

Conteúdo

1	Cap	ítulo 1																											8
	1.1	Questão	1.						 																				8
	1.2	Questão	2 .						 																				8
	1.3	Questão	3.						 																				9
	1.4	Questão	4 .						 																				9
	1.5	Questão	5.						 																				11
	1.6	Questão	6.						 																				11
	1.7	Questão	7.						 																				11
	1.8	Questão	8.						 																				12
	1.9	Questão	9.						 																				13
	1.10	Questão	10						 																				13
	1.11	Questão	11						 																				14
	1.12	Questão	12						 																				14
	1.13	Questão	13						 																				15
	1.14	Questão	14						 																				16
	1.15	Questão	15						 																				16
	1.16	Questão	16						 																				17
	1.17	Questão	17						 																				18
	1.18	Questão	18						 																				19
	1.19	Questão	19						 																				19
	1.20	Questão	20						 																				20
•		4 1 6																											0.1
2	_	ítulo 2	1																										21
	2.1	Questão																											21
	2.2	Questão																											21
	2.3	Questão																											22
	2.4	Questão																											23
	2.5	Questão																											24
	2.6	Questão																											25
	2.7	Questão		•	٠	•	٠	•	 •	٠	•	•	•	•	 •	٠	•	•	•	 ٠	•	•	•	٠	•	•	٠	•	25
	2.8	Questão						•																			٠	٠	27
	2.9	Questão																									•	•	28
		Questão																										•	28
		Questão			•															•	•	•	٠	•	•	•	•	•	29
		Questão		•	•															٠	٠	٠	•	٠	•	•	٠	•	30
		Questão Questão		٠	•	•	•		 •	•	•	•	•	•	 •	٠	•	•	•	 •	٠	•	•	•	•	•	•	•	31 31
	7.14	CHIESTAO	14																										.3.1

	2.15	Questão	15		•	•				•	•			•	•	•	•	•	•	•	•	32
3	Cap	ítulo 3																				34
	3.1	Questão	1 .																			34
	3.2	Questão	2 .																			35
	3.3	Questão	3 .																			37
	3.4	Questão	4 .																			39
	3.5	Questão	5 .																			40
	3.6	Questão	6 .																			41
	3.7	Questão	7 .																			43
	3.8	Questão	8 .																			44
	3.9	Questão	9 .																			44
	3.10	Questão	10																			45
	3.11	Questão	11																			46
	3.12	Questão	12																			46
	3.13	Questão	13																			47
	3.14	Questão	14																			48
	3.15	Questão	15																			50
	3.16	Questão	16																			51
	3.17	Questão	17																			53
	3.18	Questão	18																			54
	3.19	Questão	19																			56
	3.20	Questão	20																			57
	3.21	Questão	21																			57
	3.22	Questão	22																			58
	3.23	Questão	23																			60
	3.24	Questão	24																			61
4	Cap	ítulo 4																				63
	4.1	Questão	1 .																			63
	4.2	Questão																				64
		Questão																				66
	4.4	Questão																				66
	4.5	Questão																				68
	4.6	Questão																				70
	4.7	Questão																				71
	4.8	Questão																				72
	4.9	Questão											•									74
	4.10	Questão																				76
		Questão																				77
		Questão																				79
																						_

CONTEÚDO

	4.13	Questão 13														81
		Questão 14														81
		Questão 15														83
		Questão 16														85
		Questão 17														86
		Questão 18														88
		V														
5	Cap	ítulo 5														91
	5.1	Questão 1														91
	5.2	Questão 2														92
	5.3	Questão 3														94
	5.4	Questão 4														94
	5.5	Questão 5														95
	5.6	Questão 6														96
	5.7	Questão 7														98
	5.8	Questão 8														99
	5.9	Questão 9														101
	5.10	Questão 10														102
	5.11	Questão 11														103
	5.12	Questão 12														106
_	~	4. 3 -														
6	-	ítulo 6														108
6	6.1	Questão 1														108
6	6.1 6.2	Questão 1 Questão 2														108 108
6	6.1 6.2 6.3	Questão 1 Questão 2 Questão 3														 108 108 109
6	6.1 6.2 6.3 6.4	Questão 1 Questão 2 Questão 3 Questão 4			 	 	 	 · ·	 		 					 108 108 109 110
6	6.1 6.2 6.3 6.4 6.5	Questão 1 Questão 2 Questão 3 Questão 4 Questão 5	 •		 	 	 	 	 		 	 	 	 	 	 108 108 109 110 111
6	6.1 6.2 6.3 6.4 6.5 6.6	Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6	 	 	 	 	 	 	 		 	 	 	 	 	 108 108 109 110 111 111
6	6.1 6.2 6.3 6.4 6.5	Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6 Questão 7	 	 	· · · · · ·	 	 · · · · · ·	 	 		 	 	 	 	 	 108 108 109 110 111 111 112
6	6.1 6.2 6.3 6.4 6.5 6.6	Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6	 	 	· · · · · ·	 	 · · · · · ·	 	 		 	 	 	 	 	 108 108 109 110 111 111
6	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6 Questão 7 Questão 8 Questão 9	 	 	· · · · · ·	 	 · · · · · · · ·	 	 		 	 	 	 	 	 108 108 109 110 111 111 112
6	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6 Questão 7 Questão 8	 	 	· · · · · ·	 	 · · · · · · · ·	 	 		 	 	 	 	 	 108 108 109 110 111 111 112 113
6	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10	Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6 Questão 7 Questão 8 Questão 9		 		 	 	 	 		 	 	 	 	 	 108 109 110 111 111 112 113 115
6	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11	Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6 Questão 7 Questão 8 Questão 9 Questão 10	 	 · · · · · · · · · · · · · · · · · · ·		 	 	 	 		 	 	 	 	 	 108 109 110 111 111 112 113 115 117
6	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12	Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6 Questão 7 Questão 8 Questão 9 Questão 10 Questão 11				 	 	 		· · · · · · · · · · · · · · · ·		 		 	 	 108 109 110 111 111 112 113 115 117
6	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13	Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6 Questão 7 Questão 8 Questão 9 Questão 10 Questão 11 Questão 12				 	 	 		· · · · · · · · · · · · · · · ·		 			 	108 109 110 111 111 112 113 115 117 119
6	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14	Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6 Questão 7 Questão 8 Questão 9 Questão 10 Questão 11 Questão 12 Questão 13														108 109 110 111 111 112 113 115 117 119 120 121
6	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15	Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6 Questão 7 Questão 8 Questão 9 Questão 10 Questão 11 Questão 12 Questão 13 Questão 14														108 109 110 111 111 112 113 115 117 119 120 121
6	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 6.16	Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 Questão 6 Questão 7 Questão 8 Questão 9 Questão 10 Questão 11 Questão 12 Questão 13 Questão 14 Questão 14 Questão 15														108 108 109 110 111 111 112 113 115 117 119 120 121 121 122

7	Cap	ítulo 7																				126
	7.1	Questão	1																			126
	7.2	Questão	2																			126
	7.3	Questão	3																			127
	7.4	Questão	4																			129
	7.5	Questão	5																			132
	7.6	Questão	6																			133
	7.7	Questão	7																			134
	7.8	Questão	8																			136
	7.9	Questão	9	 •	•								•		•		•		•			138
8	Cap	ítulo 8																				140
	8.1	Questão	1																			140
	8.2	Questão	2																			140
	8.3	Questão	3																			141
	8.4	Questão	4																			142
	8.5	Questão	5																			144
	8.6	Questão	6																			145
	8.7	Questão	7																			146
	8.8	Questão	8																			146
	8.9	Questão	9																			147
	8.10	Questão	10																			147
	8.11	Questão	11																			148
	8.12	Questão	12																			149
	8.13	Questão	13																			150
	8.14	Questão	14																			151
	8.15	Questão	15																			152
	8.16	Questão	16																			153
	8.17	Questão	17																			154
		Questão																				154
	8.19	Questão	19	•	•				٠				•		•	•	•	•	•		•	156
9	Cap	ítulo 9																				158
	9.1	Questão	1																			158
	9.2	Questão	2																			159
	9.3	Questão	3																			160
	9.4	Questão	4																			161
	9.5	Questão	5																			164
	9.6	Questão	6																			165
	9.7	Questão	7																			167
	9.8	Questão	8																			168

${\rm CONTE\acute{U}DO}$

	9.9	Questão	9 .																														170
	9.10	Questão	10																														170
	9.11	Questão	11																														173
	9.12	Questão	12																														174
	9.13	Questão	13																														176
	~	4. •																															
10	_	ítulo 10	_																														178
		Questão																															
		Questão																															
		Questão																															
		Questão																															
		Questão																															
		Questão																															
		Questão																															
		Questão																															
		Questão																															188
)Questão																															190
		Questão																															191
		2Questão																															193
		3Questão																															
		lQuestão																															195
		Questão																															
		iQuestão																															196
		'Questão																															197
		3Questão					•								•											•							198
		Questão																															
	10.20)Questão	20		•			•													•					•							199
11	Con	ítulo 11																															201
ТT	_	Questão	1																														
		Questão																															
		Questão																															$\frac{202}{202}$
		Questão																															$\frac{202}{203}$
		Questão																															$\frac{205}{205}$
		Questão																															$\frac{205}{205}$
		Questão																															$\frac{205}{205}$
		Questão																					•										$\frac{205}{206}$
		Questão		•		-					-																	-		•	•	•	200
		Questão Questão		•																										•	•	•	$\frac{207}{207}$
		Questão Questão		•																			•										207
		Questão Questão		٠																													
	11.14	-Questa0	$\perp Z$	٠	•	•	•	•	٠	٠	•	•	•	•	•	•	•	•	•		•	•	•	•	٠	•	٠	•	•	•	٠		Z1 U

	11.13	3Questão	13															211
	11.14	4Questão	14															211
	11.15	¿Questão	15															212
	11.16	6Questão	16															212
	11.17	Questão	17															213
	11.18	3Questão	18															214
12	Cap	ítulo 12																216
	12.1	Questão	1 .															216
	12.2	Questão	2 .															217
	12.3	Questão	3 .															219
	12.4	Questão	4 .															219
	12.5	Questão	5.															220
	12.6	Questão	6.															221
	12.7	Questão	7.															224
	12.8	Questão	8.															225
	12.9	Questão	9 .															225

1 Capítulo 1

1.1 Questão 1

A pressão no ponto B, devido a coluna de água é:

$$P_B = P_0 + \rho_0 q h_0$$

Onde ρ_0 representa a densidade da água e P_0 a pressão atmosférica. A pressão no ponto C é devido a pressão que a coluna de água exerce na linha na altura do ponto B somada com a pressão devido à coluna de óleo de altura h_1 , desse modo a pressão em C vale:

$$P_C = P_B + \rho_1 g h_1 = P_0 + \rho_0 g h_0 + \rho_1 g h_1$$

Por fim, sabemos que a contribuição devido à pressão no ponto A e a coluna de mercúrio de altura h_2 na altura da linha que passa pelo ponto C deve ser igual à P_c , deste modo:

$$P_C = P_A + \rho_2 g h_2 \implies P_A = P_0 + \rho_0 g h_0 + \rho_1 g h_1 - \rho_2 g h_2$$

Substituindo pelos valores numéricos dados no enunciado e utilizando a conversão $1atm \approx 1.01 \times 10^5 Pa$ (E também realizando a conversão de g para kg e de cm para m):

$$P_A = 1.01 \times 10^5 + 1000 \times 9.81 \times 0.1 + 800 \times 9.81 \times 0.05 - 13600 \times 9.81 \times 0.2$$

Efetuando os cálculos:

$$P_A = 75690Pa \approx 0.75atm$$

1.2 Questão 2

No lado esquerdo do reservatório a pressão na altura H vale p_1 , já para o lado direito, a pressão exercida pela coluna de líquida na mesma altura é:

$$p = p_2 + \rho g(h + H)$$

As duas pressões devem se igualar, portanto:

$$p_1 = p_2 + \rho g(h + H) \implies p_1 - p_2 = \rho g(h + H)$$

Uma variação de volume ΔV_1 no lado esquerdo do reservatório deve corresponder a uma mesma variação de volume ΔV_2 no lado direito do reservatório, se considerarmos que o reservatório é cilíntrico, temos que:

$$\Delta V_1 = \Delta V_2 \implies H\pi \frac{D^2}{4} = h\pi \frac{d^2}{4} \implies H = h\frac{d^2}{D^2}$$

Agora podemos escrever a diferença entre as pressões como:

$$p_1 - p_2 = \rho g(h + \underbrace{h \frac{d^2}{D^2}}) = \rho gh\left(1 + \frac{d^2}{D^2}\right)$$

1.3 Questão 3

O sistema em questão é similar ao do exercício anterior, assim podemos usar a fórmula que foi obtida anteriormente. Contudo, nesse caso a altura da coluna de líquido à direita é $h = l \sin(\theta)$. Fazendo esta alteração na fórmula:

$$p_1 - p_2 = \rho g l \sin(\theta) \left(1 + \frac{d^2}{D^2} \right)$$

Isolando θ obtemos:

$$\theta = \sin^{-1} \left(\frac{p_2 - p_1}{\rho g l \left(1 + \frac{d^2}{D^2} \right)} \right)$$

Substituindo pelos valores numéricos dados no enunciado (E considerandoq ue $1atm \approx 1.01 \times 10^5 Pa$):

$$\theta = \sin^{-1} \left(\frac{0.001 \times 1.01 \times 10^5}{800 \times 9.81 \times 0.05 \left(1 + \frac{0.5^2}{2.5^2} \right)} \right) = 0.251 \text{ rad} = 14.4^{\circ}$$

1.4 Questão 4

a) A força exercida sob a tira infinitesimal, a uma distância vertical z da origem, é:

$$dF = PdA = \rho gzdA$$

Integrando:

$$F = \rho g \int_{A} z dA$$

Mas lembre-se que a coordenada central centróide de uma placa homogênea pode ser obtido a partir de :

$$\overline{z} = \frac{1}{A} \int_{A} z dA$$

Assim:

$$\int_{A} z dA = \overline{z}A$$

Deste modo a força exercida pelo líquido é:

$$F = \rho g \overline{z} A$$

b) O torque $d\tau$ aplicado em casa uma das tiras infinitesimais é o produto entre a força aplicada sob a tira e a distância em relação ao eixo $\overline{OO'}$, isto é, z:

$$d\tau = zdF = \rho gz^2 dA$$

Integrando, o torque total é:

$$\tau = \rho g \int z^2 dA = \rho g I_0 \tag{1.4.1}$$

Agora, sabemos que esse torque é equivalente ao torque resultante devido à força F aplicada no centro das pressões C_0 , que está à uma distância vertical z_0 da origem. Deste modo o torque, em termos de z_0 é:

$$\tau = z_0 F = z_0 \rho g \overline{z} A \tag{1.4.2}$$

Igualando as expressões (1.4.1) e (1.4.2) podemos obter z_0 :

$$z_0 \rho q \overline{z} A = \rho q I_0$$

Isolando z_0 chegamos em:

$$z_0 = \frac{I_0}{\overline{z}A}$$

1.5 Questão 5

a) Como a comporta é vertical e retangular, a coordenada vertical de seu centróide é simplesmente $\overline{z} = \frac{h}{2}$ e sua área é A = hl. Assim, utilizando o resultado do item a) do exercício anterior, a força encontrada é:

$$F = \frac{1}{2}\rho g l h^2$$

O centro das pressões pode ser encontrado a partir do resultado encontrado no item b do exercício anterior:

$$z_0 = \frac{I_0}{\overline{z}A}$$

Calculando I_0 (Lembre-se que dA = ldz):

$$I_0 = \int z^2 dA = l \int_0^h z^2 dz = l \frac{h^3}{3}$$

Como $\overline{z} = \frac{h}{2}$ e A = hl, o centro de pressões é:

$$z_0 = \frac{h}{3}$$

b) Vimos que o torque resultante é dado por:

$$\tau = z_0.F = \frac{h}{3}.\frac{1}{2}\rho g l h^2 \implies h_{max} = \sqrt[3]{\frac{6\tau}{\rho g l}}$$

Substituindo pelos valores numéricos e resolvendo o valor encontrado para a altura máxima admissível é:

$$h_{max} = \sqrt[3]{\frac{6 \times 150 \times 10^3}{1000 \times 9.81 \times 3}} \approx 3.1m$$

1.6 Questão 6

1.7 Questão 7

A área compreendida pela base do pistão é:

$$A = \frac{\pi}{4}(D^2 - d^2)$$

Assim, a pressão devido ao peso do pistão é:

$$P = \frac{Mg}{\frac{\pi}{4}(D^2 - d^2)}$$

Como o sistema está em equilíbrio, essa pressão deve se igualar à pressão da coluna de água, desse modo:

$$\frac{Mg}{\frac{\pi}{4}(D^2 - d^2)} = \rho g h$$

Isolando h:

$$h = \frac{4M}{\pi \rho (D^2 - d^2)}$$

A massa total do líquido é m, e pode ser escrita como:

$$m = \rho V = \rho (\frac{\pi d^2}{4}h + \frac{\pi D^2}{4}H)$$

Isolando H obtemos:

$$H = \frac{1}{D^2} \left(\frac{4m}{\pi \rho} - hd^2 \right)$$

Substituindo h pela expressão encontrada ateriormente:

$$H = \frac{1}{D^2} \left(\frac{4m}{\pi \rho} - \frac{4M}{\pi \rho (D^2 - d^2)} d^2 \right) = \frac{4}{\pi \rho D^2} \left(m - M \frac{d^2}{D^2 - d^2} \right)$$

1.8 Questão 8

a) A área superficial de um único hemisfério da esfera em função de seu diâmetro é:

$$A = 2\pi \frac{d^2}{4} = \frac{\pi}{2}d^2$$

Desse modo, a força que cada uma das duas parelhas tem que exercer é:

$$F = \frac{PA}{2} = \frac{\pi}{4}d^2\Delta P$$

b) Sendo $\Delta P = 1 - 0.1 = 0.9atm \approx 9.1 \times 10^4 Pa$, a força necessária é:

$$F = \frac{\pi}{4}0.37^2 \times 9.1 \times 10^4 Pa = 9785N \approx 1000 kgf$$

Como cada cavalo consegue exercer uma tração de 80kgf o número mínimo de cavalos é:

$$n = \lceil \frac{1000}{80} \rceil = 13 \text{ Cavalos}$$

1.9 Questão 9

O empuxo sobre o iceberg é:

$$E = \rho_a V_s g$$

Onde ρ_a representa a densidade da água e V_s o volume do iceberg que está submerso. Como o sistema está em equilíbrio o empuxo deve se igualar à força peso, sendo V o volume total do iceberg e ρ_g sua densidade, temos que:

$$E = P \implies \rho_a V_s g = mg = \rho V g \implies \frac{V_S}{V} = \frac{\rho}{\rho_a}$$

A fração do iceberg que fica submersa é:

$$f = \frac{V_S}{V} = \frac{\rho}{\rho_a} = \frac{0.92}{1.025} \approx 90\%$$

1.10 Questão 10

a) Na situação inicial, enquanto gelo flutua, a força peso é igual ao empuxo, portanto é válida a relação:

$$m = \rho V_s$$

Onde m representa a massa de gelo, ρ a densidade da água e V_s o volume de gelo submerso. Além disso, vamos considerar que o volume inicial de água no copo + o volume do gelo submerso vale V_0 . Após o completo derretimento o volume total de água passa a ser V_0 somado com o volume de água proveniente do gelo derretido, descontando o volume de gelo previamente submerso, portanto temos que:

$$V_f = V_0 - V_s + \frac{m}{\rho}$$

O termo $\frac{m}{\rho}$ representa o volume de água proveniente do gelo derretido. A partir da primeira expressão $m=\rho V_s$ concluímos que $\frac{m}{\rho}=V_s$, a equação anterior se torna:

$$\boxed{V_f = V_0 - V_s + V_s = V_0}$$

Ou seja, o volume final não se altera e o nível de água no copo não se altera. b)

1.11 Questão 11

Após a imersão do densímetro na água a calibração o volume abaixo da graduação "1" é V_0 , que é também o volume submerso. Como o empuxo se iguala ao peso do densímetro, temos que:

$$\rho_a V_0 g = mg \implies \rho_a V_0 = \rho_d V$$

Onde ρ_d representa a densidade do densímetro, V seu volume total e ρ_a representa a densidade da água. Após ser mergulhado em outro líquido de densidade ρ o densímetro se eleva a uma altura h em relação a marca "1", e volume submerso passa a ser $V_s = V_0 - Ah$. Igualando o empuxo ao peso:

$$\rho\underbrace{(V_0 - Ah)}_{V_-} g = mg = \rho_d V g = \rho_a V_0 g$$

Como a densidade relativa entre o líquido e a água é a razão ρ/ρ_a , após manipular a equação anterior o resultado obtido é:

$$\boxed{\frac{\rho}{\rho_a} = \frac{V_0}{V_0 - Ah}}$$

1.12 Questão 12

O empuxo, juntamente com a força externa aplicada, deve se igualar à força peso. Desse modo:

$$E + F_e = P$$

O empuxo é igual ao peso da massa de água deslocada, e a força externa vale $2.85kgf = 2.85g\,N$. Sendo ρ a densidade da coroa e V = 0.3l seu volume, partindo da expressão anterior temos que (O valor utilizado para a densidade da água está em kg/l, desse modo $\rho_a = 1kg/l$):

$$\rho_a Vg + 2.85g = \rho Vg$$

Isolando ρ para encontrar a densidade da coroa:

$$\rho = \frac{1 \times 0.3 + 2.85}{0.3} = 10.5 \frac{kg}{l} = 10.5 \frac{g}{cm^3}$$

Portanto coroa é de prata.

1.13 Questão 13

a) A leitura da balança de molas é igual a força exercida sobre a mola que suspende o bloco. Como o sistema está em equilíbrio, temos que para o bloco:

$$F_m + E = P$$

Onde F_m representa a força exercida pela mola, E o empuxo e P o peso. Prosseguindo com os cálculos:

$$F_m + \rho_a Vg = Mg$$

$$F_m = (M - \rho V)g = (\rho_{bloco}V - \rho V)g$$

Sendo ρ a densidade do bloco e Vo seu volume. Substituindo pelos valores dados no enunciado:

$$F_m = (7800 \times (0.05)^3 - 1000 \times (0.05)^3) \times 9.81 = 8.3N = 0,85kgf$$

Portanto a leitura da balança de molas é de $0.85kgf \approx 8.3N$.

b) A força exercida sobre o prato da balança do lado direito é a soma entre a força peso do recipiente e a água e a força de reação do empuxo entre o bloco e a água, cuja direção é vertical e para baixo. Essa força deve se igualar ao peso do bloco de massa m, portanto:

$$P_{Bloco} = P_{Recipiente} + E$$

Sabemos que a massa total do recipiente e da água é de 1kg, logo:

$$mg = 1 \times g + \rho Vg$$

A massa do bloco é:

$$m = 1 + 1000 \times (0.05)^3 = 1kg$$

1.14 Questão 14

► Solucionário Curso de Fisica Básica II

O sistema em questão é similar àquele discutido na seção 1.4 do livro, do líquido em rotação. É possível encontrar uma expressão para a superfície livre utilizando o mesmo procedimento. Utilizando a fórmula obtida no livro:

$$z = \frac{\omega^2}{2g}r^2$$

E tomando r=d=0.3m, podemos encontrar a altura h=z da coluna:

$$h = \frac{\omega^2 d^2}{2g} = \frac{10^2 \times 0.3^2}{2 \times 9.81} \approx 0.46m$$

1.15 Questão 15

Devido a aceleração horizontal, o líquido no copo tomará a seguinte forma na iminência de transbordar :

Figura 1: Figura da questão 15. A primeira figura representa o copo sujeito a uma acelração nula, já na figura central há a representação do líquido no copo sujeito à acelração máxima e na iminência de derramar a água. A figura na direita representa os vetores aceleração, o vetor na vertical representa a aceleração da gravidade, o vetor na horizontal representa a aceleração máximo horizontal e o vetor com inclinação θ representa o vetor da aceleração resultante.

Analisando o triângulo:

Assim, a tangente do ângulo θ é:

$$\tan \theta = \frac{1}{5}$$

Agora fazendo o mesmo para o outro triângulo:

A aceleração máxima é:

$$\tan \theta = \frac{1}{5} = \frac{a_{max}}{g} \implies a_{max} = \frac{g}{5} = 1.96 \frac{m}{s^2}$$

1.16 Questão 16

a) As forças agindo sobre a esfera superior são o peso (vertical para baixo), a tração (vertical para baixo) e o empuxo (pelo óleo, vertical para cima), portanto temos que para o primeiro corpo vale a igualdade:

$$E_{oleo} = m_1 q + T$$

Já para a esfera inferior, as forças agindo são a força peso (vertical para baixo), a tração (vertical para cima) e o empuxo devido ao óleo e a água (ambos vertical para cima):

$$E_{oleo} + E_{agua} = m_2 g - T$$

A massa da esfera superior pode ser escrita como $m_1 = \rho V$, e a da esfera superior, que é seis vezes mais densa pode ser escrita como $m_2 = 6\rho V$. Deste modo, podemos escrever o seguinte sistema:

$$\begin{cases} I) \ \rho_{oleo} \frac{V}{2} g = \rho V g + T \\ II) \ \rho_{oleo} \frac{V}{2} g + \rho_{agua} \frac{V}{2} g = 6\rho V g - T \end{cases}$$

Fazendo I) + II) podemos eliminar T, obtendo:

$$\frac{V}{2}g(2\rho_{oleo} + \rho_{agua}) = 7\rho Vg$$

Resolvendo para ρ :

$$\rho = \frac{2\rho_{oleo} + \rho_{agua}}{14} = \frac{2 \times 0.92 + 1}{14} \approx 0.2 \frac{g}{cm^3}$$

b) Isolando T a partir da expressão I) obtemos:

$$T = \rho_{oleo} \frac{V}{2} g - \rho V g = \frac{4\pi r^3}{3} g(\frac{\rho_{oleo}}{2} - \rho)$$

Substituindo pelos valores numéricos:

$$T = \frac{4\pi(0.1)^3}{3} (\frac{0.92}{2} - 0.2) \approx 10.7N$$

1.17 Questão 17

Após a campânula ser mergulhada na água, a pressão na interface água/ar devido à coluna de água é:

$$P_1 = P_0 + \rho g(8 - h)$$

Onde h representa a altura da coluna de água dentro da campânula. A pressão do ar dentro da campânula deixa de ser P_0 . Se considerarmos que o ar passa por um processo isotérmico podemos encontrar sua pressão final pela lei de boyle:

$$P_0V_0 = P_fV_f = cte. \implies P_f = \frac{V_0}{V_f}P_0 = \frac{3A}{(3-h)A}P_0 = \frac{3}{(3-h)}P_0$$

Onde A representa a área da seção transversal da campânula, assim, antes de ser mergulhada na água, a altura da coluna de ar é de 3m e seu volume inicial é $V_0 = 3A$, após ser mergulhada a altura da coluna de ar é 3 - h e seu volume final é $V_f = (3 - h)A$. Como a pressão devido a coluna de ar deve ser igual a pressão devido à coluna de água na interface água/ar dentro da campânula temos que:

$$P_1 = P_f \implies P_0 + \rho g(8 - h) = \frac{3}{(3 - h)} P_0$$

Simplificando a expressão:

$$\frac{P_0}{\rho a}h = 24 - 11h + h^2$$

O termo $\frac{P_0}{\rho g}$ vale 10.3, a expressão anterior se torna uma equação de segundo grau:

$$h^2 - 21.3h + 24 = 0 \implies h_{1,2} = \frac{21.3 \pm \sqrt{21.3^2 - 4 \times 1 \times 24}}{2 \times 1}$$

As raízes obtidas são:

$$h_1 = 20.1m, h_1 = 1.2m$$

Como h_1 é maior que o comprimento da campânula, essa resposta representa uma situação absurda, a altura da coluna de água dentro da campânula é então $h = h_2 = 1.2$, isso representa uma fração de:

$$f = \frac{1.2}{3} = 40\%$$

1.18 Questão 18

As forças agindo sob o balão são o empuxo (vertical para cima) e a força peso (vertical para baixo), então a força ascencional é:

$$F_{asc} = E - P$$

Sendo ρ_0 a densidade do ar, ρ a densidade do hidrogênio e r seu raio:

$$F_{asc} = \rho_0 V g - \rho V g = \frac{4\pi r^3}{3} g(\rho_0 - \rho)$$

Substituindo pelos valores dados no enunciado:

$$F_{asc} = \frac{4\pi 5^3}{3}(1.29 - 0.0899) \times 9.81 = 6164.32N = 628kgf$$

1.19 Questão 19

Sabemos que a densidade de força volumétrica é igual ao gradiente de pressão, isto é·

$$f = \nabla P$$

Para o fluído em questão a única força volumétrica atuando é a gravitacional, que vale $f = \rho g$, assim:

$$\nabla P = \rho q$$

Como a pressão só varia com a altura, temos que:

$$\frac{dP}{dh} = \rho g = (\rho_0 + ch)g \implies dP = g(\rho_0 + ch)dh$$

Integrando de $h_0 = 0$ até h e de P_0 até P:

$$\int_{P_0}^{P} dP = g \int_0^h (\rho_0 + ch) dh$$

Após resolver as integrais a resposta obtida é:

$$P = P_0 + \rho_0 g h + c g \frac{h^2}{2}$$

1.20 Questão 20

O volume dos blocos de alumínio e cobre é, respectivamente $V_{al}=10/2700=3.7\times 10^{-3}m^3$ e $V_{cu}=10/11400=0.88\times 10^{-3}m^3$. O novo peso dos blocos, quando medidos no ar, será:

$$P'_{Al} = P - E_{Al} = P - \rho_0 V_{Al} g = 10 \times 9.81 - 1.29 \times 3.7 \times 10^{-3} \times 9.81 = 98.0532N$$

para o alumínio, e:

$$P'_{Cu} = P - \rho_0 V_{Cu} g = 10 \times 9.81 - 1.29 \times 0.88 \times 10^{-3} \times 9.81 = 98.0888N$$

para o cobre. Portanto concluímos que o Alumínio pesa menos, o que era de se esperar, pois o empuxo sobre o bloco de alumínio é maior, visto que seu volume também é maior.

Computando a diferença entre os pesos:

$$\Delta P = P'_{Cu} - P'_{Al} = 98.0888N - 98.0532N = 0.0356N$$

A diferença de massa correspondente é:

$$\Delta m = \frac{\Delta P}{g} = \frac{0.0356}{9.81} \approx 3.63g$$

2 Capítulo 2

2.1 Questão 1

Utilizando Bernoulli podemos encontrar a velocidade v do jato de água que passa pelo orifício (Iremos considerar que a velocidade de escoamento v_0 da água do tanque é baixíssima):

$$\frac{P_0}{\rho g} + \frac{v^2}{2g} + z = \frac{P_0}{\rho g} + \underbrace{\frac{v_0^2}{2g}}_{\approx 0} + z_0$$

z representa a altura do orifício em relação a origem e z_0 representa a altura do topo da coluna de água de no tanque, a diferença $h=z_0-z=1m$ representa a diferença de altura entre o orifício e o topo da coluna d'água. Isolando v na expressão encontramos:

$$v = \sqrt{2gh}$$

A vazão do orifício é:

$$Q = fAv = f\frac{\pi d^2}{4}\sqrt{2gh}$$

Onde f representa o fator de contração e A a área do orifício. Substituindo pelos valores do enunciado:

$$Q = 0.69 \times \frac{\pi \times 0.01^2}{4} \sqrt{2 \times 9.81 \times 1} = 2.4 \times 10^{-4} \frac{m^3}{s} = 0.24 \frac{l}{s}$$

2.2 Questão 2

Como vimos no exercício anterior, a velocidade horizontal do jato de água ao sair do orifício a uma distância z da superfície da coluna d'água é:

$$v_x = \sqrt{2gz} \tag{2.2.1}$$

Além disso, temos que:

$$h - z = \frac{gt^2}{2} \implies t = \sqrt{\frac{2(h-z)}{g}} \tag{2.2.2}$$

Onde h-z representa a distância entre o orifício e o chão e t representa o intervalo de tempo necessário para que essa distância seja percorrida pelo jato

d'água. Por fim, temos que a distância horizontal percorrida pelo jato (tomando o orifício como a origem) é:

$$x = v_x t (2.2.3)$$

Substituindo a (2.2.1) e a (2.2.2) na (2.2.3) chegamos em:

$$x = \sqrt{2gz}\sqrt{\frac{2(h-z)}{g}} = 2\sqrt{hz - z^2}$$
 (2.2.4)

Basta derivar a expressão anterior com respeito a z e igualar à zero para encontrar o valor de z que maximiza x:

$$\boxed{\frac{dx}{dz} = 0 \implies \frac{d(\sqrt{hz - z^2})}{dz} = 0 \implies \frac{1}{2} \frac{(h - 2z)}{\sqrt{hz - z^2}} = 0 \implies z = \frac{h}{2}}$$

Portanto a altura na qual o orifício deve estar para que esta distância máxima seja atingida é na metade da altura da coluna de água. Para descobrir qual a distância horizontal percorrida nesse caso basta substituir z por $\frac{h}{2}$ na (2.2.4):

$$x_{max} = 2\sqrt{h\left(\frac{h}{2}\right) - \left(\frac{h}{2}\right)^2} = h$$

2.3 Questão 3

A pressão na base é exercida pela contribuição da coluna de óleo e da coluna de água, ambas de mesma altura h=0.5m:

$$P = \underbrace{P_0 + \rho_{oleo}gh}_{\text{Coluna de \'oleo}} + \underbrace{\rho_{agua}gh}_{\text{Coluna de \'agua}} = P_0 + (\rho_{oleo} + \rho_{agua})gh$$

Escrevendo Bernoulli para o fluído na base do orifício e para o jato de água escoando:

$$P + \rho g h + \frac{\rho v^2}{2} = C$$

$$P = P_0 + \frac{v^2}{2a} \implies P_0 + \rho_{oleo} g h + \rho_{agua} g h = P_0 + \frac{\rho_{agua} v^2}{2}$$

Resolvendo para v obtemos:

$$v = \sqrt{2g \frac{(\rho_{agua} + \rho_{oleo})}{\rho_{agua}}} = \sqrt{2 \times 9.81 \times \frac{1000 + 690}{1000} \times 0.5} = 4.07 m/s$$

2.4 Questão 4

A equação dos gases ideais pode ser escrita em função da densidade ρ do gás, pois:

$$PV = nRT \implies PV = \frac{m}{M}RT \implies P = \rho RT$$

Onde m representa a massa de gás e M sua massa molar. Portanto, se o gás está submetido à pressões P_0 e P_1 diferentes, a relação entre suas densidade é (Assumindo que o processo que levou o gás de uma pressão a outra é isotérmico):

$$\frac{P_1}{\rho_1} = \frac{P_0}{\rho_0} \implies \rho_1 = \frac{P_1}{P_0} \rho_0$$

Portanto, se a densidade do ar na atmosfera é de $1.3kg/m^3$, à uma pressão $P_1 = 1.25atm = 1.25P_0$, essa densidade é:

$$\rho_1 = \frac{P_1}{P_0} \rho_0 = \frac{1.25P_0}{P_0} \times 1.3 = 1.62 \frac{kg}{m^3}$$

Chamando a pressão interna de P_1 e a externa de P_0 , a equação de Bernoulli para o ar dentro do tubo e para o gás que escapa com velocidade v é:

$$\frac{P_1}{\rho_1 g} = \frac{P_0}{\rho_1 g} + \frac{v^2}{2g}$$

Resolvendo para v encontramos (O valor utilizado para a pressão atmosférica é $P_0 = 1.01 \times 10^5 Pa$):

$$v = \sqrt{\frac{2(P_1 - P_0)}{\rho_1}} = \sqrt{\frac{2 \times (1.25 - 1) \times 1.013 \times 10^5}{1.62}} \approx 177m/s$$

2.5 Questão 5

A relação entre a força agindo sobre um corpo e seu momento p = mv é:

$$F_{ext} = \frac{dp}{dt} = m\frac{dv}{dt} + v\frac{dm}{dt} = 0$$

Veja que não há forças externas agindo na horizontal, por isso escrevemos que $F_{ext}=\frac{dp}{dv}=0$. O empuxo resultante é $E_r=m\frac{dv}{dt}=ma$ e é expresso por:

$$E_r = m\frac{dv}{dt} = -v\frac{d}{dt} \underbrace{\overbrace{m}^{\rho V, \ \rho = cte.}}_{dt} = -\rho v\frac{dV}{dt} = -\rho vQ$$

Onde Q representa a vazão do gás, que é dada por Q=Av, assim o empuxo resultante pode ser escrito como:

$$F = E_r = -\rho A v^2 \tag{2.5.1}$$

A velocidade de escapamento do ar pode ser encontrada através de Bernoulli. A pressão no interior da câmara é P, em seu exterior é P_0 , e sua densidade é ρ . Escrevendo a equação para o gás dentre do câmara e o gás que compõe feixe que escapa pelo orifício:

$$\frac{P}{\rho g} = \frac{P_0}{\rho g} + \frac{v^2}{2g} \implies v^2 = \frac{2(P - P_0)}{\rho}$$

Substituindo na (2.5.1) obtemos:

$$E_r = -\rho A \frac{2(P - P_0)}{\rho} = -2A(P - P_0)$$

O sinal de negativo somente nos diz que a direção de movimento do foguete é contrária a da massa ejetada.

2.6 Questão 6

De acordo com o exercício anterior temos que a força resultante agindo sob o sistema vale:

$$E_r = -\rho A \frac{2(P - P_0)}{\rho} = -2A(P - P_0)$$

Como a pressão exercida pela água na altura do orifício é dada por:

$$P = P_0 + \rho g h$$

E a massa total inicial do sistema é $M_t=M_0+m_0,$ a aceleração inicial é:

$$F = E_r = M_t a = -2A(P - P_0) \implies a = -2A\left(\frac{\rho gh}{M_0 + m_0}\right)$$

2.7 Questão 7

a) Sendo v_1 a velocidade inicial de escoamento na base superior da ampulheta, isto é, a velocidade de descida do nível de água, e v_0 a velocidade de escoamento para a água no centro da ampulheta, temos que:

$$A_1 v_1 = A_0 v_0 \implies v_2 = \frac{R^2}{r^2} v_1 \implies v_0^2 = \left(\frac{R}{r}\right)^4 v_1^2$$

E aplicando Bernoulli para ambos os pontos:

$$\frac{v_0^2}{2g} = \frac{v_1^2}{2g} + h$$

Substituindo v_0 pela primeira expressão encontrada:

$$\left(\frac{R}{r}\right)^4 \frac{v_1^2}{2q} = \frac{v_1^2}{2q} + h$$

Resolvendo para v_1 :

$$v_1^2 \left(\left(\frac{R}{r} \right)^4 - 1 \right) = 2gh$$

$$v_1 = \sqrt{2gh\left(\frac{r^4}{R^4 - r^4}\right)}$$

Substituindo pelos valores numéricos o valor encontrado para a velocidade inicial de descida do nível da água é:

$$v_1 = \sqrt{2 \times 9.81 \times 10 \times 10^{-2} \left(\frac{0.1^4}{10^4 - 0.1^4}\right)} = 0.14 mm/s$$

b) Usando semelhança de triângulos podemos descobrir qual é o raio da superfície da água após ter baixado 5cm:

$$\frac{R'}{10} = \frac{5}{10} \implies R' = 5cm$$

Fazendo as substituições pelos novos valores $h \to h' = 5cm$ e $R \to R' = 5cm$ basta utilizar a resposta do exercícios anterior para encontrar a velocidade do nível de descida da água:

$$v_1 = \sqrt{2gh'\left(\frac{r^4}{R'^4 - r^4}\right)}$$

$$v_1 = \sqrt{2 \times 9.81 \times 5 \times 10^{-2} \left(\frac{0.1^4}{5^4 - 0.1^4}\right)} \approx 0.39mm/s$$

- c) Para a água a uma altura qualquer z, medida a partir do centro da ampulheta,
- ▶ Solucionário Curso de Fisica Básica II

sua superfície irá possuir um raio ρ , medido a partir do eixo do cone. Sendo v a velocidade de descida da água nesse instante e v_0 a velocidade de descida na água no centro do cone, temos que para que a vazão seja constante a seguinte relação deve ser válida:

$$A_0 v_0 = A v \implies r^4 v_0^4 = \rho^4 v^4 \implies v_0^2 = \left(\frac{\rho}{r}\right)^4 v^2$$

Para qualquer ρ e z.

Escrevendo a equação Bernoulli para ambos os pontos:

$$v^2 + 2qz = v_0^2$$

Substituindo v_0 :

$$v^2 + 2gz = \left(\frac{\rho}{r}\right)^4 v^2 \implies v^2 \left(\left(\frac{\rho}{r}\right)^4 - 1\right) = 2gz$$

Como:

$$v^2 \left(\left(\frac{\rho}{r} \right)^4 - 1 \right) \approx v^2 \left(\frac{\rho}{r} \right)^4 \implies v^2 \left(\frac{\rho}{r} \right)^4 \approx 2gz$$

Resolvendo para z encontramos:

$$z = \frac{v^2}{2g} \left(\frac{\rho}{r}\right)^4$$

2.8 Questão 8

Como a é o raio da torneira e a vazão da água é Q, a velocidade da água na origem é $v = \frac{Q}{\pi a^2}$. Sendo z a altura do filete medindo a partir da origem, ρ o raio do filete a essa altura z e v' a velocidade de escoamento nesse ponto temos que:

$$a^2v = \rho^2v' \implies v'^2 = \left(\frac{a^4}{\rho^4}\right)v^2$$

E utilizando a equação de Bernoulli em ambos os pontos temos que:

$$\frac{v^2}{2g} + z = \frac{v'^2}{2g} \implies v'^2 = v^2 + 2gz \implies v^2 \left(\frac{a^4}{\rho^4}\right) = v^2 + 2gz$$

Manipulando a equação anterior encontramos a razão:

$$\boxed{\frac{\rho^2}{a^2} = \frac{v}{\sqrt{v^2 + 2gz}}}$$

Com v dado por:

$$Q = \pi a^2 v$$

2.9 Questão 9

No tubo em cotovelo há um ponto de estagnação onde v=0, contudo há uma pressão adicional P=pgh devido a diferença de altura h em relação a outra coluna de água. Comparando este ponto de estagnação com um ponto na correnteza, com velocidade de escoamento v, basta escrever a equação de Bernoulli:

$$\frac{P_0}{\rho q} + \frac{v^2}{2q} = \frac{P_0}{\rho q} + h \implies v = \sqrt{2gh}$$

Substituindo pelos valores dados no enunciado:

$$v = \sqrt{2 \times 9.81 \times 5 \times 10^{-2}} = 0.99 m/s$$

2.10 Questão 10

Pelo equilíbrio hidrostático no manomêtro temos que:

$$P_1 + p_f gh = P_2 + pgh \implies \Delta P = (\rho_f - \rho)gh$$

Onde P_1 representa a pressão no ramo esquerdo do tubo, devido ao líquido na parte superior que escorre com velocidade v e P_2 é a pressão do líquido no cotovelo, onde há um ponto de estagnação. Para encontrar a relação entre essas pressões basta escrever Bernoulli para o fluído na correnteza e no ponto de estagnação:

$$\frac{P_1}{\rho g} + \frac{v^2}{2g} = \frac{P_2}{\rho g} \implies \Delta P = \frac{\rho v^2}{2}$$

Substituindo na primeira expressão:

$$\frac{\rho v^2}{2} = (\rho_f - \rho)gh$$

Portanto a velocidade de escoamento é:

$$v = \sqrt{2gh\left(\frac{\rho_f}{\rho} - 1\right)}$$

2.11 Questão 11

Sendo v_1 a velocidade de escoamento na seção do tubo que possui raio R, e v_2 a velocidade de escoamento na seção de raio r temos:

$$Q_1 = Q_2 \implies v_1 R^2 = v_2 r^2 \implies v_2^2 = \frac{R^4}{r^4} v_1^2$$

Aplicando Bernoulli aos pontos 1 e 2 (Que são os pontos associados às alturas z_1 e z_2 respectivamente):

$$\frac{P_1}{\rho g} + \frac{v_1^2}{2g} + z_1 = \frac{P_2}{\rho g} + \frac{v_2^2}{2g} + z_2$$

$$\frac{P_1 - P_2}{\rho g} = \frac{v_1^2}{2g} \left(\frac{R}{r}\right)^4 - \frac{v_1^2}{2g} + z_2 - z_1$$

$$P_1 - P_2 = \rho v_1^2 \left(\left(\frac{R}{r}\right)^4 - 1\right) + \rho g(z_2 - z_1)$$

Pelo equilíbrio hidrostático do manômetro podemos escrever:

$$P_1 + \rho g h + \rho g(z_1 - z_2) = P_2 + \rho_f g h \implies P_1 - P_2 = (\rho_f - \rho)g h - \rho g(z_1 - z_2)$$

$$\rho \frac{v_1^2}{2} \left(\left(\frac{R}{r} \right)^4 - 1 \right) + \rho g(z_2 - z_1) = (\rho_f - \rho)gh - \rho g(z_1 - z_2)$$

Simplificando a expressão obtemos (Veja que os termos contendo z_1 e z_2 se cancelam):

$$v_1 = \sqrt{\frac{2g(\rho_f - \rho)h}{\rho[(R/r)^4 - 1]}}$$

Como a vazão vale $Q_1 = \pi R^2 v_1$, encontramos:

$$Q = \pi R^2 \sqrt{\frac{2gh(\rho_f - \rho)}{\rho[(R/r)^4 - 1]}}$$

2.12 Questão 12

a) Aplicando Bernoulli entre a superfície do líquido e a saída do tubo, no ponto C (Iremos considerar que a velocidade de escoamento do reservatório é praticamente nula):

$$\frac{P_0}{\rho g} + \underbrace{\frac{v_s^2}{2g}}_{\approx 0} + h_1 = \frac{P_0}{\rho g} + \frac{v^2}{2g}$$
$$\boxed{v = \sqrt{2gh_1}}$$

b) Aplicando Bernoulli entre o ponto A e a superfície do líquido no reservatório (Lembre-se que a velocidade ao longo do sifão é constante, portanto a velocidade de escoamento no ponto A é igual a velocidade de escoamento na saída do sifão):

$$\frac{P_0}{\rho g} + h_1 = \frac{P_A}{\rho g} + \frac{v^2}{2g} + h_1$$

$$P_A = P_0 - \rho g h_1$$

Analogamente para o ponto B:

$$\frac{P_0}{\rho g} + h_1 = \frac{P_B}{\rho g} + \frac{v^2}{2g} + h_0 + h_1$$
$$P_B = P_0 - \rho g(h_1 + h_0)$$

c) Aplicando Bernoulli entre o ponto B e a superfície do líquido no reservatório:

$$P_B + h_0 + h_1 = \frac{P_0}{\rho q}$$

Para uma pressão nula no ponto B encontramos:

$$h_{0,max} = \frac{P_0}{\rho g} - h_1$$

2.13 Questão 13

a) Pela equação obtida na seção 2.7 do livro, a vazão em um tubo cilíndrico de raio a, comprimento l, viscosidade η e diferença de pressão P_1-P_2 entre as extremidades é:

$$V = \frac{\pi a^4}{8\eta} \left(\frac{P_1 - P_2}{l} \right)$$

Substituindo pelo valores dados no enunciado (O valor usado para 1atm é de $1.013 \times 10^5 Pa$):

$$V = \frac{\pi (10 \times 10^{-2})^4}{8 \times 1} \left(\frac{(5-1) \times 1.013 \times 10^5}{50 \times 10^3} \right) \approx 3.18 \times 10^{-4} \frac{m^3}{s}$$

Transformando em l/dia obtemos:

$$V = 3.18 \times 10^{-4} \times 24 \times 60 \times 60 \times 10^{3} = 2.75 \times 10^{4} \frac{l}{dia}$$

2.14 Questão 14

A partir de Bernoulli podemos encontrar a diferença entre a pressão acima e abaixo das asas. Sendo P_1 e $v_1=1.25v_2$ a pressão e velocidade acima da asas e P_2 e v_2 a pressão e a velocidade abaixo das asas temos que:

$$\frac{P_1}{\rho g} + \frac{v_1^2}{2g} = \frac{P_2}{\rho g} + \frac{v_2^2}{2g} \implies v_1^2 - v_2^2 = 1.25^2 v_2^2 - v_2^2 = \frac{9}{16} v_2^2 = \frac{2(P_2 - P_1)}{\rho} = \frac{\Delta P}{\rho}$$

Essa diferença de pressão deve ser igual a pressão devido ao peso, que é dada por:

$$P = \Delta P = \frac{mg}{A}$$

Substituindo na primeira expressão e resolvendo para v_2 , que é a velocidade mínima *abaixo* da asa:

$$v_2 = \frac{4}{3} \sqrt{\frac{2mg}{\rho A}}$$

Encontramos:

$$v_2 = \frac{4}{3}\sqrt{\frac{2 \times 2000 \times 9.81}{1.3 \times 30}} = 42.3 \frac{m}{s} = 152 \frac{km}{h}$$

A velocidade de escoamento acima das asas é então:

$$v_1 = 1.25v_2 = 190 \frac{km}{h}$$

2.15 Questão 15

A circulação em questão é definida a partir de:

$$v = \frac{C_{\Gamma}}{2\pi r}$$

Esse tipo de escoamento assume a seguinte forma:

Figura 2: Escoamento circular.

