

Foundations of dynamic modeling: The SIR Model Family

Jonathan Dushoff, McMaster University

MMED 2023

Goals

- This lecture will:
 - introduce the idea of dynamical modeling
 - explain why dynamical modeling is a key tool for understanding infectious disease
 - discuss and demonstrate simple dynamical models from the SIR model family
 - investigate some insights that can be gained from these models

Dynamical modeling connects scales

Measles reports from England and Wales

- Start with rules about how things change in short time steps
 - Usually based on individuals
- Calculate results over longer time periods
 - Usually about populations

Compartmental models

Divide people into categories:

 $\blacktriangleright \ \mathsf{Susceptible} \to \mathsf{Infectious} \to \mathsf{Recovered}$

What determines transition rates?

- People get better independently
- ▶ People get infected by infectious people

Conceptual modeling (preview)

Conceptual modeling

- ▶ What is the final result?
- ▶ When does disease increase, decrease?

Dynamic implementation

- Requires assumptions about recovery and transmission
- ► The conceptually simplest implementation uses Ordinary Differential Equations (ODEs)
 - Other options may be more realistic
 - Or simpler in practice

Recovery

- \blacktriangleright Infectious people recover at per capita rate γ
 - ▶ Total recovery rate is γI
 - Mean time infectious is $D = 1/\gamma$

Transmission

- Susceptible people get infected by:
 - Going around and contacting people (rate c)
 - \triangleright Some of these people are infectious (proportion I/N)
 - ► Some of these contacts are effective (proportion *p*)
- ▶ Per capita rate of becoming infected is $cpI/N \equiv \beta I/N$
- Population-level transmission rate is $T = \beta SI/N$

Another perspective on transmission

- ► Infectious people infect others by:
 - ightharpoonup Going around and contacting people (rate c)
 - ightharpoonup Some of these people are susceptible (proportion S/N)
 - ► Some of these contacts are effective (proportion *p*)
- ▶ Per capita rate of infecting others is $cpS/N \equiv \beta S/N$
- ▶ Population-level transmission rate is $T = \beta SI/N$

Conceptual modeling (repeat)

12/32

The basic reproductive number

 \triangleright \mathcal{R}_0 is the number of people who would be infected by an infectious individual *in a fully susceptible population*.

- $ightharpoonup \mathcal{R}_0 = \beta/\gamma = \beta D = (cp)D$
 - c: Contact Rate
 - p: Probability of transmission (infectivity)
 - D: Average duration of infection
- ▶ A disease can invade a population if and only if $\mathcal{R}_0 > 1$.

ODE implementation

$$\begin{array}{rcl} \frac{dS}{dt} & = & -\beta \frac{SI}{N} \\ \frac{dI}{dt} & = & \beta \frac{SI}{N} - \gamma I \\ \frac{dR}{dt} & = & \gamma I \end{array}$$

14/32

Spreadsheet implementation

http://tinyurl.com/SIR-MMED-2023

15/32

ODEs and mechanistic models

- What is the relationship between the spreadsheet and the ODE model we started with?
 - ▶ * The ODE is the limit when deltaT \rightarrow 0
 - ► * ODE methods allow us to do this without an infinite amount of computer time

ODE assumptions

- Lots and lots of people
- Perfectly mixed

ODE assumptions

- Waiting times are exponentially distributed
- Rarely realistic
 - but sometimes OK for a particular application

Scripts vs. spreadsheets

- Scripts are more transparent, less redundant
- Spreadsheets are more intuitive for simple problems

More about transmission

- $\beta = pc$
 - ▶ What is a contact?
 - What is the probability of transmission?
- Sometimes this decomposition is clear
- ► But usually it's not
- So we often start by estimating β directly

Population sizes

- ▶ How does β change with population size?
- We can make different assumptions about this
 - It may increase with population size, or not
- ▶ If population size changes we have to *consider* the question

Population sizes (repeat)

$$\begin{array}{rcl} \frac{dS}{dt} & = & -\beta \frac{SI}{N} \\ \frac{dI}{dt} & = & \beta \frac{SI}{N} - \gamma I \\ \frac{dR}{dt} & = & \gamma I \end{array}$$

Population sizes

$$\begin{array}{ll} \frac{dS}{dt} & = & -\beta(N)\frac{SI}{N} \\ \frac{dI}{dt} & = & \beta(N)\frac{SI}{N} - \gamma I \\ \frac{dR}{dt} & = & \gamma I \end{array}$$

23/32

Standard incidence

$$\beta(N) = \beta_0$$

$$\mathcal{T} = \frac{\beta_0 SI}{N}$$

$$\mathcal{T} = \frac{\beta_0 SI}{N}$$

► Also known as frequency-dependent transmission

Mass action

- $\triangleright \beta(N) = \alpha_0 N$
- $ightharpoonup \mathcal{T} = \alpha_0 SI$
- ► Also known as *density-dependent* transmission

General

- ▶ Per-capita rate:
 - ► May not go to zero when N does
 - \blacktriangleright May not go to ∞ when N does

Digression – units

- $ightharpoonup \mathcal{T} = \beta SI/N : [ppl/time]$
- $\triangleright \beta : [1/\text{time}]$
 - The true β always has people in the numerator and the denominator
- $ightharpoonup \mathcal{T} = \alpha SI : [ppl/time]$
 - ▶ Mass-action incidence, $\alpha : [1/(\text{people} \cdot \text{time})]$

Closing the circle

Tendency to oscillate

- ▶ Many susceptibles \rightarrow many infections \rightarrow few susceptibles \rightarrow few infections \rightarrow ...
- Oscillations in simple models tend to be "damped"

With individuality

- Treating individuals as individuals can produce substantial oscillations even in large populations
- Interaction between random effects and the different time scales (of infection and recovery)

30/32

Summary

- Dynamic models are an essential tool because they allow us to link between scales
- There are many ways to construct and implement dynamic models
- Very simple models can provide useful insights
 - Reproductive numbers and thresholds
 - Tendency for oscillation (and tendency for damping)
- More complex models can provide more detail, but also require more assumptions, and more choices
- Understanding simple models can help guide our understanding of more complicated models

