亥姆霍兹线圈磁场实验

课	次	
班号:	日期:	实验室名称:
试验人:		指导老师:

实验目的

- (1) 学习感应法测量磁场的原理和方法:
- (2) 研究研究亥姆霍兹线圈周线上的磁场分布.

主要仪器

磁场测试仪、亥姆霍兹线圈架和亥姆霍兹磁场实验控制箱. 工作温度 10~35℃, 相对湿度 25%~75%.

两个励磁线圈各 500 匝,圆线圈的平均半径 $R=105\,\mathrm{mm}$,两线圈中心间距 $105\,\mathrm{mm}$. 感应线圈距离分辨率 $0.5\,\mathrm{mm}$.

实验原理

—、

载流圆线圈与亥姆霍兹线圈

1、载流圆线圈磁场

半径为R通以电流为I的圆线圈,周线上磁场的公式为

$$B = \frac{\mu_0 N_0 I R^2}{2(R^2 + X^2)^{\frac{3}{2}}}$$

式中 N_0 为线圈的匝数; x 为轴上某一点到圆心 O 的距离; $\mu_0 = 4\pi \times 10^7 \, H \cdot m^{-1}$.本次实验取 I=200mA.

2、亥姆霍兹线圈

两个相同线圈彼此靠近,使线圈上通以同向电流理论计算证明:线圈间距a等于线圈半径R时,两线圈合场在轴附近较大范围内是均匀的.这时线圈称为亥姆霍兹线圈,如图所示.

设由交流信号驱动的交变磁场的强度 $B=B_m\sin\omega t$,设有一个探测线圈放在这个磁场中,通过这个探测线圈的有效磁通量为

$$\Phi = NSB_m \cos\theta \sin\omega t$$

式中,N 为探测线圈的匝数,S 为线圈的截面积; θ 为 B 与线圈法线夹角.线圈产生的感应 电动势为

$$\varepsilon = -\frac{\mathrm{d}\Phi}{\mathrm{d}t} = NS\omega B_m \cos\theta \cos\omega t = -\varepsilon_m \cos\omega t$$

当 $\theta=0$ 时, $\varepsilon_{\max}=NS\omega B_{m}$.用数字式毫伏表测量此时线圈的电动势,则其示值 U_{\max} 应为

$$\frac{\varepsilon_{\text{max}}}{\sqrt{2}}$$
, \mathbb{M}

$$B_{\text{max}} = \frac{\varepsilon_{\text{max}}}{NS\varepsilon} = \frac{\sqrt{2}U_{\text{max}}}{NS\omega} \tag{1}$$

由(1)式可以计算出 B_m .

实验内容

- 1. 测量亥姆霍兹线圈周线上的磁场分布
- 2. 验证公式 $\varepsilon_m = NS\omega B_m \cos\theta$
- 3. *研究励磁电流频率改变对磁场强度的影响 数据记录与处理:

表 1

载流圆线圈轴线上的磁场分布

轴向距L(mm)	10	0	-10	-20	-30	-40	-50
实测磁场 B (mT)	0.345	0.387	0.426	0.466	0.5	0.525	0.534
轴向距L(mm)	-60	-70	-80	-90	-100	-110	
实测磁场 B (mT)	0.532	0.516	0. 491	0, 455	0.414	0.372	

作出 B——L 图象:

表 2

亥姆霍兹线圈轴上磁场分布

轴向距L (mm)	-110	-100	-90	-80	-70	-60	-50	-40	-30	-20	-10	0
实测磁场 B (mT)	0. 458	0.514	0. 569	0.623	0.669	0.708	0. 738	0.755	0.765	0.772	0.772	0.772
轴向距 L (mm)	10	20	30	40	50	60	70	80	90	100	110	
实测磁场 B (mT)	0.771	0.771	0.768	0.758	0.741	0.714	0. 673	0.625	0.572	0.518	0.462	

注意事项

- 1、开机后应至少预热 10 分钟才可进行试验.
- 2、更换测量位置时,应切断励磁线圈的电流后将将感应电动势调零;之后再通电测量读数.这时为了抵消地磁场的影响及对其他不稳定因素的补偿.

试验建议

HD4501型亥姆霍兹磁场试验仪使用螺旋转轴的旋转来控制探测线圈的移动. 螺纹的螺距较小,这样可以提高调节的精度;但也使较大距离的移动很不方便. 如果如果再次制造该类型的仪器,可以考虑使用较大螺距的螺纹.

本实验使用的装置可谓"一体化",这使操作很方便;但这也使主要实验误差来源于仪器本身,限制了实验可能达到的精度. 实验数据:

