

# **FCC SAR TEST REPORT**

**APPLICANT** TCL Communication Ltd.

Car Wifi Hotspot PRODUCT NAME

Y856UB MODEL NAME

ALCATEL ONETOUCH TRADE NAME

**BRAND NAME** ALCATEL ONETOUCH

FCC ID 2ACCJB028

47CFR 2.1093 STANDARD(S) IEEE 1528-2013

**ISSUE DATE** 

LICATIONS TECHNOLOGY Co., Ltd. SHENZHEN MORLAB COMMUN

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Http://www.morlab.com

Tel: 86-755-36698555

Fax: 86-755-36698525



# DIRECTORY

|                                                    | 5       |
|----------------------------------------------------|---------|
|                                                    |         |
| 1.TECHNICAL INFORMATION ······                     | ···6    |
|                                                    |         |
| 1.1 IDENTIFICATION OF APPLICANT ······             | 6       |
| 1.2 IDENTIFICATION OF MANUFACTURER······           | 6       |
| 1.3 EQUIPMENT UNDER TEST (EUT)                     | 6       |
| 1.3.1 PHOTOGRAPHS OF THE EUT······                 | 6       |
| 1.3.2 IDENTIFICATION OF ALL USED EUT               |         |
| 1.4 APPLIED REFERENCE DOCUMENTS                    | 7       |
|                                                    |         |
| 2. SPECIFIC ABSORPTION RATE (SAR)·····             | 9       |
| all it glate north no. 18 is glate north no. 18 is |         |
| 2.1 INTRODUCTION ·····                             | 9       |
| 2.2 SAR DEFINITION ······                          | 9       |
|                                                    |         |
| 3. SAR MEASUREMENT SETUP                           | .10     |
| AE TARE TOPLE HOW AE THE TARE TOPLE HOW AE         |         |
| 3.1 THE MEASUREMENT SYSTEM ·····                   | .10     |
| 3.2 PROBE                                          | -<br>10 |
| 3.3 PROBE CALIBRATION PROCESS·····                 |         |
| 3.3.1 DOSIMETRIC ASSESSMENT PROCEDURE ·····        |         |
| 3.3.2 Free Space Assessment Procedure              |         |
| 3.3.3 Temperature Assessment Procedure             |         |
| 3.4 PHANTOM                                        | ·13     |
| 3.5 DEVICE HOLDER ·····                            | ·13     |
|                                                    |         |
| 4. TISSUE SIMULATING LIQUIDS                       | ·14     |
| ORLAN MORE THE AR ORLAN MORE THE AR ORLAN          |         |
| E LINICEPTAINITY ACCECCATINIT                      | 16      |
| 5. UNCERTAINTY ASSESSIVIENT                        |         |
| 5. UNCERTAINTY ASSESSMENT                          |         |
| 5.1 UNCERTAINTY EVALUATION FOR EUT SAR TEST        | 16      |



| 6. SAR MEASUREM                               | ENT EVALUATION        |               |             |            |            |       | <u>19</u>     |
|-----------------------------------------------|-----------------------|---------------|-------------|------------|------------|-------|---------------|
|                                               |                       |               |             |            |            |       |               |
| 6.1 System Setup ····<br>6.2 Validation Resul |                       |               |             |            |            |       | 19            |
| 6.2 VALIDATION RESU                           | LTS·····              |               |             |            |            |       | 20            |
|                                               |                       |               |             |            |            |       |               |
| 7. OPERATIONAL CO                             | ONDITIONS DURI        | NG TEST·····  |             |            |            |       | <u>21</u>     |
|                                               |                       |               |             |            |            |       |               |
| 7.1 BODY-WORN CON<br>7.2 MEASUREMENT PI       | FIGURATIONS ······    |               |             |            |            |       | 21            |
| 7.2 MEASUREMENT PE                            | ROCEDURE ······       |               |             |            |            |       | 21            |
| 7.3 DESCRIPTION OF I                          | NTERPOLATION/EXTR     | APOLATION SCH | EME         |            |            |       | 22            |
|                                               |                       |               |             |            |            |       |               |
| 8. HOTSPOT MODE                               | <b>EVALUATION PRO</b> | OCEDURE       |             |            |            |       | 23            |
|                                               |                       |               |             |            |            |       |               |
| 9. INFORMATION                                | RELATED TO            | LTE TEST P    | ARAMETER(   | PER 941225 | D05V02R03) |       | 24            |
| RLAL                                          | , Mc                  | BIRLA         | MORL        | Mo         | AB .       | RI.AL | OF            |
| 10. SAR EVALUATIO                             | N PROCEDURES8         | POWER MEAS    | SUREMENT FO | R LTE····· |            |       | 27            |
| MORE                                          | AB                    | RLAL          | OLE W       | AB         | RLAL       | MORL  | _             |
| 11. MEASUREMENT                               | OF CONDUCTED          | OUTPUT POV    | VER         |            |            |       | 44            |
|                                               |                       |               |             |            |            |       |               |
| 12. TEST RESULTS L                            | IST                   |               |             |            |            |       | 47            |
| A.B                                           | ALAL MORL             | a We          | AB          | RLAL       | REMARKS    | AB    |               |
| 13. REPEATED SAR                              | MEASUREMENT           |               |             |            |            |       | 59            |
| BLAL                                          | WOLE W                | AB            | QRLA.       | MORE       | Me AE      | RLA   |               |
| 14 MULTIPLE TRAN                              | SMITTERS EVALU        | ATION ······  |             |            |            |       | 60            |
| RIA MORE                                      | No.                   | BORLA         | MORE        | lile.      | AB         | al al | Off.          |
| 15. ANNEX A GENE                              | RAL INFORMATION       | ON            |             |            |            |       | 64            |
| WOLES WE                                      | D.C                   | ALAE M        | 265 146     | O.B        | RLAR       | MORE  |               |
| 16. ANNEX B PHOT                              | OGRAPHS OF TH         | F FUT         |             |            |            |       | 64            |
| ZOI MINICA DI HO                              | 2 LA                  | MORE          | Mo. of      | 3 QLA      | MORL       | Wo.   | <del></del>   |
| 17. ANNEX C PLOT                              | S OE SAR TEST RE      | SI II TS      |             | 40,        |            |       | 64            |
| 17. ANNEX CELOT                               | JOI JAN ILJI NE       | JOLIS         | 60          | alas no    | RL IIIO    | .0    | <del>0-</del> |
| 18. ANNEX D SYST                              | ENA DEDECIDADANA      | CE CHECK DAT  | ΛII         | )" (0)     |            | 1087  | 64            |
| 10. AIVIVEX D 31311                           | LIVIFLAFORIVIAN       | CHLCK DAI     |             | 1010       | NI CO      |       | <u>04</u>     |
| 15. ANNEX A GENE                              | DAL INICODMANTIC      | N. 40RL       | MOL         | 3 m alae   | ORLA       | HOL   | 65            |
| TO. HININEY A GEINE                           | NAL INFURIVIATIO      | 'IN           |             |            |            |       | 03            |



|       |            | Change History                     |        |
|-------|------------|------------------------------------|--------|
| Issue | Date       | Reason for change                  |        |
| 1.0   | 2015-11-10 | First edition                      | UC ST. |
| - LA  | ORLA       | MORE I WE LAR OFFICE MORE I WE LAR |        |



# **TEST REPORT DECLARATION**

| Applicant            | TCL Communication Ltd.                                                                          |           |                          |
|----------------------|-------------------------------------------------------------------------------------------------|-----------|--------------------------|
| Applicant Address    | 5F, C-Tower, No.232, Liangjing Road, Zhangjiang High-tech Park, Pudong, Shanghai, China         |           |                          |
| Manufacturer         | TCL Mobile Communication Co. Ltd. Huizhou                                                       |           |                          |
| Manufacturer Address | 70 Huifeng 4rd., ZhongKai High-Technology Development District, Huizhou, Guangdong, PRC. 516006 |           |                          |
| Product Name         | Car Wifi Hotspot                                                                                |           |                          |
| Model Name           | Y856UB                                                                                          |           |                          |
| Brand Name           | ALCATEL ONETOUCH                                                                                |           |                          |
| HW Version           | 03                                                                                              |           |                          |
| SW Version           | Y856_00_03.28_07                                                                                |           |                          |
| Test Standards       | 47CFR 2.1093; IEEE 1528-2013                                                                    |           |                          |
| Test Date            | 2015-10-16 to 2015-10-17                                                                        |           |                          |
| The Highest Reported | Body                                                                                            | 1.349W/Kg | Limit/\\//ka\: 1.6\\//ka |
| 1g-SAR(W/kg)         | Simultaneous                                                                                    | 1.483W/Kg | Limit(W/kg): 1.6W/kg     |

| Tested by :     | LIU JUN     | G.     |
|-----------------|-------------|--------|
| HOLE SHE        | Liu Jun     |        |
| Reviewed by :   | Thu Than    | 100    |
| MORTE MOL. THE  | Zhu Zhan    | 40,    |
| Approved by :   | Zerg Dexin  | of ACP |
| HER HOME TO THE | Zelvg Dexin |        |



# 1.TECHNICAL INFORMATION

Note: the Following data is based on the information by the applicant.

# 1.1 Identification of Applicant

| Company Name: | TCL Communication Ltd.                                          |
|---------------|-----------------------------------------------------------------|
| Address:      | 5F, C-Tower, No.232, Liangjing Road, Zhangjiang High-tech Park, |
| B ORLA MOR    | Pudong,Shanghai,China                                           |

## 1.2 Identification of Manufacturer

| Company Name:    | TCL Mobile Communication Co. Ltd. Huizhou                       |
|------------------|-----------------------------------------------------------------|
| Address:         | 70 Huifeng 4rd., ZhongKai High-Technology Development District, |
| B THE SLAB LORLE | Huizhou, Guangdong, PRC. 516006                                 |

# 1.3 Equipment Under Test (EUT)

| Model Name:         | Y856UB                                                                                                                                                                                                                                         |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trade Name:         | ALCATEL ONETOUCH                                                                                                                                                                                                                               |
| Brand Name:         | ALCATEL ONETOUCH                                                                                                                                                                                                                               |
| Hardware Version:   | 03                                                                                                                                                                                                                                             |
| Software Version:   | Y856_00_03.28_07                                                                                                                                                                                                                               |
| Tx Frequency Bands: | CDMA BC0: 824-849MHz; CDMA BC1: 1850-1910MHz;<br>CDMA BC10:817.25-819.75MHz;817.9-819.75MHz;<br>FDD-LTE Band 25: 1850-1915MHz;FDD-LTE Band 26: 824-849 MHz;<br>TDD-LTE Band 41: 2496-2690MHz;<br>WiFi 802.11b/g/n20/n40; WiFi 802.11n MIMO 2x2 |
| Uplink Modulations: | CDMA:CDMA<br>LTE:QPSK/16QAM;<br>WIFI 802.11b: DSSS; WIFI 802.11g: OFDM; WIFI 802.11n20:OFDM;<br>WIFI 802.11n40:OFDM;                                                                                                                           |
| DTM:                | Not support                                                                                                                                                                                                                                    |
| Antenna type:       | Fixed Internal Antenna                                                                                                                                                                                                                         |
| Development Stage:  | Identical prototype                                                                                                                                                                                                                            |

# 1.3.1 Photographs of the EUT

Please refer to the External Photos for the Photos of the EUT





### 1.3.2 Identification of all used EUT

The EUT identity consists of numerical and letter characters, the letter character indicates the test sample, and the Following two numerical characters indicate the software version of the test sample.

| EUT<br>Identity | Hardware Version | Software Version |
|-----------------|------------------|------------------|
| 1#              | 03               | Y856_00_03.28_07 |

### 1.4 Applied Reference Documents

Leading reference documents for testing:

| No. | Identity             | Document Title                                                                                                          |  |  |
|-----|----------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|
| AB1 | 47 CFR§2.1093        | Radiofrequency Radiation Exposure Evaluation: Portable                                                                  |  |  |
| 2 1 | IEEE 1528-2013       | Devices  IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human |  |  |
|     | LAU AE HORE DELAE ME | Head from Wireless Communications Devices:  Measurement Techniques                                                      |  |  |
| 3   | KDB 447498 D01v05r02 | General RF Exposure Guidance                                                                                            |  |  |
| 4   | KDB 248227 D01v02    | SAR Measurement Procedures for 802.11 a/b/g Transmitters                                                                |  |  |
| 5   | KDB 941225 D01v03    | SAR Measurement Procedures for 3G Devices                                                                               |  |  |
| 6   | KDB 941225 D02v02r02 | HSPA and 1x Advanced                                                                                                    |  |  |
| 7   | KDB 941225 D03v01    | SAR Test Reduction GSM GPRS EDGE                                                                                        |  |  |
| 8   | KDB 941225 D04v01    | SAR for GSM E GPRS Dual Xfer Mode                                                                                       |  |  |
| 9 🧬 | KDB941225 D05v02r03  | SAR for LTE Devices                                                                                                     |  |  |
| 10  | KDB941225 D06v01r01  | Hotspot Mode SAR                                                                                                        |  |  |
| 11  | KDB 865664 D01v01r04 | SAR Measurement 100 MHz to 6 GHz                                                                                        |  |  |
| 12  | KDB 865664 D02v01r01 | SAR Reporting                                                                                                           |  |  |



# 1.5 Device Category and SAR Limits <u>Uncontrolled Environment</u>

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

### Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

### Limits for Occupational/Controlled Exposure (W/kg)

| Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles |
|------------|--------------|--------------------------------|
| 0.4        | 8.0          | 20.0                           |

### Limits for General Population/Uncontrolled Exposure (W/kg)

| Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles |
|------------|--------------|--------------------------------|
| 0.08       | 1.6          | 4.0                            |

Note: This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.



# 2. SPECIFIC ABSORPTION RATE (SAR)

#### 2.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are Middle than the limits for general population/uncontrolled.

### 2.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density. ( $\rho$ ). The equation description is as below:

$$SAR = \frac{d}{dt} \Big( \frac{dW}{dm} \Big) = \frac{d}{dt} \Big( \frac{dW}{\rho dv} \Big)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by,

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where C is the specific head capacity,  $\delta T$  is the temperature rise and  $\delta t$  the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where  $\sigma$  is the conductivity of the tissue,  $\rho$  is the mass density of the tissue and |E| is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.



# 3. SAR MEASUREMENT SETUP

# 3.1 The Measurement System

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the Following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The Following figure shows the system.



The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

#### 3.2 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 37/08 EP80 with Following specifications is used

- Dynamic range: 0.01-100 W/kg

- Tip Diameter: 6.5 mm





- Distance between probe tip and sensor center: 2.5mm

 Distance between sensor center and the inner phantom surface: 4 mm (repeatability better than +/- 1mm)

Probe linearity: <0.25 dB</li>
Axial Isotropy: <0.25 dB</li>
Spherical Isotropy: <0.25 dB</li>

- Calibration range: 835to 2500MHz for head & body simulating liquid.

Angle between probe axis (evaluation axis) and surface normal line: less than 30°

Probe calibration is realized, in compliance with CENELEC EN 62209 and IEEE 1528 std, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the EN 622091 annex technique using reference guide at the five frequencies.



$$SAR = \frac{4\left(P_{fw} - P_{bw}\right)}{ab\delta} \cos^2\left(\pi \frac{y}{a}\right) e^{-(2z/\delta)}$$

Where:

Pfw = Forward Power Pbw = Backward Power

a and b = Waveguide dimensions

Skin depth



### Keithley configuration:

Rate = Medium; Filter =ON; RDGS=10; FILTER TYPE =MOVING AVERAGE; RANGE AUTO After each calibration, a SAR measurement is performed on a validation dipole and compared with a NPL calibrated probe, to verify it.

The calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are:

$$CF(N)=SAR(N)/Vlin(N)$$

(N=1,2,3)

The linearised output voltage Vlin(N) is obtained from the displayed output voltage V(N) using

$$Vlin(N)=V(N)*(1+V(N)/DCP(N))$$

(N=1,2,3)

Where DCP is the diode compression point in mV.

#### 3.3 Probe Calibration Process

#### 3.3.1 Dosimetric Assessment Procedure

Each E-Probe/Probe Amplifier combination has unique calibration parameters. SATIMO Probe calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an with CALISAR, Antenna proprietary calibration system.

#### 3.3.2 Free Space Assessment Procedure

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm<sup>2</sup>.

#### 3.3.3 Temperature Assessment Procedure

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulating head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

Where:

 $\delta t = \text{exposure time (30 seconds)},$ 





$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

C = heat capacity of tissue (brain or muscle),

 $\delta T$  = temperature increase due to RF exposure.

SAR is proportional to  $\Delta T/\Delta t$ , the initial rate of tissue heating, before thermal diffusion takes place. The electric field in the simulated tissue can be used to estimate SAR by equating the thermally derived SAR to that with the E- field component.

Where:

$$SAR = \frac{\sigma |E|^2}{\rho}$$

 $\sigma$  = simulated tissue conductivity,

 $\rho$  = Tissue density (1.25 g/cm<sup>3</sup> for brain tissue)

#### 3.4 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

### 3.5 Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is Middle than 1°.



Device holder

| System Material | Permittivity | Loss Tangent |
|-----------------|--------------|--------------|
| Delrin          | 3.7          | 0.005        |



### 4. TISSUE SIMULATING LIQUIDS

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in below table.

The following table gives the recipes for tissue simulating liquids

| Frequency Band<br>(MHz)           | 750    | 83    | 35    | 1750  | 19    | 00    | 2450  | 2600           |
|-----------------------------------|--------|-------|-------|-------|-------|-------|-------|----------------|
| Tissue Type                       | Body   | Head  | Body  | Body  | Head  | Body  | Body  | Body           |
| Ingredients (% by we              | ight ) | LAB   | OPLA  | MOR   | S W   | LAB   | ORLA  | W <sub>C</sub> |
| Deionised Water                   | 50.00  | 50.36 | 50.20 | 68.80 | 54.90 | 40.40 | 73.20 | 68.1           |
| Salt(NaCl)                        | 0.80   | 1.25  | 0.90  | 0.20  | 0.18  | 0.50  | 0.10  | 0.10           |
| Sugar                             | 48.80  | 0.00  | 48.50 | 0.00  | 0.00  | 58.00 | 0.00  | 0.00           |
| Tween 20                          | 0.00   | 48.39 | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00           |
| HEC                               | 0.20   | 0.00  | 0.20  | 0.00  | 0.00  | 1.00  | 0.00  | 0.00           |
| Bactericide                       | 0.20   | 0.00  | 0.20  | 0.00  | 0.00  | 0.10  | 0.00  | 0.00           |
| Triton X-100                      | 0.00   | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00           |
| DGBE                              | 0.00   | 0.00  | 0.00  | 31.00 | 44.92 | 0.00  | 26.70 | 31.8           |
| Diethylenglycol<br>monohexylether | 0.00   | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00           |
| Target dielectric para            | meters | OR    | INC   | A.B   | RLAR  | MORE  | Mo    | aB.            |
| Dielectric Constant               | 55.50  | 41.50 | 56.10 | 53.40 | 39.90 | 53.30 | 52.70 | 52.5           |
| Conductivity (S/m)                | 0.96   | 0.90  | 0.95  | 1.49  | 1.42  | 1.52  | 1.95  | 2.16           |

Note: Please refer to the validation results for dielectric parameters of each frequency band.

The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using an Agilent 85033E Dielectric Probe Kit and an Agilent Network Analyzer.



