

Tarea III: Macroeconometría Aplicada I

Nombres:

Juan Andrés Vicente Jaramillo

Fecha de entrega:

14 de noviembre, 2021

I) Predicción, Covid19 y búsquedas de Google

1. Construya una serie sobre el promedio (en cada semana) de exámenes PCR y casos confirmados de Covid para la RM. Grafique la serie de exámenes PCR junto a la serie GTCOVID (en escala secundaria). ¿Qué le sugiere el gráfico? Repita la pregunta para el promedio semanal de casos confirmados. ¿Observa alguna relación entre el índice de Google y las dos series?

Se observa una correlación positiva entre ambas series de 63%, sin embargo, se observa que la serie GTCOVID no logra ajustarse bien a los valores extremos de la serie del promedio semanal de exámenes PCR.

No se logra observar una clara relación entre la serie GTCOVID y el promedio semanal de casos confirmados, además se presenta una correlación de 37% (menor que la serie de exámenes PCR), sin embargo, en algunas ventanas de tiempo tienen una relación positiva y bastante similar, como por ejemplo en abril de 2020 hasta septiembre de 2021.

2. Muestre si las series de PCR y de casos confirmados son estacionarias. Explique.

Para corroborar si las series de PCR y de casos confirmados son estacionarias se procederá a realizar el test de **Phillips-Perron y Dickey-Fuller**, donde se encuentran los siguientes resultados en el **valor-p** para diferentes rezagos.

lags	<pre>p-fuller(p)</pre>	p-pperron(p)	<pre>p-fuller(c)</pre>	p-pperron(c)
1	.22075884	.23262383	.02703548	.33197958
2	.27136926	.24432826	.00930091	.2315508
3	.32574354	.24337773	.0152961	.17550771
4	.45919104	.25137708	.17220881	.15252542
5	.55083485	.26607948	.27592065	.14849624
6	.62347385	.28420202	.07119829	.15290233
7	.65670363	.30145134	.07190176	.16260837
8	.75347774	.30950992	.03331473	.17315983
9	.74594343	.31111705	.00512718	.18226885
10	.75732143	.30850721	.08436514	.18954451
11	.73235117	.3008169	.11157501	.19588887
12	.67465246	.29135803	.13500568	.20268117
13	.68058101	.28647075	.1439022	.2110489
14	.61819377	.28357106	.17197806	.22184936
15	.61880043	.28369105	.10743494	.23452963
16	.55651102	.28732813	.2177954	.24933113
17	.54879787	.29115182	.2754201	.26576023
18	.53182864	.29421718	.22930111	.28253554
19	.58492893	.29677492	.2596605	.29914395
20	.64316951	.29506881	.23746536	.31523484

Siendo "p" la serie de PCR y "c" la serie de casos confirmados, podemos notar lo siguiente:

La hipótesis nula de estos test nos indica que la serie tiene raíz unitaria, y como podemos observar para la s**erie de PCR** en ninguno de los rezagos se obtiene un p-value menor a 5%, por lo que no se rechaza la hipótesis nula y la serie **no** es estacionaria.

Por otro lado podemos notar que para la serie de **casos confirmados** encontramos resultados mixtos, para el test de **P-perron** no se rechaza la hipótesis nula y por otro lado en el test de **P-fuller** sí. Existiendo evidencia mixta de estos test para determinar si la serie de casos confirmados es estacionaria o no.

- 3. En línea con la pregunta anterior, defina yt como la serie de crecimiento semanal de exámenes PCR en la RM. A su vez, cree la variable xt la cual corresponde al crecimiento semanal de casos confirmados. ¿Son estas series estacionarias? Llame al crecimiento semanal de la serie de Google, como ΔGT_t . Estime los siguientes modelos:
 - PCR

$$M1_{pcr}: y_t = \alpha_0 + \alpha_1 y_{t-1} + \epsilon_t \tag{1}$$

$$M2_{pcr}: y_t = \alpha_0 + \alpha_1 y_{t-1} + \alpha_2 \Delta G T_{t-1} + \alpha_3 \Delta G T_{t-2} + \varepsilon_t$$
 (2)

Contagios

$$M1_{contagios}: x_t = \beta_0 + \beta_1 y_{t-1} + \epsilon_t \tag{3}$$

$$M2_{contagios}: x_t = \beta_0 + \beta_1 y_{t-1} + \beta_2 \Delta G T_{t-1} + \beta_3 \Delta G T_{t-2} + \varepsilon_t \tag{4}$$

Estime cada uno de los modelos por separado e interprete sus resultados.

