光栅衍射

院	系: _	自动化系
班	级:	自 31 班
学生	姓名: _	李想
学	号: _	2022011642
组	号: _	单一晚 N
座位	江号:	18

目录

1	实验名称	2
2	实验目的	2
3	实验仪器	2
4	数据处理 4.1 光线垂直入射测光栅常数和光波波长	2 2 5
5	实验总结	5
6	思考题	6
7	原始数据	8

2024 年 3 月 31 日 2022011642

1 实验名称

光栅衍射实验

2 实验目的

- (1) 进一步熟悉分光计的使用方法
- (2) 学习并理解如何使用衍射光栅测定光波波长以及光栅常数
- (3) 加深对光栅衍射公式及其成立条件的理解

3 实验仪器

分光计、光栅、平面镜(调节用)、汞灯。

4 数据处理

4.1 光线垂直入射测光栅常数和光波波长

光栅编号: 19; $\Delta_{\emptyset} = 1$ '; 入射光方位 $\phi_{10} = 327^{\circ}50$ '; $\phi_{20} = 147^{\circ}42$ ';

波长/nm	黄 1		黄 2		546.1		紫	
衍射光谱级次 m	2		2		2		2	
游标	I	II	I	II	I	II	I	II
左侧衍射光方位 φ1	348°25'	167°45'	347°55'	40°35'	346°45'	166°40'	312°30'	162°50'
右侧衍射光方位 φ2	307°15'	127°20'	307°20'	127°20'	308°35'	128°20'	342°45'	132°30'
$2\varphi_m = \varphi_1 - \varphi_2$	41°10'	40°25'	40°35'	40°35'	38°15'	38°20'	30°15'	30°20'
$2\overline{\varphi_m}$	40°47'		40°35'		38°18'		30°18′	
$\overline{\varphi_m}$ 20°23		23'	20°17'		19°9'		15°9'	

因为:

$$d\sin\varphi_m = m\lambda$$

对于绿光: $\lambda = 546.1 \text{ nm}, \varphi_m = 19^{\circ}9'$ 故代人公式得到:

$$d = 3329.4 \text{ nm}$$

我们知道 m 的不确定度为 0, 并且 546.1nm 为绿光的标准波长, 故 λ 的不确定度非常小, 可 忽略, 代入之前推导出的不确定度公式有:

$$\frac{\Delta d}{d} = \sqrt{\left(\frac{\Delta m}{m}\right)^2 + \left(\frac{\Delta \lambda}{\lambda}\right)^2 + \left(\frac{\Delta \sin \varphi_m}{\sin \varphi_m}\right)^2} = \sqrt{\left(\Delta \varphi_m \operatorname{ctg} \varphi_m\right)^2}$$

而 φ_m 的不确定度来源为两次读数取平均值,故有:

2024 年 3 月 31 日 2022011642

$$\Delta\varphi_m = \frac{1}{2}\sqrt{2\Delta / \chi^2} = 0.707'$$

所以有:

$$\Delta d = d\Delta \varphi_m \operatorname{ctg} \varphi_m = 3329.4 \times \frac{\pi \times 0.707}{60 \times 180} \times \operatorname{ctg} 19^{\circ}9' = 2.0 \text{ nm}$$

故:

$$d = (3329.4 \pm 2.0)$$
nm

这样,我们就可以由计算出的 d=3329.4 nm 和测得的各光线的 φ_m 值计算出:

紫光: $\varphi_m = 15^{\circ}9'$

$$\lambda = \frac{d\sin\varphi_m}{m} = 434.5 \text{ nm}$$

黄 1: $\varphi_m = 20^{\circ}23'$

$$\lambda = \frac{d\sin\varphi_m}{m} = 579.0 \text{ nm}$$

黄 2: $\varphi_m = 20^{\circ}17'$

$$\lambda = \frac{d\sin\varphi_m}{m} = 576.3 \text{ nm}$$

计算 $\Delta\lambda$ 的过程如下: 预习报告中推导出的不确定度公式有:

$$\frac{\Delta \lambda}{\lambda} = \sqrt{\left(\frac{\Delta d}{d}\right)^2 + \left(\frac{\Delta m}{m}\right)^2 + \left(\Delta \varphi_m \operatorname{ctg} \varphi_m\right)^2}$$

