## Konseptuelle spørsmål:

- **Q8.1** Hvorfor ville du observere et rent rotasjonsspektrum i mikrobølgeområdet, men et rotasjons-vibrasjonsspektrum i infrarødt område
- **Q8.2** Faste stoffer utvider seg generelt når temperaturen øker. En slik utvidelse skyldes en økning i bindingslengden mellom tilstøtende atomer ettersom den vibrasjonelle amplituden øker. Vil et harmonisk potensial føre til termisk ekspansjon? Vil et Morse-potensial føre til termisk ekspansjon?
- **Q8.3** Hvordan er det mulig å observere vibrasjonelle overganger i Raman-spektroskopi ved bruk av lasere med synlig lys, der fotonenergien er mye større enn avstanden mellom vibrasjonsenergiene?
- Q8.12 Hva er forskjellen mellom et permanent og et dynamisk dipolmoment?
- Q8.6 Hva er forskjellen mellom overgangsdipolmomentet og det dynamiske dipolmomentet?
- **Q8.7** Nitrogen og oksygen absorberer ikke infrarød stråling og er derfor ikke drivhusgasser. Forklar hvorfor dette er tilfellet. Dvs. forklar både hvorfor de ikke absorberer IR-stråling og hvorfor dette er relevant for drivhuseffekten.
- **Q8.9** Hvilken egenskap ved Morse-potensialet gjør det egnet for å modellere dissosiasjon av et diatomisk molekyl?
- **Q8.10** Hvis rotasjonsnivåene til et diatomisk molekyl var jevnt fordelt og utvalgregelen forble uendret, hvordan ville utseendet til det rotasjons-vibrasjonelle spekteret i Figur 8.17 endres?
- **Q8.13** Hva er forklaringen på fraværet av en topp i det rotasjons-vibrasjonelle spekteret nær 3000 cm<sup>-1</sup> i Figur 8.17?
- **Q8.16** Kvadratet av flere vibrasjonelle energiegentilstander er vist overlagt på en Morsepotensial i den medfølgende figuren. Tildel kvantetall til de viste nivåene. Forklar forskjellene i formen på egentilstandene sammenlignet med de for en harmonisk potensial.
- **Q8.22** Sett følgende molekyler i økende rekkefølge fra laveste til høyeste vibrasjonelle energinivå: H<sub>2</sub>, HD, D<sub>2</sub>. Forklar din begrunnelse.
- Q8.21 Tenk på et vibrasjonelt energinivå for et diatomisk molekyl beskrevet av potensialfunksjonen

$$V(x)=rac{(x-x_e)^2}{2}$$

Avstanden mellom de to klassiske snupunktene der den horisontale linjen som representerer energinivået krysser potensialfunksjonen, er et mål på den vibrasjonelle amplituden. Angi hvordan denne vibrasjonelle amplituden varierer hvis:

- a. Likevektsbindingslengden  $x_e$  økes mens kvantetallet n og molekylets reduserte masse  $\mu$  forblir konstant.
- b. Kvantetallet n økes mens likevektsbindingslengden  $x_e$  og molekylets reduserte masse  $\mu$  forblir konstant.
- c. Molekylets reduserte masse  $\mu$  økes mens kvantetallet n og likevektsbindingslengden  $x_e$  forblir konstant.

## Regneoppgaver

**P8.1** Molekylet  $^1\mathrm{H}^{19}\mathrm{F}$  kan beskrives ved et Morse-potensial med  $D_e=9.05\times 10^{-19}$  J. Kraftkonstanten k for dette molekylet er 966 N m $^{-1}$  og  $\nu=1.24\times 10^{14}$  s $^{-1}$ .

• a. Beregn de fire laveste energinivåene for en Morse-potensial ved å bruke formelen

$$E_n = h
u\left(n+rac{1}{2}
ight) - rac{h^2
u^2}{4D_e}igg(n+rac{1}{2}igg)^2$$

• Beregn grunnfrekvensen  $\nu_0$  som tilsvarer overgangen  $n=0 \to n=1$  og frekvensene til de to første overtonevibrasjonene. Hvor stor ville den relative feilen være dersom du antar at de to første overtonefrekvensene er  $2\nu_0$  og  $3\nu_0$ ?