Uma porção do fluído de massa infinitesimal $dm = \rho dV$ a uma distância r do centro sofre a ação de uma força dF. Sendo a_{cp} a aceleração centrípeta a qual essa porção do fluído está submetida, a força centrípeta é:

$$dF = a_{cp}dm = a_{cp}\rho dV \implies \frac{dF}{dV} = f = \rho a_{cp} = \frac{\rho v^2}{r}$$

Onde dF representa a força infinitesimal e f a densidade de força. Além disso sabemos que a densidade de força se relaciona com a pressão da seguinte maneira:

$$f = \nabla p$$

Como a pressão só varia radialmente temos que:

$$f = \frac{dp}{dr}$$

Logo:

$$f = \frac{dp}{dr} = \frac{\rho v^2}{r}$$

Escrevendo v em termos do raio e da circulação:

$$\frac{dp}{dr} = \frac{\rho C_{\Gamma}^2}{4\pi^2 r^3}$$

Separando as variáveis e integrando:

$$\int_{P_{\infty}}^{P} dP = \frac{\rho C_{\Gamma}^2}{4\pi^2} \int_{\infty}^{r} r^{-3} dr$$

Resolvendo as integrais obtemos:

$$P = P_{\infty} - \frac{\rho C_{\Gamma}^2}{8\pi^2 r^2}$$

Escrevendo a circulação em função do raio e da velocidade chegamos à expressão alternativa:

$$P = P_{\infty} - \frac{\rho(2\pi rv)^2}{8\pi^2 r^2} = P_{\infty} - \frac{1}{2}\rho v^2$$

A constante P_{∞} representa o valor que a pressão assume quando $r \to \infty$.

3 Capítulo 3

3.1 Questão 1

Pela conservação de momento linear podemos encontrar a velocidade v' dos corpos após o impacto:

$$mv = (M+m)v' \implies v' = \frac{m}{m+M}v$$

Deste modo, a velocidade inicial do oscilador é $v(0) = v' = \frac{m}{m+M}v$. Sabemos que após o impacto os corpos se mantêm unidos e presos pela mola de constante k, deste modo a EDO para o sistema é:

$$(m+M)a = -kx \implies (m+M)\ddot{x} + kx = 0 \implies \ddot{x} + \frac{k}{m+M}x = 0$$

Ou seja, a expressão para o deslocamento do sistema, que é a solução da EDO anterior é da forma:

$$x(t) = A\cos(\omega t + \phi)$$

Sendo A a amplitude, ϕ a fase e ω a frequência angular, dada por:

$$\omega^2 = \frac{k}{m+M}$$

A amplitude e fase da expressão para o deslocamento podem ser obtidas a partir das condições iniciais do sistema. Sabemos que o sistema parte da origem no instante t=0, e também sabemos que imediatamente após o impacto, no instante t=0, o sistema adquire velocidade v', que foi obtida anteriormente. Assim, as condições inicias para o deslocamento e velocidade são, respectivamente:

$$\begin{cases} x(0) = 0 \\ v(0) = v' = \frac{m}{m+M}v \end{cases}$$

A partir da condição inicial para o deslocamento temos que:

$$x(0) = A\cos(\omega.0 + \phi)$$

Como $A \neq 0$, pois a amplitude não pode ser nula:

$$\cos \phi = 0 \implies \phi = \frac{\pi}{2}$$

Como já encontramos a fase do sistema podemos então obter a amplitude do movimento a partir da condição inicial para a velocidade:

$$v(t) = \dot{x}(t) = -\omega A \sin(\omega t + \phi) \implies v(0) = \frac{m}{m+M} v = A\omega \sin(\omega . 0 + \frac{\phi}{2})$$
$$A = \frac{v}{\omega} \frac{m}{m+M}$$

A expressão para x é:

$$x(t) = A\cos(\omega t + \phi) = \frac{v}{\omega} \frac{m}{m+M}\cos(\omega t + \frac{\pi}{2})$$

Como $\sin(\theta) = \cos(\theta + \frac{\pi}{2})$, a expressão do deslocamento para t > 0 é:

$$x(t) = \frac{v}{\omega} \frac{m}{(m+M)} \sin(\omega t)$$

3.2 Questão 2

As forças agindo sobre o corpo são a força restauradora da mola e a força peso, a EDO associada é:

$$m\ddot{x} = -kx + mg$$
$$\ddot{x} + \frac{k}{m}x = g$$

Figura 3: Sistema massa-mola oscilando verticalmente

A solução da EDO anterior é a combinação entre a solução particular e a solução homogênea, isto é:

$$x(t) = x_p(t) + x_h(t)$$

Já sabemos que a solução associada à EDO homogênea

$$\ddot{x} + \frac{k}{m}x = 0$$

é:

$$x_h(t) = A\cos(\omega t + \phi), \quad \omega^2 = \frac{k}{m}$$

Para encontrar a solução particular iremos assumir que ela é da forma:

$$x_p(t) = C$$

Onde C é constante. Espera-se que a solução particular seja uma constante pois a expressão no lado direito da EDO também é constante. Substituindo x por $x_p(t) = C$ na EDO:

$$\ddot{x}_p + \frac{k}{m}x_p = 0$$

Resolvendo:

$$\underbrace{\frac{d^2C}{dt^2}}_{=0} + \frac{k}{m}C = g$$

Por fim, encontramos a solução particular:

$$x_p(t) = C = \frac{mg}{k}$$

A expressão geral é, portanto:

$$x(t) = x_p(t) + x_h(t) = A\cos(\omega t + \phi) + \frac{mg}{k}$$

A posição de equilíbrio da mola está no ponto onde a força restauradora se iguala à força peso:

$$kx = mg \implies x = \frac{mg}{k}$$

Em relação ao teto, esta distância vale $x = l_0 + mg/k$. Como o bloco é solto em repouso a uma distância l_0 do teto o deslocamento inicial do bloco em relação ao ponto de equilíbrio do oscilador é:

$$x(0) = l_0 - (\frac{mg}{k} + l_0) = -\frac{mg}{k}$$

E a velocidade inicial é:

$$v(0) = 0$$

Temos,

$$\begin{cases} x(0) = A\cos\phi = -\frac{mg}{k} \\ v(0) = -\omega A\sin\phi = 0 \end{cases}$$

A partir da segunda condição inicial podemos inferir que $\phi=0$, e resolvendo para A a partir da primeira condição inicial encontramos que $A=-\frac{mg}{k}$. Substituindo na solução geral:

$$x(t) = A\cos(\omega t + \phi) + \frac{mg}{k}$$

Porém o exercício pede a posição relativa ao teto, e não ao ponto de equilíbrio do sistema, portanto é necessário introduzir o termo adicional l_0 :

$$x(t) = l_0 + A\cos(\omega t + \phi) + \frac{mg}{k}$$

Resolvendo:

$$x(t) = l_0 - \frac{mg}{k}\cos(\omega t + \phi) + \frac{mg}{k}$$

Simplificando e substituindo $\omega = \sqrt{k/m}$ obtemos:

$$x(t) = l_0 + \frac{mg}{k} \left(1 - \cos\left(\sqrt{\frac{k}{m}}t\right) \right)$$

3.3 Questão 3

a) A expressão do deslocamento para cada uma das partículas é:

$$\begin{cases} x_1 = A_1 \cos(\omega t + \phi_1) \\ x_2 = A_2 \cos(\omega t + \phi_2) \end{cases}$$

A condição inicial do deslocamento para a primeira partícula é $x_1(0) = -0.01m$, e para a velocidade é $v_1(0) = \sqrt{3}$. Montando um sistema de equações a partir das condições iniciais:

$$\begin{cases} I)x_1(0) = A\cos\phi_1 = -0.01\\ II)v_1(0) = -\omega A\sin\phi_1 = -\sqrt{3} \end{cases}$$

Dividindo a II pela I obtemos:

$$-\omega \frac{\cos \phi_1}{\sin \phi_1} = -\sqrt{\frac{k}{m}} \tan \phi_1 = \frac{\sqrt{3}}{0.01}$$

Resolvendo para ϕ_1 :

$$\phi_1 = \tan^{-1}\left(-\frac{\sqrt{3}}{0.01}\sqrt{\frac{m}{k}}\right) = \tan^{-1}\left(-\frac{\sqrt{3}}{0.01}\sqrt{\frac{10\times10^{-3}}{100}}\right) = \tan^{-1}\left(-\sqrt{3}\right) = -\frac{\pi}{3}$$

Agora utilizaremos a equação I para encontrar A_1 :

$$A_1 \cos \phi_1 = A_1 \cos -\frac{\pi}{3} = -0.01 \implies A_1 \frac{1}{2} = -0.01 \implies A_1 = -0.02$$

Para encontrar A_2 o procedimento é análogo e a única diferença encontrada é de que o sinal da amplitude é oposto, ou seja, $\phi_2 = -\frac{\pi}{3}$ e $A_2 = 0.02$. Assim, as equações para o deslocamento são (Lembre-se que $\omega = \sqrt{k/m} = \sqrt{100/0.01} = 100$):

$$\begin{cases} x_1 = -0.02\cos\left(100t - \frac{\pi}{3}\right) \\ x_2 = 0.02\cos\left(100t - \frac{\pi}{3}\right) \end{cases}$$

b) Igualando as duas expressões para o deslocamento:

$$x_1 = x_2 \implies -0.02\cos(100t - \frac{\pi}{3}) = 0.02\cos(100t - \frac{\pi}{3}) \implies \cos(100t - \frac{\pi}{3}) = 0$$

$$(100t - \frac{\pi}{3}) = \cos^{-1}(0) = \frac{\pi}{2}$$

Resolvendo para t:

$$t = \frac{1}{100} \left(\frac{\pi}{3} + \frac{\pi}{2} \right) = \frac{\pi}{120} s$$

As partículas irão colidir uma com a outra quando $t = \pi/120s$.

c) Como ambas as partículas estão presas a molas de mesma constante elásticas

k e suas amplitude só se diferem por ter sinais opostos, a energia total do sistema é·

$$E = 2 \times \frac{kA^2}{2}$$

Substituindo pelos valores obtidos anteriormente:

$$E = 2 \times \frac{100 \times (0.02)^2}{2} = 0.04J$$

3.4 Questão 4

Esse sistema é análogo a um pêndulo simples de comprimento r. A conta de massa m se movimenta ao longo do aro vertical de raio r:

A força peso P pode ser decomposta em uma componente tangencial F_{\perp} , a partir da qual podemos obter a aceleração angular e escrever a equação do movimento. Relacionando a força peso com a força tangencial e fazendo a aproximação para pequenos ângulos ($\sin \theta \approx \theta$):

$$\sin \theta = \frac{F_{\perp}}{P} \implies F_{\perp} = -mg \sin \theta \approx -mg\theta$$

Relacionando com a aceleração angular $\ddot{\theta}$:

$$mr\ddot{\theta} = F_{\perp} \approx -mg\theta$$

Por fim, obtemos a EDO:

$$\ddot{\theta} + \frac{g}{r}\theta = 0$$

Que representa um movimento harmônico simples, de frequência angular:

$$\omega^2 = \frac{g}{r}$$

O período do oscilador é:

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{r}{g}}$$

3.5 Questão 5

a) A velocidade com que a bola se choca com o prato pode ser encontrada a partir da conservação de energia:

$$\frac{mv^2}{2} = mgh \implies v = \sqrt{2gh}$$

Que também é a velocidade do oscilador após o instante inicial, ou seja, $v(0) = \sqrt{2gh}$. Igualando a força peso a força restauradora da mola podemos encontrar a posição de equilíbrio:

$$mg = kx \implies x = \frac{mg}{k}$$

Quando a bola colide com o prato a mola não há distensão na mola, portanto ela está a uma distância x = x(0) = mg/k do ponto de equilíbrio, que é a posição inicial do corpo. A partir destas duas condições iniciais obtemos:

$$\begin{cases} I)x(0) = A\cos\phi = \frac{mg}{k} \\ II)v(0) = A\sin\phi = \sqrt{2gh} \end{cases}$$

Elevando ambas as equações ao quadrado e somando $(I^2 + II^2)$ podemos eliminar ϕ :

$$A^{2}\cos^{2}\phi + A^{2}\sin^{2}\phi = A^{2}\underbrace{(\cos^{2}\phi + \sin^{2}\phi)}_{=1} = \left(\frac{mg}{k}\right)^{2} + 2gh$$

Resolvendo para A:

$$A = \frac{mg}{k}\sqrt{1 + 2\frac{kh}{mg}}$$

b) A energia total de oscilação é dada por:

$$E = \frac{kA^2}{2}$$

$$E = \frac{k}{2} \left(\frac{mg}{k} \sqrt{1 + 2\frac{kh}{mg}} \right)^2$$

Simplificando a expressão anterior obtemos:

$$E = mgh + \frac{(mg)^2}{2k}$$

3.6 Questão 6

O fio de módulo de torção K é responsável por um torque restaurador τ que é diretamente proporcional ao ângulo de torção:

$$\tau = -K\theta$$

Além disso sabemos que o produto entre o momento de inércia e a aceleração angular é igual ao torque:

$$I\ddot{\theta} = -K\theta \implies \ddot{\theta} + \frac{K}{I}\theta = 0$$

A partir desta EDO concluúmos que a frequência angular é $\omega=\sqrt{K/I}$ e o período do oscilador é:

$$\tau = 2\pi \sqrt{\frac{I}{K}}$$

a) O momento de inércia é definido por:

$$I = \int r^2 dm$$

Para um disco girando em torno do próprio plano podemos estabelecer que r é a distância radial e que a massa inifinitesimal dm é:

$$dm = \sigma dS = \sigma 2\pi r dr$$

Onde σ represenjta a densidade superficial e $2\pi r dr$ a massa de um anel a uma distância r do centro e espessura infinitesimal dr.

Figura 4: Disco uniforme

Pela definição de momento de inércia:

$$I_a = \int r^2 dm = \int r^2 (\sigma 2\pi r dr) = 2\pi \sigma \int r^3 dr$$

Integrando de 0 até R obtemos o momento de inércia do disco (Lembre que como a densidade superficial é σ e a área superficial do disco é πR^2 a massa total é $M = \sigma \pi R^2$):

$$I_a = 2\pi\sigma \left[\frac{r^4}{4}\right]\Big|_0^R = \frac{R^2}{2}\underbrace{\sigma\pi R^2}_M = \frac{MR^2}{2}$$

Substituindo na expressão encontrada para o período:

$$\tau_a = 2\pi \sqrt{\frac{I_a}{K}} = 2\pi \sqrt{\frac{MR^2/2}{K}} = \pi R \sqrt{\frac{2M}{K}}$$

b) No exemplo anterior o disco girava em torno do eixo z. Ou seja, para o exemplo anterior:

$$dI_a = r^2 dm$$

Essa distância também pode ser escrita em termos das distâncias x e y, pois $r^2 = x^2 + y^2$, logo:

$$dI_a = (x^2 + y^2)dm = x^2dm + y^2dm = dI_x + dI_y \implies I_x + I_y = I_a$$

Por simetria $I_x = I_y$, que também é o momento de inércia I_b que procuramos, ou seja:

$$I_x + I_y = 2I_b = I_a \implies I_b = \frac{I_a}{2}$$

 I_a é o momento de inércia encontrado no item anterior, portanto:

$$I_b = \frac{MR^2}{4}$$

Substituindo na fórmula encontrada para o período:

$$\tau_b = 2\pi \sqrt{\frac{MR^2/4}{K}} = \pi R \sqrt{\frac{M}{K}}$$

3.7 Questão 7

Vimos que a frequência angular ω do pêndulo é:

$$\omega^2 = \frac{g}{l}$$

Como o comprimento do pêndulo é l=1m a frequência ω vale:

$$\omega = \sqrt{g} \approx 3.13 \frac{rad}{s}$$

Pela conservação de momento linear, a velocidade do sistema "bala+pêndulo" logo após o impacto é:

$$mv = (m+M)v' \implies v' = \frac{m}{m+M}v$$

Assim, a velocidade angular inicial do sistema vale:

$$\dot{\theta}(0) = \frac{m}{m+M} \frac{v}{l}$$

Além disso o ângulo inicial com a vertical é zero $(\theta(0) = 0)$, e o ângulo θ em função de t é:

$$\theta(t) = \theta_0 \cos(\omega t + \phi)$$

Onde θ_0 representa a amplitude, que é o ângulo máximo que o pêndulo faz com a vertical. Montando um sistema com as duas condições iniciais:

$$\begin{cases} \theta(0) = \theta_0 \cos \phi = 0\\ \dot{\theta}(0) = -\omega \theta_0 \sin \phi = \frac{m}{(m+M)} \frac{v}{l} \end{cases}$$

A partir da primeira condição inicial concluímos que $\cos \phi = 0 \implies \phi = \frac{\pi}{2}$. Por fim encontraremos a amplitude a partir da segunda condição inicial:

$$-\omega\theta_0\sin\phi = \frac{m}{(m+M)}\frac{v}{l} \implies \theta_0 = -\frac{m}{(m+M)}\frac{v}{\omega l}$$

Substituindo pelos valores numéricos:

$$\theta_0 = -\frac{10 \times 10^{-3}}{(10 \times 10^{-3} + 10)} \frac{300}{3.13 \times 1} \approx -0.096 rad$$

Substituindo os valores encontrados na expressão para o ângulo θ (Lembre-se que $\cos(\theta + \frac{\pi}{2}) = -\sin(\theta)$):

$$\theta(t) = \theta_0 \cos(\omega t + \phi) = -0.096 \sin(3.13t)$$

3.8 Questão 8

A EDO para o oscilador é:

$$\ddot{x} + \frac{k}{m+M}x = 0$$

Ou seja, o módulo da aceleração a qual os corpos são submetidos é:

$$a = \frac{k}{m+M}x$$

E essa aceleração é máxima quando o sistema está na amplitude, isto é x = A:

$$a_{max} = \frac{k}{m+M}A$$

Quando o bloco está na iminência de escorregar a força devido a aceleração do oscilador se iguala à força de atrito estático:

$$F = F_{at} \implies ma_{max} = \mu_e mg \implies A \frac{k}{m+M} = \mu_e g$$

Resolvendo para A encontramos que a amplitude máxima vale:

$$A = \frac{\mu_e g(m+M)}{k}$$

3.9 Questão 9

Inicialmente o densímetro está em equilíbrio, isto, a força peso é igual ao empuxo:

$$mg = \rho_0 v_0 g \implies m = \rho_0 V_0$$

Onde m representa a massa do densímetro e ρ_0 a densidade da água. Ao se deslocar uma pequena distância x para baixo, o volume submerso do densímetro passa a ser $V_s = V_0 + Ax$. Escrevendo a equação do movimento nesta nova situação:

$$ma = P - E = mg - \rho_0(V_0 + Ax)g = mg - \rho_0V_0g - \rho_0Agx$$

$$m\ddot{x} + \rho_0 Agx = mg - \rho_0 V_0 g$$

$$\ddot{x} + \frac{\rho_0 Ag}{m} x = g - \frac{\rho_0 V_0}{m} g$$

Vimos que $m = \rho_0 V_0$, substituindo na expressão anterior a EDO é fica:

$$\ddot{x} + \left(\frac{Ag}{V_0}\right)x = 0$$

A frequência angular de oscilação é:

$$\omega = \sqrt{\frac{gA}{V_0}}$$

3.10 Questão 10

Iremos supor que o trampolim está sujeito a uma força restauradora da forma:

$$F = -kz$$

Onde z representa o deslocamento vertical. No equilíbrio essa força restauradora é igual ao peso, portanto:

$$kz = mq$$

Lembre-se que a constante k se relaciona com a frequência angular de oscilação a partir de:

$$k = m\omega^2$$

Logo:

$$kz = m\omega^2 z = mg \implies \omega = \sqrt{\frac{g}{z}}$$

Substituindo pelos valores numéricos:

$$\omega = \sqrt{\frac{g}{z}} = \sqrt{\frac{9.81}{0.05}} = 14s^{-1}$$

3.11 Questão 11

a) A resolução deste item é análoga à resoluão do item anterior. Ao se desprender da plataforma o peso do bloquinho se iguala à força restauradora, portanto:

$$mg = kz = m\omega^2 z \implies z = \frac{g}{\omega^2}$$

z representa a altura em que o bloquinho se desprende da plataforma. Calculando:

$$z = \frac{g}{\omega^2} = \frac{9.81}{400} = 2.45cm$$

b) A energia cinética do bloquinho quando ele se despreende da plataforma pode ser encontrada a partir da conservação de energia. A energia potencial do oscilador vale $E_p = kz^2/2$ e a energia total vale $E_t = kA^2/2$, portanto:

$$E_t = E_c + E_p \implies E_c = E_t - E_p = \frac{k}{2}(A^2 - z^2) = \frac{m\omega^2}{2}(A^2 - z^2)$$

Igualando a energia cinética do bloquinho à energia potencial gravitacional podemos encontrar a altura máxima h que ele atinge:

$$E_c = mgh \implies h = \frac{E_c}{mq} = \frac{\frac{m\omega^2}{2}(A^2 - z^2)}{mq} = \frac{\omega^2}{2q}(A^2 - z^2)$$

Substituindo pelos valores numéricos obtemos:

$$h = \frac{20^2}{2 \times 9.81} (0.04^2 - 0.0245^2) = 2.04cm$$

3.12 Questão 12

Pela conservação de energia, a derivada da energia do oscilador com respeito ao tempo deve ser nula:

$$\frac{dE}{dt} = 0$$

Utilizando a expressão dada no enunciado:

$$\frac{d(\dot{q}^2 + \omega^2 q)}{dt} = 0 \implies \frac{d\dot{q}^2}{dt} + \omega^2 \frac{dq^2}{dt} = 0$$

Utilizando a regra do produto para derivar \dot{q}^2 :

$$\frac{d\dot{q}^2}{dt} = \dot{q}\frac{d\dot{q}}{dt} + \frac{d\dot{q}}{dt}\dot{q} = 2\dot{q}\ddot{q}$$

Fazendo o mesmo para q^2 encontramos:

$$\frac{dq^2}{dt} = 2q\dot{q}$$

Voltando para a expressão inicial:

$$\frac{d\dot{q}^2}{dt} + \omega^2 \frac{dq^2}{dt} = 0 \implies 2\dot{q}\ddot{q} + 2\omega^2 q\dot{q} = 0$$

Simplificando a expressão obtemos:

$$\ddot{q} + \omega^2 q = 0$$

Que é a EDO que representa o movimento de um sistema que oscila com frequência ω .

3.13 Questão 13

Como a bola rola sem deslizar, duas forças agem sobre ela, a força peso e o atrito. Escrevendo a EDO relativa a $\ddot{\theta}$ (Iremos considerar que o centro de massa da esfera está localizado a uma distância $R - r \approx R$ do ponto C):

$$m(R-r)\ddot{\theta} = -mg\sin\theta + F_{at}$$

Fazendo as aproximações $R - r \approx R$ e $\sin \theta \approx \theta$:

$$mR\ddot{\theta} + mg\theta - F_{at} = 0$$

Chamando de φ o ângulo correspondente à rotação da bola em torno do próprio eixo, o torque que o atrito exerce na esfera é:

$$\tau = I\ddot{\varphi} = -F_{at}r$$

Podemos relacionar o ângulo φ com o ângulo θ a partir de um vínculo geométrico. A bola, ao ser rotacinada pelo ângulo φ , percorre um arco $s=r\varphi$, que deve ser igual ao seu deslocamento na calha, que vale $s'=R\theta$, portanto:

$$r\varphi = R\theta \implies \ddot{\varphi} = \frac{R}{r}\ddot{\theta}$$

Substituindo na expessão do atrito:

$$I\frac{R}{r}\ddot{\theta} = -F_{at}r$$

O momento de inércia de uma esfera homogênea de massa m vale $I=2mr^2/5$, portanto:

$$\frac{2mr^2}{5}\frac{R}{r}\ddot{\theta} = -F_{at}r \implies -F_{at} = \frac{2mR}{5}\ddot{\theta}$$

Substituindo na EDO:

$$mR\ddot{\theta} + mg\theta + \frac{2mR}{5}\ddot{\theta} = 0$$

Reescrevendo-a na forma usual e simplificando:

$$mR\ddot{\theta}\left(1 + \frac{2}{5}\right) + mg\theta = 0$$
$$\ddot{\theta} + \frac{5g}{7R}\theta = 0$$

Por fim, encontramos a frequência angular a partir da EDO, que vale:

$$\omega = \sqrt{\frac{5}{7} \frac{g}{R}}$$

3.14 Questão 14

a) O momento de inércia de um arco circular de raio T girando em torno de seu eixo central vale:

$$I_a = MR^2$$

Como o aro está girando a uma distância R do seu eixo, pelo teorema dos eixos paralelos o novo momento de inércia vale:

$$I_a' = MR^2 + MR^2 = 2MR^2$$

Escrevendo a equação do movimento para o corpo:

$$I_a'\ddot{\theta} \approx -Mg\underbrace{r_{cm}}_{=R}\theta$$

$$2MR^2\ddot{\theta} + MgR\theta = 0$$

$$\ddot{\theta} + \frac{g}{2R}\theta = 0$$

Como $R = \frac{l}{2}$ a EDO anterior se torna:

$$\ddot{\theta} + \frac{g}{l}\theta = 0$$

E o período de oscilação vale:

$$\tau_a = 2\pi \sqrt{\frac{l}{g}}$$

Que é idêntido ao perído de oscilação do pêndulo de comprimento l, portanto:

$$\tau_a = \tau$$

b) Como vimos no item a) do exercício 6 o momento de inércia do disco em torno dos eixos x e y vale:

$$I_b = \frac{MR^2}{2}$$

Pelo teorema dos eixos paralelos, o momento de inércia do disco girando à uma distância ${\cal R}$ vale:

$$I_b' = \frac{3MR^2}{2}$$

A EDO é similar à EDO do item anterior basta fazer a substituição $I'_a \to I'_b$ e realizar cálculos semelhantes, encontrado assim:

$$\ddot{\theta} + \frac{4}{3} \frac{g}{l} \theta = 0$$

Ou seja, o período vale:

$$\tau_b = 2\pi \sqrt{\frac{3}{4} \frac{l}{g}}$$

Comparando com o período do pêndulo:

$$\tau_b = \frac{\sqrt{3}}{2}\tau$$

3.15 Questão 15

a) O torque agindo sobre o pêndulo de massa M é:

$$\tau = Mgs\sin\left(\theta\right) \approx Mgs\theta$$

Escrevendo a equação do movimento para o corpo:

$$I\ddot{\theta} = \tau \approx Mgs\theta \implies \ddot{\theta} + \frac{Mgs}{I}\theta = 0$$

O período T de oscilação é:

$$T = \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{\frac{Mgs}{I}}} = \frac{2\pi}{\sqrt{g}} \sqrt{\frac{I}{Ms}}$$

O momento de inércia do corpo pode ser obtido a partir do teorema dos eixos paralelos. O momento de inércia de uma barra homogênea de comprimento l girando em torno de seu centro vale:

$$I_0 = M \frac{l^2}{12}$$

Para uma barra girando a uma distância s do seu centro o momento de inércia vale:

$$I = I_0 + Ms^2 = M\left(\frac{l^2}{12} + s^2\right)$$

Substituindo na expressão para o período:

$$T = \frac{2\pi}{\sqrt{g}} \sqrt{\frac{I}{Ms}} = \frac{2\pi}{\sqrt{g}} \sqrt{\frac{M(\frac{l^2}{12} + s^2)}{Ms}} = \frac{2\pi}{\sqrt{g}} \sqrt{\frac{l^2}{12s} + s}$$

O período é mínimo quando a expressão dentro da raiz é mínima, derivando a expressão com respeito a s e igualando a zero:

$$\frac{d(\sqrt{\frac{l^2}{12s} + s})}{ds} = 0 \implies -\frac{l^2}{12s^2} + 1 = 0$$

Resolvendo a equação anterior o valor encontrado para s tal que o período é mínimo é:

$$s = \frac{l}{\sqrt{12}} = \frac{l}{2\sqrt{3}}$$

b) Substituindo o resultado encontrado na fórmula para o período:

$$T = 2\pi \sqrt{\frac{I}{Mgs}} = 2\pi \sqrt{\frac{\frac{Ml^2}{12} + Ms^2}{Mgs}} = 2\pi \sqrt{\frac{\frac{l^2}{12} + \frac{l^2}{12}}{\frac{l}{2\sqrt{3}}g}}$$

Simplificando a expressão anterior:

$$T = 2\pi \sqrt{\frac{l}{\sqrt{3}g}}$$

3.16 Questão 16

Primeiramente iremos encontrar o momento de inércia de uma barra homogênea de comprimento l que gira em torna de sua extremidade. Pela definição de momento de inércia:

$$I = \int x^2 dm$$

Onde x representa a distância em relação à origem, que está localizada na extremidade da barra. Sendo λ a densidade linear da barra, a massa de um trecho infinitesimal vale $dm = \lambda dx$. Substituindo na expressão anterior e integrando de 0 até l:

$$I_{barra} = \lambda \int_0^l x^2 dx$$

$$I_{barra} = \lambda \left[\frac{x^3}{3} \right] \Big|_0^l = \lambda \frac{l^2}{3} = \lambda \frac{l^3}{3} = \frac{ml^2}{3}$$

Resolvendo a integral:

O sistema é constituído de duas barras homogênea de comprimento l presas pela sua extremidade, o momento de inércia total do sistema vale:

$$I = 2 \times I_{barra} = \frac{2}{3}ml^2$$

Agora devemos encontrar o centro de massa do sistema. Analisando a figura:

O centro de massa está localizado a uma altura igual à metade da altura do triângulo, portanto sua distância em relação à origem vale:

$$r_{cm} = \frac{l\sqrt{3}}{4}$$

Relacionando o torque com a componente radial da força peso do sistema:

$$I\ddot{\theta} = \tau = -mgr_{cm}\sin\theta \approx -mgr_{cm}\theta$$

$$\ddot{\theta} + \frac{mgr_{cm}}{I}\theta = 0 \implies \omega^2 = \frac{mgr_{cm}}{I}$$

Calculando o período:

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{I}{mgr_{cm}}}$$

Substituindo I e r_{cm} pelos valores encontrados para o momento de inércia e o centro de massa, respectivamente:

$$T = 2\pi \sqrt{\frac{\frac{2}{3}ml^2}{mg\frac{l\sqrt{3}}{2}}} = \frac{4\pi}{3} \sqrt{\frac{\sqrt{3}l}{g}}$$

3.17 Questão 17

A expressão do deslocamento do oscilador é da forma:

$$x(t) = A\cos(\omega t + \phi) = A\cos(\frac{2\pi}{\tau}t + \phi)$$

Para um quarto de período, isto é $t=\tau/4$, o deslocamento vale:

$$x(\tau/4) = A\cos\left(\frac{\pi}{2} + \phi\right)$$

Como $\cos\left(\frac{\pi}{2} + \phi\right) = -\sin\phi$:

$$x(\tau/4) = -A\sin\phi$$

E a velocidade vale:

$$\dot{x}(\tau/4) = -\omega A \sin\left(\frac{\pi}{2} + \phi\right)$$

Como $\sin\left(\frac{\pi}{2} + \phi\right) = \cos\phi$

$$\dot{x}(\tau/4) = -\omega A \sin\left(\frac{\pi}{2} + \phi\right) = -\omega A \sin\phi$$

De acordo com o enunciado a energia cinética é 3 vezes maior que a energia potencial, portanto:

$$\frac{m\dot{x}^2}{2} = 3\frac{kx^2}{2}$$

$$\frac{\overbrace{m\omega^2}^k A^2 \cos^2 \phi}{2} = 3 \frac{kA^2 \sin^2 \phi}{2}$$

Simplificando:

$$\tan^2 \phi = \frac{1}{3} \implies \phi = \tan^{-1} \left(\pm \frac{\sqrt{3}}{3} \right)$$

Cujas soluções são:

$$\phi=\pm\frac{\pi}{6}$$

e

$$\phi = \pi \pm \frac{\pi}{6}$$

3.18 Questão 18

Esse exercício pode ser resolvido a partir da obtenção de uma constante elástica equivalente k_{eq} para cada um dos sistemas. Para o primeiro caso, no qual as molas estão em paralelo, a distensão é a mesma para ambas as molas, portanto:

$$x = x_1 = x_2$$

x representa a distensão da mola equivalente. Além disso as duas molas irão exercer uma força restauradora sob o corpo na mesma direção, que deve ser:

$$F_{eq} = F_1 + F_2 \implies kx = k_1x_1 + k_2x_2$$

Figura 5: Molas em paralelo

Montando um sistema:

$$\begin{cases} x = x_1 = x_2 \\ kx = k_1 x_1 + k_2 x_2 \end{cases}$$

Resolvendo para k:

$$kx = k_1x_1 + k_2x_2 = k_1x + k_2x \implies kx = (k_1 + k_2)x \implies k = k_1 + k_2$$

Ou seja, para uma assosiação de molas em paralelo a a constante elástica equivalente é a soma entre cada uma das constantes elásticas. Já para o caso das molas

em série, a distensão equivalente x vale:

$$x = x_1 + x_2$$

Além disso, pelo equilíbrio na junção entre as duas molas temos que:

$$F_1 = F_2 \implies k_1 x_1 = k_2 x_2$$

E na extremide da segunda mola, que é conectada ao corpo, a força restauradora da segunda mola deve ser igual a força da mola equivalente:

$$F_{eq} = F_2 \implies kx = k_2x_2$$

Figura 6: Molas em série

Montando um sistema com as equações anteriores:

$$\begin{cases} x = x_1 + x_2 \\ kx = k_1 x_1 = k_2 x_2 \end{cases}$$

A partir da segunda equação encontramos as razões:

$$\frac{x}{x_1} = \frac{k_1}{k}, \quad \frac{x_2}{x_1} = \frac{k_1}{k_2}$$

Dividindo a primeira equação pode x_1 :

$$\frac{x}{x_1} = 1 + \frac{x_2}{x_1} \implies \frac{k_1}{k} = 1 + \frac{k_1}{k_2}$$

Resolvendo para k:

$$k = \frac{k_1 k_2}{k_1 + k_2}$$

a) Este sistema é constituído por duas molas em paralelo, como a frequência angular de um sistema massa mola é $\omega = \sqrt{k/m}$ basta substituir k pela constante elástica equivalente das molas k_1 e k_2 em paralelo:

$$\omega_a = \sqrt{\frac{k_{eq}}{m}} = \sqrt{\frac{k_1 + k_2}{m}}$$

b) Nesse caso basta substituir k pela constante equivalente das molas em série:

$$\omega_b = \sqrt{\frac{k_{eq}}{m}} = \sqrt{\frac{k_1 k_2}{m(k_1 + k_2)}}$$

3.19 Questão 19

O torque devido a força peso da massa m é:

$$\tau_P = -Mgl\sin\theta \approx -Mgl\theta$$

Já o torque devido a força restauradora exercida pela mola vale:

$$\tau_M = -k \underbrace{x}_{=\frac{l}{2}\sin\theta} \frac{l}{2} \approx -k \frac{l^2}{4}\theta$$

Escrevendo a equação do movimento para o pêndulo:

$$I\ddot{\theta} = -\left(Mgl + \frac{kl^2}{4}\right)\theta$$

$$\ddot{\theta} + \left(\frac{Mgl + \frac{kl^2}{4}}{I}\right)\theta = 0$$

A massa m gira em torno do ponto de suspensão a uma distância l, portanto o momento de inércia do corpo vale:

$$I = ml^2$$

A frequência de oscilação do pêndulo é então:

$$\omega^{2} = \left(\frac{Mgl + \frac{kl^{2}}{4}}{I}\right) = \left(\frac{Mgl + \frac{kl^{2}}{4}}{ml^{2}}\right)$$

$$\omega = \sqrt{\frac{g}{l} + \frac{k}{4m}}$$

3.20 Questão 20

Ao abaixar o lado esquerdo da coluna de líquido por uma altura z será erguida uma massa $m = \rho z$ do fluído, cujo CM estará localizado a uma altura $z_{cm} = z(1 + \cos \varphi)/2$ (Lembre-se que toda a massa M se locomove com velocidade \dot{z}):

$$E = \frac{M\dot{z}}{2} + \rho Az z \frac{(1 + \cos\varphi)}{2} \implies E = \frac{M\dot{z}^2}{2} + \rho gz^2 \frac{(1 + \cos\varphi)}{2}$$

Pela conservação de energia basta fazer:

$$\frac{d(\frac{M\dot{z}^2}{2} + \rho gAz^2\frac{(1+\cos\varphi)}{2})}{dt} = 0 \implies \frac{M}{2}2\dot{z}\ddot{z} + \rho gA2\dot{z}z\frac{(1+\cos\varphi)}{2} = 0$$

Simplificando:

$$\ddot{z} + \frac{\rho A g (1 + \cos \varphi)}{M} z = 0$$

Logo, a frequência angular é:

$$\omega = \sqrt{\frac{\rho A g (1 + \cos \varphi)}{M}}$$

Veja que para $\varphi = 0$ o resultado se reduz àquele obtido na seção 3.3.d.

