

Chapter 1 Introduction

Java Software Solutions
Foundations of Program Design
8th Edition

John Lewis William Loftus

edited BPK 08/30/2016

Focus of the Course

- Object-Oriented Software Development
 - Java programming language
 - program design, implementation, and testing
 - object-oriented concepts
 - classes
 - objects
 - encapsulation
 - inheritance
 - polymorphism
 - graphical user interfaces are in CS 152
 - Skip pages in text with yellow edges

Introduction

- Chapter 1 focuses on:
 - components of a computer
 - how computers store and manipulate information
 - computer networks (read on your own)
 - the Internet and the World Wide Web (read on your own)
 - programming and programming languages
 - an introduction to Java
 - an overview of object-oriented concepts

Outline

Computer Processing

Hardware Components

ONE Networks

The Java Programming Language

Program Development

Object-Oriented Programming

Hardware and Software

Hardware

- the physical, tangible parts of a computer
- keyboard, monitor, memory, disks, wires, chips, etc.

Software

- programs and data
 - both are encoded as bit patterns stored in memory

Memory

Memory refers to the hardware devices used to store information.

'Storage' and 'memory' are synonymous.

Almost always, information is encoded as **bits** (ones and zeros).

Two categories of memory:

Main memory

 closely connected to the processor, not permanent, fast access

Secondary memory — permanent (unless explicitly erased), large capacity, slow access

THE MEMORY HIERARCHY

PROCESSOR	PROCESSOR REGISTER	SUPER FAST SUPER EXPENSIVE TINY CAPACITY
	CPU CACHE LEVEL 1 (L1) CACHE LEVEL 2 (L2) CACHE LEVEL 3 (L3) CACHE	FASTER EXPENSIVE SMALL CAPACITY
SD-RAM DDR-SDRAM	PHYSICAL MEMORY RANDOM ACCESS MEMORY (RAM)	PRICED REASONABLY AVERAGE CAPACITY
SOLID STATE DRIVES	SOLID STATE MEMORY NON-VOLATILE FLASH-BASED MEMORY	AVERAGE SPEED PRICED REASONABLY AVERAGE CAPACITY
MECHANICAL HARD DRIVES	VIRTUAL MEMORY FILE-BASED MEMORY	SLOW CHEAP LARGE CAPCITY

CPU and Main Memory

Primary storage area for programs and data that are in active use

Implemented using RAM chips

Input / Output Devices

Secondary Memory Devices

Software Categories

- Operating System
 - controls all machine activities
 - provides the user interface to the computer
 - manages resources such as the CPU and memory
 - Windows, Mac OS, Unix, Linux, Android
- Application program
 - term for any other kind of software
 - word processors, missile control systems, games, web browsers, music & video
- Most operating systems and application programs have a graphical user interface (GUI)

Analog vs. Digital

There are two basic ways to store and manage data:

Analog

- continuous, in direct proportion to the data represented
- music on a vinyl record album a needle rides on ridges in the grooves that are directly proportional to the voltages sent to the speaker

Digital

- the information is broken down into pieces, and each piece is represented separately
- sampling record discrete values of the analog representation
- music on a compact disc the disc stores numbers representing specific voltage levels sampled at specific times

Analog Information

Sampling

Digital Information

- Computers store all information digitally:
 - numbers
 - text
 - graphics and images
 - audio
 - video
 - program instructions
- Information is digitized broken down into pieces and represented as patterns of bits

Representing Text Digitally

- For example, every character is stored as a number, including spaces, digits, and punctuation
- Corresponding upper and lower case letters are separate characters

Binary Patterns

- Once information has been digitized, it is represented and stored in memory using binary patterns
- A single binary digit (0 or 1) is called a bit
 - like a light bulb that is either on (1) or off (0)
- Patterns of bits are used to store values
- bit patterns are often called "binary numbers" (even when they are not being used for numbers)

Bit Patterns

<u>1 bit</u>	2 bits	<u>3 bits</u>	<u>4 b</u>	<u>its</u>
0	00	000	0000	1000
1	01	001	0001	1001
	10	010	0010	1010
	11	011	0011	1011
		100	0100	1100
		101	0101	1101
		110	0110	1110
		111	0111	1111

Each additional bit doubles the number of possible patterns

Bit Patterns

- Each pattern can represent a particular item
- There are 2^N patterns of N bits
- Therefore, N bits are needed to represent 2^N unique items

How many items can be represented by

```
1 bit ? 2^1 = 2 items

2 bits ? 2^2 = 4 items

3 bits ? 2^3 = 8 items

4 bits ? 2^4 = 16 items

5 bits ? 2^5 = 32 items
```

Puzzle

How many bits would you need to represent each of the 50 United States using a unique pattern of bits?

Puzzle

How many bits would you need to represent each of the 50 United States using a unique pattern of bits?

