

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	РЛ «Pa	РЛ «Радиоэлектроника и лазерная техника»		
КАФЕДРА _	РЛ-5	«Элементы приборных устройств»		
РАСЧЕТ	гно-пояс	нительная	ВАПИСКА	
	К КУРСОІ	ВОМУ ПРОЕКТУ	-	
	H	A TEMY:		
	Механизм с	следящего привод	a	
		, •		
Converge	<i>I</i> 1 <i>G</i> 2	20/05/2020	Mayyya A A	
	V1-62 руппа)	(Подпись, дата)	Кочнов А.А (И.О. Фамилия)	
Руководитель курсового проекта		20/05/2020	Нарыкова Н.И.	
т уководитель кур	реового проекта	(Подпись, дата)	(И.О. Фамилия)	
Консультант			Нарыкова Н.И.	

(Подпись, дата)

(И.О. Фамилия)

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

	Факультет_	ИУ	
Кафедра _		ИУ2	

ЗАДАНИЕ

на курсовую работу

по курс	уВысокоточные системы н	авигации)
Студент	Кочнов А.А.	<u>ИУ1-72</u>
	(фамилия, инициалы)	(индекс группы)
Руковод	итель Щеглова Н.Н.	
	(фамилия, инициалы)	
		%к _3_нед., 50 % к 7_нед., 75 % к 10_нед.,
	_15_нед.	
	ита работы2020	
І. Тема	а работы <u>Курсовой гироскоп</u> (с динамическим демпфером по оси наружной
рамки		
		ь динамическую систему_с динамическим
	ером и сопутствующей нелин	
	Пояснить назначение и принцип работы п	
	Записать уравнения движения с сопутству	ющей нелинейностью. ы преобразовать исходные уравнения к векторно-матрично
	для идеализированной линеиной систем форме и записать уравнения для передаточ	
	а) как объекта управления;	ты функции тироспотемы.
	б) как объекта стабилизации.	
		упруго-диссипативной связи для динамических элементо
	гиросистемы по критерию minmax $ W(j\omega) $.	
		системы с оптимальными параметрами µ и С. и необходимы и на условия заданной статической точности и необходимы
	запасов устойчивости.	я на условия заданной стати секой то шости и необходимы
		ующим координатам при действии постоянного возмущающег
	момента.	
	Построить АЧХ податливости замкнутой п Построить АЧХ динамического коэффици	
		ента подавления колеоании. емы с сопутствующей нелинейностью и преобразовать ее
		мент и приведенную линейную часть. Записать выражение дл
	передаточной функции приведенной лине	иной части.
		метода гармонической линеаризации. Построить ЛАЧ
	приведенной линейной части. Осуществить гормоническию линеоризони	ю нелинейной системы. Записать условие амплитудно-фазовог
	осуществить гармоническую линеаризаци баланса.	ю нелинеиной системы. Записать условие амплитудно-фазовог
13.	Решить уравнение амплитудно-фазового б	аланса на комплексной плоскости. Построить АФХ приведенно
		ку гармонически линеаризованного нелинейного элемента.
		уравнения, полученные в п.1. Записать переходный процесс
	Определить параметры автоколебаний. Сравнить результаты, полученные в п. 13	a n 1 <i>1</i>
		и п.т й нелинейности на устойчивость гиросистемы.
		оических работ нет листов
		ваписка на 30-40 листах формата А4)
ΨΟΙ	ришти 711, рас-теппо-поленительная	mineκα na50-40nnetax φορικατά A4)_
	удент	Руководитель проекта

