Portfolio Dynamics and the Supply of Safe Securities

David Xiaoyu Xu

Southern Methodist Universtiy

May 05, 2023

OFR Rising Scholars Conference

- ▶ Financial intermediaries transform risky assets into safe liabilities.
- ▶ This paper's context: securitization backed by loan portfolios.
- ▶ New idea: dynamic collateral management helps create *larger* safe tranches.

- ▶ Financial intermediaries transform risky assets into safe liabilities.
- ▶ This paper's context: securitization backed by loan portfolios.
- ▶ New idea: dynamic collateral management helps create *larger* safe tranches.

♦ Senior tranche is not safe if it is too big

- ▶ Financial intermediaries transform risky assets into safe liabilities.
- ▶ This paper's context: securitization backed by loan portfolios.
- ▶ New idea: dynamic collateral management helps create *larger* safe tranches.

- ♦ Senior tranche is not safe if it is too big
- Trading: replace bad loans with good loans
 - ⋆ Portfolio's cash flow uncertainty ↓

- ▶ Financial intermediaries transform risky assets into safe liabilities.
- ▶ This paper's context: securitization backed by loan portfolios.
- ▶ New idea: dynamic collateral management helps create *larger* safe tranches.

- ♦ Senior tranche is not safe if it is too big
- ⋄ Trading: replace bad loans with good loans
 - ⋆ Portfolio's cash flow uncertainty ↓
- \diamond Ex ante: commitment \Rightarrow a bigger safe tranche

- ▶ Financial intermediaries transform risky assets into safe liabilities.
- ▶ This paper's context: securitization backed by loan portfolios.
- ▶ New idea: dynamic collateral management helps create *larger* safe tranches.

- Senior tranche is not safe if it is too big
- ⋄ Trading: replace bad loans with good loans
 - ⋆ Portfolio's cash flow uncertainty ↓
- \diamond Ex ante: commitment \Rightarrow a bigger safe tranche
- $\diamond\;$ Equity holders enjoy a lower cost of capital

The Idea in Practice

- ▶ Leveraged loans: junk-rated, syndicated corporate loans
- Collateralized loan obligations (CLOs):
 - □ Create AAA securities (65%) backed by dynamic loan portfolios.
 - □ Trade loans with loan funds (mutual and hedge funds) that also hold loans.

Research Questions

1. Size of safe tranches backed by dynamic portfolios?

2. Why do institutions have similar loans but distinct financing?

3. Does trading matter for the total supply of safe debt?

1. Size of safe tranches backed by dynamic portfolios?

2. Why do institutions have similar loans but distinct financing?

3. Does trading matter for the total supply of safe debt?

- 1. Size of safe tranches backed by dynamic portfolios?
 - Jointly determined with endogenous loan prices.
- 2. Why do institutions have similar loans but distinct financing?

3. Does trading matter for the total supply of safe debt?

- 1. Size of safe tranches backed by dynamic portfolios?
 - Jointly determined with endogenous loan prices.
- 2. Why do institutions have similar loans but distinct financing?
 - Coexistence of CLOs and loan funds arises in equilibrium.
- 3. Does trading matter for the total supply of safe debt?

- 1. Size of safe tranches backed by dynamic portfolios?
 - Jointly determined with endogenous loan prices.
- 2. Why do institutions have similar loans but distinct financing?
 - ♦ Coexistence of CLOs and loan funds arises in equilibrium.
- 3. Does trading matter for the total supply of safe debt?
 - Price pressure from CLOs induces loan funds to invest more, increasing total collateral and safe debt.
- 4. Is the market equilibrium efficient?

- 1. Size of safe tranches backed by dynamic portfolios?
 - Jointly determined with endogenous loan prices.
- 2. Why do institutions have similar loans but distinct financing?
 - ♦ Coexistence of CLOs and loan funds arises in equilibrium.
- 3. Does trading matter for the total supply of safe debt?
 - Price pressure from CLOs induces loan funds to invest more, increasing total collateral and safe debt.
- 4. Is the market equilibrium efficient?
 - There can be an underproduction of safe debt.

Stylized Facts

Model

Equilibrium

Efficiency and Policy Implications

Fact 1: CLOs and Loan Funds Coexist

Top 30 leveraged loan asset managers by AUM:

Fact 2: CLOs Face Binding Collateral Constraints

Empirical distribution: the slackness of senior tranche over-collateralization constraint:

Persistently binding collateral constraints: CLOs fully use safe debt capacity.

Fact 3: Binding Constraints Force CLOs to Replace Loans

CLOs' secondary market trades around the onset of COVID-19:

Fact 4: Portfolio Substitution Improves Collateral Quality

Compare with counterfactual portfolio quality:

Fact 4: Portfolio Substitution Improves Collateral Quality

Compare with counterfactual portfolio quality:

► Trading offsets 60% of quality deterioration.