3.21 Questão 21

a) Utilizando a aproximação parabólica para o potencial U, a constante equivalente k pode ser obtida a partir de sua segunda derivada em torno do ponto de equilíbrio a:

$$k = \frac{d^2U}{dr^2} \bigg|_{r=a}$$

Derivando a expressão da energia potencial:

$$U(r) = -Ke^2 \frac{1}{r} + B \frac{1}{r^{10}}$$

$$\frac{dU}{dr} = Ke^2 \frac{1}{r^2} - 10B \frac{1}{r^{11}}$$

$$\frac{d^2U}{dr^2} = -2Ke^2\frac{1}{r^3} + 110B\frac{1}{r^12}$$

Em torno do equilíbrio a energia potencial é mínima, portanto a derivada da energia potencial deve ser zero:

$$\frac{dU}{dr} = 0 \implies Ke^2 \frac{1}{r^2} - 10B \frac{1}{r^1 1} = 0 \implies B = \frac{Ke^2 r^9}{10}$$

Substituindo B na expressão da segunda derivada de U:

$$k = \frac{d^2U}{dr^2} = -2Ke^2\frac{1}{r^3} + 110B\frac{1}{r^{12}} = \frac{d^2U}{dr^2} = -2Ke^2\frac{1}{r^3} + 110\frac{Ke^2r^9}{10}\frac{1}{r^{12}} = \frac{9Ke^2}{r^3}$$

Substituindo pelos valores numéricos:

$$k = \frac{9 \times 9 \times 10^9 \times (1.66 \times 10^{-19})^2}{(1.28 \times 10^{-10})^3} \approx 989N/m$$

b) A frequência angular de moléculas diatômicas é:

$$\omega = \sqrt{\frac{k}{\mu}} = \sqrt{\frac{k(m_2 + m_1)}{m_1 m_2}}$$

Onde μ representa a massa reduzida. A massa do cloro é de 17 unidade de massa atômica, e a do hidrogênio é de uma unidade de massa atômica, inserindo os valores dados no enunciado na expressão anterior a frequência encontrada é:

$$f = \nu = \frac{\omega}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{k(m_2 + m_1)}{m_1 m_2}} = \frac{1}{2\pi} \sqrt{\frac{989(1 \times 1.66 \times 10^{-27} + 17 \times 1.66 \times 10^{-27})}{4 \times 1 \times 1.66^2 \times 10^{-27 \times 2}}}$$

$$\nu = 1.24 \times 10^{14} s^{-1}$$

3.22 Questão 22

a) A partir da fórmula de Euler:

$$e^{ix} = \cos x + i \sin x$$

é possível obter a relação:

$$\cos x = \frac{(e^{ix} + e^{-ix})}{2}$$

Utilizando a fórmula anterior para expressar $\cos(a+b)$ em termos das exponenciais:

$$\cos(a+b) = \frac{(e^{i(a+b)} + e^{-i(a+b)})}{2} = \frac{(e^{ia}e^{ib} + e^{-ia}e^{-ib})}{2}$$

Utilizando a fórmula de Euler:

$$= \frac{[(\cos a + i \sin a)(\cos b + i \sin b) + (\cos (-a) + i \sin (-a))(\cos (-b) + i \sin (-b))]}{2}$$

Como $\cos(-x) = \cos x e \sin(-x) = -\sin x$:

$$\cos(a+b) = \frac{\left[(\cos a + i\sin a)(\cos b + i\sin b) + (\cos a - i\sin a)(\cos b - i\sin b)\right]}{2}$$

$$=\frac{\cos a \cos b + i \cos a \sin b + i \sin a \cos b - \sin a \sin b}{2} + \frac{\cos a \cos b - i \cos a \sin b - i \sin a \cos b - \sin a \sin b}{2} \Longrightarrow$$

Finalmente:

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

Para $\sin(a+b)$ o processo é análogo. Pelo fórmula de Euler temos que:

$$\sin x = \frac{(e^{ix} - e^{-ix})}{2} \implies \sin(a+b) = \frac{e^{ia}e^{ib} - e^{-ia}e^{-ib}}{2i}$$

$$\sin(a+b) = \frac{\left[(\cos a + i\sin a)(\cos b + i\sin b) - (\cos a - i\sin a)(\cos b - i\sin b)\right]}{2i}$$

$$=\frac{\cos a \cos b + i \cos a \sin b + i \sin a \cos b - \sin a \sin b}{2i} + \frac{-\cos a \cos b + i \cos a \sin b + i \sin a \cos b + \sin a \sin b}{2i} \Longrightarrow$$

$$\sin(a+b) = \sin a \cos b - \cos a \sin b$$

b)

$$\cos(3a) = \frac{(e^{(ia)3}) + e^{(-ia)3})}{2} = \frac{[(\cos a + i\sin a)^3 + (\cos(-a) + i\sin(-a))^3]}{2}$$

$$= \frac{\cos^3 a + i(3\sin a\cos^2 a - \sin^3 a) - 3\sin^2 a\cos a}{2} + \frac{\cos^3 a - i(3\sin a\cos^2 a - \sin^3 a) - 3\sin^2 a\cos a}{2}$$

$$\sin(3a) = \cos^3 a - 3\sin^2 a\cos a$$

Para $\sin(3a)$:

$$\sin(3a) = \frac{(e^{(ia)3}) - e^{(-ia)3})}{2i} = \frac{[(\cos a + i\sin a)^3 - (\cos(-a) + i\sin(-a))^3]}{2i}$$

$$= \frac{\cos^3 a + i(3\sin a\cos^2 a - \sin^3 a) - 3\sin^2 a\cos a}{2i} + \frac{\cos^3 a - i(3\sin a\cos^2 a - \sin^3 a) - 3\sin^2 a\cos a}{2i}$$

$$\sin(3a) = 3\cos^2 a\sin^a - \sin^3 a$$

3.23 Questão 23

a) Pela fórmula de Euler:

$$\cos x = \frac{e^{ix} + e^{-ix}}{2} \implies \cos(ix) = \frac{e^{i(ix)} + e^{-i(ix)}}{2} = \frac{e^x + e^{-x}}{2}$$
$$\cos(ix) = \cosh x = \frac{(e^x + e^{-x})}{2}$$

Para $\sin(ix)$:

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i} \implies \sin(ix) = \frac{e^{i(ix)} - e^{-i(ix)}}{2} = \frac{e^x - e^{-x}}{2i}$$

▶ Solucionário Curso de Fisica Básica II

Como $\frac{1}{i} = -i$:

$$\sin(ix) = i\sinh x = i\frac{(e^x - e^{-x})}{2}$$

b) Pelas definições de $\sinh x = \cosh x$:

$$\cosh^{2} x - \sinh^{2} x = \frac{(e^{x} + e^{-x})^{2}}{4} - \frac{(e^{x} - e^{-x})^{2}}{4}$$
$$\cosh^{2} x - \sinh^{2} x = \frac{e^{2ix}}{4} + \frac{1}{2} + \frac{e^{-2ix}}{4} - \frac{e^{2ix}}{4} + \frac{1}{2} - \frac{e^{-2ix}}{4}$$
$$\cosh^{2} x - \sinh^{2} x = 1$$

c)

$$\sinh(2x) = \frac{((e^x)^2 + (e^{-x})^2)}{2}$$

A expressão no numerador representa uma diferença entre quadrados e pode ser reescrita como:

$$\sinh(2x) = \frac{(e^x + e^{-x})(e^x - e^{-x})}{2}$$

Pelas definições de $\sinh x = \cosh x$:

$$\sinh(2x) = 2\sinh x \cosh x$$

3.24 Questão 24

As equações dos movimentos harmônicos simples são:

$$\begin{cases} x_1(t) = \cos\left(\omega t - \frac{\pi}{6}\right) \\ x_2(t) = \sin\left(\omega t\right) = \cos\left(\omega t - \frac{\pi}{2}\right) \end{cases}$$

Identificando cada ampliude e fase:

$$A_1 = 1$$
, $\phi_1 = -\frac{\pi}{6}$, $A_2 = 1$, $\phi_2 = -\frac{\pi}{2}$

A amplitude do movimento resultante é:

$$A^{2} = A_{1}^{2} + A_{2}^{2} + 2A_{1}A_{2}\cos(\phi_{2} - \phi_{1}) = 1^{2} + 1^{2} + 2 \times 1 \times 1\cos(\frac{\pi}{2} - (-\frac{\pi}{6})) = 3 \implies A = \sqrt{3}$$

A fase do movimento resultante é $\phi = \beta + \phi_1$ com β dado por:

$$\sin \beta = \frac{A_2}{A} \sin (\phi_2 - \phi_1) = \frac{1}{\sqrt{3}} \sin (-\frac{\pi}{2} + \frac{\pi}{6}) = -\frac{1}{2} \implies \beta = -\frac{\pi}{3}$$

A fase do movimento resultanto é então:

$$\phi = \beta + \phi_1 = -\frac{\pi}{6} - \frac{pi}{6} = -\frac{\pi}{3}$$

E a equação do MHS é:

$$x = x_1 + x_1 = \sqrt{3}\cos\left(\omega t - \frac{\pi}{3}\right)$$

Figura 7: Vetores girantes

4 Capítulo 4

4.1 Questão 1

A primeira parte do exercício consiste em verificar que a expressão $x=te^{-\frac{\gamma}{2}t}$ satistfaz a expressão:

$$\ddot{x} + \gamma \dot{x} + \omega_0^2 x = 0 \tag{4.1.1}$$

A derivada de x em relação ao tempo é:

$$\frac{dx}{dt} = \frac{d(te^{-\frac{\gamma}{2}t})}{dt} = t\frac{d(e^{-\frac{\gamma}{2}t})}{dt} + \frac{d(t)}{dt}e^{-\frac{\gamma}{2}t} = e^{-\frac{\gamma}{2}t}(1 - \frac{\gamma}{2}t)$$

Derivando novamente:

$$\frac{d^2x}{dt^2} = \frac{d\dot{x}}{dt} = \frac{d(e^{-\frac{\gamma}{2}t} - \frac{\gamma}{2}te^{-\frac{\gamma}{2}}))}{dt} = \frac{d(e^{-\frac{\gamma}{2}t})}{dt} - \frac{\gamma}{2}\underbrace{\frac{d(te^{-\frac{\gamma}{2}t})}{dt}}_{-\dot{x}} = -\frac{\gamma}{2}e^{-\frac{\gamma}{2}t} - \frac{\gamma}{2}e^{-\frac{\gamma}{2}t}(1 - \frac{\gamma}{2}t)$$

$$\ddot{x} = e^{-\frac{\gamma}{2}t} (\frac{\gamma^2}{4}t - \gamma)$$

Assim, temos:

$$\begin{cases} x = te^{-\frac{\gamma}{2}t} \\ \dot{x} = e^{-\frac{\gamma}{2}t} (1 - \frac{\gamma}{2}t) \\ \ddot{x} = e^{-\frac{\gamma}{2}t} (\frac{\gamma^2}{4}t - \gamma) \end{cases}$$

Substituindo na (4.1.1) e tomando $\omega_0 = \frac{\gamma}{2}$:

$$e^{-\frac{\gamma}{2}t}(\frac{\gamma^2}{4}t - \gamma) + \gamma e^{-\frac{\gamma}{2}t}(1 - \frac{\gamma}{2}t) + \frac{\gamma^2}{4}e^{-\frac{\gamma}{2}t} = 0$$

$$\frac{\gamma^2}{4}te^{-\frac{\gamma}{2}t} - \gamma e^{-\frac{\gamma}{2}t} + \gamma e^{-\frac{\gamma}{2}t} - \frac{\gamma^2}{2}te^{-\frac{\gamma}{2}t} + \frac{\gamma^2}{4} = 0 \implies 0 = 0$$

Ou seja, a expressão $x=te^{-\frac{\gamma}{2}t}$ satisfaz a (4.1.1). A segunda parte do enunciado consiste em mostrar que a expressão:

$$x(t) = \frac{F_0}{2m\omega_0} t \sin(\omega_0 t) \tag{4.1.2}$$

satisfaz a equação diferencial:

$$\ddot{x} + \omega_0^2 x = \frac{F_0}{m} \cos\left(\underbrace{\omega}_{=\omega_0} t\right) \tag{4.1.3}$$

e as condições iniciais x(0) = 0 e $\dot{x}(0) = 0$. Derivando a (4.1.2) duas vezes:

$$\frac{dx}{dt} = \frac{F_0}{2m\omega_0} \frac{d(t\sin(\omega_0 t))}{dt} = \frac{F_0}{2m\omega_0} (\sin(\omega_0 t) + t\omega_0 \cos(\omega_0 t))$$

$$\frac{d^2x}{dt^2} = \frac{F_0}{2m\omega_0} \frac{\left(\sin\left(\omega_0 t\right) + \omega_0 t\cos\left(\omega_0 t\right)\right)}{dt} = \frac{F_0}{2m\omega_0} \left(2\omega_0 \cos\left(\omega_0 t\right) - \omega_0^2 t\sin\left(\omega_0 t\right)\right)$$

Substituindo na (4.1.3):

$$\frac{F_0}{2m\omega_0}(2\omega_0\cos(\omega_0t)-\omega_0^2t\sin(\omega_0t))+\omega_0^2\frac{F_0}{2m\omega_0}t\sin(\omega_0t)=\frac{F_0}{m}\cos(\omega_0t)$$

$$\frac{F_0}{m}\cos\omega_0 t - \omega_0^2 \frac{F_0}{2m\omega_0} t \sin(\omega_0 t) + \omega_0^2 \frac{F_0}{2m\omega_0} \sin(\omega_0 t) = \frac{F_0}{m} \cos(\omega_0 t)$$

$$\implies \cos(\omega_0 t) = \cos(\omega_0 t)$$

A (4.1.2) também satisfaz ambas as condições iniciais:

$$x(0) = \frac{F_0}{2m\omega_0} \cdot 0 \cdot \sin(\omega_0 \cdot 0) = 0$$

e:

$$\dot{x}(0) = \frac{F_0}{2m\omega_0} (\sin(\omega_0.0) + 0.\omega_0 \cos(\omega_0 t)) = 0$$

4.2 Questão 2

A dissipação de energia é dada por:

$$\Delta E = -\gamma \langle E \rangle \Delta t$$

A energia cinética média do oscilador é igual a metade da energia mecânica média, tomando $\Delta t = 1s$:

$$\Delta E = -2\gamma \langle E_c \rangle$$

De acordo com o enunciado o decréscimo de energia a cada segundo é de 4 vezes a energia cinética, portanto:

$$\Delta E = -2\gamma \langle E_c \rangle = -4 \langle E_c \rangle \implies \gamma = 2s^{-1}$$

A partir do fator de mérito é possível relacionar o fator de amortecimento γ e a frequência natural ω_0 do sistema:

$$Q = \frac{\omega_0}{\gamma} \implies \omega_0 = Q\gamma = 10\gamma$$

Ou seja, $\frac{\gamma}{2}<\omega_0$ e o amortecimento é subcrítico, e a solução para x é:

$$x(t) = e^{-\frac{\gamma}{2}t} [A\cos(\omega t) + B\sin(\omega t)]$$
(4.2.1)

Aplicando a primeira condição inicial x(0) = 0:

$$x(0) = 0 = A \implies A = 0$$

Derivando x e utilizando a segunda condição inicial é possível encontrar a constante B:

$$\dot{x}(t) = -\frac{\gamma}{2}x(t) + e^{-\frac{\gamma}{2}t}[-\omega A\sin(\omega t) + B\cos(\omega t)]$$

$$\dot{x}(0) = 5 = \omega B \implies B = \frac{5}{\omega}$$

O valor de ω é dado por:

$$\omega = \sqrt{\omega_0^2 - \frac{\gamma^2}{4}}$$

Como $\omega_0 = 10\gamma$:

$$\omega = \sqrt{100\gamma^2 - \frac{\gamma^2}{4}} \approx 10\gamma = 20s^{-1}$$

Assim, a constante B vale:

$$B = \frac{5}{\omega} = 0.25$$

Substituindo os valores encontrados para A, B, γ e ω na (4.2.1):

$$x(t) \approx e^{-\frac{2}{2}t} [0 \times \cos(20t) + 0.25 \times \sin(20t)]$$

$$x(t) \approx 0.25e^{-t}\sin(20t)$$

4.3 Questão 3

a) A solução geral para o caso do amortecimento crítico é:

$$x(t) = Ae^{-\frac{\gamma}{2}t}\cos(\omega t + \phi)$$

Para o caso de amortecimento fraco podemos considerar que a amplitude em um instante t é dada pelo fator:

$$A(t) = Ae^{-\frac{\gamma}{2}t}$$

Sendo t_2 e t_1 dois instantes correspondentes a dois máximos consecutivos A_2 e A_1 , com $t_2 > t_1$ e $A_2 < A_1$, a razão r entre os dois máximos é:

$$r = \frac{A_2}{A_1} = \frac{Ae^{-\frac{\gamma}{2}t_2}}{Ae^{-\frac{\gamma}{2}t_1}} = e^{-\frac{\gamma}{2}(t_2 - t_1)} \implies \ln r = -\frac{\gamma\tau}{2}$$

O decremento logarítimico vale:

$$\delta = |\ln r| = \frac{\gamma \tau}{2}$$

b) Relacionando a razão r=1/2 com a constante de amortecimento e o intervalo de tempo $t=n\tau$ (A relação do item anterior para a razão se mantem válida para outros intervalos de tempo, e não necessariamente só para máximos consecutivos):

$$\ln r = n \frac{\gamma \tau}{2} \implies \frac{\gamma \tau}{2} = \frac{\ln(1/2)}{n}$$

Como $\delta = \frac{\gamma \tau}{2}$:

$$\delta = \frac{\ln\left(\frac{1}{2}\right)}{n} \approx \frac{0.69}{n}$$

4.4 Questão 4

a) A solução geral para um oscilador criticamente amortecido é:

$$x(t) = e^{-\frac{\gamma}{2}t}(a+bt)$$

De acordo com o enunciado o oscilador parte do equilíbrio, aplicando essa condição inicial é possível obter a:

$$x(0) = 0 = e^{0}(a + b \times 0) \implies a = 0$$

A solução geral se reduz a:

$$x(t) = bte^{-\frac{\gamma}{2}t}$$

Derivando a expressão e aplicando a segunda condição inicial:

$$\dot{x}(t) = -\frac{\gamma}{2} \underbrace{x(t)}_{=bte^{-\frac{\gamma}{2}t}} + be^{-\frac{\gamma}{2}t}$$

$$\dot{x}(0) = v_0 \implies b = v_0$$

A solução geral pode ser reescrita como:

$$x(t) = v_0 t e^{-\frac{\gamma}{2}t}$$

É possível encontrar o valor de t para o qual o deslocamento é máximo derivando a expressão anterior e igualando-a zero:

$$\dot{x}(t) = -\frac{\gamma}{2}v_0te^{-\frac{\gamma}{2}t} + v_0e^{-\frac{\gamma}{2}} = 0 \implies \gamma = 2t$$

De acordo com o enunciado o oscilador atinge o deslocamento máximo quando t=1s, portanto:

$$\gamma = 2s^{-1}$$

Esse deslocamento máximo vale 3.68m e ocorre quando t = 1s, portanto:

$$x(t) = v_0 t e^{-\frac{\gamma}{2}t}$$

$$x(1) = 3.68 = v_0 \times 1 \times e^{-\frac{2}{2} \times 1} \implies v_0 = 3.68e$$

$$v_0 \approx 10m/s$$

b) Nesse segundo caso as novas condições iniciais são x(0) = 2m e $\dot{x}(0) = 10m/s$ (As duas constantes a e b são diferentes daquelas obtidas no item anterior e precisam ser calculadas novamente). A partir do deslocamento inicial é possível encontrar a:

$$x(t) = e^{-\frac{\gamma}{2}t}(a+bt)$$

$$x(0) = 2 = e^{0}(a + b \times 0) \implies a = 2$$

Já a constante b pode ser encontrada a partir da segunda condição inicial:

$$\dot{x}(t) = -\frac{\gamma}{2}x(t) + be^{-\frac{\gamma}{2}t}$$

$$\dot{x}(0) = 10 = -\overbrace{\frac{\gamma}{2}}^{=2} \underbrace{x(0)}_{=2} + be^{-\frac{\gamma}{2} \times 0} \implies b = 12$$

O deslocamento x é então:

$$x(t) = (2 + 12t)e^{-t}$$

4.5 Questão 5

Solução 1: A equação do movimento é:

$$m\ddot{z} = -\rho \dot{z} \implies \ddot{z} + \gamma \dot{z} = 0$$

Supondo que a solução é um complexo $z_i = z_0 e^{\omega t}$:

$$\dot{z}_i = \omega z, \quad \ddot{z}_i = \omega^2 z = 0$$

Substituindo na EDO encontramos a equação característica:

$$\underbrace{\omega^2 z}_{\ddot{z}_i} + \gamma \underbrace{\omega z}_{\dot{z}_i} = 0$$

$$\omega^2 + \gamma \omega = 0 \implies \omega_1 = -\gamma, \quad \omega_2 = 0$$

A solução geral é da forma:

$$z(t) = Ae^{\omega_1 t} + Be^{\omega_2 t}$$

Como $\omega_1 = -\gamma \ e \ \omega_2 = 0$:

$$z(t) = Ae^{-\gamma} + B$$

Onde A e B são as constantes arbitrárias que satisfazem as condições iniciais, que são $z(0) = z_0$ e $\dot{z}(0) = v_0$, portanto:

$$\begin{cases} z(0) = A + B = z_0 \\ \dot{z}_0 = -\gamma A = v_0 \end{cases}$$

A partir da segunda equação encontramos a constante A:

$$A = -\frac{v_0}{\gamma}$$

E a partir da primeira equação é possível encontrar B:

$$B = z_0 - A = z_0 + \frac{v_0}{\gamma}$$

A solução geral é:

$$z(t) = -\frac{v_0}{\gamma}e^{-\gamma t} + z_0 - \frac{v_0}{\gamma} = z_0 + \frac{v_0}{\gamma}(1 - e^{-\gamma t})$$

Solução 2: Escrevendo a equação do movimento para o corpo:

$$m\ddot{z} = -\rho \dot{z} \implies \ddot{z} = -\gamma \dot{z}$$

Ao introduzir uma nova variável $q = \dot{z}$ a expressão anterior se torna:

$$\dot{q} = \frac{dq}{dt} = -\gamma q$$

A EDO anterior é uma EDO separável. Separando as variáveis e integrando:

$$\frac{dq}{q} = -\gamma dt \implies \int_{q_0}^{q} \frac{dq}{q} = -\gamma \int_{0}^{t} dt \implies \ln\left(\frac{q}{q_0}\right) = -\gamma t$$
$$q(t) = q_0 e^{-\gamma t}$$

De acordo com o enunciado a velocidade inicial é v_0 , a partir dai é possível encontrar a constante q_0 :

$$\dot{z}(0) = q(0) = q_0 e^{-\gamma \times 0} = v_0 \implies q_0 = v_0$$

$$q(t) = v_0 e^{-\gamma t}$$

Como $\dot{z} = q$:

$$\frac{dz}{dt} = q \implies dz = qdt = v_0 e^{-\gamma t} dt \implies \int_{z_0}^z dz = v_0 \int_0^t e^{-\gamma t} dt$$

Integrando:

$$z - z_0 = -\frac{v_0}{\gamma} (e^{-\gamma t} - e^0)$$

Simplificando a expressão anterior obtemos o deslocamento z:

$$z(t) = z_0 + \frac{v_0}{\gamma} (1 - e^{-\gamma t})$$

4.6 Questão 6

A equação do movimento para esta partícula é:

$$m\ddot{z} = -\rho \dot{z} + mq \implies \ddot{z} + \gamma \dot{z} = q$$

A solução geral da EDO é:

$$zt = z_h(t) + z_p(t)$$

A função $z_h(t)$ representa a solução da EDO homogênea correspondente, que foi encontrada no exercício anterior:

$$z_h(t) = Ae^{-\gamma t} + B$$

Como a expressão do lado direito da EDO é uma constante, espera-se que a solução particular seja da forma:

$$z_p(t) = Ct + D$$

Calculando suas respectivas derivadas e substituindo na EDO:

$$\dot{z}_p = C, \quad \ddot{z} = 0$$

$$\ddot{z} + \gamma \dot{z} = g \implies 0 + \gamma C = g \implies C = \frac{g}{\gamma} \implies z_p(t) = \frac{g}{\gamma} t + D$$

A solução geral é soma entre a solução particular e a solução homogênea, logo (O termo B+D obtido ao somar as duas expressões se mantém constante, por isso somente a constante B foi mantida na expressão):

$$z(t) = Ae^{-\gamma t} + B + \frac{g}{\gamma}t$$

As condições iniciais são $z(0) = z_0$ e $\dot{z}(0) = v_0$, portanto:

$$\begin{cases} A + B = z_0 \\ -\gamma A + \frac{g}{\gamma} = v_0 \end{cases}$$

A partir da segunda equação:

$$A = -\frac{v_0}{\gamma} + \frac{g}{\gamma^2}$$

Substituindo na primeira equação para encontrar B:

$$B = z_0 + \frac{v_0}{\gamma} - \frac{g}{\gamma^2}$$

Substituindo na expressão geral:

$$z(t) = Ae^{-\gamma t} + B + \frac{g}{\gamma}t = (-\frac{v_0}{\gamma} + \frac{g}{\gamma^2})e^{-\gamma t} + z_0 + \frac{v_0}{\gamma} - \frac{g}{\gamma^2} + \frac{g}{\gamma}t$$

Simplificando:

$$z(t) = z_0 + \left(\frac{v_0}{\gamma} - \frac{g}{\gamma^2}\right)(1 - e^{-\gamma t}) + \frac{g}{\gamma}t$$

4.7 Questão 7

A EDO correspondente ao movimento é:

$$m\ddot{x} + kx = F_0 \sin(\omega t)$$

$$\ddot{x} + \omega_0^2 x = \frac{F_0}{m} \sin{(\omega t)}$$

Que possui solução geral:

$$x(t) = x_h(t) + x_n(t)$$

A solução homogênea da EDO é:

$$x_h(t) = B\sin(\omega_0 t + \phi)$$

(Pois ela satisfaz $\ddot{x} + \omega_0^2 x = 0$). Supondo que a solução particular é da forma:

$$x_p = A\sin(\omega t)$$

Temos:

$$\ddot{x}_p = -\omega^2 A \sin\left(\omega t\right)$$

Substituindo na EDO:

$$\ddot{x} + \omega_0^2 kx = \frac{F_0}{m} \sin(\omega t) \implies -\omega^2 A \sin(\omega t) + \omega_0^2 A \sin(\omega t) = \frac{F_0}{m} \sin(\omega t)$$

Resolvendo para A:

$$A = \frac{F_0}{m(\omega_0^2 - \omega^2)}$$

Portanto:

$$x_p = \frac{F_0}{m(\omega_0^2 - \omega^2)} \sin(\omega t)$$

A solução geral é:

$$x = x_p + x_h = \frac{F_0}{m(\omega_0^2 - \omega^2)} \sin(\omega t) + B\sin(\omega_0 t + \phi)$$

B pode ser obtido a partir das condições iniciais:

$$\begin{cases} x(0) = B\sin(\phi) = 0\\ \frac{\omega F_0}{m(\omega_0^2 - \omega^2)}\cos\phi + \omega_0 B\cos\phi = 0 \end{cases}$$

Pela primeira equação:

$$\phi = 0$$

E pela segunda equação:

$$B = -\frac{\omega}{\omega_0} \frac{F_0}{m(\omega_0^2 - \omega^2)}$$

Assim, a solução é reescrita como:

$$x(t) = \frac{F_0}{m(\omega_0^2 - \omega^2)} \left(\sin(\omega t) - \frac{\omega}{\omega_0} \sin(\omega_0 t) \right)$$

4.8 Questão 8

A EDO correspondente ao movimento é:

$$\ddot{x} + \omega_0^2 x = \frac{F_0}{m} e^{-\beta t}$$

A solução da EDO homogênea correspondente é:

$$x_h = a\cos(\omega_0 t) + b\sin(\omega_0 t)$$

Como a expressão do lado direito da EDO é uma exponencial, iremos supor que a solução particular é da forma:

$$x_p = Ce^{-\beta t}$$

Onde C representa uma constante. Derivando a expressão duas vezes:

$$\ddot{x}_p = \beta^2 C e^{-\beta t}$$

Substituindo na EDO:

$$\beta^2 C e^{-\beta t} + C e^{-\beta t} = \frac{F_0}{m} e^{-\beta t}$$

Resolvendo para C:

$$C = \frac{F_0}{m(\omega_0^2 + \beta^2)}$$

A solução particular resulta em:

$$x_p = \frac{F_0}{m(\omega_0^2 + \beta^2)} e^{-\beta t}$$

E a solução geral:

$$x(t) = a\cos(\omega_0 t) + b\sin(\omega_0 t) + \frac{F_0}{m(\omega_0^2 + \beta^2)}e^{-\beta t}$$

Ajustando às condições inicias:

$$\begin{cases} x(0) = a + \frac{F_0}{m(\omega_0^2 + \beta^2)} = 0\\ \dot{x}(0) = -\beta \frac{F_0}{m(\omega_0^2 + \beta^2)} + \omega_0 b = 0 \end{cases}$$

A partir da primeira equação encontra-se a:

$$a = -\frac{F_0}{m(\omega_0^2 + \beta^2)}$$

E pela segunda equaçã obtém-se:

$$b = \frac{\beta}{\omega_0} \frac{F_0}{m(\omega_0^2 + \beta^2)}$$

A solução completa fica:

$$x(t) = \frac{F_0}{m(\omega_0^2 + \beta^2)} \left(e^{-\beta t} - \cos(\omega_0 t) + \frac{\beta}{\omega_0} \sin(\omega_0 t) \right)$$

4.9 Questão 9

Identificando as forças que agem sobre o bloco:

$$m\ddot{z} = -F_{at} - F_{el} - E + P$$

Sendo l_0 o comprimento rekaxada da mola, a o comprimento da aresta do bloco cúbico, ρ sua densidade e ρ_0 a densidade do fluido no qual o bloco está mergulhado, a expressão anterior se torna:

$$m\ddot{z} = -\rho \dot{z} - k(z - l_0) - \rho a^3 g + mg$$

Reescrevendo a EDO na forma usual:

$$\ddot{z} + \frac{\rho}{\rho a^3} \dot{z} + \frac{k}{m} z = g - \frac{\rho_0}{\rho} g + k l_0$$

A frequência natural do sistema é:

$$\omega_0 = \sqrt{\frac{k}{\rho a^3}} = \sqrt{\frac{40}{8}} \approx 2.23s^{-1}$$

E o fator de amortecimento γ vale:

$$\gamma = \frac{\rho}{m} = \frac{2}{8} = 0.25s^{-1}$$

Temos que $\gamma/2 < \omega_0$, portanto o movimento é subamortecido e a solução geral da EDO homogênea correspondente é da forma:

$$x_h = e^{-\frac{\gamma}{2}t}(a\cos(\omega t) + b\sin(\omega t))$$

Com ω :

$$\omega = \sqrt{\omega_0^2 - \frac{\gamma^2}{4}} = \sqrt{2.23^2 - \frac{0.25^2}{4}} \approx 2.23s^{-1}$$

Substituindo na solução homogênea:

$$x_h = e^{-0.125t} (a\cos(2.23t) + b\sin 2.23t)$$

Para encontrar a solução particular iremos supor que ela é da forma $x_p = C$, onde C representa uma constante, pois a expressão do lado direito da EDo também é constante. Substituindo na EDO:

$$\underbrace{\ddot{z}}_{=0} + \frac{\rho}{\rho a^3} \underbrace{\dot{z}}_{=0} + \frac{k}{m} \underbrace{\dot{z}}_{=0} = g - \frac{\rho_0}{\rho} g + k l_0$$

$$\frac{k}{m}C = g - \frac{\rho_0}{\rho}g + kl_0 \implies C = \frac{g}{\omega_0^2}(1 - \frac{\rho_0}{\rho}) + l_0$$

Substituindo pelos valores numéricos:

$$z_p = C = \frac{9.81}{2.23^2} \left(1 - \frac{1.25}{8}\right) + 0.5 = 2.15m$$

A solução geral é então:

$$z = z_h + z_p = e^{-0.125t} (a\cos(2.23t) + b\sin(2.23t) + 2.15t)$$

Com as constantes a e b a serem determinadas a partir das condições inicias. De acordo com o enunciado o bloco é solto a partir do repouso e a 1cm para baixo da posição de equilíbtio. A posição de equilíbrio está a 2.15m do teto, e é a mesma distância encontrada na solução particular, portanto a primeira condição inicial é z(0) = 2.15 + 0.01 = 2.16m:

$$z(0) = 2.16 = e^{-0.125 \times 0} (a\cos(2.23 \times 0) + b\sin 2.23 \times 0) + 2.15 \implies a = 0.01m$$

E pela segunda condição inicial $\dot{z}(0)=0$, pois o bloco parte do repouso. Derivando z(t) obtém-se:

$$\dot{z}(t) = -\frac{\gamma}{2}z(t) + e^{-\frac{\gamma}{2}t}(-\omega a\sin(\omega t) + \omega b\cos(\omega t))$$

$$\dot{z}(0) = -\frac{\gamma}{2}z(0) + \omega b \implies b - \frac{\dot{z}(0) + \frac{\gamma}{2}z(0)}{\omega}$$

$$b = 0.01 \times \frac{0.125}{2.23} = 0.01 \times 0.056$$

Substituindo as constantes encontradas na solução da EDO:

$$z = z_h + z_p = e^{-0.125t}(0.01\cos(2.23t) + 0.01 \times 0.056\sin(2.23t) + 2.15$$

Simplificando:

$$z(t) = 2.15 + 0.01e^{-0.125t}(\cos(2.23t) + 0.056\sin(2.23t)) (m)$$

4.10 Questão 10

a) A amplitude deste tipo de oscilação é dada por (Conferir seção 4.4-a):

$$A(\omega) = \frac{F_0}{m\sqrt{(\omega_0^2 - \omega^2)^2 + \gamma^2 \omega^2}}$$

Para que a amplitude seja máxima o termo dentro da raiz deve ser mínimo, portanto:

$$\frac{d(\omega_0^2 - \omega^2)^2 + \gamma^2 \omega^2}{d\omega}\bigg|_{\omega_{max}} = 0$$

Derivando:

$$-4\omega(\omega_0^2 - \omega^2) + 2\gamma^2\omega = 0 \implies \omega^2 = \omega_0^2 - \frac{\gamma^2}{2}$$

O valor de ω para o qual a amplitude é máxima é:

$$\omega_{max} = \sqrt{\omega_0^2 - \frac{\gamma^2}{2}}$$

Substituindo na expressão da amplitude encontramos:

$$A_{max} = \frac{F_0}{m\gamma\sqrt{\omega_0^2 - \frac{\gamma^2}{4}}}$$

b) O produto $A\omega$ vale:

$$A(\omega)\omega = \frac{F_0}{m} \sqrt{\frac{\omega^2}{(\omega_0^2 - \omega^2) - \gamma^2 \omega^2}}$$

Para que a amplitude $A\omega$ seja máxima o termo da raiz deve ser maximizado, portanto basta derivar e igualar à zero, assim como no item anterior:

$$\frac{d(\frac{\omega^2}{(\omega_0^2 - \omega^2) - \gamma^2 \omega^2})}{d\omega}\bigg|_{\omega_{max}} = 0$$

Derivando pela regra do quociente chegamos a:

$$2\omega[(\omega_0^2 - \omega^2)^2 + \gamma^2\omega^2] + \omega^2[-2\omega(\omega_0^2 - \omega^2) + 2\gamma^2\omega] = 0$$

Simplificando a expressão chegamos em:

$$2\omega^4 - 3\omega_0^2\omega^2 + \omega_0^4 = 0$$

Que é uma equação biquadrática. Resolvendo a equação obtém-se a raiz não-nula:

$$\omega_{max} = \omega_0$$

Substituindo na expressão da amplitude $A\omega$ encontra-se:

$$A\omega)_{max} = \frac{F_0}{\gamma m}$$

4.11 Questão 11

O ponto A no qual a mola está presa oscila obedecendo a seguinte expressão:

$$z_A = A\sin(\omega t)$$

Com A=5cm. Ou seja, o próprio movimento da mão da pessoa provoca uma distensão na mola. Além disso há a distensão z causada pelo movimento do bloco, deste modo a força restauradora exercida pela mola sobre o ponto a é:

$$F = k(z - A\sin(\omega t))$$

E a força total exercida sobre a extremidade A vale (A expressão seguinte é a resposta do item b):

$$F(t) = mg + k(z - A\sin\omega t)$$

A força resturadora exercida pela mola tem o mesmo módulo, mas direção contrário, portanto vale $F = k(A\sin(\omega t - z))$. Escrevendo a EDO para o bloco:

$$m\ddot{z} = mg + k(A\sin(\omega t - z))$$

$$\ddot{z} + \omega_0^2 z = \omega_0^2 \sin{(\omega t)}$$

A solução da EDO homogênea associada já é conhecida:

$$z_h = a\cos(\omega_0 t) + b\sin(\omega_0 t)$$

Para encontrar a solução particular iremos supor que ela é da forma:

$$z_p = C\sin\left(\omega t\right)$$

Substituindo na EDO:

$$-\omega^2 C \sin(\omega t) + \omega_0^2 C \sin(\omega t) = \omega_0^2 A$$

$$C = \frac{\omega_0^2}{\omega_0^2 - \omega^2} A$$

A solução geral é:

$$z = z_h + z_p = a\cos(\omega_0 t) + b\sin(\omega_0 t) + \frac{\omega_0^2}{\omega_0^2 - \omega^2} A\sin(\omega t)$$

A partir da primeira condição inicial z(0)=0 (O bloco está inicialmente em equilíbrio):

$$z(0) = a = 0$$

E pela segunda condição inicial $\dot{z}(0) = 0$ encontramos b:

$$\dot{z} = -a\omega\sin(\omega_0 t) + \omega_0 b\cos(\omega_0 t) + \omega \frac{\omega_0^2}{\omega_0^2 - \omega^2} A\sin\omega$$

$$\dot{z}(0) = 0 \implies \omega_0 b + \omega \frac{\omega_0^2}{\omega_0^2 - \omega^2} A = 0 \implies b = -\frac{\omega}{\omega_0} \frac{\omega_0^2}{\omega_0^2 - \omega^2} A$$

Substituindo o termo anterior e sua segunda derivada na solução:

$$z(t) = \frac{\omega_0^2}{\omega_0^2 - \omega^2} A\left(-\frac{\omega}{\omega_0} \sin(\omega_0 t) + \sin(\omega t)\right)$$

Tomando:

$$A' = \frac{\omega_0^2}{\omega_0^2 - \omega^2} A$$

A expressão anterior se torna:

$$z(t) = A' \left(-\frac{\omega}{\omega_0} \sin(\omega_0 t) + \sin(\omega t) \right)$$

A frequência natural vale:

$$\omega_0 = \sqrt{\frac{k}{m}} = \sqrt{\frac{80}{0.5}} \approx 12.65s^{-1}$$

Já a frequência da força de impulsão vale:

$$\omega = \frac{2\pi}{\tau} = \frac{2\pi}{1} \approx 6.28s^{-1}$$

Por fim, a constante A' fica:

$$A' = \frac{\omega_0^2}{\omega_0^2 - \omega^2} A = \frac{12.65^2}{12.65^2 - 6.28^2} \times 0.05 \approx 0.066m$$

4.12 Questão 12

A variação na amplitude do sistema ao longo do tempo não altera seu período, que só depende de ω , portanto ele é constante e vale:

$$\tau = \frac{2\pi}{\omega} = \frac{\pi}{5}s \approx 0.63s$$

Sendo A_i a amplitude do bloco no início do n-ésimo semiperíodo e A_{i+1} a amplitude após o n-enésimo semiperíodo, temos que pela conservação de energia mecânica:

$$\frac{kA_i^2}{2} = \frac{kA_{i+1}^2}{2} + \underbrace{\mu mg(A_i + A_{i+1})}_{W}$$

Onde W representa a energia dissipada devido ao atrito. A equação anterior é uma equação quadrática para A_{i+1} que tem como solução:

$$A_{i+1} = A_i - 2\frac{\mu mg}{k}$$

Ou seja,
a partir da equação anterior podemos encontrar a diferença entre duas amplitudes consecutivas:

$$\Delta A = A_i - A_{i+1} = 2\frac{\mu mg}{k}$$

Substituindo pelos valores numéricos:

$$\Delta A = 2 \times \frac{0.25 \times 1 \times 9.81}{100} \approx 4.9cm$$

A amplitude decresce por 4.9cm a cada semiperíodo, portanto o número de semiperíodos necessários para que o bloco pare é:¹

$$n = \frac{A}{\Delta A} = \frac{24.5}{4.9} = 5$$

4.13 Questão 13

A potência média é dada por:

$$\langle P \rangle = \langle F \dot{x} \rangle$$

$$\langle P \rangle = \langle F_0 \cos(\omega t)(-\omega a \sin \omega t + \omega b \cos(\omega t)) \rangle$$

$$\langle P \rangle = F_0 \langle (-\omega a \underbrace{\frac{1}{2} \sin 2\omega t}_{=\sin(\omega t)\cos(\omega t)} + \omega b \cos^2(\omega t)) \rangle$$

Como $\overline{\sin(2\omega t)} = 0$ e $\overline{\cos^{(\omega t)}} = 1/2$ a equação anterior se reduz a:

$$\langle P \rangle = F_0 \frac{\omega |b|}{2}$$

4.14 Questão 14

O raciocínio que deve ser desenvolvido neste exercício é o mesmo daquele apresentado na seção 4.6 (Oscilações acopladas). Como o sistema é idêntico as equação obtidas são as mesmas (Conferir eq. 4.6.11-4.6.13) para os corpos 1 e 2, respectivamente:

$$x_1(t) = A_1 \cos(\omega_0 t + \phi_1) + A_2 \cos(\omega_2 t + \phi_2)$$

$$x_2(t) = A_1 \cos(\omega_0 t + \phi_1) - A_2 \cos(\omega_2 t + \phi_2)$$

Pelas condições iniciais $x_1(0) = 0$ e $x_2(0) = 0$:

 $^{^1\}mathrm{Refer\hat{e}ncia:}$ https://www.ncsu.edu/per/Articles/MarchewkaAbbott&Beichner.pdf

$$A_1 \cos \phi_1 + A_2 \cos \phi_2 = 0$$
$$A_1 \cos \phi_1 - A_2 \cos \phi_2 = 0$$

A partir da equação anterior concluímos que $\phi_1 = \pi/2$ e $\phi_2 = \pi/2$. As equações do deslocamento se tornam:

$$x_1(t) = A_1 \sin(\omega_0 t) + A_2 \sin(\omega_2 t)$$

$$x_2(t) = A_1 \sin(\omega_0 t) - A_2 \sin(\omega_2 t)$$

Derivando:

$$\dot{x}_1(t) = \omega_0 A_1 \cos(\omega_0 t) + \omega_2 A_2 \cos(\omega_2 t)$$
$$\dot{x}_2(t) = \omega_0 A_1 \cos(\omega_0 t) - \omega_2 A_2 \cos(\omega_2 t)$$

A partir das condições iniciais relativas às velocidades obtemos as equações:

$$\dot{x}_1(0) = \omega_0 A_1 + \omega_2 A_2 = 0$$
$$\dot{x}_2(0) = \omega_0 A_1 - \omega_2 A_2 = v$$

Somando as duas equações obtemos:

$$A_1 = \frac{v}{2\omega_0}$$

E substraindo a segunda equação da primeira chegamos em:

$$A_2 = -\frac{v}{2\omega_2}$$

Portanto as equações do deslocamento são reescritas como:

$$x_1(t) = \frac{v}{2\omega_0} \sin(\omega_0 t) - \frac{v}{2\omega_2} \sin(\omega_2 t)$$
$$x_2(t) = \frac{v}{2\omega_0} \sin(\omega_0 t) + \frac{v}{2\omega_2} \sin(\omega_2 t)$$

A frequência natural ω_0 é a frequência do pêndulo de comprimeto l (Conferir equação 4.6.1):

$$\omega_0 = \sqrt{\frac{g}{l}} = \sqrt{\frac{9.81}{0.5}} \approx 4.43s^{-1}$$

Já a frequência ω_2 é dada por (Conferir equações 4.6.3 e 4.6.10):

$$\omega_2 = \sqrt{\omega_0^2 + 2\underbrace{K}_{=k/m}} = \sqrt{4.43^2 + 2 \times \frac{25}{0.25}} \approx 14.8s^{-1}$$

E como v = 0.1 m/s as expressões para o deslocamento se tornam (em cm):

$$x_1(t) = 1.13\sin(4.43t) - 0.34\sin(14.8t)$$
$$x_2(t) = 1.13\sin(4.43t) + 0.34\sin(14.8t)$$

4.15 Questão 15

O raciocínio aqui empregado é similar àquele desenvolvido no exercício anterior. A equação do movimento para o primeiro corpo fica:

$$m\ddot{x}_1 = -kx_1 + K(x_1 - x_2) \implies \ddot{x}_1 + \omega_1^2 x_1 - \frac{K}{m}(x_1 - x_2) = 0$$

Com $\omega_0^2 = k/m$. Analogamente para o segundo corpo (Lembre-se que o módulo da força exercida pela mola central é a mesma para ambos os corpos, contudo a direção é contrária):

$$m\ddot{x}_2 = -kx_2 - K(x_1 - x_2) \implies \ddot{x}_2 + \omega_1^2 x_2 + K(x_1 - x_2) = 0$$

Temos portanto duas EDOs:

$$\begin{cases} I)\ddot{x}_1 + \omega_1^2 x_1 - \frac{K}{m}(x_1 - x_2) = 0\\ II)\ddot{x}_2 + \omega_1^2 x_2 + \frac{K}{m}(x_1 - x_2) = 0 \end{cases}$$

Fazendo I + II:

$$(\ddot{x}_1 + \ddot{x}_2) + \omega_1^2(x_1 + x_2) = 0$$

Introduzindo uma variável auxiliar $q_1 = (x_1 + x_2)/2$ a EDO anterior pode ser reescrita como:

$$\ddot{q}_1 + \omega_1^2 q_1 = 0$$

Introduzindo uma nova variável auxiliar $q_2 = (x_2 - x_1)/2$ a diferença II - I entre as EDOs nos leva a:

$$\ddot{q}_2 + (\omega_1^2 + k)q_2 = 0$$

As EDOs apresentam soluções iguais a:

$$q_1(t) = A_1 \cos(\omega_1 t + \phi_1)$$

$$q_2(t) = A_2 \cos(\omega_2 t + \phi_2)$$

Como $x_1 = q_2 + q_1$ e $x_2 = q_2 - q_1$, as expressões para o deslocamento podem ser escritas como:

$$x_1 = A_1 \cos(\omega_1 t + \phi_1) + A_2 \cos(\omega_2 t + \phi_2)$$

$$x_2 = A_1 \cos(\omega_1 t + \phi_1) - A_2 \cos(\omega_2 t + \phi_2)$$

As condições iniciais para o deslocamento são $x_1(0)=0$ e $x_2(0)=0$, que levam a:

$$A_1 \cos \phi_1 + A_2 \cos \phi_2 = 0$$
$$A_1 \cos \phi_1 - A_2 \cos \phi_2 = 0$$

A partir do sistema anterior obtemos $\phi_1 = \pi/2$ e $\phi_2 = \pi/2$. As equações para o deslocamento são reescritas como:

$$x_1(t) = A_1 \sin(\omega_1 t) + A_2 \sin(\omega_2 t)$$

$$x_2(t) = A_1 \sin(\omega_1 t) - A_2 \sin(\omega_2 t)$$

As outras duas condições iniciais são $\dot{x}_1 = 0$ e $\dot{x}_2 = v$. Derivando as expressões anteriores para obter $\dot{x}_1(t)$ e $\dot{x}_2(t)$ chegamos em:

$$\begin{cases} I)\omega_1 A_1 + \omega_2 A_2 = 0\\ II)\omega_1 A_1 - \omega_2 A_2 = v \end{cases}$$

Fazendo I + II encontramos:

$$A_1 = \frac{v}{2\omega_1}$$

e fazendo II - I encontramos:

$$A_2 = -\frac{v}{2\omega_2}$$

Assim, as equações para o deslocamento são:

$$x_1(t) = \frac{v}{2\omega_1} \sin(\omega_1 t) - \frac{v}{2\omega_2} \sin(\omega_2 t)$$
$$x_2(t) = \frac{v}{2\omega_1} \sin(\omega_1 t) + \frac{v}{2\omega_2} \sin(\omega_2 t)$$

Com:

$$\omega_1^2 = \frac{k}{m}, \quad \omega_2^2 = \omega_1^2 + 2\frac{K}{m}$$

4.16 Questão 16

O raciocínio deste exercício é análogo àquele desenvolvido no exercício 14 e na seção 4.6 do livro, a diferença é que a segunda partícula é submetida a uma força de impulsão da forma $F(t) = F_0 \cos(\omega t)$, ou seja, a primeira EDO é idêntica, mas a segunda contém um termo adicional F(t) (Conferir equação 4.6.4):

$$\ddot{x}_1 + \omega_0^2 x_1 - k(x_2 - x_1) = 0$$
$$\ddot{x}_2 + \omega_0^2 x_2 + k(x_2 - x_1) = \frac{F_0}{m} cos(\omega_0 t)$$

