COSC 290 Discrete Structures

Lecture 24: Transitive closure and equivalence relations

Prof. Michael Hay Monday, Apr. 2, 2018

Colgate University

Closures

Plan for today

- 1. Closures
- 2. Equivalence relations and partial orders

Closures

A closure of a relation R on A is a smallest $R'\supseteq R$ that satisfies a desired property.

· reflexive closure:

$$R' = R \cup \{ \langle a, a \rangle : a \in A \}$$

· symmetric closure:

$$R' = R \cup R^{-1}$$

 transitive closure: (hint: what does R ∘ R give you?)

2

Poll: towards transitive closure

Consider the parentOf relation on persons where $\langle p, c \rangle \in parentOf$ if p is the parent of c. What is parentOf \circ parentOf?

- A) ancestorOf
- B) grandParentOf
- C) parentOf
- D) childOf
- E) grandChildOf
- F) descendantOf

Bonus question for you to consider during the discussion period: what is $parentOf \cup (parentOf)$?

Exercise

Input: Relation $R \subseteq A \times A$.

Output: smallest $R' \supset R$ that is transitive

- 1: R' := R
- 2: **repeat** 3: new := (R ∘ R') − R'
- 4: R' := R' ∪ new
- $_{5:}\; \textbf{until}\; |\textit{new}| = 0$
- 6: return R'

Exercise: working in groups, apply the algorithm to this graph. How many times does the loop repeat?

Computing the transitive closure

Input: Relation $R \subseteq A \times A$.

Output: smallest $R' \supset R$ that is transitive

- 1: R' := R
- 2: repeat
- 3: $new := (R \circ R') R'$
- 4: R' := R' ∪ new
- 5: **until** |new| = 0
- 6: return R'

Example (Applying transitive closure algorithm)

Let's apply the algorithm to this example:

Closures

A closure of a relation R on A is a smallest $R' \supseteq R$ that satisfies a desired property.

· reflexive closure:

$$R' = R \cup \{ \langle a, a \rangle : a \in A \}$$

· symmetric closure:

$$R' = R \cup R^{-1}$$

· transitive closure:

$$R' = R \cup (R \circ R) \cup ((R \circ R) \circ R) \cup \cdots$$

Equivalence relations and partial orders

Special relation: equivalence relation

Relation R on A is an equivalence relation if it is reflexive, symmetric, transitive.

Conventions: use \equiv as the "name" of the relation (as opposed to a letter like R) and use infix notation: $a \equiv b$ instead of $\langle a,b \rangle \in \equiv$. Intuition: equivalence relations behave like \equiv .

Recall: relation properties

For relation R on $A \times A$.

- **R** reflexive: for every $a \in A$, $\langle a, a \rangle \in R$.
- **IR** irreflexive: for every $a \in A$, $\langle a, a \rangle \notin R$.
- **S** symmetric: for every $a,b\in A$, if $\langle a,b\rangle\in R$, then $\langle b,a\rangle\in R$.
- **antiS** antisymmetric: for every $a,b\in A$, if $\langle a,b\rangle\in R$ and $\langle b,a\rangle\in R$, then a=b.
 - **AS** asymmetric: for every $a, b \in A$, if $(a, b) \in R$, then $(b, a) \notin R$.
 - **T** transitive: for every $a,b,c\in A$, if $\langle a,b\rangle\in R$ and $\langle b,c\rangle\in R$, then $\langle a,c\rangle\in R$.

Equivalence classes

When R is an equivalence relation on A, the elements of A be can be partitioned into equivalence classes. (See book for formal definition.)

Example (Equivalence classes)

Let R denote the equivalence relation on $\{0, 1, 2, ..., 10\}$ where $(a, b) \in R$ if $(a \mod 2) = (b \mod 2)$

The equivalence classes are:

- · { 0, 2, 4, 6, 8, 10 }
- $\{1,3,5,7,9\}$

۰

Exercise

Let $S := \{0,1\}^3$ be the set of length 3 bitstrings. Consider the two binary relations R_1 and R_2 on S defined as follows:

- 1. $(x,y) \in R_1$ if x and y are identical or reverses of each other. For example, if $x = b_1b_2 \dots b_n$, we say that reverse $(x) = b_nb_{n-1} \dots b_1$. Then, $(x,y) \in R_1$ iff x = y or x = reverse(y).
- 2. $(x,y) \in R_2$ if x and y are rearrangements/permutations of each other. For example, if $x = b_1b_2 \dots b_n$, then $(x,y) \in R_n$ iff there exists some bijection $p: \{1,\dots,n\} \to \{1,\dots,n\}$ such that $y = b_0(\eta)b_0(y) \dots b_0(n)$.

Working in small groups, write out the equivalence classes for R_1 and R_2 .