A Book of Abstract Algebra (2nd Edition)

Chapter 31, Problem 3EB		Bookmark	Show all steps: ON
	Proble	em	
Find the root field of $x^3 + x^2 + 1 \in$	$\mathbb{Z}_2[x]$ over \mathbb{Z}_2	Write its addition a	and multiplication tables.
	Step-by-step	solution	
	Step 1 of	4	
The objective is to find the root field multiplication tables.	d of $x^3 + x^2 + 1$	over \mathbb{Z}_2 , and write	its addition and
Comment			
	Step 2 of	4	

Let
$$a(x) = x^3 + x^2 + 1 \in \mathbb{Z}_2$$
.
 $a(0) = 0^3 + 0^2 + 1$
 $= 1$
 $\neq 0$
 $a(1) = 1^3 + 1^2 + 1$
 $= 1 + 1 + 1$
 $= 1$
 $\neq 0$

Therefore, a(x) has no roots in \mathbb{Z}_2 .

This implies that $x^3 + x^2 + 1$ is irreducible over \mathbb{Z}_2 .

Therefore, the root field of $x^3 + x^2 + 1$ over \mathbb{Z}_2 is $\mathbb{Z}_2[x]/(x^3 + x^2 + 1)$.

Comment

Step 3 of 4

Let k be any root of $a(x) = x^3 + x^2 + 1 \in \mathbb{Z}_2$.

Then
$$k^3 + k^2 + 1 = 0$$
.

$$k^3 = -k^2 - 1$$
$$= k^2 + 1$$

The root field is of size $2^3 = 8$.

The addition table is given as follows:

+	0	1	k	1+ <i>k</i>	k^2	$1 + k^2$	$k + k^2$	1
0	0	1	k	1+ <i>k</i>	k^2	$1 + k^2$	$k + k^2$	1
1	1	0	1+ <i>k</i>	k	1+k ²	k^2	$1+k+k^2$,
k	k	1+ <i>k</i>	0	1	$k + k^2$	$1+k+k^2$	k^2	1
1+ <i>k</i>	1+ <i>k</i>	k	1	0	$1+k+k^2$	$k + k^2$	1+k ²	1
k^2	k^2	1+k ²	$k + k^2$	$1+k+k^2$	0	1	k	1
1+k ²	1+k ²	k^2	$1+k+k^2$	$k + k^2$	1	0	1+ <i>k</i>	ì
$k + k^2$	$k + k^2$	$1+k+k^2$	k^2	1+k ²	k	1+ <i>k</i>	0	1

$1+k+k^2$	$1+k+k^2$	$k + k^2$	$1+k^2$	k^2	1+ <i>k</i>	k	1	0
-----------	-----------	-----------	---------	-------	-------------	---	---	---

Comment

Step 4 of 4

The multiplication table is given as follows:

×	0	1	k	1+ <i>k</i>	k^2	$1 + k^2$	$k + k^2$	$1+k+k^2$
0	0	0	0	0	0	0	0	0
1	0	1	k	1+ <i>k</i>	k^2	$1+k^2$	$k + k^2$	$1+k+k^2$
k	0	k	k^2	$k + k^2$	$1+k^2$	$1+k+k^2$	1	1+ <i>k</i>
1+ <i>k</i>	0	1+ <i>k</i>	$k + k^2$	1+k ²	1	k	$1+k+k^2$	k^2
k ²	0	k^2	1+k ²	1	$1+k+k^2$	1+ <i>k</i>	k	$k + k^2$
1+k ²	0	1+k ²	$1+k+k^2$	k	1+ <i>k</i>	$k + k^2$	k^2	1
$k + k^2$	0	$k + k^2$	1	$1+k+k^2$	k	k^2	1+ <i>k</i>	$1 + k^2$
$1+k+k^2$	0	$1+k+k^2$	1+ <i>k</i>	k^2	$k + k^2$	1	1+k ²	k

Comment

About Chegg
Chegg For Good
College Marketing
Corporate Development
Investor Relations
Jobs
Join Our Affiliate Program
Media Center

COMPANY

Site Map

LEGAL & POLICIES Advertising Choices Cookie Notice **General Policies** Intellectual Property Rights Terms of Use Global Privacy Policy Honor Code Honor Shield

CHEGG PRODUCTS AND SERVICES Cheap Textbooks Chegg Coupon Chegg Play Chegg Study Help College Textbooks eTextbooks Flashcards Learn Chegg Math Solver

Mobile Apps
Sell Textbooks
Solutions Manual
Study 101
Textbook Rental
Used Textbooks
Digital Access Codes
Chegg Money

CHEGG NETWORK CUSTOMER SERVICE EasyBib **Customer Service** Internships.com Give Us Feedback Thinkful Help with eTextbooks Help to use EasyBib Plus Manage Chegg Study Subscription **Return Your Books**

Textbook Return

Policy