Weather Patterns X COVID-19

Final Project Documentation

Uhuru Kamau, Shuyang Lu, Yifan Zhao, Chenhao Zhao, Zhaofeng Liu

Contents

Project Workflow	2
Right Side	2
Left Side	3
Data Acquisition	3
1. New York City COVID-19 Data Archive	3
2. New York City Weather Data	4
3. Daily UV Index Scores - New York City	4
Relational Schema	5
Data Cleaning	6
1. New York City COVID-19 Data Archive	6
2. New York City Weather Data	6
3. Daily UV Index Scores - New York City	9
Data Wrangling and Objectives	10
1. Is there a Difference in Number of Cases Observed in the Summer vs in the Winter? \dots	10
Is there an Association between temperature and Incidence?	11
<pre># Load Required Packages library(tidyverse) library(kableExtra) library(readr) library(gridExtra) library(knitr)</pre>	

Project Workflow

Right Side

```
knitr::include_graphics(path = "images/QBS181_1.png")
```


Figure 1: QBS181 Final Project: WorkFlow (Part A)

Left Side

```
knitr::include_graphics(path = "images/QBS181_2.png")
```


Figure 2: QBS181 Final Project: WorkFlow (Part B)

Data Acquisition

- 1. New York City COVID-19 Data Archive
 - Source: NYC OpenData
 - Acquisation Method
 - Download .csv file
 - Purpose:
 - We will use this time series data to track changes in the incidence of COVID-19.

2. New York City Weather Data

- Source: Weather Underground Weather Archive
- Acquisition Method
 - Webscraping/ API Tool
- Purpose:
 - Merge time series weather data with timeseries Covid-19 data and investigate potential associations

3. Daily UV Index Scores - New York City

- Source: Central New York's Live Weather Source
- Acquisition Method
 - UV index values are presented as tables (see figure)
 - Copy tables and paste into Microsoft Excel
 - Save as .csv file
- Purpose
 - Sunlight and Vitamin-D absorbtion
 - * It is generally accepted that there is a positive association between exposure to sunlight and absorbtion of vitamin-D.
 - * It is also generally accepted that there is a positive association between vitamin-D absorbtion and immune system capacity.
 - We will us UV-Index as a proxy for exposure to sunlight at the population level and test for associations between UV Index and the incidence of Covid-19.

Relational Schema

knitr::include_graphics(path = "images/Relational_Schema.png")

Figure 3: Highlighting the Keys to our Relational Database

Data Cleaning

1. New York City COVID-19 Data Archive

A. Read in the Covid-19 Date Frame

```
covid_df <- read.csv("data/Raw Data/nyc_covid19_data/NYC_Covid_Data_raw.csv")</pre>
```

2. New York City Weather Data

A. Read-in File from Raw Data File

- The raw file has an issue with the column headers.
 - Several Headers include symbols that don't work with the interpretor

```
* eg. Low\_Temp({}^{o}F), High\_Temp({}^{o}F)
```

• Solution: Update column names while reading in the file!

- B. Format all observations of the "Date" Variable
 - Variable is of class "character" by default

```
class(weather.raw$Date)
```

RESULT [1] "character"

• Reclassify the variable as a "Date"

```
weather.clean <- weather.raw %>%
  mutate(Date = as.Date(Date, "%m/%d/%Y"))
```

• Outcome:

```
class(weather.clean$Date)
```

```
RESULT [1] "Date"
```

- C. Missing Data
 - Since we intend to do a time series, we need to identify any missing dates in the "date" column.
 - We will do this using a CUSTOM FUNCTION!

```
# Custom function to find the missing date in the date column
find.missing.dates <- function(d) {
    date_range <- seq(min(d), max(d), by = 1)
    date_range[!date_range %in% d]
}</pre>
```

• Use the custom function to identify missing dates in our NYC Weather df

```
# Display the missing dates
date.missing = c()
date.missing <- find.missing.dates(weather.clean$Date)
print(date.missing)</pre>
```

```
RESULT [1] "2020-11-08"
```

- D. Replace Missing Values
 - Method: Fill the missing data by averaging the former 6 days' data

```
# Find the index of the day before '2020-11-08'
weather.clean$Date <- as.character(weather.clean$Date)
id.missing.date = which(weather.clean$Date == "2020-11-07") + 1</pre>
```

- Build a custom function to fill the missing data
 - Approach: use the average of the previous six days

```
# Custom function to fill the missing data by averaging the former 6 days' data
fill.missing.values <- function(df, newrow.id) {
    newrow <- list()
    value <- c()
    first.row = newrow.id - 6
    last.row = newrow.id - 1
    col.num = ncol(df) - 2
    for (i in 1:col.num) {
        subs <- weather.clean[first.row:last.row, i] # Create a new subset for each column
        value <- mean(subs) # Calculate the mean
        newrow <- append(newrow, value)
    }
    return(newrow)
}</pre>
```

• Use the custom function to fill in the values of the missing row

```
# Fill the missing values in the missing row
missing.row <- fill.missing.values(weather.clean, id.missing.date)
missing.row <- append(missing.row, "2020-11-08")
missing.row <- append(missing.row, "new york city")</pre>
```

• Build another custom function to insert the row into the df

• Insert the imputed value into the df!

```
# Insert the missing row and store it into a new df
weather.clean <- insertRow(weather.clean, missing.row, id.missing.date)</pre>
```

- E. Remove the "City" Variable
 - Every observation is is "new york city"
 - This variable is effectively just clutter.

```
weather.clean = weather.raw %>%
    select(-City)
```

