Section 8.5

8.5.1

Proving divisibilty results by induction

a. Prove that for any positive integer n, 4 evenly divides $3^{2n} - 1$.

Proof. Base Case: n = 1

$$3^{2(1)} - 1 = 8 = 4(2)$$
 \checkmark

Inductive Hypothesis: Assume that 4 evenly divides $3^{2k} - 1$, for some $k \in \mathbb{Z}^+$. This means that

$$3^{2k} - 1 = 4m$$
, where $m \in \mathbb{Z}$.
 $3^{2k} = 4m + 1$

Inductive Case: n = k + 1

$$3^{2(k+1)} - 1 = 3^{2k+2} - 1$$

= $(3^{2k} \cdot 9) - 1$
= $(4m+1) \cdot 9 - 1$ by the Inductive Hypothesis
= $36m + 8$
= $4(9m+2)$

Since m is an integer, 9m + 2 is also an integer. Therefore, $3^{2(k+1)} - 1$ is equal to 4 times an integer. This means that $3^{2(k+1)} - 1$ is divisible by 4. Therefore, for any positive integer n, 4 evenly divides $3^{2n} - 1$.

c. Prove that for any positive integer n, 4 evenly divides $11^n - 7^n$.

Proof. Base Case: n = 1

$$11^1 - 7^1 = 4 = 4(1) \checkmark$$

Inductive Hypothesis: Assume that 4 evenly divides $11^k - 7^k$, for some $k \in \mathbb{Z}^+$. This means that

$$11^k - 7^k = 4m$$
, where $m \in \mathbb{Z}$.
 $11^k = 4m + 7^k$

Inductive Case: n = k + 1

$$11^{k+1}-7^{k+1}=11\cdot 11^k-7\cdot 7^k$$

$$=11\cdot (4m+7^k)-7\cdot 7^k$$
 by the Inductive Hypothesis
$$=44m+4\cdot 7^k$$

$$=4(11m+7^k)$$

Since m and k are both integers, $11m + 7^k$ is also an integer. Therefore, $11^{k+1} - 7^{k+1}$ is equal to 4 times an integer, and thus 4 evenly divides $11^{k+1} - 7^{k+1}$. Therefore, for any positive integer n, 4 evenly divides $11^n - 7^n$.

e. Prove that for any positive integer n, 2 evenly divides $n^2 - 5n + 2$.

Proof. Base Case: n = 1

$$1^2 - 5(1) + 2 = -2 = -2(1)$$
 \checkmark

Inductive Hypothesis: Assume that 2 evenly divides $k^2 - 5k + 2$, for some $k \in \mathbb{Z}^+$. This means that there exists some integer m such that $k^2 - 5k + 2 = 2m$.

Inductive Step: n = k + 1

$$(k+1)^2 - 5(k+1) + 2 = k^2 + 2k + 1 - 5k - 5 + 2$$

= $k^2 - 5k + 2 + (2k - 4)$
= $2m + 2(k-2)$ by the inductive hypothesis
= $2(m+k-2)$

Since m and k are integers, m + k - 2 is also an integer. Therefore, $(k + 1)^2 - 5(k + 1) + 2$ is equal to 2 times an integer, and thus is divisible by 2. This completes the inductive step.

By mathematical induction, for any positive integer n, 2 evenly divides $n^2 - 5n + 2$.

8.5.3

Proving explicit formulas for recurrence relations by induction.

- **a.** Define the sequence $\{b_n\}$ as follows:
 - $b_0 = 1$
 - $b_n = 2b_{n-1} + 1$ for $n \ge 1$

Prove that for $n \geq 0, b_n = 2^{n+1} - 1$.

Proof. Base Case: n = 0

$$b_0 = 1 = 2^{0+1} - 1 \checkmark$$

Inductive Hypothesis: Assume that for some $k \ge 0$, $b_k = 2^{k+1} - 1$.

Inductive Step: n = k + 1

$$b_{k+1}=2b_k+1$$

$$=2(2^{k+1}-1)+1$$
 by the Inductive Hypothesis
$$=2^{k+2}-2+1$$

$$=2^{k+2}-1$$

Therefore, $b_{k+1} = 2^{k+2} - 1$.

By mathematical induction, for all $n \ge 0, b_n = 2^{n+1} - 1$.

8.4.3

Prove each of the following statements using mathematical induction.

a. Prove that for n > 2, $3^n > 2^n + n^2$.

Proof. Base Case: n=2

$$P(2): 3^2 > 2^2 + 2^2 \Rightarrow 9 > 8 \checkmark$$

Inductive Hypothesis: Assume that P(k) is true for some $k \in \mathbb{Z}^+$ Inductive Case: n = k + 1

$$3^{k+1} = 3^k 3 > 3 \cdot 2^k + 3 \cdot k^2$$
 by inductive hypothesis
$$> 2 \cdot 2^k + k^2 + 2k + 1$$
 since $k > 1$
$$> 2^{k+1} + (k+1)^2$$

Therefore P(k+1) is true. Since P(1) is true, and P(k+1) is true, therefore P(n) is true for all $n \in \mathbb{Z}^+$.