

AD A 0 31357

II

Jo B

OF

4D A031357

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS - 1963 - A

AVSCOM REPORT NO. 76-41

Production Engineering Measures Program Manufacturing Methods and Technology

Improvement of Helicopter Forgings by Controlled Solidification and Thermal-Mechanical Treatments

Joseph C. Zola Boeing Vertol Company P.O. Box 16858 Philadelphia, Pennsylvania 19142

October 1976

Final Report Contract Number 25-74-C-0448

Approved for public release; distribution unlimited

Prepared for

U.S. ARMY AVIATION SYSTEMS COMMAND St. Louis, Missouri 63166

FRANKFORD ARSENAL
MATERIALS ENGINEERING DIVISION
Pitman Dunn Laboratory
Philadelphia, Pennsylvania 19137

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

Mention of any trade names or manufacturers in this report shall not be construed as advertising nor as an official indorsement or approval of such products or companies by the United States Government.

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed. Do not return to the originator.

MBER
D COVE
74
761
NUMBE
-
BER(s)
IEW
ECT, TA
20
20(XD
20(10
eport)
GRADIN
for
for
eatmen
eatmen ue
eatmen
EE

FOREWORD

The Boeing Vertol Company of Philadelphia, Pennsylvania, prepared this report to satisfy the requirements of Contract DAAA25-74-C-0448. This project was accomplished through Frankford Arsenal as part of the U.S. Army Aviation Systems Command Manufacturing Technology program. The primary objective of this program is to develop, on a timely basis, manufacturing processes, techniques and equipment for use in production of Army materiel. Comments are solicitated on the potential utilization of the information contained herein as applied to present and/or future production programs. Such comments should be sent to: U.S. Army Aviation Systems Command, ATTN: AMSAV-EXT, P.O. Box 209, St. Louis, Mo. 63166. The U.S. Army Aviation Systems Command project engineer was Mr. James Tutka and the Frankford Arsenal contract technical supervisor was Dr. Jeffrey Waldman.

The Boeing Vertol Company acknowledges the support of the Aluminum Company of America in conducting this program.

Boeing Vertol Company personnel responsible for this program were Leonard J. Marchinski, Director, Structures Technology; Daniel M. Hardy, Program Manager; and Joseph C. Zola, Project Engineer. Aluminum Company of America personnel included Harold Y. Hunsicker, Physical Metallurgy Division Manager; James Staley, Program Manager; and John Vruggink, Project Engineer.

TABLE OF CONTENTS

				Page
FOREWORD				1
LIST OF ILLUSTRATIONS				5
LIST OF TABLES				18
INTRODUCTION				21
POWDER METALLURGY				21 21 22
DISCUSSION				23
TASK I — SELECT ADVANCED PROCESSES FOR SCALE-UP TASK II — PRODUCE FORGINGS USING CONVENTIONAL AND				23
SCALED-UP ADVANCED PROCESSES				23
FORGING MATERIAL		:		25 25
TASK I – SELECTION OF ADVANCED PROCESSES				28
MATERIAL AND PROCEDURE RESULTS AND DISCUSSION COMMENTARY				30
TASK II - PRODUCTION OF FORGINGS				97
TASK III - MECHANICAL-PROPERTIES TESTS	•			110
TENSILE-PROPERTIES TESTS FRACTURE-TOUGHNESS TESTS FATIGUE-STRENGTH TESTS FATIGUE-CRACK PROPAGATION-RATE TESTS STRESS-CORROSION TESTS			 	111 112 114
TASK IV — DATA ANALYSIS AND EVALUATION				189
COST EFFECTIVENESS				196
CONCLUSIONS				199
RECOMMENDATIONS				200

		<u>Pa</u>	ige
REF	ERE	ENCES	01
BIB	LIOG	GRAPHY	02
APP	END	DIXES	
	A.	Location and Orientation of Test Specimens in Task II Forgings 20	03
	B.	Load-Strain Plots of Forging Specimens	11
	C.	Fracture-Toughness Load-Displacement Plots	24
	D.	Fatigue-Crack Propagation-Rate Data Tabulations	41
	E.	Calculation of Potential Weight Savings in the YUH-61A Horizontal-Stabilizer Spar Fitting	57
	F.	Predicted Weight Savings in the YUH-61A Antitorque-Rotor Collective-Pitch Slider Sized to Damage Tolerance	59

LIST OF ILLUSTRATIONS

Figure		Page
1	Individual Task II Forgings for Conventional 7075-T73 and 7475-TMT1 and 7475-TMT2 Alloys	24
2	Examples of Forged-Aluminum Components on Current Helicopters	27
3	Microstructure, Properties, and Forging Practice for 2-Inch- Thick 7475-T7X Hand Forging S-426669-1	38
4	Microstructure, Properties, and Forging Practice for 2-Inch- Thick 7475-T7X Hand Forging S-426669-2	39
5	Microstructure, Properties, and Forging Practice for 2-Inch- Thick 7475-T7X Hand Forging S-42666-3	40
6	Microstructure, Properties, and Forging Practice for 2-Inch- Thick 7475-T7X Hand Forging S-426669-5	41
7	Microstructure, Properties, and Forging Practice for 2-Inch- Thick 7475-T7X Hand Forging S-426669-6	42
8	Microstructure, Properties, and Forging Practice for 2-Inch- Thick 7475-T7X Hand Forging S-426669-7	43
9	Microstructure, Properties, and Forging Practice for 1-Inch- Thick 7475-T7X Hand Forging S-426669-8	44
10	Microstructure, Properties, and Forging Practice for 1-Inch- Thick 7475-T7X Hand Forging S-426669-9	45
11	Microstructure, Properties, and Forging Practice for 1-Inch- Thick 7475-T7X Hand Forging S-426669-10	46
12	Microstructure, Properties, and Forging Practice for 1-Inch- Thick 7475-T7X Hand Forging S-426669-11	47
13	Microstructure, Properties, and Forging Practice for 1-Inch- Thick 7475-T7X Hand Forging S-426669-12	48
14	Microstructure, Properties, and Forging Practice for 1-Inch- Thick 7475-T7X Hand Forging S-426669-13	49

Figure		Page
15	Microstructure, Properties, and Forging Practice for 1-Inch- Thick 7475-T7X Hand Forging S-426669-14	. 50
16	Microstructure, Properties, and Forging Practice for 2-Inch- Thick 7475-T7X Hand Forging S-426669-15	. 51
17	Microstructure, Properties, and Forging Practice for 2-Inch- Thick 7475-T7X Hand Forging S-426669-16	. 52
18	Microstructure, Properties, and Forging Practice for 1-Inch- Thick 7475-T7X Hand Forging S-426669-17	. 53
19	Microstructure, Properties, and Forging Practice for 1-Inch- Thick 7475-T7X Hand Forging S-426669-18	. 54
20	Microstructure, Properties, and Forging Practice for 1-Inch- Thick 7475-T7X Hand Forging S-426669-19	. 55
21	Microstructure, Properties, and Forging Practice for 1-Inch- Thick 7475-T7X Hand Forging S-426669-20	. 56
22	Microstructure, Properties, and Forging Practice for 2-Inch- Thick 7475-T7X Hand Forging S-426669-21	. 57
23	Microstructure, Properties, and Forging Practice for 1-Inch- Thick 7475-T7X Hand Forging S-426669-22	. 58
24	Microstructure, Properties, and Forging Practice for 1-Inch Thick 7475-T7X Hand Forging S-426669-23	. 59
25	Microstructure, Properties, and Forging Practice for 1-Inch- Thick 7475-T7X Hand Forging S-437666-26A	. 60
26	Microstructure, Properties, and Forging Practice for 2-Inch- Thick 7475-T7X Hand Forging S-437666-26B	. 61
27	Microstructure, Properties, and Forging Practice for 1-Inch- Thick 7475-T7X Hand Forging S-437666-27A	. 62
28	Microstructure, Properties, and Forging Practice for 1.5-Inch- Thick 7475-T7X Hand Forging S-437666-27B	. 63
29	Microstructure, Properties, and Forging Practice for 1.75-Inch- Thick 7475-T7X Hand Forging S-437666-27C	. 64

Figure		Page
30	Microstructure, Properties, and Forging Practice for 2-Inch- Thick 7475-T7X Hand Forging S-437666-27D	65
31	Microstructure, Properties, and Forging Practice for 2.25-Inch-Thick 7475-T7X Hand Forging S-437666-27E	66
32	Microstructure, Properties, and Forging Practice for 1-Inch- Thick 7475-T7X Hand Forging S-437666-28A	67
33	Microstructure, Properties, and Forging Practice for 2-Inch- Thick 7475-T7X Hand Forging S-437666-28B	68
34	Solution Heat-Treatment, Quenching, and Artificial Aging of 1- to 2.25-Inch-Thick 7475 Hand Forging	71
35	Sampling of 1- to 2.25-Inch-Thick 7475-T7X Hand Forgings for Mechanical-Property and Corrosion Tests	72
36	Sharply Notched, 1/2-Inch-Diameter Notch-Tensile Specimen (Tapered Seat)	73
37	Compact-Tension Fracture-Toughness Specimen	74
38	Relationship Between Grain Dimensions and Amount of Warm Forging for 1- to 2.25-Inch-Thick 7475-T7X ITMT Hand Forgings	84
39	Longitudinal Properties of 1- to 2.25-Inch-Thick 7475-T7X Hand Forgings as a Function of Yield Strength	85
40	Short-Transverse Properties of 2- to 2.25-Inch-Thick 7475-T7X Hand Forgings as a Function of Short-Transverse Yield Strength	86
41	Longitudinal Properties of 1- to 2.25-Inch-Thick 7475-T7X Hand Forgings as a Function of the Grain Dimension in the Short-Transverse Direction	87
42	Longitudinal Properties of 1- to 2.25-Inch-Thick 7475-T7X Hand Forgings as a Function of the Grain Dimension in the Long-Transverse Direction	88
43	Longitudinal Properties of 1- to 2.25-Inch-Thick 7475-T7X Hand Forgings as a Function of the Grain Dimension in the Longitudinal Direction	89
44	Longitudinal Properties of 1- to 2.25-Inch-Thick 7475-T7X Hand Forgings as a Function of the Width and Thickness of the Grains	90

Figure		Page
45	Longitudinal Properties of 1- to 2.25-Inch-Thick 7475-T7X Hand Forgings as a Function of the Length and the Thickness of the Grains	91
46	Longitudinal Properties of 1- to 2.25-Inch-Thick 7475-T7X Hand Forgings as a Function of the Width and Length of the Grains	92
47	Short-Transverse Properties of 2- to 2.25-Inch-Thick 7475-T7X Hand Forgings as a Function of the Grain Dimension in the Longitudinal Direction	93
48	Short-Transverse Properties of 2- to 2.25-Inch-Thick 7475-T7X Hand Forgings as a Function of the Grain Dimensions in the Longitudinal and Long-Transverse Directions	94
49	Short-Transverse Properties of 2- to 2.25-Inch-Thick 7475-T7X Hand Forgings as a Function of the Length, Width, and Thickness of the Grains	95
50	Short-Transverse Properties of 2- to 2.25-Inch-Thick 7475-T7X Hand Forgings as a Function of the Length and Width of the Grains	96
51	Microstructure Properties and Forging Practice for 6.7-Inch- Thick 7475-T73 Task II Forging, S-438170	98
52	Microstructure Properties and Forging Practice for 2-Inch-Thick 7475-T73 Task II Forging, S-438169	99
53	Microstructure Properties and Forging Practice for 1-Inch- Thick 7475-T73 Task II Forging, S-438168	100
54	Microstructure Properties and Forging Practice for 6.7-Inch- Thick 7475-T73 Task II Forging, S-438173	101
55	Microstructure Properties and Forging Practice for 2-Inch- Thick 7475-T73 Task II Forging, S-438172	102
56	Microstructure Properties and Forging Practice for 1-Inch- Thick 7475-T73 Task II Forging, S-438171	103
57	Solution-Heat Treatment and Aging of 7075-T73 Stepped Hand Forging	105
58	Solution-Heat Treatment and Aging of 7475-T73 Hand Forgings	106

Figure		Page
59	Microstructure Properties for 6.7-Inch-Thick 7075-T73 Task II Forging, S-437701-3	107
60	Microstructure Properties for 2-Inch-Thick 7075-T73 Task II Forging, S-437701-2	108
61	Microstructure Properties for 1-Inch-Thick 7075-T73 Task II Forging, S-437701-1	109
62	Configuration of Standard Round Specimen for Tension Test	118
63 63	Configuration of Compact Specimen for Fracture-Toughness Testing, Specimens 0223, 0224, 0823, 0824, 1423, 1424, 0401, 1001, 1601, 0606, 1206, and 1806	.120
64	Configuration of Compact Specimen for Fracture-Toughness Testing, Specimens 0123, 0124, 0723, 0724, 1323, and 1324	121
65	Method for Determining Fracture Toughness	124
66	Fracture Surface of 7075-T73 Toughness Specimen 0124	126
67	Fracture Surface of 7475-TMT1 Toughness Specimen 0724	126
68	Fracture Surface of 7475-TMT2 Toughness Specimen 1324	126
69	Configuration of Smooth Specimen for Goodman Fatigue Test	127
70	Configuration of Notched Specimen for Goodman Fatigue Test	127
71	Fatigue Performance of Task II 7075-T73 Aluminum-Alloy Forging, Specimen Group 1	129
72	Fatigue Performance of Task II 7075-T73 Aluminum-Alloy Forging, Specimen Group 2	129
73	Fatigue Performance of Task II 7075-T73 Aluminum-Alloy Forging, Specimen Group 3	130
74	Fatigue Performance of Task II 7075-T73 Aluminum-Alloy Forging, Specimen Group 4	130
75	Fatigue Performance of Task II 7075-T73 Aluminum-Alloy Forging, Specimen Group 5	131

F	igure		Page
	76	Fatigue Performance of Task II 7075-T73 Aluminum-Alloy Forging, Specimen Group 6	131
	77	Fatigue Performance of Task II 7475-TMT1 Aluminum-Alloy Forging, Specimen Group 7	132
	78	Fatigue Performance of Task II 7475-TMT1 Aluminum-Alloy Forging, Specimen Group 8	132
	79	Fatigue Performance of Task II 7475-TMT1 Aluminum-Alloy Forging, Specimen Group 9	133
	80	Fatigue Performance of Task II 7475-TMT1 Aluminum-Alloy Forging, Specimen Group 10	133
	81	Fatigue Performance of Task II 7475-TMT1 Aluminum-Alloy Forging, Specimen Group 11	134
	82	Fatigue Performance of Task II 7475-TMT1 Aluminum-Alloy Forging, Specimen Group 12	134
	83	Fatigue Performance of Task II 7475-TMT1 Aluminum-Alloy Forging, Specimen Group 13	135
	84	Fatigue Performance of Task II 7475-TMT1 Aluminum-Alloy Forging, Specimen Group 14	135
	85	Fatigue Performance of Task II 7475-TMT1 Aluminum-Alloy Forging, Specimen Group 15	136
	86	Fatigue Performance of Task II 7475-TMT1 Alumínum-Alloy Forging, Specimen Group 16	136
	87	Fatigue Performance of Task II 7475-TMT2 Aluminum-Alloy Forging, Specimen Group 17	137
	88	Fatigue Performance of Task II 7475-TMT2 Aluminum-Alloy Forging, Specimen Group 18	137
	89	Fatigue Performance of Task II 7475-TMT2 Aluminum-Alloy Forging, Specimen Group 19	138
	90	Fatigue Performance of Task II 7475-TMT2 Aluminum-Alloy Forging, Specimen Group 20	138

Figure		Page
91	Fatigue Performance of Task II 7475-TMT2 Aluminum-Alloy Forging, Specimen Group 21	139
92	Fatigue Performance of Task II 7475-TMT2 Aluminum-Alloy Forging, Specimen Group 22	139
93	Fatigue Performance of Task II 7475-TMT2 Aluminum-Alloy Forging, Specimen Group 23	140
94	Fatigue Performance of Task II 7475-TMT2 Aluminum-Alloy Forging, Specimen Group 24	140
95	Fatigue Performance of Task II 7475-TMT2 Aluminum-Alloy Forging, Specimen Group 25	141
96	Fatigue Performance of Task II 7475-TMT2 Aluminum-Alloy Forging, Specimen Group 26	141
97	Comparison of Fatigue Strengths for 7075-T73 and 7475-TMT1 Forging, Groups 1 and 7	142
98	Comparison of Fatigue Strengths for 7075-T73 and 7475-TMT2 Forging, Groups 1 and 17	142
99	Comparison of Fatigue Strengths for 7075-T73 and TMT1 Forging, Groups 2 and 8	143
100	Comparison of Fatigue Strengths for 7075-T73 and 7475-TMT2 Forging, Groups 2 and 18	143
101	Comparison of Fatigue Strengths for 7075-T73 and 7475-TMT1 Forging, Groups 3 and 10	144
102	Comparison of Fatigue Strengths for 7075-T73 and 7475-TMT2 Forging, Groups 3 and 20	144
103	Comparison of Fatigue Strengths for 7075-T73 and 7475-TMT1 Forging, Groups 4 and 13	145
104	Comparison of Fatigue Strengths for 7075-T73 and 7475-TMT2 Forging, Group 4 and 23	145
105	Comparison of Fatigue Strengths for 7075-T73 and 7475-TMT1 Forging, Groups 5 and 15	146

Figure		Page
106	Comparison of Fatigue Strengths for 7075-T73 and 7475-TMT2 Forging, Groups 5 and 25	146
107	Comparison of Fatigue Strengths for 7075-T73 and 7475-TMT1 Forging, Groups 6 and 16	147
108	Comparison of Fatigue Strengths for 7075-T73 and 7475-TMT2 Forging, Groups 6 and 26	147
109	Goodman Diagram for 2-Inch-Thick Forging of 7475-TMT2 Aluminum-Alloy	148
110	Goodman Diagram for 2-Inch-Thick Forging of 7475-TMT1 Aluminum-Alloy	148
111	Fatigue-Fracture Surface and Origin of Failure for Specimens 0716, 0906, 1212, and 1303	149
112	Fatigue-Fracture Surface and Origin of Failure for Specimens 1437, 1447, 1508, and 1807	160
113	Grain Orientation and Grain Size for Specimens 0716, 0906, 1212, and 1303	161
114	Grain Orientation and Grain Size for Specimens 1437, 1447, 1508, and 1807	162
115	Configuration of Specimen for Fatigue-Crack Propagation-Rate Test	163
116	Typical Fatigue-Crack-Propagation Test Setup	163
117	Fatigue-Crack-Propagation Test Setup With Specimen Under Test in 3.5-Percent Salt Solution	165
118	Fatigue-Crack Growth-Rate Performance of Task II Forging, Conventional 7075-T73 Aluminum Alloy, Specimen 0120	166
119	Fatigue-Crack Growth-Rate Performance of Task II Forging, Conventional 7075-T73 Aluminum Alloy, Specimen 0121	166
120	Fatigue-Crack Growth-Rate Performance of Task II Forging, Conventional 7075-T73 Aluminum Alloy, Specimen 0122	167

Figure		Page
121	Fatigue-Crack Growth-Rate Performance of Task II Forging, Conventional 7075-T73 Aluminum Alloy, Specimen 0220	167
122	Fatigue-Crack Growth-Rate Performance of Task II Forging, Conventional 7075-T73 Aluminum Alloy, Specimen 0221	168
123	Fatigue-Crack Growth-Rate Performance of Task II Forging, Conventional 7075-T73 Aluminum Alloy, Specimen 0222	168
124	Fatigue-Crack Growth-Rate Performance of Task II Forging, Conventional 7075-T73 Aluminum Alloy, Specimen 0501	169
125	Fatigue-Crack Growth-Rate Performance of Task II Forging, Conventional 7075-T73 Aluminum Alloy, Specimen 0502	169
126	Fatigue-Crack Growth-Rate Performance of Task II Forging, Conventional 7075-T73 Aluminum Alloy, Specimen 0604	170
127	Fatigue-Crack Growth-Rate Performance of Task II Forging, Conventional 7075-T73 Aluminum Alloy, Specimen 0605	170
128	Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT1 Aluminum Alloy, Specimen 0720	171
129	Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT1 Aluminum Alloy, Specimen 0721	171
130	Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT1 Aluminum Alloy, Specimen 0722	. 172
131	Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT1 Aluminum Alloy, Specimen 0855	. 172
132	Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT1 Aluminum Alloy, Specimen 0856	. 173
133	Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT1 Aluminum Alloy, Specimen 0857	. 173
134	Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT1 Aluminum Alloy, Specimen 1101	. 174
135	Fatigue-Crack Growth-Rate Performance of Task II Forging,	174

Figure		Page
136	Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT1 Aluminum Alloy, Specimen 1204	. 175
137	Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT1 Aluminum Alloy, Specimen 1205	. 175
138	Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT2 Aluminum Alloy, Specimen 1320	. 176
139	Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT2 Aluminum Alloy, Specimen 1321	. 176
140	Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT2 Aluminum Alloy, Specimen 1322	. 177
141	Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT2 Aluminum Alloy, Specimen 1455	. 177
142	Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT2 Aluminum Alloy, Specimen 1456	. 178
143	Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT2 Aluminum Alloy, Specimen 1457	. 178
144	Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT2 Aluminum Alloy, Specimen 1701	. 179
145	Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT2 Aluminum Alloy, Specimen 1702	. 179
146	Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT2 Aluminum Alloy, Specimen 1804	. 180
147	Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT2 Aluminum Alloy, Specimen 1805	. 180
148	Longitudinal Yield Strength Versus Electrical Conductivity for Unrecrystallized 7075 Aluminum Alloy	. 185
149	Applied Stress Versus Longitudinal Yield Strength for Aluminum Alloy	. 186
150	Applied Stress Versus Longitudinal Tensile Strength for Aluminum Alloy	. 187

Figure		Page
151	Applied Stress Versus Electrical Conductivity for Aluminum Alloy	188
152	Horizontal-Stabilizer Spar Fitting for YUH-61A UTTAS	191
153	Weight Savings Available Through Improved Fatigue Properties	192
154	Collective-Pitch Slider for Antitorque Rotor on YUH-61A UTTAS	193
155	Improved Failsafety Through Enhanced Fracture Properties	194
156	Weight Savings Available Through Improved Fracture Properties	195
Al	One-Inch-Thick Forging for Specimens XX01 Through XX24	204
A2	Two-Inch-Thick Forging for Specimens XX01 Through XX57	205
A3	Two-Inch-Thick Forging of 7075-T73 for Specimens 0201 Through 0224	206
A4	6.7-Inch-Thick Forging for Specimens XX01 Through XX08	207
A5	6.7-Inch-Thick Forging for Specimens XX01, XX02, and XX03	208
A6	6.7-Inch-Thick Forging for Specimens XX01 and XX02	209
A7	6.7-Inch-Thick Forging for Specimens XX01 Through XX13	210
B1	Tension Tests of Standard Round Specimens No. 0101, 0102, and 0111	212
B2	Tension Tests of Standard Round Specimens No. 0201, 0202, and 0211	213
В3	Tension Tests of Standard Round Specimens No. 0402 and 0403	214
B4	Tension Tests of Standard Round Specimens No. 0601 and 0609	215
B5	Tension Tests of Standard Round Specimens No. 0701, 0702, and 0711	216
В6	Tension Tests of Standard Round Specimens No. 0827, 0828, and 0829	217

]	Figure		Page
	B7	Tension Tests of Standard Round Specimens No. 1002 and 1003	218
	B8	Tension Tests of Standard Round Specimens No. 1201 and 1209	219
	В9	Tension Tests of Standard Round Specimens No. 1301, 1302, and 1311	220
	B10	Tension Tests of Standard Round Specimens No. 1427, 1428, and 1429	221
	B11	Tension Tests of Standard Round Specimens No. 1602 and 1603	222
	B12	Tension Tests of Standard Round Specimens No. 1801 and 1809	223
	C1	Fracture-Toughness Test of Longitudinal-Compact Specimen No. 0124, 1-Inch Thick 7075-T73 Aluminum Forging	224
	C2	Fracture-Toughness Test of Longitudinal-Compact Specimen No. 0223, 2-Inch Thick 7075-T73 Aluminum Forging	225
	C3	Fracture-Toughness Test of Longitudinal-Compact Specimen No. 0224, 2-Inch-Thick 7075-T73 Aluminum Forging	226
	C4	Fracture-Toughness Test of Short-Transverse-Compact Specimen No. 0401, 6.7-Inch-Thick 7075-T73 Aluminum Forging	227
	C5	Fracture-Toughness Test of Longitudinal-Compact Specimen No. 0606, 6.7-Inch-Thick 7075-T73 Aluminum Forging	228
	C6	Fracture-Toughness Test of Longitudinal-Compact Specimen No. 0723, 1-Inch-Thick 7475-TMT1 Aluminum Forging	229
	C7	Fracture-Toughness Test of Longitudinal-Compact Specimen No. 0724, 1-Inch-Thick 7475-TMT1 Aluminum Forging	230
	C8	Fracture-Toughness Test of Longitudinal-Compact Specimen No. 0853, 2-Inch-Thick 7475-TMT1 Aluminum Forging	231
	C9	Fracture-Toughness Test of Longitudinal-Compact Specimen No. 0854, 2-Inch-Thick 7475-TMT1 Aluminum Forging	232

Figure		Page
C10	Fracture-Toughness Test of Short-Transverse-Compact Specimen No. 1001, 6.7-Inch-Thick 7475-TMT1 Aluminum Forging	233
C11	Fracture-Toughness Test of Longitudinal-Compact Specimen No. 1206, 6.7-Inch-Thick 7475-TMT1 Aluminum Forging	234
C12	Fracture-Toughness Test of Longitudinal-Compact Specimen No. 1323, 1-Inch-Thick 7474-TMT2 Aluminum Forging	235
C13	Fracture-Toughness Test of Longitudinal-Compact Specimen No. 1324, 1-Inch-Thick 7475-TMT2 Aluminum Forging	236
C14	Fracture-Toughness Test of Longitudinal-Compact Specimen No. 1453, 2-Inch-Thick 7475-TMT2 Aluminum Forging	237
C15	Fracture-Toughness Test of Longitudinal-Compact Specimen No. 1454, 2-Inch-Thick 7475-TMT2 Aluminum Forging	238
C16	Fracture-Toughness Test of Short-Transverse-Compact Specimen No. 1601, 6.7-Inch-Thick 7475-TMT2 Aluminum Forging	239
C17	Fracture-Toughness Test of Longitudinal-Compact Specimen No. 1806, 6.7 Inch-Thick 7475-TMT2 Aluminum Forging	240
F1	Stress Analysis of Tail-Rotor Collective-Pitch Slider for YUH-61A (Sheet 1 of 2)	261
F1	Stress Analysis of Tail-Rotor Collective-Pitch Slider for YUH-61A (Sheet 2 of 2)	262
F2	Computation Procedure and Crack-Stress Model for Stress- Intensity Factor	263
F3	Relationship Between Critical Crack Length and Fracture Toughness of Pitch Slider	264

LIST OF TABLES

Table		Page
1	Comparison of Properties	25
2	Forging Practices Used to Fabricate 1-Inch-Thick 7475-T7X Hand Forgings in Phase I	34
3	Forging Practices Used to Fabricate 2-Inch-Thick 7475-T7X Hand Forgings in Phase I	35
4	Forging Practices Used to Fabricate 1-Inch-Thick 7475-T7X Hand Forgings in Phase II	36
5	Forging Practice Used to Fabricate 2-Inch-Thick 7475-T7X Hand Forging in Phase II	37
6	Forging Practices Used to Fabricate 1- to 1.75-Inch-Thick 7475-T7X Hand Forgings in Phase III	69
7	Forging Practices Used to Fabricate 2- to 2.25-Inch-Thick 7475-T7X Hand Forgings in Phase III	70
8	Properties of 1-Inch-Thick Recrystallized Plus Hot-Worked 7475-T7X Hand Forgings	75
9	Properties of 1- to 1.75-Inch-Thick Recrystallized 7475-T7X Hand Forgings	76
10	Properties of 1-Inch-Thick Unrecrystallized 7475-T7X Hand Forgings	77
11	Properties of 2-Inch-Thick Recrystallized Plus Hot-Worked 7475-T7X Hand Forgings	78
12	Properties of 2- to 2.25-Inch-Thick Recrystallized 7475-T7X Hand Forgings	79
13	Properties of 2-Inch-Thick Unrecrystallized 7475-T7X Hand Forgings	80
14	Results of Accelerated Stress-Corrosion Tests on 1- to 2-Inch-Thick 7475-T7X Hand Forgings (Longitudinal Specimens)	81
15	Results of Accelerated Stress-Corrosion Tests on 1- to 2-Inch-Thick 7475-T7X Hand Forgings (Short-Transverse Specimens)	82

Table		Page
16	Grain Counts, Grain Dimensions, and Fabricating Variables for 7475-T7X Hand Forgings Produced Using ITMT-Type Practices	83
17	Fabricating Details for 7475 Hand Forgings Produced by ITMT-Type Procedures	104
18	Tensile-Properties Test Matrix	110
19	Mechanical Properties for Task II Forgings, Thermal/Mechanical Heat-Treated Aluminum Alloy	119
20	Fracture-Toughness Test Matrix	122
21	Fracture-Toughness-Test Results for Task II Forgings, Thermal/ Mechanical Heat-Treated Aluminum Alloy	123
22	Improvement in Fracture Toughness Relative to 7075-T73	125
23	Fatigue Tests	128
24	Axial-Fatigue-Test Results for Task II Forgings	148
25	Fatigue Performance of Task II Forgings Compared to 7075-T73 at 50 x 10 ⁶ Cycles	157
26	Typical Rockwell-Hardness Values for Selected Fatigue Specimens	157
27	Fatigue-Crack Propagation-Rate Test Matrix	164
28	Comparison of 7475-TMT Crack-Propagation Rates With 7075-T73 Crack-Propagation Rates	181
29	Comparison of Longitudinal and Short-Transverse Crack- Propagation Rates in 6.7-Inch Forging	181
30	Resistance to Corrosion of 6.7-Inch-Thick 7075-T7X and 7475-T7X Hand Forgings	182
31	Resistance to Corrosion of 2-Inch-Thick 7075-T7X and 7475-T7X Hand Forgings	183
32	Resistance to Corrosion of 1-Inch-Thick 7075-T7X and 7475-T7X Hand Forgings	184

Table									Page
33	Ranking of 7475-TMT Alloy Forgings								189
34	Subsystem Cost-Weight Coefficients								198

INTRODUCTION

In recent years, the aluminum industry has directed an intensive effort toward optimizing strength-toughness-stress-corrosion combinations in 2XXX- and 7XXX-series wrought alloys. Examples are 2419, 2124, 2048, 7050, and 7475 in aluminum-alloy plate and 2419, 7049, 7050, and 7175 in aluminum-alloy forgings. Development of these alloys has included work in the areas of alloy chemistry and processing. Reduction of intermetallic particles, both soluble and insoluble, has been broadly exploited.

Future improvements in structural properties, i.e., increased fracture toughness with no loss in strength, can be achieved through the application of microstructure control to products with optimum alloy chemistries to obtain desirable microstructures not now available with conventional processing methods. There are several approaches to controlling microstructure; they include powder metallurgy for wrought products, refinements in ingot-casting technology, advanced and specific thermomechanical treatments during ingot processing to improve and control grain size and morphology, and thermomechanical treatments following the solution-heat-treat operation which would establish new final precipitate and dislocation structures.

The objective of this program is to develop industrially viable fabrication schedules for producing aluminum-alloy forgings which will possess combinations of strength, fracture toughness, fatigue performance, and resistance to stress-corrosion cracking superior to that of 7075-T73.

POWDER METALLURGY

The present powder-metallurgy (P/M) approach, i.e., the work of Cebulak¹, has not only concentrated its efforts in the area of high strength and toughness, but has also emphasized resistance to stress-corrosion cracking. The present P/M alloys offer considerable promise of providing superior combinations of the three properties. P/M alloys were not considered in this study because production quantities of P/M wrought products are not now available. Emphasis has been placed on ingot metallurgy approaches, particularly in the areas of thermomechanical treatment.

FINAL-PROCESSING TMT (FTMT)

References 2 through 7 describe several procedures that involve a combination of thermal and mechanical treatments of 2XXX- and 7XXX-series alloys following solution heat treatment, i.e., prior to or during aging. Such concepts are not new; the T8 tempers of 2XXX alloys have been commercially available for many years. The newer TMT processes differ in that they generally involve preaging at artificial aging temperatures prior to mechanical working. They fall into two general categories:

- Those which seek to improve stress-corrosion resistance while suffering no loss in tensile properties or fracture toughness
- Those which seek to improve tensile strength, while minimizing loss in fracture toughness. These processes have not emphasized stress-corrosion resistance.

The first type, described by Sommer et al², involves elevated-temperature working of a T6-type temper to improve stress-corrosion resistance. The second type, described by a number of workers ³⁻⁸, produces strength-toughness combinations which may be attractive for certain high-strength applications of sheet or plate but do not require a high degree of resistance to stress-corrosion cracking. If it were possible to develop adequate stress-corrosion resistance using such methods, it is doubtful that these techniques could be adapted to the closed-die-forging practices which are the ultimate goal of this contract effort.

For these reasons, final-processing TMT was not included in this investigation.

INGOT-PROCESSING TMT (ITMT)

It has been known for some time that a fine, recrystallized grain structure in sheet is a desirable microstructure for high toughness. In sheet form, these structures are usually obtained by cold-rolling prior to and recrystallizing during solution heat treatment.

Producing plate and forgings in a similar manner by cold-working prior to solution heat treatment has not been possible with today's alloys and fabrication procedures, largely because limited ductility prohibits introduction of sufficient cold work. Hence, commercially available, thick-section wrought products often have an unrecrystallized, highly elongated lamellar grain structure which, although desirable for some properties in some directions, is considered detrimental to fracture toughness in the short-transverse direction.

Recently, DiRusso et al⁴ and Waldman et al⁸ developed novel processes specifically designed to produce a fine-grained, recrystallized structure in 7XXX alloy plate. These processes, referred to as Intermediate Thermal-Mechanical Treatments, (ITMT) including establishing a preliminary structure amenable to recrystallization by applying appropriate thermal treatments prior to working at lower-than-conventional working temperatures (in the case of 7X75 plate, the warm-working temperature was 500°F). The warm working introduces relatively high degrees of strain hardening which promote recrystallization to a relatively fine-grained equiaxial grain structure during a subsequent high-temperature thermal treatment. ITMT methods produce products that have either a recrystallized grain structure or an altered grain structure produced by hot working the previously recrystallized structure; the latter procedure elongates the recrystallized grains. The resulting grain morphology is desirable for good fracture toughness and the general fabrication method involved in achieving this structure may be commercially feasible for forgings. For these reasons, the ITMT approach was selected for this study.

To effectively evaluate the advanced processing for applications to forging of hardware, the special technologies of the material producer and the airframe manufacturer have been combined. The material producer, Aluminum Company of America, applied recently developed methods to forging fabrication and the initial optimization of candidate processes. The airframe manufacturer, the Boeing Vertol Company, performed the final evaluation through structural-properties testing of the two most promising candidates identified by the material producer.

The final evaluation includes side-by-side testing of conventional 7075-T73 for comparison with the Intermediate-Thermal-Mechanical-Treatment alloys to permit a valid assessment of the impact of results on the design of helicopter structure.

DISCUSSION

The Boeing Vertol Company, with subcontracted support from the Aluminum Company of America, conducted a four-part program to develop industrial techniques for producing improved aluminum-alloy forgings and to evaluate the forgings for use as components in helicopters.

The primary objective of this program is to develop industrial techniques for producing forgings ranging from 1 to 6.7 inches in section thickness and meeting the target properties shown below:

Tensile Properties - Equivalent to or better than 7075-T73

Toughness – 20% better than 7075-T73 Fatigue Properties – 20% better than 7075-T73

Stress Corrosion - Equivalent to or better than 7075-T73

To achieve this objective, four tasks were identified for accomplishment.

TASK I - SELECT ADVANCED PROCESSES FOR SCALE-UP

Task I was a laboratory-process-optimization effort, concentrating on a combination of alloy-chemistry and alloy-processing method to achieve the best combination of strength, fracture toughness, and resistance to stress-corrosion cracking as indicated by screening tests. Thirty-one advanced-alloy/process combinations or modifications on a 7475 alloy were selected for initial evaluation. The major parameters associated with the advanced processes include chemistry, solidification and homogenization, ingot processing, and thermal/mechanical treatments, and are based primarily on work done by investigators at the Frankford Arsenal, Massachusetts Institute of Technology, and Istituto Sperimentale dei Metalli Leggeri.

One 2 by 8 by 30-inch hand forging with pronounced longitudinal grain-flow characteristics was produced for each of the selected candidate alloy/process combinations. Thermal-mechanical treatment (TMT) was applied during ingot processing to control grain size and grain morphology. The tensile properties, fracture toughness, stress-corrosion resistance, and metallurgical structure of each forging were determined and, on the basis of these results, two optimum TMT practices were selected for scale-up to industrial status.

TASK II – PRODUCE FORGINGS USING CONVENTIONAL AND SCALED-UP ADVANCED PROCESSES

During Task II, scaled-up forgings for detailed testing were produced at Alcoa's Cleveland Works. The test forgings selected are representative of helicopter structural components and were 17 inches wide with section thicknesses of 6.7, 2.0, and 1.0 inch, respectively (see Figure 1). In addition to these three forgings for each optimum TMT process, conventional 7075-T73 forgings were produced in the same sizes. A total of nine scaled-up forgings were produced and delivered to the Boeing Vertol Company.

Figure 1. Individual Task II Forgings for Conventional 7075-T73 and 7475-TMT1 and 7475-TMT2 Alloys.

TASK III – CONDUCT MECHANICAL-PROPERTIES TESTS ON FORGING MATERIAL

In this phase of the program the room-temperature mechanical properties of the nine forgings produced in Task II would be determined by test. The following characteristics would be measured:

- a. Tensile properties as determined using ASTM procedures and specimen configuration.

 Tests would be conducted on specimens with longitudinal grain direction and on specimens with short-transverse grain direction.
- b. Fracture-toughness properties would be determined using a compact-specimen configuration and test procedures per ASTM method E399-72T¹⁰. Properties for the longitudinal and short-transverse grain directions would be established.
- c. Fatigue properties would be determined on axially loaded specimens. Constant-amplitude fatigue-stress levels for testing would be selected with the objective of obtaining data over the life range from 10⁴ to 5 x 10⁷ cycles. The influences of stress ratio (minimum stress/maximum stress), stress concentration, and grain direction would be investigated.
- d. Fatigue-crack-propagation properties would be determined using the compact-specimen configuration and constant-amplitude fatigue loading. The influences of an air environment and a salt-solution environment would be investigated. In addition, the properties of the longitudinal and short-transverse grain directions would be determined.
- e. Stress-corrosion-resistance properties would be established using Federal Test Method 823 or the latest recommendation of Joint Aluminum Association-ASTM Task Group for stress-corrosion testing of high-strength 7000-series aluminum alloys.

TASK IV – ANALYZE AND EVALUATE DATA

The objectives of this task are to analyze and evaluate the metallurgical and mechanicalproperties data developed in the previous tasks and to assess the impact of improved mechanical properties on the weight and cost of helicopter components.

The influence of the processing on properties will be identified. Primary emphasis will be placed on ranking the candidate processing techniques with respect to their ability to improve tensile, fatigue, fracture, and stress-corrosion-resistance properties. The properties obtained with the advanced-alloy/process combinations will be compared with the properties obtained from the conventionally processed 7075-T73. The parameters used for comparison will include those identified in Table 1.

TABLE 1. COMPARISON OF PROPERTIES

Basis of Comparison	Parameters for Making Comparison
Tensile properties	Tensile ultimate strength Tensile yield strength Elongation Reduction in area
Fatigue properties	Fatigue limit at 5 x 10 ⁷ cycles S-N curve, fatigue strength as a function of life Goodman diagram, mean-stress/ alternating-stress relationship for various constant cyclic lifetimes
Fracture properties	Plane-strain fracture toughness per ASTM 399-70T Notched tensile-strength-to-yield- strength ratio
Fatigue-crack- propagation properties	Fatigue-crack-growth rate as a function of stress-intensity level
Stress-corrosion resistance	Stress levels and times for stress Corrosion cracking as identified from testing according to Federal Test Method 823 or Joint Aluminum Association- ASTM task group for stress- corrosion testing

Metallurgical analyses will be directed toward understanding the mechanisms relating the processing and resulting microstructure to the mechanical properties. This will help identify the optimum process for a specific application.

The culmination of the program is the evaluation of the candidate materials for application to helicopter components. The evaluation answers the question, "Is it cost-effective to use these advanced processes to produce forgings for helicopter components?" Obviously, the answer

depends on the details of the specific application. One of the objectives of this analytical task is to provide evaluations for some specific applications and to provide the guidelines whereby the cost-effectiveness of other applications can be evaluated.

Many considerations, such as cost, weight, reliability, and maintainability, govern the design of a helicopter structural component. Weight is a basic concern in such applications and results directly from satisfying structural requirements related to parameters such as static strength, fatigue strength, and failsafe or damage-tolerance strength.

Many current and proposed helicopter dynamic-system components are aluminum forgings; typical components are shown in Figure 2. These components are generally sized by fatigue-strength considerations. Advanced processes for aluminum forgings possessing increased fatigue strength have potential for weight savings in direct proportion to the increase in strength.

The weight-savings potential for helicopter components sized to damage-tolerance requirements will also be evaluated.

Typical weight savings will be determined for various loading criteria. The next step is to establish whether the potential weight savings are cost-effective. This will be achieved through consideration of forging costs, the amount of weight saved, the number of components involved, and the value of a unit of weight in the aircraft cost analysis.

Each task is discussed in detail in the following sections.

Figure 2. Examples of Forged-Aluminum Components on Current Helicopters.

TASK I – SELECTION OF ADVANCED PROCESSES

The goal of Task I of this contract was to produce and evaluate at Alcoa Laboratories 1.0- and 2.0-inch-thick, high-purity, 7XXX-series alloy hand forgings. The hand forgings were to be produced from laboratory cast ingot using ITMT-type practices and a commercial forging practice. Based on these evaluations, two ITMT-type procedures were to be selected to produce high-purity 7XXX alloy hand forgings at the Cleveland Forge Plant for testing by the Boeing Vertol Company.

MATERIAL AND PROCEDURE

Alloy

Alloy 7475, a modification of 7075, which nominally contains percentages at 5.70 Zn, 2.25 Mg, 1.55 Cu, 0.20 Cr, 0.12 maximum Fe, and 0.10 maximum Si, was selected for this work. The iron and silicon in 7475 are restricted to the lowest values that are considered to be commercially feasible.

Ingot

Direct-chill ingots, 7 inches in diameter by 100 inches long, were used for the fabrication in Task I. The ingots were stress-relieved at 575°F, cropped, scalped to 6.5-inch diameter, and cut into 15.5-inch lengths. The compositions of the ingots are as follows:

S-No.	Zn	Mg	Cu	Cr	Fe	Si	Ti
	-		_	_	_	_	
426669	5.96	2.31	1.63	0.20	0.06	0.04	0.01
437666	5.84	2.23	1.69	0.20	0.06	0.05	0.03

Fabrication

Two broad types of structures were produced using ITMT-type practices: (1) a recrystallized structure, and (2) a structure that was produced by moderately hot-working a structure that had been recrystallized during an intermediate thermal treatment. In addition, hand forgings having an unrecrystallized structure were produced for comparison. Attempts to produce the desired fine-grained recrystallized structure proceeded in phases. The initial trials employed warm-forging at a temperature of 500°F, the temperature which was found to produce the target fine-grained recrystallized structure in 7475 rolled plate using ITMT-type practices. When this failed to produce the desired structure, succeeding trials were carried out using warm-forging temperatures below 500°F.

The 1.0- and 2.0-inch-thick 7475 hand forgings produced in Task I were obtained by a combination of upsetting and drawing operations carried out at various temperatures. The forging operations were carried out, maintaining as closely as possible the desired temperature in each case by suspending the forging operations when the temperature of the billet increased 50°F above the starting temperature, holding until the temperature of the billet decreased to the starting temperature, then continuing the forging operation. If the temperature of the billet

decreased 25°F below the starting temperature during forging, the forging operation was stopped and the billet was reheated to the starting temperature; the forging operation was then continued.

The deformation introduced during each of the forging steps was measured by the value N (N = original dimension in the direction of greatest reduction/final dimension in the direction of greatest reduction). In many of the forging sequences, several N values are required to describe the deformation obtained because the billet was deformed in several directions between succeeding thermal treatments.

The size of the starting ingot sections was restricted by the capacity of the forging press, the size of the dies, and the maximum L/D ratio allowed for upsetting operations. In upsetting an ingot section or forging billet, the relationship between the length of the section in the direction of upsetting and the smallest dimension perpendicular to the direction of upsetting (L/D) is critical. To obtain the proper metal flow, the L/D ratio must be no greater than 3 and in most commercial forging operations involving upsetting the L/D ratio is a maximum of 2.4. In the forging work in Task I, a maximum L/D ratio of 2.4 was used.

The practices used in Phase I to fabricate 1.0- and 2.0-inch-thick 7475-T7X hand forgings by ITMT-type practices are described in detail in Tables 2 and 3. Alloy 7475 hand forgings 1.0 and 2.0 inches thick having an unrecrystallized structure were also produced. Practices patterned after the Frankford Arsenal ITMT (FA-ITMT) plate practice (forgings S-426669-7 and -13) were also included in Phase I. The target fine-grained recrystallized structure was not obtained in the hand forgings fabricated in this phase (500°F forging temperature); consequently lower forging temperatures were investigated in Phase II.

The practices used in Phase II to fabricate 1.0- and 2.0-inch-thick forgings by ITMT-type procedures are described in Tables 4 and 5. These practices evaluated warm-forging temperatures of 350–400°F in conjunction with the same thermal treatments and forging sequences used in Phase I. The target fine-grained recrystallized structure was again not obtained in the hand forgings fabricated in Phase II. The use of the 350°F temperature taxed the capacity of the forging press so this temperature was not used in Phase III. Thus, other thermal treatments and forging sequences were evaluated in Phase III.

The practices used in Phase III to fabricate 1.00- to 2.25-inch-thick forgings by ITMT-type practices are described in Tables 6 and 7. A practice patterned after the Instituto Sperimentale dei Metalli Leggeri (ISML-ITMT) plate practice (forgings S-437666-26A and -26B) and variations in the warm-forging sequences at 400°F were tried in Phase III. Several thicknesses of finished hand forgings were fabricated from the same ingot section by producing stepped hand forgings. An acceptable fine-grained recrystallized structure was obtained in the 1.0-inch-thick portion of a 7475-T7X hand forging produced in Phase III.

The forging practices used in Phases I, II, and III are described pictorially in Figures 3 through 33.

Thermal Treatments

A temperature of 960°F was used for the majority of the ingot preheats*, billet reheats, recrystallization, and solution-heat treatments in this work because prior Alcoa work demonstrated beneficial effects of the 960°F treatments on fracture toughness. (Refer to U.S. Patent No. 3, 791, 880). Work at Alcoa under U.S. Army Contract DAAA25-73-C-0657 showed no adverse effects of a 960°F temperature on the recrystallized grain size of 7475 plate produced using ITMT-type practices. All thermal treatments were carried out using circulating-air furnaces.

Sections of the 1.00- to 2.25-inch-thick 7475 hand forgings were solution-heat-treated, quenched, and artificially aged as indicated in Tables 2 through 7 and in Figure 34.

Grain-Size Determination

The grain dimensions were determined at the T/2 location of the 1.00- to 2.25-inch-thick forgings from grain counts made microscopically using the linear-intercept method. The locations of samples used for the grain counts are shown in Figure 34.

Property Determination

The location, number, and type of specimens used to determine the properties of the forgings are described in Figure 35. The notched-tensile and compact-tension fracture-toughness specimen configurations are shown in Figures 36 and 37. Short-transverse mechanical properties could be determined only on the 2.00- to 2.25-inch-thick forgings because of specimen size limitations.

The resistance to stress-corrosion cracking of selected forgings was determined by exposing stressed specimens to a 3.5-percent NaCl solution by alternate immersion for 84 days as described by Federal Test Method 823. Triplicate longitudinal 0.125-inch-diameter threadedend tensile specimens from 1.0- and 2.0-inch-thick forgings, similar short-transverse specimens from 2.0-inch-thick forgings, and triplicate short-transverse 0.75-inch-diameter C-rings from 1.0-inch-thick forgings were exposed stressed at a level of 45 ksi.

RESULTS AND DISCUSSION

Grain counts, mechanical-property, and corrosion data are presented in Tables 8 through 16 The mechanical-property values reported are the results of single tests made on the samples aged by each practice. In the following paragraphs, the effects of forging practice on grain dimensions are discussed first, next the effects of yield strength on the mechanical properties, then the relationship between grain structure and the mechanical properties and the effect of grain structure on the resistance to stress-corrosion cracking.

^{*}The use of 960°F thermal treatments on the nonhomogeneous material requires a preheat at lower temperature to eliminate nonequilibrium phases.

ITMT Forging Variables Versus Grain Dimensions

The ITMT-type forging practices in Task I were used to evaluate the merits of nonconventional-type processing and explore the possibility of developing a commercially viable ITMT process to produce a fine-grained recrystallized structure in 7475-T73 hand forgings. The forging practices used were designed to determine whether ITMT practices could produce 7475 hand forgings having a fine-grained recrystallized structure and were not designed to optimize or completely survey the effects of individual fabricating variables. The warm-forging temperature, reduction during warm forging, and reduction during the ingot breakdown by hot-forging at 750°F were not changed in a systematic fashion, and thus the individual effect of each fabricating variable on the grain dimensions of the hand forging is difficult to determine.

The grain counts, average grain dimensions calculated from the grain counts, and the fabricating variables for the forgings produced using ITMT practices are given in Table 16. Three-dimensional photomicrographs at 100X showing the grain structures obtained are included as Figures 3 through 33. The grain thickness, grain width, grain length, and aspect ratio (grain length/grain thickness) of the recrystallized 7475-T7X hand forgings in Table 16 are plotted as functions of the reduction applied during the warm-forging operation (N) in Figure 38. For the forgings produced using sequential warm-forging operations, the value for N used in the plots is the sum of the N values for each separate forging operation.

While no significant relationships were evident between the grain dimensions in the 1.00- to 2.25-inch-thick 7475-T7X ITMT hand forgings and the reductions applied during warmforging, generalizations concerning the forging operations and the grain structure obtained in the 7475-T7X ITMT hand forgings can be made:

- Forging the ingot at 750°F prior to warm-forging was beneficial in obtaining a finegrained recrystallized structure.
- Warm-forging at a temperature of 400°F produced a finer-grained recrystallized structure in the hand forging than did warm-forging at a temperature of 500°F.
- Increasing the amount of warm-forging at temperatures of 400°F and 500°F decreased the grain thickness of the recrystallized structure in the forgings.
- 4. Subsequent forging at 750°F of the prior recrystallized structure increased the aspect ratio of the grains, i.e., decreased the grain thickness and increased the grain length.
- 5. Reductions of up to N = 9.1 at a warm-forging temperature of $550^{\circ}F$ and up to N = 4.4 at a warm-forging temperature of $500^{\circ}F$ did not produce a recrystallized structure in the hand forging when the ingot was not initially forged at $750^{\circ}F$.

Mechanical Properties Versus Yield Strength

Ductility and toughness often correlate with yield strength. Consequently, percentage elongation and reduction-in-area values, notched-tensile-strength/yield-strength ratios, and K_Q values (Tables 8 through 14) were plotted as functions of yield strength for the longitudinal

properties in Figure 39, and for the short-transverse properties in Figure 40. The only consistent relationship found was between longitudinal notched-tensile-strength/yield-strength ratio and the yield strength. The longitudinal notched-tensile-strength ratio decreased with increasing yield strength.

The longitudinal and short-transverse yield strengths were well above the minimum yield strengths specified for 7075-T73 hand forgings up to 3.00-inches in thickness (longitudinal 56.0 ksi and short-transverse 52.0 ksi).

Grain Structure Versus Mechanical Properties

The use of several second-step aging practices provided three sets of mechanical properties for each forging. To minimize the number of data points for graphical analyses to determine the effect of grain dimensions on ductility and toughness, the average elongations and reduction-in-area values and the average notched-tensile-strength/yield-strength ratios for each ITMT forging (Tables 8 through 12), along with maximum and minimum values, were plotted as functions of the grain dimensions. Single $K_{\rm O}$ values were also plotted.

The data for the longitudinal direction (Figures 41 through 46) show no consistent change in the elongation, reduction-in-area, notched-tensile-strength/yield-strength ratio, or K_Q values with decreasing grain thickness, decreasing grain width or thickness, or with increasing grain aspect ratios. However, there is an indication that the longitudinal reduction in area increases with decreasing grain thickness.

The short-transverse data (Figures 47 through 50) show that the only consistent change in ductility and toughness with variations in grain dimensions is in the reduction in area and notched-tensile-strength/yield-strength ratio. The reduction in area increased with decreasing grain thickness and the notched-tensile-strength/yield-strength ratio decreased with decreasing grain length or width.

Grain Structure Versus Stress-Corrosion Cracking

The results of accelerated stress-corrosion tests of longitudinal and short-transverse specimens are summarized in Tables 14 and 15, respectively. The results predict that the resistance to stress-corrosion cracking will be relatively high for 7475 hand forgings having a recrystallized-plus-hot-worked structure, a recrystallized structure, or an unrecrystallized structure when aged 24 hours at 250°F plus 8 hours at 350°F. Longitudinal and short-transverse specimens from all forgings tested satisfied the 30-day, 3.5-percent NaC1 alternate-immersion-capability test specified for 7075-T73 forgings in MIL-A-22771D.

COMMENTARY

The results of the work carried out in Task I of this contract showed the following:

 An ITMT-type practice of hot-forging at 750°F, warm-forging at 400°F, and recrystallizing at a temperature of 960°F produced a fine-grained recrystallized structure in 7475-T7X hand forgings.

- The longitudinal and short-transverse tensile, ductility, and notched-tensile-strength/ yield-strength ratios were similar for 7475-T7X hand forgings having a recrystallizedplus-hot-worked structure and an unrecrystallized structure.
- The longitudinal notched-tensile-strength/yield-strength ratios and K_Q values obtained on 7475-T7X hand forgings, regardless of the structure, were superior to similar properties of 7075 hand forgings at the same strength level.

TABLE 2. FORGING PRACTICES USED TO FABRICATE 1-INCH-THICK 7475-T7X HAND FORGINGS IN PHASE I

Fo	Forging Operation	ntion			6.5 (\$x 15.5.	6.5 \phi x 15.5-In. Ingot Section			F	Forged Billet	lillet		Dage	and Hearting	Forging by	
		Gra	Grain Count,	ınıt,			Forging Operation	DK.				orging (Forging Operation	Recty	Recrystantization	Drawing at 750 OF	Solution-
	Size	C/mm	mu ;	1	Thermal Temp	Temp		tion,		Size Thermal Temp	Tem		Reduction,	_	Thermal	Reduction,	. Temperature
S-No.	(in.)	×	-	7	Treatment (*F)	(F)	lype	z	(m.)	(in.) Treatment ("F") Type	=	Lype	z	(m.)	Leatment	z	3
426669-8	1x8x64	4	7	22	4	750	Upset & draw Upset & draw	2.8	7x8x9	V	500	500 Draw	7.0	1x8x64	10 hr/960°F	None	2 hr/960
426669.9	1x8x64	×	3	24	<	750	Upset & draw Upset & draw	2.8	4x8x16	٧ ،	200	Draw	4.0	1x8x64	30096/a401	None	2 hr/960
42669-10	1x8x64	S		70	<	750	Upset & draw Upset & draw	8.0	2x8x32	٧ :	900	Draw	2.0	1x8x64	4 ₀ 096/14 01	None	2 hr/960
426669-11	1x8x64	6	7	40	<	750	Upset & draw Upset & draw	2.8	7x8x9	<	200	Draw	7	1.7x8x38	10 hr/960 ⁰ F	7.1	2 hr/960
426669.12	1x8x64	2	~	43	<	750	Upset & draw Upset & draw	2.8	3.5x8x16 A	V 91	500	500 Draw	1.5	1.7x8x38	10 hr/9600F	: 1.7	2 hr/960
426669-13	1x8x64	-	-	61	8	200	Upset & draw	9.1					1	-1.7x8x38	40098/Jul 01	1.7	2 hr/860
426669-14 1x8x64	1x8x64		recryst	Unrecrystallized													→ 2 hr/960
NOTES: 1	Ingot thermal treatments: Abours at 775°E, cooled t	rmal t	reatme F, coc	ents: /	V heated 6 hs 500°F at 50	ours at 80	ingor thermal treatments: A heated 6 hours at 860°F plus 20 hours at 960°F; B heated 20 hours at 860°F, cooled to 775°F at 50°F/hour, soaked 2 hours at 775°F, cooled to 500°F at 50°F/hour, and soaked at least 4 hours at 500°F.	irs at 960°F	; B heat	ted 20 hour	rs at 86	O°F, co	oled to 775	^o F at 50 ^o F.	/hour, soaked		
7	. Forged-billet thermal treatment: A hand soaked at least 4 hours at 500°F	illet the	east 4	treatm hours a	nent: A heat at 500°F.	ed 2 hou	2. Forged-billet thermal treatment: A heated 2 hours 960°F, cooled to 775°F at 50°F/hour, soaked 2 hours at 775°F, cooled to 500°F at 50°F/hour, and soaked at least 4 hours at 500°F.	to 775°F a	1 50°F/	hour, soak	ed 2 h	urs at 7	75°F, coole	d to 500°F	at 50°F/hou		
3	. All therm	al trea	itment	S Carrie	3. All thermal treatments carried out in circulating-air furnaces.	culating-a	ir furnaces.										

TABLE 3. FORGING PRACTICES USED TO FABRICATE 2-INCH-THICK 7475-T7X HAND FORGINGS IN PHASE I

	Final	Final Forging	50			6.5 ¢ x	6.5 \phi x 15.5-In. Ingot Section	ot Section	-	Fo	Forged Billet	illet				Foreine hv	
		Grain C G/mm	Grain Count, G/mm	-		-	Forging Operation	tion				Forging Operation	ration	Recry	Recrystallization	Drawing at 750°F	Solution - Heat-Treat
S-No.	Size (in.)	×	>	2	Thermal Temy Z Treatment (^O F)	Temp (^O F)	Туре	Reduction, N		Size Thermal Tem (in.) Treatment (^O F)	Temp (^O F)	Туре	Reduction, N	n, Size (in.)	Thermal Treatment		Reduction, Temperature N (^O F)
426669.1	2x8x32	-	-	36	4	750	Upset & draw Upset & draw	2.3	7x8x9	4	900	500 Draw	2.0	(3.5x8x18 10 hr/960°F 1.8	8.1	2 hr/960
426669-2	2x8x32	7	~1	61	v	750	Upset & draw Upset & draw	2.8	4x8x16	V 9	900	Draw	2.0	2x8x32	10 hr/960°F	F None	2 hr/960
426669-3	2x8x32	-	-	9	<	750	Upset & draw Upset & draw	2.8	8x8x8	4	900	500 Draw	4.0	2x8x32	10 hr/960°F	F None	2 hr/960
426669-5	2x8x32	-	-	38	<	750	Upset & draw Upset & draw	2.8	8x8x8	<	500	Draw Upset & draw	20	3.5x8x18	8.1 4°096/14/01	1.8	2 hr/960
426669-6	2x8x32	4	c1	24	<	750	Upset & draw Upset & draw	2.8	8x8x8	<	500 500 500	Draw Upset & draw Upset & draw	2.0 w 2.3 w 2.7	3x8x21	10 hr/960 ⁹ F 1.5	5.1	2 hr/960
426669.7	2x8x32	Unrecry	cry		8	200	Upset & draw 4.4	4.4 v					1	3.5x8x18	10 hr/860°F	8. 1.8	2 hr/860
426669-16	2x8x32	3 2	2 2	17	<	750	Upset & draw Upset & draw	2.3	7x8x9	<	500	Draw Upset & draw	8.1 8.4	2x8x32	10 hr/960°F	F None	2 hr/960
NOTES:	1. Ingot 2 hour 2. Forget and so 3. All the	Ingot thermal treat 2 hours at 775.9F., c. Forged-billet them and soaked at least All thermal treatm	treati s ^o F, c therms least	nents: ooled of freat 4 hour	ments: A heated (cooled to 500°F at alf reatment: A heated strong at 500°F. The total strong at 500°F ents carried out in	d 6 hor at 50° heater F.	 Ingot thermal treatments: A heated 6 hours at 860°F plus 20 hours at 960°F; B heated 2 hours at 775°F, cooled to 500°F at 50°F/hour, and soaked at least 4 hours at 500°F. Forged-billet thermal treatment: A heated 2 hours 960°F, cooled to 775°F at 50°F/ho and soaked at least 4 hours at 500°F. All thermal treatments carried out in circulating-air furnaces. 	plus 20 he soaked at 1 ⁰ F, coole	ours at 9 least 4 l	60 ⁰ F; B h hours at 50 5 ⁰ F at 50 ⁰	eated 90°F.	20 hours at 8 r, soaked 2 h	60°F, co	oled to 775 75°F, cook	1. Ingot thermal treatments: A heated 6 hours at 860°F plus 20 hours at 960°F; B heated 20 hours at 860°F, cooled to 775°F at 50°F/hour, snaked 2 hours at 775°F, cooled to 500°F at 50°F/hour, and soaked at least 4 hours at 500°F. 2. Forged-billet thermal treatment: A heated 2 hours 960°F, cooled to 775°F at 50°F/hour, snaked 2 hours at 775°F, cooled to 500°F at 50°F/hour, and snaked at least 4 hours at 500°F. 3. All thermal treatments carried out in circulating-air furnaces.	our, soaked	

TABLE 4. FORGING PRACTICES USED TO FABRICATE 1-INCH-THICK 7475-T7X HAND FORGINGS IN PHASE II

	rmar rouging			6.5 6	-C'C X 0	6.5 \phi x 15.5-In. Ingot Section			Fo	Forged Billet	let				Forging by	
Gra		Grain Count,	mt,		F	Forging Operation				For	Forging Operation	ion	Recrys	Recrystallization	Drawing at 750°F	Solution- Heat-Treat
5	=	C/mm		Thermal	Temp	Redu	iction.	Reduction. Size Thermal Temp	rmal	Temp		Reduction,	Size	Thermal	Reduction	Temperature
×		٨	7	Treatment	(9E)	Type	z	(in.) Treatment (^O F)	ıtmenı	(OF)	Type	z	(in.)	Treatment	Z	(^o F)
1x8x64 2		~	24	8	400	Upset & draw 15.5	15.5					1	1x8x64	→ 1x8x64 10 hr/860°F	None	2 hr/860
٠,		3	25	3	400	Upset & draw 15.5	15.5					1	1x8x64	→ 1x8x64 10 hr/960 ⁰ F	None	2 hr/960
1x8x64	9	3	20	V	750	Upset & draw Upset & draw	3.1	5x8x13	4	400 L	Jpset & draw	7.7 v	1.7x8x38	5x8x13 A 400 Upset & draw 7.7 1.7x8x38 10 hr/960 ⁰ F	1.7	2 hr/960
1x8x64	9	3	91	v	750	Upset & draw Upset & draw	3.1	5x8x13	<	400 L	Jpset & draw	v 13	1x8x64	5x8x13 A 400 Upset & draw 13 1x8x64 10 hr/960 ⁰ F	None	2 hr/960
1x8x64	~1	-	51	В	400	Upset & draw	1.6					1	1.7x8x38	→ 1.7x8x38 10 hr/860°F	1.7	2 hr/860
1x6x85	3	~1	30	B	350	Upset & draw	15.5		-			1	1x6x85	4 1x6x85 10 hr/8600F	None	2 hr/860

1. Ingot thermal treatments: A heated 6 hours at 860°F plus 20 hours at 960°F; B heated 20 hours at 860°F, cooled to 775°F at 50°F/hour, soaked 2 hours at 500°F, cooled to 500°F at 50°F/hour, and soaked at least 4 hours at 860°F plus 20 hours at 960°F, cooled to 775°F at 50°F/hour, and soaked at least 4 hours at 500°F. NOTES

2. Forged-biller thermal treatment: A heated 2 hours at 960°F, cooled to 775°F at 50°F/hour, soaked 2 hours at 775°F, cooled to 500°F at 50°F/hour, and soaked at least 4 hours at 500°F.

3. All thermal treatments carried out in circulating-air furnaces.

TABLE 5. FORGING PRACTICE USED TO FABRICATE 2-INCH-THICK 7475-T7X HAND FORGING IN PHASE II

	Solution - Heat-Treat	Reduction, Temperature N (^O F)	2 hr/960	
Forging by	Drawing at 750°F.	Reduction, N	None	
	Recrystallization	Size Thermal (in.) Treatment	2x8x32 10 hr/960°F	
	Recryst	Size (in.)	2x8x32	50°F/hour,
	on	Reduction, N	6.5	d to 500°F at
Billet	Forging Operation	Type	400 Upset & draw	at 775°E, coole
Forged Billet		Temp (^O F)	904	d 2 hours a
		Thermal freatment	<	our, soake
		Size 1	5x8x13 A	at 50°F/h
		Reduction, Size Thermal Temp N (in.) Treatment (OF)	3.1	irs at 960°F.
6.5 ¢ x 15.5-In. Ingot Section	Forging Operation	Type	750 Upset & draw 750 Upset & draw	NOTES: 1. Ingot thermal treatment: A heated 6 hours at 860°F plus 20 hours at 960°F. 2. Forged-billet thermal treatment: A heated 2 hours at 960°F, cooled to 775°F at 50°F/hour, soaked 2 hours at 775°F, cooled to 500°F at 50°F/hour, and soaked at least 4 hours at 500°F. 3. All thermal treatments carried out in circulating-air furnaces.
n 15.5-In	Fo	Temp (^O F)	750	iours at 86 ated 2 hou irculating-
6.5 ¢		Gomm Thermal Temp	4	 Ingot thermal treatment: A heated 6 hours at 860^oF plus 20 Forged-billet thermal treatment: A heated 2 hours at 960^oF and soaked at least 4 hours at 500^oF. All thermal treatments carried out in circulatingair furnaces.
1	ount.	2	32	atment: rmal treat st 4 hours
-	Grain Count.	G6mm X Y	15 7	billet the ked at lea mal treati
Final Forging		Size (in.)	2x8x32	1. Ingot th 2. Forged- and soal 3. All then
		S-No.	426669-21 2x8x32 15 7 32	NOTES

Figure 3. Microstructure, Properties, and Forging Practice for 2-Inch-Thick 7475-T7X Hand Forging S-426669-1.

Figure 4. Microstructure, Properties, and Forging Practice for 2-Inch-Thick 7475-T7X Hand Forging S-426669-2.

Figure 5. Microstructure, Properties, and Forging Practice for 2-Inch-Thick 7475-T7X Hand Forging S-426669-3.

| SPAIN COUNT | SPANS | SPANS

Figure 6. Microstructure, Properties, and Forging Practice for 2-Inch-Thick 7475-T7X Hand Forging S-426669-5.

Figure 7. Microstructure, Properties, and Forging Practice for 2-Inch-Thick 7475-T7X Hand Forging S-426669-6.

Figure 8. Microstructure, Properties, and Forging Practice for 2-Inch-Thick 7475-T7X Hand Forging S-426669-7.

Figure 9. Microstructure, Properties, and Forging Practice for 1-Inch-Thick 7475-T7X Hand Forging S-426669-8.

Figure 10. Microstructure, Properties, and Forging Practice for 1-Inch-Thick 7475-T7X Hand Forging S-426669-9.

Figure 11. Microstructure, Properties, and Forging Practice for 1-Inch-Thick 7475-T7X Hand Forging S-426669-10.

Figure 12. Microstructure, Properties, and Forging Practice for 1-Inch-Thick 7475-T7X Hand Forging S-426669-11.

Figure 13. Microstructure, Properties, and Forging Practice for 1-Inch-Thick 7475-T7X Hand Forging S-426669-12.

Figure 14. Microstructure, Properties, and Forging Practice for 1-Inch-Thick 7475-T7X Hand Forging S-426669-13.

Figure 15. Microstructure, Properties, and Forging Practice for 1-Inch-Thick 7475-T7X Hand Forging S-426669-14.

Figure 16. Microstructure, Properties, and Forging Practice for 2-Inch-Thick 7475-T7X Hand Forging S-426669-15.

Figure 17. Microstructure, Properties, and Forging Practice for 2-Inch-Thick 7475-T7X Hand Forging S-426669-16.

Figure 18. Microstructure, Properties, and Forging Practice for 1-Inch-Thick 7475-T7X Hand Forging S-426669-17.

Figure 19. Microstructure, Properties, and Forging Practice for 1-Inch-Thick 7475-T7X Hand Forging S-426669-18.

Figure 20. Microstructure, Properties, and Forging Practice for 1-Inch-Thick 7475-T7X Hand Forging S-426669-19.

Figure 21. Microstructure, Properties, and Forging Practice for 1-Inch-Thick 7475-T7X Hand Forging S-426669-20.

8HR/350°F

Figure 22. Microstructure, Properties, and Forging Practice for 2-Inch-Thick 7475-T7X Hand Forging S-426669-21.

Figure 23. Microstructure, Properties, and Forging Practice for 1-Inch-Thick 7475-T7X Hand Forging S-426669-22.

Figure 24. Microstructure, Properties, and Forging Practice for 1-Inch-Thick 7475-T7X Hand Forging S-426669-23.

Figure 25. Microstructure, Properties, and Forging Practice for 1-Inch-Thick 7475-T7X Hand Forging S-437666-26A.

Figure 26. Microstructure, Properties, and Forging Practice for 2-Inch-Thick 7475-T7X Hand Forging S-437666-26B.

Figure 27. Microstructure, Properties, and Forging Practice for 1-Inch-Thick 7475-T7X Hand Forging S-437666-27A.

Figure 28. Microstructure, Properties, and Forging Practice for 1.5-Inch-Thick 7475-T7X Hand Forging S-437666-27B.

Figure 29. Microstructure, Properties, and Forging Practice for 1.75-Inch-Thick 7475-T7X Hand Forging S-437666-27C.

Figure 30. Microstructure, Properties, and Forging Practice for 2-Inch-Thick 7475-T7X Hand Forging S-437666-27D.

Figure 31. Microstructure, Properties, and Forging Practice for 2.25-Inch-Thick 7475-T7X Hand Forging S-437666-27E.

Figure 32. Microstructure, Properties, and Forging Practice for 1-Inch-Thick 7475-T7X Hand Forging S-437666-28A.

75.9 67.4 17.1 48 104.7 1.55 73.3 63.9 17.1 47 101.6 1.59

Figure 33. Microstructure, Properties, and Forging Practice for 2-Inch-Thick 7475-T7X Hand Forging S-437666-28B.

TABLE 6. FORGING PRACTICES USED TO FABRICATE 1- TO 1.75-INCH-THICK 7475-T7X HAND FORGINGS IN PHASE III

	Final Forging	gui			6.5	5 \$ 15.5.	6.5 \$ 15.5-fn. Ingot Section	ction			Forged Billet	illet					Forging by	Forging by Solution-
		Gra	Grain Count,			F	Forging Operation	tion	Cino	Thorns		Forging Operation	eration		Kecrysta	Kecrystallization	Drawing at 750°F.	Orawing Heat-Treat
	Size	C/mm	mı		Thermal	Temp		Reduction,		(in.) Treatmen	=	D A	eduction		Size	Thermal	Reduction,	(OF)
S-No.	(in.)	×	>	7	1 Icalilliciii	(PF)	Type	Z			(°F)	(oF) Type N	Z		(in.	Treatment	z	
437666-26A 1x8xR	1x8xR	Unrecry	cry		Q	980	Upset & draw	- 1.6 WI				- Upset & draw 7.4 1.7x8xR	& draw	7.4 1.7		48 hr/860°F 1.7	F 1.7	2 hr/860
437666-27C 1.75x8xR 14 10	1.75x8xR	4	0	4	4	750	Upset & draw Upset & draw	IW 2.8	5x8x13	13 A) Upset	& draw	3.7 1.7	5x8xR	400 Upset & draw 8.7 1.75x8xR 10 hr/960 ⁰ F None	F None	2 hr/960
437666-27D 1.5x8xR 23 14	1.5x8xR	23	4	4	<	750	Upset & draw Upset & draw	w 2.8	5x8x13	13 A	400		Upset & draw 13 1.5x8xR	13 1.5	x8xR	10 hr/960°F None	F None	2 hr/960
437666-27E IX8XR	Ix8xR	56	16	53	4	750	Upset & draw Upset & draw	w 2.8 w 3.1	5x8x13	13 A	404	400 Upset & draw 2.6 1x8xR	& draw	2.6 lx	8xR	10 hr/960°F None	F None	2 hr/960
437666-28A 1x8xR		12	7	57	<	750	Upset & draw Upset & draw	w 2.8 w 3.1	5x8x13	13 A	400		Upset & draw 2.6 Upset & draw 7.7	_	1.7x8xR	10 ht/960°F None	F None	2 hr/960
NOTES	2. For	Ingot thermal treatm Forged-billet thermal and soaked at least 4	mal tr	eatmen ermal tr ast 4 ho	ents: A heated treatments: A hours at 500°F	d 6 hour	NOTES: 1. Ingot thermal treatments: A heated 6 hours at 860°F plus 20 hours at 960°F; D heated 16 hours at 750°F; 2. Forged-billet thermal treatments: A heated 2 hours at 960°F, cooled to 775°F at 50°F/hour, soaked 2 hour and soaked at least 4 hours at 500°F.	plus 20 hot 960 ⁹ F, cot	urs at 960	3ºF; Dhe	eated 16 h	ours at 75, soaked 2	0 ⁰ F.	10511	i, cooled	1. Ingot thermal treatments: A heated 6 hours at 860°F plus 20 hours at 960°F; D heated 16 hours at 750°F. 2. Forged-billet thermal treatments: A heated 2 hours at 960°F, cooled to 775°F at 50°F/hour, soaked 2 hours at 775°F; cooled to 500°F at 50°F/hour, and soaked at least 4 hours at 500°F.	150°F/hour	
	3. All	therm	al trea	tments	carried out	in circul	3. All thermal treatments carried out in circulating-air furnaces.	laces.										

TABLE 7. FORGING PRACTICES USED TO FABRICATE 2. TO 2.25-INCH-THICK 7475-T7X HAND FORGINGS IN PHASE III

	Final Forging	Bui			6.5 ¢	15.5.1 x	6.5 \$ x 15.5-In. Ingot Section			Forge	Forged Billet		_			Forging by	
		25	Grain Count,	unt,		Fo	Forging Operation				Forgi	Forging Operation		Recrys	Recrystallization	Drawing 21 7500E	Solution- Heat-Treat
S-No.	Size (in.)	Ž ×	G/mm X Y	2	Treatment	Temp (^O F)	Reduction, Type N	Z tion,	Size Tenp (in.) Treatment (°F)	ment	Temp (^O F)	Reduction, Type N		Size (in.)	Thermal	Reduction,	Reduction, Temperature N (^O F)
437666-26B 2x8xR Unrecry	2x8xR	Unr	ecry		Q	950	Upset & draw 4.	4.4					4	5x8xR	→ 3.5x8xR 48 hr/860°F	8.1	2 hr/860
437666-27E 2.25x8xR 17 10	2.25x8xR	17	10	50	4	750	Upset & draw 2. Upset & draw 3.	3.1	5x8x13	A 4	00 Up	400 Upset & draw 5.8 2.25x8xR 10 hr/9600F	× ×	25x8xR	10 hr/960°F	None	2 hr/960
437666-27D 2x8xR	2x8xR	01	S	35	<	750	Upset & draw 2. Upset & draw 3.	3.1	5x8x13	4	00 Up	400 Upset & draw 6.5 2x8xR	5 2x	8xR	10 hr/960°F	None	2 hr/960
437666-28B 2x8xR	2x8xR	9	4	33	<	750	Upset & draw 2. Upset & draw 3.	3.1	5x8x13	A A	5 5 5	400 Upset & draw 2.6 Upset & draw 2.6 Upset & draw 3.8	8 6 6	5x8xR	Upset & draw 2.6 Upset & draw 2.6 Upset & draw 3.8 3.5x8xR 10 hr/960 ⁰ F	*	2 hr/960
NON	NOTES: 1. I	Forger and so	1-biller aked a	of treat	Ingot thermal treatments: A heated Forged-billet thermal treatments: A and soaked at least 4 hours at 500°F All thermal treatments carried out in	ated 6 hc 30°F. ut in circ	 Ingot thermal treatments: A heated 6 hours at 860°F plus 20 hours at 960°F; D heated 16 hours at 750°F. Forged-billet thermal treatments: A heated 2 hours at 960°F, cooled to 775°F at 50°F/hour, soaked 2 hours at 775°F, cooled to 500°F at 50°F/hour, and soaked at least 4 hours at 500°F. All thermal treatments carried out in circulating-air furnaces. 	P, cool	rs at 960°F; led to 775°F	D heate	d 16 hc	ours at 750°F, soaked 2 hou	rs at 7	75°F, co	oled to 500°F	at 50°F/ho	ur,

SECTIONS OF 1.00" TO 2.25" THICK 7475 HAND FORGINGS SOLUTION HEAT-TREATED, COLD WATER QUENCHED AND AGED 24 HR AT 250°F 4 DAYS AFTER QUELICHIUS

Figure 34. Solution Heat-Treatment, Quenching, and Artificial Aging of 1- to 2.25-Inch-Thick 7475 Hand Forging.

1.00 TO 1.75 THICK FORGINGS 2.00" TO 2.25" THICK FORGINGS 245" SAMPLES #1, ZAND 3 Z"x 5" SAMPLES "1, ZAND 3 LI LZ L2 2"5" SAMPLE #4 42 153 SAMPLE \$5 42" x 52" SAMPLE " 5 16 LG NG N7 L7 L7

SPECIMEN LI 0.357" & LONGITUDINAL TAPERED SEAT TENSILE SPECIMEN FROM T/2 LOCATION

SPECIMEN L2 0.500" & LONGITUDINAL TAPERED SEAT NOTCHED TENSILE SPECIMENS FROM T/2 LOCATION

SPECIMENS L3, L4, L5 0.125" & LONGITUDINAL THREADED END TENSILE SPECIMENS FROM T/2 LOCATION

SPECIMENS L6, L7 1.00" THICK, COMPACT TENSION FRACTURE TOUGHNESS SPECIMENS FROM T/2 LOCATION

SPECIMEN NI 0.160" & SHORT-TRANSVERSE TAPERED SEAT TENSILE SPECIMEN

SPECIMEN NZ 0.500" & SHORT-TRANSVERSE TAPERED SEAT NOTCHED TENSILE SPECIMEN

SPECIMENS N3, N4, NS SHORT-TRANSVERSE THREADED END TENSILE SPECIMENS

SPECIMENS N6, N7 0.75" THICK SHORT-TRANSVERSE COMPACT TENSION FRACTURE TOUGHNESS SPECIMENS

SPECIMENS CI, C2, C3 0.75" & SHORT-TRANSVERSE C-RINGS.

Figure 35. Sampling of 1- to 2.25-Inch-Thick 7475-T7X Hand Forgings for Mechanical-Property and Corrosion Tests.

Figure 36. Sharply Notched, 1/2-Inch-Diameter Notch-Tensile Specimen (Tapered Seat).

Figure 37. Compact-Tension Fracture-Toughness Specimen.

TABLE 8. PROPERTIES OF 1-INCH-THICK RECRYSTALLIZED PLUS HOT-WORKED 7475-T7X HAND FORGINGS

		Solution-					companie macamina inchange		Service	
		Heat Treat					Reduction			
S-No.	Thickness (in.)	Temperature (^O F)	2nd-Step Aging	UTS¹ (ksi)	YS (ksi)	EI (%)	in Area (%)	NTS ² (ksi)	NTS/YS	Ko ³ (ksi ² in.)
426669-11	1.00	096	4 hr/350°F	78.7	72.7	17.1	45	109.3	1.50	
			8 hr/350°F	75.1	66.4	16.4	94	103.7	1.56	54.0
			Avg			17.1	20		1.56	
426669-12	1.00	096	4 hr/350°F	78.5	71.9	16.4	15	107.3	1.49	
			6 hr/350°F	7.97	68.7	17.9	15	107.8	1.57	
			8 hr/350°F	17.7	69.7	17.9	53	107.3	1.54	45.6
			Avg			17.4	52		1.53	
426669-13	1.00	098	4 hr/350°F	76.1	1.79	15.0	4	103.2	1.52	
			6 hr/350°F	73.9	63.7	15.7	42	9.001	1.58	
			8 hr/350°F	73.1	62.4	15.7	41	9.001	1.52	1
			Avg			15.5	14		1.54	
426669-19	1.00	096	4 hr/350°F	78.9	72.3	15.0	4	8.601	1.52	
			6 hr/350°F	77.5	69.4	15.7	45	106.7	1.54	
			8 hr/350°F	1.97	6.99	17.1	15	102.7	1.54	8.64
			Avg			15.9	46		1.53	
426669-22	1.00	096	4 hr/350°F	677	69.2	15.7	39	102.1	1.48	
			6 hr/350°F	15.9	66.2	15.7	4	9.001	1.52	
			8 hr/350°F	73.7	63.4	15.0	47	1.66	1.56	50.4
			Avg			15.5	43		1.52	
437666-28A	1.00	096	4 hr/350°F	76.9	68.7	15.7	14	108.3	1.58	
			6 hr/350°F	75.9	67.4	17.1	48	104.7	1.55	
			8 hr/350°F	73.3	63.9	17.1	47	9.101	1.59	51.4
			Avg			9.91	45		1.57	

Duplicate 1.00-inch-thick longitudinal and 0.75-inch-thick short-transverse compact-tension fracture-toughness tests.
 Forgings solution-heat-treated, cold-water-quenched, and artificially aged 24 hours at 250°F plus indicated 2nd-step aging at least 4 days after quenching.

TABLE 9. PROPERTIES OF 1- TO 1.75-INCH-THICK RECRYSTALLIZED 7475-T7X HAND FORGINGS

		Solution-				Longit	udinal Mech	anical Pro	perties	
S-No.	Thickness (in.)	Heat-Treat Temperature (°F)	2nd-Step Aging	UTS ¹ (ksi)	YS (ksi)	El (%)	Reduction in Area (%)	NTS ² (ksi)	NTS/YS	K _Q ³ (ksi√in.)
426669-8	1.00	960	4 hr/350°F	77.1	70.2	15.7	42	107.8	1.54	-
			6 hr/350°F	74.7	68.4	16.4	43	105.2	1.54	-
			8 hr/350°F	75.9	64.9	15.0	37	105.2	1.62	-
			Avg			15.7	41		1.57	
426669-9	1.00	960	4 hr/350°F	79.3	72.4	14.3	36	107.3	1.48	_
			6 hr/350°F	76.7	69.2	16.4	31	106.7	1.54	-
			8 hr/350°F	75.3	66.7	15.0	39	105.7	1.58	-
			Avg			15.2	35		1.53	
426669-10	1.00	960	4 hr/350°F	76.5	70.2	15.7	43	106.2	1.51	_
			6 hr/350°F	74.3	68.2	15.0	47	103.7	1.52	_
			8 hr/350°F	74.5	65.9	15.0	38	104.2	1.58	-
			Avg			15.2	43		1.54	
426669-17	1.00	860	4 hr/350°F	76.1	67.4	14.3	38	102.7	1.52	
120007-17	1.00	000	6 hr/350°F	75.9	65.2	17.1	43	99.6	1.53	_
			8 hr/350°F	73.1	62.9	13.6	40	99.3	1.58	_
			Avg		02.7	15.0	40		1.54	
426669-18	1.00	960	4 hr/350°F	77.9	71.2	15.7	38	104.7	1.47	
420009-18	1.00	900	6 hr/350°F	76.1	68.4	15.7	38	103.2	1.51	_
			8 hr/350°F	73.5	65.4	15.7	45	103.2	1.57	50.1
				, 5.5	05.4	15.7		102.7	1.52	30.1
			Avg			15./	40		1.52	
426669-20	1.00	960	4 hr/350°F	74.3	66.9	14.3	29	98.1	1.47	-
			6 hr/350°F	74.4	66.7	15.7	39	96.5	1.45	-
			8 hr/350°F	73.9	64.4	15.7	39	97.5	1.51	-
			Avg			15.2	36		1.48	
426669-23	1.00	860	4 hr/350°F	73.3	64.9	15.7	38	97.5	1.50	-
			6 hr/350°F	74.1	64.1	15.7	41	102.1	1.59	~
			8 hr/350°F	71.1	60.4	15.7	44	98.6	1.63	-
			Avg			15.7	41		1.57	
437666-27A	1.00	960	4 hr/350°F	75.1	68.1	16.4	48	6.001	1.48	~
			8 hr/350°F	72.3	64.2	16.4	50	97.5	1.52	-
			Avg			16.4	49		1.50	
437666-27B	1.50	960	4 hr/350°F	75.5	68.7	14.3	34	100.6	1.46	
			8 hr/350°F	72.5	64.0	15.0	35	95.5	1.49	_
			Avg			14.6	35		1.48	
437666-27C	1.75	960	4 hr/350°F	75.3	67.7	14.3	34	99.1	1.46	
43,000-270	1.75	700	8 hr/350°F	72.5	63.4	15.7	36	97.5	1.54	
					05.4			71.5		
			Avg			15.0	35		1.50	

NOTES:

- 1. Single 0.357-inch φ tapered-seat longitudinal tensile specimens and 0.160-inch φ tapered-seat short-transverse tensile specimens.
- 2. Single 0.500-inch ϕ tapered-seat longitudinal and short-transverse notched tensile specimens.
- 3. Duplicate 1.00-inch-thick longitudinal and 0.75-inch-thick short-transverse compact-tension fracture-toughness tests.
- Forgings solution-heat-treated, cold-water-quenched, and artificially aged 24 hours at 250°F plus indicated 2nd-step aging at least 4 days after quenching.

TABLE 10. PROPERTIES OF 1-INCH-THICK UNRECRYSTALLIZED 7475-T7X HAND FORGINGS

		Solution-			1	ongitudir	Longitudinal Mechanical Properties	cal Proper	ties	
		Heat-Treat					Reduction	u		
S-No.	Thickness (in.)	Temperature (^O F)	2nd-Step Aging	UTS ¹ (ksi)	YS (ksi)	E1 (%)	in Area (%)	NTS ² (ksi)	NTS/YS	
426669-14	1.00	096	4 hr/350°F	78.9	72.4	15.7	48	106.7	1.47	
			6 hr/350°F	75.7	6.79	16.4	50	103.2	1.52	
			8 hr/350°F	74.7	67.2	17.9	20	104.2	1.55	
437666-26A	1.00	098	4 hr/350°F	73.7	6.99	15.7	46	95.0	1.42	
			6 hr/350°F	71.9	64.9	15.7	45	9.66	1.53	
			8 hr/350°F	72.1	619	15.7	4	9.101	1.64	
NOTES: 1.	Single 0.357-inc	th de tapered-seat le	ongitudinal tensil	le specimen	s and 0.1	60-inch	\$ tapered-se	at short-ti	NOTES: 1. Single 0.357-inch ϕ tapered-seat longitudinal tensile specimens and 0.160-inch ϕ tapered-seat short-transverse tensile specimens.	cimens.
2.	Single 0.500-inc	2. Single 0.500-inch ϕ tapered-seat longitudinal and short-transverse notched tensile specimens.	ongitudinal and s	hort-transv	erse note	hed tensi	le specimen	18.		
3.	Forgings solution-heat-treated least 4 days after quenching.	on-heat-treated, co	d-water-quenche	ed, and arti	ficially ag	ged 24 hc	ours at 250°	F plus inc	3. Forgings solution-heat-treated, cold-water-quenched, and artificially aged 24 hours at 250°F plus indicated 2nd-step aging at least 4 days after quenching.	ng at

TABLE 11. PROPERTIES OF 2-INCH-THICK RECRYSTALLIZED PLUS HOT-WORKED 7475-T7X HAND FORGINGS

		Solution -				Longitudinal	idinal		Mechan	Mechanical Properties	ies		Short-1	Short-Transverse			
S.No.	Thickness (in.)	Temperature (^O F)	2nd-Step Aging	UTS¹ (ksi)	YS (ksi)	El (%)	RA (%)	NTS ² (ksi)	NTS/YS	K _Q ³ (ksi Jin.)	UTS¹ (ksi)	YS (ksi)	E1 (%)	RA (%)	NTS ² (ksi)	NTS/YS (Ko3 (ksi/sin)
126669-1	2.00	096	4 hr/350°F 6 hr/350°F 8 hr/350°F Avg	77.3	70.7 66.4 64.2	15.7 17.1 18.6 17.1	45 45	102.1	1.44	55.4	77.4 75.1 72.1	70.1 63.8 60.8	9.4	8 = 9	101.1 99.1 91.9	150	1 + 4
426669-5	2.00	096	4 hr/350°F 6 hr/350°F 8 hr/350°F Avg	77.3 74.3 72.5	70.9	13.6 17.9 17.9 16.5	29 47 44	100.6	1.42	1 1 2 84.8	76.4 74.9 73.6	67.9 64.9 61.9	9.4 10.9 7.8	6 6 0 9	96.5 100.6 80.7	1.42	1 1 4
426669-6	2.00	096	4 hr/350°F 6 hr/350°F 8 hr/350°F Avg	78.5 76.7 74.5	72.2 68.7 66.4	15.0 17.1 15.7 15.9	35 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	102.1 101.6 96.0	1.48	55.4	77.1 75.9 73.9	69.0 64.9 62.3	6.2 9.4 7.8 7.8	7 2 2 2	94.5 96.5 96.0	1.37	45.2
437666-28B	2.00	096	4 hr/350°F 6 hr/350°F 8 hr/350°F Avg	76.5 72.3 72.5	69.8 64.9 62.4	15.7	\$ 6 5 S	99.6 96.5	1.45	1 + 4	75.6 74.5 73.0	68.6 65.7 64.2	8. 8.3 8.3	2 0 = 4	91.9 93.5 89.9	1.39	37.4

1. Single 0.357-inch φ tapered-seat longitudinal tensile specimens and 0.160-inch φ tapered-seat short-transverse tensile specimens. NOTES:

Single 0.500-inch φ tapered-seat longitudinal and short-transverse notched tensile specimens.

3. Duplicate 1.00-inch-thick longitudinal and 0.75-inch-thick short-transverse compact-tension fracture-toughness tests.

4. Forgings solution-heat-treated, cold-water-quenched, and artificially aged 24 hours to 2500F plus indicated 2nd-step aging at least 4 days after quenching.

TABLE 12. PROPERTIES OF 2- TO 2.25-INCH-THICK RECRYSTALLIZED 7475-T7X HAND FORGINGS

		Solution -				Lon	Congitudinal		lechanica	Mechanical Properties			Short-T	Short-Transverse			
S-No.	Thickness (in.)	Temperature (^O F)	2nd-Step Aging	UTS¹ (ksi)	YS (ksi)	El (%)	KA (%)	NTS ² (ksi)	NTS/YS	KQ3 (Ksi vin.)	UTS¹ (ksi)	YS (ksi)	El (%)	RA (%)	NTS ² (ksi)	NTS/YS	KO ³ (Ksi ^v in.)
426669-2	2:00	096	4 hr/350°F 6 hr/350°F 8 hr/350°F Avg	78.3 75.9 74.9	70.7 67.9 65.4	14.3 12.9 13.6 13.6	2 4 8 4	103.2 98.6 99.1	1.46	111	79.1	68.7 66.4 65.7	6.2 9.4 4.7 6.8	» = ° »	89.9 91.9 93.0	1.38	111
426669-3	2.00	096	4 hr/350°F 6 hr/350°F 8 hr/350°F Avg	77.3 75.1 73.9	70.9 67.4 65.9	14.3	30 30 23	98.6 98.6 99.6	1.39	1 + 1	74.6 73.6 73.1	67.9 63.1 62.7	7.8 7.8 6.8	r = 8	90.4 99.6 95.0	1.33 1.57 1.52 1.47	1 1 1
426669-16	2.00	096	4 hr/350°F 6 hr/350°F 8 hr/350°F Avg	76.1 74.9 72.7	68.7 65.9 63.2	12.6 12.1 12.1 12.3	24 23 24	100.6 99.6 92.4	1.46	111	75.1 73.6 73.9	66.4 61.9 62.3	7.8 9.4 10.9 9.4	00 0 1 6	84.8 85.8 94.0	1.28 1.38 1.51	1 1 1
426669-21	2.00	096	4 hr/350°F 6 hr/350°F 8 hr/350°F Avg	77.4 75.1 72.3	69.4 66.7 62.7	11.4 12.9 12.9	27 28 28 25	93.0 91.9 91.9	1.38	46.6	72.6 73.4 71.1	64.5 60.0 60.0	9.3	9 1 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2	86.8 86.3 83.2	134 139 139	1 1 44.6
437666-27D	2.00	096	4 hr/350°F 8 hr/350°F Avg	74.3	62.9	15.7	35	93.7	1.52	f I	74.1	66.0	12.5 12.5 12.5	22 23	90.4	1.37	1 1
437666-27E	2.25	096	4 hr/350°F 8 hr/350°F Avg	75.7	68.5	14.3	32 30	94.5	1.38	1.1	74.9	67.2	12.5	24 23	81.7	1.21	1 1

1. Single 0.357-inch & tapered-seat longitudinal tensile specimens and 0.160-inch & tapered-seat short-transverse tensile specimens. NOTES:

2. Single 0.500-inch ϕ tapered-seat longitudinal and short-transverse notched tensile specimens.

3. Duplicate 1.00-inch-thick longitudinal and 0.75-inch-thick short-transverse compact-tension fracture-toughness texts.

4. Forgings solution-heat-treated, cold-water-quenched, and artificially aged 24 hours at 250°F plus indicated 2nd-step aging at least 4 days after quenching.

TABLE 13. PROPERTIES OF 2-INCH-THICK UNRECRYSTALLIZED 7475-T7X HAND FORGINGS

ure 2nd-Step Aging											Mechanical Properties	Propert	ies					
0-15 0-15			Solution- Heat-Treat				-	ongitud	linal					Sho	ort-Trans	sverse		
· 3	S-No.	Thickness (in.)	Temperature (^O F)	2nd-Step Aging	UTS¹ (ksi)	YS (ksi)	E (%)	RA (%)	NTS ² (ksi)	NTS/YS	Ko³ (ksi vin.)		YS (ksi)	El (%)	RA (%)	NTS ² (ksi)	NTS/YS	KQ ³ NTS/YS (ksi vin.)
· 3	126669-7	2.00	860	4 hr/350°F	73.3	64.9	14.3	33	95.0	1.46	1	74.1	65.3	7.8	9	919	14.1	1
				6 hr/350°F	6.07	61.2	14.3	32	92.4	1.51	1	1.69	60.4	12.5	56	91.4	1.51	1
				8 hr/350°F	70.7	60.4	15.0	50	95.0	1.57	1	9.07	57.8	6.01	20	85.8	1.48	1
	126669-15	2.00	096	4 hr/350°F	78.7	72.2	12.9	27	9.101	1.41	1	77.1	70.1	7.8	59	103.2	1.47	1
8 hr/350 ⁰ F 73.1 64.4 17.9 49 99.1 1.54 – 72.4 64.9 7.8 5 95.5 137666-26B 2.00 860 4 hr/350 ⁰ F 74.5 67.4 15.7 48 98.6 1.46 – 71.8 67.0 3.1 6 93.0 6 hr/350 ⁰ F 71.9 63.7 15.7 48 96.2 1.51 – 72.3 67.2 3.1 7 88.9 88.4 hr/350 ⁰ F 70.3 61.1 17.1 50 95.5 1.56 45.5 72.0 62.5 6.3 10 88.4 sex. VOTES: 1. Single 0.357-inch φ tapered-seat longitudinal tensite specimens and 0.160-inch φ tapered-seat short-transverse tensile specimens. 3. Duplicate 1.00-inch-thick longitudinal and short-transverse compact-tension fracture-foughness tests. 4. Forgings solution-heat-treated, cold-water-quenched, and artificially aged 24 hours at 250 ⁰ F plus indicated 2nd-step aging at least 4 days after quenching the cold-water-quenched, and artificially aged 24 hours at 250 ⁰ F plus indicated 2nd-step aging at least 4 days after quenching the cold-water-quenched, and artificially aged 24 hours at 250 ⁰ F plus indicated 2nd-step aging at least 4 days after quenching the cold-water-quenched, and artificially aged 24 hours at 250 ⁰ F plus indicated 2nd-step aging at least 4 days after quenching the cold-water-quenched, and artificially aged 24 hours at 250 ⁰ F plus indicated 2nd-step aging at least 4 days after quenching the cold-step aging at least 4 days after quenching the cold-step aging at least 4 days after quenching the cold-step aging at least 4 days after quenching the cold-step aging at least 4 days after quenching the cold-step aging at least 4 days after quenching the cold-step aging at least 4 days after quenching the cold-step aging at least 4 days after quenching the cold-step aging at least 4 days after quenching the cold-step aging at least 4 days after quenching the cold-step aging at least 4 days after quenching the cold-step aging at least 4 days after quenching the cold-step aging at least 4 days after quenching the cold-step aging at least 4 days after quenching the cold-step aging at least 4 days after quenching the cold-step aging at least 4 days after quenching the cold-step aging at least 4 days after quenching				6 hr/350°F	7.97	69.2	15.0	41	103.7	1.50	1	75.9	6.79	4.7	2	103.7	1.53	
137666-26B 2.00 860 4 hr/350 ⁰ F 74.5 67.4 15.7 48 98.6 1.46 – 71.8 67.0 3.1 6 93.0 88.9 88.9 88.9 1.50 5 hr/350 ⁰ F 71.9 63.7 15.7 48 96.2 1.51 – 72.3 67.2 3.1 7 88.9 88.9 88.9 88.9 1.5 hr/350 ⁰ F 70.3 61.1 17.1 50 95.5 1.56 45.5 72.0 62.5 6.3 10 88.9 88.9 1.5 hr/350 ⁰ F 70.3 61.1 17.1 50 95.5 1.56 45.5 72.0 62.5 6.3 10 88.9 88.9 1.5 hr/350 ⁰ F 70.3 61.1 17.1 50 95.5 1.56 45.5 72.0 62.5 6.3 10 88.9 100TES: 1. Single 0.357-inch φ tapered-seat longitudinal tensite specimens and 0.160-inch φ tapered-seat longitudinal and short-transverse notched tensile specimens. 3. Duplicate 1.00-inch-thick longitudinal and 0.75-inch-thick short-transverse compact-tension fracture-toughness tests. 4. Forgings solution-heat-treated, cold-water-quenched, and artificially aged 24 hours at 250 ⁰ F plus indicated 2nd-step aging at least 4 days after quenchii				8 hr/350°F	73.1	64.4	17.9	49	1.66	1.54	1	72.4	64.9	7.8	2	95.5	1.47	1
8 hr/350 ⁰ F 71.9 63.7 15.7 48 96.2 1.51 – 72.3 67.2 3.1 7 88.9 88.4 Shr/350 ⁰ F 70.3 61.1 17.1 50 95.5 1.56 45.5 72.0 62.5 6.3 10 88.4 shr/350 ⁰ F 70.3 61.1 17.1 50 95.5 1.56 45.5 72.0 62.5 6.3 10 88.4 shr/350 ⁰ F 10.357-inch φ tapered-seat longitudinal tensile specimens and 0.160-inch φ tapered-seat short-transverse tensile specimens. 2. Single 0.357-inch φ tapered-seat longitudinal and short-transverse compact-tension fracture-toughness tests. 3. Duplicate 1.00-inch-thick longitudinal and 0.75-inch-thick short-transverse compact-tension fracture-toughness tests. 4. Forgings solution-heat-treated, cold-water-quenched, and artificially aged 24 hours at 250 ⁰ F plus indicated 2nd-step aging at least 4 days after quenchii	137666-26B	2.00	098	4 hr/350°F	74.5	67.4	15.7	84	9.86	1.46	1	71.8	0.79	3.1	9	93.0	1.39	1
88.4 VOTES: 1. Single 0.357-inch φ tapered-seat longitudinal tensite specimens and 0.160-inch φ tapered-seat short-transverse tensile specimens. 2. Single 0.357-inch φ tapered-seat longitudinal and short-transverse compact-tension fracture-toughness tests. 3. Duplicate 1.00-inch-thick longitudinal and 0.75-inch-thick short-transverse compact-tension fracture-toughness tests. 4. Forgings solution-heat-treated, cold-water-quenched, and artificially aged 24 hours at 250 ⁰ F plus indicated 2nd-step aging at least 4 days after quenchii				6 hr/350°F	71.9	63.7	15.7	48	96.2	1.51	1	72.3	67.2	3.1	7	88.9	1.32	1
 1. Single 0.357-inch φ tapered-seat longitudinal tensile specimens and 0.160-inch φ tapered-seat short-transverse tensile specimens. 2. Single 0.500-inch φ tapered-seat longitudinal and short-transverse notched tensile specimens. 3. Duplicate 1.00-inch-thick longitudinal and 0.75-inch-thick short-transverse compact-tension fracture-toughness tests. 4. Forgings solution-heat-treated, cold-water-quenched, and artificially aged 24 hours at 250⁰F plus indicated 2nd-step aging at least 4 days after quenching. 				8 hr/350°F	70.3	1.19	17.1	90	95.5	1.56	45.5	72.0	62.5	6.3	10	88.4	1.41	35.5
 Single 0.500-inch φ tapered-seat longitudinal and short-transverse notched tensile specimens. Duplicate 1.00-inch-thick longitudinal and 0.75-inch-thick short-transverse compact-tension fracture-toughness tests. Forgings solution-heat-treated, cold-water-quenched, and artificially aged 24 hours at 250⁰F plus indicated 2nd-step aging at least 4 days after quenchir 	AOTES. 1.	Single 0.35	7-inch \$ tapered.	-seat fongitudin	al tensile	specimen	is and 0.	160-inch	ι φ tapere	d-seat sho	ort-transvers	se tensile	specimer	ıs.				
 Duplicate 1.00-inch-thick longitudinal and 0.75-inch-thick short-transverse compact-tension fracture-foughness tests. Forgings solution-heat-treated, cold-water-quenched, and artificially aged 24 hours at 250^{0F} plus indicated 2nd-step aging at least 4 days after quenchii 	-1	Single 0.50	0-inch \(\phi \) tapered	-seat longitudin	al and she	ort-transv	erse not	ched ten	isile speci	imens.								
4. Forgings solution-heat-treated, cold-water-quenched, and artificially aged 24 hours at 250°F plus indicated 2nd-step aging at feast 4 days after quenchin	3	. Duplicate 1	L00-inch-thick le	ongitudinal and	0.75-inch	thick sh	ort-trans	sverse co	mpact-te	nsion frac	ture-tought	ress tests						
	4	Forgings so	dution-heat-treat	ed, cold-water-	quenched	and arti	ficially a	ged 24 l	hours at	250°F plu	s indicated	2nd-step	aging at	feast 4 da	iys after	duenchii	ig.	

