LISTA 2

1) Fie M o mulțime și $\mathcal{P}(M)$ mulțimea submulțimilor lui M. Definim pe $\mathcal{P}(M)$ două operații + și \cdot astfel:

$$X + Y = (X \setminus Y) \cup (Y \setminus X)$$
 si $X \cdot Y = X \cap Y$.

Să se arate că:

- i) $(\mathcal{P}(M), +, \cdot)$ este inel asociativ, comutativ, cu unitate;
- ii) dacă $|M| \geq 2$ atunci orice $X \in \mathcal{P}(M) \setminus \{\emptyset, M\}$ este divizor al lui zero;
- iii) $(\mathcal{P}(M), +, \cdot)$ este corp dacă și numai dacă |M| = 1.
- 2) Fie $(R, +, \cdot)$ un inel asociativ și $a, b \in R$. Să se arate că:
- a) $(a + b)^2 = a^2 + 2ab + b^2 \Leftrightarrow ab = ba \Leftrightarrow a^2 b^2 = (a b)(a + b);$
- b) dacă ab = ba atunci pentru orice $n \in \mathbb{N}^*$ avem

$$(a+b)^{n} = C_{n}^{0}a^{n} + C_{n}^{1}a^{n-1}b + \dots + C_{n}^{n-1}ab^{n-1} + C_{n}^{n}b^{n};$$

$$a^{n} - b^{n} = (a-b)\left(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1}\right);$$

$$a^{2n+1} + b^{2n+1} = (a+b)\left(a^{2n} - a^{2n-1}b + \dots - ab^{2n-1} + b^{2n}\right).$$

- 3) Fie $a \in \mathbb{Z}$. Să se arate că $\widehat{a} \in \mathbb{Z}_n$ este inversabil în \mathbb{Z}_n dacă și numai dacă (a, n) = 1. Să se deducă de aici că inelul $(\mathbb{Z}_n, +, \cdot)$ este corp dacă și numai dacă n este număr prim.
- 4) a) Să se rezolve în \mathbb{Z}_{12} ecuațiile $\widehat{4}x+\widehat{5}=\widehat{9}$ și $\widehat{5}x+\widehat{5}=\widehat{9}$ și în $M_2(\mathbb{C})$ ecuația

$$\left(\begin{array}{cc} 1 & 2 \\ 1 & 2 \end{array}\right) X = \left(\begin{array}{cc} 1 & 2 \\ 1 & 2 \end{array}\right).$$

b) Să se rezolve în \mathbb{Z}_{12} sistemul:

$$\begin{cases} \widehat{3}x + \widehat{4}y = \widehat{11} \\ \widehat{4}x + \widehat{9}y = \widehat{10} \end{cases}.$$

- 5) Fie $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}\$ și $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}\$. Să se arate că:
- i) $\mathbb{Z}[\sqrt{2}]$ este un subinel al lui $(\mathbb{R}, +, \cdot)$ care contine pe 1;
- ii) $\mathbb{Q}(\sqrt{2})$ este un subcorp al lui $(\mathbb{R}, +, \cdot)$;
- iii) $S_1 = \{a + b\sqrt[3]{2} \mid a, b \in \mathbb{Z}\}$ nu este subinel al lui $(\mathbb{R}, +, \cdot)$;
- iv) $S_2 = \{a + b\sqrt[3]{2} \mid a, b \in \mathbb{Q}\}$ nu este subcorp al lui $(\mathbb{R}, +, \cdot)$
- 6) Un număr $d \in \mathbb{Z}$ se numește **întreg liber de pătrate** dacă $d \neq 1$ și d nu se divide prin pătratul nici unui număr prim. Fie d un întreg liber de pătrate. Să se arate că:
- i) $\sqrt{d} \notin \mathbb{Q}$;
- ii) $a, b \in \mathbb{Q}$ și $a + b\sqrt{d} = 0$ implică a = b = 0;
- iii) $\mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d} \mid a, b \in \mathbb{Z}\}$ este un subinel în $(\mathbb{C}, +, \cdot)$ care conține pe 1;
- iv) $\mathbb{Q}(\sqrt{d}) = \{a + b\sqrt{d} \mid a, b \in \mathbb{Q}\}$ este un subcorp al lui $(\mathbb{R}, +, \cdot)$.
- 7) Să se arate că singurul omomorfism nenul de corpuri de la $(\mathbb{Q}, +, \cdot)$ la $(\mathbb{C}, +, \cdot)$ este omomorfismul de incluziune $i : \mathbb{Q} \to \mathbb{C}, i(x) = x$.

1

- 8) Să se determine automorfismele corpului $\mathbb{Q}(\sqrt{2})$.
- 9) Să se arate că singurul endomorfism nenul al corpului $(\mathbb{R}, +, \cdot)$ este $1_{\mathbb{R}}$.