

TECHNICAL REPORT TD-77-11

AN INVESTIGATION OF FLOW AND STABILITY CHARACTERISTICS FOR A BODY OF REVOLUTION WITH FINS AND FLARE IN PRESENCE OF PLUME INDUCED SEPARATION AT MACH NUMBERS 0.7 TO 1.4

Aeroballistics Directorate Technology Laboratory

> COPY AVAILABLE TO DDG DOES KOT PERSIT FULLY LEGISLE PRODUCTION

May 1977

Approved for public release; distribution unlimited.

AD NO.

US Army Missile Research and Development Command Redstone Arsenal, Alabama 35809

DISPOSITION INSTRUCTIONS

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL INDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
TD-77-11 / 18 DRDMI 2. GOVT ACCESSION N	NO. 3. RECIPIENT'S CATALOG NUMBER
TITLE (and Subtitle)	TYPE OF REPORT & PERIOD COVERED
An Investigation of Flow and Stability Charac-	
teristics for a Body of Revolution with Fins	Technical Report
and Flare in Presence of Plume Induced Separa-	6. PERFORMING ORG. REPORT NUMBER
tion at Mach Numbers 0.7 to 1.4	(1H) RTR-026-1
AUTHOR(s)	6. CONTRACT OR GRANT NUMBER(8)
C. Wayne Dahlke	DAAK40-77-C-0008 Juleu
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Commander, US Army Missile Research	AREA & WORK UNIT NUMBERS
and Development Command ATTN: DRDMI-TD	(12)/80P.1
Redstone Arsenal, Alabama 35809	
CONTROLLING OFFICE NAME AND ADDRESS Commander, US Army Missile Research and Development Command	May 1977
ATTN: DRDMI-TI	13. NUMBER OF PAGES
Redstone Arsenal, Alabama 35809	185
MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office	15. SECURITY CLASS. (of this report)
	Unclassified
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
	SCHEDULE
Approved for public release, distribution unlim	ited. DDC
Approved for public release, distribution unlim	The Runde
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different	trom Report) IN #1 1971
Approved for public release, distribution unlim DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different Supplementary notes This report was prepared from data plotted by R All data presented are in a data base maintaine in tabular or magnetic tape form.	EMTECH, Inc., Huatsville, AL.
SUPPLEMENTARY NOTES This report was prepared from data plotted by R All data presented are in a data base maintaine	EMTECH, Inc., Huntsville, AL. d by REMTECH and are available
Supplementary notes This report was prepared from data plotted by R All data presented are in a data base maintaine in tabular or magnetic tape form. K_Y WORDS (Continue on reverse side if necessary and identify by block numb Thrust Effects Plume	EMTECH, Inc., Huntsville, AL. d by REMTECH and are available
SUPPLEMENTARY NOTES This report was prepared from data plotted by R All data presented are in a data base maintaine in tabular or magnetic tape form. K_Y WORDS (Continue on reverse side if necessary and identity by block numb Thrust Effects Plume Longitudinal Stability Boundary Layer	EMTECH, Inc., Huntsville, AL. d by REMTECH and are available
SUPPLEMENTARY NOTES This report was prepared from data plotted by R All data presented are in a data base maintaine in tabular or magnetic tape form. KLY WORDS (Continue on reverse side if necessary and identify by block numb Thrust Effects Plume Longitudinal Stability Boundary Layer Plume Effects	EMTECH, Inc., Huntsville, AL. d by REMTECH and are available
SUPPLEMENTARY NOTES This report was prepared from data plotted by R All data presented are in a data base maintaine in tabular or magnetic tape form. KLY WORDS (Continue on reverse side if necessary and identify by block numb Thrust Effects Plume Longitudinal Stability Boundary Layer Plume Effects	EMTECH, Inc., Huntsville, AL. d by REMTECH and are available
SUPPLEMENTARY NOTES This report was prepared from data plotted by R All data presented are in a data base maintaine in tabular or magnetic tape form. K-Y WORDS (Continue on reverse side if necessary and identity by block numb Thrust Effects Plume Longitudinal Stability Boundary Layer Plume Effects Base Pressure	EMTECH, Inc., Huntsville, AL. d by REMTECH and are available
SUPPLEMENTARY NOTES This report was prepared from data plotted by R All data presented are in a data base maintaine in tabular or magnetic tape form. K_Y MORDS (Continue on reverse side if necessary and identify by block number than the stability and the stability belock number to the stability by block number to t	EMTECH, Inc., Huntsville, AL. d by REMTECH and are available
Supplementary notes This report was prepared from data plotted by R All data presented are in a data base maintaine in tabular or magnetic tape form. K_Y MORDS (Continue on reverse side if necessary and identify by block numb. Thrust Effects Longitudinal Stability Plume Effects Base Pressure ABSTRACT (Continue on reverse side if necessary and identify by block numb. The results of a wind tunnel test, simulat	EMTECH, Inc., Huntsville, AL. d by REMTECH and are available Separation or) ing rocket motor exhaust
Supplementary notes This report was prepared from data plotted by R All data presented are in a data base maintaine in tabular or magnetic tape form. K_Y MORDS (Continue on reverse side if necessary and identify by block numb. Thrust Effects Longitudinal Stability Plume Effects Base Pressure ABSTRACT (Continue on reverse side if necessary and identify by block numb. The results of a wind tunnel test, simulat jet effects on missile aerodynamics at Mach numb.	EMTECH, Inc., Huntsville, AL. d by REMTECH and are available Separation or) ing rocket motor exhaust bers of 0.7 to 1.4 are pre-
Supplementary notes This report was prepared from data plotted by R All data presented are in a data base maintaine in tabular or magnetic tape form. K_Y MORDS (Continue on reverse side if necessary and identity by block number to be a supplementary by block numbers and the supplementary by block numbers and the supplementary by block numbers and the supplementary by block numbers are pressure ABSTRACT (Continue on reverse side if necessary and identity by block numbers are pressure as a supplementary and identity by block numbers and the supplementary and identity by block numbers are pressure. ABSTRACT (Continue on reverse side if necessary and identity by block numbers are pressure as a supplementary and identity by block numbers are pressure. A pressure are pressure as a supplementary and identity by block numbers are pressure as a supplementary and identity by block numbers are pressure. A pressure are pressure as a supplementary and identity by block numbers are pressure. A pressure are pressure as a supplementary and identity by block numbers are pressure. A pressure are pressure as a supplementary and identity by block numbers are pressure. A pressure are pressure as a supplementary and identity by block numbers are pressure. A pressure are pressure as a supplementary and identity by block numbers are pressure as a supplementary and identity by block numbers are pressured as a supplementary and identity by block numbers are pressured as a supplementary and identity by block numbers are pressured as a supplementary and identity by block numbers are pressured as a supplementary and identity by block numbers are pressured as a supplementary and identity by block numbers are pressured as a supplementary and identity by block numbers are pressured as a supplementary and identity by block numbers are pressured as a supplementary and identity by block numbers are pressured as a supplementary and identity by block numbers are pressured as a supplementary and identity by block numbers are pressured as a suppl	EMTECH, Inc., Huntsville, AL. d by REMTECH and are available er) Separation ing rocket motor exhaust bers of 0.7 to 1.4 are preto induce afterbody bound-
SUPPLEMENTARY NOTES This report was prepared from data plotted by R All data presented are in a data base maintaine in tabular or magnetic tape form. K_Y WORDS (Continue on reverse side if necessary and identity by block number to be a second plume and the second plume and the second plume and the second plume are plume as a second plume and the second plume are plume as a second plume and the second plume are plume as a second plume and the second plume are plume as a second plume are plume are plume as a second plume are plume	EMTECH, Inc., Huntsville, AL. d by REMTECH and are available er) Separation ing rocket motor exhaust bers of 0.7 to 1.4 are preto induce afterbody boundiques including both
Supplementary notes This report was prepared from data plotted by R All data presented are in a data base maintaine in tabular or magnetic tape form. KLY WORDS (Continue on reverse side if necessary and identity by block number thrust Effects Longitudinal Stability Plume Effects Base Pressure ABSTRACT (Continue on reverse side if necessary and identity by block number to the state of a wind tunnel test, simulated the fects on missile aerodynamics at Mach number the feets of the feets	EMTECH, Inc., Huntsville, AL. d by REMTECH and are available Separation Separation or ing rocket motor exhaust bers of 0.7 to 1.4 are preto induce afterbody boundiques including both The primary emphasis
Supplementary notes This report was prepared from data plotted by R All data presented are in a data base maintaine in tabular or magnetic tape form. KLY WORDS (Continue on reverse side if necessary and identify by block numb and in the stability belock number and in the stability by block number and	EMTECH, Inc., Huntsville, AL. d by REMTECH and are available ser) Separation or ing rocket motor exhaust bers of 0.7 to 1.4 are preto induce afterbody boundiques including both The primary emphasis ments taken on twelve

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
408 564

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) three forward fin configurations; body flare combination; and two combinations of forward fins/strakes with tail fins. All force and moment coefficients are presented in plotted form. One configuration is shown with ground plane interference simulation.

