

위치기반데이터 분석(Location based Data Analytics) 14강 R 공간분석프로그래밍

ggmap 라이브러리 사용하기(1)

get_googlemap 함수

Parameter	설명
center	지도의 중심좌표 the central coordinates of a map
zoom	지도의 확대크기로서 3(대륙) ~ 21(빌딩) 기본값은 10(도시) Default value 10(city)
size	지도의 가로와 세로 필셀 크기 기본값은 640 * 640 (c(640, 640)
maptype	출력될 지도 유형 기본값은 "terrain" roadmap, terrain, stellite, hybrid 선택

ggmap 설치

install.packages('devtools')
library('devtools')

install_github('dkahle/ggmap', ref='tidyup')

library('ggmap')

ggmap 라이브러리 사용하기(2)

소스코드

```
install.packages('devtools')
library('devtools')
install_github('dkahle/ggmap', ref='tidyup')
library('ggmap')
usethis::edit_r_environ()
mykey <- Sys.getenv('GOOGLE_API_KEY')</pre>
register_google(key=mykey)
names<-c("용두암", "성산일출봉", "정방폭포", "중문관광단지", "한라산1100고지",
addr<-c("제주시 용두암길 15",
"서귀포시 성산읍 성산리",
        "서귀포시 중문동 2624-1",
        "서귀포시 색달동 산1-2",
        "제주시 한경면 고산리 125"
gc<-geocode(enc2utf8(addr))</pre>
df<- data.frame(name=names, lon=gc$lon, lat=gc$lat)</pre>
cen<-c(mean(df$lon), mean(df$lat))</pre>
map<-get_googlemap(center=cen, maptype = "terrain", zoom=10, size = c(640,640),</pre>
                   markers = gc)
gmap<-ggmap(map)</pre>
gmap+geom_text(data=df, aes(x=lon, y=lat), size=5, label=df$name)
```

결괴

공용API를 활용하여 부동산 실거래가 분석하기(1)

data.go.kr에서 제공하는 공용API에서 실거래가 정보 가져오기

```
install.packages("httr")
install.packages("httr")
install.packages("rvest")
install.packages("jsonlite")

library(tidyverse)
library(httr)
library(jsonlite)

mykey <- Sys.getenv("DATAGOKR_KEY")

url <- "http://openapi.molit.go.kr:8081/OpenAPI_ToolInstallPackage/service/rest/RTMSOBJSvc/getRTMSDataSvcAptTrade?"

res <- GET(url = url, query=list(LAWD_CD = '41135', DEAL_YMD='202003', serviceKey=mykey %>% I()))

res %>% content(as='text', encoding = "UTF-8") %>% fromJSON() -> json

dfk-json$response$body$items$item
```

dataframe에 실거래가 정보

•	거래 [‡] 금액	건축 [‡] 년도	· 년	법정 [‡] 동	아파트	[‡] 월	9	전용 [‡] 면적	지번 수	지역 ^수 코드	÷
1	64,000	1993	2020	분당동	장안타운(건영)	3	4	70.6800	66	41135	4
2	60,500	1992	2020	분당동	샛별마을(동성)	3	4	59.4000	35	41135	2
3	85,000	1993	2020	분당동	장안타운(건영)	3	5	131.5500	66	41135	7
4	78,000	1993	2020	분당동	샛별마을(라이프)	3	6	84.9900	34	41135	1
5	89,900	1994	2020	분당동	샛별마율(우방)	3	7	84.9900	38	41135	2
6	62,800	1992	2020	분당동	샛별마을(라이프)	3	10	58.1700	34	41135	12
7	89,000	1992	2020	분당동	샛별마율(동성)	3	12	84.8200	35	41135	2
8	85,500	1994	2020	분당동	장안타운(건영)	3	17	131.5500	66	41135	10
9	51,000	1993	2020	분당동	장안타운(건영)	3	17	67.7300	66	41135	1
10	112,500	1994	2020	분당동	샛별마을(우방)	3	24	133.8600	38	41135	9
11	100,000	1993	2020	수내동	푸른마을(쌍용)	3	3	84.7200	75	41135	6
12	102,000	1993	2020	수내동	푸른마을(신성)	3	3	84.7200	73	41135	16

