

Sejam bem-vindos!

Programação de Soluções Computacionais Prof Alex Andrade

2024.1

Introdução a Programação

Aulas Passadas

- O que é Algoritmo;
- O que é a Lógica;
- O que significa Programação;
- O que é Lógica de Programação;
- O que é uma Linguagem de Programação;
- Quais os passos para criar um algoritmo;
- Quais as formas de representar um Algoritmo.
 - Exercícios.

Introdução a Lógica

- Lógica → capacidade que todo ser humano precisa ter para resolver os problemas que aparecem no dia-a-dia.
 - Descrição das etapas que serão realizadas e sua sequência.
 - Na etapa de lógica, devem ser identificadas as necessidades do problema e as instruções a serem seguidas para atingir o resultado.
 - Se tratando da Computação → É o período da programação que requer mais atenção;
 - A lógica detalha os procedimentos para realização de uma tarefa, independentemente das próximas etapas (escolha do paradigma e da linguagem);
 - A qualidade dessa etapa afeta diretamente nas demais.
 - A maior parte das dificuldades na programação ocorre nessa etapa.

Introdução a Lógica – Definição Formal

- "O uso corriqueiro da palavra lógica está normalmente relacionado à coerência e à racionalidade.
 - Frequentemente se associa lógica apenas à matemática, não se percebendo sua aplicabilidade e sua relação com as demais ciências.
- Podemos relacionar a lógica com a 'correção do pensamento', pois uma de suas preocupações é determinar quais operações são válidas e quais não são, fazendo análises das formas e leis do pensamento.
 - Como filosofia, ela procura saber por que pensarmos assim e não de outro jeito.
 - Como arte ou técnica, ela nos ensina a usar corretamente as leis do pensamento."

FORBELLONE; EBERSPÄCHER, 2005

Introdução a Lógica – Definição Formal

- De acordo com Puga e Rissetti (2009):
 - A palavra lógica é originária do grego logos, que significa linguagem racional.
 - Ela é uma criação do filósofo Aristóteles, a qual ele chamava de razão.

Exemplos:

- a) Todo mamífero é um animal. Todo cavalo é um mamífero. Portanto, todo cavalo é um animal.
- b) Todo homem é mortal. Sócrates é um homem. Portanto, Sócrates é mortal.
 - Do ponto de vista da lógica, esses argumentos têm as seguintes estruturas:
 - Todo X é Z. Y é X. Logo, Y é Z
- c) Sandra é mais velha do que Ricardo. Ricardo é mais velho do que Pedro. Logo, Sandra é mais velha do que Pedro.
 - X é mais velha que Y. Y é mais velho que Z. Logo, X é mais velha que Z.

Os argumentos utilizados na Lógica são classificados em:

- Indutivos → podemos chegar a uma resposta pela comparação com algo já conhecido, ou seja, por uma analogia. Entretanto, esse tipo de raciocínio não garante a veracidade da resposta (PUGA; RISSETTI, 2009).
 - 1. Ontem não havia nuvens no céu e não choveu.
 - 2. Hoje não há nuvens no céu.
 - 3. Portanto, hoje não vai chover.
- - Remetem a lógica formal (Lógica Aristotélica): "codifica argumentos, testes e demonstrações de consistência e validade", a qual temos axiomas¹ e tabelas-verdade² para nos fornecerem o retorno de veracidade.

¹Um axioma propõe uma estrutura dedutiva, no qual podemos estabelecer resultados, a partir de certos princípios.

²Uma tabela-verdade é um tipo de tabela matemática utilizada em Lógica para determinar se uma fórmula é válida.

Será que existe Lógica no cotidiano?

- a) A gaveta está fechada e a caneta está dentro da gaveta.
 - Para pegar a caneta → Precisamos primeiro abrir a gaveta para depois pegar a caneta.
- b) João é mais velho que Maria e Maria é mais velha que Marivaldo.
 - Logo, João é mais velho que Marivaldo.

Três senhoras, Dona Branca, Dona Rosa e Dona Violeta passeavam pelo parque quando Dona Rosa disse:

- "Não é curioso que estejamos usando vestidos de cores branca, rosa e violeta, embora nenhuma de nós esteja usando um vestido de cor igual ao seu próprio nome.
- "Uma simples coincidência" respondeu a senhora com o vestido violeta.