TABLE OF CONTENTS

		PAGE	
Ι.	INTRODUCTION	3	
II.	APPARATUS	4	
	TEST FACILITY	4 4 6	
III.	TEST PROCEDURES AND CONDITIONS	6	
IV.	DATA	7	
	REDUCTION	7 7 7	

APPENDIX A - PLOTS OF BASIC DATA

APPENDIX B - SLOPES AT ZERO ANGLE OF ATTACK

9-12				
-7.8		White 80	citan	ũ
		Butt Sect	ios	0
MCOFRA CO	CID			
STI ICA	108			
9Y Distribu	NYA KOIT	HLABILIT	COSE	3
Cist.	AVAIL	354/06	SPECIA	-
A	27	;		
1	18	71		

INDEX OF TABLES

TABLE	DESCRIPTION		PAGE
I	MODEL GEOMETRY		12
II	NOMINAL TEST CONDITIONS		12
III	NOMINAL PLUME SIMULATOR CHAMBER PRESSURE		13
IV	DATA UNCERTAINTY		13
٧	DATA SET SUMMARY		14
VI	SUMMARY OF STABILITY DERIVATIVES		21
	INDEX OF FIGURES		
FIGURE	DESCRIPTION		PAGE
1	SCHEMATIC OF MODEL		25
2	INSTALLATION PHOTOGRAPHS		26
3	COMBINED OIL FLOW/SHADOWGRAPH BODY ALONE, M_{∞} =1.25, CRT=0, α =1°		30
4	COMBINED OIL FLOW/SHADOWGRAPH BODY ALONE, M $_{\infty}$ =1.25, CRT=4.2, α =1° · · ·		31
5	COMBINED OIL FLOW/SHADOWGRAPH BODY ALONE, $M_{\infty}=1.25$, CRT=7.2, α =1° · · ·		32
6	COMBINED OIL FLOW/SHADOWGRAPH BF5, M =1.25, CRT=7.2, α=1° · · · · · ·		
7	COMBINED OIL FLOW/SHADOWGRAPH BF7S1, M =1.25, CRT=7.2, α=1° · · · · ·		34
8	BASE PRESSURE RATIO VERSUS CRT		35
9	ROLLING MOMENT COEFFICIENT, MACH=1.25 .		36
10	ROLLING MOMENT COEFFICIENT, BODY ALONE .		39
11	STABILITY COEFFICIENT DERIVATIVES, CRT=0.0 · · · · · · · · · · · · · · · · · ·		40
12	CENTER OF PRESSURE FROM NOSE AND ZERO LIFT FORE DRAG	.\t	45

INTRODUCTION

The objective of this test was to study several techniques for improving static aerodynamic stability for missiles with large rocket motor plumes. Flow phenomena were recorded through both oil flow and shadowgraph for seven of the thirteen configurations that were tested during the force phase. This report documents primarily the data from the aerodynamic force measurement phase. Subsequent reports will include more detail analysis with data from the visualization phase. All testing was conducted in the Aerodynamic Wind Tunnel (IT) of the Arnold Engineering Development Center (AEDC) Propulsion Wind Tunnel Facility (PWT).

It has been shown (reference 1) that longitudinal location of fin stabilizers may be adjusted to improve aerodynamic stability for particular plume-missile configurations that have afterbody boundary layer flow separation. Location of fins forward of the missile body base may not be feasible in some cases, and it could further complicate the structural considerations of hardware design. The model for this test was designed so that aerodynamic stability could be studied for configurations with geometric modification to aft mounted fin stabilizers. These were: extended fin exposed span, fin body gap, and extended fin chord. Two additional configurations were introduced: strakes/finstrake combinations and a forward mounted flare. All of these were covered in the thirteen configurations tested. A normal jet plume simulator was used to induce the afterbody boundary layer separation. One series of test throughout the Mach number range of 0.7 to 1.4 was conducted with a solid bottom tunnel wall replacing the normal perforated wall. This was implemented to provide nose bow shock reflections and/or ground plane interference effects on aerodynamic stability with plume simulated boundary layer separation.

II. APPARATUS

A. Test Facility Description and Operation.

The AEDC-PWT Aerodynamic Wind Tunnel (IT) is a continuous flow, non-return facility, with Mach number capability from 0.2 to 1.5. The tunnel total pressure is essentially nonvariant at approximately 2850 psfa with \pm 5 percent variation. The total temperature variation can be controlled from 80 to 120 degree F. The test section is one foot square and 37.5 inches long with 6 percent porosity with all four perforated walls installed. During the visualization phase the sidewalls were replaced with solid transparent walls, and during the force test simulating ground plane interference the bottom wall was replaced with a solid floor. A more detailed description of the IT facility may be found in the AEDC Test Facility Handbook (reference 2).

B. Model

The model was a sting mounted body of revolution having a diameter of 1.1 in. It had a 3-caliber tangent ogive nose with a 7.4 caliber cylindrical afterbody, making a total length of 10.4 calibers (11.44 in.), figure 1. Five tail fins were added to give six arrangements of: two exposed span variations (F2, F5); three fin root chord body gaps (F5, F6, F7); two chord variations (F2, F8); and F2 rolled 45° to the "X" position. Three fins were mounted forward of the base; S1, S2 and F2. Fins S1 and S2 are referred to as "strakes" and are mounted with their trailing edge 1.5 calibers from the base. Fin F2 was mounted with the trailing edge 1.65 calibers from the base. Combinations of the small strake S1 and tail fins F5 and F7 were also tested. A truncated cone "flare" one caliber long was added with the flare base one caliber from

the body base. The flare height and the exposed span of strake S1 were made to be the estimated boundary layer thickness for the model in the 1T test section. Strake S2 was made to be two boundary layer thicknesses. Fin F2 and the body were made to be geometrically similar to previous models tested at CALSPAN, and AEDC, PWT 16T, reference 1. These configurations are shown in figure 1 and table I. Installation photographs of each of these are shown in figure 2. Many other arrangements are available with this model. The plume simulator is identified on the first of the photographs of figure 2. Geometric similarity between this plume simulator and the larger model simulator, reference 1, was maintained where possible. Total radial flow from the plume simulator is from 12 holes 5/64 in. diameter equally spaced around the circumference of the simulator, located 0.73 in. aft of the model base. Both the larger plume simulator and this simulator had a total sonic jet orifice area of 6.0% of the model cross-sectional area with the centerline of the orifice 0.66 body diameters (calibers) aft of the body base. Due to structural considerations the simulator diameter to model diameter ratio could not be matched. The simulator was tested for both leaks and structural integrity up to approximately 2000 psi chamber pressure. The simulator used in this test was 0.815 in. in diameter for a simulator to model diameter ratio of 0.74 as compared to 0.60 for the larger model, reference 2. Detailed descriptions of the plume simulator and all model parts including sting and adapter are contained in MIRADCOM drawings RDK-13900 series.

C. Instrumentation

Force and moment measurements were made by an AEDC six-component internal 3/4 in. strain-gage balance, 6-.75-.040-.52 mf. Two model

base pressures and the plume simulator chamber pressure were measured with transducers and plumbing integal to the sting-simulator hardware. Plume simulator chamber temperature was measured with an internal iron-constantan thermocouple.

III. TEST PROCEDURES AND CONDITIONS

The test was conducted through a Mach number range of 0.7 to 1.4. Tunnel and atmospheric conditions prevented obtaining a tunnel section Mach number of 1.5. Tunnel total temperature was varied from 125 to 180° F as required to prevent moisture condensation in the test section. The nominal tunnel test conditions are summarized in table II.

