Platinum, hydroquinone and silver

Platinum, hydroquinone and silver

Part A Oxidation numbers of platinum

The anti-cancer drug *cis-platin* has the formula $Pt(NH_3)_2Cl_2$.

In the human body, one of the chloride ions of *cis-platin* is replaced by one water molecule.

$$Pt(NH_3)_2Cl_2 + H_2O \longrightarrow [Pt(NH_3)_2(H_2O)Cl]^+ + Cl^-$$

What is the oxidation number of platinum in each of these complexes?

	cis-platin	in the aquo complex
Α	+2	+1
В	+2	+2
С	+4	+3
D	+4	+4

	\	
()	Λ
1	1	~

() B

() C

() D

Part B Hydroquinone and silver bromide

When exposed film from a camera is developed, one step involves reacting the light-activated silver bromide crystals with hydroquinone in alkali according to the following equation:

OH
$$+ 2AgBr + 2OH$$
 $+ 2Ag + 2H_2O + 2Br$ Hydroquinone

Figure 1: Hydroquinone and silver bromide in presence of base.

Which of the following describes the role of hydroquinone?

	It acts only as a reducing agent
It acts only as an acid	It acts as both a base and a reducing agent
	It acts as both an acid and a reducing agent
It acts only as an oxidising agent	It acts only as an acid
	It acts only as an oxidising agent

Part A adapted with permission from UCLES, A-Level Chemistry, June 1996, Paper 3, Question 9; Part B adapted with permission from OCSEB, A-Level Chemistry, June 1994, Paper 1, Question 3

Oxidation states of \boldsymbol{S} and \boldsymbol{N}

Oxidation states of \boldsymbol{S} and \boldsymbol{N}

Part A Oxidation states of sulfur

In which of the following pairs of	species is the	sulfur in the sa	ame oxidation s	state in both i	members of	the
pair?						

- 1. ${
 m SF}_6$ and ${
 m SO_4}^{2-}$
- 2. SO_2 and HSO_3^-
- 3. $\mathrm{S_2O_3}^{2-}$ and $\mathrm{S_4O_6}^{2-}$
 - 1, 2 and 3 are correct
 - 1 and 2 only are correct
 - 2 and 3 only are correct
 - 1 only is correct
 - 3 only is correct

Part B Oxidation states of nitrogen

In which of the following conversions does the oxidation number of the nitrogen change by two?

- 1. $NH_2OH \longrightarrow NH_3$
- **2**. $N_2 \longrightarrow NO$
- **3**. $NO_2 \longrightarrow HNO_3$
 - 1, 2 and 3 are correct
 - 1 and 2 only are correct
 - 2 and 3 only are correct
 - 1 only is correct
 - 3 only is correct

Oxides of nitrogen

Oxides of nitrogen

Part A Oxides of nitrogen

In an attempt to establish the formula of an oxide of nitrogen, a known volume of the pure gas was mixed with hydrogen and passed over a catalyst at a suitable temperature. 100% conversion of the oxide to ammonia and water was shown to have taken place.

$$\mathrm{N}_x\mathrm{O}_y \xrightarrow[\mathrm{catalyst}]{\mathrm{H}_2} x\,\mathrm{NH}_3 + y\,\mathrm{H}_2\mathrm{O}$$

 $2400\,\mathrm{cm^3}$ of the nitrogen oxide, measured at room temperature and pressure (RTP) produced $7.200\,\mathrm{g}$ of water. The ammonia produced was neutralised by $200\,\mathrm{cm^3}$ of $1.0\,\mathrm{mol}~\mathrm{dm^{-3}}$ HCl.

[Molar volume of gas at RTP = $24000 \,\mathrm{cm}^3 \,\mathrm{mol}^{-1}$]

What was the oxidation number of nitrogen in the solid oxide?

- () +
- () +2
- () +;
- → +/
- ______

Part B Oxidation numbers of nitrogen

$$4\,\mathrm{NH_3}\left(\mathrm{g}\right) + 5\,\mathrm{O_2}\left(\mathrm{g}\right) \longrightarrow 4\,\mathrm{NO}\left(\mathrm{g}\right) + 6\,\mathrm{H_2O}\left(\mathrm{g}\right)$$

What is the oxidation number of nitrogen in

 NH_3

NO

Part A adapted with permission from UCLES, A-Level Chemistry, November 1989, Paper 3, Question 2; Part B adapted with permission from UCLES, A-Level Chemistry, November 1995, Paper 3, Question 1

Home

Oxidation numbers of halides

Oxidation numbers of halides

Part A Oxidation of bromine

What changes can be regarded as oxidation of bromine?

- 1. $Br_2 \longrightarrow BrO^-$
- **2**. $\operatorname{Br}_2 \longrightarrow \operatorname{BrF}$
- 3. $\operatorname{Br}_2 \longrightarrow \operatorname{BrI}$
 - 1, 2 and 3 are correct
 - 1 and 2 only are correct
 - 2 and 3 only are correct
 - 1 only is correct

Part B Oxidation numbers of halides

Which of the statements about the reaction below are correct?

$${
m IO_3}^-({
m aq}) + 2\,{
m I}^-({
m aq}) + 6\,{
m H}^+({
m aq}) + 6\,{
m Cl}^-({
m aq}) \longrightarrow 3\,{
m ICl_2}^-({
m aq}) + 3\,{
m H_2O}\left(1
ight)$$

- **1**. The oxidation number of chlorine changes from -1 to -2.
- **2**. The oxidation number of the iodine in the iodide ion I^- (aq) changes from -1 to +1.
- **3**. The oxidation number of the iodine in the iodate ion IO_3^- (aq) changes from +5 to +1.
 - 1, 2 and 3 are correct
 - 1 and 2 only are correct
 - 2 and 3 only are correct
 - 1 only is correct

Part A adapted with permission from UCLES, A-Level Chemistry, June 1996, Paper 3, Question 37; Part B adapted with permission from UCLES, A-Level Chemistry, June 1989, Paper 3, Question 37

Home Chemis

Chemistry Essential Pre-Uni Chemistry K1.4

Essential Pre-Uni Chemistry K1.4

Select the element or species that is being oxidised in the following reactions.

Part A (a)

$$2\,\mathrm{Al} + \mathrm{Cr}_2\mathrm{O}_3 \longrightarrow \mathrm{Al}_2\mathrm{O}_3 + 2\,\mathrm{Cr}$$

- Al in Al₂O₃
- \bigcirc Cr in Cr_2O_4
- O Al
- \bigcirc O in Cr_2O_3

Part B (b)

$$2\,\mathrm{NH_3} + 3\,\mathrm{CuO} \longrightarrow \mathrm{N_2} + 3\,\mathrm{Cu} + 3\,\mathrm{H_2O}$$

- O in CuO
- \bigcirc N in N₂
- NH₃
- Cu in CuO

Part C (c)

 $2\,Cu^{2+} + 4\,I^- \longrightarrow 2\,CuI + I_2$

- O I in CuI
- I⁻
- Cu in CuI
- \bigcirc Cu²⁺

Part D (d)

 $6\,PbO + O_2 \longrightarrow 2\,Pb_3O_4$

- Pb in PbO
- \bigcirc O in O_2
- O in PbO
- Pb in Pb₃O₄

Part E (e)

 $H_2O_2 + SO_2 \longrightarrow H_2SO_4$

- \bigcirc SO₂
- \bigcirc H₂O₂
- $\bigcirc \quad S \text{ in } H_2SO_4 \\$
- $\bigcirc \quad H \text{ in } H_2SO_4 \\$

Part F (f)

 $3\,\mathrm{H}_2\mathrm{SO}_4 + 2\,\mathrm{NaBr} \longrightarrow 2\,\mathrm{NaHSO}_4 + \mathrm{Br}_2 + \mathrm{SO}_2 + 2\,\mathrm{H}_2\mathrm{O}$

- Na in NaBr
- Br in NaBr
- H in H₂SO₄
- S in H₂SO₄

Part G (g)

 $\mathrm{Mg} + 2\,\mathrm{CH_3COOH} \longrightarrow \mathrm{Mg}(\mathrm{CH_3COO})_2 + \mathrm{H_2}$

- $\bigcirc \quad C \text{ in } CH_3COOH \\$
- \bigcirc H₂
- O Mg
- Mg in Mg(CH₃COO)₂

Part H (h)

 $2\,\mathrm{Fe^{3+}} + 6\,\mathrm{ClO^{-}} + 4\,\mathrm{OH^{-}} \longrightarrow 2\,\mathrm{FeO_{4}}^{2-} + 3\,\mathrm{Cl_{2}} + 2\,\mathrm{H_{2}O}$

- O in ClO
- Cl in ClO
- OH-
- \bigcirc Fe³⁺

Home

Rocket and metal reduction

Rocket and metal reduction

Part A Solid rocket booster

The propellant used in the solid rocket booster of a space shuttle is a mixture of aluminium and compound \mathbf{X} . Compound \mathbf{X} contains chlorine in an oxidation state of +7.

