The χ^2 distribution & the t distribution

Lecture 12a (STAT 24400 F24)

1/16

Normal and t, χ^2 distributions

Note that, " $\mathbb{P}\left(\frac{|\bar{X}-\mu|}{\sigma/\sqrt{n}} \leq 1.96\right) \approx 95\%$ " is equivalent to

$$\mathbb{P}\left(\bar{X} - 1.96 \cdot \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X} + 1.96 \cdot \frac{\sigma}{\sqrt{n}}\right) \approx 95\%$$

If σ^2 is known, this is a statement of a 95% confidence interval for μ . However, in practice, σ^2 is not known.

How can we obtain a confidence interval by the CLT when σ^2 is unknown? What if we replace σ^2 by sample variance S^2 ? (Lessons from Guinness)

In order to apply the CLT to learn about unknown parameters such as μ and σ^2 , a few distributions (t, χ^2, F) closely related to the normal distribution are needed.

We start with the t distribution and the χ^2 distributions.

CLT and normal distribution

Suppose that X_1, \ldots, X_n are i.i.d. with mean μ and variance σ^2 .

Let
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 be the sample mean.

According to the central limit theorem, for large n,

In distribution:
$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \approx N(0, 1), \qquad \bar{X} \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$

We can have probability statement, such as

$$\mathbb{P}\left(\frac{|\bar{X}-\mu|}{\sigma/\sqrt{n}} \leq z_*\right) \; pprox \; 1-lpha$$

For example,

$$\mathbb{P}\left(\frac{|\bar{X} - \mu|}{\sigma/\sqrt{n}} \le 1.96\right) \approx 95\%$$

2/16

Sample mean & sample variance as estimators

Suppose that X_1, \ldots, X_n are i.i.d. with mean μ and variance σ^2 .

How could we estimate μ & σ^2 from the sample (i.e. the observed X,'s)?

The most common estimators are

• sample mean

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

sample variance:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

Unbiasedness of the sample mean

These estimators are unbiased, meaning

$$\mathbb{E}(\bar{X}) = \mu, \qquad \mathbb{E}(S^2) = \sigma^2$$

For the sample mean, the unbiasedness can be shown by linearity of $\mathbb{E}(\cdot)$:

$$\mathbb{E}(\bar{X}) = \mathbb{E}\left(\frac{X_1 + \dots + X_n}{n}\right) = \frac{1}{n} \sum_{i=1}^n \mathbb{E}(X_i) = \mu$$

5/16

Normal sample mean & sample variance

Special case: normal distribution (i.e., $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$)

For normal data, it holds that

$$\bar{X} \perp S^2$$

(even though they both are functions of the same sample)

Proof for the case n=2: we have $\bar{X}=\frac{X_1+X_2}{2}$, and

$$S^{2} = \frac{1}{2-1} \sum_{i=1}^{2} (X_{i} - \bar{X})^{2} = \left(X_{1} - \frac{X_{1} + X_{2}}{2}\right)^{2} + \left(X_{2} - \frac{X_{1} + X_{2}}{2}\right)^{2} = \frac{1}{2}(X_{1} - X_{2})^{2}$$

So, to show $\bar{X} \perp S^2$, it's sufficient to check that $X_1 + X_2 \perp X_1 - X_2$.

Unbiasedness of the sample variance

To show unbiasedness of the sample variance, we can calculate

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} = \frac{1}{n-1} \sum_{i=1}^{n} ((X_{i} - \mu) - (\bar{X} - \mu))^{2}$$

$$= \frac{1}{n-1} \left(\sum_{i=1}^{n} (X_{i} - \mu)^{2} - 2 \sum_{i=1}^{n} (X_{i} - \mu)(\bar{X} - \mu) + n(\bar{X} - \mu)^{2} \right)$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \mu)^{2} - \frac{n}{n-1} (\bar{X} - \mu)^{2}$$

this step is similar to $Var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$

this explains dividing by n-1 instead of n

$$\Rightarrow \mathbb{E}(S^2) = \frac{1}{n-1} \sum_{i=1}^n \underbrace{\operatorname{Var}(X_i)}_{=\sigma^2} - \frac{n}{n-1} \underbrace{\operatorname{Var}(\bar{X})}_{=\sigma^2/n} \stackrel{\checkmark}{=} \sigma^2.$$

6/16

Normal sample mean & sample variance (cont.)

$$\begin{bmatrix} X_1 + X_2 \\ X_1 - X_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

linear transformation bivariate normal

 \Rightarrow $(X_1 + X_2, X_1 - X_2)$ is bivariate normal.

For components of a bivariate normal, uncorrelated \iff independent.

$$Cov(X_1 + X_2, X_1 - X_2)$$

$$= Cov(X_1, X_1) - Cov(X_1, X_2) + Cov(X_2, X_1) - Cov(X_2, X_2)$$

$$= Var(X_1) - 0 + 0 - Var(X_2) = \sigma^2 - 0 + 0 - \sigma^2 = 0.$$

Therefore, $X_1 + X_2 \perp X_1 - X_2$ and so $\bar{X} \perp S^2$.

function of $X_1 + X_2$ function of $X_1 - X_3$

The χ^2 distribution

If $Z_1, \ldots, Z_n \stackrel{\text{iid}}{\sim} \mathsf{N}(0,1)$, then the distribution of $V = Z_1^2 + \cdots + Z_n^2$ is χ_n^2 $(\chi_n^2 - \text{"the } \chi^2 \text{ distribution with } n \text{ degrees of freedom"})$

Density:

$$f(x) = \frac{1}{2^{n/2}\Gamma(n/2)} x^{n/2-1} e^{-x/2}$$
 over $x \ge 0$

Expected value:

$$\mathbb{E}(V) = \mathbb{E}(Z_1^2) + \cdots + \mathbb{E}(Z_n^2) = \mathsf{Var}(Z_1) + \cdots + \mathsf{Var}(Z_n) = n.$$

Variance: Var(V) = 2n. (exercise)

<u>Note</u> χ^2 is a special case of Gamma, with $\chi^2_n = \text{Gamma}(\frac{n}{2}, \frac{1}{2})$.

