Quadrature

Walter Mudzimbabwe

Quadrature

Quadrature

Walter Mudzimbabwe

Presentation Outline

Quadrature

Walter Mudzimbabwe

Quadrature

1 Quadrature

Numerical Quadrature

Quadrature

Walter Mudzimbabw

Quadrature

Problem: Approximate the definite integral:

$$I = \int_{a}^{b} f(x) dx. \tag{1}$$

An *n*-point quadrature formula has the form:

$$I = \int_{a}^{b} f(x)dx = \sum_{i=1}^{n} w_{i}f(x_{i}) + R_{n},$$
 (2)

 w_i - weights and remainder R_n . Therefore

$$I \approx \sum_{i=1}^{n} w_i f(x_i) \tag{3}$$

You can approximate f by a polynomial of degree n, P_n

$$I = \int_{a}^{b} f(x)dx \approx \int_{a}^{b} P_{n}(x)dx. \tag{4}$$

Trapezoidal Rule

Quadrature

Walter Mudzimbabwe

Quadrature

Trapezoidal Rule

Quadrature

Walter Mudzimbabwe

Quadrature

Partition [a, b] into n subintervals of equal width So there will be n+1 points: x_0, x_1, \dots, x_n , where $x_0 = a$ and $x_n = b$.

Let

$$x_{i+1}-x_i=h=\frac{b-a}{n}, \quad i=0,1,2,\cdots,n-1.$$

On each subinterval $[x_i, x_{i+1}]$, approximate f(x) with a first degree polynomial,

$$P_1(x) = f_i + \frac{f_{i+1} - f_i}{x_{i+1} - x_i} (x - x_i)$$
$$= f_i + \frac{f_{i+1} - f_i}{h} (x - x_i).$$

Trapezoidal Rule

Quadrature

Walter Mudzimbabw

Quadrature

$$\int_{x_{i}}^{x_{i+1}} f(x) dx \approx \int_{x_{i}}^{x_{i+1}} P_{1}(x) dx$$

$$= \int_{x_{i}}^{x_{i+1}} \left(f_{i} + \frac{f_{i+1} - f_{i}}{h} (x - x_{i}) \right) dx$$

$$= \frac{h}{2} (f_{i} + f_{i+1})$$

Summing over all subintervals and simplifying gives:

$$I = \int_{a}^{b} f(x)dx = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} f(x)dx \approx \sum_{i}^{n} \frac{f(x_{i-1}) + f(x_{i})}{2}h,$$
(5)

or:

$$I \approx \frac{h}{2} \left[f_0 + 2(f_1 + f_2 + \dots + f_{n-1}) + f_n \right],$$
 (6)

which is known as the Composite Trapezoidal

Error of Trapezoidal rule

Quadrature

Walter Mudzimbabwe

Quadrature

The error of Trapezoidal rule is:

$$E_T = \int_a^b f(x)dx - I,$$
 (7)

It can be shown that

$$E_T = -\frac{(b-a)h^2}{12}f''(\epsilon), \quad \epsilon \in [a,b], \tag{8}$$

We can also see that the error is of order $\mathcal{O}(h^2)$.

Example

Quadrature

Walter Mudzimbabwe

Quadrature

Using the trapezoidal rule, evaluate:

$$\int_0^1 \frac{1}{1+x^2} dx.$$

use n = 6, i.e. we need 7 nodes.

Solution:

Since n = 6 then h = (1 - 0)/6 = 1/6, therefore:

$$I \approx \frac{1}{12} \left[f_0 + 2(f_1 + f_2 + f_3 + f_4 + f_5) + f_6 \right] = 0.784241$$

where $f_i = f(x_i)$ and $x_i = x_0 + ih = i/6$, $i = 0, 1, 2, \dots, 6$. Exact value is $\pi/4 = 0.785398$, so approximation is correct to 2 decimals, not bad!

The Midpoint Method

Quadrature

Walter Mudzimbabwe

Quadrature

The Midpoint Method

Quadrature

Walter Mudzimbabw

Quadrature

Partition
$$[a, b]$$
 into n subintervals of equal width.

$$\int_{a}^{b} f(x) dx = \int_{x_{0}}^{x_{1}} f(x) dx + \int_{x_{1}}^{x_{2}} f(x) dx + \dots + \int_{x_{n-1}}^{x_{n}} f(x) dx,$$

$$\approx hf\left(\frac{x_{0} + x_{1}}{2}\right) + hf\left(\frac{x_{1} + x_{2}}{2}\right) + \dots$$

$$+ hf\left(\frac{x_{n-1} + x_{n}}{2}\right),$$

This can be rewritten as:

$$\int_{a}^{b} f(x)dx \approx h \sum_{i=0}^{n-1} f(m_i), \tag{9}$$

where $m_i = (a + h/2) + ih$.

Simpson's Rule

Quadrature

Walter Mudzimbabw

Quadrature

The trapezoidal rule approximates the area under a curve by summing over the areas of trapezoids formed by connecting successive f_i 's with straight lines.

Simpson's rule a parabola to connect adjacent points. Simpson requires n to be **even**.

