Practical 8

Interval estimation of a population mean: σ known

 Construct a 95% confidence interval for the population mean of amount spent per shopping trip in Lloyd's departmental store. On the computer, open the Lloyd's file on ClickUP in the *Data files for Practicals* folder.

Complete column C as in Figure P1.1 below.

Type in cell D4: **=COUNT(A2:A101)** which will give the sample size.

Type in cell D5: **=AVERAGE(A2:A101)** to calculate the sample mean.

Type in cell D7: =20 the population standard deviation is given.

The confidence coefficient is 0.95 (type in cell D8: **0.95**).

The level of significance is 1 - 0.95 = 0.05 (type in cell D9: **=1-D8**).

Type in cell D11: **=CONFIDENCE.NORM(D9,D7,D4)** to calculate the margin

of error
$$z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$
.

The point estimate for the population mean is the sample mean. Type in cell D13: **=D5.**

The lower limit of the confidence interval is \bar{x} – (margin of error). So type in cell D14: **=D13-D11.**

The upper limit of the confidence interval is \bar{x} + (margin of error). So type in cell D15: **=D13 + D11.**

Compare your answer with Figure P1.1 and P1.2 below.

Figure P1.1 – Formula sheet

- 3	.3						
	A	В	C	D			
1	Amount Spent		Interval Estimate of a Population Mean				
2	72		Population Stan	dard Deviation Known			
3	91						
4	74		Sample Size	=COUNT(A2:A101)			
5	115		Sample Mean	=AVERAGE(A2:A101)			
6	71						
7	120		Population Standard Deviation	20			
8	37		Confidence Coefficient	0.95			
9	96		Level of Significance	=1-D8			
10	91						
11	105		Margin of Error	=CONFIDENCE.NORM(D9,D7,D4)			
12	104						
13	89		Point Estimate	=D5			
14	70		Lower Limit	=D13-D11			
15	125		Upper Limit	=D13+D11			
16	43						
17	61						

Rows 80 – 101 are hidden

Figure P1.2 – Value sheet

	A	В	C	D			
1	Amount Spent		Interval Estimate of a Population Mean				
2	72		Population Standard Deviation Known				
3	91						
4	74		Sample Size	100			
5	115		Sample Mean	82			
6	71						
7	120		Population Standard Deviation	20			
8	37		Confidence Coefficient	0.95			
9	96		Level of Significance	0.05			
10	91						
11	105		Margin of Error	3.92			
12	104						
13	89		Point Estimate	82.00			
14	70		Lower Limit	78.08			
15	125		Upper Limit	85.92			
16	43						
17	61						

Rows 80 – 101 are hidden

Interval estimation of a population mean: σ unknown

 Construct a 95% confidence interval for the population mean training time for the data in the Scheer file. On the computer, open the Scheer file on ClickUP in the Data files for Practicals folder.

Complete column C as in Figure P4.1 below.

Type in cell D4: **=COUNT(A2:A21)** which will give the sample size.

Type in cell D5: **=AVERAGE(A2:A21)** to calculate the sample mean.

Type in cell D6: **=STDEV(A2:A21)** to calculate the sample standard deviation.

The confidence coefficient is 0.95 (type in cell D8: **0.95**).

The level of significance is 1 - 0.95 = 0.05 (type in cell D9: **=1-D8**).

The degrees of freedom is n-1 so type into cell D10: **=D4-1**.

The t-value corresponding to the upper tail area of $\alpha/2$ can be calculated by entering the following in cell D11: **=T.INV(D9,D10)**.

The standard error $\frac{S}{\sqrt{n}}$ can be calculated by entering the following in cell

D13: =D6/SQRT(D4).

The margin of error $t_{\alpha/2} \frac{s}{\sqrt{n}}$ can be calculated by entering the following in

cell D14: **=D11*D13.**

The point estimate for the population mean is the sample mean. Type in cell D16: **=D5.**

The lower limit of the confidence interval is \bar{x} – (margin of error). So type in cell D17: **=D16-D14.**

The upper limit of the confidence interval is \bar{x} + (margin of error). So type in cell D18: **=D16 + D14.**

Compare your answer with Figure P4.1 and P4.2 below.

Figure P2.1

	rıgı	ire PZ. i						
	\blacksquare	Α	В	С	D			
	1	Days	Inter	nterval Estimation of a Population Mean				
	2	52		Using the t Distribution				
	3	44						
	4	55		Sample Size	=COUNT(A2:A21))		
	5	44		Mean	=AVERAGE(A2:A2	21)		
	6	45		Standart deviation	=STDEV(A2:A21)			
	7	59						
	8	50		Confidence Coefficient	0	0.95		
	9	54		Level of significance (alpha)	=1-D8			
	10	62		Degrees of Freedom	=D4-1			
	11	46		t Value	=T.INV.2T(D9,D10)			
	12	5/						
N - 4 - 41	4			Standard error	=D6/SQRT(D4)			
		e do not di xcel calcul		Margin of error	=D11*D13			
•		for a two-ta						
		ribution.		Point Estimate	=D5			
				Lower limit	=D16-D14			
	18 48			Upper limit	=D16+D14			
	19	55						
	Figu	ıre P2.2						
			T .	~	T 7	_		

	A	В	C	D	Ε			
1	Days		nterval Estimate of a Population Mean					
2	52		Using the t Distribut	Using the t Distribution				
3	44							
4	55		Sample size	20				
5	44		Mean	51.5				
6	45		Standard deviation	6.840283				
7	59							
8	50		Confidence Coefficient	0.95				
9	54		Level of Significance (alpha)	0.05				
10	62		Degrees of Freedom	19				
11	46		t Value	2.093025				
12	54							
13	42		Standard error	1.529534				
14	60		Margin of error	3.201352				
15	62							
16	43		Point Estimate	51.5				
17	42		Lower limit	48.29865				
18	48		Upper limit	54.70135				
19	55							

- 3. Excel 2010's **Descriptive Statistics tool** can also be used to compute the margin of error when the t distribution is used. *Detailed instructions in textbook from p.366 and Figure 8.7 on p367.*
 - Step 1. Click the Data tab on the Ribbon
 - Step 2. In the Analysis group, click Data Analysis
 - Step 3. Choose Descriptive Statistics from the list of Analysis tools
 - **Step 4.** Complete the dialog box as below.

