folha prática 3

vetores, retas e planos

página 1/3

universidade de aveiro de departamento de matemática

Vetores

- 1. Considere os vetores de \mathbb{R}^3 , X = (1, -2, 1) e Y = (-1, 1, 0).
 - (a) Calcule X + Y = 3X 2Y.
 - (b) Indique, justificando, se X e Y são vetores perpendiculares. E colineares?
 - (c) Determine o ângulo entre os vetores: i. $X \in Y$; ii. $X \in -Y$; iii. $X + Y \in X Y$.
 - (d) Apresente um vetor unitário com a direção do vetor X.
 - (e) Encontre todos os vetores com a direção de X e comprimento 2. De entre estes, indique os que têm: i. o sentido de X; ii. o sentido oposto a X.
 - (f) Escreva o vetor X como soma de um vetor com a direção de Y e um vetor ortogonal a Y.
 - (g) Determine todos os vetores perpendiculares a X e a Y.
 - (h) Encontre todos os vetores perpendiculares a X.
- 2. Mostre que o triângulo de vértices $P_1(2,3,-4)$, $P_2(3,1,2)$ e $P_3(-3,0,4)$ é isósceles.
- 3. Encontre todos os vetores que fazem um ângulo de $\frac{\pi}{3}$ com (1,0,0).
- 4. Sendo X e Y vetores de \mathbb{R}^n , mostre que
 - (a) $||X + Y||^2 + ||X Y||^2 = 2(||X||^2 + ||Y||^2);$
 - (b) se X e Y são ortogonais, então $\|X + Y\|^2 = \|X\|^2 + \|Y\|^2$ (Teorema de Pitágoras).
- 5. Sejam X = (2, -1, 1) e Y = (0, 2, -1) dois vetores em \mathbb{R}^3 .
 - (a) Calcule o produto externo (ou produto vetorial) $X \times Y$.
 - (b) Verifique que o vetor $X \times Y$ é ortogonal quer a X quer a Y.
- 6. Mostre que, sendo X e Y vetores não nulos de \mathbb{R}^3 ,
 - (a) $X \in Y$ são colineares se e só se $X \times Y = 0$;
 - (b) $||X \times Y||^2 + (X \cdot Y)^2 = ||X||^2 ||Y||^2$.
- 7. Considere o paralelogramo (e o triângulo) com lados correspondentes aos vetores X e Y como na figura.

- (a) Verifique que:
 - i. a altura do paralelogramo é igual a $||Y||\sin(\theta)$, sendo a base do paralelogramo o lado correspondente ao vetor X e $\theta = \angle(X,Y)$;
 - ii. a área do paralelogramo é $A_{\square} = ||X \times Y||$;
 - iii. a área do triângulo é $A_{\succeq} = \frac{1}{2} ||X \times Y||$.
- (b) Determine a área:
 - i. do paralelogramo de lados dados pelos vetores (3, -1, -1) e (1, 2, 1);
 - ii. do triângulo de vértices (1,0,1), (0,1,1), (1,1,2);
 - iii. dos vários paralelogramos com vértices em (1,0,1), (0,1,1) e (1,2,1).
- 8. Sejam X = (1, 2, 0) e Y = (1, -1, 1) dois vetores em \mathbb{R}^3 .
 - (a) Determine todos os vetores ortogonais a $X \in Y$.
 - (b) Calcule a área do paralelogramo de vértice na origem e lados correspondentes aos vetores X e Y.

9. Considere o paralelepípedo com arestas correspondentes aos vetores $X, Y \in \mathbb{Z}$.

- (a) Verifique que:
 - i. o paralelepípedo tem altura igual a $||Z|| |\cos(\theta)|$, considerando como base do paralelepípedo o paralelepípedo de lados correspondentes aos vetores X e Y e sendo $\theta = \angle(X \times Y, Z)$;
 - ii. o volume do paralelepípedo é $V = |(X \times Y) \cdot Z|$.
- (b) Calcule o volume do paralelepípedo com um vértice na origem e arestas dadas pelos vetores:
 - i. $(3, -2, 1), (1, 2, 3) \in (2, -1, 2);$
 - ii. (2,1,1), (2,3,4) e (1,0,-1).
- 10. Usando as alíneas 6(b) e 7(a)iii, mostre que a área do triângulo, cujos lados são os vetores X, Y e X+Y de comprimento a = ||X||, b = ||Y|| e, respetivamente, c = ||X + Y||, é dada pela fórmula de Herão:

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$
, onde $s = \frac{1}{2}(a+b+c)$ é o semiperímetro.

Retas e planos

- 11. Seja \mathcal{R} uma reta passante por $P(x_0, y_0, z_0)$ com vetor diretor $v = (v_x, v_y, v_z) \neq 0$.
 - (a) Prove que, se $v_x v_y v_z \neq 0$, \mathcal{R} é definida pelas equações (cartesianas) $\frac{x-x_0}{v_x} = \frac{y-y_0}{v_y} = \frac{z-z_0}{v_z}$.
 - (b) Sejam $u_1 = (0, -v_z, v_y)$, $u_2 = (v_z, 0, -v_x)$ e $u_3 = (-v_y, v_x, 0)$. Verifique que, para qualquer combinação linear $u = \alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3 \neq 0$, com $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$, a reta \mathcal{R} está contida no plano que passa por P e é ortogonal a u.

Defina agora a matriz quadrada $M_v = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}^{\top}$. Mostre que

- (c) $M_v w = v \times w$ para qualquer $w \in \mathbb{R}^3$;
- (d) $w \in \mathcal{N}(M_v)$ se e só se $w = tv \text{ com } t \in \mathbb{R}$;
- (e) $M_v^T w = w \times v$ para qualquer $w \in \mathbb{R}^3$;
- (f) $C(M_v) = \mathcal{L}(M_v)$;

(g) $X \in \mathcal{R}$ se e só se $v \times \overrightarrow{PX} = 0$;

- (h) $w \in \mathcal{C}(M_v)$ se e só se $v \cdot w = 0$.
- 12. Determine uma equação vetorial da reta $\mathcal R$ definida pelo sistema de equações cartesianas

$$\begin{cases} x+y-z=2\\ x-y+z=0 \end{cases},$$

assim como uma equação vetorial e uma equação geral do plano \mathcal{P} que passa pelo ponto P(2,2,1) e que contém a reta \mathcal{R} .

- 13. Considere o plano \mathcal{P} que passa pelos pontos A(1,1,1), B(0,1,0) e C(0,0,1) e a família de planos $\mathcal{P}_{a,b}$ definidos pela equação geral ax + y + z = b, com $a, b \in \mathbb{R}$.
 - (a) Determine uma equação geral do plano \mathcal{P} .
 - (b) Discuta a posição relativa dos planos \mathcal{P} e $\mathcal{P}_{a,b}$ em função dos parâmetros a e b.
- 14. Considere a família de retas \mathcal{R}_a definidas pelo sistema de equações cartesianas

$$\begin{cases} x + ay + z = 2 \\ x + ay + 2z = 3 \end{cases},$$

com $a \in \mathbb{R}$, e a família de planos \mathcal{P}_b definidos pela equação geral bx + by + z = 2, com $b \in \mathbb{R}$. Discuta a posição relativa do plano \mathcal{P}_b e da reta \mathcal{R}_a em função dos parâmetros a e b.

15. Considere a reta \mathcal{R} definida por x=2y+z=1 e a família de retas $\mathcal{F}_{a,b}$ de equação vetorial

$$(x, y, z) = (a, 0, 1) + s(0, 2, b), \quad s \in \mathbb{R},$$

com $a, b \in \mathbb{R}$. Discuta a posição relativa das retas \mathcal{R} e $\mathcal{R}_{a,b}$ em função dos parâmetros a e b.

- 16. Determine os pontos de \mathbb{R}^3 equidistantes dos pontos A(-1,0,2) e B(1,-1,1).
- 17. Considere o ponto $A(3, \frac{1}{2}, -\frac{7}{2})$ e o plano \mathcal{P} de equação geral y+z=-1.
 - (a) Escreva uma equação vetorial da reta ortogonal ao plano \mathcal{P} que passa pelo ponto A.
 - (b) Calcule a distância do ponto A ao plano $\mathcal P$ por dois processos distintos.
- 18. Considere o ponto P(-1,1,2) e a reta $\mathcal R$ que passa pelos pontos A(1,0,0) e B(0,0,1).
 - (a) Escreva uma equação geral do plano que contém o ponto P e é perpendicular à reta \mathcal{R} .
 - (b) Calcule a distância do ponto P à reta \mathcal{R} .
- 19. Considere os planos \mathcal{P} e $\mathcal{P}_{a,b}$ de equações x+y+2z=3 e ax+2y+4z=b, respectivamente, com $a,b\in\mathbb{R}$.
 - (a) Discuta a posição relativa dos planos \mathcal{P} e $\mathcal{P}_{a,b}$ em função dos parâmetros reais a e b.
 - (b) Determine a distância entre os planos \mathcal{P} e $\mathcal{P}_{2,2}$.
- 20. Verifique que o plano de equação geral x-y+z=1 e a reta definida pelo sistema de equações cartesianas

$$\begin{cases} x - 2y = -1 \\ y + z = 3 \end{cases}$$

são estritamente paralelos e calcule a distância entre eles.

- 21. Considere a família de planos \mathcal{P}_k de equação geral y+kz=1, com $k\in\mathbb{R}$, e a reta \mathcal{R} definida por x=2y=z-1.
 - (a) Discuta a posição relativa da reta \mathcal{R} e do plano \mathcal{P}_k em função do parâmetro k.
 - (b) Determine equações gerais dos planos perpendiculares à reta \mathcal{R} , cuja distância à origem é 1.
- 22. Considere a reta \mathcal{R}_1 que passa pelo ponto (1,1,-1) e tem vetor diretor (-1,2,-1) e a reta \mathcal{R}_2 que passa pelos pontos (1,-1,0) e (0,1,-1).
 - (a) Determine a posição relativa das retas \mathcal{R}_1 e \mathcal{R}_2 .
 - (b) Calcule a distância entre as retas \mathcal{R}_1 e \mathcal{R}_2 .
- 23. Considere as retas \mathcal{R}_1 e \mathcal{R}_2 de equações vetoriais

$$(x, y, x) = (1, 2, 0) + \alpha(-1, 0, 1), \ \alpha \in \mathbb{R},$$
 $(x, y, x) = (0, 1, 0) + \alpha(0, -1, 1), \ \alpha \in \mathbb{R}.$

- (a) Verifique que as retas \mathcal{R}_1 e \mathcal{R}_2 são enviezadas.
- (b) Determine o plano que contém \mathcal{R}_2 e é paralelo a \mathcal{R}_1 .
- (c) Calcule a distância e o ângulo entre as retas \mathcal{R}_1 e \mathcal{R}_2 .
- 24. Considere os planos de equações

$$(x, y, z) = (1, 1, -1) + s(0, 1, -1) + t(4, -1, -1),$$
 $s, t \in \mathbb{R}$

e $x + \alpha y + 2z = \beta$. Determine os valores dos parâmetros reais α e β para os quais a distância entre os dois planos é igual a 3.

- 25. Determine equações cartesianas das retas contidas no plano de equação x+y=0 cuja distância ao plano de equação x+y+z=1 é igual a $\sqrt{3}/3$.
- 26. Sabendo que $M_1(2,1,3)$, $M_2(5,3,-1)$ e $M_3(3,-4,0)$ são os pontos médios dos lados do triângulo ABC, determine
 - (a) uma equação da recta que contém o lado AB, cujo ponto médio é M_1 ;
 - (b) a área do triângulo (verifique o resultado, numericamente, usando a fórmula de Herão do exercício 10).

