

Computer Architecture

Spring 2020

Hamed Farbeh

farbeh@aut.ac.ir

Department of Computer Engineering

Amirkabir University of Technology

Copyright Notice

Lectures adopted from

- Computer Organization and Design: The Hardware/Software Interface, 5th edition, David A. Patterson, John L. Hennessy, MK pub., 2014
 - Chapter 3: Arithmetic for Computers

COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

Chapter 3

Arithmetic for Computers

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation

- In binary
 - \bullet ±1. $xxxxxxxx_2 \times 2^{yyyy}$
- Types float and double in C

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand: 1.0 ≤ |significand| < 2.0</p>
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored (Unsigned)
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1023 Bias = $(2^{E-1}-1)$

Biased Exponent

Decimal	Signed-2's	Biased Notation	Decimal Value of
Exponent	Complement	(Excess-16)	Biased Notation
15	01111	11111	31
14	01110	11110	30
		• • •	
1	00001	10001	17
0	00000	10000	16 (bias)
-1	11111	01111	15
-15	10001	00001	1
-16	10000	00000	0

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001⇒ actual exponent = 1 - 127 = -126
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $= \pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 11111110⇒ actual exponent = 254 127 = +127
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001⇒ actual exponent = 1 - 1023 = -1022
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value

 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

- Relative precision
 - all fraction bits are significant
 - Single: approx 2⁻²³
 - Equivalent to 23 x log₁₀2 ≈ 23 x 0.3 ≈ 6 decimal digits of precision
 - Double: approx 2⁻⁵²
 - Equivalent to 52 x log₁₀2 ≈ 52 x 0.3 ≈ 16 decimal digits of precision

Floating-Point Example

- Represent –0.75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - S = 1
 - Fraction = $1000...00_2$
 - Exponent = -1 + Bias
 - Single: $-1 + 127 = 126 = 011111110_2$
 - Double: $-1 + 1023 = 1022 = 0111111111110_2$
- Single: 1011111101000...00
- Double: 10111111111101000...00

Floating-Point Example

 What number is represented by the singleprecision float

11000000101000...00

- S = 1
- Fraction = $01000...00_2$
- Exponent = $10000001_2 = 129$
- $x = (-1)^{1} \times (1 + 01_{2}) \times 2^{(129 127)}$ $= (-1) \times 1.25 \times 2^{2}$ = -5.0

Denormal Numbers

Exponent = $000...0 \Rightarrow$ hidden bit is 0

$$x = (-1)^{S} \times (0 + Fraction) \times 2^{-Bias}$$

- Smaller than normal numbers
 - allow for gradual underflow, with diminishing precision
- Denormal with fraction = 000...0

$$x = (-1)^{S} \times (0+0) \times 2^{-Bias} = \pm 0.0$$

Two representations of 0.0!

Infinities and NaNs

- Exponent = 111...1, Fraction = 000...0
 - ±Infinity
 - Can be used in subsequent calculations, avoiding need for overflow check
- Exponent = 111...1, Fraction ≠ 000...0
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - e.g., 0.0 / 0.0
 - Can be used in subsequent calculations

Single precision		Double precision		Object represented	
Exponent	Fraction	Exponent	Fraction		
0	0	0	0	0	
0	Nonzero	0	Nonzero	± denormalized number	
1–254	Anything	1–2046	Anything	± floating-point number	
255	0	2047	0	± infinity	
255	Nonzero	2047	Nonzero	NaN (Not a Number)	

FIGURE 3.13 EEE 754 encoding of floating-point numbers. A separate sign bit determines the sign. Denormalized numbers are described in the *Elaboration* on page 222. This information is also found in Column 4 of the MIPS Reference Data Card at the front of this book.

•	single	double	extended	full quadruple
Format length	32	64	80	128
Stored fraction bits	23	52	64	112
Precision (p)	24	53	64	113
Biased-exponent bits	8	11	15	15
Minimum exponent	-126	-1022	-16382	-16382
Maximum exponent	127	1023	16383	16383
Exponent bias	127	1023	16383	16383
macheps (2^{-p+1})	2^{-23}	2^{-52}	2^{-63}	2^{-112}
•	$\approx 1.19e-07$	≈ 2.22e-16	$\approx 1.08\text{e-}19$	$\approx 1.93e\text{-}34$
Largest finite	$(1-2^{-24})2^{128}$	$(1-2^{-53})2^{1024}$	$(1-2^{-64})2^{16384}$	$(1-2^{-113})2^{16384}$
	≈ 3.40e+38	$\approx 1.80e + 308$	$\approx 1.19e + 4932$	$\approx 1.19e + 4932$
Smallest normalized	2^{-126}	2^{-1022}	2^{-16382}	2^{-16382}
	$\approx 1.18e\text{-}38$	≈ 2.23e-308	≈ 3.36e-4932	≈ 3.36e-4932
Smallest denormalized	2^{-149}	2^{-1074}	2^{-16446}	2^{-16494}
	$\approx 1.40e-45$	$\approx 4.94e\text{-}324$	$\approx 1.82\text{e-}4951$	$\approx 6.48e\text{-}4966$