TABLE 14. RESULTS OF ACCELERATED STRESS-CORROSION TESTS ON 1- TO 2-INCH-THICK 7475-T7X HAND FORGINGS (LONGITUDINAL SPECIMENS)

			10	d :: -6		E	9		1 10 1- 4	- E	lov was a to
			Grain Dimensions	nensions		len	lensue Properties	erties	1/8-In. Ø	Tensile Bars St.	1/8-in. \(\phi \) Lensile Bars Stressed at 75% TS
S-No.	Thickness (in.)	Thickness (mm)	Width (mm)	Length (mm)	Aspect Ratio	UTS (ksi)	YS (ksi)	E1 (%)	Spec L3	Spec L4	Spec L5
		Recrysta	Recrystallized Plus Hot-Worked	lot-Worked							
426669-1	2.00	0.028	1.000	1.000	35.7	74.5	66.4	17.0	OK 84DA	OK 84DA	OK 84DA
437666-28B	2.00	0.030	0.250	0.100	3.3	72.5	62.4	17.0	OK 84DA	OK 84DA	OK 84DA
426669-5	2.00	0.036	1.000	1.000	27.7	74.3	6.99	18.0	OK 84DA	OK 84DA	OK 84DA
426669-6	2.00	0.042	0.500	0.250	0.9	7.97	68.7	17.0	OK 84DA	OK 84DA	OK 84DA
437666-28A	1.00	0.018	0.500	0.083	4.6	75.8	0.89	16.0	OK 84DA	OK 84DA	OK 84DA
426669-19	1.00	0.020	0.333	0.167	8.4	77.9	70.1	14.0	OK 84DA	OK 84DA	OK 84DA
426669-12	1.00	0.023	0.500	0.200	8.7	9.92	0.99	13.0	OK 84DA	OK 84DA	OK 84DA
426669-11	1.00	0.025	0.500	0.333	13.2	78.7	9.89	13.0	OK 84DA	OK 84DA	OK 84DA
426669-22	1.00	0.046	1.000	0.500	10.9	0.97	64.9	17.0	OK 84DA	OK 84DA	OK 84DA
			Recrystallized	pe							
426669-21	2.00	0.031	0.143	0.067	2.2	75.1	66.7	13.0	OK 84DA	OK 84DA	OK 84DA
426669-18	1.00	0.040	0.333	0.200	5.0	77.0	67.1	0.91	OK 84DA	OK 84DA	OK 84DA
			Unrecrystallized	pəz							
426669-15	2.00	1	1	ı	ſ	73.1	64.4	18.0	OK 84DA	OK 84DA	OK 84DA
437666-26B	2.00	1	1	1	1	71.9	63.7	16.0	OK 84DA	OK 84DA	OK 84DA
426669-14	1.00	1	1	1	1	77.8	69.2	13.0	OK 84DA	OK 84DA	OK 84DA
NOTES: 1. S	1. Specimens exposed stressed for 84 days by alternate immersion to 3.5% NaCl solution (Federal Test Method 823)	osed stressed fo	r 84 days by	alternate in	nmersion to	3.5% NaC	31 solutio	n (Feder	al Test Method	d 823).	
2.1	2. All forgings artificially aged 24 hours at 250°F plus 8 hours at 350°F.	ificially aged 24	hours at 25	8 snld 400	hours at 350) ⁰ F.					
3. 9	3. Specimens from T/2 location.	n T/2 location.									

TABLE 15. RESULTS OF ACCELERATED STRESS-CORROSION TESTS ON 1- TO 2-INCH-THICK 7475-T7X HAND FORGINGS (SHORT-TRANSVERSE SPECIMENS)

			Grain D	Grain Dimensions		Tensik	Tensile Properties	ies						
	Thickness	Thickness	Width	Length	Aspect	UTS	YS	E	1/8-In. Tel	1/8-In. & Tensile Bars Stressed at 42 ksi	ed at 42 ksi	3/4-In. Ø C-R	3/4-In. \(\phi\) C-Rings Stressed at 42 ksi	t 42 ksi
S-No.	(in.)	(mm)	(mm)	(mm)	Ratio	(ksi)	(ksi)	(%)	N3	AN	NS	10	23	63
						Recryst	allized Pl	Recrystallized Plus Hot-Worked	orked					
A26669-1	2.00	0.028	1.000	1.000	35.7	0.97	9.99	12.0	OK 84DA	OK 84DA	OK 84DA	1	Ť	1
437666-28B	2.00	0.030	0.250	0.100	3.3	72.7	64.0	0.6	OK 84DA	OK 84DA	OK 84DA	1	i	1
426669-5	2.00	0.036	1.006	1.000	27.7	75.2	64.3	0.11	OK 84DA	OK 84DA	OK 84DA	1	1	1
426669-6	2.00	0.042	0.500	0.250	0.9	75.4	0.79	0.6	F 68DA	F 84DA	OK 84DA	1	1	1
437666-28A	1.00	0.018	0.500	0.083	4.6	1	1	ì	1	1	ı	OK 30DA ²	OK 84DA ²	OK 84DA ²
426669-19	1.00	0.020	0.333	0.167	8.4	1	1	1	1	1	,	OK 84DA ³	OK 30DA ³	OK 84DA ³
426669-12	1.00	0.023	0.500	0.200	8.7	1	1	1	1	ţ	1	OK 84DA	OK 84DA4	OK 84DA
426669-11	1.00	0.025	0.500	0.333	13.2	1	1	1		1	1	OK 84DA	OK 84DA	OK 84DA4
426669-22	1.00	0.046	1.000	0.500	6.01		1		1	1	1	OK 84DA4	OK 84DA	OK 84DA
							Rea ystallized	lized						
426669-21	2.00	0.031	0.143	0.067	2.2	68.4	64.1	4.0	OK 84DA	OK 84DA	OK 84DA	1	1	1
426669-18	1.00	0.040	0.333	0.200	5.0	1	1	1	1	1	1	OK 84DA4	OK 84DA	OK 84DA
							Unrecrystallized	allized						
426669-15	2.00	1	1	1	1	74.3	64.9	10.0	Defective specimen	F 47DA	OK 84DA	1		1
437666-26B	2.00	ı		1	1	72.7	64.0	0.6	OK 84DA	OK 84DA	OK 84DA	ı		1
426669-14	1.00	•		1	1	1	1	ı	1	f	1	OK 84DA4	OK 84DA	OK 84DA

NOTES: 1. After 30-day and 84-day exposure, C-rings did not crack or show any visible evidence of lined-up pitting.

2. One specimen examined microscopically after 30 days and 2 specimens examined microscopically after 84 days. No evidence of stress-corrosion cracking noted after either 30- or 84-day

3. One specimen examined microscopically after 30 days and 2 specimens examined microscopically after 84 days. Slight evidence of stress-corrosion cracking after 30 days and no increase in the evidence of stress-corrosion cracking after 84 days.

Specimens examined microscopically after 84 days. No evidence of stress-corrosion cracking.

5. All specimens from T/2 location exposed stressed for 84 days by alternate immersion to 3.5% NaCl solution (Federal Test Method 823).

6. All forgings aged 24 hours at 250°F plus 8 hours at 350°F.

TABLE 16. GRAIN COUNTS, GRAIN DIMENSIONS, AND FABRICATING VARIABLES FOR 7475-T7X HAND FORGINGS PRODUCED USING ITMT-TYPE PRACTICES

Water Forging		Breakdown		at 750°F		Grain	Grain Counts			Calculated (Calculated Grain Dimensions	sions		
Reduction,	Temperature	at 750°F, Reduction,	Recry	After Recry, Reduction.		G/mm		G/mm ³	Thickness Width	Width –	Length	Aspect Z	Forging	
z	(_o E)	z	(₀ E)	z	7	Y	×	XYZ	7	>	×	×	(in.)	S-No.
			1.00- to 1.50	1.00- to 1.50-In-Thick Recrystallized	stallized									
15.5	350	None	860	None	30	7	3	180	0.033	0.500	0.333	10.0	1.00	426669-23
15.5	400	None	098	None	24	7	7	96	0.042	0.500	0.500	11.9	1.00	426669-17
15.5	400	None	096	None	25	3	S	375	0.040	0.333	0.200	5.0	1.00	426669-18
13.0	400	2.8 + 3.1	096	None	53	91	56	22,048	610.0	0.062	0.038	2.0	1.00	437666-27A
13.0	400	2.8 + 3.1	096	None	91	3	9	288	0.062	0.333	0.167	2.7	1.00	426669.20
8.7	400	2.8 + 3.1	096	None	4	4	23	14,168	0.023	0.071	0.044	1.9	1.50	437666-27B
7.0	900	2.8 + 2.3	096	None	22	2	4	176	0.046	0.500	0.250	5.4	1.00	426669-8
4.0	900	2.8 + 4.0	096	None	24	3	00	576	0.042	0.333	0.125	3.0	1.00	426669.9
2.0	200	2.8 + 8.0	096	None	70	5	8	300	0.050	0.200	0.333	9.9	1.00	426669-10
			1.75- to 2.25	1.75- to 2.25-Thick Recrystallized	lized									
7.4	400	2.8 + 3.1	096	None	4	01	4	5,740	0.024	0.100	170.0	3.0	1.75	437666-27C
6.5	400	2.8 + 3.1	096	None	32	7	15	3,360	0.031	0.143	0.067	2.2	2.00	426669-21
6.5	400	2.8 + 3.1	096	None	52	5	01	1,250	0.040	0.200	0.100	2.5	2.00	437666-27D
5.8	400	2.8 + 3.1	096	None	56	10	13	4,930	0.034	0.100	0.059	1.7	2.25	437666-27E
1.8 + 4.0	500	2.8 + 2.3	096	None	11	2	8	102	0.059	0.500	0.333	9.6	2.00	426669-16
4.0	200	2.8 + 2.0	096	None	9	-	-	9	0.167	1.000	1.000	6.5	2.00	426669.3
2.0	200	2.8 + 4.0	096	None	61	7	1	366	0.053	0.500	0.143	2.7	2.00	426669-2
			1.00-InThic	1.00-In, Thick Recrystallized Plus Hot-Forged	Plus Ho	t-Forged								
2.6 + 2.6 + 7.7	400	2.8 + 3.1	096	1.7	23	2	12	1,368	810.0	0.500	0.083	4.6	00.1	437666-28A
9.1	400	None	998	1.7	22	-	~	44	0.046	1.000	0.500	6.01	1.00	426669-22
9.1	200	None	860	1.7	61	-	-	61	0.053	1.000	1.000	18.9	1.00	426669-13
9.1	550	None	860	1.7		Unrecrystallized	allized			í		1	1.00	437666-26A
1.7	400	2.8 + 3.1	096	1.7	90	3	9	006	0.020	0.333	0.167	8.4	1.00	426669-19
4.1	200	2.8 + 2.3	096	1.7	40	5	3	240	0.025	0.500	0.33	13.2	1.00	426669-11
2.1	200	2.8 + 4.6	096	1.7	43	2	2	430	0.023	0.500	0.200	7.8	1.00	426669-12
			2.00-InThick	2.00-InThick Recrystallized Plus Hot -Forged	Plus II o	Pagao 3-1								
2.6 + 2.6 + 3.8	400	2.8 + 3.1	096	1.8	33	4	10	1,320	0.030	0.250	0.100	3.3	2.00	437666-28B
2.0 + 2.3 + 2.7	200	2.8 + 2.0	096	1.5	24	7	4	192	0.042	0.500	0.250	0.9	2.00	426669-6
4.4	200	None	098	1.8		Unrecrystallized	allized				1	1	2.00	426669.7
4.4	550	None	098	1.8		Unrecrystallized	allized		1	ŧ		1	2.00	437666-26B
2.0 + 2.3	200	2.8 + 2.3	096	1.8	28	-	-	28	0.036	1.000	1.000	27.7	2.00	426669.5
3.0	000		4											

Figure 38. Relationship Between Grain Dimensions and Amount of Warm Forging for 1- to 2.25-Inch-Thick 7475-T7X ITMT Hand Forgings.

Figure 39. Longitudinal Properties of 1- to 2.25-Inch-Thick 7475-T7X Hand Forgings as a Function of Yield Strength.

LONGITUDINAL YIELD STRENGTH . KSI

Figure 40. Short-Transverse Properties of 2- to 2.25-Inch-Thick 7475-T7X Hand Forgings as a Function of Short-Transverse Yield Strength.

Figure 41. Longitudinal Properties of 1- to 2.25-Inch-Thick 7475-T7X Hand Forgings as a Function of the Grain Dimension in the Short-Transverse Direction.

Figure 42. Longitudinal Properties of 1- to 2.25-Inch-Thick 7475-T7X Hand Forgings as a Function of the Grain Dimension in the Long-Transverse Direction.

Figure 43. Longitudinal Properties of 1- to 2.25-Inch-Thick 7475-T7X Hand Forgings as a Function of the Grain Dimension in the Longitudinal Direction.

Figure 44. Longitudinal Properties of 1- to 2.25-Inch-Thick 7475-T7X Hand Forgings as a Function of the Width and Thickness of the Grains.

Figure 45. Longitudinal Properties of 1- to 2.25-Inch-Thick 7475-T7X Hand Forgings as a Function of the Length and the Thickness of the Grains.

Figure 46. Longitudinal Properties of 1- to 2.25-Inch-Thick 7475-T7X Hand Forgings as a Function of the Width and Length of the Grains.

Figure 47. Short-Transverse Properties of 2- to 2.25-Inch-Thick 7475-T7X Hand Forgings as a Function of the Grain Dimension in the Longitudinal Direction.

Figure 48. Short-Transverse Properties of 2- to 2.25-Inch-Thick 7475-T7X Hand Forgings as a Function of the Grain Dimensions in the Longitudinal and Long-Transverse Directions.

Figure 49. Short-Transverse Properties of 2- to 2.25-Inch-Thick 7475-T7X Hand Forgings as a Function of the Length, Width, and Thickness of the Grains.

Figure 50. Short-Transverse Properties of 2- to 2.25-Inch-Thick 7475-T7X Hand Forgings as a Function of the Length and Width of the Grains.

TASK II - PRODUCTION OF FORGINGS

The goal of Task II was the fabrication of 6.7-, 2.0-, and 1.0-inch-thick 7075 and 7475 hand forgings in the F temper at the Cleveland Plant of Alcoa and the heat treatment of the forgings at Alcoa Laboratories to supply forgings in the T73 temper for testing by Boeing Vertol and Alcoa Laboratories. The three thicknesses of 7075 forgings were produced as a stepped forging from commercial ingot using a commercial fabricating practice. The three thicknesses of 7475 forgings were produced by two experimental fabricating practices from 17-inch-diameter ingot cast at Alcoa Laboratories. The practices used were of the Intermediate-Thermal-Mechanical-Treatment (ITMT) type and were selected to produce forgings having a recrystallized-plus-hot-worked structure. By mutual agreement, Boeing Vertol, Alcoa, and Frankford Arsenal selected ITMT practices 426669-19 and 437666-28A in Task I to be used as the two ITMT practices in Task II. This selection was based on microstructure evaluation, tensile properties, fracture-toughness characterization, and stress-corrosion-cracking performance of the 31 hand forgings.

Based on commercial forging restraints and the ingot size available, the two ITMT practices in Task I were then equated to produce 6.7-, 2.0-, and 1.0-inch-thick 7475 hand forgings having a recrystallized-plus-hot-worked structure. The practices based on the practice used to produce forging S-426669-19 are described pictorially in Figures 51, 52, and 53 and are identified subsequently in this report as 7475-TMT1. The practices based on the practice used to produce forging S-437666-28A are described pictorially in Figures 54, 55, and 56 and are identified subsequently as 7475-TMT2.

The reductions used during the forging sequences are compared in Table 17.

The solution-heat treatment, quenching, and artificial aging of the forgings at Alcoa Laboratories are described in Figure 57 for the 7075-T73 forgings and in Figure 58 for the 7475-T73 forgings. The 6.7-inch-thick forgings were fabricated so that short-transverse fatigue tests could be made by Boeing Vertol. However, to minimize the effect of quench rate in comparing the properties obtained on the 6.7-inch-thick forgings with the properties obtained on the 2- and 1-inch-thick forgings, 2-inch-thick sections were sawed from the 6.7-inch-thick forgings and thermally treated as indicated. The time of the second-step aging practice used for the 7475 forgings was longer than that used for 7075-T73 because the results of the accelerated stress-corrosion tests carried out in Task I indicated that the standard 7075-T73 second-step aging practice might not produce a satisfactory resistance to stress-corrosion cracking in the short-transverse direction in 7475-T73 hand forgings.

The grain dimensions of the 7475-T73 hand forgings having a recrystallized-plus-hot-worked structure are given in Table 17. Three-dimensional photomicrographs of the structures of samples of the hand forgings are presented in Figures 51 through 56 for the 7475-T73 hand forgings having a recrystallized-plus-hot-worked structure, in Figures 59 through 61 for the 7075-T73 hand forgings.

Figure 52. Microstructure Properties and Forging Practice for 2-Inch-Thick 7475-T73
Task II Forging, S-438169.

Figure 54. Microstructure Properties and Forging Practice for 6.7-Inch-Thick 7475-T73 Task II Forging, S-438173.

Figure 55. Microstructure Properties and Forging Practice for 2-Inch-Thick 7475-T73
Task II Forging, S-438172.

Figure 56. Microstructure Properties and Forging Practice for 1-Inch-Thick 7475-T73
Task II Forging, S-438171.

TABLE 17. FABRICATING DETAILS FOR 7475 HAND FORGINGS PRODUCED BY ITMT-TYPE PROCEDURES

-	Finished Hand Forging	orging		Initial Forging of 16.5 ϕ x 49-In. Ingot at 750 ^o F ¹	of 16.5 ¢ x 750°F¹	Warm Forgi	Warm Forging of Billet at 400°F ²) ⁰ F²	Forging of Re	Forging of Recrystallized Billet at 750 ⁰ F ³	et at 750°F³	Finished
		Grain Dimensions	sions	Type of		Initial	Type of		Initial	Type of		Size of
S-No.	Thickness (mm)	Width (mm)	Length (mm)	Forging Operation	Reduction, N	Size (in.)	Forging Operation	Reduction, N	Size (in.)	Forging Operation	Reduction, N	Forging (in.)
				6.7-InThick Hand Forgings	and Forgings							
438170	0.042	0.083	0.125	Upset & draw Upset & draw	3.1	13x13x39	Upset & draw	4.9	8x17x46	Draw	1.2	6.7x17x51
438173	0.036	0.083	0.200	Upset & draw Upset & draw	3.1	13x13x39	Upset & draw	3.0				
							Upset & draw Upset & draw	3.0	8x17x46	Draw	1.2	6.7x17x51
				2.0-Inch-Thick Hand Forgings	Hand Forgings							
438169	0.010	0.020	0.067	Upset & draw	3.1	10x10x25	Upset & draw	8.3	3x17x51	Draw	1.5	2.0x17x76
438172	0.015	0.071	0.250	Upset & draw Upset & draw	3.1	10x10x25	Upset & draw	2.5				
							Upset & draw Upset & draw	2.5 8.3	3x17x51	Draw	1.5	2.0x17x76
				1.0-Inch-Thick Hand Forging	Hand Forging							
438168	0.013	0.062	160:0	Upset & draw Upset & draw	3.1	7x7x18	Upset & draw	12.0	1.5x17x36	Draw	1.5	1.0x17x51
438171	0.020	160.0	0.143	Upset & draw Upset & draw	3.1	7x7x18	Upset & draw	2.6				
							Upset & draw Upset & draw	2.6 12.0	1.5x17x36	Draw	1.5	1.0x17x51

2. Billet reheated 2 hours at 960°F, furnace cooled to 775°F, soaked 2 hours at 775°F, furnace cooled to 500°F, and soaked 4 hours at 500°F prior to warm-forging at 400°F.

3. Forging reheated 10 hours at 960°F after warm-forging at 400°F and prior to forging at 750°F.

4. Reduction, N = original thickness in direction of greatest reduction final thickness in direction of greatest reduction

5. Composition of ingot: Cu, 1.55; Mg, 2.37; Zn, 5.73; Fe, 0.06; Si, 0.04; Cr, 0.20; Ti, 0.02; Be, 0.002.

Figure 57. Solution Heat Treatment and Aging of 7075-T73 Stepped Hand Forging.

Figure 58. Solution Heat Treatment and Aging of 7475-T73 Hand Forgings.

Figure 59. Microstructure Properties for 6.7-Inch-Thick 7075-T73 Task II Forging, S-437701-3.

Figure 60. Microstructure Properties for 2-Inch-Thick 7075-T73 Task II Forging, S-437701-2.

1.00" Thick 7075-T73 Hand Forging

Figure 61. Microstructure Properties for 1-Inch-Thick 7075-T73 Task II Forging, S-437701-1.

TASK III – MECHANICAL-PROPERTIES TESTS

The mechanical properties of all Task II forgings were measured.

TENSILE-PROPERTIES TESTS

Test Matrix and Test-Specimen Configuration

As indicated in Table 18, tensile properties of Task II forgings were measured by testing 10 specimens for each of the selected TMT forgings and 10 specimens for the conventional 7075-T73 forgings. The short-transverse properties of the 6.7-inch-thick forgings were determined, in addition to the longitudinal properties.

TABLE 18. TENSILE-PROPERTIES TEST MATRIX

					Numbe	er of Spec	imens			
Group Number	Specimen Configuration		Process 7075-T73 Forging ickness (i		M T 74	Advanced Thermal/ fechanica reatment 474-TMT Forging ckness (i	1 t 1	T Me Tr 74	dvanced hermal/ chanical eatment 75-TMT2 Forging kness (in.	
	1 Longitudinal grain 2 Short-transverse grain		2.0	1.0	6.7	2.0	1.0	6.7	2.0	1.0
1			3	3	2	- 3	3	2	3	3
2			-	-	2	-	-	2	-	-
	Subtotal	4	3	3	4	3	3	4	3	3
dest	Subtotal		10	200	1000	10			10	
	Total		The s			30	tun.			

The test-specimen configuration is shown in Figure 62 and conforms to ASTM Standard E8-61T, Reference 9, for standard tension-test round specimens.

Selected locations in each forging from which the tensile specimens were taken are shown in Appendix A.

Test Procedure

Specimens were tested using a strain rate of 0.005 inch/inch/minute up to the 0.2-percent yield offset and then straining at a rate causing failure within one minute after offset. Testing was accomplished by using a Baldwin-Wiedeman universal tensile-testing machine; stress-strain plots were recorded on a Hewlett Packard Model 7590C X-Y recorder and are presented in Appendix B.

Test Results

Test results are shown in Table 19. The data show that TMT may improve the ultimate tensile strength and the yield strength in addition to significantly increasing the ductility of the material. One 7075-T73 specimen, 0101, demonstrated a slant fracture and resulted in the low values measured for percent elongation and reduction in area shown in the table. A metallurgical examination of the specimen confirmed the suspicion that due to the location of the specimen near a corner of the forging, the grain orientation is not parallel to the long axis of the specimen.

FRACTURE-TOUGHNESS TESTS

The objective of these tests was to develop valid fracture-toughness values (K_{IC}) for thermal-mechanically treated aluminum-alloy forgings. Testing was conducted according to the guidelines of ASTM specification E399-72T 10 in room-temperature air by testing standard-compact specimens.

Test-Specimen Configuration and Preparation

The fracture-toughness specimens were manufactured from blanks cut from selected locations in each forging. These locations, including serial numbers, are shown in Appendix A. The specimen configurations are shown in Figures 63 and 64.

Specimens were fatigue precracked on a universal Sonntag Model SF-1U fatigue-test machine fitted with a clevis fixture to accommodate compact specimens. All fatigue precracking was conducted at 10 Hz in air at room temperature using constant-amplitude loading within the guidelines of the specification. The specimens were observed under a 3-power microscope to assure the desired crack length.

Test Procedure and Test Setup

Fracture-toughness testing was conducted on a Vertol servocontrolled hydraulic tension-tension machine capable of ramp loading. The ramp-loading rate used corresponded to a stress-intensity rate between 30,000 and 150,000 psi $\sqrt{\text{in.}}$ per minute. Clevis fixtures required for each size compact specimen were designed and fabricated according to the guidelines of ASTM E399-72T. 10

The matrix of specimens tested is shown in Table 20.

Crack opening was measured by a strain-gage-instrumented clip gage. The test data, load, and crack opening were plotted directly by a Hewlett Packard Model 7590C X-Y recorder. From each recording, the load $P_{\rm O}$ was obtained for determining fracture toughness.

Test Results

The results of the testing are summarized in Table 21 along with pertinent data used in the analysis. The method of reducing data is in accordance with the requirements of ASTM E399-72T and is demonstrated in Figure 65. Individual load-displacement recordings for each specimen are given in Appendix C.

As indicated in Table 21, five tests resulted in valid measurements of plane-strain fracture toughness, K_{IC} . For each of the invalid measurements, the conditional fracture toughness, K_{Q} , and the reason for invalidity is indicated. As seen in the notes of Table 21, all specimens except one were invalid because of specimen dimensions. This indicates that a plane-strain condition cannot be achieved in the 1- and 2-inch-thick forgings. In the case of the thick (6.7-inch) forgings, the specimens must be larger in order to obtain a valid plane-strain fracture-toughness value, K_{IC} , for the longitudinal grain direction.

Significant improvements in the conditional fracture toughness of TMT aluminum-alloy forgings have been achieved for all three thicknesses investigated. Table 22 is a comparison of average results for each forging and shows the percentage improvement when compared to the commercial 7075-T73 measurements. The high conditional fracture-toughness values of the TMT forgings are further substantiated by the fact that each TMT specimen fracture shows shear lips. In particular, the longitudinal grain direction shows very large shear lips covering 20 to 50 percent of the fracture surface. Typical examples of the difference in fracture surface are shown in Figures 66, 67, and 68.

FATIGUE-STRENGTH TESTS

The fatigue-strength characteristics of a metal are of primary importance in considering the application of that material to helicopter structure. A thorough evaluation must include an analysis of the influences of stress ratio (minimum stress/maximum stress), stress concentration, grain direction, and forging thickness on fatigue properties. The testing conducted on axially loaded specimens provides the data necessary for evaluating the thermal-mechanical-treatment aluminum-alloy forgings when compared to data for similar forgings fabricated from conventional 7075-T73 aluminum alloy.

Test-Specimen Configuration

Two types of specimens, smooth and notched, were used for fatigue tests. Smooth-specimen details are shown in Figure 69. The notced specimen, Figure 70, is designed to produce a stress-concentration factor, K_T , of 3.0.

Test Procedure and Test Setup

All specimens were axially loaded using either a Wiedeman fatigue-test machine Model SF-1-U or an Amsler Vibraphore fatigue-test machine. Load frequency was 30 Hz on the SF-1-U and 70 Hz on the Vibraphore. No difference in fatigue strength was noted between specimens tested at 30 Hz and those tested at 70 Hz. Axial test loads were measured by a calibrated strain-gage link. The adapter assembly which fixed the test specimen in the machine also contains calibrated strain-gaged links to determine bending loads. The bending gages were used during specimen installation to produce an alignment which results in no bending in the specimen. During testing, all links were monitored to verify the axial load and to verify alignment of the test specimen. Strain gages were coupled to an Ellis Associates BA-12 or BA-13 bridge amplifier and total system accuracy was within ± 2 percent.

All fatigue testing was conducted in air at room temperature and at constant-amplitude load levels in groups of a minimum of eight specimens to develop the S-N curve for each of 26

combinations of test-program variables, with the objective of acquiring data over the life range from 10^4 to 5 x 10^7 cycles. Program variables, shown in Table 23, include material, forging thickness, grain direction, stress ratio, and stress-concentration factor.

Testing emphasized the specially treated forgings, and in particular the two-inch-thick forging, to develop the steady-stress/alternating-stress relationship (Goodman diagram) for the 7475-TMT alloy forgings.

Test Results

The objective of the fatigue testing is to demonstrate the achievement of a 20-percent increase in fatigue strength of TMT alloys when compared to 7075-T73. In many instances, that goal has been achieved or exceeded.

The results of the tests are shown in terms of fatigue-stress level and number of cycles in Figure 71 through 96. Where possible, comparisons of data for 7075-T73 groups have been made with 7475-TMT results obtained from this series of tests and are presented in Figures 97 through 108. Detailed test results are provided in Table 24. A summary of the results based on a comparison of endurance limits at 5×10^7 cycles is given in Table 25 by using test data and other sources of data for 7075-T73. Goodman diagrams for the two-inch-thick 7475-TMT1 and 7475-TMT2 aluminum-alloy forgings are presented in Figures 109 and 110 for the longitudinal grain orientation.

All specimens except two exhibited typical failure modes for smooth and notched fatigue specimens. The smooth specimens failed at the minimum section at the midlength of the specimen; the notched specimens failed at the notch. The two smooth specimens which did not follow trends failed in the threads provided for gripping the specimen in the test fixture. Because of the flat curve defined by the seven other specimens from this group, these two atypical failures are included in the statistical analysis of the data.

As demonstrated by the data, TMT1 achieved or exceeded the goal of a 20-percent increase in fatigue strength when compared to 7075-T73 for the majority of test conditions. The improvements ranged approximately from 5 percent to 75 percent and suggest that advantages can be achieved with this thermal-mechanical treatment.

The TMT2 practice achieved or exceeded the goal of a 20-percent increase in fatigue strength in two cases and is rated second to TMT1 on the basis of fatigue properties.

The impact of these results on design of helicopter structure is demonstrated by example in Appendix E.

Metallurgical examinations were conducted on a number of specimens to identify the origin of failure, the extent of fatigue damage prior to separation of the fracture surfaces, and microstructure characteristics. Hardness measurements are summarized in Table 26. As indicated in Figures 111 and 112, the origin of failure for the smooth and notched specimens selected is at the surface of the specimen. Grain orientation and grain size are shown in Figures 113 and 114. Two test specimens, 0716 shown in Figure 111 and 0714, have a slanted grain orientation which is neither longitudinal nor transverse. This is attributed to the fact that these specimens came from the edge of the one-inch-thick forging.

FATIGUE-CRACK PROPAGATION-RATE TESTS

The objective of these tests is to obtain fatigue-crack propagation-rate data over a range of stress and environmental conditions representative of those expected in the service life of helicopter hardware.

Test-Specimen Configuration and Preparation

Thirty fatigue-crack propagation-rate specimens were fabricated from blanks cut from selected locations in each forging. These locations are centered with respect to the thickness of each blank and are shown in Appendix A. The specimen configuration is shown in Figure 115.

In order to measure crack growth, a grid consisting of approximately 40 lines with a nominal spacing of 0.040 inch was photographically applied to one side of each specimen. A typical specimen with the grid is shown in Figure 116.

Test Procedure and Test Setup

Table 27 contains the matrix of test parameters for the 30 fatigue-crack and propagation-rate specimens. All testing was conducted at a load frequency of 5 Hz.

Loads were applied to the specimen as shown in Figure 116. The test setup included a load cell in series with the specimen. Load control was provided to permit no greater than \pm 1.5-percent variation of the cyclic range of load for the duration of each test. In cases where precracking loads higher than the test crack-propagation loads were required, care was taken to step down to the test loads in small increments and to let the crack grow to a length such that the prior load would not influence the crack-growth data.

Crack growth was monitored visually by observing the intersection of the crack front with the grid lines previously described. Dye penetrant (Type MIL-I-25135, spotcheck SKL-HF penetrant by Magnaflux Corporation) and optical magnification of various power (15X and 45X) were used as aids in following the crack in those specimens tested in a 3.5-percent salt solution; the optical magnification was used as an aid in following the crack. In this case, the salt solution is contained in a transparent container surrounding the crack as shown in Figure 117 The crack is viewed through the container. Periodic checks were made to insure that cracking was progressing uniformly on both sides of the specimen.

Basic crack-growth data, consisting of crack length and number of fatigue cycles, was reduced by computer to determine the fracture-mechanics parameters of stress-intensity-range factor, \triangle K, and fatigue crack propagation rate, \triangle a/ \triangle N. Data is presented in Figures 118 through 147 and tabulations including basic data can be found in Appendix D with a listing of the computer program used.

The stress-intensity range was calculated using the following expression from Reference 8:

$$\Delta K = \frac{\Delta P}{1/2} \left[29.6 \left(\frac{a}{W} \right)^{1/2} - 185.5 \left(\frac{a}{W} \right)^{3/2} + 655.7 \left(\frac{a}{W} \right)^{5/2} - 1017.0 \left(\frac{a}{W} \right)^{7/2} + 638.9 \left(\frac{a}{W} \right)^{9/2} \right] ,$$

where ΔP is the load range, $P_{MAX} - P_{MIN}$,

a is average crack length,

B is average thickness of specimen, and

W is average width of specimen per Reference 8.

Test Results

The results of the fatigue-crack propagation-rate tests are presented in Figures 118 through 147 as plots of stress-intensity-factor range, $\triangle K$, versus fatigue-crack-propagation rate, $\triangle A \triangle N$.

In general, both TMT1 and TMT2 alloys demonstrated more favorable crack-growth rates when compared to 7075-T73. In some instances this is due to the fact that TMT alloys maintain stable crack-growth rates at the higher values of stress-intensity-range factor, Δ K; in other instances, the crack-propagation rates of TMT alloys are slower than 7075-T73 rates. Of the two TMT alloys tested, TMT2 is rated better than TMT1 on the basis of crack-propagation rates.

The results of the short-transverse grain direction are particularly significant and demonstrate that TMT alloys are superior in performance to 7075-T73 in thick forgings.

Forging Thickness – Forging thickness may or may not influence the crack-propagation rates in TMT aluminum-alloy forgings. Referring to Table 28, one can see that the 7475-TMT2 performance is equal to or better than the 7075-T73, and is greater for the one- and two-inchthick forgings in room-temperature air, than it is for the 6.7-inch-thick forging. The 7475-TMT1 alloy does not show room-air crack-propagation rates superior to 7075-T73 for one- and two-inch forgings, but demonstrates the advantage of stable growth rates in the 6.7-inch forging for both grain directions, something which is not possible in conventional 7075-T73 alloy at the higher values of stress-intensity-range factor, ΔK .

In a 3.5-percent salt solution, 7475-TMT1 and 7475-TMT2 demonstrate the same crack-propagation rates. As shown in Table 28, the short-transverse crack-propagation rates of TMT aluminum alloys are equivalent to 7075-T73 rates in the thick (6.7-inch) forging, and remain stable at higher values of stress-intensity-factor range, ΔK . A thickness effect is apparent in the longitudinal direction in TMT alloys; the crack-propagation rates of TMT alloys are 33 percent faster than 7075-T73 in one-inch forging and 100 percent faster in two- and 6.7-inch forging.

Environment – For each of the three materials, a 3.5-percent salt solution was found to increase the crack-growth rates above those obtained in an air environment. The crack-growth rate of 7475-TMT1 in salt solution is approximately three times the rate in air. This is also true for 7475-TMT2 and for conventional 7075-T73.

In a 3.5-percent salt solution, 7475-TMT1 and 7475-TMT2 demonstrate the same crack-propagation rates. In comparison to 7075-T73, the crack-propagation rates of TMT alloys are faster, but this is offset by the fact that TMT alloys have the capability to maintain stable crack-growth rates at high values of stress-intensity-factor range, ΔK . This cannot be achieved in conventional 7075-T73 alloy.

Grain Direction – Longitudinal and short-transverse specimens were tested from the 6.7-inch-thick forgings. In both environments, room air and 3.5-percent salt solution, no significant differences were found in the crack-growth rates of TMT material loaded parallel to the grain (longitudinal) and TMT material loaded transverse to the grain (short-transverse). This applies to both TMT1 and TMT2, and is a distinct advantage over the conventional 7075-T73 material which demonstrates short-transverse crack-growth rates 33 percent faster than longitudinal crack-growth rates (see Table 29).

Another advantage clearly identified in the results is the fact that crack-growth rates in TMT1 and TMT2 remain stable at values of stress-intensity-factor range, ΔK , where 7075-T73 crack-growth rates were unstable.

STRESS - CORROSION TESTS

Alcoa's participation in Task III of the Boeing Vertol contract consisted of evaluating the resistance to stress-corrosion cracking of the 6.7-, 2.0-, and 1.0-inch-thick 7075 and 7475 hand forgings produced at the Cleveland Plant in Task II of this contract.

Samples of 6.7-, 2.0-, and 1.00-inch-thick 7075 and 7475 hand forgings solution-heat-treated, quenched, and artificially aged 24 hours at 250°F in Task II were aged additionally 2 to 9 hours at 350°F. Longitudinal 0.125-inch-diameter threaded-end tensile specimens were machined from the T/2 location of all of the samples of forgings. Short-transverse 0.125-inch-diameter threaded-end tensile specimens were machined from the samples of 6.7- and 2.0-inch-thick forgings, and short-transverse 0.75-inch-diameter C-rings were machined from the samples of 1.0-inch-thick forgings. The specimens were stressed at 25, 35, or 45 ksi and exposed to a 3.5-percent NaC1 solution by alternate immersion, Federal Method 823, for 84 days. The second-step aging times at 350°F, the stresses at which the specimens were exposed, and the results of the corrosion test are summarized in Table 30 for the 6.7-inch-thick forgings, in Table 31 for the 2.0-inch-thick forgings, and in Table 32 for the 1.00-inch-thick forgings.

Stress-corrosion acceptance criteria and minimum tensile properties are well-established for 7075-T73 products. Figure 148 demonstrated that a second-step aging of 8 hours at 350°F resulted in the 1- and 2-inch-thick 7075-T73 forgings being aged to electrical conductivities well above the specified minimum of 38 percent IACS and to yield strengths well above the guaranteed minimum of 56 ksi specified for forgings up to 3 inches thick. The 6.7-inch-thick 7075-T73 forging given a second-step aging of 8 hours at 350°F also displayed an electrical conductivity well above the specified minimum of 38 percent IACS. Figure 148 provides

some evidence that the nominal aging practice provides sufficient latitude within the specification limits for successful commercial production of 7075-T73 forgings.

Although a minimum electrical conductivity and minimum tensile properties have not been specified for 7475-T73 forgings, the multiple second-step aging times that were used in the investigation permit a comparison of the tensile properties and electrical conductivity of the 7075-T73 and the 7475-T73 forgings at comparable levels of resistance to stress corrosion. From Figures 149 and 150, it is evident that the fabrication procedures used in this investigation produced longitudinal yield strengths in the 7475-T73 forgings that were above the minimum value of 56.0 ksi specified for 7075-T73 hand forgings of thicknesses less than 3.0 inches, but that for an equivalent resistance to stress-corrosion cracking the 7475-T73 forgings had strengths lower than those of the 7075-T73 forgings included for comparison. Based on this limited data for 7475-T73 forgings, it would appear that minimum tensile properties for 7475-T73 forgings would have to be lower than those that have been specified for 7075-T73 forgings. Furthermore, Figure 151 shows that the minimum electrical conductivity of 38 percent IACS will not be applicable to 7475-T73 forgings fabricated by the studied procedures. The 7475-T73 forgings require aging to higher electrical conductivities to obtain the same resistance to stress corrosion that 7075-T73 forgings display at an electrical conductivity of 38 percent IACS.

Figure 62. Configuration of Standard Round Specimen for Tension Test.

TABLE 19. MECHANICAL PROPERTIES FOR TASK II FORGINGS, THERMAL/MECHANICAL HEAT-TREATED ALUMINUM ALLOY

	Porging					Cage	Yield	Yield	Ultimate	Ultimate		u
	Thickness	Grain	Specimen	Diameter	Area	Length	Load	Siress	Load	Stress	Elongation	Area
Material	(m.)	Orientation	Number	(in.)	(sq m.)	(m.)	(H)	(isd)	(B)	(isd)	(%)	(%)
	-		•1010	0.500	0.1964		12,750*	64,918*	14,650*	74,592*	*9	6
	-	1	0102	0.500	0.1964	-1	12,625	64,282	14,650	74,592	2	23
			1110	0.499	0.1956		12,500	63,905	14,700	75,153	14	36
								av = 64,090		av = 74,870	av = 13.5	av = 30
			0201	0.500	0.1964	7	11,800	180'09	14,500	73,828	13	34
7075-173	**	7	0202	0.500	0.1964	7	11,875	60,463	14,400	73,319	13	67
			0211	0.500	0.1964	~	008.11	180,03	14,300	72,810		34
								av = 60,130		av = 73,300		av = 32
	6.7	S.T	0402	0.500	0.1964	7	11,700	59,572	13,400	68,228	4	5
			0403	0.500	0.1964	~	11.800	180.09	13,800	70,264	8	5
								057,02 = ve		av = 69,200	3v = 4.5	3 = VB
		T	1090	0.500	0.1964	7	11.625	89.190	13,800	70.264	13	33
			6090	0.500	0.1964	CI	11,475	58,426	13,600	69,246	4-	34
								av = 58,750		av = 69,700	S	av = 34
			10/0	0.500	0.1964	7	12,200	62,118	14,200	72,301	61	54
	-	T	0702	0.500	0.1964	c	12,200	62,118	14,300	72,810	16	44
			0711	0.498	0.1948	7	12,125	62,243	14,150	72,638	18	54
								av = 62,160		av = 72,580	1	av = 50
			75.80	0.498	0.1948	-	12,000	109 19	14.350	73.151	15	46
7475-TMT1	**	T	0828	0.499	0.1956	-	11.500	58,793	13,750	70,396	17	4
			0839	0.499	0.1956	. ~1	11.875	60,710	14,100	72,085	17	40
								av = 60,370		av = 71,840	av = 16.3	av = 43
	6.7	S.T	1002	0.499	0.1956	,	12.350	1.9.09	14 000	71 574	5	7
		;	1003	0.500	0.1964		11 700	50.577	13,700	69 755		,,
			CONT	8000				av = 61,100	20,100	av = 70,665		av = 23
		-	1001	0.499	0.1956	,	13 375	99, 89	14 400	73.619	11	47
			1000	0.499	0.1956		008 21	67.883	14 100	73.108	17	45
								av = 63,075		av = 73.360		3v = 46
			1301	0.500	0.1964	-1	12,000	660,19	14,150	72,046	15	55
	-	-1	1302	0.499	0.1956	٠.	11,750	170,00	14,050	71,830	17	5.2
			1311	0.500	0.1964		11,925	717.09	14,050	71,537	1.1	55
								av = 60,630		av = 71,800	av = 16.3	av = 54
			1427	0.500	0.1964	~	11,425	58,172	13,800	70,264	15	15
7475-TMT 2	~1	-	1428	0.490	0.1956	٠,	12,000	61,349	14,000	71,574	17	47
			1429	0.500	0.1964	C1	11,375	51,917	13,650	105'69		48
								av = 50,150		av = 70,445	av = 16.3	av = 49
	6.7	ST	1602	0.500	0.1964		12,100	809, 19	14,050	71,537	4-	25
			1603	0.500	0.1964		12,250	62,372	14,350	73,065		15
								av = 61,990		av = 72,300	av = 14	av = 20
		1	1801	0.500	0.1964	~1	12,400	63,136	14,400	73,319	1.1	44
			LNON	0.500	0.1964		12,250	62,372	14,300	72,810	1.7	47
								av = 62,750		av = 73.065	3v = 17	3v = 46

1. 32 FINISH ON ALL SURFACES EXCEPT AS NOTED.
2. SURFACES MARKED "A" TO BE PERPENDICULAR AND PARALLEL AS APPLICABLE TO WITHIN 0.005 IN. TIR.
3. POINTS OF INTERSECTION OF THE CRACK STARTER TIPS WITH THE TWO SPECIMEN FACES SHALL BE EQUAL DISTANCE FROM EITHER PIN-HOLE CENTER TO WITHIN 0.0126 IN.
4. DIMENSIONS "C" AND "D" MUST BE WITHIN 0.0260 IN. OF EACH OTHER.
5. EACH OF THE TWO PARALLEL NOTCH SURFACES MUST LIE IN ONE PARALLEL AS APPLICABLE TO THE SPECIMEN FACES TO WITHIN

NOTES

0.0126 IN. ALL DIMENSIONS IN INCHES. INTEGRAL KNIFE-EDGE DETAILS.

Figure 63. Configuration of Compact Specimen for Fracture-Toughness Testing, Specimens 0223, 0224, 0823, 0824, 1423, 1424, 0401, 1001, 1601, 0606, 1206, and 1806.

0.010 R (MAX)

Figure 64. Configuration of Compact Specimen for Fracture-Toughness Testing, Specimens 0123, 0124, 0723, 0724, 1323, and 1324.

TABLE 20. FRACTURE-TOUGHNESS TEST MATRIX

						Numbe	Number of Specimens	imens			
	Test Pa	Test Parameters	Co	Conventional Process 7075-T73	al	T 74	Mechanical Treatment 7475-TMT1		N T	Mechanical Treatment 7475-TMT2	- 6
	Specimen	E	Thi	Forging Thickness (in.)	(1)	Thi	Forging Thickness (in.)	.)	Thi	Forging Thickness (in.)	1.)
Number	Direction	I est Environment	6.7	6.7 2.0 1.0	1.0	6.7	2.0 1.0		6.7	2.0	1.0
_	Longitudinal	70°F Air	1	2	2	1	2	2	1	2	2
2	Short transverse	70°F Air	-	1	1	-	ı	1	-	1	1
	Subtotal		2	7	2	2	2	2	2	2	2
	Subtotal			9			9			9	
	Total						18				

TABLE 21. FRACTURE-TOUGHNESS-TEST RESULTS FOR TASK II FORGINGS, THERMAL/MECHANICAL HEAT-TREATED ALUMINUM ALLOY

	Forging						Fatigue Crack Length, a (in.)	ue Crack ngth, a (in.)		•	S .	2	
Material	Thickness (in.)	Grain	Specimen	(in.)	(in.)	l _e	a ₂	a3	a _{av}	o (a)	"Q (ksi √m.)	(ksi √in.)	Comments
	-	7	0123	1.0023	2.0015	1.1315	1,2015	1.1615	1.1648	3.151	1.1	31.838	Failed in precracking
7075-T73	7	٦	0223	1.25006	2.4900	1.3400	1.3800	1.3700	1.3633	8,531	48.454	1 1	
	6.7	S.T.	0401	1.2511	2.5030	1.2783	1.2983	1.2683	1.2816	4,884	41.816	24.688	-
	-	٦	0723	1.0026	1.9981	0.6540	0.9040	0.6440	0.7340	9,922	47.760	1.1	2
7475-TMT1	7	-	0853	1.2520	2.4942	1.1242	1.3842	1.1342	1.2142	9,137	42.604	39.178	Е
	6.7	S.T.	1001	1.2506	2.4905	1.1005	1.3005	1.1305	1.1805	7,299	33.194	1 1	_
7475.TMT?		1 -	1323	1.0030	2.0002	0.9635	1.1335	0.9835	1.0235	6,167	42.962 59.415 48 598	111	
	. 69	. rs 1	1454 1601 1806	1.2512	2.4897	1.1287	1.2637	1.1175	1.1875	8,080 10,420	53.522	36.535	
NOTES: 1. 2. 3.	Specimen dime Specimen dime Specimen crack	Specimen dimensions too small for plane-strain fracture-tou Specimen dimensions too small for plane-strain fracture-tou Specimen crack too short for valid test, 2.5 $(K_Q/\sigma_{YS})^2 > a$		for plane-strain fracture-toughness measurement, $2.5(K_Q/\sigma_{YS})^2 > B$ and $> a$ for plane-strain fracture-toughness measurement, $P_{MAX}/P_Q > 1.10$. Hid test, $2.5~(K_Q/\sigma_{YS})^2 > a$.	rughness me rughness me a.	asurement,	2.5(KQ/0YS PMAX/PQ>) ² > B and .	, e				

LINE 0A TANGENT TO INITIAL LOAD-DISPLACEMENT CURVE

TANGENT OB = 0.95 TANGENT OA

$$K_{Q} = \frac{P_{Q}}{B\sqrt{W}} \left[29.6 \left(\frac{a}{W}\right)^{1/2} - 185.5 \left(\frac{a}{W}\right)^{3/2} + 655.7 \left(\frac{a}{W}\right)^{5/2} - 1017 \left(\frac{a}{W}\right)^{7/2} + 638.9 \left(\frac{a}{W}\right)^{9/2} \right]$$

B = AVERAGE THICKNESS OF SPECIMEN

W = AVERAGE DIMENSION PER ASTM 399-72

a = AVERAGE CRACK LENGTH

KO = CONDITIONAL FRACTURE TOUGHNESS

Figure 65. Method for Determining Fracture Toughness.

TABLE 22. IMPROVEMENT IN FRACTURE TOUGHNESS RELATIVE TO 7075-T73

Material and Co	onfiguration	K _Q or K _{IC} (ksi√in.)	Improvement (%)
7475-TMT1			
	l in. thick longitudinal	51.5	62
	2 in. thick longitudinal	39.2	None
	6.7 in. thick longitudinal	47.7	11
	6.7 in. thick short transverse	33.2	34
7475-TMT2			
	l in. thick longitudinal	51.2	61
	2 in. thick longitudinal	51.1	10
	6.7 in. thick longitudinal	45.0	8
	6.7 in. thick short transverse	36.5	48
7075-T73			
	1 in. thick longitudinal	31.8	-
	2 in. thick longitudinal	46.5	_
	6.7 in. thick longitudinal	41.8	-
	6.7 in. short transverse	24.7	-

Figure 66. Fracture Surface of 7075-T73 Toughness Specimen 0124.

Figure 67. Fracture Surface of 7475-TMT1 Toughness Specimen 0724.

Figure 68. Fracture Surface of 7475-TMT2 Toughness Specimen 1324.

Figure 69. Configuration of Smooth Specimen for Goodman Fatigue Test.

TABLE 23. FATIGUE TESTS

			· .		61	Specime	Specimen Group Number	Number			
Ĕ	Test Parameters		,				Advanced Thermal/	p > .		Advanced Thermal/	
	i	Stress	ٽ 	Process 7075-T73	naf 3		Mechanical Treatment 7475-TMT1			Mechanical Treatment 7475-TMT2	7
Grain	Ratio,	Factor,	Thi	Forging Thickness (in.)	n.)		Forging Thickness (in.)	3 (in.)	Th	Forging Thickness (in.)	1.)
	:	ī	-	2	6.7	-	2	6.7	1	2	6.7
Longitudinal	- 1.0	1.0	1	1	1	1	6	1	1	61	1
Longitudinal	+ 0.05	1.0	-	3	5	7	10	15	11	20	25
Longitudinal	+ 0.50	1.0	1	1	1	1	=	1	1	21	1
Longitudinal	- 1.0	3.0	1	1	1	1	12	1	1	22	ı
Longitudinal	+ 0.05	3.0	71	4	1	∞	13	1	18	23	1
Longitudinal	+ 0.50	3.0	1	1	1	1	14	1	1	24	1
Short transverse	+ 0.05	1.0	ł	1	9	1	1	91	1	ſ	56
Short transverse	+ 0.05	3.0	1	1	1	1	1	1	1	1	1

Figure 71. Fatigue Performance of Task II 7075-T73 Aluminum-Alloy Forging, Specimen Group 1.

