Матан. Подготвка к экзамену.

q

June 19, 2021

Contents

1	Дал	ГЫ	3	
	1.1	Консультация	3	
	1.2	Экзамен	3	
2	Вид	цосы	3	
	2.1	Интегралы	3	
	2.2	Ряды	3	
3	Тем	пы	4	
	3.1	Первообразная и неопределенный интеграл (определения).		
		Свойства интеграла. Таблица основных неопределенных		
		интегралов. Формула замены переменной в неопределенном		
		интеграле (с доказательством). Формула интегрирования		
		по частям.	4	
		3.1.1 DONE Onp. 1	4	
		3.1.2 DONE Опр. 2	4	
		3.1.3 DONE Основные свойства интеграла	4	
		3.1.4 DONE След. 1 (Линейность интеграла)	5	
		3.1.5 ТООО Формула замены переменной	5	
	3.2	Определенный интеграл Римана (определение). Ограниченно	сть	
		интегрируемых функций (с доказательством). Верхние и		
		нижние суммы Дарбу (определения). Верхний и нижний		
		интегралы Дарбу (определения). Критерий Дарбу. Интегриру	емости	
		непрерывных функций. Интегрируемость монотонных функций. 8		
	3.3	Свойства определенного интеграла (сформулировать все,		
		доказать непрерывность интеграла по верхнему пределу).		
		Интегральная теорема о среднем	8	

3.4	Теорема о дифференцировании интеграла по верхнему пределу	
	(с доказательством). Теорема о существовании первообразной	
	(с доказательством). Формула Ньютона-Лейбница (с доказател	ьством)
	Формула замены переменной в определенном интеграле.	,
		8
3.5	Определение несобственных интегралов. Формула Ньютона-	
	Лейбница и формула замены переменной для несобственных	
	интегралов	8
3.6	Несобственные интегралы от неотрицательных функций	
	(лемма и признак сравнения). Критерий Коши сходимости	
	интеграла (с доказательством). Абсолютно сходящиеся	
	интегралы (определение и теорема о сходимости абсолютно	
		8
3.7	Определение числового ряда. Необходимый признак сходимост	И
	ряда (с доказательством). Критерий Коши сходимости	
	ряда (с доказательством). Ряды с неотрицательными членами	
	(признак сравнения, интегральный признак Коши, радикальны	й
	1 / 1 / 1 /	8
3.8	Знакопеременные ряды (признак Лейбница). Абсолютно	
	сходящиеся ряды (определение). Критерий Коши абсолютной	
	сходимости ряда. Условно сходящиеся ряды (определение).	
	1	8
3.9	Функциональные последовательности и ряды (определения,	
	в том числе, ограниченная последовательность, сходящаяся	
	последовательность, сходящийся ряд, абсолютно сходящийся	
	ряд). Равномерная сходимость функциональной последователь	ности
	и функционального ряда (определение и пример). Критерии	
	Коши равномерной сходимости функциональной последователь	
0.40		8
3.10	Свойства равномерно сходящихся рядов (непрерывность) 0
0.11	суммы (с доказательством), интегрирование, дифференцирован	ние). 8
3.11	Степенные ряды (определение). Первая теорема Абеля (с	
	доказательством). Радиус и круг (интервал) сходимости	
	степенного ряда (определения). Понятие аналитической	U
	функции (определение). Теорема о представлении аналитическ	
	функции рядом Тейлора	8

1 Даты

1.1 Консультация

2021-06-24 Thu

1.2 Экзамен

2021-06-25 Fri

2 Видосы

2.1 Интегралы

Интеграл: Азы интегрирования. Высшая математика Определенный интеграл. Шпаргалка для первокурсника. Высшая математика

2.2 Ряды

Математический анализ, 35 урок, Числовые ряды Математический анализ, 36 урок, Достаточные признаки сходимости

3 Темы

3.1 Первообразная и неопределенный интеграл (определения). Свойства интеграла. Таблица основных неопределенных интегралов. Формула замены переменной в неопределенном интеграле (с доказательством). Формула интегрирования по частям.

3.1.1 DONE Опр. 1.

Функция F называется первообразной функции f на промежутке Δ , если F дифференцируема на Δ и в каждой точке $x \in \Delta$

$$F'(x) = f(x) \tag{1}$$

Очевидно, что первообразная F(x) непрерывна на Δ .

3.1.2 DONE Oпр. 2.

Пусть функция f(x) задана на промежутке Δ . Совокупность всех ее первообразных на этом промежутке называется неопределенным интегралом от функции f и обозначается

$$\int f(x)dx \tag{2}$$

Если F(x) — какая-либо первообразная функции f(x) на Δ , то пишут

$$\int f(x)dx = F(x) + C \tag{3}$$

C — произвольная постоянная.

3.1.3 DONE Основные свойства интеграла

1. Если функция F(x) дифференцируема на Δ , то

$$\int dF(x) = F(x) + C$$
или
$$\int F'(x)dx = F(x) + C$$
 (4)

2. Пусть функция f(x) имеет первообразную на Δ . Тогда для любого $x \in \Delta$ имеет место равенство:

$$d \int f(x) = f(x)dx \tag{5}$$

3. Если функции f_1 , f_2 имеют первообразные на Δ , то функция f_1+f_2 имеет первообразную на Δ , причем:

$$\int (f_1(x) + f_2(x))dx = \int f_1(x)dx + \int f_2(x)dx$$
 (6)

4. Если функция f(x) имеет первообразную на Δ , $k \in$, то функция kf(x) также имеет на Δ первообразную, и при $k \neq 0$:

$$\int kf(x)dx = \{kF(x) + C\}, \ k \int f(x)dx = k\{F(x) + C\}$$

Т.к. C – произвольная постоянная и $k \neq 0$, то множества kF(x) + C и kF(x) + C совпадают.

3.1.4 DONE След. 1 (Линейность интеграла)

Если f_1 и f_2 имеют первообразные на Δ , λ_1 , $\lambda_2 \in$, $\lambda_1^2 + \lambda_2^2 > 0$, то функция $\lambda_1 f_1 + \lambda_2 f_2$ имеет первообразную на Δ , причем

$$\int (\lambda_1 f_1(x) + \lambda_2 f_2(x)) dx = \lambda_1 \int f_1(x) dx + \lambda_2 \int f_2(x) dx \tag{7}$$

Доказательство вытекает из свойств 3 и 4.

3.1.5 TODO Формула замены переменной

Пусть функции f(x) и $\varphi(t)$ заданы соответственно на промежутках Δ_x и Δ_t , причем $\varphi(\Delta_t) = \Delta_x$, т.е. имеет смысл сложная функция $f(\varphi(t))$, $t \in \Delta_t$. Пусть, кроме того, функция $\varphi(t)$ дифференцируема и строго монотонна на Δ_t . Тогда у функции $\varphi(t)$ существует обратная однозначная функция $\varphi^{-1}(x)$, определенная на промежутке Δ_x .

Теорема 1. Существование на промежутке Δ_x интеграла

$$\int f(x)dx \tag{8}$$

и существование на промежутке Δ_t интеграла

$$\int f(\varphi(t))\varphi'(t)dt \tag{9}$$

равносильны, и имеет место формула

$$\int f(x)dx = \int f(\varphi(t))\varphi'(t)dt \bigg|_{t=\varphi^{-1}(x)}$$
(10)

Формула (10) называется формулой замены переменной в неопределенном интеграле: переменная х заменяется переменной t по формуле $x = \varphi(t)$.

Доказательство. Докажем, что существование первообразной у функции f(x) на Δ_x равносильно существованию первообразной у функции $f(\varphi(t))\varphi'(t)$ на Δ_t . Пусть у функции f(x) на Δ_x существует первообразная F(x), т.е.

$$\frac{dF(x)}{dx} = f(x), \ x \in \Delta_t \tag{11}$$

Имеет смысл сложная функция $F(\varphi(t))$, она является первообразной функции $f(varphi(t))\varphi'(t)$ на Δ_t . Действительно, d dtF((t)) = d F(x) dx - - x=(t) d (t) dt = f((t)) 0 (t). (14) Обратно. Пусть функция f(t) 0 (t) имеет первообразную (t), тогда d (t) dt = f((t)) 0 (t). (15) Покажем, что (1(x)) является на x первообразной функции f(x). В самом деле, d dx ; 1(x) $\phi = d$ (t) dt - - t=1(x) d 1(x) dx = (f((t))) 0 (t))| $t=1(x) \times x$ d 1(x) dx = f(x). Итак, интегралы (10) и (11) одновременно существуют или нет. При этом Z f(x)dx = F(x) + C, (16) Z f((t)) 0 (t)dt = F((t)) + C, а так как F((t))| t=1(x) = F(x), имеет равенство (12).

- 3.2 Определенный интеграл Римана (определение). Ограниченность интегрируемых функций (с доказательством). Верхние и нижние суммы Дарбу (определения). Верхний и нижний интегралы Дарбу (определения). Критерий Дарбу. Интегрируемость непрерывных функций. Интегрируемость монотонных функций.
- 3.3 Свойства определенного интеграла (сформулировать все, доказать непрерывность интеграла по верхнему пределу). Интегральная теорема о среднем.
- 3.4 Теорема о дифференцировании интеграла по верхнему пределу (с доказательством). Теорема о существовании первообразной (с доказательством). Формула Ньютона-Лейбница (с доказательством). Формула замены переменной в определенном интеграле. Формула интегрирования по частям.
- 3.5 Определение несобственных интегралов. Формула Ньютона-Лейбница и формула замены переменной для несобственных интегралов.
- 3.6 Несобственные интегралы от неотрицательных функций (лемма и признак сравнения). Критерий Коши сходимости интеграла (с доказательством). Абсолютно сходящиеся интегралы (определение и теорема о сходимости абсолютно сходящегося интеграла).
- 3.7 Определение числового ряда. Необходимый признак сходимости ряда (с доказательством). Критерий Коши сходимости ряда (с доказательством). Ряды с неотрицательными членами (признак сравнения, интегральный признак Коши, радикальный признак Коши, признак Даламбера).
- 3.8 Знакопеременные ряды (признак Лейбница). Абсолютно сходящиеся ряды (определение). Критерий Коши абсолютной сходимости ряда. Условно сходящиеся ряды (определение). Теорема Римана.
- 3.9 Функциональные последовательности и ряды (определения, в том числе, ограниченная последовательность, сходящаяся последовательность, сходящийся ряд, абсолютно сходящийся ряд). Равномерная сходимость функциональной последовательности и функционального ряда (определение и пример). Критерии Коши равномерной сходимости функциональной последовательности (ряда). Признак Вейерштрасса.
- 3.10 Свойства равномерно сходящихся рядов (непрерывность суммы (с доказательством), интегрирование, дифференцирование).
- 3.11 Степенные ряды (определение). Первая теорема Абеля (с доказательством). Радиус и круг (интервал) сходимости