Dynamic resource allocation problems in communication networks:

Weakly Coupled Markov decision processes

Alexandre Reiffers-Masson

Equipe Maths&Net, IMT Atlantique, CS department LabSTICC (UMR CNRS 6285)

July 11, 2023

Motivation

Weakly Coupled Markov decision processes

Construction of LP-Admissible Policy

Example: Load balancing and service rate planning in parallel queue networks

 Scenario: N queues are processing jobs. The rate of each queue can be controlled. Moreover, the scheduler can also decide to which queue a job can be sent.

Example: Load balancing and service rate planning in parallel queue networks

- Scenario: N queues are processing jobs. The rate of each queue can be controlled. Moreover, the scheduler can also decide to which queue a job can be sent.
- Challenge: In order to minimize the total load on the system:
 - which queue should a job be allocated at each instant t?
 - which queue should see its service rate increased or decreased at each instant t?

Arrival Process

We consider that at every time instant αN new jobs arrives in the system with probability $p \in (0,1)$. Let $T_n \in \mathbb{N}_+$ be the arrival time of the n-th batch new jobs.

Note that:

$$\mathbb{P}(T_n - T_{n-1} = \tau) = (1 - p)^{\tau - 1} p, \ \forall \tau \ge 1, \ \forall n \in \mathbb{N}_+.$$

Dynamic of the queue

The length of the k-th queue, denoted by $S_k(T_{n+1})$ at instant T_{n+1} is given by:

$$S_k(T_{n+1}) = S_k(T_n) - D_k(T_{n+1} - T_n) + I\{S_k(T_n) < K\}A_k(T_n)$$

where:

- K is the finite buffer size of a queue;
- $D_k(T_n)$ the number of process jobs between T_n and T_{n+1} . We assume that the probability that a job is processed during one-time unit is equal to $B_k(t) \in \{\underline{b}, \overline{b}\}$. We assume that between two arrivals $B_k(t)$ is constant for all t and k;
- $A_k(T_n) \in \{0,1\}$ is equal to one if one job from n-th batch is sent to the queue k.

Transition Probability

From that fact that the arrival are i.d.d. and the departure only depends on the inter-arrival time, we can rewrite the dynamic of the queue:

$$S_k(t+1) = S_k(t) - D_k(\tau) + I\{S_k(t) < K\}A_k(t).$$

We have the following lemma:

Lemma

For s+a < k, we have that the probability $\mathbb{P}(S_k(t+1) = s' | S_k(t+1) = s, \ A_k(t) = a, \ B_k(t) = b)$ is equal to

$$\sum_{\tau=1}^{+\infty} (1-p)^{\tau-1} p I_{s' < \min\{\tau, s+a\}} {\tau \choose s'} b^{\tau-s'} (1-b)^{s'}.$$

Cost functions and constraints

Costs: We will assume that there are two instantaneous costs:

- Energy cost: $\sum_k C_s(S_k(t)) + \sum_k C_q(B_k(t))$, where $C_s(\cdot)$ and $C_q(\cdot)$ are convex increasing.
- Job rejection cost: $-\gamma \sum_k A_k(t)$, with $\gamma > 0$. This cost implies that we prefer to send jobs.

Constraints: We will also assume that there are two instantaneous constraints:

$$\sum_{k} A_{k}(t) \leq \alpha N, \tag{1}$$

$$\sum_{k} B_{k}(t) \leq \beta N. \tag{2}$$

$$\sum_{k} B_k(t) \leq \beta N. \tag{2}$$

Motivation

Weakly Coupled Markov decision processes

Construction of LP-Admissible Policy

A Weakly Coupled Markov decision processes is composed of N statistically equivalent MDPs where:

A Weakly Coupled Markov decision processes is composed of N statistically equivalent MDPs where:

• $S_k(t) \in \mathcal{S}$ is the state of the arm k at the discrete decision time $t \in \{0, \cdots, T\}$,

A Weakly Coupled Markov decision processes is composed of N statistically equivalent MDPs where:

- $S_k(t) \in \mathcal{S}$ is the state of the arm k at the discrete decision time $t \in \{0, \cdots, T\}$,
- $A_k(t) \in \mathcal{A}$ is the action taken by the decision maker at the discrete decision time $t \in \{0, \cdots, T\}$.

