Discussion Session 7

Review on Fourier Socies

$$f(t) = \sum_{n=-\infty}^{\infty} F_n e^{jnw \cdot t}$$
 $w_n = \frac{2\pi}{T}$: fundamental frequency

$$F_n = \frac{1}{T} \int f(t) e^{-jwnt} dt$$
 $F_n: F_{ourier}$ Gefficient

Answer:
$$W_0 = \frac{2\pi}{\tau} = \frac{2\pi}{2\pi} = 1$$
 $\longrightarrow W_0 = nw_0$

$$F_{n} = \frac{1}{T} \int_{T} f(t) e^{-jnW_{0}t} = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ax} e^{-jnt} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{(a-jn)t} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{(a-jn)t} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{(a-jn)} \int_{-\pi}^{\pi} e^{(a-jn)} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{(a-jn$$

$$= e^{(a-jn)-\Pi} = \frac{1}{2\pi(a-jn)} \left[e^{\alpha n} e^{j\alpha n} - e^{-\alpha n} e^{jnn} \right] = \frac{(-1)^n}{2\pi(a-jn)} \left(e^{\alpha n} - e^{-\alpha n} \right)$$

Example:
$$T = 2\pi$$
, $f(t) = 1 + \sin^2(t)$ for $t \in (-\pi, \pi)$

Answer:
$$f(t) = 1 + \sin^2(t) = 1 + \frac{1}{2} \left(1 - \cos(2t) \right) = \frac{3}{2} - \frac{1}{2} \cos(2t) = \frac{3}{2} - \frac{1}{2} \left[\frac{1}{2} e^{j2t} \right]$$

$$+\frac{1}{2}e^{-j}$$
 $\frac{2+}{2}$ $\frac{3}{2}$ $\frac{1}{4}e^{j}$ $\frac{2+}{4}$ $\frac{1}{4}e^{-j}$ $\frac{2+}{4}$ $\frac{2+}{$

$$F_{n} = \frac{1}{T} \int f(t) e^{-jnW_{0}t} dt = \frac{1}{2\Pi} \int_{-\Pi}^{\Pi} \left[\frac{3}{2} - \frac{1}{4} e^{-j2t} - \frac{1}{4} e^{-j2t} \right] e^{jnt} dt$$

Solving this will give you
$$F = \frac{3}{2}$$
 $F_2 = F_2 = \frac{-1}{4}$

Alternetively:
$$f(t) = \frac{3}{2} - \frac{1}{4} e^{j2t} - \frac{1}{4} e^{-j2t} = \sum_{n=-\infty}^{\infty} F_n e^{jnw_n t} = \sum_{n=-\infty}^{\infty} F_n e^{jnt}$$

By comparing the right and left side of equation, you can find
$$f = \frac{3}{2}$$
, $\frac{7}{2} = \frac{-1}{4}$

Fourier Gefficient and signal transformation

$f(+) \stackrel{FS}{\longleftrightarrow} F_{\Lambda}$	period = T
f(t-t.) = Fs, Fne-j	um.t.
f(-+) (Fs) Fn	
$f(a+) \longleftrightarrow F_n$	period = I
d f(+) (jkw.	
<u></u>	/ Fn
$f(\bar{t}) \longleftarrow F_{-n}^*$	

$$f_1(H) \stackrel{FS}{\longleftarrow} a_n$$
 $f_2(H) \stackrel{FS}{\longleftarrow} b_k$

$$Af_1(H) * B f_2(H) \stackrel{FS}{\longleftarrow} Aa_k * Bb_k$$

$$f_1(H) f_2(H) \stackrel{FS}{\longleftarrow} a_k * b_k$$

$$f(a+) \longleftrightarrow F_n \quad period = \frac{T}{a}$$

$$\frac{d}{dt} f(t) \longleftrightarrow (jkw_n) F_n$$

$$f(t) \longleftrightarrow F_n^*$$

Famous fourier series pairs:

pulse train =
$$\sum_{k=-\infty}^{\infty} rect\left(\frac{1-kT}{2T_i}\right)$$
 $\sum_{k=-\infty}^{FS} a_k = \frac{2T_i}{T} sinC\left(\frac{2T_i}{T}k\right)$

Delta train =
$$\sum_{k=-\infty}^{\infty} \delta(f_-kT)$$
 $\stackrel{FS}{\longleftarrow}$ $\alpha_k = \frac{1}{T}$

$$Cos(lw.t) = cos(l \frac{2\pi}{T}t) \xrightarrow{FS} a_{k} = \begin{cases} 0 & k \neq l \\ \frac{1}{2} & k = \pm l \end{cases}$$

$$Sin (lw_{*}+) = Sin (l \frac{2\eta}{T}+) \stackrel{FS}{\longleftarrow} \begin{cases} 0 & k \neq l \\ \frac{1}{2j} & k = l \\ \frac{-1}{2j} & k = -l \end{cases}$$

