Лабораторная работа 3

ИНТЕРПОЛИРОВАНИЕ АЛГЕБРАИЧЕСКИМИ МНОГОЧЛЕНАМИ

<u>Цель работы</u>: Изучение приближения функции, заданной в узлах, алгебраическими многочленами; построение интерполяционного многочлена Ньютона и таблицы разделенных разностей; применение интерполирования для построения графика функции, заданной в узлах; исследование зависимости погрешности интерполирования от числа и взаимного расположения узлов и от гладкости функции.

План проведения работы:

- 1. Ознакомьтесь с постановкой задачи интерполирования и описанием алгоритма построения интерполяционного многочлена Ньютона $N_n(x)$.
- 2. Ознакомьтесь с описанием функций пакета MATHEMATICA, используемых для построения интерполяционного многочлена, графиков функции и многочлена и исследования погрешности.
- 3. Рассмотрите решение типового примера.
- 4. Постройте интерполяционные многочлены степени n для функции f(x), заданной в равноотстоящих точках отрезка [a,b] (согласно номера вашего варианта), и исследуйте зависимость погрешности интерполирования от степени полинома n (n=4, 5, 6, 7 и 10) (или, что равносильно, от расстояния между узлами h=(b-a)/n).

Для этого:

- a) вычислите n+1 значение заданной функции в равноотстоящих точках $\text{отрезка} \quad x_j = a + \frac{b-a}{n} \cdot j, \quad j = 0,1,...,n \, ;$
- δ) постройте и выведите таблицу разделенных разностей по значениям функции в n+1 узле;
- e) найдите интерполяционный многочлен $N_n(x)$ для интерполирования вперед;

- c) найдите интерполяционный многочлен $N_n(x)$ с помощью встроенной функции *InterpolatingPolinomial* ;
- d) выведите графики функции f(x), интерполяционного многочлена и абсолютной величины погрешности интерполирования на отрезке [a-h, b+h];
- e) найдите максимальную погрешность интерполирования на отрезке [a,b] как разности между значениями функции и построенного интерполяционного многочлена $N_n(x)$
- (a, b) с помощью априорной и апостериорной формул оценки погрешности.
- **5*)** Смоделируйте погрешность задания значений функции, увеличив значения в нечетных узлах и уменьшив значения в четных последовательно на 0.01, 0.1 и на 1% для n= 4, 7 и 10. Повторите выполнение п. 4 для данных с погрешностью.

Сделайте выводы о зависимость погрешности интерполирования от числа узлов и от гладкости функции.

Сделайте выводы о зависимости между ростом разделенных разностей в таблице и погрешностью интерполирования, порядком возросших разностей и рекомендуемым числом узлов интерполирования (на основании апостериорной оценки погрешности интерполирования).

Встроенные функции пакета Mathematica, используемые для приближения функций

Abs [x] – абсолютная величина x.

Append [lst, x] создает новый список, добавляя элемент x в конец списка lst.

Array [a, n, k] — символьный список $\{a[k], a[k+1], ..., a[k+n-1]\}$, состоящий из n элементов. Если n = 0, то функция дает пустой список $\{\}$. Аргумент k (начальное значение индекса) может быть нулевым или отрицательным. Array[a, n] эквивалентно Array[a, n, 1], то есть дает список $\{a[1], a[2], ..., a[n]\}$.

Clear [s1, s2, ...] стирает любые значения, присвоенные указанным символам s1, s2, ...

 ${\it Collect}~[\it expr, x]~$ группирует члены выражения $\it expr~$ с одной и той же степенью переменной $\it x.$

Column Form [lst, w1, w2] выводит список lst на экран в виде колонки. Аргументы w1 и w2 необязательны.

Первый задает способ выравнивания элементов списка в колонке по горизонтали:

Center — по центру,

Left — по левому краю,

Right — по правому краю.

Второй определяет выравнивание в ячейке вывода по вертикали:

Center – по центру,

Below – по верхнему краю,

Above — по нижнему краю.

ColumnForm[*lst*] эквивалентно *ColumnForm*[*lst*, *Left*, *Below*].

Interpolating Polinomial [lst, x] — многочлен по переменной x, который в узловых точках {x1, x2, ...} принимает заданные значения {y1, y2, ...}. В общем случае аргумент lst представлен списком { $\{x1, y1\}$, { $x2, y2\}$, ...}. Список { $\{1, y1\}$, { $2, y2\}$, ...} можно задать как {y1, y2, ...}.

FindMaximum $[\{f[x],a\le x\le b\}, x]$ находит локальный максимум функции f(x) на отрезке [a,b] .

ListPlot [lst, optns] предназначена для построения графика по точкам. В общем случае аргумент lst представлен списком $\{\{x_1, y_1\}, \{x_2, y_2\}, ...\}$, где $(x_1, y_1), (x_2, y_2), ...$ – координаты отмечаемых точек. Список $\{\{1, y_1\}, \{2, y_2\}, ...\}$ можно задать как $\{y_1, y_2, ...\}$. Список также можно создать какойлибо функцией, например Range или Table.

Для функции ListPlot используются, в основном, те же опции optns, что и для функции Plot. Если требуется соединять точки на графике отрезками прямых, то нужно установить дополнительную опцию $PlotJoined \rightarrow True$. Для управления размером точек используется директива PointSize, а не Thickness, как для линий.

Max [a, b, c, ...] — максимальное значение из a, b, c, ... Любой из аргументов может быть списком.

PaddedForm [expr, $\{m, n\}$] задает размер m (количество цифр) десятичного представления вещественного значения выражения expr при выводе его на экран. Здесь n – количество цифр после десятичной точки.

Plot [$\{f1, f2, ...\}$, $\{x, xmin, xmax\}$, optns] предназначена для построения графиков функций y = f1(x), y = f2(x), ... при изменении независимой переменной x в пределах от xmin до xmax. При этом используется прямоугольная (декартова) система координат. Необязательные аргументы optns (опции), общие и для других графических функций, служат для настройки вида графиков.

Если опции не указаны, то их стандартные значения устанавливаются автоматически.

Show [plot, opns] выводит на экран уже сформированный (например, функцией plot) график. С помощью второго параметра можно изменить значения опций в той графической функции, при помощи которой был получен рисунок.

Show [$\{plot1, plot2, ...\}$, opns] совмещает в одном графическом окне несколько графиков. Функция полезна в тех случаях, когда желательно, не вычисляя заново исходные графики plot1, plot2, ..., просмотреть их при иных настройках опций opns или сопоставить.

Table [expr, n] – список из n значений одного и того же выражения expr.

Table $[expr, \{i, m, n, d\}]$ — список значений выражения expr, зависящего от параметра i, для i от m до n с шагом d.

 $Table\ [expr, \{i, m, n\}]\$ эквивалентно $Table\ [expr, \{i, m, n, l\}].$

 $Table\ [expr, \{i, n\}]$ эквивалентно $Table\ [expr, \{i, 1, n, 1\}].$

Table [expr, $\{i, m_1, n_1\}$, $\{j, m_2, n_2\}$, ...] порождает многоуровневые списки, используется для создания числовых таблиц.

TableForm [lst, opns] выводит на экран двухуровневый список lst в виде таблицы, высота строк и ширина столбцов которой определяются максимальными размерами элементов списка. Линейный список представляется строкой или колонкой в зависимости от значения (Row или Column) опции TableDirections. Если установить опцию TableHeadings, то можно вывести названия для строк и столбцов.

Пример построения интерполяционного полинома Ньютона и исследования погрешности интерполирования

ПРИМЕР 1.

Постройте интерполяционный многочлен степени n=4 для функции $f(x)=e^x$, заданной на отрезке [-2,2] и оцените погрешность интерполирования на отрезке.

Выведите таблицу разделенных разностей по значениям функции в n+1 узле, графики функции f(x) и интерполяционного многочлена $N_4(x)$ и абсолютной величины погрешности интерполирования $R_n(x)$.