Se realiza el test de **Phillips-Perron y Dickey-Fuller**, donde se encuentran los siguientes resultados en el valor-p para diferentes rezagos:

lags	p-fuller(y)	p-pperron(y)	p-fuller(x)	p-pperron(x)
1	3.784e-07	5.464e-13	.03820835	.00403898
2	8.990e-06	5.529e-13	.00130409	.00357329
3	8.706e-06	5.415e-13	.00108911	.00169723
4	.00002236	5.406e-13	.00029887	.00121627
5	.00001323	5.523e-13	.02791199	.00121661
6	.00001154	5.818e-13	.05958836	.00108174
7	3.545e-06	5.997e-13	.13078851	.00119841
8	.00013637	5.834e-13	.0947789	.00137031
9	.00081456	5.570e-13	.22749542	.00159969
10	.01464008	5.309e-13	.24530422	.00182606
11	.14081506	5.305e-13	.21235967	.00204782
12	.12287396	5.356e-13	.12485692	.00223718
13	.26279647	5.271e-13	.13799788	.00255717
14	.352654	5.181e-13	.35129426	.00306029
15	.4151729	5.130e-13	.4061059	.00359168
16	.51475401	4.952e-13	.36485223	.00441429
17	.62405562	4.761e-13	.29815491	.00551966
18	.62944138	4.625e-13	.20645393	.00663181
19	.62148873	4.392e-13	.07677525	.00798797
20	.60456153	4.339e-13	.12174561	.00994005

Para la serie "y" se rechaza hipótesis nula hasta los 10 rezagos en ambos tipos de test (**Phillips-Perron y Dickey-Fuller**,) sin embargo, no se rechazaría en valores mayores a 10 rezagos. Por otra parte en la serie "x" se encuentra evidencia mixta entre ambos test, donde se rechaza la hipótesis nula para todos los rezagos en el test de **Phillips-Perron** (y por lo tanto es una serie estacionaria), sin embargo, solo se rechaza también para rezagos menores a 5 en el test de **Dickey-Fuller**, y no se rechazaría la hipótesis nula para rezagos mayores a 5.

Para (1):

Regression with Maximum lag =	•	standard er	rors	Number (F(1, Prob >	76) =	78 0.11 0.7437
у	Coefficient	Newey-West std. err.	t	P> t	[95% conf.	interval]
у L1.	.0572029	.1743055	0.33	0.744	2899566	. 4043625
_cons	.0316013	.0154792	2.04	0.045	.0007717	.0624308

Podemos notar que el coeficiente "yL1", no es estadísticamente significativo, por lo que el crecimiento semanal de **exámenes PCR** en *t-1* no sería adecuado para explicar el crecimiento semanal de exámenes PCR en *t*.

Para (2):

Regression with Newey-West standard errors	Number of ol	os =	77
Maximum lag = 4	F(3,	73) =	21.50
	Prob > F	=	0.0000

у	Coefficient	Newey-West std. err.	t	P> t	[95% conf.	interval]
у L1.	2590506	.1151419	-2.25	0.027	488528	0295732
dGT L1. L2.	.5365775 .3628781	.0932878 .0995008	5.75 3.65	0.000	.3506551 .1645733	.7224999 .5611828
_cons	.024027	.0095791	2.51	0.014	.0049359	.0431182

Podemos notar que los coeficientes "yL1, GTL1 y GTL2" son estadísticamente significativos, además el modelo en su conjunto también es significativo. Por lo que estos coeficientes logran explicar el crecimiento semanal de exámenes PCR en *t*.

Para (3):

Regression with Newey-West standard errors Number of obs = 78 Maximum lag = 4 F(1, 76) = 1.77 Prob > F = 0.1868

*		Newey-West				
х	Coefficient	std. err.	t	P> t	[95% conf.	interval]
у						
L1.	.4616057	.3464958	1.33	0.187	2285005	1.151712
_cons	.0296	.0449027	0.66	0.512	0598316	.1190315

Notamos que el coeficiente "yL1" no es estadísticamente significativo, por lo que el crecimiento semanal de exámenes PCR en t-l, no logran explicar el crecimiento semanal de casos confirmados en t.

