Outline - Optimization Using Data-flow Analysis

Programming Languages and Compiler Design

Optimization Using Data-flow Analysis

Yliès Falcone, Jean-Claude Fernandez

Master of Sciences in Informatics at Grenoble (MoSIG)
Master 1 info

Univ. Grenoble Alpes (Université Joseph Fourier, Grenoble INP)

Academic Year 2015 - 2016

Introduction and Preliminaries

Elimination of Redundant Computations with Available Expressions

Elimination of Useless Instructions with Live Variables

Constant Propagation

Generalization

Summary

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

1 |

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

Optimization

Where are we in the compiler steps?

Outline - Optimization Using Data-flow Analysis

Introduction and Preliminaries

Elimination of Redundant Computations with Available Expressions

Flimination of Useless Instructions with Live Variable

Constant Propagation

Generalization

Outline - Optimization Using Data-flow Analysis

Introduction and Preliminaries

Objectives

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

Objectives of this chapter

Give some hints on general optimization techniques:

- data-flow analysis,
- register allocation,
- software pipelining,
- etc.

Describe the main data-structures used:

- ► Control Flow Graph (CFG),
- ▶ intermediate code (e.g., 3-address code),
- Static Single Assignment form (SSA),
- etc.

See some concrete examples.

But not a complete panorama of the whole optimization process.

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

6 | 72

Objective of the optimization phase

Improve the efficiency of the target code, while preserving the source semantics.

Several (antagonist) criteria:

- execution time,
- code size,
- used memory,
- energy consumption,
- etc.

⇒ no optimal solution, no general algorithm

A bunch of optimization techniques:

- ▶ dependent from each other,
- sometimes based on heuristics.

Outline - Optimization Using Data-flow Analysis

Introduction and Preliminaries

Three-Address Code and Control Flow Graph

Intra-procedural 3-address code (TAC)

"High-level" assembly code:

- binary logic and arithmetic operators,
- ▶ use of temporary memory location ti,
- ▶ assignments to variables, temporary locations,
- ▶ a label can be assigned to an instruction,
- conditional jumps goto.

Example (3-address code)

```
▶ 1: x := y op x
▶ 1: x := op y
```

▶ 142: x := y

▶ 19: goto l'

▶ l': if x oprel y goto l''

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

Definition and how to compute the

Definition and how to compute them

Basic block (BB)

Definition (Basic Block)

A maximal instruction sequence $S = i_1 \cdot \cdot \cdot \cdot i_n$ such that:

- ► *S* execution is never "broken" by a jump \Rightarrow no goto instruction in $i_1 \cdots i_{n-1}$
- S execution cannot start somewhere in the middle \Rightarrow no label in $i_2 \cdots i_n$
- \Rightarrow execution of a BB is "atomic".

Partitioning a 3-address code into BBs

- computation of BB heads:
 1st inst., inst. target of a jump, inst. following a jump
- 2. computation of BB tails: last inst., inst. before a BB head
- \Rightarrow a single traversal of the TAC.

Control-Flow Graph (CFG)

A representation of how the execution may progress inside the TAC.

Definition (Control-Flow Graph)

A graph (V, E) such that:

$$V = \{B_i \mid B_i \text{ is a basic block}\}\$$

$$E = \{(B_i, B_j) \mid$$
 "tail of B_i is a jump to head of B_j "

"head of B_i follows the tail of B_i in the TAC" }

Basic Block and Control-Flow Graph: example

Example/Exercise

Give the Basic Blocks and CFG associated to the following TAC sequence:

```
0. x := 1 6. z := 5

1. y := 2 7. if d goto 1

2. if c goto 6 8. z := z+2

3. x := x+1 9. r := 1

4. z := 4 10 y := y-1

5. goto 9
```

- ► Heads of blocks: 0, 1, 3, 6, 8, 9.
- ► Tails of blocks: 2, 5, 7, 10.

10 | 72

Outline - Optimization Using Data-flow Analysis

Introduction and Preliminaries

Optimization Techniques (Independent from the Target Machine)

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

Two kinds of optimization techniques

Optimization independent from the target machine

- Objective: optimize the performance of the program.
- "source level" or "assembly level" pgm transformations.

Example (Optimization independent from the target machine)

- constant propagation, constant folding
- dead code elimination
- common sub-expressions elimination
- code motion

Optimization dependent from the target machine

• Objective: optimize the use of hardware resources.

Example (Optimization dependent from the target machine)

- machine instruction,
- memory hierarchy (registers, cache, pipeline, etc.).

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

14 | 72

Main principles of optimisation techniques

Input: initial intermediate code Output: optimized intermediate code

Several steps:

- 1. generation of a control flow graph (CFG)
- 2. analysis of the CFG
- 3. transformation of the CFG
- 4. generation of the output code

Analysis and transformations

Analysis	Transformation
Available expressions	Elimination of redundant computation
common sub-expressions	
Live Variables	Elimination of useless code
Constant propagation	Replacing variables by their constant value
Induction Variable	Strength reduction
Loop Invariant	Moving the invariant code outside the loop
Dead-code elimination	Suppress useless instructions
	(which do not influence the execution)
Constant folding	Performing operations between constants
Copy propagation	Suppress useless variables
	(i.e., equal to another one or to a constant)
Algebraic simplification	Replace costly computations
Strength reduction	by less expensive ones

Optimization techniques performed on the CFG

Two levels: local and global.

Local optimization techniques

- Computed inside each BB.
- ▶ BBs are transformed independently from each other.

Global optimizations techniques

- Computed on the CFG.
- ► Transformation of the CFG:
 - ► code motion between BBs,
 - transformation of BBs.
 - modification of the CFG edges.

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

Outline - Optimization Using Data-flow Analysis

Introduction and Preliminaries

Optimization Techniques (Independent from the Target Machine) Local Optimization Techniques

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

Examples of local optimization techs

Initial code:

a := x ** 2

c := x

d := c * c

e := b * 2

g := e * f

Examples of local optimization techs

Algebraic simplification:

a := x ** 2a := x * xb := 3c := xc := xd := c * cd := c * ce := b << 1f := a + df := a + dg := e * fg := e * f

Examples of local optimization techs

Examples of local optimization techs

Copy propagation:

а	:= x * x	a := x * x
b	:= 3	b := 3
С	:= x	c := x
d	:= c * c	d := x * x
е	:= b << 1	e := 3 << 1
f	:= a + d	f := a + d
ď	·- o * f	c o * f

Constant folding:

a := x	* X	a	:=	х	*	2
b := 3		b	:=	3		
c := x		С	:=	x		
d := x	* X	d	:=	х	*	2
e := 3	<< 1	е	:=	6		
f := a	+ d	f	:=	a	+	c
g := e	* f	g	:=	е	*	1

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

21.1

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

0017

Examples of local optimization techs

Examples of local optimization techs

Elimination of common sub-expressions:

a := x * x	a := x * x
b := 3	b := 3
c := x	c := x
d := x * x	d := a
e := 6	e := 6
f := a + d	f := a + d
g := e * f	g := e * f

Copy propagation:

a := x * x	a := x * x
b := 3	b := 3
c := x	c := x
d := a	d := a
e := 6	e := 6
f := a + d	f := a + a
g := e * f	g := 6 * f

Example of local optimizations

Dead code elimination (+ strength reduction):

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

25 | 72

26 | 72

Initial Block B5

Local optimization: a more concrete example

Initial source program: addition of matrices

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

Optimization of B5 (1/4)

$$\begin{array}{lll} B5: & \boxed{t1:=4*i} \\ t2:=40*j \\ t3:=t1+t2 \\ t4:=A[t3] \\ \hline t5:=4*i \\ t6:=40*j \\ t7:=t5+t6 \end{array} \qquad \begin{array}{lll} t8:=B[t7] \\ t9:=t4+t8 \\ \hline t10:=4*i \\ t11:=40*j \\ t12:=t10+t11 \\ S[t12]:=t9 \\ j:=j+1 \\ goto\ B4 \end{array}$$

The same value is assigned to temporary locations t1, t5, t10.

Optimization of B5 (2/4)

A same value is assigned to temporary locations t2, t6, t11.

