1. Exercices

Limite d'une suite

► Exercice 1 – Voir le corrigé

Pour tout entier naturel n, on pose $u_n = \sqrt{n}$.

- 1. Résoudre l'inéquation $u_n \ge 100$.
- 2. Résoudre l'inéquation $u_n \ge 100000$.
- 3. Soi A un réel quelconque. Résoudre l'inéquation $u_n \geqslant A$.
- 4. Que peut-on en déduire sur la limite de la suite (u_n) ?

► Exercice 2 – Voir le corrigé

On considère la suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = 4 - 3n$.

- 1. Calculer u_{30} , u_{70} , u_{1000} . Quelle semble être la limite de la suite (u_n) ?
- 2. Soit *A* un réel. Résoudre l'équation $u_n \leq A$, d'inconnue $n \in \mathbb{N}$.
- 3. Que peut-on en conclure sur la limite de la suite (u_n) ?

► Exercice 3 – Voir le corrigé

Pour tout
$$n \in \mathbb{N}$$
, on note $u_n = \begin{cases} 1 & \text{si } n \text{ est premier} \\ n^2 & \text{sinon} \end{cases}$. A-t-on $\lim_{n \to +\infty} u_n = +\infty$?

► Exercice 4 – Voir le corrigé

Pour tout $n \in \mathbb{N}$, on pose $u_n = \frac{3-5n}{10n+2}$. Quelle semble être la limite de la suite (u_n) ?

► Exercice 5 – Voir le corrigé

On considère la suite (u_n) définie par $u_0 = 12$ et pour tout entier naturel n, $u_{n+1} = \frac{u_n}{2} + 2$.

- 1. Quelle semble être la limite de la suite (u_n) ?
- 2. Cette limite change-t-elle si $u_0 = 3$?

► Exercice 6 – Voir le corrigé

On considère la suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = \frac{3n+6}{n+1}$.

- 1. Donner des valeurs approchées au centième de u_{10} , u_{100} , u_{1000} .
- 2. La suite (u_n) semble-t-elle convergente ? Quelle serait sa limite ?
- 3. Montrer que pour $n \in \mathbb{N}$, $u_n 3 = \frac{3}{n+1}$. Quel est le signe de cette quantité ?
- 4. En déduire que $|u_n 3| = u_n 3$. On rappelle que la valeur absolue d'un réel x vaut x si ce réel est positif et -x sinon.
- 5. Soit $\varepsilon > 0$. Résoudre l'inéquation $|u_n 3| < \varepsilon$, d'inconnue $n \in \mathbb{N}$. Conclure.

► Exercice 7 – Voir le corrigé

Pour tout entier naturel n, on pose $u_n = (-1)^n$. La suite (u_n) semble-t-elle avoir une limite ?

2 1. Exercices

Opérations sur les limites

► Exercice 8 – Voir le corrigé

Dans chacun des cas suivants, déterminer la limite, si elle existe, de la suite (u_n) définie pour tout entier naturel non nul n.

a.
$$u_n = n^2 + \sqrt{n}$$

b.
$$u_n = \frac{1}{n} - n^3$$

$$\mathbf{c.}\ u_n = \mathrm{e}^{-n} + 3n$$

d.
$$u_n = \frac{1}{n} + \frac{1}{n^2} + n$$

e.
$$u_n = -6n^2 + 1 + \frac{1}{n}$$
 f. $u_n = \frac{1+n}{n}$

$$\mathbf{f.}\ u_n = \frac{1+n}{n}$$

g.
$$u_n = (2n+1)\left(\frac{1}{n}+2\right)$$

h.
$$u_n = \left(3 + \frac{2}{n}\right) \left(\frac{5}{n^2} - 2\right)$$
 i. $u_n = \sqrt{n} - n^2 \sqrt{n}$

$$\mathbf{i.}\ u_n = \sqrt{n} - n^2 \sqrt{n}$$

$$\mathbf{j.}\ u_n = \frac{\mathrm{e}^n}{1 + \frac{1}{n}}$$

$$\mathbf{k.} \ u_n = \frac{6 + \frac{3}{n^2}}{\frac{5}{n} - 1}$$

$$\mathbf{l.} \ u_n = \frac{-1 + \frac{3}{n}}{\frac{1}{n^2}}$$

m.
$$u_n = n^2 - n$$

$$\mathbf{n.} \ u_n = \left(1 - \frac{1}{n}\right) \left(2 + \frac{3}{n^2}\right) \qquad \mathbf{o.} \ u_n = \frac{3 + \sqrt{n}}{1 + \frac{2}{n}}$$

o.
$$u_n = \frac{3 + \sqrt{n}}{1 + \frac{2}{n}}$$

p.
$$u_n = -2n^2 - \frac{5}{n+1}$$

q.
$$u_n = \frac{5}{-1-n}$$

$$\mathbf{r.}\ u_n = (3n+1)\left(\frac{1}{n}-2\right)$$

► Exercice 9 – Voir le corrigé

Donner deux suites (u_n) et (v_n) telles que $\lim_{n \to +\infty} u_n = +\infty$, $\lim_{n \to +\infty} v_n = 0$ et $\lim_{n \to +\infty} (u_n v_n) = 0$.

► Exercice 10 – Voir le corrigé

Donner deux suites (u_n) et (v_n) telles que $\lim_{n\to+\infty} u_n = +\infty$, $\lim_{n\to+\infty} v_n = -\infty$ et $\lim_{n\to+\infty} (u_n + v_n) = 3$.

► Exercice 11 – Voir le corrigé

Démontrer la propriété suivante : soit (u_n) et (v_n) deux suites telles que $\lim_{n \to +\infty} u_n = +\infty$ et $\lim_{n \to +\infty} v_n = \ell \in \mathbb{R}$, alors $\lim_{n\to+\infty}(u_n+v_n)=+\infty$.

► Exercice 12 – Voir le corrigé

Soit (u_n) une suite convergente et (v_n) une suite divergente. En procédant par l'absurde, montrer que la suite $(u_n + v_n)$ est divergente.

► Exercice 13 – Voir le corrigé

On considère la suite (u_n) définie par $u_0 = 1$ et pour tout entier naturel n, $u_{n+1} = \frac{u_n}{1 + 2u}$.

