

(19)

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 09145995 A

(43) Date of publication of application: 06 . 06 . 97

(51) Int. CI

G02B 13/00

G02B 3/10 G02B 13/18 G11B 7/135

(21) Application number: 07329449

(22) Date of filing: 27 . 11 . 95

(71) Applicant:

KONICA CORP

(72) Inventor:

YAMAZAKI NORIYUKI

(54) OPTICAL SYSTEM FOR RECORDING AND REPRODUCING OPTICAL INFORMATION RECORDING MEDIUM

(57) Abstract:

PROBLEM TO BE SOLVED: To provide an information pickup device and an optical disk device which are compatible and simple in structure while the light quantity loss is suppressed as much as possible with one pickup.

SOLUTION: Adjacent zonal lens surfaces among $_{\cong}3$ zonal lens surfaces are different in refracting power and the zones rings are constituted so that each zone corresponds to a thin transparent substrate and a thick transparent substrate alternately ever other zone from the outer periphery, and when the thin transparent substrate is almost a half as thick as the thick transparent substrate, $d_1 \neq d_2$ holds, where d_1 is the interval on the optical axis between an objective lens and the transparent substrate of an optical information recording surface on the optical axis when light is converged on the information recording surface through the thin transparent substrate and d_2 is the interval on the optical axis when light is converged through the thick transparent substrate.

COPYRIGHT: (C)1997,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-145995

(外2名)

(43)公開日 平成9年(1997)6月6日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ			1	技術表示箇所
G 0 2 B	13/00			G 0 2 B	13/00			
	3/10				3/10			
	13/18				13/18			
G 1 1 B	7/135			G 1 1 B	7/135	1	4	
				審查請才	文 未請求	請求項の数13	FD	(全 11 頁)
(21)出願番号	₱	特願平7-329449		(71) 出願人	=	270 株式会社		
(22)出願日		平成7年(1995)11	月27日	(72)発明者	東京都新 山崎 村	新宿区西新宿17 数之 八王子市石川町2		

(54) 【発明の名称】 光情報記録媒体の記録再生用光学系

(57)【要約】

(修正有)

【課題】 一つのピックアップで光量損失を極力抑えた、互換性を有する、構造が簡単な情報ピックアップ装置および光ディスク装置を実現する。

【解決手段】 3つ以上の輪帯状レンズ面のうち、隣あう輪帯状レンズ面は異なる屈折力を有すると共に、外周から一輪帯おきに厚みの薄い透明基板、厚い透明基板に対応するように輪帯が構成されており、上記2種類の透明基板において薄い透明基板の厚みが厚い透明基板の厚みのほぼ半分の厚みであるとき、以下の条件式を満足する。

 $d_1 \neq d_2$

ただし d₁: 厚みの薄い透明基板を介して情報記録面 上に集光する際の対物レンズと光情報記録面の透明基板 との光軸上の間隔

d₂: d₁とは反対に厚い透明基板を介した場合の光軸上の間隔。

(74)代理人 弁理士 佐藤 文男

【特許請求の範囲】

【請求項1】 光情報記録媒体の透明基板を介して情報記録面上に集光する正の屈折力を有する対物レンズを含み、該対物レンズは厚みの異なる透明基板を有する2種類の光情報記録媒体のそれぞれについて情報記録面上に集光するように、少なくとも一方の面が光軸を中心とした3つ以上の輪帯状レンズ面により構成されており、該3つ以上の輪帯状レンズ面のうち、隣あう輪帯状レンズ面は異なる屈折力を有すると共に、外周から一輪帯おきに厚みの薄い透明基板、厚い透明基板に対応するように10輪帯が構成されており、上記2種類の透明基板において薄い透明基板の厚みが厚い透明基板の厚みのほぼ半分の厚みであるとき、以下の条件式を満足することを特徴とする光情報記録媒体の記録再生用光学系。

1

ただし d₁: 厚みの薄い透明基板を介して情報記録面上に集光する際の対物レンズと光情報記録面の透明基板との光軸上の間隔

d₂: 厚みの厚い透明基板を介して情報記録面上に集光 する際の対物レンズと光情報記録面の透明基板との光軸 上の間隔

【請求項2】 上記対物レンズは光源側に凸面を向けた 正の単レンズであり、光源側、情報記録面側に面する両 面が非球面であり、かつ、少なくとも光源側のレンズ面 に上記輪帯状レンズ面が形成されており、該非球面形状 は面の頂点を原点とし、光軸方向をX軸とした直交座標 系において、κを円錐形数、Ai を非球面係数、Pi を 非球面のべき数とするとき、

[数1] *
x =
$$\frac{C \phi^z}{1 + \sqrt{1 - (1 + \kappa) C^2 \phi^2}} + \Sigma \operatorname{Ai} \phi^{Pi}$$
 3

$$\phi = \sqrt{y^2 + z^2} \quad , \quad C = 1 / r$$

$$\theta$$
 (2i-1) > θ ' (2i) θ (2j) < θ ' (2j+1)

