直流辉光等离子实验实验报告

何金铭 PB21020660

实验目的 1

- 1. 观察直流低气压辉光等离子体的放电现象,通过对辉光等离子体的伏安特性曲线的测量,理解 辉光等离子体的电学特性;
- 2. 理解直流电气击穿的机制;
- 3. 验证帕邢定律;
- 4. 采用 Langmuir 双探针法测量等离子体参数

2 实验原理

2.1 等离子体及其物理特性及主要参量

- 一般用来描述等离子体的参数有:
- 1. 电子温度 T_e 。它是等离子体的一个主要参量,因为在等离子体中电子碰撞电离是主要的,而电 子碰撞电离与电子的能量有直接关系,即与电子温度相关联。
- 2. 带电粒子密度。电子密度为 n_e , 正离子密度为 n_i , 在等离子体中 $n_e \approx n_i$
- 3. 轴向电场强度 E_L 。表征为维持等离子体的存在所需的能量
- 4. 电子平均动能 E_e
- 5. 空间电位分布

2.2 气体放电

气体放电可以采用多种能量激励形式,如直流、微波、射频等能量形式。其中直流放电因为结 构简单、成本低而受到广泛应用。

低气压放电可分为三个阶段: 暗放电、辉光放电和电弧放电。其中各个阶段的放电在不同的应 用领域有广泛的应用。

图 1: 气体放电伏安特性曲线: AB 段—非自持放电本底电离区; BC 段—非自持放电饱和区; CE 段—汤森放电区; DE 段—电晕放电区; EF 段—前期辉光放电区; FG 段—正常辉光放电区; GH 段—异常辉光放电区; HK 段—弧光放电区

2.3 帕邢定律

在低气压直流放电中,气体的击穿电压由下式决定:

$$V_b = \frac{Cpd}{\ln Apd/\ln 1 + \frac{1}{\gamma}} = f(pd) \tag{1}$$

其中 γ 为二次电子发射系数,常数 A、C 和气体种类有关的常数,p 为压强,d 为阴阳极间距离, V_b 为击穿电压。

上式表明某一特定气体的击穿电压仅仅依赖于 pd 的乘积,这一现象被称为帕邢 (Paschen) 定律。

2.4 郎缪尔 (Langmuir) 探针

探针是封入等离子体中的一个小的金属电极(其形状可以是平板形、圆柱形、球形)。以放电管的阳极或阴极作为参考点,改变探针电位,测出相应的探针电流,得到探针电流与其电位之间的关系,即探针伏安特性曲线。

经过复杂且不重要的运算,可以得到以下结论

$$T_e = -\frac{e}{k} \frac{I_{i01} I_{i02}}{I_{i01} + I_{i02}} \left(\frac{dV_D}{dI_D} \Big|_{V_D = 0} \right)$$
 (2)

其中 I_{i01} , I_{i02} 分别为是探针 1、2 的离子饱和电流

$$n_e = \frac{4I_{e0}}{eS_e} \sqrt{\frac{\pi m_e}{8kT_e}} \tag{3}$$

其中 $I_{e0} = 0.05A, S_e = 0.04cm^2$

利用实验数据绘制的双探针 V-I 特性曲线同理论曲线会有很大差距, 绘制 V-I 特性曲线时要有 足够的数据量,斜率 $\frac{dV_D}{dI_D}$ 取值要注意是在 $V_D=0$ 附近,饱和电流 I_{i0} 一般用实验曲线中 I_{i01} 和 I_{i02} 延长线与纵轴的交点确定。

3 实验仪器

DH2006 型直流辉光等离子体实验装置

原始实验数据

电压/V	电流/mA
803	90
782	85
759	80
738	75
714	70
688	65
663	60
638	55
612	50
588	45
564	40
553	35
530	30
509	25
485	20
457	15
420	10
370	5
298	0

电压/V	电流/mA
580	90
567	85
556	80
545	75
532	70
520	65
508	60
496	55
484	50
473	45
462	40
452	35
442	30
429	25
413	20
394	15
370	10
335	5
306	0

