Fonction exponentielle et logarithme népérien

1^{re} Spécialité mathématiques Analyse - Cours

Généralités sur la fonction exponentielle 1

Définition et propriété admise :

Il existe une unique fonction f dérivable sur \mathbb{R} telle que f' = f et f(0) = 1.

Cette fonction est appelée fonction exponentielle et se note exp.

Ainsi, pour tout réel x, on a $\exp'(x) = \exp(x)$ et $\exp(0) = 1$.

Propriétés algébriques

Lemme:

Pour tout réel x, on a $\exp(x) \neq 0$.

Propriétés:

- 1. Pour tous réels x et y, on a $\exp(x+y) = \exp(x) \times \exp(y)$ qu'on appelle relation fonctionnelle.
- 2. Pour tous réels x et y, on a :
 - $\exp(-x) = \frac{1}{\exp(x)}$
 - $\exp(x y) = \frac{\exp(x)}{\exp(y)}$
 - $\exp(nx) = \exp(x)^n$

1.2 La notation de l'exponentielle

L'image de 1 par la fonction exp est le nombre noté e, appelé constante d'Euler. Ainsi, $\exp(1) = e$.

Remarque: La fonction exp possède les mêmes propriété algébriques que les fonctions puissances. On notera donc $\exp(x) = e^x$ $(e \approx 2,7182...)$.

Propriété:

Pour tous réels x et y, on a :

- $e^{x+y} = e^x \times e^y$ $e^{x-y} = \frac{e^x}{e^y}$
- $\bullet \ e^{-x} = \frac{1}{e^x}$
- $\bullet (e^x)^n = e^{nx}$

1.3 Lien avec les suites géométriques

Propriété:

Soit a un réel. Soit u la suite définie pour tout entier naturel n par $u_n = e^{na}$.

Alors la suite u est une suite géométrique.

2 Étude et applications de la fonction exponentielle

2.1 Signe de la fonction exponentielle

Propriété:

La fonction exp est strictement positive sur \mathbb{R} .

Autrement dit : pour tout nombre réel $x, e^x > 0$.

2.2 Variations de la fonction exponentielle

On résume dans le tableau de variation suivant :

Propriété:

La fonction exp est strictement croissante sur \mathbb{R} .

x	$-\infty$ $+\infty$
Signe de $f'(x)$	+
Variations de $f(x) = e^x$	

2.3 Courbe de la fonction exponentielle

x	e^x
-2	$\approx 0,13$
-1,5	$\approx 0,22$
-1	≈ 0.37
-0,5	$\approx 0,61$
0	1
0, 5	$\approx 1,65$
1	$\approx 2,72$
1,5	$\approx 4,48$
2	$\approx 7,39$

2.4 Fonctions définies par $f(t) = e^{kt}$ avec $k \in \mathbb{R}$

Propriété:

Pour k > 0, la fonction f définie par $f(t) = e^{kt}$ est strictement croissante sur \mathbb{R} .

Pour k < 0, la fonction f définie par $f(t) = e^{kt}$ est strictement décroissante sur \mathbb{R} .

2.5 Fonctions du type $f: x \mapsto e^{ax+b}$

Propriété :

Pour a et b fixés, la fonction f définie sur \mathbb{R} par $f(x) = e^{ax+b}$ est dérivable sur \mathbb{R} et pour tout réel x, $f'(x) = a \times e^{ax+b}$.

2.6 Équations et inéquations

${\bf Propri\acute{e}t\acute{e}:}$

Pour tous réels a et b, on a :

- $e^a = e^b \Leftrightarrow a = b$
- $e^a < e^b \Leftrightarrow a < b$

Exemples:

• On résout dans \mathbb{R} l'équation $e^{2x+1} = e^{x-3}$:

• On résout dans \mathbb{R} l'inéquation $e^{x-3} < 1$:

$$e^{2x+1} = e^{x-3}$$

$$\Leftrightarrow 2x + 1 = x - 3$$

$$\Leftrightarrow x + 1 = -3$$

$$\Leftrightarrow \ x = -4$$

$$\Leftrightarrow S = \{-4\}$$

$$e^{x-3} < 1$$

$$\Leftrightarrow e^{x-3} < e^0$$

$$\Leftrightarrow x - 3 < 0$$

$$\Leftrightarrow x < 3$$

$$\Leftrightarrow S =]-\infty;3[$$

3 Généralités sur la fonction logarithme

3.1 Introduction

Théorème:

Pour tout réel a > 0, il existe un unique réel b tel que $a = e^b$.

3.2 Définition et notation

Définition :

On appelle logarithme népérien d'un réel a > 0, le nombre réel b tel que $e^b = a$. On le note $\ln(a) = b$.

Exemple:

•
$$\ln(1) = 0 (\text{car } e^0 = 1)$$

•
$$\ln(e) = 1 (\text{car } e^1 = e)$$

Remarques:

•
$$\ln(0)$$
 n'existe pas. En effet, $e^x \neq 0$ pour tout $x \in \mathbb{R}$

• Pour tout entier
$$n \ge 2$$
, $\ln(n)$ n'est pas rationel.

3.3 Propriétés algébriques

Théorème:

Pour tout réel x > 0, y > 0 et pour tout entier relatif n,

$$\bullet \ e^{\ln(x)} = x$$

•
$$\ln(e^x) = x$$

•
$$\ln(xy) = \ln(x) + \ln(y)$$

•
$$\ln(\frac{x}{y}) = \ln(x) - \ln(y)$$

•
$$\ln(x^n) = n \ln(x)$$

4 Propriétés graphiques

4.1 Symétrie des courbes représentatives de l'exponentielle et du logarithme

Dans un repère orthonormé, on note d la droite d'équation x=y.

La symétrie axiale par rapport à la droite d a pour effet d'échanger les abscisses et les ordonnées, c'est à dire qu'elle transforme tout point de coordonnées (x;y) en un point de coordonnées (x;y).

Les courbes représentatives de la fonction exp et ln sont symétriques l'une de l'autre par rapport à la droite d.

4.2 Dérivation de la fonction logarithme

Théorème:

Si pour tout réel x > 0, $f(x) = \ln(x)$ alors f est dérivable, et pour tout x > 0: $f'(x) = \frac{1}{x}$

Corrolaire:

- La fonction ln(x) est strictement croissante sur $]0; +\infty[$.
- Pour tous réels a et b strictements positifs, $\ln(a) < \ln(b) \Leftrightarrow a < b$.