RL@ PicsArt Outro lecture

RL for deep learning tasks

General formalism

• Maximize
$$J = \underset{\substack{s \sim p(s) \\ a \sim \pi \, (a|obs(s))}}{E} R(s,a)$$
 over π

General formalism

• Maximize
$$J = \mathop{E}_{\substack{s \sim d(s) \\ a \sim \pi \, (a|obs(s))}} R\,(s\,,a)$$
 over π

- R(s,a) or R(session) is a black box
 - Special case: $R(s,a) = r(s,a) + \gamma R(s',a')$

General formalism

• Maximize
$$J = \underset{\substack{s \sim p(s) \\ a \sim \pi \, (a | obs(s))}}{E} R\left(s, a\right) \text{ over } \pi$$

- R(s,a) or R(session) is a black box
 - Special case: $R(s,a) = r(s,a) + \gamma R(s',a')$

- Markov property: P(s'|s,a,*) = P(s'|s,a)
- Special case: obs(s) = s , fully observable

General approaches

Idea 1: evolution strategies

- pertrubate π , take ones with higher J

Idea 2: value-based methods

estimate J as a function of a, pick best a

Idea 3: policy gradient

- ascend J over $\pi(a|s)$ using ∇J

General approaches

Idea 4: Bayesian optimization

- build a model of J, pick π that is most informative to finding maximal J
- e.g. Gaussian processes (low-dimensional only)

Idea 5: simulated annealing

Idea 6: crossentropy method

. . .

Application domains

- Videogames
- Online ads
- Recommender systems
- Conversation systems
- Robot control / dynamic system control
- Parameter tuning
- Financial tasks
- Medicine

7

Domains so far

- Videogames
- Online ads toy problems
- Recommender systems videogames
- Conversation systems toy problems
- Robot control / dynamic system control
- Parameter tuning videogames
- Financial tasks toy problems
- Medicine guess what?

S

Encoder-decoder architectures

- Read input data (sequence / arbitrary)
- Generate output sequence

Trivia: what problems match this formulation?

Encoder-decoder tasks

- Image to caption
- Machine translation
- Word to transcript

- Conversation system
- Image to latex
- Code to docstring

Image Captioning

Problem:

- Process image
- Generate sentence
- Sentences must describe image (e.g. BLEU/CIDEr)

Solution?

Image Captioning

Problem:

- Process image
- Generate sentence
- Sentences must describe image (e.g. BLEU/CIDEr)

- Take large dataset of (image,caption) pairs
- Maximize log P(caption|image)

Conversation systems

Problem:

- Read sentence from user
- Generate response sentence
- System must be able to support conversation

- Take large dataset of (phrase, response) pairs
- Maximize log P(response|phrase)

Grapheme to phoneme

Problem:

- Read word (characters): "hedgehog"
- Generate transcript (phonemes): "hεjhag"
- Transcript must read like real word (Levenshtein)

- Take large dataset of (word, transcript) pairs
- Maximize log P(transcript|word)

Yet another problem

Problem:

- Read x~X
- Produce answer y~Y
- Answer should be argmax R(x,y)

- Take large dataset of (x,y) pairs with good R(x,y)
- Maximize log P(y|x) over those pairs

Works great as long as you have good data! good = abundant + near-optimal R(x,y)

What could possibly go wrong?

Distribution shift

Supervised seq2seq learning:

$$P(y_{t+1}|x,y_{0:t}), y_{0:t} \sim reference$$

Inference

$$P(y_{t+1}|x,\hat{y}_{0:t}), \hat{y}_{0:t} \sim ???$$

Distribution shift

Supervised seq2seq learning:

$$P(y_{t+1}|x,y_{0:t}), y_{0:t} \sim reference$$

Inference

$$P(y_{t+1}|x, \hat{y}_{0:t}), \qquad \hat{y}_{0:t} \sim model$$

Distribution shift

Supervised seq2seq learning:

$$P(y_{t+1}|x,y_{0:t}), y_{0:t} \sim reference$$

Inference

$$P(y_{t+1}|x, \hat{y}_{0:t}), \qquad \hat{y}_{0:t} \sim model$$

If model ever generates something that wasn't in data, It gets unstable from next time-step! 19

```
Works great as long as you have good data!

good = abundant + near-optimal R(x,y)

... and a perfect network ...
```

Works great as long as you have good data!
good = abundant + near-optimal R(x,y)
... and a perfect network ...

