

Examen d'algèbre 1

Instructions: Les documents, les calculatrices et les téléphones portables sont interdits durant l'examen. Rédiger et justifiez clairement vos réponses.

Exercice 01:(4 points)

Soit f la fonction définie de $\mathbb{R}\setminus\{3\}$ dans \mathbb{R} par : $\forall x \in \mathbb{R}\setminus\{3\}$, $f(x) = \frac{2+x}{3-x}$. 1. Calculer $f(\{-1,2\})$ et $f^{-1}(\{-1\})$. \bigcirc 5 + \bigcirc 5. 2. Soit g un réel fixé. Résoudre l'équation $g = \frac{2+x}{3-x}$.

Soit y un réel fixé. Résoudre l'équation y = ^{2+x}/_{3-x}.
En déduire que f est injective, mais qu'elle n'est pas bijective.

4. Montrer qu' il existe un réel a tel que f soit une bijection de $\mathbb{R}\setminus\{3\}$ sur $\mathbb{R}\setminus\{a\}$, et expliciter la bijection réciproque. 0,5 +0,5

Exercice 02:(5 points) +0.15 = 5.15

Soit \mathcal{R} la relation binaire définie dans \mathbb{R} par :

$$\forall x, y \in \mathbb{R}, x\mathcal{R}y \iff x^4 - x^2 = y^4 - y^2$$

1. Montrer que \mathcal{R} est une relation d'équivalence.

2. Déterminer la classe d'équivalence de 0, en déduire celle de 1. 1 + 0,5

3. Soit $a \in \mathbb{R}$.

i) Trouver α et β dans \mathbb{R} pour que $X^4 - X^2 - (a^4 - a^2) = (X^2 - a^2)(X^2 + \alpha X + \beta)$.

ii)Déterminer la classe d'équivalence de a.

Exercice 03: $(7 \text{ points}) \neq \emptyset, \zeta = 7, \zeta$

Soit $G = \mathbb{Q}^2 - \{(0,0)\}$. On définit sur G la loi * par :

$$(a,b)*(c,d)=(ac-bd,ad+bc)$$

1) Vérifier l'identité:

$$(a^2 + b^2)(c^2 + d^2) = (ac - bd)^2 + (ad + bc)^2$$

En déduire que * est une loi interne.

3) Montrer que (G, *) est un groupe commutatif. 0, 5 + 1 + 1 + 1 = 3, 5

4) Soit l'application $f: G \longrightarrow \mathbb{C}^*$ définie par : f(a,b) = a + ib (où $i^2 = -1$) a)Montrer que f est un homomorphisme du groupe (G, *) dans le groupe (\mathbb{C}^*, \cdot) .

b) Déterminer Ker(f). L'homomorphisme f est-il injectif? Est-ce un isomorphisme? 0, 5+0, 5+0, 5+0, 5

Exercice 04:(4 points)

On note A l'ensemble de réels suivant :

$$A = \{m + n\sqrt{5}, m, n \in \mathbb{Z}\}\$$

1. Montrer que $(A, +, \times)$ est un sous anneau de $(\mathbb{R}, +, \times)$. 0, 5 + 0, 5 + 0, 5 = 21, 5

2. On considère l'application φ de A dans lui-même définie, pour tout, $m+n\sqrt{5}\in A$ par :

$$\varphi(m + n\sqrt{5}) = m - n\sqrt{5}$$

Montrer que φ est un automorphisme de l'anneau $(A, +, \times)$. 0, 25 + 0, 25 + 0, 25 + 0, 25 + 0, 25 = 1,