DSA - LAB MCQs Exam

English 🗸

Result..

Total Score -	35
Correct Answer -	35
Wrong Answer -	35
Total Attempt-	70
Total Not Attempt -	0

Your performance

← Dashboard (https://www.parikshado.com/oldwebsite/dashboard)

1 of 70

which of the given options provides the increasing order of asymptotic complexity of functions f1,f2,f3and f4?

f1 (n)-2ⁿ

 $f2(n) = n^{3}(3/2)$

f3(n)=nLogn

f4(n) n[^] (Logn)

- 1 O f3,f2,f4,f1
- (**3**) (f2,f3,f1,f4

f3,f2,f4,f1

2 of 70

From following which is not the operation of data structure?

- 1 Operations that manipulate data in some way
- **2** Operations that perform a computation
- **3** Operations that check of syntax errors
- 4
- Operations that monitor an object for the occurance of a controlling event

Solution -

Operations that manipulate data in some way

3 of 70

Complete the following code if the function implements bubble sort, to sort elements in ascending order.

- int temp= arr[i];
 - arr[j+1]=arr[j];
- **1** arr[j]=temp;

,,	
int temp=arr[j-1]; arr[j-1]=arr[j]: arr[j]=temp;	
<pre>int temp=arr[i-1]: arr[i-1]=arr[j]; arr[i]=temp;</pre>	
<pre>int temp =arr[i-1]; arr[i-1]=arr[j]; arr[j]=temp;</pre>	
Solution - int temp=arr[j-1];	
arr[j-1]=arr[j]: arr[j]=temp;	

If you want to store the name and marks of N students, which of the following is the correct choice?

- 1 O An array of structures that contains names and marks as a field
- 2 Astructure containing arrays of Names and arrays of Marks
- **3** An array of names and an Array of marks
- 4 All of the above

Solution -

An array of structures that contains names and marks as a field

5 of 70

The time complexity of merge sort algorithm is

1 O O(n)

28/23, 5:11 PM	Walrus Solutions - Leading online tes
2 O(log n)	
3 O(n^2)	
4 ○ O(n log n) ✓	
Solution -	
O(n log n)	
6 of 70	
What are the time complexities of fin beginning and the 8th element from the the number of nodes in a linked list	he end in a singly linked list? Let n
1 O(1) and O(n)	
2 O(1) and O(1)	

- O(n) and O(1)
- O(n) and O(n)

O(1) and O(n)

7 of 70

Which of the following algorithm design techniques is used in finding all pairs of shortest distances in a graph?

1	O Dynamic programming	~
---	-----------------------	----------

- Back Tracking
- Greedy

Dynamic programming

8 of 70

If already sorted array is passed to a sorting algorithm, which one will be the slowest?

Solution -Insertic 00:00:00

Question palette

9 of 70 16

Let 'm' and 'n' be the number of edges and vertices in a graph G, respectively.

Which of the following is the time complexity of Kruskal's algorithm to find the minimum spanning tree of G?

25
Solution O(m log m)

10 of 70

Which one of the following is an application of queue data structure

- 1 When a resource is shared among multiple consumers.
- 2 When a data is tranferred asynchronously
- 3 O Load Balancing
- 4 All the above

Solution -

All the above

11 of 70

Which node porter should be updated a new node is to be inserted in the middle of a Credes of a doubly linked list?

- Next Pointer of A. Previous Pointer of B, Next Painter of C and previous
- pointer of C
- Next Pointer of A. Previous Pointer of B, Next Pointer of B and previous
- pointer of C
- (3)
- Next Pointer of A, Previous pointer of Anext pointer of B and previous
 - pointer of C
- 4 None of the above

Next Pointer of A. Previous Pointer of B, Next Pointer of B and previous pointer of C

onsider the stack shown below:

12 11 34 56 5 45 4 45

Top

After performing the following operations in sequence, which value will be at the top of the stack?

Pop,pop,pop,push 29, push 30,pop,pop,pop

- 1 0 29
- 2 0 30
- 3 0 5
- 4 0 56

Solution -

56

13 of 70

A complete n-ary tree is a tree in which each node has n children or no children.

Let | be the number of internal nodes and L be the number of leaves in a complete n-ary tree. If L = 41, and | = 10, what is the value of n?

