4.1. Defining the Derivative at a point.

4.1.1. Derivative at a point

Definition: Let f be a function defined on an open interval]a,b[, and let $x_0 \in]a,b[$. We say f is differentiable at x_0 , with derivative $f'(x_0)$, if the limit

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Exists.

Geometric Interpretation for the derivative

Definition bis: Let f be a function defined on an open interval]a,b[, and let $x_0 \in]a,b[$. We say f is differentiable at x_0 , with derivative $f'(x_0)$, if the limit

$$\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$$

Exists.

This limit is denoted $f'(x_0)$ (or $also \frac{df}{dx}(x_0)$) and is called the derivative of f(x) at $x = x_0$.

Geometric Interpretation

Example: Find, if possible, derivatives at $x_0 = 1$ for the function $f(x) = x^3 - 1$

$$f'(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1}$$

$$= \lim_{x \to 1} \frac{x^3 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x^2 + x + 1)}{(x - 1)} = 3$$

and
$$f'(x) = 3x^2$$
 $f'(1) = 3$

Left Hand And Right Hand Derivatives

Definition (Right derivative)

Let $f: [a,b[\to \mathbb{R}. \ A \ function \ f \ is \ right \ differentiable \ at \ a$ if the right limit : $\lim_{x \to a^+} \frac{f(x) - f(a)}{x - a}$ exists. When it does exist, then that limit is called the right derivative of f. And denoted by $f'_d(a)$. We will say f is defferentiable on [a,b[when f is differentiable on]a,b[and is right differentiable at a.

4. Dérivabilité

Left Hand And Right Hand Derivatives

Definition (Left derivative)

Let $f:]a,b] \to \mathbb{R}$. A function f is left defferentiable at b if the left limit $\lim_{x\to b^-} \frac{f(x)-f(b)}{x-b}$ exists. When it does exist, then that limit is called the *left derivative* of f, and denoted by $f'_g(b)$. We will say f is defferentiable on]a,b[when f is defferentiable on]a,b[and is right defferentiable at b.

Example:

if
$$f(x) = |x| = \begin{cases} x & \text{si } x > 0 \\ -x & \text{si } x \le 0 \end{cases}$$
,

then
$$f_d'(0) = 1$$
 et $f'_g(0) = -1$.

The following result is immediate

Proposition: Let $f: I \to \mathbb{R}$, and $a \in I$. For the map f to be differentiable at a, it is necessary and sufficient that

f be both left and right differentiable at a and the left and right derivative are equal ie $f'_g(a) = f'_d(a)$. Under these conditions, we have $f'(a) = f'_g(a) = f'_d(a)$.

Derivative on an interval

Definition: Let f be a function defined on an interval I. We say that a function f is differentiable on an interval I if only if f is differentiable for all point a in that inerval I.

Proposition: Let $f:]a, b[\rightarrow \mathbb{R} \text{ and let } x_0 \in]a, b[$.

- If f is differentiable at x_0 then f is continuous at x_0 .
- if f is differentiable on I then f is continuous on I.

Combinations of Differentiable Functions

Theorem: (Algebraic Differentiability Theorem) Let f and g be functions defined on an interval A, and assume both are differentiable at some point $x \in A$. Then

$$> (f+g)'(x) = f'(x) + g'(x),$$

$$\triangleright (\alpha f)'(x) = \alpha f'(x), \alpha \in \mathbb{R}$$
,

$$> (fg)'(x) = f'(x)g(x) + f(x)g'(x) ,$$

$$\geqslant \left(\frac{1}{f}\right)'(x) = \frac{-f'(x)}{f(x)^2}, \quad si \ f(x) \neq 0.$$

$$\geqslant \left(\frac{f}{g}\right)' = \frac{f'(x)g(x) - g'(x)f(x)}{g(x)^2} \quad si \ g(x) \neq 0.$$

Chain Rule

Proposition: Let $f: I \to \mathbb{R}$ and $g: J \to \mathbb{R}$ satisfy $f(I) \subseteq J$ so that the composition $g \circ f$ is defined. If f is differentiable at $x_0 \in I$ and if g is differentiable at $f(x_0) \in J$, then $g \circ f$ is differentiable at x_0 with

$$(g \circ f)'(x_0) = g'(f(x_0)) f'(x_0).$$

Examples: Soit $h(x) = e^{-\frac{x^2}{2}}$

We put
$$f(x) = \frac{-x^2}{2}$$
 and $g(x) = e^x$.

$$h'(x) = (g \circ f)'(x) = g'(f(x))f'(x) = -x e^{-\frac{x^2}{2}}$$

Derivatives of inverse functions

Let $f: I \to J$ and $f^{-1}: J \to I$ be inverse functions, where I and J are open intervals.

Suppose f is differentiable at $x_0 \in I$ and $f'(x_0) \neq 0$. Then f^{-1} is differentiable at $y_0 = f(x_0)$

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}$$

Derivatives of usuels functions:

Fonction	Fonction dérivée
$x^n, n \in \mathbb{Z}$	nx^{n-1}
$x^{\alpha}, \alpha \in \mathbb{R}$	$\alpha x^{\alpha-1}$
$\sqrt{\chi}$	$\frac{1}{2\sqrt{x}}$
sin(x)	$\cos(x)$
cos(x)	$-\sin(x)$
tan(x)	$\frac{1}{\cos^2(x)} = 1 + \tan^2(x)$
e^{x}	e^{x}
ln(x)	$\frac{1}{x}$

Local and Global Maxima and Minima

Definition

Let I be an interval, like (a,b) or [a,a] for example, and let the function f(x) be defined for all $x \in I$. Now let $x_0 \in I$. Then

- we say that f(x) has a global (or absolute)
 minimum on the interval I at the point x= x₀
 if f(x)≥ f(x₀) for all x∈ I.
- Similarly, we say that f(x) has a global (or absolute) maximum on I at x=x₀
 if f(x)≤f(x₀) for all x∈ I.