Figure 72. Fatigue Performance of Task II 7075-T73 Aluminum-Alloy Forging, Specimen Group 2.

Figure 73. Fatigue Performance of Task II 7075-T73 Aluminum-Alloy Forging, Specimen Group 3.

Figure 74. Fatigue Performance of Task II 7075-T73 Aluminum-Alloy Forging, Specimen Group 4.

Figure 75. Fatigue Performance of Task II 7075-T73 Aluminum-Alloy Forging, Specimen Group 5.

Figure 76. Fatigue Performance of Task II 7075-T73 Aluminum-Alloy Forging, Specimen Group 6.

Figure 77. Fatigue Performance of Task II 7475-TMT1 Aluminum-Alloy Forging, Specimen Group 7.

Figure 78. Fatigue Performance of Task II 7475-TMT1 Aluminum-Alloy Forging, Specimen Group 8.

Figure 79. Fatigue Performance of Task II 7475-TMT1 Aluminum-Alloy Forging, Specimen Group 9.

Figure 80. Fatigue Performance of Task II 7475-TMT1 Aluminum-Alloy Forging, Specimen Group 10.

Figure 81. Fatigue Performance of Task II 7475-TMT1 Aluminum-Alloy Forging, Specimen Group 11.

Figure 82. Fatigue Performance of Task II 7475-TMT1 Aluminum-Alloy Forging, Specimen Group 12.

Figure 83. Fatigue Performance of Task II 7475-TMT1 Aluminum-Alloy Forging, Specimen Group 13.

Figure 84. Fatigue Performance of Task II 7475-TMT1 Aluminum-Alloy Forging, Specimen Group 14.

Figure 85. Fatigue Performance of Task II 7475-TMT1 Aluminum-Alloy Forging, Specimen Group 15.

Figure 86. Fatigue Performance of Task II 7475-TMT1 Aluminum-Alloy Forging, Specimen Group 16.

Figure 87. Fatigue Performance of Task II 7475-TMT2 Aluminum-Alloy Forging, Specimen Group 17.

Figure 88. Fatigue Performance of Task II 7475-TMT2 Aluminum-Alloy Forging, Specimen Group 18.

Figure 89. Fatigue Performance of Task II 7475-TMT2 Aluminum-Alloy Forging, Specimen Group 19.

Figure 90. Fatigue Performance of Task II 7475-TMT2 Aluminum-Alloy Forging, Specimen Group 20.

Figure 91. Fatigue Performance of Task II 7475-TMT2 Aluminum-Alloy Forging, Specimen Group 21.

Figure 92. Fatigue Performance of Task II 7475-TMT2 Aluminum-Alloy Forging, Specimen Group 22.

Figure 93. Fatigue Performance of Task II 7475-TMT2 Aluminum-Alloy Forging, Specimen Group 23.

Figure 94. Fatigue Performance of Task II 7475-TMT2 Aluminum-Alloy Forging, Specimen Group 24.

Figure 95. Fatigue Performance of Task II 7475-TMT2 Aluminum-Alloy Forging, Specimen Group 25.

Figure 96. Fatigue Performance of Task II 7475-TMT2 Aluminum-Alloy Forging, Specimen Group 26.

Figure 97. Comparison of Fatigue Strengths for 7075-T73 and 7475-TMT1 Forging, Groups 1 and 7.

Figure 98. Comparison of Fatigue Strengths for 7075-T73 and 7475-TMT2 Forging, Groups 1 and 17.

Figure 99. Comparison of Fatigue Strengths for 7075-T73 and 7475-TMT1 Forging, Groups 2 and 8.

Figure 100. Comparison of Fatigue Strengths for 7075-T73 and 7475-TMT2 Forging, Groups 2 and 18.

Figure 101. Comparison of Fatigue Strengths for 7075-T73 and 7475-TMT1 Forging, Groups 3 and 10.

Figure 102. Comparison of Fatigue Strengths for 7075-T73 and 7475-TMT2 Forging, Groups 3 and 20.

Figure 103. Comparison of Fatigue Strengths for 7075-T73 and 7475-TMT1 Forging, Groups 4 and 13.

Figure 104. Comparison of Fatigue Strengths for 7075-T73 and 7475-TMT2 Forging, Groups 4 and 23.

Figure 105. Comparison of Fatigue Strengths for 7075-T73 and 7475-TMT1 Forging, Groups 5 and 15.

Figure 106. Comparison of Fatigue Strengths for 7075-T73 and 7475-TMT2 Forging, Groups 5 and 25.

Figure 107. Comparison of Fatigue Strengths for 7075-T73 and 7475-TMT1 Forging, Groups 6 and 16.

Figure 108. Comparison of Fatigue Strengths for 7075-T73 and 7475-TMT2 Forging, Groups 6 and 26.

TABLE 24, AXIAL-FATIGUE-TEST RESULTS FOR TASK II FORGINGS

	S	-	_	-		_	-		-	43					_		=	_	42	4		41				-		43
	Remarks	Failure	Failure	Failure	Failure		Failure	Failure	Failure	Faifure	Failure	Failure	Failure	Failure		Failure	Runout	Failure	Failure	Failure	Failure	Failure	Failure		Failure	Failure	Failure	Failure
Number	to Failure, X 10 ⁶	690'0	0.079	41.410	0.108		0.072	0.484	31.520	0.061	0.171	0.123	0.108	13.642		0.120	62.132	0.440	0.032	0.082	0.122	9.995	23.812		0.032	0.154	0.106	0.021
ating	Stress (psi)	23,000	21,000	17,000	19,000		25,000	18,000	17,500	26,000	000'6	8,000	2,000	9000		10,000	7,000	5,500	11,000	27,000	25,000	24,000	22,000		29,000	24,500	24,000	30,000
Alternating	Load (lb)	1,130	1,032	835	935		1,229	882	829	1,274	634	268	492	426		902	497	389	780	1,325	1,228	1,180	1,078		1,430	1,202	1,180	1,475
dy	Stress (psi)	25,415	23,205	18,785	20,995		27,630	068'61	19,340	28,730	9,945	8,840	7,735	6,630		11,050	7,735	080'9	12,160	29,835	27,632	26,520	24,310		32,045	27,070	26,520	33,150
Steady	Load (lb)	1,249	1,141	922	1,033		1,359	876	949	1,408	701	627	544	470		780	549	430	862	1,465	1,357	1,304	1,191		1,581	1,328	1,304	1,630
Cross-	Area (sq in.)	0.04913	0.04917	0.04913	0.04921		0.04917	0.04917	0.04909	0.04901	0.07045	0.07097	0.07036	0.07092		0.07059	0.07097	0.07078	0.07087	0.04909	0.04913	0.04917	0.04901		0.04932	0.04905	0.04917	0.04917
	Hz	30	30	30	20		70	0/	20	30	70	30	30	30		30	30	30	30	30	30	70	30		30	30	30	30
	Specimen Number	0103	0105	0107	6010		0112	0114	0116	0118	0104	0106	8010	0110		0113	0115	0117	0119	0203	0205	0207	0200		0212	0214	0216	0218
Service	Concentration Factor					1.0									3.0									1.0				
Stress	Ratio,					0.05									0.05									0.09				
Checimen	Grain Direction					Longitudinal									Longitudinal									Longitudinal				
Foreing	Thickness (in.)					-									-									7				
	Material					7075-T73									7075-T73									7075-T73				
	Group					-									7									3				

TABLE 24 - Continued

Number of Cycles		0 0.048 Failure 0 0.043 Failure 0 0.179 Failure 0 51.901 Runout 0 0.037 Failure 0 0.333 Failure 0 0.023 Failure	0 30.216 Failure 0 - Invalid 0 0.106 Failure 0 0.664 Failure 0 0.029 Failure 0 0.013 Failure 0 0.096 Failure	0 0.024 Failure 0 0.030 Failure 0 0.075 Failure 0 0.042 Failure 0 0.179 Failure 0 0.179 Failure
Alternating	d Stress (psi)	711 10,000 640 9,000 566 8,000 496 7,000 779 11,000 533 7,500 852 12,000 496 7,000	977 20,000 375 28,000 231 25,000 ,133 23,000 373 28,000 ,433 29,000 ,031 21,000	1,128 23,000 0,032 21,000 735 15,000 935 19,000 647 13,000
<u> </u>	(B)		ਜੰਜੀਜੀ ਜੀਜੀਜੀ	
Steady	Stress (psi)	11,050 9,945 8,840 7,740 12,160 8,290 13,260 7,740	22,105 30,940 27,632 25,415 24,310 30,940 32,045 23,210	25,415 23,205 16,575 20,995 11,050 14,365 8,840
Š	Load (B)	786 707 626 548 861 881 942 942 548	1,080 1,519 1,361 1,252 1,200 1,518 1,583 1,140	1,247 1,141 812 812 542 542 715
Cross-	Area (sq in.)	0.07018 0.07078 0.07083 0.07083 0.07078 0.07078 0.07106	0.04885 0.04909 0.04924 0.04924 0.04936 0.04940 0.04940	0.04905 0.04917 0.04897 0.04909 0.04980
	丑,	3333 2333	30 20 30 30 30 30 30 30 30 30 30 30 30 30 30	8 8 8 8 8 8
	Specimen Number	0204 0206 0208 0210 0213 0215 0217	0602 0603 0607 0608 0611 0611	0301 0302 0303 0304 0305 0306
Stress	Concentration Factor	3.0	0.1	01
Cirece	Ratio,	0.05	0.05	0.05
	Grain Grain Direction	Longiudinal	Longitudinal	Short
Foreign	Thickness (in.)	7	6.7	6.7
	Material	7075-173	7075-T73	7075-173
	Group	4	٧٠	•

TABLE 24 - Continued

		Foreine	Crecimen	Strees	Stress			Cross-	Ste	Steady	Alter	Alternating	Number	
Group Number	Material	Thickness (in.)	Grain Direction	Ratio,	Concentration Factor	Specimen Number	程	Area (sq in.)	Load (b)	Stress (psi)	Load (lb)	Stress (psi)	to Failure,	Remarks
						0703	30	0.04928	1,525	30,940	1,380	28,000	0.058	Failure
						0705	30	0.04925	1,469	29,840	1,330	27,000	0.124	Failure
						0707	30	0.04917	1,275	25,970	1,154	23,500	0.106	Failure
						60/0	3	0.04917	1,413	28,730	1,278	26,000	0.123	Failure
1	7475-TMT1	-	Longitudinal	0.05	1.0									
						0712	30	0.04917	1,304	26,520	1,180	24,000	0.612	Failure
						0714	8	0.04925	1,224	24,860	1,108	22,500	690.0	Failure
						0716	2	0.04909	1,085	22,100	982	20,000	0.246	Failure
						0718	9	0.04928	086	19,890	887	18,000	0.532	Failure
						0704	30	0.07069	937	13,260	848	12,000	0.015	Failure
						90/0	30	0.07054	828	12,160	176	11,000	0.022	Failure
						0708	99	0.07059	780	11,050	902	10,000	0.046	Failure
						0710	8	0.07078	704	9,950	637	000'6	990.0	Failure
•	7475-TMT1	-	Longitudinal	0.05	3.0									
						0713	2	690/000	625	8,840	265	8,000	0.179	Fzilure
						0715	9	0.07054	545	7,730	494	2,000	14.651	Failure
						7170	9	0.07059	468	6,630	424	000'9	51.577	Runout
						6170	30	0.07045	284	8,290	528	7,500	0.120	Failure
						1080	30	0.04909	0	0	2,455	50,000	0.015	Failure
						0802	30	0.04913	0	0	1,965	40,000	0.072	Failure
						0803	30	0.04909	0	0	1,718	35,000	0.184	Failure
						0804	30	0.04917	0	0	1,475	30,000	1.117	Failure
6	7475-TMT1	7	Longitudinal	7	1.0									
						080	30	0.04901	0	0	2,695	25,000	0.003	Failure
						9080	30	0.04909	0	0	2,602	53,000	0.009	Failure
						0807	02	0.04909	0	0	1,227	25,000	12.343	Pailure
						8080	30	0.04909	0	0	1,129	23,000	21.617	Runout

TABLE 24 - Continued

			are ure	
	Remarks	Failure Failure Failure Failure Failure Failure	Yielded Runout Thread Failure Failure Failure Failure Failure Failure	Failure Failure Failure Failure Failure Failure
Number	to Failure, X 10	0.022 0.039 0.172 0.231 0.242 3.117 0.173 1.656	51.745 - 0.151 - 0.115 - 0.093 54.533	0.008 0.015 0.050 2.015 0.068 0.058 0.358 32.536
Alternating	Stress (psi)	30,000 28,000 26,000 25,000 24,000 27,000 23,500	20,000 14,000 16,000 17,000 17,000 18,000 15,000 14,500	25,000 20,000 16,000 12,000 14,000 11,500 10,000
Alter	Load (lb)	1,461 1,377 1,276 1,227 1,203 1,178 1,325 1,154	982 687 784 784 835 835 737 712	1,771 1,417 1,132 846 922 813 710
ıdy	Stress (psi)	33,150 30,940 28,730 27,630 26,520 26,520 29,840 25,970	60,000 42,000 48,000 51,000 51,000 54,000 45,000	0000 0000
Steady	Load (lb)	1,614 1,521 1,410 1,356 1,329 1,302 1,464 1,275	2,945 2,062 2,352 2,352 2,504 2,504 2,653 2,211 2,135	0000 0000
Cross-	Area (sq in.)	0.04870 0.04909 0.04909 0.04909 0.04909 0.04909	0.04909 0.04901 0.04901 0.04909 0.04909 0.04913 0.04913	0.07083 0.07083 0.07073 0.07054 0.07092 0.07093 0.07093
	Hz	2222	30 30 30 30 30 30 30 30 30 30 30 30 30 3	8888 8868
	Specimen Number	0818 0819 0820 0821 0822 0823 0824 0824	0809 0810 0811 0812 0813 0814 0815 0816	0845 0846 0847 0848 0850 0851 0851
Street	Concentration Factor	0.1	1.0	3.0
Chrase	Ratio,	0.05	0.50	-1.0
Sacrimen	Grain	Longitudinal	Longitudinal	Longitudinal
Possina	Thickness (in.)	8	7	2
	Material	7475-TMT1	7475-TMT1	7475-TMT1
	Group	9	=	13

TABLE 24 - Continued

	re, Remarks	Failure Failure Failure		Runout Failure Failure Failure Failure Failure Failure Failure Failure Failure	Failure
Number	to Failure,	0.025	0.063 0.063 0.192 54.099 0.111 0.818	54.299 0.862 0.101 0.072 0.126 0.291 54.459 0.121	0.079 0.042 0.193 1.566 0.231 19.008 1.810 50.016
Alternating	Stress (psi)	12,000	9,000 11,000 7,000 7,500	5,000 6,000 7,500 6,500 6,000 6,000	27,000 26,000 24,000 21,000 20,000 19,000
Alte	(P)	707	636 636 696 531 531	354 424 495 832 832 459 423 423	1,331 1,278 1,227 1,178 1,133 1,032 982 982
Steady	Stress (psi)	13,260 11,050 8.840	9,950 7,730 9,390 8,290	15,000 18,000 21,000 22,500 19,500 18,000 18,000	29,840 28,730 27,630 26,520 25,420 23,210 22,100 20,995
Ste	Load (B)	939 781 626	228 862 248 548 587	1,062 1,272 1,484 1,596 1,377 1,274 1,170	1,471 1,413 1,366 1,302 1,140 1,085 1,085 1,085
Cross-	Area (sq in.)	0.07078 0.07078 0.07070	0.07087 0.07089 0.07083 0.07083	0.07073 0.07069 0.07092 0.07059 0.07078 0.07092	0.04928 0.04909 0.04909 0.04909 0.04913 0.04928
	Hz	888	28 8888	2222 2222	3233 3333
	Specimen Number	0826 0830 0831	0833 0834 0835 0836	0837 0838 0839 0840 0841 0842 0843	1202 1203 1207 1208 1210 1211 1213
300	Concentration Factor		3.0	3.0	1.0
00000	Ratio,		0.05	0.50	0.05
Specimen			Longitudinal	Longitudinal	Longitudinal
	Thickness (in.)		2	2	6.7
	Material		7475-TMT i	747S-TMT1	7475-TMT I
	Group		13	4	SI

TABLE 24 - Continued

	Remarks	Failure Failure Failure	Failure Failure Failure	Failure Failure Failure	Failure Failure Failure Runout Railure Failure Failure Failure	Failure Failure Failure Failure Runout Failure
Number	to Failure,	0.019 0.051 1.172	0.014 0.295 0.075	2.821 1.819 2.621	0.583 2.858 28.791 64.700 0.110 0.048 0.100	0.070 0.033 0.028 2.183 0.018 62.339 0.226 0.310
ating	Stress (psi)	25,000 23,000 21,000	24,000 22,000 20,000	18,000 20,000 17,000	25,000 23,000 20,000 19,000 26,000 24,000 28,000	9,000 11,000 10,000 8,000 7,000 7,500 7,500
Alternating	Load (lb)	1,227 1,130 1,031	1,178 1,080 983	884 983 835	1,129 982 933 1,276 1,276 1,325 1,325 1,375	636 778 705 565 845 495 530
Steady	Stress (psi)	27,630 25,420 23,210	26,520 24,310 22,100	19,890 22,100 18,790	27,630 25,420 22,100 20,995 28,730 26,520 29,840 30,940	9,950 12,160 11,050 8,840 13,260 7,730 9,390 8,290
Ste	Load (ib)	1,356 1,249 1,139	1,302 1,193 1,086	977 1,086 922	1,356 1,248 1,085 1,031 1,410 1,302 1,464 1,519	703 860 779 625 934 546 662 586
Cross-	Area (sq in.)	0.04909 0.04913 0.04909	0.04909 0.04909 0.04913	0.04913 0.04909 0.04909	0.04909 0.04909 0.04909 0.04909 0.04909 0.04909 0.04909	0.07069 0.07069 0.07069 0.07069 0.07069 0.07069
	Hz	888	222	888	3333 3333	30 30 30 30 30 30 30 30 30 30 30 30 30 3
	Specimen Number	0901 0902 0903	0904 0905 0906	0907 0908 0909	1303 1305 1307 1309 1312 1314 1316	1304 1306 1308 1310 1313 1315 1317
	Suress Concentration Factor		0.1		1.0	3.0
	Ratio,		0.05		0.05	0.05
	Specimen Grain Direction		Short		Longitudinal	Longitudinal
Coming	rorging Thickness (in.)		6.7		-	-
	Material		7475-TMT!		7475-TMT2	7475-TMT2
	Group Number		91		71	82

TABLE 24 - Continued

	-						Cross-	210	Steady	Alter	Alternating	Number	
Material	Thickness (in.)	Grain Grain Direction	Ratio,	Concentration Factor	Specimen Number	4	Area (sq in.)	Load (B)	Stress (psi)	Load (lb)	Stress (psi)	to Failure,	Remarks
					1401	30	0.04913	0	0	2,456	50,000	0.014	Failure
					1402	30	0.04909	0	0	1,964	40,000	990.0	Failure
					1403	30	0.04913	0	0	1,719	35,000	0.176	Failure
					1404	30	0.04913	0	0	1,474	30,000	1.359	Failure
7475-TMT2	7	Longitudinal	-1.0	1.0									
					1405	30	0.04909	0	0	2,209	45,000	0.023	Failure
					1406	30	0.04909	0	0	1,227	25,000	0.422	Failure
					1407	02	0.04913	0	0	1.032	21,000	1.116	Failure
					1408	30	0.04913	0	0	884	18,000	50.355	Runout
					1417	8	0.04913	1,629	33,150	1.474	30,000	0.013	Failure
					1418	30	0.04909	1,519	30,940	1,375	28,000	0.043	Failure
					1419	30	0.04909	1,464	29,840	1,325	27,000	0.043	Failure
					401.	;	00000		000	,	2000	0000	:
					1420	30	0.04909	1,410	28,730	1,276	26,000	0.899	Failure
7475-TMT2	7	Longitudinal	0.05	1.0	1421	30	0.04909	1,356	27,630	1,227	25,000	0.063	Failure
					1422	30	0.04909	1,437	29,280	1,301	26,500	0.128	Failure
					1423	02	0.04909	1.275	25.970	1.154	23.500	0.052	Failure
					1424	30	0.04909	1,302	26,520	1.178	24.000	1.560	Failure
					1425	92	0.04909	1,224	24,860	1,108	22,500	0.265	Failure
					1409	30	0.04913	2,542	51,750	847	17,250	0.075	Failure
					1410	30	0.04909	2,284	46,500	19/	15,500	27.257	Failure
					1411	90	0.04897	2,350	48,000	784	16,000	0.111	Failure
					1412	30	0.04909	2,430	49,500	810	16,500	0.058	Failure
7475-TMT2	2	Longitudinal	0.50	1.0									
					1413	30	0.04909	2,209	45,000	736	15,000	31.422	Failure
					1414	30	0.04913	2,137	43,500	712	14,500	54.697	Runout
					1415	30	0.04913	2,469	50,250	823	16,750	0.124	Failure
					1416	30	0.04917	2.507	51.000	836	17,000	0.080	Failure

TABLE 24 - Continued

Alternating Number	Load Stress to Failure, (lb) (psi) X 100 Remarks	,415 20,000 0.012 Failure 1,332 16,000 0.034 Failure 991 14,000 0.033 Failure 850 12,000 0.052 Failure	10,000 0.083 8,000 0.083 9,000 0.083 8,500 0.617	848 12,000 0.015 Failure 779 11,000 0.018 Failure 708 10,000 0.066 Failure 637 9,000 0.040 Failure 565 8,000 0.068 Failure 496 7,000 0.096 Failure 424 6,000 0.235 Failure 353 5,000 50.528 Runout	424 6,000 0.111 Failure 459 6,500 0.071 Failure 389 5,500 0.288 Failure 354 5,000 0.283 Failure 319 4,500 0.263 Failure 282 4,000 50.000 Runout 319 4,500 2.934 Failure
Steady	Stress (psi)	0000	0000	13,260 12,160 11,050 9,950 8,840 7,730 6,630 5,530	18,000 19,500 16,500 15,000 13,500 13,500
	Area Load (sq in.) (lb)	0.07073 0 0.07073 0 0.07078 0		0.07069 937 0.07078 861 0.07078 782 0.07078 704 0.07069 625 0.07069 469 0.07069 391	0.07069 1,272 0.07069 1,378 0.07069 1,166 0.07069 1,062 0.07083 956 0.07083 956
5	T.	8 8 8 8 0.0.0		30 000 30 000 30 000 30 000 30 000	30 0.0 30 0.0 30 0.0 30 0.0 30 0.0 30 0.0 30 0.0
	ion Specimen Number	245 446 447 448	1449 1450 1451 1451	1426 1430 1431 1432 1433 1434 1436	1437 1439 1440 1441 1443
á	Stress Concentration Factor		3.0	3.0	3.0
	Stress Ratio, R		0.1-	0.05	al 0.50
	Specimen Grain Direction		Longitudinal	Longitudinal	Longitudinal
	Forging Thickness (in.)		2	2	2
	Material		7475-TMT2	7475-TMT2	7475-TMT2
	Group		22	23	25

TABLE 24 - Continued

		Forming	Crecimen	Change	Crapes			Cross-	Steady	ady	Alten	Alternating	Number	
Group	Material	Thickness (in.)	Grain	Ratio,	Concentration	Specimen Number	Ŧ	Area (sq in.)	Load (Jb)	Stress (psi)	(B)	Stress (psi)	to Failure, X 10 ⁶	Remarks
						1802	30	0.04925	1,469	29,840	1,330	27,000	0.108	Failure
						1803	3	0.04917	1,413	28,730	1,278	26,000	0.174	Failure
						1807	30	0.04913	1,357	27,630	1,228	25,000	0.157	Failure
						1808	30	0.04928	1,307	26,520	1,183	24,000	4.648	Failure
25	7475-TMT2	6.7	Longitudinal	0.09	1.0									
						1810	30	0.04913	1,249	25,420	1,130	23,000	6.434	Failure
						1811	30	0.04917	1,195	24,310	1,082	22,000	1.215	Failure
						1812	30	0.04924	1,088	22,100	985	20,000	2.083	Failure
						1813	30	0.04925	616	19,890	886	18,000	50.327	Runout
						1051	30	0.04909	1,464	29,840	1,325	27,000	800.0	Failure
						1502	30	0.04913	1,357	27,630	1,228	25,000	0.010	Failure
						1503	30	0.04909	1,410	28,730	1,276	26,000	0.007	Failure
			Short			1504	30	0.04909	814	16.580	3.16	5.000	0.109	Failure
26	7475-TMT2	6.7	transverse	0.05	1.0	1505	30	0.04913	1,249	25,420	•	3 300	0.028	Failure
						1506	30	0.04913	1,086	22,100		8000	0.010	Failure
						1507	30	0.04913	902	14.370	439	13 000	0.065	Failure
						1508	30	0.04909	265	12,160	340	11 6436	0.033	Failure
						1509	30	0.04913	543	11,050	141	10,000	0.139	Failure

TABLE 25. FATIGUE PERFORMANCE OF TASK II FORGINGS COMPARED TO 7075-T73 AT 50 x 10⁶ CYCLES

					Mater	ial			
	Stress		7475-T Thicknes			1	7475-TMT nickness (i		
C	Concentration			6.	7			6.	7
Stress Ratio, R	Factor, K _T	1	2	L	S-T	1	2	L	S-T
-1.0	1.0	-	1.031	-	-	_	1.001	_	_
	3.0	-	1.43 ²	-	-	-	1.142	-	-
+0.05	1.0	1.26	1.00	1.01	1.73	1.16	1.00	1.06	0.80
	3.0	1.15	0.93	-	-	1.23	0.67	-	-
+0.50	1.0	-	1.173	_	_	_	1.20 ³	_	_
	3.0	-	1.254	-	-	-	1.064	-	-

NOTES: 1. Estimated 7075-T73 mean endurance limit ±23,000 psi

- 2. Estimated 7075-T73 mean endurance limit ± 7,000 psi
- 3. Estimated 7075-T73 mean endurance limit ±12,500 psi
- 4. Estimated 7075-T73 mean endurance limit $\pm 12,500/3 = \pm 4,170$ psi

Source of data on 7075-T73: Mehr, P.L., Spuhler, E.H., and Mayer, L.W., ALCOA ALLOY 7075-T73, Alcoa Green Letter, Revised June 1969 by R. A. Schultz, Aluminum Company of America, Application Engineering Division, Alcoa Center, PA.

TABLE 26. TYPICAL ROCKWELL-HARDNESS VALUES FOR SELECTED FATIGUE SPECIMENS

Specimen Number	тмт	Original Material Thickness (in.)	Grain Orientation	Rockwell Hardness, R _B
0716	1	1	300 from longitudinal	85.5
0906	1	6.7	Short transverse	84.0
1212	1	6.7	Longitudinal	83.5
1303	2	1	Longitudinal	84.0
1437	2	2	Longitudinal	80.0
1447	2	2	Longitudinal	80.0
1508	2	6.7	Short transverse	86.0
1807	2	6.7	Longitudinal	84.5

Figure 109. Goodman Diagram for 2-Inch-Thick Forging of 7475-TMT2 Aluminum Alloy.

Figure 110. Goodman Diagram for 2-Inch-Thick Forging of 7475-TMT1 Aluminum Alloy.

Figure 111. Fatigue-Fracture Surface and Origin of Failure for Specimens 0716, 0906, 1212, and 1303.

Figure 112. Fatigue-Fracture Surface and Origin of Failure for Specimens 1437, 1447, 1508, and 1807.

Figure 113. Grain Orientation and Grain Size for Specimens 0716, 0906, 1212, and 1303.

Figure 114. Grain Orientation and Grain Size for Specimens 1437, 1447, 1508, and 1807.

Figure 115. Configuration of Specimen for Fatigue-Crack-Rate Test.

Figure 116. Typical Fatigue-Crack-Propagation Test Setup.

TABLE 27. FATIGUE-CRACK-PROPAGATION-RATE TEST MATRIX

			6.7	1	1	-	1	4		
	Advanced Thermal/ Mechanical Treatment	7475-TMT2 Forging Thickness (in.)	2.0	2	-	1	1	3	10	
	AL Ž L	77 Thi	1.0	2	-	1	ì	3		
imens		1 (.n	6.7	-	-	-	-	4		
Number of Specimens	Advanced Thermal/ Mechanical Treatment	7475-TMT1 Forging Thickness (in.)	2.0	2	-	1	1	3	10	30
Number	4 - X F	77 Thi	1.0	2	-	1	1	3		
	la	3	6.7	-	-	-	-	4		
	Conventional Process	7075-T73 Forging Thickness (in.)	2.0	2	-	1	1	3	10	
	Col	7 Thic	1.0	2	-	١	1	3		
	05	Test Environment		Air, 70°F	3.5% NaC1,	Air, 70°F	3.5% NaC1, 70 ⁰ F			
Test Parameters	Stress Ratio, R = +0.05	Specimen Grain Direction		Longitudinal	Longitudinal	Short transverse	Short transverse	Subtotal	Subtotal	Total
	01	Group		-	2	3	4			

Figure 117. Fatigue-Crack-Propagation Test Setup With Specimen in 3.5-Percent Salt Solution.

Figure 118. Fatigue-Crack Growth-Rate Performance of Task II Forging, Conventional 7075-T73 Aluminum Alloy, Specimen 0120.

Figure 119. Fatigue-Crack Growth-Rate Performance of Task II Forging, Conventional 7075-T73 Aluminum Alloy, Specimen 0121.

Figure 120. Fatigue-Crack Growth-Rate Performance of Task II Forging, Conventional 7075-T73 Aluminum Alloy, Specimen 0122.

Figure 121. Fatigue-Crack Growth-Rate Performance of Task II Forging, Conventional 7075-T73 Aluminum Alloy, Specimen 0220.

Figure 122. Fatigue-Crack Growth-Rate Performance of Task II Forging, Conventional 7075-T73 Aluminum Alloy, Specimen 0221.

Figure 123. Fatigue-Crack Growth-Rate Performance of Task II Forging, Conventional 7075-T73 Aluminum Alloy, Specimen 0222.

Figure 124. Fatigue-Crack Growth-Rate Performance of Task II Forging, Conventional 7075-T73 Aluminum Alloy, Specimen 0501.

Figure 125. Fatigue-Crack Growth-Rate Performance of Task II Forging, Conventional 7075-T73 Aluminum Alloy, Specimen 0502.

Figure 126. Fatigue-Crack Growth-Rate Performance of Task II Forging, Conventional 7075-T73 Aluminum Alloy, Specimen 0604.

Figure 127. Fatigue-Crack Growth-Rate Performance of Task II Forging, Conventional 7075-T73 Aluminum Alloy, Specimen 0605.

Figure 128. Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT1 Aluminum Alloy, Specimen 0720.

Figure 129. Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT1 Aluminum Alloy, Specimen 0721.

Figure 130. Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT1 Aluminum Alloy, Specimen 0722.

Figure 131. Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT1 Aluminum Alloy, Specimen 0855.

Figure 132. Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT1 Aluminum Alloy, Specimen 0856.

Figure 133. Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT1 Aluminum Alloy, Specimen 0857.

Figure 134. Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT1 Aluminum Alloy, Specimen 1101.

Figure 135. Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT1 Aluminum Alloy, Specimen 1102.

Figure 136. Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT1 Aluminum Alloy, Specimen 1204.

Figure 137. Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT1 Aluminum Alloy, Specimen 1205.

Figure 138. Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT2 Aluminum Alloy, Specimen 1320.

Figure 139. Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT2 Aluminum Alloy, Specimen 1321.

Figure 140. Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT2 Aluminum Alloy, Specimen 1322.

Figure 141. Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT2 Aluminum Alloy, Specimen 1455.

Figure 142. Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT2 Aluminum Alloy, Specimen 1456.

Figure 143. Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT2 Aluminum Alloy, Specimen 1457.

Figure 144. Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT2 Aluminum Alloy, Specimen 1701.

Figure 145. Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT2 Aluminum Alloy, Specimen 1702.

Figure 146. Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT2 Aluminum Alloy, Specimen 1804.

Figure 147. Fatigue-Crack Growth-Rate Performance of Task II Forging, 7475-TMT2
Aluminum Alloy, Specimen 1805.

TABLE 28. COMPARISON OF 7475-TMT CRACK-PROPAGATION RATES WITH 7075-T73 CRACK-PROPAGATION RATES

			Original Forging	Thickness (in.)	
Material	Environment		2	6	.7
		1/	2	Longitudinal	Short transverse
2.436 TMT)	Room Air	TMT1 rate is same as 7075-T73; maintains stable growth at higher ΔK's	TMT1 rate same as 7075-T73	TMT1 slower than 7075-T73; maintains stable growth at higher ΔK 's	TMT1 slower than 7075-T73; maintains stable growth at higher ΔK 's
7475-TMT1	3.5% Salt Solution	TMT1 rate is 33% faster than 7075-T73	TMT1 is 100% faster than 7075-T73	_	Rates are the same; TMT1 maintains stable growth rate at higher ΔK 's
7475- TMT 2	Room Air	TMT2 is slower than 7075-T73; maintains stable growth rate at higher ΔK's	TMT2 is 100% slower than 7075-T73	Rates are the same	TMT2 is slower than 7075-T73; maintains stable growth rate at higher ΔK's
/4/3-1M112	3.5% Salt Solution	TMT2 is 33% faster than 7075-T73	TMT2 is 100% faster than 7075-T73	TMT2 is 100% faster than 7075-T73	Rates are the same

TABLE 29. COMPARISON OF LONGITUDINAL AND SHORT-TRANSVERSE CRACK-PROPAGATION RATES IN 6.7-INCH FORGING

	Environm	ent
Material	Room Air	3.5% Salt Solution
7075- T 73	Influence of fracture toughness clearly indicated by instability of crack growth at high ΔK 's	Short-transverse rate is 33% faster than longitudinal rate
7475-TMT1	Short-transverse rate is 14% faster than longitudinal	Short-transverse and longitudinal rates are the same
7475-TMT2	Short-transverse rate slightly faster than longitudinal rate	Short-transverse and longitudinal rates are the same

TABLE 30. RESISTANCE TO CORROSION OF 6.7-INCH-THICK 7075-T7X AND 7475-T7X HAND FORGINGS

						Day	to Failu	Days to Failure of 1/8-In. & Tensile Bars Exposed Stressed to Alternate Immersion (Method 823) for 84 Days		Bars Ex	posed Stres	sed to Alt	ernate In	mersion (N	Method 82	3) for 84	Days
	" Sten	Lo	Longitudinal	7		Long	Longitudinal		Shor	1-Transve	rse	Shor	Short-Transverse	rse	Shor	Short-Transverse	rse
	Aging at	Tensik	Tensile Properties	ies	Elec	Stressed	Stressed at 45 ksi		Stres	Stressed at 45 ksi	ksi	Stres	sed at 35	ksi	Stres	Stressed at 25 ksi	ksi
S-No.	350°F (hr)	CES)	YS (ksi)	E (2)	Cond (% IACS)	Spec	Spec L3	Spec L4	Spec N2	Spec N4	Spec N6	Spec	Spec N8	Spec	Spec	Spec N7	Spec N9
					7075 Hand Forging	orging -	Unrecrystallized	allized									
437701-32	2	78.3	68.2	14.0	36.6	OK 84	OK 84	OK 84	F51	F2	FS	F72	OK 84	OK 84	OK 84	OK 84	OK 84
437701-33	4	17.2	1.79	14.0	38.7	OK 84	OK 84	OK 84	OK 84	OK 84	F58	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84
437701-34	9	72.8	0.19	14.0	40.7	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84
437701-35	×	70.2	58.0	14.0	42.1	OK 84	Ok 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84
					7475 Hand Forging -	- orging -	Recrystal	Recrystallized Plus Hot-Worked (7475-TMT1)	lot-Worke	d (7475-	FMT1)						
438170-2	2	76.7	68.3	16.0	36.2	OK 84	OK 84	OK 84	F4	F3	F2	F4	F4	F3	F10	OK 84	F9.
438170-3	4	75.6	0.79	14.0	38.6	OK 84	OK 84	OK 84	F81	F80	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84
438170-4	9	73.9	64.4	16.0	40.1	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84
438170-6	6	73.7	63.2	14.0	40.3	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84
					7475 Hand Forging – Recrystallized Plus Hot-Worked (7475-TMT2)	orging -	Recrystal	lized Plus	fot-Worke	d (7475-	FMT2)						
438173-2	2	78.6	70.0	14.0	35.2	OK 84	OK 84	OK 84	F3	F2	F2	OK 84	F2	F2	F10	F10	F3
438173-3	4	74.2	9.59	0.81	39.0	OK 84	OK 84	OK 84	F16	F30	F9	F62	F78	F5	OK 84	OK 84	F78
438173-4	9	73.5	64.6	0.91	39.7	OK 84	OK 84	OK 84	F46	OK 84	F80	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84
438173-6	6	70.2	69.0	0.81	40.5	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84
					7475 Hand Forging - Unrecrystallized	Forging -	Unrecrys	tallized									
438176-2	2	82.9	75.6	12.0	35.2	OK 84	OK 84	OK 84	F2	F2	F2	F2	F2	F2	F2	F10	OK 84
438176-3	4	0.77	70.7	0.9	37.7	OK 84	OK 84	OK 84	F10	F3	OK 84	F24	OK 84	F84	OK84	F83	OK 84
438176-4	9	75.9	9.79	10.0	38.9	OK 84	OK 84	OK 84	F30	F10	Not	F25	F37	Not	F83	OK 84	OK 84
438176-6	6	9.79	0.09	0.9	40.4	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	Not	OK 84	OK 84	OK 84	OK 84
													exposed				
NOTES	I. Forgings he	at-treated,	quenche	d in cold	1. Forgings heat-treated, quenched in cold water, aged 24 hours at 250°F plus indicated time at 350°F as 2-in-thick sawed sections.	I hours at	250 ⁰ F pl	us indicate	d time at 3	350°F as	2-inthick	sawed sec	tions.				
	2. 7075 heat-treated at 880°F, 3. Vield strength = 0.2% offset	reated at 8		475 heat-	7475 heat-treated at 960°F.	F.											
	J. Held streng	0/7-10	Uliaci.														

TABLE 31. RESISTANCE TO CORROSION OF 2-INCH-THICK 7075-T7X AND 7475-T7X HAND FORGINGS

						-		-								-	
4 A	2nd-Step Aging at	Tensi	Longitudinal Tensile Properties	ties	Elec	Stres	Stressed at 45 ksi	ksi	Stre	Stressed at 45 ksi	rerse i ksi	Stresse	Short-Transverse Stressed at 35 ksi	Si Si	Short	Short-Transverse Stressed at 25 ksi	se ksi
35 S-No. (350°F (hr)	UTS (ksi)	YS (ksi)	E &	Cond (% IACS)	Spec L2	Spec L3	Spec L4	Spec N2	Spec N4	Spec N6	Spec	Spec N8	Spec	Spec	Spec N7	Spec N9
					7075 Hand Forging — Unrecrystallized	orging -	Unrecryst	tallized									
437701-22	2	83.7	73.4	12.0	36.0	OK 84	OK 84	OK 84	F3	F34	F43	F72	F10	F72	F10	F3	OK 84
437701-23	4	78.0	0.69	14.0	39.2	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84
437701-24	9	76.3	65.4	14.0	39.6	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84
437701-25	∞	73.3	61.7	16.0	41.0	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84
,					7475 Hand Forging - Recrystallized Plus Hot-Worked (7475-TMT1)	orging -	Recrystal	lized Plus	Hot-Work	d (7475-	LMT1)						
438169-2	2	82.0	74.9	14.0	37.2	OK 84	OK 84	OK 84	F2	F2	F2	F2	F2	OK 84	F3	F3	F3
438169-3	4	9.61	71.0	0.91	39.3	OK 84	OK 84	OK 84	F46	F54	F6	F60	OK 84	F52	OK 84	OK 84	OK 84
438169-4	9	79.4	70.2	0.91	40.7	OK 84	OK 84	OK 84	F66	F60	F58	F71	OK 84	F80	OK 84	OK 84	OK 84
438169-6	6	76.0	9.59	14.0	41.5	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84
					7475 Hand Forging - Recrystallized Plus Hot-Worked (7475-TMT2)	orging -	Recrystal	lized Plus	Hot-Work	d (7475-	TMT2)						
438172-2	2	80.3	72.0	14.0	38.0	OK 84	OK 84	OK 84	F2	F2	F2	F3	F2	F3	F2	F3	OK 84
438172-3	4	80.7	71.0	14.0	40.1	OK 84	OK 84	OK 84	F4	FS	F33	F57	F58	F61	OK 84	OK 84	OK 84
438172-4	9	76.4	67.3	16.0	40.5	OK 84	OK 84	OK 84	F54	OK 84	F27	OK 84	F64	F58	OK 84	OK 84	OK 84
438172-6	6	75.1	63.9	14.0	42.3	OK 84	OK 84	OK 84	F57	Defect	F80	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84
										sbec							
					7475 Hand Forging - Unrecrystallized	- guigno	Unrecrys	tallized									
438175-2	2	82.3	74.6	16.0	36.6	OK 84	OK 84	OK 84	F3	F3	F3	F8	F30	F30	OK 84	OK 84	OK 84
438175-3	4	9.61	71.7	0.91	39.7	OK 84	OK 84	OK 84	F19	F24	FS	F26	F30	F30	F57	F58	OK 84
438175-4	9	75.2	65.3	16.0	40.6	OK 84	OK 84	OK 84	Not	Not	OK 84	OK 84	OK 84	F30	OK 84	OK 84	OK 84
									expose	exposed exposed	P						
438175-6	6	73.4	63.9	0.91	42.2	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	F84	OK 84	OK 84	OK 84

3. Yield strength = 0.2% offset.

TABLE 32. RESISTANCE TO CORROSION OF 1-INCH-THICK 7075-T7X AND 7475-T7X HAND FORGINGS

											Stressed or 84 Days	
	2nd-Step Aging at		itudinal le Proper	ties	Elec	Tensile	dinal 1/8 Bars d at 45 ks		Short-Tra Stressed at 45 ksi		0.75-In. C-Rings Stressed	
S-No.	350°F (hr)	UTS (ksi)	YS (ksi)	El (%)	Cond (% IACS)	Spec L2	Spec L3	Spec L4	Spec C1	Spec C2	Spec C3	Spec C4
					7075 Hand	Forging -	Unrecrys	tallized				
437701-12	2	82.2	72.9	14.0	36.3	OK 84	OK 84	OK 84	OK 84 ²	OK 84 ²	Not exposed	Not exposed
437701-13	4	79.9	69.5	16.0	37.4	OK 84	OK 84	OK 84	OK 841	OK 841		Not exposed
437701-14	6	78.7	68.0	14.0	38.4	OK 84	OK 84	OK 84	OK 841	OK 841		Not exposed
437701-15	8	74.5	62.7	16.0	40.6	OK 84	OK 84	OK 84	OK 84	OK 84	Not exposed	Not exposed
					7475 Hand	Forging -	Recrysta	llized Plu	s Hot-Wo	rked (74	75-TMT1)	
438168-2	2	81.9	74.6	16.0	37.9	OK 84	OK 84	OK 84	OK 841	OK 841	OK 84 ²	OK 841
438168-3	4	81.0	72.7	16.0	40.0	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 841
438168-4	6	78.5	69.3	16.0	41.0	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84
438168-6	9	74.3	65.4	18.0	41.9	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84
					7475 Hand	Forging-Re	crystallia	zed Plus I	Hot-Work	ed (7475	TMT2)	
438171-2	2	80.0	73.4	16.0	38.3	OK 84	OK 84	OK 84	F51DA	F51DA	OK 84 ²	OK 84 ²
438171-3	4	79.0	71.6	16.0	40.2	OK 84	OK 84	OK 842	OK 84	OK 841	OK 841	OK 84
438171-4	6	77.0	67.8	16.0	41.0	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84
438171-6	9	74.6	64.4	16.0	42.1	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84
					7475 Hand	Forging -	Unrecrys	tallized				
438174-2	2	83.8	76.6	14.0	37.0	OK 84	OK 84	OK 84	OK 84 ²	OK 841	Not exposed	Not exposed
438174-3	4.	80.2	72.4	14.0	39.1	OK 84	OK 84	OK 84	OK 84	OK 84	Not exposed	Not exposed
438174-4	ć	77.4	69.0	18.0	40.1	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84	OK 84
				18.0	41.3							

NOTES:

- 1. Specimen did not fail but contained severe directional pitting.
- 2. Specimen did not fail but contained small directional cracks.
- 3. Forgings heat-treated, quenched in cold water, aged 24 hours at 250°F plus indicated time at 350°F.
- 4. 7075 forging heat-treated at 880°F, 7475 forgings heat-treated at 960°F.
- 5. Yield strength = 0.2% offset.

Figure 148. Longitudinal Yield Strength Versus Electrical Conductivity for Unrecrystallized 7075 Aluminum Alloy.

Figure 149. Applied Stress Versus Longitudinal Yield Strength for Aluminum Alloy.

Figure 150. Applied Stress Versus Longitudinal Tensile Strength for Aluminum Alloy.

7475 UNRECRYSTALLIZED (438175, 438176)

7475-TMT2 RECRYSTALLIZED PLUS HOT-WORKED (438172, 438173)

7475-TMT1 RECRYSTALLIZED PLUS HOT-WORKED (438169, 438170)

7075 UNRECRYSTALLIZED (437701)

Figure 151. Applied Stress Versus Electrical Conductivity for Aluminum Alloy.

TASK IV – DATA ANALYSIS AND EVALUATION

The objectives of this task are to analyze and evaluate the metallurgical and mechanical-properties data developed in the previous tasks and to assess the impact of improved mechanical properties on the weight and cost of helicopter components.

The properties obtained with the advanced-alloy/process combinations 7475-TMT1 and 7475-TMT2 were compared with the properties measured from the conventionally processed 7075-T73, and in some instances with 7075-T73 properties available in published literature. The advanced-alloy/process combinations are ranked in Table 33 with respect to their ability to improve tensile, fatigue, fracture, and stress-corrosion-resistance properties.

TABLE 33. RANKING OF 7475-TMT ALLOY FORGINGS

Basis of Comparison	7475-TMT1		7475-TMT2	
Tensile Properties	Longitudinal	A	Longitudinal	В
	Short-transverse	В	Short-transverse	A
Fatigue Properties		A		В
Fatigue-Crack-	Low AK	A	Low ΔK	В
Propagation Properties	High ΔK	В	High ΔK	A
Fracture Properties		A		В
Stress-Corrosion		A		В
Resistance				
NOTE: A is superior to B.				

The advantages of using advanced processes to produce forgings for helicopter components will be demonstrated by example.

In designing helicopter structural components, the selection of a material involves considerations of cost, weight, reliability, and maintainability as well as basic material properties. Weight is a primary concern and results directly from satisfying structural requirements for static strength, fatigue strength, and failsafe or damage-tolerance strength.

Many helicopter structural components are aluminum forgings which are generally sized first by fatigue-strength requirements. Advanced processes for aluminum forgings possessing increased fatigue strength have potential for weight savings in direct proportion to that increase in fatigue strength. This can be demonstrated for the YUH-61A horizontal-stabilizer spar fitting, part no. 179-25101, shown in Figure 152. This component is sized for fatigue strength and the critical areas are the lugs. The fitting lug is designed for 5,000 hours of fatigue life using 7075-T73 forging. Detailed calculations presented in Appendix E show that a 5-percent increase in the design-allowable fatigue strength results in a 5-percent reduction in component weight (see Figure 153).

Potential weight savings for helicopter components sized to damage-tolerance requirements are possible by using the 7475-TMT1 or 7475-TMT2 advanced-alloy/process combination. Consider the YUH-61A antitorque-rotor collective-pitch slider, part no. 179-57370, shown in Figure 154. The pitch slider can be designed to be failsafe if equipped with a fatigue-crack-detection device which provides a visible indication (failure warning) when a small crack exists. Assume the device is examined prior to each flight and that there is a criterion requiring the partially failed component to be capable of sustaining flight loads for 30 hours subsequent to the initial failure warning.

In designing the component for these requirements, two mechanical properties are of prime concern. First, the fatigue-crack propagation-rate properties determine how fast the fatigue crack grows. Second, the fracture-toughness property determines the critical crack length which the component can be expected to sustain under the maximum load anticipated in flight.

The predicted performance of the pitch slider is shown in Figure 155 and is based on the properties measured in Task III for conventional 7075-T73 and 7475-TMT2 alloy for fatigue-crack-propagation rate (Figures 127 and 146) and for fracture toughness (Table 21).

For this example, crack growth is predicted by using an RMS stress level of $865\pm1,605$ psi with the crack model for a hollow cylinder and the Paris relationship for crack-growth rate. The computation procedure is detailed in Appendix F.

From the comparison shown in Figure 155, it can be seen that an improvement is possible with TMT forgings. This improvement can be used to provide additional reliability or to effect a weight saving and meet the original reliability. The weight saving as a function of improvement in fracture properties is shown in Figure 156. Computations are shown in Appendix F.

Figure 152. Horizontal Stabilizer Spar Fitting for YUH-61A UTTAS.

Figure 153. Weight Savings Available Through Improved Fatigue Properties.

Figure 154. Collective Pitch Slider for Antitorque Rotor on YUH-61A UTTAS.

Figure 155. Improved Failsafety Through Enhanced Fracture Properties.

Figure 156. Weight Savings Available Through Improved Fracture Properties.

COST EFFECTIVENESS

Weight savings are potentially cost-effective. A cost analysis involves many factors which can be grouped in the following categories:

- Unit investment
- Support (maintenance, equipment, training)
- Spares
- Weight penalty
- · Operated effectiveness
- Attrition loss of aircraft due to component failure

Each cost category is sensitive to the following variables, which must be factored into the true cost profile:

- Mission requirements
- Fleet size
- Fleet life period
- Aircraft configuration (i.e., size)
- Projected dollars (inflation)

Obviously the goal of developing an absolute cost is a formidable task beyond the scope of this study. However, a basic approach can be demonstrated in order to place in proper perspective the relative costs involved.

The equation for flyaway costs can be used to illustrate a cost saving by using TMT aluminum alloys. The assumption that production quantities of TMT aluminum forgings can be fabricated as economically as conventional 7075-T73 has been made. Flyaway costs of the airframe are estimated by subsystem weight.

Average airframe per unit cost of one production aircraft

$$= \sum_{i=1}^{19} CAFFCA(i)$$
 (1)

and

The current baseline coefficients, B12L(i) and B12M(i), are given in Table 34. As an example, the production-aircraft cost savings will be demonstrated for a weight savings in the rotor system, subsystem 12. Since relative savings are of interest, it is possible to compare the flyaway cost equations for 7075-T73 and for 7475-TMT.

For a 5-percent weight saving in the rotor subsystem,

$$S(12)_{7475-TMT} = 0.95 S(12)_{7075-T73}$$
 (5)

By substitution in equation 4,

CAFFCM(12)_{7075-T73} =
$$\left\{A12M(12)\right\} \left(\frac{G12}{NPAC}\right)$$
 S(12) $\frac{B12M(12)}{7075-T73}$ (6)

and

CAFFCM(12)_{7475-TMT} =
$$\left\{A12M(12)\right\} \left(\frac{G12}{NPAC}\right) S(12) \frac{B12M(12)}{7475-TMT}$$
 (7)

The relative cost savings can be determined by dividing equation 7 by equation 6 and substituting equation 5:

CAFFCM(12)_{7475-TMT} = CAFFCM(12)_{7075-T73}
$$\left(\frac{S(12)_{TMT}}{S(12)_{T73}}\right)^{B12M(12)}$$

= CAFFCM(12)_{7075-T-73} $\left(\frac{0.95}{1.00}\right)^{0.84899}$
= 0.96 CAFFCM(12)_{7075-T73},

or a 4-percent savings in the flyaway cost of each production aircraft.

TABLE 34. SUBSYSTEM COST-WEIGHT COEFFICIENTS

Subsystem	X(i)	A12L(i)	B12L(i)	A12M(i)	B12M(i)
Fuselage	1	39,063.35	0.486394	126.88	0.812642
Wings	2	15,401.34	0.531771	98.45	0.809710
Nacelles	3	6,425.37	0.633160	484.84	0.846940
Empennage	4	24,383.69	0.468590	110.11	0.816530
Armor Plate	5	0.0	1.0	10.065	0.94226
Alighting Gear	6	1,953.87	0.623630	100.71	0.859430
Flight Controls	7	708.67	0.722290	255.48	0.854320
Hydraulic/Electrical	8	11,057.01	0.630270	613.32	0.865070
Instruments	9	1,914.29	0.697960	356.94	0.922710
Air Cond & Deicing	10	0	1.0	789.3	0.863577
Personal Accom	11	0	1.0	35.935	0.861541
Rotor System	12	2,889.21	0.646230	190.92	0.848990
Drive System	13	2,542.42	0.654770	267.82	0.847810
Fuel System	14	1,231.99	0.632870	312.42	0.857300
Engine Accessories	15	0	1.0	790.62	0.855075
Airframe Electronics	16	0	1.0	1,391.2	0.862380
Passenger/Cargo	17	0 .	1.0	69.647	0.865559
Propeller Inst	18	2,889.21	0.646230	190.92	0.848990
Integration	19	54,852.0	0.4416448	0.0	1.0

CONCLUSIONS

The goal of this program was to achieve ITMT aluminum-alloy forgings that have equivalent tensile properties and stress corrosion resistance, and 20 percent better toughness fatigue properties than conventional 7075-T73 forgings. This goal has been achieved and, in some instances, exceeded:

- Tensile properties of ITMT aluminum-alloy forgings are better than those of 7075-T73
 forgings in that the TMT materials have equivalent strength, higher elongation, and
 reduction in area.
- 2. Fracture-toughness values of ITMT aluminum-alloy forgings are as much as 62 percent higher than conventional 7075-T73 forgings.
- 3. Fatigue properties of ITMT aluminum-alloy forgings are as much as 62 percent higher than conventional 7075-T73 forging properties.
- 4. Stress-corrosion properties of TMT aluminum-alloy forgings are equivalent to 7075-T73 forging properties.

These advantages have been achieved within the limits of current industrial forging practices. Undoubtedly, the potential for still further improvements exists if present-day forging constraints imposed by machine capacity are expanded beyond today's industrial limits. It has been demonstrated that ITMT forgings are cost-effective. The development of further improvements in ITMT forging technology will, therefore, also improve the cost-effectiveness of these practices.

RECOMMENDATIONS

The results of this program show that Intermediate Thermal-Mechanical Treatment (ITMT) is a technique for improving the properties of 7XXX-series aluminum-alloy forgings, and that it is a cost-effective means of saving weight in helicopter components. The next step recommended is a program for the fabrication of an actual helicopter component using an ITMT-processed aluminum alloy and for side-by-side test evaluation of this component with a conventional aluminum component.

REFERENCES

- Cebulak, W. S., and Truax, D. J., PROGRAM TO DEVELOP HIGH STRENGTH ALUMINUM POWDER METALLURGY PRODUCT, PHASE III – SCALE UP A, Final Report, U.S. Army Frankford Arsenal Contract DAAA25-70-C-0358, September 1972.
- 2. Sommer, A. W., Paton, N. E., and Folgner, D. G., EFFECTS OF THERMOMECHANICAL TREATMENTS ON ALUMINUM ALLOYS, AFML-TR-72-5, February 1972.
- 3. Thompson, D. S., Levy, S. A., Spangler, G. E., and Benson, D. K., PROGRAM TO IMPROVE THE FRACTURE TOUGHNESS AND FATIGUE RESISTANCE OF ALUMINUM SHEET AND PLATE FOR AIRCRAFT APPLICATIONS, WPAFB Contract F33615-72-C-1202, Semiannual report for the period June 1, 1972, to December 31, 1972, January 1973.
- 4. Conserva, M., DiRusso, E., and Gatto, F., A NEW THERMOMECHANICAL TREAT-MENT FOR Al-Zn-Mg TYPE ALLOYS, Alumino e Nuovo Metallurgia, 9, 441-445, 1968.
- Ostermann, F., IMPROVED FATIGUE RESISTANCE OF Al-Zn-Mg-Cu (7075) ALLOYS THROUGH THERMOMECHANICAL PROCESSING, Metallurgical Transactions, 2, 2897-2902, 1971.
- 6. Ruch, L., and Sulinski, H., FINAL THERMAL MECHANICAL TREATMENT OF 7039, 7075, X7007, AND X7050 ALLOYS, Frankford Arsenal report (in preparation).
- 7. Hyatt, M. V., Early, D. O., and Pasley, D. H., PROGRAM TO IMPROVE THE FRACTURE TOUGHNESS AND FATIGUE RESISTANCE OF ALUMINUM SHEET AND PLATE FOR AIRFRAME APPLICATIONS, WPAFB Contract No. F33615-72-C-1649, Semiannual report for period July 1, 1972, to December 31, 1972, January 1973.
- 8. Waldman, J., Sulinski, H., and Markus, H., NEW PROCESSING TECHNIQUES FOR ALUMINUM ALLOYS, presented at the Army Materials Technology Conference on Solidification Technology, Wentworth by the Sea, New Hampshire, October 1972.
- 9. STANDARD TENSION TEST, E8-61T, American Society for Testing and Materials, Philadelphia, Pennsylvania.
- TENTATIVE METHOD OF TEST FOR PLANE-STRAIN FRACTURE TOUGHNESS OF METALLIC MATERIALS, E399-72T, American Society for Testing and Materials, Philadelphia, Pennsylvania.

BIBLIOGRAPHY

Boyd, J. D., Drennan, D. C., Martin, C. J., Price, C. W., Rosenfield, A. R., and Williams, D. N., RESEARCH ON SYNTHESIS OF HIGH STRENGTH ALUMINUM ALLOYS, Technical Report AFML-TR-72-199, July 1, 1971 to July 31, 1972.

1964 BOOK OF ASTM STANDARDS, PART 30, GENERAL TESTING METHODS; QUALITY CONTROL; APPEARANCE TESTS; TEMPERATURE MEASUREMENT; EFFECT OF TEMPERATURE, American Society for Testing and Materials, Philadelphia, Pennsylvania.

APPENDIX A

LOCATION AND ORIENTATION OF TEST SPECIMENS IN TASK II FORGINGS

Figures A1, A2, and A3 indicate forging dimensions and define the sequence of events for producing the final sections used to fabricate test specimens.

The exact location of each individual test specimen can be identified from Figures A4 through A7.

ALL DIMENSIONS ARE IN INCHES.

SPECIMEN TYPE	QUANTITY	NOMINAL DIMENSIONS FOR SPECIMEN BLANKS
TENSILE	3	5.7 x 1 x 1
FATIGUE		
SMOOTH	8 16	$6.7 \times 0.8 \times 0.8$
NOTCHED	8 1	$6.7 \times 0.8 \times 0.8$
CRACK-PROPAGATION	3	3.2 x 3:2 x 0.6
FRACTURE-TOUGHNESS	2	$3.5 \times 3.4 \times 1.0$

MATERIAL	SECTION IDENTIFICATION NUMBER, XX
7075-T73	01
7475-TMT1	07
7475-TMT2	13

NOTE: t/2, THE CENTERLINE OF THE SECTION, SHALL CORRESPOND TO THE CENTERLINE OF ALL SPECIMENS AS SHOWN.

Figure A1. One-Inch-Thick Forging for Specimens XX01 Through XX24.

Figure A2. Two-Inch-Thick Forging for Specimens XX01 Through XX57.

NOMINAL DIMENSIONS

SPECIMEN TYPE

QUANTITY

FOR SPECIMEN BLANKS

FATIGUE, SMOOTH

9

 $6.7 \times 0.8 \times 0.8$

ALL DIMENSIONS ARE IN INCHES.

NOTE: t/2, THE CENTERLINE OF THE SECTION, SHALL CORRESPOND TO THE CENTERLINE OF ALL SPECIMENS AS SHOWN.

MATERIAL	SECTION IDENTIFICATION NUMBER, XX
7075-T73	03
7475-TMT1	09
7475-TMT2	15

Figure A4. 6.7-Inch-Thick Forging for Specimens XX01 Through XX08.

		NOMINAL DIMENSIONS
SPECIMEN TYPE	QUANTITY	FOR SPECIMEN BLANKS
TENSILE	2	5.7 x 1 x 1
FRACTURE-TOUGHNESS	1	$3.5 \times 3.4 \times 1.4$

NOTE: t/2, THE CENTERLINE OF THE

SECTION, SHALL CORRESPOND TO THE CENTERLINE OF ALL ALL DIMENSIONS ARE IN INCHES.

MATERIAL	SECTION IDENTIFICATION NUMBER, XX
7075-T73	04
7475-TMT1	10
7475-TMT2	16

Figure A5. 6.7-Inch-Thick Forging for Specimens XX01, XX02, and XX03.

MATERIAL	SECTION IDENTIFICATION NUMBER, XX
7075-T73	05
7475-TMT1	11
7475-TMT2	17

Figure A6. 6.7-Inch-Thick Forging for Specimens XX01 and XX02.

SPECIMEN TYPE	QUANTITY	NOMINAL DIMENSIONS FOR SPECIMEN BLANKS		
TENSILE	2	5.7 × 1 × 1		
FATIGUE, SMOOTH	8	$6.7 \times 0.8 \times 0.8$		
CRACK-PROPAGATION	2	$3.2 \times 3.2 \times 0.6$		
FRACTURE-TOUGHNESS	1	$3.5 \times 3.4 \times 1.4$		

ALL DIMENSIONS ARE IN INCHES.

NOTE:

t/2, THE CENTERLINE OF THE SECTION, SHALL CORRESPOND TO THE CENTERLINE OF ALL SPECIMENS AS SHOWN.

	SECTION IDENTIFICATION NUMBER,
MATERIAL	XX
7075-T73	06
7475-TMT1	12
7475-TMT2	18

Figure A7. 6.7-Inch-Thick Forging for Specimens XX01 Through XX13.

APPENDIX B

LOAD-STRAIN PLOTS OF FORGING SPECIMENS

Load-strain traces for the 30 standard tension tests are presented in Figures B1 through B12.

Figure B1. Tension Tests of Standard Round Specimens No. 0101, 0102, and 0111.

Figure B2. Tension Tests of Standard Round Specimens No. 0201, 0202, and 0211.

Figure B3. Tension Tests of Standard Round Specimens No. 0402 and 0403.

Figure B4. Tension Tests of Standard Round Specimens No. 0601 and 0609.

Figure B5. Tension Tests of Standard Round Specimens No. 0701, 0702, and 0711.

Figure B6. Tension Tests of Standard Round Specimens No. 0827, 0828, and 0829.

Figure B7. Tension Tests of Standard Round Specimens No. 1002 and 1003.

Figure B8. Tension Tests of Standard Round Specimens No. 1201 and 1209.

Figure B9. Tension Tests of Standard Round Specimens No. 1301, 1302, and 1311.

Figure B10. Tension Tests of Standard Round Specimens No. 1427, 1428, and 1429.

Figure B11. Tension Tests of Standard Round Specimens No. 1602 and 1603.

Figure B12. Tension Tests of Standard Round Specimens No. 1801 and 1809.

APPENDIX C

FRACTURE-TOUGHNESS LOAD-DISPLACEMENT PLOTS

Figure C1. Fracture-Toughness Test of Longitudinal-Compact Specimen No. 0124, 1-Inch Thick 7075-T73 Aluminum Forging.

Figure C2. Fracture-Toughness Test of Longitudinal-Compact Specimen No. 0223, 2-Inch Thick 7075-T73 Aluminum Forging.

Figure C3. Fracture-Toughness Test of Longitudinal-Compact Specimen No. 0224, 2-Inch-Thick 7075-T73 Aluminum Forging.

Figure C4. Fracture-Toughness Test of Short-Transverse-Compact Specimen No. 0401, 6.7-Inch-Thick 7075-T73 Aluminum Forging.

Figure C5. Fracture-Toughness Test of Longitudinal-Compact Specimen No. 0606, 6.7-Inch-Thick 7075-T73 Aluminum Forging.

Figure C6. Fracture-Toughness Test of Longitudinal-Compact Specimen No. 0723, 1-Inch-Thick 7475-TMT1 Aluminum Forging.

Figure C7. Fracture-Toughness Test of Longitudinal-Compact Specimen No. 0724, 1-Inch-Thick 7475-TMT1 Aluminum Forging.

Figure C8. Fracture-Toughness Test of Longitudinal-Compact Specimen No. 0853, 2-Inch-Thick 7475-TMT1 Aluminum Forging.

Figure C9. Fracture-Toughness Test of Longitudinal-Compact Specimen No. 0854, 2-Inch-Thick 7475-TMT1 Aluminum Forging.

Figure C10. Fracture-Toughness Test of Short-Transverse-Compact Specimen No. 1001, 6.7-Inch-Thick 7475-TMT1 Aluminum Forging.

Figure C11. Fracture-Toughness Test of Longitudinal-Compact Specimen No. 1206, 6.7-Inch-Thick 7475-TMT1 Aluminum Forging.

Figure C12. Fracture-Toughness Test of Longitudinal-Compact Specimen No. 1323, 1-Inch-Thick 7475-TMT2 Aluminum Forging.

Figure C13. Fracture-Toughness Test of Longitudinal-Compact Specimen No. 1324, 1-Inch-Thick 7475-TMT2 Aluminum Forging.

Figure C14. Fracture-Toughness Test of Longitudinal-Compact Specimen No. 1453, 2-Inch-Thick 7475-TMT2 Aluminum Forging.

Figure C15. Fracture-Toughness Test of Longitudinal-Compact Specimen No. 1454, 2-Inch-Thick 7475-TMT2 Aluminum Forging.

Figure C16. Fracture-Toughness Test of Short-Transverse-Compact Specimen No. 1601, 6.7-Inch-Thick 7475-TMT2 Aluminum Forging.

Figure C17. Fracture-Toughness Test of Longitudinal-Compact Specimen No. 1806, 6.7-Inch-Thick 7475-TMT2 Aluminum Forging.

APPENDIX D

FATIGUE-CRACK PROPAGATION-RATE DATA TABULATIONS

```
SJOB
                         ZOLA, KP=29, LINES=50, PAGES=90, TIME=30, RUN=CHECK
             FORMAT(1H1, T10, "FATIGUE CRACK PROPAGATION DATA FOR 7475 TMT")
 3
         30 FORMAT (1H0, 17A4)
             FORMAT (/14x4HPMAX10x4HPMIN10x2HA010x2HN010x1HB10x1HW)
           FORMAT (12xf7.0,6xf7.0,6xf7.5,4xf7.0,7xf7.5,5xf7.5)
7 FORMAT (/6x1HA13x1HN9x4HDELA10x4HDELN8x4HKMAX7x4HDELK8x4HDADN)
 4
 5
 67
           8 FORMAT(2XE11.5,3XF9.0,3XE11.5,1XF9.0,3YF8.2,3XF8.2,3XE11.5)
DIMENSION ALP(17),A(100),XN(100),DELK(100),DADN(100),DELA(100),DEL
            1N(100), XKMAX(100)
COMMON RDT(226)
 8
 9
             EQUIVALENCE (RDT(10), PMAX), (RDT(11), PMIN), (RDT(12), B), (RDT(13), W),
            1(RDT(14),A0),(RDT(15),XND),(RDT(16),XA),(RDT(17),A(1)),(RDT(116),X
            2N(1))
             00 69 1=1,226
10
          69 RDT(I)=0.0
11
         00 15 T=1.17
15 ALP(I)=0.0
12
13
14
         10 READ, N, M, (RDT (N+K-1), K=1, M)
             IF (N-1)25,25,10
15
         25 NN=RDT(1)+.01
16
             IF(NN-1)60,70,55
         55 READ9, (ALP(N), N=1,17)
18
19
           9 FORMAT (17A4)
20
         45 GO TO 10
          70 DELPSPMAX-PMIN
15
22
             COEF=DELP/(B+(W++0.5))
23
             RATIOEPMAX/DELP
             N=RDT(16)+,001
             PRINT 20
PRINT 30, (ALP(K), Ks1, 17)
25
27
             PRINT
             PRINT 3, PMAX, PMIN, AO, XNO, B, W
28
29
             PRINT 7
30
             DELK(1)=COEF+(29,6+(A(1)/W)++0,5+655,7+(A(1)/W)++2,5+638,9+(A(1)/W)
            1) ++4,5-185,5+(A(1)/W)++1,5-1017,+(A(1)/W)++3,5)
             XKMAX(1)=RATIO+DELK(1)
31
             DELA(1)=A(1)=A0
32
33
             DELN(1)=XN(1)=XNO
34
             DADN(1) #DELA(1) /DELN(1)
35
             PRINT 8, A(1), XN(1), DELA(1), DELN(1), XKMAX(1), DELK(1), DADN(1)
36
37
             00 100 J=2,N
            DELK(J)=COEF+(29.6+(A(J)/W)++0.5+655.7+(A(J)/W)++2.5+638.9+(A(J)/W
1)++4.5-185.5+(A(J)/W)++1.5-1017.+(A(J)/W)++3.5)
38
             XKMAX(J)=RATIO=DELK(J)
             DELA(J)=A(J)-A(J-1)
39
             DELN(J) =XN(J) -XN(J-1)
40
41
             DADN(J) DELA(J) /DELN(J)
             PRINT 8, A(J), XN(J), DELA(J), DELN(J), XKMAX(J), DELK(J), DADN(J)
42
        100 CONTINUE
GO TO 10
43
44
45
          60 STOP
46
             END
```

FATION ...

	J	- 17	4.5	Sac.		
	114.		- 1 2- 1-	٠.	0.42140	2.59000
24			PL.	K 1A	ieLs.	Ually
0.4/1405	11) 1/-1.	1.400000-91	.157.	10-74.41	14330.22	0.1050204
0.71 3605	11	1	1.5011 .	11100.00	100000-1	0-11-0504
0.753506	10 1.7.1.	4	.150.	114440	109171	4 . 1259mr - 04
0.743404	11-1-	0000005-01	11711.	11-67.35	11254.55	U-140371-U4
	00 1-11 .		17/0.	1//11.70	1100/-14	0.1.14651-04
9.4/5606	10 1 10	1 . 45 , 445 -44	cc30.	17/14.75	10014.75	0.1/77or-0-
	2.7.0.	1.401000=01	C4 50 .	13145.35	16535.70	U. 1401t-04
	10 /11.00.	1.40000-01	6634.	13/11.24	13024.50	0.177751-04
904544.0	2.1211.	0.400001-01	1650.	14001.10	13741.34	4.6341004
0.103366	11 2-110.	7.40.1955-61	1100.	14447.49	14104.41	11. CH 9051 -U4
0.10/35F	1 2/- 0.	0 · • unique - 6.1	1500.	15473.01	145445	v . 2566/t - 04
	11 1111.	c-yuu1	1500.	1-140.43	15332.77	U. ctho71 - U4
	11 : 11.	1.4600061	11/0.	Ibabo. sa	10012.47	U . 34 887 - U+
0.11-14	11 .15.1.	n. • aayaf -al	450 ·	17500000	10145.77	U. 41667+-U4
0.12.1366	11 301.00	L. *	210.	12454.35	17534.45	0.443835-04
	11 1-1-1.	1.400000 -01	lei.	17303014	14344.36	11.755757-04
	11		570.	20153.25	1433+024	U. 10175 -U4
	11/		-20.	71440.40	20301.49	9.4573nt-44
	11	900015-01	6411.	26542.71	c1704.14	0.1666703
	11 **1***	1.400000 -91	150.	23476.70	cellhods	U. CAND 15 -US
	11		1600	11.50+05	24101.44	CU15 EE E E C
	11 ******	" . 4 - (edge - 0]	• (i •	11117.53	25/04.00	0.44444-03
0.155346	1 14410.	····	nu.	C4441 . 40	21751.00	U. 0600 11 - U.S

Fatters feets acres

SPEC NO UIZI LONG GOALS COME ALL STRESS HATTO U.OF TEST FREE S AL

	u		- 1 -	*1	20	-		
	774.		*** 9** 5***0			0.04.00	2.50000	
			*1	TLN	* 43.	1114	Unit	
0.5/+10+	0.0	17/11.	1.400000	vi .5/11.	10444.41	10401.55	U-117041-04	
0.71-16F	0.0	×1,11.	weendar -	11 75.0.	11234.00	100/2019	U . 1747 st -04	
0.75+305	0.6	1111.	· · · · / in our -	vi coin.	11564.14	19999.14	0 - 153201 -04	
1.744305	00	11 1.	4.41 nout -	11 / / / / /	11,01.00	11345.74	0.17044 - 04	
0 3430+	0.0	138 10 .	· • • 0009 d* •	11 11511.	16.52.71	11/14.24	U.17778U4	
1.474305	0.0	101111	*** @ ! ! ! ! ! =	21 -190.	12-00-54	14154.00	U . 140461 -U4	
0.41440+	0.0	1/319.	0.400005-	1420.	11244.29	16514.23	0.7043304	
1.454 105	0.0	1 . 5711.	1.460995-	vi -444.	1 3467 - 17	13111.75	U-1440-1-04	
1.444 10F	66	111111	0.40-00-	vi 1530.	14355.45	13534.23	U. Ch 1 445 - U4	
1.10 14 34	0.1	11.19.	0.46000-	01 1557.	14447.75	14144.25	0.201441-04	
0.10/436	6.1	1.174.	***********	17 17 40 .	15577.50	14/4/.47	U-310Unt -U4	
0.1114 1	12.1	resta.	11.400 1 Jr -	11 11/0.	10/47.40	15437.45	6.3410004	
0.11545	01	Zn 110 .	9 · + + 1: 1: 1: 1: -	11+0+	16470.63	10161.06	U . 35085F -U4	
0.1174 IF	0.1	214300	0.490075-	111 770.	1//45.11	1000/.00	U 0 4 U 4 F - U 4	
0 - 1 - 14 35	1	117711.	Hermore -	vi len.	15564.15	1/204.36	4.75555r -U4	
0.17/435	fr]	24.44.).	0.40/0015-	01 550.	14446.74	120611.45	0.50505* -04	
0.111435	0.1	2		-1 500.	20043.64	1740/.07	v. n666/1-04	
0 . 1 174 35	0.1	2.27	U . + (11 210.	c1	20001	0 - 14 - 15 0 5	
10114435	61		responde-	110.	21-110.00	£1007.45	60-4525720	
0.143434	0.1	247-11.	1.40400-	150.	24145.24	12+35.45	J. CAND 14 -US	
0.14/4 15	0.1	r 7	9.46499r =	11 -11.	17747.41	C4300.76	11.44444115	

COPY AVAILABLE TO DDG DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

FATIGUE PRACE PROPAGATION PALA

SPEC AN MIZZ LONG GRAS - MOON SALT INST & S HZ

	SAC.		Prin		Δ()	140		*
					٥.	0.25000		
A		11	OELA		DELN	XMAX	CELK	DADE
0.679405	00	5210.	0.40000	t-01	3270.	1892.97	1498.33	0.122321 -04
0.719408	00	5010.	0.40000	E-01	2340.	8104.13	1644.92	0.170946-04
0.759anE	00	1710.	0.00000		2100.	8540.05	1924.75	0.1964mt =04
0.799406	00	Yout.	0. 40000		1950.	15.1108	A180.50	0.205151-04
0.839401	00	11400.	0.40000		1740.	6910.02	4470.25	0.229696-04
0. H7940E	00	15050.	0.40000		1050.	9241.21	4779.15	4.24247t-04
0.919401	00	14010.	0.40000		1500.	0591.99	9112.39	0.256416-04
0.95940E	00	16110.	0.40000		1500.	9961.94	9449.54	0.266671 -04
0.99440£		17570.	0.40000		1200.	10507.20	9850.80	0.31746t -04
0.1039aF		14500.	0.40000		1256.	10797.19	10257.34	0. 525201-04
0.107946	01	19460.	0.40000		1260.	11255.49	10040.73	U.31746E-04
0.111946	01	20970.	0.40000		1110.	11740.95	11155.91	0.300 66E-04
0.1159at	01	21M10.	00000		840.	12205.01	11650.45	0.476196-04
0.119941	01	22850.	0.40000		1020.	12628.28	12184.47	0.492161-04
0.125946	01	25446.	0.40000		1050.	13435.15	12765.40	0.380951-04
0.12794F	01	24480.	00000		600.	14097.65	13492.75	0.000071-04
0.131946	01	25140.	0.45000		000.	14422.45	14041.52	0. 50nont -04
0.135446	01	25400.	0.40000		640.	15020.10	14859.10	0.5060at-04
0,139946		20450.	0.46000		630.	16501.87	15670.78	0.054926-04

PATIGUE CRACK PROPAGATION DATA

SPEC NO OF LONG GRAIN HOOM SALT TEST & 5 HZ

PMAY 779.		PHIN		in	Ch .	+		
		10.	0,724	70	0.	0.24910	2.50000	
0.765708		2430.	0.400001	-01	2430.	11000.76	11095.94	7.1mun1t=04
0.80570£		4740.	0.40000E		2510.	12004.03	11460.63	0.1751mf =0u
0.44570E	00	6870.	0.40000E		2130.	12486.70	11661.57	0.18/795-04
0.56570E		8910.	0.40000€		2040.	12945.24	12297.1A	n. 1960#F=0u
0.925708	00	120 Table 2 Table 2 Table 2	0.40000F				12766.47	0.220kgf =00
0.965701	00	17650.	0.40000€		1740.	15964.42	132-9-11	1. 220AHL-04
0.10057E		13890.	0.400006					a. Zana /f = Gu
	01				1500.	14544.07	13805.50	
0,104576	01	15000.	0.400006		1110.	15135.01	14577.30	0.560566-04
0.108578	01	16320.	0.400005		1320.	15/77.10	14447.25	0.304041-01
0.11257E	01	17790.	0.400006		1470.	16461.50	15630.14	C. 272116-0-1
0.11957	01	18690.	n.4nnncE		900.	17199.57	14354.50	f.quarut ofa
0.120576	01	19770.	0.40000		toan.	17997.na	17091.91	6.476471-04
0.12457E	01	20540.	0.40000		e10.	18851.46	17407.49	0.49 \$8 \$F +04
0.12657E	01	21390.	0.400006		M10.	19747.36	14794.14	0.44444-64
0.13257E	01	55500.	0.40000E		Ain.	20411.94	19770.02	0.443446-04
0.13657E	01	55430 ·	n.unnnnE		n30.	21940.05	20801.65	0.654021-01
0.14057E	01	23490.	n. unnnne		bor.	251 AA. 17	77677.74	u. runnet -un
0.14457E	01	24030.	C. HOOODE	-01	540.	24574.17	24544.	/ut 74f -04
0,148576	01	24600.	0.40000€	-01	570.	20121.05	24813.91	0.701751-04
0.152571	01	24930.	n. unnnne	-01	130.	27651.28	26456.44	10-1121210
0.15657E	01	25 SAO.	0.40000	-01	450.	29749.51	P1.48545	C
0.160576	01	25680.	n. unnont	-01	360.	\$1404.20	50304.05	r. 13545F - 04
0.164576	01	25860.	0.400016	-01	110.	344114.25	32001.75	1. 224244 -04
0.164576	01	25940.	0.40000+	-01	120.	37144.77	352-4.91	1. 44444 -04
1.172576	01	26100.	n. annnet	-01	120.	40228.84	34214. H.	*. 131151 ont
0.17457E	01	26160.	0.40000€		A0.	45645.21	41494.21	IF
0.14057E	01	26190.	e. uncoef		30.	47555.21	451/4.42	1.13444-02
0.18457E	01	24550.	0.40000		30.	514A7.74	19790.01	1111111102

raflour canta en en elle vela

SPEC NO veet tuto of the and all siress a lov divo feet rate o ne

		Prink		-1,1	NU	d	
		114.		0.034/0	v •	U. < 5 0 6 1)	× < . > 0 0 0 0
						******	2.50000
Α.		14	VIEL .	to ELie	Anha	JELK	UAUN
0.014200		.41-10	0.4000uc	- 1 4020		10300.7/	U - 75 U C F F - U 5
0./14/05		1610.	11.460000	-61 36/4		14001.04	U. 166366-04
0.134645		101.1.	U. SPOULE	-01 1010		10770.14	V.167450-U4
0.17470		135000	U. + UUUUE	-u1 3C+4.		11367.61	U-163456-04
0 34600		1000.40	U.4000UC			11711066	U-121520-U4
0.27424		10000.	U.+0000E	-01 6-00.		1<144.13	0.191955-04
0. +1 4606	UU	cilnu.	descouver.	-01 2100.		10000.01	0.190400-04
0.754246	00	cc111.	detuildut.			13074.75	0.170405-04
10-444576	UU	(45.00	11.4777VVC	-01 1760.		13064.74	U. CUMJJE - U4
0.103466	UI	colev.	U.+00000E			14100.71	0.200336-04
0.10/428	01	cloou.	11.401 UUC			147/0.14	U. 2000/c-U4
0.111426		c.150.	U . + U U U U E.	-01 1500.		12410.67	U. 2000/c - U4
17461100		30330.	U. + UUJUE			10077.78	U.205011-U4
U.11746E	ul	315+0.	U-40000c			10017.70	0.341005-04
0.16346	ŭ1	36440.	W. 45000E			1/630.98	0.44446-04
0.16/420	01	13310.	U.40001c			10473.99	U.4754UE-U4
0.13146	UI	34630.	9.400000			19441.74	
0.135466	10	34700.	11.4.00UL			20461.52	U - + 4444c - U4
0.13746	uì	37470.	9 . 4 U U U U E			61034.41	
0.14442+	01	35050.	U. ** + + 1 t.			23640.60	U.00600E-04
0.140425	01	39430.	J. + UUUUE		20000.30	24/00.30	
0.176427	UL	Jonly.	4.474015			40333.75	CO-10250c-US
0.155422	ul	1/1.0.	U.401111E.		61003.66	20333.75	0-111112-03
0.100425	10	3/370.	J.40000C.		31714.66	30261.47	0.12161c-03
0.10442+	u I	3/300.	0 • • 0 · J U v t. •		34240-41	30221.49	U-1666/L-U3

SPEC AN APPRILARS AND A STATES A TIU WOOD TEST PART TO THE

	in.		- 1 -	.11	*10		
			***	0.00170	0.	0.27040	< 0000
4			- 51 -	cLv	*M.A	ICLX	D4D-
0.701206		• 1-10 •	1 - 10 11-	01 4100.	111174.31	10534.95	U.033335-U7
0.741205	00	.7::1.		1101.	11410.55	10737.30	0.102555-05
0.74170F	0.0	1 / 1000	1 . + L		11766.21	1117-11	0-102501-04
021205	0.0	1-11-	0.410000		12107.27	11770.22	0.1120404
0.401506	0.0	1	1.46,11110		12799.43	11763.43	U-13333F-04
0.401501	119	£1313.	J. + 1/1/1/45 -		13064.71	16412.40	
0.441206	00	2411 til.	0 • • e o o o o e •		13574.74	16042.64	0.155041-04
0.4-1-05	00	1-220.	11.4116.00-		14117.10	13401.45	0-158/35-04
0.10/125	01	/ 11/0.	7	.1 1500.	14071.63	13404.45	U.1-2656-04
0.105125	(1)	2.5/0.	4.491.094		15305.27		0.27766-04
0.110125	01	1/2000	7		17305.21	1473 03	0.24242+-04
0.11.125	01	101,00	7 undage -		15566.79	10101.04	0.2715704
0.11-175	01	51451.	destribute		1/415.15	15065.0+	U. c1715+ -U4
0.120126	21	est-4.	U U / U / -		10024.00	15544.05	U- 31 745 - U4
0.120125	01	1000010	U . * U !!!!! ! ! *			17315.96	U . 33335 -U4
0.170125	01	111111	7.400004-		14115.45	10100.77	0.37037+-04
0.11-125	01	1/441.	1.40000		20075.52	190/1.43	40-128516.0
0.13-125	61	1.7/7.	1.41111.73.4		c1150.11	20010.20	L.475141-04
0.147175	01	1 1			26301.14	c1114.75	U.505000U4
0.145125	01	11011.	9. * empet -		10.04665	26411.14	U.57471r-U4
0.150125	01	1	J. +0000-		25033.44	23701.51	U. 4573MF -04
0.174126	01	44210.	0.40000-		26440.75	25301.02	G-111111E-03
0.150125	01	411447.	7 1 1 1 1 1 1 1 m =		c==34.16	27015.40	U-166671-03
0.156125	01	411771	7 . 4 INDUC-		10455.53	14.05642	V-140485-03
	01	49/1/9.			10111-40	31031.00	60-12222200
	01	GUMAG.	11 . 4 (11) 1) (1 - 1		37651.44	33440.10	V.25667-03
	01	40420.	v. + onnut -		30117.36	35001.04	0.4444403
	01	4117711.	0 - +0 (0) 1c -0		-1361-14	34551.03	0.66665=03
	01	4117711.	9.400000-		44414.47	46751.23	0.133335-02
. t. else		*11.477.	7.400000-	15.	+7+41.47	40441.24	11.26507+-02

FATISUE CHACK PHURMSTIN DATA

SHEC NO USOT THEM SHEETS HOUSE ALL STRESS HITTU U.US TEST FREN S HZ

		D 1.3	- 11.	4 0	NO	d	
		~~.	***	0.5/216	0.	0.62100	2.50000
۵			ert.	ELN	***	UELK	DADN
0.71/105	00	41.1.	0. • 00000	-41 4174.	4 184.05	747 1.76	0.435736-05
0.756105	00	1/1	10466000		4535.66	0201.75	0.444386-05
0.742106	90	P	1	-01 7740.	8412.37	8474.57	U.51680F-05
0.436106	00	41170.	# . 4 U # C U *	-01 66+0.	4418.11	8761.15	U.64102E-05
0.416106	90	117-10.	4.40000	-01 -030.	7551.53	9070.05	U.66335F-US
0.416101	60	·/717.	0.40000	-01 5510.	4+11.75	7460.41	0 . /533ut -05
0.476105	0.0	-1777.	0.40000	-01 4/10.	10294.05	4787.50	0.449265-05
0.945106	00	-11/0.	0.400000	-01 3900.	10710.40	10174.45	U-10250F-04
0.10371F	01	5+3/0.	U-+009JF	-01 1750.	11150.40	10594.10	9 - 10667F - 0+
0.10/511	0.1	7/1990.	0.400000	-01 2730.	11620.01	11043.98	U.14652E-04
0-111516	01	A-11-0.	4.409946	-01 2500.	12121.11	11520.25	0 - 15504t - 04
0.115215	0.1	61 +20.	11.46.6000	-01 1/40.	12007.00	12030.33	0.229881-04
0.117-15	01	- 14-0.	0.400000	-01 /0-0.	13235.22	12579.13	0.196081-04
0.163516	0.1	47/20·	0.400000	-01 1000.	13854.51	13172.47	0.317401-04
0-15/512	01	n=210.	0.400016	-01 Luou.	14537.45	13617.27	U.38095E-U4
0.131715	0.1	A7410.	4.400000	-01 1140.	15279.71	14522.27	U.35088F-04
0.137615	01	67-20.	0 00000	-01 510.	10044.74	15295.94	0.78431F-04
0.13451.	01	6"110.	0.40000	-01 370.	10745.38	16122.45	U.10756+-03
0.14321F	01	5-720.	0.400000	-01 216.	17994.59	17102.57	0.1404dt-U3
0.14771F	01	2-250.	U.+UUUJE	-01 30.	19107.41	10100.23	U-13333E-02
0.151515	01	6"3"0.	0 00000	-01 30.	20350.44	19342.11	0.133336-02

FATIGUE CHACK PHOPAGATION DATA

SPEC NO 0005 LONG GRAIN HOOM SALT TEST F 5 HZ

		PMAX	PHIN		AU	NO	8	
	497.		25. 0.64250		0.	0.24960	2,50000	
A		N	DELA		ULLN	KMAX	DELK	DAUN
0.68250E	00	0120.	0.40000E	-01	6120.	7029.80	6676.19	0.65360E-05
0.72250E	00	10740,	0.40000E	-01	4620.	7219.64	6856.49	0.865808-05
0.76250E	00	14880.	0.40000E	-01	4140.	7430.75	7062.68	0.96618E-05
0.80250E	00	18990.	0.40000E		4110.	7679.76	7293,46	0.97324E-05
0.84250E	00	22500.	0.40000E		3510.	7947.23	7547.48	0.11396E-04
0.88250E	00	25620.	0.40000E	-01	5120.	8238.12	7823.73	0.12821E-04
0.92250E	00	28020.	0.40000E	-01	2400.	8551,63	8121.47	0.16667E-04
0.96250E	00	51140.	0.40000E	-01	5120.	8867,52	8440.47	0.12821E-04
0.10025E	01	34540.	0.40000E	-01	2400.	9246.01	8780.99	0.100001-04
	01	35490.	0.400006	-01	1950.	9628.54	9144.02	0.20515E-04
0.10825E	10	3/530.	0.400018		2040.	10036.00	9531.18	0.19608E-04
0.11225E	01	39060.	0.40000E	-01	1530.	10471.65	9944.89	0.201441-04
0.116256	01	40560.	0.40000E	-01	1500.	10958.80	10388.57	0.2000/E-04
0.12025E	01	41820.	0.40000E	-01	1260.	11441.92	10866.38	0.31740E-04
0.12425E	01	42750.	0.40000E	-01	930.	11980,59	11583.00	0.43011E-04
0.12825E	01	45860.	0.40000E	-01	1110.	12579.60	11446.83	0.300364-04
0,13225E	01	44640.	0.40000E	-01	780.	13228,63	12503,22	0.51282E-04
0.13625E	01	45600.	0.40000£	-01	960.	13945.05	13241.68	0.41007E-04
0,14025E	01	46290.	0.40000E		690.	14733,09	13992.00	0.57971t-04
0.14425E	01	46950.	0,40000E	-01	660.	15610,77	14825.54	U. 00000t-04
0.14825E	01	47430.	0.40000E		400.	16588,98	15754.54	0.83533E=04
0.15225E	01	41700.	0.40000E	-01	270.	17665.18	16793.70	0.14815E-03
0.15625E	01	47910.	0.40000E		210.	18908.62	1/957.50	0.19048E-05
0.16025E	01	48030.	0.40000E		120.	20264.17	14263.86	0.33335E-05

COPY AVAILABLE TO DDG DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

FATIGUE CHALK PROPAGATION Dale

SPEC ON ORDER LONG GRAIN MOUNT SALT TEST F S HA

		P-AY	61.1N	40		~0		
		1.21.	31.	0.79290		0.	0.25000	2.50000
Δ				0	FLN	****	DELK	0405
0.8329nE	00	51 mo.	0.400001	-01 4	180.	9851.38	9340.01	0.125791 -04
0.872906	00	4540.	0.400001	-01 2	400.	10107.36	9678.42	0.100071-04
0.912906	0.0	6010.	0.400006	-01 2	450.	10571.67	10045.95	0.164611-04
0.952906	00	13020.	0.40000	-01 2	010.	10984.07	10435.75	0.199016-04
1005000	06	11/06.	0.400001	-01 1	680.	11424.52	10854.22	0.238106-04
0.103246	01	15000.	3.4000ct	-01 2	100.	11494.05	11500.30	0.190486-04
0.107201	01	15420.	0.400006	-01 1	620.	12544.76	11776.03	0.246911-64
0.111291	01	:1220.	0.400001	-01 1	800.	12929.50	12284.07	40-355555.0
0.115296	01	14720.	0.400001	-01 1	500.	14502.45	12828.35	U.26667t-04
0.119206	01	19950.	0.40000	-01 1	230.	14118.70	13413.91	0.125201-04
0.125296	7-1	21240.	0.400000		290.	14785.06	14047.01	0.5100bt-04
0.127291	ni	55500.	0.400006	-01 1	020.	15509.44	14755.28	0.592166-04
0.131298	01	23240.	0.400001	:-01 1	020.	16301.55	15487.61	0.592166-04
0.135296	01	24210.	0.400001	-01	930.	17171.92	16314.71	0.450116-04
0.139298	A 1	23990.	0.400011	-01	700.	18135.60	17228.45	0.51285E-04
0.143291	0.1	25050.	0.46000	-01	000.	19200.40	18242.32	0.606066-04
0.147291	11	50550.	0.400001		570.	20,449.34	193/1.71	0.70175t-04
0.151291	01	20070.	0.400001	-01	450.	21717.98	20033.85	0.886896-04
0.155295	n 1	27140.	0.40000		510.	23205,56	22046.98	0.78431F-04
0,159206	0.1	27000.	0.400006		420.	24474.45	23652.73	0.952381-04
0.163596	01	24050.	0.00000		450.	26747.45	25412.12	0.88HH9t-04
0.167298	01	24417.	0.40000		500.	26451.44	27411.59	0.111116-03
J.17129F	01	24/10.	0,40000		300.	31214.79	24656.54	0.155338-05
0.17529F	n 1	PAGAN.	O.unoont		210.	53000.05	32174.07	0.14H15E-03
0.179298	0.1	54140.	11.4000nt		210.	56839.16	35000.19	0.190461-05
0.16350F	~1	2931	0.40000		150.	40167.96	341-5.84	0.33333E-03
0.18779F	0.1	29440.	" C. C. C. C.		20.	45069.41	41698.65	0.43333E-03
0.101501	r 1	50100.	6.acono		60.	20.29090	45644,77	0.000071-03
0.195746	01	545200	n.annat		bu.	52077.55	50041.29	0.000076-03
0.199501	0.1	54410.	0.40000	-01	.0.	5/810.63	54430.49	0.00007t-05

FATIGUE CHICA PROPERMITOR GATA

SPECIMEN NO. 1805 CONSTITUTION AND MAIN HOUR LIN STHESS HATTO CON THE

		₩ *A X	+ 1 -	*1:	NO	* 4	
		114.	5	V-54100	. 0.	0.25060	2.50000
Δ				WEL .	×44×	DELK	DADN
0.64100F	00	3070.	1.40 HOF-	01 12/0.	10464.30	10415.34	0.122321-04
0.72100€	00	n4/11.	n. 4 gradt -	01 1170.	11259.07	10647.40	0-126484-04
0.76100F	00	wasa.	1.400000	vi 2040.	11594.45	11017.44	0.151521-04
0.80100E	0.0	11140.	A 00000E -	01 6640.	11474.32	11374.45	0.175446-04
0.P4100F	00	1 15-0.	9.400000	11 (650.	12340.47	11770.15	0-177186-04
0.881U0F	00	15440.	4.40000t -	01 2000.	12843.24	15.00.21	0.166076-04
0.92100F	00	1/4.0.	1.40000t-	01 1000.	13331.41	12004.00	0 - 24242+ -04
0.46100F	00	1 - > > 0 .	9.400006-	.0102	13554.39	13160.79	0.19901F-04
0.10010F	01	Z1 110.	0 - + 0 9 9 9 4 -	01 1000.	14412.44	13041.30	0.232104-04
0.10410F	01	174211.	0.+6090t-	01 1590.	15004.71	14200.40	0.251571-04
0 - 10010E	01	14279.	000000	UI 1350.	15643.05	14004.40	0.246301-04
0.11210F	01	c7710.	0.400000	01 1200.	10161.41	15504.31	0.31746t-04
0.11610F	01	20070.	0.400006-	ul 11.0.	1794A.77	10177.25	U . 35088F -U4
0.12010F	01	2/419.	1.400000	01 11-0.	11032.01	10434.24	U . 350881 - 04
0.12+10E	01	SHAPO.	0 . 40 (11) (1t -	01 1050.	10074.72	17144.55	0 . 340451 - 04
0.12H10E	01	24743.	W. 40090c -	31 +30.	19602.37	10021.01	U.43011F-04
0.13410F	0.1	10579.	7.49(0)6-	01 /70.	05.51005	19500.28	0.512021-04
0.13610E	01	31440 .	11.400000	01 4/0.	13.65115	20037.73	0.45977E-04
0.14010E	01	32100.	11.4U11111.	11 000.	20.56422	51405.40	U.60606E-04
0 - 14410E	01	32170.	0.40000t-	01 550.	24314.45	23044.30	0.634421-04
0 - 14 5 1 0E	01	31340.	9.40000t-	01 630.	25837.75	24744.72	0.634426-04
0.15210F	01	33400.	0.40000	01 540.	21534.18	56.46105	0.740745-04
0.150106	01	34411.	1.41111111	01 710.	24443.50	27404.46	0.784315-04
0.16010E	01	14MA() .	4	1)1 450.	11561.66	30000.53	0. 548646-04
0 - 15410F	01	35310.	n.4nnf.ue-	#1 45V.	33441.77	322111.53	0 - HARHYF - 04
0.15810F	01	17540 .	7.4911075-	61 350.	16677.12	34840.44	0.151516-03
0.17210E	01	35/40.	1	01 159.	34164.73	37715.50	0.255676-03
0.17610F	01	35440.	7 711 . t	vi -0.	• 3101 • 01	44443.24	0.444446-03

FATIGUE CRACK PROPAGATION DATA

SPEC NO 0720 LONG GRAIN ROOM AIR TEST FREQ 5 MZ

	PMAX		PMIN		AO	NO		
		779.	39,	0.	60540	0.	0,25040	2,50000
			DELA		DELN	KMAX	DELK	DADN
0.60540E	00	4800.	0.00000	00	4800.	10539,83	10012.17	0.00000E 00
0.64540E		8910.	0.40000		4110.	10748,29	10210.20	0.97324E-05
0.68540E	00	12750.	0.40000		3840.	11003,32	10452.46	0.10417E-04
0.72540E	00	16200.	0.40000		3450.	11303,14	10737.27	0.11594E-04
0.76540E	00	19380.	0.40000		3180.	11645,41	11062,40	0.12579E-04
0.80540E	00	22320.	0.40000		2940.	12027.87	11425.71	0.13605E-04
0.84540E	00	24930.	0.40000		2010.	12448,49	11825,27	0.153266-04
0.88540E	00	27450.	0.40000		2520.	12905,55	12259,46	0.15873E-04
0.92540E	00	29400.	0.40000		1950.	13397,96	12727.21	0.20513E-04
0.96540E		31500.	0.40000		2100.	13925,25	13228,11	0.19048E-04
0.10054E	01	33150.	0,400001		1650.	14468.06	13762.74	0.24242E-04
0.10454E	01	34680.	0.40000		1530.	15088.04	14332.68	0.26144E-04
0.10854E	01	36180.	0.40000		1500.	15728,07	14940,67	0.26667E-04
0.11254E		37530.	0.400006		1350.	16412.00	15590.36	0.29630E-04
0.116548		38640.	0.40000		1110.	17145,66	16287.29	0.36036E-04
0.12054E	01	39660.	0.40001		1020.	17936,20	17038.25	0.39217E-04
0.12454E	01	40650.	0.400008		990.	18792.36	17851.55	0.40404E-04
0.12854€		41580.	0.40000		930.	19724.72	18737,23	0.43011E-04
0.13254E	01	42330.	0.490000		750.	20745.74	19707.14	0.53333E-04
0.136546	01	43110.	0.40000		780.	21869.80	20774.92	0.51282E-04
0.14054E		43740.	0.40000		630.	23113.50	21956.36	0.63492E-04
0.14454E	01	44280.	0.40000		540.	24495,48	23269.16	0.74074E-04
0.14854E	01	44790.	0,40000		510.	26036.32	24732,85	0.78431E-04
0.15254E	01	45300.	0.40000		510.	27759.67	26369,92	0.78431E-04
0.15654E	01	45720.	0.400001		420.	29690.69	26204,46	0.95238E-04
0,16054E	01	45960.	0,40000		240.	31857.49	30262.60	0.16667E-03
0.16454E	01	46080.	0.40000		120.	34290.79	32574.07	0.33335E-03
0.16854E	01	46200.	0.40000		120.	37022.94	35169.44	0.33333E-03
0.17254E	01	40290.	0.40000		90.	40091.40	36064,29	0.4444E-03
0.17654E	01	46380.	0.40000		90.	43533,71	41354,26	0.4444E-03
0,18054E		46410.	0.40000		30.	47391.54	45018,95	0.13333E-02

FATIGUE CRACK PROPAGATION DATA

		PMAY	PMTN	AO	NO	8	*
		779.	39.	0.60540	0.	0.24970	2.50000
			DELA	DELN	KMAY	DELK	DAON
	0.64540€ 0	4800,	0.40000E=	1 4800.	10778.43	10238.82	0.833336-05
	0.68540E 0	0 A910.	0.40000E=	1 4110.	11034.17	10481.76	0.97324E-05
	0.72540E 0	12750.	0.40000E-	3840.	11334.83	10767.37	0.10417E-04
	0.76540E n	16200.	0.40000E-	1 3450.	11678.05	11093.41	0.11594E-04
	0.80540E 0	19380.	0.40000E+	3160.	12061,59	11457.74	0.125798-04
*	0.84540E 0	. 05555	0.40000E-	2940.	12443.39	11858,43	0.13005E-04
	0.885602 0	24930.	0.40000E-	2610.	12941.73	12293,43	0,153766-04
	0.92540E 0	27450.	0.40000E-	1 2520.	13435.52	12762.89	0.15873E-04
	0.96540E 0	29400.	0.400000	1 1950.	13964.30	13265,20	0.20513F-04
	0.10054E 0	1 31500.	0.40000E-	.0015 10	14528,68	13801.32	0.19007F-04
	0.10454E 0	33150.	0.40000E-	1 1650.	15130.34	14372.86	0.202025-00
	0.10854E 0	1 34680.	0.40000E-	1530.	15772.16	14982.55	0.26144E-04
	0.11254E 0	36180.	0.40000E-	1 1500.	16456,00	15634,06	0.266678-04
	0,11654E 0	1 37530.	0.400000	1 1350.	17193.73	16332.95	0.29630E-04
	0.12054E 0	1 38640.	0.40001E-	1110.	17986.48	17086.02	0.36037F-04
	0.12454E 0	1 39660,	0,40000E-		18845.04	17901.60	0.39216E-04
	0.128548 0	40650.	0.400000	990.	19780.02	18789,76	0,404046-04
	0.13254E 0	41580.	0.40000E-		20803,90	19762,39	0.430116-04
	0.13654E 0	1 42330,	0.400000	750.	21931.11	20833.16	0.53333E-04
	0.18054E 0	1 43110.	0.40000E=	780.	23178,30	22017,91	0,512826-04
	0.14454E 0	1 43740.	0.40000	01 630.	24564,16	23334,39	0.634925-04
	0.148542 0	1 44280.	0.40000E-	540.	26109.31	54405.10	0,740746-04
	0.15254E 0	1 44790.	0.40000E=	510.	27837.49	26443.85	0,784316-04
	0.156542 0	45300.	0.40000E-		29774.13	24283,53	0.78431E-04
	0.16054E n		0.40000E-		31946.80	30347.44	0.952386-04
	0.164548 0		0.400nnE-		34386.92	32665,39	0,166676-03
	0.168542 0		0.400000-		37126,73	35268.04	0,3333F-03
	0.172546 0		0.40000E-		40203.79	38191.05	0.333336-03
	0.17654E 0		0.40000E-		43655.75	41470.19	0.4444F-03
	0.18054E 0	46350.	" . 40000E-		47524.39	45145,15	0.4444F-03
	0.18454E 0	46410.	0.40000	11 30.	51853.55	49257.58	0.13333E-02

