Distribution	Parameters	Possible Description	$\mathbf{Range}\ \Omega_X$	$\mathbb{E}[\mathbf{X}]$	$\mathbf{Var}(\mathbf{X})$	$\mathrm{PDF}/\mathrm{PMF}$	$\begin{array}{ c c } \mathbf{CDF} \\ (\mathbb{P}(X \le x)) \end{array}$
Uniform (disc)	$X \sim Unif(a, b)$ for $a, b \in \mathbb{Z}$ and $a \le b$	Equally likely to be any $integer$ in $[a, b]$	$\{a,\ldots,b\}$	$\frac{a+b}{2}$	$\frac{(b-a)(b-a+2)}{12}$	$\frac{1}{b-a+1}$	
Bernoulli	$X \sim Ber(p)$ for $p \in [0, 1]$	Takes value 1 with prob p and 0 with prob $1-p$	{0,1}	p	p(1-p)	$p^k \left(1 - p\right)^{1 - k}$	
Binomial	$X \sim Bin(n, p)$ for $n \in \mathbb{N}$, $p \in [0, 1]$	Sum of n independent Bernoulli trials, each with parameter p	$\{0,1,\ldots,n\}$	np	np(1-p)	$\binom{n}{k} p^k \left(1 - p\right)^{n - k}$	
Poisson	$X \sim Poi(\lambda)$ for $\lambda > 0$	# of events that occur in a unit of time independently with rate λ per unit time	$\{0,1,\ldots\}$	λ	λ	$e^{-\lambda} \frac{\lambda^k}{k!}$	
Geometric	$Geo(p)$ for $p \in [0, 1]$	# of independent Bernoulli trials with parameter p up to and including first success	$\{1,2,\ldots\}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$(1-p)^{k-1} p$	$1-\left(1-p\right)^x$
Hypergeometric	$HypGeo(N, K, n)$ for $n, K \leq N$ and $n, K, N \in \mathbb{N}$	# of successes in n draws (w/out replacement) from N items that contain K successes in total	$\{\max(0, n + K - N), \dots, \min(n, K)\}$	$n\frac{K}{N}$	$n\frac{K(N-K)(N-n)}{N^2(N-1)}$	$\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$	
Negative Binomial	$NegBin(r,p)$ for $r \in \mathbb{N}, p \in [0,1]$	# of trials until r^{th} success in Bernoulli process	$\{r,r+1,\ldots\}$	$\frac{r}{p}$	$\frac{r\left(1-p\right)}{p^2}$	$\binom{k-1}{r-1}p^r\left(1-p\right)^{k-r}$	
Multinomial	$\mathbf{X} \sim Mult_r(n, \mathbf{p})$ for $r, n \in \mathbb{N}$ and $\mathbf{p} = (p_1, p_2,, p_r),$ $\sum_{i=1}^r p_i = 1$	generalization of the binomial distribution, n trials with r categories each with probability p_i	$k_i \in \{0, \dots, n\},$ $i \in \{1, \dots, r\}$ and $\Sigma k_i = n$	$\mathbb{E}[\mathbf{X}] = n\mathbf{p} = \begin{bmatrix} np_1 \\ \vdots \\ np_r \end{bmatrix}$	$Var(X_i) = np_i(1 - p_i)$ $Cov(X_i, X_j) =$ $-np_i p_j, i \neq j$	$\binom{n}{k_1,\dots,k_r}\prod_{i=1}^r p_i^{k_i}$	
Multivariate Hypergeomet- ric	$\mathbf{X} \sim MVHG_r(N, \mathbf{K}, n)$ for $r, n \in \mathbb{N}$, $\mathbf{K} \in \mathbb{N}^r$ and $N = \sum_{i=1}^r K_i$	generalization of the hypergeometric distribution, n draws from r categories each with K_i successes (w/out replacement)	$k_i \in \{0, \dots, K_i\},$ $i \in \{1, \dots, r\}$ and $\Sigma k_i = n$	$\mathbb{E}[\mathbf{X}] = n \frac{\mathbf{K}}{N} = \begin{bmatrix} n \frac{K_1}{N} \\ \vdots \\ n \frac{K_r}{N} \end{bmatrix}$	$Var(X_i) = n\frac{K_i}{N} \cdot \frac{N - K_i}{N} \cdot \frac{N - n}{N - 1}$ $Cov(X_i, X_j) = -n\frac{K_i}{N} \frac{K_j}{N} \cdot \frac{N - n}{N - 1}, i \neq j$	$\frac{\prod_{i=1}^{r} \binom{K_i}{k_i}}{\binom{N}{n}}$	

Continuous Distributions											
Distribution	Parameters	Possible Description	Range Ω_X	$\mathbb{E}[\mathbf{X}]$	$\mathbf{Var}(\mathbf{X})$	PDF/PMF	$\begin{aligned} \mathbf{CDF} \\ (\mathbf{F_X}\left(\mathbf{x}\right) = \mathbb{P}(\mathbf{X} \leq \mathbf{x})) \end{aligned}$				
Uniform	Unif(a,b) for $a < b$	Equally likely to be any real number in $[a, b]$	[a,b]	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{1}{b-a}$	$\begin{cases} 0 & \text{if } x < a \\ \frac{x-a}{b-a} & \text{if } a \le x < b \\ 1 & \text{if } x \ge b \end{cases}$				
Exponential	$Exp(\lambda)$ for $\lambda > 0$	Time until next event in Poisson process	$[0,\infty)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\lambda e^{-\lambda x}$	$\begin{cases} 0 & \text{if } x < 0 \\ 1 - e^{-\lambda x} & \text{if } x \ge 0 \end{cases}$				
Normal	$ \mathcal{N}(\mu, \sigma^2) \text{for } \mu \in \mathbb{R}, \sigma^2 > 0 $	Standard bell curve	$(-\infty,\infty)$	μ	σ^2	$\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	$\Phi\left(\frac{x-\mu}{\sigma}\right)$				
Gamma	$Gam(r,\lambda)$ for $r,\lambda>0$	Time to r^{th} event in Poisson process. Conjugate prior for Exp, Poi parameter	$(0,\infty)$	$\frac{r}{\lambda}$	$rac{r}{\lambda^2}$	$\frac{\lambda^r}{\Gamma(r)} x^{r-1} e^{-\lambda x}$	Note: $\Gamma(r) = (r-1)!$ for integers r .				
Beta	$Beta(\alpha,\beta)$ for $\alpha,\beta>0$	Conjugate prior for Ber, Bin, Geo, NegBin parameter p .	(0, 1)	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{\left(\alpha+\beta\right)^{2}\left(\alpha+\beta+1\right)}$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$					
Dirichlet	$\mathbf{X} \sim Dir(\alpha_1, \alpha_2, \dots, \alpha_r)$ for $\alpha_i, r > 0$ and $r \in \mathbb{N}, \alpha_i \in \mathbb{R}$	Generalization of Beta distribution. Conjugate prior for Multinomial parameter p	$x_i \in (0,1);$ $\sum_{i=1}^{r} x_i = 1$	$\mathbb{E}[X_i] = \frac{\alpha_i}{\sum_{j=1}^r \alpha_j}$		$\frac{\frac{1}{B(\alpha)} \prod_{i=1}^{r} x_i^{a_i - 1}}{x_i \in (0, 1), \sum_{i=1}^{r} x_i} = 1$					
Multivariate Normal	$\mathbf{X} \sim \mathcal{N}_n(oldsymbol{\mu}, oldsymbol{\Sigma})$ for $oldsymbol{\mu} \in \mathbb{R}^n$ and $oldsymbol{\Sigma} \in \mathbb{R}^{n imes n}$	Multivariate generalization of Normal distribution.	\mathbb{R}^n	μ	Σ	$\frac{\frac{1}{(2\pi)^{n/2} \Sigma ^{1/2}}\cdot}{\exp(-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu))}$					
University of	University of Washington CSE312 Tsun & Estber										