Teoretická informatika - Úkol č.1

Buchal Petr, xbucha02

28. Říjen, 2018

1. Příklad

1.1 Zadání

S využitím uzávěrových vlastností dokažte, nebo vyvraťte, následující vztahy:

- (a) $L_1, L_2 \in \mathcal{L}_3 \Rightarrow L_1 \backslash L_2 \in \mathcal{L}_3$
- (b) $L_1 \in \mathcal{L}_3, L_2 \in \mathcal{L}_2^D \Rightarrow L_1 \backslash L_2 \in \mathcal{L}_2^D$
- (c) $L_1 \in \mathcal{L}_3, L_2 \in \mathcal{L}_2 \Rightarrow L_1 \backslash L_2 \in \mathcal{L}_2$

 \mathcal{L}_2^D značí třídu deterministických bezkontextových jazyků.

1.2 Řešení

1.2.1 Bod a

Regulární jazyky jsou uzavřeny vzhledem k operacím \cup (sjednocení), \cdot (konkatenace) a * (iterace). To plyne z definice regulárních množin a ekvivalence regulárních množin a regulárních jazyků.

 $L_1 \setminus L_2 = L_1 \cap \overline{L_2}$, pokud jsou regulární jazyky uzavřeny vzhledem k průniku a zároveň vzhledem ke komplementu, jsou uzavřené rovněž vzhledem k rozdílu a výsledný jazyk bude náležet do \mathcal{L}_3 .

(a) Uzavřenost regulárních jazyků vzhledem ke komplementu K jazyku L sestrojíme úplně definovaný KA M

$$M = (Q, \Delta, \Sigma, q_0, F)$$

kde $\Delta\subseteq\Sigma$ a platí, že L=L(M). Pak KAM'

$$M' = (Q, \Delta, \Sigma, q_0, Q \backslash F)$$

zřejmě přijímá jazyk $\Delta^* \backslash L$. Komplement vzhledem k Σ^* :

$$\overline{L} = L(M') \cup \Sigma^*(\Sigma \backslash \Delta)\Sigma^*$$

což je regulární jazyk.

(b) Uzavřenost regulárních jazyků vzhledem k průniku
Uzavřenost regulárních jazyků vzhledem ke komplementu plyne z de Morganových zákonů:

$$L_3 \cap L_4 = \overline{\overline{L_3 \cap L_4}} = \overline{\overline{L_3} \cup \overline{L_4}}$$

a tedy $L_3, L_4 \in \mathcal{L}_3 \Rightarrow L_3 \cap L_4 \in \mathcal{L}_3$.

1.2.2 Bod b

 $L_1 \setminus L_2 = L_1 \cap \overline{L_2}$, pokud jsou deterministické bezkontextové jazyky uzavřeny vzhledem k průniku s regulárními jazyky a vzhledem k doplňku, tvrzení 1.b bude pravdivé. Deterministické bezkontextové jazyky jsou vyjádřitelné deterministickými zásobníkovými automaty.

- (a) Uzavřenost deterministických bezkontextových jazyků vzhledem k průniku s regulárními jazyky Uzavřenost dokážeme tak, že zkonstruujeme deterministický zásobníkový automat přijímající příslušný průnik konstruujeme průnik na konečném řízení, zásobníkové operace zůstávají.
- (b) Uzavřenost deterministických bezkontextových jazyků vzhledem k doplňku Nechť $M = (Q, \Sigma, R, s, F)$ je deterministický zásobníkový automat, kde
 - Q je konečná množina stavů,
 - Σ je abeceda taková, že $\Sigma \cap Q = a \Sigma = \Sigma_I \cup \Sigma_{PD}$, kde Σ_I je vstupní abeceda a Σ_{PD} je zásobníková abeceda obsahující startovací symbol S.
 - $R \subseteq \Sigma_{PD}Q(\Sigma_I \cup {\epsilon}) \times \Sigma_{PD}^*Q$ je konečná množina pravidel,
 - $s \in Q$ je počáteční stav
 - $\bullet \ F \subseteq Q$ množina koncových stavů

a který přijímá $w \in \Sigma_I^*$, $Ssw \vdash_* zq$, kde $q \in Q$ a $z \in \Sigma_{PD}^*$. Poté existuje algoritmus, který takový deterministický zásobníkový automat přijme na vstupu a na výstup předá deterministický zásobníkový automat $M' = (Q', \Sigma', R', s', F')$ takový, že $L(M') = \overline{L(M)}$.

