MATH32032 2021 SOLUTIONS+MARKING SCHEME

Notice to the Referee. In order to make collusion more difficult, several versions of this take-home exam paper may be prepared, with minor differences between them: e.g., a different generator matrix, different numerical values, etc. Each student will be able to download and attempt only one particular version of the paper.

A1. Let C be the linear code over the field $\mathbb{F}_5 = \{0, 1, 2, 3, 4\}$ generated by the matrix

$$G = \begin{bmatrix} 1 & 0 & 2 & 3 & 0 & 1 \\ 0 & 1 & 3 & 1 & 0 & 2 \\ 2 & 0 & 4 & 0 & 0 & 4 \end{bmatrix}.$$

For each of the statements about the code C, given below, determine if the statement is true and briefly justify your answer. Marks will not be given for true/false answers without any justification. [*ILO2*, basic]

(a) $\dim C = 6$.

Answer. [straightforward exercise similar to examples done in class -2]

False: $\dim C$ is the number of rows in the generator matrix, which is 3 and not 6.

(b) C is a code of weight 4.

Answer. [straightforward exercise similar to examples done in class -2]

False: the bottom row $\underline{\mathbf{r}}_3$ of G is a codevector of C of weight 3 so $w(C) \leq 3$.

(Note that "w(C)=3" is incorrect as $2\underline{\mathbf{r}}_1-\underline{\mathbf{r}}_2$ has weight 2.)

(c) $d(C^{\perp}) = 2$.

Answer. [straightforward exercise similar to examples done in class — 2]

False: since the fifth column of G is zero, the dual code C^{\perp} contains the vector 000010 of weight 1, so $d(C^{\perp}) = w(C^{\perp}) = 1$.

(d) C is a cyclic code.

Answer. [$straightforward\ exercise\ similar\ to\ examples\ done\ in\ class\ --2\]$

False: the fifth symbol of every codevector of C is 0. If C were cyclic, then due to cyclic shifts this would imply that all symbols of every codevector are zero, which is manifestly untrue.

(e) $\sum_{\mathbf{c} \in C} w(\underline{\mathbf{c}}) = 600.$

Answer. [straightforward exercise similar to examples done in class -2]

False: by the Average Weight Equation, the average weight of a codevector of C is $(n-z)(1-q^{-1})$ where n-z is the number of non-zero columns of G and q=5. This gives $5\times (1-1/5)=4$. The number of codevectors is $5^3=125$ so the sum of weights is $125\times 4=500\neq 600$.

[10 marks]