Spoiler: most of the time we don't. Too bad.

Works great as long as you have good data! good = abundant + near-optimal R(x,y)

Spoiler: most of the time we don't. Too bad.

There's more then one correct translation.

Source: 在找给家里人的礼物.

Versions:

```
i 'm searching for some gifts for my family.
i want to find something for my family as presents.
i 'm about to buy some presents for my family.
i 'd like to buy my family something as a gift.
i 'm looking for a present for my family.
```

(Sample from IWSLT 2009 Ch-En, http://bit.ly/2o404Tz)

There's more then one correct translation. You don't need to learn all of them.

Source: 在找给家里人的礼物.

Versions:

```
i 'm searching for some gifts for my family.
i want to find something for my family as presents.
i 'm about to buy some presents for my family.
i 'd like to buy my family something as a gift.
i 'm looking for a present for my family.
```

(Sample from IWSLT 2009 Ch-En, http://bit.ly/2o404Tz)

There's more then one correct translation. You don't need to learn all of them.

Source: 在找给家里人的礼物.

Model 1 p(y x)	Model 2 p(y x)
1e-2	0.99
2e-2	1e-100
1e-2	1e-100
0.96	0.01
	p(y x) 1e-2 2e-2 1e-2

There's more then one correct translation. You don't need to learn all of them.

Source: 在找给家里人的礼物.

Versions:	Model 1 p(y x)	Model 2 p(y x)
(version 1)	1e-2	0.99
(version 2)	2e-2	1e-100
(version 3)	1e-2	1e-100
(all rubbish)	0.96	0.01

not in data Trivia: which model has better Mean log p(y|x)?

There's more then one correct translation. You don't need to learn all of them.

Source: 在找给家里人的礼物.

Versions:	Model 1 p(y x)	Model 2 p(y x)
(version 1)	1e-2	0.99
(version 2)	2e-2	1e-100
(version 3)	1e-2	1e-100
(all rubbish)	0.96	0.01
not in data	better IIh	worse IIh
	96% rubbish	1% rubbish

Conversation system issues

Two kinds of datasets:

- Large raw data twitter, open subtitles, books, bulk logs 10^6-8 samples, http://bit.ly/2nJHmA7
- Small clean data moderated logs, assessor-written conversations 10^2~4 samples

Conversation system issues

Two kinds of datasets:

- Large raw data twitter, open subtitles, books, bulk logs 10^6-8 samples, http://bit.ly/2nJHmA7
- **Small clean data**Near-optimal R(x,y), but too small moderated logs, assessor-written conversations 10^2~4 samples

Motivational example

So you want to train a Q&A bot for a bank.

Motivational example

So you want to train a Q&A bot for a bank.

Let's scrape some data from social media!

Motivational example

So you want to train a Q&A bot for a bank.

Let's scrape some data from social media!

32

Seq2seq as a POMDP

Hidden state **s** = translation/conversation state Initial state **s** = encoder output Observation **o** = previous words Action **a** = write next word Reward **R** = domain-specific reward (e.g. BLEU)

Supervised learning Vs policy gradient

Supervised learning:

$$\nabla llh = E_{x, y_{opt} \sim D} \nabla \log P_{\theta}(y_{opt}|x)$$

Policy gradient:

$$\nabla J = \mathop{E}_{\substack{s \sim d(s) \\ a \sim \pi(a|obs(s))}} \nabla \log \pi(a|s) Q(s,a)$$

Supervised learning Vs policy gradient

Supervised learning:

$$\nabla llh = E_{s, a_{opt} \sim D} \nabla \log \pi_{\theta}(a_{opt}|s)$$

Policy gradient:

$$\nabla J = \mathop{E}_{\substack{s \sim d(s) \\ a \sim \pi(a|obs(s))}} \nabla \log \pi(a|s) Q(s,a)$$

