

Statistics and Quantitative Analysis U4320

Segment 12:

Extension of Multiple Regression Analysis

Prof. Sharyn O'Halloran

Key Points

- Dummy Variables
 - Shift in the intercept
- Difference of Means Test
 - Are two groups significantly different
- Interactive Terms
 - Shift in the Slope

I. Introduction to Dummy Variables

A. Definition:

Any dichotomous variable that is coded zero-one

- Examples:
 - Gender: 1 for female O for male
 - Employment: 1 if employed0 if unemployed
 - Religion: 1 if Catholic0 otherwise

I. Introduction to Dummy Variables

B. Example

- Suppose that a certain drug is suspected of raising blood pressure.
- One way to test this hypothesis is to conduct a <u>controlled</u> <u>experiment</u>.
- For example, suppose we randomly sample 10 women, 6 take the drug, 4 do not take the drug.

B. Example

- 1. Variables
 - We represent this information by a dummy variable.
 - Y = Level of Blood Pressure
 - D = number of doses of this drug daily
 - D = 1 if she took the drug
 - D = 0 if she did not (i.e., was a control)

- B. Example
 - 2. Data

OBS	PRESSURE	DRUG
1	85	0
2	95	1
3	90	1
4	75	0
5	100	1
6	90	0
7	90	0
8	90	1
9	100	1
10	85	1

- B. Example
 - **3.** Graph

- B. Example
 - 4. Results
 - There are four observations when D = 0. The mean of these observations is 85.
 - There are six observations when D = 1. The mean of these observations is 93.3.

- B. Example
 - 4. Results (cont.)
 - So how do we get a regression line from these data?
 - To draw the regression line, we just connect the means of each group!
 - This minimizes the sum of the squared distances from the data points to the line.

- B. Example
 - 4. Results (cont.)
 - The equation would be:

$$Y = 85 + 8.3 Drug.$$
 (3.2) (4.16)

- B. Example
 - 5. Interpretation
 - The intercept is the average blood pressure level for those who did not take the drug
 - The group of all people who did not take the drug is called the reference group, or the control group.
 - The intercept is the average of the dependent variable when the dummy variable is 0.

- B. Example
 - 5. Interpretation (cont.)
 - The coefficient on the Dummy variable states by how much an individual's blood pressure increases, on average, when given the drug.

- C. Difference of Means Test
 - 1. Slope
 - What is the difference between the means when the sample is divided into those who took the drug and those who did not?
 - As the dummy variable goes from 0 to 1, the value of Y rises by 8.33 points.
 - The difference between the means is 8.33.

- C. Difference of Means Test
 - 2. Significant Difference
 - Now, how can we tell if this slope is significantly different from zero?
 - a. Hypothesis

$$H_0: \beta = 0$$

$$H_a: \beta > 0$$

- C. Difference of Means Test
 - 2. Significant Difference (cont.)
 - b. t-statistic
 - c. Accept of Reject
 - the variable is significant at the 5% level.

$$n=10$$
; df. =8; $\alpha = .05$

$$t=83/4.16=2.00$$

- C. Difference of Means Test
 - 3. Interpretation
 - What does it mean that the slope is significant?
 - People who took the drug did have a significantly higher blood pressure than those who didn't.

- D. SPSS Example 1:
 - Does education vary according to a respondent's religion?
 - I investigated whether Catholics had more or less education than the general population.
 - 1. Hypothesis

$$H_0$$
: $\beta = 0$; H_a : $\beta \neq 0$

- D. SPSS Example 1:
 - 1. Hypothesis (cont.)
 - 1. Commands
 - I made my own variable called Catholic.
 - I recoded it and gave it value labels, so that all Catholics were coded 1 and all others got a 0.
 - I then made a variable for education, called Smarts.
 - Finally, I specified my regression.

- D. SPSS Example 1:
 - 1. Hypothesis
 - 2. Regression Results

Variable	В	SE B	Beta	Т	SigT	
CATHOLIC	.314567	.178289	.047002	1.764	.0779	
(Consant)	12.755382	.093351	-	136.639	.0000	

- D. SPSS Example 1:
 - 1. Hypothesis
 - 2. Regression Results (cont.)
 - What was the average education level of non-Catholics in the population?
 - What's the average education level of Catholics?

- D. SPSS Example 1:
 - 1. Hypothesis
 - 3. Significance
 - Is the coefficient significant at the 5% level?

$$\frac{3.145}{0.178} = 1.764$$

- D. SPSS Example 1:
 - 1. Hypothesis
 - 4. Difference of Means Results
 - For comparison, I did a difference of means test on the same data.
 - Is There A Significant Difference Between Catholics

And The Rest Of The Population?

- D. SPSS Example 1:
 - 1. Hypothesis
 - 4. Difference of Means Results (cont.)
 - T-TEST /GROUPS CATHOLIC (0,1) /VARIABLES SMARTS.
 - Independent samples of CATHOLIC
 - Group 1: CATHOLIC EQ .00 Group 2: CATHOLIC EQ 1.00
 - t-test for: SMARTS

- D. SPSS Example 1:
 - 1. Hypothesis
 - 4. Difference of Means Results (cont.)

Number of Cases	Mean	Standard Deivation	
Group 1 1022	127554	3.031	.095
Group 2 386	130699	2.855	.145

- D. SPSS Example 1:
 - 1. Hypothesis
 - 4. Difference of Means Results (cont.)

Pooled Vaiance Estimate Separate Variance Estimate

F Value	2-Tail	tValue	Degrees of	2-Tail	tValue	Degrees of	2-Tail
	Prob		Frædom	Prob		Frædom	Prob
1.13	.165	-1.76	1406	.078	-1.81	73250	.070

- D. SPSS Example 1:
 - 1. Hypothesis
 - 5. Interpretation
 - The results suggest that there is no significant difference between Catholics and the rest of the population.

II. More than One Dummy Variable

A. Sample Equation

If we had many different drugs that we thought might cause high blood pressure, then we could write:

$$Y = b_0 + b_1D_1 + b_2D_2 + b_3D_3 + ...$$

• Then b₁, b₂, b₃, the slope coefficient on the dummy variables, are the difference between the blood pressure of someone taking that drug and a control group which takes none of the drugs.

- B. 1. Example: More than One Dummy Variable
 - Say that we rerun the regression from before, but we allow religion to be either Protestant, Catholic, Jewish, or Other.
 - We create separate variables for each category.

B. 1. Example: More than One Dummy Variable (cont.)

Variables:

Catholic 1 if yes

0 othewise

Protestant 1 if yes

0 othewise

Jewish 1 if yes

0 oth**ewise**

Other 1 if other than catholic, Protestant, etc.

0 oth**ew**ise

2. Question:

Can we run a regression that looks like this:

 $Y = b_0 + b_1$ Catholic + b_2 Protestant, + b_3 Jewish + b_4 Other ?

3. Model Specification

- Let's have Catholic be our base group.
- Then the correct equation is:

$$Y = b_0 + b_1$$
 Protestant + b_2 Jewish + b_3 Other.

C. Difference of Means

1. Results

Variable	B SE B	Beta	Т	SigT
OTHER	1.654190 .564760	.078695	2.929	.0035
JEWISH	2.773802 .539575	.138466	5.141	.0000
PROTSTNT	476816 .176751	074344	-2.698	.0071
(Constant)	13069948 .149293	;	87.546	.0000

- C. Difference of Means
 - 2. Interpretation
 - The intercept is the average education of the reference group.
 - It is 13.06. This agrees with our earlier results when we just did Catholic as our single category.
 - Slopes is the difference in years of education from the base case.

- C. Difference of Means
 - 3. Differences between other groups
 - We can also use these results to tell the difference between any two groups.
 - For instance, the education difference between **Jewish and Other** is:

2.77 - 1.64 = 1.13.

- C. Difference of Means
 - 3. Differences between other groups (cont.)
 - However, to tell if this difference is significant, we'd have to re-run the regression, using either Jewish or Other as the reference group.

III. Dummy Variables and Confounding Variables

We may think that our results are confounded by other factors.

A. Parallel Lines for Two Categories

- 1. Blood Pressure Example
 - What we want to do is compare the blood pressure of those women who take the drug against those who do not.
 - In testing the effect of the drug, however, we will also want to control for age.

