RESUMO

Aqui começa o resumo escrito em língua vernácula.

ABSTRACT

Here the abstract written in foreign language begins

1 INTRODUÇÃO

Segundo o dicionário Cambridge, a palavra *rank* significa uma posição particular, mais alta ou mais baixa que outras. Por exemplo, a seleção brasileira de futebol masculino ocupa uma posição na classificação das seleções da FIFA.

A posição ocupada pela seleção brasileira somada as posições ocupadas pelas outras seleções constituem o *ranking* das seleções de futebol masculino da FIFA. Pode-se citar como outros exemplos de *ranking*: o *ranking* do IDH (Índice de Desenvolvimento Humano) dos países, o *ranking* da competição da Yahoo! ¹ sobre *Learning to rank*, entre outros.

Todos os *rankings* citados são ordenados de acordo com um critério. Por exemplo, para a definição do *ranking* de seleções da FIFA, calcula-se o total de pontos para cada seleção vinculada à FIFA e ordenam-se as seleções com base nas pontuações. As seleções com maior pontuação ocupam o topo do *ranking*, enquanto as seleções com menor pontuação ocupam a base.

A pontuação total de uma seleção em um período de quatro anos é definida por meio da soma da média de pontos ganhos em partidas disputados nos 12 últimos meses e da média de pontos ganhos em partidas que ocorreram há mais de 12 meses, a qual se deprecia anualmente. Há uma fórmula matemática para definir a pontuação de uma equipe em uma partida.

Podemos afirmar que as fórmulas utilizadas pela FIFA para definir as pontuações das seleções constituem um modelo que determina uma ordem parcial do conjunto de seleções FIFA. Dizer que o as fórmulas utilizadas pela FIFA constituem um modelo caracteriza a tarefa de ordenação das seleções FIFA como computável, ou seja, o modelo pode ser escrito em forma de algoritmo e avaliado, junto aos dados necessários, por um computador.

Outra característica do modelo FIFA é que ele foi definido por funcionários da instituição, ou seja, o modelo é fruto do intelecto humano. Apesar disso, seria possível a aprendizagem automática de um modelo que ordenasse o conjunto de seleções vinculadas à FIFA.

¹http://learningtorankchallenge.yahoo.com/leaderboard.php

As características de computabilidade e possibilidade de aprendizagem automática, observadas no exemplo do *ranking* da FIFA, podem ser encontradas em diversos outros tipos de ordenações.

Talvez não haja muita valia em automatizar o aprendizado de um modelo para ordenar as seleções vinculadas à FIFA; o modelo definido pela FIFA já é bastante adequado. Porém, para uma grande quantidade de aplicações, aprender modelos que ordenem uma base de dados pode ser útil, ajudando a lidar com problemas como quantidade de dados e variáveis a serem consideradas.

Um problema beneficiado pela aprendizagem de um modelo de ordenação seria: Dado um conjunto de documentos em que cada documento pode receber um rótulo, atribuir uma posicao a cada documento do conjunto, tendo como insumo pares documento-rótulo ou uma relação de ordem total ou parcial entre os documentos.

O problema de ordenação de documentos é um dos problemas de interesse de uma área conhecida como *Learning to Rank* que tem atraído a atenção de muitos pesquisadores nos últimos anos. Já conta com sites especializados no assunto², competições³ além do apoio das gigantes de TI.

Essa área de pesquisa está inserida no contexto de *inteligência artificial* e compartilha conhecimentos com áreas como *Aprendizado de máquina*, *Recuperação de informação* e *processamento de linguagem natural*.

Estudaremos a implantação e avaliação de uma técnica de aprendizado para ordenação de um conjunto no qual os elementos são passíveis de rotulação. Tal técnica reduz o problema de ordenação a uma problema de classificação de acordo com o descrito em (1).

Essa técnica, que havia sido especificada apenas teoricamente, foi implantada, avaliada e comparada com outras técnicas. Essa é a principal contribuição desse estudo.

Para a implantação do algoritmo de *ranking* foi escolhida a ferramenta *WEKA*⁴, descrita no livro (2). Essa ferramenta fornece vários recursos para *aprendizado de máquina*.

O restante dessa monografia está organizado da seguinte forma: O capítulo 2 faz uma introdução aos conceitos necessários para o entendimento do algoritmo *Ranking*; o capítulo 3 mostra os problemas e soluções que derivaram da implantação do *Ranking*; o capítulo 4 descreve a estrategia usada para avaliar o algoritmo e os resultados obtidos; e o capítulo 5 apresenta

²http://research.microsoft.com/en-us/um/beijing/projects/letor/

³http://learningtorankchallenge.yahoo.com/

⁴http://www.cs.waikato.ac.nz/ml/weka/

as principais descobertas obtidas nesse estudo.

2 RANKING: NOÇÕES PRELIMINARES

Na área de *aprendizado de máquina*, classificação é tarefa de atribuir rótulos a cada elemento de um dado conjunto tendo como entrada pares elemento-rótulo. Comparativamente, *ranking* é a tarefa de atribuir posições a cada elemento de um dado conjunto tendo como entrada pares elemento-rótulo, uma relação de ordem parcial entre os elementos, ou uma relação de ordem total entre os elementos (3).

Embora desempenhem tarefas diferentes com saídas diferentes, algoritmos de classificação e de *ranking* podem compartilhar o mesmo tipo de entrada: pares elemento-rótulo. Isso é uma evidência de que se pode usar um algoritmo de classificação para compor um algoritmo de *ranking*.

De fato, a técnica de *ranking* descrita em (1) propõe envolver um algoritmo de classificação com etapas de pré-processamento e pós-processamento de forma que o produto final seja uma ordenação. Nesse estudo, essa técnica é chamada de *ranking reduzido a classificação*.

