- 1. ((Independent and identical (i.i.d.) variables) Say we have independent random variables X and Y, and we know their probability density functions (PFDs) $f_X(t) = 2t e^{-t^2}$ and $f_Y(t) = 2t e^{-t^2}$ which are Rayleigh distributions. For a fixed value a > 0, find cumulative distribution functions (CDFs) of Z where (please provide all steps of your derivations)
 - (a) $Z = a(X + Y)^2$
 - (b) $Z = aX^2 + aY^2$
 - (c) $Z = \max(aX^2, aY^2)$
- 2. (Multi-antenna systems) A wireless system consists of a single-antenna transmitter and two antennas receiver. The multipath channel gain between the transmitter and the receiver antennas are h_1 and h_2 where their $|h_1|$ and |A| golfogni in that legit is tributed by with the limit power gain, i.e., $f_{|h_i|}(x) = 2x e^{-x^2}$. The average SNR of each branch (channel) is $\bar{\gamma}$.
 - (a) Write the receiver with maximal ratio combining and selection combining (SC).
 - (b) Derive closed-form expressions for the SNR outage probabilities for both MRC and Cohe where expressions for the SNR outage probabilities for both provide details of your derivation.
 - (c) Verify analytical outage probability expressions by using MATLAB simulations. You may plot outage probability vs average SNR $\bar{\gamma}$ where $\bar{\gamma}$ varies from -10 dB to 16 dB.
 - (d) Find the diversity orders and array gains for both MRC and SC. You may use asymptotic analysis for $\bar{\gamma} \to \infty$.
 - (e) (Optional) Plot asymptotic expressions on the same plot in (c).