$$\chi_{c1}(1P)$$

$$I^{G}(J^{PC}) = 0^{+}(1^{++})$$

See the Review on " $\psi(2S)$ and χ_c branching ratios" before the $\chi_{c0}(1P)$ Listings.

$\chi_{c1}(1P)$ MASS

<i>VALUE</i> (MeV)		EVTS	DOCUMENT ID		TECN	COMMENT
3510.66 ± 0	.07 OUR AVE	RAGE	Error includes scale	facto	r of 1.5.	See the ideogram
below.						_
3510.30 ± 0	$.14 \pm 0.16$		ABLIKIM	05 G	BES2	$\psi(2S) \rightarrow \gamma \chi_{c1}$
3510.719 ± 0	$.051 \pm 0.019$		ANDREOTTI	05A	E835	$p\overline{p} \rightarrow e^+e^-\gamma$
3509.4 ± 0	.9		BAI	99 B	BES	$\psi(2S) ightarrow \gamma X$
3510.60 ± 0	$.087 \pm 0.019$	513	¹ ARMSTRONG	92	E760	$\overline{p}p \rightarrow e^+e^-\gamma$
3511.3 ± 0	$.4 \pm 0.4$	30	BAGLIN	86 B	SPEC	$\overline{p}p \rightarrow e^+e^-X$
3512.3 \pm 0	$.3 \pm 4.0$		² GAISER	86	CBAL	ψ (2 S) $ ightarrow$ γ X
3507.4 ± 1	.7	91	³ LEMOIGNE	82	GOLI	185 π^- Be \rightarrow
						$\gamma \mu^+ \mu^- A$
3510.4 ± 0	.6		OREGLIA	82	CBAL	$e^+e^- \rightarrow J/\psi 2\gamma$
3510.1 ± 1	.1	254	⁴ HIMEL	80	MRK2	$e^+e^- \rightarrow J/\psi 2\gamma$
3509 ± 11		21	BRANDELIK	79 B	DASP	$e^+e^- \rightarrow J/\psi 2\gamma$
3507 ± 3			⁴ BARTEL	78 B	CNTR	$e^+e^- \rightarrow J/\psi 2\gamma$
3505.0 ± 4	±4		^{4,5} TANENBAUM	78	MRK1	e^+e^-
3513 ± 7		367	⁴ BIDDICK	77	CNTR	$\psi(2S) ightarrow \gamma X$
 ● ● We do 	not use the fol	lowing d	lata for averages, fit	s, limit	s, etc.	• • •
3500 ± 10	ı	40	TANENBAUM	75	MRK1	Hadrons γ

WEIGHTED AVERAGE 3510.66±0.07 (Error scaled by 1.5)

HTTP://PDG.LBL.GOV

Page 1

$\chi_{c1}(1P)$ WIDTH

VALUE (MeV)	CL%	EVTS	DOCUMENT ID		TECN	COMMENT
0.84 ± 0.04	OUR FIT					
0.88 ± 0.05	OUR AVERAGE	•				
$1.39 \begin{array}{l} +0.40 \\ -0.38 \end{array}$	$^{+0.26}_{-0.77}$		ABLIKIM	05 G	BES2	$\psi(2S) \rightarrow \gamma \chi_{c1}$
0.876 ± 0.045	5 ± 0.026		ANDREOTTI	05A	E835	$p\overline{p} \rightarrow e^+e^-\gamma$
$0.87\ \pm0.11$	± 0.08	513	¹ ARMSTRONG	92	E760	$\overline{p}p \rightarrow e^+e^-\gamma$
• • • We do n	ot use the follow	ing data fo	or averages, fits, li	mits,	etc. • •	•
<1.3	95		BAGLIN	86 B	SPEC	$\overline{p}p \rightarrow e^+e^-X$
<3.8	90		GAISER	86	CBAL	ψ (2 S) $ ightarrow$ γ X
$^{ m 1}$ Recalculate	d by ANDREOT	TI 05A.				

$\chi_{c1}(1P)$ DECAY MODES

Scale factor/ Fraction (Γ_i/Γ) Confidence level

Created: 5/30/2017 17:21

Hadronic decays						
Γ_1	$3(\pi^+\pi^-)$	$(5.8 \pm 1.4) \times 10^{-3}$	S=1.2			
	$2(\pi^{+}\pi^{-})$	$(7.6 \pm 2.6) \times 10^{-3}$				
	$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	(1.22±0.16) %				
•	$ ho^{+}\pi^{-}\pi^{0}$ + c.c.	(1.48±0.25) %				
Γ_5	$ ho^{0}\pi^{+}\pi^{-}$	$(3.9 \pm 3.5) \times 10^{-3}$				
Γ_6	$4\pi^0$	$(5.5 \pm 0.8) \times 10^{-4}$				
	$\pi^+\pi^-K^+K^-$	$(4.5 \pm 1.0) \times 10^{-3}$				
	$K^+K^-\pi^0\pi^0$	$(1.14\pm0.28)\times10^{-3}$				
	$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	(1.15±0.13) %				
	$K_S^0 K^{\pm} \pi^{\mp} \pi^+ \pi^-$	$(7.5 \pm 0.8) \times 10^{-3}$				
Γ_{11}	$K^{+}\pi^{-}\overline{K}^{0}\pi^{0}+$ c.c.	$(8.7 \pm 1.4) \times 10^{-3}$				
Γ_{12}	$ ho^-$ K $^+$ $\overline{\mathrm{K}}{}^0$ $+$ c.c.	$(5.1 \pm 1.2) \times 10^{-3}$				
Γ_{13}	$K^*(892)^0 \overline{K}{}^0 \pi^0 \rightarrow$	$(2.4 \pm 0.7) \times 10^{-3}$				
	$K^{+}\pi^{-}\overline{K}^{0}\pi^{0} + \text{c.c.}$	_				
	$K^+K^-\eta\pi^0$	$(1.14\pm0.35)\times10^{-3}$				
	$\pi^+\pi^ K^0_S$ K^0_S	$(7.0 \pm 3.0) \times 10^{-4}$				
Γ_{16}	$K^+K^-\eta$	$(3.2 \pm 1.0) \times 10^{-4}$				
	$\overline{K}{}^{0}K^{+}\pi^{-}$ + c.c.	$(7.1 \pm 0.6) \times 10^{-3}$				
	$K^*(892)^0 \overline{K}{}^0 + \text{c.c.}$	$(1.0 \pm 0.4) \times 10^{-3}$				
Γ_{19}	$K^*(892)^+ K^- + \text{c.c.}$	$(1.5 \pm 0.7) \times 10^{-3}$				

Mode

 $^{^1}$ Recalculated by ANDREOTTI 05A, using the value of $\psi(2S)$ mass from AULCHENKO 03.

² Using mass of $\psi(2S) = 3686.0 \text{ MeV}.$

 $^{^3}J/\psi(1S)$ mass constrained to 3097 MeV.

 $^{^4}$ Mass value shifted by us by amount appropriate for $\psi(2S)$ mass =3686 MeV and $_J/\psi(1S)$ mass =3097 MeV.

 $^{^{5}}$ From a simultaneous fit to radiative and hadronic decay channels.

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ე%
$\Gamma_{64} K^{+} \overline{p} \Lambda(1520) + \text{c.c.}$ (1.7 ±0.5) × 10 ⁻⁴ $\Gamma_{65} \Lambda(1520) \overline{\Lambda}(1520)$ < 1.0 × 10 ⁻⁴ CL=90	ე%
$\Gamma_{65} \Lambda(1520)\overline{\Lambda}(1520)$ < 1.0 × 10 ⁻⁴ CL=90	1.1
$\Gamma_{cc} = \overline{\Sigma}^0 \overline{\Sigma}^0$	ე%
100 = =	ე%
Γ_{67} $\Sigma^{+}\overline{\Sigma}^{-}$ < 6 $\times 10^{-5}$ CL=90	ე%
$\Gamma_{68} \Sigma(1385)^{+} \overline{\Sigma}(1385)^{-} $ < 1.0 × 10 ⁻⁴ CL=90	ე%
$\Gamma_{69} \Sigma(1385)^{-} \overline{\Sigma}(1385)^{+} $ < 5 × 10 ⁻⁵ CL=90	ე%
$\Gamma_{70} K^- \Lambda \overline{\Xi}^+ + \text{c.c.}$ (1.38±0.25) × 10 ⁻⁴	
$\Gamma_{71} = \overline{50} = 0$ $< 6 \times 10^{-5} \text{ CL} = 90$	ე%
$\Gamma_{72} = \overline{\Xi}^{+} $ (8.2 ±2.2) × 10 ⁻⁵	
$\Gamma_{73} \pi^{+}\pi^{-} + K^{+}K^{-} $ < 2.1 × 10 ⁻³	
$\Gamma_{74} K_S^0 K_S^0 $ < 6 × 10 ⁻⁵ CL=90	ე%
$\Gamma_{75} \eta_c \pi^+ \pi^- $ < 3.2 × 10 ⁻³ CL=90	ე%

Radiative decays

	$\gamma J/\psi(1S)$	(33.9 ± 1.2) %
Γ_{77}	γho^{0}	$(2.20\pm0.18)\times10^{-4}$
Γ ₇₈	$\gamma\omega$	$(6.9 \pm 0.8) \times 10^{-5}$
Γ ₇₉	$\gamma\phi$	$(2.5 \pm 0.5) \times 10^{-5}$
Γ_{80}	$\gamma \gamma$	

CONSTRAINED FIT INFORMATION

A multiparticle fit to $\chi_{c1}(1P)$, $\chi_{c0}(1P)$, $\chi_{c2}(1P)$, and $\psi(2S)$ with 4 total widths, a partial width, 25 combinations of partial widths obtained from integrated cross section, and 84 branching ratios uses 239 measurements to determine 49 parameters. The overall fit has a $\chi^2=342.4$ for 190 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta p_i \delta p_j \right\rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$.

<i>x</i> 36	6				
^X 45	8	3			
×58	13	5	7		
[×] 76	31	13	6	26	
Γ	-19	-8	-62	-16	-51
	<i>x</i> ₁₇	<i>x</i> 36	×45	× ₅₈	^x 76

$\chi_{c1}(1P)$ PARTIAL WIDTHS $\chi_{c1}(1P) \Gamma(i)\Gamma(\gamma J/\psi(1S))/\Gamma(total)$

$\Gamma(p\overline{p}) \times \Gamma(\gamma J/\psi(1S))/\Gamma_{\text{total}}$ $\Gamma_{45}\Gamma_{76}/\Gamma$ VALUE (eV) 21.9±0.8 OUR FIT 21.4±0.9 OUR AVERAGE ¹ ANDREOTTI 05A E835 $p \overline{p} \rightarrow e^+ e^- \gamma$ $21.5 \!\pm\! 0.5 \!\pm\! 0.8$

$\chi_{c1}(1P)$ BRANCHING RATIOS

- HADRONIC DECAYS

 $\Gamma(3(\pi^+\pi^-))/\Gamma_{\text{total}}$ Γ_1/Γ VALUE (units 10^{-3}) DOCUMENT ID TECN COMMENT **5.8±1.4 OUR EVALUATION** Error includes scale factor of 1.2. Treating systematic error as correlated. 5.8 ± 1.1 OUR AVERAGE

 $5.4 \pm 0.7 \pm 0.9$ 99B BES $\psi(2S) \rightarrow \gamma \chi_{c1}$ ¹ TANENBAUM 78 MRK1 $\psi(2S) \rightarrow \gamma \chi_{c1}$ $16.0\!\pm\!5.9\!\pm\!0.8$

$$\Gamma(2(\pi^+\pi^-))/\Gamma_{\mathsf{total}}$$

 Γ_2/Γ

Created: 5/30/2017 17:21

VALUE (units 10^{-3}) DOCUMENT ID TECN COMMENT **7.6±2.6 OUR EVALUATION** Treating systematic error as correlated.

8 \pm **4 OUR AVERAGE** Error includes scale factor of 1.5.

