

# Université d'Ottawa • University of Ottawa

Faculté des sciences Mathématiques et de statistique Faculty of Science Mathematics and Statistics

DISCRETE MATHEMATICS FOR COMPUTING

Instructor: Elizabeth Maltais

## MAT1348C — Practice Final Exam — for practice only

- ♦ Clearly write your name and student number on this exam, and **sign it** below to confirm that you will read and follow these **instructions**:
- ♦ This is a 3-hour **closed-book** practice final exam. **No notes. No calculators.**
- ♦ This exam consists of 22 questions on 18 pages (including this cover page). The total number of pretend points possible is 60 points.
- ♦ Questions 1–6 are **multiple-choice**. In each question, you must select the correct response. You do not need to justify your answers.
- ♦ Questions 7–10 are **true-or-false**. Circle the correct response. You do not need to justify your answers.
- Questions 11–17 are short-answer. Write the final answer in the appropriate answer box. Whenever indicated, you must briefly justify your answers in order to receive full (pretend) marks.
- ♦ Questions 18–22 are **long-answer**. To receive full (pretend) marks, your solution/proof must be complete, correct, and show all relevant details.
- Read all questions carefully and be sure to follow the instructions for the individual problems.
  You may ask for clarification.
- ♦ You must use proper mathematical notation and terminology.
- For rough work or additional space, you may use Page 18 or the backs of pages.
   Do not use any of your own scrap paper.

| FAMILY NAME: | STUDENT NUMBER: |
|--------------|-----------------|
| FIRST NAME:  | †Signature:     |

|                     | multiple-choice | true-or-false | short-answer | long-answer | TOTAL     |
|---------------------|-----------------|---------------|--------------|-------------|-----------|
| max points possible | 12              | 9             | 15           | 24          | 60 points |
| points obtained     |                 |               |              |             |           |

#### MULTIPLE-CHOICE QUESTIONS.

Write your choice in the answer box. No justification is needed.

- **Q1.** Let  $A = \{1, 2\}$  and let  $B = \{s, t, u, v, w\}$ . How many **injective** functions are there from A to B?
  - **A.** 20

**B.** 25

**C.** 32

**D.** 0

**E.** 10

 ${f F.}$  None of the previous answers.

Answer: [2 points]

**Q2.** Let  $\mathcal{R}$  be the equivalence relation on the set  $A = \{-6, -2, 0, 1, 4, 5, 6, 7, 15\}$  defined by  $x\mathcal{R}y \iff \left(x \equiv y \pmod{5} \text{ or } x \equiv -y \pmod{5}\right)$ 

Which one (if any) of the following statements is **true**?

- **A.**  $\{-6,6\}$  is an equivalence class with respect to  $\mathcal{R}$ .
- **B.**  $[-2]_{\mathcal{R}} = [6]_{\mathcal{R}}$ .
- **C.**  $\mathcal{P} = \{\{-6, -2\}, \{0\}, \{1, 4, 5, 6, 7, 15\}\}\$  is the partition of A into equivalence classes.
- **D.**  $\mathcal{P} = \{\{-6, 1, 4, 6\}, \{-2, 7\}, \{0, 5, 15\}\}\$  is the partition of A into equivalence classes.
- E.  $4\mathcal{R}7$ .
- **F.** None of the above.

Answer:

[2 points]

**Q3.** One of the following statements is **false**. Which one?

- **A.**  $A \cap (B \cup \overline{C}) = (A \cap B) \cup (A \cap \overline{C})$
- **B.**  $\overline{A} \cap (B \cup C) = A \cup (\overline{B \cup C})$
- C.  $A \cup (\overline{B \cap C}) = \overline{\overline{A} \cap (B \cap C)}$
- **D.**  $(\overline{A} \cup \overline{B}) \cap C = (\overline{A} \cap C) \cup (\overline{B} \cap C)$
- **E.**  $(A \cup B) \cup \overline{C} = \overline{(\overline{A \cup B}) \cap C}$