- 1 0 6
- 2 0 3
- 3 0 4

5

14 of 70

The height of a binary tree is the maximum number of edges in any root-to-leaf path. The maximum number of nodes in a binary tree of height is____

- **1** 2%h -1
- **2** 2%h-1)-1
- 3 2%h+1)-1
- **4** 2*(h+1)

Solution -

2%h+1) -1

15 of 70

We use a dynamic programming approach when:

- 3 O The given problem can be reduced to the 3-SAT problem
- 4 O It's faster than Greedy

The solution has an optimal substructure

16 of 70

The value returned by Hash Function is called as:

- 1 O Digest

- 4 All of these

Solution -

All of these

17 of 70

```
Which of the following is recursive preorder traversal function, if class node is defined as follows?
class Node {
  int data;
  Node left, right,
  public Node(int key) {
    data=key;
  left=right = null;
  }
}
```

if(node= = null)
return;
System.out.print(node.data + * >*);
Preorder(node. Left):
preorder(node.right):

(1)

```
void preorder(Node node){
        if(node!= null
        return;
        System.out.print(node.data + * >*);
        Preorder(node. Left);
        preorder(node.right);
2
    void preorder(Node node){
        if(node!= null
 3
        return;
       none
Solution -
void preorder(Node node) {
if(node= = null)
return;
System.out.print(node.data + * >*);
Preorder(node. Left):
preorder(node.right):
}
```

Consider the following undirected graph with edge weights as shown:
at a4
09 a2 ao
a4 09
at at 0.4
as a4
The number of minimum-weight spanning trees of the graph is
1 O In adjacency list representation, space is saved for sparse graphs.
2 O In adjacency list representation, space is saved for sparse graphs.
(3)

Adding a vertex in adjacency list representation is easier than adjacency

matrix representation.

All of the above

All of the above

19 of 70

What is the time complexity of the following code: int a = 0,1=N; while (i > 0) { $a +=i; \\ i \neq 2;$ }

- 1 O O(N)
- **2** O(Sqrt(N))
- **3** O(N/2)
- **4** O(log N) ✓

Solution -

O(log N)

20 of 70

The recurrence relation capturing the optimal time of the Tower of Hanoi problem with n discs is

- 1 O T(n) = 2T(n-2)+2
- 2 T(n) = 2T(n-1)+n
- **3** Tin) = 2T(n/2)+1
- **4** O T(n)=2T(n-1)+1

T(n) = 2T(n-2)+2

21 of 70

Which of the following is FALSE about B/B+ tree

- 1 O B/B+ trees grow upward while Binary Search Trees grow downward
- (2)
- Time complexity of search operation in B/B+ tree is better than Red Black
- Trees in general.
- (3)
 - Number of child pointers in a B/B+ tree node is always equals to number
- of keys in it plus one.
- A B/B+ tree is defined by a term minimum degree. And minimum degree depends on hard disk block size, key and address sizes.

Solution -

Time complexity of search operation in B/B+ tree is better than Red Black Trees in general.

22 of 70

An ADT is defined to be a mathematical model of a user-defined type along with the collection______of all operations on that model.

- 1 Cardinality
- 2 Assignment
- 3 O Primitive
- 4 OStructure

Primitive

23 of 70

Which of the following algorithm can be used to efficiently sort a linked list?

- 2 Quick Sort
- **3** O Heap Sort
- 4 Selection Sort

Solution -

Merge Sort

24 of 70

What does the following return? Public int getval (Bnode T) { //T=root node int value =0; if(T) { //LC= Left child and RC right child If((T.L.C)== NULL) && (T.RC)== NULL)) value -1; else value= value+ getval(T.LC)+ getval(.TRC): } return value; }

- 1 Number of internal nodes in the tree
- **2** height of the tree

3 Number of nodes without right sibling in the tree
4 Number of leaf nodes in the tree
Solution -
Number of nodes without right sibling in the tree
25 of 70
Which of the following data structure is BEST suited to implement LRU Cache?
1 Array
2 O Binary Tree
3 O Doubly Linked List ✓
4 O Graph
Solution -
Doubly Linked List
•
26 of 70
The integrity of transmitted data can be verified by using:
1 Message Authentication Code (MAC)
2 Timestamp comparison
3 O Data length comparison
4 O None of these

Message Authentication Code (MAC)

27 of 70

In Hash Table, which collision handling technique results in Secondary Clustering?