99B BES $4.6 \pm 2.1 \pm 2.6$

 $\psi(2S) \rightarrow \gamma \chi_{c1}$ ¹ TANENBAUM 78 MRK1 $\psi(2S) \rightarrow \gamma \chi_{c1}$ $12.5 \pm 4.2 \pm 0.6$

 1 Rescaled by us using B($\psi(2S)$ ightarrow $\gamma\chi_{c1})$ = (8.8 \pm 0.4)% and B($\psi(2S)$ ightarrow $J/\psi(1S)\pi^{+}\pi^{-}) = (32.6 \pm 0.5)\%.$

$$\Gamma(\pi^{+}\pi^{-}\pi^{0}\pi^{0})/\Gamma_{\text{total}}$$
 $VALUE (\%)$
 $EVTS$
 $DOCUMENT ID$
 $TECN$
 $COMMENT$

1.22±0.15±0.04
 $EVTS$
 $EVTS$

 1 HE 08B reports 1.28 \pm 0.06 \pm 0.15 \pm 0.08 % from a measurement of [$\Gamma(\chi_{c1}(1P)
ightarrow$ $\pi^+\pi^-\pi^0\pi^0)/\Gamma_{\mathsf{total}} \times [\mathsf{B}(\psi(2S) \to \gamma\chi_{c1}(1P))] \text{ assuming } \mathsf{B}(\psi(2S) \to \gamma\chi_{c1}(1P)) = 0$ $(9.07\pm0.11\pm0.54) imes 10^{-2}$, which we rescale to our best value B $(\psi(2S) o \gamma \chi_{c1}(1P))$ $= (9.55 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $^{^{1,2}}$ ARMSTRONG 92 E760 $\overline{p}p \rightarrow e^+e^-\gamma$ $21.4 \pm 1.5 \pm 2.2$ $19.9^{+4.4}_{-4.0}$ ¹ BAGLIN 86B SPEC $\overline{p}p \rightarrow e^+e^-X$

¹ Calculated by us using B($J/\psi(1S) \rightarrow e^+e^-$) = 0.0593 \pm 0.0010.

² Recalculated by ANDREOTTI 05A.

 $^{^{1}}$ Rescaled by us using B($\psi(2S)$ ightarrow $\gamma\chi_{c1})$ = (8.8 \pm 0.4)% and B($\psi(2S)$ ightarrow $J/\psi(1S)\pi^{+}\pi^{-}) = (32.6 \pm 0.5)\%.$

```
\Gamma(\rho^+\pi^-\pi^0+\text{c.c.})/\Gamma_{\text{total}}
VALUE (%)
                                                                     08B CLEO e^+e^- \to \gamma h^+h^-h^0h^0
                                        ^{1,2} HE
                              712.3
1.48 \pm 0.24 \pm 0.05
   ^{1} HE 08B reports 1.56 \pm 0.13 \pm 0.22 \pm 0.10 \% from a measurement of [\Gamma(\chi_{c1}(1P) 
ightarrow
     \rho^+\,\pi^-\,\pi^0 + \text{ c.c.})/\Gamma_{\text{total}}] \ \times \ [\mathsf{B}(\psi(2S) \ \to \ \gamma\chi_{c1}(1P))] \ \text{ assuming } \ \mathsf{B}(\psi(2S) \ \to \ \gamma\chi_{c1}(1P))]
     \gamma \chi_{c1}(1P) = (9.07 \pm 0.11 \pm 0.54) \times 10^{-2}, which we rescale to our best value B(\psi(2S) \rightarrow
     \gamma \chi_{c1}(1P) = (9.55 \pm 0.31) \times 10^{-2}. Our first error is their experiment's error and our
     second error is the systematic error from using our best value.
   <sup>2</sup> Calculated by us. We have added the values from HE 08B for \rho^+\pi^-\pi^0 and \rho^-\pi^+\pi^0
     decays assuming uncorrelated statistical and fully correlated systematic uncertainties.
\Gamma(\rho^0\pi^+\pi^-)/\Gamma_{\text{total}}
                                                                                                                  \Gamma_5/\Gamma
                                                                          TECN COMMENT
VALUE (units 10^{-4})
                                               1 \, \overline{ {
m TANENBAUM} \, 78 } \,\,\,\, {
m MRK1} \,\,\, \psi(2S) 
ightarrow \,\, \gamma \chi_{m{c}1}
39±35
   <sup>1</sup> Estimated using B(\psi(2S) \rightarrow \gamma \chi_{c1}(1P)) = 0.087. The errors do not contain the
     uncertainty in the \psi(2S) decay.
\Gamma(4\pi^0)/\Gamma_{\text{total}}
                                                                                                                  \Gamma_6/\Gamma
VALUE (units 10^{-3})
                                                                 11A BES3 e^+e^- \rightarrow \psi(2S) \rightarrow \gamma \chi_{c1}
0.55\pm0.08\pm0.02
                                         <sup>1</sup> ABLIKIM
   ^1 ABLIKIM 11A reports (0.57\pm0.03\pm0.08)\times10^{-3} from a measurement of [\Gamma(\chi_{c1}(1P)\to 0.08)\times10^{-3}]
     (4\pi^0)/\Gamma_{\mathsf{total}} \times [\mathsf{B}(\psi(2S) \to \gamma \chi_{c1}(1P))] assuming \mathsf{B}(\psi(2S) \to \gamma \chi_{c1}(1P)) = (9.2 \pm 1.0)
     0.4) \times 10<sup>-2</sup>, which we rescale to our best value B(\psi(2S) \rightarrow \gamma \chi_{c1}(1P)) = (9.55 \pm
     0.31) \times 10^{-2}. Our first error is their experiment's error and our second error is the
     systematic error from using our best value.
\Gamma(\pi^+\pi^-K^+K^-)/\Gamma_{\text{total}}
                                                                                                                  \Gamma_7/\Gamma
VALUE (units 10^{-3})
                                                  DOCUMENT ID
                                                                       TECN COMMENT
4.5±1.0 OUR EVALUATION Treating systematic error as correlated.
4.5±0.9 OUR AVERAGE
4.2\pm0.4\pm0.9
                                                                       99B BES
                                                                                         \psi(2S) \rightarrow \gamma \chi_{c1}
                                               ^{1} TANENBAUM 78 MRK1 \psi(2S) 
ightarrow \gamma \chi_{c1}
7.3 \pm 3.0 \pm 0.4
   <sup>1</sup>Rescaled by us using B(\psi(2S) \rightarrow \gamma \chi_{c1}) = (8.8 \pm 0.4)% and B(\psi(2S) \rightarrow
     J/\psi(1S)\pi^{+}\pi^{-}) = (32.6 \pm 0.5)\%.
\Gamma(K^+K^-\pi^0\pi^0)/\Gamma_{\text{total}}
                                               DOCUMENT ID TECN COMMENT
                                                                     08B CLEO e^+\overline{e^- \rightarrow \gamma h^+ h^- h^0 h^0}
0.114±0.028±0.004 45.1
                                             <sup>1</sup> HE
   ^1 HE 08B reports 0.12 \pm 0.02 \pm 0.02 \pm 0.01 \% from a measurement of [\Gamma(\chi_{c1}(1P) 
ightarrow
     \textit{K}^+\textit{K}^-\pi^0\pi^0)/\Gamma_{\mathsf{total}}]\times [\mathsf{B}(\psi(2S)\to~\gamma\chi_{c1}(1P))] \text{ assuming } \mathsf{B}(\psi(2S)\to~\gamma\chi_{c1}(1P))
     = (9.07 \pm 0.11 \pm 0.54) 	imes 10^{-2}, which we rescale to our best value B(\psi(2S) 
ightarrow
     \gamma \chi_{c1}(1P)) = (9.55 \pm 0.31) \times 10^{-2}. Our first error is their experiment's error and
     our second error is the systematic error from using our best value.
\Gamma(K^+K^-\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}
                                                                                                                  \Gamma_0/\Gamma
VALUE (units 10^{-3}) EVTS
                                                                 13B BES3 e^+e^- \rightarrow \psi(2S) \rightarrow \gamma \chi_{c1}
11.46 \pm 0.12 \pm 1.29
                             12k
                                         <sup>1</sup> ABLIKIM
   <sup>1</sup> Using 1.06 \times 10^8 \psi(2S) mesons and B(\psi(2S) \rightarrow \chi_{c1} \gamma) = (9.2 \pm 0.4)\%.
```

HTTP://PDG.LBL.GOV

Page 6

$\Gamma(K_s^0 K^{\pm} \pi^{\mp} \pi^{+} \pi^{-})/\Gamma_{\text{total}}$

 Γ_{10}/Γ

VALUE (units 10^{-3}) EVTS 13B BES3 $e^+e^- \rightarrow \psi(2S) \rightarrow \gamma \chi_{c1}$ $7.52\pm0.11\pm0.79$ ¹ ABLIKIM ¹ Using $1.06 \times 10^8 \ \psi(2S)$ mesons and $B(\psi(2S) \to \chi_{c1} \gamma) = (9.2 \pm 0.4)\%$.

 $\Gamma(K^{+}\pi^{-}\overline{K}^{0}\pi^{0} + \text{c.c.})/\Gamma_{\text{total}}$

VALUE (%)

DOCUMENT ID

TECN

COMMENT

TECN $e^+e^- \rightarrow \gamma h^+h^-h^0h^0$ _EVTS 1 HE $0.87 \pm 0.14 \pm 0.03$ 141.3 1 HE 08B reports 0.92 \pm 0.09 \pm 0.11 \pm 0.06 % from a measurement of [$\Gamma(\chi_{c1}(1P)
ightarrow$ $\textit{K}^{+}\,\pi^{-}\,\overline{\textit{K}}{}^{0}\,\pi^{0} + \text{ c.c.})/\Gamma_{\text{total}}] \;\times\; \left[\mathsf{B}(\psi(2S) \;\to\; \gamma \chi_{\textit{C}1}(1P)) \right] \; \text{assuming} \; \; \mathsf{B}(\psi(2S) \;\to\; \gamma \chi_{\textit{C}1}(1P))$

 $\gamma \chi_{c1}(1P)) = (9.07 \pm 0.11 \pm 0.54) \times 10^{-2}$, which we rescale to our best value B($\psi(2S) \rightarrow$ $\gamma \chi_{c1}(1P))=(9.55\pm0.31)\times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(\rho^- K^+ \overline{K}^0 + \text{c.c.})/\Gamma_{\text{total}}$

VALUE (%)

08B CLEO $\frac{e^+e^- \rightarrow \gamma h^+h^-h^0h^0}{e^+e^- \rightarrow \gamma h^+h^-h^0h^0}$ 141.3 $0.51\pm0.12\pm0.02$ 1 HE 08B reports 0.54 \pm 0.11 \pm 0.07 \pm 0.03 % from a measurement of [$\Gamma(\chi_{c1}(1P)
ightarrow$ $ho^- \, {\it K}^+ \, {\it K}^0 + {
m c.c.})/\Gamma_{
m total}] imes [{\it B}(\psi(2S)
ightarrow \gamma \chi_{c1}(1P))]$ assuming ${\it B}(\psi(2S)
ightarrow \gamma \chi_{c1}(1P)) = (9.07 \pm 0.11 \pm 0.54) imes 10^{-2}$, which we rescale to our best value ${\it B}(\psi(2S)
ightarrow 10^{-2})$ $\gamma \chi_{c1}(1P))=(9.55\pm0.31) imes10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(\textit{K}^*(892)^0\overline{\textit{K}}^0\pi^0\rightarrow \textit{K}^+\pi^-\overline{\textit{K}}^0\pi^0+\text{c.c.})/\Gamma_{\text{total}}$

 Γ_{13}/Γ

 1 HE 08B reports 0.25 \pm 0.06 \pm 0.03 \pm 0.02 % from a measurement of [$\Gamma(\chi_{c1}(1P)
ightarrow$ $K^*(892)^0 \overline{K}{}^0 \pi^0 \rightarrow K^+ \pi^- \overline{K}{}^0 \pi^0 + \text{c.c.})/\Gamma_{\mathsf{total}} \times [\mathsf{B}(\psi(25) \rightarrow \gamma \chi_{c1}(1P))] \text{ assum-}$ ing B($\psi(2S) \rightarrow \gamma \chi_{c1}(1P)$) = $(9.07 \pm 0.11 \pm 0.54) \times 10^{-2}$, which we rescale to our best value B($\psi(2S) \to \gamma \chi_{c1}(1P)$) = $(9.55 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(K^+K^-\eta\pi^0)/\Gamma_{\text{total}}$

VALUE (%) ¹ HE $0.114 \pm 0.035 \pm 0.004$ 141.3

 1 HE 08B reports 0.12 \pm 0.03 \pm 0.02 \pm 0.01 % from a measurement of [$\Gamma(\chi_{c1}(1P)
ightarrow$ $\begin{array}{l} \text{$K^+\,K^-\,\eta\pi^0$}/\Gamma_{\text{total}}]\times [\mathsf{B}(\psi(2S)\to\,\gamma\chi_{c1}(1P))] \text{ assuming } \mathsf{B}(\psi(2S)\to\,\gamma\chi_{c1}(1P))=\\ (9.07\pm0.11\pm0.54)\times10^{-2}, \text{ which we rescale to our best value } \mathsf{B}(\psi(2S)\to\,\gamma\chi_{c1}(1P)) \end{array}$ $= (9.55 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(\pi^+\pi^-K^0_SK^0_S)/\Gamma_{\text{total}}$

