7.2 负反馈放大电路的四种组态

1. 反馈信号的连接方式

当考虑到信号源和负载时,负反馈放大器包含四个部分:

根据反馈信号的连接方式分类:

▶ 输入端: 串联、并联 ▶ 输出端: 取电压、电流

2. 反馈的四种基本组态

根据反馈的连接方式的组合,得到四种基本组态:

判断反馈的基本组态的方法

输出端获取反馈信号类型: 电压? 电流?

电压反馈

 $\dot{X}_{0} \rightarrow \dot{V}_{0}$

电流反馈

$$\dot{X}_{\scriptscriptstyle 0}
ightarrow \dot{I}_{\scriptscriptstyle 0}$$

如何判别?

直接观察输出连接方式;

或采用负载短路法:

$$\dot{V}_{o} = 0$$
 仍存在反馈 $\dot{X}_{f} = F \cdot \dot{V}_{o}$ $\neq 0$

仍存在反馈电流

$$\dot{X}_{f} = F \cdot \dot{I}_{o}$$

$$\neq 0$$

Example 1: 判别输出反馈类型

方法1: 观察输出连接方式;

找出反馈通路: $R_2 \setminus R_1$ 通路 判断正/负反馈: 负反馈

电压反馈: 反馈点同时连接运放输出和 R_L 。

方法2: 负载短路法;

$$\Leftrightarrow R_{\rm L}=0$$

$$\rightarrow v_0 = 0$$

$$\rightarrow v_{\rm f} = 0$$

反馈消失,是电压反馈。

Example 2: 判别输出反馈类型

找出反馈通路: $R_2 \setminus R_1$ 通路 判断正/负反馈: 负反馈

电流反馈:反馈点没有同时 连接运放输出和 R_L 。

方法1: 观察输出连接方式;

方法2: 负载短路法;

$$\Leftrightarrow R_{\rm L}=0$$

$$\rightarrow v_0 = 0$$

→ v₁≠0 (接运放输出)

反馈仍存在,是电流反馈。

BJT电路的电压反馈采样的两种形式: 💙

BJT电路的电流反馈采样的两种形式:

判断反馈的基本组态的方法

2) 输入端反馈类型: 串联? 并联?

串联反馈

 $\dot{X}_{i} \rightarrow \dot{V}_{i}$

并联反馈

 $\dot{X}_{\rm i} \rightarrow \dot{I}_{\rm i}$

如何判别?

直接观察输入连接方式;

 \dot{X}_i 和 \dot{X}_f 接 \dot{X}_i 和 \dot{X}_f 接 不同输入端

相同输入端

放大电路的两个输入端:

并联反馈 串联反馈 **Op-amp Diff-amp BJT** FET $R_{\rm e}$ 引入串联反馈

Examples: 判别输入反馈类型(串联?并联?)

电压串联负反馈

反馈通路: R_2 、 R_1 通路 正/负反馈: 负反馈: 负反馈 电压反馈 \dot{X}_i 和 \dot{X}_f 接不同输入端 串联反馈

 $v_{\rm I} \stackrel{R_3}{\longleftarrow} v_{\rm O}$

电压并联负反馈

反馈通路: R₃通路 正/负反馈: 负反馈 电压反馈 \dot{X}_{i} 和 \dot{X}_{f} 接相同输入端 并联反馈

Examples: 判别输入反馈类型(串联?并联?)

R_e反馈通路 电流串联负反馈

4. 反馈放大器类型描述

类型 = (交、直流) + 输出 + 输入 + 极性 有 交流反馈 电压反馈 串联反馈 负反馈 债? 直流反馈 电流反馈 并联反馈 正反馈

例如: 交流电压串联负反馈 交直流电流串联负反馈 正反馈

类型 = (交、直流) +输 出 + 输 入 + 极 性 (1) (2) (3) (4) (5) 有 交流反馈 电压反馈 串联反馈 负反馈 反馈 直流反馈 电流反馈 并联反馈 正反馈

类型判别举例: ——五步法

交直流电压串联负反馈

- (1)有反馈 R_f 、 R_1
- (2)交直流反馈
- (3)电压反馈
- (4)串联反馈
- (5)负反馈

 类型 = (交、直流) +输 出 + 输 入 + 极 性

 (1) (2) (3) (4) (5)

