1 Центральная предельная теорема

Теорема 1.1 (Линдеберга). Пусть $\{\xi_k\}_{k\geqslant 1}$ — независимые случайные величины, $\mathsf{E}\xi_k^2<+\infty\ \forall k.$ Обозначим $m_k=\mathsf{E}\xi_k,\,\sigma_k^2=\mathsf{D}\xi_k>0;\,S_n=\sum_{i=0}^n\xi_i;\,\mathsf{D}_n^2=\sum_{k=1}^n\sigma_k^2\ u\ F_k(x)$ — функция распределения ξ_k . Пусть выполнено условие Линдеберга:

$$\forall \varepsilon > 0 \quad \frac{1}{\mathsf{D}_n^2} \sum_{k=1}^n \int_{\{x: |x-m_k| > \varepsilon \mathsf{D}_n\}} (x-m_k)^2 \, dF_k(x) \xrightarrow[n \to \infty]{} 0.$$

Тогда
$$\frac{S_n - \mathsf{E} S_n}{\sqrt{\mathsf{D} S_n}} \longrightarrow \mathcal{N}(0,1), n \to \infty.$$

2 Гауссовские случайные векторы

Определение 1. Случайный вектор $\vec{\xi} \sim \mathcal{N}(m, \Sigma)$ — гауссовский, если его характеристическая функция $\varphi_{\xi}(\vec{t}) = \exp{(i(\vec{m}, \vec{t}) - \frac{1}{2}(\Sigma \vec{t}, \vec{t}))}, \vec{m} \in \mathbb{R}^n, \Sigma$ — симметричная неотрицательно определенная матрица.

Определение 2. Случайный вектор $\vec{\xi}$ — гауссовский, если он представляется в следующем виде: $\vec{\xi} = A\vec{\eta} + \vec{b}$, где $\vec{b} \in \mathbb{R}^n$, $A \in \mathrm{Mat}\,(m \times n)$ и $\eta = (\eta_1, \ldots, \eta_m)$ — независимые и распределенные $\mathcal{N}(0,1)$.

Определение 3. Случайный вектор $\vec{\xi}$ — гауссовский, если $\forall \lambda \in \mathbb{R}^n$ случайная величина $(\vec{\lambda}, \vec{\xi})$ имеет нормальное распределение.

Теорема 2.1 (Об эквивалентности определений гауссовских векторов). *Предыдущие три определения эквивалентны.*