Brandon Elman Exercise 5 $\psi_{0} = \sum_{\lambda} c_{0\lambda} \varphi_{\lambda} \Rightarrow |a\rangle = \sum_{\lambda} c_{0\lambda} |\lambda\rangle$ where $\langle \lambda' | \lambda \rangle = \delta_{\lambda\lambda'}$ $\langle a'|a \rangle = \left\{ \sum_{\lambda \lambda'} c_{\alpha' \lambda'} c_{\alpha \lambda} \langle \lambda' | \lambda \rangle \right\} = \sum_{\lambda} c_{\alpha' \lambda} c_{\alpha \lambda}$ Because the transformation is univery, \(\Sigma akqyk = \Sigma_1k \Rightarrow $\langle a'|a \rangle = \sum_{\lambda} c_{\alpha'\lambda} c_{\alpha\lambda} = \delta_{\alpha'\alpha} \Rightarrow \langle a'|a \rangle = \delta_{\alpha'\alpha}$ i.e. the new basis is orthogonal | E plack1 $\sum_{k=1}^{\infty} |k|^{c} |k|$ $= \int_{C} |c|^{c} |\partial c|^{c} |\partial c|^{c} |\partial c|^{c}$ los We know the Durity. E BAY CKA The sleter determinant in the new basis is given by: $\Psi = \begin{vmatrix} \gamma_{i}(x_{1}) & \cdots & \gamma_{i}(x_{N}) \\ \vdots & \ddots & \vdots \\ \gamma_{i}(x_{1}) & \cdots & \gamma_{i}(x_{N}) \end{vmatrix} = \frac{1}{|A|} \begin{vmatrix} \sum_{i} C_{i,i} \varphi_{i}(x_{i}) & \cdots & \sum_{i} C_{i,k} \varphi_{i}(x_{N}) \\ \vdots & \ddots & \vdots \\ \gamma_{i}(x_{N}) & \cdots & \gamma_{i}(x_{N}) \end{vmatrix} = \frac{1}{|A|} \begin{vmatrix} \sum_{i} C_{i,k} \varphi_{i}(x_{N}) & \cdots & \sum_{i} C_{i,k} \varphi_{i}(x_{N}) \\ \vdots & \ddots & \vdots \\ \gamma_{i}(x_{N}) & \cdots & \sum_{i} C_{i,k} \varphi_{i}(x_{N}) \end{vmatrix}$ I = Det(c). I Slater Determinat in old basis? $C = \begin{bmatrix} C_{11} & \cdots & C_{1A} \\ \vdots & \ddots & \ddots \\ \vdots & \ddots & \ddots \\ C_{A1} & \cdots & C_{AN} \end{bmatrix}$ $C = \begin{bmatrix} C_{11} & \cdots & C_{1A} \\ \vdots & \ddots & \ddots \\ \vdots & \ddots & \ddots \\ Q_{1}(X_{1}) & \cdots & Q_{1}(X_{N}) \end{bmatrix}$ $Q_{1}(X_{1}) & \cdots & Q_{1}(X_{N})$

e) From (1),
$$\Psi = \text{der}(\hat{c}) \Psi_{0}$$

Because \hat{c} is a unitary matrix, $|\text{Det}(c)| = 1$.

 $\Rightarrow \text{Det}(c) = e^{AB}$ where \mathcal{H} is real, so

 Ψ is equal to Ψ_{0} up to some couplex constat.

6) (a) $\langle \mathbf{I}_{0}| \mathbf{F} | \mathbf{I}_{0} \rangle = ?$

$$|\mathbf{I}_{0}\rangle = \frac{1}{4\pi} \sum_{i=1}^{n} \sum_{i=1}^{n} \hat{f}_{i} |\mathbf{I}_{0}\rangle = |\mathbf{I}_$$

b)
$$\langle e_1 F | e_1^a \rangle = \langle e_1 | \sum_{k=1}^{n} \langle e_k \rangle \left\{ \sum_{k=1}^{n} \langle e_1 \rangle^p \hat{p} | \mathbf{x}_1 \dots \mathbf{x}_k \dots \mathbf{x}_k \rangle \right\}$$

$$= \langle \mathbf{x}_1 \dots \mathbf{x}_k \dots \mathbf{x}_k \rangle \left\{ \sum_{k=1}^{n} \langle e_1 \rangle^p \hat{p} | \mathbf{x}_1 \dots \mathbf{x}_k \dots \mathbf{x}_k \rangle \right\}$$

$$= \langle \mathbf{x}_1 \dots \mathbf{x}_k \dots \mathbf{x}_k \rangle \left\{ \sum_{k=1}^{n} \langle e_1 \rangle^p \hat{p} | \mathbf{x}_1 \dots \mathbf{x}_k \dots \mathbf{x}_k \rangle \right\}$$

$$= \sum_{k=1}^{n} \langle \mathbf{x}_1 \dots \mathbf{x}_k \dots \mathbf{x}_k \rangle \left\{ \sum_{k=1}^{n} \langle e_1 \rangle^p \hat{p} | \mathbf{x}_1 \dots \mathbf{x}_k \dots \mathbf{x}_k \rangle \right\}$$

$$= \sum_{k=1}^{n} \langle \mathbf{x}_1 \dots \mathbf{x}_k \dots \mathbf{x}_k \rangle \left\{ \sum_{k=1}^{n} \langle e_1 \rangle^p \hat{p} | \mathbf{x}_1 \dots \mathbf{x}_k \dots \mathbf{x}_k \rangle \right\}$$

$$= \sum_{k=1}^{n} \langle \mathbf{x}_1 \dots \mathbf{x}_k \dots \mathbf{x}_k \rangle \left\{ \sum_{k=1}^{n} \langle e_1 \rangle^p \hat{p} | \mathbf{x}_1 \dots \mathbf{x}_k \dots \mathbf{x}_k \rangle \right\}$$

$$= \sum_{k=1}^{n} \langle \mathbf{x}_1 \dots \mathbf{x}_k \dots \mathbf{x}_k \rangle \left\{ \sum_{k=1}^{n} \langle e_1 \rangle^p \hat{p} | \mathbf{x}_1 \dots \mathbf{x}_k \rangle \right\}$$

$$= \sum_{k=1}^{n} \langle \mathbf{x}_1 \dots \mathbf{x}_k \rangle \left\{ \sum_{k=1}^{n} \langle e_1 \rangle^p \hat{p} | \mathbf{x}_1 \dots \mathbf{x}_k \rangle \left\{ \sum_{k=1}^{n} \langle e_1 \rangle^p \hat{p} | \mathbf{x}_1 \dots \mathbf{x}_k \rangle \right\}$$

$$= \sum_{k=1}^{n} \langle e_1 \rangle^p \hat{p} \rangle = \sum_{k=1}^{n} \langle \langle e_1 \dots e_1 \rangle^p \hat{p} | \mathbf{x}_1 \dots \mathbf{x}_k \rangle \left\{ \sum_{k=1}^{n} \langle e_1 \rangle^p \hat{p} | \mathbf{x}_1 \dots \mathbf{x}_k \rangle \right\}$$

$$= \sum_{k=1}^{n} \langle e_1 \rangle^p \hat{p} \rangle = \sum_{k=1}^{n} \langle \langle e_1 \dots e_1 \rangle^p \langle e_1 \rangle^p \hat{p} | \mathbf{x}_1 \dots \mathbf{x}_k \rangle \left\{ \sum_{k=1}^{n} \langle e_1 \rangle^p \hat{p} | \mathbf{x}_1 \dots \mathbf{x}_k \rangle \right\}$$

$$= \sum_{k=1}^{n} \langle e_1 \rangle^p \hat{p} \rangle = \sum_{k=1}^{n} \langle \langle e_1 \rangle^p \langle e_1 \rangle$$

d) The one-body term will involve A terms. The two body term will include two terms if A=2.

A	# terms	
2	2	<1219112> - (1219121>
3	6	erzt , <321, <311
4	12	<121, <321, <311, 431, (44) <41)
5	20	

The pattern appears to be that for A states we have A(A-1) terms for the two body aperator: