A FIRST COURSE IN

ABSTRACT ALGEBRA

A FIRST COURSE

IN

ABSTRACT ALGEBRA

MAT3004 Notebook

Dr. Guang Rao

The Chinese University of Hongkong, Shenzhen

Contents

Ackno	owledgments	V11
Notat	ions	ix
1	Week1	1
1.1	Monday	1
1.1.1	Introduction to Abstract Algebra	1
1.1.2	Group	1
2	Week2	11
2.1	Tuesday	11
2.1.1	Review	11
2.1.2	Cyclic groups	11
3	Week3	17
3.1	Tuesday	17
3.2	Thursday	22
3.2.1	Cyclic Groups	22
3.2.2	Symmetric Groups	25
3.2.3	Dihedral Groups	28
3.2.4	Free Groups	29
4	Week4	31
4.1	Subgroups	31
4.1.1	Cyclic subgroups	32
4.1.2	Direct Products	36

4.1.3	Generating Sets	. 37
5	Week4	41
5.1	Reviewing	41
5.1.1	Theorem of Lagrange	. 43
6	Week5	49
6.1	Monday	49
6.1.1	Derived subgroups	. 52

Acknowledgments

This book is from the MAT3004 in fall semester, 2018.

CUHK(SZ)

Notations and Conventions

 \mathbb{R}^n *n*-dimensional real space \mathbb{C}^n *n*-dimensional complex space $\mathbb{R}^{m \times n}$ set of all $m \times n$ real-valued matrices $\mathbb{C}^{m \times n}$ set of all $m \times n$ complex-valued matrices *i*th entry of column vector \boldsymbol{x} x_i (i,j)th entry of matrix \boldsymbol{A} a_{ij} *i*th column of matrix *A* \boldsymbol{a}_i $\boldsymbol{a}_{i}^{\mathrm{T}}$ *i*th row of matrix **A** set of all $n \times n$ real symmetric matrices, i.e., $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $a_{ij} = a_{ji}$ \mathbb{S}^n for all *i*, *j* \mathbb{H}^n set of all $n \times n$ complex Hermitian matrices, i.e., $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\bar{a}_{ij} = a_{ji}$ for all i, j $\boldsymbol{A}^{\mathrm{T}}$ transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{\mathrm{T}}$ means $b_{ji} = a_{ij}$ for all i,jHermitian transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{H}$ means $b_{ji} = \bar{a}_{ij}$ for all i,j A^{H} trace(A)sum of diagonal entries of square matrix A1 A vector with all 1 entries 0 either a vector of all zeros, or a matrix of all zeros a unit vector with the nonzero element at the *i*th entry e_i C(A)the column space of \boldsymbol{A} $\mathcal{R}(\boldsymbol{A})$ the row space of \boldsymbol{A} $\mathcal{N}(\boldsymbol{A})$ the null space of \boldsymbol{A}

 $\operatorname{Proj}_{\mathcal{M}}(\mathbf{A})$ the projection of \mathbf{A} onto the set \mathcal{M}

Chapter 6

Week5

6.1. Monday

Let G be a finite group with $H \leq G$. Then G can be partitioned into the left cosets or the right cosets of H. However, the left cosets and the right cosets are usually different.

■ Example 6.1 Let $G = S_3$ and $H = \{(), (12)\}$, it is early seen that

$$G = H \sqcup (13)H \sqcup (23)H = H \sqcup H(13) \sqcup H(23)$$

However, we see that

$$(13)H \neq H(13), (23)H \neq H(23)$$

We are interested in the case when the left coset of H and the right coset of H are always the same.

Definition 6.1 [normal subgroup] Let G be a group. A subgroup $H \leq G$ is **normal** if

$$aH = Ha$$
, $\forall a \in G$

We denote this by $H \subseteq G$ and $H \triangleleft G$ when H < G.

Normal subgroups have several equivalent definitions:

Theorem 6.1 Let G be a group and $H \leq G$. The following statements are equivalent:

- 1. $H \subseteq G$
- 2. $a^{-1}Ha \subseteq H$, for $\forall a \in G, h \in H$
- 3. $a^{-1}Ha = H$, for $\forall a \in G$.

Proof. The non-trivial case is (2) implies (3). Since (2) holds for all $a \in G$, it holds for a^{-1} , i.e.,

$$(a^{-1})^{-1}Ha^{-1} \subseteq H \implies aHa^{-1} \subseteq H \implies H \subseteq a^{-1}Ha$$

1. Any group G contains the trivial normal subgroups, i.e. ,1 and G

- 2. Let G = S₃, N = {(),(123),(132)}, H₁ = {(),(12)}, H₂ = {(),(13)}, H₃ = {(),(23)}, then N ⊲ G but H_i's are not.
 3. Let n ∈ N⁺, then SL(n,R) ⊲ GL(n,R)
 4. Let n ∈ N⁺, then A_n ⊲ S_n. (question)
 5. Let H,K be groups and G = H × K. Then H × 1 and 1 × K are normal subgroups

Proposition 6.1 Let i, j, k be such that

$$i^2 = j^2 = k^2 = ijk = -1 \in \mathbb{R},$$

show that the quaternion group

$$Q_8 = \langle i, j, k \rangle$$

has order 8, and every its subgroup is normal.

Proof. Since $i^2 = j^2 = k^2 = -1$, ij = k, jk = i, ki = j, any element from the set Q_8 can be written as the form $\pm i^{m_1} j^{m_2} k^{m_3}$ for $m_i \in \mathbb{N}$ with $m_1 + m_2 + m_3 = 1$. Hence, the set Q_8 has at most 8 elements, i.e., the order should be no more than 8. Furthermore, note that $\pm 1, \pm i, \pm j, \pm k \in Q_8$, which means the $|Q_8| = 8$.

Also, due to Lagrange's theorem, every subgroup can only have order 1,2,4,8, and the subgroup with order 1 or 8 are trivial normal subgroups; the subgroup with order 4 has index 2, i.e., is normal. After computation, we find the only one subgroup with order 2 is $\{1,-1\}$, which is normal obviously.

R Every subgroup of an abelian group is normal, but the converse is not true (e.g., see example above). In general, a group *G* is **Dedekind** if every its subgroups is normal; and if *G* is non-abelian but with all normal subgroups, then *G* is **Hamiltonian group**.

Theorem 6.2 Let G be a group with $H \subseteq G$, then the set [G : H] forms a **quotient** group (factor group) G/H under the operation defined as:

$$(aH)(bH) := (ab)H, \quad \forall a,b \in G$$

Note that the proof is incomplete, we need to check the well-defineness of operation.

Proof. To examine that G/H is indeed a group:

- (ab)H is also a left cosets
- associative
- *H* is identity
- $a^{-1}H$ is inverse

■ Example 6.3 For $n \in \mathbb{N}^+$, the abelian group \mathbb{Z} contains a normal subgroup $n\mathbb{Z}$, and $\mathbb{Z}/n\mathbb{Z}$ is a cyclic group of order n.

Proposition 6.2 Let *G* be a group, then the **center**

$$Z(G) := \{ z \in G \mid zg = gz, \forall g \in G \}$$

forms a normal subgroup of *G*.

Question for Proposition 3.5

Proof. First, show that $z_1, z_2 \in Z(G)$ implies $z_1 z_2^{-1} \in Z(G)$. Next, show that $g^{-1} z g = z$ for all $g \in G$ and $z \in Z(G)$.

- Example 6.4 1. Let G be an abelian group, then Z(G) = G, i.e., Z(G) is essentially the largest abelian subgroup of G
 - 2. Let $n \ge 3$ be an integer, then $Z(S_n) = 1$.
 - 3. Let $n \geq 3$ be an integer, then $Z(\mathbb{Z}_n \times S_n) = \mathbb{Z}_n \times 1$.

4

$$Z(\mathsf{GL}(2,\mathbb{R})) = \{ \mathsf{diag}(a,b) : ab \neq 0 \}$$

6.1.1. Derived subgroups

Definition 6.2 [derived subgroup] Let G be a group and $a,b \in G$. The **commutator** of a,b is:

$$[a,b] := a^{-1}b^{-1}ab$$

The derived subgroup (commutator subgroup) of G is

$$G' := \langle [a,b] | a,b \in G \rangle$$

Proposition 6.3 The G'-coset partition defines an equivalence relation on G such that $ab \sim_{G'} ba$ for $\forall G$.

Proof. First show that $x \sim_{G'} y$ iff $xy^{-1} \in G'$.

Then it's trivial that $aba^{-1}b^{-1} \in G'$.

Note that the *L*-coset parititon $a \sim_L b$ means that aH = bH.

 \mathbb{R} If $G' \triangleleft G$, then G/G' is an abelian group. Note that G' is normal since

$$a^{-1}ha = [a, h^{-1}]h \in G'$$

Theorem 6.3 Let *G* be a group, then $G' \triangleleft G$ and G/G' is abelian.

Corollary 6.1 Let G be a group such that G'' = 1, then G is abelian

Proof. $\{\{a\} \mid a \in G\}$ is abelian implies G is abelian.

The derived subgroup is the smallest normal subgraoup such that the quotient group G/G' is abelian, i.e., any quotient group G/H is abelian iff H contains G'.