Five bits wouldn't be enough, because 2⁵ is 32.

Six bits would give us 64 patterns, and some wouldn't be used.

000000 Alabama
000001 Alaska
000010 Arizona
000011 Arkansas
000100 California
000101 Colorado

etc.

Outline

Computer Processing

Hardware Components

Output Networks

The Java Programming Language

Program Development

Object-Oriented Programming

A Computer Specification

- Consider the following specification for a personal computer:
 - 3.07 GHz Intel Core i7 processor
 - 4 GB RAM
 - 750 GB Hard Disk
 - 16x Blu-ray / HD DVD-ROM & 16x DVD+R DVD
 Burner
 - 17" Flat Screen Video Display with 1280 x 1024 resolution
 - Network Card

Computer Components

Memory

Storing Information

Storage Capacity

- Every memory device has a storage capacity, indicating the number of bytes it can hold
- Capacities are expressed in various units:

Unit	Symbol	Number of Bytes
kilobyte	KB	$2^{10} = 1024$
megabyte	MB	2 ²⁰ (over one million)
gigabyte	GB	2 ³⁰ (over one billion)
terabyte	ТВ	2 ⁴⁰ (over one trillion)
petabyte	PB	2 ⁵⁰ (a whole bunch)

Memory

- Main memory is volatile stored information is lost when electric power is removed
- Secondary memory devices are nonvolatile
- Main memory and disks are direct access devices information can be reached directly
- The terms direct access and random access mean the same thing
- A magnetic tape is a sequential access device since its data is arranged in a linear order - you must get by the intervening data in order to access other information

Hard Disk Drive

RAM vs. ROM

- RAM Random Access Memory (direct access)
- ROM Read-Only Memory (direct access)
- The terms RAM and main memory are basically interchangeable
- ROM could be a set of memory chips, or a separate device, such as a CD ROM
- Both RAM and ROM are random (direct) access devices
- RAM probably should be called Read-Write Memory

© Compact Discs

- A CD-ROM is portable read-only memory
- A microscopic pit on a CD represents a binary 1 and a smooth area represents a binary 0
- A low-intensity laser reflects strongly from a smooth area and weakly from a pit
- A CD-Recordable (CD-R) drive can be used to write information to a CD once
- A CD-Rewritable (CD-RW) can be erased and reused
- The speed of a CD drive indicates how fast (max) it can read and write information to a CD

© DVDs

- A DVD is the same physical size as a CD, but can store much more information
- The format of a DVD stores more bits per square inch
- A CD can store 650 MB, while a standard DVD can store 4.7 GB
 - A double sided DVD can store 9.4 GB
 - Other advanced techniques can bring the capacity up to 17.0 GB
- Like CDs, there are DVD-R and DVD-RW discs

The Central Processing Unit

- A CPU on a chip called a microprocessor
- It continuously follows the fetch-decode-execute cycle (the machine cycle):

Retrieve an instruction from main memory

The Central Processing Unit

The Central Processing Unit

- The speed of a CPU is controlled by the system clock
 - the clock can't go faster than the electronics can handle
 - speed of signals in copper partly determines this
- The system clock generates an electronic pulse at regular intervals
 - The speed is usually measured in gigahertz (GHz)
- The pulses coordinate the activities of the CPU
 - like a conductor's baton with an orchestra

Wonitor

- The size of a monitor (17") is measured diagonally, like a television screen
- A monitor has a certain maximum resolution, indicating the number of picture elements, called pixels, that it can display (such as 1280 by 1024)
- High resolution (more pixels) produces sharper pictures

Outline

Computer Processing

Hardware Components

The Java Programming Language

Program Development

Object-Oriented Programming

Output Networks

- A network is two or more computers that are connected so that data and resources can be shared
- Most computers are connected to some kind of network
- Each computer has its own *network address*, which uniquely identifies it among the others
- A file server is a network computer dedicated to storing programs and data that are shared among network users

Network Connections

- Each computer in a network could be directly connected to every other computer in the network
- These are called point-to-point connections

Adding a computer requires a new communication line for each computer already in the network

This technique is not practical for more than a few close machines

Network Connections

- Most networks share a single communication line
- Adding a new computer to the network is relatively easy

Network traffic must take turns using the line, which introduces delays Often information is broken down in parts, called *packets*, which are sent to the receiving machine and then reassembled

© A Computer Network

© Local-Area Networks

A Local-Area Network
(LAN) covers a small
distance and a small
number of computers

A LAN often connects the machines in a single room or building

Wide-Area Networks

The Internet

- The Internet is a WAN which spans the planet
- The word Internet comes from the term internetworking
- It started as a United States government project, sponsored by the Advanced Research Projects Agency (ARPA)
 - originally it was called the ARPANET
- The Internet grew quickly throughout the 1980s and 90s

