Cours de première année :

Eléments de Logique

par Dr. Mathias K. KOUAKOU Université F.H.B de Cocody Abidjan (Côte d'Ivoire) Abidjan, 05-17 Novembre, 2012

Chapitre 1

Ensembles

1.1 Définitions, Exemples

Définition

On appelle ensemble toute collection d'objets bien déterminés dans laquelle les objets sont uniques.

Ces objets s'appellent éléments de l'ensemble, ou les points de l'ensemble.

Si x est un point d'un ensemble A, on écrit $x \in A$ et on lit x appartient à A.

Si x n'est pas un point de A, on écrit $x \notin A$.

Un ensemble peut être fini ou non, peut être concrêt ou imaginaire.

Exemples

- $-0, 1, 2, 3, \cdots$ les entiers naturels forment un ensemble qui est noté \mathbb{N} .
- L'ensemble des couleurs de l'arc-en-ciel.
- L'ensemble des étudiants de l'université de Cocody inscrits pour cette année universitaire :
 - − a,b,c,...,z sont lettres de l'alphabet français.

Notations

- L'ensemble qui n'a aucun élément est dit vide et est noté ∅ ou {}.
- Un ensemble qui n'a qu'un seul élément x est noté $\{x\}$ et est appelé singléton.

Un ensemble constitué de deux éléments s, x est noté $\{s, x\}$, ou $\{x, s\}$ et est appelé paire.

Remarque

Un ensemble s'écrit soit en extension, soit en compréhension. Par exemple l'ensemble E de tous les entiers naturels inférieurs ou égal a 6 est écrit en extension :

$$E = \{0, 1, 2, 3, 4, 5, 6\}$$

et en compréhension:

$$E = \{x \in \mathbb{N} : \le 6\}$$

- L'ensemble ${\mathbb P}$ de tous les entiers relatifs pairs est écrit en compréhension :

$$\mathbb{P} = \{2n, \ n \in \mathbb{Z}\}\$$

(ce n'est pas la seule façon!). Notons que $101 \notin \mathbb{P}$

- L'ensemble S de toutes les puissances entières de 3 est qcrit en compréhension :

$$S = \{3^n, n \in \mathbb{Z}\}$$

Notons qu'aucun nombre pair appartient à S.

- La collection $\{\star, 1, \star\}$ n'est pas un ensemble.

1.2 Inclusion

Soient E et F deux ensemles. On dira que E est inclus dans F si tout élément de E est élément de F. On dit encore que E est un sous-ensemble de F ou E est une partie de F. On écrit dans ce cas $E \subset F$ ou $F \supset E$.

Exemples

- L'ensemble des poulets est contenu dans celui des oiseaux.
- L'ensemble

$$\left\{\frac{\cos x}{2+n}; x \in \mathbb{R}, n \in \mathbb{N}\right\}$$

est contenu dans]-1,1[.

$$-\{*\} \subset \{*, \triangle\}, \{\triangle\} \subset \{*, \triangle\}, \\ \{*, \square\} \not\subset \{\square, \triangle, O\} \text{ et } \{\square, \triangle, O\} \not\subset \{*, \square\}.$$

Remarque

- 1- On convient que l'ensemble vide ∅ est contenu dans tout ensemble.
- 2- On a bien $E \subset E$, et si on a $A \subset B$ et $B \subset A$, alors A = B.
- 3- Si $E \subset F$ et $F \subset G$, alors $E \subset G$.

Exercice

Soit *E* l'ensemble $\{*, \triangle, \bigcirc\}$. Trouver tous les sous-ensembles de *E*.

Notation

Si E est un ensemble, on note $\mathcal{P}(E)$ l'ensemble de tous les sous-ensembles de E. On note que si card(E)=n, alors

$$card(\mathcal{P}(E)) = 2^n$$

1.3 Opérations élémentaires dans les ensembles

1.3.1 L'intersection d'ensembles

On appelle intersection de 2 ensembles A et B, le nouvel ensemble constitué des objets α tels que $\alpha \in A$ et $\alpha \in B$. Cet ensemble est noté $A \cap B$. On définit de la même façon l'intersection de 3 ou de plusieurs ensembles.

Remarques $-A \cap B = B \cap A$

- $-A \cap B \subset A \text{ et } A \cap B \subset B$
- $-A \cap A = A, \emptyset \cap A = \emptyset$
- Si $A \cap B = \emptyset$, on dit que A et B sont disjoints.
- Notons que $\alpha \notin A \cap B$ signifie qu'on est dans l'une des 3 situations suivantes :
- (1) $\alpha \notin A \text{ et } \alpha \in B \text{ ou }$
- (2) $\alpha \notin B$ et $\alpha \in A$ ou
- (3) $\alpha \notin A \text{ et } \alpha \notin B$

1.3.2 Réunion d'ensembles

On appelle réunion de 2 ensembles A et B, le nouvel ensemble constitué des objets α tels que $\alpha \in A$ et $\alpha \in B$. Cet ensemble est noté $A \cup B$. On définit de la même façon l'intersection de B ou de plusieurs ensembles.

