Trapdoor Memory-Hard Functions

Benedikt Auerbach

Christoph Günther

Krzysztof Pietrzak

Eurocrypt 2024

• Need moderately-hard functions, e.g., password hashing, PoW, ...

- Need moderately-hard functions, e.g., password hashing, PoW, ...
- Computationally hard functions are not egalitarian (easier on specialized hardware, e.g., ASICs)

- Need moderately-hard functions, e.g., password hashing, PoW, ...
- Computationally hard functions are not egalitarian (easier on specialized hardware, e.g., ASICs)
- Memory-hardness: Evaluation cost dominated by memory usage and not computation

- Need moderately-hard functions, e.g., password hashing, PoW, ...
- Computationally hard functions are not egalitarian (easier on specialized hardware, e.g., ASICs)
- Memory-hardness: Evaluation cost dominated by memory usage and not computation
- Scrypt, Argon2 family, DRSample, ...

Memory measure

Memory measure

• Sequential algorithm $Eval(w) \rightarrow y$

- Sequential algorithm $Eval(w) \rightarrow y$
- Mode of operation for a hash function $H: \{0, 1\}^* \to \{0, 1\}^{\ell}$

- Sequential algorithm $Eval(w) \rightarrow y$
- Mode of operation for a hash function $H: \{0, 1\}^* \to \{0, 1\}^{\ell}$
- Memory-hardness parameter n

- Sequential algorithm $Eval(w) \rightarrow y$
- Mode of operation for a hash function $H: \{0, 1\}^* \to \{0, 1\}^{\ell}$
- Memory-hardness parameter n
- Eval's CMC is $\Theta(n^2\ell)$

- Sequential algorithm $Eval(w) \rightarrow y$
- Mode of operation for a hash function $H: \{0, 1\}^* \to \{0, 1\}^{\ell}$
- Memory-hardness parameter n
- Eval's CMC is $\Theta(n^2\ell)$

Theorem (Alwen et al., EC'17)

Any (parallel) algorithm evaluating Scrypt has a CMC of $\Omega(n^2\ell)$ in the random oracle model

$$w = w_0$$

$$w = w_0 \xrightarrow{H(w_0)} w_1$$

$$w = w_0 \xrightarrow{H(w_0)} w_1 \xrightarrow{H(w_1)} w_2$$

$$w = w_0 \xrightarrow{H(w_0)} w_1 \xrightarrow{H(w_1)} w_2 \xrightarrow{} w_{n-1}$$

Algorithms

- Setup() \rightarrow pp
- Eval(pp, w) $\rightarrow y$

Algorithms

- Setup() \rightarrow pp, td
- Eval(pp, w) $\rightarrow y$
- TDEval(pp, w, td) $\rightarrow y$

Algorithms

- Setup() \rightarrow pp, td
- Eval(pp, w) $\rightarrow y$
- TDEval(pp, w, td) $\rightarrow y$

Correctness

Eval(pp, w) = TDEval(pp, w, td)

Algorithms

- Setup() \rightarrow pp, td
- Eval(pp, w) $\rightarrow y$
- TDEval(pp, w, td) $\rightarrow y$

Correctness

Eval(pp, w) = TDEval(pp, w, td)

Memory-hardness

Evaluation without td has high CMC

Algorithms

- Setup() \rightarrow pp, td
- Eval(pp, w) $\rightarrow y$
- TDEval(pp, w, td) $\rightarrow y$

Correctness

Eval(pp, w) = TDEval(pp, w, td)

Memory-hardness

Evaluation without td has high CMC

TD-Efficiency

CMC of TDEval ≪ CMC of Eval

Server Client

Diodon (Biryukov & Perrin, AC'17)

- Setup samples hidden-order RSA group
 - pp = N RSA modulus
 - $td = \varphi(N)$ Group order

Diodon (Biryukov & Perrin, AC'17)

- Setup samples hidden-order RSA group
 - pp = N RSA modulus
 - $td = \varphi(N)$ Group order
- Input is group element $W \in \mathbb{Z}_N^*$

Diodon (Biryukov & Perrin, AC'17)

- Setup samples hidden-order RSA group
 - pp = N RSA modulus
 - $td = \varphi(N)$ Group order
- Input is group element $W \in \mathbb{Z}_N^*$
- Scrypt but hashes $w_{i+1} = H(w_i)$ replaced by squares

$$W_{i+1} = W_i^2 \bmod N$$

Diodon (Biryukov & Perrin, AC'17)

- Setup samples hidden-order RSA group
 - pp = N RSA modulus
 - $td = \varphi(N)$ Group order
- Input is group element $W \in \mathbb{Z}_N^*$
- Scrypt but hashes $w_{i+1} = H(w_i)$ replaced by squares

$$W_{i+1} = W_i^2 \mod N$$
$$= W^{2^{i+1}} \mod N$$

Diodon's Eval

Diodon's Eval

Diodon's TDEval

Diodon's TDEval

• Correctness: By inspection

- Correctness: By inspection
- TD-Efficiency:

Eval
$$\approx n^2 \log(N)$$

- Correctness: By inspection
- TD-Efficiency:

Eval
$$\approx n^2 \log(N)$$
 \gg TDEval $\approx n \log(n) \log(N)^2$

- Correctness: By inspection
- TD-Efficiency:

Eval
$$\approx n^2 \log(N)$$
 \gg TDEval $\approx n \log(n) \log(N)^2$

Memory-hardness: ???

