Fixslicing PIPO

https://youtu.be/whAoa22y640

HANSUNG UNIVERSITY CryptoCraft LAB

Fixslicing GFIT

- Adomnicai et. al "Fixslicing: A New GIFT Representation" (2020)
- 하드웨어 지향 GIFT 블록 암호에 대한 새로운 표현
- 몇 번의 회전만을 사용하여 GIFT의 매우 효율적인 소프트웨어 비트슬라이싱 구현

Fixslicing AES

- Adomnicai et. al "Fixslicing AES-like Ciphers" (2021)
- 다른 암호에도 적용될 수 있음을 보임
 - Fixslicing 기법을 적용하여 PIPO의 빠른 구현 가능성
 - 32bit 임베디드 Cortex-m에서는 구현 결과 없음

PIPO Revisit

- 8bit 임베디드 환경 최적화
- 효율적인 비트슬라이싱 구현이 가능하도록 설계
- 기존 Fixslicing 기법 구현은 Permuation Layer을 변형하여 구현
- PIPO에는 Substitution Layer을 변형 하여 적용함

Fig. 3. R-layer

S-layer

```
#define PIPO_SBOX(X0, X1, X2, X3, X4, X5, X6, X7)
                                                                                   #define PIPO_SBOX(X0, X1, X2, X3, X4, X5, X6, X7)
            X5 ^= (X7 & X6); X4 ^= (X3 & X5);
                                                                                                 X5 ^= (X7 & X6); X4 ^= (X3 & X5);
             X7 ^= X4; X6 ^= X3;
                                                                                                 X7 ^= X4; X6 ^= X3;
             X3 ^= (X4 | X5); X5 ^= X7;
                                                                                                 X3 ^= (X4 | X5); X5 ^= X7;
             X4 ^= (X5 & X6); X2 ^= X1 & X0;
                                                                                                 X4 ^= (X5 & X6); X2 ^= X1 & X0;
             X0 ^= X2 | X1; X1 ^= X2 | X0;
                                                                                                 X0 ^= X2 | X1; X1 ^= X2 | X0;
             X2 = ^{\sim}X2; X7 ^{\sim}X1;
                                                                                                 X2 = ^{\sim}X2; X7 ^{\sim}X1;
             X3 ^= X2; X4 ^= X0;
                                                                                                 X3 ^= X2; X4 ^= X0;
             X6 ^= (X7 \& X5); T0 = X7^X6;
                                                                                                 X6 ^= (X7 \& X5); T0 = X7^X6;
             X6 ^= (X4 | X3); T1 = X3^X5
                                                                                                 X6 = (X4 | X3); T1 = X3^X5
             X5 ^= (X6 | X4); X2 ^= T0;
                                                                                                 X5 ^= (X6 | X4); X2 ^= T0;
             X[2] = T[0]; T[0] = X[1] T[2];
                                                                                                 T2 = X7; X1 ^= X4 ^ (T1 & T0);
            X[1] = X[0]^T[1]; X[0] = X[7];
                                                                                                 X0 = X0^{1};
             X[7] = T[0]; T[1] = X[3];
             X[3] = X[6]; X[6] = T[1];
             T[2] = X[4]; X[4] = X[5]; X[5] = T[2];
```

S-layer

(0, 3, 4, 5, 6, 2, 1, 7)의 순서에서 (7, 6, 5, 4, 3, 2, 1, 0)로 정렬

(0, 3, 4, 3, 0, 2, 1, 7) = ENGIN (7, 0, 3, 4, 3, 2, 1, 0) = 8 =																	
	BI	ock7	BI	ock6	В	lock5	E	Block4	Blo	ck3	BIC	ock2	BI	ock1	BI	ock(<u>'</u>
	Ble	ock0	ВІ	ock3	В	lock4	В	Block5	Blo	ck6	Blo	ck2	Blo	ock1	ВІ	ock7	,
				Clas	ssic							F	Fixsl	icing			_
Register 0	7	6	5	4	3	2	1	0		63	62	61	60	59	58	57	56
Register 1	15	14	13	12	11	10	9	8		15	14	13	12	11	10	9	8
Register 2	23	22	21	20	19	18	17	16		23	22	21	20	19	18	17	16
Register 3	31	30	29	28	27	26	25	24		55	54	53	52	51	50	49	48
Register 4	39	38	37	36	35	34	33	32		47	46	45	44	43	42	41	40
Register 5	47	46	45	44	43	42	41	40		39	38	37	36	35	34	33	32
Register 6	55	54	53	52	51	50	49	48		31	30	29	28	27	26	25	24
Register 7	63	62	61	60	59	58	57	56		7	6	5	4	3	2	1	0

R-layer

Classic

7	6	5	4	3	2	1	0
15	14	13	12	11	10	9	8
23	22	21	20	19	18	17	16
31	30	29	28	27	26	25	24
39	38	37	36	35	34	33	32
47	46	45	44	43	42	41	40
55	54	53	52	51	50	49	48
63	62	61	60	59	58	57	56

7	6	5
8	15	14
19	18	17
28	27	26
34	33	32
42	41	40
54	53	52
61	60	59

<<< 7

<<< 4

<<< 3

<<< 6

<<< 5

<<< 1

<<< 2

<<< 2

<<< 7

<<< 4

<<< 1

<<< 5

<<< 6

<<< 3

7	6	5	4	3	2	1	0
8	15	14	13	12	11	10	9
19	18	17	16	23	22	21	20
28	27	26	25	24	31	30	29
34	33	32	39	38	37	36	35
42	41	40	47	46	45	44	43
54	53	52	51	50	49	48	55
61	60	59	58	57	56	63	62

Fixslicing

63	62	61	60	59	58	57	56
15	14	13	12	11	10	9	8
23	22	21	20	19	18	17	16
55	54	53	52	51	50	49	48
47	46	45	44	43	42	41	40
39	38	37	36	35	34	33	32
31	30	29	28	27	26	25	24
7	6	5	4	3	2	1	0

61	60	59	58	57	56	63	62
8	15	14	13	12	11	10	9
19	18	17	16	23	22	21	20
54	53	52	51	50	49	48	55
42	41	40	47	46	45	44	43
34	33	32	39	38	37	36	35
28	27	26	25	24	31	30	29
7	6	5	4	3	2	1	0

Fixslicing PIPO


```
S: Classic S-Lyaer - input {0, 1, 2, 3, 4, 5, 6, 7}
```

```
S1: Fixslicing S-Layer - input {0, 1, 2, 3, 4, 5, 6, 7}
S2: Fixslicing S-Layer - input {7, 1, 2, 6, 5, 4, 3, 0}
```

R1: Fixslicing R-Layer - left rotation {0, 7, 4, 3, 6, 5, 1, 2}

R2: Fixslicing R-Layer - left rotation {2, 7, 4, 1, 5, 6, 3, 0}

성능 비교

 어셈블리 구현 Microchip Studio 시뮬레이터 8bit ATmega128 보드

	Classic	Fixslicing	속도 향상
8bit ATmega128	1,574	1,501	13%

• C 구현 32bit cortex-m3 보드

	Classic	Fixslicing	속도 향상
32bit cortex-m3	3,404	2,216	53%

추후 연구

• 32bit Cortex-m3

• GPU

Q&A