Logifold: A Geometric Fondation of Ensemble Machine Learning

Inkee Jung ¹ Siu-Cheong Lau ²

¹PhD student of Mathematics Boston University

²Faculty of Mathematics Boston University

November 4

International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME 2024)
4-5 November 2024, Male, Maldives

Jung, Lau (BU) Logifold ICECCME2024 1/15

"Manifold" in Data Science

High-dimensional analogue of 2 dimensional surface in \mathbb{R}^N

(Image from Sebastian Goldt, Marc Mézard, Florent Krzakala, and Lenka Zdeborová)

Jung, Lau (BU) Logifold ICECCME2024 2/15

Classification Dataset and Neural Network

 $f = \sigma_2 \circ L_2 \circ \sigma_1 \circ L_1$

Classification with two classes

• Network models gain tremendous success in describing datasets

Jung, Lau (BU) Logifold ICECCME2024 3/15

Motivated from Neural Network.

Example: Directed graph G & Set of affine maps $L = \{l_{v_1}, l_{v_2}, l_{v_3}\}, D \subset \mathbb{R}^2$

4□ > 4□ > 4 = > 4 = > = 90

4 / 15

Motivated from Neural Network.

Example: Directed graph G & Set of affine maps $L = \{l_{v_1}, l_{v_2}, l_{v_3}\}$, $D \subset \mathbb{R}^2$

Jung, Lau (BU) Logifold ICECCME2024 4 / 15

Motivated from Neural Network.

Example: Directed graph G & Set of affine maps $L = \{l_{v_1}, l_{v_2}, l_{v_3}\}$, $D \subset \mathbb{R}^2$

4 / 15

Motivated from Neural Network.

Example: Directed graph G & Set of affine maps $L=\{l_{v_1},l_{v_2},l_{v_3}\}$, $D\subset\mathbb{R}^2$

 $f: D \to \{t_1, t_2, t_3\}$ is a function defined by G and L.

4 / 15

- Measurable set $D \subset \mathbb{R}^n$, Finite set T.
- Directed finite graph G without cycle
- Affine maps

 $L = \{l_v : v \text{ is a vertex with more than one outgoing arrows}\}$

Definition

 $f_{G,L}:D\to T$ is a linear logical function of (G,L) if $I_v\in L$ are affine linear functions whose chambers in D are one-to-one corresponding to the outgoing arrows of v.

(G, L) is called a linear logical graph.

4 / 15

Linear logical function: Example

 $f = \sigma \circ L_2 \circ s \circ L_1$ where

- $L_1: \mathbb{R}^n \to \mathbb{R}^2$ is affine map and s is a component-wise step function.
- $L_2: \mathbb{R}^2 \to \mathbb{R}^3$ is affine map and σ is the index-max map.

f is a linear logical function with the above graph G and $L = \{L_1\}$.

5 / 15

Fuzzy linear logical function: Example

 $f = \sigma \circ L_2 \circ s \circ L_1 : S^n \to S^3$ with SoftMax σ and ReLU s.

• *G* is a finite directed graph that has no oriented cycle with exactily one source vertex and target vertex *t*.

Jung, Lau (BU) Logifold ICECCME2024 6/15

Fuzzy linear logical function: Example

 $f = \sigma \circ L_2 \circ s \circ L_1 : S^n \to S^3$ with SoftMax σ and ReLU s.

• Each vertex v of G is equipped with a product of standard simplices P_v , with domain $D = P_{v_0}$.

$$P_{v_0} = P_{v_1} = P_{v_2} = P_{v_3} = S^n, P_t = S^3$$

6/15

Fuzzy linear logical function: Example

 $f = \sigma \circ L_2 \circ s \circ L_1 : S^n \to S^3$ with SoftMax σ and ReLU s.

• Arrow maps $p_a: P_{s(a)} \to P_{t(a)}$ for each arrow a, and affine map I_v whose chambers in P_{ν} are one-to-one corresponding to the outgoing arrows of v.

 $L_{v_0} = L_1$ and I is the restricted affine linear map on chambers made by L_{v_0} and the ReLU activation s.

Jung, Lau (BU) ICECCME2024 6/15

Fuzzy linear logical function

- G is a finite directed graph that has no oriented cycle with exactily one source vertex and target vertices t_1, \ldots, t_K .
- Each vertex v of G is equipped with a product of standard simplices P_v , where simplex is a set of the form $\{x \in \mathbb{R}^{d+1} : \sum x_i = 1\}$. Domain D is a subset of P_{v_0} .
- Each arrow a is equipped with a continuous function

$$p_a:P_{s(a)}\to P_{t(a)}$$

where s(a), t(a) denote the source and target vertices respectively.

