Множества: Введение

12 октября • 8 класс

Правила. Пятёрки получат те, кто до 18 октября включительно наберут 10 баллов. По умолчанию каждый пункт каждой задачи ст**о**ит 1 балл. Удачи!

Задачи на разбор

Определение. Множеством называется набор из любого числа объектов, отобранных по какому-нибудь принципу, но без повторений. Принцип может быть сколь угодно хитрым, как вы увидите в примерах. Множества обозначают фигурными скобками, внутрь которых включают либо полный список элементов, либо правило, которое их выделяет.

Примеры.

```
A=\{ученики класса 8–4\} B=\{люди в этом дискорд-канале\} C=\{стулья в аудитории 404\} D=\{натуральные числа\} E=\{точки плоскости\} F=\{0,\ 7,\ Илон Маск, левый стул первой парты среднего ряда, (\sqrt{2},\sqrt{3})\}
```

Обратите внимание, что определение не требует, чтобы объекты из одного множества были в каком-нибудь смысле «одной природы», последний пример это иллюстрирует. Однако, на практике чаще всего полезны именно однородные множества.

Задача 1. Сколько элементов в каждом из множеств A, \ldots, F ?

Решение: |A|=25, |B|=11, $|C|\approx 30$, $|D|=\infty$ (точнее — \aleph_0 , но это пока не нужно понимать), $|E|=\infty$ (точнее — 2^{\aleph_0} , но это пока не нужно понимать), |F|=5.

Определение. Здесь и далее незанятыми заглавными латинскими буквами обозначаются произвольные множества. Объединением множеств X и Y называется множество $X \cup Y$, содержащее в себе в точности те элементы, которые есть в X **или** в Y (обратите внимание, что «или» не исключающее). Пересечением множеств X и Y называется множество $X \cap Y$, содержащее в себе в точности те элементы, которые есть **и** в X, **и** в Y.

```
Задача 2. Сколько элементов в множествах: (a) A \cup B; (b) A \cap B; (c) ((C \cup D) \cup E) \cap F? 
Pewenue: (a) |A \cup B| = |\{\text{ученики 8-4 и Илья Левин}\}| = 26; (b) |A \cap B| = |\{\text{ученики 8-4 в этом дискорд-канале}\}| = 10;
```

(c) $|((C \cup D) \cup E) \cap F| = |\{7, \,\,$ левый стул первой парты среднего ряда, $(\sqrt{2}, \sqrt{3})\}| = 3.$

```
Обозначения. \forall обозначает «для любого»; \exists обозначает «существует»; x \in S обозначает «элемент x лежит в множестве S»; x \notin S обозначает «элемент x не лежит в множестве S»; P \Rightarrow Q обозначает «если P, то Q» (или, другими словами, «из P следует Q»).
```

Задача 3. Верны ли следующие утверждения?

- (a) Михаил Лесс $\in A$;
- (b) Диана Варзина $\notin B$;
- (c) $\forall x (x \in B \Rightarrow x \in A)$;
- (d) $\exists x (x \in C \text{ и } x \in F).$

Решение: (a) Верно. (b) Неверно.

- (с) Словами: любой человек в этом дискорд-канале является учеником 8-4; неверно.
- (d) Словами: существует стул из 404 аудитории, лежащий в множестве F; верно.

Задача 4. Пусть X и Y — какие-то множества. Всегда ли верны следующие утверждения?

- (a) $\forall x (x \in X \Rightarrow x \in X \cup Y)$;
- (b) $\forall x (x \in X \Rightarrow x \in X \cap Y)$;
- (c) $\forall x (x \in X \text{ и } x \in Y \Rightarrow x \in X \cap Y).$

Peшение: (a) Словами: всякий элемент множества X лежит в объединении X и Y. Верно, смотри определение.

- (b) Словами: всякий элемент множества X лежит в пересечении X и Y. Неверно, контрпример: $X = \{1, 2\}, \quad Y = \{3\}, \quad x = 1$. Тогда x лежит в X, но не лежит в $X \cap Y = \emptyset$.
- (c) Словами: всякий элемент, лежащий и в X, и в Y, лежит в их пересечении. Верно, смотри определение. \Box

Задачи для самостоятельного решения

Задача 1. Придумайте множество из (a) 6; (b) 100; (c) 0 элементов.

Задача 2. Придумайте такие множества G и H, что в них по 5 элементов, а в их пересечении 2 элемента. Сколько элементов в их объединении? Всегда ли так будет?

Задача 3 (2 балла). Придумайте множество I, удовлетворяющее условию

$$\forall x (x \in D \Rightarrow \exists y (y \in I \text{ и } y > x)).$$

Задача 4. Пусть X и Y — какие-то множества. Всегда ли верны следующие утверждения?

- (a) $\forall x (x \in X \cup Y \Rightarrow x \in X)$;
- (b) $\forall x (x \in X \cap Y \Rightarrow x \in X)$;
- (c) $\forall x (x \in X \cup Y \Rightarrow x \in X$ или $x \in Y)$.

Задача 5. Зависит ли ответ на задачу 2(с) из разбора от расстановки скобок?

Задача 6. Сформулируйте и докажите.

- (а) ассоциативность объединения;
- (b) ассоциативность пересечения;
- (с) коммутативность объединения;
- (d) коммутативность пересечения;
- (е, по 2 балла) дистрибутивность (да-да, их и вправду две разных!)

Подсказка: все эти утверждения очевидны из определения, надо только записать их значками.