

PCC3101 – Geometria Gráfica para Engenharia

Geometria Cotada

- O que é ?
 - Uma forma de representação de elementos geométricos do espaço 3D no plano (2D);

Geometria Cotada

- Para que serve ?
 - Representação de elementos 3D no plano (folha de papel, tela do computador, etc.);
 - Solução de problemas espaciais;
 - Fundamentação para Superfícies Topográficas

Projeção

- Como fazer $3D \rightarrow 2D$?
 - através de uma projeção !

Geometria Cotada

Projeção

- Elementos básicos:
 - Plano de projeção (¶);

Centro de projeção (O);

Objetos a serem projetados

Raios visuais ou projetantes

Projeção Cônica

- Centro de projeção "próximo" do plano de projeção;
- Raios visuais formam um "cone";

Projeção Cilíndrica

Se o centro de projeção for afastado...

4

Projeção Cilíndrica

- ... até muito longe (→∞)...
- os raios visuais formam um cilindro.

- É o tipo de proj. usada em Geom. Cotada
 - Projeção Cilíndrica +
 - Direção de projeção ortogonal ao plano de projeção

Representação em G. Cotada

Falta $z_p ! \rightarrow cota$

4

Representação em G. Cotada

Exemplos

Unidade

- 9,2 o quê? 15 e 6?
- É necessário especificar uma unidade;

Escala

- Sempre cabe tudo na folha ? Não !
- É necessário adotar uma escala;
- Escalas de redução
 - **1:2**
 - **1:10**
 - **1:50**
 - **1:250**
 - **1:1000**
 - Etc.

- Escalas de ampliação
 - **2:1**
 - **10:1**
 - Etc.
- Escala Natural
 - **1:1**

4

Distâncias

$$DH=0,2m * 50 = 10 m$$

$$DV = 15m - 6m = 9 m$$

$$D = \sqrt{(DH^2 + DV^2)} =$$
= $\sqrt{(10^2 + 9^2)} =$
= 13,45 m

Exercício 3.2: São dados os pontos $A_1^{2,3}$ e $B_1^{7,5}$ (ignore C_1 , por enquanto). Determine:

- •Distância horizontal entre A e B = _____
- •Distância vertical entre A e B = _____
- •Distância entre A e B = _____

Unidade: metro escala: 1:100

$$A_1^{2,3}$$

$$B_1^{7,5}$$

Exercício 3.3: Ao realizar o exercício anterior, você utilizou o Teorema de Pitágoras para calcular distância entre os pontos **A** e **B**? Existe outra maneira de determinar esta distância sem usar o teorema? Tente elaborar um procedimento para determinar GRAFICAMENTE a distância entre os pontos **A** e **B**. Aplique o procedimento elaborado abaixo e verifique se a distância determinada graficamente é igual à distância calculada algebricamente no exercício 3.2 (ignore a projeção **C**₁, por enquanto):

$$A_1^{2,3}$$
 C_1 $B_1^{7,5}$ $+$ $+$

4

Inclinação ou Mergulho

4

Inclinação ou Mergulho

Método gráfico para determinar inclinação de uma reta

Declividade

Exercício 3.4: São dados os pontos $A_1^{1,5}$ e $B_1^{4,3}$. Determine a inclinação da reta AB por método gráfico. Calcule sua declividade.

Unid.: metro escala: 1:100

Intervalo

 Distância horizontal percorrida quando se sobe ou desce 1 unidade

Pertinência ponto-reta

- Para que um ponto pertença a uma reta, é necessário que:
 - a projeção do ponto pertença à projeção da reta;
 - a cota do ponto seja igual à cota do ponto da reta cuja projeção coincida com a projeção do ponto dado.

Pertinência ponto-reta

Determinação Analítica

$$\frac{4,3-1,7}{38} = \frac{Z_M - 1,7}{26}$$

$$Z_M = 3,48 \, m$$

Pertinência ponto-reta

- Determinação Gráfica
 - Usando o método gráfico para graduação...

Graduação de Retas

Graduar: marcar pontos de cota inteira

Graduação de Retas

Método Gráfico 1

de cota inteira

Graduação de Retas

Método Gráfico 2

Exercício 3.5: Determine a cota do ponto C sabendo-se que ele pertence à reta AB:

Unidade: metro escala: 1:100

$$A_1^{2,3} +$$

$$C_1 + B_1^{7,5}$$

Exercício 3.6: São dados os pontos $C_1^{2,7}$ e $D_1^{9,6}$. Sabendo-se que a distância horizontal entre eles é 10 metros:

- .Determine a escala da folha cotada: _____
- .Graduar a reta CD por método gráfico.
- .Determine seu intervalo: i =_____
- . Verifique se o ponto E pertence a reta CD (□sim □não). Justifique.
- •Determine graficamente o ponto $F^{7,3}$ que pertence a reta CD.

Unidade: metro

$$C_1^{2,7}$$

$$E_1^{11,9}$$
 $D_1^{9,6}$

Exercício 3.7: São dados os pontos $A_1^{5,2}$ e $B_1^{13,5}$. Gradue a reta AB por método gráfico e determine seu intervalo.

Unidade: metro escala: 1:50

$$B_1^{13,5}$$

$$A_1^{5,2}$$

Retas Concorrentes

- Duas retas são concorrentes quando:
 - Suas projeções no plano horizontal π_1 têm um ponto comum e
 - nesse ponto, ambas as retas têm a mesma cota.

Retas Concorrentes

Método gráfico de verificação de concorrência

Teorema 1

Teorema da Conservação do Paralelismo:

"NA PROJEÇÃO CILÍNDRICA, O PARALELISMO SE CONSERVA".

Retas Paralelas

- Duas retas são paralelas quando:
 - suas projeções são paralelas <u>e</u>
 - seus intervalos são iguais <u>e</u>
 - suas graduações são concordantes (têm o mesmo sentido de crescimento).

Teorema 2

Teorema da Conservação do Perpendicularismo:

"NA PROJEÇÃO CILÍNDRICA, RETAS ORTOGONAIS / PERPENDICULARES SÓ CONSERVAM O PERPENDICULARISMO QUANDO PELO MENOS UMA DELAS FOR PARALELA AO PLANO DE PROJEÇÃO".

Retas Perpendiculares

Retas Perpendiculares

Verificação da ortogonalidade

FIM