A Weakly Coupled Markov decision processes is composed of N statistically equivalent MDPs where:

- $S_k(t) \in \mathcal{S}$ is the state of the arm k at the discrete decision time $t \in \{0, \cdots, T\}$,
- $A_k(t) \in \mathcal{A}$ is the action taken by the decision maker at the discrete decision time $t \in \{0, \cdots, T\}$.
- We assume that the decision-maker has to respect the following resource allocation constraints:

$$\sum_{k} D_l(S_k(t), A_k(t)) \le N\alpha_l, \ \forall l = 1, \dots, L$$

For each time-step $t = 0, \dots, T-1$:

For each time-step $t = 0, \ldots, T-1$:

1. The decision-maker gets full knowledge of the current system state $S(t) := [S_1(t), \dots, S_N(t)] \in \mathcal{S}^N$;

For each time-step $t = 0, \ldots, T-1$:

- 1. The decision-maker gets full knowledge of the current system state $S(t) := [S_1(t), \dots, S_N(t)] \in \mathcal{S}^N$;
- 2. Once S(t) has been observed, the decision-maker chooses a control $A(t) := [A_1(t), \dots, A_N(t)] \in \mathcal{A}^N$, such that:

$$\sum_{k} D_l(S_k(t), A_k(t)) \le N\alpha_l, \ \forall l = 1, \dots, L$$

For each time-step $t = 0, \ldots, T-1$:

- 1. The decision-maker gets full knowledge of the current system state $S(t) := [S_1(t), \dots, S_N(t)] \in \mathcal{S}^N$;
- 2. Once S(t) has been observed, the decision-maker chooses a control $A(t) := [A_1(t), \dots, A_N(t)] \in \mathcal{A}^N$, such that:

$$\sum_{k} D_{l}(S_{k}(t), A_{k}(t)) \leq N\alpha_{l}, \ \forall l = 1, \dots, L$$

3. The decision-maker collects the reward $\sum_{k} r_{S_k(t)}^{A_k(t)}$;

For each time-step $t = 0, \ldots, T-1$:

- 1. The decision-maker gets full knowledge of the current system state $S(t) := [S_1(t), \dots, S_N(t)] \in \mathcal{S}^N$;
- 2. Once S(t) has been observed, the decision-maker chooses a control $A(t) := [A_1(t), \dots, A_N(t)] \in \mathcal{A}^N$, such that:

$$\sum_{k} D_{l}(S_{k}(t), A_{k}(t)) \leq N\alpha_{l}, \ \forall l = 1, \dots, L$$

- 3. The decision-maker collects the reward $\sum_{k} r_{S_k(t)}^{A_k(t)}$;
- 4. For every k, the arm k evolves to $S_k(t+1)=s'$ with probability $p_{S_k(t),s'}^{A_k(t)}$.

For each time-step $t = 0, \ldots, T-1$:

- 1. The decision-maker gets full knowledge of the current system state $S(t) := [S_1(t), \dots, S_N(t)] \in \mathcal{S}^N$;
- 2. Once S(t) has been observed, the decision-maker chooses a control $A(t):=[A_1(t),\ldots,A_N(t)]\in\mathcal{A}^N$, such that:

$$\sum_{k} D_l(S_k(t), A_k(t)) \le N\alpha_l, \ \forall l = 1, \dots, L$$

- 3. The decision-maker collects the reward $\sum_{k} r_{S_k(t)}^{A_k(t)}$;
- 4. For every k, the arm k evolves to $S_k(t+1)=s'$ with probability $p_{S_k(t),s'}^{A_k(t)}$.

 $\label{eq:objective: Maximize the expected total sum of rewards over the T time-steps.}$

For each time-step $t = 0, \ldots, T-1$:

- 1. The decision-maker gets full knowledge of the current system state $S(t) := [S_1(t), \dots, S_N(t)] \in \mathcal{S}^N$;
- 2. Once S(t) has been observed, the decision-maker chooses a control $A(t):=[A_1(t),\ldots,A_N(t)]\in\mathcal{A}^N$, such that:

$$\sum_{k} D_l(S_k(t), A_k(t)) \le N\alpha_l, \ \forall l = 1, \dots, L$$

- 3. The decision-maker collects the reward $\sum_{k} r_{S_k(t)}^{A_k(t)}$;
- 4. For every k, the arm k evolves to $S_k(t+1)=s'$ with probability $p_{S_k(t),s'}^{A_k(t)}$.

 $\label{eq:objective: Maximize the expected total sum of rewards over the T time-steps.}$

Discussion with respect to the constraints

We assume that all terms in $D_l(s,a)$ and α_l are non-negative numbers, and that D(s,0)=0.

This is a natural assumption under the resource allocation context in which a=0 corresponds to a passive action that consumes no resources.

