

Team 22: Smart Cricket Bat Bi-Weekly Update 5

Team members: Pablo Barron Gavin Dahl Jiakai Hu

Nolapat Pipitvitayakul TA: Fardeen Hasib Mozumder Sponsor: Pranav Dhulipala

Project description

- Problem: "Cricket practice equipment lacks effectiveness without the assistance and guidance of a coach"
- Solution proposal: "Create a device that will mount on the cricket bat and, through a user friendly app, gives real time feedback on the user's cricket swing i.e. efficiency and swing angle. Must be easy to use and set up"

Diagram of subsystems and interface

Project Timeline

Power System

Accomplishments since last presentation 10 hr of effort	Ongoing progress/problems and plans until the next presentation			
 Finished assemble final PCB Tested the battery charging circuit 	ML data collection			

Power System

Charge current: 150 mA Charge voltage: 4.2 V

Gavin Dahl

Accomplishments since last presentation 18 hr of effort	Ongoing progress/problems and plans until the next presentation			
 Housing and Mounting Unit printed, designs changed as needed, Final Design printed Bluetooth Range Validated 	 Finish final PCB assembly and re-validation ML data collection Try to "polish" bluetooth 			

Gavin Dahl

*IMU on bottom layer/side of PCB

Gavin Dahl

```
COM6
14:45:28.211 -> BT connection at: 10 ft
14:45:59.332 -> BT connection at: 20 ft
14:46:32.348 -> BT connection at: 30 ft
14:48:49.184 -> BT connect ft.
14:49:28.085 -> Btion at: 50 ft
14:50:18.726 -> BT connection at: 60 ft
14:52:31.356 -> BT connection at: 70 ft
14:53:30.461 -> BT connection at: 80 ft
14:54:43.617 -> BT connection at: 90 ft
14:56:12.299 -> Bion at: 100 ft
14:58:25.228 -> BT connection at: 110 ft
14:59:28.717 -> BT connection at: 120 ft.
15:01:02.842 -> BT connection at: 130 ft
15:02:11.232 -> BT connection at: 140 ft
15:03:25.615 -> BT connection at: 150 ft
15:05:20.859 -> BT connection at: 160 ft
15:07:03.971 -> BT connection at: 170 ft
15:08:31.987 -> BT connection at: 180 ft
15:10:15.585 -> B90 ft
15:12:56.856 -> BT connection at: 200 ft
15:14:36.078 -> BT connection at: 210 ft
15:15:46.228 -> BT connection at: 220 f
```

(a) Bluetooth Distance Validation

Bluetooth Validation

- Wrote sketch for MCU to send current distance, incremented by 10ft, when prompted by bluetooth-connected device
- Connection stable and able to send data until 220 to 240 ft

Sensing Unit Mass Verification

- Took average mass from 10 weigh-ins: 85.89 ± 0.01 grams

(b) Housing Unit + PCB + Battery Total Mass

Gavin Dahl

- Calculated Expected Acceleration at Impact: 139.4 g's
- Measured Acceleration at Impact:

114.188 g's

Android App

Pablo Barron

Accomplishments and changes since last presentation: 13 Hrs	Ongoing progress/problems and plans until the next presentation
 Validated Range of Bluetooth with Gavin: 240 ft Switched ML to run on the cloud instead of locally: Firebase 	Currently still integrating with ML and creating Firebase server to host pre-processing and ML

Android App

I/FirebaseApp: Device unlocked: initializing all Firebase APIs for app [DEFAULT]

I/FirebaseInitProvider: FirebaseApp initialization successful

I/DynamiteModule: Considering local module com.google.android.gms.measurement.dynamite

I/DynamiteModule: Selected local version of com.google.android.gms.measurement.dynamite

D/NetworkSecurityConfig: No Network Security Config specified, using platform default

V/EA: anActivityCnastad

Machine Learning

Accomplishments since last presentation:

- Preprocessed and trained newly gathered data
 Plans until next presentation:
 - More data gathering to increase accuracy