Introduzindo as mesmas variáveis auxiliares q_1 e q_2 dos exercícios anteriores obtemos:

$$\ddot{q}_1 + \omega_0^2 q_1 = \frac{F_0}{2m} \cos(\omega t)$$
$$\ddot{q}_2 + \omega_1^2 = -\frac{F_0}{2m} \cos(\omega t)$$

Com $\omega_0^2 = g/l$ e $\omega_1^2 = \omega_0^2 + 2k/m$. Supondo que a solução particular da para a primeira EDO é da forma $q_1(t) = C_1 \cos(\omega t)$, basta substituir na EDO e encontrar C_1 :

$$-\omega^{2}C_{1}\cos(\omega t) + \omega_{0}^{2}C_{1}\cos(\omega t) = \frac{F_{0}}{2m}\cos(\omega t)$$

Obtemos:

$$C_1 = \frac{F_0}{2m(\omega_0^2 - \omega^2)} \implies q_1(t) = \frac{F_0}{2m(\omega_0^2 - \omega^2)} \cos(\omega t)$$

Supondo que a solução particular da segunda EDO é $q_2 = C_2 \cos(\omega t)$ e passando pelo mesmo processo o valor encrontado para C_2 é:

$$C_2 = -\frac{F_0}{2m(\omega_1^2 - \omega^2)} \implies q_2(t) = -\frac{F_0}{2m(\omega_1^2 - \omega^2)}\cos(\omega t)$$

Resolvendo para x_1 e x_2 obtemos:

$$x_1(t) = \frac{F_0}{2m} \left(\frac{1}{\omega_0^2 - \omega^2} - \frac{1}{\omega_1^2 - \omega^2} \right) \cos(\omega t)$$
$$x_2(t) = \frac{F_0}{2m} \left(\frac{1}{\omega_0^2 - \omega^2} + \frac{1}{\omega_1^2 - \omega^2} \right) \cos(\omega t)$$

Simplificando as expressões anteriores:

$$x_{1} = \frac{F_{0}}{m} \frac{k}{(\omega_{0}^{2} - \omega^{2})(\omega_{1}^{2} - \omega^{2})} \cos(\omega t)$$
$$x_{2} = \frac{F_{0}}{2m} \frac{(\omega_{0}^{2} + \omega_{1}^{2} - 2\omega^{2})}{(\omega_{0}^{2} - \omega^{2})(\omega_{1}^{2} - \omega^{2})} \cos(\omega t)$$

4.17 Questão 17

a) A distensão da mola a esquerda vale $x_1 - x_2$, já a distensão da segunda mola vale $x_2 - x_3$, escrevendo a equação do movimento para os corpos:

$$M\ddot{x}_1 = -k(x_1 - x_2)$$

$$m\ddot{x}_2 = -k(x_2 - x_3) + k(x_1 - x_2)$$

$$M\ddot{x}_3 = k(x_2 - x_3) = -k(x_3 - x_2)$$

O centro de massa do sistema é dado por:

$$x_{cm} = \frac{\sum m_i x_i}{\sum m_i} = \frac{Mx_1 + mx_2 + Mx_3}{2M + m}$$

Derivando:

$$\ddot{x}_{cm} = \frac{(M\ddot{x}_1 + m\ddot{x}_2 + M\ddot{x}_3)}{2M + m}$$

Substituindo pelas expressões encontradas nas equações do movimento:

$$\ddot{x}_{cm} = \frac{-k(x_1 - x_2) - k(x_2 - x_3) + k(x_1 - x_2) + k(x_2 - x_3)}{2M + m}$$

$$\ddot{x}_{cm} = 0$$

b) Introduzindo as variáveis K=k/M e K'=k/k, o sistema anterior pode ser reescrito como:

$$\begin{cases} I)\ddot{x}_1 + K(x_1 - x_2) = 0\\ II)\ddot{x}_2 + K'(x_2 - x_3) - K'(x_1 - x_2) = 0\\ III)\ddot{x}_3 + K(x_3 - x_2) = 0 \end{cases}$$

Fazendo II - I:

$$\ddot{x}_2 - \ddot{x}_1 + K'(x_2 - x_3 - K'(x_1 - x_2) - L(x_1 - x_2) = 0$$

Introduzindo as variáveis $\xi=x_2-x_1$ e $\eta=x_3-x_2$ a EDO anterior é reescrita como:

$$\ddot{\xi} + (K + K')\xi = K'\eta$$

Fazendo III - II e utilizando a mesma notação obtemos:

$$\ddot{x}_3 + K(x_3 - x_2) - \ddot{x}_2 + K'(x_2 - x_3) - K'(x_1 - x_2) = 0$$

$$\ddot{\eta} + (K + K')\eta = K'\xi$$

Temos portanto um sistema de duas EDOs:

$$\begin{cases} I)\ddot{\xi} + (K + K')\eta = K'\eta \\ II)\ddot{\eta} + (K + K')\eta = K'\xi \end{cases}$$

c) Agora, iremos introduzir novas coordenadas $q_1 = (\xi + \eta)/3$ e $q_2 = (\xi - \eta)/2$. A partir de II + I chegamos na EDO:

$$\ddot{\xi} + \ddot{\eta} + (K + K')(\xi + \eta) = K'(\eta + \xi)$$

Resolvendo, chegamos na EDO:

$$\ddot{q}_1 + Kq_1 = 0$$

E por II - I encontramos:

$$\ddot{\xi} - \ddot{\eta} + (K + K')(\xi - \eta) = K'(\eta - \xi)$$

$$\ddot{q}_2 + (K + 2K')q_2 = 0$$

Assim, as duas EDO desacopladas são:

$$\ddot{q}_1 + Kq_1 = 0$$
$$\ddot{q}_2 + (K + 2K')q_2 = 0$$

A frequência da primeira EDO corresponde à primeira autofrequência do sistema, que vale:

$$\omega_1^2 = K = \frac{k}{M}$$

Já a segunda autofrequência vale:

$$\omega_2^2 = K + 2K' = k\left(\frac{1}{M} + \frac{2}{m}\right)$$

d) Calculando as a razão entre as autofrequência e fazendo a substituição M=16u e m=12u, onde u representa a unidade de massa atômica:

$$r = \frac{\omega_2}{\omega_1} = \sqrt{k\left(\frac{1}{M} + \frac{2}{m}\right)\frac{k}{M}} = \sqrt{\frac{\frac{1}{16} + \frac{2}{12}}{\frac{1}{16}}}$$

Resolvendo:

$$\boxed{\frac{\omega_2}{\omega_1} = \sqrt{\frac{11}{3}}}$$

4.18 Questão 18

a) A distensão da mola superior vale z_1 , já a distensão da mola inferior vale $z_2 - z_1$. As equações do movimento ficam:

$$m\ddot{z}_1 = -kz_1 + k(z_2 - z_1) \implies \ddot{z}_1 = \frac{k}{m}(z_2 - 2z_1)$$

$$\ddot{z}_2 = \frac{k}{m}(z_1 - z_2)$$

b e c) Supondo que a solução seja uma combinação linear entre z_1 e z_2 na forma $q = \alpha z_1 + \beta z_2$, para que a equação de movimento para q se reduza à equação do

MHS é necessário que:

$$\ddot{q} = -\omega^2 q$$

Como $q = \alpha z_1 + \beta z_2$, vem:

$$\ddot{q} = -\omega^2(\alpha z_1 + \beta z_2) = -\omega^2 \alpha z_1 - \omega^2 \beta z_2$$

O termo \ddot{q} é obtido ao derivar q duas vezes:

$$\ddot{q} = \alpha \ddot{z}_1 + \beta \ddot{z}_2$$

Substituindo pelas expressões obtidas no item a:

$$\ddot{q} = \alpha \frac{k}{m} (z_2 - 2z_1) + \beta \frac{k}{m} (z_1 - z_2) = z_1 k(\beta - 2\alpha) + z_2(\alpha - \beta)$$

Substituindo na equação do movimento de q:

$$z_1k(\beta - 2\alpha) + z_2(\alpha - \beta) = -\omega^2 \alpha z_1 - \omega^2 \beta z_2$$

Os coeficiente de z_1 do lado direito devem se igualar aos coeficientes de z_1 do lado esquerdo, o mesmo para z_2 , a partir dai obtemos o sistema:

$$\begin{cases} I)\beta - 2\alpha = -\frac{\omega^2}{k}\alpha\\ II)\alpha - \beta = -\frac{\omega^2}{k}\beta \end{cases}$$

Manipulando a primeira equação para obter β :

$$\beta = \alpha \left(2 - \frac{\omega^2}{k} \right) \tag{4.18.1}$$

E pela equação II:

$$\alpha = \beta \left(1 - \frac{\omega^2}{k} \right) \tag{4.18.2}$$

Multiplicando a (4.18.1) pela (4.18.2) as variáveis β e α se cancelam e chegamos em:

$$\left(1 - \frac{\omega^2}{k}\right) \left(2 - \frac{\omega^2}{k}\right) = 1 \implies \left(\frac{\omega^2}{k}\right)^2 - 3\frac{\omega^2}{k} + 1 = 0$$

Que é uma equação biquadrática, tomando $y = \omega^2/k$ a equação se torna:

$$y^2 - 3y + 1 = 0$$

Com raízes $y_1=(3-\sqrt{5})/2$ e $y_2=(3+\sqrt{5})/2$, assim, obtemos as frequências:

$$\omega_1^2 = \frac{k}{2}(3 - \sqrt{5})$$

$$\omega_2^2 = \frac{k}{2}(3 + \sqrt{5})$$

Para encontrar as constantes iremos tomar $\alpha=1,$ assim, a partir da (4.18.1) obtemos:

$$\beta_1 = \frac{1}{2}(\sqrt{5} - 1), \quad \beta_2 = -\frac{1}{2}(\sqrt{5} + 1)$$

Substituindo na expressão $q = \alpha z_1 + \beta z_2$:

$$q_1 = z_1 + \frac{1}{2}(\sqrt{5} - 1)z_2$$

$$q_2 = z_2 - \frac{1}{2}(\sqrt{5} + 1)z_2$$

5 Capítulo 5

Obs: A notação utilizada para a frequência será a letra f, e não ν , para que não haja confusão com a notação utilizada para a velocidade v.

5.1 Questão 1

Pelos dados fornecidos no enunciado podemos obter três características da corda. A amplitude A=0.03m, frequência f=5Hz e densidade linear $\mu=\frac{m}{l}=\frac{2kg}{20m}=0.1kg/m$.

a) A velocidade de propagação v é encontrada a partir da tensão T na corda e da densidade linear μ :

$$v = \sqrt{\frac{T}{\mu}} = \sqrt{\frac{10}{0.1}} = 10\frac{m}{s}$$

O comprimento de onda λ pode ser obtido a partir da velocidade de propagação e do período $T=\frac{1}{f}$:

$$\lambda = vT = \frac{v}{f} = \frac{10}{5} = 2m$$

b) A equação geral de uma onda harmônica progressiva é:

$$y(x,t) = A\cos(kx - \omega t + \delta)$$

Utilizando os valores obtidos anteriormente iremos encontrar o número de onda k e a frequência angular ω . O número de onda pode ser obtido a partir do comprimento de onda:

$$k = \frac{2\pi}{\lambda} = \frac{2\pi}{2} = \pi$$

E a frequêcia angular pode ser obtido a partir do número de onda e da velocidade ou da frequência:

$$\omega = kv = 10\pi$$

ou,

$$\omega = 2\pi f = 10\pi$$

Por fim iremos encontrar a fase δ a partir da condição inicial dada. O deslocamento inicial é de 1.5cm na extremidade x=0m e no instante inicial y=0s, portanto:

$$y(0,0) = 0.015 \implies y(0,0) = A\cos(k \times 0 - \omega \times 0 + \delta) = 0.03\cos\delta = 0.015$$

$$\cos \delta = \frac{1}{2} \implies \delta = \frac{\pi}{3}$$

Logo, a equação que descreve essa onda é:

$$y(x,t) = 0.03\cos\left(\pi x - 10\pi t + \frac{\pi}{3}\right)$$

c) A intensidade da uma onda harmônica progressiva é dada por:

$$I = \frac{1}{2}\mu v\omega^2 A^2$$

Substituindo pelos valores encontrados ao longo do exercício:

$$I = \frac{1}{2} \times 0.1 \times 10 \times (10\pi)^2 (0.03)^2 = 0.44W$$

5.2 Questão 2

Durante os 0, 5s iniciais o pulso percorre uma distância $x = vt = 10 \times 0, 5 = 5m$ (A velocidade de propagação é a mesma do exercício anterior v = 10m/s). Ou seja, para t = 0, 5s o pulso possui a seguinte forma:

Durante o intervalo t=0,5 e t=1,5s o pulso percore uma distância $x=10\times(1,5-0,5)=10m$. Ou seja, o pulso da figura anterior se desloca dez metros para a direita e tem sua amplitude diminuida até se tornar nula na origem:

a) Entre os instantes t=1,5s e t=1,7s a corda percorre $x=10\times 0, 2=2m,$ ou seja, o pulso anterior se desloca dois metros para a direita:

b) Entre t=1,7s e t=2,6s o pulso se desloca $x=10\times(2,6-1,7)=9m$ para a direita. Contudo, parte do pulso é refletida com amplitude de sinal oposto. Como a extremidade da corda está presa em x=20m, a fração do pulso em x>20-9=11 é refletido. Deste modo poderiamos representar o pulso refletido e o pulso não refletido da seguinte maneira:

Fazendo a superposição entre o pulso encontramos a seguinte forma:

5.3 Questão 3

Na situação inicial, na qual o bloco não está mergulhado, a tensão é igual ao peso do bloco, assim a velocidade de propagação é:

$$v = \sqrt{\frac{T}{\mu}} = \sqrt{\frac{mg}{\mu}} \implies$$

$$T = mg = \mu v^2 \tag{5.3.1}$$

Na segunda situação o empuxo também age sobre o bloco. O volume que está submerso na água é $V_s=\frac{2}{3}V$, sendo V o volume total do bloco. Sendo ρ_0 a densidade da água a nova tensão na corda é:

$$T' = P - E = mg - \frac{2}{3}\rho_0 Vg$$

A nova velocidade de propagação v' vale 95.5% da anterior, assim:

$$v' = 0.955v = \sqrt{\frac{T'}{\mu}} \implies T' = \mu v'^2$$

$$T' = mg - \frac{2}{3}\rho_0 Vg = \mu (0.955)^2 v^2$$
(5.3.2)

Dividindo a (5.3.2) pela (5.3.1):

$$\frac{T'}{T} = \frac{mg - \frac{2}{3}\rho_0 Vg}{mg} = \frac{\mu(0.955)^2 v^2}{\mu v^2}$$

Simplificando e escrevendo a massa m do bloco em termos de sua densidade ρ e volume V:

$$\frac{\rho - \frac{2}{3}\rho_0}{\rho} \approx 0.912$$

Manipulando a equação anterior para encontrar a densidade relativa à água, que é a razão $\frac{\rho}{\rho_0}$ obtemos:

$$\frac{\rho}{\rho_0} = 7.6$$

5.4 Questão 4

- a) A velocidade de propagação é:
- ▶ Solucionário Curso de Fisica Básica II

$$v = \sqrt{\frac{T}{\mu}}$$

Onde μ é constante e representa a densidade linear da corda. Derivando com respeito a T e relacionando a derivada com a variação percentual (Fazendo que $\Delta v \approx dv$ e que $\Delta T \approx dT$):

$$\frac{dv}{dT} = \frac{1}{2\sqrt{\mu T}} \approx \frac{\Delta v}{\Delta T} \implies \Delta v = \frac{1}{2} \frac{\Delta T}{\sqrt{\mu T}}$$

Dividindo a expressão anterior por v:

$$\boxed{\frac{\Delta v}{v} = \frac{1}{2} \frac{\frac{\Delta T}{\sqrt{\mu T}}}{\sqrt{\frac{T}{\mu}}} = \frac{1}{2} \frac{\Delta T}{T}}$$

b) Como a intensidade máxima dos batimentos se repete a cada 0.5s, o periodo associado a esses batimentos é $\Delta t = 0.5s$, e se refere a onda moduladora do sistema. A frequência Δf associada é então:

$$\Delta f = \frac{1}{\Delta t} = \frac{1}{0.5} = 2Hz$$

Que além de ser a frequência da onda moduladora também é a diferença entre as frequências das duas ondas.

A velocidade de propagação da onda é $v=\lambda f$, portanto a variação Δv de velocidade corresponde a:

$$\Delta v = \lambda \Delta f \implies \frac{\Delta v}{v} = \frac{\Delta f}{f}$$

Relacionando com a variação percentual da tensão:

$$\frac{\Delta v}{v} = \frac{1}{2} \frac{\Delta T}{T} \implies \frac{\Delta T}{T} = 2 \frac{\Delta v}{v} = 2 \frac{\Delta f}{f}$$

Substituindo pelos valores encontrados:

$$\frac{\Delta T}{T} = 2\frac{\Delta f}{f} = \frac{2}{440} \approx 0.91\%$$

5.5 Questão 5

A velocidade de fase pode ser escrita como:

$$v_{\varphi} = \frac{\omega}{k}$$

E de acordo com o enunciado, a velocidade de fase nas ondas é:

$$v_{\varphi} = \sqrt{\frac{g\lambda}{2\pi}} = \sqrt{\frac{g}{k}} = \frac{\omega}{k}$$

A frequência angular é então:

$$\omega = \sqrt{qk}$$

A velocidade de grupo é a derivada da frequência angular com respeito ao número de onda:

$$v_g = \frac{d\omega}{dk} = \frac{d(\sqrt{gk})}{dk} = \frac{1}{2}\sqrt{\frac{g}{k}}$$

Comparando com a velocidade de fase é fácil ver que:

$$\boxed{v_g = \frac{1}{2}v_\varphi}$$

5.6 Questão 6

a) A amplitude da onda resultante pode ser obtida a partir de:

$$A^2 = A_1^2 + A_2^2 + 2A_1A_2\cos\Delta\phi$$

Com $A_1 = A = 2mm$ e $A_2 = 2A = 4mm$ e $\Delta \phi$ representa a defasagem entre as ondas. A primeira onda é cossenoidal e possui fase $\phi_1 = \frac{\pi}{6}$, as segunda onda é senoidal de fase 0, portanto na representação como cossenóide sua fase vale 1/2 (Mais detalhadamente, a expressão da onda é $y_2 = 2A\sin(\omega t - kx)$, como $\sin \theta = -\sin \theta$ e $\cos(\theta + \pi/2) = -\sin \theta$ a expressão para a segunda onda fica $y_2 = 2A\cos(kx - \omega t + \pi/2)$). Substituindo os valores numéricos na fórmula:

$$A = \sqrt{2^2 + 4^2 + 2 \times 2 \times 4 \cos\left(\frac{\pi}{2} - \frac{\pi}{3}\right)} = 5.29m = 5.29 \times 10^{-3}m$$

A fase da onda resultante pode ser obtida a partir de (Conferir seção 3.5 do livro):

$$\phi = \phi_1 + \beta$$

Com,

$$\sin \beta = \frac{A_2}{A} \sin \phi_2 - \phi_1$$

$$\sin \beta = \frac{4}{5.29} \sin \frac{\pi}{2} - \frac{\pi}{6} \implies \beta \approx 0.714 rad$$

$$\phi = \frac{\pi}{6} + 0.714 \approx 1.24 rad$$

A expressão da onda fica:

$$y = 5.29 \times 10^{-3} \cos(kx - \omega t + 1.24)$$

A frequência angular vale $\omega = 2\pi f = 2\pi \times 100 \approx 628$.

A área da seão transversal da corda vale $A = \frac{d^2}{4}\pi = 0.0025\pi cm^2$, e sua densidade $\rho = 8g/cm^3$, portanto sua densidade linear vale $\mu = A\rho$, e velocidade de propagação da onda é:

$$v = \sqrt{\frac{T}{\mu}} = \sqrt{\frac{T}{A\rho}} = \sqrt{\frac{500}{(0.01^2)/4 \times \pi \times 8000}} \approx 282.1 m/s$$

Como $\omega = kv$:

$$k = \frac{\omega}{v} = \frac{628}{282.1} \approx 2.23 m^{-1}$$

Por fim, encontramos a expressão da onda resultante:

$$y = 5.29 \times 10^{-3} \cos(2.23x - 628t + 1.24)$$

b) A equação da intensidade da onda é:

$$I = \frac{1}{2}\mu v\omega^2 A^2$$

Substituindo pelos valores numéricos obtidos:

$$I = \frac{1}{2} (8000 \times \frac{0.001^2}{4} \pi) \times 282.1 \times 628^2 \times (5.29 \times 10^{-3})^2 \approx 9.8W$$

c) A expressão para a intensidade resultante da onda é $I = I_1 + I_2 + 2\sqrt{I_1I_2}\cos\Delta\phi$. Fazendo a diferença de fase $\Delta\phi$ assumir os valores 0 e π obtemos o valor das intensidades máximas e mínimas, respectivamente. O valor da intensidade da primeira onda é:

$$I_1 = \frac{1}{2}\mu v\omega^2 A^2$$

Já para a segunda onda:

$$I_2 = \frac{1}{2}\mu v\omega^2 (2A)^2 = 4I_1$$

Substituindo na expressão da intensidade resultando, para $\Delta \phi = 0$:

$$I_{max} = I_1 + 4I_1 + 2\sqrt{4I_1^2} = 9I_1$$

Fazendo o mesmo para obter o mínimo:

$$I_{min} = I_1 + 4I_1 - 2\sqrt{4I_1^2} = I_1$$

Ou seja, a razão entre as intensidades vale:

$$r = \frac{I_{max}}{I_{min}} = 9$$

5.7 Questão 7

a) A velocidade de propagação da onda na corda é:

$$v = \sqrt{\frac{T}{\mu}} = \frac{80}{0.5 \times 10^{-3}} = 400 \frac{m}{s}$$

O comprimento de onda pode ser obtido a partir de:

$$\lambda = \frac{v}{f} = \frac{400}{660} \approx 0.6$$

Como a corda oscila no primeiro modo normal de vibração o comprimento da onda estacionário vale o dobro do comprimento da corda $\lambda=2l$, portanto o comprimento da corda é:

$$l = \frac{\lambda}{2} = 0.3m$$

b) Nessa nova situação a porção da corda que vibra possui comprimento l'. Adotando o mesmo procedimento do exercício anterior podemos encontrar o novo comprimento de onda a partir da frequência de vibração e da velocidade de propagação:

$$\lambda' = \frac{v}{f} = \frac{400}{880} = 0.455m$$

O novo comprimento é:

$$l' = \frac{\lambda'}{2} = 0.227m$$

A razão entre os comprimentos é:

$$\frac{l'}{l} = \frac{0.227}{0.3} \approx 75\% = \frac{3}{4}$$

5.8 Questão 8

É possível descrever os modos normais de vibração a aprtir da seguinte equação (Conferir seção 5.7):

$$y(x,t) = A(x)\cos(\omega t + \delta) \tag{5.8.1}$$

Além disso, a função A(x) deve ser solução da seguinte equação diferencial:

$$\frac{d^2A}{dx^2} + k^2A = 0$$

Ou seja, tem solução geral na forma:

$$A(x) = a\cos(kx) + b\sin(kx)$$

As condições iniciais nos permitirão encontrar a e b e por conseguinte k. A primeira condição de contorno se aplica à origem:

$$y(0,t) = 0$$

Além disso sabemos que a componente vertical da força resultante na extremidade livre (que está a uma distância x = l) deve ser nula:

$$\frac{\partial y}{\partial x}(l,t) = 0$$

Aplicando a primeira condição de contorno:

$$a\cos(k.0) + b\sin(k.0) \implies a = 0$$

Agora, aplicando a segunda condição de contorno:

$$\frac{\partial (\overbrace{a}^{=0} \cos(kl) + b\sin(kl))}{\partial x} = 0 \implies b\cos(kl) = 0$$

Como $b \neq 0$, temos que:

$$\cos(kl) = 0 \implies k_n = \frac{(2n+1)\pi}{l} \ (n = 0, 1, 2, 3 \cdots)$$

Logo, n-ésima frequência fundamental é expressão por:

$$f_n = \frac{\omega_n}{2\pi} = \frac{k_n v}{2\pi} = \frac{(2n+1)}{4l} v \ (n=0,1,2,3\cdots)$$

Relacionando o comprimento de onda do n-ésimo modo de vibração com o comprimento da corda:

$$\lambda_n = \frac{2\pi}{k_n} \implies l = \frac{(2n+1)\lambda}{4}$$

Para o primeiro modo normal:

$$l_0 = \frac{\lambda}{4}$$

Isto é, o comprimento da corda corresponde a 1/4 do comprimento de onda. Para o segundo modo normal obtemos $l_1=\frac{3\lambda}{4}$, e por fim, para o terceio modo normal $l_2=\frac{5\lambda}{4}$:

5.9 Questão 9

Inicialmente o pulso se propaga para a direita, até ser refletido e voltar para a posição inicial, atingindo a extremidade fixa e em seguida há uma inversão de sinal na amplitude. Ele realiza o mesmo processo, se propagando até a extremidade fixa e voltando para a posição inicial, dessa vez voltando a condição original.

Deste modo, a distância percorrida pelo pulso é x=4l, e o tempo necessário para que isso ocorra é:

$$t = \frac{4l}{v}$$

5.10 Questão 10

O deslocamento transversal é dado por:

$$y_n(x,t) = b_n \sin(k_n x) \cos(\omega_n t + \delta_n)$$

Derivando a expressão para obter a velocidade:

$$\dot{y}_n = \frac{\partial y}{\partial t} = -\omega_n b_n \sin(k_n x) \sin(\omega_n t + \delta_n)$$

▶ Solucionário Curso de Fìsica Básica II

A energia cinética de uma fração infinitesimal da corda de massa dm é:

$$dE = \frac{dm\dot{y}_n^2}{2} = \frac{\mu \dot{y}_n^2}{2} dx$$

Tomando t = 0 para $\dot{y}_n(x,t)$ e substituindo na expressão anterior:

$$dE = \frac{\mu(\omega_n b_n \sin(k_n x))^2}{2} dx = \frac{\mu \omega_n^2 b_n^2}{2} \sin^2(k_n x) dx$$

Escrevendo ω_n em termos de f_n :

$$\omega_n = 2\pi f_n \implies dE = 2\pi^2 \mu f_n^2 b_n^2 \sin(k_n x) dx$$

Agora, integrando a expressão:

$$\int_{0}^{E} dE = 2\pi^{2} \mu f_{n}^{2} b_{n}^{2} \int_{0}^{l} \sin^{2}(k_{n}x) dx$$

Utilizando a fórmula do meio-arco para tornar a integral mais simples:

$$\sin^{2}(k_{n}x) = \frac{1}{2}(1 - \cos(k_{n}x))$$

$$\int_{0}^{E} dE = 2\pi^{2}\mu f_{n}^{2}b_{n}^{2}\frac{1}{2}\int_{0}^{l}\frac{1}{2}(1 - \cos(k_{n}x))dx$$

$$E = \pi^{2}\mu f_{n}^{2}b_{n}^{2}(l - \underbrace{\sin(k_{n}l)}_{=\sin(\frac{2\pi}{\lambda}l)=0})$$

Finalmente, encontramos a energia total, que é:

$$E = \pi^2 \mu l f_n^2 b_n^2$$

5.11 Questão 11

a) Basta utilizar as fórmulas $\omega = kv$ e $v = \sqrt{T/\mu}$ para cada uma das cordas. No caso da corda 1:

$$v_1 = \sqrt{\frac{T}{\mu_1}}, \quad k_1 = \frac{\omega}{v_1}$$

Para a corda 2:

$$v_2 = \sqrt{\frac{T}{\mu_2}}, \quad k_1 = \frac{\omega}{v_2}$$

b) No ponto de junção o deslocamento transversal de ambas as cordas deve ser igual, portanto o deslocamento transversal da onda incidente e da onda refletida somados devem se igualar ao deslocamento transversal da orda transmitida:

$$y_i + y_r = y_t \tag{5.11.1}$$

c) Vimos que a projeção vertical da tensão agindo sobre um ponto (x, y) da corda é dado por:

$$F_y = T \sin \theta \approx T \frac{\partial y}{\partial x}$$

As forças exercida por ambas as cordas devem se igualar, a partir disto obtemos a segunda condição de contorno :

$$T\frac{\partial(y_i + y_r)}{\partial x} = T\frac{\partial y_t}{\partial x}$$

$$\boxed{\frac{\partial}{\partial x}(y_i + y_r) = \frac{\partial}{\partial x}y_t}$$
(5.11.2)

d) Aplicando a primeira condição de contorno, para x = 0:

$$y_i(0,t) + y_r(0,t) = y_t(0,t) \implies A_1 \cos(k_1 \underbrace{x}_{=0} - \omega t) + B_1 \cos(k_1 x + \omega t) = A_2 \cos(k_2 x - \omega t)$$

$$A_1 \cos(-\omega t) + B_1 \cos(\omega t) = A_2 \cos(-\omega t)$$

Como $\cos(\omega t) = \cos(-\omega t)$, os cossenos na expressão anterior se cancelam e obtemos:

$$A_1 + B_1 = A_2 (5.11.3)$$

Derivando as expressões para o deslocamento transversal obtemos:

$$\frac{\partial}{\partial x}(y_i + y_r) = k_1(-A_1\sin(k_1x - \omega t) + B_1\sin(k_1x + \omega t))$$

e,

$$\frac{\partial}{\partial x}y_t = -k_2 A_2 \sin(k_2 x - \omega t)$$

Aplicando a (5.11.2), que é a segunda condição de contorno (Em x = 0):

$$\left. \frac{\partial}{\partial x} (y_i + y_r) \right|_{x=0} = \left. \frac{\partial}{\partial x} y_t \right|_{x=0}$$

$$-k_1(A_1\sin(k_1x - \omega t) + B_1\sin(k_1x + \omega t)) = -k_2A_2\sin(k_2x - \omega t)$$

$$A_1 \sin(-\omega t) + B_1 \sin(\omega t) = \frac{k_2}{k_1} A_2 \sin(-\omega t)$$

Como $\sin(-\omega t) = -\sin(\omega t)$ a expressão anterior se reduz à:

$$A_1 - B_1 = \frac{k_1}{k_2} A_2 \tag{5.11.4}$$

A (5.11.3) e a (5.11.4) constituem um sistema de equações, e a partir dele encontraremos a razão $\rho = \frac{B_1}{A_1}$, que representa a amplitude de reflexão, e a razão $\tau = \frac{A_2}{A_1}$, que representa a amplitude de transmissão:

$$\begin{cases} I) \ A_1 + B_1 = A_2 \\ II) \ A_1 - B_1 = \frac{k_2}{k_1} A_2 \end{cases}$$

Fazendo I) + II) obtém-se:

$$A_1 = A_2 \left(\frac{k_2}{k_1} + 1\right) \implies \tau = \frac{A_2}{A_1} = 2\frac{k_1}{k_1 + k_2}$$

Lembre-se que $k_1 = \omega/v_1$ e que $k_2 = \omega/v_2$, assim, ao reescrever a expressão anterior em função das velocidades obtemos:

$$\tau = \frac{A_2}{A_1} = 2\frac{k_1}{k_1 + k_2} = 2\frac{\frac{\omega}{v_1}}{\frac{\omega}{v_1} + \frac{\omega}{v_2}} = 2\frac{v_2}{v_1 + v_2}$$

Para encontrar ρ iremos reescrever o sistema, multiplicando ambos os lados de I) pela razão $\frac{k_2}{k_1}$, obtendo:

$$\begin{cases} I) \frac{k_2}{k_1} (A_1 + B_1) = \frac{k_2}{k_1} A_2 \\ II) A_1 - B_1 = \frac{k_2}{k_1} A_2 \end{cases}$$

Ou seja, as expressões no lado esquerdo de ambas as equações devem se igualar, portanto:

$$\frac{k_2}{k_1}(A_1 + B_1) = A_1 - B_1$$

$$A_1 \left(1 - \frac{k_2}{k_1} \right) = B_1 \left(1 + \frac{k_2}{k_1} \right) \implies A_1 \left(\frac{k_1 - k_2}{k_1} \right) = B_1 \left(\frac{k_1 + k_2}{k_1} \right)$$

$$\rho = \frac{B_1}{A_1} = \frac{k_1 - k_2}{k_1 + k_2}$$

Escrevendo k em termos de v encontramos a seguinte expressão para a amplitude de reflexão:

$$\rho = \frac{B_1}{A_1} = \frac{\frac{\omega}{v_1} - \frac{\omega}{v_2}}{\frac{\omega}{v_1} + \frac{\omega}{v_2}} = \frac{v_2 - v_1}{v_2 + v_1}$$

Veja que se $v_1 > v_2$ temos $\rho < 0$, o que implica em uma amplitude B_1 negativa, ou seja, o sinal refletido volta invertido.

5.12 Questão 12

a) A intensidade da onda refletida é:

$$I_r = \frac{1}{2}\mu_1 v_1 \omega^2 B_1^2$$

Já a da onda incidente:

$$I_i = \frac{1}{2}\mu_1 v_1 \omega^2 A_1^2$$

E por fim, intensidade da onda transmitida é:

$$I_t = \frac{1}{2}\mu_2 v_2 \omega^2 A_2^2$$

Calculando a razão entre s intensidades da onda refletida e da onda incidente:

$$r = \frac{I_r}{I_i} = \frac{\frac{1}{2}\mu_1 v_1 \omega^2 B_1^2}{\frac{1}{2}\mu_1 v_1 \omega^2 A_1^2} = \left(\frac{B_1}{A_1}\right) = \rho^2$$

Portanto a refletividade é:

$$r = \rho^2 = \left(\frac{v_1 - v_2}{v_1 + v_2}\right)^2$$

Agora, calculando a transmissividade:

$$t = \frac{I_t}{I_i} = \frac{\frac{1}{2}\mu_2 v_2 \omega^2 A_2^2}{\frac{1}{2}\mu_1 v_1 \omega^2 A_1^2} = \frac{\mu_2 v_2}{\mu_1 v_1} \left(\frac{A_2}{A_1}\right)^2 = \frac{\mu_2 v_2}{\mu_1 v_1} \tau^2$$

Como $T=v^2\mu,$ e T é igual para ambas as cordas (no ponto de junção) temos que:

$$T = v_1^2 \mu_1 = v_2^2 \mu_2 \implies \frac{\mu_2}{\mu_1} = \frac{v_1^2}{v_2^2} \implies \frac{\mu_2 v_2}{\mu_1 v_1} = \frac{v_1}{v_2}$$

Substituindo na expressão para a transmissividade:

$$t = \frac{\mu_2 v_2}{\mu_1 v_1} \tau^2 = \frac{v_1}{v_2} \tau^2 = \frac{v_1}{v_2} \frac{4v^2}{(v_1 + v_2)^2}$$
$$t = \frac{4v_1 v_2}{(v_1 + v_2)^2}$$

b) Finalmente, podemos calcular r + t:

$$r+t = \left(\frac{v_1 - v_2}{v_1 + v_2}\right)^2 + \frac{4v_1v_2}{(v_1 + v_2)^2} = \frac{v_1^2 - 2v_1v_2 + v_2^2}{v_1^2 + 2v_1v_2 + v_2^2} + \frac{4v_1v_2}{v_1^2 + 2v_1v_2 + v_2^2} = \frac{v_1^2 + 2v_1v_2 + v_2^2}{v_1^2 + 2v_1v_2 + v_2^2}$$

$$\boxed{r+t=1}$$

A expresssão exprime a conservação de energia. Para tornar isso mais claro, voltemos a escrever a expresão anterior como a razão entre as diferentes intensidades:

$$\frac{I_r}{I_i} + \frac{I_t}{I_i} = 1 \implies I_r + I_t = I_i$$

Ou seja, o fluxo de energia refletido mais o fluxo de energia transmitido são iguais ao fluxo de energia incidente.

6 Capítulo 6

6.1 Questão 1

a) A velocidade do som é dada por (Considerando o processo adiabático):

$$v = \sqrt{\frac{\gamma RT}{m}}$$

Substituindo pelos dados fornecidos no enunciado:

$$v = \sqrt{\frac{1.66 \times 8.31 \times 293}{4 \times 10^{-3}}} = 1005 \frac{m}{s}$$

b) A frequência da onda é dada por $f = \frac{v}{\lambda}$, calculando a razão entre a frequência f do hélio e a frequência f_0 do ar, a um mesmo comprimento de onda:

$$\frac{f}{f_0} = \frac{\frac{v}{\lambda}}{\frac{v_0}{\lambda}} = \frac{1005}{340} \approx 2.96$$

Ou seja, uma voz de baixo é transformada em voz de soprano, isto é, fica mais aguda.

6.2 Questão 2

a) O nível sonoro da onda é (em dB):

$$\alpha = 10\log_1 0 \left(\frac{I}{I_0}\right)$$

 I_0 é o valor de referência. A intensidade I pode ser obtida a partir da razão entre a potência e a área pela qual o som se distribui, visto que ele o faz uniformemente em todas as direções a área é esférica:

$$I = \frac{P}{4\pi r^2}$$

Onde r representa a distância da fonte sonora. Substituindo na expressão do nível sonoro:

$$\alpha = 10 \log_{10} \left(\frac{\frac{P}{4\pi r^2}}{I_0} \right) = 10 \log_{10} \left(\frac{\frac{1}{4\pi \times 2^2}}{10^{-12}} \right) \approx 103 dB$$

b) A amplitude de pressão se relaciona com a intensidade por:

$$I = \frac{1}{2} \frac{\mathscr{P}}{\rho_0 v} \implies \mathscr{P} = \sqrt{2I\rho_0 v}$$

Substituindo pelos valores numéricos:

$$\mathscr{P} = \sqrt{2\frac{1}{4\pi \times 2^2} \times 1.3 \times 340} \approx 4.2 \frac{N}{m^2}$$

c) Encontrada a amplitude de pressão podemos encontrar a amplitude de deslocamento, a partir da intensidade do som:

$$I = \frac{1}{2}\rho_0 v\omega^2 U^2 \implies U = \sqrt{2\frac{I}{\rho_0 v\omega^2}}$$

Como $\omega = 2\pi f$ e I = P/A, a expressão anterior se torna:

$$U = \sqrt{\frac{\frac{P}{4\pi r^2}}{\rho_0 v (2\pi f)^2}} = \sqrt{\frac{\frac{1}{4\pi \times 2^2}}{1.3 \times 340 \times (2\pi \times 100)^2}} \approx 0.015 mm$$

d) O novo nível de intensidade α' vale 10db a menos que o anterior, ou seja, $\alpha' = 93dB$. A partir da definição do nível de intensidade:

$$\alpha' = 10 \log_{10} \left(\frac{I}{I_0} \right) \implies I = I_0 \times 10^{\frac{\alpha'}{10}}$$

A intensidade I vale $I=P/A=P/(4\pi d^2),$ onde d representa a nova distância, portanto:

$$\frac{P}{4\pi d^2} = I_0 \times 10^{\frac{\alpha'}{10}} \implies d = \sqrt{\frac{P}{4\pi \times 10^{\frac{\alpha'}{10}} I_0}}$$

Logo:

$$d = \sqrt{\frac{1}{4\pi \times 10^{\frac{93}{10}} \times 10^{-12}}} \approx 6.31m$$

6.3 Questão 3

a) No tom fundamental o comprimento de um tubo fechado em uma das extremidades vale um quarto do comprimento de onda (conferir pág. 136):

$$l = \frac{\lambda}{4}$$

E como $\lambda = \frac{v}{f}$:

$$l = \frac{v}{4f} = \frac{341}{4 \times 262} = 32.7cmb$$

b) A velocidade do som no ar é dada por:

$$v = \sqrt{\frac{\gamma RT}{m}}$$

Sendo f e T a frequência e a temperatura inicias, respectivamente, e f' e T' a nova frequência e a nova temperatura, a razão entre as frequência é:

$$\frac{f'}{f} = \frac{\frac{v}{\lambda}}{\frac{v'}{\lambda}} = \frac{\sqrt{\frac{\gamma RT'}{m}}}{\sqrt{\frac{\gamma RT}{m}}} = \sqrt{\frac{T'}{T}} \implies f' = \sqrt{\frac{T'}{T}}f$$

A variação de frequência é vale:

$$\Delta f = f' - f = f(\sqrt{\frac{T'}{T}} - 1) = 262(\sqrt{\frac{293}{283}} - 1) = 4.5Hz$$

6.4 Questão 4

a) Na primeira ressonância o comprimento do tubo vale:

$$l_1 = \frac{\lambda}{4} + \delta l$$

Onde δl representa o valor da correção terminal do tubo. Já na segunda ressonância:

$$l_2 = \frac{3\lambda}{4} + \delta l$$

Calculando a diferença entre l_2 e l_1 eliminamos δl :

$$l_2 - l_1 = \frac{\lambda}{2} \implies \lambda = 2(55.5 - 17.5) = 76cm$$

b) Utilizando l_1 e λ para encontrar δl :

$$\delta l = \frac{\lambda}{4} - l_1 = \frac{76}{4} - 17.5 = 1.5cm$$

c) O valor da correção terminal é estimada como 60% do valor do raio do tubo (pág. 135), portanto:

$$\delta l = 0.6R \implies d = \frac{\delta l}{0.3} = 5cm$$

d) Relacionando a frequência f da onda com seu comprimento de onda e velocidade:

$$v = f\lambda = 440 \times 76 \times 10^{-2} \approx 334m/s$$

6.5 Questão 5

- a) Eles correspondem aos nodos da onda.
- b) Como a distância entre o topo dos montículos vale Δl , o topo de um montículo representa um nodo, a distância entre dois nodos consecutivos corresponde à metade do comprimento de onda:

$$\Delta l = \frac{\lambda}{2}$$

Relacionando com a frequência e a velocidade do som no gás:

$$\boxed{\Delta l = \frac{v}{2f} \implies v = 2f\Delta l}$$

c) Substituindo os dados do enunciado na expressão anterior:

$$v = 2 \times 880 \times 0.152 = 267.5 \frac{m}{s}$$

6.6 Questão 6

a) Para um fluído em movimento é válida a relação (Checar seção 2.3, equação 2.3.3):

$$\rho \mathbf{a} = \mathbf{f} - \nabla p$$

Tomando $\mathbf{f} = 0$ para a onda sonora, pois não há forças externas sendo aplicadas:

$$\rho \mathbf{a} = -\nabla p$$

A aceleração de uma onda sonora harmônica, com vetor deslocamento dado por $\mathbf{u} = A\cos(\mathbf{k}\cdot\mathbf{r} - \omega t + \phi)$ é:

$$\mathbf{a} = \frac{\partial^2 \mathbf{u}}{\partial^2 t} = -\omega^2 A \cos(\mathbf{k} \cdot \mathbf{r} - \omega t + \phi) = -\omega^2 \mathbf{u}$$

Ou seja, para um fluído de densidade de equilíbrio ρ_0 e uma onda se propagando com frequência ω , obtemos a seguinte equação a partir das expressões anteriores:

$$\rho_0 \omega^2 \mathbf{u} = \nabla p$$

(Também é possível chegar no mesmo resultado utilizando o mesmo desenvolvimento da seção 4.3 c, realizando os mesmos cálculos para cada uma das componentes x,y e z).

b) O resultado da parte x, somente para a componente x, é:

$$\rho_0 \omega^2 u_x = -\frac{\partial p}{\partial x}$$

Como $u_x = 0$:

$$\frac{\partial p}{\partial x} = 0$$

6.7 Questão 7

a) De acordo com o enunciado:

$$k^2 = k_x^2 + k_y^2$$

Substituindo k_x por $k\cos\theta$ e k_y por $k\sin\theta$:

$$k^2 = k^2(\cos^2\theta + \sin^2\theta) = k^2$$

b) A onda total é dada por:

$$p = p_i + p_r = \mathscr{P}\cos(-k_x x + k_y y - \omega t) + \mathscr{P}'\cos(k_x x + k_y y - \omega t)$$

Aplicando a condição de contorno:

$$\frac{\partial p}{\partial x} = 0 \implies k_x \mathscr{P} \cos(-k_x x + k_y y - \omega t) - k_x \mathscr{P}' \sin(k_x x + k_y y - \omega t) = 0$$

$$\mathscr{P}'=\mathscr{P}$$

A onda refletida possui mesma amplitude.

c) Para $k_y = 0$ as expressões das ondas são:

$$p_i = \mathscr{P}\cos(-k_x x - \omega t)$$
$$p_r = \mathscr{P}\cos(k_x x - \omega t)$$

Somando as duas equações (E utilizando a propriedade $\cos \theta = \cos (-\theta)$ para p_i):

$$p = \mathscr{P}(\cos(k_x x + \omega t) + \cos(k_x x - \omega t))$$

A partir da propriedade $2\cos\theta\cos\varphi = \cos(\theta - \varphi) + \cos(\theta - \varphi)$ podemos reescrever a expressão anterior como (Tomando $\theta = k_x x$ e $\varphi = \omega t$ e aplicando a propriedade):

$$p = 2\mathscr{P}\cos(k_x)x\cos(\omega t)$$

Que é uma onda estacionária na direção x.

