

The Librarian from Alexandria

Font Classification for Ancient Manuscripts

Mohammad Khair Hndauoi (794491)

Julia Milliet Sciorra (E05228)

Gabriele Goglia (806711)

Project Overview

CNN Model

CNN model to recognize 11 ancient manuscript fonts

Dataset

Started with 1,200 images, expanded to 8,000

Challenges

Data challenges: class imbalance, inconsistent formats, varying quality

Goal

Goal: accurate classification despite limited training data

Data Preparation

Preprocessing

RGB conversion, resizing to 224×224, normalization

Augmentation

Rotation, brightness/contrast adjustments, blur, sharpening

Dataset Expansion

Expanded dataset from 1,200 to 8,000 images

Class Balancing

Balanced classes at ~850 samples each

Original vs Augmented Dataset

The chart shows a 7.93x multiplication factor. Initially underrepresented classes received more augmentation, creating balanced training data across all font types.

Data Augmentation Samples

Preprocessed Image Samples - White Space From Canvas Removed

Model Architecture

Experimental Design

Dataset Splitting

Stratified dataset splitting for balanced evaluation

Evaluation Metrics

Metrics: accuracy, precision, recall, F1-score, confusion matrix

Goals

Goal: evaluate CNN effectiveness, impact of augmentation, architecture comparison

Performance Focus

Focus on realistic performance to avoid overfitting

Results: Model Performance Comparison

The chart shows performance metrics across three models. LightCNN with augmentations dramatically outperformed both alternatives.

Data augmentation provided +16.4% accuracy improvement over the baseline LightCNN and +11.6% over MobileNetV2.

Key Takeaways

Better Architecture

Task-specific CNN outperformed MobileNetV2

Augmentation Impact

Data augmentation crucial for performance

Effective Preprocessing

Effective preprocessing enabled strong results despite limited data

Limitations & Future Work

Thank You!

