Lecture 11: Fast Reinforcement Learning ¹

Emma Brunskill

CS234 Reinforcement Learning

Winter 2021

Refresh Your Understanding: Multi-armed Bandits

- Select all that are true:
 - ① Up to slide variations in constants, UCB selects the arm with arg $\max_a \hat{Q}_t(a) + \sqrt{\frac{1}{N_t(a)}\log(1/\delta)}$
 - Over an infinite trajectory, UCB will sample all arms an infinite number of times
 - **3** UCB still would learn to pull the optimal arm more than other arms if we instead used $\arg\max_a \hat{Q}_t(a) + \sqrt{\frac{1}{\sqrt{N_t(a)}}} \log(t/\delta)$
 - **1** UCB uses $\arg \max_a \hat{Q}_t(a) + b$ where b is a bonus term. Consider b = 5. This will make the algorithm optimistic with respect to the empirical rewards but it may still cause such an algorithm to suffer linear regret.
 - Algorithms that minimize regret also maximize reward
 - Not Sure

Refresh Your Understanding: Multi-armed Bandits Solution

- Select all that are true:
 - ① Up to slide variations in constants, UCB selects the arm with $\arg\max_a \hat{Q}_t(a) + \sqrt{\frac{1}{N_t(a)}\log(1/\delta)}$
 - Over an infinite trajectory, UCB will sample all arms an infinite number of times
 - **③** UCB still would learn to pull the optimal arm more than other arms if we instead used $\arg\max_a \hat{Q}_t(a) + \sqrt{\frac{1}{\sqrt{N_t(a)}}\log(t/\delta)}$
 - **1** UCB uses $\arg\max_a \hat{Q}_t(a) + b$ where b is a bonus term. Consider b = 5. This will make the algorithm optimistic with respect to the empirical rewards but it may still cause such an algorithm to suffer linear regret.
 - 6 Algorithms that minimize regret also maximize reward
 - Not Sure
- Solutions: (1) False (log t is missing) (2) True (3) True (4) True (5) True

Where We are

- Last time: Bandits and regret and UCB (fast learning)
- This time: Bayesian bandits (fast learning)
- Next time: MDPs (fast learning)

Recall Motivation

• Fast learning is important when our decisions impact the world

Today

- Bandits and Probably Approximately Correct
- Bayesian bandits
- Thompson sampling
- Bayesian Regret

Settings, Frameworks & Approaches

- Over next couple lectures will consider 2 settings, multiple frameworks, and approaches
- Settings: Bandits (single decisions), MDPs
- Frameworks: evaluation criteria for formally assessing the quality of a RL algorithm
- Approaches: Classes of algorithms for achieving particular evaluation criteria in a certain set
- Note: We will see that some approaches can achieve multiple frameworks in multiple settings

Multiarmed Bandits Recap

- Multi-armed bandit is a tuple of (A, R)
- A: known set of m actions (arms)
- $\mathcal{R}^a(r) = \mathbb{P}[r \mid a]$ is an unknown probability distribution over rewards
- ullet At each step t the agent selects an action $a_t \in \mathcal{A}$
- ullet The environment generates a reward $r_t \sim \mathcal{R}^{a_t}$
- ullet Goal: Maximize cumulative reward $\sum_{ au=1}^t r_ au$
- Regret is the opportunity loss for one step

$$I_t = \mathbb{E}[V^* - Q(a_t)]$$

• Total Regret is the total opportunity loss

$$L_t = \mathbb{E}[\sum_{\tau=1}^t V^* - Q(a_\tau)]$$

Maximize cumulative reward ←⇒ minimize total regret

Simpler Optimism

- Last time saw UCB, an optimism under uncertainty approach, which has sublinear regret bounds
- Do we need to formally model uncertainty to get the right form of optimism?

Optimistic Initialization with Greedy Bandit Algorithms

- Simple and practical idea: initialize Q(a) to high value
- Update action value by incremental Monte-Carlo evaluation
- Starting with N(a) > 0

$$\hat{Q}_t(a_t) = \hat{Q}_{t-1} + \frac{1}{N_t(a_t)}(r_t - \hat{Q}_{t-1})$$

Optimistic Initialization with Greedy Bandit Algorithms

- Simple and practical idea: initialize Q(a) to high value
- Update action value by incremental Monte-Carlo evaluation
- Starting with N(a) > 0

$$\hat{Q}_t(a_t) = \hat{Q}_{t-1} + \frac{1}{N_t(a_t)}(r_t - \hat{Q}_{t-1})$$

- Encourages systematic exploration early on
- But can still lock onto suboptimal action
- Depends on how high initialize Q
- Check your understanding: What is the downside to initializing *Q* too high?
- Check your understanding: Is this trivial to do with function approximation? Why or why not?

