	 		_	 	 	_		
SRN		_	•					

PES University, Bangalore (Established under Karnataka Act No. 16 of 2013)

UE16EC101

MAY 2017: END SEMESTER ASSESSMENT (ESA) B.TECH. II SEMESTER UE16EC 101- BASIC ELECTRONICS

Ti	me: 3	Hrs Answer All Questions Max Marks: 10	00						
1	a)	Name the 3 types of resistances associated with the diode? Derive the expression for the dynamic resistance of the diode.							
	b)	The reverse saturation current of a Si diode is 5 nA at a temperature of 300K. Find the diode current and its dynamic resistance at 60° C and $V_D = 0.5$ V.	4						
	c)	With a neat diagram, explain the basic construction and working of an LED. Why is called IR LED? Justify. Given Energy gap for Ga As = 1.43 eV.	6						
	d)	Determine I_D , V_{D2} , and V_O for the circuit shown.	4						
		Policinime I B, V B ₂ , and V Sion the circuit shown. Si GC +12 V I_R V							
2	a)	With neat Circuit diagram and waveforms explain the working of bridge rectifier. Write the expression for the output dc voltage V_{dc} and PIV rating of the diode.	8						
	b)	Draw the circuit diagram of a center tapped FWR with capacitor filter. Calculate the percentage ripple for the voltage developed across a 120 μ F filter capacitor when providing a load current of 80 mA. The full wave rectifier operating from 60 Hz supply develops a peak rectified voltage of 25 V.	7						
	c)	Design a zener regulator that will maintain the output voltage at 20 V across a 1 K Ω resistor. Input varies between 30 V to 50 V. Find R s and I _{Z max} .	5						
3	a)	Simplify the following Boolean expression and realize the simplified expression using NOR gates.	5						
		$Y = (\overline{A} \overline{C} + \overline{B} C) (\overline{A} \overline{B} + \overline{A} \overline{B} \overline{C})$							
	b)	Draw the circuit diagram of a Full-Adder using NAND gates. Write its output equations and its truth table.	5						
	c)	Draw the logic diagram and the truth table of a clocked RS flip-flop. How to convert the same into a clocked D flip-flop and what is the advantage of it?	6						
	d)	Realize a 3-input XOR gate using 4-to-1 MUX.	4						
4	`	Draw the output characteristics of CB configuration marking 3 regions of operation. State the biasing conditions for these regions and explain behavior of transistor in these regions along with the output current equation for active region.	9						

Explain any one open loop application of op amp.