Contrôle de cours 2 (1 heure)

N.B. : Le barème est sur 20. Il y a en tout 4 questions de cours.

1	Espaces vectoriels
Co	urs 1 : familles de vecteurs (6 points)
	at E un espace vectoriel sur \mathbb{R} et $\mathcal{F}=(e_1,\cdots,e_n)$ une famille de n vecteurs de E $(n\in\mathbb{N}^*)$. (a) Donner la définition mathématique de : \mathcal{F} est une famille libre de E .
	(b) Donner la définition mathématique de : $\mathcal F$ est une famille liée de E .
	(c) Dans cette question uniquement, $E = \mathbb{R}_2[X]$. Parmi les vecteurs $P_1 = 2$, $P_2 = X + 1$, $P_3 = X$, $P_4 = X^2 + X$ $P_5 = X^2 + 2X + 2$, donner sans justifier d'une part une famille libre de E composée de 3 vecteurs et d'autre pa une famille liée de E composée de 3 vecteurs.
	2. On suppose que \mathcal{F} est une famille génératrice de E . (a) Que cela signifie-t-il? Vous devez répondre en utilisant des quantificateurs.
	(b) Dans cette question uniquement, $E = \mathbb{R}^2$. Proposer sans justifier une famille génératrice de E parmi les vecteu $u_1 = (1, -2), u_2 = (-2, 4), u_3 = (-1, 1)$ et $u_4 = (-1, -2)$.
	3. On suppose que e_1 est une combinaison linéaire de e_2 , e_3 et e_4 . Montrer rigoureusement que $\operatorname{Vect}\left((e_1,e_2,e_3,e_4)\right) = \operatorname{Vect}\left((e_2,e_3,e_4)\right)$

Cours 2 : bases (3 points)

	deux questions sont independantes. 1. Dans \mathbb{R}^3 , on considère la base $\mathcal{B} = (e_1 = (1,0,1), e_2 = (0,1,1), e_3 = (1,1,0))$. Rappeler à l'aide de quantificateurs ce que signifie « \mathcal{B} base de \mathbb{R}^3 ». Soit $u = (x,y,z) \in \mathbb{R}^3$ de coordonnées 1, 2 et 3 dans la base \mathcal{B} (en respectant l'ordre des vecteurs de \mathcal{B}). Trouver x, y et z .				
2	. Dans \mathbb{R}^3 , on considère $F = \text{Vect}(((1,2,0),(3,-2,1),(4,0,1)))$. Trouver la dimension de F . Justifier soigneusement.				
2 Co	Applications linéaires urs 3 : exemples (3 points)				
	ner, sans justifier, un exemple : 1) d'un endomorphisme non nul de \mathbb{R}^3 , 2) d'une application non linéaire de \mathbb{R}^3 vers \mathbb{R}^2 , une application linéaire non nulle de \mathbb{R}^3 vers $\mathbb{R}[X]$.				
• • • • •					
· · · · ·					

Cours 4: noyau et image (8 points)

1.	Donner la définition mathématique de $Ker(f)$.
2.	Donner la définition mathématique de $\text{Im}(f)$.
3.	$\textbf{Donner et démontrer} \text{ une condition nécessaire et suffisante sur } \operatorname{Ker}(f) \text{ et/ou } \operatorname{Im}(f) \text{ pour } \ast f \text{ injective } \ast$
ŧ.	$\textbf{Donner} \text{ une condition n\'ecessaire et suffisante sur } \operatorname{Ker}(f) \text{ et/ou } \operatorname{Im}(f) \text{ pour } \ast f \text{ surjective } \ast$
ŏ.	Donner sans justifier un exemple d'une application linéaire de \mathbb{R}^3 vers \mathbb{R}^3 tel que $\mathrm{Ker}(f) = \mathrm{Vect}(((1,0,-2)))$