FATIGUE CHACK PHEPAGATION DATA

SPEC NO 0722 LONG GRAIN HOUM SALT TEST F 5 MZ

		PMAY	PMIN	04	20		
		497.	25.	0.64790	0.	0.25330	2.50000
		4	CELA	DELA	****	PELK	DALA
0.68790E	00	6990.	0.40000t	-01 6990	. 6950.75	0601.12	0.57225E-05
0.72790E	00	12120.	0.4000ct			6782.27	0.77973t-05
0.76790E	00	10440.	0.40000E			6988.86	0.925921-05
0,80790£	00	19600.	0.4000cE	-01 3360	. 7601.80	7219.42	0.11905E-04
0.84790F	00	22800.	0.40000E	-01 3000		7472.73	0.13535E-04
0.88790E	00	25560.	0.40000E	-01 2760	. 6158,17	7747.81	0.14493E-04
0.92790F	00	27660.	0.4000CE	0015 10-		8044.07	0.19048E-04
0.96790F	00	29610.	0.40000F	-01 1950		8361.22	0.20513E-04
0.10079E	01	31410.	0.4000nE	-01 1800	. 9160.51	8699.73	0.22222E-04
0.10479E	01	32910.	0.40000E	-01 1500	. 9540.45	9060.54	0.266671-04
0.10879F	01	34290.	0.40000E	-01 1380	. 9945.6A	9445.40	0.28985E-04
0.11279E	01	35A50.	0.40000E	-01 1560	. 10378.86	9856.79	0.256411-04
0.11679f	01	36870.	0.40000E			10298.32	0.392166-04
0.12079E	01	37890.	0.40000E	-01 1020	. 11344.69	10774.04	0.34216E-04
0.12479E	01	38640.	0.40000E	-01 750		11289.48	0.53333E-04
0,12874E	01	39450.	0.40000E	-01 810		11851.03	0.49383t-04
0.13279F	01	40200.	0.400000	-01 750	. 13126,46	12466,19	0,53333E-04
0.13679E	01	40860.	0.40000E	-01 660	. 13839.84	13143.69	0.60606t-64
0.14079E	01	41400.	0.40000E	-01 540	. 14629,33	13893.46	0.74074E-04
0.14479E	01	41850.	0.40000t.	-01 450	. 15506,79	14726.79	0.888M9E-04
0.14879F	01	42300.	0.40000E	-C1 450	. 16485.21	15655,99	0.888A9t-04
0.15279E	01	42090.	0.40000t	-01 390	. 17579,86	16695.57	0.10256E-05
J. 15679E	61	42990.	0.40000E	-01 300	. 1880h.55	17860,57	0.133331-03
0.16079E	01	43290.	0.40000E	-01 300	. 20183,17	19167.94	0,13353E=05
0.16479E	01	43540.	0.40000E	-01 240	. 21728,91	20635,93	0.166671-03
0.15879E	01	43770.	0.40000E	-01 240	. 23464.86	22284.55	0,16667E-03
0.17279E	01	43980.	0.4cccnE.	-01 210	. 25413.82	24135.48	0.1904At-03
0.176796	01	44130.	0.40001E	-01 150	. 27500.31	26211,99	0.26007E-03
0.18079E	01	44280.	0.40000E	•01 150	. 30050.99	28539.40	0.26no7t=03
0.18479E	01	44400.	0.40000E.	-01 120	. 32792.81	31143.30	0,333338-03
0.18879F	01	44520.	0.4000E		. 35856,38	34052.77	0.33335E-03
0.19279E	01	44610.	0.4000nE	-01 90	. 39274,42	37298.88	0.4444E-03
0,19679€	01	44670.	0.400006			40911.84	0.00007E-05
0.200706	01	44730.	0.400roE			44927.04	0.66667E-03
0.20479E	0.1	44790.	0.40000E			44379,57	0.000076-05
0.20879E	01	44850.	9.40000E	•01 60	. 57184.74	54308.30	0.060078-03

FATTGUE CRACK PROPAGATION DATA

SPEC NO 0855 LONG GRAIN ROOM AIR TEST FRED 5 HZ

		DWAY	PMIN		40	NO	6	
		779.	30.	0.6	0769	0.	0.25510	2.50000
		N	DELA		DELN	KMAX	DELK	DADA
0.64760E	00	5070.	0.400006	-01	5070.	10562.88	10034.06	0.7889At -05
0.687608		9630.	0.40000		4560.	10815.70	10274.23	0.87719F-05
0.72760F		13040.	0.40000		3450.	11112.27	10555.95	0.115046-04
0.767605	00	16500.	0.40000		3720.	11450.45	10877.20	1.10753E-04
0.807608	00	50550	0.400006	-01	5420.	11827.98	11235.84	0.116966-04
0.847601	00	23430.	0.400006	-01	3210.	12242.83	11629.91	0.12441F-04
0.887698	00	26220.	0.40000		2790	12693.48	12054.00	0.143376-04
0.927ADE	90	. OORRS	0.400006		2540.	15178.54	12518.AA	0.155046-04
1.9676nt	00	31260.	0.40000		2460.	1369A.17	13012.39	0.16260F-04
0.100768	01	31330.	0.400006		2070.	14252.61	13539.07	0.193246-04
0.10476	01	35190.	0.40000		1840.	14843.60	14100.48	0.21505F-04
0.108768	01	36930.	n. unonnt		1740.	15073.98	14699.30	0.229RRE-04
0.11276F	01	34500.	0.40000		1570.	16147.90	15339.48	0.2547AE-04
0.11676E	01	40080.	0.40000		1580.	16871.00	16026.38	0.253168-04
0.120758	01	41400.	0.400006	-01	1320.	17650.27	16766.64	0. 30303E-04
0.1247AE	01	42440.	0.40000€		1040.	18494.34	17508.45	0.37037F-04
0.12A74E	01	41590.	1.40000	-01	1110.	19414.06	18442.13	0. 56036F-04
0.1327AE	01	44520.	1.40000E	-01	930.	20421.40	19399.04	1.45011F-04
0.13674E	11	45360.	0.400016	-01	Aun.	21530.82	20452.91	0.476206-04
0.14076E	01	46140.	0.40000		780.	2275A.64	21619.27	1.51282F-00
0.14476E	01	46770.	C. 40000E		630.	24123.13	22915.44	1.63492F-04
0.1487AL	01	47430.	0.40000	-01	660.	25444.44	24.006 A2	0.404065-04
0.15276E	01	47790.	. 40000	-01	300.	2734A.73	25977.46	0.111116-03
0.1567AF	01	48240.	0.40000	-04	450.	29254.31	27789.74	ARRAGE-DU
0.160746	01	48540.	0.40000	-01	300.	51394 AA	29A23.14	0.133336-03
1.16476E	01	4.7.0.	C. 40000F		240.	3379A.73	32106.45	0.166675-03
0.16476E	01	49020.	r. 40000F	-01	240.	36497.72	34670.52	0.18687F-01
0.17274E	01	40140.	0.40000	-01	120.	5952H. 63	57549.60	n. 11333F-01
0.176766	01	49250.	0.40000	-01	90.	45.45624	40779.15	0. 44444F-05
1.1807AF	01	49240	0.40000	-01	30.	4673A.5A	44194.69	n. 13335-02
0.18476E	01	49290	0.400006		30.	51003.45	48450.04	1.13336-02
0.189766	01	49320.	n. unnnn		30.	55767.45	52075.73	0.13311F-02

PATIGUE CRACK PROPAGATION DATA
SPEC NO 0856 LONG GRAIN ROOM AIR TEST FREG 5 HZ

		PMAX	PMIN		AU	NO	н	
		779.	39,	0.6	930	0.	0.25500	2.50000
		N	DELA		DELN	KMAX	DELK	DADN
0.64930E	00	5550.	0.40000E-	-01	5550.	10551.98	10023.71	0.12012t-05
0.68930E	00	9900.	0.40000E-		4350.	10806.25	10265.26	0.91954E-05
0.72930E	00	14160.	0.40000E-		4260.	11104.05	10548.15	0.93897E-05
0.76930E	00	18000.	0.40000E-		3840.	11445.29	10870.39	0.10417E-04
0.80930E	00	21650.	0.40000E-		3630.	11621,73	11229,89	0.110196-04
0.84930E	00	25050.	0.40000t-		3420.	12237,25	11624.60	0.116966-04
0.88930E	00	28020.	0.40000E-	-01	2970.	12688,42	12053,19	0.134686-04
0,92930E	00	30750.	0.40000E-		2730.	13174,22	12514.67	0.146526-04
0,96950E	00	32910.	0.40000E-	-01	2160.	13694.16	15008.59	0.18518E-04
0.10093E	01	35310.	0.40000t.	-01	2400.	14249.00	13535.64	0.16667t-04
0.10493E	01	37140.	0.40000E-	-01	1830.	14840.47	14097.51	0.21858t-04
0,10895E	01	38910.	0.40000E-	-01	1770.	15471.39	14696.84	0.225991-04
0.112936	01	40590.	0,40000t-	-01	1680.	16145,96	15537.64	0.23809t-04
0,11695E	01	42090.	0.40000E-	-01	1500.	16869,85	16025,29	0.26667E-04
0,12093E	01	43650.	0,40000E-	-01	1500.	17650.13	16/66.50	0.25641t-04
0,12493E	01	44640.	0.40000E-	-01	990.	18495,67	17569,71	0.40404E-04
0,12893E	01	45870.	0,40000E-	-01	1230.	19416.91	18444.84	0.325201-04
0.132935	01	46590.	0,40000E-	-01	720.	20426,57	19403.75	0.55556t-04
0,136936	01	47490.	0,40000E-	-01	900.	21538,26	20459,98	0.444446-04
0,14093E	01	48150.	0,40000E-	-01	660.	22769,04	21629,15	0.000000000
0,144938	01	48840.	0.40000E-		690.	24137,12	22928,73	0.57971E-04
0,14893E	01	49410.	0,40000E-	.01	570.	25662,90	24378,13	0.70175t-04
0,15293E	01	49890.	0.40000E-	-01	480.	27369,93	25999,69	0.433536-04
0.156938	01	50190.	0,40000E-		300.	29282,89	27816.89	0.13535t -03
0,16093E	01	50430.	0,40000E-	01	240.	31429.80	29856,31	0.10007E-03
0.16493E	01	50580.	0,40000E-	01	150.	33840,74	32146.55	0.26667t-05
0.16893E	01	50730.	0.40000E-	-01	150.	36548,21	34718,48	0.20007t-05
0.17295E	01	50820.	0.40000E-	01	90.	39587,78	37605.88	0,44444 -03
0.17695E	01	50910.	0.40001E-		90.	42997,70	40845.09	0.4445t-05
0.18093E	01	50940.	0.40000E-	-01	30.	46819.40	44475.46	0.133356-02
0.18493E	01	51000.	0,40000E-	01	60.	51094,75	48536,77	0.66667t-05

FATIGUE CRACK PROPAGATION DATA

SPEC	NO	0857	LONG	GRAIN	80CM	SALT	TEST	5	HZ	

		PMAX	PMIN	40	Nu			
		497.	25.	0.54850	0.	0.25400	2.50000	
			PELA	DELN	XAIAX	neca	r.en:	
0.68830E	00	4380.	0.40000E-	01 43A0.	6933,35	6564.59	0.913241-05	
0.72830€	00	8100.	1.40000E-	01 3720.	7125.88	6765.54	0.107531-04	
0.76830€	00	11520.	0.40000E-	01 3420.	7341.03	6971.77	0.11696F =00	
0.80830€	00	14640.	0.400006-		75A3.3A	7201.94	0.124215-04	
0.84830€	00	18240.	0.40000E-		7849.61	7454.77	0.111111004	
0.88830E	00	21090.	0.40000t -	01 2850.	813A.73	7729.54	0.140351-04	
0.92830E	00	23190.	0.40000E-	01 2100.	8449.99	A024.95	n. 19nuff -nu	
0.96830E	00	25230.	0.40000E-	01 2040.	87A3.26	A341.46	0.194066-04	
0.10083E	01	27240.	0.40000E-	01 2010.	9134,91	8679.21	0.19900F-04	
0.10483E	01	28920.	0.4000nE-	01 1680.	951A.00	9039.74	1.23809F -04	
0.1088 SE	01	30300.	0.40000E-	01 1380.	44,5500	9423.65	n. PAGASF - nu	
0.11283E	01	31500.	0.40000E-	.0051 10	10354.79	9855.95	0.453456-04	
0.11683E	91	32670.	0.400006-		10818.63	10274.45	0.341AFE -04	
0.12083E	01	53A70.	0.40000E-	1200.	11518.60	10749.26	n. 13314F .nu	
0.12483E	01	34890.	0.40000t-	01 1020.	11860.35	11245.77	0.302166-04	
0.120838	01	35760.	1.40000E-	01 870.	12450.48	11624.21	0.49775-04	
0.13283E	01	36540.	0.400016-	01 780.	13097.06	12454.27	n. 41785t - nu	
0.136ASE	01	37170.	0.40000E-	01 630.	15809.14	14114.55	0.434021-04	
0.140ASE	01	37800.	0.40000F-	01 630.	14597.34	14864.08	0.434024-00	
0.144A3E	01	38340.	0.40000E-	01 540.	15473.30	14694,98	0.74074F-04	
0.148836	01	38850	P. 40000E -	01 510.	10450.30	15622.43	C. 7#431F - 04	
0.15283E	01	39240.	0.40000F-	01 390.	17542.87	10000.45	0.102446-01	
0.15683E	01	39660.	0.400006-	01 420.	18747.81	17823.77	0.9523#F=00	
0.160835	01	40020.	0.40000E-	01 360.	20142.14	19174.97	0.1111116-03	
0.16483E	01	40350.	0.40000E-	01 330.	21685,45	20594.65	0.121211-04	
0.10883E	01	40590.	n.unnone-	01 240.	23418.61	55540.44	0.166676-03	
0.17283E	01	40800.	0.40000E-	01 210.	25 364 . 37	PHONR, UM	0.1904#1-03	
0.17683E	01	41040.	0.40000E-	01 240.	27547.51	26161.Au	0.16m47F=03	
0.180838	01	41250.	0.40000E-	01 210.	24441.84	2H445.15	0.190unf -05	
0.18483E	01	41400.	0.40000E-	01 150.	32731.74	31085.30	0.26667F=01	
0.18883E	01	41550.	0.40000E-	01 150.	35790.49	33990.20	0.26667F=01	
0.19283E	01	41670.	0.400001-		39701.A3	37229.45	0.33535-05	
0.19683E	01	41790.	0.40000E-	120,	42999 A9	40836.96	0. 153355-04	
0.200A3E	01	41880.	C. 40000F-	01 90.	47720.34	44H45.11	A. 44444E-A5	
0.20483E	01	41910.	n. 40000F-	01 30.	51900.61	49240.94	0.133146-02	

COPY AVAILABLE TO DDG DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

250

0.7280nF	.0	4690.	0.40000E-01	4890.	6704.27	6377.AR	O.RIAONE-05
0.7680nE	00	9720.	0.40000E-01	4430.	6912.59	4572.15	0. AZA1AF - 04
0.8080nF	io	13020	0.4000nE-01	4200.	7140.69	6789.01	0.9523AE-05
0.84800	0	17820.	0.40000E-01	3900.	7391.27	7027.25	0.102568-04
0.8880nE	ào	21150.	0.40000F-01	3330.	7663.42	7245.99	0.120125-04
0.92800F	00	23AAO.	0.40000E-01	2730.	7956.43	7564.57	0.146521-04
0.96800F	00	26190.	0.40000E-01	2310.	8270.20	7862.89	0.173164-04
0.1008nE	11	28340.	0.4000nE-01	2190.	8605.04	A1 A1 . 24	0.182656-04
0.104805	ė1	30150.	0.4000nE-01	1770.	8961.97	A520.59	0.225991-04
0.1088nF	01	31800.	0.40000E-01	1650.	9342.61	PARZ.49	0.242426-04
3n6511.0	ė1	33270.	0.4000nE-01	1470.	9749.59	4540.45	0.27211F-04
0.1168AF	61	34560.	0.40000E-01	1290.	10184.33	9684.65	0.3100At -04
0.12080	61	35520.	0.40000E-01	960.	10454.96	10132.10	0.416671-04
0.1248nE	ė1	36450.	0.4000nf-01	930.	11166.81	10616.84	0.430115-04
0.12680€	61	37260.	0.4000nE-01	610.	11722.32	11144.99	0.493431-04
0.13280€	11	38010.	0.4000nf -01	750.	12330.01	11723.61	0.533335-04
0.1368nF	61	38640.	0.400nnE-01	630.	13001.04	12360.73	0.634926-04
0.1408nF	61	39300.	0.40000E-01	640.	13742.78	13065.94	0.60AOAE-04
0.144865	ė1	39810.	0.400006-01	510.	14567.21	13849.77	0.784316-04
0.1488AF	^1	40260.	0.40000E-01	450.	15486.35	14723.64	0. ABBAGF -04
0.1528AF	61	40680.	0.4000nt-01	420.	16514.95	15701.58	0.9573AE-04
0.1558AF	61	41040.	0.4000nE-01	300.	17667.47	16797.34	0.111116-03
0.1608nF	èl	41460.	0.4000nE-01	420.	18960.65	18026.85	0.9523AF-04
0.1648nE	A1	41730.	0.40000E-01	270.	20413.19	19407.84	0.144151-03
0.1688AF	ė1	41970.	0.40000E-01	240.	22043.76	2095A.10	0.166675-03
0.1728nF	61	.0155#	0.4000nE-01	240.	23.75.22	22699.34	0.166671-03
0.175805	ė1	42420.	0,4000nE-01	210.	25929.48	24552.45	0.1904AE-03
0.1828eF	ė1	42540.	0.000nnE-01	120.	29483.69	28031.61	0.500006-05
0.1868nF	61	92560.	0.40000E-01	120.	32207.54	30421.31	0.333551-03
0.1858nE	ė1	42750.	0.20000E-01	90.	33484.42	32027.35	0.255554-03

2.50000

		ALIG			- AGAI	TON D				
SPEC	NO	1102	TOINS	GRAIN	-	SALT	TEST	F	5	47

		SAC.	29.	0.00	1340	0.	0.25340	2,50000
		N	CELA		DELN	KMAX	DELK	DALM
0.68390E	00	9990.	0.40000€	-01	9990.	8157.57	7755.19	0.40040t-05
0.725906	03	21840.	0.40000€	-01	11850.	8378.81	7965.46	0.33755t -05
0.7639nE	00	\$1020.	0.400001	-01	9780.	8631,63	8203.75	0.40900t -05
0.80390E	00	41760.	0.400006	-01	10140.	8914.58	8472.48	0.3944AF -05
0.84390F	06	50010.	0.40000€	-01	#250.	9225.46	876A.14	0.484456+05
0.883906	00	50350.	0.400006	-01	8340.	9565.62	9089.54	0.479621-05
0,9239nE	00	64320.	0.400008	-01	5970.	9926.00	9435.85	0.67002E-05
0,96390E	00	71340.	0.400006	-01	.050	10318,41	9606.91	U.56980E-US
0,10039E	01	75490.	0.40000€	-01	4650.	10735.06	10202.90	0.860211-05
0.10439E	01	A1090.	0.4000AE	-01	5100.	11179,23	10025.06	0.78431E-05
0,10839F	01	85410.	0.40001E	-01	4320.	11652.94	11075.28	0.925956 -05
0,11239€	01	88050.	0.400006	-01	2640.	12159,23	11556.48	U. 151526 -04
0,11639E	01	92070.	0.40000€	-01	4020.	12702.24	12072.57	0.99502t-05
0.12034E	01	94800.	0.40000E	-01	2750.	13287.14	12628.47	0.14652E-04
0.12434F	01	97500.	00000E		2700.	13920.46	13230.40	0.14815t-04
0,128396	01	94546.	0.40000E	-01	1740.	14610.05	13885.80	0.229ABE-04
0.13230E	01	100950.	0.400CCE	-01	1710.	15365.09	14603.42	0.235921-04
0,136396	01	102720.	0.400006	-61	1770.	16196.17	15393.30	0.225946-04
0,14039E	01	105920.	0.40000E	-01	1200.	17115,50	10267.05	0.33335E-04
0,144396	01	105150.	0.40000€	-01	1230.	18136.93	17237.85	0.32520E-04
0.148396	01	100050.	0.400001	-01	900.	19275.55	18320.03	0.4444E-04
0,152396	01	100 AO.	0.4000cE	-01	930.	20549.07	19530.42	0.43011E-04
0.156591	01	107700.	0.400006	-01	720.	21975.70	20886.52	0.55550E-04
0.16039F	01	108270.	0.400001	-01	570.	23576.93	22408.18	0.701756-04
0.16439E	01	109.50'	0.400006	-01	450.	25374.79	24116.91	0.88889E-04
0.168396	01	109170.	U. 40000E	-01	450.	27393.24	20035.30	0.88889E-04
0.17239E	01	109410.	0.40000€	-01	240.	29060,16	28189,86	0.16667t-03
0.17639	01	109560.	0.40000E	-61	150.	16.50225	30607.50	0.266676-05
0.18039E	01	104710.	0.#0000t	-01	150.	35054.57	33510.86	0.200078-03
0.18439E	01	109800.	0.40000E	-01	90.	38244.23	30348.40	0.44444-03
0.16839E	01	109860.	0.400001	-01	60.	41810.33	39737.71	0.66667603
0,19239E	01	109890.	0.400COE	-01	30.	45787.79	43518.00	0.13333E-05

40

PATIGUE PHACK PHOPAGATION DATA
SPEC NO 1101 TRANS GRAIN ROOM AIR 1651 F 5 HZ

FATIGUE CRACK PROPAGATION DATA

SPEC NO 1204 LONG GRAIN HOOM AIR TEST FRED 5 HZ

779. 39. 0.00730 0. 0.24930 2.50000 A			PMAX	PMIN		AO	NO		
0.40730E 00			779.	39,	0.0	0730	0.	0.24930	2,50000
0.44730E 00 8880. 0.40000E-01 5490. 1080.84 10265.82 0.45045t-05 0.68730E 00 14370. 0.40000E-01 6180. 11360.36 10799.25 0.4025t-05 0.72730E 00 20550. 0.40000E-01 6180. 11360.36 10799.25 0.4025t-05 0.80730E 00 32940. 0.40000E-01 6390. 11711.15 11127.66 0.62598f-05 0.80730E 00 32940. 0.40000E-01 4710. 12526.41 11897.39 0.84926t-05 0.80730E 00 37650. 0.40000E-01 4710. 12526.41 11897.39 0.84926t-05 0.80730E 00 42180. 0.40000E-01 4530. 12985.12 12335.04 0.88300E-05 0.92730E 00 46230. 0.40000E-01 4530. 12985.12 12335.04 0.88300E-05 0.92730E 00 46230. 0.40000E-01 4050. 13481.36 12800.43 0.98765t-05 0.92730E 00 46230. 0.40000E-01 34.0 14012.75 15311.23 0.11696t-04 0.10073E 01 52590. 0.40000E-01 2730. 15184.20 13649.88 0.13606t-04 0.10073E 01 52590. 0.40000E-01 2730. 15184.20 14424.03 0.14652E-04 0.10873E 01 55320. 0.40000E-01 2730. 15184.20 14424.03 0.13606t-04 0.10873E 01 57930. 0.40000E-01 2730. 15184.20 14424.03 0.13606t-04 0.10873E 01 57930. 0.40000E-01 2250. 15518.27 15091.31 0.17778t-04 0.11673E 01 60180. 0.40000E-01 1890. 17257.78 16393.79 0.21164E-04 0.12073E 01 60180. 0.40000E-01 1890. 17257.78 16393.79 0.21164E-04 0.12073E 01 604950. 0.40000E-01 1350. 16054.69 17150.81 0.29830t-04 0.12073E 01 604950. 0.40000E-01 1350. 18057.86 17970.77 0.20144E-04 0.12073E 01 60390. 0.40000E-01 1550. 18917.86 17970.77 0.20144E-04 0.1273E 01 60390. 0.40000E-01 150. 18917.86 17970.77 0.20144E-04 0.12073E 01 60390. 0.40000E-01 150. 18917.86 17970.77 0.20144E-04 0.13273E 01 60390. 0.40000E-01 1500. 20888.39 179842.85 0.39216E-04 0.13273E 01 60390. 0.40000E-01 150			N	DELA		DELN	KMAX	DELA	DADN
0.06730E 00	0.64730E	00	8880.	0.40000	E-01	8880.	10806.84	10265.82	0.45045t-05
0.72730E 00 20550. 0.40000E-01 6380. 11360.36 10799.25 0.64725E-05 0.76730E 00 26940. 0.40000E-01 6390. 11714.15 11127.66 0.625986-05 0.80730E 00 32940. 0.40000E-01 6000. 12100.15 11494.38 0.666671-05 0.80730E 00 37650. 0.40000E-01 4710. 12520.41 11897.39 0.84926E-05 0.80730E 00 42180. 0.40000E-01 4550. 12985.12 12335.04 0.88300E-05 0.92730E 00 46230. 0.40000E-01 4550. 13481.36 12806.45 0.96765E-05 0.96730E 00 49650. 0.40000E-01 4050. 13481.36 12806.45 0.96765E-05 0.96730E 00 49650. 0.40000E-01 3470. 14012.75 15511.23 0.11696E-04 0.10073E 01 52590. 0.40000E-01 2730. 15184.20 14424.03 0.14662E-04 0.10073E 01 55320. 0.40000E-01 2730. 15184.20 14424.03 0.14662E-04 0.10073E 01 55320. 0.40000E-01 2730. 15184.20 14424.03 0.14662E-04 0.11673E 01 55320. 0.40000E-01 2730. 15184.20 14424.03 0.14662E-04 0.11673E 01 60180. 0.40000E-01 2250. 16518.27 15691.31 0.17778E-04 0.11673E 01 62070. 0.40000E-01 1890. 17257.78 16593.79 0.21164E-04 0.12673E 01 63420. 0.40000E-01 1890. 17257.78 16593.79 0.21164E-04 0.12673E 01 63420. 0.40000E-01 1850. 18917.86 17770.77 0.26144E-04 0.12673E 01 63490. 0.40000E-01 1350. 18917.86 17770.77 0.26144E-04 0.12673E 01 63490. 0.40000E-01 1440. 18656.41 18864.23 0.27778E-04 0.13673E 01 66390. 0.40000E-01 1440. 18656.41 18864.23 0.27778E-04 0.13673E 01 66390. 0.40000E-01 1440. 18656.41 18864.23 0.27778E-04 0.13673E 01 66390. 0.40000E-01 1900. 20282.87 20920.33 0.41667E-04 0.13673E 01 69240. 0.40000E-01 1900. 22022.87 20920.33 0.41667E-04 0.13673E 01 69240. 0.40000E-01 870. 23273E 10 24916.18 0.53335E-04 0.15673E 01 71700. 0.40000E-01 300. 32077.1 30500.29 0.78331E-04 0.15673E 01 71700. 0.40000E-01 300. 32673E, 31 32634.86 0.13333E-02 0.16673E 01 71700. 0.40000E-01 300. 32673E, 31 32634.86 0.13333E-02 0.16673E 01 72670. 0.40000E-01 300. 32670. 324916.18 0.53333E-03 0.16673E 01 72670. 0.40000E-01 300. 32670. 324916.18 0.53333E-03 0.16673E 01 72670. 0.40000E-01 300. 32670. 324916.18 0.53333E-03 0.16673E 01 72670. 0.40000E-01 300. 32690. 324916.18 0.33333E-03 0.16673E 01 72670. 0.40000E-01 300. 32670. 3	0.68730E	00	14370.						
0.76730E 00	0.72730E	00	20550.	0.40000	E-01				
0.80730E 00 32940, 0.40000E=01 4710, 12100.15 11494.38 0.6667t=05 0.80730E 00 37650, 0.40000E=01 4710, 12524.41 11897.39 0.80926t=05 0.80730E 00 42180, 0.40000E=01 4550, 12985,12 12335.04 0.80300E=05 0.92730E 00 46230, 0.40000E=01 4050, 13461.36 12606.45 0.96765t=05 0.92730E 00 46230, 0.40000E=01 3405, 13461.36 12606.45 0.96765t=05 0.40000E=01 3405, 13461.36 12606.45 0.96765t=05 0.40000E=01 2940, 14579.80 13849.88 0.13806t=04 0.10073E 01 52590, 0.40000E=01 2730, 15184.20 14424.03 0.14652E=04 0.10073E 01 55320, 0.40000E=01 2730, 15184.20 14424.03 0.14652E=04 0.10073E 01 57930, 0.40000E=01 2730, 15184.20 14424.03 0.14652E=04 0.11673E 01 57930, 0.40000E=01 2250, 16518.27 15691.31 0.17778t=04 0.11673E 01 60180, 0.40000E=01 1870, 17257.78 16393.79 0.21164E=04 0.12073E 01 63420, 0.40000E=01 1850, 18917.86 17970.77 0.26144E=04 0.12073E 01 63420, 0.40000E=01 1550, 18917.86 17970.77 0.26144E=04 0.12073E 01 63420, 0.40000E=01 1550, 18917.86 17970.77 0.26144E=04 0.13273E 01 64950, 0.40000E=01 1020, 20888.39 19842.85 0.39216E=04 0.13273E 01 64950, 0.40000E=01 1020, 20888.39 19842.85 0.39216E=04 0.13273E 01 64970, 0.40000E=01 1020, 20888.39 19842.85 0.39216E=04 0.13273E 01 69240, 0.40000E=01 750, 22022.87 20920.33 0.41667E=04 0.13273E 01 69240, 0.40000E=01 750, 22022.87 20920.33 0.41667E=04 0.13273E 01 69240, 0.40000E=01 750, 22673, 32112.77 0.45977E=04 0.14473E 01 69990, 0.40000E=01 750, 22673, 32112.77 0.45977E=04 0.15673E 01 71790, 0.40000E=01 750, 24673, 34 21438.11 0.53333E=04 0.15573E 01 71970, 0.40000E=01 750, 24673, 34 21438.11 0.53333E=04 0.15673E 01 71970, 0.40000E=01 300, 32576, 13 3254.86 0.73333E=02 0.15673E 01 72570, 0.40000E=01 300, 325771 30500.29 0.78431E=04 0.15673E 01 72570, 0.40000E=01 300, 325771 30500.29 0.78431E=04 0.15673E 01 72570, 0.40000E=01 300, 325771 30500.29 0.78431E=04 0.15673E 01 72570, 0.40000E=01 300, 3250771 30500.29 0.78431E=04 0.15673E 01 72570, 0.40000E=01 300, 3250771 30500.29 0.78431E=04 0.15673E 01 72570, 0.40000E=01 300, 3250771 30500.29 0.12121E=03 0.16673E 01 72570, 0.40000E=01 3	0,76730E	00	26940.	0.40000	E-01	6390.			0.025986-05
0.88730E 00	0,80730E	00	32940,	0.80000	E-01	6000.		11494.38	0.00007t-05
0.88730E 00	0,84730E	00	37650.	0,40000	E-01	4710.			0.84926E-05
0.92730E 00 40530, 0.40000E=01 34-0. 13461,36 12806,43 0.96765E=05 0.96730E 00 49650. 0.40000E=01 34-0. 14012,75 13511,23 0.11696E=04 0.10073E 01 52590, 0.40000E=01 2730, 15164,20 14024,03 0.13606E=04 0.10673E 01 55320, 0.40000E=01 2730, 15164,20 14024,03 0.13606E=04 0.10673E 01 57930, 0.40000E=01 2730, 15164,20 14024,03 0.13666E=04 0.11273E 01 60180, 0.40000E=01 2250, 16518,27 15691,31 0.17778E=04 0.11673E 01 62070, 0.40000E=01 1850, 17257,78 16393,79 0.21164E=04 0.12673E 01 63420, 0.40000E=01 1350, 1804,69 17150,81 0.29630E=04 0.12473E 01 64950, 0.40000E=01 1350, 18017,86 17970,77 0.26144E=04 0.12673E 01 64950, 0.40000E=01 1550, 18917,86 17970,77 0.26144E=04 0.13273E 01 64950, 0.40000E=01 1440, 18658,41 18864,23 0.27778E=08 0.13273E 01 64370, 0.40000E=01 1020, 20888,39 1942,85 0.39716E=08 0.13273E 01 64370, 0.40000E=01 1020, 20888,39 1942,85 0.39716E=08 0.14073E 01 64240, 0.40000E=01 750, 23278,15 22112,77 0.45977E=08 0.14073E 01 64240, 0.40000E=01 750, 23278,15 22112,77 0.45977E=08 0.14073E 01 64240, 0.40000E=01 750, 24673,34 23438,11 0.53333E=08 0.15573E 01 71250, 0.40000E=01 750, 24673,34 23438,11 0.53333E=08 0.15573E 01 71250, 0.40000E=01 750, 24673,34 23438,11 0.53333E=08 0.15573E 01 71250, 0.40000E=01 350, 32107,71 30500,29 0.78431E=08 0.15673E 01 71640, 0.40000E=01 350, 32107,71 30500,29 0.78431E=08 0.15673E 01 71640, 0.40000E=01 350, 32107,71 30500,29 0.78431E=08 0.15673E 01 71640, 0.40000E=01 350, 32107,71 30500,29 0.12121E=03 0.16673E 01 72510, 0.40000E=01 350, 32107,71 30500,29 0.12121E=03 0.16673E 01 72510, 0.40000E=01 350, 32107,71 30500,29 0.12121E=03 0.16673E 01 72510, 0.40000E=01 350, 33335E=02 0.16673E 01 72510, 0.40000E=01 150, 40899,91 0.19048E=03 0.16673E 01 72670, 0.40000E=01 150, 40899,91 0.19048E=03 0.16673	0,88730E	00	42180.	0,40000	E-01	4530.			0.883006-05
0.9073E 00 4950, 0.40000E=01 2940, 14012.75 13511.23 0.116=0E=0a 0.10073E 01 52590, 0.40000E=01 2730, 1516=20 14824.03 0.136=0E=0a 0.10873E 01 55320, 0.40000E=01 2730, 1516=20 14824.03 0.146=2E=0a 0.10873E 01 57930, 0.40000E=01 2610, 15829.01 15030.56 0.15426E=0a 0.11273E 01 60180, 0.40000E=01 2250, 16518.27 15691.31 0.17778E=0a 0.11673E 01 62070, 0.40000E=01 1890, 17257.78 16593.79 0.21164E=0a 0.12673E 01 63420, 0.40000E=01 1890, 17257.78 16593.79 0.21164E=0a 0.12673E 01 63420, 0.40000E=01 1350, 18917.86 17970.77 0.26144E=0a 0.12673E 01 64950, 0.40000E=01 1440, 18917.86 17970.77 0.26144E=0a 0.12673E 01 66390, 0.40000E=01 1440, 18656.41 18664.23 0.27778E=0a 0.13673E 01 66370, 0.40000E=01 1020, 20886.39 19842.65 0.39216E=0a 0.13673E 01 66370, 0.40000E=01 1870, 22022.87 20920.33 0.41667E=0a 0.14073E 01 69240, 0.40000E=01 870, 23273E 15 22112.77 0.45977E=0a 0.14073E 01 69240, 0.40000E=01 870, 23273E 15 22112.77 0.45977E=0a 0.14073E 01 69240, 0.40000E=01 870, 23273E 15 22112.77 0.45977E=0a 0.14073E 01 69240, 0.40000E=01 870, 23273E 15 22112.77 0.45977E=0a 0.14073E 01 70740, 0.40000E=01 870, 23278.15 22112.77 0.45977E=0a 0.15273E 01 71250, 0.40000E=01 750, 24073.54 23436.11 0.53335E=0a 0.15273E 01 71250, 0.40000E=01 750, 26229.30 24916.18 0.53335E=0a 0.15273E 01 71250, 0.40000E=01 30, 34555,13 32634.68 0.78331E=0a 0.15273E 01 71250, 0.40000E=01 30, 34555,13 32634.68 0.13333E=0a 0.15273E 01 71270, 0.40000E=01 30, 34555,13 32634.68 0.13333E=02 0.16473E 01 72720, 0.40000E=01 30, 34555,13 32634.68 0.13333E=02 0.16473E 01 72720, 0.40000E=01 30, 34555,13 32634.68 0.13333E=02 0.16473E 01 72200, 0.40000E=01 150, 43689.97 41702.19 0.26667E=03 0.16473E 01 72200, 0.40000E=01 150, 43689.97 41702.19 0.26667E=03 0.16473E 01 72670, 0.40000E=01 150, 43689.97 41702.19 0.266	0,92730E	00	46230.	0,40000	E-01	4050.			0.967656-05
0.10473E 01 55320, 0.40000E-01 2610, 15184.20 14424.03 0.14652E-04 0.10873E 01 57930, 0.40000E-01 2610, 15829.01 15036.56 0.15526E-04 0.11273E 01 60180, 0.40000E-01 2250, 16518.27 15691.31 0.17778E-04 0.12073E 01 62070, 0.40000E-01 1890, 17257.78 16393.79 0.21164E-04 0.12073E 01 63420, 0.40000E-01 1350, 18054.69 17150.81 0.29850E-04 0.12473E 01 64950, 0.40000E-01 1550, 18917.86 17970.77 0.26144E-04 0.12673E 01 64950, 0.40000E-01 1550, 18917.86 17970.77 0.26144E-04 0.12873E 01 64950, 0.40000E-01 1020, 20888.39 19842.55 0.39216E-04 0.13273E 01 64740, 0.40000E-01 1020, 20888.39 19842.55 0.39216E-04 0.13273E 01 64740, 0.40000E-01 1020, 20888.39 19842.55 0.39216E-04 0.14073E 01 69240, 0.40000E-01 870, 23278.15 22112.77 0.45977E-04 0.14473E 01 69240, 0.40000E-01 870, 23278.15 22112.77 0.45977E-04 0.14473E 01 69240, 0.40000E-01 750, 26272.80 24916.18 0.55333E-04 0.15573E 01 70740, 0.40000E-01 750, 26272.30 24916.18 0.55333E-04 0.15573E 01 71640, 0.40000E-01 750, 26273.30 24916.18 0.55333E-04 0.15573E 01 71640, 0.40000E-01 300, 29919.30 28421.44 0.10256E-03 0.16073E 01 7200, 0.40000E-01 300, 32107.71 30500.29 0.12121E-03 0.16073E 01 72700, 0.40000E-01 300, 32107.71 30500.29 0.12121E-03 0.16073E 01 72700, 0.40000E-01 300, 32107.71 30500.29 0.12121E-03 0.16073E 01 72700, 0.40000E-01 300, 37325.61 35856.98 0.78431E-04 0.1773E 01 72720, 0.40000E-01 150, 43899.97 41702.19 0.26667E-03 0.16073E 01 72990, 0.40000E-01 150, 43899.97 41702.19 0.26667E-03 0.16073E 01 73050, 0.40000E-01 150, 43099.97 41702.19 0.26	0,96730E	00	49650.	0,40000	E-01	3420.	14012.75		0.116961-04
0.10873E 01 57930, 0.40000E=01 2610, 15829,01 15036,56 0.15526E=04 0.11273E 01 60180, 0.40000E=01 1890, 17257,78 16593,79 0.21164E=04 0.12073E 01 63420, 0.40000E=01 1890, 17257,78 16593,79 0.21164E=04 0.12073E 01 63420, 0.40000E=01 1350, 18054,69 17150,81 0.29630E=04 0.12473E 01 64950, 0.40000E=01 1550, 18917,86 17970,77 0.26144E=04 0.12673E 01 664950, 0.40000E=01 1440, 19856,41 18864,23 0.27778E=04 0.13273E 01 664950, 0.40000E=01 1440, 19856,41 18864,23 0.27778E=04 0.13273E 01 67410, 0.40000E=01 1020, 20886,39 19842,65 0.39216E=04 0.13673E 01 67410, 0.40000E=01 870, 22022,87 20920,33 0.41667E=04 0.14073E 01 69240, 0.40000E=01 870, 22022,87 20920,33 0.41667E=04 0.14073E 01 69240, 0.40000E=01 870, 23278,15 22112,77 0.45977E=04 0.14473E 01 69290, 0.40000E=01 750, 24673,34 23438,11 0.53335E=04 0.14873E 01 70740, 0.40000E=01 750, 24673,34 23438,11 0.53335E=04 0.15273E 01 71250, 0.40000E=01 750, 24673,34 23438,11 0.53335E=04 0.15273E 01 71250, 0.40000E=01 510, 2799,12 26568,89 0.78831E=04 0.15273E 01 71250, 0.40000E=01 390, 29919,30 28421,44 0.10256E=03 0.15673E 01 71640, 0.40000E=01 30, 34565,13 32634,68 0.13333E=02 0.16473E 01 72000, 0.40000E=01 30, 34565,13 32634,68 0.13333E=02 0.16473E 01 72720, 0.40000E=01 30, 34565,13 32634,68 0.13333E=02 0.16473E 01 72720, 0.40000E=01 150, 4389,97 41702,19 0.26667E=03 0.16473E 01 72720, 0.40000E=01 150, 4389,97 41702,19 0.26667E=03 0.16473E 01 72990, 0.40000E=01 150, 4389,97 41702,19 0.26667E=03 0.16473E 01 72870, 0.40000E=01 150, 4389,97 41702,19 0.26667E=03 0.16473E 01 72890, 0.40000E=01 150, 4389,97 41702,19 0.26667E=03 0.16473E 01 73800, 0.40000E=01 150, 5254,83 4943,78 0.6667E=03 0.16473E	0,10073E	01	52590.	0.40000	E-01	2940.	14579.80	13849.88	0.13606t-04
0.11273E 01 60180. 0.40000E-01 1250. 16518.27 15691.31 0.17778E-04 0.11673E 01 62070. 0.40000E-01 1870. 17257.78 16393.79 0.21164E-04 0.12673E 01 63420. 0.40000E-01 1350. 18917.86 17970.77 0.26144E-04 0.12673E 01 64950. 0.40000E-01 1550. 18917.86 17970.77 0.26144E-04 0.12673E 01 64390. 0.40000E-01 1020. 20888.39 19842.85 0.39216E-04 0.13273E 01 64390. 0.40000E-01 1020. 20888.39 19842.85 0.39216E-04 0.13273E 01 64390. 0.40000E-01 1020. 20888.39 19842.85 0.39216E-04 0.13273E 01 64390. 0.40000E-01 870. 23278.15 22112.77 0.45977E-04 0.14473E 01 64240. 0.40000E-01 870. 23278.15 22112.77 0.45977E-04 0.14473E 01 64240. 0.40000E-01 750. 24673.34 23438.11 0.53333E-04 0.15273E 01 70740. 0.40000E-01 750. 24673.34 23438.11 0.53333E-04 0.15273E 01 71250. 0.40000E-01 750. 24673.34 23438.11 0.53333E-04 0.15273E 01 71250. 0.40000E-01 390. 24914.30 24416.18 0.53333E-04 0.15273E 01 71270. 0.40000E-01 390. 24914.30 24416.18 0.53333E-04 0.15273E 01 71270. 0.40000E-01 390. 24914.30 24821.44 0.10256E-03 0.15673E 01 71440. 0.40000E-01 390. 24914.30 24821.44 0.10256E-03 0.15673E 01 71440. 0.40000E-01 30. 32107.71 30500.29 0.12121E-03 0.16473E 01 72500. 0.40000E-01 30. 34565.13 32634.68 0.13333E-02 0.16473E 01 72510. 0.40000E-01 30. 34565.13 32634.68 0.13333E-02 0.16473E 01 72500. 0.40000E-01 150. 40423.66 38399.91 0.19048E-03 0.17073E 01 72870. 0.40000E-01 150. 40423.66 38399.91 0.19048E-03 0.16473E 01 72800. 0.40000E-01 150. 40423.66 5800.00 0.16473E	0,10473E	01	55320,	0,40000	E-01	2730.	15184.20	14424.03	0.146521-04
0.11673E 01 62070. 0.40000E=01 1890. 17257.78 16393.79 0.21164E=04 0.12073E 01 63420. 0.40000E=01 1350. 18054.69 17150.81 0.20850E=04 0.12473E 01 64950. 0.40000E=01 1550. 18073E 01 7070.77 0.26144E=04 0.12873E 01 64950. 0.40000E=01 1440. 19858.41 18864.23 0.27778E=04 0.13273E 01 647410. 0.40000E=01 1020. 20888.39 19842.65 0.39216E=04 0.13673E 01 68370. 0.40000E=01 1020. 20888.39 19842.65 0.39216E=04 0.13673E 01 69240. 0.40000E=01 960. 22022.87 20920.33 0.41667E=04 0.14073E 01 69240. 0.40000E=01 870. 23278.15 22112.77 0.45977E=04 0.14473E 01 69240. 0.40000E=01 750. 24273.54 23438.11 0.53335E=04 0.14873E 01 70740. 0.40000E=01 750. 26229.30 24916.18 0.5333E=04 0.15273E 01 71250. 0.40000E=01 300. 29919.30 28421.44 0.10256E=03 0.16073E 01 71070. 0.40000E=01 30. 34565.13 32634.66 0.13333E=02 0.16473E 01 72000. 0.40000E=01 30. 34565.13 32634.66 0.13333E=02 0.16473E 01 72720. 0.40000E=01 30. 34565.13 32634.66 0.13333E=02 0.16473E 01 72720. 0.40000E=01 150. 43899.91 0.19046E=03 0.17673E 01 72720. 0.40000E=01 150. 43899.91 0.19046E=03 0.18073E 01 72990. 0.40000E=01 150. 43899.91 0.19046E=03 0.18073E 01 72990. 0.40000E=01 150. 43899.97 41702.19 0.26667E=03 0.18073E 01 73050. 0.40000E=01 150. 47790.05 45403.21 0.33333E=02 0.18073E 01 73050. 0.40000E=01 150. 52154.83 49543.78 0.66667E=03 0.18073E 01 73050. 0.40000E=01 30. 57056.49 54171.55 0.133333E=02 0.18073E 01 73050. 0.40000E=01	0,10873E	01	57930.	0.40000	E-01	2610.	15829,01	15030,56	0.15526E-04
0.12073E 01	0.11273E	01	60180.	0,40000	E-01	2250.	16518,27	15691.31	0.17778t-04
0.12473E 01 64950. 0.40000E-01 1550. 18917.86 17970.77 0.26144E-04 0.12673E 01 66390. 0.40000E-01 1440. 19858.41 18864.23 0.27778E-04 0.13273E 01 67410. 0.40000E-01 1020. 20888.39 19842.85 0.39718E-04 0.13273E 01 68370. 0.40000E-01 960. 22022.87 20920.33 0.41667E-04 0.14073E 01 69240. 0.40000E-01 870. 23278.15 22112.77 0.45977E-04 0.14073E 01 69990. 0.40000E-01 750. 24673.34 23438.11 0.53333E-04 0.14873E 01 70740. 0.40000E-01 750. 24673.34 23438.11 0.53333E-04 0.15273E 01 71250. 0.40000E-01 510. 27969.12 26568.89 0.78431E-04 0.15273E 01 71440. 0.40000E-01 390. 29919.30 24416.18 0.53333E-03 0.15673E 01 71640. 0.40000E-01 390. 29919.30 24421.44 0.10256E-03 0.15073E 01 71970. 0.40000E-01 300. 32107.71 30500.29 0.12121E-03 0.16473E 01 72510. 0.40000E-01 30. 34565.31 32334.68 0.13333E-02 0.16473E 01 72570. 0.40000E-01 510. 37325.61 35456.96 0.78431E-04 0.17273E 01 72720. 0.40000E-01 510. 37325.61 35456.96 0.78431E-04 0.17273E 01 72720. 0.40000E-01 150. 43899.91 0.19048E-03 0.18073E 01 72990. 0.40000E-01 150. 43899.91 0.19048E-03 0.18073E 01 72990. 0.40000E-01 150. 43899.91 0.19048E-03 0.18073E 01 72990. 0.40000E-01 150. 43899.91 0.20667E-03 0.18073E 01 72990. 0.40000E-01 150. 43899.91 0.20667E-03 0.18073E 01 73050. 0.40000E-01 150. 43899.91 0.33333E-02	0.116738	01	62070.	0.40000	E-01	1890.	17257.78	16393,79	0.21164E-04
0.12673E 01 66390. 0.40000E=01 1440. 19858.41 18864.23 0.27778E=04 0.13273E 01 67410. 0.40000E=01 1020. 20888.39 19842.65 0.39216E=04 0.13273E 01 68370. 0.40000E=01 960. 22022.87 20920.33 0.41667E=04 0.14073E 01 69240. 0.40000E=01 870. 23278.15 22112.77 0.45977E=04 0.14473E 01 69990. 0.40000E=01 750. 24673.54 21438.11 0.53335E=04 0.14873E 01 70740. 0.40000E=01 750. 24673.54 21438.11 0.53335E=04 0.15273E 01 71250. 0.40000E=01 750. 24673.54 21438.11 0.53335E=04 0.15273E 01 71250. 0.40000E=01 750. 27969.12 245568.89 0.78831E=04 0.15273E 01 71640. 0.40000E=01 360. 27919.30 28421.44 0.10256E=03 0.16073E 01 71640. 0.40000E=01 360. 29919.30 28421.44 0.10256E=03 0.16073E 01 72000. 0.40000E=01 30. 32107.71 30500.29 0.12121E=03 0.16473E 01 72000. 0.40000E=01 30. 34565.13 32634.66 0.13333E=02 0.16473E 01 72510. 0.40000E=01 30. 34565.13 32634.66 0.13333E=02 0.17273E 01 72720. 0.40000E=01 150. 43689.97 41702.19 0.26667E=03 0.17673E 01 72720. 0.40000E=01 150. 43689.97 41702.19 0.26667E=03 0.18073E 01 72990. 0.40000E=01 150. 43689.97 41702.19 0.26667E=03 0.18073E 01 72990. 0.40000E=01 150. 43689.97 41702.19 0.26667E=03 0.18073E 01 72990. 0.40000E=01 120. 47790.05 45403.21 0.33333E=02 0.18073E 01 73050. 0.40000E=01 120. 47790.05 45403.21 0.33333E=02 0.18073E 01 73050. 0.40000E=01 120. 47790.05 45403.21 0.33333E=02 0.18073E 01 73050. 0.40000E=01 30. 57100E.49 54171.55 0.13333E=02	0.12073E	01	63420,	0,40000	E-01	1350.	18054,69	17150,81	0.29630t-04
0.13273E 01 67410. 0.40000E-01 1020. 20888.39 19842.65 0.39216E-04 0.33673E 01 68370. 0.40000E-01 870. 22022.87 20920.33 0.41667E-04 0.14073E 01 69240. 0.40000E-01 870. 23278.15 22112.77 0.45977E-04 0.14473E 01 69990. 0.40000E-01 750. 24673.34 23438.11 0.53335E-04 0.14873E 01 70740. 0.40000E-01 750. 24673.34 23438.11 0.53335E-04 0.15273E 01 71250. 0.40000E-01 510. 2799.12 26568.89 0.78831E-04 0.15273E 01 71640. 0.40000E-01 390. 29919.30 28421.44 0.10256E-03 0.16073E 01 71970. 0.40000E-01 390. 29919.30 28421.44 0.10256E-03 0.16073E 01 72000. 0.40000E-01 30. 32107.71 30500.29 0.12121E-03 0.16473E 01 72000. 0.40000E-01 30. 34565,13 32634.68 0.13333E-02 0.16473E 01 72720. 0.40000E-01 30. 34565,13 32634.68 0.13333E-02 0.17273E 01 72720. 0.40000E-01 210. 40423.66 38399.91 0.19048E-03 0.17673E 01 72720. 0.40000E-01 150. 43699.97 41702.19 0.26667E-03 0.16473E 01 72870. 0.40000E-01 150. 43699.97 41702.19 0.26667E-03 0.16473E 01 72870. 0.40000E-01 150. 43699.97 41702.19 0.26667E-03 0.16473E 01 72990. 0.40000E-01 120. 47790.05 45403.21 0.3333E-02 0.16473E 01 73050. 0.40000E-01 120. 47790.05 45403.21 0.33333E-02 0.16473E 01 73050. 0.40000E-01 30. 57026.49 54171.55 0.13333E-02 0.18473E 01 73050. 0.40000E-01 30. 57026.49 54171.55 0.13333E-02	0.12473E	01	64950.	0,40000	E-01	1530.	18917.86	17970.77	0.261446-04
0.13673E 01 68370, 0.40000E=01 960, 22022.87 20920.33 0.41667E=04 0.14073E 01 69240, 0.40000E=01 750, 23278.15 22112.77 0.45977E=04 0.14873E 01 69240, 0.40000E=01 750, 24673.54 23438.11 0.53335E=04 0.14873E 01 70740, 0.40000E=01 750, 26629.30 24916.18 0.53335E=04 0.15873E 01 71250, 0.40000E=01 750, 27969.12 26568.89 0.78431E=04 0.15873E 01 71640, 0.40000E=01 390, 29919.30 28421.44 0.10256E=03 0.16073E 01 71970, 0.40000E=01 330, 32107.71 30500.29 0.12121E=03 0.16473E 01 72000, 0.40000E=01 330, 32107.71 30500.29 0.12121E=03 0.16473E 01 72000, 0.40000E=01 30, 34565.13 32834.68 0.13333E=02 0.16473E 01 72720, 0.40000E=01 510, 37325.61 35456.96 0.78431E=04 0.17273E 01 72720, 0.40000E=01 210, 40423.66 38399.91 0.19048E=03 0.17673E 01 72870, 0.40000E=01 150, 43899.97 41702.19 0.26667E=03 0.18473E 01 72890, 0.40000E=01 150, 43899.97 41702.19 0.26667E=03 0.18473E 01 73050, 0.40000E=01 120, 47796.05 45403.21 0.3333E=02 0.18473E 01 73050, 0.40000E=01 120, 47796.05 45403.21 0.33333E=03 0.18473E 01 73050, 0.40000E=01 120, 47796.05 45403.21 0.33333E=03 0.18473E 01 73050, 0.40000E=01 30, 57026.49 54171.55 0.13333E=02 0.18473E 01 73050	0,12873E	01	66390.	0,40000	E-01	1440.	19858.41	18864.23	0.27778E-04
0,14073E 01 69240. 0,40000E=01 870. 23278,15 22112.77 0,45977E=04 0,14473E 01 69990. 0,40000E=01 750. 24673,34 21438,11 0,53335E=04 0,14873E 01 70740. 0,40000E=01 750. 24673,34 21438,11 0,53335E=04 0,15273E 01 71250. 0,40000E=01 510. 27969,12 245568,89 0,78331E=04 0,15273E 01 71640. 0,40000E=01 390. 29919,30 28421,44 0,10256E=03 0,16073E 01 71970. 0,40000E=01 330. 32107.71 30500.29 0,12121E=03 0,16473E 01 72000. 0,40000E=01 30. 34555,13 32634,66 0,13333E=02 0,16473E 01 72510. 0,40000E=01 30. 34555,13 32634,66 0,13333E=02 0,17273E 01 72720. 0,40000E=01 510. 40423.66 36399,91 0,19046E=03 0,17673E 01 72720. 0,40000E=01 150. 43689,97 41702.19 0,26667E=03 0,18673E 01 72990. 0,40000E=01 150. 43689,97 41702.19 0,26667E=03 0,18473E 01 72990. 0,40000E=01 120. 47796.05 45403,21 0,3333E=03 0,18473E 01 73050. 0,40000E=01 120. 47796.05 45403,21 0,3333E=03 0,18473E 01 73050. 0,40000E=01 120. 47796.05 45403,21 0,3333E=03 0,18473E 01 73050. 0,40000E=01 30. 57026.49 54171,55 0,13333E=02	0,13273E	01	67410.	0,40000	E-01	1020.	20888,39	19842.05	0.39216E-04
0.14473E 01 6990. 0.40000E-01 750. 24673.34 23436.11 0.53335E-04 0.14873E 01 70740. 0.40000E-01 750. 26229.30 24916.18 0.53335E-04 0.15273E 01 71250. 0.40000E-01 510. 27909.12 26568.89 0.78431E-04 0.15673E 01 71640. 0.40000E-01 390. 29919.30 28421.44 0.10256E-03 0.16073E 01 71970. 0.40000E-01 350. 32107.71 30500.29 0.12121E-03 0.16473E 01 72000. 0.40000E-01 30. 34565,13 32334.68 0.133333E-02 0.16473E 01 72720. 0.40000E-01 30. 34565,13 32334.68 0.133333E-02 0.17273E 01 72720. 0.40000E-01 210. 40423.66 38399.91 0.19048E-03 0.17673E 01 72720. 0.40000E-01 150. 43690.97 41702.19 0.26667E-03 0.18073E 01 72990. 0.40000E-01 150. 43690.97 41702.19 0.26667E-03 0.18473E 01 72990. 0.40000E-01 120. 47790.05 45403.21 0.33333E-03 0.18473E 01 73050. 0.40000E-01 120. 47790.05 45403.21 0.33333E-03 0.18473E 01 73050. 0.40000E-01 30. 57026.49 54171.55 0.13333E-02	0.13673E	01	68370.	0,40000	E-01	960,	22022,87	20920,33	0,41007E-04
0.14873E 01 70740, 0.40000E=01 750, 26229.30 24916.18 0.53333E=04 0.15273E 01 71250, 0.40000E=01 510, 27909.12 26568.89 0.78831E=04 0.15673E 01 71640, 0.40000E=01 390, 29919.30 28421.44 0.10256E=03 0.16073E 01 71970, 0.40000E=01 330, 32107.71 30500.29 0.12121E=03 0.16473E 01 72000, 0.40000E=01 30, 34565.13 32634.68 0.13333E=02 0.16473E 01 72510, 0.40000E=01 510, 37325.61 35456, 96 0.78831E=04 0.17273E 01 72720, 0.40000E=01 210, 40423.66 36399.91 0.19048E=03 0.17673E 01 72870, 0.40000E=01 150, 43899.97 41702.19 0.26667E=03 0.18473E 01 72990, 0.40000E=01 120, 47796.05 45403.21 0.3333E=03 0.18473E 01 73050, 0.40000E=01 120, 47796.05 45403.21 0.33333E=03 0.18473E 01 73050, 0.40000E=01 120, 47796.05 45403.21 0.33333E=03 0.18473E 01 73050, 0.40000E=01 30, 57026.49 54171.55 0.13333E=02		01	69240.	0,40000	E-01	870.	23278,15	22112.77	0.45977E-04
0.15273E 01 71250, 0.40000E=01 510, 27969.12 26566.89 0.78831E=08 0.15673E 01 71640, 0.40000E=01 390, 29919.50 28421.44 0.10256E=03 0.15673E 01 71970, 0.40000E=01 330, 32107.71 30500.29 0.12121E=03 0.16473E 01 72000, 0.40000E=01 30, 34565.13 32834.66 0.13333E=02 0.16473E 01 72510, 0.40000E=01 510, 37325.61 35456.96 0.788451E=08 0.17273E 01 72720, 0.40000E=01 210, 40423.66 36399.91 0.19046E=03 0.17673E 01 72670, 0.40000E=01 150, 43899.97 41702.19 0.26667E=03 0.18073E 01 72990, 0.40000E=01 120, 47796.05 45403.21 0.3333E=03 0.18473E 01 73050, 0.40000E=01 120, 47796.05 45403.21 0.33333E=03 0.18473E 01 73050, 0.40000E=01 30, 57026.49 54171.55 0.13333E=02	0,14473E	01	69990,	0,40000	E-01	750.	24673,34	23438,11	0.53335E-04
0.15673E 01 71640. 0.40000E=01 390. 29919.30 28421.44 0.10256E=03 0.16073E 01 71970. 0.40000E=01 350. 32107.71 30500.29 0.12121E=03 0.16473E 01 72000. 0.40000E=01 30. 34565,13 32634.68 0.13333E=02 0.16473E 01 72510. 0.40000E=01 30. 37325.61 35456.96 0.13333E=02 0.17273E 01 72720. 0.40000E=01 210. 40423.66 3639.91 0.170408E=03 0.17673E 01 72720. 0.40000E=01 150. 43690.97 41702.19 0.26667E=03 0.18073E 01 72990. 0.40000E=01 150. 43690.97 41702.19 0.26667E=03 0.18473E 01 73050. 0.40000E=01 120. 47790.05 45403.21 0.33333E=03 0.18473E 01 73050. 0.40000E=01 30. 57126.49 54171.55 0.13333E=02 0.18073E 01 73050. 0.40000E=01 30. 57126.49 54171.55 0.13333E=02		01	70740.	0.40000	E-01	750.	26229,30	24916.18	0.55333E-04
0.16473E 01 71970, 0.40000E=01 330, 32107,71 30500,29 0.12121E=03 0.16473E 01 72000, 0.40000E=01 30, 34565,13 32634,66 0.13333E=02 0.16473E 01 72510, 0.40000E=01 510, 37325,61 35456,96 0.78431E=04 0.17273E 01 72720, 0.40000E=01 210, 40423,66 36399,91 0.19048E=03 0.17673E 01 72870, 0.40000E=01 150, 43699,97 41702,19 0.26667E=03 0.18073E 01 72990, 0.40000E=01 120, 47796,05 45403,21 0.33333E=03 0.18473E 01 73050, 0.40000E=01 60, 52154,83 49343,78 0.66667E=03 0.18073E 01 73050, 0.40000E=01 30, 57026,49 54171,55 0.13333E=02		01	71250.	0,40000	E-01	510.	27969,12	26568,89	0,78431E-04
0.16473E 01 72000. 0.40000E=01 30. 34565.13 32834.68 0.13333E=02 0.16473E 01 72510. 0.40000E=01 510. 37325.61 35456.98 0.78431E=04 0.17273E 01 72720. 0.40000E=01 210. 40423.66 36399.91 0.19040E=03 0.17673E 01 72870. 0.40000E=01 150. 43899.97 41702.19 0.26667E=03 0.18073E 01 72990. 0.40000E=01 120. 47796.05 45403.21 0.3333E=03 0.18473E 01 73050. 0.40000E=01 60. 52154.83 49543.78 0.66667E=03 0.18073E 01 73080. 0.40000E=01 30. 57026.49 54171.55 0.13333E=02		01	71640.	0,40000	t-01	390.	29919,30	28421.44	0.10256E-03
0.14873E 01 72510. 0.40000E-01 510. 37325.01 35456.96 0.78831E-04 0.17273E 01 72720. 0.40000E-01 210. 40423.66 38399.91 0.19048E-03 0.17673E 01 72870. 0.40000E-01 150. 43899.97 41702.19 0.26667E-03 0.18073E 01 72990. 0.40000E-01 120. 47798.05 45403.21 0.33333E-03 0.18473E 01 73050. 0.40000E-01 20. 47798.05 45403.21 0.33333E-03 0.18473E 01 73050. 0.40000E-01 30. 57026.49 54171.55 0.13333E-02		01		0,40000	E-01	330.	32107.71	30500.29	0.121211-03
0.17273E 01 72720, 0.40000E-01 210, 40423.66 38399.91 0.19048E-03 0.17673E 01 72870, 0.40000E-01 150, 43899.97 41702.19 0.26667E-03 0.18073E 01 72990, 0.40000E-01 120, 47796.05 45403.21 0.33331-03 0.18473E 01 73050, 0.40000E-01 60, 52154.83 49543.78 0.66667E-03 0.18473E 01 73080, 0.40000E-01 30, 57026.49 54171.55 0.13333E-02		01		0.40000	E-01	30.	34565,13	32834,68	0,13333E-02
0.17673E 01 72870, 0.40000E=01 150, 43899,97 41702.19 0.26667E=03 0.18073E 01 72990, 0.40000E=01 120, 47796.05 45403.21 0.33333E=03 0.18473E 01 73050, 0.40000E=01 60, 52154.83 49543.78 0.66667E=03 0.18673E 01 73080, 0.40000E=01 30, 57026.49 54171.55 0.13333E=02		10		0.40000	E-01	510.	37325.61		0.78431E-04
0.18073E 01 72990, 0.40000E=01 120, 47796.05 45403.21 0.33333E=03 0.18473E 01 73050, 0.40000E=01 60, 52154.83 49543.78 0.66667E=03 0.18873E 01 73080, 0.40000E=01 30, 57026.49 54171.55 0.13333E=02		01		0.40000	E-01	210.	40423,66	38399,91	0.19048E-03
0.18473E 01 73050, 0.40000E-01 80, 52154.83 49543.78 0.66667E-03 0.18673E 01 73080, 0.40000E-01 30, 57026.49 54171.55 0.13335E-02		01	72870,	0,40000	E-01	150.	43899,97	41702.19	0,26667E-03
0,18873E 01 73080, 0,40000E-01 30, 57026,49 54171,55 0,13335E-02		01	72990.	0.40000	E-01	120.	47796.05	45403.21	0,33333E-03
						60.	52154,83	49543.78	0.000071-03
0.192736 01 73110. 0.400016-01 30. 62459.77 59112 82 0.131146-02			73080.			30.	57026,49	54171.55	0.133356-02
-1	0.192736	01	73110.	0.40001	E-01	30.	62459,77	59552,82	0,13354E-02

