

Networking and Content Delivery

Section 1: Networking basics

Networks

IP addresses

IPv4 and IPv6 addresses

IPv4 (32-bit) address: 192.0.2.0

IPv6 (128-bit) address: 2600:1f18:22ba:8c00:ba86:a05e:a5ba:00FF

Classless Inter-Domain Routing (CIDR)

Open Systems Interconnection (OSI) model

Layer	Number	Function	Protocol/Address
Application	7	Means for an application to access a computer network	HTTP(S), FTP, DHCP, LDAP
Presentation	6	 Ensures that the application layer can read the data Encryption 	ASCI, ICA
Session	5	Enables orderly exchange of data	NetBIOS, RPC
Transport	4	Provides protocols to support host-to-host communication	TCP, UDP
Network	3	Routing and packet forwarding (routers)	IP
Data link	2	Transfer data in the same LAN network (hubs and switches)	MAC
Physical	1	Transmission and reception of raw bitstreams over a physical medium	Signals (1s and 0s)

Section 2: Amazon VPC

Amazon VPC

Amazon VPC

- Enables you to provision a logically isolated section of the AWS Cloud where you can launch AWS resources in a virtual network that you define
- Gives you control over your virtual networking resources, including:
 - Selection of IP address range
 - Creation of subnets
 - Configuration of route tables and network gateways
- Enables you to customize the network configuration for your VPC
- Enables you to use multiple layers of security

VPCs and subnets

• VPCs:

- Logically isolated from other VPCs
- **Dedicated** to your AWS account
- Belong to a single AWS Region and can span multiple Availability Zones

Subnets:

- Range of IP addresses that divide a VPC
- Belong to a single Availability Zone
- Classified as public or private

IP addressing

- When you create a VPC, you assign it to an IPv4 CIDR block (range of private IPv4 addresses).
- You cannot change the address range after you create the VPC.
- The largest IPv4 CIDR block size is /16.
- The smallest IPv4 CIDR block size is /28.
- IPv6 is also supported (with a different block size limit).
- CIDR blocks of subnets cannot overlap.

Reserved IP addresses

Example: A VPC with an IPv4 CIDR block of 10.0.0.0/16 has 65,536 total IP addresses. The VPC has four equal-sized subnets. Only 251 IP addresses are available for use by each subnet.

VPC: 10.0.0.0/16	
Subnet 1 (10.0.0.0/24)	Subnet 2 (10.0.2.0/24)
251 IP addresses	251 IP addresses
Subnet 4 (10.0.1.0/24)	Subnet 3 (10.0.3.0/24)
251 IP addresses	251 IP addresses

IP Addresses for CIDR block 10.0.0.0/24	Reserved for
10.0.0.0	Network address
10.0.0.1	Internal communication
10.0.0.2	Domain Name System (DNS) resolution
10.0.0.3	Future use
10.0.0.255	Network broadcast address

Public IP address types

Public IPv4 address

- Manually assigned through an Elastic IP address
- Automatically assigned through the auto-assign public IP address settings at the subnet level

Elastic IP address

- Associated with an AWS account
- Can be allocated and remapped anytime
- Additional costs might apply

Elastic network interface

- An elastic network interface is a virtual network interface that you can:
 - Attach to an instance.
 - Detach from the instance, and attach to another instance to redirect network traffic.
- Its attributes follow when it is reattached to a new instance.
- Each instance in your VPC has a default network interface that is assigned a private IPv4 address from the IPv4 address range of your VPC.

Route tables and routes

- A route table contains a set of rules (or routes) that you can configure to direct network traffic from your subnet.
- Each **route** specifies a destination and a target.
- By default, every route table contains a local route for communication within the VPC.
- Each subnet must be associated with a route table (at most one).

Main (Default) Route Table

Destination	Target	
10.0.0.0/16	local	

VPC CIDR block

Section 2 key takeaways

- A VPC is a logically isolated section of the AWS Cloud.
- A VPC belongs to one Region and requires a CIDR block.
- A VPC is subdivided into subnets.
- A subnet belongs to one Availability Zone and requires a CIDR block.
- Route tables control traffic for a subnet.
- Route tables have a built-in local route.
- You add additional routes to the table.
- The local route cannot be deleted.

