PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-223920

(43) Date of publication of application: 08.08.2003

(51)Int.CI.

H01M 8/06 B01D 53/72 B01D 53/86 H01M 8/10

(21)Application number: 2002-020409

(71)Applicant: YUASA CORP

(22)Date of filing:

29.01.2002

(72)Inventor: OKUYAMA RYOICHI

NOMURA EIICHI

(54) LIQUID-FUEL DIRECT SUPPLY FUEL CELL SYSTEM (57)Abstract:

PROBLEM TO BE SOLVED: To obtain a liquid-fuel direct supply fuel cell system from which a by-product generated by electrochemical reaction of a positive electrode and a negative electrode can certainly be removed.

SOLUTION: A vapor-liquid separation bath 3, which separates vapor and liquid from a reaction product generated by electrochemical reaction of the negative electrode 12 and that generated by electrochemical reaction of the positive electrode 13, is provided, and a filter, which absorbs or decomposes the by-product, is provided in a vapor component recovery means 5, which recovers separated vapor components and discharges them to the open air.

LEGAL STATUS

[Date of request for examination]

24.09.2004

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2003-223920 (P2003-223920A)

(43)公開日 平成15年8月8日(2003.8.8)

(51) Int.Cl. ⁷		識別記号	FI			テーマコード(参考)
H01M	8/06		H 0 1 M	8/06		S 4D002	
B01D	53/72			8/10		4D048	
	53/86		B01D	53/34	1 2 0	D 5H026	
H 0 1 M	8/10			53/36		G 5H027	
			審査請求	朱請未	請求項の数4	OL (全 5	頁)
(21)出願番号	身	特顧2002-20409(P2002-20409)	(71) 出願)6688 会社ユアサコーポ	レーション	
(22)出願日		平成14年1月29日(2002.1.29)		大阪	存高槻市古曽部町	二丁目3番21号	
			(72)発明	者 奥山	良一		
				大阪	存高槻市古曽部町	二丁目3番21号	株
				式会	社ユアサコーポレ	ーション内	
			(72)発明	者 野村	栄一		
			·	大阪	存高機市古曽部町	二丁目3番21号	株
				式会	吐ユアサコーポレ	ーション内	
			İ				
	• • .	•					اليند.
						最終頁に	続く

(54) 【発明の名称】 液体燃料直接供給形燃料電池システム

(57)【要約】

【課題】 正極、負極の電気化学反応で生成した副生成 物を確実に除去することができる液体燃料直接供給形燃 料電池システムを得る。

【解決手段】 負極12の電気化学反応によって生成し た反応生成物と正極13の電気化学反応によって生成し た反応生成物とから気体と液体を分離する気液分離槽3 を設け、分離された気体成分を回収して大気に排出する 気体成分回収手段5に副生成物を吸収または分解するフ ィルターを備える。 10

*【特許請求の範囲】

【請求項1】 プロトン導電性固体高分子膜からなる電解質を介して負極と正極とを対設した単電池セルの、負極に液体燃料を供給し、正極に酸化剤ガスを供給する構成が設けられ、かつ前記単電池セルまたはこの単電池セルが複数個積層されたセルスタックからなる発電ユニットを備えた液体燃料直接供給形燃料電池システムにおいて、前記正、負極の電気化学反応によって生成した反応生成物から気体と液体を分離する構成を設けるとともに、前記反応生成物から分離された気体成分を回収して10大気に排出する気体成分回収手段を設け、かつ前記気体成分回収手段は気体成分中の副生成物を吸収または分解するフィルターを備えたことを特徴とする液体燃料直接供給形燃料電池システム。

【請求項2】 請求項1記載の液体燃料直接供給形燃料 電池システムにおいて、フィルターが活性炭またはゼオ ライトなどの吸着材を含有していることを特徴とする液 体燃料直接供給形燃料電池システム。

【請求項3】 請求項1記載の液体燃料直接供給形燃料 電池システムにおいて、フィルターが貴金属系触媒、銀20 系触媒を含有していることを特徴とする液体燃料直接供 給形燃料電池システム。

【請求項4】 請求項1 記載の液体燃料直接供給形燃料 電池システムにおいて、フィルターが光化学触媒を含有 していることを特徴とする液体燃料直接供給形燃料電池 システム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は液体燃料直接供給形燃料電池システムに関するもので、さらに詳しく言え 30 ば、液体燃料と酸化剤ガスとを直接供給して発電を行うことができる液体燃料直接供給形燃料電池を、分散形電源、移動体用電源、小型携帯用電源に適用するに際しての、その最適な構造に関するものである。

[0002]

