PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM Integnationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C07D 277/30, 319/06, 417/06, 277/24, 493/04 // (C07D 493/04, 313:00, 303:00)

A1

(11) Internationale Veröffentlichungsnummer: WO 99/03848

(43) Internationales Veröffentlichungsdatum:

28. Januar 1999 (28.01.99)

(21) Internationales Aktenzeichen:

PCT/EP98/04462

(22) Internationales Anmeldedatum:

16. Juli 1998 (16.07.98)

(30) Prioritätsdaten:

197 31 316.7

16. Juli 1997 (16.07.97)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): SCHER-ING AKTIENGESELLSCHAFT [DE/DE]; Müllerstrasse 178, D-13353 Berlin (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): MULZER, Johann [DE/AT]; Universitätsstrasse 10/16, A-1090 Wien (AT). MAN-TOULIDIS, Andreas [DE/AT]; Reithlegasse 1578, A-1190 Wien (AT). (81) Bestimmungsstaaten: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ARIPO Patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Mit internationalem Recherchenbericht.

Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.

(54) Title: THIAZOLE DERIVATIVES, METHOD FOR THEIR PRODUCTION AND USE

(54) Bezeichnung: THIAZOLDERIVATE, VERFAHREN ZUR HERSTELLUNG UND VERWENDUNG

(57) Abstract

The invention relates to thiazole derivatives of formula (II), in which R^1 is C_1 – C_4 alkyl, R^2 is any protective group with chelating power, R^3 is hydrogen or C_1 – C_4 alkyl, and Y is CO_2R^4 , CHO, CH=CH₂ or CH₂R⁵, in which R^4 stands for C_1 – C_4 alkyl and an optionally substituted benzyl group, R^5 is halogen, hydroxy, p-toluenesulphonate and –OSO₂B, and B stands for C_1 – C_4 alkyl or C_1 – C_4 perfluoroalkyl. These derivatives are produced without diastereomers and are used in the production of epothilon A and epothilon B and their derivatives.

(57) Zusammenfassung

Thiazolderivate der Formel II, worin R^1 C_1 – C_4 –Alkyl, R^2 eine beliebige chelatisierungsfähige Schutzgruppe, R^3 Wasserstoff oder C_1 – C_4 –Alkyl, Y CO_2R^4 , CHO, CH=CH2 oder CH2 R^5 , wobei R^4 für C_1 – C_4 –Alkyl und eine gegebenenfalls substituierte Benzylgruppe, R^5 für Halogen, Hydroxy, p–Toluolsulfonat und –OSO2B und B für C_1 – C_4 –Alkyl oder C_1 – C_4 -Perfluoralkyl steht, bedeutet, lassen sich diastereomerenrein herstellen und sind geeignet für die Herstellung von Epothilon A und Epothilon B und deren Derivaten.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	$\mathbf{s}\mathbf{K}$	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
ВJ	Benin	ΙE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	\mathbf{MW}	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	$\mathbf{z}\mathbf{w}$	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumänien		
\mathbf{CZ}	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

WO 99/03848 PCT/EP98/04462

Thiazolderivate, Verfahren zur Herstellung und Verwendung

Die Erfindung betrifft den in den Patentansprüchen gekennzeichneten Gegenstand, daß heißt Thiazolderivate, Verfahren zu ihrer Herstellung und ihre Verwendung zur Herstellung von Epothilon A, Epothilon B oder deren Derivaten.

Es ist bekannt, daß die Naturstoffe Epothilon A (R = H) und Epothilon B (R = Methyl) (Verbindung I, DE 195 42 986 A1, DE 41 38 042 C2)

10

15

20

5

fungizid und cytotoxisch wirken. Nach Hinweisen für eine in vitro Aktivität gegen Brust- und Darmtumorzelllinien erscheint diese Verbindungsklasse in besonderem Maße interessant für die Entwicklung eines Arzneimittels. Verschiedene Arbeitsgruppen beschäftigen sich daher mit der Synthese dieser makrocyclischen Verbindungen. Die Arbeitsgruppen gehen von unterschiedlichen Bruchstücken des Makrocyclus aus, um die gewünschten Naturstoffe zu synthestisieren. Danishefsky et al plant die Synthese aus drei Bruchstücken C(1)-C(2) + C(3)-C(9) + C(10)-C(20). Bei dem C(10)-C(20)-Bruchstück handelt es sich um ein Thiazolderivat, das in einer 15-stufigen Synthese nicht diastereomerenrein erhalten werden konnte (JOC, 1996, 61, 7998-7999). Diastereomerenreinheit ist jedoch oft entscheidend für die Wirkung und Voraussetzung für die Herstellung eines Arzneimittels.

Es bestand daher die Aufgabe, geeignete Bruchstücke diastereomerenrein bereitzustellen, aus denen sich die makrocyclischen Verbindungen und deren Derivate synthetisieren lassen.

Es wurde nun gefunden, daß die Thiazolderivate der Formel II

$$QR^2$$
 R^1
 R^3
 R^3
 R^3
 R^1
 R^1
 R^2
 R^3
 R^3
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4

5 worin R¹ C₁-C₄-Alkyl,

R² eine beliebige chelatisierungsfähige Schutzgruppe,

R³ Wasserstoff oder C₁-C₄-Alkyl

Y CO₂R⁴, CHO, CH=CH₂ oder CH₂R⁵, wobei

R⁴ für C₁-C₄-Alkyl oder eine gegebenenfalls substituierte Benzylgruppe.

R⁵ für Halogen, Hydroxy, p-Toluolsulfonat oder -OSO₂B und

B für C_1 - C_4 -Alkyl oder C_1 - C_4 -Perfluoralkyl steht,

bedeutet,

10

15

30

sich diastereomerenrein herstellen lassen und geeignet sind für die Herstellung von Epothilon A und Epothilon B und deren Derivaten.

Unter C_1 - C_4 -Alkyl für R^1 , R^3 , R^4 , und B sind Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl und Tertiärbutyl zu verstehen.

- Unter einer beliebigen chelatisierungsfähigen Schutzgruppe R² sind zum Beispiel Benzylreste wie z.B. Benzyl, p-Methoxybenzyl (PMB), Silylreste wie z.B. Trimethyl-silyl, 2-(Trimethylsilyl)ethoxymethyl (SEM), Tetrahydropyranyl, Methoxymethyl, Benzyloxymethoxymethyl, Benzoyl, Acetyl zu verstehen.
- Die substituierte Benzylgruppe R⁴ kann z.B. p-Methoxybenzyl, 2,4-Dimethoxybenzyl oder ein durch andere elektronenschiebende Substituenten substituierter Benzylrest sein.

Mit Halogen sind Fluor, Chlor, Brom und Iod gemeint, wobei Brom und Iod bevorzugt sind.

Unter C_1 - C_4 -Perfluoralkyl sind geradkettige oder verzweigte vollständig fluorierte Alkylreste wie zum Beispiel CF_3 , C_2F_5 , C_3F_7 , C_4F_9 zu verstehen.

5

10

15

20

25

30

Die Verbindungen II können nach dem in Schema I gezeigten Verfahren hergestellt werden, in dem die Synthese beispielhaft für Verbindung IIa mit R^2 = p-Methoxybenzyl, R^3 = Methyl und Y = CO_2Et dargestellt ist.

Ausgehend von der natürlich vorkommenden (S)-Äpfelsäure (III) wird die α-Hydroxysäurefunktion mit Trifluoressigsäureanhydrid/Methanol (a) in den Mono-methylester überführt. Die noch verbliebene Säurefunktion wird dann mit Diboran in Tetrahydrofuran (b) zum Alkohol reduziert. Der so erhaltene (S)-(-)-Methyl-2,4-Dihydroxyester wird mit p-Methoxybenzyldimethylacetal mit Camphersulfonsäure in Toluol unter Rückfluß (c) in das cyclische Acetal (IV) überführt. Aus dem Methylester wird durch Reaktion mit einem Äquivalent Methyllithium in 2 Stunden bei -100°C (d) das Methylketon (V) erhalten. Umsetzung mit einer C₂-, C₃- oder C₄-metallorganischen Verbindung z.B. einer Grignardverbindung unter üblichen Reaktionsbedingungen führt zu den übrigen Resten R¹. Bei der Wittigreaktion (e) wird das 2-Methyl-4-thiazolylmethyltriphenylphosphoniumbromid, das in zwei Stufen aus 1,3-Dichlorpropanon zugänglich ist, zuerst mit Natriumhexamethyldisilazid bei -78°C in Tetrahydrofuran zusammengegeben bevor das Keton dazugegeben wird. Die Reaktion führt nach 1 Stunde und Erwärmen auf -40°C zu einem E/Z-Gemisch (E/Z = 3.6:1). Das E-Isomer (VI) ist durch einfache Flashchromatographie abzutrennen. Regioselektive Freisetzung der terminalen Hydroxygruppe durch reduktive Öffnung des Acetals mit 4 Äquivalenten Diisobutylaluminiumhydrid in Methylenchlorid in 4 Stunden bei -20°C (f) ergibt ein gut trennbares Gemisch (5,6:1 für das gewünschte Regioisomer) der Alkohole. Nach Trennung wird der Alkohol durch Swern-Oxidation in einer Stunde unter Aufwärmen von -78°C nach O°C (g) in den entsprechenden Aldehyd überführt, der sofort zur Wadsworth-Horner-Emmons-Kondensation unter Still's Bedingungen (h) mit Ethyl-2-Diethoxyphosphinylpropionat oder dem entsprechend dem gewünschten Rest R³ geeigneten Horner-Reagenz unter Zugabe von Kaliumhexamethyldisilazid, 18-Krone-6 bei -78°C für eine Stunde in Tetrahydrofuran umgesetzt wird. Es wird ein E/Z-Gemisch (E/Z = 6.2:1) der α,β -ungesättigten Ester erhalten, aus dem das Z-Isomer (IIa) in guter Ausbeute abgetrennt werden kann. Die Verwendung des Trifluorethylphosphonat-Derivates führt zu einer besseren Selektivität von 15:1.

Schema I

Die Verbindung der allgemeinen Formel IIa stellt einen zentralen Baustein für die Synthese von Epothilon-Derivaten und Epothilon selbst dar.

Die Esterfunktion in Position 11 kann in jede beliebige, für den späteren Ringschluß benötigte, Funktionalität überführt werden.

Derivatisierungen in 12-und 13-Position (Epothilon-Zählweise) sind aus der Doppelbindung möglich. So zum Beispiel die Überführung in das im Epothilon selbst vorhandene Epoxid durch Sharpless-Oxidation:

Dazu wird der Ester IIa mit 3 Äquivalenten Diisobutylaluminiumhydrid in Tetrahydrofuran bei -20°C (i) zum α,β-ungesättigten Alkohol reduziert und anschließend die Doppelbindung des Allylalkohols mit 4A Molekularsieb, Titantetraisopropylat, D-(-)-diisopropyltartrat, Tertiärbutylhydroperoxid in Methylenchlorid für 3 Stunden bei -30°C (k)
diastereoselektiv epoxidiert.

15

5

Auch die noch in geschützter Form vorliegende Hydroxyfunktion in 15-Position läßt Derivatisierungen an dieser Stelle zu oder ist unter literaturbekannten Bedingungen spaltbar.

Verbindungen mit Y = CHO können durch Dibal-Reduktion von Verbindung IIa in literaturbekannter Weise erhalten werden. Nachfolgende Wittigreaktion führt zu Verbindungen mit Y = CH=CH₂.

25

20

Die Verbindungen mit $Y = CH_2R^5$ mit $R^5 = p$ -Toluolsulfonat, (C_1-C_4) alkylsulfonat, oder (C_1-C_4) perfluoralkylsulfonat können aus dem Alkohol (VII) erhalten werden.

5

35

Die Verbindungen mit $Y = CH_2$ -Halogen lassen sich aus z.B. der Verbindung mit $Y = CH_2$ -p-Toluolsulfonat oder Y = OH in üblicher Weise erhalten.

Im Gegensatz zu dem Verfahren von Danishefsky et al werden nur 10 Stufen für die Synthese bis zur Stufe des Epoxids benötigt und das Thiazolderivat der Formel IIa kann ebenso wie auch das Epoxid diastereomerenrein erhalten werden. Ein weiterer Vorteil besteht darin, daß das verwendete natürliche Ausgangsmaterial und die Reaktionen der Synthese eine Herstellung größerer Mengen erlauben.

Die Weiterverarbeitung der erfindungsgemäßen Verbindungen zu Epothilon A und B kann wie in der nachstehenden Reaktionssequenz angegeben erfolgen. Die Verbindung der allgemeinen Formel XI wird analog zu bekannten Verfahren durch Abspaltung der primären Schutzgruppe, Oxidation in Position 1, selektive Freisetzung der 15-Hydroxygruppe, wie sie beispielsweise von K.C. Nicolaou et al. In Nature, Vol. 387,
 15 1997, S. 268 – 272 und J. Am. Chem. Soc.1997, 119, S. 7960 – 7973 beschrieben sind. zu Epothilon B weiterverarbeitet:

f) (i) Iodidbildung, (ii) Sulfonkupplung, 76,5%; g) Desulfonierung, 70%;

h) Desilylierung, 98%; i) Aldolreaktion.

Die nachfolgenden Beispiele dienen der näheren Erläuterung des Erfindungsgegenstandes, ohne ihn auf diese beschränken zu wollen.

Präparative Methoden

10

15

20

25

30

35

Alle Umsetzungen metallorganischer Reagenzien und alle Reaktionen in absoluten Lösemitteln werden unter Luft- und Feuchtigkeitsausschluß durchgeführt. Die verwendeten Glasapparaturen werden vor Versuchsbeginn mehrmals im Ölpumpen-vakuum ausgeheizt und mit getrocknetem Argon der Firma Linde belüftet. Wenn nicht anders angegeben, werden sämtliche Reaktionsansätze magnetisch gerührt.

Methylenchlorid wird über eine basische Aluminiumoxidsäule der Aktivitätsstufe I (Woelm) getrocknet. Diethylether wird nach Vortrocknung auf einer basischen Aluminiumoxidsäule über eine 8:1 Natrium/Kalium-Legierung refluxiert bis zur stabilen Blaufärbung des Benzophenon-Indikators und vor der Verwendung frisch abdestilliert. Das Tetrahydrofuran (THF) wird über KOH vorgetrocknet, über eine mit basischem Aluminiumoxid beschickte Säule filtriert und anschließend über Kalium mit Triphenylmethan als Indikator destilliert.

Der Essigsäureethylester (EE) wird nach Vortrocknung über Calciumchlorid ebenso wie Hexan (Hex) vor der Verwendung zur Säulenchromatographie am Rotationsverdampfer abdestilliert.

Chromatographische Verfahren

Sämtliche Reaktionen werden durch Dünnschichtchromatographie (DC) auf Kieselgel-60-Alufolien mit UV-Indikator F₂₅₄ der Firma Merck verfolgt. Als Laufmittel werden zumeist Lösemittelgemische aus Hexan (Hex) und Essigsäureethylester (EE) verwendet. Zum Sichtbarmachen nicht UV-aktiver Substanzen bewährt sich meist Anisaldehyd/Eisessig/Schwefelsäure (1:100:1) als Standard-Tauchreagenz.

Die präperative Säulenchromatographie wird an Kieselgel-60 der Firma Merck (0,04-0,063 mm, 230-400 mesh) durchgeführt, wobei als Eluens Lösemittelgemische aus Hexan (Hex) und Essigsäureethylester (EE) bzw. Diisopropylether dienen.

Im analytischen, wie auch im präperativen Maßstab werden die hochdruckflüssig-keitschromatographischen Trennungen (HPLC) auf Modulsystemen der Firmen Knauer (Pumpe 64, UV- und RI-Detektoren, Säulen und Schreiber), Waters/Millipore (Injek-tionssystem U6K9) und Milton-Roy (Integrator CI-10) durchgeführt. Für die analytische HPLC wird zumeist eine Knauer-Säule (4·250 mm) mit 5 μ m Nucleosil und für die präperative HPLC eine Säule (16·250 mm, 32·250 mm bzw. 64·300 mm) mit 7 μ m oder 5 μ m Nucleosil 50 verwendet.

WO 99/03848 PCT/EP98/04462

Färbereagenzien

5

10

15

30

35

Färbereagenz I (F I): 1 g Cer(IV)sulfat in 10 mL konz. Schwefelsäure und 90 mL Wasser liefert mit den meisten reduzierbaren Verbindungen intensiv blaue Farbreaktion beim Trocknen.

Färbereagenz II (F II): Eine 10%ige ethanolische Lösung von Molybdatophosphorsäure stellt ein weiteres Tauchreagenz zum Nachweis ungesättigter und reduzierbarer Verbindungen dar. Im Unterschied zum Färbereagenz I zeigt das Molydat-Färbereagenz, speziell auf einige Funktionalitäten ansprechend, ein breiteres Farbspektrum bei praktisch gleicher Zuverlässigkeit.

Färbereagenz III (F III): 1 mL Anisaldehyd in 100 mL Ethanol und 2 mL konz. Schwefelsäure stellt ein äußerst empfindliches Färbereagenz dar, daß zudem auch das wohl breiteste Farbspektrum zeigt.

Färbereagenz IV (F IV): Das Vanillin-Tauchbadreagenz ist ähnlich empfindlich, wie das Anisaldehyd-Färbereagenz und zeigt wie dieses ein nahezu breites Farbspektrum.

Färbereagenz V (F V): 1 g 2,4-Dinitrophenylhydrazin in 25 mL Ethanol, 8 mL Wasser und 5 mL konz. Schwefelsäure stellt ein hervorragendes, seletiv schon ohne Erwärmung auf Aldehyde und etwas langsamer auf Ketone ansprechendes, Tauchreagenz dar.

Färbereagenz VI (F VI): Eine 0.5%ige wässerige Lösung von Kaliumpermanganat zeigt durch Entfärbung oxidierbare Gruppen an, wobei ungesättigte, nicht aromatische Struktureinheiten spontan ohne Erwärmung reagieren.

Spektroskopische Verfahren und allgemeine Analytik

NMR-Spektroskopie

Die ¹H-NMR-Spektren werden mit einem AC 250, AM 270 oder AMX 500 Spektrometer der Firma Bruker mit den Substanzen als Lösung in deuterierten Lösemitteln und Tetramethylsilan als internem Standard aufgenommen. Die Auswertung der Spektren erfolgt nach den Regeln erster Ordnung. Ist eine auftretende Signalmultiplizität damit nicht zu erklären, erfolgt die Angabe des beobachteten Liniensatzes. Zur Bestimmung der Stereochemie wird die NOE-Spektroskopie (Nuclear Overhauser Effect) verwendet.

Zur Charakterisierung der Signale werden folgende Abkürzungen verwendet: s (Singulett), d (Dublett), dd (Doppeldublett), ddd (6-Liniensystem bei zwei gleichen Kopplungskonstanten bzw. ein 8-Liniensystem bei drei verschiedenen Kopplungs-konstanten), t (Triplett), q (Quartett), quint (Quintett), sext (Sextett), sept (Septett), m (Multiplett), mc (zentriertes Multiplett), br (breit) und v (verdecktes Signal).

Die ¹³C-NMR-Spektren werden mit einem AC 250 der Firma Bruker mit CDCl₃-Signal bei 77,0 ppm als internem Standard vermessen, wobei die Protonenresonanzen breitbandentkoppelt werden.

10

15

20

25

30

Verwendete Abkürzungen

abs.: absolut, Ar: Aryl/Aromat, ber.: berechnet, Brine: kalt gesättigte Kochsalzlösung, c: Konzentration, COSY: korrelierte Spektroskopie (correlated spectroscopy), DC: Dünnschichtchromatographie, DDQ: Dichloro-dicyano-Quinon, d.e.: diastereomeric excess, DIBAL: Diisobutyl-aluminiumhydrid, DMF: N,N'-Dimethylformamid, DMS: Dimethylsulfid, DMSO: Dimethylsulfoxid, ds: Diastereoselektion, EA: Elementaranalyse, e.e.: enantiomeric excess, EE: Essigsäureethylester, EI: Elektronenstoßionisation, eq: Äquivalent(e), eV: Elektronenvolt, FG: functional group, gef.: gefunden, ges.: gesättigt(e), h: Stunde(n), Hex: n-Hexan, HMDS: Hexamethyldisilazid, HPLC: Hochdruckflüssigkeitschromatographie (high pressure liquid chromatographie, Hünig Base: N-Ethyl-diisopropylamin, HRMS: High Resolution Massenspektrometrie, HV: Hochvakuum, iPrOH: 2-Propanol, IR: Infrarotspektrometrie/Infrarotspektrum, J: Kopplungskonstante, LDA: Lithiumdiisopropylamin, Lsg.: Lösung, Lsm.: Lösemittel, Me: Methyl, MeLi: Methyllithium, min: Minute(n), MS: Massenspektrometrie/Massenspektren, NMR: Kernmagnetische Resonanz (Nuclear Magnetic Resonanz), NOE: Kern-Overhauser-Effekt (Nuclear Overhauser Effect), PCC: Pyridiniumchlorochromat, PG: Schutzgruppe (protection group), Ph: Phenyl, ppm: parts per million, Rkt.: Reaktion, rt: Retentionszeit, RT: Raumtemperatur (20-30 °C), Std.: Stunde(n), TBAF: Tetra-n-Butylammoniumfluorid, TBDPS: tert.-Butyldiphenyl-silyl-, TBS: tert.-Butyldimethylsilyl-, tert./t: tertiär, TFA: Trifluorethansäure, TFAA: Trifluorethansäureanhydrid, TFMS: Trifluormethansulfonsäure, THF: Tetrahydrofuran, TMS: Trimethylsilyl-, u: gmol⁻¹.

PCT/EP98/04462

WO 99/03848 -10-

Beispiel 1

5

10

15

20

25

30

 $(2S,\!4S)\text{-}2\text{-}[4\text{-}Methoxyphenyl}]\text{-}1,\!3\text{-}dioxan\text{-}4\text{-}carbons\"{a}uremethylester}$

AW-5-2 C₁₃H₁₆O₅ M= 252.26 g/mol C 61.9% H 6.4% O 31.7%

In einem ausgeheizten 250 ml Dreihalslöwenthalkolben werden 6.7 g (50 mmol) (S)-Äpfelsäure bei 0 °C unter Argon vorgelegt. Unter Rühren werden bei 0 °C 30 ml Trifluoressigsäureanhydrid über einen Tropftrichter sehr langsam zugegeben (Druckausgleich!). Nach vollständiger Zugabe wird das Eisbad entfernt und die Reaktionslösung noch 2 h bei Raumtemperatur gerührt.

Nun wird Trifluoressigsäure und überschüssiges Anhydrid zunächst im Wasserstrahlvakuum und anschließend an der Ölpumpe entfernt und der kristalline Rückstand bei 0 °C tropfenweise mit 4.5 ml Methanol versetzt (Druckausgleich, s.o.!) und nach Entfernung des Eisbades noch ca. 12 h gerührt.

Nach Einengung und Trocknung im Vakuum wird die kristalline Verbindung von (2S)-2-Hydroxy-butan-1,4-disäure-1-monomethylester in 70 ml abs. THF gelöst und bei 0 °C tropfenweise mit 100 ml einer 1M Boran·THF-Komplex-Lsg. versetzt, 3 h nachgerührt und dann vorsichtig durch tropfenweise Zugabe von 60 ml Methanol die Reaktion abgebrochen. Nach Einengung am Rotationsverdampfer wird das zähe Öl zur Entfernung von Trimethylborat noch mehrfach mit Methanol versetzt und im Vakuum eingedampft. (Eventuell liegt die Dihydroxyverbindung im Gemisch mit Hydroxy-butyrolacton vor; das so gereinigte Rohprodukt wird direkt weiter umgesetzt).