Optimization of B5 (3/4)

$$\begin{array}{lll} \text{B5:} & t1 := 4 * i \\ & t2 := 40 * j \\ & t3 := t1 + t2 \\ & t4 := A[t3] \\ & t7 := t1 + t2 \end{array} \qquad \begin{array}{ll} t8 := B[t7] \\ & t9 := t4 + t8 \\ \hline & t12 := t1 + t2 \\ & S[t12] := t9 \\ & j := j + 1 \\ & \text{goto B4} \end{array}$$

A same value is assigned to temporary locations t3, t7, t12.

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

29 | 72

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

30 | 72

Optimization of B5 (4/4): the final code

$$\begin{array}{lll} \text{B5:} & \text{t1} := 4 * \text{i} \\ & \text{t2} := 40 * \text{j} \\ & \text{t3} := \text{t1} + \text{t2} \\ & \text{t4} := \text{A[t3]} \\ & \text{t8} := \text{B[t3]} \\ & \text{t9} := \text{t4} + \text{t8} \\ & \text{S[t3]} := \text{t9} \\ & \text{j} := \text{j} + 1 \\ & \text{goto B4} \end{array}$$

Outline - Optimization Using Data-flow Analysis

Introduction and Preliminaries

Objectives

Three-Address Code and Control Flow Graph

Optimization Techniques (Independent from the Target Machine)

Local Optimization Techniques

Global Optimization Techniques

Principles of Data-flow Analysis

Elimination of Redundant Computations with Available Expressions

Flimination of Useless Instructions with Live Variable

Constant Propagation

Generalization

Global optimization techniques

Example (Global optimization techniques)

- ► constant propagation trough several basic blocks
- elimination of global redundancies
- ▶ code motion: move invariant computations outside loops
- ▶ dead code elimination

How to extend local optimization to the whole CFG?

- 1. Associate (local) properties to entry/exit points of BBs (e.g., set of live variables, set of available expressions, etc.)
- 2. Propagate them along CFG paths → enforce consistency w.r.t. the CFG structure
- 3. Update each BB (and CFG edges) according to these global properties.
- ⇒ a possible technique: data-flow analysis

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

Outline - Optimization Using Data-flow Analysis

Introduction and Preliminaries

Principles of Data-flow Analysis

33 | 72

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

Data-flow analysis

Static computation of data-related properties of programs.

Data-flow problem

- \triangleright (local) Properties φ_i associated to some pgm locations i
- ► Set of data-flow equations:
 - \rightarrow how the φ_i 's are transformed along pgm executions.
- Regarding propagation:
 - forward vs backward propagation (depending on φ_i)
 - ▶ the property can depend on its previous value on either all paths or at least one path
 - ► cycles inside the control flow ⇒ fix-point equations!

Solving the equation system

- ▶ A solution of this equation system assigns "globaly consistent" values to each φ_i .
- ▶ Such a solution may not exist...
- ▶ Decidability may require abstractions and/or approximations.

Outline - Optimization Using Data-flow Analysis

Elimination of Redundant Computations with Available Expressions

Computing available expressions

Getting intuition on examples

Let us consider expression a + b.

How to determine whether a + b is available, i.e., whether its value has been previously computed and does not need to be computed again.

- ▶ Which computation of a+b is not needed?
- ► How does the information "being previously computed" propagate?

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

37 | 72

Computing available expressions

Getting intuition on examples

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

00 1 70

Computing available expressions

Getting intuition on examples

▶ What is available when the program starts?

- The CFG structure gives us relations between the availabilities at the entrances and exits of blocks.
- Availability at the entrance is obtained from the availability at the exits.
- ▶ How to deal with cycles?

Elimination of redundant computation with available expressions

Running example

Available expressions and redundant computations

We consider the set of expressions appearing in the program.

Definition (Available expression)

An expression e is available at location i iff

- ▶ it is computed on every path going to location i, and
- ▶ on each of the paths leading to *i* operands of *e* are not modified between the last computation of *e* and location *i*

Definition (Redundant computation (of an expression))

The computation of an expression e is redundant at location i iff it is available at location i, and it is computed at location i,

Remark We consider syntactic equality.

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

Running example

Available expressions and redundant computations

Available and redundant computation

- ▶ y + 1 is not available anywhere.
- ▶ x + 1 is only available after being computed and at the exit of B3.
- ▶ a + b is available at the exits of B2, B3, and at the entrance of B5.
- ▶ the computation of a + b in B5 is redundant.