공용API를 활용하여 부동산 실거래가 분석하기(2)

일정기간 동안의 실거래가 정보 수집 및 범주형 Vector로 변경

공용API를 활용하여 부동산 실거래가 분석하기(3)

데이터프레임에서 데이터 연결 방법

Inner Join	Outer Join	Left Outer Join	Right Outer Join			
merge(A, B, by='key')	merge(x=A, y=B, by='key', all = TRUE)	merge(x=A, y=B, by='key', all.x = TRUE)	merge(x=A, y=B, by='key', all.y = TRUE)			
A B B * Key 값 기준 정렬 가정	A AB B NA	A G B	A B AB NA			

공용API를 활용하여 부동산 실거래가 분석하기(4)

통계분석하기

```
mean(x=result$거래금액)
median(x=result$거래금액)
result$건축년도 %>% table() %>% sort(decreasing = TRUE)
min(x=result$거래금액)
max(x=result$거래금액)
range(x=result$거래금액)
range(x=result$거래금액)
%>% diff()
quantile(x=result$거래금액)
quantile(x=result$거래금액, probs = c(0.95, 0.99))
IQR(x=result$거래금액)
var(x=result$거래금액)
sd(x=result$거래금액)
```

```
> mean(x=result$거래금액)
[1] 86040.16
> median(x=result$거래금액)
[1] 83750
> result$건축년도 %>% table() %>% sort(decreasing = TRUE)
1995 1993 1992 1994 2009 1996 2003 1991 2004 2008 2015 2007 2010 2011 1998 2005 2013 2012
1740 1371 1120 1104 951 370 330 304 194 117 58 43
> min(x=result$거래금액)
[1] 20600
> max(x=result$거래금액)
[1] 350000
> range(x=result$거래금액)
[1] 20600 350000
> range(x=result$거래금액) %>% diff()
[1] 329400
> quantile(x=result$거래금액)
       25% 50% 75% 100%
 20600 60500 83750 105000 350000
> quantile(x=result$거래금액, probs = c(0.95, 0.99))
  95%
         99%
144500 180000
> IQR(x=result$거래금액)
[1] 44500
> var(x=result$거래금액)
[1] 1089309605
> sd(x=result$거래금액)
[1] 33004.69
```


공용API를 활용하여 부동산 실거래가 분석하기(5)

그래프 그리기(히스토그램)

```
hist(x=result$거래금액, main='거래금액 히스토그램')
hist(x=result$거래금액, breaks = seq(from=0, to = 350000, by = 25000), freq = FALSE, col='gray50', border = 'gray30', main='거래금액 히스토그램')
lines(x=density(x=result$거래금액), lwd = 3, col='red')
```


공용API를 활용하여 부동산 실거래가 분석하기(6)

그래프 그리기(상자수염그림)

공용API를 활용하여 부동산 실거래가 분석하기(7)

그래프 그리기(산점도)

공용API를 활용하여 부동산 실거래가 분석하기(8)

그래프 그리기(산점도)

```
result %>% mutate(지번주소=str_c('경기도 성남시 분당구', 법정동, 지번, sep=''),
                    면적평균 = 거래금액/전용면적) %>%
 select(아파트, 지번주소, 면적평균) %>% group_by(아파트, 지번주소) %>%
 summarise(단지평균 = mean(면적평균)) -> df
library(ggmap)
my_gokey <- Sys.getenv('GOOGLE_API_KEY')</pre>
register_google(key=my_gokey)
                                                                            UNJUNG-DONG
addr_v = c()
for(atmp in df['지번주소']) {addr_v <- atmp}
gc<-geocode(enc2utf8(addr_v))</pre>
df$위도 <- NA
df $ 경도 <- NA
for(i in 1:nrow(x=df)) {
 df$위도[i] <- gc$lat[i]
 df$경도[i] <- gc$lon[i]
center <- c(lon=median(x=df$경도), lat= median(x=df$위도))
qmap(location = c(lon = center[1], lat = center[2]),
    zoom = 13,
    maptype = 'hybrid',
    source = 'google') + geom_point(data=df, mapping= aes(x=경도, y=위도, color=단지평균),
                                  shape = 19.
                                  size = 2) + scale_color_gradient(low='yellow', high='red') +
  theme(legend.position = 'None')
```