6.8 Questão 8

a) Aplicando pitágoras no seguinte triângulo (Veja que a distância da fonte sonora até o ponto A vale R-e):

$$R^2 = h^2 + (R - e)^2 \implies R - e = \sqrt{R^2 - h^2} = R\sqrt{1 - \frac{h^2}{R^2}}$$

Como h/R << 1 podemos utilizar a aproximação $\sqrt{1 \pm \varepsilon} \approx 1 \pm \frac{1}{2}\varepsilon$, logo:

$$R - e = R\sqrt{1 - \frac{h^2}{R^2}} \approx R\left(1 - \frac{1}{2}\frac{h^2}{R}\right)$$

Portanto:

$$e \approx \frac{h^2}{2R}$$

b) Vamos chamar o ponto de onde partem as ondas sonoras de O'. Chamaremos de caminho $\overline{O'AOF}$ o caminho que passa pelo cento da lente, e $\overline{O'IF}$ o caminho que passa pela periferia. O tempo necessário para que a aonda atravesse o caminho $\overline{O'AOF}$ é:

$$t_1 = \frac{\overline{O'A}}{\overline{N} - e} + \frac{\overline{AO}}{e} + \frac{\overline{OF}}{v_1}$$

Já o tempo t_2 que a onda leva para percorrer a periferia vale:

$$t_2 = \frac{\overline{O'I}}{R} + \frac{\overline{IF}}{v_1}$$

O valor do segmento \overline{IF} pode ser encontrado a partir do seguinte triângulo retângulo:

$$\overline{IF} = \sqrt{h^2 + (f - e)^2}$$

Como $f - e \approx f$:

$$\overline{IF} \approx \sqrt{h^2 + f^2} = f \sqrt{1 + \frac{h^2}{f^2}}$$

Utilizando a aproximação $\sqrt{1+\varepsilon}\approx 1+\frac{1}{2}\varepsilon$:

$$\overline{IF} \approx f \left(1 + \frac{h^2}{2f^2} \right)$$

Portanto:

$$t_2 = \frac{R}{v_1} + \frac{f\left(1 + \frac{h^2}{2f^2}\right)}{v_1}$$

Igualando os tempos t_1 e t_2 :

$$\frac{R-e}{v_1} + \frac{e}{v_2} + \frac{f}{v_1} = \frac{R}{v_1} + \frac{f\left(1 + \frac{h^2}{2f^2}\right)}{v_1}$$

Multiplicando ambos os lados por v_2 :

$$R - e + \underbrace{n}_{=\frac{v_1}{v_2}} e + f = R + f \left(1 + \frac{h^2}{2f^2} \right)$$

Simplificando e substituindo $e = \frac{h^2}{2B}$:

$$\underbrace{\frac{h^2}{2R}}_{=e}(n-1) = \frac{h^2}{2f}$$

Simplificando novamente finalmente obtemos a expressão procurada:

$$f = \frac{R}{(n-1)}$$

6.9 Questão 9

A distância x entre O e o ponto de interferência pode ser determinada a partir das distâncias d, 2d e as distâncias r_1 e r_2 entre as fontes sonoras A e B e o ponto de interferência. Por pitágoras temos:

$$r_1^2 = d^2 + x^2 \implies r_1 = \sqrt{d^2 + x^2} = d\sqrt{1 + \frac{x^2}{d^2}}$$

Como x/d << 1 podemos utilizar a aproximação $\sqrt{1+\varepsilon} \approx 1 + \frac{1}{2}\varepsilon$:

$$r_1 = d\sqrt{1 + \frac{x^2}{d^2}} \approx d\left(1 + \frac{1}{2}\frac{x^2}{d^2}\right)$$

Fazendo o mesmo para r_2 :

$$r_2^2 = 4d^2 + x^2 \implies r_2 = \sqrt{4d^2 + x^2} = 2d\sqrt{1 + \frac{x^2}{4d^2}} \approx 2d\left(1 + \frac{1}{8}\frac{xy^2}{d^2}\right)$$

Para que ocorra interferência construtiva a diferença entre r_2 e r_1 deve ser um múltiplo inteiro do comprimento de onda λ , portanto:

$$r_2 - r_1 = n\lambda$$

$$2d\left(1+\frac{1}{8}\frac{x^2}{d^2}\right)-d\left(1+\frac{1}{2}\frac{x^2}{d^2}\right)=n\lambda$$

Resolvendo para x obtemos:

$$x = 2\sqrt{d(n\lambda - d)} = 2\sqrt{d(n\frac{v}{f} - d)}$$

Para que a expressão dentro da raiz seja válida é necessário que:

$$n\lambda - d \geqslant 0 \implies n \geqslant \frac{d}{\lambda} = \frac{d}{\frac{v}{f}} = \frac{3.4}{\frac{340}{20 \times 10^3}} = 200$$

Ou seja, para encontrar os três primeiros máximos iremos substituir n por 200, 201 e 202:

$$x_0 = 2\sqrt{3.14(200 \times \frac{340}{20 \times 10^3} - 3.4)} = 0cm$$

$$x_1 = 2\sqrt{3.14(201 \times \frac{340}{20 \times 10^3} - 3.4)} = 48cm$$

$$x_2 = 2\sqrt{3.14(202 \times \frac{340}{20 \times 10^3} - 3.4)} = 68cm$$

Para encontrar os mínimos o processo é análogo, contudo a diferença entre r_2 e r_1 deve ser igual a um múltiplo inteiro da metade do comprimento de onda, portanto:

$$x = 2\sqrt{d([n+\frac{1}{2}]\lambda - d)} = 2\sqrt{d(n\frac{v}{f} - d)}$$

Substituindo por n=200 e n=201 encontramos os dois primeiros mínimos:

$$x_1 = 2\sqrt{3.14((200 + \frac{1}{2}) \times \frac{340}{20 \times 10^3} - 3.4)} = 34cm$$
$$x_2 = 2\sqrt{3.14((201 + \frac{1}{2}) \times \frac{340}{20 \times 10^3} - 3.4)} = 59cm$$

6.10 Questão 10

Analisando o triângulo vemos que:

$$r_1 \approx R - \frac{d}{2}\sin\theta$$

e,

$$r_2 \approx T + \frac{d}{2}\sin\theta$$

Considerando que as condas são esféricas, cuja expressão é dada por:

$$\varphi(r,t) = \frac{A}{r}e^{i(kr - \omega t + \delta)}$$

A expressão da onda resultando no experimento de três fendas é:

$$\varphi = \varphi_1 + \varphi_2 + \varphi_3 = \frac{A}{R - d\sin\theta} e^{i(k(R - d\sin\theta) - \omega t)} + \frac{A}{R + d\sin\theta} e^{i(k(R + d\sin\theta) - \omega t)} + \frac{A}{R} e^{i(kR - \omega t)}$$

Para a amplitude podemos considerar o termo $d \sin \theta$ deprezível, portanto a expressão anterior pode ser simplificada como:

$$\varphi = (1 + e^{-ikd\sin\theta} + e^{ikd\sin\theta}) \frac{A}{R} e^{i(kR - \omega t)}$$
(6.10.1)

Veja que o termo $(1 + e^{-ikd\sin\theta} + e^{ikd\sin\theta})$ da (6.10.1) mostra como a amplitude varia de acordo com θ , portanto para encontrar os pontos nos quais a amplitude é mínima basta minimizar a expressão em questão. Portanto, para encontrar o valor de θ para o qual ocorrem os mínimos de interferência devemos igualar a expressão entre parênteses a zero:

$$1 + e^{-ikd\sin\theta} + e^{ikd\sin\theta} = 0 \implies 1 + e^{ikd\sin\theta} + e^{2ikd\sin\theta} = 0$$

Utilizando a fórmula dada no enunciado:

$$\frac{\sin\left(\frac{3}{2}kd\sin\theta\right)}{\sin\left(\frac{kd\sin\theta}{2}\right)} = 0$$

$$kd\sin(\theta) = n\pi$$

Como $k = 2\pi/\lambda$ chegamos em:

$$d\sin\theta_n = \frac{n}{3}\lambda \quad (n = 1, 2, 4, 5...n \neq \text{ inteiro})$$

Deste modo, para todo valor de n que não seja múltiplo de três a amplitude é nula (Tente substituir o valor de n por 1 ou 2 e veja que a amplitude se anula e veja que para n=3 isto não ocorre). Além disso, como:

$$I \propto \frac{A^2}{R^2}$$

Logo, para A = 0 a intensidade é nula.

6.11 Questão 11

Se considerarmos que a ferquência do som durante o afastamento vale f, a frequência durante a aproximação vale $f'=2^{\frac{1}{12}}f_0\approx 1.0595f$ (A variação de um semitom indica que a frequência varia em aproximadamente 6%). Para a aproximação da ambulância:

$$f' = 1.0595f = \frac{f_0}{1 - \frac{v_a}{r}}$$

Onde v_a representa a velocidade da ambulância e v a velocidade do som. Para o afastamento:

$$f = \frac{f_0}{1 + \frac{v_a}{v}}$$

Calculando a razão r entre as frequências:

$$\frac{f'}{f} = r = 1.0595 = \frac{v + v_a}{v - v_a}$$

Resolvendo para v_a :

$$v_a = v \frac{(r-1)}{(r+1)}$$

Substituindo pelos valores numéricos obtemos:

$$v_a = 340 \times \frac{1.0595 - 1}{1.0595 + 1} \approx 9.82 m/s \approx 35.3 km/h$$

6.12 Questão 12

a) As frequências podem ser obtidas a partir do efeito Doppler para a fonte e o observador em movimento (conferir pág. 149). Para a aproximação temos:

$$f_{+} = f_0 \left(\frac{1 + \frac{v_t}{v}}{1 - \frac{v_t}{v}} \right) = f_0 \left(\frac{v + v_t}{v - v_t} \right)$$

Onde v representa a velocidade do som no ar e v_t representa o módulo da velocidade dos trens. Analogamente para o afastamento:

$$f_{-} = f_0 \left(\frac{1 - \frac{v_t}{v}}{1 + \frac{v_t}{v}} \right) = f_0 \left(\frac{v - v_t}{v + v_t} \right)$$

Calculando a razão r entre as frequências de aproximação e afastamento:

$$r = \frac{f_{+}}{f_{-}} = \frac{f_{0}\left(\frac{v+v_{t}}{v-v_{t}}\right)}{f_{0}\left(\frac{v-v_{t}}{v+v_{t}}\right)} = \frac{(v+v_{t})^{2}}{(v-v_{t}^{2})} \implies (v+v_{t}) = \sqrt{r}(v-v_{t})$$

Resolvendo para v_t :

$$v_t = v \frac{(\sqrt{r} - 1)}{(1 + \sqrt{r})} = 340 \frac{\sqrt{\frac{348}{259}} - 1}{1 + \sqrt{\frac{348}{259}}} = 25m/s = 90km/h$$

b) Encontrada a velocidade dos trens podemos encontrar a frequência do apito f_0 a partir da fórmula do efeito Doppler utilizada anteriormente:

$$f_{+} = f_{0} \left(\frac{v + v_{t}}{v - v_{t}} \right) \implies f_{0} = f_{+} \left(\frac{v - v_{t}}{v + v_{t}} \right)$$

$$\boxed{f_{0} = 348 \left(\frac{340 - 25}{340 + 25} \right) \approx 300Hz}$$

6.13 Questão 13

Tratando a parede como um observador em repouso, a frequência da onda incidente ao colidir com a parede é:

$$f = \frac{f_0}{1 - \frac{v_c}{v}}$$

Onde v_c representa a velocidade do carro e v a velocidade do som. Agora, a onda é refletida pela parede com frequência f, contudo o carro está em movimento, e a parede deve ser tratado como uma fonte em repouso. A frequência da onda para um observador no carro é:

$$f' = f\left(1 + \frac{v_c}{v}\right) = f_0\left(\frac{1 + \frac{v_c}{v}}{1 - \frac{v_c}{v}}\right)$$

A frequência dos batimentos (Que é de 5hz, de acordo com o enunciado) é igual ao módulo da diferença entre a frequência f_0 do som produzido pela buzina e a frequência f', da onda que é fletida pela parede, portanto:

$$f' - f_0 = \Delta f = 5Hz$$

$$f_0\left(\frac{1+\frac{v_c}{v}}{1-\frac{v_c}{c}}-1\right) = \Delta f \implies \frac{v+v_c}{v-v_c}-1 = \frac{\Delta f}{f_0}$$

Resolvendo para v_c :

$$v_c\left(2 + \frac{\Delta f}{f_0}\right) = \frac{\Delta f}{f_0}v = \Longrightarrow v_c = v\frac{\Delta f}{f_0(2 + \frac{\Delta f}{f_0})}$$

Substituindo pelos valores numéricos:

$$v_c = 340 \times \frac{5}{2 \times 200(1 + \frac{5}{200})} \approx 4.19 m/s \approx 15 km/h$$

6.14 Questão 14

Esta situação é similar a situação do exercício anterior. A diferença é que no exercício a fonte está em movimento e a parede é fixa, neste caso a fonte está em repouso e o objeto se move. Fazendo uma analogia com o exer o objeto seria o carro e a fonte a parede seria a fonte fixa, portanto basta fazer a substituição $v_c \rightarrow u$:

$$u| = v \frac{\Delta f}{f_0(2 + \frac{\Delta f}{f_0})} = \frac{v \Delta f}{2f_0 + \Delta f}$$

6.15 Questão 15

a) Se o vento possui velocidade V a nova velocidade do som \acute{e} :

$$v' = v - V$$

Utilizando a fórmula do efeito do Doppler para fonte e observador em movimento:

$$f = f_0 \left(\frac{1 + \frac{v_2}{v'}}{1 - \frac{v_1}{v'}} \right) = f_0 \left(\frac{v' + v_2}{v' - v_1} \right)$$

$$f = f_0 \left(\frac{v - V + v_2}{v - V - v_1} \right)$$

b) Para $v_2 = -v_1$:

$$f = f_0 \left(\frac{v - V - v_1}{v - V - v_1} \right) = f_0$$

6.16 Questão 16

Podemos decompor a velocidade do observador em uma componente radial u_r que é perpenducular a frente de ondas (A componente paralela a frente de ondas não contribui com o efeito):

$$u_r = u\cos\theta\hat{r}$$

Substituindo u por u_r na equação do efeito Doppler para a fonte parada e o observador em movimento obtemos:

$$f = f_0 \left(1 + \frac{u \cos \theta}{v} \right)$$

Para $\theta = 0$ a expressão anterior fica:

$$f = f_0 \left(1 + \frac{u}{v} \right)$$

Que é a equação do efeito Doppler para a aproximação. Já para $\theta=\pi,$ que representa o afastamento:

$$f = f_0 \left(1 - \frac{u}{v} \right)$$

6.17 Questão 17

a) Para o referencial S do meio, temos que:

$$x = vt$$

A expressão geral da onda fica:

$$\varphi(x,t) = \mathscr{A}\cos\left(kvt - \omega t + \phi\right)$$

Já no referencial S' a coordenada x' do observador é dada por:

$$x' = x - ut = vt - ut = vt \left(1 - \frac{u\cos\theta}{v}\right)$$

Onde $u_x = u \cos \theta$ representa a componente x da velocidade do corpo. A expressão geral da onda nesse refercial se torna:

$$\varphi(x,t) = \mathscr{A}\cos\left(kvt\left(1 - \frac{u\cos\theta}{v}\right) - \omega t + \phi\right) = \mathscr{A}\cos\left(kvt - kvt\left(\frac{u\cos\theta}{v}\right) - \omega t + \phi\right)$$

Como $\omega = kv$:

$$\varphi(x,t) = \mathscr{A}\cos\left(kvt - \omega t\left(\frac{u\cos\theta}{v}\right) - \omega t + \phi\right) = \cos\left(kx - \underbrace{\omega\left(1 + \frac{u\cos\theta}{v}\right)}_{u'}t + \phi\right)$$

Comparando ω com ω' :

$$\omega' = \omega \left(1 + \frac{u \cos \theta}{v} \right)$$

E portanto (Tomando $f_0 = \frac{\omega}{2\pi}$ e $f = \frac{\omega}{2\pi}$):

$$f = f_0 \left(1 + \frac{u \cos \theta}{v} \right)$$

b) Na transformada geral temos:

$$\mathbf{r'} = \underbrace{\mathbf{r}}_{\mathbf{v}t} - \mathbf{u}t$$

Substituindo na equação geral da onda no referencial S':

$$\varphi(x,t) = \mathscr{A}\cos(\mathbf{k}\cdot(\mathbf{r}-\mathbf{u}t) - \omega t + \phi)$$

$$\varphi(x,t) = \mathscr{A}\cos(\mathbf{k}\cdot\mathbf{r} - \omega t(1+\frac{\mathbf{u}}{\mathbf{v}}) + \phi)$$

Portanto:

$$f = f_0 \left(1 + \frac{\mathbf{u}}{\mathbf{v}} \right)$$

6.18 Questão 18

a) Relacionando o ângulo de abertura θ com a velocidade do som v e a velocidade do corpo V:

$$\sin \theta = \frac{v}{V} \implies \theta = \sin^{-1} \left(\frac{v}{V}\right)$$

Como a velocidade do do jato vale o dobro da velocidade do som:

$$\theta = \sin^{-1}\left(\frac{v}{V}\right) = \sin^{-1}\left(\frac{v}{2v}\right) = 30^{\circ}$$

b) Durante o intervalor t=2.5s o jato terá percorrido uma distância horizontal d=Vt. Relacionando com a altura h em relação a casa a partir do triângul retângulo:

$$\tan \theta = \frac{h}{d}$$

Resolvendo:

$$h = Vt \tan \theta$$

Como V=2v basta substituir pelos valores numéricos:

$$h = 2 \times 34 \tan 30^{\circ} \approx 981 m$$

7 Capítulo 7

7.1 Questão 1

A variação de volume da cavidade interna é dada por:

$$\Delta V = V_0 \gamma \Delta T$$

Onde $\gamma=3\alpha$ representa o coeficiente de dilatação volumétrica. Substituindo pelos valores dados no enunciado (em cm):

$$\Delta V = \frac{4\pi}{3} 10^3 \times 3 \times 2.3 \times 10^{-5} \times (40 - 15) \approx 7.23 cm^3$$

7.2 Questão 2

Para resolver o problema basta encontrar o coeficiente de dilatação linear de uma barra equivalente, cujo comprimento total é de 30cm, considerarando uma variação de temperatura arbitrária ΔT .

A variação de comprimento da fração da barra correspondente ao latão é:

$$\Delta l_1 = l_{01} \alpha_1 \Delta T$$

Já a variação da barra de alumínio:

$$\Delta l_2 = l_{02}\alpha_2\Delta T$$

Podemos escrever a expressão da dilatação da "barra equivalente", composta pelas barras de alumínio e latão, como:

$$\Delta L = L_0 \alpha_{eq} \Delta T$$

Como a variação de comprimento da barra equivalente deve corresponder à variação de comprimento das duas barras de alumínio e latão somadas,

$$\Delta L = \Delta l_1 + \Delta l_2 \implies \alpha_{eq} = \frac{l_{01}\alpha_1 + l_{02}\alpha_2}{L_0}$$

A resposta é então:

$$\alpha_{eq} = 1.63 \times 10^{-5} / ^{\circ}C$$

7.3 Questão 3

De acordo com o enunciado, as tiras se encontram inicialmente lado a lado, conforme a figura:

Figura 8: Situação inicial

Na situação final a tira adquire o formato de um arco circular, e os raios R_1 e R_2 se relacionam por:

$$R_2 = R_1 + d$$

Figura 9: Situação final

Além disso, podemos relacionar o ângulo formado pelo arco com o o seu raio e o comprimento da barra de latão da seguinte maneira:

$$\theta = \frac{l_{2f}}{R_2}$$

A mesma relação é válida para a barra de aço (basta substituindo o número 2 nos índices por 1), portanto:

$$\frac{l_{1f}}{R_1} = \frac{l_{2f}}{R_2}$$

Temos então, duas equações:

$$\begin{cases} l_{1f}R_2 = R_1 l_{2f} \\ R_2 = R_1 + d \end{cases}$$

Resolvendo para R_2 (Que é o valor R pedido no enunciado):

$$R_2 = (R_2 - d) \frac{l_{1f}}{l_{2f}}$$

Isolando R_2 :

$$R_2 = d\left(\frac{l_{1f}}{l_{2f}}\right) \left(\frac{l_{1f}}{l_{2f} - l_{1f}}\right)$$

Sabemos que $l_{1f} = l_1(1+\alpha_1\Delta T)$ e que $l_{2f} = l_2(1+\alpha_2\Delta T)$. E que $l_1 = l_2 = 15cm$. Portanto a expressão anterior se reduz a:

$$R_2 = d \frac{(1 + \alpha_1 \Delta T)}{(1 + \alpha_2 \Delta T)} \left(\frac{1 + \alpha_1 \Delta T}{\Delta T (\alpha_2 - \alpha_1)} \right)$$

Agora, substituindo pelos valores numéricos (Todos os valores estão em cm):

$$R_2 = 0.2 \frac{(1 + 1.1 \times 10^{-5} \times 25)}{(1 + 1.9 \times 10^{-5} \times 25)} \left(\frac{1 + 1.1 \times 10^{-5} \times 25}{25 \times (1.9 - 1.1) \times 10^{-5}} \right)$$

$$R_2 = R \approx 1000cm = 10m$$

Agora, para encontrar y basta utilizar um pouco de geometria. É fácil ver que:

$$y = R_2 - R_2 \cos \theta = R_2 (1 - \cos \theta).$$

Para achar θ basta usar a relação (Novamente com todas as unidades em cm):

$$\theta = \frac{l_{2f}}{R_2} = \frac{l_2(1 + \alpha_2 \Delta T)}{R_2} = \frac{15(1 + 1.9 \times 10^{-5} \times 25)}{1000} \approx 0.015$$

Substituindo na expressão para y:

$$y = 1000(1 - \cos 0.015)$$

$$y \approx 0.1126cm = 1.126mm$$

7.4 Questão 4

a) Vamos considerar que a uma temperatura T na qual o pêndulo funciona com precisão seu comprimento é l_0 , e além disso seu período é de exatamente 1s, assim como projetado. Esse período t=1s pode ser escrito como:

$$t = 2\pi \sqrt{\frac{l_0}{g}}$$

Analogamente, devidos aos efeitos de contração e dilatação, podemos definir o período do pêndulo no inverno como:

$$t_i = 2\pi \sqrt{\frac{l_i}{g}}$$

E no verão:

$$t_v = 2\pi \sqrt{\frac{l_v}{g}}$$

Onde l_i e l_v designam o comprimento do pêndulo no inverno e no verão, respectivamente. O comprimentos do pêndulo em cada uma das estações pode ser obtido a partir das equações:

Inverno:
$$l_i = l_0(1 + \alpha \Delta T) = l_0(1 + \alpha(10 - T))$$

Verão: $l_v = l_0(1 + \alpha \Delta T) = l_0(1 + \alpha(30 - T))$

Figura 10: Pêndulo no inverno, em azul, e pêndulo no verão, em vermelho

Onde α representa o coeficiente de dilatação linear pedido no enunciado e ΔT a diferença de temperatura. Substituindo as duas equações anteriores nas expressões para o período:

$$t_{i} = 2\pi \sqrt{\frac{l_{0}(1 + \alpha(10 - T))}{g}}$$
$$t_{v} = 2\pi \sqrt{\frac{l_{0}(1 + \alpha(30 - T))}{g}}$$

Simplificando,

$$t_i^2 \frac{g}{4\pi^2 l_0} - 1 = \alpha (10 - T)$$

$$t_v^2 \frac{g}{4\pi^2 l_0} - 1 = \alpha(30 - T)$$

Mas como o período do pêndulo a temperatura ideal T e comprimento l_0 é 1s, temos que $\frac{g}{l_0} = 4\pi^2$. As expressões anteriores se tornam, portanto:

$$\begin{cases} I) \ t_i^2 - 1 = \alpha (10 - T) \\ II) \ t_v^2 - 1 = \alpha (30 - T) \end{cases}$$

Fazendo II) – I) encontramos:

$$\alpha = \frac{t_v^2 - t_i^2}{20} \tag{7.4.1}$$

Para encontrar t_i e t_v basta calcular o quanto o período do pêndulo varia no inverno e no verão. Sabemos que no inverno o relógio adianta 55s por semana, portanto seu período de oscilação é adiantado em:

$$\Delta t = \frac{55}{7 \times 24 \times 60 \times 60} \frac{\text{s}}{\text{oscilação}} \approx 9.10 \times 10^{-5} \frac{\text{s}}{\text{oscilação}}$$

Deste modo, o período do pêndulo no inverno é:

$$t_i = t - \Delta t = 1 - 9.10 \times 10^{-5} s$$

Fazendo o mesmo para o pêndulo no verão encontramos:

$$t_v = 1 + 9.92 \times 10^{-5} s$$

Substituindo na (7.4.1):

$$\alpha = \frac{(1+9.92\times10^{-5})^2 - (1-9.10\times10^{-5})^2}{20} \approx 1.9\times10^{-5}/^{\circ}C$$

b) Definimos a temperatura T como a temperatura na qual o pêndulo possui comprimento l_0 e período de oscilação de 1s. Portanto para encontrar a temperatura na qual o relógio funcionaria com precisão basta calcular T. Utilizando a equação I) e isolando a variável de interesse:

$$T = 10 - \frac{t_i^2 - 1}{\alpha}$$

$$T = 10 - \left(\frac{t_i^2 - 1}{\alpha}\right) = 10 - \left(\frac{(1 - 9.1 \times 10^{-5})^2 - 1}{1.9 \times 10^{-5}}\right) \approx 19.6^{\circ}C$$

7.5 Questão 5

Para resolver esta questão precisamos utilizar um vínculo geométrico, devemos relacionar as grandezas l_1, l_2 e l (Consulte a figura), isto é, comprimento total do pêndulo pode ser escrito em termos dos comprimentos l_1 e l_2 :

$$l = 2l_1 - l_2$$

Sabemos que o comprimento deve se manter igual mesmo após a dilatação, portanto:

$$l = 2l_{1f} - l_{2f}$$

Com l_{1f} e l_{2f} dados por:

$$l_{1f} = l_1(1 + \alpha_1 \Delta T)$$

$$l_{2f} = l_2(1 + \alpha_2 \Delta T)$$

Figura 11: Vínculos geométricos do pêndulo. Veja que o comprimento indicado pela seta em vermelho é dado por $l_1 - l_2$, assim, podemos escrever o comprimento total do pêndulo como $l = l_2 + 2(l_1 - l_2) = 2l_1 - l_2$

Também sabemos que o comprimento do pêndulo deve se manter constante para todo ΔT , portanto iremos fazer que $\Delta T = 10^5 \, ^{\circ}C$ por pura conveniência,

facilitando assim o trabalho algébrico, embora esta situação não seja razoável fisicamente. Deste modo, os comprimentos após a dilatação são:

$$l_{1f} = l_1(1 + 1.1 \times 10^{-5} \times 10^5) = 2.1l_1$$

$$l_{2f} = l_2(1 + 2.3 \times 10^{-5} \times 10^5) = 3.3l_2$$

Assim, temos um sistema de equações para resolver:

$$\begin{cases} l = 2l_1 - l_2 \\ l = 4.2l_1 - 3.3l_2 \end{cases}$$

Resolvendo para l_2 encontramos (Em cm):

$$l_2 = \frac{1.1}{1.2} \ l = \frac{1.1}{1.2} \times 50cm \approx 45.8cm$$

E agora resolvendo para l_1 :

$$l_1 = \frac{l_2 + l}{2} = \frac{50 + 45.8}{2} cm \approx 47.9 cm$$

7.6 Questão 6

a) A densidade de um líquido de de massa m e volume V_0 é:

$$\rho_0 = \frac{m}{V_0} \tag{7.6.1}$$

Após a dilatação o líquido o volume muda de V_0 para V, com:

$$V = V_0(1 + \beta \Delta T)$$

Portanto a densidade do líquido após a dilatação será:

$$\rho = \frac{m}{V_0(1 + \beta \Delta T)} \tag{7.6.2}$$

Dividindo a (7.6.2) pela (7.6.1):

$$\frac{\rho}{\rho_0} = (1 + \beta \Delta T)^{-1}$$

Utilizando a aproximação $(1+x)^n \approx 1 + nx$:

$$\frac{\rho}{\rho_0} \approx 1 - \beta T = 1 - \beta (T - T_0)$$

b) A pressão no fundo do recipiente contendo gelo é:

$$P_{qelo} = \rho_0 g h_0 + P_0 \tag{7.6.3}$$

Onde P_0 é a pressão atmosférica. Já no recipiente contendo óleo:

$$P_{oleo} = \rho g h + P_0 \tag{7.6.4}$$

A pressão no fundo dos recipientes deve ser igual, portanto:

$$P_{gelo} = P_{oleo} \implies \rho_0 g h_0 + P_0 = \rho g h + P_0$$

$$\frac{\rho_0}{\rho} = \frac{h}{h_0}$$

E a razão entre as densidades é:

$$\frac{\rho_0}{\rho} = 1 + \beta (T - T_0)$$

Logo:

$$\frac{h}{h_0} = 1 + \beta (T - T_0)$$

Isolando β :

$$\beta = \left(\frac{h - h_0}{h_0}\right) \left(\frac{1}{T - T_0}\right)$$

Substituindo com os valores dados no exercício:

$$\beta = \left(\frac{1.03 - 1}{1}\right) \left(\frac{1}{20 - 0}\right) = 1.5 \times 10^{-3} / {^{\circ}C}$$

7.7 Questão 7

a) Chamando a área da base do tubo cilíndrico de A_0 , o volume da coluna líquida é dado, antes da dilatação, por:

$$V_0 = A_0 h_0$$

Após a dilatação o líquido assume um volume V:

$$V = V_0(1 + \beta \Delta T)$$

E a base do cilindro passa a ter uma área A:

$$A = A_0(1 + 2\alpha)$$

A altura da coluna líquida também é alterada e passa a ser h. Deste modo, o novo volume da coluna líquida também pode ser escrito como:

$$V = Ah$$

	Antes da dilatação	Após a dilatação
Área do cilindro	A_0	$A = A_0(1 + 2\alpha\Delta T)$
Volume da coluna líquida	$V_0 = A_0 h_0$	$V = V_0(1 + \beta \Delta T) = Ah$

Deste modo, temos que:

$$V = Ah \implies V_0(1 + \beta \Delta T) = A_0 h_0(1 + \beta \Delta T)$$

= $Ah = A_0(1 + 2\alpha \Delta T)h$

$$V_0(1 + \beta \Delta T) = A_0(1 + 2\alpha \Delta T)h$$

De acordo com o enunciado $\Delta T = 1^{\circ}C$. Isolando h:

$$h = h_0 \left(\frac{1+\beta}{1+2\alpha} \right)$$

Como o item a) pede a variação Δh da altura:

$$\Delta h = h - h_0 = h_0 \left(\frac{1 + \beta \Delta T}{1 + 2\alpha} \right) - h_0 = h_0 \left(\underbrace{\frac{\beta - 2\alpha}{1 + 2\alpha}}_{\approx 1} \right)$$

O termo no denominador pode ser aproximado para 1, pois $\alpha \ll 1$, assim

$$\Delta h = h_0(\beta - 2\alpha)$$

b) Agora basta substituir utilizar os valores dados no enunciado na expressão obtida.

$$\Delta h = 10(1.8 \times 10^{-4} - 2 \times 9 \times 10^{-6}) = 1.62 \times 10^{-3} cm$$

$$\Delta h = 0.016mm$$

7.8 Questão 8

a) O líquido possui volume inicial V_0 , portanto após a dilatação temos:

$$V = V_0(1 + \beta \Delta T)$$

O reservatório também possui volume inicial V_0 , mas como seu coeficiente de dilatação linear é α , seu volume após dilatar será:²

$$V_r = V_0(1 + 3\alpha\Delta T)$$

Por fim, o diâmetro inicial do capilar é d_0 , assim seu que após a dilatação se torna:

$$d = d_0(1 + \alpha \Delta T)$$

Figura 12: Estado inicial do termômetro

O volume total do líquido deve ser igual ao volume de líquido no reservatório mais o líquido presente no capilar. Portanto:

²Note que $\beta < 3\alpha$, ou seja, a dilatação do mercúrio é maior do que a do vidro, o que faz com que parte do líquido escape do bulbo após a dilatação, elevando a coluna de mercúrio.

$$V_{\text{Volume total do líquido}} = V_{\text{Volume do reservatório}} + \pi \frac{d^2}{4} h$$
Volume do líquido no capilar

Figura 13: Estado final do termômetro

Onde h é a altura da coluna de líquido, como foi dito no enunciado. Substituindo pelas expressões que encontramos:

$$V_0(1+\beta\Delta T) = V_0(1+3\alpha\Delta T) + \frac{\pi}{4}d_0^2(1+\alpha\Delta T)^2h$$

$$V_0\Delta T(\beta-3\alpha) = \frac{\pi}{4}d_0^2\underbrace{(1+\alpha\Delta T)^2}_{\approx 1}h$$

$$\frac{4}{\pi d_0^2}V_0\Delta T(\beta-3\alpha) = h$$

E de acordo com o enunciado $\Delta T = T - T_0$, assim a resposta do item a) é, portanto:

$$h \approx \frac{4V_0}{\pi d_0^2} (T - T_0)(\beta - 3\alpha)$$

b) De acordo com o enunciado, precisamos encontrar o diâmetro do tubo no caso em que a altura da coluna é h=1cm, e a variação temperatura é $T-T_0=1^{\circ}C$, para um reservatório de volume $V_0=0.2cm^3$. Reescrevendo a exppressão anterior para encontrar d_0 :

$$d_0 = \sqrt{\frac{4V_0}{\pi h}(T - T_0)(\beta - 3\alpha)}$$

Substituindo pelos valores numéricos dados:

$$d_0 = \sqrt{\frac{4 \times 0.2}{\pi \times 1} \times 1 \times (1.8 \times 10^{-4} - 3 \times 9 \times 10^{-6})}$$

Efetuando os cálculos chega-se em:

$$d_0 = 3.2 \times 10^{-3} cm = 0.062 mm$$

7.9 Questão 9

a) Como o bloco está em equilíbrio a soma das forças resultantes sob ele é nula. Como as duas únicas forças agindo no bloco são empuxo e a força peso:

$$F_p = F_e \implies mg = \rho V_{sub}g \implies V_{sub} = \frac{m}{\rho}$$

Onde V_{sub} representa a porção do bloco submersa, ρ é densidade do líquido e m é a massa do bloco. A massa m também pode ser escrita como $m = \rho_b V_b$, onde ρ_b representa a densidade do bloco e $V_b = a_0^3$ seu volume total. Assim:

$$V_{sub} = \frac{\rho_b a_0^3}{\rho}$$

Deste modo podemos encontrar a altura do bloco que está submersa. Vamos chamar essa altura de a_{sub} . Ela se relaciona com o volume por $V_{sub} = a_{sub}a_0^2$, assim:

$$V_{sub} = a_{sub}a_0^2 = \frac{\rho_b a_0^3}{\rho} \implies a_{sub} = \frac{\rho_b a_0}{\rho}$$

Figura 14: Figura da questão 9

Desse modo, o comprimento correspondente ao lado da fração da parte $n\tilde{a}o$ submersa do bloco é $a=a_0-a_{sub}$ (Confira a figura acima). E também é fácil ver que:

$$H_0 = a + h_0 \implies H_0 = a_0 - \frac{\rho_b a_0}{\rho} + h_0$$
 (7.9.1)

Substituindo pelos valores dados no exercício (em cm):

$$H_0 = 30 - \frac{8.6 \times 30}{13.55} + 50$$

$$H_0 = 60.96cm$$

8 Capítulo 8

8.1 Questão 1

Para calcular a máxima diferença de temperatura possível iremos considerar que toda a energia potencial gravitacional de uma porção de massa m de água é convertida em calor. Portanto:

$$\Delta Q = U \implies \Delta Q = mc\Delta T = mhg \implies \Delta T = \frac{gh}{c}$$

Antes de efetuar os cálculos, converta c para as unidades do SI:

$$c = 1 \frac{cal}{g \circ C} = 4200 \frac{J}{kg \circ C}$$

Assim:

$$\Delta T = \frac{9.81 \times 50}{4200} \approx 0.12^{\circ} C$$

8.2 Questão 2

a) De acordo com enunciado a função da capacidade térmica molar C(T) do sólido é:

$$C_v(T) = \frac{464}{T_D^3} T^3$$

Onde $T_D \approx 271 K$, para o NaCl. Para encontrar a capacidade térmica molar média basta utilizar a fórmula para o valor médio de uma função. No caso da função C(T) devemos encontrar o valor médio entre T=10 K e T=20 k, portanto:

$$\overline{C}_v = \frac{\int_{10}^{20} C(T)dT}{20 - 10} = \frac{464}{10T_D^3} \int_{10}^{20} T^3 dT = \frac{464}{10 \times 281^3} \left[\frac{T^4}{4} \right] \Big|_{10}^{20}$$

$$\overline{C}_v = \frac{464}{10 \times 281^3} \left[\frac{20^4}{4} - \frac{10^4}{4} \right] = 7.84 \times 10^{-2} \frac{cal}{mol K}$$

b) Utilizando uma tabela periódica, você irá encontrar que a massa molar do NaCl é de aproximadamente $58\frac{g}{mol}$. Portanto em 1kg de NaCl há 1000/58=17.25 mol. A quantidade de calor necessária é, portanto:

$$\Delta Q = n\bar{C}_v\Delta T = 17.25 \times 7.84 \times 10^{-2} \times 10 = 13.5cal$$

Veja que como foi dada a capacidade térmica molar nesse exercício, é necessário incluir o número de mols da substância em questão no cálculo da quantidade de calor.

8.3 Questão 3

Como o gelo desliza com velocidade constante sabemos que há a presença de atrito. No caso de um bloco descendo um plano inclinado, a força de atrito pode ser escrita como:

$$F_{at} = \mu mg \cos \theta$$

E sabemos que no equilíbrio, que é o caso desse exercício:

$$\mu = \tan \theta$$

Assim, a força de atrito pode ser escrita como:

$$F_{at} = mq \sin \theta$$

Ou seja, a força de atrito deve ser iguial à componente da força peso paralela ao plano inclinado.

O trabalho W devido a essa força de atrito é, em termos de uma distância percorrida d:

$$W = F_{at}d = F_{at}v\Delta t$$

Como o exercício pede a quantidade de gelo derretida após 1 minutos, iremos considerar que o intervalo de tempo Δt vale 60s. Esse trabalho devido ao atrito é o calor cedido ao bloco, portanto:

$$W = Q \implies m_d L = W = mq \sin \theta v \Delta t$$

Onde m_d é a massa de bloco derretido e m a massa total do bloco. Assim:

$$m_d = \frac{mg\sin\theta v\Delta t}{L}$$

Substituindo pelos valores numéricos $m=1000kg,~g=9.81\frac{m}{s^2},~\theta=10^\circ,~v=0.1\frac{m}{s},~\Delta t=60s$ e $l=80\frac{cal}{g}=336\frac{J}{g}.$ Substituindo:

$$m_d = \frac{1000 \times 9.81 \times \sin(10) \times 0.1 \times 60}{336} \approx 30g$$

8.4 Questão 4

a) Um elemento infinitesimal de área é representado em coordenadas esféricas por:

$$dS = R^2 \sin \theta d\theta d\varphi$$

Figura 15: Elemento de área em coordenadas esféricas

Onde θ representa o azimute e φ a longitude. Podemos calcular a potência incidente como:

$$P = \int_{S} \mathbf{F} \cdot d\mathbf{S} = \int_{S} \mathbf{F} \cdot \hat{\mathbf{n}} dS$$
 (8.4.1)

Isto é, estamos levando em conta nos cálculos a projeção do fluxo que é perpendicular à superfície na qual ele incide. Como $\mathbf{F} \cdot \hat{\mathbf{n}} = F \frac{y}{r}$ (cheque a imagem abaixo) e $y = r \sin \theta \sin \varphi$, a expressão para a potência incidente fica:

$$P = \int_0^{\pi} \int_0^{\pi} F \sin \theta \sin \varphi dS$$

Colocando os termos constantes fora da integral:

$$P = FR^2 \int_0^{\pi} \int_0^{\pi} \sin^2 \theta \sin \varphi d\theta d\varphi \tag{8.4.2}$$

Ambos os limites das integrais vão de 0 a π pois o a radiação só atinge um hemisfério.

Figura 16: As linhas de fluxo são paralelas ao eixo y, por isso podemos calcular sua projeção na superfície da terra como $\mathbf{F} \cdot \hat{\mathbf{n}} = F \frac{y}{r}$, pois o vetor unitário normal à superfície vale $\hat{\mathbf{n}} = \mathbf{r}/||r|| = (x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}})/||r||$.

Integrando primeiro com relação a φ , temos:

$$P = FR^2 \int_0^{\pi} \sin^2 \theta \left[-\cos \varphi \right] \Big|_0^{\pi} d\theta$$

E por conseguinte,

$$P = 2FR^2 \int_0^{\pi} \sin^2 \theta d\theta = FR^2 \left[\frac{1}{2} (\theta - \sin \theta \cos \theta) \right]_0^{\pi}$$

A integral acima pode ser feita através da substituição $\sin^2 x = \frac{1}{2}(1-\cos 2x)$ ou por partes. Assim, substituindo θ pelos valores nos limites de integração, finalmente obtemos:

$$P = \pi F R^2$$

Calculando a energia que incide em um dia (O valor que utilizaremos para o raio da Terra é de R=6371000m):

$$E = P\Delta t = \pi F R^2 \Delta t = \pi \times 1360 \times (6371000)^2 \times 24 \times 60 \times 60 = 1.5 \times 10^{22} J/dia$$

b) A energia efetiva que participará do processo de evaporação da água é $E' = 0.23 \times 0.71E = 0.1633E$. Deste modo, a massa de água evaporada é:

$$Q = mL \implies m = \frac{E'}{L}$$

Onde L representa o calor latente. Sendo ρ a densidade da água e Vo volume de água evaporada:

$$V = \frac{E'}{\rho L}$$

Como a espessura da camada de água evaporada é muito pequena em relação ao raio da Terra, iremos supor que $V \approx Ah = 4\pi R^2 h$, sendo h a profundidade da camada evaporada. Deste modo:

$$4\pi R^2 h = \frac{E'}{\rho L} \implies h = \frac{0.1633E}{4\pi \rho R^2 L}$$

Fazendo as devidas conversões de unidade obtemos (Convertendo o calor latente de cal para J e g para kg):

$$h \approx \frac{0.1633 \times 1.5 \times 10^{22}}{4\pi \times 1000 \times 6371000^2 \times 590 \times 1000 \times 4.18} \approx 1.95cm$$

Obs: A resposta diverge do gabarito

8.5 Questão 5

Primeiramente, devemos descobrir se todo o gelo pode ser derretido com o calor fornecido pelo calorímetro. Como há 100g de gelo e seu calor latente é de 80cal/g, o calor necessário para efetuar esse processo é:

$$Q = m_{aelo}L = 100 \times 80 = 8000cal$$

Efetue os calculos para o calorímetro e massa de água, tomando $\Delta T=20$ e veja que:

$$\Delta Q_{Aqua} + \Delta Q_{Al} = 100 \times 1 \times 20 + 250 \times 0.21 \times 20 = 11050 cal$$

Ou seja, o sistema pode fornecer mais calor do que o necessário para que todo o gelo derreta, deste modo temos que a temperatura de equilíbrio é diferente de zero.

$$T_{eq} \neq 0$$

Agora iremos calcular a temperatura de equilíbrio. Sabendo que a energia deve se conservar, podemos descobrir a temperatura final do sistem a partir de:

$$\sum Q = 0$$

$$\Delta Q_{Aqua} + \Delta Q_{Al} + \Delta Q_{qelo} + 8000 = 0$$

Sabemos que massa de água a inicialmente a $20^{\circ}C$ é de 500g (correspondente a 0, 5l), a massa de alumínio é 250g, seu calor específico é de $0.21\frac{cal}{g^{\circ}C}$, que a massa de água a $0^{\circ}C$ é de 100g e que $\Delta Q = mc\Delta T$, deste modo:

$$m_{Aaua_1}c_{Aaua}(T-20) + m_{Al}c_{Al}(T-20) + m_{Aaua_2}c_{Aaua}(T-0) + 8000 = 0$$

Substituindo pelos valores dados na questão:

$$500 \times 1 \times (T - 20) + 250 \times 0.21 \times (T - 20) + 100 \times 1 \times (T - 0) + 8000 = 0$$

Resolvendo para T_{eq} , que é a temperatura final do sistema:

$$T_{eq} = 4.7^{\circ}C$$

Obs: A resposta encontrada diverge do gabarito que consta no livro.