2.1 INTRODUÇÃO AO PROBLEMA

Dado um conjunto composto por elementos aos quais é possível atribuir um rótulo de valor 0 ou 1, deseja-se encontrar uma permutação dos elementos de maneira que os elementos que apresentem maior chance de receber o rótulo 0 devem preceder os com maior chance de receber o rótulo 1. Cada elemento é composto por um conjunto de características e a chance de um elemento receber o rótulo 0 ou o rótulo 1 deve ser calculada com base nessas características.

Substituindo-se a palavra rótulo pela palavra classe no enunciado acima, percebe-se que o problema de ordenação pode ser tratado como um problema de classificação. Mais especificamente, um problema de classificação binária, pois os valores de classe possíveis são 0 e 1.

Um algoritmo de aprendizado para classificação recebe como entrada um conjunto em que cada elemento possui uma classe assinalada e, partindo dessa entrada, deve aprender um classi-

ficador capaz atribuir uma classe a qualquer elemento. A etapa em que o aprendizado ocorre é chamada de treinamento.

O treinamento de um classificador é um aprendizado supervisionado, pois cada elemento submetido à etapa de treinamento está vinculado à sua classe verdadeira. Dessa forma, pode-se medir a qualidade do classificador aprendido usando elementos com classes conhecidas, porém suprimindo-as quando forem os elementos forem submetidos a classificação.

O produto da classificação de um elemento é a previsão da classe à qual aquele elemento pertence. Essa previsão é composta pelo valor da classe e pela probabilidade do elemento pertencer à classe prevista. Nesso caso, por se tratar de um problema de classificação binária, se a chance de um elemento pertencer à classe 0 é p, a chance dele pertencer à classe 1 é 1-p.

Supondo que se submeta um conjunto a um classificador, de posse das previsões feitas para todas os elementos do conjunto, é possível ordenar tais elementos, de forma decrescente, de acordo com a probabilidade de cada instância pertencer à classe 0. De fato, essa é uma possível solução para o problema de ordenação.

Segundo (1), esse método para ordenação dos elementos pode resultar em um erro teórico máximo muito alto, dependendo da performance do classificador. A técnica de *ranking reduzido a classificação*, proposta no mesmo artigo, reduz o erro teórico máximo envolvendo o treinamento do classificador com uma etapa de pré-processamento e a avaliação com uma etapa de pós-processamento.

Na técnica de *ranking reduzido a classificação*, o treinamento do classificador binário ocorre após uma etapa inicial em que se aplica uma transformação nos exemplos da base de treinamento. Após o treinamento, a definição da ordem das instâncias na base de avaliação é feita por um algoritmo chamado *torneio*, que usa as previsões do classificador treinado.

2.2 DEFINIÇÕES

Como dito anteriormente, o treinamento e avaliação de um classificador é um processo que manipula conjuntos compostos por elementos. Definições mais rigorosas são necessárias para a descrição da implantação da técnica de *ranking reduzido a classificação* no capítulo 3. As definições abaixo foram feitas levando-se em consideração o funcionamento da ferramenta WEKA e os requisitos necessários para se modelar a solução de *ranking reduzido a classificação* exposta em (1).

• Uma base B é um conjunto de instâncias com cardinalidade n.

$$B = \{i_1, ..., i_n\}$$
 $|B| = n$

Uma instância I é uma tupla A, C na qual A é um conjunto de atributos com cardinalidade
 m e C é a classe da instância e pode valer 0 ou 1.

$$I = (A, C)$$
 $A = \{a_1, ..., a_m\}$ $C = x \mid x \in \{0, 1\}$

Não será necessária a definição do conceito de atributo. Uma vez que os atributos são manipulados pelo classificador e o funcionamento dos classificadores nas soluções aqui propostas é uma caixa preta, os atributos são transparentes para os propósitos desse trabalho.

panorama	temperatura	humidade	ventoso	adequado para jogo
ensolarado	quente	alta	falso	não
ensolarado	quente	alta	verdadeiro	não
nublado	quente	alta	falso	sim
chuvoso	branda	alta	falso	sim
chuvoso	frio	normal	falso	sim
chuvoso	frio	normal	verdadeiro	não
nublado	frio	normal	verdadeiro	sim
ensolarado	branda	alta	falso	não
ensolarado	frio	normal	falso	sim
chuvoso	branda	normal	falso	sim
ensolarado	branda	normal	verdadeiro	sim
nublado	branda	alta	verdadeiro	sim
nublado	quente	normal	falso	sim
chuvoso	branda	alta	verdadeiro	não
				-

Tabela 1: Base de dados de tempo

A tabela ?? aprensenta um exemplo de base extraido do livro (2). Essa base indica se há condições para a prática de um esporte de acordo com medições meteorológicas. Um exemplo dessa base apresenta um conjunto de medições meteorológicas e, de acordo com essas medições, a classe do exemplo pode ser *sim* ou *não*.

Nessa tabela, a primeira linha nomeia os quatro atributos da base e a classe (adequado para jogo), as linhas seguintes representam as instâncias da base. Nota-se que a classe recebe valores *sim* e *não*, apesar de serem valores diferentes de 0 e 1, como dito na definição, ainda se trata de uma base com classe binária.

Escrevendo a primeira instância da base na notação definida acima, tem-se: (ensolarado, quente, alta, falso, não). O primeiro elemento da tupla é o conjunto de atributos e o segundo elemento é a classe da instância.

2.3 MEDIDAS DE DESEMPENHO

Geralmente, a medida de eficiência mais utilizada para classificação é a acurácia: uma razão entre o número de instâncias corretamente classificadas sobre o número total de instâncias no conjunto de avaliação.

O erro decorrente de uma classificação afeta a acurácia de maneira linear. Como, para ordenações, a quantidade de acertos não é tão relevante quanto a posição das instâncias ordenadas, propõe-se outro tipo de medida para avaliação do *ranking* aprendido.

Uma medida comum de avaliação para algoritmos de *ranking* é a área sobre a curva *ROC* (*Receiver Operating Characteristic*), comumente chamada de *AUC* (*Area Under the Curve*).

A perda, 1 - AUC, associada a essa medida é calculada pelo número de instâncias, normalizado pela quantidade de 0s vezes a quantidade de 1s, que necessitam ser trocadas para um ranking perfeito.

Uma ordenação é perfeita, quando todas as instâncias com classe 0 precedem as com classe 1, nesse caso a perda na *AUC* é 0. No pior caso, em que todos os 1s precedem os 0s, a perda na *AUC* é 1.

Comparativamente, um erro de classificação pode ter maior influência na medida *AUC* que na acurácia afetando consideravelmente um *ranking*, mas não a classificação. A causa disso é a *AUC* considerar a relação entre as instâncias ordenadas, enquanto a acurácia considera apenas erros e acertos pontualmente. Abaixo ilustramos através de um exemplo uma relação entre essas medidas que comprova o intuído sobre erros na classificação.

No exemplo acima, temos quatorze instâncias ordenadas em um *ranking* com os atributos, as classes e as previsões dadas por um classificador. Podemos perceber que o classificador errou apenas a classe da primeira instância.

Calculando a acurácia, temos treze acertos em quatorze possíveis, o que equivale a aproximadamente 93% de acerto.

Calculando a perda da AUC considerando como base a classe sim, a primeira instância precisa retroceder nove posições para uma ordenação perfeita, normalizando pelo número de nãos vezes o número de sims, temos $(1 - AUC) = 9 \div (5*9) = 0,2$, logo a AUC vale 80%. Esse exemplo comprova que a AUC sofre um impacto maior devido a erros de classificação se comparada à acurácia.

De acordo com (1), um classificador que gere um erro de ordem α na acurácia pode gerar

panorama	temperatura	humidade	ventoso	classe	previsão
ensolarado	quente	alta	falso	não	sim
nublado	quente	alta	falso	sim	sim
chuvoso	branda	alta	falso	sim	sim
chuvoso	frio	normal	falso	sim	sim
nublado	frio	normal	verdadeiro	sim	sim
ensolarado	frio	normal	falso	sim	sim
chuvoso	branda	normal	falso	sim	sim
ensolarado	branda	normal	verdadeiro	sim	sim
nublado	branda	alta	verdadeiro	sim	sim
nublado	quente	normal	falso	sim	sim
ensolarado	quente	alta	verdadeiro	não	não
chuvoso	frio	normal	verdadeiro	não	não
ensolarado	branda	alta	falso	não	não
chuvoso	branda	alta	verdadeiro	não	não

Tabela 2: Exemplo de ranking e classificação na base weather

um erro teórico máximo de $\alpha \cdot n$ na AUC, onde n é a cardinalidade do conjunto de instâncias avaliado. Enquanto para o mesmo classificador, a técnica de *ranking reduzido a classificação* apresenta um erro teórico máximo de $\alpha \cdot 2$.

O erro na AUC se intensifica a medida que o desbalanceamento de classes do conjunto usado no treinamento aumenta pois, quanto mais desbalanceadas as classes, mais provável que o classificador resultante seja tendencioso para a classe majoritária.

3 RANKING: IMPLANTAÇÃO

Como dito anteriormente, a técnica de *ranking reduzido a classificação* aplica uma transformação à base original antes da etapa de treinamento do classificador e modifica a etapa de avaliação a fim de ordenar as instâncias. A transformação da base e o treinamento do classificador compõe um algoritmo de nome *AUC-Train* (algoritmo 1).

```
Algoritmo 1: AUC-Train
```

```
Let S' = \{ \langle (x_1, x_2), 1(y_1 < y_2) \rangle : (x_1, y_1), (x_2, y_2) \in Sandy_1 \neq y_2 \};

return c = A(S')
```

A transformação consiste em formar novas instâncias a partir de pares entre instâncias de classes diferentes. A ordem em que as instâncias aparecem no par é relevante; o par $\langle i_{\alpha}, i_{\beta} \rangle$ e o par $\langle i_{\beta}, i_{\alpha} \rangle$ representam informações diferentes para o aprendizado do classificador. Além disso, as classes das duas instâncias que formam um par são combinadas a fim de gerar uma nova classe para a nova instância.

Essa transformação foi implantada particionando a base de treinamento em dois subconjuntos, um subconjunto S_0 com as instâncias de classe 0 e outro, S_1 , com as instâncias de classe 1. Com as duas partições definidas, basta combiná-las em um conjunto de elementos com formato final $\langle (i_{\alpha}(A), i\beta(A)), 1(i_{\alpha}(C) < i_{\beta}(C)) \rangle$.

A função 1, aplicada para obter a classe da nova instância, retorna 1, se o resultado da expressão avaliada é verdadeiro, ou 0, se o resultado da expressão é falsa. Como o argumento para a função é $i_{\alpha}(C) < i_{\beta}(C)$, se $i_{\alpha}(C)$ valer 1, a classe da nova instância será 0, se valer 0, a classe da nova instância será 1.

```
Função 1(expr)

avaliacao \leftarrow 1

se expr = False então

avaliacao \leftarrow 0

fim

retorna avaliacao
```

A modificação da etapa de avaliação tem como objetivo usar as previsões do classificador

treinado pelo *algoritmo* AUC-Train para gerar o *ranking* da base de avaliação. O algoritmo que efetua a ordenação recebe o nome de *Tournament*, torneio em português. O porquê do nome é devido ao algoritmo se assemelhar muito a um torneio em que muitos competidores se enfrentam, formando um *ranking* de acordo com suas performances.

Continuando a analogia com uma competição, a performance de cada instância na avaliação é medida como a quantidade de "vitórias" que essa instância obteve diante das outras instâncias na base de avaliação. Para gerar o *ranking*, basta promover o embate entre todas as instâncias na base e ordenar pelo número de "vitórias".

Como desejamos ordenar as instâncias de forma que as que tenham maior chance de pertencer à classe 0 estejam no topo, a semântica de "vitoria" é: em um embate entre duas instâncias, a instância vencedora é a que possui a maior chance de pertencer à classe 0. Quem define a instância vitoriosa em um embate é a previsão do classificador binário.

Tecnicamente, um embate entre as instâncias i_{α} e i_{β} consiste em criar uma nova instância com formato $\langle (i_{\alpha}(A), i_{\beta}(A)) \rangle$ e submetê-la à classificação; se a classe prevista da nova instância for 1, i_{α} ganha, se for 0, i_{β} ganha. Nota-se que o formato da instância a ser classificada é o mesmo que o de uma instância usada no treinamento do classificador, exceto pela ausência de classe. O algoritmo 2 demonstra o processo de ordenação.

Algoritmo 2: Tournament

For
$$x \in U$$
, let $deg(x) = |\{x' : c(x, x') = 1, x' \in U\}|;$

Sort U in descending order of deg(x), breaking ties arbitrarily

Uma das vantagens da técnica de *ranking reduzido a classificação* é que o uso de um algoritmo de aprendizado para classificação é transparente. Essa característica possibilitou o uso dos algoritmos de classificação existentes na ferramenta *WEKA*.

O principal ponto negativo é a performance da técnica no que diz respeito a tempo computacional. Os algoritmos *AUC-Train* (1) e *Tournament* (2) que constituem o cerne da técnica de *ranking reduzido a classificação* possuem elevada complexidade.

Os algoritmos expostos nesse capítulo estão descritos em pseudo-código e em sua maioria se baseiam em conceitos de teoria de conjuntos e vetores, uma vez que base e instâncias foram definidas sobre esses conceitos.

Assim como a maioria das técnicas de aprendizagem supervisionada, o *ranking reduzido a classificação* pode ser dividido em duas grandes partes distintas: a primeira é o treinamento de um ordenador e a segunda é a ordenação de uma base a partir do ordenador treinado.

Os principais algoritmos nas etapas de treinamento e avaliação para a técnica de *ranking reduzido a classificação* são, respectivamente, *AUC-Train* e *Tournament*. Portanto, a complexidade da técnica será estudada a partir das complexidades desses dois algoritmos separadamente.

3.1 TREINAMENTO: ESTUDO DE COMPLEXIDADE DO ALGORITMO AUC-TRAIN (??)

Considera-se como entrada para o algoritmo de AUC-Train(1) uma base S com n instâncias das quais k possuem a classe 0 e n-k possuem a classe 1. O algoritmo executa em três grandes etapas:

- 1. particionar a base de treinamento em duas bases S_0 e S_1 ; S_0 possui as instâncias de classe 0 e S_1 possui as instâncias de classe 1;
- 2. combinar as partições S_0 e S_1 de forma que a base de treinamento S' possua todos os pares entre instâncias de classe 1 e de classe 0;
- 3. aplicar um algoritmo de aprendizagem A à base S' obtendo um classificador c como saída.

Em questão de custo computacional, o tempo de execução do algoritmo *AUC-Train* é composto pela soma dos tempos de particionamento da base de treinamento, da aplicação de duas combinações entre as partições e da aplicação do algoritmo de aprendizagem.

Por se tratar de uma técnica baseada em meta classificação, não é possível determinar um custo computacional para a 3^a etapa pois diferentes algoritmos de aprendizagem para classificação possuem tempos de execução distintos. Portanto, o estudo da complexidade da técnica *AUC-Train* será baseado na computação extra que as etapas 1 e 2 acrescentam ao aprendizado.

Para o particionamento da base, basta iterar uma vez pela base original incluindo as instâncias de classe 0 no conjunto S_0 e as de classe 1 no conjunto S_1 , como mostrado na *função particionar*. Essa etapa executa sempre em tempo O(n).

```
Função particionar(S)

Entrada: Conjuntos de instâncias S

Saída: Partições de instâncias S_0, S_1

S_0, S_1 \leftarrow \emptyset

para todo i \in S faça

\begin{vmatrix} \mathbf{se} \ i(C) = 0 \ \mathbf{então} \\ \mid S_0 \leftarrow S_0 \cup i \end{vmatrix}

senão
\begin{vmatrix} S_1 \leftarrow S_1 \cup i \\ \mathbf{fim} \end{vmatrix}
fim
```

retorna S_0, S_1

Após o particionamento da base, gera-se o conjunto S' a partir das combinações entre as partições S_0 e S_1 . A *função combinar* é a encarregada de formar novas instâncias a partir da mesclagem das instâncias nas partições S_0 e S_1 . Essa função deve ser executada duas vezes a fim de formar todos os pares.

A mesclagem das instâncias consiste em gerar uma nova instância a partir de duas outras instâncias de acordo com o algoritmo original do AUC-Train(1). A função mesclar desempenha esse papel. Essa função executa sempre em tempo O(1).

```
Função mesclar(\alpha, \beta)
Entrada: Instâncias \alpha \in \beta
Saída: Nova instância, mescla de \alpha com \beta
retorna \langle (\alpha(A) \cup \beta(A)), 1 \cdot (\alpha(C), \beta(C)) \rangle
```

Os casos extremos da *função combinar* ocorrem quando k = 0 ou k = n. Nesses casos, todas as instâncias pertencem a mesma classe e o algoritmo não conseguiria formar pares para treinar um classificador; logo, esses casos não estarão incluídos em nossos estudos.

O melhor caso ocorre, com tempo computacional de O(n), quando k = 1 ou k = n - 1. Nesses casos, todas as instâncias pertencem à mesma classe, exceto por uma e $S_{\alpha} = \emptyset$ ou $S_{\beta} = \emptyset$, dessa forma um dos loops executa apenas uma vez, enquanto o outro executa n vezes.

