Data: 29-junho-2022

## **ENUNCIADO**

- I Considere a seguinte Função de Transferência,  $\frac{Y(s)}{R(s)} = \frac{16}{20s+4}$ .
- (3,0) 1 –Determine a resposta temporal y(t) para uma entrada r(t)=10 (escalão de posição de amplitude 10). Desenhe um esboço simplificado da resposta y(t) e calcule o valor da saída em t=10s, ou seja y(10).
  - II Considere o seguinte diagrama de blocos em cadeia fechada (Figura 1).



Figura 1

- (3,0) 2 Determine o domínio do controlador proporcional ( $K_C$ ) de modo que o erro forçado seja inferior a 4%, para uma entrada do tipo rampa, r(t)=t.
  - III Considere o sistema hidráulico com 2 tanques interativos (Figura 2), com duas entradas ( $q_1$  e  $q_2$ ) e com duas saídas ( $q_3$  e  $q_4$ ).



rigui

(4,0) 3 – Determine o Modelo de Estado do sistema da Figura 2:  $\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$ 

Considere como variáveis de estado as grandezas  $h_1$  e  $h_2$ .

Ref.a: LREN05

Data: 29-junho-2022

IV – Considere o seguinte diagrama de blocos (Figura 3).



Figura 3

- (3,0) 4 Obtenha a FTCF do diagrama da Figura 3, utilizando a álgebra dos diagramas de blocos.
- (3,0) 5 Transforme o diagrama de blocos da Figura 3 em diagrama de fluxo de sinal e obtenha a Transmitância total (FTCF), aplicando a fórmula de Mason.
- V Considere o diagrama de blocos na forma canónica apresentado na Figura 4.



Figura 4

(4,0) 6 – Analise a estabilidade do sistema da Figura 4, a partir do critério de estabilidade do Diagrama do Lugar Geométrico das Raízes (*root locus*).

| Nome  |          |               |     | Aluno nº      |  |
|-------|----------|---------------|-----|---------------|--|
| Turma | Semestre | Classificação | (   | ) O Professor |  |
|       |          |               | FIM | <del></del>   |  |