

PROVA DE CONHECIMENTOS ESPECÍFICOS E REDAÇÃO

16.12.2012

003. Ciências da Natureza e Matemática

(Questões 13 - 24)

- ✓ Confira seus dados impressos neste caderno.
- ✓ Assine com caneta de tinta azul ou preta apenas no local indicado. Qualquer identificação no corpo deste caderno acarretará a atribuição de nota zero a esta prova.
- ✓ Esta prova contém 12 questões discursivas e terá duração total de 4h30.
- ✓ A prova deve ser feita com caneta de tinta azul ou preta.
- ✓ A resolução e a resposta de cada questão devem ser apresentadas no espaço correspondente. Não serão consideradas questões resolvidas fora do local indicado.
- ✓ Encontra-se neste caderno a Classificação Periódica, a qual, a critério do candidato, poderá ser útil para a resolução de questões.
- ✓ O candidato somente poderá entregar este caderno e sair do prédio depois de transcorridas 3h30, contadas a partir do início da prova.

Assinatura do candidato

NÃO ESCREVA NESTE ESPAÇO

VNSP1207/003-CE-CiêncNatMatemática

2

A batalha pelo elemento é impiedosa, assim como aquela por água, ar ou sexo, mas apenas de vez em quando a verdade de suas negociações é exposta em toda sua brutalidade. As plantas que comem animais são apenas um exemplo entre muitos para mostrar o quão competitivo o negócio deve ser, e como a Natureza recorre às conveniências mais improváveis para tirar o máximo do pouco que há disponível.

(Steve Jones. A Ilha de Darwin, 2009.)

Planta carnívora (Dionaea sp) em seu hábitat.

(www.carnivoras.com.br)

No texto, o autor refere-se a um elemento químico, abundante na atmosfera, mas não no solo onde a planta cresce. Esse elemento é essencial para o desenvolvimento das plantas, uma vez que irá constituir suas proteínas e ácidos nucleicos.

Qual é o elemento químico referido pelo autor e, considerando que na natureza as plantas carnívoras o obtêm dos animais que capturam, explique de que forma as espécies vegetais não carnívoras o obtêm.

RESULUÇAU E RESPUSTA	CORREÇÃO
	REVISÃO
2	VNCD1207/002 CF City Not Material

O tuco-tuco (Ctenomys brasiliensis) é um animal curioso, que se pode, em linhas gerais, descrever como roedor com hábitos de toupeira. [...] São animais noturnos, e alimentam-se especialmente de raízes de plantas, o que explica os túneis longos e superficiais que cavam. [...] O homem que mos trouxe afirmou que muito comumente os tuco-tucos são encontrados cegos. O exemplar que eu conservava no álcool achava-se nesse estado. [...] Lamarck rejubilar-se-ia com este fato, se acaso o tivesse conhecido.

(Charles Darwin, Diário das investigações sobre a História Natural e Geologia dos países visitados durante a viagem ao redor do mundo pelo navio de Sua Majestade "Beagle", sob o comando do Capt. Fitz Roy, R. A, 1871.)

Tuco-tuco brasileiro (Ctenomys brasiliensis), Blainville, 1826.

(mamiferosdomundo.blogspot.com.br)

O texto foi escrito por Charles Darwin, em seu diário de bordo, em 26 de julho de 1832, à época com 23 anos de idade, quando de sua passagem pelo Brasil e Uruguai.

Escrito antes que construísse sua Teoria da Evolução, o texto revela que Darwin conhecia a obra de Lamarck.

Como Lamarck explicaria as observações de Darwin sobre o tuco-tuco brasileiro, e qual é a explicação apresentada pela Teoria da Evolução na biologia moderna?

RESULUÇAU E RESPUSTA	CORREÇÃO
	REVISÃO
	KEVISAU
VNSP1207/003-CE-CiêncNatMatemática	

Em 2012, assim como em anos anteriores, o Ministério da Saúde promoveu a campanha para vacinação contra a gripe. A seguir, o cartaz informativo da campanha.

No cartaz, lemos que devem ser vacinadas "Pessoas com 60 anos ou mais".

Essa recomendação aplica-se a todos os que têm mais de 60 anos, independentemente de terem sido vacinados antes, ou somente àqueles que têm mais de 60 anos e que não tinham sido vacinados em anos anteriores? Justifique sua resposta, tendo por base as características antigênicas do vírus da gripe, e explicando como a vacina protege o indivíduo contra a doença.