 Γ_{15}/Γ

Created: 5/30/2017 17:21

 $rac{ extit{DOCUMENT ID}}{1 ext{ ABLIKIM}}$ 050 BES2 $\psi(2S)
ightarrow$ *VALUE* (units 10⁻⁴)_____ $\overline{\text{050 BES2}} \ \overline{\psi(\text{2S})} \to \ \chi_{c1} \gamma$ $7.0 \pm 3.0 \pm 0.2$ $^{1}\text{ABLIKIM 050 reports } [\Gamma(\chi_{c1}(1P) \ \rightarrow \ \pi^{+}\,\pi^{-}\,K^{0}_{S}\,K^{0}_{S})/\Gamma_{\text{total}}] \ \times \ [\text{B}(\psi(2S) \ \rightarrow \ \pi^{+}\,\pi^{-}\,K^{0}_{S}\,K^{0}_{S})/\Gamma_{\text{total}}]$ $\gamma \chi_{c1}(1P))] = (0.67 \pm 0.26 \pm 0.11) \times 10^{-4}$ which we divide by our best value B($\psi(2S) \rightarrow$ $\gamma \chi_{c1}(1P)) = (9.55 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

HTTP://PDG.LBL.GOV

Page 7

 $\Gamma(K^+K^-\eta)/\Gamma_{\text{total}}$

VALUE (units 10^{-3})

 $0.32 \pm 0.10 \pm 0.01$

07 CLEO $\psi(2S) \to \gamma h^{+} h^{-} h^{0}$

 1 ATHAR 07 reports (0.34 \pm 0.10 \pm 0.04) \times 10 $^{-3}$ from a measurement of [Γ($\chi_{c1}(1P) \rightarrow$ $K^+K^-\eta)/\Gamma_{ ext{total}}]$ × [B($\psi(2S) \to \gamma \chi_{c1}(1P)$)] assuming B($\psi(2S) \to \gamma \chi_{c1}(1P)$) = 0.0907 ± 0.0011 ± 0.0054, which we rescale to our best value B($\psi(2S) \to \gamma \chi_{c1}(1P)$) $= (9.55 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(\overline{K}^0K^+\pi^- + \text{c.c.})/\Gamma_{\text{total}}$

 Γ_{17}/Γ

VALUE (units 10^{-3})

DOCUMENT ID

 7.1 ± 0.6 OUR FIT

$\Gamma(K^*(892)^0\overline{K}^0 + \text{c.c.})/\Gamma_{\text{total}}$

 Γ_{18}/Γ

VALUE (units 10^{-3}) DOCUMENT ID ¹ ABLIKIM 06R BES2 $\psi(2S) \rightarrow \gamma \chi_{c1}$ $1.00\pm0.37\pm0.03$

¹ ABLIKIM 06R reports $(1.1\pm0.4\pm0.1)\times10^{-3}$ from a measurement of $[\Gamma(\chi_{c1}(1P)\to$ $\textit{K*}(892)^{\textstyle 0} \, \overline{\textit{K}}^{\textstyle 0} + \text{ c.c.})/\Gamma_{\textstyle \text{total}}] \; \times \; \left[\textit{B}(\psi(2S) \; \rightarrow \; \gamma \, \chi_{c1}(1P)) \right] \; \text{assuming} \; \; \textit{B}(\psi(2S) \; \rightarrow \; \gamma \, \chi_{c1}(1P))$ $\gamma \chi_{c1}(1P)) = (8.7 \pm 0.4) \times 10^{-2}$, which we rescale to our best value B($\psi(2S) \rightarrow$ $\gamma \chi_{c1}(1P))=(9.55\pm0.31) imes10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(K^*(892)^+K^- + \text{c.c.})/\Gamma_{\text{total}}$

 Γ_{19}/Γ

VALUE (units 10^{-3}) DOCUMENT ID TECN COMMENT ¹ ABLIKIM 06R BES2 $\psi(2S) \rightarrow \gamma \chi_{c1}$ $1.46 \pm 0.66 \pm 0.05$

 1 ABLIKIM 06R reports (1.6 \pm 0.7 \pm 0.2) \times 10 $^{-3}$ from a measurement of [Γ($\chi_{c1}(1P) \rightarrow$ $K^*(892)^+K^- + \text{c.c.})/\Gamma_{ ext{total}}] \times [B(\psi(2S) \rightarrow \gamma \chi_{c1}(1P))] \text{ assuming } B(\psi(2S) \rightarrow \gamma \chi_{c1}(1P))]$ $\gamma \chi_{c1}(1P)) = (8.7 \pm 0.4) \times 10^{-2}$, which we rescale to our best value B($\psi(2S) \rightarrow$ $\gamma \chi_{c1}(1P)) = (9.55 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(K_J^*(1430)^0\overline{K}^0 + \text{c.c.} \rightarrow K_S^0K^+\pi^- + \text{c.c.})/\Gamma_{\text{total}}$

 Γ_{20}/Γ

DOCUMENT ID

TECN
COMMENT

ABLIKIM
06R
RFS2 06R BES2 ψ (2S) ightarrow $\gamma \chi_{c1}$ <0.8

 1 ABLIKIM 06R reports < 0.9 \times 10 $^{-3}$ from a measurement of $[\Gamma(\chi_{c1}(1P)$ ightarrow $K_I^*(1430)^0 \overline{K}^0 + \text{c.c.} \rightarrow K_S^0 K^+ \pi^- + \text{c.c.})/\Gamma_{\text{total}} \times [B(\psi(2S) \rightarrow \gamma \chi_{c1}(1P))]$ assuming B($\psi(2S) \rightarrow \gamma \chi_{c1}(1P)$) = (8.7 \pm 0.4) \times 10⁻², which we rescale to our best value B($\psi(2S) \to \gamma \chi_{c1}(1P)$) = 9.55 × 10⁻².

$\Gamma(K_J^*(1430)^+K^- + \text{c.c.} \rightarrow K_S^0K^+\pi^- + \text{c.c.})/\Gamma_{\text{total}}$

 Γ_{21}/Γ

Created: 5/30/2017 17:21

VALUE (units 10^{-3}) 06R BES2 $\psi(2S) \rightarrow \gamma \chi_{c1}$ <2.2

 1 ABLIKIM 06R reports $< 2.4 \times 10^{-3}$ from a measurement of $[\Gamma(\chi_{c1}(1P) \rightarrow$ $K_{J}^{*}(1430)^{+}K^{-} + \text{c.c.} \rightarrow K_{S}^{0}K^{+}\pi^{-} + \text{c.c.})/\Gamma_{\mathsf{total}} \times [B(\psi(2S) \rightarrow \gamma\chi_{c1}(1P))]$ assuming B($\psi(2S) \rightarrow \gamma \chi_{c1}(1P)$) = $(8.7 \pm 0.4) \times 10^{-2}$, which we rescale to our best value B($\psi(2S) \to \gamma \chi_{c1}(1P)$) = 9.55 × 10⁻².

HTTP://PDG.LBL.GOV

Page 8

 $\Gamma(K^+K^-\pi^0)/\Gamma_{\text{total}}$

VALUE (units 10^{-3}) $1.85 \pm 0.24 \pm 0.06$

TECN COMMENT

 $\begin{array}{c|cc} & \underline{TECN} & \underline{COMMENT} \\ \hline 07 & \underline{CLEO} & \psi(2S) \rightarrow \gamma \, h^+ \, h^- \, h^0 \end{array}$

 1 ATHAR 07 reports (1.95 \pm 0.16 \pm 0.23) \times 10 $^{-3}$ from a measurement of [Γ($\chi_{c1}(1P) \rightarrow$ $K^+K^-\pi^0$ / Γ_{total}] × [B($\psi(2S) \rightarrow \gamma \chi_{c1}(1P)$)] assuming B($\psi(2S) \rightarrow \gamma \chi_{c1}(1P)$) = 0.0907 ± 0.0011 ± 0.0054, which we rescale to our best value B($\psi(2S) \rightarrow \gamma \chi_{c1}(1P)$) $=(9.55\pm0.31) imes10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\eta \pi^+ \pi^-)/\Gamma_{\text{total}}$

VALUE (units 10^{-3})

 Γ_{23}/Γ

4.9±0.5 OUR AVERAGE					
$4.7 \pm 0.5 \pm 0.2$		¹ ATHAR	07	CLEO	$\psi(2S) \rightarrow \gamma h^+ h^- h^0$
$5.4 \pm 0.9 \pm 0.2$	222	² ABLIKIM	06 R	BES2	$\psi(2S) \rightarrow \gamma \chi_{c1}$

- 1 ATHAR 07 reports (5.0 \pm 0.3 \pm 0.5) imes 10 $^{-3}$ from a measurement of [$\Gamma(\chi_{c1}(1P)
 ightarrow$ $\eta\pi^+\pi^-)/\Gamma_{\mathsf{total}}] \times [\mathsf{B}(\psi(2S) \to \gamma\chi_{c1}(1P))]$ assuming $\mathsf{B}(\psi(2S) \to \gamma\chi_{c1}(1P)) = 0.0907 \pm 0.0011 \pm 0.0054$, which we rescale to our best value $\mathsf{B}(\psi(2S) \to \gamma\chi_{c1}(1P))$ $= (9.55 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- 2 ABLIKIM 06R reports (5.9 \pm 0.7 \pm 0.8) \times 10 $^{-3}$ from a measurement of [$\Gamma(\chi_{c1}(1P) \rightarrow$ $\eta\pi^+\pi^-)/\Gamma_{\rm total}] \times [{\sf B}(\psi(2S) \to \gamma\chi_{c1}(1P))]$ assuming ${\sf B}(\psi(2S) \to \gamma\chi_{c1}(1P)) = (8.7 \pm 0.4) \times 10^{-2}$, which we rescale to our best value ${\sf B}(\psi(2S) \to \gamma\chi_{c1}(1P)) = (8.7 \pm 0.4) \times 10^{-2}$ $(9.55 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(a_0(980)^+\pi^- + \text{c.c.} \to \eta \pi^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{24}/Γ

VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
1.8±0.6±0.1	58	¹ ABLIKIM	06R	BES2	$\overline{\psi(2S)} \rightarrow \gamma \chi_{c1}$

 $^1\, {\rm ABLIKIM}$ 06R reports (2.0 \pm 0.5 \pm 0.5) $\times\, 10^{-3}$ from a measurement of [Γ($\chi_{\it C1}(1P)$ \rightarrow $a_0(980)^+\pi^-+{
m c.c.}
ightarrow \eta\pi^+\pi^-)/\Gamma_{
m total}] imes [{
m B}(\psi(2S)
ightarrow \gamma\chi_{c1}(1P))]$ assuming ${
m B}(\psi(2S)
ightarrow \gamma\chi_{c1}(1P))=(8.7\pm0.4)\times 10^{-2},$ which we rescale to our best value $B(\psi(2S) \rightarrow \gamma \chi_{c1}(1P)) = (9.55 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(f_2(1270)\eta)/\Gamma_{\text{total}}$

 Γ_{25}/Γ

$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
2.7±0.8±0.1	53	¹ ABLIKIM	06 R	BES2	$\psi(2S) \rightarrow \gamma \chi_{c1}$

 1 ABLIKIM 06R reports (3.0 \pm 0.7 \pm 0.5) $\times\,10^{-3}$ from a measurement of [Γ($\chi_{c1}(1P)$ \rightarrow $f_2(1270)\eta)/\Gamma_{\mathsf{total}} \times [\mathsf{B}(\psi(2S) \to \gamma \chi_{c1}(1P))] \text{ assuming } \mathsf{B}(\psi(2S) \to \gamma \chi_{c1}(1P)) = 0$ $(8.7 \pm 0.4) \times 10^{-2}$, which we rescale to our best value B($\psi(2S) \rightarrow \gamma \chi_{c1}(1P)$) = $(9.55\pm0.31) imes10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$$\Gamma(\pi^+\pi^-\eta')/\Gamma_{\text{total}}$$

 Γ_{26}/Γ

VALUE (units
$$10^{-3}$$
)DOCUMENT IDTECNCOMMENT2.3±0.5±0.11 ATHAR07 CLEO $\psi(2S) \rightarrow \gamma h^+ h^- h^0$

¹ ATHAR 07 reports $(2.4\pm0.4\pm0.3)\times10^{-3}$ from a measurement of $[\Gamma(\chi_{c1}(1P)\to\pi^+\pi^-\eta')/\Gamma_{\text{total}}]\times[B(\psi(2S)\to\gamma\chi_{c1}(1P))]$ assuming $B(\psi(2S)\to\gamma\chi_{c1}(1P))=0.0907\pm0.0011\pm0.0054$, which we rescale to our best value $B(\psi(2S)\to\gamma\chi_{c1}(1P))=(9.55\pm0.31)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(K^+K^-\eta'(958))/\Gamma_{\text{total}}$

 Γ_{27}/Γ

$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
8.75±0.87	310	¹ ABLIKIM	1 4J	BES3	$\psi(2S) \rightarrow \gamma K^+ K^- \eta'(958)$

 $^{^1}$ Derived using B($\psi(2S) \to ~\gamma \chi_{c1}) = (9.2 \pm 0.4)\%.$ Uncertainty includes both statistical and systematic contributions combined in quadrature.

