Last update: February 25, 2024

Convex set (2)

Given n values $a_j \in \mathbb{R}_+$, with $j \in \{1,2,\ldots,n\}$, and a point $(c_1,c_2,\ldots,c_n) \in \mathbb{R}^n$, consider the set:

$$F = \left\{ (x_1, x_2, \dots, x_n) \in \mathbb{R}^n : \sum_{j=1}^n \frac{(x_j - c_j)^2}{a_j^2} \le 1 \right\}$$

It corresponds to the set of points inside an ellipsoid centered in $(c_1, c_2, ..., c_n)$ with lengths of the semi-axes given by the values a_j , with $j \in \{1, 2, ..., n\}$.

Questions

- 1. Provide the condition for the values $a_j \in \mathbb{R}_+$, with $j \in \{1, 2, ..., n\}$, under which F is the set of points within a ball of radius $r \in \mathbb{R}_+$ centered in $(c_1, c_2, ..., c_n) \in \mathbb{R}^n$.
- 2. Prove that *F* is a convex set.
- 3. Consider n=2, $a_1=3$, $a_2=2$ and the center $(c_1,c_2)=(4,3)$, draw the set F in \mathbb{R}^2 .

Solution

A set $F \subseteq \mathbb{R}^n$ (subset of the *n*-dimensional space) is **convex** if

$$\forall p, w \in F \text{ and } \forall \lambda \in [0,1] \text{ we have } \underbrace{\lambda p + (1-\lambda) w}_{\text{convex combination}} \in F$$

The Cauchy-Schwarz inequality:

$$|\boldsymbol{p} \cdot \boldsymbol{w}| \le ||\boldsymbol{p}|| \, ||\boldsymbol{w}||, \quad \forall \, \boldsymbol{p}, \, \boldsymbol{w} \in \mathbb{R}^n$$

1. Given a center $(c_1, c_2, ..., c_n) \in \mathbb{R}^n$ and $r \in \mathbb{R}_+$, the set of points inside a ball of radius r centered in $(c_1, c_2, ..., c_n)$ is given by:

$$\left\{ (x_1, x_2, \dots, x_n) \in \mathbb{R}^n : \sum_{j=1}^n (x_j - c_j)^2 \le r^2 \right\} = \left\{ (x_1, x_2, \dots, x_n) \in \mathbb{R}^n : \sum_{j=1}^n \frac{(x_j - c_j)^2}{r^2} \le 1 \right\}$$

Therefore, *F* is a ball of radius *r* centered in $(c_1, c_2, ..., c_n)$ iff $a_j = r$ for all $j \in \{1, 2, ..., n\}$.

2. For any two points $\mathbf{p} = (p_1, p_2, ..., p_n)$ and $\mathbf{w} = (w_1, w_2, ..., w_n)$ in the set F, we have:

$$\sum_{j=1}^{n} \frac{(p_j - c_j)^2}{a_j^2} \le 1 \quad \text{and} \quad \sum_{j=1}^{n} \frac{(w_j - c_j)^2}{a_j^2} \le 1$$

Moreover, for any $\lambda \in [0, 1]$, we have:

$$\sum_{j=1}^{n} \frac{\left(\lambda p_{j} + (1-\lambda) w_{j} - c_{j}\right)^{2}}{a_{j}^{2}} = \sum_{j=1}^{n} \frac{\left(\lambda (p_{j} - c_{j}) + (1-\lambda) (w_{j} - c_{j})\right)^{2}}{a_{j}^{2}}$$

$$= \sum_{j=1}^{n} \frac{\lambda^{2} (p_{j} - c_{j})^{2} + (1-\lambda)^{2} (w_{j} - c_{j})^{2} + 2\lambda (1-\lambda) (p_{j} - c_{j}) (w_{j} - c_{j})}{a_{j}^{2}}$$

$$= \lambda^{2} \sum_{j=1}^{n} \frac{(p_{j} - c_{j})^{2}}{a_{j}^{2}} + (1-\lambda)^{2} \sum_{j=1}^{n} \frac{(w_{j} - c_{j})^{2}}{a_{j}^{2}} + 2\lambda (1-\lambda) \sum_{j=1}^{n} \frac{(p_{j} - c_{j}) (w_{j} - c_{j})}{a_{j}^{2}}$$

$$\leq \lambda^{2} + (1-\lambda)^{2} + 2\lambda (1-\lambda) \sum_{j=1}^{n} \frac{(p_{j} - c_{j}) (w_{j} - c_{j})}{a_{j}^{2}}$$

$$\leq \lambda^2 + (1 - \lambda)^2 + 2\lambda(1 - \lambda)\sum_{j=1}^n \frac{(p_j - c_j)(w_j - c_j)}{a_j^2}$$

By the Cauchy-Schwarz inequality we have:

$$\left| \sum_{j=1}^{n} \frac{p_j - c_j}{a_j} \frac{w_j - c_j}{a_j} \right| \le \sqrt{\sum_{j=1}^{n} \frac{(p_j - c_j)^2}{a_j^2}} \sqrt{\sum_{j=1}^{n} \frac{(w_j - c_j)^2}{a_j^2}} \le 1$$

Accordingly, we can conclude:

$$\sum_{j=1}^{n} \frac{\left(\lambda \, p_{j} + (1-\lambda) \, w_{j} - c_{j}\right)^{2}}{a_{j}^{2}} \, \leq \, \lambda^{2} + (1-\lambda)^{2} + 2 \, \lambda \, (1-\lambda) = 1$$

Then the point $\lambda p + (1 - \lambda) w$ belong to the set and, accordingly, the set *F* is convex.

3. For the specific values, we have the following convex set:

$$F = \left\{ (x_1, x_2) \in \mathbb{R}^2 : \frac{(x_1 - 4)^2}{3^2} + \frac{(x_2 - 3)^2}{2^2} \le 1 \right\}$$

The set F corresponds to the set of points inside an ellipse surrounding two focal points with orthogonal semi-axes of length $a_1 = 3$ and $a_2 = 2$ and centered in $\bar{x} = (4,3)$. They are the points shown by the red-shaded portion of the space in the following figure:

