LC03 : Structure spatiale des molécules

Niveau: Lycée

<u>Pré requis</u>: isomère, stéréoisomérie, représentation de Lewis, formule développée et semi-développée, formule topologique, loi de Beer-Lambert, dosage acido-basique, liaison hydrogène, moment dipolaire

Détermination de la configuration absolue du carbone asymétrique de l'alanine

Détermination de la configuration absolue du carbone asymétrique de l'alanine

Détermination de la configuration absolue du carbone asymétrique de l'alanine

Chiralité

Exemple de molécule chirale

Exemple des deux énantiomères : Ibuprofène

Exemple des deux énantiomères : limonène

Configuration d'une double liaison C=C: Z et E

Règles CIP:

- 1) On classe les groupements liés à la double liaison C=C par ordre de priorité
- 2) On attribue la configuration :
 - Z : si les deux groupements prioritaires sont du même coté de la double liaison
 - E : si les deux groupements prioritaires sont de part et d'autre de la double liaison

Exemples de diastéréoisomères

Acide fumarique

Acide maléique

Polarimètre de Laurent

	faire tourner vers la droite
	faire tourner vers la gauche
équipénombre	Relever la valeur de l'angle

Mesure du pouvoir rotatoire du saccharose

Loi de Biot :
$$\alpha = [\alpha]lC$$

α : pouvoir rotatoire (en°)

C : concentration (en g/mL)

l: longueur de la cuve en dm

 $[\alpha]$: pouvoir rotatoire spécifique (en °.mL/g/dm)

Théoriquement : $[\alpha] = 66,5$ °.mL/g/dm

Mesure du pouvoir rotatoire du saccharose

•Loi de Biot : $\alpha = [\alpha]lC$

α : pouvoir rotatoire (en°)

C: concentration (en g/mL)

 $\it l$: longueur de la cuve en dm

[α]: pouvoir rotatoire spécifique (en °.mL/g/dm)

•Loi de Beer-Lambert :

$$A = [\varepsilon]lC$$

A: absorbance

C: concentration (en g/mL par exemple)

l: longueur de la cuve

[ε]: coefficient d'absorption molaire (en mL/g/dm)

Exemples de diastéréoisomères

Acide fumarique

Acide maléique

Propriétés de l'acide fumarique et de l'acide maléique

	Acide maléique	Acide fumarique
Formule	но он	но
Température de fusion	130°C	286°C
Solubilité dans l'eau	très grande	très faible

HO C=C H

Intramoléculaire (ac malique)

Liaison hydrogène

Intermoléculaire (ac fum arique)

Chiralité dans le vivant

Surface de récepteur biologique