(ロ) (倒) (目) (目) (目) (の)

Optimistic Initialization with Greedy Bandit Algorithms

- Simple and practical idea: initialize Q(a) to high value
- Update action value by incremental Monte-Carlo evaluation
- Starting with N(a) > 0

$$\hat{Q}_t(a_t) = \hat{Q}_{t-1} + \frac{1}{N_t(a_t)}(r_t - \hat{Q}_{t-1})$$

- Will turn out that if carefully choose the initialization value, can get good performance
- Under a new measure for evaluating algorithms

Theoretical regret bounds specify how regret grows with T

- Theoretical regret bounds specify how regret grows with T
- Could be making lots of little mistakes or infrequent large ones
- May care about bounding the number of non-small errors

- Theoretical regret bounds specify how regret grows with T
- Could be making lots of little mistakes or infrequent large ones
- May care about bounding the number of non-small errors
- More formally, probably approximately correct (PAC) results state that the algorithm will choose an action a whose value is ϵ -optimal $(Q(a) \geq Q(a^*) \epsilon)$ with probability at least 1δ on all but a polynomial number of steps
- Polynomial in the problem parameters (#actions, ϵ , δ , etc)
- Most PAC algorithms based on optimism or Thompson sampling
- Some PAC algorithms using optimism simply initialize all values to a (specific to the problem) high value

Toy Example: Probably Approximately Correct and Regret

- Surgery: $\phi_1 = .95$ / Taping: $\phi_2 = .9$ / Nothing: $\phi_3 = .1$
- Let $\epsilon = 0.05$
- O = Optimism, TS = Thompson Sampling: W/in $\epsilon = \mathbb{I}(Q(a_t) \geq Q(a^*) \epsilon)$

0	TS	Optimal	O Regret	O W/in ϵ	TS Regret	TS W/in ϵ
a^1	a^3	a^1	0		0.85	
a^2	a^1	a^1	0.05		0	
a^3	a^1	a^1	0.85		0	
a^1	a^1	a^1	0		0	
a^2	a^1	a^1	0.05		0	

Toy Example: Probably Approximately Correct and Regret

- Surgery: $\phi_1 = .95$ / Taping: $\phi_2 = .9$ / Nothing: $\phi_3 = .1$
- Let $\epsilon = 0.05$
- O = Optimism, TS = Thompson Sampling: W/in $\epsilon = \mathbb{I}(Q(a_t) \geq Q(a^*) \epsilon)$

0	TS	Optimal	O Regret	O W/in ϵ	TS Regret	TS W/in ϵ
a^1	a ³	a^1	0	Y	0.85	N
a^2	a ¹	a^1	0.05	Y	0	Y
a^3	a ¹	a^1	0.85	N	0	Y
a^1	a ¹	a^1	0	Y	0	Y
a^2	a ¹	a^1	0.05	Y	0	Y

- Theoretical regret bounds specify how regret grows with T
- Could be making lots of little mistakes or infrequent large ones
- May care about bounding the number of non-small errors
- More formally, probably approximately correct (PAC) results state that the algorithm will choose an action a whose value is ϵ -optimal $(Q(a) \geq Q(a^*) \epsilon)$ with probability at least 1δ on all but a polynomial number of steps
- Polynomial in the problem parameters (#actions, ϵ , δ , etc)
- Most PAC algorithms based on optimism or Thompson sampling
- PAC approaches can be relevant to MDPs as well

Greedy Bandit Algorithms vs Optimistic Initialization

- Greedy: Linear total regret
- Constant ϵ -greedy: Linear total regret
- **Decaying** ϵ -**greedy**: Sublinear regret but schedule for decaying ϵ requires knowledge of gaps, which are unknown
- **Optimistic initialization**: Sublinear regret if initialize values sufficiently optimistically, else linear regret
- Check your understanding: why does fixed ϵ -greedy have linear regret? (Encourage you to do a proof sketch)

Today

- Bandits and Probably Approximately Correct
- Bayesian bandits
- Thompson sampling
- Bayesian Regret