No caso médio, parte-se da hipótese que todas as entradas são uniformemente prováveis. A probabilidade de uma entrada para um dado k é $\frac{1}{n-1}$ e a quantidade de iterações geradas por essa entrada é $k \cdot (n-k)$. Partindo desses dados, a complexidade do caso médio pode ser calculada pela fórmula:

$$f_{avg}(n) = \sum_{k=1}^{n-1} \frac{k \cdot (n-k)}{n-1}$$

Desenvolvendo o somatório:

$$f_{avg}(n) = \frac{1}{n-1} \cdot \sum_{k=1}^{n-1} k(n-k)$$

$$= \frac{1}{n-1} \cdot \sum_{k=1}^{n-1} kn - k^2$$

$$= \frac{1}{n-1} \cdot \left(\sum_{k=1}^{n-1} kn - \sum_{k=0}^{n} k^2\right)$$

$$= \frac{1}{n-1} \cdot \left(n \cdot \sum_{k=1}^{n-1} k - \sum_{k=1}^{n} k^2\right)$$

$$= \frac{1}{n-1} \cdot \left(n \cdot \frac{n((n-1)+1)}{2} - \frac{(n-1)((n-1)+1)(2(n-1)+1)}{6}\right)$$

$$= \frac{1}{n-1} \cdot \frac{n^3 - n}{6}$$

$$= \frac{n^2 + n}{6}$$

Logo, a complexidade do caso médio é igual a $O(f_{avg}) = O(\frac{n^2+n}{6}) = O(n^2)$.

O pior caso acontece quando $k=\frac{n}{2}$, nesse caso a base de treinamento possui metade das instâncias com classe 0 e a outra metade com classe 1. A combinação ocorrerá entre dois conjuntos com $\frac{n}{2}$ instâncias, resultando na complexidade assintótica $O(\frac{n}{2} \cdot \frac{n}{2}) = O(\frac{n^2}{4}) = O(n^2)$.

Analisando a tabela 3, percebe-se que o gargalo do algoritmo *AUC-Train* reside na combinação das instâncias. Na prática, algumas otimizações foram aplicadas ao algoritmo final escrito para

Caso	Particionar	Combinar	AUC-Train
Melhor	O(n)	O(n)	O(n) + O(n) = O(n)
Médio	O(n)		$O(n) + O(n^2) = O(n^2)$
Pior	O(n)	$O(n^2)$	$O(n) + O(n^2) = O(n^2)$

Tabela 3: Complexidade do algoritmo AUC-Train

o workbench WEKA: O algoritmo de produto cartesiano foi levemente alterado para gerar tanto o par (x,y) quanto o par (y,x); isso elimina a necessidade da aplicação de dois produtos cartesianos. Apesar da aplicação dessas otimizações, a complexidade do algoritmo se manteve inalterada.

3.2 TREINAMENTO: OTIMIZAÇÕES E IMPLANTACAO DO ALGORITMO AUC-TRAIN

Recapitulando, o algoritmo *AUC-Train* (1) é composto de três etapas principais: particionamento, com a *função particionar*; combinação das partições, com a *função combinar*; e treinamento do classificador.

De acordo com o estudo de complexidade, verificou-se que o custo computacional adicionado pelas duas primeiras etapas do algoritmo original, principalmente a de combinação, é alto. Duas estratégias, familiares no campo de aprendizagem de máquina, são propostas para mitigar esse custo: Amostragem e Votação.

Amostragem consiste em utilizar apenas um subconjunto da base completa a ser usada no treinamento do classificador. O objetivo da estratégia não é reduzir a complexidade intríseca das etapas de particionamento e combinação, mas limitar a quantidade de instâncias a serem combinadas amortizando o que seria o tempo total de geração das novas instâncias. A *função amostragem*) ilustra o processo de amostragem utilizado nesse estudo.

Votação consiste em treinar vários classificadores em vez de apenas um. Para avaliar uma instância, basta submetê-la aos classificadores e coletar as previsões. A classe que mais figurar entre as previsões é então a classe da instância.

Não há sentido em executar uma votação em que os classificadores foram aprendidos a partir da mesma base de treinamento. Isso resultaria em classificadores iguais e, portanto, seus votos também seriam iguais. Esse panorama só deixaria de ocorrer se o próprio algoritmo de aprendizagem inserisse alguma incerteza durante o treinamento.

Apesar do uso da amostragem beneficiar o tempo de execução, o classificador resultante não

Função amostragem $(S_{\alpha}, S_{\beta}, p, f)$ Entrada: Partições de instâncias S_{α}, S_{β} ; Pares por instância p;

Função para manipulação das instâncias fSaída: Amostra com pares S $Set \leftarrow \emptyset$; para todo $\alpha \in S_{\alpha}$ faça | para todo $\beta \in Subset_{\beta}$ tal que $Subset_{\beta} \subseteq S_{\beta} \land |Subset_{\beta}| = p$ faça

| Set \leftarrow Set \cup { $f(\alpha, \beta)$ }; fim

fim

retorna S_a

será treinado com todas as informações disponíveis, o que pode causar um efeito de intensificação no erro da classificação. Com a votação, embora o treinamento de diversos classificadores resulte em acréscimo de tempo para o algoritmo, geralmente o resultado da classificação possuirá um erro menor.

Há uma complementaridade entre as duas estratégias escolhidas para otimização do algoritmo *AUC-Train* (1). Enquanto uma preza por melhor tempo de execução, o outra preza por maior segurança na classificação. Basta combiná-las para balancear compromisso entre tempo de execução e menor erro na classificação.

De posse das informações necessárias para a implantação do *algoritmo AUC-Train* (1) e de suas otimizações, a etapa de treinamento do *Ranking* está exposta no *algoritmo 3*.

