Aula prática N.º 7

Objetivos

- Familiarização com o modo de funcionamento de um periférico com capacidade de produzir informação.
- Utilização da técnica de interrupção para detetar a ocorrência de um evento e efetuar o consequente processamento.
- Efetuar a conversão analógica/digital de um sinal de entrada e mostrar o resultado no sistema de visualização implementado anteriormente.

Introdução

Como foi já observado na aula prática anterior, quando o módulo A/D termina uma sequência de conversão gera um pedido de interrupção (ativa o bit **AD1IF** do registo **IFS1)**. Para que este pedido de interrupção tenha seguimento, o sistema de interrupções do microcontrolador terá que estar devidamente configurado, de modo a que, na ocorrência do evento de fim de conversão, a rotina de serviço à interrupção (RSI) seja executada.

Para isso, para além das configurações do módulo A/D, já efetuadas anteriormente, é ainda necessário configurar o sistema de interrupções, procedendo do seguinte modo:

1. configurar o nível de prioridade das interrupções geradas pelo módulo A/D – registo IPC6¹, nos 3 bits AD1IP; terá que ser escrito um valor entre 1 e 6; o valor 7, a que corresponde a prioridade máxima, não deve ser usado; para o valor 0 os pedidos de interrupção nunca são aceites, o que equivale a desativar essa fonte de interrupção:

```
IPC6bits.AD1IP = 2; // configure priority of A/D interrupts
```

2. fazer o *reset* de alguma interrupção pendente – registo **IFS1**, bit **AD1IF**;

```
IFS1bits.AD1IF = 0; // clear A/D interrupt flag
```

3. autorizar as interrupções geradas pelo módulo A/D – registo **IEC1**, bit **AD1IE**;

```
IEC1bits.AD1IE = 1; // enable A/D interrupts
```

4. ativar globalmente o sistema de interrupções;

```
EnableInterrupts(); // Macro defined in "detpic32.h"
```

A rotina de serviço à interrupção terá a seguinte estrutura:

O prefixo "_int_" indica ao compilador que se trata de uma rotina de serviço a uma interrupção. Com essa indicação, o compilador gera o código necessário para salvaguardar todos os registos que são usados pela RSI (prolog) e para repor o valor desses registos no final (epilog). "VECTOR" deve ser substituído pelo vetor associado à fonte de interrupção. Com essa informação, o compilador preenche a posição da tabela de endereços de interrupção correspondente ao vetor, com uma instrução de salto incondicional para o endereço da primeira instrução da RSI.

¹ A informação relativa a cada fonte de interrupção, nomeadamente o vetor associado e registos de configuração, está condensada na tabela das páginas 74 a 76 do PIC32MX5XX/6XX/7XX, Family Data Sheet (disponível no *moodle* de AC2).

Trabalho a realizar

No trabalho prático anterior fizemos a deteção do evento de fim de conversão do módulo A/D (ADC) por *polling*, isto é, num ciclo que espera pela passagem a 1 do bit **AD1IF**. O que se pretende agora é que o atendimento ao evento de fim de conversão seja feito por interrupção e não por *polling*.

1. O programa-esqueleto que se apresenta de seguida mostra a estrutura-base do programa para interagir com a ADC por interrupção, ainda numa versão simplificada. Na função main(), após as configurações iniciais, é dada ordem de conversão à ADC e de seguida o programa entra num ciclo infinito. Quando a ADC terminar a conversão gera uma interrupção e o programa salta para a rotina de serviço, e aí é feita a leitura e a impressão do valor convertido. Antes de terminar, a rotina de serviço dá nova ordem de conversão à ADC e regressa ao ciclo infinito do programa principal. Quando a ADC terminar a conversão gera novo pedido de interrupção e o processo repete-se (free run mode).

Neste primeiro exercício pretende-se que a ADC gere a interrupção ao fim de 1 conversão (SMPI=0).

A rotina de serviço à interrupção para interação com o módulo A/D e impressão do valor lido poderá ter a seguinte organização:

Guarde esta versão do seu programa para que possa ser usada na parte 2 deste guião.

