

ARCHITURE DES MICROPROCESSEURS

TD4: Hiérarchie mémoire

1. Introduction

Dans ce quatrième TD nous allons essayer d'appréhender l'organisation et l'efficacité de diverses architectures de mémoire cache. Il n'y aura pas de codage VHDL pour cette séance.

2. Cache mémoire « Direct »

Une mémoire cache de type « direct mapped » travaillant sur des adresses 32 bits et construite à l'aide de mémoires ayant un accès par octet a un adressage organisé de la façon suivante :

31		10	9		5	4		0
	TAG			INDEX			OFFSET	

Quelle est la taille de la ligne de cache, en nombre d'octets, de mots ?

Quelle est le nombre d'entrées de cette mémoire cache ?

On réorganise l'adressage de cette manière :

31	••	12	11		6	5		0
TAG			INDEX			OFFSET		

Quelle est la taille de la ligne de cache, en nombre d'octets, de mots ?

Quelle est le nombre d'entrées de cette mémoire cache ?

3. Performance 1

Soit un CPU fonctionnant à une période horloge de 1GHz et disposant d'une mémoire cache L1, L2, L3 avec les paramètres suivants :

L1 HIT time = 1 cycle

L2 HIT time = 4 cycles

L3 HIT time = 8 cycles Miss pénalité = 15 cycles

On constate les taux suivants :

L1 HIT rate = 95%

L2 HIT rate = 92%

L3 HIT rate = 90%

Quel est le taux de MISS Global?

Quelle est la pénalité de MISS du cache L2 ?

Quelle est la pénalité de MISS du cache L1?

Quel est le temps d'accès moyen

On considère un système disposant d'une mémoire cache de niveau L1 et L2 , en supposant que sur 1000 accès mémoire on ait :

40 MISS sur L1

20 MISS sur L2

Quels sont les différents taux de MISS?

Quel est le temps d'accès moyen ? (en supposant HIT time L1 =1, HIT time L2=10, MISS pénalité L2=100)

4. Performance 2

On considère un système disposant d'une mémoire cache d'instructions constituée de 64 lignes de contenant chacune 4 instructions de 32bits.

Un programme constitué d'une boucle principale de 257 instructions tourne sur ce système, on supposera que ce programme n'accède pas à la mémoire de données.

Quelle est la taille du cache ?

Quels sont les largeurs des champs offset, index et tag de ce système de mémoire cache ?

Si l'algorithme de remplacement des lignes du système de mémoire cache et du type LRU (Least Recently Used) quel sera le taux de MISS ?

Si l'algorithme de remplacement des lignes du système de mémoire cache et du type MRU (Most Recently Used) quel sera le taux de MISS ?