Para (4):

Regression with Newey-West standard errors Number of obs = 77 Maximum lag = 4 F(3, 73) = 8.97 Prob > F = 0.0000

x	Coefficient	Newey-West std. err.	t	P> t	[95% conf.	interval]
у L1.	0774096	.1736098	-0.45	0.657	4234135	. 2685943
dGT L1. L2.	.8763082 .5971319	.269542 .1598855	3.25 3.73	0.002 0.000	.3391118 .2784807	1.413505 .9157832
_cons	.0137051	.0343255	0.40	0.691	0547054	.0821156

Notamos que solo los coeficientes "GTL1 y GL2" son estadísticamente significativos, además el modelo en su conjunto también lo es. Por lo que agregar los coeficientes del índice GTCOVID, lograría poder explicar el promedio semanal de casos confirmados en *t*.

4. Ahora, evaluaremos la capacidad predictiva del índice de Google. Usando el esquema recursivo y comenzando en la observación 25, construya una serie de errores de predicción artificiales para los 4 modelos descritos anteriormente. Recuerde adjuntar sus códigos, especialmente para esta parte. Realice un test de sesgo para cada uno de los modelos. De acuerdo a sus resultados, ¿cree usted que agregar rezagos del índice ΔGT_t ¿Es útil para mejorar las predicciones sobre el total de exámenes PCR y casos confirmados? Explique. ¿Cómo se relaciona esto con su intuición de observar los gráficos de la pregunta 1?

Graficando la serie de errores de predicción para los 4 modelos, encontramos lo siguiente:

Podemos observar que el modelo 2 "M2y", en el primer gráfico tiene errores más pequeños cuando hay mayor volatilidad frente al modelo 1 "M1y".

Sucede algo parecido en el gráfico 2, donde el modelo que contiene el índice GTCOVID tiende a tener menores errores.

A continuación se presentan los test de sesgo:

Para (1):

. newey mlye, lag(2)

Regression with Newey-West standard errors	Number of obs	= 55
Maximum lag = 2	F(0, 54)	E ×
	Prob > F	= .

m1ye	Coefficient	Newey-West std. err.	t	P> t	[95% conf.	interval]
_cons	0265905	.0158485	-1.68	0.099	0583649	.0051839

Para (2):

. newey m2ye, lag(2)

Regression with Newey-West standard errors	Number of obs	; =	55
Maximum lag = 2	F(0,	54) =	
	Prob > F	=	

m2ye	Coefficient	Newey-West std. err.	t	P> t	[95% conf.	interval]
_cons	0170712	.0106583	-1.60	0.115	0384397	.0042974

Para (3):

. newey mlxe, lag(2)

Regression with Newey-West standard errors	Number of obs	=	55
Maximum lag = 2	F(0,	54) =	
	Prob > F	=	

m1xe	Coefficient	Newey-West std. err.	t	P> t	[95% conf.	interval]
_cons	0160704	.0379259	-0.42	0.673	0921072	.0599664

Para (4):

. newey m2xe, lag(2)

Regression with Newey-West standard errors

Maximum lag =	2			F(0, Prob > F	54) = =	
m2xe	Coefficient	Newey-West std. err.	t	P> t	[95% conf.	interval]
cons	.0061004	.0345118	0.18	0.860	0630916	.0752925

Number of obs

55

Se puede observar que para los 4 modelos no se puede rechazar la hipótesis nula, la cual indica que el coeficiente es distinto de 0. Razón por la cual el "forecast error" está centrado en 0 para los 4 modelos y **no** hay existencia de sesgo positivo, ni negativo para el 95% de confianza.

En conclusión, si creemos que agregar rezagos del índice **GTCOVID** sea útil para mejorar las predicciones, pues se notaría una disminución en los errores de predicción (estando más cerca del 0). Esto se relaciona con la intuición del gráfico, pues en estos gráficos encontrábamos una correlación entre tanto las series para los casos confirmados y los exámenes PCR con el índice **GTCOVID**.

