## 1-1.7-9

## EE24BTECH11049 Patnam Shariq Faraz Muhammed

## **QUESTION**

If the points A = (k + 1, 2k), B = (3k, 2k + 3), and C = (5k - 1, 5k) are collinear, then find the value of k.

## **SOLUTION:**

| Variables | Co-ordinates | Formula            |
|-----------|--------------|--------------------|
| A         | (k+1,2k)     | $\binom{k+1}{2k}$  |
| В         | (3k, 2k+3)   | $\binom{3k}{2k+3}$ |
| С         | (5k-1,5k)    | $\binom{5k-1}{5k}$ |

TABLE 0: Variables Used

Points A, B, C are defined to be collinear if

$$Rank (B-A \quad C-A)^T$$

is equal to 1.

$$\begin{pmatrix} B - A & C - A \end{pmatrix}^T = \begin{pmatrix} 2k - 1 & 3\\ 4k - 2 & 3k \end{pmatrix}$$
(0.1)

$$\stackrel{R_2=R_2-2R_1}{\longrightarrow} \begin{pmatrix} k-1 & 3\\ 0 & 3k-6 \end{pmatrix} \tag{0.2}$$

For the rank of the matrix to be 1 it should've one non-zero row. make the elements of the  $2^{nd}$  row zero.

$$\implies 3k - 6 = 0$$
$$\implies k = 2$$



Fig. 0.1