Les fonctions primitives d'une fonction continue sur un intervalle:

Définition:

Soit f une fonction numérique définie sur un intervalle IOn dit que F est une fonction primitive de f sur l'intervalle ISi les deux conditions suivantes sont vérifiées :

- F est dérivable sur l'intervalle I
- $(\forall x \in I); F'(x) = f(x)$

Propriétés:

Toute fonction continue sur un intervalle admet une primitive sur cet intervalle

Soit f une fonction numérique définie sur un intervalle I Si F est une fonction primitive de f sur l'intervalle I, alors toutes les fonctions primitives de f sont définies sur l'intervalle I comme suit : $x \mapsto F(x) + k$; $(k \in \mathbb{R})$

Soit f une fonction numérique qui admet une fonction primitive sur un intervalle I Et soit x_0 un élément de I et y_0 un réel quelconque de $\mathbb R$ Il existe une unique fonction primitive F de f sur l'intervalle I qui vérifie la condition initiale: $F(\mathbf x_0)=y_0$

Les primitives de f + g et kf: $(k \in \mathbb{R})$

Propriété:

Soit f et g deux fonctions numériques définies sur un intervalle I et k un réel Si F et G sont deux primitives de f et g successivement sur l'intervalle I alors :

- $\bullet \quad F + G \text{ est une fonction primitive } \mathrm{de} f + g \text{ sur } \\ \mathrm{l'intervalle} \ I$
- kF est une fonction primitive $\deg kf$ sur l'intervalle I

Tableau des primitives de quelques fonctions usuelles:

f(x)	F(x)
$a \in \mathbb{R}$	ax + k
x	$\frac{1}{2}x^2 + k$
$\frac{1}{x^2}$	$\frac{-1}{x} + k$
$\frac{1}{\sqrt{x}}$	$2\sqrt{x} + k$
x^r ; $(r \in \mathbb{Q}^* - \{-1\})$	$\frac{x^{r+1}}{r+1} + k$
$\sin x$	$-\cos x + k$
$\cos x$	$\sin x + k$
$1 + \tan^2 x = \frac{1}{\cos^2 x}$	$\tan x + k$
$\frac{1}{x}$	$\ln x + k$
e^{x}	$e^{x}+k$

<u>Utilisation des formules de dérivée pour la détermination de quelques primitives:</u>

f(x)	F(x)
u'(x)+v'(x)	u(x)+v(x)+k
$au'(x)$; $(a \in \mathbb{R})$	au (x)
$u'(x) \times v(x) + u(x) \times v'(x)$	$u(x)\times v(x)+k$
$\frac{\neg v'(x)}{\left[v(x)\right]^2}$	$\frac{1}{v(x)} + k$
$\frac{u'(x) \times v(x) - u(x) \times v'(x)}{\left[v(x)\right]^2}$	$\frac{u(x)}{v(x)} + k$
$\frac{u'(x)}{\sqrt{u(x)}}$	$2\sqrt{u(x)} + k$
$u'(x) \times [u(x)]^r$; ($r \in \mathbb{Q}^* - \{-1\}$)	$\frac{\left[u(x)\right]^{r+1}}{r+1} + \mathbf{k}$
$\frac{u'(x)}{u(x)} + k$	$\ln u(x) + k$
$u'(x)e^{u(x)}$	$e^{u(x)}+k$
$\cos(ax + b) ; (a \neq 0)$	$\frac{1}{a}\sin(ax+b)+k$
$\sin(ax + b)$; (a $\neq 0$)	$-\frac{1}{a}\cos(ax+b)+k$