Seminars 12 and 13 - 2025

Theoretical aspects:

Definition:

A sequence $(X_n)_n$ of random variables with $E|X_n| < \infty \ \forall \ n \in \mathbb{N}$, obeys the weak law of large numbers (WLLN), if

$$\frac{1}{n}\sum_{k=1}^{n} \left(X_k - E(X_k) \right) \stackrel{P}{\to} 0.$$

Definition:

A sequence $(X_n)_n$ of random variables with $E|X_n| < \infty, \forall n \ge 1$, obeys the strong law of large numbers (SLLN) if

$$\frac{1}{n} \sum_{k=1}^{n} \left(X_k - E(X_k) \right) \stackrel{a.s.}{\to} 0.$$

Theorem 1. Let $(X_n)_n$ be a sequence of pairwise independent random variables satisfying the condition

$$V(X_n) \leq L$$
, for all $n \in \mathbb{N}^*$,

where L > 0 is a constant. Then $(X_n)_n$ obeys the WLLN.

Theorem 2. If $(X_n)_n$ is a sequence of independent random variables such that $\sum_{n=1}^{\infty} \frac{1}{n^2} V(X_n) < \infty$, then

$$\frac{1}{n} \sum_{k=1}^{n} \left(X_k - E(X_k) \right) \stackrel{a.s.}{\to} 0,$$

i.e. $(X_n)_n$ obeys the SLLN.

Theorem 3. Let $(X_n)_{n\geq 1}$ be a sequence of independent identically distributed random variables such that $E(X_n)=m$ for all $n\in\mathbb{N}$. Then

$$\frac{1}{n} \sum_{k=1}^{n} X_k \stackrel{a.s.}{\to} m,$$

i.e. $(X_n)_{n\in\mathbb{N}}$ obeys the SLLN.

.....

- **1.** Consider the sequence of independent identically distributed random variables $(X_n)_{n\geq 1}$ such that $X_n \sim Unif[1,3]$ for each $n\geq 1$. Compute the a.s. limit of the sequence which is
- i) the arithmetic mean of $X_1,...,X_n$, as $n \to \infty$;
- ii) the geometric mean of $X_1, ..., X_n$, as $n \to \infty$;
- iii) the harmonic mean of $X_1, ..., X_n$, as $n \to \infty$.
- **2.** Let $(X_n)_{n\geq 1}$ be a sequence of random variables such that $P(X_n=n^2)=\frac{1}{n}$ and $P(X_n=0)=1-\frac{1}{n}$, for all $n\geq 1$. Prove that:

1

- $\mathbf{a}) X_n \stackrel{P}{\longrightarrow} 0.$
- **b**) $(X_n)_{n\geq 1}$ does not converge in mean square.

3. A bank cashier serves customers in the queue one by one. It is known that the expected service time for each customer is 3 minutes, with a standard deviation of 2 minutes. We assume that the service times for the bank customers are independent. Let T be the total time the bank cashier spends serving 100 customers. Estimate the probability P(240 < T < 320) by using values from the table below.

Hint: Let F denote the cdf of the N(0,1) distribution. In the table below there are computed the values F(x) for $x \in \{-3,-2,-1,0,1,2,3\}$ in Python with scipy.stats.norm.cdf(x,0,1)

\boldsymbol{x}	-3	-2	-1	0	1	2	3
F(x)	0.00135	0.02275	0.15866	0.5	0.84134	0.97725	0.99865

- **4.** If $(X_n)_n$ is a sequence of independent normally distributed random variables such that $X_n \sim N(0, \frac{1}{n})$, for each $n \geq 1$. Prove that $(X_n)_n$ obeys the SLLN.
- **5.** The measurement error (in millimeters) of a certain object produced in a factory is a continuous random variable X with the cumulative distribution function $F : \mathbb{R} \to [0, 1]$,

$$F(x) = \begin{cases} 0, & x < -1\\ \frac{1}{4}(2+3x-x^3), & x \in [-1,1]\\ 1, & x > 1. \end{cases}$$

Find: $P(-\frac{1}{2} < X < \frac{1}{2})$, $P(X < \frac{1}{2}|X > -\frac{1}{2})$, E(X).

- **6.** A random value X is generated according to the density function $f_X : \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{1}{2}e^{-|x|}$, for all $x \in \mathbb{R}$. Compute:
- a) the cumulative distribution function of X;
- b) the cumulative distribution function of the random value X^2 ;
- c) $P(X^2 \ge 1)$;
- d) the mean value and the variance of X.
- **7.** For each $n \in \mathbb{N}, n \ge 2$, consider

$$X_n \sim \begin{pmatrix} -1 & 1\\ \frac{1}{n} & 1 - \frac{1}{n} \end{pmatrix}$$

such that $(X_n)_{n\geq 2}$ is a sequence of pairwise independent random variables.

- (a) Does $(X_n)_{n\geq 2}$ obey the weak law of large numbers?
- (b) Compute $\lim_{n\to\infty} V\left(\frac{1}{2}(X_{n-1}+X_n)\right)$.
- 8. Consider a binary communication channel transmitting codes of n bits each. Assume that the probability of successful transmission of a single bit is $p \in (0,1)$ and that the probability of an error is 1-p. Assume also that the channel is capable of correcting up to m errors, where 0 < m < n. If we assume that the transmission of successive bits is independent, compute the probability of successful code transmission.