- 1. Calculer u_1 , u_2 et u_3 .
- 2. Montrer par récurrence que pour tout entier naturel n, $u_n > 0$.
- 3. Pour tout entier naturel *n*, on pose $v_n = \frac{1}{u_n}$.
 - (a) Calculer v_0 , v_1 , v_2 et v_3 . Quelle semble être la nature de la suite (v_n) ?
 - (b) Calculer $v_{n+1} v_n$ pour tout entier naturel n. L'hypothèse de la question précédente est-elle vérifiée
 - (c) En déduire une expression de v_n en fonction de n pour tout entier naturel n.
 - (d) En déduire une expression de u_n en fonction de n pour tout entier naturel n.
 - (e) Déterminer alors $\lim_{n\to+\infty} u_n$.

► Exercice 14 – Voir le corrigé

On considère la suite (u_n) définie par $u_0 = 3$ et, pour tout entier naturel n, $u_{n+1} = u_n + 2n - 1$.

Pour tout entier naturel n, on pose $v_n = u_n - n^2$.

- 1. Montrer que la suite (v_n) est arithmétique. On précisera sa raison et son premier terme.
- 2. Déterminer une expression de v_n puis u_n pour tout entier naturel n.
- 3. Déterminer alors $\lim_{n\to+\infty} u_n$.

► Exercice 15 (Nouvelle-Calédonie 2023) – Voir le corrigé

On considère la suite (u_n) telle que $u_0 = 0$ et, pour tout entier naturel n,

$$u_{n+1} = \frac{-u_n - 4}{u_n + 3}.$$

Soit (v_n) la suite définie pour tout entier naturel n par $v_n = \frac{1}{u_n + 2}$.

- 1. Donner v_0 .
- 2. Montrer que la suite (v_n) est arithmétique. On précisera son premier terme et sa raison.
- 3. En déduire une expression de v_n en fonction de n pour tout entier naturel n
- 4. En déduire que pour tout entier naturel n, $u_n = \frac{1}{n+0.5} 2$.
- 5. Déterminer alors $\lim_{n\to+\infty} u_n$.

► Exercice 16 – Voir le corrigé

On considère la suite (u_n) définie par $u_0 = 2$ et, pour tout entier naturel n, $u_{n+1} = \frac{3u_n - 2}{2u_n - 1}$.

- 1. On considère la fonction $f: x \mapsto \frac{3x-2}{2x-1}$. Déterminer le sens de variations de f sur son domaine de définition.
- 2. Montrer par récurrence que, pour tout entier naturel n, $u_n > 1$.
- 3. Pour tout entier naturel *n*, on pose alors $v_n = \frac{1}{u_n 1}$
 - (a) Montrer que pour tout entier naturel n, $v_{n+1} v_n = 2$.
 - (b) En déduire une expression de v_n puis de u_n pour tout entier naturel n.
 - (c) Déterminer alors $\lim_{n\to+\infty} u_n$.

Formes indéterminées

► Exercice 17 – Voir le corrigé

En factorisant par le terme dominant, déterminer la limite de la suite (u_n) dans chacun des cas suivants.

a.
$$u_n = \frac{3n^3 + 2n - 5}{2 - 4n^3}$$

b.
$$u_n = \frac{n^2 + 1}{n + 3}$$

$$\mathbf{c.}\ u_n = \frac{1 - 2n^3}{n^2 - 3n^3}$$

$$\mathbf{d.}\ u_n = \frac{1 - 6n^4}{5n^6 + 2n^2 + 1}$$

e.
$$u_n = \frac{(n-1)(n^2+1)}{2-3n^2}$$

$$\mathbf{e.} \ u_n = \frac{(n-1)(n^2+1)}{2-3n^2} \qquad \qquad \mathbf{f.} \ u_n = \frac{n^2 - 3n^3}{n^3+3} \text{ pour } n > 0$$

1. Exercices

► Exercice 18 – Voir le corrigé

On considère la suite (u_n) définie par

$$\begin{cases} u_0 = 1 \\ \text{Pour tout entier naturel } n, u_{n+1} = \frac{9}{6 - u_n} \end{cases}$$

- 1. Calculer u_1 et u_2 .
- 2. Montrer par récurrence que pour tout entier naturel n, $0 < u_n < 3$.
- 3. Pour tout entier naturel n, on pose $a_n = \frac{1}{3 u_n}$.
 - (a) Justifier que pour tout entier naturel n, $u_n = \frac{3a_n 1}{a_n}$.
 - (b) Montrer que pour tout entier naturel n, $a_{n+1} = a_n + \frac{1}{3}$. Pour cela, on exprimera a_{n+1} en fonction de u_{n+1} , puis en fonction de u_n , puis en fonction de a_n .
 - (c) En déduire que la suite (a_n) est arithmétique. Préciser sa raison et son premier terme.
 - (d) Exprimer a_n puis u_n en fonction de n pour tout entier naturel n.
 - (e) Quelle est la limite de la suite (u_n) lorsque n tend vers $+\infty$?

► Exercice 19 - Voir le corrigé

Déterminer la limite de la suite (u_n) dans chacun des cas suivants.

a.
$$u_n = \sqrt{n-3} - \sqrt{n+8}$$

c. $u_n = \frac{1}{\sqrt{n+1} - \sqrt{n+2}}$

b.
$$u_n = \sqrt{n+2} + \sqrt{2n+5}$$

d.
$$u_n = \sqrt{4n+3} - \sqrt{4n+2}$$

► Exercice 20 – Voir le corrigé

Déterminer les limites suivantes.

a.
$$\lim_{n\to+\infty} \frac{4+\sqrt{n}}{\sqrt{4+n}}$$

b.
$$\lim_{n \to +\infty} \frac{\sqrt{2n^2 + 1}}{n + e^{-n}}$$

$$\mathbf{c.} \lim_{n \to +\infty} \sqrt{\frac{\mathbf{e}^n}{1 + \mathbf{e}^n}}$$

► Exercice 21 – Voir le corrigé

Pour tout entier naturel n > 1, on pose $u_n = \sqrt{n^2 + 3n - 2} - \sqrt{n^2 - n - 1}$.