**Table 1: Dielectric Performance of Tissue Simulating Liquid** 

| Temperature | e: 22.0~23.8°C | C, humidity: 54~60%.       |       |        |          |           |
|-------------|----------------|----------------------------|-------|--------|----------|-----------|
| Date        | Freq.(MHz      | Liquid Parameters          | Meas. | Target | Delta(%) | Limit±(%) |
| 2015/11/04  | Dody 925       | Relative Permittivity(cr): | 55.69 | 56.10  | -0.73    | 5         |
| 2015/11/04  | Body 835       | Conductivity(σ):           | 0.97  | 0.95   | 2.11     | 9 5       |
| 2015/11/04  | Pady 1000      | Relative Permittivity(cr): | 53.10 | 53.3   | -0.38    | 5         |
| 2015/11/04  | Body 1900      | Conductivity(σ):           | 1.53  | 1.52   | 0.66     | 5         |
| 2015/11/05  | Dady 0450      | Relative Permittivity(cr): | 52.52 | 52.70  | -0.34    | 5         |
| 2015/11/05  | Body 2450      | Conductivity(σ):           | 1.94  | 1.95   | -0.51    | 5         |
| 2045/44/05  | Dody 2000      | Relative Permittivity(cr): | 52.45 | 52.50  | -0.10    | 5         |
| 2015/11/05  | Body 2600      | Conductivity(σ):           | 2.10  | 2.16   | -2.78    | 5         |



# 5. UNCERTAINTY ASSESSMENT

The Following table includes the uncertainty table of the IEEE 1528. The values are determined by Antennessa.

# **5.1 UNCERTAINTY EVALUATION FOR EUT SAR TEST**

|                                                                                |        |                  |               |                    |             |                   | 3/3            |                        |         |
|--------------------------------------------------------------------------------|--------|------------------|---------------|--------------------|-------------|-------------------|----------------|------------------------|---------|
| a not morting in the morting                                                   | b      | C                | d             | e=<br>f(d,k)       | MORLAR      | g                 | h=<br>c*f/e    | i=<br>c*g/<br>e        | k       |
| Uncertainty Component                                                          | Sec.   | Tol<br>(+-<br>%) | Prob<br>Dist. | Div.               | Ci<br>(1g)  | Ci<br>(10g)       | 1g Ui<br>(+-%) | 10g<br>Ui<br>(+-<br>%) | Vi      |
| Measurement System                                                             | AR     | ORLAN            | 1110          | . 6                | 4110        | LAB               | ORLAN          | 70)                    | Oak     |
| Probe calibration                                                              | E.2.1  | 4.76             | N             | 1.0RL              | 1 1         | 1                 | 4.76           | 4.7                    | ∞       |
| Axial Isotropy                                                                 | E.2.2  | 2.5              | R             | $\sqrt{3}$         | 0.7         | 0.7               | 1.01           | 1.0                    | ∞       |
| Hemispherical Isotropy                                                         | E.2.2  | 4.0              | R             | $\sqrt{3}$         | 0.7         | 0.7               | 1.62           | 1.6                    | ∞       |
| Boundary effect                                                                | E.2.3  | 1.0              | R             | $\sqrt{3}$         | 1           | 1.0               | 0.58           | 0.5                    | ∞       |
| Linearity                                                                      | E.2.4  | 5.0              | R             | $\sqrt{3}$         | 1 🐠         | 1                 | 2.89           | 2.8                    | ∞       |
| System detection limits                                                        | E.2.5  | 1.0              | R             | $\sqrt{3}$         | 1           | 1.00              | 0.58           | 0.5                    | ∞       |
| Readout Electronics                                                            | E.2.6  | 0.02             | N             | 1 110              | 1 🚜         | 1                 | 0.02           | 0.0                    | ∞       |
| Reponse Time                                                                   | E.2.7  | 3.0              | R             | $\sqrt{3}$         | 1           | 1                 | 1.73           | 1.7                    | ∞       |
| Integration Time                                                               | E.2.8  | 2.0              | R             | $\sqrt{3}$         | 1           | 1                 | 1.15           | 1.1                    | ∞       |
| RF ambient Conditions                                                          | E.6.1  | 3.0              | R             | $\sqrt{3}$         | 10          | 1 ala             | 1.73           | 1.7                    | ∞       |
| Probe positioner Mechanical Tolerance                                          | E.6.2  | 2.0              | R             | $\sqrt{3}$         | 1           | 1"                | 1.15           | 1.1<br>5               | ∞       |
| Probe positioning with respect to Phantom Shell                                | E.6.3  | 0.05             | R             | $\sqrt{3}$         | <b>11</b> 0 | 1 <sub>RLAB</sub> | 0.03           | 0.0                    | 8       |
| Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation | E.5.2  | 5.0              | R             | $\sqrt{3}$         | AB W        | 1 HORLAE          | 2.89           | 2.8                    | 8       |
| Test sample Related                                                            | AL     | MORE             | 41/6          | , AB               |             | RLAL .            | MORIL          | NI NI                  | 9       |
| Test sample positioning                                                        | E.4.2. | 0.03             | N             | 1 <sub>north</sub> | 1 ME        | 1 NORLAR          | 0.03           | 0.0                    | N-<br>1 |
| Device Holder Uncertainty                                                      | E.4.1. | 5.00             | N             | 1 110              | 1 💸         | 1                 | 5.00           | 5.0                    | N-      |



|                                  |         | . 40   |       | 100        | ~20    |       | 70,    |      |      |
|----------------------------------|---------|--------|-------|------------|--------|-------|--------|------|------|
| 2LAB CORL                        | 1       | VB In. | al.P  | 300        | Line   | More  | " B W. | 0    | 1    |
| Output power Power drift -       | 6.6.2   | 4.04   | R     | $\sqrt{3}$ | 1 , 1  | 1     | 2.33   | 2.3  | ∞    |
| SAR drift measurement            | "B W    | CLAP   |       | RLA        | Mole   | B W   | LAB    | 3    | ORL  |
| Phantom and Tissue Para          | meters  | MOL    | .0    | LAB        | .(     | RLA   | MOL    | 0 1  |      |
| Phantom Uncertainty              | E.3.1   | 0.05   | R     | $\sqrt{3}$ | 1,     | 1 1 N | OF     | 0.0  | ∞    |
| (Shape and thickness tolerances) | NOTE OF | AB M   | MORLA | 3 MOF      | L.A. A | Mole  | 0.03   | 3    | 8    |
| Liquid conductivity -            | E.3.2   | 4.57   | R     | $\sqrt{3}$ | 0.64   | 0.43  | 1.69   | 1.1  | ∞    |
| deviation from target value      | AL      | MORIE  | 2 11  | AB         | ,      | QLAP. | MORL   | 3    |      |
| Liquid conductivity -            | E.3.3   | 5.00   | N     | 1,108      | 0.64   | 0.43  | 3.20   | 2.1  | М    |
| measurement uncertainty          | MORT    | Mo     | . 0   | 3          | LAR    | MORL  | MO.    | 5    | 8    |
| Liquid permittivity -            | E.3.2   | 3.69   | R     | $\sqrt{3}$ | 0.6    | 0.49  | 1.28   | 1.0  | 8    |
| deviation from target value      | Mo      | A.B    |       | QLAB       | MORL   | Mc    | O.B    | 4    | الله |
| Liquid permittivity -            | E.3.3   | 10.0   | N 🐠   | 1 6        | 0.6    | 0.49  | 6.00   | 4.9  | М    |
| measurement uncertainty          | o.B     | 0      | LAB   | MORL       | 4110   |       |        | 0    | - 0  |
| Combined Standard                | ORL     | Mo     | RSS   | 9          | LAB    | JORL  | 11.55  | 10.  | 3    |
| Uncertainty                      |         | AB     | NORLE | MO         | ~      | 9     | aLAE   | 67   |      |
| Expanded Uncertainty             | Mo.     | .0     | K=2   | alaB       | *OBI   | Mc    | 23.11  | 21.  | 210  |
| (95% Confidence interval)        | AB      | ORLA   | 17/   | 000        | Di.    | LAB   | ORLA   | 33 🕔 | Ole  |

### 5.2 UNCERTAINTY FOR SYSTEM PERFORMANCE CHECK

| a                       | b word | C     | d                                     | e=<br>f(d,k)     | f RLA  | g     | h=<br>c*f/e | i=<br>c*g/ | k   |
|-------------------------|--------|-------|---------------------------------------|------------------|--------|-------|-------------|------------|-----|
| AE MIC SLAE SOR         | ALL    | ORL   | ~B III.                               | LAB              | .0     | 2LAP  | MOKE        | е          |     |
| Uncertainty Component   | Sec.   | Tol   | Prob                                  | Div.             | Ci     | Ci    | 1g Ui       | 10g        | Vi  |
|                         | NOF    | (+-   | · ALA                                 | , o <sup>8</sup> | (1g)   | (10g) | (+-%)       | Ui         | 8   |
|                         | OPI    | %)    | Dist.                                 | B                | AF     | .0    | RLA         | (+-        |     |
|                         | S W    | LAB   |                                       | RLA              | MORE   | BHIL  | LAB         | %)         | PLA |
| Measurement System      | Like   | Moles | · · · · · · · · · · · · · · · · · · · | LAB              | .0     | RLA   | MORE        | S W        |     |
| Probe calibration       | E.2.1  | 4.76  | N                                     | 1,000            | 1      | 1 100 | 4.76        | 4.7        | 8   |
| Axial Isotropy          | E.2.2  | 2.5   | R                                     | $\sqrt{3}$       | 0.7    | 0.7   | 1.01        | 1.0        | 8   |
| Hemispherical Isotropy  | E.2.2  | 4.0   | R                                     | $\sqrt{3}$       | 0.7    | 0.7   | 1.62        | 1.6        | 8   |
| Boundary effect         | E.2.3  | 1.0   | R                                     | $\sqrt{3}$       | 1      | 1.8   | 0.58        | 0.5        | 8   |
| Linearity               | E.2.4  | 5.0   | R                                     | $\sqrt{3}$       | 1 🐠    | 1 🕓   | 2.89        | 2.8        | 8   |
| System detection limits | E.2.5  | 1.0   | R                                     | $\sqrt{3}$       | 1      | 108   | 0.58        | 0.5        | ∞   |
| Readout Electronics     | E.2.6  | 0.02  | N                                     | 1,5              | 1 ALAS | 1     | 0.02        | 0.0        | 8   |



| Reponse Time                                                                   | E.2.7       | 3.0     | R    | $\sqrt{3}$       | 1         | 1,10        | 1.73  | 1.7       | ∞    |
|--------------------------------------------------------------------------------|-------------|---------|------|------------------|-----------|-------------|-------|-----------|------|
| Integration Time                                                               | E.2.8       | 2.0     | R    | $\sqrt{3}$       | 1 21.0    | 1           | 1.15  | 1.1       | ∞    |
| RF ambient Conditions                                                          | E.6.1       | 3.0     | R    | $\sqrt{3}$       | 1         | 1,0         | 1.73  | 1.7       | ∞    |
| Probe positioner  Mechanical Tolerance                                         | E.6.2       | 2.0     | R    | $\sqrt{3}$       | 1 👊       | 1           | 1.15  | 1.1       | ∞    |
| Probe positioning with respect to Phantom Shell                                | E.6.3       | 0.05    | R    | $\sqrt{3}$       | 1         | 1/110       | 0.03  | 0.0       | 8    |
| Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation | E.5.2       | 5.0     | R    | $\sqrt{3}$       | LAE IN    | ALAS MORLAS | 2.89  | 2.8       | 8    |
| Dipole                                                                         | OR          | Library | Mole | S III            |           | 3           | RLA   | MOL       |      |
| Dipole axis to liquid Distance                                                 | 8,E.4.<br>2 | 1.00    | N    | $\sqrt{3}$       | 1         | 1 PLAE      | 0.58  | 0.5<br>8  | ∞    |
| Input power and SAR drift measurement                                          | 8,6.6.<br>2 | 4.04    | R    | $\sqrt{3}$       | 1 M       | 1 MORLA     | 2.33  | 2.3       | ∞    |
| Phantom and Tissue Para                                                        | meters      | All     | NORT | luc.             | 6         | 3           | RLA.  | MORIL     |      |
| Phantom Uncertainty (Shape and thickness tolerances)                           | E.3.1       | 0.05    | R    | $\sqrt{3}$       | 110 P. H. | 1 M         | 0.03  | 0.0       | 8    |
| Liquid conductivity - deviation from target value                              | E.3.2       | 4.57    | R    | $\sqrt{3}$       | 0.64      | 0.43        | 1.69  | 1.1       | ∞    |
| Liquid conductivity - measurement uncertainty                                  | E.3.3       | 5.00    | N    | $\sqrt{3}$       | 0.64      | 0.43        | 1.85  | 1.2       | М    |
| Liquid permittivity - deviation from target value                              | E.3.2       | 3.69    | R    | $\sqrt{3}$       | 0.6       | 0.49        | 1.28  | 1.0       | 8    |
| Liquid permittivity - measurement uncertainty                                  | E.3.3       | 10.0    | N    | $\sqrt{3}$       | 0.6       | 0.49        | 3.46  | 2.8       | М    |
| Combined Standard Uncertainty                                                  | , D         | MORLA   | RSS  | RLAB             | in.       | RLAE        | 8.83  | 8.3       | OF   |
| Expanded Uncertainty (95% Confidence interval)                                 | OPLA        | AE HO   | K=2  | , m <sup>o</sup> | LAB       | MORLA       | 17.66 | 16.<br>73 | 3 11 |



### 6. SAR MEASUREMENT EVALUATION

### 6.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below



The validation dipole is placed beneath the flat phantom with the specific spacer in place. The distance spacer is touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The power meter PM1 measures the forward power at the location of the system check dipole connector. The signal generator is adjusted for the desired forward power (250 mW is used for 700 MHz to 3 GHz,100 mW is used for 3.5 GHz to



6 GHz) at the dipole connector and the power meter PM2 is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2.

### 6.2 Validation Results

After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %.

| Frequency                                | 835MHz(B)             | 1900MHz(B)            | 2450MHz(B)            | 2600MHz(B)            |
|------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Target value<br>1W (1g)                  | 10.04 W/Kg            | 42.36W/Kg             | 56.13 W/Kg            | 57.73 W/Kg            |
| Test value 1g<br>(100 mW<br>input power) | 0.992 W/Kg<br>(11.04) | 4.348 W/Kg<br>(11.04) | 5.443 W/Kg<br>(11.05) | 5.487 W/Kg<br>(11.05) |
| Normalized to<br>1W value(1g)            | 9.92 W/Kg             | 43.48 W/Kg            | 54.43 W/Kg            | 54.87 W/Kg            |

Note: System checks the specific test data please see Annex D



## 7. OPERATIONAL CONDITIONS DURING TEST

## 7.1 Body-worn Configurations

The body-worn configurations shall be tested with the supplied accessories (belt-clips, holsters, etc.) attached to the device in normal use configuration.

For body-worn and other configurations a flat phantom shall be used which is comprised of material with electrical properties similar to the corresponding tissues.



**Illustration for Body Worn Position** 

### 7.2 Measurement procedure

The Following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface.
- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- 3. Measurement of the SAR distribution with a grid of 8 to 16mm \* 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- 4. Around this point, a cube of 30 \* 30 \* 30 mm or 32 \* 32 \* 32 mm is assessed by measuring 5 or 8 \* 5 or 8 \* 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.



### 7.3 Description of interpolation/extrapolation scheme

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimize measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.



# 8. HOTSPOT MODE EVALUATION PROCEDURE

The SAR evaluation procedures for Portable Devices with Wireless Router function is according to KDB 941225 D06 Hot Spot SAR v01r01.

SAR must be tested for all surfaces and edges (side) with a transmitting antenna with in 2.5 cm from that surface or edge, at a test separation distance of 10 mm, in the wireless mode that support wireless routing.

Edge configurations:



| Assessment  | "ORL H | otspot sid | le for SAR | AB      | Wo.           | 20     |
|-------------|--------|------------|------------|---------|---------------|--------|
|             |        |            |            | VB III. | Test distance | : 15mm |
| Antennas    | Back   | Front      | Edge A     | Edge B  | Edge C        | Edge D |
| CDMA/LTE    | Yes    | Yes        | Yes        | Yes     | No            | Yes    |
| WLAN(ANT 1) | Yes    | Yes        | No         | Yes     | No            | Yes    |
| WLAN(ANT 2) | Yes    | Yes        | No         | Yes     | No            | Yes    |



# 9. Information Related to LTE Test parameter(Per 941225 D05v02r03)

|          | 3 ORLE MOR                                                                                                                                                                                          | Band 25                                                 | A.B               | RLA         | "IOLE"       | S VIII     | , AB     | ORLA.      |  |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------|-------------|--------------|------------|----------|------------|--|--|
|          | Identify the operating                                                                                                                                                                              | Tx:1850-                                                | 1910 MHz          | Rx:1930-    | 1995 MHz     | ar moi     |          |            |  |  |
|          | frequency range of each LTE                                                                                                                                                                         | Band 26<br>Tx: 814 - 849MHz Rx: 859 - 894MHz<br>Band 41 |                   |             |              |            |          |            |  |  |
|          | transmission FCC band used                                                                                                                                                                          |                                                         |                   |             |              |            |          |            |  |  |
|          | by the device                                                                                                                                                                                       |                                                         |                   |             |              |            |          |            |  |  |
|          | A TOPLAS                                                                                                                                                                                            | Tx:2496-                                                | 2690 MHz          | Rx: 2496    | -2690 MH     | z Mo       |          |            |  |  |
| ORE      | AB GLAS                                                                                                                                                                                             | Davidos                                                 | HILO              | S C         | hannel Ba    | ndwidth    | 21.      | No.        |  |  |
|          | ELAS MOEL MO.                                                                                                                                                                                       | Band25                                                  | 20Mhz             | 15MHz       | 10MHz        | 5MHz       | 3MHz     | 1.4MHz     |  |  |
|          | AB " ELAB MOR                                                                                                                                                                                       | 1                                                       | 20050/            | 20025/      | 20000/       | 19975/     | 19965/   | 19957/     |  |  |
| <i>P</i> | MORLY MO. OF W.                                                                                                                                                                                     | Low                                                     | 1720              | 1717.5      | 1715         | 1712.5     | 1711.5   | 1710.7     |  |  |
| 2        | 3 M TLAS MORLA                                                                                                                                                                                      | VIIO.                                                   | 20175/            | 20175/      | 20175/       | 20175/     | 20175/   | 20175/     |  |  |
|          | MOR SE M. STUE                                                                                                                                                                                      | Middle                                                  | 1732.5            | 1732.5      | 1732.5       | 1732.5     | 1732.5   | 1732.5     |  |  |
|          | Identify the high, middle and                                                                                                                                                                       | .6                                                      | 20300/            | 20325/      | 20350/       | 20375/     | 20384/   | 20392/     |  |  |
|          | low (L, M, H) channel                                                                                                                                                                               | High                                                    | 1745              | 1747.5      | 1750         | 1752.5     | 1753.5   | 1754.2     |  |  |
| 3        | numbers and frequencies                                                                                                                                                                             | - CLAB                                                  | Channel Bandwidth |             |              |            |          |            |  |  |
|          | tested in each LTE frequency band                                                                                                                                                                   | Band26                                                  | 20Mhz             | 15MHz       | 10MHz        | 5MHz       | 3MHz     | 1.4MHz     |  |  |
|          | Darid                                                                                                                                                                                               | Low                                                     | 20850/2           | 20825/      | 20800/       | 20775/     | ,        | 0.         |  |  |
|          | arue Mostre Mo.                                                                                                                                                                                     |                                                         | 510               | 2507.2      | 2505         | 2502.5     | ALAE     | ORL        |  |  |
|          | DE NO SLAE HOR                                                                                                                                                                                      | - 4                                                     | 21100/2           | 21100/      | 21100/       | 21100/2    | MON      | , S        |  |  |
|          | TORLE MOTO AE M                                                                                                                                                                                     | Middle                                                  | 535               | 2535        | 2535         | 535        | ORI      | 1          |  |  |
|          | TLAE TOPLE                                                                                                                                                                                          | Mo                                                      | 21350/2           | 21375/      | 21400/       | 21425/     | 70 ·     | al AB      |  |  |
|          | HOT RE IN TLAS                                                                                                                                                                                      | High                                                    | 560               | 2562.5      | 2565         | 2567.5     | /        | /          |  |  |
|          | Specify the UE category and                                                                                                                                                                         | The UE                                                  | Category is       | s 4 and the | uplink me    | odulations | used are | QPSK and   |  |  |
| 3 111    | uplink modulations used                                                                                                                                                                             | 16QAM.                                                  |                   |             |              |            |          |            |  |  |
| >        | -7.7 OV W                                                                                                                                                                                           |                                                         |                   | OV          | 100          | .0         |          |            |  |  |
|          | Descriptions of the LTE                                                                                                                                                                             | 2LAB                                                    |                   |             |              |            |          |            |  |  |
|          | Descriptions of the LTE transmitter and antenna                                                                                                                                                     | MORLAL                                                  |                   |             |              |            |          |            |  |  |
|          | M S A                                                                                                                                                                                               | MORLAD                                                  |                   |             |              |            |          |            |  |  |
|          | transmitter and antenna                                                                                                                                                                             | MORLAD                                                  |                   |             |              |            |          |            |  |  |
|          | transmitter and antenna implementation & identify whether it is a standalone                                                                                                                        | MORLAL MORL                                             | E HORL            | HORLAR      | MORLAE MORLA | E HORLAN   | LAE MOR  | HORLAE M   |  |  |
| RLA      | transmitter and antenna implementation & identify whether it is a standalone transmitter operating                                                                                                  |                                                         | lule has a        | primary ar  | ntenna for   | all LTE&U  | MTS band | ds, a Wi-F |  |  |
| RLA      | transmitter and antenna implementation & identify whether it is a standalone transmitter operating independently of other                                                                           | The mod                                                 |                   | primary ar  | ntenna for   | all LTE&U  | MTS band | ds, a Wi-F |  |  |
| RLAY     | transmitter and antenna implementation & identify whether it is a standalone transmitter operating independently of other wireless transmitters in the                                              |                                                         |                   | primary ar  | ntenna for   | all LTE&U  | MTS band | ds, a Wi-F |  |  |
| RLA      | transmitter and antenna implementation & identify whether it is a standalone transmitter operating independently of other wireless transmitters in the device or sharing hardware                   |                                                         |                   | primary ar  | ntenna for   | all LTE&U  | MTS band | ds, a Wi-F |  |  |
| PLAY     | transmitter and antenna implementation & identify whether it is a standalone transmitter operating independently of other wireless transmitters in the device or sharing hardware components and/or |                                                         |                   | primary ar  | ntenna for   | all LTE&U  | MTS band | ds, a Wi-F |  |  |
| A MIC    | transmitter and antenna implementation & identify whether it is a standalone transmitter operating independently of other wireless transmitters in the device or sharing hardware                   |                                                         |                   | primary ar  | ntenna for   | all LTE&U  | MTS band | ds, a Wi-F |  |  |



