PDS Coded Project Report

Prepared By: Parthasarathi Behura

CONTENTS:

Austo Motor Company	Page
Important Information about the dataset	4
Preliminary analysis of variables	5
Data Exploration and Visualizations to draw insights	9
Understanding the relationship between variables and proper analysis of data (Univariate Analysis)	10
Bivariate analysis	17
Inferences	41
Question Solutions	42
LIST OF FIGURES:	
Figure-1: Box plots of numerical variables	9
Figure-2: Box plots of numerical variables individually	10
Figure-3: Univariate analysis of numerical variables	12
Figure-4: Univariate analysis of categorial variables	14
Figure-5 : Pair plot of the dataset numerical variables	15
Figure-6 : Correlation heatmap of numerical variables	16
Figure-7: Bivariate relationship of categorial vs numerical variables	40
Figure-8 : Count plot of Gender vs Make	42
Figure-9 : Count plot of Profession vs Make	43
Figure-10 : Count plot of Profession vs Make for Male buyers	44
Figure-11 : Count plot of spending on automobiles by Gender	45
Figure-12: Box plot of total spending on automobiles by personal loan	46
Figure-13 : Box plot of average price of cars by partner working	47

LIST OF TABLES:

Table 1: Top five rows of the dataset	4
Table 2: Basic information of the data type	4
Table 3: Basic information of the data	5
Table 4: Name of the columns present in the dataset	6
Table 5: Inspecting null values in the dataset	6
Table 6: Inspecting subcategories of Gender	7
Table 7: After imputing the Gender	. 7
Table 8: Statistical summary of numeric variables	.7
Table 9: Value counts of categorial variables	. 8

DSBA Project

Austo Motor Company is a leading car manufacturer specializing in SUV, Sedan, and Hatchback models. In its recent board meeting, concerns were raised by the members on the efficiency of the marketing campaign currently being used. The board decides to rope in analytics professional to improve the existing campaign.

Imported the libraries for the Data are

- Numpy
- Pandas
- Matplotlib
- Seaborn
- 1. There are some information about the dataset, decision makers should have a look.
 - > The dataset is having 1581 rows and 14 columns.
 - > There is a look on the 5 sample rows to check the data type.

	Age	Gender	Profession	Marital_status	Education	No_of_Depen dents	sonal_loan	House_loa n	Partner_workin g	Salary	Partner_salary	Total_salary	Price	Make
0	53	Male	Business	Married	Post Graduate	4	No	No	Yes	99300	70700	170000	61000	SUV
1	53	Female	Salaried	Married	Post Graduate	4	Yes	No	Yes	95500	70300	165800	61000	SUV
2	53	Female	Salaried	Married	Post Graduate	3	No	No	Yes	97300	60700	158000	57000	SUV
3	53	Female	Salaried	Married	Graduate	2	Yes	No	Yes	72500	70300	142800	61000	SUV
4	53	Male	Salaried	Married	Post Graduate	3	No	No	Yes	79700	60200	139900	57000	SUV

Table 1: Top five rows of the dataset

2. While having a look on the data set information, it is found that there are 6 numerical and 8 categorial variables. The below table contains the same information.

Age	int64
Gender	object
Profession	object
Marital_status	object
Education	object
No_of_Dependents	int64
Personal_loan	object
House_loan	object
Partner_working	object
Salary	int64
Partner_salary	float64
Total_salary	int64
Price	int64
Make	object
dtype: object	

Table 2: Basic information of the data type

3. Checking the data information.

	method DataF		of Age	Gender	Profession	Marital_s	status	Educ
ation 0	No_of_Depend 53 Male	ents \ Business	Married	l Dog+	Graduate		4	
1	53 Female	Salaried			Graduate		4	
2	53 Female	Salaried	Married		Graduate		3	
3	53 Female	Salaried	Married		Graduate		2	
4	53 Male	Salaried			Graduate		3	
					•••			
1576	22 Male	Salaried	Single		Graduate		2	
1577	22 Male	Business	Married		Graduate		4	
1578	22 Male	Business	Single		Graduate		2	
1579	22 Male	Business	Married		Graduate		3	
1580	22 Male	Salaried	Married		Graduate		4	
P€	ersonal_loan	House_loan	Partner_worki	ng Sal	lary Partn	er_salary	\	
0	No	No	Y	es 99	9300	70700.0		
1	Yes	No	Y	es 95	5500	70300.0		
2	No	No	Y		7300	60700.0		
3	Yes	No			2500	70300.0		
4	No	No	Y	es 79	9700	60200.0		
	• • •		•	• •	• • •			
1576	No	Yes			3300	0.0		
1577	No	No			2000	0.0		
1578	No	Yes			2900	0.0		
1579	Yes	Yes			2200	0.0		
1580	No	No		No 31	1600	0.0		
п		Price	Malra					
0	Total_salary 170000	61000	Make SUV					
1	165800	61000	SUV					
2	158000	57000	SUV					
3	142800	61000	SUV					
4	139900	57000	SUV					
 1576	33300		tchback					
1577	32000		tchback					
1578	32900		tchback					
1579	32200		tchback					
1580	31600		tchback					
[1581 r	rows x 14 col	umns]>						

Table 3: Basic information of the data

4. Checking the columns of the dataset, to get the name of the variables.

Table 4: Name of the columns present in the dataset

5. Checking the null values:

There are nulls in 'Gender' and 'Partner_salary' variables.

