

Yard Storage in Port Terminal Operations

Software-Simulatie

Deurganckdock

General Setting

Yard scheduling – Container Groups

Each Container Group (CG) g

- Number n_g of containers
- Arrives and/or Departs with a vessel

Yard scheduling – Container Groups

Each Container Group (CG) g

- Number n_g of containers
- Arrives and/or Departs with a vessel
- Specified time window to be processed within $(t_g^{in} t_g^{out})$

Yard scheduling – Container Groups

Each Container Group (CG) g

- Number n_q of containers
- Arrives and/or Departs with a vessel
- Specified time window to be processed within (t_gⁱⁿ t_g^{out})
- Must always be stored in an intermediate storage location (yard block)

Yard scheduling – Yard Blocks

Each Yard Block(CG) z

- Capacity o_z^{max}
- Compatible with certain CGs (depending on container content and flow)

Yard assignments

For each CG **g** define a Yard Assignment (YA)

 $y = \langle g, z_y \rangle$ such that:

Yard assignments

For each CG **g** define a Yard Assignment (YA)

 $y = \langle g, z_y \rangle$ such that:

• z_v a yard block compatible with g

Objective function

Cost of each Yard Assignment y:

$$YC(y) = n_{g_y} \cdot \left(dist(\ell_{g_y}^{in}, z_y) + dist(z_y, \ell_{g_y}^{out}) \right)$$

Cost function:

Total Container Transfer Distance:

$$TCTD \! = \! \sum_{y \in Y^G} YC(y)$$

Yard assignment simulation

Processing order

CG1

CG2

CG3

Yard assignment simulation

Processing order
CG1
CG2
CG3

