

CARRERA DE ESPECIALIZACIÓN EN INTELIGENCIA ARTIFICIAL

MEMORIA DEL TRABAJO FINAL

Clasificación de reclamos de usuario

Autor: Ing. Lucas Rivela

Director: Dr. Lic. Rodrigo Cárdenas (FIUBA)

Jurados:

Nombre del jurado 1 (pertenencia) Nombre del jurado 2 (pertenencia) Nombre del jurado 3 (pertenencia)

Este trabajo fue realizado en la Ciudad Autónoma de Buenos Aires, entre mayo de 2023 y septiembre de 2023.

Resumen

La presente memoria describe el diseño e implementación de un sistema de clasificación de reclamos desarrollado para Ualá. La solución permite optimizar el tiempo que lleva el proceso de clasificación mediante la asignación automática de categorías de primer y segundo nivel; y por otro lado, reducir la cantidad de personas necesarias para esta tarea.

Para poder realizar este trabajo se aplicaron conceptos de bases de datos, procesamiento del lenguaje natural y aprendizaje profundo para realizar la extracción de los datos, el procesamiento del texto, el entrenamiento de los modelos de IA y el despliegue de los mismos en un ambiente de desarrollo.

Agradecimientos

A mi familia y amigos por apoyarme durante la realización de esta carrera.

A mis compañeros y profesores por el acompañamiento.

A mi director, Dr. Lic. Rodrigo Cárdenas por orientarme y guiarme en la realización de este trabajo.

Índice general

Ke	esumen	I
1.	Introducción general 1.1. Introducción 1.1.1. Qué es la atención al cliente 1.1.2. Organización de un equipo de atención al cliente 1.1.3. El proceso de atención al cliente 1.2. Motivación 1.3. Estado del arte 1.3.1. Word Embeddings 1.3.2. Transformers	1 1 1 2 3 4 4 4
	1.4. Objetivos y alcance	5
2.	Introducción específica 2.1. Estilo y convenciones	7 7 7 8 9 10
3.	Diseño e implementación 3.1. Análisis del software	13 13
4.	Ensayos y resultados 4.1. Pruebas funcionales del hardware	15 15
5.	Conclusiones5.1. Conclusiones generales5.2. Próximos pasos	17 17 17
Bi	bliografía	19

Índice de figuras

1.1.	Organigrama de un área de atención al cliente ¹	2
1.2.	Evolución de las redes en cantidad de parámetros. ²	5
2.1.	Ilustración del cuadrado azul que se eligió para el diseño del logo.	8
2.2.	Imagen tomada de la página oficial del procesador ³	9
2.3.	¿Por qué de pronto aparece esta figura?	9
2 4	Tres gráficos simples	9

Índice de tablas

2.1.	caption corto	 															1	1()

Introducción general

En este capítulo se realiza una introducción al funcionamiento de un área de atención al cliente. Además, se menciona el estado del arte de los sistemas de procesamiento del lenguaje natural, y por último se explican los objetivos y alcances del presente trabajo.

1.1. Introducción

En esta sección se introduce un área típica de atención al cliente en una empresa.

1.1.1. Qué es la atención al cliente

El área de atención al cliente se encarga de dar soporte al consumidor y tiene como objetivo resolver sus problemas [1].

A menudo se confunde el área de atención con el área de servicio al cliente. La principal diferencia radica en que el servicio es una función proactiva con la intención de anticiparse a las necesidades inmediatas y a largo plazo del cliente. La atención al cliente es una función reactiva que busca resolver los problemas que el cliente manifestó [2].

A continuación se listan las características principales del proceso [2]:

- 1. Inicio y duración: inicia cuando un cliente se pone en contacto con la empresa. Demora el tiempo que sea necesario hasta brindar una solución.
- 2. Objetivo: solucionar problemas que surjan del funcionamiento del producto o condiciones del servicio.
- 3. Actitud: reactiva.
- 4. Interacción: canales específicos. Por ejemplo, telefónicos, email, chat.
- 5. Participantes: cliente y representante del centro de atención. Raras veces entran en juego otros trabajadores de la empresa.