FATIGUE CHACK PROPAGATION DATA

SPEC NO 1205 LONG GRAIN HOOM SALT TEST F 5 MZ

	PMAX	PHIN	40	NO		
	497.	25.	0,64610	٥.	0.25220	2,50000
	N	DELA	DELN	KMAX	DELK	DADN
0.48810E 00	5610.	0.40000E-	01 5610.	6981.93	6630,73	0.71301E-05
0.72810E 00		0.40000E-		7173.68	6612.84	0,98765E-05
0.76810E 00		0.40000E-	01 3030.	7392,25	7020.41	0,11019E-04
0.80810E 00		0.40000E-	01 3390.	7636.23	7252.12	0.11799E-04
0.84610E 00		0.40000E-		7904.23	7500.04	0.16667E-04
0.68810E 00		0.40000E-		8195,29	7783.00	0.17094E-04
0.92810E 00		0.40000E-		8508.63	8080,64	0,15873t-04

PATIGUE CRACK PROPAGATION DATA

SPEC NO 1320 LONG GRAIN ROOM AIR TEST FREG 5 HZ

774, 39, 0,60860 0, 0,25420 2,50000 0.68860E 00 3610, 0,4000E=01 3610, 10606,07 10075,09 0,104976-04 0,68860E 00 8670, 0,40000E=01 4260, 10860,86 10317,13 0,93897E=05 0,72860E 00 12240, 0,40000E=01 4170, 11159,63 10600,94 0,9523F=05 0,7660E 00 16520, 0,40000E=01 4170, 11159,63 10600,94 0,9523F=05 0,7660E 00 16520, 0,40000E=01 3630, 11879,86 11285,11 0,11019E=04 0,88860E 00 25110, 0,40000E=01 3630, 11879,86 11285,11 0,11019E=04 0,88860E 00 25110, 0,40000E=01 2550, 12750,17 12111,85 0,1566E=04 0,88860E 00 25110, 0,40000E=01 2550, 12750,17 12111,85 0,1566E=04 0,40000E=01 2850, 0,40000E=01 2850, 13277,93 12575,20 0,14055E=04 0,40000E=01 2850, 13277,93 12575,20 0,14055E=04 0,40000E=01 2850, 13277,93 12575,20 0,14055E=04 0,40000E=01 32800, 0,40000E=01 1830, 1556,13 14766,89 0,21858E=04 0,10086E 01 34710, 0,40000E=01 1830, 1556,13 14766,89 0,21858E=04 0,12868E 01 34500, 0,40000E=01 1830, 1556,13 14766,89 0,21858E=04 0,11286E 01 38500, 0,40000E=01 1830, 1556,13 14766,89 0,21858E=04 0,11286E 01 38700, 0,40000E=01 1830, 1556,13 14766,89 0,21858E=04 0,11286E 01 38700, 0,40000E=01 1830, 1556,13 14766,89 0,21858E=04 0,11286E 01 40920, 0,40000E=01 1900, 16581,86 17651,59 0,40046E=04 0,12868E 01 40920, 0,40000E=01 1900, 16581,86 17651,59 0,40046E=04 0,12868E 01 40920, 0,40000E=01 900, 16581,86 17651,59 0,40046E=04 0,12868E 01 44780, 0,40000E=01 900, 16581,86 17651,59 0,40046E=04 0,13868E 01 44780, 0,40000E=01 900, 16581,86 17651,59 0,40046E=04 0,13868E 01 46780, 0,40000E=01 900, 16581,86 17651,59 0,40046E=04 0,14868E 01 46780, 0,40000E=01 900, 16581,86 17651,59 0,40046E=04 0,14868E 01 46780, 0,40000E=01 900, 16581,87 0,14868E 01 46780, 0,40000E=01 900, 16581,87 0,14868E 01 46780, 0,40000E=01 900, 16381,87 0,14868E 01 46780, 0,40000E=01 900, 16381,87 0,14868E 01	-			PMAX	PMIN		AD	NO		
0.68860E 00 3810 0.40000E-01 3810 10006.07 10075.09 0.10499F-015 0.72860E 00 12240 0.40000E-01 4260 10860.06 10317.13 0.9389FE-015 0.72860E 00 12240 0.40000E-01 4170 11159.03 10600.94 0.9523F-05 0.70660E 00 16320 0.40000E-01 4080 11499.04 1092.25 0.98039E-05 0.80860E 00 25160 0.40000E-01 3510 12297.06 11681.43 0.12461F-04 0.88660E 00 25160 0.40000E-01 2550 12297.06 11681.43 0.12461F-04 0.88660E 00 25510 0.40000E-01 2550 12297.06 11681.43 0.12461F-04 0.88660E 00 25510 0.40000E-01 2550 12750.17 12111.85 0.15686E-04 0.98660E 00 30840 0.40000E-01 2550 12750.17 12111.85 0.15686E-04 0.10860E 01 32910 0.40000E-01 2280 13760.12 13071.24 0.17544E-04 0.10860E 01 32910 0.40000E-01 2280 13760.12 13071.24 0.17544E-04 0.10860E 01 34710 0.40000E-01 1800 13760.12 13071.24 0.17544E-04 0.10860E 01 34710 0.40000E-01 1800 15545.13 14766.89 0.22272E-04 0.10860E 01 34710 0.40000E-01 1800 15545.13 14766.89 0.22272E-04 0.10860E 01 34710 0.40000E-01 1800 15545.13 14766.89 0.221858E-04 0.112860E 01 38070 0.40000E-01 1800 15545.13 14766.89 0.221858E-04 0.112860E 01 39720 0.40000E-01 1800 15545.13 14766.89 0.221858E-04 0.112860E 01 40920 0.40000E-01 1800 17733.05 16845.27 0.33333E-04 0.12886E 01 4190 0.40000E-01 1800 17733.05 16845.27 0.33333E-04 0.12886E 01 4190 0.40000E-01 1900 17733.05 16845.27 0.40049F-04 0.12886E 01 4390 0.40000E-01 990 18580.88 18530.29 0.40040E-04 0.13286E 01 4390 0.40000E-01 900 18580.8 18530.29 0.40040E-04 0.13286E 01 43780 0.40000E-01 900 18580.8 18530.29 0.40040E-04 0.13286E 01 44730 0.40000E-01 900 18580.8 18530.29 0.40040E-04 0.13286E 01 44780 0.40000E-01 900 18580.8 18530.29 0.40040E-04 0.13286E 01 44780 0.40000E-01 900 18580.8 18530.9 0.43011E-04 0.13286E 01 4860 0.40000E-01 900 18580.8 18580.9 0.13333E-04 0.13286E 01 4860 0.40000E-01 900 18580.8 18580.9 0.133					39.	0.6	0860	0.	0.25420	2.50000
0.68860E 00 3810 0.40000E-01 3810 10006.07 10075.09 0.10499F-015 0.72860E 00 12240 0.40000E-01 4260 10860.06 10317.13 0.9389FE-015 0.72860E 00 12240 0.40000E-01 4170 11159.03 10600.94 0.9523F-05 0.70660E 00 16320 0.40000E-01 4080 11499.04 1092.25 0.98039E-05 0.80860E 00 25160 0.40000E-01 3510 12297.06 11681.43 0.12461F-04 0.88660E 00 25160 0.40000E-01 2550 12297.06 11681.43 0.12461F-04 0.88660E 00 25510 0.40000E-01 2550 12297.06 11681.43 0.12461F-04 0.88660E 00 25510 0.40000E-01 2550 12750.17 12111.85 0.15686E-04 0.98660E 00 30840 0.40000E-01 2550 12750.17 12111.85 0.15686E-04 0.10860E 01 32910 0.40000E-01 2280 13760.12 13071.24 0.17544E-04 0.10860E 01 32910 0.40000E-01 2280 13760.12 13071.24 0.17544E-04 0.10860E 01 34710 0.40000E-01 1800 13760.12 13071.24 0.17544E-04 0.10860E 01 34710 0.40000E-01 1800 15545.13 14766.89 0.22272E-04 0.10860E 01 34710 0.40000E-01 1800 15545.13 14766.89 0.22272E-04 0.10860E 01 34710 0.40000E-01 1800 15545.13 14766.89 0.221858E-04 0.112860E 01 38070 0.40000E-01 1800 15545.13 14766.89 0.221858E-04 0.112860E 01 39720 0.40000E-01 1800 15545.13 14766.89 0.221858E-04 0.112860E 01 40920 0.40000E-01 1800 17733.05 16845.27 0.33333E-04 0.12886E 01 4190 0.40000E-01 1800 17733.05 16845.27 0.33333E-04 0.12886E 01 4190 0.40000E-01 1900 17733.05 16845.27 0.40049F-04 0.12886E 01 4390 0.40000E-01 990 18580.88 18530.29 0.40040E-04 0.13286E 01 4390 0.40000E-01 900 18580.8 18530.29 0.40040E-04 0.13286E 01 43780 0.40000E-01 900 18580.8 18530.29 0.40040E-04 0.13286E 01 44730 0.40000E-01 900 18580.8 18530.29 0.40040E-04 0.13286E 01 44780 0.40000E-01 900 18580.8 18530.29 0.40040E-04 0.13286E 01 44780 0.40000E-01 900 18580.8 18530.9 0.43011E-04 0.13286E 01 4860 0.40000E-01 900 18580.8 18580.9 0.13333E-04 0.13286E 01 4860 0.40000E-01 900 18580.8 18580.9 0.133	_			N	DELA		DELN	KMAX	DELK	DADN
0.68860E 00 12240. 0.40000E=01 4260. 10860.A6 10317.13 0,93897E=05 0.72860E 00 12240. 0.40000E=01 4170. 11159.63 10600.94 0.95923F=05 0.76860E 00 16320. 0.40000E=01 3630. 11679.86 11285.11 0,11019E=04 0.86860E 00 23160. 0.40000E=01 3210. 12297.06 11681.43 0,12461F=04 0.86860E 00 25710. 0.40000E=01 2550. 12750.17 12111.85 0,156A6E=04 0.96860E 00 25710. 0.40000E=01 2550. 13237.93 12575.20 0,16035E=04 0.96860E 00 30840. 0.40000E=01 2850. 13237.93 12575.20 0,14035E=04 0.96860E 00 30840. 0.40000E=01 2850. 13237.93 12575.20 0,14035E=04 0.10860E 01 32910. 0.40000E=01 2070. 14317.45 13600.67 0.19324E=04 0.10860E 01 34710. 0.40000E=01 2070. 14317.45 13600.67 0.19324E=04 0.10860E 01 36540. 0.40000E=01 1800. 14911.47 14164.95 0.2222ZE=04 0.10860E 01 36540. 0.40000E=01 1850. 1556.13 14766.89 0.21856E=04 0.112860E 01 36700. 0.40000E=01 1850. 16222.58 15410.43 0,26144E=04 0.112860E 01 36970. 0.40000E=01 1850. 16222.58 15410.43 0,26144E=04 0.112860E 01 39720. 0.40000E=01 1850. 16222.58 15410.43 0,26144E=04 0.12860E 01 40920. 0.40000E=01 1650. 16949.45 16100.91 0,22242E=04 0.12860E 01 40920. 0.40000E=01 1650. 16949.45 16100.91 0,22242E=04 0.12860E 01 40920. 0.40000E=01 1950. 88 18530.29 0.40004E=04 0.132860E 01 42900. 0.40000E=01 990. 19506.88 18530.29 0.40004E=04 0.132860E 01 43830. 0.40000E=01 990. 19506.88 18530.29 0.40004E=04 0.132860E 01 46740. 0.40000E=01 990. 21636.36 20553.17 0.44440E=04 0.132860E 01 46740. 0.40000E=01 900. 21636.36 20553.17 0.44440E=04 0.132860E 01 46740. 0.40000E=01 900. 21636.36 20553.17 0.44440E=04 0.152860E 01 46740. 0.40000E=01 900. 21636.37 2090.97 0.40004E=04 0.16860E 01 46740. 0.40000E=01 900. 21636.36 20553.17 0.44440E=04 0.16860E 01 46740. 0.40000E=01 900. 21636.37 2090.97 0.40004E=04 0.16860E 01 46740. 0.40000E=01 900. 21636.37 2090.97 0.40004E=04 0.16860E 01 46740. 0.40000E=01 360. 33992.04 32982.85 0.1111E=03 0.16860E 01 46740. 0.40000E=01 360. 33992.04 32982.85 0.1111E=03 0.16860E 01 46740. 0.40000E=01 360. 31565.00 29982.85 0.1111E=03 0.16860E 01 46740. 0.40000E=01 360. 39948.55 37586.8		30484A.0	00	3810.		-01		10606.07		
0.72860E 00			-							0.93897E-05
0.7666E 00 16320	-									
0.80800E 00										
0.68660E 00 25160. 0.40000E=01 3210. 12297.06 11681.83 0.12861E 01 0.88660E 00 2550. 0.40000E=01 2550. 12750.17 12111.85 0.15686E=04 0.98660E 00 26560. 0.40000E=01 2550. 12750.17 12111.85 0.15686E=04 0.98660E 00 30840. 0.40000E=01 2650. 13217.93 12575.20 0.14035E=04 0.10860E 01 32910. 0.40000E=01 2080. 13760.12 13071.24 0.17544E=04 0.10860E 01 34710. 0.40000E=01 2080. 13760.12 13071.24 0.17544E=04 0.10860E 01 34710. 0.40000E=01 1800. 14911.47 14164.95 0.22272E=04 0.10860E 01 36070. 0.40000E=01 1850. 15555.13 14766.89 0.218580E=04 0.112660E 01 36070. 0.40000E=01 1850. 15555.13 14766.89 0.218580E=04 0.112660E 01 36070. 0.40000E=01 1850. 15555.13 14766.89 0.218580E=04 0.112660E 01 36070. 0.40000E=01 1850. 16949.45 16100.91 0.24242E=04 0.112660E 01 39720. 0.40000E=01 1650. 16949.45 16100.91 0.24242E=04 0.112660E 01 41910. 0.40000E=01 1650. 16949.45 16100.91 0.24242E=04 0.12660E 01 41910. 0.40000E=01 1200. 17733.05 16845.27 0.33331E=04 0.12660E 01 41910. 0.40000E=01 990. 19506.86 18530.29 0.40040E=04 0.12660E 01 41910. 0.40000E=01 990. 19506.86 18530.29 0.40040E=04 0.132660E 01 42900. 0.40000E=01 990. 19506.86 18530.29 0.40040E=04 0.132660E 01 44730. 0.40000E=01 990. 19506.86 18530.29 0.40040E=04 0.132660E 01 44730. 0.40000E=01 900. 21636.36 20553.17 0.44440E=04 0.132660E 01 44730. 0.40000E=01 900. 21636.36 20553.17 0.44440E=04 0.132660E 01 44730. 0.40000E=01 900. 21636.36 20553.17 0.444440E=04 0.132660E 01 46740. 0.40000E=01 720. 24244.71 23030.93 0.555560E=04 0.132660E 01 46740. 0.40000E=01 570. 27486.78 26112.60 0.701750E=04 0.152660E 01 46740. 0.40000E=01 570. 27486.78 26112.60 0.701750E=04 0.152660E 01 46740. 0.40000E=01 570. 27486.78 26112.60 0.701750E=04 0.152660E 01 46860E 01 46860. 0.40000E=01 570. 27486.78 26112.60 0.701750E=04 0.152660E 01 46860. 0.40000E=01 570. 27486.78 26112.60 0.701750E=04 0.152660E 01 46860. 0.40000E=01 500. 3748.55 37758.61 0.166670E=03 0.16660E 01 46860. 0.40000E=01 500. 3748.55 37758.61 0.166670E=03 0.16660E 01 46950. 0.40000E=01 500. 3748.55 37758.61 0.166670E=03 0.16660E 01 4695			77.							
0.88866E 00 28710. 0.40000E-01 2850. 12750.17 12111.85 0.15646E-04 0.92860E 00 28560. 0.40000E-01 2850. 13237.93 12575.20 0.14035E-04 0.96860E 00 36840. 0.40000E-01 2870. 13760.12 13071.24 0.17544E-04 0.1086E 01 32910. 0.40000E-01 2070. 14317.45 13600.67 0.19324E-04 0.1086E 01 34710. 0.40000E-01 1800. 14911.47 14164.95 0.22272E-04 0.1086E 01 36540. 0.40000E-01 1850. 15565.13 14766.89 0.21858E-04 0.11286E 01 3670. 0.40000E-01 1850. 15565.13 14766.89 0.21858E-04 0.11286E 01 3670. 0.40000E-01 1850. 16522.58 15410.43 0.20144E-04 0.11286E 01 3670. 0.40000E-01 1850. 16222.58 15410.43 0.20144E-04 0.11286E 01 40920. 0.40000E-01 1850. 16949.45 16100.91 0.24242E-04 0.1286E 01 40920. 0.40000E-01 1200. 17733.05 16845.27 0.53333E-04 0.12886E 01 42900. 0.40000E-01 1200. 17733.05 16845.27 0.40044E-04 0.12886E 01 42900. 0.40000E-01 990. 18581.86 17651.59 0.40044E-04 0.12886E 01 42900. 0.40000E-01 990. 18581.86 17651.59 0.40044E-04 0.12886E 01 42900. 0.40000E-01 990. 18581.86 17651.59 0.40044E-04 0.13886E 01 42900. 0.40000E-01 990. 18581.86 17651.59 0.40044E-04 0.13886E 01 42900. 0.40000E-01 990. 21636.36 20553.17 0.40044E-04 0.13886E 01 43830. 0.40000E-01 990. 21636.36 20553.17 0.40044E-04 0.13886E 01 44730. 0.40000E-01 990. 21636.36 20553.17 0.40044E-04 0.13886E 01 46740. 0.40000E-01 900. 21636.36 20553.17 0.40044E-04 0.13886E 01 46740. 0.40000E-01 720. 24204.71 23030.93 0.55556E-04 0.13886E 01 46740. 0.40000E-01 720. 24204.71 23030.93 0.55556E-04 0.15886E 01 46740. 0.40000E-01 720. 24204.71 23030.93 0.55556E-04 0.15886E 01 47820. 0.40000E-01 570. 27488.78 26112.80 0.70175E-04 0.15886E 01 48840. 0.40000E-01 570. 27488.78 26112.80 0.70175E-04 0.15886E 01 48840. 0.40000E-01 570. 27488.78 26112.80 0.70175E-04 0.16886E 01 48840. 0.40000E-01 570. 27488.78 26112.80 0.70175E-04 0.16886E 01 48840. 0.40000E-01 570. 30698.85 57758.81 0.15111E-03 0.16886E 01 48840. 0.40000E-01 180. 43571.11 41009.81 0.2223E-03 0.18886E 01 49500. 0.40000E-01 180. 43571.11 41009.81 0.2223E-03 0.18886E 01 49500. 0.40000E-01 500. 51297.13 48729.20 0.1111E-0			2.3							
0.02800E 00 28500. 0.40000E=01 2850. 13237.93 12575.20 0.1035E=04 0.90600E=01 30840. 0.40000E=01 2280. 1376.12 13071.24 0.17544E=04 0.1080EE 01 32910. 0.40000E=01 2070. 14317.45 13000.67 0.19324E=04 0.1080EE 01 34710. 0.40000E=01 1800. 14911.47 14164.95 0.2222E=04 0.1080EE 01 38540. 0.40000E=01 1850. 15545.13 14766.89 0.21858E=04 0.11286E 01 38070. 0.40000E=01 1550. 16222.58 15410.43 0.26144E=04 0.11286E 01 38070. 0.40000E=01 1550. 16222.58 15410.43 0.26144E=04 0.11286E 01 39720. 0.40000E=01 1550. 16222.58 15410.43 0.26144E=04 0.1286E 01 40920. 0.40000E=01 1650. 16949.45 16100.91 0.22242E=04 0.1286E 01 41910. 0.40000E=01 1200. 17733.05 16845.27 0.3333E=04 0.1286E 01 42900. 0.40000E=01 990. 16561.86 17651.59 0.40004E=04 0.1386E 01 42900. 0.40000E=01 990. 19506.88 18530.29 0.40004E=04 0.1386E 01 43830. 0.40000E=01 990. 19506.88 18530.29 0.40004E=04 0.1386E 01 44730. 0.40000E=01 990. 19506.88 18530.29 0.40004E=04 0.1386E 01 44730. 0.40000E=01 990. 21636.36 20553.17 0.40004E=04 0.1386E 01 44730. 0.40000E=01 900. 21636.36 20553.17 0.40004E=04 0.1386E 01 46740. 0.40000E=01 900. 22671.64 21726.61 0.49383E=04 0.1486E 01 46260. 0.40000E=01 900. 22671.64 21726.61 0.49383E=04 0.15266E 01 47310. 0.40000E=01 570. 24244.71 23330.93 0.555556E=04 0.15266E 01 47320. 0.40000E=01 570. 27486.78 26112.60 0.70175E=04 0.15266E 01 47320. 0.40000E=01 570. 27486.78 26112.60 0.70175E=04 0.15266E 01 47320. 0.40000E=01 570. 27486.78 26112.60 0.70175E=04 0.15266E 01 48340. 0.40000E=01 360. 33982.04 27936.18 0.7833E=04 0.1686E 01 48540. 0.40000E=01 360. 33982.04 27936.18 0.7833E=04 0.1686E 01 48340. 0.40000E=01 360. 33982.04 27936.18 0.7833E=02 0.1686E 01 48930. 0.40000E=01 360. 33982.04 27936.18 0.7843E=03 0.1686E 01 48930. 0.40000E=01 360. 33982.04 27936.18 0.1666E 01 48930. 0.40000E=01 3										
0.9660E 00 30840. 0.40000E=01 2280. 13760.12 13071.24 0.17544E=04 0.1068E 01 32910. 0.40000E=01 2070. 14117.45 13600.67 0.19324E=04 0.1068E 01 34710. 0.40000E=01 1800. 14911.47 14164.95 0.22272E=04 0.1068E 01 3670. 0.40000E=01 1830. 15545.13 14766.89 0.21858E=04 0.1286E 01 38070. 0.40000E=01 1550. 1622.58 15410.43 0.2144E=04 0.1286E 01 39720. 0.40000E=01 1550. 1622.58 15410.43 0.2144E=04 0.1286E 01 40920. 0.40000E=01 1550. 16949.45 16100.91 0.2242E=04 0.1286E 01 40920. 0.40000E=01 1500. 17733.05 16845.27 0.33333E=04 0.1286E 01 40920. 0.40000E=01 1200. 17733.05 16845.27 0.33333E=04 0.1286E 01 42900. 0.40000E=01 990. 18561.86 17651.59 0.40004E=04 0.1286E 01 42900. 0.40000E=01 990. 18561.86 17651.59 0.40004E=04 0.13286E 01 42900. 0.40000E=01 990. 18560.86 18530.29 0.40044E=04 0.13286E 01 42900. 0.40000E=01 990. 18560.86 18530.29 0.40044E=04 0.13286E 01 42900. 0.40000E=01 900. 21636.36 20553.17 0.44444E=04 0.13286E 01 42900. 0.40000E=01 900. 21636.36 20553.17 0.44444E=04 0.14086E 01 45540. 0.40000E=01 900. 21636.36 20553.17 0.44444E=04 0.14086E 01 45540. 0.40000E=01 720. 24244.71 23030.93 0.55556E=04 0.14886E 01 46740. 0.40000E=01 720. 24244.71 23030.93 0.55556E=04 0.15286E 01 47310. 0.40000E=01 570. 27488.78 26112.60 0.70175E=04 0.15286E 01 47310. 0.40000E=01 570. 27488.78 26112.60 0.70175E=04 0.15286E 01 47310. 0.40000E=01 500. 33982.04 32280.79 0.1111E=03 0.16886E 01 48840. 0.40000E=01 500. 33982.04 32280.79 0.1111E=03 0.16886E 01 48840. 0.40000E=01 360. 33982.04 32280.79 0.1111E=03 0.18886E 01 48840. 0.40000E=01 360. 33982.04 32280.79 0.1111E=03 0.18886E 01 48900. 0.40000E=01 300. 33982.04 32280.79 0.1111E=03 0.18886E 01 48900.										
0.10000E 01 32910 0.40000E=01 2070 14317.45 15000.67 0.10324E=04 0.10480E 01 34710 0.40000E=01 1800 14911.47 14164.95 0.2222E=04 0.10480E 01 36540 0.40000E=01 1850 15545.13 14766.89 0.218780E=04 0.11280E 01 38070 0.40000E=01 1850 16528.58 15410.43 0.20144E=04 0.11280E 01 39720 0.40000E=01 1850 16228.58 15410.43 0.20144E=04 0.11280E 01 40920 0.40000E=01 1850 16949.45 16100.91 0.24242E=04 0.1280E 01 40920 0.40000E=01 1200 17733.05 16845.27 0.53333E=04 0.1280EE 01 42900 0.40000E=01 990 18581.86 17651.59 0.40004E=04 0.1280E 01 42900 0.40000E=01 990 18581.86 17651.59 0.40004E=04 0.1280EE 01 42900 0.40000E=01 990 18581.86 17651.59 0.40004E=04 0.1380E 01 42900 0.40000E=01 990 19506.88 18530.29 0.40004E=04 0.1380E 01 43830 0.40000E=01 990 20520.20 19492.89 0.43011E=04 0.1380E 01 44730 0.40000E=01 930 20520.20 19492.89 0.43011E=04 0.1380E 01 45540 0.40000E=01 900 21636.36 20553.17 0.4444E=04 0.1480E 01 46260 0.40000E=01 900 21636.36 20553.17 0.4444E=04 0.1480E 01 46260 0.40000E=01 720 24240.71 23330.93 0.55556=04 0.1480E 01 46740 0.40000E=01 720 24240.71 23330.93 0.55556=04 0.15286E 01 47310 0.40000E=01 720 24240.71 23330.93 0.55556=04 0.15286E 01 47310 0.40000E=01 720 24240.71 27936.18 0.78333E=04 0.15286E 01 47320 0.40000E=01 570 27488.78 26112.80 0.70175E=04 0.1586E 01 48380 0.40000E=01 570 27488.78 26112.80 0.70175E=04 0.1586E 01 48380 0.40000E=01 570 27488.78 26112.80 0.70175E=04 0.1686E 01 48380 0.40000E=01 500 31563.00 29982.85 0.1111E=03 0.1686E 01 48380 0.40000E=01 270 36078.87 34861.60 0.14815E=03 0.1686E 01 48380 0.40000E=01 270 36078.87 34861.60 0.14815E=03 0.1686E 01 49300 0.40000E=01 270 36078.87 34861.60 0.14815E=03 0.1686E 01 49300 0.40000E=01 180 47005.80 44652.53 0.22225E=03 0.1886E 01 49300 0	-									
0.10486E 01 36710 0.40000E=01 1800 14911.47 14164.95 0.2222E=04 0.10886E 01 36540 0.40000E=01 1850 15545.13 14766.89 0.21858E=04 0.11286E 01 36070 0.40000E=01 1550 16222.58 15410.43 0.26144E=04 0.11286E 01 36070 0.40000E=01 1650 16924.45 16100.91 0.22242E=04 0.1286E 01 40920 0.40000E=01 1650 16949.45 16100.91 0.22242E=04 0.1286E 01 41910 0.40000E=01 1200 17753.05 16845.27 0.53733E=04 0.1286E 01 42900 0.40000E=01 990 16561.86 17651.59 0.4004E=04 0.1386E 01 42900 0.40000E=01 990 19506.88 18530.29 0.4004E=04 0.1386E 01 43830 0.40000E=01 990 21836.36 20555.17 0.4444E=04 0.1386E 01 44730 0.40000E=01 900 21836.36 20555.17 0.4444E=04 0.1386E 01 44730 0.40000E=01 900 21836.36 20555.17 0.4444E=04 0.1488E 01 46240 0.40000E=01 900 22871.64 21726.61 0.4383E=04 0.1488E 01 46240 0.40000E=01 720 24244.71 25330.93 0.55556E=04 0.1586E 01 46740 0.40000E=01 720 24244.71 25330.93 0.55556E=04 0.1586E 01 46740 0.40000E=01 720 24248.71 224485.86 0.8333E=04 0.1526E 01 47310 0.40000E=01 570 27486.78 26112.60 0.70175E=04 0.1586E 01 46840 0.40000E=01 500 27486.78 26112.60 0.70175E=04 0.1686E 01 46840 0.40000E=01 360 31563.00 29982.85 0.11111E=03 0.1686E 01 48840 0.40000E=01 360 31563.00 29982.85 0.11111E=03 0.1686E 01 48850 0.40000E=01 360 3748.55 37758.61 0.78431E=04 0.1686E 01 48850 0.40000E=01 360 3748.55 37758.61 0.78431E=04 0.1686E 01 48900 0.40000E=01 100 43571.11 11009.81 0.2223E=03 0.1686E 01 49900 0.40000E=01 90 51297.13 46729.02 0.4444E=03										
0.1088E 01 3650. 0.40000E=01 1830. 15545.13 14766.89 0.21858E=04 0.11286E 01 38070. 0.40000E=01 1530. 16225.58 15410.43 0.26144E=04 0.11286E 01 39720. 0.40000E=01 1650. 16949.45 16100.91 0.2242E=04 0.1288E 01 40920. 0.40000E=01 1200. 17733.05 16845.27 0.53333E=04 0.1288E 01 41910. 0.40000E=01 990. 18581.86 17651.59 0.40004E=04 0.1288E 01 42900. 0.40000E=01 990. 18581.86 18530.29 0.40004E=04 0.13286E 01 42900. 0.40000E=01 990. 19506.88 18530.29 0.40004E=04 0.13286E 01 42730. 0.40000E=01 900. 21636.36 20553.17 0.44444E=04 0.13286E 01 45540. 0.40000E=01 900. 21636.36 20553.17 0.44444E=04 0.14486E 01 45540. 0.40000E=01 900. 22871.64 21726.61 0.49383E=04 0.14486E 01 45540. 0.40000E=01 720. 24244.71 23030.93 0.55556E=04 0.14886E 01 46740. 0.40000E=01 720. 24244.71 23030.93 0.55556E=04 0.15286E 01 47310. 0.40000E=01 720. 24244.71 23030.93 0.55556E=04 0.15286E 01 47310. 0.40000E=01 570. 27488.78 26112.60 0.7745E=04 0.15286E 01 47310. 0.40000E=01 570. 27488.78 26112.60 0.77475E=04 0.16886E 01 48810. 0.40000E=01 500. 31563.00 29982.85 0.11111E=03 0.16886E 01 48810. 0.40000E=01 360. 31563.00 29982.85 0.11111E=03 0.16886E 01 48810. 0.40000E=01 360. 31563.00 29982.85 0.11111E=03 0.16886E 01 48810. 0.40000E=01 270. 36698.87 34861.60 0.14815E=03 0.16886E 01 48810. 0.40000E=01 270. 36698.87 34861.60 0.14815E=03 0.16886E 01 48820. 0.40000E=01 270. 36698.87 34861.60 0.14815E=03 0.16886E 01 48930. 0.40000E=01 270. 36698.87 34861.60 0.14815E=03 0.16886E 01 48930. 0.40000E=01 180. 47005.80 44652.53 0.22222E=03 0.18886E 01 48950. 0.40000E=01 90. 51297.13 48729.20 0.44444E=03										
0.11286E 01 38070	-									
0.11080E 01										
0.1208E 01 40920. 0.40000E=01 1200. 17733.05 16845.27 0.33333E=04 0.1286E 01 42900. 0.40000E=01 900. 16561.86 17651.59 0.40004E=04 0.1286E 01 42900. 0.40000E=01 900. 19506.86 18530.29 0.40004E=04 0.13286E 01 42900. 0.40000E=01 900. 20520.20 19492.89 0.43011E=04 0.13286E 01 44730. 0.40000E=01 900. 21636.36 20553.17 0.44444E=04 0.1486E 01 45540. 0.40000E=01 900. 21636.36 20553.17 0.44444E=04 0.1486E 01 45540. 0.40000E=01 720. 22871.64 21726.61 0.448385.604 0.1486E 01 46740. 0.40000E=01 720. 24244.71 23030.93 0.55556E=04 0.15286E 01 47310. 0.40000E=01 720. 24244.71 23030.93 0.55556E=04 0.15286E 01 47310. 0.40000E=01 570. 27488.78 26112.60 0.70175E=04 0.15286E 01 47310. 0.40000E=01 570. 27488.78 26112.60 0.70175E=04 0.15286E 01 47310. 0.40000E=01 570. 27488.78 26112.60 0.70175E=04 0.16886E 01 48180. 0.40000E=01 360. 31563.00 29982.85 0.1111E=03 0.16886E 01 48810. 0.40000E=01 360. 31563.00 29982.85 0.1111E=03 0.16886E 01 48810. 0.40000E=01 360. 31563.00 29982.85 0.1111E=03 0.16886E 01 48810. 0.40000E=01 270. 36698.87 34861.60 0.14815E=03 0.16886E 01 48230. 0.40000E=01 270. 36698.87 34861.60 0.14815E=03 0.17866E 01 48230. 0.40000E=01 270. 36698.85 37758.61 0.16667E=03 0.18886E 01 48230. 0.40000E=01 180. 47005.80 44652.53 0.22222E=03 0.18886E 01 48230. 0.40000E=01 180. 47005.80 44652.53 0.22222E=03 0.18886E 01 48230. 0.40000E=01 180. 47005.80 44652.53 0.22222E=03 0.18886E 01 48200. 0.40000E=01 90. 51297.13 48729.02 0.44444E=03 0.18886E 01 48200										
0.12486E 01 42900 0.40000E=01 990 18581.86 17651.59 0.4000E=01 0.12886E 01 42900 0.40000E=01 990 19506.88 18530.29 0.4000E=04 0.12886E 01 43830 0.40000E=01 930 20520.20 19492.89 0.4301E=04 0.13868E 01 43830 0.40000E=01 900 21636.36 20553.17 0.4444E=04 0.13868E 01 45540 0.40000E=01 900 21636.36 20553.17 0.4444E=04 0.14886E 01 46260 0.40000E=01 720 24244.71 23330.93 0.55556E=04 0.14886E 01 46740 0.40000E=01 480 25776.12 24485.88 0.8333E=04 0.15286E 01 47310 0.40000E=01 480 25776.12 24485.88 0.8333E=04 0.15286E 01 47310 0.40000E=01 570 27488.78 26112.60 0.70175E=04 0.15866E 01 47820 0.40000E=01 570 27486.78 26112.60 0.70175E=04 0.15866E 01 48840 0.40000E=01 500 31563.00 29982.85 0.1111E=03 0.16486E 01 48840 0.40000E=01 360 31563.00 29982.85 0.1111E=03 0.16486E 01 48840 0.40000E=01 360 31563.00 29982.85 0.1111E=03 0.16486E 01 48840 0.40000E=01 270 36678.87 34861.60 0.14815E=03 0.17286E 01 49500 0.40000E=01 270 36678.87 34861.60 0.14815E=03 0.17286E 01 49500 0.40000E=01 270 36678.87 34861.60 0.14815E=03 0.16886E 01 49230 0.40000E=01 180 47005.80 44652.53 0.22223E=03 0.18886E 01 49230 0.40000E=01 180 47005.80 44652.53 0.22223E=03 0.18886E 01 49500 0.40000E=01 90 51297.13 48729.02 0.44444E=03 0.18886E 01 49500 0.40	-									
0.12886E 01 42900 0.40000E=01 990 1950e.86 18530.29 0.4004E=04 0.13286E 01 43830 0.40000E=01 900 21636.36 20553.17 0.4444E=04 0.13286E 01 44730 0.40000E=01 900 21636.36 20553.17 0.4444E=04 0.14486E 01 45540 0.40000E=01 720 24244.71 23030.93 0.55556E=04 0.14886E 01 46740 0.40000E=01 720 24244.71 23030.93 0.55556E=04 0.15286E 01 47310 0.40000E=01 720 24244.71 23030.93 0.55556E=04 0.15286E 01 47310 0.40000E=01 570 27486.78 26112.60 0.70175E=04 0.15286E 01 47320 0.40000E=01 570 27486.78 26112.60 0.70175E=04 0.15866E 01 47820 0.40000E=01 570 27486.78 26112.60 0.70175E=04 0.15866E 01 48540 0.40000E=01 360 31563.00 2982.85 0.11111E=03 0.16886E 01 48540 0.40000E=01 360 33982.04 32280.79 0.11111E=03 0.16886E 01 48540 0.40000E=01 360 3748.55 37758.61 0.78475E=03 0.17286E 01 4800 0.40000E=01 270 36698.87 34861.60 0.14815E=03 0.16886E 01 48950 0.40000E=01 270 36698.87 34861.60 0.14815E=03 0.16886E 01 48540 0.40000E=01 100 43171.11 4009.81 0.22223E=03 0.16886E 01 48500 0.40000E=01 100 43171.11 4009.81 0.22223E=03 0.18886E 01 48500 0.40000E=01 180 47005.80 44652.55 0.22223E=03 0.18886E 01 48500 0.40000E=01 90 51297.13 48729.02 0.40444E=03 0.18886E 01 48500 0.40000E=01 90 51297.13 48729.02 0.44444E=03 0.18886E 01 48500 0.440000E=01 90 51297.13 48729.02 0.4444600E=03 0.18886E 01 48500 0.440000E=01 90 51297.13 48729.02 0.4444600E=03 0.18										
0.13286E 01										
0.13686E 01	-									
0.14086E 01			2.7							
0.1486E 01 46740. 0.40000E=01 720. 24244.71 23030.93 0.55556E=04 0.1486E 01 46740. 0.40000E=01 480. 25776.12 24485.68 0.8333E=04 0.1526E 01 47310. 0.40000E=01 570. 27488.78 26112.60 0.70175E=04 0.1526E 01 47310. 0.40000E=01 510. 29408.47 27936.18 0.78431E=04 0.1646E 01 48180. 0.40000E=01 360. 31563.00 29982.85 0.11111E=03 0.1646E 01 48840. 0.40000E=01 360. 31593.00 32982.85 0.11111E=03 0.1646E 01 48810. 0.40000E=01 360. 33982.04 32280.79 0.11111E=03 0.1646E 01 48810. 0.40000E=01 270. 36698.87 34661.60 0.14815E=03 0.17266E 01 49050. 0.40000E=01 270. 36698.87 34661.60 0.14815E=03 0.17266E 01 49230. 0.40001E=01 180. 47005.80 44652.53 0.22222E=03 0.16886E 01 49300. 0.40000E=01 180. 47005.80 44652.53 0.22222E=03 0.18866E 01 49500. 0.40000E=01 90. 51297.13 48729.02 0.44444E=03 0.16886E 01 49500. 0.40000E=01 60. 56091.45 53283.31 0.6667E=03 0.19266E 01 49500. 0.40000E=01 50. 56091.45 5328										
0.14886E 01 47310 0.40000E=01 480 25776.12 24485.88 0.83333E=04 0.15286E 01 47310 0.40000E=01 570 27488.78 26112.60 0.70175E=04 0.15866E 01 47820 0.40000E=01 510 29408.47 27936.18 0.78431E=04 0.16486E 01 48840 0.40000E=01 360 31565.00 29482.85 0.11111E=03 0.16486E 01 48840 0.40000E=01 360 33982.04 32280.79 0.11111E=03 0.16486E 01 48810 0.40000E=01 270 36698.87 34861.60 0.14815E=03 0.17286E 01 49050 0.40000E=01 270 36698.87 34861.60 0.14815E=03 0.17286E 01 49050 0.40000E=01 270 39748.55 37758.61 0.16667E=03 0.16886E 01 49230 0.40000E=01 180 43171.11 41009.81 0.2223E=03 0.18886E 01 49300 0.40000E=01 180 47005.80 44652.53 0.2223E=03 0.18886E 01 49500 0.40000E=01 90 51297.13 48729.02 0.44444E=03 0.18886E 01 49500 0.40000E=01 90 51297.13 48729.02 0.44444E=03 0.19286E 01 49500 0.40000E=01 50 56091.45 53283.31 0.66667E=03 0.18286E 01 49500 0.40000E=01 50 56091.45 53283.31 0.66667E=03 0.19286E 01 49500 0.40000E=01 50 56091.45 53283.31 0.66667E=03 0.19286E 01 49500 0.40000E=01 50 61439.39 58381.52 0.13333E=02	-									
0.15286E 01 47310. 0.40000F=01 570. 27488.78 26112.60 0,70175E=04 0.15868E 01 47820. 0.40000E=01 510. 29408.47 27936.18 0,78431E=04 0.16486E 01 48180. 0.40000E=01 360. 31565.00 29982.85 0,11111E=03 0.16486E 01 48810. 0.40000E=01 360. 33982.04 32280.79 0.11111E=03 0.16886E 01 48810. 0.40000E=01 270. 36698.87 34861.60 0.14815E=03 0.17286E 01 49050. 0.40000E=01 240. 39748.55 37758.61 0.16667E=03 0.17686E 01 49230. 0.40000E=01 240. 39748.55 37758.61 0.16667E=03 0.18886E 01 49230. 0.40000E=01 180. 47005.80 44652.55 0.22222E=03 0.18886E 01 49500. 0.40000E=01 180. 47005.80 44652.55 0.22222E=03 0.18886E 01 49500. 0.40000E=01 90. 51297.13 48729.02 0.44444E=03 0.18886E 01 49500. 0.40000E=01 90. 51297.13 48729.02 0.44444E=03 0.19286E 01 49500. 0.40000E=01 30. 61439.39 58363.52 0.15333E=02										
0.15686E 01 47820. 0.40000E=01 510. 29408.47 27936.18 0.78431E=04 0.16086E 01 48180. 0.40000E=01 360. 31563.00 2948.45 0.11111E=03 0.16486E 01 48810. 0.40000E=01 360. 33982.04 32280.79 0.111111E=03 0.16886E 01 48810. 0.40000E=01 270. 36698.87 34861.60 0.14815E=03 0.17266E 01 49050. 0.40000E=01 200. 39748.55 37758.61 0.16667E=03 0.17666E 01 49230. 0.40001E=01 180. 43171.11 41009.81 0.22225E=03 0.18086E 01 49230. 0.40000E=01 180. 47005.80 44652.53 0.22222E=03 0.18086E 01 49500. 0.40000E=01 90. 51297.13 48729.02 0.44444E=03 0.18086E 01 49500. 0.40000E=01 60. 56091.45 53283.31 0.6667E=03 0.19286E 01 49500. 0.40000E=01 60. 56091.45 53283.31 0.6667E=03 0.19286E 01 49500. 0.40000E=01 30. 61439.39 58383.52 0.15333E=02										
0.1008E 01 48100 0.40000E=01 360 31565.00 29987.85 0,11111E=03 0.10486E 01 48840 0.40000E=01 360 33992.04 32280.79 0.11111E=03 0.10486E 01 48810 0.40000E=01 270 36699.87 34661.60 0.14815E=03 0.17286E 01 49050 0.40000E=01 200 39748.55 37758.61 0,16667E=03 0.17686E 01 49030 0.40000E=01 180 43171.11 41009.81 0.2223E=03 0.18886E 01 4910 0.40000E=01 180 47005.80 44652.55 0.2223E=03 0.18886E 01 49500 0.40000E=01 90 51297.13 48729.02 0.44444E=03 0.18886E 01 49500 0.40000E=01 90 51297.13 48729.02 0.44444E=03 0.18886E 01 49500 0.40000E=01 90 51297.13 48729.02 0.44444E=03 0.18886E 01 49500 0.40000E=01 30 61439.39 58383.51 0.66667E=03										
0.16486E 01 48540. 0.40000E=01 360. 33982.04 32280.79 0.11111E=03 0.16886E 01 48050. 0.40000E=01 270. 36698.87 34861.60 0.14815E=03 0.17286E 01 49050. 0.40000E=01 240. 39748.55 37758.61 0.16667E=03 0.17686E 01 49230. 0.40000E=01 180. 43171.11 41000.81 0.22223E=03 0.16886E 01 49410. 0.40000E=01 180. 47005.80 44652.55 0.22222E=03 0.18886E 01 49500. 0.40000E=01 90. 51297.13 48729.02 0.44444E=03 0.18886E 01 49500. 0.40000E=01 60. 56091.45 53283.31 0.6667E=03 0.19286E 01 49500. 0.40000E=01 30. 61439.39 58361.52 0.15333E=02			12.2							
0.16886E 01 48810. 0.40000E=01 270. 36698.87 34861.60 0.14815E=03 0.17266E 01 49050. 0.40000E=01 200. 39748.55 37758.61 0.16667E=03 0.17666E 01 49230. 0.40000E=01 180. 43171.11 41009.81 0.22223E=03 0.18086E 01 49300. 0.40000E=01 180. 47005.80 44652.53 0.22222E=03 0.18866E 01 49500. 0.40000E=01 90. 51297.13 48729.02 0.44444E=03 0.18886E 01 49500. 0.40000E=01 60. 56091.45 53283.31 0.66667E=03 0.18266E 01 49500. 0.40000E=01 30. 61439.39 58383.52 0.15333E=02										
0.1788E 01 49030 0.40000E=01 200 39748.55 37758.61 0,18667E=03 0.17686E 01 49230 0.40001E=01 100. 43171.11 41009.81 0.2223E=03 0.18686E 01 49410. 0.40000E=01 180. 47005.80 44652.53 0.2222E=03 0.18886E 01 49500, 0.40000E=01 90. 51297.13 48729.02 0.44444E=03 0.18886E 01 49500 0.40000E=01 60. 56091.45 53283.31 0.66667E=03 0.18886E 01 49500 0.40000E=01 30. 61439.39 58381.52 0.13333E=02			100							
0,17686E 01 4930, 0,40001E-01 180, 43171.11 41009,81 0,22223E-03 0,18086E 01 49410, 0,40000E-01 180, 47005,80 44652,53 0,22222E-03 0,18886E 01 49500, 0,40000E-01 90, 51297,13 48729,02 0,44444E-03 0,18886E 01 49500, 0,40000E-01 60, 56091,45 53283,31 0,6667E-03 0,19286E 01 49500, 0,40000E-01 30, 61439,39 58361,52 0,15333E-02										
0.18088E 01 49410. 0.40000E=01 180, 47005.80 44652.55 0.22222E=03 0.18888E 01 49500, 0.40000E=01 90, 51297.13 48729.02 0.44444E=03 0.18888E 01 49500, 0.40000E=01 60. 56091.45 53283.31 0.66667E=03 0.18288E 01 49500, 0.40000E=01 30. 61439.39 58383.52 0.153333E=02			000 G							
0,18886E 01 49500, 0,40000E=01 90, 51297.13 4A729.02 0,44444E=03 0,18886E 01 49500, 0,40000E=01 60, 56091.45 53283.31 0,66667E=03 0,19286E 01 49590, 0,40000E=01 30, 61439.39 58363.52 0,13333E=02	-									
0,18886E 01 49500, 0,40000E=01 60, 56091,45 53283,31 0,66667E=03 0,19286E 01 49590, 0,40000E=01 30, 61439,39 58363,52 0,13333E=02										
0,19286E 01 49590, 0,40000E=01 30, 61439,39 58363,52 0,13333E=02										

