

MDS 6106: Introduction to Optimization

Final Project

Presentation

December 30th

Content

Introduction

Introduction

Background

- ▶ Binary Classification Problem: Assume that our training data consists of feature vectors $a_i \in \mathbb{R}^n, i \in \{1, 2, ..., m\}$ and corresponding class labels $b_i \in \{-1, 1\}$.
- Goal: Utilize minimization methodologies for solving support vector machine and logistic regression binary classification models

Introduction

Data Preparation

Generate Synthetic Data:

► Formula:

$$a_i = c_1 + \left(egin{array}{c} arepsilon_1 \ arepsilon_2 \end{array}
ight), \quad a_j = c_2 + \left(egin{array}{c} \delta_1 \ \delta_2 \end{array}
ight)$$

where $i=1,2,3,...,m_1, j=1,2,3,...,m_2,\ \varepsilon_1,\varepsilon_2\sim N\left(0,\sigma_1^2\right),\ \delta_1,\delta_2\sim N\left(0,\sigma_2^2\right)$

- ► Parameters:
 - Dataset1: $c_1 = (5, 5)$, $c_2 = (8, 10)$, $\sigma_1 = 2$ $\sigma_2 = 2$ and $m_1 = m_2 = 500$
 - Dataset2: $c_1 = (17, 14)$, $c_2 = (10, 20)$, $\sigma_1 = 1.2$ $\sigma_2 = 2.5$ and $m_1 = m_2 = 1000$
 - Dataset3: $c_1 = (0,1)$, $c_2 = (1,0)$, $\sigma_1 = 0.3$ $\sigma_2 = 0.3$ and $m_1 = m_2 = 600$
 - Dataset4: $c_1 = (10, 15)$, $c_2 = (15, 10)$, $\sigma_1 = 3$ $\sigma_2 = 2$ and $m_1 = m_2 = 1200$
- Result: Four datasets generated by different parameters.

Data Preparation

Data Preparation

Data From LIBSVM

Table below are the description of the datasets from LIBSVM we used in later numerical comparison.

data set	m	n	data set	m	n
a9a	32561	122	mushrooms	8124	112
breast-cancer	683	10	news20	19996	1355191
covtype	581012	54	phishing	11055	68
gisette	6000	5000	rcv1	20242	47236

Data Processing

- Train Test Split: from sklearn.model_selection import train_test_split
- ▶ Normalization: from sklearn.processing import MaxAbsScalar

Support Vector Machine

Support Vector Machine

Methodology: Consider a smooth variant of the support vector machine:

$$\min_{x,y} f_{\text{svm}}(x,y) := \frac{\lambda}{2} ||x||^2 + \sum_{i=1}^m \varphi_+ \left(1 - b_i \left(a_i^\top x + y \right) \right)$$

Here, $\varphi_+(t)$ denotes a Huber-type version of the max-function $\max\{0,t\}$:

$$arphi_+(t) = \left\{ egin{array}{ll} rac{1}{2\delta}(\max\{0,t\})^2 & ext{if } t \leq \delta \ t - rac{\delta}{2} & ext{if } t > \delta \end{array}
ight.$$

Support Vector Machine

Implementation

- ▶ GM: With backtracking ($\gamma = 0.1, \sigma = 0.5, \text{ and } s = 1$)
- ► AGM: Follow the basic extrapolation strategy

$$lpha_k = \frac{1}{L}, \quad \beta_k = \frac{t_{k-1} - 1}{t_k},$$

$$t_k = \frac{1}{2} \left(1 + \sqrt{1 + 4t_{k-1}^2} \right), \quad t_{-1} = t_0 = 1$$

and use the adaptive version of Lipschitz constant.

- ► BFGS:
 - With backtracking($\gamma = 0.1, \sigma = 0.5, \text{ and } s = 1$) and $H_0 = I$ as initial matrix.
 - ▶ Use $(s^k)^T y^k > 10^{-14}$ to guarantee positive definiteness.

Seperate Line

Convergence of $\log (\|\nabla f(x, y)\|)$

(a) Performance for Dataset1

(c) Performance for Dataset3

(b) Performance for Dataset2

(d) Performance for Dataset4

More performance index

datasets	methods	accuracy	iter	cpu-time	datasets	methods	accuracy	iter	cpu-time
	GM	0.922	10000*1	329.54s		GM	0.992	10000*	271.28s
dataset 1	AGM	0.923	10000*	20.11s	dataset 3	AGM	0.992	4061	10.23s
	BFGS	0.923	74	3.08s		BFGS	0.992	65	2.22s
	GM	0.996	10000*	749.91s		GM	0.99	10000*	778.71s
dataset 2	AGM	0.997	10000*	39.09s	dataset 4	AGM	0.995	10000*	46.21s
	BFGS	0.997	95	9.15s		BFGS	0.995	80	6.55s

