CVS166磁阻数据多项式拟合结果

全局多项式拟合

首先尝试对数据全局进行多项式拟合。得到的结果是8次方时函数才能拟合的较好(预设r有4个9为精准拟合),但其实多项式在2次及以上时高场数据就能很好的吻合,但0附近的行为无法很好的符合。

原因分析

从0度和90度的数据曲线可以看出,二者在强 场处都遵从准线性行为(即用一个二次系数 很小的二次函数就能精准拟合, 且此系数为 负),而弱场附近的数据则至少遵从x^2的行 为(即二次系数主导,且为正)甚至拥有更 复杂的高次项。这体现在高场数据仅需二阶 多项式就能拟合的很好,而要精准地顾及磁 阻在0处的行为则需要很高的阶数才能实现。 可以看出0-90的曲线族都存在拐点 下的二阶导为负,弱场下的为正) 越小拐点越接近0,如果将强弱场范围分开考 虑(粗浅地认为由不同的效应导致) 角度越大强场效应在竞争中越占优势 更早进入强场下的行为)。由于全局多项式 拟合无法得到令人信服的结果,下面尝试分 段拟合。

强场多项式拟合:90度

可以看到90度数据在磁场2T 以上用二阶多项式拟合的结 果十分精确,注意到此时B2 为负,如果不考虑2T以下的 磁场,A*x-B*x^2就能很好地 解释磁阻在磁场下的变化关 系。

强场多项式拟合:0度

相比90度数据, 0度数据在磁场5T以上才能用二阶多项式拟合得到精确结果, 此时B2 为负, 可以看到随着角度减小, 强场应越来越不占优势。以上被放应数据范围, 高、设定的。以上磁场临界Bc以上磁阻的变化行为是平凡的。

强场效应随角度的变化

		截距	E	В	1	B2		统计	
		值	标准误差	值	标准误差	值	标准误差	调	整后R平方
Вс	=6T	3. 59634E-4	1. 11876E-5	9. 19492E-4	3. 10882E-6	-2. 0575E-5	1. 90584E-7		0. 99957
	C	3. 27283E-4	1. 14717E-5	9. 30262E-4	3. 18775E-6	-2. 12085E-5	1. 95422E-7		0. 99955
	D	3. 40165E-4	1. 22775E-5	9. 25233E-4	3. 41165E-6	-2. 08805E-5	2. 09149E-7		0. 99949
	Е	3. 56369E-4	1. 27552E-5	9. 21378E-4	3. 5444E-6	-2. 06013E-5	2. 17287E-7		0. 99945
	F	3. 1425E-4	1. 19073E-5	9. 25927E-4	3. 3088E-6	-2. 07935E-5	2. 02843E-7		0. 99952
	G	3. 01694E-4	1. 19672E-5	9. 30334E-4	3. 32543E-6	-2. 09319E-5	2. 03863E-7		0. 99952
	Н	2. 73424E-4	1. 13177E-5	9. 33683E-4	3. 14496E-6	-2. 0966E-5	1. 92799E-7		0. 99958
	Ι	2. 73517E-4	1. 15358E-5	9. 3615E-4	3. 20556E-6	-2. 10502E-5	1. 96514E-7		0. 99956
	J	2. 59405E-4	1. 16687E-5	9. 3638E-4	3. 2425E-6	-2. 08307E-5	1. 98779E-7		0. 99956
	K	2. 44939E-4	1. 09693E-5	9. 43722E-4	3. 04814E-6	-2. 10038E-5	1.86864E-7		0. 99961
	L	2. 19832E-4	1. 1146E-5	9. 47627E-4	3. 09723E-6	-2. 09539E-5	1. 89873E-7		0. 99961
	M	1. 77317E-4	1. 03023E-5	9. 53721E-4	2.86281E-6	-2. 09 555E-5	1. 75502E-7		0. 99967
	N	1. 46157E-4	9. 83375E-6	9. 57767E-4	2. 7326E-6	-2. 08256E-5	1. 6752E-7		0. 99971
	0	1. 13367E-4	1. 04929E-5	9. 66556E-4	2. 91577E-6	-2. 09845E-5	1. 78749E-7		0. 99967
	P	6. 93511E-5	1. 00737E-5	9. 75273E-4	2. 79929E-6	-2. 10646E-5	1. 71608E-7		0. 9997
	Q	4. 32593E-5	1. 00308E-5	9. 76981E-4	2. 78736E-6	-2. 07295E-5	1. 70877E-7		0. 99971
-	R	1. 57841E-5	9. 32088E-6	9.81195E-4	2. 59008E-6	-2. 05144E-5	1. 58783E-7		0. 99976
	S	-4. 49701E-5	9. 55925E-6	9. 90561E-4	2. 65632E-6	-2. 04964E-5	1. 62843E-7		0. 99975
	Т	-6. 99602E-5	9. 75283E-6	9. 94796E-4	2. 71011E-6	-2. 02937E-5	1. 66141E-7		0. 99975
	U	-1. 03509E-4	8. 84103E-6	9. 99727E-4	2. 45674E-6	-2. 01044E-5	1. 50608E-7		0. 9998
	V	-1. 38862E-4	8. 75779E-6	0. 00101	2. 43361E-6	-1. 99967E-5	1. 4919E-7		0. 99981
	W	-2. 07444E-4	9. 08125E-6	0. 00101	2. 52349E-6	-1. 98268E-5	1. 54701E-7		0. 9998
	X	-2. 56007E-4	7. 69862E-6	0. 00102	2. 13929E-6	-1. 99227E-5	1. 31147E-7		0. 99986
	Y	-2. 95719E-4	7. 80375E-6	0. 00103	2. 1685E-6	-1. 9429E-5	1. 32938E-7		0. 99986
	Z	-3. 21779E-4	7. 86203E-6	0. 00103	2. 18469E-6	-1. 91095E-5	1. 33931E-7		0. 99986
	AA	-3. 99821E-4	8. 3877E-6	0. 00105	2. 33077E-6	-1. 96046E-5	1. 42886E-7		0. 99984
	AB	-4. 18843E-4	7. 26123E-6	0. 00104	2. 01775E-6	-1. 88727E-5	1. 23696E-7		0. 99989
	AC	-4. 91371E-4	5. 76284E-6	0. 00105	1. 60137E-6	-1. 87654E-5	9. 81709E-8		0. 99993
	AD	-5. 24656E-4	6. 65884E-6	0. 00106	1.85035E-6	-1. 89283E-5	1. 13434E-7		0. 99991
	AE	-5. 84996E-4	6. 2092E-6	0. 00107	1. 72541E-6	-1. 8836E-5	1. 05775E-7		0. 99992
	AF	-6. 01514E-4	6. 32153E-6	0. 00107	1. 75662E-6	-1. 82858E-5	1. 07688E-7		0. 99992
	AG	-6. 90637E-4	5. 30103E-6	0. 00109	1. 47305E-6	-1. 8736E-5	9. 03039E-8		0. 99995
	AH	-7. 04683E-4	5. 1364E-6	0. 00109	1. 4273E-6	-1.87194E-5	8. 74994E-8		0. 99995
	ΑI	-7. 14468E-4	5. 07492E-6	0. 0011	1. 41022E-6	-1.86938E-5	8. 64522E-8		0. 99995
	AJ	-7. 65055E-4	5. 48545E-6	0. 0011	1. 52429E-6	-1. 85645E-5	9. 34455E-8		0. 99994
	AK	-7. 49186E-4	5. 33264E-6	0. 00109	1. 48183E-6	-1. 7968E-5	9. 08424E-8		0. 99995

弱场多项式拟合:90度

对2T以下的90度数据进行拟合, 发现至少需要三阶多项式才能精确拟合,主要原因还是0处磁阻的导数几乎为0导致的,且弱场下二次项明显是正值,这有可能理解为弱场效应和强场效应存在竞争,而建立全局变化关系似乎比较困难。

弱场多项式拟合:0度

对弱场下2T以内的数据进行拟合,发现至少需要四阶多项式才能较好拟合,而如果将上限放到5T则需要更高阶数。这似乎可以理解为角度减小,弱场下的效应就越复杂,与强场效应在磁场范围内竞争时的结果更难以拟合。

CVS166磁阻数据拟合尝试

拟合公式

- 有0度和90度下的阻值-磁场数据
- 给定多项式为(y1为0度阻值, y2为90度阻值, x为磁场):
- $y1=(A*x^2)/(A^2+B^2*x^2)$
- $y2=(A*x^2+B*x^4)/(C^2+C*B*x^2+D^2*x^2)$
- •目标是用y1对0度数据拟合, y2对90度数据拟合

尝试y1拟合0度数据

结果如右所示,黑色为实验数据,红色曲线为拟合公式y1,发现形状很和于公式实验,发现形式,发现形式,发现产品,是一个多数,无法通过,不是一个多数,无法通过。"两端抬起中间落下"

尝试y1拟合0度数据:多项式拟合

为了分析曲线成分,用多项式拟合,可以看到4阶就能拟合的很好,而且主要是线性项占主导,高阶项很小,证明实验数据主要是线性关系,与y1中x均为偶数次项不符。

尝试y1拟合0度数据:改写成倒数形式

曲线成分还可通过改写为 倒数形式看出。注意到 $(y1)^{(-1)}=A+B*x^{(-2)}$ 这个尝试拟合,可以清楚 地看到曲线的反比例效应 很强, -2次方不足以拟合, 只看函数形式可以猜测较 好的拟合应类似于y^(-1)= $A+B*x^{(-2)}+...+C*x^{(-n)}$, 必定含有高阶项

尝试y2拟合90度数据

用y2拟合90的数据,发现虽然形式符合,但是参数的误差甚至高于本值,说明y2对参数变化的影响很迟钝,说明用此公式拟合数据也不合适。

其他尝试和结论

- **这之后进行了其他各种尝试**,包括只截取临界磁场Bc附近的数据进行拟合,或者拿y2和y1反过来拟合0度和90度的数据,都得不到好的结果,要么曲线形状和数据差别太大,要么参数的相对误差极大(类似于之前的情况)
- 根据前面的讨论,可以得出结论:拟合公式y1和y2与0度和90度的数据不够吻合,理想的拟合公式可能含有显著的线性/奇数阶项或者是有更丰富的高阶项多项式的比值,这样才能有一个合适的结果。

补充: 电阻的数据拟合

在尝试用电阻数据拟合时,发现如果 给v1和v2加上一个共同的常数C(因 为电阻在B=0时不为零)进行拟合. 同时用y2和y1拟合0度和90度的数据 (相当于反过来) 能得到看似合理的 结果(形状较为符合,参数误差不大, 参数结果相同),除此之外任何其他 方法都无法得到好结果。分析认为公 式在描述阻值变化的图像上没有问题, 但是在某些细节上无法精确拟合,推 测还存在可能的修正项。

