Contrôle d'attitude des satellites

Automne 2025 – Politech' Sophia – MAM5 Partie 2a – Le PID pour le contrôle de l'attitude d'un satellite Damiana Losa – Thales Alenia Space

La dynamique du satellite

■ Dynamique d'attitude 1 axe (axe Y de tangage ou picth) du satellite aux « petits angles »

$$J_y \ddot{\theta} = C_{ext} + T_{cmd} = C_{ext} - \dot{H}_{roue}$$

■ Représentation par fonction de transfert, obtenue par transformée de Laplace

$$G(s) = \frac{\Theta(s)}{T_{cmd}(s) + C_{ext}(s)} = \frac{1}{J_{v}s^{2}}$$

Le correcteur PID (1/2)

Structure d'un correcteur PID (fonction de transfert)

$$K(s) = K_P + \frac{K_D s}{1 + \tau s} + \frac{K_I}{s}$$

- Le choix des coefficients du PID est fait généralement par placement de pôles
 - ✓ On calcule les gains K_P et K_D pour imposer un comportement de type second ordre à la boucle fermée, de pulsation ω_n et d'amortissement ξ (voir dernier TD).

$$K_P = J_y \omega_n^2$$
 et $K_D = 2\xi J_y \omega_n$

✓ Ajout d'un terme intégral pour annuler l'erreur statique vis-à-vis de perturbations constantes: on montre que pour préserver la stabilité, K_I doit vérifier :

$$K_I < K_P K_D / J_y$$

✓ On choisit généralement $K_I = K_P \omega_n / 10$ pour découplage fréquentiel.

Le correcteur PID (2/2)

Structure d'un correcteur PID (formulation temporelle)

$$T_{cmd}(t) = -K_P e(t) - K_I \int_{t0}^{t} e(\tau) d\tau - K_D \frac{de(t)}{dt} = J_{roue} \dot{\Omega}$$

- L'action proportionnelle : $K_P e(t) \rightarrow K_P E(s)$
 - augmente la précision et la rapidité
 - ... au détriment de la stabilité
- L'action intégrale : $K_I \int_{t_0}^t e(\tau) d\tau$ → $\frac{K_I}{s} E(s)$
 - annule l'erreur statique vis-à-vis de la consigne et vis-à-vis des perturbations constantes en aval du régulateur
 - avec un effet déstabilisant
- L'action dérivée : $K_D \frac{de(t)}{dt}$ → $K_D s E(s)$ [Rappel : $K_D s / (1 + \tau s) E(s)$ pour la faisabilité physique]
 - avec effet stabilisant

- Même si encore largement utilisé, il n'existe pas que la façon de contrôler l'attitude via un correcteur Proportionnel Intégral Dérivatif.
- Autres méthodes de contrôle d'attitude :
 - ✓ Placement de pôles,
 - ✓ Commande optimale,
 - ✓ Commande Hinfini,
 - ✓ Inversion dynamique,
 - ✓ Méthodes robustes,
 - ✓ Commande prédictive,
 - ✓ Commande adaptative,

. .