FATIGUE CRACK PROPAGATION DATA

SPEC NO 1321 LONG GRAIN ROOM AIR TEST FREQ 5 HZ

		PMAX	PMIN	40	NO	8	
		. 150	31.	0.60100	0.	0.24930	2.50000
		N	DELA	DELN	KMAX	DELK	DADN
0.64100E	00	9840.	0.40000E-0		8565,89	8157,30	0.40650E-05
0.68100E	00	17850.	0.40000E-0		8786.05	8347.46	0.49938E-05
0.72100E	00	24480.	0.40000E-0		9022,25	8571,88	0.60332E-05
0.76100E	00	30840.	0.40000E-0		9292,60	8828,73	0.628931-05
0.80100E	00	37890.	0.40000E-0	1 7050.	9595.42	9116.43	0.56738E-05
0.84100E	00	42390.	0.40000E-0	1 4500.	9928.89	9433.25	0.88889E-05
0.88100E	00	46890.	0.40000E-0		10291.71	9777.96	0.88889E-05
92100E	00	51600.	0.40000E-0	1 4710.	10682.90	10149.62	0.84926E-05
0.96100E	00	55470.	0.40000E-0		11101.97	10547.78	0.10336t-04
0.10010E	01	59010.	0.40000E-0	1 3540.	11549.56	10973.02	0.11300E-04
0.10410E	01	62040.	0.40000E-0	1 3030.	12026,57	11426.21	0.13201E-04
0,10810E	01	64740.	0.40000E-0	1 2700.	12535,29	11909.54	0,14815E-04
0.11210E	01	67140.	0.40000E-0	1 2400.	13078,68	12426.00	0.16667E-04
0,11610E	01	69360.	0,40000E-0	1 5550.	13661.73	12979,76	0.18018E-04
0.12010E	01	71250.	0.40000E-0	1 1890.	14289,38	13576,07	0.21164E-04
0.12410E	01	72960.	0.40000E-0	1 1710.	14968,67	14221.45	0.233926-04
0,12810E	01	74520.	0.40000E-0	1 1560.	15708,02	14923.89	0.25641E-04
0,13210€	01	76020.	0.40000E-0	1 1500.	16517,23	15692.71	0.20007E-04
0,13610E	01	77400.	0,40000E-0		17407.56	10538,60	0,28985E-04
0.14010E	01	78480.	0.40000E-0	1 1080.	18392,21	17474.09	0.37037E-04
0,144106	01	79320,	0,40000E-0		19485,75	18513,04	0.476196-04
0,14810E	01	80250.	0.40000E-0		20704.63	19671.08	0.43011E-04
0.15210E	01	81060.	0.40000E-0		22067,24	20965,67	0.493836-04
0,15610E	01	81750.	0.40000E-0		23594.04	22416.25	0.57971E-04
0,16010E	01	82380,	0.40000E-0		25307,38	24044.07	0.634928-04
0,16410E	01	95840	0.40000E-0		27230.70	25871.38	0.78431E-04
0.168106	01	83280.	0.40000E-0		29390,58	27923,43	0.102566-03
0.17210E	01	83610,	0,40000E-0		31816,30	30558,00	0.121216-03
0,176106	01	83940,	0.40000E-0		34538,30	32814,18	0.151516-03
0,18010E	01	84240.	0.40000E-0		37589,15	35712.75	0,13333E-03
0,18410E	01	84420.	0.40000E-0		41003,10	38956,27	0.555556-03
0.18510€	01	84540.	0,40000E-0		44819,75	42562.39	0,333338-03
0.19210E	01	84660.	0.40000E-0		49077,94	46628,03	0.3333E-03
0,19610E	01	84720.	0.40001E-0		53820.00	51133,37	0.666686-03
0,200102	01	84750.	0.40000E-0	30,	59090,93	56141,17	0,133338-02

FATIGUE CRACK PROPAGATION DATA

SPEC NO 1322 LONG GRAIN ROOM SALT TEST F 5 HZ

-		497.				8	
-			25,	0.72820	0.	0.25390	2,50000
		N	DELA	DELN	KMAX	DELM	DADN
	0,76820E 00	2610.	0.40000E-	01 2610.	7343,34	6975,96	0.15324E-04
	0,80820E 00	4890.	0.40000E-	01 2280.	7585.74	7204.17	0-17544E-04
	- 0,84020E -00	6660,	0.40000E-	01 1770.	7852.00	7457,04	0.22599E-04
	0,88820E 00	8250.	0.40000E-	01 1590.	8141.14	7731,64	0.25157E-04
	0. 45050E 00	9900.	0.40000E-	01 1650.	8452,51	8027,34	0.24242E-04
-	- 0, 96850E 00 -	11460.	0,40000E-	01 1560.	6765,82	8343,80	0.25641E-04
	0,10002E 01	12960.	0.40000E-	01 1500.	9141.64	8681.81	0.2666E-04
	0,10462E 01	14130.	0,40000E-		9520.79	9041.89	0.34188E-04
	10 350001.0	15240.	0,40000E-		9925.26	9426,01	0.36036E-04
	10 350211.0	16290.	0.40000E-	01 1050.	10357.70	9636,70	0.38095E-04
	0,11682E 01	17250.	0,40000E-		10821,48	10277.34	0.41667E-04
-	10 35005110	- 10000.	0,40001E-		11321,79	10752.30	0.49384E-04
	10 320021 01	16690.	0,40000E-	01 630.	11863.61	11206.86	0.63492E-04
	0.1200SE 01	19500.	0,40000E-		12453,90	11027,46	0.49383E-04
	- 10 3505E 110		0,40000E-		13100,56	12441.59	0.70175E-04
	0,13682E 01	20670.	0,40000E-	01 600.	13012.77	13117,97	0.6667E-04
	0.14062E 01	21210.	0,40000E-	01 540.	14600.97	13866,53	0.74074E-04
-	++++++++++++++++++++++++++++++++++++++	51000'	- J. 40000E-	01 300.	15477.04	14696,53	0,10256E-03
	0,14662E 01	21990.	0.40000E-	01 390.	16454.02	15626,37	0.10256E-03
	0,152026 01	22320.	0,40000E-	01 330.	17546,84	15.44441	0.12121E-03
-	-0,15602E-01-	22650.	0,40000En		10771.94	17627.70	0.12121E-03
	0,16002E 01	55450	0,40000E.		20146.26	19132,89	0,14815E-03
	0.16462E 01	23130.	0,40000E.	01 210.	21689.80	20596,79	0.19046E-03
-	-0,16865E 01-	23310.	- 0,40000f -	01 100.	23423.01	22244,61	0.22222E-03
	0.17202E 01	23500.	0,40000E-	01 270.	25349,16	24093.09	0.14815E-03
	0,17662E 01	24060.	0.40000E-	01 480.	27552.62	20100,70	0.83333E-04 -
	-0,10002E 01	24450.	0,40000E-	01 390.	20,000	28490,04	0.10256E-03
	0,18462E 01	24670.	0.40000E-		32737.08	31090.38	0.95238E-04
	0,16862E 01	25200.	0.40000E-		35796.13	33995,55	0.12121E-03
-	10 350561.0	25470.	-0,40000E-		34504'51 -	37230,00	0,14815E-03
	10 358001,0	25650.	0.40000E-		43006.87	40843,56	0.222226-03
	10 350005.0	25030.	0.40000E-		47227.76	44452.16	0.222326-03

PATIGUE CRACK PROPAGATION DATA

SPEC NO 1455 LONG GRAIN ROOM AIR TEST PREG 5 HZ

-			MAX	PMIN		40	NO	8	
			779.	39,	0.60	720	0.	0,25460	2,50000
				DELA		DELN	KMAX	DELK	DADN
	0.647202	00	4740.	0.40000	E-01	4740.	10581,29	10051,55	0.84388E-05
	0.687202		8940.	0.40000	E-01	4200.	10834,18	10291.78	0.95238E-05
-	0.72720E		12900.	0.40000	E-01	3960.	11130,91	10573.66	0.10101E-04
	0.76720E		16890.	0.40000	E-01	3990.	11469,36	10895.17	0.10025F-04
	0.80720E	00	20370.	0.40000	E-01	3480.	11847.29	11254,17	0.114946-04
-	0.847202	00	23310.	0.40000	E-01	2940.	12262.62	11648,71	0,13605E-04
	0.8872AE		26100.	0.40000	E-01	2790.	12713,68	12077,20	0.14337E-04
	0.92720€	00	28500.	0.40000	10-3	2400.	13199.47	12538.66	0.166678-04
-	0.967208	00	30750.	0.40000	E-01	2250.	13719,72	13032.87	0.177788-04
	0.10072E	01	32760.	0.40000		2010.	14274.87	13560.22	0.19901E-04
	0.10472€	01	34680.	0.40000	E-01	1920.	14866.67	14122.39	0.20833E-04
-	0.10872E		36480.	0.40000		1800.	15497.88	14722.00	0.222228-04
	0.11272€		38070.	0.40000		1590.	10172.59	15362,93	0,25157E=04
	0.11672€		39570.	0.40000		1500.	16696,60	16050.70	0.26667E-04
-	0.120728		40920.	0.40000		1350.	17676.81	16791.85	0.296308-04
	0.12472E		42090.	0.40000		1170.	18521.92	17594,65	0.34188F-04
	0.12872E		43200.	0.40000		1110.	19442.51	18469,15	0.36036E=04
-	0.13272€		44070.	0.40000		870.	20450.88	19427.04	0.459776-04
	0.136726		44940.	0.40000		870.	21561.47	20462.03	0.45977E-04
	0.14072E		45010.	0.40000		870.	22790.29	21649,33	0.45977E-04
-	0.144725		46470.	0.40000		660.	24156.06	22946,73	0.60606E-04
	0.14872E		47100.	0.40000		630.	25678,83	24393,26	0.63492E-04
	0.152722		47550.	0.40000		450.	27382.64	26011.77	0.88889E-04
-	0,156726		48090.	0.40000		540.	29291.72	27825,27	0.74074E-04
	0.160726		48420.	0.40000		330.	31433,77	29860.09	0.12121E-03
	0.16472E		48690.	0.40000		270.	33839,39	32145,27	0.14815E-03
-	0.168726		49020.	0.40000		330.	36541.05	34711.08	0.121216-03
	0.17272€		49200.	0.40000		180.	39573.66	37592,46	0.222228-03
	0.17672E		49290.	0.40001		90.	42976.66	40825.10	0,44445E-03
	0.18072E		49530.	0.40000		240.	46790.69	44448,18	0,16667E-03
	0.184726		49560.	0.40000		30.	\$1058,73	48502.55	0.133436-05
	0.18872E		49590.	0.40000		30.	55026,62	53031.75	0.133336-02
-									

254 N

	PHEX	PHIN	AO		NO		
	497.	25,	0,6488	0	٥.	0.25300	2,50000
-		DELA		DELN	KMAX	DELK	DAON
0	7450,	0,40000E	-01	9450,	6962,95	0612,71	0.42328E-0
0.72000E 00	15300.	0.40000E	-01	5850.	7154,59	6794.71	0.68376E-0
0,7600E 00		0,40000E	-01	3870.	7372.95	7002.08	0,10336E-0
0,80880E 00	55800	0,40000E	-01	3630.	7616,52	7233,40	0,11019E-0
0,84880E 00	25620.	0,40000E	-01	2020,	7884,13	7487,55	0.14184E-0
0, 80000E 00	20000.	0.40000E	-01	2460.	6174.61	7763,42	0.10200E-0
0,92860E 00	30120.	0,40000E	-01	2040.	8487.39	8060.47	0.1960BE-0
0,96860E 00	32100.	0,40000E	-01	1960.	45,5588	8378,50	0.202026-0
0,10000E 01	33930,	0,40000E	-01	1030.	9179,64	8717.89	0.21858E-0
0.10488E 01	35400.	0,40001E	-01	1470.	9560,57	9079.67	0,27211E-0
0.10888E 01	36750.	0.40000E	-01	1350.	9966.87	9465,53	0.29630E-0
0,11200E 01	30070.	0.40000E	-01	1320.	10401.31	- 9876,11	0.30303E-0
0,11666E 01	39330.	0.40000E	-01	1260.	10867.48	10320.84	0.31746E-0
0.12088E 01	40290.	0.40000E		960.	11369.89	10797.98	0.41667E-0
0,12488E 01	41100.	0,40000E	-01	610.	11914,30	11315,00	0.493836-0
0,12888E 01	41940.	0.40000E		840.	12507.45	11878,32	0.47619E-0
0.13288E 01	42690.	0,40000E		750.	13157.30	12495,48	0,53333E-0
0.13000E 01	43200.	0,40000E		510.	13873,10	13175,33	- 0.70431E-0
0.14086E 01	43800.	0,40000E		600.	14665.48	13927,40	0.66667E-0
0.14468E 01	44310.	0.40000E		510.	15546.09	14764.11	0.78431E-0
0.14668E 01	44760.	0,40000E		450.	16526,25	15070,00	0.888896-0
0.15268E 01	45090.	0.40000E		330.	17626.69	16740.05	0.121216-0
0.15668E 01	45420.	0,40000E		330.	18858.32	17909.73	0.121216-0
0,10000E 01	45690.	0,40000€		270.	20239.86	19221.70	0,14815E-0
0.16488E 01	46050.	0.40000E		300.	21791.53	20695.39	0.11111E-0
0.1688BE 01	46290.	0,40000E		240.	23534,23	22350,44	0.16667E-0
0.17200E 01	40500.	0.40000E		210.	25490.67	24200,40	0.19048E-0
0.17666E 01	46650.	0.40000E		150.	27685,52	16,56202	0.266678-0
0.18088E 01	46630.	0,40000E		100.	30144.55	20620,26	0-32555E-0
0.10400E 01		0.40000E		150.	32697.21	31242,45	0,26667E-0
0.1888BE 01	47070.	0.40000E		90.	35972.00	34162,50	0.4444E-0
0.1920BE 01	47160.	0,40000E			39401.98	37420.02	0.44446-0
0.196602 01	47229.	0,40000E			43219.91	41045.41	0.57971E-0
0.200088 01	47310.	0.40000E		01.	47462.79	45075.37	0.49363E-0

FATIGUE	CRACK	PROPAGATION	DATA	

FATIGUE CRACK PROPAGATION DATA

SPEC NO	1450 L	ONG GRAIN	ROOM AIR	TEST FREG	5 HZ			
	PM	AX	PMIN	AC)	NO	8	
		79.	39.	0.6091		0.	0.25520	2.50000
-								•••••
A		N	DELA		DELN	KMAX	DELK	DADN
0.6491	00 B	4380.	0.40000	E-01	4380.	10567.41	10038,37	0.91324E-05
0.6891	00 30	8820.	0.400001	E-01	4440.	10821.79	10280.02	0.90090E-05
0,72910	E 00	13230.	0.400001	E-01	4410.	11119.88	10563.18	0.90703E-05
0,76910	E 00	17010.	0.400001	E-01	3780.	11459.42	10885.73	0.10582E-04
0.80910	DE 00	20730.	0.400001	E-01	3720.	11838,26	11245,59	0.10753E-04
0,8491	E 00	23940.	0,400001	E-01	3210.	12254,38	11640.89	0.12461E-04
0.88910	E 00	27120.	0.400001	E-01	3180.	12706.07	12069.96	0.12579E-04
0.9291		29460.	0.400001	E-01	2340.	13192,30	12531,85	0.17094E-04
0,9691	E 00	32010.	0.400001	E-01	2550.	13712.92	13026,40	0,15686E-04
0.10091	E 01	34080.	0.40000	E-01	2070.	14268,50	13554.17	0.19324E-04
- 0.10491	E 01 -	36060.	0.40000	E-01	1980.	14860.64	14116.66	0.20202E-04
0.1089	E 01	38100.	0.40000	E-01	2040.	15492.37	14716.77	0.19608E-04
0.11291	E 01	39750.	0.400001	E-01	1650.	16167,73	15358,32	0.24242E-04
0.11691	E 01	41310.	0.40000	E-01	1560.	16892.55	16046.85	0.25641E-04
0.12091	E 01	42480.	0.40000	E-01	1170.	17673,69	16786.89	0.34188E-04
0,12491	E OI	43560.	0,40000	E-01	1080.	18520,18	17592,99	0.37037E-04
-0,12091	E 01-	44700.	0,40000	2-01	1140.	19442.43	18469.07	0.35088E-04
0,13291	E 01	45750.	0,40000	E-01	1050.	20453.05	19429,10	0.38095E-04
0,13691	E 01	46680.	0.40000	E-01	930.	21566,18	20486.51	0.43011E-04
0.14091	E 01	47430.	0,400001	E-01	750.	22798,16	21656,80	0.53333E-04
0,14491	E 01	48090.	0,40000	E-01	660.	24167.64	22957.73	0.60606E-04
0,14891	E 01	48780.	0.40001	E-01	690.	25695,31	24408.92	0.57972E-04
0,1529	10 3	44500	0,40000	2-01	420.	27403,83	26031,90	0.95238E-04
0,15691	E 01	49620.	0,40000	E-01	420.	29318,76	27850,96	0.95238E-04
0,16091	E 01	49980.	0.40000	E-01	300.	31467,50	29892.13	0.11111E-03
0,16491	E 01	50250.	0,40000	E-01	270.	33880,93	32184,73	0.14815E-03
0,1689	E 01	50460.	0,40000	E-01	210.	36591,35	34759.46	0.19048E-03
0.1729	E 01	50640.	0,40000	E-01	100.	39633,80	37649,59	0.222226-03
-0.17691	E 01 -	50790.	0,40000	E-01	190.	43047.65	40892,54	0.26667E-03
0,18091	E 01	50880.	0,40000	E-01	90.	46872.04	44525,46	0.4444E-03
0,18491		50910.	0.40000		30.	51152,20	48591.34	0.13333E-02
0.18891	E 01	50940.	0.400001		30.	55934.80	53134.51	0.13333E-02
0,19291		50970.	0.40000		30.	61266.39	58201.08	0.13333E-02
0.19691	E 01	51000.	0.400001	1001	30.	67206,19	63841.64	0.13333E-02
	-					-		

FATIGUE PRACK PROPAGATION DATA

SPEC NO	1701	TRANS	GRAIN	ROOM	AIR	TEST	F 5	HZ
---------	------	-------	-------	------	-----	------	-----	----

			PMAY	PMIN		AO	NO		W
			545.	29.	0.6	4630	0.	0,25370	2,50000
			N	DELA		DELN	KMAX	DELK	DADN
	0.68630E	00	7140.	0.400001	E-01	7140.	8170,63	7765.60	0.56022E-05
	0.72630E	00	12990.	0.400001	10-	5850.	8395,16	7979.00	0.683766-05
	0,76830E	00	18990.	0.40000	-01	6000.	8651.07	8222.22	0.6667E-05
	0.80830E	00	24690.	0.400001	E-01	5700.	8936,66	8493.66	0.70175E-05
	0.84830E	00	29640.	0.40000	-01	4950.	9250.41	8791.85	0.80808E-05
-	0.88830E	00	35220.	0.40000	1001	5580.	9591.12	9115.67	0.71685E-05
	0.92830E	00	40470.	0.40000		5250.	9957.94	9464.30	0.76191E-05
	0.96830E	00	45200.	0.40000		2730.	10350.68	9837.57	0.14652E-04
	0.10083E	01	46620.	0.40000		3420.	10769,78	10235.91	0.11696E-04
	0.10483E	01	49530.	0.40000	-01	2910.	11216,53	10660,51	0.13746E-04
	0.10883E	01	51780.	0.40000		2250.	11693,14	11113.49	0.17778E-04
	0.11283E	01	54330.	0.40000		2550.	12202.64	11597.74	0.15686E-04
	0.116832	01	56640.	0.400001		2310.	12749.26	12117.26	0.17316E-04
	0.12083E	01	58650.	0.40000		2010.	13338,45	12677.24	0.19900E-04
	0.12483E	01	60060.	0.40000		1410.	13976,88	13284.02	0,28369E-04
	0.12663E	01	61650.	0.40000		1620.	14672.33	13945.00	0.246916-04
	0.13283E	01	63030.	0.400016		1350.	15434,29	14669.18	0.29630E-04
-	0.13683E	01	64050.	0.40000		1020.	16273.44	15466.74	0.39216E-04
	0.14083E	01	65070.	0.40000		1020.	17202.29	16349,55	0.392166-04
	0.14463E	01	65970.	0.40000		900.	10234.59	17330.66	0.4444E-04
	0.14883E	01	66900.	0.40000		930.	19385,92	18424.93	0.43011E-04
	0.19203E	01	67440.	0.40000		540.	20673.47	19648.65	0.74074E-04
	0.15663E	01	68070.	0.40000		630.	22117.01	21020,63	0.63492E-04
	0.16083F	01	68460.	0.400001		390.	23736.59	22559,93	0.10256E-03
	0.16483E	01	68820.	0.40000		360,	25555,32	24288.49	0.11111E-03
	0.16863E	01	69090.	0.40000		270.	27597.77	26229.70	0.14815E-03
	0.17263E	01	69310.	0.400000		210.	29890.70	28408.96	0,19048E-03
	0.17683E	01	69420.	0.40000		120.	32463.48	30854.21	0,33333E-03
	0.18083E	01	69540,	0.40000		120.	35346,38	33594,20	0,33333E-03
	0.16463E	01	.9600.	0.40000		60.	38572,66	36660.73	0.66667E-03
	0.18883E	01	69690.	0.40000		90.	42177.46	40086.65	0.4444E-03
		01	69720.	0,40000		30.	46197.57	43907.47	0.13333E-02

FATIGUE CRACK PROPAGATION DATA

	PMAX 1	PMIN	AO	NO			
	467.	23,	0,64640	0.	0,25050	2,50000	
	N	DELA	DELN	KMAX-	DELK	DAON	-
0.68640E 00	6780,	0,40000E	-01 6780.	6597,90	6272,95	0.58997E-05	
0.72640E 00	13630.	0.40000E	01 7050.	4778,16	6444,34	0.56738E-05	
-0,76640E no	19950,	0.40000E		6963,69	6639,94	0,65359E-05	
0,8000E 00	26490,	0.40000E		7213,71	6858,44	0,61162E-05	
0.84640E 00	31740.	0.40000E		7460,27	7096,56	0,76191E-05	
0,88640E 00	35970	-0,40000E		7740,73-	7359,54	-0,94563E-05	_
0,92640E 00	40170.	0,40000E	·01 4200,	8036,29	7640,50	0.95238E-05	
0,96640E 00	43410.	0,40000E	01 3240.	8352,86	7941,46	0,12346E-04	
0,10004E 01	46410	0,40000E	-01 3000.	8690,68	4565,66	0,13333E-04	
0.104648 01		0.40000E		9050,77	8605,02	0,19048E-04	
0,10864E 01	50400,	0.40000E		9434,90	8970,23	0.21164E-04	
10 30051140	52050	-0,4000E	-01 1650.	9845,44	9360,55	-0-34545E-04	
0,11664E 01	53550,	0,40000E		10285,90	9779,32	0,26667E-04	
0,12064E 01	54750.	0.40000E	.01 1200.	10760,60	10230,64	0,3333E-04	
- 0,12464E 01	-55804,	0,40000E		11274,68	10719,40	0,38095E-04	
0.120645 01	56820,	0,40000E		11634,56	11251.73	0,39216E-04	
0.13264F 01	57570.	0,40000E		12447,87	11834,80	0,53333E-04	
-0-13000E 01		-0,40000E		- 13123,10		-0,0000E-04	-
0,14064E 01	58860.	0.40000E		13870,37	13187,25	0.63492E-04	
0.14464E 01	59340,	0,40000E		14700.73	13976,72	0,83333E-04	
-0-14864E n1	\$9700,	-0,40000E		15626,43	14056,03	0,88889E-04	
0,15264E 01	60270.	0,40000E		16662,18	15841,57	0.83333E-04	
0.15664E 01	60630.	0.40000E		17822,58	16944.81	0.11111E-03	
- 0v11004E 01	*****	4,40000E		19124,87	19195'60	0,133336-03	-
0.16464E 01	61200.	0,40001E		20587,25	19573,32	0,14815E-03	
0.16864E 01	61470.	0.40000E		22229,59	21134.77	0,14815E-03	
-0,17264E 01	61650,	0.40000E		24073,32	22887,70	0.555556-03	
0.17664E 01	61830,	0.40000E		26142,16	24854.65	0.555556-03	
0,18064€ 01	61950,	0,40000E		28460.57	27058,88	0.33333E-03	
0-18464E 01		0,40000E		31054,75	29825,30	-0.4444E-03	-
0,10064E 01	62130.	0.40000E		33953.77	32281,54	0,4444E-03	
0.19264E 01	62190.	0,40000E		37187,58	35356,08	0,66667E-03	
-0-19004E 01	62220.	0.40000E	01 30.	40786,40	38779,56	0.133336-02	

FATIGUE CRACK PROPAGATION DATA
SPEC NO 1804 LONG GRAIN ROOM AIR TEST FREG 5 HZ

	779.	PMIN 39.	0.60440	NO 0.	0.25190	2.50000
	N	DELA	DELN	KMAX	DELK	DADN
0.64440E 00		0.40000E-		10678,53	10143.93	0.10582E-04
0.68440E 00		0.40000E-		10930.93	10383.69	0.90090E-05
0.72440E 00		0.40000E-		11227.83	10665.73	0.13201E-04
0.76440E 00		0.40000E-		11567.02	10987,93	0.11204E-04
0.80440E 00		-0.40000E-		11946,25	11348,18	0.15152E-04
0.84440E 00		0.40000E-		12363,47	11744.51	0.15152E-04
0.88440E 00		0.40000E-		12816.89	12175.23	0.15504E-04
0.92440E 00		0.40000E-		13305,47	12639.35	0.20513E-04
0.96440E 00		0.40000E-		13828,79	13136.47	0.21164E-04
0.10044E 01		0.40000E-		14387,38	13667.10	0.20833E-04
0.10444E 01	30030.	0,40000E-		14962,83	14232.74	0.25157E-04
0.10844E 01	31740.	0.40000E-		15617.94	14836.05	0.23392E-04
0.11244E 01		0.40000E-		16296.69	15480.82	0.31008E-04
0.11644E 01	34140.	0.40000E-		17024,77	16172.45	0.36036E-04
0.12044E 01		0.40000E-		17809.04	16917.46	0.37037E-04
0.12444E 01		0.40000E-		18658,29	17724.19	0.41667E-04
0.12844E 01		0.40000E-		19583,00	18602.61	0.43011E-04
0.13244E 01		0,40000E-		20595.55	19564.47	0.45977E-04
0.13644E 01		0.40000E-		21710,30	20623.41	0.49383E-04
0.14044E 01		0.40000E-		22943,43	21794.80	0.57971E-04
0.14444E 01		0.40000E-		24313.42	23096.21	0.70175E-04
0.14844E 01		0.40000E-		25840.66	24546.99	0.70175E-04
-0.15244E 01		0.40000E-		27549,25	26170.04	0.70175E-04
0.15644E 01		0,40000E-		29463.18	27988.15	0.11111E-03
0.16044E 01		0.40000E-		31610.79	30028.25	0.95238E-04
0.16444E 01		0.40000E-		34022.66	32319.55	0.121216-03
0.16844E 01		0.40000E-		36730,62	34891.75	0.10256E-03
0.17244E 01		0.40000E-		39771.97	37780.85	0.19048E-03
-0.17644E 01		0.40000E-		43184,23	41022.28	0.222222.03
0.18044E 01		0,40001E-		47007.63	44654.26	0.19048E-03
0.18444E 01		0.40000E-		51287.52	48719.88	0.26667E-03
- 0.18844E 01		0,40000E-		56070,22	53263,15	0.26667E-03

FATIGUE CRACK PRUPAGATION DATA

SPEC NO 1805 LONG GRAIN HOUN SALT TEST F 5 HZ

		PWAX	D.1.	40	NO	P	*
		497.	25.	0.64580	0.	0.25260	2.50000
		N	OFLA	DELN	KMAX	DELK	CADE
0.68580E	00	4980.	0.40000E-	01 4980.	6960.71	6610.58	0.803216-05
0.725806	00	8540.	U.40000E-	01 5560.	/150.5/	£790.89	0.119056-04
0.76580E	00	11160.	0.440006-	01 2820.	1367.51	6996.73	0.141846-04
0.805806	00	13650.	U.40000E-	01 2490.	7609.46	7225.70	0.160641-04
0,84580E	00	15930.	0.4000UE-	01 2280.	7875.6A	7479.53	0.1/5441-04
0.88580E	00	17820.	0.400006-	01 1890.	6164.98	7754.28	0.211641-04
0.92580E	00	19800.	0.40000E-	01 1980.	6470.61	8050.23	0.202026-04
0.96580E	00	21360.	U.40000E-	01 1560.	0610.54	8567.17	0.256416-04
0.10058E	01	22800.	0.4000006-	01 1440.	9100.55	#705.46	0.2777FE-04
0.10458E	01	24240.	0.40000E-	01 1440.	4546.24	9000.00	0.277786-04
0.10858E	01	25500.	O. WOODCE -	01 1260.	9951.17	9450.62	0.31746t-04
0.11258t	01	26570.	0.40000E-	01 1170.	10384.09	9861.77	0.3418Mt-04
0,11658t	01	27540.	0.400006-	01 870.	10848,51	10302.82	0.459771 -04
0.1205AL	01	28560.	0.40000E-	01 1020.	11348.50	10777.45	0.392106-04
0.1245AL	01	29340.	0.40000t-	01 760.	11890.07	11292.56	0.517821-04
0.12858L	01	29940.	0.400000	01 000.	12480,87	11853.07	0.000074-0=
0.132586	01	50090.	0.40000E-	01 750.	15127.19	17466.88	0.535336-04
0.13658t	01	31290.	0.400not-	01 600.	13850.78	15142.68	0.000071-04
0.140586	01	31800.	0.40000t-	01 510.	14020.26	13490.54	0.764311-04
0.1445AE	01	35580	0.40000E-	01 480.	15501.15	14721.45	0.#3555F-04
0.14858E	01	32730.	n.unnact-	01 450.	16476,54	15047.75	0. ********
0.15258E	01	35150.	0.40000t-	01 420.	17507,85	10004.17	0.952586-04
0.156585	01	35510.	0.400004	01 360.	18740.26	17845.09	0,111111-03
0.16058E	01	33720.	0.40000E-	01 210.	20152.41	19148.22	0.190481-05
0.1645AE	01	34050.	0,40000E-	01 350.	21703.24	20011.55	0.12121F-04
0.16858t	01	34320.	0.40000E-	01 270.	23453.27	22254.50	0.140156-05
0.17258E	01	34530.	0.40000E-	.015 10	25375.79	24049.37	0.190461-05
0.17658E	01	34740.	0.40001E-	01 210.	27555.28	24.00.22	0.190486.01
0.18058E	01	34860.	0,40000E-	01 120.	5400H . 10	25.99485	0.533356-05
0.1845BE	01	35010.	0.40000E-	01 150,	32/31,44	31085.06	0.20007F-05
0.188586	01	35160.	U.4000nt-	01 150.	35786.55	33900.45	0.200071-05
0.1925AE	01	35280.	0.40000E-		19193.00	15.55515	0.333556-05
0.19058t	01	35410.	0.40000E-		42987.59	40825.21	0.333351 -05
0.20058E	01	35400.	n. 40000E-	01 60.	47203.77	44829.38	0.000071-05

APPENDIX E

CALCULATION OF POTENTIAL WEIGHT SAVINGS IN THE YUH-61A HORIZONTAL-STABILIZER SPAR FITTING

The fatigue life of a helicopter component is based on a design-allowable fatigue-endurance limit which must be used to account for variables other than basic material properties affecting the fatigue performance of helicopter components.

The design-allowable fatigue-endurance limit for helicopter components is established by reducing the mean-endurance limit of material-coupon data to account for component-coupon size effects and to accommodate the statistical probabilities of component failure.

Results of the Task III material-coupon tests indicate that 7475-TMT1 has a higher meanendurance limit than 7075-T73 has for the design conditions which apply to the horizontal stabilizer. The corresponding design-allowable fatigue-endurance limit for each material is determined as follows:

	<u>7075-T73</u>	7475-TMT1
Mean-Endurance-Limit Coupon Data Stress Ratio, R = 0.05 6.7-Inch Forging Longitudinal Properties	20,000 psi	21,000 psi
(Mean-3\sigma), 13\% Coefficient of Variation	13,169 psi	13,829 psi
Reduction for Size Effect, $\left\{ \frac{M-3\sigma}{1.95} \right\}$	6,753 psi	7,092 psi

An adjustment is necessary for stress ratio, R. To estimate the allowable at R = 0.52, the Goodman diagram for 2-inch forgings, Figure 110, is used.

Design Allowable
$$R = 0.52$$
Design Allowable $R = 0.05$

$$Endurance Limit @ 5 x 107 cycles (R = 0.52)$$

$$Endurance Limit @ 5 x 107 cycles (R = 0.05)$$

Design Allowable
$$R = 0.52 = \left\{ \frac{14,700}{23,000} \right\}$$
 Design Allowable $R = 0.05 = 0.05$

0.64 Design Allowable R = 0.05

DESIGN-ALLOWABLE FATIGUE-ENDURANCE LIMIT

7075-T73 4,322 psi

7475-TMT1 4,533 psi

Adjustment for Stress Concentration Factor, $K_t = 3.5$

Design Allowable K_t

1,235 psi

1,295 psi

7475-TMT1 alloy demonstrates a design allowable which is 5 percent higher than the design allowable for 7075-T73.

A 5-percent increase in allowable stress translates into a 5-percent weight reduction:

$$Stress = \frac{Load}{Area}$$

and

Weight/unit length = (volume/unit length) x material density

=
$$(area \times 1) \times \rho$$
.

Given the same load, an allowable stress of 1,235 psi generates a requirement for an area,

$$A = \frac{Load}{Allowable} = \frac{1,560 \text{ lb}}{1,235 \text{ psi}} = 1.263 \text{ in.}^2 \text{ and an allowable stress of } 1,295 \text{ psi generates a}$$
requirement for an area,
$$A = \frac{1,560 \text{ lb}}{1,295 \text{ psi}} = 1.205 \text{ in.}^2$$

The weight relationship is then

$$\frac{\text{Weight}_{7075-T73}}{\text{Weight}_{7475-TMT1}} = \frac{(\text{Area}_{7075-T73} \times 1) \times \rho}{(\text{Area}_{7475-TMT1} \times 1) \times \rho}$$

$$\text{Weight}_{7475-TMT1} = \text{Weight}_{7075-T73} \frac{\text{Area}_{7475-TMT1}}{\text{Area}_{7075-T73}}$$

$$= \text{Weight}_{7075-T73} \left\{ \frac{1.205}{1.263} \right\}$$

$$= \text{Weight}_{7075-T73} = (0.95)$$

or, conversely, a 5-percent weight reduction.

APPENDIX F

PREDICTED WEIGHT SAVINGS IN THE YUH-61A ANTITORQUE-ROTOR COLLECTIVE-PITCH SLIDER SIZED TO DAMAGE TOLERANCE

REQUIREMENTS

The predicted crack growth in the pitch slider shown in Figure 155 is based on an RMS stress in the slider, the material properties measured in Task III, the crack-stress model for a hollow cylinder, and the Paris equation for crack-growth rate. The RMS stress is determined as shown in Figure F1.

Fatigue-crack-propagation rates for 7075-T73 (Figure 127) and 7475-TMT2 (Figure 146) and short-transverse fracture-toughness values for 6.7-inch forging (Table 21) have been used in this example. The Paris equation was selected for illustration purposes to present a simpler computation. The coefficients for fatigue-crack propagation-rate data from Figures 127 and 146 are:

$$\frac{7075-T73}{C_{\mathbf{P}}} = 6.0493 \times 10^{-7}$$
 $C_{\mathbf{P}} = 8.0902 \times 10^{-8}$
 $n_{\mathbf{P}} = 1.8329$
 $n_{\mathbf{P}} = 2.03514$

The crack-stress model for stress-intensity factor and the computation procedure are shown in Figure F2.

A weight savings due to the improvement in fracture properties can be demonstrated.

Based on the measured short-transverse fracture-toughness value for 6.7-inch 7075-T73 forging, the pitch slider can sustain a 4.60-inch crack prior to catastrophic failure. This is based on the geometry of the slider and the relationship for stress-intensity factor:

$$K_{IC} = \sigma_{limit} \sqrt{\pi a_c} \quad f_{(a_c)}$$

Using this relationship and the increased fracture toughness of 7475-TMT2, one can determine that:

$$\sigma_{\text{limit}_{7475-\text{TMT}2}} = \left(\frac{K_{\text{IC}}}{K_{\text{IC}}}\right) \sigma_{\text{limit}_{\text{T73}}}$$

$$\sigma_{\text{limit}_{7475\text{-TMT}2}} = (1.48) \quad \sigma_{\text{limit}_{\text{T73}}}$$

See Figure F3.

An increase in the allowable stress translates into a decrease in weight as shown in Appendix E. Hence, a 48-percent increase in allowable stress results in a 48-percent decrease in weight.

As shown in Figure 153, the slower crack-growth rate in 7475-TMT2 can be advantageous in reducing weight.

Crack-growth rate is directly affected by stress level. By increasing the RMS stress in the 7475-TMT2 slider, a tradeoff in weight is possible, with the maximum weight reduction occurring when the crack-growth rates are identical for the 7475-TMT2 and 7075-T73 sliders.

By an iterative solution, the 7475-TMT2 slider can demonstrate the same failsafe life as the 7075-T73 slider while functioning at a stress level of $890 \pm 1,650$ psi. Compared to the 7075-T73 slider at $700 \pm 1,296$ psi, this shows a 27-percent increase in allowable stress and, consequently, a 27-percent reduction in weight.

Figure F1. Stress Analysis of Tail-Rotor Collective-Pitch Slider for YUH-61A (Sheet 1 of 2).

$$\overline{X}' = \frac{1.933 \text{ IN.}^3}{0.96 \text{ IN.}^2} = 2.014 \text{ IN.}$$

$$lyy = 0.1313 + 4.037 - (1.933)(2.014) = 0.276 IN.^4$$

LOAD CALCULATION:

MOMENT AT SEC A-A = MA

$$M_{PH} = \frac{(141 \pm 261 \text{ LB}) (2.5 \text{ IN.}) (4.0 \text{ IN.})}{(7.5 \text{ IN.})} = 188 \pm 348 \text{ IN.-LB}$$

TO CALCULATE MPV, CALCULATE SHEAR CENTER e:

$$e = \frac{2R}{(\pi - \theta) + \sin \theta \cos \theta} [(\pi - \theta) \cos \theta + \sin \theta]$$

$$e = \frac{2(2.25)}{(3.14159 - 1.96) + (0.9205)(0.39073)} [(3.14159 - 1.96)(0.39073) + 0.9205]$$

e = 4.035 IN.

MOMENT ARM = (4.035 IN. - 3.438 IN.) = 0.597 IN.

$$M_{PV}$$
 = (0.597 IN.) (141 ± 261 LB) = 84 ± 156 IN.-LB

$$M_A = M_{PH} + M_{PV} = 272 \pm 504 \text{ IN.-LB}$$

$$f_b = 0.81 (272 \pm 504 \text{ IN.-LB}) (0.875 \text{ IN.})/(0.276 \text{ IN.}^4) = 700 \pm 1,296 \text{ psi (RMS)}$$

Figure F1. Stress Analysis of Tail-Rotor Collective-Pitch Slider for YUH-61A (Sheet 2 of 2).

Figure F2. Computation Procedure and Crack-Stress Model for Stress-Intensity Factor.

Figure F3. Relationship Between Critical Crack Length and Fracture Toughness of Pitch Slider.

AD-A031 357

USA-AVSCOM-76-41

OCT 76

IMPROVEMENT OF HELICOPTER FORGINGS BY CONTROLLED SOLIDIFICATION & THER-MAL-MECHANICAL TREATMENTS(U) JOSEPH C. ZOLA.

UNCLASSIFIED BOEING VERTOL COMPANY, PHILADELPHIA, PA.

4 OF 4 AD-A 031 357

ERRATA

END DATE FILMED 1-25-77 NTIS

OFA D-A 31357

RATA

SE XOX B

Cover Page

Form DD 147

P. 97

P. 199

P. 199

P. 199

P. 199 .

Addition

ERRATA SHEET - AVSCOM REPORT NO. 76-41

Cover Page	Change Contract Number from "A25-74-C-0448" to "DAAA25-74-C-0448"
Form DD 1473	Change 4. Title to "Improvement of Helicopter Forgings By Controlled Solidification and Thermal-Mechanical Treatments"
P. 97	Insert word "and" in last sentence so that statement reads " a recrystallized-plus-hot-worked structure, and in
P. 199	In first paragraph insert word "and" in first sentence so that paragraph reads "20 percent better toughness and fatigue"
P. 199	In item 1. change "TMT" to "ITMT"
P. 199	In item 3. change "62" to "75"
P. 199	In item 4. change "TMT" to "ITMT"

Distribution List (See attachments)

REPRODUCED BY
NATIONAL TECHNICAL
INFORMATION SERVICE
U. S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 22161