A FIRST COURSE IN

ABSTRACT ALGEBRA

A FIRST COURSE

IN

ABSTRACT ALGEBRA

MAT3004 Notebook

Dr. Guang Rao

The Chinese University of Hongkong, Shenzhen

Contents

Ackno	owledgments	V11
Notat	tions	ix
1	Week1	1
1.1	Monday	1
1.1.1	Introduction to Abstract Algebra	1
1.1.2	Group	1
2	Week2	. 11
2.1	Tuesday	11
2.1.1	Review	11
2.1.2	Cyclic groups	11
3	Week3	. 17
3.1	Tuesday	17
3.2	Thursday	22
3.2.1	Cyclic Groups	22
3.2.2	Symmetric Groups	25
3.2.3	Dihedral Groups	28
3.2.4	Free Groups	29
4	Week4	. 31
4.1	Subgroups	31
4.1.1	Cyclic subgroups	32
4.1.2	Direct Products	36

4.1.3	Generating Sets	37
5	Week4	41
5.1	Reviewing	41
5.1.1	Theorem of Lagrange	43
6	Week5	49
6.1	Monday	49
6.1.1	Derived subgroups	52
6.2	Thursday	57
6.2.1	Homomorphisms	57
6.2.2	Classification of cyclic groups	61
6.2.3	Isomorphism Theorems	62

Acknowledgments

This book is from the MAT3004 in fall semester, 2018.

CUHK(SZ)

Notations and Conventions

 \mathbb{R}^n *n*-dimensional real space \mathbb{C}^n *n*-dimensional complex space $\mathbb{R}^{m \times n}$ set of all $m \times n$ real-valued matrices $\mathbb{C}^{m \times n}$ set of all $m \times n$ complex-valued matrices *i*th entry of column vector \boldsymbol{x} x_i (i,j)th entry of matrix \boldsymbol{A} a_{ij} *i*th column of matrix *A* \boldsymbol{a}_i $\boldsymbol{a}_{i}^{\mathrm{T}}$ *i*th row of matrix **A** set of all $n \times n$ real symmetric matrices, i.e., $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $a_{ij} = a_{ji}$ \mathbb{S}^n for all *i*, *j* \mathbb{H}^n set of all $n \times n$ complex Hermitian matrices, i.e., $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\bar{a}_{ij} = a_{ji}$ for all i, j $\boldsymbol{A}^{\mathrm{T}}$ transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{\mathrm{T}}$ means $b_{ji} = a_{ij}$ for all i,jHermitian transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{H}$ means $b_{ji} = \bar{a}_{ij}$ for all i,j A^{H} trace(A)sum of diagonal entries of square matrix A1 A vector with all 1 entries 0 either a vector of all zeros, or a matrix of all zeros a unit vector with the nonzero element at the *i*th entry e_i C(A)the column space of \boldsymbol{A} $\mathcal{R}(\boldsymbol{A})$ the row space of \boldsymbol{A} $\mathcal{N}(\boldsymbol{A})$ the null space of \boldsymbol{A}

 $\operatorname{Proj}_{\mathcal{M}}(\mathbf{A})$ the projection of \mathbf{A} onto the set \mathcal{M}

Chapter 1

Week1

1.1. Monday

1.1.1. Introduction to Abstract Algebra

The basic concepts include groups, rings, fields.

One topic is algebra, i.e., the solvability of polynomials. (From Galois Theory to analysis)

Example:
$$\frac{d\mathbf{y}}{d\mathbf{x}} = g(\mathbf{x}) \implies D\mathbf{y} = g(\mathbf{x})$$

with operatior $D := \frac{d}{dx}$. The operator D forms a ring, i.e.,

$$\{a_n(x)D^n + a_{n-1}(x)D^{n-1} + \dots + a_0(x)\} \mapsto \text{ring}$$

Second topic is number theory

Third topic is geometry, including *algebraic geometry*, *differential geometry*, *topology*, *finite geometry*, *affine geometry*, *algebraic graph theory*, *combinatorics*, with applications to coding theory, physics, crystallography chemestry.

1.1.2. Group

Definition 1.1 [Group] A group \mathcal{G} is a set equipped with a binary operation, i.e.,

$$*: \mathcal{G} \times \mathcal{G} \mapsto \mathcal{G}$$

such that:

- 1. Associativity: (a * b) * c = a * (b * c) for $\forall a, b, c \in \mathcal{G}$.
- 2. Existence of Identity: \exists an identity $e \in \mathcal{G}$ s.t. e * g = g * e = g for $\forall g \in \mathcal{G}$.
- 3. Existence of Inverse: $\forall g \in \mathcal{G}$, there exists an inverse g^{-1} s.t. $g^{-1} * g = g * g^{-1} = e$.

The size(order) of \mathcal{G} is denoted by $|\mathcal{G}|$.

- If a * b = b * a for $\forall a, b$, then \mathcal{G} is called an **abelian group**.
- If $|\mathcal{G}| = 1$, then \mathcal{G} is said to be **trivial**, otherwise \mathcal{G} is **nontrivial**.
- Similarly, the ternary operation means:

$$*: \mathcal{G} \times \mathcal{G} \times \mathcal{G} \mapsto \mathcal{G}$$

- The semigroup definition only requires the (1) condition; and the menoid requires the (1) and (2) conditions.
- Is \emptyset a group? By the second condition, it is not a group.

Given a set S with its associated operation *, to check (S,*) is a group, we need to check:

- 1. S is **closed** under the operation *, i.e., $a * b \in S$ for $\forall a, b \in S$
- 2. Associativity.
- 3. Existence of Identity
- 4. Existence of Inverse

Proposition 1.1 $(\mathbb{Q},+)$ is a group.

Proof. 1. For $\forall a, b \in \mathbb{Q}$, it is easy to show $a + b \in \mathbb{Q}$.

- 2. Associativity: (a + b) + c = a + (b + c) for $\forall a, b \in \mathbb{Q}$
- 3. Existence of Identity: Take the identity $0 \in \mathbb{Q}$, we have 0 + a = a + 0 = a for $\forall a \in \mathbb{Q}$.
- 4. Existence of Inverse: For $\forall a \in \mathbb{Q}$, it follows that $(-a) \in \mathbb{Q}$ s.t. (-a) + a = a + (-a) = 0.

Note that (\mathbb{Q}, \cdot) is not a group since inverse does not exist.

R Note that the existence of identity is unique, which will be shown in the future.

Proposition 1.2 (u_m, \cdot) is a group, where

$$u_m = \{1, \xi^m, \dots, \xi_m^{m-1}\}$$

with $\xi^m = 1$ and $\xi \neq 1$.

Proof. 1. Note that for $\forall \xi^j, \xi^k \in u_m$, we have

$$\xi^{j} \cdot \xi^{k} := \xi^{j+k} = \begin{cases} \xi^{j+k}, j+k \leq m-1 \\ \xi^{j+k-m}, j+k \geq m \end{cases}$$

- 2. The associativity is easy to show.
- 3. Take the identity e = 1.
- 4. For $\forall \xi^k \in u_m$, we take the inverse ξ^{m-k} .

Proposition 1.3 The set $\mathcal{G} = \{\text{bijections of } \mathbb{R}\}$ associated with the **conposition** operator is a group.

Definition 1.2 [bijection] The bijection contains **injective**, i.e., f(x) = f(y) implies x = y; and **supjective**, i.e., $\forall y \in \mathcal{B}, \exists x \in \mathcal{A} \text{ s.t. } f(x) = y$.

Proof. 1. $\forall f,g \in \mathcal{G}$,

• Injective: take $x, y \in \mathbb{R}$ s.t. $(f \odot g)(x) = (f \odot g)(y)$, it follows that

$$f(g(x)) = f(g(y)) \implies g(x) = g(y) \implies x = y.$$

- Subjective: take $y \in \mathbb{R}$ s.t. f(z) = y. Hence, $\exists x \in \mathbb{R}$ s.t. g(x) = z, which implies f(g(x)) = y.
- 2. For any functions f, g, $h \in \mathcal{G}$,

$$((f \odot g) \odot h)(x) = (f \odot g)(h(x)) = f(g(h(x))), \forall x \in \mathbb{R}$$

Similarly,

$$(f \odot (g \odot h))(x) = f((g \odot h)(x)) = f(g(h(x))), \forall x \in \mathbb{R}$$

3. Define $e: x \mapsto x$. Then $e \in \mathbb{G}$. It follows that

$$(e * g)(x) = e(g(x)) = g(x)$$

Similarly, (g * e)(x) = g(x). Hence, *e* is the identity.

4. For $\forall f \in \mathcal{G}$, take $f^{-1}: f(x) \mapsto x$. Firstly verify f^{-1} is a bijection. Then we have

$$f^{-1} \odot f = f \odot f^{-1} = e$$
.

Recall a definition from Linear Algebra:

$$GL(n,\mathbb{R}) := \{ \mathbf{A} \in \mathcal{M}_n(\mathbb{R}) \mid \det(\mathbf{A}) \neq 0 \}$$

where $\mathcal{M}_n(\mathbb{R})$ denotes the set of $n \times n$ matrices over \mathbb{R} .

Proposition 1.4 The set $GL(n,\mathbb{R})$ associated with the matrix multiplication operator is the general linear group.

Proof. 1. $\forall A, B \in GL(n, \mathbb{R})$, we have $AB \in GL(n, \mathbb{R})$ since

$$\det(\mathbf{A}\mathbf{B}) = \det(\mathbf{A})\det(\mathbf{B}) \neq 0$$

- 2. Associativity of matrix multiplication is easy to verify
- 3. Take the identity $e := I_n$
- 4. Inverse is A^{-1} .

 \mathbb{R} SL $(n,\mathbb{R}) := \{ \mathbf{A} \in \mathcal{M}_n(\mathbb{R}) \mid \det(\mathbf{A}) = 1 \}$ is a special linear group.

Proposition 1.5 Let $n \in \mathbb{Z}^+$, for the set

$$\mathbb{Z}_n := \{0, 1, \dots, n-1\}$$

associated with the operation

$$+_n$$
 such that $a+_nb=\begin{cases} a+b, & \text{if } a+b\leq n-1\\ a+b-n, & \text{if } a+b\geq n \end{cases}$

Proof. 1. Closed under operation

2. Associativity:

$$(a +_n b +_n c) = a + b + c \in \mathbb{Z}_n \text{ or } a + b + c - n \in \mathbb{Z}_n \text{ or } a + b + c - 2n \in \mathbb{Z}_n$$

- 3. Identity?
- 4. Inverse?

In the future we abuse the operator + to denote the $+_n$ for \mathbb{Z}_n .

Theorem 1.1 Given a sequence of elements $g_1, ..., g_n$ in the group \mathcal{G} associated with \cdot , the product is independent from adding brackets.

Proof. We show it by induction. Let $\mathcal{P}(n)$ denotes the product is the same whatever different ways of putting brackets on g_1, \dots, g_n

- 1. Easy to verify $\mathcal{P}(1)$ is true.
- 2. Assume $\mathcal{P}(n)$ is true for $n \leq k$. Consider n = k + 1. For $\forall m \leq n$, we have

$$(g_1g_2...g_m)(g_{m+1}...g_{k+1})$$

$$= (g_1(g_2...g_m))(g_{m+1}...g_{k+1})$$

$$= g_1((g_2...g_m)(g_{m+1}...g_{k+1}))$$

$$= g_1(g_2...g_{k+1})$$

$$= g_1...g_{k+1}$$

R Theorem (1.1) shows that given a sequence of elements multiplied together, we do not need to specify the order of operations that performed.

