

PCT/AU98/00380

REC'D	16 JUN 1998
WFO	PCT

**Patent Office
Canberra**

I, KIM MARSHALL, MANAGER EXAMINATION SUPPORT AND SALES, hereby certify that the annexed is a true copy of the Provisional specification in connection with Application No. PP 1460 for a patent by THE COUNCIL OF THE QUEENSLAND INSTITUTE OF MEDICAL RESEARCH filed on 22 January 1998.

I further certify that the annexed specification is not, as yet, open to public inspection.

PRIORITY DOCUMENT

WITNESS my hand this First
day of June 1998

KIM MARSHALL
MANAGER EXAMINATION SUPPORT AND
SALES

The Council of The Queensland Institute of Medical Research

A U S T R A L I A
Patents Act 1990

PROVISIONAL SPECIFICATION

for the invention entitled:

"A novel gene and uses therefore-IIb"

The invention is described in the following statement:

- 1A -

A NOVEL GENE AND USES THEREFOR-IIb

FIELD OF THE INVENTION

5

The present invention relates generally to a novel human gene and to derivatives and mammalian, animal, avian, insect, nematode, and microbial homologues thereof. The present invention further provides pharmaceutical compositions and diagnostic agents as well as genetic molecules useful in gene replacement therapy and recombinant molecules useful in protein replacement 10 therapy.

Bibliographic details of the publications referred to by author in this specification are collected at the end of the description. Sequence Identity Numbers (SEQ ID NOS.) for the nucleotide and amino acid sequences referred to in the specification are defined after the bibliography.

15

BACKGROUND OF THE INVENTION

The increasing sophistication of recombinant DNA technology is greatly facilitating research and development in the medical and allied health fields. There is growing need to develop 20 recombinant and genetic molecules for use in diagnosis, conventional pharmaceutical preparations as well as gene and protein replacement therapies.

In work leading up to the present invention, the inventors sought to identify and clone human genes which might be useful as potential diagnostic and/or therapeutic agents. One area of 25 particular interest is in the field of signal transduction.

Knowledge of cellular interaction in the control of cell proliferation is essential in the rational design of specific therapeutic strategies aimed at controlling proliferative disorders. Such proliferative disorders including a range of cancers, inflammatory conditions and atherosclerosis. 30 An important aspect of cellular interaction is in signal transduction *via* receptors to intracellular transducers. One key signal transducer is Ras which couples the receptors for diverse

extracellular signals to different effectors. Ras directly activates the downstream kinase Raf which in turn induces the mitogen activated protein kinase (MAPK) cascade.

The Ras is an example of a guanine nucleotide exchange factor (GEF). A mutation in a GEF 5 such as Ras has been implicated in development of a range of cancers and tumours. There is a need, therefore, to identify new GEFs and to develop therapeutic and diagnostic protocols based on modulating function of the GEF singalling pathways.

SUMMARY OF THE INVENTION

10

Throughout this specification, unless the context requires otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element or integer or group of elements or integers but not the exclusion of any other element or integer or group of elements or integers.

15

One aspect of the present invention contemplates an isolated nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding an amino acid sequence having homology to a guanine nucleotide exchange factor (GEF) or a derivative of said gene regulator.

20

Another aspect of the present invention is directed to an isolated nucleic acid molecule comprising a sequence of nucleotides or a complementary form thereof selected from:

- (i) a nucleotide sequence set forth in SEQ ID NO:1;
- 25 (ii) a nucleotide sequence encoding an amino acid sequence set forth in SEQ ID NO:2;
- (iii) a nucleotide sequence having at least about 40% similarity to the nucleotide sequence of (i) or (ii); and
- (iv) a nucleotide sequence capable of hybridizing under low stringency conditions to the nucleotide sequence set forth in (i), (ii) or (iii).

30

Even yet another aspect of the present invention provides a genetic construct comprising a vector

portion and an animal, more particularly a mammalian and even more particularly a human *mcg7* gene portion, which *mcg7* gene portion is capable of encoding an MCG7 polypeptide or a functional or immunologically interactive derivative thereof.

5 Still yet another aspect of the present invention contemplates a method of detecting a condition caused or facilitated by an aberration in *mcg7*, said method comprising determining the presence of a single or multiple nucleotide substitution, deletion and/or addition or other aberration to one or both alleles of said *mcg7* wherein the presence of such a nucleotide substitution, deletion and/or addition or other aberration may be indicative of said condition or a propensity to develop
10 said condition.

Even still a further aspect of the present invention relates to a method of detecting a condition caused or facilitated by an aberration in *mcg7*, said method comprising screening for a single or multiple amino acid substitution, deletion and/or addition to MCG7 wherein the presence of such
15 a mutation is indicative of or a propensity to develop said condition.

Another aspect of the present invention contemplates a method for detecting MCG7 or a derivative thereof in a biological sample said method comprising contacting said biological sample with an antibody specific for MCG7 or its derivatives or homologues for a time and under
20 conditions sufficient for an antibody-MCG7 complex to form, and then detecting said complex.

BRIEF DESCRIPTION OF THE DRAWINGS

- Figure 1 is a representation showing similarity of MCG7 with GEFs of various organisms.
25
- Figure 2(a) is a representation of the nucleotide sequence and corresponding amino acid sequence of *mcg7*. An alternative spliced exon is shown in the nucleotide sequence in lower case (nucleotides 183-288).
- 30 Figure 2(b) is a representation of the partial nucleotide sequence and corresponding amino acid sequence of *mcg7* but without the exon shown in Fig. 2(a). Amino acids have been numbered

from the first methionine codon (underlined). The cDNA molecules of Fig. 2(a) and Fig.2(b) differ by the inclusion and exclusion of the exon shown in Figure 2(a) in lower case.

Figure 3 is a representation showing a comparison between MCG7 and a homologue from
 5 *Caenorhabditis elegans* using the BESTFIT algorithm. In the figure, the following sequences
 are underlined:

EF-Hand = PROSITE DATABASE NO. PD0C00018

1a nematode	DVDEEDEVEDIEF
10 1b human	DVDGDGHISQEEF
nematode	DHDRDGFISQEEF
1c human	DQNQDGCGISREEM
nematode	DVDMMDGQISKDEL

15 GUANINE NT BINDING REGION = BLOCKS DATABASE NO. BL00720B

2 human	HFVHVAEKLLQLQNFNTLMAVVGGLSHSSISRLKETH
nematode	KFVHVAKHLRKINNFNTLMSVVGGITHSSVARLAKTY

DaG-PE BINDING DOMAIN = PROSITE DATABASE NO. PD0C00379

20 3 human	HNFQESNSLRPVACRHCKALILGIYKQGLKCRACGVNCHKQCKDRLSVEC
nematode	HNFHETTFLPTTCNHCNKLLWGILRQGFCKDCGLAVHSCCKSNAVAEC

Figure 4 is a representation of an alignment of human and a partial (5' UTR and partial coding sequence) murine *mcg7* cDNA (GenBank Acc. No. W71787 and AA237373). The putative
 25 initiation codon is underlined. The murine sequence represents a composite of 2 partial cDNA
 sequences from the EST database (accession numbers W71787 and AA237373). Nucleotide
 differences between human and murine sequences are shown in lower case lettering and identical
 residues are indicated with asterisks.

30 Figure 5 is a representation of further 5' nucleotide and corresponding amino acid sequence for
 human *mcg7*. Nucleotide positions 1-321 were derived from GenBank Acc. No. AC000134 and

- 5 -

nucleotides 322 onwards from Fig. 2(a). Two in-frame initiation codons are underlined. Asterisks denote in-frame stop codons.

Figure 6 is a graphical representation of a GDP release assay. □ Experiment #1 (mean of 5 duplicates). ◇ Experiment #2 (mean of duplicates). The exchange reaction contained 36pmols of GST-MCG (N-terminally truncated; encoded by Construct B in Fig. 7) and 1.6-12.8 pmols of recombinant GST-N-Ras.GDP. Reaction time 6 mins.

Estimated reaction constants:

$$K_m = 2.1 \mu M, V_{max} = 37 \text{ pMol}/6 \text{ min}/36 \text{ pMol} [\text{Expt#1}]$$

$$10 \quad K_m = 1.5 \mu M, V_{max} = 30.3 \text{ pMol}/6 \text{ min}/36 \text{ pMol} [\text{Expt#2}]$$

Figure 7 depicts various recombinant plasmids containing partial or full-length *mcg7*.

15 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding an amino acid sequence having homology to a guanine nucleotide exchange factor (GEF) or a derivative of said gene regulator.

20

More particularly, the present invention is directed to an isolated nucleic acid molecule comprising a sequence of nucleotides or a complementary form thereof selected from:

- (i) a nucleotide sequence set forth in SEQ ID NO:1;
- 25 (ii) a nucleotide sequence encoding an amino acid sequence set forth in SEQ ID NO:2;
- (iii) a nucleotide sequence having at least about 40% similarity to the nucleotide sequence of (i) or (ii); and
- (iv) a nucleotide sequence capable of hybridizing under low stringency conditions to the nucleotide sequence set forth in (i), (ii) or (iii).

30

Preferably, the percentage similarity is at least about 50%. More preferably, the percentage

similarity is at least about 60%.

Reference herein to a low stringency at 42°C includes and encompasses from at least about 1% v/v to at least about 15% v/v formamide and from at least about 1M to at least about 2M salt for 5 hybridisation, and at least about 1M to at least about 2M salt for washing conditions. Alternative stringency conditions may be applied where necessary, such as medium stringency, which includes and encompasses from at least about 16% v/v to at least about 30% v/v formamide and from at least about 0.5M to at least about 0.9M salt for hybridisation, and at least about 0.5M to at least about 0.9M salt for washing conditions, or high stringency, which includes and 10 encompasses from at least about 31% v/v to at least about 50% v/v formamide and from at least about 0.01M to at least about 0.15M salt for hybridisation, and at least about 0.01M to at least about 0.15M salt for washing conditions.

The term "similarity" as used herein includes exact identity between compared sequences at the 15 nucleotide or amino acid level. Where there is non-identity at the nucleotide level, "similarity" includes differences between sequences which result in different amino acids that are nevertheless related to each other at the structural, functional, biochemical and/or conformational levels. Where there is non-identity at the amino acid level, "similarity" includes amino acids that are nevertheless related to each other at the structural, functional, biochemical and/or conformational 20 levels.

The present invention extends to nucleic acid molecules with percentage similarities of approximately 65%, 70%, 75%, 80%, 85%, 90% or 95% or above or a percentage in between. 25 The nucleic acid molecule of the present invention is hereinafter referred to as constituting the "mcg7" gene. The protein encoded by *mcg7* is referred to herein as "MCG7" and is involved in signal transduction.

The present invention extends to the naturally occurring genomic *mcg7* nucleotide sequence or 30 corresponding cDNA sequence or to derivatives thereof. Derivatives contemplated in the present invention include fragments, parts, portions, mutants, homologues and analogues of

MCG7 or the corresponding genetic sequence. Derivatives also include single or multiple amino acid substitutions, deletions and/or additions to MCG7 or single or multiple nucleotide substitutions, deletions and/or additions to *mcg7*. Derivatives also includes modifications to nucleotide bases or amino acid residues to, for example, alter glycosylation sites or amino acid side chains. "Additions" to the amino acid or nucleotide sequences include fusions with other peptides, polypeptides or proteins or fusions to nucleotide sequences. Reference herein to "MCG7" or "*mcg7*" includes references to all derivatives thereof including functional derivatives and immunologically interactive derivatives of MCG7.

- 10 The *mcg7* of the present invention is particularly exemplified herein from humans and in particular from human chromosome 11q13.

The present invention also extends, however, to a range of homologues from, for example, primates, livestock animals (eg. sheep, cows, horses, donkeys, pigs), companion animals (eg. dogs, cats) laboratory test animals (eg. rabbits, mice, rats, guinea pigs), birds (eg. chickens, ducks, geese, parrot), insects, nematodes, eukaryotic microorganisms and captive wild animals (eg. deer, foxes, kangaroos). Reference herein to *mcg7* or MCG7 includes reference to these molecules of human origin as well as novel forms of non-human origin.