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

42 | 72

Data-flow equations for available expressions (1/3)

For a basic block B, we note:

- ► Kill(B): expressions made non available by B (because an operand of e is modified by B).
- Gen(B): expressions made available by B
 (computed in B, operands not modified afterwards).
- \blacktriangleright In(B): available expressions when entering B.
- ightharpoonup Out(B): available expressions when exiting B

$$Out(B) = (In(B) \setminus Kill(B)) \cup Gen(B) = F_b(In(B)),$$

where: F_B : transfer function of block B

Data-flow equations for available expressions (2/3)

To define Gen and Kill, for a block B, we introduce local functions Gen_l and $Kill_l$:

Gen(B)	=	$Gen_l(B,\emptyset)$
Kill(B)	=	$Kill_I(B,\emptyset)$
$Gen_I(x := a; B, X)$	=	$Gen_I(B, X \setminus \{e' \mid x \in Used(e')\})$
		$\cup \left\{ a \mid x \notin \mathit{Used}(a) \right\})$
$Gen_I(if b goto 1, X)$	=	$X \cup \{b\}$
$Gen_I(goto 1, X)$	=	X
$Gen_I(\epsilon,X)$	=	X
$Kill_I(x := a; B, X)$	=	$Kill_I(B, X \cup \{e' \mid x \in Used(e')\})$
$Kill_I$ (if b goto 1, X)	=	X
$Kill_{I}(goto 1, X)$	=	X
$Kill_I(\epsilon, X)$	=	X

41 | 72

Running example

Computing Gen and Kill

Gen and Kill

- ► $Gen(B1) = \emptyset$, $Kill(B1) = \{a+b, x+1\}$
- Arr Gen(B2) = {x+1, a+b}, Kill(B2) = {y+1}
- ► $Gen(B3) = \{a+b, x+1\}, Kill(B3) = \emptyset$
- ► $Gen(B4) = \emptyset$, $Kill(B4) = \{y+1\}$
- ▶ $Gen(B5) = \{a+b\}, Kill(B5) = \emptyset$

Data-flow equations for available expressions (3/3)

How to compute In(b)?

▶ if *b* is the initial block:

$$In(b) = \emptyset$$

▶ if b is not the initial block: An expression e is available at its entry point iff it is available at the exit point of all predecessor of b in the CFG.

$$\mathit{In}(b) = \bigcap_{b' \in \mathit{Pre}(b)} \mathit{Out}(b')$$

⇒ forward data-flow analysis along the CFG paths.

How to deal with cycles inside the CFG? fix-points computation!

We want to as much available expressions possible: greatest fix-point.

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

46 | 72

Using data-flow equations to compute available expressions

Initialisation

It is a forward analysis \Rightarrow initialisation concerns the In(b) sets.

- ▶ Initialise $In(B_{init})$ to \emptyset : there is no available expression at the beginning of the program.
- ▶ Initialise In(b), for $b \neq B_{init}$ to the maximal element, i.e., to the set of all expressions.

Iteration until stabilisation

Iterate the following steps until stabilisation, i.e., when the In(b) sets are the same as in the previous step. At stabilisation, one has found the (greatest) fix-point.

- 1. Compute Out(b) sets using $Out(b) = (In(b) \setminus Kill(b)) \cup Gen(b)$.
- 2. Compute the (new) In(b) sets using $In(b) = \bigcap_{b' \in Pre(b)} Out(b')$.

Suppressing redundant computations

We look at all computed available expressions in each block (In(b) sets).

Is an available expression redundant?

Let e be an available expression at the entry of a basic block b.

If the two following conditions are met:

- e appears in b, and
- ▶ none of the operand of e is assigned from the beginning of the block until the use of e
- \Rightarrow the computation of e is redundant.

Suppressing redundant computation

Let e be an expression which computation is redundant in a block b.

- ▶ Introduce a new variable, say u.
- \blacktriangleright Using a backward analysis from b, locate each occurrence of x := e, and replace it with
- ▶ Replace the occurrence of e where its computation is redundant.