Algoritmus 1 Algoritmus na získání doplňku deterministického zásobníkového automatu

```
1: Q' := \{ [q, k] : q \in Q \text{ and } k \in \{1, 0, @\} \}
 2: F := \{ [q, @] : q \in Q \}
 3: if s \in F then
         s' = [s, 1]
 4:
 5: else
         s' = [s, \ 0]
 6:
 7: for each r : Aq \vdash xp \in R and k = 0, 1 do
         if p \in F or k = 1 then
             R' := R' \cup \{A[q, k] \vdash x[p, 1]\}
 9:
         else
10:
             R' := R' \cup \{A[q, k] \vdash x[p, 0]\}
11:
12: for each r: Aqa \vdash xp \in R do
         R' := R' \cup \{A[q, 0] \vdash A[q, @]\}
13:
         if p \in F then
14:
             R' := R' \cup \{A[q, 1]a \vdash x[p, 1], A[q, @]a \vdash x[p, 1]\}
15:
16:
             R' := R' \cup \{A[q, 1]a \vdash x[p, 0], A[q, @]a \vdash x[p, 0]\}
17:
```

1.2.3 Bod c

 $L_1 \setminus L_2 = L_1 \cap \overline{L_2}$, k pravdivosti vztahu 1.c je potřeba dokázat, že je bezkontextový jazyk L_2 uzavřený vzhledem k doplňku a vzhledem k průniku s regulárními jazyky. Uzavřenost vzhledem k doplňku se pokusíme dokázat jako první. Z De Morganových zákonů plyne uzavřenost vzhledem k průniku $L_1 \cap L_2 = \overline{L_1 \cap L_2} = \overline{L_1} \cup \overline{L_2}$. Bezkontextové jazyky, ale nejsou uzavřené vzhledem k průniku, což lze demonstrovat na následujícím příkladu:

- (a) Mějme bezkontextové jazyky $L_3 = \{a^m b^m c^n | n, m \ge 1\}$ a $L_4 = \{a^m b^n c^n | n, m \ge 1\}$.
- (b) Provedeme operaci průnik $L_3 \cap L_4 = \{a^n, b^n, c^n | n \ge 1\}.$
- (c) Pomocí pumping teorému provedeme důkaz, že $L_5 = \{a^n, b^n, c^n | n \ge 1\} \notin \mathcal{L}_2$. Nechť L_5 je bezkontextový jazyk, pak existuje konstanta k > 0 taková, že je-li $z \in L_5$ a $|z| \ge k$, pak lze z zapsat ve tvaru:

$$z = uvwxy, vx \neq \epsilon, |vwx| < k$$

a pro všechna $i \geq 0$ je $uv^iwx^iy \in L_5$. Řetězce v a x ale nelze zvolit tak, aby jejich iterací zůstával stejný počet symbolů a,b,c a současně pořadí symbolů a,b,c zůstalo nezměněno. Nastává spor, tedy $L_5 \notin \mathcal{L}_2$, z čehož vyplývá, že bezkontextové jazyky nejsou uzavřeny vzhledem k průniku.

Z neuzavřenosti bezkontextových jazyků (L_2) vzhledem k průniku plyne neuzavřenost vzhledem k doplňku, a tedy $L_1 \in \mathcal{L}_3, L_2 \in \mathcal{L}_2 \Rightarrow L_1 \setminus L_2 \notin \mathcal{L}_2$.

2. Příklad

2.1 Zadání

Nechť $\Sigma = \{0, 1, 2\}$. Uvažujme jazyk L nad abecedou $\Sigma \cup \{\#\}$ definovaný následovně: $L = \{w_1 \# w_2 | w_1, w_2 \in \Sigma^*, \#_1(w_1) + (2 * \#_2(w_1)) = \#_1(w_2) + (2 * \#_2(w_2))\}$

Sestrojte deterministický zásobníkový automat M_L takový, že $L(M_L) = L$.

2.2 Řešení

3. Příklad

3.1 Zadání

Dokažte, že jazyk L z předchozího příkladu není regulární.

