

Approximation Algorithms

- Q. Suppose I need to solve an NP-hard problem. What should I do?
- A. Theory says you're unlikely to find a poly-time algorithm.

Must sacrifice one of three desired features.

- . Solve problem to optimality.
- . Solve problem in poly-time.
- . Solve arbitrary instances of the problem.

ρ-approximation algorithm.

- Guaranteed to run in poly-time.
- Guaranteed to solve arbitrary instance of the problem
- . Guaranteed to find solution within ratio ρ of true optimum.

Challenge. Need to prove a solution's value is close to optimum, without even knowing what optimum value is!

11.1 Load Balancing

Load Balancing

Input. m identical machines; n jobs; job j has processing time t_{j} .

- . Job j must run contiguously on one machine.
- . A machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i. The load of machine i is L_i = Σ_j $_{\in J(i)}$ † $_j.$

Def. The makespan is the maximum load on any machine L = $\max_i L_i$.

Load balancing. Assign each job to a machine to minimize the makespan.

Decision Version. Is the makespan bound by a number K?

Load Balancing: Greedy Scheduling

Greedy-scheduling algorithm.

- · Consider n jobs in some fixed order.
- . Assign job j to machine whose load is smallest so far.

```
 \begin{aligned} & \text{Greedy-Scheduling (m, n, t_1, t_2, ..., t_n) } \\ & \text{for } i = 1 \text{ to } m \text{ } \\ & L_i \leftarrow 0 & \leftarrow \text{lood on machine } i \\ & J(i) \leftarrow \phi & \leftarrow \text{ jobs assigned to machine } i \\ & \} \\ & \text{for } j = 1 \text{ to } n \text{ } \\ & i = \text{argmin}_k \text{ } \{L_k\} & \leftarrow \text{ machine i has smallest lood } \\ & J(i) \leftarrow J(i) \cup \{j\} & \leftarrow \text{ assign job j to machine } i \\ & L_i \leftarrow L_i + t_j & \leftarrow \text{ update lood of machine } i \\ & \} \\ & \text{return } J(1), ..., J(m) \\ & \} \\ \end{aligned}
```

Implementation: O(n log m) using a priority queue.

 ρ -approximation

An algorithm for an optimization problem is a $\rho\text{-approximation}$ if the solution found by the algorithm is always within a factor $\boldsymbol{\rho}$ of the optimal solution.

Minimization Problem: ρ = approximate-solution/optimal-solution

Maximization Problem: ρ = optimal-solution/approximate-solution

In general, 1 $\leq \rho.$ If ρ = 1, then the solution is optimal.

Load Balancing: Greedy Scheduling Analysis

Theorem. [Graham, 1966] Greedy algorithm is a 2-approximation.

- First worst-case analysis of an approximation algorithm.
- . Need to compare resulting solution with optimal makespan L^{\star} .

Lemma 1. The optimal makespan $L^\star \geq max_j \ t_j.$ Pf. Some machine must process the most time-consuming job. •

Lemma 2. The optimal makespan $L^* \geq \frac{1}{m} \sum_j t_j$.

- . The total processing time is Σ_j t $_j$. One of m machines must do at least a 1/m fraction of total work. •

Load Balancing: Greedy Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.

Pf. Consider max load L_i of bottleneck machine i.

- . Let j be the last job scheduled on machine i.
- . When job j assigned to machine i, i had smallest load. Its load before assignment is L_i - $t_j \implies L_i$ - $t_j \le L_k$ for all $1 \le k \le m$.
- . Sum inequalities over all k and divide by m:

$$L_i - t_j \leq \frac{1}{m} \sum_k L_k$$

$$= \frac{1}{m} \sum_k t_k$$

 $L_i \ = \ \underbrace{(L_i - t_j)}_{\leq L^*} \ + \ \underbrace{t_j}_{\leq L^*} \ \leq \ 2L^*. \endalign{4mm} \bullet$

Load Balancing: Greedy Scheduling Analysis		
Q. Is our analysis tight? A. Essentially yes.		
Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m Greedy solution = 2m-1;		
Greedy Solution - 2m-1,		
		machine 2 idle
		machine 3 idle
		machine 4 idle
m = 10		machine 5 idle
		machine 6 idle
		machine 7 idle
		machine 8 idle
l		machine 9 idle
		machine 10 idle
l		+ +
list scheduling makespan = 19		

Load Balancing: LPT Rule

Longest processing time (LPT). Sort \boldsymbol{n} jobs in descending order of processing time, and then run Greedy scheduling algorithm.

```
\label{eq:lpt-greedy-Scheduling} \begin{split} \text{LPT-Greedy-Scheduling} \left( \textbf{m}, \ \textbf{n}, \ \textbf{t}_1, \textbf{t}_2, \dots, \textbf{t}_n \right) & \text{ {\bf Sort jobs so that } } \textbf{t}_1 \geq \textbf{t}_2 \geq \ \dots \geq \textbf{t}_n \end{split}
         for j = 1 to n {
                    \mathbf{i} = \operatorname{argmin}_{\mathbf{k}} \mathbf{L}_{\mathbf{k}} \leftarrow \operatorname{machine} i \operatorname{has smallest load} \\ \mathcal{J}(\mathbf{i}) \leftarrow \mathcal{J}(\mathbf{i}) \cup \{\mathbf{j}\} \leftarrow \operatorname{assign job j to machine} i
                    L_i \leftarrow L_i + t_j
                                                                                  ← update load of machine i
          return J(1), ..., J(m)
```

Load Balancing: LPT Rule

Observation. If at most ${\sf m}$ jobs, then greedy-scheduling is optimal.

Pf. Each job put on its own machine. •

Lemma 3. If there are more than m jobs, $L^{\bigstar} \geq 2 \; t_{m*1}.$

- . Consider first m+1 jobs $\boldsymbol{t}_1,\,...,\,\boldsymbol{t}_{m+1}.$
- . Since the t_i 's are in descending order, each takes at least t_{m+1} time.
- There are m+1 jobs and m machines, so by pigeonhole principle, at least one machine gets two jobs. •

Theorem. LPT rule is a 3/2 approximation algorithm.

Pf. Same basic approach as for the first greedy scheduling.

$$L_i = \underbrace{(L_i - t_j)}_{\leq L^n} + \underbrace{t_j}_{\leq \frac{1}{2}L^n} \leq \tfrac{3}{2}L^n \cdot \bullet$$

$$\downarrow \\ \text{Lemma 3} \\ \text{(by observation, can assume number of jobs > m)}$$

Load Balancing: LPT Rule

- Q. Is our 3/2 analysis tight?
- A. No.

Theorem. [Graham, 1969] LPT rule is a 4/3-approximation.

- Pf. More sophisticated analysis of the same algorithm.
- Q. Is Graham's 4/3 analysis tight?
- A. Essentially yes.

11.2 Center Selection

Center Selection Problem

Input. Set of n sites $s_1, ..., s_n$ and integer k > 0.

Center selection problem. Select k centers C so that maximum distance from a site to nearest center is minimized.

Center Selection Problem

Input. Set of n sites s_1 , ..., s_n and integer k > 0.

Center selection problem. Select k centers C so that maximum distance from a site to nearest center is minimized.

- dist(x, y) = distance between x and y.
- $dist(s_i, C) = min_{c \in C} dist(s_i, c) = distance from s_i to closest center.$
- $r(C) = \max_{i} dist(s_i, C) = smallest covering radius.$

Goal. Find set of centers C that minimizes r(C), subject to |C| = k.

Distance function properties.

- dist(x, x) = 0 (identity)
- dist(x, y) = dist(y, x) (symmetry)
- $dist(x, y) \le dist(x, z) + dist(z, y)$ (triangle inequality)

Center Selection Example Ex: each site is a point in the plane, a center can be any point in the plane, dist(x, y) = Euclidean distance. Remark: search can be infinite!

Center Selection: Greedy Algorithm

Greedy algorithm. Repeatedly choose the next center to be the site farthest from any existing center.

```
Greedy-Center-Selection(k, n, s<sub>1</sub>, s<sub>2</sub>,..., s<sub>n</sub>) {
    C = { s<sub>1</sub> }
    repeat k-1 times {
        Select a site s<sub>1</sub> with maximum dist(s<sub>1</sub>, C)
        Add s<sub>1</sub> to C
    }
        site forthest from any center
    return C
}
```

Observation. Upon termination all centers in ${\it C}$ are pairwise at least ${\it r}({\it C})$ apart.

Pf. By construction of algorithm.

Center Selection

Theorem. Let \mathcal{C}^{\bigstar} be an optimal set of centers. Then $r(\mathcal{C}) \leq 2r(\mathcal{C}^{\bigstar}).$

 $\label{thm:continuous} \textbf{Theorem. Greedy algorithm is a 2-approximation for center selection problem.}$

Remark. Greedy algorithm always places centers at sites, but is still within a factor of 2 of best solution that is allowed to place centers anywhere.

e.g., points in the plane

Question. Is there hope of a 3/2-approximation? 4/3?

Theorem. Unless P = NP, there no $\rho\text{-approximation}$ for center-selection problem for any ρ < 2.

 ${\it Center Selection:} \ \, {\it Hardness of Approximation}$

Theorem. Unless P = NP, there is no $\rho\text{-approximation}$ algorithm for metric k-center problem for any ρ < 2.

Pf. We show how we could use a (2 - $\epsilon)$ approximation algorithm for k-center to solve DOMINATING-SET in poly-time.

- Let G = (V, E), k be an instance of DOMINATING-SET. ← see Exercise 8.29
- Construct instance G' of k-center with sites V and distances
- d(u, v) = 1 if $(u, v) \in E$
- d(u, v) = 2 if (u, v) ∉ E
- . Note that G^{\prime} satisfies the triangle inequality.
- Claim: G has dominating set of size k iff there exists k centers C^* with $r(C^*)$ = 1.
- Thus, if G has a dominating set of size k, a (2 ϵ)-approximation algorithm on G' must find a solution C^* with $r(C^*)$ = 1 since it cannot use any edge of distance 2.

11.4 The Pricing Method: Weighted Vertex Cover

Pricing Method

Pricing method. Each edge must be covered by some vertex. Edge e = (i, j) pays price $p_e \ge 0$ to use vertex i and j.

Fairness. Edges incident to vertex i should pay $\leq w_i$ in total.

for each vertex i: $\sum_{e=(i,j)} p_e \le w_i$

Lemma. For any vertex cover S and any fair prices p_e : $\Sigma_e p_e \leq w(S)$.

$$\sum_{e \in E} p_e \leq \sum_{i \in S} \sum_{e = (i,j)} p_e \leq \sum_{i \in S} w_i = w(S).$$
The effective of property of the engineering of the engi

Pricing Method

Pricing method. Set prices and find vertex cover simultaneously.

```
Weighted-Vertex-Cover-Approx(G, w) {
  foreach e in E
   pe = 0
                                                                                                  \sum_{e=(i,j)} p_e = w_i
    while (\exists \ \text{edge i-j} \ \text{such that neither i nor j are tight}) select such an edge e increase p_e as much as possible until i or j tight
    S ← set of all tight nodes return S
```


Pricing Method: Analysis

Theorem. Pricing method is a 2-approximation.

- Algorithm terminates since at least one new node becomes tight after each iteration of while loop.
- Let S = set of all tight nodes upon termination of algorithm. S is a
 vertex cover: if some edge i-j is uncovered, then neither i nor j is
 tight. But then while loop would not terminate.
- . Let S^* be optimal vertex cover. We show $w(S) \le 2w(S^*)$.

$$w(S) = \sum_{i \in S} w_i = \sum_{i \in S} \sum_{e = (i,j)} p_e \leq \sum_{i \in V} \sum_{e = (i,j)} p_e = 2 \sum_{e \in E} p_e \leq 2w(S^*). \quad \blacksquare$$
 all nodes in S are tight
$$\sum_{priceS \geq 0} p_e \leq \sum_{e \in E} p_e \leq 2w(S^*). \quad \blacksquare$$

11.6 LP Rounding: Weighted Vertex Cover

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Given an undirected graph G = (V, E) with vertex weights $w_i \ge 0$, find a minimum weight subset of nodes S such that every edge is incident to at least one vertex in S.

Integer programming formulation.

. Model inclusion of each vertex i using a 0/1 variable $\mathbf{x}_{i\cdot}$

$$x_i = \begin{cases} 0 & \text{if vertex } i \text{ is not in vertex cover} \\ 1 & \text{if vertex } i \text{ is in vertex cover} \end{cases}$$

Vertex covers in 1-1 correspondence with 0/1 assignments: $S = \{i \in V : x_i = 1\}$

- . Objective function: minimize $\boldsymbol{\Sigma}_{i}\,\boldsymbol{w}_{i}\,\boldsymbol{x}_{i}.$
- . For each edge (i, j), must take either i or j: $x_i + x_j \ge 1$.

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Integer programming formulation.

$$\begin{array}{lll} (\mathit{ILP}) \ \min & \sum\limits_{i \ \in \ V} w_i \, x_i \\ & \mathrm{s.t.} & x_i + x_j & \geq & 1 & (i,j) \in E \\ & x_i & \in & \{0,1\} & i \in V \end{array}$$

Observation. If x^* is optimal solution to (ILP), then S = $\{i \in V : x^*_i$ = 1} is a minimum weight vertex cover.

Integer Programming

INTEGER-PROGRAMMING. Given integers \mathbf{a}_{ij} and \mathbf{b}_{ir} find integers \mathbf{x}_{j} that satisfy:

$$\begin{array}{rcl}
\max & c^t x \\
s. t. & Ax \ge b \\
& x & \text{integral}
\end{array}$$

$$\begin{array}{ccccc} \sum\limits_{j=1}^{n} a_{ij} x_{j} & \geq & b_{i} & & 1 \leq i \leq m \\ & x_{j} & \geq & 0 & & 1 \leq j \leq n \\ & x_{i} & & \text{integral} & 1 \leq j \leq n \end{array}$$

 ${\color{blue} \textit{Observation.}} \ \ \textit{Vertex cover formulation proves that integer} \\ \textbf{programming is NP-hard.}$

even if all coefficients are 0/1 and at most two variables per inequality Linear Programming

 $\label{linear programming.} \begin{tabular}{ll} Linear programming. Max/min linear objective function subject to linear inequalities. \end{tabular}$

- . Input: integers c_j , b_i , a_{ij} .
- . Output: real numbers x_j .

(P)
$$\max c' x$$

s. t. $Ax \ge b$
 $x \ge 0$

$$\begin{array}{lll} \text{(P)} & \max & \sum\limits_{j=1}^n c_j x_j \\ & \text{s. t.} & \sum\limits_{j=1}^n a_{ij} x_j & \geq & b_i & 1 \leq i \leq m \\ & x_j & \geq & 0 & 1 \leq j \leq n \end{array}$$

Linear. No x^2 , xy, arccos(x), x(1-x), etc.

Simplex algorithm. [Dantzig 1947] Can solve LP in practice. Ellipsoid algorithm. [Khachian 1979] Can solve LP in poly-time.

LP Feasible Region

LP geometry in 2D.

The region satisfying the inequalities $x_1 \ge 0$, $x_2 \ge 0$ $x_1 + 2x_2 \ge 6$ $2x_1 + x_2 \ge 6$ $2x_1 + x_2 = 6$

Weighted Vertex Cover: LP Relaxation

Weighted vertex cover. Linear programming formulation.

$$\begin{array}{lll} (\mathit{LP}) \ \min & \sum\limits_{i \ \in \ V} w_i \, x_i \\ & \mathrm{s.\,t.} & x_i + x_j & \geq \ 1 & (i,j) \in E \\ & x_i & \geq \ 0 & i \in V \\ \end{array}$$

Observation. Optimal value of (LP) is \leq optimal value of (ILP).

Pf. LP has fewer constraints.

Note. LP is not equivalent to vertex cover.

Q. How can solving LP help us find a small vertex cover?

A. Solve LP and round fractional values.

Weighted Vertex Cover

Theorem. If x^* is optimal solution to (LP), then S = {i $\in V: x^*_i \geq \frac{1}{2}$ } is a vertex cover whose weight is at most twice the min possible weight.

Pf. [S is a vertex cover]

• Consider an edge $(i, j) \in E$.

. Since $x^*_i + x^*_j \ge 1$, either $x^*_i \ge \frac{1}{2}$ or $x^*_j \ge \frac{1}{2} \implies (i, j)$ covered.

Pf. [S has desired cost]

. Let S* be optimal vertex cover. Then

$$\begin{array}{cccc} \sum w_i & \geq & \sum w_i \, x_i^* & \geq & \frac{1}{2} \, \sum w_i \\ i \in S^* & \uparrow & \uparrow & \uparrow \\ \text{LP is a relaxation} & \mathbf{x^*}_i \geq \frac{1}{2} \end{array}$$

Weighted Vertex Cover

Theorem. 2-approximation algorithm for weighted vertex cover.

Theorem. [Dinur-Safra 2001] If P \neq NP, then no $\rho\text{-approximation}$ for ρ < 1.3607, even with unit weights.

Open research problem. Close the gap.

11.8 Knapsack Problem

 ${\it Polynomial\ Time\ Approximation\ Scheme}$

PTAS. (1 + $\epsilon)$ -approximation algorithm for any constant ϵ > 0.

- Load balancing. [Hochbaum-Shmoys 1987]
- Euclidean TSP. [Arora 1996]

 ${\it Consequence.} \ {\it PTAS} \ produces \ arbitrarily \ high \ quality \ solution, \ but \ trades \ off time \ for \ accuracy.$

This section. PTAS for knapsack problem via rounding and scaling.

Knapsack: PTAS

- v_{max} = largest value in original instance
- $-\varepsilon = \text{precision parameter} \\ -\theta = \text{scaling factor} = \varepsilon \, v_{\text{max}} / n$

Observation. Optimal solution to problems with $\,\overline{\!\nu}$ or $\,\hat{\!\nu}$ are equivalent.

Intuition. \overline{v} close to v so optimal solution using \overline{v} is nearly optimal; $\hat{\mathcal{V}}$ small and integral so dynamic programming algorithm is fast.

Running time. $O(n^3 / \epsilon)$.

. Dynamic program II running time is $O(n^2\,\hat{v}_{\max})$, where

$$\hat{v}_{\text{max}} = \left\lceil \frac{v_{\text{max}}}{\theta} \right\rceil = \left\lceil \frac{n}{\varepsilon} \right\rceil$$

Knapsack: PTAS

 $\overline{v}_i = \left[\frac{v_i}{\theta}\right] \theta$ Knapsack PTAS. Round up all values:

Theorem. If S is solution found by our algorithm and S* is an optimal solution of the original problem, then $(1+\varepsilon)\sum_{i\in S}v_i\geq\sum_{i\in S^*}v_i$

Pf. Let S^* be an optimal solution satisfying weight constraint.

$$\begin{split} \sum_{i \in S^*} v_i &\leq \sum_{i \in S} \overline{v_i} & \text{always round up} \\ &\leq \sum_{i \in S} \overline{v_i} & \text{solve rounded instance optimally} \\ &\leq \sum_{i \in S} (v_i + \theta) & \text{never round up by more than } \theta \\ &\leq \sum_{i \in S} v_i + n\theta & |S| \leq n \\ &\leq (1 + \epsilon) \sum_{i \in S} v_i & n\theta = \epsilon v_{\text{max.}} v_{\text{max.}} \leq \Sigma_{\text{ics}} v_i \end{split}$$