Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária

#### Introdução - Conceitos Básicos

Conjunto de registros ou arquivos ⇒ tabelas

#### Tabela:

associada a entidades de vida curta, criadas na memória interna durante a execução de um programa.

#### • Arquivo:

geralmente associado a entidades de vida mais longa, armazenadas em memória externa.

#### Distinção não é rígida:

tabela: arquivo de índices

arquivo: tabela de valores de funções.

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária

# Conteúdo do Capítulo

- 5.1 Pesquisa Sequencial
- 5.2 Pesquisa Binária
- 5.3 Árvores de Pesquisa
- 5.3.1 Árvores Binárias de Pesquisa sem Balanceamento
- 5.3.2 Árvores Binárias de Pesquisa com Balanceamento\* Árvores SBB
  - \* 41,40162.20
- 5.4 Pesquisa Digital
- 5.4.1 Trie
- 5.4.2 Patricia

- 5.5 Transformação de Chave (*Hashing*)
- 5.5.1 Funções de Transformação
- 5.5.2 Listas Encadeadas
- 5.5.3 Endereçamento Aberto
- 5.5.4 *Hashing* Perfeito com ordem Preservada
- 5.5.5 *Hashing* Perfeito Usando Espaço Quase Ótimo

#### Introdução - Conceitos Básicos

- Estudo de como recuperar informação a partir de uma grande massa de informação previamente armazenada.
- A informação é dividida em registros.
- Cada registro possui uma chave para ser usada na pesquisa.
- Objetivo da pesquisa:

Encontrar uma ou mais ocorrências de registros com chaves iguais à **c**have de pesquisa.

Pesquisa com sucesso X Pesquisa sem sucesso.

# Pesquisa em Memória Primária\*

Última alteração: 31 de Agosto de 2010

<sup>\*</sup>Transparências elaboradas por Fabiano C. Botelho, Israel Guerra e Nivio Ziviani

#### **Pesquisa Sequencial**

- Método de pesquisa mais simples: a partir do primeiro registro, pesquise sequencialmente até encontrar a chave procurada; então pare.
- Armazenamento de um conjunto de registros por meio do tipo estruturado arranjo:

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária

#### Algoritmos de Pesquisa ⇒ Tipos Abstratos de Dados

- É importante considerar os algoritmos de pesquisa como tipos abstratos de dados, com um conjunto de operações associado a uma estrutura de dados, de tal forma que haja uma independência de implementação para as operações.
- Operações mais comuns:
  - Inicializar a estrutura de dados.
  - 2. Pesquisar um ou mais registros com determinada chave.
  - 3. Inserir um novo registro.
  - 4. Retirar um registro específico.
  - 5. Ordenar um arquivo para obter todos os registros em ordem de acordo com a chave.
  - 6. Ajuntar dois arquivos para formar um arquivo maior.

#### Dicionário

- Nome comumente utilizado para descrever uma estrutura de dados para pesquisa.
- Dicionário é um tipo abstrato de dados com as operações:
  - 1. Inicializa
  - 2. Pesquisa
  - 3. Insere
  - 4. Retira
- Analogia com um dicionário da língua portuguesa:
  - − Chaves ⇔ palavras
  - Registros ⇐⇒ entradas associadas com cada palavra:
    - \* pronúncia
    - \* definição
    - \* sinônimos
    - \* outras informações

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária

### Escolha do Método de Pesquisa mais Adequado a uma Determinada Aplicação

- Depende principalmente:
  - Quantidade dos dados envolvidos.
  - 2. Arquivo estar sujeito a inserções e retiradas frequentes.

Se conteúdo do arquivo é estável é importante minimizar o tempo de pesquisa, sem preocupação com o tempo necessário para estruturar o arquivo

#### Pesquisa Sequencial: Análise

Pesquisa com sucesso:

melhor caso : C(n) = 1pior caso : C(n) = ncaso médio : C(n) = (n+1)/2

• Pesquisa sem sucesso:

$$C'(n) = n + 1.$$

• O algoritmo de pesquisa sequencial é a **melhor escolha** para o problema de pesquisa em tabelas com até **25 registros**.

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.1

#### **Pesquisa Sequencial**

- Pesquisa retorna o índice do registro que contém a chave *x*;
- Caso não esteja presente, o valor retornado é zero.
- A implementação não suporta mais de um registro com uma mesma chave.
- Para aplicações com esta característica é necessário incluir um argumento a mais na função Pesquisa para conter o índice a partir do qual se quer pesquisar.

#### **Pesquisa Sequencial**

- Utilização de um registro sentinela na posição zero do array:
  - Garante que a pesquisa sempre termina: se o índice retornado por Pesquisa for zero, a pesquisa foi sem sucesso.
  - 2. Não é necessário testar se i > 0, devido a isto:
    - o anel interno da função Pesquisa é extremamente simples: o índice i é decrementado e a chave de pesquisa é comparada com a chave que está no registro.
    - isto faz com que esta técnica seja conhecida como pesquisa sequencial rápida.

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.1

#### Pesquisa Sequencial

```
procedure Inicializa (var T: Tipotabela);
begin T.n := 0;
end; { Inicializa }

function Pesquisa (x: TipoChave; var T: Tipotabela): TipoIndice;
var i: integer;
begin T.Item[0].Chave := x;
    i := T.n + 1;
    repeat i := i - 1; until T.Item[i].Chave = x;
    Pesquisa := i;
end; { Pesquisa }

procedure Insere (Reg: TipoRegistro; var T: Tipotabela);
begin if T.n = MAXN
    then writeIn('Erro: tabela cheia')
    else begin T.n := T.n + 1; T.Item[T.n] := Reg; end;
end; { Insere }
```

é cerca de  $\log n$ .

Pesquisa Binária: Análise

aplicações muito dinâmicas.

13

#### **Árvores de Pesquisa**

- A árvore de pesquisa é uma estrutura de dados muito eficiente para armazenar informação.
- Particularmente adequada quando existe necessidade de considerar todos ou alguma combinação de:
  - 1. Acesso direto e sequencial eficientes.
  - 2. Facilidade de inserção e retirada de registros.
  - 3. Boa taxa de utilização de memória.
  - 4. Utilização de memória primária e secundária.

#### Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.2

Pesquisa Binária

#### • Pesquisa em tabela pode ser mais eficiente ⇒ Se registros forem mantidos em ordem

A cada iteração do algoritmo, o tamanho da tabela é dividido ao meio.

• Logo: o número de vezes que o tamanho da tabela é dividido ao meio

a cada inserção na posição p da tabela implica no deslocamento dos

• Ressalva: o custo para manter a tabela ordenada é alto:

registros a partir da posição p para as posições seguintes.

• Consequentemente, a pesquisa binária não deve ser usada em

- Para saber se uma chave está presente na tabela
  - 1. Compare a chave com o registro que está na posição do meio da tabela.
  - 2. Se a chave é menor então o registro procurado está na primeira metade da tabela
  - 3. Se a chave é maior então o registro procurado está na segunda metade da tabela.
  - 4. Repita o processo até que a chave seja encontrada, ou fique apenas um registro cuja chave é diferente da procurada, significando uma pesquisa sem sucesso.

#### Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.2

### Algoritmo de Pesquisa Binária

```
function Binaria (x: TipoChave; var T: TipoTabela): TipoIndice;
var i, Esq, Dir: TipoIndice;
begin
  if T.n = 0
  then Binaria := 0
                                                   Pesquisa para a chave G:
  else begin
                                                     1 2 3 4 5 6 7 8
       Esq := 1; Dir := T.n;
                                                     A \quad B \quad C \quad \mathbf{D} \quad E \quad F \quad G \quad H
       repeat
                                                                     E \quad F \quad G \quad H
         i := (Esq + Dir) div 2;
         if x > T.Item[i].Chave
                                                                             G H
         then Esq := i+1
         else Dir := i-1;
       until (x = T.Item[i].Chave) or (Esq > Dir);
       if x = T.Item[i].Chave then Binaria := i else Binaria := 0;
       end:
end; { Binaria }
```

#### Procedimento para Pesquisar na Árvore Uma Chave x

- Compare-a com a chave que está na raiz.
- Se x é menor, vá para a subárvore esquerda.
- Se x é maior, vá para a subárvore direita.
- Repita o processo recursivamente, até que a chave procurada seja encontrada ou um nó folha é atingido.
- Se a pesquisa tiver sucesso o conteúdo retorna no próprio registro x.

```
procedure Pesquisa (var x: TipoRegistro; var p: TipoApontador);
begin if p = nil
      then writeIn ('Erro: TipoRegistro nao esta presente na arvore')
      else if x.Chave < p^.Reg.Chave
           then Pesquisa (x, p^.Esq)
           else if x.Chave > p^.Reg.Chave
                then Pesquisa (x, p^{\wedge}.Dir) else x := p^{\wedge}.Reg;
end; { Pesquisa }
```

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.3.1

#### Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.3.1

17

# Árvores Binárias de Pesquisa sem Balanceamento



- O nível do nó raiz é 0.
- Se um nó está no nível i então a raiz de suas subárvores estão no nível i+1.
- A altura de um nó é o comprimento do caminho mais longo deste nó até um nó folha.
- A altura de uma árvore é a altura do nó raiz.

# Implementação do Tipo Abstrato de Dados Dicionário usando a Estrutura de Dados Árvore Binária de Pesquisa

#### Estrutura de dados:

```
type TipoChave
                    = integer;
     TipoRegistro
                    = record
                        Chave: TipoChave:
                        { outros componentes }
                      end:
     TipoApontador = ^TipoNo;
     TipoNo
                    = record
                        Reg: TipoRegistro;
                        Esq, Dir: TipoApontador;
                      end:
     TipoDicionario = TipoApontador;
```

### **Árvores Binárias de Pesquisa sem Balanceamento**

Para qualquer nó que contenha um registro



Temos a relação invariante



- 1. Todos os registros com chaves menores estão na subárvore à esquerda.
- 2. Todos os registros com chaves maiores estão na subárvore à direita.

21

20

### Exemplo da Retirada de um Registro da Árvore



Assim: para retirar o registro com chave 5 na árvore basta trocá-lo pelo registro com chave 4 ou pelo registro com chave 6, e então retirar o nó que recebeu o registro com chave 5.

Procedimento para Retirar x da Árvore

- Alguns comentários:
  - 1. A retirada de um registro não é tão simples quanto a inserção.
  - 2. Se o nó que contém o registro a ser retirado possui no máximo um descendente ⇒ a operação é simples.
  - 3. No caso do nó conter dois descendentes o registro a ser retirado deve ser primeiro:
    - substituído pelo registro mais à direita na subárvore esquerda;
    - ou pelo registro mais à esquerda na subárvore direita.

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.3.1

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.3.1

# Procedimentos para Inicializar e Criar a Árvore

```
procedure Inicializa (var Dicionario: TipoDicionario);
begin Dicionario := nil;
end; { Inicializa }
program CriaArvore;
type TipoChave = integer;
{— Entra aqui a definição dos tipos mostrados no slide 18—}
var Dicionario: TipoDicionario;
   Х
              : TipoRegistro;
{--- Entram aqui os procedimentos Insere e Inicializa ---}
begin Inicializa (Dicionario);
      read (x.Chave);
      while x.Chave > 0 do begin
        Insere (x, Dicionario);
        read (x.Chave);
        end;
     end.
```

### Procedimento para Inserir na Árvore

- Atingir um apontador nulo em um processo de pesquisa significa uma pesquisa sem sucesso.
- O apontador nulo atingido é o ponto de inserção.

```
procedure Insere (x: TipoRegistro; var p: TipoApontador);
begin
  if p = nil
  then begin
       new (p);
       p^{Reg} := x; p^{Esq} := nil; p^{Dir} := nil;
       end
  else if x.Chave < p^.Reg.Chave
       then Insere (x, p^.Esq)
       else if x.Chave > p^.Reg.Chave
            then Insere (x, p^.Dir)
            else writeln ('Erro: Registro ja existe na arvore')
end; { Insere }
```

25

24

#### **Caminhamento Central**

- Após construída a árvore, pode ser necessário percorrer todos os registros que compõem a tabela ou arquivo.
- Existe mais de uma ordem de caminhamento em árvores, mas a mais útil é a chamada ordem de caminhamento central.
- O caminhamento central é mais bem expresso em termos recursivos:
- 1. caminha na subárvore esquerda na ordem central;
- 2. visita a raiz:
- 3. caminha na subárvore direita na ordem central.
- Uma característica importante do caminhamento central é que os nós são visitados de forma ordenada.