РЕШЕНИЕ:

a) вычисляем n+1 значение заданной функции в равноотстоящих точках отрезка:

b - a

```
h = -
        b = 2 : a = -2 :
Сформируем таблицу данной функции
XDT = \{\}; YDT = \{\};
For [i = 0, i \le n, i++,
цикл ДЛЯ
   xdata[i] = a + i \times h;
   ydata[i] = N[Exp[xdata[i]]];
                ... показательная функция
   XDT = Append[XDT, xdata[i]];
         добавить в конец
   YDT = Append[YDT, ydata[i]];];
Array[xdata, {n + 1, 0}]; Array[ydata, {n + 1, 0}];
MatrixForm[XDT]
                     MatrixForm[YDT]
матричная форма
                     матричная форма
ixForm=
                     rixForm=
                      0.135335
 ^{\prime} - 2
                       0.367879
  -1
  0
                       1.
                       2.71828
  1
                       7.38906
```

б) вычисляем таблицу разностей по рекуррентной формуле с помощью циклов:

```
Array[difftab, \{n+1, n+1\}, \{0, 0\}];
массив
(*Сначала определяются элементы, которые соответствуют пустым клеткам таблицы*)
For [k = 1, k \le n, k++,
цикл ДЛЯ
  For [i = n, i \ge n - k, i - -, difftab[i, k] = ""]];
(*Затем определяются элементы, в которых хранятся разности*)
For[i = 0, i \le n, i++, difftab[i, 0] = ydata[i]];
For k = 1, k \le n, k++,
цикл ДЛЯ
  For i = 0, i \le n - k, i++,
  цикл ДЛЯ
                     difftab[i+1, k-1] - difftab[i, k-1]
   difftab[i, k] = -
                              xdata[i+k] - xdata[i]
tab1 = Array[difftab, {n + 1, n + 1}, {0, 0}];
PaddedForm[TableForm[tab1], {6, 5}]
форма числа … табличная форма
```

```
JedForm=
0.13534
0.23254
0.19979
0.11443
0.04916
0.36788
0.63212
0.54308
0.31106
1.00000
1.71828
1.47625
2.71828
4.67077
7.38906
```

g) находим интерполяционные многочлены $N_n(x)$ для интерполирования вперед (формируем последовательно список четырех многочленов Ньютона — 1-го, 2-го, 3-его и 4 порядка):

г) с помощью встроенной функции *InterpolatingPolinomial* получаем решение:

Обратите внимание, что коэффициенты многочлена, найденного нами выше, и полученные встроенной функцией незначительно отличаются (следствие ошибок округления).

д) выводим график интерполяционного многочлена Ньютона $N_4(x)$ и функции f(x) на отрезках [a-h, b+h] и [a-2h, b+2h];

е) реализуем алгоритм вычисления интерполяционного многочлена $N_{\scriptscriptstyle n}(x)$ по схеме Горнера:

ColumnForm[Pln]

-2

-1

```
\begin{array}{l} 0.0491561 \\ 0.114431 + 0.0491561 \; (-1+x) \\ 0.199788 + \; (0.114431 + 0.0491561 \; (-1+x)) \; x \\ 0.232544 + \; (1+x) \; \; (0.199788 + \; (0.114431 + 0.0491561 \; (-1+x)) \; x) \\ 0.135335 + \; (2+x) \; \; (0.232544 + \; (1+x) \; \; (0.199788 + \; (0.114431 + 0.0491561 \; (-1+x)) \; x) \\ \end{array}
```

Найдем максимальную абсолютную величину разности между значениями функции e^x и интерполяционного многочлена $N_n(x)$, вычисленного для значений x_i между узлами интерполирования:

$$\max_{x_i \in [-2,2]} \left| e^x - N_4(x) \right| = 0.0454365.$$

Построим график абсолютной разности между значениями функции e^x и интерполяционного многочлена $N_n(x)$ на отрезке [-2,2]:

Plot [Abs [Exp[x] - nwtn[x]], $\{x, -2, 2\}$]

Величину погрешности интерполирования на отрезке [-2,2] можно найти при помощи встроенной функции пакета Mathematica:

FindMaximum[{Abs[Exp[x] - nwtn[x]],
$$-2 < x < 2$$
}, {x, 2}]

$$\{0.0458373, \{2 \rightarrow 1.66208\}\}$$

Максимальная величина погрешности на отрезке достигается для x=1.66208 и равна $\max_{x\in[-2,2]}\left|e^x-N_4(x)\right|=0.0458373$.