- 20 The nucleic acid molecules of the present invention may be DNA or RNA. When the nucleic acid molecule is in DNA form, it may be genomic DNA or cDNA. RNA forms of the nucleic acid molecules of the present invention are generally mRNA.

Although the nucleic acid molecules of the present invention are generally in isolated form, they 25 may be integrated into or ligated to or otherwise fused or associated with other genetic molecules such as vector molecules and in particular expression vector molecules. Vectors and expression vectors are generally capable of replication and, if applicable, expression in one or both of a prokaryotic cell or a eukaryotic cell. Preferably, prokaryotic cells include *E. coli*, *Bacillus sp* and *Pseudomonas sp*. Preferred eukaryotic cells include yeast, fungal, mammalian 30 and insect cells.

Accordingly, another aspect of the present invention contemplates a genetic construct comprising a vector portion and an animal, more particularly a mammalian and even more particularly a human *mcg7* gene portion, which *mcg7* gene portion is capable of encoding an *mcg7* polypeptide or a functional or immunologically interactive derivative thereof.

5

Preferably, the *mcg7* gene portion of the genetic construct is operably linked to a promoter on the vector such that said promoter is capable of directing expression of said *mcg7* gene portion in an appropriate cell.

- 10 In addition, the *mcg7* gene portion of the genetic construct may comprise all or part of the gene fused to another genetic sequence such as a nucleotide sequence encoding glutathione-S-transferase or part thereof.

The present invention extends to such genetic constructs and to prokaryotic or eukaryotic cells

15 comprising same.

It is proposed in accordance with the present invention that MCG7 is a GEF involved in signal transduction. Mutations in *mcg7* or MCG7 may result in defective control of cell proliferation leading to the development of or a propensity to develop various types of cancer.

20

A deletion or aberration in the *mcg7* gene may also be important in the detection of cancer or a propensity to develop cancer. An aberration may be a homozygous mutation or a heterozygous mutation. The detection may occur at the foetal or post-natal level. Detection may also be at the germline or somatic cell level. Furthermore, a risk of developing cancer may 25 be determined by assaying for aberrations in the parents of a subject under investigation.

According to this aspect of the present invention, there is contemplated a method of detecting a condition caused or facilitated by an aberration in *mcg7*, said method comprising determining the presence of a single or multiple nucleotide substitution, deletion and/or addition or other

30 aberration to one or both alleles of said *mcg7* wherein the presence of such a nucleotide substitution, deletion and/or addition or other aberration may be indicative of said condition or

a propensity to develop said condition.

The nucleotide substitutions, additions or deletions may be detected by any convenient means including nucleotide sequencing, restriction fragment length polymorphism (RFLP), polymerase 5 chain reaction (PCR), oligonucleotide hybridization and single stranded conformation polymorphism analysis (SSCP) amongst many others. An aberration includes modification to existing nucleotides such as to modify glycosylation signals amongst other effects.

In an alternative method, aberrations in the *mcg7* gene are detected by screening for mutations 10 in MCG7.

A mutation in MCG7 may be a single or multiple amino acid substitution, addition and/or deletion. The mutation in *mcg7* may also result in either no translation product being produced or a product in truncated form. A mutation may also be an altered glycosylation pattern or the 15 introduction of side chain modifications to amino acid residues.

According to this aspect of the present invention, there is provided a method of detecting a condition caused or facilitated by an aberration in *mcg7*, said method comprising screening for a single or multiple amino acid substitution, deletion and/or addition to MCG7 wherein the 20 presence of such a mutation is indicative of or a propensity to develop said condition.

A particularly convenient means of detecting a mutation in MCG7 is by use of antibodies.

Accordingly another aspect of the present invention is directed to antibodies to MCG7 and its 25 derivatives. Such antibodies may be monoclonal or polyclonal and may be selected from naturally occurring antibodies to MCG7 or may be specifically raised to MCG7 or derivatives thereof. In the case of the latter, MCG7 or its derivatives may first need to be associated with a carrier molecule. The antibodies to MCG7 of the present invention are particularly useful as diagnostic agents.

30

For example, antibodies to MCG7 and its derivatives can be used to screen for wild-type MCG7

or for mutated MCG7 molecules. The latter may occur, for example, during or prior to certain cancer development. A differential binding assay is also particularly useful. Techniques for such assays are well known in the art and include, for example, sandwich assays and ELISA. Knowledge of normal MCG7 levels or the presence of wild-type MCG7 may be important for
5 diagnosis of certain cancers or a predisposition for development of cancers or for monitoring certain therapeutic protocols.

As stated above antibodies to MCG7 of the present invention may be monoclonal or polyclonal or may be fragments of antibodies such as Fab fragments. Furthermore, the present invention
10 extends to recombinant and synthetic antibodies and to antibody hybrids. A "synthetic antibody" is considered herein to include fragments and hybrids of antibodies.

For example, specific antibodies can be used to screen for wild-type MCG7 molecule or specific mutant molecules such as molecules having a certain deletion. This would be important, for
15 example, as a means for screening for levels of MCG7 in a cell extract or other biological fluid or purifying MCG7 made by recombinant means from culture supernatant fluid or purified from a cell extract. Techniques for the assays contemplated herein are known in the art and include, for example, sandwich assays and ELISA.

20 It is within the scope of this invention to include any second antibodies (monoclonal, polyclonal or fragments of antibodies or synthetic antibodies) directed to the first mentioned antibodies discussed above. Both the first and second antibodies may be used in detection assays or a first antibody may be used with a commercially available anti-immunoglobulin antibody. An antibody as contemplated herein includes any antibody specific to any region of wild-type MCG7 or to a
25 specific mutant phenotype or to a deleted or otherwise altered region.

Both polyclonal and monoclonal antibodies are obtainable by immunization of a suitable animal or bird with MCG7 or its derivatives and either type is utilizable for immunoassays. The methods of obtaining both types of sera are well known in the art. Polyclonal sera are less
30 preferred but are relatively easily prepared by injection of a suitable laboratory animal or bird with an effective amount of MCG7 or antigenic parts thereof or derivatives thereof, collecting

- 11 -

serum from the animal or bird, and isolating specific sera by any of the known immunoadsorbent techniques. Although antibodies produced by this method are utilizable in virtually any type of immunoassay, they are generally less favoured because of the potential heterogeneity of the product.

5

The use of monoclonal antibodies in an immunoassay is particularly preferred because of the ability to produce them in large quantities and the homogeneity of the product. The preparation of hybridoma cell lines for monoclonal antibody production derived by fusing an immortal cell line and lymphocytes sensitized against the immunogenic preparation can be done by techniques 10 which are well known to those who are skilled in the art.

Another aspect of the present invention contemplates a method for detecting MCG7 or a derivative thereof in a biological sample said method comprising contacting said biological sample with an antibody specific for MCG7 or its derivatives or homologues for a time and under 15 conditions sufficient for an antibody-MCG7 complex to form, and then detecting said complex.

Preferably, the biological sample is a cell extract from a human or other animal or a bird.

The presence of MCG7 may be accomplished in a number of ways such as by Western blotting 20 and ELISA procedures. A wide range of immunoassay techniques are available as can be seen by reference to US Patent Nos. 4,016,043, 4,424,279 and 4,018,653. These include both single-site and two-site or "sandwich" assays of the non-competitive types, as well as traditional competitive binding assays. These assays also include direct binding of a labelled antibody to a target.

25

Sandwich assays are among the most useful and commonly used assays and are favoured for use in the present invention. A number of variations of the sandwich assay technique exist, and all are intended to be encompassed by the present invention. Briefly, in a typical forward assay, an unlabelled antibody is immobilized on a solid substrate and the sample to be tested brought into 30 contact with the bound molecule. After a suitable period of incubation, for a period of time sufficient to allow formation of an antibody-antigen complex, a second antibody specific to the

antigen, labelled with a reporter molecule capable of producing a detectable signal is then added and incubated, allowing time sufficient for the formation of another complex of antibody-antigen-labelled antibody. Any unreacted material is washed away, and the presence of the antigen is determined by observation of a signal produced by the reporter molecule. The results may either 5 be qualitative, by simple observation of the visible signal, or may be quantitated by comparing with a control sample containing known amounts of hapten. Variations on the forward assay include a simultaneous assay, in which both sample and labelled antibody are added simultaneously to the bound antibody. These techniques are well known to those skilled in the art, including any minor variations as will be readily apparent. In accordance with the present 10 invention the sample is one which might contain MCG7 including cell extract or, tissue biopsy. The sample is, therefore, generally a biological sample comprising biological fluid but also extends to fermentation fluid and supernatant fluid such as from a cell culture.

In the typical forward sandwich assay, a first antibody having specificity for the MCG7 or an 15 antigenic part thereof or a derivative thereof or antigenic parts thereof, is either covalently or passively bound to a solid surface. The solid surface is typically glass or a polymer, the most commonly used polymers being cellulose, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene. The solid supports may be in the form of tubes, beads, discs of microplates, or any other surface suitable for conducting an immunoassay. The binding processes are well- 20 known in the art and generally consist of cross-linking covalently binding or physically adsorbing, the polymer-antibody complex is washed in preparation for the test sample. An aliquot of the sample to be tested is then added to the solid phase complex and incubated for a period of time sufficient (e.g. 2-40 minutes) and under suitable conditions (e.g. 25°C) to allow binding of any subunit present in the antibody. Following the incubation period, the antibody subunit solid 25 phase is washed and dried and incubated with a second antibody specific for a portion of the hapten. The second antibody is linked to a reporter molecule which is used to indicate the binding of the second antibody to the hapten.

An alternative method involves immobilizing the target molecules in the biological sample and 30 then exposing the immobilized target to specific antibody which may or may not be labelled with a reporter molecule. Depending on the amount of target and the strength of the reporter

molecule signal, a bound target may be detectable by direct labelling with the antibody. Alternatively, a second labelled antibody, specific to the first antibody is exposed to the target-first antibody complex to form a target-first antibody-second antibody tertiary complex. The complex is detected by the signal emitted by the reporter molecule.

5

By "reporter molecule" as used in the present specification, is meant a molecule which, by its chemical nature, provides an analytically identifiable signal which allows the detection of antigen-bound antibody. Detection may be either qualitative or quantitative. The most commonly used reporter molecules in this type of assay are either enzymes, fluorophores or radionuclide 10 containing molecules (i.e. radioisotopes) and chemiluminescent molecules.

In the case of an enzyme immunoassay, an enzyme is conjugated to the second antibody, generally by means of glutaraldehyde or periodate. As will be readily recognized, however, a wide variety of different conjugation techniques exist, which are readily available to the skilled artisan. Commonly used enzymes include horseradish peroxidase, glucose oxidase, beta-15 galactosidase and alkaline phosphatase, amongst others. The substrates to be used with the specific enzymes are generally chosen for the production, upon hydrolysis by the corresponding enzyme, of a detectable colour change. Examples of suitable enzymes include alkaline phosphatase and peroxidase. It is also possible to employ fluorogenic substrates, which yield a fluorescent product rather than the chromogenic substrates noted above. In all cases, the 20 enzyme-labelled antibody is added to the first antibody hapten complex, allowed to bind, and then the excess reagent is washed away. A solution containing the appropriate substrate is then added to the complex of antibody-antigen-antibody. The substrate will react with the enzyme linked to the second antibody, giving a qualitative visual signal, which may be further quantitated, usually spectrophotometrically, to give an indication of the amount of hapten which was present 25 in the sample. "Reporter molecule" also extends to use of cell agglutination or inhibition of agglutination such as red blood cells on latex beads, and the like.

Alternately, fluorescent compounds, such as fluorescein and rhodamine, may be chemically coupled to antibodies without altering their binding capacity. When activated by illumination 30 with light of a particular wavelength, the fluorochrome-labelled antibody adsorbs the light energy, inducing a state of excitability in the molecule, followed by emission of the light at a

characteristic colour visually detectable with a light microscope. As in the EIA, the fluorescent labelled antibody is allowed to bind to the first antibody-hapten complex. After washing off the unbound reagent, the remaining tertiary complex is then exposed to the light of the appropriate wavelength the fluorescence observed indicates the presence of the hapten of interest.