**P8.2** Det infrarøde spekteret til <sup>127</sup>I<sup>79</sup>Br har en intens linje ved 268,4 cm<sup>-1</sup>. Beregn kraftkonstanten og vibrasjonsperioden til dette molekylet.

**P8.5** Vis at Morse-potensialet nærmer seg det harmoniske potensialet for små verdier av vibrasjonsamplituden. (Hint: Utvid Morse-potensialet i en Taylor–Maclaurin-rekke.)

**P8.9** Et sterkt absorpsjonsbånd i det infrarøde området av det elektromagnetiske spekteret observeres ved  $\nu=378\,\mathrm{cm^{-1}}$  for  $^{27}\mathrm{Al^{79}Br}$ . Anta at det harmoniske potensialet gjelder, og beregn grunnfrekvensen  $\nu$  i enheter av inverse sekunder, vibrasjonsperioden i sekunder, og nullpunktsenergien for molekylet i joule og elektronvolt.

P8.15 Vis at en anharmonisk oscillator beskrevet av Morse-potensialet,

$$V(x) = D_e \Biggl( 1 - \exp \left( - \sqrt{rac{2k}{D_e}} (x - x_e) 
ight) \Biggr)^2 - D_e$$

har en likevektslengde  $x_e$  og en dybde  $D_e$ .

**P8.24** Et infrarødt absorpsjonsspektrum av en organisk forbindelse er vist i figuren nedenfor. Bruk de karakteristiske gruppefrekvensene som er listet opp i Seksjon 8.5 for å avgjøre om denne forbindelsen mest sannsynlig er etylamin, pentanol eller aceton.

## Konseptuelle spørsmål:

- **Q8.1** Hvorfor ville du observere et rent rotasjonsspektrum i mikrobølgeområdet, men et rotasjons-vibrasjonsspektrum i infrarødt område
- **Q8.2** Faste stoffer utvider seg generelt når temperaturen øker. En slik utvidelse skyldes en økning i bindingslengden mellom tilstøtende atomer ettersom den vibrasjonelle amplituden øker. Vil et harmonisk potensial føre til termisk ekspansjon? Vil et Morse-potensial føre til termisk ekspansjon?
- **Q8.3** Hvordan er det mulig å observere vibrasjonelle overganger i Raman-spektroskopi ved bruk av lasere med synlig lys, der fotonenergien er mye større enn avstanden mellom vibrasjonsenergiene?
- Q8.12 Hva er forskjellen mellom et permanent og et dynamisk dipolmoment?
- Q8.6 Hva er forskjellen mellom overgangsdipolmomentet og det dynamiske dipolmomentet?
- **Q8.7** Nitrogen og oksygen absorberer ikke infrarød stråling og er derfor ikke drivhusgasser. Forklar hvorfor dette er tilfellet. Dvs. forklar både hvorfor de ikke absorberer IR-stråling og hvorfor dette er relevant for drivhuseffekten.
- **Q8.9** Hvilken egenskap ved Morse-potensialet gjør det egnet for å modellere dissosiasjon av et diatomisk molekyl?
- **Q8.10** Hvis rotasjonsnivåene til et diatomisk molekyl var jevnt fordelt og utvalgregelen forble uendret, hvordan ville utseendet til det rotasjons-vibrasjonelle spekteret i Figur 8.17 endres?
- **Q8.13** Hva er forklaringen på fraværet av en topp i det rotasjons-vibrasjonelle spekteret nær 3000 cm<sup>-1</sup> i Figur 8.17?
- **Q8.16** Kvadratet av flere vibrasjonelle energiegentilstander er vist overlagt på en Morsepotensial i den medfølgende figuren. Tildel kvantetall til de viste nivåene. Forklar forskjellene i formen på egentilstandene sammenlignet med de for en harmonisk potensial.
- **Q8.22** Sett følgende molekyler i økende rekkefølge fra laveste til høyeste vibrasjonelle energinivå: H<sub>2</sub>, HD, D<sub>2</sub>. Forklar din begrunnelse.

