

UNIVERSIDADE FEDERAL DE SANTA CATARINA CAMPUS JOINVILLE CENTRO TECNOLÓGICO DE JOINVILLE CURSO ENGENHARIA MECATRÔNICA

SEMESTRE 2019/1

I. IDENTIFICAÇÃO DA DISCIPLINA

Código: EMB 5642 Nome: Microcontroladores

Carga horária: 54 horas-aula Créditos: 03

Turma(s): 04605/06605

Professor: Anderson Wedderhoff Spengler

II. PRÉ-REQUISITO(S) SUGERIDO(S)

EMB 5626 - Sistemas Digitais / EMB 5626 - Circuitos Digitais

EMB 5625 – Introdução às Estruturas de Dados / EMB 5630 – Programação II

III. EMENTA

Arquitetura de microcontroladores: registradores, indexadores, pilhas, endereçamento. Interfaces paralelas e seriais. Conversores A/D e D/A. Memórias. Instruções de transferência de dados, operações lógicas e aritméticas, desvios e sub-rotinas. Interrupções. Programação em linguagem assembly ou C. Aplicações típicas de microcontroladores. Projeto de aplicações com microcontroladores.

IV. OBJETIVOS

Desenvolver a habilidade de projetar circuitos digitais utilizando componentes discretos e microprocessadores. Desenvolver a habilidade de programar microprocessadores em baixo nível e em alto nível. O microcontrolador utilizado neste semestre será a família ARM Cortex M4F da Texas Instrument. Porém, o aluno deverá desenvolver habilidade para utilizar outras famílias de microcontroladores/microprocessadores.

V. CONTEÚDO PROGRAMÁTICO

- 1. Introdução à arquitetura de computadores e microcontroladores.
- 2. Arquitetura ARM Cortex M.
- 3. GPIOs.
- 4. Interrupções e timers.
- 5. Conversores A/D e D/A.
- 6. Módulos de comunicação.
- 7. Módulos adicionais do microcontrolador.
- 8. Projeto e aplicações de circuitos com microprocessadores/microcontroladores.

VI. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

O conteúdo programático detalhado acima será abordado em aulas teóricas e práticas (ou teóricopráticas). Ambos tipos de aulas serão ministradas em laboratório de ensino, devido à necessidade de demonstrações e desenvolvimento de experimentos.

Aulas teóricas: o conteúdo programático da disciplina será exposto de acordo com o cronograma distribuído aos alunos.

Aulas práticas: Projeto de circuitos digitais utilizando softwares simuladores e kits de desenvolvimento. O uso intensivo de datasheets e de ferramentas profissionais de desenvolvimento tais como ORCAD, Keil, etc..., são fundamentais para que o aluno ganhe experiência no desenvolvimento de projetos de circuitos digitais. O curso exige que a teoria e a prática sejam abordadas de maneira concomitante. Isto ocorrerá com mais intensidade nas aulas de desenvolvimento de programas em baixo nível do microcontrolador.

VII. METODOLOGIA DE AVALIAÇÃO

Serão realizadas duas provas, uma atividade prática com a elaboração de relatório de atividades e um projeto final. A média final (MF) será calculada da seguinte forma:

$$MF = k \times (0.3P1 + 0.4P2 + 0.2Projeto + 0.1Trabalhos)$$

OBS1: Os pesos das avaliações e o número de avaliações poderá sofrer alterações de acordo com o andamento das atividades, segundo critérios dos professores.

OBS2: O coeficiente k multiplicativo na fórmula da MF será calculado através da participação em sala de aula, realização das atividades sugeridas e presença, seu intervalo será 0.5 até 1.2.

Será considerado aprovado o estudante que alcançar uma média de igual ou superior a 5,75 na disciplina, desde que tenha um mínimo de 75% da carga horária da disciplina (art.72 e art. 69 § 20 da Resolução 017/Cun/97). Caso o estudante tenha obtido uma média entre 3,0 e 5,5 e tenha frequência suficiente, poderá realizar uma avaliação de recuperação envolvendo todo o conteúdo da disciplina. Com a nota obtida nessa avaliação de recuperação mais a média das avaliações parciais (art. 70 § 20 da Resolução 017/Cun/97), será calculada uma média aritmética. Se esta nota for igual ou superior a 6,0 o aluno será aprovado e essa será sua nota final. Caso a frequência do aluno seja inferior a 75% da carga horária da disciplina ele estará automaticamente reprovado com nota zero, independente das notas obtidas nas avaliações parciais (art. 69 § 20 da Resolução 017/Cun/97).