Implication: The later also implies that our resource constraint problem has at least a feasible solution by always choosing the passive action.

Mathematical Formulation

$$\min_{\pi} \quad \mathbb{E} \sum_{t=0}^{T-1} \sum_{s} r_s^a Y_{a,s}^{(N)}(t) := V_{opt}^{(N)}(m(0), T)$$
 (3a)

s.t. Arms follow the Markovian evolution generated by $\Pi_n p_{s_n,s_n'}^{a_n}$, (3b)

$$\sum_{a} Y_{a,s}^{(N)}(t) = M_s^{(N)}(t), \ \forall t \in [[0, T-1]], \ \forall s \in \mathcal{S},$$
 (3c)

$$\sum D_l(s, a) Y_{s,a}^{(N)}(t) \le \alpha_l \ \forall t \in [[0, T-1]],, \tag{3d}$$

$$M_s^{(N)}(0) = m_s(0), \ \forall s \in \mathcal{S}, \tag{3e}$$

where $m_s(0) = \frac{1}{N} \sum_{k=1}^N I\{S_k(0) = s\}$, for all $s \in \mathcal{S}$.

Difficulty

The key difficulty of Weakly Coupled Markov decision processes is coming from:

$$\sum_{s} D_{l}(s, a) Y_{s, a}^{(N)}(t) \le \alpha_{l} \ \forall t \in [[0, T - 1]],$$

which couples all the arms together.

Challenge of the day:

How to design an efficient heuristic to solve such problem? A different one that the projection policy.

Outline of the approach

1. **Relaxation:** Classical approach is to relax this constraint and consider a problem where this constraint has to be satisfied only in expectation:

Outline of the approach

 Relaxation: Classical approach is to relax this constraint and consider a problem where this constraint has to be satisfied only in expectation:

$$\sum_{s} D_l(s, a) \mathbb{E}[Y_{s, a}^{(N)}(t)] \le \alpha_l \ \forall t \in [[0, T - 1]],$$

Outline of the approach

 Relaxation: Classical approach is to relax this constraint and consider a problem where this constraint has to be satisfied only in expectation:

$$\sum_{s} D_l(s, a) \mathbb{E}[Y_{s, a}^{(N)}(t)] \le \alpha_l \ \forall t \in [[0, T - 1]],$$

2. **Interpolation:** Construct a sequence of decision rules $\pi_t: \Delta^d \to \Delta^{2d}$ which is optimal for the relaxed problem.

Relaxed problem

$$\min_{\pi} \quad \mathbb{E}\left[\sum_{t=0}^{T-1} \sum_{s,a} r_s^a Y_{a,s}^{(N)}(t)\right] =: V_{rel}^{(N)}(m(0), T) \tag{4a}$$

s.t. Arms follow the Markovian evolution generated by $\Pi_n p_{s_n,s_n'}^{a_n}$, (4b)

$$\sum_{a} Y_{a,s}^{(N)}(t) = M_s^{(N)}(t), \ \forall t \in [[0, T-1]], \ \forall s \in \mathcal{S}, \tag{4c}$$

$$\sum_{l} D_l(s, a) \mathbb{E}[Y_{s, a}^{(N)}(t)] \le \alpha_l \ \forall t \in [[0, T - 1]], \ \forall l,$$
 (4d)

$$M_s^{(N)}(0) = m_s(0), \ \forall s \in \mathcal{S}, \tag{4e}$$

LP formulation

Let us define the following LP problem:

$$\min_{y \geq 0} \sum_{t=0}^{T-1} \sum_{s,a} r_s^a y_{s,a}(t) =: V_{LP}(m(0), T)$$
s.t.
$$\sum_{a} y_{s,a}(t) = m_s(t), \ \forall t \in [[0, T-1]], \ \forall s \in \mathcal{S},$$

$$m_s(t) = \sum_{s'} \sum_{a} y_{s',a}(t-1) p_{s',s}^a \ \forall t \in [[1, T-1]], \ \forall s \in \mathcal{S},$$

$$\sum_{s} D_l(s, a) y_{s,a}(t) \leq \alpha_l \ \forall t \in [[0, T-1]], \ \forall l,$$

$$m_s(0) = m^0, \ \forall s \in \mathcal{S}$$
(5)

LP formulation

Let us define the following LP problem:

$$\min_{y \geq 0} \sum_{t=0}^{T-1} \sum_{s,a} r_s^a y_{s,a}(t) =: V_{LP}(m(0), T)$$
s.t.
$$\sum_{a} y_{s,a}(t) = m_s(t), \ \forall t \in [[0, T-1]], \ \forall s \in \mathcal{S},$$

$$m_s(t) = \sum_{s'} \sum_{a} y_{s',a}(t-1) p_{s',s}^a \ \forall t \in [[1, T-1]], \ \forall s \in \mathcal{S},$$

$$\sum_{s} D_l(s, a) y_{s,a}(t) \leq \alpha_l \ \forall t \in [[0, T-1]], \ \forall l,$$

$$m_s(0) = m^0, \ \forall s \in \mathcal{S}$$
(5)

We denote by $y^*:=[[[y^*_{s,a}(t)]]]_{s,a,t}$ the optimal solution of (6) and we also define $m^*:=[[m_s(t):=\sum_a y^*_{s,a}(t)]]_{s,t}$.

Motivation

Weakly Coupled Markov decision processes

Construction of LP-Admissible Policy

We define the set of feasible control at time t by:

$$\mathcal{Y}(M^{(N)}(t)) := \left\{ y \in \mathbb{R}^{2S}_+ | \sum_a y_{s,a} = M_s^{(N)}(t) \ \forall s \in \mathcal{S}; \right.$$
$$\left. \sum_s \sum_a D_l(s,a) y_{s,a} \le \alpha_l \right\}$$

We define the set of feasible control at time t by:

$$\mathcal{Y}(M^{(N)}(t)) := \left\{ y \in \mathbb{R}^{2S}_{+} | \sum_{a} y_{s,a} = M_s^{(N)}(t) \ \forall s \in \mathcal{S}; \right.$$
$$\left. \sum_{s} \sum_{a} D_l(s, a) y_{s,a} \le \alpha_l \right\}$$

We define the set of feasible control at time t by:

$$\mathcal{Y}(M^{(N)}(t)) := \left\{ y \in \mathbb{R}^{2S}_+ | \sum_a y_{s,a} = M_s^{(N)}(t) \ \forall s \in \mathcal{S}; \right.$$
$$\left. \sum_s \sum_a D_l(s,a) y_{s,a} \le \alpha_l \right\}$$

- 1. In general, note that $y^*(t)$ are not an integers;
- 2. In general $y^*(t) \notin \mathcal{Y}(M^{(N)}(t))$;

We define the set of feasible control at time t by:

$$\mathcal{Y}(M^{(N)}(t)) := \left\{ y \in \mathbb{R}^{2S}_+ | \sum_a y_{s,a} = M_s^{(N)}(t) \ \forall s \in \mathcal{S}; \right.$$
$$\left. \sum_s \sum_a D_l(s,a) y_{s,a} \le \alpha_l \right\}$$

- 1. In general, note that $y^*(t)$ are not an integers;
- 2. In general $y^*(t) \notin \mathcal{Y}(M^{(N)}(t))$;
- 3. In general $y^*(t) \in \mathcal{Y}(m^*(t))$.

We define the set of feasible control at time t by:

$$\mathcal{Y}(M^{(N)}(t)) := \left\{ y \in \mathbb{R}^{2S}_+ | \sum_a y_{s,a} = M_s^{(N)}(t) \ \forall s \in \mathcal{S}; \right.$$
$$\left. \sum_s \sum_a D_l(s,a) y_{s,a} \le \alpha_l \right\}$$

- 1. In general, note that $y^*(t)$ are not an integers;
- 2. In general $y^*(t) \notin \mathcal{Y}(M^{(N)}(t))$;
- 3. In general $y^*(t) \in \mathcal{Y}(m^*(t))$.

Resolving policy

We redefine the following LP:

$$\min_{y \geq 0} \sum_{t=0}^{T-t-1} \sum_{s,a} r_s^a y_{s,a}(t) =: V_{LP}(m(0), \mathbf{T-t})$$
s.t.
$$\sum_{a} y_{s,a}(t) = m_s(t), \ \forall t \in [[0, \mathbf{T-t-1}]], \ \forall s \in \mathcal{S},$$

$$m_s(t) = \sum_{s'} \sum_{a} y_{s',a}(t-1) p_{s',s}^a \ \forall t \in [[1, \mathbf{T-t-1}]], \ \forall s \in \mathcal{S},$$

$$\sum_{s} y_{s,1}(t) \leq \alpha, \ \forall t \in [[0, \mathbf{T-t-1}]],$$

$$m_s(0) = m^0, \ \forall s \in \mathcal{S}$$
(6)

