Bi furcations

Points where critical points change-need a parameter in system (for harvesting, that's H).

$$Ex$$
: $y' = y^2 - \alpha$
 y_c
 $x = y^2 - \alpha$

Critical Points

$$\alpha < 0 \quad \rightarrow \quad \text{none}$$
 $\alpha = 0 \quad \rightarrow \quad \text{one} \quad y_{=0}$
 $\alpha > 0 \quad \rightarrow \quad two \quad y_{c} = t \, \sqrt{\alpha}$

The critical point at $\alpha=0$ splits into two for $\alpha>0$ is called a saddle node bifurcation.

$$Ex: y' = y^3 - \alpha y$$

Critical points

$$\alpha = 0 \rightarrow \text{ one } (y_c = 0)$$
 $\alpha < 0 \rightarrow \text{ one } (y_c = 0)$
 $\alpha > 0 \rightarrow \text{ three}$

This is called a pitchfork bifurcation.

Ex: (Harvesting) -> saddle -node

Numerics

Suppose we have:

$$y' = f(t,y)$$
 with $y(t_0) = y_0$.

Now the idea is to build our solution by connecting

lines:

$$y_i \approx y(t_i)$$
 $y_i \approx y(t_i)$
 $y_i \approx y(t_i)$

to given

yo given

n steps (given)

for j = 0: n

Yin= some formula to make line (or curve)

tim = tx44+h

end.

Note: Could also use while loop:

while (t; < T) where T = to + n.h

Ex: (Forward Euler)

If we zoom in, notice the line can be approximated by the tangent line.

Recall the point-slope formula:

$$y-y_n=m\left(t-t_n\right) \quad , \quad m=y'(t_n)=f(t_n,y_n)$$
 And plug in (t_{n+1},y_{n+1}) :

$$y_{n+1} = y_n + f(t_n, y_n)(t_{n+1} - t_n) = 4 y_n + h f(t_n, y_n)$$

This is Forward Euler.

Algorithm

Given Yo, to, n, h.

$$y_{i''} = y_i + h f(t_i, y_i)$$

end.

We may use "k-notation" (later):

for
$$j = a : n$$

 $k_0 = f(t_i, y_i)$
 $y_{i+1} = y_i + hk_0$
 $t_{i+1} = t_i + h$
end

Error:

7 Local error

$$y(t_{n+1}) = y(t_n) + h y'(t_n) + \frac{h^2 y''(t_n)}{2} + \dots$$

Note that $h^3 \ll h^2$ for small h, so my error is $\frac{h^2 y''(tn)}{2} = O(h^2), \text{ call big-0 notation.} \left(O(h^2) \leq C \cdot h^2\right)$

We can see why Euler has local error of O(n2):

$$y(t_{n+1}) \quad y_{n+1} = y_n + h y'(t_n) \underbrace{z_{n+1}}_{=} + O(h^2)$$

$$\approx y_n + h f(t_n, y_n) = y_{n+1}$$

* Cumulative Error

Each step taken, accomulates a local error. So, Take t = [0,1], $n = \frac{1}{h}$, so h steps taken. Then,

$$err_{(0,1)} \approx \sum_{j=1}^{n} e_{j} = o(h^{2})n = o(h)$$

comulative error for Euler

This is the most commonly used metric. As we seen we've lost an order of accuracy from local error.

cut h in half -> step twice as much

half the error -> some amount of work

Second Order Schemes

Euler

Improved Euler

to, yo, n given
for
$$j=0:n$$

 $K_0 = f(y_j, t_i)$
 $U = y_i + hk_0$
 $K_1 = f(u_i + t_{j+1})$
 $Y_{j+1} = Y_i + \frac{h}{2}(k_0 + k_1)$
 $t_{j+1} = t_i + h$

end

Error (Improved Euler)

Local ~ O(h3)

Comulative O(h2)

Cut h in half => double the work

the work

error down y 4 => overall gain

* Improved Euler gives a relative estimate of error:

YLOW = yi + hks

YHIGH = Y; + h(Ko+ki) Imploved Euler

Euler

1 YHIGH - YLOW | 2 local error (as h K(1)

This allows for <u>adaptive</u> schemes.

Idea: Determine step-size h based on estimate of error!

YLOW is called the low order predictor

YHIGH is called the high order corrector.

if lyman - YLOW > tolerance L> cut h

or lyman - Youl < really small tolerance Lyraise h.