F. Display

```
kable(x = weather.clean[1:5, ], digits = 2, align = "c")
```

High.Temp	Low.Temp	Avg.Temp	Precip	Dew.Point	Humidity	Date
44	26	35.46	0.00	13.67	41.83	3/1/2020
56	38	48.17	0.00	30.46	51.12	3/2/2020
58	48	52.41	0.01	44.59	75.47	3/3/2020
57	46	50.52	0.28	28.52	44.76	3/4/2020
52	40	44.75	0.00	25.38	48.50	3/5/2020

G. Write the Processed Data to a new .csv file

```
write.csv(x = weather.clean, file = "data/Processed Data/nyc_weather.csv")
```

- H. In Excel Add a "Season" variable to the .csv generated in the prior section
 - Open File in Microsoft Excel
 - Summarise the process
 - Save the file as "nyc clean weather add season.csv"
 - Push to Github
- I. Read in "nyc_clean_weather_add_season.csv" and reformat the "date" variable
 - Read in the file

• Reformat the "date" variable

J. Display

```
knitr::kable(x = add_season_nyc_weather[1:5, ], align = "c")
```

High.Temp	Low.Temp	Avg.Temp	Precip	Dew.Point	Humidity	date	Month	season
44	26	35.46	0.00	13.67	41.83333	03/01/2020	3	spring
56	38	48.17	0.00	30.46	51.12500	03/02/2020	3	spring
58	48	52.41	0.01	44.59	75.47059	03/03/2020	3	spring
57	46	50.52	0.28	28.52	44.76000	03/04/2020	3	spring
52	40	44.75	0.00	25.38	48.50000	03/05/2020	3	spring

3. Daily UV Index Scores - New York City

A. Read in the csv file that we built in excel

```
nyc.uv = read.csv(file = "data/Raw Data/nyc_uv_raw.csv", header = T)
```

- B. Remove the "City" Variable
 - Every observation is "New York City" so this variable is effectively clutter.

```
nyc.uv <- nyc.uv %>%
select(-City)
```

C. Display

```
knitr::kable(x = nyc.uv[1:5, ], align = "c")
```

Date	UV
3/1/2020	0.8
3/2/2020	1.3
3/3/2020	1.3
3/4/2020	0.8
3/5/2020	2.1

Data Wrangling and Objectives

- 1. Is there a Difference in Number of Cases Observed in the Summer vs in the Winter?
- A. Add the "CASE_COUNT_7DAY_AVG" variable from the covid df to the add_season_nyc_weather df
 - Visual Aid

```
knitr::include_graphics(path = "images/weather_and_7day_avg.png")
```

\begin{figure}

 $\label{lem:caption} $$ \CASE_COUNT_7DAY_AVG$ variable from the covid df to the add_season_nyc_weather df} $$ \end{figure}$

• Combine

```
add_season_test <- add_season_nyc_weather
rownames(covid_df) <- covid_df$DATE_OF_INTEREST
add_season_test$Case_Count_7Day_Avg <- covid_df[, "CASE_COUNT_7DAY_AVG"]</pre>
```

B. Create a df with ONLY the summer and winter observations

```
sum_win <- add_season_test %>%
filter(season == "summer" | season == "winter")
```

C. Run a Wilcox Test to test the difference in incidence (summer vs winter)

• We can reject the null hypothesis that there is no difference in incidence.

Is there an Association between temperature and Incidence?

• Scatter Plot

RESULT 'geom_smooth()' using method = 'loess' and formula 'y ~ x'

Temperature vs Incidence of COVID-19 Stratified by Season

• Boxplot

```
par(mfrow = c(1, 2)) # divide graph area in 2 columns
boxplot(add_season_test$Avg.Temp, main = "Temperature")
boxplot(add_season_test$Case_Count_7Day_Avg, main = "COVID cases")
```


COVID cases

• Bar Graph

RESULT Warning: position_stack requires non-overlapping x intervals

• Correlation between Temperature and Case Count

cor(add_season_test\$Avg.Temp, add_season_test\$Case_Count_7Day_Avg)

RESULT [1] -0.7175508

• Single Variable Linear Regression Model Temperature ~ Cases

```
linearMod <- lm(add_season_test$Avg.Temp ~ add_season_test$Case_Count_7Day_Avg, data = add_season_test)
print(linearMod)</pre>
```

```
RESULT Call:

RESULT lm(formula = add_season_test$Avg.Temp ~ add_season_test$Case_Count_7Day_Avg,

RESULT data = add_season_test)

RESULT Coefficients:

RESULT (Intercept) add_season_test$Case_Count_7Day_Avg

RESULT 73.416364 -0.008214
```

• View Linear Model Coefficients

summary(linearMod)\$coefficients

```
RESULT (Intercept) Estimate Std. Error t value RESULT (Intercept) 73.416363791 0.6608480427 111.09417 RESULT add_season_test$Case_Count_7Day_Avg -0.008214267 0.0003233623 -25.40268 RESULT Pr(>|t|) RESULT (Intercept) 0.0000000e+00 RESULT add_season_test$Case_Count_7Day_Avg 1.417949e-97
```

• Improve Linear Model By using the Log incident case values

```
# log cases
add_season_test$log_cases <- log(add_season_test$Case_Count_7Day_Avg)
for (i in 1:nrow(add_season_test)) {
    if (add_season_test$Case_Count_7Day_Avg[i] == 0) {
        add_season_test$log_cases[i] = 0
    }
}</pre>
```

• Scatter plot of temp~ new log cases

