

Faculty of Engineering Department of Electrical-Electronics Engineering

Introduction to Robotics

Homework **DESIGN OF AN INDUSTRIAL ROBOT**

Student: Çağdaş Karabulut

Lecturer: dr. Akif Durdu

My designed robot is a universal assembly robot for car manufacturing with changeable grabber. Robot is approximately human size with capability of lifting parts up to $30 \, \text{kg}$. It is powered with AC servo motors and can reach 360° around itself.

Specification	
Lifting capacity	30 kg
Reach	1300 mm
Height(min/max)	700/2000 mm
Degrees of freedom	6
Mechanical weight with pedestal	500 kg
Repeatability	±0.08 mm
Mounting method	Floor
Drive method	Electric servo motors
Grabber	Pneumatic changeable gripper
Motion range	
J1	360°
J2	245°
J3	270°
J4	0-100 mm
J5	360°
J6	180°
Maximum speed	800 mm/s
Environment	
Ambient temperature	5°C – 45°C
Relative humidity	Max 95%
Noise level	Max 70 dB
Emission	EMC/EMI shielded

Drawing with dimensions (measurements in cm):

3D model:

Robot has 5 links, 4 kinematic pairs, two of them have 2 degrees of freedom.

Motion range drawing:

Work envelope is spherical (side view, measurements in cm):

Work envelope (top view):

Part II

Kinematic scheme of the robot:

Length of the links:

$$a_1 = 60cm$$
, $a_2 = 65cm$, $a_3 = 50cm$, $a_4 = 15cm$

Joints' angles:

$$\theta_1=45^\circ$$
, $\theta_2=30^\circ$, $\theta_3=60^\circ$

Grabber coordinates:

$$x = 0 + a_2 \cdot \sin\theta_1 + a_3 \cdot \sin(\theta_1 + \theta_2) + a_4 \cdot \sin(\theta_1 + \theta_2 + \theta_3)$$

$$y = a_1 + a_2 \cdot \cos\theta_1 + a_3 \cdot \cos(\theta_1 + \theta_2) + a_4 \cdot \cos(\theta_1 + \theta_2 + \theta_3)$$

$$x = 65 \cdot \sin45^\circ + 50 \cdot \sin(45^\circ + 30^\circ) + 15 \cdot \sin(45^\circ + 30^\circ + 60^\circ) =$$

$$= 65 \cdot 0,707 + 50 \cdot 0,966 + 15 \cdot 0,707 = 104,86$$

$$y = 60 + 65 \cdot \cos45^\circ + 50 \cdot \cos(45^\circ + 30^\circ) + 15 \cdot \cos(45^\circ + 30^\circ + 60^\circ) =$$

$$= 60 + 65 \cdot 0,707 + 50 \cdot 0,259 + 15 \cdot (-0,707) = 108,3$$

Orientation of the grabber:

$$x_1 = (\cos(\theta_1 + \theta_2 + \theta_3), \sin(\theta_1 + \theta_2 + \theta_3)) = (\cos(135^\circ), \sin(135^\circ)) = (-0.707, 0.707)$$

 $y_1 = (-\sin(\theta_1 + \theta_2 + \theta_3), \cos(\theta_1 + \theta_2 + \theta_3)) = (-\sin(135^\circ), \cos(135^\circ)) = (-0.707, -0.707)$

Physical Specifications

Max Reach: 2000 mm **Degrees of Freedom:** 2 (4 per arm)

Body Weight: 70 Kg without pedestal

140 Kg with optional pedestal

Electrical Specifications

Supply Voltage: 120 volts alternating current

Rated Current: 6 amps

Battery Operation: DC-to-120V AC Inverter (Note: the Baxter robot has an internal PC,

which cannot be powered directly off of 24V DC)

Interface: Standard 120VAC power. Robot power bus and internal PC both have

"universal" power supplies and support 90 – 264V AC (47 – 63Hz)

Max Consumption: 6A at 120V AC, 720W max per unit

Max Efficiency: 87% to 92%

Power Supply: Uses medical-grade DC switching power supply for robot power bus **Tolerance to Sags:** Sags tolerated to 90V. Sustained interruption will require manual

power-up

Voltage Flicker: Holdup time 20mS

Voltage Unbalance: Only single phase operation

Computer Specifications

Procesor: 4th Gen i7-4700HQ (6MB, 3,4 GHz) Processor w/HD 5000 Graphics

Memory: 8GB, NON-ECC, 1600MHz DDR3

Storage: 256GB SSD