| CB III | Voice/data requirements in     | report.         | ZLAB     | ٥٠       | RLA               | More           | "B W        | CLAP    | , 0            |
|--------|--------------------------------|-----------------|----------|----------|-------------------|----------------|-------------|---------|----------------|
|        | each operating mode and        | NORLIN M        |          |          |                   |                |             |         | "B VILL        |
| aLA    | exposure condition with        | M. SLAE         |          |          |                   |                |             |         | RLA            |
| VOL    | respect to head and body test  | MOIN            |          |          |                   |                |             |         | LAB            |
| .0     | configurations, antenna        | AB              |          |          |                   |                |             |         | MORE           |
| 3 411  | locations, handset flip-cover  | S WILL          |          |          |                   |                |             |         |                |
| A      | or slide positions, antenna    | ORLAN           |          |          |                   |                |             |         | T MIC          |
| . 6    | diversity conditions, etc.     | MIC AB          | اع       | AL       | MORT              | MIC            | of the same |         | 21.46          |
| ORL    | Identify if Maximum Power      | MORIL           |          |          |                   |                |             |         | AB             |
|        | Reduction (MPR) is optional    | A 00DD          | TO 00    | 40444    |                   | 040.00\        |             |         | MORL           |
| 2 1111 | or mandatory, i.e. built-in by | As per 3GPP     |          |          | 2                 | 70,            | (MADD) (    |         | . 01           |
| All    | design:                        | Table 6.2.3-1   | : waxir  | num P    | ower R            | eauction       | (MPK) I     | or Powe | r Class        |
| . 6    | only mandatory MPR may be      | 3               | اه       | Ab       | MORL              | W <sub>O</sub> |             |         | aLAB           |
| ORL    | considered during SAR          | MORL            | Chan     | nel 🔝    | bandwi            | dth /          | Transı      | mission | A.B            |
|        | testing, when the maximum      | Modulation      | band     | width (  | N <sub>RB</sub> ) | · ·            |             | LAB     | MPR            |
| 6      | output power is permanently    | Wood did not    | 1.4      | 3.0      | 5                 | 10             | 15          | 20      | (dB)           |
| Alle   | limited by the MPR             | al Alb          | MHz      | MHz      | MHz               | MHz            | MHz         | MHz     | W <sub>O</sub> |
| 6      | implemented within the UE;     | QPSK            | > 5      | > 4      | > 8               | > 12           | > 16        | > 18    | ≤1             |
| ORL    | and only for the applicable    | 16 QAM          | ≤ 5      | ≤ 4      | ≤ 8               | ≤ 12           | ≤ 16        | ≤ 18    | ≤ 1            |
|        | RB (resource block)            | 16 QAM          | > 5      | > 4      | > 8               | > 12           | > 16        | > 18    | ≤ 2            |
| PILC   | configurations specified in    | MOIN            |          |          |                   |                |             |         | lu.            |
| AB     | LTE standards                  | A-MPR is sup    | ported   | by des   | ign, but          | disable fo     | or SAR te   | esting. | MOL            |
| ~      | b) A-MPR (additional MPR)      | MOL IN          |          |          |                   |                |             |         | LAB            |
| 109L/h | must be disabled.              | 10RLA           | 140 Fr.  | .0       | III.              | ALD B          | ORLA        | HO!     | . 0            |
|        | Include the maximum            | E ME            |          |          |                   |                |             |         | ORLAN          |
| MC     | average conducted output       | MORE            |          |          |                   |                |             |         | M              |
| AB.    | power measured on the          | AB              |          |          |                   |                |             |         | MOE            |
|        | required test channels for     | MORT IN         |          |          |                   |                |             |         | AB             |
| RLA    | each channel bandwidth and     | ORLAL           |          |          |                   |                |             |         | 211            |
|        | UL modulation used in each     | NIO. D          |          |          |                   |                |             |         | RLAB           |
| 7 🦽    | frequency band:                | This is include | ed in th | e sectio | on 11 of          | this repor     | t. "oʻ      |         | Mo.            |
| ,B     | a) with 1 RB allocated at the  | 08              |          |          |                   |                |             |         | , nOF          |
|        | low, centred, high end of a    | MORL. MI        |          |          |                   |                |             |         | OB III         |
| QLA!   | channel                        | RLAG            |          |          |                   |                |             |         | A.L.           |
| 10.    | b) using 50% RB allocation     | Mor             |          |          |                   |                |             |         | QLAE           |
|        | low, centered, high end within | AB OPLIA        |          |          |                   |                |             |         | Morri          |
| B      | a channel                      | 'B W            |          |          |                   |                |             |         | · OF           |
|        | c) using 100% RB allocation    | al Property     | Jan.     | M        |                   | 3              | LA          | *OF     | M              |



| AB III | Include the maximum average conducted output                                              | MORLAE MORLAE DE MORLAE MORLAE MORLAE MORLAE DE M  |
|--------|-------------------------------------------------------------------------------------------|----------------------------------------------------|
| 8      | power measured for the other wireless mode and frequency bands                            | This is included in the section 13 of this report. |
| AB III | Identify the simultaneous transmission conditions for                                     |                                                    |
| NORLA  | the voice and data configurations supported by                                            |                                                    |
| 10     | all wireless modes, device configurations and frequency                                   |                                                    |
| ORLA   | bands, for the head and body exposure conditions and device operating                     |                                                    |
| VE 446 | configurations (handset flip or cover positions, antenna diversity conditions etc.)       |                                                    |
| ORLA   | When power reduction is applied to certain wireless                                       | HOPLAS HOPLAS HOPLAS HOPLAS HOPLAS HOPLAS          |
| AB M   | modes to satisfy SAR compliance for simultaneous transmission conditions, other           |                                                    |
| ORLA   | equipment certification or operating requirements,                                        |                                                    |
| AE MC  | include the maximum average conducted output power measured in each                       | THE MORLE HOLD WORLD IN MORLE HORLE HOLD WOLLD     |
| 11     | power reduction mode applicable to the                                                    | Not applicable.                                    |
| lor    | simultaneous voice/data                                                                   |                                                    |
| AE ME  | transmission configurations for such wireless                                             |                                                    |
| ORLA   | configurations and frequency<br>bands; and also include<br>details of the power reduction |                                                    |
| BHIC   | implementation and measurement setup                                                      |                                                    |



# 10. SAR EVALUATION PROCEDURES&POWER MEASUREMENT FOR LTE

#### "1. QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and *required test channel* combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each *required test channel*. When the *reported* SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and *required test channels* is not required for 1 RB allocation; otherwise, SAR is required for the remaining *required test channels* and only for the RB offset configuration with the highest output power for that channel.6 When the *reported* SAR of a *required test channel* is > 1.45 W/kg, SAR is required for all three RB offset configurations for that *required test channel*.

### 2. QPSK with 50% RB allocation

The procedures required for 1 RB allocation in 1. are applied to measure the SAR for QPSK with 50% RB allocation.

### 3. QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output

power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB

allocations and the highest *reported* SAR for 1 RB and 50% RB allocation in 1. and 2. are ≤ 0.8

W/kg. Otherwise, SAR is measured for the highest output power channel and if the reported SAR

is > 1.45 W/kg, the remaining required test channels must also be tested.

#### Higher order modulations

For each modulation besides QPSK; e.g., 16-QAM, 64-QAM, apply the QPSK procedures in sections 1. and 2.and 3. to determine the QAM configurations that may need SAR measurement. For each configuration identified as required for testing, SAR is required only when the highest maximum output power for the configuration in the higher order modulation is  $> \frac{1}{2}$  dB higher than the same configuration in QPSK or when the *reported* SAR for the QPSK configuration is > 1.45 W/kg.

### 4. Other channel bandwidth standalone SAR test requirements

For the other channel bandwidths used by the device in a frequency band, apply all the procedures required for the largest channel bandwidth in section 5.2 to determine the channels and RB configurations that need SAR testing and only measure SAR when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is  $> \frac{1}{2}$  dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg.



The equivalent channel configuration for the RB allocation, RB offset and modulation etc. Is determined for the smaller channel bandwidth according to the same number of RB allocated in The largest channel bandwidth. For example, 50 RB in 10 MHz channel bandwidth does not apply to 5MHz channel bandwidth; therefore, this cannot be tested in the smaller channel bandwidth. However, 50% RB allocation in 10 MHz channel bandwidth is equivalent to 100% RB allocation in 5 MHz channel bandwidth; therefore, these are the equivalent configurations to be compared to determine the specific channel and configuration in the smaller channel bandwidth that need SAR testing."





# LTE BAND 25

| Band Width                            | Channel  | Freq.(MHZ) | Modulation | RB Con              | Average Power |       |
|---------------------------------------|----------|------------|------------|---------------------|---------------|-------|
|                                       |          | ,          |            | RB Size             | RB Offset     | (dBm) |
| AB .                                  | 21.10    | W.         | AB         | all 1               | 0             | 21.03 |
| AE MC                                 | -0       | LAB        | ORL        | 1 0                 | 49            | 23 16 |
|                                       | RLA      | "IOK"      | ODCK       | 1                   | 99            | 23 50 |
| ORL                                   | ORL' MO' | LAB        | QPSK       | 50                  | 0             | 22 12 |
| III AF                                | Lalia    | Moles      | No. Of     | 50                  | 25            | 22 31 |
| ORL                                   | Mor      | -6         | VP OBL.    | 50                  | 49            | 22 60 |
| W                                     | AB .     | 1860       | III.       | 100                 | 0             | 22 54 |
| LAB                                   | 31. 110  | .0         | al Alb     | AL 1 W              | 0             | 20 10 |
| ie. Ule                               | 26140    | RLA        | Oke. W.    | 1                   | 49            | 22 35 |
| LAB                                   | 20140    | Mo.        | 40.0444    | 1                   | 99            | 22 94 |
| MORE                                  | Mr. O.F  | RLA        | 16-QAM     | 50                  | 0 🐠           | 20.86 |
| LAP                                   | ORL      | MO.        | e " LA     | 50                  | 25            | 21 20 |
| MORE                                  | M        | NB QL      | Moke       | 50                  | <b>4</b> 9    | 21 16 |
| .0                                    | LAB      | Er. Mo.    | 0.         | 100                 | 0             | 21 49 |
| 21.4.                                 | la.      | O.B        | QLA MC     | 1 - 1               | 0             | 23 59 |
| . 6                                   | LAB      | ORL        | QPSK       | 1                   | 49            | 23.46 |
| RLA                                   | MORE     | ME         |            | 011                 | 99            | 23.46 |
| MO.                                   | LAF      | ORL        |            | 50                  | 0             | 22 39 |
| M                                     | M        | Miles      |            | 50                  | 25            | 22 52 |
| MO                                    | . 6      | 1882.5     |            | 50                  | 49            | 22 57 |
| 20MHz                                 | al Ar    |            | A B        | 100                 | 0             | 22 62 |
| NO.                                   | . 6      | LAB        | OFFLIE     | 1 4                 | 0             | 22 74 |
| A.B                                   | 26365    | MORE LAE N |            | 1                   | 49            | 22 79 |
| ORL                                   | 20000    |            |            | 1                   | 99            | 22 53 |
| ME                                    | QL.A.    | MORE       | 16-QAM     | 50                  | 0             | 21 52 |
| ORLAN                                 | Mor      | . 6        | E ORLIN    | 50                  | 25            | 21 38 |
| MILE                                  | O.B      | LAL        | MORE       | <b>5</b> 0          | 49            | 21 77 |
| LAB                                   | ir. Mo   | 0          | AB         | 100                 | 0             | 21.60 |
| MIC                                   | o B      | QL.A.      | Ole W      | 1.0                 | 0             | 23.02 |
| LAB                                   | ORLA     | MO. B      | LAB        | 1                   | 49            | 23.45 |
| WOE.                                  | ME AF    | RLA        | ODCK       | 1                   | 99            | 21 37 |
| LAB                                   | ORL      | WO.        | QPSK       | 50                  | 0             | 22.43 |
| MORE                                  | Н        | all al     | MORE       | 50                  | 25            | 22 13 |
| .0                                    | LAB      | IIIO I     | - G        | 50                  | 49            | 22 33 |
| LA ANO                                | MIC      | 1905       | QLA NO     | 100                 | 0             | 22.39 |
| · · · · · · · · · · · · · · · · · · · | LAB      | ORLA       | 3          | 1                   | 0             | 22 60 |
| RLAL                                  | 26590    | Mr. OB     | RLA        | -10 <sup>16</sup> 1 | 49            | 22 52 |
| MO.                                   | 20000    | ORLA       | 40.0014    | 1                   | 99            | 20.96 |
| QLA!                                  | MORL     | Me         | 16-QAM     | 50                  | 0             | 20 12 |
| MOL                                   | D. Lu.   | AB ORL     | WOL.       | 50                  | 25            | 20 94 |
| AB .                                  | LA       | III.       | 60         | 50                  | 49            | 21.06 |
| 21.                                   | L.       | AB         | RLE        | 100                 | 0             | 21 41 |





| Band Width | Channel         | Freq.(MHZ) | Modulation        | RB Cor            | nfiguration | Average Powe |       |
|------------|-----------------|------------|-------------------|-------------------|-------------|--------------|-------|
|            |                 | , ,        |                   | RB Size           | RB Offset   | (dBm)        |       |
| MORLAR     | ORL             | Wo.        | AB                | 081               | 0           | 21 20        |       |
|            | ME              | QLA!       | ORL               | 1 .               | 37          | 23 16        |       |
| TAP        | ORLAN           | MOL        | O DOLL            | 1 082             | 74          | 23.40        |       |
| MORI       | Mo              | B 01       | QPSK              | 36                | <i>∞</i> 0  | 21 90        |       |
| 0          | AB L            | Erry More  | S III             | 36                | 18          | 22 21        |       |
| AL         | Ser Mc          | 20         | ZLAP              | 36                | 35          | 22 51        |       |
| S In       | AB              | 1857.5     | OL WILL           | 75                | 0           | 22 47        |       |
| QLA.       | MORI            | MC         | aLA               | 1011              | 0           | 20 33        |       |
| NOL        | 26115           | ORLAN      | More              | 1 .               | 37          | 22.26        |       |
| QLA.       | 20113           | MIC        | 3 40 0 44 1 1     | 140               | 74          | 22 57        |       |
| More       | 0               | AB ORL     | 16-QAM            | 36                | 0           | 21 11        |       |
| OB.        | LAL             | III.C.     | 3                 | 36                | 18          | 21 35        |       |
| , MO       | O MI            | AB         | SRL MIC           | 36                | 35          | 21.08        |       |
| 60         | QLA!            | "OLT M     | 20                | 75                | 0           | 21.60        |       |
| ORLA       | Mo.             | AB         | ORL               | 41 <sup>0</sup> 1 | 0           | 23 33        |       |
| ing ve     | ZLAP.           | , ORL      | MC                | 1 1               | 37          | 23 59        |       |
| ORL IN     | M               | S W.       | J.B anagrille     | 1                 | 74          | 23.22        |       |
| MIC        |                 | LAL        | QPSK              | 36                | 0           | 22 50        |       |
| A.B        |                 | S. Bu.     | CLAE III SPLAE MC | 36                | 18          | 22 38        |       |
| MC         |                 | 2LAL       |                   | 36                | 35          | 22 52        |       |
| 15MHz      | ORLAN           | 1882.5     | AB                | 75                | - O         | 22.62        |       |
| NORL       | Me VB           |            | 16-QAM            | 1 .               |             | 22.76        |       |
| A.F        | 26365           | MOLO       |                   | 1 084             | 37          | 22.81        |       |
| MORLE      | 20303           | 20303      |                   | 1                 | <i>∞</i> 74 | 22 74        |       |
| e la       | LAB             | NO.        |                   | 36                | 0 4         | 21.62        |       |
| AL         | inc.            | 20         |                   | 36                | 18          | 21 35        |       |
| S bu       | AB              | ORLAN N    |                   | 36                | 35          | 21 73        |       |
| QLA!       | 40R             | We To      | al All            | 75                | 0           | 21.61        |       |
| NO.        | I. AB           | ORL.       | Wo.               | 1                 | 0 0         | 23 35        |       |
| QLA!       | MORLE           | Me         | B GLA             | 1.0               | 37          | 23.65        |       |
| MOL        | Par.            | AB ORL     | ODOK              | 1                 | 74          | 21.68        |       |
| O.P        | LA MO           | Mo         | QPSK              | 36                | 0 411       | 22 41        |       |
| MO         | H               | AB         | JELL MO           | 36                | 18          | 22 10        |       |
| O.B        | QLA!            | "Obr I     | .5                | 36                | 35          | 22 44        |       |
| ORL        | MO              | 1907.5     | RL                | 75                | 0           | 22 32        |       |
| N. O.B     | QLAL            | MORLE      | III NE            | 1 🗥               | 0.0         | 22.80        |       |
| ORLAN      | 26615           | 26615      | B Mr.             | D ORLAN           | 1,0         | 37           | 22 42 |
| W          | 20010           | AL         | 40.044            | <b>№</b> 1        | 74          | 20 94        |       |
| AB         | Transition IIIO | MOR W      | 16-QAM            | 36                | 0           | 21 56        |       |
| Mo         | 3               | QLAP.      | WC MC             | 36                | 18          | 21 33        |       |
| AB         | ORL             | NO. S. I   | AB                | 36                | 35          | 21.03        |       |
| ORI        | W. B            | LAR        | ORI               | 75                | 0 1         | 22 36        |       |