- A. Parallel Lines for Two Categories
 - 2. Path Diagram

Drug-----> High Blood pressure

3. Data

- A. Parallel Lines for Two Categories
 - **3.** Data

OBS	PRESSURE AGE		DRUG
1	85	30	0
2	95	40	1
3	90	40	1
4	75	20	0
5	100	60	1
6	90	40	0
7	90	50	0
8	90	30	1
9	100	60	1
10	85	30	1

- A. Parallel Lines for Two Categories
 - 4. Results
 - a. Regression
 - Suppose after we run a regression line then the results look like this
 - Blood Pressure = $b_0 + b_1AGE + b_2DRUG$

VARIABLE	COEFFICIENT	ST. DEV.	T-STATISTIC
CONSTANT	69535	2.905	2393
AGE	0.44186	0.07301	6.05
DRUG	4.651	1.885	2.47

- A. Parallel Lines for Two Categories
 - 4. Results
 - a. Regression (cont.)
 - Our regression equation is

$$Y = 69.5 + 0.4(4A2g) + 4.65(Drugs)$$

 $Y = 69.5 + 0.4442G(E)$ D=0
 $Y = 69.5 + 0.442(AGE) + 4.65$ D=1

- A. Parallel Lines for Two Categories
 - 4. Results
 - b. Graph
 - What is the regression line then, for those women who take the drug?

- A. Parallel Lines for Two Categories
 - 4. Results
 - c. Interpretation
 - How do we interpret the coefficient?
 - The coefficient on Drugs is the change in Blood pressure that accompanies a unit change in Drugs, while age remains constant.

- A. Parallel Lines for Two Categories
 - 4. Results
 - c. Interpretation
 - How do we interpret the coefficient? (cont.)
 - There is an increase in blood pressure of 5 units as we go from a woman without the drug (D=0) to a woman of the same age with the drug (D=1).

- A. Parallel Lines for Two Categories
 - 5. Construct a 95% confidence interval
 - a. State hypothesis

$$H_0: \beta = 0$$

$$H_a$$
: $\beta \neq 0$

- A. Parallel Lines for Two Categories
 - 5. Construct a 95% confidence interval
 - b. Confidence Interval

$$\beta = b_{-} t_{.025} \frac{s}{\sqrt{||x^{2}||}}.$$

$$\beta = b_{-} t_{.025} *SE$$

$$d.f. = n-k1 = 10-2-1=7$$

$$\beta = 4.7 - 2.36*(188)$$

$$4.7 - 4.4$$

- A. Parallel Lines for Two Categories
 - 5. Construct a 95% confidence interval
 - c. Accept or Reject
 - So can we reject the null hypothesis that the difference is 0?

- A. Parallel Lines for Two Categories
 - 5. Construct a 95% confidence interval
 - d. Interpretation
 - This suggests that on average women taking the drug have significantly higher blood pressure than those who do not.

- A. Parallel Lines for Two Categories
 - 5. Construct a 95% confidence interval
 - e. Note
 - We should note, however, that this does not suggest that the drug causes high blood pressure.

- A. Parallel Lines for Two Categories
 - 5. Construct a 95% confidence interval
 - e. Note (cont.)
 - Other confounding factors, such as stress levels, eating and exercise habits, may also influence blood pressure.

- B. Parallel Lines for Several Categories
 - 1. Data
 - What if we are now testing two drugs, A and B, against a control C, with a sample of 30 patients.
 - In measuring drugs, we use two dummy variables.
 - $D_A = 1$ if drug A given; 0 otherwise
 - $D_B = 1$ if drug B given; 0 otherwise

B. Parallel Lines for Several Categories

- 2. Estimates
 - Suppose the regression line turned out to be:
 - $Y = 70 + 5D_A + 8D_B + .44AGE +$
 - From this regression, we can easily write down three separate equations for the three groups:
 - For the control group, set $D_A = 0$, $D_B = 0$: Y = 70 + .44(AGE)
 - For the group on Drug A, set $D_A = 1$, $D_B = 0$: Y = 75 + .44(AGE)
 - For the group on Drug B, set $D_A = 0$, $D_B = 1$: Y = 78 + .44(AGE)

B. Parallel Lines for Several Categories

- 3. Graph
 - The easiest way to interpret these results by a graph.

B. Parallel Lines for Several Categories

- 4. Interpretation
 - The results show that the group on drug A exceeds the controls by 5 units-- the coefficient on D_A .
 - Similarly, the group on Drug B exceeds the controls by 8 units-- the coefficient of D_B.

B. Parallel Lines for Several Categories

NOTE

 Again, in designing our models we need to make sure that we identify our equation. That is, we need to have a least one category left as a reference group.

- What if the relation between age and the drug is not additive but multiplicative?
 - That is, not only does the intercept change, but so does the slope of the regression line.

- 1. Definition
 - What if the drug had a greater impact on your blood pressure as a person gets older.
 - We can investigate this possibility by adding a multiplicative term to the regression.
 - Y = c + Drug + Age + Age*Drug
- The term Age*Drug is called an <u>interactive term</u>.

