

UNIVERSIDAD DE SONORA

DEPARTAMENTO DE FÍSICA

TRANSFORMADA DE FOURIER

Alumno:

Luis Alfonso Torres Flores

Profesor Carlos Lizárraga Celaya

18 de Abril de 2017

Transformada de Fourier

Curso de Fisica computacional

Índice

Ín	dice	1
1.	Breve resumen	2
2.	Introducción	2
3.	Transformada discreta de Fourier	2
4.	Graficas y su analisis	3

1. Breve resumen

Ya hemos hablado sobre las mareas, hemos analizado como se distribuyen a lo largo del tiempo, pero uno puede llegar a quererlas identificar. Después de utilizar la transformada discreta de Fourier podemos saber los periodos mediante algunas operaciones bastante sencillas, también tenemos una tabla con la que podremos identificar dichas mareas según su periodo.

2. Introducción

En este trabajo mostraremos el código utilizado para realizar la transformada discreta de Fourier, al igual que el cómo fue empleado nombrando los datos colocados. Dicha transformada será mostrada en forma de una gráfica donde hablaremos sobre que podemos notar en ella y la usaremos para identificar las mareas. Estaremos tratando los datos de enero, febrero y marzo del año 2016 de Baltimore, Maryland y de Topolobampo, Sinaloa, teniendo los datos cada hora obteniendo una gran cantidad de ellos, incapaces de poder revisarlos uno por uno, por lo que se hará uso nuevamente de Python para poderlo trabajar de una manera más cómoda.

3. Transformada discreta de Fourier

A continuación mostraremos el código empleado para la transformación de Fourier:

```
from scipy.fftpack import fft,
fftfreq, fftshift # number of signal points
N = 2184
# sample spacing
T = 1
vf = fft(v)
xf = fftfreq(N, T)
xf = fftshift(xf)
vplot = fftshift(vf)
plt.plot(xf, 1.0/N * np.abs(yplot))
plt.grid(True)
plt.title('Fecha vs Altura Baltimore')
plt.xlabel("Fecha")
plt.ylabel(.Altura")
plt.xlim(0,0.00004)
plt.ylim(0,0.1)
fig=plt.gcf()
fig.set size inches(10,10)
plt.show()
```

Nuestra N es la cantidad de datos que manejaremos, por lo que indicamos que en esos 3 meses tenemos 2184 horas que utilizaremos para graficar, T habla del periodo. Tanto en los datos de Topolobampo como en Baltimore se utilizaron estos apartados de la misma manera, puesto que coincidían en números de datos. Sin embargo, quitando los comandos meramente estéticos para indicar los textos en las gráficas, los limites tuvieron que ser claramente modificados en cada una de las gráficas para poder apreciar en mejor medida los picos que nos interesan.

4. Graficas y su analisis

Altura importantes

 $\begin{array}{l} \operatorname{array}([\ 0.23787134,\ 0.04946012,\ 0.03144628,\ 0.05187018,\ 0.04213037,\ 0.05610421,\ 0.03104957,\ 0.04621175,\ 0.03432758,\ 0.04877159,\ 0.03145338,\ 0.03338159,\ 0.06828875,\ 0.06828875,\ 0.03338159,\ 0.03145338,\ 0.04877159,\ 0.03432758,\ 0.04621175,\ 0.03104957,\ 0.05610421,\ 0.04213037,\ 0.05187018,\ 0.03144628,\ 0.04946012]) \end{array}$

Horas a la que ocurren

(array([0, 4, 6, 7, 11, 12, 14, 18, 24, 29, 30, 44, 176, 2008, 2140, 2154, 2155, 2160, 2166, 2170, 2172, 2173, 2177, 2178, 2180]),)

Altura	Hora	Periodo	Tipo de marea
0.23787134	0	4.204	M_6
0.04946012	4	20.2183	OO_1
0.03144628	6	31.8	$2Q_1$
0.05187018	7	19.2789	OO_1
0.04213037	11	23.7358	K_1
0.05610421	12	17.824	OO_1
0.03104957	14	32.2066	$2Q_1$
0.04621175	18	21.6395	OO_1
0.03432758	24	29.1311	$2Q_1$
0.04877159	29	20.5037	OO_1
0.03145338	30	31.793	$2Q_1$
0.03338159	44	29.9566	$2Q_1$
0.06828875	176	14.6437	$2N_2$

Curso de Fisica computacional

Altura importantes

 $\begin{array}{l} \operatorname{array}([\ 427.68452381,\ 60.29357848,\ 87.40856372,\ 135.88992176,\ 105.12146543,\ 105.12146543,\ 135.88992176,\ 87.40856372,\ 60.29357848]) \end{array}$

Horas a la que ocurren

(array([0, 85, 91, 176, 182, 2002, 2008, 2093, 2099]),)

Altura	Hora	Periodo	Tipo de marea
427.68452381	0	0.2338	M_8
60.29357848	85	1.6586	M_8
87.40856372	91	1.144	M_8
135.88992176	176	0.7359	M_8
105.12146543	182	0.9513	M_8