Mathematical Oncology

Non-dimensionalisation

Nikolaos Sfakianakis*

A simple case

We start by considering a simple dimensional problem

$$p = \alpha x + \beta \tag{1}$$

where $\alpha, \beta \in \mathbb{R}$ are constants and where x, p the independent and dependent variable respectively.

Assuming that the above equation refers to an actual problem involving x kilograms (kg) of a product and it price p in GBPs (£), it will be best if we write it in the following form

$$[p \pounds] = [\alpha \pounds/ \text{kg}][x \text{kg}] + [\beta \pounds]$$
(2)

which clearly highlights the role of each one of the variables and parameters as well as their dimensions.

The process of non-dimensionalisation relies on choosing **references** values $[p_{\text{ref}} \pounds]$ and $[x_{\text{ref}} \ker]$ for the *dimensional* variables $[p \pounds]$ and $[x \ker]$ respectively, and on **introducing** the corresponding **non-dimensional** variables \tilde{p} and \tilde{x} as follows

$$\tilde{p} = \frac{[p \,\pounds]}{[p_{\text{ref}} \,\pounds]}, \quad \tilde{x} = \frac{[x \,\text{kg}]}{[x_{\text{ref}} \,\text{kg}]}$$
(3)

or

$$[p \, \pounds] = [p_{\text{ref}} \, \pounds] \tilde{p}, \quad [x \, \text{kg}] = [x_{\text{ref}} \, \text{kg}] \tilde{x}.$$

Substituting in (2) we obtain

$$[p_{\text{ref}} \pounds] \tilde{p} = [\alpha \pounds/ \text{kg}] [x_{\text{ref}} \text{kg}] \tilde{x} + [\beta \pounds]$$

or, after dividing by $[p_{ref} \pounds]$,

$$\tilde{p} = \frac{\left[\alpha \, \pounds/\, \mathrm{kg}\right] \left[x_{\mathrm{ref}} \, \mathrm{kg}\right]}{\left[p_{\mathrm{ref}} \, \pounds\right]} \tilde{x} + \frac{\left[\beta \, \pounds\right]}{\left[p_{\mathrm{ref}} \, \pounds\right]}.\tag{4}$$

^{*}School of Mathematics and Statistics, University of St. Andrews, Scotland, UK, n.sfakianakis@st-andrews.ac.uk

We now introduce the dimensionless parameters

$$\tilde{\alpha} = \frac{[\alpha \, \pounds/\, \mathrm{kg}][x_{\mathrm{ref}} \, \mathrm{kg}]}{[p_{\mathrm{ref}} \, \pounds]}, \quad \tilde{\beta} = \frac{[\beta \, \pounds]}{[p_{\mathrm{ref}} \, \pounds]}$$

and (4) recasts into

$$[\tilde{p} = \tilde{\alpha}\tilde{x} + \tilde{\beta}.]$$
 (5)

This is the **non-dimensional** version of the original dimensional equation (1) or (2).

Remark 1. It should clear that (5) depends on the reference values $[p_{ref} \mathcal{L}]$ and $[x_{ref} kg]$. For example,

- If a much-much larger reference value $[p_{ref} \mathcal{L}]$ is chosen (while keeping the same $[x_{ref} kg]$) then it should be expected that the dimensionless coefficients $\tilde{\alpha}$ and $\tilde{\beta}$ will be much-much-much smaller; one could imagine that $\tilde{\alpha}$ and $\tilde{\beta}$ could be even assumed to be zero.
- If on the other hand, a much-much smaller value of $[x_{ref} kg]$ is chosen (while maintaining the same $[p_{ref} \mathcal{L}]$), it should be expected that $\tilde{\alpha}$ would be much-much-much smaller; one could imagine that in this case only $\tilde{\alpha}$ could be assumed to be zero.