Bayesian Bandits

- ullet So far we have made no assumptions about the reward distribution ${\cal R}$
 - Except bounds on rewards
- Bayesian bandits exploit prior knowledge of rewards, p[R]
- They compute posterior distribution of rewards $p[\mathcal{R} \mid h_t]$, where $h_t = (a_1, r_1, \dots, a_{t-1}, r_{t-1})$
- Use posterior to guide exploration
 - Upper confidence bounds (Bayesian UCB)
 - Probability matching (Thompson Sampling)
- Better performance if prior knowledge is accurate

Short Refresher / Review on Bayesian Inference

- In Bayesian view, we start with a prior over the unknown parameters
 - Here the unknown distribution over the rewards for each arm
- Given observations / data about that parameter, update our uncertainty over the unknown parameters using Bayes Rule

Short Refresher / Review on Bayesian Inference

- In Bayesian view, we start with a prior over the unknown parameters
 - Here the unknown distribution over the rewards for each arm
- Given observations / data about that parameter, update our uncertainty over the unknown parameters using Bayes Rule
- For example, let the reward of arm i be a probability distribution that depends on parameter ϕ_i
- Initial prior over ϕ_i is $p(\phi_i)$
- Pull arm i and observe reward r_{i1}
- Use Bays rule to update estimate over ϕ_i :

Short Refresher / Review on Bayesian Inference

- In Bayesian view, we start with a prior over the unknown parameters
 - Here the unknown distribution over the rewards for each arm
- Given observations / data about that parameter, update our uncertainty over the unknown parameters using Bayes Rule
- For example, let the reward of arm i be a probability distribution that depends on parameter ϕ_i
- Initial prior over ϕ_i is $p(\phi_i)$
- Pull arm i and observe reward r_{i1}
- Use Bays rule to update estimate over ϕ_i :

$$p(\phi_i|r_{i1}) = \frac{p(r_{i1}|\phi_i)p(\phi_i)}{p(r_{i1})} = \frac{p(r_{i1}|\phi_i)p(\phi_i)}{\int_{\phi_i} p(r_{i1}|\phi_i)p(\phi_i)d\phi_i}$$

Short Refresher / Review on Bayesian Inference II

- In Bayesian view, we start with a prior over the unknown parameters
- Give observations / data about that parameter, update our uncertainty over the unknown parameters using Bayes Rule

$$p(\phi_i|r_{i1}) = \frac{p(r_{i1}|\phi_i)p(\phi_i)}{\int_{\phi_i} p(r_{i1}|\phi_i)p(\phi_i)d\phi_i}$$

• In general computing this update may be tricky to do exactly with no additional structure on the form of the prior and data likelihood

Short Refresher / Review on Bayesian Inference: Conjugate

- In Bayesian view, we start with a prior over the unknown parameters
- Give observations / data about that parameter, update our uncertainty over the unknown parameters using Bayes Rule

$$p(\phi_i|r_{i1}) = \frac{p(r_{i1}|\phi_i)p(\phi_i)}{\int_{\phi_i} p(r_{i1}|\phi_i)p(\phi_i)d\phi_i}$$

- In general computing this update may be tricky
- But sometimes can b e done analytically
- If the parametric representation of the prior and posterior is the same, the prior and model are called conjugate
- For example, exponential families have conjugate priors

Short Refresher / Review on Bayesian Inference: Bernoulli

- Consider a bandit problem where the reward of an arm is a binary outcome 0, 1, sampled from a Bernoulli with parameter θ
 - E.g. Advertisement click through rate, patient treatment success/fails,
- The Beta distribution $Beta(\alpha, \beta)$ is conjugate for the Bernoulli distribution

$$p(\theta|\alpha,\beta) = \theta^{\alpha-1} (1-\theta)^{\beta-1} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}$$

where $\Gamma(x)$ is the Gamma family

Short Refresher / Review on Bayesian Inference: Bernoulli

- ullet Consider a bandit problem where the reward of an arm is a binary outcome 0, 1, sampled from a Bernoulli with parameter heta
 - E.g. Advertisement click through rate, patient treatment success/fails,
- The Beta distribution $Beta(\alpha, \beta)$ is conjugate for the Bernoulli distribution

$$p(\theta|\alpha,\beta) = \theta^{\alpha-1} (1-\theta)^{\beta-1} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}$$

where $\Gamma(x)$ is the Gamma family

- Assume the prior over θ is $Beta(\alpha, \beta)$ as above
- Then after observed a reward $r \in \{0,1\}$ then updated posterior over θ is $Beta(r + \alpha, 1 r + \beta)$

