Name:	Signature:
P525/1	
CHEMISTRY	
Paper 1	
August 2023	
$2\frac{3}{4}$ hours.	

Uganda Advanced Certificate of Education END OF TERM TWO EXAMINATIONS

S.5 CHEMISTRY

Paper 1

2 hours 45 minutes

INSTRUCTIONS:

Answer all questions in this section A and six questions in section B.

Allanswers must be written in the spaces provided.

The Periodic Table, with relative atomic masses, is attached at the end of the paper.

Mathematical tables (3-figure tables) are adequate or non-programmable scientific electronic calculators may be used.

Illustrate your answers, with equations where applicable.

Where necessary, use the following;

Molar gas constant, R=8.31 JK⁻¹mol⁻¹.

Molar volume of a gas at s.t.p is 22.4 litres.

Standard temperature = 273K.

Standard pressure = 101325Nm⁻²

						F	or	Tea	che	's'	Use	Only					
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total

SECTION A (46 MARKS)

Answer all questions in this section.

	Complete (i)	the fol ²⁷ Al -	_	•		3 +			(01 mark)
		$4\frac{1}{1}H$		→	⁴ Не	+			(01 mark)
	(iii)	²³⁹ U —		²³⁹ ₉₁ U	+				(01 mark)
	half-life	ubstanc	e take	to dec	ay to	25%.	•	(02	how many marks)
2. An o	organic c	•	nd, R ho I ₃ CH =			cture;			
(a)	Name t		Ü			sent in	R .	(0	1 mark)
(b)	Write	equatio	n for 1	he red	action	 1 betwe	een R and	d:	······································
(i)	alko	aline po	tassiur	n mang	ganat	e(vii) s	olution.	(01	. mark)
(ii)	amr	noniaca	l silver	nitra	te so	lution.		(0:	1 mark)

(c)	State what would be observ	ved in (b) (i) and (ii) (02 marks)
	(ii)	
	Vrite an equation for the reac	tion between hot concentrated sodium
(i		(1 ½ marks)
(i	i) Silicon	(1 ½ marks)
(i	ii) phosphorus	(1 ½ marks)
(i	v) aluminium powder	(1 ½ marks)

4. (a) Wha	t is m	eant by relative	abundance?	(01 mark)
(b) Bromin	e has	two naturally o	ccurring isotopes with	isotopic masses
and relativ	e abu	ndances as show	n below.	
		Isotopic mass	Relative abundance	
		79	50.5	
		81	49.3	
(i)		ine has two isot	opes, Br-79 and Br-81 pectrum when the two is	
(ii)	 Calcu	late the average	atomic mass of bromine	

product in each case.	
(a) \(\bigcap + \text{HBr} \) \((1½ marks)
Name of product	
(b) CH_3 $Cl_2/uv \ light$	(1½ marks)
Name of product	
(c) $CH_3CH = CH_2$ $\frac{1.Conc.H_2SO_4}{2.H_2O/warm}$ Name of product	(1½ marks)
6. (a) Define diagonal relationship	(01 mark)
(i) State two properties in which beryllium resembles	s aluminium

(ii)State two reasons why beryllium resembles aluminium (01 mark)

5. Complete the following organic reactions and name the major organic

b) State any other pair of elements on a periodic table	that exhibit
diagonal relationship.	(01 mark)
7. (a) Define the term bond energy	(01 mark)
(a) (i) The standard enthalpy change of formation of silicon(IV) chlor kJmol ⁻¹ . The standard enthalpy changes of atomisation of silicon and chlorine +122kJmol ⁻¹ respectively. Use these values to construct a Born-Habel formation of silicon(IV) chloride from its elements and indicate the	are +338 and r cycle for the
	(02marks)
(ii) Calculate the average bond energy of the $Si-Cl$ bond	(01 mark)

b) Some bond energies are given below

Bond	Average bond energy(kJmol ⁻¹)
Cl-Cl	242
C-H	435
Cl — H	431
C-Cl	339

Determine the e	enthalpy c	hange for th	e reaction below	
	CH4 (g)	+ Cl ₂ (g)	CH₃Cl (g) + HCl (g)	
8. Complete the mechanism for e			and suggest the possible IUP	4
a. CH ₃ CHCHCH ₃ Br Br	CH ₃ CH ₂ C	O'/CH3CH2OH , Heat	(03 marks)	
CI b. (CH ₃) ₂ CCH ₂ CF	H ₃ NaO He		(02marks)	•••

