PRACTICE SHEET 01

CS & IT

Digital Logic

Boolean theorem and Gates

Q1 $(A+B)(A+C)(A+\overline{C})$ is equivalent to

(A) A + BC

(B) $\mathbf{A} + \mathbf{B}\overline{\mathbf{C}}$

(C) 0

(D) A

Q2 A logical function is given as:

$$egin{aligned} fig(A,B,Cig) &= B\overline{C}ig[A+A\overline{C}D+\overline{B}CD+\overline{A}B\overline{C}\ &+\overline{A}\overline{B}Cig] \end{aligned}$$

is equivalent to

- (A) \overline{AB} \overline{CD}
- (B) $B\overline{C}$
- (C) $A\overline{B} + B\overline{C} + CD$
- (D) $AB\overline{C}D$
- Q3 If we have 4-variables in a logical function, then number of non-dual logical functions possible_____.
- **Q4** A logical function

 $\textbf{\textit{f}}(\textbf{\textit{A}},\textbf{\textit{B}},\textbf{\textit{C}}) = (\textbf{\textit{A}}+\textbf{\textit{B}}) \left(\overline{B}+C\right) \left(A+C\right) \text{, then } \overline{f} \text{ will be equal to}$

- (A) $AB + \overline{B}C$
- (B) $\overline{A}\overline{B} + B\overline{C}$
- (C) $\overline{A}\overline{B} + \overline{A}\overline{C}$
- (D) AB + AC
- **Q5** Which of the following statement is true?
 - (A) Dual function f^D is always equals to f.
 - (B) NAND is self dual in nature.
 - (C) NOT is self dual in nature.
 - (D) Number of self dual function with 3-variables is **8**.

- **Q6** Logical function $f(A, B, C, D) = AB + \overline{A}CD + \overline{B}CD$ is equivalent to
 - (A) $AB + \overline{B}C$
 - (B) AB + CD
 - (C) $\overline{AC} + \overline{BC}$
 - (D) $AB + \overline{B}C$
- Q7 A logical function is given as:

$$f(A, B, C) = \overline{AB} + \overline{ABC} + \overline{ABC}$$

then which of the following statement is true?

- (A) $f(A, B, C) = \overline{AB} + B\overline{C}$
- (B) $f(A, B, C) = \overline{A} + \overline{C}$
- (C) f(A, B, C) is a self dual function.
- (D) None of the above
- Q8 Which of the following is true?

$$(A) \overline{\overline{AB} + A\overline{B}} = (\overline{A} + \overline{B})(A + B)$$

(B) $\overline{AB} \overline{\overline{CD}} = \overline{A} + \overline{B} + \overline{C} + \overline{D}$

$$\overline{(C)} \overline{\overline{AB}.C} = (A + \overline{C})(\overline{B} + \overline{C})$$

- (D) None of these
- Q9 Which of the following is true?
 - (A) We can use '1' as enable input for OR gate
 - (B) We can use '0' as enable input for AND gate
 - (C) '0' as well as '1' can be used as enable input for XNOR gate
 - (D) None of the these
- Q10 Which of the following relation is true?
 - (A) $A \oplus \overline{B} = \overline{A} \odot B$
 - (B) $\overline{A \oplus \overline{B}} = A \odot B$

$$\begin{array}{l} \text{(C)}\,\overline{\overline{A}\odot\overline{B}}=A\oplus B\\ \text{(D)}\,\overline{\overline{A}\oplus\overline{B}}=A\oplus B \end{array}$$

Q11 A logical circuit is as given below:

Output \mathbf{y} will be

(A)
$$\overline{\mathbf{A}} + \mathbf{B}$$

(B)
$$\overline{A} + \overline{B}$$

(C)
$$A\overline{B}$$

Q12 A logic circuit has 4-input & 1-output line as shown:

Output y is '1' wherever no. of zeroes on input side are odd, then output y can be expressed as:

- (A) $A\odot B\odot C\odot D$
- (B) $\overline{A \odot B \odot C} \odot D$
- (C) $\overline{A \oplus B} \oplus C \oplus \overline{D}$
- (D) None of these
- Q13 A logic circuit is as given below: Which of the following is true?

- (A) Output \mathbf{y} is $\overline{\mathbf{A}}\mathbf{B}$ if control input = 0
- (B) Output \mathbf{y} is $\overline{\mathbf{A} + \mathbf{B}}$ if control input = 1

- (C) Output ${m y}$ is $\overline{A + B}$ if control input = 0
- (D) Output \mathbf{y} is $\overline{\overline{\mathbf{A}} \cdot \mathbf{B}}$ if control input = 1
- **Q14** A logic circuit is as given below:

Which of the following is true?

- (A) Output is \overline{A} if n is even
- (B) Output is A if n is even
- (C) Output is \overline{A} if n is odd
- (D) Output is A if n is odd
- Q15 A logical circuit is as given below:

Output y is

(A) A

(B) $\overline{\mathbf{B}}$

(C) A

- (D) B
- Q16 A logical expression is given as:

$$f(A, B, C, D) = \overline{A} + AB[ABC + \overline{B}C + AB\overline{C} + C\overline{D}]$$

then minimum number of 2-input NAND gate require to implement above logic function will be ____.

Q17 A logical expression is given as:

$$\begin{split} f\big(A,\ B,\ C\big) &= \big(\overline{A}\ +\ B\big)\ \big(A\ +\ \overline{B}\big), \\ \text{minimum number of 2-input NAND gate require} \\ \text{to implement above logical function is} \,. \end{split}$$

Q18 A logical expression is given as:

$$f(A, B, C) = \overline{A} + ABC$$
, then minimum number of 2-input NAND gate require to implement above logical function is _____.

Q19 A logical function is given as:

GATE

 $f\big(A,\;B\big)=A\oplus A\overline{B}$, If we implement this logical function using 2-input NAND gate then, minimum number of NAND gate require is

(D)

Q1

Answer Key

Q2	(B)
Q3	65280~65280
Q4	(B)
Q5	(C)
Q6	(B)
Q7	(C)

(C)

(C)

(C)

Q8

Q9

Q10

Q11	(B)
Q12	(B, C)
Q13	(B)
Q14	(A)
Q15	(A)
Q16	2~2
Q17	5~5
Q18	2~2
Q19	2

Hints & Solutions

Q1 Text Solution:

(d)

Q2 Text Solution:

(b)

Q3 Text Solution:

(65280)

Q4 Text Solution:

(b)

Q5 Text Solution:

(c)

Q6 Text Solution:

(b)

Q7 Text Solution:

(c)

Q8 Text Solution:

(c)

Q9 Text Solution:

(c)

Q10 Text Solution:

(c)

Q11 Text Solution:

(b)

Q12 Text Solution:

(b, c)

Q13 Text Solution:

(b)

Q14 Text Solution:

(a)

Q15 Text Solution:

(a)

Q16 Text Solution:

2

Q17 Text Solution:

5

Q18 Text Solution:

2

Q19 Text Solution:

2

