

INFORME 08 LABORATORIO: COMPORTAMIENTO COMPRESOR DE TORNILLO

Estudiante:

Teresa Almonacid F

Alumna Ing. Civil Mecánica

Docentes:

Cristóbal Galleguillos K.

Tomás Herrera M.

Escuela Ingeniería Mecánica PUCV

13 de noviembre del 2020

Contenido

1.	INTRODUCCIÓN	3
1.1.	OBJETIVO DEL ENSAYO	3
2.	DATOS DEL ENSAYO	4
3.	FUNCIONAMIENTO DEL COMPRESOR	4
4.	TABLA VALORES MEDIDOS:	7
5.	SIMBOLOGÍA	7
6.	FÓRMULAS	7
6.1.	DATOS CALCULADOS	8
6.2.	TABLA ENTREGADA POR EL FABRICANTE	8
6.3.	GRÁFICOS	9
6.3.1	L. GRÁFICO CAUDAL CORREGIDO V/S PRESIÓN DESCARGA ENSAYO	9
6.3.2	2. GRÁFICO DEL FABRICANTE	10
6.3.3	3. GRÁFICO COMPARATIVO	10
6.3.3	3.1. ANÁLISIS COMPARATIVO	11
6.3.3	3.2. ANÁLISIS DE LOS VALORES	11
6.3.3	3.3. COMENTARIOS	11
6.4.	PUNTO DE ROCÍO A PRESIÓN	12
6.4.1	L. SIGNIFICADO	12
6.4.2	2. FÓRMULAS PARA EL CÁLCULO	12
6.4.3	3. CÁLCULOS DE HUMEDAD	13
REFE	RENCIAS	14
ANE	XO 1	15
ANF	XO 2	16

1. INTRODUCCIÓN

Como es sabido el compresor es una máquina utilizada en múltiples procesos y área de la ingeniería, a continuación, se analizará el comportamiento de un compresor de tornillo GA 7 VSD FF¹ de la compañía Atlas Copco, el cual se encuentra ubicado en la escuela de ingeniería mecánica de la PUCV.

1.1. OBJETIVO DEL ENSAYO

- 1. Conocer el comportamiento de un compresor de tornillo
- 2. Describir la operación del compresor
- 3. Graficar y comparar las curvas del compresor
- 4. Calcular la humedad que se encuentra presente en el proceso

_

¹ La placa perteneciente al compresor se encuentra en el anexo 1

2. DATOS DEL ENSAYO

Los siguientes datos fueron los utilizados para realizar el ensayo

Presión nominal: 7 bar

Rango de presión del ensayo: 5,5 – 9 bar

• Corriente límite: 17 A

Velocidad máxima de rotación: 4350 rpm
Factor potencia motor eléctrico: 0,9 [-]

3. FUNCIONAMIENTO DEL COMPRESOR

El funcionamiento de los compresores de tornillo consiste en rotores helicoidales engranados entre ellos, y se ubican dentro de la carcaza en donde comprimen y desplazan el gas hacia la descarga.

Los lóbulos de los rotores son distintos, para poder ajustarse entre sí. A continuación, se adjunta una ilustración donde se explica mejor el funcionamiento

Ilustración 1, Proceso funcionamiento de los tornillos

Ilustración 2, Despiece unidad compresora

Las piezas principales del elemento de tornillo son los rotores macho y hembra, que giran en direcciones opuestas mientras disminuye el volumen entre ellos y la carcasa.

El compresor de tornillo no está equipado generalmente con válvulas y no tiene fuerzas mecánicas que ocasionen desequilibrio. Esto significa que puede funcionar con una alta velocidad del eje y puede combinar un gran caudal con unas pequeñas dimensiones exteriores.

En el mercado existen compresores de tornillo con inyección de aceite y compresores de tornillo exento de aceite. A continuación, se muestra el diagrama de flujo de un compresor de tornillo con inyección de aceite.