9. (a) What is meant by the follow(i) Enthalpy of combustion	ving terms.		(01 mark	<)	··
(iii) Standard heat of formation			(0	1 mark)	
b) Calculate the enthalpy of comb ethermochemical data. Enthalpy of com Enthalpy of form	bustion of co	urbon = · vdrogen = ·	(03 r -393 kJm	narks) nol ⁻¹ nol ⁻¹	
SECTION Answer any six 10. (a) State what is meant by	•	om this sec			
substance.	me term t	reezing po		tant of mark)	a
•	ows the f	reezing po	(01	mark)	
(b) The table below she	ows the f	reezing po	(01	mark)	

Plot a graph of freezing point depression against concentration of $\ensuremath{\mathsf{Q}}$

(c)	Determine the : (i) slope of the graph you have drawn in (b).	(1 ½ marks)
	(ii) relative molecular mass of Q. (K _f of water is 1.86°C	(2 ½ marks)
 11. V	rite equations to show how the following compou	 nds can be
synth (a)	esised. Indicate the condition(s) for the reaction(s). from ethyne.	(2 ½ marks)

•	•	Benzene from ethene	` -	marks)
(c)	CH₃CH2COCH3 from propyne	(3 ½	marks)
	••••••			

- 12. The elements; sodium, magnesium, silicon and Sulphur belong to Period 3 of the Periodic Table.
 - (a) For each element, write the formula and name the structure of the hydride it forms. (04 marks)

Element	Formula of hydride	Structure
Sodium		
Magnesium		
Silicon		
Sulphur		

(b)		e equation for the reaction that ne hydride of;	t takes place between water
	(i)	Sodium	(01 mark)
	(ii)	Sulphur	(01 mark)
(c)		e equation for the reaction the neaction that neaction the neaction that neaction the neaction the neaction that neaction the neactio	at takes place between hot
	(i)	Magnesium	(01½ marks)
	(ii)	Sulphur	(01½ marks)
13.		at is meant by the following term Hydration energy	ns (01 mark)
	(ii)	Lattice energy	(01 mark)
••••••	••••••		

((iii) Enthalpy	of solution	(01 mark)
(b) State two factors which can affect the magnitude of lattice energy c) The lattice hydration energies of salts RX and TX are given in the table below Salt Lattice energy(kjmol-1) Hydration energy (kjmol-1) RX 880 860 TX 790 800 (c) Calculate the enthalpy of solution of each salt (i) RX (02 marks)			
	ce hydration (energies of salts RX and	TX are given in the table
	Salt	Lattice energy(kjmol ⁻¹)	Hydration energy (kjmol ⁻
	RX	880	860
	TX	790	800
(c) Calculate	e the enthalpy	y of solution of each salt	
	(i) RX		(02 marks)
((ii) TX		(02 marks)

4. 1.363g of compound Y containing carbon, hydrogomplete combustion gave 1.10g of carbon dioxide and When 0.35g of Y was vapourised, it occupied 39.	at a given (0½ mark)			
(iii) Give a reason for your answer in c(ii) above.	(0½ mark)			
 14. 1.363g of compound Y containing carbon, hydroge complete combustion gave 1.10g of carbon dioxide and When 0.35g of Y was vapourised, it occupied 39.5 750mmHg. Calculate (i) the empirical formula of Y 	d 0.45g of water.			
(ii)the molecular formula of Y				

	b)Y forms a compound Z when treated with a mixture of potassium hydroxide solution and ethanol under reflux. Z reacts with ammoniacal silver nitrate solution to form a white precipitate Q. identify;
	(i) Y
•••	
	(ii) Z
••••	(iii) Q
•••	c) Write (i) an equation for the reaction between Z and ammoniacal silver nitrate solution
	(ii)the mechanism for the reaction leading to formation of Z
•••	
•••	
••••	

