- 1) What is the distribution of gender, vehicle size, and vehicle class?
 - 1. What is the distribution of gender, vehicle size, and vehicle class?

68 09:58 Sunday, February 11, 2024

The	FREU Proce	dure	
Frequency	Percent	Cumulative Frequency	Cumulative Percent
4658 4476	51.00 49.00	4658 9134	51.00 100.00
Frequency	Percent	Cumulative Frequency	Cumulative Percent
946 6424 1764	10.36 70.33 19.31	946 7370 9134	10.36 80.69 100.00
Frequency	Percent		
4621 163 184 1796 484 1886	50.59 1.78 2.01 19.66 5.30 20.65	4621 4784 4968 6764 7248 9134	50.59 52.38 54.39 74.05 79.35 100.00
	Frequency 4658 4476 Frequency 946 6424 1764 Frequency 4621 163 184 1796 484	Frequency Percent 4658 51.00 4476 49.00 Frequency Percent 946 10.36 6424 70.33 1764 19.31 Frequency Percent 4621 50.59 163 1.78 184 2.01 1796 19.66 484 5.30	4658 51.00 4658 4476 49.00 9134 Frequency Percent Cumulative Frequency 946 10.36 946 6424 70.33 7370 1764 19.31 9134 Frequency Percent Cumulative Frequency 4621 50.59 4621 163 1.78 4784 184 2.01 4968 1796 19.66 6764 484 5.30 7248

- Gender: The sample is almost evenly split between men (49%) and women (51%).
- **Vehicle size:** Most people in the sample drive midsize vehicles (70%), followed by small vehicles (19%) and large vehicles (10%).

Vehicle class: The most popular vehicle class is four-door cars (51%), followed by two-door cars (21%), SUVs (20%), sports cars (5%), luxury SUVs (2%), and luxury car (~2%). That is, four door car, two door car & SUV combine to form almost 91% of the total cars, luxury and sports car are only 9% in the total vehicle class segment.

These results are just for a sample of the population, and the results may not be generalizable to the entire population. Additionally, the data does not show any causal relationships between the variables. For example, we cannot say that women are more likely to drive small vehicles than men, or that people who drive SUVs are more likely to be male.

2) What is the average customer lifetime value of each level of gender, vehicle size, and vehicle class?

09:58 Sunday, February 11, 2024

The MEANS Procedure
Analysis Variable : Customer_Lifetime_Value

Gender	N Obs	N	Mean	Std Dev	Minimum	Max i mum
F	4658	4658	8096.60	6956.06	1898.68	73225.96
М	4476	4476	7909.55	6780.74	1898.01	83325.38

09:58 Sunday, February 11, 2024

The MEANS Procedure

Analysis Variable : Customer_Lifetime_Value

Hob in la

Size	0bs	N	Mean	Std Dev	Minimum	Maximum
Large	946	946	7545.00	6625.40	1940.98	60556.19
Medsize	6424	6424	8050.66	6833.10	1898.01	74228.52
Small	1764	1764	8085.10	7127.66	1898.68	83325.38

09:58 Sunday, February 11, 2024

The MEANS Procedure Analysis Variable : Customer_Lifetime_Value

Vehicle_Class	N Obs	N	Mean	Std Dev	Minimum	Maximum
Four - Door Car	4621	4621	6631.73	5164.94	1904.00	41787.90
Luxury Car	163	163	17053.35	12542.36	5886.22	83325.38
Luxury SUV	184	184	17123.00	12671.87	6383.61	73225.96
SUV	1796	1796	10443.51	7939.86	2864.82	58753.88
Sports Car	484	484	10750.99	8462.33	3074.11	67907.27
Two-Door Car	1886	1886	6671.03	5163.89	1898.01	38887.90

In terms of gender, the average customer lifetime value for females is \$8096.60, surpassing that of males, which stands at \$7909.55.

In terms of vehicle size, on average, customers with small vehicles have the highest average customer lifetime value, followed by those with medsize vehicles and then large vehicles. The difference in customer lifetime value between small and large vehicles is \$540.10.

Luxury SUV, Luxury Car owners have highest customer life value of \$17123 and \$17053.35 respectively. Four door and two door cars have the lowest average customer lifetime values.

While there appears to be a correlation between owning luxury cars and experiencing higher insurance costs, however, it's important to recognize that correlation does not necessarily imply causation. It's crucial to consider other contributing factors such as driving behaviors, geographical location, and individual driving histories. These variables can also play significant roles in determining insurance premiums.

3) Do large cars have a higher lifetime value than medsize cars. Do a t-test and report on your findings.

To Treate tive initiaty tres course

Firstly, we will consider the hypothesis test for inequality of variances:

Null Hypothesis: Equal variances of customer lifetime value for large and medsize vehicles.

Alternate Hypothesis: Variances of customer lifetime value for large and medsize vehicles is not equal.

The observed p-value (0.2183) is greater than 0.05(considering confidence interval of 95%), so we fail to reject the null hypothesis, hence we conclude that variances of customer lifetime values of medsize cars and large cars are equal.

Now, taking into consideration the equal variances p-value,

Null Hypothesis: Customer lifetime value of large and medsize vehicles are equal.

Alternate Hypothesis: Customer lifetime value of large vehicles is higher than medsize cars.

The p-value for this test is 0.0329 which is lower than 0.05, so we reject the null hypothesis. This means that the average customer lifetime value of large vehicles is higher than medsize vehicles.

Therefore, we can infer that, on average, large cars exhibit a higher customer lifetime value compared to midsize vehicles.

4) Is there a significant difference between men and women in customer lifetime value?

4. Is the	ere a significant d	lifference b	etween men a	and women in	n customer l	ifetime va	alue? 09:58 Sunday	, February	73 24
		The	TTEST Proces	dure					
		Variable:	Customer_Li	fetime_Value	В				
Gender	Method	N	Mean	Std Dev	Std Err	Minimum	Maximum		
F M Diff (1-2) Diff (1-2)	Pooled Satterthwaite	4658 4476	8096.6 7909.6 187.1 187.1	6956.1 6780.7 6870.7	101.9 101.4 143.8 143.7	1898.7 1898.0	73226.0 83325.4		
Gender	Method	Mean	95% CL	Mean	Std Dev	95% CL	Std Dev		
F M Diff (1-2) Diff (1-2)	Pooled Satterthwaite	8096.6 7909.6 187.1 187.1	7896.8 7710.9 -94.8477 -94.7043	8296.4 8108.3 468.9 468.8	6956.1 6780.7 6870.7	6817.6 6643.1 6772.5	7100.3 6924.2 6971.8		
	Method	Variand	es DI	F t Value	e Pr > t	l			
	Pooled Satterthwaite	Equal Unequal	913 9130.						
Equality of Variances									
	Method	Num DF	Den DF	F Value	$Pr \rightarrow F$				
	Folded F	4657	4475	1.05	0.0847				

For Predictive Analytics Course

First, we form the hypothesis test for inequality of variances:

Null Hypothesis: Variances of customer lifetime value for males and females are equal. **Alternate Hypothesis:** Variances of customer lifetime value for males and females are not equal.

The observed p-value for this test is 0.0847 which is greater than 0.05, so we fail to reject the null hypothesis, hence variances of customer lifetime value for men and women are equal.

Taking the equal variances p-value,

Null Hypothesis: Customer lifetime value for men and women are the equal, signifying no difference.

Alternate Hypothesis: Customer lifetime value for men and women are not equal, signifying there is a difference.

The p-value for this test is 0.1934 which is greater than 0.05, so we fail to reject the null hypothesis. This means that the average customer lifetime value for men and women are equal.

Hence, we establish that there is no significant difference between men and women in customer lifetime value.

5) Use ANOVA to test whether there is difference in customer lifetime value across different sales channels. Which sales channel generates the highest lifetime value?

We take hypothesis test for inequality of means:

Null Hypothesis: Customer lifetime value across all sales channels is equal.

Alternate Hypothesis: Customer lifetime value is not equal for at least two sales channels.

The observed p-value for this test is 0.4503 which is greater than 0.05, so we fail to reject the null hypothesis.

Using ANOVA test, we establish that there is no difference in customer lifetime value across different sales channels.

Looking at the sales channels above, we notice that **Agent** sales channel generates the highest lifetime value.

6) What demographic factors (education, income, marital_status) affect customer lifetime value?

Regression Analysis for numerical independent variable

We have performed regression analysis for analyzing income's effect on the customer lifetime value because customer lifetime value is a numerical continuous dependent variable whereas income being the numerical independent variable here.

The regression analysis suggests that income has a positive and statistically significant impact on customer lifetime value. Here's a breakdown of the key findings:

The coefficient for the income variable is 0.00551, which is positive. This indicates that for every unit increase in income, the predicted customer lifetime value increases by 0.00551 units.

The p-value for the income variable is 0.0199, which is less than the significance level of 0.05. This means that the positive relationship between income and customer lifetime value is unlikely to be due to chance and is statistically significant.

The ANOVA Procedure Class Level Information

Class	Levels	Values	
Education	5	Bachelor College Doctor High	School or Below Master
		er of Observations Read er of Observations Used	9134 9134

	Impact of Edu	cation on Custo	mer Lifetime Valu	ie	09:58 Sunda	y, February	11, 2024	84
		The ANOVA Proce	dure					
	Dependent Var	iable: Customer	_Lifetime_Value					
Source	DF	Sum of Squares	Mean Square	F Value	$Pr \rightarrow F$			
Mode 1	4	457250843.14	114312710.79	2.42	0.0460			
Error	9129	430713468084	47180793.963					
Corrected Total	9133	431170718927						
R-Square	Coeff Var	Root MSE	Customer_Lifetim	ne_Value Mea	an.			
0.001060	85.80736	6868.828		8004.94	10			
Source	DF	Anova SS	Mean Square	F Value	Pr > F			
Education	4	457250843.1	114312710.8	2.42	0.0460			

Analysis of Variance(ANOVA) for categorical independent variable

From ANOVA table P value of F statistics is 0.046 which is significant at 95% confidence level. Thus we can say that customer lifetime value is different for each category of education level.

The ANOVA Procedure

Class Level Information

Class Levels Values

Marital_Status 3 Divorced Married Single

Number of Observations Read 9134 Number of Observations Used 9134

In the second	Impact of Marital Status on Customer Lifetime Value					y, February	11, 2024	86
	The ANOVA Procedure							
	Dependent Var	iable: Customer	_Lifetime_Value					
Source	DF	Sum of Squares	Mean Square	F Value	Pr → F			
Mode 1	2	313096315.33	156548157.67	3.32	0.0363			
Error	9131	430857622612	47186247.137					
Corrected Total	9133	431170718927						
R-Square	Coeff Var	Root MSE	Customer_Lifetin	ne_Value Mea	ın			
0.000726	85.81231	6869.225		8004.94	10			
Source	DF	Anova SS	Mean Square	F Value	Pr > F			
Marital_Status	2	313096315.3	156548157.7	3.32	0.0363			

Analysis of Variance(ANOVA) for categorical independent variable

From ANOVA table P value of F statistics is 0.036 which is significant at 95% confidence level. Thus we can say that customer lifetime value is different for each category. It is highest for the customer having Divorced status.

7) Is there a relationship between renew_offer_type and response (use Chi-sq test)? Which offer type generates the highest response rate?

The FREQ Procedure

Statistics for Table of Renew_Offer_Type by Response

Statistic	DF	Value	Prob
Chi-Square	3	548.1645	<.0001
Likelihood Ratio Chi-Square	3	751.4675	< .0001
Mantel-Haenszel Chi-Square	1	242.3027	< .0001
Phi Coefficient		0.2450	
Contingency Coefficient		0.2379	
Cramer¹s V		0.2450	

Sample Size = 9134

We form the following hypothesis:

Null Hypothesis: Renew_Offer_Type and Response are independent **Alternative Hypothesis:** Renew_Offer_Type and Response are not independent

As p value for the Chi-sq test is less than 0.05 we reject null hypothesis of independence and conclude that there is a relationship between Renew_Offer_Type and Response.

Offer 2 generated the highest response rate as its acceptance rate is about 52.29% out of the total of 1308 offers that were accepted.

8) Do different renew_offer_types have different lifetime values? Which offer type is the best?

```
8.Do different renew_offer_types have different lifetime values? Which offer type is the best?

The ANOVA Procedure

Class Level Information

Class Levels Values

Renew_Offer_Type 4 Offer1 Offer2 Offer3 Offer4

Number of Observations Read 9134
Number of Observations Used 9134
```

o different renew_of	fer_types have	different life	time values? Whic	h offer typ	e is the best? 09:58 Sunday, Februar	y 11, 20
		The ANOVA Proce	dure			
	Dependent Var	iable: Customer	_Lifetime_Value			
Source	DF	Sum of Squares	Mean Square	F Value	Pr → F	
Mode 1	3	3629085924.8	1209695308.3	25.83	<.0001	
Error	9130	427541633002	46828218.292			
Corrected Total	9133	431170718927				
R-Square	Coeff Var	Root MSE	Customer_Lifetim	ne_Value Mea	n	
0.008417	85.48614	6843.115		8004.94	0	
Source	DF	Anova SS	Mean Square	F Value	Pr > F	
Renew_Offer_Type	3	3629085925	1209695308	25.83	<.0001	

8.Do different renew_offer_types had	ve differen	t lifetime values	? Which offer	type is	the best? 09:58 Sunday,	February	91 11, 2024
	The ANOVA	Procedure					
Level of Renew_Offer_Type	N	Customer_Life Mean	time_Value Std Dev				
Offer1 Offer2 Offer3 Offer4	3752 2926 1432 1024	8707.08558 7396.75383 7997.88652 7179.94727	7336.97889 6446.14649 6669.59254 6286.01359				

First, we will form the hypothesis test for inequality of means:

Null Hypothesis: All renew offer types have equal customer lifetime value.

Alternate Hypothesis: Customer lifetime value is different for at least two renew offer types.

The p-value for ANOVA test is less than 0.05, so we reject the null hypothesis.

Therefore, we conclude that the customer lifetime value is different for at least two renew offer types. We can say that different renew_offer_types have different customer lifetime values.

Offer-1 seems to be the best with highest average customer life value: 8707.09.

9) Is the effectiveness of renew_offer_type different across different states with respect to lifetime value?

The GLM Procedure

9.Is the effectiveness of renew_offer_type different across different states with respect to lifetime value? 93 09:58 Sunday, February 11, 2024

D	ependent Var	iable: Customer	_Lifetime_Value		
Source	DF	Sum of Squares	Mean Square	F Value	$Pr \rightarrow F$
Mode 1	19	4079881683.7	214730614.93	4.58	<.0001
Error	9114	427090837243	46860965.245		
Corrected Total	9133	431170718927			
R-Square	Coeff Var	Root MSE	Customer_Lifetim	e_Value Mea	n
0.009462	85.51603	6845.507		8004.94	0
Source	DF	Type I SS	Mean Square	F Value	Pr → F
Renew_Offer_Type State Renew_Offer_Ty*State	3 4 12	3629085925 49002980 401792779	1209695308 12250745 33482732	25.81 0.26 0.71	<.0001 0.9028 0.7388
Source	DF	Type III SS	Mean Square	F Value	$Pr \rightarrow F$
Renew_Offer_Type State Renew Offer Ty*State	3 4 12	3098493921 151310616 401792779	1032831307 37827654 33482732	22.04 0.81 0.71	<.0001 0.5203 0.7388

For Predictive Analytics Course

H0: Effect of renew offer is same across state with respect to customer lifetime value

H1: Effect of renew offer is not same across state with respect to customer lifetime value

The p-value for the interaction term Renew_Offer_Ty*State is 0.7388, which is greater than 0.05. This indicates that the interaction effect is not statistically significant. However, looking at the individual p-values for each Renew Offer Type within each state can provide more insights.

The p-value for the State effect is 0.9028, which is also greater than 0.05. This suggests that there's no statistically significant overall effect of state on Customer Lifetime Value.

The p-value for the Renew_Offer_Type effect is less than 0.05, indicating that there's a statistically significant effect of different renewal offer types on Customer Lifetime Value.

- 10) What other interesting insights that are useful to the company in terms of action can be obtained from the data?
 - a. Write any three (3) hypotheses. The hypotheses should be useful to the insurance firm. You must indicate why the result will be useful to the firm.
 - b. Do appropriate statistical tests or analysis.
 - c. Report what you found in each case and also write how management can use this information to improve their operations.

