## KXSD9 3-axis Digital Accelerometer 加速度計

工作電壓:DC 1.8V~3.6V

溝通介面:I2C 或 SPI

輸出範圍:±2g, ±4g, ±6g, ±8g

IC 封裝為 BGA

#### 功能區塊圖



### 感測能力

特別說明一下這個 Sensitivy 表格·設定由 CTRL\_REGC 控制·每一軸輸出的 range 如下·單位為 count/g

| Pa                       | arameters           | Units    | Min | Typical | Max |
|--------------------------|---------------------|----------|-----|---------|-----|
|                          | FS1=1, FS0=1 (± 2g) |          | 794 | 819     | 844 |
| Sensitivity <sup>1</sup> | FS1=1, FS0=0 (± 4g) | counts/a | 390 | 410     | 430 |
| Sensitivity              | FS1=0, FS0=1 (± 6g) | counts/g | 257 | 273     | 289 |
|                          | FS1=0, FS0=0 (± 8g) |          | 189 | 205     | 221 |

#### 其他電性注意

- 1.I2C 的上拉電阻最小接 1.5K(1.5K 算是強拉力,且較耗電,一般皆 4.7K~8.1K 即可)
- 2.Low Pass Filter 分別有 2Khz,1Khz,500hz,100hz,50hz,可由 CTRL\_REGC 暫存器控制 Low Pass Filter

3.A/D Conversion time (這個攸關讀取的問題)需要注意,通常是 200uS,跟 CTRL\_REGB CLKhld 有關係,當 KXSD9 還在量測用 I2C 去讀取,然後 CLKhld=1,則 KXSD9 會拉住 SCL 為 LOW,直到量測完畢,才放開 SCL,接著後面動作。(本實作不會用到此功能)

| Parameters          | Units | Min | Typical | Max |
|---------------------|-------|-----|---------|-----|
| A/D Conversion time | μS    |     | 200     |     |

## KXSD9 電路



#### 接腳描述

| Pin | Name     | Description                                                                              |
|-----|----------|------------------------------------------------------------------------------------------|
| 1   | IO Vdd   | The power supply input for the digital communication bus                                 |
| 2   | DNC      | Reserved – Do Not Connect                                                                |
| 3   | AUX IN   | Auxiliary Input for analog/digital conversion                                            |
| 4   | GND      | Ground                                                                                   |
| 5   | Vdd      | The power supply input. Decouple this pin to ground with a 0.1uF ceramic capacitor.      |
| 6   | nCS      | SPI Enable I <sup>2</sup> C/SPI mode selection (1 = I <sup>2</sup> C mode, 0 = SPI mode) |
| 7   | MOT      | Motion Wakeup Interrupt                                                                  |
| 8   | ADDR/SDI | I <sup>2</sup> C programmable address bit/SPI Serial Data Input                          |
| 9   | SCL/SCLK | I <sup>2</sup> C Serial Clock/SPI Serial Clock                                           |
| 10  | SDA/SD0  | I <sup>2</sup> C Serial Data/SPI Serial Data Output                                      |

● nCS:當使用 I2C 溝通介面,此腳要接 HIGH; SPI 當作溝通介面,此腳接 LOW

● MOT:由 KSD9 輸出到外部,通常都接到主控的外部中斷,由加速度計喚醒主控。

● ADDR/SDI: 當溝通介面為 I2C,此腳為設定 KXSD9 slave address

| ADDR       | KXSD9 I2C slave address | [001100 x] |
|------------|-------------------------|------------|
| 接 1(HIGH)  | 00110011 -> Read (0x33) |            |
| 汝 I(IIIII) | 00110010 -> Wirte(0x32) |            |
| 接 0(LOW)   | 00110001 -> Read (0x31) |            |
| 按 U(LUW)   | 00110000 -> Wirte(0x30) |            |

若溝通介面為 SPI, 此腳為 SPI Data input 腳。

本範例用 I2C 介面溝通·SPI 介面不贅述。

# IC 對應 3 軸的方位(Orientation)



當加速度移動,相對於+X,+Y,+Z移動,相對的數值會增加。

## 靜態測試得到的方位(地球的重力)

測試條件:FS1=1,FS0=1(±2g)(CTRL\_REGC 暫存器控制 bit 1 & bit 0) 變化如紅框數值·相對應 Diagram 的 IC 擺放方式。

> (1-g) 1-g -> 地球的重力 ▼

Earth's Surface

| Position   | 1      | 2      | 3      | 4      | 5      | 6      |
|------------|--------|--------|--------|--------|--------|--------|
| Diagram    |        |        |        |        | Тор    | Bottom |
|            |        |        |        |        | Bottom | Тор    |
| X          | 2048   | 2867   | 2048   | 1229   | 2048   | 2048   |
|            | counts | counts | counts | counts | counts | counts |
| Y          | 2867   | 2048   | 1229   | 2048   | 2048   | 2048   |
|            | counts | counts | counts | counts | counts | counts |
| Z          | 2048   | 2048   | 2048   | 2048   | 2867   | 1229   |
|            | counts | counts | counts | counts | counts | counts |
|            |        |        |        |        |        |        |
| X-Polarity | 0      | +      | 0      | -      | 0      | 0      |
| Y-Polarity | +      | 0      | -      | 0      | 0      | 0      |
| Z-Polarity | 0      | 0      | 0      | 0      | +      | -      |

# 用 I2C Bus 操作 KXSD9

| Term | Definition                |
|------|---------------------------|
| S    | Start Condition           |
| Sr   | Repeated Start Condition  |
| SAD  | Slave Address             |
| W    | Write Bit                 |
| R    | Read Bit                  |
| ACK  | Acknowledge               |
| NACK | Not Acknowledge           |
| RA   | Register Address          |
| Data | Transmitted/Received Data |
| Р    | Stop Condition            |

## 資料傳輸(只列基本的)

# 1.主控對 KXSD9 Write 1byte data

| Master | S | SAD + W |     | RA |     | DATA |     | Р |
|--------|---|---------|-----|----|-----|------|-----|---|
| Slave  |   |         | ACK |    | ACK |      | ACK |   |

# 2.主控對 KXSD9 Write N-byte data

| Master | S | SAD + W |     | RA |     | DATA |     | DATA |     | Р |
|--------|---|---------|-----|----|-----|------|-----|------|-----|---|
| Slave  |   |         | ACK |    | ACK |      | ACK |      | ACK |   |

# 3.主控對 KXSD9 Read 1-byte data

|   | Master | S | SAD + W |     | RA |     | Sr | SAD + R |     |      | NACK | Р |
|---|--------|---|---------|-----|----|-----|----|---------|-----|------|------|---|
| Ī | Slave  |   |         | ACK |    | ACK |    |         | ACK | DATA |      |   |

# 4.主控對 KXSD9 Read N-byte data

| Master | S | SAD + W |     | RA |     | Sr | SAD + R |     |      | ACK |      | NACK | Р |
|--------|---|---------|-----|----|-----|----|---------|-----|------|-----|------|------|---|
| Slave  |   |         | ACK |    | ACK |    |         | ACK | DATA |     | DATA |      |   |

#### KXSD9 暫存器

不論是用 I2C 還是 SPI 最終都是操作 KXSD9 的暫存器,來得到相對應加速度數值。 如下表為 I2C 的表(SPI 有另外一張表,這邊不列出,因為操作是 I2C 非 SPI,可參閱 KXSD9 sepc)

|               | Туре       | Add  | ress      |
|---------------|------------|------|-----------|
| Register Name | Read/Write | Hex  | Binary    |
| XOUT_H        | R          | 0x00 | 0000 0000 |
| XOUT_L        | R          | 0x01 | 0000 0001 |
| YOUT_H        | R          | 0x02 | 0000 0010 |
| YOUT_L        | R          | 0x03 | 0000 0011 |
| ZOUT_H        | R          | 0x04 | 0000 0100 |
| ZOUT_L        | R          | 0x05 | 0000 0101 |
| AUXOUT_H      | R          | 0x06 | 0000 0110 |
| AUXOUT_L      | R          | 0x07 | 0000 0111 |
| -             | -          | xxxx | XXXX XXXX |
| -             | -          | XXXX | XXXX XXXX |
| Reset_write   | W          | 0x0A | 0000 1010 |
| -             | -          | xxxx | XXXX XXXX |
| CTRL_REGC     | R/W        | 0x0C | 0000 1100 |
| CTRL_REGB     | R/W        | 0x0D | 0000 1101 |
| CTRL_REGA     | R          | 0x0E | 0000 1110 |

Table 9. I<sup>2</sup>C Mode Register Map

這邊攸關於模式切換&讀取加速度數值,介紹幾個關鍵暫存器。

#### 重點介紹暫存器

## 3 軸加速度數值暫存器 (Register Address 0x00~0x05)

如下,為 X 軸數值,分高低  $Byte \circ Y$  和 Z 軸一樣,這邊不列出(可看 SPEC)

## XOUT H

X-axis accelerometer output most significant byte

| R       | R       | R      | R      | R      | R      | R      | R      |
|---------|---------|--------|--------|--------|--------|--------|--------|
| XOUTD11 | XOUTD10 | XOUTD9 | XOUTD8 | XOUTD7 | XOUTD6 | XOUTD5 | XOUTD4 |
| Bit7    | Bit6    | Bit5   | Bit4   | Bit3   | Bit2   | Bit1   | Bit0   |

#### XOUT L

X-axis accelerometer output least significant byte

| R      | R      | R      | R      | R    | R    | R    | R    |
|--------|--------|--------|--------|------|------|------|------|
| XOUTD3 | XOUTD2 | XOUTD1 | XOUTD0 | X    | X    | X    | X    |
| Bit7   | Bit6   | Bit5   | Bit4   | Bit3 | Bit2 | Bit1 | Bit0 |

從 KXSD9 讀取出來後要合併成一個 · XOUT = (XOUT\_H<<8) | (XOUT\_L>>4);

**這邊要注意,數值一定都是正的。**可參考靜態測試得到的方位(地球的重力),

 $Y \cdot Z$  軸一樣的作法。

#### KXSD9 開發重點 Note

#### 重置 KXSD9 Reset Write

當在 Rregister 0x0A(Reset Write)寫入 0b11001010,會 Reset KXSD9。

#### Reset write

| W    | W    | W    | W    | W    | W    | W    | W    |
|------|------|------|------|------|------|------|------|
| 1    | 1    | 0    | 0    | 1    | 0    | 1    | 0    |
| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |

I2C Address: 0x0Ah

### 控制 KXSD9 暫存器 CTRL REGC

## CTRL\_REGC

Read/write control register: Factory programmed power up/reset default value (0xE1h)

| RW   | R/W  | R/W  | . R/W  | RW     | R/W  | R/W  | R/W  | Reset Value |
|------|------|------|--------|--------|------|------|------|-------------|
| LP2  | LP1  | LP0  | MOTLev | MOTLat | 0    | FS1  | FS0  | 11100001    |
| Bit7 | Bit6 | Bit5 | Bit4   | Bit3   | Bit2 | Bit1 | Bit0 | -           |

SPI Read Address: 0x8Ch

SPI Write Address: 0x0Ch

I<sup>2</sup>C Address: 0x0Ch

當 Power on 或 Reset 後,CTRL\_REGC 初始數值為 0xE1。也就是 LP = "111",MOT="00",FS="01"。

先介紹 LP2,LP1,LP0, 此為控制加速度運算的頻寬。初始化是 50HZ(LP="111")。

| LP2 | LP1 LP0 |   | Filter Corner<br>Frequency |  |  |
|-----|---------|---|----------------------------|--|--|
| 0   | 0       | 0 | No Filter                  |  |  |
| 0   | 0       | 1 | 2000 Hz                    |  |  |
| 0   | 1       | 0 | 2000 Hz                    |  |  |
| 0   | 1       | 1 | 2000 Hz                    |  |  |
| 1   | 0       | 0 | 1000 Hz                    |  |  |
| 1   | 0       | 1 | 500 Hz                     |  |  |
| 1   | 1       | 0 | 100 Hz                     |  |  |
| 1   | 1       | 1 | 50 Hz                      |  |  |

再來介紹 **FS1,FS0** · 用來控制輸出感測範圍(The full scale sensing range of accelerometer) · 初始 化為±6g(FS="01")

| FS1 | FS0 | Full Scale<br>Range | 12-bit Sensitivity |
|-----|-----|---------------------|--------------------|
| 0   | 0   | +/-8 g              | 205 counts/g       |
| 0   | 1   | +/-6 g              | 273 counts/g       |
| 1   | 0   | +/-4 g              | 410 counts/g       |
| 1   | 1   | +/-2 g              | 819 counts/g       |

最後介紹 MOTLev,MOTLat 這兩個參數,是用來控制 KXSD9 的 pin7 輸出行為。此接腳是功

用是來喚醒主控(wake up)。



● MOTLat:是否要鎖住 MOT pin,如下圖,當 MOTLat =1

# Typical Motion Wake Up Interrupt Example (MOTLat = 1)



如下圖,當 MOTLat =0

# Typical Motion Wake Up Interrupt Example (MOTLat = 0)



#### KXSD9 開發重點 Note

#### 解釋:

● **當 MOTLat** = 1 · 會將 MOT pin 7 拉 HIGH · 並且將 CTRL\_REGA MOTI bit 設"1"。同時間 去清除 CTRL\_REGB 的 MOTlen bit · 然後進入 full-power mode。(當 CTRL\_REGB MOTlen bit 為"1" 則是 low power motion wake up mode。

CTRL\_REGA MOTI bit -> 當有喚醒(wake up)發生·會自動設"1",若沒有發生·則是"0"。 (等等後面會介紹)。

若要 KXSD9 重新進入 low power motion wake up mode,需要設定 CTRL\_REGB 的 MOTlen bit 為"1"。

● **當 MOTLat** =0 · 當 CTRL\_REGB MOTlen 為"1"且有移動發生(motion event happens) · 則 會將 MOT pin7 拉 HIGH · 並且將 CTRL\_REGA MOTI bit 設"1"。但不會進入 full-power mode · 反而是持續在 low power motion wakeup mode ·

當去讀取 CTRL\_REGA, MOT 會自動拉 LOW。

就是當有設定 MOTLat=1,會一直讓 MOT pin 維持 high。MOTLat=0,會一直讓 MOT pin 維持 high,但只要去讀取 CTRL\_REGA 後,MOT 會自動拉 LOW。

● MOTLev,設定 threshold(臨界值),觸發移動偵測(motion event)喚醒用(跟 MOT pin 有關係)。設定關係如下表,正負一起設定,如紅框所示

| MOTLev | FS1 | FS0 | Motion Wake Up<br>Threshold |
|--------|-----|-----|-----------------------------|
| 0      | 0   | 0   | +/-6 g                      |
| 0      | 0   | 1   | +/-4.5 g                    |
| 0      | 1   | 0   | +/-3 g                      |
| 0      | 1   | 1   | +/-1.5 g                    |
| 1      | 0   | 0   | +/-4 g                      |
| 1      | 0   | 1   | +/-3 g                      |
| 1      | 1   | 0   | +/-2 g                      |
| 1      | 1   | 1   | +/-1 g                      |



## 控制 KXSD9 暫存器 CTRL\_REGB

### CTRL REGB

Read/write control register: Factory programmed power up/reset default value (0x40h)

| R/W    | R/W    | R/W  | R/W  | R/W  | R/W    | R/W  | RW   | Reset Value |
|--------|--------|------|------|------|--------|------|------|-------------|
| CLKhld | ENABLE | ST   | 0    | 0    | MOTlen | 0    | 0    | 01000000    |
| Bit7   | Bit6   | Bit5 | Bit4 | Bit3 | Bit2   | Bit1 | Bit0 | _           |

I<sup>2</sup>C Address: 0x0Dh

SPI Read Address: 0x8Dh SPI Write Address: 0x0Dh

CTRL REGB 初始化數值為:0x40,參數有 CLKhld、ENABLE、ST、MOTlen 這四個。

這邊不討論 CLKhld,這個是 I2C SCL 有 hold 住的做法,在這邊不會使用到,也不會看到。 通常讓 CLKhld 保持為"0"就好。

● ENABLE: 設定 KXSD9 模式。

ENABLE = 1, normal mode  $\circ$ 

ENABLE=0 · low power mode °

● ST:自我測試(Self-test function), 會測試 3 軸,輸出會丟在 3 軸加速度暫存器。 進入條件: ST 要設"1"外, EANBLE 也要設"1"。

● MOTlen:開啟移動偵測喚醒功能(motion wakeup feature),

MOTlen=1·KXSD9 會進入 low power mode 直到有移動事件發生(motrion event pccurs)· 會使暫存器 CTRL\_REGA MOTI 設"1"·外部腳 MOT 為"HIGH"。

但 KSD9 是甚麼模式要看 CTRL\_REGC 的 MOTLat bit。

- ◆ 當 MOTLat =1 · 保持 KXSD9 為 low power mode。
- ◆ 當 MOTLat =0 · KXSD9 轉為 normal mode。

MOTlen=0,保持為 mormal operating mode。

## 控制 KXSD9 暫存器 CTRL\_REGA

一個參數 MOTI, 用來讀取得知是否有移動喚醒中斷發生(motion wakeup interrupt)。

## CTRL\_REGA

Read-only status register

| R    | R    | R    | R    | R    | R    | R    | R    |
|------|------|------|------|------|------|------|------|
| X    | X    | X    | X    | X    | X    | MOTI | X    |
| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |

I<sup>2</sup>C Address: 0x0Eh

SPI Read Address: 0x8Eh SPI Write Address: 0x0Eh

● MOTI,當有移動喚醒中斷發生

MOTI=1,代表有 Wake up event 發生,同時外部 MOT pin 為 high

MOTI=0,代表有 Wake up event 發生,同時外部 MOT pin 為 low

#### KXSD9 工作流程

簡易流程如下,詳細請參考 code: EXAMPLE\_KXSD9.C



# 註:KXSD9\_INIT API 包含幾項初始化步驟:

- 1. KXSD9\_RESET API (下達Soft Reset)
- 2. KXSD9\_SET\_LOW\_PASS (設定low pass filter 100hz)
- 3. KXSD9\_SET\_FS\_MOTLEV\_MOTLAT(設定FS mode,MOTLev,MOTLat)
- 4. KXSD9\_SET\_PWR\_MODE(設定power mode)
- 5. KXSD9\_SET\_MOTLEN(設定MOTLen)