| Band Width | Channel | Freq.(MHZ) | Modulation | RB Configuration |             | Average Powe |
|------------|---------|------------|------------|------------------|-------------|--------------|
|            |         |            |            | RB Size          | RB Offset   | (dBm)        |
| AB         | ORL     | Wo.        | Ale        | 081              | , O         | 21 49        |
| MORL       |         | 2LAL       | ORI        | 1                | 24          | 22.08        |
| W. AE      |         | MOLO       | a part M   | 1 081            | 49          | 22 56        |
| NORL       |         | S 21       | QPSK       | 25               | <b>ॐ</b> 0  | 21 84        |
| S W        | AB L    | ET'IL      | NI WILL    | 25               | 12          | 21.66        |
| AL         |         | .0         | al Alb     | 25               | 24          | 22 36        |
| S bu       |         | 1855       | Or W       | 50               | 0           | 22 10        |
| 2LAP       |         | MO         | 2LA        | 1011             | 0           | 20.64        |
| NOL        | 26090   | RLL        | MOL        | 1 . 3            | 24          | 21 52        |
| . alak     | 20090   | MO         | BLALA      | 1,01             | 49          | 21.86        |
| MOL        |         | AB ORL     | 16-QAM     | 25               | 0           | 20.93        |
|            |         | MO.        | -0         | 25               | 12          | 20.51        |
| MO         |         | , A.B      | SPLA.      | 25               | 24          | 20.76        |
| 20         |         | "OBL       | 28         | 50               | 0           | 21 20        |
| RLA        | 110.    | D.B        | QRL.       | 410°1            | 0           | 23.64        |
| MO.        |         | ORL        | Mo.        | 1 2              | 24          | 23 39        |
| RL Lan     |         | U.         | B          | 1,10             | 49          | 23 44        |
| Mo         |         | LAD        | QPSK       | <i>№</i> 25      | 0           | 22 57        |
| AB         | M NO    |            | AB         | 25               | 12          | 22.62        |
| MC         |         | LAB        | ORL        | 25               | 24          | 22 59        |
| 10MHz      |         | 1882.5     | AB         | 50               | 100         | 22 58        |
| ORL        |         | 2LAB       | *Okr       | 1 0              | 0 0         | 22 90        |
| A.B        | 26365   | MOLE       | a Miles    | 1 084            | 24          | 22.45        |
| ORL        | 20303   | 3 N        | 16-QAM     | 1                | <b>2</b> 49 | 22.78        |
| J. W.      |         | A.A. MORE  |            | 25               | 0 0         | 21 62        |
| AB         |         | .0         | al Alb     | 25               | 12          | 21 71        |
| Miles      |         | QRL.A.     | Die We     | 25               | 24          | 21 55        |
| 2LAB       |         | MO. TO     | ALAB       | 50               | 0           | 21 51        |
| NOF        | N. O.B  | CRL        | "IO"       | 1 . 0            | 0 0         | 23.24        |
| ZLAB       |         | MIC        | a alak     | 1.0 P.L.         | 24          | 23.16        |
| MOF        |         | AB GRL     | -1010      | A 1              | 49          | 21 91        |
| .6         |         | Mo.        | QPSK       | 25               | The O III   | 22 39        |
| .m         | H       | AB         | RLA MO     | 25               | 12          | 22.06        |
| 20         |         | ORL        | 20         | 25               | 24          | 22 36        |
| RLA        |         | 1910       | RLA        | 50               | 0           | 22 35        |
| W. C.      |         | ORE        | We E       | 1 1              | 0.01        | 22 43        |
| RLA        | 26640   | No.        | B RLA      | 1/01             | 24          | 22 10        |
| MO         | 20040   | LAB ORL    | Wo.        | <b>№</b> 1       | 49          | 20.78        |
| AB         |         | W. W.      | 16-QAM     | 25               | 0           | 21 32        |
| MO         |         | 2LAB       | Okr. W.    | 25               | 12          | 21.09        |
| AB         |         | MOLE. H    | O.B        | 25               | 24          | 21 16        |
| ORIL.      |         | AB         | ORL        | 50               |             | 22.05        |





| Band Width | Channel | Freq.(MHZ) | Modulation | RB Configuration  |            | Average Power  |
|------------|---------|------------|------------|-------------------|------------|----------------|
|            |         |            |            | RB Size           | RB Offset  | (dBm)          |
| LAB        | ORL     | Mo. S      | AB         | OP1               |            | 21.76          |
| MORIE      | MIC OF  | 2LAL       | ORI        | 1 .               | 12         | 22 15          |
| D. DE      | RLM     | MOL        | a m        | 1 084             | 24         | 22.03          |
| , ORL      | MO      | AB AV      | QPSK       | 12                | <b>∞</b> 0 | 21 79          |
| S. W.      | AB L    | The Mole   | M          | 12                | 6          | 21.86          |
| LAP        | Ser Mc  | -3         | aLAB .C    | 12                | 11.3       | 21 95          |
| S Mi       | AB      | 1852.5     | OL W       | 25                | 0          | 21.83          |
| 3LAE       | ORL     | MO         | 2 LA       | 10 <sup>1</sup> 1 | 0          | 21 15          |
| MOL        | 26065   | RLA        | MOL        | 1 .               | 12         | 21 23          |
| 3LAV       | 20003   | MO         | B LA       | 1.0               | 24         | 21 51          |
| MOL        | Z W     | AB ORL     | 16-QAM     | 12                | 0          | 20.76          |
| AB         | LAE 10  | IIIO.      | -6         | 12                | 6          | 20.64          |
| .10        | In the  | , AB       | SRLA .IIC  | 12                | 11         | 20.49          |
| .0         | 3LAB    | ORL        | 20         | 25                | 0          | 20.91          |
| RLA        | Mo.     | A.B.       | -RL        | 110°1             | 0          | 23.44          |
| MO.        | LAB     | ORL        | MO.        | 1 24              | 12         | 23 36          |
| RLA.       | Mole    | UNIV       | B QLA      | 11/0              | 24         | 23.41          |
| M          | .0      | OFLAD      | QPSK       | √12               | 0          | 22 59          |
|            | M       |            |            | 12                | 6          | 22 33          |
| MO         | .0      | aLAB       | ORL MC     | 12                | 11         | 22.46          |
| 5MHz       | RLA     | 1882.5     | Q.B        | 25                |            | 22.60          |
| OIVII IZ   | MO. B   | 1002.3     | 16-QAM     | 1                 |            | 22 33          |
| A.F        | 20205   |            |            | 1081              | 12         | 22 11          |
| ORL        | 26365   |            |            |                   | 24         | 22 16          |
| MILE       | OB.     |            |            | 12                | 0 4        | 21 59          |
| AB O       | r. 1110 | . 6        | CLAP C     | 12                | 6          | 21.63          |
| M          | Q.B     | QLA.       | Oker We    | 12                | 11         | 21 47          |
| A.A.B      | ORL     | WO.        | LAB        | 25                | 0          | 21 57          |
| MORT       | 40 00   | QLA        | ~ O.       | 1                 | 0          | 22 69          |
| LAB        | ORL     | Mor        | 3 AF       | 1,08              | 12         | 22 32          |
| MORL       | M       | aB al      | MORI       | 1                 | 24         | 21.87          |
| .6         | LAB O   | Tr. MO.    | QPSK       | 12                | 0          | 22 43          |
| A NO       | H W     | N.B        | PLA.       | 12                | 6          | 22.02          |
| - Co - Fr. | LAB     | ORL        | D          | 12                | 11         | 22 21          |
| RLA        | MOR     | 1912.5     | RLA        | 25                | 0          | 22 38          |
| NO.        | AB      | 1012.0     | West of    | 1                 | 0.01       | 22 10          |
| QLA!       | 26665   | 26665      | 3 SLA      | 1/01              | 12         | 21 22          |
| Mor        |         |            | AB ORL     | "IO"              | <b>№</b> 1 | 24             |
| NB .       |         | Me         | 16-QAM     | 12                | 0          | 21.36<br>21.06 |
| MO         | O M     | AB         | RILL       |                   |            |                |
| .0         | ZLA!    | "OBT       | 20         | 12                | 6          | 21 10          |
| J.Ab       | 10      | M. B       | 21.1       | 12<br>25          | 11         | 21 03<br>21 54 |





| Band Width | Channel | Freq.(MHZ) | Modulation  | RB Configuration |              | Average Powe   |       |
|------------|---------|------------|-------------|------------------|--------------|----------------|-------|
|            |         |            |             | RB Size          | RB Offset    | (dBm)          |       |
| LAB        | ORL     | W. B       | LAB         | 1                | 410°0        | 21 77          |       |
| MORE       | M. O.F. | QLA!       | MORLE       | 1                | 3 7 al       | 21 94          |       |
| I. AF      | ORLAN   | MOL        | ODOK        | 1                | 14           | 21.89          |       |
| MORL       | Me      | d a        | QPSK        | 8                | <b>∞</b> 0   | 21 11          |       |
| G W        | AP L    | The More   | S 10.       | 8                | 4            | 21 23          |       |
| AL         | in the  | <b>S</b>   | al Al       | 8                | 7.           | 21 52          |       |
| . 6        | AB      | 1851.5     | 0, 2, 11,   | 15               | 0            | 21 91          |       |
| RI.A.      | MORI    | MIC OF     | QL.A.       | 1                | 0            | 20 95          |       |
| NOT        | 26055   | ORL. M.    | MOL         | 1                | 7 7 PL       | 21 20          |       |
| QLA!       | 20055   | Mo         | 40.0414     | 1.0              | 14           | <i>∞</i> 21 17 |       |
| MOLO       | G M.    | AB ORL     | 16-QAM      | 8                | 0            | 20.89          |       |
| OB.        | ALAL MO | Mo         | 00          | 8                | A A          | 20.96          |       |
| MO         | O U     | LAB        | ORLE MI     | 8                | 7            | 21 10          |       |
| O.B        | QLA.    | .40R       | 3           | 15               | 0            | 21.09          |       |
| ORLAN      | Mo.     | The Alb    | ORL         | 410°1            | 0            | 23.62          |       |
| INC OF     | ZLA!    | 10RF       | MC          | 1 2              | 7.01         | 23 30          |       |
| ORLAND     | MORE    | MOL        | 8 60        | ODOK             | 1110         | 14             | 23.44 |
| MIC        | NB.     | LAL        | QPSK        | <b>∞</b> 8       | 0            | 22 41          |       |
| AB         | M       | S In.      | AB          | 8                | 4            | 22.06          |       |
| M          |         | al Al      | STAL DEL IN | 8                | 7            | 22 13          |       |
| 3MHz       | ORLAN   | 1882.5     | AB          | 15               | 0            | 22.63          |       |
| NORE       | M. O.B. | 26365      | 16-QAM      | 1                | 0            | 22 65          |       |
| A.F        | 26365   |            |             | 1 0              | 7            | 22.76          |       |
| MORLE      | 20000   |            |             | 1                | <b>№ 1</b> 4 | 22 50          |       |
| e la       | LAB     | The MORE   |             | 8                | 0            | 21 43          |       |
| AL NO      | MIC     |            | QLAL .      | 8                | 4.3          | 21 26          |       |
| S Dr.      | AB      | ORLAN D    | Dr. S. Mr.  | 8                | 7            | 21.82          |       |
| QLAL       | 4ORY    | Mr. B      | alak.       | 15               | 0            | 21 58          |       |
| NO.        | I. A.B  | ORL        | Mo.         | 1                | O of the     | 22 54          |       |
| 2LAP       | MORI    | Me         | B ZLA       | 1.0              | 7            | 22 44          |       |
| MOL        | D 40.   | AB ARL     | OPOK        | 1                | 14           | 22 14          |       |
| AB .       | LAL     | INC        | QPSK        | 8                | 0 411        | 21.62          |       |
| , alo      | Н       | AB         | SRL MI      | 8                | 4            | 21 38          |       |
| 0.0        | RI.A.   | MORE       | 20          | 8                | 7            | 21 42          |       |
| ORL        | Mor     | 1913.5     | RLA         | 15               | 0            | 22 37          |       |
| n all      | 26675   | MORE       | We of       | 1                | 0.0          | 21 44          |       |
| ORLAN      |         | 26675      | 0 100       | DE SELLE         | 1            | 7              | 21 32 |
| Me         |         | LAL AORL   | 40.0414     | <b>№</b> 1       | 14           | 21 10          |       |
| AB         | Tr. MO  | S W.       | 16-QAM      | 8                | 0            | 21.03          |       |
| Mo         | NB .    | QLAL.      | DEL ME      | 8                | 4            | 21 41          |       |
| AB         | ORLING  | WOL T      | , AB        | 8                | 7            | 21.00          |       |
| ORL        | W. B    | A.A.E.     | ORIV        | 15               |              | 21 57          |       |





| Band Width                            | Channel | Freq.(MHZ) | Modulation                               | RB Configuration |            | Average Powe   |
|---------------------------------------|---------|------------|------------------------------------------|------------------|------------|----------------|
|                                       |         |            |                                          | RB Size          | RB Offset  | (dBm)          |
| LAB                                   | ORL     | 410.       | AB                                       | 081              | 0          | 21 98          |
| NORL                                  | MIC OF  | 3LAP       | ORL                                      | 1                | 0 2        | 22.01          |
| III. AF                               | ORL.    | MOLO       | S                                        | 1 08             | 5          | 21 95          |
| *OBT                                  | MIC     | A 1        | QPSK                                     | 3                | <b>ॐ</b> 0 | 21 98          |
| Z Mr.                                 | AB L    | The More   | la l | 3                | IRL 1 W    | 21.56          |
| LAL                                   | W.C.    |            | 2LAB                                     | 3                | 2.3        | 21 95          |
| S MI                                  | AB      | 1850.7     | OL W                                     | 6                | 0          | 21 92          |
| 3LAP                                  | ORL     | MO         | 21.0.                                    | 1                | MI O       | 21 10          |
| MOL                                   | 26047   | RLA        | MOIL                                     | 1                | 2          | 21 22          |
| T.A.B                                 | 26047   | MO         | B LALP                                   | 140              | 5          | 21 16          |
| MOLE                                  | M       | AB CRI     | 16-QAM                                   | 3                | 0          | 21 20          |
| .0                                    | LAB     | MO.        | .0                                       | 3                | 1 1        | 21 13          |
| LIN 1110                              | - W     | AB         | arl. A.                                  | 3                | 2          | 21 11          |
| .0                                    | LAB     | ORL        | - B                                      | 6                | 0          | 21.06          |
| RLA                                   | MO.     | 0.0        | RL                                       | 1                | 0          | 23.74          |
| HOLE IN THE                           | LAF     | ORL        | MO.                                      | 1 2              | 201        | 23 35          |
| RLA                                   | "UOLE"  | M          | E QLA                                    | 1/10%            | 5          | 23 35          |
| MO.                                   | . 6     | LAB        | QPSK                                     | <b>√</b> 3       | 0          | 23 47          |
| AB .                                  | M       |            |                                          | 3                | 1 0        | 23 34          |
| MO S M                                | LAB     | ORLAND MI  | 3                                        | 2                | 23 41      |                |
| 1.4MHz                                | QLA.    | 1882.5     | E MOREAE                                 | 6                | 0          | 22.64          |
| 1.41/11/12                            | MO.     |            |                                          | 1                | 0          |                |
| ME                                    | 00005   |            |                                          | 1081             | 2          | 22 40<br>22 35 |
| ORLA                                  | 26365   |            |                                          | 1/10/10          | - 5<br>- 5 |                |
| Mic                                   | NB.     | LAL        | 16-QAM                                   | 60               | -0.7       | 22 36          |
| AB                                    | True Mo | TLAE III   | ORLAE                                    | 3                | 0          | 21.86          |
| MIC                                   | .0      |            |                                          | 3                | 2          | 21 91          |
| AB                                    | RLA     | MOL        | AB                                       | 3                | 5          | 21 46          |
| ORL                                   | 40      | 21.1       | 408                                      | 6                | 0          | 21 61          |
| M. AB                                 | RLIN    | MOLE       | S WILL                                   | 1                | 0          | 22 42          |
| JORL                                  | Mo      | A          | ORL                                      | 1,0              | 2          | 22 47          |
| Nu.                                   | AB      | LA MORE    | QPSK                                     | 1                | 5          | 22 30          |
| AT O                                  | H WO    | .0         | 2LAB                                     | 3                | 0          | 22 43          |
| W                                     | AB      | RLA        | Die W                                    | 3                | 1          | 22 52          |
| 2LAE                                  | ORL     | 10110      | CLAB                                     | 3                | 2          | 22 32          |
| MOL                                   | I'm O.E | 1914.3     | " Offi                                   | 6                | 0          | 22 38          |
| LAB                                   | ORL     | Wo.        | B LA                                     | 1.0              | 0          | 21 25          |
| MORE                                  | 26683   | all al     | MOR                                      | 1                | 2          | 21 31          |
| .0                                    | LAB     | WO.        | 16-QAM                                   | 1                | 5          | 21.26          |
| A. ANO                                | MIL     | N.B        | RLA                                      | 3                | 0          | 21.06          |
| · · · · · · · · · · · · · · · · · · · | LAB     | ORLE       | Dr. W.                                   | 3                | 1          | 21 43          |
| QLA.                                  | MORE    | Mrs all    | QLA.                                     | 3                | 2          | 21 58          |
| VO.                                   | 14.     |            | VO.2.                                    | 6                |            | 21 59          |





