# 晶實半導體科技有限公司

BISS0001 PIR 紅外感應 IC

#### 一、 特點

- COMS 數模混合專用積體電路;
- ▶ 具有獨立的高輸入阻抗運算放大器,
- ▶ 可與多種感測器匹配,進行信號預處理;
- 雙向鑒幅器可有效抑制干擾;
- ▶ 內設延遲時間計時器和封鎖時間計時器,
- ▶ 結構新穎、穩定可靠,調節範圍寬;
- ▶ 内置參考電源;
- ➤ 工作電壓範圍寬 +3V~+5V;
- ➤ 採用 16 腳 DIP 封裝;



#### 二、原理框圖



圖 2

## 晶寶半導體科技有限公司

BISS0001 PIR 紅外感應 IC

#### 三、 工作原理

圖 2 為 BISS0001 紅外傳感信號處理器的原理框圖。外接元件由使用者根據需要選擇。

由圖可見 BISS0001 是由運算放大器、電壓比較器和狀態控制器、延遲時間計時器、封鎖時間計時器 及參考電壓源等構成的數模混合專用積體電路。可廣泛應用於多種感測器和延時控制器。

各引腳的定義和功能如下:

- V<sub>DD</sub> 工作電源正端。範圍為 3~5V。
- Vss 一 工作電源負端。一般接 0V。
- 1<sub>B</sub> 一 運算放大器偏置電流設置端。經 R<sub>B</sub>接 Vss端, R<sub>B</sub>取值為 1MΩ 左右。
- 111- 一 第一級運算放大器的反相輸入端。
- 1114 一 第一級運算放大器的同相輸入端。
- 1011 一 第一級運算放大器的輸出端。
- 211- 第二級運算放大器的反相輸入端。
- 2017 一 第二級運算放大器的輸出端。
- $V_c$  觸發禁止端。當  $V_c \langle V_R$  時禁止觸發;當  $V_c \rangle V_R$  允許觸發。 $V_R \approx 0.2 V_D$ 。
- V<sub>RF</sub> 一 參考電壓及重定輸入端。一般接 V<sub>DD</sub>,接"0"時可使用計時器復位。
- A 一 可重複觸發和不可重複觸發端。當 A= "1"時,允許重複觸發,當 A= "0"時。不可重複觸發。
- $V_0$  一 控制信號輸出端,由  $V_5$ 的上跳變沿觸發使  $V_0$ 從低電平跳變到高電平時為有效觸發。在輸出延遲時間  $T_x$ 之處和無  $V_5$ 上跳變時  $V_0$ 為低電平狀態。
- $RR_1RC_1$  輸出延遲時間  $T_X$ 的調節端。 $T_X \approx 49152R_1C_1$ 。
- $RR_2RC_2$  觸發封鎖時間  $T_1$  的調節端。 $T_1 \approx 24R_2C_2$ 。

我們先以圖 3 所示的不可重複觸發工作方式下的各點波形,來說明 BISS 0001 的工作過程。



### 晶寶半導體科技有限公司

BISS0001 PIR 紅外感應 IC

首先,由使用者根據實際需要,利用運算放大器  $OP_1$ 組成傳感信號預處理電路,將信號放大。然後綜合給運算放大器  $OP_2$ ,再進行第二級放大,同時將直流電位抬高為  $V_M$  ( $\approx 0.5 V_{DD}$ ) 後,送到由比較器  $COP_1$ 和  $COP_2$ 組成的雙向鑒幅器,檢出有效觸發信號  $V_S$ 。由於  $V_H \approx 0.7 V_{DD}$ 、 $V_L \approx 0.3 V_{DD}$ ,所以當  $V_{DD} = 5 V$  時,可有效地抑制 $\pm 1 V$  的雜訊干擾,提高系統的可靠性。 $COP_1$ 是一個條件比較器。當輸入電壓  $V_C < V_R (\approx 0.2 V_{DD})$  時, $COP_1$ 輸出為低電平封住了及閘  $U_2$ ,禁止觸發信號  $V_S$ 向下級傳遞;而當  $V_C > V_R$ 時, $COP_1$ 輸出為高電平,打開及閘  $U_2$ ,此時若有觸發信號  $V_S$ 的上跳變沿到來,則可啟動延遲時間計時器,同時  $V_S$ 端輸出為高電平,進入延時週期。當 A 端接 "0"電平時,在  $T_X$ 時間內任何  $V_2$ 的變化都被忽略,直至  $T_X$ 時間結束,即所謂不可重複觸發工作方式。當  $T_X$ 時間結束時, $V_2$ 下跳回低電平,同時啟動封鎖時間計時器而進入封鎖週期  $T_1$ 。在  $T_1$ 週期內,任何  $V_2$ 的變化都不能使  $V_0$ 為有效狀態。這一功能的設置,可有效抑制負載切換過程中產生的各種干擾。

下面再以圖 4 所示可重複觸發工作方式下各點的波形,來說明 BISS 0001 在此狀態下的工作過程。



在  $V_c$  = "0"、A = "0"期間, $V_5$ 不能觸發  $V_0$ 為有效狀態。在  $V_c$  = "1"、A = "1"時, $V_5$ 可重複觸發  $V_0$ 為有效狀態,並在  $T_x$ 週期內一直保持有效狀態。在  $T_x$ 時間內,只要有  $V_5$ 的上跳變,則  $V_0$ 將從  $V_5$ 上跳變時刻算起繼續延長一個  $T_x$ 週期 1 若  $V_5$ 保持 "1"狀態,則  $V_0$ 一直保持有效狀態;若  $V_5$ 保持為 "0"狀態,則在  $T_x$  週期結束後  $V_0$ 恢復為無效狀態,並且在封鎖時間  $T_1$ 時間內,任何  $V_5$ 的變化都不能觸發  $V_0$ 為有效狀態。

