301 Jace 105

CHAPTER 34 MOLECULAR & CELLULAR RADIOBIOLOGY

Radiation Interaction With Water

• The principal radiation interaction in the body

In Vitro

• Irradiation outside of the cell or body

In Vivo

Irradiation with the cell or body

IRRADIATION OF MACROMOLECULES

Solution

• A liquid that contains dissolved substances

Three Major Effects When Macromolecules Are Irradiation in a Solution In Vitro

• Main-chain Scission, Cross-linking & Point Lesion

Main-Chain Scission

- The breakage of the backbone of the lingchain macromolecules
- Result:
 - Reduction of a long, single molecule into many smaller molecules
- *Effects*:
 - o Reduces the size of the macromolecules
 - o Reduces the viscosity of the solution
 - Very thick & slow to flow
- *Measurement of Viscosity:* determines the degree of main-chain scission

Cross-Linking

- Process of side spurs created by irradiation & attached to a neighboring macromolecules or to another segment of the same molecule
- *Effect:* increases the viscosity of the macromolecular solution

Point Lesion

- Any change that results in the impairment or loss of function at the point of a single chemical bond
- Not detectable

At low radiation doses, point lesion are considered to be the cellular radiation damage that results in the late radiation effects observed at the whole-body level!

Catabolism

• The reduction of nutrient molecules for energy

Anabolism

• The production of large molecules for form and function

Metabolism consists of catabolism and anabolism!

Translation

Process of forming a protein molecule from messenger RNA

Transcription

• Process of constructing mRNA

Proteins

- More abundant than nucleic acids
- Less radiosensitive than nucleic acids

DNA

- The most important molecule in the body
- Not abundant in the cell

DNA is the most radiosensitive molecule!

G₁ Portion of Interphase

- Deoxyribose, phosphate & base molecules accumulate in the nucleus
- DNA is in familiar double-helix form

S Portion of Interphase

- The DNA separates like a zipper
- Two daughter DNA molecules are formed

Chromosomes

• Control the growth & development of the cell

CHAPTER 34 MOLECULAR & CELLULAR RADIOBIOLOGY

Radiation Effects on DNA

- Chromosome aberration or cytogenetic damage
- Abnormal metabolic activity
- Structural change

Type of Chromosome Aberrations

- Terminal deletion
- Dicentric formation
- Ring formation

Unobservable Radiation Response of DNA

- Main-chain scission with only one side rail severed
 - o Result: structural change
- Main-chain scission with both side rail severed
 - o Result: structural change
- Main-chain scission & subsequent crosslinking
 - o Result: structural change
- Rung breakage causing separation of bases
 - o Result: structural change
- Change in or loss of a base
 - o A molecular lesion of DNA
 - o Destroys the triplet code
 - o May not be reversible

Point Lesion

- A molecular lesion of DNA
- Critical Consequence: the transfer of incorrect genetic code to one of the two daughter cells

Three Principal Observable Effects

- Cell death
- Malignant disease
 - Molecular level
 - Linear, nonthreshold dose-response relationship
- Genetic damage
 - o Molecular level
 - Linear, nonthreshold dose-response relationship

Radiolysis of Water

- Dissociation of water into other molecular products as a result of irradiation
- Initial Result
 - o Ion Pair: HOH+& e
- Final Result
 - o *Ion Pair:* H⁺ & OH⁻
 - Two Free Radicals: H* & OH*

Irradiation of Water

• It represents the principal radiation interaction in the body

Free Radical

- An uncharged molecule that contains a single unpaired electron in the other shell
- Lifetime: < 1 ms

Hydrogen Peroxide

- Poisonous to the cell & therefore acts as a toxic agent
- Chemical Formula: H₂O₂
- *Formed By:*
 - \circ HO* + HO* or
 - $\circ HO_{2}^{*} + HO_{2}^{*}$

Hydroperoxyl Radical

- The principal damaging product after radiolysis of water along with Hydrogen peroxide
- *Chemical Formula:* HO^{*}₂
- Formed By: $H^* + O_2$

Organic Molecules

• Symbol: RH

Organical Free Radicals

- H* & R*
 - o Formed By: RH + irradiation
- RO 2
 - \circ Formed By: $R^* + O_2$

DIRECT & INDIRECT EFFECTS

Direct Effect

- If the initial ionizing event occurs on the target molecule
 - SUMMARIZED BY: MEYNARD Y. CASTRO

CHAPTER 34 MOLECULAR & CELLULAR RADIOBIOLOGY

Indirect Effect

- If the initial ionizing event occurs on a distant, noncritical molecule
- The energy is transferred to the target molecule

The principal effect of radiation on humans is indirect!

Target Theory

- For a cell to die after radiation exposure, its target molecule must be inactivated
- It was used to represent cell lethality
- It can be used to describe nonlethal radiation-induced cell abnormalities

DNA is the target molecule!

Target

 An area on the cell occupied by the target molecule or by a sensitive site on the target molecule

Hit

- Radiation interaction with the target or molecules
- It occurs through both direct & indirect effect
- It isn't simply an ionizing event, but rather an ionization that inactivates the target molecule

Direct & Indirect Effects

- Low-LET Radiation & Absence of Oxygen:
 - Low probability of hit on the target molecules
 - Rationale: relatively large distances between ionizing event
- Low-LET Radiation & Presence of Oxygen:
 - High probability of hit on the target molecules
 - *Rationale:*
 - Formation of free radical
 - Enlarged volume of effectiveness

surrounding each ionization

- High-LET Radiation & Absence of Oxygen:
 - High probability of a hit by direct effect
 - Rationale: close distance between ionization event
- *High-LET Radiation & Presence of Oxygen:*
 - o Does not result in additional hits
 - Rationale: the maximum number of hits has already been produced by direct effect with high-LET radiation

CELL SURVIVAL KINETICS

Cell Cloning

• Process by which normal cells produce a visible colony in a short time

The lethal effects of radiation are determined by observing cell survival, not cell death!

Two Models of Cell Survival

- Single-Target, Single-Hit Model
- Multi-Target, Single-Hit Model

Single-Target, Single-Hit Model

- It applies to biologic targets such as enzymes, viruses & bacteria
- *Equation:*

$$\circ$$
 S = N/N_o = $e^{-D/D_{37}}$

Radiation interacts randomly with matter!

D_{37}

- When the radiation dose reaches a level sufficient to kill 63% of the cells (37% survival)
- A measure of the radiosensitivity of the cell
- Low D_{37} : highly radiosensitive
- $High D_{37}$: highly radioresistant

If there were no wasted hits (uniform interaction), D_{37} is the dose that would be sufficient to kill 100% of the cells!

CHAPTER 34 MOLECULAR & CELLULAR RADIOBIOLOGY

Multi-Target, Single-Hit Model

- It applies to more complicated biologic system such as human cells
- *Equation:*

$$\circ$$
 S = N/N₀ = 1 - (1 - e^{D/D₀})ⁿ

• It represents a threshold

Cell Survival

- Very Low Radiation Dose: nearly 100%
- High Radiation Dose: fewer cells survive
 - o *Rationale:* more sustain a hit in both target molecules
 - o Survived Cells: have one target hit
 - Dose-Response Relationship: appear as single-target, single-hit model

D_0

- The mean lethal dose
- A constant related to the radiosensitivity of the cell
- It is equal to D_{37} in the linear portion of the graph
- Large D_0 : radioresistant cells
- Small D_0 : radiosensitive cells

Extrapolation Number

• The target number

D_Q

- The threshold dose
- A measure of the width of the shoulder of the multitarget single-hit model
- It is related to the capacity of the cell to recover from sublethal damage
- Large D_Q : the cell can recover readily from sublethal radiation damage

Sublethal Damage

- A damage that must be accumulated before the cell dies
- Wider Shoulder:
 - More sublethal damage that can be sustain
 - o The higher the value of D₀

Split-Dose Irradiation

 Designed to describe the capacity of a cell to recover from sublethal damage

CELL CYCLE EFFECTS

Cell-Cycle Time/Cell Generation Time

- The average time from one mitosis to another
- Human Cells: approximately 24 hrs
- Neurons: hundreds of hrs
 - o do not normally replicate
- Longer Generation Time
 - Results From: lengthening of the G₁ phase of the cell cycle

G_1 is the most time variable of cell phases!

Age-Response Function

- The pattern of change in radiosensitivity as a function of phase in the cell cycle
- Mitosis:
 - o The most sensitive
 - Lower fraction of surviving cells
- G_1 -S Transition: the next most sensitive
- Late S-Phase: the most resistant

Human cells are most radiosensitive in M & most resistant in late S!

LET, RBE & OER

Linear Energy Transfer (LET)

- At Very High LET: cell survival kinetics follows the single-target, single-hit model
 - o Examples: alpha particles & neutrons
- At Low LET: cell survival kinetics follows the multi-target, single-hit model
 - o *Example:* x-rays
- *Mean Lethal Dose:* greater after low-LET irradiation than after high-LET irradiation

Relative Biologic Effectiveness (RBE)

- Formula:
- $RBE = \frac{D_0 \text{ (x-radiation) to produce an effect}}{D_0 \text{ (test radiation) to produce the same effect}}$

SUMMARIZED BY: MEYNARD Y. CASTRO

²age 109

CHAPTER 34 MOLECULAR & CELLULAR RADIOBIOLOGY

Irradiation of mammalian cells with high-LET radiation follows the single-target, single-hit model!

Oxygen

- The most completely studied dose modifier
- *Presence of Oxygen:* maximizes the effect of low-LET radiation
- *Anoxic Cells:* requires higher dose to produce a given effect

Oxygen Enhancement Ratio

- Designed to measure the magnitude of the oxygen effect
- Formula:

 $OER = \frac{D_0 \text{ (anoxic) to produce an effect}}{D_0 \text{ (oxygenated) to produce the same effect}}$

LET determines the magnitude of RBE & OFR!