```
In [1]:
         import pandas as pd
         import numpy as np
         a=pd.read_csv(r"C:\All Datasets\bangalore-cas-alerts.csv")
In [2]:
Out[2]:
        e_location_longitude deviceCode_location_wardName deviceCode_pyld_alarmType deviceCode_pyld_sr
                 77.744087
                                              Kadugodi
                                                                           PCW
                 77.744087
                                               Kadugodi
                                                                           PCW
                 77.741119
                                        Garudachar Playa
                                                                           FCW
                                        Garudachar Playa
                 77.741119
                                                                           FCW
                 77.740051
                                                  Hudi
                                                                       Overspeed
                 77.741516
                                               Kadugodi
                                                                          UFCW
                 77.745117
                                                                          UFCW
                                               Kadugodi
                 77.749886
                                               Hagadur
                                                                       Overspeed
                                                                           FCW
                 77.746841
                                               Hagadur
                                                                           PCW
                 77.744125
                                               Hagadur
In [3]: |a.isnull().sum()
Out[3]: deviceCode deviceCode
                                                   0
         deviceCode location latitude
                                                   0
         deviceCode_location_longitude
                                                   0
         deviceCode location wardName
                                                   0
         deviceCode_pyld_alarmType
                                                   0
         deviceCode_pyld_speed
                                                   0
         deviceCode time recordedTime $date
         dtype: int64
In [4]: | a["deviceCode_pyld_alarmType"].value_counts()
Out[4]: UFCW
                       82425
         HMW
                       36143
         FCW
                       35000
                       27440
         Overspeed
         PCW
                       24003
         LDWL
                        1412
         LDWR
                        1194
         Name: deviceCode_pyld_alarmType, dtype: int64
```

In [5]: from sklearn.preprocessing import LabelEncoder
l=LabelEncoder()
a["deviceCode_location_wardName"]=l.fit_transform(a["deviceCode_location_wardName"]=l.fit_transform(a["deviceCode_pyld_alarmType"])

In [6]: a

Out[6]:

	deviceCode_deviceCode	deviceCode_location_latitude	deviceCode_location_longitude	devic			
0	864504031502210	12.984595	77.744087				
1	864504031502210	12.984595	77.744087				
2	864504031502210	12.987233	77.741119				
3	864504031502210	12.987233	77.741119				
4	864504031502210	12.987503	77.740051				
207612	864504031432707	12.976435	77.741516				
207613	864504031035658	12.986425	77.745117				
207614	863977033828919	12.969396	77.749886				
207615	863977033715231	12.974123	77.746841				
207616	863977033827523	12.975480	77.744125				
207617 rows x 7 columns							

207617 rows × 7 columns

In [7]: del a["deviceCode_time_recordedTime_\$date"]

In [8]: a

Out[8]:

	deviceCode_deviceCode	deviceCode_location_latitude	deviceCode_location_longitude	devic
0	864504031502210	12.984595	77.744087	
1	864504031502210	12.984595	77.744087	
2	864504031502210	12.987233	77.741119	
3	864504031502210	12.987233	77.741119	
4	864504031502210	12.987503	77.740051	
207612	864504031432707	12.976435	77.741516	
207613	864504031035658	12.986425	77.745117	
207614	863977033828919	12.969396	77.749886	
207615	863977033715231	12.974123	77.746841	
207616	863977033827523	12.975480	77.744125	

207617 rows × 6 columns

- In [9]: x=a.iloc[:,[0,1,2,3,5]].values
 y=a.iloc[:,-2].values
- In [10]: from sklearn.preprocessing import StandardScaler
 s=StandardScaler()
 x1=s.fit_transform(x)
- In [11]: from imblearn.over_sampling import SMOTE
 sm=SMOTE()
 X,Y=sm.fit_resample(x1,y)
- In [13]: from sklearn.neighbors import KNeighborsClassifier
 from sklearn.tree import DecisionTreeClassifier
 from sklearn.ensemble import RandomForestClassifier
- In [14]: kn=KNeighborsClassifier(n_neighbors=5,metric="minkowski",p=2)
 dt=DecisionTreeClassifier(criterion="entropy")
 rf=RandomForestClassifier(n_estimators=5)

```
In [15]: | from sklearn.ensemble import VotingClassifier
         vc=VotingClassifier(estimators=[("knn",kn),("Dec.tree",dt),("RandomForest",rf)])
         vc.fit(x_train,y_train)
Out[15]: VotingClassifier(estimators=[('knn', KNeighborsClassifier()),
                                       ('Dec.tree',
                                        DecisionTreeClassifier(criterion='entropy')),
                                       ('RandomForest',
                                        RandomForestClassifier(n_estimators=5))])
In [16]: |
         pred=vc.predict(x_test)
In [17]: pred
Out[17]: array([0, 5, 0, ..., 3, 5, 1])
In [18]: from sklearn.metrics import accuracy score
         accuracy_score(pred,y_test)*100
Out[18]: 87.02456778889899
In [20]: from sklearn.model selection import StratifiedKFold
         st=StratifiedKFold(n splits=5,random state=30,shuffle=True)
         st.get n splits(x train,y train)
Out[20]: 5
In [21]: from sklearn.model selection import cross val score
         from sklearn.model_selection import cross_val_predict
         from sklearn.metrics import accuracy score
In [22]:
         scores=cross_val_score(vc,x_train,y_train)
         pred2=cross_val_predict(vc,x_test,y_test)
         print((scores)*100)
         print(pred2)
         accuracy_score(pred2,y_test)*100
         [85.12933836 85.233329
                                   85.34923524 85.2484943 85.3178214 ]
         [1 6 1 \dots 3 5 2]
Out[22]: 74.9789852246631
 In [ ]:
```