ただし

 $d_1 \neq d_2$

N : 対物レンズの光源側のレンズ面の輪帯数 θ (2i-1) : 第 (2i-1) 輪帯状レンズ面と第2i輪帯状レンズ面の境界部分における第 (2i-1) 輪帯状レンズ面の法線と光軸とのなす角度であり、第 (2i-1) 輪帯状レンズ面は第2i輪帯状レンズ面よりも外側 (周辺側) に位置する。

 θ '(2i) :第(2i-1)輪帯状レンズ面と第2i輪帯状レンズ面の境界部分における第2i輪帯状レンズ面の法線と光軸とのなす角度であり、第2i輪帯状レンズ面は第(2i-1)輪帯状レンズ面よりも内側(光軸側)に位置する。

θ(2j) :第2j輪帯状レンズ面と第(2j+1)輪帯状レンズ面の境界部分における第2j輪帯状レンズ面の法線と光軸とのなす角度であり、第2j輪帯状レンズ 50

* で表され、同一の透明基板に対応する各輪帯状レンズ面の形状を上記非球面形状式に従って光軸まで延長した際の軸上におけるレンズの厚みによる光路長差△と光源波長 λ が以下の関係を満足することを特徴とする請求項1

 $\triangle = m\lambda$ (mは整数)

の光情報記録媒体の記録再生用対物レンズ。

ただし Δ:同一の透明基板に対応する各輪帯状レンズ 面の任意の2つの輪帯のレンズ面形状を上記非球面形状 式に従って光軸まで延長したときの軸上におけるレンズ の厚みの差に使用波長における該レンズの屈折率をかけ た値

λ:使用する光源の波長

【請求項3】 上記光路長差が以下の関係を満足することを特徴とする請求項2の光情報記録媒体の記録再生用対物レンズ。

 $-10 \leq m \leq 10$

【請求項4】 上記2種類の透明基板のそれぞれに対応する各輪帯状レンズ面の形状が同一の非球面形状式で表現できることを特徴とする請求項2の光情報記録媒体の記録再生用対物レンズ。

【請求項5】 上記対物レンズの輪帯状レンズ面形状をなす光源側のレンズ面において、隣接する輪帯状レンズ面の境界部分における外側輪帯状レンズ面、内側輪帯状レンズ面のそれぞれの方線と光軸とのなす角度が以下の条件式を満たすことを特徴とする請求項2ないし5の何れかの光情報記録媒体の記録再生用対物レンズ。

 $[1 \le i \le N/2, i は整数]$

 $[1 \le i \le (N-1)/2$, iは整数]

面は第(2j+1)輪帯状レンズ面よりも外側(周辺側)に位置する。

θ'(2j+1):第2j輪帯状レンズ面と第(2j+1)輪帯状レンズ面の境界部分における第(2j+1)輪帯状レンズ面の法線と光軸とのなす角度であり、第(2j+1)輪帯状レンズ面は第2j輪帯状レンズ面よりも内側(光軸側)に位置する。

【請求項6】 以下の条件式を満足するように最外周輪帯状レンズ面と一つ内側の輪帯状レンズ面との境界が設定されていることを特徴とする請求項5の光情報記録媒体の記録再生用対物レンズ。

1. 50 $< \lambda/NA_2 < 2.00$

ただし λ :使用する光源の波長 (μ m)

NA₂: 最外周の一つ内側の輪帯状レンズ面から出射する光束の開口数

2

40

3

【請求項7】 上記対物レンズを形成する素材は、ガラスであることを特徴とする請求項1ないし6の何れかの 光情報記録媒体の記録再生用対物レンズ。

【請求項8】 上記対物レンズを形成する素材は、プラスチックであることを特徴とする請求項1ないし6の何れかの光情報記録媒体の記録再生用対物レンズ。

【請求項9】 各輪帯状レンズ面間の境界部分の1ヶ所 は段差がなく、連続であることを特徴とする請求項7あ るいは8の光情報記録媒体の記録再生用対物レンズ。

【請求項10】 上記対物レンズの光源側の面に形成された輪帯数Nが、以下の条件式を満足することを特徴とする請求項9の光情報記録媒体の記録再生用対物レンズ。

$3 \leq N \leq 10$

【請求項11】 上記対物レンズの光源側の面に形成された輪帯状レンズ面数Nが、以下の条件式を満足することを特徴とする請求項9の光情報記録媒体の記録再生用対物レンズ。

$3 \le N \le 6$

【請求項12】 光情報媒体の透明基板を介して光源からの光を記録面上に集光する光学系において、該光学系は透明基板の厚みの異なる複数種類の光情報媒体に対応するために、光軸上に離れた複数のスポットを形成するように構成され、1つのスポットが1種の光情報媒体の記録面上に形成されるとき、他のスポットを形成するための光束の記録面での反射光が透明基板表面にスポットを形成しないように、上記複数のスポット位置と対物レンズとの距離が設定されていることを特徴とする光情報媒体の記録再生用光学系。

【請求項13】 上記光学系において、対物レンズは透明基板の厚みの異なる複数種類の光情報媒体に対応するために、光軸上に離れた複数のスポットを形成するように構成された対物レンズであって、1つのスポットが1種の光情報媒体の記録面上に形成されるとき、他のスポットを形成するための光束の記録面での反射光が透明基板表面にスポットを形成しないように、上記複数のスポット位置の対物レンズからの距離が設定されていることを特徴とする請求項12の光情報媒体の記録再生用光学系

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、レーザ光などの光源からの光ビームを透明基板を介して光情報記録媒体の情報記録面に集光することにより情報を記録再生する光学系に用いる対物レンズに関する。

[0002]

【従来の技術】従来の光情報記録媒体の記録再生用光学系(本発明で云う記録再生用光学系とは、記録用光学系、再生用光学系、記録と再生との両用の光学系を含む。)の一例を図9に示す。図において、半導体レーザ 50

等の光源1から出射した光東はビームスプリッタ2を通ってコリメータレンズ3に入射し、平行光東となって絞り5で所定の光東に制限されて対物レンズ6に入射する。この対物レンズ6は、平行光東が入射すると、所定の厚みの透明基板7を通してほぼ無収差の光スポットを情報記録面8上に結像する。この情報記録面8で情報ピットによって変調されて反射した光東は、対物レンズ6、コリメータレンズ3を介してビームスプリッタ2に戻り、ここでレーザ光源1からの光路から分離され、受光手段9へ入射する。この受光手段9は多分割されたPINフォトダイオードであり、各素子から入射光東の強度に比例した電流を出力し、この電流を図には示さない検出回路系に送り、ここで情報信号、フォーカスエラー信号、トラックエラー信号に基づき、磁気回路とコイル

等で構成される2次元アクチュエータで対物レンズ6を

制御し、常に情報トラック上に光スポット位置を合わせ

【0003】このような情報ピックアップでは、対物レ ンズ6で集光される光スポットを小さくするため大NA (例えばNAO. 6) であるので、このような集光光束 中に置かれる透明基板の厚みが所定の厚みからずれると 大きな球面収差を発生させる。図10を参照して、NA 0.6、レーザ光源から出射されるレーザ光の波長63 5 n m、透明基板厚み0. 6 m m、基板屈折率1. 5 8 の条件で最適化された対物レンズで、基板の厚みを変え た場合、0.01mm基板厚みがずれる毎に0.01λ rms程収差が増大する。従って、透明基板厚みが生 0. 07mmずれると0. 07λrmsの収差となり、 読み取りが正常に行える目安となるマレシャル限界値に 達してしまう。このため、0.6mm厚みの基板に替え て例えば1.2mm厚の基板を持つ光情報記録媒体を記 録再生しようとする場合、アクチュエータ部で1.2m m厚対応の対物レンズ11と絞り10に切り換えて再生 するようにしている。あるいは0.6mm厚の基板用 と、1.2mm厚の基板用の2個の情報ピックアップを 装備することも考えられる。また、情報ピックアップ中 にホログラムを配設し、これを通過する0次光と1次光 の各々を0.6mm厚基板と1.2mm厚基板に対応す る光スポットとして情報記録面に集光させる方法も考え られる。

【0004】上記のように1台の光ディスク装置で異なる基板厚みを有する光ディスクを再生可能な装置とするために、例えばディスクの透明基板厚が0.6mm用と1.2mm用それぞれに対応する対物レンズを2個取り付けたり、ディスクの透明基板厚が0.6mm用と1.2mm用の2個の光ピックアップを装置に付ける方法では情報ピックアップ装置および光ディスク装置をコンパクトで低コストなものとすることはできない。また、情報ピックアップ中にホログラムを配設し、これを透過する0次光、1次光の各々を0.6mm厚基板と1.2m

m厚基板に対応する光スポットとして情報記録面に集光 させる方法は、常に情報記録面に向けて2つの光束が出 射されるため、一方の光束による光スポットでの情報読 み出しを行うときは他方の光束は読み出しには寄与しな い不要光となるだけでなく、実際に利用する2つのスポ ット以外にも利用できない回折光が発生し、光量損失が 大きく、光量低下によるS/N比低下や、光量を増大さ せた場合には、レーザ寿命が低下してしまう。

[0005]

【発明が解決しようとする課題】本発明は、上記欠点を 解消し、一つのピックアップで異なる基板厚を有する光 ディスクの記録再生を可能とし、光量損失を極力抑え た、相互に互換性を有する、構造が簡単でコンパクトな 情報ピックアップ装置および光ディスク装置を実現する ことを可能とする光情報記録媒体の記録再生用対物レン ズを得ることを目的とする。

