CSE215 Foundations of Computer Science

State University of New York, Korea

Instructor: Zhoulai Fu

Great time for Midterm 1

Agenda

- Proof by contradiction review
- Proof by contraposition
- Proof by dividing into cases

Proof by contradiction review

Proof by contradiction

- Your objective is to prove P. E.g., \sqrt(2) is irrational.
- You go by proving ~P is False.
- You assume ~P, and then get a contradiction

$\sqrt{2}$ is irrational

- Proof.
 - We use proof by contradiction.
 - Assume sqrt(2) is a rational number, namely:
 - (A) there exists two integers m, n such that sqrt(2)=m/n, and m and n have no common factors.
 - Thus m² = 2 n². Thus, m² is even. Thus m must be even (otherwise m² becomes odd).
 - Thus m = 2k for some integer k. Thus, n ^2= 2 k^2. Thus n^2 is even and therefore n must be even.
 - But the fact that m and n are both even contradicts with (A)
 - Therefore sqrt(2) must be irrational.
- QED.

Proof by contraposition

Proof by contraposition

- You are asked to prove P -> Q and you feel ~Q -> ~P is easier to prove
- Proof
 - We use proof by contraposition to proceed
 - We will prove: ____
 - Suppose _____
 - Therefore _____
- QED.

n^2 is even $\implies n$ is even

Prove:

Suppose n is an integer. If n^2 is even, then n is even

Exercise 1: Prove the following

Suppose $x \in \mathbb{R}$. If $x^2 + 5x < 0$ then x < 0.

Exercise 2: Prove the following

Suppose $x \in \mathbb{R}$. If $x^3 - x > 0$ then x > -1.

Proof by dividing into cases

Proof by dividing into cases

- You are asked to prove Q and you consider an exhaustive list cases. For each case, Q is true.
 - We use proof by dividing into cases to proceed
 - We consider __N__ cases.
 - Case 1: ____ Therefore Q
 - Case 2: ____. Therefore Q
 - ...
 - Case N: _____ Therefore Q
- QED.

 $n^2 + 3n + 2$ is even

- Proof. We consider two cases.
 - Case 1: n is even. n^2 + 3n + 2 is even + even + even, therefore even.
 - Case 2: n is odd. n^2 + 3n + 2 is odd + odd + even, therefore even.
- QED.

Example: Prove the following statement

Proposition If $n \in \mathbb{N}$, then $1 + (-1)^n (2n - 1)$ is a multiple of 4.

Proposition If $n \in \mathbb{N}$, then $1 + (-1)^n (2n - 1)$ is a multiple of 4.

Proof. Suppose $n \in \mathbb{N}$.

Then n is either even or odd. Let's consider these two cases separately.

Case 1. Suppose *n* is even. Then n = 2k for some $k \in \mathbb{Z}$, and $(-1)^n = 1$.

Thus $1 + (-1)^n (2n - 1) = 1 + (1)(2 \cdot 2k - 1) = 4k$, which is a multiple of 4.

Case 2. Suppose *n* is odd. Then n = 2k + 1 for some $k \in \mathbb{Z}$, and $(-1)^n = -1$. Thus $1 + (-1)^n (2n - 1) = 1 - (2(2k + 1) - 1) = -4k$, which is a multiple of 4.

These cases show that $1 + (-1)^n (2n - 1)$ is always a multiple of 4.

Exercise: Prove the following statement

If two integers have opposite parity, then their sum is odd

Proof. Suppose m and n are two integers with opposite parity.

We need to show that m + n is odd. This is done in two cases, as follows.

Case 1. Suppose m is even and n is odd. Thus m = 2a and n = 2b + 1 for some integers a and b. Therefore m + n = 2a + 2b + 1 = 2(a + b) + 1, which is odd (by Definition 8.2).

Case 2. Suppose m is odd and n is even. Thus m = 2a + 1 and n = 2b for some integers a and b. Therefore m + n = 2a + 1 + 2b = 2(a + b) + 1, which is odd (by Definition 8.2).

In either case, m + n is odd.

Summary

- proof by contradiction
- Proof by contraposition
- proof by dividing into cases