5. Finalmente, suponga que queremos evaluar qué tan buenos son nuestros modelos para predecir PCR y contagios. Nos gustaría determinar si $M1_{pcr}$ es superior en términos de precisión respecto a $M2_{pcr}$. Para esto, y asumiendo una función de pérdida cuadrática, realice un test de Diebold y Mariano (1995). Comente sobre sus resultados. Repita el mismo test para comparar ahora $M1_{contagios}$ vs $M2_{contagios}$. ¿Son sus conclusiones similares a lo encontrado en la pregunta 4.? En caso que las conclusiones difieran, comente porque cree que esto ocurre.

Realizando el test de **Diebold y Mariano**, se obtiene lo siguiente:

. ttest ly==0

One-sample t test

Variable	0bs	Mean	Std. err.	Std. dev.	[95% conf.	interval]
ly	55	.0075511	.00314	.0232867	.0012558	.0138464
mean =	= mean(ly) = 0			Degrees	t of freedom	
	ean < 0) = 0.9902	Pr(Ha: mean != T > t) =		7/1/2014	ean > 0) = 0.0098

Con esto nos damos cuenta que el coeficiente es positivo (y existe una diferencia que es significativa, se rechaza la hipótesis nula). Por lo que el modelo M1ye tiene mayores errores que el modelo M2ye.

. ttest lx==0

One-sample t test

5						
Variable	0bs	Mean	Std. err.	Std. dev.	[95% conf.	interval]
lx	55	.0135283	.0108352	.0803558	0081949	.0352515
mean =	= mean(lx) = 0			Degrees	t of freedom	
	ean < 0) = 0.8914	Pr(Ha: mean != T > t) = 0			ean > 0) = 0.1086

Nos damos cuenta de que no hay una diferencia que sea significativa (no se rechaza la hipótesis nula). No es claro que el modelo M1xe sea mejor que el modelo M2xe.

El modelo **M1y** es el modelo que no considera el índice **GTCOVID**, y encontramos que este tiene mayores errores que el modelo **M2y** (modelo que sí contiene el índice **GTCOVID**), por lo que el análisis para estos modelos si es concordante con lo encontrado en la pregunta 4. Por otra parte no se logra encontrar una diferencia clara de los errores entre el modelo **M1x** versus el modelo **M2x** (modelo que contiene el índice **GTCOVID**), por lo que las conclusiones para este modelo si serían distintas.

Creemos que esto ocurre porque si bien creamos una serie de errores de predicción para los 4 modelos y encontramos que el modelo que incluía los rezagos del índice GTCOVID tenía menores errores, no testeamos si esta diferencia en los errores era estadísticamente significativa.

II) Volatilidad Estocástica

1. Encuentre el mejor modelo para el promedio condicional de los retornos accionarios (use Box-Jenkins y test de correlación serial para los residuos de su estimación). Interprete.

Se escoge la serie de índices accionarios STOXX 50, ilustrada a continuación:

Test de Phillips-Perron, Dickey-Fuller y ruido blanco para distintos rezagos:

lags	p-fuller	p-pperron	Port-stati~c
1	0	0	1.4652024
2	0	0	5.0403649
3	0	0	20.024658
4	0	0	23.616929
5	0	0	35.657477
6	0	0	38.803401
7	0	0	40.852148
8	0	0	42.220412
9	0	0	42.247884
10	0	0	42.298216
11	0	0	42.855302
12	0	0	42.997789
13	0	0	43.167754
14	0	0	43.845015
15	0	0	44.267051
16	0	0	54.287497
17	0	0	54.67494
18	0	0	62.414556
19	0	0	64.802422
20	0	0	65.586541

Se debe probar que la variable no tiene ruido blanco, porque si ese fuese el caso no se podría aplicar herramienta econométrica alguna. Por lo que se procede a realizar el test de White noise de Portmanteau. Como se puede observar se rechaza la hipótesis nula y el retorno accionario no sigue un proceso de ruido blanco.

Además comprobamos si la serie es estacionaria y encontramos que se rechaza la hipótesis nula tanto para el test de **Phillips-Perron**, **Dickey-Fuller**, por lo tanto la serie sí es estacionaria.

Ahora para encontrar el mejor modelo, se tendrá en consideración tanto el autocorrelograma como el autocorrelograma parcial.

