

Teoria de Comunicações (FGA - 203815) Segunda Prova 30/outubro/2014

	Para responder às questões, use o verso da folha se for necessário. Prova sem consulta.	
Nome:	Matrícula:	

Questão	1	2	3	Total
Pontos	25	30	45	100
Nota				

- (20) (a) Projete o modulador, tendo em vista tenha as seguintes características para os sinais em banda estreita e banda larga:
 - Em banda estreita, desvio de frequência de 15 Hz e frequência de portadora em 200 KHz.
 - Em banda larga, desvio de frequência de 75 KHz e frequência de portadora em 100.1 MHz.

Você dispõe de, no máximo, 5 triplicadores e 7 duplicadores de frequência.

(5) (b) Desenhe o diagrama de blocos do modulador, explicitando as frequências e desvios de fase à entrada e saída de cada um dos blocos.

Questão 2		30 I	Pontos
-----------	--	------	--------

Considere a modulação tonal de uma senoide $m(t)=5\cos(2\pi f_m t)$, usada como representante da frequência máxima de uma mensagem a ser transmitida em FM. A frequência f_m deve ser especificada para que três condições sejam satisfeitas ao se realizar a modulação FM de m(t):

- A frequência de m(t) deve ser a maior possível, porém não pode ultrapassar 50 KHz;
- A largura de banda do sinal modulado em FM deve ser de 500 KHz;
- O sinal modulado não pode ter potência alocada na frequência da portadora.
- (10) (a) Encontre a frequência do sinal modulante, f_m , assim como o valor de k_F , em Hz/V.
- (20) (b) Desenhe o espectro bilateral do sinal modulado, para portadora com $A_c=20~{
 m V}$ e $f_c=2~{
 m MHz}.$

Questão 3 .		45	Ponto
-------------	--	----	-------

Na entrada de um receptor, considere um sinal de ruído modelado por um ruído branco gaussiano de média nula e densidade espectral de potência de 10^{-10} W/Hz. Para todos os casos de demodulação, a potência de sinal recebido é a do sinal transmitido atenuada de 30 dB. As demodulações AM são síncronas. Sabendo que a mensagem m(t) possui as seguintes características:

- Largura de banda de 20 KHz;
- Potência média de 1 W;
- Valor máximo de 10 V;
- Derivada com valor máximo de $0.5 \cdot 10^6 \text{ V/s}$,

complete a tabela abaixo, explicitando todos os seus cálculos. Sabe-se também que, em todos os casos, a amplitude da portadora na usada no transmissor é de 20 V.

Modulação	S_{IN} (mW)	B_T (KHz)	$N_{IN} \; (\mu { m W})$	$(S/N)_{IN} \text{ (dB)}$	$(S/N)_{OUT} (dB)$
AM-DSB-SC					
AM-SSB-SC					
AM-DSB+C,					
$\mu = 0.5$					
$PM, \beta_{PM} = 8$					
$FM, \beta_{FM} = 6$					

[Desafio, 10 pontos]: mostre que ao usarmos pré-ênfase em m(t), a relação sinal-ruído à saída de um demodulador FM é melhorada de um fator

 $\frac{1}{3} \left(\frac{B_m}{B_{pe}} \right)^2,$

onde B_{pe} é a largura de faixa sobre a qual atua a pré-ênfase no transmissor.

Formulário

Funções de Bessel

β	J_0	J_1	J_2	J_3	J_4	J_5	J_6	J_7	J_8	J_9	J_{10}	J_{11}	J_{12}
0,25	0,98	0,12	0,01	0	0	0	0	0	0	0	0	0	0
0,5	0,94	0,24	0,03	0	0	0	0	0	0	0	0	0	0
0,8	0,85	0,37	0,07	0,01	0	0	0	0	0	0	0	0	0
1,0	0,77	0,44	0,11	0,02	0	0	0	0	0	0	0	0	0
1,5	0,51	0,56	0,23	0,06	0,01	0	0	0	0	0	0	0	0
2,0	0,22	0,58	0,35	0,13	0,03	0,01	0	0	0	0	0	0	0
2,40	0	0,52	0,43	0,20	0,065	0.016	0	0	0	0	0	0	0
3,0	-0,26	0,34	0,49	0,31	0,13	0,04	0,01	0	0	0	0	0	0
4,0	-0,4	-0,07	0,36	0,43	0,28	0,13	0,05	0,02	0	0	0	0	0
5,0	-0,18	-0,33	0,05	0,36	0,39	0,26	0,13	0,05	0,02	0,01	0	0	0
5,52	0	-0,34	-0,123	0,25	0,40	0,32	0,19	0,09	0,03	0,01	0	0	0
6,0	0,15	-0,28	-0,24	0,11	0,36	0,36	0,25	0,13	0,06	0,02	0,01	0	0
7,0	0,3	0	-0,3	-0,17	0,16	0,35	0,34	0,23	0,13	0,06	0,02	0,01	0
8,0	0,17	0,23	-0,11	-0,29	-0,11	0,19	0,34	0,32	0,22	0,13	0,06	0,03	0,01
8,65	0	0,27	0,062	-0,243	-0,23	0,03	0,27	0,34	0,29	0,18	0,1	0,05	0,02

PM, FM e Ruído em Sistemas Analógicos

$$\varphi_{\mathsf{AM}}(t) = A_c \left(1 + \mu m(t)\right) \cos(2\pi f_c t)$$

$$\varphi_{\mathsf{DSB}}(t) = A_c m(t) \cos(2\pi f_c t)$$

$$\varphi_{\mathsf{SSB}}(t) = \frac{A_c}{2} \left[m(t) \cos(2\pi f_c t) \pm m_h(t) \sin(2\pi f_m t) \right]$$

$$\varphi_{\mathsf{PM}}(t) = A_c \cos(2\pi f_c t + k_P m(t))$$

$$\varphi_{\mathsf{FM}}(t) = A_c \cos\left(2\pi f_c t + 2\pi k_F \int_{-\infty}^t m(\alpha) d\alpha\right)$$

$$e^{j\beta \sin(2\pi f_m t)} = \sum_{n=-\infty}^{+\infty} J_n(\beta) e^{-j2\pi n f_m t}$$

$$B_T = 2 B_m(\beta + 1) = 2 \left(\Delta f + B_m\right)$$

$$\beta_{\mathsf{FM}} = \frac{k_F}{B_m} \frac{m_\mathsf{P}}{B_m} \quad \beta_{\mathsf{PM}} = \frac{k_P}{2\pi B_m}$$

$$\left(\frac{S}{N}\right)_{\mathsf{IN}}^{\mathsf{DSB-SC}} = \frac{A_c^2 P_m}{2} \frac{1}{2N_0 B_m}$$

$$\left(\frac{(S/N)_{\mathsf{OUT}}}{(S/N)_{\mathsf{IN}}}\right)^{\mathsf{DSB-SC}} = 2$$

$$\left(\frac{S}{N}\right)_{\mathsf{IN}}^{\mathsf{SSB}} = \frac{A_c^2 P_m}{4} \frac{1}{N_0 B_m}$$

Folha para solução