1. En utilisant la quantité conjuguée, montrer que pour tout entier naturel n > 1

$$u_n = \frac{4n-1}{\sqrt{n^2 + 3n - 2} + \sqrt{n^2 - n - 1}}.$$

2. Montrer que pour tout entier naturel n > 1,

$$u_n = \frac{4 - \frac{1}{n}}{\sqrt{1 + \frac{3}{n} - \frac{2}{n^2}} + \sqrt{1 - \frac{1}{n} - \frac{1}{n^2}}}.$$

3. En déduire, si elle existe, la limite en $+\infty$ de la suite (u_n) .

2. Corrigés

▶ Correction 1 – Voir l'énoncé

Puisque $n \ge 0$, $u_n \ge 100$ si et seulement si $n \ge 100^2$ c'est-à-dire $n \ge 10000$.

Puisque $n \ge 0$, $u_n \ge 100000$ si et seulement si $n \ge 100^2$ c'est-à-dire $n \ge 10000000000$.

On considère un réel A quelconque.

- Si A < 0, alors pour tout $n, u_n > A$.
- Si $A \ge 0$, on sait que $\sqrt{n} \ge A \Leftrightarrow n \ge A^2$. Ainsi, dès que $n \ge A^2$, on a $u_n \ge A$ et ceci est valable quelque soit la valeur de A.

Puisque pour tout A, on a $u_n \geqslant A$ à partir d'un certain rang, on peut en conclure que $\lim_{n \to +\infty} u_n = +\infty$.

► Correction 2 – Voir l'énoncé

On a $u_{30} = -86$, $u_{70} = -206$, $u_{1000} = -2996$. Il semble que la limite de la suite (u_n) soit $-\infty$.

 $u_n \leqslant A$ si et seulement si $4-3n \leqslant A$ si et seulement si $n \geqslant \frac{A-4}{-3}$. Puisque pour tout réel A, on a $u_n \leqslant A$ à partir d'un certain rang, on peut en conclure que $\lim_{n \to +\infty} u_n = -\infty$.

► Correction 3 – Voir l'énoncé

Cette suite tend pas vers $+\infty$. En effet, on rappelle qu'il existe une infinité de nombres premiers, et donc une infinité de valeur de n pour lesquels $u_n = 1$. Prenons en particulier A = 2 dans la définition de la limite infinie. On a donc que, pour tout N, il existe un rang $n \ge N$ tel que $u_n < 2$: il n'est pas possible d'avoir tous les termes de la suite supérieurs à 2 à partir d'un certain rang. La limite de la suite ne peut donc être $+\infty$.

► Correction 4 – Voir l'énoncé

Il semble que la limite de la suite (u_n) soit $-\frac{1}{2}$.

► Correction 5 – Voir l'énoncé

Il semblerait que la limite de cette suite soit 4. On obtient la même limite si on prend $u_0 = 3$.

► Correction 6 – Voir l'énoncé

On a $u_{10} = \frac{36}{11} \simeq 3.272$, $u_{100} = \frac{306}{101} \simeq 3.030$, $u_{1000} = \frac{3006}{1001} \simeq 3.003$. Il semblerait que la suite (u_n) soit convergente, de limite 3.

Pour
$$n \in \mathbb{N}$$
, $u_n - 3 = \frac{3n+6}{3+1} - \frac{3(n+1)}{n+1} = \frac{3n+6-3n-3}{n+1} = \frac{3}{n+1}$. Puisque cette valeur est positive, on a $|u_n - 3| = u_n - 3 = \frac{3}{n+1}$.

Soit
$$\varepsilon > 0$$
. On a $|u_n - 3| < \varepsilon \Leftrightarrow \frac{3}{n+1} < \varepsilon \Leftrightarrow \frac{n+1}{3} > \frac{1}{\varepsilon} \Leftrightarrow n > \frac{3}{\varepsilon} - 1$.

Ainsi, pour tout $\varepsilon > 0$, dès que $n > \frac{3}{\varepsilon} - 1$, on a $|u_n - 3| < \varepsilon$. Ainsi, la suite (u_n) est convergente et $\lim_{n \to +\infty} u_n = 3$.

► Correction 7 – Voir l'énoncé

6 2. Corrigés

Les termes de rang pair de cette suite valent 1 alors que les termes de rang impair valent -1. Cette suite n'admet pas de limite.

► Correction 8 – Voir l'énoncé

a. On sait que $\lim_{n \to +\infty} n^2 = +\infty$, $\lim_{n \to +\infty} \sqrt{n} = +\infty$. Ainsi, d'après les règles de la limite de la somme, $\lim_{n \to +\infty} n^2 + \sqrt{n} = +\infty$.

b. On sait que $\lim_{n \to +\infty} \frac{1}{n} = 0$ et $\lim_{n \to +\infty} -n^3 = -\infty$.

Ainsi, d'après les règles de la limite de la somme, $\lim_{n \to +\infty} \left(\frac{1}{n} - n^3 \right) = -\infty$;

c. On sait que $\lim_{n \to +\infty} e^{-n} = 0$ et $\lim_{n \to +\infty} (3n) = +\infty$. Ainsi, d'après les règles de la limite de la somme, $\lim_{n \to +\infty} (e^{-n} + 3n) = +\infty$.

d. On sait que $\lim_{n\to +\infty} \frac{1}{n} = 0$, $\lim_{n\to +\infty} \frac{1}{n^2} = 0$ et $\lim_{n\to +\infty} n = +\infty$.

Ainsi, d'après les règles de la limite de la somme, $\lim_{n \to +\infty} \left(\frac{1}{n} + \frac{1}{n^2} + n \right) = +\infty$.

e. On sait que $\lim_{n \to +\infty} -n^2 = -\infty$, $\lim_{n \to +\infty} \frac{1}{n} = 0$ et $\lim_{n \to +\infty} 1 = 1$.

Ainsi, d'après les règles de la limite de la somme, $\lim_{n \to +\infty} \left(-6n^2 + 1 + \frac{1}{n} \right) = -\infty$.

f. Pour tout entier naturel non nul n, $\frac{n+1}{n} = \frac{1}{n} + \frac{n}{n} = 1 + \frac{1}{n}$. On sait que $\lim_{n \to +\infty} \frac{1}{n} = 0$ et $\lim_{n \to +\infty} 1 = 1$.