In einem ausgeheizten 250 ml Dreihalslöwenthalkolben wird obiges Rohprodukt in 220 ml abs. Toluol mit 12.8 mL (65 mmol) Anisaldehyddimethylacetal vorgelegt, mit 1.16 g Campfersulfonsäure versetzt und über einen mit aktiviertem 4Å Molsieb gefüllten Soxhletextraktor unter Rückfluß 5 h gerührt. Nach Abkühlung der Lösung wird über eine mit Kieselgel beschickte Fritte filtriert, nachgewaschen mit Ether, mit ges. Natriumcarbonat-Lsg. ausgeschüttelt, über Magnesiumsulfat getrocknet, filtriert und eingeengt. Das Rohprodukt wird über eine 5:1-Hex/EE-Kieselgelsäule chromatographiert. Man erhalt 6.65 g (52.7%) des thermodynamischen Acetalproduktes als kristalline Verbindung.

¹**H-NMR** (400 MHz, CDCl₃): δ in ppm =

1.85 (dtd, $J_{3a,3b}$ = 13.5 Hz, $J_{3a,4a \text{ u. } 2}$ = 2.8 Hz, $J_{3a,4b}$ = 1.5 Hz, 1H, 3a-H); 2.12 (dddd, $J_{3b,3a}$ = 13.5 Hz, $J_{3b,2} \cong J_{3b,4a} \cong 12.0$ Hz, $J_{3b,4b} = 5.0$ Hz, 1H, 3b-H); 3.76+3.77 (s, 3H+3H, OC H_3 +CO₂C H_3); 3.98 (ddd, $J_{4a,3b} \cong J_{4a,4b} \cong 12.0$ Hz, $J_{4a,3a} = 2.5$ Hz, 1H, 4a-H); 4.30 (ddd, $J_{4b,4a}$ = 12.0 Hz, $J_{4b,3b}$ = 5.0 Hz, $J_{4b,3a}$ = 1.5 Hz, 1H, 4b-H); 4.49 (dd, $J_{2,3b}$ = 12.0 Hz, $J_{2,3a}$ = 2.8 Hz, 1H, 2-H); 5.47 (s, 1H, OCHArO); 6.87 (dt, $J_{ArH,ArH}$ = 8.5 Hz, $J_{ArH,OCHArO}$ = 2.0 Hz, 2H, ArH); 7.42 (d, $J_{ArH,ArH}$ = 8.5 Hz, 2H, ArH).

¹³C-NMR (100 MHz, CDCl₃): δ in ppm =

28.1 (C-3); 52.2 (C-6); 55.5 (C-11); 66.6 (C-4); 75.7 (C-2); 101.3 (C-5); 113.6 (C-9); 127.5 (C-8); 130.2 (C-7); 160.1 (C-10); 170.4 (C-1).

IR (Si-Film): ν in cm⁻¹ =

2961m; 2855m; 1730s; 1614m; 1519m; 1445m; 1375m; 1310s; 1251vs; 1207m; 1185m; 1137s; 1096s; 1070m; 1028vs; 993vs; 832s.

MS (EI, 70 eV, 30° C): m/e =

252 (98) [M⁺]; 251 (100) [M⁺-H]; 221 (14); 193 (86); 169 (16); 137 (88); 136 (98); 135 (98); 121 (28); 119 (34); 109 (42); 77 (53); 69 (58); 57 (25); 55 (31).

20

5

10

15

Schmp.: 78-80°C (aus Et₂O)

 $(M = 252.26 \text{ g} \cdot \text{mol}^{-1})$ $C_{13}H_{16}O_5$: EA: ber.: C: 61,90 % H: 6,39 %

gef.: C: 61.67 % H: 6.43 %

25

30

Beispiel 2

(2S,4S)-(2-[4-Methoxyphenyl]-1,3-dioxan-4-yl)-ethan-1-on

AW-6-2 $C_{13}H_{16}O_4$ M = 236.26 g/molC 66.1% H 6.8% O 27.1%

5

10

25

30

35

In einem 250 ml Dreihalsrundkolben werden 2.066 g (8.19 mmol) der aus Beispiel 1 erhaltenen Verbindung in ca. 80 ml abs. THF bei -100 °C tropfenweise mit 7.17 ml einer 1.6 M MeLi-Lsg. (1.4 eq) versetzt und 1-2 h nachgerührt.

Bei vollständigem Umsatz des Eduktes, wird das Kühlbad entfernt und zügig mit ca. 100 ml ges. NH₄Cl-Lsg. gequenscht und 1 h nachgerührt. Zur Aufarbeitung wird mit Ether verdünnt, die Phasen getrennt, die org. Phase mit Wasser, ges. NaHCO₃-Lsg., Wasser und Brine gewaschen und die wässerige Phase nochmals mit Ether extrahiert. Die vereinigten org. Phasen werden über Magnesiumsulfat getrocknet, filtriert und einrotiert, wobei das Produkt eventuell schon auskristallisiert (in diesem Fall kann zur Reinigung einfach mit kaltem Hexan gewaschen werden). Nach Chromatographie über eine 3:1-Hex/EE-Kieselgelsäule wurden 1.656 g (85.6%) erhalten.

¹**H-NMR** (400 MHz, CDCl₃) : δ in ppm =

1.79 (dtd, $J_{2a,2b}$ = 13.3 Hz, $J_{2a,1a \text{ u. }3}$ = 2.9 Hz, $J_{2a,1b}$ = 1.5 Hz, 1H, 2a-H); 1.90 (dddd. $J_{2b,2a}$ = 13.3 Hz, $J_{2b,2 \text{ u. }3}$ = 11.8 Hz, $J_{2b,1b}$ = 4.9 Hz, 1H, 2b-H); 2.27 (s. 3H, COC H_3); 3.79 (s, 3H, OC H_3); 3.96 (td, $J_{1a.1b}$ \cong $J_{1a,2b}$ \cong 11.8 Hz, $J_{1a.2a}$ = 2.5 Hz, 1H, 1a-H); 4.25(dd, $J_{3,2b}$ = 11.3 Hz, $J_{3,2a}$ = 3.0 Hz, 1H, 3-H); 4.29 (ddd, $J_{1b,1a}$ = 11.3 Hz, $J_{1b,2b}$ = 4.9 Hz. $J_{1b,2a}$ = 1.0 Hz, 1H, 1b-H); 5.50 (s, 1H, OCHArO); 6.89 (d, $J_{ArH,ArH}$ = 8.8 Hz, 2H, ArH); 7.43 (d, $J_{ArH,ArH}$ = 8.4 Hz, 2H, ArH).

¹³C-NMR (100 MHz, CDCl₃): δ in ppm =

25.7 (C-5); 27.2 (C-2); 55.2 (C-11); 66.7 (C-1); 81.5 (C-2); 100.9 (C-6); 113.6 (C-9); 127.3 (C-8); 130.5 (C-7); 160.1 (C-10); 208.1 (C-1).

IR (Si-Film): ν in cm⁻¹ =

2999m; 2969s; 2931s; 2909m; 2871s; 2832m; 1710s; 1615m; 1590m; 1520s; 1464m; 1452m; 1429s; 1399m; 1359vs; 1328w; 1310m; 1296m; 1236vs; 1220m; 1207m; 1180s; 1119s; 1100s; 1069m; 1035vs; 1018vs; 992vs; 971vs; 948m; 833vs.

MS (EI, 70 eV, 30° C): m/e =

236 (88) [M⁺]; 235 (91); 221 (20); 194 (72); 193 (78); 163 (33); 153 (27); 137 (88); 136 (88); 135 (86); 121 (77); 109 (85); 100 (28); 92 (47); 84 (99); 83 (65); 77 (92); 65 (31); 63 (31); 57 (43); 55 (31); 43 (100).

