CS 181

Warren Kim

April 5, 2023

Contents

1	\mathbf{Det}	terministic Finite Automata	9
	1.1	Definitions	
	1.2	Formulating Automata	Ş
		1 2 1 Automata Examples	2

Preface

In this course, we want to answer two questions:

- (1) What is computation?
- (2) Are there problems that computers cannot solve?

1 Deterministic Finite Automata

1.1 Definitions

Alphabet: Any **nonempty finite** set of symbols.

- (β) $\{0,1\}$ is the binary alphabet.
- (γ) +, -, ·, / is the alphabet of arithmetic operators.
- (α) a, b, \ldots, z is the alphabet of lowercase English letters.

String: Any finite sequence of symbols from a given alphabet.

Note: The empty string (ϵ) is the only string contained in all alphabets.

$$101101 \in \beta$$
$$+ + -/ - - \cdot - + \in \gamma$$
$$abcad \in \alpha$$

Language: A set of strings over a given alphabet. More specifically, the language of a Discrete Finite Automata (DFA) is a set of strings that the DFA accepts.

- (1) $\{0,001,010,100,\ldots\}$ is the set containing all odd length binary strings over β
- (2) $\{aim, claim, denim, \ldots\}$ is the set containing all English words that end in "im" over γ
- (3) $\{\epsilon\}$ is the set containing the empty string over **all** alphabets.
- (4) Ø is the empty set over all alphabets.

Note: (1) and (2) are infinite while (3) and (4) are finite languages.

Computational Device: Any mechanism that imports a string and either accepts or rejects it.

Input (e.g. "math")
$$\longrightarrow$$
 Computational Device \longrightarrow Accept/Reject

1.2 Formulating Automata

Automata abides by the following rules:

- Choose an alphabet.
- Draw states.
- Choose a start¹ state.
- Choose accept² states.
- Draw transitions from **every** state to **every** symbol.

 $^{^1\}mathrm{Start}$ states are required

 $^{^2}$ Accept states are **not** required

1.2.1 Automata Examples

Figure 1: Accepts the set of strings $W=\{w:w \text{ is nonempty and contains either all } a\text{'s or all } b\text{'s}\}$ over the alphabet $\{a,b\}$

Figure 2: Accepts the set of strings $W=\{w: w \text{ is nonempty and } \sum_{i=1}^{k=|w|} w_i \text{ is divisible by } 3, \ 1 \leq i \leq n\}$ over the alphabet $\{0,1,2\}$

Figure 3: Accepts the set of strings $W=\{w:|w| \text{ is even, } 1\leq i\leq n\}$ over the alphabet $\{0,1\}$

Figure 4: Accepts the set of strings $W=\{w: w \text{ is nonempty and begins and ends with the same letter, } 1 \leq i \leq n\}$ over the alphabet $\{a,b\}$