Application of Particle Swarm Optimization in D-optimal Design

Park, Sungmin

Department of Statistics Seoul National University

15 MAR 19

- Introduction
- Optimal Design
- Particle Swarm Optimization
- Application of PSO in Optimal Design
- Examples
- 6 Discussion

- Introduction
- Optimal Design
- Particle Swarm Optimization
- 4 Application of PSO in Optimal Design
- Examples
- 6 Discussion

Locally optimal design for nonlinear model is an optimization problem where analytical formula for the design is rarely available.

This presentation provides,

- a brief introduction to locally optimal design and particle swarm optimization.
- a demonstation of how particle swarm optimization can be successfully implemented in locally optimal design via various examples.

- Introduction
- Optimal Design
- Particle Swarm Optimization
- 4 Application of PSO in Optimal Design
- 5 Examples
- 6 Discussion

Research Design

Given an experimental research model, a researcher must decide

- $\mathbf{0}$ # of combination levels of indep. variables (# of design points)
- values for these design points

For example, consider a medical study to test the effect of a new drug. The researcher must decide,

- 1 # of dose levels to be administered
- values for each dose level

Exact vs. Approximate Design

There are two types of characterization for the design problem: Exact vs. Approximate

Both specifies $\mathbf{0}$ # of combination levels and $\mathbf{2}$ values for these levels.

Two types of design differ in 3,

Exact design specifies the exact # of subjects for each design points.

Approximate design specifies the *proportion* of subjects for design points.

In this presentation, we focus on approximate design.

Notation

- $\mathcal{P}(\cdot)$: model
- θ : parameter
- k: # of distinct design points
- $x_i, 1 \le i \le k$: design points
- $w_i, 1 \le i \le k$: proportion of subjects assigned to design point x_i
- $\xi_k = (x_1, \dots, x_k, w_1, \dots, w_k)$: k-point approximate design

Optimal Design, D-optimal

A good design is one that produces estimates (usually MLE) with smaller variance or confidence ellipsoid.

Among many optimality criteria, D-optimality criterion is widely used.

D-optimality criterion:

Given a model $\mathcal{P}(\theta)$ and the # of design points k,

$$\xi_k^*$$
 is *D*-optimal if $\xi_k^* = \operatorname*{argmin}_{\xi_k} \left| \mathit{Var}\left(\hat{\theta}(\xi)\right) \right|$

Optimal Design, c-optimal

There is a variant of D-optimal design called c-optimal design.

c-optimality criterion for a function of interest $c(\theta)$:

Given a model $\mathcal{P}(\theta)$ and the # of design points k ξ_k^* is c-optimal if $\xi_k^* = \operatorname*{argmin} \left| Var \left[c \left(\hat{\theta}(\xi) \right) \right] \right|$, with $Var \left[c \left(\hat{\theta}(\xi) \right) \right] \approx \left(\frac{\partial c(\theta)}{\partial \theta} \right) Var \left(\hat{\theta}(\xi) \right) \left(\frac{\partial c(\theta)}{\partial \theta} \right)^T$

D- and c-optimal design using MLE involves determinant and matrix inversion complicating the optimization problem.

The design solutions are locally optimal because they depend on the choice of parameter θ .

Choice of k

Choice of k is usually pre-specified before the search for optimal design.

In order to estimate p parameters in any model, at least p distinct design points are required.

Carathéodory's theorem provides an upper bound on the number of design points needed for an optimal design.

For many design problems with p parameters,

$$p \le$$
 Optimal number of distinct design points $\le \frac{p(p+1)}{2}$

Start with k = p.

If k = p fails to provide an optimal design, try k = p + 1 and so on ...

Equivalence Theorem

Equivalence Theorem provides a method to verify whether the approximate design solution is optimal.

Let $f = (f_1, \ldots, f_p)^T$ be a vector of linearly independent real functions on X, whose range is compact in \mathbb{R}^p . Let S be any Borel field of subsets of X containing every finite subset of X and ξ a probability measure on S with finite support.