Module 5: Networking and Content Delivery

Section 3: VPC networking

Internet gateway

Public Subnet Route Table

Destination	Target	
10.0.0.0/16	local	
0.0.0.0/0	igw-id	

Network address translation (NAT) gateway

Public Subnet Route Table

Destination	Target	
10.0.0.0/16	local	
0.0.0.0/0	igw-id	

Private Subnet Route Table

Destination	Target
10.0.0.0/16	local
0.0.0.0/0	nat-gw-id

VPC peering

Route Table for VPC A

Destination	Target	
10.0.0.0/16	local	
10.3.0.0/16	pcx-id	

Route Table for VPC B

Destination	Target
10.3.0.0/16	local
10.0.0.0/16	pcx-id

You can connect VPCs in your own AWS account, between AWS accounts, or between AWS Regions.

Restrictions:

- IP spaces cannot overlap.
- Transitive peering is not supported.
- You can only have one peering resource between the same two VPCs.

AWS Site-to-Site VPN

Public subnet route table

Destination	Target	
10.0.0.0/16	local	
0.0.0.0/0	igw-id	

Private subnet route table

Destination	Target
10.0.0.0/16	local
192.168.10.0/24	vgw-id

Site-to-Site

connection

VPN

Customer

gateway

Corporate data center:

192.168.10.0/24

AWS Direct Connect

Section 3 key takeaways

- There are several VPC networking options, which include:
 - Internet gateway
 - NAT gateway
 - VPC endpoint
 - VPC peering
 - VPC sharing
 - AWS Site-to-Site VPN
 - AWS Direct Connect
 - AWS Transit Gateway
- You can use the VPC Wizard to implement your design.

Section 4: VPC security

Security groups

Security groups act at the **instance level**.

Security groups

Inbound				
Туре	Protocol	Port Range	Source	Description
All traffic	All	All	sg-xxxxxxxx	
Outbound				
Туре	Protocol	Port Range	Source	Description
All traffic	All	All	sg-xxxxxxxx	

- Security groups have rules that control inbound and outbound instance traffic.
- Default security groups deny all inbound traffic and allow all outbound traffic.
- Security groups are stateful.

Custom security groups

Inbound				
Туре	Protocol	Port Range	Source	Description
HTTP	TCP	80	0.0.0.0/0	All web traffic
HTTPS	TCP	443	0.0.0.0/0	All web traffic
SSH	TCP	22	54.24.12.19/32	Office address
Outbound				
Туре	Protocol	Port Range	Source	Description
All traffic	All	All	0.0.0.0/0	
All traffic	All	All	::/0	

- You can **specify allow** rules, but not deny rules.
- All rules are evaluated before the decision to allow traffic.

Network access control lists (network ACLs)

Network ACLs act at the **subnet level**.

Network ACLs

Inbound					
Rule #	Type	Protocol	Port Range	Source	Allow/Deny
100	All IPv4 traffic	All	All	0.0.0.0/0	ALLOW
*	All IPv4 traffic	All	All	0.0.0.0/0	DENY
Outbound					
Rule #	Type	Protocol	Port Range	Source	Allow/Deny
100	All IPv4 traffic	All	All	0.0.0.0/0	ALLOW
*	All IPv4 traffic	All	All	0.0.0.0/0	DENY

- A network ACL has separate inbound and outbound rules, and each rule can either allow or deny traffic.
- Default network ACLs allow all inbound and outbound IPv4 traffic.
- Network ACLs are stateless.

Custom network ACLs

Inbound					
Rule #	Туре	Protocol	Port Range	Source	Allow/Deny
103	SSH	TCP	22	0.0.0.0/0	ALLOW
100	HTTPS	TCP	443	0.0.0.0/0	ALLOW
*	All IPv4 traffic	All	All	0.0.0.0/0	DENY
Outbound					
Rule #	Туре	Protocol	Port Range	Source	Allow/Deny
103	SSH	TCP	22	0.0.0.0/0	ALLOW
100	HTTPS	TCP	443	0.0.0.0/0	ALLOW
*	All IPv4 traffic	All	All	0.0.0.0/0	DENY

- Custom network ACLs deny all inbound and outbound traffic until you add rules.
- You can specify both allow and deny rules.
- Rules are evaluated in number order, starting with the lowest number.

Security groups versus network ACLs

Attribute	Security Groups	Network ACLs
Scope	Instance level	Subnet level
Supported Rules	Allow rules only	Allow and deny rules
State	Stateful (return traffic is automatically allowed, regardless of rules)	Stateless (return traffic must be explicitly allowed by rules)
Order of Rules	All rules are evaluated before decision to allow traffic	Rules are evaluated in number order before decision to allow traffic