(a) P=20 Pa

(b) P = 40 Pa

表 1: 直流低压放电的伏安数据记录

压强 P/Pa	10	20	30	40	50
电压 U/V	365	409	430	432	460

表 2: 不同气压下气体击穿电压的记录表

电压 U/V	电流 I /µA	电压 U/V	电流 I /µA
0	0	0	0
1	0.63	-1	-0.63
2	1.15	-2	-1.10
3	1.55	-3	-1.45
4	1.77	-4	-1.66
5	1.98	-5	-1.83
6	2.15	-6	-1.92
7	2.25	-7	-2.06
8	2.33	-8	-2.15
9	2.42	-9	-2.25
10	2.50	-10	-2.30
20	2.95	-20	-2.75
30	3.26	-30	-3.05
40	3.55	-40	-3.38
50	3.92	-50	-3.63
60	4.27	-60	-4.02
70	4.42	-70	-4.22
80	4.67	-80	-4.42
90	5.13	-90	-4.88
98.8	5.43	-98.8	-5.20

表 3: 朗缪尔双探针法实验的伏安数据记录 $(P_{gas}=20pa,P=475V\times 18.2mA=8.645W)$

5 数据处理与数据分析

5.1 直流低压放电现象

5.1.1 数据处理

图 2: 直流低压气体放电的伏安特性曲线 (P = 20 pa)

图 3: 直流低压气体放电的伏安特性曲线 (P = 40 pa)

以上分别为不同气压下的直流低压气体放电的伏安特性曲线,下面将它们在同一个图中画出:

I-U relationship of DC low pressure discharge

图 4: 直流低压气体放电的伏安特性曲线

5.1.2 数据分析

实验现象为:

- 1. 当压强恒定的情况下,当电压差不多超过 300V 时,开始产生电流,且随着电压的增大,电流 也逐渐增大。
- 2. 对于相同的电压, 在气压更大的时候, 击穿电流也会变的更大。

分析现象可能的原因有:

- 1. 当电压 U=300V 左右为气体的击穿电压,发生从暗放电到辉光放电的转变。其中对于 P=20pa 时,U=298V;对于 P=40pa 时,U=306V。由于实验的误差较大(肉眼观察现象),所以最终 取 U=300V 为击穿电压。
- 2. 对于不同的气压,伏安特性曲线也不一样。在不同的气压下,气体的击穿电压相差不大,由于要产生气体的电离,电子需要到达一定的能量,对于不同气压下的气体来说,这个能量的大小是几乎确定的;在气压高的情况下 $K = \frac{d\,I}{d\,U}$ 更大,即伏安特性曲线更陡峭。可能是由于在气压高的时候,气体分子的分子数密度 n 更大,导致更加容易发生电离,气体的导电能力变强,使得 $\frac{d\,I}{d\,U}$ 变大。

5.2 气体击穿电压的测定

U-P relationship(Gas breakdown voltage under different pressure)

图 5: 气体于不同击穿电压处的拟合曲线

观察发现,随着气压的增强,气体的击穿电压也逐渐增加。说明帕邢定律中的 $p 与 V_0$ 呈正相关,且其线性性不是特别良好,符合帕邢定律。

5.3 郎缪尔双探针法测电子温度和等离子体密度

I-U relationship of Langmuir double probe method

图 6: 气体于不同击穿电压处的拟合曲线

得到的拟合曲线方程分别为:

$$I_1(\mu A) = 0.527U(V) + 0.0214 \tag{4}$$

$$I_2(\mu A) = 0.0315U(V) + 2.281 \tag{5}$$

$$I_3(\mu A) = 0.0310U(V) - 2.086 \tag{6}$$

其中 I_1 , I_2 , I_3 分别对应上图中的 fitted data 1, fitted data 2, fitted data 3; 分别取的是中心的 7 个电和旁边的各 10 个点。可得结果:

$$\frac{dV_D}{dI_D}\Big|_{V_D=0} = \frac{1}{\frac{dI_D}{dV_D}\Big|_{V_D=0}} = \frac{1}{0.527\frac{\mu A}{V}} = 1.898 \times 10^6 (V/A) \tag{7}$$

$$I_{i01} = 2.281\mu A, \quad I_{i02} = -2.086\mu A, \quad |I_{i02}| = 2.086\mu A$$
 (8)

由电子温度计算公式可得:

$$T_{e} = -\frac{e}{k} \frac{I_{i01}I_{i02}}{I_{i01} + I_{i02}} \left(\frac{dV_{D}}{dI_{D}}\Big|_{V_{D}=0}\right)$$

$$= \frac{1.602 \times 10^{-19}C}{1.381 \times 10^{-23}J/K} \frac{2.281 \cdot 2.086 \cdot (10^{-6}A)^{2}}{(2.281 + 2.086) \cdot (10^{-6}A)} \cdot \frac{1.898 \times 10^{6}V}{A}$$

$$= 2.3998 \times 10^{4}K$$
(9)