3.2 Řešení

- Předpokládejme, že $L \in \mathcal{L}_3$.
- $\bullet \ \exists k>0: \forall w\in L: |w|\geq k \Rightarrow \exists x,y,z\in \Sigma^*: w=xyz \land y\neq \epsilon \land |xy|\leq k \land \forall i\geq 0: xy^iz\in L$
- $\bullet\,$ Uvažme libovolné k>0 splňující uvedené tvrzení.
- Zvolme $w = 1^k \# 1^k, |w| = 2k + 1 \ge k$
- Tedy $\exists x, y, z \in \Sigma^* : w = x, y, z \land y \neq \epsilon \land |xy| \leq k \land \forall i \geq 0 : xy^i z \in L$
- $Z |xy| \le k$ a z $y \ne \epsilon$ plyne, že y musíme zvolit z prefixu 1^k , který je tvořen pouze symboly 1.
- Poté pro i = 0 řetězce $1^k \# 1^k$ nebude platit, že $\#_1(w_1) + (2 * \#_2(w_1)) = \#_1(w_2) + (2 * \#_2(w_2))$, což je spor.
- Předpoklad, že $L \in \mathcal{L}_3$, byl chybný.
- $L \notin \mathcal{L}_3$

4. Příklad

4.1 Zadání

Nechť $G_P = (N, \Sigma, P, S)$ je pravá lineární gramatika. Navrhněte a formálně popište algoritmus, který pro zadanou pravou lineární gramatiku $G_P = (N, \Sigma, P, S)$ vytvoří levou lineární gramatiku G_L takovou, že $L(G_P) = L(G_L)$.

Algoritmus demonstrujte na na gramatice $G = (\{S, A, B\}, \{a, b\}, P, S)$ s následujícími pravidly:

$$S \to abA|bS$$

$$A \rightarrow bB|S|ab$$

$$B \to \epsilon |aA|$$

4.2 Řešení

4.2.1 Algoritmus pro převod pravé lineární gramatiky na levou lineární gramatiku

1. Pravou lineární gramatiku $G_P=(N,\Sigma,P,S)$ převedeme na gramatiku $G'=(N',\Sigma',P',S')$, kde P' obsahuje pouze pravidla tvaru

$$A \to aB; \ A, B \in N'; \ a \in \Sigma$$
 nebo

$$A \to \epsilon$$

tak, že $L(G_P) = L(G'_P)$.

(a) Pravidla z P tvaru

$$A \to aB; \ A, B \in N'; \ a \in \Sigma$$
 nebo

$$A \to \epsilon$$

zařadíme do P'.

(b) Každé pravidlo tvaru

$$A \rightarrow a_1 a_2 \dots a_n B, n \geq 2$$

z P nahradíme v P' soustavou pravidel:

$$A \rightarrow a_1 A_1$$

$$A_1 \rightarrow a_2 A_2$$

..

$$A_{n-1} \to a_n B$$

(c) Každé pravidlo tvaru

$$A \to a_1 a_2 \dots a_n, \ n \ge 1$$

z P nahradíme v P' soustavou pravidel:

$$A \rightarrow a_1 A_1'$$

$$A_1' \rightarrow a_2 A_2'$$

. . .

$$A'_{n-1} \to a_n A'_n$$

$$A'_{n-1} \to \epsilon$$

- (d) Odstraníme (zbývající) tzv. jednoduchá pravidla tvaru $A \to B.$
- 2. Ke gramatice $G'=(N', \Sigma', P', S')$ sestrojíme nedeterministický konečný automat $M=(Q,\Sigma,\delta,q_0,F)$ následovně:

(a)
$$Q = N$$

- (b) $\Sigma = \Sigma'$
- (c) δ : $\delta(A, a)$ obsahuje B, jestliže $A \to aB$ je v P'
- (d) $q_0 = S'$
- (e) $F = \{A | A \to \epsilon \text{ je v } P'\}$
- 3. Nedeterministický konečný automat $M=(Q,\Sigma,\delta,q_0,F)$ upravíme následovně:
 - (a) Vytvoříme nový stav $F_0 \in Q$.
 - (b) Do δ přidáme pravidla $\delta(A, \epsilon) \to F_0$ pro $A \in F$.
 - (c) Množinu koncových stavů určíme jako $F = \{F_0\}$.
- 4. K nedeterministickému konečnému automatu $M=(Q,\Sigma,\delta,q_0,F)$ sestavíme levou lineární gramatiku $G_L=(N,\Sigma,P,S)$ následovně:
 - (a) N = Q
 - (b) $\Sigma = \Sigma$
 - (c) Pravidla P sestavíme následovně:
 - i. Pokud existuje δ : (B, a) = A, pak P obsahuje pravidlo $A \to Ba$.
 - ii. Pokud $A=q_0$, pak P obsahuje pravidlo $A \to \epsilon$
 - (d) $S = F_0, F_0 \in F$