Используемые обозначения и сокращения

Сокращения				
ДД	динамический демпфер			
$\Pi\Phi$	передаточная функция			
ОДЗ	область допустимых значений (функции)			
Обозначения				
x, y	оси внутренней и наружной рамок соответственно			
α, β	углы поворота вокруг осей у и х			
α_1	угол поворота ДД по оси у			
A	суммарный момент инерции системы относительно оси наружной			
	рамки у			
$A_{ m ДД}$	момент инерции маховика динамического демпфера относительно			
	оси у			
B	суммарный момент инерции системы относительно оси			
	внутренней рамки х			
Н	кинематический момент ротора гироскопа			
$\mu_{lpha},\;\mu_{eta}$	коэффициенты вязкого трения в осях наружной и внутренней			
	рамок			
$K_{\rm OC}$	коэффициент обратной связи			
M_{α}, M_{β}	внешние моменты, действующие на систему по осям у и х			
$\varphi(\dot{lpha}),~\eta$	функция и коэффициент нелинейности сухого трения в оси			
	наружной рамки			
C, μ	коэффициенты упругой и диссипативной связей			
$M_{ m Д}$	момент упруго-диссипативного взаимодействия кожуха			
, , ,	курсового гироскопа с инерционной массой динамического			
	демпфера			

1. Назначение и принцип работы прибора

Заданный курсовой прибор является гирополукомпасом, так как предназначен для отслеживания заданного азимута. Гирополукомпас (ГПК) – курсовой гироскопический прибор, построенный на основе трехстепенного астатического гироскопа, имеет системы горизонтальной и азимутальной коррекции. Кинематическая схема ГПК приведена на рисунке 1. Система горизонтальной коррекции состит из ЧЭ – датчика угла ДУ₁, расположенного по оси внутренней рамки гироскопа, и исполнительного элемента – электродвигателя ЭДВ, создающего момент относительно оси наружной рамки Oy_1 . Базовая система координат $O\xi\eta\zeta$ - географическая.

При отклонении вектора H от плоскости горизонта на угол β на выходе ДУ₁ появляется напряжение $U=K_{\text{ДУ}}\beta$ при $\beta<\beta_{\text{п}}$. ЭДВ при наличии тока создает момент $M_{\text{эдв}}=E\beta$ относительно оси наружной рамки Oy_1 , из-за чего возникает прецессия гироскопа $\dot{\beta}=\frac{M_{\text{эдв}}}{H}=\frac{E\beta}{H}=\varepsilon\beta$.

Датчик момента ДМ азимутальной коррекции управляется напряжением, поступающим с пульта, и компенсирует величину $\omega_{\zeta} \approx U \sin(\varphi)$. Момент ДМ азимутальной коррекции $M_{\text{ДM}_2} \approx H\omega_{\zeta} = HU/\sin(\varphi)$. Система азимутальной коррекции позволяет скомпенсировать постоянную составляющую ω_0 собственной скорости прецессии. Поэтому на пульте устанавливаются 2 потенциометра со шкалами φ (в градусах — широта), и ω_0 (гр/ч). Величину ω_0 определяют по показаниям ГПК в сравнении с показаниями других средств (GPS, магнитный компас) на стоянке аэродрома или в прямолинейном полете с постоянной линейной скоростью. Момент азимутальной коррекции с учетом ω_0 : $M_{\text{ДM}_2} \approx H(U \sin(\varphi) + \omega_0$.

ГПК предназначены для отслеживания азимута (заданного направления) и находят широкое применение в авиации и наземных объектах.

2. Уравнения движения ГПК с соответствующей нелинейностью

1) Уравнение движения наружной рамки:

$$A\ddot{\alpha} + M_{\text{ДД}} - H\dot{\beta} - K_{\text{OC}}\beta + \varphi(\dot{\alpha}) = M_{\alpha}$$

2) Уравнение движения внутренней рамки

$$B\ddot{\beta} + \mu_{\beta}\dot{\beta} + H\dot{\alpha} = M_{\beta}$$

3) Уравнение движения динамического демфера

$$A_{\mathrm{A}}\ddot{lpha}_{\mathrm{A}} - M_{\mathrm{ДД}} = M_{lpha_{\mathrm{A}}}$$