VIII. AVALIAÇÃO FINAL

O(a) aluno(a) com frequência suficiente e média das notas entre três (3,0) e cinco vírgula cinco (5,5) terá direito a uma **nova avaliação** no final do semestre que **versará sobre todo o conteúdo da disciplina**, conforme o que dispõe o § 2º do Art. 70 e § 3º do Art. 71 da Resolução nº 17/Cun/97. Neste caso, a média final será calculada através da média aritmética simples entre a média das notas das avaliações feitas durante o semestre e a nota obtida na nova avaliação. A nota mínima de aprovação é seis (6,0).

Caso o(a) aluno(a) **não** compareça a **75% da carga horária da disciplina** estará automaticamente reprovado com nota **0,0(zero)**, independentemente da sua média nas avaliações individuais, conforme dispõem no **Art. 69 § 2º da Resolução 017/CUn/97.**

Os(as) alunos(as) que eventualmente faltarem em alguma avaliação que foram perdidas por motivos extremos, mediante justificativa; dentro do prazo de **3 (três) dias úteis** após a avaliação conforme o que dispõe o **Art. 74, da Resolução 017/CUn/97**, poderão solicitar na secretaria acadêmica do Centro de Engenharias da Mobilidade o pedido de segunda chamada. Após a análise do pedido e seu deferimento, os(as) alunos(as) poderão realizar a avaliação de segunda chamada na data, no local e horário definido no cronograma.

IX. CRONOGRAMA

X. CRONOGRAMA DAS AULAS	
Semana	Conteúdo
10	Apresentação do plano de ensino 2019-1
	Introdução à arquitetura de microcomputadores. (12/03)
2^{0}	Arquitetura de microcontroladores (19/03)
3 ⁰	GPIOs (26/03)
4^{0}	Registradores e fontes de clock (02/04)
5 ⁰	Debouncer e Display de 7 segmentos (09/04)
6^0	Interrupção (16/04)
7^{0}	Timers (23/04)
80	Prova 1 (30/04)
9^{0}	Conversores AD e DA (07/05)
10^{0}	Barramentos e Protocolos de Comunicação
	Módulo UART (14/05)
11 ⁰	Módulo SSI (AD e DA externos) (21/05)
12°	Módulo SSI (LCD Display) (28/05)
13 ⁰	Módulo I2C (0406)
14 ⁰	Módulo PWM (Led RGB) (11/06)
15 ⁰	Módulo PWM (IR Led e Sensor) (18/06)
16 ⁰	Prova 2 (25/06)
17 ⁰	Apresentação do Projeto Final (02/07)
18 ⁰	RECUPERAÇÃO (09/07)

Cronograma está sujeito a alterações.

Esta disciplina poderá contar com a presença e participação de um aluno de estágio docente.

X. BIBLIOGRAFIA BÁSICA

MARWEDEL, P. Embedded System Design. New York, NY: Springer US, 2006.

WILLIAMS, E. Make AVR Programming: Learning to Write Software for Hardware. Make

Media Inc. 2014. ISBN 978-1449355784

NICOLOSI, D.E.C. **Microcontrolador 8051 com linguagem C**: prático e didático-família AT89S8252 Atmel. Editora Érica, 2005.

XI. BIBLIOGRAFIA COMPLEMENTAR

PEREIRA, F. Microcontroladores MSP430: Teoria e Prática. São Paulo: Érica Editora. 2013.

de SOUSA, D. R. **Microcontroladores ARM 7**: Philips Familia LPC213x – O poder dos 32 bits. Érica Editora. 2006

SILVA JUNIOR, V.P. **Aplicações práticas do microcontrolador 8051**. 11a. edição, São Paulo, Editora Érica, 2003.

YIU, J. **The Definitive Guide do ARM Cortex-M3 and Cortex-M4 Processors**. 3 ed. Editora Newnes. 2013. ISBN 978-0124080829

MAZIDI, M. A.; NAIMI, S. NAIMI, S. **AVR Microcontroller and Embedded Systems: Using Assembly and C**. Prentice Hall. 2010. ISBN 978-0138003319

VALVANO, J. W. **Embedded Systems: Introduction to ARM Cortex M Microcontrollers**. Create Space Independent Publishing Platform. 2012. ISBN 978-1477508992

Atualizado em: 26/02/2017