

自然语言处理

在线峰会

NLP基础技术 论坛

2021.07.10 (周六) 09: 00~17: 30

多语言预训练模型在 机器翻译中的应用

马树铭 微软亚洲研究院 研究员

Roadmap of Machine Translation

SMT (Statistical Machine Translation)

NMT (Neural Machine Translation)

MNMT (Multilingual Neural Machine Translation)

- Translation model
- Language model
- Feature engineering

- End-to-end
- Multiple models for different languages

- One unified model
- Reduce training and serving cost
- Transfer among languages

Multilingual Neural Machine Translation

Training

- -Combination of multilingual language pairs
- -Sampling the training data according to the data size

• Sampling ratio
$$\alpha_L = \frac{D_L^{1/T}}{\sum D_i^{1/T}}$$

Modeling

- One unified model
 - All languages share the same parameters
- Cross-lingual Transferability
 - High-resource languages help low-resource ones
- Prepend a language tag before the input
 - Indicate which target language to translate

Pretrained Model: DeltaLM^[1]

A pretrained encoder-decoder model for generation and translation.

DeltaLM: Decoder as the Task Layer

Pretrained Encoder

Decoder (Task Layer)

- Efficiency:
 - Speed up convergence & reduce training cost
- Effectiveness:
 - A strong encoder is important for MT
 - Our experiments verify this conclusion
 - -Inheriting the cross-lingual transfer capability
 - Achieve SOTA results across NLU benchmarks

- Decoupling enc. & dec. helps multilingual NLG
 - Hard to share space between languages
- More flexible in decoder's architecture

We can unify two parts via encoder-decoder pre-training.

DeltaLM: Decoder as the Task Layer

- How to initialize the decoder?
 - The structure of decoder is different from the encoder
 - Decoder initialization is understudied
- Which tasks to pre-train the encoder-decoder?
 - Mostly preserve the capability of pretrained encoder
 - Effectively leverage bilingual data

DeltaLM: Initialization

A novel interleaved decoder fully initialized by pretrained encoders

- One self-attn, one cross-attn, one FFN
- Initialization:
 - Pretrained encoder → Self-attn + FFN
 - Random initialized Cross-attn
- Cons:
 - Inconsistent with pretrained encoder (one FFN after one attention)

Our interleaved decoder:

- One FFN after one attention
- Initialize the self-attn/cross-attn in the interleaved way
 - Odd layers of pretrained encoder → Self-attn + FFN
 - Even layers of pretrained encoder → Cross-attn + FFN
- Fully use the weights of pretrained encoder

DeltaLM: Pre-training Task

- A novel pre-training task to leverage monolingual text + bilingual text
 - Span Corruption Task (T5):

 Reconstruct the text spans based on the input document

Input: Target:

Thanks [Mask1] invitation [Mask2].

[Span1] for your [Span2] last week

Translation Pair Span Corruption Task^[1]:
 Predict the text spans based on the input masked translation pair

Input: Target:

Thanks [Mask1] invitation [Mask2]. 谢谢你上周的[Mask3]。

[Span1] for your [Span2] last week [Span3] 邀请

DeltaLM for MNMT

• For MNMT, we can directly fine-tune DeltaLM.

Experiments: Multilingual Machine Translation

DeltaLM reaches SOTA results on both X->E and E->X translation

X->E	#Params	fr -> en	cs -> en	de -> en	fi -> en	lv -> en	et -> en	ro -> en	hi -> en	tr -> en	gu -> en	Avg.
Transformer-big	240M	34.8	29.0	40.1	21.2	20.4	26.2	34.8	22.8	23.8	19.2	27.2
mBART	610M	36.2	29.9	40.0	22.2	20.6	27.2	37.2	23.3	25.7	21.7	28.4
FB m2m	420M	33.4	26.2	35.6	19.6	19.9	25.8	34.1	22.0	23.4	0.4	24.0
FB m2m	1.2B	35.8	29.6	40.7	22.8	23.0	30.6	38.2	24.6	26.1	0.5	27.2
DeltaLM	360M	36.5	30.9	42.2	23.0	22.3	29.2	37.7	27.0	27.3	22.7	29.9

