一. 实验内容

- 1. 写出算术表达式的无二义文法,对比其与示例文法的区别(设计输入使差别展现)
- 2. 自行设计任意文法
- a)设计词法及语法规则

输出文件 a.txt (二义性):

- b)写出构词规则序列、产生式序列及翻译规则
- c)给出输入、得到输出并分析结果

二. 算术表达式的无二义性文法

```
응응
start:expr STOP {printf("expr=%d\n", $1); exit(1);}
expr:expr PLUS t {$$=$1+$3;}
|expr MINUS t {$$=$1-$3;}
|t {$$=$1}
t:t MUL f {$$=$1*$3;}
|t DIV f {$$=$1/$3;}
|f {$$=$1;}
f:LP expr RP {$$=$2; }
|DIGIT {$$=$1; }
응응
输入文件<b.c>:
3*20+5q
■ b.c - 记事本
文件(F) 编辑(E) 格式(O) 查看(V)
3*20+5q
```


输出文件 a2.txt (无二义性):

三. 文法设计

1. 词法规则

输入一个布尔表达式。计算出其最终的布尔值。

例如,输入: !false&&true,程序将返回 true

```
fa false
tr true
delim [ \t]
whitedelims {delim}+
```

2. 语法规则

从左到右扫描布尔表达式,当扫描到下一个字符串(非运算符或分隔符)时匹配是否为 true 或者 false 或者是我们定义好的布尔运算符: AND(与),OR(或),NOT(非),XOR(异或),若为其他则报错。

3. 产生式

```
88
"||"
       {return AND;}
" & & "
       {return OR;}
11 | 11
       {return NOT;}
11 6 11
      {return XOR;}
" ("
      {return LP;}
")"
      {return RP;}
{fa}
      {return F;}
{tr}
      {return T;}
{whitedelims} {;}
"\n" {return ENTER;}
       {printf("\nLEX:ERROR! c = %s\n", yytext);}
```

4. 翻译规则

四. 结果分析

名称	修改日期	类型	大小
☑ Cal.l	2019/6/2 22:39	L文件	1 KB
	2019/6/2 23:33	C 文件	44 KB
📝 Cal.tab.h	2019/6/2 23:33	H 文件	3 KB
☑ Cal.y	2019/6/2 23:32	Y 文件	2 KB
☑ lex.yy.c	2019/6/2 23:33	C 文件	38 KB
test.exe	2019/6/2 23:33	应用程序	53 KB