© TCP/IP

- A protocol is a set of rules that determine how things communicate with each other
- The software that manages Internet communication follows a suite of protocols called TCP/IP
- The Internet Protocol (IP) determines the format of the information as it is transferred
- The Transmission Control Protocol (TCP) dictates how messages are reassembled and handles lost information

UP and Internet Addresses

 Each computer on the Internet has a unique IP address, such as:

 Most computers also have a unique Internet name, which also is referred to as an Internet address:

```
hector.vt.edu kant.gestalt-llc.com
```

- The first part indicates a particular computer (hector)
- The rest is the domain name, indicating the organization (vt.edu)

Domain Names

 The last part of a domain name, called a top-level domain (TLD), supposedly indicates the type of organization:

edu educational institution

com commercial entity

org non-profit organization

net network-based organization

Sometimes the suffix indicates the country:

uk United Kingdom

au Australia

ca Canada

se Sweden

Additional TLDs have been added:

biz, info, tv, name

Domain Names

- A domain name can have several parts
- Unique domain names mean that multiple sites can have individual computers with the same local name
- When used, an Internet address is translated to an IP address by software called the *Domain Name* System (DNS)
- There is <u>no</u> one-to-one correspondence between the sections of an IP address and the sections of an Internet address

The World Wide Web

- The World Wide Web allows many different types of information to be accessed using a common interface
- A browser is a program which accesses network resources and presents them
 - Popular browsers: Internet Explorer, Safari, Firefox
- Resources presented include:
 - text, graphics, video, sound, audio, executable programs
- A Web document usually contains links to other Web documents, creating a hypermedia environment
- The term Web comes from the fact that information is not organized in a linear fashion

The World Wide Web

- Web documents are often defined using the HyperText Markup Language (HTML)
- Information on the Web is found using a Uniform Resource Locator (URL):

```
http://www.cnn.com
http://www.vt.edu/student_life/index.html
ftp://java.sun.com/applets/animation.zip
```

 A URL specifies a protocol (http), a domain, and possibly specific documents

Outline

Computer Processing

Hardware Components

Networks

The Java Programming Language

Program Development

Object-Oriented Programming

Java

- The Java programming language was created by Sun Microsystems, Inc.
- It was introduced in 1995 and it's popularity grew quickly
- A programming language is a formal language:
 - symbols used in the language and syntax rules are exactly specified
- A programming language employs a set of rules that dictate how the words and symbols can be put together to form valid program statements

Java Program Structure

- In Java:
 - A program is made up of one or more classes
 - A class contains one or more methods
 - A method contains program statements
- A Java program always contains a class that contains a method called main
- Only one class can have main.
- See Lincoln.java

```
//***********************
  Lincoln.java Author: Lewis/Loftus
//
  Demonstrates the basic structure of a Java application.
//***********************
public class Lincoln
  //----
  // Prints a presidential quote.
                    _____
  public static void main (String[] args)
    System.out.println("A quote by Abraham Lincoln:");
    System.out.println("Whatever you are, be a good one.");
```

Output

```
//******
                                                 *****
         A quote by Abraham Lincoln:
   Lincol
         Whatever you are, be a good one.
   Demons
//***********************
public class Lincoln
  // Prints a presidential quote.
  public static void main (String[] args)
     System.out.println ("A quote by Abraham Lincoln:");
     System.out.println ("Whatever you are, be a good one.");
```

Java Program Structure

Java Program Structure

```
comments about the class
public class MyProgram
      comments about the method
   public static void main( String[] args )
                                  method header
           method body
```

Comments

- Comments explain the purpose of the program and describe processing steps
- They do not affect how a program works
- Java comments can take three forms:

```
// this comment runs to the end of the line
/* this comment runs to the terminating
    symbol, even across line breaks */
/** this is a javadoc comment */
```

Identifiers

- Identifiers are the names for things in a program
- A Java identifier can be made up of letters, digits, the underscore character _ , and the dollar sign \$, but no spaces or other punctuation.
- Identifiers cannot begin with a digit
- Java is case sensitive: Total, total, and TOTAL are different identifiers
- By convention, programmers use different case styles for different types of identifiers, such as
 - title case for class names Lincoln
 - upper case for constants MAXIMUM

Identifiers

- Sometimes the programmer chooses the identifier (such as Lincoln)
- Sometimes we are using another programmer's code, so use the identifiers in it (such as println)
- Special words called reserved words already have a meaning in the language
 - A reserved word cannot be used in any other way

Reserved Words

The Java reserved words:

abstract	else
assert	enum
boolean	extends
break	false
byte	final
case	finally
catch	float
char	for
class	goto
const	if
continue	implements
default	import
do	instanceof
double	int

switch
synchronized
this
throw
throws
transient
true
try
void
volatile
while

Quick Check

Which of the following are valid Java identifiers?

```
grade
quizGrade
NetworkConnection
frame2
3rdTestScore
MAXIMUM
MIN CAPACITY
student#
Shelves1&2
```