Schmp.: 74-76°C

 $C_{13}H_{16}O_4$: (M= 236.26 g·mol⁻¹) EA: ber.: C: 66,09 % H: 6,83 %

gef.: C: 66.34 % H: 6.99 %

Beispiel 3

 $(2^{\circ}S,4^{\circ}S,1E)-4-[2-(4-Methoxyphenyl-1,3-dioxan-4-yl)-prop-1-enyl]-2-methylthiazol$

5

AM-5-2 C₁₈H₂₁NO₃S M= 331.42 g/mol C 65.2% H 6.4% N 4.2% O 14.5% S 9.7%

In einem 100 mL Dreihals-Löwenthalkolben werden 1.475 g (3.25 mmol; 1.3 eq) Wittigreagenz (2-Methyl-thiazol-4-yl-methyl-triphenylphosphoniumbromid); nach erneuter Trocknung im Ölpumpenvakuum mit 5 ml abs. THF suspendiert. Nach Abkühlung der Suspension auf -78 °C, wird mit einer Lösung von 715 mg (3.9 mmol; 1.2 eq) NaHMDS, gelöst in 5 ml abs. THF, durch langsame Zugabe deprotoniert und 15 min nachgerührt.

Nochmals direkt vor der Verwendung getrocknete 590 mg (2.5 mmol) der aus Beispiel 2 erhaltenen Verbindung, gelöst in 5 ml abs. THF, werden bei -78 °C langsam zugetropft, 5 min nachgerührt, anschließend das Kühlbad entfernt und auf Raumtemperatur erwärmen gelassen. Nach ca. 40 min wird die Reaktionslösung im Wasserbad auf 40-50 °C erwärmt und 1 h gerührt.

Zur Aufarbeitung wird durch Zugabe von ges. NH₄Cl-Lsg. gequenscht, die Phasen getrennt, die organische Phase über Magnesiumsulfat getrocknet, filtriert und einrotiert. Nach Chromatographie über eine 6:5:1-CH₂Cl₂/Hex/EE-Kieselgelsäule werden 171 mg Z-Olefin und 614 mg E-Olefin erhalten.

Die Olefinierungsprodukte werden somit in einer Ausbeute von 94.75% im Verhältnis von 1:3.6-Z:E-Olefin erhalten.

25

10

15

20

¹**H-NMR** (400 MHz, CDCl₃) (E-Olefin): δ in ppm =

1.67 (dtd, $J_{2a,2b}$ = 13.3 Hz, $J_{2a,1a \text{ u. } 3}$ = 2.5 Hz, $J_{2a,1b}$ = 1.5 Hz, 1H, 2a-H); 2.02 (mc, 1H, 2b-H); 2.10 (d, $J_{4,5}$ = 1.0 Hz, 1H, 4-H); 2.69 (s, 3H, TAr-C H_3); 3.78 (s, 3H,

OC H_3); 4.02 (td, $J_{1a,1b} \cong J_{1a,2b} \cong 11.5$ Hz, $J_{1a,2a} = 2.5$ Hz, 1H, 1a-H); 4.29 (ddd. $J_{1b,1a} = 11.5$ Hz, $J_{1b,2b} = 5.0$ Hz, $J_{1b,2a} = 1.5$ Hz, 1H, 1b-H); 4.34 (mc, 1H, 3-H); 5.56 (s, 1H, OCHArO); 6.63 (q, $J_{5,4} \cong 1.0$ Hz, 1H, 5-H); 6.88 (mc, 2H, Ar-H); 6.97 (s, 1H, TAr-H); 7.44 (mc, 2H, Ar-H).

5

10

15

20

25

30

¹³C-NMR (100 MHz, CDCl₃) (E-Olefin): δ in ppm =

15.1 (C-16); 19.2 (C-9); 30.2 (C-2); 55.3 (C-15); 67.1 (C-1); 81.7 (C-3); 101.1 (C-10);

113.5 (C-13); 115.7 (C-7); 118.9 (C-5); 127.5 (C-12); 131.3 (C-11); 139.1 (C-4); 152.8 (C-6); 159.9 (C-14); 164.4 (C-8).

IR (Si-Film): ν in cm⁻¹ =

3105w; 3057w; 2959m; 2925m; 2850m; 1658w; 1614s; 1517s; 1463m; 1442m: 1429m; 1394m; 1371m; 1302s; 1248vs; 1215w; 1172s; 1152w; 1118s; 1096s: 1062w; 1034s; 977w; 830m.

MS (EI, 70 eV, 40° C): m/e =

331 (41) [M⁺]; 279 (35); 247 (23); 231 (21); 195 (34); 178 (24); 167 (54); 164 (52); 149 (57); 140 (43); 139 (51); 136 (92); 135 (100); 119 (96); 97 (40); 94 (44); 91 (69); 77 (36); 69 (52); 57 (44); 55 (43); 43 (50).

 $C_{18}H_{21}NO_3S$: (M= 331.42 g·mol⁻¹)

EA: ber.: C: 65,23 % H: 6,39 % N: 4.22 % gef.: C: 65.37 % H: 6.41 % N: 4.40 %

Beispiel 4

(3S, 4*E*)-3-[(4-Methoxyphenyl)methoxy]-4-methyl-5-(2-methylthiazol-4-yl)pent-4-enol

AM-12-2 C₁₈H₂₃NO₃S M= 333.44 g/mol C 64.8% H 7.0% N 4.2% O 14.4% S 9.6%

In 30 ml abs. CH₂Cl₂ werden 662 mg (2 mmol) der aus Beispiel 3 erhaltenen Verbindung bei -20 °C tropfenweise mit 8 ml einer 1M DIBAL-Lsg. (4 eq) versetzt und ca. 5 h gerührt. Zum Reaktionsabbruch wird mit 1 ml MeOH gequenscht und anschließend langsam gesättigte NaK-Tartrat-Lsg. (30 ml) hinzugegeben. Die Lsg. wird über Nacht gerührt, wobei sich zwei klare Phasen gebildet haben. Die Phasen werden getrennt, die wässerige Phase noch zweimal mit CH₂Cl₂ extrahiert und die vereinigten org. Phasen mit ges. NH₄Cl-Lsg. gewaschen. Nach Trocknung über MgSO₄ wird filtriert und im Vakuum eingeengt.

Chromatographie über eine 2:1-Hex/EE-Kieselgelsäule erbrachte 594 mg (89.1%) Gesamtausbeute im Verhältnis 15:85 ((89 mg); (505 mg)).

¹H-NMR (400 MHz, CDCl₃): δ in ppm =

1.68 (dq, $J_{2a,2b}$ = 14.3 Hz, $J_{2a,1's u.3}$ = 4.9 Hz, 1H, 2a-H); 1.94 (mc, 1H, 2b-H); 1.99 (s, 3H, 4-H); 2.37 (br s, 1H, 1-OH); 2.66 (s, 3H, TAr-CH₃); 3.68 (br mc, 2H, 1-H); 3.73 (s, 3H, OC H_3); 3.99 (dd, $J_{3,2a}$ = 8.9 Hz, $J_{3,2b}$ = 3.9 Hz, 1H, 3-H); 4.18+4.42 (je d, J=11.3 Hz, 2H, OC H_2 Ar); 6.48 (s, 1H, 5-H); 6.80 (mc, 2H, Ar-H); 6.93 (s, 1H, TAr-H); 7.18 (mc, 2H, Ar-H).

¹³C-NMR (100 MHz, CDCl₃): δ in ppm =

13.6 (C-16); 19.2 (C-9); 36.7 (C-2); 55.2 (C-15); 61.1 (C-1); 69.9 (C-3); 84.3 (C-10); 113.9 (C-13); 115.9 (C-7); 121.1 (C-5); 129.4 (C-12); 130.2 (C-11); 139.1 (C-4); 152.6 (C-6); 159.2 (C-14); 164.7 (C-8).

25

10

15

20

IR (Si-Film): ν in cm⁻¹ =

3396br; 2926m; 2856w; 2835w; 1612m; 1586w; 1514vs; 1464m; 1453m; 1442m; 1302m; 1248vs; 1181m; 1173m; 1060m; 1035s; 821m.

MS (EI, 70 eV, 40° C): m/e = 30

> 333 (9) $[M^{+}]$; 281 (14); 231 (14); 212 (40); 197 (51); 164 (30); 135 (22): 122 (40); 121 (100); 113 (31); 97 (23); 91 (39); 77 (37); 69 (38).