RESOLUÇÃO E RESPOSTA

· ·	CURREÇAU
	REVISÃO
5 VNSP1207/003-CI	E-CiêncNatMatemática

A taurina é uma substância química que se popularizou como ingrediente de bebidas do tipo "energéticos". Foi isolada pela primeira vez a partir da bile bovina, em 1827.

$$\begin{array}{c} O \\ \parallel \\ N \\ N \end{array}$$

taurina

Na literatura médica e científica, a taurina é frequentemente apresentada como um aminoácido. Entretanto, tecnicamente a taurina é apenas uma substância análoga aos aminoácidos.

Explique por que a taurina não pode ser rigorosamente classificada como um aminoácido e, sabendo que, em soluções aquosas de pH neutro, a taurina encontra-se como um sal interno, devido aos grupos ionizados (zwitterion), escreva a equação que representa essa dissociação em água com pH igual a 7.

RESOLUÇÃO E RESPOSTA-

		CORREÇAO
		REVISÃO
SP1207/003-CF-CiêncNatMatemática	6	L

O esquema apresentado descreve os diagramas energéticos para uma mesma reação química, realizada na ausência e na presença de um agente catalisador.

Com base no esquema, responda qual a curva que representa a reação na presença de catalisador. Explique sua resposta e faça uma previsão sobre a variação da entalpia dessa reação na ausência e na presença do catalisador.

RESOLUÇÃO E RESPOSTA	
HEODEOGRA E HEOF OUTA	CORREÇÃO
	REVISÃO
7	VNSP1207/003-CE-CiêncNatMatemátic

A imagem é a fotografia de uma impressão digital coletada na superfície de um pedaço de madeira. Para obtê-la, foi utilizada uma técnica baseada na reação entre o sal do suor (NaCl), presente na impressão digital, com solução aquosa diluída de um reagente específico. Depois de secar em uma câmara escura, a madeira é exposta à luz solar.

Considere soluções aquosas diluídas de AgNO₃ e de KNO₃. Indique qual delas produziria um registro fotográfico de impressão digital ao reagir com o sal do suor, nas condições descritas, e justifique sua resposta descrevendo as reações químicas envolvidas.

RESOLUÇÃO E RESPOSTA

KESULUÇAU E KESPUSTA	CORREÇÃO
L L	
Ţ	REVISÃO
SP1207/003-CE-CiêncNatMatemática 8	

Ouestão 19

Um brinquedo é constituído por dois carrinhos idênticos, A e B, de massas iguais a 3 kg e por uma mola de massa desprezível, comprimida entre eles e presa apenas ao carrinho A. Um pequeno dispositivo, também de massa desprezível, controla um gatilho que, quando acionado, permite que a mola se distenda.

Antes de o gatilho ser acionado, os carrinhos e a mola moviam-se juntos, sobre uma superfície plana horizontal sem atrito, com energia mecânica de 3,75 J e velocidade de 1 m/s, em relação à superfície. Após o disparo do gatilho, e no instante em que a mola está totalmente distendida, o carrinho B perde contato com ela e sua velocidade passa a ser de 1,5 m/s, também em relação a essa mesma superfície.

Nas condições descritas, calcule a energia potencial elástica inicialmente armazenada na mola antes de o gatilho ser disparado e a velocidade do carrinho A, em relação à superfície, assim que B perde contato com a mola, depois de o gatilho ser disparado.

RESOLUÇÃO E RESPOSTA

· ·	CURKEÇAU
	REVISÃO
9 VNSP1207/003-C	E-CiêncNatMatemática

Determinada massa de gás ideal sofre a transformação cíclica ABCDA mostrada no gráfico. As transformações AB e CD são isobáricas, BC é isotérmica e DA é adiabática. Considere que, na transformação AB, 400 kJ de calor tenham sidos fornecidos ao gás e que, na transformação CD, ele tenha perdido 440 kJ de calor para o meio externo.

Calcule o trabalho realizado pelas forças de pressão do gás na expansão AB e a variação de energia interna sofrida pelo gás na transformação adiabática DA.

RESOLUÇÃO E RESPOSTA	CORREÇÃO
	REVISÃO

Um feixe é formado por íons de massa m_1 e íons de massa m_2 , com cargas elétricas q_1 e q_2 , respectivamente, de mesmo módulo e de sinais opostos. O feixe penetra com velocidade \vec{V} , por uma fenda F, em uma região onde atua um campo magnético uniforme \vec{B} , cujas linhas de campo emergem na vertical perpendicularmente ao plano que contém a figura e com sentido para fora. Depois de atravessarem a região por trajetórias tracejadas circulares de raios R_1 e $R_2 = 2 \cdot R_1$, desviados pelas forças magnéticas que atuam sobre eles, os íons de massa m_1 atingem a chapa fotográfica C_1 e os de massa m_2 a chapa C_2 .