### LTE BAND 26

| la.        | _&              |                 | - All      | 0 18             |            | OFF ME       |       |
|------------|-----------------|-----------------|------------|------------------|------------|--------------|-------|
| Band Width | Channel         | Freq.(MHZ)      | Modulation | RB Configuration |            | Average Powe |       |
|            |                 | ,O* \           | . 9        | RB Size          | RB Offset  | (dBm)        |       |
| MORLA      |                 | INC ORLAR       | MORLAL     | 1                | 0          | 23 25        |       |
|            |                 |                 |            | 1                | 37         | 22 71        |       |
| QL.A.      |                 | MIC             | QPSK       | 1                | 74         | 22 72        |       |
| MO.        |                 | LAB ORL         | MO         | 36               | 0          | 21 94        |       |
| AB         | al A            | Me              | oB.        | 36               | 18         | 21 56        |       |
| F. 480     |                 | AB              | ORLIN      | 36               | 35         | 21 82        |       |
| NB.        |                 | 831.5           |            | 75               | 0          | 22.05        |       |
| ORLIN      | 26865           | In. AE          | ORLAN      | 1                | 0          | 22 37        |       |
| We The     |                 | "OBT            | We of      | 1                | 37         | 22.06        |       |
| ORLAN      |                 | 0 10            | 16-QAM     | 1.0              | 74         | 22 11        |       |
| Mo         |                 | LAP             | 10 07 1111 | 36               | 0          | 21 53        |       |
| AB         |                 | S. Mr.          | AB         | 36               | 18         | 21 46        |       |
| MIC        |                 | 2LAB            | ORL MC     | 36               | 35         | 21 32        |       |
| AB         | QL.M.           | *0h             | .0         | 75               | 0          | 21.00        |       |
| ORL        |                 | LAB             | ORL        | 4101             | 0          | 22 75        |       |
| M. A.F.    | AF TRIAL        | MOLE            | NI OF      | 1                | 37         | 22 68        |       |
| ORL        |                 | -8 " N          | QPSK       | 1                | 74         | 22 67        |       |
| ME         |                 | The Work        | QF SIX     | <b>36</b>        |            | 21 91        |       |
| AB         |                 | .0              |            | 36               | 18         | 21 53        |       |
| M          | М               | 836.5           |            | 36               | 35         | 21.81        |       |
| 15MHz      |                 |                 |            | 75               | 10,0       | 21 97        |       |
| WOLE.      | 26915           |                 |            | 1                | 0          | 22 43        |       |
| LAB        |                 | MO.             | e LAP      | 1 081.           | 37         | 22 12        |       |
| MORE       |                 | LAE MOPLAE MORL | 16-QAM     | 1                | ~ 74       | 22 ∩4        |       |
| .6         |                 |                 |            | 36               | 0 1        | 21 26        |       |
| A          |                 |                 |            | 36               | 18         | 21 33        |       |
| 6          | LAB             |                 |            | 36               | 35         | 21 14        |       |
| QL.A.      | 40 <sup>R</sup> | W. B            | al Al      | 75               | 0          | 20.86        |       |
| NO.        | LAB             | ORL             | Wo.        | 1                | 0          | 23 12        |       |
| QLA        |                 | Me              | B QLA      | 1.0              | 37         | 23.03        |       |
| MOL        |                 | AB ORL          | ODOK       | 1                | 74         | 22 99        |       |
| B .        |                 | NII.C           | QPSK       | 36               | 0 411      | 22 11        |       |
| 110        | H W             | AB              | RILL MO    | 36               | 18         | 22.09        |       |
| OB         |                 | "OB" N          | 20         | 36               | 35         | 22 10        |       |
| ORLAN      |                 | 841.5           | RLL        | 75               | 0          | 22 21        |       |
| in a       |                 | ALAD AORIG      | Me "E      | 1 1              | 0.0        | 21.82        |       |
| ORLAN      | 26965           | 26965           | 3 11       | In B RLA         | 1,0        | 37           | 21.65 |
| ME         |                 |                 | AE ORL     | 10.0111          | <b>№</b> 1 | 74           | 21.60 |
| AB         |                 | lu.             | 16-QAM     | 36               | 0          | 21.06        |       |
| MO         |                 | LAB             | OBT. WO    | 36               | 18         | 21 13        |       |
| AB         |                 | MOL W           | A.B        | 36               | 35         | 21 09        |       |
| ORI.       |                 | AB              | ORL.       | 75               | ONLA       | 21 16        |       |





| Band Width    | Channel   | Freq.(MHZ)                               | Modulation | RB Configuration |           | Average Powe |
|---------------|-----------|------------------------------------------|------------|------------------|-----------|--------------|
|               | 0.1011101 |                                          | modulation | RB Size          | RB Offset | (dBm)        |
| , AB          | OB!       | 110.                                     | A.B        | 31               | 0         | 23 27        |
| ORL           | MO        | LAB                                      | ORL        | 1 .              | 24        | 23.56        |
| W. O.E.       | RLA       | MOLE                                     | a m        | 1 0 12 1         | 49        | 23.29        |
| ORL           | MO.       | 0                                        | QPSK       | 25               | 21g<br>0  | 22 15        |
| M             | AB .      | CLA MORE                                 | nn-        | 25               | 12        | 22 49        |
| LAB           | F 440     |                                          | LAB        | 25               | 24        | 22 21        |
| M             | O.B       | 829                                      | Ok. W      | 50               | 0         | 22.28        |
| LAB           | 00040     | 023                                      | LA.        |                  |           |              |
| MORE          | 26840     | QLA.                                     | MORLE      | 1                | 0         | 22 37        |
| A.F.          | ORLAN     | "IO"                                     | a A        | 1 1              | 24        | 22 59        |
| MORL          | Me        | al al                                    | 16-QAM     | 1.0              | 49        | 22 48        |
| S 10.         | LAE C     | Erry Wolf                                | S bu       | 25               | 0         | 21 41        |
| LAL           | Ser MIC   |                                          | al Alb     | 25               | 12        | 21 28        |
| S lin         | AB        | RLA                                      | OL WILL    | 25               | 24        | 21 52        |
| 2LAB          | 102       | 40                                       |            | 50               | 0         | 21 31        |
| HOPLAS MORLAS | RLA       | MORE                                     | 1          | 0                | 22 72     |              |
|               | ORL       | WO.                                      | e LA       | 1 1              | 24        | 22.86        |
|               |           | AB CRL                                   | QPSK       | 1                | 49        | 23.00        |
|               | LAB       | Er. Mo.                                  |            | 25               | 0         | 22.06        |
| LA            | NA MILE   | o.B                                      | QLA" and   | 25               | 12        | 22 15        |
|               | M         | ORL                                      | 0,         | 25               | 24        | 22 18        |
| 10MHz         | MORI      | 836.5                                    | et A       | 50               | 0         | 22.26        |
| MO.           | 26915     | ORL                                      | MOL        | 1                | 0         | 22 53        |
| al.Al         | NORL      | OF AB MO. MORLA                          | 16-QAM     | 1.08             | 24        | 22 41        |
| MOLO          | S. Mr.    |                                          |            | 1                | 49        | 22 59        |
| A .           | LAL       |                                          |            | 25               | 0 4       | 21 13        |
| LIV           | J. M.     | AB                                       | SELLE MO   | 25               | 12        | 21 33        |
| .0            | LAB       | ORL                                      | .0         | 25               | 24        | 21 09        |
| RLIN          | *O/-      | M. B                                     | al.h.      | 50               | 0         | 21 23        |
| MC.           | LAB       | ORL                                      | MO.        | 1                | 0         | 21 29        |
| RL.A.         | Mole      | NA.                                      | Balla      | 1.0              | 24        | 22 53        |
| Mo.           | .6        | AB ORL                                   | QPSK       | 1                | 49        | 22 88        |
| NB S          | LA MO     | la l | QFSK       | 25               | 0 411     | 22 12        |
| I. MO         | H         | LAB                                      | TEL. MO    | 25               | 12        | 22 20        |
| D.B           | RLA       | MORE                                     | o.B        | 25               | 24        | 22 03        |
| ORL           | Mo.       | 844                                      | RL         | 50               | 0         | 22 13        |
| W. "B         | QLA!      | MORIE                                    | III VE     | 1                | 0 0       | 21.85        |
| RL            | 26990     | 0 4                                      | B SRLA     | 1                | 24        | 21 78        |
| ME            | 20330     | AL ORL                                   | 40.0414    | <b>№</b> 1       | 49        | 21.67        |
| AB            | Live MO   | V. W.                                    | 16-QAM     | 25               | 0         | 21 03        |
| MO            | .0        | J.A.B                                    | Pler Mo    | 25               | 12        | 21 18        |
| AB            | RLA       | MOK. N                                   | W OF       | 25               | 24        | 21 12        |
| ORI.          | Mo. B     | AB                                       | ORL        | 50               | 0 0       | 21.06        |





# LTE BAND 26 (Continue)

| Band Width | Channel    | Freq.(MHZ) | Modulation | RB Cor      | nfiguration | Average Power |
|------------|------------|------------|------------|-------------|-------------|---------------|
|            |            | ,          |            | RB Size     | RB Offset   | (dBm)         |
| LAB        | ORL        | Mo. B      | AB         | 0.00        | 410°0       | 23 19         |
| MORL       | MIC OF     | al.Al      | NORL       | 1           | 12          | 23.42         |
| W. O.F.    | ORLAN      | MOLO       | a part M   | 1 084       | 24          | 23 32         |
| NORL       | Me         | S 01       | QPSK       | 12          | <b>ॐ</b> 0  | 22 52         |
| S bu       | AB         | The Mole   | S Mr.      | 12          | 6           | 22.66         |
| LAL        | F We       |            | 2LAD       | 12          | 11.3        | 22 18         |
| G M        | AB         | 826.5      | OL Y       | 25          | 0           | 22 29         |
| al Al      | 26815      | MC VB      | 2LA        | 01          | 0 4         | 22 53         |
| MOL        | 20010      | ORL IV     | MOL        | 1 . 9       | 12          | 22.43         |
| ZLA!       | , ORL      | MC         | Burnela    | 1.0         | 24          | 22 27         |
| MOL        | S. Mr.     | AB ORL     | 16-QAM     | 12          | 0           | 21 56         |
| 3          | LAE 10     | III.O      | -6         | 12          | 6           | 21 77         |
| LIP MO     | in the     | A.B        | arlin m    | 12          | 11          | 21 33         |
| .0         | 2LAB       | ORL        | .6         | 25          | 0           | 21 11         |
| RLA        | Mo.        | D.B        | QQL.       | 1           | 0           | 23 11         |
| MO.        | LAB        | ORL        | MO.        | 1 1         | 12          | 23.06         |
| RLA        | Mole       | lu.        | E RLA      | 1110        | 24          | 23.13         |
| MO         | .0         | LAP        | QPSK       | <b>№</b> 12 |             | 22 34         |
| AB .       | all all of | NI NI      | A.B        | 12          | 6           | 22 18         |
| Mo         | M          | 2LAB       | ORL. MC    | 12          | 11          | 22 44         |
| 5MHz       | RLA        | 836.5      | AB         | 25          | 410         | 22 19         |
| 10 RUI     | 26915      | 300.0      | 16-QAM     | III 1       | 0 0         | 22.42         |
| M. A.B     | 20913      |            |            | 1 084       | 12          | 22.60         |
| ORL        | Mo.        |            |            | 1111        | 24          | 22 13         |
| PIL.       | AB         |            |            | 12          | 0 41        | 21 38         |
| AB O       | gr. Mo     | .6         | ALAIS C    | 12          | 6           | 21 44         |
| M          | QB.        | -QLA       | Die. We    | 12          | -11         | 21 25         |
| LAB        | ORL        | 110.       | LAB        | 25          | 0           | 21 34         |
| MOLE       | 10.        | RL         | NO.        | 1           | 0           | 22 95         |
| LAB        | ORL        | MO.        | 3 LAP      | 1.0R        | 12          | 22.88         |
| Moles      | M          | OB GL      | MORE       | 4 1         | 24          | 22 97         |
| . O        | LAB        | r. Mo.     | QPSK       | 12          | 0 111       | 22.03         |
| , m        | M          | AB         | RLA MO     | 12          | 6           | 22 11         |
| .0         | H          | ORL        | 20         | 12          | 11          | 22.06         |
| RLA        | Mole       | 846.5      | RLA        | 25          | 0           | 22.02         |
| Mo.        | 27015      | 2 70.0     | We.        | 1           | 0.01        | 22 54         |
| RLA        | 27013      | M          | B QLA      | 110         | 12          | 22.52         |
| Mo.        | .6         | LAP ORL    | Mo.        | <b>№</b> 1  | 24          | 22 15         |
| AB         | LA. MO     | NOE MO     | 16-QAM     | 12          | 0           | 21 42         |
| WO.        | · 8        | LAB        | ORL MO     | 12          | 6           | 21 29         |
| NB         | RLA        | MORE N     | N.B        | 12          | 11          | 21 33         |
|            | YO.        | 4.         |            | 25          |             | 21.06         |





# TE BAND 26 (Continue)

| Band Width | Channel          | Freq.(MHZ)  | Modulation | RB Co      | nfiguration | Average Powe |
|------------|------------------|-------------|------------|------------|-------------|--------------|
|            |                  | ,           |            | RB Size    | RB Offset   | (dBm)        |
| LAB        | OPL              | WO. B       | LAB        | 0.00       |             | 23 35        |
| MORE       | ME               | al All      | MORE       | 1          | 3 7 al      | 23 44        |
| LAF        | ORL              | MO          | ODOK       | 1 08       | 14          | 23 37        |
| MORL       | MIC              | all all     | QPSK       | 8          | <b>ॐ</b> 0  | 22 16        |
| B          | LAP L            | Err More    | D In.      | 8          | 4           | 22 52        |
| .A.        | in in            | <b>S</b>    | al Al      | 8          | 7.0         | 22.28        |
| . 6        | LAB              | 825.5       | 0, 2       | 15         | 0           | 22 32        |
| RI.A.      | MORI             | MC OF       | 2LA        | 011        | 0           | 22.63        |
| MO.        | 26805            | ORLAN       | More       | 1 .        | 7 7         | 22 53        |
| QLA.       | 20003            | Mo          | 40.0414    | 1.0        | 14          | 22 18        |
| MOL        | B In.            | LAB ORL     | 16-QAM     | 8          | 0           | 21 25        |
| NB.        | LA.              | MIC         | <b>S</b>   | 8          | 4           | 21.08        |
| MO         | Co Mil           | LAB         | ORLAN MI   | 8          | 7           | 21 33        |
| 60         | QLAR.            | "Obr        |            | 15         | 0           | 21 12        |
| ORLA       | 410.             | T. A.B      | ORL        | 10,1       | 0           | 23.26        |
| INC. CE    | QLA!             | "OBT        | Mo         | 1 📣        | 7.0         | 23 11        |
| ORLAND     | More             | 8 60        | O DOLARIA  | 110        | 14          | 23.03        |
| MIC        | 20               | LALL        | QPSK       |            | 0           | 22 16        |
| AB         | M 🧬              | S Lu.       | AB         | 8          | 4           | 22 34        |
| M          | <b>S</b>         | 26915       | ORL        | 8          | 7           | 22 19        |
| 3MHz       | ORLAND           |             | , AB       | 15         | 410°0       | 22 24        |
| NORL       | MC VE            |             | "Ober      | 1          |             | 22.76        |
| A.F        | 26915            |             | 16-QAM     | 1 261      | 7           | 22 34        |
| MORLE      | 20313            |             |            | 1          | <b>14</b>   | 22.08        |
| e la       | LAB              | The Mole    |            | 8          | 0 4         | 21 16        |
| AL         | PHO PHIC         |             |            | 8          | 4.3         | 21 43        |
| S W.       | AB               | ORLAN       | Dr. S. E.  | 8          | 7           | 21 38        |
| QLA!       | .40 <sup>R</sup> | MP B        | al Al      | 15         | 0           | 21 25        |
| NO.        | LA PE            | ORL         | Wo.        | 1          | O OFFILE    | 22 90        |
| QLA!       | NORL             | ME          | B QLA      | 1.0        | 7           | 23.06        |
| MOL        | . D              | AB ARL      | ODOK       | a 1        | 14          | 22 96        |
| AB .       | LA.              | IN INC.     | QPSK       | 8          | 0 11        | 22 10        |
| " MO       | H                | AB          | TRILL ON   | 8          | 4           | 21 96        |
| O.B        | RLAL             | MORE        | OB.        | 8          | 7           | 22 21        |
| ORL        | Mo.              | 847.5       | RL         | 15         | 0           | 22.02        |
| AF OF      | QLA!             | MORLE       | W. V.      | 1 📣        | 0.00        | 21.69        |
| ORLAN      | 27025            | . 6         | PLL        | 1/10       | 7           | 21.88        |
| W          | 2.020            | LAL         | 1000       | <b>№</b> 1 | 14          | 21.66        |
| AB         | T. MO            | De Line     | 16-QAM     | 8          | 0           | 21 12        |
| ME         | NB .             | AB TANK ORL | Dien Ille  | 8.0        | 4           | 21 25        |
| AB         | ORLIN            | MOL A       | A.B        | 8          | 7           | 21 36        |
| ORE        | We C             | at All      | ORL        | 15         | 0           | 21.03        |





# LTE BAND 26 (Continue)

| Band Width | Channel | Freq.(MHZ) | Modulation | Modulation RB Co |            | Average Powe |
|------------|---------|------------|------------|------------------|------------|--------------|
|            |         |            |            | RB Size          | RB Offset  | (dBm)        |
| LAB        | ORL     | 40. 8      | AB         | 091              | 0          | 23.28        |
| NORL       | MIC OF  | 2LAP       | ORL        | 1                | 0 2        | 23.15        |
| W. AF      | RLA     | More       | S PILL A   | 1 081            | 5          | 23.23        |
| ORL        | Mo      | AB SLA     | QPSK       | 3                | <b>ॐ</b> 0 | 23.20        |
| S Mr.      | AB L    | A.M. MOR   | NI.        | 3                | IRL 1 W    | 23.05        |
| LAL        | ST. MIC | ~3         | J.A.B      | 3                | 2.3        | 22.86        |
| S MI       | AB      | 824.7      | 2 in.      | 6                | 0          | 22 32        |
| 2LAP       | ORL     | MO. TE     | 2LA        | 1011             | MI O       | 22 54        |
| MOL        | 26797   | RLA        | MOL        | 1                | 2          | 22.42        |
| LAB        | 20/9/   | MO.        | B LALA     | 1401             | 5          | 22 33        |
| Mole       | W       | AB RLP     | 16-QAM     | 3                | 0          | 21 71        |
| A          | LAD     | Mo.        | .0         | 3                | 1 m        | 21.86        |
| Line       | NI NI   | , AB       | RLA M      | 3                | 2          | 21.52        |
| .6         | 2LAB    | ORL M      | _0         | 6                | 0          | 21.45        |
| RLA        | 40.     | D.B.       | al         | WO 1             | 0          | 23.27        |
| MO.        | T.A.B   | ORL        | Mo.        | 1 📣              | 2014       | 23.42        |
| RLA        | Mokey   | III.       | BELA       | 14100            | 5          | 23.62        |
| MO.        | .0      | LAP ORL    | QPSK       | <b>√</b> 3       | 0          | 23.25        |
| AB .       | M       | N. A.      | AB.        | 3                | 1.0        | 23.41        |
| r. Mo      | .0      | LAB        | Er. M.     | વ                | 2          | 23.26        |
| 1.4MHz     | RLA     | 836.5      | QB.        | 6                | 0          | 22 29        |
| 11 11 12   | Mo.     | 000.0      | OPE        | 1                |            | 22 53        |
| ME         | 00045   | 26915      | M. A.      | 1.081            | 2          | 22 44        |
| ORL        | 26915   |            | ORL        | 1110             | <b>5</b>   | 22.61        |
| M          | DB .    | The Works  | 16-QAM     | 3                | 0 4        | 22.06        |
| AF O       | Tr. MO  | . 6        | ALAE       | 3                | 2.0        | 22.42        |
| M          | Q.B     | - RLAW M   | ler Hu     | 3                | 5          | 22 13        |
| LAB        | ORL     | Mo, B II.  | LAB        | 6                | 1110       | 21 24        |
| MOFF       | 100     | Ql.        | *10°       | 1                | 0 - 1      | 22.89        |
| LAB        | ORL     | Mos        | S T. A.    | 1.08             | 2          | 22 91        |
| MORE       | M       | AB GLA     | MORE       | 4 1              | 5          | 22 99        |
| .0         | LAB     | IIIO.      | QPSK       | 3                | 0 4        | 22 95        |
| LA MO      | Н       | O.B        | RIA. MC    | 3                | 10.5       | 22.88        |
| .0         | SLAB    | ORL M      | -8         | 3                | 2          | 23.01        |
| RLA        | MORE    | 848.3      | RLAL       | 40° 6            | 0          | 22 10        |
| No.        | LAB     | 0 10.0     | We.        | 1                | OOF        | 21.62        |
| RLA        | 27022   | W. O.      | al.A.      | 1/01             | 2          | 21 70        |
| MO         | 27033   | AB ORLA    | MO         | √9 1             | 5          | 21 54        |
| AB         | LA      | MILE       | 16-QAM     | 3                | 0          | 21 52        |
| WO.        | . 6     | LAB        | RL         | 3                | 1          | 21 69        |
| 60         | RLAL    | "IOE" III, | .0         | 3                | 2          | 21 24        |
| RL         | Wo.     | W. VE      | RLA        | 6                | 0          | 21 10        |