【従来の技術】近年、環境問題や資源問題への対策がクローズアップされ、その一環として燃料電池の開発が活発に行われている。

【0003】燃料電池は、電解質の両側に負極と正極とを設け、負極に水素などの還元剤を供給し、正極に空気40中の酸素などの酸化剤を供給し、電解質を介した電気化学反応によって発電を行うものであり、その発電効率、エネルギー密度が高いことから、ニッケルー水素電池やリチウムイオン電池などの二次電池に代わる電源として注目されている。特に、還元剤として、メタノールなどの液体燃料を用いる、直接メタノール形燃料電池に代表される液体燃料直接供給形燃料電池は、燃料を改質、ガス化せずに直接発電に利用することができることから、構造がシンプルにでき、容易に小型化、軽量化できるので、種々の移動体用電源、分散形電源、可搬用電源、コ50

2

ンピューター用等のコンシューマ電源として検討されて いる。

【0004】このような直接メタノール形燃料電池では、負極に濃度が3%程度のメタノール水溶液を供給し、正極に空気を供給すると、負極の電気化学反応によって二酸化炭素が生成し、正極の電気化学反応によって水が生成し、負極側では前記二酸化炭素と反応後のメタノール水溶液が、正極側では前記水と反応後の空気が外部に排出される。

【0005】また、上記した直接メタノール形燃料電池には、正極に空気を供給するのに、ポンプ等の外部動力を用いるタイプと、正極に空気を大気中から取り入れるための溝と貫通孔を正極側セパレータに設け、この溝と貫通孔を通じて大気中の酸素を自然拡散、自然対流によって供給するタイプとが検討されており、後者のものは、前者のものと比較して、出力を得にくいといった短所はあるものの、ポンプを駆動するための電力が不要であることから、発電効率を高くでき、システムをシンプルでコンパクトにできる、ボンプの駆動音のない静かな発電機にできる、といった長所がある。このようなことから、直接メタノール形燃料電池は、コンピューター用等の小型のコンシューマ電源として最適なものとなる可能性がある。

[0006]

【発明が解決しようとする課題】しかしながら、上記のように、直接メタノール形燃料電池は、負極側から二酸化炭素と反応後のメタノール水溶液が、正極側から水と反応後の空気が外部に排出されるが、その排出物中に副生成物として生成した微量のホルムアルデヒド、蟻酸、またはこれらの反応によって生じた蟻酸メチルが混入することが知られており、これらをどのように処理するかが直接メタノール形燃料電池の実用化の上で重要であった。

[0007]

【課題を解決するための手段】本発明は上記課題を解決するためになされたもので、前述した副生成物が外部に排出されないようにすることを目的とし、その請求項1記載の発明は、プロトン導電性固体高分子膜からなる電解質を介して負極と正極とを対設した単電池セルの、負極に液体燃料を供給し、正極に酸化剤ガスを供給する構成が設けられ、かつ前記単電池セルまたはこの単電池セルが複数個積層されたセルスタックからなる発電ユニットを備えた液体燃料直接供給形燃料電池システムにおいて、前記正、負極の電気化学反応によって生成した反応生成物から気体と液体を分離する構成を設けるとともに、前記反応生成物から分離された気体成分を回収して大気に排出する気体成分回収手段を設け、かつ前記気体成分回収手段は気体成分中の副生成物を吸収または分解するフィルターを備えたことを特徴とするものである。

【0008】また、請求項2記載の発明は、請求項1記

*載の液体燃料直接供給形燃料電池システムにおいて、フィルターが活性炭またはゼオライトなどの吸着材を含有していることを特徴とするものである。

【0009】また、請求項3記載の発明は、請求項1記載の液体燃料直接供給形燃料電池システムにおいて、フィルターが貴金属系触媒、銀系触媒を含有していることを特徴とするものである。

【0010】また、請求項4記載の発明は、請求項1記載の液体燃料直接供給形燃料電池システムにおいて、フィルターが光化学触媒を含有していることを特徴とする10ものである。

【0011】すなわち、請求項1~4記載の発明によれば、前述した副生成物を、活性炭またはゼオライトなどの吸着材を含有しているか、貴金属系触媒、銀系触媒を含有しているか、光化学触媒を含有しているかのフィルターを透過させた後に、外部に排出されないようにしているから、直接メタノール形燃料電池における電気化学反応で生成した蟻酸、ホルムアルデヒド、メタノールなどが蒸気の状態で外部に排出されることはない。

[0012]

【発明の実施の形態】以下、本発明を、その実施の形態 に基づいて説明する。

【0013】図1は、本発明の第1の実施の形態に係る 液体燃料直接供給形燃料電池システムの例として示した 直接メタノール形燃料電池システムの構成図であり、そ の特徴は、プロトン導電性固体高分子膜からなる電解質 11を介して負極12と正極13とを対設して単電池セ ル1を発電ユニットとし、前記負極12に、液体燃料と してのメタノール水溶液を、その電気化学反応に適した 濃度にして貯蔵する燃料タンク2から供給し、正極1330 に、酸化剤ガスとしての空気を、図示していないポンプ によって供給するようにし、前記単電池セル1の電気化 学反応よって生成した反応生成物を、気液分離槽3で気 体と液体に分離し、液体成分としての水と負極の電気化 学反応に寄与したメタノール水溶液とは液体成分回収手 段4としての回収タンクに回収し、気体成分としての空 気と二酸化炭素とはフィルターを備えた気体成分回収手 段5に回収し、前記フィルターによって気体成分中の副 生成物が吸収または分解されるようにしたことである。