Bayesian Inference for Decision Making

- Maintain distribution over reward parameters
- Use this to inform action selection

Today

- Bandits and Probably Approximately Correct
- Bayesian bandits
- Thompson sampling
- Bayesian Regret

Thompson Sampling

- 1: Initialize prior over each arm a, $p(\mathcal{R}_a)$
- 2: **for** iteration= $1, 2, \ldots$ **do**
- 3: For each arm a **sample** a reward distribution \mathcal{R}_a from posterior
- 4: Compute action-value function $Q(a) = \mathbb{E}[\mathcal{R}_a]$
- 5: $a_t = \arg\max_{a \in \mathcal{A}} Q(a)$
- 6: Observe reward *r*
- 7: Update posterior $p(\mathcal{R}_a|r)$ using Bayes Rule
- 8: end for

- True (unknown) Bernoulli parameters for each arm/action
- Surgery: $\theta_1 = .95$ / Taping: $\theta_2 = .9$ / Nothing: $\theta_3 = .1$
- Thompson sampling:
- Place a prior over each arm's parameter. Here choose Beta(1,1) (Uniform)
 - Sample a Bernoulli parameter given current prior over each arm Beta(1,1), Beta(1,1), Beta(1,1):

- True (unknown) Bernoulli parameters for each arm/action
- Surgery: $\theta_1 = .95$ / Taping: $\theta_2 = .9$ / Nothing: $\theta_3 = .1$
- Thompson sampling:
- Place a prior over each arm's parameter. Here choose Beta(1,1)
 - Sample a Bernoulli parameter given current prior over each arm Beta(1,1), Beta(1,1), Beta(1,1): 0.3 0.5 0.6
 - 2 Select $a = \arg \max_{a \in A} Q(a) = \arg \max_{a \in A} \theta(a) =$

¹Note:This is a made up example. This is not the actual expected efficacies of the various treatment options for a broken toe

- True (unknown) Bernoulli parameters for each arm/action
- Surgery: $\theta_1 = .95$ / Taping: $\theta_2 = .9$ / Nothing: $\theta_3 = .1$
- Thompson sampling:
- Place a prior over each arm's parameter. Here choose $\theta_i \sim \text{Beta}(1,1)$
 - **1** Per arm, sample a Bernoulli θ given prior: 0.3 0.5 0.6
 - 2 Select $a_t = \arg \max_{a \in A} Q(a) = \arg \max_{a \in A} \theta(a) = 3$
 - 3 Observe the patient outcome's outcome: 0
 - Update the posterior over the $Q(a_t) = Q(a^3)$ value for the arm pulled

- True (unknown) Bernoulli parameters for each arm/action
- Surgery: $\theta_1 = .95$ / Taping: $\theta_2 = .9$ / Nothing: $\theta_3 = .1$
- Thompson sampling:
- Place a prior over each arm's parameter. Here choose $\theta_i \sim \text{Beta}(1,1)$
 - Sample a Bernoulli parameter given current prior over each arm Beta(1,1), Beta(1,1), Beta(1,1): 0.3 0.5 0.6
 - 2 Select $a_t = \arg \max_{a \in A} Q(a) = \arg \max_{a \in A} \theta(a) = 3$
 - Observe the patient outcome's outcome: 0
 - **1** Update the posterior over the $Q(a_t) = Q(a^1)$ value for the arm pulled
 - Beta (c_1, c_2) is the conjugate distribution for Bernoulli
 - If observe 1, $c_1 + 1$ else if observe 0 $c_2 + 1$
 - New posterior over Q value for arm pulled is:
 - **1** New posterior $p(Q(a^3)) = p(\theta(a_3)) = Beta(1,2)$

- True (unknown) Bernoulli parameters for each arm/action
- ullet Surgery: $heta_1 = .95$ / Taping: $heta_2 = .9$ / Nothing: $heta_3 = .1$
- Thompson sampling:
- Place a prior over each arm's parameter. Here choose $\theta_i \sim \text{Beta}(1,1)$
 - Sample a Bernoulli parameter given current prior over each arm Beta(1,1), Beta(1,1), Beta(1,1): 0.3 0.5 0.6
 - 2 Select $a_t = \arg \max_{a \in A} Q(a) = \arg \max_{a \in A} \theta(a) = 1$
 - 3 Observe the patient outcome's outcome: 0
 - New posterior $p(Q(a^1)) = p(\theta(a_1) = Beta(1, 2)$