Diga: Qual a cor do vestido de cada senhora?

Será que existe Lógica no cotidiano?

- Se a senhora com o vestido violeta respondeu a Dona Rosa, então ela não é a própria Dona Rosa.
- Além disso, como ela não tem o vestido da mesma cor de seu nome, ela também não é a Dona Violeta.
- Logo, é a Dona Branca que está com o vestido violeta.
- Dona Rosa não está usando o vestido rosa nem o violeta, portanto só pode estar usando o branco.
- Consequentemente, Dona Violeta veste o vestido rosa.

Dona Rosa está de vestido branco; Dona Branca está de vestido violeta; Dona Violeta está de vestido rosa.

- Conceito mais elementar no estudo da lógica → Proposição.
 - Proposição vem de propor, que significa submeter à apreciação, requerer um juízo/avaliação.
- Trata-se de uma sentença declarativa, cujo conteúdo poderá ser considerado:
 VERDADEIRO ou FALSO.
 - Exemplo → se alguém fala:

"A Terra é maior que a Lua"

- estaremos diante de uma proposição cujo valor lógico é verdadeiro.
- Quando falarmos em VALOR LÓGICO estaremos nos referindo a um dos dois possíveis juízos que atribuiremos a uma proposição:
 - Verdadeiro (V) ou Falso (F).

• E se alguém disser:

"Feliz ano novo!",

- será que isso é uma proposição verdadeira ou falsa?
 - NÃO se trata de uma sentença para a qual se possa atribuir V/F.
- Normalmente, as proposições são representadas por letras minúsculas
 ...p, q, r, s...
- Exemplos de proposições:
 - p: Pedro é médico. → Supondo que é verdadeiro: VL(p)=V
 - q: 5 > 8 \rightarrow VL(q)=F
 - r: Luíza foi ao cinema ontem à noite. → Supondo que é falso: VL(r)=F

"Eu gosto de futebol"

- Essa frase é uma proposição lógica porque cumpre três requisitos fundamentais:
 - 1. Oração → lembre-se das aulas de Português que orações são frases que possuem verbo. Essa frase tem o verbo "gostar", logo é uma oração.

 - 3. Classificada como Verdadeira ou Falsa → dependendo de quem pronuncia a frase, ela pode assumir esses dois valores lógicos (V/F).

- O que NÃO é proposição?
 - 1. Perguntas → as orações interrogativas. Ex: "Que dia é hoje?".
 - 2. Exclamações → as frases exclamativas. Ex: "Que dia belo!".
 - Essas frases apresentam percepções individuais. Ainda que você não concorde que o dia está belo, isto não significa que a frase dita é falsa.
 - 3. Ordens → as frases imperativas. Ex: "Vá comprar pão.".
 - Uma ordem pode ser cumprida ou descumprida, mas a ordem em si não pode ser considerada verdadeira ou falsa.
 - Muita atenção com os verbos no imperativo, eles são um forte indicativo de frases que não são proposições.

- Há alguma proposição que possa, ao mesmo tempo, ser verdadeira e falsa?
 Não! Jamais! E por que não?
 - Porque o raciocínio Lógico, como um todo, está sedimentado sobre alguns princípios que terão que ser sempre obedecidos.
- Princípio da identidade:
 - Uma proposição verdadeira é verdadeira; uma proposição falsa é falsa;
- Princípio da Não Contradição:
 - Nenhuma proposição poderá ser verdadeira e falsa ao mesmo tempo;
- Princípio do Terceiro Excluído:
 - Uma proposição ou será verdadeira, ou será falsa.
 - Não há outra possibilidade.

- Proposições podem ser ditas como SIMPLES ou COMPOSTAS.
- Simples -> aquelas que vêm sozinhas, desacompanhadas de outras proposições. Exemplos:

Todo homem é mortal.

O novo papa é alemão.

• Compostas → se duas, ou mais, proposições vêm conectadas entre si (conectivos lógicos), formando uma só sentença. Exemplos:

João é médico e Pedro é dentista.

Maria vai ao cinema ou Paulo vai ao circo.

Ou Luís é baiano, ou é paulista.

Se chover amanhã de manhã, então não irei à praia.

Comprarei uma mansão se e somente se eu ganhar na loteria.