5 Immunofluorescence and EIA techniques are both very well established in the art and are particularly preferred for the present method. However, other reporter molecules, such as radioisotope, chemiluminescent or bioluminescent molecules, may also be employed.

As stated above, the present invention extends to genetic constructs capable of encoding MCG7
10 or functional derivatives thereof. Such genetic constructs are also contemplated to be useful in modulating expression of specific genes in which *mcg7* is involved in tissue-specific or temporal regulation.

Accordingly, another aspect of the present invention is directed to a genetic construct comprising
15 a nucleotide sequence encoding a peptide, polypeptide or protein and *mcg7* or a functional derivative or homologue thereof capable of modulating the expression of said nucleotide sequence.

The present invention is further described with reference to the following non-limiting Examples.

- 15 -

EXAMPLE 1

A human gene (designated *mcg7*) was identified and isolated from chromosome 11q13 which encodes a protein that bears striking homology with guanine nucleotide exchange factors (GEFs) 5 from a wide variety of organisms (Fig. 1).

EXAMPLE 2

The composite *mcg7* cDNA sequence is at least 2.4kb in length and Figure 2(a) shows a 10 predicted translation product of at least 609 amino acids beginning at methionine 120. An alternative start site due to alternate exon splicing (indicated in lower case) may yield a protein of 671 amino acids starting at methionine 58 (Fig.2a).

EXAMPLE 3

15

An *mcg7* homologue from *C. elegans* has been identified, the product of which is highly conserved with that of MCG7 (Fig. 3). There are several salient features of the protein which have been underlined in Fig. 3 - namely: a guanine nucleotide binding region, a diacylglycerol binding region, and "EF-hand"-calcium binding regions. In addition, there are several potential 20 cAMP, protein kinase C, and casein kinase II phosphorylation sites, as well as a number of potential sites for glycosylation (not indicated).

EXAMPLE 4

25 A number of partial human and murine EST clones exist for *mcg7*. The GenBank database contains a cDNA (Acc. no. Y12336) encoding a full-length open reading frame (ORF) for human *mcg7* as well as a partial murine *mcg7* ORF (Y12339). In addition, the complete genomic sequence of the human *mcg7* gene is contained within GenBank entry AC000134.

30

EXAMPLE 5

The best characterised GEFs are members of the family of *ras* oncproteins, which play a pivotal role in signal transduction and when mutated are responsible for tumour development. A variety 5 of therapeutic regimes for cancer treatment have been designed to specifically interfere with the *ras* signalling pathways. There is potential, therefore that the product of *mcg7* could also be a target for such clinical strategies.

EXAMPLE 6

10

The nucleotide sequence for *mcg7* cDNA was extended 5' with genomic DNA sequence from Genbank accession number AC000134 (positions 1-321) and analysed for additional coding sequence 5' to the putative initiation codon (nt 681-683) (Fig. 5). An additional in-frame ATG occurs at position nt 495-497 when the alternatively splice exon (position nt 504-609) is present 15 (also shown in Fig. 2(a)). This closely matches the Kozak consensus. When this exon is absent, then the ATG is not in-frame and other possible initiation codons are absent (resulting translation shown in lower case lettering) (also shown in Fig. 2(b)). Further evidence that the initiation codon at position nt 681-683 is the true initiation site is given in Figure 4.

- 20 Alignment of human and a partial murine *mcg7* cDNA sequences is shown in Figure 4. The putative initiation codon is at position nt 360-362. Both murine ESTs appear to have an upstream in-frame stop codon at position nt 326-328, downstream of the differentially spliced exon and the sequence alignment thus suggests that this region represents the 5' UTR of *mcg7*.
- 25 Furthermore, similarity with the *C. elegans* homologue (Fig.13) strongly suggest that the ATG codon at position nt 360-362 encodes the N-terminus of MCG7.

EXAMPLE 7

Figure 6 shows data from experiments indicating that a truncated version of MCG7 when expressed as a GST fusion protein (construct B in Fig. 7) can function as a Ras-guanine nucleotide exchange factor. In brief, Ras (unprocessed and as a GST fusion protein) is loaded with ³H-GDP then incubated in the presence of excess cold GTP ± GST-MCG7. Full details of this assay can be found in Porfiri et al. J. Biol. Chem. 269, 22672-22677 (1994).

EXAMPLE 8

10

Nucleotide sequence data generated from cosmid clone cSRL-20h12 with the T7 primer (Promega, and Applied Biosystems Incorporated dye terminator sequencing kit) was aligned to the GenBank Expressed Sequence Tag (EST) database using the program BLASTN (Altschul *et al.*, 1990) and was found to match GenBank entries T78563 (clone 113434) TO9103 (clone 15 HIBBP12) and AA035643 (clone 471819). EST clones 113434 and 471819 were obtained from Genome Systems Inc. and these DNAs were sequenced on both strands with gene-specific primers (Table 1) to generate the cDNA sequence of *mcg7* shown in Figures 2(a) and (b).

The cDNA sequence of *mcg7* was translated in all possible reading frames and compared to the 20 GenBank non-redundant protein database using the program BLASTX (Altschul *et al.*, 1990) and the coding region was assigned on the basis of showing homology to the *C. elegans* protein F25B3.3 (Figure 3). The *mcg7* cDNA composite was suspected to contain a single nucleotide error that originated from clone 471819 and the correct nucleotide sequence was, therefore, sought by reverse transcription-polymerase chain reaction (RT-PCR) of the cDNA fragment 25 from a human cDNA pool. Total RNA was extracted from a human lymphoblastoid cell line using an RNeasy Mini Kit (Qiagen). cDNA synthesis was conducted with the reverse transcriptase Superscript II RNaseH- (GIBCO, BRL) and random hexamers using the procedure recommended by the manufacturer (GIBCO, BRL). One fortieth of the cDNA mix was subjected to 35 cycles of PCR using the following cycling conditions: 94°C for 30 seconds, 58°C 30 for 30 seconds and 72°C for 90 seconds. The 50μl reaction mix consisted of 1x reaction buffer (Dade Scientific), 2mM dNTP mix, 20pmol of primers (see Table 1) MCG7UF (within the

- 18 -

variably spliced exon of Figure 2(b), between nucleotide positions 184-201) and SGCADRV2 (between nucleotide positions 866-846 of Figure 2(a)) and 10 units of Dynazyme (Dade Scientific). The resulting PCR product was cloned into the pGEM-T vector (Promega) using standard methodology and sequenced using gene-specific primers. The correct nucleotide sequence of *mcg7* (as shown in Figure 2(a)) matches that of the recently release GenBank entry Y12336. A partial mouse *mcg7* cDNA sequence can also be found in GenBank entry Y12339.

EXAMPLE 9

10 The coding sequence of *mcg7* was cloned into vectors for expression in both bacterial and mammalian cells. In addition to the full-length constructs, the deletion constructs shown in Figure 7 were designed to retain the guanine nucleotide exchange (GEF) domain. For prokaryotic expression, the *mcg7* coding region was inserted downstream of and in-frame with the Sj26 cassette of the pGEX (Pharmacia) series of vectors (Smith and Johnson, 1988) using 15 standard cloning techniques (Sambrook *et al*, 1989). For mammalian expression, the *mcg7* coding sequence was first myc-tagged at the N-terminus and then ligated into the expression vector pc Exv-n using standard cloning techniques. Ligation junctions of the constructs were sequences as the cloning strategies inadvertently changed or introduced additional amino acids as shown below.

20

Construct (A): EST clone 113434 was digested with *Apa*I (Figure 2(a), nucleotide positions 1022 to >2416 (within the vector)), blunt-ended with T4 DNA polymerase according to the specifications of the manufacturer (New England Biolab) and ligated into the *Sma*I site of pGEX-3X.

25

Sequence of the pGEX and *mcg7* (underlined) junction:

pGEX-3X	mcg7 (1022)
Sj26 ... GGG ATC CCC	<u>CTG GTC</u> [SEQ ID NO:5]
additional amino acids	Gly Ile Pro

30

Construct (B): EST clone 113434 was digested with *Eco*RI (Figure 2(a), nucleotide positions

- 19 -

<695 (within the vector) to 1711) and ligated into the *Eco*RI site of pGEX-1.

Sequence of the pGEX and *mcg7* (underlined) junction:

pGEX-1	<i>mcg7</i> (695)
5	Sj26 ... GAA TTC GGC ACG AGC <u>CGA CGG</u> [SEQ ID NO:6]
	additional amino acids Glu Phe Gly Thr Ser

Construct (C): full-length *mcg7*: The pGEM-T clone containing the 5' end of the *mcg7* coding region was digested with *Apal* (subsequently blunt-ended with T4 DNA polymerase) and *Bst*XI to liberate the fragment between nucleotide positions 336 and 830 of Figure 2(a). Clone 113434 was digested with *Bst*XI and *Hind*III (vector derived) to liberate a fragment between nucleotide positions 830 > and 2416 (vector derived) of Figure 2(a). A pGEM-11zf vector (Promega) containing the *myc*-tag (constructed by J. Hancock) was digested with *Apal* (subsequently blunt-ended with T4 DNA polymerase) and *Hind*III, and ligated with the 2 inserts described above.

15

Sequence of the *myc*-tag/*mcg7* junction:

```
-----myc-tag-----      vector BamHI mcg7 5' UTR (337)      start
ATGGAGCAGAAGCTGATCTCCGAGGAGGACCTG CCCGGGGCAGCTggatccG CAGCCCACCCCGGGCCGGCGGCCATG
M E Q K L I S E E D L P G A A G S A A H P A P A A M
-----additional amino acids-----
```

20

The *myc*-tagged full-length *mcg7* insert in pGEM-11zf [SEQ ID NO:7] was then excised with *Sac*I and *Hind*III (both vector derived) and directionally cloned into the mammalian expression vector pEXV (Beranger *et al.* 1994).

25

Construct (D): Construct (C) in pGEM-11zf was sequentially digested with *Hind*III (this site was subsequently blunt-ended with T4 DNA polymerase) then *Bam*HI, and ligated into pGEX-2T digested with *Bam*HI and *Sma*I. Digestion with *Bam*HI, and ligated into pGEX-2T digested with *Bam*HI and *Sma*I. Digestion with *Bam*HI removed the *myc*-tag of Construct (C).

30

- 20 -

Sequence of the pGEX and *mcg7* [SEQ ID NO:9] (underlined) junction:

5

pGEX-2 BamHI *mcg7* (337)
 Sj26...gga tcc GCA GCC CAC CCC GGG CCG GCG GCC ATG
 Gly Ser Ala Ala His Pro Ala Pro Ala Ala Met
 -----additional amino acids-----

EXAMPLE 10

- 10 Overnight bacterial cultures containing the pGEX plasmid were used to inoculate 500ml of Luria Broth media containing 50μg/ml ampicillin. The cultures were grown to an OD of ~0.8 and then induced with 1mM of IPTG for up to 3 hours at 37°C. The bacteria were pelleted and resuspended in 15 ml of STE buffer (10mM Tris pH 8.0, 150 mM NaCl and 1mM EDTA) with 1 mg/ml lysozyme. The mixture was left on ice for more than 1 hour and subsequent steps were
- 15 performed at 4°C. Protease inhibitors aprotinin, pepstatin and leupeptin were added at final concentrations of 25μg/ml, prior to the addition of Triton-X-100 (2% v/v final) and n-lauroyl sarcosine (1.5% final). The lysate was sonicated for ~1 minute and pelleted at 14,000 x g for 15 minutes. 100 μl of 50% w/v glutathione-sephadex bead slurry (in PBS) was added per ml of supernatant. Following a 30 minute incubation at 4°C, the beads were washed three times with
- 20 NETN (20mM Tris-HCl pH 8.0, 100mM NaCl, 1mM EDTA, 0.5% NP40), once with NETN-HS (equivalent to NETN but with 1M NaCl), and once in NETN. The bound protein was directly analysed by SDS-polyacrylamide gel electrophoresis (PAGE) as described below or the bound protein was eluted from the beads with the following elution buffer (50mM Tris pH 8.0, 150mM NaCl, 5mM MgCl₂, 1mM DTT, 10mM reduced glutathione) for use in GDP release
- 25 assays.