Ainsi, d'après les règles de la limite de la somme, $\lim_{n \to +\infty} \left(\frac{1+n}{n} \right) = 1$.

g. D'une part, $\lim_{n\to+\infty} (2n+1) = +\infty$. D'autre part, $\lim_{n\to+\infty} \frac{1}{n} = 0$ d'où $\lim_{n\to+\infty} \left(\frac{1}{n} + 2\right) = 2$.

Ainsi, d'après les règles de calcul de la limite d'un produit, $\lim_{n \to +\infty} (2n+1) \left(\frac{1}{n} + 2\right) = +\infty$.

- **h.** On a $\lim_{n\to+\infty}\frac{2}{n}=0$, d'où $\lim_{n\to+\infty}\left(3+\frac{2}{n}\right)=3$. D'autre part, $\lim_{n\to+\infty}\frac{5}{n^2}=0$ d'où $\lim_{n\to+\infty}\left(\frac{5}{n^2}-2\right)=-2$. Finalement, par produit de limites, $\lim_{n\to+\infty} \left(3+\frac{2}{n}\right) \left(\frac{5}{n^2}-2\right) = 3\times(-2) = -6.$
- i. Si l'on fait la limite de chaque terme de la somme, on aboutit à une forme indéterminée, de type " $\infty \infty$ ". Il faut donc factoriser u_n . Pour tout entier n, $u_n = \sqrt{n}(1-n^2)$. Or, $\lim_{n \to +\infty} \sqrt{n} = +\infty$ et $\lim_{n \to +\infty} (1-n^2) = -\infty$. Ainsi, $\lim_{n\to+\infty}u_n=-\infty.$
- **j.** D'une part, $\lim_{n\to +\infty} \mathrm{e}^n = +\infty$. D'autre part, $\lim_{n\to +\infty} \frac{1}{n} = 0$ d'où $\lim_{n\to +\infty} \left(1+\frac{1}{n}\right) = 1$. Finalement, $\lim_{n\to +\infty} \frac{\mathrm{e}^n}{1+\frac{1}{n}} = +\infty$.

k. On a, $\lim_{n \to +\infty} \frac{3}{n^2} = 0$ d'où $\lim_{n \to +\infty} \left(6 + \frac{3}{n^2}\right) = 6$. D'autre part, $\lim_{n \to +\infty} \frac{5}{n} = 0$ d'où $\lim_{n \to +\infty} \left(\frac{5}{n} - 1\right) = -1$. Finale-

ment,
$$\lim_{n \to +\infty} \frac{6 + \frac{3}{n^2}}{\frac{5}{n} - 1} = \frac{6}{-1} = -6.$$

l. D'une part, $\lim_{n\to +\infty}\frac{3}{n}=0$, d'où $\lim_{n\to +\infty}\left(1+\frac{3}{n}\right)=1$. Par ailleurs, $\lim_{n\to +\infty}\frac{1}{n^2}=0$ par valeurs supérieures. Ainsi,

$$\lim_{n \to +\infty} \frac{1 + \frac{3}{n}}{\frac{1}{n^2}} = +\infty.$$
 Il est également possible de remarquer que dans ce cas, pour nous $n > 0$, $u_n = n^2 \left(1 + \frac{3}{n}\right)$

et utiliser les règles de calcul sur un produit.

m. Si l'on fait la limite de chaque terme de la somme, on aboutit à une forme indéterminée, de type " $\infty - \infty$ ". Il faut donc factoriser u_n . Pour tout entier naturel n, $u_n = n(n-1)$. Or, $\lim_{n \to +\infty} n = +\infty$ et $\lim_{n \to +\infty} (n+1) = +\infty$. Ainsi, $\lim_{n \to +\infty} u_n = +\infty$.

n. D'une part,
$$\lim_{n\to +\infty} \left(1-\frac{1}{n}\right) = 1$$
. D'autre part, $\lim_{n\to +\infty} \left(2+\frac{3}{n^2}\right) = 2$. Ainsi, par limite du produit, $\lim_{n\to +\infty} u_n = 2$.

- **o.** D'une part, $\lim_{n\to+\infty} (3+\sqrt{n}) = +\infty$. D'autre part, $\lim_{n\to+\infty} \left(1+\frac{2}{n}\right) = 1$. Finalement, $\lim_{n\to+\infty} u_n = +\infty$.
- **p.** D'une part, $\lim_{n\to+\infty} (-2n^2 = -\infty)$. D'autre part, $\lim_{n\to+\infty} -\frac{5}{n} = 0$. Ainsi, $\lim_{n\to+\infty} u_n = -\infty$.
- **q.** Puisque $\lim_{n \to +\infty} (-1 n) = -\infty$, on a $\lim_{n \to +\infty} u_n = 0$.
- **r.** D'une part, $\lim_{n \to +\infty} (3n+1) = +\infty$. D'autre part, $\lim_{n \to +\infty} \left(\frac{1}{n} 2\right) = -2$. Ainsi, en utilisant la règle des limites sur les produits, $\lim_{n \to +\infty} u_n = -\infty$ (ne pas oublier la règle des signes).

► Correction 9 – Voir l'énoncé

Pour tout entier naturel non nul n, on pose $u_n = n$ et $v_n = \frac{1}{n^2}$. On a $\lim_{n \to +\infty} u_n = +\infty$ et $\lim_{n \to +\infty} v_n = 0$. Or, pour tout entier naturel non nul n, $u_n v_n = \frac{1}{n}$. Ainsi, $\lim_{n \to +\infty} (u_n v_n) = 0$.

► Correction 10 – Voir l'énoncé

Pour tout entier naturel non nul n, on pose $u_n = n$ et $v_n = 3 - n$. On a $\lim_{n \to +\infty} u_n = +\infty$ et $\lim_{n \to +\infty} v_n = -\infty$. Or, pour tout entier naturel non nul n, $u_n + v_n = 0$ 3. Ainsi, $\lim_{n \to +\infty} (u_n + v_n) = 0$ 3

▶ Correction 11 – Voir l'énoncé

Soit ε un réel strictement positif et A un réel

- Puisque $\lim_{n\to+\infty} u_n = +\infty$, il existe un entier N_1 tel que, pour tout entier $n \geqslant N_1$, on a $u_n \geqslant A l + \varepsilon$
- Puisque $\lim_{n\to +\infty} v_n = l$, il existe un entier N_2 tel que, pour tout entier $n \geqslant N_2$, on a $v_n \in [l-\varepsilon, l+\varepsilon]$. En particulier, $v_n \geqslant \varepsilon$

Prenons alors $N = \max(N_1; N_2)$. Alors, pour tout entier naturel $n \ge N$, on a $u_n + v_n \ge A - l + \varepsilon + l - \varepsilon$, c'est-à-dire $u_n \ge A$. Ainsi, $\lim_{n \to +\infty} (u_n + v_n) = +\infty$.