1. First Hypothesis:

10.Customers with hig	gher income	levels ar	e more lik	ely to p	purchase	e higher cove		nce plans. 19:58 Sunday,	, February	11, 1	95 2024
The LOGISTIC Procedure											
Testing Global Null Hypothesis: BETA=0											
	Test		Chi-Square		DF	Pr > ChiSq					
Likelihood Ratio Score Wald			7.10 7.09 7.08	24	2 2 2	0.0286 0.0288 0.0289					
Type 3 Analysis of Effects											
Effect D			Wald DF Chi-Square		Pr >	ChiSq					
	Income		2 7.0880			0.0289					
Analysis of Maximum Likelihood Estimates											
Parameter	Parameter Coverage DF Es		Standa Estimate Erm			Wald Chi-Square	Pr > ChiSc	1			
Intercept Intercept Income Income	Basic Extended Basic Extended		1.9297 1.2929 -4.97E-7 -2.42E-6	0.00 0.00 1.224 1.306	637 E - 6	1028.7370 412.3970 0.1647 3.4293	<.0001 <.0001 0.6848 0.0640	3			
Odds Ratio Estimates											
	Effect	Effect Coverage		Point Estimate		K Wald ence Limits					
	Income Income	Basic Extended	1.0 I 1.0		1.000 1.000	1.000 1.000					

For Predictive Analytics Course

The alternate hypothesis that we are looking at states that "customers with higher income levels are more likely to purchase higher coverage insurance plans".

The income coefficient has a positive value and a p-value less than 0.05, indicating a statistically significant positive relationship.

However, the R-squared value was very low, suggesting that income only explains a small portion of the variation in coverage level.

The majority of customers have Basic coverage (5568), followed by Extended coverage (2742), and Premium coverage (824).

This analysis suggests that while income may not directly influence Basic or Extended coverage, management can still use these insights to refine marketing strategies or tailor offerings based on other relevant factors. Understanding customer preferences and behaviors allows for targeted approaches in product development and customer engagement, potentially improving overall business performance and customer satisfaction. Further exploration of additional predictors may provide deeper insights into customer segmentation and preferences, guiding strategic decision-making for the management.

2. Second Hypothesis: Dependence of Customer Lifetime Value across different coverage types


```
The ANOVA Procedure

Tukey's Studentized Range (HSD) Test for Customer_Lifetime_Value

NOTE: This test controls the Type I experimentwise error rate.

Alpha
Error Degrees of Freedom 9131
Error Hean Square 45877277
Critical Value of Studentized Range 3.31504

Comparisons significant at the 0.05 level are indicated by ***.

Difference
Between Comparison Heans Confidence Limits

Premium = Extended 2105.9 1475.2 2736.7 ***
Extended - Premium - 2105.9 3112.3 4297.5 ***
Extended - Premium - 2105.9 - 2736.7 - 1475.2 ***
Extended - Premium - 3704.9 - 4297.5 - 3112.3 ***
Basic - Extended - 1599.0 - 1989.4 - 1228.6 ***

For Predictive Analytics Course
```

H0: Customer Lifetime Value is same across coverage types

H1: Customer Lifetime Value is different across coverage types

This test will be useful for the car insurance firm to understand whether the customer lifetime value is dependent on coverage types and how they can accordingly devise strategies for each coverage type to maximize the lifetime value of customers.

The ANOVA test reflects the p-value to be less than 0.05, so we reject the null hypothesis in favour of the alternate, suggesting that different coverage types has varied effect on the customer lifetime value.

We did the tukey test to find which coverage has significant impact on lifetime values. The result of the same indicates the premium coverage to have the best impact on the Customer Lifetime Value through which management's operation can be diverted towards increasing their marketing towards gaining more premium coverage.

3. Third Hypothesis: There is a significant difference in auto premiums across different location codes (Rural, Suburban, Urban).

H0: Mean of Monthly auto premium is same for all type of location code H1: Mean H0: Mean of Monthly auto premium is not same for all type of location code

The ANOVA analysis yielded a p-value of 0.0001, indicating statistical significance below the conventional threshold of 0.05. Therefore, we reject the null hypothesis, concluding that there is a difference in means among the various Location categories.

Upon examination of the means, it is evident that Suburban customers exhibit a higher monthly auto premium. This could potentially be attributed to their likely daily use of cars for commuting to urban or downtown areas, resulting in higher mileage and subsequently increased insurance costs. From a business perspective, these customers represent a lucrative segment for the company and warrant additional benefits such as complimentary temporary car provisions in case of accidents and expedited claim processing.