而:

$$\Delta\varphi_m = \frac{1}{2}\sqrt{2\Delta_{\text{fl}}^2} = 0.707' \quad \Delta m = 0$$

所以有:

紫光:

$$\begin{split} \frac{\Delta\lambda}{\lambda} &= \sqrt{\left(\frac{\Delta d}{d}\right)^2 + \left(\Delta\varphi_m \operatorname{ctg}\varphi_m\right)^2} \\ &= \sqrt{\left(\frac{2.0}{3329.4}\right)^2 + \left(\frac{\pi \times 0.707}{60 \times 180} \times \operatorname{ctg} 15^{\circ}9'\right)^2} \\ &= 9.6 \times 10^{-4} \end{split}$$

$$\Delta \lambda = \lambda \cdot \frac{\Delta \lambda}{\lambda} = 0.4 \text{ nm}$$

 $\lambda = (434.5 \pm 0.4) \text{nm}$

黄 1:

$$\frac{\Delta\lambda}{\lambda} = \sqrt{\left(\frac{\Delta d}{d}\right)^2 + \left(\Delta\varphi_m \operatorname{ctg}\varphi_m\right)^2}$$

$$= \sqrt{\left(\frac{2.0}{3329.4}\right)^2 + \left(\frac{\pi \times 0.707}{60 \times 180} \times \operatorname{ctg} 20^{\circ} 23'\right)^2}$$

$$= 8.2 \times 10^{-4}$$

$$\Delta \lambda = \lambda \cdot \frac{\Delta \lambda}{\lambda} = 0.5 \text{ nm}$$

 $\lambda = (579.0 \pm 0.5) \text{nm}$

黄 2:

$$\frac{\Delta\lambda}{\lambda} = \sqrt{\left(\frac{\Delta d}{d}\right)^2 + \left(\Delta\varphi_m \operatorname{ctg}\varphi_m\right)^2}$$

$$= \sqrt{\left(\frac{2.0}{3329.4}\right)^2 + \left(\frac{\pi \times 0.707}{60 \times 180} \times \operatorname{ctg} 20^{\circ}17'\right)^2}$$

$$= 8.2 \times 10^{-4}$$

$$\Delta \lambda = \lambda \cdot \frac{\Delta \lambda}{\lambda} = 0.5 \text{ nm}$$

$$\lambda = (576.3 \pm 0.4) \text{nm}$$

综上所述:

根据绿光波长计算出的光栅常数为:

$$d = (3329.4 \pm 2.0) nm$$

根据光栅常数计算其他光的波长为:

紫光:

$$\lambda = (434.5 \pm 0.3) \text{nm}$$

偏差为:

$$\delta = \frac{\lambda_{\cancel{\$}} - \lambda}{\lambda_{\cancel{\$}}} = 0.07\%$$

黄 1:

$$\lambda = (579.0 \pm 0.4) \mathrm{nm}$$

偏差为:

$$\delta = \frac{\lambda_{\mbox{\colored} \pm 1} - \lambda}{\lambda_{\mbox{\colored} \pm 1}} = 0.10\%$$

黄 2:

$$\lambda = (576.3 \pm 0.4) \text{nm}$$

偏差为:

$$\delta = \frac{\lambda_{\mbox{\colored} \pm 2} - \lambda}{\lambda_{\mbox{\colored} \pm 2}} = 0.14\%$$