 有 交流反馈 电压反馈 串联反馈 负反馈

 反馈

 直流反馈 电流反馈 并联反馈 正反馈

类型判别举例: ——五步法

- (1)有反馈 $R_{\mathbf{f}}$
- (2)交直流反馈
- (3)电压反馈
- (4)并联反馈
- (5)负反馈

类型 = (交、直流) +输 出 + 输 入 + 极 性 (1) (2) (3) (4) (5) 有 交流反馈 电压反馈 串联反馈 负反馈 反馈 直流反馈 电流反馈 并联反馈 正反馈

类型判别举例: ——五步法

交直流电流串联负反馈

- (1)有反馈 R_{e1}
- (2)交直流反馈
- (3)电流反馈
- (4)串联反馈
- (5)负反馈

类型 = (交、直流) +输 出 + 输 入 + 极 性 (1) (2) (3) (4) (5) 有 交流反馈 电压反馈 串联反馈 负反馈 反馈 直流反馈 电流反馈 并联反馈 正反馈

类型判别举例: ——五步法

交直流电流串联负反馈

- (1)有反馈 $R_{\mathbf{f}}$
- (2)交直流反馈
- (3)电流反馈
- (4)串联反馈
- (5)负反馈

例: 试判断图示电路 R_1 、 R_1 各引入何种反馈?

解:1、 R_1 加在 B_1 上:

- (1)直流反馈
- (2)电流反馈
- (3)并联反馈
- (4)负反馈

引入直流 电流并联负反馈

- 2、R_f加在E₁上:
 - (1)交流 (2)电压 (3)串联 (4)负反馈

引入交流电压串联负反馈

例: 试判断图示电路中的反馈类型

讨论:信号源对反馈效果的影响(P374:7.1.3)

串联负反馈 $v_{ID} = v_I - v_F$ 希望 v_F 变化不影响 v_I 。

则 v_I 应为电压源,即信号源内阻 R_S 越小越好。

电压串联负反馈电路 $\begin{pmatrix} + \\ v_s \end{pmatrix} \qquad \begin{pmatrix} + \\ v_{ID} \end{pmatrix} \qquad \begin{pmatrix} + \\ A \end{pmatrix} \qquad \begin{pmatrix} + \\ V_{ID} \end{pmatrix} \qquad \begin{pmatrix} + \\ R_I \end{pmatrix} \qquad \begin{pmatrix} + \\ V_{ID} \end{pmatrix} \qquad \begin{pmatrix} + \\ R_I \end{pmatrix} \qquad \begin{pmatrix} + \\ V_{ID} \end{pmatrix} \qquad \begin{pmatrix} + \\ R_I \end{pmatrix} \qquad \begin{pmatrix} + \\ V_{ID} \end{pmatrix} \qquad \begin{pmatrix} + \\ R_I \end{pmatrix} \qquad \begin{pmatrix} + \\ V_{ID} \end{pmatrix} \qquad \begin{pmatrix} + \\ R_I \end{pmatrix} \qquad \begin{pmatrix} + \\ V_{ID} \end{pmatrix} \qquad \begin{pmatrix} + \\ R_I \end{pmatrix} \qquad \begin{pmatrix} + \\ V_{ID} \end{pmatrix} \qquad \begin{pmatrix} + \\ R_I \end{pmatrix} \qquad \begin{pmatrix} + \\ V_{ID} \end{pmatrix} \qquad \begin{pmatrix} + \\ R_I \end{pmatrix} \qquad \begin{pmatrix} + \\ V_{ID} \end{pmatrix} \qquad \begin{pmatrix} + \\ R_I \end{pmatrix} \qquad \begin{pmatrix} + \\ V_{ID} \end{pmatrix} \qquad \begin{pmatrix} + \\ R_I \end{pmatrix} \qquad \begin{pmatrix} + \\ V_{ID} \end{pmatrix} \qquad \begin{pmatrix} + \\ R_I \end{pmatrix} \qquad \begin{pmatrix} + \\ V_{ID} \end{pmatrix} \qquad \begin{pmatrix} + \\ R_I \end{pmatrix} \qquad \begin{pmatrix} + \\ V_{ID} \end{pmatrix} \qquad \begin{pmatrix} + \\ R_I \end{pmatrix} \qquad \begin{pmatrix} + \\$

