La transformée en Z

1 La transformée en Z

1.1 Définition

1.1.1 Généralités

La transformée en Z est un outil permettant de décrire et d'analyser des systèmes numériques.

z est la variable de la transformée en Z :

$$z = re^{j\theta} = Re(z) + jIm(z)$$

Il s'agit de l'équivalent dans le domaine discret de la transformée de Laplace pour le domaine continu. Les deux transformées sont très similaires à la différence que :

- La transformée de Laplace produit un plan rectangulaire
- La transformée en Z produit un plan polaire

1.1.2 Lien avec la transformée de Fourier

Soit x(t) un signal continu échantillonné à une période T_e . Le signal discret correspondant est la suite :

$$x[n] = x(nT_e)$$

La transformée de Fourier de ce signal est :

$$\mathcal{F}(x(t)) = \int_{-\infty}^{+\infty} x(t)e^{-j2\pi ft}dt$$

Une approximation peut être obtenue à partir du signal discret par la méthode des rectangles :

$$\mathcal{F}(x[n]) \simeq \sum_{n=-\infty}^{+\infty} x[n]e^{-j2\pi f nT_e}$$

On pose alors $z = e^{j2\pi fT_e}$ et on obtient alors :

$$\mathcal{Z}(x[n]) = X(z) = \sum_{n=-\infty}^{+\infty} x[n]z^{-n}$$

C'est la définition même de la transformée en Z!

On peut montrer aussi de même un lien entre la transformée de Laplace et la transformée en Z !

1.1.3 Exemples

• Calculer la transformée en z de la série $x[n] = \{-2, 3, 0, 2, -7, 5\}$ qui commence à l'indice n=-2 :

$$X(z) = \sum_{n=-\infty}^{+\infty} x[n]z^{-n} = -2z^2 + 3z + 2z^{-1} - 7z^{-2} + 5z^{-3}$$

• Déterminer la TZ d'un échelon unité $(u[n] = 1 \text{ si } n \ge 0 \text{ et } = 0 \text{ si } n < 0)$:

$$X(z) = \sum_{n=-\infty}^{+\infty} u[n]z^{-n} = \sum_{n=0}^{+\infty} 1z^{-n} = \sum_{n=0}^{+\infty} (z^{-1})^n = \frac{1}{1-z^{-1}}$$

car en effet $\sum_{n=0}^{+\infty} a^n = \frac{1}{1-a}$ si |a| < 1 donc au final :

$$\mathcal{Z}(u[n]) = \frac{1}{1 - z^{-1}}$$

à condition que $|z^{-1}| < 1$, soit encore |z| > 1

• Calculer la TZ de la séquence suivante $x[n] = 0, 5^n u[n]$:

$$X(z) = 1 + 0,5z^{-1} + 0,5^2z^{-2} + 0,5^3z^{-3} + \dots = \sum_{n=0}^{+\infty} 0,5^nz^{-n} = \sum_{n=0}^{+\infty} (0,5z^{-1})^n = \frac{1}{1-0,5z^{-1}}$$

à condition que |z| > 0, 5

1.2 Rayon de convergence (ROC)

1.2.1 Généralités

- La transformée en Z ne converge pas pour toutes les séquences et pour toutes les valeurs de z.
- Pour une séquence donnée, l'ensemble des valeurs de z pour lesquelles la transformée en Z converge (est fini) s'appelle la région de convergence (ROC).
- Pour une séquence finie x[n], la transformée X(z) est un polynôme en z ou en z^{-1} , et converge $(|X(z)|<+\infty)$ pour toutes les valeurs de z, sauf :
 - -z=0 si X(z) contient des termes de la forme z^{-k}
 - $-z = +\infty$ si X(z) contient des termes de la forme z^k
- La ROC exclut toutes les valeurs des pôles où |X(z)| devient infini.

