一、填空题

1、已知球面的一条直径的两个端点为(2,-3,5)和(4,1,-3),则该球面的方程为

2、

3、曲面 $z = x^2 + v^2$ 与平面 2x + 4v - z = 0 平行的切平面方程为

4.
$$\lim_{(x,y)\to(0,0)} \frac{(1-\cos(x^2+y^2))\sin xy}{(x^2+y^2)^2 e^{x^2+y^2}} = \underline{\hspace{1cm}}$$

5、设二元函数
$$z = xy^2 + x^3y$$
 ,则 $\frac{\partial^2 z}{\partial x \partial y} =$

二、选择题

- 1、旋转曲面 $x^2 v^2 z^2 = 1$ 是()
 - (A) xOz 坐标面上的双曲线绕 Ox 轴旋转而成;
 - (B) xOv 坐标面上的双曲线绕 Oz 轴旋转而成;
 - (C) xOv 坐标面上的椭圆绕 Oz 轴旋转而成:
 - (D) xOz 坐标面上的椭圆绕 Ox 轴旋转而成.

2、

3、已知直线
$$L: \frac{x-2}{\sqrt{2}} = \frac{y+1}{2} = \frac{z}{-\sqrt{2}\pi}$$
 与平面 $\pi: x + \sqrt{2}y - \pi \ z = 4$,则 ()

- (B). L 与 π 不相交;
- (C). L 与 π 正交;
- (D). L 与 π 斜交.
- 4、下列说法正确的是()
- (A) 两向量 \vec{a} 与 \vec{b} 平行的充要条件是存在唯一的实数 λ , 使得 $\vec{b} = \lambda \vec{a}$;
- (B) 二元函数 z = f(x, y)的两个二阶偏导数 $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial y^2}$ 在区域 D 内连续,则在该区域内两个二阶混 合偏导必相等;
- (C) 二元函数 Z = f(x, y)的两个偏导数在点 (x_0, y_0) 处连续是函数在该点可微的充分条件;
- (D) 二元函数 z = f(x, y) 的两个偏导数在点 (x_0, y_0) 处连续是函数在该点可微的必要条件.

5、设
$$z = f(2x + y, x - 2y)$$
, 且 $f \in C^2$ (即函数具有连续的二阶连续偏导数),则 $\frac{\partial^2 z}{\partial x \partial y} = ($)

(A)
$$2f_{11} - 2f_{22} - 3f_{12}$$
; (B) $2f_{11} + f_{22} + 3f_{12}$;

(B)
$$2 f_{11} + f_{22} + 3 f_{13}$$

(C)
$$2f_{11} + f_{22} + 5f_{12}$$
; (D) $2f_{11} - 2f_{22} - f_{12}$.

(D)
$$2f_{11} - 2f_{22} - f_{12}$$

三、计算题

2、设
$$z = uv^2 + t\cos u$$
, $u = e^t$, $v = \ln t$, 求全导数 $\frac{dz}{dt}$ 。

3、

四、应用题

五、综合题

1、已知直线
$$l_1$$
:
$$\begin{cases} \frac{y}{b} + \frac{z}{c} = 1 \\ x = 0 \end{cases}$$
, l_2 :
$$\begin{cases} \frac{x}{a} - \frac{z}{c} = 1 \\ y = 0 \end{cases}$$
, 求过 l_1 且平行于 l_2 的平面方程.

