시험 대비 생존 분석 심화 개념 정리 (증명 포함)

1 생존 분석의 기초

생존 분석은 어떤 사건(event)이 발생하기까지 걸리는 시간 변수와 이에 영향을 미치는 요인들을 통계적으로 분석하는 방법론입니다.

1.1 주요 함수와 그 관계

• 생존 함수 (Survivor Function, S(t)): 특정 시점 t를 지나 생존할 확률입니다.

$$S(t) = P(T > t), \quad t > 0$$

• 위험 함수 (Hazard Function, h(t)): 시점 t까지 생존했을 때, 바로 그 순간(t와 $t + \Delta t$ 사이)에 사건이 발생할 조건부 확률을 나타내는 순간 위험률입니다.

$$h(t) = \lim_{\Delta t \to 0} \frac{P(t < T \le t + \Delta t | T > t)}{\Delta t}$$

• S(t)와 h(t)의 관계 증명: 위험 함수의 정의에 따라, h(t)는 다음과 같이 표현될 수 있습니다.

$$h(t) = \frac{f(t)}{S(t)}$$

여기서 f(t)는 시점 t에서의 사건 발생 확률 밀도 함수(PDF)이며, $f(t)=-S'(t)=-\frac{dS(t)}{dt}$ 입니다. 따라서,

$$h(t) = -\frac{S'(t)}{S(t)} = -\frac{d}{dt} \ln S(t)$$

이 식을 0부터 t까지 적분하면,

$$\int_0^t h(u)du = -\int_0^t \frac{d}{du} \ln S(u)du = -[\ln S(t) - \ln S(0)]$$

S(0) = P(T > 0) = 1이므로 $\ln S(0) = 0$ 입니다. 따라서,

$$\int_0^t h(u)du = -\ln S(t)$$

이를 S(t)에 대해 정리하면 다음과 같은 핵심 관계식이 유도됩니다.

$$S(t) = \exp\left[-\int_0^t h(u)du\right]$$

2 카플란-마이어(KM) 곡선과 로그-순위 검정

2.1 카플란-마이어 (Kaplan-Meier) 추정량

KM 추정량은 중도절단이 있는 데이터에서 생존 함수를 추정하는 비모수적 방법입니다.

• KM 공식 (Product-Limit Formula): 시점 $t_{(j)}$ 에서의 생존율은 그 이전 시점까지의 생존율에 해당 시점에서 생존할 조건부 확률을 곱하여 계산됩니다.

$$\hat{S}(t) = \prod_{t_{(i)} \le t} \left(\frac{n_i - m_i}{n_i} \right)$$

여기서 $t_{(i)}$ 는 i번째 사건 발생 시점, n_i 는 해당 시점의 위험 집단(risk set) 크기, m_i 는 해당 시점의 사건 수입니다.

• KM 공식의 유도: 생존 함수의 정의에 따라, 시점 $t_{(j)}$ 를 지나 생존하는 것은 시점 $t_{(1)}, t_{(2)}, \ldots, t_{(j)}$ 에서 연속적으로 사건을 겪지 않는 것과 같습니다. 이는 조건부 확률의 곱으로 표현할 수 있습니다.

$$\hat{S}(t_{(j)}) = \prod_{i=1}^{j} P(T > t_{(i)} | T \ge t_{(i)})$$

i번째 사건 시점에서 생존할 조건부 확률은 $(n_i-m_i)/n_i$ 로 추정되므로, 위 공식이 유도됩니다. 또한, 이는 재귀적으로도 표현 가능합니다:

$$\hat{S}(t_{(j)}) = \hat{S}(t_{(j-1)}) \times P(T > t_{(j)}|T \ge t_{(j)})$$

2.2 로그-순위 검정 (Log-Rank Test)

로그-순위 검정은 여러 그룹의 생존 곡선이 통계적으로 동일한지를 검정하는 방법입니다.

- 귀무가설 (H_0) : 모든 그룹의 생존 곡선은 같다 $(S_1(t) = S_2(t) = \cdots = S_G(t))$.
- 원리: 각 사건 발생 시점 j마다 그룹 1의 **기대 사건 수** (e_{1j}) 를 계산합니다. 이는 해당 시점의 전체 사건 수 $(m_i = m_{1j} + m_{2j})$ 를 위험 집단의 비율에 따라 배분한 값입니다.

$$e_{1j} = (m_{1j} + m_{2j}) \times \left(\frac{n_{1j}}{n_{1j} + n_{2j}}\right)$$

• 검정 통계량: 관측된 총 사건 수 (O_i) 와 기대된 총 사건 수 (E_i) 의 차이를 이용합니다. 두 그룹 비교 시, 검정 통계량은 다음과 같으며 자유도가 1인 카이제곱 분포를 따릅니다.

Log-Rank Statistic =
$$\frac{(O_2 - E_2)^2}{\text{Var}(O_2 - E_2)} \sim \chi^2(1)$$

G개 그룹 비교 시에는 자유도가 G-1인 카이제곱 분포를 따릅니다.

(보강) 충화/가중 로그-순위 검정 공변량(예: 검사치 범주)을 충화변수 $s=1,\ldots,S$ 로 나누고, 각 사건시점의 관측/기대 사건수 차이를 충별로 계산한 후 합산한다.

$$U = \sum_{s=1}^{S} \sum_{j \in \mathcal{J}_s} w_{sj} \left[O_{1,sj} - E_{1,sj} \right], \quad Var(U) = \sum_{s=1}^{S} \sum_{j \in \mathcal{J}_s} w_{sj}^2 V_{sj},$$

여기서 w_{sj} 는 가중치(기본 로그-순위는 $w_{sj}=1$), \mathcal{J}_s 는 층 s의 사건시점 집합이다. 검정통계량 $Z=U/\sqrt{Var(U)}$ 또는 $\chi^2=Z^2$ 로 유의성을 판단한다. 실무에서는 survdiff의 rho로 w_{sj} 를 달리할 수 있다 (예: Fleming-Harrington 계열; $\rho=0$ 가 표준 로그-순위). 또한 공변량에 따라 층화하려면 survdiff(time \tilde{r} group + strata(z))처럼 strata()를 사용한다.

3 콕스 비례위험(Cox Proportional Hazards) 모델

3.1 콕스 PH 모델의 공식과 가정

콕스 PH 모델은 공변량이 생존 시간에 미치는 영향을 분석하는 준모수적 회귀 모델입니다.

• 모델 공식:

$$h(t, X) = h_0(t) \cdot \exp\left(\sum_{i=1}^p \beta_i X_i\right)$$

여기서 $h_0(t)$ 는 **기저 위험 함수(baseline hazard function)**로, 형태를 특정하지 않아 비모수적 (non-parametric) 부분이며, $\exp(\dots)$ 부분은 모수적(parametric) 부분입니다.

• 핵심 가정 (비례 위험 가정): 두 공변량 벡터 X^* 와 X를 가진 개인들의 위험비(Hazard Ratio)는 시간에 따라 변하지 않고 일정하다는 것입니다.

$$\frac{h(t, X^*)}{h(t, X)} = \text{constant for all } t$$

3.2 위험비 (Hazard Ratio, HR)의 유도

위험비는 두 그룹의 위험 함수 간의 비율로, 콕스 모델에서 다음과 같이 유도됩니다.

$$HR = \frac{h(t, X^*)}{h(t, X)} = \frac{h_0(t) \exp(\sum \beta_i X_i^*)}{h_0(t) \exp(\sum \beta_i X_i)} = \exp\left[\sum \beta_i (X_i^* - X_i)\right]$$

여기서 기저 위험 함수 $h_0(t)$ 가 소거되므로, 위험비는 시간에 의존하지 않는 상수가 됩니다.

3.3 부분 가능도 (Partial Likelihood)

콕스 모델의 회귀 계수 β 는 부분 가능도(Partial Likelihood)를 최대화하여 추정됩니다. 이는 각 사건 발생 시점에서, 실제로 사건을 겪은 개인이 위험 집단 내 다른 이들보다 먼저 사건을 겪을 조건부 확률들의 곱으로 구성됩니다. j번째 사건이 발생했을 때의 가능도 L_i 는 다음과 같습니다.

$$L_j(\beta) = \frac{\text{Hazard for the individual who fails at } t_{(j)}}{\sum_{k \in R(t_{(j)})} \text{Hazards for all individuals in risk set } R(t_{(j)})}$$

$$L_{j}(\beta) = \frac{h_{0}(t_{(j)}) \exp(\sum \beta_{i} X_{ij})}{\sum_{k \in R(t_{(j)})} h_{0}(t_{(j)}) \exp(\sum \beta_{i} X_{ik})} = \frac{\exp(\sum \beta_{i} X_{ij})}{\sum_{k \in R(t_{(j)})} \exp(\sum \beta_{i} X_{ik})}$$

전체 부분 가능도는 모든 사건에 대한 L_j 의 곱입니다: $L(\beta)=\prod_{j=1}^k L_j(\beta)$. 여기서도 $h_0(t)$ 가 소거되므로, 기저 위험 함수를 몰라도 β 를 추정할 수 있습니다.

(보강) 동일시각 사건(ties)의 처리 동일한 시점 t에 사건이 d건 발생하면 부분가능도의 분모/분자 정의가 달라진다. 대표적 방법은 다음과 같다.

- 정확법(Exact/Marginal): d건의 사건 발생 순열을 모두 고려한 정확 가능도를 사용. 계산량이 크나 가장 정확.
- ullet Breslow 근사: 사건 d건을 한꺼번에 발생한 것으로 보고 분모를 $\left(\sum_{i\in R(t)}e^{eta^{ op}x_i}
 ight)^d$ 로 근사.
- Efron 근사: d건이 위험집합에서 점진적으로 제거된다고 보고 분모에 보정항을 도입(정확법에 더 근접).

실무에선 표본크기/동률 빈도에 따라 coxph(..., ties="efron") (기본), "breslow", "exact"를 선택하다.

4 비례 위험(PH) 가정 평가

4.1 로그-로그 플롯(Log-log Plots)의 원리 증명

로그-로그 플롯이 평행해야 하는 이유는 콕스 모델의 생존 함수로부터 수학적으로 유도됩니다.

1. 콕스 모델의 생존 함수는 다음과 같습니다:

$$S(t,X) = [S_0(t)]^{\exp(\sum \beta_i X_i)}$$

여기서 $S_0(t)$ 는 기저 생존 함수입니다.

2. 양변에 자연로그를 취합니다 (Log #1):

$$\ln S(t, X) = \exp\left(\sum \beta_i X_i\right) \cdot \ln S_0(t)$$

3. 양변에 음수를 곱하고 다시 자연로그를 취합니다 (Log #2):

$$\ln[-\ln S(t, X)] = \ln\left[-\exp\left(\sum \beta_i X_i\right) \cdot \ln S_0(t)\right]$$
$$= \ln\left(\exp\left(\sum \beta_i X_i\right)\right) + \ln(-\ln S_0(t))$$
$$= \sum \beta_i X_i + \ln(-\ln S_0(t))$$

4. 두 개인(공변량 X_1, X_2)에 대한 로그-로그 생존 함수의 차이를 계산하면 다음과 같습니다:

$$\ln[-\ln S(t, X_1)] - \ln[-\ln S(t, X_2)] = \left(\sum \beta_i X_{1i} + \ln(-\ln S_0(t))\right) - \left(\sum \beta_i X_{2i} + \ln(-\ln S_0(t))\right)$$
$$= \sum \beta_i (X_{1i} - X_{2i})$$

결과적으로, 두 로그-로그 플롯 간의 수직 거리는 시간에 의존하지 않는 상수 $(\sum \beta_i(X_{1i}-X_{2i}))$ 가 됩니다. 따라서 두 그래프는 평행해야 합니다.

4.2 시간 의존 변수를 이용한 검정

PH 가정을 통계적으로 검정하는 가장 엄격한 방법은 시간 의존 변수를 포함하는 **확장된 콕스 모델(extended Cox model)**을 사용하는 것입니다.

$$h(t, X) = h_0(t) \exp[\beta X + \delta(X \times g(t))]$$

여기서 g(t)는 시간의 함수(예: t 또는 $\ln(t)$)입니다.

- 귀무가설 (H_0) : $\delta = 0$.
- 만약 귀무가설이 기각되면(δ 가 0과 유의하게 다르면), X의 효과가 시간에 따라 변한다는 의미이므로, X는 PH 가정을 위배한 것입니다.

4.3 PH 가정의 그래프적/잔차 기반 점검과 실무적 대처

(1) Observed vs Expected 비교(조정 생존곡선) 콕스모형 적합 후 각 사건시점 $t_{(j)}$ 에서 집단 g의 기대 사건수는

$$e_{gj} = d_j \frac{\sum_{i \in R(t_{(j)}) \cap g} \exp(\hat{\beta}^\top x_i)}{\sum_{i \in R(t_{(j)})} \exp(\hat{\beta}^\top x_i)},$$

여기서 d_i 는 $t_{(i)}$ 에서의 총 사건 수, $R(t_{(i)})$ 는 위험집합입니다. 누적 관측-기대 차이

$$C_g(t) = \sum_{t_{(j)} \le t} \{ O_{gj} - e_{gj} \}$$

를 시점에 따라 그리거나, 조정 생존곡선

$$\hat{H}_0(t) = \sum_{t_{(j)} \le t} \frac{d_j}{\sum_{i \in R(t_{(j)})} \exp(\hat{\beta}^\top x_i)}, \quad \hat{S}_0(t) = \exp\{-\hat{H}_0(t)\}, \quad \hat{S}(t \mid x) = \hat{S}_0(t)^{\exp(\hat{\beta}^\top x)}$$

을 생성하여 집단별 대표 공변량(또는 평균/중앙 공변량)으로 비교합니다. PH가 성립하면 관찰(KM)과 모형기반(조정) 곡선이 체계적으로 벌어지지 않습니다.

(2) Schoenfeld **잔차 기반 PH 가정 검정(Grambsch-Therneau)** k번째 사건시점에서 실패한 개인의 공변량을 $x_{(k)}$ 라 하고, 위험집합 가중 평균을

$$\bar{x}(\beta, t_{(k)}) = \frac{\sum_{i \in R(t_{(k)})} x_i \exp(\beta^\top x_i)}{\sum_{i \in R(t_{(k)})} \exp(\beta^\top x_i)}$$

로 두면, Schoenfeld 잔차는

$$r_k = x_{(k)} - \bar{x}(\hat{\beta}, t_{(k)}).$$

PH가 성립하면 r_k 는 시간에 의존적 패턴을 갖지 않습니다. 실무에서는 scaled 잔차 \tilde{r}_k (정보행렬로 정규화)를 구성하여, 각 공변량별로 \tilde{r}_k 를 사건시간의 함수(예: $\log t$ 또는 순위)에 회귀시켜 \mathcal{I} 울 \mathcal{I} = θ 을 검정합니다. 변수별 p값과 전역(global) p값을 함께 보고, 유의하면 해당 공변량의 PH 위반을 시사합니다.

(보강) cox.zph의 변환 선택과 전역(Global) 검정 Schoenfeld(및 scaled) 잔차에 대해 cox.zph는 시간 축 변환으로 "identity", "km", "rank" 등을 제공한다. 변환은 잔차-시간 관계의 선형화를 돕는 목적이며, 변수별 p값과 함께 전역(Global) p값으로 모형 전반의 PH 가정을 평가한다. 여러 변환에서 유사한 결론이나오는지 함께 확인하면 해석이 안정적이다.

(3) 시간의존 상호작용으로 엄밀 검정(확장 Cox) 이미 기술한 확장 콕스

$$h(t | X) = h_0(t) \exp{\{\beta X + \delta X g(t)\}}$$

에서 $H_0: \delta=0$ 을 Wald/Score/LRT로 검정합니다. g(t)는 $\log t, t,$ 구간함수 등으로 두며, 유의한 δ 는 X효과가 시간에 따라 변함을 의미(=PH 위반)합니다.

(4) PH 위반 시 대처 전략

- **충화** Cox: 문제가 되는 범주형 공변량으로 층화하여 $h_0(t)$ 를 층별로 분리(해당 변수의 HR은 추정하지 않음).
- 구간별 HR(piecewise): t를 구간으로 나눠 $X \times I(t \in T)$ 로 효과를 시점별로 다르게 허용.
- 시간의존 효과 모델링: $X \times g(t)$ 의 함수형을 모형 안에 명시(유도한 δ 포함).
- 모형 변경 고려: PH 가정이 본질적으로 맞지 않는다면 AFT 등 대안 모형 검토.