[0006]

【問題を解決するための手段】本発明の光情報記録媒体 の記録再生用光学系は、その対物レンズによって実現す る場合、該対物レンズは光情報記録媒体の透明基板を介 して情報記録面上に集光するよう正の屈折力を有し、厚 みの異なる透明基板を有する2種類の光情報記録媒体の それぞれについて情報記録面上に集光するように、少な くとも一方の面が光軸を中心とした3つ以上の輪帯状レ ンズ面により構成されており、該3つ以上の輪帯状レン ズ面のうち、隣あう輪帯状レンズ面は異なる屈折力を有 すると共に、外周から一輪帯おきに厚みの薄い透明基 *

$$\triangle = m \lambda$$

ただし △:同一の透明基板に対応する各輪帯状レンズ 面の任意の2つの輪帯のレンズ面形状を上記非球面形状 30 式に従って光軸まで延長したときの軸上におけるレンズ の厚みの差に使用波長における該レンズの屈折率をかけ※

$$-10 \leq m \leq 10$$

そして、上記2種類の透明基板のそれぞれに対応する各 輪帯状レンズ面のレンズ面形状が同一の非球面形状式で 表現できることが望ましい。

【0008】上記対物レンズの輪帯状レンズ面形状をな★

$$\theta$$
 (2i-1) $> \theta$, (2i)

50

$$[1 \le i \le N/2, i は整数]$$

θ (2j) $< \theta$ ' (2j+1)

ただし

:対物レンズの光源側のレンズ面の輪帯数 θ(2i-1) : 第(2i-1) 輪帯状レンズ面と第2i輪 帯状レンズ面の境界部分における第 (2 i - 1) 輪帯状 レンズ面の法線と光軸とのなす角度であり、第(2i-1)輪帯状レンズ面は第2i輪帯状レンズ面よりも外側 (周辺側) に位置する。

θ'(2i):第(2i-1)輪帯状レンズ面と第2i輪 帯状レンズ面の境界部分における第2i輪帯状レンズ面 の法線と光軸とのなす角度であり、第2i輪帯状レンズ 面は第(2i-1)輪帯状レンズ面よりも内側(光軸

* 板、厚い透明基板に対応するように輪帯が構成されてお り、上記2種類の透明基板において薄い透明基板の厚み が厚い透明基板の厚みのほぼ半分の厚みであるとき、以 下の条件式を満足することを特徴とする。

$$d_1 \neq d_2$$
 · · · ①

ただし d₁: 厚みの薄い透明基板を介して情報記録面 上に集光する際の対物レンズと光情報記録面の透明基板 との光軸上の間隔

d₂: 厚みの厚い透明基板を介して情報記録面上に集光 する際の対物レンズと光情報記録面の透明基板との光軸 上の間隔

【0007】より具体的には、上記対物レンズは光源側 に凸面を向けた正の単レンズであり、光源側、情報記録 面側に面する両面が非球面であり、かつ、少なくとも光 源側のレンズ面に上記輪帯状レンズ面が形成されてお り、該非球面形状は面の頂点を原点とし、光軸方向をX 軸とした直交座標系において、κを円錐形数、Ai を非 球面係数、Piを非球面のべき数とするとき、

【数2】

$$x = \frac{C \phi^{2}}{1 + \sqrt{1 - (1 + \kappa) C^{2} \phi^{2}}} + \Sigma \operatorname{Ai} \phi^{P1}$$

$$\phi = \sqrt{y^{2} + z^{2}} , \quad C = 1 / r$$

で表され、同一の透明基板に対応する各輪帯状レンズ面 の形状を上記非球面形状式に従って光軸まで延長した際 の軸上におけるレンズの厚みによる光路長差△と光源波 長λが以下の関係を満足する。

• • • ③

※た値

λ:使用する光源の波長

ここでmは整数であり、より望ましくは光路長差は以下 の範囲であることが好ましい。

★す光源側のレンズ面において、隣接する輪帯状レンズ面 の境界部分における外側輪帯状レンズ面、内側輪帯状レ ンズ面のそれぞれの方線と光軸とのなす角度が以下の条 件式を満たすことが望ましい。

側)に位置する。

 θ (2j) :第2 j 輪帯状レンズ面と第(2 j + 1) 輪 帯状レンズ面の境界部分における第2 j 輪帯状レンズ面 の法線と光軸とのなす角度であり、第2j輪帯状レンズ 面は第(2j+1)輪帯状レンズ面よりも外側(周辺 側)に位置する。

θ'(2j+1): 第2 j 輪帯状レンズ面と第(2j+1)輪 帯状レンズ面の境界部分における第(2 j + 1)輪帯状 レンズ面の法線と光軸とのなす角度であり、第 (2 j + 1)輪帯状レンズ面は第2 j輪帯状レンズ面よりも内側 (光軸側)に位置する。

7

【0009】さらに上記対物レンズは、以下の条件式を 満足するように最外周輪帯状レンズ面と一つ内側の輪帯*

1. $50 < \lambda/NA_2 < 2.00$

ただし λ :使用する光源の波長 (μm) NA₂:最外周の一つ内側の輪帯状レンズ面から出射す る光束の開口数

そして、各輪帯状レンズ面間の境界部分の1ヶ所は段差がなく、連続であることが好ましく、その光源側の面に形成された輪帯数Nが、

 $3 \leq N \leq 10$

. . . 8

さらに望ましくは

 $3 \le N \le 6$

の範囲にあることが好ましい。

【0010】上記対物レンズを形成する素材は、ガラスであってもよく、あるいはプラスチックであってもよい。

[0011]

【作用】本発明の光情報記録媒体の記録再生用対物レン ズは、少なくとも一方のレンズ面が交互に屈折力の異な る輪帯状レンズ面で形成され、光情報記録媒体の厚みの 異なる透明基板を介してそれぞれの情報記録面上に光束 を集光することにより、透明基板の厚みが異なる光ディ スクの記録再生を可能とするものである。図3はNA 0.60、基板厚0.6mm、基板屈折率1.58の条 件で波長635nmの平行光束が入射するときに収差補 正が最適化された対物レンズに光束を入射させたときの 光路図である。図4はNAO.38、基板厚1.2m m、基板屈折率1.58の条件で波長635nmの平行 光束が入射するときに収差補正が最適化された対物レン ズに光束を入射したときの光路図である。図5は図3、 4における2つの条件を兼ね備えた輪帯状の屈折面を有 する対物レンズに光束を入射させたときの光路図であ る。無限遠からの光束は、絞りを通過した後、輪帯状レ ンズ面を有する対物レンズに入射される。ここで屈折力 の異なる輪帯状のレンズ面を通過することにより、基板 厚0.6mm、1.2mmを介して集光する2つのスポ ットに分割される。

【0012】図5は、対物レンズのレンズ面に屈折力の異なる2つの輪帯状レンズ面(以下単に輪帯という。)を形成し、外周輪帯からの出射光束は基板厚0.6mmを介して集光するように、また、光軸を含む内側輪帯からの出射光束は基板厚1.2mmを介して集光するように構成された場合を示している。この例の場合、基板厚0.6mmと基板厚1.2mmを介して集光する光束の光強度分布は、それぞれ図6、7に示すようになる。基板厚0.6mmの基板を介して集光する外周輪帯からの光スポットは、高密度情報記録に対応させるためのスポットであるため、図6に示したようなサイドローブの強度が大きくなり過ぎるとノイズの増大を招き、高密度情報の記録再生に悪影響をおよぼす場合がある。そのた

*状レンズ面との境界が設定されることが好ましい。

2. 00 ···⑦

め、基板厚1.2mmに対応する内周輪帯部の光軸を含む内周側を基板厚0.6mmに対応する屈折力を有する第3番目の輪帯とすることにより、基板厚0.6mmのときには不要光を出射する第2輪帯の面積を減少させ、サイドローブを減少させることができる。これを繰返し、すなわちレンズ面に設ける屈折力の異なる輪帯を外間から1つおきに複数構成することにより、基板厚の異なる光情報記録媒体の記録再生を行うに適した2つの光スポットを得ることが可能になる。しかし、輪帯数を過度に増やすと、輪帯の幅が小さくなり過ぎ加工性が悪くなるため、サイドローブを実用上問題のないレベルにまで軽減し、なおかつ加工性を良好に保つためには、3輪帯以上、10輪帯以下にすることが望ましい。さらに望ましくは、3輪帯以上、6輪帯以下にすることが好ましい。

【0013】また、厚み0.6mmの透明基板を介して 情報記録面上に集光する際の対物レンズと光情報記録面 の透明基板との光軸上の間隔 d iと厚み 1. 2 mmの透 明基板を介して情報記録面上に集光する際の対物レンズ と光情報記録媒体面の透明基板との光軸上の間隔d₂が 等しい場合、図8に示すように、厚み0.6mmの透明 基板を介して集光している際には不要光である厚み1. 2mmに対応する輪帯からの光束が、情報記録面で反射 し、ちょうど透明基板の表面上に集光することとなる。 この集光スポットが透明基板表面で反射し、元の光路を たどり、受光手段へ入射してしまうことになり、情報信 号のS/N比を低下させることになる。条件式①は、こ の問題を解決するために必要な条件である。この条件を 満たすことにより、情報記録面で反射された不要光が透 明基板の表面上に集光することを防止し、透明基板表面 からの反射光は元の光路からずれることとなり、情報信 号のS/N比低下を軽減できる。

