I hate geometry, change my mind

MATTHEW KENDALL

FIGURE 1. Paul Erdös (1913-1996)

FIGURE 2. George Szekeres (1911-2005)

Topics

Ramsey Theory. Suppose we have five people in a room. Can we always find 3 people who are all friends with each other or all don't know each other? Assume friendship is mutual: if A is friends with B, then B is friends with A. What if we instead have six people in the room?

We need 18 people to have a group of *four* people who either all are friends or all don't know each other. This will lead to Ramsey theory. I'll tell Paul Erdös's story about aliens and R(6,6).

Polygon separation. Suppose I draw two (convex) polygons P and Q in the plane. Can I always draw a line that separates them?

• Try separating two squares; guess whether it is true for general polygons; what is a convex polygon?

A door to a colorful world. First question, if I give you a 10-sided polygon and a point x inside the polygon, can you choose 3 vertices of the polygon whose triangle contains x? This is called Caratheodory's Theorem.

Colorful version: If a red pentagon, a blue square, and a green triangle overlap at a point x, can you choose a vertex of each shape such that x lies in the resulting triangle?

Erdös-Szekeres Theorem. If I draw 4 points on the plane, will they necessarily be the vertices of a *convex* quadrilateral? What if I draw 5 points in the plane? How many points do you need so that you can find 5 of them that are the vertices of a pentagon?

• This problem is called the "happy ending problem" (by Erdös) because Szekeres ended up marrying his future wife Esther Klein after solving versions of this problem.

Definition. Call f(n) to be the minimum number of points so that we can find n of them that form the vertices of a convex n-gon.

Conjecture. $f(n) = 2^{n-2} + 1$.

Our best estimate is by Holmsen, Mojarrad, Pach and Tardos in 2017:

$$f(n) \le 2^{n + 6\sqrt{n \log n}}.$$

Incidences. Call a point-line pair (p, ℓ) an *incidence* if p lies on ℓ . Let I(m, n) be the maximum number of incidences between m points and n lines in the plane. What is I(1, m); what is I(n, 1); prove that

$$I(m,n) < mn$$
.

Theorem (Szemerédi-Trotter, 1983). There exists a positive constant c so that for every pair of integers $m, n \ge 1$,

$$I(m,n) \le c(m^{2/3}n^{2/3} + m + n).$$

Let u(n) be the maximum number of unit distances among n points. For example, u(3) = 3. What is u(4)?

Conjecture (Erdös unit distance problem). Show that $u(n) \approx c \cdot n$ for some constant c > 0.

This is a huge open problem in *discrete geometry*; we are not at all close to solving it.

Covering. Suppose we want to *cover* the plane with a finite number of copies of a polygon P.

Definition. A covering of the plane is a collection of copies of P that only overlap on their edges.

Can you cover the plane with triangles? With squares/pentagons/hexagons? How about n-gons for n > 6?

 $\label{eq:Helly's theorem.}$ Helly's theorem.

Theorem. If n segments are drawn in the plane such that any 2 intersect, then they all intersect.

Theorem. If n polygons are drawn in the plane such that any 3 intersect, then they all intersect.

There are many variants of this theorem!