Facilitate Communication

A mechanism for increasing intergroup contact.

Thomas Yiliang Ge 12/11/2024

Context

- Intergroup Contact provides an opportunity to gain new information and reduce intergroup prejudice.
- To increase the communication intention, requires:
 - a) For any group, there should be at least one Type A agent and at least one Type B agent.
 - b) The utility function of social planner satisfies: $U(S) = \min\{m_i\}$, where m_i represents the similarity degree of agent in group i. Find $\max\{U(S)\}$.

High similarity ⇒ High Intention

Type B

		Initiate	Respond
Туре А	Initiate	(u_1,u_1)	(u_2,u_2)
Type II	Respond	(u_2, u_2)	(u_3, u_3)

$$u_1 = Rh(1 - Rh)^{1-\gamma} - \lambda(1 - h)h^{1-\gamma}$$

$$u_2 = h(1 - h)^{1-\gamma} - \lambda(1 - h)h^{1-\gamma}$$

$$u_3 = 0$$

$$\begin{cases} h > \frac{\lambda}{\lambda^{\gamma} + \lambda} \\ h < \frac{R - R^{1 - \gamma}}{R^{2 - \gamma} - R^{1 - \gamma}} \end{cases}$$

- Agents who are too different are more likely to suffer in communication.
- Agents who are too similar worry about unexpected losses.
- Agents who are too similar or too different from each other are not easy to communicate.

Bipartite Graph Matching

- Construct a bipartite graph: one set of vertices being A Type, the other set of vertices being B Type. Build edge between two vertices if they have an acceptable matching score.
- Perform perfect matching

Red: Type A Purple: Type B

Bipartite Graph Matching

```
Input: Bipartite Graph G = \langle L, R, E \rangle
Output: The matching array matched[]
Hungarian(G):
     create Array matched[], visited[] with size |R|
     \mathrm{matched}[\mathrm{u}] \leftarrow \mathrm{NULL} \ \mathrm{for} \ \mathrm{every} \ u \in R
     for v \in L do:
           \text{visited}[\mathbf{u}] \leftarrow False \text{ for every } u \in R
           DFS(G, v)
     end for
     return matched
Input: Bipartite Graph G = \langle L, R, E \rangle, v
Output: Whether an alternating path starting from v exists
DFS(G,v):
     for u \in Neighbor(v) do:
           if visited[u] then continue
           visited[u] \leftarrow True
           if matched[u]=NULL or DFS(G,matched[u]) then
                 \mathrm{matched}[\mathrm{u}] \leftarrow v
                 return True
           end if
     end for
     return False
```

Matching Degree

Student	Gender	Nationality	Term Session	Roommate	Atmosphere	Bedtime	Cleanliness	Outgoing	Wake Up
211	Female	International	Fall 2017	229	2	2	0	2	2
229	Female	Chinese	Fall 2017	211	-2	-1	-1	0	0
258	Female	International	Fall 2017	306	-1	-1	-1	1	0
306	Female	Chinese	Fall 2017	258	1	1	0	1	0

$$m_{i,j} = 10 - \frac{\sqrt{5}}{2} \| \boldsymbol{l}_i - \boldsymbol{l}_j \|_2$$

Discussion

Difficulties:

- 1. hard to satisfy in groups 3 agent
- 2. difficult to define a proper way to measure the matching degree

Potential Approach: Bounded Pair

Questions are welcome