E->X	#Params	en -> fr	en -> cs	en -> de	en -> fi	en -> lv	en -> et	en -> ro	en -> hi	en -> tr	en -> gu	Avg.
Transformer-big	240M	34.2	20.9	40.0	15.0	18.1	20.9	26.0	14.5	17.3	13.2	22.0
mBART	610M	33.7	20.8	38.9	14.5	18.2	20.5	26.0	15.3	16.8	12.9	21.8
FB m2m	420M	31.5	18.4	33.9	13.1	15.4	18.6	27.9	17.3	14.5	0.3	19.1
FB m2m	1.2B	35.5	22.1	42.2	16.6	19.2	22.9	32.0	17.9	15.5	1.3	22.5
DeltaLM	360M	35.8	22.4	40.9	15.7	18.8	20.6	26.9	17.3	18.5	16.2	23.3

^{*} BLEU-4 is the evaluation metrics

^{**} FB m2m supports 101 languages while DeltaLM is fine-tuned on a 11-language dataset

Experiments: Cross-lingual Summarization

• DeltaLM is competitive compared with mt5 large given only 30% parameters.

WikiLingua Dataset:

- Input: Spanish/Russian/Vietnamese/Turkish document
- Output: English summary

Madala	#Dereme		es			ru			vi			tr			Avg.		
Models	#Params	R-1	R-2	R-L													
mBART	610M	38.3	15.4	32.4	33.1	11.9	27.8	32.0	11.1	26.4	34.4	13.0	28.1	34.5	12.9	28.7	
mt5 small	300M	29.8	9.8	25.5	27.2	8.5	23.2	29.4	10.9	23.4	23.5	6.0	19.0	27.5	8.8	22.8	
mt5 base	580M	36.3	13.7	30.6	32.5	11.1	26.9	32.5	13.6	26.0	26.0	7.5	20.5	31.8	11.5	26.0	
mt5 large	1.2B	39.3	15.7	33.0	35.0	12.7	28.8	29.9	9.6	23.8	36.2	15.0	29.1	35.1	13.3	28.7	
mt5 XL	3.7B	41.8	17.4	34.7	38.6	15.4	32.3	35.5	13.0	29.2	41.5	19.6	34.7	39.4	16.4	32.7	
DeltaLM	360M	36.5	13.6	29.7	33.4	12.0	27.2	31.8	10.8	25.7	39.6	17.1	32.3	35.3	13.4	28.7	

^{*} R-1, R-2, R-3 denotes ROUGE-1, ROUGE-2, ROUGE-L

Experiments: Data-to-text Generation

DeltaLM outperforms mt5 XL (3.7B) with only 360M parameters.

(JOHN E BLAHA BIRTHDATE 1942 08 26) (JOHN E BLAHA BIRTHPLACE SAN ANTONIO) (JOHN E BLAHA OCCUPATION FIGHTER PILOT)

John E Blaha, born in San Antonio on 1942-08-26, worked as a fighter pilot.

Data

Text

Models	#Params		en			ru		Avg.			
Wodels		R-1	R-2	R-L	R-1	R-2	R-L	R-1	R-2	R-L	
mBART	610M	83.4	63.1	70.3	34.8	13.4	33.0	59.1	38.3	51.7	
mt5 small	300M	78.8	59.2	67.2	29.7	10.5	28.4	54.3	34.9	47.8	
mt5 base	580M	82.3	62.1	69.7	33.0	12.7	31.3	57.7	37.4	50.5	
mt5 large	1.2B	83.8	64.4	71.6	33.4	13.4	32.1	58.6	38.9	51.9	
mt5 XL	3.7B	83.5	63.6	71.0	34.3	13.7	32.8	58.9	38.7	51.9	
DeltaLM	360M	83.4	63.9	71.1	35.0	15.0	33.3	59.2	39.4	52.2	

^{*} R-1, R-2, R-3 denotes ROUGE-1, ROUGE-2, ROUGE-L

Experiments: Multilingual Language Generation

• DeltaLM achieves consistent improvement across different tasks/languages.

Settings:

- Question generation (XQG)
 - Input: Chinese answer and the corresponding document
 - Output: Chinese question
- Abstractive summarization (XGiga)
 - Input: French document
 - Output: French summary

			XQG		XGiga					
Models	#Params	BLEU-4	METEOR	ROUGE-L	ROUGE-1	ROUGE-2	ROUGE-L			
XLM	570M	23.41	23.32	47.20	56.27	39.20	52.84			
XNLG ^[1]	480M	24.89	24.53	49.72	57.84	40.81	54.24			
DeltaLM	360M	25.80	24.87	52.05	58.39	42.02	54.94			

Experiments: Zero-shot Cross-lingual Transfer

DeltaLM has good capability of zero-shot transfer for NLG.