► Correction 12 – Voir l'énoncé

Supposons que la suite $(u_n + v_n)$ converge. Alors, pour tout entier naturel n, $v_n = (u_n + v_n) - u_n$. (v_n) est donc la différence de deux suites convergentes, elle est donc convergente, ce qui est contraire à ce qu'indique l'énoncé. Finalement, la suite $(u_n + v_n)$ diverge.

▶ Correction 13 – Voir l'énoncé

8 2. Corrigés

On a
$$u_1 = \frac{1}{1+2\times 1} = \frac{1}{3}$$
, $u_2 = \frac{\frac{1}{3}}{1+2\times \frac{1}{3}} = \frac{\frac{1}{3}}{\frac{5}{3}} = \frac{1}{5}$ et $u_3 = \frac{\frac{1}{5}}{1+2\times \frac{1}{5}} = \frac{\frac{1}{5}}{\frac{7}{5}} = \frac{1}{7}$.

Pour tout entier naturel n, on considère la proposition P(n): « $u_n > 0$ ».

- Initialisation : $u_0 = 1 > 0$. P(0) est vraie.
- Hérédité : Soit $n \in \mathbb{N}$ tel que P(n) est vraie. On a donc $u_n > 0$ et donc $1 + 2u_n > 0$. u_{n+1} est le quotient de deux réels strictement positifs, il est donc également strictement positif.
- Conclusion : Par récurrence, P(n) est vraie pour tout entier naturel n.

On a alors $v_0 = 1$, $v_1 = 3$, $v_2 = 5$, $v_3 = 7$. La suite (v_n) semble arithmétique.

Pour tout entier naturel n,

$$v_{n+1} - v_n = \frac{1}{u_{n+1}} - \frac{1}{u_n} = \frac{1}{\frac{u_n}{1+2u_n}} - \frac{1}{u_n} = \frac{1+2u_n}{u_n} - \frac{1}{u_n} = \frac{2u_n}{u_n} = 2.$$

Ainsi, pour tout entier naturel n, $v_{n+1} = 2 + v_n$. La suite (v_n) est arithmétique de raison 2.

Pour tout entier naturel n, $v_n = v_0 + 2n = 1 + 2n$ et $u_n = \frac{1}{v_n} = \frac{1}{2n+1}$. Ainsi, $\lim_{n \to +\infty} u_n = 0$.

► Correction 14 – Voir l'énoncé

Pour tout entier naturel n,

$$v_{n+1} - v_n = u_{n+1} - (n+1)^2 - (u_n - n^2) = u_n + 2n - 1 - (n^2 + 2n + 1) - u_n + n^2 = -2.$$

Ainsi, (v_n) est arithmétique, de premier terme $v_0 = u_0 - 0^2 = 3$ et de raison -2. Ainsi, pour tout entier naturel n, $v_n = 3 - 2n$.

Or, puisque $v_n = u_n - n^2$, il en vient que $u_n = v_n + n^2 = n^2 - 2n + 3$.

Ainsi, pour tout entier naturel n, $u_n = n^2 \left(1 - \frac{2}{n} + \frac{3}{n^2}\right)$. Or, $\lim_{n \to +\infty}^2 = +\infty$ et $\lim_{n \to +\infty} \left(1 - \frac{2}{n} + \frac{3}{n^2}\right) = 1$.

Par produit, $\lim_{n\to+\infty}u_n=+\infty$.

► Correction 15 – Voir l'énoncé

On a
$$v_0 = \frac{1}{u_0 + 2} = \frac{1}{2}$$
.

Pour tout entier naturel n, on a $v_n = \frac{1}{u_n + 2}$ et donc $v_{n+1} = \frac{1}{u_{n+1} + 2}$.

Or, $u_{n+1} = \frac{-u_n - 4}{u_n + 3}$. On remplace donc u_{n+1} par cette valeur. Ainsi,

$$v_{n+1} = \frac{1}{\frac{-u_n - 4}{u_n + 3} + 2} = \frac{1}{\frac{-u_n - 4}{u_n + 3} + \frac{2(u_n + 3)}{u_n + 3}} = \frac{1}{\frac{-u_n - 4}{u_n + 3} + \frac{2u_n + 6)}{u_n + 3}} = \frac{1}{\frac{-u_n - 4 + 2u_n + 6}{u_n + 3}} = \frac{1}{\frac{-u_n - 4 + 2u_n + 6}{u_n + 3}} = \frac{1}{\frac{-u_n + 4}{u_n + 3}} = \frac{1}{\frac{-u_n + 4}$$

Ainsi,

$$v_{n+1} - v_n = \frac{u_n + 3}{u_n + 2} - \frac{1}{u_n + 2} = \frac{u_n + 2}{u_n + 2} = 1.$$

Finalement, pour tout entier naturel n, $v_{n+1} = 1 + v_n$. La suite (v_n) est arithmétique de raison 1.

Pour tout entier naturel n, on a donc $v_n = v_0 + n \times 1$ soit $v_n = \frac{1}{2} + n$.

Pour tout entier naturel *n*, on a $v_n = \frac{1}{u_n + 2}$. Ainsi, $\frac{1}{v_n} = u_n + 2$ et $u_n = \frac{1}{v_n} - 2 = \frac{1}{n + 0.5} - 2$.

Par ailleurs, $\lim_{n\to+\infty} \frac{1}{n+0.5} = 0$ et donc $\lim_{n\to+\infty} u_n = -2$.

► Correction 16 – Voir l'énoncé

On considère la suite (u_n) définie par $u_0 = 2$ et, pour tout entier naturel n, $u_{n+1} = \frac{3u_n - 2}{2u_n - 1}$.

f est dérivable sur $\left]-\infty; \frac{1}{2}\right[$ et $\left]\frac{1}{2}; +\infty\right[$. Pour tout réel $x \neq \frac{1}{2}$,

$$f'(x) = \frac{3(2x-1) - 2(3x-2)}{(2x-1)^2} = \frac{6x - 3 - 6x + 4}{(2x-1)^2} = \frac{1}{(2x-1)^2} > 0.$$

 $f \text{ est donc strictement croissante sur } \left] -\infty; \frac{1}{2} \right[\text{ et } \left] \frac{1}{2}; +\infty \right[.$

Pour tout entier naturel n, on considère la proposition P(n): « $u_n > 1$ ».

- Initialisation : $u_0 = 2 > 0$. P(0) est vraie.
- **Hérédité**: Soit $n \in \mathbb{N}$ tel que P(n) est vraie. On a donc $u_n > 1$. La fonction f étant strictement croissante sur $\left[\frac{1}{2}; +\infty\right[$, on a donc $f(u_n) > f(1)$. Or, $f(u_n) = u_{n+1}$ et $f(1) = \frac{3 \times 1 2}{2 \times 1 1} = 1$. Ainsi, $u_{n+1} > 1$. P(n+1) est vraie.
- Conclusion : Par récurrence, P(n) est vraie pour tout entier naturel n.

Puisque pour tout entier naturel n, $u_n > 1$, il en vient que $u_n - 1 \neq 0$ et la suite (v_n) est donc bien définie.

Pour tout entier naturel n,

$$v_{n+1}-v_n=\frac{1}{u_{n+1}-1}-\frac{1}{u_n-1}=\frac{1}{\frac{3u_n-2}{2u_n-1}-1}-\frac{1}{u_n-1}=\frac{1}{\frac{3u_n-2-(2u_n-1)}{2u_n-1}}-\frac{1}{u_n-1}=\frac{1}{\frac{u_n-1}{2u_n-1}}-\frac{1}{u_n-1}.$$

Ainsi,

$$v_{n+1} - v_n = \frac{2u_n - 1}{u_n - 1} - \frac{1}{u_n - 1} = \frac{2u_n - 2}{u_n - 1} = \frac{2(u_n - 1)}{u_n - 1} = 2.$$

Finalement, pour tout entier naturel n, $v_{n+1} = 2 + v_n$. La suite (v_n) est donc arithmétique de raison 2 et de premier terme $v_0 = \frac{1}{u_0 - 1} = \frac{1}{2 - 1} = 1$. Ainsi, pour tout entier naturel n, $v_n = 1 + 2n$.

Par ailleurs, $v_n = \frac{1}{u_n - 1}$ et donc $u_n = \frac{1}{v_n} + 1 = \frac{1}{1 + 2n} + 1$.

On en déduit que $\lim_{n\to+\infty} u_n = 1$.

▶ Correction 17 – Voir l'énoncé

a. Pour tout entier naturel non nul n, $\frac{3n^3 + 2n - 5}{2 - 4n^3} = \frac{n^3 \left(3 + \frac{2}{n^2} - \frac{5}{n^3}\right)}{n^3 \left(\frac{2}{n^3} - 4\right)} = \frac{3 + \frac{2}{n^2} - \frac{5}{n^3}}{\frac{2}{n^3} - 4}.$

En appliquant les règles de calcul classiques sur les limites, on en déduit que $\lim_{n \to +\infty} \frac{3n^3 + 2n - 5}{2 - 4n^3} = -\frac{3}{4}$

10 2. Corrigés

b. Pour tout entier naturel non nul
$$n$$
, $\frac{n^2+1}{n+3} = \frac{n^2\left(1+\frac{1}{n^2}\right)}{n\left(1+\frac{3}{n}\right)} = n \times \frac{1+\frac{1}{n^2}}{1+\frac{3}{n}}$.

Or,
$$\lim_{n \to +\infty} \frac{1 + \frac{1}{n^2}}{1 + \frac{3}{n}} = 1$$
 et $\lim_{n \to +\infty} n = +\infty$. Ainsi, $\lim_{n \to +\infty} \frac{n^2 + 1}{n + 3} = +\infty$.

c. Pour tout entier naturel non nul
$$n$$
, $\frac{1-2n^3}{n^2-3n^3} = \frac{n^3 \times \left(\frac{1}{n^3}-2\right)}{n^3 \times \left(\frac{1}{n}-3\right)} = \frac{\frac{1}{n^3}-2}{\frac{1}{n}-3}$.

Ainsi,
$$\lim_{n \to +\infty} \frac{1 - 2n^3}{n^2 - 3n^3} = \frac{-2}{-3} = \frac{2}{3}$$
.

d. Pour tout entier naturel non nul
$$n$$
, $\frac{1-6n^4}{5n^6+2n^2+1} = \frac{n^4\left(\frac{1}{n^4}-6\right)}{n^6\left(5+\frac{2}{n^4}+\frac{1}{n^6}\right)} = \frac{1}{n^2} \times \frac{\frac{1}{n^4}-6}{5+\frac{2}{n^4}+\frac{1}{n^6}}$.

Or,
$$\lim_{n \to +\infty} \frac{\frac{1}{n^4} - 6}{5 + \frac{2}{n^4} + \frac{1}{n^6}} = -\frac{6}{5} \text{ et } \lim_{n \to +\infty} \frac{1}{n^2} = 0. \text{ Ainsi, } \lim_{n \to +\infty} \frac{1 - 6n^4}{5n^6 + 2n^2 + 1} = 0.$$

e. Pour tout entier naturel non nul n,

$$\frac{(n-1)(n^2+1)}{2-3n^2} = \frac{n \times \left(1 - \frac{1}{n}\right) \times n^2 \times \left(1 + \frac{1}{n^2}\right)}{n^2 \times \left(\frac{2}{n^2} - 3\right)} = n \times \frac{\left(1 - \frac{1}{n}\right)\left(1 + \frac{1}{n^2}\right)}{\left(\frac{2}{n^2} - 3\right)}.$$

Or,
$$\lim_{n \to +\infty} n = +\infty$$
, $\lim_{n \to +\infty} \left(\frac{2}{n^2} - 3\right) = -3$ et $\lim_{n \to +\infty} \left(1 + \frac{1}{n^2}\right) = 1$.
Ainsi, $\lim_{n \to +\infty} \frac{(n-1)(n^2+1)}{2-3n^2} = -\infty$.