Define $M(\xi) = (m_{ij}(\xi))$ with $m_{ij}(\xi) = \int_X f_i(x) f_j(x) \xi(dx)$ and $d(x;\xi) = f(x)^T [M(\xi)]^{-1} f(x)$ if $M(\xi)$ is **invertible**. Then, TFAE

- ② $f(x)^T [M(\xi^*)]^{-1} f(x) \le p, \forall x \in X$ with equality holding at x_i^* s in $\xi^* = (x_1^*, \dots, x_k^*, w_1^*, \dots, w_k^*)$

- Introduction
- Optimal Design
- Particle Swarm Optimization
- 4 Application of PSO in Optimal Design
- Examples
- 6 Discussion

Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a nature-inspired algorithm originating from research in fish and swarm movement behavior.

Benefits of PSO include the ability to find the optimal solution to a complex problem or get close to the optimal solution quickly **without** requiring any assumption on the objective function. \Rightarrow flexible

However, the method still lacks a firm theoretical justification to date and is under-utilized in statistical literature.

The idea of PSO is as follows,

- A number of particles are scattered onto the search domain.
- 2 Each particle investigates the search domain and shares knowledge with the group.
- 3 Possible solution is obtained from the group's aggregated knowledge.

PSO Algorithm

Update Equation:

$$v_i^{t+1} = \tau_t v_i^t + \gamma_1 \beta_1 \odot (\rho_i^t - z_i^t) + \gamma_2 \beta_2 \odot (\rho_g^t - z_i^t), \tag{1}$$

$$z_i^{t+1} = z_i^t + v_i^{t+1}. (2)$$

- $h(\cdot)$: objective function (fitness) to minimize
- z_i^t : position of the *i*th particle at time t
- v_i^t : velocity of the *i*th particle at time t
- p_i^t : argmin_{$z_i^s,1\leq s\leq t$} { $h(z_i^s)$ }, personal best position
- p_g^t : argmin_{$z_m,1 \le m \le k,1 \le s \le t$} $\{h(z_m^s)\}$, global best position
- ①: Hadamard product operator

PSO Algorithm

Update Equation:

$$v_i^{t+1} = \tau_t v_i^t + \gamma_1 \beta_1 \odot (p_i^t - z_i^t) + \gamma_2 \beta_2 \odot (p_g^t - z_i^t),$$

$$z_i^{t+1} = z_i^t + v_i^{t+1}.$$

- τ_t : inertia wieght at time t, const. or decreasing between (0,1)
- γ_1 : cognitive learning parameter
- γ_2 : social learning parameter
- β_1, β_2 : random vector

In this paper, learning parameter was $\gamma_1=\gamma_2=2$ fixed and components of β_1,β_2 was sampled i.i.d from U(0,1) at each iteration and particle.

PSO Algorithm

PSO pseudo-code for flock size n (i.e. n particles in the swarm)

- (1) Initialize particles
 - (1.1) Initiate position x_i^0 and velocities v_i^0 for i = 1, ..., n
 - (1.2) Calculate the fitness values $h(x_i^0)$ for i = 1, ..., n
 - (1.3) Determine the personal best positions $p_i^0 = x_i^0$ and the global position p_g^0 for i = 1, ..., n
- (2) Repeat until stopping criteria are satisfied,
 - (2.1) Calculate particle velocity according to Eq. (1)
 - (2.2) Update particle position according to Eq. (2)
 - (2.3) Project particle back to the search space
 - (2.4) Calculate the fitness values $h(x_i)$ for v_i for $i = 1, \ldots, n$
 - (2.5) Update personal and global best positions $p_i, (1 \le i \le n)$ and p_g
- (3) Output $p_g = \underset{x}{\operatorname{argmin}} \{h(x)\} \text{ with } gbest = h(p_g)$