Quick Check

Which of the following are valid Java identifiers?

grade Valid

quizGrade Valid

NetworkConnection Valid

frame2 Valid

3rdTestScore Invalid - cannot begin with a digit

MAXIMUM Valid

MIN_CAPACITY Valid

student# Invalid - cannot contain the '#' character

Shelves1&2 Invalid – cannot contain the '&' character

White Space

- Spaces, blank lines, and tabs are called white space
- White space is used to separate words and symbols in a program
- Extra white space is ignored

Program Formatting

- A valid Java program can be formatted many ways
- Programs should be formatted to enhance readability, using consistent indentation
- See Lincoln2.java and Lincoln3.java

```
//*********************
   Lincoln3.java Author: Lewis/Loftus
//
   Demonstrates the basic structure of a Java application.
//**********************
      public class
Lincoln3
public static void main (String
[] args)
    System.out.
println ("A quote by Abraham Lincoln:"
    System.out.println ("Whatever you are, be a good one.");
```

Outline

Computer Processing

Hardware Components

Networks

The Java Programming Language

Program Development

Object-Oriented Programming

Program Development

- Developing a program involves:
 - writing the program in a specific programming language (such as Java) using a text editor
 - source code (source file)
 - translating the program into a form that the computer can execute
 - ultimately, needs to be instructions that the processor can perform electronically
 - machine code (for Java: byte code)
 - see slide 31
 - finding and fixing errors

Programming Languages

- Each type of CPU executes only one particular machine language
- A program must be translated into machine language before it can be executed
- A compiler is a software tool which translates source code into a specific target language
- Sometimes, that target language is the machine language for a particular CPU type
- The Java approach is somewhat different

Java Translation

- The Java compiler translates Java source code into a special representation called bytecode
- Java bytecode is not the machine language for any traditional CPU
- Bytecode is executed by the Java Virtual Machine (JVM)
 - a CPU implemented in software
- Therefore Java bytecode is not tied to any particular machine
- Java is considered to be architecture-neutral

Java Translation

Development Environments

- There are many programs that support the development of Java software, including:
 - Java Development Kit (JDK)
 - Eclipse
 - NetBeans
 - BlueJ (what we will mostly use)
- Details differ, but the basic compilation and execution process is essentially the same

Syntax and Semantics

- The syntax rules of a language define how we can put together symbols, reserved words, and identifiers to make a valid program
- The semantics of a program statement define what that statement means (its purpose or role in a program)
- A program that is syntactically correct is not necessarily logically (semantically) correct
 - Colorless green ideas sleep furiously.

Errors

- A program can have three types of errors
- The compiler will find syntax errors and other basic problems (compile-time errors)
 - If compile-time errors exist, an executable version of the program is not created
- A problem can occur during program execution, such as trying to divide by zero, which causes a program to terminate abnormally (run-time errors)
 - Sometimes called a "bug"
- A program may run, but produce incorrect results, perhaps using an incorrect formula (*logical errors*)
 - Also called a "bug"

Basic Program Development

Outline

Computer Processing

Hardware Components

Networks

The Java Programming Language

Program Development

Object-Oriented Programming

Problem Solving

- The key to designing a solution is breaking it down into manageable pieces
- An object-oriented approach lends itself to this kind of solution decomposition
- Our programs have pieces called objects and classes

Object-Oriented Programming

- A software object is a fundamental piece of a Java program
- Objects can represent real-world entities
 - an object might represent a particular employee in a company
 - an object might represent a dragon in a game
- A program might have dozens (or thousands) of objects

Objects

- An object has:
 - statedescriptive characteristics
 - behaviors what it can do (or what can be done to it)
- The state of a bank account includes its account number and its current balance
- The behaviors associated with a bank account include the ability to make deposits and withdrawals
- The behavior of an object might change its state

Classes

- An object is described by a class
- A class is the "blueprint" of an object
- A class represents a concept, and an object is an actual instance of that concept
- Many objects can be created from the same class
 - lots of bank accounts
 - lots of dragons

Class = Blueprint

 One blueprint to create several similar, but different, houses:

Objects and Classes

A class (the concept)

Bank Account

Multiple objects from the same class

An object (the realization)

John's Bank Account Balance: \$5,257

Bill's Bank Account Balance: \$1,245,069

Mary's Bank Account Balance: \$16,833

Inheritance

- One class can be used to derive another via inheritance
- Classes can be organized into hierarchies

Summary

- Chapter 1 focused on:
 - components of a computer
 - how those components interact
 - how computers store and manipulate information
 - computer networks
 - the Internet and the World Wide Web
 - programming and programming languages
 - an introduction to Java
 - an overview of object-oriented concepts