XLNet: Generalized Autoregressive Pretraining for Language Understanding

Zhilin Yang*1, Zihang Dai*12, Yiming Yang1, Jaime Carbonell1, Ruslan Salakhutdinov1, Quoc V. Le2

1 Carnegie Mellon University, 2 Google Brain

Published Date: Jun 2019

- Introduction
- Related Work
- Permutation Language Modeling
- Two-Stream Self-Attention
- Long Text Understanding
- Evaluation

Introduction

Input —— Pre-train Model —— Downstream task

- Sequence (Text)
- Image
- Videos

Transfer Learning

NLP:

- ELMo
- GPT(GPT2)
- BERT
- ERNIE

CV:

- VGG
- ResNet
- Inception
- MobileNet
- NASNet
- ...

NLP:

- Text classification
- Semantic classification
- Question Answering
- ...

CV:

- Image classification
- Image detection
- ...

Hybrid:

- Image(Video) caption
- Visual Question Answering
- ...

- AutoRegressive(AR): Target is only conditioned on the token up to position **t**.
 - Given a sequence $\mathbf{x} = (x_1, x_2, x_3, x_4, x_5)$

$$\prod p(x_t | x_{< t}) = p(x_5 | x_4, x_3, x_2, x_1) \times p(x_4 | x_1, x_2, x_3) \times p(x_3 | x_1, x_2) \times p(x_2 | x_1) \times p(x_1)$$

Maximum the likelihood

$$\max_{\theta} \log p_{\theta}(\mathbf{x}) = \sum_{t=1}^{T} \log p_{\theta}(x_{t} | \mathbf{x}_{< t}) = \sum_{t=1}^{T} \log \frac{\exp(h_{\theta}(\mathbf{x}_{1:t-1})^{T} e(x_{t}))}{\sum_{x'} \exp(h_{\theta}(\mathbf{x}_{1:t-1})^{T} e(x'))}$$

GPT

ELMo

Given a sequence $\mathbf{x} = (x_1, x_2, x_3, x_4, x_5)$

• AutoRegressive(AR):

Forward: Given
$$x_1, x_2 \to \text{Predict } x_3, x_4$$

 $p(x_3 | x_1, x_2) \times p(x_4 | x_1, x_2, x_3)$

Backward: Given $x_5, x_4 \to \text{Predict } x_3, x_2$ $p(x_3 | x_5, x_4) \times p(x_2 | x_5, x_4, x_3)$

Issue:

• Context dependency

Passage: Thom Yorke is the singer of Radiohead.

$$p(is | Thom Yorke) \times ... \times$$

AR: $p(\text{singer} | \text{Thom York is the}) \times ... \times p(\text{Radiohead} | \text{Thom York is the singer of})$

Question: What band is Thom Yorke in?

Answer: Radiohead.

Question: Who is the singer of Radiohead?

Answer: Thom Yorke.

 $p(\text{Thom Yorke} \mid \text{is the singer of Radiohead}) \times \dots \times$

XLNet: $p(\text{singer} | \text{Thom York is the, of Radiohead}) \times ... \times p(\text{Radiohead} | \text{Thom York is the singer of})$

- AutoEncoding(AE): Utilize bidirectional contexts for reconstruction.
 - Given a sequence $\mathbf{x} = (x_1, x_2, x_{mask}, x_4, x_{mask})$

$$\prod p(x_{mask} | \hat{x}) = p(x_3 | x_{1,2,4}) \times p(x_5 | x_{1,2,4})$$

• Maximum the likelihood

$$\max_{\theta} \log p_{\theta}(\mathbf{x}_{mask} | \hat{\mathbf{x}}) = \sum_{t=1}^{T} \log p_{\theta}(x_t | \hat{\mathbf{x}}) = \sum_{t=1}^{T} \log \frac{\exp(H_{\theta}(\hat{\mathbf{x}})_t^T e(x_t))}{\sum_{x'} \exp(H_{\theta}(\hat{\mathbf{x}})_t^T e(x'))}$$

Given a sequence $\mathbf{x} = (x_1, x_2, x_3, x_4, x_5)$

• AutoEncoding(AE):

Objective: Given
$$x_1, x_2, x_5 \to \text{Predict } x_3, x_4$$

 $p(x_3 | x_1, x_2, x_5) \times p(x_4 | x_1, x_2, x_5)$

Issue:

- Independence Assumption
- Input Noise

Passage: Thom Yorke is the singer of Radiohead.