Introdução a Lógica de Proposições – Tabela Verdade

Toda proposição simples 'p' tem o valor lógico ∨ /F → (verdade)/(falsidade).

- Se tratando de uma proposição composta, a determinação do seu valor lógico, conhecidos os valores lógicos das proposições simples componentes, se faz com base no seguinte princípio:
 - O valor lógico de qualquer proposição composta depende unicamente dos valores lógicos das proposições simples componentes, ficando por eles univocamente determinado (sem ambiguidade).

p q

1 V V
2 V F
3 F V
4 F F

Qtd_Linhas = 2^n

Introdução a Lógica de Proposições – Tabela Verdade

No caso de uma proposição composta cujas proposições são p, q e r, as atribuições possíveis

são:

	p	q	ľ
1	V	V	V
2	V	V	F
3	V	F	V
4	V	F	F
5	F	V	V
6	F	V	F
7	F	F	V
8	F	F	F

- Simbolicamente, esse conectivo pode ser representado por "Λ".
- Então, se temos a sentença: "Marcos é médico e Maria é estudante"
 - Podemos representá-la apenas por: p ∧ q, onde:
 - p = Marcos é médico;
 - q = Maria é estudante.
- Diante da sentença "Marcos é médico e Maria é estudante":
 - SÓ PODEREMOS CONCLUIR QUE esta proposição composta É VERDADEIRA SE FOR VERDADE, AO MESMO TEMPO, que:
 - Marcos é médico e que Maria é estudante.
 - BASTA QUE UMA DAS PROPOSIÇÕES componentes SEJA FALSA, E A CONJUNÇÃO SERÁ TODA ELA FALSA.
 - O resultado falso também ocorrerá quando ambas as proposições componentes forem falsas.

- Essas conclusões podem ser resumidas em uma pequena tabela.
 - Trata-se da TABELA VERDADE, de fácil construção e de fácil entendimento.
- Retomemos as nossas premissas:

p = Marcos é médico

q = Maria é estudante.

Marcos é médico (p)	Maria é estudante (q)	Marcos é médico e Maria é estudante (p^q)
V	V	V
V	F	F
F	V	F
F	F	F

TABELA VERDADE do Conectivo AND.

р	q	p ^ q
V	V	V
V	F	F
F	V	F
F	F	F

Pensando na forma de um CIRCUITO:

- Exercícios:
 - Crie duas proposições compostas utilizando conjunções.
 - Em seguida escreva as proposições criadas com a notação lógica.
 - Qual o valor lógico de cada proposição criada?

- p: A neve é branca. (V)
- q: 2 < 5. (V)
- p^q : A neve é branca e 2<5.
- V (p^q)=V (p)^V (q)=V^V =V.

Lógica de Proposições – Conectivos Lógicos – "ou" (OR – Disjunção)

- Simbolicamente, esse conectivo pode ser representado por "V".
- Então, se temos a sentença: "Marcos é médico ou Maria é estudante"
 - Podemos representá-la apenas por: p V q, onde:
 - p = Marcos é médico;
 - q = Maria é estudante.
- Diante da sentença "Marcos é médico ou Maria é estudante":
 - BASTA QUE UMA DAS PROPOSIÇÕES componentes SEJA VERDADEIRA, E A CONJUNÇÃO SERÁ – TODA ELA – VERDADE.
 - SÓ PODEREMOS CONCLUIR QUE esta proposição composta É FALSA SE, AO MESMO TEMPO, todas as PROPOSIÇÕES componentes FOREM FALSAS.

Lógica de Proposições – Conectivos Lógicos – "ou" (OR – Disjunção)

TABELA VERDADE do Conectivo OR.

р	q	p V q
V	V	V
V	F	V
F	V	V
F	F	F

Pensando na forma de um CIRCUITO:

Lógica de Proposições – Conectivos Lógicos – "ou" (OR – Disjunção)

- Exercícios:
 - Crie duas proposições compostas utilizando disjunções.
 - Escreva as proposições criadas com a notação lógica.
 - Qual o valor lógico de cada proposição criada?
 - p: Paris é a capital da França. (V)
 - q: 10-7=5. (F)
 - p v q : Paris é a capital da França ou 10–7=5
 - V (p v q)=V (p) v V (q)= V v F = V

- Há um terceiro tipo de proposição composta, bem parecido com a disjunção que acabamos de ver, mas com uma pequena diferença.
- Comparemos as duas sentenças abaixo:

Te darei uma bola OU te darei uma bicicleta OU te darei uma bola OU te darei uma bicicleta

Pergunta: O que difere?