N: 4.20 % ber.: C: 64,84 % H: 6,95 % $C_{18}H_{23}NO_3S$: EA: N: 4.14 % $(M = 333.44 \text{ g·mol}^{-1})$ gef.: C: 65.08 % H: 7.00 % 35

WO 99/03848 -16-

Beispiel 5

5

10

15

20

25

30

(5S,2Z,6E)-2,6-Dimethyl-5-[(4-ethoxyphenyl)methoxy]-7-(2-methylthiazol-4-yl)hepta-2,6-diensäure-ethylester

OPMB

5

6

7

14' 3'

5' 1'

AM-14-1 C₂₃H₂₉NO₄S M= 415.54 g/mol C 66.5% H 7.0% N 3.4% O 15.4% S 7.7%

In 30 ml abs. CH_2Cl_2 werden 102 μ L Oxalylchlorid (1,1 eq) vorgelegt und nach Einkühlung auf -78°C unter Argon langsam mit 187 μ L DMSO (2,5 eq) versetzt und 10 min nachgerührt. (Trübung)

Bei -78 °C werden 354 mg (1,062 mmol)der aus Beispiel 4 erhaltenen Verbindung, gelöst in 5 ml abs. CH₂Cl₂, langsam zugegeben und 10 min nachgerührt. Anschließend wird ca. 1 ml (>5 eq) Hünigbase zugegeben, 15 min nachgerührt und dann das Kühlbad entfernt. (Wieder klare Lsg.). Die Reaktionslösung wird mit 40 ml einer 1:1-Hex/EE-Lsg. verdünnt und mit Eiswasser gequenscht. Die Phasen werden getrennt, die wässerige Phase noch zweimal mit Ether extrahiert und die vereinigten organischen Phasen über Magnesiumsulfat getrocknet, über eine kurze Kieselgelfritte filtriert, im Vakuum eingeengt und an der Ölpumpe getrocknet. Der Rohaldehyd wird ohne weitere Aufreinigung direkt für die nachfolgende Umsetzung verwendet.

In 25 ml abs. THF werden 303,5 mg 2-Phosphonopropionsäure-triethylester (1,2 eq) und 842 mg 18-Krone-6 (3 eq) bei -78 °C vorgelegt. Bei dieser Temperatur wird durch langsame Zugabe von 239 mg KHMDS (1,15 eq), gelöst in ca. 5 ml abs. THF, deprotoniert und 10 min nachgerührt. Anschließend wird der Rohaldehyd, gelöst in ca. 10 ml abs. THF, langsam zugegeben. DC-Kontrolle nach ca. 30 min zeigte bereits vollständigen Umsatz, so dass das Kühlbad entfernt und die Reaktion durch Zugabe von ges. NH₄Cl-Lsg. gequenscht wurde.

Nach Phasentrennung wird mit ges. NaHCO₃-Lsg. gewaschen, die wässerigen Phasen noch zweimal mit Ether extrahiert und die vereinigten organischen Phasen über Magnesiumsulfat getrocknet. Nach Filtration der organischen Phasen über kurze Kieselgelfritte wird am Rotationsverdampfer eingeengt. Chromatographie über ein 3:1-Hex/EE-Kieselgelvorsäule erbrachte 377 mg (85,46%) Isomerengemisch im Verhältnis

5

10

15

20

25

von ca. 6,2:1 . Zur Trennung der Doppelbindungsisomere emphielt sich eine Chromatographie über eine 7:1-Hex/EE-Kieselgelsäule oder eine Reinigung auf der präperativen HPLC.

(Mitlerweile wurde auch die Verwendung des Trifluorethyl-Phosphonat-Derivates untersucht, die eine Selektivität von 15:1 erbrachte).

¹H-NMR (400 MHz, CDCl₃) (Z-Isomer): δ in ppm =

1.28 (t, J= 7.5 Hz, 3H, -CO₂CH₂CH₃); 1.88 (d, J_{2, 3}= 1.5 Hz, 3H, 2-H); 2.04 (d, J₆, J= 1.0 Hz, 3H, 6-H); 2.73 (s, 3H, TAr-CH₃); 2.82 (mc, 2H, 4-H's); 3.80 (s, 3H, OCH₃); 3.88 (t, J_{5,4a u. 4b}= 7.0 Hz, 1H, 5-H); 4.17 (q, J= 7.0 Hz, 2H, -CO₂CH₂CH₃); 4.24+4.49 (je d, J= 11.5 Hz, 2H, OCH₂Ar); 5.96 (tq, J_{3,4a u. 4b}= 6.9 Hz, J_{3, 2}= 1.5 Hz, 1H, 3-H); 6.54 (s, 1H, 6-H); 6.87 (mc, 2H, Ar-H); 6.99 (s, 1H, TAr-H); 7.25 (mc, 2H, Ar-H).

¹³C-NMR (100 MHz, CDCl₃): δ in ppm =

13.4 (C-20); 14.3 (C-13); 19.2 (C-11); 20.7 (C-21); 34.4 (C-4); 55.3 (C-19); 60.1 (C-12); 69.8 (C-14); 84.3 (C-5); 113.7 (C-17); 115.8 (C-9); 121.4 (C-7); 128.4 (C-2); 129.4 (C-16); 130.7 (C-15); 138.8 (C-3); 139.1 (C-6); 152.7 (C-8): 159.1 (C-18); 164.5 (C-10); 167.9 (C-1).

MS (EI, 70 eV, 110° C): m/e =

415 (8) [M⁺]; 371 (13) [M⁺-OEt]; 294 (20); 289 (40); 288 (100); 248 (26); 231 (18); 204 (18); 164 (29); 138 (30); 122 (96); 121 (92); 113 (28); 97 (61); 91 (39); 78 (50); 77 (71); 69 (40); 53 (45); 43 (37).

 $C_{23}H_{29}NO_4S$: EA: ber.: C: 66,48 % H: 7,03 % N: 3.37 % $(M=415.54 \text{ g·mol}^{-1})$ gef.: C: 65.91 % H: 6.77 % N: 3.29 %

Beispiel 6

5

10

15

20

25

(5S,2Z,6E)-2,6-Dimethyl-5-[(4-methoxyphenyl)methoxy]-7-(2-methyl-thia-zol-4-yl)hepta-2,6-dienol

AM-15 C₂₁H₂₇NO₃S M= 373.51 g/mol C 67.5% H 7.3% N 3.8% O 12.9% S 8.6%

In 100 ml abs. THF werden bei -20 °C 417 mg (1,0035 mmol) der aus Beispiel 5 erhaltenen Verbindung vorgelegt und dann tropfenweise mit 3 ml einer 1M-DIBAL in Heptan Lösung versetzt. Nach 3 h wurde zur Vervollständigung des Reaktionsumsatzes noch 1 ml der DIBAL-Lsg. nachgegeben und nochmals 30 min bei -20 °C nachgerührt.

Zum Reaktionsabbruch wurde mit 1 ml MeOH gequenscht und nach Verdünnung mit 50 ml Diethylether werden 100 ml halbkonz. NaK-Tartrat-Lsg. zugegeben. Nach ca. 2-3 h kräftigen Rührens bei RT werden die Phasen getrennt, die wässerige Phase noch zweimal mit Ether extrahiert und die vereinigten organischen Phasen über Magnesiumsulfat getrocknet, filtriert und im Vakuum eingeengt. Chromatographische Reinigung über eine 1:1-Hex/EE-Kieselgelsäule erbrachte 272 mg (72,56%) Vinylalkohol.

¹**H-NMR** (400 MHz, CDCl₃): δ in ppm =

1.79 (s, 3H, 2-H); 2.03 (d, $J_{6, 7}$ = 1.0 Hz, 3H, 6-H); 2.21 (mc, 1H, 4a-H); 2.47 (br, 1H, 1-OH); 2.52 (dt, $J_{4b, 4a}$ = 14.3 Hz, $J_{4b, 3 u. 5}$ = 8.4 Hz, 1H, 4b-H); 2.70 (s, 3H, TAr-C H_3); 3.75 (dd, $J_{5, 4a}$ = 8.4 Hz, $J_{5, 4b}$ = 4.4 Hz, 1H, 5-H); 3.77 (s, 3H, OC H_3); 3.84+4.13 (je br d, J= 11.8 Hz, 2H, 1-H's); 4.20+4.46 (je d, J= 11.3 Hz, 2H, OC H_2 Ar); 5.26 (t, $J_{3,4a u. 4b}$ = 8.0 Hz, 1H, 3-H); 6.49 (s, 1H, 7-H); 6.84 (mc, 2H, Ar-H); 6.97 (s, 1H, TAr-H); 7.20 (mc, 2H, Ar-H).