f. Pour tout entier naturel non nul
$$n$$
, $\frac{n^2 - \frac{1}{n^4}}{n^3 + 3} = \frac{n^2 \times \left(1 - \frac{1}{n^6}\right)}{n^3 \times \left(1 + \frac{3}{n^3}\right)} = \frac{1}{n} \times \frac{1 - \frac{1}{n^6}}{1 + \frac{3}{n^3}}$

Or,
$$\lim_{n \to +\infty} \frac{1}{n} = 0$$
, $\lim_{n \to +\infty} \left(1 - \frac{1}{n^6} \right) = 1$ et $\lim_{n \to +\infty} \left(1 + \frac{3}{n^3} \right) = 1$. Ainsi, $\lim_{n \to +\infty} \frac{n^2 - \frac{1}{n^4}}{n^3 + 3} = 0$.

► Correction 18 – Voir l'énoncé

$$u_1 = \frac{9}{6-1} = \frac{9}{5}, u_2 = \frac{9}{6-\frac{9}{5}} = \frac{9}{\frac{21}{5}} = \frac{45}{21} = \frac{15}{7}.$$

Pour tout entier naturel n, on pose P(n): « $0 < u_n < 3$ ».

- **Initialisation**: Puisque $u_0 = 1$, on a bien $0 < u_0 < 3$. P(0) est vraie.
- **Hérédité**: Soit $n \in \mathbb{N}$. Supposons P(n) vraie. Ainsi, $0 < u_n < 3$ En multipliant par -1, qui est négatif, on a donc $0 > -u_n > -3$. On ajoute 6 pour avoir $6 > 6 u_n > 3$. On applique alors la fonction inverse

qui est décroissante sur $]0;+\infty[$. On a donc $\frac{1}{6}<\frac{1}{6-u_n}<\frac{1}{3}$. Enfin, on multiplie par 9 pour obtenir $\frac{3}{2} < \frac{9}{6-u_n} < 3$. Or, puisque $0 < \frac{3}{2}$, on a bien $0 < u_{n+1} < 3$. P(n+1) est vraie.

• Conclusion : P(0) est vraie, P est héréditaire. Par récurrence, P(n) est vraie pour tout entier naturel n.

Soit $n \in \mathbb{N}$. On a $a_n = \frac{1}{3 - u_n}$. Puisque $a_n \neq 0$, on peut appliquer la fonction inverse à cette égalité. On a alors $\frac{1}{a_n} = 3 - u_n$. Ainsi, $u_n = 3 - \frac{1}{a_n} = \frac{3a_n - 1}{a_n}$.

Pour tout $n \in \mathbb{N}$, on a $a_n = \frac{1}{3 - u_n}$. Ainsi, $a_{n+1} = \frac{1}{3 - u_{n+1}}$.

Or,
$$u_{n+1} = \frac{9}{6 - u_n}$$
. Ainsi $a_{n+1} = \frac{1}{3 - \frac{9}{6 - u_n}} = \frac{1}{\frac{3(6 - u_n) - 9}{6 - u_n}} = \frac{6 - u_n}{9 - 3u_n}$.

Or, d'après la question précédente, $u_n = \frac{3a_n - 1}{a_n}$. Ainsi, $a_{n+1} = \frac{6 - \frac{3a_n - 1}{a_n}}{9 - 3 \times \frac{3a_n - 1}{a_n}} = \frac{\frac{6a_n - (3a_n - 1)}{a_n}}{\frac{9a_n - 3 \times (3a_n - 1)}{a_n}}$.

On a donc
$$a_{n+1} = \frac{3a_n + 1}{a_n} \times \frac{a_n}{3} = \frac{3a_n + 1}{3} = a_n + \frac{1}{3}$$
.

La suite (a_n) est donc arithmétique de raison $r = \frac{1}{3}$. Son premier terme vaut $a_0 = \frac{1}{3 - u_0} = \frac{1}{3 - 1} = \frac{1}{2}$. On rappelle que si (a_n) est une suite arithmétique de raison r, alors pour tout entier naturel n, $a_n = a_0 + rn$. Dans notre cas, pour tout entier naturel n, $a_n = \frac{1}{2} + \frac{n}{3}$.

On sait que pour tout entier naturel n, $u_n = \frac{3a_n - 1}{a_n}$. Ainsi, pour tout entier naturel n,

$$u_n = \frac{3 \times \left(\frac{1}{2} + \frac{n}{3}\right) - 1}{\frac{1}{2} + \frac{n}{3}} = \frac{\frac{3}{2} + n - 1}{\frac{3 + 2n}{6}} = \frac{6 \times \left(n + \frac{1}{2}\right)}{3 + 2n} = \frac{6n + 3}{3 + 2n}.$$

En utilisant les règles sur les calculs de limites, on aboutit à une forme indéterminée $\frac{\infty}{\infty}$

Or, pour tout entier naturel non nul
$$n$$
, $u_n = \frac{n\left(6 + \frac{3}{n}\right)}{n\left(\frac{3}{n} + 2\right)} = \frac{6 + \frac{3}{n}}{\frac{3}{n} + 2}$.

Finalement, $\lim_{n \to +\infty} u_n = \frac{6}{2} = 3$.

► Correction 19 – Voir l'énoncé

a. Pour tout entier naturel n > 3,

$$\sqrt{n-3} - \sqrt{n+8} = (\sqrt{n-3} - \sqrt{n+8}) \times \frac{\sqrt{n-3} + \sqrt{n+8}}{\sqrt{n-3} + \sqrt{n+8}} = \frac{n-3 - (n+8)}{\sqrt{n-3} + \sqrt{n+8}}$$

et donc

$$\sqrt{n-3} - \sqrt{n+8} = -\frac{11}{\sqrt{n-3} + \sqrt{n+8}}$$

12 2. Corrigés

Ainsi,
$$\lim_{n \to +\infty} (\sqrt{n-3} - \sqrt{n+8}) = 0.$$

b. Attention à ne pas se lancer dans des calculs par pur automatisme, il ne s'agit pas ici d'une forme indéterminée ! $\lim_{n \to +\infty} \sqrt{n+2} + \sqrt{2n+5} = +\infty$.