Data for single run/part number were obtained by varying angle-of-attack with Mach number and plume simulator chamber pressure held constant. Angle-of-attack was nominally varied from -3 to 4 degrees at zero yaw and roll "+" attitudes. Angle-of-attack was varied up to +6 degrees for the runs with the ground plane simulation, and two configurations were run with a 45 degree "x" roll angle. The plume simulator air supply was adjusted to give the preselected chamber pressure that gave the desired radial thrust coefficient (CRT) for the tunnel test section conditions. The values for chamber pressure at specified values of CRT along with the expression for computation is contained in table III. The mass flow rate varied up to 1.5 - 2.0 pounds per second.

During the shadowgraph and oil flow phases pictures were taken primarily at angles of attack of 0, 1, and 2 degrees. Force and moments were not recorded during the visualization phase of testing. The composition of oil used was 1 part titanium dioxide, 2 parts oil (mobil DTE heavy-medium duty oil) and 1 - 2 drops oleic acid per quart of above mixture.

A. Reduction

All balance force coefficients are referenced to the cross-sectional area of the body, 0.95033 sq. in. The moment reference center is located at model station 5.83 inches aft of the nose or at 5.1 calibers forward of the body base. The moment coefficients are referenced to the body cross-sectional area times the body diameter (1.1 in.). The sign convention is the standard body axis system, positive nose up and right (climbing right turn). The two base pressures were averaged and ratioed to the free stream ambient pressure. The computation method of the radial thrust coefficient, and values obtained during the test are listed in table III. Corrections to angle-of-attack were made for sting and balance deflections caused by aerodynamic loads and model weight.

B. Uncertainty

Data uncertainty was estimated by AEDC for a confidence level of 95 percent. The values shown in table IV are based on the uncertainty of both balance measurements and tunnel conditions.

C. Presentation of Results

This report presents the results of the force phase of this test. Table V contains a complete run log for both the oil flow and shadow-graph phases along with the force measurement runs. During the initial part of the testing strain gage balance drift caused by a lead length temperature compensation problem was excessive. Because of this part (run) numbers through 50 are not included in the presentation with the exception of Mach number 1.35 data. Most of these data were repeated, and are presented in Appendix A.

1. Visualization Results

Approximately 145 oil flow and 138 shadowgraph photographs were taken at discrete Mach number, angle of attack, and simulated thrust levels. A number of the 70 mm oil flow prints have been enlarged, then superimposed onto the full sized shadowgraph prints to provide visualization of the combined body surface and external flow patterns at matching flow and plume simulator conditions. Sample combined prints with jet-off and two simulator pressures for body without fins are shown for Mach number 1.25 at one degree angle-of-attack on figures 3 through 5. Figure 6 shows the large fin-body (BF5) and figure 7 the combination of strake and gap fin (BF7S1) for CRT = 7.2. Analysis of the visualization results and how they are related to and aid in interpretation of force data is incomplete.

2. Force and Moment Results

The stability coefficients, normal force, side force, pitching moment, and yawing moment are shown in Appendix A for all configurations. The base pressure ratio as a function of CRT at the various Mach numbers are shown in figure 8. It should be pointed out here that the base pressure and especially the point of flow separation - boundary layer separation - on the afterbody is significantly affected by the condition of the body approach boundary layer. In addition to boundary layer properties of temperature, Reynolds number and turbulence, the thickness must be considered when comparing these results to either similar tests or prototype versions. However, the trends that exist for increases in simulator (CRT) magnitude, Mach number, angle-of-attack and limited comparisons between configurations should represent qualities of all similar situations. Samples of the rolling moment coefficients are

shown in figures 9 and 10. The data shown in figure 9 are all at Mach 1.25 for cases where the variations in side force and yawing moment (Appendix A) are quite large. Body alone data - jet off - is shown in figure 10. All coefficients will be retained for future reference.

The stability derivatives over the linear portion of the normal force and pitching moment curves near zero angle-of-attack (generally $-1.5 \le \alpha \le 1.5$ degrees) are presented in Appendix B for all configurations tested. A list of all of these slopes are contained in table VI. Comparisons of the jet off stability and forebody axial force coefficients are shown in figures 11 and 12.

REFERENCES

- Batiuk, G., Henderson, J. H., "A Summary of Jet Plume Effects on the Stability Characteristics of a Body of Revolution with Various Fin Configurations at Mach Numbers from 0.2 to 2.3 (Normal Jet Plume Simulator)," U. S. Army Missile Command, Redstone Arsenal, Alabama, 13 December 1976, Report No. RD-77-12.
- 2. "Test Facilities Handbook" (Tenth Edition), Propulsion Wind Tunnel Facility, Vol. 4, Arnold Engineering Development Center, May 1974.

NOMENCLATURE

SYMBOL	PLOT SYMBOL	DEFINITION
b/2		fin chord length, in.
С		fin exposed semi-span, in.
c_A		axial force coefficient
c_{D_O}	CDo	fore drag coefficient, total less base drag
c_ℓ	C1	rolling moment coefficient
c _m	C _{LM}	pitching moment coefficient
C _n	CLN	yawing moment coefficient
CN	CN	normal force coefficient
$c_{m_{\alpha}}$	CMa, C _M ALPHA	pitching moment slope at zero angle of attack
$c_{N_{\alpha}}$	CNa, C _{NALPHA}	normal force slope at zero angle of attack
CY	CY	side force coefficient
CRT	CRT	radial thrust coefficient
$\ell_{\sf ref}$	LREF	reference length, in.
M _{sc}		tunnel test section Mach number
P_b/P_{∞}	Pb/Pi	base to tunnel static pressure ratio
P _t		tunnel stagnation pressure, psfa
$q_{_{\infty}}$		tunnel test section dynamic pressure, psf
R_N		Reynolds number, per foot

NOMENCLATURE (Continued)

SYMBOL	PLOT SYMBOL	DEFINITION
S _{ref}	SREF	reference area used to reduce data to coefficient form, in.
t		fin thickness, in.
Х _{ср}	XCP	center of pressure in calibers from nose
X _{mrp}	XMRP	moment reference point on X axis
α	ALPHA	angle of attack, degrees
ф	PHI	angle of roll, degrees

TABLE I MODEL GEOMETRY

Config.	c (in.)	b/2 (in.)	Gap (in.)	t (in.)	Profile	Remarks
В						Body alone
F2	0.66	0.55	0.0	0,033	1/4c Wedge Flat Plate	Fin
F5		1.32	*			
F6		1.045	0,275			
F7		0.77	0,55			
F8	2.31	0.55	0.0		1	•
*\$1	1.10	0.15			Flat with Round L.E.	Strake
S2		0.30	*	*	+	+
**FL	+	0.15			Flare Angle	

- \star Trailing edge of strakes 1.50 calibers from base.
- ** Flare base 1.0 caliber from base.

TABLE II

NOMINAL TEST CONDITIONS

M _∞	P _t	q _∞	R _N × 10 ⁻⁶
	(psfa)	(psf)	(per ft.)
0.60	2850	563	4,001
0.70		705	4.426
0.90		955	5,013
1.00		1054	5,187
1.10		1130	5,287
1.25		1204	4,999
1.40	*	1229	4,916

TABLE III

NOMINAL PLUME SIMULATOR CHAMBER PRESSURE

MACH				CRT				
	2.5	3	4.2	6	7.2	9	12	18
0.7	172	204	281	397	474	590	783	1169
0.9	227	271	376	533	637	794	1056	1579
1.0	249	297	412	585	701	874	1163	1740
1.1	265	317	441	627	750	936	1246	
1.25	281	336	467	665	797	995		
1.4	285	341	476	678				

CRT = A_{nj} (0.5283 x P_c (1.4 x M_j^2 + 1) - P_s /144) / (A_{ref} x q/144)

A_{nj} = Total exit area, 12 orifices

 $A_{nj}/A_{ref} = 0.06$

 M_j = Sonic jet (M=1.0)

q = Free stream dynamic pressure, psf

P_c = Chamber pressure in simulator, psi

 P_s = Tunnel static pressure, psf

 P_{t} = 2850 psi -- tunnel total pressure

TABLE IV
DATA UNCERTAINTY

M _∞	ΔM _∞	Δq (psf)	ΔCN	ΔC _Y	ΔCA	ΔC _m	ΔC _n	ΔCe
0.60	±.003	+4.75	±.059	+.036	+.029	±.031	+.046	+.012
0.70	+.003	+4.35	±.047	±.028	<u>+</u> .023	±.025	+.037	+.009
0.90	+.003	<u>+</u> 3.79	±.035	+.021	±.017	±.018	+.027	+.007
1.00	+.004	+3.93	±.032	+.019	+.016	±.017	+.024	+.006
1.10	+.006	+4.30	±.030	+.018	±.015	±.016	+.023	+.006
1.25	+.012	+4.45	±.028	+.017	±.014	±.015	+.021	+.005
1.40	<u>+</u> .025	<u>+</u> 1.96	<u>+</u> .027	<u>+</u> .016	<u>+</u> .013	<u>+</u> .014	+.021	+.005

