Unit 3 → Circular Motion

Horizontal Circular Paths

- Uniform Circular Motion
 - o Constant, consistent, evenly applied speed
 - Uniform
 - Consistent, constantly, evenly applied
- Circular Motion
 - o Objects are moving in a curved path
 - How can we find the speed of an object as it moves through a circle?
 - o Reference Table

- T = period = time for one circle(s)
- \blacksquare As r increases, so does v
- Tangential Veloctity
 - o The direction of velocity is constantly changing
 - The direction is *tangent* to the circle
 - Speed is constant
 - Velocity is *not* constant
 - Change in direction therefore there is acceleration
- Centripetal Acceleration
 - o Reference Table

$$a_c = \frac{v^2}{r}$$

- a_c = centripetal acceleration (m/s^2)
- v = speed(m/s)
- r = radius(m)

$$F_{net} = F_{net\ circular} = F_c = ma_c = \frac{mv^2}{r}$$

- o The force that cauces an object to move toward the inside of a circle
 - Centripetal force is circular net force
 - Centripetal force causes centripetal accleration
 - Net force produces centripetal acceleration of circular motion
 - F_{net} produces a_c of circular motion

- Horizontal Circular Motion
 - o Flat tabletop
 - o Car on a curve
 - o Record player
 - o Force of gravity DOES NOT directly play a role
 - o Particular Cases
 - Make towards the center of the circle positive (+)
 - Flat curve

$$F_{c} = F_{F}$$

$$F_{net_{x}} = F_{net_{x}}$$

$$F_{c_{x}} = F_{c_{x}}$$

$$ma_{c} = F_{F}$$

$$ma_{c} = \mu F_{N}$$

$$F_{net_{y}} = F_{net_{y}}$$

$$ma_{y} = \Sigma F_{y}$$

$$ON = F_{N} + F_{g}$$

$$F_{g} = F_{N}$$

$$ma_{c} = \mu F_{g}$$

$$a_{c} = \mu g$$

$$\frac{v^{2}}{r} = \mu g$$

- Conical pendulum
 - Object on a string

 F_c is a component of the tension force (F_T)

$$F_{net_x} = F_{net_x}$$
 $F_{c_x} = F_{c_x}$
 $ma_c = \Sigma F_x$
 $ma_c = F_{T_x}$
 $F_{T_x} = F_{T_y} tan\theta$
 $ma_c = F_{T_y} tan\theta$
 $ma_c = F_g tan\theta$
 $ma_c = mgtan\theta$
 $a_c = gtan\theta$
 $\frac{v^2}{r} = tan\theta$

- Banked curve
 - F_c is a component of F_N
 - Proper banking angle indicates no friction
 - SAME SITUATION AS CONICAL PENDULUMS

$$F_{net_x} = F_{net_x}$$

$$F_{c_x} = F_{c_x}$$

$$ma_c = F_{N_x}$$

$$\begin{split} F_{net_y} &= F_{net_y} \\ ma_y &= \Sigma F_y \\ 0N &= F_{N_y} + F_g \\ F_g &= F_{N_y} \\ F_{N_x} &= F_{N_y} tan\theta \\ & \frac{ma_c = F_g tan\theta}{r} \\ & \frac{v^2}{r} = gtan\theta \end{split}$$

Vertical Circular Paths

- Vertical Circular Motion
 - o Examples
 - Rollercoaster loop
 - Driving over a bump
 - Walking
 - Force of gravity **DOES** play a *direct* role
- Particular Cases
 - Towards the cener of the circle is positive (+)
 - o Bottom of a curve

$$F_{net_y} = F_{net_y}$$

$$F_{c_y} = F_{c_y}$$

$$ma_c = \Sigma F_y$$

$$ma_c = F_N + -F_g$$

Top of a curve

$$F_{net_y} = F_{net_y}$$

 $F_{c_y} = F_{c_y}$
 $ma_c = \Sigma F_y$
 $ma_c = F_g + -F_N$

Top of a curve (upside-down)

$$F_{net_y} = F_{net_y}$$

 $F_{c_y} = F_{c_y}$
 $ma_c = \Sigma F_y$
 $ma_c = F_N + F_q$

- Critical Speed
 - Slowest speed at which an object can complete a circle
 - o At the top of a curve

$$F_N = ON$$

$$F_N = F_a$$

$$\frac{mv^{2}}{r} = F_{N} + F_{g}$$

$$\frac{mv^{2}}{r} = F_{g}$$

$$\frac{mv^{2}}{r} = mg$$

$$\frac{v^{2}}{r} = g$$

Force of Gravity

- Long Rangeforce
 - No need for contact
 - Extends to infinity
 - o Always attractive
- $F_q = mg$
 - \circ Force of attraction between Earth and another object on Earth

 - Weight
- $\bullet \quad F_g = G \frac{m_1 m_2}{r^2}$
 - o Force of attraction between 2 objects
 - \blacksquare m_1 and m_2
 - \blacksquare G is the Universal Gravitation Constant

•
$$G = 6.67 \times 10^{-11} N \cdot \frac{m^2}{ka^2}$$

• Acceleration due to gravity

$$\circ \quad |F_g| = F_g$$

$$g = \frac{Gm_P}{r^2}$$

- ullet m_P represents the mass of a planet
- ullet m_o represent the mass of an object
- The Skeleton
 - Equation

$$F_g = \frac{Gm_1m_2}{r^2}$$

o Skeleton

$$\blacksquare \frac{(1)(\)(\)}{(\)^2}F_g$$

Orbits

- Orbits
 - o Vertical circular motion
 - o Objects are in free-fall
 - lacksquare $F_c = F_g$
 - $a_c = g$
 - \circ Period (T) is the time for one full revolution
- Period of an orbit

$$a_{C} = g$$

$$\frac{v^{2}}{r} = G \frac{m_{P}}{r^{2}}$$

$$\frac{\left(\frac{2\pi r}{T}\right)^{2}}{r} = G \frac{m_{P}}{r^{2}}$$

$$T = \sqrt{\frac{4\pi^{2}r^{3}}{Gm_{P}}}$$

Circular Motion Quiz

Multiple Choice

- 1) C
- 2) D
- 3) C
- 4) C
- 5) A
- 6) A
- 7) B
- 8) D
- 9) D
- 10) A

Short Response

- 11) 9000N
- 12) *0.21N*
- 13) *51.34*°
- 14) *788N*
- 15) *1,741.5N*

Circular Motion Test

Multiple Choice

- 1) C
- 2) D
- 3) D
- 4) A
- 5) E
- 6) E
- 7) D
- 8) D
- 9) E
- 10) B
- 11) A
- 12) B
- 13) B
- 14) D
- 15) C
- 16) B
- 17) E
- 18) A
- 19) B

Short Response

- 20) 2.35 · 10⁻³N
- 21) $6.418 \cdot 10^{-8} \, \text{m/s}^2$
- 22) 2,294.41 km
- 23) $1.44 \cdot 10^7 m$
- 24) 5.77 m/s
- 25) $1.9 \cdot 10^{21} kg$