8.6 Questão 6

A solução deste problema é similar à do exercício anterior. Sabendo que:

$$\Delta Q_{Aaua} + \Delta Q_{Latao} + \Delta Q_{Alcool} = 0$$

$$m_{Agua}c_{Agua}\Delta T_{Agua} + m_{Latao}c_{Latao}\Delta T_{Latao} + m_{Alcool}c_{Alcool}\Delta T_{Alcool} = 0$$

Resolvendo para c_{Alcool} :

$$c_{Alcool} = -\frac{m_{Agua}c_{Agua}\Delta T_{Agua} + m_{Latao}c_{Latao}\Delta T_{Latao}}{m_{Alcool}\Delta T_{Alcool}}$$

Utilizando os valores dados:

$$c_{Alcool} = -\frac{250 \times 1 \times (26.3 - 30) + 200 \times 0.09 \times (26.3 - 30)}{150 \times (26.3 - 15)}$$

$$c_{Alcool} = 0.59 \frac{cal}{g^{\circ}C}$$

8.7 Questão 7

A energia fornecida pelo aquecedor é E=Pt, onde t representa o intervalo de tempo de funcionamento do aquecedor, no caso, 300s. Como toda essa energia será utilizada para aquecer o líquido:

$$E = \Delta Q \implies Pt = m_a L + mc\Delta T + C\Delta T$$

O termo m_gL representa o calor fornecido para derreter o gelo, $mc\Delta T$ representa o calor fornecido para elevar a temperatura da água (Veja que nesse caso m=200g, pois leva em consideração a água que já estava presentre no calorímetro e o gelo que foi derretido), e por fim $C\Delta T$ representa o calor fornecido para elevar a temperatura do calorímetro.

Agora, basta substituir pelos valores numéricos, $L=80\frac{cal}{g}, c=1\frac{cal}{g^{\circ}C}, \Delta T=39.7^{\circ}C, m_g=100g, m=200g, C=50\frac{cal}{g}, e~t=300s$:

$$P = \frac{100 \times 80 + 200 \times 1 \times 39.7 + 50 \times 39.7}{300} = 59.75 \frac{cal}{s} = 250W$$

8.8 Questão 8

A energia dissipada pelo resistor de potência P em um intervalo de tempo t é:

$$E = Pt$$

Que fará com que o líquido se aqueça, portanto:

$$\Delta Q = mc\Delta T = Pt \implies c = \frac{P}{\Delta T} \left(\frac{m}{t}\right)^{-1} = \frac{P}{V_m \Delta T}$$

Substituindo pelo valores numéricos:

$$c = \frac{200}{5 \times (38.3 - 15)} = 1.717 \frac{J}{q^{\circ}C}$$

Convertendo para de J para cal:

$$c = 0.41 \frac{cal}{g^{\circ}C}$$

8.9 Questão 9

A variação total de energia no primeiro experimento é:

$$\Delta E = 20U = 20mgh = 20 \times 26.3 \times 9.81 \times 1.6 = 8256.096J$$

E para o segundo experimento, no qual é usado um calorímetro, a quantidade de calor é (Lembre-se de converter a massa m de kg para g, pois o calor específico da água será utilizado em $\frac{cal}{g^{\circ}C}$):

$$Q=mc\Delta T=6320\times 1\times 0.313=1978.16cal$$

Igualando as duas grandezas:

$$8256.096J = 1978.16cal \implies 4.18J = 1cal$$

8.10 Questão 10

A quantidade de calor responsável pela variação de temperatura na bala e pela fusão corresponde à diferença entre a energia cinética inicial e final do sistema. Para descobrir a velocidade do sistema após a bala colidir com o pêndulo balístico basta utilizar conservação de momento (Como a bala fica retida no pêndulo, ambos os corpos passam a se mover com a mesma velocidade):

$$mv = (m+M)v_f$$

Onde v_f representa a velocidade final do conjunto bala+pêndulo e, m e M representam a massa da bala de chumbo e do pêndulo, respectivamente. Resolvendo para v_f e por meio dos valores dados no enunciado:

$$v_f = \frac{m}{m+M}v = \frac{0.01}{0.01+0.2} \times 300 = 14.29 \frac{m}{s}$$

A energia cinética do sistema antes da colisão é:

$$E_c = \frac{mv^2}{2} = \frac{0.01 \times 300^2}{2} = 450.00J$$

E após a colisão:

$$E_{cf} = \frac{(m+M)v_f^2}{2} = \frac{(0.01+0.2)14.29^2}{2} = 21.44J$$

A variação de energia é, portanto $\Delta E = 450 - 21.44 = 428.57J = 102.53cal$. Essa energia é convertida em calor. Para saber se é possível derreter uma fração da bala primeiro é necessário descobrir se essa variação de energia é o suficiente para

elevar a temperatura da bala de $(27^{\circ}C)$ até sua temperatura de fusão $(327^{\circ}C)$. A energia exigida para efetuar esse processo é:

$$Q = mc\Delta T = 10 \times 0.031 \times (327 - 27) = 93.00cal$$

A quantidade de calor exigida é, portanto, menor que a variação de energia ΔE . Deste modo, o calor utilizado para fundir parte da bala será Q = 102.53 - 93.00 = 9.53cal. Sendo m_d a massa da bala que é derretida, temos que:

$$Q = m_d L \implies m_d = \frac{Q}{L} = \frac{9.53}{5.85} = 1.6g$$

8.11 Questão 11

a) A taxa de transmissão de calor deve ser igual tanto na porção de alumínio quanto na porção de cobre, portanto:

$$\frac{dQ}{dt} = \Phi = \frac{k_{Al}A(100 - T)}{l_{Al}} = \frac{k_{Cu}A(T - 0)}{l_{cu}}$$

Veja que o termo A é cancelado. Substituindo pelos valores numéricos dados no exercício podemos encontrar a temperatura T na junção:

$$\frac{0.48 \times (100 - T)}{5} = \frac{0.92 \times T}{10}$$

Resolvendo para T:

$$96 - 0.96T = 0.92T \implies T = 51^{\circ}C$$

b) Utilizando os dados do alumínio, calcule a taxa de transmissão de calor:

$$\Phi = \frac{\Delta Q}{\Delta t} = \frac{0.48 \times 1 \times (100 - 51)}{5} = 4.704 \frac{cal}{s}$$

O calor fornecido no intervalo de uma hora é, portanto:

$$\Delta Q = \Phi \Delta t = 5.704 \frac{cal}{s} \times \underbrace{3600s}_{\text{1hora}} = 16934.4cal$$

A massa de gelo que é derretida por hora é então:

$$m_d = \frac{Q}{L} = \frac{16934.4}{80} = 211.5g$$

8.12 Questão 12

Podemos escrever a taxa de fluxo de calor para cada uma das partes como:

$$\Phi = \frac{dQ}{dt} = \frac{k_1 A(T_2 - T_1)}{l_1} = \frac{k_2 A(T_3 - T_2)}{l_2} = \frac{k_3 A(T_4 - T_3)}{l_3}$$

E para a barra equivalente:

$$\Phi = \frac{dQ}{dt} = \frac{kA(T_4 - T_1)}{l_1 + l_2 + l_3} \tag{8.12.1}$$

Figura 17: Barra metálica formada por três segmentos.

Veja que podemos reescrever as diferenças de temperatura como:

$$\Phi \frac{l_1}{k_1 A} = (T_2 - T_1), \Phi \frac{l_2}{k_2 A} = (T_3 - T_2), \Phi \frac{l_3}{k_3 A} = (T_4 - T_3)$$

Agora, veja que na equação da barra equivalente a diferença de temperatura pode ser escrita como:

$$T_4 - T_1 = (T_4 - T_3) + (T_3 - T_2) + (T_2 - T_1)$$

Substituindo pelas expressões encontradas:

$$T_4 - T_1 = \frac{\Phi}{A} \left(\frac{l_1}{k_1} + \frac{l_2}{k_2} + \frac{l_3}{k_3} \right)$$

Substituindo na (8.12.1):

$$\Phi = \frac{kA}{l_1 + l_2 + l_3} \frac{\Phi}{A} \left(\frac{l_1}{k_1} + \frac{l_2}{k_2} + \frac{l_3}{k_3} \right)$$

Resolvendo para k:

$$k = \frac{l_1 + l_2 + l_3}{\left(\frac{l_1}{k_1} + \frac{l_2}{k_2} + \frac{l_3}{k_3}\right)}$$

8.13 Questão 13

A taxa de transmissão de calor para uma casca infinitesimal de espessura dr, a uma distância r do centro e com diferença de temperatura dT entre sua parte interna e sua parte externa é:

$$\Phi = \frac{dQ}{dt} = 4\pi kr^2 \frac{dT}{dr}$$

Separando as variáveis:

$$\Phi \int_{r_1}^{r_2} \frac{dr}{r^2} = 4\pi k \int_{T_1}^{T_2} dT$$

Resolvendo as integrais:

$$\Phi\left(\frac{1}{r_1} - \frac{1}{r_2}\right) = 4\pi k (T_2 - T_1)$$

Simplificando a expressão chegamos à:

$$\Phi = 4\pi k \left(\frac{r_1 r_2}{r_2 - r_1}\right) (T_2 - T_1)$$

8.14 Questão 14

a) Sabemos que área compreendida por uma casca infinitesimal e concêntrica a uma distância ρ do centro do cilindro é:

$$A = 2\pi \rho l$$

Portanto podemos escrever a taxa de transmissão de calor por unidade de tempo como:

$$\Phi = \frac{dQ}{dt} = k(2\pi\rho l)\frac{dT}{d\rho}$$

Basta adotar os mesmo métodos do exercício anterior, isto é, separar as variáveis e integrar:

$$\Phi \int_{\rho_1}^{\rho_2} \frac{d\rho}{\rho} = 2\pi lk \int_{T_1}^{T_2} dT$$

$$\Phi(\ln \rho_2 - \ln \rho_1) = 2\pi l k (T_2 - T_1)$$

Logo:

$$\Phi = \frac{2\pi l k (T_2 - T_1)}{\ln\left(\frac{\rho_2}{\rho_1}\right)}$$

b) Primeiramente, substituiremos os valores numéricos dados pelo exercício na fórmula que encontramos anteriormente:

$$\frac{dQ}{dt} = \Phi = \frac{2\pi \times 20 \times 5.7 \times 10^{-5} \times (100 - 25)}{\ln\left(\frac{5.5}{5}\right)} = 5.64 \frac{cal}{s}$$

Agora iremos calcular o volume de café dentro da garrafa:

$$V = l\pi \rho_1^2 = 20\pi \times 5^2 = 1571cm^3$$

Em seguida, assumiremos que a densidade e o calor específico do café são iguais aos da água. Fazendo isso encontramos uma massa de café de 1571g, deste modo:

$$Q = mc\Delta T = 1571 \times 1 \times (100 - 25) = 117825cal$$

Como a taxa de transmissão de calor por unidade de tempo é de $5.64\frac{cal}{s}$ e o calor cedido ao ambiente é Q=117825cal, o tempo necessário para que o café esfrie até a temperatura ambiente é:

$$\frac{\Delta Q}{\Delta t} = \Phi \implies \Delta t = \frac{\Delta Q}{\Phi} = \frac{117825cal}{5.64\frac{cal}{2}} = 20890s$$

Convertendo para horas:

$$\Delta t = 5h48min$$

8.15 Questão 15

Essa questão é similar à anterior. Sabemos que a água é evaporada a uma taxa de $\frac{1 \text{ litro}}{5 \text{ min}}$. O calor necessário para evaporar 1l de água é:

$$\Delta Q = mL = 1000 \times 540 = 540000 cal$$

Portanto, podemos escrever:

$$\frac{dQ}{dt} = \frac{\Delta Q}{\Delta t} = \frac{540000cal}{5 \times 60s} = 1800 \frac{cal}{s}$$

A taxa de transmissão de calor por unidade de tempo para o fundo da chaleira pode ser escrita como:

$$\frac{dQ}{dt} = \frac{k\pi r^2}{d}(T_2 - T_1)$$

Onde k é sua condutividade térmica, r seu raio, d sua espessura e T_2 e T_1 são as temperaturas no fundo e no topo da base da chaleira, respectivamente. Substituindo pelos valores numéricos:

$$\frac{dQ}{dt} = 1800 = \frac{0.49 \times \pi \times 7.5^2}{0.2} (T_2 - 100)$$

Resolvendo para T_2 o valor encontrado é:

$$T_2 = 104.2^{\circ}C$$

8.16 Questão 16

a) O calor necessário para congelar uma camada de água de massa m e calor latente de fusão L é:

$$\Delta Q = mL$$

Sua massa pode ser expressa como $m = \rho Ax$, portanto:

$$\Delta Q = \rho AxL$$

Onde A é a área de sua seção transversal e x sua espessura. Agora, a taxa de transmissão de calor por unidade de tempo para esta camada de gelo será:

$$\Phi = \frac{\Delta Q}{t} = \frac{kA\Delta T}{dx}$$

$$\frac{\rho AxL}{t} = \frac{kA\Delta T}{dx}$$

Separando as variáveis e integrando:

$$\int_{x_0}^x x dx = \frac{kt\Delta T}{\rho L}$$

Considerando que $x_0 = 0$ obtemos:

$$\frac{x^2}{2} = \frac{kt\Delta T}{\rho L}$$

$$x = \sqrt{\frac{2kt(\Delta T)}{\rho L}}$$

b) Neste item o cálculo é direto, basta utilizar os valores dados no enunciado:

$$x = \sqrt{\frac{2 \times 4 \times 10^{-3} \times (60 \times 60) \times (10)}{0.92 \times 80}} = 1.98cm$$

8.17 Questão 17

a) Como $1l = 0.001m^3$, a variação de volume da água será:

$$\Delta V = V_f - V_i = 1.671 - 0.001 = 1.670m^3$$

Como a pressão atmosférica vale $P_0=1.013\times 10^5 Pa$, o trabalho realizado pelo vapor é:

$$W = P_0 \Delta V = 1.013 \times 1.670 \times 10^5 = 1.69 \times 10^5 J$$

b) O calor necessário para evaporar 1l de água é:

$$\Delta Q = mL = 1000 \times 536.9 = 536900cal = 2.25 \times 10^6 J$$

Pela 1ª lei da termodinâmica:

$$\Delta U = \Delta Q - W$$

A variação de energia interna é, portanto:

$$\Delta U = 2.25 \times 10^6 - 1.69 \times 10^5 = 2.09 \times 10^6 J$$

8.18 Questão 18

a) Partindo dos dados do enunciado podemos inferir que:

$$\begin{cases} I)P_i(V_b - V_i) = W_{ibf} = 100J \\ II)(P_a - P_i)(V_b - V_i) = W_{iafbi} = 200J \\ III)U_f - U_i = 50J \end{cases}$$

O índice representa as grandezas em cada ponto do diagrama PV (V_i representa o volume no ponto i, V_b representa o volume no ponto b etc).

Pela 1^a lei, a quantidade de calor Q_{ibf} associada ao caminho ibf será:

$$Q_{ibf} = \Delta U + W_{ibf} = 50J + 100J = 150J$$

b) A partir da equação II) podemos deduzir que o trabalho associado ao ciclo completo, isto é, a área correspondente ao quadrilátero ibfa compreendido pelo ciclo é de 200J. É facil ver que o trabalho associado ao caminho iaf é:

$$W_{iaf} = W_{iafbi} + W_{ibf} = 200 + 100 = 300J$$

c) Utilizando a primeira lei:

$$Q_{iaf} = \Delta U + W_{iaf} = 50 + 300 = 350J$$

d) O trabalho associado ao caminho fci é:

$$W_{fci} = (P_i - P_a)(V_i - V_b) = -(P_a - P_i)(V_b - V_i) = -W_{iafbi} = -200J$$

Uma maneira alternativa de encontrar W_{fci} é ver que a área do triângulo ibf equivale a metade da área do quadriláterio ibfa, isto é $W_{ibfi} = 200/2 = 100J$. Como o trabalho associado ao caminho ibf é 100J (Que também é a area associada ao quadrilátero compreendido pelo eixo V e o segmento que liga i e b), some ambas as grandezas e você irá obter 200J, como o processo se dá no caminho contrário, isto é, de f até i, o valor será negativo, portanto $W_{icf} = -200J$.

Agora, para encontrar a quantidade de calor associada é necessário usar primeira lei mais uma vez:

$$Q_{fci} = \Delta U + W = (U_i - U_f) + W_{icf} = -(U_f - U_i) + W_{icf} = -50 - 200 = -250J$$

8.19 Questão 19

Comece encontrando o trabalho em cada etapa, pois o resto da solução se tornará mais simples. Para o caminho ab o trabalho é (Lembre-se que $1bar = 10^5 Pa$ e que $1l = 10^{-3}m^3$):

$$W_{ab} = P_a(V_b - V_a) = 1 \times 10^5 (10 - 5) \times 10^{-3} = 500J$$

Para o caminho bc encontre a área do trapézio, ou faça que:

$$W_{bc} = \frac{1}{2}(P_c - P_a)(V_a - V_b) + P_a(V_a - V_b) = -750J$$

E o trabalho do caminho ca é $W_{ca} = 0$, pois o processo é isovolumétrico. E para encontrar o trabalho do ciclo basta efetuar a soma algébrica do trabalho calculado para cada etapa, deste modo $W_{ciclo} = 500 - 750 + 0 = -250J$. Preenchendo a tabela:

Etapa	W(J)	Q(J)	$\Delta U(J)$
ab	500	800	
bc	-750		
ca	0		-100
ciclo(abca)	-250		

Pela primeira lei podemos encontrar a variação de energia interna do processo ab:

$$\Delta U_{ab} = Q - W_{ab} = 800 - 500 = 300J$$

E o calor associado ao processo ca:

$$Q = W_{ca} + \Delta U_{ca} = 0 - 100 = -100J$$

Etapa	W(J)	Q(J)	$\Delta U(J)$
ab	500	800	300
bc	-750		
ca	0	-100	-100
ciclo(abca)	-250		

Para encontrar a variação interna no processo bc basta fazer o seguinte, temos que:

$$\begin{cases} I)U_b - U_a = 300J \\ II)U_a - U_c = -100J \end{cases}$$

Fazendo -[II) + I]:

$$-(U_a - U_c) - (U_b - U_a) = U_c - U_b = \Delta U_{bc} = 100 - 300 = -200J$$

Utilizando a primeira lei:

$$Q_{bc} = W_{bc} + \Delta U_{bc} = -750 - 200 = -950J$$

Etapa	W(J)	Q(J)	$\Delta U(J)$
ab	500	800	300
bc	-750	-950	-200
ca	0	-100	-100
ciclo(abca)	-250		

Como o ciclo é fechado a variação de energia interna é zero (faça a soma algébrica da variação de energia interna e você verá que isso ocorre de fato). E o calor associado ao ciclo é a soma algébrica do calor de cada etapa, deste modo $Q_{ciclo} = 800 - 950 - 100 = -250J$. Finalizando a tabela:

Etapa	W(J)	Q(J)	$\Delta U(J)$
ab	500	800	300
bc	-750	-950	-200
ca	0	-100	-100
ciclo(abca)	-250	-250	0

9 Capítulo 9

9.1 Questão 1

A pressão P do gás, juntamente com a pressão da coluna de mercúrio P_m , deve ser igual à pressão atmosférica P_0 , portanto:

$$P + P_m = P_0 \implies P = P_0 - P_m$$

A pressão da coluna de mercúrio é proporcional a sua altura, sabendo que a altura devido a pressão atmosférica verdadeira é de 750mm, quando a altura da coluna de mercúrio é de 735mm, P_m vale:

$$P \propto h \implies P_m = \frac{h_1}{h_0} P_0 = \frac{735}{750} P_0$$

A pressão do gás é, então:

$$P = P_0 - P_m = P_0 - \frac{735}{750}P_0 = P_0(1 - \frac{735}{750})$$

Utilizando a lei dos gases ideais podemos encontrar o número de mols n de ar que está aprisionado no espaço acima da coluna:

$$PV = nRT \implies n = \frac{PV}{RT}$$

Como a coluna que contém ar possui altura h = 900 - 735 = 165mm e área da seção transversal $A = 1cm^2$, seu volume será de $V = Ah = 165 \times 10^{-3} \times 10^{-4} = 1.65 \times 10^{-5}m^3$. E a temperatura, em Kelvin, é T = 20 + 273 = 293K. Agora que temos todos os dados podemos encontrar o número de mols n (O valor utilizado para a pressão atmosférica é $P_0 = 1atm \approx 1.013 \times 10^5 Pa$):

$$n = \frac{PV}{RT} = \frac{(1 - \frac{735}{750}) \times 1.013 \times 10^5 \times 1.65 \times 10^{-5}}{8.31 \times 293}$$
$$\boxed{n = 1.36 \times 10^{-5} mol}$$

9.2 Questão 2

a) O número de mols de um gás é a razão entre sua massa e sua massa molar, deste modo podemos escrever a equação de Clapeyron como:

$$PV = \frac{m}{M}RT$$

No caso do gás oxigênio, sua massa molar M é de $32\frac{g}{mol}$. Agora, resolvendo para m e substituindo pelos dados numéricos do enunciado (Desta vez o valor usado para a constante R será $0.082\frac{atm\ l}{mol\ K}$) o valor encontrado para a quantidade de O_2 em cada um dos recipientes é:

$$m = \frac{PVM}{RT} = \frac{1 \times 1 \times 32}{0.082 \times 298} = 1.31g$$

Ou seja, a massa total de O_2 é:

$$m = 2.62g$$

b) O volume dos recipientes não se altera durante o processo e sabemos que na situação final a pressão em ambos será a mesma. Aquecer um dos recipientes fará com que uma porção do gás passe de um lado para o outro. Para resolver este subitem é necessário encontrar a quantidade final de O_2 em cada um dos recipientes. Escrevendo a equação de Claperyon para o recipiente da esquerda e da direita, respectivamente:

$$PV = n_1 RT_1$$
 e $PV = n_2 RT_2$

Figura 18: Recipiente contendo O_2 .

Dividindo uma equação pela outra e isolando n_2 :

$$n_2 = \frac{T_1}{T_2} n_1 = \frac{298}{373} n_1$$

Que é o número de mols de oxigênio presente no recipiente que foi aquecido. Como o sistema é fechado, a quantidade de gás deve se manter constante, desse modo:

$$n_1 + n_2 = N_0 = cte.$$

Onde N_0 é a quantidade total de oxigênio presente nos recipientes. Como $n=\frac{m}{M}$:

$$N_0 = \frac{2.62}{32} = 8.19 \times 10^{-2} mol$$

Agora podemos encontrar n_1 e n_2 :

$$\begin{cases} n_1 + n_2 = 8.19 \times 10^{-2} \\ n_2 = \frac{298}{373} n_1 \end{cases}$$

Resolvendo o sistema encontramos que $n_1 = 4.55 \times 10^{-2}$ e $n_2 = 3.64 \times 10^{-2}$. Utilizar a equação de Clapeyron para o segundo recipiente (Usar a equação para o primeiro recipiente irá fornecer o mesmo resultado) nos permite encontrar a pressão:

$$P = \frac{n_2 R T_2}{V} = \frac{3.64 \times 10^{-2} \times 0.082 \times 373}{1} = 1.11 atm$$

c) A variação de número de mols no recipiente mais quente é:

$$\Delta n = \frac{N_0}{2} - n_2 = 4.55 \times 10^{-3} mol$$

Como M = 32g/mol, segue que:

$$\Delta m = M\Delta n = 0.15g$$

9.3 Questão 3

a) A pressão resultante sob o gás será a soma da pressão atmosférica e da pressão devido ao corpo da massa de 10kg:

$$P = P_0 + \frac{mg}{A} = 1atm + \frac{10 \times 9.81}{200 \times 10^{-4}} \times 10^{-5} atm = 1.048 atm$$

► Solucionário Curso de Fisica Básica II

Onde usamos que $1Pa \approx 10^{-5} atm$. A quantidade de gás no recipiente é:

$$n = \frac{PV}{RT} = \frac{1.048 \times 3}{0.082 \times 293} = 0.131 mol$$

Sabemos que a massa molar do He_2 é de M=4g/mol, desse modo o valor encontrado para a densidade inicial do gás hélio é:

$$\rho = \frac{m}{V} = \frac{nM}{V} = \frac{0.131 \times 4}{3} = 0.174 \frac{g}{l} = 0.174 \frac{kg}{m^3}$$

b)Utilizando a equação de Clapeyron:

$$V = \frac{nRT}{P} = \frac{0.131 \times 0.082 \times 343}{1.048} = 3.51l$$

c) Como o processo é isobárico o trabalho é dado por (Usando a conversão $1atm \approx 10^5 Pa$):

$$W = P\Delta V = 1.048 \times 10^5 \times (3.51 - 3.00) \times 10^{-3} = 53.4J$$

d) A variação de temperatura do gás foi de $\Delta T = 50^{\circ}C$. A variação de energia interna encontrada é:

$$\Delta U = nC_v \Delta T = 0.131 \times \frac{3}{2} \times 8.31 \times 50 = 81.6J$$

e) Por meio da 1ª lei podemos encontrar o calor fornecido ao gás:

$$Q = \Delta U + W = 53.4 + 81.6 = 135J$$

9.4 Questão 4

- a) Segue o diagrama P-V com a identificação de cada um dos processos:
- ▶ Solucionário Curso de Fìsica Básica II

Pelas informações dadas no enunciado podemos encontrar os valores numéricos dos volumes e pressões. O volume inicial V_0 , no ponto A, será:

$$V_A = V_0 = \frac{nRT_0}{V_0} = \frac{1 \times 0.082 \times 300}{1} = 24.6l$$

E o volume no ponto B, após ocorrer o primeiro processo:

$$V_B = \frac{3}{4}V_0 = 18.5l$$

Como o a temperatura no ponto C é igual à temperatura do ponto A $(T_0 = T_A = T_C = 300K)$, temos que:

$$\frac{P_A V_A}{T_A} = \frac{P_C V_C}{T_C} \implies P_C = \frac{V_A}{V_C} P_A = \frac{V_0}{\frac{3}{4} V_0} P_0 = \frac{4}{3} atm$$

Colocando esses valores no diagrama P-V:

b) O trabalho nos processos ii e iv é nulo, deste modo a contribuição parte somente dos processos i e iii:

$$W = W_i + W_{iii}$$

Temos que:

$$W_i = P_0(V_B - V_A) = P_0(\frac{3}{4}V_0 - V_0) = 1.013 \times 10^5(18.5 - 24.6) \times 10^{-3} = -623J$$

$$W_{iii} = P_1(V_D - V_C) = \frac{4}{3} \times 1.013 \times 10^5 (24.6 - 18.5) \times 10^{-3} = 837J$$

$$W = W_i + Wiii = -623 + 837 = 208J$$

c) Pela primeira lei:

$$Q = \Delta U + W$$

Como a temperatura nos pontos A e C é igual, a variação de energia interna é nula, e o calor fornecido será igual ao trabalho do ponto A ao ponto C realizado pelo gás:

$$Q = W_i = 623J$$

d) Utilizando a equação de Clapeyron nos pontos B e D, respectivamente:

$$T_B = \frac{P_0 V_B}{nR} = \frac{1 \times 18.5}{1 \times 0.082} = 225K$$

$$T_D = \frac{P_1 V_D}{nR} = \frac{\frac{4}{3} \times 1 \times 24.6}{1 \times 0.082} = 400K$$

e) Como dito anteriormente, a temperatura nos pontos A e C é a mesma, portanto:

$$\boxed{\Delta U_{i+ii} = 0}$$

9.5 Questão 5

a) Para os pontos A e B é válida a relação:

$$\frac{P_A V_A}{T_A} = \frac{P_B V_B}{T_B} \implies \frac{P_0 V_0}{T_0} = \frac{P_B \frac{3}{2} V_0}{T_o} \implies P_B = P_C = \frac{2}{3} P_0$$

Colocando os dados no diagrama:

b) Como o processo i é isotérmico, o trabalho é dado por:

$$dW = PdV \implies W = nRT \int_{V_i}^{V_f} \frac{dV}{V} = nRT \ln \left(\frac{V_f}{V_i}\right)$$
$$W_i = 1 \times 8.31 \times 293 \times \ln \left(\frac{\frac{3}{2}V_0}{V_0}\right) = 987J$$

Para o processo 2, que ocorre a pressão constante:

$$W_{ii} = \frac{2}{3}P_0(V_0 - \frac{3}{2}V_0) = -\frac{1}{3}P_0V_0 = -\frac{1}{3}nRT_0 = -812J$$

O trabalho total realizado pelo gás é:

$$W = Wi + W_{ii} = 987 - 812 = 175J$$

9.6 Questão 6

a) Para o ponto B:

$$V_B = \frac{nRT_B}{P_B} = \frac{0.1 \times 0.082 \times 300}{1} = 2.46l$$

O processo BC é isovolumétrico, deste modo $V_C = V_B = 2.46l$. Assim, vale para estes pontos,

$$\frac{P_B}{T_B} = \frac{P_C}{T_C} \implies P_C = P_1 = P_B \frac{T_C}{T_B} = 1 \times \frac{300}{600} = 2atm$$

Finalmente, podemos encontrar a o volume V_A :

$$V_A = \frac{nRT_A}{P_A} = \frac{0.1 \times 0.082 \times 300}{2} = 1.23l$$

Desenhando o diagrama P-V:

b) Temos para o processo AB que:

$$AB: \begin{cases} \Delta U = 0, \text{ pois } \Delta T = 0\\ W = nR \ln \left(\frac{V_f}{V_i}\right) = 0.1 \times 8.31 \times 300 \ln \left(\frac{2.46}{1.23}\right) = 173J \text{ (Processo isotérmico)}\\ Q = W + \Delta U = 173J \end{cases}$$

Para o processo BC:

$$BC: \begin{cases} \Delta U = nC_v \Delta T = 0.1 \times \frac{3}{2} \times 8.31 \times (600 - 300) = 374J \\ W = 0, \text{ pois } \Delta V = 0 \\ Q = W + \Delta U = 374J \end{cases}$$

E finalmente, para o processo CA:

$$CA: \begin{cases} \Delta U = nC_v \Delta T = 0.1 \times \frac{3}{2} \times 8.31 \times (300 - 600) = -374J \\ W = P\Delta V = 2 \times 1.013 \times 10^5 \times (1.23 - 2.46) \times 10^{-3} = -249J \\ Q = W + \Delta U = -623J \end{cases}$$

Preenchendo a tabela:

Processo	$\Delta W(J)$	$\Delta Q(J)$	$\Delta U(J)$
AB	173	173	0
BC	0	374	374
CA	-249	-623	-374
ciclo	-76	-76	0

9.7 Questão 7

a) Nas condições normais de temperatura e pressão temos que P=1atm e T=273K. E em 1g de Hélio há $n=\frac{m}{M}=\frac{1}{4}=0.25mol$. Utilizando Clapeyron podemos encontrar o encontrar o volume no ponto A (Volume inicial):

$$V_0 = \frac{nRT_A}{P_A} = \frac{0.25 \times 0.082 \times 273}{1} = 5.6l$$

Após o primeiro processo o volume dobra, portanto o volume no ponto B é:

$$V_B = 2V_0 = 11.2l$$

No processo BC o gás absorve 50cal = 210J, como o gás não realiza trabalho todo o calor fornecido é igual a variação de energia interna:

$$Q = \Delta U \implies \Delta T = \frac{Q}{nC_v} \implies T_C - 273 = \frac{210}{0.25} \times \frac{2}{3 \times 8.31} \implies T_C = 340K$$

Por fim, basta encontrar a pressão P_D no ponto D:

$$P_D = \frac{nRT_D}{V_D} = \frac{0.25 \times 0.082 \times 340}{5.6} = 1.25atm$$

Desenhando o diagrama:

b) Para o processo AB:

$$\begin{cases} \Delta U = 0J, \text{ pois } \Delta T = 0\\ W = nRT \ln \left(\frac{V_i}{V_f}\right) = 0.25 \times 8.31 \times 273 \times \ln \left(\frac{11.2}{5.6}\right) = 393J \end{cases}$$

Para o processo BC:

$$\begin{cases} \Delta U = nC_v \Delta T = 0.25 \times \frac{3}{2} \times 8.31 \times (340 - 273) = 209J \\ W = 0J, \text{ pois } \Delta V = 0 \end{cases}$$

E para o processo CD:

$$\begin{cases} \Delta U = 0J, \text{ pois } \Delta T = 0\\ W = nRT \ln \left(\frac{V_i}{V_f}\right) = 0.25 \times 8.31 \times 340 \times \ln \left(\frac{5.6}{11.2}\right) = -490J \end{cases}$$

Transcrevendo para uma tabela:

Processo	$\Delta U(J)$	W(J)
AB	0	393
BC	209	0
CD	0	-490

9.8 Questão 8

Para o processo AB podemos escrever o trabalho como:

$$W_{AB} = P_0(V_B - V_A)$$

Escrevendo a equação de Clapeyron para os pontos A e B, respectivamente:

$$V_A = \frac{RT_1}{P_0}$$

$$V_B = \frac{RT_2}{P_0}$$

O trabalho no processo AB é, portanto:

$$W_{AB} = P_0(\frac{RT_2}{P_0} - \frac{RT_1}{P_0}) = R(T_2 - T_1)$$

O trabalho no processo BC, que é um processo isotérmico, pode ser escrito como:

$$W_{BC} = RT \ln \left(\frac{V_0}{V_B}\right)$$

O volume V_B pode ser encontrado a partir de Clapeyron:

$$V_B = \frac{RT_2}{P_0}$$

O trabalho para segunda etapa é, então:

$$W_{BC} = RT \ln \left(\frac{P_0 V_0}{R T_2} \right)$$

Para encontrar o trabalho realizado na quarta etapa o procedimento é análogo:

$$W_{DA} = RT_1 \ln \left(\frac{V_A}{V_0}\right)$$

O volume V_A no ponto A é dado por:

$$V_A = \frac{RT_1}{P_0}$$

Substituindo:

$$W_{DA} = RT_1 \ln \left(\frac{RT_1}{P_0 V_0} \right) = -RT_1 \ln \left(\frac{P_0 V_0}{RT_1} \right)$$

O trabalho total é:

$$W = W_{AB} + W_{BC} + \underbrace{W_{CD}}_{=0} + W_{DA} = R(T_2 - T_1) + RT_2 \ln\left(\frac{P_0 V_0}{RT_2}\right) - RT_1 \ln\left(\frac{P_0 V_0}{RT_1}\right)$$

9.9 Questão 9

A capacidade térmica a pressão constante é dada por:

$$C_p = C_v + R = \frac{3}{2}R + R = \frac{5}{2}R$$

O coeficiente de Poisson será:

$$\gamma = \frac{C_p}{C_v} = \frac{5}{3}$$

Para um processo adiabático:

$$P_0V_0^{\gamma} = PV^{\gamma}$$

$$V^{5/3} = \frac{P_0}{P} \left(\frac{nRT}{P_0}\right)^{5/3} = \frac{10}{1} \left(\frac{1 \times 0.082 \times 273}{10}\right)^{5/3} \implies V = 8.92l$$

Assim, podemos encontrar a temperatura:

$$T = \frac{PV}{nR} = \frac{1 \times 8.92}{1 \times 0.082} = 109K = -164^{\circ}C$$

b) Como o processo é adiabático, o calor fornecido é Q=0, deste modo podemos encontrar o trabalho a partir da variação de energia interna:

$$Q = \Delta U + W \implies W = -\Delta U = -nC_v \Delta T = -1 \times \frac{3}{2} \times 8.31 \times (109 - 273)$$

$$W = 2045J$$

9.10 Questão 10

a) Com as informações fornecidas no enunciado podemos desenhar o seguinte diagrama:

Como o processo AB é adiabático vale o seguinte:

$$P_A V_A^{\gamma} = P_B V_B^{\gamma} \implies P_B = P_A \left(\frac{V_A}{V_B}\right)^{\gamma} = 1 \left(\frac{1}{0.5}\right)^{\frac{7}{5}} = 2.64l$$

Para encontrar a temperatura no ponto B podemos usar a seguinte relação:

$$\frac{P_A V_A}{T_A} = \frac{P_B V_B}{T_B} \implies T_B = T_A \left(\frac{P_B V_B}{P_A V_A}\right) = 300 \left(\frac{2.64 \times 0.5}{1 \times 1}\right) = 396K$$

E para o ponto C:

$$\frac{V_C}{T_C} = \frac{V_A}{T_A} \implies T_C = T_A \frac{V_C}{V_A} = 300 \times \frac{0.5}{1} = 150K$$

Colocando esses dados no diagrama:

b) Podemos calcular o número de mols de Hidrogênio a partir de,

$$n = \frac{PV}{RT} = \frac{1 \times 1}{0.082 \times 300} = 4.06 \times 10^{-2} mol$$

Como $\gamma = 7/5$ e $C_p = C_v + R$, temos que:

$$\gamma = \frac{C_p}{C_v} = 1 + \frac{R}{C_v} = \frac{7}{5} \implies C_v = \frac{5}{2}R$$

Assim, a variação de energia interna no processo AB é:

$$\Delta U_{AB} = nC_v \Delta T = 4.06 \times 10^{-2} \times \frac{5}{2} \times 8.31(396 - 300) = 80.9J$$

Portanto, temos que:

$$W_{AB} = -\Delta U_{AB} = -80.9J$$

Para o processo CA o trabalho é simplesmente,

$$W_{CA} = P_0(V_C - V_A) = 1.013 \times 10^5 (1 - 0.5) \times 10^{-3} = 50.6$$

Tendo sido realizadas as conversões apropriadas de unidades. O trabalho do ciclo vale, então:

$$W = W_{AB} + W_{CA} = -30.3J$$

c) No processo BCo trabalho é nulo, a variação de energia interna por sua vez vale:

$$\Delta U_{BC} = nC_v \Delta T = 4.06 \times 10^{-2} \times \frac{5}{2} \times 8.31 \times (150 - 396) = -207.5J$$

E $Q_{BC}=\Delta U_{BC}.$ Por fim, a variação de energia interna do gás no processo CAé:

$$\Delta U_{CA} = 4.06 \times 10^{-2} \times \frac{5}{2} \times 8.31 \times (300 - 150) = 126.5J$$

E por conseguinte, $Q_{CA} = \Delta U_{CA} + W_{CA} = 126.5J + 50.6J = 177.1J$. Preenchendo a tabela:

Processo	$\Delta U(J)$	Q(J)
AB	80.9	0
BC	-207.5	-207.5
CA	126.6	177.1

9.11 Questão 11

Processo i): Como o processo é isovolumétrico $(V_f = V_i)$ vale a relação:

$$\frac{P}{T} = \frac{P_0}{T_0} \implies T = T_0 \frac{P}{P_0} = \frac{290}{2} = 145K$$

Como $\Delta V=0$ segue que W=0. Já a variação de energia interna pode ser encontrada por:

$$\Delta U = nC_v \Delta T = 1 \times \frac{3}{2} \times 8.31 \times (145 - 290) = -1807J$$

Processo ii): Devido ao fato do processo ser isotérmico o produto entre a pressão o volume é constante, portanto:

$$PV = P_0 V_0 \implies V = V_0 \frac{P_0}{P} = 2V_i$$

O trabalho realizado pelo gás no prcesso isotérmico é:

$$W = nRT \ln \frac{V}{V_i} = 1 \times 8.31 \times 290 \times \ln 2 = 1678J$$

Como $\Delta T = 0$ não há variação de energia interna, pois $\Delta U = nC_v \underbrace{\Delta T}_{=0} = 0$.

Processo iii): Para processos adiabáticos temos que:

$$PV^{\gamma} = P_0 V_0^{\gamma}$$

Como $C_v=3/2R$, temos que $C_p=3/2R+R=5/2R$ e por conseguinte $\gamma=\frac{C_p}{C_v}=5/3$. Resolvendo para V:

$$V = \left(\frac{P_0}{P}\right)^{\frac{1}{\gamma}} V_i = 2^{3/5} V_i = 1.51 V_i$$

Para encontrar a temperatura utilizaremos a relação:

$$\frac{PV}{T} = \frac{P_0 V_0}{T_0} \implies T = T_0 \frac{P_0 V_0}{P} = T_0 \frac{1.64}{2} = 218K$$

Utilizando a variação de temperatura para encontrar a variação de energia interna:

$$\Delta U = nC_v \Delta T = 1 \times \frac{3}{2} \times 8.31 \times (219 - 290) = -897J$$

Para o processo adiabático $W = -\Delta U$, portanto W = 897J.

Processo iv): Na expansão livre não há variação de enegia interna nem realização de trabalho, a temperatura também se mantém constante. Só há alteração no volume:

$$PV = P_0 V_0 \implies V = 2V_i$$

Montando a tabela:

Processo	V_f	$T_f(K)$	W(J)	$\Delta U(J)$
i	V_i	145	0	-1807
ii	$2V_i$	290	1670	0
iii	$1.51V_i$	219	897	-897
iv	$2V_i$	290	0	0

9.12 Questão 12

a) No equilíbrio, a pressão no gás será:

$$P = P_0 + \frac{mg}{\pi a^2}$$

Se o gás for submetido à um processo adiabático podemos dizer que:

$$PV^{\gamma} = P_f V_f^{\gamma} \tag{9.12.1}$$

Onde P_f e V_f indicam pressão e volume finais, respectivamente. Se a bolinha for empurrada a uma distância x para baixo, o volume final do gás será:

$$V_f = V - \pi a^2 x$$

Deste modo, podemos encontrar a pressão a partir da (9.12.1):

$$P_f = P\left(\frac{V}{V_f}\right)^{\gamma} = P\left(\frac{V_f}{V}\right)^{-\gamma} = P\left(\frac{V - \pi a^2 x}{V}\right)^{-\gamma} = P\left(1 - \frac{\pi a^2 x}{V}\right)^{-\gamma}$$

Utilizando a aproximação $(1+x)^n \approx 1 + nx$:

$$P_f = P(1 + \gamma \frac{\pi a^2 x}{V})$$

Escrevendo a equação do movimento para a bolinha:

$$m\ddot{x} = P_0\pi a^2 + mg - P_f\pi a^2$$

$$m\ddot{x} = P_0 \pi a^2 + mg - P(1 + \gamma \frac{\pi a^2 x}{V}) \pi a^2$$

Organizando a expressão obtemos:

$$\ddot{x} + \underbrace{\frac{P\gamma\pi^2a^4}{mV}}_{...2} x = \pi a^2(P_0 - P) + mg = 0$$

Que é a equação de um oscilador harmônico simples. Identificando a frequência ω :

$$\omega = \sqrt{\frac{P\gamma\pi^2a^4}{mV}} = \pi a^2 \sqrt{\frac{P\gamma}{mV}}$$

O período é dado por $\tau = \frac{2\pi}{\omega}$, deste modo:

$$\tau = \frac{2}{a^2} \sqrt{\frac{mV}{P\gamma}}$$

b) Isolando γ a partir da resposta do exercício anterior:

$$\gamma = \frac{4mV}{a^4 \left(P_0 + \frac{mg}{\pi a^2}\right)\tau^2}$$

Substituindo pelos dados fornecidos:

$$\gamma = \frac{4 \times 10 \times 10^{-3} \times 5 \times 10^{-5}}{(5 \times 10^{-3})^4 \left(10^5 + \frac{10 \times 10^{-3} \times 9.81}{\pi (5 \times 10^{-3})^2}\right) \times 1.5^2} = 1.4$$

9.13 Questão 13

a) Temos que no instante inicial $T_0 = 273K$ e que P = 1atm (Condições NTP). Deste modo a temperatura inicial é:

$$V_0 = \frac{nRT_0}{P_0} = \frac{1 \times 0.082 \times 273}{1} = 22.4l$$

Agora, podemos encontrar a pressão do gás no segundo estado levando em consideração que o primeiro processo é isotérmico,

$$P_1V_1 = P_0V_0 \implies P_1 = P_0\frac{V_0}{V_1} = 1 \times \frac{22.4}{5} = 4.48atm$$

Agora, comparando o terceiro estado com o primeiro, obtemos a seguinte relação (Veja que em ambos os estados os volumes são iguais $V_2 = V_0 = 22.4l$):

$$\frac{P_2}{T_2} = \frac{P_0}{T_0} \implies T_2 = T_0 \frac{P_2}{P_0} = 273 \times \frac{0.55}{1} = 150K$$

b) Sabemos que o processo *ii* é um processo adiabático e representa a transição entre o segundo e o terceiro estado, deste modo:

$$P_1 V_1^{\gamma} = P_2 V_2^{\gamma} \implies \left(\frac{V_2}{V_1}\right)^{\gamma} = \frac{P_1}{P_2} \implies \ln\left(\frac{V_2}{V_1}\right)^{\gamma} = \ln\frac{P_1}{P_2}$$
$$\gamma \ln\left(\frac{V_2}{V_1}\right) = \ln\frac{P_1}{P_2}$$

Utilizando os valores encontrados:

$$\gamma = \frac{\ln \frac{P_1}{P_2}}{\ln \left(\frac{V_2}{V_1}\right)} = \frac{\ln \left(\frac{4.48}{0.55}\right)}{\ln \left(\frac{22.4}{5}\right)} = 1.4 = \frac{7}{5}$$

Também abemos que $\gamma = \frac{C_p}{C_v}$ e que $C_p = C_v + R$, portanto:

$$\gamma = 1 + \frac{R}{C_V} \implies \frac{7}{5} = 1 + \frac{R}{C_V} \implies \frac{5}{2}R$$

e:

$$C_p = C_v + R = \frac{5}{2}R + R = \frac{7}{2}R$$

- c) Como a diferença de temperatura entre os estados inciais e finais é $\Delta T =$
- ► Solucionário Curso de Fisica Básica II

150 - 273 = -123K:

$$\Delta U = nC_v \Delta T = 1 \times \frac{5}{2} \times 8.31 \times (-123) = -2556J$$

e) No primeiro processo, que é isotérmico, o trabalho vale:

$$W_i = nRT_0 \ln\left(\frac{V_f}{V_i}\right) = 1 \times 8.31 \times 273 \times \ln\left(\frac{5}{22.4}\right) = -3402J$$

E como o segundo processo é adiabático temos que:

$$W_{ii} = -\Delta U \implies W_{ii} = 2556J$$

Por conseguinte,

$$W = W_i + W_{ii} = -3402 + 2556 = -847J$$

10 Capítulo 10

10.1 Questão 1

Suponha que exista um ciclo ABC, sendo o processo AB uma expansão isotérmica, BC uma compressão adiabática e o CA uma expansão adiabática. Não haveria troca de calor nos processos BC e CA, por serem adiabáticos, e no processo AB a máquina térmica removeria calor de um reservatório térmico, produzindo uma quantidade equivalente de trabalho, violando a segunda lei da termodinâmica. 3

10.2 Questão 2

A eficiência máxima ideal é igual à eficiência de uma de máquina de Carnot operando entre as temperaturas T_1 e T_2 . Neste caso ela vale:

$$\eta = 1 - \frac{T_2}{T_1} = 1 - \frac{20 + 273}{500 + 273} = 0.621$$

Deste modo, uma eficiência de 40% representa uma fração de:

$$f = \frac{0.4}{0.621} = 64.4\%$$

10.3 Questão 3

a) Temos que $W = Q_1 - Q_2$, que é a diferença de calor entre as fontes quente e fria, desse modo:

$$K = \frac{Q_2}{W} = \frac{Q_2}{Q_1 - Q_2}$$

³Ver Basic and Applied Thermodynamics, p. 152

Mas como $Q_1/Q_2 = T_1/T_2 \implies Q_1 = Q_2(T_1/T_2)$, o termo Q_2 é cancelado na expressão acima, e a expressão para o coeficiente de desempenho fica:

$$K = \frac{Q_2}{Q_2 \left(\frac{T_1}{T_2} - 1\right)} = \frac{1}{\frac{T_1}{T_2} - 1} = \frac{T_2}{T_1 - T_2}$$

b) A eficiência pode ser escrita como:

$$\eta = \frac{W}{Q_1} = \frac{W}{W + Q_2} \implies \frac{W + Q_2}{W} = \frac{1}{\eta} \implies \frac{Q_2}{W} = \frac{1}{\eta} - 1$$

Pela definição $K = \frac{Q_2}{W}$:

$$K = \frac{1 - \eta}{\eta}$$

c) Como o refrigerador opera entre as temperaturas $T_1 = 300K$ e $T_2 = 260K$, seu coeficiente de desempenho ideal é:

$$K = \frac{260}{300 - 260} = 6.5$$

Contudo, seu coeficiente de desempenho real vale:

$$K_{real} = 0.4K = 2.60$$

Pelo definição de coeficiente de desempenho:

$$K_{real} = \frac{Q_2}{W} \implies Q_2 = WK_{real}$$

Onde Q_2 é o calor removido da fonte fria. Agora, veja que o trabalho é dado por W = Pt, sendo P a potência do motor. Assim, temos que:

$$Q_2 = (Pt)K_{real} = 220 \times 15 \times 60 \times 2.6 = 5.15 \times 10^5 J$$

Obs: A resposta acima não coincide com a resposta apresentada no gabarito. Para obter $Q_2=4.7\times 10^5 J$ deveriamos considerar que P=200W.