Running example

Computing available expressions

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

49 | 72

Running example

Determining redundant computation

- ► $In(B1) = In(B2) = In(B3) = \emptyset$.
- ▶ $In(B4) = \{a + b\}$, but there is no computation of a + b in B4.
- ▶ $In(B5) = \{a+b\}$, a+b is computed in B5, and there is no modification of its operands from the beginning of the block to its computation. Hence, the computation of a+b in B5 is *redundant*.

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

50 1 72

Running example

Final CFG

Outline - Optimization Using Data-flow Analysis

Introduction and Preliminaries

Elimination of Redundant Computations with Available Expressions

Elimination of Useless Instructions with Live Variables

Constant Propagation

Generalization

Computing live variables

Getting intuition on examples

Let us consider a variable x appearing in a program.

How to determine whether x is *live*, i.e., whether its value is needed for computation.

- ▶ Where is the value of x needed?
- How does the information "being needed" propagate?

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

Computing live variables

Getting intuition on examples

- ► What can make x not live?
- ► What can make x live?

- What is needed for x to be live in the first block?
- How does the notion of liveness depend on previous paths? (note, previous refers to a successor block)

53 | 72

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

54 | 72

Computing live variables

Getting intuition on examples

▶ What is live when the program terminates?

- The CFG structure gives us relations between liveness at the exits and entrances of blocks.
- Liveness at exits is obtained from the liveness at the entrance.
- ▶ How to deal with cycles?

Live variables and useless instructions

Definitions

Objective: remove useless instructions.

Definition (Live Variable)

A variable x is live at location i if it is used in at least one CFG-path going from i to j, where j is:

- either a final instruction, or
- ▶ an assignment to x.

Definition (Useless instructions)

An instruction x := e at location i is useless if x is dead at location i.

Remark Used means "in the right-hand side of an assignment or in a branch condition".

Data-flow analysis for live variables

We compute the set of live variables. . .

Local analysis

Gen(b) is the set of variables x s.t. x is used in block b, and, in this block, any assignment to x happens after the (first)

Kill(i) is the set of variables x assigned in block b.

Global analysis

Backward analysis, \exists a CFG-path (least solution).

▶ $In(b) = (Out(b) \setminus Kill(b)) \cup Gen(b)$.

 \blacktriangleright

$$\mathtt{Out}(b) \ = \ \left\{ \begin{array}{ll} \emptyset & \text{if b is final,} \\ \bigcup_{b' \in \mathit{Succ}(b)} \mathit{In}(b') & \text{otherwise.} \end{array} \right.$$

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

57 1 72

Computation of functions Gen and Kill

Recursively defined on the syntax of a basic block B:

$$B := \varepsilon \mid B$$
; $x := a \mid B$; if b goto $1 \mid B$; goto 1

Gen(B)	=	$Gen_I(B, \emptyset)$
Kill(B)	=	$Kill_I(B,\emptyset)$
$Gen_I(B; x := a, X)$	=	$Gen_I(B, X \setminus \{x\} \cup Used(a))$
$Gen_I(B; if b goto 1, X)$	=	$Gen_I(B, X \cup Used(b))$
$Gen_I(B; goto 1, X)$	=	$Gen_I(B, X)$
$Gen_I(\varepsilon,X)$	=	X
$Kill_I(B; x := a, X)$	=	$Kill_I(B, X \cup \{x\})$
$Kill_I(B; if b goto 1, X)$	=	$Kill_{I}(B,X)$
$Kill_I(B; goto 1, X)$	=	$Kill_I(B,X)$
$Kill_l(\varepsilon,X)$	=	X

Used(e): set of variables appearing in expression e.

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

E0 1 TO

Removal of useless instructions

- 1. Compute the sets In(B) and Out(B) of live variables at entry and exit points of each block.
- 2. Let $F: Code \times 2^{Var} \to Code$ F(B,X) is the code obtained when removing useless assignments inside B, assuming that variables of X are live at the end of B execution.

$$F(\texttt{B}\;;\;\texttt{x}\;:=\texttt{a},X) = \begin{cases} F(B,X) & \text{if } x\not\in X \\ F(B,(X\setminus\{x\})\cup Used(a)); \texttt{x}:=\texttt{a} & \text{if } x\in X \end{cases}$$

$$F(\texttt{B}\;;\;\texttt{if}\;\texttt{b}\;\texttt{goto}\;\texttt{1},X) = F(B,X\cup Used(b)); \texttt{if}\;\texttt{b}\;\texttt{goto}\;\texttt{1}$$

$$F(\texttt{B}\;;\;\texttt{goto}\;\texttt{1},X) = F(B,X); \texttt{goto}\;\texttt{1}$$

$$F(\epsilon,X) = \epsilon$$

3. Replace each block B by F(B, Out(B)).

Remark This transformation may produce new dead variables...