**Q4.** How many strings of length 6 with symbols from  $\{a, b, c, d, e\}$  start with 'ace' or end with ee'? (this is inclusive or)

- **A.** 755
- **B.** 36
- **C.** 750
- **D.** 35
- **E.** 745
- **F.** 34

| Q5. | <b>5.</b> Let $G$ be a graph with 7 vertices and 10 edges. If every vertex of $G$ has degree 2 or 3 how many vertices of each degree does $G$ have? |                                                                           |              |              |             |              |              |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------|--------------|-------------|--------------|--------------|--|--|--|
|     | Α.                                                                                                                                                  | <b>A.</b> $G$ has 0 vertices of degree 2 and 7 vertices of degree 3.      |              |              |             |              |              |  |  |  |
|     | В.                                                                                                                                                  | <b>B.</b> $G$ has 1 vertex of degree 2 and 6 vertices of degree 3.        |              |              |             |              |              |  |  |  |
|     | C.                                                                                                                                                  | $\mathbf{C}$ . $G$ has 2 vertices of degree 2 and 5 vertices of degree 3. |              |              |             |              |              |  |  |  |
|     | D.                                                                                                                                                  | <b>D.</b> $G$ has 3 vertices of degree 2 and 3 vertices of degree 3.      |              |              |             |              |              |  |  |  |
|     | <b>E</b> .                                                                                                                                          | <b>E.</b> $G$ has 4 vertices of degree 2 and 3 vertices of degree 3.      |              |              |             |              |              |  |  |  |
|     | F.                                                                                                                                                  | <b>F.</b> No such graph exists.                                           |              |              |             |              |              |  |  |  |
|     |                                                                                                                                                     |                                                                           |              |              |             |              |              |  |  |  |
|     |                                                                                                                                                     |                                                                           |              |              |             |              |              |  |  |  |
|     |                                                                                                                                                     |                                                                           |              |              |             |              |              |  |  |  |
|     |                                                                                                                                                     |                                                                           |              |              |             |              |              |  |  |  |
|     |                                                                                                                                                     |                                                                           |              |              |             |              |              |  |  |  |
|     |                                                                                                                                                     |                                                                           |              |              | Answer:     |              | [2 points]   |  |  |  |
| Q6. | How many binary strings of length 7 contain at least 5 zeros?                                                                                       |                                                                           |              |              |             |              |              |  |  |  |
|     | Α.                                                                                                                                                  | 21                                                                        | <b>B.</b> 32 | <b>C.</b> 96 | <b>D.</b> 4 | <b>E.</b> 49 | <b>F.</b> 29 |  |  |  |
|     | G.                                                                                                                                                  | None of the                                                               | he above.    |              |             |              |              |  |  |  |
|     |                                                                                                                                                     |                                                                           |              |              |             |              |              |  |  |  |
|     |                                                                                                                                                     |                                                                           |              |              |             |              |              |  |  |  |
|     |                                                                                                                                                     |                                                                           |              |              |             |              |              |  |  |  |
|     |                                                                                                                                                     |                                                                           |              |              |             |              |              |  |  |  |
|     |                                                                                                                                                     |                                                                           |              |              |             |              |              |  |  |  |
|     |                                                                                                                                                     |                                                                           |              |              |             |              |              |  |  |  |
|     |                                                                                                                                                     |                                                                           |              |              |             |              |              |  |  |  |
|     |                                                                                                                                                     |                                                                           |              |              |             |              |              |  |  |  |
|     |                                                                                                                                                     |                                                                           |              |              |             |              |              |  |  |  |
|     |                                                                                                                                                     |                                                                           |              |              |             |              |              |  |  |  |
|     |                                                                                                                                                     |                                                                           |              |              |             |              |              |  |  |  |
|     |                                                                                                                                                     |                                                                           |              |              |             |              |              |  |  |  |
|     |                                                                                                                                                     |                                                                           |              |              |             |              |              |  |  |  |
|     |                                                                                                                                                     |                                                                           |              |              |             |              |              |  |  |  |
|     |                                                                                                                                                     |                                                                           |              |              | Answer:     |              | [2 points]   |  |  |  |

### TRUE-OR-FALSE QUESTIONS.

Circle the correct responses. No justification is needed.