TABLE V. DATA SET SUMMARY FORCE AND MOMENT PHASE

Set	IESI	AEDC IM-330	200													
860001 B 0.7 A 0 522	Data				0						CRT					
BECORDI B	Set		8			0		3		9	7.2		6	12	14	18
10	B600	_	0.7	A	0	522				525			524			523
0.3 B 1.0 A 0 513 512 510 509 650 650 650 650 650 650 650 650 650 650	F	-	0.9	A	0	517				516			515			
04 B 1.1 A 0 604.508 510			1.0	A		513	512			511				*9		
0.5 B 1.25 A 0 496 501 45 60 45 60 66 B 1.35 A 0 6.88 47 46 45 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			1.1	A		504,508	510									
06 B 1,35 A 0 68 43 47 46 45 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			1.25			496	501		500		43,497					
07 B 1.4 A 0 528 531 530 529 68 597 698 698 698 699 699 699 699 699 699 699			1.35		0	48	47	46	45							
08 BFL 0.7 A 0 595		Section 1	1.4		0	528	531	530	529							
09 BFL 1.0 A 0 589 592 591 586 587 587 587 10 BFL 1.0 A 0 583 588 586 567 567 567 567 567 567 567 567 567 56		08 BFL	0.7	A	0	595				869			265			969
10 BFL 1.25 A 0 583 588 586 587 587 587 119 BF2 0.7 A 0 562 571 570 570 563 118 BF2 0.7 A 0 568 571 570 570 570 569 13 BF2 1.25 A 0 573 576 589 579 715 714 713 711 18 BF2/B 0.7 B 0 739 736 721 722 728 738 738 738 738 738 738 738 738 738 73		09 BFL	1.0		0	589	592			591				280		
11 BF2 0.7 A 0 562		10 BFL	1.25		0	583	588		586		585		587			
12 BF2 1.0 A 0 568 571 570 570 569 13 BF2 1.25 A 0 573 576 579 574 570 574 569 13 BF2 1.25 A 0 573 576 579 579 574 570 570 570 570 570 570 570 570 570 570		11 BF2	0.7		0	562				292			564	563		
13 BF2 1.25 A 45 578 580 579 714 713 714 713 716 15 BF2 1.25 A 45 578 710 716 716 717 716 717 716 717 716 717 716 717 716 717 716 717 718 718 718 718 718 718 718 718 718			0.	A	0	568	571			570				569		
14 BF2 1.25 A 45 578			1.25		0	573	976		575		574					
15 BF2/A 1.25 A 0 712 717 716 715 714 713 741 16 BF2/B 0.7 B 0 739 729 729 729 729 729 728 728 729 728 729 728 729 728 728 729 728 728 728 729 729 728 729 728 729 729 729 729 728 729 729 729 729 729 729 729 729 729 729			1.25	A	45	578			580	579						
6 8F2/8 0.7 8 0 739 739 742 729 728 728 729 729 728 728 729 729 728 728 729 729 728 72		BF2/	1.25		0	712	717		716		715	714	713			
17 BF2/B 0.9 B 0 727 730 729 728 735 7		BF2/			0	739				742				741		740
18 BF2/B 1.0 B 0 731 736 736 737 736 737 737 736 737 737 737				В	0	727	730			729				. 87/		
19 BF2/B 1.1 B 0 734 723 721 722 720 BF2/B 1.25 B 0 720 724 745 744 721 722 722 8F5 0.9 A 0 548 558 555 558 555 721 BF5 1.0 A 0 559 558 557 558 557 558 557 558 557 558 558		BF2/	1.0	8	0	731				733			732	738		
20 BF2/B 1.25 B 0 720 724 723 721 722		19 BF2/B	<u>-</u>	8	0	734				736			735			
21 BF2/B 1.4 B 0 743 746 745 744 546 547 546 23 BF5 0.7 A 0 548 559 550 550 549 558 25 BF5 1.0 A 0 559 558 557 557 556 25 BF5 1.1 A 0 559 558 557 557 556 25 BF5 1.4 A 0 534 537 536 535 57 8 BF6 0.7 A 0 601 8 601 8 604 603 8 8 8 640 8 8 8 640 8 8 8 640 601 8 8 8 640 601 8 8 8 640 601 8 604 603 8 604 603 8 604 603 8 604 603 8 604 603 8 604 603 8 604 603 8 604 603 8 604 603 8 604 601 8 604 603 8 604 603 8 604 603 8 604 603 8 604 603 604 605 604 605 605 605 605 605 605 605 605 605 605		20 BF2/B	_	m	0	720	724		723		721		722			
22 BF5 0.7 A 0 544 559 550 549 549 550 549 550 549 550 549 559 559 559 559 559 559 559 559 559		21 BF2/B		В	0	743	746		745	744						
23 BF5		22 BF5	0.7	A	0	544				547			246			545
24 BF5 1.0 A 0 551 553 552 555 25 BF5 1.1 A 0 559 558 557 556 557 26 BF5 1.25 A 0 538 540 535 604 603 603 27 BF5 1.4 A 0 534 537 536 535 604 603 28 BF6 0.7 A 0 601 80tom Wall 2/B = Aft Location, Solid Bottom Wall Schedules: A = +4, ±3, ±2, ±1.5, ±1.0, ±0.5, 0 B = +6, +4, ±3, ±2, ±1.5, ±1.0, ±0.5, 0		23 BF5		A	0	548				550			549			
25 BF5		24 BF5	1.0	A	0	551	553			552				555		
26 BF5		25 BF5		A	0	559	558			557			929			
2/8 BF6		26 BF5	1.25	A	0	538	540		539		543					
28 BF6		27 BF5	1.4	A	0	534	537	536	535							
2/A = Forward Location 2/B = Aft Location, Solid Bottom Wall Schedules: A = +4, +3, +2, +1.5, +1.0, +0.5, 0 B = +6, +4, +3, + 2, +1.5, +1.0, +0.5, 0	•	28 BF6	10.7	A	0	601				604		-	603			602
2/B = Aft Location, Solid Bottom Wall Schedules: A = +4, ±3, ±2, ±1.5, ±1.0, ±0.5, 0 B = +6, +4, +3, + 2, +1.5, +1.0, +0.5, 0	BF2	1)	ward I	ocat	•											
Schedules: A = +4, +3, +2, +1.5, +1.0, +0.5, B = +6, +4, +3, + 2, +1.5, +1.0, +0.5,	BF2	11	Locat	ion		id Botte	m Wall	0	c					* CRT=1.		
= +6, +4, +3, +2, +1.5, +1.0, +0.5,	ਲ ਰ	chedules		+		17, 1		6.01								
				+		+	+		+0.5,							

TABLE V. DATA SET SUMMARY (continued) FORCE AND MOMENT PHASE (concluded)

		18			624			635			664							674											
		14																											
		12	609			623			989										675			703							
		6			625			640			029	665	662		269	694	889	678		6/9	705								
		8.2											693	652			689			089				У	y	У			
	CRT	7.2		611			919			949			629	653			069			681			708	Jata On	Data On	Data On			
		9.	909		626	629	617	641	637			999		654		695			9/9		902	704			Pressure	Pressure			
		4.2		612			618			647			099	655			691			682			709	Base Pr	Base Pr	Base Pr			
		3																						CRT -	CRT -	CRT -			
		2.5	209	613		630	619		638	648		299	199			969	692			683				Variable	ariable	ariable			
		0	605	610	627	628	615	642	639	645	699	899	658	651	869	693	687	673	677	489	702	701	707	5 - V	50 - V	/ -			
-	0		0	0	0	0	0	0	0	0	0	0	0	45	0	0	0	0	0	0	0	0	0	0	0	0			
1	ಶ		A			A	A	A	A	A	A	A	A	A	A	A	A	A	A	A			A		0	0			
0	Mach	No.	1.0	1.25	0.7	0.1	1,25	0.7	1.0	1.25	0.7		1.25	1.25	0.7	1.0	1.25	0.7	1.0	1.25	0.7	1.0	1.25	0.7	0.1	1.25			
AEDC TM-350	Config		4	-	BF7	BF7	BF7	BF8	B F 8	8F8	BS1	BS1	851	881	852	BS2	852	BF751	BF751	BF751	BF551	BF551	BF5S1	В					
TEST AE	Data	Set	B60029	130	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	20	5	1 52			