- Filtro de aspiración
- Whula centinele
- Elemento de tomiko
- O Motor de imanes permanentes interiores (PM)
- Depósito separador de aire/sceite
- Wivula de derivación terrecetática.
- Filtro de aceite
- O Whyda de seguridet
- O Separador de aquita

- Wilyula da presido minima
- Walvula solenoida
- Refrigeredor posterior
- (C) Varrillation
- (I) Richigerador de aceive
- Purgador electrónico (* mortado en el refrigerador posterior en los mostelos sin secador)
- C Security (spcion Full-Feature)
- Cicle de prevención de condemento

- Aire comprimitis húmeitis
- Contensato
- Аги сотртитов мися
- Aire de aspiracion.
- Mezcia de anviscaria
- Acets

Ilustración 3, Diagrama de flujo compresor de tornillo

4. TABLA VALORES MEDIDOS:

Los datos conseguidos en el ensayo fueron los siguientes:

Tabla 1, Valores dados en el ensayo

	COMPRESOR DE TORNILLO										
P.Des	Veloc	Veloc.	Temp	Hum. Amb.	Temp	Punto	Punto Temp. Pres. Corriente C	Caudal	Pres.		
		Amb		Desc.	Rocío	EBP	EBP			Atm	
$p_{\rm d}$	n	t_{amb}	H_{amb}	$t_{ m desc}$	PRP	t_{EBP}	Δh	I	Q	P_{atm}	
[bar]	[rpm]	[°C]	%	[°C]	[°C]	[°C]	$[mm_{ca}]$	[A]	[%]	$[mm_{H-g}]$	
5,5	4315	18	59,4	73	4	20	476	17	98%	759,5	
6	4350	19	58,9	73	4	20	484	16	100%	759,5	
7	4350	18	58,6	75	4	21	464	17	100%	759,5	
8	4176	18	58,9	76	4	21,5	406	17	100%	759,5	
9	3984	19	58,9	77	4	21	348	17	100%	759,5	

5. SIMBOLOGÍA

Tabla 2

Símbolo	Unidad	Significado				
V	m³/h	Capacidad, caudal de aire libre				
α	-	Coeficiente de caudal del diafragma su valor es 0,600				
S	cm ²	Sección del orificio del diafragma es igual a 2,2 cm				
Та	K	emperatura abs. De aspiración del compresor				
T	K	mperatura abs. Del estanque de baja presión				
Н	cm _{agua}	Presión en el manómetro diferencial				
Pa	cm _{agua}	Presión barométrica				
n	rpm	Velocidad rotacional				

6. FÓRMULAS

Capacidad:

$$V = 8,62 * \alpha * S * T_a * \sqrt{\frac{H}{T*P_a}}$$
 Ecuación 4.1

Caudal corregido²:

$$V' = \frac{V*n_{m\acute{a}x}}{n}$$
 Ecuación 4.2

² El caudal fue corregido con respecto a la velocidad

8

6.1. DATOS CALCULADOS

Los datos se calcularon en base a las ecuaciones mostradas en el apartado anterior.

Tabla 3

Datos calculado en el ensayo							
P. Des	Cau	ıdal	Velocidad				
p _d	(n					
[bar]	m3/hr	%	rpm				
5,5	72,4387817	98%	4315				
6	72,7062503	100%	4350				
7	70,8236556	100%	4350				
8	68,9512508	100%	4176				
9	67,1999207	100%	3984				

6.2. TABLA ENTREGADA POR EL FABRICANTE ³

Tabla 4

Da	atos Fabrican	te
P. Des	Cau	ıdal
p_d	Q n	n3/hr
[bar]	mínimo	máximo
5,5	25,9	78,8
7	25,2	78,1
9,5	24,5	64,8
12,5	26,3	51,12

_

³ Valores sacados del manual del fabricante y medidos con norma ISO1217

6.3. GRÁFICOS

6.3.1. GRÁFICO CAUDAL CORREGIDO V/S PRESIÓN DESCARGA ENSAYO

6.3.2. GRÁFICO DEL FABRICANTE

6.3.3. GRÁFICO COMPARATIVO

6.3.3.1. ANÁLISIS COMPARATIVO

¿Compare los valores obtenidos con los que señala el fabricante?

Se puede ver en el gráfico que a pesar de que el dibujo de las curvas son los esperados y bastante similares entre ellos, los valores de alguno de los puntos no son los esperados ya que a igual presión de descarga y caudal al 100% debieron haber coincidido. Esto se puede explicar debido a que el fabricante no debió haber considerado las pérdidas que se producen en el proceso a la hora de entregar el caudal, sumado a otros factores de entrada como la humedad, temperatura o altitud.

