ЛАБОРАТОРНА РОБОТА № 1.

ДИСКРЕТНА ЗГОРТКА СИГНАЛІВ.

Мета: Ознайомитися з поняттям дискретних систем. Освоїти процес та алгоритм дискретної згортки сигналів.

Поняття дискретних систем

Узагальнена структурна схема дискретної системи представлена на рис. 1.

Вхідний аналоговий сигнал переводиться в послідовність відліків $s_{\rm BX}(k)$ і надходить на пристрій обробки, звідки знімається вихідна імпульсна послідовність $s_{\rm Bux}(k)$, яка потім згладжується фільтром. Окремим випадком дискретної системи є система цифрової обробки сигналу (ЦОС), коли послідовність вхідних відліків $s_{\rm BX}(k)$ оцифровується. У цьому випадку, очевидно, пристрій обробки повинен мати аналогово-цифровий перетворювач (АЦП) на вході і цифро-аналоговий перетворювач (ЦАП) на виході.

Дискретизація аналогового сигналу. Теорема Найквіста-Котельникова-Шеннона.

Перехід від аналогового безперервного сигналу s(t) до дискретного $s_D(t)$ здійснюється шляхом дискретизації по часу (рис. 2). З рисунків бачимо, що вихідний неперервний сигнал s(t) представляється послідовністю відліків $\{s_k\}$, де $s_k=s(k\Delta t)$. Інтервал Δt називають *кроком дискретизації*, а $f_D=\frac{1}{\Delta t}-$ *частотою дискретизації*. Зрозуміло, що для уникнення втрат інформації крок дискретизації повинен бути досить малим. З іншого боку, занадто часті відліки ведуть до невиправданої надмірності інформації і ускладнення апаратури. Відповідь про правильний вибір Δt дає теорема Найквіста-Котельникова-Шеннона.

Аналоговий сигнал

Рис. 2б. Коректне відтворення. Аналоговий гармонічний і дискретний сигнали: частота сигнала $f_s = 2$ к Γ ц, частота дискретизації $f_D = 40$ к Γ ц

Рис. 2в. Некоректне відтворення. Аналоговий гармонічний і дискретний сигнали: частота сигнала $f_s = 42 \text{ к} \Gamma \text{ц}$, частота дискретизації $f_D = 40 \text{ к} \Gamma \text{ц}$

 $Tеорема \ Haйквіста-Котельникова-Шеннона$: довільний сигнал s(t), спектр якого обмежений частотою F_B може бути повністю відтворений по послідовності своїх відліків, взятих з інтервалом

$$\Delta t \le \frac{1}{2F_B} \tag{1}$$

При цьому відновлення здійснюється за допомогою ряду

$$s(t) = \sum_{k=-\infty}^{\infty} s_k \frac{\sin\left[\frac{\pi}{\Delta t}(t - k\Delta t)\right]}{\frac{\pi}{\Delta t}(t - k\Delta t)}.$$
(2)

Фізичний зміст цієї теореми стає зрозумілим, якщо розглянути спектри сигналів s(t) і $s_D(t)$.

3 рис. 3 видно, що $S_D(f)$ містить в собі S(f) і ще нескінченне число копій S(f), зсунутих один відносно одного на частоту дискретизації f_D . Якщо пропустити сигнал $S_D(f)$ через фільтр низьких частот (ФНЧ), амплітудно-частотна характеристика (АЧХ) якого показана на цьому ж рисунку, то на виході ФНЧ залишиться тільки S(f), тобто відновиться сигнал S(f).

При $f_D > 2F_B$ копії не перетинаються з основною пелюсткою спектра $S_D(f)$ і таке відновлення можливе. При $f_D = 2F_B$ копії дотикаються до основної пелюстки, проте виділення вихідного сигналу s(t) ще можливе, але за допомогою ідеального ФНЧ з нескінченною крутизною спаду АЧХ.

При $f_D < 2F_B$ пелюстки спектру $S_D(f)$ перекриваються і відновлення вихідного сигналу s(t) стає неможливим.

На практиці частоту f_D завжди вибирають більшою, ніж $2F_B$, так як будь-який фільтр допустимої складності має не нескінченну крутизну спаду АЧХ. Спектр реального сигналу зазвичай має точну верхню межу. Найчастіше S(f) зменшується із зростанням частоти, асимптотично наближаючись до нуля. У такому випадку на вході пристроя-дискретизатора застосовують ФНЧ з частотою, яка рівна ефективній ширині спектра вихідного аналогового сигналу. Його призначення — прибрати "хвости" спектра за межами F_B і тим самим виключити перекриття пелюсток спектра $S_D(f)$

Дискретна згортка сигналів

Згортку двох аналогових сигналів можна зобразити у вигляді:

$$x(t) * y(t) = f(t) = \int_{-\infty}^{\infty} x(\tau)y(t-\tau)d\tau = \int_{-\infty}^{\infty} y(\tau)x(t-\tau)d\tau.$$
 (1)

За аналогією зі згорткою неперервних сигналів в теорії дискретних систем вводять дискретну згортку - сигнал, відліки якого пов'язані з відліками дискретних сигналів $\{x_k\}$ і $\{y_k\}$ співвідношенням:

$$f_m = \sum_{k=0}^{\infty} x_k y_{m-k}, \qquad m = 0, 1, 2, \dots$$
 (2)

