OSI Reference Model Transport Layer Transport Layer

Munesh Singh

Indian Institute of Information Technology, Design and Manufacturing Kancheepuram, Chennai, Tamil Nadu 600127

Transport Layer Protocols

 There are mainly two transport layer protocols that are used on the Internet-

Transmission Control Protocol

- TCP is short for Transmission Control Protocol.
- It is a transport layer protocol.
- It has been designed to send data packets over the Internet.
- It establishes a reliable end to end connection before sending any data.

Characteristics Of TCP

TCP is a reliable protocol.

- It guarantees the delivery of data packets to its correct destination.
- After receiving the data packet, receiver sends an acknowledgement to the sender.
- It tells the sender whether data packet has reached its destination safely or not.
- TCP employs retransmission to compensate for packet loss.

TCP is a connection oriented protocol.

- TCP establishes an end to end connection between the source and destination.
- The connection is established before exchanging the data.
- The connection is maintained until the application programs at each end finishes exchanging the data.

TCP handles both congestion and flow control.

- TCP handles congestion and flow control by controlling the window size.
- TCP reacts to congestion by reducing the sender window size.

TCP ensures in-order delivery.

- TCP ensures that the data packets get deliver to the destination in the same order they are sent by the sender.
- Sequence Numbers are used to coordinate which data has been transmitted and received.

TCP connections are full duplex.

- TCP connection allows to send data in both the directions at the same time.
- So, TCP connections are Full Duplex.

TCP works in collaboration with Internet Protocol.

- A TCP connection is uniquely identified by using-
 - Combination of port numbers and IP Addresses of sender and receiver.
- IP Addresses indicate which systems are communicating.
- Port numbers indicate which end to end sockets are communicating.
- Port numbers are contained in the TCP header and IP Addresses are contained in the IP header.
- TCP segments are encapsulated into an IP datagram.
- So, TCP header immediately follows the IP header during transmission

TCP can use both selective & cumulative acknowledgements.

- TCP uses a combination of Selective Repeat and Go back N protocols.
- In TCP, sender window size = receiver window size.
- In TCP, out of order packets are accepted by the receiver.
- When receiver receives an out of order packet, it accepts that packet but sends an acknowledgement for the expected packet.
- Receiver may choose to send independent acknowledgements or cumulative acknowledgement.
- To sum up, TCP is a combination of 75% SR protocol and 25% Go back N protocol.

TCP is a byte stream protocol.

- Application layer sends data to the transport layer without any limitation.
- TCP divides the data into chunks where each chunk is a collection of bytes.
- Then, it creates a TCP segment by adding IP header to the data chunk.
- TCP segment = TCP header + Data chunk.

- TCP provides error checking & recovery mechanism.
 - Checksum
 - Acknowledgement
 - Retransmission
- It continuously receives data from the application layer.
- It divides the data into chunks where each chunk is a collection of bytes.
- It then creates TCP segments by adding a TCP header to the data chunks.
- TCP segments are encapsulated in the IP datagram.

TCP segment = TCP header + Data chunk

TCP Header

• The following diagram represents the TCP header format-

Source Port

- Source Port is a 16 bit field.
- It identifies the port of the sending application.

Destination Port

- Destination Port is a 16 bit field.
- It identifies the port of the receiving application.

Note:

- A TCP connection is uniquely identified by using-
 - Combination of port numbers and IP Addresses of sender and receiver
- IP Addresses indicate which systems are communicating.
- Port numbers indicate which end to end sockets are communicating.

Sequence Number

- Sequence number is a 32 bit field.
- TCP assigns a unique sequence number to each byte of data contained in the TCP segment.
- This field contains the sequence number of the first data byte.

Acknowledgement Number

- Acknowledgment number is a 32 bit field.
- It contains sequence number of the data byte that receiver expects to receive next from the sender.
- It is always sequence number of the last received data byte incremented by 1.

Header Length

- Header length is a 4 bit field.
- It contains the length of TCP header.
- It helps in knowing from where the actual data begins.

Minimum and Maximum Header length

- The length of TCP header always lies in the range-[20 bytes , 60 bytes]
 - The initial 5 rows of the TCP header are always used.
 - So, minimum length of TCP header $= 5 \times 4$ bytes = 20 bytes.
 - The size of the 6th row representing the Options field vary.
 - The size of Options field can go up to 40 bytes.
 - So, maximum length of TCP header = 20 bytes + 40 bytes = 60 bytes

Concept of Scaling Factor

- Header length is a 4 bit field.
- So, the range of decimal values that can be represented is [0, 15].
- But the range of header length is [20, 60].
- So, to represent the header length, we use a scaling factor of 4.
- Header length = Header length field value x 4 bytes

Example

 If header length field contains decimal value 5 (represented as 0101), then-

Header length $= 5 \times 4 = 20$ bytes

• If header length field contains decimal value 10 (represented as 1010), then-

Header length $= 10 \times 4 = 40$ bytes

 If header length field contains decimal value 15 (represented as 1111), then-

Header length $= 15 \times 4 = 60$ bytes

- Header length and Header length field value are two different things.
- The range of header length field value is always [5, 15].
- The range of header length is always [20, 60].
- Reserved Bits
 - The 6 bits are reserved.
 - These bits are not used.
- URG Bit: URG bit is used to treat certain data on an urgent basis.
 - When URG bit is set to 1,
 - It indicates the receiver that certain amount of data within the current segment is urgent.
 - Urgent data is pointed out by evaluating the urgent pointer field.
 - The urgent data has be prioritized.
 - Receiver forwards urgent data to the receiving application on a separate channel
 - ACK Bit: ACK bit indicates whether acknowledgement number field is valid or not.
 - When ACK bit is set to 1, it indicates that acknowledgement number contained in the TCP header is valid.
 - For all TCP segments except request segment, ACK bit is set to 1.
 - Request segment is sent for connection establishment during Three Way Handshake.

- PSH Bit: PSH bit is used to push the entire buffer immediately to the receiving application.
 - When PSH bit is set to 1,
 - All the segments in the buffer are immediately pushed to the receiving application.
 - No wait is done for filling the entire buffer.
 - This makes the entire buffer to free up immediately.

Note:

- Unlike URG bit, PSH bit does not prioritize the data.
- It just causes all the segments in the buffer to be pushed immediately to the receiving application.
- The same order is maintained in which the segments arrived.
- It is not a good practice to set PSH bit = 1.
- This is because it disrupts the working of receivers CPU and forces it to take an action immediately.

RST Bit-RST bit is used to reset the TCP connection.

- When RST bit is set to 1,
 - It indicates the receiver to terminate the connection immediately.
 - It causes both the sides to release the connection and all its resources abnormally.
 - The transfer of data ceases in both the directions.
 - It may result in the loss of data that is in transit.
- This is used only when-
 - There are unrecoverable errors.
 - There is no chance of terminating the TCP connection normally.
- SYN Bit: SYN bit is used to synchronize the sequence numbers.
 - When SYN bit is set to 1,
 - It indicates the receiver that the sequence number contained in the TCP header is the initial sequence number.
 - Request segment sent for connection establishment during Three way handshake contains SYN bit set to 1

FIN Bit: FIN bit is used to terminate the TCP connection.

- When FIN bit is set to 1,
 - It indicates the receiver that the sender wants to terminate the connection.
 - FIN segment sent for TCP Connection Termination contains FIN bit set to 1.

Window Size

- Window size is a 16 bit field.
- It contains the size of the receiving window of the sender.
- It advertises how much data (in bytes) the sender can receive without acknowledgement.
- Thus, window size is used for Flow Control.

Note

- The window size changes dynamically during data transmission.
- It usually increases during TCP transmission up to a point where congestion is detected.
- After congestion is detected, the window size is reduced to avoid having to drop packets.

Checksum

- Checksum is a 16 bit field used for error control.
- It verifies the integrity of data in the TCP payload.
- Sender adds CRC checksum to the checksum field before sending the data.
- Receiver rejects the data that fails the CRC check.

Urgent Pointer

- Urgent pointer is a 16 bit field.
- It indicates how much data in the current segment counting from the first data byte is urgent.
- Urgent pointer added to the sequence number indicates the end of urgent data byte.
- This field is considered valid and evaluated only if the URG bit is set to 1.

USEFUL FORMULAS

- Number of urgent bytes = Urgent pointer + 1
- End of urgent byte= Sequence number of the first byte in the segment + Urgent pointer

Options

- Options field is used for several purposes.
- The size of options field vary from 0 bytes to 40 bytes.

Options field is generally used for the following purposes-

- Time stamp
- Window size extension
- Parameter negotiation
- Padding

Time Stamp

- Multiple segments having the same sequence number may appear at the receiver side.
- This makes it difficult for the receiver to identify the correct segment.
- If time stamp is used, it marks the age of TCP segments.
- Based on the time stamp, receiver can identify the correct segment.

Window Size Extension

- Options field may be used to represent a window size greater than 16 bits.
- Using window size field of TCP header, window size of only 16 bits can be represented.
- If the receiver wants to receive more data, it can advertise its greater window size using this field.
- The extra bits are then appended in Options field.

Parameter Negotiation

- Options field is used for parameters negotiation.
- Example- During connection establishment,
 - Both sender and receiver have to specify their maximum segment size.
 - To specify maximum segment size, there is no special field. So, they specify their maximum segment size using this field and negotiates.

Padding

- Addition of dummy data to fill up unused space in the transmission unit and make it conform to the standard size is called as padding.
- Options field is used for padding.
 - When header length is not a multiple of 4, extra zeroes are padded in the Options field.
 - By doing so, header length becomes a multiple of 4.
 - If header length = 30 bytes, 2 bytes of dummy data is added to the header.
 - This makes header length = 32 bytes.
 - Then, the value 32 / 4 = 8 is put in the header length field.
 - In worst case, 3 bytes of dummy data might have to be padded to make the header length a multiple of 4.

Thank You