并联负反馈 $i_{ID} = i_I - i_F$ 希望 i_F 变化不影响 i_I 。

则 i_{I} 最好为电流源,即信号源内阻 R_{S} 越大越好。

电压并联负反馈电路

7.3 负反馈放大电路增益的计算方法 P339

- 1 闭环放大倍数的一般表达式
- 2 反馈深度
- 3 环路增益

1 闭环放大倍数的一般表达式

开环增益:

Open loop gain

反馈系数:

Feedback transfer function

$$\dot{A} = \frac{\dot{X}_{o}}{\dot{X}'_{i}}$$

$$\dot{F} = \frac{\dot{X}_f}{\dot{X}_o}$$

闭环增益:

Closed-loop signal gain

$$\begin{cases} \dot{A}_f = \frac{\dot{X}_o}{\dot{X}_i} \\ \dot{X}'_i = \dot{X}_i - \dot{X}_f \end{cases}$$

量纲说明

$$\dot{A}_{f} = \frac{\dot{X}_{o}}{\dot{X}_{i}} = \frac{\dot{X}_{o}}{\dot{X}'_{i} + \dot{X}_{f}} = \frac{\frac{\dot{X}_{o}}{\dot{X}'_{i}}}{\frac{\dot{X}'_{i}}{\dot{X}'_{i}} + \frac{\dot{X}_{o}}{\dot{X}'_{i}}} = \frac{\dot{A}}{1 + \dot{A}\dot{F}}$$

四种负反馈类型各物理量的含义

 A_f 量纲说明(P341 表7.3.1)

负反馈类型	输入量 $x_i \ x_f \ x_{id}$	输出量 <i>x_o</i>	$A=x_o/x_{id}$	$A_f = x_o/x_i$	$F=x_f/x_o$
电压 串联	电压	电压	Av	Avf	Fv
电压 并联	电流	电压	Ar	Arf	Fg
电流 串联	电压	电流	Ag	Agf	Fr
电流 并联	电流	电流	Ai	Aif	Fi

2 反馈深度

 $1 + \dot{A}\dot{F}$ 称为反馈深度

$$1 + \dot{A}\dot{F} = \frac{\dot{A}}{\dot{A}_{f}} \qquad \qquad \dot{A}_{f} = \frac{\dot{A}}{1 + \dot{A}\dot{F}}$$

反映反馈对放大电路影响的程度

三种情况:

- (1)当 $|1+\dot{A}\dot{F}|>1$ 时, $|\dot{A}_{\rm f}|<|\dot{A}|$,相当负反馈
- (2)当 $|1+\dot{A}\dot{F}|$ <1时, $|\dot{A}_{F}|$ > $|\dot{A}|$,相当正反馈
- (3)当 $|1+\dot{A}\dot{F}|=0$ 时, $|\dot{A}_{f}|=\infty$,"自激状态"

2 反馈深度 $|1+\dot{A}\dot{F}|$

反馈电路通常采用标准电阻或电容,反馈系数稳定。因此,运放开环增益越大,闭环增益越精确。

当
$$A$$
非常大,满足 $1/A << F$ 时: $A_f = \frac{x_o}{x_s} = \frac{1}{F}$ 例如 $A=10000$, $F=0.1$,则 $\frac{1}{1/A+F} = \frac{1}{0.1001} \approx 9.99$ $A=1000$, $F=0.1$,则 $\frac{1}{1/A+F} = \frac{1}{0.101} \approx 9.9$

设计高增益运放,引入负反馈后,闭环增益稳定可调!

3 环路增益 | AF |

Loop Gain

是指放大电路和反馈网络所形成环路的增益。

7.2 & 7.3 反馈类型判断与负反馈增益计算

小结

掌握: 判断反馈放大电路的类型

掌握: 负反馈放大电路增益的相关基本概念

预习: 反馈放大电路的闭环增益计算

作业

P374: 7.1.1, 7.1.2, 7.2.4