Algorithm (Improved Euler)

for
$$j=0:n$$
 (while loop)

 $k_0 = f(t_i, t_{ij})$
 $v = y_i + h k_0$
 $k_1 = f(t_{i+1}, u)$
 $v_{i+1} = v_i + \frac{h}{2}(k_0 + k_i)$

adaptive $v_{i+1} = v_{i+1} + \frac{h}{2}(k_0 + k_i)$
 $v_{i+1} = v_{i+1} + \frac{h}{2}(k_0 + k_i)$

end

Do this ... twice .

$$K_{0} = f(t_{11}y_{1})$$

$$Uy_{2} = y_{1} + \frac{h}{2} k_{0}$$

$$K_{1} = f(t_{11}y_{1})$$

$$K_{1} = f(t_{11}y_{2})$$

$$K_{2} = f(t_{11}y_{2}, Uy_{2})$$

$$V_{3} = y_{1} + \frac{h}{2} k_{3}$$

$$K_{4} = f(t_{11}y_{2}, \overline{U}y_{2})$$

$$U_{1} = y_{1} + h k_{3}$$

$$K_{1} = f(t_{11}y_{1}, \overline{U}y_{2})$$

THE THE SAME TO BE

Error (contid)

For RKH, local error is $O(h^5)$ and comulative is $O(h^4)$.

Half $h \Rightarrow converse co$

Ex:

$$h = 0.1$$
 $1e-2$ $1e-2$ $2.3e-2$
 $h = 0.01$ $2.1e-3$ $2.2e-4$ $1.7e-6$
 $h = 0.001$ $1.1e-4$ $3e-6$ $4e-10$

Much better error as you go down in h. Trade-off -> more computational work.

ODE45 global

5 - local error i order of corrector

L, i.e. YHIGH

4 - Boro Assed error of predictor

Lie. YLOW

ODE 12

Improved Euler would be designed, for example

Ly MATLAB doesn't use I.E., but onother type of second order.

Other RK4 methods

Another one is the 3/84's rule:

$$k_{0} = f(t_{1}, y_{1})$$

$$k_{1} = f(t_{1} + \frac{h}{3}, y_{1} + \frac{k_{0}}{3})$$

$$k_{2} = f(t_{1} + \frac{2h}{3}, y_{1} - \frac{k_{0}}{3} + k_{1})$$

$$k_{3} = f(t_{1} + y_{1} + k_{1} - k_{2} + k_{3})$$

$$y_{1} = y_{1} + \frac{h}{8}(k_{0} + 3k_{1} + 3k_{2} + k_{3})$$

Numerical Stability

Note to students: This is not critical point stability.

Suppose we have the test equation: y' = -ay; $y(0) = y_0 \rightarrow y = y_0 e^{at}$, a>0.

Now suppose we integrate with Euler:

$$y_1 = y_0 + hf(y_0) = y_0 - ahy_0 = (1-ah)y_0$$

 $y_2 = y_1 + hf(y_1) = y_1 - ahy_1 = (1-ah)y_1 = (1-ah)y_0$
:
 $y_n = (1-ah)^n y_0$, usually written $y_n^2 = z^n y_0$.

Notice, as $t \rightarrow \infty$, $y \rightarrow 0$. However, in our scheme, this only happens when |Z| < 1. This is the idea behind stability.

So, |z|<| => -1 < |-ah < |

- * Notice that I-ah < I always true.
- \rightarrow 1-ah >-1 \rightarrow ah < 2 \rightarrow h < 2/q. Stability limit or stability bound

If
$$h = \frac{2}{a}$$
, then $y_{n+1} = (-1)^n y_0$

All explicit schemes (what we have discussed so for) are subject to numerical instability.

Implicit Schemes

Before: yn= yn+ hf(tn, yn)

Now: yn+1 = yn + hf(+n+1, yn+1)

This is <u>Backward</u> <u>Euler</u>. The equation is implicit. So, if we want to step, we have to solve for y_{n+1}.

Let's look at the stability. Take f(t,y) = -ay again.

So, y' = -ay ? $y(0) = y_0$.

y, = yo + hf(yi) = yo - ahy, -> y1 = yo

 $y_2 = y_1 + hf(y_2) = y_0 - ahy_2 \rightarrow y_2 = \frac{y_1}{1+ah} = \left(\frac{1}{1+ah}\right)^2 y_0$

 $y_n = \left(\frac{1}{1+ah}\right)^n y_0$, so $y_n = Z^n y_0$ wi $Z = \frac{1}{1+ah}$

* Notice |z|<1 for any choice of h -> unconditionally stable.

ODE15s is a first order implicit scheme with a fifth order corrector.