A quantidade de gelo que podemos formar é:

$$m = \frac{Q_2}{W} = \frac{5.15 \times 10^5 J}{80 cal/g} = \frac{5.15 \times 10^5 J}{3.36 \times 10^5 J/kg} = 1.53 kg$$

10.4 Questão 4

Utilizando Clapeyron para cada um dos vértices:

$$T_A = \frac{P_A V_A}{R} = \frac{1 \times 10^5 \times 20 \times 10^{-3}}{8.31} = 240.6K$$

$$T_B = \frac{P_B V_B}{R} = \frac{2 \times 10^5 \times 20 \times 10^{-3}}{8.31} = 481K$$

$$T_C = \frac{P_C V_C}{R} = \frac{2 \times 10^5 \times 30 \times 10^{-3}}{8.31} = 721K$$

$$T_D = \frac{P_D V_D}{R} = \frac{1 \times 10^5 \times 30 \times 10^{-3}}{8.31} = 361K$$

b) O trabalho realizado pelo ciclo é:

$$W = W_{DA} + W_{BC} = P_B(V_C - V_D) + P_A(V_A - V_D)$$

$$W = 2 \times 10^{5}(30 - 20) \times 10^{-3} + 1 \times 10^{5}(20 - 30) \times 10^{-3} = 1000J$$

Para encontrar C_v para este gás podemos utilizar o valor $\gamma=\frac{7}{5}$ dado no exrrcício. Sabemos que:

$$\begin{cases} \gamma = \frac{C_p}{C_v} \\ C_p = C_v + R \end{cases} \implies \gamma = 1 + \frac{R}{C_v} = \frac{7}{5}$$

Resolvendo para C_v encontramos:

$$C_v = \frac{5}{2}R$$

Agora, a partir da primeira lei, podemos calcular o calor cedido em cada um dos processos a partir do trabalho e da variação de energia interna em cada etapa:

AB:
$$W = 0$$
, $\Delta U = nC_v \Delta T_{AB} = 1 \times \frac{5}{2} \times 8.31 \times (481 - 240.6) = 4995J$
BC: $W = 2000J$, $\Delta U = nC_v \Delta T_{BC} = 1 \times \frac{5}{2} \times 8.31 \times (722 - 481) = 5007J$
CD: $W = 0$, $\Delta U = nC_v \Delta T_{CD} = 1 \times \frac{5}{2} \times 8.31 \times (481 - 722) = -5006J$
DA: $W = -1000J$, $\Delta U = nC_v \Delta T_{DA} = 1 \times \frac{5}{2} \times 8.31 \times (240.6 - 361) = -2500J$

O calor total cedido é:

$$Q = Q_{AB} + Q_{BC} = 0 + 4995 + 2000 + 5007 \approx 12000J$$

A eficiência é, portanto:

$$\eta = \frac{W}{Q} = \frac{1000}{12000} \approx 8.33\%$$

c) No caso ideal a eficiência do ciclo é igual ao de uma máquina de Carnot que opera entre as temperaturas T_C e T_A :

$$\eta_c = 1 - \frac{T_A}{T_C} = 1 - \frac{240.6}{722} \approx 66.7\%$$

10.5 Questão 5

a) Desenhando o processo no diagrama P-V:

Podemos encontrar a pressão P_1 no ponto B (e também no C), utilizando a seguinte relação (Lembre-se que o processo de A até B é isotérmico):

$$P_A V_A = P_B V_B \implies P_B = P_1 = \frac{P_0 V_0}{\frac{3}{2} V_0} = \frac{2}{3} P_0$$

Adotando um processo análogo entre os pontos A e C, é possível encontrar a temperatura em C (Veja que nesse caso o processo CA é isovolumétrico):

$$\frac{P_C}{T_C} = \frac{P_A}{T_A} \implies T_C = T_0 \frac{\frac{2}{3}P_0}{P_0} = \frac{2}{3}P_0$$

O trabalho no processo isotérmico AB é:

$$W_{AB} = nRT_0 \ln \left(\frac{V_f}{V_i}\right) = nRT_0 \ln \left(\frac{3}{2}\right)$$

Já o trabalho no processo BC:

$$W_{BC} = P\Delta V = \frac{2}{3}P_0(V_0 - \frac{3}{2}V_0) = -\frac{P_0V_0}{3} = -\frac{nRT_0}{3}$$

Por fim, a variação de energia interna no processo CA é:

$$\Delta U_{CA} = nC_v \Delta T = \frac{3}{2} nR(T_0 - \frac{2}{3}T_0) = \frac{1}{2} nRT_0$$

Com esses dados podemos encontrar o calor fornecido, que vale:

$$Q = W_{AB} + \Delta U_{CA} = nRT_0 \ln\left(\frac{3}{2}\right) + \frac{1}{2}nRT_0$$

E o trabalho realizado no ciclo,

$$W = W_{AB} + W_{BC} = nRT_0 \ln\left(\frac{3}{2}\right) - \frac{nRT_0}{3}$$

Agora podemos encontrar o seu rendimento:

$$\eta = \frac{W}{Q} = \frac{nRT_0 \ln\left(\frac{3}{2}\right) - \frac{nRT_0}{3}}{nRT_0 \ln\left(\frac{3}{2}\right) + \frac{1}{2}nRT_0} \approx 8\%$$

b) O rendimento de um ciclo de Carnot que opera entre as temperatura extremas deste ciclo, isto é, entre $T_{max}=T_0$ e $T_{min}=\frac{2}{3}T_0$, é:

$$\eta_c = 1 - \frac{T_2}{T_1} = 1 - \frac{\frac{2}{3}T_0}{T_0} = 1 - \frac{2}{3} \approx 33.3\%$$

10.6 Questão 6

a) O trabalho do processo AB pode ser encontrado a partir do calculo da área sob o segmento AB, que é:

$$W_{AB} = \frac{(2P_0 - P_0)(2V_0 - V_0)}{2} + P_0(2V_0 - V_0) = \frac{3}{2}P_0V_0$$

Caso você queira encontrar o trabalho utilizando integrais, você pode identificar a função que descreve o processo AB. No caso essa função é de primeiro grau e parte da origem, na forma $P(V) = \frac{P_0}{V_0}V$. Integrando de V_0 até $2V_0$:

$$W_{AB} = \int_{V_i}^{V_f} P dV = \frac{P_0}{V_0} \int_{V_0}^{2V_0} V dV = \frac{P_0}{V_0} \left[\frac{V^2}{2} \right] \Big|_{V_0}^{2V_0} = \frac{3}{2} P_0 V_0$$

Que é o mesmo resultado obtido anteriormente. Agora, no processo CA:

$$W_{CA} = P_0(V_0 - 2V_0) = -P_0V_0$$

Antes de encontrar a variação de energia interna no processo AB precisamos encontrar a temperatura no ponto B (Iremos considerar que a temperatura no ponto A é T_0):

$$\frac{P_A V_A}{T_A} = \frac{P_B V_B}{T_B} \implies T_B = T_0 \frac{2P_0 \times 2V_0}{\frac{P_0}{V_0}} = 4T_0$$

Para C_v : sabemos que $\gamma = \frac{C_p}{C_v}$ e $C_p = C_v + R$, utilizando estas duas equações podemos encontrá-lo em termos de γ :

$$\gamma = 1 + \frac{R}{C_v} \implies \gamma - 1 = \frac{R}{C_v} \implies C_v = R \frac{1}{(\gamma - 1)}$$

A variação de energia interna é, então:

$$\Delta U_{AB} = nC_V \Delta T = nR \frac{1}{(\gamma - 1)} (4T_0 - T_0) = 3nRT_0 \frac{1}{(\gamma - 1)} = 3P_0 V_0 \frac{1}{(\gamma - 1)}$$

Agora, podemos encontrar o calor total fornecido:

$$Q = W_{AB} + \Delta U_{AB} = \frac{3}{2} P_0 V_0 + 3P_0 V_0 \frac{1}{(\gamma - 1)} = 3P_0 V_0 (\frac{1}{(\gamma - 1)} + \frac{1}{2})$$

E o trabalho realizado pelo ciclo:

$$W = W_{AB} + W_{CA} = \frac{3}{2}P_0V_0 - P_0V_0 = \frac{1}{2}P_0V_0$$

E por fim, encontramos o rendimento:

$$\eta = \frac{W}{Q} = \frac{\frac{1}{2}P_0V_0}{3P_0V_0(\frac{1}{(\gamma - 1)} + \frac{1}{2})} = \frac{1}{3}\left(\frac{\gamma - 1}{\gamma + 1}\right)$$

b) O rendimento de uma máquina de Carnot operando entre T_0 e $4T_0$ é:

$$\eta_c = 1 - \frac{T_2}{T_1} = 1 - \frac{T_0}{4T_0} = \frac{3}{4}$$

Você pode mostrar que o rendimento deste ciclo sempre será menor que o ciclo de Carnot a partir da seguinte inequação. Suponha que o rendimento deste ciclo é maior do que o ciclo de Carnot:

$$\eta > \eta_c \implies \frac{1}{3} \left(\frac{\gamma - 1}{\gamma + 1} \right) > \frac{3}{4}$$

Todos os reais $\gamma < -2.6$ satisfazem essa inequação, contudo uma situação na qual $\gamma < 0$ é absurda, deste modo, não existe nenhum γ para o qual o rendimento deste ciclo é maior do que o rendimento do ciclo de Carnot.

10.7 Questão 7

a) Vamos começar calculando as grandezas termodinâmicas no ponto C. Chamando a pressão em B de P_0 , segue que:

$$P_0V_0^{\gamma} = P_C(rV_0)^{\gamma} \implies P_C = P_0r^{-\gamma}$$

E a temperatura pode ser encontrada a partir da relação (Iremos chamar a temperatura em B de T_0):

$$\frac{P_0 V_0}{T_0} = \frac{P_C V_C}{T_C} = \frac{P_0 r^{-\gamma} V_0 r}{T_C} \implies T_C = r^{1-\gamma} T_0$$

E como o processo CA é isotérmico, temos que $T_A = T_C$. Agora que temos todos os valores necessários podemos calcular o trabalho e as variações de energia

interna. Para o processo BC, o trabalho será:

$$W_{BC} = -\frac{(P_f V_f - P_i V_i)}{1 - \gamma} = -\frac{P_0 V_0 r^{1 - \gamma} - P_0 V_0}{1 - \gamma} = -P_0 V_0 (\frac{r^{1 - \gamma} - 1}{\gamma - 1})$$

No processo AB, o trabalho é nulo, mas a variação de energia interna é (Lembrese que podemos escrever C_v em função de γ , e encontramos a seguinte relação $C_v = \frac{R}{\gamma - 1}$):

$$\Delta U_{AB} = nC_v(T_0 - T_A) = n\frac{R}{\gamma - 1}(T_0 - T_0 r^{1-\gamma}) = nRT_0 \frac{(1 - r^{1-\gamma})}{\gamma - 1}$$

Como $nRT_0 = P_0V_0$, variação de energia interna no processo AB vale:

$$\Delta U_{AB} = P_0 V_0 \frac{(1 - r^{1 - \gamma})}{\gamma - 1}$$

E no processo CA, que é isotérmico:

$$W_{CA} = nRT_A \ln \left(\frac{V_0}{rV_0}\right)$$

Como $nRT_A = P_A V_A$ e $\ln\left(\frac{V_0}{rV_0}\right) = -\ln r$:

$$W_{CA} = -P_A V_A \ln r$$

Mas,

$$\frac{P_A V_A}{T_A} = \frac{P_B V_B}{T_B} = \frac{P_0 V_0}{T_0} \implies \frac{P_A V_0}{T_0 r^{1-\gamma}} = \frac{P_0 V_0}{T_0} \implies P_A = P_0 r^{1-\gamma}$$

Obtemos:

$$W_{CA} = -P_0 V_0 r^{1-\gamma} \ln r$$

Finalmente, podemos encontrar o rendimento:

$$\eta = \frac{W}{Q} = \frac{W_{BC} + W_{CA}}{\Delta U_{AB}} = 1 - (\gamma - 1) \frac{r^{1-\gamma}}{(1 - r^{1-\gamma})} \ln r$$

Simplificando:

$$\eta = 1 - \frac{(\gamma - 1) \ln r}{(r^{\gamma - 1} - 1)}$$

b) A razão ρ entre as temperatura extremas é:

$$\rho = \frac{T_1}{T_2} = \frac{T_B}{T_C} = \frac{T_0}{T_0 r^{1-\gamma}} = r^{\gamma - 1}$$

E a expressão para o rendimento pode ser reescrita como:

$$\eta = 1 - \frac{\ln r^{\gamma - 1}}{r^{\gamma - 1} - 1}$$

Fazendo a substituição $\rho = r^{\gamma-1}$:

$$\eta = 1 - \frac{\ln \rho}{\rho - 1}$$

c) Temos que:

$$\rho = \frac{T_1}{T_2} = r^{\gamma - 1} = 2^{1.4 - 1} = 2^{0.4}$$

Substituindo na fórmula do exercício anterior, encontramos uma eficiência de:

$$\eta = 1 - \frac{\ln \rho}{\rho - 1} = 1 - \frac{\ln 2^{0.4}}{2^{0.4} - 1} \approx 0.132$$

E para um ciclo de Carnot operando entre as temperatura T_2 e T_1 :

$$\eta_c = 1 - \frac{T_2}{T_1} = 1 - \frac{1}{\rho} = 1 - \frac{1}{2^{0.4}} \approx 0.242$$

A razão é:

$$\frac{\eta}{\eta_c} = \frac{0.132}{0.242} \approx 54.5\%$$

10.8 Questão 8

a) O trabalho num processo adiabático é dado por:

$$W_{i \to f} = -\frac{(P_f V_f - P_i V_i)}{\gamma - 1}$$

Portanto, temos que para os processos AB e CD, respectivamente, o trabalho é:

$$W_{AB} = -\frac{\overbrace{P_B V_B}^{nRT_B} - \overbrace{P_A V_A}^{nRT_A}}{\gamma - 1} = -nR\left(\frac{T_B - T_A}{\gamma - 1}\right)$$

$$W_{CD} = -nR\left(\frac{T_D - T_C}{\gamma - 1}\right)$$

E a variação de energia interna no processo BC é:

$$\Delta U_{BC} = nC_v(T_C - T_B)$$

 C_v é escrito em termos de γ como $\frac{R}{\gamma-1}$, portanto:

$$\Delta U_{BC} = nR \left(\frac{T_C - T_B}{\gamma - 1} \right)$$

O rendimento do ciclo é dado por:

$$\eta = \frac{W}{Q} = \frac{W_{CD} + W_{AB}}{\Delta U_{BC}} = \frac{-nR\left(\frac{T_D - T_C}{\gamma - 1}\right) - nR\left(\frac{T_B - T_A}{\gamma - 1}\right)}{nR\left(\frac{T_C - T_B}{\gamma - 1}\right)}$$
$$\eta = \left(\frac{T_C - T_D + T_A - T_B}{T_C - T_B}\right) = 1 - \frac{T_D - T_A}{T_C - T_B}$$

Agora, temos que escrever as temperaturas em termos de γ e r. Como o processo CD é adiabático, segue que:

$$P_C V_0^{\gamma} = P_D (V_0 r)^{\gamma} \implies P_D = P_C r^{-\gamma}$$

Analogamente, para o processo AB:

$$P_A = P_B r^{-\gamma}$$

E veja que para os pontos A,B,C e D temos que:

$$\begin{cases} P_A V_A = P_B r^{-\gamma} V_0 = nRT_A \\ P_B V_B = P_B \frac{V_0}{r} = nRT_B \\ P_C V_C = P_C \frac{V_0}{r} = nRT_C \\ P_D V_D = P_C r^{-\gamma} V_0 = nRT_D \end{cases}$$

Portanto:

$$P_D V_D - P_A V_A = nRT(T_D - T_A) \implies T_D - T_A = \frac{P_D V_D - P_A V_A}{nR} = \frac{V_0 r^{-\gamma} (P_C - P_B)}{nR}$$

Seguindo a mesma linha de raciocínio podemos encontrar a diferença entre as temperaturas T_C e T_B :

$$T_C - T_B = \frac{V_0}{r} \frac{(P_C - P_B)}{nR}$$

Portanto, segue que:

$$\frac{T_D - T_A}{T_C - T_B} = \frac{\frac{V_0 r^{-\gamma} (P_C - P_B)}{nR}}{\frac{V_0}{r} \frac{(P_C - P_B)}{nR}} = r^{-\gamma + 1} = \left(\frac{1}{r}\right)^{\gamma - 1}$$

Por fim, podemos escrever o rendimento como:

$$\eta = 1 - \frac{T_D - T_A}{T_C - T_B} = 1 - \left(\frac{1}{r}\right)^{\gamma - 1}$$

b) Substituindo os dados na fórmula encontrada:

$$\eta = 1 - \left(\frac{1}{10}\right)^{1.4-1} \approx 60\%$$

10.9 Questão 9

a) O trabalho no processo BC é dado por:

$$W_{BC} = P_1(V_2 - V_1) = nR(T_C - T_B)$$

E a variação de energia interna:

$$\Delta U_{BC} = nC_v \Delta T = n \frac{R}{\gamma - 1} (T_C - T_B)$$

Já para o processo CD o trabalho vale:

$$W_{CD} = -\frac{(P_D V_D - P_C V_C)}{\gamma - 1} = -nR \frac{(T_D - T_C)}{\gamma - 1}$$

E para o processo AB:

$$W_{AB} = -\frac{(P_B V_B - P_A V_A)}{\gamma - 1} = -nR\frac{(T_B - T_A)}{\gamma - 1}$$

O trabalho total realizado vale $W = W_{BC} + W_{CD} + W_{AB}$ e o calor fornecido é $Q = \Delta U_{BC} + W_{BC}$, deste modo o rendimento vale:

$$\eta = \frac{W}{Q} = \frac{nR(T_C - T_B) - nR\frac{(T_D - T_C)}{\gamma - 1} - nR\frac{(T_B - T_A)}{\gamma - 1}}{nR(T_C - T_B) + n\frac{R}{\gamma - 1}(T_C - T_B)}$$

$$\eta = \frac{(\gamma - 1)(T_C - T_B) - (T_D - T_C + T_B - T_A)}{\gamma(T_C - T_B)}$$

Simplificando:

$$\boxed{\eta = 1 - \frac{1}{\gamma} \left(\frac{T_D - T_A}{T_C - T_B} \right)}$$

Para um processo adiabático é válida a relação $TV^{\gamma-1} = cte$. (Conferir pág. 200), portanto, podemos escrever para os processos CD e AB, respectivamente:

$$T_C V_2^{\gamma - 1} = T_D V_0^{\gamma - 1} \implies T_D = T_C r_e^{1 - \gamma}$$
$$T_A V_0^{\gamma - 1} = T_B V_1^{\gamma - 1} \implies T_A = T_B r_c^{1 - \gamma}$$

Substituindo na expressão do rendimento:

$$\eta = 1 - \frac{1}{\gamma} \frac{T_C r_e^{1-\gamma} - T_B r_c^{1-\gamma}}{T_C - T_B}$$

Podemos relacionar as temperaturas T_C e T_B a partir do processo BC, pois:

$$\frac{V_1}{T_B} = \frac{V_2}{T_C}$$

Como $V_1 = V_0/r_c$ e $V_2 = V_0/r_e$, segue que:

$$T_B r_c = T_c r_e \implies T_C = T_B \frac{r_c}{r_e}$$

Substituindo na equação do rendimento:

$$\eta = 1 - \frac{1}{\gamma} \frac{T_B \frac{r_c}{r_e} r_e^{1-\gamma} - T_B r_c^{1-\gamma}}{T_B \frac{r_c}{r_e} - T_B}$$

Simplificando (Veja que $r_c r_e^{1-\gamma} = r_c r_e r_e^{-\gamma}$ e $r_e r_c^{1-\gamma} = r_e r_c r_c^{-\gamma}$):

$$\eta = 1 - \frac{1}{\gamma} \frac{r_c r_e (r_e^{-\gamma} - r_c^{-\gamma})}{r_c - r_e}$$

O termo $r_c r_e/(r_c - r_e)$ pode ser reescrito como $(1/r_e - 1/r_c)^{-1}$, deste modo, finalmente obtemos:

$$\eta = 1 - \frac{1}{\gamma} \frac{r_e^{-\gamma} - r_c^{-\gamma}}{(1/r_e) - (1/r_c)}$$

b) Substituindo os valores numéricos na fórmula para o rendimento encontramos:

$$\eta = 1 - \frac{1}{1.4} \frac{5^{-1.4} - 15^{-1.4}}{(1/5) - (1/15)} \approx 56\%$$

O rendimento do ciclo de Carnot associado é:

$$\eta_c = 1 - \frac{T_A}{T_C}$$

A razão entre as temperaturas pode ser encontrada a partir das relações já obtidas $T_B r_c = T_C r_e$ e $T_B = T_A r_c^{\gamma-1}$. Substituindo na equação que contem T_B e T_C obtemos:

$$\frac{T_A}{T_C} = \frac{r_e}{r_c^{\gamma}}$$

O rendimento de Carnot é então:

$$\eta = 1 - \frac{r_e}{r_c^{\gamma}} = 1 - \frac{5}{15^{1.4}} \approx 89\%$$

10.10 Questão 10

a) Os volumes V_A e V_D se relacionam com V_B e V_C através de:

$$P_A V_A^{\gamma} = P_B V_B^{\gamma} \implies P_0 V_A^{\gamma} = r P_0 V_B^{\gamma} \implies V_A = r^{\frac{1}{\gamma}} V_B$$

$$P_D V_D^{\gamma} = P_C V_C^{\gamma} \implies P_0 V_D^{\gamma} = r P_0 V_C^{\gamma} \implies V_D = r^{\frac{1}{\gamma}} V_C$$

O trabalho em cada uma das etapas é:

$$\begin{split} W_{BC} = & P_B(V_C - V_B) = r P_0(V_C - V_B) \\ W_{DA} = & P_D(V_A - V_D) = -P_0 r^{\frac{1}{\gamma}} (V_C - V_B) \\ W_{AB} = & -\frac{(V_B P_B - V_A P_A)}{\gamma - 1} = -P_0 V_B \frac{(r - r^{\frac{1}{\gamma}})}{\gamma - 1} \\ W_{CD} = & -\frac{(V_D P_D - V_C P_C)}{\gamma - 1} = P_0 V_C \frac{(r - r^{\frac{1}{\gamma}})}{\gamma - 1} \end{split}$$

A variação de energia interna na etapa BC vale,

$$\Delta B_C = nC_v(T_C - T_B)$$

Mas faça que $C_v = R/(\gamma - 1)$, $nRT_B = P_BV_B = rP_0V_B$, e que $nRT_C = P_CV_C = rP_0V_C$, pois assim,

$$\Delta U_{BC} = \frac{r}{\gamma - 1} P_0 (V_C - V_B)$$

A eficiencia do ciclo é dada por:

$$\eta = \frac{W}{Q} = \frac{W_{BC} + W_{DA} + W_{AB} + W_{CD}}{W_{BC} + \Delta U_{BC}}$$

Substituindo pelas expressões encontradas.

$$\eta = \frac{P_0(V_C - V_B)(r - r^{\frac{1}{\gamma}}) + P_0(V_C - V_B)\frac{(r - r^{\frac{1}{\gamma}})}{\gamma - 1}}{P_0(V_C - V_B)(r + \frac{r}{\gamma - 1})}$$

O termo $P_0(V_B - V_C)$ é cancelado na expressão acima, e finalmente obtemos, após algumas simplificações algébricas:

$$\eta = 1 - \left(\frac{1}{r}\right)^{\frac{\gamma - 1}{\gamma}}$$

b) Considerando que o gás é diatômico, isto é, $\gamma = 7/5$, achamos:

$$\eta = 1 - \left(\frac{1}{10}\right)^{\frac{7/5 - 1}{7/5}} \approx 48\%$$

10.11 Questão 11

O trabalho na etapas BC e DE vale:

$$W_{BC} = Q_{BC} = nRT_1 \ln \left(\frac{V_C}{V_B}\right) = nRT_1 \ln r$$

$$W_{DE} = Q_{DE} = nRT_3 \ln \left(\frac{V_E}{V_D}\right) = nRT_3 \ln r$$

Já para o processo FA, o trabalho é:

$$W_{FA} = nRT_2 \ln \left(\frac{V_A}{V_F}\right)$$

Para calcular a razão V_A/V_F precisamos encontrar três equações. Primeiramente, veja que os processos AB, EF e CD são adiabáticos, portanto utilizaremos a identidade $TV^{\gamma-1} = cte$. para obter as relações:

$$\begin{split} T_A V_A^{\gamma - 1} &= T_B V_B^{\gamma - 1} \implies T_2 V_A^{\gamma - 1} = T_1 V_1^{\gamma - 1} \\ T_F V_F^{\gamma - 1} &= T_E V_E^{\gamma - 1} \implies T_2 V_F^{\gamma - 1} = T_3 r^{\gamma - 1} V_2^{\gamma - 1} \\ T_C V_C^{\gamma - 1} &= T_D V_D^{\gamma - 1} \implies T_1 r^{\gamma - 1} V_1^{\gamma - 1} = T_3 V_2^{\gamma - 1} \end{split}$$

Através da terceira equação obtemos a identidade:

$$\left(\frac{V_1}{V_2}\right)^{\gamma-1} = \left(\frac{T_3}{T_1}\right) r^{-(\gamma-1)}$$

E ao dividir a primeira equação pela segunda, encontramos,

$$\left(\frac{V_A}{V_F}\right)^{\gamma-1} = \left(\frac{T_1}{T_3}\right) r^{-(\gamma-1)} \left(\frac{V_1}{V_2}\right)^{\gamma-1}$$

Logo:

$$\left(\frac{V_A}{V_F}\right)^{\gamma-1} = \left(\frac{T_1}{T_3}\right) r^{-(\gamma-1)} \left(\frac{T_3}{T_1}\right) r^{-(\gamma-1)} = r^{-2(\gamma-1)}$$

E por conseguinte,

$$\frac{V_A}{V_F} = r^{-2}$$

O trabalho realizado pelo processo FA fica:

$$W_{FA} = Q_{FA} = nRT_2 \ln r^{-2} = -2nRT_2 \ln r$$

Como Q_{BC} e Q_{DE} representam o calor absorvido pelo sistema e Q_{FA} o calor cedido à fonte fria, o rendimento do ciclo vale:

$$\eta = 1 + \frac{Q_{FA}}{Q_{BC} + Q_{DE}} = 1 - 2\frac{nR\ln r}{nR\ln r(T_1 + T_3)} = 1 - \frac{T_2}{\frac{T_1 + T_3}{2}}$$

10.12 Questão 12

De acordo com o enunciado do exercício 2 do capítulo 8, a capacidade térmica molar do NaCl é $C_v=464(T/T_D)^3$, logo:

$$dQ = C_v dT = 464 \left(\frac{T}{T_D}\right)^3 dT$$

Podemos relacionar a entropia com o calor a partir de:

$$dS = \frac{dQ}{T}$$

Assim, temos que a variação de entropia molar é dada por:

$$\Delta s = s_f - s_i = \int_{T_i}^{T_f} \frac{dQ}{T} = \frac{464}{T_D^3} \int_{T_i}^{T_f} T^2 dT$$

Resolvendo a integral e tomando $T_i=0$ e $s_i=0$ encontramos:

$$s_f = \frac{464}{T_D^3} \frac{T^3}{3} = \frac{464}{281^3} \times \frac{1}{3} T^3 = 6.97 \times 10^{-6} T^3 cal/(mol\ K)$$

10.13 Questão 13

a) Temos que:

$$dS = \frac{dQ}{T} = \frac{dU}{T} + \frac{PdV}{T} \implies TdS = dU + PdV$$

Integrando ao longo de um ciclo completo:

$$\oint TdS = \oint dU + \oint PdV$$

Temos que para um caminho fechado $\Delta U = 0$ e reversível, portanto:

$$\oint TdS = \oint PdV = W$$

- b) Considere um ciclo de Carnot que consiste dos seguintes processos:
- 1^a processo: Expansão isotérmica AB
- 2^a processo: Expansão adiabática BC
- 3ª processo: Compressão isotérmica CD

• 4ª processo: Compressão adiabática DA

No primeiro processo não há variação de temperatura, contudo há um aumento de entropia $(S_1 \to S_2)$. Como o segundo processo é um processo adiabático reversível, ele é isentrópico, a entropia se mantém constante e há um decréscimo de temperatura $(T_2 \to T_1)$. No terceiro processo a entropia do sistema decresce a temperatura constante, retornando ao valor inicial $(S_2 \to S_1)$. O quarto processo é similar ao segundo, não há variação de entropia mas o sistema volta a temperatura inicial $(T_1 \to T_2)$. Desenhando todas as etapas no diagrama T-S:

c) De acordo com o resultado do item a) o trabalho realizado pelo sistema é igual à área compreendida pelo ciclo no diagrama T-S. Portanto, o trabalho total realizado é:

$$W = (T_2 - T_1)(S_2 - S_1)$$

Como nos processos BC e DA não há troca de calor, todo o calor recebido pelo sistema é proveniente do processo AB, deste modo temos que:

$$Q = \underbrace{\Delta U}_{=0} + W = T_2(S_2 - S_1)$$

O rendimento do ciclo é:

$$\eta = \frac{W}{Q} = \frac{(T_2 - T_1)(S_2 - S_1)}{T_2(S_2 - S_1)} = 1 - \frac{T_1}{T_2}$$

Que é o resultado esperado.

10.14 Questão 14

Ao aquecer uma substância de calor específico c e massa m de uma temperatura T_1 até uma temperatura T_2 , a variação de entropia correspondente é:

$$dS = \frac{dQ}{T} = \frac{mcdT}{T} = mc \int_{T_1}^{T_2} \frac{dT}{T} \implies \Delta S = mc \ln \left(\frac{T_2}{T_1}\right)$$

E para uma transição de fase, a variação de entropia é:

$$S = \frac{mL}{T}$$

Onde L representa o calor latente da substância. A variação de entropia na primeira etapa, que consiste em aquecer o gelo de $-15^{\circ}C$ até 0° é:

$$\Delta S_1 = mc \ln \left(\frac{T_2}{T_1}\right) = 1000 \times 0.5 \times \ln \left(\frac{0 + 273}{-15 + 273}\right) = 28.26 \frac{cal}{K}$$

No processo de fusão:

$$\Delta S_2 = \frac{mL}{T} = \frac{1000 \times 79.6}{0 + 273} = 291.57 \frac{cal}{K}$$

Agora, para aquecer a água de $0^{\circ}C$ a $100^{\circ}C$:

$$\Delta S_3 = mc \ln \left(\frac{T_2}{T_1}\right) = 1000 \times 1 \times \ln \left(\frac{100 + 273}{0 + 273}\right) = 312.10 \frac{cal}{K}$$

Por fim, a variação de entropia devido ao processo de vaporização vale:

$$\Delta S_4 = \frac{mL}{T} = \frac{1000 \times 539.6}{373} = 1446.65 \frac{cal}{K}$$

A variação total de entropia é:

$$\Delta S = \Delta S_1 + \Delta S_2 + \Delta S_3 + \Delta S_4 = 2079 \frac{cal}{K} = 8702 \frac{J}{K}$$

10.15 Questão 15

Veja que a entropia, para 1 mol de uma substância, pode ser escrita como (pg. 226):

$$S(P, V) = C_v \ln (PV^{\gamma}) + cte.$$

Para n mols de uma substância a entropia pode ser escrita como $S_n = nS = nC_v \ln{(PV^{\gamma})} + cte$. Além disso, lembre-se que podemos escrever C_v como $C_v = \frac{R}{\gamma - 1}$. E utilizando Clapeyron podemos encontrar no número de mols de gás presentes

(Lembre-se que o gás está sob as condições normais de temperatura e pressão, T=273K e P=1atm):

$$n = \frac{PV}{RT} = \frac{1 \times 2}{0.082 \times 273} = 0.09 mol$$

No primeiro processo o volume passa de um volume inicial V_0 para um volume final $V_f = 1.5V_0$. A Variação de entropia associada à essa etapa vale:

$$\Delta S_1 = n \underbrace{C_v}_{\frac{R}{\gamma - 1}} (\ln(P_0(1.5V_0)^{\gamma}) - \ln(P_0V_0^{\gamma})) = 0.09 \times \frac{8.31}{1.4 - 1} \ln(1.5^{1.4}) = 1.06 \frac{J}{K}$$

No segundo processo a pressão é diminuída de 1atm para 0.75atm, deste modo a variação de entropia correspondente é:

$$\Delta S_2 = n \frac{R}{\gamma - 1} \left(\ln \left(\underbrace{P}_{0.75atm} V^{\gamma} \right) - \ln \left(\underbrace{P_0}_{1atm} V^{\gamma} \right) \right) = 0.09 \times \frac{8.31}{1.4 - 1} \ln \left(\frac{0.75}{1} \right) = -0.54 \frac{J}{K}$$

A variação total de entropia é:

$$\Delta S = \Delta S_1 + \Delta S_2 = 1.06 - 0.54 = 0.52 \frac{J}{K}$$

10.16 Questão 16

a) Primeiro vamos verificar se é possível derreter todo o gelo. Caso a temperatura de equilíbrio seja $T_{eq} = 0$, o calor fornecido ao gelo pela água é:

$$\Delta Q = mc\Delta T = 2000 \times (30 - 0) = 60000cal$$

E o calor necessário para derreter 500g de gelo é:

$$\Delta Q = mL = 500 \times 80 = 40000 cal$$

Portanto $T_{eq} \neq 0$. Deste modo, para encontrar a temperatura final do sistema podemos escrever:

$$\sum Q_i = 0$$

Sendo m_g a massa de gelo (que depois é derretida), m_a a massa de água e T a temperatura de equilíbrio:

$$m_g L + m_a c (T - 30) + m_g c (T_f - 0) = 0 \implies T = \frac{30 m_a c - m_g L}{c (m_a + m_g)}$$

$$T = \frac{30 \times 2000 \times 1 - 500 \times 80}{1 \times (2000 + 500)} = 8^{\circ}C$$

b) A variação de entropia no processo de fusão do gelo é:

$$\Delta S_1 = \frac{mL}{T} = \frac{500 \times 80}{273} = 146.5 \frac{cal}{K}$$

Para a massa de água resfriada:

$$\Delta S_2 = mc \ln \left(\frac{T_2}{T_1}\right) = 2000 \times 1 \times \ln \left(\frac{8 + 273}{30 + 273}\right) = -150.75 \frac{cal}{K}$$

E para a porção de água aquecida:

$$\Delta S_3 = 500 \times 1 \times \ln\left(\frac{8 + 273}{0 + 273}\right) = 14.45 \frac{cal}{K}$$

A variação total de entropia é:

$$\Delta S = \Delta S_1 + \Delta S_2 + \Delta S_3 = 146.5 - 150.75 + 14.45 = 10.2 \frac{cal}{K}$$

10.17 Questão 17

Podemos escrever que a variação de entropia do universo como:

$$\Delta S_{Universo} = \Delta S_{Reservatorio} + \Delta S_{Agua}$$

Como a água está a T=100+273=373K, a variação de entropia no seu processo de vaporização é:

$$\Delta S_{Agua} = \frac{\Delta Q}{T} = \frac{1000 \times 539.6}{373} = 1447 \frac{cal}{K}$$

Para encontrar a variação de entropia no reservatório basta efetuar cálculos similares. No caso a) a temperatura do reservatório é igual à temperatura da água, portanto fica claro que $\Delta S_{Reservatorio} = -\Delta S_{Agua}$ (Pois é o reservatório que cede calor a água, portanto a variação de entropia é negativa). Deste modo $\Delta S_{Universo} = 0$ e o processo é reversível.

No caso b), que é um processo irreversível, a variação de entropia do reservatório a T = 200 + 273 = 473K será:

$$\Delta S_{Reservatorio} = -\frac{1000 \times 539.6}{473} = -1141 \frac{cal}{K}$$

E a variação de entropia do universo será:

$$\Delta S_{Universo} = 1447 - 1141 = 306 \frac{cal}{K}$$

10.18 Questão 18

a) Podemos imaginar esse processo como um processo irreversível, no qual podemos quantificar a variação de entropia a partir da mudança de pressão. A entropia pode ser escrita como:

$$S(P,T) = C_p \ln T - R \ln P + cte. \implies \Delta S = C_p \ln \left(\frac{T_2}{T_1}\right) - R \ln \left(\frac{P_2}{P_1}\right)$$

Na situação que estamos tratando o gás está em equilíbrio térmico com o exterior, assim $T_1 = T_2$. Após o vazamento, o gás ejetado passa a ter a mesma pressão que atmosfera, portanto $P_1 = 150atm$ e $P_2 = 1atm$. Assim a variação de entropia em 1 mol de He é:

$$\Delta S = -R \ln \left(\frac{1}{150}\right) = 41.68J/L$$

Como a massa molar do He é $M=4\frac{g}{mol}$, há $n=\frac{m}{M}=\frac{1000g}{4g/mol}=250mol$. Portanto, a variação de entropia é:

$$\Delta S_{total} = n\Delta S = 250 \times 41.68 = 1.04 \times 10^4 \frac{J}{K}$$

b) Podemos encontrar o trabalho a partir da entropia e da temperatura usando a relação:

$$W = T\Delta S$$

Utilizando a temperatura dada no enunciado T = 17 + 273 = 290K:

$$W = 290 \times 1.04 \times 10^4 = 3.02 \times 10^6 J$$

10.19 Questão 19

a) A variação de entropia da chaleira é dada por:

$$\Delta S_{Chaleira} = mc \ln \left(\frac{T_2}{T_1}\right) = 1000 \times 1 \times \ln \left(\frac{20 + 273}{100 + 273}\right) = -241 \frac{cal}{K}$$

b) Se considerarmos a piscina como um reservatório de massa muito superior àquela presente na chaleira, a variação de entropia do reservatório será devido ao calor trocado com a água proveniente da chaleira, portanto:

$$\Delta S_{Reservatorio} = \frac{\Delta Q}{T} = \frac{mc\Delta T}{T} = \frac{1000\times1\times(100-20)}{(20+273)} = 273\frac{cal}{K}$$

Deste modo, a variação de entropia do universo é:

$$\Delta S_{Universo} = \Delta S_{Chaleira} + \Delta S_{Reservatorio} = -241 + 273 = 31 \frac{J}{K}$$

10.20 Questão 20

a) Temos que:

$$dF = dU - TdS$$

Integrando (Lembre-se que o processo é isotérmico, portanto a variação de energia interna é 0):

$$\Delta F = \underbrace{\Delta U}_{=0} - \oint T dS$$

Mas como vimos no exercício 13 deste capítulo:

$$\oint TdS = \oint PdV = W$$

Portanto:

$$W = \oint T dS = -\Delta F$$

b) No caso irreversível, tem-se que:

$$\delta Q < TdS$$

E portanto:

$$\delta W < T dS - \delta U = -\Delta F$$

Ou seja, o trabalho é menor que o decréscimo de F.

11 Capítulo 11

11.1 Questão 1

Considerando que após a colisão a componente da velocidade que é paralela à normal da superfície adquire direção oposta, a variação de momento associado à colisão é:

$$\Delta p = 2mv_x$$

Se há N colisões, a variação total de momento vale:

$$\Delta p = 2mv_r \times N$$

Podemos escrever a pressão como a variação de momento por intervalo de tempo por área:

$$P = \frac{F}{A} = \frac{\Delta p}{A\Delta t} = 2mv_x \frac{N}{A\Delta t}$$

Se a densidade de moléculas do feixe é n, o número de colisões em um intervalo de tempo Δt associadas a esse feixe é:

$$N = nAv_r\Delta t$$

Onde A representa a área associada ao feixe e v a velocidade das moléculas. O termo $v\Delta t$ representa a distância percorrida pelo feixe no intervalo de tempo Δt , ou seja, $Av\Delta t$ representa o volume varrido pelo feixe ao longo de um intervalo Δt . Veja que partindo da expressão anterior podemos estabelecer a relação:

$$\frac{N}{A\Delta t} = nv_x$$

Assim, podemos escrever a expressão para a pressão como:

$$P = 2mv_x \frac{N}{A\Delta t} = 2mnv_x^2$$

A densidade de moléculas é $n=10^{10}\frac{moleculas}{cm^3}=10^{16}\frac{moleculas}{m^3}$, a velococidade v_x representa a componente da velocidade perpendicular à superfície (ou seja, paralela a sua normal), logo $v_x=v\cos{(30)}$. Por fim a massa da moléculas de oxigênio vale 32 unidades de massa atômica, onde uma unidade massa atômica vale $1.66\times10^{-27}kg$, assim:

$$P = 2mnv_x^2 = 2 \times 32 \times 1.66 \times 10^{-27} \times 10^{16} \times (500\cos(30))^2 \approx 2 \times 10^{-4} \frac{N}{m^2}$$

11.2 Questão 2

Utilizando a equação de estado:

$$PV = NkT$$

Podemos encontrar a quantidade de moléculas por unidade de volume (Iremos fazer aconversão 1mm/Hg = 133.3Pa):

$$n = \frac{N}{V} = \frac{P}{kT} = \frac{133.3 \times 10^{-12}}{1.38 \times 10^{-23} \times 300} = 3.22 \times 10^4 \frac{moleculas}{cm^3}$$

11.3 Questão 3

a) No referencial do pistão a molécula se aproxima do pistão com velocidade $v_x + u$, como M >> m a velocidade da molécula assume direção oposta:

Analisando no referencial do laboratório basta subtrair u das velocidades que obtém-se:

Calculando a diferença entre a energia cinética antes e após a colisão:

$$\Delta E = \frac{mv_x^2}{2} - \frac{m(v_x + 2u)^2}{2} = \frac{m}{2}(4v_x u + 4u^2)$$

Deprezando os termos de segunda ordem:

$$\Delta E \approx 2muv_x$$

Para N moléculas:

$$\Delta E_N = 2Nmuv_r$$

b) O trabalho realizado pelo pistão vale:

$$W = Fx = \frac{\Delta p}{\Delta t}x = \Delta pu$$

A variação de momento é $\Delta p = 2m(v_x + u)$, deste modo o trabalho total realizado pelo pistão vale (Para N moléculas):

$$W = 2Nm(v_x + u)u \approx 2Nmv_x u$$

Que é o resultado obtido anteriormente.