TABLE V. DATA SET SUMMARY (continued)
OIL VISUALIZATION PHASE

TEST A	TEST AEDC TM-350	150													
Data	Config Mach	Mach	ಶ	0					0	CRT					
Set	,	No.			0	2.5	3	4.2	9	7.2	8.2	6	12	14	18
	8	0.7	0	0								102		_	
	В	0.7	-	0								103		98,100	
	8	10.7	2	0								104		66	
	8	0.7	3	0								105			
	8	1.0	0	0	79	88			85				80		
	8	1.0	ŀ	0		89			84				81		
	8	1.0	2	0		90			83				82		
	8	1.0	3	0		91									
	B	1.0	4	0		92									
	8	1.0	2	0		93									
	В	1.0		0		94									
	В	1.25			99			62,71	72	27					
6	8	1.25			63,67			61,70	73	58					
	B	1.25		0	64,68			69,09	74	69					
	8	1.25		0					7.5						
	8	1.25		0					9/			115.			
	BF5	0.7		0	109							116,126			14,121
	BF5	0.7	-	0	110							17,125			13,122
	BF5	0.7	2	0	111							18,124			12,123
	BF5	1.0	0		129				135				134		
	BF5	1.0	-		130				136				133		
	BF5	1.0	2		131				137				132		
	BF5	1.25						145		140					
	BF5	1.25		0				144		141					
	BF5	1.25		0	147,148			143		142					
	BF7	0.7	0	0	188				187			182			
	BF7	0.7	-	0	189				186			183			
	BF7	0.7	2	0	190				185			184			
	BF7	1.0	0	0		179			174						

TABLE V. DATA SET SUMMARY (continued)
OIL VISUALIZATION PHASE (continued)

TEST	AEDC TM-350	50													
Data	Config Mach	Mach	ಶ	0						CRT					
Set		No.			0	2.5	3	4.2	9	7.2	8.2	6	12	14	18
	BF7	0.1	-	0		178			175						
	BF7	1.0	2	0		177			176						
		1.25	0	0	158,169	168		157	163	151					
	BF7	1.25	-	0	159,170	167		156	164	152					
		1.25	2	0	160,171	166		155	165	153,154					
		0.7	0	0	193,194							207			200
		0.7	-	0	195							506			201
		0.7	2	0	196							205			202
		0.7	3	0								204			203
	BFL	1.0	_	0	222										
	BFL	1.0		0	221	216			215				210		
Ļ	BFL	1.0	_	0	220	217			214				211		
17	BFL	1.0	2	0	219	218			213				212		
	BFL	1.25	_	0	231					230		225			
	BFL	1.25		0	232					229		226			
	BFL	1.25		0	233					228		227			
	BS1	0.7	_	0	274							5/3			897
	851	0.7	-	0	275							212			569
	BS1	0.7	2	0	276							271			270
	BS1	1.0	0	0	265	262			261			256			
	BS1	1.0		0		263			260			257			
	BS1	1.0		0		264			259			258			
	BS1	1.25	-	0		253									
	BS1	1.25		0	242	252		247		241		236			
	BS1	1.25		0	243	251		248		240		237			
	BS1	1.25	2	0	244	250		249		239		238			
	BF751	0.7		0								284			279
	BF751	0.7	-	0								283			280
	BF7S1	0.7	2	0								282			281

17

TABLE V. DATA SET'SUMMARY (continued)
OIL VISUALIZATION PHASE (concluded)

		18																					
		14																					
		12	288	289	290																		
		6				596	297	298															
		8.2																					
	CRT	7.2				301,302	300	299	313	314	315												
		9	293	292					318	317	316	324	325	326									
		4.2				305	306	307	319	320	321	329	328	327									
		3																					
		2.5				310	309	308															
		0										330											
	€	+	0	0	0	0	0	0	45	45	45	45	45	45									
	5		0	1	_	0	-	2	0	1	2	0		2									
20	Mach	No.	0.	1.0	1.0	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25									
AEDC TM-350	Confid	5	BF751	BF7S1	BF7S1	BF7S1	BF751	BF751	BS1	BS1	BS1	BF2	BF2	BF2									
TEST AE	Data	Set																					

TABLE V. DATA SET SUMMARY (continued) SHADOWGRAPH VISUALIZATION PHASE

		18		368	367	366							379	378	377																	
		14		3	3	3			-				3	3	3		-		-	-												
			_	_	-		_						_				-	_		-												
		12		369*	370*	*	356	355	354				* 08	381*	12 ×																	
		6		36	37	37				338	337		38	38	38				397	396	395	423	424	425	436	435	434	458	155,459	454,456	157,460	
		8.2																						426								475
	CRT	7.2								339	340	341							398	399	400	414	413	412	442	441	440	462,463	461/1	461/2		476
		9					357	358	359							388	387	386														
		4.2								344	343	342							403	402	401	415	416	417	443	444	445	464	465	466		481
		3																														
		2.5					362	361	360	345	346	347				389	390	391	404	405	406	420	419	418	448	447	446					
		0		363	364	365	351	352	353	333	334	335	374	375	376	383	384	385	392	393	394	409	410	411	431	432	433	451	452	453		469
	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		45
	ಶ			0	1	2	0	-	2	0	-	2	0	1	2	0	1	2		_	2	0	_	2	0	-	2	0	-	2		0
50	Mach	No.		0.7	0.7	0.7	1.0	1.0	1.0	1.25	1.25	1.25	0.7	0.7	0.7	1.0	1.0	1.0	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25		1.25
AEDC TM-350	Config Mach			8	8	8	8	В	8	В	В	В	BF5	BF5	BF5	BF5	BF5	BF5	BF5	BF5	BF5	BS1	BS1	BS1	BF751	BF751	BF7S1	BFL	BFL	BFL	-	851
TEST A	Data	Set														19																

*CRT-11

TABLE V. DATA SET SUMMARY (concluded) SHADOWGRAPH VISUALIZATION PHASE (concluded)

Data Config Mach Car C		_	_	-	-	-	-	-	 -		-	-	-	_	 _	-	-	 _	-	 	-	 	-	 -	
Data Config Mach a			18																						
Data Config Mach			14								1														
Data Config Mach			12						1																
Data Config Mach			6						1																
Data Config Mach \(\alpha \) \(\therefore\) Data Set \(\text{No.} \) \(\text{No.} \) \(\text{Vo.} \) \(8.2	474	473																				
Data Config Mach α φ 0 2.5 3 4.2 Set No. 1.25 1 45 470 480 BS1 1.25 2 45 471 479 BF2 1.25 0 45 484 490 BF2 1.25 2 45 486 491		CRT	7.2	477	478																				
Data Config Mach α φ 0 2.5 3 4 Set No. α φ 0 2.5 3 4 Set No. α φ 0 2.5 3 4 BS1 1.25 2 45 471 47 BF2 1.25 1 45 486 499 BF2 1.25 2 45 486 499			9			489	488	487																	
Data Config Mach α φ 0 2.5 Set No. α φ 0 2.5 Set BS1 1.25 1 45 470 BS1 1.25 0 45 484 BF2 1.25 1 45 486 BF2 1.25 2 45 486 BF2 1.25 2 45 486 BF2 1.25 2 45 486			4.2	480	479	490	491	492																	
Data Config Mach α φ 0 Set No. 0 BST 1.25 1 45 470 BST 1.25 2 45 485 BF2 1.25 1 45 486 BF2 1.25 1 45 486 BF2 1.25 1 45 486 BF2 1.25 2 45 486			3																						
Data Config Mach α φ Set No. BS1 1.25 1 45 BS1 1.25 2 45 BF2 1.25 1 45 BF2 1.25 2 45			2.5																						
Data Config Mach α Set No. BS1 1.25 1 BS1 1.25 1 BF2 1.25 1 BF2 1.25 2 BF2 1.25 2			0	470	471	484	485	486																	
Data Config Mach Set No. BS1 1.25 BF2 1		•	+	45	45	45	45	45			I														
Data Set				F	1					\int															
Data Set	50	Mach	No.	1.25	1.25	1.25	1.25	1.25																	
Data Set	EDC TM-3	Config	5	851																					
	TEST A																								

