)$ then set ls(r,ptr) = al
- 22) if r-q-1>= 1 then set ls(r,r-q-1) = al
- 23) if mod(r,q+1)=0 then set ls(r,r-1)=0 and if mod(r,q+1)=q then set ls(r,r+1)=0
- 24) r=r+1 and ptr=ptr+1
- $25) \; set \; ls((p+1).(q+1),(p+1).(q+1)) = cl \; , \; ls((p+1).(q+1),(p+1).(q+1)-1) = bl \; and \; ls((p+1).(q+1),(p+1).(q+1)-q-1) = al \; and \; zero \; matrix \; rs \; of \; dimensions \; (p+1).(q+1) \; x \; 1$
- 26) Set tt=1 and repeat steps 27-47 till tt < =td+1
- 27) Set row = 1
- 28) Set i=1 and repeat steps 29-37 till i < p+1
- 29) Set j=1 and repeat steps 30-36 till $j \le q+1$
- 30) Set xc=i and yc=j
- 31) Set

$$d_{i,j}^n = u_{i-1,j}^n \{ \frac{r_x}{2} \} + u_{i,j-1}^n \{ \frac{r_y}{2} \}$$
 (1)

$$+u_{i,j}^{n}\left\{1-r_{x}-r_{y}\right\}+u_{i,j+1}^{n}\left\{\frac{r_{y}}{2}\right\}+u_{i+1,j}^{n}\left\{\frac{r_{x}}{2}\right\}\tag{2}$$

Where $u_{i,j}^n = fs(yc,xc,tt-1)$, $u_{i-1,j}^n = fs(yc,xc-1,tt-1)$ and so on

- 32) If j=q+1 then remove term $u_{i,j+1}^n\{\frac{r_y}{2}\}$ from $d_{i,j}^n$ and if j=0 then remove term $u_{i,j-1}^n\{\frac{r_y}{2}\}$
- 33) If i=p+1 then remove term $u_{i+1,j}^n\{\frac{r_x}{2}\}$ from $d_{i,j}^n$ and if i=0 then remove term $u_{i-1,j}^n\{\frac{r_x}{2}\}$
- 34) Set rs(row,1) = $d_{i,j}^n$
- 35) set row = row + 1
- 36) j=j+1

- 37) i=i+1
- 38) Set matrix soln= $ls^{-1}.rs$
- 39) set row=1
- 40) set i=1 and repeat steps 41-46 till i < =p+1
- 41) set j=1 and repeat steps 42-45 till j<=q+1
- 42) Set xc=i and yc=j
- 43) Set fs(yc,xc,tt)=soln(row,1)
- 44) set row=row+1
- 45) set j=j+1
- 46) set i=i+1
- 47) tt=tt+1 and set boundary conditions
- 48) The solution is acquired in fs where right along a row denotes increasing x, down a column denotes increasing y and outwards along z axis denotes increasing y
- 49) The solution is acquired in fs
- 50) End