Resolving policy

We redefine the following LP:

$$\min_{\substack{y \geq 0}} \sum_{t=0}^{T-t-1} \sum_{s,a} r_s^a y_{s,a}(t) =: V_{LP}(m(0), \mathbf{T-t})$$
s.t.
$$\sum_{a} y_{s,a}(t) = m_s(t), \ \forall t \in [[0, \mathbf{T-t-1}]], \ \forall s \in \mathcal{S},$$

$$m_s(t) = \sum_{s'} \sum_{a} y_{s',a}(t-1) p_{s',s}^a \ \forall t \in [[1, \mathbf{T-t-1}]], \ \forall s \in \mathcal{S},$$

$$\sum_{s} y_{s,1}(t) \leq \alpha, \ \forall t \in [[0, \mathbf{T-t-1}]],$$

$$m_s(0) = m^0, \ \forall s \in \mathcal{S}$$
(6)

The solution of this LP is denoted by

$$y^{Res}(m(0),T-t) = [y^{Res}_{t'}(m(0),T-t)]_{0 \leq t' \leq T-t-1}.$$

Algorithm to solve the LP

What could be a possible algorithm to solve this LP?

Solution 1: Simplex or Convex optimisation?

Solution 2: Dynamic programming. Observe that:

$$V_{LP}(m, T - t) = \min_{y \in \mathcal{Y}(m)} \sum_{s, a} r_s^a y_{s, a} + V_{LP}(\phi(m, y), T - t - 1),$$

where $\phi_s(m,y) = \sum_{s'} \sum_a y_{s',a} p_{s',s}^a$ for all s.

We define the following operator:

$$\pi_t^{Res}(M^{(N)}) := y_0^{Res}(M^{(N)}, T - t).$$
 (7)

We define the following operator:

$$\pi_t^{Res}(M^{(N)}) := y_0^{Res}(M^{(N)}, T - t). \tag{7}$$

Note that:

We define the following operator:

$$\pi_t^{Res}(M^{(N)}) := y_0^{Res}(M^{(N)}, T - t). \tag{7}$$

Note that:

1. In general, note that $\pi_t^{Res}(M^{(N)})$ are not an integers;

We define the following operator:

$$\pi_t^{Res}(M^{(N)}) := y_0^{Res}(M^{(N)}, T - t).$$
(7)

Note that:

- 1. In general, note that $\pi_t^{Res}(M^{(N)})$ are not an integers;
- 2. $\pi_t^{Res}(M^{(N)}) \in \mathcal{Y}(M^{(N)}(t));$

We define the following operator:

$$\pi_t^{Res}(M^{(N)}) := y_0^{Res}(M^{(N)}, T - t).$$
(7)

Note that:

- 1. In general, note that $\pi_t^{Res}(M^{(N)})$ are not an integers;
- 2. $\pi_t^{Res}(M^{(N)}) \in \mathcal{Y}(M^{(N)}(t));$
- 3. $y^*(t) = pi_t^{Res}(m^*(t))$. (P-Admissible Policy)

Algorithm

Resolving Policy

- Input: Initial system configuration vector m(0) and time horizon T.
- **Set** $\hat{M} := m(0);$
- For $t = 0, 2, \dots, T 1$ do:
 - 1. Compute $y^{Res}(\hat{M}, T-t)$; Set $\hat{y}(t) = y_0^{Res}(\hat{M}, T-t)$
 - 2. Rounding step: For all $s \in \mathcal{S}$, set:

$$\hat{Y}_{s,a}^{(N)}(t) = \left\{ \begin{array}{ll} N^{-1} \lfloor N \hat{y}_{s,1}(t) \rfloor & \text{if } a = 1, \\ \hat{M}_s - N^{-1} \lfloor N \hat{y}_{s,1}(t) \rfloor & \text{otherwise}. \end{array} \right.$$

- 3. Use control $\hat{Y}^{(N)}$ to advance to the next time-step ;
- 4. Set $\hat{M}:=$ current empirical distribution;

Certainty equivalent control

Our policy is inspired from the certainty equivalent control (CEC).

Certainty equivalent control

Our policy is inspired from the certainty equivalent control (CEC).

Principle of the CEC

Sub-optimal control that applies at each stage the control that would be optimal if some or all of the uncertain quantities were fixed at their expected values.

Bibliography

- The proof of the main theorem and more advance theorem can be found here: Gast, Nicolas, Bruno Gaujal, and Chen Yan. "The LP-update policy for weakly coupled Markov decision processes." arXiv preprint arXiv:2211.01961 (2022).
- If you want to have a quick introduction to dynamic programming, please have a look to the lecture note of Nahum Shimkin: https://webee.technion.ac.il/ shimkin/LCS11/LCS11index.html