latex-math Macros

compiled: 2021-10-17

Latex macros like **\frac{#1}{#2}** with arguments are displayed as $\frac{\#1}{\#2}.$

Note that macro declarations may only span a single line to be displayed correctly in the below tables.

Contents

basic-math	2
basic-ml	3
ml-automl	6
ml-bagging	6
ml-boosting	6
ml-eval	7
ml-feature-sel	8
ml-gp	9
ml-hpo	9
ml-interpretable	10
ml-nn	10
ml-rf	11
ml-survival	11
ml-svm	11
ml-trees	12
probmodel	12

basic-math

Macro	Notation	Comment
\N	IN	N, naturals
\Z	${\mathbb Z}$	Z, integers
\ Q	$\mathbb Q$	Q, rationals
\R	\mathbb{R}	R, reals
\C	${\Bbb C}$	C, complex
\continuous	\mathcal{C}	C, space of continuous functions
\M	\mathcal{M}	machine numbers
\epsm	ϵ_m	maximum error
\xt	$ ilde{x}$	x tilde
\argmax	argmax	argmax
\argmin	$rg \min$	argmin
\argminlim	$rg \min$	argmax with limits
\argmaxlim	argmax	argmin with limits
\sign	$ \sin n $	sign, signum
\I	I	I, indicator
\order	\mathcal{O}	O, order
\fp	<u>ð.</u>	partial derivative
\pd	$\frac{\partial \cdot}{\partial \cdot}$	partial derivative
\sumin	$\sum_{i=1}^{n}$	summation from $i=1$ to n
\sumim	$\sum_{i=1}^{m}$	summation from $i=1$ to m
\sumjp	$\begin{array}{l} \frac{\partial \cdot}{\partial \overline{\cdot}} \\ \frac{\partial \cdot}{\partial \overline{\cdot}} \\ \frac{\partial \cdot}{\partial \overline{\cdot}} \\ \sum_{i=1}^{n} \sum_{p=1}^{m} \\ \sum_{i=1}^{k} \sum_{g=1}^{k} \\ \sum_{j=1}^{g} \\ j=1 \end{array}$	summation from $j=1$ to p
\sumik	$\sum_{i=1}^{k}$	summation from $i=1$ to k
\sumkg	$\sum_{k=1}^{g}$	summation from k=1 to g
\sumjg	$\sum_{j=1}^{g}$	summation from $j=1$ to g
\meanin	$\frac{1}{n} \sum_{i=1}^{n}$	mean from $i=1$ to n
\meankg	$\frac{1}{g} \sum_{k=1}^{g}$	mean from k=1 to g
\prodin	$\prod_{i=1}^{n}$	product from $i=1$ to n
\prodkg	$\prod_{k=1}^{g}$	product from $k=1$ to g
\prodjp	$\prod_{j=1}^{p}$	product from $j=1$ to p
\one	1	1, unitvector
\zero	0	0-vector
\id	I	I, identity
\diag	diag	diag, diagonal
\trace	tr	tr, trace
\spn	span	span
\scp	$\langle \cdot, \cdot \rangle$	<.,.>, scalarproduct
\mat	(\cdot)	short pmatrix command
\Amat	A	matrix A
\xv	X ~	vector x (bold)
\xtil	$ ilde{\mathbf{x}}$	vector x-tilde (bold)

\yv	\mathbf{y}	vector y (bold)
\Deltab	$oldsymbol{\Delta}$	error term for vectors
∖ E	${ m I\!E}$	E, expectation
\var	Var	Var, variance
\cov	Cov	Cov, covariance
\corr	Corr	Corr, correlation
\normal	$\mathcal N$	N of the normal distribution
\iid	$\overset{i.i.d}{\sim}$	dist with i.i.d superscript
\distas	$\stackrel{\cdot}{\sim}$	is distributed as

basic-ml

Macro	Notation	Comment
\Xspace	\mathcal{X}	X, input space
\Yspace	\mathcal{Y}	Y, output space
\nset	$\{1,\ldots,n\}$	set from 1 to n
\pset	$\{1,\ldots,p\}$	set from 1 to p
\gset	$\{1,\ldots,g\}$	set from 1 to g
\Pxy	\mathbb{P}_{xy}	P_xy
\Exy	\mathbb{E}_{xy}	E_xy: Expectation over random variables xy
\xy	(\mathbf{x}, y)	observation (x, y)
\xvec	$(x_1,\ldots,x_p)^T$	(x1,, xp)
\Xmat	X	Design matrix
\allDatasets	\mathbb{D}	The set of all datasets
\D	\mathcal{D}	D, data
\obsi	$\left(\mathbf{x}^{(\cdot)}, y^{(\cdot)}\right)$	observation $(x^(i), y^(i))$
\Dn	\mathcal{D}_n	D_n, data of size n
\allDatasetsn	\mathbb{D}_n	The set of all datasets of size n
\defAllDatasetsn	$(\mathcal{X} \times \mathcal{Y})^n$	Def. of the set of all datasets of size n
\defAllDatasets	$\bigcup_{n\in\mathbb{N}}(\mathcal{X}\times\mathcal{Y})^n$	Def. of the set of all datasets
\ydat	\mathbf{y}	y (bold), vector of outcomes
\yvec	$\begin{pmatrix} y^{(1)}, \dots, y^{(n)} \end{pmatrix}^T$ $y^{(\cdot)}$	(y1,, yn), vector of outcomes
\yi	$y^{(\cdot)}$	y^i, i-th observed value of y
\xyi	$\left(\mathbf{x}^{(\cdot)}, y^{(\cdot)}\right)$	(x^i, y^i) , i-th observation
\xivec	$\left(x_1^{(i)},\ldots,x_p^{(i)}\right)^T$	(x1 $^{-}$ i,, xp $^{-}$ i), i-th observation vector
\xj	\mathbf{x}_{j}	x_j , j-th feature
\xjvec	$egin{pmatrix} (x_j^{(1)},\dots,x_j^{(n)})^T \end{pmatrix}$	$(x^1_j,, x^n_j)$, j-th feature vector
\Dtrain	$\hat{\mathcal{D}}_{ ext{train}}$	D_train, training set
\Dtest	$\mathcal{D}_{ ext{test}}$	D_test, test set
\phiv	ϕ	Basis transformation function phi
\phixi	$\phi^{(i)}$	Basis transformation of xi: phi^i := phi(xi)
\lamv	λ	lambda vector, hyperconfiguration vector
\Lam	Λ	Lambda, space of all hpos