Algoritmo 3: Treinamento

```
Entrada: Partições de instâncias S_0, S_1;
Algoritmo de aprendizagem para classificação A;
Quantidade de classificadores a serem treinados n;
Pares por instância p
Saída: Conjunto de classificadores C
C \leftarrow \emptyset
se i > 1 então
    para i \leftarrow 1; i \rightarrow n faça
         S' \leftarrow amostragem(S_0, S_1, p, mesclar);
         S' \leftarrow S' \cup amostragem(S_1, S_0, p, mesclar) \ C \leftarrow C \cup \{A(S')\}
    fim
senão
    S' \leftarrow combinar(S_0, S_1, mesclar);
    S' \leftarrow combinar(S_1, S_0, mesclar) \ C \leftarrow \{A(S')\}\
fim
retorna C
```

O parâmetro de pares por instância indica a quantidade pares que uma instância *i* deve formar como primeiro item da combinação entre *i* e *y* onde *y* é qualquer instância de classe antagônica à classe de *i*. O parâmetro *n* constitui o número de classificadores a serem treinados para votação. O valor de retorno é sempre um conjunto de classificadores.

O algoritmo 3 atende tanto ao propósito do algoritmo AUC- $Train\ 1$ quanto às otimizações propostas para esse; para tal, manipula-se os parâmetros n e p. Para executar o algoritmo original, basta definir n como 1 e p como todas. Para executar o algoritmo com amostragens e votação, basta definir n com um valor maior que 1 e p com um valor entre 1 e o número de instâncias da classe minoritária.

3.3 ORDENAÇÃO: ESTUDO DE COMPLEXIDADE DO ALGORITMO TOURNAMENT

Após a etapa de treinamento, a técnica de *ranking reduzido a classificação* procede à etapa de ordenação. Nessa etapa, o classificador aprendido na etapa de treinamento é utilizado para ordenar um conjunto de instâncias como descrito no algoritmo *Tournament* (2).

O algoritmo *Tournament* (2) recebe como entrada um classificador c aprendido durante a etapa de treinamento e uma base B composto de n instâncias sem classes assinaladas. Esse algoritmo executa em duas grandes etapas:

- 1. Obter a pontuação para todas as instâncias na base *B*;
- 2. Ordenar as instâncias na base *B*.

Partindo dessa divisão, o tempo computacional do algoritmo é a soma dos tempos das etapas de obtenção das pontuações e de ordenação. A etapa de obtenção das pontuações é bem definida no algoritmo *Tournament 2*, enquanto, na etapa de ordenação, qualquer algoritmo de ordenação pode ser usado: *mergesort*, *quicksort*, para citar alguns.

Para o etapa de obtenção da pontuação, o pior caso, o caso médio e o melhor caso apresentam o mesmo tempo de execução, pois é sempre necessário formar todos os pares de instâncias possíveis. O processo de formação de todos os pares funciona a partir de dois loops aninhados, assim como a *função* (combinar); isso resulta em um custo de ordem $O(n^2)$.

Como há algoritmos de ordenação com pior tempo de execução da ordem de $O(n^2)$, o gargalo da etapa de ordenação reside na necessidade de se gerar todos os pares a partir das

instâncias no conjunto a ser ordenado. Qualquer tentativa de otimização desse processo deve levar em consideração essa observação.

Vale destacar que a otimização de votação sugerida para a etapa de treinamento tem extensões na etapa de ordenação. Para que a estratégia de votação funcione, o algoritmo de ordenação precisa utilizar a *função votacao*. Essa iterará sobre o conjunto de classificadores produzidos na etapa de treinamento determinando a classe majoritária na votação.

```
Função votacao(C, i)
  Entrada: Conjunto de classificadores C;
 Instância a ser classificada i;
 Saída: Previsão da classe de i
  classe \leftarrow 0;
  zero \leftarrow 0
  para todo c \in C faça
      se c(i) = 0 então
       | zero \leftarrow zero + 1
      senão
       | zero \leftarrow zero - 1
      fim
 fim
 se zero < 0 então
  | classe \leftarrow 1
 fim
 retorna classe
```

De acordo com o exposto até agora sobre a etapa de ordenação, essa pode ser descrito como no algoritmo 4. Por causa especificações, o algoritmo de ordenação é mais monolítico que o algoritmo de treinamento, que pode ser dividido em funções menores.

Pelo menos uma otimização poderia ser aplicada ao algortimo 4: os pares $\alpha || \beta \in \beta || \alpha$ poderiam ser formados no mesmo loop. Isso reduziria a quantidade de repetições pela metade. Apesar disso, a complexidade do algoritmo continuaria a mesma. O algortimo implantado na ferramenta *WEKA* possui essa otimização.

Algoritmo 4: Ordenação

3.4 ORDENAÇÃO: OTIMIZAÇÕES E IMPLANTAÇÃO DO ALGORITMO TOURNAMENT

A etapa de ordenação original é chamada de *tournament*. Nessa abordagem, todas as instâncias do conjunto a ser ordenado são comparadas entre si com base no classificador obtido no treinamento e recebem uma pontuação. As instâncias de maior pontuação assumem as primeiras posições no *ranking*.

Como visto na seção anterior, o custo computacional da etapa de ordenação é composto pelas somas dos custos da obtenção das pontuações e da ordenação. A maior parte do custo é devida ao processo de obtenção das pontuações, de complexidade $O(n^2)$. E com as pontuações obtidas, ainda é executado um algoritmo de ordenação.

Uma otimização possível, segundo (4), é utilizar o classificador treinado como uma relação de ordem a fim de definir uma precedência entre as instâncias. Assim seria possível utilizar o classificador diretamente no algoritmo de ordenação em vez de coletar a pontuação de todas as instâncias.

Essa otimização eliminaria a necessidade da etapa de pontuação. O artigo sugere que o classificador seja usado em conjunto com o algoritmo de *quicksort* como uma operação de comparação entre duas instâncias. Essa operação ocorre no momento do particionamento do conjunto, onde ocorre o reposicionamento do elemento pivot.

