Problem

 $U = \{\langle M, x, \#^t \rangle |_{\text{NTM M accepts x within t steps on at least one branch}. \text{ Note that M isn't required to halt on all branches. Show that U is NP-complete.}$

Step-by-step solution

Step 1 of 2

User contains an NDTM M_L , for any given NP language, in such a way that $\forall x \in L$, M_L accepts x on minimum single branch in maximum $P_L(|x|)$ steps. Here, $P_L(\cdot)$ denotes a fixed polynomial depending on the machine.

- It is also known that any $x \notin L$ will not be accepted by M_L . Then, user can use a polynomial time to create $y = \left\langle M_L, x, \#^{p_L(|x|)} \right\rangle$ for the given x.
- Consider the previous argument, according to this argument, $x \in L$ if and only if $y \in U$. Therefore, U is NP-hard.

Comments (1)

Step 2 of 2

To show that U is also in NP, users have to create an NDTM M_U , which given an input $y = \langle M_L, x, \# \rangle$, simulates M on x for t steps.

- Every branches of M are guessed by M_U non-deterministically and accepts u if and only if u is accepted by M.
- Since the minimum length of input is t and user simulate M for maximum t steps, the running time is polynomial in the length of the input.
- Now it can be easily seen that the language $\it U$ is exactly accepted by $\it M_{\it U}$, therefore, $\it U \in \it NP$.

Hence, \boldsymbol{U} is NP-complete.

Comment