Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Группа М3215	К работе допущен		
Студент Каримов Максим Дмитриевич _	Работа выполнена 9.09.2024г		
Преподаватель Хвастунов Н.Н.	Отчет принят		

Рабочий протокол и отчет по лабораторной работе №1

Исследование распределения случайной величины

1. Цель работы.

Исследование распределения случайной величины на примере многократных измерений определённого интервала времени.

- 2. Задачи, решаемые при выполнении работы.
 - 1. Провести многократные измерения определенного интервала времени.
 - 2. Построить гистограмму распределения результатов измерения.
 - 3. Вычислить среднее значение и дисперсию полученной выборки.
 - 4. Сравнить гистограмму с графиком функции Гаусса с такими же как и у экспериментального распределения средним значением и дисперсией.
- 3. Объект исследования.

Случайное распределение реальных значений временных интервалов при замере интервалов в 10 секунд.

4. Метод экспериментального исследования.

Многократные прямые измерения. Выбирается устанавливаемый по часам или секундомеру промежуток времени T = 10c. Многократно устанавливая этот промежуток времени, проведено N = 50 измерений. Результат каждого измерения (показания цифрового хронометра) занесены во второй столбец Табл.1.

5. Рабочие формулы и исходные данные.

$$p(t) = \lim_{\substack{N o \infty \ \Delta t \to 0}} rac{\Delta N}{N \Delta t} = rac{1}{N} rac{dN}{dt}$$
 (1) - функция плотности $p(t) = rac{1}{\sigma \sqrt{2\pi}} \exp\left(-rac{(t - \langle t \rangle)^2}{2\sigma^2}
ight)$ (2) - функция плотности вероятности от (σ, t) $\langle t \rangle_N = rac{1}{N} (t_1 + t_2 + \ldots + t_N)$ (3) - матожидание замера времени t от N

$$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^N (t_i - \langle t \rangle_N)^2}$$
 (4) - выборочное среднеквадратичное отклонение от t $ho_{max} = \frac{1}{\sigma \sqrt{2\pi}}$ (5) - максимальное значение плотности вероятности $\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^N (t_i - \langle t \rangle_N)^2}$ (6) - среднеквадратичное отклонение среднего

 $\Delta t = t_{lpha,N} * \sigma_{\langle t \rangle}$ (7) - доверительный интервал для измеряемого в работе промежутка времени.

 $t_{\alpha,N}=2,01$ значение коэффициента Стьюдента при доверительной вероятности $\alpha=0,95$ и количестве измерений N=50.

6. Измерительные приборы.

	or remember of strate in processing						
№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора			
1	Цифровой секундомер			0,01c			
2	Часы		Весь циферблат				

7. Схема установки (*перечень схем, которые составляют Приложение 1*) <u>Не требуется</u>

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица 1. Результаты прямых измерений и отличие от среднего результата.

Nº	t _i , c	t_i - $\langle t \rangle_N$, c	$(t_i - \langle t \rangle_N)^2$, c^2
1	9,93	-0,03	0
2	9,97	0,01	0
3	10,08	0,12	0,01
4	9,94	-0,02	0
5	10,01	0,05	0
6	9,83	-0,13	0,02
7	9,75	-0,21	0,04
8	9,94	-0,02	0
9	9,88	-0,08	0,01
10	10	0,04	0
11	9,88	-0,08	0,01
12	9,94	-0,02	0
13	9,79	-0,17	0,03
14	10,13	0,17	0,03
15	10,2	0,24	0,06
16	9,93	-0,03	0
17	10,13	0,17	0,03
18	10	0,04	0
19	9,94	-0,02	0
20	9,74	-0,22	0,05
21	10	0,04	0
22	9,71	-0,25	0,06
23	9,94	-0,02	0
24	9,94	-0,02	0
25	10	0,04	0
26	10,06	0,1	0,01
27	9,94	-0,02	0
28	9,95	-0,01	0
29	10,07	0,11	0,01
30	10,06	0,1	0,01
31	9,68	-0,28	0,08
32	10,01	0,05	0
33	10	0,04	0
34	10,07	0,11	0,01
35	9,87	-0,09	0,01
36	10,07	0,11	0,01
37	10	0,04	0
38	9,93	-0,03	0
39	9,94	-0,02	0
40	9,95	-0,01	0

41	10,06	0,1	0,01
42	9,93	-0,03	0,00
43	9,67	-0,29	0,08
44	9,87	-0,09	0,01
45	10,2	0,24	0,06
46	9,94	-0,02	0
47	10,27	0,31	0,10
48	10,01	0,05	0
49	10,06	0,1	0,01
50	9,8	-0,16	0,03
			$\sigma_N=\overline{0,13c}$
	(t)n = 9,96c	$\sum_{i=1}^{N} (t_i - (t)_N) = 0,01c$	$\sigma_N=$ 0,13c $ ho_{max}=3.06c^{-1}$

 σ_N посчитана исходя из уравнения(4), уравнения(3) и результатов измерений t. N ρ_{max} посчитано исходя из уравнения(5) и значения.