Q7. Consider the following three graphs:

[1.5 points]







Circle the correct responses.

G is a tree.

 $\mathbf{T}$   $\mathbf{F}$ 

H is a forest.

T F

L is a tree.

 $\mathbf{T}$   $\mathbf{F}$ 

**Q8.** Consider the following sets:

[3 points]

$$S = \big\{ \varnothing, 1, \{1\} \big\} \qquad \text{and} \qquad T = \big\{ 1, \{\varnothing, 1\} \big\}$$

Circle the correct responses.

$$|S \times T| = 9.$$

 $\mathbf{T}$   $\mathbf{F}$ 

$$\big\{\{1\}\big\}\subseteq S$$

 ${f T}$ 

 $\mathbf{F}$ 

 $\mathbf{F}$ 

 $\mathbf{F}$ 

 $\mathbf{F}$ 

 $\mathbf{F}$ 

$$|S \cap T| = 2$$

 ${f T}$ 

$$\big(\{1\},\{1\}\big) \in T \times S$$

 ${f T}$ 

$$|S \cup T| = 4$$

 ${f T}$ 

$$|\mathcal{P}(T)| = 4$$

 $\mathbf{T}$ 

**Q9.** Consider the following relation on the set  $\mathbb{Z}$ :

[2 points]

$$x\mathcal{R}y \iff x(1+y)$$
 is even.

What properties does the relation  $\mathcal{R}$  possess? Circle the correct responses.

 $\mathcal{R}$  is reflexive.

 ${f T}$   ${f F}$ 

 $\mathcal{R}$  is symmetric.

 $\mathbf{T}$   $\mathbf{F}$ 

 $\mathcal{R}$  is antisymmetric.

T F

 $\mathcal{R}$  is transitive.

 $\mathbf{T}$   $\mathbf{F}$ 

**Q10.** Consider the following propositions with atomic variables x and y:

[2.5 points]

$$P_1: x \wedge \neg y$$

$$P_2: \neg x \lor \neg y$$

$$P_3: \quad x \to y$$

$$C: \quad y \to x$$

Circle the correct responses.

The set  $\{P_1, P_2, P_3\}$  is a consistent set of propositions.

 ${f T}$ 

 $\mathbf{F}$ 

The set  $\{P_1, P_2\}$  is a consistent set of propositions.

 ${f T}$   ${f F}$ 

The argument  $(P_1 \wedge P_2 \wedge P_3) \to C$  is a valid argument.

 $\mathbf{T}$   $\mathbf{F}$ 

The compound proposition  $P_1 \wedge P_2 \to C$  is a tautology.

 ${f T}$   ${f F}$ 

Compound propositions  $P_1$  and  $\neg P_3$  are logically equivalent.

 ${f T}$   ${f F}$ 

## SHORT-ANSWER QUESTIONS.

Write your final answer in the answer box.

Wherever indicated, you must briefly justify your answers to receive full marks.

**Q11.** Let a, b and c be propositional variables.

Give a disjunctive normal form (DNF) for the following compound proposition:

$$P: (a \leftrightarrow b) \land (b \lor \neg c)$$

DNF for P:

Justification: [1.5 points]

Q12. Fully evaluate the following expression:

$$\binom{9}{6} + \binom{9}{7} =$$

Justification: [1.5 points]

Q13. Consider the following sequence:

(a) Does there exist a graph with the above degree sequence? Circle: YES NO

If so, draw an example of such a graph; otherwise, briefly explain why no such graph exists.

(b) Draw an example of a **tree** whose degree sequence is (1, 1, 1, 1, 3, 3).

