AMPLIACIÓN DE MATEMÁTICAS TRABAJO PRÁCTICO 10: Homomorfismos y teorema chino del resto

Se dice que $\alpha \in \mathbb{K}$ es una raíz de f de multiplicidad r si $(x - \alpha)^r f$ y $(x - \alpha)^{r+1} \not f$. Una raíz múltiple es una raíz cuya multiplicidad es 2 o más. Halla las raíces múltiples de $3x^4 + x^2 + 3$ en
Cy en \mathbb{Z}_5 . $3 \times 4 \times 43 = 0$ $\times = \frac{1}{6} \pm \sqrt{13 - 36} = \frac{1}{6} \pm \sqrt{-35}$ $= \frac{1}{6} \times \sqrt{-35}$ $= $
$3 \times 7 + x^{2} + 3 = 3(x + 3)(x + 2) = les naices dobts son:$
Estando en Estados Unidos el Sr. Herrera se quedó sin dinero en efectivo y fue al banco a cambiar un cheque de viaje. El cajero al pagarle confundió el número de dólares con el número de centavos y viceversa. Sin darse cuenta de este hecho el Sr. Herrera gastó 68 centavos en sellos, y entonces vio para su sorpresa que la contidad de dinero en efectivo que tenía era exactamente el doble del valor del cheque de viaje que había cambiado. Determina el valor mínimo que podría tener dicho 9 cheque. Tarrera gastó 68 centavos en sellos, y entonces 35 vio para su sorpresa que la contidad de dinero en efectivo que tenía era exactamente el doble del valor del cheque de viaje que había cambiado. Determina el valor mínimo que podría tener dicho 9 cheque. Tarrera gastó 68 centavos en sellos, y entonces 35 vio para su sorpresa que la contidad de dinero en efectivo que tenía era exactamente el doble del 20 y valor del cheque = 100 x + y curlavos $\frac{1}{2}$
justificando la respuesta en cada caso. $1_{\mathcal{H}_{1}} \times \mathcal{H}_{2} + 1_{\mathcal{H}_{1}} \times \mathcal{H}_{2} = 0_{\mathcal{H}_{1}} \times \mathcal{H}_{2} = 0$
Hzx Hz; Hy no veryos =)

$$\begin{array}{rcl}
x & \equiv & 2 \pmod{4} \\
x & \equiv & 3 \pmod{5}
\end{array}$$

Para ello, calcula los coeficientes de la identidad de Bezout 4u + 5v = 1 = (4,5). Nótese que u es el inverso de 4 en \mathbb{Z}_5 y v el inverso de 5 en \mathbb{Z}_4 (si prefieres, puedes trabajar con los representantes positivos de la clase de equivalencia).

Considera el número $\alpha = 3 * u * 4 + 2 * v * 5$ y comprueba que es solución. Por tanto, Toda solución es de tipo $\alpha + 20k$, $k \in \mathbb{Z}$.

En general, si tenemos $x \equiv a \pmod{m}$ y $x \equiv b \pmod{n}$, con (m, n) = 1 = um + vn, las soluciones

En general, si tenemos
$$x \equiv a \pmod{m}$$
 y $x \equiv b \pmod{n}$, con $(m, n) = 1 = um + vn$, las solutiones son de tipo $umb + vna + mnk$, con $k \in \mathbb{Z}$. Acumula esto para resolver:

$$3x \equiv 2 \pmod{7}$$

$$x \equiv 1 \pmod{10}$$

$$2x \equiv 1 \pmod{9}$$

$$x \equiv 5 \pmod{9}$$

$$x \equiv 5 \pmod{9}$$

$$x \equiv 6 \pmod{7}$$

$$x \equiv 1 \pmod{10}$$

$$x \equiv 6 \pmod{7}$$

$$x \equiv 1 \pmod{10}$$

$$x \equiv 6 \pmod{7}$$

$$x \equiv 6 \pmod{7}$$

$$x \equiv 6 \pmod{7}$$

$$x \equiv 6 \pmod{7}$$

$$x \equiv 6 \pmod{9}$$

$$x \equiv 6 \pmod{9$$

¿Te atreves a hacerlo con polinomios? $P(x) \equiv x \pmod{x^2 + x}$ $P(x) \equiv 1 \pmod{x^2 + 1}$ (En $\mathbb{Z}_3[x]$)

The atreves a hacerlo con polinomios?
$$P(x) \equiv 1 \pmod{x^2 + 1}$$
 $P(x) \equiv 1 \pmod{x^2 + 1}$ $P(x)$

=) d=(x+1)(x2+x).1+(x+1)(x2+1).x