CLUSTERING

E. Fersini

INTRODUCTION

- K-Means is a flat clustering technique that produces k partitions (clusters).
- During this lab we will demonstrate how to perform k-means clustering on a customer dataset.

customer= read.csv('customer.csv', header=TRUE)

customer = scale(customer[,-1])

K-MEANS

- The k-means algorithm:
 - The goal is to partition n objects into k clusters, where each object belongs to the cluster with the nearest mean.
 - The objective of the algorithm is to minimize the **within-cluster sum of squares** (**WCSS**). Assuming x is the given set of observations, $S = \{S1, S2, ..., Sk\}$ denotes k partitions, and μi is the mean of Si, then we can formulate the WCSS function as follows:

$$f = \sum_{i=1}^{k} \sum_{x \in S_i} ||x - \mu_i||^2$$

K-MEANS

- The k-means process is as follows:
 - 1. Specify the number of k clusters.
 - Randomly create k partitions.
 - 3. Calculate the center of the partitions.
 - 4. Associate objects closest to the cluster center.
 - 5. Repeat steps 2, 3, and 4 until the WCSS changes very.
- The k-means algorithm in practice:

```
set.seed(22)
fit = kmeans(customer, 4)
fit
```

SILHOUETTE

- During this lab we will demonstrate how to validate clusters.
 - To validate a clustering method, two criteria can be usually used: intercluster distance and intracluster distance.
 - The higher the intercluster distance, the better it is
 - The lower the intracluster distance, the better it is.

Silhouette(x) =
$$\frac{b(x) - a(x)}{\max([b(x), a(x)])}$$

a(x) is the average distance between x and all other points within the cluster

b(x) is the minimum of the average distances between x and the points in the other clusters

library(cluster)
kms = silhouette(fit\$cluster,dist(customer))
plot(kms)

SILHOUETTE

mean similarity of each own cluster minus the mean similarity of the next similar cluster

Average silhouette width: 0.46

OPTIMAL NUMBER OF CLUSTERS

- While k-means clustering is fast and easy to use, it requires k to be the input at the beginning.
- Therefore, we can use the silhouette index to determine the optimum number of clusters for k-means.

```
library(fpc)
nk = 2:10
set.seed(22)
SW = sapply(nk, function(k) {cluster.stats(dist(customer), kmeans(customer, centers=k)$cluster)$avg.silwidth})
SW
plot(nk, SW, type="l", xlab="number of clusers", ylab="average silhouette")
```

OPTIMAL NUMBER OF CLUSTERS

DISSIMILARITY MATRIX

- A dissimilarity matrix can be used as a measurement for the quality of a cluster. To visualize the matrix, we can use a heat map on a distance matrix.
 - Within the plot, entries with low dissimilarity (or high similarity) are plotted darker, which is helpful to identify hidden structures in the data.
- install and load the "seriation" package:
 - > install.packages("seriation")
 - > library(seriation)
- 2. Use <u>dissplot()</u> to visualize the dissimilarity matrix:
 - > dissplot(dist(customer), labels=fit\$cluster,options=list(main="Kmeans Clustering With k=4"))

DISSIMILARITY MATRIX

clusters similar to each other are plotted darker, and dissimilar combinations are plotted lighter.

ASSIGNMENT

- Make your cluster analysis on the iris dataset
 - Take care about the randomness of the KMEANS
 - Look at the parameter nstart
- Evaluate your results with respect to the ground truth
 - cluster.evaluation(G, S)
 - true_cluster <- c(1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3)
 - new_cluster <- c(2, 1, 2, 3, 3, 2, 2, 1, 3, 3, 3, 3)
 - cluster.evaluation(true_cluster, new_cluster)
- Plot your best cluster assignment (using PCA)
 - library(fviz_cluster)
 - fviz_cluster(k1, iris[, -5], frame.type = "norm")