1 Struktury danych

- \bullet id numer id procesu
- \bullet n liczba menadżerów
- \bullet s liczba miejsc w salonie
- \bullet l liczba lekarzy
- m_i liczba modelek procesu *i*-tego
- $shift_l$ przesuniecie numeru lekarza względem początku kol_{lek}
- \bullet $clock_{lek}$ oznacza chwilę w której dany menadżer ubiega się o lekarza
- kol_{lek} kolejka procesów ubiegającch się o dostęp do lekarza posortowana z użyciem pary $(clock_{rec}, id_{proc})$
- $clock_{sal}$ oznacza chwilę w które dany menadżer ubiega się o dostęp do salonu
- kol_{sal} kolejka procesów ubiegających się o dostęp do salonu posortowana z użyciem $(clock_{rec}, id_{proc})$
- l_{lek} lista id_{proc} oznaczająca otrzymaną akceptację dostępu do lekarza od procesu
- ullet l_{sal} lista id_{proc} oznaczająca otrzymaną akceptację dostępu do salonu od procesu
- clock wektor zegarów logicznych procesów
- \bullet $count_s$ liczba dostępnych miejsc w salonie

2 Rodzaje komunikatów

Każdy komunikat zawiera rec_{id} - numer procesu oraz zawiera zmienną $clock_{rec}$ będącą zegarem logicznym

- ACK_{lek}
- REQ_{lek}
- ACK_{sal} zawiera m_{rec} liczba modelek zwolniona przez id_{proc} -ty proces
- REQ_{sal} zawiera m_{rec} liczba modelek dla procesu j-tego

3 Algorytm

3.1 Odbiór wiadomości

 $clock_i = \max(clock_i, clock_{rec}) + 1$, $clock_{rec_{id}} = clock_{rec}$, jeżeli wiadomość typu:

- ACK_{lek} Jeżeli para z kol_{lek} dla której $id_{proc} = rec_{id}$ poprzedza parę $(clock_{lek}, id)$ to shift + = 1. Usuń tę parę z kol_{lek} , dodaj rec_{id} do l_{lek}
- REQ_{lek} Dodaj parę $(clock_{rec}, rec_{id})$ do kol_{lek} .
- ACK_{sal} $count_s$ zwiększ o m_{rec}
- REQ_{sal} Jeżeli nie istnieje taka para $(clock_{sal},id) \in kol_{sal}$. Wyślij wiadomość typu ACK_{sal} do procesu rec_{id} , gdzie $m_{rec} = 0$. W przeciwnym wypadku jeżeli para z kol_{sal} dla której $id_{proc} = rec_{id}$ poprzedza parę $(clock_{sal},id)$ to $count_s$ zmniejsz o m_{rec} , w przeciwnym wypadku dodaj id_{proc} do l_{sal} .

3.2 Pseudokod

- 1. $count_s = s$, $clock_i = 0$, $losuj m_i cout_{acklek} = 0$, $count_{acksal} = 0$
- 2. Odbiór wiadomości. Inkrementuj $clock_i$. Wyślij wiadomość typu REQ_{lek} z $clock_{rec} = clock_i$, dodaj parę $(clock_i, id_{proc})$ do kol_{lek} oraz $clock_{lek} = clock_i$.
- 3. Obierz wiadomości. Jeżeli $kol_{lek}.size() + l_{lek}.size() = n$ oraz l > nr oraz $shift_l = l$ oraz gdzie nr jest numerem pozycji procesu w kol_{lek} . Skorzystaj z lekarza o numerze równym nr gdzie nr jest pozycją procesu w kol_{lek} , $shift_l := 0$. W przeciwnym wypadku GOTO 3.
- 4. Wyślij wiadomość ACK_{lek} do każdego procesu.
- 5. Odbierz wiadomości. Inkrementuj $clock_i$. Wyślij wiadomość typu REQ_{sal} gdzie $m_{rec} = m_i$. Dodaj parę $(clock_i, id)$ do kol_{sal} .
- 6. Odbierz wiadomości. Jeżeli dla każdego $id_{proc} \notin kol_{sal}, id_{proc} \notin l_{sal} \ clock_{id_{proc}} > clock_{id} \ oraz \ count_s >= m_i \ GOTO 7. W przeciwnym wypadku powtórz krok.$
- 7. Zaprowadź modelki do salonu. Po powrocie modelek wyślij wiadomość typu ACK_{sal} z $m_{rec}=m_i$ do każdego procesu.
- 8. Odbierz wiadomości. Jeżeli $l_{sal}.size()=n$ Odbywa się konkurs i GOTO 1. W przeciwnym wypadku powtórz krok.