```
In [1]:
```

```
%pylab inline
import pandas
import seaborn
```

Populating the interactive namespace from numpy and matplotlib

Load CSV file into memory

```
In [2]:
```

```
data=pandas.read_csv('Desktop/uber-raw-data-apr14.csv')
data.head()
```

Out[2]:

	Date/Time	Lat	Lon	Base
0	4/1/2014 0:11:00	40.7690	-73.9549	B02512
1	4/1/2014 0:17:00	40.7267	-74.0345	B02512
2	4/1/2014 0:21:00	40.7316	-73.9873	B02512
3	4/1/2014 0:28:00	40.7588	-73.9776	B02512
4	4/1/2014 0:33:00	40.7594	-73.9722	B02512

Convert DateTime and add some useful columns

```
In [ ]:
```

```
data['Date/Time'] = data['Date/Time'].map(pandas.to_datetime)
```

```
In [5]:
```

```
data.tail()
```

Out[5]:

	Date/Time	Lat	Lon	Base
564511	2014-04-30 23:22:00	40.7640	-73.9744	B02764
564512	2014-04-30 23:26:00	40.7629	-73.9672	B02764
564513	2014-04-30 23:31:00	40.7443	-73.9889	B02764
564514	2014-04-30 23:32:00	40.6756	-73.9405	B02764
564515	2014-04-30 23:48:00	40.6880	-73.9608	B02764

In [6]:

```
def get_dom(dt):
    return dt.day

data['dom'] = data['Date/Time'].map(get_dom)

data.tail()
```

Out[6]:

	Date/Time	Lat	Lon	Base	dom
564511	2014-04-30 23:22:00	40.7640	-73.9744	B02764	30
564512	2014-04-30 23:26:00	40.7629	-73.9672	B02764	30
564513	2014-04-30 23:31:00	40.7443	-73.9889	B02764	30
564514	2014-04-30 23:32:00	40.6756	-73.9405	B02764	30
564515	2014-04-30 23:48:00	40.6880	-73.9608	B02764	30

In [8]:

```
def get_weekday(dt):
    return dt.weekday()
data['weekday'] = data['Date/Time'].map(get_weekday)
data.tail()
```

Out[8]:

	Date/Time	Lat	Lon	Base	dom	weekday
564511	2014-04-30 23:22:00	40.7640	-73.9744	B02764	30	2
564512	2014-04-30 23:26:00	40.7629	-73.9672	B02764	30	2
564513	2014-04-30 23:31:00	40.7443	-73.9889	B02764	30	2
564514	2014-04-30 23:32:00	40.6756	-73.9405	B02764	30	2
564515	2014-04-30 23:48:00	40.6880	-73.9608	B02764	30	2

In [9]:

```
def get_hour(dt):
    return dt.hour
data['hour'] = data['Date/Time'].map(get_hour)
data.tail()
```

Out[9]:

	Date/Time	Lat	Lon	Base	dom	weekday	hour
564511	2014-04-30 23:22:00	40.7640	-73.9744	B02764	30	2	23
564512	2014-04-30 23:26:00	40.7629	-73.9672	B02764	30	2	23
564513	2014-04-30 23:31:00	40.7443	-73.9889	B02764	30	2	23
564514	2014-04-30 23:32:00	40.6756	-73.9405	B02764	30	2	23
564515	2014-04-30 23:48:00	40.6880	-73.9608	B02764	30	2	23

Let's start the analysis

Analyze the Date of Month(DoM)

In [15]:

```
hist(data.dom, bins=30, rwidth=.8 ,range=(0.5,30.5), color=('salmon'), alpha=(0.5)) xlabel('Date of the month') ylabel('Frequency') title('Uber - Frequency by Date of the month(DoM) April 2014')
```

Out[15]:

Text(0.5, 1.0, 'Uber - Frequency by Date of the month(DoM) April 201 4')

In [16]:

```
def count_rows(rows):
    return len(rows)

by_date = data.groupby('dom').apply(count_rows)
by_date
```

Out[16]:

dom	
1	14546
2	17474
3	20701
4	26714
5	19521
6	13445
7	19550
8	16188
9	16843
10	20041
11	20420
12	18170
13	12112
14	12674
15	20641
16	17717
17	20973
18	18074
19	14602
20	11017
21	13162
22	16975
23	20346
24	23352
25	25095
26	24925
27	14677
28	15475
29	22835
30	36251
dtype:	int64

In [20]:

```
by_date_sorted = by_date.sort_values()
by_date_sorted
```

Out[20]:

dom	
20	11017
13	12112
14	12674
21	13162
6	13445
1	14546
19	14602
27	14677
28	15475
8	16188
9	16843
22	16975
2	17474
16	17717
18	18074
12	18170
5	19521
7	19550
10	20041
23	20346
11	20420
15	20641
3	20701
17	20973
29	22835
24	23352
26	24925
25	25095
4	26714
30	36251
dtype:	int64

In [89]:

```
bar(range(1,31),by_date_sorted)
seaborn.set(font_scale=0.7)
xticks(range(1,31), by_date_sorted.index)
xlabel('Day of the month')
ylabel('Frequency')
title('Uber - Frequency by date of month April 2014')
;
```

Out[89]:

1 1

Analyze the Hour

In [134]:

```
hist(data.hour,bins=24,range=(0.5,24),color=('indianred'), alpha=0.85)
xticks(range (0,24))
xlabel('hour of the day')
ylabel('Frequency')
title('Uber - Frequency by hour of the day April 2014')
;
```

Out[134]:

1 1

Analyze the weekday

In [102]:

```
hist(data.weekday,bins=7, range=(-.5,6.5), rwidth=.8, color='palevioletred', alpha=(xticks(range(7), 'Mon Tue Wed Thu Fri Sat Sun'.split()) xlabel('Weekday') ylabel('Frequency') title('Uber - Frequency by weekday April 2014');
```

Out[102]:

1 1

Cross analysis (hour, day of the week)

```
In [104]:
```

```
by_cross = data.groupby('weekday hour'.split()).apply(count_rows).unstack()
```

```
In [106]:
```

```
seaborn.heatmap(by_cross)
;
```

Out[106]:

, ,

Latitude and longitude analysis

In [126]:

```
hist(data['Lat'], bins=100, range=(40.6,40.9), color='firebrick');
```


In [125]:

```
hist(data['Lon'], bins=100, range=(-74.1,-73.9), color='sienna');
```


In [136]:

```
hist(data['Lat'], bins=100, range=(40.6,40.9), color='darkorchid', alpha=0.5, label=
grid()
legend(loc='best')
twiny()
hist(data['Lon'], bins=100, range=(-74.1,-73.9), color='darkcyan', alpha=0.5, label=
grid()
legend(loc='upper left')
;
```

Out[136]:

. .

In [144]:

```
figure(figsize(20,20))
plot(data['Lon'], data['Lat'], '.', ms=1, alpha=.5)
xlim(-74.2,-73.7)
ylim(40.7,41)
```

Out[144]:

(40.7, 41)

In []: