

How to Connect Smart Dusts

DaoliName Service

May 2019

Connect Smart Dusts? May I know your name dust?

- Once upon a time, like father like son in the name of, ..., postcode, library study, inventory management, ..., domain names, ...
- 1992: DARPA-CNRI proposed "Handle System"
- 1994: DOI (Digital Object Identifiers) implementation
- 2003: IETF Handle System RFCs
 - RFC-3650 Handle System Overview
 - RFC-3651 Handle System Namespace and Service Definition
 - RFC-3652 Handle System Protocol (ver 2.1) Specification
- 2017: Chinese IoT Name Resolution Whitepaper

What's in common: GoodIDs = universally uniquely identifiable, structured, suit-to-human, scalably manageable

Peer-to-Peer Connection Multiply²

One phone is useless

Two phones are very useful, no wonder cryptographers are so addicted to study Alice and Bob

Metcalfe's Law: n phones p2p connected = n² multiply revenue for, e.g., "The Phone Company"

However unless phone numbers are structurally organized, line plugging girls would have been in nightmarish job

Mandate From 2019: Smart Dusts Must Know Each Other Securely

With dusts already smart, crypto does authentication Public Key: n nodes authentication complexity = n

- With random private key → random public key, in a close system, e.g., BTC, blockchain, peer nodes having random ID features anonymity! Who is Nakamoto? p2p = r2r (r = random)
- PKI: CA binds a GoodID to a random public key.
 A cert may be huge to have all revoked certs.
 PKI has never won clients, let alone mobiles
 (Trust CA, not the figure in the right!)
- PGP: The 1st Amendment free exporting RSA!
- Identity Based Crypto: GoodID is public key!
 Need Private Key Generator (PKG). Centralized gravity for attacks! Why no semblance of impact since a promising proposal for 20 years?

An Awesome Example of Managing GoodIDs

Domain Names: Well structured, global scale searchable, DNS binds DN as a GoodID to a more random looking IP

DNS is an interactive query-answer system, pyramid sale structure and management efficiency, and the service enjoys natural monopoly

GoodID as a Public Key (IDaaPK) Inspiration from Interaction

- Consider a DN = public key, a client can verify binding (DN, IP). IBC can offer a good DNS security solution
- Observe, a returned IP can also be a public key, though looking random, bilinear pairing can verify the binding
- Q: What is one more IPaaPK for?
- Eureka! The private key behind this IPaaPK needn't be generated by PKG anymore!
- Centralized gravity for attacks and single point failure is dispersed

Trustlessly Agreeable Diffie-Hellman Quadruple Membership Decision

Bilinear Pairing, bilinearity easily computable

$$\hat{e}(U+V,U') = \hat{e}(U,U') \times \hat{e}(V,U')$$

$$\hat{e}(U,U'+V') = \hat{e}(U,U') \times \hat{e}(U,V')$$

Let Alice₁, Alice₂ be "pairing friendly elliptic curve" points which are deterministically derived from Alice's GoodID. The following equation is publicly decidable, i.e., Trustlessly Agreeable.

 $P"+"Q"+"R = \mathbf{0}$

Decision does not need to know Alice's private key k_{Alice}

$$\hat{e}(\text{Alice}_1, [k_{\text{Alice}}] \text{Alice}_2) = \hat{e}([k_{\text{Alice}}] \text{Alice}_1, \text{Alice}_2)$$

(Alice₁, Alice₂, $[k_{Alice}]$ Alice₁, $[k_{Alice}]$ Alice₂) is called Trustlessly Agreeable Diffie-Hellman Quadruple (TADHQ). Publicly decidability of TADHQ means it contains ONLY GoodID. Entering TADHQ in a public blockchain service, GoodID is publicly agreeable being cryptography worthy public key(s).

DaoliName Service for IDaaPK

Distributed consensus ledger fixation of TADHQ for IDaaPK:

- No one can alter TADHQ, i.e., GoodID based IDaaPK, fixation once entering a distributed consensus ledger
- No CA, no PKG, no centralized single point of attack or failure
- Peer-to-peer, e.g., mobile phone VPN overlaying social network
- Service handles no secret and can be easily elastically scaled in world wide distributed replicas
- IDaaPK uses ID-asking, IDaaPKanswering online service, so it has inherent key revocation (Who can live offline today, not even a cryptographer!)

Applications

DA@LI NAME

- DNs are GoodIDs, IPs bound to DNs are GoodIDs too, therefore SSL like web security can straightforwardly use IDaaPK: No CA, no cert, no muss, no fuss
- IPSec VPN: No CA, no cert, off you go!
- Clients IDaaPK: SSL two-way authentication for the first time
- Overlay "VPN" on top of social media network as underlay, e.g., secure, private, business and office uses of WeChat, Facebook, and the like
- IoT security, ...

Try it NOW!

http://daoliname.com:8080/daoliname.apk

(Android for the moment, other OSes soon)

The Future is Private AND NOT Centralized