	(1.1. (21. 21.2)	
\preimageInducer	$\left(\bigcup_{n\in\mathbb{N}}(\mathcal{X}\times\mathcal{Y})^n\right)\times\mathbf{\Lambda}$	Set of all datasets times the hyperparameter space
\preimageInducerShort	$\mathbb{D} imes \Lambda$	Set of all datasets times the hyperparameter space
\inducer	$\mathcal{I}_{_{\mathcal{I}}}$	Inducer, inducing algorithm, learning algorithm
\ftrue \ftruex	f_{true}	True underlying function (if a statistical model is assumed)
\frac{\frac{1}{1}}{1}}	$f_{\text{true}}(\mathbf{x})$	True underlying function (if a statistical model is assumed) $f(x)$, continuous prediction function
	$egin{aligned} f(\mathbf{x}) \ \mathcal{H} \end{aligned}$	hypothesis space where f is from
\Hspace \fix	$f_i(\mathbf{x})$	f_i(x), discriminant component function
\fjx	$f_j(\mathbf{x})$	$f_{-j}(x)$, discriminant component function
\fkx	$f_k(\mathbf{x})$	$f_{-}(x)$, discriminant component function
\fgx		$f_{\underline{g}}(x)$, discriminant component function
\fh	$egin{aligned} f_g(\mathbf{x}) \ \hat{f} \end{aligned}$	f hat, estimated prediction function
\fxh	$\hat{f}(\mathbf{x})$	fhat(x)
\fxt	$f(\mathbf{x} \mid \boldsymbol{\theta})$	$f(x \mid theta)$
\fxi	$f\left(\mathbf{x}^{(i)}\right)$	$f(x \cap G(x))$
\fxih	$\hat{f}\left(\mathbf{x}^{(i)}\right)$	$f(x^{-1})$
\fxit	$f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)$	$f(x^{(i)})$ theta)
\fhD	$\hat{f}_{\mathcal{D}}$	fhat_D, estimate of f based on D
\fhDtrain	$\hat{f}_{\mathcal{D}_{ ext{train}}}$	fhat_Dtrain, estimate of f based on D
\fhDnlambda	$\hat{f}_{\mathcal{D}_n,oldsymbol{\lambda}}$	model learned on Dn with hp lambda
\fhDlambda	$\hat{f}_{\mathcal{D},oldsymbol{\lambda}}$	model learned on D with hp lambda
\fhDnlambdastar	$\hat{f}_{\mathcal{D}_n,oldsymbol{\lambda}^*}$	model learned on Dn with optimal hp lambda
\fhDlambdastar	$\widehat{f}_{\mathcal{D}, oldsymbol{\lambda}^*}$	model learned on D with optimal hp lambda
\hx	$h(\mathbf{x})$	h(x), discrete prediction function
\hxv	$h(\mathbf{x})$	h(x), discrete prediction function with x (vector) as input
\hh	\hat{h}	h hat
\hxh	$\hat{h}(\mathbf{x})$	hhat(x)
\hxt	$h(\mathbf{x} oldsymbol{ heta})$	$h(x \mid theta)$
\hxi	$h\left(\mathbf{x}^{(i)}\right)$	$h(x^{}(i))$
\hxit	$h\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)$	$h(x^{}(i) \mid theta)$
\yh	$\hat{y}_{_{(1)}}$	yhat for prediction of target
\yih	$\hat{y}^{(i)} \ \hat{ heta}$	yhat^(i) for prediction of ith targiet
\thetah	$\hat{ heta}$	theta hat
\thetab	θ	theta vector
\thetabh	$\hat{ heta}$	theta vector hat
\thetat	$oldsymbol{ heta}^{[t]}$	theta [*] [t] in optimization
\thetatn	$oldsymbol{ heta}^{[t+1]}$	theta $[t+1]$ in optimization
\thxh	$oldsymbol{ heta}^T\mathbf{x}$	linear combination with theta
\thetahDnlambda	$oldsymbol{\hat{ heta}}_{\mathcal{D}_n,oldsymbol{\lambda}}$	theta learned on Dn with hp lambda
\thetahDlambda	$\hat{m{ heta}}_{\mathcal{D},m{\lambda}}$	theta learned on D with hp lambda
\pdf	p	p
\pdfx	$p(\mathbf{x})$	p(x)
\pixt	$\pi(\mathbf{x} \mid \boldsymbol{\theta})$	pi(x theta), pdf of x given theta
\pixit	$\pi\left(\mathbf{x}^{(i)}\midoldsymbol{ heta} ight)$	$pi(x^i theta)$, pdf of x given theta
\pixii	$\pi\left(\mathbf{x}^{(i)}\right)$	$pi(x^i)$, pdf of i-th x
\pdfxy	$p(\mathbf{x}, y)$	p(x, y)
\pdfxyt	$p(\mathbf{x}, y \mid \boldsymbol{\theta})$	$p(x, y \mid theta)$
\pdfxyit	$p\left(\mathbf{x}^{(i)}, y^{(i)} \mid \boldsymbol{\theta}\right)$	$p(x^(i), y^(i) \mid theta)$
\pdfxyk	$p(\mathbf{x} y=k)$	$p(x \mid y = k)$
\pdfxyj	$p(\mathbf{x} y=j)$	$p(x \mid y = j)$
\lpdfxyk	$\log p(\mathbf{x} y=k)$	$\log p(x \mid y = k)$
\pdfxiyk	$p\left(\mathbf{x}^{(i)} y=k\right)$	$p(x^i \mid y = k)$

```
\pi_k
                                                                                    pi k, prior
\pik
                                                                                    log pi k, log of the prior
\lpik
                                            \log \pi_k
\pit
                                            \pi(\boldsymbol{\theta})
                                                                                   Prior probability of parameter theta
                                            \mathbb{P}(y = 1 \mid \mathbf{x})
                                                                                   P(y = 1 | x), post. prob for y=1
\post
\pix
                                            \pi(\mathbf{x})
                                                                                    pi(x), P(y = 1 \mid x)
                                            \mathbb{P}(y = k \mid \mathbf{x})
                                                                                   P(y = k | y), post. prob for y=k
\postk
                                            \pi_k(\mathbf{x})
\pikx
                                                                                   pi k(x), P(y = k \mid x)
                                                                                   pi_k(x \mid theta), P(y = k \mid x, theta)
                                            \pi_k(\mathbf{x} \mid \boldsymbol{\theta})
\pikxt
\pijx
                                            \pi_j(\mathbf{x})
                                                                                   pi_j(x), P(y = j \mid x)
                                            \pi_g(\mathbf{x})
                                                                                   pi_g(x), P(y = g \mid x)
\pigx
\pdfygxt
                                            p(y \mid \mathbf{x}, \boldsymbol{\theta})
                                                                                   p(y \mid x, theta)
                                            p\left(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta}\right)
                                                                                   p(v^i |x^i, theta)
\pdfvigxit
                                            \log p(y \mid \mathbf{x}, \boldsymbol{\theta})
                                                                                    \log p(y \mid x, \text{ theta})
\lpdfygxt
                                            \log p\left(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta}\right)
                                                                                   \log p(y^i | x^i, theta)
\lpdfyigxit
                                            \hat{\pi}(\mathbf{x})
                                                                                   pi(x) hat, P(y = 1 | x) hat
\pixh
                                                                                   pi_k(x) hat, P(y = k \mid x) hat
\pikxh
                                            \hat{\pi}_k(\mathbf{x})
                                            \hat{\pi}(\mathbf{x}^{(i)})
                                                                                   pi(x^{(i)}) with hat
