

Logic Statements

- Logic is used to construct <u>all</u> proofs and computer systems
- A statement is any declarative sentence that results in either true or false

2/8/2017

Sacramento State - Cook - CSc 28 - Spring 2017

Examples of Statements

- There are exactly 35 people in this room
- Sacramento State is located next to a river
- 10 + 2 = 11
- We had great choices for the 2016 Election

2/8/2017

Sacramento State - Cook - CSc 28 - Spring 2017

Boolean Logic

- Discovered by George Boole
- First published in The Mathematical Analysis of Logic (1847)
- Revolutionized logic & proofs and is part of framework of modern of computer science

2/8/2017

Sacramento State - Cook - CSc 28 - Spring 2017

Boolean Operators

- Statements can be combined in compound statements using Boolean operators
- After statements are combined, they are still statements
- For example: "p and q"
 - given that p and q are both statements
 - then "p and q" is also a statement

2/8/2017

acramento State - Cook - CSc 28 - Spring 2017

Implication

- The only Boolean operator that causes confusion is implication
- However, its usage is <u>vital</u> to understand – since it is used your programs (even if you might not see it)

2/8/2017

Sacramento State - Cook - CSc 28 - Spring 2017

Implication

- For "p implies q"...
- p is called the antecedent (or hypothesis or assumption)
- q is called the consequent (or conclusion)

7 Sacramento State - Cook - CSc

Implication

- "p implies q" is contradicted (false) only when...
 - p is true and q is false

• In all other cases, it is true

2/8/2017

Sacramento State - Cook - CSc 28 - Spring 2017

Implication

- Consider the expression below
- The word "then" is alternative way of saying "implies"
- So, Is it True? False?

if x > 2 then $x^2 > 4$ 82017 Sacramento Stato - Cock - Citic 28 - Spring 2017 22

Implication

- There <u>are</u> different values of x that will make the antecedent and consequent both true and false
- ...but nothing that makes the expression false
- It is always true no matter what the value of x

if x > 2 then $x^2 > 4$

"If I pan for gold then I'll get rich"

- Let's look at this statement closer
- It can be rewritten "Pan of Gold → Get Rich" or, very tersely, "P → R"
- There <u>four</u> different combinations of the truth table

2/8/2017

Sacramento State - Cook - CSc 28 - Spring 2017

True → True

- If P is true, and R is true...
- "We panned for gold and got rich"
- Statement is true
 - we asserted that if P is true then R is true
 - · since both are true, the statement is affirmed
 - true → true = true

0000017

Sacramento State - Cook - CSc 28 - Spring 2017

False → True

- What if P is false and R is true
- "We didn't pan for gold and got rich"
- Statement is true
 - the fact we got rich (without panning for gold), doesn't mean that our statement is false
 - it has not contradicted the statement
 - false → true = true

2/8/2017

Sacramento State - Cook - CSc 28 - Spring 2017

False → False

- What if P is false and R is false?
- "We didn't pan for gold and didn't get rich"
- Statement is true
 - the fact that both are false, still does not contraction our original statement
 - it stated "IF we pan for gold THEN we get rich"
 - false → false = true

2/8/2017

Sacramento State - Cook - CSc 28 - Spring 2017

True → False

- Finally what if P is true and R is false?
- We panned for gold, but <u>didn't</u> get rich
- Statement is false
 - we asserted if P is true then R must be true
 - however, since this contradicts the assertion, the result of the implication is false
 - true → false = false

2/8/201

Sacramento State - Cook - CSc 28 - Spring 2017

Deconstructing Implication

- The implication logic can be broken down into the forms that are easier to remember
- This is actually quite important when we cover a few logical tricks later one
- So, let's look at the truth table for other logical operators

2/8/2017

acramento State - Cook - CSc 28 - Spring 2017

Algebra: Order of Operations It is 7 Divide and multiply are equal (and then done left to right), addition is done last 3 + 6 / 3 * 2 = 7

Example Contradictions ■ The following are examples of contradictions ■ The result will always be false p ∧ ¬p p p ⊕ p

Involution Law

- One of the most basic equivalences in logic is the double negation
- It is fairly obvious, so not more needs to be said

```
□ □ p ≡ p

28/2017 Sacramento State - Cook - CSc 28 - Spring 2017 61
```

Complement Law

- When a statement is used with its complement (itself negated), it will result in either true or false
- So, it is always as tautology or contradiction

```
p ∧ ¬ p ≡ false
p ∨ ¬ p ≡ true
```

Identity Law

- Some operands will have no effect on the truth table of a statement
- In this case, the statement can be simplified

```
p ∧ true ≡ p
p ∨ false ≡ p

security State - Cock - Cisc 28 - Spring 2017 63
```

Domination Law

- This might look similar to the identity law, but look very careful at which operator is being used
- These will result in either true or false.

```
p ∨ true ≡ true
p ∧ false ≡ false
s2017 Sacramerio Stato - Cook - Cido 28 - Spring 2017 64
```

Associative Law

- Some operators in math are associative
- For example: (a + b) + c = a + (b + c)
- Same applies to ∧ and ∨

$$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$$

Distributive Law

- Math has operators that are distributive
- For example: a * (b + c) = (a * b) + (a * c)
- Works for both ∧ and ∨

DeMorgan's Law

- DeMorgan's Law states important rule for logical equivalency
- These are used to convert And operators to Or and viceversa

0.00017

Sacramento State - Cook - CSc 28 - Spring 2017

DeMorgan's Law

- So, it states you can change the operator from ∧ to ∨ or vice-versa
- If you negate both operands

$$\neg (p \land q) \equiv \neg p \lor \neg q$$

$$\neg (p \lor q) \equiv \neg p \land \neg q$$
202017 Secrement State - Code - CSC 21 - Spring 2017 68

Truth Table – Testing Not-Or

Р	q	¬p	¬ q	¬p ∧ ¬q	¬(p ∨ q)
Т	Т	F	F	F	F
Т	F	F	Т	F	F
F	Т	Т	F	F	F
F	F	Т	Т	Т	Т

Truth Table - Testing Not-And

T T F F F F T T T T T	Р	q	¬p	¬ q	¬p ∨ ¬q	¬(p ∧ q)
	Т	Т	F	F	F	F
F T T F T T	Т	F	F	Т	Т	Т
	F	Т	Т	F	Т	Т
F F T T T T	F	F	Т	Т	Т	Т

Example

- So, what is the truth table for the example below?
- Let's create a truth table

Boolean Algebra

- However, truth tables become unwieldy as the number of variables increase.
- Logical algebra is another way to evaluate equivalence
- Equivalences can be used to generate one expression from another

2/8/201

Sacramento State - Cook - CSc 28 - Spring 2017

Arguments A combination of true statements can be used to claim another as true An argument is a collection of statements (called premises), which, when all are true, imply a consequence Secrete State - Cook - Citie 28 - Sprey 2017 202017 202017 202017 202017 202017

When an Argument is Valid

- When <u>all</u> the premises are true then the consequence <u>must</u> be true
- If all the premises are true, but the conclusion can be false, the argument is disproven

0.00017

Sacramento State - Cook - CSc 28 - Spring 2017

When an Argument is Valid However, if any premise is false, then the argument is

 We can often prove arguments by building truth tables

not disproven - it is still valid

Sacramento State - Cook

Argument Notation

- Arguments can be written out several ways
- The most common approach is to write each premise on a different line
- The consequence is written below the premises separated with horizontal line

2/8/2017

Sacramento State - Cook - CSc 28 - Spring

Common Notation $\begin{array}{c} p \rightarrow q \\ q \rightarrow r \\ \hline p \rightarrow r \end{array}$

Another Argument Notation

- Arguments can be written on a single line
- Premises are separated with commas
- The consequence follows the symbol ⊢ or ∴.

Simply Logic: letters First, let's simply the structure of the argument so we can see the logic We will assign each part a letter s = studied a = got an A g = watched Game of Thrones

The Strategy ■ We could use a Truth Table to prove this ■ Let's use Boolean Algebra to prove if this is correct a ∨ b = true a ∧ b = false a = ¬b 282017 Sacramete State - Cook - Clic 28 - Spring 2017 121

The dual of this law: $p = p \wedge p$ p = p $= p \wedge true$ $= p \wedge (p \vee \neg p)$ $= (p \wedge p) \vee (p \wedge \neg p)$ $= (p \wedge p) \vee false$ $= p \wedge p$ Identity $= p \wedge p \wedge p$ $= (p \wedge p) \vee false$ $= (p \wedge p) \vee f$

```
The dual of this law: p = p \land p
p = p
= p \land true \qquad Identity
= p \land (p \lor \neg p) \qquad Complement
= (p \land p) \lor (p \land \neg p) \qquad Distributive
= (p \land p) \lor false \qquad Complement
= p \land p \qquad Identity
```

Conclusion

- The second proof was simple because all the initial laws were true – as were their duals
- So, <u>any</u> proof of a law P using the laws of Boolean algebra can be rewritten using the duals, which would prove the dual of P

98/2017 Sacramento State - Cook - CSc 28 - Spring 2