```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb

from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.cluster import KMeans
import warnings
warnings.filterwarnings('ignore')

data = pd.read_excel('/content/Online Retail.xlsx')
data.head()
```

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Coun
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	2010-12-01 08:26:00	2.55	17850.0	Un Kinga
1	536365	71053	WHITE METAL LANTERN	6	2010-12-01 08:26:00	3.39	17850.0	Un Kinga
2	536365	84406B	CREAM CUPID HEARTS	8	2010-12-01 08·26·00	2.75	17850.0	Un Kinar

data.shape

(541909, 8)

data.info()

data.describe().T

	count	mean	std	min	25%	50%	75%	
Quantity	541909.0	9.552250	218.081158	-80995.00	1.00	3.00	10.00	8
UnitPrice	541909.0	4.611114	96.759853	-11062.06	1.25	2.08	4.13	3
CustomerID	406830 N	15287 600570	1713 600303	123/16 00	12052 በበ	15152 00	16701 00	1

data.describe()

```
Quantity
                               UnitPrice
                                             CustomerID
      count 541909.000000 541909.000000
                                          406829.000000
      mean
                  9.552250
                                 4.611114
                                           15287,690570
                218,081158
                                96.759853
                                             1713,600303
       std
             -80995.000000
                            -11062,060000
                                           12346,000000
       min
       25%
                  1.000000
                                 1.250000
                                           13953.000000
       50%
                  3.000000
                                 2.080000
                                           15152.000000
       75%
                                           16791.000000
                 10 000000
                                 4 130000
                                          19297 000000
              90005 000000 39070 000000
       may
"""We see that the "CustomerID" column is currently a floating point value. When we clean the data, we'll cast it into an integer:
Customer Segmentation in Python: A Practical Approach
Output of data.describe()
Also note that the dataset is quite noisy. The "Quantity" and "UnitPrice" columns contain negative values:"""
     \mbox{\tt 'We} see that the "CustomerID" column is currently a floating point value. When we clean
     the data, we'll cast it into an integer:\nCustomer Segmentation in Python: A Practical
     Approach\nOutput of data.describe()\nAlso note that the dataset is quite noisy. The "Qu
     antity" and "UnitPrice" columns contain negative values: "
# Check for missing values in each column
missing values = data.isnull().sum()
print(missing_values)
     InvoiceNo
                         0
     StockCode
                         0
     Description
                      1454
     Quantity
                         0
     InvoiceDate
                         0
     UnitPrice
                         0
     CustomerID
                    135080
     Country
                         0
     dtype: int64
# Drop rows with missing CustomerID
data.dropna(subset=['CustomerID'], inplace=True)
# Remove rows with negative Quantity and Price
data = data[(data['Quantity'] > 0) & (data['UnitPrice'] > 0)]
data['CustomerID'] = data['CustomerID'].astype(int)
# Verify the data type conversion
print(data.dtypes)
     InvoiceNo
                            object
                            object
     StockCode
     Description
                            object
     Quantity
                             int64
     InvoiceDate
                    datetime64[ns]
     UnitPrice
                           float64
     CustomerID
                             int64
     Country
                            object
     dtype: object
snapshot_date = max(data['InvoiceDate']) + pd.DateOffset(days=1)
data['Total'] = data['Quantity'] * data['UnitPrice']
rfm = data.groupby('CustomerID').agg({
    'InvoiceDate': lambda x: (snapshot_date - x.max()).days,
    'InvoiceNo': 'nunique',
```

```
'Total': 'sum'
})
```

rfm.rename(columns={'InvoiceDate': 'Recency', 'InvoiceNo': 'Frequency', 'Total': 'MonetaryValue'}, inplace=True)
rfm.head()

	Recency	Frequency	MonetaryValue	
CustomerID				ıl.
12346	326	1	77183.60	
12347	2	7	4310.00	
12348	75	4	1797.24	
12349	19	1	1757.55	
12350	310	1	334.40	

rfm.describe()

MonetaryValue	Frequency	Recency	
4338.000000	4338.000000	4338.000000	count
2054.266460	4.272015	92.536422	mean
8989.230441	7.697998	100.014169	std
3.750000	1.000000	1.000000	min
307.415000	1.000000	18.000000	25%
674.485000	2.000000	51.000000	50%
1661.740000	5.000000	142.000000	75%
280206.020000	209.000000	374.000000	max

Calculate custom bin edges for Recency, Frequency, and Monetary scores

```
recency_bins = [rfm['Recency'].min()-1, 20, 50, 150, 250, rfm['Recency'].max()]
frequency_bins = [rfm['Frequency'].min() - 1, 2, 3, 10, 100, rfm['Frequency'].max()]
monetary_bins = [rfm['MonetaryValue'].min() - 3, 300, 600, 2000, 5000, rfm['MonetaryValue'].max()]

# Calculate Recency score based on custom bins
rfm['R_Score'] = pd.cut(rfm['Recency'], bins=recency_bins, labels=range(1, 6), include_lowest=True)

# Reverse the Recency scores so that higher values indicate more recent purchases
rfm['R_Score'] = 5 - rfm['R_Score'].astype(int) + 1

# Calculate Frequency and Monetary scores based on custom bins
rfm['F_Score'] = pd.cut(rfm['Frequency'], bins=frequency_bins, labels=range(1, 6), include_lowest=True).astype(int)
rfm['M_Score'] = pd.cut(rfm['MonetaryValue'], bins=monetary_bins, labels=range(1, 6), include_lowest=True).astype(int)
```

Print the first few rows of the RFM DataFrame to verify the scores
print(rfm[['R_Score', 'F_Score', 'M_Score']].head(10))

	R_Score	F_Score	M_Score
CustomerID			
12346	1	1	5
12347	5	3	4
12348	3	3	3
12349	5	1	3
12350	1	1	2
12352	4	3	4
12353	2	1	1
12354	2	1	3
12355	2	1	2
12356	4	2	4

```
# Extract RFM scores for K-means clustering
X = rfm[['R_Score', 'F_Score', 'M_Score']]
\# Calculate inertia (sum of squared distances) for different values of k
inertia = []
for k in range(2, 11):
    kmeans = KMeans(n_clusters=k, n_init= 10, random_state=42)
    kmeans.fit(X)
    inertia.append(kmeans.inertia_)
# Plot the elbow curve
plt.figure(figsize=(8, 6),dpi=150)
plt.plot(range(2, 11), inertia, marker='o')
plt.xlabel('Number of Clusters (k)')
plt.ylabel('Inertia')
plt.title('Elbow Curve for K-means Clustering')
plt.grid(True)
plt.show()
```



```
# Perform K-means clustering with best K
best_kmeans = KMeans(n_clusters=4, n_init=10, random_state=42)
rfm['Cluster'] = best_kmeans.fit_predict(X)

# Group by cluster and calculate mean values
cluster_summary = rfm.groupby('Cluster').agg({
    'R_Score': 'mean',
```

plt.show()

```
'F_Score': 'mean',
    'M_Score': 'mean'
}).reset index()
print(cluster_summary)
        Cluster R_Score F_Score M_Score
            0 4.669811 3.188679 3.764151
     1
             1 3.027290 1.893762 3.115984
     2
              2 1.442263 1.061201 1.505774
              3 3.878194 1.083475 1.602215
     3
colors = ['#3498db', '#2ecc71', '#f39c12','#C9B1BD']
# Plot the average RFM scores for each cluster
plt.figure(figsize=(10, 8),dpi=150)
# Plot Avg Recency
plt.subplot(3, 1, 1)
bars = plt.bar(cluster_summary.index, cluster_summary['R_Score'], color=colors)
plt.xlabel('Cluster')
plt.ylabel('Avg Recency')
plt.title('Average Recency for Each Cluster')
plt.grid(True, linestyle='--', alpha=0.5)
plt.legend(bars, cluster_summary.index, title='Clusters')
# Plot Avg Frequency
plt.subplot(3, 1, 2)
bars = plt.bar(cluster_summary.index, cluster_summary['F_Score'], color=colors)
plt.xlabel('Cluster')
plt.ylabel('Avg Frequency')
plt.title('Average Frequency for Each Cluster')
plt.grid(True, linestyle='--', alpha=0.5)
plt.legend(bars, cluster_summary.index, title='Clusters')
# Plot Avg Monetary
plt.subplot(3, 1, 3)
bars = plt.bar(cluster_summary.index, cluster_summary['M_Score'], color=colors)
plt.xlabel('Cluster')
plt.ylabel('Avg Monetary')
plt.title('Average Monetary Value for Each Cluster')
plt.grid(True, linestyle='--', alpha=0.5)
plt.legend(bars, cluster_summary.index, title='Clusters')
plt.tight layout()
```


Percentage of Customers in Each Cluster

