Trigonometrija - osnovne formule

Definicija trigonometrijskih funkcija – u pravokutnom trokutu:

$$\sin \alpha = \frac{\text{nasuprotna kateta}}{\text{hipotenuza}} = \frac{a}{c}$$

$$\cos\alpha = \frac{\text{priležeća kateta}}{\text{hipotenuza}} = \frac{b}{c}$$

$$\label{eq:tgap} \boxed{ \mathrm{tg}\alpha = \frac{\mathrm{nasuprotna\ kateta}}{\mathrm{prileže\acute{e}a\ kateta}} = \frac{a}{b}}$$

$$ctg\alpha = \frac{priležeća \text{ kateta}}{nasuprotna \text{ kateta}} = \frac{b}{a}$$

Vrijednosti trigonometrijskih funkcija u nekim važnijim kutevima:

stupnjevi:	0°	30°	45°	60°	90°	120°	150°	180°	270°	360°
radijani:	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2}{3}\pi$	$\frac{5}{6}\pi$	π	$1\frac{1}{2}\pi$	2π
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	0	-1	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	-1	0	1
tg	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	$\pm \infty$	$-\sqrt{3}$	$-\frac{\sqrt{3}}{3}$	0	$\pm \infty$	0
ctg	$\pm \infty$	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	$-\frac{\sqrt{3}}{3}$	$-\sqrt{3}$	$\mp\infty$	0	$\mp\infty$

Vrijednosti trigonometrijskih funkcija na jediničnoj kružnici:

Prvi kvadrant:

 $\sin \varphi > 0$ $\cos\varphi > 0$

 $tg\varphi > 0$

 $ctg\varphi > 0$

Drugi kvadrant:

 $\sin \varphi > 0$ $\cos\varphi < 0$

 $tg\varphi < 0$ $ctg\varphi < 0$

Treći kvadrant:

 $\sin \varphi < 0$ $\cos\varphi < 0$

 $tg\varphi > 0$ ${\rm ctg}\varphi>0$

<u>Četvrti kvadrant:</u>

 $\sin\varphi < 0$

 $\cos\varphi > 0$ $tg\varphi < 0$

 ${\rm ctg}\varphi<0$

Osnovne trigonometrijske formule:

$$\sin^2\!\alpha + \cos^2\!\alpha = 1$$

$$tg\alpha = \frac{\sin\alpha}{\cos\alpha}$$

$$ctg\alpha = \frac{\cos\alpha}{\sin\alpha}$$

• Parnost i neparnost trigonometrijskih funkcija:

$$\sin(-\alpha) = -\sin\alpha$$

$$\cos(-\alpha) = \cos\alpha$$

$$tg(-\alpha) = -tg\alpha$$

$$ctg(-\alpha) = -ctg\alpha$$

• Izražavanje jedne trigonometrijske funkcije pomoću druge:

$$\sin \alpha = \sqrt{1 - \cos^2 \alpha} = \frac{\operatorname{tg}\alpha}{\sqrt{1 + \operatorname{tg}^2 \alpha}} = \frac{1}{\sqrt{1 + \operatorname{ctg}^2 \alpha}} \left[\cos \alpha = \sqrt{1 - \sin^2 \alpha} = \frac{1}{\sqrt{1 + \operatorname{tg}^2 \alpha}} = \frac{\operatorname{ctg}\alpha}{\sqrt{1 + \operatorname{ctg}^2 \alpha}} \right]$$

$$\tan \alpha = \frac{\sin \alpha}{\sqrt{1 - \sin^2 \alpha}} = \frac{\sqrt{1 - \cos^2 \alpha}}{\cos \alpha} = \frac{1}{\operatorname{ctg}\alpha} \left[\operatorname{ctg}\alpha = \frac{\sqrt{1 - \sin^2 \alpha}}{\sin \alpha} = \frac{\cos \alpha}{\sqrt{1 - \cos^2 \alpha}} = \frac{1}{\operatorname{tg}\alpha} \right]$$

$$\cos \alpha = \sqrt{1 - \sin^2 \alpha} = \frac{1}{\sqrt{1 + \operatorname{tg}^2 \alpha}} = \frac{\operatorname{ctg} \alpha}{\sqrt{1 + \operatorname{ctg}^2 \alpha}}$$

$$tg\alpha = \frac{\sin\alpha}{\sqrt{1-\sin^2\alpha}} = \frac{\sqrt{1-\cos^2\alpha}}{\cos\alpha} = \frac{1}{ctg\alpha}$$

$$\operatorname{ctg}\alpha = \frac{\sqrt{1 - \sin^2 \alpha}}{\sin \alpha} = \frac{\cos \alpha}{\sqrt{1 - \cos^2 \alpha}} = \frac{1}{\operatorname{tg}\alpha}$$

• Funkcije zbroja i razlike kutova:

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$

$$tg(\alpha \pm \beta) = \frac{tg\alpha \pm tg\beta}{1 \mp tg\alpha \cdot tg\beta}$$

$$ctg(\alpha \pm \beta) = \frac{ctg\alpha \cdot ctg\beta \mp 1}{ctg\beta \pm ctg\alpha}$$

• Funkcije dvostrukih kutova: $|\sin 2\alpha = 2\sin \alpha \cdot \cos \alpha|$ $|\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha|$

$$tg2\alpha = \frac{2tg\alpha}{1 - tg^2\alpha}$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$

$$tg2\alpha = \frac{2tg\alpha}{1 - tg^2\alpha} \qquad ctg2\alpha = \frac{ctg^2\alpha - 1}{2ctg\alpha}$$

• Funkcije polovičnog kuta: $\sin \frac{\alpha}{2} = \sqrt{\frac{1 - \cos \alpha}{2}}$

$$\sin\frac{\alpha}{2} = \sqrt{\frac{1 - \cos\alpha}{2}}$$

$$\cos \frac{\alpha}{2} = \sqrt{\frac{1 + \cos \alpha}{2}}$$

$$tg\frac{\alpha}{2} = \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} = \frac{1 - \cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{1 + \cos \alpha}$$

$$tg\frac{\alpha}{2} = \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} = \frac{1 - \cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{1 + \cos \alpha} \qquad ctg\frac{\alpha}{2} = \sqrt{\frac{1 + \cos \alpha}{1 - \cos \alpha}} = \frac{1 + \cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{1 - \cos \alpha}$$

• Zbroj i razlika trigonometrijskih funkcija:

$$\sin \alpha + \sin \beta = 2 \cdot \sin \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha + \sin \beta = 2 \cdot \sin \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha - \sin \beta = 2 \cdot \cos \frac{\alpha + \beta}{2} \cdot \sin \frac{\alpha - \beta}{2}$$

$$\cos \alpha + \cos \beta = 2 \cdot \cos \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha + \cos \beta = 2 \cdot \cos \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2} \qquad \cos \alpha - \cos \beta = -2 \cdot \sin \frac{\alpha + \beta}{2} \cdot \sin \frac{\alpha - \beta}{2}$$

$$tg\alpha \pm tg\beta = \frac{\sin(\alpha \pm \beta)}{\cos \alpha \cdot \cos \beta}$$

$$tg\alpha \pm tg\beta = \frac{\sin(\alpha \pm \beta)}{\cos \alpha \cdot \cos \beta} \qquad ctg\alpha \pm tg\beta = \pm \frac{\sin(\alpha \pm \beta)}{\sin \alpha \cdot \sin \beta}$$

$$tg\alpha + ctg\beta = \pm \frac{\cos(\alpha - \beta)}{\cos\alpha \cdot \sin\beta}$$

$$tg\alpha + ctg\beta = \pm \frac{\cos(\alpha - \beta)}{\cos \alpha \cdot \sin \beta} \qquad ctg\alpha - tg\beta = \pm \frac{\cos(\alpha \pm \beta)}{\sin \alpha \cdot \cos \beta}$$

• Produkt funkcija:

$$\sin \alpha \sin \beta = \frac{1}{2} \left[\cos(\alpha - \beta) - \cos(\alpha + \beta) \right] \qquad \cos \alpha \cos \beta = \frac{1}{2} \left[\cos(\alpha - \beta) + \cos(\alpha + \beta) \right]$$

$$\cos \alpha \cos \beta = \frac{1}{2} \left[\cos(\alpha - \beta) + \cos(\alpha + \beta) \right]$$

$$\sin \alpha \cos \beta = \frac{1}{2} \left[\sin(\alpha - \beta) + \sin(\alpha + \beta) \right]$$

Rješavanje trokuta:

Sinusov poučak:

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$

ili
$$a:b:c=\sin\alpha:\sin\beta:\sin\gamma$$

Kosinusov poučak:

$$\frac{a^2 = b^2 + c^2 - 2bc \cdot \cos c}{\cos \alpha = \frac{b^2 + c^2 - a^2}{2bc}}$$

$$a^2 + c^2 - b^2$$

$$\boxed{ cos \alpha = \frac{b^2 + c^2 - 2bc \cdot \cos \alpha}{2bc} \quad \boxed{ b^2 = a^2 + c^2 - 2ac \cdot \cos \beta } \quad \boxed{ c^2 = a^2 + b^2 - 2ab \cdot \cos \gamma } }$$

Jednostavne trigonometrijske jednadžbe:

$$\begin{array}{c|ccc} \sin x = a & x = (-1)^k \sin^{-1} a + k\pi \\ \hline \cos x = a & x = \pm \cos^{-1} a + 2k\pi \\ \hline \operatorname{tg} x = a & x = \operatorname{tg}^{-1} a + k\pi \\ \hline \operatorname{ctg} x = a & x = \operatorname{ctg}^{-1} a + k\pi \end{array}$$