#### LTE BAND 41

| Band Width | Channel    | Freq.(MHZ)                              | Modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RB Con       | figuration | Average Power |
|------------|------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|---------------|
|            | 0.10.11.01 | , , , , , , , , , , , , , , , , , , , , |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RB Size      | RB Offset  | (dBm)         |
| AB         | ORL.       | 110.                                    | A.B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1            | 0          | 22.05         |
| ORL        | ORL ME     | LAB                                     | ORL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HIP 1        | 49         | 22.82         |
| AF SELLE   | MOLO       | a Mir                                   | 1 opli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99           | 22.84      |               |
| ORL        |            | -B                                      | QPSK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50           |            | 21 69         |
| W          | AB L       | LA MOR                                  | NIL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50           | 25         | 21 53         |
| LAB        |            | .0                                      | OLAB CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50           | 49         | 21.80         |
| M          |            | 2506                                    | Ole M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100          | 0          | 21 72         |
| ALAB.      |            | 11100 2000                              | 2LAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01           | 0          | 21.66         |
| MOL        | 20750      | RLA                                     | Mole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 . 9        | 49         | 21 92         |
| LAF        | 39750      | WO.                                     | e La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 140Pt        | 99         | 21 48         |
| MOK        |            | AB CEL                                  | 16-QAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50           | 0          | 20.75         |
| .0         |            | Fr. MO.                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50           | 25         | 20.69         |
| LIA        |            | AB                                      | -RLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50<br>50     | 49         | 20 51         |
| .0         |            | *ORL                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100          | 0          | 20.63         |
| RLA        | 10.        | U.S.                                    | RLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100          | 0          | 20.63         |
| MO.        |            | ORL                                     | Mo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 21         | 49         | 22.45         |
| RLA        |            | III.                                    | B RLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1410         | 99         | 22 29         |
| MO.        |            | LAB ORL                                 | QPSK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50           | 0          | 21.45         |
| A.B        | M          | NI PILO                                 | O.B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50           | 25         | 21 34         |
| ", MO      |            | LAB                                     | ORL. MC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50           | 49         | 21 53         |
| 20MHz      |            | 2593                                    | O.B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100          | 0          | 21.46         |
| 20111112   |            | 40620                                   | 16-QAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 2          | 0          | 21 26         |
| M. DE      | 40000      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 081.7      | 49         | 21 40         |
| ORL        | 40620      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | All Co       | 99         | 21 33         |
| M          |            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50           | 0          | 20.58         |
| AB O       |            | . 6                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50           | 25         | 20.42         |
| M          |            | QLA.                                    | Oler We                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50           | 49         | 20.64         |
| LAB        |            | Wo. B                                   | LAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100          | 0          | 20.33         |
| MORE       | 4. 08      | ali                                     | anor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1            | 0          | 22 19         |
| LAB        |            | MO                                      | S AF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.082        | 49         | 21 93         |
| MORE       |            | all al                                  | MOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A 1          | 99         | 22 30         |
| .0         |            | HO.                                     | QPSK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50           | 200        | 20.85         |
| A. ano     | H MILE     | O.B                                     | RLA MO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50<br>50     | 0<br>25    | 20.66         |
| - C        |            | ORL                                     | D. W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50           | 49         | 20.76         |
| RLAL       |            | 2680                                    | QLA!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100          | 0          | 20.75         |
| WO.        |            | 2000                                    | Wes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 100        | 0.0%       | 20.75         |
| QLA!       | 44.400     | Me                                      | B ala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110          | 49         | 20.83         |
| More       | 41490      | AB SRL                                  | MOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 1<br>- 3 1 | 99         | 20.71         |
| OB.        |            | MIC                                     | 16-QAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 Y          | 10.        |               |
| "IO        |            | AB                                      | SELLE MIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50           | 0          | 19.81         |
| .3         |            | "OBL" M                                 | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50<br>50     | 25         | 20 16         |
|            |            | CAL ST                                  | The contract of the contract o | 5()          | 49         | 19 92         |





# LTE BAND 41 (Continue)

| Band Width   | Channel  | Freq.(MHZ)     | Modulation | RB Cor   | nfiguration | Average Power  |
|--------------|----------|----------------|------------|----------|-------------|----------------|
| Barra Wiatir | Grianino | 1 1041(111112) | Modulation | RB Size  | RB Offset   | (dBm)          |
| , Ale        | ORIL.    | Wo.            | , Alb      | 1        | 0           | 22.62          |
| ORL          | MO.      | 3LAB           | ORL        | III I    | 37          | 22.52          |
| In. VE       | RLIN     | MOL            | a m        | 1 081    | 74          | 22.61          |
| ORL          | MO       | -8 N           | QPSK       | 36       | <b>ॐ</b> 0  | 21.65          |
| M            | AB L     | The Moles      | lu lu      | 36       | 18          | 21 72          |
| LAB          | St. Mo   | .0             | ALAID OF   | 36       | 35          | 21.67          |
| M            | A.B      | 2503.5         | Oken Un    | 75       | 0           | 21 70          |
| ZLAB         | ORL      | 1000.0         | 2LA        | 01       | 11100       | 21 53          |
| MOL          | 20705    | RLA            | "IOFC"     | 1 3      | 37          | 21 43          |
| LAB          | 39725    | MO.            | e " LA     | 1.01     | 74          | 21.60          |
| Moles        | Ulle     | AB GL          | 16-QAM     | 36       | 0           | 20.71          |
| .0           | LAB      | INO.           | . 6        | 36       | 18          | 20.52          |
| LIA MO       | M        | A.B            | RLA MIC    | 36       | 35          | 20.39          |
| .0           | 2LAB     | ORL            | 0,         | 75       | 0           | 20.51          |
| RLA          | 40.      | U.S.           | -QLA       | 1        | 0           | 22 51          |
| Mo.          | LAB      | ORL            | Mo.        | 1 21     | 37          | 22 37          |
| RLA          | MOFE     | MILE           | B RLA      | 140      | 74          | 22.40          |
| MO.          | . 6      | LAB ORL        | QPSK       | 36       | 0           | 21 47          |
| D.B          | M        | M              | Q.B        | 36       | 18          | 21 38          |
| " MO         | . 6      | LAB            | ORL. MC    | 36       | 35          | 21 44          |
| 15MHz        | RLA      | 2593           | 0.B        | 75       | 0           | 21 52          |
| 10111112     | Mo.      | 2000           | OFF        | 1        |             | 21 42          |
| O.B          | 40000    | LAB MORL       | B MC ORLAS | 1 084    | 37          | 21 59          |
| ORL          | 40620    |                |            | 1        | 74          | 21 32          |
| MILE         | NB S     |                | 16-QAM     | 36       | 0           | 20.56          |
| AB C         | Tr. MO.  | . 6            | LAB        | 36       | 18          | 20.71          |
| M            | 0.B      | QLA!           | Okr. We    | 36       | 35          | 20.28          |
| LAB          | ORL      | WO.            | LAB        | 75       | 0           | 20.37          |
| MORT         | III OB   | QL.            | V/O5       | 1        | 0           | 22 22          |
| LAB          | ORLAN    | Mor            | S AF       | 1.0      | 37          | 21.87          |
| MORY         | ME       | all all        | MORE       | 4        | 74          | 22 35          |
| .0           | LAP      | MOL            | QPSK       | 36       | 0           | 20 84          |
| A.O          | H W      | AB.            | PLA.       | 36       | 18          | 20.53          |
| · Ø          | LAB      | ORL            | D          | 36<br>36 | 35          | 20.79          |
| RLA          | MOR      | 2682.5         | RLA        | 75       | 0           | 20.92          |
| NO.          | T.AB     | 2002.0         | West of    | 1        | 0.0         | 20.88          |
| QLA!         | 44545    | W.             | 3 ala      | 100      | 37          | 20.67          |
| MO           | 41515    | AB ORL         | "IO"       | √9 1     |             | 20.67          |
| NB .         | LA       | We             | 16-QAM     | 36       | 74          | 19 93          |
| MO           | · Q ///  | LAB            | PLI.       |          | 18          | 22.7           |
| <b>S</b>     | QLA.     | "OBE W         | .0         | 36<br>36 | 18<br>35    | 19 75<br>40 66 |
|              | 'VO2     | W. P.          | al. h      | 75       | 0           | 19.66<br>19.84 |





# LTE BAND 41 (Continue)

| Band Width | Channel  | Freq.(MHZ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Modulation | RB Cor     | nfiguration | Average Powe   |
|------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|-------------|----------------|
| Dana Watin | Onao.    | 1 1091(111112)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Modulation | RB Size    | RB Offset   | (dBm)          |
| AB         | OR.L.    | 110.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , Alb      | 31         | 0           | 22.72          |
| ORL        | MO       | LAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ORL        | III I      | 24          | 22.62          |
| W. AE      | RLIN     | MOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a m        | 1 081      | 49          | 22.68          |
| ORL        | Mo       | -B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | QPSK       | 25         | <i>№</i> 0  | 21 53          |
| M          | AB L     | STA. MOK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | W          | 25         | 12          | 21 43          |
| LAB        | SIL. MIC | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | al Alb     | 25         | 24          | 21.66          |
| M          | O.B      | 2501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Oke. III.  | 50         | 0           | 21 nn<br>21 71 |
| LAB        | ORL      | 11100 200 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | aL Ale     | 01         | M 0         | 21 34          |
| Mok        | 20700    | RLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | "IOFE"     | 1 1        | 24          | 21 52          |
| T.A.F      | 39700    | Mo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e " LA     | 14012      | 49          | 21 44          |
| MORE       | M        | AB al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16-QAM     | 25         | 0           | 20.85          |
| . 6        | LAB      | Er. Mo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0          |            | 62.7        |                |
| LAT        | in the   | o.B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RLAN       | 25<br>25   | 12          | 20 42<br>20 62 |
| Co Tri     | LAB      | ORL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D. 8 41.   | 25         | 24          | 100            |
| QLA.       | 108      | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | al.A       | 50         | 0           | 20.32          |
| MOL        | In. DE   | ORLAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | More       | 1          | 0           | 22 41          |
| 2LAV       | ,ORL     | MC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G LA       | 1,01       | 24          | 22.36          |
| MOL        | July 1   | AB ORL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QPSK       | 1          | 49          | 22 29          |
| .6         | M        | Br. Mo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .6         | 25         | 0           | 21 53          |
| -MO        | IVI MILE | AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | arla and   | 25         | 12          | 21 38          |
| 40141      | CLAB.    | 0500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20 1       | 25         | 24          | 21 16          |
| 10MHz      | Moles    | 2593                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cat Day    | 50         | 0           | 21 46          |
| Mo.        | LAF      | ORL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mo.        | 1          | 0           | 21 62          |
| RLA        | 40620    | MIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S QLA      | 1          | 24          | 21 43          |
| WO.        | . 6      | LAB ORL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16-QAM     | 1          | 49          | 21 71          |
| NB .       | LA       | By We                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60         | 25         | G. 0 «      | 20 37          |
| WO WIO     | Q ///    | AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SELL MO    | 25         | 12          | 20 59          |
| 3          | QLA.     | "OBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NB.        | 25         | 24          | 20.25          |
| ORL IN     | 401      | M. OB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A Line     | 50         | 0           | 20.36          |
| INC. VE    | 3LAV     | JORL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MC         | 1          | 0           | 22 16          |
| RLA        | MOL      | S W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BALL       | 1.0        | 24          | 22.07          |
| MIC        | .0       | LAT TORL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | QPSK       | 1          | 49          | 22 31          |
| AB         | Lie MO   | the state of the s | Qi Oit     | 25         | 0 411       | 20.75          |
| MO         | H        | 2LAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OBJ. MO    | 25         | 12          | 21.06          |
| A.B        | RLA      | MOL N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OB         | 25         | 24          | 20.95          |
| ORL        | Mo.      | 2685                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ORL.       | 50         | 0           | 20.66          |
| aB         | -QLA     | MORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mr OF      | 1          | 0.08        | 20.73          |
| ORL        | 41540    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ORLIN      | 1          | 24          | 20.86          |
| M          | N 10 10  | A AORL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16 0 11    | <b>№</b> 1 | 49          | 20.39          |
| AP         | Tr. MO   | S. Mr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16-QAM     | 25         | 0           | 19 96          |
| MIC        | <b>S</b> | QLA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DEL MC     | 25         | 12          | 20.04          |
| AB         | ORLIN    | WOL W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AB         | 25         | 24          | 19.86          |
| ORL        | We C     | LAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ORIV       | 50         | 0           | 19 77          |





# LTE BAND 41 (Continue)

| Band Width | Channel   | Freq.(MHZ)                             | Modulation | RB Cor     | nfiguration | Average Powe |
|------------|-----------|----------------------------------------|------------|------------|-------------|--------------|
|            |           |                                        |            | RB Size    | RB Offset   | (dBm)        |
| ALA DE     | ORL       | Mo. S                                  | AB         | - P1       | WO.0        | 22 41        |
| MORL       |           | QL.A.F                                 | MORLE      | 1 6        | 12          | 22 32        |
| II.        |           | MOL                                    | O DOLLA    | 1081       | 24          | 22 51        |
| MORLE      |           | al al                                  | QPSK       | 12         | <i>ॐ</i> 0  | 21 43        |
| D Liv      | AB L      | Erra Mole                              | S. U.      | 12         | 6           | 21 38        |
| AL         |           | <b>S</b>                               | QLAL NO    | 12         | 11          | 21 16        |
| 6          |           | 2498.5                                 | 2,0        | 25         | 0           | 21 56        |
| QLA!       |           | MP VB                                  | 21 has     | 1          | 0           | 21 38        |
| NO.        | 39675     | ORLAN                                  | MOL        | 1 .        | 12          | 21 42        |
| QLA!       | 39073     | INC                                    | 40.044     | 1.0        | 24          | 21 26        |
| MOL        |           | AB ORL                                 | 16-QAM     | 12         | 0           | 20.48        |
| NB .       |           | luc luc                                | <b>S</b>   | 12         | 6           | 20.39        |
| MO         |           | LAB                                    | JRL MO     | 12         | 11          | 20.75        |
| D.B        | QLA!      | *OP**                                  | _0         | 25         | 4010        | 20.61        |
| ORLA       | Mo.       | All                                    | ORL        | 1 1        | 0           | 22.42        |
| AF AF      |           | MORL                                   | ME         | 1 1        | 12          | 22 38        |
| ORLAN      |           |                                        | ODOK       | 1          | 24          | 22 24        |
| Me         |           | AB BLAN MORE                           | QPSK       | <b>1</b> 2 | 0           | 21 52        |
| AB         | M<br>2593 | M NO                                   | LAB        | 12         | 6           | 21 39        |
| Me         |           | QLA.                                   | OLE WILL   | 12         | 11          | 21.08        |
| 5MHz       |           | 2593                                   | AB         | 25         | 410,0       | 21 33        |
| OPL        |           | 40620                                  | MORE       | Mile 1     | 0 0         | 21 37        |
| LAB        | 40620     |                                        | 16-QAM     | 1.081.     | 12          | 21 26        |
| MORE       | .0020     |                                        |            | 1          | 24          | 21 69        |
| 6          |           | Bright                                 |            | 12         | 0 1         | 20.42        |
| AL         |           | O.B                                    | al All     | 12         | 6 🌣         | 20.83        |
| . 6        |           | ORL                                    | D          | 12         | 11          | 20.63        |
| RLAI       | 40PL      | We The                                 | al Al      | 25         | 0           | 20.29        |
| No.        |           | ORL                                    | WO.        | 1          | 0           | 22 16        |
| RLA        |           | MIC                                    | 3 RLA      | 10         | 12          | 21 93        |
| MO         |           | AB ORL                                 | QPSK       | 1          | 24          | 22 42        |
| AB C       | LA        | IN INC.                                | QFSN       | 12         | 0 44        | 20 91        |
| "INO       | H         | LAB                                    | DRL. MO    | 12         | 6           | 20.73        |
| AB         |           | MOK. W                                 | O.B        | 12         | 11          | 20.62        |
| ORL        |           | 2687.5                                 | ORL.       | 25         | 0           | 20.71        |
| n. O.B     |           | MORE                                   | W. OE      | 1          | OORL        | 20.69        |
| ORL        | 41565     | لله الله                               | ORLE       | 10         | 12          | 20.74        |
| M          | 41303     | The Works                              | 16-QAM     | <b>ॐ</b> 1 | 24          | 20 59        |
| A.B        |           | ************************************** | 10-QAIVI   | 12         | 0           | 19.86        |
| Man        |           | RLA                                    | Die. Hills | 12         | 6           | 19.66        |
| LAB        |           | Mo.                                    | ALAE       | 12         | 11          | 19 92        |
| OF         | In B      | al A                                   | *O/v       | 25         |             | 19 57        |



# 11. MEASUREMENT OF CONDUCTED OUTPUT POWER

# CDMA 1xRTT Conducted power

|            |         | Frequency | Output |
|------------|---------|-----------|--------|
| Band       | Channel | (MHz)     | Power  |
| ODA44      | 1013    | 824.7     | 28.75  |
| CDMA       | 384     | 836.52    | 28.76  |
| BC 0       | 777     | 848.31    | 28.56  |
| EVDO of LA | 1013    | 824.7     | 26.78  |
| EVDO 0     | 384     | 836.52    | 26.94  |
| BC 0       | 777     | 848.31    | 26.97  |
| MO. VE     | 1013    | 824.7     | 28.14  |
| EVDO A     | 384     | 836.52    | 28.61  |
| BC 0       | 777     | 848.31    | 28.26  |
| ODNAA      | 25      | 1851.25   | 26.81  |
| CDMA       | 600     | 1880.0    | 26.84  |
| BC 1       | 1175    | 1908.75   | 26.89  |
| E\/DO 0    | 25      | 1851.25   | 26.71  |
| EVDO 0     | 600     | 1880.0    | 26.71  |
| BC 1       | 1175    | 1908.75   | 26.96  |
| E)/DO 4    | 25      | 1851.25   | 26.54  |
| EVDO A     | 600     | 1880.0    | 26.52  |
| BC 1       | 1175    | 1908.75   | 26.79  |
| CDMA       | 450     | 817.25    | 28.34  |
| BC 10      | 500     | 818.50    | 28.62  |
| Subclass 2 | 550     | 819.75    | 28.31  |
| EVDO 0     | 450     | 817.25    | 28.60  |
| BC 10      | 500     | 818.50    | 28.58  |
| Subclass 2 | 550     | 819.75    | 28.32  |
| EVDO A     | 450     | 817.25    | 28.31  |
| BC 10      | 500     | 818.50    | 28.60  |
| Subclass 2 | 550     | 819.75    | 28.57  |



| Pand       | Channal | Frequency | Output |
|------------|---------|-----------|--------|
| Band       | Channel | (MHz)     | Power  |
| CDMA       | 650     | 822.25    | 28.64  |
| BC 10      | 660     | 822.50    | 28.67  |
| Subclass 3 | 670     | 822.75    | 28.57  |
| EVDO 0     | 650     | 822.25    | 28.72  |
| BC 10      | 660     | 822.50    | 28.66  |
| Subclass 3 | 670     | 822.75    | 28.59  |
| EVDO A     | 650     | 822.25    | 28.62  |
| BC 10      | 660     | 822.50    | 28.62  |
| Subclass 3 | 670     | 822.75    | 28.64  |

# 2. Wifi average output power(ATN1)

| David | Oharan             | Frequency | (       | Output Power(dE | Bm)        |
|-------|--------------------|-----------|---------|-----------------|------------|
| Band  | Channel            | (MHz)     | 802.11b | 802.11g         | 802.11n 20 |
| Mo as | 1 <sub>al</sub> Ab | 2412      | 14.08   | 12.34           | 9.50       |
| Wifi  | 6                  | 2437      | 13.59   | 11.94           | 9.21       |
|       | 11                 | 2462      | 16.19   | 14.13           | 11.55      |

|      |         |           | Output     |
|------|---------|-----------|------------|
| Band | Channel | Frequency | Power(dBm) |
|      |         | (MHz)     | 802.11n40  |
| LAB  | 3       | 2422      | 9.12       |
| Wifi | 6       | 2437      | 9.31       |
|      | 9       | 2452      | 9.97       |