Considere que a intensidade da força magnética que atua sobre uma partícula de carga q, movendo-se com velocidade v, perpendicularmente a um campo magnético uniforme de módulo B, é dada por $F_{MAG} = |q| \cdot v \cdot B$.

Indique e justifique sobre qual chapa, C₁ ou C₂, incidiram os íons de carga positiva e os de carga negativa.

Calcule a relação $\frac{m_1}{m_2}$ entre as massas desses íons.

RESOLUÇÃO E RESPOSTA —	
	CORREÇÃO
	~
	REVISÃO
11	VNSP1207/003-CE-CiêncNatMatemátic

Quantos são os números naturais que podem ser decompostos em um produto de quatro fatores primos, positivos e distintos, considerando que os quatro sejam menores que 30?

RESOLUÇÃO E RESPOSTA	CORREÇÃO
	REVISÃO

Os pontos A e C são intersecções de duas cônicas dadas pelas equações $x^2 + y^2 = 7$ e $y = x^2 - 1$, como mostra a figura fora de escala. Sabendo que tg $49^{\circ} \cong \frac{2 \cdot \sqrt{3}}{3}$ e tomando o ponto B(0 , $-\sqrt{7}$), determine a medida aproximada do ângulo A \hat{B} C, em graus.

RASCUNHO

RESOLUÇÃO E RESPOSTA	
	CORREÇÃO
	REVISÃO
13	VNSP1207/003-CE-CiêncNatMatemá

Sabendo-se que $\cos{(2x)} = \cos^2{x} - \sin^2{x}$, para quais valores de x a função $f(x) = \cos{x} + \frac{1}{2} \cdot \cos{(2x)}$ assume seu valor mínimo no intervalo $0 \le x \le 2\pi$?

		3
		RFVISÃ
		REVISÃO
P1207/003-CE-CiêncNatMatemática	14	REVISÃO

- RESOLUÇÃO E RESPOSTA -

CORREÇÃO

CLASSIFICAÇÃO PERIÓDICA

1																	18
1 H																	2 He
1,01	2											13	14	15	16	17	4,00
3 Li 6,94	4 Be 9,01											5 B 10,8	6 C 12,0	7 N 14,0	8 O 16,0	9 F 19,0	10 Ne 20,2
11 Na 23,0	12 Mg 24,3	3	4	5	6	7	8	9	10	11	12	13 Al 27,0	14 Si 28,1	15 P 31,0	16 S 32,1	17 CI 35,5	18 Ar 39,9
19 K 39,1	20 Ca 40,1	21 Sc 45,0	22 Ti 47,9	23 V 50,9	24 Cr 52,0	25 Mn 54,9	26 Fe 55,8	27 Co 58,9	28 Ni 58,7	29 Cu 63,5	30 Zn 65,4	31 Ga 69,7	32 Ge 72,6	33 As 74,9	34 Se 79,0	35 Br 79,9	36 Kr 83,8
37 Rb 85,5	38 Sr 87,6	39 Y 88,9	40 Zr 91,2	41 Nb 92,9	42 Mo 95,9	43 Tc (98)	44 Ru 101	45 Rh 103	46 Pd 106	47 Ag 108	48 Cd 112	49 In 115	50 Sn 119	51 Sb 122	52 Te 128	53 127	54 Xe 131
55 Cs 133	56 Ba 137	57-71 Série dos Lantanídios	72 Hf 178	73 Ta 181	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt 195	79 Au 197	80 Hg 201	81 TI 204	82 Pb 207	83 Bi 209	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89-103 Série dos Actinídios	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (277)	109 Mt (268)	110 Ds (271)	111 Rg (272)							
	Série dos Lantanídios																
Número Atômico Símbolo			57 La 139	58 Ce 140	59 Pr 141	60 Nd 144	61 Pm (145)	62 Sm 150	63 Eu 152	64 Gd 157	65 Tb 159	66 Dy 163	67 Ho 165	68 Er 167	69 Tm 169	70 Yb 173	71 Lu 175
Massa Atômica Série dos Actinídios																	
() = n.° de massa do isótopo mais estável			89 Ac (227)	90 Th 232	91 Pa 231	92 U 238	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

(IUPAC, 22.06.2007.)

RASCUMA

NÃO ASSINE ESTA FOLHA

RASCUMA

NÃO ASSINE ESTA FOLHA

17

RASCUMA

RASCUMAO

NÃO ASSINE ESTA FOLHA