1.1.2. Organización de un equipo de atención al cliente

A continuación se enumeran los principales roles que podemos encontrar en el área de atención al cliente:

 Gerente de atención al cliente: tiene bajo su responsabilidad el cumplimiento de metas estratégicas. Gestionan el volumen de casos entrantes y comunican las tendencias a otros departamentos. [3]

- 2. Coordinador de atención al cliente: es quien está en el día a día en contacto con los agentes. Apoya la resolución de problemas y escala aquellos que requieren validaciones o decisiones que no estén a su alcance [4].
- 3. Analista de atención al cliente: canaliza las quejas, reclamos y sugerencias. Se encarga de proveer soporte a los usuarios. [4]

En algunas organizaciones, dependiendo de su tamaño, se pueden encontrar más o menos mandos intermedios entre el gerente y el coordinador. Una variante puede ser tener varios coordinadores respondiendo a un supervisor. Este supervisor puede estar a cargo de la atención de reclamos para ciertos productos de la empresa que están relacionados.

En la figura 1.1 podemos ver la principal tendencia que hay en cuanto a organización de equipos. La idea es que cada equipo sea especialista en un conjunto de casos.

FIGURA 1.1. Organigrama de un área de atención al cliente¹.

1.1.3. El proceso de atención al cliente

El proceso de atención al cliente consiste en una serie de pasos que se realizan para atender los reclamos y/o consultas que recibe la empresa [5].

A continuación se describen los pasos principales de un proceso de atención típico [6].

- Contacto y captura de la demanda del cliente: en esta etapa se recibe el mensaje del cliente por cualquiera de los canales establecidos y se procede a registrarlo en el sistema.
- Análisis y clasificación: se analiza la información recibida y se evalúa si es suficiente para proceder a la clasificación del caso. De lo contrario se vuelve a contactar al cliente para obtener más detalles.

¹Imagen tomada de https://blog.hubspot.es/service/que-es-atencion-al-cliente

1.2. Motivación 3

Resolución: en esta etapa se busca dar una respuesta a la consulta o reclamo del cliente. En algunos casos puede involucrar varios equipos o personas, por lo que su duración es variable.

 Cierre: en esta etapa se presenta la solución al cliente y se le comunican los próximos pasos si los hubiera.

1.2. Motivación

Hoy en día al cliente se le hace muy fácil pasar a la competencia en caso de que la empresa no pueda cumplir con sus expectativas. Una mala *CX* (*Customer Experience*) puede generar un efecto de bola de nieve, ya que los usuarios que hayan tenido una mala experiencia, son mas propensos a comunicarlo con sus conocidos haciendo que la empresa no sólo pierda un cliente sino que ademas, se le dificulte expandir su mercado [7].

Según informes de CX Trends [8][9][10] y de Esteban Kolsky [11]:

- El 70 % de los consumidores gastará más en una empresa que ofrezca una buena CX.
- El 50 % de los clientes se pasaría a la competencia después de haber tenido tan solo una mala experiencia. Este valor sube a un 80 % si se les pregunta si hubieran tenido dos o más malas experiencias.
- El 72 % de los clientes compartiría una experiencia positiva con 6 o más personas.
- El 13 % de los clientes compartiría su experiencia con 15 o más personas si no está satisfecho.
- Sólo el 3.85 % de los clientes insatisfechos se lo comunican a la empresa.

Estos números muestran que la ausencia de quejas no es un signo de satisfacción. Por el contrario, es probable que los clientes hayan abandonado la empresa y estén compartiendo su insatisfacción con otras personas. También muestran la importancia de mantenerlos satisfechos, ya que son propensos a compartirlo.

Más aún, entre las principales razones de una mala atención al cliente se encuentran tener tiempos de espera demasiado largos [12] y tener muchas derivaciones internas [13].

De todo esto se deduce que resulta muy importante que los procesos del área se realicen de forma eficiente. La utilización de modelos de IA para automatizar el proceso de clasificación de reclamos y consultas, ayuda a la empresa a responder a sus clientes con tiempos de respuesta menores y permite disponer de más analistas en la etapa de resolución y cierre. De esta manera, se genera una imagen positiva de la empresa que facilita la fidelización de clientes existentes y aumenta la incorporación de los nuevos.

1.3. Estado del arte

El PNL (Procesamiento del lenguaje natural) es un subcampo de la inteligencia artificial que busca enseñar a un programa informático a comprender, interpretar y generar texto en lenguaje humano. A principios del siglo XXI, el PNL experimentó un crecimiento significativo gracias a la aplicación de algoritmos de aprendizaje profundo y la disponibilidad de grandes corpus de texto [14].

1.3.1. Word Embeddings

En 2003, Yoshua Bengio et al. entrenan la primer red neuronal orientada al lenguaje, utilizando vectores para representar palabras. Llamarían a este proceso "aprender una representación distribuida para cada palabra" [15].

En 2008 Ronan Collobert y Jason Weston introducen el concepto de *Word Embeddings* como una herramienta potente para tareas de PNL. Se distinguirían de sus antecesores mencionando que su objetivo era predecir la relevancia de una palabra dada la parte previa y posterior de la oración, a diferencia de el trabajo previo que buscaba predecir la probabilidad de una palabra dada la parte previa de una oración.

En 2013, Tomas Mikolov et al. publican su artículo dónde detallan las arquitecturas *CBOW* y *Skip-Gram*. Además liberan el primer modelo pre-entrenado llamado *Word2Vec* (basado en *Skip-Gram*) popularizando el uso de los *Word Embeddings* [16].

Posteriormente, en 2014, Pennington et al. publicarían *GloVe* como otro método de generación de *Word Embeddings* que utiliza una probabilidad de co-ocurrencia [17]. Con esta técnica, si dos palabras co-existen muchas veces, ambas palabras tienen una probabilidad alta de tener un mismo significado.

Los *Word Embeddings* se convirtieron en la herramienta principal dentro del PNL. Capturan el significado de una palabra y la traducen a una representación numérica que puede ser usada como entrada para las redes neuronales.

1.3.2. Transformers

El avance del aprendizaje profundo, permitió a los investigadores desarrollar arquitecturas de redes neuronales más avanzadas y eficientes.

Sin embargo, no fue hasta 2017, cuando Vaswani et. al publican la utilización de un mecanismo de atención para desarrollar una nueva arquitectura que ellos llamarían *Transformers* que se marca un verdadero hito [18]. Las redes más usadas hoy en día están basadas en esta mejora.

Básicamente, en los *Transformers* se reemplazan las capas recurrentes que se venían utilizando hasta ese momento por "capas de atención" que codifican cada palabra en función del resto de la frase, permitiendo de esta forma, introducir el contexto en la representación matemática del texto. Por este motivo, sus *Embeddings* generados son denominados *Embeddings Contextuales*.

Otra de las innovaciones introducidas es el uso de *Embeddings posicionales*. Con ellos se logra una mayor paralelización, ya que no es más necesario pasar una palabra a la vez. Agregando un valor secuencial con cada palabra, hacen posible pasarle a la red todas las palabras en simultáneo.

En la figura 1.2 se puede ver la evolución de la cantidad de parámetros de estas redes.

FIGURA 1.2. Evolución de las redes en cantidad de parámetros.².

1.4. Objetivos y alcance

 $^{^2} Imagen \ tomada \ de \ https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlower \ deepspeed-and-megatron-to-train-megatron-turing-nlower \ deepspeed-and-megatron-turing-nlower \ deepspeed-and-megatron-tu$

Introducción específica

Todos los capítulos deben comenzar con un breve párrafo introductorio que indique cuál es el contenido que se encontrará al leerlo. La redacción sobre el contenido de la memoria debe hacerse en presente y todo lo referido al proyecto en pasado, siempre de modo impersonal.

2.1. Estilo y convenciones

2.1.1. Uso de mayúscula inicial para los título de secciones

Si en el texto se hace alusión a diferentes partes del trabajo referirse a ellas como capítulo, sección o subsección según corresponda. Por ejemplo: "En el capítulo 1 se explica tal cosa", o "En la sección 2.1 se presenta lo que sea", o "En la subsección 2.1.2 se discute otra cosa".

Cuando se quiere poner una lista tabulada, se hace así:

- Este es el primer elemento de la lista.
- Este es el segundo elemento de la lista.

Notar el uso de las mayúsculas y el punto al final de cada elemento.

Si se desea poner una lista numerada el formato es este:

- 1. Este es el primer elemento de la lista.
- 2. Este es el segundo elemento de la lista.

Notar el uso de las mayúsculas y el punto al final de cada elemento.

2.1.2. Este es el título de una subsección

Se recomienda no utilizar **texto en negritas** en ningún párrafo, ni tampoco texto <u>subrayado</u>. En cambio sí se debe utilizar *texto en itálicas* para palabras en un idioma extranjero, al menos la primera vez que aparecen en el texto. En el caso de palabras que estamos inventando se deben utilizar "comillas", así como también para citas textuales. Por ejemplo, un *digital filter* es una especie de "selector" que permite separar ciertos componentes armónicos en particular.