TABLE VI. SUMMARY OF STABILITY DERIVATIVES - $c_{
m N}$

TEST	AEDC TM-350	20			ייייי	:						N N			
1		N C		•						CRT					
Set	Contrig	No.	ಶ	0-	0	2.5	3	4.2	9	7.2	8.2	6	12	14	18
B600C	-	0.7	A	0	.0445				.0030			0423			0777
 -	02 B	0.9	A	0	.0484				0520			1046			
	-	1.0	A	0	.0500	.0115			0678			10	* 000		
	_	1.1	A	0	.0503	0064			0841			0793			
	_	1.25	A	0	.0515	0052		0887		2107					
	06 B	1.35	A	0	.0483	0115	0259	0799							
		1.4	A	0	.0495	0041	0117	0611							
	18 BFL	0.7	A	0	.0540				.0464			.0432			.0409
	09 BFL	1.0		0	.0611	.0629			.0439				.0315		
	0 BFL	1.25		0	.0646	.0645		.0507		.0063		0424			
	1 BF2	0.7	_	0	.1158				.0393			0150	1338		
	2 BF2	1.0		0	.1310	9950.			1035				0981		
E	3 BF2	1.25		0	.1405	0422		0526		1210					
		1.25		45	.1237				0977						
2	BF2 /	1.25		0	.1549	.1000		.0531		1177	2614	4636			
	6 BF2/B	0.7		0	.1176				.0497				0852		.0238
	7 BF2/B	6.0	В	0	.1263	9690			9960				.0096.		
	8 BF2/B	1.0	В	0	.1291				1748			.0093	.0157		
	19 BF2/B	1.1		0	.1323				0858			.0422			
	20 BF2/B	1.25	В	0	.1403	0314		0476	_	0808	•	£800°			
	21 BF2/B	1.4	В	0	.1268	0036		0787	0356						
	2 (BF5	1.0	A	0	.2502				.1275			.0356			1515
7	3 BF5	6.0	A	0	.4180				.0748			-,1756			
	4 BF5	1.0	A	0	.2976	.2015			0761				0949		
-	5 BF5	1.1		0	.2982	.1279			0408			0476			
	26 BF5	1.25		0	.2989	.0736				1258					
	27 BF5	1.4		0	.2623	.1233	.0123	0660							
•	8 BF6	0.7	A	0	.1508				.0683			.0285			-,0307
BF	BF2/A = For	Forward Location	Loca									*	*CRT=11		
BF	2/B = Aft	Loca	tion		id Bott	Solid Bottom Wall							-		
8	α Schedules: $A = +4$,	¥	+ 4		+2, +	.5, +1	.0, +0.5								
		<u>m</u>	9+=	, +4,	1+3	+2, +1.5, +1.0, +0.5,	, 11.0,	- 1	0						

TEST RUN NUMBERS

TABLE VI. SUMMARY OF STABILITY DERIVATIVES (continued) $\mathsf{C}_{\mathsf{N}} \quad \text{(concluded)}$

		18			0233			3T/T			0717							0384									1	
		14																										
		12	0341			0135			4439										0542			0412						
		6			.0448			.0213			0163	0882	.0287		:0003	0786	0858			. 0882	.0642							
		8.2											1063	0684			1796			.0232								
	CRT	7.2		1862			1706			7039			1759	1060			1559			1636			0787					
		9	0101		.0624	.0398	0879	.0757	3384			0511		1561		0376			.0417		.1598	0037						
		4.2		0082			0108			3984			0475	0559			0264			0315			.0007					
		3																										
		2.5	1094	.0875		.0782	9690.		.0724	-,0729		.0324	.0012			.0525	.0471			.0833				1		1		
		0	.1747	1699	9011.	.1399	.1339	.1298	.1418	.1716	.0474	.0582	.0647	.0603	.0788	.0847	.0858	.1192	1471	.1480	.2640	.2913	3008					
	0		0	0	0	0	0	0	0	0	0	0	0	45	0	0	0	0	0	0	0	0	0					
1	ಶ		A	A	A	A					A	A		A				A			1	A	A					
150	Mach	No.	1.0	1.25	0.7	1.0	1.25	0.7	1.0	1.25	0.7	1.0	1.25	1.25	0.7	1.0	1.25	0.7	1.0	1.25	0.7	1.0	1.25					
TEST AEDC TM-350	Config Mach		BF6	BF6	BF7	32 BF7	BF7	34 BF8	35 BF8	36 BF8	37 BS1	BS1	39 851	40 BS1				_		46 BF7S1	BF551	48 BF5S1	BF551					
TEST AF	Data	Set	B60029 BF6	1-30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	₹ 49					

TABLE VI. SUMMARY OF STABILITY DERIVATIVES (continued)

		18	.5847							1471								.1486			,			.9159						.3761
		14																												
		12			2*						.1778		.8741	.6249				9199.	.1676	1596						.5975				
		6	.4707	.7191	.6382*	.5254				.1378		.4755	.3320				1.8334			.1936	.0564	.0388		1017	1.0598		.3635			.2045
		8.2															1.2056													-
	CRT	7.2					1.0412					.3063			.6644		.7466					.4882						.6983		
		9	.2635	.4949	. 5652	.6054				.1169	.1305		.1003	.7669		.6448		.1129	.7544	1.0588	.6252		.4614	2581	0295	.5971	4416			0237
رس الس		4.2					.7286	.6929	.6390			.1472			.5425	.5549	.1803					.4895	.7219					.3920	0899.	
		3						.4951	.4799																				.3670	
		2.5			.2393	.3749	.3855	4446	.4127		. 0895	.0891		.0561	.5605		.0598		.0039			.5078	.4146			5686	-,2235	.0629	1796	
		0	.1372	.1257	.1012	1194	.1183	.1563	.1647	.1322	.0684	.0702	1740	2697	2839	2699	1703	1926	2521	2665	2730	2708	2037	8485	-1.6036		-1,0373	-1.0186	8598	3679
	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	45	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ಶ		A	A	A	A	A	A	A	A	A		5		A	A	А	A	A	A	A	A	A	A	A	A	A	A	A	A
20	Mach	No	0.7	6.0	1.0	1.1	1.25	1.35	1.4	0.7	1.0	1.25	0.7	1.0	1.25	1.25	1.25	0.7	6.0	1.0		1.25	1.4	0.7	6.0	1.0		1.25	1.4	0.7
TEST AEDC TM-350	Config	,		В	В	В	В	В	В		BFI				BF2	BF2	BF2/A	BF2/B	BF2/B	BF2/B	BF2/B	-	BF2/B	BF5			BF5	BF5	BF5	BF6
TEST AE		Set	B60001	7 02	03	04	02		100	80	60	10	11	112	13	14	15	91	17	18	19		21					56	27	4 28

* CRT=11

TABLE VI. SUMMARY OF STABILITY DERIVATIVES (concluded) $C_{m_{\alpha}} \mbox{ (concluded)}$

	18			.3865			1.5798			.5206							.4312							I				
	14																											
	12	.3774			.2875			.8892										.4025			.3991							T
	6			1911.			.2475			.4120	.6305	1721		.3223	.5985	.6243			.0205	.0214				1	-			1
	8.2											.6229	4629			.9211			.1225							-		
CRT	7.2		9932			9057			2.9912			.9108	.6149			.8246			.8371			.5497	1	1				
	9	.3313		0043	.1275	.6122	.0714	1.7718			.5133		.8757		.4732			.1569		3966	.3190			1				
	4.2		.3663			.3804			2.0457			.5238	.5577			.5472			.4695			.3284						
	3																											
	2.5	.1693	.0446		0176	.0542		1079	.8093		.2147	.3596			.1484	.2570			0139				1	1			1	1
	0	.4908	.4400	. 2005	.3276	.2692	.1779	.2440	. 2644	.1074	.0787	1099	6660.	.0448	.0223	.0577	2250	3192	3015	8450	9831	9864						
0	-	0	0	0	0	0	0	0	0	0	0	0	45	0	0	0	0	0	0	0	0	0						
8		A	A	А	A	A	A	A	A	A	A	А	A	A	A	А	А	A	A	A	А	A						
Mach	No.	1.0	1.25	0.7	0.1	1.25	0.7	0.1	1.25	0.7	1.0	1.25	1.25	2.0	1.0	1.25	0.7	0.1	1.25	0.7	0.1	1.25						
Data Config Ma		BF6	BF6	BF7	BF7	BF7		BF8	BF8	BS1	BS1	BS1	BS1		852	852		BF7S1	BF7S1	BF5SI	BF551	BF5S1						
Data	Set			3]	32	33	34	35			(1)		40	41					46	47	48	₹ 49						