$\Gamma(K_0^*(1430)^+K^- + \text{c.c.})/\Gamma_{\text{total}}$

 Γ_{28}/Γ

$VALUE$ (units 10^{-4})	DOCUMENT ID		TECN	COMMENT
$6.41 \pm 0.57 {+2.09 \atop -2.71}$	¹ ABLIKIM	14 J	BES3	$\psi(2S) \rightarrow \gamma K^+ K^- \eta'(958)$

¹ Normalized to B($\chi_{c1} \rightarrow K^+ K^- \eta'(958)$) branching fraction.

$\Gamma(f_0(980)\eta'(958))/\Gamma_{\text{total}}$

 Γ_{29}/Γ

VALUE (units 10^{-4})	DOCUMENT ID		TECN	COMMENT
$1.65 \pm 0.47 ^{+1.32}_{-0.56}$	¹ ABLIKIM	14 J	BES3	${\psi(2S) \rightarrow \gamma K^{+} K^{-} \eta'(958)}$

¹ Normalized to B($\chi_{c1} \rightarrow K^+ K^- \eta'(958)$) branching fraction.

$\Gamma\big(\mathit{f}_{0}(1710)\eta'(958)\big)/\Gamma_{\mathsf{total}}$

 Γ_{30}/Γ

VALUE (units 10 ⁻⁴)	DOCUMENT ID		TECN	COMMENT
$0.71 \pm 0.22 ^{+0.68}_{-0.48}$	¹ ABLIKIM	14 J	BES3	$\psi(2S) \rightarrow \gamma K^+ K^- \eta'(958)$

 $^{^1\,\}mathrm{Normalized}$ to B($\chi_{\it c1} \rightarrow~\mathrm{K}^+\,\mathrm{K}^-\,\eta^\prime$ (958)) branching fraction.

$\Gamma(f_2'(1525)\eta'(958))/\Gamma_{\text{total}}$

 Γ_{31}/Γ

VALUE (units 10^{-4})	DOCUMENT ID	TECN	COMMENT
$0.92 \pm 0.23 {+0.55 top -0.51}$	$^{ m 1}$ ABLIKIM	14J BES3	$\psi(2S) \rightarrow \gamma K^+ K^- \eta'(958)$

$\Gamma(\pi^0 f_0(980) \rightarrow \pi^0 \pi^+ \pi^-)/\Gamma_{\text{total}}$

 Γ_{32}/Γ

VALUE	CL%	DOCUMENT ID	TECN	<u>COMMENT</u>
<6 × 10 ⁻⁶	90	¹ ABLIKIM	11D BES3	$\psi(2S) \rightarrow \gamma \pi^0 \pi^+ \pi^-$
4		^	0 1	

 $^{^1}$ ABLIKIM 11D reports [$\Gamma(\chi_{c1}(1P)\to\pi^0\,f_0(980)\to\pi^0\,\pi^+\,\pi^-)/\Gamma_{\rm total}]\times [{\rm B}(\psi(2S)\to\gamma\chi_{c1}(1P))]<6.0\times10^{-7}$ which we divide by our best value ${\rm B}(\psi(2S)\to\gamma\chi_{c1}(1P))=9.55\times10^{-2}$.

$$\Gamma(K^+\overline{K}^*(892)^0\pi^- + \text{c.c.})/\Gamma_{\text{total}}$$

 Γ_{33}/Γ

Created: 5/30/2017 17:21

VALUE (units 10^{-4})	DOCUMENT ID	TECN	COMMENT
32±21	¹ TANENBAUM 78	MRK1	$\psi(2S) \rightarrow \gamma \chi_{c1}$

¹ Estimated using B($\psi(2S) \to \gamma \chi_{c1}(1P)$) = 0.087. The errors do not contain the uncertainty in the $\psi(2S)$ decay.

HTTP://PDG.LBL.GOV

Page 10

 $\Gamma(K^*(892)^0\overline{K}^*(892)^0)/\Gamma_{\text{total}}$

 Γ_{34}/Γ

 $\Gamma(K^+K^-K^0_SK^0_S)/\Gamma_{\text{total}}$

² Assumes B($K^*(892)^0 \to K^-\pi^+$) = 2/3.

 Γ_{35}/Γ

 $\Gamma(K^+K^-K^+K^-)/\Gamma_{\text{total}}$

 Γ_{36}/Γ

VALUE (units 10^{-3})

DOCUMENT ID

0.55 ± 0.11 OUR FIT

 $\Gamma (K^+ K^- \phi) / \Gamma_{\text{total}}$

 Γ_{37}/Γ

VALUE (units 10^{-3})EVTSDOCUMENT IDTECNCOMMENT0.42 \pm 0.15 \pm 0.01171 ABLIKIM06TBES2 $\psi(2S) \rightarrow \gamma 2K^+ 2K^-$

 1 ABLIKIM 06T reports $(0.46\pm0.16\pm0.06)\times10^{-3}$ from a measurement of $[\Gamma(\chi_{c1}(1P)\to K^+K^-\phi)/\Gamma_{total}]\times[B(\psi(2S)\to \gamma\chi_{c1}(1P))]$ assuming $B(\psi(2S)\to \gamma\chi_{c1}(1P))=(8.7\pm0.4)\times10^{-2},$ which we rescale to our best value $B(\psi(2S)\to \gamma\chi_{c1}(1P))=(9.55\pm0.31)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(\overline{K}^0K^+\pi^-\phi + \text{c.c.})/\Gamma_{\text{total}}$

 Γ_{38}/Γ

VALUE (units 10^{-3})DOCUMENT IDTECNCOMMENT3.27 ± 0.28 ± 0.46ABLIKIM15MBES3 $\psi(2S) \rightarrow \gamma \chi_{c1}$

 $\Gamma(K^+K^-\pi^0\phi)/\Gamma_{\text{total}}$

 Γ_{39}/Γ

VALUE (units 10^{-3})DOCUMENT IDTECNCOMMENT1.62 \pm 0.12 \pm 0.28ABLIKIM15MBES3 $\psi(2S) \rightarrow \gamma \chi_{c1}$

 $\Gamma(\phi\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$

 Γ_{40}/Γ

Created: 5/30/2017 17:21

VALUE (units 10^{-3})EVTSDOCUMENT IDTECNCOMMENT0.75 \pm 0.06 \pm 0.08373 1 ABLIKIM13BBES3 $e^{+}e^{-} \rightarrow \psi(2S) \rightarrow \gamma \chi_{c1}$

 $^{1}\, {\rm Using}~ 1.06 \times 10^{8}~ \psi(2S)$ mesons and ${\rm B}(\psi(2S) \rightarrow~\chi_{{\cal C}1} \gamma) = (9.2 \pm 0.4)\%.$

 $\Gamma(\omega\omega)/\Gamma_{\text{total}}$ Γ_{41}/Γ

VALUE (units 10^{-4})EVTSDOCUMENT IDTECNCOMMENT**5.8±0.7±0.2**597 1 ABLIKIM11KBES3 $\psi(2S) \rightarrow \gamma$ hadrons

 1 ABLIKIM 11K reports $(6.0\pm0.3\pm0.7)\times10^{-4}$ from a measurement of $[\Gamma(\chi_{c1}(1P)\to\omega\omega)/\Gamma_{total}]\times[B(\psi(2S)\to\gamma\chi_{c1}(1P))]$ assuming $B(\psi(2S)\to\gamma\chi_{c1}(1P))=(9.2\pm0.4)\times10^{-2},$ which we rescale to our best value $B(\psi(2S)\to\gamma\chi_{c1}(1P))=(9.55\pm0.31)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\omega K^+ K^-)/\Gamma_{\text{total}}$

 Γ_{42}/Γ

 $\Gamma(\omega\phi)/\Gamma_{\text{total}}$

 Γ_{43}/Γ

VALUE (units 10^{-4})EVTSDOCUMENT IDTECNCOMMENT**0.21±0.06±0.01**15 1 ABLIKIM11KBES3 $\psi(2S) \rightarrow \gamma$ hadrons

 1 ABLIKIM 11K reports $(0.22\pm0.06\pm0.02)\times10^{-4}$ from a measurement of $[\Gamma(\chi_{c1}(1P)\to\omega\phi)/\Gamma_{total}]\times[B(\psi(2S)\to\gamma\chi_{c1}(1P))]$ assuming $B(\psi(2S)\to\gamma\chi_{c1}(1P))=(9.2\pm0.4)\times10^{-2},$ which we rescale to our best value $B(\psi(2S)\to\gamma\chi_{c1}(1P))=(9.55\pm0.31)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(\phi\phi)/\Gamma_{\mathsf{total}}$

VALUE (units 10^{-4})EVTSDOCUMENT IDTECNCOMMENT**4.2±0.5±0.1**366 1 ABLIKIM11KBES3 $\psi(2S) \rightarrow \gamma$ hadrons

 $\Gamma(p\overline{p})/\Gamma_{\text{total}}$ Γ_{45}/Γ

VALUE (units 10⁻⁴) DOCUMENT ID

0.772±0.035 OUR FIT

 $\Gamma(p\overline{p}\pi^0)/\Gamma_{\mathsf{total}}$

 Γ_{46}/Γ

Created: 5/30/2017 17:21

VALUE (units 10^{-3})	DOCUMENT ID		TECN	COMMENT
0.159±0.019 OUR AVERAGE				
$0.166 \pm 0.020 \pm 0.005$	$^{ m 1}$ ONYISI	10	CLE3	$\psi(2S) \rightarrow \gamma p \overline{p} X$
$0.114 \pm 0.048 \pm 0.004$	² ATHAR	07	CLEO	$\psi(2S) \rightarrow \gamma h^+ h^- h^0$

 1 ONYISI 10 reports (1.75 \pm 0.16 \pm 0.13 \pm 0.11) \times 10 $^{-4}$ from a measurement of $[\Gamma(\chi_{c1}(1P)\to p\overline{p}\pi^0)/\Gamma_{total}]\times [\mathsf{B}(\psi(2S)\to \gamma\chi_{c1}(1P))]$ assuming $\mathsf{B}(\psi(2S)\to \gamma\chi_{c1}(1P))=(9.07\pm0.11\pm0.54)\times10^{-2}$, which we rescale to our best value $\mathsf{B}(\psi(2S)\to \gamma\chi_{c1}(1P))=(9.55\pm0.31)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $^{^1}$ ABLIKIM 11K reports (4.4 \pm 0.3 \pm 0.5) \times 10 $^{-4}$ from a measurement of [$\Gamma(\chi_{c1}(1P)\to\phi\phi)/\Gamma_{total}]\times$ [B($\psi(2S)\to\gamma\chi_{c1}(1P)$)] assuming B($\psi(2S)\to\gamma\chi_{c1}(1P)$) = (9.2 \pm 0.4) \times 10 $^{-2}$, which we rescale to our best value B($\psi(2S)\to\gamma\chi_{c1}(1P)$) = (9.55 \pm 0.31) \times 10 $^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 2 ATHAR 07 reports $(1.2\pm0.5\pm0.1)\times10^{-4}$ from a measurement of $\Gamma(\chi_{c1}(1P)\to$ $p\overline{p}\pi^0)/\Gamma_{\mathsf{total}}] \times [\mathsf{B}(\psi(2S) \to \gamma \chi_{c1}(1P))] \text{ assuming } \mathsf{B}(\psi(2S) \to \gamma \chi_{c1}(1P)) = 0$ $(9.07\pm0.11\pm0.54)\times10^{-2}$, which we rescale to our best value B($\psi(2S)\to\gamma\chi_{c1}(1P)$) $= (9.55 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 Γ_{47}/Γ $\Gamma(p\overline{p}\eta)/\Gamma_{\text{total}}$

VALUE (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT
$0.148 \pm 0.025 \pm 0.005$		¹ ONYISI	10	CLE3	$\psi(2S) \rightarrow \gamma p \overline{p} X$

• • • We do not use the following data for averages, fits, limits, etc. • • •

² ATHAR 07 CLEO $\psi(2S) \rightarrow \gamma h^+ h^- h^0$ < 0.15

 10^{-2} , which we rescale to our best value B($\psi(2S) \rightarrow \gamma \chi_{c1}(1P)$) = 9.55×10^{-2} .

