Undertanding the cartwheel data set

The notebook aims to undertand the content of the cartwheel data set.

Acknowledgments

Data from https://www.coursera.org/ from the course "Understanding and Visualizing Data with Python" by University of Michigan

Cartwheel data set

1. A cartwheel

- 2. The dataset description
 - o The dataset used here is an extension from the original cartwheel dataset from cursera
 - Total numer of observations: 28
 - o Many observations/measurements/recordings of the characteristics/attributes/variables of cartwheel executions
 - o Variables: Age, Gender, GenderGroup, Glasses, GlassesGroup, Height, Wingspan, CWDistance, ... (X variables)

Importing and inspecting the data

```
1 # Define where you are running the code: colab or local
 2 RunInColab = True # (False: running locally | True: running in Colab)
4 # If running in Colab:
 5 if RunInColab:
      # Mount your Google Drive in Google Colab
 7
      from google.colab import drive
      drive.mount('/content/drive')
8
9
10
      # Define the path of the project
      Ruta = "/content/drive/MyDrive/ITC/5toSem/semanaTecAn/"
11
12
13 else:
14
      # Define the path of the project for local use
15
      Ruta = "your/local/path/here" # Replace with your local path if running locally
16
17
      # Define path del proyecto
                      = ""
18
    Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_r
1 # Import the packages that we will be using
 2 import pandas as pd
4 # Dataset url
5 url = "datasets/iris.csv"
7 # Load the dataset
 8 df = pd.read csv(Ruta + url)
```

```
1 # Print the dataset
2 df
```

₹		sepal.length	sepal.width	petal.length	petal.width	variety	\blacksquare
	0	5.1	3.5	1.4	0.2	Setosa	ıl.
	1	4.9	3.0	1.4	0.2	Setosa	+/
	2	4.7	3.2	1.3	0.2	Setosa	_
	3	4.6	3.1	1.5	0.2	Setosa	
	4	5.0	3.6	1.4	0.2	Setosa	
	145	6.7	3.0	5.2	2.3	Virginica	
	146	6.3	2.5	5.0	1.9	Virginica	
	147	6.5	3.0	5.2	2.0	Virginica	
	148	6.2	3.4	5.4	2.3	Virginica	
	149	5.9	3.0	5.1	1.8	Virginica	
	150 rd	ows × 5 columns					

Data types

→ El dataset tiene 5 variables

1 df.dtypes

```
sepal.length float64
sepal.width float64
petal.length float64
petal.width float64
variety object
dtype: object
```

Activity: work with the iris dataset

- 1. Load the iris.csv file in your computer and understand the dataset
- 2. How many observations (rows) are in total?
- 3. How many variables (columns) are in total? What do they represent?
- 4. How many observations are for each type of flower?
- 5. What is the type of data for each variable?
- 6. What are the units of each variable?

```
1 # Get the total number of rows (observations)
2 total rows = len(df)
3 print(f"Total number of observations (rows): {total rows}")
   Total number of observations (rows): 150
1 # Get the number of columns (variables) and their names
2 total_columns = len(df.columns)
3 print(f"Total number of variables (columns): {total_columns}")
4 print("Columns and their representation:")
5 print(df.columns)
   Total number of variables (columns): 5
    Columns and their representation:
    Index(['sepal.length', 'sepal.width', 'petal.length', 'petal.width',
           'variety'],
          dtype='object')
1 # Count the number of observations for each type of flower
2 flower_counts = df['variety'].value_counts()
3 print("Number of observations for each type of flower:")
4 print(flower counts)
   Number of observations for each type of flower:
    variety
    Setosa
    Versicolor
                  50
    Virginica
                  50
    Name: count, dtype: int64
1 # Check the data type of each variable
2 print("Data types of each variable:")
3 print(df.dtypes)
```

```
→ Data types of each variable:
    sepal.length
                   float64
                   float64
    sepal.width
                   float64
    petal.length
                   float64
    petal.width
                    object
    variety
    dtype: object
1 print("The units of each variable in the iris dataset are typically:")
3 print("Sepal Length and Width: Measured in centimeters (cm).")
4 print("Petal Length and Width: Measured in centimeters (cm).")
5 print("Variety: Categorical data representing the type of flower.")
The units of each variable in the iris dataset are typically:
    Sepal Length and Width: Measured in centimeters (cm).
    Petal Length and Width: Measured in centimeters (cm).
    Variety: Categorical data representing the type of flower.
```