Theorem 6.4 Let *G* be a group and $H \triangleleft G$, then G/H is abelian iff $G' \leq H$.

Proof. Necessity. Since G/H is abelian, we have

$$abH = baH \implies abh_1 = bah_2 \implies [a,b] = h_2h'_1 \in H \implies \langle [a,b]|a,b \in G \rangle \in H$$

Suffiency. Note that

$$a^{-1}b^{-1}ab \in G' \subseteq H \implies a^{-1}b^{-1}ab = h \implies ab \sim_H ba, \forall a, b \in G$$

Theorem 6.5 Let $n \in \mathbb{N}^+$, then $A_n = S'_n$ (A_n denotes the group of even permutations). Moreover, when $n \geq 5$, $A'_n = A_n$.

Recall that a permutation is called an even permutation if it can be written as a product of an even number of transpositions.

Proof. Note that $S_n/A_n = A_n \sqcup \tau A_n$, and therefore abelian. Thus $A_n \geq S_n'$. It suffices to show $S_n' \geq A_n$, Note that

$$A_n = \langle (12i)|i=3,\ldots,n\rangle$$

Therefore $(12i) = (12)^{-1}(1i)^{-1}(12)(1i) \in S'_n$ implies $A_n \le S'_n$.

When $n \ge 5$, note that $A'_n \le A_n$. On the other hand,

$$(12i) = (1a2)^{-1}(1bi)^{-1}(1a2)(1bi) \in A'_n \implies A_n \le A'_n$$

In general, a group satisfying G' = G is perfect. The alternating groups are concrete examples of perfect groups.

Proposition 6.4 The group $SL(2,\mathbb{R})$ is perfect.

Proof. Note that any element is a product of $\begin{pmatrix} 1 & x \\ 0 & x \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ y & 1 \end{pmatrix}$ and these two basis can be written as the form [a,b].,e.g.,

$$\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} (\sqrt{2})^{-1} & 0 \\ 0 & \sqrt{2} \end{pmatrix} \end{bmatrix}$$

Definition 6.3 [Simple] Every group G contains the trivial normal subgroups 1 and G. If these are only normal subgroups contained in G, then we say G is **simple**.

Definition 6.4 [Conjugacy Class] Let G be a group and $a,b \in G$. If there exists $g \in G$ such that $g^{-1}ag = b$, then a,b are **conjugate**, and b is a conjugate of a. The conjugacy class with representative a is a collection of all conjugates of a:

$$\mathsf{CI}(a) = \{ g^{-1}ag \mid g \in G \}$$

Proposition 6.5 The conjugacy class defines an equivalence relation on G; and $Cl(z) = \{z\}$ for each $z \in G$.

Theorem 6.6 Let G be a finite group with r disjoint conjugacy classes of size $c_1, ..., c_r \ge 2$. Let $|Z(G)| = c_0$, then

$$|G| = \sum_{i=0}^{r} c_i$$

Proof. Note that $x \in Cl(z)$ with $z \in Z(G)$ iff x = z. Hence the conjugacy class with only one element must be of the form $\{z\}$, $z \in Z(G)$. Thererfore,

$$|G| = \sum_{i=0}^{r} c_i$$

Theorem 6.7 The alternating group A_5 is simple.

Solution. Let $\sigma \in N \triangleleft A_5$ be non-identity, then if we can show that $N = A_5$, which is a contradiction, then we show that A_5 is simple.

Note that A_5 is generated by the 3-cycles, i.e., every element σ of A_n can be written as

$$\sigma = C_1 C_2 \cdots C_k$$

with C_i to be 3-cycles.

Note that N contains a non-trivial even permutation σ , which must be of the form (abcde) or (ab)(cd) or (abc).

• When $\sigma = (abcde)$, let $\alpha = (ab)(cd)$. then N also contains:

$$\alpha \sigma \alpha^{-1} = (ab)(cd)(abcde)(ab)(cd) = (adceb)$$

and therefore contains

$$\sigma\sigma^{-1} = (aec)$$

• When $\sigma = (ab)(cd)$, let $\beta = (abe)$, then N also contains

$$\sigma' = \beta \sigma \beta^{-1} = (becd)$$

and therefore contains

$$\sigma\sigma^{-1} = (abe)$$

If N contains a signle 3-cycles, since 3-cycles are mutually conjugate, N will contain any other 3-cycles. Therefore N = A, which is a contradiction.

Solution 2. Let N be a normal subgroup of A_5 , then it is a union of some of the conjugacy classes of A_5 . Since the order of N must divide 60, a short calculation shows that no union of some of these conjugacy classes that includes $\{e\}$ has order a divisor of 60, unless $A_5 = \{e\}$ or A_5 .