Simpson's Rule

Quadrature

Walter Mudzimbabwe

Quadrature

Simpson's Rule

Quadrature

Walter Mudzimbabw

Quadrature

Therefore our approximation is:

$$I = \frac{h}{3} \left[f_{i-1} + 4f_i + f_{i+1} \right]. \tag{10}$$

Summing the definite integrals over each subinterval $[x_{i-1}, x_{i+1}]$ for $i = 1, 3, 5, \dots, n-1$ provides the approximation:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} \left[(f_0 + 4f_1 + f_2) + (f_2 + 4f_3 + f_4) + \cdots + (f_{n-2} + 4f_{n-1} + f_n) \right]$$
(11)

By simplifying this sum we obtain the approximation scheme:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} \left[f_{0} + 4f_{1} + 2f_{2} + 4f_{3} + \dots + 2f_{n-2} + 4f_{n-1} + f_{n} \right]$$

$$\approx \frac{h}{3} \left[f_{0} + 4(f_{1} + f_{3} + \dots + f_{n-1}) + 2(f_{2} + f_{4} + \dots + f_{n-2}) \right]$$
(12)

Error of Simpson's Rule

Quadrature

Walter Mudzimbabw

Quadrature

The error for Simpson's rule is:

$$E_{S} = -\frac{(b-a)h^{4}}{180}f^{4}(\epsilon), \qquad \epsilon \in [a,b],$$
 (13)

giving an error of $\mathcal{O}(h^4)$. Hence if the integrand is of degree $n \leq 3$, then the error is zero and we obtain the exact value. The same can be said for the trapezoidal rule the integrand is linear.

Example

Quadrature

Walter Mudzimbabwe

Quadrature

Using the Simpson's rule, evaluate:

$$\int_0^1 \frac{1}{1+x^2} dx,$$

use n = 6, i.e. we need 7 nodes.

Solution:

Since n = 6 then h = (1 - 0)/6 = 1/6, therefore:

$$I \approx \frac{1}{18}[f_0 + 4(f_1 + f_3 + f_5) + 2(f_2 + f_4) + f_6] = 0.785398$$

where $f_i = f(x_i)$ and $x_i = x_0 + ih$, $i = 0, 1, 2, \dots, 6$.

Exact value is $\pi/4 = 0.785398$, so approximation is correct to 6 decimals, that's great!

Double integrals

Quadrature

Walter Mudzimbabwe

Quadrature

Problem:

$$\int_a^b \int_c^d f(x,y) dy dx.$$

Can we approximate this integral numerically on $[a, b] \times [c, d]$? We now have h_x and h_y given by

$$h_x = \frac{b-a}{n_x}, \ h_y = \frac{d-c}{n_y}$$

Can be done by using any of the quadrature rules we have seen so far.

Double integrals using Midpoint rule

Quadrature

Walter Mudzimbabw

Quadrature

Let

$$g(x) = \int_{c}^{d} f(x, y) dy$$

Therefore

$$\int_{a}^{b} \int_{c}^{d} f(x, y) dy dx = \int_{a}^{b} g(x) dx$$

Thus Midpoint rule applied to g(x) results in:

$$g(x) = \int_{c}^{d} f(x, y) dy \approx h_{y} \sum_{j=0}^{n_{y}-1} f(x, \bar{y}_{j}), \quad \bar{y}_{j} = c + \frac{1}{2}h_{y} + jh_{y}.$$

So, the double integral approximated by the midpoint method:

$$\int_a^b g(x)dx \approx h_x \sum_{i=0}^{n_x-1} g(\bar{x}_i), \quad \bar{x}_i = a + \frac{1}{2}h_x + ih_x.$$

Example of a double integral using Midpoint rule

Quadrature

Walter Mudzimbabwe

Quadrature

Using $n_x = n_y = 5$, compute the integral:

$$\int_2^3 \int_0^2 (2x+y) dy dx.$$

Solution:
$$h_x = \frac{b-a}{n_x} = \frac{3-2}{5}, \ h_y = \frac{d-c}{n_y} = \frac{2-0}{5}$$

$$\int_{2}^{3} \int_{0}^{2} (2x + y) dy dx = \int_{2}^{3} g(x) dx$$

Example of a double integral using Midpoint rule

Quadrature

Walter Mudzimbabwe

Quadrature

Thus Midpoint rule applied to g(x) results in:

$$g(x) = \int_0^2 (2x+y)dy \approx h_y \sum_{j=0}^{n_y-1} (2x+\bar{y}_j), \quad \bar{y}_j = 0 + \frac{1}{2}\frac{2}{5} + j\frac{2}{5}$$

$$= \frac{2}{5} \sum_{j=0}^4 (2x+\frac{1}{5}+j\frac{2}{5})$$

$$= \frac{2}{5} \sum_{j=0}^4 (2x+\frac{1}{5}) + \frac{2}{5} \sum_{j=0}^4 j\frac{2}{5}$$

$$= 2(2x+\frac{1}{5}) + \frac{8}{5}$$

$$= 4x + 2$$
(14)

