CS308 Homework 1

Exercises for Algorithm Design and Analysis by Li Jiang, 2016 Autumn Semester

 $Name: \underline{Gao\ Chao} \quad Student\ ID: \underline{5142029014} \quad Email:\ gaoc96@163.com$

Coverage: This assginment covers the chapter 3.7 including coverting NFA to DFA, regular expression to DFA and transition table.

- 1. (Section 3.7, Exercises 3.7.1) Convert to DFA's the NFA's of:
 - (a) Fig. 3.26.

图 1: Fig. 3.26.

(b) Fig. 3.29.

图 2: Fig. 3.29.

(c) Fig. 3.30.

图 3: Fig. 3.30.

(a) solution of a

NFA state	DFA state	a	b
{ 0, 1, 3 }	A	В	С
{ 2 }	В	В	Ø
{ 4 }	С	Ø	С

表 1: transition table

图 4: DFA

(b) solution of b

NFA state	DFA state	a	b
{ 0 }	A	В	Α
{ 0, 1 }	В	С	В
{ 0, 1, 2 }	С	С	D
{ 0, 1, 2, 3 }	D	С	D

表 2: transition table

图 5: DFA

(c) solution of c

NFA state	DFA state	a	b
{ 0, 1, 2, 3 }	A	A	A

表 3: transition table

图 6: DFA

2. (Section 3.7, Exercises 3.7.2) use Algorithm 3.22 to simulate the NFA's on input aabb regarding the above Fig 3.29 and Fig 3.30.

Algorithm 3.22:

INPUT: An input string x terminated by an end-of-file character eof. An NFA N with start state s_0 , accepting states F, and transition function move.

OUTPUT: Answer "yes" if N accepts x. Answer "no" otherwise.

$$\mathbf{EXAMPLE:} - start - > \{0\} - a - > \{0,1\} - a - > \{0,1,2\} - b - > \{0,2,3\} -$$

Solutions:

$$\begin{array}{l} 1. \ -start -> \{0\} -a -> \{0,1\} -a -> \{0,1,2\} -b -> \{0,1,2,3\} -b -> \{0,1,2,3\} \\ 2. \ -start -> \{0,1,2,3\} -a -> \{0,1,2,3\} -a -> \{0,1,2,3\} -b -> \{0,1,2,3\} \\ \{0,1,2,3\} \end{array}$$

3. (Section 3.7, Exercises 3.7.3) Convert the following regular expressions to deterministic finite automata, using algorithms 3.23 and 3.20:

Algorithm 3.20:

INPUT: An NFA N.

OUTPUT: A DFA D accepting the same language as N.

Algorithm 3.23:

INPUT:A regular expression r over alphabet \sum .

OUTPUT: An NFA N accepting L(r).

- (a) $(a|b)^*$
- (b) $(a^*|b^*)^*$
- (c) $((\varepsilon|a)|b^*)^*$

EXAMPLE:

NFA:

Transition table:

NFA State	DFA State	\boldsymbol{a}	b
{0,1,3}	A	В	С
{2}	В	В	0
{4}	C	0	C

DFA:

图 7: An example.

${\bf Solutions:}$

(a) $(a|b)^*$

图 8: NFA

NFA state	DFA state	a	b
{ 0, 1, 2, 4, 7 }	A	В	С
{ 1, 2, 3, 4, 6, 7 }	В	В	С
{ 1, 2, 4, 5, 6, 7 }	С	В	С

表 4: transition table

图 9: DFA

(b) $(a^*|b^*)^*$

图 10: NFA

NFA state	DFA state	a	b
{ 0, 1, 2, 3, 5, 6, 7, 9, 10, 11 }	A	В	С
{ 1, 2, 3, 4, 5, 6, 7, 9, 10, 11 }	В	В	С
{ 1, 2, 3, 5, 6, 7, 8, 9, 10, 11 }	С	В	Γ

表 5: transition table

图 11: DFA

(c) $((\varepsilon|a)|b^*)^*$

图 12: NFA

NFA state	DFA state	a	b
{ 0, 1, 2, 3, 4, 6, 7, 9, 10 }	A	В	С
{ 1, 2, 3, 4, 5, 6, 7, 9, 10 }	В	В	С
{ 1, 2, 3, 4, 6, 7, 8, 9, 10 }	С	В	С

表 6: transition table

图 13: DFA