Министерство образования и науки Украины Национальный технический университет «Харьковский политехнический институт»

Кафедра компьютерной математики и анализа данных

ЛАБОРАТОРНАЯ РАБОТА №7

МЕТОД СОПРЯЖЕННЫХ ГРАДИЕНТОВ

ст. гр. КН-118

Тепляков А. Д.

<u>**Цель:**</u> Реализовать метод сопряженных градиентов поиска экстремумов функции многих переменных.

Задачи

- 1. Изучить метод сопряженных градиентов.
- 2. Реализовать метод сопряженных градиентов поиска экстремума функции.
- 3. Исследовать скорость сходимости метода для квадратичной формы

$$f(x) = (Ax, x) + (\mathbf{b}, x)$$

где $\mathbf{x}, \mathbf{b} \in R^2$, $A \in R^{2 \times 2}$ — положительно определена:

• с разной ориентацией осей:

$$\gamma = k \cdot \pi/4$$
, $(k = \overline{0.8})$,

 γ — угол между осью абсцисс и большою полуосью квадратичной формы;

• с разной эллиптичностью линий уровня:

$$\varepsilon = \frac{b}{a}$$
; $\varepsilon = \{1, ..., 100\}$,

где b и a большая и малая полуоси эллипса соответственно;

4. Сравнить скорости сходимости метода наискорейшего спуска, метода Ньютона, метода ДФП и метода сопряженных градиентов для квадратичной формы большой размерности: $\dim x = \{2,...,1000\}$.

1. Теоретическая часть

Пусть имеется функция f(x) = (Ax, x) + (b, x) (1), матрица A – положительно определена и симметрична. Требуется найти минимум данной функции.

В таком случае найти минимум можно при помощи метода сопряженных градиентов (далее – $MC\Gamma$) по следующим формулам:

$$\begin{cases} x_{k+1} = x_k + \alpha_k d_k \\ k = 0 \dots n - 1, n = \dim(A) \\ d_0 = -\nabla f(x_0) \\ d_k = -\nabla f(x_k) + \beta_{k-1} d_{k-1} \\ \alpha_k = argminf(x_k) = -\frac{(Ax_k + b, d_k)}{2(Ad_k, d_k)} \\ \beta_{k-1} = \frac{(Ad_{k-1}, \nabla f_k)}{(Ad_{k-1}, d_{k-1})} \end{cases}$$
(2)

Где:

 x_i — вектор в пространстве R^n

 d_i — вектор из A — сопряженной системы векторов

$$f(x)$$
 — функция вида (1)

$$\alpha_i,\beta_i\ \in R^1$$

Существуют теоремы, доказывающие, что МСГ является методом сопряженных направлений, и что для любой выбранной точки x_0 точка x_n , полученная по схеме (2), будет координатой minf(x) и будет найдена не более чем за n шагов.

2. Результаты работы программы

Рассмотрим результаты работы программы для функции вида (1):

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, b = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

С различными точками x_0 :

$$x_0 = (0; 0)$$

Рис.1 – результат работы МСГ для квадратичной формы

Iteration	Lambda	X1	X2	F_x	norm_X
	Forma				
0		0	0		
1	0,416661	0,833323	-0,41666	-1,04167	0,931683
2	0,3	0,999987	-0,25	-1,125	0,235699
3	0,413058	0,999998	-0,25	-1,125	1,20E-05
	Extremum	0,999998	-0,25	-1,125	

Рис. 2 – результат работы МСГ для квадратичной формы

$$x_0 = (2; 2)$$

Puc.3 – MCГ для другой начальной точки

Iteration	Lambda	X1	X2	F_x	norm_X
	Forma				
0		2	2		
1	0,256008	1,487984	-0,30407	-0,88102	2,360276
2	0,488247	1,000051	-0,24986	-1,125	0,490936
3	0,254861	1,000019	-0,25	-1,125	0,00015
	Extremum	1,000019	-0,25	-1,125	

Рис.4 – МСГ для другой начальной точки

3. Исследование скорости сходимости МСГ для квадратичной формы

Исследуем сходимость МСГ для квадратичной формы в зависимости от угла наклона большей полуоси фигуры к оси абсцисс с помощью поворота фигуры матрицей поворота, где

$$\gamma = k \frac{\pi}{4}, (k = \overline{0,8}),$$

 γ – угол наклона фигуры к оси абсцисс,

k – коэфициент угла наклона.

Рис.5 – вращение квадратичной формы

Исследуем сходимость МСГ для различной эллиптичности линий уровня квадратичной формы по формуле

$$\varepsilon = \frac{b}{a}$$
,

где b и a – большая и меньшая полуоси соответственно.

Рис.6 – эллиптичность квадратичной формы

Как можно видеть из приведенных выше графиков, количество итераций МСГ не изменяется с поворотом формы или с изменением эллиптичности линий уровня.

4. Сравнение МСГ с другими методами

Рис.7 – сравнение времени работы методов

Рис.8 – сравнение количества вычислений функции

Рис.9 – сравнение количества вычислений градиента

Из приведенных выше графиков видно, что метод Ньютона наилучший – это объясняется низким количеством дополнительных вычислений, помимо обращения матрицы. МСГ оказывается на втором месте.

Так же следует учитывать, что полученные результаты могут несколько отличаться в зависимости от программной реализации методов.

5. Выводы

Основная идея методов сопряженных направлений — использование системы A — сопряженных векторов вместо направлений спуска. И, так как система таких векторов может быть выбрана различными способами, существует несколько методов сопряженной направлений.

В данной работе был рассмотрен и реализован один из методов сопряженных направлений — метод сопряженных градиентов. От ранее рассмотренных он отличается прежде всего тем, что не является методом спуска. Выбор системы A — сопряженных векторов делается при помощи градиента функции.

Так же было проведено сравнение работы МСГ для различных параметров квадратичной формы и выявлено, что те не влияют на его скорость сходимости.

Было проведено сравнение МСГ с методами спуска, в котором лучше него показал себя метод Ньютона, так как он требует меньше сопутствующих вычислений.