- 1 Mid-Square
- 2 Quadratic Probing
- 3 Linear Probing
- 4 O Folding

Solution -

Quadratic Probing

28 of 70

Which of the following is the advantage of the array data structure?

- 4 Elements of an array cannot be sorted

Solution -

Easier to access the elements in an array

29 of 70 Which one of the following is an application of Stack Data Structure?
1
2 The stock span problem
3 Arithmetic expression evaluation
4 O All of the above
Solution -
All of the above
30 of 70 A tree node with no children is called a:
1 O Leaf node ✓
2 Root node
3 O Parent node
4 O Ancestor node
Solution -
Leaf node
31 of 70 You are very hungry and you decide to bake a batch by following your

You are very hungry and you decide to bake a batch by following your grandmother's chocolate chip cookie recipe. Which of the following computational thinking skills required to complete the abovetask?

1 Abstraction

2 Algorithm Design
3 Pattern Recognition
4 O Decomposition
Solution -
Algorithm Design
32 of 70
Depth First Search graph traversal method makes use of data structure.
1 O Tree
2 O Stack
3 Queue
4 O Linked list
Solution -
Stack
33 of 70
Create a Binary search tree for the given set of strings: MAR, MAY, NOV,AUG,APR, JAN, DEC,JULY,FEB,JUNE,OCT,SEPT What are the leaf nodes generated in the tree?
1 O APR, FEB DEC, JULY, SEPT
2 O FEB JUNE, SEPT
3 O can't create the tree

4	0	None of the above

APR, FEB DEC, JULY, SEPT

34 of 70

In Computational thinking terms, breaking down a complex problem into smaller, more specific sub-problems is called as_____.

- 1 Problem Identification
- 2 O Decomposition
- 3 Pattern Recognition
- 4 Algorithmic Thinking

Solution -

Decomposition

35 of 70

Which is the safest method to choose a pivot element?

- 1 Choosing a random element as a pivot
- 2 Choosing the first element as a pivot
- 3 O Choosing the last element as a pivot
- 4 Median-of-three partitioning method

Solution -

Median-of-three partitioning method

36 of 70 Which of the following algorithms solves the all-pair shortest path algorithm?
1 O Prim"s algorithm
2 O Dijkstra's algorithm
3 O Bellman-Ford algorithm
4 O Floyd-Warshall's algorithm
Solution -
Floyd-Warshall's algorithm

In which of the following tree do the height of the left subtree and the height of the right subtree differ at most by one?

- 1 O AVL Tree
- 2 Expression Tree
- 4 O Binary Search Tree

Solution -

AVL Tree

38 of 70

Which one of the following is the tightest upper bound that represents the time complexity of inserting an object into a binary search tree of n nodes?

1 0 0(1)		
2 O(log n)		
3 O(n) 🗸		
4 O(nlogn)		
Solution -		
O(n)		

What is the maximum height of any AVL tree with 7 nodes? Assume that the height of a tree with single node is 0.

- (1) O 2 ✓
- **2 O** 3
- 3 0 4
- 4 0 5

Solution -

2

40 of 70

A digraph is said to be COMPLETE, if it has N vertices andedges.

- (1) O N*N
- 2 O N-1
- 3 N*(N-1)

4 N*(N-1)/2

Solution -

N*(N-1)

41 of 70

How many numbers of comparisons will be done in worst case using Binary Search the

- 1 0 10
- 2 0 2
- 3 0 5
- (4) O 4 **~**

Solution -

4

42 of 70

Let G=(V,G) be a weighted undirected graph and let T be a Minimum Spanning Tree (MST) of G maintained using adjacency lists. Suppose a new weighed edge $(u,v) \in V*V$ is added to G. The worst-case time complexity of determining if T is still an MST of the resultant graph is

- 2 theta(E!.IVI)
- 3 theta(E| log IVI)
- 4 theta(IVI)

_		
\mathbf{c}	lution	
	HITIAN	_
\mathbf{u}	uuuui	

theta(IVI)

43 of 70

Which of the following data structure is BEST suited to implement Priority Queue?

