TRANSFORMAÇÃO DE DADOS CONVERSÃO SIMBÓLICO-NUMÉRICO

Cristiane Neri Nobre

- Técnicas como redes neurais artificias, SVM e vários algoritmos de agrupamento lidam apenas com dados numéricos
- E o que podemos fazer quando temos dados simbólicos (nominais/categóricos)?
 - o Precisamos transformar os valores para valores numéricos!

E como podemos fazer isso?

Caso 1:

Quando o atributo é do **tipo simbólico** e assume apenas dois valores, se os valores denotam a presença ou ausência de uma característica podemos utilizar **um dígito binário**

Exemplos

Gênero:

Masculino - 0

Feminino - 1

Tumor:

Maligno - 0

Benigno - 1

Caso 2:

Quando o atributo é do **tipo simbólico** e assume mais de dois valores, a técnica utilizada na conversão depende de o atributo ser **nominal ou ordinal**.

Se não houver uma relação de ordem entre os valores do atributo, a inexistência de uma relação de ordem deve continuar para os valores numéricos gerados.

Ou seja, a diferença entre quaisquer dois valores numéricos deve ser a mesma.

Uma forma de conseguir isso é codificar cada valor nominal por uma sequência de c bits, em que c é igual ao número de possíveis valores ou categorias.

Na codificação 1-de-c, também denominada canônica ou topológica, cada sequência possui apenas um bit com o valor 1 e os demais com o valor zero.

A diferença entre as sequências é definida pela posição que o valor 1 ocupa nelas.

Para definir a diferença entre dois valores, pode ser utilizada a distância de Hamming.

Nesta codificação, cada posição da sequência binária corresponde a um possível valor do atributo nominal.

Por exemplo, se a sequência binária possui 4 bits, o primeiro corresponde ao primeiro valor, o segundo bit ao segundo valor e assim por diante.

Como apenas um dos bits pode assumir o valor 1, o bit que assumir esse valor sinaliza a presença do valor nominal correspondente àquele bit.

Exemplo de codificação 1-de-c

Atributo nominal	Código $1 - de - e$		
Azul	100000		
Amarelo	010000		
Verde	001000		
Preto	000100		
Marrom	000010		
Branco	000001		

Observem que são utilizados 6 bits! Não é um número inteiro! Isso é o chamo de **binarizar o atributo.**

O que significa isso?

Que um único atributo com 6 opções de resposta vão virar 6 entradas na base de dados.

É como se você enxergasse:

Azul	Amarelo	Verde	Preto	Marrom	Branco
1	0	0	0	0	0
0	1	0	0	0	0
0	0	1	0	0	0
0	0	0	1	0	0
0	0	0	0	1	0
0	0	0	0	0	1

Observem que são utilizados 6 bits! Não é um número inteiro! Isso é o que chamo de **binarizar o atributo.**

O que significa isso?

Que um único atributo com 6 opções de resposta vão virar 6 entradas na base de dados.

É como se você enxergasse:

Azul	Amarelo	Verde	Preto	Marrom	Branco
1	0	0	0	0	0
0	1	0	0	0	0
0	0	1	0	0	0
0	0	0	1	0	0
0	0	0	0	1	0
0	0	0	0	0	1

E veja que a distância de Hamming entre as instâncias é sempre 2.

Onde mais podemos utilizar esta codificação?

Em vários outros contextos!

Exemplo:

Onde você nasceu?

- O Em casa
- no hospital
- na rua
- na BR

Instância	Em casa	No Hosp	Na rua	Na BR
1	1	0	0	0
2	0	1	0	0
3	0	0	1	0
4	0	0	0	1

Exemplo:

Qual o seu curso?

- O CC
- O SI
- Jogos
- O ES

Instância	CC	SI	Jogos	ES
1	1	0	0	0
2	0	1	0	0
3	0	0	1	0
4	0	0	0	1

Veja que isso é interessante apenas para atributos com poucas opções de resposta.

Imagina se você tiver que criar uma codificação desta para representar 193 países?

Isso não seria uma boa opção!

Uma alternativa é a representação dos possíveis valores nominais por um conjunto de pseudoatributos.