Mask token \rightarrow Thom Yorke is the x_{mask} of x_{mask} .

BERT: $p(\text{singer} | \text{Thom Yorke is the, of}) \times p(\text{Radiohead} | \text{Thom Yorke is the, of})$

XLNet: $p(\text{singer} | \text{Thom Yorke is the, of}) \times p(\text{Radiohead} | \text{Thom Yorke is the singer of})$

BERT MLM

BERT

Pre-train:

	x _{mask}	x_2	x_3	x_4	
x_{mask}					
x_2					×
x_3					
x_4					

Fine-tune:

: Attention mark

Permutation Language Modeling

PLM learns to utilize **contextual information** from **all positions** (capturing bidirectional context) without using *mask* token.

- 1. Given a sequence: x_1, x_2, x_3, x_4 , target: x_3
- 2. Permutation: x_2, x_4, x_3, x_1
- 3. $p(x_3 | mem, x_2, x_4, x_3)$

Factorization order: $2 \rightarrow 4 \rightarrow 3 \rightarrow 1$

Self-Attention

	x_2	x_4	x_3	x_1
x_2				
x_4				
x_3				
x_1				

Permutation Language Modeling

3.

- 1. Given a sequence: x_1, x_2, x_3, x_4 , target: x_3
- 2. Permutation: x_4 , x_3 , x_1 , x_2
- 3. $p(x_3 | mem, x_4)$

Factorization order: $4 \rightarrow 3 \rightarrow 1 \rightarrow 2$

	x_4	x_3	x_1	x_2
x_4				
x_3				
x_1				
x_2				

- 1. Given a sequence: x_1, x_2, x_3, x_4 , target: x_3
- 2. Permutation: x_1, x_4, x_2, x_3

Factorization order: $1 \rightarrow 4 \rightarrow 2 \rightarrow 3$

	x_1	x_4	x_2	x_3
x_1				
x_4				
x_2				
x_3				

Permutation Language Modeling

Remark on Permutation

1. Given a sequence: x_1, x_2, x_3, x_4 , target: x_3

- 2. Permutation: x_1, x_4, x_2, x_3
- 3. $p(x_3 | mem, x_1, x_4, x_2)$

Factorization order: $1 \rightarrow 4 \rightarrow 2 \rightarrow 3$

XLNet

	x_1	x_4	x_2	x_3
x_1				
x_4				
x_2				
x_3				

	x_1	x_2	x_3	x_4
x_1				
x_2				
x_3				
x_4				

- Use Content stream to learn bidirectional contexts.
- Use Query stream instead of <Mask> token and predict target.

Figure 2: (a): Content stream attention, which is the same as the standard self-attention. (b): Query stream attention, which does not have access information about the content x_{z_t} . (c): Overview of the permutation language modeling training with two-stream attention.

Content stream

Attention(Q, K, V) = softmax(
$$\frac{QK^T}{\sqrt{d_k}}$$
)V

$$h_{z_t}^m = \text{Attention}(Q = h_{z_t}^{m-1}, KV = \underline{h_{z_{\leq t}}^{m-1}}; \theta)$$

Sample a factorization order : $3 \rightarrow 2 \rightarrow 4 \rightarrow 1$ target : 1

	h_1^0	h_2^0	h_{3}^{0}	h_4^0
h_1^0				
h_2^0				
h_3^0				
h_{4}^{0}				

 QK^{T}

$$h_{1}^{0}$$
 h_{2}^{0}
 h_{3}^{0}
 h_{4}^{0}

$$h_1^1 = h_{1\sim 4}^0$$

$$h_2^1 = h_{2\sim 3}^0$$

$$h_3^1 = h_3^0$$

$$h_4^1 = h_{2\sim 4}^0$$

V

Query stream

Attention(Q, K, V) = softmax(
$$\frac{QK^T}{\sqrt{d_k}}$$
)V

$$g_{z_t}^m = \text{Attention}(Q = g_{z_t}^{m-1}, KV = \underline{h_{z_{< t}}^{m-1}}; \theta)$$