# 3. Wifi average output power(ANT2)

| Daniel | Chanal  | Frequency | С       | Output Power(dE | Bm)       |
|--------|---------|-----------|---------|-----------------|-----------|
| Band   | Channel | (MHz)     | 802.11b | 802.11g         | 802.11n20 |
| e w    | 10      | 2412      | 14.03   | 11.91           | 9.42      |
| Wifi   | 6       | 2437      | 13.51   | 11.46           | 9.21      |
| MC AB  | 11      | 2462      | 14.56   | 11.88           | 9.64      |

|         | -            | . V.      |                      |
|---------|--------------|-----------|----------------------|
| Band    | Channel      | Frequency | Output<br>Power(dBm) |
|         | G.I.G.III.G. | (MHz)     | 802.11n40            |
| 2LAF    | 3            | 2422      | 7.59                 |
| Wifi    | 6            | 2437      | 8.08                 |
| alae .o | 9 410        | 2452      | 8.22                 |

# 4. Wifi MIMO 2x2 average output power

|        |                           | Fraguency | Output Power(dBm) |
|--------|---------------------------|-----------|-------------------|
| Band   | d Channel Frequency (MHz) |           | MIMO 2x2          |
|        |                           | (1411 12) | 802.11n20         |
| ALMORE | 1 1111                    | 2422      | 12.47             |
| Wifi   | Wifi 6                    |           | 12.22             |
| MORL   | 11 🧀                      | 2452      | 13.71             |

| The state of the s |         |           | 76. 10.           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|-------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Frequency | Output Power(dBm) |
| Band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Channel | (MHz)     | MIMO 2x2          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | (**** :=/ | 802.11n40         |
| NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3       | 2422      | 11.43             |
| Wifi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6       | 2437      | 11.54             |
| B W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9       | 2452      | 12.19             |



# **12. TEST RESULTS LIST**

Summary of Measurement Results (CDMA BC0 Band)

| emperature: 21.0~23.8     | °C, humidity: 54~60%     | ó.                  | MC AB                 | RLAL              | MORIL                    | Mo          |
|---------------------------|--------------------------|---------------------|-----------------------|-------------------|--------------------------|-------------|
| Phantom<br>Configurations | Device Test<br>Positions | Device Test channel | SAR(W/Kg),<br>1g Peak | Scaling<br>Factor | Scaled SAR<br>(W/Kg), 1g | Plot<br>No. |
| E MO LAB                  | ORLAN MIC                | 1013                | 0.910                 | 1.059             | 0.964                    | 0           |
|                           | Back upward              | 384                 | 0.959                 | 1.057             | 1.014                    | 410         |
|                           | MORE                     | 777                 | 0.836                 | 1.081             | 0.904                    | B           |
| CDMA                      | ORLAS                    | 1013                | 0.847                 | 1.059             | 0.897                    | 0           |
| Body                      | Face upward              | 384                 | 0.807                 | 1.057             | 0.853                    | OFLA        |
| (15mm Separation)         | ORLA                     | 777                 | 0.789                 | 1.081             | 0.853                    |             |
|                           | Edge A                   | 10RLIN              | 0.320                 | LAB               | 0.346                    | 1110        |
|                           | Edge B                   | 384                 | 0.211                 | 1.081             | 0.228                    | B           |
|                           | Edge D                   | Mole                | 0.149                 |                   | 0.161                    | .0          |
| I ORL                     | 40, 70 m.                | 1013                | 0.843                 | 1.052             | 0.887                    | ORLA        |
|                           | Back upward              | 384                 | 0.859                 | 1.014             | 0.871                    |             |
| EVDO 0                    | E ME SLAE                | 777                 | 0.789                 | 1.007             | 0.795                    | MO          |
| Body<br>(15mm Separation) | Face upward              | I TLAB              | 0.707                 | MOL               | 0.717                    | B           |
|                           | Edge A                   | 204                 | 0.248                 | 1.014             | 0.251                    | .0          |
|                           | Edge B                   | 384                 | 0.205                 | 1.014             | 0.208                    | ORLA        |
|                           | Edge D                   | No.                 | 0.229                 |                   | 0.232                    |             |



# Summary of Measurement Results (CDMA BC1 Band)

| emperature: 21.0~23.8°    | C, humidity: 54~60%      | 6.                  | ELAB                  | ORLA              | WOLF. B.                 |             |
|---------------------------|--------------------------|---------------------|-----------------------|-------------------|--------------------------|-------------|
| Phantom<br>Configurations | Device Test<br>Positions | Device Test channel | SAR(W/Kg),<br>1g Peak | Scaling<br>Factor | Scaled SAR<br>(W/Kg), 1g | Plot<br>No. |
| AB GLAB                   | ORLAN MOR                | 25                  | 1.063                 | 1.045             | 1.136                    | -LAP        |
|                           | Back upward              | 600                 | 1.038                 | 1.037             | 1.154                    | O.          |
|                           | MOL SE IN                | 1175                | 1.192                 | 1.026             | 1.223                    | .0          |
| CDMA                      | S JORL                   | 25                  | 1.274                 | 1.045             | 1.331                    | 8 111.      |
| Body                      | Face upward              | 600                 | 1.268                 | 1.037             | 1.314                    |             |
| (15mm Separation)         | ORLE                     | 1175                | 1.315                 | 1.026             | 1.349                    | al.AF       |
|                           | Edge A                   | NIO,                | 0.413                 | RLAB              | 0.424                    | 0.          |
|                           | Edge B                   | 1175                | 0.159                 | 1.026             | 0.163                    | .,0         |
|                           | Edge D                   | MO. AB              | 0.141                 |                   | 0.145                    | 0           |
| "OEF" MO.                 | AB RLA                   | 25                  | 0.927                 | 1.069             | 0.991                    |             |
|                           | Back upward              | 600                 | 1.148                 | 1.069             | 1.227                    | al Ale      |
|                           | QLAS OF                  | 1175                | 1.013                 | 1.009             | 1.022                    | 0,          |
| EVDO 0                    | MO. OB                   | 25                  | 0.844                 | 1.069             | 0.902                    |             |
| Body                      | Face upward              | 600                 | 1.053                 | 1.069             | 1.126                    | 0           |
| (15mm Separation)         | OB III                   | 1175                | 0.968                 | 1.009             | 0.977                    |             |
| 3 ME                      | Edge A                   | (B)                 | 0.344                 | Mo                | 0.347                    | 2LAB        |
|                           | Edge B                   | 1175                | 0.128                 | 1.009             | 0.129                    | 0.          |
|                           | Edge D                   | LAB                 | 0.101                 |                   | 0.102                    | ~           |



# Summary of Measurement Results (CDMA BC10 Subclass 3 Band)

| Phantom<br>Configurations | Device Test<br>Positions | Device Test channel | SAR(W/Kg),<br>1g Peak | Scaling<br>Factor | Scaled SAR<br>(W/Kg), 1g | Plot<br>No. |
|---------------------------|--------------------------|---------------------|-----------------------|-------------------|--------------------------|-------------|
| S HONG IN                 | OFLAE MORLE              | 650                 | 1.083                 | 1.086             | 1.176                    | , AP        |
| AL MORL S N               | Back upward              | 660                 | 1.148                 | 1.079             | 1.239                    | ORL         |
| ALAB ORLAN                | MORE M                   | 670                 | 1.013                 | 1.104             | 1.118                    |             |
| CDMA                      | S ORLAN                  | 650                 | 0.844                 | 1.086             | 0.917                    | e la        |
| Body                      | Face upward              | 660                 | 1.049                 | 1.079             | 1.132                    |             |
| (15mm Separation)         | ORLA                     | 670                 | 0.956                 | 1.104             | 1.055                    | aLA!        |
|                           | Edge A                   | JEEL HO             | 0.355                 | 1.079             | 0.383                    | 0,0         |
| ELAB MORLE                | Edge B                   | 660                 | 0.279                 | 1.079             | 0.301                    |             |
| O. DE WALL                | Edge D                   | MO                  | 0.137                 | 1.079             | 0.148                    | B           |
| "OLF" ILO                 | as ala                   | 650                 | 1.090                 | 1.067             | 1.163                    |             |
| E RLAP                    | Back upward              | 660                 | 0.989                 | 1.081             | 1.069                    | al Al       |
| MO. OB                    | ELAB AN                  | 670                 | 1.008                 | 1.099             | 1.108                    | 0.          |
| EVDO 0                    | MO. NE                   | 650                 | 0.941                 | 1.067             | 1.004                    | 0           |
| Body                      | Face upward              | 660                 | 0.874                 | 1.081             | 0.945                    | 8           |
| (15mm Separation)         | OB M. SLA                | 670                 | 0.856                 | 1.099             | 0.941                    |             |
| E MORLAE N                | Edge A                   | A                   | 0.284                 | 1.081             | 0.307                    | TLAP        |
|                           | Edge B                   | 650                 | 0.201                 | 1.081             | 0.217                    | 0.          |
|                           | Edge D                   | AB                  | 0.224                 | 1.081             | 0.242                    |             |



#### Note:

- 1. The test distance separation refer to User Manual.
- 2. When the 1-g SAR for the mid-band channel or the channel with the highest output power satisfy the following conditions, testing of the other channels in the band is not required. (Per KDB 447498 D01 General RF Exposure Guidance v05r02)
  - ≤ 0.8 W/kg and transmission band ≤ 100 MHz
  - ≤ 0.6 W/kg and, 100 MHz < transmission bandwidth ≤ 200 MHz
  - ≤ 0.4 W/kg and transmission band > 200 MHz
- 3. IEEE Std 1528-2013 require the middle channel to be tested first. This generally applies to wireless devices that are designed to operate in technologies with tight tolerances for maximum output power variations across channels in the band. When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel must be used.
- 4. Per KDB 447498, when the SAR procedures require multiple channels to be tested and the 1-g SAR for the highest output channel is less than 0.8 W/kg and peak SAR is less than 1.6W/kg, where the transmission band corresponding to all channels is ≤ 100 MHz, testing for the other channels is not required.



#### Summary of Measurement Results (LTE Band 25 bandwidth 20MHz with QPSK 1RB)

| Phantom                   | Device Test | Device Test | SAR(W/Kg), | Scaling | Scaled SAR | Plo  |
|---------------------------|-------------|-------------|------------|---------|------------|------|
| Configurations            | Positions   | channel     | 1g Peak    | Factor  | (W/Kg), 1g | No   |
| E TAB                     | ORLAN MORE  | 26140       | 1.034      | 1.000   | 1.034      | aLA! |
| MOL                       | Back upward | 26365       | 1.143      | 1.002   | 1.145      | 0,   |
| QLAE AORLA                | MOL VE W    | 26590       | 1.028      | 1.012   | 1.040      |      |
| OF THE ST                 | ID NORL.    | 26140       | 0.958      | 1.000   | 0.958      | 8 6  |
| Body<br>(15mm Separation) | Face upward | 26365       | 0.967      | 1.002   | 0.969      |      |
| (15mm Separation)         | ORL, MO.    | 26590       | 0.917      | 1.012   | 0.928      | QLA! |
| CELAE MO. MORLAE          | Edge A      | 26140       | 0.489      | 1.000   | 0.489      | O.   |
|                           | Edge B      | 26140       | 0.247      | 1.000   | 0.247      | -40  |
| o all                     | Edge D      | 26140       | 0.168      | 1.000   | 0.168      | 0    |

# Summary of Measurement Results (LTE Band 25 bandwidth 20MHz with QPSK 50RB)

| Temperature: 21.0~23.8°   | C, humidity: 54~60%      | <b>6. 10 10</b>     | W. STUE               | ORLA              | More                     | B W.        |
|---------------------------|--------------------------|---------------------|-----------------------|-------------------|--------------------------|-------------|
| Phantom<br>Configurations | Device Test<br>Positions | Device Test channel | SAR(W/Kg),<br>1g Peak | Scaling<br>Factor | Scaled SAR<br>(W/Kg), 1g | Plot<br>No. |
| AB ME TRIAR               | Back upward              | AB AN               | 0.727                 | ORLA              | 0.797                    |             |
| MORL DELL MOV             | Face upward              | MORL                | 0.708                 |                   | 0.776                    | W.          |
| Body (15mm Separation)    | Edge A                   | 26140               | 0.354                 | 1.096             | 0.388                    |             |
| (15mm Separation)         | Edge B                   | "MO"                | 0.249                 |                   | 0.273                    | AB          |
|                           | Edge D                   | LLAP MOF            | 0.184                 |                   | 0.202                    | ORL         |



#### Summary of Measurement Results (LTE Band 25 bandwidth 20MHz with QPSK 50RB)

| Temperature: 21.0~23.8°   | C, humidity: 54~60%      | 6.                  | LAB                   | ORLAN             | WOLES OF                 | illo.       |
|---------------------------|--------------------------|---------------------|-----------------------|-------------------|--------------------------|-------------|
| Phantom<br>Configurations | Device Test<br>Positions | Device Test channel | SAR(W/Kg),<br>1g Peak | Scaling<br>Factor | Scaled SAR<br>(W/Kg), 1g | Plot<br>No. |
| Body                      | Back upward              | 20005               | 0.714                 | 1 and MO          | 0.733                    | 2LAB        |
| (15mm Separation)         | Face upward              | 26365               | 0.698                 | 1.026             | 0.716                    | O.          |

Additional LTE test requirement for 16QAM

Not required.

Additional LTE test requirement for other bandwidth



### Summary of Measurement Results (LTE Band 26 bandwidth 15MHz with QPSK 1RB)

| Temperature: 21.0~23.8°   | C, humidity: 54~60%      | 6.                  | NAB .                 | ORLA              | WOLES E                  | No.         |
|---------------------------|--------------------------|---------------------|-----------------------|-------------------|--------------------------|-------------|
| Phantom<br>Configurations | Device Test<br>Positions | Device Test channel | SAR(W/Kg),<br>1g Peak | Scaling<br>Factor | Scaled SAR<br>(W/Kg), 1g | Plot<br>No. |
| AB GLAS                   | Back upward              | 10                  | 0.708                 | MO                | 0.750                    | 6           |
| III NOW NE                | Face upward              | O'ELLE MO           | 0.640                 |                   | 0.678                    | 0,          |
| Body (15mm Separation)    | Edge A                   | 26865               | 0.259                 | 1.059             | 0.274                    | .01         |
| (15mm Separation)         | Edge B                   | MOL                 | 0.206                 |                   | 0.218                    | 8           |
|                           | Edge D                   | ORLAN               | 0.191                 |                   | 0.202                    |             |

### Summary of Measurement Results (LTE Band 26 bandwidth 15MHz with QPSK 36RB)

| Temperature: 21.0~23.8° | 5, Harrianty: 54~007 | 8           | OPLI       | 410     | - G N      | 6    |
|-------------------------|----------------------|-------------|------------|---------|------------|------|
| Phantom                 | Device Test          | Device Test | SAR(W/Kg), | Scaling | Scaled SAR | Plot |
| Configurations          | Positions            | channel     | 1g Peak    | Factor  | (W/Kg), 1g | No.  |
| AB GLAR                 | Back upward          | all the     | 0.628      | ORLA    | 0.687      |      |
| MORL Dodge              | Face upward          | MORL        | 0.607      |         | 0.664      | Mo   |
| Body (15mm Separation)  | Edge A               | 26865       | 0.227      | 1.094   | 0.248      |      |
| (15mm Separation)       | Edge B               | MO.         | 0.201      |         | 0.220      | o.B  |
|                         | Edge D               | LAP AOF     | 0.164      |         | 0.179      | ORL  |

Additional LTE test requirement for 16QAM

Not required.

Additional LTE test requirement for other bandwidth

Not required.

Additional LTE test requirement for 20MHz with QPSK 100RB

Not required.





#### Summary of Measurement Results (LTE Band 41 bandwidth 20MHz with QPSK 1RB)

| Temperature: 21.0~23.8°0  | C, humidity: 54~60%      | ó.                  | AB                    | ORLAN             | WOLE W                   |                 |
|---------------------------|--------------------------|---------------------|-----------------------|-------------------|--------------------------|-----------------|
| Phantom<br>Configurations | Device Test<br>Positions | Device Test channel | SAR(W/Kg),<br>1g Peak | Scaling<br>Factor | Scaled SAR<br>(W/Kg), 1g | Plot<br>No.     |
| AB GLAD                   | Back upward              | AB (1)              | 0.342                 | MO                | 0.355                    | LAB             |
| The More AB               | Face upward              | NATURE INC.         | 0.413                 |                   | 0.429                    | 0,              |
| Body                      | Edge A                   | 40620               | 0.434                 | 1.038             | 0.450                    | ,0 <sup>R</sup> |
| (15mm Separation)         | Edge B                   | MOL                 | 0.258                 |                   | 0.268                    | 8               |
| JORLA MON                 | Edge D                   | ORLIN               | 0.231                 |                   | 0.240                    |                 |

#### Summary of Measurement Results (LTE Band 41 bandwidth 20MHz with QPSK 50RB)

| Phantom<br>Configurations | Device Test<br>Positions | Device Test<br>channel | SAR(W/Kg),<br>1g Peak | Scaling<br>Factor | Scaled SAR<br>(W/Kg), 1g | Plot<br>No. |
|---------------------------|--------------------------|------------------------|-----------------------|-------------------|--------------------------|-------------|
| AB AR GLAR                | Back upward              | OB THE                 | 0.289                 | ORLA              | 0.303                    |             |
| NORL! Day NO.             | Face upward              | MORLIN                 | 0.384                 |                   | 0.402                    | Mo          |
| Body (15mm Separation)    | Edge A                   | 39750                  | 0.401                 | 1.047             | 0.420                    |             |
| (15mm Separation)         | Edge B                   | MO.                    | 0.234                 |                   | 0.245                    | NB          |
|                           | Edge D                   | LAE TOP                | 0.218                 |                   | 0.228                    | ORL         |

Additional LTE test requirement for 16QAM

Not required.

Additional LTE test requirement for other bandwidth

Not required.

Additional LTE test requirement for 20MHz with QPSK 100RB

Not required.





#### Note:

- 1. IEEE Std 1528-2013 require the middle channel to be tested first. This generally applies to wireless devices that are designed to operate in technologies with tight tolerances for maximum output power variations across channels in the band. When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel must be used.
- 2. Per KDB 447498, when the SAR procedures require multiple channels to be tested and the 1-g SAR for the highest output channel is less than 0.8 W/kg and peak SAR is less than 1.6W/kg, where the transmission band corresponding to all channels is ≤ 100 MHz, testing for the other channels is not required.
- 3. The WCDMA mode is test with 12.2kbps RMC and TPC set to all "1", if maximum SAR for 12.2kbps RMC is ≤ 75% of the SAR limit (i.e. 1.2W/Kg 1g) and maximum average output of each RF channel with HSDPA/HSUPA active is less than 1/4 dB higher than that measured without HSDPA/HSUPA using 12.2kbps RMC, according to KDB 941225D01v02, SAR is not required for this handset with HSPA capabilities. This module supports 3GPP release R7 HSPA+ using QPSK only without 16QAM in the uplink. So PBA is not required for HSPA+.