\pixih
                                            \hat{\pi}_k(\mathbf{x}^{(i)})
                                                                                   pi k(x^{(i)}) with hat
\pikxih
\eps
                                                                                   residual, stochastic
                                            \epsilon^{(i)}
                                                                                   epsilon<sup>*</sup>i, residual, stochastic
\epsi
                                            \hat{\epsilon}
                                                                                   residual, estimated
\epsh
                                            yf(\mathbf{x})
\yf
                                                                                   y f(x), margin
                                            y^{(i)}f\left(\mathbf{x}^{(i)}\right)
\yfi
                                                                                   y^i f(x^i), margin
                                            \hat{\Sigma}
                                                                                   estimated covariance matrix
\Sigmah
                                            \hat{\Sigma}_i
\Sigmahj
                                                                                   estimated covariance matrix for the j-th class
\Lyf
                                            L(y,f)
                                                                                   L(y, f), loss function
                                            L(y, f(\mathbf{x}))
                                                                                   L(y, f(x)), loss function
\Lxy
                                            L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)
                                                                                   loss of observation
\Lxyi
\Lxyt
                                            L(y, f(\mathbf{x} \mid \boldsymbol{\theta}))
                                                                                   loss with f parameterized
                                            L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right)
                                                                                   loss of observation with f parameterized
\Lxyit
                                            L\left(y^{(i)}, f\left(\tilde{\boldsymbol{x}}^{(i)} \mid \boldsymbol{\theta}\right)\right)
\Lxym
                                                                                    loss of observation with f parameterized
                                                                                    loss in classification
                                            L(y, \pi(\mathbf{x}))
\Lpixy
                                            L\left(y^{(i)}, \pi\left(\mathbf{x}^{(i)}\right)\right)
\Lpixyi
                                                                                    loss of observation in classification
                                            L(y, \pi(\mathbf{x} \mid \boldsymbol{\theta}))
                                                                                    loss with pi parameterized
\Lpixyt
                                            L\left(y^{(i)}, \pi\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right)
                                                                                   loss of observation with pi parameterized
\Lpixyit
\Lhxy
                                            L(y, h(\mathbf{x}))
                                                                                   L(y, h(x)), loss function on discrete classes
                                            L(r)
                                                                                   L(r), loss defined on residual (reg) / margin (classif)
\Lr
\risk
                                            \mathcal{R}
                                                                                   R, risk
                                            \mathcal{R}(f)
                                                                                   R(f), risk
\riskf
\riskt
                                            \mathcal{R}(\boldsymbol{\theta})
                                                                                   R(theta), risk
                                                                                   R emp, empirical risk w/o factor 1 / n
\riske
                                            \mathcal{R}_{\mathrm{emp}}
                                                                                   R_emp, empirical risk w/ factor 1 / n
\riskeb
                                            \bar{\mathcal{R}}_{\mathrm{emp}}
\riskef
                                            \mathcal{R}_{\mathrm{emp}}(f)
                                                                                   R = emp(f)
\risket
                                            \mathcal{R}_{\mathrm{emp}}(\boldsymbol{\theta})
                                                                                   R emp(theta)
                                                                                   R reg, regularized risk
\riskr
                                            \mathcal{R}_{	ext{reg}}
                                            \mathcal{R}_{\text{reg}}(\boldsymbol{\theta})
                                                                                   R reg(theta)
\riskrt
\riskrf
                                            \mathcal{R}_{reg}(f)
                                                                                   R_reg(f)
                                            \hat{\mathcal{R}}_{\text{reg}}(\boldsymbol{\theta})
\riskrth
                                                                                   hat R_reg(theta)
                                                                                   hat R emp(theta)
\risketh
                                            \mathcal{R}_{\mathrm{emp}}(\boldsymbol{\theta})
\LL
                                            \mathcal{L}
                                                                                   L, likelihood
\LLt
                                            \mathcal{L}(\boldsymbol{\theta})
                                                                                   L(theta), likelihood
                                                                                   l, log-likelihood
\log1
                                            \ell
                                            \ell(\boldsymbol{\theta})
                                                                                   l(theta), log-likelihood
\loglt
```