4.2 i=15°0' 时测量波长较短的黄色谱线对应波长

	游标	入射光方位 $arphi_0$	入射角 i	\overline{i}		
入射角	I	327°30′	15°5′	150	ς,	
/(分)/H	II	147°30′	15°4'	15°5'		
光谱级次 m	游标	左侧衍射光方位 φ_1	衍射角 $arphi_{m\pm}$	衍射角 $\overline{arphi_{mar{\Sigma}}}$	同(异)侧	
2	I	$349^{\circ}50$ '	37°15′	37°13'	异	
2	II	$169^{\circ}45$ '	37°11′	37 13	开	
光谱级次 m	游标	右侧衍射光方位 φ_2	衍射角 $arphi_{m au}$	衍射角 $\overline{arphi_{mar{n}}}$	同(异)侧	
2	I	307°30′	5°5′	5°5'	同	
2	II	127°30′	$5^{\circ}4$	5 5	l _H 1	

由于 $\varphi_{m\pi} = 5°5′$ 与入射光线位于法线同侧, 故:

$$d \cdot (\sin \varphi_{m \not= 1} + \sin 15^\circ) = m\lambda$$

故:

$$\lambda = \frac{d(\sin \varphi_{m \text{fi}} + \sin 15^\circ)}{m} = 580.5 \text{ nm}$$

由于 $\varphi_{m\pm} = 37^{\circ}13'$ 与入射光线位于法线异侧, 故:

$$d \cdot (\sin \varphi_{m/\pi} - \sin 15^{\circ}) = m\lambda$$

故:

那么:

$$\overline{\lambda} = 579.4nm$$

偏差为:

$$\delta = \frac{\lambda_{\mbox{\em \pm }2} - \overline{\lambda}}{\lambda_{\mbox{\em \pm }2}} = 0.05\%$$

这与理论值很接近。

5 实验总结

• 我去年从法学院降级转专业到工科院系,没有来得及选修物理实验(1),因此这是我第一次使用分光计。实验前,我时常听到"眼睛看'瞎'也没看出来","分光计是最难的物理实验"之类的"同学经验分享",不免让我十分紧张。因此我做了很详尽的课前预习,不仅重新复习了光栅的分光原理,还上网观看了一次又一次分光计的使用操作。因此虽然在实际操作时仍然有不明白的地方,但在助教学长的帮助下,也还是很快解决了问题,测量到了足够精确的数据,实在让我感到幸运而长出一口气。

• 在具体做实验时,对零级左右两侧的衍射角均测量并取平均,以此来减小偏心误差的方法我 第一次接触,感到十分精妙,值得我在以后的实验设计与操作中应用。

- 调节分光计时先粗调再细调的实验方法,以及利用绿色十字叉丝与目镜瞄准叉丝对齐,来保证光栅垂直入射的自准法,让我感到分光计这样精密光学仪器的使用需要十分谨慎,调节的方法要妥善选取。
- 感谢老师与助教学长的悉心指导!

6 思考题

- 1. 需要保持光线垂直入射,即 i 应该等于 0. 在具体实验操作时,可将光栅置放于物镜前,观察其反射回来的绿色十字叉丝,接着调整光栅角度,直到绿色十字叉丝与目镜上的瞄准叉丝完全对齐,即可认为光线已经垂直入射。
 - 2. 这在预习报告上推导过, 简要过程如下: 由于:

$$d = \frac{m\lambda}{\sin\varphi_m}$$

故有:

 $\ln d = \ln m + \ln \lambda - \ln \sin \varphi_m$

而:

$$\begin{split} \frac{\partial \ln d}{\partial m} &= \frac{1}{m} \\ \frac{\partial \ln d}{\partial \lambda} &= \frac{1}{\lambda} \\ \frac{\partial \ln d}{\partial \sin \varphi_m} &= -\frac{1}{\sin \varphi_m} \end{split}$$

所以有:

$$\frac{\Delta d}{d} = \sqrt{\left(\frac{\Delta m}{m}\right)^2 + \left(\frac{\Delta \lambda}{\lambda}\right)^2 + \left(\frac{\Delta \sin \varphi_m}{\sin \varphi_m}\right)^2} = \sqrt{\left(\frac{\Delta m}{m}\right)^2 + \left(\frac{\Delta \lambda}{\lambda}\right)^2 + \left(\Delta \varphi_m \operatorname{ctg} \varphi_m\right)^2}$$

