INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA CRISTHIAN FONTANA MATTIUZZI

INTELIGÊNCIA ARTIFICIAL: SOLUÇÃO DE PROBLEMAS POR BUSCA

> SERRA 2023

Sumário

1. Fundamentação Teórica	3
1.1. Algoritmo depth-first search	
1.2. Algoritmo uniform cost search	3
1.3. Algoritmo A*	
1.4. Diferenças	
2. Experimentos	4
3. Resultados	4
Referências bibliográficas	6

1. Fundamentação Teórica

Os algoritmos de busca desempenham um papel fundamental em inteligência artificial, permitindo que os sistemas tomem decisões e encontrem soluções para problemas complexos com base na busca do melhor caminho usando as métricas de tempo de execução, número de nós expandidos, número de nós gerados, custo do caminho e tamanho do caminho.

1.1. Algoritmo depth-first search

A busca em profundidade (DFS - depth first search) é um algoritmo de busca não informada que explora um grafo ou uma árvore seguindo um caminho até o seu nó mais profundo antes de retroceder. A ideia básica do algoritmo é seguir uma abordagem de "mergulho profundo" na estrutura de dados, explorando ao máximo um ramo antes de voltar e explorar outros ramos. O algoritmo mantém uma pilha de nós visitados, empilhando um nó e seus filhos antes de retroceder.

1.2. Algoritmo uniform cost search

O algoritmo de busca de custo uniforme (Uniform Cost Search) é um algoritmo de busca informada utilizado para encontrar o caminho de custo mínimo em um grafo ou uma árvore ponderada. O objetivo principal do algoritmo de busca de custo uniforme é expandir os nós com o menor custo acumulado primeiro, buscando encontrar o caminho de menor custo. Ele mantém uma fila de prioridade que ordena os nós a serem explorados com base em seus custos acumulados, de forma crescente. Inicialmente, apenas o nó inicial é adicionado à fila de prioridade, com um custo acumulado de zero.

1.3. Algoritmo A*

O algoritmo A* (A-star) é um algoritmo de busca informada utilizado para encontrar o caminho de menor custo entre um nó inicial e um nó objetivo em um grafo ou uma árvore ponderada. A ideia é utilizar uma função heurística para estimar o custo restante de um nó até o objetivo. Essa função heurística fornece uma estimativa admissível do custo, ou seja, nunca superestima o custo real para atingir o objetivo. Essa informação heurística é usada para priorizar os nós a serem explorados.

1.4. Diferenças

O DFS não considera custos e não garante a busca pelo caminho mais curto, enquanto o UCS considera os custos, mas não usa uma heurística. O A* combina a consideração de custos com uma heurística para guiar a busca e encontrar o caminho mais curto de forma eficiente.

2. Experimentos

O experimento foi conduzido em um computador com processador Intel® Core™ i3-9100 com frequência base de 3.60 GHz e máxima de 4.20 GHz, 8 GB de memória RAM DDR4. O teste foi realizado em single core utilizando o python 3.10.7 no sistema operacional Ubuntu 20.10.

Dos quatro algoritmos implementados BFS, DFS, A-star e Uniforme Cost é esperado que o BFS encontre o melhor caminho para o labirinto gerado, caso ele exista, contudo a quantidade de nós visitados e o tempo de execução deve ser o maior entre os demais, já o DFS é esperado que encontre um caminho em um tempo menor que o BFS e com menos nós expandidos, porém o custo do caminho será provavelmente maior que o BFS sendo possível o mesmo custo com baixa probabilidade, enquanto que o A-star terá um tempo inferior ao BFS e encontrará um caminho bom mas não necessariamente o melhor e do uniforme coust espera-se que tenha um tempo menor e a quantidade de nós expandidos também menor além de um custo do caminho bom.

3. Resultados

Tabela 1: Resultados dos algoritmos de busca no labirinto

	Tempo (s)	Nós Expandidos	Nós Gerados	Custo do Caminho	Tamanho do Caminho
BFS	161.66	36432	30000	412,58	314
DFS	0.16	1045	30000	722.77	572
A*	0.40	1739	30000	423.02	329
Uniform Cost	0.09	817	30000	441.16	343

Fonte: Acervo do autor.

Com os resultados do experimento apresentados na tabela 1, confirmamos o esperado para cada algoritmo, com o BFS nos mostrando o melhor caminho no gráfico com tamanho de 314, custo de 412,58, o DFS com um caminho razoável para o tempo de execução, o A* e o Uniform Cost com bons tempos e bons caminhos se muitos nós expandidos.

Referências bibliográficas

RUSSELL, Stuart; NORVIG, Peter. **Artificial Intelligence**: A Modern Approach. 4 ed. Londres: Pearson, 2020.