La escritura debe ser impersonal. Por ejemplo, no utilizar "el diseño del firmware lo hice de acuerdo con tal principio", sino "el firmware fue diseñado utilizando tal principio".

El trabajo es algo que al momento de escribir la memoria se supone que ya está concluido, entonces todo lo que se refiera a hacer el trabajo se narra en tiempo pasado, porque es algo que ya ocurrió. Por ejemplo, "se diseñó el firmware empleando la técnica de test driven development".

En cambio, la memoria es algo que está vivo cada vez que el lector la lee. Por eso transcurre siempre en tiempo presente, como por ejemplo:

"En el presente capítulo se da una visión global sobre las distintas pruebas realizadas y los resultados obtenidos. Se explica el modo en que fueron llevados a cabo los test unitarios y las pruebas del sistema".

Se recomienda no utilizar una sección de glosario sino colocar la descripción de las abreviaturas como parte del mismo cuerpo del texto. Por ejemplo, RTOS (*Real Time Operating System*, Sistema Operativo de Tiempo Real) o en caso de considerarlo apropiado mediante notas a pie de página.

Si se desea indicar alguna página web utilizar el siguiente formato de referencias bibliográficas, dónde las referencias se detallan en la sección de bibliografía de la memoria, utilizado el formato establecido por IEEE en [IEEE:citation]. Por ejemplo, "el presente trabajo se basa en la plataforma EDU-CIAA-NXP [CIAA], la cual...".

2.1.3. Figuras

Al insertar figuras en la memoria se deben considerar determinadas pautas. Para empezar, usar siempre tipografía claramente legible. Luego, tener claro que **es incorrecto** escribir por ejemplo esto: "El diseño elegido es un cuadrado, como se ve en la siguiente figura:"

La forma correcta de utilizar una figura es con referencias cruzadas, por ejemplo: "Se eligió utilizar un cuadrado azul para el logo, como puede observarse en la figura 2.1".

FIGURA 2.1. Ilustración del cuadrado azul que se eligió para el diseño del logo.

El texto de las figuras debe estar siempre en español, excepto que se decida reproducir una figura original tomada de alguna referencia. En ese caso la referencia

FIGURA 2.2. Imagen tomada de la página oficial del procesador¹.

de la cual se tomó la figura debe ser indicada en el epígrafe de la figura e incluida como una nota al pie, como se ilustra en la figura 2.2.

La figura y el epígrafe deben conformar una unidad cuyo significado principal pueda ser comprendido por el lector sin necesidad de leer el cuerpo central de la memoria. Para eso es necesario que el epígrafe sea todo lo detallado que corresponda y si en la figura se utilizan abreviaturas entonces aclarar su significado en el epígrafe o en la misma figura.

FIGURA 2.3. ¿Por qué de pronto aparece esta figura?

Nunca colocar una figura en el documento antes de hacer la primera referencia a ella, como se ilustra con la figura 2.3, porque sino el lector no comprenderá por qué de pronto aparece la figura en el documento, lo que distraerá su atención.

Otra posibilidad es utilizar el entorno *subfigure* para incluir más de una figura, como se puede ver en la figura 2.4. Notar que se pueden referenciar también las figuras internas individualmente de esta manera: 2.4a, 2.4b y 2.4c.

FIGURA 2.4. Tres gráficos simples

El código para generar las imágenes se encuentra disponible para su reutilización en el archivo **Chapter2**. **tex**.

2.1.4. Tablas

Para las tablas utilizar el mismo formato que para las figuras, sólo que el epígrafe se debe colocar arriba de la tabla, como se ilustra en la tabla 2.1. Observar que

¹Imagen tomada de https://goo.gl/images/i7C70w

sólo algunas filas van con líneas visibles y notar el uso de las negritas para los encabezados. La referencia se logra utilizando el comando \ref{<label>} donde label debe estar definida dentro del entorno de la tabla.

```
\begin{table}[h]
\centering
\caption[caption corto]{caption largo más descriptivo}
\begin{tabular}{l c c}
\toprule
\textbf{Especie} & \textbf{Tamaño} & \textbf{Valor}\\
\midrule
Amphiprion Ocellaris & 10 cm & \$ 6.000 \\
Hepatus Blue Tang & 15 cm & \$ 7.000 \\
Zebrasoma Xanthurus & 12 cm & \$ 6.800 \\
\bottomrule
\hline
\end{tabular}
\label{tab:peces}
\end{table}
```