2014/15 vetores, retas e planos

página 1/1

- 1. (a) X+Y=(0,-1,1) e 3X-2Y=(5,-8,3). (b) Não. Não. (c) i. $\frac{5\pi}{6}$; ii. $\frac{\pi}{6}$; iii. $\arccos(\frac{2}{\sqrt{7}})$. (d) $\pm \frac{1}{\sqrt{6}}(1,-2,1)$. (e) i. $\frac{2}{\sqrt{6}}(1,-2,1)$; ii. $-\frac{2}{\sqrt{6}}(1,-2,1)$. (f) $X=-\frac{3}{2}(-1,1,0)+\left(-\frac{1}{2},-\frac{1}{2},1\right)$. (g) $\alpha(1,1,1),\ \alpha\in\mathbb{R}$. (h) $\alpha(1,0,-1)+\beta(0,1,2),\ \alpha,\beta\in\mathbb{R}$.
- 2. Dois lados do triângulo têm comprimento $\sqrt{41}$.
- 3. $\left(\frac{1}{3}\sqrt{3y^2+3z^2}, y, z\right), y, z \in \mathbb{R}.$
- 5. (a) (-1, 2, 4).
- 7. (b) i. $\sqrt{66}$; ii. $\frac{\sqrt{3}}{2}$; iii. 2.
- 8. (a) $\alpha(2, -1, -3), \alpha \in \mathbb{R}$. (b) $\sqrt{14}$.
- 9. (b) i. 8; ii. 3.
- 12. Uma equação vetorial da reta \mathcal{R} é $(x,y,z)=(1,1,0)+\alpha(0,1,1), \alpha\in\mathbb{R}$; uma equação vetorial do plano \mathcal{P} é $(x,y,z)=(2,2,1)+\alpha(0,1,1)+\beta(1,1,1), \alpha,\beta\in\mathbb{R}$, e uma equação geral de \mathcal{P} é y-z=1.
- 13. (a) x y z + 1 = 0; (b) \mathcal{P} e $\mathcal{P}_{a,b}$ são coincidentes se a = -1 e b = 1; estritamente paralelos se a = -1 e $b \neq 1$; concorrentes se $a \neq -1$ e $b \in \mathbb{R}$.
- 14. \mathcal{R}_a está contida em \mathcal{P}_b se a=b=1; \mathcal{R}_a e \mathcal{P}_b são concorrentes se $a\neq 1$ e $b\neq 0$; estritamente paralelos se (a=1 e $b\neq 1)$ ou $(a\in \mathbb{R} \ e\ b=0)$.
- 15. \mathcal{R} e $\mathcal{R}_{a,b}$ são coincidentes se a=1 e b=-4; estritamente paralelas se $a\neq 1$ e b=-4; concorrentes se a=1 e $b\neq -4$; enviezadas se $a\neq 1$ e $b\neq -4$.
- 16. Todos os pontos do plano de equação geral 2x y z + 1 = 0.
- 17. (a) $(x, y, z) = (3, \frac{1}{2}, -\frac{7}{2}) + \alpha(0, 1, 1), \ \alpha \in \mathbb{R}; (b) \sqrt{2}.$
- 18. (a) x z + 3 = 0; (b) 1.
- 19. (a) \mathcal{P} e $\mathcal{P}_{a,b}$ são coincidentes se a=2 e b=6; estritamente paralelos se a=2 e $b\neq 6$; concorrentes se $a\neq 2$ e $b\in \mathbb{R}$. (b) $\frac{2}{\sqrt{6}}$.
- 20. $\frac{1}{3}\sqrt{3}$.
- 21. (a) \mathcal{R} e \mathcal{P}_k são concorrentes se $k \neq -\frac{1}{2}$ e estritamente paralelos se $k = -\frac{1}{2}$. (b) $2x + y + 2z = \pm 3$.
- 22. (a) estritamente paralelas; (b) $\frac{1}{6}\sqrt{30}$.
- 23. (b) x + y + z = 1; (c) $\frac{2}{3}\sqrt{3}$ e $\frac{1}{3}\pi$.
- 24. $\alpha = 2 \text{ e } (\beta = -8 \text{ ou } \beta = 10).$
- 25. $\begin{cases} x + y = 0 \\ z = 0 \end{cases} e \begin{cases} x + y = 0 \\ z = 2 \end{cases}$
- 26. (a) $(x, y, z) = (2, 1, 3) + t(2, 7, -1), t \in \mathbb{R}$; (b) $6\sqrt{110}$.