Comparemos as duas sentenças abaixo:

Te darei uma bola OU te darei uma bicicleta OU te darei uma bola OU te darei uma bicicleta

- A diferença é sutil, mas importante.
 - Na primeira sentença nota-se que se a primeira parte for verdade, não impedirá que a segunda parte também seja.
 - Já na segunda proposição, se for verdade que "te darei uma bola", então teremos que não será dada a bicicleta, e vice-versa.
- EXCLUSIVAMENTE, uma coisa OU a outra.
 - Conhecido, no estudo de circuitos digitais como OU Exclusivo!

- Em outras palavras:
 - a DISJUNÇÃO EXCLUSIVA apresenta duas situações mutuamente excludentes, de sorte que apenas uma delas pode ser verdadeira, e a restante será necessariamente falsa.
 - Ambas nunca poderão ser, ao mesmo tempo, verdadeiras;
 - Ambas nunca poderão ser, ao mesmo tempo, falsas.
- Só será verdadeira se houver uma das sentenças verdadeira e a outra falsa.
 - Nos demais casos, a disjunção exclusiva será falsa.
- O símbolo que designa a disjunção exclusiva é o "V".

TABELA VERDADE do Conectivo OR... OR.

р	q	p <u>V</u> q
V	V	F
V	F	V
F	V	V
F	F	F

Pensando na forma de um CIRCUITO:

- No caso de uma proposição SIMPLES:
 - Basta pôr a palavra 'NÃO' antes da sentença, e já a tornamos uma negativa.
- Exemplos:
 - João é médico. Negativa: João não é médico.
 - Maria é estudante. Negativa: Maria não é estudante.
- O símbolo que representa a negação é uma pequena cantoneira (¬) ou um sinal de til (~), antecedendo a frase.
- TABELA VERDADE do Conectivo NOT (Simples).

р	~p
V	F
F	V

- No caso de uma proposição COMPOSTA:
 - Para negar uma proposição no formato de conjunção (p e q):
 - Negaremos a primeira parte (~p);
 - Negaremos a segunda parte (~q);
 - 3. Trocaremos "e" por "ou".
- Exemplo: João é médico e Pedro é dentista
 - 1. Nega-se a primeira parte (~p) = João não é médico;
 - 2. Nega-se a segunda parte (~q) = Pedro não é dentista;
 - 3. Troca-se E por OU, e o resultado final será o seguinte:

João não é médico ou Pedro não é dentista

• Traduzindo para a linguagem da lógica, dizemos que:

$$\sim$$
(p^q) = \sim p V \sim q

TABELA VERDADE do Conectivo NOT (Composto Conjuntivo).

р	q	p∧q	~(p ∧ q)
V	V	V	F
V	F	F	V
F	V	F	V
F	F	F	V

Pensando na forma de um CIRCUITO:

- No caso de uma proposição COMPOSTA:
 - Para negar uma proposição no formato de disjunção (p ou q):
 - Negaremos a primeira parte (~p);
 - 2. Negaremos a segunda parte (~q);
 - 3. Trocaremos "ou" por "e".
- Exemplo: João é médico ou Pedro é dentista
 - 1. Nega-se a primeira parte (~p) = João não é médico;
 - 2. Nega-se a segunda parte (~q) = Pedro não é dentista;
 - 3. Troca-se OU por E, e o resultado final será o seguinte:

João não é médico e Pedro não é dentista

Traduzindo para a linguagem da lógica, dizemos que:

$$\sim$$
(p V q) = \sim p $^{\sim}$ q

TABELA VERDADE do Conectivo NOT (Composto Disjuntivo).

р	q	p V q	~(p V q)
V	V	V	F
V	F	V	F
F	V	V	F
F	F	F	V

Pensando na forma de um CIRCUITO:

Lógica de Proposições – Conectivos Lógicos – "Se... então" (Condicional)

Se nasci em Apodi, então sou potiguar.

