Package 'NestedCategBayesImpute'

April 14, 2016

Type Package

Version 0.1

Index

Title Synthetic Household with Structure Zeros

Date 2016-02-15	
Author Quanli Wang, Jerry Reiter, Jingchen Hu and Olanrewaju Akande	
Maintainer Quanli Wang <quanli@stat.duke.edu></quanli@stat.duke.edu>	
Description The tool set provides a set of functions to fit Dirichlet process mixture models for nested categor cal data with structure zeros. It has has direct applications for generate synthetic households dat	
License GPL(>=3)	
LazyData TRUE	
Imports Rcpp (>= 0.12.0)	
LinkingTo Repp	
GetImpossibleHouseholds groupcount groupcount1D household households2individuals initData initOutput initParameters samplehouseholds samplezHH samplezmember UpdateAlpha UpdateBeta UpdateLambda	2 3 4 5 6 7 8 8 9 10 11 11 12
UpdatePhi 1 UpdatePi 1 UpdateW 1	

15

2 checkconstraints

Description

Checking the possible/impossible household status under predefined constraints due to structure zeros.

Usage

```
checkconstraints(data, neededpossiblehh)
```

Arguments

data A household datmatrix generated by calling samplinghouseholds. neededpossiblehh

The number of possible household one need before stopping checking.

Details

Given an input household data matrix, this functions will check the possible/impossible status of each household and also output the desired number of possible/impossible households separately.

Value

A list containing information on checking result.

outcome An indicator vector for possible/impossible household status under constraints.

Households A data matrix for impossible households

Index A vector for the original indexes of households when possible households are

found. Generally not to be used.

synHouseholds A data matrix for possible households.

possible The actural number of possible households returned.

Author(s)

${\tt GetImpossibleHouseholds}$

Generate the desired number of impossible households for given household size and model parameters.

Description

Generate the desired number of impossible households for given household size and model parameters. Also generate possible household data (synthetic data) when required.

Usage

GetImpossibleHouseholds(d, ACS_count, lambda, w, phi, pi, howmany, n, synindex)

Arguments

d number of levels for each variable.

ACS_count number of households for different household size. Need to change this name

later.

lambda parameters for the household level variables.

w w parameter.
phi phi parameter.
pi pi parameter.

howmany number households to be generated at each batch. It is used as a tuning parame-

ter for performance.

n number of household in the original input data.

synindex indicates if a possible household data(synthetic data) is needed.

Value

A list of variales relating to impossible household/individuals and synthetic data. Really confusing here and need more clarifiction.

Individuals_extra

A data matrix for individual members from the impossible households.

HHdata_extra A data matrix for impossible household level variables.

z_HHdata_individual_extra

A data matrix for impossible household level component indicators. The household level indicators are expanded to individual members within this data matrix.

z_HH_extra A vector for the household level component indicators.

hh_size_new A vector for the number of impossible households for different household size.

synIndividuals_all

A data matrix for individual members from the possible(synthetic) households when synindex is non-zero. NULL otherwise.

Author(s)

4 groupcount

groupcount

Generate 2D count table for two integer-valued vectors.

Description

Similar to 'table' function, this function builts a contingency table of the counts at each combination of all possible values from two integer-valued input vectors.

Usage

```
groupcount(g1, g2, n1, n2)
```

Arguments

g1	The first integer-valued input vector. The max value in g1 is n1.
g2	The second integer-valued input vector. The max value in g1 is n2.
n1	The maximum value in g1.
n2	The maximum value in g2.

Details

This is implemented as an utility function to build a 2D histogram count table. For efficiency, it does not check if the maxmim values in input vectors exceed the maximum values specified.

Value

The count table.

Author(s)

Quanli Wang

Examples

```
n1 <- 20
n2 <- 10
g1 <- sample.int(n1,1000, replace = TRUE)
g2 <- sample.int(n2,1000, replace = TRUE)
counts <- groupcount(g1,g2,n1,n2)</pre>
```

groupcount1D 5

groupcount1D

Generate histogram count for an integer-valued vector.

Description

Generate histogram count for an integer-valued vector.

Usage

```
groupcount1D(g, n)
```

Arguments

g An integer-valued input vector. The max value in g is n.

n The max value in g.

Details

This is implemented as an utility function for 1D histgram count. For efficiency, it does not check if the maxmim value in input vector exceeds the maximum value specified.

Value

The count values.

Author(s)

Quanli Wang

Examples

```
n <- 20
g <- sample.int(n,1000, replace = TRUE)
counts <- groupcount1D(g,n)</pre>
```

household

example dataset to be used for library development.

Description

This is the example data set that is used in Monica's paper (not exactly the same, but a new random sample of same size).

Usage

```
data("household")
```

6 households2individuals

Format

A data frame with 10000 observations on the following 9 variables.

```
Hhindex Household index

pernum Ask Monica to fill it in

sex Gender. 1 = male, 2 = female

race Recoded general race code. 1 = white alone, 2 = black alone,3 = American Indian/Alaska

Native alone,4 = Asian or Pacific Islander alone,5 = other, 6 = two or more races.

sthn Gender. 1 = male, 2 = female

age Age. 1=0(lessthenoneyearold),2=1,...,94 = 93

relate 1 = head/householder, 2 = spouse, 3 = child, 4 = child-in-law, 5 = parent, 6 = parent-in-law, 7 = sibling, 8 = sibling-in-law,9 = grandchild, 10 = other relatives,11 = partner, friend, visitor,12 = other non-relatives

ownership Ownership of dwelling. 1 = owned or being bought (loan), 2 = rented.

householdsize Household size. 2=2people,3=3people,4=4people.
```

Details

Monica please provide the details here about the dataset.

Source

From Monica. Need real sources.

References

Jingchen Hu, Jerome P. Reiter and Quanli Wang. Dirichlet process mixture models for nested categorical data. Vol 00(000). DOI: 0000.

Examples

data(household)

households2individuals

Convert a household data matrix to the corresponding individual household member data matrix.

Description

Convert a household data matrix to the corresponding individual household member data matrix.

Usage

households2individuals(data)

Arguments

data

household data matrix.

initData 7

Value

individual household member data matrix.

Author(s)

Quanli Wang

initData

Initilize the input data structure.

Description

Initilize the input data structure.

Usage

initData(household)

Arguments

household

A data matrix for the input household data.

Details

Curently the variables and the level of each variable are harded coded. This needs to be changed later on once it is generalized.

Value

A list object including all the necessary data variables needed by the model.

Author(s)

Quanli Wang

initOutput

Initilize output data structure for saved parameters.

Description

Initilize output data structure for saved parameters.

Usage

```
initOutput(data, hyper, mc)
```

Arguments

data Input data, including household info, and level of each variable.

hyper Hyper parameters for priors.

mc MCMC parameters.

8 samplehouseholds

Details

Currently, the program is harded code to the specific data format used in the paper. Needs to be generalized once a standard foramt is defined and the general format to define structural zeros is finalized.

Value

A list of output parameters to be saved.

initParameters

MCMC model parameters initilization.

Description

MCMC model parameters initilization.

Usage

```
initParameters(data, hyper)
```

Arguments

data The input data to be used in the model.

hyper Hyper parameters for the prior distributions.

Value

All the parameters that ae used and are to be updated by the model. Provide more details later once the individual parameters are documented.

Author(s)

Quanli Wang

samplehouseholds

Rcpp implementation for sampling household data without constraints.

Description

Rcpp implementation for sampling household data without constraints.

Usage

samplezHH 9

Arguments

phi	phi parameter
W	w parameter
pi	pi parameter

d the number of levels for each variable.
 lambda1 lambda for the first household level variable
 lambda2 lambda for rge second household level variable

currentbatch The current batch number for the household data to be generated. The household

ID will be generated based on this batch number.

nHouseholds The number of households to be generated by one call to this function.

householdsize The size of the household to be generated.

Details

This function allows the model to generate a batch of nHouseholds with each household of size householdsize. The generated household data will include both possible and impossible households.

Value

A data matrix with each row for one household.

Author(s)

Quanli Wang

samplezHH	Update household level component indexes.	
-----------	---	--

Description

Update household level component indexes.

Usage

```
samplezHH(phi, data, w, pi, S, HHdata, lambda1, lambda2)
```

Arguments

phi	phi parameters	
data	Input data.	
W	w parameter.	
pi	pi parameter.	

S household size variable.

HHdata Household level variables. Currently hard-coded to two variables in the paper.

lambda for household level variable 1

lambda for household level variable 2 (household size)

10 samplezmember

Details

Need to add more details by Monica or Michael.

Value

A list with two variables.

zHH component indexes for input households

z_HH_Individuals

component indexes for input individuals

Author(s)

Quanli Wang

samplezmember

Update individual level component indezes.

Description

Update individual level component indezes.

Usage

```
samplezmember(phi, data, w, zHH, serial)
```

Arguments

phi phi parameter. data input data. w w parameters.

zHH household level component indexes.

serial Initial household indexes.

Value

A vector for the updated individual level component indexes.

Author(s)

UpdateAlpha 11

UpdateAlpha

Update alpha parameter

Description

Update alpha parameter.

Usage

```
UpdateAlpha(aa, ab, u)
```

Arguments

aa hyper parameter a for alpha ab hyper parameter b for alpha

u u parameter

Value

updated alpha parameter.

Author(s)

Quanli Wang

UpdateBeta

Update beta parameter

Description

Update beta parameter.

Usage

```
UpdateBeta(ba, bb, v)
```

Arguments

ba hyper parameter a for beta.bb hyper parameter b for beta.

v parameter v.

Value

Updated beta parameter.

Author(s)

12 UpdatePhi

UpdateLambda	Update lambda parameters

Description

Update lambda parameters.

Usage

```
UpdateLambda(dHH, K, z_HH_all, HHdata_all)
```

Arguments

dHH A vector for number of levels for each household level variable.

K Maximum number of components at the household level.

z_HH_all Component indicators at the household level for all households, including all

impossible households.

HHdata_all Data matrix for household level variables for all households, including all im-

possible households.

Value

Updated phi parameter.

Author(s)

Quanli Wang

Description

Update phi parameter.

Usage

```
UpdatePhi(IndividualData_all, z_Individual_all, K, L, p, d, maxd)
```

Arguments

IndividualData_all

data matrix for all individuals, including invididuals from impossible households.

 $z_{Individual_all}$

component indicator matrix for all indiciduals, including individuals from im-

possible households.

K Maximum number of components at the household level.

L Maximum number of components at the individual level.

UpdatePi 13

p Number of individual level variables in the model.

d A vector for number of levels of each individual level variable.

maxd Maximum number of levels from all individual level variables.

Value

Updated phi parameter.

Author(s)

Quanli Wang

UpdatePi

Update pi parameter

Description

Update pi parameter.

Usage

```
UpdatePi(alpha, z_HH_all, K)
```

Arguments

alpha alpha parameter.

z_HH_all component indicator at the household level for all households, including impos-

sible households.

K Maximum number of components at the household level.

Value

updated pi parameter.

Author(s)

14 UpdateW

UpdateW

Update W and v parameters

Description

Update W and v parameters.

Usage

```
UpdateW(beta, z_Individual_all, K, L)
```

Arguments

beta Beta parameter.

z_Individual_all

component indicator matrix for all indiciduals, including individuals from im-

possible households.

K Maximum number of components at the household level.

L Maximum number of components at the individual level.

Value

A list containing updated W and v parameters.

Author(s)

Index

*Topic constraints
checkconstraints, 2
*Topic datasets
household, 5
*Topic example
household, 5
*Topic household data without
constraint
samplehouseholds, 8
*Topic household data
household, 5
*Topic household level
samplezHH, 9
*Topic impossible household
checkconstraints, 2
GetImpossibleHouseholds, 3
*Topic individual level
samplezmember, 10
*Topic possible household
checkconstraints, 2
*Topic sampler
GetImpossibleHouseholds, 3
samplehouseholds, 8
samplezHH,9
samplezmember, 10
UpdateAlpha, 11
UpdateBeta, 11
UpdateLambda, 12
UpdatePhi, 12
UpdatePi, 13
UpdateW, 14
*Topic synthetic data
GetImpossibleHouseholds, 3
*Topic utility function
households2individuals, 6
checkconstraints, 2
GetImpossibleHouseholds, 3
groupcount, 4
groupcount1D, 5
O p y
household, 5
households2individuals, 6

```
initData, 7
initOutput, 7
initParameters, 8

samplehouseholds, 8
samplezHH, 9
samplezmember, 10

UpdateAlpha, 11
UpdateBeta, 11
UpdateLambda, 12
UpdatePhi, 12
UpdatePi, 13
UpdateW, 14
```