2. Integre no programa anterior o sistema de visualização. Faça as alterações que permitam a visualização do valor da amplitude da tensão nos *displays* de 7 segmentos, em decimal. O programa deverá: i) efetuar 5 sequências de conversão A/D por segundo (frequência de amostragem de 5 Hz), cada uma delas com 8 amostras; ii) enviar informação para o sistema de visualização a cada 10 ms (frequência de refrescamento de 100 Hz). Utilize, na organização do seu código, o programa-esqueleto que se apresenta de seguida:

```
volatile unsigned char voltage = 0;
                                      // Global variable
int main (void)
{
  unsigned int cnt = 0;
  // Configure all (digital I/O, analog input, A/D module, interrupts)
  EnableInterrupts(); // Global Interrupt Enable
  while (1)
   {
      if(cnt == 0)
                        // 0, 200 ms, 400 ms, ... (5 samples/second)
         // Start A/D conversion
      // Send "voltage" value to displays
      cnt = (cnt + 1) % ??;
      // Wait ?? ms
   }
  return 0;
}
void _int_(VECTOR) isr_adc(void)
  // Calculate buffer average (8 samples)
  // Calculate voltage amplitude
  // Convert voltage amplitude to decimal and store the result in the
      global variable "voltage"
   // Reset AD1IF flag
}
```

Nota:

A palavra-chave **volatile** dá a indicação ao compilador que a variável pode ser alterada de forma não explicitada na zona de código onde está a ser usada (i.e., noutra zona de código, como por exemplo numa rotina de serviço à interrupção). Com esta palavra-chave força-se o compilador a, sempre que o valor da variável seja necessário, fazer o acesso à posição de memória onde essa variável reside, em vez de usar uma eventual cópia, potencialmente com um valor desatualizado, residente num registo interno do CPU.

Parte II

Na aula prática anterior mediu-se o tempo de conversão do conversor A/D. Sabendo esse tempo podemos agora estimar a latência no atendimento a uma interrupção no PIC32 (intervalo de tempo que decorre desde o pedido de interrupção até à execução da primeira instrução "útil" da rotina de serviço à interrupção). Para isso, vamos usar novamente o porto digital RD11 configurado como saída (disponível no ponto de teste INT4).

1. Retome o programa que guardou no final do exercício 1 da parte 1 e faça as seguintes alterações: i) no programa principal configure o porto RD11 como saída; ii) na rotina de serviço à interrupção desative o porto RD11 no início e ative-o imediatamente antes de dar ordem de início de conversão ao conversor A/D; iii) elimine o system call de impressão do valor lido (substitua-o por simples leitura para a variável "adc_value".

Execute o programa e, com um osciloscópio, meça o tempo durante o qual o porto RD11 permanece ao nível lógico 1 e tome nota desse valor. Se subtrair a esse tempo o tempo de conversão medido no trabalho prático anterior, obtém a latência do atendimento a uma interrupção no PIC32. Sabendo que a frequência do CPU é 40 MHz, poderá explicitar o resultado em ciclos de relógio (#cycles = latencia * 40E6).

Figura 1. Medição da latência no atendimento à interrupção da ADC.

2. Pretende-se agora estimar o *overhead* global do atendimento a uma interrupção no PIC32. Para isso, e para além da latência, temos ainda de considerar o tempo necessário para o regresso ao programa interrompido, essencialmente constituído pelo tempo necessário para repor o contexto salvaguardado no início da rotina de serviço à interrupção (*epilog*).

Para medir esse tempo podemos ativar o porto de saída no fim da rotina de serviço à interrupção (deve ser a última instrução dessa rotina) e desativar esse mesmo porto no ciclo infinito do programa principal. Meça, com o osciloscópio, o tempo durante o qual o porto **RD11** está ativo e expresse esse tempo em número de ciclos de relógio. Adicionando esse valor ao obtido no ponto anterior, obtém uma boa estimativa para o *overhead* global no atendimento a uma interrupção no PIC32.

Elementos de apoio

- Slides das aulas teóricas.
- PIC32 Family Reference Manual, Section 17 A/D Module.
- PIC32 Family Reference Manual, Section 08 Interrupts.
- PIC32MX5XX/6XX/7XX, Family Data Sheet, Pág. 74 a 76.

PDF criado em 21/04/2022