Dessa forma, o algoritmo de ordenação passaria a herdar a complexidade do método de

ordenação quicksort. Isso significa que ainda teria complexidade de pior caso $O(n^2)$, mas no caso médio a complexidade cairia para $O(n \cdot \log n)$.

Ainda segundo ??, a consequência dessa otimização é tornar viável o uso da técnica de *ran-king reduzido a classificação* em sistemas comerciais, tais como: motores de busca e sistemas de recomendações.

Embora a ordenação por quicksort tenha sido implantada na solução para o *framework WEKA*, não houve nenhuma avaliação empírica dessa estratégia, como será visto no próximo capítulo.

4 AVALIAÇÃO DO RANKING

De acordo com o artigo Langford, o algoritmo de Ranking proposto tem um desempenho melhor quando aplicado sobre bases com alto desbalanceamento entre as classes. Partindo desse princípio, foi montada uma estratégia de testes com cinco bases de dados com diferentes níveis de desbalanceamento. Tais bases podem ser encontradas no repositório da University of California, Irvine (UCI) em http://archive.ics.uci.edu/ml/.

4.1 CARACTERÍSTICAS DAS BASES

As bases usadas foram as seguintes: Breast Cancer; Statlog (Vehicle Silhouettes), chamada de Vehicle; Hepatitis; Glass Identification, chamada de Glass e Yeast. Como o algoritmo proposto em langford tem um custo computacional alto, $O(n^2)$ para treinamento e $O(n^2)$ para gerar o ranking; isso aliado ao baixo controle sobre o ambiente de execução culminou na escolha de bases pequenas para avaliação do experimento.

As bases Vehicle, Glass e Yeast tratam, originalmente, de problemas multi classe. A essas bases foram aplicadas transformações a fim de torná-las problemas de classe binária. Para as bases Vehicle e Glass, foram unidas todas as classes, exceto a minoritária, em uma nova classe. Para a base Yeast, apenas as classes de valor 'CYT' ou 'POX' foram consideradas.

Cada base utilizada apresenta diferentes características como: desbalanceamento entre as classes, número de atributos, número de instâncias, entre outros. A tabela 4 mostra um resumo sobre as características das bases.

4.2 EXECUÇÃO E AVALIAÇÃO DO ALGORITMO

Foram escolhidos quatro classificadores base para avaliar o algoritmo: J48, Naïve Bayes, Logistic e SMO. O motivo da escolha desses classificadores é o reconhecimento de tais como padrões em suas famílias, J48 para árvores (implanta a árvore de decisão C4.5), Naïve Bayes

Bases	Atributos		Instâncias	Classe		
	Contínuos	Discretos	mstancias	Minoritária	Majoritária	Distribuição
breast-cancer	0	9	286	85	201	30% - 70%
vehicle	18	0	846	199	647	23% - 77%
hepatitis	6	13	155	32	123	20% - 80%
glass	9	0	214	29	185	13% - 87%
yeast	8	0	483	20	463	4% - 96%

Tabela 4: Dados sobre as bases usadas para ranking

para estatísticos, Logistic (implanta curva logística) e SMO (implanta Support Vector Machine) para classificadores baseados em funções.

Para cada classificador base houve quatro baterias de execução com diferentes configurações:

- 1. Somente o classificador;
- 2. O classificador como base para o algoritmo de *ranking* original;
- 3. O classificador como base para o algoritmo de ranking com configurações de 1 par por instância e 10 classificadores na votação;
- 4. O classificador como base para o algoritmo de ranking com configurações de 10 pares por instância e 1 classificador na votação.

Nas três baterias que envolveram o algoritmo de *ranking*, o método de ordenação usado para gerar o resultado final foi o *torneio*, como explicado no artigo langford. Em todas as baterias foi executada uma validação cruzada com 10 partições e os resultados apresentados nas tabelas é a média das *AUCs* obtidas para cada partição.

Para as tabelas de número 5, 6, 7 e 8; o símbolo * significa ranking aplicado com 1 par por instância e 10 classificadores na votação. O símbolo ** significa ranking aplicado com 10 pares por instância e 1 classificador na votação.

- 4.2.1 DESEMPENHO PARA C4.5 (TREES.J48)
- 4.2.2 DESEMPENHO PARA NAÏVE BAYES (BAYES.NAIVEBAYES)
- 4.2.3 DESEMPENHO PARA A CURVA LOGÍSTICA (FUNCTIONS.LOGISTIC)
- 4.2.4 DESEMPENHO PARA SUPPORT VECTOR MACHINE (FUNCTIONS.SMO)

Bases	J48	J48 acrescido de			
	J +0	Ranking Original	Ranking*	Ranking** 0,45055 (0,02984) 0,95670 (0,00071) 0,72179 (0,04571) 0,88860 (0,02668)	
breast-cancer	0,62806 (0,01005)	0,46784 (0,03049)	0,51289 (0,01950)	0,45055 (0,02984)	
vehicle	0,93725 (0,00056)	0,91389 (0,00624)	0.98072 (0.00017)	0,95670 (0,00071)	
hepatitis	0,69655 (0,04084)	0,67112 (0,03127)	0,74322 (0,03925)	0,72179 (0,04571)	
glass	0,90322 (0,01578)	0,83772 (0,03524)	0,89016 (0,02934)	0,88860 (0,02668)	
yeast	0,48918 (0,00021)	0,95009 (0,01453)	0,78550 (0,03630)	0.84806 (0.01924)	

