Instructions

- 1. Write your name at the top of the *first* page and your initials at the bottom of *every* page.
- 2. Do *not* staple the exam.
- 3. Return the exam with all the pages, arranged in ascending order.
- 4. This is a closed-book exam.
- 5. No electronic devices are permitted.
- 6. You may use the blank spaces for any scratch work.
- 7. Discussing the exam before the solutions have been posted is a violation of the Honor Code.
- 8. There are 9 problems on this exam and you have 75 minutes to answer them.
- 9. Problems 1 7 involve 19 multiple-choice questions, each worth 4 points. Each question must have *exactly one* response clearly marked in the circle provided or else your answer will be marked incorrect.
- 10. Problems 8 (worth 16 points) and 9 (worth 8 points), must be answered clearly in the boxed space provided for those problems.

Problem 1. Insert the following keys in that order into a maximum-oriented heap-ordered binary tree:

B Z Q K V F S N I

a.	Wha	t is	the	key	with	index	1?
----	-----	------	-----	-----	------	-------	----

	В
	Ι
	Z
\bigcap	N

Initials: 1 of 9

b.	What is the key	with ind	ex 63	?													
	Q																
	F																
	S																
	K																
	N																
c.	If we perform a debefore it is sunk		pera	tion o	on th	e tre	e, wl	hat is	s the	key	that	will	repla	ce th	e curr	ent ma	aximum
	F																
	В																
	I																
	Q																
	K																
Pı	roblem 2. Consid	der inser	ting t	the fo	ollow	ing l	кеу-v	alue	pair	s in	that	orde	er int	o a s	ymbol	table	st.
		1	ъ	0	т	a	т	п	м	т	0	11	ח	7.7			
		key: value:	R 1	Q 2	J 3	G 4	L 5	R 6	M 7	I 8	Q 9	H 10	R 11	V 12			
a.	What is the valu	e returno	ed by	st.s	size()?											
	12																
	<u> </u>																
	8																
	9																
	<u> </u>																
b.	What is the valu	e return	ed by	st.g	get("	R")?											
	6																
	<u> </u>																
	3																
	18																
	1																
Pı	roblem 3. Consid	der inser	ting t	the fo	ollow	ing k	eys	(assı	ıme v	value	es to	be n	On n	ull ai	nd arb	oitrary) into a

binary search tree (BST) symbol table st, an object of type BST.

Н

Q

G

T

J

Z

K

Α

0

C M

В

a.	What is	the	heigh	t of	the E	BST	(assu	ıme ı	root	to be	e at l	neigh	t 0)?
		6											
		5											
		7											
		4											
		8											
b.	What is	the	value	ret	urned	by a	st.ra	nk("	M")?				
		5											
		8											
		7											
		6											
		4											
c.	What is	the	order	in v	which	the	keys	are	visite	ed if	we t	ravei	rse the BST in pre-order?
		A	В	С	G	Н	J	K	М	0	Q	Т	Z
		G	A	С	В	Т	J	Н	Q	0	K	Z	М
		В	С	A	Н	М	0	K	Q	J	Z	Т	G
		G	A	С	В	Т	J	Н	M	K	Z	0	Q
		G	Α	С	В	Т	J	Н	Q	K	0	М	Z
d.	What is	the	order	in v	which	the	keys	are	visit	ed if	we t	ravei	rse the BST in in-order?
		A	В	С	G	Н	J	K	M	0	Q	Т	Z
		A	В	С	G	Н	J	K	M	Z	Q	0	Т
		A	В	С	G	Н	J	K	Q	Z	Т	0	М
		В	С	A	Н	M	0	K	Q	J	Z	Т	G
		G	A	С	В	Т	J	Н	Q	K	0	М	Z
e.	What is	the	order	in v	which	the	keys	are	visite	ed if	we t	ravei	rse the BST in post-order?
		В	С	A	Н	М	0	K	Z	Q	J	G	Т
		В	С	A	Н	M	0	K	J	G	Q	Z	T
		A	В	С	G	Н	J	K	M	0	Q	Т	Z
		В	С	A	Н	M	0	K	Q	J	Z	Т	G
		G	A	С	В	Т	J	Н	Q	K	0	M	Z

Initials: 3 of 9

D 11 4	α · 1	. , .	,1 C 11 ·	1	11	. 0	0 1 4
Problem 4.	Consider	inserting	the following	g keys into	an initially	empty 2-	3 search tree.

B Q P F N W G J L H U X

- a. What is the height of the tree that results (assume root to be at height zero)?
 - \bigcirc 3
 - 5
 - 2
 - 4
 - \bigcirc 1
- b. How many 2-nodes does the tree contain?
 - \bigcirc
 - 5
 - () з
 - \bigcirc 7
 - 4
- c. How many 3-nodes does the tree contain?
 - () 4
 - \bigcirc ϵ
 - <u>5</u>
 - () з
 - () 7

Problem 5. Suppose you insert the key 9 into the following left-leaning red-black BST:

Allowed operations (rotations and color flip):

Initials: 4 of 9

a. What is	the third operation that results?
	Rotate 8 left
	Rotate 12 right
	Rotate 10 right
	Rotate 6 left
	Color flip 9
b. What is	the fifth operation that results?
	Rotate 12 right
	Rotate 6 left
	Rotate 10 right
	Color flip 9
	Rotate 8 left
an initially mod M to	6. Consider inserting the following keys (assume values to be non null and arbitrary) into empty hash table of $M=5$ lists, using separate chaining. Use the hash function $h(k)=k$ transform the k th letter of the alphabet into a table index, where $1 \le k \le 26$. J D W E V U L P F K X Y the length of the longest chain?
	1
	4
	3
	5
	2
b. Which o	of the following keys is in the longest chain?
	0
	V
	J
	\mathtt{W}
	U

Problem 7. Consider the digraph shown below. Assume that, in the internal representation, all vertices appear in ascending order in each adjacency list.

- a. Do a breadth-first search with 0 as the source vertex, and list the order in which vertices are processed by the algorithm?
 - 0 1 4 5 2 3 6
 - () 0 1 2 5 4 3 6
 - () 0 1 3 2 4 5 6
 - () 0 1 2 5 3 4 6
 - 0 1 2 3 6 4 5
- b. Do a depth-first search with 0 as the source vertex, and list all vertices in pre-order.
 - () 0 1 5 6 4 2 3
 - () 0 1 2 3 5 6 4
 - 0 1 4 2 3 6 5
 - () 0 1 3 5 6 4 2
 - () 0 1 4 2 3 5 6

Problem 8. (16 points) Design an efficient data structure called ThreadedSet to store a threaded set of strings, which maintains a set of strings (no duplicates) and the order in which the strings were inserted, according to the following API:

	$\operatorname{Constructor/method}$	Description
a. (6 points)	ThreadedSet()	create an empty threaded set
b. (3 points)	void add(String s)	add the string s to the set (if it is not already in the set)
c. (3 points)	boolean contains(String s)	is the string s in the set?
d. (3 points)	String previousKey(String s)	the string added to the set immediately before s (null if s is the first string added; throw java.util.NoSuchElementException if s is not in the set)

Here is an example:

```
ThreadedSet set = new ThreadedSet();
set.add("aardvark");
                             // { "aardvark" }
                             // { "aardvark",
set.add("bear");
                                              "bear" }
set.add("cat");
                             // { "aardvark", "bear", "cat" }
                             // { "aardvark", "bear", "cat" }
set.add("bear");
                             // (adding a duplicate key has no effect)
set.contains("bear");
                             // true
                             // false
set.contains("tiger");
                             // "bear"
set.previousKey("cat");
                             // "aardvark"
set.previousKey("bear");
set.previousKey("aardvark"); // null
```

Your answer will be graded on correctness, efficiency, and clarity. You may use data types that we have considered in this course.

```
import edu.princeton.cs.algs4.*;
import java.util.NoSuchElementException;
public class ThreadedSet {
    // Instance variables.
```

Initials: 7 of 9

public void add(String s) {						
}							
public boolean c	ontains(Str	ing s) {				
}							
public String pr	eviousKey(S	tring	} (a				
} }							
e. (1 point) Under reason							rowth of each of the methods
as a function of the number bounded by a constant.	N ber of keys N	in th	ne data s	structı	ire? A	Assume th	at the length of all strings is
		1	$\log N$	\sqrt{N}	N	$N \log N$	N^2
	add()						
	contains()						
:	previousKey()						

Initials: 8 of 9

2 points) W	hat is the order	of growth of th	ne worst case r	unning time of	your algorithm	?

Initials: 9 of 9