The Law of Large Numbers

Lecturer: John Guttag

6.00x

Law of Large Numbers

Law of Large Numbers

In repeated **independent tests** with the same **actual probability** p of a particular outcome in each test, the chance that the **fraction of times** that outcome occurs differs from p converges to zero as the number

of trials goes to infinity.

Gambler's Fallacy

If deviations from expected behavior occur, these deviations are likely to be evened out by opposite deviations in the future.

6.00x

6.00x

```
for numFlips in xAxis:
numHeads = 0
for n in range(numFlips):
    if random.random() < 0.5:
        numHeads += 1
numTails = numFlips - numHeads
ratios.append(numHeads/float(numTails))
diffs.append(abs(numHeads - numTails))</pre>
```

. . .

```
pylab.title('Difference Between Heads and Tails')
pylab.xlabel('Number of Flips')
pylab.ylabel('Abs(#Heads - #Tails)')
pylab.plot(xAxis, diffs)
pylab.figure()
pylab.title('Heads/Tails Ratios')
pylab.xlabel('Number of Flips')
pylab.ylabel('Heads/Tails')
pylab.plot(xAxis, ratios)
```

6.00x