EXAMPLE 11

- 30 Twenty microlitres of GST-sepharose-bound MCG7 were added to an equal volume of 2 x sample loading dye (100mM Tris pH6.8, 2% v/v mercaptoethanol, 4% w/v SDS, 0.2% w/v bromophenol blue, 20% v/v glycerol), boiled for 5 min and loaded onto a 7.5% w/v SDS-PAGE

- 21 -

gel (Sambrook *et al.*, 1989). The Coomassie brilliant blue stained gel (Sambrook *et al.*, 1989) typically displayed a protein doublet, running between 87-95 kDa consisting of the MCG7-GST fusion and a slightly smaller, co-purified contaminating *E. coli* protein of ~105kDa. The calculated molecular weight of full-length MCG7 is 77.5 kDa (Construct (D)) and the GST component has a molecular weight of 26kDa hence the recombinant protein runs slightly smaller than predicted. A Western blot of the same gel probed with anti-GST antibody yields an MCG7-specific band at the same position as that of the stained gel.

EXAMPLE 12

10

Assumptions: (a) GST-Ras molecular weight = 50 kD; (b) Concentration of GST-Ras solution = 1mg/ml = $20\mu\text{M}$; (c) [^3H]-GDP is 1mCi/ml and 13.3Ci/mmol, therefore [H]-GDP concentration = $75\ \mu\text{M}$ and 1pmol [^3H]-GDP=15,466 cpm; (d) Elution buffer = Buffer E = 20 mM Tris-Cl, pH7.5; 50mM NaCl; 5mM MgCl₂; 1mM DTT (added just before use). Buffer E + BSA= Buffer E+1mg/ml BSA (added just before use).

Mix together, in the following order and mix well after each addition:

10 μl (=10 μg) GST-Ras (@1mg/ml in Buffer E), 463 μl Buffer E + BSA, 7 μl [^3H]-GDP, 10ml 490 μM EDTA. Incubate @ RT for 10 min. Add 10 μl 0.5 M MgCl₂ and mix well. Incubate 20 @ RT for 10 min. Place on ice. During the first incubation the excess EDTA concentration is 5mM, during the second incubation the excess Mg concentration is 5mM. The [^3H]-GDP concentration is 1 μM and the final concentration of GST-Ras is 400nM. Thus 20ml of the final mix will contain 8pmol of GST-Ras protein. Specific activity of GDP is 15,446 cpm/pmol x (1/1.4) = 11,047 cpm/pmol.

25

EXAMPLE 13

Exchange Ras with labelled GDP as above. Add unlabelled GTP (stock = 100mM, pH7) to 1 mM. Adjust Mg concentration by adding 5 μl 0.5 EDTA to labelled Ras, 5 μl 0.5M EDTA to 30 500 μl MCG7, and 5 μl 0.5M EDTA to 500 μl Buffer E + BSA. On ice set up microfuge tubes with 40 μl Ras-GDP (in triplicate) with 40 μl MCG7 or Buffer E + BSA (control). Transfer tubes

to heat block @ 25°C and incubate for 10, 20 or 30 min. Stop exchange reactions with 1ml of ice cold buffer E and place on ice. Pre-soak nitrocellulose filters, pore size 45 μ m, in Buffer E. Assemble the vacuum manifold apparatus (Millipore) with wet filters and plug the wells with rubber bungs. Switch on the vacuum pump. Remove the first plug, aliquot the sample and once
5 it has been sucked through, wash the filter with 10ml of ice cold Buffer E. Remove next plug etc and continue round the manifold. Take manifold apart. Pin the filters to a pin board reserved for [3 H]. Air dry. Take up in 4ml scintillation fluid and count. These studies have been carried out with a truncated MCG7-GST fusion protein (amino acids 341 of Figure 2a to stop encoded within construct B).

10

Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications. The invention also includes all of
15 the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations of any two or more of said steps or features.

- 23 -

TABLE 1
***mcg7*-specific oligonucleotides**

name	sequence (5' to 3')	SEQ ID NOs.
M1044R	GGA CAA AGT GTG TGA TGA ACC	SEQ ID NO:11
MCG7-GEF-REV2	CTC ATC CTC CGT CTG ATA CTG	SEQ ID NO:12
M7R	GTA GAT GTG GAT CAG CTT GG	SEQ ID NO:13
MCG7 CA FOR	AGG TGG AGA ATG GTC AAGG	SEQ ID NO:14
MCG7-GEF-REV	GTC ATA GTC TGT CTC CTA CT	SEQ ID NO:15
MCG7 GEF FOR	ACA TAG ACA GCG TGC CTA CC	SEQ ID NO:16
MCG7-PKC-REV	TAC AAC CTT AGG GAC ACC AG	SEQ ID NO:17
MCG7-PKC-FOR	TGC TGA GCC TGC TCA CGG TG	SEQ ID NO:18
T09103F	CAA GTG AAC AGC ACG TCC	SEQ ID NO:19
M7F	GAC TAT CTC AAG GAC CAG CTG	SEQ ID NO:20
MCG7UF	GGT TCG GTC CGA GCC CGG	SEQ ID NO:21
SGCADRV2	GGA GCG ATA CTC CAA GTA GGT	SEQ ID NO:22

BIBLIOGRAPHY

1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990) *J. Mol. Biol.* 215: 403-410.
2. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) *Molecular Cloning*. A Laboratory Manual.
3. Smith, D.B., and Johnson, K.S. (1988) *Gene* 67: 31-40.
4. Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994) *Nucleic Acids Res.* 22: 4673-4680.
5. Beranger, F., Paterson, H., Powers, S., de Gunzburg, J. and Hancock, J.F. (1994) *Molecular and Cellular Biology* 14: 744-758.

- 25 -

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: The Council of The Queensland Institute for Medical Research

(ii) TITLE OF INVENTION: A NOVEL GENE AND USES THEREFOR

(iii) NUMBER OF SEQUENCES: 22

(iv) CORRESPONDENCE ADDRESS:

- (A) ADDRESSEE: DAVIES COLLISON CAVE
- (B) STREET: 1 LITTLE COLLINS STREET
- (C) CITY: MELBOURNE
- (D) STATE: VICTORIA
- (E) COUNTRY: AUSTRALIA
- (F) ZIP: 3000

(v) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) OPERATING SYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0, Version #1.25

(vi) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER: AUSTRALIAN PROVISIONAL
- (B) FILING DATE:
- (C) CLASSIFICATION:

(viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: HUGHES, DR E JOHN L
- (C) REFERENCE/DOCKET NUMBER: EJH/AF

(ix) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: +61 3 9254 2777
- (B) TELEFAX: +61 3 9254 2770
- (C) TELEX: AA 31787

- 26 -

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2415 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 3..2188

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CG ATT TCA TTC CTC GCT CCC CAC AGG TCC CTC TCC CCA AAA TAT TCC Ile Ser Phe Leu Ala Pro His Arg Ser Leu Ser Pro Lys Tyr Ser 1 5 10 15	47
CAT CTT GTC CTA GCC CAT CCC CCA GAC TAT CTC AAG GAC CAG CTG TCC His Leu Val Leu Ala His Pro Pro Asp Tyr Leu Lys Asp Gln Leu Ser 20 25 30	95
CCA CGC CCC CGA CCT CCA CTA GGC CTG TGC CAC CCG CTG CCT GCA GGA Pro Arg Pro Arg Pro Pro Leu Gly Leu Cys His Pro Leu Pro Ala Gly 35 40 45	143
AGA CGC CCG GTC CCG GGC CGG GTT AGC CCC ATG GGA ACG CAG CGC CTG Arg Arg Pro Val Pro Gly Arg Val Ser Pro Met Gly Thr Gln Arg Leu 50 55 60	191
TGT GGC CGC GGG ACT CAA GGC TGG CCT GGC TCA AGT GAA CAG CAC GTC Cys Gly Arg Gly Thr Gln Gly Trp Pro Gly Ser Ser Glu Gln His Val 65 70 75	239
CAG GAG GCG ACC TCG TCC GCG GGT TTG CAT TCT GGG GTG GAC GAG CTG Gln Glu Ala Thr Ser Ser Ala Gly Leu His Ser Gly Val Asp Glu Leu 80 85 90 95	287
GGG GTT CGG TCC GAG CCC GGT GGG AGG CTC CCG GAG CGC AGC CTG GGC Gly Val Arg Ser Glu Pro Gly Gly Arg Leu Pro Glu Arg Ser Leu Gly 100 105 110	335
CCA GCC CAC CCC GCG CCG GCG GCC ATG GCA GGC ACC CTG GAC CTG GAC Pro Ala His Pro Ala Pro Ala Met Ala Gly Thr Leu Asp Leu Asp 115 120 125	383
AAG GGC TGC ACG GTG GAG GAG CTG CTC CGC GGG TGC ATC GAA GCC TTC Lys Gly Cys Thr Val Glu Glu Leu Leu Arg Gly Cys Ile Glu Ala Phe 130 135 140	431
GAT GAC TCC GGG AAG GTG CGG GAC CCG CAG CTG GTG CGC ATG TTC CTC Asp Asp Ser Gly Lys Val Arg Asp Pro Gln Leu Val Arg Met Phe Leu 145 150 155	479
ATG ATG CAC CCC TGG TAC ATC CCC TCC TCT CAG CTG GCG GCC AAG CTG Met Met His Pro Trp Tyr Ile Pro Ser Ser Gln Leu Ala Ala Lys Leu 160 165 170 175	527
CTC CAC ATC TAC CAA CAA TCC CGG AAG GAC AAC TCC AAT TCC CTG CAG Leu His Ile Tyr Gln Gln Ser Arg Lys Asp Asn Ser Asn Ser Leu Gln 180 185 190	575
GTG AAA ACG TGC CAC CTG GTC AGG TAC TGG ATC TCC GCC TTC CCA GCG	623

