

COLLEGE OF INFORMATION STUDIES

Relational Joins in Hadoop: A module for Cloud9lib MapReduce library.

Mohamed Mohideen Abdul Rasheed

Big Data

Data is Everywhere: Information is accumulated at a staggering rate everywhere from small startups to massive corporations.

More Data = Better Insights: Research provides evidence that simple algorithms running on large data outperforms sophisticated algorithms running on smaller data set.

Business Intelligence: It is a widely accepted fact that these accumulated data (such as user logs) has the key to identify crucial business opportunities and will guide the companies make right decisions.

Hadoop

Hadoop is an open source implementation of the MapReduce – a framework for tackling data-intensive applications.

Widely adopted Big Data tool. (Facebook, Amazon, Microsoft,...) Active community for getting support

Less Investment

Open Source Runs on commodity hardware

Great Data Capabilities

Can handle data in the PB scale Support for unstructured and semistructured data sets.

Performance Tuning

Available at

Hadoop job configuration can be tuned to set internal sort properties appropriate to application characterstics to gain perfomance.

Deliverables

https://github.com/mohideen/cloud9

http://mohideen.github.com/Cloud9/

Experimentation Report & Documentation

Working Relational Join Module

Availble for download at

Chart showing time taken before (left) and after (right) performance tuning.

Relational Joins

"Relational Joins combine different data structures together and gain meaningful information from them."

Relational Joins are essential for any data warehousing application.

Hadoop Relational Join Techniques:

- Reduce-Side Joins
- Map-side Joins
- Memory Backed Joins
- Memcached Joins

To deliver a relational join module for UMD's Cloud9lib, an open source Hadoop library, developed by Dr. Jimmy Lin.

GOALS

➤ Learn Map-Reduce programming

Understand Hadoop Framework

> Contribute meaningfully to a project

Map Join vs Reduce Join

Set X: 1 Billion Rows (2 Integer & 3 String Fields) Uniform Distribution

Set Y: 600 Million Rows (3 Integer Fields) Uniform Distribution

Chart showing job durations for joins on same dataset pairs with increasing the number of tasks.

Techniques Implemented

Reduce-Side Joins – Caters applications with unorganized data. Less efficient. Suitable for Ad-hoc necessities.

Map-side Joins – Efficient technique but requires sorted-partitioned input data.

Experimentation on the cluster

Bespin: A 13-node UMIACS Hadoop Cluster with 78 Map Slots and 52 Reduce Slots.

Test Data:

Size ranging from 10 Millon to 1 Billion rows. Uniform and Zipf distributions