【0014】対物レンズの光源側面を凸面とし、さらに 光源側、情報記録面側の両面に非球面を導入することに より、対物レンズを単レンズで実現することができ、コ スト低減が可能となる。同一の透明基板に対応する各輪 帯のレンズ面形状を、上記②式にしたがって光軸まで延 長した際の軸上におけるレンズの厚みが等しくない場 合、各輪帯面を通過する光束には光路長差が生じる。光 路長差を有する波面が重なりあうと干渉が発生すること はよく知られていることであり、光路長差△と波長 λの 間に△=m λ (mは整数)の関係が成立する場合に、干 渉による強度は最大となる。従ってそれぞれの透明基板 に対応する各輪帯の任意の2つの輪帯のレンズ面形状を 上記②式にしたがって光軸まで延長した際の軸上におけるレンズの厚みの差に使用波長におけるレンズの屈折率 をかけた値△と使用波長 λの間に条件式③が成立する場

合最大強度の光スポットが得られることになる。しかし、光源、具体的には半導体レーザの波長には個体差によるバラツキ、温度変化による波長変動があるため、一定の波長に固定することは困難である。従って、各輪帯からの光束に光路長差条件式③の関係が崩れる場合が生じる。このような波長変動は5%程度発生するため、より望ましくは条件式④を満足するのがよい。この場合、波長変動が生じても、本来の強度の50%以上の強度を維持することが可能である。さらに、△=0であれば、波長変動に係わらず一定の強度を維持出来ることはいう 1までもない。また、この輪帯面の加工性をより高めるた

【0015】対物レンズの素材としては、ガラス、プラスチックの何れを用いることも可能である。ガラス素材の場合は、環境変化に対し性能変化の少ない、安定したレンズを提供することが可能であり、また、環境変化による性能変化を許容できる場合には、プラスチック素材を使用することにより、更に低コストを実現することが可能となる。

めに、それら輪帯のレンズ面形状が同一の非球面形状式

で表現できることが望ましい。

【0016】条件式⑤、⑥を満たさない場合、薄い透明基板と厚い透明基板のそれぞれを介して集光する光スポットの位置が接近することになる。2つの光スポットの位置が接近すると、不要な光スポットの情報記録面における光強度が大きくなってしまう。その結果、大きなノイズが発生することとなり、光情報記録媒体の記録再生が困難になる。

【0017】本発明は、光情報記録媒体の近年の動向と して開発されている基板厚の薄い高密度情報記録ディス クと、従来のディスクのように、透明基板の厚みの異な る記録媒体の記録再生を単一の対物レンズで実現しよう とするものである。例えば基板厚0.6mmのディスク は高密度化を目的としているため、基板厚1.2mmの 従来のCD、CD-ROMと比べて小さい光スポットが 求められる。具体的には、従来のCD、CD-ROMな どにおいては、光源の波長が780nmにおいて、対物 レンズのNAが0. 45程度の光スポットが求められて いた。光スポットの大きさは、波長に比例し、NAに反 比例することはよく知られている。従って、光スポット を小さくするためには波長を短くするか、あるいは対物 レンズのNAを大きくする必要がある。基板厚 0. 6 m mの高密度ディスクにおいては、光源の波長を635n m~650nm程度まで短くすると共に、対物レンズの NAを0.6程度に大きくすることにより、光スポット を小さくすることが考えられている。

【0018】本発明の対物レンズによって透明基板の厚みの異なる2種類のディスク、基板厚0.6mm、基板厚1.2mmに対応する光スポットを実現する場合には、最外周の輪帯から一つおきに基板厚0.6mm、基板厚1.2mmのディスク用光束に振り分ける。従っ

10

て、光源の波長が635nmのとき、最外周の輪帯を通過した光東はNAO.6相当の光スポットとする必要があり、その一つ内側の輪帯を通過した光東はNAO.37程度(光源波長が780nmのときNAO.45程度に相当)の光スポットとする必要がある。条件式⑦はこの条件を満たすために必要なものである。一定の光源波長において、最外周から一つ内側の輪帯の開口数NA。が上限を越えるほど小さくなると、光スポットが大きくなり過ぎて、基板厚1.2mmの光情報記録媒体の記録再生が困難になる。また、下限を越えるほど開口数NA。が大きくなると、光スポットが小さくなり過ぎて、やはり情報の記録再生が困難になる。

【0019】本発明の対物レンズは、複数種類の透明基板のそれぞれに対応する各輪帯のレンズ面形状を②式に従って光軸まで延長した際の軸上におけるレンズの厚みが等しいことを特像の一つとしている。また、屈折力の異なるレンズ面を輪帯状に隣接させている。そのため、N個の輪帯を有するレンズ面において(N-1)個存在する輪帯の境界全てにおいて、段差のない、連続した面にすることは困難である。しかし、レンズ面に段差があると、段差部分に欠け等が発生しやすくなるため、生産性、加工性の点では段差は望ましくない。従って、生産性、加工性を向上させるためには、輪帯間の境界部の1ヶ所は段差のない、連続な面であることが望ましい。

