AMATH/PMATH 331 - Applied Real Analysis

Cameron Roopnarine

Last updated: November 28, 2020

Contents

Contents		1
1	Real Limits, Continuity and Differentiation	2
	1.1 Order Properties in R	2
	1.2 Limit of Sequences in R	

Chapter 1

Real Limits, Continuity and Differentiation

1.1 Order Properties in R

THEOREM 1.1.1: Discreteness Property of Z

We state two equivalent definitions.

$$\forall k \in \mathbf{Z} \ \forall n \in \mathbf{Z} \ (k \le n \iff k < n+1)$$

$$\forall n \in \mathbf{Z} \, \nexists k \in \mathbf{Z} \, (n < k < n+1)$$

Proof of: Theorem 1.1.1

Accepted axiomatically, without proof.

DEFINITION 1.1.2: Bounded above, Upper bound

A is **bounded above** (in **R**) when

$$\exists b \in \mathbf{R} \ \forall x \in A \ (x \le b)$$

We say that b is an **upper bound** for A.

DEFINITION 1.1.3: Bounded below, Lower bound

A is **bounded below** (in **R**) when

$$\exists a \in \mathbf{R} \ \forall x \in A \ (a \le x)$$

We say that a is a **lower bound** for A.

DEFINITION 1.1.4: Bounded

A is **bounded** when A is both bounded above and below.

DEFINITION 1.1.5: Supremum, Least upper bound, Maximum element

A has a **supremum** (or a **greatest lower bound**) when there exists an element $b \in \mathbf{R}$ such that b is an upper bound for A with $b \leq c$ for every upper bound $c \in \mathbf{R}$ for A. In this case, we say b is the **supremum** (or the **greatest lower bound**) of A and write $b = \sup\{A\}$. When $b = \sup\{A\} \in A$ we also say that b is the **maximum element** of A, and we write $b = \max\{A\}$.

DEFINITION 1.1.6: Infimium, Greatest lower bound, Minimum element

A has an **infimum** (or a **greatest lower bound**) when there exists an element $a \in \mathbb{R}$ such that a is a lower bound for A with $c \leq a$ for every lower bound c for A. In this case, we say a is the **infimum** (or the **greatest lower bound**) of A and write $a = \inf\{A\}$. When $a = \inf\{A\} \in A$ we also say that a is the **minimum element** of A, and we write $a = \min\{A\}$.

EXAMPLE 1.1.7

Let $A = \mathbf{R}_{>0} = (0, \infty) = \{x \in \mathbf{R} \mid x > 0\}$ and $B = [1, \sqrt{2}) = \{x \in \mathbf{R} \mid 1 \le x < \sqrt{2}\}.$

- *A* is bounded below, but not above.
- -1 and 0 are both lower bounds for A.
- $\inf\{A\} = 0$
- A has no minimum element, and no maximum element.
- *B* is bounded both above and below.
- 0 and 1 are both lower bounds for B
- $\sqrt{2}$ and 3 are both upper bounds for B.
- $\inf\{B\} = 1$
- $\sup\{B\} = \sqrt{2}$
- B has a minimum element, namely $min\{B\} = 1$, but has no maximum element.

THEOREM 1.1.8: The Supremum and Infemum Properties of R

- (1) Every non-empty subset of **R** which is bounded above in **R** has a supremum in **R**.
- (2) Every non-empty subset of **R** which is bounded below in **R** has an infimum in **R**.

Proof of: Theorem 1.1.8

Accepted axiomatically, without proof.

THEOREM 1.1.9: Approximation Property of Supremum and Infimum

```
 \begin{array}{l} \textit{Let} \; \emptyset \neq A \in \mathbf{R}. \\ \textit{(1)} \; \; b = \textit{sup}\{A\} \implies \forall \varepsilon \in \mathbf{R}_{>0} \; \exists x \in A \; (b-\varepsilon < x \leq b) \\ \textit{(2)} \; \; a = \textit{inf}\{A\} \implies \forall \varepsilon \in \mathbf{R}_{>0} \; \exists x \in A \; (a \leq x < a + \varepsilon) \end{array}
```

Proof of: Theorem 1.1.9

We prove (1). Let $b=\sup\{A\}$ and $\varepsilon>0$. Suppose for a contradiction that there exists no element $x\in A$ with $b-\varepsilon< x$, or equivalently that for all $x\in A$ we have $b-\varepsilon\geq x$. Let $c=b-\varepsilon$. Note that c is an upper bound for A since $x\leq b-\varepsilon=c$ for all $x\in A$. Then, since $b=\sup\{A\}$ and c is an upper bound for A, we have $b\leq c$. However, since $\varepsilon>0$ we have $b>b-\varepsilon=c$, contradiction. Therefore, there exists $x\in A$ with $b-\varepsilon< x$. Now, choose an element $x\in A$. Then, since $b=\sup\{A\}$, we know that b is an upper bound for A and hence $b\geq x$. Therefore, $b-\varepsilon< x\leq b$, as required.

THEOREM 1.1.10: Well-Ordering Properties of Z in R

- (1) Every non-empty subset of **Z** which is bounded above in **R** has a maximum element.
- (2) Every non-empty subset of **Z** which is bounded below in **R** has a minimum element.