 Γ_{48}/Γ

Created: 5/30/2017 17:21

 $\Gamma(p\overline{p}\omega)/\Gamma_{\text{total}}$

VALUE (units 10^{-3}) $\frac{}{10} \quad \overline{\text{CLE3}} \quad \psi(2S) \rightarrow \gamma p \overline{p} X$ $0.216 \pm 0.031 \pm 0.007$

 1 ONYISI 10 reports (2.28 \pm 0.28 \pm 0.16 \pm 0.14) imes 10 $^{-4}$ from a measurement of $\gamma \chi_{c1}(1P)$) = $(9.55 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(p\overline{p}\phi)/\Gamma_{\text{total}}$ Γ_{49}/Γ

VALUE (units
$$10^{-5}$$
) CL% DOCUMENT ID TECN COMMENT

4.8 90 1 ABLIKIM 11F BES3 $\psi(2S) \rightarrow \gamma p \overline{p} K^+ K^-$

$\Gamma(p\overline{p}\pi^+\pi^-)/\Gamma_{\text{total}}$ Γ_{50}/Γ

VALUE (units 10^{-3}) DOCUMENT ID TECN COMMENT 0.50 ± 0.19 OUR EVALUATION Treating systematic error as correlated.

 0.50 ± 0.19 OUR AVERAGE

¹ BAI $0.46 \pm 0.12 \pm 0.15$ 99B BES $\psi(2S) \rightarrow \gamma \chi_{c1}$ ¹ TANENBAUM 78 MRK1 $\psi(2S) \rightarrow \gamma \chi_{c1}$ $1.08\!\pm\!0.77\!\pm\!0.05$

 1 Rescaled by us using B $(\psi(2S)$ ightarrow $\gamma\chi_{c1})$ = (8.8 \pm 0.4)% and B(ψ (2S) \rightarrow $J/\psi(1S)\pi^{+}\pi^{-}) = (32.6 \pm 0.5)\%.$

 $^{^1}$ ONYISI 10 reports (1.56 \pm 0.22 \pm 0.14 \pm 0.10) imes 10 $^{-4}$ from a measurement of $[\Gamma(\chi_{c1}(1P) \rightarrow p\overline{p}\eta)/\Gamma_{total}] \times [B(\psi(2S) \rightarrow \gamma\chi_{c1}(1P))]$ assuming $B(\psi(2S) \rightarrow \gamma\chi_{c1}(1P))$ $\gamma \chi_{c1}(1P)) = (9.07 \pm 0.11 \pm 0.54) \times 10^{-2}$, which we rescale to our best value B($\psi(2S) \rightarrow$ $\begin{array}{l} \gamma\chi_{c1}(1P)) = (9.57 \pm 0.31) \times 10^{-2}. \text{ Our first error is their experiment's error and our second error is the systematic error from using our best value.} \\ {}^2\text{ATHAR 07 reports} < 0.16 \times 10^{-3} \text{ from a measurement of } [\Gamma(\chi_{c1}(1P) \to p\overline{p}\eta)/\Gamma_{\text{total}}] \\ \times [B(\psi(2S) \to \gamma\chi_{c1}(1P))] \text{ assuming } B(\psi(2S) \to \gamma\chi_{c1}(1P)) = (9.07 \pm 0.11 \pm 0.54) \times 10^{-2}. \end{array}$

 $^{^{1}}$ ABLIKIM 11F reports $<1.82\times10^{-5}$ from a measurement of $[\Gamma(\chi_{C1}(1P)\to p\overline{p}\phi)/\Gamma_{\rm total}]\times[{\rm B}(\psi(2S)\to \gamma\chi_{c1}(1P))]$ assuming ${\rm B}(\psi(2S)\to \gamma\chi_{c1}(1P))=(9.2\pm0.4)\times10^{-5}$ 10^{-2} , which we rescale to our best value B($\psi(2S) \rightarrow \gamma \chi_{c1}(1P)$) = 9.55×10^{-2} .

 $\Gamma(p\overline{p}\pi^0\pi^0)/\Gamma_{ ext{total}}$

 $\frac{VALUE\ (\%)}{<0.05}$ $\frac{CL\%}{90}$ $\frac{DOCUMENT\ ID}{1}$ $\frac{TECN}{0.05}$ $\frac{COMMENT}{e^+e^- \rightarrow \gamma h^+h^-h^0h^0}$

 1 HE 08B reports < 0.05 % from a measurement of $[\Gamma(\chi_{c1}(1P)\to p\overline{p}\pi^{0}\pi^{0})/\Gamma_{\rm total}]\times [B(\psi(2S)\to \gamma\chi_{c1}(1P))]$ assuming $B(\psi(2S)\to \gamma\chi_{c1}(1P))=(9.07\pm0.11\pm0.54)\times 10^{-2},$ which we rescale to our best value $B(\psi(2S)\to \gamma\chi_{c1}(1P))=9.55\times 10^{-2}.$

$\Gamma(p\overline{p}K^+K^-\text{(non-resonant)})/\Gamma_{\text{total}}$

 Γ_{52}/Γ

VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID		TECN	COMMENT
1.30±0.23±0.04	82 ± 9	1 ABLIKIM	11F	BES3	$ \overline{\psi(2S)} \rightarrow \gamma p \overline{p} K^+ K^- $
4					

¹ ABLIKIM 11F reports $(1.35\pm0.15\pm0.19)\times10^{-4}$ from a measurement of $[\Gamma(\chi_{c1}(1P)\to p\overline{p}K^+K^-(\text{non-resonant}))/\Gamma_{\text{total}}]\times[B(\psi(2S)\to \gamma\chi_{c1}(1P))]$ assuming $B(\psi(2S)\to \gamma\chi_{c1}(1P))=(9.2\pm0.4)\times10^{-2}$, which we rescale to our best value $B(\psi(2S)\to \gamma\chi_{c1}(1P))=(9.55\pm0.31)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(p\overline{p}K_S^0K_S^0)/\Gamma_{\text{total}}$

 Γ_{53}/Γ

VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT
<4.5	90	¹ ABLIKIM	06 D	BES2	$\psi(2S) \rightarrow \gamma \chi_{c1}$

¹ Using B($\psi(2S) \rightarrow \chi_{c1} \gamma$) (9.1 \pm 0.6)%.

 $\Gamma(p\overline{n}\pi^-)/\Gamma_{\text{total}}$

 Γ_{54}/Γ

$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
$3.9 \pm 0.5 \pm 0.1$	1412	¹ ABLIKIM	12 J	BES3	$\psi(2S) \rightarrow \gamma \rho \overline{n} \pi^-$

 1 ABLIKIM 12J reports $[\Gamma\big(\chi_{c1}(1P)\to p\overline{n}\pi^-\big)/\Gamma_{\text{total}}]\times [\mathsf{B}(\psi(2S)\to \gamma\chi_{c1}(1P))]=(0.37\pm0.02\pm0.04)\times10^{-4}$ which we divide by our best value $\mathsf{B}(\psi(2S)\to \gamma\chi_{c1}(1P))=(9.55\pm0.31)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\overline{p}n\pi^+)/\Gamma_{\text{total}}$

 Γ_{55}/Γ

VALUE (units 10^{-4})	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
4.0±0.5±0.1	1625	¹ ABLIKIM	12J	BES3	$\psi(2S) \rightarrow \gamma \overline{p} n \pi^+$

¹ ABLIKIM 12J reports $[\Gamma(\chi_{c1}(1P) \to \overline{p}n\pi^+)/\Gamma_{total}] \times [B(\psi(2S) \to \gamma\chi_{c1}(1P))] = (0.38 \pm 0.02 \pm 0.04) \times 10^{-4}$ which we divide by our best value $B(\psi(2S) \to \gamma\chi_{c1}(1P)) = (9.55 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(p\overline{n}\pi^-\pi^0)/\Gamma_{\text{total}}$

 Γ_{56}/Γ

Created: 5/30/2017 17:21

VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
10.5±1.2±0.3	1082	¹ ABLIKIM	12 J	BES3	$ \overline{\psi(2S)} \rightarrow \gamma p \overline{n} \pi^- \pi^0 $

¹ ABLIKIM 12J reports $[\Gamma(\chi_{c1}(1P) \to p \overline{n} \pi^- \pi^0)/\Gamma_{total}] \times [B(\psi(2S) \to \gamma \chi_{c1}(1P))] = (1.00 \pm 0.05 \pm 0.10) \times 10^{-4}$ which we divide by our best value $B(\psi(2S) \to \gamma \chi_{c1}(1P)) = (9.55 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update $\Gamma(\overline{p}n\pi^{+}\pi^{0})/\Gamma_{\text{total}}$ VALUE (units 10⁻⁴ 12J BES3 $\psi(2S) \rightarrow \gamma \overline{p} n \pi^+ \pi^0$ $10.3 \pm 1.2 \pm 0.3$ 1261 $^{1}\text{ABLIKIM 12J reports}\left[\Gamma\big(\chi_{c1}(1P)\to \overline{p}n\pi^{+}\pi^{0}\big)/\Gamma_{\text{total}}\right]\times\left[\mathsf{B}(\psi(2S)\to \gamma\chi_{c1}(1P))\right]=0$ $(0.98 \pm 0.05 \pm 0.10) \times 10^{-4}$ which we divide by our best value B($\psi(2S) \rightarrow \gamma \chi_{c1}(1P)$) $= (9.55 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. $\Gamma(\Lambda\Lambda)/\Gamma_{\text{total}}$ Γ_{58}/Γ VALUE (units 10^{-4}) DOCUMENT ID 1.16±0.12 OUR FIT $\Gamma(\Lambda \overline{\Lambda} \pi^+ \pi^-)/\Gamma_{\text{total}}$ Γ_{59}/Γ

<150 90 2 ABLIKIM 06D BES2 $\psi(2S)
ightarrow \gamma \chi_{c1}$

² Using B($\psi(2S) \rightarrow \chi_{c1} \gamma$) (9.1 \pm 0.6)%.

$\Gamma(\Lambda \overline{\Lambda} \pi^+ \pi^- (\text{non-resonant})) / \Gamma_{\text{total}}$

 Γ_{60}/Γ

VALUE (units 10^{-5})EVTSDOCUMENT IDTECNCOMMENT25±6±113 1 ABLIKIM12IBES3 $\psi(2S) \rightarrow \gamma \Lambda \overline{\Lambda} \pi^{+} \pi^{-}$

¹ ABLIKIM 12I reports $(26.2 \pm 5.5 \pm 3.3) \times 10^{-5}$ from a measurement of $[\Gamma(\chi_{c1}(1P) \rightarrow \Lambda \overline{\Lambda} \pi^+ \pi^- (\text{non-resonant}))/\Gamma_{\text{total}}] \times [B(\psi(2S) \rightarrow \gamma \chi_{c1}(1P))]$ assuming $B(\psi(2S) \rightarrow \gamma \chi_{c1}(1P)) = (9.2 \pm 0.4) \times 10^{-2}$, which we rescale to our best value $B(\psi(2S) \rightarrow \gamma \chi_{c1}(1P)) = (9.55 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\Sigma(1385)^{+}\overline{\Lambda}\pi^{-} + \text{c.c.})/\Gamma_{\text{total}}$

 Γ_{61}/Γ

$\Gamma(\Sigma(1385)^{-}\overline{\Lambda}\pi^{+} + \text{c.c.})/\Gamma_{\text{total}}$

 Γ_{62}/Γ

Created: 5/30/2017 17:21

¹ ABLIKIM 12I reports $(31.1\pm3.4\pm3.9)\times10^{-5}$ from a measurement of $[\Gamma(\chi_{c1}(1P)\to\Lambda\overline{\Lambda}\pi^+\pi^-)/\Gamma_{total}]\times[B(\psi(2S)\to\gamma\chi_{c1}(1P))]$ assuming $B(\psi(2S)\to\gamma\chi_{c1}(1P))=(9.2\pm0.4)\times10^{-2}$, which we rescale to our best value $B(\psi(2S)\to\gamma\chi_{c1}(1P))=(9.55\pm0.31)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

¹ ABLIKIM 12I reports < 14 \times 10⁻⁵ from a measurement of $[\Gamma(\chi_{c1}(1P) \rightarrow \Sigma(1385)^{-}\overline{\Lambda}\pi^{+} + \text{c.c.})/\Gamma_{\text{total}}] \times [B(\psi(2S) \rightarrow \gamma\chi_{c1}(1P))]$ assuming $B(\psi(2S) \rightarrow \gamma\chi_{c1}(1P)) = (9.2 \pm 0.4) \times 10^{-2}$, which we rescale to our best value $B(\psi(2S) \rightarrow \gamma\chi_{c1}(1P)) = 9.55 \times 10^{-2}$.