【0014】また、図2は、本発明の第2の実施の形態40に係る液体燃料直接供給形燃料電池システムの例として示した直接メタノール形燃料電池システムの構成図であり、図1のシステムとの相違点は、正極13に酸化剤ガスとしての空気が、ファンによって自然拡散または自然対流で供給されるようにし、正極13の電気化学反応によって生成した水と反応に寄与した空気を、フィルターを備えた気体成分回収手段51で回収し、負極12の電気化学反応によって生成した二酸化炭素と反応後のメタノール水溶液を、気液分離槽3で気体と液体に分離し、気体成分としての二酸化炭素はフィルターを備えた気体50

成分回収手段52で回収し、前記フィルターによって気体成分中の副生成物を吸収または分解するようにしたことである。なお、この第2の実施の形態のシステムでは、単電池セル1の正極側が大気中に開放されているため、単電池セル1全体をケースに入れている。

【0015】前記フィルターを、活性炭またはゼオライトなどの吸着材を含有しているものにすると、メタノール、ホルムアルデヒド、蟻酸、蟻酸メチルのような副生成物を吸着することができ、貴金属系触媒、銀系触媒を含有しているものや光化学触媒を含有しているものにすると、前記副生成物を水と二酸化炭素に分解することができるので、このような副生成物が大気中に放出されるのを防止することができる。

【0016】上記したフィルターを備えた気体成分回収手段5、51、52としては、図3に、吸着材や貴金属系触媒、銀系触媒を含有しているものの例を示しているが、これらを図示したハニカム層に担持させておくのがよく、また、図4に光化学触媒を含有しているものの例を示しているが、この場合は、同様にハニカム層に担持させておくとともに、これに太陽光が照射されるようにしたり、ケミカルランプの光が照射されるようにして、これを活性化させるようにする。

【0017】また、上記した吸着材や種々の触媒は単独で用いてもよいが、それぞれを適宜組み合わせてもよい。この場合は、それらの相乗効果を期待することができる。

【0018】また、上記した実施の形態は、液体燃料にメタノール水溶液を用いる直接メタノール形燃料電池システムで説明したが、メタノール水溶液以外の液体燃料、たとえばエチルアルコール、ブタノール、ジメチルエーテル等を用いた液体燃料直接供給形燃料電池にも適用することができる。

【0019】また、上記した実施の形態は、発電ユニットが単電池セル1からなるものについて説明したが、この単電池セル1が複数個積層されたセルスタックからなるもので発電ユニットを構成しても同様に適用することができる。

[0020]

20

【発明の効果】以上のように、本発明によれば、メタノール水溶液を改質、ガス化することなく発電を行うことができるといった直接メタノール形燃料電池を、携帯用電源、コンピューター用電源といった小型コンシューマー用途に適用するに際し、その副生成物を確実に除去することができ、上記した用途に適した直接メタノール形燃料電池システムの構成に寄与することができる。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態に係る直接メタノール形燃料電池システムの構成図である。

【図2】本発明の第2の実施の形態に係る直接メタノー ル形燃料電池システムの構成図である。 「【図3】フィルターを備えた気体成分回収手段の一例である

【図4】フィルターを備えた気体成分回収手段の他の例である。

【符号の説明】

- 1 単電池セル
- 2 燃料タンク
- 3 気液分離槽
- 4 回収タンク
- 5、51、52 気体成分回収手段

【図1】

【図2】

フロントページの続き

F 夕一ム(参考) 4D002 AA32 AA40 AB03 AC10 BA03 CA07 DA41 DA45 FA01 4D048 AA17 AA19 AB01 BA30Y BA31Y BA32Y BA33Y BA34Y BB02 EA01 5H026 AA08 EE02 EE05 EE11 5H027 AA08 BA16 Partial translation of Japanese Examined Patent Publication No. Sho 49-34092

CLAIM

1. A fuel cell system using hydrazine as a fuel, comprising: a liquid mixture tank for a liquid mixture comprising the fuel and an electrolyte; and a fuel cell unit, said liquid mixture being circulated between the liquid mixture tank and the fuel cell unit,

wherein gas in the liquid mixture discharged from the fuel cell unit is separated by a gas-liquid separator, toxic gas contained in the separated gas is decomposed by a gas decomposer and vented, and toxic gas discharged from a vent provided in said liquid mixture tank is decomposed by a gas decomposer and vented.