Proof of: Theorem 1.1.10

We prove (1). Let A be a non-empty subset of ${\bf Z}$ which is bounded above. By Theorem 1.1.8 (1), A has a supremum in ${\bf R}$. Let $n=\sup\{A\}$. We must show that $n\in A$. Suppose for a contradiction that $n\notin A$. By Theorem 1.1.9 (using $\varepsilon=1$), we can choose $a\in A$ with $n-1< a\le n$. Note that $a\ne n$ since $a\in A$ and $n\notin A$, so we have a< n. By Theorem 1.1.9 (using $\varepsilon=n-a$) we can choose $b\in A$ with $a< b\le n$. Since a< b we have b-a>0. Since n-1< a and $b\le n$, we have 1=n-(n-1)>b-a. However, we have 1=n-(n-1)>b-a. However, we have 1=n-(n-1)>b-a. Therefore, 1=n-(n-1)>b-a. And hence 1=n-(n-1)>b-a. Therefore, 1=n-(n-1)>b-a.

THEOREM 1.1.11: Floor and Ceiling Properties of Z in R

```
(1) \forall x \in \mathbf{R} \exists ! n \in \mathbf{Z} (x - 1 < n \le x).
```

(2) $\forall x \in \mathbf{R} \exists ! m \in \mathbf{Z} \ (x \le m < x + 1).$

Proof of: Theorem 1.1.11

We prove (1).

Uniqueness. Let $x \in \mathbf{R}$, suppose $n, m \in \mathbf{Z}$ with $x-1 < n \le x$ and $x-1 < m \le x$. Since x-1 < n we have x < n+1. Since $m \le x$ and x < n+1, we have m < n+1, hence $m \le n$ by Theorem 1.1.1. Similarly, $n \le m$. Since $n \le m$ and $m \le n$, we have n = m as required.

Existence. Let $x \in \mathbf{R}$. First, let us consider the case that $x \geq 0$. Let $A = \{k \in \mathbf{Z} \mid k \leq x\}$. Note that $A \neq \emptyset$ (because $0 \in A$), and A is bounded above by x. By Theorem 1.1.10, A has a maximum element. Let $n = \max\{A\}$. Since $n \in A$, we have $n \in \mathbf{Z}$ and $n \leq x$. Also, note that x - 1 < n since $x - 1 \geq n \implies x \geq n + 1 \implies n + 1 \in A \implies n \neq \max\{A\}$. Thus, for $n = \max\{A\}$, we have $n \in \mathbf{Z}$ with $x - 1 < n \leq x$ as required.

Next, consider the case that x < 0. If $x \in \mathbf{Z}$, we can take n = x. Suppose that $x \notin \mathbf{Z}$. We have -x > 0 so, by the previous paragraph, we can choose $m \in \mathbf{Z}$ with -x - 1 < -m < x + 1. Thus, we can take n = -m - 1 to get x - 1 < n < x.

DEFINITION 1.1.12: Floor, Floor function

Let $x \in \mathbf{R}$. The floor of x, denoted by $\lfloor x \rfloor$, is the unique $n \in \mathbf{Z}$ with $x - 1 < n \le x$. The function $f : \mathbf{R} \to \mathbf{Z}$ given by $f(x) = \lfloor x \rfloor$ is called the floor function.

DEFINITION 1.1.13: Ceiling, Ceiling function

Let $x \in \mathbf{R}$. The **ceiling** of x, denoted by $\lceil x \rceil$, is the unique $n \in \mathbf{Z}$ with $x \leq n < x + 1$. The function $f : \mathbf{R} \to \mathbf{Z}$ given by $f(x) = \lceil x \rceil$ is called the **ceiling function**.

THEOREM 1.1.14: Archimedean Properties of Z in R

- (1) $\forall x \in \mathbf{R} \ \exists n \in \mathbf{Z} \ (n > x).$
- (2) $\forall x \in \mathbf{R} \ \exists m \in \mathbf{Z} \ (m < x).$

Proof of: Theorem 1.1.14

Let $x \in \mathbf{R}$. Let $n = \lfloor x \rfloor + 1$ and $m = \lfloor x \rfloor - 1$. Since $x - 1 < \lfloor x \rfloor$, we have $x < \lfloor x \rfloor + 1 = n$ and since $\lfloor x \rfloor \le x$, we have $m = \lfloor x \rfloor - 1 \le x - 1 < x$.

THEOREM 1.1.15: Density of Q in R

$$\forall a \in \mathbf{R} \ \forall b \in \mathbf{R} \ \exists q \in \mathbf{Q} (a < b \implies a < q < b)$$

Proof of

Let $a, b \in \mathbf{R}$ with a < b. By Theorem 1.1.14, we can choose $n \in \mathbf{Z}$ with $n > \frac{1}{b-a} > 0$. Then, n(b-a) > 1 and so nb > na+1. Let $k = \lfloor na+1 \rfloor$. Then we have $na < k \le na+1 < nb$ hence $a < \frac{k}{n} < b$. Thus, we can take $q = \frac{k}{n}$ to get a < q < b.

1.2 Limit of Sequences in R

DEFINITION 1.2.1: Sequence, Term

For $p \in \mathbf{Z}$, let $Z_{\geq p} = \{k \in \mathbf{Z} \mid k \geq p\}$. A **sequence** in a set A is a function of the form $x : \mathbf{Z}_{\geq p} \to A$ for some $p \in \mathbf{Z}$. Given a sequence $x : \mathbf{Z}_{\geq p} \to A$, the k^{th} **term** of the sequence is the element $x_k = x(k) \in A$, and we denote the sequence x by

$$(x_k)_{k\geq p}=(x_p,x_{p+1},\ldots)$$

Note that the range of the sequence $(x_k)_{k>p}$ is the set $\{x_k\}_{k>p}=\{x_k\mid k\geq p\}$.