- 28 -

GCC ATG GTG ACC AGC CTG CGG CCA CCA GTA CAG GCC AAC CCC GAC CTG Ala Met Val Thr Ser Leu Arg Pro Pro Val Gln Ala Asn Pro Asp Leu 465 470 475	1439
CTG AGC CTG CTC ACG GTG TCT CTG GAT CAG TAT CAG ACG GAG GAT GAG Leu Ser Leu Leu Thr Val Ser Leu Asp Gln Tyr Gln Thr Glu Asp Glu 480 485 490 495	1487
CTG TAC CAG CTG TCC CTG CAG CGG GAG CCG CGC TCC AAG TCC TCG CCA Leu Tyr Gln Leu Ser Leu Gln Arg Glu Pro Arg Ser Lys Ser Ser Pro 500 505 510	1535
ACC AGC CCC ACG AGT TGC ACC CCA CCA CCC CGG CCC CCG GTA CTG GAG Thr Ser Pro Thr Ser Cys Thr Pro Pro Pro Arg Pro Pro Val Leu Glu 515 520 525	1583
GAG TGG ACC TCG GCT GCC AAA CCC AAG CTG GAT CAG GCC CTC GTG GTG Glu Trp Thr Ser Ala Ala Lys Pro Lys Leu Asp Gln Ala Leu Val Val 530 535 540	1631
GAG CAC ATC GAG AAG ATG GTG GAG TCT GTG TTC CGG AAC TTT GAC GTC Glu His Ile Glu Lys Met Val Glu Ser Val Phe Arg Asn Phe Asp Val 545 550 555	1679
GAT GGG GAT GGC CAC ATC TCA CAG GAA GAA TTC CAG ATC ATC CGT GGG Asp Gly Asp Gly His Ile Ser Gln Glu Glu Phe Gln Ile Ile Arg Gly 560 565 570 575	1727
AAC TTC CCT TAC CTC AGC GCC TTT GGG GAC CTC GAC CAG AAC CAG GAT Asn Phe Pro Tyr Leu Ser Ala Phe Gly Asp Leu Asp Gln Asn Gln Asp 580 585 590	1775
GGC TGC ATC AGC AGG GAG GAG ATG GTT TCC TAT TTC CTG CGC TCC AGC Gly Cys Ile Ser Arg Glu Glu Met Val Ser Tyr Phe Leu Arg Ser Ser 595 600 605	1823
TCT GTG TTG GGG GGG CGC ATG GGC TTC GTA CAC AAC TTC CAG GAG AGC Ser Val Leu Gly Gly Arg Met Gly Phe Val His Asn Phe Gln Glu Ser 610 615 620	1871
AAC TCC TTG CGC CCC GTC GCC TGC CGC CAC TGC AAA GCC CTG ATC CTG Asn Ser Leu Arg Pro Val Ala Cys Arg His Cys Lys Ala Leu Ile Leu 625 630 635	1919
GGC ATC TAC AAG CAG GGC CTC AAA TGC CGA GCC TGT GGA GTG AAC TGC Gly Ile Tyr Lys Gln Gly Leu Lys Cys Arg Ala Cys Gly Val Asn Cys 640 645 650 655	1967
CAC AAG CAG TGC AAG GAT CGC CTG TCA GTT GAG TGT CGG CGC AGG GCC His Lys Gln Cys Lys Asp Arg Leu Ser Val Glu Cys Arg Arg Arg Ala 660 665 670	2015
CAG AGT GTG AGC CTG GAG GGG TCT GCA CCC TCA CCC TCA CCC ATG CAC Gln Ser Val Ser Leu Glu Gly Ser Ala Pro Ser Pro Ser Pro Met His 675 680 685	2063
AGC CAC CAT CAC CGC GCC TTC AGC TTC TCT CTG CCC CGC CCT GGC AGG Ser His His His Arg Ala Phe Ser Phe Ser Leu Pro Arg Pro Gly Arg 690 695 700	2111
CGA GGC TCC AGG CCT CCA GAG ATC CGT GAG GAG GAG GTA CAG ACG GTG Arg Gly Ser Arg Pro Pro Glu Ile Arg Glu Glu Glu Val Gln Thr Val 705 710 715	2159
GAG GAT GGG GTG TTT GAC ATC CAC TTG TA ATAGATGCTG TGGTTGGATC Glu Asp Gly Val Phe Asp Ile His Leu 720 725	2208

- 29 -

AAGGACTCAT TCCTGCCTTG GAGAAAATAC TTCAACCAGA GCAGGGAGCC TGGGGGTGTC	2268
GGGGCAGGAG GCTGGGGATG GGGGTGGGAT ATGAGGGTGG CATGCAGCTG AGGGCAGGGC	2328
CAGGGCTGGT GTCCCTAAGG TTGTACAGAC TCTTGTGAAT ATTTGTATTT TCCAGATGGA	2388
ATAAAAAGGC CCGTGTAAATT AACCTTC	2415

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 728 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Ile Ser Phe Leu Ala Pro His Arg Ser Leu Ser Pro Lys Tyr Ser His	
1 5 10 15	
Leu Val Leu Ala His Pro Pro Asp Tyr Leu Lys Asp Gln Leu Ser Pro	
20 25 30	
Arg Pro Arg Pro Pro Leu Gly Leu Cys His Pro Leu Pro Ala Gly Arg	
35 40 45	
Arg Pro Val Pro Gly Arg Val Ser Pro Met Gly Thr Gln Arg Leu Cys	
50 55 60	
Gly Arg Gly Thr Gln Gly Trp Pro Gly Ser Ser Glu Gln His Val Gln	
65 70 75 80	
Glu Ala Thr Ser Ser Ala Gly Leu His Ser Gly Val Asp Glu Leu Gly	
85 90 95	
Val Arg Ser Glu Pro Gly Gly Arg Leu Pro Glu Arg Ser Leu Gly Pro	
100 105 110	
Ala His Pro Ala Pro Ala Ala Met Ala Gly Thr Leu Asp Leu Asp Lys	
115 120 125	
Gly Cys Thr Val Glu Glu Leu Leu Arg Gly Cys Ile Glu Ala Phe Asp	
130 135 140	
Asp Ser Gly Lys Val Arg Asp Pro Gln Leu Val Arg Met Phe Leu Met	
145 150 155 160	
Met His Pro Trp Tyr Ile Pro Ser Ser Gln Leu Ala Ala Lys Leu Leu	
165 170 175	
His Ile Tyr Gln Gln Ser Arg Lys Asp Asn Ser Asn Ser Leu Gln Val	
180 185 190	
Lys Thr Cys His Leu Val Arg Tyr Trp Ile Ser Ala Phe Pro Ala Glu	
195 200 205	
Phe Asp Leu Asn Pro Glu Leu Ala Glu Gln Ile Lys Glu Leu Lys Ala	
210 215 220	
Leu Leu Asp Gln Glu Gly Asn Arg Arg His Ser Ser Leu Ile Asp Ile	
225 230 235 240	
Asp Ser Val Pro Thr Tyr Lys Trp Lys Arg Gln Val Thr Gln Arg Asn	
245 250 255	

- 30 -

Pro	Val	Gly	Gln	Lys	Lys	Arg	Lys	Met	Ser	Leu	Leu	Phe	Asp	His	Leu
			260					265						270	
Glu	Pro	Met	Glu	Leu	Ala	Glu	His	Leu	Thr	Tyr	Leu	Glu	Tyr	Arg	Ser
		275				280						285			
Phe	Cys	Lys	Ile	Leu	Phe	Gln	Asp	Tyr	His	Ser	Phe	Val	Thr	His	Gly
		290			295						300				
Cys	Thr	Val	Asp	Asn	Pro	Val	Leu	Glu	Arg	Phe	Ile	Ser	Leu	Phe	Asn
	305				310				315					320	
Ser	Val	Ser	Gln	Trp	Val	Gln	Leu	Met	Ile	Leu	Ser	Lys	Pro	Thr	Ala
				325				330				335			
Pro	Gln	Arg	Ala	Leu	Val	Ile	Thr	His	Phe	Val	His	Val	Ala	Glu	Lys
		340				345						350			
Leu	Leu	Gln	Leu	Gln	Asn	Phe	Asn	Thr	Leu	Met	Ala	Val	Val	Gly	Gly
		355				360					365				
Leu	Ser	His	Ser	Ser	Ile	Ser	Arg	Leu	Lys	Glu	Thr	His	Ser	His	Val
	370				375				380						
Ser	Pro	Glu	Thr	Ile	Lys	Leu	Trp	Glu	Gly	Leu	Thr	Glu	Leu	Val	Thr
	385				390				395					400	
Ala	Thr	Gly	Asn	Tyr	Gly	Asn	Tyr	Arg	Arg	Arg	Leu	Ala	Ala	Cys	Val
		405					410					415			
Gly	Phe	Arg	Phe	Pro	Ile	Leu	Gly	Val	His	Leu	Lys	Asp	Leu	Val	Ala
		420				425					430				
Leu	Gln	Leu	Ala	Leu	Pro	Asp	Trp	Leu	Asp	Pro	Ala	Arg	Thr	Arg	Leu
		435				440					445				
Asn	Gly	Ala	Lys	Met	Lys	Gln	Leu	Phe	Ser	Ile	Leu	Glu	Glu	Leu	Ala
		450				455					460				
Met	Val	Thr	Ser	Leu	Arg	Pro	Pro	Val	Gln	Ala	Asn	Pro	Asp	Leu	Leu
	465				470				475					480	
Ser	Leu	Leu	Thr	Val	Ser	Leu	Asp	Gln	Tyr	Gln	Thr	Glu	Asp	Glu	Leu
		485				490					495				
Tyr	Gln	Leu	Ser	Leu	Gln	Arg	Glu	Pro	Arg	Ser	Lys	Ser	Ser	Pro	Thr
		500				505						510			
Ser	Pro	Thr	Ser	Cys	Thr	Pro	Pro	Pro	Arg	Pro	Pro	Val	Leu	Glu	Glu
		515				520						525			
Trp	Thr	Ser	Ala	Ala	Lys	Pro	Lys	Leu	Asp	Gln	Ala	Leu	Val	Val	Glu
		530			535						540				
His	Ile	Glu	Lys	Met	Val	Glu	Ser	Val	Phe	Arg	Asn	Phe	Asp	Val	Asp
		545				550				555				560	
Gly	Asp	Gly	His	Ile	Ser	Gln	Glu	Glu	Phe	Gln	Ile	Ile	Arg	Gly	Asn
			565				570					575			
Phe	Pro	Tyr	Leu	Ser	Ala	Phe	Gly	Asp	Leu	Asp	Gln	Asn	Gln	Asp	Gly
			580				585					590			
Cys	Ile	Ser	Arg	Glu	Glu	Met	Val	Ser	Tyr	Phe	Leu	Arg	Ser	Ser	Ser
		595				600					605				
Val	Leu	Gly	Gly	Arg	Met	Gly	Phe	Val	His	Asn	Phe	Gln	Glu	Ser	Asn

- 31 -

610	615	620
Ser Leu Arg Pro Val Ala Cys Arg His Cys Lys Ala Leu Ile Leu Gly		
625	630	635
Ile Tyr Lys Gln Gly Leu Lys Cys Arg Ala Cys Gly Val Asn Cys His		
	645	650
Lys Gln Cys Lys Asp Arg Leu Ser Val Glu Cys Arg Arg Arg Ala Gln		
	660	665
Ser Val Ser Leu Glu Gly Ser Ala Pro Ser Pro Ser Pro Met His Ser		
	675	680
His His His Arg Ala Phe Ser Phe Ser Leu Pro Arg Pro Gly Arg Arg		
	690	695
Gly Ser Arg Pro Pro Glu Ile Arg Glu Glu Glu Val Gln Thr Val Glu		
	705	710
Asp Gly Val Phe Asp Ile His Leu		
	725	

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 300 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 170..300

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

CGATTCATT CCTCGCTCCC CACAGGTCCC TCTCCCCAAA ATATTCCCAT CTTGTCCTAG 60
 CCCATCCCC AGACTATCTC AAGGACCAGC TGTCCCCACG CCCCCGACCT CCACTAGGCC 120
 TGTGCCACCC GCTGCCTGCA GGAAGACGCC CGGTCCCGGG CCGGGTTAG CCC CAT 175
 Pro His
 1
 GGG AAC GGG GTT CGG TCC GAG CCC GGT GGG AGG CTC CCG GAG CGC AGC 223
 Gly Asn Gly Val Arg Ser Glu Pro Gly Gly Arg Leu Pro Glu Arg Ser
 5 10 15
 CTG GGC CCA GCC CAC CCC GCG CCG GCG GCC ATG GCA GGC ACC CTG GAC 271
 Leu Gly Pro Ala His Pro Ala Pro Ala Ala Met Ala Gly Thr Leu Asp
 20 25 30
 CTG GAC AAG GGC TGC ACG GTG GAG GAG CT 300
 Leu Asp Lys Gly Cys Thr Val Glu Glu Leu
 35 40

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:

- 32 -

- (A) LENGTH: 44 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Pro	His	Gly	Asn	Gly	Val	Arg	Ser	Glu	Pro	Gly	Gly	Arg	Leu	Pro	Glu
1				5				10					15		
Arg	Ser	Leu	Gly	Pro	Ala	His	Pro	Ala	Pro	Ala	Ala	Met	Ala	Gly	Thr
								25					30		
Leu	Asp	Leu	Asp	Lys	Gly	Cys	Thr	Val	Glu	Glu	Leu				
								40							

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 15 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

GGGATCCCCC	TGGTC	15
------------	-------	----

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 21 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

GAATTCCGGCA	CGAGCCGACCG	G	21
-------------	-------------	---	----

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 78 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 1..78

- 33 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

ATG GAG CAG AAG CTG ATC TCC GAG GAG GAC CTG CCC GGG GCA GCT GGA Met Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Pro Gly Ala Ala Gly 1 5 10 15	48
TCC GCA GCC CAC CCC GGG CCG GCG GCC ATG Ser Ala Ala His Pro Gly Pro Ala Ala Met 20 25	78

