VE281

Data Structures and Algorithms

Non-comparison Sort

Announcement

- Programming Assignment One released
 - On sorting
 - Due time: 11:59 pm, Sep. 30th, 2017

Outline

- Non-comparison Sort
 - Counting Sort
 - Bucket Sort
 - Radix Sort

A Simple Version

- Sort an array A of **integers** in the range [0, k], where k is known.
- 1. Allocate an array count[k+1].
- 2. Scan array A. For i=1 to N, increment count[A[i]].
- 3. Scan array **count**. For i=0 to **k**, print **i** for **count[i]** times.
- Time complexity: O(N + k).
- The algorithm can be converted to sort integers in some other known range [a, b].
 - Minus each number by a, converting the range to [0, b-a].

A General Version

- In the previous version, we print i for count[i] times.
 - Simple but only works when sorting integer keys alone.
 - How to sort items when there is "additional" information with each key?
- A general version:
- 1. Allocate an array C[k+1].
- 2. Scan array A. For i=1 to N, increment C[A[i]].
- 3. For i=1 to k, C[i]=C[i-1]+C[i]
 - C[i] now contains number of items less than or equal to i.
- 4. For i=N downto 1, put A[i] in new position C[A[i]] and decrement C[A[i]].

- 1. Allocate an array **C[k+1]**.
- 2. Scan array A. For i=1 to N, increment C[A[i]].
- 3. For i=1 to k, C[i]=C[i-1]+C[i]
- 4. For i=N downto 1, putA[i] in new positionC[A[i]] and decrementC[A[i]].

	k=5	5						
	1	2	3	4	5	6	7	8
L	2	5	3	0	2	3	0	3

	0	1	2	3	4	_5_
C	2	0	2	3	0	1

Example

- 1. Allocate an array **C**[**k+1**].
- 2. Scan array A. For i=1 to N, increment C[A[i]].
- 3. For i=1 to k, C[i]=C[i-1]+C[i]
- For i=N downto 1, put
 A[i] in new position
 C[A[i]] and decrement
 C[A[i]].

Why putting 3 at location 7 is correct?

- 1. Allocate an array **C**[**k+1**].
- 2. Scan array A. For i=1 to N, increment C[A[i]].
- 3. For i=1 to k, C[i]= C[i-1]+C[i]
- For i=N downto 1, putA[i] in new positionC[A[i]] and decrementC[A[i]].

_ 1	2	3	4	5	6	7	8
	0					3	

	0	1	2	3	4	_5_
C	1	2	4	6	7	8

- 1. Allocate an array **C**[**k+1**].
- 2. Scan array A. For i=1 to N, increment C[A[i]].
- 3. For i=1 to k, C[i]=C[i-1]+C[i]
- For i=N downto 1, putA[i] in new positionC[A[i]] and decrementC[A[i]].

 		4	 6	/	8
0			3	3	
-	-	-	 		

	0	1	2	3	4	5
C	1	2	4	5	7	8

- 1. Allocate an array **C**[**k+1**].
- 2. Scan array A. For i=1 to N, increment C[A[i]].
- 3. For i=1 to k, C[i]=C[i-1]+C[i]
- 4. For i=N downto 1, putA[i] in new positionC[A[i]] and decrementC[A[i]].

_1	2	3	4	5	6	7	8
	0		2		3	3	

	0	1	2	3	4	_5_
C	1	2	3	5	7	8

- 1. Allocate an array **C**[**k+1**].
- 2. Scan array A. For i=1 to N, increment C[A[i]].
- 3. For i=1 to k, C[i]=C[i-1]+C[i]
- 4. For i=N downto 1, putA[i] in new positionC[A[i]] and decrementC[A[i]].

_	1	2	3	4	5	6	7	8
	0	0		2		3	3	

	0	1	2	3	4	_5
C	0	2	3	5	7	8

- 1. Allocate an array **C**[**k+1**].
- 2. Scan array A. For i=1 to N, increment C[A[i]].
- 3. For i=1 to k, C[i]= C[i-1]+C[i]
- For i=N downto 1, putA[i] in new positionC[A[i]] and decrementC[A[i]].

_1	2	3	4	5	6	7	8
0	0		2	3	3	3	

	0	1	2	3	4	5	
C	0	2	3	4	7	8	

- 1. Allocate an array **C**[**k+1**].
- 2. Scan array A. For i=1 to N, increment C[A[i]].
- 3. For i=1 to k, C[i]=C[i-1]+C[i]
- For i=N downto 1, putA[i] in new positionC[A[i]] and decrementC[A[i]].

_ 1	2	3	4	5	6	7	8
0	0		2	3	3	3	5

Example

- 1. Allocate an array **C**[**k+1**].
- 2. Scan array A. For i=1 to N, increment C[A[i]].
- 3. For i=1 to k, C[i]=C[i-1]+C[i]
- 4. For **i=N** downto **1**, put **A**[i] in new position **C**[A[i]] and decrement **C**[A[i]].

Done!

Is counting sort stable?

Yes!

Outline

- Non-comparison Sort
 - Counting Sort
 - Bucket Sort
 - Radix Sort

Bucket Sort

- Instead of simple integer, each key can be a complicated record, such as a real value.
- Then instead of incrementing the count of each bucket, distribute the records by their keys into appropriate buckets.
- Algorithm:
- 1. Set up an array of initially empty "buckets".
- 2. Scatter: Go over the original array, putting each object in its bucket.
- 3. Sort each non-empty bucket by a comparison sort.
- 4. Gather: Visit the buckets in order and put all elements back into the original array.

Bucket Sort

- Time complexity
 - Suppose we are sorting cN items and we divide the entire range into N buckets.
 - Assume that the items are uniformly distributed in the entire range.
 - The average case time complexity is O(N).

Outline

- Non-comparison Sort
 - Counting Sort
 - Bucket Sort
 - Radix Sort

- Radix sort sorts integers by looking at one digit at a time.
- Procedure: Given an array of integers, from the least significant bit (LSB) to the most significant bit (LSB), repeatedly do **stable** bucket sort according to the current bit.

- ullet For sorting base-b numbers, bucket sort needs b buckets.
 - For example, for sorting decimal numbers, bucket sort needs 10 buckets.

Example

- Sort 815, 906, 127, 913, 098, 632, 278.
- Bucket sort 81<u>5</u>, 90<u>6</u>, 12<u>7</u>, 91<u>3</u>, 09<u>8</u>, 63<u>2</u>, 27<u>8</u> according to the least significant bit:

0	1	2	3	4	5	6	7	8	9
		63 <u>2</u>	91 <u>3</u>		81 <u>5</u>	90 <u>6</u>	12 <u>7</u>	09 <u>8</u> 27 <u>8</u>	

• Bucket sort 632, 913, 815, 906, 127, 098, 278 according to the second bit.

Example

• Bucket sort 632, 913, 815, 906, 127, 098, 278 according to the second bit.

0	1	2	3	4	5	6	7	8	9
9 <u>0</u> 6		1 <u>2</u> 7	6 <u>3</u> 2				2 <u>7</u> 8		0 <u>9</u> 8
	8 <u>1</u> 5								

• Bucket sort <u>9</u>06, <u>9</u>13, <u>8</u>15, <u>1</u>27, <u>6</u>32, <u>2</u>78, <u>0</u>98 according to the most significant bit.

Example

• Bucket sort <u>9</u>06, <u>9</u>13, <u>8</u>15, <u>1</u>27, <u>6</u>32, <u>2</u>78, <u>0</u>98 according to the most significant bit.

0	1	2	3	4	5	6	7	8	9
<u>0</u> 98	<u>1</u> 27	<u>2</u> 78				<u>6</u> 32		<u>8</u> 15	906 913

• The final sorted order is: 098, 127, 278, 632, 815, 906, 913.

Radix Sort: Correctness

- Claim: after bucket sorting the i-th LSB, the numbers are sorted according to their last i digits
- Proof by mathematical induction
- Inductive step
 - ullet Assume that according to the last i digits, order is $a_1 < \dots < a_n$
 - For two adjacent numbers a_k and a_{k+1} if they are not in the same bucket, they are sorted according to their last i digits
 - If they are in the same bucket, then $a_k < a_{k+1}$ for the last (i-1) bits. They are also sorted due to stability of bucket sort

Time Complexity

- Let k be the maximum number of digits in the keys and N be the number of keys.
- We need to repeat bucket sort *k* times.
 - Time complexity for the bucket sort is O(N).
- The total time complexity is O(kN).

- Radix sort can be applied to sort keys that are built on positional notation.
 - **Positional notation**: all positions uses the same set of symbols, but different positions have different weight.
 - Decimal representation and binary representation are examples of positional notation.
 - Strings can also be viewed as a type of positional notation. Thus, radix sort can be used to sort strings.
- We can also apply radix sort to sort records that contain multiple keys.
 - For example, sort records (year, month, day).