No es claro el proceso que sigue la serie, por lo que se procederá a evaluar distintos modelos, donde los criterios de información se detallan a continuación:

Modelos y criterios de información AIC y BIC:

Model	N	ll(null)	ll(model)	df	AIC	BIC
AR3ar5MA3ma5	9,084		26584.29	10	-53148.59	-53077.44
AR3ar5MA3~16	9,084		26588.2	10	-53156.4	-53085.25
AR3ar5MA3~18	9,084		26584.81	10	-53149.61	-53078.47
AR3ar5MA5~16	9,084		26588.82	12	-53153.64	-53068.27
AR3ar5MA5~18	9,084		26585.69	12	-53147.38	-53062.01
AR3ar5MA1~18	9,084		26591.89	23	-53137.79	-52974.16
AR3ar16MA3~5	9,084		26589.28	10	-53158.55	-53087.41
AR3ar16MA~16	9,084		26584.27	10	-53148.55	-53077.4
AR3ar16MA~18	9,084		26580.78	10	-53141.56	-53070.41
AR3ar16MA~16	9,084		26601.52	12	-53179.05	-53093.68
AR3ar16MA~18	9,084		26589.86	12	-53155.72	-53070.35
AR3ar16MA~18	9,084		26603.8	23	-53161.59	-52997.96
AR3ar18MA3~5	9,084		26585.32	10	-53150.64	-53079.5
AR3ar18MA~16	9,084		26580.32	10	-53140.65	-53069.5
AR3ar18MA~18	9,084		26582.69	10	-53145.39	-53074.24
AR3ar18MA~16	9,084		26589.38	12	-53154.77	-53069.4
AR3ar18MA~18	9,084		26585.91	12	-53147.82	-53062.45
AR3ar18MA~18	9,084		26592.42	23	-53138.84	-52975.21
AR5ar16MA3~5	9,084		26589.68	12	-53155.36	-53069.98
AR5ar16MA~16	9,084		26601.67	12	-53179.34	-53093.97
AR5ar16MA~18	9,084		26589.78	12	-53155.57	-53070.2
AR5ar16MA~16	9,084		26601.42	14	-53174.83	-53075.23
AR5ar16MA~18	9,084		26589.9	14	-53151.81	-53052.21
AR5ar16MA~18	9,084		26606.9	25	-53163.8	-52985.94
AR5ar18MA3~5	9,084		26585.92	12	-53147.83	-53062.46
AR5ar18MA~16	9,084		26589.36	12	-53154.73	-53069.35
AR5ar18MA~18	9,084		26585.76	12	-53147.52	-53062.15
AR5ar18MA~16	9,084		26589.42	14	-53150.84	-53051.24
AR5ar18MA~18	9,084		26591.31	14	-53154.62	-53055.02
AR5ar18MA~18	9,084		26606.04	25	-53162.07	-52984.22
AR16ar18MA~5	9,084		26599.55	23	-53153.1	-52989.47
AR16ar18M~16	9,084		26604.84	23	-53163.69	-53000.06
AR16ar18M~18	9,084		26593.19	23	-53140.37	-52976.74
AR16ar18M~16	9,084		26606.71	25	-53163.42	-52985.57
AR16ar18M~18	9,084		26605.81	25	-53161.63	-52983.77
ARIMA000	9,084		26559.22	2	-53114.43	-53100.21
ARIMA003	9,084		26570.1	5	-53130.2	-53094.63

