IUT DE COLMAR

R314

Année 2022-23

Analyse de Fourier

MARTIN BAUMGAERTNER

Table des matières

1	\mathbf{CM}	1 - 21	l septembre 2022
	1.1	Défini	tion
	1.2	Exemp	ple
		1.2.1	Tracer le signal
		1.2.2	Calcul de sa valeur moyenne
		1.2.3	Calcul des coefficients de Fourier
		1.2.4	Donner sa décomposition en série de Fourier
		1.2.5	Donner les 4 premières harmoniques
		1.2.6	Trucs et astuces

$1 \quad \text{CM 1 - 21 septembre 2022}$

1.1 Définition

Un signal est dit périodique lorsque que nous pouvons retrouver un travers un signal un zone répétée.

La fréquence d'un signal peut se calculer avec : $\nu = f = \frac{1}{T}$

f(t) = signal périodique de période T. Et, on l'écrira de cette manière:

$$f(t) = a_0 + \sum_{n=1}^{+\infty} a_n cos(n\omega t) + b_n sin(n\omega t)$$

Les différents harmoniques de rang n peut s'écrire : $a_n cos(n\omega t) + b_n sin(n\omega t) = hn(t)$

Le calcul des coefficients de Fourier : $a_0 = \frac{1}{T} \int_{\Delta} f(t) dt = \text{valeur moyenne}$

Ces deux formules servent car nous pouvons calculer les données a_n et b_n pour la grosse formule au dessus avec le petit 1 :

$$- a_n = \frac{2}{T} \int_{\triangle} f(t) cos(n\omega t) dt$$
$$- b_n = \frac{2}{T} \int_{\triangle} f(t) sin(n\omega t) dt$$

1.2 Exemple

Soit le signal:

$$f(t) = \begin{cases} 1 & \text{si } -\pi \le t \le 0 \\ 2 & \text{si } 0 \le t \le \pi \end{cases}$$

1.2.1 Tracer le signal

FIGURE 1 – La courbe 1

1.2.2 Calcul de sa valeur moyenne

On calcule d'abord $a_O = \frac{1}{T} \int_{\triangle} f(t) dt$:

$$\Rightarrow T = 2\pi$$

$$\Rightarrow \triangle = [-\pi; \pi]$$

$$\Rightarrow a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)dt = \frac{1}{2T} (\int_{-\pi}^{0} 1 dt + \int_{0}^{\pi} 2 dt)$$

$$\Rightarrow a_0 = \frac{1}{2\pi} ([t]_{-\pi}^{0} + [2t]_{0}^{\pi})$$

$$\Rightarrow a_0 = \frac{1}{2\pi} (0 - (-\pi) + (2\pi - 0))$$

$$\Rightarrow a_0 = \frac{1}{2\pi} (\pi + 2\pi) = \frac{1}{2\pi} = \frac{3}{2}$$

1.2.3 Calcul des coefficients de Fourier

Premièrement, on calcule a_n et b_n :

$$\Rightarrow \omega = \frac{2\pi}{T} = \frac{2\pi}{2\pi} = 1$$

$$\Rightarrow a_n = \frac{2}{T} \int_{\Delta} f(t) \cos(nt) dt$$

$$\Rightarrow a_n = \frac{2}{2\pi} \int_{-\pi}^{\pi} f(t) \cos(nt) dt$$

$$\Rightarrow a_n = \frac{1}{\pi} \left[\int_{-\pi}^{0} 1 \cos(nt) dt + \int_{0}^{\pi} 2 \cos(nt) dt \right]$$

$$\Rightarrow a_n = \frac{1}{\pi} \left(\left[\frac{\sin(nt)}{n} \right]_{-\pi}^{0} + \left[\frac{2\sin(nt)}{n} \right]_{0}^{\pi} \right)$$

$$\Rightarrow a_n = 0$$

La fonction sinus est impaire car f(-x) = -f(x)

1.2.4 Donner sa décomposition en série de Fourier

1.2.5 Donner les 4 premières harmoniques

1.2.6 Trucs et astuces

- Si f(t) est pair alors les b_n sont nuls
- Si f(t) est impair alors a_0 les a_n sont nuls
- Si f(t) est quelconque mais que $f(t) a_O$ est impair alors les a_n sont nuls