AIR UDIVERSITY

Air University

Department of Cyber Security

(Final-Term Examination: Fall 2022)

Subject: Data Structures and Algorithms Total Marks: 100

 Course Code:
 CS-214
 Date:
 January, 2023

 Class:
 BS-CYS-III
 Time:
 0:00 - 0:00 PM

Section: A Duration: 3 Hours

FM Name: **Dr. Mohammad Imran**

HoD Signatures: _____ FM Signatures: ____

Note:

- This paper consists of Four (4) questions and you are required to attempt ALL of them
- This examination carries 45% weight towards the final grade
- This is a closed book/notes exam
- The question paper must be returned with the answer sheet

										No. 1 (CLO 1)	40 Marks
	On your answer sheet, draw the vertices as shown in the diagram, and draw edges										
	represented by the adjacency matrix below.										
		Α	В	С	D	Е	F	G	Н	I	
	Α	0	∞	3	∞	∞	∞	∞	∞	∞	
	В	8	0	∞	∞	∞	7	∞	∞	∞ A B C	
	С	∞	6	0	5	~	∞	∞	∞	∞	
	D	∞	∞	∞	0	∞	∞	∞	~	6	
	Е	∞	∞	∞	∞	0	∞	8	~	\bigcirc	
	F	∞	3	∞	∞	∞	0	∞	9	8	
	G	∞	∞	4	∞	7	∞	0	∞	∞ (G) (H) (I)	
	Н	∞	∞	∞	2	∞	∞	4	0	8	
(i)	ı	∞	∞	1	∞	∞	2	∞	∞	0	10
(-)	ANS	•		I	I		1				10
	<u>ANS:</u>										
	$\left(\begin{array}{ccc} A \end{array}\right) \leftarrow \begin{array}{cccc} 8 \\ \end{array} \left(\begin{array}{cccc} B \end{array}\right) \leftarrow \begin{array}{cccc} 6 \\ \end{array} \left(\begin{array}{cccc} C \end{array}\right) \leftarrow \begin{array}{ccccc} \end{array}$										
										5 7	
	3										
	$\begin{array}{c c} \hline \\ \hline $										
	8 6 2										
	G 4 H I										
	2 4										
							2			_	

	Q. No. 2 (CLO 2)											30 Marks
	A linear-probing hash table of length 10 uses the hash function $h(x) = x \mod 10$. On your answer sheet, draw the hash table as shown below, and insert the following keys. The keys must be inserted in the same order as shown.											
(i)				46, 34	, 42, 23,	, 52, 33,	29, 86, 2	, 93				10
	0	1	2	3	4	5	6	7	8	9	_	
	2	93	42	23	34	52	46	33	86	29		
(ii)	ANS: For un-variation weight.	weighted m number here is not a same nurse trees, but see edges A weight	graphs, r of edgo concept mber of a min are included	a spannies to kee of a mare edges. I imum spuded when can har	ing tree ep the grainimum For weign anning ich keep we man	represent raph consispanning ghted grautree is the pothe grap	ts the granected. So tree becaphs, the e one who had conne	aph with to basic cause ea above c nich has	n same vo ally for u ach spanr definition the sam d have th	ertices bein-weighting tree is true e vertice te least	hted e will for es but total	5
(iii)	using, a ANS: The diag	e MST of and show y	ow show	orking. I	ST obta ST wing ta	ined thro	ow the sugh Krus	skal.	1 2 3 4 5 6 6 7 8 9	F-G Accep D-E Accep A-C Accep B-F Accep C-E Reject C-F Accep A-E Done E-G D-F B-C D-G A-B	ot ot ot ot ot	15

	Q. No. 3 (CLO 3)	10 Marks								
	Write down a recursive function int CountNodes (Node* head) that returns the number of nodes in a linked list. ANS: int countNodes (Node *head) if (head = NULL) // We're at the end of the list! return 0 else return (1 + countNodes (head->next)) // This node is not null, Good! This means we have at least one node. // Now call the function recursively for the next node and add 1 to	10								
	// the result									
	Q. No. 4 (CLO 4)	20 Marks								
	(a) What is the worst case and average time complexity of the BST search algorithm?									
(i)	ANS: The worst case complexity of BST search is O(n), and the average time complexity of BST search is O(log n).									
	(b) Why is the worst case complexity of BST search different from the average time complexity? Explain by using a diagram.									
	ANS: If the BST is highly imbalanced, like shown in the figure, then the BST search algorithm will always go to only one side of the tree. This means that in the worst case, the algorithm will have to check every node in the tree, leading to a complexity of O(n).	2+5+3=10								
	(c) How can the worst case complexity of BST search algorithm be made equal to the average time complexity?									
	ANS: We introduce balance property for each node (AVL trees) to make sure that the BST is balanced and therefore the worst time complexity of BST search algorithm becomes equal to average time complexity.									
(ii)	(a) Devise a recurrence relation for the function that you developed in Q. 3. ANS: The basic operation for the algorithm shown in Q. 3 is addition. For the base case (when the node is NULL) there is no addition, so $T(0) = 0$. For recursive case (the n^{th} case), we have one addition operation, because we run the algorithm for n-1 case and then simply add 1 to the result of n-1 case. So $T(N) = 1 + T(N-1)$ (b) Use the recurrence relation to compute the time complexity of the algorithm. ANS: $T(N) = 1 + T(N-1)$. But what is $T(N-1)$? Using the same equation, we can see that $T(N-1) = 1 + T(N-1) = 1 + T(N-2)$. Replace this value in the first equation. $T(N) = 1 + T(N-1)$ $T(N) = 1 + (1 + (T(N-2)) = 2 + T(N-2)$ $T(N) = 2 + (1 + T(N-3)) = 3 + T(N-3)$ $T(N) = k + T(N-k)$ (by generalizing the above pattern). Now use N in place of k $T(N) = N + T(N-N) = N + T(0) = N + 0 = N$ Total number of operations for a linked list of N nodes is N. Hence the time complexity is $O(n)$.									