In 'Gender' it is found that there are total 53 null values.

In 'Partner_salary' it is found that there are total 106 null values.

Age	0
Gender	53
Profession	0
Marital_status	0
Education	0
No_of_Dependents	0
Personal_loan	0
House_loan	0
Partner_working	0
Salary	0
Partner_salary	106
Total_salary	0
Price	0
Make	0

Table 5: Inspecting null values in the dataset

6. In order to treat the nulls in the 'Partner_salary', we have checked where the 'Total_salary' is greater than 'Salary'.

Then we applied condition that,

1. If , 'Total_salary' > 'Salary'

then, 'Partner_salary' = 'Total_salary' - 'Salary'

2. If, 'Total salary ≯ 'Salary'

Then, 'Partner_salary' = 0

7. Checking the values count of 'Gender', and found that

Male 1199

Female 327

Femal 1

Femle 1

Name: Gender, dtype: int64

Table 6: Inspecting subcategories of Gender

After treatment of the miss spellings in the 'Gender' and treating the null values, we got that

Gender

Male 1252

Female 329

Name: count, dtype: int64

Table 7: After imputing the Gender

8. Now we are to have a look on statistical summery of the numeric variables of the dataset.

	Age	No_of_Dependents	Salary	Partner_salary	Total_salary	Price
count	1581.000000	1581.000000	1581.000000	1581.000000	1581.000000	1581.000000
mean	31.922201	2.457938	60392.220114	19233.776091	79625.996205	35597.722960
std	8.425978	0.943483	14674.825044	19670.391171	25545.857768	13633.636545
min	22.000000	0.000000	30000.000000	0.000000	30000.000000	18000.000000
25%	25.000000	2.000000	51900.000000	0.000000	60500.000000	25000.000000
50%	29.000000	2.000000	59500.000000	25100.000000	78000.000000	31000.000000
75%	38.000000	3.000000	71800.000000	38100.000000	95900.000000	47000.000000
max	54.000000	4.000000	99300.000000	80500.000000	171000.000000	70000.000000

Table 8: Statistical summary of numeric variables

9. Observations:

- 1. The customers are between 22 and 54 years old. They could be considered to be in the working age group. The median age is 29, and the mean age is 31.92.
- 2. The clients' salaries vary from 30K to 99.3K. There is a very small difference between the mean and median values.
- 3. The minimum purchase value of the automobile is 18k and maximum value is 70k.

10. Checking the value counts of categorial variables.

```
Value counts for Gender:
Gender
Male 1252
Female 329
Name: count, dtype: int64
Value counts for Profession:
Profession
Salaried 896
Business 685
Name: count, dtype: int64
Value counts for Marital status:
Marital status
Married 1443
Single 138
Single
           138
Name: count, dtype: int64
Value counts for Education:
Education
Post Graduate
                985
                596
Graduate
Name: count, dtype: int64
Value counts for Personal loan:
Personal loan
Yes 792
No
     789
Name: count, dtype: int64
Value counts for House loan:
House loan
No 1054
Yes 527
Name: count, dtype: int64
Value counts for Partner working:
Partner working
Yes 868
      713
No
Name: count, dtype: int64
Value counts for Make:
Make
Sedan
             702
Hatchback 582
SUV
            297
```

Table 9: Value counts of categorial variables

11. Checking for the outliers or extreme values.

Figure-1: Box plots of numerical variables

Analyzing box plots of every numerical variables separately:

Figure-2: Box plots of numerical variables individually

- 1. We can see that there are no negative values present in any numerical category.
- 2. The 'Total_salary' is having outlier.
- 12. Univariate analysis of numerical variables.

Figure-3: Univariate analysis of numerical variables

Inferences:

- 1. Salary has a range between 50k to 70k.
- 2. Total salary has a range between 60k to 100k.

13. Univariate analysis of categorial

Figure-4: Univariate analysis of categorial variables

Inferences:

- 1. Sedan is most preferred, after Hatchback and SUV respectively.
- 2. The buyers with working partner are higher than the buyers with non-working partners or single status.
- 3. The married buyers are very higher than the single status.
- 4. Major of the buyers are having postgraduate.
- 5. Buyers having business are little less than the number of buyers being salaried.
- 6. The buyers with having 2-3 dependents are higher in the dataset. Then comes the buyers with 1 & 4 dependents and the buyers having 0 dependents are very less.

