Análise de Dados

Dashbord de Logística

- A área de logística gerencia o fluxo de produtos e informações desde a origem até o destino final.
- Isso inclui atividades como transporte, armazenamento, distribuição, embalagem e gerenciamento de estoque.
- Uma logística eficaz garante a disponibilidade de mercadorias no momento e local certos, otimizando recursos e minimizando custos.
- Com a complexidade crescente dos negócios e a globalização, a logística se tornou um fator crítico de sucesso para muitas empresas.

Principais KPIs da Área de Logística

KPIs são métricas utilizadas para medir o desempenho e a eficácia dos processos de uma empresa.

Custo de transporte: o custo médio por unidade ou por pedido para transportar os produtos.

Análise Descritiva dos Dados

	Viagem	Data Pedido	Data Entrega	Prazo Entrega	Valor do Frete Líquido	Кт	Custo Combustível	Custo Manutenção	Custos Fixos
count	58980.000000	58980	58980	58980.000000	58980.000000	58980.000000	58980.000000	58980.000000	58980.000000
mean	29490.500000	2023-02-18 12:14:52.126144512	2023-02-23 08:48:51.271617280	6.500661	230.467185	7.627316	19.426054	8.314301	7.570520
min	1.000000	2022-01-01 00:00:00	2022-01-02 00:00:00	1.000000	0.900000	0.000000	0.000000	0.010000	0.000000
25%	14745.750000	2022-09-04 00:00:00	2022-09-08 00:00:00	3.000000	76.167500	2.010000	2.990000	2.910000	2.130000
50%	29490.500000	2023-03-10 00:00:00	2023-03-16 00:00:00	6.000000	163.600000	5.680000	10.670000	6.560000	5.680000
75%	44235.250000	2023-08-08 00:00:00	2023-08-13 00:00:00	10.000000	310.665000	11.660000	27.700000	12.340000	11.360000
max	58980.000000	2023-12-30 00:00:00	2024-01-01 00:00:00	12.000000	2095.800000	44.240000	177.380000	39.980000	42.230000
std	17026.203775	NaN	NaN	3.451109	220.357751	6.831773	22.869509	6.694189	6.706057

Assimetria, Curtose e Moda

```
from scipy.stats import skew, kurtosis
tabela= pd.read_excel("base.xlsx")

assimetria= skew(tabela["Viagem"])
curtose = kurtosis(tabela["Viagem"])
print("Assimetria:", assimetria)
print("Curtose:", curtose)

Assimetria: 0.0
Curtose: -1.20000000006899254
```

```
tabela= pd.read_excel("base.xlsx")

assimetria= skew(tabela["Prazo Entrega"])
curtose = kurtosis(tabela["Prazo Entrega"])
print("Assimetria:", assimetria)
print("Curtose:", curtose)

Assimetria: 0.0023547017313065126
Curtose: -1.222617762230585
```

```
import statistics
moda= statistics.mode(tabela["Prazo Entrega"])
print(f"Moda: {moda}")

Moda: 10
```

Assimetria, Curtose e Moda

```
tabela= pd.read_excel("base.xlsx")

assimetria= skew(tabela["Valor do Frete Líquido"])
curtose = kurtosis(tabela["Valor do Frete Líquido"])
print("Assimetria:", assimetria)
print("Curtose:", curtose)

Assimetria: 1.980786227636433
Curtose: 5.42477312771546
```

```
moda= statistics.mode(tabela["Valor do Frete Líquido"])
print(f"Moda: {moda}")

Moda: 50.4
```

Assimetria e Curtose

```
tabela= pd.read_excel("base.xlsx")

assimetria= skew(tabela["Km"])
curtose = kurtosis(tabela["Km"])
print("Assimetria:", assimetria)
print("Curtose:", curtose)

Assimetria: 1.0757669412638369
Curtose: 0.6531130905981071
```

```
tabela= pd.read_excel("base.xlsx")

assimetria= skew(tabela["Custo Combustível"])
curtose = kurtosis(tabela["Custo Combustível"])
print("Assimetria:", assimetria)
print("Curtose:", curtose)

Assimetria: 1.8572579192080618
Curtose: 3.8609949041657154
```

Assimetria, Curtose e Moda

```
tabela= pd.read_excel("base.xlsx")

assimetria= skew(tabela["Custo Manutenção"])
curtose = kurtosis(tabela["Custo Manutenção"])
print("Assimetria:", assimetria)
print("Curtose:", curtose)

Assimetria: 0.9852535910762299
Curtose: 0.43230105418347575
```

```
tabela= pd.read_excel("base.xlsx")

assimetria= skew(tabela["Custos Fixos"])
curtose = kurtosis(tabela["Custos Fixos"])
print("Assimetria:", assimetria)
print("Curtose:", curtose)

Assimetria: 1.1091808375944685
Curtose: 0.7875449097371923
```

```
moda= statistics.mode(tabela["Custo Manutenção"])
print(f"Moda: {moda}")

Moda: 2.06
```

```
moda= statistics.mode(tabela["Custos Fixos"])
print(f"Moda: {moda}")

Moda: 0.14
```

Probabilidade - Distribuição Binomial

```
from scipy.stats import binom
n=10
k=0
p = 0.3
probabilidade= binom.pmf(k,n,p)
porcentagemArredondado= round((probabilidade)*100)
print("A probabilidade de nenhuma entrega ser atrasada em uma amostra de 10 é:", porcentagemArredondado,"%")
A probabilidade de nenhuma entrega ser atrasada em uma amostra de 10 é: 3 %
from scipy.stats import binom
n=10
k=1
p = 0.3
probabilidade= binom.pmf(k,n,p)
porcentagemArredondado= round((probabilidade)*100)
print("A probabilidade de 1 entrega ser atrasada em uma amostra de 10 é:", porcentagemArredondado,"%")
A probabilidade de 1 entrega ser atrasada em uma amostra de 10 é: 12 %
```

Regressão