\LS	${\mathfrak L}$??????????	
\TS	$\mathfrak T$???????????	
\errtrain	$\mathrm{err}_{\mathrm{train}}$	training error	
\errtest	$\mathrm{err}_{\mathrm{test}}$	training error	
\errexp	$\overline{\mathrm{err}_{\mathrm{test}}}$	training error	

ml-automl

Macro	Notation	Comment
\lambdav	λ	lambda vector

Back to contents

ml-bagging

Macro	Notation	Comment
\bl	$b^{[\cdot]}(\mathbf{x})$	baselearner with argument for m
\blm	$b^{[m]}(\mathbf{x})$	baselearner without argument for m
\blmh	$\hat{b}^{[m]}(\mathbf{x})$	estimated base learner
\fM	$f^{[M]}(\mathbf{x})$	ensembled predictor
\fMh	$\hat{f}^{[M]}(\mathbf{x})$	estimated ensembled predictor
\ambifM	$\Delta\left(f^{[M]}(\mathbf{x})\right)$	ambiguity/instability of ensemble

Back to contents

ml-boosting

Macro	Notation	Comment
\fm	$f^{[m]}$	prediction in iteration m
\fmh	$\hat{f}^{[m]}$	prediction in iteration m
\fmd	$f^{[m-1]}$	prediction m-1
\fmdh	$\hat{f}^{[m-1]}$	prediction m-1

\bmm	$b^{[m]}$	basemodel m
\bmmh	$\hat{b}^{[m]}$	basemodel m with hat
\betam	$\beta^{[m]}$	weight of basemodel m
\betamh	$\hat{eta}^{[m]}$	weight of basemodel m with hat
\betai	$eta^{[\cdot]}$	weight of basemodel with argument for m
\errm	$\operatorname{err}^{[m]}$	weighted in-sample misclassification rate
\wm	$w^{[m]}$	weight vector of basemodel m
\wmi	$w^{[m](i)}$	weight of obs i of basemodel m
\thetam	$ heta^{[m]}$	parameters of basemodel m
\thetamh	$\hat{ heta}^{[m]}$	parameters of basemodel m with hat
\rmm	$\widetilde{r}^{[m]}$	pseudo residuals
\rmi	$\widetilde{r}^{[m](i)}$	pseudo residuals
\Rtm	$R_t^{[m]}$	terminal-region
\Tm	$T^{[m]}$	
\ctm	$c_t^{[m]}$	mean, terminal-regions
\ctmh	$\hat{c}_t^{[m]}$	mean, terminal-regions with hat
\ctmt	$ ilde{c}_t^{[m]}$	mean, terminal-regions
\fxk	$f_k(x)$	$f_k(x)$
\Lp	L'	
\Ldp	$L^{\prime\prime}$	
\Lpleft	$L'_{ m left}$	

ml-eval

Macro	Notation	Comment
\ntest	$n_{ m test}$	size of the test set
\ntrain	$n_{ m train}$	size of the train set
\ntesti	$n_{ m test,\cdot}$	size of the i-th test set
\ntraini	$n_{ m train,\cdot}$	size of the i-th train set
$\$ Jtrain	$J_{ m train}$	index vector associated to the train data
\Jtest	$J_{ m test}$	index vector associated to the test data
\Jtraini	$J_{ m train,\cdot}$	index vector associated to the i-th train dataset
\Jtesti	$J_{ m test,\cdot}$	index vector associated to the i-th test dataset
\Dtraini	$\mathcal{D}_{ ext{train},\cdot}$	D_train,i, i-th training set
\Dtesti	$\mathcal{D}_{ ext{test},\cdot}$	D_test,i, i-th test set
\JSpace	$\{1,\ldots,n\}$	space of train indices of size m_train
$\$ JtrainSpace	$\{1,\dots,n\}^{n_{ ext{train}}}$	space of train indices of size m_train
\JtestSpace	$\{1,\ldots,n\}^{n_{\mathrm{test}}}$	space of train indices of size m_test
\ yJ	\mathbf{y} .	output vector associated to index J
\yJDef	$\left(y^{(J^{(1)})},\ldots,y^{(J^{(m)})}\right)$	def of the output vector associated to index J
\ JJ	$\dot{\mathcal{J}}$	cali-J, set of all splits
\JJset	$((J_{\text{train},1},J_{\text{test},1}),\ldots,(J_{\text{train},B},J_{\text{test},B}))$	(Jtrain_1,Jtest_1)(Jtrain_B,Jtest_B)
\GE	GE	GE
\GEh	$\widehat{ ext{GE}}$	GE-hat

