

2017 FAST CAMPUS SCHOOL

DATA SCIENCE SCHOOL PROJECT (1)

/

REGRESSION ANALYSIS

박재근 매니저

목차

- 1. 팀 공개
- 2. 데이터셋 소개 (Cross Validation)
- 3. 주제 설명
- 4. 주제 선정
- 5. 타임라인

팀공개A반

1조

이신형, 신신호, 강민구

3조

강창기, 김경윤, 지성민

5조

조성빈, 심호섭, 엄인성

7조

조한준, 이정언, 김동현

23

최정혁, 권순호, 박현, 신정원

4조

이세영, 이규태, 허성현

6조

조현윤, 정하연, 이상협

팀공개 B반

1조

윤병관, 백승민, 김인수

3조

최규형, 진미나, 염승식

5조

박상하, 김현규, 한상훈

7조

고정욱, 편설인, 이원재

2조

배광빈, 송세현, 공명구

4조

노범용, 유정오, 양영규, 김영법

6조

최윤철, 이기훈, 김성희, 안동순

데이터셋 소개: Cross Validation

데이터셋 소개 : Final Test

주제 설명

1. House Prices: Advanced Regression Techniques

Predict sales prices and practice feature engineering, RFs, and gradient boosting

2. New York City Taxi Trip Duration

Share code and data to improve ride time predictions

3. Sberbank Russian Housing Market

Can you predict realty price fluctuations in Russia's volatile economy?

4. Toyota Corolla Prices

Predict used Toyota Corolla car prices

House Prices: Advanced Regression Techniques

GOAL

It is your job to predict the sales price for each house.

For each Id in the test set, you must predict the value of the SalePrice variable.

METRIC

Submissions are evaluated on Root-Mean-Squared-Error (RMSE) between the logarithm of the predicted value and the logarithm of the observed sales price. (Taking logs means that errors in predicting expensive houses and cheap houses will affect the result equally.)

$$\mathrm{RMSD}(\hat{\theta}) = \sqrt{\mathrm{MSE}(\hat{\theta})} = \sqrt{\mathrm{E}((\hat{\theta} - \theta)^2)}.$$

SUBMISSION FILE FORMAT

The file should contain a header and have the following format:

```
Id, SalePrice
1461, 169000.1
1462, 187724.1233
1463, 175221
```

DATA SIZE

- train.csv: 1030rows, 81colums (@SalePrice)

- test.csv: 430rows, 80colums

New York City Taxi Trip Duration

GOAL

It is your job to predict the duration time for each id.

For each Id in the test set, you must predict the value of the trip_duration variable.

METRIC

The evaluation metric for this competition is Root Mean Squared Logarithmic Error. The RMSLE is calculated as

$$\epsilon = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\log(p_i + 1) - \log(a_i + 1))^2}$$

 ϵ is the RMSLE value (score)

n is the total number of observations in the (public/private) data set,

 p_i is your prediction of trip duration, and

 a_i is the actual trip duration for i.

log(x) is the natural logarithm of x

SUBMISSION FILE FORMAT

The file should contain a header and have the following format:

```
id,trip_duration
id00001,978
id00002,978
id00003,978
id00004,978
```

DATA SIZE

- train.csv: 701778rows, 11colums (@dropoff_datetime, trip_duration)
- test.csv: 346797rows, 9colums

GOAL

It is your job to predict the sales price for each house.

For each Id in the test set, you must predict the value of the price_doc variable.

METRIC

The evaluation metric for this competition is Root Mean Squared Logarithmic Error. The RMSLE is calculated as

$$\epsilon = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\log(p_i + 1) - \log(a_i + 1))^2}$$

 ϵ is the RMSLE value (score)

n is the total number of observations in the (public/private) data set,

 p_i is your prediction of trip duration, and

 a_i is the actual trip duration for i.

log(x) is the natural logarithm of x

SUBMISSION FILE FORMAT

The file should contain a header and have the following format:

```
id,price_doc
30474,7118500.44
30475,7118500.44
30476,7118500.44
```

DATA SIZE

- train.csv: 21570rows, 292colums (@price_doc)

- test.csv: 8901rows, 291colums

macro.csv: 2484rows, 100colums - data on Russia's macroeconomy and financial sector

(could be joined to the train and test sets on the "timestamp" column)

GOAL

It is your job to predict the sale price of a used automobile. For each Id in the test set, you must predict the value of the Price variable.

METRIC

Submissions are evaluated on Root-Mean-Squared-Error (RMSE) between the logarithm of the predicted value and the logarithm of the observed sales price. (Taking logs means that errors in predicting expensive houses and cheap houses will affect the result equally.)

$$\mathrm{RMSD}(\hat{\theta}) = \sqrt{\mathrm{MSE}(\hat{\theta})} = \sqrt{\mathrm{E}((\hat{\theta} - \theta)^2)}.$$

SUBMISSION FILE FORMAT

The file should contain a header and have the following format:

```
Id,Price
3,13950
4,14950
6,12950
7,16900
```

DATA SIZE

- train.csv: 1019rows, 39colums (@Price)
- test.csv: 417rows, 38colums

주제 선정

- House Prices
- NYC Taxi
- Sberbank House
- Toyota Corolla

한 주제당 최대 **2조** 까지 선택 가능 (main)

한 주제 이상 분석 가능 (optional)