Outline - Optimization Using Data-flow Analysis

Introduction and Proliminaries

Elimination of Redundant Computations with Available Expressions

Flimination of Useless Instructions with Live Variable

Constant Propagation

Generalization

Constant propagation

A variable is constant at location 1 if its value at this location can be computed at compilation time.

Example (Constant propagation principle)

- ▶ At exit point of B1 and B2, i and j are constants.
- ▶ At entry point of B3, i is not constant, j is constant.

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

61 1 73

62 | 72

Constant propagation: data-flow equations

A basic block = sequence of assignments

$$\mathtt{b} \quad ::= \quad \epsilon \mid \mathtt{x} \colon \mathtt{=e} \ ; \ \mathtt{b}$$

- ▶ Property at location 1 is a function $Var \rightarrow D$.
- ► Forward analysis:

$$\mathit{In}(b) = \begin{cases} \lambda x. \bot & \text{if b is initial,} \\ \sqcup_{b' \in \mathit{Pred}(b)} \mathit{Out}(b') & \text{otherwise} \end{cases}$$

 $\mathit{Out}(b) = F_b(\mathit{In}(b))$

Transfer function F_b by syntactic induction

$$F_{x:=e}$$
; $b(f) = F_b(f[x \mapsto f(e)])$ (assuming variable initialization)
 $F_{\epsilon}(f) = f$

Program transformation

$$\forall$$
 block b , $f \in In(b)$, $f(e) = v \Rightarrow x := e$ replaced by $x := v$

Remark We assume that variables are properly initialized.

Constant propagation: the lattice

Intuitively, the property is an "abstraction" of the memory:

- ▶ Each variable takes its value in $D = \mathbb{N} \cup \{\top, \bot\}$, where:
 - ▶ ⊤ means "non constant value"
 - ▶ ⊥ means "no information"

Defining the lattice:

- ▶ Partial order relation \leq : if $v \in D$ then $\bot < v$ and $v < \top$.
- ► The least upper bound \sqcup : for $x \in D$ and $v_1, v_2 \in \mathbb{N}$

$$x \sqcup \top = \top \mid x \sqcup \bot = x \mid v_1 \sqcup v_2 = \top \text{ if } v_1 \neq v_2 \mid v_1 \sqcup v_1 = v_1$$

Remark Relation
$$\leq$$
 is extended to functions $Var \rightarrow D$
 $f1 \leq f2$ iff $\forall x : f1(x) \leq f2(x)$.

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

Outline - Optimization Using Data-flow Analysis

Introduction and Proliminaries

Elimination of Redundant Computations with Available Expressions

Flimination of Useless Instructions with Live Variables

Constant Propagation

Generalization

Summarv

Recall data-flow analysis

Static computation of data-related properties of programs:

Data-flow problem

- (local) Properties φ_i associated to some pgm locations i
- ► Set of data-flow equations:
 - \rightarrow how φ_i are transformed along pgm execution
- ▶ Regarding propagation:
 - forward vs backward propagation (depending on φ_i)
 - ► cycles inside the control flow ⇒ fix-point equations!

Solving the equation system

- \blacktriangleright A solution of this equation system assigns "globaly consistent" values to each $\varphi_i.$
- ▶ Such a solution may not exist...
- ► Decidability may require abstractions and/or approximations

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

65 | 73

Generalization

Data-flow properties are expressed as finite sets associated to entry/exit points of basic blocks: *In*(b), *Out*(b).

