Topic: Chemical Combinations III

Subtopics:

- 1. Naming of Chemical Compounds
- 2. Conventional Naming vs IUPAC Naming

Lesson Objectives:

By the end of this lesson, students should be able to:

- Understand how to name chemical compounds correctly.
- Differentiate between **conventional names** and **IUPAC names**.
- Apply **IUPAC rules** for naming simple compounds.
- Write the names and formulae of **common compounds**.

1. Naming of Chemical Compounds

Why is Naming Important?

- To identify and classify compounds.
- To communicate **clearly and universally** in science.
- To understand the **composition of compounds** from their names.

Types of Chemical Compounds:

Type of Compound Examples

Ionic Compounds NaCl, MgO

Covalent Compounds H₂O, CO₂

Acids HCl, H₂SO₄

Bases NaOH, Ca(OH)₂

Salts Na₂SO₄, KNO₃

2. Conventional Naming vs IUPAC Naming

a) Conventional Naming

- Names are based on historical usage or local language.
- Often do not follow systematic rules.
- Widely used in daily life and industry.

Examples of Conventional Names:

Compound Conventional Name

NaCl Common Salt

H₂O Water

NH₃ Ammonia

CaCO₃ Chalk or Limestone

H₂SO₄ Oil of Vitriol

NaOH Caustic Soda

b) IUPAC Naming

IUPAC stands for **International Union of Pure and Applied Chemistry**.

- Provides standardized naming rules.
- Ensures consistency and global understanding.
- Names indicate the **composition of the compound**.

Basic IUPAC Rules for Naming Compounds:

Ionic Compounds (Metal + Non-Metal)

Formula: Metal + Non-Metal (add -ide ending)

Compound IUPAC Name

NaCl Sodium chloride

MgO Magnesium oxide

CaBr₂ Calcium bromide

K₂S Potassium sulphide

If the metal has multiple valencies, use Roman numerals:

Compound Name

FeCl₂ Iron(II) chloride

FeCl₃ Iron(III) chloride

CuO Copper(II) oxide

Cu₂O Copper(I) oxide

Covalent Compounds (Non-Metal + Non-Metal)

Use **prefixes** to indicate the number of atoms:

Prefix Number

Mono 1

Di 2

Tri 3

Tetra 4

Penta 5

Hexa 6

Examples:

Compound IUPAC Name

CO Carbon monoxide

CO₂ Carbon dioxide

N₂O Dinitrogen monoxide

NO₂ Nitrogen dioxide

PCl₅ Phosphorus pentachloride

SO₃ Sulphur trioxide

Acids

Formula Name

HCl Hydrochloric acid

H₂SO₄ Sulphuric acid

HNO₃ Nitric acid

H₂CO₃ Carbonic acid

Bases

Formula Name

NaOH Sodium hydroxide

KOH Potassium hydroxide

Ca(OH)₂ Calcium hydroxide

NH₄OH Ammonium hydroxide

Salts

Derived from the reaction of acid + base.

Salt Acid Base

NaCl HCl NaOH

KNO₃ HNO₃ KOH

CaSO₄ H₂SO₄ Ca(OH)₂

Oxyanions (Compounds with Oxygen)

Ion Name

NO₃⁻ Nitrate

NO₂ Nitrite

SO₄²⁻ Sulphate

SO₃²⁻ Sulphite

CO₃²⁻ Carbonate

PO₄³⁻ Phosphate

3. Differences Between Conventional and IUPAC Naming

Conventional Name IUPAC Name

Water Dihydrogen monoxide (rarely used, but correct IUPAC name)

Ammonia Nitrogen trihydride

Baking Soda Sodium hydrogen carbonate

Caustic Soda Sodium hydroxide

Chalk Calcium carbonate

Oil of Vitriol Sulphuric acid

4. Importance of IUPAC Naming

- Prevents confusion across languages and regions
- Helps in learning chemical structure
- Makes chemical communication universal

Summary of Key Points

Concept Meaning

Conventional Naming Names based on history or local usage

IUPAC Naming Systematic global naming of compounds

Ionic Compounds Metal + Non-metal (-ide ending)

Covalent Compounds Non-metal + Non-metal (use prefixes)

Acids/Bases/Salts Named based on reaction with water

Conclusion

Understanding **chemical naming systems** is crucial for reading, writing, and communicating in chemistry.

The **IUPAC** system helps students and scientists worldwide to describe chemicals in a **clear and** standard way.