데이터 다운로드

GITHUB

github.com/JKeun/dss-regression-datasets

~10/10 **EDA**Exploratory data analysis

~10/14
FEATURE
SELECTION

9 27

⊞	explanation-of 파일 수정 보기		구 부가기능 도움말	드라이브에서 모든	변경사항이 저장되었	습니다.				<u> </u>	davidn 댓글
	きゃって	₩ % .0 ₁ .00 123 - Ari	ial - 10 -	B Z -5- A	- B- ⊞ - B	■・上・ →・炒・	00 🖪 📶	Ψ-Σ	- 000	-	
fx	데이터 부족 (n = 90	4, 106, 9)									
	A	В	С		D	E	F	G	н	1	J
1	Variable	내외장 :1 / 편의 :2 / 안전: 3	버린 이유(근	거)	Description	Description (in Kor)	Category	Decision	Weight	상관계수	유의성 검정
2	Id	(-		Record_ID		0				, 상관계수 관 <mark>탭에 노란 음</mark>
3	Model		version = CC/1000 이므로	CC에 완전종속적	Model Description		0				
4	Price		종숙변수	у	Offer Price in EUROs		0			1	
5	Age 08 04		채택		Age in months as ir §		0	1	1	-0.884	0.000
6	Mfg_Month		연식(age)에 종	속적	Manufacturing mont &	산월	0	0	0	-0.044	
7	Mfg_Year		연식(age)에 종	속적	Manufacturing Year &	방산년	0	0	0	0.893	0.000
8	KM		채택		Accumulated Kilom 3		0	1	1	-0.576	0.000
9	Fuel_Type		데이터 부족 (n = 9		Fuel Type (Petrol, C 7		1	0	1	-	-
10	HP		weight와의 변수값 재			ㅏ력(최대 술력)	0	0	1	0.315	0.000
11	CC		상관계수 0.144로 영향		Cylinder Volume in 4 5		0	1	0.5	0.144	0.000
12	Cylinders		전 차종 4개, 차별		Number of cylinders 2		0	0	0	-	-
13	Color		1차 회귀분석에서 유		Color (Blue, Red, G 3		1	1	1	-	-
14	Doors		상관계수 0.181로 영향		Number of doors X		0	0	0	0.181	0.000
15	Gears		상관계수 0.053으로 영			단 / 4단 등의 기어 개수	0	0	0	0.053	0.088
16	Quarterly_Tax		상관계수 0.179로 영향		Quarterly road tax in 8		0	0	0	0.179	0.000
17	Weight		HP와의 변수값 재설		Weight in Kilograms ス		0	0	0	0.557	0.000
18	Guarantee_Period		상관계수 0.166으로 영	향력 낮다 판단	Guarantee period in 5	변중 기간	0	1	0.5	0.166	0.000
19	ABS	3	SUM_OPTIONS	로 통합	Anti-Lock Brake Sy X	ト퉁 브레이크	1	1	0.5	0.3	
20	Airbag_1	3	SUM_OPTION⊆	로 통합	Driver_Airbag (Yes: &		1	1	0.5	0.096	
21	Airbag_2	3	SUM_OPTIONS		Passenger Airbag (3		1	1	0.5	0.24	
22	Airco	1	SUM_OPTIONS		Airconditioning (Yer 0		1	1	0.5	0.44	
23	Automatic_airco	1	SUM_OPTION9		Automatic Aircondit X		1	1	0.5	0.6	
24	Doordoomerder	4	CHM ODTIONS	声 章 秋	Decedermenter /Vo T	L도 11 : 11 전 프 리 ㅇ ㅁ	1	0	0	0.6	

2017 FAST CAMPUS

SCHOOL PRESENTATION

~10/16
MODELING
OLS Regression

OLS Regression Results

Dep. Variable:	y_train_model.Price	R-squared:	0.863
Model:	OLS	Adj. R-squared:	0.862
Method:	Least Squares	F-statistic:	1192.
Date:	Thu, 29 Jun 2017	Prob (F-statistic):	0.00
Time:	16:55:00	Log-Likelihood:	-6560.0
No. Observations:	764	AIC:	1.313e+04
Df Residuals:	759	BIC:	1.315e+04
Df Model:	4		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-2.895e+06	8.93e+04	-32.422	0.000	-3.07e+06	-2.72e+06
Mfg_Year	1445.8335	44.928	32.181	0.000	1357.636	1534.031
KM	-0.0202	0.001	-13.519	0.000	-0.023	-0.017
Weight	13.5075	1.050	12.865	0.000	11.446	15.569
Options	141.2806	17.778	7.947	0.000	106.380	176.181

2.074	Durbin-Watson:	74.702	Omnibus:
465.999	Jarque-Bera (JB):	0.000	Prob(Omnibus):
6.45e-102	Prob(JB):	-0.096	Skew:
1.49e+08	Cond. No.	6.821	Kurtosis:

~10/21
MODEL
SELECTION

Milestone #12. 최종 회귀모델 결정

Price = 19,230 - 138.583(Age_08_04) - 0.0165(KM) + 546.796(InOut) - 396.891(Safe)

~10/25 PROJECT 발표 10/24 까지 **projectname_answer.txt** 파일 제출

10/24 까지 프로젝트 발표자료 완성 (Jupyter Notebook, PPT)

10월 25일 수요일 프로젝트 발표

END

THANK YOU; -)