Big Data

Tuur Vanhoutte

8 februari 2021

Inhoudsopgave

1	Und	lerstanding Data Intensive Applications	1
	1.1		1
		1.1.1 Use case: data intensive application RouteYou	1
	1.2	=	
		1.2.1 Common similar abbreviations	
		1.2.2 Methods to improve Maintainability	2
		1.2.3 RAMS applied to Route You application	2
	1.3	Learning outcome for this module	2
	1.4	Scaling	3
		1.4.1 MySQL scaling	3
		1.4.2 ElasticSearch Scaling: distributed system	3
		1.4.3 Professional architecture (Dev oriented)	4
		1.4.4 Time series Distributed database (OpenTSDB, InfluxDB)	4
	1.5	Scalability & application performance management	4
		1.5.1 The need for speed: some insights from Google	4
		1.5.2 Response times for websites	
		1.5.3 4 components of network latency	5
			5
		1.5.5 Long tail latency	7
	1.6	Conclusion	
2	Prof	fessional storage	8
	2.1	Cloud MIPS	
	2.2	Latency vs storage space pyramid	8
	2.3	Storage media	9
		2.3.1 Magnetic disks	9
		2.3.2 Flash (NAND) / SSDs	9
		2.3.3 Big difference between read and writing	
		2.3.4 IOPS vs Bandwidth	C
		2.3.5 Storage options	
	2.4	Professional Storage Topology	1

1 Understanding Data Intensive Applications

1.1 Why Big Data?

1.1.1 Use case: data intensive application RouteYou

Figuur 1: RouteYou

- Routes user preferences & interests
- · Searcheable Text data
- · Geospatial data
- · Community driven
 - Exponential user growth is necessary to make the application posssible
 - Server power/bills should grow linearly

1.2 Data Intensive Application: RAMS!

- Reliable
 - tolerating human mistakes
- Available
- Maintainable
 - Easy to adapt (evolvability)
 - Easy to deploy & operate (operations/sys admins)
- Scalable
 - User growth while maintaining low response times

1.2.1 Common similar abbreviations

- Infrastructure: RAS (Reliable, Available, Serviceable)
- Developer: RMS (Reliable, Maintainable, Scalable)

1.2.2 Methods to improve Maintainability

- Github
- · Error handling
- · Relative paths (not absolute)
- Abstraction (REST API, ...)
- Documentation

1.2.3 RAMS applied to RouteYou application

- Geospatial data (longitude, latitude)
- · Available & scalable
- · Scalable & low response time
- · Community driven unstructured text
- Maintainable: automatic classification of community input (ML)

Figuur 2: To support many users, you need a caching layer

1.3 Learning outcome for this module

Being able to make infrastructure & software choices to build a Reliable, Available, Maintainable & Scalable (RAMS) data intensive application.

- · Deep insights into database technology & cloud services
- · Connecting with Machine Learning & AI
- Configuring a data back-end (in the cloud or locally)

1.4 Scaling

1.4.1 MySQL scaling

Figuur 3: Transactions/sec

• Processing power of 16-64 = slightly less then 4x

• Real performance: 2.3x

• = scaling up: add more processing power to the system

1.4.2 ElasticSearch Scaling: distributed system

Figuur 4: Response time per request

• Scaling out: add more servers to your data system

1.4.3 Professional architecture (Dev oriented)

Figuur 5: Professional architecture diagram

· Reverse proxy / Load balancer: improves scalability

• Opcode/app/Webserver: webservice + API

• Key-value store: 'caching layer'

• Database server: distributed storage system + relational database

1.4.4 Time series Distributed database (OpenTSDB, InfluxDB)

Figuur 6: Data from windmill sensors. Most sensors log about every second

- · Losing data is not that big a problem
- · Massive amount of data to write

1.5 Scalability & application performance management

Response times and percentiles rule the web

1.5.1 The need for speed: some insights from Google

- Speed is a ranking factor
- · When your site has high response times, less URLs will be crawled from your site
- 53% of visits are abandoned if a site takes longer than 3 seconds to load

· Slow websites will be labeled by Google Chrome

1.5.2 Response times for websites

• Ideal: "blink of an eyeïs 300-400 ms

• Excellent: 500ms to 1.5 seconds at most

· Barely acceptable: 3 seconds

Response time = Network latency + processing

- 2.9 seconds is faster than 50% of the web
- 1.7 seconds is faster than 75% of the web
- 0.8 seconds is faster than 94% of the web

1.5.3 4 components of network latency

Figuur 7: Network latency diagram

- · Processing delay
 - Processing network software stack (TCP/IP layers)
 - Routing decisions
- · Transmission delay
 - Bits on physical link (Bandwidth plays a big role, ex: 1Gbit/s)
- · Propagation delay
 - Speed of EM signals in fiber: 200.000 km/s (67% of lightspeed)
 - Changes with distance and medium (Copper: 64% of lightspeed)
- Queing delay
 - Time spent in router & NIC buffers

1.5.4 TCP Congestion Window - slow start

- Network congestion = a network node or link is carrying more data than it can handle
- The internet is built around dropped packages

Figuur 8: TCP Congestion window

- 4-8-16-32 TCP segments (Win 2008, Win7)
- 10-20-40 (Linux 2.6+, Windows Server 2016 / Windows 10)

Figuur 9: Because of many handshakes, there is a lot of latency

- Solution: KeepAlive of a HTTP Persistent Connection
 - Only one 3-way handshake for many requests
 - Lower network & CPU load
 - Lower response times
 - **Downside**: more connections open \Rightarrow more memory, more connection failures, app crashing, . . .
- Measure parallel requests of a website using https://www.webpagetest.org/
- · Get a waterfall view of a webpage

1.5.5 Long tail latency

Figuur 10: Long tail latency vs Normal latency

- Average = useless
- Long tail latency = 99th percentile
 - To be experienced by a lot more than 1% of users!
- · Best customers encounter highest percentiles
- · URL consists of many requests

1.6 Conclusion

- Our goal is RAMS (or RASS)
- Many data models & stores: transactional, timeseries, text search
- Website 99th percentile + DNS + TCP \Rightarrow < 2s response time
 - Efficient caching
 - Think about your architecture (infrastructure + software) before coding

2 Professional storage

2.1 Cloud MIPS

Figuur 11: MIPS = Million Instructions Per Second

2.2 Latency vs storage space pyramid

Figuur 12: The higher the performance, the higher the cost per byte of storage

2.3 Storage media

2.3.1 Magnetic disks

Figuur 13: Massive capacity but mechanical latency

- · Seek time and latency are the key bottlenecks
- Need large quantity of disks for good server performance

2.3.2 Flash (NAND) / SSDs

Figuur 14: Flash storage

- NAND = MOSFET + floating gate
- Voltage between control gate and N+: electrons in floating gate
- · This works very quickly

2.3.3 Big difference between read and writing

	MLC NAND flash
Random Read (page)	50-100 μs
Erase (block)	1000-2000 μs per block
Programming (page)	40-250 μs

Figuur 15

- · Limited number of writes
- · Slow block write
- Limited "normal"write (programming)

2.3.4 IOPS vs Bandwidth

- · Transactions & virtualized workloads: lots of random access
- Timeseries fileserving: mostly sequential
- HDD: random performance can be extremely low to medium
- IOPS = Input/Output Operations Per Second

Storage device	Seagate Enterprise HDD	Intel SSD NVMe
	ST8000NE0001	DC3700
Capacity	8 TB	800 GB
Spindle speed (rpm)	7200	N/A
Max. BW (MB/s)	230	600
Latency (ms)	4,16	N/A
Seek time	8	N/A
Total Random read time ms	12	0,08
		1000 Random 4 KB
Random Performance	1000 Random 4 KB blocks	blocks
Total Random read time (ms)	12000	80
Transfer time (ms)	17,4	6,7
Sustained Transfer rate (MB/s)	0,33	46,15
IOPS	83	11538
Sequential Performance	1x 4 MB block	1x 4 MB block
Total Random read time (ms)	12	0,08
Transfer time (ms)	17	7
Sustained Transfer rate (MB/s)	136	593

Figuur 16: An enterprise HDD vs an NVME SSD

2.3.5 Storage options

	Media Type	Interfac e	Read Latency (µs)	Write latency (µs)	Random IOPS	BW (MB/s)
HDD	Magnetic	SATA	10.000	10.000	100	1-200
Low-end SSD	NAND Flash	SATA	100-300+	40- 2000+	5k-20k	100-550
High-end SSD	NAND Flash	NVMe	100-200+	20- 1000+	50-200k	100-1800
3D-Xpoint	Electric resistanc e	NVMe	10-40	10-60	500+k	200-2000

Figuur 17: Storage options

Туре	Queue depth	Random?	Write vs Read	Perf consistency
HDD	As low as possible (1-2)	Sequential! Random as low as 50 IOPS	Write slightly slower	Terrible (1 -200 MB/s)
Low-end SSD	8-16	Random	Write can be a lot slower	IOPS writes can vary 2-4x
High-end SSD	16+	Both	Write can be a lot slower	IOPS writes can vary 10- 30 percent
3D-Xpoint	2+	Both	Does not matter	Very good

Figuur 18: Performance Conditions

2.4 Professional Storage Topology