No justification is needed.

[2 points]

**Q14.** Determine the **coefficient** of  $\frac{1}{x^8}$  in the expansion of  $\left(3x^2 + \frac{5}{x^4}\right)^{10}$ .

 $Your\ answer\ may\ include\ unevaluated\ factorials,\ binomial\ coefficients,\ powers,\ products,\ or\ sums.$ 

Coefficient of  $x^{-8}$ :

Justification: [2.5 points]

**Q15.** Give an example of a compound proposition P such that

- ullet P consists of the propositional variables  $x,\ y,\ {\rm and}\ z$  (all three variables must be used).
- P contains **only** the logical connectives  $\neg$  and  $\rightarrow$  and P must contain **both** these connectives.
- $\bullet$  *P* is a **contradiction** (justification required below).

Make sure your proposition P contains only the variables x, y, and z, the logical connectives  $\neg$  and  $\rightarrow$  and appropriate parentheses.

P =

Justification that P is a contradiction:

[2 points]

**Q16.** Let  $f: \mathbb{Q} \to \mathbb{Q} \times \mathbb{Q}$  be a function defined by  $f(x) = (x^3, x^4)$ .

[3.5 points]

Answer the following questions regarding the above function f.

To justify your answers, either give a proof or a concrete numerical counterexample.

Is f is injective?

Circle:

YES

NO

 ${\it Justification~(proof~or~counterexample):}$ 

Is f is surjective?

Circle:

YES

NO

 ${\it Justification \ (proof \ or \ counterexample):}$ 

Is f is invertible?

Circle:

YES

NO

No justification is needed for this part.

Q17. Which of the following four graphs are bipartite?

[2 points]

For each graph, circle the correct response and justify your answer by either giving a proper 2-colouring of the graph, or by indicating an odd cycle in the graph.









## LONG-ANSWER QUESTIONS.

Detailed solutions are required.

#### **Q18.** Let m be a positive integer.

Give a **proof by contradiction** of the following statement:

#### Statement:

If 3m+1 marbles are placed into m jars, then at least one jar will contain at least 4 marbles.

#### $\bf Q19.$ Use Mathematical Induction to prove that

(2n)! is a multiple of  $2^{n+1}$ 

for all integers  $n \geq 2$ .

Clearly state the proposition to be proved, Basis of Induction, Induction Hypothesis, and Induction Step. Clearly indicate where the Induction Hypothesis is used in your proof.

**Q20.** Use a **truth tree** to determine whether or not the proposition P below is a **tautology**. If you claim that P is not a tautology, give **all** counterexamples.

$$P: (c \lor (b \to \neg a)) \leftrightarrow \neg (a \land b)$$

Clearly indicate the root of the tree. Use the branching rules precisely as taught in class. Do not use equivalences. Do not skip steps or combine branching rules. Make sure your truth tree is fully grown.

Complete truth tree:

Is P a tautology? Circle: YES NO

If you circled **NO**, give **all counterexamples**:

**Q21.** Define a binary relation  $\mathcal{R}$  on the set  $A = \{\text{binary strings of length 4}\}$  as follows:

For all strings  $s, t \in A$ ,

 $s\mathcal{R}t$  if and only if s and t have the same number of ones.

(a) Prove that  $\mathcal{R}$  is an equivalence relation.

(b) Give the **equivalence class** of the string s = 1010 with respect to the relation  $\mathcal{R}$ .

$$\left[ `1010' \right]_{\mathcal{R}} =$$

**Q22a.** Consider the following two graphs:





[4 points]

Are G and H isomorphic? If so, give an isomorphism between them and verify that your function is an isomorphism; otherwise, clearly explain why they are not isomorphic.

 ${\bf Q22b.}$  Now consider these two graphs:





Are K and L isomorphic? If so, give an isomorphism between them and verify that your function is an isomorphism; otherwise, clearly explain why they are not isomorphic.

Extra page for scrap work.