

Τι ισχύει για την ακολουθία $a_n = \frac{1}{\ln n}, n \geq 2;$

- Είναι φθίνουσα και αποκλίνει.
- Είναι φθίνουσα και συγκλίνει.
- Είναι αύξουσα και αποκλίνει.
- Τίποτα από τα υπόλοιπα.

Ποιες από τις σειρές συγκλίνουν: *

i.
$$1 + (-1) + 1 + \dots + (-1)^{n-1} + \dots$$

ii.
$$1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1} + \dots$$

iii.
$$1 + \frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^{n-1}} + \dots$$

- H ii.
- O Hi.
- H iii.
- Η ii και η iii.

1/1

Ποιό είναι το μεριχό άθροισμα S_{50} της σειράς $\sum\limits_{n=1}^{\infty}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right);$

$$1 - \frac{1}{\sqrt{51}}$$

$$\frac{1}{\sqrt{50}} - \frac{1}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{51}}$$

Επιλογή 2

Επιλογή 4

Έστω η σειρά $\sum_{n=1}^{5} \frac{5}{(1+n^2)^2}$. Εάν εφαρμόσουμε το χριτήριο σύγχρισης με τη σειρά $\sum_{n=1}^{\infty} \frac{5}{n^4}$, σε ποιό συμπέρασμα μπορούμε να οδηγηθούμε;

- Η σειρά αποκλίνει.
- Η σειρά συγκλίνει.
- Το κριτήριο σύγκρισης δεν εφαρμόζεται.
- Η σειρά συγκλίνει αλλά όχι απόλυτα.

- H σειρά $\sum_{n=1}^{\infty} \frac{(-1)^n}{n!}$:
 - Συγκλίνει, αλλά όχι απόλυτα χρησιμοποιώντας το κριτήριο του λόγου.
 - Αποκλίνει χρησιμοποιώντας το κριτήριο σύγκρισης με την 1/n.
 - Δεν μπορούμε να αποφανθούμε ως προς τη σύγκλιση χρησιμοποιώντας το κριτήριο του λόγου.
 - Συγκλίνει απόλυτα χρησιμοποιώντας το κριτήριο του λόγου.

1/1

/ *

Εάν $a_n>b_n>0$ για $n\geq 1$, ποιο από τα παρακάτω είναι αληθές;

 E άν $\lim_{n o \infty} a_n = 0$, τότε η $\sum_{n=1}^\infty b_n$ συγκλίνει

Εάν η $\sum\limits_{n=1}^{\infty}a_n$ συγκλίνει, τότε $\lim\limits_{n o\infty}b_n=0$

Επιλογή 1

Επιλογή 2

Εάν η $\sum\limits_{n=1}^{\infty}b_n$ αποκλίνει, τότε $\lim\limits_{n o\infty}a_n=0$

Εάν η $\sum\limits_{n=1}^{\infty}a_n$ αποκλίνει, τότε αποκλίνει και η $\sum\limits_{n=1}^{\infty}b_n$

Επιλογή 3

🔵 Επιλογή 4

Ποιο είναι το άθροισμα της άπειρης σειράς $\frac{3}{2} + \frac{9}{16} + \frac{27}{128} + \frac{81}{1024} + \cdots$;

- 2.5
- (1.6
- 2.3

Έστω οι σειρές

$$\sum_{k=1}^{\infty} \alpha_k, \sum_{k=1}^{\infty} \beta_k, \sum_{k=1}^{\infty} \frac{\alpha_k}{\beta_k}$$

όπου $\alpha_k=(3k^2-2)^k$ και $\beta_k=(6k^2+5)^k$. Ποια από τις ακόλουθες προτάσεις ισχύει;

Η σειρά $\sum \alpha_k$ συγκλίνει

Η σειρά $\sum \beta_k$ συγκλίνει

🔵 Επιλογή 1

Επιλογή 2

Η σειρά $\sum \frac{\alpha_k}{\beta_k}$ συγκλίνει

Βρείτε το διάστημα σύγκλισης της δυναμοσειράς $\sum_{n=1}^{\infty} \frac{x^n}{n}$

- Συγκλίνει σε όλο το R.
- Συγκλίνει μόνο στο κέντρο της.
- [-1,1)
- () [-1, 1]

Ποιά είναι η σειρά Taylor στο σημείο $x_0=1$ για τη συνάρτηση $f(x)=\frac{1}{x+1};$

$$\sum_{n=0}^{\infty} \frac{1}{2^{n+1}} (x-1)^n$$

Επιλογή 1

$$\sum_{n=0}^{\infty} \frac{1}{2^{n+1}} (x+1)^n$$

🔵 Επιλογή 3

 $\sum_{n=0}^{\infty} \frac{(-1)^n n!}{2^{n+1}} (x-1)^n$

Επιλογή 4

Επιλογή 2