- Qual é a única maneira dessa proposição está incorreta?
 - Só há um jeito desta frase ser FALSA:
 - Se a primeira parte for verdadeira, e a segunda for falsa.
 - Ou seja, se é verdade que eu nasci em Apodi, então necessariamente é verdade que eu sou potiguar.
 - Se alguém disser que é verdadeiro que eu nasci em Apodi, e que é falso que eu sou potiguar, então este conjunto estará todo falso.
- Não é preciso que exista qualquer conexão de sentido entre o conteúdo das proposições componentes da condicional.
 - Por exemplo, poderíamos ter a seguinte sentença:

"Se a baleia é um mamífero, então o papa é alemão".

Lógica de Proposições – Conectivos Lógicos – "Se... então" (Condicional)

- O que interessa é apenas uma coisa: a primeira parte da condicional é uma condição suficiente para obtenção de um resultado necessário.
- Só será falsa esta estrutura quando houver a condição suficiente, mas o resultado necessário não se confirmar.
 - Ou seja, quando a primeira parte for verdadeira, e a segunda for falsa.
 - Nos demais casos, a condicional será verdadeira.
- A sentença condicional "Se p, então q" será representada por uma seta: p→q.
 - A proposição p é denominada antecedente (ou hipótese);
 - A proposição q é denominada consequente.

Lógica de Proposições – Conectivos Lógicos – "Se... então" (Condicional)

• TABELA VERDADE do Conectivo SE... ENTÃO.

р	q	p → q
V	V	V
V	F	F
F	V	V
F	F	V

Lógica de Proposições – Conectivos Lógicos – "Se... então" (Condicional)

- Neste exemplo, suponha que seu amigo disse:
 - Se eu me formar na primavera, então vou tirar férias na Flórida
- Condições:
 - Se ele realmente se formar na primavera (V) e tirar suas férias na Flórida (V), a sentença foi VERDADEIRA;
 - Porém, se ele se formar na primavera (V) e não tirar suas férias na Flórida (F), seu comentário foi uma sentença FALSA;
 - Agora, supondo que ele não se formou (F), independentemente de ele tirar ou não as férias na Flórida, a sentença não tornou-se falsa, pois demos-lhe o benefício da dúvida.

Lógica de Proposições – Conectivos Lógicos – "Se... então" (Condicional)

- Exercício:
 - p: O mês de maio tem 31 dias. (V)
 - q: A seleção brasileira de futebol é hexacampeã. (F)
 - (p -> q):

Se o mês de maio tem 31 dias, então seleção brasileira de futebol é hexacampeã.

$$VL(p \rightarrow q) = VL(p) \rightarrow VL(q) = V \rightarrow F = F$$

Lógica de Proposições – Conectivos Lógicos – "Se e somente se" (Bicondicional)

"Eduardo fica alegre se e somente se Mariana sorri".

- É o mesmo que fazer a conjunção entre as duas proposições condicionais:
 - O "Eduardo fica alegre somente se Mariana sorri e Mariana sorri somente se Eduardo fica alegre".
- A bicondicional é uma conjunção entre duas condicionais.
- Haverá duas situações em que a bicondicional será VERDADEIRA:
 - 1. Quando antecedente e consequente forem ambos verdadeiros;
 - 2. Quando forem ambos falsos.
 - Nos demais casos, a bicondicional SERÁ FALSA.
- A frase "p se e somente se q" é representada por " $p \leftrightarrow q$.
- No estudo dos circuitos digitais, é chamada de COINCIDÊNCIA.

Lógica de Proposições – Conectivos Lógicos – "Se e somente se" (Bicondicional)

TABELA VERDADE do Conectivo SE E SOMENTE SE.

р	q	$p \leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

Lógica de Proposições – Conectivos Lógicos – "Se e somente se" (Bicondicional)

```
p: Roma fica na Europa . (V)

q: A neve é branca (V)

p \leftrightarrow q: Roma fica na Europa

se e somente se A neve é branca

V(p \leftrightarrow q) = V(p) \leftrightarrow V(q) = V \leftrightarrow V = V
```

Lógica de Proposições – Operadores Lógicos

Conectivo	Símbolo	Operação Lógica	Valor Lógico	
não	~	negação	Terá valor falso quando a proposição for verdadeira e vice-versa.	
е	^	conjunção	Será verdadeira somente quando todas as proposições forem verdadeiras.	
ou	v	disjunção	Será verdadeira quando pelo menos uma das proposições for verdadeira.	
seentão	→	condicional	Será falsa quando a proposição antecedente for verdadeira e a consequente for falsa.	
se somente se	↔	bicondicional	Será verdadeira quando ambas as proposições forem verdadeira ou ambas falsas.	