$\Gamma(K^{+}\overline{p}\Lambda)/\Gamma_{\text{total}}$

 Γ_{63}/Γ

VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
4.2±0.4 OUR AVERAGE	Error	includes scale fact	or of 1	l.1.	
$4.3 \pm 0.4 \pm 0.1$	3k	^{1,2} ABLIKIM			$\psi(2S) \rightarrow \gamma \Lambda \overline{p} K^+$
$3.1 \pm 0.9 \pm 0.1$		³ ATHAR	07	CLEO	$\psi(2S) \rightarrow \gamma h^+ h^- h^0$
¹ ABLIKIM 13D report	s (4.5 \pm	$0.2 \pm 0.4) \times 10^{-4}$	from	a measu	rement of $[\Gamma(\chi_{c1}(1P) ightarrow$
$(K^{+}\overline{p}\Lambda)/\Gamma_{total}] \times $	$B(\psi(2S)$	$\rightarrow \gamma \chi_{c1}(1P))]$	assun	ning B(y	$\psi(2S) \rightarrow \gamma \chi_{c1}(1P)) =$
(0.0 + 0.1) - 10-2				. 5/	(4.5))

 $K^+ \overline{p} \Lambda)/\Gamma_{\text{total}}] \times [B(\psi(2S) \to \gamma \chi_{c1}(1P))]$ assuming $B(\psi(2S) \to \gamma \chi_{c1}(1P)) = (9.2 \pm 0.4) \times 10^{-2}$, which we rescale to our best value $B(\psi(2S) \to \gamma \chi_{c1}(1P)) = (9.55 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(K^+\overline{p}\Lambda(1520) + \text{c.c.})/\Gamma_{\text{total}}$

VALUE (units 10^{-4})

 Γ_{64}/Γ

$1.7 \pm 0.4 \pm 0.1$	48 ± 10	$^{ m 1}$ ABLIKIM	11F	BES3	$\psi(2S) \rightarrow \gamma p \overline{p} K^+ K^-$
¹ ABLIKIM 11F rep	orts (1.81 \pm 0	$0.38 \pm 0.28) \times 10^{-1}$	⁴ from	a meası	urement of $[\Gamma(\chi_{c1}(1P) ightarrow$
$K^{+} \overline{p} \Lambda(1520) +$	$\text{c.c.}\big)/\Gamma_{total}]$	\times [B(ψ (2 S) \rightarrow	$\gamma \chi$	$c1^{(1P)}$] assuming $B(\psi(2S) \to$
					r best value B $(\psi(2S) ightarrow$
$\gamma \chi_{c1}(1P)) = (9.$.55 ± 0.31) >	$< 10^{-2}$. Our first	error i	s their e	experiment's error and our

second error is the systematic error from using our best value.

DOCUMENT ID

TECN

TECN COMMENT

COMMENT

$\Gamma(\Lambda(1520)\overline{\Lambda}(1520))/\Gamma_{\text{total}}$

VALUE (units 10^{-4})

 Γ_{65}/Γ

<1.0	90	$^{ m 1}$ ABLIKIM	11F BES3	$\psi(2S) \rightarrow \gamma p \overline{p} K^+ K^-$
¹ ABLIKIM 1	1F reports < 1	$.00 \times 10^{-4}$ fro	m a measurer	ment of $[\Gamma(\chi_{c1}(1P) \rightarrow$
				assuming $B(\psi(2S) \to$
		10^{-2} , which we	rescale to ou	r best value B $(\psi(2S) ightarrow$
$\gamma \chi_{c1}(1P))$ =	$= 9.55 \times 10^{-2}$.			

DOCUMENT ID

$\Gamma\big(\Sigma^0\,\overline{\Sigma}{}^0\big)/\Gamma_{total}$

 Γ_{66}/Γ

VALUE (units 10^{-4})	CL%	EVTS		DOCUMENT ID)	TECN	COMMENT
<0.4	90	3.8 ± 2.5	1	NAIK	08	CLEO	$\psi(2S) \rightarrow \gamma \Sigma^0 \overline{\Sigma}{}^0$
\bullet \bullet We do not	use t	he following	data	for averages,	fits, lin	nits, etc.	. • • •
< 0.6	90		2	ABLIKIM	13H	BES3	$\psi(2S) \rightarrow \gamma \Sigma^{0} \overline{\Sigma}{}^{0}$

² Using B($\Lambda \rightarrow p\pi^-$) = 63.9%.

³ ATHAR 07 reports $(3.3 \pm 0.9 \pm 0.4) \times 10^{-4}$ from a measurement of $[\Gamma(\chi_{c1}(1P) \rightarrow K^+ \overline{p} \Lambda)/\Gamma_{total}] \times [B(\psi(2S) \rightarrow \gamma \chi_{c1}(1P))]$ assuming $B(\psi(2S) \rightarrow \gamma \chi_{c1}(1P)) = (9.07 \pm 0.11 \pm 0.54) \times 10^{-2}$, which we rescale to our best value $B(\psi(2S) \rightarrow \gamma \chi_{c1}(1P)) = (9.55 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 1 NAIK 08 reports < 0.44 \times 10 $^{-4}$ from a measurement of [$\Gamma(\chi_{c1}(1P) \rightarrow \Sigma^{0} \overline{\Sigma}^{0}) / \Gamma_{total}] \times [B(\psi(2S) \rightarrow \gamma \chi_{c1}(1P))]$ assuming $B(\psi(2S) \rightarrow \gamma \chi_{c1}(1P)) = (9.07 \pm 0.11 \pm 0.54) \times 10^{-2}$, which we rescale to our best value $B(\psi(2S) \rightarrow \gamma \chi_{c1}(1P)) = 9.55 \times 10^{-2}$.

² ABLIKIM 13H reports $< 0.62 \times 10^{-4}$ from a measurement of $[\Gamma(\chi_{c1}(1P) \to \Sigma^0 \overline{\Sigma}^0)/\Gamma_{total}] \times [B(\psi(2S) \to \gamma \chi_{c1}(1P))]$ assuming $B(\psi(2S) \to \gamma \chi_{c1}(1P)) = (9.2 \pm 0.4) \times 10^{-2}$, which we rescale to our best value $B(\psi(2S) \to \gamma \chi_{c1}(1P)) = 9.55 \times 10^{-2}$.

$\Gamma(\Sigma^{+}\overline{\Sigma}^{-})/\Gamma_{\text{total}}$

 Γ_{67}/Γ

$VALUE$ (units 10^{-4})	CL%	EVTS	DOCUMENT ID		TECN	COMMENT
<0.6	90	4.3 ± 2.3	¹ NAIK	08	CLEO	$\psi(2S) \rightarrow \gamma \Sigma^{+} \overline{\Sigma}^{-}$

• • • We do not use the following data for averages, fits, limits, etc. • • •

<0.8 90 2 ABLIKIM 13H BES3 $\psi(2S) o \gamma \Sigma^+ \overline{\Sigma}^-$

 1 NAIK 08 reports < 0.65 \times 10^{-4} from a measurement of $[\Gamma(\chi_{c1}(1P)\to \Sigma^{+}\overline{\Sigma}^{-})/\Gamma_{total}]\times [B(\psi(2S)\to \gamma\chi_{c1}(1P))]$ assuming $B(\psi(2S)\to \gamma\chi_{c1}(1P))=(9.07\pm0.11\pm0.54)\times 10^{-2},$ which we rescale to our best value $B(\psi(2S)\to \gamma\chi_{c1}(1P))=9.55\times 10^{-2}.$

² ABLIKIM 13H reports $< 0.87 \times 10^{-4}$ from a measurement of $[\Gamma(\chi_{c1}(1P) \to \Sigma^+ \overline{\Sigma}^-)/\Gamma_{total}] \times [B(\psi(2S) \to \gamma \chi_{c1}(1P))]$ assuming $B(\psi(2S) \to \gamma \chi_{c1}(1P)) = (9.2 \pm 0.4) \times 10^{-2}$, which we rescale to our best value $B(\psi(2S) \to \gamma \chi_{c1}(1P)) = 9.55 \times 10^{-2}$.

$\Gamma(\Sigma(1385)^+\overline{\Sigma}(1385)^-)/\Gamma_{\text{total}}$

 Γ_{68}/Γ

 1 ABLIKIM 12I reports $<10\times10^{-5}$ from a measurement of $[\Gamma(\chi_{c1}(1P)\to\Sigma(1385)^+\overline{\Sigma}(1385)^-)/\Gamma_{\rm total}]\times[{\rm B}(\psi(2S)\to\gamma\chi_{c1}(1P))]$ assuming ${\rm B}(\psi(2S)\to\gamma\chi_{c1}(1P))=(9.2\pm0.4)\times10^{-2},$ which we rescale to our best value ${\rm B}(\psi(2S)\to\gamma\chi_{c1}(1P))=9.55\times10^{-2}.$

$\Gamma(\Sigma(1385)^{-}\overline{\Sigma}(1385)^{+})/\Gamma_{\text{total}}$

 Γ_{69}/Γ

VALUE (units 10^{-5})CL%DOCUMENT IDTECNCOMMENT**<5**90 1 ABLIKIM12IBES3 $\psi(2S) \rightarrow \gamma \Lambda \overline{\Lambda} \pi^{+} \pi^{-}$

 1 ABLIKIM 12I reports $<5.7\times10^{-5}$ from a measurement of $[\Gamma(\chi_{c1}(1P)\to\Sigma(1385)^{-}\overline{\Sigma}(1385)^{+})/\Gamma_{\rm total}]\times[{\rm B}(\psi(2S)\to\gamma\chi_{c1}(1P))]$ assuming ${\rm B}(\psi(2S)\to\gamma\chi_{c1}(1P))=(9.2\pm0.4)\times10^{-2},$ which we rescale to our best value ${\rm B}(\psi(2S)\to\gamma\chi_{c1}(1P))=9.55\times10^{-2}.$

$\Gamma(K^- \Lambda \overline{\Xi}^+ + \text{c.c.})/\Gamma_{\text{total}}$

 Γ_{70}/Γ

Created: 5/30/2017 17:21

 $\Gamma(\Xi^0\overline{\Xi}^0)/\Gamma_{\text{total}}$ VALUE (units 10^{-4}) CL%1.7 + 2.4 1 NAIK 08 reports < 0.60 \times 10 $^{-4}$ from a measurement of [$\Gamma(\chi_{c1}(1P)\rightarrow~\Xi^{0}\,\overline{\Xi}^{0})/\Gamma_{total}]\times [\mathrm{B}(\psi(2S)\rightarrow~\gamma\chi_{c1}(1P))]$ assuming $\mathrm{B}(\psi(2S)\rightarrow~\gamma\chi_{c1}(1P))=(9.07\pm0.11\pm0.54)\times (10^{-4})$ 10^{-2} , which we rescale to our best value B($\psi(2S) \rightarrow \gamma \chi_{c1}(1P)$) = 9.55×10^{-2} . $\Gamma(\Xi^{-}\overline{\Xi}^{+})/\Gamma_{total}$ Γ_{72}/Γ VALUE (units 10^{-4}) CL%CLEO $\psi(2S) \rightarrow \gamma \overline{\Xi}^{+} \overline{\Xi}^{-}$ • • We do not use the following data for averages, fits, limits, etc. • ² ABLIKIM 06D BES2 $\psi(2S) \rightarrow \gamma \chi_{c1}$ < 3.4 1 NAIK 08 reports (0.86 \pm 0.22 \pm 0.08) \times 10 $^{-4}$ from a measurement of [Г($\chi_{{\cal C}1}(1P)$ \rightarrow $= \overline{\Xi}^+ / \Gamma_{\mathsf{total}} \times [\mathsf{B}(\psi(2S) \to \gamma \chi_{c1}(1P))] \text{ assuming } \mathsf{B}(\psi(2S) \to \gamma \chi_{c1}(1P)) = 0$ $(9.07\pm0.11\pm0.54)\times10^{-2}$, which we rescale to our best value B($\psi(2S)\to\gamma\chi_{c1}(1P)$) $= (9.55 \pm 0.31) imes 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. ² Using B($\psi(2S) \rightarrow \chi_{c1} \gamma$) (9.1 \pm 0.6)%. $\left[\Gamma(\pi^{+}\pi^{-}) + \Gamma(K^{+}K^{-})\right]/\Gamma_{\text{total}}$ Γ_{73}/Γ VALUE (units 10^{-4}) DOCUMENT ID TECN COMMENT ¹ FELDMAN 77 MRK1 $\psi(2S) \rightarrow \gamma \chi_{C1}$ • • We do not use the following data for averages, fits, limits, etc. • • ¹ BRANDELIK 79B DASP $\psi(2S) \rightarrow \gamma \chi_{c1}$ <38 90 ¹Estimated using B($\psi(2S) o \gamma \chi_{c1}(1P)$) = 0.087. The errors do not contain the uncertainty in the $\psi(2S)$ decay. $\Gamma(K_S^0 K_S^0)/\Gamma_{\text{total}}$ Γ_{74}/Γ DOCUMENT ID TECN COMMENT VALUE (units 10^{-4}) 050 BES2 $\psi(2S) \rightarrow \chi_{c1} \gamma$ < 0.6 $^{1} \, \text{ABLIKIM 050 reports} \, \left[\Gamma \big(\chi_{\textit{c}1}(1P) \, \rightarrow \, \, \textit{K}^{\, 0}_{\textit{S}} \, \textit{K}^{\, 0}_{\textit{S}} \big) / \Gamma_{\text{total}} \right] \, \times \, \left[\text{B} \big(\psi(2S) \, \rightarrow \, \, \gamma \, \chi_{\textit{c}1}(1P) \big) \right]$ $<0.6\times10^{-5}$ which we divide by our best value B($\psi(2S)\to\gamma\chi_{c1}(1P)$) = 9.55×10^{-2} . Γ_{75}/Γ DOCUMENT ID TECN COMMENT 13B BES3 $e^+e^- \rightarrow \psi(2S) \rightarrow \gamma \chi_{c1}$ 1,2 ABLIKIM 90 • • • We do not use the following data for averages, fits, limits, etc. • • • 13B BES3 $e^+e^- \rightarrow \psi(2S) \rightarrow \gamma \chi_{c1}$ $< 4.4 \times 10^{-3}$ 90 ^{1,3} ABLIKIM $^{1}\, \rm Using~1.06 \times 10^{8}~ \psi(2S)$ mesons and B($\psi(2S) \rightarrow~ \chi_{\it c1}\gamma) =$ (9.2 \pm 0.4)%.