Local and Global Maxima and Minima

- we say that f(x) has a local minimum on the interval I at the point $x = x_0$ if $f(x) \ge f(x_0)$ for all $x \in I$ that are near x_0 .
- Similarly, we say that f(x) has a local maximum on I at $x=x_0$ if $f(x) \le f(x_0)$ for all $x \in I$. that are near x_0 .

The global maxima and minima of a function are called the global extrema of the function, while the local maxima and minima are called the local extrema.

Theorem:

Let f be differentiable on an open interval]a,b[. If f If attains a local maximum (or a local minimum) at some point $x_0 \in]a,b[$,

then
$$f'(x_0) = 0$$
.

But the converse is generally false!!

Rolle's Theorem (Michel Rolle, 1652–1719)

Theorem

Let $f: [a,b] \to \mathbb{R}$ be continuous on [a,b] and differentiable on]a,b[, if f(a)=f(b) then there exists a point $c \in]a,b[$ where f'(c)=0.

Mean Value Theorem

Theorem

If f is continuous on [a, b] and differentiable on a, b then there exists a point $c \in a, b$ where

$$f(b) - f(a) = f'(c)(b - a).$$

L'égalité des accroissements finis, écrite sur un pont de Pékin.

Proposition

Suppose that $f: I \to \mathbb{R}$ is differentiable at all points of an open interval I.

- (i) $f'(x) \ge 0$ for all $x \in I$ if and only if f is increasing on I.
- (ii) If f'(x) > 0 for all $x \in I$, then f is strictly increasing on
- (iii) $f'(x) \le 0$ for all $x \in I$ if and only if f is decreasing on I.
- (iv) If f'(x) < 0 for all $x \in I$, then f is strictly decreasing on I.
- (v) If $f'(x) \neq 0$ for all $x \in I$, then f is monotone on I.

L'Hospital's Rules

Proposition: Let $f, g: I \to \mathbb{R}$ be two functions differenciables and let $x_0 \in I$. we suppose that

$$-f(x_0) = g(x_0) = 0,$$

$$-\forall x \in I \setminus \{x_0\}, g'(x) \neq 0.$$

if
$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = l$$
 $(l \in \mathbb{R}) \Longrightarrow \lim_{x \to x_0} \frac{f(x)}{g(x)} = l$

Example:

$$\lim_{x \to 0} \frac{\ln(1+x)}{\sqrt{x}} = \lim_{x \to 0} \frac{f'(x)}{(\ln(1+x))}$$

$$= \lim_{x \to 0} \frac{1}{\frac{1+x}{2\sqrt{x}}} = \lim_{x \to 0} \frac{2\sqrt{x}}{1+x} = 0$$

Higher Derivatives

if f is a function defined on an interval open I of \mathbb{R} is differentiable at every point \mathbf{x}_0 of I.

and furthermore f' is differentiable at x_0

We say that f is twice differentiable at x_0 and we put $f''(x_0) = (f')'(x_0)$

Higher Derivatives

if f is a function defined on an interval open I of \mathbb{R} is twice differentiable at every point \mathbf{x}_0 of I.

and furthermore f" is differentiable at x_0

We say that f is three time differentiable at x_0 and we put $f'''(x_0) = (f'')'(x_0)$

Higher Derivatives

if f is a function defined on an interval open I of \mathbb{R} is n-time differentiable at every point \mathbf{x}_0 of I.

and that moreover the n-th derivative function $f^{(n)}$ is differentiable at x_0

We say that f is (n+1) times differentiable at x_0 and we put $f^{(n+1)}(x_0) = (f^{(n)})'(x_0)$

4. Derivatives Smoothness

Differentiability class Functions of the classe C^{∞} on an open interval of $\mathbb R$

- Consider an open set I on the real line R and a function f defined on I with real values. Let k be q non negative integer. The function f is said to be differentiability class C^k if the derivatives f', f,"..... f^(k) exists and are continuous on I.
- If f is k-differenciable on I then it is at least in the class C^{k-1} since f', f,"..... $f^{(k-1)}$ are continuous on I.
- The function is said to be infinitely differentiable, smooth or of class C^{∞} if it has derivatives of all orders on I.

Example: The functions exp, sin, cos, polynomes function admit derivatives of any order. We will say that they are indefinitely differentiable.

Theorem: Leibniz formula

$$(fg)^{(n)} = f^{(n)}g + \binom{n}{1}f^{(n-1)}g' + \dots + \binom{n}{k}f^{(n-k)}g^{(k)} + \dots + f^{(n-k)}g^{(n)}$$

in other words $fg^{(n)}$.

$$(fg)^{(n)} = \sum_{k=0}^{n} {n \choose k} f^{(n-k)} g^{(k)}.$$

Where

$$\binom{n}{k} = C_n^k = \frac{n!}{k!(n-k)!}$$

are called binomial coefficients.

Example: