

### **Machine Learning**

Lesson 7: Time Series Modeling









### **Concepts Covered**



- Components of a Time Series Data
- Stationarity in Time Series
- ARIMA Modelling

### **Learning Objectives**



By the end of this lesson, you will be able to:

- Understand time series analysis
- Build time series models using ARIMA

# Time Series Modeling Topic 1: Overview

Simplifearn. All rights reserved.

### **Definition**

Time Series can be defined as a set of measurements of certain variable made at **regular time intervals**.

Time acts as an independent variable for estimation

A time series defined by the values Y1, Y2.. of a variable Y at times t1, t2, t3.. is given by :

$$Y = F(t)$$



Series of monthly sales data

### **Applications**

Daily sales score of E-commerce





Weekly production of a shoe manufacturing company

Yearly GDP of a developing country





Monthly tickets sold by an airline

Notice that all these datasets include time

Datasets



### Need **Evaluate current Understand** seasonal patterns progress **Detect unusual Forecasting** events

### **Time Series Pattern Types**





**Downtrend** 

Stock Market price for a wall street company

Smartphone sales for a 3 year period



A trend is a long-term increase or decrease in time series data



### **Time Series Pattern Types (Contd.)**





- When factors such as the time of the year or the day of the week affect the dependent variable, repetitive patterns are observed in the time series
- Seasonality is always of a fixed and known frequency

### **Time Series Pattern Types (Contd.)**





- Unlike seasonal patterns, cyclic patterns exhibit rise and fall that are not of fixed period
- Duration is at least 2 years

### **Time Series Pattern Types (Contd.)**





- Irregular patterns might occur due to random or unforeseen events
- They are often of short duration and non-repeating

### **White Noise**

A white noise series is one with a zero mean, a constant variance, and no correlation between its values at different times.





Since values are uncorrelated, the adjacent values do not help to forecast future values

### White Noise (Contd.)





Example: Stock prices of companies may vary daily and time series become uncorrelated

# Time Series Modeling Topic 2: Stationarity



### **Stationarity**







The time series should be stationary to build the model

### **Non-Stationary Series**



Increasing trend or non-constant **mean** 







simpl<sub>i</sub>learn

### **Stationarity Check**





Plot the moving average or moving variance to check if it varies with time.

Notice the mean and variance **increase** constantly

### Dickey Fuller test (Statistical)

Test Statistic 0.815369
p-value 0.991880
#Lags Used 13.000000
Number of Observations Used 130.000000
Critical Value (1%) -3.481682
Critical Value (5%) -2.884042
Critical Value (10%) -2.578770
dtype: float64

Null Hypothesis = TS is non-stationary

If 'Test Statistic' < 'Critical Value',
Reject the null hypothesis

simpl;learn

### **Stationarity Removal Techniques**

Differencing

Decomposition



Getting a TS perfectly stationary is desirable but not practical, so it is made as close as possible using these statistical techniques

simpl<sub>i</sub>learn

### **Differencing**

Differencing is performed by subtracting the previous observation from the current observation.

$$\Delta y_t = y_t - y_{t-1}$$

 $\Delta y_t$  is the difference between two successive values  $Y_t$  is the value of y at t and  $Y_{t-1}$  is the value preceding  $Y_t$ 





On differencing the series on left

### **Decomposition**

Detrending or de-seasonalizing eliminates the trend and seasonality respectively.

Decomposition is performed on the original series by regressing the series on time and taking the residuals from the regression.

$$y_t = \mu + \beta t + \epsilon_t$$



Seasonality with increasing trend



Seasonally decomposed series



You can also use techniques like **transformation** which penalize higher values more than lower values. Example: square root, cube root, log.

### **Assisted Practice**

### **Stationarity**

Duration: 15 mins.

**Problem Statement:** The Air Passenger dataset provides monthly total of US airline passengers, from 1949 to 1960. This dataset is of a time series class.

### **Objective:**

- Check for the stationarity of your data using Rolling Statistics and Dickey fuller test
- If stationarity is present, remove it using differencing in Python

**Access:** Click on the Labs tab on the left side panel of the LMS. Copy or note the username and password that are generated. Click on the Launch Lab button. On the page that appears, enter the username and password in the respective fields, and click Login.



### **Unassisted Practice**

### **Stationarity**

Duration: 20 mins.

**Problem Statement:** The Beer production dataset provides a time series data for monthly beer production in Australia, for the period Jan 1956 – Aug 1995.

### **Objective:**

- Check for the stationarity of your data using Rolling Statistics and Dickey fuller test
- if stationarity is present, remove it using differencing in Python

**Access:** Click on the Labs tab on the left side panel of the LMS. Copy or note the username and password that are generated. Click on the Launch Lab button. On the page that appears, enter the username and password in the respective fields, and click Login.



### **Step 1: Data Import**



```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.pyplot import rcParams
from datetime import datetime
%matplotlib inline
df = pd.read_csv('monthly-beer-production-in-austr.csv')
df.head()
```

|   | Month   | Monthly beer production in Australia |
|---|---------|--------------------------------------|
| 0 | 1956-01 | 93.2                                 |
| 1 | 1956-02 | 96.0                                 |
| 2 | 1956-03 | 95.2                                 |
| 3 | 1956-04 | 77.1                                 |
| 4 | 1956-05 | 70.9                                 |
|   |         |                                      |

### **Step 2: Parse and Plot**



```
dateparse = lambda dates: pd.datetime.strptime(dates, '%Y-%m')
data = pd.read_csv('monthly-beer-production-in-austr.csv',
parse_dates=['Month'], index_col='Month', date_parser=dateparse)

ts = data['Monthly beer production in Australia']
ts.plot()
plt.ylabel("Consumption in megalitres")
```



### **Step 3: Stationarity Check**

```
from statsmodels.tsa.stattools import adfuller
def test stationarity(timeseries):
    #Determing rolling statistics
    rolmean = timeseries.rolling(window=52, center=False).mean()
    rolstd = timeseries.rolling(window=52,center=False).std()
    #Plot rolling statistics:
    orig = plt.plot(timeseries, color='blue', label='Original')
    mean = plt.plot(rolmean, color='red', label='Rolling Mean')
    std = plt.plot(rolstd, color='black', label = 'Rolling Std')
    plt.legend(loc='best')
    plt.title('Rolling Mean & Standard Deviation')
    plt.show(block=False)
    #Perform Dickey-Fuller test:
    print ('Results of Dickey-Fuller Test:')
    dftest = adfuller(timeseries, autolag='AIC')
    dfoutput = pd.Series(dftest[0:4], index=['Test Statistic','p-value','#Lags
                                              Used', 'Number of Observations Used'])
    for key, value in dftest[4].items():
        dfoutput['Critical Value (%s)'%key] = value
    print (dfoutput)
test stationarity(data['Monthly beer production in Australia'])
```

### Output



| Test Statistic              | -2.282661  |
|-----------------------------|------------|
| p-value                     | 0.177621   |
| #Lags Used                  | 17.000000  |
| Number of Observations Used | 458.000000 |
| Critical Value (1%)         | -3.444709  |
| Critical Value (5%)         | -2.867871  |
| Critical Value (10%)        | -2.570142  |
| dtype: float64              |            |

The test statistic is more than critical value and the moving average is not constant over time.

So, the null hypothesis of the Dickey-Fuller test cannot be rejected. This shows that the time series is not stationary.

### **Step 4: Stationarize**

```
pd.rolling_mean(data['Monthly beer production in Australia'].apply(lambda x:
math.log(x)), 2).diff(1).plot()
test_stationarity(ts_log_mv_diff)
```



| Test Statistic              | -3.303161  |
|-----------------------------|------------|
| p-value                     | 0.014738   |
| #Lags Used                  | 18.000000  |
| Number of Observations Used | 452.000000 |
| Critical Value (1%)         | -3.444900  |
| Critical Value (5%)         | -2.867956  |
| Critical Value (10%)        | -2.570187  |
| dtype: float64              |            |

Test statistic < 5 % of critical value. Reject null hypothesis

### Time Series Modeling Topic 3: Various Time Series Models

Simplifearn. All fights reserved.

### **Time Series Models**



### **Auto Regressive (AR) Model**

In an AR model, you predict future values based on a weighted sum of past values.

Equation for the auto regressive model:

$$Y_t = c + \phi_1 Y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p Y_{t-p} + e_t$$

 $Y_t$  is the function of different past values of the same variable  $e_t$  is the error term c is a constant  $\phi_1$  to  $\phi_p$  are the parameters

AR(1) is a model whose current value is based on the preceding value

AR(2) is based on the preceding two values

| Day | Price |                  |
|-----|-------|------------------|
| 1   | 21    | y <sub>t-p</sub> |
| 2   | 22    |                  |
| 3   | 23    | •                |
| 4   | 24    | •                |
| 5   | 23    | •                |
| 6   | 26    | •                |
| 7   | 27    | •                |
| 8   | 27    | •                |
| 9   | 29    | y <sub>t-3</sub> |
| 10  | 30    | y <sub>t-2</sub> |
| 11  | 32    | y <sub>t-1</sub> |
| 12  | ?     | y <sub>t</sub>   |

### **Moving Average (MA) Model**

MA model is used to forecast time series if Y<sub>t</sub> depends only on the random error terms.

### Equation for the MA model:



| Year | Units | Moving Avg   |
|------|-------|--------------|
| 1994 | 2     | <del>_</del> |
| 1995 | 5 -   | 3            |
| 1996 | 2     | <b>}</b> 3   |
| 1997 | 2     | 3.67         |
| 1998 | 7     | <b>\</b> 5   |
| 1999 | 6_    | J –          |

### **ARMA Model**

ARMA model is used to forecast time series using both the past values and the error terms.

Equation for the ARMA model:

$$Y_t = c + \phi_1 Y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p Y_{t-p} + e + \mu + E_t + \phi_1 E_{t-1} + \phi_2 E_{t-2} + \dots + \phi_p E_{t-p}$$
Autoregressive part

$$ARMA$$



It is referred as ARMA (p, q), where p is autoregressive terms and q is moving average terms

### **ARIMA Model**

ARIMA model predicts a value in a response time series as a linear combination of its own past values, past errors, also current and past values of other time series.





If no differencing is done (d = 0), the models are usually referred to as ARMA(p, q) models

### **ACF and PACF**

Autocorrelation refers to the way the observations in a time series are related to each other.

### **Autocorrelation Function (ACF)**

ACF is the coefficient of correlation between the value of a point at a current time and its value at lag p, that is, correlation between Y(t) and Y(t-p)

ACF will identify the order of MA process

### **Partial Autocorrelation Function (PACF)**

PACF is similar to ACF, but the intermediate lags between t and t-p are removed, that is, correlation between Y(t) and Y(t-p) with p-1 lags excluded.

PACF will identify the order of AR process



ACF and PACF are used to determine the value of p and q



### **Characteristics of ACF and PACF**

| MODEL     | ACF                       | PACF                      |
|-----------|---------------------------|---------------------------|
| AR(p)     | Spikes decay towards zero | Spikes cutoff to zero     |
| MA(q)     | Spikes cutoff to zero     | Spikes decay towards zero |
| ARMA(p,q) | Spikes decay towards zero | Spikes decay towards zero |



ACF "decays" to zero



PACF "cuts off" to zero after the 2nd lag

### **Steps in Time Series Forecasting**

| Step 01 | Visualize the time series – check for trend, seasonality, or random patterns |
|---------|------------------------------------------------------------------------------|
| Step 02 | Stationarize the series using decomposition or differencing techniques       |
| Step 03 | Plot ACF / PACF and find ( p, d, q ) parameters                              |
| Step 04 | Build ARIMA model                                                            |
| Step 05 | Make predictions using final ARIMA model                                     |

#### **Assisted Practice**

### Modeling

Duration: 15 mins.

**Problem Statement:** The Air Passenger dataset provides monthly total of US airline passengers, from 1949 to 1960. This dataset is of a time series class

#### **Objective:**

Perform ARIMA modeling in Python after obtaining ACF and PACF plots

**Access:** Click on the **Labs** tab on the left side panel of the LMS. Copy or note the username and password that are generated. Click on the **Launch Lab** button. On the page that appears, enter the username and password in the respective fields, and click **Login**.



### **Unassisted Practice**

### Modeling

Duration: 15 mins.

**Problem Statement:** : The Beer production dataset provides a time series data for monthly beer production in Australia, for the period Jan 1956 – Aug 1995

#### **Objective:**

Perform ARIMA modeling in Python after obtaining ACF and PACF plots

**Access:** Click on the Labs tab on the left side panel of the LMS. Copy or note the username and password that are generated. Click on the Launch Lab button. On the page that appears, enter the username and password in the respective fields, and click Login.



