

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

2894789041

MATHEMATICS 9709/12

Paper 1 Pure Mathematics 1

May/June 2024

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has **20** pages. Any blank pages are indicated.

BLANK PAGE

1

Find the value of the positive constant a .	2	~ l~	r.,	-	2	[3
· · · · ·	•	7				
<u> </u>	z					
			•••••	•••••		
			•••••	•••••		

the transformations have	ve been applied.	•			
		z	·····	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •
	,		······································	······································	
······/-,······	- TV	······································		~ / B	
	•••••	••	* AL M	1 , -	
	•••••		•••••	•••••	
	•••••	•••••		•••••	

3 (a) Show that the equation $\frac{7 \tan \theta}{\cos \theta} + 12 = 0$ can be expressed as

$$12\sin^2\theta - 7\sin\theta - 12 = 0.$$
 [3]

$$= \begin{array}{c} \frac{\sin\theta}{2} & \frac{1}{\cos\theta} \times \frac{1}{\cos\theta} + \frac{1}{2} = 0 \\ \frac{1}{2} & \frac{1}{2} &$$

$$-> 7 \frac{\sin \theta}{\cos^2 \theta} + 12 = 0$$

$$\frac{1}{2} = \frac{1}{2} \frac{$$

(b) Hence solve the equation
$$\frac{7 \tan \theta}{\cos \theta} + 12 = 0$$
 for $0^{\circ} \le \theta \le 360^{\circ}$. [3]

© UCLES 2024

4	701	C		c ·	1 ~	1	C 11	
4	ı ne	Tiina	erion	T 1S	defin	ea as	TOH	ows

$$f(x) = \sqrt{x} - 1$$
 for $x > 1$.

The diagram shows the graph of y = g(x) where $g(x) = \frac{1}{x^2 + 2}$ for $x \in \mathbb{R}$.

(b)	State the range of g and explain whether g	exists.	[2]
	1.0 / 1.0	. C	

when $\pi: \partial g(\pi) = \frac{1}{2}$ if range of $g: 0 < g < \frac{1}{2}$

g	, -1	does	nod	exist	be cause	961,5	
α	y	na ny	01	ne fun	etion,	961,5	
		0					
•••••	• • • • • • • • • • • • • • • • • • • •						
•••••							•••
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			•••••		•••••	

The function h is defined by $h(x) = \frac{1}{x^2 + 2}$ for $x \ge 0$.

		7		•••••	•••••
			/ ******		
<u> </u>			-	• • • • • • • • • • • • • • • • • • • •	•••••
			·····		
•	7				
				•••••	•••••
	•			• • • • • • • • • • • • • • • • • • • •	•••••
		1			
	2	***************************************		•••••	
	•••••	•••••	•••••	•••••	•••••
	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
		•••••			

5	The first and	second	terms	of an	arithmetic	progression	are	$\tan \theta$	and	$\sin\theta$	respectively,	where
	$0<\theta<\tfrac{1}{2}\pi.$											

	secon.	(;)	'nΛ	7 Th	Z	12	$=\frac{1}{2}n\{2a+($	(n-1)d
lle	n = 0	t [I	n-1)d			•••••	
	12 =					Sa=	In[24.	t (n-1)d]
5>	d: -	2405			シ	Suo =	=x40x/	2 + 39x -
		2	• • • • • • • • • • • • • • • • • • • •				20 × -74+3	
•••••				•••••		-		+ 390 52
						- 40	70	7 2 70 00
	•••••			•••••		•••••	•••••	•••••
•••••	•••••						•••••	
	•••••						•••••	
•••••	•••••						•••••	
	•••••						•••••	
•••••	•••••••••••		•		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	••••••
	•••••							
	•••••							

The first and second terms of a geometric progression are $\tan\theta$ and $\sin\theta$ respectively, where $0<\theta<\frac{1}{2}\pi$.

(b) (i)	Find the sum to infinity of the progression	in terms of θ .	α	[2]
	Un = ar h-1	5 co =	: 1.7	
	=> Sin 0 = fan p r	->S∞	= dun B - 1-105B	
	=> Sino = Sino r			
	=> Y = COSB			

(ii)	Given that $\theta = \frac{1}{3}\pi$, find the sum	of the first	10 terms	of the	progression.	Give your	answer
	correct to 3 significant figures.	_					[3]

second; Sin $\frac{3}{3}$ = $\frac{3}{2}$

$$S_{n} = \frac{\alpha \left(1 - \gamma^{n}\right)}{1 - \gamma}$$

$$2 > \frac{\sqrt{3} \times \left(1 - \frac{1}{2}\right)}{1 - \frac{1}{2}}$$

			1			
	TT1		0 🔻 1		ntersects the positive.	- : A D
h	I ne curve with ea	n = r - r	xyz nas a minimiin	i noint at <i>a</i> and ii	ntersects the nositive	Y-axis at K
v	THE CUITE WILLIAM	quality $\Delta \lambda$	on mus a minimum	i pomi at 11 ana m	intersects the positive.	n unib ut D.

