

MOSFET

650V CoolMOS™ CFDA Power Transistor

CoolMOS™ is a revolutionary technology for high voltage power MOSFETs, designed according to the superjunction (SJ) principle and pioneered by Infineon Technologies. 650V CoolMOS™ CFDA series combines the experience of the leading SJ MOSFET supplier with high class innovation. The resulting devices provide all benefits of a fast switching SJ MOSFET while offering an extremely fast and robust body diode. This combination of extremely low switching, commutation and conduction losses together with highest robustness make especially resonant switching applications more reliable, more efficient, lighter, and cooler.

Features

- · Ultra-fast body diode
- Very high commutation ruggedness
- Extremely low losses due to very low FOM Rdson*Qg and Eoss
- Easy to use/drive
- Qualified according to AEC Q101
- Green package (RoHS compliant), Pb-free plating, halogen free for mold compound

Applications

650V CoolMOS™ CFDA is designed for switching applications.

Table 1 Rey 1 enormance 1 arameters						
Value	Unit					
650	V					
0.66	Ω					
20	nC					
17	A					
1.8	μJ					
900	A/µs					
0.2	μC					
65	ns					
4.5	A					
	Value 650 0.66 20 17 1.8 900 0.2 65					

Type / Ordering Code	Package	Marking	Related Links
IPD65R660CFDA	PG-TO 252	65F660A	-

650V CoolMOS™ CFDA Power Transistor IPD65R660CFDA

Table of Contents

Description
Table of Contents
Maximum ratings
Thermal characteristics
Electrical characteristics
Electrical characteristics diagrams
Test Circuits
Package Outlines
Revision History
Trademarks13
Disclaimer

1 Maximum ratings at $T_j = 25$ °C, unless otherwise specified

Table 2 Maximum ratings

Danamatan	0		Values			N / / T / O !!!!
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Continuous drain current ¹⁾	I _D			6	Α	T _C = 25°C
				3.8		T _C = 100°C
Pulsed drain current ²⁾	/ _D ,pulse			17	Α	T _C = 25°C
Avalanche energy, single pulse	E _{AS}			115	mJ	$I_{\rm D}$ = 1.2A, $V_{\rm DD}$ = 50V (see table 10)
Avalanche energy, repetitive	E AR			0.21	mJ	$I_{\rm D}$ = 1.2A, $V_{\rm DD}$ = 50V
Avalanche current, repetitive	I AR			1.2	А	
MOSFET dv/dt ruggedness	dv/dt			50	V/ns	V _{DS} = 0 400V
Gate source voltage	V _{GS}	-20		20	V	static
		-30		30		AC (f > 1 Hz)
Power dissipation (SMD) DPAK	P _{tot}			62.5	W	T _C = 25°C
Operating and storage temperature	$T_{\rm j}, T_{\rm stg}$	-40		150	°C	
Continuous diode forward current	I _S			6	А	T _C = 25°C
Diode pulse current	/ S,pulse			17	Α	T _C = 25°C
Reverse diode dv/dt ³⁾	dv/dt			50	V/ns	$V_{\rm DS} = 0 \dots 400 \text{V}, I_{\rm SD} \le I_{\rm D}$
Maximum diode commutation speed	di _f /dt			900	A/µs	$T_j = 25^{\circ}\text{C}$ (see table 8)

 $^{^{1)}}$ Limited by $T_{j\;max}.$ $^{2)}$ Pulse width t_p limited by $T_{j\;max}$ $^{3)}$ Identical low side and high side switch with identical R_G

IPD65R660CFDA

2 Thermal characteristics

Table 3 Thermal characteristics DPAK

Dovomotor	Cumbal	Values			Unit	Note / Took Condition
Parameter	Symbol	Min.	Тур.	Max.	Ullit	Note / Test Condition
Thermal resistance, junction - case	R _{thJC}			2	K/W	
Thermal resistance, junction - ambient ¹⁾	R_{thJA}			62	K/W	SMD version, device on PCB, minimal footprint
			35			SMD version, device on PCB, 6cm² cooling area
Soldering temperature, wave- & reflowsoldering allowed	$T_{ m sold}$			260	°C	reflow MSL

¹⁾ Device on 40mm*40mm*1.5mm one layer epoxy PCB FR4 with 6cm² copper area (thickness 70μm) for drain connection. PCB is vertical without air stream cooling.