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 26 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Pro Gly Ala Ala Gly 1 5 10 15
Ser Ala Ala His Pro Gly Pro Ala Ala Met 20 25

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 33 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 1..33

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

GGA TCC GCA GCC CAC CCC GGG CCG GCG GCC ATG Gly Ser Ala Ala His Pro Gly Pro Ala Ala Met 1 5 10	33
--	----

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Gly Ser Ala Ala His Pro Gly Pro Ala Ala Met 1 5 10

(2) INFORMATION FOR SEQ ID NO:11:

- 34 -

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 21 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

GGACAAAGTG TGTGATGAAC C

21

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 21 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

CTCATCCTCC GTCTGATACT G

21

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

GTAGATGTGG ATCAGCTTGG

20

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 19 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

AGGTGGAGAA TGGTCAAGG

19

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

- 35 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GTCATAGTCT GTCTCCTACT

20

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

ACATAGACAG CGTGCCTACC

20

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

TACAACCTTA GGGACACCAAG

20

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

TGCTGAGCCT GCTCACGGTG

20

(2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

CAAGTGAACA GCACGTCC

18

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 base pairs

- 36 -

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

GACTATCTCA AGGACCAGCT G

21

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

GGTCGGTCC GAGCCCGG

18

(2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

GGAGCGATAAC TCCAAGTAGG T

21

DATED this 22nd day of January, 1998

The Council of The Queensland Institute for Medical Research

By DAVIES COLLISON CAVE

Patent Attorneys for the Applicants

Figure 1

Sequences producing High-scoring Segment Pairs:		High Score	Smallest P(N)	Sum N
gnl PID e236178	(Z70752) F25B3.3 [Caenorhabditis ele...	307	3.0e-124	8
gi 1293099	(U53884) aimless RasGEF [Dictyosteli...	202	7.8e-22	5
gi 1655941	(U67326) Ras-GRF2 [Mus musculus]	152	3.6e-16	4
pir S30356	CDC25 protein homolog - yeast (Candi...	150	2.2e-15	3
sp P43069 CC25_CANAL	CELL DIVISION CONTROL PROTEIN 25	150	2.2e-15	3
sp P28818 GNRP_RAT	GUANINE NUCLEOTIDE RELEASING PROTEIN...	166	2.6e-15	3
prf 1814463A	guanine nucleotide-releasing factor ...	166	2.6e-15	3
pir B46199	nucleotide-exchange-factor homolog c...	167	1.1e-14	1
gnl PID e238680	(X97560) hypothetical protein L1309 ...	158	3.0e-14	3
pir S22693	CDC25 protein homolog - mouse /gi 50...	167	3.7e-14	2
sp P14771 SC25_YEAST	SCD25 PROTEIN /gi 457494 (M26647) SD...	158	4.6e-14	3
sp P26674 STE6_SCHPO	STE6 PROTEIN /pir S28098 stef prote...	160	5.2e-14	2
pir S28407	CDC25 protein homolog - mouse	167	1.2e-13	3
sp P27671 GNRP_MOUSE	GUANINE NUCLEOTIDE RELEASING PROTEIN...	167	1.2e-13	3
gi 386047	(S62035) Ras-specific guanine nucleo...	153	2.0e-13	2
sp Q02342 CC25_SACKL	CELL DIVISION CONTROL PROTEIN 25 /pi...	142	4.5e-13	2
pir S14177	SCD25 protein - yeast (Saccharomyces...	152	5.7e-13	3
gi 433720	(L26584) CDC25 [Homo sapiens]	153	6.0e-13	3
gnl PID e241744	(Z68880) T14G10.2 [Caenorhabditis el...	157	7.2e-13	1
gi 3484	(X03579) CDC25 protein (aa 1-1588) [...	136	3.4e-12	3
sp P04821 CC25_YEAST	CELL DIVISION CONTROL PROTEIN 25 /pi...	136	3.4e-12	3
gi 915328	(U24070) Munc13-1 [Rattus norvegicus]	151	5.5e-12	1
pir A46199	nucleotide-exchange-factor homolog c...	149	5.6e-12	1
pdb 1PTR	Molecule: Protein Kinase C Delta Ty...	136	1.5e-11	1
gi 915330	(U24071) Munc13-2 [Rattus norvegicus]	150	1.6e-11	2
gi 474982	(D21239) 'C3G protein' [Homo sapiens...]	131	3.3e-11	3
gi 1763306	(U75361) Munc13-3 [Rattus norvegicus]	153	6.4e-11	2
gi 806957	guanine-nucleotide exchange factor C...	128	7.8e-11	3
sp Q03385 GNDS_MOUSE	GUANINE NUCLEOTIDE DISSOCIATION STIM...	133	1.0e-10	2
pir BVBYL1	LTE1 protein - yeast (Saccharomyces ...	139	1.9e-10	1
gi 452242	(D21354) a putative guanine nucleotid...	139	2.7e-10	1
sp P07866 LTE1_YEAST	LOW TEMPERATURE ESSENTIAL PROTEIN /p...	139	2.7e-10	1
gi 509050	(Z22521) protein kinase C delta [Hom...	137	4.0e-10	1
gi 520587	(D10495) protein kinase C delta-type...	137	4.6e-10	1
sp P05130 KPC1_DROME	PROTEIN KINASE C, BRAIN ISOZYME (PKC...)	137	4.7e-10	1
pir S35704	protein kinase C (EC 2.7.1.-) delta ...	137	4.7e-10	1
sp Q05655 KPCD_HUMAN	PROTEIN KINASE C, DELTA TYPE (NPKC-D...)	137	4.7e-10	1
pir S40279	protein kinase C mu - human /pir A5...	137	4.9e-10	1
sp P09215 KPCD_RAT	PROTEIN KINASE C, DELTA TYPE (NPKC-D...)	135	9.0e-10	1
gi 520878	(Z34524) serine/threonine protein ki...	133	1.8e-09	1
gi 1519719	(U68142) RalGDS-like [Homo sapiens]	115	3.8e-09	3

FIGURE 2

CG ATT TCA TTC CTC GCT CCC CAC AGG TCC CTC TCC CCA AAA TAT TCC Ile Ser Phe Leu Ala Pro His Arg Ser Leu Ser Pro Lys Tyr Ser 1 5 10 15	47
CAT CTT GTC CTA GCC CAT CCC CCA GAC TAT CTC AAG GAC CAG CTG TCC His Leu Val Leu Ala His Pro Pro Asp Tyr Leu Lys Asp Gln Leu Ser 20 25 30	95
CCA CGC CCC CGA CCT CCA CTA GGC CTG TGC CAC CCG CTG CCT GCA GGA Pro Arg Pro Arg Pro Pro Leu Gly Leu Cys His Pro Leu Pro Ala Gly 35 40 45	143
AGA CGC CCG GTC CCG GGC CGG GTT AGC CCC ATG GGA ACG CAG CGC CTG Arg Arg Pro Val Pro Gly Arg Val Ser Pro Met Gly Thr Gln Arg Leu 50 55 60	191
TGT GGC CGC GGG ACT CAA GGC TGG CCT GGC TCA AGT GAA CAG CAC GTC Cys Gly Arg Gly Thr Gln Gly Trp Pro Gly Ser Ser Glu Gln His Val 65 70 75	239
CAG GAG GCG ACC TCG TCC GCG GGT TTG CAT TCT GGG GTG GAC GAG CTG Gln Glu Ala Thr Ser Ser Ala Gly Leu His Ser Gly Val Asp Glu Leu 80 85 90 95	287
GGG GTT CGG TCC GAG CCC GGT GGG AGG CTC CCG GAG CGC AGC CTG GGC Gly Val Arg Ser Glu Pro Gly Gly Arg Leu Pro Glu Arg Ser Leu Gly 100 105 110	335
CCA GCC CAC CCC GCG CCG GCG GCC ATG GCA GGC ACC CTG GAC CTG GAC Pro Ala His Pro Ala Pro Ala Ala Met Ala Gly Thr Leu Asp Leu Asp 115 120 125	383
AAG GGC TGC ACG GTG GAG GAG CTG CTC CGC GGG TGC ATC GAA GCC TTC Lys Gly Cys Thr Val Glu Leu Leu Arg Gly Cys Ile Glu Ala Phe 130 135 140	431
GAT GAC TCC GGG AAG GTG CGG GAC CCG CAG CTG GTG CGC ATG TTC CTC Asp Asp Ser Gly Lys Val Arg Asp Pro Gln Leu Val Arg Met Phe Leu 145 150 155	479
ATG ATG CAC CCC TGG TAC ATC CCC TCC TCT CAG CTG GCG GCC AAG CTG Met Met His Pro Trp Tyr Ile Pro Ser Ser Gln Leu Ala Ala Lys Leu 160 165 170 175	527
CTC CAC ATC TAC CAA CAA TCC CGG AAG GAC AAC TCC AAT TCC CTG CAG Leu His Ile Tyr Gln Gln Ser Arg Lys Asp Asn Ser Asn Ser Leu Gln 180 185 190	575
GTG AAA ACG TGC CAC CTG GTC AGG TAC TGG ATC TCC GCC TTC CCA GCG Val Lys Thr Cys His Leu Val Arg Tyr Trp Ile Ser Ala Phe Pro Ala 195 200 205	623
GAG TTT GAC TTG AAC CCG GAG TTG GCT GAG CAG ATC AAG GAG CTG AAG Glu Phe Asp Leu Asn Pro Glu Leu Ala Glu Gln Ile Lys Glu Leu Lys 210 215 220	671
GCT CTG CTA GAC CAA GAA GGG AAC CGA CGG CAC AGC AGC CTA ATC GAC Ala Leu Leu Asp Gln Glu Gly Asn Arg Arg His Ser Ser Leu Ile Asp 225 230 235	719
ATA GAC AGC GTC CCT ACC TAC AAG TGG AAG CGG CAG GTG ACT CAG CGG Ile Asp Ser Val Pro Thr Tyr Lys Trp Lys Arg Gln Val Thr Gln Arg 240 245 250 255	767
AAC CCT GTG GGA CAG AAA AAG CGC AAG ATG TCC CTG TTG TTT GAC CAC Asn Pro Val Gly Gln Lys Lys Arg Lys Met Ser Leu Leu Phe Asp His	815

FIGURE 2 (Cont. II)

