Agora:

$$A_2 = R_1 Q_1 = \begin{pmatrix} 2.5998 & 0 & 0.2000 \\ 0 & 1 & 0 \\ 0.2000 & 0 & 0.4000 \end{pmatrix}.$$

Aplicando novamente o processo, temos que: $U_1 = U_3 = I$. Devemos então determinar U_2 . Assim:

$$s = \frac{0.2000}{\sqrt{(2.5998)^2 + (0.2000)^2}} = 0.0767,$$

$$c = \frac{2.5998}{\sqrt{(2.5998)^2 + (0.2000)^2}} = 0.9971.$$

Portanto:

$$U_2 = \begin{pmatrix} 0.9971 & 0 & 0.0767 \\ 0 & 1 & 0 \\ -0.0767 & 0 & 0.9971 \end{pmatrix} ,$$

e assim:

$$U_2 A_2 = \begin{pmatrix} 2.6076 & 0 & 0.2301 \\ 0 & 1 & 0 \\ 0 & 0 & 0.3935 \end{pmatrix} = R_2$$

Logo:

$$A_2 = \underbrace{\begin{pmatrix} 0.9971 & 0 & -0.0767 \\ 0 & 1 & 0 \\ 0.0767 & 0 & 0.9971 \end{pmatrix}}_{U_2^t} \begin{pmatrix} 2.6076 & 0 & 0.2301 \\ 0 & 1 & 0 \\ 0 & 0 & 0.3835 \end{pmatrix} = Q_2 R_2$$

Finalmente,

$$A_3 = R_2 \ Q_2 = \left(\begin{array}{ccc} 2.6177 & 0 & 0.0294 \\ 0 & 1 & 0 \\ 0.0094 & 0 & 0.3824 \end{array} \right) \ .$$

Desde que o maior elemento, em valor absoluto, abaixo da diagonal principal é menor do que 10^{-2} , temos que os valores aproximados dos auto-valores de A são: 2.6177, 1 e 0.3824. Observe que os auto-valores de A são: 2.618034, 1 e 0.381966.

O método QR permite obter também os auto-vetores. Como no método LR o cálculo dos auto-vetores é trabalhoso por este método e assim será omitido. O leitor interessado pode encontrar a descrição do método, por exemplo em [Fox, 19..].

Exercícios

7.13 - Usando o método QR, determinar todos os auto-valores das matrizes:

$$A = \begin{pmatrix} 4 & 4 & -3 \\ 0 & 8 & 1 \\ 0 & 2 & -1 \end{pmatrix} , B = \begin{pmatrix} 12 & 3 & 1 \\ -9 & -2 & -3 \\ 14 & 6 & 2 \end{pmatrix} ,$$

com precisão de 10^{-2} .

7.14 - Usando o método QR, uma única vez, na matriz:

$$A = \left(\begin{array}{ccc} 1 & 1 & 3 \\ 2 & 0 & 1 \\ 2 & 1 & -1 \end{array}\right) ,$$

é possível estimar seus auto-valores? (Use aritmética exata).

7.8 Exercícios Complementares

7.15 - Para cada uma das matrizes:

$$A = \begin{pmatrix} -2 & 5 \\ 1 & -3 \end{pmatrix} , \quad A = \begin{pmatrix} 1 & 4 & 3 \\ 0 & 3 & 1 \\ 0 & 2 & -1 \end{pmatrix} ,$$

encontre um polinômio que tenha a matriz como raiz.

7.16 - Sabendo que uma matriz de ordem 3 tem como auto-valores $\lambda_1 = -1$, $\lambda_2 = 2$, $\lambda_3 = 3$.

- a) Qual é o polinômio característico de A?
- **b)** Quanto vale $tr(A^2)$?
- c) Quais são os auto-valores de A^{-1} ?
- d) A matriz A é uma matriz singular? Por quê?

7.17 - Seja A uma matriz quadrada de ordem n e sejam $\lambda_1, \lambda_2, \dots, \lambda_n$ seus auto-valores. Quais são os auto-valores de A-qI onde q é uma constante e I é a matriz identidade?

7.18 - Mostre que se v é auto-vetor de A e de B então v é auto-vetor de $\alpha A + \beta B$, onde α, β são escalares quaisquer.

7.19 - Mostre que uma matriz A e sua transposta A^t possuem o mesmo polinômio característico.

7.20 - Considere a matriz:

$$A = \left(\begin{array}{rrr} 1 & 3 & -1 \\ 0 & 0 & 2 \\ -1 & 1 & 0 \end{array} \right) .$$

Verifique, através do método de Leverrier, que seu polinômio característico é dado por:

$$P(\lambda) = -\lambda^3 + \lambda^2 + 3\lambda - 8.$$

7.21 - Seja a matriz:

$$A = \left(\begin{array}{ccc} 1 & 0 & 2 \\ 0 & 3 & 1 \\ 2 & 1 & 2 \end{array}\right) .$$

a) Verifique pelo método de Leverrier-Faddeev que seu polinômio característico é dado por:

$$P(\lambda) = (-1)^3 (\lambda^3 - 6\lambda^2 + 6\lambda + 7)$$
.