Forward analysis

- ▶ property is "false" (⊥) at entry of initial block
- $ightharpoonup Out(b) = F_b(In(b))$
- ▶ In(b) depends on Out(b'), where $b' \in Pred(b)$ (\sqcap for " \forall paths", \sqcup for " \exists path")

Backward analysis

- ▶ property is "false" (⊥) at exit of final block
- $ightharpoonup In(b) = F_b (Out(b))$
- ▶ Out(b) depends on In(b'), where $b' \in Succ(b)$ (\sqcap for " \forall paths", \sqcup for " \exists path")

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

66 | 72

Data-flow equations: forward analysis

Forward analysis,	In(b)	=	$\left\{ \begin{array}{c} \bot \\ \bigsqcup_{b' \in Pre(b)} Out(b') \end{array} \right.$	if <i>b</i> is initial otherwise.
least fix-point	Out(b)	=	$F_b(In(b))$	
Forward analysis,	In(b)	=	$ \left\{ \begin{array}{l} \bot \\ \square_{b' \in Pre(b)} Out(b') \end{array} \right. $	if <i>b</i> is initial otherwise.
greatest fix-point			$F_b(In(b))$	

Data-flow equations: backward analysis

Backward analysis,	Out(b)	=	$ \left\{ \begin{array}{l} \bot \\ \bigsqcup_{b' \in Succ(b')} In(b') \end{array} \right. $	if <i>b</i> is final otherwise.
least fix-point				
	In(b)	=	$F_b(Out(b))$	
	Out(b)		\int \perp	if b is final
Backward analysis,	Out(b)	_	$ \left\{ \begin{array}{l} \bot \\ \bigcap_{b' \in Succ(b)} In(b') \end{array} \right. $	otherwise.
greatest fix-point				
	In(b)	=	$F_b(Out(b))$	

Solving the data-flow equations (1/2)

Let (E, \leq) a partial order.

- ▶ For $X \subseteq E$, $a \in E$:
 - ▶ a is an upper bound of X if $\forall x \in X : x \leq a$,
 - ▶ a is a lower bound of X if $\forall x \in X : a < x$.
- ▶ The least upper bound (lub, \sqcup) is the smallest upper bound.
- ▶ The greatest lower bound (glb, \sqcap) is the largest lower bound.
- \triangleright (E, <) is a lattice if any two elements of E admit a lub and a glb.
- ▶ A function $f: 2^E \rightarrow 2^E$ is increasing if:

$$\forall X, Y \subseteq E \quad X \leq Y \Rightarrow f(X) \leq f(Y)$$

- ► $X = \{x_0, x_1, \dots x_n, \dots\} \subseteq E$ is an (increasing) chain if $x_0 \le x_1 \le \dots x_n \le \dots$
- ▶ A function $f: 2^E \to 2^E$ is (\sqcup -)continuous if \forall increasing chain X, $f(\sqcup X) = \sqcup f(X)$

Solving the data-flow equations (2/2)

Fix-point equation: solution?

- ightharpoonup properties are finite sets of expressions ${\cal E}$
- \triangleright $(2^{\mathcal{E}}, \subseteq)$ is a complete lattice

 \perp : least element (aka minimum), \top : greatest element (aka maximum)

 \sqcap : greatest lower bound (aka supremum), \sqcup : least upper bound (aka infimum)

- ▶ data-flow equations are defined on monotonic and continuous operators (\cup, \cap) on $(2^{\mathcal{E}}, \subseteq)$.
- ► Kleene and Tarski theorems:
 - ▶ the set of solutions is a complete *lattice*
 - the greatest (resp. least) solution can be obtained by successive iterations w.r.t. the greatest (resp. least) element of $2^{\mathcal{E}}$

$$\mathsf{lfp}(f) = \sqcup \{f^i(\bot) \mid i \in \mathbb{N}\} \qquad \mathsf{gfp}(f) = \sqcap \{f^i(\top) \mid i \in \mathbb{N}\}$$

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

69 1 7

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Optimization Using Data-flow Analysis

70 1 72

Outline - Optimization Using Data-flow Analysis

Introduction and Preliminaries

Elimination of Redundant Computations with Available Expressions

Elimination of Useless Instructions with Live Variables

Constant Propagation

Generalization

Summary

Summary

Code Optimization using data-flow analysis

- Objective: produce a semantically equivalent version of 3-address code that is optimized.
- ▶ Focused on optimizations independent from the target machine:
 - ▶ available expressions for the suppression of redundant computations,
 - ► live variables for useless assignments
 - constant propagation for replacing variables with their (fixed) values.