• Each vertex v that has more than one outgoing arrows is equipped with affine map I_v whose chambers in P_v are one-to-one corresponding to the outgoing arrows of v.

Given $x \in D$, L and p_a determine a path to a target, and $f_{(G,L,P,p)}(x)$ is defined by the composition of arrow maps along the path.

Jung, Lau (BU) Logifold ICECCME2024 7/15

Tropical limits

Introduce formal parameter T to logistic functions.

$$\lim_{T \to \infty} \frac{1}{1 + T^{-x}} = \begin{cases} 1 & (x > 0) \\ 0 & (x < 0) \end{cases}$$

$$\operatorname{SoftMax}(x) \xleftarrow{T \to e} \left(\frac{T^{-x_k}}{\sum_i T^{-x_i}} \right) \xrightarrow{T \to 0^+} \operatorname{Argmax}(x)$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

8 / 15

Universality of Linear logical function

- $D \subset \mathbb{R}^N$ with $\mu(D) < \infty$, where μ is the Lebesgue measure.
- T is finite

Theorem (I. Jung and S.C. Lau)

For any (Lebesgue) measurable function $f: D \to T$, we have a linear logical function that approximates to f.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ト ・ 恵 ・ 夕久で

9/15

Universality of Linear logical function

- $D \subset \mathbb{R}^N$ with $\mu(D) < \infty$, where μ is the Lebesgue measure.
- T is finite

Theorem (I. Jung and S.C. Lau)

For any (Lebesgue) measurable function $f:D\to T$, we have a linear logical function that approximates to f.

Corollary

There exists a family \mathcal{L} of linear logical functions $L_i: D_i \to T$, where $D_i \subset D$ and $L_i \equiv f|_{D_i}$, such that $D \setminus \bigcup_i D_i$ is measure zero set.

□ > < □ > < □ > < □ > < □ >

9 / 15

Fuzzy linear logical function and fuzzy linear logifold

Definition

A fuzzy linear logifold is a tuple $(X, \mathcal{P}, \mathcal{U})$, where (X, \mathcal{U}) be a logifold and

- \mathcal{U} is a collection of tuples (ρ_i, ϕ_i, f_i)
- ullet $ho_i:X o [0,1]$ describe fuzzy subsets of X with $\sum_i
 ho_i \leq 1_X$
- $U_i = \{x \in X : \rho_i(x) > 0\}$ be the support of ρ_i

In classification problems,

- $X = \mathbb{R}^n \times T$
- $\mathcal{P}: X \to [0,1]$ describes how likely an element of $\mathbb{R}^n \times \mathcal{T}$ is classified as 'yes'
- ullet ho_i can be 'generalization performance', or 'constant'.

◆ロト ◆個ト ◆差ト ◆差ト を めへぐ

10 / 15

Example of logifold

 $f:(0,1]\to\{0,1\}$ be a function defined as

$$f(x) = \sum_{n=0}^{\infty} \left(\frac{(-1)^n + 1}{2} \right) I_{E_n}(x)$$

where $E_n = (1 - 2^{-n}, 1 - 2^{-n-1}].$ The graph of $f \subset [0, 1) \times \{0, 1\}$

with countably many 'jumps' or 'discontinuities' near at x = 0.

◆ロト ◆部ト ◆注ト ◆注ト 注 り < ○</p>

Jung, Lau (BU) Logifold ICECCME2024 11/15

In classification problems, $X = \mathbb{R}^n \times T$ and each model $g_i : X \to T$ with $U_i = X$. Define $G_i : X \times T \to [0,1]$ by g such that $G_i(x,t) = (g_i(x))_t$. Let N be the total number of classifiers.

• If $\rho_i = \frac{1}{N}$ for any i, then $P: X \times T \rightarrow [0,1]$ is defined by

$$P(x,t) = \sum \rho_i(x) 1_{t_{i,0}(x)}(t)$$

, where $t_{i,0}(x) = \arg \max G_i(x,t)$ denoting 'the answer of g_i ', and therefore the system employs majority voting.

Jung, Lau (BU) Logifold ICECCME2024 12 / 15

In classification problems, $X = \mathbb{R}^n \times T$ and each model $g_i : X \to T$ with $U_i = X$. Define $G_i : X \times T \to [0,1]$ by g such that $G_i(x,t) = (g_i(x))_t$. Let N be the total number of classifiers.