#### Outro Exemplo de Retirada de Nó



Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.3.1

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.3.1

# Procedimento para Retirar x da Árvore

```
begin {—— Retira——}
  if p = nil
 then writeIn ('Erro: Registro nao esta na arvore')
  else if x.Chave < p^.Reg.Chave
      then Retira (x, p^.Esq)
      else if x.Chave > p^.Reg.Chave
           then Retira (x, p^.Dir)
           else if p^.Dir = nil
                then begin Aux := p; p := p^.Esq; dispose(Aux); end
                else if p^.Esq = nil
                     then begin Aux:=p; p:=p^. Dir; dispose(Aux); end
                     else Antecessor (p, p^.Esq);
end; { Retira }
```

• Obs.: proc. recursivo Antecessor só é ativado quando o nó que contém registro a ser retirado possui 2 descendentes. Solução usada por Wirth, 1976, p.211.

# Procedimento para Retirar x da Árvore

```
procedure Retira (x: TipoRegistro; var p: TipoApontador);
var Aux: TipoApontador;
  procedure Antecessor (q: TipoApontador; var r: TipoApontador);
  begin
    if r^. Dir <> nil
    then Antecessor (q, r^.Dir)
    else begin
         q^{Reg} := r^{Reg}
         q := r; \quad r := r^{.Esq};
         dispose (q)
         end:
  end; { Antecessor }
```

29

### Árvores Binárias de Pesquisa com Balanceamento

- Árvore completamente balanceada ⇒ nós externos aparecem em no máximo dois níveis adjacentes.
- Minimiza tempo médio de pesquisa para uma distribuição uniforme das chaves, onde cada chave é igualmente provável de ser usada em uma pesquisa.
- Contudo, custo para manter a árvore completamente balanceada após cada inserção é muito alto.
- Para inserir a chave 1 na árvore à esquerda e obter a árvore à direita é necessário movimentar todos os nós da árvore original.



Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.3.1

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.3.1

#### **Análise**

• O número de comparações em uma pesquisa com sucesso:

melhor caso : C(n) = O(1)pior caso : C(n) = O(n)caso médio :  $C(n) = O(\log n)$ 

 O tempo de execução dos algoritmos para árvores binárias de pesquisa dependem muito do formato das árvores.

#### **Análise**

- 1. Para obter o pior caso basta que as chaves sejam inseridas em ordem crescente ou decrescente. Neste caso a árvore resultante é uma lista linear, cujo número médio de comparações é (n+1)/2.
- 2. Para uma **árvore de pesquisa randômica** o número esperado de comparações para recuperar um registro qualquer é cerca de  $1,39\log n$ , apenas 39% pior que a árvore completamente balanceada.
- Uma árvore A com n chaves possui n+1 nós externos e estas n chaves dividem todos os valores possíveis em n+1 intervalos. Uma inserção em A é considerada randômica se ela tem probabilidade igual de acontecer em qualquer um dos n+1 intervalos.
- Uma árvore de pesquisa randômica com n chaves é uma árvore construida através de n inserções randômicas sucessivas em uma árvore inicialmente vazia.

Caminhamento Central

```
procedure Central (p: TipoApontador);
begin
   if p <> nil
    then begin
        Central (p^.Esq);
        writeIn (p^.Reg.Chave);
        Central (p^.Dir);
    end;
end; { Central }
```

 Percorrer a árvore usando caminhamento central recupera, na ordem: 1, 2, 3, 4, 5, 6, 7.



McCreight E.M., 1972)

Árvore 2-3 ⇒ caso especial da árvore B.

Cada nó tem duas ou três subárvores.

Mais apropriada para memória primária.

**Árvores SBB** 

33

32

#### **Árvores SBB**

- Árvore 2-3 ⇒ árvore B binária (assimetria inerente)
  - 1. Apontadores à esquerda apontam para um nó no nível abaixo.
- 2. Apontadores à direita podem ser verticais ou horizontais. Eliminação da assimetria nas árvores B binárias ⇒ árvores B binárias simétricas (Symmetric Binary B-trees - SBB)
- Árvore SBB tem apontadores verticais e horizontais, tal que:
  - 1. todos os caminhos da raiz até cada nó externo possuem o mesmo número de apontadores verticais, e
  - 2. não podem existir dois apontadores horizontais sucessivos.



Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.3.2

# **Uma Forma de Contornar este Problema**

• Procurar solução intermediária que possa manter árvore "quase-balanceada", em vez de tentar manter a árvore completamente balanceada.

Árvores B ⇒ estrutura para memória secundária. (Bayer R. e

• Exemplo: Uma árvore 2-3 e a árvore B binária correspondente

- Objetivo: Procurar obter bons tempos de pesquisa, próximos do tempo ótimo da árvore completamente balanceada, mas sem pagar muito para inserir ou retirar da árvore.
- Heurísticas: existem várias heurísticas baseadas no princípio acima.
- Gonnet e Baeza-Yates (1991) apresentam algoritmos que utilizam vários critérios de balanceamento para árvores de pesquisa, tais como restrições impostas:
  - na diferença das alturas de subárvores de cada nó da árvore,
  - na redução do comprimento do caminho interno
  - ou que todos os nós externos apareçam no mesmo nível.

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.3.2

#### **Uma Forma de Contornar este Problema**

- Comprimento do caminho interno: corresponde à soma dos comprimentos dos caminhos entre a raiz e cada um dos nós internos da árvore.
- Por exemplo, o comprimento do caminho interno da árvore à esquerda na figura do slide 31 é 8 = (0 + 1 + 1 + 2 + 2 + 2).

39

37

#### **Procedimentos Auxiliares para Árvores SBB**

```
procedure DD (var Ap: TipoApontador);
var Ap1: TipoApontador;
begin
 Ap1 := Ap^{\bullet}. Dir :
                            Ap^{\Lambda}. Dir := Ap1^{\Lambda}. Esq: Ap1^{\Lambda}. Esq := Ap:
 Ap1^.BitD := Vertical; Ap^.BitD := Vertical; Ap := Ap1;
end; { DD }
procedure DE (var Ap: TipoApontador);
var Ap1, Ap2: TipoApontador;
begin
 Ap1 := Ap^{\bullet}.Dir;
                           Ap2 := Ap1^{.}Esq;
                                                     Ap1^.BitE := Vertical;
 Ap^.BitD := Vertical; Ap1^.Esq := Ap2^.Dir; Ap2^.Dir := Ap1;
 Ap^{\cdot}.Dir := Ap2^{\cdot}.Esq; Ap2^{\cdot}.Esq := Ap;
                                                     Ap := Ap2;
end: { DE }
```

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.3.2.2

# Estrutura de Dados Árvore SBB para Implementar o Tipo Abstrato de Dados Dicionário

```
type TipoChave
                    = integer;
    TipoRegistro
                   = record
                        Chave: TipoChave
                        { outros componentes }
                      end:
    TipoInclinacao = (Vertical, Horizontal);
    TipoApontador = ^TTipoNo;
    TipoNo = record
               Rea
                          : TipoRegistro;
                Esq, Dir : TipoApontador;
                BitE, BitD: TipoInclinacao
              end;
    TipoDicionario = TipoApontador;
```

#### **Procedimentos Auxiliares para Árvores SBB**

```
procedure EE (var Ap: TipoApontador);
var Ap1: TipoApontador;
begin
 Ap1 := Ap^.Esq:
                         Ap^{A}.Esq := Ap1^{A}.Dir: Ap1^{A}.Dir := Ap:
 Ap1^.BitE := Vertical; Ap^.BitE := Vertical; Ap := Ap1;
end; { EE }
procedure ED (var Ap: TipoApontador);
var Ap1, Ap2: TipoApontador;
begin
 Ap1 := Ap^{.Esq};
                         Ap2 := Ap1^{.} Dir;
                                                Ap1^.BitD := Vertical;
 Ap^.BitE := Vertical; Ap1^.Dir := Ap2^.Esq; Ap2^.Esq := Ap1;
 Ap^{.}Esq := Ap2^{.}Dir; Ap2^{.}Dir := Ap;
                                                Ap := Ap2;
end; { ED }
```

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.3.2.2

### Transformações para Manutenção da Propriedade SBB

- O algoritmo para árvores SBB usa transformações locais no caminho de inserção ou retirada para preservar o balanceamento.
- A chave a ser inserida ou retirada é sempre inserida ou retirada após o apontador vertical mais baixo na árvore.
- Nesse caso podem aparecer dois apontadores horizontais sucessivos, sendo necessário realizar uma transformação:



#### **Procedimento Retira**

- Retira contém um outro procedimento interno de nome IRetira.
- IRetira usa 3 procedimentos internos: EsqCurto, DirCurto, Antecessor.
  - EsgCurto (DirCurto) é chamado quando um nó folha que é referenciado por um apontador vertical é retirado da subárvore à esquerda (direita) tornando-a menor na altura após a retirada;
  - Quando o nó a ser retirado possui dois descendentes, o procedimento Antecessor localiza o nó antecessor para ser trocado com o nó a ser retirado.

#### Exemplo

43

Inserção de uma sequência de chaves em uma árvore SBB:

- 1. Árvore à esquerda é obtida após a inserção das chaves 7, 10, 5.
- 2. Árvore do meio é obtida após a inserção das chaves 2, 4 na árvore anterior.
- 3. Árvore à direita é obtida após a inserção das chaves 9, 3, 6 na árvore anterior.



```
procedure Inicializa (var Dicionario: TipoDicionario);
beain
  Dicionario := nil;
end; { Inicializa }
```

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.3.2.2

if x.Chave > Ap^.Reg.Chave

then begin

end else Fim := true:

if not Fim

else

then begin

end

end;

end; { IInsere }

begin { Insere }

end; { Insere }

Fim := true;

IInsere (x, Ap, IAp, Fim);

else begin

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.3.2.2

# Procedimento para Inserir na Árvore SBB

```
procedure Insere (x: TipoRegistro; var Ap: TipoApontador);
var Fim: boolean; IAp: TipoInclinacao;
 procedure IInsere(x: TipoRegistro; var Ap: TipoApontador; var IAp: TipoInclinacao; var Fim: boolean);
 begin
    if Ap = nil
    then begin
        new (Ap); IAp := Horizontal; Ap^.Reg := x;
        Ap^.BitE := Vertical; Ap^.BitD := Vertical;
        Ap^.Esq := nil; Ap^.Dir := nil; Fim := false;
        end
    else
    if x.Chave < Ap^.Reg.Chave
    then begin
         IInsere (x, Ap^.Esq, Ap^.BitE, Fim);
        if not Fim
        then if Ap^.BitE = Horizontal
              then begin
                   if Ap^.Esq^.BitE = Horizontal
                  then begin EE (Ap); IAp := Horizontal; end
                  else if Ap^.Esq^.BitD = Horizontal
                       then begin ED (Ap); IAp := Horizontal; end;
                  end
              else Fim := true;
```

IInsere (x, Ap^.Dir, Ap^.BitD, Fim);

then if Ap^.BitD = Horizontal

Procedimento para Inserir na Árvore SBB

if Ap^. Dir^. BitD = Horizontal

writeln ('Erro: Chave ja esta na arvore');

else if Ap^.Dir^.BitE = Horizontal

then begin DD (Ap); IAp := Horizontal; end

then begin DE (Ap); IAp := Horizontal; end;

45

44

#### Procedimento para Retirar da Árvore SBB

```
begin { IRetira }
 if Ap = nil then begin writeln ('Chave nao esta na arvore'); Fim := true; end
 else if x.Chave < Ap^.Req.Chave
       then begin IRetira (x, Ap^.Esq, Fim); if not Fim then EsqCurto (Ap, Fim); end
       else if x.Chave > Ap^.Reg.Chave
       then begin IRetira (x, Ap^.Dir, Fim); if not Fim then DirCurto (Ap, Fim); end
       else begin { Encontrou chave }
           Fim := false: Aux := Ap:
           if Aux^. Dir = nil
           then begin Ap := Aux^.Esq; dispose (Aux); if Ap <> nil then Fim := true; end
           else if Aux^.Esa = nil
                then begin Ap := Aux^.Dir; dispose (Aux); if Ap <> nil then Fim := true; end
                else begin Antecessor (Aux, Aux^.Esq, Fim); if not Fim then EsqCurto (Ap, Fim); end;
           end:
end; { IRetira }
begin { Retira }
 IRetira (x. Ap. Fim)
end; { Retira }
```

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.3.2.2

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.3.2.2

#### Procedimento para Retirar da Árvore SBB - DirCurto

```
procedure DirCurto (var Ap: TipoApontador; var Fim: boolean);
var Ap1: TipoApontador:
begin { Folha direita retirada => arvore curta na altura direita }
 if Ap^.BitD = Horizontal
 then begin Ap^.BitD := Vertical; Fim := true; end
 else if Ap^. BitE = Horizontal
       then begin
           Ap1:=Ap^.Esq; Ap^.Esq:=Ap1^.Dir; Ap1^.Dir:=Ap; Ap:=Ap1;
           if Ap^.Dir^.Esq^.BitD = Horizontal
           then begin ED (Ap^.Dir); Ap^.BitD := Horizontal; end
           else if Ap^.Dir^.Esq^.BitE = Horizontal
                then begin EE (Ap^.Dir); Ap^.BitD := Horizontal; end;
           Fim := true:
           end
       else begin
           Ap^.BitE := Horizontal:
           if Ap^.Esq^.BitD = Horizontal
           then begin ED (Ap); Fim := true; end
           else if Ap^.Esq^.BitE = Horizontal then begin EE (Ap); Fim := true; end;
end; { DirCurto }
```

#### Procedimento para Retirar da Árvore SBB - Antecessor

#### Procedimento para Retirar da Árvore SBB

```
procedure Retira (x: TipoRegistro; var Ap: TipoApontador);
var Fim: boolean:
procedure IRetira(x:TipoRegistro:var Ap:TipoApontador:var Fim:boolean):
var Aux: TipoApontador;
procedure EsqCurto (var Ap: TipoApontador; var Fim: boolean);
var Ap1: TipoApontador:
begin { Folha esquerda retirada => arvore curta na altura esquerda }
 if Ap^.BitE = Horizontal
 then begin Ap^.BitE := Vertical; Fim := true; end
  else if Ap^.BitD = Horizontal
       then begin
            Ap1:=Ap^. Dir: Ap^. Dir:=Ap1^. Esq: Ap1^. Esq:=Ap: Ap:=Ap1:
            if Ap^.Esq^.Dir^.BitE = Horizontal
           then begin DE (Ap^.Esq); Ap^.BitE := Horizontal; end
            else if Ap^.Esq^.Dir^.BitD = Horizontal
                 then begin DD (Ap^.Esq); Ap^.BitE := Horizontal; end;
            Fim := true:
            end
       else begin
           Ap^.BitD := Horizontal;
            if Ap^. Dir^. BitE = Horizontal
           then begin DE (Ap); Fim := true; end
            else if Ap^.Dir^.BitD = Horizontal then begin DD (Ap); Fim := true; end;
end; { EsqCurto }
```

#### **Análise**

- Nas árvores SBB é necessário distinguir dois tipos de alturas:
- 1. Altura vertical  $h \to \text{necess\'aria}$  para manter a altura uniforme e obtida através da contagem do número de apontadores verticais em qualquer caminho entre a raiz e um nó externo.
- Altura k → representa o número máximo de comparações de chaves obtida através da contagem do número total de apontadores no maior caminho entre a raiz e um nó externo.
- A altura k é maior que a altura h sempre que existirem apontadores horizontais na árvore.
- ullet Para uma árvore SBB com n nós internos, temos que

$$h \le k \le 2h$$
.

# Exemplo: Retirada de Nós da Árvore SBB





Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.3.2.2

#### Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.3.2.2

# Exemplo: Retirada de Nós da Árvore SBB



2 chamadas DirCurto



#### **Exemplo**



- A árvore à esquerda abaixo é obtida após a retirada da chave 7 da árvore à direita acima.
- A árvore do meio é obtida após a retirada da chave 5 da árvore anterior.
- A árvore à direita é obtida após a retirada da chave 9 da árvore anterior.



53

#### **Exemplo**

• Dada as chaves de 6 bits:

B = 010010

C = 010011

H = 011000

J = 100001

M = 101000



Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.4

### Pesquisa Digital

- Pesquisa digital é baseada na representação das chaves como uma sequência de caracteres ou de dígitos.
- Os métodos de pesquisa digital são particularmente vantajosos quando as chaves são grandes e de tamanho variável.
- Um aspecto interessante quanto aos métodos de pesquisa digital é a possibilidade de localizar todas as ocorrências de uma determinada cadeia em um texto, com tempo de resposta logarítmico em relação ao tamanho do texto.
  - Trie
  - Patrícia

#### **Trie**

- Uma trie é uma árvore M-ária cujos nós são vetores de M componentes com campos correspondentes aos dígitos ou caracteres que formam as chaves.
- Cada nó no nível i representa o conjunto de todas as chaves que começam com a mesma sequência de i dígitos ou caracteres.
- Este nó especifica uma ramificação com M caminhos dependendo do (i+1)-ésimo dígito ou caractere de uma chave.
- ullet Considerando as chaves como sequência de bits (isto é, M=2), o algoritmo de pesquisa digital é semelhante ao de pesquisa em árvore, exceto que, em vez de se caminhar na árvore de acordo com o resultado de comparação entre chaves, caminha-se de acordo com os bits de chave.

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.3.2.2

#### Análise

• De fato Bayer (1972) mostrou que

$$\log(n+1) \le k \le 2\log(n+2) - 2.$$

- Custo para manter a propriedade SBB ⇒ Custo para percorrer o caminho de pesquisa para encontrar a chave, seja para inserí-la ou para retirá-la.
- Logo: O custo é  $O(\log n)$ .
- Número de comparações em uma pesquisa com sucesso é:

melhor caso : C(n) = O(1)pior caso :  $C(n) = O(\log n)$ caso médio :  $C(n) = O(\log n)$ 

• **Observe:** Na prática o caso médio para  $C_n$  é apenas cerca de 2% pior que o  $C_n$  para uma árvore completamente balanceada, conforme mostrado em Ziviani e Tompa (1982).

#### Mais sobre Patricia

- O algoritmo para construção da árvore Patricia é baseado no método de pesquisa digital, mas sem o inconveniente citado para o caso das tries.
- O problema de caminhos de uma só direção é eliminado por meio de uma solução simples e elegante: cada nó interno da árvore contém o índice do bit a ser testado para decidir qual ramo tomar.
- Exemplo: dada as chaves de 6 bits:

B = 010010

C = 010011

H = 011000

J = 100001

Q = 101000



Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.4.1

#### Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.4.1

#### Considerações Importantes sobre as Tries

- O formato das tries, diferentemente das árvores binárias comuns, não depende da ordem em que as chaves são inseridas e sim da estrutura das chaves através da distribuição de seus bits.
- Desvantagem:
  - Uma grande desvantagem das tries é a formação de caminhos de uma só direção para chaves com um grande número de bits em comum.
  - Exemplo: Se duas chaves diferirem somente no último bit, elas formarão um caminho cujo comprimento é igual ao tamanho delas, não importando quantas chaves existem na árvore.
  - Caminho gerado pelas chaves B e C.

# Patricia - Practical Algorithm To Retrieve Information Coded In Alphanumeric

- Criado por Morrison D. R. 1968 para aplicação em recuperação de informação em arquivos de grande porte.
- Knuth D. E. 1973  $\rightarrow$  novo tratamento algoritmo.
- Reapresentou-o de forma mais clara como um caso particular de pesquisa digital, essencialmente, um caso de árvore trie binária.
- Sedgewick R. 1988 apresentou novos algoritmos de pesquisa e de inserção baseados nos algoritmos propostos por Knuth.
- Gonnet, G.H e Baeza-Yates R. 1991 propuzeram também outros algoritmos.

#### Inserção das Chaves W e K na Trie Binária



Faz-se uma pesquisa na árvore com a chave a ser inserida. Se o nó externo em que a pesquisa terminar for vazio, cria-se um novo nó externo nesse ponto contendo a nova chave. Exemplo: a inserção da chave W = 110110.

Se o nó externo contiver uma chave cria-se um ou mais nós internos cujos descendentes conterão a chave já existente e a nova chave. Exemplo: inserção da chave K=100010.

#### **Funções Auxiliares**

```
function Bit (i: TipoIndexAmp; k: TipoChave): TipoDib;
{ Retorna o i-esimo bit da chave k a partir da esquerda }
var c, j: integer;
begin
  if i = 0
 then Bit := 0
  else begin
      c := ord(k);
      for j := 1 to D - i do c := c div 2;
       Bit := c \mod 2:
      end:
end; { Bit }
function EExterno (p: TipoArvore): boolean;
begin { Verifica se p^ nodo externo }
 EExterno := p^.nt = Externo:
end: { EExterno }
```

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.4.2

#### Inserção da Chave W

- A inserção da chave W = 110110 ilustra um outro aspecto.
- Os bits das chaves K e W são comparados a partir do primeiro para determinar em qual índice eles diferem (nesse casod os de índice 2).
- Portanto: o ponto de inserção agora será no caminho de pesquisa entre os nós internos de índice 1 e 3.
- Cria-se aí um novo nó interno de índice 2, cujo descendente direito é um nó externo contendo W e cujo descendente esquerdo é a subárvore de raiz de índice 3.



#### Estrutura de Dados

63

61

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.4.2

# Inserção da Chave K





- Para inserir a chave K = 100010 na árvore à esquerda, a pesquisa inicia pela raiz e termina quando se chega ao nó externo contendo J.
- Os índices dos bits nas chaves estão ordenados da esquerda para a direita. Bit de índice 1 de K é 1 → a subárvore direita Bit de índice 3 → subárvore esquerda que neste caso é um nó externo.
- Chaves J e K mantêm o padrão de bits 1x0xxx, assim como qualquer outra chave que seguir este caminho de pesquisa.
- Novo nó interno repõe o nó J, e este com nó K serão os nós externos descendentes.
- O índice do novo nó interno é dado pelo 1º bit diferente das 2 chaves em questão, que é o bit de índice 5. Para determinar qual será o descendente esquerdo e o direito, verifique o valor do bit 5 de ambas as chaves.

.

### Descrição Informal do Algoritmo de Inserção

- Continuação:
  - 3. Se a raiz da subárvore corrente for um nó interno, vai-se para a subárvore indicada pelo bit da chave k de índice dado pelo nó corrente, de forma recursiva.
  - 4. Depois são criados um nó interno e um nó externo: o primeiro contendo o índice i e o segundo, a chave k. A seguir, o nó interno é ligado ao externo pelo apontador de subárvore esquerda ou direita, dependendo se o bit de índice i da chave k seja 0 ou 1, respectivamente.
  - 5. O caminho de inserção é percorrido novamente de baixo para cima, subindo com o par de nós criados no Passo 4 até chegar a um nó interno cujo índice seja menor que o índice i determinado no Passo 2. Este é o ponto de inserção e o par de nós é inserido.

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.4.2

#### Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.4.2

#### Algoritmo de Pesquisa

```
procedure Pesquisa (k: TipoChave; t: TipoArvore);
begin
   if EExterno (t)
   then if k = t^.Chave
        then writeIn ('Elemento encontrado')
        else writeIn ('Elemento nao encontrado')
   else if Bit (t^.Index, k) = 0
        then Pesquisa (k, t^.Esq)
   else Pesquisa (k, t^.Dir)
end; { Pesquisa }
```

#### Descrição Informal do Algoritmo de Inserção

- Cada chave k é inserida de acordo com os passos abaixo, partindo da raiz:
  - Se a subárvore corrente for vazia, então é criado um nó externo contendo a chave k (isto ocorre somente na inserção da primeira chave) e o algoritmo termina.
  - 2. Se a subárvore corrente for simplesmente um nó externo, os bits da chave k são comparados, a partir do bit de índice imediatamente após o último índice da sequência de índices consecutivos do caminho de pesquisa, com os bits correspondentes da chave k' deste nó externo até encontrar um índice i cujos bits difiram. A comparação dos bits a partir do último índice consecutivo melhora consideravelmente o desempenho do algoritmo. Se todos forem iguais, a chave já se encontra na árvore e o algoritmo termina; senão, vai-se para o Passo 4.

# Procedimentos para Criar Nós Interno e Externo

```
function CriaNodoInt(i: integer; var Esq, Dir: TipoArvore): TipoArvore;
var p: TipoArvore;
begin
  new (p, Interno);
  p^.nt := Interno;
  p^*.Esq := Esq; p^*.Dir := Dir;
  p^.Index := i; CriaNodoInt := p;
end; { CriaNodoInt }
function CriaNodoExt (k: TipoChave): TipoArvore;
var p: TipoArvore;
begin
  new (p, Externo);
  p^.nt := Externo;
  p^{\cdot}.Chave := k;
  CriaNodoExt := p;
end; { CriaNodoExt }
```

69

#### Transformação de Chave (Hashing)

- Um método de pesquisa com o uso da transformação de chave é constituído de duas etapas principais:
  - 1. Computar o valor da **função de transformação**, a qual transforma a chave de pesquisa em um endereço da tabela.
- 2. Considerando que duas ou mais chaves podem ser transformadas em um mesmo endereço de tabela, é necessário existir um método para lidar com **colisões**.
- Qualquer que seja a função de transformação, algumas colisões irão ocorrer fatalmente, e tais colisões têm de ser resolvidas de alguma forma.
- Mesmo que se obtenha uma função de transformação que distribua os registros de forma uniforme entre as entradas da tabela, existe uma alta probabilidade de haver colisões.

