Université Mohamed V Ecole Mohammadia des ingénieurs Département Génie Industriel

TD N°2: Logique combinatoire

Exercice1

Pour obtenir l'équivalent d'une porte logique avec un multiplexeur, il suffit d'utiliser la méthode de table de Karnaug à table inscrite et d'inscrire une des deux entrées :

OU	UU				
A	В	S	S (B inscrit)		
0	0	0	В		
0	1	1			
1	0	1	1		
1	1	1			

A	В	S	S (B inscrit)
0	0	0	0
0	1	0	
1	0	0	В
1	1	1	

77	0	Т
A		ıĸ

A	В	S	S (B inscrit)
0	0	0	В
0	1	1	
1	0	1	B'
1	1	0	

Pour réaliser le XOR, puisqu'une valeur inscrite est inversée, il faut également utiliser un multiplexeur pour créer un inverseur

Exercice2

Exprimer algébriquement les fonctions suivantes :

1)
$$S = \overline{A} \overline{B} (0) + \overline{A} B(1) + A \overline{B} (1) + AB(0) = A \oplus B$$

2)
$$S = \overline{A} \overline{B} (1) + \overline{A} B(1) + A \overline{B} (1) + AB(0) = \overline{AB}$$

3)
$$S = \overline{B} \overline{A} (0) + \overline{B} A (0) + B \overline{A} (1) + BA(1) = B$$

4)
$$S = \overline{B} \overline{A} (0) + \overline{B} A (1) + B \overline{A} (0) + BA(1) = A$$

Exercice3

En utilisant un démux de 3 à 8 et des portes N-OU à trois entrées, réaliser les fonctions

- 1) $f_1(x_1, x_2, x_3) = \sum m(0, 1, 2, 4, 5)$
- 2) $f_2(x_1, x_2, x_3) = \sum m(3, 4, 5, 6, 7)$ 3) $f_3(x_1, x_2, x_3) = \prod M(4, 5, 7)$ 4) $f_4(x_1, x_2, x_3) = \prod M(0, 3, 5)$

Exercice4

En utilisant un mux de 4 à 1 et des portes logiques, réaliser les fonctions suivantes:

- 1) $f_1(x_1, x_2, x_3) = \sum m(0, 1, 2, 4, 5)$ 2) $f_2(x_1, x_2, x_3) = \sum m(3, 4, 5, 6, 7)$ 3) $f_3(x_1, x_2, x_3, x_4) = \prod M(4, 5, 7, 15)$ 4) $f_4(x_1, x_2, x_3, x_4) = \prod M(7, 10, 13, 15)$

La réponse à cette question dépend de la façon dont on choisi les signaux de contrôle. Voici une réalisation possible.

