Germplasm RNP Modeling

Workflow

Data collection

Confocal microscopy

- Confocal microscopy was used to obtain the z-stack of germ plasm labeled for RNPs.
- Each z section was processed to obtain the location and radius of the RNPs present.

Image processing

A watershed segmentation algorithm was used to isolate regions of fluorescence from the darker background.

RNP Detection

From the fluorescent regions, RNPs were detected using a Laplacian of Gaussian blob detection algorithm.

Preprocessing

Visualization & Clustering

WT dnd-dazl

Cortex Removal

With cortex

Without cortex

Straightening

First principal curve

Straightened aggregate

Data analysis

Principal components

2D Plots

Removing Outliers

Outlier boundaries

Cleaned 2D plots

Results

Aura dnd nanos

r = 0.28 pi = 0.88 ph = 0.27 SE: r = 0.3114 pi = 0.643 ph = 0.346

SE:

WT vasa dazl

Original

Clustered & Cortex removed

pi = 1.92 ph = 0.4 SE: r = 0.158 pi = 0.945 ph = 0.411

SE:

We can use computer generated models with known patterns to understand what we see biologically

Synthetic models:

- 1. Perfect Helix
- 2. Helix with random error
- 3. Not a helix (stacks)

Perfect helices

Helices with random error

Not a helix

Directions

Ideas for synthetic models

- Keeping radius and pitch constant, introduce 3D spatial error between 1 -50% of the radius for a regular helix and calculate standard error for each case.
- Keeping pitch constant, introduce changes in the radius and calculate the standard error of fits.
- Keeping radius constant, introduce changes in the pitch and calculate the standard error of fits.
- Combine changes in pitch and radius and calculate standard error of fits.
- Combine changes in pitch and radius with different percentages of 3D spatial error and quantify standard error.
- We can use these models to elucidate what we see in zebrafish germ plasm.