¹³C-NMR (100 MHz, CDCl₃): δ in ppm =

13.8 (C-18); 19.2 (C-11); 22.2 (C-19); 34.0 (C-4); 55.2 (C-17); 61.3 (C-1); 70.0 (C-12); 83.7 (C-5); 113.7 (C-15); 115.8 (C-9); 121.1 (C-7); 123.8 (C-3); 129.6

(C-14); 129.9 (C-13); 138.2 (C-2); 139.4 (C-6); 152.6 (C-8); 159.2 (C-16); 164.7 (C-10).

MS (EI, 70 eV, 50° C): m/e =

373 (9) [M⁺]; 357 (8); 307 (11); 289 (27); 288 (96); 219 (19); 197 (17); 167 (39); 164 (28); 149 (33); 138 (41); 122 (100); 121 (92); 119 (34); 109 (27); 97 (52); 91 (81); 78 (39); 77 (56); 69 (36); 43 (56).

10 Beispiel 7

5

15

20

25

30

(5S,2Z,6E)-2,6-Dimethyl-2,3-epoxy-5-[(4-methoxyphenyl)-methoxy]-7-(2-methoxyphenyl)-methoxyphenyl)-methoxyphenyl-2,3-epoxy-5-[(4-methoxyphenyl)-methoxyphenyl)-methoxyphenyl-2,3-epoxy-5-[(4-methoxyphenyl)-methoxyphenyl)-methoxyphenyl-2,3-epoxy-5-[(4-methoxyphenyl)-methoxyphenyl)-methoxyphenyl-3,4-[(4-methoxyphenyl)-methoxyphenyl-3,4-[(4-methoxyphenyl)-methoxyphenyl-3,4-[(4-methoxyphenyl)-methoxyphenyl-3,4-[(4-methoxyphenyl)-methoxyphenyl-3,4-[(4-methoxyphenyl)-methoxyphenyl-3,4-[(4-methoxyphenyl)-methoxyphenyl-3,4-[(4-methoxyphenyl)-methoxyphenyl-3,4-[(4-methoxyphenyl)-methoxyphenyl-3,4-[(4-methoxyphenyl)-methoxyphenyl-3,4-[(4-memethylthiazol-4-yl)hept-6-enol

AM-16 $C_{21}H_{27}NO_4S$ M = 389.50 g/molC 64.8% H 7.0% N 3.6% O 16.4% S 8.2%

Zu einer Suspension von ca. 80 mg aktiviertem, zerstoßenem 3Å Molsieb in 2 ml abs. CH₂Cl₂ werden bei -15 °C 20,5 mg (0,0874 mmol) D-(-)-Diisopropyl-Tartrat und 21,7 μ 1 (7,28 µmol) Titanisopropoxid zugegeben.

Bei -30 °C werden 199 μl einer ca. 5,5M tert.-Butylhydroperoxid-Lsg. in Nonan langsam zugetropft, 10 min nachgerührt. Anschließend wird die resultierende Reagenzlösung bei -30 °C tropfenweise mit 265 mg (0,7095 mmol) der aus Beispiel 5 erhaltenen Verbindung, gelöst in ca. 1 ml abs. CH₂Cl₂, versetzt und 3 d gerührt.

Zur Aufarbeitung der Reaktion wird zunächst mit 15 ml CH₂Cl₂ verdünnt, 1 ml Wasser zugegeben und 30 min nachgerührt. Anschließend werden 1 ml (Brine/3N NaOH=1:1) zugegeben und wiederum 30 min kräftig nachgerührt. Nach Phasentrennung, zweimaliger Extraktion der wässerigen Phase mit CH2Cl2, Trocknung der vereinigten organischen Phasen über Magnesiumsulfat und Filtration über eine kurze Celite-Fritte wird im Vakuum eingeengt. Chromatographie über eine 1:1-Hex/EE-Kieselgelsäule erbrachte 235 mg (215 mg direkt und 20 mg ex 13 C-Daten in der Mischfraktion) (85,04%) und noch 40 mg Gemischrest .

¹**H-NMR** (400 MHz, CDCl₃): δ in ppm =

1.40 (s, 3H, 2-H); 1.76 (ddd, ${}^{2}J_{4a, 4b}$ = 15.3 Hz, $J_{4a, 5}$ = 10.8 Hz, $J_{4a, 3}$ = 9.9 Hz, 1H, 4a-H); 2.01 (ddd, ${}^{2}J_{4b, 4a}$ = 14.8 Hz, $J_{4b, 3}$ = 3.4 Hz, $J_{4b, 5}$ = 2.5 Hz, 1H, 4b-H); 2.04 (d, ${}^{4}J_{6, 7}$ = 1.0 Hz, 3H, 6-H); 2.71 (s, 3H, TAr-C H_{3}); 2.76 (dd, $J_{3, 4a}$ = 9.9 Hz, $J_{3, 4b}$ = 3.5 Hz, 1H, 3-H); 3.29 (dd, $J_{1-OH, 1}$ = 10.8 Hz, $J_{1-OH, 1}$ = 2.0 Hz, 1H, 1-OH); 3.45 (dd, ${}^{2}J_{1a, 1b}$ =11.8 Hz, $J_{1a, 1-OH}$ = 2.0 Hz, 1H, 1a-H); 3.61 (t br, ${}^{2}J_{1b, 1a}$ =11.3 Hz, 1H, 1b-H); 3.78 (s, 3H, OC H_{3}); 3.99 (dd, $J_{5, 4a}$ = 10.8 Hz, $J_{5, 4b}$ = 2.5 Hz, 1H, 5-H); 4.22+4.51 (je d, ${}^{2}J$ = 11.5 Hz, 2H, OC H_{2} Ar); 6.49 (d, ${}^{4}J$ = 1.0 Hz, 1H, 7-H); 6.86 (mc, 2H, Ar-H); 7.00 (s, 1H, TAr-H); 7.22 (mc, 2H, Ar-H).

15 13 C-NMR (100 MHz, CDCl₃): δ in ppm =

10

20

13.4 (C-18); 19.2 (C-11); 20.4 (C-19); 33.7 (C-4); 55.2 (C-17); 60.5 (C-1); 62.1 (C-3); 64.2 (C-2); 70.0 (C-12); 81.3 (C-5); 113.9 (C-15); 116.4 (C-9); 121.7 (C-7); 129.0 (C-14); 131.1 (C-13); 138.1 (C-6); 152.3 (C-8); 159.5 (C-16); 164.9 (C-10).

Patentansprüche

1. Verbindungen der allgemeinen Formel II

$$QR^2$$
 R^1
 N
 S
(II)

5

10

worin R¹ C₁-C₄-Alkyl,

R² eine beliebige chelatisierungsfähige Schutzgruppe,

R³ Wasserstoff oder C₁-C₄-Alkyl

Y CO₂R⁴, CHO, CH=CH₂ oder CH₂R⁵, wobei

R⁴ für C₁-C₄-Alkyl oder eine gegebenenfalls substituierte Benzylgruppe,

R⁵ für Halogen, Hydroxy, p-Toluolsulfonat oder -OSO₂B und

B für C₁-C₄-Alkyl oder C₁-C₄-Perfluoralkyl steht,

15 bedeutet.

2. Verbindungen der allgemeinen Formel II

$$QR^2$$
 R^1
 R^3
 R^3
 R^3
 R^4
 R^4

20

25

worin R¹ C₁-C₄-Alkyl,

R² p-Methoxybenzyl

R³ Methyl und

 $Y CO_2R^4$

 $mit R^4 C_1-C_4-Alkyl$

bedeutet.