Click **OK** and the results follow in figure P3.1: **Figure P3.1**

	A	В	C	D
1	Days			
2				
3	Mean	51.5		
4	Standard Error	1.529534		
5	Median	53		
6	Mode	44		
7	Standard Deviation	6.840283		
8	Sample Variance	46.78947		
9	Kurtosis	-1.39138		
10	Skewness	0.012059		
11	Range	20		
12	Minimum	42		
13	Maximum	62		
14	Sum	1030		
15	Count	20	The val	ue of the
16	Confidence Level(95.0%)	3.201352	margin	of error
17			apppears	in cell D16.

Therefore we can calculate the 95% confidence interval as follow:

$$\bar{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$$
51.5 ± 3.201352
(48.299,54.701)

4. Assume the following data show a sample of the prescription cost in dollars for Zocor, a drug used to lower cholesterol.

110 112 115 99 100 98 104 126

Construct a 90% confidence interval for the population mean cost for prescription of Zocor.

$$\bar{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$$

$$108 \pm 1.895 \left(\frac{9.666}{\sqrt{8}}\right)$$

$$(101.524;114.476)$$

Compare your answer with Figure P4.1 below.

Figure P4.1

	A	В	C	D	Е
1	Training Time		Interval Estimate of a P	opulation	Mean
2	110		Using the t Distrib	ution	
3	112				
4	115		Sample size	8	
5	99		Mean	108.00	
6	100		Standard Deviation	9.67	
7	98				
8	104		Confidence Coefficient	0.9	
9	126		Level of Significance (alpha)	0.1	
10			Degrees of Freedom	7	
11			t Value	1.895	
12					
13			Standard Error	3.42	
14			Margin of Error	6.47	
15					
16			Point Estimate	108.00	
17			Lower Limit	101.53	
18			Upper Limit	114.47	
19					

Interval estimation of a population proportion

5. Construct a 95% confidence interval for the population proportion of woman golfers who are satisfied with availability of tea times for the data in the **TeeTimes** file. On the computer, open the **TeeTimes** file on ClickUP in the **Data files for Practicals** folder.

Complete column C as in Figure P5.1 below.

Type in cell D3: **=COUNT(A2:A901)** which will give the sample size.

Type in cell D4: **Yes** for response of interest.

Type in cell D5: **=COUNTIF(A2:A901,D4)** to calculate the count of response.

To calculate the sample proportion type in cell D6: **=D5/D3**.

The confidence coefficient is 0.95 (type in cell D8: **0.95**).

The level of significance is 1 - 0.95 = 0.05 (type in cell D9: **=1-D8**).

The z-value corresponding to the upper tail area of $\alpha/2$ can be calculated by entering the following in cell D10: **=NORM.S.INV**(1-D9/2).

The standard error $\sqrt{\frac{\overline{p}(1-\overline{p})}{n}}$ can be calculated by entering the following in cell D12: **=SQRT(D6*(1-D6)/D3)**.

The margin of error $z_{\alpha/2}\sqrt{\frac{\overline{p}(1-\overline{p})}{n}}$ can be calculated by entering the

following in cell D13: =D10*D12.

The point estimate for the population proportion is the sample proportion.

Type in cell D15: **=D6.**

The lower limit of the confidence interval is \overline{p} – (margin of error). So type in cell D16: **=D15 -D13.**

The upper limit of the confidence interval is \overline{p} + (margin of error). So type in cell D17: =D15 + D13.

Compare your answer with Figure P5.1 and P5.2 below.

Figure P5.1

	,	-				
4	Α	В	С	D	Е	
1	Response		Interval Estimation of a Populat	ion Proportion		
2	Yes					
3	No		Sample size	=COUNT(A	A2:A901)	
4	Yes		Response of Interest	Yes		
5	Yes		Count of Response	=COUNTIF	(A2:A901,	04)
6	No		Sample Proportion	=D5/D3		
7	No					
8	No		Confidence Coefficient	0.95		
9	Yes		Level of Significance (alpha)	=1-D8		
10	Yes		z Value	=NORM.S.	INV(1-D9/	2)
11	Yes					
12	No		Standard error	=SQRT(D6	*(1-D6)/D3	3)
13	No		Margin of error	=D10*D12		
14	Yes					
15	No		Point estimate	=D5/D3		
16	No		Lower limit	=D15-D13		
17	Yes		Upper limit	=D15+D13		
18	No					

Note: Rows 19 - 901 are hidden

Figure P5.2

	A	В	C	D	E	F
1	Response		Interval Estimation of a P	opulatio	on Prop	ortion
2	Yes					
3	No		Sample size	900		
4	Yes		Response of Interest	Yes		
5	Yes		Count of Response	396		
6	No		Sample proportion	0.44		
7	No					
8	Nο		Confidence Coefficient	0.95		
9	Yes		Level of Significance (alpha)	0.05		
10	Yes		z Value	1.96		
11	Yes					
12	No		Standard Error	0.0165		
13	No		Margin of Error	0.0324		
14	Yes					
15	No		Point Estimate	0.44		
16	No		Lower Limit	0.4076		
17	Yes		Upper limit	0.4724		
18	Nο					

Note: Rows 19 – 901 are hidden