Q8.21 Tenk på et vibrasjonelt energinivå for et diatomisk molekyl beskrevet av potensialfunksjonen

$$V(x)=rac{(x-x_e)^2}{2}$$

Avstanden mellom de to klassiske snupunktene der den horisontale linjen som representerer energinivået krysser potensialfunksjonen, er et mål på den vibrasjonelle amplituden. Angi hvordan denne vibrasjonelle amplituden varierer hvis:

- a. Likevektsbindingslengden  $x_e$  økes mens kvantetallet n og molekylets reduserte masse  $\mu$  forblir konstant.
- b. Kvantetallet n økes mens likevektsbindingslengden  $x_e$  og molekylets reduserte masse  $\mu$  forblir konstant.
- c. Molekylets reduserte masse  $\mu$  økes mens kvantetallet n og likevektsbindingslengden  $x_e$  forblir konstant.

## Regneoppgaver

**P8.1** Molekylet  $^1\mathrm{H}^{19}\mathrm{F}$  kan beskrives ved et Morse-potensial med  $D_e=9.05\times 10^{-19}$  J. Kraftkonstanten k for dette molekylet er 966 N m $^{-1}$  og  $\nu=1.24\times 10^{14}$  s $^{-1}$ .

• a. Beregn de fire laveste energinivåene for en Morse-potensial ved å bruke formelen

$$E_n = h
u\left(n+rac{1}{2}
ight) - rac{h^2
u^2}{4D_e}igg(n+rac{1}{2}igg)^2$$

• Beregn grunnfrekvensen  $\nu_0$  som tilsvarer overgangen  $n=0 \to n=1$  og frekvensene til de to første overtonevibrasjonene. Hvor stor ville den relative feilen være dersom du antar at de to første overtonefrekvensene er  $2\nu_0$  og  $3\nu_0$ ?

**P8.2** Det infrarøde spekteret til  $^{127}I^{79}Br$  har en intens linje ved 268,4 cm $^{-1}$ . Beregn kraftkonstanten og vibrasjonsperioden til dette molekylet.

**P8.5** Vis at Morse-potensialet nærmer seg det harmoniske potensialet for små verdier av vibrasjonsamplituden. (Hint: Utvid Morse-potensialet i en Taylor–Maclaurin-rekke.)

**P8.9** Et sterkt absorpsjonsbånd i det infrarøde området av det elektromagnetiske spekteret observeres ved  $\nu=378\,\mathrm{cm}^{-1}$  for  $^{27}\mathrm{Al}^{79}\mathrm{Br}$ . Anta at det harmoniske potensialet gjelder, og beregn grunnfrekvensen  $\nu$  i enheter av inverse sekunder, vibrasjonsperioden i sekunder, og nullpunktsenergien for molekylet i joule og elektronvolt.

**P8.15** Vis at en anharmonisk oscillator beskrevet av Morse-potensialet,

$$V(x) = D_e \Biggl( 1 - \exp \left( - \sqrt{rac{2k}{D_e}} (x - x_e) 
ight) \Biggr)^2 - D_e$$

har en likevektslengde  $x_e$  og en dybde  $D_e$ .

**P8.24** Et infrarødt absorpsjonsspektrum av en organisk forbindelse er vist i figuren nedenfor. Bruk de karakteristiske gruppefrekvensene som er listet opp i Seksjon 8.5 for å avgjøre om denne forbindelsen mest sannsynlig er etylamin, pentanol eller aceton.



| TABLE 8.4 Selected Group Frequencies |                               |              |                               |
|--------------------------------------|-------------------------------|--------------|-------------------------------|
| Group                                | Frequency (cm <sup>-1</sup> ) | Group        | Frequency (cm <sup>-1</sup> ) |
| O—H stretch                          | 3450–3650                     | C=O stretch  | 1650–1750                     |
| N—H stretch                          | 3300–3500                     | C=C stretch  | 1620–1680                     |
| C—H stretch                          | 2800-3000                     | C—C stretch  | 1200-1300                     |
| C—H bend                             | 1450–1480                     | C—Cl stretch | 600–800                       |