Remarques:

- $-A \cup B = B \cup A$.
- $A \subset A \cup B$ et $B \subset A \cup B$.
- $-A \cup A = A$, $\emptyset \cup A = A$.
- $-A \cup B = \emptyset$ que si $A = \emptyset$ et $B = \emptyset$.
- Notons que $\alpha \notin A \cup B$ signifie que : $\alpha \notin A$ et $\alpha \notin B$.

1.3.3 Le complémentaire d'un ensemble contenu dans un autre

Soient E un ensemble et A une partie de E. On appelle complémentaire de A dans E, le sous-ensemble de E constitué des $\gamma \in E$ tels que $\gamma \notin A$. Cet ensemble est noté E - A ou $C_E A$.

Remarques : Si $A \subset E$, on a :

-
$$A \cap C_E A = \emptyset$$
 et $A \cup C_E A = E$ $C_E C_E A = A$, $C_E E = \emptyset$ et $C_E \emptyset = E$

Une partition d'un ensemble E: On appelle partition de l'ensemble E toute famille $\{A_i\}_{i\in I}$ de sous-ensembles de E telle que :

1- si
$$i \neq i'$$
, on a $A_i \cap A_{i'} = \emptyset$ et

$$2 - E = \bigcup_{i \in I} A_i$$

Par exemple, si $A \subset E$, la paire $\{A, C_E A\}$ est une partition de E.

1.3.4 Propriétés des opérations élémentaires

- -(i) $E \cup F = F \cup E$, $E \cap F = F \cap E$, on dit que la réunion et l'intersection sont des opérations commutatives.
- -(ii) $E \cup (F \cup G) = (E \cup F) \cup G$, $E \cap (F \cap G) = (E \cap F) \cap G$ on dit que la réunion et l'intersection sont des opérations associatives.

-(iii)
$$E \cap (F \cup G) = (E \cap F) \cup (E \cap G)$$
 et $E \cup (F \cap G) = (E \cup F) \cap (E \cup G)$.

On dit que l'intersection et la réunion sont distributives l'une sur l'autre.

- (iv) Si A et B sont deux parties de E, alors $A \cap B$, $A \cup B$, $C_E A$, $C_E B$, $C_E A \cup B$, $C_E A \cap B$ sont toutes des parties de E, et on a

$$C_E(A \cap B) = (C_E A) \cup (C_E B)$$
 $C_E(A \cup B) = (C_E A) \cap (C_E B)$

1.3.5 Produit cartésien d'ensembles

Soient E et F deux ensembles. On appelle produit cartésien de E par F, l'ensemble de tous les couples (x,y) où $x \in E$ et $y \in F$. On le note

$$E \times F$$

Plus généralement si E_1 , E_2 , , , , E_n sont n ensembles, on appelle prodruit cartésien de E_1 , E_2 , , , , E_n l'ensemble de tous les n-uplets $(x_1, x_2, ..., x_n)$ où

 $x_1 \in E_1, x_2 \in E_2, ..., x_n \in E_n$. On le note

$$E_1 \times E_2 \times \cdots \times E_n$$

Remarques

- On convient de noter $E \times E$ par E^2 , et plus généralement $\underbrace{E \times E \times \cdots \times E}_{nfois}$ par E^n .

$$-E \times F = \emptyset$$
 ssi $E = \emptyset$ ou $F = \emptyset$

 $-A \times B \subset E \times P$ ssi $A \subset E$ et $B \subset P$.

- $E \times P \neq P \times E$, $E \nsubseteq E \times P$. En particulier $E \nsubseteq E^2$.
- Si E et P sont des ensembles finis, on a

$$Card(E \times P) = Card(E) \cdot Card(P)$$

1.3.6 Opérations logiques dans un ensemble

Soient \mathcal{A} et P, Q, R... des propriétés que peuvent posséder les éléments de \mathcal{A} . Par exemple :

A est l'ensemble des étudiants de l'université de Cocody,

- P : avoir le Bac C; - Q : avoir moins de 20 ans; - R : avoir obtenu la mention assez-bien.

Partant de ces propriétés, on peut en construire de nouvelles à l'aide des opérations logiques élémentaires :

opérations logiques élémentaires :

-
$$1^{\circ}$$
) – $nonP$ (négation de P) :

Dire que l'élément $x \in \mathcal{A}$ possède la propriété nonP, c'est dire que x ne possède pas la propriété P.

$$-2^{\circ}$$
) – $PetQ$ (conjonction de P et Q):

Dire que l'élément $x \in \mathcal{A}$ possède la propriété PetQ, c'est dire que x possède à la fois la propriété P et la propriété Q.

