- 1. Find an equation for the fine tangent to the curve at the point defined by the given value of t.
- (a). $\chi = 5e^2t 1$ y = tant $t = -\frac{\pi}{4}$
- (b). $\chi = -\sqrt{t+1}$ $y = \sqrt{3t}$ t = 3
- 2. Find dy
- (1). $y = x + 2x^2 \frac{1}{3}x^3 + x^4$
- (b). $y = x \cdot \cot x$
- 3. The curve L: y = y(x) is defined by the equation $y^3 + y^2 = 2x^2$. Find the equation for the line tangent to L at (1,1).
- 4. Let fix be a differentiable function on IR, $g(x) = f(x^2)$, $h(x) = f(x)^2$, and f(y) = f(x) = f(x) when x = 1, prove that: f(y) = 0 or f(y) = 1.

5. Let $f(x) = \frac{x^2-2}{x^2-x-2}$, find $f^{(n)}(x)$.

6. Let fix) be a twice-differentiable function on [-2,2], and |f(x)| < 1, $f(0)^2 + f'(0)^2 = 4$.

Prove: There exist $\lambda \in [-2, 2]$, such that $f(\lambda) + f'(\lambda) = 0$. Hint: Consider $F(x) = f(x) \cdot \sin x + f(x) \cdot \cos x$, and use the first derivative theorem for local extreme values.