

Robobrole : Frottement, système de frappe

Compétences		Connaissances
Co6.4	'	Concept d'équilibre
	de comportement à partir d'observations ou de mesures faites sur le produit.	(mouvement d'un système)
	mesures raites sur le produit.	

Objectifs:

- Comprendre les efforts en jeu pour déplacer le palet à l'aide du système de frappe
- Lier les compétences acquises en mécanique statique
- Manipuler les équations de manière pertinente.

Critères de réalisation :

- Manipuler les grandeurs
- Appliquer les outils mathématiques
- Réinvestir les compétences acquises en travaux pratiques.

<u>Critères de réussite :</u>

- J'utilise les bonnes unités
- Je convertis correctement les grandeurs si nécessaire
- Je sais déterminer les efforts et/ou coefficients

Loi de comportement pour le frottement statique :

Frottement caisse/camion

Lorsque nous faisons varier l'angle d'inclinaison de la benne, $\overrightarrow{F_N}$ finit par sortir du cône de frottement et la caisse se met à glisser.

Identifier les vecteurs poids \vec{P} et réaction de la benne \vec{R} de l'exemple **1** en traçant la flèche de la bonne couleur ci-dessous. (Rouge et noire)

₱ :	1. Quelle remarque peut-on faire sur l'intensité
Ř :	des vecteur précédents ?

Robobrole : Frottement, système de frappe

Situation 2, **tracer** le triangle des forces, dans le cadre page 2, qui fait apparaître la force qui s'oppose au mouvement. Vous la nommerez $\overrightarrow{F_T}$, cette force représente l'effort tangentielle.

2. **Tracer** le triangle des forces et **nommer** les vecteurs ($\overrightarrow{F_N}$; $\overrightarrow{F_T}$; \overrightarrow{P}) dans le cadre ci-dessous.

Que peut-on dire du vecteur $\overrightarrow{F_T}$ par rapport à la projection du vecteur \overrightarrow{P} sur le plan de la benne ?

.....

Tracer les vecteurs manquants pour que tous les efforts en jeu figurent sur le dessin ci-dessous. (*Aidez vous du triangle des forces*)

Déterminer le coefficient μ :

Données : la masse de la caisse est de 200 kg, \vec{g} vaut 10 m.s ⁻² et $\overrightarrow{F_T}$ = 600 N				
Calculer l'angle $arphi$				

