Московский физико-технический институт Физтех-школа прикладной математики и информатики

БОЛЬШОЕ НАЗВАНИЕ КУРСА

V CEMECTP

Лектор: Иван Иванович Иванов

Автор: Павел Дуров Репозиторий на Github

Содержание

0.1	Несобственные интегралы от знакопеременных функций	2
0.2	Несобственные интегралы с несколькими особенностями	4

0.1 Несобственные интегралы от знакопеременных функций

Изучм вопросы сходимости несобственных интегралов от функций ни в какой функции точки b.

Лемма 0.1. Пусть f,g — локально интегрируемы на [a,b) и $\int_a^b g(x)dx$ — абсолютно сходится. Тогда несобственные интегралы

$$\int_{a}^{b} (f(x) + g(x))dx, \int_{a}^{b} f(x)dx$$

Либо одинаково расходятся, либо одновременно сходятся условно, либо одновременно сходятся абсолютно.

Доказательство. Абсолютная сходимость влечет сходимость, поэтому $\int_a^b g(x) dx$ сходится. Тогда по линейности

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} (f(x) + g(x))dx - \int_{a}^{b} g(x)dx$$

И заключаем, что интегралы $\int_a^b (f(x)+g(x))dx, \int_a^b f(x)dx$ сходятся одновременно. При этом,

$$|f + g| \le |f| + |g|, |f| \le |f + g| + |g|$$

Тогда по критерию сравнения, получаем, что $\int_a^b |f(x)+g(x)|dx$, $\int_a^b |f(x)|dx$ сходятся одновременно, т.е. $\int_a^b (f(x)+g(x))dx$, $\int_a^b f(x)dx$ абсолютно сходятся одновременно.

Теорема 0.1 (Признак Дирихле). Пусть f, g локально интегрируемы на [a,b), причем

- 1. $F(x) = \int_a^x f(t)dt$ ограничена на [a,b)
- $2. \ g(x)$ монотонна
- 3. $g \to 0$ $npu \ x \to b 0$

Тогда $\int_a^b f(x)g(x)dx$ сходится.

Доказательство. Существует такая константа $M: |F| \leqslant M$. Тогда $\forall \xi \in [a,b)$ имеем $\left| \int_{\xi}^{x} f(t)g(t)dt \right| = |F(x) - F(\xi)| < 2M$. Пусть $\varepsilon > 0$. Тогда $\exists b' \in [a,b) \forall x \in (b',b) \left(|g(x)| \leqslant \frac{\varepsilon}{2M} \right)$. По лемме Абеля, для интервалов $\forall [\xi,\eta] \subset (b',b)$ выполнено $\left| \int_{\xi}^{\eta} f(x)g(x)dx \right| < 2 \cdot 2M(|g(\xi)| + |g(\eta)|) < \varepsilon$. Далее применяем свойство Коши.

Замечание. Условия 1, 2 выполнены если f непрерывна и имеет ограниченную первообразную на [a,b), а g дифференцируема и g' сохраняет знак на [a,b).

Пример. Исследуем сходимость и абсолютную сходимость интеграла

$$I(\alpha) = \int_{1}^{+\infty} \frac{\sin kx}{x^{\alpha}} dx, \alpha \in \mathbb{R}(k > 0)$$

Делаем замену t = kx и получаем следующее:

$$I(\alpha) = \int_{1}^{+\infty} \frac{\sin t}{t^{\alpha}} dt$$

1. $\alpha > 1$.

$$\left| \frac{\sin t}{t^{\alpha}} \right| \leqslant \frac{1}{t^{\alpha}} \Rightarrow \int_{1}^{+\infty} \frac{|\sin t|}{t^{\alpha}} dt - \text{сходится}$$

To есть $I(\alpha)$ сходится абсолютно

2. $\alpha \le 0$. Проверим расходимость при помощи Коши.

$$\exists \varepsilon_0 = \forall \Delta > 1 \exists \xi = 2\pi n > \Delta, \eta = 2\pi n + \pi > \Delta$$

$$\left| \int_{\varepsilon}^{\eta} \frac{\sin t}{t^{\alpha}} dt \right| = \int_{\varepsilon}^{\eta} t^{-\alpha} \sin t dt \geqslant (2\pi n)^{-\alpha} \int_{2\pi n}^{2\pi n + \pi} \sin t dt = (2\pi n)^{-\alpha} \cdot 2 \geqslant 2$$

Тогда по критерию Коши, $I(\alpha)$ расходится.

3. $\alpha \in (0,1]$.

$$f(x) = \sin t, g(t) = \frac{1}{t^{\alpha}}, F(t) = \int_{1}^{t} \sin s \ ds$$
 — ограничена на $1, +\infty$

Тогда $I(\alpha)$ сходится по признаку Дирихле. Теперь проверим абсолютную сходимость:

$$\left| \frac{\sin x}{x^{\alpha}} \right| \geqslant \frac{\sin^2 x}{x^{\alpha}} = \frac{1}{2} \left(\frac{1}{x^{\alpha}} - \frac{\cos 2x}{x^{\alpha}} \right) \geqslant 0$$

При этом $\int \frac{1}{x^{\alpha}}$ — расходится, а $\int \frac{\cos 2x}{x^{\alpha}}$ — сходится. Тогда их разность расходится.