#### Transformação de Chave (Hashing)

- Os registros armazenados em uma tabela são diretamente endereçados a partir de uma transformação aritmética sobre a chave de pesquisa.
- Hash significa:
  - 1. Fazer picadinho de carne e vegetais para cozinhar.
  - 2. Fazer uma bagunça. (Webster's New World Dictionary)

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.4.2

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.4.2

Algoritmo de inserção

end; { InsereEntre }

```
function Insere (k: TipoChave; var t: TipoArvore): TipoArvore;
var p: TipoArvore; i: integer;
  function InsereEntre (k: TipoChave; var t: TipoArvore; i: integer): TipoArvore;
  var p: TipoArvore;
  begin
    if EExterno (t) or (i < t^.Index)</pre>
    then begin { cria um novo no externo }
         p := CriaNodoExt (k);
         if Bit (i, k) = 1
         then InsereEntre := CriaNodoInt (i, t, p)
         else InsereEntre := CriaNodoInt (i, p, t);
         end
    else begin
         if Bit (t^{\cdot}.Index, k) = 1
         then t^.Dir := InsereEntre (k, t^.Dir, i)
         else t^.Esq := InsereEntre (k, t^.Esq, i);
         InsereEntre := t;
         end:
```

# Algoritmo de inserção

```
begin
  if t = nil
  then Insere := CriaNodoExt (k)
  else begin
       p := t;
       while not EExterno (p) do
         begin if Bit (p^{\wedge}.Index, k) = 1 then p := p^{\wedge}.Dir else p := p^{\wedge}.Esq; end;
       i := 1; { acha o primeiro bit diferente }
       while (i \le D) and (Bit (i, k) = Bit (i, p^.Chave)) do i := i+1;
       if i > D
       then begin
            writeln ('Erro: chave ja esta na arvore'); Insere := t;
            end
       else Insere := InsereEntre (k, t, i);
 end:
end; { Insere }
```

#### Método mais Usado

• Usa o resto da divisão por M.

$$h(K) = K \mod M$$

onde K é um inteiro correspondente à chave.

 Cuidado na escolha do valor de M. M deve ser um número primo, mas não qualquer primo: devem ser evitados os números primos obtidos a partir de

$$b^i \pm j$$

onde b é a base do conjunto de caracteres (geralmente b=64 para BCD, 128 para ASCII, 256 para EBCDIC, ou 100 para alguns códigos decimais), e i e j são pequenos inteiros.

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5

#### Transformação de Chave (Hashing)

• Alguns valores de p para diferentes valores de N,onde M=365.

| N  | p     |
|----|-------|
| 10 | 0,883 |
| 22 | 0,524 |
| 23 | 0,493 |
| 30 | 0,303 |

• Para N pequeno a probabilidade p pode ser aproximada por  $p \approx \frac{N(N-1))}{730}$ . Por exemplo, para N=10 então  $p\approx 87,7\%$ .

#### Funções de Transformação

- Uma função de transformação deve mapear chaves em inteiros dentro do intervalo [0..M-1], onde M é o tamanho da tabela.
- A função de transformação ideal é aquela que:
  - 1. Seja simples de ser computada.
- 2. Para cada chave de entrada, qualquer uma das saídas possíveis é igualmente provável de ocorrer.

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5

### Transformação de Chave (Hashing)

- O paradoxo do aniversário (Feller,1968, p. 33), diz que em um grupo de 23 ou mais pessoas, juntas ao acaso, existe uma chance maior do que 50% de que 2 pessoas comemorem aniversário no mesmo dia.
- Assim, se for utilizada uma função de transformação uniforme que enderece 23 chaves randômicas em uma tabela de tamanho 365, a probabilidade de que haja colisões é maior do que 50%.
- A probabilidade p de se inserir N itens consecutivos sem colisão em uma tabela de tamanho M é:

$$p = \frac{M-1}{M} \times \frac{M-2}{M} \times \ldots \times \frac{M-N+1}{M} = \prod_{i=1}^{N} \frac{M-i+1}{M} = \frac{M!}{(M-N)!M^N}$$

77

#### Transformação de Chaves Não Numéricas: Nova Versão

Implementação da função hash de Zobrist:

- Para obter h é necessário o mesmo número de adições da função do programa anterior, mas nenhuma multiplicação é efetuada.
- Isso faz com que h seja computada de forma mais eficiente.
- Nesse caso, a quantidade de espaço para armazenar  $h \notin O(n \times |\Sigma|)$ , onde  $|\Sigma|$  representa o tamanho do alfabeto, enquanto que para a função do programa anterior é O(n).

```
function h (Chave: TipoChave; p: TipoPesos): TipoIndice;
var i, Soma: integer; { Funcao h do Zobrist}
begin
 Soma := 0:
 for i := 1 to N do Soma := Soma + p[i, ord(Chave[i])];
 h := Soma mod M:
end; { h }
```

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.1

#### Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.1

### Transformação de Chaves Não Numéricas

```
type TipoPesos = array [1..N] of integer;
procedure GeraPesos (var p: TipoPesos);
var i: integer;
begin
 randomize;
 for i := 1 to N do p[i] := trunc (1000000 * random + 1);
end:
type TipoChave = packed array [1..N] of char;
     TipoIndice = 0..M - 1;
function h (Chave: TipoChave; p: TipoPesos): TipoIndice;
var i, Soma: integer;
begin
 Soma := 0:
 for i := 1 to N do Soma := Soma + ord (Chave[i]) * p[i];
 h := Soma mod M:
end; { h }
```

#### Transformação de Chaves Não Numéricas: Nova Versão

- Modificação no cálculo da função h para evitar a multiplicação da representação ASCII de cada caractere pelos pesos (Zobrist 1990).
  - Este é um caso típico de troca de espaço por tempo.
- Um peso diferente é gerado randomicamente para cada um dos 256 caracteres ASCII possíveis na i-ésima posição da chave, para 1 < i < n.

```
const TAMALFABETO = 256:
type TipoPesos = array[1..N, 1..TAMALFABETO] of integer;
procedure GeraPesos (var p: TipoPesos);
var i, j: integer;
begin
  randomize:
  for i := 1 to N do
    for j := 1 to TAMALFABETO do
     p[i, j] := trunc(1000000 * random + 1);
end: {GeraPesos}
```

# Transformação de Chaves Não Numéricas

As chaves não numéricas devem ser transformadas em números:

$$K = \sum_{i=1}^{n} \text{Chave}[i] \times p[i]$$

- n é o número de caracteres da chave.
- Chave[i] corresponde à representação ASCII do i-ésimo caractere da chave.
- p[i] é um inteiro de um conjunto de pesos gerados randomicamente para  $1 \le i \le n$ .
- Vantagem de usar pesos: Dois conjuntos diferentes de  $p_1[i]$  e  $p_2[i]$ ,  $1 \le i \le n$ , leva a duas funções  $h_1(K)$  e  $h_2(K)$  diferentes.

81

80

#### Operações do Dicionário Usando Listas Encadeadas

```
procedure Insere (x: TipoItem; var p: TipoPesos; var T: TipoDicionario);
begin
  if Pesquisa (x.Chave, p, T) = nil
 then Ins (x, T[h(x.Chave, p)])
  else writeln ('Registro ja esta presente')
end; { Insere }
procedure Retira (x: Tipoltem; var p: TipoPesos; var T: TipoDicionario);
var Ap: TipoApontador:
begin
 Ap := Pesquisa (x.Chave, p, T);
  if Ap = nil
 then writeln ('Registro nao esta presente')
  else Ret (Ap, T[h(x.Chave, p)], x)
end; { Retira }
```

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.2

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.2

### Estrutura do Dicionário para Listas Encadeadas

```
type TipoChave
                    = packed array [1..N] of char;
     TipoItem
                    = record
                        Chave: TipoChave
                        { outros componentes }
                      end:
     TipoIndice
                    = 0..M - 1;
     TipoApontador = ^TipoCelula;
     TipoCelula
                    = record
                        Item: TipoItem:
                        Prox: TipoApontador
                      end:
     TipoLista
                    = record
                        Primeiro: TipoApontador;
                        Ultimo : TipoApontador
     TipoDicionario = array [TipoIndice] of TipoLista;
```

#### Operações do Dicionário Usando Listas Encadeadas

```
procedure Inicializa (var T: TipoDicionario);
var i: integer;
begin for i := 0 to M - 1 do FLVazia (T[i]) end;
function Pesquisa (Ch: TipoChave; var p: TipoPesos; var T: TipoDicionario): TipoApontador;
{-- Obs.: Apontador de retorno aponta para o item anterior da lista---}
var i : TipoIndice; Ap: TipoApontador;
begin
  i := h (Ch, p);
  if Vazia (T[i])
  then Pesquisa := nil { Pesquisa sem sucesso }
  else begin
       Ap := T[i]. Primeiro;
       while (Ap^.Prox^.Prox <> nil) and (Ch <> Ap^.Prox^.Item.Chave) do Ap := Ap^.Prox;
       if Ch = Ap^.Prox^.Item.Chave
       then Pesquisa := Ap
       else Pesquisa := nil { Pesquisa sem sucesso }
       end
end; { Pesquisa }
```

#### **Listas Encadeadas**

- Uma das formas de resolver as colisões é construir uma lista linear encadeada para cada endereco da tabela. Assim, todas as chaves com mesmo endereço são encadeadas em uma lista linear.
- Exemplo: Se a *i*-ésima letra do alfabeto é representada pelo número *i* e a função de transformação  $h(Chave) = Chave \mod M$  é utilizada para M=7, o resultado da inserção das chaves  $P \mathrel{E} S \mathrel{Q} U \mathrel{I} S \mathrel{A}$  na tabela é o seguinte:
  - -h(A) = h(1) = 1, h(E) = h(5) = 5, h(S) = h(19) = 5, e assim por diante.



#### Estrutura do Dicionário Usando Endereçamento Aberto

```
const VAZIO = '!!!!!!!!!';
      RETIRADO = '********';
     M = 7:
     N = 10; { Tamanho da chave }
type TipoApontador = integer;
    TipoChave
                   = packed array [1..N] of char;
    Tipoltem
                   = record
                       Chave: TipoChave
                        { outros componentes }
                     end:
    TipoIndice
                   = 0..M - 1;
    TipoDicionario = array [TipoIndice] of TipoItem;
```

#### Exemplo

- Se a *i*-ésima letra do alfabeto é representada pelo número *i* e a função de transformação  $h(Chave) = Chave \mod M$  é utilizada para M = 7.
- então o resultado da inserção das chaves L U N E S na tabela, usando hashing linear para resolver colisões é mostrado abaixo.
- Por exemplo, h(L) = h(12) = 5, h(U) = h(21) = 0, h(N) = h(14) = 0, h(E) = h(5) = 5, e h(S) = h(19) = 5.

|        | Т |
|--------|---|
| 0      | U |
| 1      | N |
| 2      | S |
| _      |   |
| 4      |   |
| 5<br>6 | L |
| 6      | E |

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.3

85

87

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.2

### **Endereçamento Aberto**

- Quando o número de registros a serem armazenados na tabela puder ser previamente estimado, então não haverá necessidade de usar apontadores para armazenar os registros.
- Existem vários métodos para armazenar N registros em uma tabela de tamanho M > N, os quais utilizam os lugares vazios na própria tabela para resolver as colisões. (Knuth, 1973, p.518)
- No Endereçamento aberto todas as chaves são armazenadas na própria tabela, sem o uso de apontadores explícitos.
- Existem várias propostas para a escolha de localizações alternativas. A mais simples é chamada de **hashing linear**, onde a posição  $h_i$  na tabela é dada por:

$$h_j = (h(x) + j) \mod M$$
, para  $1 \le j \le M - 1$ .

#### **Análise**

- Assumindo que qualquer item do conjunto tem igual probabilidade de ser enderecado para qualquer entrada de T, então o comprimento esperado de cada lista encadeada é N/M, onde N representa o número de registros na tabela e M o tamanho da tabela.
- Logo: as operações Pesquisa, Insere e Retira custam O(1+N/M)operações em média, onde a constante 1 representa o tempo para encontrar a entrada na tabela e N/M o tempo para percorrer a lista. Para valores de M próximos de N, o tempo se torna constante, isto é, independente de N.

89

# • Seja $\alpha = N/M$ o fator de carga da tabela. Conforme demonstrado por Knuth (1973), o custo de uma pesquisa com sucesso é

$$C(n) = \frac{1}{2} \left( 1 + \frac{1}{1 - \alpha} \right).$$

- O hashing linear sofre de um mal chamado agrupamento(clustering) (Knuth, 1973, pp.520–521).
- Esse fenômeno ocorre na medida em que a tabela começa a ficar cheia, pois a inserção de uma nova chave tende a ocupar uma posição na tabela que esteja contígua a outras posições já ocupadas, o que deteriora o tempo necessário para novas pesquisas.
- Entretanto, apesar do hashing linear ser um método relativamente pobre para resolver colisões os resultados apresentados são bons.
- O melhor caso, assim como o caso médio, é O(1).

#### Operações do Dicionário Usando Endereçamento Aberto

```
procedure Retira (Ch: TipoChave; var p: TipoPesos; var T: TipoDicionario);
var i: integer;
begin
    i := Pesquisa (Ch, p, T);
    if i < M
    then T[i].Chave := RETIRADO
    else writeIn ('Registro nao esta presente')
end; { Retira }</pre>
```

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.3

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.3

### Operações do Dicionário Usando Endereçamento Aberto

```
procedure Insere (x: TipoItem; var p: TipoPesos; var T: TipoDicionario);
var i, Inicial: integer;
begin
  if Pesquisa (x.Chave, p, T) < M
 then writeIn ('Elemento ja esta presente')
  else begin
       Inicial := h (x.Chave, p);
      i := 0;
       while ((T[(Inicial + i) mod M]. Chave <> VAZIO) and
          (T[(Inicial + i) mod M].Chave <> RETIRADO)) and
         (i < M) do i := i + 1;
       if i < M
       then T[(Inicial + i) mod M] := x
       else writeln (' Tabela cheia')
      end:
end; { Insere }
```

#### Operações do Dicionário Usando Endereçamento Aberto

```
procedure Inicializa (var T: TipoDicionario);
var i: integer;
begin
  for i := 0 to M - 1 do T[i]. Chave := VAZIO
end; { Inicializa }
function Pesquisa (Ch: TipoChave; var p: TipoPesos;
                   var T: TipoDicionario): TipoApontador;
var i, Inicial: integer;
begin
  Inicial := h(Ch, p); i := 0;
  while (T[(Inicial + i) mod M]. Chave <> VAZIO) and
        (T[(Inicial + i) \mod M].Chave <> Ch) and (i < M) do i := i + 1;
  if T[(Inicial + i) mod M]. Chave = Ch
  then Pesquisa := (Inicial + i) mod M
  else Pesquisa := M { Pesquisa sem sucesso }
end; { Pesquisa }
```

#### Algoritmo de Czech, Havas e Majewski

- Czech, Havas e Majewski (1992, 1997) propõem um método elegante baseado em grafos randômicos para obter uma função de transformação perfeita com ordem preservada.
- A função de transformação é do tipo:

$$hp(x) = (g[h_0(x)] + g[h_1(x)] + \dots + g[h_{r-1}(x)]) \bmod N,$$

na qual  $h_0(x), h_1(x), \dots, h_{r-1}(x)$  são r funções não perfeitas descritas pelos programas dos slides 77 ou 79, x é a chave de busca, e q um arranjo especial que mapeia números no intervalo  $0 \dots M-1$  para o intervalo  $0 \dots N-1$ .

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.4

# Hashing Perfeito com Ordem Preservada

- Se  $h(x_i) = h(x_i)$  se e somente se i = j, então não há colisões, e a função de transformação é chamada de função de transformação perfeita ou função hashing perfeita(hp).
- Se o número de chaves N e o tamanho da tabela M são iguais  $(\alpha = N/M = 1)$ , então temos uma função de transformação perfeita mínima.
- Se  $x_i \le x_i$  e  $hp(x_i) \le hp(x_i)$ , então a ordem lexicográfica é preservada. Nesse caso, temos uma função de transformação perfeita mínima com ordem preservada.

# Vantagens e Desvantagens de Uma Função de Transformação Perfeita Mínima

- Nas aplicações em que necessitamos apenas recuperar o registro com informação relacionada com a chave e a pesquisa é sempre com sucesso, não há necessidade de armazenar a chave, pois o registro é localizado sempre a partir do resultado da função de transformação.
- Não existem colisões e não existe desperdício de espaço pois todas as entradas da tabela são ocupadas. Uma vez que colisões não ocorrem, cada chave pode ser recuperada da tabela com um único acesso.
- Uma função de transformação perfeita é específica para um conjunto de chaves conhecido. Em outras palavras, ela não pode ser uma função genérica e tem de ser pré-calculada.
- A desvantagem no caso é o espaço ocupado para descrever a função de transformação hp.

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.3

# Vantagens e Desvantagens de Transformação da Chave

#### Vantagens:

93

- Alta eficiência no custo de pesquisa, que é O(1) para o caso médio.
- Simplicidade de implementação.

#### **Desvantagens:**

- Custo para recuperar os registros na ordem lexicográfica das chaves é alto, sendo necessário ordenar o arquivo.
- Pior caso é O(N).

#### Obtenção da Função q a Partir do Grafo Acíclico

**Passo importante:** conseguir um arranjo g de vértices para inteiros no intervalo  $0 \dots N-1$  tal que, para cada aresta  $(h_0(x), h_1(x))$ , o valor de  $hp(x) = g(h_0(x)) + g(h_1(x)) \mod N$  seja igual ao rótulo da aresta.

- O primeiro passo é obter um hipergrafo randômico e verificar se ele é acíclico.
- O Programa 7.10 do Capítulo 7 do livro para verificar se um hipergrafo é acíclico é baseado no fato de que um r-grafo é **a**cíclico se e somente se a remoção repetida de arestas contendo vértices de grau 1 elimina todas as arestas do grafo.

#### **Grafo Acíclico Randômico Gerado**



- O problema de obter a função q é equivalente a encontrar um hipergrafo acíclico contendo M vértices e N arestas.
- Os vértices são rotulados com valores no intervalo  $0 \dots M-1$
- Arestas são definidas por  $(h_1(x), h_2(x))$ para cada uma das N chaves x.
- Cada chave corresponde a uma aresta que é rotulada com o valor desejado para a função hp perfeita.
- Os valores das duas funções  $h_1(x)$  e  $h_2(x)$  definem os vértices sobre os quais a aresta é incidente.

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.4

# Exemplo (Obs.: Existe Erro na Tab.5.3(a), pag.205 do livro)

| Chave x | $h_0(x)$ | $h_1(x)$ | hp(x) |
|---------|----------|----------|-------|
| jan     | 11       | 14       | 0     |
| fev     | 14       | 2        | 1     |
| mar     | 0        | 10       | 2     |
| abr     | 8        | 7        | 3     |
| mai     | 4        | 12       | 4     |
| jun     | 14       | 6        | 5     |
| jul     | 1        | 7        | 6     |
| ago     | 12       | 10       | 7     |
| set     | 11       | 4        | 8     |
| out     | 8        | 13       | 9     |
| nov     | 3        | 4        | 10    |
| dez     | 1        | 5        | 11    |

• Chaves: 12 meses do ano abreviados para os três primeiros caracteres.

97

- Vamos utilizar um hipergrafo acíclico com r=2 (ou 2-grafo), onde cada aresta conecta 2 vértices.
- Usa duas funções de transformação universais  $h_0(x)$  e  $h_1(x)$ .
- Objetivo: obter uma função de transformação perfeita hp de tal forma que o i-ésimo mês é mantido na (i-1)-ésima posição da tabela hash.

# Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.4

Problema Resolvido Pelo Algoritmo

- ullet Um hipergrafo ou r-grafo é um grafo não direcionado no qual cada aresta conecta r vértices.
- Dado um hipergrafo não direcionado acíclico  $G_r = (V, A)$ , onde |V| = M e |A| = N, encontre uma atribuição de valores aos vértices de  $G_r$  tal que a soma dos valores associados aos vértices de cada aresta tomado módulo N é um número único no intervalo [0, N-1].
- A questão principal é como obter uma função g adequada. A abordagem mostrada a seguir é baseada em hipergrafos acíclicos randômicos.

103

101

#### Programa para Obter Função de Transformação Perfeita

#### **Program** ObtemHashingPerfeito; begin Ler conjunto de N chaves; Ler o valor de M: Ler o valor de r: repeat Gera os pesos $p_0[i], p_1[i], \ldots, p_{r-1}[i]$ para 1 < i < MAXTAMCHAVE; Gera o hipergrafo $G_r = (V, A)$ ; GrafoAciclico (G\_r, L, GAciclico) until GAciclico:

Retorna  $p_0[i], p_1[i], ..., p_{r-1}[i]$  e g;

- Gera hipergrafos randômicos iterativamente e testa se o grafo gerado é acíclico.
- Cada iteração gera novas funções  $h_0, h_1, \ldots, h_{r-1}$  até que um grafo acíclico seja obtido.
- A função de transformação perfeita é determinada pelos pesos  $p_0, p_1, \ldots, p_{r-1}$ , e pelo arranjo q.

# Rotula Grafo e Atribui Valores para o Arranjo q

```
Procedure Atribuig (var Grafo: TipoGrafo; var L: TipoArranjoArestas; var g: Tipog);
var i, u, Soma: integer; v: TipoValorVertice; a: TipoAresta;
  for i := Grafo.NumVertices - 1 downto 0 do g[i] := INDEFINIDO;
  for i := Grafo.NumArestas - 1 downto 0 do
    begin
    a := L[i]; Soma := 0;
    for v := Grafo.r - 1 downto 0 do
      if q[a.Vertices[v]] = INDEFINIDO
      then begin u := a. Vertices[v]; g[u] := Grafo.NumArestas; end
      else Soma := Soma + g[a.Vertices[v]];
    q[u] := a.Peso - Soma;
    if g[u] < 0 then g[u] := g[u] + (Grafo.r-1) * Grafo.NumArestas;
    end:
end:
```

- Todas as entradas do arranjo q são feitas igual a Indefinido = -1.
- Atribua o valor N para  $q[v_{i+1}], \ldots, q[v_{r-1}]$  que ainda estão indefinidos e faça  $g[v_j] = (i_a - \sum_{v_i \in a \land g[v_i] \neq -1} g[v_i]) \bmod N.$

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.4

Atribuig (G, L, g);

end.

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.4

# Obtenção da Função q a Partir do Grafo Acíclico

#### Algoritmo:

- 1. O Programa 7.10 retorna os índices das arestas retiradas no arranjo  $\mathcal{L} = (2, 1, 10, 11, 5, 9, 7, 6, 0, 3, 4, 8)$ . O arranjo  $\mathcal{L}$  indica a ordem de retirada das arestas.
- 2. As arestas do arranjo  $\mathcal{L}$  devem ser consideradas da direita para a esquerda, condição suficiente para ter sucesso na criação do arranjo q.
- 3. O arranjo q é iniciado com -1 em todas as entradas.
- 4. A aresta a = (4, 11) de índice  $i_a = 8$  é a primeira a ser processada. Como inicialmente g[4] = g[11] = -1, fazemos g[11] = N e  $g[4] = i_a - g[11] \mod N = 8 - 12 \mod 12 = 8.$
- 5. Para a próxima aresta a = (4, 12) de índice  $i_a = 4$ , como g[4] = 8, temos que  $g[12] = i_a - g[4] \mod N = 4 - 8 \mod 12 = 8$ , e assim sucessivamente até a última aresta de  $\mathcal{L}$ .

#### Algoritmo para Obter q no Exemplo dos 12 Meses



| Chave x | $h_0(x)$ | $h_1(x)$ | hp(x) |
|---------|----------|----------|-------|
| jan     | 11       | 14       | 0     |
| fev     | 14       | 2        | 1     |
| mar     | 0        | 10       | 2     |
| abr     | 8        | 7        | 3     |
| mai     | 4        | 12       | 4     |
| jun     | 14       | 6        | 5     |
| jul     | 1        | 7        | 6     |
| ago     | 12       | 10       | 7     |
| set     | 11       | 4        | 8     |
| out     | 8        | 13       | 9     |
| nov     | 3        | 4        | 10    |
| dez     | 1        | 5        | 11    |

| v    |   |   |   |   |   |   |   |   |    |    |    |    |   |   |   |
|------|---|---|---|---|---|---|---|---|----|----|----|----|---|---|---|
| g[v] | 3 | 3 | 1 | 2 | 8 | 8 | 5 | 3 | 12 | -1 | 11 | 12 | 8 | 9 | 0 |

#### Gera um Grafo sem Arestas Repetidas e sem Self-Loops

```
procedure GeraGrafo (var ConjChaves
                                       : TipoConjChaves;
                    Ν
                                       : TipoValorAresta:
                    M
                                       : TipoValorVertice;
                                       : Tipor;
                     var Pesos
                                       : TipoTodosPesos:
                     var NgrafosGerados: integer;
                     var Grafo
                                       : TipoGrafo);
{ Gera um grafo sem arestas repetidas e sem selfloops }
var i, j: integer; Aresta: TipoAresta; GrafoValido: boolean;
 function VerticesIquais (Aresta: TipoAresta): boolean;
 var i, j: integer;
  begin VerticesIguais := false;
        for i := 0 to Grafo.r -2 do
         for j := i + 1 to Grafo. r - 1 do
            if Aresta.Vertices[i] = Aresta.Vertices[i]
            then VerticesIquais := true;
 end:
```

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.4

105

# Estruturas de dados (1)

```
const
  MAXNUMVERTICES = 100000; {--No. maximo de vertices---}
 MAXNUMARESTAS = 100000; {—No. maximo de arestas—}
 MAXR = 5:
 MAXTAMPROX = MAXR*MAXNUMARESTAS;
  MAXTAM = 1000; {--- Usado Fila---}
 MAXTAMCHAVE = 6; {—No. maximo de caracteres da chave—}
 MAXNUMCHAVES = 100000; {—No. maximo de chaves lidas—}
 INDEFINIDO = -1;
type
  {-- Tipos usados em GrafoListaInc do Programa 7.25 -- }
  TipoValorVertice
                    = -1..MAXNUMVERTICES:
  TipoValorAresta
                    = 0..MAXNUMARESTAS;
  Tipor
                    = 0..MAXR;
                    = -1..MAXTAMPROX;
 TipoMaxTamProx
 TipoPesoAresta
                    = integer;
  TipoArranjoVertices = array[Tipor] of TipoValorVertice;
```

# Estruturas de dados (2)

```
TipoAresta
                    = record
                      Vertices: TipoArranjoVertices;
                      Peso
                              : TipoPesoAresta;
TipoArranjoArestas = array[TipoValorAresta] of TipoAresta;
TipoGrafo =
 record
    Arestas
                  : TipoArranjoArestas;
    Prim
                  : array[TipoValorVertice] of TipoMaxTamProx;
                  : array[TipoMaxTamProx] of TipoMaxTamProx;
    Prox
    ProxDisponivel: TipoMaxTamProx;
                 : TipoValorVertice;
    NumVertices
                  : TipoValorAresta;
   NumArestas
                  : Tipor;
 end:
TipoApontador = integer;
```

```
Estruturas de dados (3)
```

```
{ -- Tipos usados em Fila do Programa 3.17 -- }
Tipoltem = record
             Chave: TipoValorVertice;
             { outros componentes }
           end:
TipoFila = record
             Item: array [1..MaxTam] of TipoItem;
             Frente: TipoApontador;
             Tras : TipoApontador;
           end:
TipoPesos
              = array [1..MAXTAMCHAVE] of integer;
TipoTodosPesos = array [Tipor] of Tipopesos;
Tipog
              = array[0..MAXNUMVERTICES] of integer;
TipoChave
              = packed array[1..MAXTAMCHAVE] of char;
TipoConjChaves = array[0..MAXNUMCHAVES] of TipoChave;
TipoIndice
              = TipoValorVertice;
```

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.4

109

#### Programa Principal para Gerar Arranjo q (3)

```
write ('Grafo aciclico com arestas retiradas:');
for i := 0 to Grafo.NumArestas - 1 do write (L[i].Peso:3): writeIn:
  Atribuig (Grafo, L, g);
  writeIn (ArqSaida, N, ' (N)');
  writeIn (ArqSaida, M, ' (M)');
  writeIn (ArqSaida, r, ' (r)');
  for j := 0 to Grafo.r - 1 do
   begin
   for i := 1 to MAXTAMCHAVE do write (ArgSaida, Pesos[i][i], ' ');
   for i := 1 to MAXTAMCHAVE do write (Pesos[i][i], ' ');
   writeln (ArgSaida, ' (p',j:1,')'); writeln (' (p',j:1,')');
   end:
  for i := 0 to M - 1 do write (ArgSaida, g[i], '');
  for i := 0 to M - 1 do write (g[i], ');
  writeln (ArqSaida, ' (g)'); writeln (' (g)');
  writeIn (ArgSaida, 'No. grafos gerados por GeraGrafo: ',NGrafosGerados);
  close (ArqSaida); close (ArqEntrada);
end. { ObtemHashPerfeito }
```

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.4

#### Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.4

#### Programa Principal para Gerar Arranjo q (1)

```
program RotulaGrafoAciclico;
```

```
— Entram agui as estruturas de dados dos slides 104, 105, 106—}
var M
                        : TipoValorVertice;
   Ν
                        : TipoValorAresta:
                        : Tipor;
    Grafo
                        : TipoGrafo;
                        : TipoArranjoArestas;
    GAciclico
                        : boolean;
    g
                        : Tipog;
                        : TipoTodosPesos;
   Pesos
   i, j, NGrafosGerados: integer;
   ConiChaves
                        : TipoConjChaves;
   ArgEntrada, ArgSaida: text;
   NomeAra
                        : string [100];
   — Entram aqui os operadores do Programa 3.18 — }
   — Entram aqui os operadores do slide 77—}
     Entram agui os operadores do Programa 7.26 --- }
      Entram agui VerticeGrauUm e GrafoAciclico do Programa 7.10 — }
```

#### Programa Principal para Gerar Arranjo q (2)

```
begin { - ObtemHashPerfeito- }
  randomize: {--- Inicializa random para 2^32 valores----}
  write ('Nome do arquivo com chaves a serem lidas: ');
  readIn (NomeArg); assign (ArgEntrada, NomeArg);
  write ('Nome do arquivo para gravar experimento: '); readln(NomeArg);
  assign (ArgSaida, NomeArg); reset (ArgEntrada); rewrite (ArgSaida);
  NGrafosGerados := 0; i := 0; readln (ArgEntrada, N, M, r);
  while (i < N) and (not eof(ArgEntrada)) do
    begin readIn (ArqEntrada, ConjChaves[i]); i := i + 1; end;
  if (i⇔N) then begin writeIn('Erro: entrada com menos que ',N,' itens'); exit; end;
  repeat
    GeraGrafo(ConjChaves, N, M, r, Pesos, NgrafosGerados, Grafo); ImprimeGrafo(Grafo);
    write('prim: '):
    for i:=0 to Grafo.NumVertices-1 do write(Grafo.Prim[i]:3); writeln;
    for i:=0 to Grafo.NumArestas*Grafo.r-1 do write(Grafo.prox[i]:3); writeIn;
    GrafoAciclico (Grafo, L, GAciclico):
  until GAciclico:
```

#### Gera um Grafo sem Arestas Repetidas e sem Self-Loops

```
begin { -GeraGrafo- }
  repeat
    GrafoValido := true:
                           Grafo.NumVertices := M:
    Grafo.NumArestas := N: Grafo.r := r:
    FGVazio (Grafo);
                            NGrafosGerados := 0;
    for j := 0 to Grafo.r - 1 do GeraPesos (Pesos[j]);
    for i := 0 to Grafo.NumArestas -1 do
     begin
     Aresta.Peso := i;
      for j := 0 to Grafo.r-1 do Aresta.Vertices[j]:=h(ConjChaves[i], Pesos[j]);
    if VerticesIguais (Aresta) or ExisteAresta (Aresta, Grafo)
      then begin GrafoValido := false; break; end
      else InsereAresta (Aresta, Grafo);
     end:
    NGrafosGerados := NGrafosGerados + 1;
 until GrafoValido:
end: { GeraGrafo }
```

113

#### Teste para a Função de Transformação Perfeita (3)

```
begin
  write ('Nome do arquivo com chaves a serem lidas: '); readln (NomeArg);
  assign (ArgEntrada, NomeArg); reset (ArgEntrada);
  readin (ArgEntrada, N); readin (ArgEntrada, M); readin (ArgEntrada, r);
  for i := 0 to r - 1 do
   begin
   for i := 1 to MAXTAMCHAVE do read (ArgEntrada, Pesos[i][i]);
   readIn (ArgEntrada);
   end:
  for i := 0 to M-1 do read (ArqEntrada, g[i]); readIn (ArqEntrada);
  readIn (Chave):
  while Chave <> 'aaaaaa' do
   begin writeIn (hp(Chave, r, Pesos, g)); readIn (Chave); end;
  close (ArgEntrada);
end. { hashingperfeito }
```

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.4

#### Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.4

#### Teste para a Função de Transformação Perfeita (1)

```
program HashingPerfeito;
const
 MAXNUMVERTICES = 100000; {-Numero maximo de vertices-}
 MAXNUMARESTAS = 100000; {-Numero maximo de arestas-}
 MAXR = 5;
 MAXTAMCHAVE = 6; {—Numero maximo de caracteres da chave—}
 MAXNUMCHAVES = 100000; {—Numero maximo de chaves lidas—}
type
 TipoValorVertice = -1..MAXNUMVERTICES;
 TipoValorAresta = 0..MAXNUMARESTAS;
 Tipor
                 = 0..MAXR;
 TipoPesos
                 = array [1..MAXTAMCHAVE] of integer;
 TipoTodosPesos
                = array [Tipor] of Tipopesos;
 Tipog
                 = array[0..MAXNUMVERTICES] of integer;
 TipoChave
                 = packed array[1..MAXTAMCHAVE] of char;
 TipoConjChaves
                 = array[0..MAXNUMCHAVES] of TipoChave;
 TipoIndice
                 = 0..MAXNUMARESTAS;
```

```
Teste para a Função de Transformação Perfeita (2)
```

```
var
 М
            : TipoValorVertice;
 Ν
            : TipoValorAresta;
            : Tipor;
            : Tipog:
  Pesos
            : TipoTodosPesos;
  i, i
            : integer;
  ConjChaves: TipoConjChaves;
          : string [100];
  NomeAra
  Chave
            : TipoChave;
  ArgEntrada: text;
{ Entra aqui a funcao hash universal do slide 77 }
{ Entra aqui a funcao hash perfeita do slide 112 }
```

Função de Transformação Perfeita

```
function hp (Chave
                      : TipoChave;
                      : Tipor;
             var Pesos: TipoTodosPesos;
             var q
                      : Tipoq): TipoIndice;
var i, v: integer;
begin
  v := 0;
  for i := 0 to r - 1 do v := v + g[h(Chave, Pesos[i])];
  hp := v \mod N;
end: { hp }
```

- O número de bits por chave para descrever a função é uma medida de complexidade de espaço importante.
- Como cada entrada do arranjo g usa  $\log N$  bits, a complexidade de espaço do algoritmo é  $O(\log N)$  bits por chave, que é o espaço para descrever a função.
- De acordo com Majewski, Wormald, Havas e Czech (1996), o limite inferior para descrever uma função perfeita com ordem preservada é  $\Omega(\log N)$  bits por chave, o que significa que o algoritmo que acabamos de ver é ótimo para essa classe de problemas.
- Na próxima seção vamos apresentar um algoritmo de *hashing* perfeito sem ordem preservada que reduz o espaço ocupado pela função de transformação de  $O(\log N)$  para O(1).

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.4

#### Análise: Influência do Valor de r

• Segundo Czech, Havas e Majewski (1992, 1997), quando M=cN, c>2 e r=2, a probabilidade  $P_{ra}$  de gerar aleatoriamente um 2-grafo acíclico  $G_2=(V,A)$ , para  $N\to\infty$ , é:

$$P_{r_a} = e^{\frac{1}{c}} \sqrt{\frac{c-2}{c}}.$$

- Quando c=2,09 temos que  $P_{r_a}=0,33$ . Logo, o número esperado de iterações para gerar um 2-grafo acíclico é  $1/P_{r_a}=1/0,33\approx 3$ .
- Logo, aproximadamente 3 grafos serão testados em média.
- O custo para gerar cada grafo é linear no número de arestas do grafo.
- O procedimento GrafoAciclico para verificar se um hipergrafo é acíclico tem complexidade O(|V| + |A|).
- Logo, a complexidade de tempo para gerar a função de transformação é proporcional ao número de chaves N, desde que M>2N.

#### Análise: Influência do Valor de r

- O grande inconveniente de usar M=2,09N é o espaço necessário para armazenar o arranjo g.
- Uma maneira de aproximar o valor de M em direção ao valor de N é usar 3-grafos, onde o valor de M pode ser tão baixo quanto 1,23N.
- Logo, o uso de 3-grafos reduz o custo de espaço da função, mas requer o cômputo de mais uma função de transformação auxiliar h<sub>2</sub>.
- O problema tem naturezas diferentes para r = 2 e r > 2:
  - Para r=2, a probabilidade  $P_{r_a}$  varia continuamente com c.
  - Para r>2, se  $c\leq c(r)$ , então  $P_{r_a}$  tende para 0 quando N tende para  $\infty$ ; se c>c(r), então  $P_{r_a}$  tende para 1.
  - Logo, um 3-grafo é obtido em média na primeira tentativa quando  $c \geq 1, 23$ .
- Obtido o hipergrafo, o procedimento Atribuig é determinístico e requer um número linear de passos.

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.4

# Análise

117

- A questão crucial é: quantas interações são necessárias para se obter um hipergrafo  $G_r = (V, A)$  que seja acíclico?
- A resposta a esta questão depende dos valores de r e M escolhidos no primeiro passo do algoritmo.
- Quanto maior o valor de M, mais esparso é o grafo e, consequentemente, mais provável que ele seja acíclico.

#### Hashing Perfeito Usando Espaço Quase Ótimo

Ainda no passo (a) de geração do hipergrafo:

- Testa se o hipergrafo randômico resultante contém ciclos por meio da retirada iterativa de arestas de grau 1, conforme mostrado no Programa 7.10.
- As arestas retiradas são armazenadas em  $\mathcal L$  na ordem em que foram retiradas.
- A primeira aresta retirada foi {1,2,4}, a segunda foi {1,3,5} e a
  terceira foi {0,2,5}. Se terminar com um grafo vazio, então o grafo é
  acíclico, senão um novo conjunto de funções h<sub>0</sub>, h<sub>1</sub> and h<sub>2</sub> é escolhido
  e uma nova tentativa é realizada.

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.5

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.5

#### Hashing Perfeito Usando Espaço Quase Ótimo



- (a) Para  $S=\{\mathrm{jan,fev,mar}\}$ , gera um 3-grafo 3-partido acíclico com M=6 vértices e N=3 arestas e um arranjo de arestas  $\mathcal L$  obtido no momento de verificar se o hipergrafo é acíclico.
- (b) Constrói função *hash* perfeita que transforma o conjunto S de chaves para o intervalo [0,5], representada pelo arranjo  $g:[0,5] \to [0,3]$  de forma a atribuir univocamente uma aresta a um vértice.

# Hashing Perfeito Usando Espaço Quase Ótimo

No passo (a) de geração do hipergrafo:

- Utiliza três funções h<sub>0</sub>, h<sub>1</sub> and h<sub>2</sub>, com intervalos {0,1}, {2,3} e {4,5}, respectivamente, cujos intervalos não se sobrepõem e por isso o grafo é 3-partido.
- Funções constroem um mapeamento do conjunto S de chaves para o conjunto A de arestas de um r-grafo acíclico  $G_r=(V,A)$ , onde r=3, |V|=M=6 e |E|=N=3.
- No exemplo, "jan" é rótulo da aresta  $\{h_0(\text{"jan"}), h_1(\text{"jan"}), h_2(\text{"jan"})\} = \{1, 3, 5\}$ , "fev" é rótulo da aresta  $\{h_0(\text{"fev"}), h_1(\text{"fev"}), h_2(\text{"fev"})\} = \{1, 2, 4\}$ , e "mar" é rótulo da aresta  $\{h_0(\text{"mar"}), h_1(\text{"mar"}), h_2(\text{"mar"})\} = \{0, 2, 5\}$ .

Hashing Perfeito Usando Espaço Quase Ótimo

- Algoritmo proposto por Botelho (2008): obtem função *hash* perfeita com número constante de *bits* por chave para descrever a função.
- O algoritmo gera a função em tempo linear e a avaliação da função é realizada em tempo constante.
- Primeiro algoritmo prático descrito na literatura que utiliza O(1) *bits* por chave para uma função *hash* perfeita mínima sem ordem preservada.
- Os métodos conhecidos anteriormente ou são empíricos e sem garantia de que funcionam bem para qualquer conjunto de chaves, ou são teóricos e sem possibilidade de implementação prática.
- O algoritmo utiliza hipergrafos ou r-grafos randômicos r-partidos. Isso permite que r partes do vetor g sejam acessadas em paralelo.
- As funções mais rápidas e mais compactas são obtidas para hipergrafos com r=3.

#### Valor das Variáveis na Execução do Programa

| i | а             | v | Visitado         | u | j | Soma |
|---|---------------|---|------------------|---|---|------|
| 2 | $\{0, 2, 5\}$ | 2 | $False \to True$ | 5 | 2 | 0    |
|   |               | 1 | $False \to True$ | 2 | 1 | 0    |
|   |               | 0 | $False \to True$ | 0 | 0 | 0    |
| 1 | $\{1, 3, 5\}$ | 2 | True             | - | - | 3    |
|   |               | 1 | $False \to True$ | 3 | 1 | 3    |
|   |               | 0 | $False \to True$ | 1 | 0 | 3    |
| 0 | $\{1, 2, 4\}$ | 2 | $False \to True$ | 4 | 2 | 0    |
|   |               | 1 | True             | 4 | 2 | 0    |
|   |               | 0 | True             | 4 | 2 | 3    |

• No exemplo, a primeira aresta considerada em  $\mathcal{L}$  é  $a = \{h_0(\text{"mar"}), h_1(\text{"mar"}), h_2(\text{"mar"})\} = \{0, 2, 5\}$ . A Tabela mostra os valores das varáveis envolvidas no comando:

for v := Grafo.r - 1 downto 0 do

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.5

### Hashing Perfeito Usando Espaço Quase Ótimo

- O programa no slide seguinte mostra o procedimento para obter o arranjo g considerando um hipergrafo  $G_r = (V, A)$ .
- As estruturas de dados são as mesmas dos slides 104, 105 e 106.
- Para valores  $0 \le i \le M-1$ , o passo começa com g[i] = r para marcar cada vértice como não atribuído e com Visitado[i] = false para marcar cada vértice como não visitado.
- Seja j,  $0 \le j < r$ , o índice de cada vértice u de uma aresta a.
- A seguir, para cada aresta  $a \in \mathcal{L}$  da direita para a esquerda, percorre os vértices de a procurando por vértices u em a não visitados, faz Visitado[u] = true e para o último vértice u não visitado faz  $g[u] = (j \sum_{v \in a \land Visitado[v] = true} g[v]) \bmod r$ .

#### Rotula Grafo e Atribui Valores para o Arranjo g

```
Procedure Atribuig (var Grafo: TipoGrafo; var L: TipoArranjoArestas; var g: Tipog);
var i, j, u, Soma: integer; v: TipoValorVertice; a: TipoAresta;
    Visitado: array[0..MAXNUMVERTICES] of boolean;
beain
  for i := Grafo.NumVertices - 1 downto 0 do
    begin g[i] := grafo.r; Visitado[i] := false; end;
  for i := Grafo.NumArestas - 1 downto 0 do
    begin
    a := L[i]; Soma := 0;
    for v := Grafo.r - 1 downto 0 do
      if not Visitado[a.Vertices[v]]
     then begin Visitado[a.Vertices[v]] := true; u := a.Vertices[v]; j := v; end
      else Soma := Soma + g[a.Vertices[v]];
    g[u] := (j - Soma) \mod grafo.r;
    end:
end; { -Fim Atribuig- }
```

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.5

124

### Hashing Perfeito Usando Espaço Quase Ótimo

No passo (b) de atribuição:

- Produz uma função *hash* perfeita que transforma o conjunto S de chaves para o intervalo [0, M-1], sendo representada pelo arranjo g que armazena valores no intervalo [0,3].
- O arranjo g permite selecionar um de três vértices de uma dada aresta, o qual é associado a uma chave k.

131

129

#### Obtem a Função Hash Perfeita

```
function hp (Chave: TipoChave; r: Tipor;
             var Pesos: TipoTodosPesos; var q: Tipoq): TipoIndice;
var i, v: integer; a: TipoArranjoVertices;
begin
 v := 0:
 for i := 0 to r - 1 do
   begin
   a[i] := h (Chave, Pesos[i]);
   v := v + g[a[i]];
   end:
 v := v \mod r;
 hp := a[v];
end; { hp }
```

 O procedimento recebe a chave, o valor de r, os pesos para a função h do Programa 3.18 e o arranjo q, e segue a equação do slide 130 para descobrir qual foi o vértice da aresta escolhido para a chave.

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.5

#### Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.5

#### Atribui Valores para q Usa Apenas 1 Byte por Entrada

- Como somente um dos quatro valores 0, 1, 2, ou 3 é armazenado em cada entrada de q, 2 bits são necessários.
- Na estrutura de dados do slide 106 o tipo do arranjo q é integer.
- Agora o comando

```
Tipog = array[0..MAXNUMVERTICES] of integer;
muda para
  Tipog = array[0..MAXNUMVERTICES] of byte;
```

#### Obtem a Função Hash Perfeita

- A partir do arranjo q podemos obter uma função hash perfeita para uma tabela com intervalo [0, M-1].
- Para uma chave  $k \in S$  a função hp tem a seguinte forma:

$$hp(k) = h_{i(k)}(k)$$
, onde  $i(k) = (g[h_0(k)] + g[h_1(k)] + \ldots + g[h_{r-1}(k)]) \mod r$ 

- Considerando r=3, o vértice escolhido para uma chave k é obtido por uma das três funções, isto é,  $h_0(k)$ ,  $h_1(k)$  ou  $h_2(k)$ .
- Logo, a decisão sobre qual função  $h_i(k)$  deve ser usada para uma chave k é obtida pelo cálculo  $i(k) = (g[h_0(k)] + g[h_1(k)] + g[h_2(k)]) \mod 3.$
- No exemplo da Figura, a chave "jan" está na posição 1 da tabela porque  $(q[1] + q[3] + q[5]) \mod 3 = 0$  e  $h_0("jan") = 1$ . De forma similar, a chave "fev" está na posição 4 da tabela porque  $(q[1] + q[2] + q[4]) \mod 3 = 2$  e  $h_2(\text{"fev"}) = 4$ , e assim por diante.

### Valor das Variáveis na Execução do Programa

• O comando após o anel:

$$g[u] := (j - Soma) \mod Grafo.r;$$
  
faz  $g[0] = (0 - 0) \mod 3 = 0.$ 

- Iqualmente, para a aresta seguinte de  $\mathcal{L}$  que é  $a = \{h_0("jan"), h_1("jan"), h_2("jan")\} = \{1, 3, 5\}, o \text{ comando após o anel }$ faz  $q[1] = (0-3) \mod 3 = -3$ .
- O comando a seguir:

while g[u] < 0 do g[u] := g[u] + Grafo.r;  
irá fazer 
$$g[1] = g[1] + 3 = -3 + 3 = 0$$
.

• Finalmente, para a última aresta em £ que é  $a = \{h_0(\text{"fev"}), h_1(\text{"fev"}), h_2(\text{"fev"})\} = \{1, 2, 4\}, \text{ o comando após o anel }$ faz  $g[4] = (2-3) \mod 3 = -1$ . faz g[4] = g[4] + 3 = -1 + 3 = 2.

133

#### Atribui Valores para g Usando 2 Bits por Entrada

```
Procedure Atribuig (var Grafo: TipoGrafo; var L: TipoArranjoArestas; var g: Tipog);
var i, j, u: integer; v: TipoValorVertice; a: TipoAresta; Soma: integer;
   valorg2bits: integer; Visitado: array[0..MAXNUMVERTICES] of boolean;
begin
  if (qrafo.r \le 3) { valores de 2 bits requerem r \le 3}
 then begin
      for i := Grafo.NumVertices - 1 downto 0 do
        begin AtribuiValor2Bits (q, i, grafo.r); Visitado[i] := false; end;
      for i := Grafo.NumArestas - 1 downto 0 do
        begin
        a := L[i]; Soma := 0;
        for v := Grafo.r - 1 downto 0 do
          if not Visitado[a.Vertices[v]]
          then begin Visitado[a.Vertices[v]]:=true; u:=a.Vertices[v]; j:=v; end
          else Soma := Soma + ObtemValor2Bits (g, a.Vertices[v]);
        valorg2bits := (j - Soma) mod grafo.r; AtribuiValor2Bits (g, u, valorg2bits);
        end:
      end:
end; { Atribuig }
```

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.5

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.5

### Como Empacotar Quatro Valores de q em um Byte

```
{-- Assume que as entradas de 2 bits do vetor q foram iniciadas com o valor 3--}
procedure AtribuiValor2Bits (var q : Tipoq; Indice: integer; Valor : byte);
var i, Pos : integer;
begin
 i := Indice div 4; Pos := (Indice mod 4);
 Pos := Pos * 2; { Cada valor ocupa 2 bits }
 g[i] := g[i] and (not(3 shl Pos)); { zera os dois bits a atribuir }
 g[i] := g[i] or (Valor shl Pos); { realiza a atribuicao }
end; {AtribuiValor2Bits}
function ObtemValor2Bits (var g : Tipog; Indice: Integer): byte;
var i, Pos: Integer;
begin
 i := Indice div 4; Pos := (Indice mod 4);
 Pos := Pos * 2; { Cada valor ocupa 2 bits }
  ObtemValor2Bits := (g[i] shr Pos) and 3;
end; {ObtemValor2Bits}
```

#### Como Empacotar Um Valor de g em Apenas 2 Bits

- Exemplo de "shl":  $b_0, b_1, b_2, b_3, b_4, b_5, b_6, b_7$  shl  $6 = b_6, b_7, 0, 0, 0, 0, 0, 0$ ).
- Exemplo de "shr":  $b_0, b_1, b_2, b_3, b_4, b_5, b_6, b_7$  shr  $6 = 0, 0, 0, 0, 0, 0, 0, b_0, b_1$ ).
- Na chamada do procedimento AtribuiValor2Bits, consideremos a atribuição de Valor = 2 na posição Indice = 4 de g (no caso, g[4] = 2):
  - No primeiro comando o *byte* que vai receber  $Valor = 2 = (10)_2$  é determinado por i = Indice div 4 = 4 div 4 = 1 (segundo *byte*).
  - Posição dentro do byte a seguir: Pos = Indice mod 4 = 4 mod 4 = 0 (os dois bits menos significatios do byte).
  - A seguir, Pos = Pos \* 2 porque cada valor ocupa 2 *bits* do *byte*. A seguir, **not** (3 shl Pos) = **not**  $((00000011)_2 \text{ shl 0}) = (11111100)_2$ . Logo, g[i] **and**  $(11111100)_2$  zera os 2 *bits* a atribuir.
  - Finalmente, o comando g[i] or (Valor shl Pos) realiza a atribuição e o byte fica como (XXXXXX10)<sub>2</sub>, onde X representa 0 ou 1.