- 3°) – PouQ (disjonction de P et Q):

Dire que l'élément $x \in \mathcal{A}$ possède la propriété PouQ, c'est dire que x possède soit la propriété P, soit la propriété Q, soit les deux à la fois.

L'implication et l'équivalence de deux propriétés

- L'implication conditionnelle de P et Q.

On dit que la propriété P implique la propriété Q et on écrit $P \Longrightarrow Q$, si tout élément $x \in \mathcal{A}$ possédant la propriété P, possède la propriété Q.

- L'équivalence des proprétés P et Q.

On dit que la propriété P est équivalente à la propriété Q et on écrit $P \Longleftrightarrow Q$, si les éléments $x \in \mathcal{A}$ possédant la propriété P sont les mêmes que ceux qui possèdent la propriété Q.

La table de vérité des différentes propriétés

P	Q	PetQ	PouQ	$P \Longrightarrow Q$	nonP	(nonP)ouQ	$P \Longleftrightarrow Q$
V	V	V	V	V	F	V	V
V	F	F	V	F	F	F	F
F	V	F	V	V	V	V	F
F	F	F	F	V	V	V	V

Correspondance entre sous-ensembles et propriétés

Supposons qu'aux propriétés P et Q correspondent respectivement les sousensembles A et B de l'ensemble \mathcal{A} . On a :

- à nonP correspond $\mathcal{C}_{\mathcal{A}}A$
- à PetQ correspond $A \cap B$
- à PouQ correspond $A \cup B$
- L'implication $P \Longrightarrow Q$ se traduit par $A \subset B$.
- L'équivalence $P \iff Q$ se traduit par A = B.

Les règles de calcul dans les ensembles correspondent aux règles de calcul logique :

- $-A \cup B = B \cup A$ correspond à $PouQ \iff QouP$
- $-A \cap B = B \cap A$ correspond à $PetQ \iff QetP$
- $-\mathcal{C}_{\mathcal{A}}(A \cup B) = (\mathcal{C}_{\mathcal{A}}A) \cap (\mathcal{C}_{\mathcal{A}}B)$ correspond à $non(PouQ) \iff (nonP)et(nonQ)$

$$\mathcal{C}_{\mathcal{A}}(A \cap B) = (\mathcal{C}_{\mathcal{A}}A) \cup (\mathcal{C}_{\mathcal{A}}B)$$
 correspond à $non(PetQ) \iff (nonP)ou(nonQ)$

On a
$$A\subset B$$
 ssi $\mathcal{C}_{\mathcal{A}}B\subset\mathcal{C}_{\mathcal{A}}A$, cela correspond à

$$(P \Longrightarrow Q) \Longleftrightarrow (nonQ \Longrightarrow nonP)$$
.

 $nonQ \Longrightarrow nonP$ est appelée la contraposée de l'implication $P \Longrightarrow Q$

Les quantificateurs

Les symboles \forall , \exists sont appelés quantificateurs.

- $\neg \forall$ est le quantificateur universel, \exists est le quantificateur d'existence.
- Affirmer qu'il existe un élément x au moins dans \mathcal{E} qui possede la propriété P s'écrit : $\exists x \in \mathcal{E}$ tel que x vérifie P.
 - Affirmer que tout élément x dans $\mathcal E$ possede la propriété P s'écrit :

$$\forall x \in \mathcal{E} \text{ tel que } x \text{ vérifie } P.$$

- Affirmer que pour toute série du Bac, il y a eu au moins un admis, se note :

$$\forall s \in \mathcal{B}, \exists e \in \mathcal{E} \text{ tel que } e \text{ ait obtenu } s.$$

- "Un aliment est bien consommé par tous les hommes", s'écrit :

$$\exists r \in \mathcal{R} \text{ tel que } \forall h \in \mathcal{H}, h \text{ mange } r.$$

- "Tous les hommes mangent tous les aliments" s'écrira;

$$\forall h \in \mathcal{H}, \forall r \in \mathcal{R}, h \text{ mange } r.$$

1.3.7 Logique mathématique classique

Assertion ou Proposition

On appelle proposition ou assertion, toute affirmation qui a une seule valeur de vérité, c'est à dire qui est soit vraie, soit fausse, mais pas les deux à la fois.

Par exemples :

- Tout polygône régulier de *n* cotés s'inscrit dans un cercle.
- Après la voiture, on inventa l'avion.
- un jour un africain inventera une montre.

Par contre, les affirmations suivantes ne sont pas des propositions :

- L'algèbre est plus facile que l'analyse
- C'est jolie le ciel.
- Sur Mars la vie est meilleure.

Comme pour les propriétés, à partir de propositions on peut définir de nouvelles, par la négation nonP, la conjonction PetQ, la disjonction PouQ, l'implication $P \Longrightarrow Q$ et l'équivalence $P \Longleftrightarrow Q$.

Ces nouvelles propositions sont définies par la table de vérité suivante :

P	Q	PetQ	PouQ	$P \Longrightarrow Q$	nonP	(nonP)ouQ	$P \Longleftrightarrow Q$
V	V	V	V	V	F	V	V
V	F	F	V	F	F	F	F
F	V	F	V	V	V	V	F
F	F	F	F	V	V	V	V

1.3.8 Quelques méthodes de démonstration

Méthode 1 : **Démonstration directe** :

On veut montrer que Q est vraie.

On sait qu'on a $P \Longrightarrow Q$.

On montre que P est vraie, et on obtient que Q est vraie.

Exemples : 1)- Dans un lycée, les éleves de terminale sont en tee-shirt vert.

Aya est dans ce lycée et a un tee-shirt vert. Elle est donc en terminal.

2)- Tous les étudiants studieux de l'amphi A ont validé l'UV d'algèbre 1. Touré est un étudiant studieux de l'anphi A, Touré a donc validé l'algèbre 1.

Méthode 2 : **Démonstration par la contraposée** :

On veut montrer que P implique $Q: P \Longrightarrow Q$.

On montre $nonQ \Longrightarrow nonP$, c'est à dire :

si on n'a pas Q, alors on n'a pas P.

Exemple: Soit a un entier. Si a^2 est pair, alors a est pair.

Si a n'est pas pair, a est de la forme a=2n+1. Dans ce cas on voit que

$$a^2 = (2n+1)^2 = 4n^2 + 4n + 1 = 2(2n^2 + 2n) + 1$$
 est impair.

On a ainsi établi la contraposée a impair $\Longrightarrow a^2$ impair.

Méthode 3 : Démonstration par l'absurde :

On cherche à montrer que la propriété ${\cal P}$ est vraie.

On suppose qu'elle est fausse.

Avec l'hypothèse que P est fausse , on arrive à une contradiction, par exemple à nier une propriété déjà établie.

Exemple: $P: \sqrt{2}$ n'est pas rationnel. Supposons que $\sqrt{2} \in \mathbb{Q}$.

Alors il existe deux entiers p et q premiers entre eux tels que $\sqrt{2} = \frac{p}{a}$.

Mais alors $2q^2 = p^2$. On voit alors que p^2 est pair, donc p est pair. On a alors p = 2n, cela conduit à $q^2 = 2n^2$ et par suite q aussi est pair, cela est contraire à l'hypothèse pgcd(p,q) = 1.

On conclut que $\sqrt{2}$ n'est pas rationnel.

Méthode 4 : Démonstration par disjonction des cas :

On veut montrer qu'une propriété C est vraie sur un ensemble \mathcal{E} . Si $\mathcal{E} = \mathcal{A} \cup \mathcal{B}$, on montre que C est vraie sur \mathcal{A} , puis sur \mathcal{B} .

Exemple: Tout
$$n \in \mathbb{N}$$
, $\frac{n(n+1)}{2} \in \mathbb{N}$:

On a $\mathbb{N}=\mathcal{P}\cup\mathcal{I}$, où \mathcal{P} est l'ensemble des nombres pairs et \mathcal{I} est celui des nombres impairs.

Méthode 5 : **Démonstration par récurrence** :

On veut établir une propriété P sur \mathbb{N} .

 1° - On montre que P est vraie pour n=0,

 2^o - On admet que la propriété P est vraie pour les entiers $0, \ldots, r$. Avec cette hypothèse on montre que la propriété

P est aussi vraie pour l'entier r + 1.

 3^o- On conclut alors que P est vraie pour tout $r\in\mathbb{N}.$

Exemple: On considère la suite numérique définie comme suit :

$$u_0 = \frac{1}{2}$$
 et $u_{n+1} = \frac{u_n + 1}{2}$

On veut établir que pour tout $n \in \mathbb{N}$, $u_n \in [\frac{1}{2}, 1[$. On établit cette propriété par récurrence.

Chapitre 2

Relations binaires dans un ensemble

2.1 Définitions et Exemples

Définition Soit E un ensemble non vide. On appelle relation binaire \mathcal{R} sur E toute partie non vide de $E \times E$.

Exemples : - a) $E = \{ \star, \clubsuit, \diamondsuit \heartsuit \}$, la partie

$$\mathcal{R} = \{(\star, \star), (\diamondsuit, \diamondsuit), (\heartsuit, \diamondsuit), (\diamondsuit, \diamondsuit), (\heartsuit, \clubsuit), (\clubsuit, \heartsuit)\} \subset E \times E$$

est une relation binaire sur E.