Тогда $I(\alpha)$ сходится при $\alpha>0$ и абсолютно сходится при $\alpha>1$

Теорема 0.2 (Признак Абеля). Пусть f, g локально интегрируемы на [a, b), причем

- 1. $\int_a^b f(x)dx$ сходится
- $2. \, \, g \,$ монотонна на [a,b)
- $\it 3.\,\, g\,\, orpanuчeнa\,\, ha\,\, [a,b)$

Tог ∂a

$$\int_{a}^{b} f(x)g(x)dx$$

сходится.

Доказательство. Из монотонности и ограниченности следует, что $\exists \lim_{x\to b-0} g(x) = c \in \mathbb{R}$. Поэтому $\int_a^b f(x)(g(x)-c)dx$ сходится, но тогда $\int_a^b f(x)g(x)dx = \int_a^b f(x)(g(x)-c)dx + c \int_a^b f(x)dx$ — сходится

Пример.

$$\int_{1}^{+\infty} \frac{\sin x}{\sqrt{x} - \sin x} dx$$
$$\frac{\sin x}{\sqrt{x} - \sin x} \sim_{x \to +\infty} \frac{\sin x}{\sqrt{x}}$$

Так делать нельзя, т.к. свойство, котоыре мы использовали выше, рабоатет только для неотрициательных функций. Как правильно:

$$g(x) = \frac{\sin x}{\sqrt{x}} = \frac{\sin x(\sqrt{x} - (\sqrt{x} - \sin x))}{\sqrt{x}(\sqrt{x} - \sin x)}$$

$$g(x) = \frac{\sin^2 x}{x(1 - \frac{\sin x}{\sqrt{x}})} \sim \frac{\sin^2 x}{x} = \frac{1}{2}\left(\frac{1}{x} - \frac{\cos x}{x}\right) \geqslant 0 \Rightarrow \int_1^{+\infty} g(x)dx - \text{расходится}$$

Короче говоря, принцип сравнения для знакопеременных функций не применим

Следствие (Из теоремы 4). Пусть f, g локально интегрируемы на [a,b) и g монотонна на [a,b), $\lim_{x\to b-0}g(x)=c\in\mathbb{R}\setminus\{0\}$. Тогда $\int_a^bf(x)g(x)dx$, $\int_a^bf(x)dx$ либо одновременно расходятся, либо одновременно сходятся условно, либо одновременно сходятся абсолютно.

Доказательство. Из сходимости $\int_a^b f(x)dx$ следует сходимость $int_a^b f(x)g(x)dx$ по теореме 4. Т.к. $c \neq 0$, то $\exists a^* \in [a,b) \forall x \in [a^*,b)(g(x)\neq 0)$. Следовательно, $f=fg\cdot \frac{1}{g}$ на [a,b). По теореме 4, сходимость $\int_{a^*}^b f(x)g(x)dx$ влечет $\int_{a^*}^b f(x)dx$, а значит, $\int_a^b f(x)dx$ сходится

0.2 Несобственные интегралы с несколькими особенностями

Определение 0.1. Пусть $a < b \in \overline{\mathbb{R}}$, функция f определена на a,b за исключением, быть может, конечного числа точек.

- 1. Точка $c \in (a,b)$ называется особенностью f, если $\forall [\alpha,\beta]: c \in [\alpha,\beta] \subset (a,b)$ функция $f \notin R[\alpha,\beta]$.
- 2. Точка b называется особенностью f, если либо $b=+\infty$, либо $b\in\mathbb{R}$ и $f\not\in R[\alpha,b]\forall a<\alpha< b$

Заметим, что такое определение работает для любого доопределения f в точке b.

Замечание. f не имеет особенностей на $(c,d) \to f$ локально интегрируема на (d).

Доказательство. Пусть $[u,v]\subset (a,b)$ Докажем, что $f\in R[u,v]$ По условию $\forall x\in [u,v]\exists [\alpha_x,\beta_x]$

$$\bigcup_{x \in [u,v]} (\alpha_x, \beta_x) \supset [u,v]$$

Тогда по лемме Гейне-Бореля есть конечное покрытие этого отрезка. Рассмотрим его. По аддитивности f интегрируема на некотором отрезке, содержащем $[u,v] \Rightarrow$ и на [u,v] \square

Определение 0.2. Пусть $c_1 < c_2 < \cdots < c_{N-1}$ - все особенности функции f на (a,b), причем определим $c_0 = a, c_N = b$.

$$\xi_k \in (c_{k-1}, c_k)$$
, где $k \in \{1, 2, \dots, N\}$

Несобственным интегралом $\int_a^b f(x)dx$ называется совокупность интегралов $\int_{c_{k-1}}^{\xi_k} f(x)dx$ и $\int_{\xi_k}^{c_k} f(x)dx$

 Π ричем если все интегралы и их суммы имеют смысл в $\mathbb R$ то несобственным интегралом называют именно сумму.