 \mathscr{H} * воспользуемся *априорной* формулой оценки погрешности интерполирования на отрезке [a, b]:

$$|f(x)-P_n(x)| \le \frac{M_{n+1}}{(n+1)!} \max_{x \in [a,b]} \prod_{i=0}^n (x-x_i),$$

 $M_{n+1} = \max_{x \in [a,b]} |f^{(n+1)}(x)| = \max_{x \in [-2,2]} e^x = e^2.$

Тогда
$$|f(x) - P_4(x)| \le \frac{e^2}{5!} \max_{x \in [a,b]} \prod_{i=0}^4 (x - x_i) \le 0,0615755 \cdot \max_{x \in [a,b]} \prod_{i=0}^4 (x - x_i)$$

Найдем максимальное значение произведения $\max_{x \in [-2,2]} \prod_{i=0}^{n} (x - x_i)$:

$$f[x_{-}] := \prod_{i=0}^{n} (x - xdata[i])$$

$$Collect[f[x], x]$$

$$[crpynnupoBatb]$$

$$4x - 5x^{3} + x^{5}$$

Построим график этой функции:

Plot[f[x], {x, -2, 2}]

FindMaximum [{f[x], $-2 \le x \le 2$ }, {x, -2}] [найти максимум {3.63143, {x $\to -1.64443$ }}

Тогда погрешность интерполирования на отрезке [-2,2] оценивается величиной

$$|f(x) - P_4(x)| \le \frac{e^2}{5!} \max_{x \in [-2,2]} \prod_{i=0}^4 (x - x_i) \le 0,0615755 \times 3,63143 = 0,223607.$$

Можно воспользоваться *апостериорной* формулой оценки погрешности. Для этого нужно увеличить количество узлов, вычислить разделенные разности n+1 порядка, которые являются оценкой значения производной n+1 порядка, и найти среди них максимальную.

Добавляем еще один узел и пересчитываем таблицу разделенных разностей на том же отрезке, но для n=5.

$$b = 2; a = -2;$$

$$h = \frac{b-a}{n}$$

$$\frac{4}{5}$$
МаtrixForm[XDT]

[матричная форма]

trixForm=
$$\begin{pmatrix} -2 \\ -\frac{6}{5} \\ -\frac{2}{5} \\ \frac{2}{5} \\ \frac{6}{5} \\ 2 \end{pmatrix}$$

$$atrixForm=$$

$$\begin{pmatrix} 0.135335 \\ 0.301194 \\ 0.67032 \\ 1.49182 \\ 3.32012 \\ 7.38906 \end{pmatrix}$$

PaddedForm[TableForm[tab1], {6, 5}]

форма числа … табличная форма

Согласно свойству разделенной разности справедливо следующее равенство

$$f(x_0, x_1, ..., x_5) = \frac{f^{(5)}(\xi)}{5!} = 0,00951522$$

Значение ξ равно 0.132629, в то время как максимум производной достигается при x=2 и равен $\frac{e^2}{5!}$ = 0,0615755.

Как видно из сравнения полученных величин, чтобы получить более точную апостериорную оценку с помощью разделенных разностей, требуется взять больше дополнительных узлов интерполирования.

Для выполнения задания 4 лабораторной работы полностью повторите аналогичное построение полиномов степени $n=5,\,6,\,7$ и 10 и исследуйте зависимость погрешности интерполирования от степени полинома n.

3.4 Варианты заданий

Nº	f(x)	[<i>a</i> , <i>b</i>]	№	f(x)	[<i>a</i> , <i>b</i>]
1	e x	[-2,2]	7	ln x	[1,3]
2	sin x	$[0,2\pi]$	8	arcsin x	[-1,1]
3	xcos x	$[-\pi,\pi]$	9	arctg x	[-1,2]
4	tg x	$[-\pi/4, \pi/4]$	10	x ^{0.5}	[0,4]
5	ctg x	$[0.3, 2\pi/3]$	11	1/x	[0.2,3]
6	$1/x^2$	[0.5,2]	12	$x^{1/3}$	[0,8]