Sample a factorization order : $3 \rightarrow 2 \rightarrow 4 \rightarrow 1$ target : 1

	h_1^0	h_2^0	h_{3}^{0}	h_{4}^{0}
g_1^0				
g_2^0				
g_3^0				
g_4^0				

h_1^0
h_2^0
h_3^0
h_4^0

 $g_1^1 = h_{2\sim 4}^0$ $g_2^1 = h_3^0$ $g_3^1 \approx 0$ $g_4^1 = h_{2\sim 3}^0$

 QK^T

V

$$p_{\theta}(X_{zt} = x \mid \mathbf{x}_{z < t}) = \frac{\exp(e(x)^T g_{\theta}(\mathbf{x}_{z < t}, z_t))}{\sum_{x'} \exp(e(x')^T g_{\theta}(\mathbf{x}_{z < t}, z_t))}$$

Sample a factorization order : $3 \rightarrow 2 \rightarrow 4 \rightarrow 1$, target : 4

$$\Rightarrow p(x_4 | x_3, x_2)$$

	h_1^0	h_{2}^{0}	h_{3}^{0}	h_{4}^{0}
g_{1}^{0}				
g_2^0				
g_{3}^{0}				
g_{4}^{0}				

$$h_{1}^{0}$$
 h_{2}^{0}
 h_{3}^{0}
 h_{4}^{0}

$$\begin{array}{ccc} h_1^0 & & & g_1^1 \approx 0 \\ h_2^0 & & & \\ h_3^0 & & & \\ h_4^0 & & & \\ & & g_4^1 = h_{2\sim 3}^0 \end{array}$$

$$\begin{array}{c|c}
0 \\
\hline
0 \\
\hline
1 \\
\hline
\odot
\end{array}$$

0

$$g_1^1 = 0$$

$$g_2^1 = 0$$

$$g_3^1 = 0$$

$$g_4^1 = h_{2\sim 3}^0$$

Sample a factorization order : $3 \rightarrow 2 \rightarrow 1 \rightarrow 4$, target : 1

$$\Rightarrow p(x_1 | x_3, x_2)$$

	h_{1}^{0}	h_{2}^{0}	h_3^0	h_4^0
g_1^0				
g_{2}^{0}				
g_3^0				
g_{4}^{0}				

$$h_{1}^{0}$$
 h_{2}^{0}
 h_{3}^{0}
 h_{4}^{0}

$$\begin{array}{c} h_1^0 \\ h_2^0 \\ h_3^0 \\ h_4^0 \end{array} = \begin{array}{c} g_1^1 = h_{2\sim 3}^0 \\ g_2^1 = h_3^0 \\ g_3^1 \approx 0 \\ g_4^1 \approx 0 \end{array}$$

$$g_1^1 = h_{2\sim 3}^0$$

$$g_2^1 = 0$$

$$g_3^1 = 0$$

$$g_4^1 = 0$$

Long Text Understanding

- BERT: Input is restricted to **fixed-length** context. $\{x_1, x_2, \dots, x_{512}\}$
- Transformer-XL: Use **segment recurrence mechanism** and **relative positional encoding** to pre-train long context (>512).
- XLNet:

$$h_{z_t}^m = \text{Attention}(Q = h_{z_t}^{m-1}, KV = [\tilde{h}^{m-1}, h_{z_{\leq t}}^{m-1}]; \theta), [.,.] : \text{Concatenate}$$

 \tilde{h}^m : Previous segment hidden representation.

$$X = s_{1:2T}$$
 Segment $\Rightarrow \tilde{x} = s_{1:T}, x = s_{T+1:2T}$ Permutation $\Rightarrow \tilde{z} = [1,...,T], z = [T+1,...,2T]$
$$\tilde{h}_{z_t}^m = \text{Attention}(Q = \tilde{h}_{z_t}^{m-1}, KV = \tilde{h}_{z_{\leq t}}^{m-1})$$
 Target: z_6

Previous segment: Current segment:

$$\tilde{h}^{m-1}$$
 $h_{z_{\leq t}}^{m-1}$

Evaluation

Partial Prediction: Predict last $\frac{1}{K}$ tokens (K=6).