通過以上分析,我們已對 BISS0001 的電路結構和工作過程有了全面的瞭解,可以看出該器件的結構 設計新穎,功能強,可在廣闊的領域得到應用。

# 晶實半導體科技有限公司

BISS0001 PIR 紅外感應 IC

四、極限參數: (V<sub>ss</sub> = 0V)

電源電壓: -0.5V~ +6V

輸入電壓範圍: -0.5V~6V(V<sub>DD</sub> = 6V)

各引出端最大電流: ±10mA(V<sub>DD</sub> = 5V)

工作溫度: -10℃ ~ + 70℃

存放溫度: -65℃ ~ 150℃

### 五、 電氣參數(TA = 25℃ V<sub>ss</sub> = 0V)

| 符號                                    | <b>*                                    </b> | Was = 0V)                                   |               | 參數值   |      | ш Л. |
|---------------------------------------|----------------------------------------------|---------------------------------------------|---------------|-------|------|------|
|                                       |                                              |                                             |               | 最小    | 最大   | 單位   |
| $V_{\scriptscriptstyle DD}$           | 工作電壓範圍                                       |                                             |               | 3     | 5    | V    |
| ${ m I}_{	exttt{DD}}$                 | 工作電流                                         | 輸出空載                                        | $V_{DD} = 3V$ |       | 50   | uA   |
|                                       |                                              |                                             | $V_{DD} = 5V$ |       | 100  |      |
| $V_{os}$                              | 輸入失調電壓                                       | $V_{DD} = 5V$                               |               |       | 50   | mV   |
| $I_{0S}$                              | 輸入失調電流                                       | $V_{DD} = 5V$                               |               |       | 50   | nA   |
| $A_{ m VN}$                           | 開環電壓增益                                       | $V_{DD} = 5V R_L = 1.5M\Omega$              |               | 60    |      | dB   |
| CMRR                                  | 共模抑制比                                        | $V_{DD} = 5V R_L = 1.5M\Omega$              |               | 60    |      | dB   |
| $V_{\scriptscriptstyle YH}$           | 運放輸出高電平                                      | $V_{DD} = 5V$                               |               | 4. 25 |      | V    |
| $V_{\scriptscriptstyle{\mathrm{YL}}}$ | 運入輸出底電平                                      | R <sub>L</sub> = 500KΩ 接 1/2V <sub>DD</sub> |               |       | 0.75 | V    |
| $V_{\scriptscriptstyle KH}$           | V <sub>c</sub> 端輸入高電平                        | $V_{RF} = V_{DD} = 5V$                      |               | 1.1   | -    | V    |
| $V_{\scriptscriptstyle RL}$           | V <sub>c</sub> 端輸入低電平                        |                                             |               |       | 0.9  | V    |
| $V_{\mathrm{OH}}$                     | V <sub>0</sub> 端輸出高電平                        | $V_{DD} = 5V I_{OH} = 0.5 \text{mA}$        |               | 4     |      | V    |
| V <sub>OL</sub>                       | V <sub>o</sub> 端輸出低電平                        | $V_{DD} = 5V I_{OI} = 0.1 mA$               |               |       | 0. 4 | V    |
| V <sub>AH</sub>                       | A 端輸入高電平                                     | $V_{DD} = 5V$                               |               | 3. 5  |      | V    |
| $V_{\mathtt{AL}}$                     | A 端輸入低電平                                     | $V_{DD} = 5V$                               |               |       | 1.5  | V    |

## 晶寶半導體科技有限公司

BISS0001 PIR 紅外感應 IC

#### 六、 應用電路圖

圖 5 所示為 BISS 0001 應用於熱釋電紅外開關的電路原理圖。



圖 5

熱釋電紅外開關是 BISS 0001 配以熱釋電紅外感測器和少量外接元器件構成的被動式紅外開關。它能自動快速開啟各類白熾燈、螢光燈、蜂鳴器、自動門、電風扇、烘乾機和自動洗手池等裝置,是一種高技術產品。特別適用於企業、賓館、商場、庫房及家庭的過道、走廊等敏感區域,或用於安全區域的自動燈光、照明和報警系統。

熱釋電紅外感測器是一種新型敏感元件、它是由高熱電係數材料,配以濾光鏡片和阻抗匹配用場效應 管組成。它能以非接觸方式檢測出來自人體發出的紅外輻射,將其轉化成電信號輸出,並可有效抑制人體 輻射波長以外的干擾輻射。如陽光、燈光及其反射燈。

此例中 BISS 0001 的運算放大器 0P1 作為熱釋電紅外感測器的前置放大,由 C3 耦全給運算放大器 0P2 進行第二級放大。再經由電壓比較器 COP1 和 COP2 構成的雙向鑒幅器處理後,檢出有效觸發信號去啟動延遲時間計時器。輸出信號經電晶體 T1、驅動繼電器去接通負載。R3 為光敏電阻,用來檢測環境照明度。當作為照明控制時,若環境較明亮,R3 的電阻值會降低,使 9 腳輸入為低電平而封鎖觸發信號,節省照明用電。若應用於其他方面,則可用遮光物將其單住而不受環境影響。SW1 是工作方式選擇開關,當 SW1 與 1 端連通時,紅外開關處於可重複觸發工作方式;當 SW1 與 2 端連通時,紅外開關則處於不可重複觸發工作方式。