Pairplot

Heatmap, feature importance, and result

Execution plan

Execution Plan														
	9/2/2022	9/9/2022	9/16/2022	9/23/2022	9/30/2022	10/7/2022	10/14/2022	10/21/2022	10/28/2022	11/4/2022	11/11/2022	11/18/2022	11/25/2022	12/2/2022
Status Update 1														
Control System PCB							7							
Control System and App Communication														
Power System PCB Design														
App/Control System Itegration via Bluetooth							J							
Connection and Data sending Validation														
Status Update 2												8		
PCB Fabrication and Assembly														
ML and App Intergration														
Make App "prettier" by using images and other details							XI							
ML Data Collection														
Data Training with New Data														
Status Update 3														
PCB Testing and Validation			h h											
Sensing Unit Housing Design														
Sensing Unit Handle Mount Design														
Validate ML with Real Time Swings									i i					
Status Update 4												(X)		
Final PCB Manufacturing														
Sensing Unit Housing Manufacturing														
Sensing Unit Handle Mount Manufacturing					,									
Status Update 5														
Complete System Integration														
Final PCB Validation														
System Validation														
Final Design Presentation														
Final Demo														
Final Report														

Not Started	Jiakai Hu			
In Progress	Nolapat Pipitvitayaku			
Completed	Pablo Barron			
Behind Schedule	Gavin Dahl			
	Everyone			