即:

$$\frac{\Delta d}{d} = \sqrt{\left(\frac{\Delta m}{m}\right)^2 + \left(\frac{\Delta \lambda}{\lambda}\right)^2 + \left(\Delta \varphi_m \operatorname{ctg} \varphi_m\right)^2}$$

同理可得:

$$\frac{\Delta \lambda}{\lambda} = \sqrt{\left(\frac{\Delta m}{m}\right)^2 + \left(\frac{\Delta d}{d}\right)^2 + \left(\Delta \varphi_m \operatorname{ctg} \varphi_m\right)^2}$$

当然,我们还有:

$$\Delta m = 0, \Delta \varphi_m \operatorname{ctg} \varphi_m = \frac{\sqrt{2}\Delta_{\{\chi\}}}{2tan\varphi_m}$$

因此:

$$\frac{\Delta \lambda}{\lambda} = \frac{\Delta d}{d} = \frac{\sqrt{2} \Delta_{\text{fX}}}{2 tan \varphi_m}$$

因此我们知道, φ_m 越大, 两个量的不确定度就越小。

3. 只需要在光线垂直入射的角度基础上增加或减少 15°, 便可得到光栅平面的法线方位。将望远镜转动至该方位角后,调整光栅角度,使光栅反射回来的绿色十字叉丝与目镜上的瞄准叉丝对齐即可。

4. 棱镜分光时,往往产生一组连续的光谱,这是由于棱镜分光原理的特性,不同波长的光线在通过棱镜时会产生连续的折射角,因此形成连续的光谱。而光栅分光时,通常会产生多组光谱,这是由于光栅的衍射特性:光栅会根据不同颜色的光不同的波长,产生一系列分布位置不同的亮线,据此衍射图样产生分光效果。

原始数据 7

2024 春物理实验 B(2)课程资料

附录 1 实验测量数据记录参考表格

实验题目: <u>米州省射交</u>验 姓名: <u>水州</u>, 学日2020(164), 实验组号: <u>/</u>, 实验台号: <u>/</u>8 , 实验日期 2024 - 3.25

1. i=0 时测定光栅常数 d 和光波波长 λ

0	时測定光栅常数 d 和光波波长 λ									
	光栅编号: // Δ _R = // 入射光方位: φ ₁₀ = 2 / φ ₂₀ = / 4 / 2 /									
	谱线颜色/波长(nm)	黄1		黄 2		546.1		紫		
	衍射光谱级次 m		2		2	2		-2		
	游标	I	II	I	II	I	II	I	II	
	左侧衍射光方位φε	348251	16745	34755	16755	34845'	16645	3/2030	1323%	
	右侧衍射光方位 φ_{ti}	35/15	12720	3072	1272	308'30"	12820'	34245'	16250'	
	$2\varphi_m = \varphi_{E} - \varphi_{E}$	416	4025	4035'	4835'	38"15"	3820'	38151	3020	
	$\overline{2\varphi_m}$	40	°47)	4.5	351	38°	(8	301	'8'	

2. i=15°0′时测量波长较短的黄色谱线对应波长

光栅平面法线方位φ_{1n}=<u>3/2℃</u> ′ φ_{2n}=<u>/3℃</u> ′

7124									
	游标	入射光方位 <i>φ</i> ₀	入射角 i		ī				
入射角	I	327°20'	15.2'	11	2 т'				
	II	147°30'	15 4'	/1"1"					
光谱级次 m	游标	左侧衍射光方位 ф 症	衍射角φmπ	\overline{arphi}_{m 左	同(异)侧				
	I	349° to'	3)°15'	37'13'	F				
2	II	169045	37°11'	5/13'	7				
光谱级次 m	游标	右侧衍射光方位φι	衍射角φmii	$\overline{arphi}_{m otan}$	同(异)侧				
7.	I	307° 30'	J°J'	1 ² J'	12				
	II	127°30'	1°4'	27	. 5				

3. 最小偏向角法测量波长较长的黄色谱线对应波长

自拟表格记录数据