(a) Find the coordinates of A and B.

[4]

when Stationary, TX = 0

 $\frac{1}{1}, 2 \cdot 4x^{\frac{1}{2}} = 0$ $= 2 \cdot 4x^{-\frac{1}{2}} = 2$

Y= 2×4-8×4=

> 第二章

=> 4=-8

5) SA 52

シャニチ

", A: (4,-8)

when indersect at positive r-anis

2x-8x²:0

=> x - 4x = :0

>> 1 (x - 4)=

=> x==00Y x=-4=0

B: L16,0)

=) x=0 Or x= 16

(b)

The diagram shows the curve with equation $y = 2x - 8x^{\frac{1}{2}}$ and the line AB. It is given that the equation of AB is $y = \frac{2x - 32}{3}$.

Find the area of the shaded region between the curve and the line. [5]

$$\int_{4}^{16} \left(2\pi - 8\pi^{\frac{1}{2}} \right) d\pi$$

$$= \int_{7}^{2} - 8\pi^{\frac{1}{2}} + C \int_{4}^{16}$$

$$= \int_{7}^{2} - \frac{16}{3}\pi^{\frac{1}{2}} + C \int_{4}^{16}$$

$$= \left(\frac{16^{2} - \frac{16}{3}\pi + C \int_{4}^{16}$$

$$= -\frac{176}{3}$$

$$5 \text{ hadred over} = \frac{176}{3} - 48 = \frac{32}{3}$$

7	The equation of a circle is $(x-6)^2 + (y+a)^2 = 18$. The line with equation $y = 2a - x$ is a tangent to the
	circle.

a)	Find the two possible values of the constant <i>a</i> .	[5]
	$(y+a)^2 = 18 - (\pi-b)^2$	
-	=> Y+a= ± 618-(x-b)2	
	$= $ $Y = \frac{4}{5} \sqrt{(k - 175 - 6)^2} - \alpha$	

equation is a tangent to the circle.
:,
$$2a-h=d(8-(\pi-b)^2-a(0))$$
 or $2a-r=-d(8-(\pi-b)^2-a(0))$

(2):
$$3\alpha - \pi = -\sqrt{18 - (\pi - b)^2}$$

=> $(\pi - 3a)^2 = 18 - (\pi - b)^2$
=> $\pi^2 - b\alpha\pi + 9\alpha^2 = 0$

(i):
$$(3\alpha - \pi)^2 = 18 - (\pi - b)^2$$

 $= > 9\alpha^2 - b\alpha\pi + \pi^2 = (8 - (\pi^2 - 12\pi + 3b))$
 $= > 9\alpha^2 - b\alpha\pi + \pi^2 = (8 - \pi^2 + 12\pi - 3b)$
 $= > 2\pi^2 - (b\alpha + (2)\pi + 9\alpha^2 + 18 = 0)$

$$b^{2} - 4\alpha C = 0$$

$$\Rightarrow (b\alpha + (2)^{2} - 4x^{2}x(4\alpha^{2} + 18) = 0$$

$$\Rightarrow 3b\alpha^{2} + (44\alpha + 144 - 72\alpha^{2} - 144 = 0)$$

$$\Rightarrow 3b\alpha^{2} - 144\alpha = 0$$

$$\Rightarrow \alpha^{2} - 4\alpha = 0$$

$$\Rightarrow \alpha(\alpha - 4) = 0$$

$$\Rightarrow \alpha = 0 \text{ or } \alpha = 4$$

(b)	For the greater value of a , find the equation of the diameter which is perpendicular to the given tangent. [3] $y = 2\alpha - 7$
	gradient of the normal is 1
	$(x-6)^2 + (y+a)^2 = 18$
	when $\alpha = 4$: $(\pi - 6)^2 + (9+4) = (80)$, $\gamma = 8 - \pi 0$
	center of the circle
	Substitute () : (b,-4)
	$(\pi-6)^2 + (8-\pi+4)^2 = 18$
	(4-b) 2+ (12-1)2= 18
-	=> x2-12x+3b+144-24xfx2=(8
•	=> 2 x 2 - 36 x + 16 2 = 0
	=> A ² - 18 x + 81=0
	7 -9
	=> (x-95 ² = 0
	=> 7:9
	when x=9, y=8-9
	ンソニー
	·, (9,-1)
	\(\frac{1}{x} \left(\times - 9 \right)
	=> 1 +1 = 4-9
	ピラ イニメ-10

The diagram shows a symmetrical plate *ABCDEF*. The line *ABCD* is straight and the length of *BC* is 2 cm. Each of the two sectors *ABF* and *DCE* is of radius r cm and each of the angles *ABF* and *DCE* is equal to $\frac{1}{3}\pi$ radians.

- (a) It is given that r = 0.4 cm.
 - (i) Show that the length EF = 2.4 cm.

 Yord: $\frac{1}{3}\pi$, $\Upsilon = 0.4$ NB: $\frac{1}{3}\pi$, $\frac{1}{3}\pi$,
 - (ii) Find the area of the plate. Give your answer correct to 3 significant figures.

 Splate = $(2+2.4) \times 0.45$ in $|\frac{1}{5}\pi) \times \frac{1}{5} + 2\times 2 \times 04^{2} \times \frac{1}{5}\pi$ = $\frac{1163}{25} + \frac{1}{75}\pi$ = 0.030 Cm²

•••	
t is oi	en instead that the perimeter of the plate is 6 cm.
15 51	on instead that the perimeter of the place is of the
Find th	e value of r Give your answer correct to 3 significant figures
1	e value of r . Give your answer correct to 3 significant figures. $\omega S \frac{\pi}{3} \times 2 + 2 \times 2 + 2 \times 7 + 2 \times \frac{\pi}{3} \times = 6$
ιγ	WS 3) X 2 T 2 X 2 T 2 1 T 2 X 3 1 5 0
	r + 4 + 2r + 3 = 1
ر ج	$3\gamma + \frac{2\pi}{3} \gamma = 2$
ر ر	$\frac{9+2\pi}{3}$ $\gamma = 2$
-	
_	> r= 0, 313

9 A fun	ction f is suc	h that $f'(x)$) = 6($(2x-3)^2$	6x for	· x e	$\equiv \mathbb{R}$.
---------	----------------	----------------	--------	------------	--------	-------	-----------------------

a) Determine the set of values of x for which $f(x)$ is decreasing. When say $f(x)$ is decreasing.	[4]
1/4) = 0	
=> b(24-3) 2- bx=0	
=> 6× (4x2-12x+9)-bx=0	
=> 24x2-72x+54-bx=0	
-> 24x2 - 78 x +54 -0	
=>17x2-39x+27=0	
5) 4x2 - 13 x + 9 = 0	
1 × -1 -1 -1	
=> (x-1)(4x-9)=0	
=> x=1 or x= 4	
$\int_{a}^{b} (4) = 12 (24-3) \times 2 - 6$	
= 487-72-6	
= 48 x - 78	
when x=1: 48x1-78 <0	
<u> </u>	
uhen x = 4 : 48x4-78 >0	
: Junction is decrensing.	
when x>q. function is de	creasing
~	
N.	

(b) Given that $f(1) = -1$, find $f(x)$.	[4]
[[b[27-3)2-67]dn	
= Slo(472-12449)-64]dx	
$= \int (24\pi^2 - 7^2\pi + 54 - 6\pi) d\pi$	
= J (24x2 - 78x + 44) dx	
= 8x3-39x2+54x+C	
lan Prince Constant	
when $f(1) = -1$: $f(x) = -39x(754x)$	1+65-1
=> 8-39+54+c=-1 => c=-24	
=) C = 01	
i, Sln) = 8 x3 - 39 x2 + 54 x - 24	
O	

- 10 The equation of a curve is $y = (5-2x)^{\frac{3}{2}} + 5$ for $x < \frac{5}{2}$.
 - (a) A point *P* is moving along the curve in such a way that the *y*-coordinate of point *P* is decreasing at 5 units per second.

Find the rate at which the x-coordinate of point P is increasing when y = 32. [4]

= -5
$\frac{2}{3} \left(\frac{1}{5} - \frac{1}{2} \left(\frac{1}{5} - \frac{1}{2} \times \frac{1}{5} \right) \right)$
$\frac{dy}{dx} = \frac{dy}{dx} \times \frac{dy}{dx} = -3 \left(\frac{z}{3} - 2x \right)^{\frac{1}{2}}$
uhen y=32: 3
32=[5-27), +5
=) 27=(3-27)=
シャンオニ9
5) 24=-4
=> 1 = -2
when $\pi z-2$:
-3 (5+4) = -9 = ax
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
$-9 = -5 \times \frac{04}{04}$
$\Rightarrow \overrightarrow{R} = \overrightarrow{q}$

(b)	Point A on the curve has y-coordinate 32. Point B on the curve is such that the gradient of the curve
	at B is -3 .

Find the equation of the perpendicular bisector of AB. Give your answer in the form ax + by + c = 0, where a, b and c are integers. [6]

when point 13 > grudien+ i3 -3: dy = -3 (5-2x)= = -3 => [5-27)==[1,'5 Y = 32; 1-2,325 gradient for line AB: 32-1 = 6 ', line AB; Y-32 = b (x+2) => Y = 6x+ 74 .., line of perpandicular bisactor: $y - \frac{37}{2} = -\frac{1}{5} \left(x - \frac{1}{5} \right)$ $\frac{1}{24} = -\frac{1}{5} \left(x - \frac{1}{5} \right)$ $\frac{1}{24} = -\frac{1}{5} \left(x - \frac{1}{5} \right)$ $\frac{1}{24} = -\frac{1}{5} \left(x - \frac{1}{5} \right)$

Additional page

	.1
	·
	5
······································	
	n I /
	·····
······································	<u></u> 2
	-4.V
- 12	
	••••••

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.