1.2.2 Exemple

Soit la séquence numérique dont les premières valeurs sont : x[0] = 1, x[1] = 4, x[2] = 16, x[3] = 64, x[4] = 256, ... Déterminer la Transformée en

Z. À quelle condition la série obtenue converge t-elle?

On remarque que $x[n]=4^n$, donc sa transformée en z vaut :

$$X(z) = \sum_{n=0}^{+\infty} x[n]z^{-n} = \sum_{n=0}^{+\infty} 4^n z^{-n} = \sum_{n=0}^{+\infty} (\frac{4}{z})^n = \frac{1}{1 - \frac{4}{z}} = \frac{z}{z - 4}$$

à condition que $|\frac{4}{z}|<1,$ donc que |z|>4 ce qui définit le ROC.

1.3 Quelques transformées en Z communes

Signal	Transformée en Z	ROC
$\delta[n]$	1	$ z \ge 0$
u[n]	$\frac{1}{1-z^{-1}}$	z > 1
$\alpha^n u[n]$	$\frac{1}{1-\alpha z^{-1}}$	$ z > \alpha $
$\alpha^n u[-n]$	$\frac{1}{1-\alpha^{-1}z}$	$ z < \alpha $
$\Pi[n]$	$\frac{1 - z^{-n}}{1 - z^{-1}}$	z > 0

1.4 La transformée en Z inverse

1.4.1 Généralités

• La transformée en Z inverse est donnée par :

$x[n] = \mathcal{Z}^{-1}{X(z)} = \frac{1}{j2\pi} \oint_{\Gamma} X(z)z^{n-1}dz$

Transformée en Z inverse

où Γ représente un contour d'intégration (en sens horaire) qui enferme l'origine.

- Ce calcul est bien laborieux, et on a plutôt recours à d'autres méthodes permettant d'obtenir la TZI :
 - Cas des séquences finies réécriture directe;
 - Décomposition en fonctions rationnelles et utilisation des tables ;
 - Cas des fractions rationnelles division polynomiale.

1.4.2 MÉTHODE 1 : Cas des séquences finies – réécriture directe

Pour les séquences finies, X(z) a une forme polynomiale. Cette dernière permet d'obtenir aisément la TZI.

Exemple : $X(z) = 3z^{-1} + 2z^{-4} + 5z^{-3}$. Calculer la transformée en Z inverse. On utilisera ici le résultat suivant : avec la notation habituelle de la TZ $X(z) = \mathcal{F}(x[n])$ et celle de la TZI $x[n] = \mathcal{F}^{-1}(X(z))$, on a $\boxed{\mathcal{F}^{-1}(z^{-1}X(z)) = x[n-1]}$

On établit directement que :

$$x[n] = 3\delta[n-1] + 2\delta[n-4] + 5\delta[n-3]$$

ce qui amène à (le premier terme non nul correspond à n=1):

$$x[n] = \{0..., 3, 0, 5, 2, ...0...\}$$

1.4.3 MÉTHODE 2 : Décomposition en somme de fonctions rationnelles et utilisation des tables

Il s'agit de façon analogue à la transformée de Laplace inverse de décomposer la fonction en éléments simples, à la différence que comme z se trouve au numérateur de la plupart des transformées en z standard :

- 1- On écrit $W(z) = \frac{X(z)}{z}$
- 2- On décompose en éléments simples W(z)
- 3- On multiplie W(z) par z afin d'obtenir à nouveau X(z) (la TZI est linéaire)

Exemple:

$$X(z) = \frac{1}{(z - 0, 25)(z - 0, 5)}$$

1- On écrit

$$W(z) = \frac{X(z)}{z} = \frac{1}{z(z-0,25)(z-0,5)}$$

2- On décompose en éléments simples W(z):

$$W(z) = \frac{a}{z} + \frac{b}{z - 0, 25} + \frac{c}{z - 0, 5}$$

$$a = \frac{1}{(z - 0, 25)(z - 0, 5)}|_{z=0} = 8$$

$$b = \frac{1}{z(z - 0, 5)}|_{z=0, 25} = -16$$

$$c = \frac{1}{z(z - 0, 25)}|_{z=0, 5} = 8$$

donc:

$$W(z) = \frac{8}{z} + \frac{-16}{z - 0,25} + \frac{8}{z - 0,5}$$

3- On multiplie W(z) par z afin d'obtenir à nouveau X(z) (la TZI est linéaire)

$$X(z) = zW(z) = 8 - 16\frac{z}{z - 0,25} + 8\frac{z}{z - 0,5}$$

Or, on sait que $\mathcal{F}(\delta[n]) = 1$ et que $\mathcal{F}(a^n u[n]) = \frac{1}{1-az^{-1}} = \frac{z}{z-a}$, donc il vient :

$$x[n] = 8\delta[n] - 16(0,25)^n u[n] + 8(0,5)^n u[n]$$

1.4.4 MÉTHODE 3 : Cas des fractions rationnelles – division polynomiale

Si X(z) est une fraction rationnelle, on distingue deux cas :

- Signal droitier:
 - 1 On place le numérateur et le dénominateur en ordre <u>croissant</u> de puissances de z
 - 2 On effectue la division pour obtenir des valeurs décroissantes de z
- Signal gaucher:

- 1 On place le numérateur et le dénominateur en ordre <u>décroissant</u> de puissances de z
- 2 On effectue la division pour obtenir des valeurs <u>croissantes</u> de z

1.5 Propriétés de la transformée en Z

Propriété	Signal	Transformée en Z
Déphasage	$x[n-\alpha]$	$z^{-\alpha}X(z)$
Réflexion	x[-n]	$X\left(\frac{1}{z}\right)$
Anti-causal	x[-n]u[n-1]	$X\left(\frac{1}{z}\right) - X(0)$ pour $x[n]$ causal
Échelonnage	$\alpha^n x[n]$	$X\left(\frac{z}{\alpha}\right)$
Multiplication par n	nx[n]	$-z\frac{dX(z)}{dz}$
Multiplication par cos	$cos(n\Omega)x[n]$	$^{1}/_{2}\left(X(ze^{j\Omega})+X(ze^{-j\Omega})\right)$
Multiplication par sin	$sin(n\Omega)x[n]$	$j^{1}/_{2}\left(X(ze^{j\Omega})+X(ze^{-j\Omega})\right)$
Convolution	x[n] * h[n]	$X(z)\cdot H(z)$

1.6 Transformée en Z unilatérale

1.6.1 Généralités

La transformée unilatérale est une transformée pour les signaux causaux, c'est-à-dire que x[n]=0 pour n<0.

Transformée en Z unilatérale $X(z) = \sum_{n=0}^{\infty} x[n]z^{-n}$

1.6.2 Propriétés

Les propriétés vues précédemment restent valables, mais à ces dernières s'ajoutent :

• Les propriétés de déphasage

Déphasage vers la gauche

$$x[n-\alpha] \Leftrightarrow z^{-\alpha}X(z) + z^{-(\alpha-1)}x[-1] + z^{-(\alpha-2)}x[-2] + \dots + x[-\alpha]$$

Exemples:

$$x[n-1] \leftrightarrow z^{-1}X(z) + x[-1]$$

 $x[n-2] \leftrightarrow z^{-2}X(z) + z^{-1}x[-1] + x[-2]$

Déphasage vers la droite

$$x[n+\alpha] \Leftrightarrow z^{\alpha}X(z) - z^{\alpha}x[0] + z^{\alpha-1}x[1] - \cdots - zx[\alpha-1]$$

Exemples:

$$x[n+1] \leftrightarrow zX(z) - zx[0]$$
$$x[n+2] \leftrightarrow z^2X(z) - z^2x[0] - zx[1]$$

• Le théorème de la valeur initiale

Théorème de la valeur initiale

$$x[0] = \lim_{z \to \infty} X(z)$$

• Le théorème de la valeur finale

Théorème de la valeur finale

Si les pôles de (z-1)X(z) sont à l'intérieur du cercle unitaire : $x[\infty] = \lim_{z \to 1} (z-1)X(z)$

2 Systèmes à temps discret

2.1 Définition

- Un système est discret lorsque ses signaux d'entrée et de sortie sont discrets
- Il est dit dynamique si sa sortie à l'instant présent dépend non seulement de l'entrée présente, mais aussi des entrées et sorties passées.

- Le système à temps discret produit une séquence d'échantillons y[n] à partir d'une séquence d'échantillons d'entrée x[n]
- L'étude sera restreinte aux systèmes linéaires et invariants (LTI)

Invariance en temps $y[n] = S(x[n]) \Leftrightarrow y[n-T] = S(x[n-T])$

2.2 Équation aux différences

• Les systèmes discrets sont souvent représentés sous la forme d'une équation aux différences à coefficients constants :

Équation aux différences $a_0y[n]+a_1y[n-1]\ldots+a_Ny(n-N)=b_0x[n]+b_1x[n-1]+\cdots+b_Mx[k-M]$

- Résoudre une équation aux différences consiste à déterminer la solution y[n] qui vérifie l'équation.
- Exemple : résoudre l'équation aux différences suivante :

$$y[n] - 0.5y[n - 1] = 2(0.25)^n u[n]$$

avec y[-1] = 2.

En prenant la transformée en Z de l'équation aux différences, il vient :

$$Y(z) - 0.5(z^{-1}Y(z) + y[-1]) = 2\frac{z}{z - 0.25}$$

donc:

$$Y(z)(1-0,5z^{-1}) = 1 + \frac{2z}{z-0,25} = \frac{3z-0,25}{z-0,25}$$
$$Y(z) = \frac{z(3z-0,25)}{(z-0,25)(z-0,5)}$$

On étudie et décompose en éléments simples :

$$\frac{Y(z)}{z} = \frac{3z - 0.25}{(z - 0.25)(z - 0.5)}$$

$$\frac{Y(z)}{z} = \frac{a}{z - 0.25} + \frac{b}{z - 0.5}$$

avec a = -2 et b = 5 donc :

$$Y(z) = -2\frac{z}{z - 0.25} + 5\frac{z}{z - 0.5}$$

d'où le signal solution y[n]:

$$y[n] = -2(0,25)^n u[n] + 5(0,5)^n u[n]$$

2.3 Fonction de transfert

• Tout comme la transformée de Laplace permet de trouver la fonction de transfert d'un système, la transformée en z permet de trouver la fonction de transfert d'un système discret. Elle a pour forme :

Fonction de transfert

$$H(z) = \frac{Y(z)}{X(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_M z^{-M}}{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_N z^{-N}}$$

• En notant z_i les zéros (valeurs de z qui annulent le numérateur) et p_k les pôles (valeurs de z qui annulent le dénominateur), il vient :

Fonction de transfert factorisée

$$H(z) = K \frac{(z - z_1)(z - z_2) \dots (z - z_M)}{(z - p_1)(z - p_2) \dots (z - p_N)}$$

2.4 Stabilité

2.4.1 Définition

- La stabilité d'un système est régie par l'emplacement des pôles :
 - Pour un système en temps continu, tous les pôles doivent être dans le côté gauche du plan s (partie réelle négative).
 - Pour un système en temps discret, tous les pôles doivent strictement être dans le cercle de rayon unité sur le plan z.

2.4.2 Exemple

(Les ronds représentent traditionnellement les zéros, tandis que les croix représentent les pôles).

2.4.3 Résumé

2.5 Réponse temporelle d'un système

• La réponse d'un système est simplement le produit de la transformée en Z du signal d'entrée avec la transformée en Z du système :

Réponse temporelle d'un système $Y(z) = X(z) \cdot H(z)$

• Exemple : Soit le système de fonction de transfert

$$H(z) = \frac{3z}{z - 0.7}$$

. Calculer la réponse de ce système au signal d'entrée $x[n] = 0, 5^n u[n]$

Comme:

$$X(z) = \frac{z}{z - 0.5}$$

il vient:

$$Y(z) = H(z)X(z) = \frac{3z^2}{(z - 0, 7)(z - 0, 5)}$$

donc:

$$\frac{Y(z)}{z} = \frac{3z}{(z-0,7)(z-0,5)} = \frac{a}{z-0,7} + \frac{b}{z-0,5}$$

On trouve facilement a = 10, 5 et b = -7, 5 donc :

$$Y(z) = \frac{10,5z}{z-0,7} - \frac{7,5z}{z-0,5}$$

et au final:

$$y[n] = 10, 5(0,7)^n u[n] - 7, 5(0,5)^n u[n]$$

• La <u>réponse impulsionnelle</u> en temps discret h[n] est la réponse d'un LTI en temps discret lorsque l'entrée est une impulsion $\delta[n]$. En effet, si $x[n] = \delta[n]$ alors $X(z) = \mathcal{Z}(x[n]) = 1$ et donc Y(z) = X(z)H(z) = H(z), d'où

$$y[n] = \mathcal{Z}^{-1}(Y(z)) = \mathcal{Z}^{-1}(H(z)) = h[n]$$

• La réponse indicielle en temps discret est la réponse d'un LTI en temps discret lorsque l'entrée est un échelon unité u[n]:

$$y_{step}[n] = \mathcal{Z}^{-1}(\frac{zH(z)}{z-1})$$

• Exercice : Soit le système décrit par la fonction de transfert :

$$H(z) = \frac{z+1}{z-0.5}$$

- 1- Dire si le système est stable.
- 2- Calculer la réponse impulsionnelle h[n].
- 3- Calculer la réponse indicielle $y_{step}[n]$.

- 4- Calculer la réponse du système si x[n] = 0,25u[n].
- Correction :
 - 1- Dire si le système est stable.
 Le système est effectivement stable car son seul pôle a pour valeur
 0,5 et est strictement inclus dans le disque de rayon 1.

2- Calculer la réponse impulsionnelle h[n]. On sait que $h[n] = \mathbb{Z}^{-1}(H(z))$ donc on étudie

$$\frac{H(z)}{z} = \frac{z+1}{z(z-0.5)} = \frac{a}{z} + \frac{b}{z-0.5}$$

On calcule a = -2 et b = 3 donc :

$$\frac{H(z)}{z} = \frac{-2}{z} + \frac{3}{z - 0.5}$$

$$H(z) = -2 + 3\frac{z}{z - 0.5}$$

On en déduit :

$$h[n] = -2\delta[n] + 3(0,5)^n u[n]$$

3- Calculer la réponse indicielle $y_{step}[n]$. On prend comme ce cas une entrée x[n] = u[n], donc $X(z) = \frac{z}{z-1}$ et

$$Y(z) = H(z)X(z) = \frac{z+1}{z-0.5} \frac{z}{z-1} = \frac{z(z+1)}{(z-0.5)(z-1)}$$

Comme on peut écrire :

$$\frac{Y(z)}{z} = \frac{z+1}{(z-0,5)(z-1)} = \frac{a}{z-0,5} + \frac{b}{z-1}$$

il vient a = -3 et b = 4 donc :

$$Y(z) = -3\frac{z}{z - 0.5} + 4\frac{z}{z - 1}$$

d'où on déduit :

$$y_{step}[n] = -3(0,5)^n u[n] + 4u[n]$$

4- Calculer la réponse du système si x[n]=0,25u[n].On a de suite $X(z)=\frac{z}{z-0,25}$ puis

$$Y(z) = H(z)X(z) = \frac{z+1}{z-0.5} \frac{z}{z-0.25} = \frac{z(z+1)}{(z-0.5)(z-0.25)}$$

Ainsi

$$\frac{Y(z)}{z} = \frac{z+1}{(z-0,5)(z-0,25)} = \frac{a}{z-0,5} + \frac{b}{z-0,25}$$

On obtient a=6 et b=-5 d'où

$$Y(z) = 6\frac{z}{z - 0.25} - 5\frac{z}{z - 0.25}$$

et enfin

$$y[n] = 6(0,25)^n u[n] - 5(0,25)^n u[n]$$