#### **ACF and PACF**



```
plt.plot(np.arange(0,11), acf(ts_log_mv_diff, nlags = 10))
plt.axhline(y=0,linestyle='--',color='gray')
plt.axhline(y=-7.96/np.sqrt(len(ts_log_mv_diff)),linestyle='--',color='gray')
plt.axhline(y=7.96/np.sqrt(len(ts_log_mv_diff)),linestyle='--',color='gray')
plt.title('Autocorrelation Function')
plt.show()

plt.plot(np.arange(0,11), pacf(ts_log_mv_diff, nlags = 10))
plt.axhline(y=0,linestyle='--',color='gray')
plt.axhline(y=-7.96/np.sqrt(len(ts_log_mv_diff)),linestyle='--',color='gray')
plt.axhline(y=7.96/np.sqrt(len(ts_log_mv_diff)),linestyle='--',color='gray')
plt.title('Partial Autocorrelation Function')
plt.show()
```

### Output





f ACF curve crosses the upper confidence value when the lag value is between 0 and 1 Thus, optimal value of q in the ARIMA model must be 0 or 1

The **PACF** curve drops to 0 between lag values 1 and 2 Thus, optimal value of p in the ARIMA model is 1 or 2



```
model = ARIMA(ts_log, order=(1, 1, 0)) results_ARIMA = model.fit(disp=-1)
plt.plot(ts_log_mv_diff) plt.plot(results_ARIMA.fittedvalues, color='red')
plt.title('RSS: %.4f'% ((results_ARIMA.fittedvalues[1:] - ts_log_mv_diff)**2))
predictions_ARIMA_diff = pd.Series(results_ARIMA.fittedvalues, copy=True)
predictions_ARIMA_diff.head()
predictions_ARIMA_diff_cumsum = predictions_ARIMA_diff.cumsum()
predictions_ARIMA_diff_cumsum.head()
predictions_ARIMA_log = pd.Series(ts_log.ix[0], index=ts_log.index)
predictions_ARIMA_log =
predictions_ARIMA_log.add(predictions_ARIMA_diff_cumsum,fill_value=0)
predictions_ARIMA_log.head()
```

| Month                | Month                | Month               |
|----------------------|----------------------|---------------------|
| 1956-02-15 0.000936  | 1956-02-15 0.000936  | 1956-01-15 4.534748 |
|                      |                      | 1956-02-15 4.535684 |
| 1956-03-15 -0.005458 |                      | 1956-03-15 4.530226 |
| 1956-04-15 0.003012  | 1956-04-15 -0.001510 | 1956-04-15 4.533238 |
| 1956-05-15 0.048189  | 1956-05-15 0.046680  | 1956-05-15 4.581428 |
| 1956-06-15 0.019847  | 1956-06-15 0.066527  | dtype: float64      |
| dtype: float64       | dtype: float64       | de, per 110deo4     |



```
predictions_ARIMA = np.exp(predictions_ARIMA_log)
plt.plot(ts)
plt.plot(predictions_ARIMA)
plt.title('RMSE: %.4f'% np.sqrt(((predictions_ARIMA-ts)**2)/(ts)))
```



### **Key Takeaways**



Now, you are able to:

- Understand time series analysis
- Build time series models using ARIMA





### Which of the following cannot be a part of time series data?

- a. Trend
- b. Seasonality
- c. Noise
- d. None of the above



Which of the following cannot be a part of time series data?

1

- a. Trend
- b. Seasonality
- c. Noise
- d. None of the above



The correct answer is d. None of the above

Options a, b, c are time series components.

2

### Which of the following techniques can be used to make a series stationary?

- a. Transformation
- b. Differencing
- c. Decomposition
- d. All of the above



2

Which of the following techniques can be used to make a series stationary?

- a. Transformation
- b. Differencing
- c. Decomposition
- d. All of the above



The correct answer is **d. All of the above** 

All of these techniques are used to stationarize a time series

# Lesson-End Project IMF Commodity Price Forecast

Duration: 20 mins.

**Problem Statement:** You are provided with a dataset which consists of Zinc prices for the period Jan 1980 – Feb 2016

#### **Objective:**

- Visualize the time series
- Check for the stationarity of your data using Rolling Statistics and Dickey fuller test and if present, remove it using stationarity removal techniques
- Plot ACF and PACF plots. Find p, d, q values
- Perform ARIMA modeling
- Forecast the prices using the new model

**Access:** Click on the Labs tab on the left side panel of the LMS. Copy or note the username and password that are generated. Click on the Launch Lab button. On the page that appears, enter the username and password in the respective fields, and click Login.







## Thank You