9/16

The χ^2 distribution

For normal data:

If $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$, then

$$\sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2 \sim \chi_n^2.$$

A more useful result:

$$\sum_{i=1}^{n} \left(\frac{X_i - \bar{X}}{\sigma} \right)^2 \sim \chi_{n-1}^2 \qquad \Longrightarrow \qquad \frac{n-1}{\sigma^2} \cdot S^2 \sim \chi_{n-1}^2$$

Proof for the case n=2: We know $\mathbb{E}(X_1-X_1)=0$, $\text{Var}(X_1-X_2)=2\sigma^2$.

$$\frac{n-1}{\sigma^2} \cdot S^2 = \frac{1}{\sigma^2} \cdot \frac{1}{2} \left(\underbrace{X_1 - X_2}_{\sim N(0, 2\sigma^2)} \right)^2 = \left(\underbrace{\frac{X_1 - X_2}{\sqrt{2\sigma^2}}}_{\sim N(0, 1)} \right)^2 \sim \chi_1^2$$

The χ^2 distribution - density

We can derive the density for the case n = 1.

Start with the CDF: for $x \ge 0$,

$$F_V(x) = \mathbb{P}(V \le x) = \mathbb{P}(Z_1^2 \le x) = \mathbb{P}(-\sqrt{x} \le Z_1 \le \sqrt{x}) = \Phi(\sqrt{x}) - \Phi(-\sqrt{x})$$

where Φ is the CDF of N(0,1):

$$\Phi(t) = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$

Take the derivative for density:

$$f_V(x) = \frac{d}{dx} F_V(x) = \Phi'(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}} - \Phi'(-\sqrt{x}) \cdot \frac{-1}{2\sqrt{x}} = \frac{1}{\sqrt{2\pi}} x^{-1/2} e^{-x/2}$$

$$\Phi'(t) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2} = \text{the density of N}(0, 1)$$

This is the density of $\operatorname{Gamma}(\frac{1}{2},\frac{1}{2})$, n=1 case of $\chi_n^2 \sim \operatorname{Gamma}(\frac{n}{2},\frac{1}{2})$.

10 / 16

Recap

What we've calculated so far:

If $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$, then

- $\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$ (exact)
- $\frac{n-1}{\sigma^2} \cdot S^2 \sim \chi^2_{n-1}$ (exact)
- and $\bar{X} \perp S^2$

If X_1, \ldots, X_n are i.i.d. with mean μ and variance σ^2 (not of normal distribution), then the above statements hold approximately, for large n.

The *t* distribution

If $Z \sim \mathsf{N}(0,1)$ and $V \sim \chi_n^2$ and $Z \perp V$, then the distribution of $T = \frac{Z}{\sqrt{V/n}}$ is t_n , "the t distribution with n degrees of freedom"

Density:

$$f(x) = (ext{normalizing constant}) \cdot \left(1 + rac{x^2}{n}
ight)^{-(n+1)/2}, ext{ over } x \in \mathbb{R}$$

which can be written as

$$f(x) \propto \left(1+\frac{x^2}{n}\right)^{-(n+1)/2}$$

" \propto " means proportional to.

13 / 16

t distribution for sampling

Return to the normal case: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$. Define

$$T = \frac{\bar{X} - \mu}{S / \sqrt{n}}$$

Then:

$$T = \frac{\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}}{S/\sigma} = \frac{\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}}{\sqrt{\frac{n-1}{\sigma^2}S^2/(n-1)}} \sim t_{n-1}$$

$$\sim \chi_{n-1}^2$$
since numerator \bot denominator \times

The degrees of freedom

For a small n, the t_n distribution has heavy tails: $\mathbb{P}(T \ge x)$ is much larger than $1 - \Phi(x)$, as x grows large.

For increasing n, the t_n distrib. grows more similar to N(0,1).

We can see this in the density function:

$$f(x) \propto \left(1 + \frac{x^2}{n}\right)^{-(n+1)/2} = \left[\underbrace{\left(1 + \frac{x^2}{n}\right)^n}_{\approx e^{x^2}}\right]^{-(n+1)/2n} \approx e^{-x^2/2}$$

14 / 16

Overview

If $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$, then

$$ar{X} \sim {\sf N}\left(\mu, rac{\sigma^2}{n}
ight) \quad {\sf and} \quad rac{n-1}{\sigma^2} \cdot S^2 \sim \chi^2_{n-1} \quad {\sf and} \quad ar{X} \perp \!\!\! \perp S^2$$
 and $\qquad rac{ar{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$

If X_1, \ldots, X_n are i.i.d. with mean μ and variance σ^2 , then the above statements hold approximately.

This important result is used to construct confidence intervals for μ .