Os valores dos pseudoatributos podem ser do tipo binário, inteiro ou real

Pseudoatributo e seus possíveis valores

Pseudoatributo	#Valores
Continente	7 (b)
PIB	1 (i)
População	1 (i)
TMA	1 (i)
Área	1 (i)

Onde mais podemos ver este tipo de atributos?

- 1) Qual a cidade onde você mora?
- Qual o curso você faz (com muitas opções de resposta)?
- 3) Qual o tipo de droga você já utilizou?

Caso 3:

Quando existe uma relação de ordem, o atributo é do tipo ordinal, e a codificação deve preservar essa relação.

Para isso, deve ser utilizada uma codificação em que a ordem dos valores esteja clara.

Quando o valor numérico é um número **inteiro ou real**, essa transformação é simples e direta: basta ordenar os valores categóricos ordinais e codificar cada valor de acordo com sua posição na ordem:

Valor ordinal	Valor inteiro
Primeiro	0
Segundo	1
Terceiro	2
Quarto	3
Quinto	4
Sexto	5

Se for necessário converter valores ordinais em valores binários, pode ser utilizado o **código cinza** ou o **código termômetro**.

Valor ordinal	Código cinza	Código termômetro
Primeiro	000	00000
Segundo	001	00001
Terceiro	011	00011
Quarto	010	00111
Quinto	110	01111
Sexto	100	11111

Como realizar o binarização dos atributos no ambiente WEKA?

- Carregue o arquivo: weather.nominal.arff que fica na pasta Data onde o WEKA está instalado
 - Veja que o atributo Outlook assume os três possíveis valores: ensolarado, nublado e chuvoso
- Na tela principal do WEKA, vá até a opção weka/Filters/supervised/atribute/NominalToBinary

	No.	1: outlook Nominal	2: temperature Nominal	3: humidity Nominal	4: windy Nominal	5: play Nominal
	1	sunny	hot	high	FALSE	no
	2	sunny	hot	high	TRUE	no
ı	3	overcast	hot	high	FALSE	yes
ı	4	rainy	mild	high	FALSE	yes
ı	5	rainy	cool	normal	FALSE	yes
	6	rainy	cool	normal	TRUE	no
ı	7	overcast	cool	normal	TRUE	yes
ı	8	sunny	mild	high	FALSE	no
ı	9	sunny	cool	normal	FALSE	yes
ı	10	rainy	mild	normal	FALSE	yes
ı	11	sunny	mild	normal	TRUE	yes
ı	12	overcast	mild	high	TRUE	yes
	13	overcast	hot	normal	FALSE	yes
	14	rainy	mild	high	TRUE	no

Relation: weather.symbolic-weka.filters.supervised.attribute.NominalToBinary

Base Original

	ion. wedater.symbo								
No.	1: outlook=sunny 2:	outlook=overcast	3: outlook=rainy	4: temperature=hot	5: temperature=mild 6	: temperature=cool	7: humidity=normal 8	: windy=FALSE	9: play
	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric	Nomina
1	1.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	no
2	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	no
3	0.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	yes
4	0.0	0.0	1.0	0.0	1.0	0.0	0.0	1.0	yes
5	0.0	0.0	1.0	0.0	0.0	1.0	1.0	1.0	yes
6	0.0	0.0	1.0	0.0	0.0	1.0	1.0	0.0	no
7	0.0	1.0	0.0	0.0	0.0	1.0	1.0	0.0	yes
8	1.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	no
9	1.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0	yes
10	0.0	0.0	1.0	0.0	1.0	0.0	1.0	1.0	yes
11	1.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	yes
12	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	yes
13	0.0	1.0	0.0	1.0	0.0	0.0	1.0	1.0	yes
14	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	no

Mas veja, antes de rodar os modelos, se a implementação da técnica já não faz esta conversão automática

· Rede neural, por exemplo, já faz isso automaticamente!

Referências:

- Capítulo 3 do livro (Seção 3.6.1)
- Katti Faceli et al.
 Inteligência Artificial, Uma abordagem de Aprendizado de Máquina, LTC, 2015.

