1/31 **FIG.**1

FIG.2

14

10

11

12

FIG.3

11

26

27

24

24

25

30

10

16

28

29

20

3/31

4/31

5/31 **FIG.6**

6/31 **FIG.7**

And the transfer of the transf

FIG.8

Color of Soil and Color-Causing Substances

Soil Color	Main Coloring Substances	Soil
Black	* Organic Matter • Humus Iron Sand Black Scoria [Manganese Speckling, Sulfides]	Muck Soil •E Peat Soil, Gley Andisol Dark-Colored Andisol (Humus Volcanic Ash Soil, Andisol) Sandy Soil Containing Large Amount of Iron Sand(Immature) Basalt Volcanic Ejector(Raw Soil)
Red ~ Brown ~ Yellow	* Ferric Oxide Minerals (Iron Oxide) Manganese [Speckled Iron]	Red Soil Light-Colored Andisol (Volcanic Ash Soil, Light-Colored Andisol) Brown Forest Soil, Yellow Soil Dark Red Soil
Blue ~ Green	* Ferrous Compounds (Reduced Iron) [Iron Sulfide, Pyrite, Etc.]	Gley Soil(Blue Soil Having Poor Drainage) Strong Gley Soil(Wet Rice Field), Gley Soil (Semi-Wet Rice Field)
Gray ~ White	* Extremely Small Iron Oxide Content *Oxidization Process of Blue Muddy Layer *Accumulation of Salts	Podzol Soil (Gray Soil), Degraded Ferro-Deficient Paddy Field Decomposed Granite Soil, Silas, Sandy Soil(White Sand) Gray Lowland Soil(Dry Rice Field) Salty Soil

(Source: Agricultural Technology System Compiled Soil Fertilizers, Vol.1 Rural Culture Association)

8/31 **FIG.9**

		Input		Output	
Name of Measurement Object Property	Water Content Ratio	Type of Soil	Measurement Method	Model	Measurement Conditions
NO3-N Concentration	Low (3~26%db) Note 1)	Kanto Loam (SILT 28%, CLAY 20%, SAND 52%)	Method 1: White light is shone onto surface of soil made even by a soil flattening blade, and the reflected light spectrum is measured	NO ₃ -N Concentration= $A+\Sigma$ Bi-exp (Ci-Xi) Where A, Bi, Ci are coefficients. The value of each coefficient is as follows. Yi=dXi / d λ A=3.96 B1=6.16 E-3 B2=0.241 B3=4.67 E-4 C1=6.27 C2=1.56 C3=6.48	The amount of reflected light Xi is measured for each of the following wavelengths. (1)824nm (2)1280nm (3)1768nm
NO3-N Concentration	High (72~120% db)	Kanto Loam (SILT 28%, CLAY 20%, SAND 52%)	Same as above	Where A, Bi, Ci are coefficients. A=0.31 B1=0.243	The amount of reflected light Xi is measured for each of the following wavelengths. (1)1286nm (2)2014nm (3)2290nm

Note 1) db is the abbreviation of dry basis, and is the proportion of the weight of water with respect to the weight of solids in the soil.

9/31 **FIG.10**

		Input		Output	
Name of Measurement Object Property	Water Content Ratio	Type of Soil	Measurement Method	Model	Measurement Conditions
Electric Conductivity	Low (2~26%db)	Upland Field	Method 1	Electric Conductivity= $A+\Sigma (Bi-Xi)$ $Yi=dXi/d\lambda$ Where A, Bi are coefficients. $A=128.07$ $B1=-7.15$ $B2=-16.29$ $B3=-7.40$	The amount of reflected light Xi is measured for each of the following wavelengths. (1)2074nm (2)1948nm (3)1776nm
Accurate Water Content Ratio	Low (0~26%db)	Upland Field	Method 1	Y is the second-order derivative of X which is related to λ. The value obtained by subtracting the average from y is divided by the standard deviation to give a value which forms the standardized value W. Accurate Water Content Ratio= 5.55 • W+13.2	The amount of reflected light X is measured for each of the following wavelengths. (1)1450nm
Accurate Water Content Ratio	High (72~120% db)	Upland Field	Method 1	Y=dX / d \(\lambda \) The value obtained by subtracting the average from y is divided by the standard deviation to give a value which forms the standardized value W. Accurate Water Content Ratio=-0.096 • W+9.16	The amount of reflected light X is measured for each of the following wavelengths. (1)1850nm

