Devoir maison n°1: Fonctions contractantes, dilatantes et points fixes

Jules Charlier, Thomas Diot, Pierre Gallois, Jim Garnier TE1

Problème 1 -

Partie A - Fonctions contractantes et rétrécissantes.

1) Soient $k \in \mathbb{R}_+^*$, et f une fonction lipschitzienne définie sur I. Montrons que cette fonction est continue.

Soit y dans I. Pour tout $\varepsilon>0$, posons $\alpha=\frac{\varepsilon}{k}$. Supposons $|x-y|<\alpha$, on obtient :

$$|x-y|<rac{arepsilon}{k}\Longleftrightarrow k|x-y|$$

Comme f est lipschitzienne, $|f(x)-f(y)|\leqslant k|x-y|<\varepsilon$ donc $|f(x)-f(y)|<\varepsilon$.

Nous avons prouvé que quelque soit le point y que l'on choisit dans le domaine de définition de f, $|x-y|<\alpha \Rightarrow |f(x)-f(y)|<\varepsilon$ ie toute fonction lipschitzienne est continue.

2) Soit f une fonction contractante définie sur I, et $x, y \in I$. Il existe donc $k \in]0,1[$ tel que $|f(x) - f(y)| \le k|x - y|$ (*).

Or,

$$k < 1 \Longrightarrow k|x - y| < |x - y|$$

 $\Longrightarrow |f(x) - f(y)| < |x - y| \text{ d'après (*)}$

f est donc rétrécissante.

De plus,

$$|f(x)-f(y)|<|x-y|\Longrightarrow |f(x)-f(y)|\leqslant 1\times |x-y|$$

1

f est donc 1-lipschitzienne.

- 3) Soient $a \in \mathbb{R}$, $I = [a, +\infty[$, et $f: x \longmapsto x + \frac{1}{x-a+1}$ pour tous $x \in I$.
 - a) f est dérivable sur I. Pour tout $x \in I$, $f'(x) = 1 \frac{1}{(x-a+1)^2}$. Or,

$$x \in I \Longrightarrow x \geqslant a$$

$$\Longrightarrow x - a \geqslant 0$$

$$\Longrightarrow x - a + 1 \geqslant 1$$

$$\Longrightarrow (x - a + 1)^2 \geqslant 1$$

$$\Longrightarrow \frac{1}{(x - a + 1)^2} \leqslant 1$$

$$\Longrightarrow 0 \leqslant f'(x).$$

La dérivée de f est positive pour tout $x \in I$, donc f est bien croissante sur I.

Soit $x \in I$.

$$\begin{aligned} x \in I &\Longrightarrow x \geqslant a \\ &\Longrightarrow x - a \geqslant 0 \\ &\Longrightarrow x - a + 1 > 0 \\ &\Longrightarrow \frac{1}{x - a + 1} > 0. \end{aligned}$$

 $x\geqslant a$, donc par somme d'inégalités, $x+\frac{1}{x-a+1}\geqslant a$ i.e. $f(x)\in I.$

b)

Partie B - Fonctions rétrécissantes et point fixe.
Partie C - Fonctions dilatantes.

On fixe $f : \mathbb{R} \to \mathbb{R}$ continue et dilatante.

1) a) La fonction $g: x \mapsto x + e^x$ est continue sur \mathbb{R} comme somme de fonctions continues. De plus, si $x, y \in \mathbb{R}$,

$$\begin{split} |g(x) - g(y)| &= |(x - y) + (e^x - e^y)| \stackrel{\text{Triangulaire}}{\geqslant} |x - y| + |e^x - e^y| \\ &\geqslant |x - y| \end{split}$$

Donc g est bien dilatante.

b) La fonction g_{λ} est continue sur $]-\infty;\lambda[$ et sur $]\lambda;+\infty[$ car ses restrictions à ces intervalles sont continues. Montrons que g_{λ} est continue en λ . D'une part,

$$\lim_{x \to \lambda^{-}} g(x) = \lim_{x \to \lambda^{-}} -x = -\lambda$$

et d'autre part,

$$\lim_{x\to\lambda^+}g(x)=\lim_{x\to\lambda^+}\lambda-2x=\lambda-2\lambda=-\lambda$$

Comme les limites de g (qui existent par continuité avant et après λ) en λ coı̈ncident avec $g(\lambda)=-\lambda$, on en déduit que g est continue en λ et donc sur tout $\mathbb R$. Montrons maintenant que g est dilatante. On distingue trois cas :

- $x, y < \lambda : |g(x) g(y)| = |y x| = |x y| \ge |x y|$
- $x,y\geqslant \lambda: |g(x)-g(y)|=|2y-2x|=2|x-y|\geqslant |x-y|$
- $\begin{array}{c} \cdot x, y \geqslant \lambda \cdot |g(x) g(y)| |2y 2x| 2|x y| \geqslant |x y| \\ \cdot x < \lambda \text{ et } y \geqslant \lambda : |g(x) g(y)| = |2y \lambda x| = |(y \lambda) + (y x)| \stackrel{\text{Triangulaire}}{\geqslant} |x y| \\ \end{array}$

Ce qui montre que q est bien dilatante.

- **2)** a) Soit $\lambda \in]f(a_1); f(a_2)[\cap]f(a_3); f(a_2)[$. Cette intersection n'est pas vide, car elle contient au moins $]\max(f(a_1),f(a_3)); f(a_2)[$. Alors en posant $g:x\mapsto f(x)-\lambda$, qui est continue par somme, comme $g(a_1),g(a_3)<0$ et $g(a_2)>0$, on obtient en appliquant TVI un $b\in]a_1;a_2[$ et un $c\in]a_2;a_3[$ tels que g(b)=g(c)=0, c'est à dire $f(b)=f(c)=\lambda$.
 - **b)** Comme f est dilatante,

$$|f(b) - f(c)| = 0 \geqslant |b - c| \geqslant 0$$

On en déduit que |b-c|=0, donc b=c. Donc f dilatante implique f injective.

c) Supposons que f ne soit pas strictement monotone, i.e f n'est ni strictement croissante ni strictement décroissante. Comme f n'est pas strictement décroissante, il existe $a_1 < a_2$ tels que $f(a_1) \leqslant f(a_2)$; a fortiori, comme f est injective, $f(a_1) < f(a_2)$.

TODO: l'argument est long