³ Using the $\eta_C \rightarrow K^+ K^- \pi^0$ decays.

RADIATIVE DECAYS ——

 $\Gamma(\gamma J/\psi(1S))/\Gamma_{\text{total}}$

 Γ_{76}/Γ

VALUE <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>

0.339 ± 0.012 OUR FIT

• • • We do not use the following data for averages, fits, limits, etc. • •

 $0.379 \pm 0.008 \pm 0.021$

¹ ADAM

05A CLEO $e^+e^-
ightarrow \psi(2S)
ightarrow \gamma \chi_{c1}$

 1 Uses B($\psi(2S) \to \gamma \chi_{c1} \to \gamma \gamma J/\psi$) from ADAM 05A and B($\psi(2S) \to \gamma \chi_{c1}$) from ATHAR 04.

 $\Gamma(\gamma
ho^0)/\Gamma_{ ext{total}}$

VALUE (units 10^{-6})	<i>EVTS</i>	DOCUMENT ID		TECN	COMMENT	
220±18 OUR AVE	RAGE	•				
$220 \pm 23 \pm 7$	432 ± 25	$^{ m 1}$ ABLIKIM	11E	BES3	$\psi(2S) \rightarrow \gamma \gamma \rho^0$	
$221 \pm 24 \pm 7$	186 ± 15	² BENNETT	08A	CLEO	$\psi(2S) \rightarrow \gamma \gamma \rho^0$	

¹ ABLIKIM 11E reports (228 \pm 13 \pm 22) \times 10⁻⁶ from a measurement of [$\Gamma(\chi_{c1}(1P) \rightarrow \gamma \rho^0)/\Gamma_{total}$] \times [B($\psi(2S) \rightarrow \gamma \chi_{c1}(1P)$)] assuming B($\psi(2S) \rightarrow \gamma \chi_{c1}(1P)$) = (9.2 \pm 0.4) \times 10⁻², which we rescale to our best value B($\psi(2S) \rightarrow \gamma \chi_{c1}(1P)$) = (9.55 \pm 0.31) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

² BENNETT 08A reports $(243 \pm 19 \pm 22) \times 10^{-6}$ from a measurement of $[\Gamma(\chi_{c1}(1P) \rightarrow \gamma \rho^0)/\Gamma_{total}] \times [B(\psi(2S) \rightarrow \gamma \chi_{c1}(1P))]$ assuming $B(\psi(2S) \rightarrow \gamma \chi_{c1}(1P)) = (8.7 \pm 0.4) \times 10^{-2}$, which we rescale to our best value $B(\psi(2S) \rightarrow \gamma \chi_{c1}(1P)) = (9.55 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(\gamma\omega)/\Gamma_{ ext{total}}$

VALUE (units 10^{-6})	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
69± 8 OUR AVER	AGE					
$67\pm~9\pm2$	136 ± 14	¹ ABLIKIM	11E	BES3	ψ (2S) $ ightarrow \gamma \gamma \omega$	
$76 \pm 17 \pm 2$	39 ± 7	² BENNETT	08A	CLEO	$\psi(2S) \rightarrow \gamma \gamma \omega$	

 1 ABLIKIM 11E reports (69.7 \pm 7.2 \pm 6.6) \times 10 $^{-6}$ from a measurement of [$\Gamma(\chi_{c1}(1P)\to\gamma\omega)/\Gamma_{total}]\times$ [B($\psi(2S)\to\gamma\chi_{c1}(1P)$)] assuming B($\psi(2S)\to\gamma\chi_{c1}(1P)$) = (9.2 \pm 0.4) \times 10 $^{-2}$, which we rescale to our best value B($\psi(2S)\to\gamma\chi_{c1}(1P)$) = (9.55 \pm 0.31) \times 10 $^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² BENNETT 08A reports $(83 \pm 15 \pm 12) \times 10^{-6}$ from a measurement of $[\Gamma(\chi_{c1}(1P) \rightarrow \gamma \omega)/\Gamma_{total}] \times [B(\psi(2S) \rightarrow \gamma \chi_{c1}(1P))]$ assuming $B(\psi(2S) \rightarrow \gamma \chi_{c1}(1P)) = (8.7 \pm 0.4) \times 10^{-2}$, which we rescale to our best value $B(\psi(2S) \rightarrow \gamma \chi_{c1}(1P)) = (9.55 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(\gamma\phi)/\Gamma_{\mathsf{total}}$

VALUE (units
$$10^{-6}$$
)CL%EVTSDOCUMENT IDTECNCOMMENT25±5±1 43 ± 9 1 ABLIKIM11EBES3 $\psi(2S) \rightarrow \gamma\gamma\phi$ • • • We do not use the following data for averages, fits, limits, etc.• • •<2490 5.2 ± 3.1 2 BENNETT08ACLEO $\psi(2S) \rightarrow \gamma\gamma\phi$

¹ ABLIKIM 11E reports $(25.8 \pm 5.2 \pm 2.3) \times 10^{-6}$ from a measurement of $[\Gamma(\chi_{c1}(1P) \rightarrow \gamma \phi)/\Gamma_{total}] \times [B(\psi(2S) \rightarrow \gamma \chi_{c1}(1P))]$ assuming $B(\psi(2S) \rightarrow \gamma \chi_{c1}(1P)) = (9.2 \pm 0.4) \times 10^{-2}$, which we rescale to our best value $B(\psi(2S) \rightarrow \gamma \chi_{c1}(1P)) = (9.55 \pm 0.31) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 2 BENNETT 08A reports $<26\times10^{-6}$ from a measurement of $[\Gamma(\chi_{c1}(1P)\to\gamma\phi)/\Gamma_{total}]\times[B(\psi(2S)\to\gamma\chi_{c1}(1P))]$ assuming $B(\psi(2S)\to\gamma\chi_{c1}(1P))=(8.7\pm0.4)\times10^{-2},$ which we rescale to our best value $B(\psi(2S)\to\gamma\chi_{c1}(1P))=9.55\times10^{-2}.$

 $\Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ Γ_{80}/Γ

VALUE (units 10 ⁻³)	<u>CL%</u>	DOCUMENT ID		<u> TECN</u>	COMMENT		
• • • We do not ι	use the followin	g data for average	es, fits,	limits,	etc. • • •		
< 3.5	90	ECKLUND	08A	CLEO	ψ (2 S) $ ightarrow$	$\gamma \chi_{c1} \rightarrow$	3γ
<150	90	$^{ m 1}$ YAMADA	77	DASP	$e^+e^- \rightarrow$	3γ	

¹ Estimated using B($\psi(2S) \to \gamma \chi_{c1}(1P)$) = 0.087. The errors do not contain the uncertainty in the $\psi(2S)$ decay.

$\chi_{c1}(1P)$ CROSS-PARTICLE BRANCHING RATIOS

$$\begin{split} \Gamma\big(\chi_{c1}(1P) &\to p\overline{p}\big)/\Gamma_{\text{total}} \,\times\, \Gamma\big(\psi(2S) &\to \gamma \chi_{c1}(1P)\big)/\Gamma\big(\psi(2S) \to \\ J/\psi(1S)\pi^+\pi^-\big) & \Gamma_{45}/\Gamma \times \Gamma_{135}^{\psi(2S)}/\Gamma_{11}^{\psi(2S)} \end{split}$$

VALUE (units 10^{-5})DOCUMENT IDTECNCOMMENT2.14 \pm 0.11 OUR FIT1.1 \pm 1.01 BAI98IBES $\psi(2S) \rightarrow \gamma \chi_{c1} \rightarrow \gamma \overline{\rho} p$

$\Gamma(\chi_{c1}(1P) \to \Lambda \overline{\Lambda})/\Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \gamma \chi_{c1}(1P))/\Gamma_{\text{total}}$ $\Gamma_{58}/\Gamma \times \Gamma_{135}^{\psi(2S)}/\Gamma^{\psi(2S)}$

VALUE (units 10⁻⁶) EVTS DOCUMENT ID TECN COMMENT

11.1±1.1 OUR FIT 10.9±1.1 OUR AVERAGE

11.2
$$\pm$$
1.0 \pm 0.9 136 ¹ ABLIKIM 13H BES3 $\psi(2S) \rightarrow \gamma \Lambda \overline{\Lambda}$ 10.5 \pm 1.6 \pm 0.6 46 \pm 7 NAIK 08 CLEO $\psi(2S) \rightarrow \gamma \Lambda \overline{\Lambda}$

$$\begin{split} \Gamma\big(\chi_{c1}(1P) \to \Lambda \overline{\Lambda}\big)/\Gamma_{\text{total}} \, \times \, \Gamma\big(\psi(2S) \to \, \gamma \, \chi_{c1}(1P)\big)/\Gamma\big(\psi(2S) \to \\ J/\psi(1S) \, \pi^+ \, \pi^-\big) & \Gamma_{58}/\Gamma \times \Gamma_{135}^{\psi(2S)}/\Gamma_{11}^{\psi(2S)} \end{split}$$

$VALUE$ (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT
3.22±0.31 OUR FIT					
7.1 $^{+2.8}_{-2.4}$ ±1.3	$9.0^{\displaystyle{+3.5}}_{\displaystyle{-3.1}}$	¹ BAI	03E	BES	$\psi(2S) \rightarrow \gamma \Lambda \overline{\Lambda}$

HTTP://PDG.LBL.GOV

Page 20

¹ Calculated by us. The value for B($\chi_{c1} \rightarrow p\overline{p}$) reported in BAI 98I is derived using B($\psi(2S) \rightarrow \gamma \chi_{c1}$) = (8.7 ± 0.8)% and B($\psi(2S) \rightarrow J/\psi(1S) \pi^+ \pi^-$) = (32.4 ± 2.6)% [BAI 98D].

 $^{^1}$ Calculated by us. ABLIKIM 13H reports B($\chi_{c1} \rightarrow \Lambda \overline{\Lambda}) = (12.2 \pm 1.1 \pm 1.1) \times 10^{-5}$ from a measurement of B($\chi_{c1} \rightarrow \Lambda \overline{\Lambda}) \times$ B($\psi(2S) \rightarrow \gamma \chi_{c1}$) assuming B($\psi(2S) \rightarrow \gamma \chi_{c1}$) = (9.2 \pm 0.4)%.

² Calculated by us. NAIK 08 reports B($\chi_{c1} \to \Lambda \overline{\Lambda}$) = (11.6 \pm 1.8 \pm 0.7 \pm 0.7) \times 10⁻⁵ using B($\psi(2S) \to \gamma \chi_{c1}$) = (9.07 \pm 0.11 \pm 0.54)%.

 $^{1}\,\text{BAI 03E reports}\;[\;\text{B}(\chi_{c1}\to \Lambda\overline{\Lambda})\;\text{B}(\psi(2S)\to \gamma\chi_{c1})\;/\;\text{B}(\psi(2S)\to J/\psi\pi^{+}\pi^{-})\;]\times \\ [\text{B}^{2}(\Lambda\to \pi^{-}p)\;/\;\text{B}(J/\psi\to p\overline{p})\;]=(1.33^{+0.52}_{-0.46}\pm 0.25)\%.\;\;\text{We calculate from this}$ measurement the presented value using B($\Lambda \to \pi^- p$) = (63.9 \pm 0.5)% and B($J/\psi \to$ $p\overline{p}$) = $(2.17 \pm 0.07) \times 10^{-3}$.