Pontificia Universidad Católica de Chile Instituto de Economía

Macroeconometría Aplicada (EAE3102-1) Profesor: Javier Turén

r: Javier Turén	_				
ARIMA005	9,084	26577.46	7	-53140.92	-53091.12
ARIMA0016	9,084	26585.98	18	-53135.96	-53007.9
ARIMA0018	9,084	26590.33	20	-53140.66	-52998.37
ARIMA300	9,084	26569.46	5	-53128.91	-53093.34
ARIMA303	9,084	26575.72	8	-53135.44	-53078.53
ARIMA305	9,084	26583.69	10	-53147.38	-53076.24
ARIMA3016	9,084	26595.45	21	-53148.9	-52999.5
ARIMA3018	9,084	26591.77	23	-53137.54	-52973.91
ARIMA500	9,084	26577.43	7	-53140.86	-53091.06
ARIMA503	9,084	26583.13	10	-53146.26	-53075.12
ARIMA505	9,084	26584.68	12	-53145.37	-53060
ARIMA5016	9,084	26601.19	23	-53156.39	-52992.76
ARIMA5018	9,084	26603.89	25	-53157.78	-52979.93
ARIMA1600	9,084	26586.77	18	-53137.54	-53009.48
ARIMA1603	9,084	26592.18	21	-53142.35	-52992.95
ARIMA1605	9,084	26600.79	23	-53155.57	-52991.94
ARIMA16016	9,084	26616.07	34	-53164.14	-52922.26
ARIMA1800	9,084	26590.43	20	-53140.86	-52998.58
ARIMA1803	9,084	26592.64	23	-53139.28	-52975.65
ARIMA1805	9,084	26600.85	25	-53151.7	-52973.84
AR3ma3	9,084	26572.73	6	-53133.46	-53090.77
ar3MA3	9,084	26572.54	6	-53133.07	-53090.39
ar3	9,084	26566.71	3	-53127.42	-53106.08
ma3	9,084	26567.01	3	-53128.03	-53106.69
AR3ma5	9,084	26575.84	6	-53139.68	-53096.99
ar3MA5	9,084	26577.83	8	-53139.67	-53082.75
ma5	9,084	26565.27	3	-53124.54	-53103.19
AR3ma16	9,084	26573.93	6	-53135.86	-53093.17
ar3MA16	9,084	26587.91	19	-53137.81	-53002.64
ma16	9,084	26564.01	3	-53122.02	-53100.67
AR3ma18	9,084	26573.05	6	-53134.1	-53091.42
ar3MA18	9,084	26590.64	21	-53139.28	-52989.88
ma18	9,084	26562.96	3	-53119.92	-53098.58
AR5ma3	9,084	26578.21	8	-53140.42	-53083.5
ar5MA3	9,084	26575.85	6	-53139.71	-53097.02
ar5	9,084	26565.23	3	-53124.47	-53103.13
AR5ma5	9,084	26577.58	8	-53139.16	-53082.25
ar5MA5	9,084	26577.83	8	-53139.66	-53082.75
AR5ma16	9,084	26581.93	8	-53147.86	-53090.95

. Javiel Tulell					
ar5MA16	9,084	26586.37	19	-53134.74	-52999.57
AR5ma18	9,084	26581.25	8	-53146.49	-53089.58
ar5MA18	9,084	26590.4	21	-53138.8	-52989.4
AR16ma3	9,084	26588.65	19	-53139.3	-53004.13
ar16MA3	9,084	26574.75	6	-53137.51	-53094.82
ar16	9,084	26564.22	3	-53122.43	-53101.09
AR16ma5	9,084	26586.93	19	-53135.87	-53000.7
ar16MA5	9,084	26582.16	8	-53148.32	-53091.4
AR16ma16	9,084	26593.1	19	-53148.19	-53013.02
ar16MA16	9,084	26592.75	19	-53147.51	-53012.34
AR16ma18	9,084	26590.44	19	-53142.88	-53007.71
ar16MA18	9,084	26594.95	21	-53147.9	-52998.5
AR18ma3	9,084	26590.91	21	-53139.82	-52990.42
ar18MA3	9,084	26573.76	6	-53135.52	-53092.83
ar18	9,084	26563.08	3	-53120.15	-53098.81
AR18ma5	9,084	26590.83	21	-53139.67	-52990.27
ar18MA5	9,084	26581.37	8	-53146.74	-53089.82
AR18ma16	9,084	26595.01	21	-53148.02	-52998.62
ar18MA16	9,084	26590.01	19	-53142.02	-53006.85
AR18ma18	9,084	26590.93	21	-53139.85	-52990.45
ar18MA18	9,084	26590.51	21	-53139.01	-52989.61

Se estimaron **97 modelos** (y se podían haber estimado más), lamentablemente el criterio **BIC** no dió buenos resultados cuando se analizaron los autocorrelogramas a los residuos, por ejemplo, la siguiente tabla, que ordena por criterios mostró que (al comprobar con los autocorrelogramas) sus mejores modelos no son satisfactorios desde el punto de vista de los autocorrelogramas a los residuos, el penúltimo modelo de la tabla (menor AIC=-53179,34) fue el mejor modelo de todos (post comprobación de analizar residuos).

```
AIC
                  BIC
-53128.029
           -53106.686
-53127.42
           -53106.077
-53124.536
           -53103.193
-53124.469
           -53103.126
-53122.433
            -53101.09
-53122.016 -53100.673
-53114.434 -53100.206
           -53098.812
-53120.155
-53119.921
           -53098.579
-53139.708 -53097.022
-53139.679
           -53096.994
-53137.51 -53094.824
-53130.204 -53094.633
-53179.34 -53093.969
-53179.048 -53093.677
```


