数学物理方法作业集

潘逸文*; 余钊焕[†] 中国广州中山大学物理学院

October 8, 2019

简介

2019 年秋季数学物理方法 (面向 18 级光电信息科学与工程) 作业。每周作业除了在课上宣布,本文件也会每周更新,可在 QQ 群文件,或 https://panyw5.github.io/courses/mmp.html 以及 http://yzhxxzxy.github.io/cn/teaching.html 找到。

*Email address: panyw
5@mail.sysu.edu.cn †Email address: yuzhaoh
5@mail.sysu.edu.cn

1 第一周 (9月3日课上交)

1. 用指数表示法表示下面的复数

$$(a) \frac{i}{e}, \qquad (b) \ 2 + \sqrt{2}i \ , \qquad (c) \ 1 + e^{\frac{9\pi i}{14}}e^{\frac{-\pi i}{7}}, \qquad (d) \ \sqrt{3} + i \ \textbf{的所有 7 次方根} \tag{1.1}$$

- 2. 定义点集 $S_N \equiv \{z^N | z \in N(0,R)\}$, 其中 R > 0, $N = 1, 2, ... \in \mathbb{N}_{>0}$ 。 讨论 S_N 与 S_{N+1} 之间谁是谁的子集,是否真子集,写明推理。
- 3. 设点集 $S \equiv \{z \in \mathbb{C} \mid |z| \leq R\}$,其中 R > 0。求解最大的 $N \in \mathbb{N}$,使得对于任意 S 的内点 z, z^N 都还是内点。写明推理。
 - 4. 考虑点集 $S \equiv \{z \in \mathbb{C} \mid |z-1| + |z+1| < R\}$, 其中 R > 0。 S 是否区域? 是否单连通? 写明推理。

2 第二周 (9 月 10 日课上交)

- 0. (若上周没做这道题) 考虑点集 $S \equiv \{z \in \mathbb{C} \mid |z-1|+|z+1| < R\}$,其中 R > 0。S 是否区域? 是否单连通? 写明推理。
 - 1. 用代数式 (即 x + iy 的形式) 表达以下复数,其中 $a, b \in \mathbb{R}$, i 是虚数单位,

(a)
$$a^i, \not \exists r \mid a > 0,$$
 (b) $i^{a+bi},$ (c) $\sin(a+ib)$. (2.1)

- 2. 设 $u(x,y)=e^x\sin y,\ v(x,y)=-e^x\cos y$,并考虑复变函数 w=u(x,y)+iv(x,y)。验证 w 是 $\mathbb C$ 上解析函数。
 - 3. 设 f 为区域 D 内解析函数,同时,其值域是 \mathbb{R} 的子集。求证 f 是常数函数。
- 4. 设解析函数 f(z) 的实部 $u(x,y) = e^x x \cos y e^x y \sin y$,求其虚部,并把 f 的表达式改写为只含 z 的表达式。

3 第三周 (9 月 17 日课上交)

- 1. 计算 $I(C_1) = \int_{C_1} \bar{z} dz$ 和 $I(C_2) = \int_{C_2} \bar{z} dz$,其中 C_1 和 C_2 分别是上半圆周 (半径 R > 0,逆时针方向) 和下半圆周 (半径 R > 0,逆时针方向)。
 - 2. 计算

$$\int_{|z|=1} \frac{\sin(\cos z)}{z} dz \ . \tag{3.1}$$

3. 设复变函数 f 在单连通区域 D 内有定义且实部虚部的的一阶偏导数连续, $G \subset D$ 是其单连通子区域并有 $G \cup \partial G \subset D$ 。证明复变函数的格林公式

$$\int_{\partial C} f(z,\bar{z})dz = \int_{C} \partial_{\bar{z}} f(z,\bar{z})d\bar{z}dz , \qquad (3.2)$$

其中面积元 $d\bar{z}dz = 2idxdy$ 。

4 第四周 (9月24日交)

0. 计算

$$\int_{|z|=1} \frac{\sin(\cos z)}{z} dz \ . \tag{4.1}$$

1. 计算围道积分,其中 $n \in \mathbb{N}$, $\lambda \in \mathbb{C}$,

$$\oint_C \left(z + \frac{\lambda}{z}\right)^n \frac{dz}{z}, \qquad C = \{z \in \mathbb{C} | |z| = 1 \}.$$
(4.2)

2. 计算围道积分, n = 1, 2, 3, ...

$$\oint_C \frac{e^z}{z^n} \frac{dz}{z} , \qquad C = \{ z \in \mathbb{C} | |z| = 1 \} . \tag{4.3}$$

5 第五周 (10 月 8 日交; 作为一次考察)

1. 设函数 f(z) 在 $\overline{N(0,R)}$ 上解析。计算积分

$$\oint_C f(z)\bar{z}^{n+1}dz, \qquad C = \partial N(0,R) . \tag{5.1}$$

其中 $n \in \mathbb{N}$, R > 0。

- 2. 考虑级数 $\sum_{k=1}^{\infty} r_k c_k$, 其中 $r_k = (-1)^{k^2}$, $c_k = (-1)^k \frac{e^{ik\theta}}{k}$ 。分情况 $\theta = 0$ 和 $\theta = \pi$ 讨论级数是否收敛,是否绝对收敛,给出简要说明。
 - 3. 计算下面幂级数的收敛半径

(1)
$$\sum_{n=1}^{\infty} \frac{1}{n^n} z^n$$
, (2) $\sum_{n=1}^{\infty} \left(1 - \frac{1}{n}\right)^n z^n$. (5.2)

- 4. 设 f(z) 是 N(0,1) 内的解析函数。计算 $(1-z)^{-1}f(z)$ 以原点 a=0 为中心的泰勒展开(给出泰勒级数通项,用 f 的各阶导数表达)。
 - 5. 考虑 3 个互异复数 $a_i, i = 1, 2, 3$ 。计算积分

$$\oint_C \frac{1}{(z-a_1)(z-a_2)(z-a_3)} dz,$$
(5.3)

其中 $C = \{z \in \mathbb{C} \mid |z| = 1 + |a_1| + |a_2| + |a_3| \}$ 。 化简最后结果。

6 第七周 (10 月 15 日交)

$$u(x,y) \equiv \frac{x^2 - y^2}{x^4 + 2x^2y^2 + y^4} \ . \tag{6.1}$$

设 u(x,y) 是在某区域内解析的复变函数 f(z=x+iy) 的实部。

- (1) 用共轭调和函数方法求 f(z) 的虚部 v(x,y), 并写出函数 f(z) 关于 z=x+iy 的表达式;
- (2) 指出 f(z) 的奇点以及所属分类;
- (3) 分别以 $z=0,\,z=1,\,z=-1$ 为展开中心,作 Laurent 或 Taylor 展开。指出所得级数的收敛区域或收敛半径。
 - 2. 考虑复变函数

$$f(z) \equiv \frac{z^n}{z-1}$$
, $n \in \mathbb{N}$. (6.2)

- (1) 列举 f(z) 以原点为中心的环状/开圆盘状解析区域;
- (2) 以原点为展开中心,在上述每一个解析区域内写出 f(z) 的 Laurent 或 Taylor 展开 $f(z)=\sum_{k=-\infty}^{+\infty}\lambda_kz^k$,并比较展开系数 $\lambda_{k\geq 0}$ 与 $f^{(k)}(0)/k!$ 是否相等 (可为一般 n 和 k 计算通项然后比较,也可取 n=2,k=1,2,3 然后比较)。