### Summary of Measurement Results (WLAN 802.11b Band ANT 1)

| Phantom Configurations | Device Test Positions | Device<br>Test<br>channel | SAR(W/Kg),<br>1g Peak | Duty<br>Cycle | Scaling<br>Factor (Duty<br>Cycle) | Scaling<br>Factor<br>(Power) | Scaled<br>SAR<br>(W/Kg), 1g | Plot<br>No. |
|------------------------|-----------------------|---------------------------|-----------------------|---------------|-----------------------------------|------------------------------|-----------------------------|-------------|
| OKT. III.              | Back upward           | RLAR                      | 0.238                 | Wo            | AB TO                             | LAB                          | 0.257                       | 9           |
| Body                   | Front upward          | 110                       | 0.134                 | 00.40/        | 4.000                             | 4.074                        | 0.145                       | NORL        |
| (15mm                  | Edge B                | 11                        | 0.124                 | 99.4%         | 1.006                             | 1.074                        | 0.134                       | 7           |
| Separation)            | Edge D                | AB III                    | 0.109                 | OPL           | MO.                               |                              | 0.118                       | 47          |

# Summary of Measurement Results (WLAN 802.11b Band ANT 2)

| Temperature: 21           | .0~23.8°C, humid         | dity: 54~60%              | . 110                 | - (c)                   | ZLAB                        | ORLA                         | MOR                         | 197         |
|---------------------------|--------------------------|---------------------------|-----------------------|-------------------------|-----------------------------|------------------------------|-----------------------------|-------------|
| Phantom<br>Configurations | Device Test<br>Positions | Device<br>Test<br>channel | SAR(W/Kg),<br>1g Peak | Duty<br>Cycle           | Scaling Factor (Duty Cycle) | Scaling<br>Factor<br>(Power) | Scaled<br>SAR<br>(W/Kg), 1g | Plot<br>No. |
| MORE                      | Back upward              | ORL                       | 0.201                 | S W                     | LAB                         | ORLAN                        | 0.224                       | Me          |
| Body                      | Front upward             | SHIP                      | 0.104                 | The same of the same of | MORE S                      | 4.407                        | 0.116                       | 4           |
| (15mm                     | Edge B                   | 11                        | 0.108                 | 99.4%                   | 1.006                       | 1.006                        | 0.120                       | AB          |
| Separation)               | Edge D                   | AB                        | 0.094                 | MORE                    | a me                        |                              | 0.105                       | le.         |

# Summary of Measurement Results (WLAN 802.11n20 MIMO 2x2)

| Temperature: 21           | .0~23.8°C, humi          | dity: 54~60%              | nO <sup>R</sup>       | , all         | RLA                         | MORE                         | We                          | AB.         |
|---------------------------|--------------------------|---------------------------|-----------------------|---------------|-----------------------------|------------------------------|-----------------------------|-------------|
| Phantom<br>Configurations | Device Test<br>Positions | Device<br>Test<br>channel | SAR(W/Kg),<br>1g Peak | Duty<br>Cycle | Scaling Factor (Duty Cycle) | Scaling<br>Factor<br>(Power) | Scaled<br>SAR<br>(W/Kg), 1g | Plot<br>No. |
| Body                      | Back upward              | AB                        | 0.228                 | ~             | A SLAB                      | ORLA                         | 0.245                       | AB W        |
| (15mm                     | Front upward             | 11                        | 0.161                 | 99.4%         | 1.006                       | 1.069                        | 0.173                       | RL          |
| Separation)               | Edge B                   | ORLA                      | 0.121                 |               | LAE OF                      |                              | 0.130                       | aLP.        |



#### Notes:

- 1. The EUT has two WLAN Tx antennas, but only 802.11n support MIMO 2x2
- 2. SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:
- 3. When the reported SAR of the highest measured maximum output power channel for the 0.8 W/kg, no further SAR testing is required for 802.11b DSSS exposure configuration is in that exposure configuration.
  - 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.
- 2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed.
- For held-to-ear and hotspot operations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is 0.4 W/kg, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is 0.8 W/kg or all test positions are measured.
- 5. Justification for test configurations for WLAN per KDB Publication 248227 D01DR02-41929 for 2.4 GHz WIFI single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR.



# 6. Scaling Factor calculation

| Band                  | Tune-up power tolerance(dBm)      | SAR test channel Power (dBm) | Scaling<br>Factor |
|-----------------------|-----------------------------------|------------------------------|-------------------|
| AB                    | RIAN MORE ME                      | 28.75                        | 1.059             |
| CDMA BC0              | Max output power =28(+1/-2)       | 28.76                        | 1.057             |
|                       | MORL MO. AB IN TRIAB              | 28.66                        | 1.081             |
| NO.                   | THE HORE MO                       | 26.78                        | 1.052             |
| EVDO 0                | Max output power =26(+1/-2)       | 26.94                        | 1.014             |
| BC 0                  | RLAD MORL MO. AB                  | 26.97                        | 1.007             |
| MORE W                | AB RIAB MORE W                    | 26.71                        | 1.069             |
| CDMA BC1              | Max output power =26(+1/-2)       | 26.54                        | 1.112             |
|                       | S I RIAL MORL MO.                 | 26.89                        | 1.026             |
| STATE OF STATE        | THE AE SLAD MORE                  | 26.71                        | 1.069             |
| EVDO 0                | Max output power =26(+1/-2)       | 26.71                        | 1.069             |
| BC 1                  | NE TIME MORLE W                   | 26.96                        | 1.009             |
| CDMA BC10             | HO OF CLAP                        | 28.64                        | 1.086             |
|                       | Max output power =28/(+1/-2)      | 28.67                        | 1.079             |
| Subclass 3            | HOP AE HE GLAS TOPLE              | 28.57                        | 1.104             |
| EVDO 0                | alde lost the ve                  | 28.72                        | 1.067             |
| BC 10                 | Max output power =28(+1/-2)       | 28.66                        | 1.081             |
| Subclass 3            | HOW AE IN TLAE                    | 28.59                        | 1.099             |
| Mo.                   | S SLAP TORL MC                    | 23.50                        | 1.000             |
| TE DANIDOS            | Max output power =23+-0.5(1RB)    | 23.49                        | 1.002             |
| LTE BAND25            | ALAE SORLE MOR AE IN              | 23.45                        | 1.012             |
| (QPSK)                | Max output power =22.5+-0.5(50RB) | 22.60                        | 1.096             |
|                       | Max output power =22+-0.5(100RB)  | 22.39                        | 1.026             |
| LTE BAND26            | Max output power =23.5+-0.5(1RB)  | 23.75                        | 1.059             |
| (QPSK)                | Max output power =22+-0.5(25RB)   | 22.11                        | 1.094             |
| TE BAND41             | Max output power =22+-0.5(1RB)    | 22.84                        | 1.038             |
| (QPSK)                | Max output power =21.5+-0.5(50RB) | 21.80                        | 1.047             |
| 802.11b ANT1          | Max output power =16+-0.5         | 16.19                        | 1.074             |
| 802.11b ANT2          | Max output power =14.5+-0.5       | 14.56                        | 1.107             |
| 802.11n20<br>MIMO 2x2 | Max output power =13.5+-0.5       | 13.71                        | 1.069             |



# 13. REPEATED SAR MEASUREMENT

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

|                    |               |              | Meas.S   | SAR(W/kg) | Largest to            |  |
|--------------------|---------------|--------------|----------|-----------|-----------------------|--|
| Band               | Test Position | Test Channel | Original | Repeated  | Smallest SAR<br>Ratio |  |
| CDMA BC0           | Back upward   | CLAB JOR     | 0.959    | 0.963     | 1.004                 |  |
| CDIVIA BCU         | Face upward   | 384          | 0.807    | 0.814     | 1.008                 |  |
| EVDO BC0           | Back upward   | ORLA         | 0.859    | 0.842     | 1.020                 |  |
| CDMA BC1           | Back upward   | S III        | 1.192    | 1.189     | 1.003                 |  |
| CDIVIA DC I        | Face upward   | MOK          | 1.315    | 1.298     | 1.013                 |  |
| CDMA BC 1 repeated | Face upward   | 1175         | 1.298    | 1.308     | 1.008                 |  |
| E)/DO DO4          | Back upward   | ORLAN        | 1.013    | 1.020     | 1.007                 |  |
| EVDO BC1           | Face upward   | S ME         | 0.969    | 0.973     | 1.004                 |  |
| CDMA DC40          | Back upward   | 660          | 1.148    | 1.140     | 1.007                 |  |
| CDMA BC10          | Face upward   | 660          | 1.049    | 1.041     | 1.008                 |  |
| EVDO BC10          | Back upward   | GEO.         | 0.989    | 0.980     | 1.009                 |  |
| EVDO BC10          | Face upward   | 650          | 0.941    | 0.948     | 1.007                 |  |
| LTE Bond 25        | Back upward   | 26265        | 1.143    | 1.150     | 1.006                 |  |
| LTE Band 25        | Face upward   | 26365        | 0.969    | 0.960     | 1.009                 |  |



# 14 MULTIPLE TRANSMITTERS EVALUATION

#### Stand-alone SAR

| Test distance: 10 | JOEL INC                      | AB RIAL MORE MIC AB                                                                            | CLAB           |
|-------------------|-------------------------------|------------------------------------------------------------------------------------------------|----------------|
| Band              | Highest power(mW) per tune up | 1-g SAR test threshold                                                                         | Test required? |
| WIFI(802.11b)     | 16.19                         | [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] | Yes            |
| WIFI(MIMO2x2)     | 13.71                         | • [√f(GHz)] ≤ 3.0 for 1-g SAR                                                                  | Yes            |

#### Simultaneous SAR

| al P | ORLA     | Simultaneous | transmission conditions | ION E WILLIAM        |
|------|----------|--------------|-------------------------|----------------------|
| Oke  | W        | WAN          | WLAN                    | Cum of MANANIS       |
| #    | LTE Data | CDMA         | 802.11b/g/n             | Sum of WWAN&<br>WLAN |
| 1    | × ×      | LAE ORLA     | ×                       | ×                    |
| 2    | 3 ORLA   | ×            | ×                       | ×                    |
| 3    | E W LAS  | X            | ×                       | × 11012              |
| 4    | × don    | SINE         | X NOW                   | ×                    |

#### Note:

- 1. When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the Wi-Fi transmitter and another WWAN transmitter. Both transmitter often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions. The "Portable Hotspot" feature on the handset was NOT activated, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal.
- 2. The hotspot SAR result may overlap with the body-worn accessory SAR requirements, per KDB 941225 D06, the more conservative configurations can be considered, thus excluding some unnecessary body-worn accessory SAR tests.
- 3. GSM supports voice and data transmission, though not simultaneously. WCDMA supports voice and data transmission simultaneously.



- 4. Simultaneous Transmission SAR evaluation is not required for BT and WiFi, because the software mechanism have been incorporated to guarantee that the WLAN and Bluetooth transmitters would not simultaneously operate.
- Per KDB 447498D01v05r01, Simultaneous Transmission SAR Evaluation procedures is as followed:
  - Step 1: If sum of 1 g SAR < 1.6 W/kg, Simultaneous SAR measurement is not required.
  - Step 2: If sum of 1 g SAR > 1.6 W/kg, ratio of SAR to peak separation distance for pair of transmitters calculated.
  - Step 3: If the ratio of SAR to peak separation distance is ≤ 0.04, Simultaneous SAR measurement is not required.
  - Step 4: If the ratio of SAR to peak separation distance is > 0.04, Simultaneous SAR measurement is required and simultaneous transmission SAR value is calculated.

(The ratio is determined by: (SAR1 + SAR2) ^ 1.5/Ri ≤ 0.04,

Ri is the separation distance between the peak SAR locations for the antenna pair in mm)

#### 6. Sum of the SAR for CDMA BC0+WiFi

| RF Exposure Test   |              | Simultaneous Tra | nsmission Scenario | Max ∑1-g  | SPLSR |  |
|--------------------|--------------|------------------|--------------------|-----------|-------|--|
| condition position | CDMA         | WiFi             | SAR(W/Kg)          | (Yes/ No) |       |  |
| RLAD               | Back upward  | 1.014            | 0.238              | 1.252     | No    |  |
| Face upwar         | Face upward  | 0.897            | 0.134              | 1.031     | No    |  |
| Dody               | Edge A       | 0.346            | 1082 / 110         | 0.346     | No    |  |
| Body               | Edge B       | 0.228            | 0.124              | 0.352     | No    |  |
| Edge C             | alab / north | 100              | 1                  | No        |       |  |
| 2LAB               | Edge D       | 0.161            | 0.109              | 0.270     | No    |  |



#### 7. Sum of the SAR for CDMA BC1+Wi-Fi

| RF Exposure             | Test               | Simultaneous Tran | nsmission Scenario | Max ∑1-g  | SPLSR     |
|-------------------------|--------------------|-------------------|--------------------|-----------|-----------|
| condition               | condition position | GPRS1900          | WiFi               | SAR(W/Kg) | (Yes/ No) |
| Back upward Face upward | 1.223              | 0.238             | 1.461              | No        |           |
|                         | Face upward        | 1.349             | 0.134              | 1.483     | No        |
| Body RLA                | Edge A             | 0.424             | RLP / MOR          | 0.424     | ∮ No △    |
| Body                    | Edge B             | 0.163             | 0.124              | 0.287     | No        |
|                         | Edge C             | AE / CRLA         | 107                | 10        | No        |
|                         | Edge D             | 0.145             | 0.109              | 0.254     | No        |

#### 8. Sum of the SAR for CDMA BC10+Wi-Fi

| RF Exposure     | Test        | Simultaneous Trar | nsmission Scenario | Max ∑1-g  | SPLSR     |
|-----------------|-------------|-------------------|--------------------|-----------|-----------|
| condition posit | position    | WCDMA850          | WiFi               | SAR(W/Kg) | (Yes/ No) |
| Dir.            | Back upward | 1.239             | 0.238              | 1.477     | No        |
|                 | Face upward | 1.132             | 0.134              | 1.266     | No        |
| Dody            | Edge A      | 0.383             | 100                | 0.383     | No        |
| Body            | Edge B      | 0.301             | 0.124              | 0.425     | No        |
| 00 II.          | Edge C      | ORL / MO          | 1 alab             | 10R1      | No        |
| ORLAN           | Edge D      | 0.148             | 0.109              | 0.257     | No        |

#### 9. Sum of the SAR for LTE Band 25+Wi-Fi

| RF Exposure        | Test        | Simultaneous Transmission Scenario |         | Max ∑1-g  | SPLSR    |  |
|--------------------|-------------|------------------------------------|---------|-----------|----------|--|
| condition position | position    | LTE Band 2                         | WiFi    | SAR(W/Kg) | (Yes/No) |  |
| -                  | Back upward | 1.145                              | 0.238   | 1.383     | No       |  |
|                    | Face upward | 0.969                              | 0.134   | 1.103     | No       |  |
| Pody               | Edge A      | 0.489                              | - 1 LE  | 0.489     | No       |  |
| Body               | Edge B      | 0.247                              | 0.124   | 0.371     | No       |  |
| S MC LAF           | Edge C      | More / S Mr                        | 1 1 CEL | 1011      | No       |  |
| MORL               | Edge D      | 0.168                              | 0.109   | 0.277     | No       |  |



#### 10. Sum of the SAR for LTE Band 26+Wi-Fi

| RF Exposure | Test        | Simultaneous Transmission Scenario |          | Max ∑1-g  | SPLSR     |  |
|-------------|-------------|------------------------------------|----------|-----------|-----------|--|
| condition   | position    | LTE Band 26                        | WiFi     | SAR(W/Kg) | (Yes/ No) |  |
| Body        | Back upward | 0.750                              | 0.238    | 0.988     | No        |  |
|             | Face upward | 0.678                              | 0.134    | 0.812     | ○ No      |  |
|             | Edge A      | 0.274                              | 1 60     | 0.274     | No        |  |
|             | Edge B      | 0.218                              | 0.124    | 0.342     | No        |  |
|             | Edge C      | Ogn / W                            | at / ala |           | No        |  |
|             | Edge D      | 0.202                              | 0.109    | 0.311     | No        |  |

#### 11. Sum of the SAR for LTE Band 41+Wi-Fi

| RF Exposure | Test        | Simultaneous Transmission Scenario |           | Max ∑1-g  | SPLSR     |  |
|-------------|-------------|------------------------------------|-----------|-----------|-----------|--|
| condition   | position    | LTE Band 41                        | WiFi      | SAR(W/Kg) | (Yes/ No) |  |
| Body        | Back upward | 0.355                              | 0.238     | 0.593     | No        |  |
|             | Face upward | 0.429                              | 0.134     | 0.563     | No        |  |
|             | Edge A      | 0.450                              | 1 1 LAB   | 0.450     | No        |  |
|             | Edge B      | 0.268                              | 0.124     | 0.392     | No        |  |
|             | Edge C      | Mo. 1 28 W                         | LAP / ORL | 10        | No        |  |
|             | Edge D      | 0.240                              | 0.109     | 0.349     | No        |  |

#### Note:

The Sum of the SAR is not greater than 1.6W/Kg SPLSR assessment is not required.



- 15. ANNEX A GENERAL INFORMATION
- 16. ANNEX B PHOTOGRAPHS OF THE EUT
- 17. ANNEX C PLOTS OF SAR TEST RESULTS
- 18. ANNEX D SYSTEM PERFORMANCE CHECK DATA





# 15. ANNEX A GENERAL INFORMATION

### 1. Identification of the Responsible Testing Laboratory

| Company Name:                 | Shenzhen Morlab Communications Technology Co., Ltd.                                                                              |  |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|
| Department:                   | Morlab Laboratory                                                                                                                |  |
| Address:                      | FL.3, Building A, FeiYang Science Park, No.8 LongChang Road, Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R. China |  |
| Responsible Test Lab Manager: | Mr. Su Feng                                                                                                                      |  |
| Telephone:                    | +86 755 36698555                                                                                                                 |  |
| Facsimile:                    | +86 755 36698525                                                                                                                 |  |

# 2. Identification of the Responsible Testing Location

| Name:     | Shenzhen Morlab Communications Technology Co., Ltd.    |  |
|-----------|--------------------------------------------------------|--|
| AP ARL MC | Morlab Laboratory                                      |  |
| Address:  | FL.3, Building A, FeiYang Science Park, No.8 LongChang |  |
|           | Road, Block 67, BaoAn District, ShenZhen, GuangDong    |  |
|           | Province, P. R. China                                  |  |



#### 3. List of Test Equipments

| No.    | Instrument                                                | Туре                                      | Cal. Date | Cal.<br>Due |
|--------|-----------------------------------------------------------|-------------------------------------------|-----------|-------------|
| MOZLA! | PC                                                        | Dell (Pentium IV 2.4GHz,<br>SN:X10-23533) | (n.a)     | (n.a)       |
| 2      | Network Emulator                                          | Aglient (8960, SN:10752)                  | 2015-2-21 | 1year       |
| 3      | Network Analyzer                                          | Agilent(E5071B ,SN:MY42404762 )           | 2015-9-26 | 1year       |
| 4      | Voltmeter                                                 | Keithley (2000, SN:1000572)               | 2015-9-24 | 1year       |
| 5      | Signal Generator                                          | Rohde&Schwarz (SMP_02)                    | 2015-9-24 | 1year       |
| 6      | Power Amplifier                                           | PRANA (Ap32 SV125AZ)                      | 2015-9-24 | 1year       |
| 7      | Power Meter                                               | Agilent (E4416A, SN:MY45102093)           | 2015-5-07 | 1year       |
| 8      | Power Sensor                                              | Agilent (N8482A, SN:MY41091706)           | 2015-5-07 | 1year       |
| 9      | Directional coupler                                       | Giga-tronics(SN:1829112)                  | 2015-9-24 | 1year       |
| 10     | Probe                                                     | Satimo (SN:SN 37/08 EP80)                 | 2015-8-17 | 1year       |
| 11     | Dielectric Probe Kit                                      | Agilent (85033E)                          | 2015-9-24 | 1year       |
| 12     | Phantom                                                   | Satimo (SN:SN_36_08_SAM62)                | 2015-9-24 | 1year       |
| 13     | Liquid Satimo(Last Calibration: 2015-10-16 to 2015-10-17) |                                           | N/A       | N/A         |
| 14     | Dipole 835MHz                                             | Satimo (SN 20/08 DIPC 99)                 | 2014-9-22 | 3year       |
| 15     | Dipole 1750MHz                                            | Satimo (SN 30/13 DIP1G750-260)            | 2014-9-22 | 3year       |
| 16     | Dipole 1900MHz                                            | Satimo (SN 30/13 DIP1G900-261)            | 2014-9-22 | 3year       |
| 17     | Dipole 2450MHz                                            | Satimo (SN 30/13 DIP2G450-263)            | 2014-9-22 | 3year       |
| 18     | Dipole 2600MHz                                            | Satimo (SN 30/13 DIP2G600-265)            | 2014-9-22 | 3year       |

\*\*\*\*\* FND OF RFPORT \*\*\*\*\*