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Таблица 2. Данные для построения гистограммы.

Границы Интервалов, с	ΔΝ	Δ N/N* Δ T, c^{-1}	t, c	ρ , c^{-1}
9,6	2	0,4	9,65	0,18
9,7	2			
9,7	4	0,8	9,75	0,83
9,8	4			
9,8	- 6	1,2	9,85	2,14
9,9	Ь			
9,9	16	3,2	9,95	3,05
10				
10	17	3,4	10,05	2,41
10,1	17			
10,1	4	4	10.15	1.05
10,2		0,8	10,15	1,05
10,2	1	0,2	10,25	0,25
10,3	1			

- 1) Разделил на 7 интервалов от t(min) до t(max)
- 2) Посчитал сколько измерений попадает в каждый интервалов
- 3) Посчитал значение плотности вероятности по формуле 3 столбец
- 4) 4 столбец это середины интервалов
- 5) Посчитал значения плотности вероятности по формуле (2) в точках взятых в 4 столбце 5 столбец

Таблица 3. Стандартные доверительные интервалы.

	Интервал, с		ΔΝ	Δ Ν/Ν	D
	ОТ	до	ΔΝ	ΔIN/IN	P
$\langle t \rangle N \pm \sigma n$	9,83	10,09	38	0	0,68
$\langle t \rangle N \pm 2\sigma n$	9,7	10,22	47	0,94	0,95

$\langle t \rangle N \pm 3\sigma n$	9,57	10,35	50	1	1
-------------------------------------	------	-------	----	---	---

В Табл.(3) построчно рассматриваются доверительные интервалы с произвольным радиусом, зависящим от σ и с центром в среднем арифметическом замеров .

- 1) 2 столбец это выбранные интервалы
- 2) кол-во результатов измерений, попадавших в эти интервалы 4 столбец
- 2) 4 столбец отношения соответствующих "попаданий" к общему числу замеров.
- 3) 5 столбец значения вероятностей попадания в данные интервалы. (Результаты эксперимента практически в точности воплощают теорию, описывающие значения вероятностей попадания в данные интервалы)
- 10. Расчет погрешностей измерений (для прямых и косвенных измерений).

Из формулы(7): $\sigma \langle t \rangle = 0$. 02c

Зная значение коэффициента Стьюдента для данного эксперимента (8) и среднеквадратичное отклонение от среднего, можно рассчитать радиус доверительного интервала случайной погрешности:

$$\Delta t = t \alpha, N \cdot \sigma \langle t \rangle = 0.04c$$

Зная значения обеих погрешностей, можно вычислить абсолютную погрешность результата измерений:

$$\Delta_t = \sqrt{(\Delta t)^2 + \left(\frac{2}{3}\Delta t\right)^2} = 0.04c$$

Отсюда следует значение относительной погрешности:

$$\varepsilon_t = \frac{\Delta_t}{(t)_N} * 100\% = 0.4\%$$

11. Графики (перечень графиков, которые составляют Приложение 2).

12. Окончательные результаты.

$$\langle t \rangle_N = (9.96 \pm 0, 04)$$
c; $\varepsilon t = 0.4\%$; $\alpha = 0.95$

13.Выводы и анализ результатов работы.

В ходе данного эксперимента, было подтверждено, что теория, описывающая нормально распределение измеряемых случайных величин вполне соответствуют действительности: теоретическая вероятность попадания замера в доверительные интервалы совпала с реальным соотношением попавших замеров ко всем замерам.

На Графике Гистограммы, есть соответствие с кривой распределения Гаусса, но есть небольшая погрешность, вероятней всего причиной этому послужила методика эксперимента: имея ориентир в виде секундной стрелки, и человек, который не всегда может остановить таймер вовремя, а именно в 10 секунд, немного нажимает заранее или позднее.

- 14.Дополнительные задания.
- 15.Выполнение дополнительных заданий.
- 16.Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).

Примечание:

- 1. Пункты 1-13 Протокола-отчета обязательны для заполнения.
- 2. Необходимые исправления выполняют непосредственно в протоколе-отчете.
- 3. Для построения графиков используют
- только миллиметровую бумагу.
- 4. Приложения 1 и 2 вкладывают в бланк протокола-отчета.

4