TABLA 2.1. caption largo más descriptivo

Especie	Tamaño	Valor
Amphiprion Ocellaris	10 cm	\$ 6.000
Hepatus Blue Tang	15 cm	\$ 7.000
Zebrasoma Xanthurus	12 cm	\$ 6.800

En cada capítulo se debe reiniciar el número de conteo de las figuras y las tablas, por ejemplo, figura 2.1 o tabla 2.1, pero no se debe reiniciar el conteo en cada sección. Por suerte la plantilla se encarga de esto por nosotros.

2.1.5. Ecuaciones

Al insertar ecuaciones en la memoria dentro de un entorno *equation*, éstas se numeran en forma automática y se pueden referir al igual que como se hace con las figuras y tablas, por ejemplo ver la ecuación 2.1.

$$ds^{2} = c^{2}dt^{2} \left(\frac{d\sigma^{2}}{1 - k\sigma^{2}} + \sigma^{2} \left[d\theta^{2} + \sin^{2}\theta d\phi^{2} \right] \right)$$
 (2.1)

Es importante tener presente que si bien las ecuaciones pueden ser referidas por su número, también es correcto utilizar los dos puntos, como por ejemplo "la expresión matemática que describe este comportamiento es la siguiente:"

$$\frac{\hbar^2}{2m}\nabla^2\Psi + V(\mathbf{r})\Psi = -i\hbar\frac{\partial\Psi}{\partial t}$$
(2.2)

Para generar la ecuación 2.1 se utilizó el siguiente código:

```
\begin{equation}
\label{eq:metric}
```

```
 ds^2 = c^2 dt^2 \left\{ \frac{d\sigma^2}{1-k\sigma^2} + \frac{1-k\sigma^2}{1-k\sigma^2} + \frac{1-k\sigma
```

Y para la ecuación 2.2:

```
\begin{equation}
\label{eq:schrodinger}
\frac{\hbar^2}{2m}\nabla^2\Psi + V(\mathbf{r})\Psi =
-i\hbar \frac{\partial\Psi}{\partial t}
\end{equation}
```

Diseño e implementación

3.1. Análisis del software

La idea de esta sección es resaltar los problemas encontrados, los criterios utilizados y la justificación de las decisiones que se hayan tomado.

Se puede agregar código o pseudocódigo dentro de un entorno lstlisting con el siguiente código:

```
\begin{lstlisting}[caption= "un epígrafe descriptivo"]
las líneas de código irían aquí...
\end{lstlisting}
A modo de ejemplo:
#define MAX SENSOR NI MRER 3
```

```
1 #define MAX_SENSOR_NUMBER 3
2 #define MAX_ALARM_NUMBER 6
3 #define MAX_ACTUATOR_NUMBER 6
{\tiny 5}\>\>\> uint32\_t\>\>\>\> sensorValue[MAX\_SENSOR\_NUMBER];
6 FunctionalState alarmControl[MAX_ALARM_NUMBER]; //ENABLE or DISABLE
7 state_t alarmState[MAX_ALARM_NUMBER]; //ON or OFF
{\tt s \ tate\_t \ actuatorState [MAX\_ACTUATOR\_NUMBER];} \qquad {\tt //ON \ or \ OFF}
void vControl() {
11
    initGlobalVariables();
12
13
    period = 500 ms;
15
    while (1) {
16
17
      ticks = xTaskGetTickCount();
18
19
      updateSensors();
20
21
      updateAlarms();
22
      controlActuators();
       vTaskDelayUntil(&ticks, period);
27
28 }
```

CÓDIGO 3.1. Pseudocódigo del lazo principal de control.

Ensayos y resultados

4.1. Pruebas funcionales del hardware

La idea de esta sección es explicar cómo se hicieron los ensayos, qué resultados se obtuvieron y analizarlos.

Conclusiones

5.1. Conclusiones generales

La idea de esta sección es resaltar cuáles son los principales aportes del trabajo realizado y cómo se podría continuar. Debe ser especialmente breve y concisa. Es buena idea usar un listado para enumerar los logros obtenidos.