También hay que mencionar que, al trabajar con la capacidad máxima del caudal, a mayor presión va disminuyendo el caudal. Mientras, que si por el contrario trabajamos con el caudal mínimo a mayor presión va aumentando el caudal, es decir, son inversamente proporcionales.

6.3.3.2. ANÁLISIS DE LOS VALORES

¿Los valores están en el rango que le corresponde?

Si, ya que como podemos apreciar la curva corregida se encuentra entremedio de la curva de caudal máximo y caudal mínimo que nos entregó el fabricante

6.3.3.3. COMENTARIOS

¿Qué comentario surge de lo anterior?

Es necesario considerar factores como la presión de descarga, temperatura de entrada, altitud, y el tipo de trabajo a realizar el compresor a la hora de seleccionar el equipo.

Si bien son cercanos los valores calculados y los valores entregados por el fabricante a igual presión de descarga, sus diferencias pueden deberse a diversos factores como una mala medición, por las pérdidas, condiciones de entrada al compresor, o a las condiciones de trabajo del motor. Esto es normal ya que los valores entregados por el fabricante fueron calculados en condiciones ideales de trabajo cosa que en la realidad.

6.4. PUNTO DE ROCÍO A PRESIÓN

6.4.1. SIGNIFICADO

Primero que todo debemos conocer el concepto de punto de rocío el cual se utiliza en los compresores para medir la sequedad del aire comprimido. La temperatura a la que comienza a condensarse el agua es la que se denomina temperatura de rocío, es decir esta temperatura es la temperatura limite a la cual puede llegar el agua antes de comenzar a condensarse en nuestra red de aire comprimido.

El punto de rocío se divide en 2, el punto de rocío atmosférico y el punto de rocío a presión. El primero de refiere al vapor saturado a presión ambiente, mientras que el segundo se refiere a una presión superior es decir la temperatura de condensación que puede afectar al compresor.

Ilustración 4, medidor de PRP

6.4.2. FÓRMULAS PARA EL CÁLCULO

Humedad relativa de salida

 $HR_{salida} = \frac{_{110+T^{\circ}_{PRP}}}{_{(110+T^{\circ}_{des})^8}} \%$ Ecuación 5.1.

Humedad absoluta entrada

 $w_{entrada} = \frac{0.622*(HR_{en})*Psat_{ent}}{P_{atm}*133,322-HR_{ent}*Psat_{ent}}$ Ecuación 5.2.

Humedad absoluta salida

 $w_{salida} = \frac{_{0.622*HR_{salida}*Psat_{salida}}}{_{P_{desc}\text{-}HR_{salida}*Psat_{salida}}} \text{_4}$ Ecuación 5.3.

12

⁴ La presión de descarga debe estar en pascales.

6.4.3. CÁLCULOS DE HUMEDAD

Utilizando las fórmulas mencionadas en el apartado anterior, se realizaron los siguientes cálculos:⁵

Tabla 5, Cálculos de humedad

Pdesc	HR entrada	HR salida	P sat entrada	P sat salida	H. abs. Entrada	H. abs. Salida	
bar	%	%	Pa	Pa	Kg agua/kg	aire seco	
5,5	59,4	2,26793%	2064	35475	0,007623377	0,000911205	
6	58,9	2,26793%	2198	35475	0,008055494	0,000835169	
7	58,6	2,07905%	2064	38592	0,007519464	0,000713761	
8	58,9	1,99129%	2064	40236	0,007558427	0,000623571	
9	58,9	1,90768%	2198	41938	0,008055494	0,000553411	

⁵ La presión de saturación de entrada y salida se calcularon mediante la carta psicométrica

REFERENCIAS

Mege, R. (s. f.). Fundamentos turbomáquinas. Recuperado de https://www.nave13.cl

Atlas Copco. (2011). *Manual de aire comprimido* (7.ª ed.). Wilrijk, Bélgica: Atlas Copco Airpower NV.

Atlas Copco. (s. f.). Ficha técnica compresor de tornillo. Wilrijk, Bélgica: Atlas Copco.