14. Bivariate analysis of all the numerical variables.

Figure-5: Pair plot of the dataset numerical variables

Figure-6: Correlation heatmap of numerical variables

14. Bivariate analysis of all the categorial vs numerical variables.

Gender

Profession vs No_of_Dependents

Marital_status vs No_of_Dependents

Marital_status

Make

Figure-7: Bivariate relationship of categorial vs numerical variables

Inferences:

- 1. Females are in higher age or older than males.
- 2. Females are having dependents 1-3, where males are having dependents 2-3.
- 3. Females are having salary ranging higher than males. While females are having salary range 34800-99300. While males are having salary range from 30000-99300.
- 4. Partner's salary of some females are little bit higher than partner's of males.
- 5. Females are having higher total salary than males.
- 6. Females have bought higher priced automobiles than males.
- 7. Some salaried buyers are older than the buyers having business.
- 8. Both salaried and business buyers are having 2-3 dependents.
- 9. Salaried buyers are little more earning than the buyers having business.
- 10. Salaried buyer's partner's salary is little higher, not so significant than the partners of buyers having business.
- 11. Some salaried buyer's total salary is having more outliers than the total salary of buyers having business.
- 12. Salaried buyers have spent more in automobiles than business buyers.
- 13. The buyers who are single are in near about within the same age group who are married.
- 14. Some single buyers are having 1 dependent.
- 15. Salary of both single and married buyers are nearly same.
- 16. Married buyers are having more total salary than the buyers who are single.
- 17. Married buyers have spent more on buying automobiles than the buyers who are single.
- 18. The buyers who are graduate are almost in the same age group of buyers who are having post-graduate.
- 19. Both the graduate and post-graduate buyers are having same number of dependents, i.e 2-3.
- 20. Post-graduate buyers are having more salary than the graduate buyers.
- 21. The graduate buyers are having a little more partner salary than the post-graduate buyers.
- 22. The post-graduate buyers are having more total salary than the graduate buyers.
- 23. The graduate buyers had spent a little more on buying the cars than post-graduate buyers.
- 24. The buyers whose salary is more then 70k have not taken personal loan.
- 25. Some buyers having 2-3 dependents have taken house loans.
- 26. Mostly the buyers who are having a working partner, they have larger total salary than the buyers who are not having working partner.

- 27. The buyers of age group 38-50 have preferred to buy SUV, where as the age group of 27-37 have preferred to buy sedan and the buyers who have preferred to buy Hatchback are 25-28 years.
- 28. The buyers having 2-3 dependents have preferred SUV and Hatchback, where as the buyers having 1-3 dependents have purchased Sedan.
- 29. The buyers having 62k-82k salaried have purchased SUV, 52k-68k salaried have purchased Sedan and 44k-66k salaried buyers have purchased Hatchback.
- 30. The buyers having 66k-120k total salary have purchased SUV, 64k-88k total salary have purchased Sedan and 60k-84k total salary buyers have purchased Hatchback.
- 31.SUV price range purchased are 52k-64K, where as Sedan cars have been purchased in mostly price range of 26k-44k and Hatchback cars have been mostly purchased in a range of 24k-30k.

Q1. Do men tend to prefer SUVs more compared to women?

Figure-8: Count plot of Gender vs Make

Ans:

We can properly see that the women more likely prefer SUVs compared to men.

So, the answer for the Q1 is 'No'.

Q2. What is the likelihood of a salaried person buying a Sedan?

Figure-9: Count plot of Profession vs Make

Ans:

From the above chart, it is evident that salaried person is more likely to buy a Sedan.

So, this statement is True.

Q3. What evidence or data supports Sheldon Cooper's claim that a salaried male is an easier target for a SUV sale over a Sedan sale?

Figure-10: Count plot of Profession vs Make for Male buyers

Ans:

From the above chart, it is evident that Salaried male prefers Sedan over SUV.

So, this statement is incorrect.

Q4. How does the amount spent on purchasing automobiles vary by gender?

Figure-11: Count plot of spending on automobiles by Gender

Ans:

We can clearly see that the spending on automobiles is done by females than males.

Q5. How much money was spent on purchasing automobiles by individuals who took a personal loan?

Figure-12 : Box plot of total spending on automobiles by personal loan

Ans:

Total amount spent on purchasing automobiles by individuals who took a personal loan: 27290000

Q6. How does having a working partner influence the purchase of higher-priced cars?

Figure-13: Box plot of average price of cars by partner working

Ans:

Average car price with working partner: 35267.28110599078 Average car price without working partner: 36000.0