Supervised learning Vs policy gradient

Supervised learning:

$$\nabla llh = \mathop{E}_{s, a_{opt} \sim D} \nabla \log \pi_{\theta}(a_{opt}|s)$$

Policy gradient:

$$\nabla J = \mathop{E}_{\substack{s \sim d(s) \\ a \sim \pi(a|obs(s))}} \nabla \log \pi(a|s)Q(s,a)$$

Trivia: what's different? (apart from Q(s,a))

Supervised learning Vs policy gradient

Supervised learning:

$$\nabla llh = E_{s, a_{opt} \sim D} \nabla \log \pi_{\theta}(a_{opt}|s)$$

reference

Policy gradient:

$$\nabla J = \mathop{E}_{\substack{s \sim d(s) \\ a \sim \pi(a|obs(s))}} \nabla \log \pi(a|s)Q(s,a)$$

Supervised learning Vs policy gradient

Supervised learning:

- Need (near-)optimal dataset
- Trains on reference sessions

Policy gradient:

- Need ~some data and reward function
- Trains on it's own output

SL VS RL

Train on references

- Need good reference (y_opt)
- If model is imperfect [and it is], training:
 D(v, povtly v, prov. ideal)

P(y_next|x,y_prev_ideal)

prediction:

P(y_next|x,y_prev_predicted)

Reinforcement learning

- Need reward function
- Model learns to improve current policy. If policy is pure random, local improvements are unlikely to produce good translation.

SL VS RL

Supervised learning

- Rather simple
- Small variance
- Need good reference (y_opt)
- Distribution shift
 different h distribution
 when training vs generating

Reinforcement learning

- Cold start problem
- Large variance (so far)
- Only needs x and r(s,a)
- No distribution shift

Supervised learning

- Trains from scratch
 - Small variance pre-training
 - Need good reference (y_opt)
 - Distribution shift
 different h distribution
 when training vs generating

Reinforcement learning

- Cold start problem
- Large variance (so far)
- Only needs x and r
- No distribution shift

post-training

Supervised learning

- Trains from scratch
 - Small variance pre-training
 - Need good reference (y_opt)
 - Distribution shift
 different h distribution
 when training vs generating

Reinforcement learning

- Cold start problem
- Large variance (so far)
- Only needs x and r
- No distribution shift

post-training

Trivia: How do we make policy gradient less noisy?

Introducing baselines

$$\nabla J = \mathop{E}_{\substack{s \sim d(s) \\ a \sim \pi(a|obs(s))}} \nabla \log \pi(a|s) A(s,a)$$

$$A(s,a)=R(s,a)-V(s)$$

Introducing baselines

$$\nabla J = \mathop{E}_{\substack{s \sim d(s) \\ a \sim \pi(a|obs(s))}} \nabla \log \pi(a|s) A(s,a)$$

$$A(s,a)=R(s,a)-V(s)$$

Trivia: How do we estimate A(s,a) in practice?

Advantage actor-critic

$$\nabla J = \mathop{E}_{\substack{s \sim d(s) \\ a \sim \pi(a|obs(s))}} \nabla \log \pi(a|s) A(s,a)$$

$$A(s,a)=[r+\gamma\cdot V(s')]-V(s)$$

Problem: need to train both π and V! Can we get V for free?

Recap: encoder-decoder rnn

Input sequence e.g. source language

Recap: encoder-decoder rnn

Input sequence e.g. source language

Recap: encoder-decoder rnn

output sequence

Input sequence e.g. source language

Training is different from inference!

change during inference?

Inference mode

Simplified scheme

Idea: use inference mode as a baseline!