Lógica de Proposições – Conectivos Lógicos – Precedência

- Define a ordem de análise de u m a proposição composta.
- Operadores com maior precedência devem ser analisados primeiro;
- Ordem de precedência comum :
 - Negação (~ ou ¬);
 - 2. Conjunção (^) e Disjunção (V);
 - 3. Condicional (\rightarrow) ;
 - 4. Bicondicional (\leftrightarrow) .
- Quando uma sentença possui dois operadores de mesma precedência, a análise dá-se da esquerda para a direita;
- Por meio da utilização de parênteses é possível alterar a precedência de proposições compostas.

Lógica de Proposições – Conectivos Lógicos – Precedência

- Exemplos : Análise as proposições abaixo e diga a ordem de análise dos operadores.
 - P: ~p^q
 - P: p^Vq[^]r
 - P: p[∨]q→r
 - P: $p^{\vee}(q \rightarrow r)$

Sistemas de Numeração

- O homem, através dos tempos, sentiu a necessidade da utilização de sistema numéricos.
- Existem vários sistemas numéricos, dentre os quais se destacam: o sistema decimal, o binário, o octal e o hexadecimal.
- O sistema decimal é utilizado por nós no dia-a-dia e é, sem dúvida, o mais importante dos sistemas numéricos.
 - Trata-se de um sistema que possui dez algarismos, com os quais podemos formar qualquer número através da lei de formação.
- Os outros sistemas, em especial o binário e o hexadecimal, são muito importantes nas áreas de técnicas digitais e informática.
 - No decorrer do decorrer das aulas, perceber-se-á a ligação existente entre os circuitos lógicos e estes sistemas de numeração.

Bases Numéricas

- Principais bases numéricas na Computação:
 - Decimal (humana);
 - Binário (circuito digitais/lógica booleana);
 - Hexadecimal (endereçamento de memória).
 - Conversão entre as bases:
 - Estudo na UC de Sistemas Computacionais;

Ano: 2019 Banca: IF-BA

Sabendo que proposição é o termo usado em lógica para descrever o conteúdo de orações declarativas que podem ser valoradas como verdadeiro ou falso, assinale a alternativa que indique uma proposição lógica.

- a) O céu é azul.
- b) Que dia será realizada a prova?
- c) O nome dos jogadores.
- d) O quadrado de um número.
- e) Ser ou não ser? Eis a questão!

Ano: 2019 Banca: IF-BA

Sabendo que proposição é o termo usado em lógica para descrever o conteúdo de orações declarativas que podem ser valoradas como verdadeiro ou falso, assinale a alternativa que indique uma proposição lógica.

- a) O céu é azul.
- b) Que dia será realizada a prova?
- c) O nome dos jogadores.
- d) O quadrado de um número.
- e) Ser ou não ser? Eis a questão!

Ano: 2018 Banca: AOCP

Considere as proposições:

P1: "Todos os retângulos são paralelogramos"; P2: "Alguns retângulos são quadrados".

Sabendo que ambas são verdadeiras, é possível concluir que:

- a) todos os paralelogramos são quadrados.
- b) alguns paralelogramos são quadrados.
- c) todos os retângulos são quadrados.
- d) nenhum paralelogramo pode ser um quadrado.
- e) nenhum retângulo pode ser um quadrado.

Ano: 2018 Banca: AOCP

Considere as proposições:

P1: "Todos os retângulos são paralelogramos"; P2: "Alguns retângulos são quadrados".

Sabendo que ambas são verdadeiras, é possível concluir que:

- a) todos os paralelogramos são quadrados.
- b) alguns paralelogramos são quadrados.
- c) todos os retângulos são quadrados.
- d) nenhum paralelogramo pode ser um quadrado.
- e) nenhum retângulo pode ser um quadrado.