^{1*} means the max iteration times reached

Methodology: Consider logistic regression model, the corresponding optimization problem is given by:

$$\min_{x,y} f_{\log}(x,y) = \frac{1}{m} \sum_{i=1}^{m} \log \left(1 + \exp \left(-b_i \cdot \left(a_i^\top x + y \right) \right) \right) + \frac{\lambda}{2} ||x||^2$$

- ▶ The sigmoid function: $\sigma: \mathbb{R} \to \mathbb{R}, \sigma(a) = \frac{1}{1 + \exp(-a)}$
- ▶ The linear model: $\ell_{(x,y)}(a) = a^{\top}x + y$

$$\sigma\left(\ell_{(\mathsf{x},\mathsf{y})}\left(a_i\right)\right)pprox\left\{egin{array}{ll} 1 & ext{if } a_i ext{ belongs to class } \mathcal{C}_1, ext{ i.e., } b_i=+1 \ 0 & ext{if } a_i ext{ belongs to class } \mathcal{C}_2, ext{ i.e., } b_i=-1 \end{array}
ight.$$

A new data point $a \in \mathbb{R}^n$ can then be classified via

$$\left\{ \begin{array}{ll} +1 & \text{if } \sigma\left(\ell_{(x,y)}(\mathbf{a})\right) > \frac{1}{2} \\ -1 & \text{if } \sigma\left(\ell_{(x,y)}(\mathbf{a})\right) \leq \frac{1}{2} \end{array} \right. \text{ or } \left\{ \begin{array}{ll} \mathcal{C}_1 & \text{if } \sigma\left(\ell_{(x,y)}(\mathbf{a})\right) > \frac{1}{2} \\ \mathcal{C}_2 & \text{if } \sigma\left(\ell_{(x,y)}(\mathbf{a})\right) \leq \frac{1}{2} \end{array} \right.$$

Implementation

- ▶ GM: With backtracking ($\gamma = 0.1, \sigma = 0.5, s = 1$)
- ▶ AGM: Follow the basic extrapolation strategy as before. But take $L = \frac{1}{4m} \sum_{i=1}^{m} \|a_i\|^2$ as the Lipschitz constant of ∇f_{\log} .
- ► L-BFGS:
 - With backtracking($\gamma = 0.1, \sigma = 0.5$, and s = 1) and $H_0 = I$ as initial matrix.
 - ▶ $s^{k-1} = x^k x^{k-1}$, $y^{k-1} = \nabla f\left(x^k\right) \nabla f\left(x^{k-1}\right)$, $\rho_k = \left(\left(s^k\right)^\top y^k\right)^{-1}$, $\gamma^k = \frac{\left(s^{k-1}\right)^\top y^{k-1}}{\|y^{k-1}\|^2}$, $H_k^0 = \gamma^k I$. Here we set the memory parameter $m_{L-BFGS} = 5$. And in the two loop recursion, if $k < m_{L-BFGS}$, we choose to iterate k times instead of m_{L-BFGS} times.

L-BFGS

Algorithm 2: The L-BFGS Method

```
1 Initialization: set \mathbf{x}^0 = 0, \mathbf{x}^0 \in \mathbb{R}^{n+1}, d^0 = -\nabla f(\mathbf{x}^0). And use backtracking (\gamma = 0.1, \sigma = 0.5, s = 1) to
        decide \alpha_0.
      for k = 1, 2, ..., max_{iter} do
               set \mathbf{x}^{k} = \mathbf{x}^{k-1} + \alpha_{k-1}d^{k-1}, s^{k-1} = \mathbf{x}^{k} - \mathbf{x}^{k-1}, y^{k-1} = \nabla f(\mathbf{x}^{k}) - \nabla f(\mathbf{x}^{k-1})
        Break when \|\nabla f(\mathbf{x}^k)\| \le tol
            if (s^k)^{\top} y^k > 10^{-14} then
\begin{array}{ll} \mathbf{5} & \text{set } q = \nabla f\left(\mathbf{x}^k\right) \\ \mathbf{for } i = k-1, k-2, \ldots, k-m_{L-BFGS} \ \mathbf{do} \\ & \text{set } \alpha_i = \rho_i \cdot \left(s^i\right)^\top q \ \text{and} \\ & \text{if } \left(s^i\right)^\top y^i > 10^{-14} \ \mathbf{then} \\ & \mid q = q - \alpha_i y^i \ ; \\ & \text{else} \end{array}
           Set r = H_k^0 q
               for i=k-m_{L-BFGS}, k-m_{L-BFGS}+1, \ldots, k-1 do
                 \begin{vmatrix} & \text{if } (s^i)^\top y^i > 10^{-14} \text{ then} \\ & \beta = \rho_i \cdot \left( y^i \right)^\top r \text{ and } r = r + \left( \alpha_i - \beta \right) s^i ; \\ & \text{else} \end{vmatrix} 
               set r = H_k \nabla f(\mathbf{x}^k), d^k = -r, use backtracking (\gamma = 0.1, \sigma = 0.5, s = 1) to decide \alpha_k.
```