- b) Sur $\mathbb Z$ on définit la relation $\mathcal S$ par :

$$(a, b) \in S \text{ si } a^2 + b > 1.$$

Notation : Soit E sur lequel est définie la relation binaire \mathcal{R} . Si $(x, y) \in \mathcal{R}$, on dit que x est en relation \mathcal{R} avec y. On écrit dans ce cas

Par exemple, on a par rapport aux relations ci-dessus :

$$\star \mathcal{R} \star , \Diamond \mathcal{R} \Diamond \text{ et } 1 \mathcal{S} 3, 3 \mathcal{S}(-6).$$

 $(\star, \lozenge) \notin \mathcal{R}$, on dira que \star n'est pas en relation avec \lozenge , et on écrira $\star \mathcal{R} \lozenge$.

Remarque : Une relation binaire \mathcal{R} sur un ensemble E est définie lorsqu'on sait quand un point x de cet ensemble et en relation avec un autre y de l'ensemble.

2.2 Quelques propriétés remarquables des relations binaires

Soit \mathcal{R} une relation binaire définie sur un ensemble non vide E.

Relation Réflexive : On dit que \mathcal{R} est réflexive si on a : $x\mathcal{R}x$ pour tout $x \in E$

Relation symétrique : \mathcal{R} est dite symétrique si pour tout couple $(x, y) \in E \times E$, la relation $x\mathcal{R}y$ implique la relation $y\mathcal{R}x$:

$$x\mathcal{R}y \Longrightarrow y\mathcal{R}x$$

Relation anti-symétrique : \mathcal{R} est dite anti-symétrique si pour tout $(x,y) \in E^2$, les relations $x\mathcal{R}y$ et $y\mathcal{R}x$ impliquent l'égalité x=y.

$$x\mathcal{R}y \text{ et } y\mathcal{R}x \Longrightarrow x=y$$

Relation transitive : On dit que \mathcal{R} est transitive si pour tout triplet $(x, y, z) \in E^3$, les relations $x\mathcal{R}y$ et $y\mathcal{R}z$ impliquent la relation $x\mathcal{R}z$.

$$x\mathcal{R}y \text{ et } y\mathcal{R}z \Longrightarrow x\mathcal{R}z$$

Exercice : On considere l'ensemble $E = \{ \clubsuit, \bigcirc, \triangle \diamondsuit \}$ et les relations binaires suivantes :

$$\mathcal{R} = \{(\clubsuit,\clubsuit), (\diamondsuit,\diamondsuit), (\heartsuit,\heartsuit)\} \text{ et }$$

$$\mathcal{S} = \{(\clubsuit,\clubsuit), (\diamondsuit,\diamondsuit), (\bigcirc,\bigcirc), (\diamondsuit,\diamondsuit), (\diamondsuit,\bigcirc), (\triangle,\bigcirc), (\clubsuit,\diamondsuit)\}$$

Etudier \mathcal{R} et \mathcal{S}

2.3 Relation d'ordre

Définition : Une relation binaire \mathcal{R} sur un ensemble non vide E est dite relation d'ordre si \mathcal{R} est a la fois réflexive, anti-symétrique et transitive.

Exemples classiques

- $1) (\mathbb{R}, \leq)$ usuel
- $2)-\mathcal{M}$ ots l'ensemble des mots écrits avec l'alphabet français muni de l'ordre lexicographique.
 - $3)-\mathbb{R}^2$ avec la relation \prec défini comme suit :

$$(a,b) \prec (a',b')$$
 si $a \leq a'$ et $b \leq b'$

c'est l'ordre cartésien.

- 4)− Soit $\emptyset \neq A$. Sur $\mathcal{P}(A)$ l'inclusion \subseteq est une relation d'ordre.
- 5)— Sur \mathbb{N}^* la relation définie par : $a\mathcal{R}b$ si a divise b est une relation d'ordre.

Ordre total, ordre partiel

ullet Une relation d'ordre $\mathcal R$ sur E est dite totale si pour tout couple x,y de points de E, on a

soit $x\mathcal{R}y$, soit $y\mathcal{R}x$.

Les exemples 1) et 2) sont des relations d'ordre total.

• Toute autre relation d'ordre est dite partielle.

2.3.1 Eléments singuliers dans un ensemble ordonné

Soient (E, \prec) un ensemble ordonné et A une partie non vide de E.

Notion de majorant et de minorant

On appelle majorant de A tout élément $e \in E$ tel que :

$$\forall a \in A \quad , a \prec e$$

On appelle minorant de A tout élément $s \in E$ tel que :

$$\forall a \in A \quad , s \prec a$$

Elément maximal, Elément minimal

Un élément $u \in A$ est dit maximal si aucun autre élément de A n'est au dessus de lui.

$$\forall x \in E \quad , u \prec x \Longrightarrow x \not\in A$$

Un élément $v \in A$ est dit minimal si aucun autre élément de A n'est en dessou de lui.

$$\forall x \in E \quad , x \prec v \Longrightarrow x \notin A$$

Remarque : Les éléments maximaux et minimaux n'existent pas toujours, s'ils existent ils ne sont pas uniques.

Elément maximum, Elément minimum

Un élément $u \in A$ est dit maximum si u est au dessus de tous les autres éléments de A.

$$\forall x \in A \quad , x \prec u$$

Un élément $s \in A$ est dit minimum si s est en dessous de tous les autres éléments de A.

$$\forall x \in A \quad , s \prec x$$

Remarque : Les éléments maximums et minimums n'existent pas toujours, s'ils existent ils sont uniques.

Borne supérieure, Borne inférieure : On appelle borne supérieure de A le minimum de tous les majorants de A.

On appelle borne inférieure de A le maximum de tous les minorants de A.

2.3.2 Relation d'équivalence

Définition : Une relation binaire \mathcal{R} est une relation d'équivalence si elle est à fois réflexive, symétrique et transitive.

Exemples : - Sur tout ensemble non vide E, la relation xRy si x=y est une relation d'équivalence. (Cette relation est dite discrette).

- Soit $n \in \mathbb{Z}$. Sur \mathbb{Z} l'entier n permet de définir une relation d'équivalence par : $(p,q) \in \mathbb{Z}^2$, $p\mathbb{R}q$ si $q-p \in n\mathbb{Z}$

Cette relation est dite de congruence modulo n.

2.3.3 Classes d'équivalence et ensemble quotient d'une relation d'équivalence.

Classes d'équivalence

Soient \mathcal{R} une relation d'équivalence sur E et $a \in E$.

On appelle classe d'équivalence de a le sous-ensemble de E constitué des points x qui sont en relation avec a.

On note \dot{a} ou \bar{a} ,.. ce sous-ensemble.

Lemme Soit \mathcal{R} une relation d'équivalence sur E. On a :

- i)- $\forall x \in E$, $x \in \dot{x}$.
- ii)- Soit $(a, b) \in E^2$. Si $a \in \dot{b}$, alors $b \in \dot{a}$ et $\dot{a} = \dot{b}$
- iii)- Soit $(a,b) \in E^2$. On a soit $\dot{a} = \dot{b}$ soit $\dot{a} \cap \dot{b} = \emptyset$
- iv)- Les différentes classes d'équivalence forment une partition de l'ensemble ${\cal E}.$

Ensemble quotient .

L'ensemble quotient est l'ensemble des classes d'équivalences. On le note E/\mathcal{R} ou $\frac{E}{\mathcal{R}}.$

Exemple: Sur \mathbb{Z} la relation d'équivalence par :

 $(p,q)\in\mathbb{Z}^2$, $p\mathbb{R}q$ si $q-p\in 5\mathbb{Z}$ a pour classes d'équivalence $\dot{0}$, $\dot{1}$, $\dot{2}$, $\dot{3}$, $\dot{4}$. et pour ensemble quotient $\frac{Z}{\mathcal{R}}=\{\dot{0},\ \dot{1},\ \dot{2},\ \dot{3},\ \dot{4}\}$. On a

$$\mathbb{Z} = \dot{0} \cup \dot{1} \cup \dot{2} \cup \dot{3} \cup \dot{4}$$

Chapitre 3

Applications d'un ensemble vers un autre

3.1 Relations d'un ensemble vers un autre

3.1.1 Définitions

Soient A et B deux ensembles non vides.

•- On appelle relation de A vers B toute partie non vide du produit cartésien $A \times B$. Par exemple pour $A = \{ \clubsuit, \diamondsuit, \heartsuit, \spadesuit \}$ et $B = \{1, 2, 3, 4, 7\}$, la partie $\{ (\clubsuit, 1), (\clubsuit, 2), (\diamondsuit, 1), (\spadesuit, 7) \}$

est une relation de A vers B.

On pourrait représenter cette relation comme suit :

(voir schéma)

3.1.2 Exemples

$$-1) - \{(\clubsuit, 2), (\diamondsuit, 2), (\diamondsuit, 3), (\heartsuit, 4), (\spadesuit, 7)\}$$

$$-2) - \{(\heartsuit, 2), (\diamondsuit, 1), (\spadesuit, 7)\}$$

3.2 Application ou fonction

ullet - On appelle application ou fonction de A vers B, toute relation f de A vers B telle que :

à tout élément $x \in A$ correspond un élément et un seul, bien déterminé y de B. On écrit $f:A \longrightarrow B$ ou , $A \stackrel{f}{\longrightarrow} B$.

- A est appelé l'ensemble de départ de f
- -B l'ensemble d'arrivé de f.
- y est l'image de x par f et est noté f(x), et x est un antécédent de y.

