Modalități de reprezentare a grafurilor

- Matrice de adiacenţă
- Liste de adiacență
- Listă de muchii/arce

Matrice de adiacență

	1	2	3	4	5	6
1	0	1	1	0	1	0
2	1	0	1	1	0	1
3	1	1	0	0	0	0
4	0	1	0	0	0	1
5	1	0	0	0	0	1
6	0	1	0	1	1	0

• este simetrică dacă graful este neorientat

Lista de adiacență

6 noduri:

1: 2, 3, 5

2: 1, 3, 4, 6

3: 1, 2

4: 2,6

5: 1,6

6: 2, 4, 5

Lista de muchii

- 1 2
- 1 3
- 2 3
- 2 4
- 4 6
- 2 6
- 1 5
- 5 6

De ce avem mai multe tipuri de reprezentări?

Care este "mai bună"?

- Memorie consumată pentru graf cu n vârfuri și m muchii
 - Matrice de adiacență: O(n²)
 - Lista de vecini: O(n+m)
 - Lista de muchii: O(m)
- \rightarrow m \leq n(n-1)/2
 - Pentru un <u>graf dens</u> (aproape complet) matricea de adiacență nu mai necesită este "rea"

- Importantă pentru complexitatea timp a algoritmilor
- Alegem reprezentarea în funcție de operațiile din algoritm:
 - parcurgerea vecinilor unui vârf
 - testarea adiacenței între două vârfuri
 - eliminare de muchii etc

Arbori cu rădăcină

Arbore

Arbore cu rădăcină

Noţiuni

- · După fixarea unei rădăcini, arborele se așează pe niveluri
- Nivelul unui nod v:

```
niv[v] = distanţa de la rădăcină la nodul v
```

 În arborele cu rădăcină există muchii doar între niveluri consecutive

Arbore cu rădăcină

- Tată: x este tată al lui y dacă există muchie de la x la y şi x se află în arbore pe un nivel cu 1 mai mic decât y
- Fiu: y este fiu al lui x ⇔ x este tată al lui y
- Ascendent (strămoș): x este ascendent a lui y dacă x aparţine unicului lanţ elementar de la y la rădăcină (echivalent, dacă există un lanţ de la y la x care trece prin noduri situate pe niveluri din ce în ce mai mici)
- Descendent (urmaş): y este descendent al lui x
 x este ascendent a lui y
- Frunză: nod fără fii

Arbore cu rădăcină

- Fiu: fii lui 3 sunt 2 și 6
- Tată: 1 este tatăl lui 7
- Ascendent: ascendenţii lui 6 sunt 3 şi 1
- Descendent: descendenţii lui 3 sunt 2, 6 şi 4
- Frunză: frunzele arborelui sunt 4, 6, 5 și 7

Modalități de reprezentare a arborilor cu rădăcină

Reprezentarea arborilor cu rădăcină

- Vector tata
- Lista de fii

Vectorul tata

Folosind vectorul tata putem determina lanțuri de la orice vârf x la rădăcină, urcând în arbore de la x la rădăcină

```
lant(x)
cat timp x!=0 executa
  scrie x
x = tata[x]
```

```
lantr(x)
daca x!=0 atunci
    lantr(tata[x])
    scrie x
```

Parcurgere = o modalitate prin care, plecând de la un vârf de start s și mergând pe arce/muchii să ajungem la toate vârfurile accesibile din s

Exemple de aplicații

Drumuri în labirint

Labirint – asociat un graf

http://www.cs.umd.edu/class/spring2019/cmsc132-020X-040X/Project8/proj8.html

Drumuri în labirint

https://rosettacode.org/wiki/Maze_solving

Probleme de accesibilitate și distanțe

- Reteaua de colaborare cu Erdos
 - Muchii a colaborat (publicat impreuna) cu
 - Noduri matematicieni
- "Distanta" fata de Erdos? Numărul Erdos
- Generalizare distanța între 2 autori într-o rețea de colaborare

Retea de colaborări, citări

Numarul Kavin Bacon

- Noduri actori
- Muchii au jucat impreuna
- Six Degrees of Kevin Bacon

https://www.iceinstitute.org/blog/2019/4/1/six-degrees-of-kevin-bacon-education-edition

Retea de colaborări, citări

Probleme relevante

- Distanțe
- Componenta unui autor/jurnal/pagina web
- componenta dominantă (de dimensiune maximă, gigant): conexă (neorientat), tare conexă (orientat) etc

Procesarea imaginilor

Algoritmi de umplere (fill)

- Imagine îi putem asocia graf grid
- Pornind de la un pixel de o anumita culoare c determinăm componenta lui de culoare c (obiect)

Detectarea de dependențe circulare

Existența de dependențe circulare în formule, module:

Tipuri de parcurgeri ale unui graf

Dat un graf G și un vârf s, cum putem determina care sunt toate vârfurile accesibile din s?

Un vârf v este accesibil din s dacă există un drum/lanț de la s la v în G.

Idee: Pas cu pas

Dacă

- u este accesibil din s (vizitat)
- uv∈E(G)

atunci v este accesibil din s.

Ce diferă? - ordinea în care considerăm vârfurile deja vizitate pentru a descoperi noi vârfuri accesibile

Parcurgerea în lățime (BF = breadth first)

Parcurgerea în adâncime (DF = depth first)