Validation plan

Paragraph	Test Name	Success Criteria	Methodology	Status	Responsible Engineer(s)	
.2.1.2	Sending Data via Android device	The app should be able to send data (input for ML Algorithm)	Upload the app to a simulated android phone and test by outputting data to a localized device to test data sending	TESTED: App is able to send real time data to a device via an input stream	Pablo Barron	
.2.1.2	ML Algorithm Precision	The ML algorithm provides precise result of output data within acceptable error range.	Use all data gathered to test the training and testing accuracy.	TESTED: Training accuracy around 98% and Testing accuracy around 13%	Jiakai Hu	
.2.1.3	Communication Range	Communication between the sensing unit and app stays active for a distance of up to 100ft.	TESTED: Bluetooth module and mock phone had strong connection until 230 ft, where the connection would cut off.	Gavin Dahl Pablo Barron		
2.1.2	System Latency	User swing analysis deliever to user via the app in no greater than 10s after the user's bat has struck the ball.	Take 20 practice swings with the bat, timing the time from the ball's impact on the cricket bat till the analysised swing data is available to user on app.	UNTESTED	Full Team	
.2.1.4	Wireless Connection Stablilty	Sensing unit connected to smartphone app via bluetooth, set to default mode, and left to run for 1 hour. Connection is monitored via smart phone app. Connection between sensing unit and smartphone app does not drop. IN PROGRESS				
2.1.4	Full Range of Motion	Sensing unit can measure the angle of the bat at a full 360°.	Sensing unit is attached to pivoting arm on a protracter, the angle is tracked on both a piece of paper and in a text file, and then compared.	TESTED: Sensing unit tracks accurate degree of turn for all 3 axes	Gavin Dahl	
2.1.5	Easy to Use GUI	The app is easily naviagble to allow any person, regardless of technical skills, to use our device	Upload the app to a simulated andriod phone to view the clarity of the app	TESTED: App is able to run on physical device and does not crash	Pablo Barron	
2.1.5	Operation Time	Sensing unit is turned on, set to defualt mode, and left to run for 2 hours. System operates continously on battery power for a minimum of 2 hours. TESTED: Fully charged 500 mAh lipo batte run for 2 hours. Tested 500 mAh lipo batte run for about 6 hours.				
2.1.6	Detection Range	Sensing unit can detect vibrations from at least 38in away when mounted on a bat.	Mount sensing unit on end of the cricket bat handle and hit the top of the bat 10 times to ensure full range. TESTED		Gavin Dahl	
2.1.7	Detection Accuracy	Sensing unit is able to detect a collison between ball and bat on any area of the cricket bat.	Mount sensing unit on cricket bat, measure data from hits in a variety of areas on the bat (at least 15) until it is confirmed there are no dead areas.	TESTED	Gavin Dahl	
.2.1.8	Detection Sensitivity	Sensors are able to detect degree's of motion within 1deg of change and is able to give changes in speed to 1 decimal places.	Mount sensing unit to cricket bat, connect to PC via microUSB, and watch realtime data output of angle of bat and speed and compare to movements made in real life.	TESTED	Gavin Dahl	
2.1.9	Ease of Use	System is easily attached to end of handle of the cricket bat, is easily connected to the app via bluetooth, and is easy to calibrated during first time start up calibrations. Whole process should take no more than 5 minutes.	IN PROGRESS	Full Team		
.2.2.1	Mass	Mass of combined control system (MCU and IMU sensors), power system (Li-Po Battery and boost converter), and our housing unit, will weigh no more than 100g.	Use digital scale to measure weight of combined unit.	TESTED: Took average of 10 weigh-ins of sensing unit in its entirety, averaged out to 85.89 ± 0.01 g.	Nolapat Pipitvitayakul Gav Dahl	
.2.2.2	Volume Envelope	The housing unit for the sensing device should a cylindrical shape, be no more than 60mm in diameter, with an intereior diameter of 56mm, and a height of 35mm.	Measure inner and outer diameters and height of created housing unit for sensors.	UNTESTED	Nolapat Pipitvitayakul Gavi Dahl	
.2.2.3	Mounting	Use the developed mounting device to mount the sensing unit onto end the handle of the bat, and do varoius shack and shock test to confirm a fig The sensing unit is able to be mounted to the handle of any cricket bat and can lock securly into place.		UNTESTED	Nolapat Pipitvitayakul Gavi Dahl	
.2.3.1.1	Input Voltage (MCU)	The input voltage for our Beetle BLE board shall be between 5V - 8V.	Use multimeter to validate input voltage level.	TESTED: Boost Converter Output is 5V +- 0.1	Nolapat Pipitvitayakul	
.2.3.1.3	Battery Charging Voltage and Current	The sensing unit has a 3.7V 150mAh Lo-Pi batteries as its power supply. These can be charged through a microUSB cable that can supply maximum 150mA of charge current with a 4.2V charge voltage.	Use multimeter to validate voltage levels and charge current levels.	TESTED: Charge voltage is 4.2 V and maximum charge current is 150 mA	Nolapat Pipitvitayakul	
2.3.2.1	App Data Gathering via Bluetooth	The Android device should be able to recieve data from our MCU via bluetooth	Upload the app to a simulated android phone and input different "dummy" data to see if the android device recieved the data	TESTED: Random Reading errors, but we are able to read data sent from the mou	Pablo Barron	
.2.4.1	Thermal Resistance	The system should be able to operate in environments with tempatures ranging from 0°C to 85°C.	Use heating mechanism to raise tempature to 85°C and test systems functionalitly. Place system in cooling mechanism to lower tempature to 0°C and test systems.	UNTESTED	Gavin Dahl	
1.2.4.2	Shock Tolerance	The IMU should be able to handle g shocks up to a max of 10,000g.	Test dropping IMU at differing heights and then use systems normal functionality to try to validate that IMU will still function after taking shocks more than 10,000	IN PROGRESS	Gavin Dahl	

Parts List

Part Description	Order Status
3 x Bluno Ble Microcontroller	Part Received
2 x HC-05 Bluetooth Module	Part Received
3 x gy-521 IMU	Part Received
1 x LiPo Battery 3.7V 150mah	Part Received
12 x Capacitor	Part Received
8 x Resistor	Part Received
3 x Inductor	Part Received
1 x Switching Voltage Regulators	Part Received
1 x JST Right-Angle Connector TH 2-Pin	Part Received

Questions?