競技プログラミング

基礎

Table

・競技プログラミングとは

・言語・ツール

基礎基礎知識

計算量・アルゴリズム

・ACM-ICPC コンテスト

・去年

コンテストについて

· 学習方法

競技プログラミングとは

なぜやるのか

- ・データ構造、アルゴリズムを学べる
- ・数学
- · 言語の(基礎部分の)勉強(x 綺麗にかけるようになる)
- ・競い合う楽しさ

なに

- ・「コーディングスピードと正確さ」を競う
- ・適切なアルゴリズムを選んで問題を解く

なに

- ・基本的な形式
- ・「A という input に対して処理した結果 B とい う output をするプログラムを作りなさい」

```
GType thunar_application_get_type ()
{
static GType type = G_TYPE |
if (G_UNLIKELY (type == G] 
{
static const GTypeInfo info = {
    sizeof (ThunarApplicationClass), NULL,  
    NULL,  
    sizeof (ThunarApplication),  
    0,  
    (GlassinitFunc) thunar_applic  
    NULL,  
    sizeof (ThunarApplication),  
    0,  
    (GinstanoeInitFunc) thunar_applic  
    NULL,  
    it type = g_type_register static (G_T) 
    return type;
}

SOURCE
```

どうやって

出題(+Sample) 考察 コーディング チェック ジャッジ 提出

・サンプル

(入力/正解出力)

出題(+Sample) 考察 コーディング チェック サンプル ソース コード ジャッジ 提出

どうやって

・実演

http://abc001.contest.atcoder.jp/

言語・ツール

言語

· Java

· C, C#, Python3, Ruby

· Order: O(計算量)

・最悪計算量: 競プロではあらゆるテストケースに 対応

• O(n log(n)), O(n!)

少

- · O(1) 定数時間
- · O(log(n)) 対数数時間
- · O(n) 線形時間
- · O(n^c) 多数項時間
- · O(cⁿ) 指数時間

· だいたい 1秒 O(10^7)

• 例

- · 入力値 a (0≦a≦100000)
- ・a回ループの二重 for -> O(a²) -> O(10¹⁰)
- · 前処理してから O(a) に落とす方法を考える

- 例
- · 入力值 N, M(0<=N<=100000, 0<=M<=10000)
 - · (NM) の計算はできない
 - · (N log M) とかに出来ないか考える

・時間計算量: 処理回数 (←ここまでの話)

・空間計算量: メモリ

問題種類

・アルゴリズム

種類

・シミュレーション・再帰

· 文章読解 · 文字列操作

· 探索 · DP

・幾何 ・グラフ

アルゴリズム

- ・総当り, 貪欲法, DP(動的計画法)
- · 二分探索, EulerTour
- ・ダイクストラ, a*, ワーシャルフロイド
- ・UnionFind, LIT, いもす
- ・ナップサック,メモ化
- ・逆元

学習方法

学習方法

- · Online コンテスト参加
- · Online Judge 問題, コンテスト過去問
- ・本

オンラインコンテスト

- · CodeForces(Div1, Div2)
 - ・ 競プロ界のステータス, 特殊
- AtCoder
 - ・初心者向け
- TopCoder

問題を解く

・過去問, コンテストはだいたい公式で公開している。

る

- ・解説記事,公式もある
- ・他の人の回答を見て学ぶ

初心者に おすすめ

主要なコンテストの紹介

			TopCoder		Codeforces *		AtCoder		
	開催頻度		月3回		月6回		毎週土曜日		
	問題文		英語		英語		日本語		
	問題数と時間		3問/75分		5問/120分		4問/90分		
	PythonのVersion		2		2, 3		2, 3		
	解ける人数	Topcoder の何色に相当するか	Div2	Div1	Div2	Div1	ABC	Al	RC
易	↑ 100%		1		1		2	2	
-55					2		3		
			2		3	1	4		
								3	
				1	4	2			4
	1		3		_				7
難	↓ 0%			2	5	3			
	. 076			3		5			

問題がある場所リスト

AOJ

judge.u-aizu.ac.jp

Introからある アルゴリズム問題をやるべき 幅広い難易度

公式解説あり

AtCoder

<u>atcoder.jp</u>

.....

Hackerrank

hackerrank.com

言語ごとの Intro からある

CodeForces

codeforces.com

難しめ, 英語

CodelQ

<u>codeiq.jp</u>

アルゴリズム学べそうな 問題を選ばないと無駄

paisa

<u>paiza.jp</u>

アルゴリズム学べそうな 問題を選ばないと無駄

CodeFight

codefights.com

CodeGolf で アルゴリズム学べたりする

・蟻本

ACM-ICPC プログラミングコンテスト

ACM-ICPC

· 国内予選 (オンライン): (日本語)

・-> アジア予選 - 筑波:(英語)

· -> 世界大会: (英語)

- ・簡単なルール
 - · 3時間, 2016/6/24(Fri)
 - · 言語: C++, Java

- ・チームプレイ
 - ・3人で1チーム
 - · PC: チームで1台

- ・環境
 - インターネット不可
 - ・問題,提出ページのみ可
 - ・紙類, 資料持ち込み可

- ・ジャッジ方法
 - ・実行時間の制限なし
 - ・解答(Output) ファイルとソースを同時に提出
 - · -> 計算量の数十倍になる程度なら無駄な処理 も無視できる
 - · -> x 一つ指数が上がるようなのは無理

- ・問題
- ・サンプル

(入力/正解出力)

・問題入力

千葉君, えるざっぷ, KP

- ・コンテストに向けた準備
 - ・勉強会なし…
 - ・俺がやってみたくて誘った

- ·本戦前
 - ・大量に大きなメモ用紙持ち込み
 - ・コード, アルゴリズムのテンプレートを印刷持 ち込み
 - ・アルゴリズム本持ち込み

- · 本戦開始
 - ・問題一気に印刷
 - 問題を読みながら誰がどれをやるのかを決める
 - 一人はコーディングを始める

· A問題: 総当り,解けた

· B問題: シミュレーション, 解けた

· C問題: ノード, ギリギリ解けた

· 3完答-終了

- ・ 通過チーム
 - 7問正解 1チーム
 - · 6問正解 1チーム
 - ・ 5問正解 10チーム (2 同学校制限)
 - ・ 4問正解 14チーム (11 同学校制限)
 - ・ 3問正解 11チーム (以下90敗退)

· 東京大学, 会津大学, 京都大学, 大阪大学, 筑波大学, 東京工業大学…

- · 反省点
 - ・エディタ3人分用意するべき
 - ・担当する問題の種類をしっかり選ぶ

参考文献

- ・オーダー: http://www.slideshare.net/
 catupper/ss-26238956
- ・プロコン: http://www.slideshare.net/iwiwi/ wakate-web-14323842