Moreover, for **abelian** groups, the group is unque regardless of the ordering of elements.

Theorem 1.2 Each group $(\mathcal{G},*)$ has the unique identity.

Proof. Let $e,e' \in \mathcal{G}$ be two identites. By definition,

$$e' = e' * e = e$$
.

Theorem 1.3 Let \mathcal{G} be a group, then g^{-1} is unique for any $g \in \mathcal{G}$.

Proof. Let h_1, h_2 be two inverses of $g \in \mathcal{G}$, by definition,

$$h_1 = h_1 \cdot e = h_1 \cdot (gh_2) = (h_1g)h_2 = e \cdot h_2 = h_2.$$

 \mathbb{R} Due to Theorem(1.1) to (1.3), it makes sense to define

$$g^n := \underbrace{g \cdot g \cdots g}_{n \text{ times}}, \qquad g^{-n} := \underbrace{g^{-1} \cdot g^{-1} \cdots g^{-1}}_{n \text{ times}}, \qquad g^0 := e.$$

Proposition 1.6 Let (\mathcal{G}, \cdot) be a group, then

1.
$$(g^{-1})^{-1} = g, \forall g \in \mathcal{G}$$

2.
$$(ab)^{-1} = b^{-1}a^{-1}, \forall a, b \in \mathcal{G}$$

3.
$$g^m \cdot g^n = g^{m+n}$$
, $\forall g \in \mathcal{G}, m, n \in \mathbb{Z}$.

In fact, we can redefine groups as the semigroups with a weaker condition.

Definition 1.3 [Group]

- ullet A group ${\mathcal G}$ is a **semigroup** with a binary operation \cdot such that
 - There exists a left identity $e \in \mathcal{G}$ s.t.

$$e \cdot a = a$$
, $\forall a \in \mathcal{G}$

– For each $a \in \mathcal{G}$, there exists a left inverse $a^{-1} \in \mathcal{G}$ s.t.

$$a^{-1}a = e$$
.

- ullet A set ${\mathcal G}$ equipped with a binary operation \cdot is said to be a **semigroup** if
 - 1. It is closed under the operation \cdot
 - 2. It satisfies the associativity.

Proposition 1.7 The definition(1.1) adn definition(1.3) are equivalent.

Proof. It suffices to show that the left identity and left inverse are essentially identity and inverse, respectively.

1. Suppose a^{-1} is the left inverse of a, we have

$$(a^{-1})^{-1}a^{-1}a = ((a^{-1})^{-1}a^{-1})a = ea = a$$

It follows that

$$aa^{-1} = (a^{-1})^{-1}a^{-1}aa^{-1}$$

$$= (a^{-1})^{-1}(a^{-1}a)a^{-1}$$

$$= (a^{-1})^{-1}ea^{-1}$$

$$= e$$

2. Suppose e is the left identity, it follows that

$$ae = a(a^{-1}a) = (aa^{-1})a = ea = a$$

Similarly, we can define a group with help of right identities and right inverses; but we cannot define a group by left identities and right inverses. Here is a counterexample:

■ Example 1.1 Let $(\mathcal{G}_{r}*)$ be a group with at least 2 elements such that

$$a*b=b$$
, $\forall a,b \in \mathcal{G}$

Note that \mathcal{G} is closed under * and associative. The group \mathcal{G} has left identities and rihgt inverses. But \mathcal{G} is not a group by definition.

If a group is **finite**, then its operation can be described by its Cayley table, or multiplication table.

■ Example 1.2 For a group $\mathcal{G} = \{e,a\}$ equipped with *, its Cayley table is given by:

*	e	а
e	e	а
а	а	e

For a group $(\mathbb{Z}_6,+)$, its Cayley table is given by:

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

- Note that a group can be described by a cayley table. But not all cayley tables define a group.
- R It is usually messy to check whether the cayley table defines a group. There are a few necessary conditions we can examine (to exclude Cayley Tables that don't define groups):
 - It has a row and column that is identical to the list of the elements
 - The elements in each row and each column must be all distinct.

Chapter 2

Week2

2.1. Tuesday

2.1.1. Review

Note that a group has the property of closeness, associatity, identity and its inverse

2.1.2. Cyclic groups

Definition 2.1 [Ablian] Let $(\mathcal{G},*)$ be a group, it is said to be ablian if

$$a*b=b*a$$
, $\forall a,b \in \mathcal{G}$

Definition 2.2 [Order] Let \mathcal{G} be a group with the identity e. The **order** if an element $g \in \mathcal{G}$ is denoted by |g|, i.e., the smallest $n \in \mathbb{N}^+$ such that $g^n = e$. If $|g| = \infty$, then g has **infinite order**.

Definition 2.3 [Periodic Group] A group is said to be

- 1. periodic (torsion) if every element from this group is of finite order.
- $2. \ \ \textbf{torsion-free} \ \ \text{if every non-identity has infinite order}.$

Note that not torsion is not equivalent to torsion-free; not torsion-free is not equivalent

to torsion.

Proposition 2.1 If $|\mathcal{G}| < \infty$, then $|g| < \infty$ for $\forall g \in \mathcal{G}$.

Proof. If $|g| = \infty$, then

$$\{e,g,g^2,\cdots,g^n,\ldots\}\subseteq\mathcal{G},$$

which implies $|\mathcal{G}| = \infty$.

Proposition 2.2 Let \mathcal{G} be a group with identity e. If $g^n = e$ for some $n \in \mathbb{N}^+$, then |g||n.

Proof. Let $m := |g| \le n$. Recall the ideas from discrete mathematics:

Theorem 2.1 — well-ordering principle. Any $S \subseteq \mathbb{N}$ has a least element (Axiom).

Theorem 2.2 — **Division Theorem.** For $\forall m \in \mathbb{Z}$ and $n \in \mathbb{N}^+$, there always $\exists q, r \in \mathbb{Z}$ such that

$$m = nq + r$$
,

where $0 \le r < n$.

Note that the power g^n can be rewritten as:

$$g^n := g^{mq+r} = (g^m)^q \cdot g^r = e.$$

Since $(g^m)^q$ equals to e, we imply $g^r = e, r < m$, i.e., r = 0.

Not that the condition $n \in \mathbb{N}^+$ can be relaxed into $n \in \mathbb{Z}$.

Definition 2.4 [cyclic] A group \mathcal{G} is cyclic if there $\exists g \in \mathcal{G}$ such that for $\forall x \in \mathcal{G}$, there always $\exists n \in \mathbb{Z}$ such that

$$x = g^n$$
.

We rewrite the group as $\mathcal{G}=< g>$, we call g as the **generator** of \mathcal{G} . The notation < g>

means:

$$\langle g \rangle := \{ \cdots, g^{-2}, g^{-1}, e.g, g^2, \cdots \}$$

Proposition 2.3 Given a group \mathcal{G} and $g \in \mathcal{G}$, we have $|\langle g \rangle| = |g|$.

Proof. • If $|g| = \infty$, the result is trivial.

• If |g| = n, we imply $|\langle g \rangle| = |\{e, g, ..., g^{n-1}\}| = n$.

Definition 2.5 Let $a,b \in \mathbb{Z}$ not all zero. The greatest common divisor is defined as:

gcd(a,b) := the greatest integer that divides a and b.

Theorem 2.3 — **Bezout**. Provided with $a,b \in \mathbb{Z}$ not all zero. Then there exists $s,t \in \mathbb{Z}$ such that

$$sa + tb = \gcd(a, b)$$

- Example 2.1 1. (\mathbb{Z}_{+}) is cyclic with generator ± 1
 - 2. $(\mathbb{Z}_n,+)=< k>$, where $\gcd(k,n)=1$. This is because we can always find s>0 and t<0 such that sa+tb=1, i.e.,

$$1 = \underbrace{k + \dots + k}_{s \text{ terms}} \in \mathbb{Z}_n$$

3. $(u_m,\cdot)=<\xi_m^k>$, where $\xi_m=\exp(\frac{2\pi i}{m})$ and $\gcd(k,m)=1$. This is because we can similarly consturct s>0 s.t. $(\xi_m^k)^s=\xi_m$.

Proposition 2.4 Every cyclic group is abelian.

Proof. As $\mathcal{G} = \langle g \rangle$, for $\forall x, y \in \mathcal{G}$, we have

$$x \cdot y = g^m \cdot g^n = g^{m+n} = g^n \cdot g^m = y \cdot x.$$

The converse of proposition(2.4) is not true. For example, $(\mathbb{Q},+)$ is abelian, but it is not cyclic, i.e., if $(\mathbb{Q},+)=<\frac{n}{m}>$, we find $\frac{n}{2m}\notin<\frac{n}{m}>$.

Definition 2.6 Let X be a set. A **permutation** of X is a **bijection** of X. We denote

$$\mathsf{Sym}(X) = \{\mathsf{all} \ \mathsf{permutations} \ \mathsf{of} \ X\}$$

Proposition 2.5 Sym(X) is a group under composition operation.

Proof. 1. For $\forall \alpha, \beta \in \text{Sym}(X)$, we have $\alpha \circ \beta \in \text{Sym}(X)$ as the composition of bijections is also bijection.

- 2. For $\forall \alpha, \beta, \gamma \in \operatorname{Sym}(X)$, we have $(\alpha \circ \beta) \circ \gamma = \alpha \circ (\beta \circ \gamma)$.
- 3. identity = $id \in Sym(X)$
- 4. For $\forall \sigma \in \text{Sym}(X)$, we choose $\rho \in \text{Sym}(X)$ s.t.

$$\rho: \sigma(x) \mapsto x, \forall x \in X$$

It follows that $\rho \circ \sigma = id$, since

$$\sigma \circ \rho(\sigma(x)) = \sigma(\rho \circ \sigma(x)) = \sigma(x)$$

Let $X = \{1, 2, ..., n\}$, we denote $\mathbb{S}_n = \operatorname{Sym}(X)$. Describe $\sigma \in \mathbb{S}_n$ by:

$$\begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$

Note that $|S_n| = n!$

Example 2.2 Consider $\mathcal{G} := \mathbb{S}_3$, then $\sigma, \beta \in \mathcal{G}$:

$$\sigma := \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} := (1,2,3) \qquad \beta := \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} := (1,2)$$

Then we compute the composite $\sigma\circ\beta$:

$$\sigma \circ \beta = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

and $\beta \circ \sigma$:

$$\beta \circ \sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

and $\sigma \circ \sigma \circ \sigma$:

$$\sigma \circ \sigma \circ \sigma = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}^3 = id,$$

which is said to be 3-cycle, which will be talked in future.

R In general, S_n is not **ablian** for $n \ge 3$.

In general, we write the *k*-cycle permutation as:

$$\alpha = (i_1, \ldots, i_k)$$

where $i_1 \mapsto i_2 \mapsto i_3 \mapsto \cdots \mapsto i_k \mapsto i_1$.

■ Example 2.3 Consider $\sigma = (15)(246) \in S_6$, i.e.,

$$\sigma = 1 \mapsto 5 \mapsto 1;$$
 $2 \mapsto 4 \mapsto 6 \mapsto 2;$ $3 \mapsto 3$

and $\alpha=(13)(45)\in\mathbb{S}_6.$ We study the composition $\sigma\circ\alpha$:

$$\sigma \circ \alpha = [(15)(246)] \circ [(13)(45)] = (135624)$$

and

$$\alpha \circ \sigma = (13)(45)(15)(246) = (146253)$$

Proposition 2.6 Each $\sigma \in \mathbb{S}_n$ is either a cycle or a product of disjoint cycle.

Disjoint cycles commute with one another.

Definition 2.7 2-cycle is called a **transposition**

Proposition 2.7 $\sigma \in \mathbb{S}_n$ can be written as a product of transpositions.

Proof. Due to proposition(2.6) and

$$(i_1i_2\cdots i_k)=(i_1i_k)\cdots (i_1i_3)(i_1i_2)$$

For $\sigma \in \mathbb{S}_n$, we have

$$\sigma(i_1,\ldots,i_k)\sigma^{-1}=(\sigma(i_1),\ldots,\sigma(i_k))$$

Chapter 3

Week3

3.1. Tuesday

Definition 3.1 [Cartesian Product]

$$\prod_{i=1}^{n} S_{i} = S_{1} \times S_{2} \times \cdots \times S_{n} = \{(a_{1}, a_{2}, \dots, a_{n}) \mid a_{i} \in S_{i}\}$$

Theorem 3.1 $\prod_{i=1}^{n} G_i$ is a group under the operation

$$(g_1,...,g_n)(h_1,...,h_n) = (g_1h_1,...,g_nh_n)$$

Proof. • It's obvious that the operation is closed.

• Check inverse and identity.

identity =
$$(e_1, e_2, \dots, e_n)$$

• Check the operation is associate:

$$[(g_1, ..., g_n)(h_1, ..., h_n)] (k_1, ..., k_n) = (g_1 h_1, ..., g_n h_n)(k_1, ..., k_n)$$

$$= (g_1 h_1 k_1, ..., g_n h_n k_n)$$

$$= (g_1, ..., g_n)(h_1 k_1, ..., h_n k_n)$$

$$= (g_1, ..., g_n) [(h_1, ..., h_n)(k_1, ..., k_n)]$$

If the operation of each G_i is the **addition**, then

$$\prod_{i=1}^n G_i := \bigoplus_{i=1}^n G_i$$

Example 3.1 1. $G=(S_3\times\mathbb{Z}_2,\cdot)$ is not abelian, e.g., $((12),0)\cdot((23),0)$ 2. $G=(\mathbb{Z}_2\times\mathbb{Z}_3,+)=\mathbb{Z}_2\oplus\mathbb{Z}_3$ is cyclic $d(1,1)=(0,0) \longrightarrow \mathcal{A}_{-1}(1,1)$

$$((12),0)\cdot((23),0)$$

$$d(1,1) = (0,0) \implies d = 6k$$

3. The Klein 4-group $V=\mathbb{Z}_2 imes\mathbb{Z}_2$ is not cyclic

$$d(x,y) = (0,0)$$

 $G = \mathbb{Z}_m \times \mathbb{Z}_n$ is **cyclic** iff gcd(m,n) = 1. Theorem 3.2

Proof. Let $k = lcn(m,n) = \frac{mn}{\gcd(m,n)} \le mn$.

Necessity. Consider $(a,b) \in G$:

$$k(a,b) = (ka,kb) := (msa,ntb) = (0,0),$$

i.e., $|(a,b)| \le k$. In particular, $mn \le k$, thus k = mn, i.e., gcd(m,n) = 1.

Sufficiency. Consider $(1,1) \in G$: $d(1,1) = (0,*) \implies d = xm$; and $d(1,1) = (*,0) \implies$ d = yn. Thus |(1,1)| = lcm(m,n) = mn, i.e., this group is cyclic.

Corollary 3.1 $\prod_{i=1}^{n} \mathbb{Z}_{m_i}$ is cyclic iff (m_i, m_j) are mutually coprime.

Definition 3.2 Let G be a group, S a non-empty subset.

$$~~:=\{a_1^{m_1},\dots,a_n^{m_n}\mid n\in\mathbb{Z}^+,m_i\in\mathbb{Z},a_i\in S\}~~$$
 If S is finite, then $$ is **finitely generated**.

Verify that this is a group, i.e., a subgroup of G. Note that a_i 's need not to be distinct. e.g.,

$$S = \{a, b\} \implies a^{-1}bab^2 \in \langle S \rangle$$

Proposition 3.1

$$\langle S \rangle = \bigcap_{\{H \mid S \subseteq H \subseteq G\}} H$$

Q is not finitely generated. **Proposition 3.2**

Theorem 3.3 — Fundamental Theorem of Finitely Generated Abelian Groups. Any finitely generated abelian group (is isomorphic to)

$$\prod_{i=1}^m \mathbb{Z}_{p_i^{r_i}} \times \mathbb{Z}^n,$$

 $r_i, n \in \mathbb{N}$.

Example 3.3 abelian group of order $360 = 2^3 3^2 5$:

$$G_2 \times G_3 \times G_5$$

$$G_5 = \mathbb{Z}_5, \ G_3 = \mathbb{Z}_3 \times \mathbb{Z}_3, \mathbb{Z}_9, \ G_2 = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2, \mathbb{Z}_2 \times \mathbb{Z}_4, \mathbb{Z}_8.$$

Thus there are 6 possible abelian groups of order 360.

How about abelian group of order 7⁵?

Definition 3.3 [Partition] Let $S \neq \emptyset$. A partition P of S is $\{S_i \mid i \in I\}$ such that

1. $S_i \neq \emptyset, \forall i \in I$ 2. $S_i \cap S_j = \emptyset, \forall i \neq j$ 3. $\bigcup_{i \in I} S_i = S$ Also, we denote $S = \bigsqcup_{i \in I} S_i$

[Equivalence Relation] An equivalence relation on S is a relation \sim such that

- 1. Reflexive: $a \sim a, \forall a \in S$ 2. Symmetric: $a \sim b$ implies $b \sim a$
- 3. Transitive: $a \sim b$, $b \sim c$ implies $a \sim c$.

Equivalence relation is essentially the same meaning of partition:

- Partition implies equivalence relation: Define $a \sim b$ if $a, b \in S_i$
- Equivalence relation implies partition: Define $C_a := \{b \in S \mid b \sim a\}$. (For the symmetricity part, show that $C_a \cap C_b \neq \emptyset$ implies $C_a = C_b$.)

We call C_a the **equivalence class** with the representative a. If $b \in C_a$, then $C_b = C_a$, so any element in an equivalence class can be its representative.

Proposition 3.3 Any $\sigma \in S_n$ is a product of disjoint cycles.

Proof. Given $a, b \in X = \{1, 2, ..., n\}$, define $a \sim b$ if $b = \sigma^k(a)$ for some $k \in \mathbb{Z}$.

3.2. Thursday

3.2.1. Cyclic Groups

Definition 3.5 [order] Let G be a group with **identity** e. The **order** of an element $g \in G$, denoted by |g| is the smallest $n \in \mathbb{N}^+$ such that $g^n = e$; if no such n exists, we say g has **infinite order** and $|g| = \infty$.

Proposition 3.4 If *G* has finite order, then every element of *G* has finite order. (The order of *G* is the number of elements in *G*).

Proof. Suppose |G| = m, consider the elements in G:

$$g^0 := e, g^1, \dots, g^m,$$

thus there exists $0 \le i < j \le m$ such that $g^i = g^j$, otherwise there will be m+1 distinct elements in G. Therefore $g^{-i}g^i = e = g^{j-i}$.

R Note that the converse of this proposition is not true.

Definition 3.6 [Torsion] A group is said to be a **periodic group** (or **torsion group**) if all its elements all have **finite** order; A group is said to be **torsion-free** if none of its non-trivial elements has finite order. Finite groups are always periodic.

Proposition 3.5 Let *G* be a group with identity *e*, and $g \in G$. If $g^n = e$ for some $n \in \mathbb{Z}$, then |g| divides n, i.e., |g||n.

Proof. Let m = |g|. There exists $q, r \in \mathbb{N}^+$ such that

$$n = mq + r$$
 $0 < r < m$

It follows that $g^n = (g^m)^q \cdot g^r = e = g^r$, which follows that r = 0.

Definition 3.7 [Cyclic] A group G is said to be cyclic if there exists $g \in G$ such that every element of G is equal to g^n for some $n \in \mathbb{Z}$. In this case, we say g is a **generator**

In general, $\langle g \rangle = \{ g^n \mid n \in \mathbb{Z} \}.$

Proposition 3.6 Let *G* be a group and $g \in G$. Then $|\langle g \rangle| = |g|$.

Question.

Proof. Note that $m := |g| \le |\langle g \rangle|$, since g^0, g^1, \dots, g^{m-1} are distinct; and also $|\langle g \rangle| \le |g|$, since $g^i = g^j$ iff $i \equiv j \pmod{m}$

The generator of a cyclic group may not be unique, i.e., there may exists distinct $g_1, g_2 \in G$ s.t. $G = \langle g_1 \rangle = \langle g_2 \rangle$.

Applications. To illustrate some examples, we introduce some results from discrete mathematics:

Definition 3.8 Let $a,b \in \mathbb{Z}$ s.t. $a^2 + b^2 \neq 0$. The greatest common divisor is defined

gcd(a,b) := greatest integer that divides both a and b

Theorem 3.4 — **Bezout's identity.** Let $a,b \in \mathbb{Z}$ s.t. $a^2 + b^2 \neq 0$. There exists $s,t \in \mathbb{Z}$ s.t.

$$sa + tb = \gcd(a, b)$$

- Example 3.4 1. (Z,+) is cyclic, generated by 1 or −1.
 2. (Z_n,+) is cyclic, generated by k with gcd(k,n) = 1.
 3. (U_m,·) is cyclic, generated by ζ^k_m = exp(^{2kπ}/_mi) with gcd(k,m) = 1.

Note that $U_m := \{1, \zeta_m^1, \dots, \zeta_m^{m-1}\}.$

Proposition 3.7 A cyclic group G has order n iff its generators have order n.

Question: Can we apply proposition(3.6) directly

Proof. • Suppose *g* is a generator of *G* with order *n*, thus $|G| = |\langle g \rangle| = n$.

• Suppose *G* is a cyclic group with order *n* and *g* is a generator of *G*, then $|g| = |\langle g \rangle| = |G| = n$.

Proposition 3.8 Let p be a prime. Let $G = (\mathbb{Z}_p, +)$. Then |g| = p for $\forall g \in G \setminus \{0\}$.

Proof. • One way is to apply proposition(3.7). The cyclic group G has order p and therefore its generators have order p. $g \in G \setminus \{0\}$ are generators since

$$sp + tg = \gcd(p,g) = 1 \implies (sk)p + (tk)g = k, \quad 1 \le k \le p$$

• Another way is to assume |g| = y for $1 \le y < p$, since $g^i = g^j$ iff $i \equiv j \pmod{p}$ and $g^p \equiv 0 \pmod{p}$. Since $sp + tg = \gcd(p,g) = 1$, we derive for $1 \le y < p$,

$$(sy)p + (ty)g = y \implies y \equiv 0 \pmod{p},$$

which is a contradiction

Proposition 3.9 Every cyclic group is abelian.

Recall that abelian means a group has commucative operation.

Proof. Suppose $G = \langle g \rangle$ for some $g \in G$, thus for any elements g^{n_1}, g^{n_2} :

$$g^{n_1} \cdot g^{n_2} = g^{n_1+n_2} = g^{n_2+n_1} = g^{n_2} \cdot g^{n_1},$$

since the product of the elements is independent from adding parentheses.

 \mathbb{R} The converse is not true, e.g., the group $(\mathbb{Q},+)$.

Verification: Assume $\mathbb{Q}=\langle \frac{p}{q} \rangle$, i.e., Choose k>1 such that (k,q)=1 and set $y=\frac{1}{k}\in G$. There exists $r\in \mathbb{Z}$ such that $(\frac{p}{q})^r=\frac{rp}{q}=y$, which implies $rp=qy=\frac{y}{k}$, which is a contradiction since RHS is not an integer.

3.2.2. Symmetric Groups

Definition 3.9 Let X be a set. A **permutation** of X is a bijection $\sigma: X \mapsto X/$

Proposition 3.10 The set of all permutations of a set X forms a group under the operation \circ (composition), denoted by Sym(X). (**symmetric group**)

Proof. • Note that $\alpha \circ \beta$ is a bijection of X, hence permutation of X

- $\alpha \circ (\beta \circ \gamma) = (\alpha \circ \beta) \circ \gamma$.
- *e* is a permutation such that e(x) = x, $\forall x \in X$. Then

$$e \circ \sigma = \sigma \circ e = \sigma$$
, $\forall \sigma \in \text{Sym}(X)$

• For a given $\sigma \in \operatorname{Sym}(X)$, there exixts a bijection $\rho \in \operatorname{Sym}(X)$ such that

$$\rho \circ \sigma = \sigma \circ \rho = e$$

Notations. For $X = \{1, 2, ..., n\}$, we write Sym(X) as S_n (n-th symmetric group). The element $\sigma \in S_n$ is denoted as:

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$

Proposition 3.11 $|S_n| = n!$.

Proof. $\sigma(1) \in \{1,...,n\}$; for fixed $\sigma(1)$, $\sigma(2) \in \{1,...,n\} \setminus \{\sigma(1)\}$; so on and so forth. Hence, there are total $n*(n-1)*\cdots*1=n!$ choices of permutations.

Example 3.5 For $\alpha, \beta \in S_3$ given by:

$$\alpha = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \quad \beta = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

we find

$$\alpha\beta = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \quad \beta\alpha = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

Thus $\alpha\beta \neq \beta\alpha$, i.e., S_3 is non-abelian.

Note that S_n is non-abelian for $n \ge 3$: To show this property, construct

$$\alpha' = \begin{pmatrix} 1 & 2 & 3 & 4 & \cdots & n \\ \alpha(1) & \alpha(2) & \alpha(3) & 4 & \cdots & n \end{pmatrix} \quad \beta' = \begin{pmatrix} 1 & 2 & 3 & 4 & \cdots & n \\ \beta(1) & \beta(2) & \beta(3) & 4 & \cdots & n \end{pmatrix}$$

Also, note that $|\alpha| = 3$. Thus S_3 is not cyclic.

More on S_n . Consider the element σ in S_6 :

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 3 & 6 & 1 & 2 \end{pmatrix}$$

We re-write σ as

$$\sigma = (15)(246)$$
,

where $(i_1,...,i_k)$ denotes the permutation

$$i_1 \mapsto i_2$$
, $i_2 \mapsto i_3$, \cdots $i_k \mapsto i_1$,

and $j \mapsto j$ for all remaining j.

Definition 3.10 [cycle] We call $(i_1, ..., i_k)$ as a k-cycle or a **cycle of length** k. In particular, we use () to denote the identity $\epsilon \in S_n$, meaning that it fixes all numbers in $\{1, ..., n\}$.

Proposition 3.12 Each permutation $\sigma \in S_n$ is either a cycle or a product of disjoint cycles.

We will prove proposition(3.12) later.

Proposition 3.13 Disjoint cycles commute with each other.

Proof. Suppose $\tau = (i_1, ..., i_k)$ and $\rho = (j_1, ..., j_l)$. Show that for $i_m \in \{i_1, ..., i_k\}$, $\tau(\rho(i_m)) = \rho(\tau(i_m))$ and similarly for j_n ; also show $\tau(\rho(s)) = \rho(\tau(s))$ for $s \in \text{dom} \setminus (I \cup J)$

Definition 3.11 [Transposition] A 2-cycle is called a transposition, for it swaps two elements with each other.

Proposition 3.14 Each element of S_n is a product of transpositions (not necessarily disjoint).

Proof. Consider
$$(i_1...i_k) = (i_1i_k)(i_1i_{k-1})\cdots(i_1i_3)(i_1i_2);$$

■ Example 3.6

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 3 & 6 & 1 & 2 \end{pmatrix} = (15)(246) = (15)(26)(24) = (15)(46)(26)$$

Proposition 3.15 Let $n \in \mathbb{N}^+$ and $\sigma \in S_n$. Show that

$$\sigma(i_1\cdots i_k)\sigma^{-1} = (\sigma(i_1)\cdots\sigma(i_k))$$

Proof. For $x := \sigma(i_m)$, $1 \le m \le k$, we have

$$\sigma^{-1}(x) = i_m \implies (i_1 \cdots i_k) \sigma^{-1}(x) = \begin{cases} i_1, & \text{if } m = k \\ i_{m+1}, & \text{otherwise} \end{cases}$$

adn thus $\sigma(i_1 \cdots i_k) \sigma^{-1}(x) = \sigma(i_1)$ if m = k, and equals $\sigma(i_{m+1})$ otherwise. For $x \in \{1, \dots, n\} \setminus \{\sigma(i_1), \dots, \sigma(i_k)\}$, we have $\sigma^{-1}(x) \notin \{i_1, \dots, i_k\}$, and thus

$$(i_1 \cdots i_k)(\sigma^{-1}(x)) = \sigma^{-1}(x) \implies \sigma(i_1 \cdots i_k)(\sigma^{-1}(x)) = x.$$

Proposition 3.16 In every factorization of σ as a product of transpositions, the number of factors is either always even or always odd.

Proof. There is a one-to-one coorespondence between σ and binary matrix A_{σ} , e.g.,

$$\sigma = (15)(246) \Leftrightarrow A_{\sigma} = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

Also, if σ is a transposition then $\det(A_{\sigma}) = -1$.

3.2.3. Dihedral Groups

Let \mathcal{T} denote the set of **transformations** of \mathbb{R}^2 , consisting of all rotations by fixed angles about the origin, and all reflections over lines through the origin.

Definition 3.12 Consider a regular n-th polygon P_n in \mathbb{R}^2 centered at origin. We represent the polygon by its vertices, e.g., $P_n = \{x_1, \dots, x_n\} \subseteq \mathbb{R}^2$. If $\tau(P_n) = P_n$ for some $\tau \in \mathcal{T}$, we say that P_n is **symmetric** w.r.t. τ .

Intuitively, P_n is symmetric w.r.t. n rotations $\{r_0, ..., r_{n-1}\}$ and n reflections $\{s_1, ..., s_n\}$ in \mathcal{T} .

Theorem 3.5 The set

$$D_n := \{r_0, r_1, \dots, r_{n-1}, s_1, \dots, s_n\}$$

forms the *n*-th **dihedral group**, under the transformation composition operation $\tau * \gamma = \tau \circ \gamma$. In particular, $|D_n| = 2n$.

Proof. The set of rotations:

$$\langle r \rangle = \{ id, r, r^2, \dots, r^{n-1} \}$$

The set of reflections:

$$\{s, rs, r^2s, \ldots, r^{n-1}s\}$$

Thus the elements in D_n :

$$D_n = \{id, r, r^2, \dots, r^{n-1}, s, rs, r^2s, \dots, r^{n-1}s\}$$

Proposition 3.17 Show that $D_3 = S_3$.

3.2.4. Free Groups

Definition 3.13 [Free Groups]

1. Let S be a non-empty set (not necessarily finite). Let 1 be an **empty word**, i.e., a string of elements from S with length 0. For each $a \in S$, define an element $a^{-1} \notin S$ s.t. their juxtaposition is 1:

$$a^{-1}a = aa^{-1} = 1$$
 $a^{-1}b \neq 1 \neq ba^{-1}, \forall b \neq a$

2. Define $S^{-1} := \{a^{-1} \mid a \in S\}$. A **reduced word** w of S is a **finite** string of elements from $S \cup S^{-1}$ s.t. no substring of w contains $a^{-1}a$ or aa^{-1} for $\forall a \in S$. Define an

operation * on the set of all reduced words F_S :

$$w_1*w_2=w:= egin{cases} w_1w_2, & ext{if } w_1w_2 ext{ is a reduced word} \\ & ext{obtained by repeatedly removing } a^{-1}a ext{ or } aa^{-1}, \end{cases}$$

 $\forall w_1, w_2 \in F_S$. It can be verified that $(F_S, *)$ forms a group, called the **free group** generated by S.

Notations. For convenience,

$$a^n := \underbrace{a \cdots a}_n \quad a^{-n} := \underbrace{a^{-1} \cdots a^{-1}}_n$$

■ Example 3.7 Let
$$S=\{a,b,c\}$$
, then
$$w_1=ac^{-4}b^2c, w_2=c^{-1}b^{-2}c^2a^{-3}, w_3=a^3c^{-2}b^3$$

are reduced words of S, while w_1w_2 and w_2w_3 are not. Also,

$$(w_1 * w_2) * w_3 = ac^{-4}b^3 = w_1 * (w_2 * w_3)$$

■ Example 3.8 Let $S = \{a\}$ be a singleton, then the free group F_S can be viewed as the

In fact, any group can be viewed as a free group with some additional conditions. For instance, a cyclic group G of order 6 can be viewed as the group F_S with the condition that $a^6 = 1$, which is sometimes written as $G = \langle a | a^6 = 1 \rangle$

Chapter 4

Week4

4.1. Subgroups

Definition 4.1 Let G be a group. A non-empty subset $H \subseteq G$ is a subgroup of G(denoted by $H \leq G$) if it satisfies the following:

1. If $a,b\in H$, then $a*b\in H$ 2. If $a\in H$, then $a^{-1}\in H$ Particularly, if H is a **proper subset** of G, then H is a **proper subgroup** of G, denoted by H < G.

- Any subgroup *H* is a subgroup iff *H* is a subset of *G*, and *H* forms a group w.r.t. the induced binary operation from G (called the induced operation on H)
 - 1. Any group G contains the trivial subgroup $\{e\}$, (sometimes writeen as 1 for such group). Any subgroup $H \neq 1$ is **non-trivial**
 - 2. $\mathbb{Z} < \mathbb{Q} < \mathbb{R} < \mathbb{C}$ under addition; $\mathbb{Z}^{\#} < \mathbb{Q}^{\#} < \mathbb{R}^{\#} < \mathbb{C}^{\#}$ under multiplication
 - 3. For any $n \in \mathbb{Z}$, we have $n\mathbb{Z} \leq \mathbb{Z}$ under addition
 - 4. Define $\mathrm{SL}(n,\mathbb{R}):=\{A\in\mathbb{R}^{n\times n}\mid \det(A)=1\}$ and $\mathrm{GL}(n,\mathbb{R}):=\{A\in\mathbb{R}^{n\times n}\mid \det(A)=1\}$ $\det(A) \neq 0$, then $SL(n,\mathbb{R}) < GL(n,\mathbb{R})$
 - 5. The set of all rotations (including the trivial rotation) in a dihedral group D_n is a subgroup of D_n
 - 6. Viewing the elements in D_n as permutations of the vertices of a regular n-gon P_n ,

we regard D_n as a subgroup of S_n

7. For any $n \in \mathbb{N}^+$, a permutation $\sigma \in S_n$ is **even (odd)** if it is a product of an even (odd) number of transpositions. The set of all even permutations in S_n forms the n-th alternating group $A_n \leq S_n$.

