Entrenamiento Especial de Teoría de Números Jesús Liceaga

jose.liceaga@cimat.mx 5 de marzo de 2021

En esta sesión, repasaremos y profundizaremos en el concepto del máximo común divisor, además de discutir el algoritmo de Euclides y sus aplicaciones.

-Liceaga

1. Teoría: Parte 1

Proposición 1. Sean a y b enteros con $b \neq 0$. Si b|a, entonces $|b| \leq |a|$.

Observación. Dados dos enteros a y b, estos tienen al menos un divisor en común: 1.

Definición 1. Sean $a ext{ y } b$ enteros, alguno de ellos distinto de 0. Definimos el $m\'{a}ximo$ $com\'{u}n$ divisor de $a ext{ y } b$, denotado como mcd(a,b) o (a,b), como el m\'{a}ximo de los divisores comunes de $a ext{ y } b$. Es decir,

$$mcd(a, b) = máx\{d \in \mathbb{Z} : d|a \ y \ d|b\}.$$

Proposición 2. Sean a y b enteros, con $a \neq 0$. Entonces

- a) mcd(a,b) = mcd(b,a).
- b) $mcd(a, b) = mcd(\pm a, \pm b) = mcd(|a|, |b|).$
- c) mcd(a, 0) = a.

Proposición 3. Sean a y b enteros, alguno de ellos distinto de 0. Entonces

$$mcd(a,b) = mcd(a,b-a) = mcd(b,a-b) = mcd(a,a+b).$$

Corolario. Sean a y b enteros, alguno de ellos distinto de 0, y sea n otro entero cualquiera. Entonces mcd(a,b) = mcd(a,b-an).

Definición 2. Decimos que a y b son primos relativos si mcd(a,b) = 1.

2. Problemas: Parte 1

Problema 1. Calcula el máximo común divisor de 2540 y 1651.

Problema 2. Nuria tiene dos barras de chocolate gigantes, una de 120 cm de largo y la otra de 96 cm. Si desea cortarlas de tal manera que todos los trozos resultantes tengan la misma longitud, que debe de ser entera, y quiere que esta sea la más grande posible, ¿cuántos trozos de chocolate obtendrá al cortar?

Problema 3. Decimos que una fracción $\frac{a}{b}$ es irreducible si a y b son primos relativos. Demuestra que la fracción $\frac{15n+4}{10n+3}$ es irreducible para todo entero n.

Problema 4. ¿Cuál es el mayor valor posible de mcd(5n + 6, 8n + 7)?

3. Teoría: Parte 2

Teorema 1. (Algoritmo de Euclides) Dados los enteros positivos a y b, mediante la aplicación repetida del algoritmo de la división podemos obtener una sucesión de cocientes y residuos

$$a = bq_{0} + r_{0} 0 \le r_{0} < b (0)$$

$$b = r_{0}q_{1} + r_{1} 0 \le r_{1} < r_{0} (1)$$

$$r_{0} = r_{1}q_{2} + r_{2} 0 \le r_{2} < r_{1} (2)$$

$$\vdots$$

$$r_{n-2} = r_{n-1}q_{n} + r_{n} 0 \le r_{n} < r_{n-1} (n)$$

$$r_{n-1} = r_{n}q_{n+1}, (n+1)$$

donde r_n es el último residuo distinto de 0. Entonces, se tiene que r_n es el máximo común divisor de a y b.

Teorema 2. (Identidad de Bézout) Si a y b son enteros, alguno de ellos distinto de 0, entonces existen enteros x y y tales que

$$ax + by = mcd(a, b).$$

Definición 3. Una expresión de la forma ax + by se llama combinación lineal de a y b.

Teorema 3. Si a, b son enteros, alguno de ellos distinto de 0, y d = ax + by es su combinación lineal positiva mínima, entonces d = mcd(a, b).

Corolario. Sean a y b enteros para los cuales existen enteros x y y tales que ax + by = 1. Entonces mcd(a,b) = 1.

Proposición 4. Sean a y b enteros, alguno de ellos distinto de 0 y $c \neq 0$ un entero. Si c|ab y mcd(a,c) = 1 entonces c|b.

Teorema 4. Sean a, b enteros, alguno de ellos distinto de 0, y sea d > 0 otro entero. Entonces las siguientes afirmaciones son equivalentes (si se cumple una se cumplen todas):

- a) d = mcd(a, b).
- b) d es la combinación lineal positiva mínima de a y b.
- c) d|a, d|b y para todo entero c tal que c|a y c|b se tiene que c|d.
- d) d|a, d|b y d es combinación lineal de a y b.

4. Problemas: Parte 2

Problema 5. Expresa al máximo común divisor de 21 y 56 como combinación lineal de éstos dos.

Problema 6. Sean a y b enteros, alguno de ellos distinto de 0, y sea d = mcd(a, b). Prueba que $mcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1$.

Problema 7. Sean a y b enteros tales que mcd(a,b) = 1. Prueba que $mcd(a^2,b^2) = 1$.

Problema 8. Sean $a \vee b$ enteros tales que $mcd(a,b) = 1 \vee r$, s enteros positivos. Prueba que $mcd(a^r,b^s) = 1$.

Problema 9. Sean a, b y n enteros positivos. Prueba que $mcd(na, nb) = n \cdot mcd(a, b)$.

Problema 10. Sean a y b enteros tales que mcd(a, b) = 1. Prueba que mcd(a + b, a - b) = 1 o 2.

Problema 11. Sean a y b enteros tales que mcd(a,b)=1. Prueba que $mcd(a+b,a^2-ab+b^2)=1$ o 3.

Problema 12. Sean \overline{ab} y \overline{ba} números de dos dígitos, donde a y b son primos relativos. Si $mcd\left(\overline{ab},\overline{ba}\right) = \frac{a+b}{2}$, encuentra el valor de a+b.

Problema 13. Sea n un entero positivo par y sean a y b enteros positivos primos relativos tales que $a + b|a^n + b^n$. Encuentra a y b.

Problema 14. Sean a > 1 un entro y b, c enteros, alguno de ellos distinto de 0. Demuestra que $mcd(a^b - 1, a^c - 1) = a^{mcd(b,c)} - 1$

Problema 15. Sean m y n enteros positivos con m impar. Demuestra que $2^m - 1$ y $2^n + 1$ son primos relativos.

Problema 16. Los números de la sucesión $101, 104, 109, 116, \ldots$ son de la forma $a_n = 100 + n^2$, donde n es un entero positivo. Sea $d_n = mcd(a_n, a_{n+1})$. ¿Cuál es el mayor valor que puede tomar d_n ?

Problema 17. Sean a y b enteros positivos y sea d su máximo común divisor. Si $\frac{a+1}{b} + \frac{b+1}{a}$ es un entero, demuestra que $d \le \sqrt{a+b}$.

Problema 18. Determina todas las parejas (a, b) de enteros positivos tales que el número

$$\frac{a^2(b-a)}{b+a}$$

es el cuadrado de un número primo.