Algunas preguntas que pueden servir para completar este capítulo:

- ¿Cuál es el grado de cumplimiento de los requerimientos?
- ¿Cuán fielmente se puedo seguir la planificación original (cronograma incluido)?
- ¿Se manifestó algunos de los riesgos identificados en la planificación? ¿Fue efectivo el plan de mitigación? ¿Se debió aplicar alguna otra acción no contemplada previamente?
- Si se debieron hacer modificaciones a lo planificado ¿Cuáles fueron las causas y los efectos?
- ¿Qué técnicas resultaron útiles para el desarrollo del proyecto y cuáles no tanto?

5.2. Próximos pasos

Acá se indica cómo se podría continuar el trabajo más adelante.

Bibliografía

- [1] Tiendanube. *Atención al cliente: qué es y claves para mejorar tu servicio*. https://www.tiendanube.com/blog/que-es-servicio-atencion-cliente/. Mar. de 2023. (Visitado 01-07-2023).
- [2] HubSpot. ¿En qué se diferencian el servicio al cliente y la atención al cliente? https://blog.hubspot.es/service/diferencia-servicio-cliente-y-atencion-cliente. Ene. de 2023. (Visitado 01-07-2023).
- [3] HubSpot. ¿Qué hace un gerente de servicio al cliente? https://blog.hubspot.es/service/gerente-servicio-cliente. Ene. de 2023. (Visitado 01-07-2023).
- [4] Zendesk. *Manual para un departamento de atención al cliente exitoso*. https://www.zendesk.com.mx/blog/manual-de-funciones-de-servicio-al-cliente/. Abr. de 2023. (Visitado 01-07-2023).
- [5] HubSpot. *Qué es el proceso de atención al cliente y cuáles son sus fases clave*. https://blog.hubspot.es/service/proceso-atencion-cliente. Abr. de 2023. (Visitado 01-07-2023).
- [6] Zendesk. Entienda lo que son las fases del proceso de atención al cliente y en que puedes ayudar tener ese proceso interno en una empresa. https://www.zendesk.com.mx/blog/fases-del-proceso-de-atencion-al-cliente/. Jun. de 2020. (Visitado 01-07-2023).
- [7] Smart Tribune. *The Importance of Customer Experience*. https://blog.smart-tribune.com/en/importance-of-customer-experience. Sep. de 2021. (Visitado 01-07-2023).
- [8] Zendesk. *CX Trends* 2023. https://cxtrends.zendesk.com/mx. Feb. de 2023. (Visitado 01-07-2023).
- [9] HubSpot. *Qué es la atención al cliente, elementos clave e importancia*. https://blog.hubspot.es/service/que-es-atencion-al-cliente. Abr. de 2023. (Visitado 01-07-2023).
- [10] Zendesk. 5 examples of bad customer service (and how to be great instead). https://www.zendesk.com/blog/what-is-bad-customer-service/. Mayo de 2023. (Visitado 01-07-2023).
- [11] SuperOffice. 32 CUSTOMER EXPERIENCE STATISTICS YOU NEED TO KNOW FOR 2023. https://www.superoffice.com/blog/customer-experience-statistics/. Feb. de 2023. (Visitado 01-07-2023).
- [12] HubSpot. 8 ejemplos de mal servicio al cliente (y cómo evitarlos). https://blog.hubspot.es/service/mal-servicio-cliente. Ene. de 2023. (Visitado 02-07-2023).
- [13] Zendesk. 8 problemas comunes en servicio al cliente y cómo resolverlos. https://www.zendesk.com.mx/blog/problemas-comunes-con-clientes/. Feb. de 2021. (Visitado 02-07-2023).
- [14] Piperlab. *Cómo hemos llegado hasta ChatGPT y el resto de LLMs*. https://piperlab.es/2023/03/29/como-hemos-llegado-hasta-chatgpt-y-el-resto-de-llms/. Mar. de 2023. (Visitado 02-07-2023).

20 Bibliografía

[15] Yoshua Bengio, Réjean Ducharme y Pascal Vincent. «A Neural Probabilistic Language Model». En: (2003).

- [16] Tomas Mikolov y col. «Efficient Estimation of Word Representations in Vector Space». En: (2013).
- [17] Jeffrey Pennington, Richard Socher y Christopher D. Manning. «GloVe: Global Vectors for Word Representation». En: (2014).
- [18] Ashish Vaswani y col. «Attention Is All You Need». En: (2017).