• Sequence length: 512

• Memory length: 384

• Train XLNet-Large on 512 TPUs for 500k steps about 2.5 days.

Pre-train Dataset	Size(GB)
English wiki	2.78
BookCorpus	1.09
Giga5	4.75
ClueWeb	4.3
Common Crawl	19.97

Fine-tune Dataset	Task				
Race	QA				
SQuAD	QA				
IMDB	Text classification				
Yelp	Text classification Text classification				
DBpedia					
AG	Text classification Text classification				
Amazon					
GLEU	•••				

Evaluation

RACE	Accuracy	Middle	High
GPT [25]	59.0	62.9	57.4
BERT [22]	72.0	76.6	70.1
BERT+OCN* [28]	73.5	78.4	71.5
BERT+DCMN* [39]	74.1	79.5	71.8
XLNet	81.75	85.45	80.21

Table 1: Comparison with state-of-the-art results on the test set of RACE, a reading comprehension task. * indicates using ensembles. "Middle" and "High" in RACE are two subsets representing middle and high school difficulty levels. All BERT and XLNet results are obtained with a 24-layer architecture with similar model sizes (aka BERT-Large). Our single model outperforms the best ensemble by 7.6 points in accuracy.

SQuAD1.1	EM	F1	SQuAD2.0	EM	F1			
Dev set result	Dev set results without data augmentation							
BERT [10]	84.1	90.9	BERT† [10]	78.98	81.77			
XLNet	88.95	94.52	XLNet	86.12	88.79			
Test set result.	Test set results on leaderboard, with data augmentation (as of June 19, 2019)							
Human [27]	82.30	91.22	BERT+N-Gram+Self-Training [10]	85.15	87.72			
ATB	86.94	92.64	SG-Net	85.23	87.93			
BERT* [10]	87.43	93.16	BERT+DAE+AoA	85.88	88.62			
XLNet	89.90	95.08	XLNet	86.35	89.13			

Table 2: A single model XLNet outperforms human and the best ensemble by 7.6 EM and 2.5 EM on SQuAD1.1. * means ensembles, † marks our runs with the official code.

Evaluation

†: Jointly train XLNet on the four largest datasets-MNLI, SST-2, QNLI, QQP, and fine-tune on the other datasets.

Model	MNLI	QNLI	QQP	RTE	SST-2	MRPC	CoLA	STS-B	WNLI
Single-task single models on dev									
BERT [2]	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-
XLNet	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8	-
Single-task single	Single-task single models on test								
BERT [10]	86.7/85.9	91.1	89.3	70.1	94.9	89.3	60.5	87.6	65.1
Multi-task ensembles on test (from leaderboard as of June 19, 2019)									
Snorke1* [29]	87.6/87.2	93.9	89.9	80.9	96.2	91.5	63.8	90.1	65.1
$ALICE^*$	88.2/87.9	95.7	90.7	83.5	95.2	92.6	68.6	91.1	80.8
MT-DNN* [18]	87.9/87.4	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0
XLNet*	$90.2/89.7^\dagger$	98.6^{\dagger}	90.3^{\dagger}	86.3	96.8^{\dagger}	93.0	67.8	91.6	90.4

Table 4: Results on GLUE. * indicates using ensembles, and † denotes single-task results in a multi-task row. All results are based on a 24-layer architecture with similar model sizes (aka BERT-Large). See the upper-most rows for direct comparison with BERT and the lower-most rows for comparison with state-of-the-art results on the public leaderboard.