\GEfull	$\mathrm{GE}(\mathcal{I}, \boldsymbol{\lambda}, \cdot, ho)$	GE(I, lam, ?, rho)
\GEhlam	$\widehat{\operatorname{GE}}(oldsymbol{\lambda})$	GE-hat(lam)
\GEhlamsubIJrho	$\widehat{\operatorname{GE}}_{\mathcal{I},\mathcal{J}, ho}(oldsymbol{\lambda})$	GE-hat_I,J,rho(lam)
\GEhresa	$\widehat{\operatorname{GE}}(\mathcal{I},\mathcal{J}, ho,oldsymbol{\lambda})$	GE-hat I,J,rho(lam)
\GErhoDef	$\lim_{n_{ ext{test}} o \infty} \mathbb{E}\left[ho\left(\mathbf{y}_{J_{ ext{test}}}, oldsymbol{F}_{J_{ ext{test}}, \mathcal{I}(\mathcal{D}_{ ext{train}}, oldsymbol{\lambda})} ight) ight]$	GE formal def
\agr	$\underset{\text{agr}}{\text{agr}} = [F \left(J J_{\text{test}}, -J_{\text{test}}, \mathcal{L}(\mathcal{D}_{\text{train}}, \mathbf{A}) \right)]$	aggregate function
\GEf	$\operatorname{GE}\left(\hat{f} ight)$	Generalization error of a fitted model
\GEind	$GE_n(\mathcal{I}_{L,O})$	Generalization error of a fitted model
\GEnf	$GE_n\left(\hat{f}_{\cdot}\right)$	Generalization error GE
\GEhat	ĜE	Estimated train error
\GED	$\mathrm{GE}_{\mathcal{D}}$	Generalization error GE
\EGEn	EGE_n	expected GE
\EDn	$\mathbb{E}_{ D =n}$	expectation wrt data of size n
\rhoL	$ ho_L$	perf. measure derived from pointwise loss function L
\F	F_{\perp}	matrix of prediction scores
\Fi	$oldsymbol{F}^{(\cdot)}$	i'th row vector of the prediction scores matrix
\FJ	F.	predscore mat index vector J
\FJf	$oldsymbol{F}_{J,f}$	predscore mat index vector J and model f
\FJtestfh	$oldsymbol{F}_{J_{ ext{test}},\hat{f}}$	predscore mat index vector Jtest and model f hat
\FJ testftrain	$oldsymbol{F_{J_{ ext{test}},\mathcal{I}(\mathcal{D}_{ ext{train}},oldsymbol{\lambda})}}$	predscore mat index vector Jtest and model f
\FJtestftraini	$oldsymbol{F}_{J_{ ext{test},\cdot},\mathcal{I}(\mathcal{D}_{ ext{train},\cdot},oldsymbol{\lambda})}$	predscore mat i-th index vector Jtest and model f
\FJfDef	$egin{aligned} oldsymbol{F}_{J_{ ext{test}},,\mathcal{I}(\mathcal{D}_{ ext{train},\cdot},oldsymbol{\lambda})} \ \left(f(\mathbf{x}^{(J^{(1)})}),\dots,f(\mathbf{x}^{(J^{(m)})}) ight) \end{aligned}$	def of predscore mat index vector J and model f
\preimageRho	$\bigcup_{m\in\mathbb{N}} \left(\mathcal{Y}^m \times \mathbb{R}^{m\times g} \right)$	Set of all datasets times the hyperparameter space
\np	n_{+}	no. of positive instances
\nn	n_{-}	no. of negative instances
\rn	π_{-}	proportion negative instances
\rp	π_{+}	proportion negative instances
\tp	#TP	true pos
\fap	#FP	false pos (fp taken for partial derivs)
\tn	#TN	true neg
\fan	#FN	false neg

ml-feature-sel

Macro	Notation	Comment
\xjNull	x_{j_0}	
\xjEins	x_{j_1}	
\xl	\mathbf{x}_l	
\pushcode		