c. Pour tout entier naturel n,

$$u_n = \frac{1}{\sqrt{n+1} - \sqrt{n+2}} \times \frac{\sqrt{n+1} + \sqrt{n+2}}{\sqrt{n+1} + \sqrt{n+2}} = \frac{\sqrt{n+1} + \sqrt{n+2}}{(n+1) - (n+2)} = \frac{\sqrt{n+1} + \sqrt{n+2}}{-1}$$

Or,
$$\lim_{n \to +\infty} (\sqrt{n+1} + \sqrt{n+2}) = +\infty$$
 et donc $\lim_{n \to +\infty} u_n = -\infty$.

d. Pour tout entier naturel n,

$$u_n = (\sqrt{4n+3} - \sqrt{4n+2}) \times \frac{\sqrt{4n+3} + \sqrt{4n+2}}{\sqrt{4n+3} + \sqrt{4n+2}} = \frac{4n+3 - (4n+2)}{\sqrt{4n+3} + \sqrt{4n+2}} = \frac{1}{\sqrt{4n+3} + \sqrt{4n+2}}.$$

Ainsi, $\lim_{n\to+\infty}u_n=0$.

► Correction 20 – Voir l'énoncé

a. Pour tout entier naturel non nul n,

$$\frac{4+\sqrt{n}}{\sqrt{4+n}} = \frac{\sqrt{n} \times \left(\frac{4}{\sqrt{n}}+1\right)}{\sqrt{n\left(\frac{4}{n}+1\right)}} = \frac{\sqrt{n}}{\sqrt{n}} \times \frac{\frac{4}{\sqrt{n}}+1}{\sqrt{\frac{4}{n}+1}} = \frac{\frac{4}{\sqrt{n}}+1}{\sqrt{\frac{4}{n}+1}}$$

Or,
$$\lim_{n \to +\infty} \left(\frac{4}{\sqrt{n}} + 1 \right) = 1$$
. Par ailleurs, $\lim_{n \to +\infty} \left(\frac{4}{n} + 1 \right) = 1$ et donc $\lim_{n \to +\infty} \sqrt{\frac{4}{n} + 1} = \sqrt{1} = 1$.

Finalement,
$$\lim_{n \to +\infty} \frac{4 + \sqrt{n}}{\sqrt{4 + n}} = 1$$
.

b. Pour tout entier naturel non nul n.

$$\frac{\sqrt{2n^2+1}}{n+e^{-n}} = \frac{\sqrt{n^2}\sqrt{2+\frac{1}{n^2}}}{n\left(1+\frac{e^{-n}}{n}\right)} = \frac{n\sqrt{2+\frac{1}{n^2}}}{n\left(1+\frac{e^{-n}}{n}\right)} = \frac{\sqrt{2+\frac{1}{n^2}}}{1+\frac{e^{-n}}{n}}$$

Or,
$$\lim_{n \to +\infty} \left(2 + \frac{1}{n^2} \right) = 2$$
 et donc $\lim_{n \to +\infty} \sqrt{2 + \frac{1}{n^2}} = \sqrt{2}$

Par ailleurs, $\lim_{n\to +\infty} e^{-n} = 0$ et donc $\lim_{n\to +\infty} \left(1 + \frac{e^{-n}}{n}\right) = 1$. Finalement, $\lim_{n\to +\infty} w_n = \sqrt{2}$.

c. Pour tout entier naturel n,

$$\frac{e^n}{1+e^n} = \frac{e^n}{e^n(e^{-n}+1)} = \frac{1}{1+e^{-n}}.$$

Or,
$$\lim_{n \to +\infty} e^{-n} = 0$$
 et donc $\lim_{n \to +\infty} \frac{1}{1 + e^{-n}} = 1$. Ainsi, $\lim_{n \to +\infty} \sqrt{\frac{e^n}{1 + e^n}} = \sqrt{1} = 1$.

► Correction 21 – Voir l'énoncé

Pour tout entier naturel non nul n,

$$u_n = \sqrt{n^2 + 3n - 2} - \sqrt{n^2 - n - 1} \times \frac{\sqrt{n^2 + 3n - 2} + \sqrt{n^2 - n - 1}}{\sqrt{n^2 + 3n - 2} + \sqrt{n^2 - n - 1}}.$$

En développant le numérateur, on a alors

$$u_n = \frac{n^2 + 3n - 2 - (n^2 - n - 1)}{\sqrt{n^2 + 3n - 2} + \sqrt{n^2 - n - 1}} = \frac{4n - 1}{\sqrt{n^2 + 3n - 2} + \sqrt{n^2 - n - 1}}.$$

On a en effet

$$\sqrt{n^2 + 3n - 2} = \sqrt{n^2} \times \sqrt{1 + \frac{3}{n} - \frac{2}{n^2}} = n\sqrt{1 + \frac{3}{n} - \frac{2}{n^2}}$$

et

$$\sqrt{n^2 - n - 1} = \sqrt{n^2} \times \sqrt{1 - \frac{1}{n} - \frac{1}{n^2}} = n\sqrt{1 - \frac{1}{n} - \frac{1}{n^2}}.$$

Ainsi

$$u_n = \frac{n\left(4 - \frac{1}{n}\right)}{n\left(\sqrt{1 + \frac{3}{n} - \frac{2}{n^2}} + \sqrt{1 - \frac{1}{n} - \frac{1}{n^2}}\right)} = \frac{4 - \frac{1}{n}}{\sqrt{1 + \frac{3}{n} - \frac{2}{n^2}} + \sqrt{1 - \frac{1}{n} - \frac{1}{n^2}}}.$$

$$\begin{aligned} &\text{Or, } \lim_{n \to +\infty} \left(4 + \frac{3}{n} \right) = 4, \\ &\lim_{n \to +\infty} \left(\sqrt{1 + \frac{3}{n} - \frac{2}{n^2}} \right) = 1 \text{ et } \lim_{n \to +\infty} \left(\sqrt{1 - \frac{1}{n} - \frac{1}{n^2}} \right) = 1. \\ &\text{Ainsi, } \lim_{n \to +\infty} \left(\sqrt{n^2 + 3n - 2} - \sqrt{n^2 - n - 1} \right) = \frac{4}{1 + 1} = 2. \end{aligned}$$