Fact 5: Price Pressure from CLOs

(a) Leveraged Loans

Fact 5: Price Pressure from CLOs

(a) Leveraged Loans

(b) High-Yield Bonds

Stylized Facts

Model

Equilibrium

Efficiency and Policy Implications

Investors and Financial Institutions

- ▶ $t \in \{0, 1, 2\}$, state $\omega \in \Omega = \{good, bad, disaster\}$ at t = 2
- ▶ Investor utility: $U = C_0 + \mathbb{E}_0[C_1 + C_2] + \gamma A$
 - \square A: safe debt, which pays face value at t=2 with certainly
 - \square γ : non-pecuniary benefit from holding safe debt (e.g., regulatory advantage)
 - \Box Endowed with perishable goods at t=0, but cannot make loans
- ▶ A continuum of risk-neutral institutions: $\mathcal{I} = [0, 1]$
 - \Box Can make loans for a risky payoff at t=2
 - \Box Need external financing at t=0
 - Flexible capital structure: can issue any equity and debt securities
 - \Box Ex-ante identical except for safe debt issuance cost ξ_i
- ▶ Investors take securities prices as given
 - $\hfill\Box$ Issuing safe debt lowers funding costs because $\gamma>0$

Investment Technology

- ▶ Institution i makes x_i loans at a convex effort cost $c(x_i) x_i$ at t = 0
- ▶ Two loan quality types $j \in \{h, l\}$

- ▶ Loan quality: $\tilde{x}_{i,l}$ become type l, iid drawn from $[0, \bar{x}_l]$
 - ☐ Key concern: which loans are low-quality is unknown before negative news
- ▶ Institutions can credibly promise $a_i \leq \min$ {portfolio payoff} by trading at t = 1
 - \square Endogenous loan prices q_l, q_h affect collateral constraints

Secondary Market Trades

▶ Negative news: binding constraints trigger trades to increase min {payoff}

Lemma 1

 $\frac{q_l}{q_h}$ < the ratio of fundamentals.

- Replacing low-quality loans generates price pressure
- ▶ Pecuniary externality: issuing safe debt
 - \square Makes selling l and buying h **costly**, and the opposite **profitable** (ex post)
 - □ Tightens collateral constraints: everyone's safe debt capacity drops (ex ante)

Stylized Facts

Model

Equilibrium

Efficiency and Policy Implications

Equilibrium Definition

- ▶ Institutions, as internal equity holders, choose lending, financing, and trading to maximize their own payoffs.
 - \Box Can credibly commit to portfolio choices at t=1.
 - \square Rationally anticipate future trades at t=0.
- ▶ Market clears: balance sheets and loan prices jointly determined.

Market Equilibrium of Financial Institutions

Proposition 1

There is a unique equilibrium with cutoff $\lambda^{CE} \in (0,1)$ such that: $i < \lambda^{CE}$ fully use safe debt capacity, and $i > \lambda^{CE}$ issue no safe debt.

Safe debt supply is endogenous at both the intensive and extensive margins.

Market Equilibrium of Financial Institutions

Corollary 1.1

Dynamic collateral management increases the total supply of safe debt beyond the static benchmark: $A^{CE} > A^{STA}$.

Lending channel: CLOs' price pressure \Rightarrow profitable liquidity provision \Rightarrow loan funds lend more.

Stylized Facts

Model

Equilibrium

Efficiency and Policy Implications

Compare with Social Planner's Allocation

Proposition 2 (Constrained Inefficiency)

There market has excessive entry into operating CLOs, underinvestment by loan funds, and an underproduction of safe debt.

A Regulation that Reduced CLOs

- ► Credit Risk Retention Rule (2014)
 - □ Requires CLO managers to contribute 5% of capital to the CLOs they operate.
- ▶ Resistance from asset managers
 - ☐ Main complaint: imposes a large cost on CLO managers.
- Practitioners won a lawsuit against the Fed and SEC
 - □ And they won in 2018: CLO managers got exempted from the rule.
 - ☐ Still unclear how such a policy affects the market equilibrium.

Unintended Consequence of Policy Intervention

Proposition 3

Imposing an entry cost on issuing safe debt exacerbates the underproduction of safe debt.

Channel: less price pressure \Rightarrow providing liquidity less profitable \Rightarrow loan funds lend even less.

Takeaways

▶ Dynamic collateral management helps individual institutions create more safe debt. ☐ Tradeoff: cheaper funding v.s. replacing deteriorated assets. ▶ The resulting price pressure drives the market equilibrium. "CLOs" and "loan funds" coexist and trade as counterparties. □ Trading can raise total lending and safe debt supply. ▶ Competitive market tends to be socially inefficient. Excessive entry into operating CLOs, but the market underproduces AAA securities. ☐ Simple policy intervention can make things even worse.

□ Commercial real estate loans, crypto-backed lending platforms, etc.

▶ The idea goes beyond the corporate loan market.

19 / 19