- True (unknown) Bernoulli parameters for each arm/action
- Surgery: $\theta_1 = .95$ / Taping: $\theta_2 = .9$ / Nothing: $\theta_3 = .1$
- Thompson sampling:
- Place a prior over each arm's parameter. Here choose $\theta_i \sim \text{Beta}(1,1)$
 - Sample a Bernoulli parameter given current prior over each arm Beta(1,1), Beta(1,1), Beta(1,2): 0.7, 0.5, 0.3

- True (unknown) Bernoulli parameters for each arm/action
- Surgery: $\theta_1 = .95$ / Taping: $\theta_2 = .9$ / Nothing: $\theta_3 = .1$
- Thompson sampling:
- Place a prior over each arm's parameter. Here choose $\theta_i \sim \text{Beta}(1,1)$
 - Sample a Bernoulli parameter given current prior over each arm Beta(1,1), Beta(1,1), Beta(1,2): 0.7, 0.5, 0.3
 - ② Select $a_t = \arg \max_{a \in A} Q(a) = \arg \max_{a \in A} \theta(a) = 1$
 - Observe the patient outcome's outcome: 1
 - New posterior $p(Q(a^1)) = p(\theta(a_1)) = Beta(2,1)$

- True (unknown) Bernoulli parameters for each arm/action
- Surgery: $\theta_1 = .95$ / Taping: $\theta_2 = .9$ / Nothing: $\theta_3 = .1$
- Thompson sampling:
- Place a prior over each arm's parameter. Here choose $\theta_i \sim \text{Beta}(1,1)$
 - Sample a Bernoulli parameter given current prior over each arm Beta(2,1), Beta(1,1), Beta(1,2): 0.71, 0.65, 0.1
 - **2** Select $a_t = \arg \max_{a \in A} Q(a) = \arg \max_{a \in A} \theta(a) = 1$
 - Observe the patient outcome's outcome: 1
 - New posterior $p(Q(a^1)) = p(\theta(a_1) = Beta(3, 1)$

- True (unknown) Bernoulli parameters for each arm/action
- Surgery: $\theta_1 = .95$ / Taping: $\theta_2 = .9$ / Nothing: $\theta_3 = .1$
- Thompson sampling:
- Place a prior over each arm's parameter. Here choose $\theta_i \sim \text{Beta}(1,1)$
 - Sample a Bernoulli parameter given current prior over each arm Beta(2,1), Beta(1,1), Beta(1,2): 0.75, 0.45, 0.4
 - ② Select $a_t = \arg \max_{a \in A} Q(a) = \arg \max_{a \in A} \theta(a) = 1$
 - 3 Observe the patient outcome's outcome: 1
 - New posterior $p(Q(a^1)) = p(\theta(a_1)) = Beta(4, 1)$

- Surgery: $\theta_1 = .95$ / Taping: $\theta_2 = .9$ / Nothing: $\theta_3 = .1$
- How does the sequence of arm pulls compare in this example so far?

Optimism	TS	Optimal	Regret Optimism	Regret TS
a^1	a^3			
a^2	a^1			
a^3	a^1			
a^1	a^1			
a^2	a^1			

- Surgery: $\theta_1 = .95$ / Taping: $\theta_2 = .9$ / Nothing: $\theta_3 = .1$
- Incurred regret?

Optimism	TS	Optimal	Regret Optimism	Regret TS
a^1	a^3	a^1	0	0
a^2	a^1	a^1	0.05	
a^3	a^1	a^1	0.85	
a^1	a^1	a^1	0	
a^2	a^1	a^1	0.05	

On to General Setting for Thompson Sampling

 Now we will see how Thompson sampling works in general, and what it is doing

Today

- Bandits and Probably Approximately Correct
- Bayesian bandits
- Thompson sampling
- Bayesian Regret

Probability Matching

- Assume have a parametric distribution over rewards for each arm
- **Probability matching** selects action *a* according to probability that *a* is the optimal action

$$\pi(a \mid h_t) = \mathbb{P}[Q(a) > Q(a'), \forall a' \neq a \mid h_t]$$

- Probability matching is optimistic in the face of uncertainty
 - Uncertain actions have higher probability of being max
- Can be difficult to compute probability that an action is optimal analytically from posterior
- Somewhat incredibly, a simple approach implements probability matching