- Introduction
- Optimal Design
- Particle Swarm Optimization
- Application of PSO in Optimal Design
- 5 Examples
- 6 Discussion

Application of PSO in Optimal Design

Update Equation:

$$\begin{aligned} v_i^{t+1} &= \tau_t v_i^t + \gamma_1 \beta_1 \odot \left(p_i^t - z_i^t \right) + \gamma_2 \beta_2 \odot \left(p_g^t - z_i^t \right), \\ z_i^{t+1} &= z_i^t + v_i^{t+1}. \end{aligned}$$

$$z_i^t \leftarrow \xi_i^t \qquad = \left(x_{i1}^t, \dots, x_{ik}^t, w_{i1}^t, \dots, w_{ik}^t \right)$$

$$h(x) \leftarrow g_D(\xi; \theta_0) = \left| Var \left(\hat{\theta}_{MLE}(\xi) \right) \right| = \left| I(\xi; \theta_0)^{-1} \right|, (D\text{-optimal})$$

$$h(x) \leftarrow g_c(\xi; \theta_0) = \left| Var \left(c \left(\hat{\theta}_{MLE}(\xi) \right) \right) \right|, (c\text{-optimal})$$

$$\approx \left| \left(\frac{\partial c(\theta)}{\partial \theta} \right|_{\theta = \theta_0} \right) I(\xi; \theta_0)^{-1} \left(\frac{\partial c(\theta)}{\partial \theta} \right|_{\theta = \theta_0} \right)^T \right|$$

Application of PSO in Optimal Design

Nominal value θ_0 of θ needs to be specified before running the algorithm. In most cases, LS estimator is used as the nominal value of θ_0 . Design space, or the search space of x_i also needs to be pre-specified.

Optimality of designs is checked by equivalence theorem for D-optimal designs with invertible Information matrix.

When equivalence theorem is not available, convergence is assumed when observed optimum does not change by more than 10^{-7} deviation from the known optimum.

- Introduction
- Optimal Design
- Particle Swarm Optimization
- 4 Application of PSO in Optimal Design
- 5 Examples
- Discussion

Drug concentration(Y) is modeled as a function($\eta(\cdot,\theta)$) of time(x) with independent normal errors($\varepsilon \sim \mathcal{N}(0,\sigma^2)$).

$$Y|X = x \sim \mathcal{N}\left(\eta(x,\theta), \sigma^{2}\right), \sigma^{2} known$$

$$\eta(x,\theta) = \theta_{3} \left\{ \exp(-\theta_{2}x) - \exp(-\theta_{1}x) \right\}, x > 0$$

$$I(\xi; \theta_{0}) \propto \sum_{i=1}^{k} \left\{ w_{i} \left(\frac{\partial \eta(x_{i}; \theta)}{\partial \theta} \Big|_{\theta = \theta_{0}} \right) \left(\frac{\partial \eta(x_{i}; \theta)}{\partial \theta} \Big|_{\theta = \theta_{0}} \right)^{T} \right\}$$

$$g_{D}(\xi; \theta_{0}) = \left| I(\xi; \theta_{0})^{-1} \right|$$

D-optimal design:

Find ξ s.t. minimize $g_D(\xi; \theta_0) \Leftrightarrow \text{Find } \xi$ s.t. maximize $|I(\xi; \theta_0)|$

- $\theta_0 = (0.05884, 4.298, 21.8)$
- n (flock size) = 100
- max iteration = 100
- k = 3
- $\xi = (x_1, \dots, x_k, w_1, \dots, w_k),$ $x_i \in [0, 30], w_i \ge 0, \forall i \text{ and } \sum_{i=1}^k w_i = 1$
- $\Rightarrow \xi^* = (0.228773, 1.38858, 18.4168, 0.333335, 0.333332, 0.333333)$

