

DC-Motor als Energiewandler

- Elektrische in mechanische Energie
 - Drehzahlkonstante
 - Drehmomentkonstante

maxon Motordaten und Betriebsbereiche Wie sind die Daten im maxon Katalog zu verstehen?

Kenndaten des Motors

beschreiben den Aufbau und das allgemeine Verhalten

- unabhängig von Spannung und Strom
- stark wicklungsabhängige Werte (elektromechanisch)
 - Anschlusswiderstand (Phase-Phase) R
 - Anschlussinduktivität (Phase-Phase) L
 - Drehmomentkonstante k_M
 - Drehzahlkonstante k_n
- praktisch unabhängig von Wicklung (mechanisch)
 - Kennliniensteigung ∆n/∆M
 - mechanische Zeitkonstante τ_m
 - Rotor-Trägheitsmoment J_{Mot}

maxon motor

Seite 2

Wicklungsreihe

Widerstand nimmt von links nach rechts zu

tiefer Widerstand

hoher Widerstand

- dicker Draht mit wenig Windungen
- tiefeNennspannungen
- hohe Dauer- und Anlaufströme
- tiefe Drehmoment-Konstante (mNm/A)
- hohe Drehzahl-Konstante (min⁻¹/V)

- dünner Draht mit vielen Windungen
- höhereNennspannungen
- tiefe Dauer- und Anlaufströme
- tiefe Drehzahl-Konstante (min⁻¹/V)
- hohe Drehmoment-Konstante (mNm/A)

maxon motor

Drehmomentkonstante k_M

erzeugtes Drehmoment proportional zum Motorstrom

$$M = k_M \cdot I$$

- durch Motorgeometrie und magn. Flussdichten bestimmt
- Drehmoment bestimmen mittels Strommessung
- im Motor: Drehmoment = Strom
- Einheiten: mNm/A

Kraft und Drehmomenterzeugung

Kräfte:

Kraft auf stromführende Leiter im Magnetfeld

Drehmoment:

Summe aller Kräfte im Abstand zu Drehachse

Einflussgrössen:

Geometrie Flussdichte Windungszahl

Konstruktion

$$M=k_M\cdot I$$

Strom I

Anwendung

maxon motor

Drehzahlkonstante k_n

- Drehzahl n und induzierte Spannung U_{ind}
 - Induktionsgesetz: Flussänderung in Leiterschleife
 - induzierte Spannung proportional zur Drehzahl
 - eigentlich Kehrwert von \mathbf{k}_{M} , nur in anderen Einheiten
- Drehzahlkonstante k_n
 - meist zur Berechnung der Leerlaufdrehzahl ${\bf n}_0$
 - Einheit: min⁻¹ / V
- Generatorkonstante k_e
 - Kehrwert von k_n: Motor als Generator (z.B. DC-Tacho). Wie viel Spannung wird induziert?
 - Einheiten: mV / min⁻¹
 V / 1000 min⁻¹

maxon motor

 $n = k_n \cdot U_{ind}$

 $n_0 = k_n \cdot U$

Seite 4

Motor als elektrischer Schaltkreis

EMK: induzierte Spannung (Wicklungs-)Widerstand R

Wicklungsinduktivität L

 Spannungsabfall über L kann für DC Motoren vernachlässigt werden Motorspannung U:

$$U = L \cdot \frac{\partial I}{\partial t} + R \cdot I + EMK \cong R \cdot I + U_{ind}$$

$$U_{ind} = U - R \cdot I$$

$$\frac{n}{k_n} = U - R \cdot \frac{M}{k_M}$$

$$n = k_n \cdot U - \left(\frac{30'000}{\pi} \cdot \frac{R}{k_M^2}\right) \cdot M$$
$$n = k_n \cdot U - \frac{\Delta n}{\Delta M} \cdot M$$

naxon motor

Drehzahl-Drehmoment Kennlinie

Kennlinien-Steigung

um wie viel wird die Drehzahl vermindert Δn , wenn das Motordrehmoment um ΔM erhöht wird?

 $\frac{\Delta n}{\Delta M} = \frac{30'000}{\pi \cdot k_{M}^{2}} \cdot R = \frac{n_{i}}{M_{iH}}$

maxon motor

Wicklungsreihe

praktisch konstant für Wicklungsreihe

konstanter Füllfaktor: gleicher totaler Kupferquerschnitt im Luftspalt

Werte bei Nennspannung

Reibung und Leerlauf

Arbeitspunkte

- Arbeitspunkte sind durch eine Last-Drehzahl n_L bei einem bestimmten Last-Drehmoment M_L charakterisiert.
- Arbeitspunkte müssen auf der Drehzahl-Drehmoment-Kennlinie liegen: Motorspannung entsprechend anpassen.

Beschleunigung

Zeit t

maxon Standardtoleranzen

Temperatur-Einfluss

Temperatur-Koeffizienten

Cu + 0.39 % pro K AlNiCo - 0.02 % pro K

Ferrit - 0.2 % pro K

NdFeB - 0.13 % pro K

maxon motor driven by precision

Wirkungsgrad

maxon Motordaten und Betriebsbereiche Wie sind die Daten im maxon Katalog zu verstehen?

Motorgrenzen: Betriebsbereiche

Kurzzeitbetrieb bei Überlast

Thermische Daten

beschreiben die Erwärmung und die thermischen Grenzen

hängen stark von den Montagebedingungen ab

Standardbedingungen:

horizontale Montage

- Erwärmen und Abkühlen
 - therm. Widerstand Gehäuse-Umgebung R_{th2}
 - therm. Widerstand Wicklung-Gehäuse R_{th1}
 - thermische Zeitkonstante der Wicklung τ_{thW}
 - thermische Zeitkonstante des Motor τ_{thS}
- Temperaturlimits
 - Umgebungstemperaturbereich
 - max. Wicklungstemperatur T_{max}

freie Konvektion bei 25 °C Umgebungstemperatur

maxon motor

Kunststoff-

Nennmoment und Temperatur

maxon motor driven by precision

Mechanische Daten

beschreiben die Grenzdrehzahl und die Lager

- Grenzdrehzahl
 - Überlegungen zur Lebensdauer der Lager (EC)
 - max. Relativgeschwindigkeit zwischen Kollektor und Bürsten (DC)
- Axialspiel, Radialspiel
 - unterdrückt durch eine Vorspannung
- axiale und radiale Belastung der Lager
 - dynamisch: in Betrieb
 - statisch: im Stillstand

maxon motor

Typenleistung

- keine einheitlichen Kriterien
 - elektrische Leistung im Nenn-Arbeitspunkt
 - Abgabeleistung im Nenn-Arbeitspunkt:
 - oder maximale Abgabeleistung P_{2.max}
 - aber auch "marketingtechnische" Faktoren

$$P_{typ} = \frac{\pi}{30} \cdot n_N \cdot M_N$$

- Typenleistung ist nur Anhaltspunkt
- Antrieb muss Drehzahl und Drehmoment bringen

