Analysis, Big O and Growth of Functions

Zach Neveu

May 27, 2019

1 Book Keeping

- Reading posted
- Lab 1 available

2 Analysis of Algorithms

Problem: a general description of input parameters and the properties that an optimal solution should have

Instance: a specific example of a problem with all parameters specified

- Example: Given a weighted graph, find the cheapest Hamiltonian Cycle (TSP)
- A "problem" can have many instances

Figure 1: instance_problem

• An algorithm solves all instances of problem

- Many algorithms, what is most efficient?
- What is efficient?
 - Memory
 - Time
 - CPU cycles
 - Disk Space
 - I/O bandwidth
 - Power
- Efficiency usually defined as using smallest time
- Index runtimes by instance size
- "Instance Size" not always well defined can have multiple params (edges, nodes)

3 Example: Insertion Sort

INSERTION-SORT (A)		cost	times
1	for $j \leftarrow 2$ to $length[A]$	c_1	n
2	do $key \leftarrow A[j]$	c_2	n-1
3	\triangleright Insert $A[j]$ into the sorted		
	sequence $A[1j-1]$.	0	n-1
4	$i \leftarrow j-1$	c_4	n-1
5	while $i > 0$ and $A[i] > key$	C5	$\sum_{j=2}^{n} t_j$
6	$\mathbf{do}\ A[i+1] \leftarrow A[i]$	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	$i \leftarrow i - 1$	c_7	$\sum_{j=2}^{n} (t_j - 1)$
8	$A[i+1] \leftarrow key$	c_8	n-1

Figure 2: Cor p.24

- Best case: already sorted. T(j) = 1, $T(n) = an + b \rightarrow \text{linear}$
- Worst case: reverse sorted: T(j) = j, $T(n) = \frac{n(n+1)}{2} \approx an^2 + bn + c \rightarrow \text{quadratic}$ Time Complexity Function: The largest amount of time for an algorithm needed to solve the problem for a given instance size.
- Even Time-Complexity function considered too complicated for daily use
- Asymptotic notation used instead

4 Asymptotic Notation

For a given function g(n), O(g(n)) = f(n) there exist positive constants k and n_0 such that $f(n) \le Kg(n)$ for all $n \ge n_0$

Less formally: O(g(n)) is the set of functions that are asymptotically less than g(n) for large n.

Example

I claim that $f(n) = an^2 + bn + c = O(n^2)$. If so, then there should exist positive constants k and n_0 such that

$$an^{2} + bn + c \le kn^{2}$$

 $a + b/n + \frac{c}{n^{2}} \le k$
 $k = a + 1$
 n_{0} is intersection

Summary

- For insertion sort, worst case runtime (time complexity function) is $an^2 + bn + c$ so the complexity is $O(n^2)$
- Also $O(n^3)$, $O(n^4)$ etc.
- Worst case runtime is $O(n^2)$
- $\bullet \;$ Worst case runtime itself is upper bound on run time
- $O(n^2)$ is then an upper bound on the general runtime as well!

Polynomial-time Algorithm: an algorithm whose time complexity function is O(p(n)) for some polynomial p(n)

Exponential-time Algorithm: an algorithm that is not polynomial time

EXPONENTIAL VERY BAD