ANEXO 1

Type: GA7VSD Year: 2012 Dryer / Secheur / T	AIRPOWER n. B-2610 Wilrijk Bo Weight: 385 rockner / Essiccatore resseur / Kompress : / : 12,75 : R134A	Product Nr Kg Serial Nr	: 815300 : CAI 713 Hz 0,31 Hz 7,5 emp. :	
---	--	----------------------------	--	--

ESPECIFICACIONES TÉCNICAS GA 7-37 VSD+

Tipo	Presión de trabajo		Capacidad FAD* (minmáx.)			Potencia instalada del motor		Nivel sonoro**	Peso, WorkPlace	Peso, WorkPlace Full-Feature
	bar(e)	psig	I/s	m³/h	cfm	kW	CV	dB(A)	kg	kg
/ersión a 50/60	Hz									
	5,5	80	72-21,9	25,9-78,8	15,2-46,4	7,5	10	62	193	277
A 7 VSD-	-7	102	70-21,7	25,2-78,1	14,8-46,0	7,5	10	62	193	277
De 7 Valor	9,5	138	6,8-18,0	24,5-64,8	14,4-38,1	7,5	10	62	193	277
	12,5	181	73-14,2	26,3-51,12	15,5-30,1	7,5	10	62	193	277
	5,5	80	73-32,9	26,3-118,4	15,5-69,7	100	35	63	196	280
A 11 VSD*	7	102	73-32,5	26,3-117,0	15,5-68,8	11	35	63	196	280
M II VSLI	9.5	138	70-272	25,2-979	14,8-576	11	16	63	WorkPlace kg	280
	12,5	181	76-23,5	27,4-84,6	16,1-49.8	11	15	63	196	280
	5,5	80	72-42,3	25,9-152,3	15,2-89,6	15	20	64	199	288
A 15 VSD*	7	102	7,1-41,8	25,6-150,5	15,0-88,6	15	20	64	199	288
IA ID VSU	9.5	138	6,8-36,5	24,5-1278	14,4-75,2	15	20	64	199	288
	12,5	181	73-279	26,3-100,4	15,5-59,1	15	20	64	199	288
468 80 W. USD.	.4	58	15,0 - 63,2	53,9 - 227,5	31,7 - 133,8	18	25	67	367	480
	7	102	14,7-61,8	53,0 - 222,6	31,2-131,0	18	25	67	367	480
A 18 VSD*	9.5	138	16,9 - 53,0	61,0 - 190,8	35,9 - 112,3	18	25	67	367	480
	12,5	181	16,3-43,0	58,5 - 154,8	34,4-91,1	18	25	67	367	480
	.4	58	15,2 - 76,1	54,6 - 274,0	32,1 - 161,2	22	30	67	363	485
	7	102	14,8 - 74,3	53,3 - 2676	31,3-157,4	22	30	67	363	485
A 22 VSD+	9,5	138	171 - 64,5	61,5 - 232,1	38,2 - 136,6	22	30	67	363	485
	12,5	181	16,9 - 53,5	60,7 - 192,5	35,7-113,2	22	30	67	WorkPlace kg 193 193 193 196 196 196 196 196	485
	4	58	14,8 - 85,8	53,2 - 309,0	31,3 - 181,8	26	35	67	373	490
a on me	7	102	14,5 - 85,3	52,1-3072	30,6 - 180,7	26	36	67	373	490
IA 26 VSD+	9.5	138	16.9 - 77.9	60.7 - 280.5	35.7 - 165.1	26	35	67	373	490
	12,5	181	16,3-64,1	58,8 - 230,8	34,6 - 135,8	26	35	67	373	490
	-4	58	15,1-98,0	54,3 - 352,8	31,9 - 2076	30	40	67	376	500
	7	102	15,0 - 97,4	54,1-350,5	31,8-206,2	30	40	67	376	500
A 30 VSD+	9,5	138	172 - 86,6	61,7 - 308,2	36,3 - 181,3	30	40	67	376	500
	12,5	181	16,7-72,0	60,0 - 259,1	35,3 - 152,4	30	40	67	376	500
	-4	58	15,3+116,4	55,1-418,9	32,4 - 246,4	37	60	67	376:	500
	7	102	14,8 - 114,8	53,2 - 413,2	31,3 - 243,1	37	50	67	376	500
A 37 VSD+	9,5	138	171 - 102,1	61,5 - 3677	36,2 - 216,3	37	50	67	376	500
	12.5	181	16,4 - 86,6	58,9-311,8	34,6 - 183,4	37	50	67	376	500