Tabela 5: Desempenho para árvore de decisão C4.5

Bases	Naïve Bayes -	Naïve Bayes acrescido de			
		Ranking Original	Ranking*	Ranking**	
breast-cancer	0,71543 (0,01899)	0,20857 (0,00620)	0,04976 (0,00445)	0,04532 (0,00426)	
vehicle	0,80898 (0,00468)	0,24323 (0,01559)	0,00310 (0,00004)	0,12514 (0,01546)	
hepatitis	0,85919 (0,01190)	0,22489 (0,05188)	0,06052 (0,00265)	0.06608 (0,00101)	
glass	0,94084 (0,01099)	0,17271 (0,02416)	0,02222 (0,00151)	0,02476 (0,00132)	
yeast	0,82863 (0.06355)	0,84269 (0,03505)	1,00000 (0,00000)	1,00000 (0,00000)	

Tabela 6: Desempenho para Naïve Bayes

Bases	Logistic -	Logistic acrescido de			
		Ranking Original	Ranking*	Ranking**	
breast-cancer	0,66625 (0,02322)	0,66740 (0,02364)	0,65784 (0,02143)	0,65132 (0,02219)	
vehicle	0,99358 (0,00003)	0,99420 (0,00003)	0,99358 (0,00003)	0,99234 (0,00002)	
hepatitis	0,80924 (0,02598)	0,79882 (0,02432)	0,75064 (0,04278)	0,74557 (0,05075)	
glass	0,95965 (0,00308)	0,97037 (0,00192)	0,96101 (0,00484)	0,95536 (0,00384)	
yeast	0,85805 (0,04115)	0,83453 (0,04931)	0,87414 (0,03463)	0,85691 (0,03997)	

Tabela 7: Desempenho para Logistic

Bases	SMO -	SMO acrescido de			
	SIVIO	Ranking Original	Ranking*	Ranking** 0,65563 (0,02003) 0,99380 (0,00002) 0,78189 (0,02640) 0,93752 (0,00537)	
breast-cancer	0,59272 (0,00696)	0,66670 (0,02294)	0,65832 (0,02119)	0,65563 (0,02003)	
vehicle	0,94434 (0,00169)	0,99651 (0,00001)	0,99396 (0,00002)	0,99380 (0,00002)	
hepatitis	0,75128 (0,01618)	0,81522 (0,01914)	0,80759 (0,01899)	0,78189 (0,02640)	
glass	0,89181 (0,00679)	0,95712 (0,00175)	0,93402 (0,00610)	0,93752 (0,00537)	
yeast	0,77391 (0,04799)	0,83555 (0,04831)	0,99891 (0,00001)	0,99891 (0,00001)	

Tabela 8: Desempenho para SMO

Figura 1: Gráficos de desempenho para árvore de decisão C4.5

Figura 2: Gráficos de desempenho para Naïve Bayes

Figura 3: Gráficos de desempenho para Curva Logística

Figura 4: Gráficos de desempenho para Curva Logística

5 CONCLUSÃO

A primeira conclusão que pode ser tirada é que o algoritmo testado aqui tem uma performance muito baixa no que diz respeito a tempo computacional, tanto para treinamento, quanto para avaliação. As estratégias para melhoria no tempo de treinamento como uso de votação e de um número reduzido de pares por instância ajudaram nesse aspecto e criaram resultados por vezes superiores ao algoritmo original e ao classificador base.

Os esforços para otimizar o tempo na etapa de avaliação consistiram em implantar um algoritmo baseado no algoritmo Quicksort, que teria tempo de execução médio $n \cdot \log n$, um avanço comparado ao tempo de execução médio do torneio que é n^2 . Embora esta estratégia tenha sido completamente implantada, não houve nenhum experimento que a utilizasse.

O classificador Naïve Bayes teve um desempenho incomum quando combinado com o algortimo de *Ranking*. Esse classificador gerou resultados muito abaixo do esperado para todas as bases testadas, exceto para a base *yeast*.

Pode-se reparar que, para a base *glass*, os resultados começam a melhorar em relação aos obtidos para as bases *breast-cancer*, *vehicle* e *hepatitis*. Já para a base *yeast*, o Naïve Bayes aliado ao algoritmo de *Ranking* teve uma performance perfeita acertando quase todos as ordenações. Esse comportamento bipolar não foi elucidado nesse estudo.

Comparando as estratégias implantandas para acelerar a etapa de treinamento de forma isolada, pode-se chegar a seguinte conclusão: o aumento do número de classificadores na votação cria resultados mais com menor varição na AUC que o aumento de pares por instância no treinamento.

Olhando as curvas geradas para cada uma dessas estratégias nos gráficos do capítulo AVA-LIACAO, percebe-se que a tendência para a estratégia de aumento de classificadores na votação é, na maioria dos casos, crescente. Enquanto a tendência para a estratégia de aumento do número de pares por instância não pode ser definida com clareza em alguns casos.

O artigo (1) mostra que um classificador que produza um erro r na classificação pode pro-

duzir um erro teórico máximo de $n \cdot r$, onde n é o número de exemplos a serem ordenados, na ordenação. Mostra também que o *Ranking* gera produz um erro teórico máximo de $2 \cdot n$.

Não foi possível verificar a validade dessa prova teórica. Na maioria dos casos, a ordenação derivada apenas do classificador teve erro inferior ao erro na ordenação via algoritmo *Ranking*.

REFERÊNCIAS BIBLIOGRÁFICAS

- 1 BALCAN, M.-F. et al. Robust reductions from ranking to classification. In: *Proceedings of 20th annual conference on Learning theory*. [S.l.: s.n.], 2007.
- 2 WITTEN, I. H.; FRANK, E. Data Mining: Practical Machine Learning Tools and Techniques. Segunda. [S.l.]: Morgan Kaufmann, 2005.
- 3 LIU, T.-Y. Learning to rank for information retrieval. *Foundations and Trends in Information Retrieval*, v. 3, n. 3, 2009.
- 4 AILON, N.; MOHRI, M. An efficient reduction of ranking to classification. In: *In Conference on Learning Theory (COLT)*. [S.l.: s.n.], 2008.