260	265	270	
CTG GAG CCC ATG GAG CTG GCG GAG CAT CTC ACC TAC TTG GAG TAT CGC Leu Glu Pro Met Glu Leu Ala Glu His Leu Thr Tyr Leu Glu Tyr Arg 275	280	285	863
TCC TTC TGC AAG ATC CTG TTT CAG GAC TAT CAC AGT TTC GTG ACT CAT Ser Phe Cys Lys Ile Leu Phe Gln Asp Tyr His Ser Phe Val Thr His 290	295	300	911
GGC TGC ACT GTG GAC AAC CCC GTC CTG GAG CGG TTC ATC TCC CTC TTC Gly Cys Thr Val Asp Asn Pro Val Leu Glu Arg Phe Ile Ser Leu Phe 305	310	315	959
AAC AGC GTC TCA CAG TGG GTG CAG CTC ATG ATC CTC AGC AAA CCC ACA Asn Ser Val Ser Gln Trp Val Gln Leu Met Ile Leu Ser Lys Pro Thr 320	325	330	1007
GCC CCG CAG CGG GCC CTG GTC ATC ACA CAC TTT GTC CAC GTG GCG GAG Ala Pro Gln Arg Ala Leu Val Ile Thr His Phe Val His Val Ala Glu 340	345	350	1055
AAG CTG CTA CAG CTG CAG AAC TTC AAC ACG CTG ATG GCA GTG GTC GGG Lys Leu Leu Gln Leu Gln Asn Phe Asn Thr Leu Met Ala Val Val Gly 355	360	365	1103
GGC CTG AGC CAC AGC TCC ATC TCC CGC CTC AAG GAG ACC CAC AGC CAC Gly Leu Ser His Ser Ser Ile Ser Arg Leu Lys Glu Thr His Ser His 370	375	380	1151
GTT AGC CCT GAG ACC ATC AAG CTC TGG GAG GGT CTC ACG GAA CTA GTG Val Ser Pro Glu Thr Ile Lys Leu Trp Glu Gly Leu Thr Glu Leu Val 385	390	395	1199
ACG GCG ACA GGC AAC TAT GGC AAC TAC CGG CGT CGG CTG GCA GCC TGT Thr Ala Thr Gly Asn Tyr Gly Asn Tyr Arg Arg Arg Leu Ala Ala Cys 400	405	410	1247
GTG GGC TTC CGC TTC CCG ATC CTG GGT GTG CAC CTC AAG GAC CTG GTG Val Gly Phe Arg Phe Pro Ile Leu Gly Val His Leu Lys Asp Leu Val 420	425	430	1295
GCC CTG CAG CTG GCA CTG CCT GAC TGG CTG GAC CCA GCC CGG ACC CGG Ala Leu Gln Leu Ala Leu Pro Asp Trp Leu Asp Pro Ala Arg Thr Arg 435	440	445	1343
CTC AAC GGG GCC AAG ATG AAG CAG CTC TTT AGC ATC CTG GAG GAG CTG Leu Asn Gly Ala Lys Met Lys Gln Leu Phe Ser Ile Leu Glu Glu Leu 450	455	460	1391
GCC ATG GTG ACC AGC CTG CGG CCA CCA GTA CAG GCC AAC CCC GAC CTG Ala Met Val Thr Ser Leu Arg Pro Pro Val Gln Ala Asn Pro Asp Leu 465	470	475	1439
CTG AGC CTG CTC ACG GTG TCT CTG GAT CAG TAT CAG ACG GAG GAT GAG Leu Ser Leu Leu Thr Val Ser Leu Asp Gln Tyr Gln Thr Glu Asp Glu 480	485	490	1487
CTG TAC CAG CTG TCC CTG CAG CGG GAG CCG CGC TCC AAG TCC TCG CCA Leu Tyr Gln Leu Ser Leu Gln Arg Glu Pro Arg Ser Lys Ser Ser Pro 500	505	510	1535
ACC AGC CCC ACG AGT TGC ACC CCA CCA CCC CGG CCC CCG GTA CTG GAG Thr Ser Pro Thr Ser Cys Thr Pro Pro Pro Arg Pro Pro Val Leu Glu 515	520	525	1583
GAG TGG ACC TCG GCT GCC AAA CCC AAG CTG GAT CAG GCC CTC GTG GTG Glu Trp Thr Ser Ala Ala Lys Pro Lys Leu Asp Gln Ala Leu Val Val 530	535	540	1631
GAG CAC ATC GAG AAG ATG GTG GAG TCT GTG TTC CGG AAC TTT GAC GTC Glu His Ile Glu Lys Met Val Glu Ser Val Phe Arg Asn Phe Asp Val			1679

FIGURE 2 (Cont. III)

545	550	555	
GAT GGG GAT GGC CAC ATC TCA CAG GAA GAA TTC CAG ATC ATC CGT GGG Asp Gly Asp Gly His Ile Ser Gln Glu Glu Phe Gln Ile Ile Arg Gly 560 565 570 575			1727
AAC TTC CCT TAC CTC AGC GCC TTT GGG GAC CTC GAC CAG AAC CAG GAT Asn Phe Pro Tyr Leu Ser Ala Phe Gly Asp Leu Asp Gln Asn Gln Asp 580 585 590			1775
GGC TGC ATC AGC AGG GAG GAG ATG GTT TCC TAT TTC CTG CGC TCC AGC Gly Cys Ile Ser Arg Glu Glu Met Val Ser Tyr Phe Leu Arg Ser Ser 595 600 605			1823
TCT GTG TTG GGG GGG CGC ATG GGC TTC GTA CAC AAC TTC CAG GAG AGC Ser Val Leu Gly Gly Arg Met Gly Phe Val His Asn Phe Gln Glu Ser 610 615 620			1871
AAC TCC TTG CGC CCC GTC GCC TGC CGC CAC TGC AAA GCC CTG ATC CTG Asn Ser Leu Arg Pro Val Ala Cys Arg His Cys Lys Ala Leu Ile Leu 625 630 635			1919
GGC ATC TAC AAG CAG GGC CTC AAA TGC CGA GCC TGT GGA GTG AAC TGC Gly Ile Tyr Lys Gln Gly Leu Lys Cys Arg Ala Cys Gly Val Asn Cys 640 645 650 655			1967
CAC AAG CAG TGC AAG GAT CGC CTG TCA GTT GAG TGT CGG CGC AGG GCC His Lys Gln Cys Lys Asp Arg Leu Ser Val Glu Cys Arg Arg Ala 660 665 670			2015
CAG AGT GTG AGC CTG GAG GGG TCT GCA CCC TCA CCC TCA CCC ATG CAC Gln Ser Val Ser Leu Glu Gly Ser Ala Pro Ser Pro Ser Pro Met His 675 680 685			2063
AGC CAC CAT CAC CGC GCC TTC AGC TTC TCT CTG CCC CGC CCT GCC AGG Ser His His Arg Ala Phe Ser Phe Ser Leu Pro Arg Pro Gly Arg 690 695 700			2111
CGA GGC TCC AGG CCT CCA GAG ATC CGT GAG GAG GAG GTA CAG ACG GTG Arg Gly Ser Arg Pro Pro Glu Ile Arg Glu Glu Glu Val Gln Thr Val 705 710 715			2159
GAG GAT GGG GTG TTT GAC ATC CAC TTG TA ATAGATGCTG TGGTTGGATC Glu Asp Gly Val Phe Asp Ile His Leu 720 725			2208
AAGGACTCAT TCCTGCCTTG GAGAAAATAC TTCAACCAGA GCAGGGAGCC TGGGGGTGTC			2268
GGGGCAGGAG GCTGGGGATG GGGGTGGAT ATGAGGGTGG CATGCAGCTG AGGGCAGGGC			2328
CAGGGCTGGT GTCCCTAAGG TTGTACAGAC TCTTGTGAAT ATTTGTATTT TCCAGATGGA			2388
ATAAAAAAGGC CCGTGTAATT AACCTTCA			2416

FIGURE 2a (cont. I)

MCG7 - Cloning of a novel human gene that encodes a guanine exchange factor

```

CGATTCATTCTCGCTCCCCACAGGTCCCTCTCCCCAAAATATTCCCATCTTGTCTTAG 60
I S F L A P H R S L S P K Y S H L V L 19
CCCATCCCCCAGACTATCTCAAGGACCAGCTGTCCCCACGCCCGACCTCCACTAGGCC 120
A H P P D Y L K D Q L S P R P R P P L G 39
TGTGCCACCCGCTGCCCTGCAGGAAGAGCAGCCCAGTCCGGGGTTAGCCCCATGGGAA 180
L C H P L P A G R R P V P G R V S P M G 59
CGcagcgccgtgtggccgcggactcaaggctggcctggctaagtgaacagcacgtcc 240
T Q R L C G R G T Q G W P G S S E Q H V 79
aggaggcgcacctcgccgcgggtttgcattctgggtggacgactggGGGTTCGGTCCG 300
Q E A T S S A G L H S G V D E L G V R S 99
AGCCCGGTGGGAGGCTCCGGAGCGCAGCCTGGGCCAGCCCACCCGCCGGCGCCA 360
E P G G R L P E R S L G P A H P A P A A 119
TGGCAGGCACCCCTGGACCTGGACAAGGGCTGCACGGTGGAGGAGCTGCTCCGCCGGTGCA 420
M A G T L D L D K G C T V E E L L R G C 139
TCGAAGCCTTCGATGACTCCGGAAAGGTGCGGGACCCGAGCTGGTGCATGTTCCCTCA 480
I E A F D D S G K V R D P Q L V R M F L 159
TGATGCACCCCTGGTACATCCCCCTCTCAGCTGGCGGCCAGCTGCTCACATCTACC 540
M M H P W Y I P S S Q L A A K L L H I Y 179
AACAAATCCCGGAAGGACAACTCCAATTCCCTGCAGGTGAAAACGTGCCACCTGGTCAGGT 600
Q Q S R K D N S N S L Q V K T C H L V R 199
ACTGGATCTCGCCTTCCCAGGGAGTTGACTTGAACCCGGAGTTGGCTGAGCAGATCA 660
Y W I S A F P A E F D L N P E L A E Q I 219
AGGAGCTGAAGGCTCTGCTAGACCAAGAAGGGAACCGACGGCACAGCAGCCTAACGACA 720
K E L K A L L D Q E G N R R H S S L I D 239
TAGACAGCGTCCCTACCTACAAGTGAAGCGGCAGGTGACTCAGCGGAACCCCTGTGGAC 780
I D S V P T Y K W K R Q V T Q R N P V G 259
AGAAAAAAGCGCAAGATGTCCCTGTTGACCACTGGAGCCATGGAGCTGGCGGAGC 840
Q K K R K M S L L F D H L E P M E L A E 279
ATCTCACCTACTTGGAGTATCGCTCCTCTGCAAGATCCTGTTCAAGGACTATCACAGTT 900
H L T Y L E Y R S F C K I L F Q D Y H S 299
TCGTGACTCATGGCTGCACTGTGGACAACCCCGTCCTGGAGCGGTTCATCTCCCTTTCA 960
F V T H G C T V D N P V L E R F I S L F 319
ACAGCGTCTCACAGTGGGTGCAGCTCATGATCCTCAGCAAACCCACAGCCCGCAGCGGG 1020
N S V S Q W V Q L M I L S K P T A P Q R 339
CCCTGGTCATCACACACTTGTCCACGTGGCGAGAACGCTACAGCTGCAGAACCTCA 1080
A L V I T H F V H V A E K L L Q L Q N F 359
ACACGCTGATGGCAGTGGTCGGGGCCTGAGCCACAGCTCCATCTCCCGCTCAAGGAGA 1140
N T L M A V V G G L S H S S I S R L K E 379
CCCACAGCCACGTTAGCCCTGAGACCATCAAGCTCTGGAGGGTCTCACCGAACACTG 1200
T H S H V S P E T I K L W E G L T E L V 399
CGGCGACAGGCAACTATGGCAACTACCGCGCTCGGCTGGCAGCCTGTGTGGCTTCGCT 1260
T A T G N Y G N Y R R R L A A C V G F R 419
TCCCGATCTGGGTGTCACCTCAAGGACCTGGTGGCCCTGCAGCTGGCACTGCCTGACT 1320
F P I L G V H L K D L V A L Q L A L P D 439
GGCTGGACCCAGCCGGACCCGGCTCAACGGGGCAAGATGAAGCAGCTCTTAGCATCC 1380
W L D P A R T R L N G A K M K Q L F S I 459
TGGAGGAGCTGGCCATGGTGACCAAGCCTGCGGCCACCAAGTACAGGCCAACCCCGACCTGC 1440
L E E L A M V T S L R P P V Q A N P D L 479
TGAGCCTGCTCACGGTGTCTGGATCAGTATCAGACGGAGGATGAGCTGTACCAAGCTGT 1500
L S L L T V S L D Q Y Q T E D E L Y Q L 499
CCCTGCAGCGGGAGCCCGCTCCAAGTCCTCGCCAACCAGCCCCACGAGTTGCACCCAC 1560
S L Q R E P R S K S S P T S P T S C T P 519
CACCCCGGCCCCCGGTACTGGAGGAGTGGACCTCGGCTGCCAAACCCAAGCTGGATCAGG 1620
P P R P P V L E E W T S A A K P K L D Q 539
CCCTCGTGGTGGAGCACATCGAGAAGATGGTGGAGTCTGTGTCCGGAACCTTGACGTG 1680

```

FIGURE 2a (cont. II)