Proposition 4.1 Let H be a non-empty subset of a group G. Then $H \leq G$ iff $ab^{-1} \in H$ whenever $a,b \in H$

Proof. Necessity:

$$a,b \in H \implies b^{-1} \in H \implies ab^{-1} \in H$$

Sufficiency: Let e be the identity of G. As H is non-empty, there exists $h \in H$ s.t.

$$e = hh^{-1} \in H$$

- Since $e \in H$, for any $a \in H$, we have $a^{-1} = e \cdot a^{-1} \in H$
- For any $a, b \in H$, we have $b^{-1} \in H$.

$$ab = a(b^{-1})^{-1} \in H$$

4.1.1. Cyclic subgroups

Given a group *G* and any element *g*, we have subset

$$\langle g \rangle = \{ g^n \mid n \in \mathbb{Z} \}$$

It is indeed the cyclic subgroup generated by *g*.

Proposition 4.2 The intersection of any collection of subgroups of a group *G* is also a subgroup of *G*.

Corollary 4.1 Let G be a group. Then for any $g \in G$, we have

$$\langle g \rangle = \bigcap_{\{H \mid g \in H \leq G\}} H,$$

i.e., $\langle g \rangle$ is the smallest subgroup of G containing g.

Proof. Note that $\bigcap_{\{H|g\in H\leq G\}} H\subseteq \langle g\rangle$.

On the other hand, note that $\bigcap_{\{H|g\in H\leq G\}}H$ is a subgroup,

$$\langle g \rangle \subseteq \bigcap_{\{H \mid g \in H \le G\}} H$$

Proposition 4.3 Every subgroup of a cyclic group is cyclic

Proof. Let $G = \langle g \rangle$ and $H \leq G$

- If H = 1, then $H = \langle e \rangle$ is cyclic
- Otherwise, there exists a samllest $m \in \mathbb{N}^+$ s.t. $g^m \in H$. It suffices to show $H = \langle g^m \rangle$
 - It's clear that $\langle g^m \rangle$ ⊆ H
 - − Take g^n ∈ H, there exists $q, r \in \mathbb{Z}$ s.t.

$$n = mq + r$$
, $0 \le r < m$

Therefore, $g^n = (g^m)^q \cdot g^r \implies g^r = (g^m)^{-q} \cdot g^n \in H \implies r = 0$. Thus $g^n \in \langle g^m \rangle$, i.e., $H \subseteq \langle g^m \rangle$.

Corollary 4.2 Any subgroup of $(\mathbb{Z},+)$ is of the form $n\mathbb{Z}$ for some $n \in \mathbb{N}$.

For $a, b \in \mathbb{Z}$, it's easy to verify

$$\langle a,b\rangle := \{ma + nb \mid m,n \in \mathbb{Z}\} \le \mathbb{Z}$$
 (4.1)

Thus following corollary(4.2), $\langle a,b\rangle=d\mathbb{Z}$ for some $d\in\mathbb{N}^+$. In fact, d is the greatest common divisor of a and b. (proof relies on Bezout's identity.)

Theorem 4.1 — **Bezout's identity.** Let $a,b \in \mathbb{Z}$ such that $a^2 + b^2 \neq 0$. Then there exists $s,t \in \mathbb{Z}$ s.t.

$$sa + tb = \gcd(a, b)$$

Proof. Consider the case that $ab \neq 0$.

Note that $\langle a, b \rangle = d\mathbb{Z}$, there exists s, t such that

$$sa + tb = d (4.2)$$

Since $a, b \in d\mathbb{Z}$, we derive d divides both a and b. From (4.2), for any x dividing both a and b, we have x|d, which implies gcd(a,b)|d, which implies d = gcd(a,b).

Proposition 4.4 Let $a, b \in \mathbb{Z}$ be such that $a^2 + b^2 \neq 0$ and $k \in \mathbb{Z}^{\#}$. Show that

$$gcd(ak,bk) = gcd(a,b)k$$

Proof. First, since gcd(a,b) divides both a and b, we imply gcd(a,b)k divides both ak and bk. It follows that

$$gcd(a,b)k|s(ak) + t(bk) = gcd(ak,bk),$$

for some s, t.

Second,

$$gcd(ak,bk)|s(ak) + t(bk) = kgcd(a,b)$$

Let $a, b \in \mathbb{Z}$ s.t. $a^2 + b^2 \neq 0$. The **least common multiple** is

$$lcm(a,b) = \begin{cases} least positive integer divisible by a and b, & ab \neq 0 \\ 0, & otherwise \end{cases}$$

Theorem 4.2 Let $a, b \in \mathbb{Z}$ s.t. $a^2 + b^2 \neq 0$. Then

$$lcm(a,b) = \frac{|ab|}{\gcd(a,b)}$$

Proof. w.l.o.g., a, b > 0.

Note that a and b divides $\frac{ab}{\gcd(a,b)}$, and thus $k \leq \frac{ab}{\gcd(a,b)}$.

On the other hand, note that ab divides both alcm(a,b) and blcm(a,b), which implies

$$ab \le \gcd(a\operatorname{lcm}(a,b),b\operatorname{lcm}(a,b)) = \operatorname{lcm}(a,b)\gcd(a,b)$$

Proposition 4.5 Let $G = \langle g \rangle$ be a cyclic group of order n. Let $g^s \in G$, then

$$|g^s| = \frac{n}{d},$$

where $d = \gcd(s, b)$. Moreover, $\langle g^s \rangle = \langle g^t \rangle$ iff $\gcd(s, n) = \gcd(t, n)$.

Proof. The idea is to transform the order of element into the order of a cyclic group.

• For some $x, y \in \mathbb{Z}$,

$$g^d = g^{xs+yn} = (g^s)^x \in \langle g^s \rangle \implies \langle g^d \rangle \subseteq \langle g^s \rangle$$

On the other hand, g^s is the power of g^d since d divides s:

$$g^s = (g^d)^{s/d} \implies \langle g^s \rangle \subseteq \langle g^d \rangle \implies \langle g^s \rangle = \langle g^d \rangle$$

it follows that

$$|g^s| = |\langle g^s \rangle| = |\langle g^d \rangle| = |g^d| = \frac{n}{d}$$

For second assrtion, the converse is clear. For the forward direction,

$$|g^s| = \frac{n}{\gcd(s,n)} = \frac{n}{\gcd(t,n)} = |g^t|$$

Corollary 4.3 All generators of a cyclic group $G=\langle g \rangle$ of order n are of the form g^r with

■ Example 4.2 Given the cyclic group $G = \mathbb{Z}_{12} = \langle g \rangle$, then all the generators of G are g, g^5, g^7, g^{11} ; since $\gcd(9,12) = \gcd(3,12) = 3$, we have $\langle g^3 \rangle = \langle g^9 \rangle$

4.1.2. Direct Products

Definition 4.2 [Cartesian Product] The Cartesian product of given sets $S_1, ..., S_n$ is

$$\prod_{i=1}^n S_i=S_1\times S_2\times\cdots\times S_n:=\{(a_1,\ldots,a_n)\mid a_i\in S_i\}$$
 If $S_1=S_2=\cdots=S_n$, we write $\prod_{i=1}^n S_i=S^n$

The product of groups also forms a group, under the operation **Proposition 4.6** induced from those groups.

If the operations of G_i are all addition, then $\prod_{i=1}^n G_i$ is said to be the **direct sum** of groups of G_i :

$$\bigoplus_{i=1}^n G_i = G_1 \oplus \cdots \oplus G_n$$

Note that $\bigoplus_{i=1}^{n} G_i$ is always abelian.

- Example 4.3
 The group G = S₃ × Z₂ is not abelian.
 The group G = (Z₂ × Z₃, +) = Z₂ ⊕ Z₃ is cyclic
 The Klein 4-group V = Z₂² is not cyclic.

Theorem 4.3 The group $G = \mathbb{Z}_m \times \mathbb{Z}_n$ is **cyclic** iff gcd(m,n) = 1.

Proof. Let k = lcm(m, n) = mn/gcd(m, n), then

$$k(a,b) = (ka,kb) = (0,0), \forall a \in \mathbb{Z}_m, b \in \mathbb{Z}_n,$$

since m and n both divide k. Thus $|g| \le k$, $\forall g \in G$. Thus G is cyclic implies k = mn, i.e., gcd(m,n) = 1

To show the converse, consider the element $(1,1) \in G$:

$$d(1,1) = (0,*), \implies d = xm$$

$$d(1,1) = (*,0), \implies d = ym$$

thus $|(1,1)| = \operatorname{lcm}(m,n) = mn$, i.e., *G* is cyclic.

Corollary 4.4 The group $\prod_{i=1}^{n} \mathbb{Z}_{m_i}$ is cyclic iff m_i, m_j are mutually co-prime.

4.1.3. Generating Sets

Definition 4.3 [Generating Set] Let G be a group, S be a non-empty subset of G, the set

$$\langle S \rangle := \{ a_1^{m_1} a_2^{m_2} \cdots a_n^{m_n} \mid n \in \mathbb{N}, a_i \in S, m_i \in \mathbb{Z} \}$$

is a subgroup of G, called the subgroup of G generated by S. If $G=\langle S \rangle$, then S is the genreating set for G.

The elements a_i do not have to be distinct, e...g, if $S = \{a,b\}$, then $a^3b^{-1}a^{-1} \in \langle S \rangle$.

Proposition 4.7

$$\langle S \rangle = \bigcap_{\{H \mid S \subseteq H \le G\}} H,$$

i.e., $\langle S \rangle$ is the smallest subgroup in *G* containing the subset *S*.

Proof. It's clear that $\langle S \rangle \supseteq \bigcap_{\{H \mid S \subseteq H \leq G\}} H$.

For any element a in $\langle S \rangle$, we find $a \in \bigcap_{\{H \mid S \subseteq H \leq G\}} H$, since $S \subseteq \bigcap_{\{H \mid S \subseteq H \leq G\}} H$.

When $S = \{a_1, ..., a_l\}$ is a finite set, we write

$$\langle S \rangle = \langle a_1, \dots, a_l \rangle$$

- Example 4.4 1. The set of cycles and the set of transpositions are two examples of generating sets for S_n
 2. S_n = ⟨(12)(12···n)⟩
 3. D_n = ⟨r,s⟩, where r is the rotation by angle ^{2π}/_n in the anti-clock wise direction; and s is any reflection

A group is said to be **finitely generated** if there are finite number of elements $a_1, \ldots, a_l \in$ G s.t.

$$G = \langle a_1, \ldots, a_l \rangle$$

Every finite group is finitely generated.

Proposition 4.8 The group $(\mathbb{Q},+)$ is not finitely generated.

Proof. Otherwise assume

$$\mathbb{Q} = \langle \frac{p_1}{q_1}, \dots, \frac{p_l}{q_l} \rangle$$

Construct number $\frac{1}{q_1...q_l} \in \mathbb{Q}$, which is a contradiction.

Theorem 4.4 — Fundamental Theorem of Finitely Generated Abelian Groups. Any

finitely generated abelian group is isomorphic to

$$\prod_{i=1}^m \mathbb{Z}_{p_i^{r_i}} \times \mathbb{Z}^n$$

where $m \in \mathbb{N}^+$, $n, r_i \in \mathbb{N}$, and p_i are primes not necessarily distinct. This direct product is unique after re-arrangement.

- **Example 4.5** The abelian groups of order $360 = 2^3 3^2 5$ up to isomorphism are

 - 1. $\mathbb{Z}_{2}^{3} \times \mathbb{Z}_{3}^{2} \times \mathbb{Z}^{5}$ 2. $\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{3}^{2} \times \mathbb{Z}^{5}$ 3. $\mathbb{Z}_{8} \times \mathbb{Z}_{3}^{2} \times \mathbb{Z}^{5}$ 4. $\mathbb{Z}_{2}^{3} \times \mathbb{Z}_{9} \times \mathbb{Z}^{5}$ 5. $\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{9} \times \mathbb{Z}^{5}$ 6. $\mathbb{Z}_{8} \times \mathbb{Z}_{9} \times \mathbb{Z}^{5}$

The abelian groups of order 7^5 up to isomorphism are

- Z₇⁵
 Z₇ × Z₂₄₀₁
 Z₄₉ × Z₃₄₃
 Z₁₆₈₀₇

39

Chapter 5

Week4

5.1. Reviewing

Definition 5.1 [partition] Let S be a non-empty set. A partition P of S is a collection of subsets $\{S_i \mid i \in I\}$ of S such that 1. $S_i \neq \emptyset$ for all $i \in I$ 2. $S_i \cap S_j = \emptyset$ whenever $i \neq j$ 3. $\bigcup_{i \in I} S_i = S$

We also say P is a sub-division of S into a **disjoint union** of non-empty subsets, denoted as $S = \sqcup_{i \in I} S_i$

[Equivalence Relation] An equivalence relation on S is a relation \sim such that

- 1. Reflexive: $a \sim a$ for all $a \in S$
- 2. Symmetric: if $a \sim b$, then $b \sim a$
- 3. Transitive: if $a \sim b$ and $b \sim c$, then $a \sim c$.

Partition and equivalence relation are essentially two equivalent concepts.

- 1. Given partition $\{S_i \mid i \in I\}$ of S, we define $a \sim b$ whenever $a, b \in S_i$ for some $i \in I$.
- 2. Suppose there is an equivalence relation \sim on S, for each $a \in S$, we define the

equivalence class with the representative *a*, i.e., partition as:

$$C_a := \{b \in S \mid a \sim b\}$$

- Non-empty: since $a \sim a$, $a \in C_a$, i.e., C_a is non-empty.
- $\bigcup_{a \in S} C_a = S$
- disjoint: we show that $C_a \cap C_b \neq \emptyset$ implies $C_a = C_b$: Suppose $c \in C_a \cap C_b$, we imply $a \sim b$. Thus for any $d \in C_a$, $d \sim b$, i.e., $C_a \subseteq C_b$. Similarly, $C_a \supset C_b$.
- If $b \in C_a$, then $C_b = C_a$, i.e., any eleemebt in an equivalence class can be its representative.

Proposition 5.1 Any permutation $\sigma \in S_n$ is a product of disjoint cycles.

Proof. Let $\sigma \in S_n$ be an permutation on $X = \{1,...,n\}$. For any $a,b \in X$, define an equivalence relation

$$a \sim b$$
 whenever $b = \sigma^k(a)$, for some $k \in \mathbb{Z}$

Thus *X* is paritioned into disjoint union of equivalence classes:

$$X = O_1 \sqcup Q_2 \sqcup \cdots \sqcup O_m$$

here O_j 's are called orbits of σ . For each $j \in \{', ..., m\}$, construct $\mu_j \in S_n$:

$$\mu_j(a) = \begin{cases} \sigma(a), & \text{if } a \in O_j \\ a, & \text{if } a \in O_j \end{cases}$$

These μ_j are mutually disjoint cycles, and thus $\sigma = \mu_1 \cdots \mu_m$.

5.1.1. Theorem of Lagrange

Let *G* be a group and $H \leq G$. We are interested in the size of *H* compared with *G*.

Proposition 5.2 For any $a, b \in G$, define a relation \sim_L on G:

$$a \sim_L b$$
 whenever $b = ah$ for some $h \in H$, i.e., $a^{-1}b \in H$

The operator \sim_L is an equivalence relation.

Thus the group G is partitioned into a disjoint union of equivalence classes w.r.t. \sim_L . We call these equivalence classes the **left cosets** of H in G, and each has form $aH = \{ah \mid h \in H\}$. Every $a \in G$ is a representative of the left coset aH.

Also, we define \sim_R as:

$$a \sim_R b$$
whenever $b = ha$ for some $h \in H$

and $Hb = \{hb \mid h \in H\}.$

■ Example 5.1 Let $G = (\mathbb{Z}, +)$ and $H = 3\mathbb{Z} \le G$. The left cosets of H in G are:

$$3\mathbb{Z}, 1 + 3\mathbb{Z}, 2 + 3\mathbb{Z}$$

The coset representatives are generally not unique.

In general, if $n \in \mathbb{N}^+$, the left cosets of $n\mathbb{Z}$ in \mathbb{Z} are:

$$i + n\mathbb{Z}, \quad i = 0, \dots, n-1$$

Definition 5.3 Let G be a group, and $H \leq G$. Denote the collection of the left cosets of H in G by [G:H]. We call the size of [G:H] the **index** of H in G, denoted as |G:H|.

R The number of left cosets and right cosets are always equal to each other, if finite.

Example 5.2 Let $G = GL(n, \mathbb{R})$, and

$$H = \mathsf{GL}^+(n,\mathbb{R}) := \{ h \in G \mid \det(h) > 0 \} \le G.$$

Take $a = \operatorname{diag}(-1,1,\ldots,1) \in G$ and thus $\operatorname{det}(a) = -1$. Take $g \in G$, then

- 1. If $\det(g)>0$, then $g\in H$ 2. If $\det(g)<0$, then $\det(a^{-1}g)>0$, i.e., $g\in aH$

Thus $[G:H]=\{H,aH\}$ and |G:H|=2. Note that both G and H are infinite, but |G:H| are finite.

Let $G = \mathsf{GL}(n,\mathbb{R})$ and $H = \mathsf{SL}(n,\mathbb{R})$. For each $x \in \mathbb{R}^{\#}$, take $a_x =$ $\operatorname{diag}(x,1,\ldots,1)\in G$ and $\operatorname{det}(a_x)=x$. Thus for each $g\in G$,

$$g = a_{\det(g)} \left[a_{\det(g)}^{-1} g \right] \in a_{\det(g)} H$$

Moreover, we show that the constructed cosets are non-trivial:

$$a_x H \bigcap a_y H = \emptyset, \forall x, y \in \mathbb{R}^{\#}$$

and therefore $G = \bigsqcup_{x \in \mathbb{R}^{\#}} a_x H$, and |G:H| is infinite.

Proposition 5.3 For the additive subgroup $\mathbb{Z} < \mathbb{R}$, we have

$$\mathbb{R} = \sqcup_{t \in [0,1)} (t + \mathbb{Z})$$

Proof. For the subgroup $H := \mathbb{Z}$, construct left cosets tH for $t \in [0,1)$. Thus for $\forall h_1 \in t_1H$ and $h_2 \in t_2H$ with distinct t_1 and t_2 , we have

$$h_1 = t_1 + z_1 \neq t_2 + z_2, \quad h_2 = t_2 + z_3 \neq t_1 + z_4$$

Thus tH's are disjoint. Moreover, for $\forall x \in \mathbb{R}$, $t_x := x - \lceil x \rceil$, and thus $x \in t_x H$.

Proposition 5.4 For vector subspace $W \subseteq V$, consider the subgroup $(W,+) \le (V,+)$. The set of cosets are the translations v + W, $v \in V$. Let $W' \subseteq V$ be a subspace complementary to W such that

- 1. dim(W) + dim(W') = dim(V)
- 2. $W \cap W' = \{0\}$

Show that $V = \sqcup_{v \in W'} (v + W)$.

Example 5.4 Consider the dihedral group D_n , we have

$$D_n = \{id, r, r^2, \dots, r^{n-1}, s, rs, \dots, r^{n-1}s\}$$

Thus we have $D_n = \langle r \rangle \sqcup \langle r \rangle s$.

Question,

- Example 5.5 Consider S_n with its subgroup A_n , we have $S_n = A_n \sqcup \tau A_n$
- Example 5.6 Recall that $S_3 = \langle \rho, \mu \rangle$ with $\rho = (123)$ and $\mu = (12)$. For the cyclic subgroup $H = \langle \mu \rangle$, we have $[S_3 : H] = \{H, \rho H, \rho^2 H\}$

Theorem 5.1 Let *G* be a finite group and
$$H \le G$$
, then $|G:H| = |G|/|H|$

Proof. Suppose $G = H \sqcup a_1 H \sqcup \cdots \sqcup a_m H$. It suffces to show $|a_k H| = |H|$ for $k \in \{1, ..., m\}$.

Suppose $H = \{h_1, ..., h_n\}$, then immediately $|a_k H| = |\bigcup_{i=1}^n \{a_k h_i\}| \le n$. For distinct $h_{i,j} \in H$, $a_k h_i = a_k h_j$ implies $h_i = h_j$, contradiction.

This theorem also works for right cosets.

Proposition 5.5 Let *G* be a group and $H \leq G$ s.t.

$$G = H \sqcup a_1 H \sqcup a_2 H \sqcup \cdots \sqcup a_m H$$
,

show that $G = H \sqcup Ha_1^{-1} \sqcup Ha_2^{-1} \sqcup \cdots \sqcup Ha_m^{-1}$.

Proof. It's clear that $H, Ha_1^{-1}, \dots, Ha_m^{-1}$ are disjoint. Also, for $\forall g \in G$, consider g^{-1} :

$$g^{-1} = a_i h \implies g = h^{-1} a_i^{-1} \in H a_i^{-1}$$

Proposition 5.6 Let *G* be a finite group and $g \in G$, then |g|||G|.

Proof. Since
$$|g| = |\langle g \rangle|$$

Proposition 5.7 Let *G* be a finite group of prime order, then *G* is cyclic.

Proof. Let $p = |G| \ge 2$. There exists non-trivial element a s.t. |a| divides p, and $|a| \ne 1$, i.e., |a| = p.

Proposition 5.8 Let *G* be a finite group. For each $g \in G$, we have

$$g^{|G|} = e$$

Proof. SInce |g| divides |G|, there exists k s.t.

$$g^{|G|} = (g^{|g|})^k = e$$

Then we give a generalization of cosets:

Definition 5.4 [Product of H by K] For a group G and $H, K \subseteq G$, the **product** of H by K is

$$HK := \{hk \mid h \in H, k \in K\}$$

Note that $(HK)L = H(KL), \forall H, K, L \subseteq G$

If $H \le G$, it's clear that HH = H; the converse is not true in general, e.g., $H = \{id, (12)\}$ and $G = S_3$.

Theorem 5.2 Let *G* be a group and $H,G \leq G$ be finite, then

$$|HK| = \frac{|H||K|}{|H \cap K|}$$

Proof. It suffices to show $|H||K| = |HK||H \cap K|$, e.g., construct a map $\phi : H \times K \mapsto HK$, it suffices to show ϕ is $|H \cap K|$ -to-1 map.

• For $h_1, h_2 \in H$ and $k_1, k_2 \in K$, if the output of the mapping is the same,

$$h_1k_1 = h_2k_2 \implies h_2^{-1}h_1 = k_2k_1^{-1} := d \in H \cap K$$

and therefore $h_2 = h_1 d^{-1}$ and $k_2 = dk_1$.

• On the other hand, for any $h \in H, k \in K, d \in H \cup K$, if $h' = hd^{-1}$ and k' = dk, we find h'k' = hk.

question.

Theorem 5.3 Let *G* be a group and $H, K \leq G$. Then *HK* is a group iff HK = KH

Proof. Let $h \in H, k \in K$

Necessity. $kh = (h^{-1}k^{-1})^{-1} \in HK$, i.e., $KH \subseteq HK$. On the other hand, $(hk)^{-1} \in HK$ implies $(hk)^{-1} := h_1k_1$, i.e., $hk = k_1^{-1}h_1^{-1} \in KH$.

Sufficiency. For any $h_1k_1, h_2k_2 \in HK$, we have

 $(h_1k_1)(h_2k_2)^{-1} = h_1k_1k_2^{-1}h_2^{-1} \in HKKH = HKHK = HHKK = HK.$

Chapter 6

Week5

6.1. Monday

Let G be a finite group with $H \leq G$. Then G can be partitioned into the left cosets or the right cosets of H. However, the left cosets and the right cosets are usually different.

■ Example 6.1 Let $G = S_3$ and $H = \{(), (12)\}$, it is early seen that

$$G = H \sqcup (13)H \sqcup (23)H = H \sqcup H(13) \sqcup H(23)$$

However, we see that

$$(13)H \neq H(13), (23)H \neq H(23)$$

We are interested in the case when the left coset of H and the right coset of H are always the same.

Definition 6.1 [normal subgroup] Let G be a group. A subgroup $H \leq G$ is **normal** if

$$aH = Ha$$
, $\forall a \in G$

We denote this by $H \subseteq G$ and $H \triangleleft G$ when H < G.

Normal subgroups have several equivalent definitions:

Theorem 6.1 Let G be a group and $H \leq G$. The following statements are equivalent:

- 1. $H \subseteq G$
- 2. $a^{-1}Ha \subseteq H$, for $\forall a \in G, h \in H$
- 3. $a^{-1}Ha = H$, for $\forall a \in G$.

Proof. The non-trivial case is (2) implies (3). Since (2) holds for all $a \in G$, it holds for a^{-1} , i.e.,

$$(a^{-1})^{-1}Ha^{-1} \subseteq H \implies aHa^{-1} \subseteq H \implies H \subseteq a^{-1}Ha$$

1. Any group G contains the trivial normal subgroups, i.e. ,1 and G

- 2. Let G = S₃, N = {(),(123),(132)}, H₁ = {(),(12)}, H₂ = {(),(13)}, H₃ = {(),(23)}, then N ⊲ G but H_i's are not.
 3. Let n ∈ N⁺, then SL(n,R) ⊲ GL(n,R)
 4. Let n ∈ N⁺, then A_n ⊲ S_n. (question)
 5. Let H,K be groups and G = H × K. Then H × 1 and 1 × K are normal subgroups

Proposition 6.1 Let i, j, k be such that

$$i^2 = j^2 = k^2 = ijk = -1 \in \mathbb{R},$$

show that the quaternion group

$$Q_8 = \langle i, j, k \rangle$$

has order 8, and every its subgroup is normal.

Proof. Since $i^2 = j^2 = k^2 = -1$, ij = k, jk = i, ki = j, any element from the set Q_8 can be written as the form $\pm i^{m_1} j^{m_2} k^{m_3}$ for $m_i \in \mathbb{N}$ with $m_1 + m_2 + m_3 = 1$. Hence, the set Q_8 has at most 8 elements, i.e., the order should be no more than 8. Furthermore, note that $\pm 1, \pm i, \pm j, \pm k \in Q_8$, which means the $|Q_8| = 8$.

Also, due to Lagrange's theorem, every subgroup can only have order 1,2,4,8, and the subgroup with order 1 or 8 are trivial normal subgroups; the subgroup with order 4 has index 2, i.e., is normal. After computation, we find the only one subgroup with order 2 is $\{1,-1\}$, which is normal obviously.

Every subgroup of an abelian group is normal, but the converse is not true (e.g., see example above). In general, a group *G* is **Dedekind** if every its subgroups is normal; and if *G* is non-abelian but with all normal subgroups, then *G* is **Hamiltonian group**.

Theorem 6.2 Let G be a group with $H \subseteq G$, then the set [G : H] forms a **quotient** group (factor group) G/H under the operation defined as:

$$(aH)(bH) := (ab)H, \quad \forall a,b \in G$$

Note that the proof is incomplete, we need to check the well-defineness of operation.

Proof. To examine that G/H is indeed a group:

- (ab)H is also a left cosets
- associative
- *H* is identity
- $a^{-1}H$ is inverse

■ Example 6.3 For $n \in \mathbb{N}^+$, the abelian group \mathbb{Z} contains a normal subgroup $n\mathbb{Z}$, and $\mathbb{Z}/n\mathbb{Z}$ is a cyclic group of order n.

Proposition 6.2 Let *G* be a group, then the **center**

$$Z(G) := \{ z \in G \mid zg = gz, \forall g \in G \}$$

forms a normal subgroup of *G*.

Question for Proposition 3.5

Proof. First, show that $z_1, z_2 \in Z(G)$ implies $z_1 z_2^{-1} \in Z(G)$. Next, show that $g^{-1} z g = z$ for all $g \in G$ and $z \in Z(G)$.

- Example 6.4 1. Let G be an abelian group, then Z(G) = G, i.e., Z(G) is essentially the largest abelian subgroup of G
 - 2. Let $n \ge 3$ be an integer, then $Z(S_n) = 1$.
 - 3. Let $n \geq 3$ be an integer, then $Z(\mathbb{Z}_n \times S_n) = \mathbb{Z}_n \times 1$.

4

$$Z(\mathsf{GL}(2,\mathbb{R})) = \{ \mathsf{diag}(a,b) : ab \neq 0 \}$$

6.1.1. Derived subgroups

Definition 6.2 [derived subgroup] Let G be a group and $a,b \in G$. The **commutator** of a,b is:

$$[a,b] := a^{-1}b^{-1}ab$$

The derived subgroup (commutator subgroup) of G is

$$G' := \langle [a,b] | a,b \in G \rangle$$

Proposition 6.3 The G'-coset partition defines an equivalence relation on G such that $ab \sim_{G'} ba$ for $\forall G$.

Proof. First show that $x \sim_{G'} y$ iff $xy^{-1} \in G'$.

Then it's trivial that $aba^{-1}b^{-1} \in G'$.

Note that the *L*-coset parititon $a \sim_L b$ means that aH = bH.

 \mathbb{R} If $G' \triangleleft G$, then G/G' is an abelian group. Note that G' is normal since

$$a^{-1}ha = [a, h^{-1}]h \in G'$$

Theorem 6.3 Let *G* be a group, then $G' \triangleleft G$ and G/G' is abelian.

Corollary 6.1 Let G be a group such that G'' = 1, then G is abelian

Proof. $\{\{a\} \mid a \in G\}$ is abelian implies G is abelian.

The derived subgroup is the smallest normal subgraoup such that the quotient group G/G' is abelian, i.e., any quotient group G/H is abelian iff H contains G'.

Theorem 6.4 Let *G* be a group and $H \triangleleft G$, then G/H is abelian iff $G' \leq H$.

Proof. Necessity. Since G/H is abelian, we have

$$abH = baH \implies abh_1 = bah_2 \implies [a,b] = h_2h'_1 \in H \implies \langle [a,b]|a,b \in G \rangle \in H$$

Suffiency. Note that

$$a^{-1}b^{-1}ab \in G' \subseteq H \implies a^{-1}b^{-1}ab = h \implies ab \sim_H ba, \forall a, b \in G$$

Theorem 6.5 Let $n \in \mathbb{N}^+$, then $A_n = S'_n$ (A_n denotes the group of even permutations). Moreover, when $n \geq 5$, $A'_n = A_n$.

Recall that a permutation is called an even permutation if it can be written as a product of an even number of transpositions.

Proof. Note that $S_n/A_n = A_n \sqcup \tau A_n$, and therefore abelian. Thus $A_n \geq S_n'$. It suffices to show $S_n' \geq A_n$, Note that

$$A_n = \langle (12i)|i=3,\ldots,n\rangle$$

Therefore $(12i) = (12)^{-1}(1i)^{-1}(12)(1i) \in S'_n$ implies $A_n \le S'_n$.

When $n \ge 5$, note that $A'_n \le A_n$. On the other hand,

$$(12i) = (1a2)^{-1}(1bi)^{-1}(1a2)(1bi) \in A'_n \implies A_n \le A'_n$$

In general, a group satisfying G' = G is perfect. The alternating groups are concrete examples of perfect groups.

Proposition 6.4 The group $SL(2,\mathbb{R})$ is perfect.

Proof. Note that any element is a product of $\begin{pmatrix} 1 & x \\ 0 & x \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ y & 1 \end{pmatrix}$ and these two basis can be written as the form [a,b].,e.g.,

$$\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} (\sqrt{2})^{-1} & 0 \\ 0 & \sqrt{2} \end{pmatrix} \end{bmatrix}$$

Definition 6.3 [Simple] Every group G contains the trivial normal subgroups 1 and G. If these are only normal subgroups contained in G, then we say G is **simple**.

Definition 6.4 [Conjugacy Class] Let G be a group and $a,b \in G$. If there exists $g \in G$ such that $g^{-1}ag = b$, then a,b are **conjugate**, and b is a conjugate of a. The conjugacy class with representative a is a collection of all conjugates of a:

$$\mathsf{CI}(a) = \{ g^{-1}ag \mid g \in G \}$$

Proposition 6.5 The conjugacy class defines an equivalence relation on G; and $Cl(z) = \{z\}$ for each $z \in G$.

Theorem 6.6 Let G be a finite group with r disjoint conjugacy classes of size $c_1, ..., c_r \ge 2$. Let $|Z(G)| = c_0$, then

$$|G| = \sum_{i=0}^{r} c_i$$

Proof. Note that $x \in Cl(z)$ with $z \in Z(G)$ iff x = z. Hence the conjugacy class with only one element must be of the form $\{z\}$, $z \in Z(G)$. Thererfore,

$$|G| = \sum_{i=0}^{r} c_i$$

Theorem 6.7 The alternating group A_5 is simple.

Solution. Let $\sigma \in N \triangleleft A_5$ be non-identity, then if we can show that $N = A_5$, which is a contradiction, then we show that A_5 is simple.

Note that A_5 is generated by the 3-cycles, i.e., every element σ of A_n can be written as

$$\sigma = C_1 C_2 \cdots C_k$$

with C_i to be 3-cycles.

Note that N contains a non-trivial even permutation σ , which must be of the form (abcde) or (ab)(cd) or (abc).

• When $\sigma = (abcde)$, let $\alpha = (ab)(cd)$. then N also contains:

$$\alpha \sigma \alpha^{-1} = (ab)(cd)(abcde)(ab)(cd) = (adceb)$$

and therefore contains

$$\sigma\sigma^{-1} = (aec)$$

• When $\sigma = (ab)(cd)$, let $\beta = (abe)$, then N also contains

$$\sigma' = \beta \sigma \beta^{-1} = (becd)$$

and therefore contains

$$\sigma\sigma^{-1} = (abe)$$

If N contains a signle 3-cycles, since 3-cycles are mutually conjugate, N will contain any other 3-cycles. Therefore N = A, which is a contradiction.

Solution 2. Let N be a normal subgroup of A_5 , then it is a union of some of the conjugacy classes of A_5 . Since the order of N must divide 60, a short calculation shows that no union of some of these conjugacy classes that includes $\{e\}$ has order a divisor of 60, unless $A_5 = \{e\}$ or A_5 .

Theorem 6.8 Let $n \ge 5$, then A_n is simple, and A_n is the only non-trivial proper normal subgroup of S_n .

It suffices to show that $1 < H \triangleleft S_n$ implies $H = A_n$.

6.2. Thursday

6.2.1. Homomorphisms

Definition 6.5 [Homomorphisms] Let G=(G,*) and $\hat{G}=(\hat{G},\odot)$, then a **homomorphisms** is a map $\phi:G\mapsto \hat{G}$ such that

$$\phi(a*b) = \phi(a) \odot \phi(b), \quad \forall a, b \in G$$

If ϕ is a **bijection**, then ϕ is said to be a **isomorphism**. We denote $G \cong^{\phi} \hat{G}$.

- homomorphisms is not necessarily injective or surjective.
- The isomorphism from G to \hat{G} is not unique;
- isomorphism admits symmetry, i.e., $G \cong \hat{G}$ iff $\hat{G} \cong G$.

$$\phi(\lambda \boldsymbol{u} + \mu \boldsymbol{v}) = \lambda \phi(\boldsymbol{u}) + \mu(\boldsymbol{v}),$$

and let $\lambda = \mu = 1$, we derive the homomorphismness.

ullet The determinant $\det: \mathsf{GL}(n,\mathbb{R}) \mapsto \mathbb{R}^{\#} := \mathbb{R} \setminus \{0\}$ is a group homomorphism:

$$\phi: g \mapsto \det(g) \implies \phi(gh) = \phi(g) * \phi(h)$$

• For any $n \in \mathbb{Z}^+$, we have $n\mathbb{Z} \leq \mathbb{Z}$. Define the map $\phi : n\mathbb{Z} \mapsto \mathbb{Z}$ as $nk \mapsto k$, then

$$\phi(nh + nk) = \phi(n(h+k)) = h + k = \phi(nh) + \phi(nk)$$

Then we need to show it is bijection. Each element on the range has its input, i.e., surjective. Also, take $\phi(nh) = \phi(nk)$, then n = k, i.e., injective.

For n > 1, we have $n\mathbb{Z} < \mathbb{Z}$, i.e., a proper subgroup can be isomorphic to its parent group.

• The map $\mathbb{Z} \mapsto \mathbb{Z}$ defined by $k \mapsto nk$ is a homomorphism but not isomorphism unless $n = \pm 1$:

$$\phi(h+k) = n(h+k) = \phi(h) + \phi(k)$$

- The remainder map $\phi: \mathbb{Z} \mapsto \mathbb{Z}_n$ is defined as mapping k to its remainder \bar{k} divided by n. It is a surjective homomorphism: $\bar{k} \in \{0, ..., n-1\}$ always has its input
- The map ϕ defined as $k \mapsto k+1$ is not a homomorphism:

$$\phi(0) = 1, \phi(1) = 2, \phi(0+1) = 2$$

Proposition 6.6 The group

$$G = \left\{ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \middle| \theta \in \mathbb{R} \right\}$$

is isomorphic to $H = \{z \in \mathbb{C} | |z| = 1\}$ under the map

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \mapsto e^{i\theta}$$

Proof. First is to check the well-defineness of ϕ . i.e., different expression of the same

input leads to the same output:

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} \cos \theta' & -\sin \theta' \\ \sin \theta' & \cos \theta' \end{pmatrix} \implies \theta' = \theta + 2n\pi \implies e^{i\theta} = e^{i\theta'}$$

Then check homomorphism and bijection.

Proposition 6.7 Let ϕ : $G \mapsto H$ be a group homomorphism, then

- 1. $\phi(e_G) = e_H$
- 2. $\phi(g^{-1}) = [\phi(g)]^{-1}$ for $\forall g \in G$
- 3. $\phi(g^n) = [\phi(g)]^n$ for $\forall g \in G$ and $n \in \mathbb{Z}$

Proof.

$$H \ni \phi(e_G) = \phi(e_G)\phi(e_G) \implies e_H = \phi(e_G)$$

Definition 6.6 [image] Let $\phi : G \mapsto H$ be a group homomorphism, then the **image** of ϕ is $\operatorname{Im} \, \phi = \phi(G) = \{\phi(g) \mid g \in G\}$ The **kernel** of ϕ is $\ker \, \phi := \{g \in G \mid \phi(g) = e_H\}$ In particular, if $\ker \, \phi = G$, then we say the homomorphism is **trivial**.

$$Im \ \phi = \phi(G) = \{\phi(g) \mid g \in G\}$$

$$\ker \phi := \{g \in G \mid \phi(g) = e_H\}$$

im $\phi \leq H$ and ker $G \triangleleft G$.

Proposition 6.8 Let ϕ defined above, then im $\phi \leq H$ and ker $\phi \leq G$

Proof.

$$a,b \in \operatorname{im} \phi \implies ab^{-1} = \phi(g)[\phi(h)]^{-1} = \phi(gh^{-1}) \in \operatorname{im} \phi$$

Proposition 6.9 A group homomorphism $\phi : G \mapsto H$ is injective iff ker $\phi = \{e_G\}$

Proof. Necessity.

Assume $a \neq e_G$ and $a \in \ker \phi$, then

$$\phi(g) = \phi(g)e_H = \phi(g)\phi(a) = \phi(g*a),$$

but $g \neq g * a$, which is a contradiction.

Sufficiency.

For any $\phi(g) = \phi(h)$, it suffices to show g = h:

$$\phi(g)[\phi(h)]^{-1} = e_H \implies \phi(gh^{-1}) = e_H \implies gh^{-1} = e_G \implies g = h.$$

Proposition 6.10 Let G, H be isomorphic groups, if G is cyclic, then so is H

Proof. Let $G = \langle g_0 \rangle \cong H$ and $\phi : G \mapsto H$. Define $h_0 = \phi(g_0)$. Take $h \in H$, there exists $n \in \mathbb{Z}$ s.t.

$$h = \phi(g_0^n) = [\phi(g_0)]^n := h_0^n$$

It follows that $H \subseteq \langle h_0 \rangle \subseteq H$, i.e., $H = \langle h_0 \rangle$

Proposition 6.11 Let G, H be isomorphic groups, if G is abelian, then so is H

Proof. For any $h_1, h_2 \in H$, there exists $g_1, g_2 \in G$ such that

$$h_1h_2 = \phi(g_1)\phi(g_2) = \phi(g_2)\phi(g_1) = h_2h_1.$$

Note that D_6 is not isomorphic to $\mathbb{Z}_6 \times \mathbb{Z}_2$, since D_6 is not abelian.

R These two propositions above still remains true if replacing isomorphism by a surjective homomorphism.

Proposition 6.12 The restriction of a homomorphism $\phi: G \mapsto \hat{G}$ to a subgroup $H \leq G$ gives a homomorphism $\phi|_H: H \mapsto \hat{G}$ as well.

Proof.
$$\phi(g_1 * g_2) = \phi(g_1) * \phi(g_2)$$
 for $g_1, g_2 \in H$

Proposition 6.13 Let G, H be groups s.t. $G \cong_{\phi} H$, then $|\phi(g)| = |g|$ for each $g \in G$.

Proof. Note that n = |g| implies

$$[\phi(g)]^n = e_H,$$

i.e., $|\phi(g)| \le n$. On the other hand, assume we can take a positive integer m < n s.t.

$$[\phi(g)]^m = e_H \implies \phi(g^m) = e_H,$$

with $g^m \neq e_G$, which implies ϕ is not one-to-one, which is a contradiction.

6.2.2. Classification of cyclic groups

Proposition 6.14 Let r_1 denote the anti-clockwise rotation by $\frac{2\pi}{n}$, then $H = \langle r_1 \rangle \leq D_n$. Then $H \cong \mathbb{Z}_n$.

Proof. Define $\phi: H \mapsto \mathbb{Z}_n$ with $\phi(r_1^k) = \bar{k}$, $k \in \mathbb{Z}$

• ϕ is well-defined:

$$r_1^{k_1} = r_1^{k_2} \implies k_2 = k_1 + nd,$$

which is well-defined since $\overline{k_1 + nd} = \overline{k_1}$.

• ϕ is a homomorphism: for $i, j \in \{0, ..., n-1\}$

$$\phi(r_1^i r_1^j) = \phi(r_1^{i+j}) = \overline{i+j} = i +_n j = \phi(r_1^i) +_n \phi(r_1^j)$$

• To show ϕ is a bijection. It suffices to show ker $\phi = \{e_H\}$:

$$\phi(r_1^i)=0 \implies i=nd, d\in \mathbb{Z} \implies r_1^i=r_0$$

Theorem 6.9 Let *G* be a cyclic group, then

1. If
$$|G| = \infty$$
, then $G \cong \mathbb{Z}$

2. If
$$|G| = n$$
, then $G \cong \mathbb{Z}_n$

Proof. Define $\phi: G \mapsto \mathbb{Z}$ with $g_0^k \mapsto k$

First show the well-defineness of ϕ ; then show ϕ is homomorphic:

$$\phi(g_0^m * g_0^n) = \phi(g_0^m) + \phi(g_0^n)$$

Then show that ϕ is bijection, i.e., ker $\phi = \{e_G\}$.

For the second case, define the map ϕ : $\mathbb{Z}_n \mapsto G$ with $k \mapsto g_0^k$:

Check the well-defineness, which is clear since the expresison for k is unique.

 ϕ is homomorphism:

$$\phi(h +_n k) = \phi(\overline{h + k}) = g_0^{\overline{h + k}} = g_0^{h + k} = g_0^h g_0^k = \phi(h)\phi(k)$$

Then show that it is bijection. A one-to-one function from a finite set to itself is onto. Then check one-to-one mapping.

Corollary 6.2 Let G, \hat{G} be cyclic groups of the same order, then $G \cong \hat{G}$.

6.2.3. Isomorphism Theorems

The first and seond theorem is required in exam. (can we apply the corresponding theorem in the exam?)

Theorem 6.10 — **The First Isomorphism Theorem.** Let $G \mapsto H$ be a **surjective** group homomorphism, then $\ker \phi \triangleleft G$ and $G/\ker \phi \cong \operatorname{im} \phi$