Example of a double integral using Midpoint rule

Quadrature

Walter Mudzimbabw

Quadrature

So, the double integral approximated by the midpoint method:

$$\int_{2}^{3} g(x)dx \approx h_{x} \sum_{i=0}^{n_{x}-1} g(\bar{x}_{i}), \ \bar{x}_{i} = 2 + \frac{1}{2} \frac{1}{5} + i \frac{1}{5} = \frac{21}{10} + i \frac{1}{5}.$$

$$= \frac{1}{5} \sum_{i=0}^{4} (4\bar{x}_{i} + 2) = \frac{4}{5} \sum_{i=0}^{4} \bar{x}_{i} + 2$$

$$= \frac{4}{5} \sum_{i=0}^{4} (\frac{21}{10} + i \frac{1}{5}) + 2$$

$$= \frac{4}{5} \sum_{i=0}^{4} \frac{21}{10} + \frac{4}{5} \frac{1}{5} \sum_{i=0}^{4} i + 2$$

$$= 12$$

Tripple integrals

Quadrature

Walter Mudzimbabw

Quadrature

Consider the triple integral:

$$\int_a^b \int_c^d \int_e^f g(x, y, z) dz dy dx,$$

We split the integral into one-dimensional integrals:

$$p(x,y) = \int_{e}^{f} g(x,y,z)dz$$
$$q(x) = \int_{c}^{d} p(x,y)dy$$
$$\int_{a}^{b} \int_{c}^{d} \int_{e}^{f} g(x,y,z)dzdydx = \int_{a}^{b} q(x)dx$$

Tripple integrals using Midpoint rule

Quadrature

Walter Mudzimbabw

Quadrature

Next we apply the midpoint rule to each of these one-dimension integrals:

$$p(x,y) = \int_e^f g(x,y,z)dz \approx h_z \sum_{k=0}^{n_z - 1} g(x,y,\bar{z}_k),$$
$$q(x) = \int_c^d p(x,y)dy \approx h_y \sum_{j=0}^{n_y - 1} p(x,\bar{y}_j),$$

$$\int_a^b \int_c^d \int_e^f g(x,y,z) dz dy dx = \int_a^b q(x) dx \approx h_x \sum_{i=0}^{n_x-1} q(\bar{x}_i),$$

where:

$$\bar{z}_k = e + \frac{1}{2}h_z + kh_z, \quad \bar{y}_j = c + \frac{1}{2}h_y + jh_y \quad \bar{x}_i = a + \frac{1}{2}h_x + ih_x.$$

Example of a tripple integral using Midpoint rule

Quadrature

Walter Mudzimbabwe

Quadrature

Evaluate the following integral:

$$\int_2^3 \int_1^2 \int_0^1 8xyz \ dzdydx,$$

where $n_x = n_y = n_z = 5$.

Solution:
$$h_x = h_y = h_z = 1/5$$

Tripple integrals using Midpoint rule

Quadrature

Walter Mudzimbabw

Quadrature

Next we apply the midpoint rule to each of these one-dimension integrals:

$$p(x,y) = \int_0^1 (8xyz)dz \approx \frac{1}{5} \sum_{k=0}^4 8xy\bar{z}_k,$$

$$q(x) = \int_1^2 p(x,y)dy \approx \frac{1}{5} \sum_{j=0}^4 p(x,\bar{y}_j),$$

$$\int_2^3 \int_1^2 \int_0^1 g(x,y,z)dzdydx = \int_2^3 q(x)dx \approx \frac{1}{5} \sum_{j=0}^4 q(\bar{x}_j),$$

where:

$$\bar{z}_k = 0 + \frac{1}{2}\frac{1}{5} + k\frac{1}{5}, \quad \bar{y}_j = 1 + \frac{1}{2}\frac{1}{5} + j\frac{1}{5}, \quad \bar{x}_i = 2 + \frac{1}{2}\frac{1}{5} + i\frac{1}{5}.$$

Tripple integrals using Midpoint rule

Quadrature

Walter Mudzimbabwe

Quadrature

Next we apply the midpoint rule to each of these one-dimension integrals:

$$p(x,y) = \frac{1}{5} \sum_{k=0}^{4} 8xy \bar{z}_k = \frac{1}{5} 8xy \sum_{k=0}^{4} (\frac{1}{10} + \frac{k}{5}) = 4xy,$$

$$q(x) = \frac{1}{5} \sum_{j=0}^{4} p(x, \bar{y}_j) = \frac{1}{5} \sum_{j=0}^{4} 4x \bar{y}_j = \frac{4x}{5} \sum_{j=0}^{4} (\frac{11}{10} + \frac{j}{5}) = 6x,$$

$$\int_{2}^{3} \int_{1}^{2} \int_{0}^{1} (8xyz) dz dy dx = \int_{2}^{3} q(x) dx \approx \frac{1}{5} \sum_{i=0}^{4} q(\bar{x}_i),$$

$$= \frac{6}{5} \sum_{i=0}^{4} \bar{x}_i = \frac{6}{5} \sum_{i=0}^{4} (\frac{21}{10} + \frac{i}{5}),$$

$$= 15$$