4) Момент динамического демфера

$$M_{\text{ДД}} = \mu(\dot{\alpha} - \dot{\alpha}_{\text{Д}}) + C(\alpha - \alpha_{\text{Д}})$$

3. Расчёт выражения для передаточных функций гиросистемы как объекта управления и как объекта стабилизации

Запишем уравнения движения без учета трения в опорах (и, соответственно, нелинейности):

$$\begin{cases}
A\ddot{\alpha} + \mu(\dot{\alpha} - \dot{\alpha}_{\pi}) + C(\alpha - \alpha_{\pi}) - H\dot{\beta} - K_{\text{OC}}\beta = M_{\alpha}, \\
B\ddot{\beta} + H\dot{\alpha} = M_{\beta}, \\
A_{\pi}\ddot{\alpha}_{\pi} - \mu(\dot{\alpha} - \dot{\alpha}_{\pi}) - C(\alpha - \alpha_{\pi}) = M_{\alpha_{\pi}}
\end{cases} (1)$$

Преобразуем систему уравнений по Лапласу:

$$\begin{cases}
A\alpha s^{2} + \mu s(\alpha - \alpha_{\Lambda}) + C(\alpha - \alpha_{\Lambda}) - H\beta s - K_{\text{OC}}\beta = M_{\alpha}, \\
B\beta s^{2} + H\alpha s = M_{\beta}, \\
A_{\Lambda}\alpha_{\Lambda}s^{2} - \mu s(\alpha - \alpha_{\Lambda}) - C(\alpha - \alpha_{\Lambda}) = M_{\alpha_{\Lambda}},
\end{cases} (2)$$

и запишем в векторно-матричной форме:

$$\begin{bmatrix} As^2 + \mu s + C & -Hs - K_{\text{OC}} & -\mu s - C \\ Hs & Bs^2 & 0 \\ -\mu s - C & 0 & A_{\text{A}}s^2 + \mu s + C \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \alpha_{\text{A}} \end{bmatrix} = \begin{bmatrix} M_{\alpha} \\ M_{\beta} \\ M_{\alpha_{\text{A}}} \end{bmatrix}.$$

Разрешим полученную систему уравнений относительно вектора $\begin{bmatrix} \alpha & \beta & \alpha_{\rm д} \end{bmatrix}^T$:

$$\begin{bmatrix} \alpha \\ \beta \\ \alpha_{\mathbf{\Pi}} \end{bmatrix} = \begin{bmatrix} W_{M_{\alpha}}^{\alpha} & W_{M_{\beta}}^{\alpha} & W_{M_{\alpha_{\mathbf{\Pi}}}}^{\alpha} \\ W_{M_{\alpha}}^{\beta} & W_{M_{\beta}}^{\beta} & W_{M_{\alpha_{\mathbf{\Pi}}}}^{\beta} \\ W_{M_{\alpha}}^{\alpha} & W_{M_{\beta}}^{\alpha} & W_{M_{\alpha_{\mathbf{\Pi}}}}^{\alpha} \end{bmatrix} \begin{bmatrix} M_{\alpha} \\ M_{\beta} \\ M_{\alpha_{\mathbf{\Pi}}} \end{bmatrix}.$$

Заметим, что искомая матрица передаточных функций - ни что иное как обратная матрица системы уравнений. Получимеё с помощью возможностей символьного вычисления Matlab. Для дальнейшей работы необходимы

лишь две передаточных функции, их и запишем:

1) системы как объекта управления

$$W_{M_{\alpha}}^{\beta} = \frac{-H(A_{\mathcal{A}}s^2 + \mu s + C)}{\Delta},$$

2) системы как объекта стабилизации

$$W_{M_{\alpha}}^{\alpha} = \frac{Bs(A_{\mathbf{A}}s^2 + \mu s + C)}{\Delta},$$

Здесь Δ - определитель матрицы системы (после сокращения одной s):

$$\Delta = AA_{\text{A}}Bs^{5} + \mu B(A + A_{\text{A}})s^{4} + (A_{\text{A}}H^{2} + BC(A + A_{\text{A}}))s^{3} + H(A_{\text{A}}K_{\text{OC}} + H\mu)s^{2} + H(CH + K_{\text{OC}}\mu)s + CHK_{\text{OC}}.$$

Получили передаточные функции системы как объекта управления и объекта стабилизации в общем виде.

