

A Level · OCR · Physics

Structured Questions

Charging & Discharging Capacitors

Capacitor Charge & Discharge / Capacitor Charge & Discharge Equations / Modelling Capacitor Discharge

Scan here to return to the course

or visit savemyexams.com

Total Marks /16 **1 (a)** The diagram below shows a circuit to charge a capacitor.

The electromotive force (e.m.f.) *E* of the cell is 1.48 V and it has negligible internal resistance. The resistance of the resistor is 120 $k\Omega$ and the capacitance of the capacitor is 2000 μ F. At time t = 0 the capacitor is uncharged. The switch is closed at time t = 0.

Calculate the time *t* when the potential difference across the capacitor is 1.00 V.

t =	s [4]
	(4 marks)

(b) A capacitor of capacitance *C* is connected across a strip of conductive paper.

The switch is moved from **X** to **Y**, and the time *t* for the potential difference across the capacitor to halve is measured.

The time *t* is given by the expression

$$t = (Ck \ ln 2) \times L$$

where *k* is the resistance of the conductive paper per unit length and *L* is the length of the conductive paper.

The value of C is 1.2×10^{-3} F.

In an experiment, *L* is changed and *t* measured.

The data points are plotted on a *t* against *L* grid as shown below.

Draw a straight line of best fit through the data points, and use the gradient of this line to determine *k*.

k =	Ω m ⁻¹ [4]
	(4 marks)

2 (a) A student wishes to determine the permittivity ε of paper using a capacitor made in the laboratory. The capacitor consists of two large parallel aluminium plates separated by a very thin sheet of paper. The capacitor is initially charged to a potential difference V_0 using a battery. The capacitor is then discharged through a fixed resistor of resistance 1.0 M Ω . The potential difference *V* across the capacitor after a time *t* is recorded by a data-logger. The student uses the data to draw the lnV against t graph shown in Fig. 22.

Fig. 22

Show that the magnitude of the gradient of the line shown in Fig. 22 is equal to

where *C* is the capacitance of the capacitor and *R* is the resistance of the resistor.

[2] (2 marks)

(b) Use Fig. 22 to determine the capacitance *C* of the capacitor. Describe how the student can then use this value of C to determine a value for ε . In your description, mention any additional measurements required on the capacitor.

[6]

(6 mayle)
(6 marks)