3. Verbindung der Formel IV

$$\begin{array}{c} \mathsf{PMP} \\ \bullet \\ \bullet \\ \bullet \\ \mathsf{CO_2Me} \end{array} \tag{IV)}$$

- 5 worin PMP p-Methoxyphenyl bedeutet.
 - 4. Verbindungen der Formel V

(V)

10

worin R^1 C_1 - C_4 -Alkyl und PMP p-Methoxyphenyl bedeutet.

5. Verbindungen der Formel VI

15

worin

 R^1 C_1 - C_4 -Alkyl und

20 PMP P-Methoxyphenyl bedeutet.

6. Verbindungen der Formel IIa

$$\begin{array}{c} \text{OPMB} \\ \\ \text{EtO}_2\text{C} \\ \\ \\ \text{R}^3 \end{array}$$

5 worin

 R^1 C_1 - C_4 -Alkyl

PMB p-Methoxybenzyl bedeutet.

R³ Wasserstoff oder C₁-C₄-Alkyl

7. Verbindungen der Formel VII

worin

15

20

R¹ C₁-C₄-Alkyl

R² eine chelatisierungsfähige Schutzgruppe darstellt.

 R^3 Wasserstoff oder C_1 - C_4 -Alkyl

8. Verfahren zur Herstellung der Verbindung der allgemeinen Formel IIa

 $\begin{array}{c} \text{OPMB} \\ \text{EtO}_2\text{C} \\ \text{R}^3 \\ \text{S} \end{array} \qquad \qquad \text{(IIa)}$

dadurch gekennzeichnet, daß

in einem Schritt 1

von (S)-Äpfelsäure (III) die α-Hydroxysäurefunktion mit Trifluoressigsäure/Methanol (a) in den Methylester überführt wird, die noch vorhandene Säurefunktion mit Diboran

WO 99/03848 -24-

in Tetrahydrofuran (b) zum Alkohol reduziert wird und der so erhaltene (S)-(-)-Methyl-2,4-Dihydroxyester mit p-Methoxybenzyldimethylacetal (c) in das cyclische Acetal (IV) überführt wird,

OH
$$A_2C$$
 A_2C A_3 A_4 A_5 A_5

in einem Schritt II

5

10

15

der Methylester mit einer C₁-C₄-Alkyl-metallorganischen Verbindung (d) in das entsprechende Alkylketon (V) überführt wird,

in einem Schritt III

das (C₁-C₄)-Alkylketon (V) in einer Wittigreaktion mit dem Thiazolylphosphoniumsalz (e) umgesetzt und das E-Isomere (VI) abgetrennt wird und

in einem Schritt IV

das E-Isomere (VI) durch Reaktion mit Diisobutylaluminiumhydrid (f), Swern-Oxidation (g) und Wadsworth-Horner-Emmons-Kondensation (h) mit Ethyl-2-Diethoxyphosphinylpropionat oder einem für R³ entsprechenden Horner-Reagenz und Reinigung vom

E-Isomeren in den Z- α,β-ungesättigten Ester (IIa) überführt wird.

Verbindung VI

Verbindung IIa

5 9. Verbindungen der allgemeinen Formel VIIa

worin R^1 Wasserstoff oder C_1 - C_4 -Alkyl und

R² p-Methoxybenzyl

R³ Wasserstoff oder C₁-C₄-Alkyl

bedeuten.

10

10. Verwendung der Verbindungen gemäß Ansprüche 1, 2, 3, 4, 5, 6, 7 und/oder 9 zur Herstellung von Epothilon A und Epothilon B und deren Derivaten.

INTERNATIONAL SEARCH REPORT

Int Honal Application No PCT/EP 98/04462

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C07D277/30 C07D319/06 C07D417/06 C07D277/24 C07D493/04 //(C07D493/04,313:00,303:00) According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 CO7D Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. DONGFANG MENG ET AL: "Studies toward a Α 1 - 10synthesis of epothilone A:Use of hydropyran templates for the management of acyclic stereochemical relationships" JOURNAL OF ORGANIC CHEMISTRY. vol. 61, no. 23, 1996, pages 7998-7999, XP002035361 EASTON US cited in the application see the whole document DE 195 42 986 A (GESELLSCHAFT FÜR Α 1 - 10BIOTECHNOLOGISCHE FORSCHUNG) 22 May 1997 cited in the application see the whole document -/--Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not cited to understand the principle or theory underlying the considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or other means ments, such combination being obvious to a person skilled "P" document published prior to the international filing date but later than the priority date claimed in the art. "&" document member of the same patent family Date of the actual completion of theinternational search Date of mailing of the international search report 4 November 1998 23/11/1998 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Henry, J Fax: (+31-70) 340-3016

1

INTERNATIONAL SEARCH REPORT

Int tional Application No
PCT/EP 98/04462

C (Cantin	(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT				
Category :	Citation of document, with indication where appropriate, of the relevant passages		Relevant to claim No		
P, X	JOHANN MULZER ET AL: "Synthesis of the C(11)-C(20) segment of the cytotoxic macrolide epothilone B " TETRAHEDRON LETTERS., vol. 38, no. 44, 3 November 1997, pages 7725-7728, XP002083207 OXFORD GB see the whole document		1-10		

1

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int ional Application No PCT/EP 98/04462

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
DE 19542986 A	22-05-1997	WO 9719086 A EP 0873341 A	29-05-1997 28-10-1998

INTERNATIONALER RECHERCHENBERICHT

Int tionales Aktenzeichen PCT/EP 98/04462

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 6 C07D277/30 C07D319/06 C07D417/06 C07D277/24 C07D493/04 //(C07D493/04,313:00,303:00)

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) $IPK\ 6\ C07D$

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

	C. ALS WESENTLICH ANGESEHENE UNTERLAGEN				
Kategorie ³	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.			
A	DONGFANG MENG ET AL: "Studies toward a synthesis of epothilone A:Use of hydropyran templates for the management of acyclic stereochemical relationships" JOURNAL OF ORGANIC CHEMISTRY., Bd. 61, Nr. 23, 1996, Seiten 7998-7999, XP002035361 EASTON US in der Anmeldung erwähnt siehe das ganze Dokument	1-10			
Α	DE 195 42 986 A (GESELLSCHAFT FÜR BIOTECHNOLOGISCHE FORSCHUNG) 22. Mai 1997 in der Anmeldung erwähnt siehe das ganze Dokument/	1-10			

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen	X Siehe Anhang Patentfamilie		
Besondere Kategorien von angegebenen Veröffentlichungen :	"T" Spätere Veröffentlichung, die nach deminternationalen Anmeldedatum		
"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert. aber nicht als besonders bedeutsam anzusehen ist	oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der		
"E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist	Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist		
"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer	 "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer T\u00e4tigkeit beruhend betrachtet werden "Y" Ver\u00f6fentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer T\u00e4tigkeit beruhend betrachtet werden, wenn die Ver\u00f6ffentlichung mit einer oder mehreren anderen Ver\u00f6ffentlichungen dieser Kategorie in Verbindung gebracht wird und 		
ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung,			
eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist	diese Verbindung für einen Fachmann naheliegend ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist		
Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts		
4. November 1998	23/11/1998		
Name und Postanschrift der Internationalen Recherchenbehörde	Bevollmächtigter Bediensteter		
Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Henry, J		

INTERNATIONALER RECHERCHENBERICHT

Int :ionales Aktenzeichen
PCT/EP 98/04462

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN			5/ 04402	
Kategorie ·	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komme	nden Teile	Betr. Anspruch Nr.	
P,X	JOHANN MULZER ET AL: "Synthesis of the C(11)-C(20) segment of the cytotoxic macrolide epothilone B " TETRAHEDRON LETTERS., Bd. 38, Nr. 44, 3. November 1997, Seiten 7725-7728, XP002083207 OXFORD GB siehe das ganze Dokument		1-10	

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Ini :ionales Aktenzeichen
PCT/EP 98/04462

im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung	
DE 19542986 A	22-05-1997	WO	9719086 A	29-05-1997	
		EP	0873341 A	28-10-1998	