Розглянемо найпростіший приклад обчислення згортки дискретних сигналів $\{x_k\} = (1,2,3)$ і $\{y_k\} = (5,3,1)$. Скориставшись алгоритмом дискретної згортки (2), здійснимо безпосереднє обчислення її відліків. Для цього спочатку випишемо відліки сигналу $\{x\}$ в прямій послідовності, а сигнала $\{y\}$ – в зворотній:

$$x_k$$
: 1 2 3 $\rightarrow x_1, x_2, x_3$ y_k : 1 3 5 $\leftarrow y_3, y_2, y_1$

Щоб визначити нульовий відлік згортки (m=0), сумістимо нульові позиції отриманих сигналів

 \leftarrow

		1	2	3
1	3	5		

 \rightarrow

і перемножимо відліки, що знаходяться один під одним. В результаті отримаємо

$$f_0 = 1 \cdot 5 = 5$$

Для
$$m=1$$
, $f_1=1\cdot 3+2\cdot 5=13$

	1	2	3
1	3	5	

Для m=2, $f_2=1\cdot 1+2\cdot 3+3\cdot 5=22$

1	2	3
1	3	5

Для m=3, $f_3=2\cdot 1+3\cdot 3=11$

1	2	3	
	1	3	5

Для m=4, $f_4=1\cdot 3=3$

1	2	3		
		1	3	5

У підсумку

$$\{f_m\} = (5, 13, 22, 11, 3)$$

Завдання до роботи.

Створити програму для знаходження дискретної згортки $\{f_m\}$ дискретних сигналів $\{x_k\}$ і $\{y_k\}$.

Таблиця 1. Вхідні дані

Daniary No	Таолиця Т. Вхідні	
Варіант №	$\{x_k\}$	$\{y_k\}$
1	3, 5, 7	6, 3, 3
	4, 5, 7, 3	4, 1, 6, 7
	6, 4, 7, 8, 1, 1, 5	5, 3, 6, 7, 1, 0
	5, 6, 0	1, 4, 7
2	2, 3, 4, 7	0, 3, 8, 7, 2, 6, 4,
_	6, 3, 2, 4, 6	0, 8, 2, 3, 7, 4, 0, 8, 5
	0, 8, 6	4, 2, 2
3	3, 2, 4, 0, 1, 2, 8, 7	1, 8, 7, 6, 4
5	3, 4, 6, 0, 9, 2, 1, 6, 4, 0	0, 1, 2, 3, 6, 4
	5, 2, 3	9, 7, 5
4		
4	2, 1, 4, 3, 6, 8	8, 4, 1, 8
	6, 4, 0, 1, 2, 8, 7, 4, 0, 1, 2	8, 3, 4, 0, 8, 2, 1
_	6, 7, 1	5, 6, 7
5	6, 4, 7, 9, 2, 3, 6, 4, 9	8, 2, 7, 3, 6, 4, 0
	2, 3, 6, 4, 2, 4, 8, 2	1, 2, 8, 6, 4, 0, 8, 3, 7, 6, 4, 0
	8, 1, 0	5, 6, 9
6	6, 4, 2, 7, 9, 3	4, 9, 0, 8, 1, 7, 2,
	6, 4, 7, 0, 8, 1, 2	3, 4, 8, 7, 0, 6
_	6, 5, 4	3, 2, 1
7	0, 9, 2, 7, 4, 3	6, 8, 6, 4
	5, 1, 0, 2, 6, 4, 7, 8	0, 1, 2, 8, 7, 4, 0
	4, 1, 1	7, 4, 5
8	9, 8, 7, 4, 9, 5, 0	5, 3, 2, 4, 0, 1, 2
	7, 1, 9, 8, 7, 5	8, 7, 3, 4, 6, 0, 9, 2, 1, 6
	5, 4, 3	1, 5, 6
9	0, 7, 1, 4, 5, 6, 1, 2	1, 0, 9, 2, 8, 7,
	0, 9, 4, 5, 0, 7, 5	4, 7, 3, 4, 9, 2, 1, 3, 7, 4
	0, 3, 6	6, 5, 4
10	7, 4, 8, 0, 1, 3, 2, 7	8, 7, 7, 5, 8, 1, 0
	4, 0, 1, 7, 5, 1, 0	2, 4, 3, 9, 6, 5
	3, 3, 6	5, 6, 0
11	9, 8, 7, 2, 1, 0	7, 1, 3, 2, 9, 4, 7, 1
	5, 7, 6, 1, 0, 8, 7, 6	8, 2, 9, 3, 0,
	4, 2, 2	9, 7, 5
12	4, 2, 2 4, 0, 8, 7, 0, 3, 7	4, 3, 9, 0, 8, 7
	8, 4, 3, 6, 5, 2, 1	3, 2, 4, 9, 0, 8, 7, 3, 2
13	7, 4, 5	5, 2, 3
	2, 6, 5, 4, 7, 6, 5	1, 8, 4, 3, 5, 0, 9
	1, 6, 5, 0, 9, 4, 7	8, 7, 3, 2, 4, 5
	1, 5, 6	6, 7, 1
14	2, 8, 7, 3, 4, 5, 1, 0	1, 2, 8, 3, 4
	2, 4, 0, 9, 1, 2, 7 6, 5, 4	0, 8, 2, 1, 6, 4, 2 8, 1, 0
15	6, 4, 0, 1, 2, 3, 6, 4, 0, 3, 8, 7	4, 0, 8, 2, 7, 3,
	2, 6, 4, 0, 8, 2	6, 4, 0, 1, 2, 8, 6, 4, 0, 8, 3, 7
	- , ·, ·, ·, ·, -	·, ·, ·, ·, ·, ·, ·, ·, ·, ·, ·, ·, ·, ·