- 1 O Doubly Linked List
- 2 O Heap
- **3** Queue using Linked List
- 4 Array

Solution -

Heap

44 of 70

Which of the following is NOT an example of balanced Binary Search Tree?

- 1 O Threaded Binary Tree
- 2 AVL Tree
- 3 Red-black Tree
- 4 Splay Tree

Solution -

Threaded Binary Tree

Consider the following type declaration for a doubly linked list node class DListNode{ int data; DListNode prev DListNode next; }

Which of the following statements (in correct order) will corectly insert a newNode node. before the node referenced by current?Assume that current is neither first nor last node in the linked list.

- newNode.next current; current.prev newNode; newNode prev current prev;
- 1 current. prev.next = newNode;
 - current.prev= = newNode; newNode.next= current; newNode. prev=current .prev;
- 2 current. prev.next = newNode;
 - newNode. prev =current.prev; newNode.next =current; current. Prev. next= newNode;
- current.next.prev= newNode; 3
 - newNode prev = current. Prev; newNode.next= current; current. Prev.next= newNode; current.prev=
- newNode;

Solution -

newNode. prev =current.prev; newNode.next =current; current. Prev. next= newNode; current.next.prev= newNode;

46 of 70

If the list is a circular linked list, with first points to the first node and temp points to the last node. Which of the following code snippet will delete a node, which is after temp? class Node { int data;

Node next;
}
1 mynode=first mynode.next=temp.next; mynode.next=first;
2 mynode=first temp.next=mynode; mynode.next-first
3 temp.next-first. next; mynode=first; first=first.next; mynode. next=null
4 O None of the above ✓
Solution -
None of the above
Hone of the above

Suppose a circular queue of capacity (n-1) elements is implemented with an array of n elements. Assume that the insertion and deletion operation are carried out using REAR and FRONT as array index variables, respectively. Initially, REAR = FRONT = 0. The conditions to detect queue full and queue empty are

- **3** O Full: REAR == FRONT, empty: (REAR+1) mod n == FRONT
- 4 O Full: (FRONT+1) mod n == REAR, empty: REAR == FRONT

Solution -

Full: (REAR+1) mod n == FRONT, empty: REAR == FRONT

48 of 70

How many Stacks are required to implement Queue data structure?

(1) () 5					
2 O 1					
3 O 2 ~					
4 O 3					
Solution -					
2					
49 of 70					
Which of the following algorithm can be used to detect negative cycle in					
a Graph?					
1 O Prim					
2 O Kruskal					
3 O Dijkstra					
4 O Bellman Ford					
Solution -					
Bellman Ford					
50 of 70					
What is the worst case possible height of AVL tree?					
1 2Logn Assume base of log is 2					
2 1.44Log n Assuming base of log is 2					
(3) Opends upon implementation					

4 O theta(n)

Solution -

1.44Log n Assuming base of log is 2

51 of 70

Which of the following types of Linked List support forward and backward traversal?

- 1 Singly Linked List
- 2 O Doubly Linked List
- 3 Oircular Singly Linked List
- 4 All of these

Solution -

Doubly Linked List

52 of 70

Let A[1...n] be an array of n distinct numbers. If Afj], then the pair (i, J) is called an inversion of A. What is the

expected number of inversions in any permutation on n elements?

- **1** n(n-1)/2

- 4 2nf[logn]

n(n-1)/4

53 of 70

Suppose the numbers 7, 5, 1, 8, 3, 6, 0, 9, 4, 2 are inserted in that order into an initially empty binary search tree. The binary search tree uses the usual ordering on natural numbers. What is the in-order traversal sequence of the resultant tree?

- **2** 0 2 4 3 1 6 5 9 8 7
- 3 0 0123456789
- 4 0 9864230157

Solution -

0123456789

54 of 70

Using _____ in java, one can sort the arrays.

- 1 System.sort()
- 2 Collection. sort()
- 3 Arrays.sort()
- 4 Array.sort()

Solution -

Array.sort()

A hash function h defined h(key)=key mod 7, with linear probing, is used to insert the keys 44, 45, 79, 55, 91, 18, and 63 into a table indexed from 0 to 6. What will be the location of key 18?