【0020】本発明の対物レンズは、透明基板の厚みの 異なる複数種類の光情報媒体に対応するために、光軸上 に離れた複数のスポットを形成するように構成された対 物レンズであって、1つのスポットが1種の光情報媒体 の記録面上に形成されるとき、他のスポットを形成する ための光束の記録面での反射光が透明基板表面にスポッ トを形成しないように、上記複数のスポット位置の対物 レンズからの距離が設定されているものであり、この条 件を満たせば透明基板の厚さの異なる光情報記録媒体の 2種類だけでなく、さらに多数の種類の光情報記録媒体 に対応出来ることはいうまでもない。しかし、このよう な光学系を実現するには、対物レンズ自体で光軸上に複 数のスポットを形成させるだけでなく、単一の焦点距離 を持つ対物レンズと、該対物レンズの光源側にホログラ ムを配設した光学系において、0次光と1次光のそれぞ れを0.6mm厚の基板と1.2mm厚基板に対応する スポットとして情報記録面に集光させる光学系におい て、スポット位置を上記のような関係になるように設定 してもよい。また、上記ホログラムに代えて、光源から の発散光の発散角を変換する発散角変換レンズを輪帯構 成とした光学系においても実現することが可能である。

【0021】以下、本発明の対物レンズの実施例を示す。実施例1、2ともに無限共役型対物レンズで、対物レンズへの入射光は平行光束である。また、使用波長は635nmである。実施例1の断面図と光路図を図1 に、実施例2の断面図と光路図を図2に示す。各実施例 においては、絞りを第1面とし、ここから順に、第i番目の面の曲率半径をri、第i番目の面と第i+1番目の面との光軸上の厚み、間隔をdi、第i番目の面と第i+1番目の面との間の媒質の光源波長での屈折率をn

* 面形状は②式により、輪帯形状をなす面においては、各輪帯を光軸まで延長した形状によって各データを表記している。

12

【0022】実施例1

i で表す。また、空気の屈折率は1とする。また、非球*

光源側面 : 分割3輪帯 (レンズ面の外周から第1、第2、第3輪帯) 第1輪帯外側直径:4.08 第1輪帯開口数NA₁:0.60 第2輪帯外側直径:2.84 第2輪帯開口数NA₂:0.38 第3輪帯外側直径:1.20 第3輪帯開口数NA₃:0.18

ディスク側面:共通

第1、第3輪帯(薄い基板対応)

i	r i	d i	n i
1	絞り (∞)	0.00	1.00
2	2.062	2.60	1. 49005
3	-5.078	1.61	1.00
4	∞	0.60	1. 58000
5	記録面 (∞)		

第2輪帯(厚い基板対応)

i	r i	d i	n i
1	絞り (∞)	0.0789	1. 00
2	2. 425	2.5211	1. 49005
3	-5.078	1.7183	1.00
4	∞	1. 20	1. 58000
5	記録 商 (公)		

5 記録面(∞)

 $\kappa = -0.83962$

非球面データ

第2面

第1、第3輪帯

第2輪帯

$$\begin{split} \kappa &= -0. & 28803 \\ A_1 &= -0. & 40571 \times 10^{-3} \\ A_2 &= -0. & 28545 \times 10^{-3} \\ A_3 &= -0. & 74058 \times 10^{-4} \\ A_4 &= 0. & 18636 \times 10^{-5} \\ \end{split} \quad \begin{array}{l} P_1 &= 4. & 0000 \\ P_2 &= 6. & 0000 \\ P_3 &= 8. & 0000 \\ P_4 &= 10. & 0000 \\ \end{array}$$

第3面

 $\kappa = -0.17696 \times 10^{2}$

$$A_1 = 0.99680 \times 10^{-2}$$
 $P_1 = 4.0000$
 $A_2 = -0.44437 \times 10^{-2}$ $P_2 = 6.0000$
 $A_3 = 0.92652 \times 10^{-3}$ $P_3 = 8.0000$
 $A_4 = -0.81284 \times 10^{-4}$ $P_4 = 10.0000$

法線と光軸のなす角度

$$\theta_{1} = 3.7.8^{\circ}$$
 $\theta_{2}' = 3.3.1^{\circ}$
 $\theta_{2} = 1.4.2^{\circ}$
 $\theta_{3}' = 1.6.5^{\circ}$

光源側面

: 分割5輪帯(レンズ面の外周から第1、第2、第3、第4、 第5輪帯)

第1輪帯外側直径:4.08 第1輪帯開口数NA1:0.60 第2輪帯外側直径:2.84 第2輪帯開口数NA2:0.37 第3輪帯外側直径:2.20 第3輪帯開口数NA3:0.32 第4輪帯外側直径:1.20 第1輪帯開口数NA1:0.16