Which of the following could be compound **X**?

- NCl₃
- NH₄Cl
- N₂H₅Cl
- NH₄ClO₄
- NH₄ClO₃

Part B Metals and reduction

In which of the following changes has the metal undergone reduction?

- \bigcirc MnO₄²⁻ \longrightarrow MnO₄⁻

Part A adapted with permission from UCLES, A-Level Chemistry, June 1992, Paper 4, Question 15; Part B adapted with permission from OCSEB, A-Level Chemistry, June 1994, Paper 1, Question 12

Chemistry

Essential Pre-Uni Chemistry K1.3

Essential Pre-Uni Chemistry K1.3

Select the element or species that is being reduced in the following reactions

Part A (a)

$$CuO + H_2 \longrightarrow Cu + H_2O$$

- O in H₂O
- O in CuO
- Cu in CuO
- H in H₂

Part B (b)

$$C_3H_6+H_2 \longrightarrow C_3H_8$$

- \bigcirc H in $\mathrm{C_3H_6}$
- \bigcirc C₃H₈
- \bigcirc C₃H₆
- \bigcirc H in H₂

Part C (c)

 $2\,Na + Br_2 \longrightarrow 2\,NaBr$

- O Na
- \bigcirc Br₂
- Na in NaBr
- Br in NaBr

Part D (d)

 $\mathrm{H_2O_2} + 2\,\mathrm{FeSO_4} + \mathrm{H_2SO_4} \longrightarrow 2\,\mathrm{H_2O} + \mathrm{Fe_2(SO_4)_3}$

- $\ \ \, \ \, S \text{ in } H_2SO_4$
- \bigcirc S in FeSO₄
- Fe in FeSO₄
- $\bigcirc \ H_2O_2$

Part E (e)

 $ZnCl_2 \longrightarrow Zn + Cl_2$

- Cl in Cl₂

Part F	(f)
--------	-----

$$\begin{split} Fe_2(SO_4)_3 + Zn &\longrightarrow 2\,FeSO_4 + ZnSO_4 \\ & & \qquad Zn \text{ in } ZnSO_4 \\ & \qquad Fe \text{ in } Fe_2(SO_4)_3 \\ & \qquad Zn \\ & \qquad S \text{ in } Fe_2(SO_4)_3 \end{split}$$

Part G (g)

 $NiSO_4 + Fe \longrightarrow FeSO_4 + Ni$ $S \text{ in } NiSO_4$ $O \text{ in } NiSO_4$ $Ni \text{ in } NiSO_4$ Fe

Part H (h)

<u>Home</u> Che

Chemistry

Essential Pre-Uni Chemistry K1.2

Essential Pre-Uni Chemistry K1.2

Write down the oxidation number of:
Part A H ₂ O
Oxygen in ${ m H_2O}$
Part B H ₂ SO ₄
Sulfur in ${ m H}_2{ m SO}_4$
Part C H_3PO_4 Phosphorus in H_3PO_4
Part D H_3PO_3
Phosphorus in ${ m H_3PO_3}$
Part E ClO ₂
Chlorine in ${ m ClO_2}$

Part M $\operatorname{Cr}_2\operatorname{O_7}^{2-}$	
Cr in $\mathrm{Cr_2O_7}^{2-}$	
Part N $\mathrm{MnO_4}^-$	
${ m Mn}$ in ${ m MnO_4}^-$	
Part O I_3^-	
${ m I}$ in ${ m I_3}^-$	

<u>Home</u> CI

Chemistry

Essential Pre-Uni Chemistry K1.1

Essential Pre-Uni Chemistry K1.1

Give the oxidation number of nitrogen in the following compounds:
Part A NH ₃
NH_3
Part B NO
NO
Part C N_2
$ m N_2$
Part D NO ₂
NO_2
Part E HNO ₃
HNO_3

Ferrite

Ferrite

Aerials in portable radios are made of a mixed oxide of calcium and iron known as 'Ferrite'. It contains $18.5\,\%$ calcium and $51.9\,\%$ iron by mass. Calculate the empirical formula of 'Ferrite' and hence deduce the oxidation number of the iron it contains.

Part A	Empirical formula
Em	pirical Formula:
Part B	Oxidation number
Oxi	dation number:

Adapted with permission from UCLES, A-Level Chemistry, June 1992, Paper 2, Question 3