Example:

Answer:
$$q_k = e^{-jk \frac{\pi}{4}} \frac{\sin(k \frac{\pi}{3})}{2k} = e^{-jk \frac{\pi}{4}} \frac{\sin(k \frac{\pi}{3})}{k \frac{\pi}{3}} \times \frac{\pi}{3 \times 2} = e^{-jk \frac{\pi}{4}} \frac{\pi}{3} \sin(k \frac{\pi}{3})$$

$$= e^{-jk\frac{\pi}{4}} \frac{\pi}{6} \left[3 \times \frac{1}{3} \operatorname{Sinc}(\frac{k}{3}) \right] = e^{-jk\frac{\pi}{4}} \frac{\pi}{2} \left[\frac{1}{3} \operatorname{Sinc}(\frac{k}{3}) \right]$$

As
$$\sum_{k=-\infty}^{\infty} rect\left(\frac{t-kT}{2T_1}\right) \stackrel{FS}{=} \frac{2T_1}{T} sinc\left(\frac{2T_1}{T}k\right)$$
, so $\frac{1}{3} sinc\left(\frac{k}{3}\right)$ is FS

of train of pulse with
$$\frac{2T_1}{T} = \frac{2T_1}{12} = \frac{1}{3}$$
 T₁ = 2

$$T = 12 - \omega_0 = \frac{2\pi}{T} = \frac{2\pi}{12} = \frac{\pi}{6}, \quad e^{-jk\frac{\pi}{4}} = e^{-jk\frac{\pi}{6} \times t_0} \qquad t_0 = \frac{3}{2}$$

So the output is the train pulse, shifted by
$$\frac{3}{2}$$
 and multiplied by $\frac{\pi}{2}$.

$$\frac{1}{2} = \frac{1}{2} \sum_{k=0}^{\infty} \text{rect} \left(\frac{1 - \frac{3}{2} - 12 \ell}{4} \right)$$

$$\frac{3}{2} - 2 = -0.5$$

Fourier Transform:

For a continuous-time function flt), the fourier transform is defined as.

$$F(j\omega) = \int_{0}^{\infty} f(t) e^{-j\omega t} dt$$

The inverse fourier transform is

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w) e^{jwt} dt$$

Example:
$$x(t) = e^{-\alpha(t)}$$
 for $\alpha > 0$. Find FT.

$$X(jw) = \int_{-\infty}^{\infty} f(t) e^{-jwt} dt = \int_{-\infty}^{\infty} e^{-\alpha(-t)} e^{-jwt} dt + \int_{-\infty}^{\infty} e^{-\alpha t} e^{-jwt} dt =$$

$$= \int_{-\infty}^{\infty} e^{(\alpha-jw)+} dt + \int_{-\infty}^{\infty} e^{-(\alpha+jw)+} dt = \frac{1}{\alpha-jw} \left[1-0\right] + \frac{1}{-(\alpha+jw)} \left[0-1\right] =$$

Example: $x(+) = te^{-2+} u(+)$. Find FT.

$$x(jw) = \int_{-\infty}^{\infty} x(t) e^{-jwt} dt = \int_{-\infty}^{\infty} t e^{-2t} e^{-jwt} dt = \int_{-\infty}^{\infty} t e^{-(2+jw)t} dt$$

$$V = t$$
, $dv = dt$, $du = e^{-(2+jw)t} dt$... $u = \frac{1}{-(2+jw)} e^{-(2+jw)t}$ $\int_{a}^{b} v du = vu \Big|_{a}^{b} \int_{a}^{b} u dv$

$$\longrightarrow \times (jw) = \left[t \frac{1}{-(2+jw)} e^{-(2+jw)} + \right]^{\infty} - \int_{-(2+jw)}^{\infty} \frac{1}{-(2+jw)} e^{-(2+jw)} dt$$

$$= -\frac{1}{(2+jw)^2} \left[e^{-(2+jw)+} \right]_{t=0}^{t=\infty} = \frac{1}{(2+jw)^2}$$

Example:
$$x(t) = \text{vect}\left(\frac{t}{2T_i}\right)$$

Answer:
$$X(jw) = \int_{-\infty}^{\infty} X(t) e^{-jwt} dt = \int_{-T_1}^{T_1} 1 e^{-jwt} = \frac{1}{-jw} e^{-jwt} = \frac{1}{t}$$

$$= \frac{1}{-jw} \left[e^{-j\omega T_1} - e^{j\omega T_1} \right] = \frac{1}{-j\omega} \left[-2j \sin(\omega T_1) \right] = \frac{2\sin(\omega T_1)}{\omega}$$

$$= 2T_1 \frac{sin(\omega T_1)}{\omega T_1} = 2T_1 sinc(\frac{\omega T_1}{\Gamma L})$$