650V CoolMOS™ CFDA Power Transistor IPD65R660CFDA

3 Electrical characteristics

at $T_j = 25$ °C, unless otherwise specified

Table 4 Static characteristics

Parameter	0		Values			N
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Drain-source breakdown voltage ¹⁾	V _{(BR)DSS}	650			V	$V_{GS} = 0V$, $I_D = 1mA$
Gate threshold voltage	V _{GS(th)}	3.5	4	4.5	V	$V_{\rm DS} = V_{\rm GS}, I_{\rm D} = 0.2 {\rm mA}$
Zero gate voltage drain current	I DSS			1	μA	$V_{\rm DS} = 650 \rm V, \ V_{\rm GS} = 0 \rm V, \ T_{\rm j} = 25 \rm ^{\circ} \rm C$
			100			$V_{\rm DS} = 650 \rm V, \ V_{\rm GS} = 0 \rm V, \ T_{\rm j} = 150 ^{\circ} \rm C$
Gate-source leakage current	I GSS			100	nA	$V_{\rm GS} = 20 \text{V}, \ V_{\rm DS} = 0 \text{V}$
Drain-source on-state resistance	R _{DS(on)}		0.594	0.66	Ω	$V_{\rm GS}$ = 10V, $I_{\rm D}$ = 3.2A, $T_{\rm j}$ = 25°C
			1.54			$V_{\rm GS}$ = 10V, $I_{\rm D}$ = 3.2A, $T_{\rm j}$ = 150°C
Gate resistance	R _G		6.5		Ω	f = 1MHz, open drain

Table 5 Dynamic characteristics

Parameter	C: mahal	Values			11!4	Nets / Test Osmalities	
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Input capacitance	Ciss		543		pF	$V_{GS} = 0V, V_{DS} = 100V, f = 1MHz$	
Output capacitance	Coss		32		pF		
Effective output capacitance, energy related ²⁾	C _{o(er)}		24		pF	V _{GS} = 0V, V _{DS} = 0 400V	
Effective output capacitance, time related ³⁾	C _{o(tr)}		97		pF	I_D = constant, V_{GS} = 0V, V_{DS} = 0 400V	
Turn-on delay time	t _{d(on)}		9		ns	$V_{\rm DD}$ = 400V, $V_{\rm GS}$ = 13V, $I_{\rm D}$ = 3.2A,	
Rise time	t _r		8		ns	$R_{\rm G} = 6.8\Omega$ (see table 9)	
Turn-off delay time	$t_{\sf d(off)}$		40		ns		
Fall time	t _f		10		ns		

 Table 6
 Gate charge characteristics

Parameter	Symbol		Values			Note / Test Condition
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Gate to source charge	Q_{gs}		3.5		nC	$V_{DD} = 480 \text{V}, I_D = 3.2 \text{A},$
Gate to drain charge	$Q_{\sf gd}$		11		nC	$V_{\rm GS} = 0$ to 10V
Gate charge total	Qg		20		nC	
Gate plateau voltage	V _{plateau}		6.4		V	

¹⁾ For applications with applied blocking voltage > 65% of the specified blocking voltage, we recommend to evaluate the impact of the cosmic radiation effect in early design phase. For assessment please contact local Infineon sales office.

office. $^{2)}$ $C_{o(er)}$ is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 400V $^{3)}$ $C_{o(tr)}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 400V

IPD65R660CFDA

Table 7 Reverse diode characteristics

Parameter	Cumbal		Values			Note / Took Condition
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Diode forward voltage	V _{SD}		0.9		V	$V_{GS} = 0V$, $I_F = 3.2A$, $T_j = 25$ °C
Reverse recovery time	t _{rr}		65		ns	$V_{R} = 400V, I_{F} = 3.2A,$
Reverse recovery charge	Qrr		0.2		μC	$di_F/dt = 100A/\mu s$ (see table 8)
Peak reverse recovery current	/ rrm		4.5		Α	(555 (42.5 5)

4 Electrical characteristics diagrams

5 Test Circuits

Table 8 Diode characteristics

Table 9 Switching times

Table 10 Unclamped inductive load

6 Package Outlines

Figure 1 Outline PG-TO 252, dimensions in mm/inches

IPD65R660CFDA

Revision History

IPD65R660CFDA

Revision: 2016-04-18, Rev. 2.2

Previous Revision

Revision	Date	Subjects (major changes since last revision)
2.0	2012-07-12	Preliminary
2.1	2014-11-19	Correction of Marking Code
2.2	2016-04-18	Updated: SOA diagrams, Idss at 150C, Rdson vs. Tj.

Trademarks of Infineon Technologies AG

 $AURIX^{\intercal}, C166^{\intercal}, CanPAK^{\intercal}, CIPOS^{\intercal}, CoolGaN^{\intercal}, CoolMOS^{\intercal}, CoolSet^{\intercal}, CoolSet^{\intercal}, CoolSet^{\intercal}, CoolSet^{\intercal}, Corecontrol^{\intercal}, Crossave^{\intercal}, Dave^{\intercal}, Di-Pol^{\intercal}, DrBlade^{\intercal}, EasyPIM^{\intercal}, EconoBRIDGE^{\intercal}, EconoDual^{\intercal}, EconoPlol^{\intercal}, EconoPlol^{$

Trademarks updated August 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Disclaimer

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2016 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.