ILP AND VERTEX COVER

A flavor of approximation algorithms

Rounding Schemes

• LP relaxation yields solutions with fractional parts.

However, ILP asks for integer solution.

- In some cases, we can approximate ILP optimum by "rounding"
 - Take optimal solution of LP relaxation
 - Round the answer to an integer answer using rounding scheme.
 - Deduce something about the ILP optimal solution.

Vertex Cover Problem

Choose smallest subset of vertices Every edge must be "covered"

```
Eg, { 1, 2, 3, 5 } or {1, 2, 3, 7 }
```

ILP for the vertex cover problem (Example)

ILP decision variables

$$x_1,\ldots,x_8$$

$$x_i = \begin{cases} 0 & \text{Vertex } \# i \text{ not chosen in subset} \\ 1 & \text{Vertex } \# i \text{ is chosen in subset} \end{cases}$$

ILP for the vertex cover problem (Example)

Vertex Cover to ILP

- Vertices { I,..., n}
 - Decision variables: x_1, \ldots, x_n

$$x_i \in \{0, 1\}$$

min
$$\sum_{i=1}^{n} x_{i}$$
s.t. $0 \le x_{i} \le 1$ $\forall i \in V$

$$x_{i} + x_{j} \ge 1 \quad \forall (i, j) \in E$$

$$x_{i} \in \mathbb{Z} \quad \forall i \in V$$

LP relaxation of a vertex cover

Problem: we may get fractional solution.

x_1	1
x_2	1
x_3	$\frac{3}{4}$
x_4	0
x_5	$\frac{5}{6}$
x_6	Ŏ
x_7	$\frac{1}{6}$
x_8	$\frac{6}{4}$
x_8	$\frac{1}{4}$

Objective value: 4

But solution meaningless for vertex cover.

Rounding Scheme

Simple rounding scheme:

$$x_i^* \ge \frac{1}{2} \quad \to \quad x_i = 1$$

Real-Optimal Solution is at least 0.5

Include vertex in the cover.

$$x_i^* < \frac{1}{2} \rightarrow x_i = 0$$

LP relaxation of a vertex cover

Problem: we may get fractional solution.

Rounding Scheme

Rounding scheme takes optimal fractional solution from LP relaxation and produces an integral solution.

$$\mathbf{x}^* \xrightarrow{\text{rounding}} \hat{\mathbf{x}}$$

- I. Does rounding always produces a valid vertex cover?
- 2. How does the rounded solution compare to the opt. solution?

Rounding Scheme Produces a Cover

$$\mathbf{x}^* \xrightarrow{\text{rounding}} \hat{\mathbf{x}}$$

$$x_i^* + x_i^* \ge 1$$
, for each $(i, j) \in E$

$$\hat{x}_i = 1 \text{ or } \hat{x}_i = 1 \text{ for each } (i, j) \in E$$

To Prove: The solution obtained after rounding covers every edge.

Rounding Scheme Approximation Guarantee

Fact: $2x_i^* \ge \hat{x_i}$ for all vertices i.

$$2\sum_{i=1}^{n} x^* \ge \sum_{i=1}^{n} \hat{x_i}$$

 $2 * (Cost of LP relaxation) \ge (Cost of Rounded Scheme Vertex Cover)$

Approximation Guarantee

- Theorem #1: Rounding scheme yields a vertex cover.
- Cost of the solution obtained by rounding: C
- Optimal vertex cover cost: C*
- Theorem #2: $C^* \le C \le 2 C^*$
- LP relaxation + rounding scheme:
 - 2-approximation for vertex cover!!