第5輪带外側直径: 0. 70 第2輪帯開口数NA₂: 0. 10

ディスク側面:共通

第1、第3、第5輪帯(薄い基板対応)

```
i
     ri
              d i
                          n i
             0.00
                        1.00
    絞り (∞)
1
                        1. 49005
    2.062
             2.60
              1.61
    -5.078
                        1.00
     \infty
              0.60
                        1. 58000
     記録面 (∞)
```

第2、第4輪帯(厚い基板対応)

i	r i	d i	n i
1	絞り (∞)	0.0789	1.00
2	2. 425	2. 5211	1. 49005
3	-5.078	1.7183	1.00
4	∞	1. 20	1. 58000
5	記録面 (∞)		

非球面データ

第2面

第1、第3、第5輪帯

$$\kappa = -0.83962$$

第2、第4輪帯

$$\kappa = -0.28803$$

$$A_1 = -0.$$
 4 0 5 7 1 × 1 0 -3 $P_1 = 4.$ 0 0 0 0 0 $A_2 = -0.$ 2 8 5 4 5 × 1 0 -3 $P_2 = 6.$ 0 0 0 0 0 $A_3 = -0.$ 7 4 0 5 8 × 1 0 -4 $P_3 = 8.$ 0 0 0 0 0 $A_4 = 0.$ 1 8 6 3 6 × 1 0 -5 $P_4 = 1.$ 0. 0 0 0 0

第3面

$$\kappa = -0.17696 \times 10^{2}$$

$$A_1 = 0.99680 \times 10^{-2}$$
 $P_1 = 4.0000$
 $A_2 = -0.44437 \times 10^{-2}$ $P_2 = 6.0000$
 $A_3 = 0.92652 \times 10^{-3}$ $P_3 = 8.0000$
 $A_4 = -0.81284 \times 10^{-4}$ $P_4 = 10.0000$

50

法線と光軸のなす角度

$$\theta_1 = 3.7.8^{\circ}$$
 $\theta_2' = 3.3.1^{\circ}$
 $\theta_2 = 2.5.9^{\circ}$
 $\theta_3' = 2.9.8^{\circ}$
 $\theta_3 = 1.6.5^{\circ}$
 $\theta_4' = 1.4.2^{\circ}$
 $\theta_4 = 8.3^{\circ}$

 $\theta_{5}' = 9. 7^{\circ}$

[0024]

【発明の効果】本発明の光情報記録再生用光学系は、一つのピックアップで異なる基板厚を有する光ディスクの記録再生を可能とし、光量損失を極力抑えた、相互に互換性を有する、構造が簡単でコンパクトな情報ピックアップ装置および光ディスク装置を実現することを可能とする。常に情報記録面に向けて複数の光束が出射されるため、一つの光束による光スポットでの情報読み出しを行うときは他の光束は読み出しには寄与しない不要光となるとはいえ、ホログラムを配設したもののように実際に利用するスポット光以外にも利用できない回折光が発生するという欠点がなく、このため光量損失も大きくなく、光量低下によるS/N比低下や、光量を増大させた場合には、レーザ寿命が低下してしまうという欠点も解消することができた。

【図面の簡単な説明】

【図1】本発明の輪帯状の屈折面を有する光情報記録媒体の記録再生用対物レンズの実施例1の断面図、光路図である。

【図2】本発明の輪帯状の屈折面を有する光情報記録媒体の記録再生用対物レンズの実施例2の断面図、光路図である。

【図3】基板厚みが0.6mmのときに収差補正が最適 化された対物レンズの光路図である。 *【図4】基板厚みが1.2mmのときに収差補正が最適 化された対物レンズの光路図である。

16

【図5】基板厚みが0.6mmと1.2mmに対応して収差補正が最適化された2輪帯レンズの光路図である。

【図6】2輪帯レンズによる厚みが0.6mmの基板を介した集光スポットの1例を示す光強度分布図である。

【図7】2輪帯レンズによる厚みが1.2mmの基板を介した集光スポットの1例を示す光強度分布図である。

【図8】厚みが薄い透明基板の厚み t_1 、厚い透明基板の厚み t_2 の間に、 t_2 = $2 \times t_1$ の関係があり、対物レンズと透明基板の間隔が、 d_1 = d_2 の輪帯レンズにより、厚み t_1 の透明基板を介して集光したときの光路図である。

【図9】従来の光情報記録媒体の記録再生用光学系の1 例を示す光学配置図である。

【図10】光情報記録媒体の透明基板厚みと波面収差との関係を示すグラフである。

【符号の説明】

201 光源2 ビームスプリッタ3コリメータレンズ5,10 絞り6,11 対物レンズ7

5,10 絞り 透明基板

8 情報記録面

9 受光手段

【図1】

【図2】

(11)

[図10]

波面収差(球面収差)

