END-SEMESTER EXAMINATION, June-2024 CALCULUS B (MTH2101)

Programme: B.Tech(All Branches)

Full Marks: 60

Semester: 2nd
Time: 3 Hours

Subject/Course Learning Outcome	†Taxonomy Level	Ques.	Marks
Use the knowledge of three dimensions and vectors to describe the region, lines, planes and surfaces.	L3	1a, b, c, 2a, 2b	2,2,2, 2,2
Compute the length of the curve, curvature, tangent normal vector, tangent plane.	L3	2c, 3a	2,2
Apply the concept of function of several variables to find the limit, derivative, directional derivative, linearization and maxima minima.	L3	3b, 3c, 4a, b, c, 5a, b,	2,2,2, 2,2,2, 2
Apply the concept of double and triple integration to evaluate the integral, to find the surface area.	L3	5c, 6a, b, c, 7a, b, 7c, 8a	2,2,2, 2,2,2, 2,2
Apply the concept of line integral to evaluate it, in conservative vector field and in Greens theorem.	L4	8b, c, 9a, b,	2,2,2,
Apply the concept of curl, Divergence, surface integrals and volume integrals *Bloom's taxonomy levels: Rememberies	L4	9c, 10a, b,	2,2,2,

*Bloom's taxonomy levels: Remembering (L1), Understanding (L2), Application (L3), Analysis (L4), Evaluation (L5), Creation (L6)

Answer all questions. Each question carries equal mark.

1	111	The state of the s	
1.		If A (0, 4, 3), B (0,0,0) and C (3, 0, 4) are three points defined in x, y, z co-ordinate system, then find the vector perpendicular to both vectors (\overrightarrow{AB}) and (\overrightarrow{BC})	2
	(15)	Compute the area of parallelogram with vertices A (-2,1), B (0,4), C (4,2) and D (2, 1)	2
	(c)	Find the position vector of the particle that has given acceleration and the specified initial velocity and position: $a(t) = t\hat{i} + e^t \hat{j} + e^{-t} \hat{k}$, $v(0) = \hat{k}, r(0) = \hat{j} + \hat{k}$	2

2. (a) Find the parametric equation for the tangent line curve $x = t$, $y = e^{-t}$, $z = 2t - t^2$ at $(0,1,0)$. (b) At what point on the curve $x = t^3$, $y = 3t$, $z = t^4$ normal plane parallel to the plane $6x + 6y - 8z = 17$	
	- 0
parametric to the plant ox + 0y - 0z - 1	
If $a = \langle 3, 0, 1 \rangle$, find a vector b such that Compab =	2. 2
3. Find the curvature of $\vec{r}(t) = \langle t, t^2, t^3 \rangle$ at the point(1)	1,1, 1). 2
Calculate: $\lim_{t\to 0} \left(e^{-3t} i + \frac{t^2}{\sin^2 t} j + \cos 2tk \right)$	2
Find the domain of the vector function, $\mathbf{r}(t) = \left\langle \sqrt{4 - t^2}, e^{-3t}, \ln(t+1) \right\rangle$	2
4. Explain if the function is differentiable and fin	
linearization L (x, y) of the function $f(x, y) = \sqrt{x} + \frac{1}{x}$ the point (3,0).	e ^{4y} at
Use the Chain Rule to find $\partial z / \partial s$ and $\partial z / \partial t$ for $z = e^{x+2y}, x = s/t, y = t/s$.	2
Find the directional derivative of the function $f(x,y) = e^x \sin y$ at $(0,\pi/3)$ in the direction of the vector $v = \langle -6,8 \rangle$.	2
5. Find the local maximum and minimum values and spoint(s) of the function $f(x, y) = xy(1-x-y)$.	saddle 2
Find out points at which the direction of fastest char the function $f(x, y_i) = x^2 + y^2 + -2x - 4y$ is $i + j$.	nge of 2
If R = [0,4] x [-1,2], Use a Riemann sum with m=2, r estimate the value of $\iint_R (1-xy^2) dA$. Take the same points to be the upper left corners of the rectangle.	
6. (a) Find the volume of the solid enclosed by the surface $z=1+e^x \sin y$ and the planes $x=\pm 1, y=0, y=\pi$, and z	2 = 0.

		et. Assa	2
	(b)	Evaluate the double integral: $\iint_{R} (x+xy^{-2})dA$, where	
		$R = \{(x, y) 0 \le x \le 1, -3 \le y \le 3\}$	
-	(c)	Evaluate the integral by reversing the order of integration	2
		$\iint_{0}^{1} \int_{x}^{1} e^{x/y} dy dx$	
7.	(a)		2
U		coordinate $\int_0^1 \int_{y}^{\sqrt{2-y^2}} (x+y) dx dy$	
	(b)	Find the surface area of the part of the plane $3x + 2y+z = 6$	2
	1	that lies in the first octant.	
	LOY	Evaluate the iterated integral	2
		$\int_{0}^{\pi/2} \int_{0}^{y} \int_{0}^{x} \cos\left(x+y+z\right) dz dx dy$	
8.	(a)		2
		x = uv, y = u/v.	
	(b)	Evaluate the line integral $\int_{C} \vec{F} \cdot dr$, if	2
		$\vec{F}(x,y,z) = (x+y)\hat{i} + (y-z)\hat{j} + z^2\hat{k}, \text{ where } r(t) = t^3\hat{i} - t^2\hat{j} + t\hat{k},$ $0 \le t \le 1$	
	101	Determine whether or not F is a conservative vector field.	2
	•	If it is, find a function f such that $\vec{F} = \nabla f$. If	
		$\vec{F}(x,y) = (2xy + y^{-2})\hat{i} + (x^2 - 2xy^{-3})\hat{j}, y > 0.$	
9.	(a)	$\int \cos y dx + x^2 \sin y dy$	2
	(la)	(0,0), (5,0), (5, 2), and (0,2).	
	Joh	Find the curl and the divergence of the vector field $\vec{F}(x,y,z) = xye^2\hat{i} + yze^z\hat{k}$	2

	(0)	Find the equation of the tangent plane to the given parametric surface $x = u + v, y = 3u^2, z = u - v$ at the point (2,3,0).	2
10	(a)	Evaluate the surface integral $\iint yds$, S is the helicoid with vector equation $r(u,v) = \langle u \cos u, u \sin v, v \rangle$, $0 \le u \le 1, 0 \le v \le \pi$.	2
	(b)	Use Stokes' Theorem to evaluate $\iint_S curl \ \vec{F} \cdot dS$. $\vec{F}(x,y,z) = \tan^{-1}(x^2yz^2)i + x^2yj + x^2z^2k$. S is the cone $x = \sqrt{y^2 + z^2}$, $0 \le x \le 2$, oriented in the direction of the positive x-axis.	2
0	(c)	Use the Divergence theorem to calculate the surface integral $\iint \vec{F} \cdot ds$, i.e; calculate the flux of \vec{F} across \vec{S} , if $\vec{F}(x,y,z)=xye^z+xy^2z^3$ \vec{j} - ye^z \vec{k} , \vec{S} is the surface of the box bounded by the coordinate planes and $x=1$, $y=2$ and $z=3$.	2
		End of Questions	