UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA DISCIPLINA: CIRCUITOS FLÉTRICOS I

DISCIPLINA. CIRCUITOS ELETRICOS I	Data
Aluno(a):	Matrícula:

Avaliação 2º Estágio

1 – Determine as polaridades de acoplamento entre os indutores L1, L2 e L3 da figura 1. Na sequência, determine a expressão do indutor equivalente obtido com a associação dos três indutores. (1.5)

- $2 Para o circuito da figura 2, mostre que o indutor equivalente é dado por <math>(L_1L_2 M^2)/(L_1+L_2+2M)$. (1.0)
- 3 Para o circuito da figura 3, sabendo que $i_L(0) = 1$ A e $v_{c1}(0) = 10$ V, determine:
 - a) $v_L(0)$, $i_{c2}(0)$, $i_{R2}(0)$ e $i_{c1}(0)$. Utilize sentidos associados de corrente e tensão para os componentes (R, L ou C) que não tenham sentido de corrente ou polaridade de referências definidos. Justifique os valores identificados baseado no comportamento de capacitores e indutores. (2.0)
 - b) Determine as expressões de $i_L(t)$, $i_{C1}(t)$ e $v_0(t)$, para t>0 (3.0)

4 – Para o circuito da figura 4, sabendo que $i_L(0) = -1$ A e $v_{c2}(0) = 5$ V, determine a expressão de $v_0(t)$. (2.5)

Formulário:

$$\begin{array}{l} x(t) = x(\infty) + [x(0) - x(\infty)]e^{-\frac{t}{\tau}} \\ A_1 e^{s_1 t} + A_2 e^{s_2 t} \text{ ou } v_f + A_1 e^{s_1 t} + A_2 e^{s_2 t} \\ D_1 t e^{-\alpha t} + D_2 e^{-\alpha t} \text{ ou } v_f + D_1 t e^{-\alpha t} + D_2 e^{-\alpha t} \\ B_1 e^{-\alpha t} \cos \left(\omega_d t\right) + B_2 e^{-\alpha t} \sin \left(\omega_d t\right) \text{ ou } v_f + B_1 e^{-\alpha t} \cos \left(\omega_d t\right) + B_2 e^{-\alpha t} \sin \left(\omega_d t\right) \\ \alpha = \frac{1}{2Rc} \text{ ou } \alpha = \frac{R}{2L} \ \omega_0 = \frac{1}{\sqrt{Lc}} \end{array}$$

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA DISCIPLINA: CIRCUITOS ELÉTRICOS I

DISCIPLINA: CIRCUITOS ELÉTRICOS I	Data:
Aluno(a):	Matrícula:

Avaliação 2º Estágio

1 – Determine as polaridades de acoplamento entre os indutores L1, L2 e L3 da figura 1. Na sequência, determine a expressão do indutor equivalente obtido com a associação dos três indutores. (1.5)

- 2 Para o circuito da figura 2, mostre que o indutor equivalente é dado por $(L_1L_2 M^2)/(L_1+L_2-2M)$. (1.0)
- 3 Para o circuito da figura 3, sabendo que $i_L(0) = 1$ A e $v_{cl}(0) = 10$ V, determine:
 - a) $v_L(0)$, $i_{c2}(0)$, $i_{R2}(0)$ e $i_{c1}(0)$. Utilize sentidos associados de corrente e tensão para os componentes (R, L ou C) que não tenham sentido de corrente ou polaridade de referências definidos. Justifique os valores identificados baseado no comportamento de capacitores e indutores. (2.0)
 - b) Determine as expressões de $i_L(t)$, $i_{C1}(t)$ e $v_0(t)$, para t>0 (3.0)

4 - Para o circuito da figura 4, sabendo que $i_L(0) = -1A$ e $v_{c2}(0) = 5V$, determine a expressão de $v_0(t)$. (2.5)

Formulário:

$$\begin{array}{l} x(t) = x(\infty) + [x(0) - x(\infty)]e^{-\frac{t}{\tau}} \\ A_1 e^{s_1 t} + A_2 e^{s_2 t} \text{ ou } v_f + A_1 e^{s_1 t} + A_2 e^{s_2 t} \\ D_1 t e^{-\alpha t} + D_2 e^{-\alpha t} \text{ ou } v_f + D_1 t e^{-\alpha t} + D_2 e^{-\alpha t} \\ B_1 e^{-\alpha t} \cos{(\omega_d t)} + B_2 e^{-\alpha t} \sin{(\omega_d t)} \text{ ou } v_f + B_1 e^{-\alpha t} \cos{(\omega_d t)} + B_2 e^{-\alpha t} \sin{(\omega_d t)} \\ \alpha = \frac{1}{2Rc} \text{ ou } \alpha = \frac{R}{2L} \ \omega_0 = \frac{1}{\sqrt{Lc}} \end{array}$$