6.1 เขียน ARIMA(0,1,1) โดยเขียนทั้งแบบที่ไม่ใช้ backshift notation และแบบที่ใช้ backshift notation

6.1.1 ไม่ใช่ backshift notation

6.1.2 ใช้ backshift notation

6.1.1

6.1.2 Backshift Notation

$$(1-B) y_t = C + (1+\theta_1 B) \varepsilon_t$$

6.2 ข้อมูลเฉพาะข้อ 6.2 นี้มีทั้งหมด 65 observations โดยข้อมูลบางส่วนดังแสดงในตาราง (ข้อนี้ไม่มี data file ให้)

Time (t)	1	2	 61	62	62	53	y ₆₄	65 y ₆₅
Observation (y_t)	222.34	222.24	278.49	281.75	285.7	286.	33	288.57

เมื่อทำ arima แล้วได้ผลลัพธ์จากโปรแกรม R ดังนี้

ขอ assume เป็น y_{64} นะครับ

Call:

arima(x = y2, order = c(1, 1, 0)) ARIMA(1,1,0)

$$\phi_1 = ar1 \\ 0.4383 \\ c = 0$$

sigma^2 estimated as 3.861: log likelihood = -134.15, aic = 272.29

จงเขียน ARIMA model ที่ได้ พร้อมทั้งแสดงการคำนวณ point forecast สำหรับ t=66, 67 นั่นคือ $\widehat{y}_{66|65}$ และ $\widehat{y}_{67|65}$

6.2 ILL ARIMA (1, 4,0)

$$y'_{t} = C + \phi_{1} y'_{t-1} + \varepsilon_{+}$$
 ; $\phi_{1} = 0.4383$

Forecast:

$$y_{t} - y_{t-1} = c + p_{1}(y_{t-1} - y_{t-2}) + p_{t}$$

$$Y_{t} = C + p_{1} Y_{t-1} - p_{1} Y_{t-2} + Y_{t-1}$$

$$= \frac{1}{289.9821} = \frac{114383}{289.5518} = \frac{0.4383}{288.57} = \frac{0$$