C. Wake Rotation Effects

1. Theory

NON-DINENSIAMOURE TO DETERMINE INCREMENTAL POWER COEFFICIENT $A_1 \mid \overline{u_{x,1}} \rightarrow$

dlp = 8a' (1-a) dr = INTERRATE TO DETERMINE Cp NEED FERATIONSHIS AMONG a', a, dr

DE INTEREST IS MARINIM PEUCH -> MARINIZE (1-4) al

APPLOACH

1) DETINE f=a'(1-a)

2) DIFFERENTIME
$$\frac{df}{da} = (1-a)\frac{da!}{da} - a! = \emptyset$$

$$\psi_{i}v_{i}+i, a \qquad \frac{da}{da} = (1-a)\frac{da!}{da} - a! = \emptyset$$

$$\psi_{i}v_{i}+i, a \qquad \frac{da!}{da} = (1-a)\frac{da!}{da} - a! = \emptyset$$

$$\psi_{i}v_{i}+i, a \qquad \frac{da!}{da} = (1-a)\frac{da!}{da} - a! = \emptyset$$

$$\psi_{i}v_{i}+i, a \qquad \frac{da!}{da} = (1-a)\frac{da!}{da} - a! = \emptyset$$

$$\psi_{i}v_{i}+i, a \qquad \frac{da!}{da} = (1-a)\frac{da!}{da} - a! = \emptyset$$

$$\psi_{i}v_{i}+i, a \qquad \frac{da!}{da} = (1-a)\frac{da!}{da} - a! = \emptyset$$

$$\psi_{i}v_{i}+i, a \qquad \frac{da!}{da} = (1-a)\frac{da!}{da} - a! = \emptyset$$

$$\psi_{i}v_{i}+i, a \qquad \frac{da!}{da} = (1-a)\frac{da!}{da} - a! = \emptyset$$

$$\psi_{i}v_{i}+i, a \qquad \frac{da!}{da} = (1-a)\frac{da!}{da} - a! = \emptyset$$

$$\psi_{i}v_{i}+i, a \qquad \frac{da!}{da} = (1-a)\frac{da!}{da} - a! = \emptyset$$

$$\psi_{i}v_{i}+i, a \qquad \frac{da!}{da} = (1-a)\frac{da!}{da} - a! = \emptyset$$

$$\psi_{i}v_{i}+i, a \qquad \frac{da!}{da} = (1-a)\frac{da!}{da} - a! = \emptyset$$

$$\psi_{i}v_{i}+i, a \qquad \frac{da!}{da} = (1-a)\frac{da!}{da} - a! = \emptyset$$

$$\psi_{i}v_{i}+i, a \qquad \frac{da!}{da} = (1-a)\frac{da!}{da} - a! = \emptyset$$

$$\psi_{i}v_{i}+i, a \qquad \frac{da!}{da} = (1-a)\frac{da!}{da} - a! = \emptyset$$

$$\psi_{i}v_{i}+i, a \qquad \frac{da!}{da} = (1-a)\frac{da!}{da} - a! = \emptyset$$

$$\psi_{i}v_{i}+i, a \qquad \frac{da!}{da} = (1-a)\frac{da!}{da} - a! = \emptyset$$

$$\psi_{i}v_{i}+i, a \qquad \frac{da!}{da} = (1-a)\frac{da!}{da} - a! = \emptyset$$

C. Wake Rotation Effects

1. Theory

4) SUBSTITUTE INTO EN. FUL
$$\frac{df}{da}$$

$$A' = \frac{1-3a}{4a-1}$$

$$Condition For Made in 2 for a'(1-a)$$

$$(u_x,u_r,u_\theta)_3$$

$$(u_x,u_r,u_\theta)_4$$

5) SUBSTITUTE INTO LE PERLATION TO WRITE A IN TERMS OF a

 $\lambda^{2} = \frac{(1-a)}{(1-3a)} (4a-1)^{2}$

6) DIFFORDINATE TO GE di

NUMBERICAL INTEGRASE
FOR DIFFERENT AS

$$C_{p,max} = \frac{24}{\lambda^2} \int_{a_1}^{a_2} \left[\frac{(1-a)(1-2a)(1-4a)}{1-3a} \right]$$

a, is insucting factor for dr = 0

C. Wake Rotation Effects

1. Theory

OBSERVATIONS

A' HIGHEST FOR LOW A

CLEMELS OF WITH INCROMSING A

ME/ESE 4470 - Wind & Tidal Power

INCRUASE TIP SPEED RATIO TO

DEZREMSE WALLE RUTATION

-D INCRUASE POWER AVAILABLE

TO BLADE RUTATION

CP CURVE DEMUNSTRATES THE IMPROVEMENT WITH INCREASING &

CP APPROACHES BETZ LIMIT ONLY AT HIGH TIP SPEEDS

WT Aerodynamics- 15

C. Wake Rotation Effects

2. Practical Consideration

CONSIDER A MUTI-BLADED WIND TURBINE

EFFICIENCY DELICENSES IF

- · BLADES REMAE SO QUILLY THAT BLACKS PASS THROUGH TURBLOST WAKE OF PRECEDING BLADE
- · BLADES POTATE SO SLUMY SULH THAT MUCH OF THE AIR PASSES BY BLADES WITHOUT INTERRETING WITH THEM

DETINE AN IDOR THE SPECIES RATIO

10 - 2TTR R- ROTOL RADIUS KR-DISNABANCE N- NUMBUL OF B DISMAGE

TRANZ DISMALE REZUL WITHCH E BLADE WILL NOT FEEL COSECIE

C. Wake Rotation Effects

2. Practical Consideration

YIMIS AN UPLICAD FULL D. Blade Aerodynamics UP WAL THIS POINT, WE HAVE NOT CONSIDERED DETMIS OF WHAT GOES ON IN_ THE FLOW ALOND AIRFAL CREATES FLACES & MOMENTS ON THE BUNDE THESE FIRES & MUMOTS ARE USED TO PRODUCE USETA MOTTON WT BLADE + LIFT COMPONENT PRODUCTS ROTATION ALPLANE & LIFT TO PLANSE FACE TO OVERLANE GRANING WE MUST DISCUSS THESE FACES & MONNIES & HOW THEY ARE CREATED & MANAGOD IF WE ARE TO BULD