- Correctness: By inspection
- TD-Efficiency:

Eval
$$\approx n^2 \log(N)$$
 \gg TDEval $\approx n \log(n) \log(N)^2$

Memory-hardness: Yes (this work)

Theorem

Assuming that factoring is hard, Diodon has a CMC lower bounded by

$$\Omega\bigg(n^2\log(N)\cdot\frac{1}{\log n}\bigg)$$

Theorem

Assuming that factoring is hard, Diodon has a CMC lower bounded by

$$\Omega\bigg(n^2\log(N)\cdot\frac{1}{\log n}\bigg)$$

Theorem

Assuming that factoring is hard, Diodon has a CMC lower bounded by

$$\Omega\bigg(n^2\log(N)\cdot\frac{1}{\log n}\bigg)$$

Theorem

Assuming that factoring is hard, Diodon has a CMC lower bounded by

$$\Omega\bigg(n^2\log(N)\cdot\frac{1}{\log n}\bigg)$$

Proof outline

- Scrypt's proof (Alwen et al., EC'17)
 - 1. Single-challenge time-memory trade-off
 - 2. Multi-challenge memory complexity lower bound

Proof outline

- Scrypt's proof (Alwen et al., EC'17)
 - 1. Single-challenge time-memory trade-off
 - 2. Multi-challenge memory complexity lower bound
- Re-use multi-challenge lower bound (thankfully...)

Proof outline

- Scrypt's proof (Alwen et al., EC'17)
 - 1. Single-challenge time-memory trade-off
 - 2. Multi-challenge memory complexity lower bound
- Re-use multi-challenge lower bound (thankfully...)
- Primary hurdle: Single-challenge trade-off

 $W W^2 W^4 W^8 W^{16} W^{32}$

 $W W^2 W^4 W^8 W^{16} W^{32}$

 ${\mathscr A}$

Challenger

• Memory reduced by 2/3...

- Memory reduced by 2/3...
- ...but 1/3 of the challenges require 2 queries!

- Memory reduced by 2/3...
- ...but 1/3 of the challenges require 2 queries!
- Intuitively: $M/\log N$ equidistant group elements offers good trade-off

- Memory reduced by 2/3...
- ...but 1/3 of the challenges require 2 queries!
- Intuitively: $M/\log N$ equidistant group elements offers good trade-off
- We prove that one cannot do much better

- M-bit state
- Challenge $j \in \{0, \dots, n-1\}$ requires t_j GGM queries

$$\Pr_{j} \left[t_{j} \gtrsim \frac{n}{2 \cdot M / \log N} \cdot \frac{1}{\log n} \right] \ge \frac{1}{2}$$

- M-bit state
- Challenge $j \in \{0, \dots, n-1\}$ requires t_j GGM queries

$$\Pr_{j} \left[\frac{t_{j}}{2 \cdot M / \log N} \cdot \frac{1}{\log n} \right] \ge \frac{1}{2}$$

- M-bit state
- Challenge $j \in \{0, \dots, n-1\}$ requires \emph{t}_j GGM queries

$$\Pr_{j}\left[t_{j} \gtrsim \frac{n}{2 \cdot M/\log N} \cdot \frac{1}{\log n}\right] \geq \frac{1}{2}$$
1/2 of challenges

- M-bit state
- Challenge $j \in \{0, \dots, n-1\}$ requires \emph{t}_j GGM queries

Time-memory trade-off

Equidistant strategy

- M-bit state
- Challenge $j \in \{0, \dots, n-1\}$ requires \emph{t}_j GGM queries

Contradiction: A answers

- quickly (most t_i small)
- given small *M*-bit state
- for most RSA moduli N

Contradiction: A answers

- quickly (most t_i small)
- given small *M*-bit state
- for most RSA moduli N
- 1. Run \mathscr{A} on all $j=0,\ldots,n-1$ given small M-bit state and extract a system $A\vec{x}=\vec{b}$ using the GGM oracle

Contradiction: A answers

- quickly (most t_i small)
- given small *M*-bit state
- for most RSA moduli N
- 1. Run \mathscr{A} on all $j=0,\ldots,n-1$ given small M-bit state and extract a system $A\vec{x}=\vec{b}$ using the GGM oracle

2. Most t_j small and $\varphi(N)$ hidden $\implies \vec{x}$ has many entries

Contradiction: A answers

- quickly (most t_i small)
- given small *M*-bit state
- for most RSA moduli N
- 1. Run \mathscr{A} on all $j=0,\ldots,n-1$ given small M-bit state and extract a system $A\vec{x}=\vec{b}$ using the GGM oracle

- 2. Most t_j small and $\varphi(N)$ hidden $\Rightarrow \vec{x}$ has many entries
- 3. Case 1: \vec{x} has few entries $\implies \mathcal{A}$ knows $\varphi(N)$
 - \implies Factor $N \not$

Contradiction: A answers

- quickly (most t_i small)
- given small *M*-bit state
- for most RSA moduli N
- 1. Run \mathscr{A} on all $j=0,\ldots,n-1$ given small M-bit state and extract a system $A\vec{x}=\vec{b}$ using the GGM oracle

- 2. Most t_i small and $\varphi(N)$ hidden
 - $\implies \vec{x}$ has many entries
- 3. Case 1: \vec{x} has few entries
 - $\implies \mathscr{A} \text{ knows } \varphi(N)$
 - \implies Factor $N \not$
- 4. Case 2: \vec{x} has many entries
 - $\implies \vec{x}$ contains a lot of info about the GGM oracle
 - \implies Compress to M bits \checkmark

Conclusion

Contribution

Diodon's CMC lower bounded by

$$\Omega\bigg(n^2\log(N)\cdot\frac{1}{\log n}\bigg)$$

proving it memory-hard

Open questions

- Tight bound (no $1/\log n$)
- TMHF saving on time and memory
- TMHF for other MHF flavors

Trapdoor Memory-Hard Functions

B. Auerbach, C. U. Günther, and K. Pietrzak

https://eprint.iacr.org/2024/312