Idea: use inference mode as a baseline!

$$\nabla J = \mathop{E}_{\substack{s \sim d(s) \\ a \sim \pi(a|obs(s))}} \nabla \log \pi(a|s) A(s,a)$$

$$A(s,a)=R(s,a)-R(s,a_{qreedy}(s))$$

$$\nabla J = \mathop{E}_{\substack{s \sim d(s) \\ a \sim \pi(a|obs(s))}} \nabla \log \pi(a|s) A(s,a)$$

$$A(s,a) = R(s,a) - R(s,a_{inference}(s))$$

sampling greedy mode (inference)

$$\nabla J = \mathop{E}_{\substack{s \sim d(s) \\ a \sim \pi(a|obs(s))}} \nabla \log \pi(a|s) A(s,a)$$

$$A(s,a)=R(s,a)-R(s,a_{inference}(s))$$

Non-trivia: why don't we use sampling mode for baseline?

$$\nabla J = \mathop{E}_{\substack{s \sim d(s) \\ a \sim \pi(a|obs(s))}} \nabla \log \pi(a|s) A(s,a)$$

$$A(s,a)=R(s,a)-R(s,a_{inference}(s))$$

Non-trivia: why don't we use sampling mode for baseline? Sampling mode is more noisy due to... sampling Also it isn't what we'll use in production

Results on G2P

Results on G2P

Image captioning with SCST

Problem:

- Process image
- Generate caption
- Caption must describe image (CIDEr)
- Dataset: MSCOCO, http://mscoco.org

What do we do?

Image captioning with SCST

Problem:

- Process image
- Generate caption
- Caption must describe image (CIDEr)
- Dataset: MSCOCO, http://mscoco.org
- Pre-training: maximize log P(caption|image)
- Fine-tuning: maximize expected CIDEr
 - Used self-critical baseline to reduce variance

SCST: results

Training	Evaluation Metric			
Metric	CIDEr	BLEU4	ROUGEL	METEOR
XE	90.9	28.6	52.3	24.1
XE (beam)	94.0	29.6	52.6	25.2
CIDEr	106.3	31.9	54.3	25.5
BLEU	94.4	33.2	53.9	24.6
ROUGEL	97.7	31.6	55.4	24.5
METEOR	80.5	25.3	51.3	25.9

Table: validation score on 4 metrics (columns) for models that optimize crossentropy (supervised) or one of those 4 metrics (scst).

MSCOCO: objects out of context

- a blue of a building with a blue umbrella on it -1.234499
- a blue of a building with a blue and blue umbrella -1.253700
- 3. a blue of a building with a blue umbrella -1.261105
- a blue of a building with a blue and a blue umbrella on top of it -1.277.
- a blue of a building with a blue and a blue umbrella -1.280045
 - (a) Ensemble of 4 Attention models (Att2in) trained with XE.

- a blue boat is sitting on the side of a building -0.194627
- a blue street sign on the side of a building -0.224760
- a blue umbrella sitting on top of a building -0.243250
- 4. a blue boat sitting on the side of a building -0.248849
- a blue boat is sitting on the side of a city street -0.265613
 - (b) Ensemble of 4 Attention models (Att2in) trained with SCST.

MSCOCO: objects out of context

- 1. a man in a red shirt standing in front of a green field -0.890775
- 2. a man in a red shirt is standing in front of a tv -0.897829
- 3. a man in a red shirt standing in front of a tv -0.900520
- 4. a man in a red shirt standing in front of a field -0.912444
- a man standing in front of a green field -0.924932
 - (a) Ensemble of 4 Attention models (Att2in) trained with XE.

- a man standing in front of a street with a television -0.249860
- 2. a man standing in front of a tv -0.256185
- a man standing in front of a street with a tv -0.280558
- a man standing in front of a street -0.295428
- a man standing in front of a street with a frisbee -0.309342
 - (b) Ensemble of 4 Attention models (Att2in) trained with SCST.

Common pitfalls

What can go wrong

- Make sure agent didn't cheat R(s,a)
 - https://openai.com/blog/faulty-reward-functions/

- Unlike games, agent can overfit data
 - Check validation performance

Duct tape zone

Pre-train agent in supervised mode

RL takes longer to train from scratch

- All policy-based tricks apply
 - Regularize with entropy / L2 logits
 - Better sampling techniques (tree, vine, etc.)
- Most seq2seq tricks apply
 - Use bottleneck If vocabulary is large
 - Some (but not all) softmax improvements

Квестионы?

</course>

You've done it!

- @urls plenty of them in couse folders (README.md files)
- @me justheuristic@yandex-team.ru
- @alx grox_halfer@mail.ru