Name:

Show an appropriate amount of work. You can (and probably should) check your work with a computer.

- 1. Compute the magnitude and argument for
- **1.1.** $Z = \left(\frac{i}{1+i}\right)^3$

abs(z) =	

- arg(z) =
- **1.2.** $Z = \left(\frac{1+\hat{i}}{\sqrt{1+3}\,\hat{i}}\right)^3$
 - abs(z) =
 - arg(z) =
- **1.3.** The roots of $z^4 = -64$
 - abs(z) =
 - arg(z) =
- **1.4.** The roots of $z^2 + 2iz + 5 = 0$
 - abs(z) =
 - arg(z) =
- **1.5.** $Z = \bar{l}^{\bar{l}}$
 - abs(z) =
 - arg(z) =

- $\mathbf{2.1.} \ Z = \left(\frac{\bar{l}}{1+\bar{l}}\right)^3$ $Z = \boxed{ + \bar{l}}$
- 2.2. $Z = \left(\frac{1+\bar{i}}{\sqrt{1+3\,\bar{i}}}\right)^3$ $Z = \boxed{ + \bar{i}}$
- **2.3.** The roots of $z^3 = -64$

$$Z_{1} = \boxed{ + i }$$

$$Z_{2} = \boxed{ + i }$$

$$Z_{3} = \boxed{ + i }$$

2.4. The roots of $z^2 + 2iz + 5 = 0$

$$Z_1 = \boxed{ + i }$$

$$Z_2 = \boxed{ + i }$$

 $Z = \bar{l}^{\bar{l}}$ $Z = + \bar{l}$

3. Sketch Points

- **3.1.** Sketch the set of points C_1 that satisfy |z-2| < 1. Make sure you label the set.
- **3.2.** Sketch the set of points C_2 that satisfy $\operatorname{im}(z-2)=1$. Make sure you label the set.
- **3.3.** Sketch the set of points C_3 that satisfy $arg(z-2) = \pi/4$. Make sure you label the set.

4.1. For cos(z) complete the

following $u(x, y) = \boxed{ and v(x, y) = }$

 $\partial_X u =$ and $\partial_X v =$

 $\partial_y u =$ and $\partial_y v =$

Analytic Yes or No

4.2. For $i x^2 - 2xy - i y^2$ complete the following

u(x, y) = and v(x, y) =

 $\partial_X u =$ and $\partial_X v =$

 $\partial_y u =$ and $\partial_y v =$

Analytic Yes or No .

If yes f(z) =

4.3. For $i x^2 - 2xy - y^2$ complete the following

u(x, y) = and v(x, y) =

 $\partial_X u = \boxed{ }$ and $\partial_X v = \boxed{ }$

 $\partial_y u =$ and $\partial_y v =$

Analytic Yes or No

If yes f(z) =

5. Is e^{x-iy} analytic? Yes or No . Show your work below.

6. Label poles with P_1, P_2, \dots Label zeros with Z_1, Z_2, \dots

$$f[z] := 3 \frac{z - 1 + i}{(1 + z^2)}$$

ComplexPlot3D[f[z],

{z, 2}, PlotLegends → Automatic]

7. Complete the following. The TS

$\arctan(z) = \sum_{k=0}^{\infty} z_{k}$	$a_k z$	whe	ere
$a_k =$			
converges for			Justify your

convergence statement using a Calculus II theorem. Give a simpler complex analytic justification below.

8. Complete the following. The TS

 $log(2 + z) = \sum_{k=0}^{\infty} a_k z^k$ where $a_k =$ converges for . Justify your

convergence statement using a Calculus II theorem. Give a simpler complex analytic justification below.

9. Label and explain the singularity and color discontinuity visible in the plot below using appropriate language. The TS

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k \text{ with } z_0 = -2 + 2i \text{ has}$$

$$a_k = \boxed{\qquad} \text{and converges for}$$

$$\begin{vmatrix} z - z_0 \end{vmatrix} < \boxed{\qquad} \text{. Explain what the TS}$$

converges to around the color discontinuity.

$$In[*]:= f[z_] := Log[1 + z]$$

ComplexPlot3D[f[z],

{z, 2}, PlotLegends → Automatic]

10. Label and explain the singularity and color discontinuity visible in the plots below using appropriate language. Explain why you might expect f_1 to match f_2 . Explain why they do not match using appropriate language.

f1[z]:=
$$\sqrt{1-z^2}$$

f2[z]:= $i \sqrt{z^2-1}$
{ComplexPlot3D[f1[z], {z, 2}, PlotLabel \rightarrow "f1"],
ComplexPlot3D[f2[z], {z, 2}, PlotLabel \rightarrow "f2"]}

11. For the closed counter clockwise contour Γ shown below

12. For the closed counter clockwise contour Γ shown below

13. Compute
$$\int_{\Gamma} \frac{e^z}{(z^2+4)(z-1)} dz = \boxed{}$$
 for the counter clockwise contour Γ . Show appropriate work.

 $p1[t_] := (E^{2\pi it} + 1.2)^2$

 $ParametricPlot[ReIm[p1[t]], \{t, 0, 1\}, PlotLegends \rightarrow \{"\Gamma"\}]$

