

Description

Image

Caption

1. Wine bottles. © iStockphoto 2. Building windows. © John Fernandez 3. Building windows. © John

The material

Soda lime glass is the glass of windows, bottles and light bulbs, used in vast quantities, the commonest of them all. The name suggests its composition: 13-17% NaO (the "soda"), 5-10% CaO (the "lime") and 70-75% SiO2 (the "glass"). It has a low melting point, is easy to blow and mold, and it is cheap. It is optically clear unless impure, when it is typically green or brown. Windows today have to be flat and that was not - until 1950 - easy to do; now the float-glass process, solidifying glass on a bed of liquid tin, makes 'plate' glass cheaply and quickly.

Compositional summary

73% SiO2/1% Al2O3/17% Na2O/4% MgO/5% CaO

General properties

Density	152	-	155	lb/ft^3
Price	* 0.64	-	0.753	USD/lb
Date first used	-3500			

Mechanical properties

Young's modulus	9.86	-	10.4	10^6 psi
Shear modulus	4.06	-	4.28	10^6 psi
Bulk modulus	5.77	-	6.08	10^6 psi
Poisson's ratio	0.21	-	0.22	
Yield strength (elastic limit)	* 4.35	-	5.08	ksi
Tensile strength	4.5	-	5.08	ksi
Compressive strength	* 52.2	-	60.9	ksi
Elongation	0			% strain
Hardness - Vickers	439	-	484	HV
Fatigue strength at 10^7 cycles	* 4.26	-	4.71	ksi
Fracture toughness	* 0.501	-	0.637	ksi.in^0.5

Mechanical loss coefficient (tan delta)	7.5e-4	- 8.8	8e-4	
Thermal properties				
Glass temperature	827	- 1.	1e3 °F	
Maximum service temperature	338	- 75	2 °F	
Minimum service temperature	-460		°F	
Thermal conductor or insulator?	Poor ins	Poor insulator		
Thermal conductivity	* 0.404	- 0.	751 BTU.ft	t/h.ft^2.F
Specific heat capacity	* 0.203	- 0.2	227 BTU/lb	o.°F
Thermal expansion coefficient	5.06	- 5.2	28 µstrair	n/°F

Electrical properties

Electrical conductor or insulator?	Good insulator			
Electrical resistivity	7.94e17	-	7.94e18	µohm.cm
Dielectric constant (relative permittivity)	7	-	7.6	
Dissipation factor (dielectric loss tangent)	0.007	-	0.01	
Dielectric strength (dielectric breakdown)	* 305	-	356	V/mil

Optical properties

Transparency	Optical Quality	
Refractive index	1.5 - 1.52	

Processability

Castability	3	- 4
Moldability	5	
Weldability	3	- 4

Durability: water and aqueous solutions

Water (fresh)	Excellent
Water (salt)	Excellent
Soils, acidic (peat)	Excellent
Soils, alkaline (clay)	Excellent
Wine	Excellent

Durability: acids

Acetic acid (10%)	Excellent
Acetic acid (glacial)	Excellent
Citric acid (10%)	Excellent
Hydrochloric acid (10%)	Excellent
Hydrochloric acid (36%)	Excellent
Hydrofluoric acid (40%)	Unacceptable

Nitric acid (10%)	Excellent
Nitric acid (70%)	Excellent
Phosphoric acid (10%)	Excellent
Phosphoric acid (85%)	Excellent
Sulfuric acid (10%)	Excellent
Sulfuric acid (70%)	Excellent

Durability: alkalis

Sodium hydroxide (10%)	Acceptable
Sodium hydroxide (60%)	Limited use

Durability: fuels, oils and solvents

Amyl acetate	Excellent
Benzene	Excellent
Carbon tetrachloride	Excellent
Chloroform	Excellent
Crude oil	Excellent
Diesel oil	Excellent
Lubricating oil	Excellent
Paraffin oil (kerosene)	Excellent
Petrol (gasoline)	Excellent
Silicone fluids	Excellent
Toluene	Excellent
Turpentine	Excellent
Vegetable oils (general)	Excellent
White spirit	Excellent

Durability: alcohols, aldehydes, ketones

Acetaldehyde	Excellent
Acetone	Excellent
Ethyl alcohol (ethanol)	Excellent
Ethylene glycol	Excellent
Formaldehyde (40%)	Excellent
Glycerol	Excellent
Methyl alcohol (methanol)	Excellent

Durability: halogens and gases

Chlorine gas (dry)	Excellent
Fluorine (gas)	Limited use
O2 (oxygen gas)	Excellent
Sulfur dioxide (gas)	Excellent

Durability	: built envi	ronments
------------	--------------	----------

Industrial atmosphere	Excellent
Rural atmosphere	Excellent
Marine atmosphere	Excellent
UV radiation (sunlight)	Excellent

Durability: flammability

Flammability	Non-flammable
--------------	---------------

Durability: thermal environments

Tolerance to cryogenic temperatures	Excellent
Tolerance up to 150 C (302 F)	Excellent
Tolerance up to 250 C (482 F)	Excellent
Tolerance up to 450 C (842 F)	Unacceptable
Tolerance up to 850 C (1562 F)	Unacceptable
Tolerance above 850 C (1562 F)	Unacceptable

Geo-economic data for principal component

Annual world production, principal component	7.87e7	-	8.07e7	ton/yr
Reserves, principal component	* 9.84e9	-	1.08e10	I. ton

Primary material production: energy, CO2 and water

Embodied energy, primary production	* 1.09e3	-	1.2e3	kcal/lb
CO2 footprint, primary production	* 0.72	-	0.796	lb/lb
Water usage	* 1.63	-	1.81	gal(US)/lb
Eco-indicator 95	50.5			millipoints/kg
Eco-indicator 99	75.7			millipoints/kg

Material processing: energy

Glass molding energy	* 847	-	1.02e3	kcal/lb
Grinding energy (per unit wt removed)	* 2.77e3	-	3.07e3	kcal/lb

Material processing: CO2 footprint

Glass molding CO2	* 0.625	-	0.757	lb/lb
Grinding CO2 (per unit wt removed)	* 1.92	-	2.12	lb/lb

Material recycling: energy, CO2 and recycle fraction

Recycle	✓			
Embodied energy, recycling	* 846	-	936	kcal/lb
CO2 footprint, recycling	* 0.614	-	0.679	lb/lb
Recycle fraction in current supply	22	-	26	%
Downcycle	✓			

Soda-lime glass

Combust for energy recovery	×
Landfill	✓
Biodegrade	×
Toxicity rating	Non-toxic
A renewable resource?	×

Environmental notes

Silica, the prime ingredient of glass, is the commonest compound in the earths crust, though it is harder to find it in a form sufficiently pure to make glass. Nonetheless, the ingredients of glass are ubiquitous, and the material is readily recycled at the end of its life.

Supporting information

Design guidelines

Soda lime glass is an exceptionally versatile material. It is easily cast, rolled, blow-molded, pressure molded or drawn to a great variety of shapes. It can be cut, polished, and toughened. It is an exceptionally durable material, surviving weathering and normal handling with no trace of degradation, sometimes for hundreds of years.

Typical uses

Windows, bottles, containers, tubing, lamp bulbs, lenses and mirrors, bells, glazes on pottery and tiles.

Links

Reference			
ProcessUniverse			
Producers			