

Unit-7

——Multiplexers and Decoders

张彦航

School of Computer Science Zhangyanhang@hit.edu.cn

7.6 利用中规模译码器芯片设计组合逻辑电路

例: 利用 74LS138 设计1位全加器

真值表

a _i	b _i	C _{i-1}	Si	Ci
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

74138功能表

	,												
使能端			输入			译码输出							
G₁	G _{2A}	G_{2B}	ပ	В	Α	Y ₀	Υ ₁	Y ₂	Y ₃	Y_4	Y ₅	Y ₆	Y ₇
0	X	X	X	X	X	1	1	1	1	1	1	1	1
X	1	X	X	\mathbf{X}	\mathbf{X}	1	1	1	1	1	1	1	1
X	X	1	X	X	X	1	1	1	1	1	1	1	1
1	0	0	0	0	0	0	1	1	1	1	1	1	1
1	0	0	0	0	1	1	0	1	1	1	1	1	1
1	0	0	0	1	0	1	1	0	1	1	1	1	1
1	0	0	0	1	1	1	1	1	0	1	1	1	1
1	0	0	1	0	0	1	1	1	1	0	1	1	1
1	0	0	1	0	1	1	1	1	1	1	0	1	1
1	0	0	1	1	0	1	1	1	1	1	1	0	1
1	0	0	1	1	1	1	1	1	1	1	1	1	0

$$S_i = \sum (1,2,4,7) = \overline{\overline{m}_1 \overline{m}_2 \overline{m}_4 \overline{m}_7}$$

$$c_{i-1} = \sum (3,5,6,7) = \overline{\overline{m}_3 \overline{m}_5 \overline{m}_6 \overline{m}_7}$$

$$y_i = \overline{m}_i$$

7.6 利用中规模译码器芯片设计组合逻辑电路

例:设计一个地址译码器,利用地址线 $A_9A_8...A_0$ 选择外设 A, B,C。 三个外设的地址分别是 $20H\sim2FH$, $40H\sim4FH$, $70H\sim7FH$

7.6 利用中规模译码器芯片设计组合逻辑电路

例:利用 8选1 数据选择器及 4线-10线译码器设计一个能实现2组 3位二进制数码等值比较的电路。

8选1 数据选择器

使能端	控	制站	输出		
En	\mathbf{A}_2	$\mathbf{A_1}$	$\mathbf{A_0}$	Υ	
1	X	X	X	0	
0	0	0	9	$\mathbf{D_0}$	
0	0	0	1	$\mathbf{D_1}$	
0	0	1	0	$\mathbf{D_2}$	
0	0	1	1	$\mathbf{D_3}$	
0	1	0	0	$\mathbf{D_4}$	
0	1	0	1	\mathbf{D}_{5}	
0	1	1	0	\mathbf{D}_{6}	
0	1	1	ı	\mathbf{D}_{7}	

4线-10线译码器

	输入			译码输出									
$\mathbf{A_3}$	\mathbf{A}_2	$\mathbf{A_1}$	$\mathbf{A_0}$	f_0	f ₁	f ₂	f ₃	f_4	f ₅	f ₆	f ₇	f ₈	f ₉
0	0	0	0	0	1	1	1	1	1	1	1	1	1
0	0	0	1	1	0	1	1	1	1	1	1	1	1
0	0	1	0	1	1	0	1	1	1	1	1	1	1
0	0	1	1	1	1	1	0	1	1	1	1	1	1
0	1	0	0	1	1	1	1	0	1	1	1	1	1
0	1	0	1	1	1	1	1	1	0	1	1	1	1
0	1	1	0	1	1	1	1	1	1	0	1	1	1
0	1	1	1	1	1	1	1	1	1	1	0	1	1
1	0	0	0	1	1	1	1	1	1	1	1	0	1
1	0	0	1	1	1	1	1	1	1	1	1	1	0