Equivalence plot for *D*-optimal design:

$$\left(\frac{\partial \eta(x;\theta)}{\partial \theta}\Big|_{\theta=\theta_0}\right)^{\mathsf{T}} I(\xi^*;\theta_0)^{-1} \left(\frac{\partial \eta(x;\theta)}{\partial \theta}\Big|_{\theta=\theta_0}\right) - 3 \le 0, \forall x \in [0,30]$$

One of the main question of interest in compartment model is time to max concentration of the drug

$$\begin{split} c(\theta) &= \operatorname*{argmax} \eta(x,\theta) \\ &= \frac{\ln \theta_1 - \ln \theta_2}{\theta_1 - \theta_2} \\ \frac{\partial c(\theta)}{\partial \theta} &= \left(\frac{1 - \frac{\theta_2}{\theta_1} - \ln \theta_1 + \ln \theta_2}{(\theta_1 - \theta_2)^2}, \frac{1 - \frac{\theta_1}{\theta_2} + \ln \theta_1 - \ln \theta_2}{(\theta_1 - \theta_2)^2}, 0 \right)^T \\ g_c(\xi; \theta_0) &= \left(\frac{\partial c(\theta)}{\partial \theta} \Big|_{\theta = \theta_0} \right)^T I(\xi; \theta_0)^- \left(\frac{\partial c(\theta)}{\partial \theta} \Big|_{\theta = \theta_0} \right) \end{split}$$

c-optimal design: find ξ s.t. minimize $g_c(\xi; \theta_0)$

- *n* (flock size) = 200
- max iteration = 1000
- k = 2
- $\xi = (x_1, \dots, x_k, w_1, \dots, w_k),$ $x_i \in [0, 10], w_i \ge 0, \forall i \text{ and } \sum_{i=1}^k w_i = 1$

Note that information matrix is singular when k=2. Instead of using generalized inverse, the author replaced $I(\xi;\theta_0)$ with invertible matrix $I_\epsilon(\xi;\theta_0)=I(\xi;\theta_0)+\epsilon I_3, \epsilon=10^{-6}$.

$$\Rightarrow \xi^* = (3.56584, 0.179287, 0.393841, 0.606159)$$

Another question of interest in compartment model is the area under the curve(AUC)

$$c(\theta) = \int_0^\infty \eta(x,\theta) dx$$

$$= \frac{\theta_3}{\theta_2} - \frac{\theta_3}{\theta_1}$$

$$\frac{\partial c(\theta)}{\partial \theta} = \left(\frac{\theta_3}{\theta_1^2}, -\frac{\theta_3}{\theta_2^2}, \frac{1}{\theta_2} - \frac{1}{\theta_1}\right)^T$$

$$g_c(\xi; \theta_0) = \left(\frac{\partial c(\theta)}{\partial \theta}\Big|_{\theta = \theta_0}\right)^T I(\xi; \theta_0)^{-} \left(\frac{\partial c(\theta)}{\partial \theta}\Big|_{\theta = \theta_0}\right)$$

c-optimal design: find ξ s.t. minimize $g_c(\xi; \theta_0)$

- k = 2
- *n* (flock size) = 100
- max iteration = 1000
- $\xi = (x_1, \dots, x_k, w_1, \dots, w_k),$ $x_i \in [0, 20], w_i \ge 0, \forall i \text{ and } \sum_{i=1}^k w_i = 1$
- $\Rightarrow \xi^* = (0.23267, 17.634, 0.0135021, 0.986498)$

One of the merits of using PSO is that when the # of design points k is over-specified, it can automatically find the optimal design directly.