Luego, corroboramos la existencia de ruido blanco en los rezagos de la serie, encontrando lo siguiente:

Portmanteau test for white noise

Portmanteau (Q)	statistic =	7.2586
Prob > chi2(16)	=	0.9679

No podemos rechazar la hipótesis nula de que los residuos son ruido blanco, por lo que el proceso sí sigue un proceso de ruido blanco.

Graficando los residuos a continuación:

Por las razones mencionadas, creemos que el modelo **AR(1/5 16) MA(1/3 16)**, sería el "mejor modelo".

2. Con los residuos de su estimación previa, haga un test para determinar la presencia de ARCH.

Generando los residuos al cuadrado y realizando los autocorrelogramas, encontramos lo siguiente:

Encontramos que para ambos autocorrelogramas existen varios rezagos que son significativos. Por lo que hay autocorrelación en el segundo momento (cluster de volatilidad). y no estaría capturando la información del segundo momento (la volatilidad).

Se procede a testear la presencia de **ARCH:**

Regression wi	th Newey-West	standard er	rors	Number	of obs =	9,068
Maximum lag =	16			F(16,	9051) =	38.87
				Prob >	F =	0.0000
		Newey-West				
re2	Coefficient	std. err.	t	P> t	[95% conf.	interval]
re2						
L1.	.0270294	.0304857	0.89	0.375	0327294	.0867882
L2.	.117113	.0257228	4.55	0.000	.0666905	.1675355
L3.	.1399623	.0456262	3.07	0.002	.0505247	.2293999
L4.	.102634	.0243837	4.21	0.000	.0548365	.1504315
L5.	.0776832	.0408318	1.90	0.057	0023563	.1577228
L6.	.0222495	.0298572	0.75	0.456	0362772	.0807763
L7.	0013454	.0204179	-0.07	0.947	0413692	.0386784
L8.	.0573966	.0536	1.07	0.284	0476714	.1624647
L9.	.0600055	.028022	2.14	0.032	.0050761	.114935
L10.	.0383159	.0363801	1.05	0.292	0329973	.1096291
L11.	.0516886	.0295786	1.75	0.081	0062921	.1096693
L12.	.0069586	.023255	0.30	0.765	0386265	.0525437
L13.	.0011658	.0238588	0.05	0.961	0456027	.0479344
L14.	.000025	.0189222	0.00	0.999	0370668	.0371168
L15.	.0032982	.0232859	0.14	0.887	0423474	.0489438
L16.	.0382773	.0315592	1.21	0.225	023586	.1001405
_cons	.0000432	7.31e-06	5.91	0.000	.0000288	.0000575

```
(1) L.re2 = 0
(2)
     L2.re2 = 0
(3)
     L3.re2 = 0
(4)
     L4.re2 = 0
(5)
     L5.re2 = 0
(6)
     L6.re2 = 0
(7)
     L7.re2 = 0
(8)
     L8.re2 = 0
(9)
     L9.re2 = 0
(10)
     L10.re2 = 0
(11)
     L11.re2 = 0
     L12.re2 = 0
(12)
(13) L13.re2 = 0
(14) L14.re2 = 0
(15)
     L15.re2 = 0
(16)
     L16.re2 = 0
```

F(16, 9051) = 38.87 Prob > F = 0.0000

Notamos que se rechaza la hipótesis nula de volatilidad homogénea con un 99% de confianza, de manera que esto respalda la presencia de **ARCH**.

3. Estime diferentes modelos GARCH(p,q) para los residuos (dejando que p y q varíen de 0 a 2 respectivamente). Basándose en criterios de información (AIC y BIC), determine el mejor modelo.