FIGURE 1. SCHEMATIC OF MODEL

BODY ALONE

BF7

FIGURE 2. INSTALLATION PHOTOGRAPHS

BODY FLARE

BF2

FIGURE 2. CONTINUED

FIGURE 2. CONTINUED

BF5S1

BF7S1

FIGURE 2. CONCLUDED

FIGURE 3. COMBINED OIL FLOW/SHADOWGRAPH BODY ALONE, M $_\infty$ =1.25, CRT=0, α =1°

FIGURE 4. COMBINED OIL FLOW/SHADOWGRAPH BODY ALONE, M $_{\infty}$ =1.25, CRT=4.2, α =1°

FIGURE 5. COMBINED OIL FLOW/SHADOWGRAPH BODY ALONE, M $_{\infty}$ =1.25, CRT=7.2, α =1° 32

FIGURE 6. COMBINED OIL FLOW/SHADOWGRAPH BF5, $\rm M_{\infty}$ =1.25, CRT=7.2, $\rm \alpha$ =1° 33

FIGURE 7. COMBINED OIL FLOW/SHADOWGRAPH BF7S1, M $_{\infty}$ =1.25, CRT=7.2, α =1°

FIGURE 8 - BASE PRESSURE RATIO VERSUS CRT

35

FIGURE 9-ROLLING MOMENT COEFFICIENT MACH = 1.25

ALPHA

FIGURE 9 CONTINUED

FIGURE 10-ROLLING MOMENT COEFFICIENT - BODY ALONE

FIGURE 11-STABILITY COEFFICIENT DERIVATIVES

MACH NO. 98.8

9.40

1.68

FIGURE 11-Continued

MACH NO.

FIGURE 11-Continued

FIGURE 11-Continued

FIGURE 11-Continued

1.20

1.88

8.68 6.88 MACH NO.

09.0

8.48

9.26

-1.19

FIGURE 12-CENTER OF PRESSURE FROM NOSE AND ZERO LIFT FORE DRAG

1.20

8.88 MACH NO.

9.99

FIGURE 12-Continued

1.20

0.80 MACH NO.

9.48

FIGURE 12-Continued

1.20

0.80 MACH NO.

FIGURE 12-Continued

1.20

0.80 MACH NO.

FIGURE 12-Continued

APPENDIX A

PLOTS OF BASIC DATA

INDEX OF DATA FIGURES

TITLE	масн	CONDITION	PAGI
Thrust Effects on Stability Coefficients, Body Alone	0.70	CRT	4
Thrust Effects on Stability Coefficients, Body Alone	0.90	CRT	6
Thrust Effects on Stability Coefficients, Body Alone	1.00	CRT	8
Thrust Effects on Stability Coefficients, Body Alone	1.10	CRT	10
Thrust Effects on Stability Coefficients, Body Alone	1.25	CRT	12
Thrust Effects on Stability Coefficients, Body Alone	1.35	CRT	14
Thrust Effects on Stability Coefficients, Body Alone	1.40	CRT	16
Thrust Effects on Stability Coefficients, Body Flare	0.70	CRT	18
Thrust Effects on Stability Coefficients, Body Flare	1.00	CRT	20
Thrust Effects on Stability Coefficients, Body Flare	1.25	CRT	22
Thrust Effects on Stability Coefficients, BF2	0.70	CRT	24
Thrust Effects on Stability Coefficients, BF2	1.00	CRT	26
Thrust Effects on Stability Coefficients, BF2	1.25	CRT	28
Thrust Effects on Stability Coefficients, BF2, Phi=45°	1.25	CRT	30
Thrust Effects on Stability Coefficients, BF2 (1.65 Fwd)	1.25	CRT	32
Thrust Effects on Stability Coefficients, BF2+Grnd Pl Ref	1 0.70	CRT	34
Thrust Effects on Stability Coefficients, BF2+Grnd P1 Ref	1 0.90	CRT	36
Thrust Effects on Stability Coefficients, BF2+Grnd Pl Ref	1 1.00	CRT	38
Thrust Effects on Stability Coefficients, BF2+Grnd P1 Ref	1 1.10	CRT	40
Thrust Effects on Stability Coefficients, BF2+Grnd Pl Ref	1 1.25	CRT	42
Thrust Effects on Stability Coefficients, BF2+Grnd Pl Ref	1 1.40	CRT	44
Thrust Effects on Stability Coefficients, BF5	0.70	CRT	46
Thrust Effects on Stability Coefficients, BF5	0.90	CRT	48
Thrust Effects on Stability Coefficients, BF5	1.00	CRT	50
Thrust Effects on Stability Coefficients, BF5	1.10	CRT	52
Thrust Effects on Stability Coefficients, BF5	1.25	CRT	54
Thrust Effects on Stability Coefficients, BF5	1.40	CRT	56
Thrust Effects on Stability Coefficients, BF6	0.70	CRT	58
Thrust Effects on Stability Coefficients, BF6	1.00	CRT	60
Thrust Effects on Stability Coefficients, BF6	1.25	CRT	62

INDEX OF DATA FIGURES - CONCLUDED

TITLE	масн	CONDITION	PAGE
Thrust Effects on Stability Coefficients, BF7	0.70	CRT	64
Thrust Effects on Stability Coefficients, BF7	1.00	CRT	66
Thrust Effects on Stability Coefficients, BF7	1.25	CRT	68
Thrust Effects on Stability Coefficients, BF8	0.70	CRT	70
Thrust Effects on Stability Coefficients, BF8	1.00	CRT	72
Thrust Effects on Stability Coefficients, BF8	1.25	CRT	74
Thrust Effects on Stability Coefficients, BS1	0.70	CRT	76
Thrust Effects on Stability Coefficients, BS1	1.00	CRT	78
Thrust Effects on Stability Coefficients, BS1	1.25	CRT	80
Thrust Effects on Stability Coefficients, BS1, Phi=45°	1.25	CRT	82
Thrust Effects on Stability Coefficients, BS2	0.70	CRT	84
Thrust Effects on Stability Coefficients, BS2	1.00	CRT	86
Thrust Effects on Stability Coefficients, BS2	1.25	CRT	88
Thrust Effects on Stability Coefficients, BF7S1	0.70	CRT	90
Thrust Effects on Stability Coefficients, BF7S1	1.00	CRT	92
Thrust Effects on Stability Coefficients, BF7S1	1.25	CRT	94
Thrust Effects on Stability Coefficients, BF5S1	0.70	CRT	96
Thrust Effects on Stability Coefficients, 8F5S1	1.00	CRT	98
Thrust Effects on Stability Coefficients, BF5S1	1.25	CRT	100

Plot Schedule: C_N , C_m , C_γ , C_n , versus α

1	AD-A040 860 UNCLASSIFIED		REMTECH INC HUNTSVILLE ALA AN INVESTIGATION OF FLOW AND STABILITY CHARACTERISTICS FOR A BOETC(U) MAY 77 C W DAHLKE RTR-026-1 DRDMI-TD-77-11 NL									(4 (C (U)		
		2 of 2 ADA 040860		M										
4			*\-	# IIII	Ni		N.X			12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N I			
			XX					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			111	K. 1 i	111	
		M			i i i	11					11			ji
								1						
			A											
													The face are one are one are one are one are one	

48

PAGE

2.0

my'

4· 25

And the second second

-

The Samuel State of the State o

MP •

BEFERENCE INFORMATION GREF .950 60.1N. LREF 1.100 IN. XMRP 5.830 IN.

