Important Algebraic Formulas

$$(a+b)^2 = a^2 + b^2 + 2ab$$

$$(a-b)^2 = a^2 + b^2 - 2ab$$

$$a^2 - b^2 = (a+b)(a-b)$$

$$a^2 + b^2 = (a+b)^2 - 2ab \quad or \quad a^2 + b^2 = (a-b)^2 + 2ab$$

$$a^3 + b^3 = (a+b)(a^2 - ab + b^2) = (a+b)^3 - 3ab(a+b)$$

$$a^3 - b^3 = (a-b)(a^2 + ab + b^2) = (a-b)^3 + 3ab(a-b)$$

$$2(a^2 + b^2) = (a+b)^2 + (a-b)^2$$

$$(a+b)^2 - (a-b)^2 = 4ab$$

$$a^4 + b^4 = (a+b)(a-b)[(a+b)^2 - 2ab]$$

$$(a-b)^2 = (a+b)^2 - 4ab$$

$$(a+b)^2 = (a-b)^2 + 4ab$$

$$a^4 + b^4 = [(a+b)^2 - 2ab]^2 - 2(ab)^2$$

$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$$

$$(a+b-c)^2 = a^2 + b^2 + c^2 - 2ab + 2bc - 2ca$$

$$(a-b-c)^2 = a^2 + b^2 + c^2 - 2ab + 2bc - 2ca$$

$$a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2 + b^2 + c^2 - ab - bc - ca)$$

$$a^4 + a^2b^2 + b^4 = (a^2 + ab + b^2)(a^2 - ab + b^2)$$

$$a^4 + a^2b^2 + b^4 = (a^2 + ab + b^2)(a^2 - ab + b^2)$$

$$a^4 + a^2b^2 + b^4 = (a^2 + ab + b^2)(a^2 - ab + b^2)$$

$$a^4 + a^2b^2 + b^4 = (a^2 + ab + b^2)(a^2 - ab + b^2)$$

$$a^4 + a^2b^2 + b^4 = (a^2 + ab + b^2)(a^2 - ab + b^2)$$

$$a^4 + a^2b^2 + b^4 = (a^2 + ab + b^2)(a^2 - ab + b^2)$$

$$a^4 + a^2b^2 + b^4 = (a^2 + ab + b^2)(a^2 - ab + b^2)$$

$$a^4 + a^2b^2 + b^4 = (a^2 + ab + b^2)(a^2 - ab + b^2)$$

$$a^4 + a^2b^2 + b^4 = (a^2 + ab + b^2)(a^2 - ab + b^2)$$

$$a^4 + a^2b^2 + b^4 = (a^2 + ab + b^2)(a^2 - ab + b^2)$$

$$a^4 + a^2b^2 + b^4 = (a^2 + ab + b^2)(a^2 - ab + b^2)$$

$$a^4 + a^2b^2 + b^4 = (a^2 + ab + b^2)(a^2 - ab + b^2)$$

$$a^4 + a^2b^2 + b^4 = (a^2 + ab + b^2)(a^2 - ab + b^2)$$

$$a^4 + a^2b^2 + b^4 = (a^2 + ab + b^2)(a^2 - ab + b^2)$$

$$a^4 + a^2b^2 + b^4 = (a^2 + ab + b^2)(a^2 - ab + b^2)$$

$$a^4 + a^2b^2 + b^4 = (a^2 + ab + b^2)(a^2 - ab + b^2)$$