A L V V E H I E K M V E S V F R N F D V 559
ATGGGGATGGCCACATCTCACAGGAAGAATTCCAGATCATCCGTGGAACTTCCCTTACC 1740
D G D G H I S Q E E F Q I I R G N F P Y 579
TCAGCGCCTTGCGGACCTCGACCAAGAACAGGATGGCTGCATCAGCAGGGAGGAGATGG 1800
L S A F G D L D Q N Q D G C I S R E E M 599
TTTCCTATTCCTCGCTCCAGCTCTGTGTTGGGGGGCGCATGGGCTTCGTACACAAC 1860
V S Y F L R S S S V L G G R M G F V H N 619
TCCAGGAGAGCAACTCTTGCGCCCGTGCCTGCCACTGCACAGCCCTGATCCTGG 1920
F Q E S N S L R P V A C R H C K A L I L 639
GCATCTACAAGCAGGGCTCAAATGCCGAGCCTGTGGAGTGAAC TGCCACAAGCAGTGCA 1980
G I Y K Q G L K C R A C G V N C H K Q C 659
AGGATCGCCTGTCAGTTGAGTGTGCGCGCAGGGCCCAGAGTGTGAGCCTGGAGGGTCTG 2040
K D R L S V E C R R R A Q S V S L E G S 679
CACCCCTCACCCCTCACCCATGCACAGCCACCATCACCGCGCCTCAGCTCTCTGCC 2100
A P S P S P M H S H H H R A F S F S L P 699
GCCCTGGCAGGCAGGGCTCCAGGCCTCCAGAGATCCGTGAGGAGGAGGTACAGACGGTGG 2160
R P G R R G S R P P E I R E E E V Q T V 719
AGGATGGGGTGTGTTGACATCCACTTGTAA TAGATGCTGTGGATCAAGGACTCATTC 2220
E D G V F D I H L * 728
CTGCCTTGGAGAAAATACTTCAACCAAGCAGAGCAGGGAGCCTGGGGTGTGGGGCAGGAGGC 2280
TGGGGATGGGGTGGATATGAGGGTGGCATGCAGCTGAGGGCAGGGCAGGGCTGGTGT 2340
CCCTAACGGTTGTACAGACTCTTGTGAATTTGTATTTCCAGATGGAATAAAAGGCC 2400
GTGTAATTAACCTTC(A)_n

Figure 2b

CGATTTCATTCTCGCTCCCCACAGGTCCCTCTCCCCAAAATATTCCCATTTGTCCTAG 60
CCCATCCCCCAGACTATCTCAAGGACCAGCTGTCCCCACGCCCGACCTCCACTAGGCC 120
TGTGCCACCCGCTGCCTGCAGGAAGACGCCGGTCCCAGGGCTAGCCCCATGGAA 180
* p h g n
CGGGGTTCGGTCCGAGCCCGGTGGGAGGCTCCGGAGCGCAGCCTGGGCCAGCCCACCC-240
g v r s e p g g r l p e r s l g p a h p
CGCGCCGGCGGCCATGGCAGGCACCTGGACCTGGACAAGGGCTGCACGGTGAGGAGCT-300
a p a a M A G T L D L D K G C T V E E L

FIGURE 3

1 MAGTLDDDKGC...TVEELLRCGIEAF..DDSGKVRDPQLVRMFMMHPW 45
| .. .: | . | : : | : | : | | : | : : | . |
1 MSSKVEEDQHELLTEDQLVARCVECFDVDEEDEVEDIEFVDALFLSHQW 50

46 YIPSSQLAAKLLHIYQQSRKDNSNSLQVKTCVLVRYWISAFPAEFDLNPE 95
. | |: | | :: | .: | .: | . | . |:
51 LSDSLSLITHFVNFYQETRNVEQRE...AVCRAVSFWIEKFPMHFDAQPQ 97

96 LAEQIKELKALLDQEGRNRRHSSLIDIDSVPVTKWKRQVTQRNPVGQKK.. 143
. | : | | . : . . .: | | : .: | | . | | . | . |:
98 VCAQVVRKLTIAEDINENIRNGL.DVSALPSFAWLRAVSVRNPLAKQTIV 146

144RKMSLLFDHLEPMELAEHLTYLEYR 168
. | | : . | : . . | . .: | |:
147 RVDFETLPTPGTPPPFFPIASKKFSLTAFSLSFVQASPSDISTSLSHIDYR 196

169 SFCKILFQDYHSFVTHGCTVDNPVLERFISLFNSVSQWQLMILSKPTAP 218
. : | : . . : | . | . | : | | | | | | | . | . |:
197 VLSRISITELKQYVKDGHLRSCPMLERSISVFNNLSNWQCMILNKTPK 246

219 QRALVITHFVHVAEKLLOLONFNTLMMAVVGGLSHSSISRLKETHSHVSPE 268
. | | . . . | | . . . | | | | | | | | | . | . |:
247 ERAEILVKFVHVAKHLRKINNENTLMSVVGITHSSVARLAKTYAVLSND 296

269 TIKLWEGLTELVTATGNYGNYRRRLAAC.VGFRFPILGVHLKDLVALQLA 317
. | . . . | : | . | : . | : | . | : | . | : | . | . |:
297 IKKELTQLTNLLSAQHNFCEYRKALGACNKKFRIPPIIGVHLKDLVAINCS 346

318 LPDWLDPARTRLNGAKMKQQLFSILEELAMVTSRPPV.QANPDLLSLLTV 366
. : | : . | . . | : | | . | . |:
347 GANFEKT..KCISSDKLVKLSKLLSNFLVFNQKGHNLPEMNMDINTLKV 394

367 SLDQYQTEDELYQLSLQREPRSKSSPTSPSTSCTPPRPPVLEEWTSAAKP 416
. | | . . . | : | . | . | . | . | . | . | . | . | . |:
395 SLDIYRNDDDIYELSLRREPKTFMN.....FEPSRGLVFAEWASGTV 437

417 KLDQALVVEHIEKMVESVFRNFDVDGEGHISOEEFOIIRGNFYYLSAFGD 466
. | . | . | . | . | . | . | . | . | . | . | . | . |:
438 APDNATVSKHISAMDAVFKHYDHDRDGFISOEEFOLIAGNFPFIDAFVN 487

467 LDONODGCISREEMVSYFLRSS.SVLGGRMGFVHNFOESNSLRPVACRHC 515
. | : | | . | : | . | . | . | . | . | . | . | . | . |:
488 IDVDMDGOISKDELKTYFMAANKNTKDLRRGFKHNFHEFTTFLPTTCNHC 537

516 KALILGIYKOGLKCRACGVNCHKOCKDRLSVECRRAQSSLEGSAPSPS 565
. | : | . | : | . | . | . | . | . | . | . | . | . |:
538 NKLLWGILROGFKCDCGLAVHSCCKSNAECRRKSSNLTRAAEWFAS 587

566 PMHSHHHRAFSFSLPRPGRRGSRPPEIREEEVQTVEDGVFDIHL 609
. | . | : | . | . | . | . | . | . | . | . | . | . |:
588 PRGSMRSRIINTC....NNSGSTPDEEIGLVLACEEVFEDDDL 627

FIGURE 4

human CGATTTCACT CCTCGTCCC CACAGGTCCC TCTCCCCAAA ATATTCCTCAT CTITGCCTAG 60
human CCCATCCCCC AGACTATCTC AAGGACCAGC TGTCCTCACG CCCCCGACCT CCACTAGGCC 120
human TGTGCCACCC GCTGCCTGCA GGAAGACGCC CGGTCCCCGG CC GGTTAAC CCCATGGAA 180
human CGCAGGGCT GTGTGGCCGC GGGACTCAAG GCTGGCTGG CTCAAGTGAA CAGCACGTCC 240
mouse ***tcag** ****ag**** t***** a*g***t>
human AGGAGGGCAG CTCGTCCCGC GGTTCGATT CTGGGGTGGA CGAGCTGGGG GTTCGGTCCG 300
acagg

mouse g*****t**a ***-catt** *****aa**aa* g**ct***** *a**aat**>
human AGCCCGGTGG GAGGCTCCCG GAGGCAGGCC TGGGCCAGC CCACCCCGCG CCGGCGGCCA 360
mouse ***a*t**** *****tga ***t*t*a*t *****t*t*** ***-tg**a *****a****>
human TGGCAGGCAC CCTGGACCTG GACAAGGGCT GCACGGTGGA GGAGCTGCTC CGCGGGTGCA 420
mouse ****ga**** t***** *****t* *****c***** *****c***** t**c**t*>
human TCGAAGCCTT CGATGACTCC GGGAAAGGTGC GGGACCCGCA GCTGGTGCGC ATGTTCCCTCA 480
mouse *****t **a***** a**t**a** ***a***** *****t*****>
human TGATGCACCC CTGGTACATC CCCTCCTCTC AGCTGGCGGC CAAGCTGCTC CACATCTACC 540
mouse *****a ***t***** *****tt* g**a***** ***t*****t*>
human ACAATCCCG GAAGGACAAC TCCAATTCCC TGCAGGTGAA AACGTGCCAC CTGGTCAGGT 600
mouse *g*****t* *a**a***** *****t*** t*****>
human ACTGGATCTC CGCCTTCCCA GCGGAGTTTG ACTTGAACCC GGAGTTGGCT GAGCAGATCA 660
mouse ***** a*****c* ***** a***c***** *a*****>
human AGGAGCTGAA GGCTCTGCTA GACCAAGAAG GGAACCGACG GCACAGCAGC CTAATCGACA 720
mouse *****t** *****ca* ***** *c*****>
human TAGACAGCGT
mouse *c**g**t**
730

Figure 5

CACGCCCTCGGAAGGGAGGTTGGGTGGTTCACAGTGAGTGTGTCTGAAGCCAAA 60
TGGTCGGAAACCGTTACCCGCTCTCCTAGGCCGGCTAGTGGGACCCAACCGCCTGCG 120
* A R L V G T P T A C>
GCTGCCCTCCAAGTTCTCCCTGTTGCCAGGCATCCAGGTCTCCAGTCTCCGAGCTG 180
G C P S Q V P P C W P G I Q V S S L R A>
CGGAGAACCCACCGCCACATGCGGCTGCCCTTCCATTGACCCGTGGGAGCCAGGC 240
A E N P P P H A A A A P F H S T L W G A R>
TTCCGGGGCCCCGTTCTCTGTGTGAACGGGCCCCCGCCCCATTCCCAGACATCAA 300
L P G P R S S C V N W A P R P H S Q T S>
GGCCCGTCTCCAGATAGCCACGATTCTCGCTCCCCACAGGTCCCTCTCCCCAA 360
R P R L Q I A T I S F L A P H R S L S P>
AATATTCCCATCTTGTCTAGCCCATCC-CCAGACTATCTCAAGGACCAGCTGTCCCCAC 420
K Y S H L V L A H P P D Y L K D Q L S P>
GCCCGACCTCCACTAGGCTGTGCCACCCGCTGCCTGCAGGAAGACGCCGGTCCGG 480
R P R P P L G L C H P L P A G R R P V P>
GCCGGGTTAGCCCCATGGGAACGcagcgctgtgtggccgcggactcaaggctggctg 540
* p h g n
G R V S P M G T Q R L C G R G T Q G W P>
gctcaagtgaacagcacgtccaggaggcgcacctcgccgcgggtttgcattctgggggg 600
G S S E Q H V Q E A T S S A G L H S G V>
acgagctggGGGTTCGGTCCGAGCCGGTGGGAGGCTCCGGAGCGCAGCCTGGGCCAG 660
D E L G V R S E P G G R L P E R S L G P>
CCCACCCCGGCCGGCCATGGCAGGCACCCCTGGACCTGGACAAGGGCTGCACGGTGG 720
A H P A P A A M A G T L D L D K G C T V>

Figure 6

Figure 7 (Cont. I)

Plasmid name: clone 16 in pGEX-3X

Plasmid size: 6.00 kb

Figure 7 (Cont. II)

Plasmid name: clone 19 in pGEX-1

Plasmid size: 6.00 kb

figure 7 (Cont. III)

Plasmid name: clone 5 in pGEM-11zf

Plasmid size: 5.50 kb

Figure 7 (Cont. IV)

Plasmid name: clone 27 in pGEX-2T

Plasmid size: 7.50 kb

THIS PAGE BLANK (USPTO)