Thompson Sampling

- 1: Initialize prior over each arm a, $p(\mathcal{R}_a)$
- 2: **for** iteration= $1, 2, \ldots$ **do**
- 3: For each arm a **sample** a reward distribution \mathcal{R}_a from posterior
- 4: Compute action-value function $Q(a)=\mathbb{E}[\mathcal{R}_a]$
- 5: $a_t = \arg \max_{a \in \mathcal{A}} Q(a)$
- 6: Observe reward *r*
- 7: Update posterior $p(\mathcal{R}_a|r)$ using Bayes Rule
- 8: end for

Thompson sampling implements probability matching

• Thompson sampling:

$$egin{aligned} \pi(a \mid h_t) &= \mathbb{P}[Q(a) > Q(a'), orall a'
eq a \mid h_t] \ &= \mathbb{E}_{\mathcal{R} \mid h_t} \left[\mathbb{1}(a = rg \max_{a \in \mathcal{A}} Q(a))
ight] \end{aligned}$$

Framework: Regret and Bayesian Regret

- How do we evaluate performance in the Bayesian setting?
- Frequentist regret assumes a true (unknown) set of parameters

$$\textit{Regret}(\mathcal{A}, T; \theta) = \sum_{t=1}^{T} \mathbb{E}\left[Q(a^*) - Q(a_t) \leq \sum_{t=1}^{T} U_t(a_t) - Q(a_t)|\theta\right]$$

Bayesian regret assumes there is a prior over parameters

$$BayesRegret(A, T; \theta) =$$

$$\mathbb{E}_{ heta \sim p_{ heta}} \left[\sum_{t=1}^T \mathbb{E} \left[Q(a^*) - Q(a_t) \leq \sum_{t=1}^T U_t(a_t) - Q(a_t) | heta
ight]
ight]$$

Thompson sampling implements probability matching

- Thompson sampling(1929) achieves Lai and Robbins lower bound
- Bounds for optimism are tighter than for Thompson sampling
- But empirically Thompson sampling can be extremely effective

Thompson Sampling for News Article Recommendation (Chapelle and Li, 2010)

- Contextual bandit: input context which impacts reward of each arm, context sampled iid each step
- Arms = articles
- Reward = click (+1) on article (Q(a)=click through rate)

Check Your Understanding: Thompson Sampling and Optimism

- Consider an online news website with thousands of people logging on each second. Frequently a new person will come online before we see whether the last person has clicked (or not). Select all that are true:
 - Thompson sampling would be better than optimism here, because optimism algorithms are deterministic and would select the same action until we get feedback (click or not)
 - Optimism algorithms would be better than TS here, because they have stronger regret bounds
 - Thompson sampling could cause much worse performance than optimism if the initial prior is very misleading.
 - Mot sure

Check Your Understanding: Thompson Sampling and Optimism **Solutions**

- Consider an online news website with thousands of people logging on each second. Frequently a new person will come online before we see whether the last person has clicked (or not). Select all that are true:
 - Thompson sampling would be better than optimism here, because optimism algorithms are deterministic and would select the same action until we get feedback (click or not)
 - Optimism algorithms would be better than TS here, because they have stronger regret bounds
 - Thompson sampling could cause much worse performance than optimism if the initial prior is very misleading.
 - On the sure of the sure of
- Solution: (1) T (2) F (3) T. Consider prior Beta(100,1) for a Bernoulli arm with parameter 0.1. Then the prior puts large weight on high values of theta for a long time.

Today

- Bandits and Probably Approximately Correct
- Bayesian bandits
- Thompson sampling
- Bayesian Regret

Where We are

- Last time: Bandits and regret and UCB (fast learning)
- This time: Bayesian bandits (fast learning)
- Next time: MDPs (fast learning)

Bayesian Regret Bounds for Thompson Sampling

Regret(UCB,T)

$$extit{BayesRegret}(extit{TS}, extit{T}) = extit{E}_{ heta \sim p_{ heta}} \left[\sum_{t=1}^{T} f^*(extit{a}^*) - f^*(extit{a}_t)
ight]$$

 Posterior sampling has the same (ignoring constants) regret bounds as UCB