PARAMETRIC VALUES PHI .00 MACH .70

N

The state of the s

70

PAGE

N

PAGE 90

APPENDIX B SLOPES AT ZERO ANGLE OF ATTACK

INDEX OF SLOPE FIGURES

	TITLE					CONDITION	PAGE
Stability	Derivatives	with	Thrust	Effects,	Body Alone, M=0.7-1.1	Mach	2
Stability	Derivatives	with	Thrust	Effects,	Body Alone, M=1.1-1.4	Mach	4
Stability	Derivatives	with	Thrust	Effects,	Body Flare	Mach	6
Stability	Derivatives	with	Thrust	Effects,	BF2	Mach	8
Stability	Derivatives	with	Thrust	Effects,	BF2, Phi=45°	Mach	10
Stability	Derivatives	with	Thrust	Effects,	BF2, (1.65 Fwd)	Mach	12
Stability	Derivatives	with	Thrust	Effects,	BF2 + Grnd P1 Ref1 M=0.7-1.1	Mach	14
Stability	Derivatives	with	Thrust	Effects,	BF2 + Grnd P1 Ref1 M=1.1-1.4	Mach	16
Stability	Derivatives	with	Thrust	Effects,	BF5, M=0.7-1.1	Mach	18
Stability	Derivatives	with	Thrust	Effects,	BF5, M=1.1-1.4	Mach	20
Stability	Derivatives	with	Thrust	Effects,	BF6	Mach	22
Stability	Derivatives	with	Thrust	Effects,	BF7	Mach	24
Stability	Derivatives	with	Thrust	Effects,	BF8	Mach	26
Stability	Derivatives	with	Thrust	Effects,	BS1	Mach	28
Stability	Derivatives	with	Thrust	Effects,	BS2	Mach	30
Stability	Derivatives	with	Thrust	Effects,	BF7S1	Mach	32
Stability	Derivatives	with	Thrust	Effects,	BF5S1	Mach	34

Plot Schedule: ${\rm C}_{{
m N}_{lpha}}$, ${\rm C}_{{
m m}_{lpha}}$ versus CRT

DISTRIBUTION

	Number f Copies		Number of Copies
Defense Documentation Center Cameron Station Alexandria, Virginia 22314 Commanding General	12	Commanding Officer Ballistic Research Laboratories ATTN: AMXRD-BEL, Mr. R. Krieger Aberdeen Proving Ground, Maryland 21005	1
US Army Materiel Command Research & Development Directorate ATTN: DRCRD Washington, D. C. 20315 Commanding Officer	1	Commanding Officer US Naval Ordnance Laboratories ATTN: Mr. S. Hastings Mr. R. T. Hall Library	1 1 1
US Army Picatinny Arsenal ATTN: SMUPA-VC3, Mr. A. Loeb Dover, New Jersey 07801	1	White Oak Silver Spring, Maryland 20910	
Director US Army Mobility Research and Development Laboratory ATTN: SAVDL-AS Ames Research Center		NASA-Langley Research Center ATTN: Mr. Leroy Spearman Mr. Charles Jackson Technical Library Hampton, Virginia 23665	1 1 1
Moffett Field, California 94035	1	Commanding Officer & Director Naval Ship Research and Developmen	t
Commanding Officer Research Laboratories ATTN: SMUEA-RA, Mr. Abraham Flatau Edgewood Arsenal, Maryland 21010	1	Center ATTN: Aerodynamic Laboratory Carderock, Maryland 20007	1
Commanding Officer Air Force Armament Laboratory ATTN: Mr. C. Butler	1	NASA-Ames Research Center ATTN: Technical Library Moffett Field, California 94035	1
Mr. F. Howard Dr. F. Findley Eglin Air Force Base, Florida 32542	i	NASA-Lewis Research Center ATTN: Technical Library Cleveland, Ohio 44135	1
Arnold Engineering and Development Center ATTN: Dr. McKay Library Mr. A. Hesketh Arnold Air Force Station, Tennessee 37389	1 1 1	NASA-Marshall Space Flight Center ATTN: Mr. K. Blackwell Mr. H. Struck Mr. J. Sims Technical Library Marshall Space Flight Center, Alabama 35812	
Air Force Flight Dynamics Laborator	y	US Air Force Academy ATTN: Lt. Col. W. A. Edgington DFAN	
Wright-Patterson Air Force Base, Ohio 45433	1	USAF Academy, Colorado 80840	1

	Number of Copies		Number of Copies
Philco Corporation Aeronutronic Division ATTN: Technical Information Services-Acquisitions Mr. L. E. Horowitz		Commander US Naval Ordnance Station Code 563 ATTN: Mr. N. Seiden Indian Head, Maryland	1
Ford Road Newport Beach, California 92663	1	Naval Weapons Center	
Rockwell International Columbus Aircraft Division ATTN: Mr. Fred Hessman 4300 East Fifth Avenue		ATTN: Mr. R. Meeker China Lake, California 93555	1
Columbus, Ohio 43216	1	University of Missouri at Columbia Dept. of Mechanical Engineering	
Sandia Corporation Sandia Base Division 9322 ATTN: Mr. W. Curry		ATTN: Dr. D. E. Wollersheim Columbia, Missouri 65201	1
Box 5800 Albuquerque, New Mexico 87115	1	University of Illinois College of Engineering ATTN: Dr. A. L. Addy	1
Purdue University ATTN: Dr. J. Hoffman, Propulsion Center Lafayette, Indiana 47907	1	Dr. H. H. Korst Dr. R. A. White Engineering Library Urbana, Illinois 61801	1 1 1
University of Tennessee Space Institute ATTN: Dr. J. M. Wu Tullahoma, Tennessee 37388	1	John Hopkins University Applied Physics Laboratory ATTN: Dr. L. Cronvich Mr. Gordon Dugger	1 1 1
University of Alabama Department of Aerospace Engineerin	g	Mr. R. Walker Silver Spring, Maryland 20910	
ATTN: Dr. Zien Dr. J. O. Doughty University, Alabama 35486	1	University of Notre Dame Dept. of Aerospace Engineering ATTN: Dr. T. J. Mueller Notre Dame, Indiana 46556	1
Jet Propulsion Laboratory California Institute of Technology ATTN: Mr. R. Martin, Mr. P. Jaffe 4800 Oak Grove Drive		Naval Air Systems Command ATTN: Mr. William Volz Air 320-C, Room 778, JP-1	6
Pasadena, California 91109		Washington, D. C. 20361 For Transmittal to:	6

TTCP

	Number of Copies	Number of Copie	25
Boeing Company ATTN: Library Unit Chief Mr. R. J. Dixon Mr. H. L. Giles P. O. Box 3707	1 1 1	The Martin-Marietta Corporation Orlando Division ATTN: D. Tipping 1 L. Gilbert 1 Orlando, Florida 32804	
Seattle, Washington 98124 Convair, A Division of General Dynamics Corporation AITN: Division Library Pomona, California 91776	1	McDonnell Douglas Astronautics CoWest ATTN: Library A3-328 5301 Bolsa Avenue Huntington Beach, California 92646 1 McDonnell Douglas Corporation	
Nielson Engineering & Research, Ir ATTN: Dr. Jack N. Nielson	nc.	P. O. Box 516 St. Louis, Missouri 63166	
850 Maude Avenue Mountain View, California 94040	1	Northrop Corporation Electro-Mechanical Division	
Hughes Aircraft Company ATTN: Documents Group Technical Library		ATTN: Mr. E. Clark 500 East Orangethorpe Y20 Anaheim, California 92801	
Florence Avenue at Teale Street Culver City, California 90230	1	Emerson Electric Company ATTN: Mr. Robert Bauman 8100 Florissant Rd.	
Ling-Temco-Vought Aerospace Corp. ATTN: Mr. Dick Ellison P. O. Box 404		St. Louis, Missouri 63136	
Warren, Michigan 48090	1	ATTN: Mr. L. M. Hair 2603 Artie Street	
Ling-Temco-Vought Aerospace Corp. Vought Aeronautics Division ATTN: C. R. James, Unit 2-53330		Huntsville, Alabama 35805 6 DRDMI-X, Dr. McDaniel 1	
Box 5907 Dallas, Texas 75222	1	-TX, Dr. Kobler 1 -PD 3	
Lockheed Missiles & Space Company Huntsville R&E Center ATTN: Mr. M. M. Penny 4800 Bradford Boulevard, N.W. Huntsville, Alabama 35805	1	Mr. Henderson 2 Mr. Dahlke 15 DRCPM-RS, Mr. Sullivan 1 DRSMI-LP, Mr. Voight 1 DRDMI-TI, (Record Set) 1	
Lockheed Missiles & Space Company ATTN: Technical Information Cente P. O. Box 504 Sunnyvale, California	er	(Reference Set) 1	
	1		