Misericordia University Mathematical Sciences Department

Course Information

Course Number: MIS 310 01

<u>Course Title</u>: Managerial Applications of Object-

Oriented Programming I

Course Credits: 3

<u>Semester:</u> 2023 Fall <u>Instructor:</u> Fanchao Meng

Contact: fmeng@misericordia.edu
 Office Location: McAuley Hall 310

- Office Hours: Mon. & Wed. 1:00 \sim 3:00 PM EST, or

by appointments

Recommended Texts/Readings: - Intro to Python for the Computer & Data

Sciences, Paul Deitel and Harvey Deitel.

- Introduction to Computation and Programming Using Python, 3rd Edition, John V. Gut-

tag.

- Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib, 2nd Edition, Robert Johans-

son.

- Python Programming and Numerical Methods: A Guide for Engineers and Scientists, Qingkai Kong, Timmy Siauw, Alexandre

Bayen.

Class Meeting Time: Tue. & Thu. 9:30 AM $\sim 10:45$ PM EST

(When the compressed schedule applies:

Tue. & Thu. 11:15 AM \sim 12:15 PM

EST)

Classroom: Henry Science Center 265

Course Description

This course provides a study of an object-oriented programming language as it pertains to managerial applications. In addition, the course introduces the use of object-oriented programming methodologies.

Course Objectives

Course Objective	After completion of this	Assessment
Course Objective	course, the student will:	Method
1. Understand environment settings for Python.	 - Understand fundamental package management; - Set up virtual environments (e.g. using Anaconda); - Be able to use both IDEs and command-line to run Python programs inside virtual environments. 	Assignments (both written and programming),
2. Understand fundamental Python programming.	- Understand Python grammar; - Be able to use fundamental Python built-in data structures (e.g. lists, tuples, dictionaries and sets); - Be able to use fundamental Python built-in packages.	quizzes and exams.
3. Understand Object-Oriented designs using UML.	- Understand use case and class designs;- Be able to use UML to draw use case class diagrams.	
4. Understand Object-Oriented Programming (OOP)	 Understand encapsulation, abstraction, inheritance and polymorphism; Understand object serialization; Be able to use OOP in Python. Understand how OOP is applied 	
5. Use cases in real problems.	in solving real problems (e.g. hardware abstract layers and data transmission).	

Course Delivery

Teaching and Learning Strategies:

- In-person classroom sessions
- In-class quizzes

- Written assignments
- Programming assignments
- Exams

Grading Method:

Item	Amount
Assignments	40%
Quizzes	10%
Midterm 1	15%
Midterm 2	15%
Final	20%
Extra Credits	5%
TOTAL	$100\% \sim 105\%$

Grading System:

Grade	Range
A	≥ 90
A-	(90, 85]
B+	(85, 80]
В	(80, 75]
B-	(75, 70]
C+	(70, 65]
С	(65, 60]
C-	(60, 55]
D	(55, 50] < 50
F	< 50

Course and Academic Policies

Academic Policies:

All Misericordia University courses follow standard academic policies, described here: https://catalog.misericordia.edu/content.php?catoid=8&navoid=490, or on the portal under the "Students" tab.

Tutoring:

Information about tutoring and other services available through the Student Success Center are described here: https://catalog.misericordia.edu/content.php?catoid=8&navoid=474#student-success-center, or on the portal under the "Students" tab.

Emergency Alerts:

Both faculty members and students keep cell phone on in event of an MU alert.

Attendance Policy:

Attendance is required, but is not reckoned in grading. Any absence is required to be reported to the instructor.

Tentative Schedules

Tentative Assignment & Exam Schedule:

Week	Assignments/Exams
3	Assignment 1 Out
5	Assignment 1 Due, Assignment 2 Out
6	Midterm 1
7	Assignment 2 Due, Assignment 3 Out
9	Assignment 3 Due, Assignment 4 Out
11	Midterm 2, Assignment 5 Out
11	Assignment 4 Due
14	Assignment 5 Due
16	Final

Tentative Topics:

- Virtual environments and package managements
- Python grammar
- Fundamental Python built-in data structures (e.g. lists, tuples, dictionaries and sets)
- Fundamental Python built-in packages
- Basic UML
- Use case diagrams and class diagrams $\,$
- Object-Oriented Programming concepts and techniques (e.g. encapsulation, abstraction, inheritance and polymorphism)
- OOP in Python
- OOP use cases in real problems