- 1 0 3
- 2 0 4
- 3 0 5
- 4 0 6

Solution -

5

56 of 70

Which algorithm strategy builds up a solution by choosing the option that looks the best at every step?

- 1 O Greedy method
- 2 O Branch and bound
- 3 O Dynamic programming
- 4 O Divide and conquer return count

Solution -

Greedy method

57 of 70

If a node has K children in B tree, then the node contains exactly keys.

1 O K	1 O K? 2 O K-1 ✓ 3 O K+1				
2 O K-					
3 O K-					
4 O VI	K				
Soluti	ion -				
K-1					
58 of 70					
What is th	ne best way to go for the game-playing problem?				
1 0 0	ptimal Search				
2 O Ra	andom Search				
(3) () H	euristic Search 🗸				
4 O St	tratified Search				
Soluti	ion -				
Heuristic	Search				
59 of 70					
	n P reads in 500 integers in the range [0100] representing the 500 students. It then prints the frequency of each score above				
	would be the best way for P to store the frequencies?				
	a current of EO promehous 🗸				
	n array of 50 numbers 🗸				
2 O ar	n array of 100 numbers				
3 O ar	n array of 500 numbers				

4 a dynamically allocated of 550 numbers						
.						

an array of 50 numbers

61 of 70

What is the worst case time complexity of Search() operation in an unbalanced Binary Search Tree having 'n' nodes?

- **1** O 0 (1)
- **2** O(logn)
- 3 O(n) ✓
- **4** O(n log n)

Solution -

O(n)

62	٥f	70
UZ	OI.	<i>,</i> L

Which of the following uses queue as data structure to store data?

- 2 O To check whether given string is palindrome
- 3 Display string in reverse order
- 4 O DFS traversal of the tree

Solution -

Waiting queue for railway reservation system

63 of 70

Which data structure is required to convert the infix to prefix notation?

- 1 O Stack
- 2 Linked List
- 3 O Binary Tree
- 4 Queue

Solution -

Stack

64 of 70

An algorithm that calls itself directly or indirectly is known as_____

1 O Sub algorithm					
2 Recursive algorithms					
3 O Polish notation					
4 O Traversal algorithm					
Solution -					
Recursive algorithms					
65 of 70 Which of the following options is not true about the Binary Search Tree?					
which of the following options is not true about the binary Search free:					
1 O The value of the left chad should be less than the root node.					
2					
3 O The left and the right sub trees should also be a binary search tree					
4 None of the above					
Solution -					
The value of the left chad should be less than the root node.					
66 of 70					
The time required to search an element in a linked list of length is					
1 O(log n)					
2 O(n) •					
3 O(1)					

(4)	0	O(n?)

O(n)

67 of 70

is a collision-resolution scheme that searches the hash table for an unoccupied location beginning with the original location that the hash function specifies and continuing at increments of 1^2, 2^2, 3^2, and so on.

- 1 Linear probing
- **2** O Double hashing
- 3 Quadratic probing
- 4 O Separate chaining

Solution -

Quadratic probing

68 of 70

singly linked list if headpoints to the first node, which of the following code will print data in last node?

- Temp=head;
 while(temp!=null) {
 temp=temp.next;
 }
- 1 System.out.println(temp.data)

```
temp=head;
       while(temp.next!=null){
       temp=temp.next;
       {
       System.out.println(temp.data);
2
    Temp=head;
       while(temp.next==null) {
       temp=temp.next;
       }
 3
       System. Out. println(temp.data);
      Temp=head;
       while(temp==null){
Solution -
temp=head;
while(temp.next!=null){
temp=temp.next;
System.out.println(temp.data);
```

```
What is time complexity of the following code? int sum=0; for (int i = 0; i < n; i++) { sum=sum+10; for (int j = 0; j < n; j++) { sum=sum + j; break; }
```

- 1 O(n²)
- 2 O(n)
- 3 0 (1)
- **4** O(log n)

O(n)

70 of 70

What is the best-case time complexity of Bubble sort to sort an array of 'n' elements?

- **1** O(n^2)
- **2** O(n log n)
- **3** O(1)
- **4** O(n) ✓

Solution -

O(n)