Ano: 2019 Banca: FUNDATEC

Considere as seguintes proposições:

I. Maria é mãe de Pedro. II. Pedro e José são irmãos gêmeos. III. José é filho de Antônio.

Disso pode-se concluir que:

- a) Maria não é mãe de José.
- b) Antônio é pai de Pedro e Maria é mãe de José.
- c) Antônio não é pai de Pedro e Maria não é mãe de José.
- d) Antônio não é pai de Pedro.
- e) Maria e José são casados.

Ano: 2019 Banca: FUNDATEC

Considere as seguintes proposições:

I. Maria é mãe de Pedro. II. Pedro e José são irmãos gêmeos. III. José é filho de Antônio.

Disso pode-se concluir que:

- a) Maria não é mãe de José.
- b) Antônio é pai de Pedro e Maria é mãe de José.
- c) Antônio não é pai de Pedro e Maria não é mãe de José.
- d) Antônio não é pai de Pedro.
- e) Maria e José são casados.

Ano: 2019 Banca: FUNDATEC

Considere as seguintes proposições:

I. Ana é mais jovem do que Márcia. II. Pedro é mais velho do que Márcia. III. Antônia é mais velha do que Ana e mais jovem do que Pedro.

Disso, pode-se concluir que:

- a) Antônia é mais jovem do que Márcia.
- b) Antônia é mais velha do que Márcia.
- c) Pedro é o mais velho das pessoas citadas.
- d) Antônia e Márcia têm a mesma idade.
- e) Antônia e Márcia têm obrigatoriamente idades diferentes.

Ano: 2019 Banca: FUNDATEC

Considere as seguintes proposições:

I. Ana é mais jovem do que Márcia. II. Pedro é mais velho do que Márcia. III. Antônia é mais velha do que Ana e mais jovem do que Pedro.

Disso, pode-se concluir que:

- a) Antônia é mais jovem do que Márcia.
- b) Antônia é mais velha do que Márcia.
- c) Pedro é o mais velho das pessoas citadas.
- d) Antônia e Márcia têm a mesma idade.
- e) Antônia e Márcia têm obrigatoriamente idades diferentes.

Ano: 2019 Banca: FUNDATEC

Considere as seguintes proposições:

I. Ana é mais jovem do que Márcia. II. Pedro é mais velho do que Márcia. III. Antônia é mais velha do que Ana e mais jovem do que Pedro.

Disso, pode-se concluir que:

- a) Antônia é mais jovem do que Márcia.
- b) Antônia é mais velha do que Márcia.
- c) Pedro é o mais velho das pessoas citadas.
- d) Antônia e Márcia têm a mesma idade.
- e) Antônia e Márcia têm obrigatoriamente idades diferentes.

- Criar a tabela verdade das expressões
 - a) $P(p, q, r) = p \wedge q \vee r$
 - b) $P(p, q) = {}^{\sim}(p {}^{\wedge} {}^{\sim}q)$
 - c) $P(p, q) = {\sim}(p \land q) \lor {\sim}(q \longleftrightarrow p)$
 - d) $P(p, q, r) = p \lor \sim r \rightarrow q \land r$
 - e) $P(p, q) = (p \leftrightarrow ^{\sim}q) \leftrightarrow (q \rightarrow p)$
 - f) $P(p, q) = {}^{\sim}(p \rightarrow {}^{\sim}q)$
 - g) $P(p, q) = p \rightarrow (q \rightarrow p)$
 - h) $P(p, q) = q \leftrightarrow ^q p$
 - i) $P(p, q, r) = (p \rightarrow (\sim q \vee r)) \wedge \sim (q \vee (p \leftrightarrow \sim r))$

Referências

- ALENCAR FILHO, Edgard de. Iniciação à Lógica Matemática. Ed. Nobel, 2002.
- FORBELLONE, A. L. V; EBERSPÄCHER, H. F. **Lógica de programação**: a construção de algoritmos e estruturas de dados. 3. ed. São Paulo: Prentice Hall. p.01-13.
- PUGA, S; RISSETTI, G. Lógica de programação e estruturas de dados, com aplicações em Java. 2.ed. São Paulo: Pearson Prentice Hall, 2009. 263p.
- SOUZA, J. N. de. Lógica para ciência da computação: uma introdução concisa.
 2.ed. Rio de Janeiro: Elsevier, 2008. 219p.