Back to contents

ml-gp

Macro	Notation	Comment
\gp	$\mathcal{GP}\left(m(\mathbf{x}), k\left(\mathbf{x}, \mathbf{x}'\right)\right)$	Gaussian Process Definition
\mvec	m	Gaussian process mean vector
$\$ \Kmat	K	estimated base learner
\kstarx	$\mathbf{k}_*(x)$	cov of new obs with x
\ls	ℓ	length-scale

Back to contents

ml-hpo

Macro	Notation	Comment
\Ilam	$\mathcal{I}_{oldsymbol{\lambda}}$	I_lambda
\lami	$oldsymbol{\lambda}^{(\cdot)}$	lambda i
\clam	$c(oldsymbol{\lambda})$	c(lambda)
\clamh	$c(\hat{oldsymbol{\lambda}})$	c(lambda-hat)
\lams	λ^*	Theoretical min of c
\lamh	$oldsymbol{\lambda}^* \ \hat{oldsymbol{\lambda}} \ ilde{oldsymbol{\Lambda}}$	returned lambda of HPO
\LamS		search space
\label{lamp}	λ^+	proposed lambda
\clamp	$c(\boldsymbol{\lambda}^+)$	c of proposed lambda
\archive	\mathcal{A}	archive at time step t
\archivet	$\mathcal{A}^{[\cdot]}$	archive at time step t
\tuner	${\mathcal T}$	tuner
\tunerfull	$\mathcal{T}_{\mathcal{I}, ilde{\mathbf{\Lambda}}, ho,\mathcal{J}}$	tuner with inducer, search space, performance measure and resampling strategy
\chlam	$c(\lambda)$	post mean of SM
\shlam	$\hat{\sigma}(oldsymbol{\lambda})$	post sd of SM
\vhlam	$\hat{\sigma^2}(oldsymbol{\lambda})$	post var of SM
\ulam	$u(\boldsymbol{\lambda})$	acquisition function
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	λ^*	Minimum of the black box function Psi
\metadata	$\left\{\left(oldsymbol{\lambda}^{(i)}, \Psi^{[i]} ight) ight\}$	Metadata for the Gaussian process
\lamvec	$\left(\lambda^{[1]},\ldots,\lambda^{[m_{\mathrm{init}}]} ight)$	Vector of different inputs
\minit	$m_{ m init}$	Size of the initial design
\lambu	$\lambda_{ m budget}$	single lambda_budget komponent HP
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\lambda_{ m fid}$	single lambda_budget komponent HP
\lamfidl	$\lambda_{ m fid}^{ m low} \ \lambda_{ m fid}^{ m upp}$	single lambda_budget komponent HP
\lamfidu	$\lambda_{ m fid}^{ m upp}$	single lambda_budget komponent HP
\etahb	$\eta_{ m HB}$	HB multiplier eta
\costs	C	costs
\Celite	$oldsymbol{ heta}^*$	elite configurations
\instances	\mathcal{I}	sequence of instances
\budget	\mathcal{B}	computational budget

Back to contents

ml-interpretable

Macro	Notation	Comment
\fj	f_j	marginal function f_j, depending on feature j
\fS	f_S	marginal function f_S depending on feature set S
\fC	f_C	marginal function f_C depending on feature set C
\fhj	$egin{array}{l} \hat{f}_j \ \hat{f}_S \ \hat{f}_C \end{array}$	marginal function fh_j, depending on feature j
\fhS	\hat{f}_S	marginal function fh_S depending on feature set S
\fhC	\hat{f}_C	marginal function fh_C depending on feature set C
\XSmat	\mathbf{X}_S	Design matrix subset
\XCmat	\mathbf{X}_C	Design matrix subset
\Scupj	$S \cup \{j\}$	coalition S but without player j
\Scupk	$S \cup \{k\}$	coalition S but without player k
\SsubP	$S \subseteq P$	coalition S subset of P
\SsubPnoj	$S \subseteq P \setminus \{j\}$	coalition S subset of P without player j
\SsubPnojk	$S \subseteq P \setminus \{j, k\}$	coalition S subset of P without player k
\phiij	$egin{array}{l} \hat{\phi}_j^{(i)} \ \mathcal{G} \end{array}$	Shapley value for feature j and observation i
\Gspace	$\mathcal{G}^{"}$	Hypothesis space for surrogate model
\neigh	$\phi_{\mathbf{x}}$	Proximity measure
\zv	${f z}$	Sampled datapoints for surrogate
\Zspace	${\mathcal Z}$	Space of sampled datapoints
\Gower	d_G	Gower distance