BIC	AIC	df	ll(model)	ll(null)	N	Model
-54081.51	-54102.85	3	27054.43		9,084	z1
-54446.85	-54468.19	3	27237.09		9,084	z2
-56529.81	-56558.26	4	28283.13		9,084	z3
-56527.32	-56562.89	5	28286.45		9,084	z4
-56210.18	-56238.63	4	28123.32		9,084	z5
-56442.22	-56470.68	4	28239.34		9,084	z6
-56436.33	-56471.9	5	28240.95		9,084	z7
-56103.82	-56132.27	4	28070.14		9,084	z8
-56518.44	-56561.13	6	28286.56		9,084	z9

Encontramos según los criterios de información **BIC**, el mejor modelo es el z3, el cual corresponde al modelo **GARCH(1 1/2).**

Además, observamos que hay evidencia a favor de ruido blanco y que no hay autocorrelación de los errores en el modelo.

4. Con su mejor modelo, guarde la serie para la varianza condicional y con esto determine la nueva serie de residuos. Haga un test para determinar la presencia de ARCH en estos nuevos residuos. Interprete.

Notamos que tanto para el autocorrelograma, como el autocorrelograma parcial se captura bien la autocorrelación en volatilidad, y por tanto, también los clusters de volatilidad en el modelo.

Luego hacemos un test para comprobar la presencia de **ARCH** en los residuos obteniendo lo siguiente:

		Newey-West				
r1v	Coefficient	std. err.	t	P> t	[95% conf.	interval]
r1						
L1.	.676401	.7158609	0.94	0.345	7268482	2.07965
L2.	.1556816	.8217379	0.19	0.850	-1.455111	1.766474
L3.	.4029935	.8014074	0.50	0.615	-1.167946	1.973933
L4.	1110689	.789265	-0.14	0.888	-1.658207	1.436069
L5.	.2879643	.7496635	0.38	0.701	-1.181546	1.757474
L6.	1432776	.7737189	-0.19	0.853	-1.659942	1.373386
L7.	7535017	.7674835	-0.98	0.326	-2.257943	.7509394
L8.	3070213	.8236013	-0.37	0.709	-1.921466	1.307423
L9.	.2247849	.8084563	0.28	0.781	-1.359972	1.809542
L10.	.4001938	.7955774	0.50	0.615	-1.159318	1.959705
L11.	.3847684	.8610379	0.45	0.655	-1.303061	2.072597
L12.	.1277949	.7860414	0.16	0.871	-1.413024	1.668614
L13.	0987653	.7748096	-0.13	0.899	-1.617567	1.420037
L14.	.3532815	.7836328	0.45	0.652	-1.182816	1.889379
L15.	.2216644	.8282717	0.27	0.789	-1.401935	1.845264
L16.	.3637258	.7856778	0.46	0.643	-1.17638	1.903832
_cons	0390579	.0107081	-3.65	0.000	0600482	0180677

```
(1) L.r1 = 0
(2) L2.r1 = 0
(3)
    L3.r1 = 0
(4)
    L4.r1 = 0
(5) L5.r1 = 0
(6) L6.r1 = 0
(7)
    L7.r1 = 0
(8) L8.r1 = 0
(9) L9.r1 = 0
(10) L10.r1 = 0
(11) L11.r1 = 0
(12) L12.r1 = 0
(13) L13.r1 = 0
(14) L14.r1 = 0
(15) L15.r1 = 0
(16) L16.r1 = 0
     F( 16, 9051) =
                       0.19
          Prob > F =
                       0.9998
```

Observamos que no se puede rechazar la hipótesis nula de volatilidad homogénea, de manera que esto respalda la ausencia de **ARCH**.

5. Grafique la volatilidad predicha y discuta qué hechos o eventos económicos correlacionan con los peaks de la variable en el país elegido.

Graficamos la volatilidad predicha:

Dentro de los eventos económicos que creemos que correlacionan con los peaks de las variables del índice escogido pensamos en los siguientes:

- 1. Efecto de la pandemia a comienzos del año 2020. En este hecho existió un gran movimiento capitales, una de las explicaciones es que muchas empresas tuvieron que cesar sus operaciones (como por ejemplo el sector turismo, y restaurantes) y otras surgieron ante nuevas necesidades.
- 2. **Crisis Subprime**, entre los años 2008 y 2009. Una razón fueron los problemas de liquidez de diversas entidades financieras que afectó a diversos mercados, incluyendo este índice.
- 3. **Crack del 87'** (lunes negro). Problemas con el suministro del petróleo, inestabilidad de los mercados, guerra Irán-Irak, entre otras causas.