- k = 3, n (flock size) = 200, max iteration = 500 $\Rightarrow \xi^* = (0.2327, 17.634, 20.0, 0.0135, 0.9865, 0.0)$ (Simulation) $\Rightarrow \xi^* = (0.2337, 17.6269, 17.7176, 0.0135, 0.8983, 0.0882)$ (Paper)
- k=3, n (flock size) = 200, max iteration = 1000 $\Rightarrow \xi^* = (0.2327, 17.634, 20.0, 0.0135, 0.9865, 0.0)$ (Simulation) $\Rightarrow \xi^* = (0.2332, 17.6336, 17.6626, 0.0135, 0.9535, 0.03296)$ (Paper)

Some more simulations,

- k = 4, n (flock size) = 100, max iteration = 100 $\Rightarrow \xi^* = (0.2337, 17.6126, 17.6464, 20.0, 0.0136, 0.3353, 0.6510, 0.0)$
- k = 4, n (flock size) = 200, max iteration = 500 $\Rightarrow \xi^* = (0.0, 0.2327, 17.634, 20.0, 0.0, 0.0135, 0.9865, 0.0)$
- k = 5, n (flock size) = 200, max iteration = 500 $\Rightarrow \xi^* = [0.0, 0.2327, 17.634, 20.0, 20.0, 0, 0.0135, 0.9865, 0.0, 0.0)$

From the simulation, it is observed that when k is too large,

- Neighboring design points converge to optimal design point
- Unnecessary design points converge to the boundary of design space and their weights converge to 0

Examples: Quadratic Logistic Model, D-optimal

Consider a binary model taking values 0 or 1 with probability $p(x; \theta)$.

$$Y|X = x \sim Ber(p(x;\theta))$$

$$p(x;\theta) = \frac{\exp[\alpha + \beta(x - \mu)^{2}]}{1 + \exp[\alpha + \beta(x - \mu)^{2}]}$$

$$f(x;\theta) = \alpha + \beta(x - \mu)^{2}$$

$$\frac{\partial f(x;\theta)}{\partial \theta} = (1, (x_{i} - \mu)^{2}, 2\beta(\mu - x_{i}))^{T}$$

$$I(\xi;\theta_{0}) = \sum_{i=1}^{k} \left\{ w_{i}p(x_{i};\theta_{0}) (1 - p(x_{i};\theta_{0})) \left(\frac{\partial f(x;\theta)}{\partial \theta} \Big|_{\theta_{0}} \right) \left(\frac{\partial f(x;\theta)}{\partial \theta} \Big|_{\theta_{0}} \right)^{T} \right\}$$

Examples: Quadratic Logistic Model, D-optimal

D-optimal design: find ξ s.t. maximize $|I(\xi; \theta_0)|$

- $\theta_0 = (\alpha_0, \beta_0, \mu_0) = (2, 3, 0)$
- *n* (flock size) = 128
- max iteration = 150
- k = 3
- $\xi = (x_1, \dots, x_k, w_1, \dots, w_k),$ $x_i \in [-3, 1], w_i \ge 0, \forall i \text{ and } \sum_{i=1}^k w_i = 1$
- $\Rightarrow \xi^* = (-0.726988, 0, 0.726988, 0.333333, 0.333333, 0.333333)$

- Introduction
- Optimal Design
- 3 Particle Swarm Optimization
- 4 Application of PSO in Optimal Design
- Examples
- 6 Discussion

Discussion

PSO is a powerful and flexible method for solving optimization problems that can be applied to a variety of problems.

Learning parameter in PSO did not seem to matter much. Setting $\gamma_1=\gamma_2=2$ worked well in all the problems.

Main problem of PSO is determining the # of iteration and flock size.

- Large flock size will result slow iteration.
- Small flock size will require longer iteration.
 (: not enough particles to cover the design space)

Reference

- Berger, M. P., & Wong, W. K. (2009). An introduction to optimal designs for social and biomedical research (Vol. 83). John Wiley & Sons.
- Qiu, J., Chen, R. B., Wang, W., & Wong, W. K. (2014). Using animal instincts to design efficient biomedical studies via particle swarm optimization. Swarm and evolutionary computation, 18, 1-10.
- Kiefer, J., & Wolfowitz, J. (1960). The equivalence of two extremum problems. Canadian Journal of Mathematics, 12, 363-366.