- 1. Definition(cont.)
 - Interactive terms captures the possibility that the effect of one independent variable might vary with the level of another independent variable.
 - In this case, the effect of the drug on your blood pressure depends on your age.

- A. Interactive Terms
 - 1. Definition (cont.)

PathDiagran of Interactive Effects

- 1. Definition (cont.)
 - 2. Data

OBS	PRESSURE	AGE	DRUG	Age*Drug
1	85	30	0	0
2	95	40	1	40
3	90	40	1	40
4	75	20	0	0
5	100	60	1	60
6	90	40	0	0
7	90	50	0	0
8	90	30	1	30
9	100	60	1	60
10	85	30	1	30

A. Interactive Terms

- 2. Results
 - Suppose that when we run a regression, we get the following results:
 - Again we set D = 0 for the control group and D = 1 for those taking the drug.

$$Y = 70 + 5(Drug) + .44(Age) + .21(Drug*Age)$$

We obtain two separate equations for the two groups:

set D = 0:
$$Y = 70 + .44Age$$

Set D = 1: $Y = 75 + .65Age$

A. Interactive Terms

• 3. Graph

- 4. Interpretation
 - Note that for those taking the drug not only does the intercept increase (that is, the average level of blood pressure), but so does the slope.
 - Interpretation of an interactive term -- The effect of one independent variable (DRUG) depends on the level of another independent variable (AGE).

- 1. Definition
- 2. Results
- 3. Graph
- 4. Interpretation (cont.)
 - The results here suggest that for people not taking the drug, each additional year adds .44 units to blood pressure.
 - For people taking the drug, each additional year increases blood pressure by .65 units.

- B. Example 3:
 - 1. Setup

- What is the interpretation of this interactive variable between Money and Gender?
 - As a male's income increases are they more likely to identify themselves as a Republican than are women?

- B. Example 3:
 - 2. Commands
 - The next two pages of your handout give the results.
 - First, I made variables for everything that I want to analyze.
 - MYPARTY is party ID.
 - MONEY is income.

- B. Example 3:
 - 2. Commands (cont.)
 - MALE is whether or not you're a male.
 - And MANBUCKS is the interactive term for MALE and MONEY.

B. Example 3:

- 3. Results
 - 1. No Interactive Effect
 - Notice that both MALE and MONEY are significant determinants of Party ID.

Equation Number 1 Dependent Variable. MYPARTY ------Variables in the Equation -----

Va iiable	В	SE B	Beta	T :	SigT
MALE MONEY			.093874 .116615		
(Consant)	2.112151	.155388	3	13593	.0000

- B. Example 3:
 - 3. Results
 - 2. Interactive Effect
 - Now we put in the interactive term. Is it significant?

Equation Number 2 Dependent Variable. MYPARTY

----- Variables in the Equation-----

Variable	В	SE B	Beta	Т	SġT
MANBUCKS	5.009256 ® 4	.022138	.001915	.023	.9820
MONEY	.045823	.013720	.116128	3340	.0009
MALE	.384671	.327505	.092209	1175	.2404
(Consant)	2.114600	.189432		11.163	.0000

- B. Example 3:
 - 3. Results
 - 3. Presentation of Results ___

Model		
Variables	Model	Mode∥I
	2.11**	2.11
Constart	(0.15)	(0.19**
MALE	0.39**	0.38
	(0.11)	(0.3 3 **
MONEY	0.046**	0.046
	(0.0)	(0.01)#
		0.0005
MANBUCKS		(0.02

Standad errors in parenthese; Significant at α < 05

- B. Example 3:
 - 3. Results
 - 4. Interpretation
 - So we conclude that as men and women's income increases, they become Republican at the same rate.
 - Men and women are equally as likely to become Democrats as they get poor.

B. Example 3:

- 3. Results
 - 5. Notice
 - Notice that the t-statistics for the other two variables went haywire when we added the interactive term into the equation.
 - This is an important general point; you can use the t-value for the interactive term, but the other t-values become meaningless.

VII. Term Paper

- Clearly state your hypothesis.
 - Use a path diagram to present the causal relation.
 - Use the correlations to help you determine what causes what.
 - State the alternative hypothesis.
- 2. Present descriptive statistics.

VII. Term Paper (cont.)

- 3. Estimate your model.
 - You can do simple regression, or include interactive terms, or do path analysis, or use dummy variables; whatever is appropriate to your hypothesis.
- 4. Present your results.
- 5. Interpret your results.

VII. Term Paper (cont.)

- 6. Draw out the policy implications of your analysis.
- 7. The paper should begin with a brief which states the basic project and your main findings.