Exemples et contre-exemples :

- -1) Les applications constantes
- -2) L'application identité de A notée id_A
- -3) L'application $f: \mathbb{Z} \longrightarrow \mathbb{N}$, $n \longmapsto 2n^2 n$ est bien définie.
- -4) La relation $g: \mathbb{R} \longrightarrow \mathbb{R}_+$, $x \longmapsto sinx$ n'est pas une application.
- -5) La relation $\{(1,\clubsuit),(2,\clubsuit),(4,\diamondsuit),(5,\heartsuit)\}$ n'est pas une application de et $A=\{1,2,3,4,5,7\}$ dans $B=\{\clubsuit,\diamondsuit,\heartsuit,\spadesuit\}$.
 - -6) La relation $h: \mathbb{Q} \longrightarrow \mathbb{Z}$, $\frac{p}{q} \longmapsto p + q$ n'est pas une application.
 - Soit $f: A \longrightarrow B$ une application.
 - Si $B \subset \mathbb{R}$, on parle de fonction réelle,
 - si $A \subset \mathbb{R}$, on parle de fonction a variables réelles.

Remarque : Si $A' \subset A$, alors f induit une application naturelle $f': A' \longrightarrow B$ définie par :

$$f'(a') = f(a')$$

On dit que f' est restriction de f à A'.

Si $B' \subset B$, f ne définit pas nécessaire une application de A dans B'.

3.2.1 Egalité de deux applications

Définition Soient $f:A\longrightarrow B$ et $f':A'\longrightarrow B'$ deux applications. On dira que f=f' lorsque :

$$A=A'$$
, $B=B'$ et pour tout $x\in A$, on a $f(x)=f'(x)$

Par exemple les applications $f: \mathbb{R} \longrightarrow \mathbb{R}$, $x \longmapsto x^2$ et $g: \mathbb{R} \longrightarrow \mathbb{R}_+$, $x \longmapsto x^2$ ne sont pas égales.

Suite d'éléments d'un ensemble E

On appelle suite d'éléments d'un ensemble E toute application de $\mathbb N$ ou d'une partie D de $\mathbb N$ dans E.

On écrit une suite d'éléments d'un ensemble E sous la forme $(u_n)_{n\in D}$.

Fonctions caractéristiques

Soient E un ensemble non vide et A une partie de E. On appelle fonction caractéristique de A l'application notée χ_A définie comme suit :

$$\chi_A: E \longrightarrow \mathbb{R}, x \longmapsto 1 \text{ si } x \in A \text{ et } x \longmapsto 0 \text{ si } x \notin A$$

Exercice : Définir χ_E et χ_\emptyset .

Propriétés remarquables des fonctions caractéristiques

- 1)- $\chi_A = \chi_B \iff A = B$.
- 2)- $\chi_{A\cap B}=\chi_A\chi_B$.
- $3-\chi_{A\cup B} = \chi_A + \chi_B \chi_A \chi_B.$
- 4)- $\chi_{\overline{A}} = 1 \chi_A$.

3.2.2 Image directe, Image réciproque

Soient $f: E \longrightarrow F$ une application, A une partie de E et B une partie de F.

ullet L'ensemble de toutes les images des points de A est appelé **image directe** de A par f, on le note f(A). On a

$$f(A) = \{ f(a), a \in A \}$$

Notons que $f(A) \subset F$.

L'image directe de l'ensemble de départ E est appelée **image** de f, on la note Imf.

• L'ensemble de tous les points de E dont l'image appartient à B est appelé image réciproque de B par f, on le note $f^{-1}(B)$. On a

$$f^{-1}(B) = \{ x \in E : f(x) \in B \}$$

Remarque :- Notons que $f^{-1}(B) \subset E$. Il est clair que $f^{-1}(F) = E$.

- On a $f(A)=\emptyset$ ssi $A=\emptyset$, alors que $f^{-1}(B)=\emptyset$ n'implique pas nécessairement que $B=\emptyset$.

3.3 Applications injectives, surjectives, bijectives

3.3.1 Définitions et remarques

Soit une application $f: E \longrightarrow F$.

f est dite injective si deux éléments distincts quelconques de E ont des images distinctes dans F. Autrement dit, si une égalité d'images f(x) = f(x') où $x, x' \in E$ entraine que x = x', ou encore si

tout $y \in F$ a au plus un seul antécédent.

$$\forall (x, x') \in E^2$$
, on a $f(x) = f(x') \Longrightarrow x = x'$.

En particulier f n'est pas injective signifie qu'il existe dans F un élément qui a moins deux antécédents.

Remarque : Si les ensembles E et F sont finis et $f:E\longrightarrow F$ est injective, alors nécessairement

$$card(E) \le card(F)$$

En particulier toute application $g: \mathbb{N} \longrightarrow B$ ou B est un ensemble fini non vide est non injective.

f est dite surjective , si tout élément de F a au moins un antécédent dans E.

$$\forall y \in F, \exists x \in E : y = f(x)$$

Remarque : Si les ensembles E et F sont finis et $f:E\longrightarrow F$ est surjective, alors nécessairement

$$card(E) \ge card(F)$$

f **est dite bijective** , si f est à la fois injective et surjective , ou encore si tout élément de F a un antécédent et un seul dans E.

$$\forall y \in F, \exists ! \ x \in E : y = f(x)$$

3.3.2 Ensembles dénombrables

Définitions : Deux ensembles non vides E et F sont dits équipotents s'il existe une application $f: E \longrightarrow F$ bijective.

Un ensemble non vide E est dit dénombrable, si E est équipotent à $\mathbb N$ ou à une partie de $\mathbb N$.

Exemples: - Tout ensemble fini est dénombrable.

- \mathbb{N} et \mathbb{Z} sont dénombrables.

Propriétés remarquables -1) Toute partie non vide d'un ensemble dénombrable est encore dénombrable.

- 2) La réunion finie d'ensembles dénombrables est dénombrable.
- 3) Le produit cartésien de deux ensembles dénombrables est dénombrable. En particulier \mathbb{Q} est dénombrable.

La bijection réciproque d'une application bijective 3.3.3

Définition : Soit $f: E \longrightarrow F$ une application bijective. Alors on peut définir une application $s: F \longrightarrow E$ de la façon suivante :

à tout $y \in F$, on associe son unique antécédent x dans E.

$$y \longmapsto x \text{ si } y = f(x)$$

s est appelé bijection réciproque de f et on la note f^{-1} .

Propriétés remarquables de s

(i) - s est bijective et sa bijection réciproque s^{-1} est exactement f.

$$(f^{-1})^{-1} = f$$

(ii) - On a
$$s(f(x)) = x$$
, $\forall x \in E \text{ et } f(s(y)) = y$, $\forall y \in F$.

Exemples: 1) - id_A est bijective et $(id_A)^{-1} = id_A$.

- 2) $f: \mathbb{R} \longrightarrow \mathbb{R}$, $x \longmapsto x + 2$ est bijective et $f^{-1}: \mathbb{R} \longrightarrow \mathbb{R}$, $x \longmapsto x 2$
- 3) $f: \mathbb{R} \longrightarrow \mathbb{R}$, $x \longmapsto -x$ est bijective et égale à sa propre bijection réciproque. Bijections classiques
- 4) $\ln : \mathbb{R}^* \longrightarrow \mathbb{R}, \ln^{-1} = \exp$
- 4) $\cos: [0, \pi] \longrightarrow [-1, 1]$, $\cos^{-1} = \arccos$ 5) $\sin: [\frac{\pi}{2}, \frac{\pi}{2}] \longrightarrow [-1, 1]$, $\sin^{-1} = \arcsin$

3.4 Composition des applications

Définition 3.4.1

Soient $f: E \longrightarrow F$ et $g: N \longrightarrow M$ deux applications. Si $F \subset N$, alors on peut définir une nouvelle application $h: E \longrightarrow M$ par : $x \longmapsto g(f(x))$.

h est appelé la **composée** de g par f et est noté

$$g \circ f$$

Notons que par définition on a pour tout $x \in E$, $(g \circ f)(x) = g(f(x))$.

Propriétés remarquables de la composition :

(i)- Si $s:V\longrightarrow W$ est une 3^e application telle que $M\subset V$, alors

$$s \circ (g \circ f) = (s \circ g) \circ f$$

(ii)- On a $id_F \circ f = f$ et $g \circ id_N = g$

Exemples : $s: \mathbb{R} \longrightarrow \mathbb{R}$, $x \longmapsto x^2$ et $v: \mathbb{R} \longrightarrow \mathbb{R}$, $x \longmapsto x+2$, on a

$$s \circ v : \mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto (x+2)^2 \text{ et } v \circ s : \mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto x^2 + 2$$

On voit qu'en particulier que

$$s \circ v \neq v \circ s$$

Théorème : Soient E, F deux ensembles non vides et $f: E \longrightarrow F$, $g: F \longrightarrow E$ deux applications telles que

$$g \circ f = id_E \text{ et } f \circ g = id_F$$

Alors f et g sont bijectives, et $f^{-1} = g$

Preuve: A faire en exercice.

3.4.2 Décomposition canonique d'une application

Soient $f: E \longrightarrow F$ une application et \mathcal{R}_f la relation d'équivalence définie sur E par f

comme suit:

$$(a,b) \in E^2$$
, $a\mathcal{R}_f b \text{ si } f(a) = f(b)$

. On a les applications naturelles suivantes :

$$-s: E \longrightarrow \frac{E}{\mathcal{R}_f}, x \longmapsto \dot{x}$$

- f induit l'application naturelle $\tilde{f}: \frac{E}{\mathcal{R}_f} \longrightarrow Im(f), \dot{x} \longmapsto f(x)$

- Si i est l'application identité de Im(f) dans f , c'est à dire

$$i: Im(f) \longrightarrow F, a \longmapsto a,$$

on a la factorisation de f suivante :

$$f=i\circ \tilde{f}\circ s$$

Cette factorisation de f est appelée **décomposition canonique ds** f.

Remarque : Notons que s est une application **surjective**, \tilde{f} est **bijective** et i est **injective**.