4. Оптимизация параметров упруго-диссипативной связи динамических элементов гиросистемы по критерию $minmax|W(j\omega)|$

Проведём оптимизацию параметров μ и С для ДД. Для этого рассмотрим разомкнутую ПФ курсового гироскопа как объекта стабилизации (принимаем $K_{\rm OC}=0$).

Запишем полное выражение вышеназванной ПФ с указанными допущениями:

$$W^{\alpha}_{M_{\alpha}} = \frac{Bs(A_{\mathbf{M}}s^2 + \mu s + C)}{AA_{\mathbf{M}}Bs^5 + \mu B(A + A_{\mathbf{M}})s^4 + (A_{\mathbf{M}}H^2 + BC(A + A_{\mathbf{M}}))s^3 + H^2\mu s^2 + CH^2s}$$

Эта ПФ обладает замечательным свойством: при одном значении C, но разных μ , на AЧX будут существовать две инвариантные точки (все АЧX пересекаются в них). При изменении C эти точки будут перемещаться.

Целью оптимизации является минимизация максимумов АЧХ $\Pi\Phi$, а именно минимизация резонансных пиков АЧХ. Таким образом, учитывая особенности нашей $\Pi\Phi$, оптимизация сводится к следующим двум этапам:

• Поиск значения C^* , при котором инвариантные точки будут располагаться на одном уровне, тем самым обеспечивается минимальное значение амплитуды в обеих инвариантных точках;

• Поиск значения μ^* , обеспечивающего минимальное значение резонансных пиков.

Поиск значения C^*

Условие инвариантности имеет следующий вид:

$$|W(j\omega)|_{\mu=0} = |W(j\omega)|_{\mu=\infty}$$

После раскрытия модуля получаем:

$$W(j\omega)_{\mu=0} = -W(j\omega)_{\mu=\infty}$$

С помощью Matlab вычислим пределы:

$$\frac{B(A_{\Lambda}(j\omega)^{2} + C)}{AA_{\Lambda}B(j\omega)^{4} + (A_{\Lambda}H^{2} + BC(A + A_{\Lambda}))(j\omega)^{2}} = \frac{-B}{B(A + A_{\Lambda})(j\omega)^{2} + H^{2}}$$

$$\frac{B(A_{\Lambda}\omega^{2} - C)}{AA_{\Lambda}B\omega^{4} - (A_{\Lambda}H^{2} + BC(A + A_{\Lambda}))\omega^{2} + CH^{2}} = \frac{B}{H^{2} - B(A + A_{\Lambda})\omega^{2}}$$

Решаем уравнение относительно С. В результате получаем четыре корня. Два из них отрицательные и не удовлетворяют ОДЗ. Два других же вполне соответствуют инвариантным точкам ω_1 и ω_2 :

$$\omega_{1,2} = \sqrt{\frac{A_{\text{A}}H^2 + BC(A + A_{\text{A}}) \pm \sqrt{B^2C^2(A^2 + A_{\text{A}}^2) + 2AA_{\text{A}}BC^2 - 2AA_{\text{A}}BCH^2 + AA_{\text{A}}BCH^2 + AA_{\text{A}}BCH$$

Подставив численные значения, получаем следующие функции:

$$\omega_{1,2} = \sqrt{\frac{10^6 + 0,6C \pm \sqrt{0,36C^2 - 10^6C + 10^{12}}}{11}}$$

Как было замечено в начале, в инвариантных точках значения С равны.