11.4 Questão 4

a) Sabemos que a densidade da água líquida é de $\rho=1g/cm^3$ e que sua massa molar é de M=18g/mol. A densidade de moléculas (Numero de moléculas por unidade de volume), pode ser escrita como :

$$n = \frac{\rho}{M} = \frac{1\frac{g}{cm^3}}{18\frac{g}{mol}} = \frac{1}{18}\frac{mol}{cm^3}$$

Sabemos que em um mol há aproximadamente 6×10^{23} moléculas, portanto:

$$n = \frac{1}{18} \times 6 \times 10^{23} \approx 3.33 \times 10^{22} \frac{moleculas}{cm^3}$$

Ou seja, há um espaçamento de $1cm^3$ por 3.33×10^{22} moléculas:

$$V_{livre} = \frac{1}{3.34 \times 10^{22}} \frac{cm^3}{molecula} = 3 \times 10^{-23} \frac{cm^3}{molecula}$$

Para obter o espaçamento médio basta extrai a raiz cúbida do volume encontrado, deste modo:

$$d_{livre} = \sqrt[3]{V_{livre}} = \sqrt[3]{3 \times 10^{-23}} = 3.1 \times 10^{-8} cm$$

b) Já para o vapor d'água iremos adotar um procedimento um pouco diferente. Usando a equação para os gases ideais, a densidade molar obtida é (Número de mols por unidade de volume):

$$\frac{n_{mols}}{V} = \frac{P}{RT} = \frac{1}{0.082 \times (100 + 273)} = 3.27 \times 10^{-2} \frac{mols}{l} = 3.27 \times 10^{-5} \frac{mols}{cm^3}$$

O número de moléculas por unidade de volume é:

$$n = 3.27 \times 10^{-5} \times 6 \times 10^{23} = 1.97 \times 10^{19} \frac{moleculas}{cm^3}$$

Agora, para encontrar o espaçamento médio basta adotar a mesma estratégia:

$$V_{livre} = \frac{1}{1.97 \times 10^{19}} \frac{cm^3}{molecula} = 5.1 \times 10^{-20} \frac{cm^3}{molecula}$$

$$d_{livre} = \sqrt[3]{V_{livre}} = \sqrt[3]{5.1 \times 10^{-20}} = 3.7 \times 10^{-7} cm$$

c) Sabemos que:

$$\frac{1}{2}m\underbrace{< v^2>}_{v_{am}^2} = \frac{3}{2}kT$$

Deste modo (Lembre-se que a massa da molécula de água vale 18 unidades de

massa atômica, e uma unidade de massa atômica vale $1.7 \times 10^{-27} kg$):

$$v_{qm} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3 \times 1.38 \times 10^{-23} \times 373}{18 \times 1.7 \times 10^{-27}}} = 711 \frac{m}{s}$$

11.5 Questão 5

Considerando a densidade do ar como $1.3\frac{kg}{m^3}$ temos que o volume de ar presente em 1kg é $V=\frac{m}{\rho}=\frac{1}{1.3}=0.77m^3$. Utilizando a equação de estado para gases ideais podemos encontrar as pressões parciais do oxigênio e do nitrogênio. Sabemos que a massa molar do oxigênio é de $32\frac{g}{mol}$, assim:

$$P_{O_2} = \frac{m}{M} \frac{RT}{V} = \frac{232}{32} \frac{8.31 \times 273}{0.77} = 0.22 \times 10^5 Pa \approx 0.21 atm$$

E para o nitrogênio, que tem massa molar de $28\frac{g}{mol}$:

$$P_{N_2} = \frac{m}{M} \frac{RT}{V} = \frac{755}{28} \frac{8.31 \times 273}{0.77} = 0.79 \times 10^5 Pa \approx 0.78 atm$$

11.6 Questão 6

Utilizando a equação de estado dos gases ideais podemos encontrar o número de mol de gás presente:

$$n = \frac{PV}{RT} = \frac{4.8 \times 10}{0.082 \times 1800} = 0.325 mol$$

Contudo, há somente 7g de N_2 , o que corresponde as n=m/M=7/28=0.25mol. Ou seja, o número de mol de nitrogênio dissociado é n=0.325-0.250=0.075. Em porcentagem:

$$x = \frac{0.075}{0.325} = 0.23 = 23\%$$

11.7 Questão 7

A velocidade quadrática médica $(v_{qm} = \sqrt{\langle v^2 \rangle})$ do hidrogênio pode ser encontrada a partir da relação:

$$m < v^2 >= 3kT$$

Sabemos que a massa do higrogênio molecular é de 2 unidades de massa atômica e que a temperatura vale T = 127 + 273 = 400K:

$$v_{qm} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3 \times 1.38 \times 10^{-23} \times 400}{2 \times 1.7 \times 10^{-27}}} \approx 2.2 \frac{km}{s}$$

Para encontrar a velocidade de escape na Lua podemos igualar a energia potencial gravitacional na superfície da lua a energia cinética correspondente à velocidade igual a velocidade de escape:

$$\frac{mv^2}{2} = \frac{GMm}{r} \implies v_{esc} = \sqrt{\frac{2GM}{R}}$$

Onde R é o raio da lua, que vale aproximadamente 1737km, e M é a massa da lua, que vale $7.35 \times 10^{22} kg$. Substituindo:

$$v_{esc} = \sqrt{\frac{2 \times 6.67 \times 10^{-11} \times 7.35 \times 10^{22}}{1737 \times 10^3}} \approx 2.4 \frac{km}{s}$$

Vimos que $v_{qm} < v_{esc}$, deste modo podemos concluir que a Lua é capaz de reter hidrogênio em sua tênue atmosfera.

11.8 Questão 8

A expressão para a velocidade do som pode ser escrita com:

$$v_{som} = \sqrt{\frac{\gamma P}{\rho}}$$

E a velocidade quadrática média pode ser escrita como:

$$v_{qm} = \sqrt{\frac{3P}{\rho}}$$

De acordo com o enunciado a velocidade do som é 0.683 vezes a velocidade quadrática média das moléculas. Deste modo, podemos calcular a razão entre as velocidades e encontrar γ , e a partir do valor encontrado podemos determinar que tipo de molécula compõe o gás:

$$\frac{v_{som}}{v_{qm}} = \frac{\sqrt{\frac{\gamma P}{\rho}}}{\sqrt{\frac{3P}{\rho}}} = \sqrt{\frac{\gamma}{3}}$$

$$\sqrt{\frac{\gamma}{3}} = 0.683 \implies \gamma \approx 1.4 = \frac{7}{5}$$

Logo podemos concluir que as moléculas que compõem o gás são diatômicas (2 átomos por molécula).

11.9 Questão 9

É possível relacionar a temperatura T de um sistema com a energia cinética das partículas a partir da seguinte relação:

$$\frac{1}{2}m < v^2 > = \frac{1}{2}mv_{qm}^2 = \frac{q}{2}kT$$

Onde q representa o número de graus de liberdade. Para q=3 temos que:

$$v_{qm} = \sqrt{\frac{3kT}{m}}$$

Para uma partícula de raio r e densidade ρ temos que:

$$m = \rho V = \frac{4\pi}{3}\rho r^3 \implies v_{qm} = \sqrt{\frac{9kT}{4\pi\rho r^3}}$$

De acordo com o enunciado o raio vale $r=0.5\times 10^{-6}m$ e a densidade vale $\rho=1.2g/cm^3=1200kg/m^3$, assim:

$$v_{qm} = \sqrt{\frac{9 \times 1.38 \times 10^{-23} \times (27 + 273)}{4\pi \times 1200 \times (0.5 \times 10^{-6})^3}} = 0.44cm/s$$

Obs: O resultado aqui encontrado diverge daquele obtido no gabarito do livro.

11.10 Questão 10

a) De acordo com o enunciado há uma certa quantidade inicial de gás constituído de moléculas diatômicas, e parte dele se dissocia, gerando moléculas diatômica. Para encontrar o coeficiente de Poisson γ equivalente iremos trabalhar com somente 1 mol de gás, por simplicidade.

Se inicialmente há 1 mol de moléculas diatômicas e uma fração x delas é dissociada em moléculas monoatômicas, como uma fração x de 1 mol é o mesmo que x mols, então são gerados 2x mols de moléculas monoatômicas, porque após a dissociação cada moléculas diatômica gera duas moléculas monoatômicas. Após a

dissociação restam 1-x mols de moléculas diatômica. Por fim, após a dissociação, o número total de mols é:

Figura 19: Veja que cada molécula diatômica dissociada gera DUAS moléculas monoatômicas. Ou seja, se uma fração x do total de moléculas iniciais é dissociada, então surge uma fração 2x (do total inicial) de moléculas monoatômicas, após a dissociação. Já para as diatômicas esse número se torna 1-x.

$$n_{total} = n_{mono} + n_{di} = 2x + (1 - x) = (x + 1)mol$$

Ou seja, a fração de moléculas monoatômicas é:

$$f_{mono} = \frac{n_{mono}}{n_{total}} = \frac{2x}{x+1}$$

E a fração de moléculas diatômicas é:

$$f_{di} = \frac{n_{di}}{n_{tota}} = \frac{1-x}{x+1}$$

Agora, para determinar o γ equivalente adotaremos o seguinte raciocínio: iremos calcular como cada um dos diferentes tipos de moléculas contribui para a energia interna total do sistema (Lembre-se que moléculas monoatômicas possuem q=3 graus de liberdade, já as diatômicas possuem cinco). Assim, podemos escrever a energia interna da porção de gás constuída de moléculas monoatômicas como:

$$U_{mono} = \left(\frac{3}{2}RT\right)f_{mono} = (3RT)\frac{x}{x+1}$$

Para as moléculas diatômicas:

$$U_{di} = \left(\frac{5}{2}RT\right)f_{di} = \left(\frac{5}{2}RT\right)\frac{1-x}{x+1}$$

A energia interna do gás com capacidade térmica equivalente $C_{v_{eq}}$ é:

$$U_{eq} = C_{v_{eq}}T$$

Como tanto U_{mono} e U_{di} contribuem para a energia interna do gás, basta somar as duas quantias e igualar à energia interna equivalente, encontrando a capacidade térmica equivalente em termos de x:

$$C_{v_{eq}}T = (3RT)\frac{x}{x+1} + \left(\frac{5}{2}RT\right)\frac{1-x}{x+1} \implies C_{v_{eq}} = \left(\frac{5+x}{x+1}\right)\frac{R}{2}$$

 C_p equivalente é simplesmente dado por $C_p = C_v + R$:

$$C_{p_{eq}} = \left(\frac{5+x}{x+1}\right)\frac{R}{2} + R = \left(\frac{7+3x}{x+1}\right)\frac{R}{2}$$

Como $\gamma = \frac{C_p}{C_v}$:

$$\gamma_{eq} = \frac{\frac{7+3x}{x+1} \frac{R}{2}}{\frac{5+x}{x+1} \frac{R}{2}} = \frac{7+3x}{5+x}$$

Nos casos limites temos que $\gamma = \frac{5}{3}$, quando x = 1, que representa uma dissociação completa, ou seja, o gás é completamente monoatômico. E quando x = 0, $\gamma = \frac{7}{5}$, que representa um gás puramente diatômico.

b) Substituindo γ por $1.5 = \frac{3}{2}$ na fórmula encontrada:

$$\frac{3}{2} = \frac{7 + 3x}{5 + x}$$

Resolvendo para x encontramos:

$$x = \frac{1}{3} \approx 33.33\%$$

11.11 Questão 11

a) Sabemos que a massa molar do hidrogênio vale $2\frac{g}{mol}$, e do hélio vale $4\frac{g}{mol}$, portanto o número total de mols no gás é:

$$n = \frac{m_1}{M_1} + \frac{m_2}{M_2} = \frac{1}{2} + \frac{1}{4} = 0.75 mols$$

A pressão é:

$$P = \frac{nRT}{V} = \frac{0.75 \times 0.082 \times 300}{10} = 1.85atm$$

b) Primeiro iremos encontrar C_v . Como o hidrogênio é diatômico, ele possui

 $C_{v1} = \frac{5}{2}R$, e o hélio, por ser monoatômico, possui $C_{v2} = \frac{3}{2}R$. Podemos escrever a energia interna do gás como a energia interna proveniente da porção de hidrogênio e da porção de hélio:

$$U_{\text{total}} = U_1 + U_2 \implies nC_v T = n_1 C_{v1} T + n_2 C_{v2} T$$

Onde o índice 1 representa as grandezas referentes ao hidrogênio e o índice 2 representa as grandezas referentes ao hélio. Sabemos que há 0.5 mols de hidrogênio e 0.25 mols de hélio, desse modo:

$$C_v = \frac{n_1 C_{v1} + n_2 C_{v2}}{n} = \frac{0.5 \times \frac{5}{2}R + 0.25 \times \frac{3}{2}R}{0.75} = 2.17R$$

E para C_p :

$$C_p = C_v + R = 3.17R$$

Finalmente, temos que:

$$\gamma = \frac{C_p}{C_v} = \frac{3.17}{2.17} = 1.46$$

11.12 Questão 12

Nós podemos escrever a energia cinética associada a rotação da molécula como:

$$E_c = \frac{I < \omega^2 >}{2} = \frac{I\omega_{qm}^2}{2}$$

Lembre-se que pelo teorema da equipartição de energia, a energia média associada a cada termo quadrático na expressão da energia total é de $\frac{1}{2}kT$ por molécula (Em equilíbrio térmico a temperatura T). Portanto, podemos relacionar essa expressão com a energia cinética da molécula devido a rotação:

$$E_c = \frac{I\omega_{qm}^2}{2} = \frac{1}{2}kT \implies \omega_{qm} = \sqrt{\frac{kT}{I}}$$

Substituindo pelos valores dados (Lembre-se que $I=6\times 10^{-39}g\times cm^2=6\times 10^{-46}kg\times m^2$):

$$\omega_{qm} = \sqrt{\frac{1.38 \times 10^{-23} \times 273}{6 \times 10^{-46}}} = 2.5 \times 10^{12} rad/s$$

11.13 Questão 13

a) O número de moléculas de volume $n = \frac{N}{V}$ pode ser obtido a partir da equação de estado (O valor utilizado para a pressão é $P = 1atm \approx 1.01 \times 10^5 Pa$):

$$PV = nKT \implies n = \frac{N}{V} = \frac{P}{kT} = \frac{1.01 \times 10^5}{1.38 \times 10^{-23} \times 288} = 2.54 \times 10^{25} \frac{moleculas}{m^3}$$

Sabemos que a expressão do livre percurso médio é:

$$\bar{l} = \frac{1}{\sqrt{2}\pi n d^2}$$

Resolvendo para d, que é o diâmetro efetivo do átomo e utilizando o valor dado no enunciado par ao livre percurso médio $\bar{l} = 1.862 \times 10^{-5} cm = 1.862 \times 10^{-7} m$:

$$d = \frac{1}{\sqrt{\sqrt{2\pi}nl}} = \frac{1}{\sqrt{\sqrt{2\pi} \times 2.54 \times 10^{25} \times 1.862 \times 10^{-7}}} = 2.17 \times 10^{-8} cm$$

b) Primeiramente é necessário encontrar a velocidade quadrática média dos átomos, que pode ser obtida a partir de:

$$\frac{mv_{qm}^2}{2} = \frac{3}{2}kT \implies v_{qm} = \sqrt{\frac{3kT}{m}}$$

No caso, iremos considerar que a velocidade média \bar{v} é aproximadamente igual à velocidade quadrática média, isto é $\bar{v} \approx v_{qm}$. Além disso, a massa do átomo de hélio é de 4 unidades de massa atômica, onde uma unidade de massa atômica vale $1.66 \times 10^{-27} kg$, deste modo:

$$\bar{v} \approx v_{qm} = \sqrt{\frac{3 \times 1.38 \times 10^{-23} \times 288}{4 \times 1.66 \times 10^{-27}}} = 1340 m/s$$

O número médio de colisões por segundo é dado como a razão entre a velocidade média e o livre percurso médio, deste modo:

$$\bar{f} = \frac{\bar{v}}{\bar{l}} = \frac{1340}{1.862 \times 10^{-7}} = 7.19 \times 10^9 \frac{colisoes}{s}$$

11.14 Questão 14

Podemos escrever a densidade do gás como:

$$\rho = \frac{Nm}{V} = nm$$

Onde N representa o número total de moléculas, n representa a quantidade de moléculas por unidade de volume e m representa a massa de cada moléculas. Uma molécula de CO_2 possui 44 unidades de massa atômica $(1.66 \times 10^{-27} kg)$. Resolvendo para n:

$$n = \frac{\rho}{m} = \frac{4.91}{44 \times 1.66 \times 10^{-27}} = 6.75 \times 10^{25} \frac{moleculas}{m^3}$$

O livre percurso médio é:

$$\bar{l} = \frac{1}{\sqrt{2\pi}nd^2} = \frac{1}{\sqrt{2\pi}6.75 \times 10^{25} \times 4.59 \times 10^{-10}} = 1.59 \times 10^{-6} cm$$

11.15 Questão 15

A equação de estado de Van der Waals é:

$$\left(P + \frac{a}{v^2}\right)(v - b) = RT$$

E lembre-se que os valores críticos são:

$$v_c = 3b$$
, $P_c = \frac{a}{27b^2}$, $RT_c = \frac{8a}{27b}$

Agora, iremos reescrever P, $v \in T$ como:

$$v = \omega v_c = 3b\omega$$
, $P = \pi P_c = \pi \frac{a}{27b^2}$, $RT = \tau T_c = \tau \frac{8a}{27b}$

Substituindo na equação de estado de Van der Waals:

$$\left(\pi \frac{a}{27b^2} + \frac{a}{9b^2\omega^2}\right)(3b\omega - b) = \tau \frac{8a}{27b}$$

Simplificando a expressão obtemos:

$$\left(\pi + \frac{3}{\omega^2}\right)(3\omega - 1) = 8\tau$$

11.16 Questão 16

Isolando P na equação de estado de Wan der Waals chegamos em:

$$P = \frac{RT}{v - b} - \frac{a}{v^2}$$

O trabalho é:

$$W = \int_{v_i}^{v_f} P dV = \int_{v_i}^{v_f} \left(\frac{RT}{v - b} - \frac{a}{v^2} \right) dv$$

Integrando o primeiro termo obtemos (Você pode utilizar a substituição u = v - b e du = dv):

$$\int_{v_i}^{v_f} \frac{RT}{v - b} dv = RT(\ln\left(v_f - b\right) - \ln\left(b_i - b\right)) = RT \ln\left(\frac{v_f - b}{v_i - b}\right)$$

E integrando o segundo termo:

$$\int_{v_i}^{v_f} -\frac{a}{v^2} dv = a \left(\frac{1}{v_f} - \frac{1}{v_i} \right)$$

Portanto, o trabalho total é:

$$W = RT \ln \left(\frac{v_f - b}{v_i - b} \right) + a \left(\frac{1}{v_f} - \frac{1}{v_i} \right)$$

Que é o trabalho realizado por 1 mol de gás.

11.17 Questão 17

Primeiramente iremos estabelecer uma expressão para encontrar b, que representa o volume de exclusão devido a 1 mol do gás. A pressão e a temperatura crítica são:

$$P_c = \frac{a}{27b^2}, \quad RT_c = \frac{8a}{27b}$$

Logo, temos que:

$$\frac{RT_c}{P_c} = 8b \implies b = \frac{R}{8} \frac{T_c}{P_c} = \frac{8.31}{8} \frac{5.19}{2.25 \times 1.01 \times 10^5} = 2.39 \times 10^{-5} \frac{m^3}{mol}$$

Agora, para encontrar o volume de exclusão associado a somente uma molécula basta dividir b pelo número de avogadro N_0 :

$$b' = \frac{b}{N_0} = \frac{2.39 \times 10^{-5}}{6 \times 10^{23}} = 3.98 \times 10^{-29}$$

Lembre-se que a esfera de exclusão de uma esfera vale oito vezes o seu volume, contudo, no modelo que trata dos gases de Van der Waals, somente o hemisfério dianteiro da esfera de exclusão é levado em conta, deste modo b' vale quatro vazes o volume da esfera, assim:

$$b' = 4 \times \frac{4\pi r^3}{3}$$

Resolvendo para r e multiplicando por 2 para encontrar o diâmetro:

$$r = \sqrt[3]{\frac{3b'}{16\pi}} = \sqrt[3]{\frac{3 \times 3.98 \times 10^{-29}}{16\pi}} = 1.33 \times 10^{-8} cm \implies d = 2.66 \times 10^{-8} cm$$

A discrepância entre o resultado obtido neste exercício e o resultado do exercício 13 ocorre porque os cálculos aqui desenvolvidos são referentes ao gás na temperatura crítica, que é baixíssima, e neste caso grande parte do volume do gás é ocupado pelas moléculas e o modelo de Van der Waals não tem tanta precisão quanto a temperaturas mais elevadas.

11.18 Questão 18

a) Como $P_c = \frac{a}{27b^2}$ e $RT_c = \frac{8a}{27b}$, ao dividir uma equação pela outra obtemos:

$$b = \frac{R}{8} \frac{T_c}{P_c}$$

Utilizando os valores dados no enunciado (trabalhando com a pressão em atm e o volume em litros):

$$b = \frac{0.082}{8} \times \frac{304.1}{73} = 0.043 \frac{l}{mol}$$

Agora, para encontrar a a partir de b e da temperatura crítica:

$$RT_c = \frac{8a}{27b} \implies a = 27b \frac{RT_C}{8} = 27 \times 0.043 \times \frac{0.082 \times 304.1}{8} = 3.6atm \frac{l^2}{mol^2}$$

b) A densidade no ponto crítico pode ser escrita como:

$$\rho_c = \frac{m}{V} = \frac{nM}{V}$$

Onde n representa o número de mols e M a massa molar. Lembre-se que o

volume molar v é dado por $v=\frac{V}{n}$, que representa o volume de 1 mol de gás, e que massa molar M do CO_2 é de 44g/mol, assim:

$$\rho_c = \frac{M}{v_c}$$

Onde v_c representa o volume molar no ponto crítico. Por fim, para encontrar o volume molar no ponto crítica basta escreve-lo em termos do covolume $v_c = 3b$, resolvendo:

$$\rho_c = \frac{M}{3b} = \frac{44}{3 \times 0.043} = 340 \frac{g}{l} = 0.34 \frac{g}{cm^3}$$

c) Basta utilizar a equação de estado para gases perfeitos:

$$P = \frac{nRT}{V} = \frac{1 \times 0.082 \times 273}{0.5} = 44.8atm$$

d) Utilizando a equação de estado de Van der Waals:

$$\left(P + \frac{a}{v^2}\right)(v - b) = RT$$

Resolvendo para P e utilizando os valores de a e b obtidos no item a):

$$P = \frac{RT}{v - b} - \frac{a}{v^2} = \frac{0.082 \times 273}{0.5 - 0.043} - \frac{3.6}{0.5^2} = 34.6atm$$

e) O termo que computa a a fração da pressão devido à interação entre as moléculas do gás é a/v^2 , deste modo a fração procurada é:

$$f = \frac{P}{P_{total}} = \frac{\frac{a}{v^2}}{34.6} = \frac{14.4}{34.6} = 42\%$$

12 | Capítulo 12

12.1 Questão 1

Para a atmosfera ao nível do mar, temos que $P = 1.01 \times 10^5 Pa$ e T = 288K, deste modo, o número de partículas por unidade de volume é dado por:

$$n(0) = \frac{P_0}{kT} = \frac{1.01 \times 10^5}{1.38 \times 10^{-23} \times 288} = 2.59 \times 10^{25} \frac{moleculas}{m^3}$$

A composição de nitrogênio é de 78% e a de oxigênio, apesar do que consta no enunciado é de 21%, não 12%. Fazendo os calculos o valor n encontrado para o nitrogênio e o oxigênio é, respectivamente:

$$n_{N_2}(0) = 0.78n(0) = 2.01 \times 10^{25} \frac{moleculas}{m^3}$$

$$n_{O_2} = 0.54 \times 10^{25} \frac{moleculas}{m^3}$$

Agora, pela lei de Halley, podemos encontra a pressão atmosférica em uma altura z = 10km (O valor utilizado para a densidade do ar ao nível do mar será de $\rho_0 = 1.25kg/m^3$):

$$P(z) = P_0 \exp\left(\frac{\rho_0 g}{P_0}z\right) = 1.01 \times 10^5 \exp\left(\frac{1.25 \times 9.81}{1.01 \times 10^5} \times 10^4\right) = 30500 Pa$$

Agora podemos encontrar $n(10^4)$, a densidade de moléculas na altura z = 10km:

$$n(10^4) = \frac{P(10^4)}{kT} = \frac{30500}{1.38 \times 10^23 \times 288} = 7.81 \times 10^{24}$$

E para encontrar n para o nitrogênio e o oxigênio podemos utiliza a distribuição obtida a partir do método de Boltzmann:

$$n(z) = n(0) \exp\left(-\frac{mg}{kT}z\right)$$

Para o nitrogênio (Lembre-se que a massa da moléculas de hidrogênio é de 28 unidades de massa atômica):

$$n_{N_2}(z) = n_{N_2}(0) \exp\left(-\frac{mg}{kT}z\right) = 2.01 \times 10^{25} \exp\left(-\frac{28 \times 1.66 \times 10^{-27} \times 9.81}{1.38 \times 10^{-23} \times 288} \times 10^4\right)$$

$$n_{N_2}(z) = n_{N_2}(10^4) = 6.28 \times 10^{24}$$

Fazendo o mesmo para o oxigênio molecular (Que tem uma massa de 32 unidades de massa atômica):

$$n_{O_2}(z) = n_{O_2}(10^4) = 1.46 \times 10^{24}$$

Calculando as porcentagens:

$$f_{N_2} = \frac{n_{N_2}(10^4)}{n(10^4)} = \frac{6.28 \times 10^{24}}{7.81 \times 10^{24}} = 80.6\%$$

E para o O_2 :

$$f_{O_2} = \frac{n_{O_2}(10^4)}{n(10^4)} = \frac{1.46 \times 10^{24}}{7.81 \times 10^{24}} = 18.4\%$$

12.2 Questão 2

a) Para calcular a constante de normalização basta encontrar A tal que:

$$\int_{-\infty}^{\infty} F(v)dv = 1$$

Ou seja, a área total sob o gráfico deve ser igual à unidade. Como o gráfico mostrado na figura é um triângulo, é fácil ver que sua área vale $S = \frac{bh}{2} = \frac{A2v_0}{2} = Av_0$. Pela condição de normalização:

$$S = Av_0 = 1 \implies A = \frac{1}{v_0}$$

b) A função presente no gráfico pode ser escrita como (Basta encontrar as funções de primeiro grau correspondentes):

$$F(v) = \begin{cases} \frac{A}{v_0}v = \frac{1}{v_0^2}v, \text{ se } 0 \leqslant v < v_0\\ -\frac{1}{v_0^2}v + \frac{2}{v_0}, \text{ se } v_0 \leqslant v \leqslant 2v_0\\ 0, \text{ se } v > 2v_0 \end{cases}$$

Para encontrar v_p basta encontrar um v que maximize F(v), analisando o gráfico fica evidente que:

$$v_p = v_0$$

Agora, para encontrar < v > é necessário utilizar a definição de velocidade média para a distribuição:

$$\langle v \rangle = \int_0^\infty F(v)vdv$$

Deste modo, temos que para a nossa função de distribuição:

$$\langle v \rangle = \int_0^{v_0} \frac{1}{v_0^2} v^2 dv + \int_{v_0}^{2v_0} \left(-\frac{1}{v_0^2} v + \frac{2}{v_0} \right) v dv$$
$$\langle v \rangle = \frac{1}{v_0^2} \int_0^{v_0} v^2 dv - \frac{1}{v_0^2} \int_{v_0}^{2v_0} v^2 dv + \frac{2}{v_0} \int_{v_0}^{2v_0} v dv$$

Resolvendo as integrais:

$$\langle v \rangle = \frac{1}{v_0^2} \left(\frac{v_0^3}{3} - 0 \right) - \frac{1}{v_0^2} \left(\frac{8v_0^3}{3} - \frac{v_0^3}{3} \right) + \frac{2}{v_0} \left(\frac{4v_0^2}{2} - \frac{v_0^2}{2} \right)$$

Ao simplificar, finalmente obtemos $\langle v \rangle$:

$$|\langle v \rangle = v_0 = v_p|$$

Por fim, iremos encontrar v_{qm} a partir da definição:

$$v_{qm}^{2} = \langle v^{2} \rangle = \int_{-\infty}^{\infty} F(v)v^{2}dv$$

$$v_{qm}^{2} = \int_{0}^{v_{0}} \frac{1}{v_{0}^{2}} v^{3}dv + \int_{v_{0}}^{2v_{0}} \left(-\frac{1}{v_{0}^{2}} v + \frac{2}{v_{0}} \right) v^{2}dv$$

$$v_{qm}^{2} = \frac{1}{v_{0}^{2}} \int_{0}^{v_{0}} v^{3}dv - \frac{1}{v_{0}^{2}} \int_{v_{0}}^{2v_{0}} v^{3}dv + \frac{2}{v_{0}} \int_{v_{0}}^{2v_{0}} v^{2}dv$$

Após integrar:

$$v_{qm}^2 = \frac{1}{v_0^2} \left(\frac{v_0^4}{4} - 0 \right) - \frac{1}{v_0^2} \left(\frac{16v_0^4}{4} - \frac{v_0^4}{4} \right) + \frac{2}{v_0} \left(\frac{8v_0^3}{3} - \frac{v_0^3}{3} \right)$$

Finalmente:

$$v_{qm} = \sqrt{\frac{7}{6}}v_0$$

12.3 Questão 3

A fração f de moléculas com velocidade no intervalo [v, v + dv] é dado por:

$$f = F(v)dv$$

De acordo com o enunciado queremos encontrar a fração de moléculas com velocidades no intervalo $[v,v+v\Delta v]$, onde $\Delta v=0.01=1\%\approx dv$. Deste modo, podemos encontrar a fração de moléculas neste intervalo a partir de uma expressão similar a anterior:

$$f = F(v)vdv \approx F(v)v\Delta v$$

Substituindo F(v) pela função de distribuição de Maxwell (Veja que agora há um fator v adicional) e tomando $v = v_p$ (Pois estamos procurando por partícular que tenha velocidade 1% maior que v_p):

$$f = F(v_p)v_p\Delta v = 4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}}v^3v_p \exp\left(-\frac{1}{kT}\frac{mv_p^2}{2}\right)$$

A velocidade mais provável é dada por:

$$v_p = \sqrt{\frac{2kT}{m}}$$

Deste modo a expresão anterior se reduz à:

$$f = \frac{4\pi}{\pi^{\frac{3}{2}}}e^{-1}\underbrace{\Delta v}_{=0.01} = 0.83\%$$

Contudo, este resultado se refere somente as partícular com velocidades entre v_p e velocidades 1% maiores que v_p , se levarmos em contra as velocidades inferiores basta dobrar o resultado obtido:

$$f = 1.66\%$$

12.4 Questão 4

A função de distribuição para uma componente qualquer vale:

$$F(v_i) = \left(\frac{m}{2\pi kT}\right) \exp\left(-\frac{1}{2}\frac{mv_i^2}{kT}\right)$$

Deste modo, a velocidade média para a componente será:

$$\langle v_i \rangle = \left(\frac{m}{2\pi kT}\right) \int_0^\infty \exp\left(-\frac{1}{2}\frac{mv_i^2}{kT}\right) v_i dv$$

Para resolver essa integral basta utilizar a substituição:

$$u = -\frac{mv^2}{2kT} \quad , \quad vdv = -\frac{2kT}{m}u$$

$$\int_0^\infty \exp\left(-\frac{1}{2}\frac{mv_i^2}{kT}\right)v_i dv = \frac{kT}{m}$$

Após resolve-la:

$$\langle v_i \rangle = \left(\frac{m}{2\pi kT}\right) \frac{kT}{m} = \sqrt{\frac{kT}{2\pi m}}$$

Mas como o exercício nos pede o módulo dessa velocidade, basta multiplicar po 2:

$$\langle v_i \rangle = 2\sqrt{\frac{kT}{2\pi m}}$$

Além disso, temos que:

$$\langle v \rangle = \sqrt{\frac{8kT}{\pi m}}$$

e,

$$< w^+ > = \sqrt{\frac{kT}{2\pi m}}$$

Calculando a razão entre $< v_i >$ e < v > e depois entre $< v_i >$ e $< w^+ >$ chegamos em:

$$\sqrt{\frac{2kT}{\pi m}} = \frac{1}{2}v_o = 2 < w^+ >$$

12.5 Questão 5

Podemos encontrar o valor de < $\frac{1}{v} >$ a partir de:

$$<\frac{1}{v}> = \int_0^\infty F(v) \frac{1}{v} dv = 4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} \int_0^\infty \exp\left(-\frac{mv^2}{2kT}\right) v dv$$

Esse integral pode ser resolvida utilizando a substituição:

$$u = -\frac{mv^2}{2kT} \quad , \quad vdv = -\frac{2kT}{m}u$$

Integrando de 0 à ∞ o resultado obtido é:

$$\int_0^\infty \exp\left(-\frac{mv^2}{2kT}\right)vdv = \frac{kT}{m}$$

Portanto:

$$<\frac{1}{v}>=4\pi\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}}\frac{kT}{m}$$

E a velocidade média é dada por (conferir pág. 276, eq. 12.2.44):

$$\langle v \rangle = \sqrt{\frac{8kT}{\pi m}}$$

Assim, a razão R é:

$$R = \frac{\langle \frac{1}{v} \rangle}{\frac{1}{\langle v \rangle}} = \frac{4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} \frac{kT}{m}}{\frac{1}{\sqrt{\frac{8kT}{\pi m}}}} = \frac{4}{\pi} \approx 1.27$$

12.6 Questão 6

a) A distribuição de velocidade para partículas com velocidades no intervalo [v, v + dv] é dada por:

$$F(v) = 4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} v^2 \exp\left(-\frac{1}{kT}\frac{mv^2}{2}\right) dv$$

A energia cinética das partículas é $E=mv^2/2$, portanto a relação entre os diferenciais da energia e da velocidade é:

$$dE = mvdv$$

Logo, fazendo as devidas substituições:

$$F(v) = 4\pi \frac{1}{(2\pi kT)^{\frac{3}{2}}} \underbrace{m^{\frac{1}{2}}v}_{\frac{1}{2}} \exp\left(-\frac{1}{kT} \underbrace{mv^2}_{E}\right) \underbrace{mvdv}_{\frac{dE}{2}}$$

Por fim, após simplificar a equação obtemos:

$$F(E) = \frac{2}{\sqrt{\pi}} \frac{\sqrt{E}}{(kT)^{\frac{3}{2}}} e^{-\frac{E}{kT}}$$

b) Pela definição da média de uma função de distribuição a energia média < E >é:

$$\langle E \rangle = \int_0^\infty F(E)EdE = \frac{2}{\sqrt{\pi}} \int_0^\infty \left(\frac{E}{kT}\right)^{\frac{3}{2}} e^{-\frac{E}{kT}} dE$$

Fazendo a substitução $\frac{E}{kT}=u^2$ e $2udu=\frac{dE}{kT}$ a expressão pode ser reescrita como:

$$< E > = \frac{4kT}{\sqrt{\pi}} \int_0^\infty u^4 e^{-u^2} du$$

Para calcular a integral iremos fazer uma nova substituição, $y = u^2$ e dy = 2udu, assim a integral pode ser reescrita como:

$$\int_0^\infty u^4 e^{-u^2} du = \frac{1}{2} \int_0^\infty y^{\frac{3}{2}} e^{-y} dy$$

Agora, iremos utilizar a função Gamma e algumas de suas propriedades para resolver essa integral. Lembre-se que a função Gama é definida como:

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

Portanto, a integral que procuramos pode ser reescrita como:

$$\int_0^\infty y^{\frac{3}{2}} e^{-y} dy = \Gamma(\frac{5}{2}) = \int_0^\infty t^{\frac{3}{2}} e^{-t} dt$$

Agora iremos utilizar uma fórmula denominada fórmula de reflexão de Euler para encontrar $\Gamma(\frac{1}{2})$:

$$\Gamma(1-x)\Gamma(x) = \frac{\pi}{\sin(x\pi)}$$

Para x = 1/2 temos que:

$$\Gamma(\frac{1}{2})^2 = \frac{\pi}{\sin\frac{\pi}{2}} \implies \Gamma(\frac{1}{2}) = \sqrt{\pi}$$

Por fim iremos usar a seguinte relação para descobrir $\Gamma(\frac{5}{2})$:

$$\Gamma(x+1) = x\Gamma(x)$$

Para x = 3/2 temos:

$$\Gamma(\frac{5}{2}) = \frac{3}{2}\Gamma(\frac{3}{2})$$

Para encontrar $\Gamma(3/2)$ basta fazer que x=1/2, logo:

$$\Gamma(\frac{3}{2}) = \frac{1}{2}\Gamma(\frac{1}{2}) = \frac{\sqrt{\pi}}{2}$$

Finalmente:

$$\Gamma(\frac{5}{2}) = \frac{3}{2}\Gamma(\frac{3}{2}) = \frac{3\sqrt{\pi}}{4}$$

Portanto:

$$\int_0^\infty y^{\frac{3}{2}} e^{-y} dy = \Gamma(\frac{5}{2}) = \frac{3\sqrt{\pi}}{4}$$

E a integral que procuravamos no início é:

$$\int_0^\infty u^4 e^{-u^2} du = \frac{1}{2} \int_0^\infty y^{\frac{3}{2}} e^{-y} dy = \frac{3\sqrt{\pi}}{8}$$

Finalmente podemos encontrar a energia média:

$$= \frac{4kT}{\sqrt{\pi}} \underbrace{\int_0^\infty u^4 e^{-u^2} du}_{\frac{3\sqrt{\pi}}{8}} = \frac{3}{2}kT = \frac{mv_{qm}^2}{2}$$

Agora, para encontrar a energia mais provável basta derivar F(E) com respeito a E e resolver para E:

$$\frac{dF(E)}{dE} = 0 \implies \frac{d(\frac{2}{\sqrt{\pi}} \frac{\sqrt{E}}{(kT)^{\frac{3}{2}}} e^{-\frac{E}{kT}})}{dE} = 0$$

Derivando:

$$\frac{1}{2}E^{-\frac{1}{2}}e^{-\frac{E}{kT}} - \frac{1}{kT}e^{-\frac{E}{kT}} = 0$$

Resolvendo para E:

$$E = \frac{kT}{2}$$

Lembre-se que a velocidade mais provável é $v_p = \sqrt{\frac{2kT}{m}}$, assim temos que:

$$E_p = \frac{kT}{2} \neq \frac{mv_p^2}{2} = kT$$

12.7 Questão 7

Para as moléculas dentro do forno a distribuição é simplesmente dada pela distribuição de Maxwell, por isso a velocidade mais provável é:

$$v_p = \sqrt{\frac{2kT}{m}} \text{ (Forno)}$$

E a energia mais provável é a mesma encontrada no exercício anterior:

$$E_p = \frac{kT}{2} \text{ (Forno)}$$

Agora, para encontrar a velocidade mais provável do feixe basta encontrar v que maximize j(v), que é dado por:

$$j(v) = AvF(v) = 4\pi A \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} v^3 \exp\left(-\frac{1}{kT}\frac{mv^2}{2}\right)$$

Onde A representa uma constante. Derivando a expressão e igualando a zero:

$$\frac{d(j(v))}{dv} = 0 \implies \frac{d(v^3 \exp\left(-\frac{1}{kT}\frac{mv^2}{2}\right))}{dv} = 0$$

Derivando:

$$3v^{2} \exp\left(-\frac{1}{kT}\frac{mv^{2}}{2}\right) - \frac{m}{kT}v^{4} \exp\left(-\frac{1}{kT}\frac{mv^{2}}{2}\right) = 0$$

Resolvendo para v obtemos:

$$v_p = \frac{3kT}{m} \text{ (Feixe)}$$

Agora iremos encontrar a distribuição para a energia adotando um procedimento análogo ao do exercício anterior. Temos que $E=\frac{mv^2}{2}$ e dE=mvdv. Manipulando a expressão para a distribuição de velocidades e fazendo as devidas substituições obtemos:

$$j(E) = \frac{2\sqrt{2}}{\sqrt{\pi}} \frac{1}{(kT)^{\frac{3}{2}}} \frac{1}{\sqrt{m}} Ee^{-\frac{E}{kT}}$$

Derivando com respeito à E e igualando a zero obtemos:

$$\frac{d(Ee^{-\frac{E}{kT}})}{dE} = 0 \implies e^{-\frac{E}{kT}} - \frac{E}{kT}e^{-\frac{E}{kT}} = 0$$

Resolvendo para E obtemos a energia mais provável:

$$\boxed{E_p = kT}$$

Veja que tanto a energia mais provável quanto a velocidade mais provável são maiores para o feixe.

12.8 Questão 8

a) A energia de uma partícula se movendo com frequência angular ω a uma distância r é:

$$U(r) = U_0 - \frac{1}{2}m\omega^2 r^2$$

Pela distribuição de Boltzmann

$$F(r,\omega) = C \exp(-\frac{E}{kT}) = C \exp(-(U_0 - \frac{1}{2}m\omega^2 r^2)/kT)$$

Como $\rho \propto F$, basta calcular a razão entre $F(0,\omega)$ e $F(R,\omega)$:

$$\frac{F(R,\omega)}{F(0,\omega)} = \exp\left(-(U_0 - \frac{1}{2}m\omega^2 r^2)/kT - (-U_0)/kT\right)$$

Logo:

$$\frac{\rho(R)}{\rho(0)} = \exp\left(\frac{m\omega^2 R^2}{2kT}\right)$$

12.9 Questão 9

a) A probabilidade de uma molécula estar concentrada num volume V/3 é:

$$p_i = \frac{\frac{V}{3}}{V} = \frac{1}{3}$$

Para que o mesmo ocorra com N moléculas (Lembre-se que a probabilidade nesse caso é multiplicativa):

$$P = \underbrace{\frac{1}{3} \cdot \frac{1}{3} \cdots \frac{1}{3}}_{N \text{vezes}} = \left(\frac{1}{3}\right)^{N}$$

b) A solução desse item é análoga à do item anterior, contudo neste segundo caso a probabilidade de encontrar uma moléculas em um volume 2V/3 é:

$$p_i = \frac{\frac{2V}{3}}{V} = \frac{2}{3}$$

Para N moléculas:

$$P = \left(\frac{2}{3}\right)^N$$

c) A probabilidade de encontrar N/3 moléculas contidas em um volume V/3 é:

$$p_1 = \left(\frac{1}{3}\right)^{\frac{N}{3}}$$

A probabilidade de encontrar as 2N/3 moléculas restantes no volume 2V/3 no volume restante é:

$$p_2 = \left(\frac{2}{3}\right)^{\frac{2N}{3}}$$

Portanto, para que os dois eventos aconteçam ao mesmo tempo, a probabilidade $\acute{\rm e}:$

$$p_{12} = p_1 p_2 = \left(\frac{1}{3}\right)^{\frac{N}{3}} \left(\frac{2}{3}\right)^{\frac{2N}{3}}$$

Contudo há várias configurações possível para que isso ocorra, e o número de combinações é dado por:

$$n = \binom{N}{\frac{N}{3}} = \binom{N}{\frac{2N}{3}}$$

Deste modo, a probabilidade de que ocorra a situação descrita no enunciado é:

$$P = np_{12} = \binom{N}{\frac{N}{3}} \left(\frac{1}{3}\right)^{\frac{N}{3}} \left(\frac{2}{3}\right)^{\frac{2N}{3}}$$

d) Temos que a variação de entropia em função do peso estatístico é:

$$\Delta S = k \ln \left(\frac{W_f}{W_i} \right)$$

Portanto, a variação de entropia ao passar do estado 1 (item a) para o estado 2(item b), é:

$$\Delta S = k \ln \left(\frac{(2V/3)^N}{(V/3)^N} \right) = Nk \ln 2$$

d) Tomando ${\cal N}=9$ e fazendo as substituições na resposta do item a:

$$P_1 = \left(\frac{1}{3}\right)^N = \left(\frac{1}{3}\right)^9 = 5.1 \times 10^{-5}$$

Agora na resposta do item b:

$$P_2 = \left(\frac{2}{3}\right)^N = \left(\frac{2}{3}\right)^9 = 2.6 \times 10^{-2}$$

E finalmente no item c:

$$P = {N \choose \frac{N}{3}} \left(\frac{1}{3}\right)^{\frac{N}{3}} \left(\frac{2}{3}\right)^{\frac{2N}{3}} = {9 \choose \frac{9}{3}} \left(\frac{1}{3}\right)^{\frac{9}{3}} \left(\frac{2}{3}\right)^{\frac{2\times 9}{3}} = 0.273$$