Back to contents

ml-nn

2.5	NT	
Macro	Notation	Comment
\neurons	z_1,\ldots,z_M	vector of neurons
\hidz	${f z}$	vector of hidden activations
\biasb	b	bias vector
\biasc	c	bias in output
\wtw	\mathbf{w}	weight vector (general)
\Wmat	\mathbf{W}	weight vector (general)
\wtu	\mathbf{u}	weight vector of output neuron
\Oreg	$R_{reg}(\theta X,y)$	regularized objective function
\Ounreg	$R_{emp}(\theta X,y)$	unconstrained objective function
\Pen	$\Omega(heta)$	penalty
\Oregweight	$R_{reg}(w X,y)$	regularized objective function with weight
\Oweight	$R_{emp}(w X,y)$	unconstrained objective function with weight
\Oweighti	$R_{emp}(w_i X,y)$	unconstrained objective function with weight w_i
\Oweightopt	$J(w^* X,y)$	unconstrained objective function withoptimal weight
\Oopt	$\hat{J}(\theta X,y)$	optimal objective function
\Odropout	$J(\theta, \mu X, y)$	dropout objective function
\Loss	$L(y, f(\mathbf{x}, \boldsymbol{\theta}))$	
\Lmomentumnest	$L(y^{(i)}, f(x^{(i)}, \boldsymbol{\theta} + \varphi \boldsymbol{\nu}))$	momentum risk
\Lmomentumtilde	$L(y^{(i)}, f(x^{(i)}, \tilde{\boldsymbol{\theta}}))$	Nesterov momentum risk

\Lmomentum	$L(y^{(i)}, f(x^{(i)}, \boldsymbol{\theta}))$	
\Hess	H	
\nub	u	
\uauto	L(x, g(f(x)))	undercomplete autoencoder objective function
\dauto	$L(x, g(f(\tilde{x})))$	denoising autoencoder objective function
\deltab	δ	
\Lossdeltai	$L(y^{(i)}, f(\mathbf{x}^{(i)} + \boldsymbol{\delta} \boldsymbol{\theta}))$	
\Lossdelta	$L(y, f(\mathbf{x} + \boldsymbol{\delta} \boldsymbol{\theta}))$	

ml-rf

Macro		Comment
,	$\beta^{[M]}$	baselearner with argument for M
\betai	$eta^{[1]}$	baselearner with argument for 1

Back to contents

ml-survival

Macro	Notation	Comment
\Ti	$T^{(\cdot)}$??
\Ci	$C^{(\cdot)}$??
\oi	$o^{(\cdot)}$??
\ti	$t^{(\cdot)}$??
\deltai	$\delta^{(\cdot)}$	
\Lxdi	$L\left(\boldsymbol{\delta}, f(\mathbf{x})\right)$	

Back to contents

ml-svm

Macro	Notation	Comment
\sv	SV	supportvectors
\HS	Φ	H, hilbertspace
\slvec	$(\zeta^{(1)},\zeta^{(n)})$	slack variables (SVM)
\sli	$\zeta^{(i)}$	slack variable (SVM)
\alphah	\hat{lpha}	alpha-hat
\alphav	lpha	vector alpha (bold)
\alphavh	$\hat{m{lpha}}$	vector alpha-hat
\phix	$\phi(\mathbf{x})$	$\phi(x)$
\phixt	$\phi(\tilde{\mathbf{x}})$	\phi(x-tilde)

ml-trees

Macro	Notation	Comment
\Np	\mathcal{N}	(Parent) node N
\Npk	\mathcal{N}_k	$node N_k$
\Nl	\mathcal{N}_1	Left node N_1
\Nr	\mathcal{N}_2	Right node N_2
\pikN	$\pi_k^{(\mathcal{N})}$ $\hat{\pi}_k^{(\mathcal{N})}$	class probability node N
\pikNh		estimated class probability node N
\pikNlh	$\hat{\pi}^{(\mathcal{N}_1)}$	
\pikNrh	$\hat{\pi}^{(\mathcal{N}_2)}$	

Back to contents

probmodel

Macro	Notation	Comment
\muk	μ_k	

Back to contents