Amendments to the Claims

This listing of claims will replace all prior versions and listing of claims in this application.

Listing of claims:

What is claimed is:

Claims 1-21 (Cancelled)

22. (Previously Presented) A olefin polymerization catalyst composition comprising a metallocene catalyst component characterized by the formula:

$$Cp^{1}Cp^{2}R"MQ_{p}$$

wherein:

- (a) Cp¹ and Cp² are each independently a substituted or unsubstituted cyclopentadienyl group, a substituted or unsubstituted indenyl group or a substituted or unsubstituted fluorenyl group wherein at least one of Cp¹ and Cp² incorporates a nitrogen (N) or phosphorus (P) atom in its cyclopentadienyl ring, and wherein at least one of Cp¹ and Cp² is a substituted or unsubstituted fluorenyl group;
- (b) R^n is a structural bridge between Cp^1 and Cp^2 imparting stereorigidity to the ligand structure provided that when Cp^1 incorporates a phosphorus atom in its cyclopentadienyl ring and Cp^2 is free of a phosphorus atom in its cyclopentadienyl ring, the bridge R^n is connected to the phosphorus atom in Cp^1 or to a carbon atom in Cp^1 which is distal to the phosphorus atom;
- (c) M is a transition metal from Group IIIB, Group IVB, Group VB or Group
 VIB of the Periodic Table of Elements (CAS Version):

- (d) Q is a halogen or a hydrocarbyl group having from 1-20 earbon atoms;
 - (e) p is equal to the valence of the transition metal M minus 2.
- 23. (Previously Presented) The composition of claim 22 wherein one of Cp¹ or Cp² incorporates a nitrogen atom in its cyclopentadienyl ring, and R" is attached to the nitrogen atom, to a carbon atom vicinal to the nitrogen atom, or to a carbon atom non-vicinal to the nitrogen atom.
- 24. (Previously Presented) The composition of claim 22 in which Cp¹ and Cp² are each independently a substituted or unsubstituted fluorenyl group, wherein at least one of Cp¹ and Cp² incorporate a nitrogen (N) or phosphorus (P) atom in its cyclopentadienyl ring.
- 25. (Previously Presented) The composition of claim 22 wherein the catalyst component is characterized by one of the following formulas (II) (VI):

wherein R^1 , R^2 , R^3 and R^4 may be the same or different and are selected from the group consisting of a halogen and $C_1 - C_{20}$ alkyl, aryl, cycloalkyl, alkoxy and silanyl groups.

26. (Previously Presented) The composition of claim 22 wherein Cp¹ is a substituted or unsubstituted cyclopentadienyl group and Cp² is a substituted or unsubstituted fluorenyl group, wherein at least one of Cp¹ and Cp² incorporate a nitrogen (N) or phosphorus (P) atom in its cyclopentadienyl ring.

27. (Canceled)

- 28. (Previously Presented) The composition of claim 22 wherein M is Ti, Zr, Hf, or V.
- 29. (Previously Presented) The composition of claim 28 wherein p is 2.
- 30. (Previously Presented) The composition of claim 29 wherein Q is Cl.
- 31. (Previously Presented) The composition of claim 22 wherein R" is substituted or unsubstituted and is selected from the group consisting of an alkylidene group having from 1-20 carbon atoms, a dialkyl germanium group, a dialkyl silicon group, a dialkyl siloxane group, an alkyl phosphine group and an amine group.
- 32. (Previously Presented) The catalyst of claim 31 wherein R" comprises an Me₂Si group or an Et group.
- 33. (Previously Presented) The catalyst of claim 22 wherein at least one of Cp¹ and Cp² are substituted with substituents which are independently selected from the group consisting of aryl groups having from 1-20 carbon atoms, hydrocarbyl groups having from 1-20 carbon atoms, cycloalkyls, silane derivatives, alkoxies and halogens.

- 34. (Previously Presented) The composition of claim 33 wherein said substituents are independently selected from the group consisting of Ph, Bz, Naph, Ind, BzInd, Me, Et, n-Pr, i-Pr, n-Bu, and Me₃Si.
- 35. (Previously Presented) The composition of claim 34 wherein the substituents are methyl groups.
- 36. (Previously Presented) The composition of claim 22 wherein the metallocene catalyst component is immobilized on a solid support.
- 37. (Previously Presented) The composition of claim 22 further comprising an aluminum- or boron-containing co-catalyst capable of activating the catalyst component.
- 38. (Previously Presented) The composition of claim 22 wherein Cp¹ incorporates a nitrogen or phosphorus atom and is a cyclopentadienyl group or an indenyl group which is substituted or unsubstituted and Cp² is a substituted or unsubstituted fluorenyl group.
- 39. (Previously Presented) The composition of claim 38 wherein Cp¹ is a substituted or unsubstituted cyclopentadienyl group and Cp² is a fluorenyl group with at least one substituent at the 3- or 6-position, or at the 2- or 7-position, wherein Cp¹ incorporates a nitrogen (N) or phosphorus (P) atom.
- 40. (Previously Presented) The composition of claim 39 wherein said fluorenyl group is disubstituted with substituents at the 3- and 6-positions or at the 2- and 7-positions.
- 41. (Previously Presented) The composition of claim 40 wherein said substituents are methyl groups.

- 42. (Previously Presented) The composition of claim 22 wherein said catalyst component is selected from the group consisting of: Me₂Si(pyrrolyl)FluZrCl₂, Et(pyrrolyl)FluZrCl₂, Me₂Si(Imidazolyl)FluZrCl₂, Et(Imidazolyl)FluZrCl₂, Me₂Si(phospholyl)FluZrCl₂, and Et(phospholyl)FluZrCl₂.
- 43. (Previously Presented) A process for the polymerization of an ethylenically unsaturated monomer comprising:
 - (a) providing a metallocene catalyst component characterized by the formula:
 Cp¹Cp²R"MO_n

wherein:

- (i) Cp¹ and Cp² are each independently a substituted or unsubstituted cyclopentadienyl group, a substituted or unsubstituted indenyl group or a substituted or unsubstituted fluorenyl group wherein at least one of Cp¹ and Cp² incorporates a nitrogen (N) or phosphorus (P) atom in its cyclopentadienyl ring, and wherein at least one of Cp¹ and Cp² is a substituted or unsubstituted fluorenyl group;
- (ii) R^* is a structural bridge between Cp^1 and Cp^2 imparting stereorigidity to the ligand structure provided that when Cp^1 incorporates a phosphorus atom in its cyclopentadienyl ring and Cp^2 is free of a phosphorus atom in its cyclopentadienyl ring, the bridge R^* is connected to the phosphorus atom in Cp^1 or to a carbon atom in Cp^1 which is distal to the phosphorus atom;
- (iii) M is a transition metal from Group IIIB, Group IVB, Group VB or Group VIB of the Periodic Table of Elements (CAS Version);
- (iv) Q is a halogen or a hydrocarbyl group having from 1-20 carbon atoms; and

- (v) p is equal to the valence of the transition metal M minus 2;
- (b) providing an activating co-catalyst component;
- (c) contacting said metallocene catalyst component and said activating cocatalyst component in a polymerization reaction zone with an ethylenically unsaturated monomer to produce a polymer product by the polymerization of said monomer; and
 - (d) recovering said polymer product from said reaction zone.
- 44. (Previously Presented) The method of claim 43 wherein said ethylenically unsaturated monomer is ethylene or propylene.
- 45. (Previously Presented) The method of claim 44 wherein said monomer comprises propylene and said polymer product is a polypropylene homopolymer or copolymer.
 - 46. (Canceled)