Settings:

- Abstractive summarization (XGiga)
 - Training:
 - English document

 English summary
 - Testing:

 - Chinese document → Chinese summary

	#Dayara		XGiga-fr		XGiga-zh				
Models	#Params	ROUGE-1	ROUGE-2	ROUGE-L	ROUGE-1	ROUGE-2	ROUGE-L		
XLM	570M	14.53	1.80	13.43	0.71	0.28	0.70		
XNLG	480M	39.98	20.31	36.31	41.66	28.70	38.91		
DeltaLM	360M	41.42	22.24	37.99	46.37	34.34	43.85		

Zero-shot Cross-lingual Transfer of NMT^[1]

Do not have any training data

- Training
 - One language pair, e.g., German-> English

- Modeling
 - One unified MT model
 - Cross-lingual Transferability

- Testing (zero-shot)
 - Unseen languages, e.g., Japanese-> English

Two-stage Fine-tuning Method

Stage 1

- Freeze encoder & decoder embeddings
 - Preserve the cross-lingual transferability of the pretrained model
- Fine-tune decoder layers
 - Adapt the decoder to the pretrained encoders
- Frozen
- Fine-tuned

Stage 2

- Fine-tune encoder layers & decoder
 - Improve the translation quality
 - Our preliminary experiments find this strategy is the best
- Remove the residual connection for self-attn
 - make the encoder outputs less position- and language-specific

Experimental Details & Results

Dataset

- -Trained on De-En parallel dataset
 - WMT19 43M parallel data
- -Tested on many-to-English language pairs
 - German group, Romance group, Slavic group, Uralic group, and Turkic group
 - German (De), Dutch (NI), Spanish (Es), Romanian (Ro), Finnish (Fi), Latvian (Lv), Turkish (Tr), Russian (Ru), Polish (PI)

Results

Model	Dete	German		Romance		Uralic			Indo-Aryan				East Asian			Ava	
Model	Data	De	NI	Es	Ro	lt	Fi	Lv	Et	Hi	Ne	Si	Gu	Zh	Ja	Ko	Avg.
mBART	0.04B	27.4	43.3	24.7	28.2	29.8	18.8	14.2	15.7	12.3	9.6	7.2	10.3	8.3	6	21.1	18.4
CRISS	1.8B	28.8	47	32.2	35.4	48.9	23.9	18.6	23.5	23.1	14.7	14.4	19	13.4	7.9	24.8	25
M2M-100	7.5B	28	48.5	30	34.1	50	24.9	19.9	25.8	21.9	3.7	10.6	0.4	19.5	11.5	32.7	24.1
Ours	0.04B	33.8	54.7	30.1	33.9	43	26.3	17.7	25.7	17.5	14.4	12.2	17.3	13.4	10.7	31.2	25.5

Less data achieves better results

Transferability vs. Language Similarity

- Training with different languages
 - German (De), Spanish (Es), Hindi(Hi)
- Testing on different language families
 - German Family (De, NI), Romance Family (Es, Ro, It), Indo-Aryan Family (Hi, Ne, Si, Gu)

Model	Train set	German Family		Ron	nance Far	nily	l	A > 4 & 4			
Model		De->En	NI->En	Es->En	Ro->En	It->En	Hi->En	Ne->En	Si->En	Gu->En	Avg.
	De->En	33.7	3	3.6	3.4	1.7	0.1	0.1	0.2	0.2	3.5
MNMT Baseline	Es->En	6.8	5.5	32.5	6.4	17.3	0.3	0.1	0.2	0.2	5.2
	Hi->En	0.6	0.9	0.2	0.5	0.6	21.5	3.6	0.1	0.2	2
	De->En	33.8	54.7	30.1	33.9	43	17.5	14.4	12.2	17.3	25.5
Ours	Es->En	19.9	38.2	33	30.9	47	6.9	4.2	3.4	5.6	16.9
	Hi->En	19	38	20.1	20.7	34.3	24.3	16.7	9.6	17.8	18.7

- The transfer ability of NMT model benefits more on similar languages than distant languages.
- Promising results of transferring insides the language family with only one language pair.

Conclusions

- Pretrained language model benefits machine translation.
 - Supervised learning of multilingual neural machine translation
 - Zero-shot cross-lingual transfer
- DeltaLM has good capability of cross-lingual transfer and language generation to help machine translation.

THANKS!

今天的分享就到这里...

Ending