4.2.2 Demonstrace algoritmu na příkladu

1. Podle prvního kroku algoritmu převedeme gramatiku $G = (\{S, A, B\}, \{a, b\}, P, S)$ s pravidly

$$S \to abA|bS$$

$$A \rightarrow bB|S|ab$$

$$B \to \epsilon |aA|$$

na gramatiku $G' = (\{S, A, B, C, D, E\}, \{a, b\}, P', S')$ s pravidly

$$S \to aC|bS$$

$$A \rightarrow bB|aC|bS|aD$$

$$B \to \epsilon |aA|$$

$$C \to bA$$

$$D \to bE$$

$$E \to \epsilon$$

Podle druhého kroku algoritmu převedeme gramatiku $G' = (\{S, A, B, C, D, E\}, \{a, b\}, P', S')$ na nedeterministický konečný automat $M = (\{S, A, B, C, D, E\}, \{a, b\}, \delta, S, \{B, E\})$

Podle třetího kroku algoritmu doplníme do NKA M nový stav F_0 , přidáme s ním spojené ϵ -přechody a množinu koncových stavů určíme jako $F = \{F_0\}$.

Podle posledního kroku algoritmu převedeme NKA $M=(\{S,A,B,C,D,E,F_0\},\{a,b\},\delta,S,\{F_0\})$ na levou lineární gramatiku $G_L=(N,\Sigma,P,S)$ s pravidly

$$F_0 \to B|E$$

$$B \to Ab$$

$$E \to Db$$

$$D \to Aa$$

$$A \to Cb|Ba$$

$$C \to Aa|Sa$$

$$S \to Aa|Sb|\epsilon$$

5. Příklad

5.1 Zadání

Dokažte, že jazyk $L=\{w\in\{a,b\}^*\mid \#_a(w)mod\ 3\neq 0\land \#_b(w)>0\}$ je regulární. Postupujte následovně:

- Definujte \sim_L pro jazyk L.
- Zapište rozklad Σ^*/\sim_L a určete počet tříd rozkladu.
- Ukažte, že L je sjednocením některých tříd rozkladu Σ^*/\sim_L .

5.2 Řešení

$$u \sim_L v \Leftrightarrow ((\#_b(u) > 0 \land \#_b(v) > 0) \lor (\#_b(u) = 0 \land \#_b(v) = 0)) \land (\#_a(u) mod 3 = \#_a(v) mod 3))$$

Pro větší přehlednost jako první sestrojíme konečný automat přijímající daný jazyk a podle něj určíme rozklad tříd (obrázek automatu se nachází na další straně). Již sestavení konečného automatu dokazuje, že daný jazyk je regulární.

$$\begin{split} L^{-1}(S_0) &= \epsilon \\ L^{-1}(S_1) &= (b + aaa(aaa)^*b + a(aaa)^*bb^*ab^*a + aa(aaa)^*bb^*a)b^*(b^*ab^*ab^*a)^* \\ L^{-1}(S_2) &= a(aaa)^* \\ L^{-1}(S_3) &= aa(aaa)^* \\ L^{-1}(S_4) &= (bb^*a + a(aaa)^*b + aaa(aaa)^*bb^*a + aa(aaa)^*bb^*ab^*a)b^*(b^*ab^*ab^*a)^* \\ L^{-1}(S_5) &= aaa(aaa)^* \\ L^{-1}(S_6) &= (bb^*ab^*a + a(aaa)^*bb^*a + aaa(aaa)^*bb^*ab^*a + aa(aaa)^*b)b^*(b^*ab^*ab^*a)^* \\ L^{-1}(S_6) &= (bb^*ab^*a + a(aaa)^*bb^*a + aaa(aaa)^*bb^*ab^*a + aa(aaa)^*b)b^*(b^*ab^*ab^*a)^* \end{split}$$

 $L = L^{-1}(S_4) \cup L^{-1}(S_6)$, L je sjednocením některých tříd rozkladu určeného pravou kongruencí na Σ^* s konečným indexem, jedná se tedy o regulární jazyk.

