Logistic regression

In this video you will:

- get acquainted with problem of credit risk assessment
- learn how train logistic regression on big data
- learn how to evaluate its performance


```
data = spark_session.read.csv(
    "/user/pmezentsev/default_of_credit_card_clients",
    header=True)
```

```
data.printSchema()
```

```
root
 |-- ID: string (nullable = true)
 -- LIMIT BAL: string (nullable = true)
 -- SEX: string (nullable = true)
 -- EDUCATION: string (nullable = true)
 -- MARRIAGE: string (nullable = true)
 -- AGE: string (nullable = true)
 -- PAY_0: string (nullable = true)
 -- PAY 2: string (nullable = true)
 -- PAY_3: string (nullable = true)
 -- PAY 4: string (nullable = true)
 -- PAY 5: string (nullable = true)
 -- PAY_6: string (nullable = true)
 |-- BILL AMT1: string (nullable = true)
 -- BILL_AMT2: string (nullable = true)
 |-- BILL AMT3: string (nullable = true)
 -- BILL_AMT4: string (nullable = true)
 -- BILL_AMT5: string (nullable = true)
 -- BILL AMT6: string (nullable = true)
 -- PAY_AMT1: string (nullable = true)
 -- PAY AMT2: string (nullable = true)
 -- PAY AMT3: string (nullable = true)
 -- PAY_AMT4: string (nullable = true)
 -- PAY_AMT5: string (nullable = true)
 -- PAY_AMT6: string (nullable = true)
 -- default payment next month: string (nullable = true)
```

ID	LIMIT_BAL	SEX	EDUCATION	MARRIAGE	AGE
1	20000	2	2	1	24
2	120000	2	2	2	26
3	90000	2	2	2	34
4	50000	2	2	1	37
5	50000	1	2	1	57

sept.	Aug.	July	June	May	APr.
PAY_0	PAY_2	PAY_3	PAY_4	PAY_5	PAY_6
2	2	-1	-1	-2	-2
-1	2	0	0	0	2
0	0	0	0	0	0
0	0	0	0	0	0
-1	0	-1	0	0	0

sept.	Aug.	July	June	May	APr.
BILL_AMT1	BILL_AMT2	BILL_AMT3	BILL_AMT4	BILL_AMT5	BILL_AMT6
3913	3102	689	0	0	0
2682	1725	2682	3272	3455	3261
29239	14027	13559	14331	14948	15549
46990	48233	49291	28314	28959	29547
8617	5670	35835	20940	19146	19131

sept.	Aug.	July	June	May	APr.
PAY_AMT1	PAY_AMT2	PAY_AMT3	PAY_AMT4	PAY_AMT5	PAY_AMT6
0	689	0	0	0	0
0	1000	1000	1000	0	2000
1518	1500	1000	1000	1000	5000
2000	2019	1200	1100	1059	1000
2000	34481	10000	9000	689	679

default payment next month

1/0 Probability

Logistic regression

 \mathcal{X}_1

• • •

 (X_n)

x =

$$x = \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$$

$$y \in (0,1)$$

$$w = \begin{pmatrix} w_0 \\ w_1 \\ w_2 \\ \dots \\ w_n \end{pmatrix}$$

$$x = \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$$

$$y \in (0,1)$$

$$w = \begin{pmatrix} w_0 \\ w_1 \\ w_2 \\ \dots \\ w_n \end{pmatrix}$$

$$\hat{y} = \frac{1}{1 + e^{-w^T x}}$$

$$x = \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$$

$$y \in (0,1)$$

$$w = \begin{pmatrix} w_0 \\ w_1 \\ w_2 \\ \dots \\ w_n \end{pmatrix}$$

$$\hat{y} = \frac{1}{1 + e^{-w^T x}}$$

$$\hat{y} = \frac{1}{1 + e^{-w^T x}}$$

$$w^T x$$

L-BFGS


```
from pyspark.ml.feature import SQLTransformer
my_sql_transformer = SQLTransformer(
    statement="""
    SELECT
      cast(LIMIT_BAL
                            as int),
      cast(SEX
                      as int),
      cast(EDUCATION
                            as int),
      cast(MARRIAGE
                           as int),
      cast(AGE
                      as int),
      cast(PAY_0
                        as int),
      cast(PAY_2
                        as int),
      cast(PAY_3
                        as int),
      cast(PAY_4
                        as int),
                        as int),
      cast(PAY_5
      cast(PAY_6
                        as int),
      cast(BILL_AMT1
                            as int),
      cast(BILL_AMT2
                            as int),
                            as int),
      cast(BILL_AMT3
      cast(BILL_AMT4
                            as int),
      cast(BILL_AMT5
                            as int),
      cast(BILL_AMT6
                            as int),
      cast(PAY_AMT1
                           as int),
      cast(PAY_AMT2
                           as int),
      cast(PAY_AMT3
                           as int),
      cast(PAY_AMT4
                           as int),
      cast(PAY_AMT5
                           as int),
      cast(PAY_AMT6
                           as int),
      cast('default payment next month'
                                      as int) as label
    FROM THIS
```

```
assembler = VectorAssembler()\
    .setInputCols([
  'LIMIT_BAL',
  'SEX',
  'EDUCATION',
  'MARRIAGE',
  'AGE',
  'PAY_0', 'PAY_2', 'PAY_3', 'PAY_4', 'PAY_5', 'PAY_6',
  'BILL_AMT1', 'BILL_AMT2', 'BILL_AMT3', 'BILL_AMT4', 'BILL_AMT5', 'BILL_AMT6',
  'PAY_AMT1', 'PAY_AMT2', 'PAY_AMT3', 'PAY_AMT4', 'PAY_AMT5', 'PAY_AMT6'
    ])\
    .setOutputCol("features")
```

data02 = assembler.transform(data01).select('features', 'label')

train, test = data02.randomSplit([0.7,0.3], seed=1)

```
lr = LogisticRegression()
lr_model = lr.fit(train)
```

scored_test = lr_model.transform(test)
scored_train = lr_model.transform(train)

	features	label	rawPrediction	probability	pre- diction
0	(10000.0, 2.0, 1.0, 2.0, 23.0, 1.0, -2.0, -2.0	0	[1.04333251803, -1.04333251803]	[0.739492505681, 0.260507494319]	0.0
1	(20000.0, 1.0, 2.0, 2.0, 23.0, 1.0, -2.0, -2.0	0	[1.04244635215, -1.04244635215]	[0.739321755498, 0.260678244502]	0.0
2	(20000.0, 1.0, 3.0, 2.0, 40.0, 1.0, -2.0, -2.0	0	[1.0287134211, -1.0287134211]	[0.736666389661, 0.263333610339]	0.0
3	(20000.0, 2.0, 2.0, 1.0, 26.0, 1.0, -2.0, -2.0	1	[0.976449927859, -0.976449927859]	[0.726403236781, 0.273596763219]	0.0
4	(20000.0, 2.0, 2.0, 1.0, 48.0, 1.0, -2.0, -2.0	1	[0.840721980366, -0.840721980366]	[0.698617251621, 0.301382748379]	0.0

	features	label	rawPrediction	probability	pre- diction
0	(10000.0, 2.0, 1.0, 2.0, 23.0, 1.0, -2.0, -2.0	0	[1.04333251803, -1.04333251803]	[0.739492505681, 0.260507494319]	0.0
1	(20000.0, 1.0, 2.0, 2.0, 23.0, 1.0, -2.0, -2.0	0	[1.04244635215, -1.04244635215]	[0.739321755498, 0.260678244502]	0.0
2	(20000.0, 1.0, 3.0, 2.0, 40.0, 1.0, -2.0, -2.0	0	[1.0287134211, -1.0287134211]	[0.736666389661, 0.263333610339]	0.0
3	(20000.0, 2.0, 2.0, 1.0, 26.0, 1.0, -2.0, -2.0	1	[0.976449927859, -0.976449927859]	[0.726403236781, 0.273596763219]	0.0
4	(20000.0, 2.0, 2.0, 1.0, 48.0, 1.0, -2.0, -2.0	1	[0.840721980366, -0.840721980366]	[0.698617251621, 0.301382748379]	0.0

	features	label	rawPrediction	probability	pre- diction
0	(10000.0, 2.0, 1.0, 2.0, 23.0, 1.0, -2.0, -2.0	0	[1.04333251803, -1.04333251803]	[0.739492505681, 0.260507494319]	0.0
1	(20000.0, 1.0, 2.0, 2.0, 23.0, 1.0, -2.0, -2.0	0	[1.04244635215, -1.04244635215]	[0.739321755498, 0.260678244502]	0.0
2	(20000.0, 1.0, 3.0, 2.0, 40.0, 1.0, -2.0, -2.0	0	[1.0287134211, -1.0287134211]	[0.736666389661, 0.263333610339]	0.0
3	(20000.0, 2.0, 2.0, 1.0, 26.0, 1.0, -2.0, -2.0	1	[0.976449927859, -0.976449927859]	[0.726403236781, 0.273596763219]	0.0
4	(20000.0, 2.0, 2.0, 1.0, 48.0, 1.0, -2.0, -2.0	1	[0.840721980366, -0.840721980366]	[0.698617251621, 0.301382748379]	0.0

$$\hat{y} = \frac{1}{1 + e^{-w^T x}}$$

	features	label	rawPrediction	probability	pre- diction
0	(10000.0, 2.0, 1.0, 2.0, 23.0, 1.0, -2.0, -2.0	0	[1.04333251803, -1.04333251803]	[0.739492505681, 0.260507494319]	0.0
1	(20000.0, 1.0, 2.0, 2.0, 23.0, 1.0, -2.0, -2.0	0	[1.04244635215, -1.04244635215]	[0.739321755498, 0.260678244502]	0.0
2	(20000.0, 1.0, 3.0, 2.0, 40.0, 1.0, -2.0, -2.0	0	[1.0287134211, -1.0287134211]	[0.736666389661, 0.263333610339]	0.0
3	(20000.0, 2.0, 2.0, 1.0, 26.0, 1.0, -2.0, -2.0	1	[0.976449927859, -0.976449927859]	[0.726403236781, 0.273596763219]	0.0
4	(20000.0, 2.0, 2.0, 1.0, 48.0, 1.0, -2.0, -2.0	1	[0.840721980366, -0.840721980366]	[0.698617251621, 0.301382748379]	0.0

$$\hat{y} = \frac{1}{1 + e^{-w^T x}} \qquad \hat{y} > 0,5$$

from pyspark.ml.evaluation import BinaryClassificationEvaluator
evaluator = BinaryClassificationEvaluator()

```
evaluator.evaluate(scored_train, {evaluator.metricName: 'areaUnderROC'})
```

0.722522648109

```
evaluator.evaluate(scored_test, {evaluator.metricName: 'areaUnderROC'})
```

0.728012080672

ROC

In this video you:

- have got acquainted with problem of credit risk assessment
- have learned how to train logistic regression on big data
- have learned how to evaluate its performance