

微电子器件实验

彭守仲

北京航空航天大学 集成电路学院

第一馆203办公室 shouzhong.peng@buaa.edu.cn

2020年12月21日

回顾: 指数运算和对数运算电路

■ 二极管的直流特性

$$i_D \approx I_S e^{\frac{u_D}{U_T}}$$

 I_S <0.1 μ A: 反向饱和电流

 $U_T \approx 26 \text{mV}$: 温度的电压当量

回顾: 指数运算和对数运算电路

难点:选择合适的电阻及输入电压,使得 $0.1 \text{mA} < i_D < 20 \text{mA}$

回顾: 指数运算和对数运算电路

■ 注意:运放正负电源不能接反,否则会烧坏芯片

最大电源电压:32V

最小电源电压:3V

■ 注意:电流表量程变化导致内阻变化,从而导致测量结果跳变

内阻 = Burden charge/Range

1mA量程: 内阻<(0.17V/1mA=) 170Ω

10mA量程:内阻<(0.17V/10mA=)17Ω

Range	Resolution	Burden Voltage	24 Hours T _{CAL} ±1°C
10 μΑ	10 pA	<0.13 V	0.007 + 0.002
100 μΑ	100 pA	<0.14 V	0.010 + 0.020
1 mA	1 nA	<0.17 V	0.007 + 0.006
10 mA	10 nA	<0.17 V	0.006 + 0.003
100 mA	100 nA	<0.20 V 11	0.010 + 0.030
1 A	1 μΑ	<0.55 V 11	0.020 + 0.004
3 A	1 μΑ	<1.70 V 11	0.030 + 0.004
10 A 12	10 μΑ	<0.50 V	0.140 + 0.025

■ 运放的线性/非线性工作区

- ▶ 运放分为线性工作区和非线性工作区(正向/负向饱和区)。
- ➤ 线性工作区: $u_o = A_{od} (u_P u_N)$
- ▶ 用来设计运算电路时,处于线性工作区。
- ▶ <u>用来设计比较器时,处于非线性工作区。</u>

■ 电压比较器

- 输入电压是模拟信号,输出电压为二值信号。
- 是最简单的模拟信号转数字信号电路。
- 要素:输出高低电平值±U_{OM}、阈值电压U_T、跃变方向。
- 工作方式:非线性区、无反馈或者正反馈。

$$u_P > u_N$$
时, $u_O = + U_{OM}$ $u_P < u_N$ 时, $u_O = - U_{OM}$

■ 常见的电压比较器

过零比较器 阈值电压U_T=0V

单限比较器 阈值电压U_T≠0V

■ 常见的电压比较器

回差电压ΔU=U_{T2}-U_{T1}

窗口比较器

步骤1:设计电压比较器

■ 设计电压比较器

- ①过零比较器 $(u_o = \pm 5V)$
- ②一般单限比较器 $(U_T=-2V)$
- ③滞回比较器(回差电压ΔU=5V)
- ④加了参考电压的滞回比较器 $(U_{T1}=-1.5V, U_{T2}=3.5V)$

写明电压比较器的电阻阻值和

步骤2: 测试电压比较器

■ 测试电压比较器

- ①过零比较器($u_o = \pm 5V$)
- ②一般单限比较器($U_T=-2V$)
- ③滞回比较器(回差电压ΔU=5V)
- ④加了参考电压的滞回比较器 $(U_{T1}=-1.5V, U_{T2}=3.5V)$

输入三角波, 用示波器的两个通道同时测量

课后思考

■ 课后思考

- 回顾前几节课学到的内容,通过电压比较器得到方波后,如何得到三角波?
- 2. 设计一个简单的报警器,当输入电压超过3V时将LED灯点亮进行报警。

t京旅客旅天大學 東京旅客旅天大學 東京旅客旅天大學

谢谢!