Module 30: MVPA Example

Pain Biomarkers

- Pain is an important health problem affecting the quality of life in a large segment of the population.
 - It is usually measured using self-reports.
- The goal is to define robust and meaningful fMRIbased biomarkers for physical pain that can augment reported pain as outcome measures.

Illustration

$$\underline{\mathbf{x}} = (\mathbf{x}_1, \dots, \mathbf{x}_V)$$
 $\mathbf{y} = \underline{\mathbf{w}}^T \underline{\mathbf{x}}$

Statistical Learning

- We develop the biomarker using data from a study of thermal pain (n=20).
 - Statistical learning techniques are used to identify spatial patterns of fMRI activity that accurately and specifically predict physical pain at the individual level.
- The development of this method entails:
 - defining appropriate features;
 - choosing a classifier;
 - training and testing the classifier; and
 - validating results on new data sets.

Example

- Participants (n=20) received a series of thermal stimulations for 12 trials at each of four intensities: innocuous warmth and three levels of increasingly painful heat.
 - Each trial consisted of separate periods of anticipation, thermal pain and pain recall.
 - The outcome measure was a trail-specific pain rating reported on a continuous visual analogue scale.

Cue	Pain	ISI 1	Rating	ISI2
8 s	10 s	14 s	4 s	10 s

Performing MVPA

- The process of performing MVPA follows a series of steps:
 - Defining features and classes
 - Feature selection
 - Choosing a classifier
 - Training and testing the classifer
 - Examining results

Feature Selection

- Voxels within pain-related brain regions were selected based on prior literature.
 - Performed a meta-analysis of 224 previous studies to select ~16,000 voxels associated with pain.

Data Averaging I

- Time courses immediately following the end of heat application were included in the analysis;
 - Averaged brain activity at each temperature for each participant over a 14s post-stimulus window.
 - At each temperature we obtained 12 maps and 12 responses for each subject.

Data Averaging II

- Data were averaged over repeated trials at each intensity level.
 - Averaged the 12 repetitions at each temperature for each participant to yield 4 unique maps per subject.
 - Averaged pain response for each participant in each condition.

Maps Responses

Subject i

Machine Learning

Classifier:

- LASSO-PCR
- Other classifier techniques gave comparable results.

Training and testing:

Used leave-one-subject out cross-validation.

Weight Maps

Analysis

Results

Cross-validated prediction of pain

Pain vs. other affective events

Study II

- Participants (n=33) received a series of 75 thermal stimulations across six different temperatures.
- After each stimulus, participants rated whether it was painful or not.
 - If non-painful, intensity was rated on a 100-point scale ranging from "no sensation at all" to "very warm but not yet painful."
 - If painful, intensity was rated on a 100-point scale ranging from "no pain" to "worst imaginable pain."

Results - Study II

Biomarker response by condition

Response by reported intensity

An fMRI-Based Neurologic Signature of Physical Pain

Tor D. Wager, Ph.D., Lauren Y. Atlas, Ph.D., Martin A. Lindquist, Ph.D., Mathieu Roy, Ph.D., Choong-Wan Woo, M.A., and Ethan Kross, Ph.D.

N Engl J Med 2013; 368:1388-1397 | April 11, 2013 | DOI: 10.1056/NEJMoa1204471

End of Module

