43 билет. Ряд Фурье. Сходимость в среднем. Минимальное свойство частичных сумм ряда Фурье.

Напомним, что

Рассматриваем пространство L([a,b]) кусочно-непрерывных функций, заданных на [a,b] и имеющих конечно число точек разрыва 1 рода, причем значение в точке разрыва x_0 равна полусумме односторонних пределов:

$$f(x_0) = \frac{f(x_0 - 0) + f(x_0 + 0)}{2}$$

Пусть $\{\varphi_k\}$ – произвольная ортонормированная система функций на L([a,b]) ОПР. Функциональный ряд

$$\sum_{k=1}^{\infty} f_k \varphi_k \,,$$

в котором через f_k обозначены постоянные числа, называемые коэффициентами Фурье элемента f и определяемые равенствами

$$f_k = (f, \varphi_k) = \int_a^b f(x)\varphi_k(x)dx, \quad k = 1,2,...$$

, называется общим рядом Фурье функции $f(x) \in L([a,b])$ по ортонормированной системе функций $\{\varphi_k\}$

Пусть $S_n = \sum_{k=1}^n f_k(x) \varphi_k(x)$ — n-я частичная сумма ряда Фурье

$$(S_n, f) = \sum_{k=1}^n f_k(x) \int_a^b \varphi_k(x) f(x) dx = \sum_{k=1}^n f_k^2$$

Выразим **отклонение**
$$S_n$$
 от f (это величина $||S_n - f||$):
$$||S_n - f||^2 = (S_n - f, S_n - f) = (S_n, S_n) - 2(S_n, f) + (f, f)$$
$$= \sum_{k=1}^n f_k^2 - 2 \sum_{k=1}^n f_k^2 + ||f||^2$$

$$\Rightarrow \|S_n - f\|^2 = \|f\|^2 - \sum_{k=1}^n f_k^2 = \|f\|^2 - \|S_n\|^2$$
 (2)

 $||S_n - f||^2 + ||S_n||^2 = ||f||^2$ (отметим, что это похоже на теорему Пифагора $c^2 = a^2 + b^2$) $\Longrightarrow S_n - f \perp S_n$

Теорема. Пусть $\{\varphi_k\}$ – произвольная ортонормированная система функций на L([a,b]) и для элемента $f \in L([a,b])$:

$$\sum_{k=1}^{\infty} f_k(x) \varphi_k(x)$$
 — ряд Фурье по этой системе

Тогда имеет место неравенство:

$$\sum_{k=1}^{\infty} f_k^2 \le \|f\|^2 = \int_a^b f^2(x) dx \qquad (*) - \text{неравенство Бесселя}$$

Док-во: вытекает из формулы 2:

$$0 \le \|S_n - f\|^2 = \|f\|^2 - \sum_{k=1}^n f_k^2 \qquad \Longrightarrow \qquad \sum_{k=1}^n f_k^2 \le \|f\|^2$$

переходя к пределу по $n \to \infty$, имеем

$$\sum_{k=1}^{\infty} f_k^2 \le ||f||^2$$
. Теорема доказана

Пример: для $f(x) = x, x \in [-\pi; \pi]$ (эту функцию рассматривали в 42 билете, там ее ряд Фурье есть) неравенство Бесселя:

$$\frac{{a_0}^2}{2} + \sum_{k=1}^{\infty} \left({a_k}^2 + {b_k}^2 \right) \le \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 dx$$

$$\sum_{k=1}^{\infty} \frac{4}{k^2} \le \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 dx = \frac{2}{3} \pi^2$$

$$\Rightarrow \sum_{k=1}^{\infty} \frac{1}{k^2} \le \frac{\pi^2}{6} \text{ (вообще говоря, тут можно поставить}$$

=, но это чисто рандом факт, ничего не значит)

Следствие: в силу сходимости числового ряда $\sum_{k=1}^{\infty} f_k^2$ по необходимому признаку $f_k^2 \to 0$

Лемма (Римана-Лебега): Для любой функции $f(x) \in L([-\pi,\pi])$ интегралы

$$\int_{-\pi}^{\pi} f(x) \cos kx \, dx \qquad \int_{-\pi}^{\pi} f(x) \sin kx \, dx$$

стремятся к нулю при $k \to +\infty$

(Это следует из того, что каждый интеграл можно решить как коэффициенты Фурье по ортонормированной тригонометрической системе функций

$$\int_{-\pi}^{\pi} f(x) \frac{\cos kx}{\sqrt{\pi}} dx \qquad \int_{-\pi}^{\pi} f(x) \sin kx \, dx$$

Теорема (экстремальное/минимальное свойство частичных сумм ряда Фурье). Пусть $\{\varphi_k\}$ — произвольная ортонормированная система функций на L([a,b]) и $S_n(x)$ — n-я частичная сумма общего ряда Фурье функции $f \in L([a,b])$, т.е.

$$S_n(x) = \sum_{k=1}^n f_k(x) \varphi_k(x)$$

Тогда для любого набора чисел $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{R}$ справедливо неравенство:

$$\|S_n - f\| \le \|\sigma_n - f\|$$
, где $\sigma_n = \sum_{k=1}^n \alpha_k \varphi_k(x)$

(Тут $\|S_n - f\|$ — длина перпендикуляра, $\|\sigma_n - f\|$ — длина наклонной)

Док-во:
$$\|\sigma_n - f\|^2 = \|\sigma_n\|^2 - 2(\sigma_n, f) + \|f\|^2 =$$

$$= \|f\| + \sum_{k=1}^n \alpha_k^2 - 2\sum_{k=1}^n \alpha_k f_k + \sum_{k=1}^n f_k^2 - \sum_{k=1}^n f_k^2 =$$

$$= \|S_n - f\|^2 + \sum_{k=1}^n (\alpha_k - f_k)^2 \ge \|S_n - f\|^2.$$
 Теорема доказана

Следствие: Числовая последовательность $\{\|S_n - f\|\}_{n=1,2,\dots}$ является убывающей последовательностью, это следует из того, что:

$$S_{n+1}(x) = \sum_{k=1}^{n+1} f_k \varphi_k(x)$$

$$\sigma_{n+1}(x) = \sum_{k=1}^{n} f_k \varphi_k(x) + 0 * \varphi_{n+1}(x)$$

А по экстремальному свойству: $||S_{n+1}(x) - f|| \le ||\sigma_n - f|| = ||S_n(x) - f||$

ОПР. Ортонормированная система функций $\{\varphi_k(x)\}$ называется замкнутой в пространстве L([a,b]), если для $\forall \varepsilon > 0$ и $\forall f \in L([a,b])$ $\exists \sigma_n(x) = \sum_{k=1}^n \alpha_k \varphi_k(x)$, такая, что:

$$\|\sigma_n - f\| < \epsilon$$

Теорема. Для любой замкнутой ортонормированной системы $\{\varphi_k\}$ и любого элемента $f \in L([a,b])$ справедливо:

$$||S_n(x) - f|| \to 0$$
 при $n \to \infty$

где S_n – n-я частичная сумма ряда Фурье, т.е. $S_n = \sum_{k=1}^n f_k(x) \varphi_k(x)$ Док-во: в силу экстремального свойства S_n :

 $||f - S_n(x)|| \le ||f - \sigma_n||$, а так как $\{||f - S_n||\}$ монотонно убывает, то для всех остальных k > n справедлива оценка:

$$||f - S_k(x)|| \le ||f - S_n(x)|| \le ||f - \sigma_n|| < \varepsilon$$

Тогда по определению предела в силу произвольности выбора ε имеем:

$$\|f - S_k(x)\| \to 0$$
 при $k \to \infty$. Теорема доказана.

Замечание: Утверждение теоремы можем записать так:

$$\int_{a}^{b} \|f(x) - S_n(x)\|^2 dx \to 0 \quad \text{при } n \to \infty$$

(Т.е. мера отклонения неравномерна)

(для замкнутой ортонормированной системы функций общий ряд Фурье функции $f \in L([a,b])$ сходится к функции f в среднем квадратичном (в среднем из-за интеграла, квадратичном из-за степени))

Следствие: Если ортонормированная система функций $\{\varphi_k\} \in L([a,b])$ замкнутая, то для $\forall f \in L([a,b])$ неравенство Бесселя превращается в равенство Парсеваля:

$$\sum_{k=1}^{\infty} f_k^2 = \|f\|^2$$