Approximation Algorithms for the Fault-Tolerant Facility Placement Problem

Li Yan

Computer Science University of California Riverside

06/10/2013

Outline

- The FTFP Problem
- Results in Dissertation
- Related Work
- 4 Techniques
- 5 Approximation Algorithms
- **6** Summary

Table of Contents

- 1 The FTFP Problem
- 2 Results in Dissertation
- Related Work
- 4 Techniques
- 6 Approximation Algorithms
- **6** Summary

Feasible Integral Solution

Instance

Feasible Integral Solution

Instance

Solution

Feasible Integral Solution

Instance

Solution

Cost

$$2f_1 + f_2 + 3f_3 + d_{11} + d_{12} + 2d_{14} + d_{23} + 3d_{31} = 38$$

Table of Contents

- 1 The FTFP Problem
- Results in Dissertation
- Related Work
- Techniques
- 5 Approximation Algorithms
- **6** Summary

Results Highlight

- LP-rounding: 1.575-approximation
- LP-rounding: asymptotic ratio of 1 when all demands large
- Primal-dual: H_n -approximation
- Primal-dual: Example of $\Omega(\log n / \log \log n)$ for dual-fitting

```
\begin{array}{ll} \mathsf{FTFP} & r_j \geq 1 & \geq 1 \text{ facility per site} \\ \mathsf{UFL} & r_j = 1 & \leq 1 \text{ facility per site} \\ \mathsf{FTFL} & r_j \geq 1 & \leq 1 \text{ facility per site} \end{array}
```

$$\begin{array}{lll} \mathsf{FTFP} & r_j \geq 1 & \geq 1 \;\; \mathsf{facility} \; \mathsf{per} \; \mathsf{site} \\ \mathsf{UFL} & r_j = 1 & \leq 1 \;\; \mathsf{facility} \; \mathsf{per} \; \mathsf{site} \\ \mathsf{FTFL} & r_j \geq 1 & \leq 1 \;\; \mathsf{facility} \; \mathsf{per} \; \mathsf{site} \end{array}$$

$$\mathsf{UFL} \preceq \mathsf{FTFP} \preceq \mathsf{FTFL}$$

```
\begin{array}{lll} \mathsf{FTFP} & r_j \geq 1 & \geq 1 \;\; \mathsf{facility} \; \mathsf{per} \; \mathsf{site} \\ \mathsf{UFL} & r_j = 1 & \leq 1 \;\; \mathsf{facility} \; \mathsf{per} \; \mathsf{site} \\ \mathsf{FTFL} & r_j \geq 1 & \leq 1 \;\; \mathsf{facility} \; \mathsf{per} \; \mathsf{site} \end{array}
```

$$\mathsf{UFL} \preceq \mathsf{FTFP} \preceq \mathsf{FTFL}$$

```
LP-rounding
```

```
UFL
FTFP 1.575
FTFL 1.7245
```

```
\begin{array}{lll} \mathsf{FTFP} & r_j \geq 1 & \geq 1 \;\; \mathsf{facility} \; \mathsf{per} \; \mathsf{site} \\ \mathsf{UFL} & r_j = 1 & \leq 1 \;\; \mathsf{facility} \; \mathsf{per} \; \mathsf{site} \\ \mathsf{FTFL} & r_j \geq 1 & \leq 1 \;\; \mathsf{facility} \; \mathsf{per} \; \mathsf{site} \end{array}
```

$$\mathsf{UFL} \preceq \mathsf{FTFP} \preceq \mathsf{FTFL}$$

UFL 1.575 FTFL 1.7245 Primal-dual

UFL 1.52

FTFP $O(\log n)$

Table of Contents

- Related Work
- 6 Approximation Algorithms

Related Work for UFL

Approximation Results for UFL

Shmoys, Tardos and Aardal	1997	3.16	LP-rounding
Chudak	1998	1.736	LP-rounding
Sviridenko	2002	1.58	LP-rounding
Jain and Vazirani	2001	3	primal-dual
Jain <i>et al.</i>	2002	1.61	greedy
Mahdian <i>et al.</i>	2002	1.52	greedy
Arya <i>et al.</i>	2004	3	local search
Byrka	2007	1.5	hybrid
Li	2011	1.488	hybrid

Lower Bound

Guha and Khuller 1998 1.463

Related Work for FTFL

Approximation Algorithms for FTFL

Jain and Vazirani	2000	3 In max _j r _j	primal-dual
Guha <i>et al.</i>	2001	4	LP-rounding
Swamy, Shmoys	2008	2.076	LP-rounding
Byrka <i>et al.</i>	2010	1.7245	LP-rounding

No primal-dual algorithms for FTFL with constant ratio.

Work on FTFP (Dissertation Topic)

Approximation Algorithms for FTFP

Xu and Shen	2009		Introduced FTFP
Liao and Shen	2011	1.861	Dual-fitting (for special case)
Yan and Chrobak	2011	3.16	LP-rounding
Yan and Chrobak	2012	1.575	LP-rounding
Yan and Chrobak	preliminary results		Dual-fitting (for general case)

Table of Contents

- Techniques
- 6 Approximation Algorithms

LP Formulation for FTFP

- y_i = number of facilities open at site $i \in \mathbb{F}$
- x_{ii} = number of connections from client $i \in \mathbb{C}$ to site $i \in \mathbb{F}$

minimize
$$\sum f_{i}y_{i} + \sum d_{ij}x_{ij}$$
 subject to
$$y_{i} - x_{ij} \geq 0 \qquad \forall i, j$$

$$\sum x_{ij} \geq r_{j} \qquad \forall j$$

$$x_{ij} \geq 0, y_{i} \geq 0 \qquad \forall i, j$$
 (1)

(Dual) maximize
$$\sum r_j \alpha_j$$
 (2)
subject to $\sum \beta_{ij} \leq f_i$ $\forall i$
 $\alpha_j - \beta_{ij} \leq d_{ij}$ $\forall i, j$
 $\alpha_j \geq 0, \beta_{ij} \geq 0$ $\forall i, j$

Techniques

Demand Reduction

- Reduce all r_i to polynomial values (to ensure polynomial time of rounding)
- ρ -approx for reduced instance $\Rightarrow \rho$ -approx for original instance

Adaptive Partitioning

- Split sites into facilities and clients into unit demands
- Split associated fractional values
- Properties ensure rounding similar to UFL can be applied

Algorithm for FTFP

Algorithm for FTFP

Techniques

Demand Reduction

- Reduce all r_i to polynomial values (to ensure polynomial time of rounding)
- ρ -approx for reduced instance $\Rightarrow \rho$ -approx for original instance
- Adaptive Partitioning
 - Split sites into facilities and clients into unit demands
 - Split associated fractional values
 - Properties ensure rounding similar to UFL can be

Demand Reduction

Implementation

- Solving LP for (x*, y*).
- $(\hat{\mathbf{x}}, \hat{\mathbf{y}}) = (\mathbf{x}^*, \mathbf{y}^*)$ round down to integer
- $(\dot{\mathbf{x}}, \dot{\mathbf{y}}) = (\mathbf{x}^*, \mathbf{y}^*) (\hat{\mathbf{x}}, \hat{\mathbf{y}})$, fractional part
- $\hat{r}_i = \sum_i \hat{x}_{ii}$ for $\hat{\mathcal{I}}$, $\dot{r}_i = r_i \hat{r}_i$ for $\dot{\mathcal{I}}$
- $(\hat{\mathbf{x}}, \hat{\mathbf{y}})$ (integral) feasible and optimal for $\hat{\mathcal{I}}$
- $(\dot{\mathbf{x}}, \dot{\mathbf{y}})$ (fractional) feasible and optimal for $\dot{\mathcal{I}}$

Properties

- $\dot{r}_i = \text{poly}(|\mathbb{F}|)$
- ρ -approx for $\mathcal I$ implies ρ -approx for $\mathcal I$

Demand Reduction: Consequences

FTFP to FTFL, 1.7245-approximation

- sites into facilities
- clients with demand r_i

Ratio 1 + O(|F|/Q) for $Q = \min_i r_i$, approaches 1 when Q is large

next slide

Ratio 1 + O(|F|/Q) for FTFP

Techniques

Demand Reduction

- Reduce all r; to polynomial values (to ensure
- ρ -approx for reduced instance $\Rightarrow \rho$ -approx for original

Adaptive Partitioning

- Split sites into facilities and clients into unit demands
- Split associated fractional values
- Properties ensure rounding similar to UFL can be applied

Adaptive Partitioning

 x_{ij}^* site client i

Adaptive Partitioning

Adaptive Partitioning

Adaptive Partitioning

Adaptive Partitioning

Partition must satisfy several properties for rounding to work...

Neighborhood of a demand

Strategy 1: for each ν , open one $\mu \in N(\nu)$ with prob. \bar{y}_{μ}

- optimal connection cost
- large facility cost

Strategy 2: do this for demands with disjoint neighborhoods

- optimal facility cost
- large connection cost

How to balance these strategies?

Two Types of Demands

 \bullet κ_1 primary

$$N(\kappa_1) \cap N(\kappa_2) = \emptyset$$

 κ_2

Two Types of Demands

 $N(\kappa_2)$

$$N(\kappa_1) \cap N(\kappa_2) = \emptyset$$

 $N(\kappa_1) \cap N(\kappa_2) = \emptyset$

Neighborhood Structure for Siblings

Example of Partitioning

Summary of Partitioning

Partitioning:

- Clients → demands
- Sites → facilities (not yet opened)
- \bullet $(x^*, y^*) \rightarrow (\bar{x}, \bar{y})$
- $\bullet \sum_{\mu} \bar{x}_{\mu\nu} = 1$
- $\bar{x}_{\mu\nu} = \bar{y}_{\mu}$ or 0

Partitioning: Clients → demands

- Sites → facilities (not yet opened)
- $(x^*, y^*) \rightarrow (\bar{x}, \bar{y})$
- $\sum_{\mu} \bar{x}_{\mu\nu} = 1$
- $\bar{x}_{\mu\nu} = \bar{y}_{\mu}$ or 0

Structure:

- If κ_1, κ_2 primary then $N(\kappa_1) \cap N(\kappa_2) = \emptyset$
- Each non-primary ν assigned to κ with
 - $N(\kappa) \cap N(\nu) \neq \emptyset$
 - priority(κ) < priority (ν) (rough estimate of demand's cost)
- if ν_1 , ν_2 are siblings and ν_i assigned to κ_i , then $[N(\kappa_1) \cup N(\nu_1)] \cap [N(\kappa_2) \cup N(\nu_2)] = \emptyset$

Summary of Partitioning - Intuition

Structure:

small facility cost
$$\longrightarrow$$
 If κ_1, κ_2 primary then $N(\kappa_1) \cap N(\kappa_2) = \emptyset$

small connection cost of
$$\nu$$

• Each non-primary ν assigned to κ with

- $N(\kappa) \cap N(\nu) \neq \emptyset$
- priority(κ) \leq priority (ν) (rough estimate of demand's cost)

fault tolerance
$$\bullet$$
 if ν_1 , ν_2 are siblings and ν_i assigned to κ_i , then
$$[N(\kappa_1) \cup N(\nu_1)] \cap [N(\kappa_2) \cup N(\nu_2)] = \emptyset$$

Table of Contents

- 6 Approximation Algorithms

Client priority values

• $tcc(j) + \alpha_i^*$ (average connection cost + dual value)

Rounding

- Facilities: Each primary κ opens random $\mu \in N(\kappa)$
- Connections: All demands assigned to κ connect to μ

Analysis

- Fault-Tolerance: ν uses only facilities in $N(\nu) \cup N(\kappa)$
- Cost: $< 3 \cdot LP^*$, because
 - Facility cost $\leq F^*$
 - Connection cost $< C^* + 2 \cdot LP^*$

1.736-Approximation for FTFP

Client priority values

• $tcc(j) + \alpha_i^*$ (average connection cost + dual value)

Rounding

- Facilities:
 - Each primary κ opens random $\mu \in N(\kappa)$
 - Other facilities open randomly independently
- Connections:
 - if a neighbor open, connect to nearest neighbor
 - else, connect via assigned primary demand

Analysis

- Fault-Tolerance: ν uses only facilities in $N(\nu) \cup N(\kappa)$
- Cost: $\leq (1+2/e) LP^*$, because
 - Facility cost < F*
 - Connection cost $\leq C^* + \frac{2}{9} \cdot LP^*$

1.575-Approximation for FTFP - Idea

More intricate neighborhood structure

- Two neighborhoods: close and far, $N(\nu) = N_{\rm cls}(\nu) \cup N_{\rm far}(\nu)$
- $N_{\rm cls}(\nu) = \text{nearest } (1/\gamma) \text{fraction of } N(\nu)$
- $N_{\rm cls}(\nu) \cap N_{\rm cls}(\kappa) \neq \emptyset$, if ν assigned to κ
- For siblings $\nu_1, \nu_2, N_{\rm cls}(\kappa_1) \cup N(\nu_1)$ and $N_{\rm cls}(\kappa_2) \cup N(\nu_2)$ disjoint

1.575-Approximation for FTFP

Client priority values

• $tcc_{cls}(i) + dmax_{cls}(i)$ (average + worst connection cost to close neighborhood)

Rounding (extension of Byrka's)

- Facilities:
 - Each primary κ opens random $\mu \in N_{\rm cls}(\kappa)$
 - Other facilities open randomly independently
- Connections:
 - if a neighbor open, connect to nearest neighbor
 - else, connect via assigned primary demand

Analysis

- Fault-Tolerance: ν uses only facilities in $N(\nu) \cup N_{\rm cls}(\kappa)$
- Cost: $\langle \gamma \cdot LP \text{ for } \gamma = 1.575, \text{ because}$
 - Facility cost $\leq \gamma \cdot F^*$
 - Connection cost $\leq \gamma \cdot C^*$

- Greedy in polynomial time
 - Best star can be found quickly
 - Best star remains best
- Ratio H_n (Wolsey's result): Greedy is H_n -approx for
 - Minimizing a linear function
 - Subject to Submodular constraint
- Lower bound $O(\log n / \log \log n)$ for dual-fitting
 - Example has k groups, $n = k^k$
 - Shrinking factor is k/2

Dual feasibility forces a ratio of k/2, number of clients $n = k^k$

Table of Contents

- The FTFP Problem
- Results in Dissertation
- Related Work
- Techniques
- 5 Approximation Algorithms
- 6 Summary

Summary

Results

- 1.575-approximation algorithm for FTFP
- Technique for extending LP-rounding algorithms for UFL to FTFP

Summary

Results

- 1.575-approximation algorithm for FTFP
- Technique for extending LP-rounding algorithms for UFL to FTFP

Open Problems

- Can FTFL be approximated with the same ratio?
- LP-free algorithms for FTFP or FTFL with constant ratio?
- Close the 1.463 − 1.488 gap for UFL!