SiO ₂	> 58 - 65,
B_2O_3	> 6 - 11.5,
Al_2O_3	> 14 - 20,
MgO	> 3 - 6,
CaO	> 4.5 - 10,
SrO	0-<4,
BaO	> 2.5 - 6,
with SrO + BaO	> 3, and
ZnO	0 - 0.5,

- 3. (Previously Amended) An aluminoborosilicate glass according to Claim 1, containing at most 5% by weight MgO based on oxide.
- 4. (Previously Amended) An aluminoborosilicate glass according to Claim 1, containing at least 60% by weight SiO₂ based on oxide.
- 5. (Previously Amended) An aluminoborosilicate glass according to Claim 1, containing more than 11% by weight MgO, CaO, SrO and BaO together based on oxide.
- 6. (Currently Amended) An alkali-free aluminoborosilicate glass consisting essentially of by weight % based on oxide,

SiO ₂	> 58 - 65,
B_2O_3	> 6 - 11.5,
Al_2O_3	> 14 - 20,
MgO	> 3 - 6,
CaO	> 4.5 - 10,
SrO	0 - 1.5,
BaO	> 1.5 - 6,
with SrO + BaO	> 3,
ZnO	0 - < 2,
ZrO_2	0-2,
TiO ₂	0-2,
With $ZrO_2 + TiO_2$	0-2,
As_2O_3	0 - 1.5,
Sb_2O_3	0 - 1.5,
SnO_2	0 - 1.5,
CeO ₂	0 - 1.5,

Cl⁻
$$0-1.5$$
,
F⁻ $0-1.5$,
 SO_4^{2-} $0-1.5$, and
Wherein $As_2O_3 + Sb_2O_3 + SnO_2 + CeO_2 + Cl^-$
 $+ F^- + SO_4^{2-}$ $0-1.5$,

- 7. (Original) An aluminoborosilicate glass according to Claim 1, which is free or essentially free of arsenic oxide and antimony oxide.
- 8. (Original) An aluminoborosilicate glass according to claim 1, having a ratio of MgO/CaO by weight of less than 1.
- 9. (Original) An aluminoborosilicate glass according to claim 1, having a ratio of MgO/CaO by weight of less than 0.7.
- 10. (Previously Amended) An aluminoborosilicate glass according to claim 1, containing at least 5% by weight CaO based on oxide.
- 11. (Previously Amended) An aluminoborosilicate glass according to claim 1, containing > 7 to $\le 11\%$ by weight B_2O_3 based on oxide.
- 12. (Previously Amended) An aluminoborosilicate glass according to claim 1, containing > 2.5% to ≤5% by weight BaO based on oxide.
- 13. (Previously Amended) An aluminoborosilicate glass according to claim 1, containing more than 3% by weight SrO and BaO together based on oxide.
- 14. (Currently Amended) An aluminoborosilicate glass according to claim 1, containing more than 0 to up to 0.5% by weight ZnO based on oxide.

- 15. (Currently Amended) An aluminoborosilicate glass according to claim 1, containing more than 0 to up to 1.5% by weight ZnO based on oxide.
- 16. (Currently Amended) An alkali-free aluminoborosilicate glass consisting essentially of by weight % based on oxide,

SiO ₂	> 58 - 65,
B_2O_3	> 6 - 11.5,
Al_2O_3	> 14 - 20,
MgO	> 3 - 6,
CaO	> 4.5 - 10,
SrO	0 - 1.5,
BaO	> 1.5 - 6,
with SrO + BaO	> 3,
ZnO	0 - < 2,
ZrO_2	≤ 0.5 , and
TiO ₂	≤ 0.5,

- 17. (Previously Amended) An aluminoborosilicate glass according to Claim 2, containing at most 5% by weight MgO based on oxide.
- 18. (Previously Amended) An aluminoborosilicate glass according to Claim 2, containing at least 60% by weight SiO₂ based on oxide.
- 19. (Previously Amended) An aluminoborosilicate glass according to Claim 2, containing more than 11% by weight based on oxide MgO, CaO, SrO and BaO is greater together.
- 20. (Currently Amended) An alkali-free aluminoborosilicate glass consisting essentially of by weight % based on oxide,

SiO_2	> 58 - 65,
B_2O_3	> 6 - 11.5,
Al_2O_3	> 14 - 20,
MgO	> 3-6,
CaO	> 4.5 - 10,
SrO	0 – < 4,
BaO	> 2.5 - 6,

with SrO + BaO	> 3,
ZnO	0 - 0.5,
ZrO_2	0-2,
TiO ₂	0-2,
with $ZrO_2 + TiO_2$	0-2,
As_2O_3	0 - 1.5,
Sb_2O_3	0 - 1.5,
SnO_2	0 - 1.5,
CeO_2	0 - 1.5,
Cl	0 - 1.5,
F ⁻	0 - 1.5,
SO ₄ ² -	0 - 1.5, and
Wherein $As_2O_3 + Sb_2O_3 + SnO_2 + CeO_2 + CeO_3 + CeO_4 + CeO_5 + CeO_5 + CeO_6 + $	21-
$+ F + SO_4^2$	0 - 1.5,

- 21. (Original) An aluminoborosilicate glass according to Claim 2, which is free or essentially free of arsenic oxide and antimony oxide.
- 22. (Original) An aluminoborosilicate glass according to claim 2, having a ratio of MgO/CaO by weight of less than 1.
- 23. (Original) An aluminoborosilicate glass according to claim 2, having a ratio of MgO/CaO by weight of less than 0.7.
- 24. (Previously Amended) An aluminoborosilicate glass according to claim 2, containing at least 5% by weight CaO based on oxide.
- 25. (Previously Amended) An aluminoborosilicate glass according to claim 2, containing > 7 to $\leq 11\%$ by weight B₂O₃ based on oxide.
- 26. (Previously Amended) An aluminoborosilicate glass according to claim 2, containing
- > 2.5% to ≤5% by weight BaO based on oxide.

- 27. (Previously Amended) An aluminoborosilicate glass according to claim 2, containing more than 3% by weight SrO and BaO together based on oxide.
- 28. (Currently Amended) An aluminoborosilicate glass according to claim 2, containing more than 0 to up to 0.5% by weight ZnO based on oxide.
- 29. (Currently Amended) An aluminoborosilicate glass according to claim $\underline{1}$ 2, containing more than 0 to up to $\underline{1.5\%} \leq 2.0\%$ by weight ZnO based on oxide.
- 30. (Currently Amended) An alkali-free aluminoborosilicate glass consisting essentially of by weight % based on oxide,

SiO_2	> 58 - 65,
B_2O_3	> 6 - 11.5,
Al_2O_3	> 14 - 20,
MgO	> 3-6,
CaO	> 4.5 - 10,
SrO	0 - < 4,
BaO	> 2.5 - 6,
with SrO + BaO	> 3,
ZnO	0 - 0.5,
ZrO_2	≤0.5, and
TiO_2	≤ 0.5,

- 31. (Previously Amended) An aluminosilicate glass according to claim 2, containing up to 3% by weight SrO based on oxide.
- 32. (Original) A substrate glass in thin-film photovoltaics or a display comprising an alkali-free aluminoborosilicate glass according to claim 1.
- 33. (Original) A TFT display or a thin-film solar cell comprising an alkali-free aluminoborosilicate glass according to claim 1.

- 34. (Original) A substrate glass in thin-film photovoltaics or a display comprising an alkali-free aluminoborosilicate glass according to claim 2.
- 35. (Original) A TFT display or a thin-film solar cell comprising an alkali-free ^ aluminoborosilicate glass according to claim 2.
- 36. (Currently Amended) An alkali-free aluminoborosilicate glass containing less than 1500 ppm alkali metal oxides and consisting essentially of by weight % based on oxide,

SiO ₂	> 58 $-$ 65,
B_2O_3	> 6 - 11.5,
Al_2O_3	> 14 - 20,
MgO	> 3 - 6,
CaO	> 4.5 - 10,
SrO	0 - 1.5,
BaO	> 1.5 - 6,
with SrO + BaO	> 3, and
ZnO	0 - < 2,

37. (Currently Amended) An alkali-free aluminoborosilicate glass containing less than 1500 ppm alkali metal oxides and consisting essentially of by weight % based on oxide,

SiO_2	> 58 - 65,
B_2O_3	>6-11.5,
Al_2O_3	> 14 - 20,
MgO	> 3 - 6,
CaO	> 4.5 - 10,
SrO	0 - < 4,
BaO	> 2.5 - 6,
with SrO + BaO	> 3, and
ZnO	0 - 0.5,

and essentially no alkali oxides.

Please cancel claims 38-45 without prejudice of disclaimer.

46. (Currently Amended) An aluminoborosilicate glass according to claim 40 $\underline{6}$ containing Sb₂O₃.

- 47. (Currently Amended) An aluminoborosilicate glass according to claim $42\ \underline{20}$ containing Sb₂O₃.
- 48. (Previously Added) An aluminoborosilicate glass according to claim 1 that has a density of less than 2.6 g/cm³.

Please enter the following new claims:

49. (New) An alkali-free aluminoborosilicate glass consisting of by weight % based on oxide,

	SiO ₂	> 58 - 65,
	B_2O_3	> 6 - 11.5,
	Al_2O_3	> 14 - 20,
	MgO	> 3 - 6,
	CaO	> 4.5 - 10,
	SrO	0 - 1.5,
	BaO	> 1.5 - 6,
	with SrO + BaO	> 3,
\bigcap	ZnO	0 - < 2,
// ~ -	ZrO_2	0-2,
TY	TiO ₂	0 - 2,
0	With $ZrO_2 + TiO_2$	0 - 2,
	As_2O_3	0 - 1.5,
	Sb_2O_3	0 - 1.5,
\	CeO_2	0 - 1.5,
	Cl ⁻	0 - 1.5,
	F	0 - 1.5,
	SO ₄ ² -	0 - 1.5, and
	Wherein $As_2O_3 + Sb_2O_3 + CeO_2 + Cl^2 + F^2 +$,
	SO ₄ ²⁻	0 - 1.5,
	·	•

and essentially no alkali oxides.

50. (New) An alkali-free aluminoborosilicate glass consisting of by weight % based on oxide,

$$SiO_2$$
 > 58 – 65,

B_2O_3	> 6 – 11.5,
Al_2O_3	> 14 - 20,
MgO	> 3 - 6,
CaO	> 4.5 - 10,
SrO	0 - 1.5,
BaO	> 1.5 - 6,
with SrO + BaO	> 3,
ZnO	0 - < 2,
ZrO_2	0 - 2,
TiO_2	0 - 2,
With $ZrO_2 + TiO_2$	0 - 2,
As_2O_3	0 - 1.5,
Sb_2O_3	0 - 1.5,
SnO_2	0 - 1.5,
CeO ₂	0 - 1.5,
F	0 - 1.5,
SO_4^{2-}	•
·	0 - 1.5, and
Wherein $As_2O_3 + Sb_2O_3 + SnO_2 + CeO_2 + F^2 + CeO_2 + CeO_$	0 15
SO_4^{2-}	0 - 1.5,

51. (New) An alkali-free aluminoborosilicate glass consisting of by weight % based on oxide,

SiO ₂	> 58 - 65,
B_2O_3	> 6 - 11.5
Al_2O_3	> 14 - 20,
MgO	> 3 - 6,
CaO	> 4.5 - 10
SrO	0 - < 4,
BaO	> 2.5 - 6,
with SrO + BaO	> 3,
ZnO	0 - 0.5,
ZrO_2	0 - 2,
TiO ₂	0-2,
with $ZrO_2 + TiO_2$	0 - 2,
As_2O_3	0 - 1.5,
Sb_2O_3	0 - 1.5,
CaO	0 - 1.5,
CeO ₂	0 - 1.5, $0 - 1.5$,
	0 - 1.5, $0 - 1.5$,
F [*]	0 - 1.5,

$$SO_4^{2-}$$
 0 - 1.5, and Wherein $As_2O_3 + Sb_2O_3 + CeO_2 + Cl^- + F^- + SO_4^{2-}$ 0 - 1.5,

52. (New) An alkali-free aluminoborosilicate glass consisting of by weight % based on oxide,

SiO ₂	> 58 - 65,
B_2O_3	> 6 - 11.5,
Al_2O_3	> 14 - 20,
MgO	> 3 - 6,
CaO	> 4.5 $-$ 10,
SrO	0 - < 4,
BaO	> 2.5 - 6,
with SrO + BaO	> 3,
ZnO	0 - 0.5,
ZrO_2	0-2,
TiO ₂	0-2,
with $ZrO_2 + TiO_2$	0-2,
As_2O_3	0 - 1.5,
Sb_2O_3	0 - 1.5,
SnO_2	0 - 1.5,
CeO_2	0 - 1.5,
F ⁻	0 - 1.5,
SO ₄ ²⁻	0 - 1.5, and
504	, with
Wherein $As_2O_3 + Sb_2O_3 + SnO_2 + CeO_2 + F^- +$	
SO_4^{2-}	0 - 1.5

and essentially no alkali oxides.

53. (New) An alkali-free aluminoborosilicate glass consisting of by weight % based on oxide,

SiO ₂	> 58 - 65,
B_2O_3	> 6 - 11.5,
Al_2O_3	> 14 - 20,
MgO	> 3 - 6,
CaO	> 4.5 - 10,
SrO	0 - 1.5,
BaO	> 1.5 - 6,

(New) An alkali-free aluminoborosilicate glass consisting of by weight % 54. based on oxide,

55. (New) An alkali-free aluminoborosilicate glass consisting of by weight % based on oxide,

and essentially no alkali oxides, and wherein the glass does not contain at least one of ZrO₂ or TiO₂.

56. (New) An alkali-free aluminoborosilicate glass consisting of by weight % based on oxide,

SiO_2	> 58 - 65,
B_2O_3	> 6 - 11.5,
Al_2O_3	> 14 - 20,
MgO	> 3 - 6,
CaO	>4.5-10,
SrO	0 - < 4,
BaO	> 2.5 - 6,
with SrO + BaO	> 3,
ZnO	0 - 0.5,
ZrO_2	0-2,
TiO ₂	0 - 2,
with $ZrO_2 + TiO_2$	0-2,

As_2O_3	0 - 1.5,
Sb_2O_3	0 - 1.5,
SnO_2	0 - 1.5,
CeO_2	0 - 1.5,
Cl ⁻	0 - 1.5,
F ⁻	0 - 1.5,
SO_4^{2-}	0 - 1.5, and
Wherein $As_2O_3 + Sb_2O_3 + SnO_2 + CeO_2 + Cl$	
$+ F^{-} + SO_4^{2-}$	0 - 1.5.

and essentially no alkali oxides, and wherein the glass does not contain at least one of ZrO_2 or TiO_2 .