Process Algebra (2IMF10)

Bas Luttik

s.p.luttik@tue.nl

May 4, 2023

Solution to Exercise 4.3.5

Let p, q and r be closed MPT(A)-terms. We need to prove that if $(p+q)+r \hookrightarrow r$, then $p+r \hookrightarrow r$ and $q+r \hookrightarrow r$. To this end, suppose that $(p+q)+r \hookrightarrow r$; then there exists a bisimulation relation R such that (p+q)+r R r. We use R to define a relation R' by

$$R' = R \cup \{(p+r,r), (q+r,r)\} \cup \{(s,s) \mid s \text{ a closed MPT}(A)\text{-term}\}$$
,

and establish that R' is a bisimulation relation too; since p + r R r and q + r R r, it then follows that $p + r \stackrel{\triangle}{=} r$ and $q + r \stackrel{\triangle}{=} r$.

To establish that R' is a bisimulation relation, we need to verify the conditions of bisimulation relations for all pairs in R'. Let us start with the pair $(p + r, r) \in R'$:

- 1. If $p+r \stackrel{a}{\longrightarrow} s$ for some closed MPT(A)-term s, then there exists a formal derivation in accordance with the structural operational semantics of MPT(A) (i.e., the term deduction system for MPT(A)) with this derivation as conclusion. From the syntactic shape p+q of the left-hand side of the transition, it follows that only two of the three rules can have been applied last in this derivation (viz. the two rules for +; note that p+r has + as main operator). We distinguish two cases according to which rule was applied last in the formal derivation:
 - If the last rule applied in the formal derivation is the first rule for +, then it follows that $p \xrightarrow{a} s$. From $p \xrightarrow{a} s$ it follows by the first rule for + that $p + q \xrightarrow{a} s$, and hence, with another application of the same rule, that $(p+q)+r \xrightarrow{a} s$. Now, since (p+q)+r R r and R is a bisimulation relation, it follows that there exists s' such that $r \xrightarrow{a} s'$ for some s' such that s R s'. Since $R \subseteq R'$, we now also have that s R' s'.
 - If the last rule applied in the formal derivation is the second rule for +, then it follows that $r \xrightarrow{a} s$. Note that s R' s by the definition of R'.
- 2. If $r \xrightarrow{a} s$ for some closed MPT(A)-term s, then, by the second rule for + we find that $p + r \xrightarrow{a} s$, and we have s R' s by the definition of R'.
- 3. Since $p + r \downarrow$ does not hold, there is nothing to prove.
- 4. Since $r\downarrow$ does not hold, there is nothing to prove.

Checking the conditions for the pair $(q + r, r) \in R'$ proceeds analogously.

Since R is a bisimulation relation by assumption, all pairs in R satisfy the conditions of bisimulation relations.

The straightforward arguments showing that pairs $(s, s) \in R'$ satisfy the conditions of bisimulation relations are omitted.

We have argued that all pairs in R' satisfy the conditions of bisimulation relations, and thereby the proof is complete.