可计算得电子的数密度为:

$$n_e = \frac{4I_{e0}}{eS_e} \sqrt{\frac{\pi m_e}{8kT_e}} = \frac{4 \cdot 0.05A}{e \cdot 0.04cm^2} \sqrt{\frac{\pi \cdot 0.91 \cdot 10^{-30}kg}{8 \cdot \frac{23998}{11600}eV}} = 3.240 \times 10^{11}cm^{-3}$$
(10)

其中,取 $I_{e0} = 0.05A, S_e = 0.04cm^2$

综上,于 $P_{gas}=20pa, P=8.645W$ 时,电子的温度 $T_e=2.3998\times 10^4 K$,电子的数密度为 $n_e=3.24\times 10^{11}cm^{-3}$

6 实验总结和误差分析

6.1 误差分析

由于实验装置是集成的,无法分析其结构中的误差,只能给出一些测量误差和其它可能的误差。

- 1. 在直流低压放电的实验中,用肉眼难以区分辉光消失的情况,且变化回暗放电的时候电压示数变化很快,故导致击穿电压难以确定。
- 2. 在气体击穿的测定实验中,由于在击穿时刻,电压示数变化很快,且电压示数本身就存在延迟, 故记录的数据存在一些误差。
- 3. 在朗缪尔双探针法实验中,由于每次测量时的电流的示数会来回变化,虽然利用了估读,但还是存在误差。

6.2 实验总结

- 1. 在直流低压放电实验中,测得气体的击穿电压约为 300V,且随着气压的变大,伏安特性会变 得更陡峭 $\left(\frac{dI}{dU}\right)$ 会变得更大)
- 2. 在帕邢定律中, P 与 V₆ 呈正相关
- 3. 计算得: 于 $P_{gas} = 20pa, P = 8.645W$ 时, 电子的温度 $T_e = 2.3998 \times 10^4 K$, 电子的数密度为 $n_e = 3.24 \times 10^{11} cm^{-3}$

思考题 7

7.1 暗放电区电流的测量应注意什么问题?

由于暗放电时,其击穿电流的范围为 10^{-5} - $10^{-10}A$,且由于升降电压方向不同,会导致不同的 物理情况,所以取测量范围为 10^{-7} - 10^{-10} 时测量的结果比较精确。由于其电流较小,故直接测量误 差会很大,通常使用电压求电流。且测量电路的阻抗应该尽可能地大,以避免因电路负载过重而影 响测量结果。

7.2 阴极与阳极显著的热效应差别的原因?

在直流辉光放电中, 电子从阴极发射出来, 在电场的作用下加速, 最终撞击到阳极上。在这个过 程中,电子会失去一部分能量,这些能量会以热的形式释放出来。由于阴极表面的电子密度高,因 此阴极受到的电子撞击更加频繁和强烈、产生的热效应也更显著。

另一方面,阳极表面的电子密度较低,因此阳极受到的电子撞击比较稀疏和弱,产生的热效应 也相对较小,因此它能够更好地承受电子撞击产生的热效应。

7.3 磁场和工作气压对辉光放电中的 V-A 特性曲线有何影响?其影响机制是什么?(选 做)

- 1. 加入磁场后, 电子还会受狭义上的洛伦兹力的作用。加入磁场可以改变电子的运动轨迹和速度, 从而影响电子的能量损失和电流密度分布。当磁场增加时,电子的运动轨迹变得更加弯曲,电 子与气体分子的碰撞概率也增加,因此电子在单位长度内的能量损失增加,电流密度也会随之 增加。这会导致 V-A 特性曲线向上弯曲,并且在较低电压下就可以观察到较高的电流。
- 2. 气压的变化会影响气体的电离和激发过程,从而影响电流密度和电压的分布。当气压增加时, 气体分子的密度增加, 电离和激发过程的概率也增加, 因此电子在单位长度内的能量损失也会 增加, 电流密度也会随之增加。这会导致 V-A 特性曲线向上弯曲, 并且在较低电压下就可以 观察到较高的电流。

USTC 2023.4.24