Seperate Line

Convergence of $\log (\|\nabla f(x, y)\|)$

(a) Performance for Dataset1

(c) Performance for Dataset3

(b) Performance for Dataset2

(d) Performance for Dataset4

More performance index

datasets	methods	accuracy	iter	cpu-time	datasets	methods	accuracy	iter	cpu-time
	GM	0.922	6903	4.31s		GM	0.991	124	0.64s
dataset 1	AGM	0.922	1173	0.63s	dataset 3	AGM	0.991	21	0.69S
	L-BFGS 0.922 24 0.	0.52s		L-BFGS	0.991	13	0.52s		
	GM	0.994	40068	27.01s		GM	0.989	79722	62.91s
dataset 2	AGM	0.994	2644	1.16s	dataset 4	AGM	0.989	3073	1.44s
	L-BFGS	0.944	0.922 6903 4.31s GM 0.991 1 0.922 1173 0.63s dataset 3 AGM 0.991 2 0.922 24 0.52s L-BFGS 0.991 1 0.994 40068 27.01s GM 0.989 7 0.994 2644 1.16s dataset 4 AGM 0.989 3	26	0.72S				

For SVM

(a) Performance for a 9a Dataset

(b) Performance for mushroom Dataset

(c) Performance for breast-cancer Dataset

For SVM

datasets	methods	accuracy	iter	cpu-time	datasets	methods	accuracy	iter	cpu-time
	GM	0.956	10000	154.97s		GM	#	#	#
breast cancer	AGM	0.956	1673	2.18s	a9a	AGM	0.850	1000*	51.91s
	BFGS	0.956	92	0.59 S		BFGS	0.850	1000*	176.33s
	GM	#2	#	#					
mushroom	AGM	1.000	5000	53.31s	#	#	#	#	#
	BFGS	1.000	5000	124.17s					

 $^{^{2}\}mbox{Due}$ to limitation of time and computing resources, we suspend these parts.

For Logistic Regression

(a) mashroom Dataset

(b) breast cancer Dataset

(d) phishing Dataset

For Logistic Regression

(a) rcv1 Dataset

(c) a9a Dataset

(b) news20 Dataset

For Logistic Regression

datasets	methods	accuracy	iter	cpu-time	datasets	methods	accuracy	iter	cpu-time
	GM	0.93	193	0.47s		GM	0.96	169	0.60s
breast-cancer	AGM	0.93	61	0.27s	mushroom	AGM	0.96	106	0.37s
	L-BFGS	0.93	44	0.41s		L-BFGS	0.96	48	0.93s
	GM	0.80	362	4.34s		GM	0.63	162	16.79s
a9a	AGM	0.80	76	0.76s	covtype	AGM	0.63	51	3.54s
	L-BFGS	0.80	30	1.36s		L-BFGS	0.63	30	12.52s
	GM	0.92	574	3.08s		GM	0.89	92	38.54s
Phishing	AGM	0.92	141	0.55s	news20	AGM	0.89	487	190.98s
	L-BFGS	0.92	67	1.06s		L-BFGS	0.89	22	107.54s
	GM	0.84	59	8.18s		GM	#3	#	#
Rcv1	AGM	0.84	69	6.64s	gisette	AGM	0.97	2712	953.09s
	L-BFGS	0.84	10	5.53s		L-BFGS	0.97	393	605.16s

³Due to limitation of time and computing resources, we suspend these parts.

Extension

Further Improve Performance: Take Logistic Regression model with L-BFGS method as the example to adjust the regularization parameter λ .

Extension

Stochastic Optimization

- ► Methodology:
 - Empirical risk minimization problem:

$$\min_{x,y} f(x,y) = \frac{1}{m} \sum_{i=1}^{m} f_i(x,y)$$

► Update Rule:

$$\begin{pmatrix} x^{k+1} \\ y^{k+1} \end{pmatrix} = \begin{pmatrix} x^k \\ y^k \end{pmatrix} - \frac{\alpha_k}{|\mathcal{S}_k|} \sum_{i \in \mathcal{S}_k} \nabla f_i \left(x^k, y^k \right)$$

Extension

Stochastic Optimization

► Implementation and Performance:

(a) mushroom Dataset

(c) mushroom Dataset

(b) phishing Dataset

(d) phishing Dataset

Conclusion

Main Observations

- ► Logistic Regression Model performs better than SVM model in terms of convergence and speed
- ► L-BFGS performs quite well on large-scale datasets.
- SGD performs quite well in spite of high randomness and bad convergence.

Future Works

- ► There are many other strategies can be applied to improve the performance of the models and algorithms.
- More principles should be investigated in order to have better interpretation of the results.
- ▶ All of our works are done via github, we will keep updating and optimizing this project in the future via our repository (https://github.com/Yihang-Li/MDS6106Project).

Happy New Year! Frohes neues Jahr!