Kapitel 2: Temperaturprofil Der Erdatmosphäre

$$\lambda_{max.}(\mu m) = \frac{2897,2(\mu m \cdot K)}{T(K)}$$

Wien'sches Verschiebungsgesetz

Sonne: 5778K $\rightarrow \lambda_{max} = 0.5 \mu m$

Erde: $288K \rightarrow \lambda_{max} = 10 \mu m$

Emissions-Spektrum der Sonne/Erde

$$\lambda_{max.}(\mu m) = \frac{2897,2(\mu m \cdot K)}{T(K)}$$

Wien'sches Verschiebungsgesetz

Sonne: 5778K $\rightarrow \lambda_{max} = 0.5 \mu m$

Erde: $288K \rightarrow \lambda_{max} = 10 \mu m$

Emissions-Spektrum der Sonne/Erde

Der Einfluss der Atmosphäre

Wellenlänge	Anteil im Sonnenlicht
>315 nm	98 %
200-315 nm	2%
100-200 nm	10-4
< 200 nm	$5 \cdot 10^{-6}$

UV-C: 100-280 nm (EUV: 10-120 nm, VUV: 100-200 nm, FUV: 200-280 nm)

UV-B: 280-315 nm UV-A: 315-380 nm

Mesosphäre (ca. 50 – 80km)

- Stockwerke in der Erdatmosphäre
- Lapse Rate wieder negativ
- Temperatur sinkt auf ca. -90°C in der Mesopause.

Stratosphäre (ca. 15 - 50km)

- Lapse Rate zunächst fast bei Null (Isothermie)
- Anschließend positiv
- Temperatur bei ca. 0°C in der Stratopause

Troposphäre (bis ca. 15km)

- Lapse Rate negativ
- Temperatur nimmt ab
- Ca. -50°C in der Tropopause

$$-\frac{dT}{dz} = \Gamma_d$$

Lapse Rate = Temperaturgradient

Astronauten steigen bei 1100°C aus der ISS aus (ca. 400 km Höhe)?

Wo ist das Ende der Atmosphäre? Wo beginnt das Weltall?

Fédération Aéronautique Internationale: Homopause - 100 km (Kármán-Linie) Homosphäre enthält über 99.9 % der Teilchen

NASA: Mesopause (etwa 80 km)

Chemie/Physik: Atmosphäre reicht bis ca. 500 km

