Módulo 3 – Espectroscopia de Ressonância Magnética Nuclear (RMN)

Parte 4 – Acoplamentos spin-spin e RMN 2D

Lucas Raposo Carvalho

Instituto de Física e Química (IFQ) Universidade Federal de Itajubá (UNIFEI)

QUI070 - Métodos Físicos de Análise, 2025.1

Sumário

- 1. Acoplamentos spin-spin típicos do tipo ${}^{1}J$, ${}^{2}J$ e ${}^{3}J$
 - 2. Acoplamentos spin-spin de longo alcance, ⁿJ
 - 3. Quando a regra n + 1 não é obedecida
 - 4. Técnicas de RMN bidimensional (2D): COSY
- 5. Técnicas de RMN bidimensional (2D): HETCOR/HSQC

- 1. As constantes de acoplamento spin-spin (J) são independentes da intensidade do campo magnético aplicado e são expressas em Hertz (Hz).
- 2. São características dos núcleos que estão acoplados e podem ser **homonucleares** e.g., $^{1}H-^{1}H$, J_{HH} ou **heteronucleares** e.g., $^{1}H-^{13}C$, J_{HC} .
- 3. A regra geral da **multiplicidade** de spins é dada por 2 n I+1, onde n é o número de núcleos acoplados e I, o número quântico de spin dos núcleos acoplados. Para I=1/2, a regra se simplificada para n+1.
- 4. A magnitude do J depende de vários fatores. No geral, $^1J > ^2J > ^3J > ^nJ$.

Constantes de acoplamento típicas do tipo 1J incluem:

Ligação (J _{ab})	J (Hz)	НН	H	
${}^{1}\text{H}-{}^{13}\text{C} \ ({}^{1}J_{\text{HC}})$	110 a 270	H	Н	H H
	<i>sp</i> ³ : 115 a 125	H H	H	
Hibridações	<i>sp</i> ² : 150 a 170	$^{1}J_{HC} =$	$^{1}J_{HC} =$	$^{1}J_{HC} =$
	sp: 240 a 270	125 HZ	156 Hz	249 Hz
$^{13}\text{C-}^{19}\text{F} \ (^{1}J_{\text{CF}})$	- 165 a - 370	Não produz	z efeito no	espectro!
$^{13}\text{C-}^{31}\text{P} \ (^{1}J_{\text{CP}})$	48 a 56			
$^{13}\text{C-}^{2}\text{D} \ (^{1}J_{\text{CD}})$	20 a 30			
${}^{1}\text{H}-{}^{31}\text{P}\ \left({}^{1}\textit{J}_{\text{HP}}\right)$	190 a 700			

Constantes de acoplamento do tipo 2J (acoplamentos geminais) incluem:

Outros sistemas que apresentam **acoplamento geminal** (^2J) :

<u>Importante</u>: Acoplamentos geminais não são sempre vistos pois a maioria dos grupos metilênicos (CH₂) possuem hidrogênios **homotópicos** ou **enantiotópicos**, sendo **magneticamente equivalentes**.

6

Constantes de acoplamento do tipo 3J (acoplamentos vicinais) dependem do ângulo diedro (φ) entre as ligações e a interação orbitalar.

2. Acoplamentos spin-spin de longo alcance, ⁿJ

Acoplamentos de longo alcance (4J a nJ) costumam ocorrer em sistemas alílicos, propargílicos, aromáticos e bicíclicos rígidos.

$$^{4}J_{\rm HH} = 0 \text{ a 3 Hz}$$

$$^{4}J_{HH} = 0 \text{ a 3 Hz}$$

$$^{4}J_{HH} = 2 \text{ a 4 Hz}$$

$$^{4}J_{HH} = 2 \text{ a 4 Hz}$$
 $^{5}J_{HH} (cis) \sim 9.6 \text{ Hz}$ $^{5}J_{HH} \sim 3.0 \text{ Hz}$

$$^5J_{\rm HH}$$
 (trans) ~ 8,0 Hz

$$H_3C$$
 H_3C
 H_3C

$$^{5}J_{\rm HH}\sim3.0~{\rm Hz}$$

Mais comum em **sistemas** rígidos

Espectros de RMN de ¹H quando a regra n + 1 é obedecida são mais simples

Quando a regra n + 1 não é obedecida (não-equivalência), há complicações

Para determinar o padrão de acoplamento (multiplicidade) quando a regra do n+1 não é obedecida, usa-se **árvores de acoplamento**.

Até o momento: técnicas de RMN gerando espectros **unidimensionais**, pois a S depende de **um** único parâmetro (δ de 1 H ou 13 C, por exemplo).

Parte final: Espectros **bidimensionais** (2D), com S dependente de **dois** parâmetros (δ de 1 H e 1 H ou de 1 H e 13 C).

Espectros **bidimensionais** também podem ser obtidos de forma **heteronuclear**. Os experimentos abordados serão os de ¹H e ¹³C **HETCOR** (*Heteronuclear Chemical Shift Correlation*) e o **HSQC** (*Heteronuclear Single Quantum Correlation*).

