Análisis Matemático I Clase 18: aplicaciones de la integral al cálculo de longitudes y áreas de superficies de revolución

Pablo D. Ochoa

Facultad de Ingeniería Universidad Nacional de Cuyo.

Mayo, 2020

Problema: determine la longitud de la curva dada por una función y = f(x) con derivada continua en el intervalo [a, b].

Solución: tomamos una partición $P = \{x_0, ..., x_n\}$ del intervalo [a, b]. Consideramos los segmentos que unen: $(x_0, f(x_0))$ con $(x_1, f(x_1))$, $(x_1, f(x_1))$ con $(x_2, f(x_2))$, ..., $(x_{n-1}, f(x_{n-1}))$ con $(x_n, f(x_n))$.

Observar que la longitud del arco de la curva que va desde $(x_{k-1}, f(x_{k-1}))$ a $(x_k, f(x_k))$ se puede aproximar con la longitud del segmento rectilíneo que une dichos puntos:

Entonces si L_k es la longitud del segmento, tenemos:

$$L_k = \sqrt{(\Delta x_k)^2 + (\Delta y_k)^2} = \sqrt{(\Delta x_k)^2 + (f(x_k) - f(x_{k-1}))^2}$$

$$L_k = \sqrt{(\Delta x_k)^2 + (\Delta y_k)^2} = \sqrt{(\Delta x_k)^2 + (f(x_k) - f(x_{k-1}))^2}$$

Por el teorema del valor medio, existe $c_k \in (x_{k-1}, x_k)$ tal que:

$$f(x_{k-1}) - f(x_k) = f'(c_k)(x_k - x_{k-1}) = f'(c_k)\Delta x_k.$$

Reemplazando en la expresión para L_k obtenemos:

$$L_k = \sqrt{(\Delta x_k)^2 + f'(c_k)^2(\Delta x_k)^2} = \sqrt{1 + f'(c_k)^2} \Delta x_k$$

Si sumamos las longitudes de los segmentos, ontendremos una aproximación de la longitud de la curva L. Luego:

$$L \approx \sum_{k=1}^{n} L_k = \sum_{k=1}^{n} \sqrt{1 + f'(c_k)^2} \Delta x_k$$

$$L \approx \sum_{k=1}^{n} L_k = \sum_{k=1}^{n} \sqrt{1 + f'(c_k)^2} \Delta x_k$$

Cuando ||P|| tiende a cero, obtenemos (ya que $\sqrt{1+f'(x)^2}$ es continua en [a,b]):

$$L = \int_a^b \sqrt{1 + (f'(x))^2} dx$$

Así:

Longitud de curva

Sea y = f(x) una función tal que f' es continua en [a, b]. Entonces la longitud de la curva y = f(x) desde el punto (a, f(a)) al punto (b, f(b)) es:

$$L = \int_{a}^{b} \sqrt{1 + (f'(x))^{2}} dx$$

Determine la longitud de la curva:

$$y = \frac{x^3}{12} + \frac{1}{x}$$

para $1 \le x \le 4$.

La longitud de una curva también se puede calcular en términos de la variable *y*:

Longitud de curva

Sea x = g(y) una función tal que g' es continua en [c, d]. Entonces la longitud de la curva x = g(y) para $c \le y \le d$ es:

$$L = \int_{C}^{d} \sqrt{1 + (g'(y))^2} dy$$

Ejemplo: determine la longitud de la curva $y = (x/2)^{2/3}$ para $0 \le x \le 2$.

Aplicación de la integral al cálculo de áreas de superficies de revolución

Integral definida: aplicaciones

Problema: determinar la cantidad de vidrio necesario para construir una bombilla eléctrica como se ilustra

con $0 \le x \le 5$, x en centímetros. Para determinar la cantidad de vidrio, vamos a determinar el área de la superficie de la bombilla.

Superficie de revolución: una superficie de revolución es una superficie obtenida al hacer girar una curva en torno de una recta fija.

Por ejemplo, la curva:

produce la siguiente superficie de revolución al girar en torno del eje x:

produce la Si la curva gira en torno al eje y se obtiene la siguiente superficie de revolución:

Área de una superficie de revolución

Sea f una función tal que $f(x) \ge 0$ para todo x en [a,b]. Supongamos que f' es continua en [a,b]. Entonces el área de la superficie obtenida al hacer girar el gráfico de f alrededor del eje x es:

$$S = \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'(x)]^{2}} dx.$$

Observar la analogía con la fórmula de longitud de una curva. Se agrega el factor $2\pi f(x)$

Ejemplo: determine el área de la superficie obtenida al hacer girar el gráfico de $y = 2\sqrt{x}$ alrededor del eje x en [1,2].

Ejemplo: determine el área de la superficie obtenida al hacer girar el gráfico de $y=2\sqrt{x}$ alrededor del eje x en [1,2].

Rotación alrededor del eje y:

Área de una superficie de revolución

Sea x = g(y) una función tal que $g(y) \ge 0$ para todo y en [c, d].

Supongamos que g' es continua en [c, d]. Entonces el área de la superficie obtenida al hacer girar el gráfico de g alrededor del eje y es:

$$S = \int_{c}^{d} 2\pi g(y) \sqrt{1 + [g'(y)]^2} dy.$$

Problema: determinar la cantidad de vidrio necesario para construir una bombilla eléctrica como se ilustra

Integral definida: aplicaciones

El área de la superficie de revolución es:

$$\begin{split} S &= 2\pi \int_{\delta}^{1/3} \left(\frac{1}{3}x^{1/2} - x^{3/2}\right) \sqrt{1 + \left[\frac{1}{6}x^{-1/2} - \frac{3}{2}x^{1/2}\right]^2} dx \\ &= 2\pi \int_{\delta}^{1/3} \left(\frac{1}{3} - x\right) \sqrt{x} \sqrt{1 + \left[\frac{1}{6}x^{-1/2} - \frac{3}{2}x^{1/2}\right]^2} dx \\ &= 2\pi \int_{\delta}^{1/3} \left(\frac{1}{3} - x\right) \left(\frac{3}{2}x + \frac{1}{6}\right) dx = 2\pi \left[-\frac{1}{2}x^3 + \frac{1}{18}x + \frac{1}{6}x^2\right] \Big|_{\delta}^{1/3}. \end{split}$$

Sea $\delta=0.01$:

$$S \approx 0.112$$
.