• If $\rho_i = \frac{1}{N}$ for any i, then $P: X \times T \rightarrow [0,1]$ is defined by

$$P(x,t) = \sum \rho_i(x) 1_{t_{i,0}(x)}(t)$$

, where $t_{i,0}(x) = \arg\max G_i(x,t)$ denoting 'the answer of g_i ', and therefore the system employs majority voting.

• If $ho_i = \frac{1}{N}$ for any i, then $P: X \times T \to [0,1]$ is defined by

$$P(x,t) = \sum G_i(x,t)$$

, which is simple average.

(ㅁㅏㅓ큠ㅏㅓㅌㅏㅓㅌㅏ - ㅌ - 쒸٩)

12 / 15

Jung, Lau (BU) ICECCME2024

In classification problems, $X = \mathbb{R}^n \times T$ and each model $g_i: X \to T$ with $U_i = X$. Define $G_i : X \times T \to [0,1]$ by g such that $G_i(x,t) = (g_i(x))_t$. Let N be the total number of classifiers.

• If $\rho_i = \frac{1}{N}$ for any i, then $P: X \times T \to [0,1]$ is defined by

$$P(x,t) = \sum \rho_i(x) 1_{t_{i,0}(x)}(t)$$

, where $t_{i,0}(x) = \arg \max G_i(x,t)$ denoting 'the answer of g_i ', and therefore the system employs majority voting.

• If $\rho_i = \frac{1}{N}$ for any i, then $P: X \times T \to [0,1]$ is defined by

$$P(x,t) = \sum G_i(x,t)$$

, which is simple average.

• If $\rho_i(x) = \frac{\max g_i(x)}{N}$ then $P(x,t) = \sum \rho_i(x)G_i(x,t)$ be the weighted average.

ICECCME2024 12 / 15 As our logifold formulation does not force to have X and T as domain/codomain of classifier, we allow classifier to have more flexibility in its target.

For instance, our classification problem is classifyting instances in X to $\{1,2,3,4,5\}$, and we have models g_1,\ldots,g_7 such that

Models	Targets
g_1	{1,2,3}, {4,5}
g_2, g_3	{1,2,3,4,5}
g ₄	{1,2,3}
g 5	{1,3}
g 6	{2,3}

Jung, Lau (BU) Logifold ICECCME2024 13 / 15

As they can have various target, we make tree of targets. For instance, with $\{1,2,3,4,5\},\{1,2,3\},\{1,3\},\{2,3\}$, we have the following target tree.

Jung, Lau (BU) Logifold ICECCME2024 13/15

On validation dataset, define first certain domain of g under the certainty threshold α .

$$Certainty = \max g(x)$$

Certain domain = {certainty > α }, α = threshold

Then compute accuracy (global, and in each target) of g. For instance, g_2 has following fuzzy domain:

certainty threshold	Accuracy	Accuracy in each target
0	0.6	(0.7,0.8,0.45,0.5,0.45)
0.8	0.7	(0.7,0.9,0.5,0.7,0.6)
0.95	0.8	(0.8,0.9,0.75,0.8,0.75)

Jung, Lau (BU) ICECCME2024 13 / 15

- For a given instance x, we can compute weighted voting for x at node $\{1,2,3,4,5\}$ according to the fuzzy domain of g_1,g_2,g_3 in each target 1,2,3,4,5.
- If answer for 1, 2, 3 is dominant, then we pass it to $\{1, 2, 3\}$ node. In this way, we have unique path in the target tree for each instance.
- On validation dataset, we can compute which (sub-)path and certainty threshold are optimal for best accuracy in each model.

Jung, Lau (BU) Logifold ICECCME2024 13/15

Experimental Result 1

Dataset: CIFAR10

Six Simple CNN structure models trained on CIFAR10 (56.45% in average)

ResNet20 structure model trained on CIFAR10 (85.96%)

Simple average: 62.55%

Majority voting provides 58.72%. Our logifold formulation: 84.86%

Experimental Result 2

dataset : CIFAR10, MNIST, Fashion MNIST (resized to 32*32*3 pixels)

- Filters are models classifying coarse targets. It only classify given data into three classes; CIFAR10, MNIST, and Fashion MNIST.
- Models only classifying either CIFAR10, MNIST, or Fashion MNIST.

Single model classifying 30 classes: 76.41% in average.

Simple average of models classifying 30 classes: 82.35%

Our logifold formulation: 94.94%.

15 / 15