10/31 **FIG.11**

FIG.12

FIG.13

13 / 31 **FIG. 14**

^{14/31} FIG.15

15/31 **FIG.16**

^{16/31} **FIG.17**

17/31 **FIG.18**

^{18/31} **FIG.19**

19/31 **FIG.20**

Definitions based on the International Soil Institute Method

Kind	Definitions: Based on Particle Diameter
Clay	Soil Particles Having a Particle Diameter below 0.002 mm
Silt	Soil Particles Having a Particle Diameter of 0.002 ~ 0.02 mm
Sand	Soil Particles Having a Particle Diameter of 0.02 ~ 2 mm

FIG.21

Type of Soil (Main Types)	Definitions	Type of Soil (Subdivided Types)	Definitions
Heavy Clay Type	Clay Content above 45%	Heavy Clay Soil	Clay Content above 45%
		Sandy Clay Soil	Sand above 55%
Clay Type	Clay Content of 25 ~ 45%	Light Clay Soil	Sand below 55%+Silt below 45%
		Silty Clay Soil	Silt above 45%
		Sandy Clay Loamy Soil	Sand above 80%
Loamy Soil Type	Clay Content of $15 \sim 25\%$	Clay Loamy Soil	Sand of 55 ~ 85%
		Silty Clay Loamy Soil	Sand below 55% (Silt above 45%)
		Loamy Sandy Soil	Sand above 85%+Clay Content above 5%
		Sandy Soil	Sand below 85%+Clay Content below 5%
Sandy Soil Type	Clay Content below 15%	Sandy Loamy Soil	Sand of 65 ~ 85%
		Loamy Soil	Sand below 65%+Silt below 45%
		Silty Loamy Soil	Silt above 45%

FIG.22

Contained Substances	Substances	Effect on Color	Specific Example
	Free Iron	Red, Brown and Yellow become strong	Red, Brown and Yellow become strong Soil with good exposure to air, such as upland field soil, etc.
Iron Compounds	Reduced Iron	Blue and Green become strong (Clay of the Gley Layer)	Oxygen Deficient Soil, such as paddy field soil
	Small Amount of Iron Compounds	Color becomes Gray, Light Gray	Deposits of volcanic ash and sand (Pyroclastic pumice flow sediment)
Manganese Compounds Free Manganese	Free Manganese	Black, Brown and Purple are supplied	For a paddy field with good drainage, the purple layer in the substrate of the surface soil will be visible
Humus Content	Content	Black becomes deep to a large extent	Soil containing a large amount of organic matter, such as Andisol containing a amount of compost etc.

Soil Attributes: The color tone becomes stronger when the amount of clay becomes larger.

Water Content: The color tone becomes lighter when the soil becomes drier.

Soil Formation Effects: Brown Woody Soil →Surface layer becomes brown ~ blackish brown(Warm Heavy Rain broad-leaved trees)

Podzol Soil →Bleaching causes color to become white ~ light gray(Cold Needle-leaved trees) Laterite→Red soil rich in iron and alumina (tropical rain forest)

Andisol →Black ~ blackish brown (volcanic ash)

Peat • Muck→Black ~ blackish brown

^{22/31} FIG.23

23/31 FIG.24

24/31 FIG.25

^{25/31} FIG.26

FIG.27

Soil Working Information Instructions U2 U3U4 U Farmland Location P1 (Location, Area, Owner, Farmer, Information Address) P2, P3 **P4 P**5 P6 Harvest Results) Cultivation Recipe + Results Presentation Recipe + Actual Actual Harvest S1 (Cultivation **S**2 **S3 S**4 **S**2 Agricultural Chemical crop field Lending Advertisements http:// Advertisements on Seed Advertisements Information on Advertisement Soil Judgment Information and Borrowing Advertisements http:// Services Fertilizer //:dm Measurement Model) Content | Conditions | (Control Data + Soil Soil Measurement m2 C2 m3m4 7 mJ \mathbb{S} Information CIWeather Heavy Dry Cold Hot Large Water Large Small Small Type of Soil NO₃-N Sand Concentration Loam Clay Clay Sand Concentration | Loam Soil Organic Materials Measurement Soil Organic Materials Property Name of NO3-N Object

26/31

27/31

29/31 **FIG.30**

31/31