六、证明题

1、设函数 $u=x^kF\left(\frac{z}{x},\frac{y}{x}\right)$, 其中 k 是常数, 函数 F 具有连续的一阶偏导数. 试证

明:
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = kx^k F\left(\frac{z}{x}, \frac{y}{x}\right)$$

第二学期高等数学期中考试试卷答案

一、填空题(本题满分15分,共有5道小题,每道小题3分)

1.
$$(x-3)^2 + (y+1)^2 + (z-1)^2 = 21$$

$$2, \frac{1}{2}.$$

$$3. \ \underline{2x + 4y - z - 5 = 0}.$$

4、0

$$5, 2y + 3x^2;$$

二、选择题

1 (A)

三、计算题

2、解:
$$\frac{\partial z}{\partial u} = \frac{\partial}{\partial u} (uv^2 + t\cos u) = v^2 - t\sin u$$
,
 $\frac{\partial z}{\partial v} = \frac{\partial}{\partial v} (uv^2 + t\cos u) = 2uv$, $\frac{\partial z}{\partial t} = \cos u$
依复合函数求导法则, 全导数为
 $\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt} + \frac{\partial z}{\partial t} \cdot \frac{dt}{dt}$
 $= (v^2 - t\sin u)e^t + 2uv \cdot \frac{1}{t} + \cos u \cdot 1$
 $= (\ln^2 t - t\sin e^t)e^t + \frac{2}{t}e^t \ln t + \cos e^t$

四、应用题

五、综合题

1、解: 直线 l_1 与 l_2 的方向向量分别为

$$\vec{\mathbf{s}}_1 = \left\{ 0, \frac{1}{b}, \frac{1}{c} \right\} \times \left\{ 1, 0, 0 \right\} = \left\{ 0, \frac{1}{c}, -\frac{1}{b} \right\},$$

$$\vec{\mathbf{s}}_2 = \left\{ \frac{1}{a}, \quad 0, \quad -\frac{1}{c} \right\} \times \left\{ 0, \quad 1, \quad 0 \right\} = \left\{ \frac{1}{c}, \quad 0, \quad \frac{1}{a} \right\},$$

取直线 l_1 上的一点 $P_1(0, 0, c)$,则过点 P_1 且以 $\vec{\mathbf{n}} = \left\{ \frac{1}{ca}, -\frac{1}{bc}, -\frac{1}{c^2} \right\}$ 为法向量的平面

$$\frac{x}{a} - \frac{y}{b} - \frac{z}{c} + 1 = 0 \quad ,$$

就是过 l_1 且平行于 l_2 的平面方程.

六、证明题:

$$\frac{\partial u}{\partial x} = kx^{k-1}F\left(\frac{z}{x}, \frac{y}{x}\right) + x^kF_1\left(\frac{z}{x}, \frac{y}{x}\right)\left(-\frac{z}{x^2}\right) + x^kF_2\left(\frac{z}{x}, \frac{y}{x}\right)\left(-\frac{y}{x^2}\right)$$

$$=kx^{k-1}F\left(\frac{z}{x}, \frac{y}{x}\right)-zx^{k-2}F_1'\left(\frac{z}{x}, \frac{y}{x}\right)-yx^{k-2}F_2'\left(\frac{z}{x}, \frac{y}{x}\right)$$

$$\frac{\partial u}{\partial y} = x^k F_2' \left(\frac{z}{x}, \frac{y}{x} \right) \cdot \frac{1}{x} = x^{k-1} F_2' \left(\frac{z}{x}, \frac{y}{x} \right)$$

$$\frac{\partial u}{\partial z} = x^k F_1 \left(\frac{z}{x}, \frac{y}{x} \right) \cdot \frac{1}{x} = x^{k-1} F_1 \left(\frac{z}{x}, \frac{y}{x} \right)$$

所以,
$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z}$$

$$= x \cdot \left[kx^{k-1} F\left(\frac{z}{x}, \frac{y}{x}\right) - zx^{k-2} F_1'\left(\frac{z}{x}, \frac{y}{x}\right) - yx^{k-2} F_2'\left(\frac{z}{x}, \frac{y}{x}\right) \right]$$

$$+ y \cdot x^{k-1} F_2' \left(\frac{z}{x}, \frac{y}{x} \right) + z \cdot x^{k-1} F_1' \left(\frac{z}{x}, \frac{y}{x} \right)$$

$$=kx^kF\left(\frac{z}{x}, \frac{y}{x}\right)$$