Math 12, Fall 2007 Lecture 9

Scott Pauls 1

¹Department of Mathematics Dartmouth College

10/15/07

Outline

- Review and overview
 - Last classes
- Today's material
 - Matrices as linear maps
 - The chain rule
- Group Work
- 4 Next class

Outline

- Review and overview
 - Last classes
- 2 Today's material
 - Matrices as linear maps
 - The chain rule
- Group Work
- 4 Next class

Differentiation

Reducing to the one variable case

• Derivatives of space curves, $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$,

$$\vec{r}'(t) = \langle x'(t), y'(t), z'(t) \rangle$$

- Derivatives of f(x, y) in specific directions
 - ① Directional derivatives, $D_{\vec{v}}f$
 - 2 Partial derivatives, f_x , f_y
 - 4 Higher order partials

Differentiation

- Tangent plane: local approximation of a function if the function is differentiable
- Differentiability \iff tangent planes vary continuously $\iff f_X, f_Y$ exist and are continuous

Outline

- Review and overview
 - Last classes
- 2 Today's material
 - Matrices as linear maps
 - The chain rule
- Group Work
- 4 Next class

Matrices

- An $m \times n$ matrix, A, is a map from \mathbb{R}^n to \mathbb{R}^m
- $A\vec{v}$ is defined via the dot product
- A is a linear map, i.e.

$$A(a\vec{v}+b\vec{w})=aA\vec{v}+bA\vec{w}$$

The matrix definition of the derivative

If $f: \mathbb{R}^n \to \mathbb{R}^m$ is a function, then the $m \times n$ matrix Df is the derivative of f at \vec{x}_0 if

$$\lim_{\vec{h} \to \vec{0}} \frac{f(\vec{x}_0 + \vec{h}) - f(\vec{x}_0) - Df\vec{h}}{|\vec{h}|} = 0$$

Examples:

- n = m = 1
- n = 2, m = 1

Outline

- Review and overview
 - Last classes
- 2 Today's material
 - Matrices as linear maps
 - The chain rule
- 3 Group Work
- 4 Next class

If $f:A\subset\mathbb{R}^m\to\mathbb{R}^n$, $g:B\subset\mathbb{R}^n\to\mathbb{R}^p$ are functions differentiable at \vec{x}_0,\vec{y}_0 respectively with $f(A)\subset B$ and $f(\vec{x}_0)=\vec{y}_0$ then the composition function $g\circ f$ is differentiable at \vec{x}_0 and

$$D(g \circ f)(\vec{x}_0) = Dg(\vec{y}_0) \cdot Df(\vec{x}_0)$$

On Variable Chain rule:

$$\frac{d}{dx}f(g(x)) = \frac{df}{dx}(g(x))\frac{dg}{dx}$$

- In more than one variable, the chain rule is more complicated: f(x, y) where x = g(s), y = h(s). What is $\frac{\partial f}{\partial s}$?
- Idea: changes in s produce changes in both x and y so,

$$\frac{\partial f}{\partial s} = \frac{\partial f}{\partial x} \frac{dx}{ds} + \frac{\partial f}{\partial y} \frac{dy}{ds}$$

On Variable Chain rule:

$$\frac{d}{dx}f(g(x)) = \frac{df}{dx}(g(x))\frac{dg}{dx}$$

- In more than one variable, the chain rule is more complicated: f(x, y) where x = g(s), y = h(s). What is $\frac{\partial f}{\partial s}$?
- Idea: changes in s produce changes in both x and y so,

$$\frac{\partial f}{\partial s} = \frac{\partial f}{\partial x} \frac{dx}{ds} + \frac{\partial f}{\partial y} \frac{dy}{ds}$$

On Variable Chain rule:

$$\frac{d}{dx}f(g(x)) = \frac{df}{dx}(g(x))\frac{dg}{dx}$$

- In more than one variable, the chain rule is more complicated: f(x, y) where x = g(s), y = h(s). What is $\frac{\partial f}{\partial s}$?
- Idea: changes in s produce changes in both x and y so,

$$\frac{\partial f}{\partial s} = \frac{\partial f}{\partial x} \frac{dx}{ds} + \frac{\partial f}{\partial y} \frac{dy}{ds}$$

On Variable Chain rule:

$$\frac{d}{dx}f(g(x)) = \frac{df}{dx}(g(x))\frac{dg}{dx}$$

- In more than one variable, the chain rule is more complicated: f(x, y) where x = g(s), y = h(s). What is $\frac{\partial f}{\partial s}$?
- Idea: changes in s produce changes in both x and y so,

$$\frac{\partial f}{\partial s} = \frac{\partial f}{\partial x} \frac{dx}{ds} + \frac{\partial f}{\partial y} \frac{dy}{ds}$$

Chain Rule

The general chain rule: Let f be a function of variables x_1, \ldots, x_n and each x_i is a function of variables s_1, \ldots, s_m . To find $\frac{\partial f}{\partial s_i}$:

- Differentiate f with respect to each x_i
- Differenitate each x_i with respect to s_i
- Put everything together
- Helpful to draw "tree diagram"

Chain Rule

The general chain rule: Let f be a function of variables x_1, \ldots, x_n and each x_i is a function of variables s_1, \ldots, s_m . To find $\frac{\partial f}{\partial s_i}$:

- Differentiate f with respect to each x_i
- Differenitate each x_i with respect to s_i
- Put everything together
- Helpful to draw "tree diagram"

Implicit Differentiation

If we consider the curve $x^2 + y^2 = 1$, what is $\frac{dy}{dx}$?

$$\frac{\partial f}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}x} + \frac{\partial f}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

• Also works with a surface F(x, y, z) = 0

Implicit Differentiation

If we consider the curve $x^2 + y^2 = 1$, what is $\frac{dy}{dx}$?

$$\frac{\partial f}{\partial x}\frac{dx}{dx} + \frac{\partial f}{\partial y}\frac{dy}{dx} = 0$$

• Also works with a surface F(x, y, z) = 0

Implicit Differentiation

If we consider the curve $x^2 + y^2 = 1$, what is $\frac{dy}{dx}$?

$$\frac{\partial f}{\partial x}\frac{dx}{dx} + \frac{\partial f}{\partial y}\frac{dy}{dx} = 0$$

• Also works with a surface F(x, y, z) = 0

Examples

- 2 $z = \sin(a)\tan(b), a = 3s + t, b = s t$
- **3** Consider the sphere $x^2 + y^2 + z^2 r^2 = 0$ as a function of four variables which implicitly defines z as a function of x, y, r. What is $\frac{\partial z}{\partial r}$?

Work for next class

- Reading: 15.6
- 15.6 # 7,8,12,13,21
- f07hw10