#### Como Empacotar Quatro Valores de g em um Byte

- Para isso foram criados dois procedimentos:
  - AtribuiValor2Bits: atribui o i-ésimo valor de g em uma das quatro posições do byte apropriado.
  - ObtemValor2Bits: retorna o i-ésimo valor de g.
- ullet Agora o tipo do arranjo g permanece como  $\emph{byte}$ , mas o comando

```
Tipog = array[0..MAXNUMVERTICES] of byte;
```

muda para

const MAXGSIZE = Trunc((MAXNUMVERTICES + 3)/4)

Tipog = array[0..MAXGSIZE] of byte;

onde MAXGSIZE indica que o arranjo Tipog ocupa um quarto do espaço e o *byte* passa a armazenar 4 valores.

#### Implementação da Tabela TabRank

- TabRank armazena em cada entrada o número total de valores de 2 bits diferentes de r=3 até cada k-ésima posição do arranjo q.
- No exemplo consideramos k=4. Assim, existem 0 valores até a posição 0 e 2 valores até a posição 4 de q.

```
Procedure GeraTabRank (var g: Tipog; Tamg: TipoValorVertice;
                      k: TipoK; var TabRank: TipoTabRank);
var i, Soma: Integer;
begin
 Soma := 0:
 for i := 0 to Tamq - 1 do
   begin
   if (i mod k = 0) then TabRank[i div k] := Soma;
    if (ObtemValor2Bits(g,i) <> NAOATRIBUIDO) then Soma := Soma + 1;
   end:
end; { GeraTabRank }
```

#### Implementação da Função Rank



- A função rank usa um algoritmo proposto por Pagh (2001).
- Usa  $\epsilon M$  bits adicionais,  $0 < \epsilon < 1$ , para armazenar o rank de cada k-ésimo índice de q em TabRank, onde  $k = \lfloor \log(M)/\epsilon \rfloor$ .
- Para uma avaliação de rank(u) em O(1), é necessário usar uma tabela  $T_r$ auxiliar.

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.5

137

139

#### Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.5

#### Implementação da Função Rank

- Para obter uma função hash perfeita mínima precisamos reduzir o intervalo da tabela de [0, M-1] para [0, N-1].
- Vamos utilizar uma estrutura de dados sucinta, acompanhada de um algoritmo eficiente para a operação de pesquisa.
- $rank: [0, M-1] \rightarrow [0, N-1]$ : conta o número de posições atribuidas antes de uma dada posição v em q em tempo constante.
- O passo de ranking constrói a estrutura de dados usada para computar a função  $rank: [0,5] \rightarrow [0,2]$  em tempo O(1). Por exemplo, rank(4) = 2 porque os valores de g[0] e g[1] são diferentes de 3.

```
fhp
0 mar
1 jan
2 3
       Ranking
                  jan
3 3
4 fev
```

# Função de Transformação Perfeita Usando 2 Bits

```
function hp (Chave: TipoChave; r: Tipor;
             var Pesos: TipoTodosPesos; var g: Tipog): TipoIndice;
var i, v: integer; a: TipoArranjoVertices;
begin
  v := 0;
  for i := 0 to r - 1 do
    begin
   a[i] := h (Chave, Pesos[i]);
    v := v + ObtemValor2Bits(g, a[i]);
   end:
  v := v \mod r;
  hp := a[v];
end; { hp }
```

 Basta substituir no programa do slide 131 o comando v := v + g[a[i]];pelo comando v := v + ObtemValor2Bits(g, a[i]);

#### Função de Transformação Perfeita Usando 2 Bits

```
function hpm (Chave: TipoChave: r: Tipor; var Pesos: TipoTodosPesos; var q: Tipoq;
              var Tr: TipoTr; k: TipoK; var TabRank: TipoTabRank): TipoIndice;
var i, j, u, Rank, Byteg: TipoIndice;
begin
 u := hp (Chave, r, Pesos, g);
 j := u div k;
                     Rank := TabRank[i];
  i := i * k;
                    j := j;
  Byteg := i \, div \, 4; i := i + 4;
  while (i < u) do
   begin Rank := Rank + Tr[g[Byteg]]; j := j + 4; Byteg := Byteg + 1; end;
 i := i - 4;
  while (j < u) do
   beain
    if (ObtemValor2Bits (g, j) <> NAOATRIBUIDO) then Rank := Rank+1;
   i := i + 1;
   end:
 hpm := Rank;
end; { hpm }
```

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.5

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.5

# Implementação da Tabela $T_r$

```
Procedure GeraTr (var Tr: TipoTr);
var i, j, v, Soma: Integer;
begin
 Soma := 0;
 for i := 0 to MAXTRVALUE do
   begin
   Soma := 0; v := i;
   for j := 1 to 4 do
     beain
     if ((v and 3) <> NAOATRIBUIDO) then Soma := Soma + 1;
     v := v shr 2;
     end;
   Tr[i] := Soma;
   end:
end: { GeraTr }
```

#### Função de Transformação Perfeita Usando 2 Bits

A função hash perfeita mínima:

$$hpm(x) = rank(hp(x))$$

- Quanto maior for o valor de k mais compacta é a função hash perfeita mínima resultante. Assim, os usuários podem permutar espaço por tempo de avaliação variando o valor de k na implementação.
- Entretanto, o melhor é utilizar valores para k que sejam potências de dois (por exemplo,  $k=2^{b_k}$  para alguma constante  $b_k$ ), o que permite trocar as operações de multiplicação, divisão e módulo pelas operações de deslocamento de bits à esquerda, à direita, e "and" binário, respectivamente.
- O valor k = 256 produz funções compactas e o número de *bits* para codificar  $k \notin b_k = 8$ .

# Implementação da Tabela $T_r$

- ullet Para calcular o  $\mathit{rank}(u)$  usando as tabelas TabRank e  $T_r$  são necessários dois passos:
  - Obter o rank do maior índice precomputado v < u em TabRank.
  - Usar  $T_r$  para contar número de vértices atribuídos de v até u-1.
- Na figura do slide 138  $T_r$  possui 16 entradas necessárias para armazenas todas as combinações possíveis de 4 bits.
- Por exemplo, a posição 0, cujo valor binário é (0000)<sub>2</sub>, contém dois valores diferentes de r=3; na posição 3, cujo valor binário é  $(0011)_2$ , contém apenas um valor diferente de r=3, e assim por diante.
- Cabe notar que cada valor de r > 2 reguer uma tabela  $T_r$  diferente.
- O procedimento a seguir considera que  $T_r$  é indexada por um número de 8 bits e, portanto, MaxTrValue = 255. Além disso, no máximo 4 vértices podem ser empacotados em um byte, razão pela qual o anel interno vai de 1 a 4.

### Análise de Espaço da Função *Hash* Perfeita Mínima hpm

- Espaço para  $q \notin 2.46$  bits por chave.
- Espaço para a tabela TabRank:

$$|g| + |\text{TabRank}| = 2cn + 32 * (cn/k),$$

assumindo que cada uma das cn/k entradas da tabela TabRank armazena um inteiro de 32  $\it bits$  e que cada uma das  $\it cn$  entradas de  $\it g$  armazena um inteiro de 2  $\it bits$ . Se tomarmos  $\it k=256$ , teremos:

$$2cn + (32/256)cn = (2+1/8)cn = (2+\epsilon)cn$$
, para  $\epsilon = 1/8 = 0.125$ .

• Logo, o espaço total é  $(2+\epsilon)cn$  bits. Usando c=1,23 e  $\epsilon=0,125$ , a função hash perfeita mínima necessita aproximadamente 2,62 bits por chave para ser armazenada.

## Análise de Espaço da Função Hash Perfeita hp

- Como somente quatro valores distintos são armazenados em cada entrada de *q*, são necessários 2 *bits* por valor.
- Como o tamanho de g para um 3-grafo é M=cN, onde c=1,23, o espaço necessário para armazenar o arranjo g é de 2cn=2,46  $\it{bits}$  por entrada.

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.5

#### 145

Projeto de Algoritmos - Cap.5 Pesquisa em Memória Primária 5.5.5

#### Análise de Tempo

- O Programa 7.10 para verificar se um hipergrafo é acíclico do tem complexidade O(|V|+|A|). Como |A|=O(|V|) para grafos esparsos como os considerados aqui, a complexidade de tempo para gerar a função de transformação é proporcional ao número de chaves N.
- O tempo necessário para avaliar a função hp do slide 130 envolve a avaliação de três funções hash universais, com um custo final O(1).
- O tempo necessário para avaliar a função hpm do slide 142 tem um custo final O(1), utilizando uma estrutura de dados sucinta que permite computar em O(1) o número de posições atribuidas antes de uma dada posição em um arranjo.
- A tabela  $T_r$  permite contar o número de vértices atribuídos em  $\epsilon \log M$  bits com custo  $O(1/\epsilon)$ , onde  $0 < \epsilon < 1$ .
- Mais ainda, a avaliação da função rank é muito eficiente já que tanto TabRank quanto  $T_r$  cabem inteiramente na memória cache da CPU.

#### Análise de Tempo (Botelho 2008)

• Quando M=cN, c>2 e r=2, a probabilidade  $P_{r_a}$  de gerar aleatoriamente um 2-grafo bipartido acíclico, para  $N\to\infty$ , é:

$$P_{r_a} = \sqrt{1 - \left(\frac{2}{c}\right)^2}.$$

- Quando c=2,09, temos que  $P_{r_a}=0,29$  e o número esperado de iterações para gerar um 2-grafo bipartido acíclico é  $1/P_{r_a}=1/0,29\approx 3,45$ .
- Isso significa que, em média, aproximadamente 3, 45 grafos serão testados antes que apareça um 2-grafo bipartido acíclico.
- Quando  $M=cN,\,c\geq 1{,}23$  e r=2, um 3-grafo 3-partido acíclico é obtido em 1 tentativa com probabilidade tendendo para 1 quando  $N\to\infty.$
- Logo, o custo para gerar cada grafo é linear no número de arestas do grafo.

# Análise de Espaço da Função *Hash* Perfeita Mínima *hpm*

- Mehlhorn (1984) mostrou que o limite inferior para armazenar uma função hash perfeita mínima é  $N\log e + O(\log N) \approx 1,44N$ . Assim, o valor de aproximadamente 2,62 bits por chave é um valor muito próximo do limite inferior de aproximadamente 1,44 bits por chave para essa classe de problemas.
- Esta seção mostra um algoritmo prático que reduziu a complexidade de espaço para armazenar uma função hash perfeita mínima de  $O(N\log N)$  bits para O(N) bits. Isso permite o uso de hashing perfeito em aplicações em que antes não eram consideradas uma boa opção.
- Por exemplo, Botelho, Lacerda, Menezes e Ziviani (2009) mostraram que uma função *hash* perfeita mínima apresenta o melhor compromisso entre espaço ocupado e tempo de busca quando comparada com todos os outros métodos de *hashing* para indexar a memória interna para conjuntos estáticos de chaves.