15. (a)(i)		
	n equation for the first ionisation energy of aluminium	(01 mark)
(iii)State	two factors that can affect the value of first ionisa	tion energy
(b)State a	nd explain how first ionisation energy varies (i) Down a group. (03 marks)	
(ii)Write an equation for the first ionisation energy of aluminium (01 mar (iii)State two factors that can affect the value of first ionisation en (b)State and explain how first ionisation energy varies (i) Down a group. (03 marks)		
	(i)Across a given period. (03 marks)	

6. (a). What is	meant by order of	by order of reaction?					
c). The table b	pelow shows some kir 3.A	netic data for the $B o Products$	reaction				
Experiment	[A] (moldm ⁻³)	[B] (moldm ⁻³)	Rate(moldm ⁻³ s ⁻¹				
1	0.2	0.2	1.2x 10 ⁻⁸				
2	0.2	0.6	1.2x 10 ⁻⁸				
3	0.4	0.6	4.8x 10 ⁻⁸				
(i) A			(02 marks)				
(ii) E	 3		(02 marks)				

(i). Overall order of reaction. (ii) Rate constant for the reaction and state it's units 7. Name one reagent that can be used to distinguish between ollowing pairs of compounds. In each case state what would be	(01 mark)
(c).Calculate the:	(01 mark)
(ii) Rate constant for the reaction and state it's units.(
17. Name one reagent that can be used to distinguish between the following pairs of compounds. In each case state what would be if each member of the pair is treated with the named reagent. (a) But-2-yne and But-1-yne	
Reagent.	(01 mark)
Observations.	(02 marks)

(a) Propane and propene

Reagent.	(01 mark)
Observations.	(02 marks)
(a) Bromoethane and chloroethane Reagent.	(01 mark)
Observations.	(02 marks)
	END.

THE PERIODIC TABLE

1	2			-								3	4	5	6	7	8
1.0 H								k								1.0 H 1	4.0 He 2
5.9 Li 3	9.0 Be 4											10.8 B 5	12.0 C 6	14.0 N 7	16.0 O 8	19.0 F 9	20.2 Ne 10
23.0 Na 11	24.3 Mg 12											27.0 Al 13	28.1 Si 14	31.0 P 15	32.1 S 16	35.4 Cl 17	40.0 Ar 18
39.1 K 19	40.1 Ca 20	45.0 Sc 21	47.9 Ti 22	50.9 V 23	52.0 Cr 24	54.9 Mn 25	55.8 Fe 26	7.5	58.7 Ni 28	63.5 Cu 29	65.7 Zn 30	69.7 Ga 31	72.6 Ge 32	74.9 As 33	79.0 Se 34	,,,,	83.8 Kr 36
85.5 Rb 37	87.6 Sr 38	88.9 Y 39	91.2 Zr 40	92.9 Nb 41	95.9 Mo 42	98.9 Tc 43	101 Ru 44	103 Rh 45	106 Pd 46	108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
133 Cs 55	137 Ba 56	139 La 57	178 Hf 72	181 Ta 73	184 W 74	186 Re 75	190 Os 76	192 Ir 77	195 Pt 78	197 Au 79	201 Hg 80	204 TI 81	207 Pb 82	Bi	209 Po 84	210 At 85	222 Rn 86
223 Fr 87	226 Ra 88	227 Ac 89					1 300				10						
			139 La 57	140 Ce 58	141 Pr 59	144 Nd 60	-	150 Sm 62	152 Eu 63	72-72-75	159 Tb 65	162 Dy 66	165 Ho 67		169 Tm 69		175 Lu 71
			227 Ac 89	232 Th 90	231 Pa 91	238 U 92	237 Np 93	244 Pu 94	243 Am 95	247 Cm 96	247 Bk 97	251 Cf 98	254 Es 99	257 Fm 100	256 Md 101	254 No 102	260 Lw 103

END.