Hieu Pham

Assignment PracticeT2-3 due 04/26/2014 at 08:27pm MST

Problem 1. 1. (1 pt) Suppose that $f(x) = 20e^x - ex^e$. Find f'(3).

$$f'(3) =$$

Answer(s) submitted:

• $(-1/3)((e^2)((3^e) - 60e))$

(correct)

Problem 2. 2. (1 pt) Find an equation for the line tangent to the graph of

$$f(x) = \frac{\sqrt{x}}{7x - 8}$$

at the point (3, f(3)).

Answer(s) submitted:

• 0.281843 - 0.049536x

(correct)

Problem 3. 3. (1 pt) Use implicit differentiation to find the slope of the tangent line to the curve

$$4xy^3 + 3xy = 7$$

at the point (1,1).

Answer(s) submitted:

 \bullet - (7/15)

(correct)

Problem 4. 4. (1 pt) Let $f(x) = 3x^2 \cos(6x)$.

Then f'(x) is ____ and f'(4) is _____ f''(x) is _ and f''(4) is ___

Answer(s) submitted:

- $6x(\cos(6x) 3x\sin(6x))$
- 24(cos(24) 12sin(24))
- $6((1 (18x^2))\cos(6x) (12x)\sin(6x))$
- \bullet -6(48sin(24) + 287cos(24))

(correct)

Problem 5. 5. (1 pt) Suppose xy = -4 and $\frac{dy}{dt} = 3$. Find $\frac{dx}{dt}$

when x = -4.

Answer(s) submitted:

• 12

(correct)

Problem 6. 6. (1 pt) Find the absolute maximum and absolute minimum values of the function

$$f(x) = x^3 + 12x^2 - 27x + 9$$

over each of the indicated intervals.

- (a) Interval = [-10, 0].
- 1. Absolute maximum =
- 2. Absolute minimum = .
- (b) Interval = [-7, 2].
 - 1. Absolute maximum =
 - 2. Absolute minimum = _____
- (c) Interval = [-10, 2].
 - 1. Absolute maximum = _____
 - 2. Absolute minimum = _

Answer(s) submitted:

- 495
- 9
- 443
- −5
- 495
- −5

(correct)

Problem 7. 7. (1 pt) Find the most general antiderivative for the function $\left(6x^4 - \frac{6}{x^5} - 3\right)$.

Note: Don't enter the +C . It's included for you.

Antiderivative = \bot + C.

Answer(s) submitted:

• $(((6x^5)/5) + (3/(2x^4)) - 3x)$

(correct)

Problem 8. 8. (1 pt) Find $\frac{dy}{dx}$ for the function $y = x^{\cos(x)}$.

Answer(s) submitted:

• $(x^{\circ}(\cos(x) - 1)(\cos(x) - (x(\ln(x))\sin(x))$

/•			
(11	1CC	rre	ct

Problem 9. 9. (1 pt)

Evaluate the limit using L'Hospital's rule if necessary

$$\lim_{x \to 1} \frac{x^2 - 1}{x^4 - 1}$$

Answer		

Answer(s) submitted:

(2/4)

(correct)

Problem 10. 10. (1 pt) Find two positive numbers whose product is 81 and whose sum is a minimum.

Answer: _____, ____

Answer(s) submitted:

- 9
- 9

(correct)

Problem 11. 11. (1 pt) Let $y = 4x^2 + 8x + 2$.

Find the differential dy when x = 4 and dx = 0.2 _____ Find the differential dy when x = 4 and dx = 0.4 _____

Answer(s) submitted:

- 8
- 16

(correct)

Problem 12. 12. (1 pt) Use linear approximation, i.e. the tangent line, to approximate $\frac{1}{0.254}$ as follows: Let $f(x) = \frac{1}{x}$ and find the equation of the tangent line to f(x) at a "nice" point near 0.254. Then use this to approximate $\frac{1}{0.254}$.

Answer(s) submitted:

• 3.936

(correct)

Problem 13. 13. (1 pt) Consider the function

$$f(x) = -3x^3 + 2x^2 + 2x + 2$$

Find the average slope of this function on the interval (2,10).

By the Mean Value Theorem, we know there exists a c in the open interval (2,10) such that f'(c) is equal to this mean slope. Find the value of c in the interval which works _____

Answer(s) submitted:

- −346
- (58/9)

(correct)

Problem 14. 14. (1 pt) Suppose that

$$f(x) = 6x^2 - x^3 + 2$$
.

(A) Find all critical numbers of f. If there are no critical numbers, enter 'NONE'.

Critical numbers = _____

(B) Use interval notation to indicate where f(x) is increasing.

Note: Use 'INF' for ∞ , '-INF' for $-\infty$, and use 'U' for the union symbol.

Increasing:

(C) Use interval notation to indicate where f(x) is decreasing.

Decreasing:

(D) List the x-coordinates of all local maxima of f. If there are no local maxima, enter 'NONE'.

x values of local maxima = _____

(E) List the x-coordinates of all local minima of f. If there are no local minima, enter 'NONE'.

x values of local minima = _____

(F) Use interval notation to indicate where f(x) is concave up.

Concave up: _____

(G) Use interval notation to indicate where f(x) is concave down

Concave down:

(H)List the x values of all inflection points of f. If there are no inflection points, enter 'NONE'.

x values of inflection points = _____

(I) Use all of the preceding information to sketch a graph of *f*. When you're finished, enter a "1" in the box below. Graph Complete: _____

Answer(s) submitted:

- 0, 4
- (0,4)
- (-INF, 0) U (4, INF)
- 4
- 0
- (-INF, 2)
- (2, INF)
- 2
- 1

(correct)

Problem 15. 15. (1 pt) Find the *x*-coordinate of the absolute minimum for the function

$$f(x) = 3x \ln(x) - 6x,$$
 $x > 0.$

x-coordinate of absolute minimum = _____

Answer(s) submitted:

• -3e

(incorrect)

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America