$\Gamma(\chi_{c1}(1P) \to \gamma J/\psi(1S))/\Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \gamma \chi_{c1}(1P))/\Gamma_{\text{total}}$ $\Gamma_{76}/\Gamma \times \Gamma_{125}^{\psi(2S)}/\Gamma^{\psi(2S)}$

				- 1	0/ 135 / 1
VALUE (units 10 ^{−2}) 3.24 ±0.07 OUR FIT	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
		Error includes scale	facto	of 1.4.	See the ideogram below.
$3.377 \pm 0.009 \pm 0.183$	142k	ABLIKIM	120	BES3	$\psi(2S) \rightarrow \gamma \chi_{c1}$
$2.81 \pm 0.05 \pm 0.23$	13k	BAI	041	BES2	$\psi(2S) ightarrow J/\psi \gamma \gamma$
$2.56 \pm 0.12 \pm 0.20$		GAISER	86	CBAL	ψ (2 S) $ ightarrow$ γ X
2.78 ± 0.30		¹ OREGLIA	82	CBAL	$\psi(2S) \rightarrow \gamma \chi_{c1}$
2.2 ± 0.5		² BRANDELIK	79 B	DASP	$\psi(2S) \rightarrow \gamma \chi_{c1}$
2.9 ± 0.5		² BARTEL	78 B	CNTR	$\psi(2S) \rightarrow \gamma \chi_{C1}$
5.0 ± 1.5		³ BIDDICK	77	CNTR	$e^+e^- \rightarrow \gamma X$
2.8 ± 0.9		$^{ m 1}$ WHITAKER	76	MRK1	e^+e^-
• • • We do not use t	he followi	ng data for averages	s, fits,	limits, 6	etc. • • •
$3.56 \pm 0.03 \pm 0.12$	24.9k	⁴ MENDEZ	80	CLEO	$\psi(2S) \rightarrow \gamma \chi_{c1}$
$3.44 \pm 0.06 \pm 0.13$	3.7k	⁵ ADAM			Repl. by MENDEZ 08
¹ Recalculated by us	using B($J/\psi(1S) \rightarrow \ell^+\ell^-$	= 0.3	1181 ±	0.0020.

WEIGHTED AVERAGE 2.93±0.15 (Error scaled by 1.4)

 $\Gamma(\chi_{c1}(1P) \to \gamma J/\psi(1S))/\Gamma_{\mathsf{total}} \times \Gamma(\psi(2S) \to \gamma \chi_{c1}(1P))/\Gamma_{\mathsf{total}}$ (units

HTTP://PDG.LBL.GOV

Page 21

Recalculated by us using B($J/\psi(1S) \rightarrow \ell^+\ell^-$) = 0.1181 \pm 0.0020. Recalculated by us using B($J/\psi(1S) \rightarrow \mu^+\mu^-$) = 0.0588 \pm 0.0010. Assumes isotropic gamma distribution.

⁴ Not independent from other measurements of MENDEZ 08.

⁵ Not independent from other values reported by ADAM 05A.

 10^{-2})

$$\begin{split} \Gamma\big(\chi_{c1}(1P) &\to \gamma J/\psi(1S)\big)/\Gamma_{total} \,\times\, \Gamma\big(\psi(2S) \to \gamma \chi_{c1}(1P)\big)/\Gamma\big(\psi(2S) \to J/\psi(1S) \text{ anything}\big) & \Gamma_{76}/\Gamma \,\times\, \Gamma_{135}^{\psi(2S)}/\Gamma_{9}^{\psi(2S)} \\ &\Gamma_{76}/\Gamma \,\times\, \Gamma_{135}^{\psi(2S)}/\Gamma_{9}^{\psi(2S)} = \Gamma_{76}/\Gamma \,\times\, \Gamma_{135}^{\psi(2S)}/(\Gamma_{11}^{\psi(2S)} + \Gamma_{12}^{\psi(2S)} + \Gamma_{13}^{\psi(2S)} + 0.339\Gamma_{135}^{\psi(2S)} + 0.192\Gamma_{136}^{\psi(2S)}\big) \end{split}$$

VALUE (units 10^{-2})

DOCUMENT ID TECN COMMENT

5.31 ± 0.11 OUR FIT

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $5.70\pm0.04\pm0.15$ $5.77 \pm 0.10 \pm 0.12$ 24.9k 3.7k

¹ MENDEZ **ADAM**

08 CLEO $\psi(2S) \rightarrow \gamma \chi_{C1}$ 05A CLEO Repl. by MENDEZ 08

$$\begin{split} \Gamma\big(\chi_{c1}(1P) &\to \gamma J/\psi(1S)\big)/\Gamma_{\mathsf{total}} \,\times\, \Gamma\big(\psi(2S) &\to \gamma \chi_{c1}(1P)\big)/\Gamma\big(\psi(2S) \to \\ J/\psi(1S)\pi^+\pi^-\big) & \Gamma_{76}/\Gamma \times \Gamma_{135}^{\psi(2S)}/\Gamma_{11}^{\psi(2S)} \end{split}$$

VALUE (units 10^{-2})

TECN COMMENT

10.15 ± 0.28 OUR AVERAGE

 $10.17 \pm 0.07 \pm 0.27$ MENDEZ 08 CLEO $\psi(2S) \rightarrow \gamma \chi_{c1}$ ¹ ABLIKIM $\psi(2S) \rightarrow J/\psi X$ $12.6 \pm 0.3 \pm 3.8$ 3k ² HIMEL 80 MRK2 $\psi(2S) \rightarrow \gamma \chi_{c1}$ 8.5 ± 2.1

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $10.24 \pm 0.17 \pm 0.23$

3.7k 3 ADAM

05A CLEO Repl. by MENDEZ 08

$\Gamma(\chi_{c1}(1P) o \overline{K}^0 K^+ \pi^- + \text{c.c.})/\Gamma_{\text{total}} \times \Gamma(\psi(2S) o \gamma \chi_{c1}(1P))/\Gamma_{\text{total}}$ $\Gamma_{17}/\Gamma \times \Gamma_{135}^{\psi(2S)}/\Gamma^{\psi(2S)}$

6.8 ± 0.5 OUR FIT

TECN COMMENT

Created: 5/30/2017 17:21

7.2±0.6 OUR AVERAGE

 $7.3\!\pm\!0.5\!\pm\!0.5$ $7.0 \pm 0.5 \pm 0.9$

VALUE (units 10⁻⁴)

¹ ATHAR

07 CLEO $\psi(2S) \rightarrow \gamma K_S^0 K^+ \pi^-$ 06R BES2 $\psi(2S) \rightarrow \gamma \chi_{c1}$

² ABLIKIM

¹ Not independent from other measurements of MENDEZ 08.

¹ From a fit to the J/ψ recoil mass spectra.

²The value for B($\psi(2S) \rightarrow \gamma \chi_{c1}$)×B($\chi_{c1} \rightarrow \gamma J/\psi(1S)$) quoted in HIMEL 80 is derived using B($\psi(2S) \rightarrow J/\psi(1S)\pi^+\pi^-$) = (33 ± 3)% and B($J/\psi(1S) \rightarrow \ell^+\ell^-$) $= 0.138 \pm 0.018$. Calculated by us using B $(J/\psi(1S) \to \ell^+\ell^-) = 0.1181 \pm 0.0020$.

³Not independent from other values reported by ADAM 05A.

 $^{^1}$ Calculated by us. The value of B($\chi_{c1} \to K^0 K^+ \pi^- + \text{c.c.})$ reported by ATHAR 07 was derived using B($\psi(2S) \to \gamma \chi_{c1}(1P)$) = (9.07 \pm 0.11 \pm 0.54)%.

 $^{^2}$ Calculated by us. ABLIKIM 06R reports B($\chi_{c1} \rightarrow~\kappa_S^0 \, K^+ \, \pi^-) = (4.0 \pm 0.3 \pm 0.5) \, \times$ 10^{-3} . We use B($\psi(2S) \to \gamma \chi_{c1}$) = (8.7 \pm 0.4) \times 10^{-2} .

 $\Gamma(\chi_{c1}(1P) \to \overline{K}{}^0 K^+ \pi^- + \text{c.c.})/\Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \gamma \chi_{c1}(1P))/\Gamma_{c1}$ $\Gamma_{17}/\Gamma \times \Gamma_{135}^{\dot{\psi}(2S)}/\Gamma_{11}^{\psi(2S)}$ $\Gamma(\psi(2S) \to J/\psi(1S)\pi^+\pi^-)$

VALUE (units 10^{-4})

DOCUMENT ID

19.7±1.6 OUR FIT

13.2±2.4±3.2

 1 BAI

99B BES $\psi(2S) \rightarrow \gamma K_S^0 K^+ \pi^-$

 1 Calculated by us. The value of B($\chi_{c1}
ightarrow ~K^0_S~K^+\pi^-$) reported by BAI 99B was derived using B($\psi(2S) \rightarrow \gamma \chi_{c1}(1P)$) = (8.7 ± 0.8)% and B($\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$) = (32.4 ± 2.6)% [BAI 98D].

 $\Gamma(\chi_{c1}(1P) \to K^+ K^- K^+ K^-)/\Gamma_{total} \times \Gamma(\psi(2S) \to \gamma \chi_{c1}(1P))/\Gamma_{total}$ $\Gamma_{36}/\Gamma\times\Gamma_{135}^{\psi(2S)}/\Gamma^{\psi(2S)}$

VALUE (units 10^{-4}) EVTS

TECN COMMENT

0.52 ± 0.11 OUR FIT

 $0.61\pm0.11\pm0.08$

¹ ABLIKIM

06T BES2 $\psi(2S) \rightarrow \gamma K^+ K^+ K^- K^-$

¹ Calculated by us. The value of B($\chi_{c1} \rightarrow 2K^+2K^-$) reported by ABLIKIM 06T was derived using B($\psi(2S) \rightarrow \gamma \chi_{c1}(1P)$) = (8.7 \pm 0.8)%.

 $\Gamma(\chi_{c1}(1P) \to K^+ K^- K^+ K^-)/\Gamma_{total} \times \Gamma(\psi(2S) \to \gamma \chi_{c1}(1P))/\Gamma_{total} \times \Gamma(\psi(2S) \to \gamma \chi_{c1}(1P)/\Gamma_{total} \times \Gamma(\psi(2S) \to \gamma \chi_{c1}(1P)/\Gamma_{total}$ $\Gamma_{36}/\Gamma \times \Gamma_{135}^{\psi(2S)}/\Gamma_{11}^{\psi(2S)}$ $\Gamma(\psi(2S) \rightarrow J/\psi(1S)\pi^+\pi^-)$

VALUE (units 10^{-4})

TECN COMMENT DOCUMENT ID

1.52 ± 0.31 OUR FIT

 $1.13\pm0.40\pm0.29$

 1 BAI

99B BES $\psi(2S) \to \gamma K^{+} K^{+} K^{-} K^{-}$

 1 Calculated by us. The value of B($\chi_{c1}
ightarrow 2 K^+ 2 K^-$) reported by BAI 99B was derived using B($\psi(2S) \to \gamma \chi_{c1}(1P)$) = (8.7 \pm 0.8)% and B($\psi(2S) \to J/\psi \pi^+ \pi^-$) = (32.4 \pm 2.6)% [BAI 98D].

 $\Gamma(\chi_{c1}(1P) \to p\overline{p})/\Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \gamma\chi_{c1}(1P))/\Gamma_{\text{total}}$

 $\Gamma_{45}/\Gamma\times\Gamma_{135}^{\psi(2S)}/\Gamma^{\psi(2S)}$

VALUE (units 10^{-6})

EVTS

DOCUMENT ID TECN COMMENT

7.4±0.4 OUR FIT

7.8±0.6 OUR AVERAGE Error includes scale factor of 1.4. See the ideogram below.

 $7.9 \pm 0.4 \pm 0.3$

453

ABLIKIM 13V BES3 $\psi(2S) \rightarrow \gamma p \overline{p}$ ¹ NAIK

CLEO $\psi(2S) \rightarrow \gamma p \overline{p}$

 $8.2 \pm 0.7 \pm 0.4$

 141 ± 13

04F BES $\psi(2S)
ightarrow \gamma \chi_{c1}(1P)
ightarrow \gamma \overline{p} p$

 $^{^{1}}$ Calculated by us. NAIK 08 reports B($\chi_{c1} \to p \overline{p}) = (9.0 \pm 0.8 \pm 0.4 \pm 0.5) \times 10^{-5}$ using B($\psi(2S) \to \gamma \chi_{c1}) = (9.07 \pm 0.11 \pm 0.54)\%$.

MULTIPOLE AMPLITUDES IN $\chi_{c1}(1P) \rightarrow \gamma J/\psi(1S)$

 $a_2 = M2/\sqrt{E1^2 + M2^2}$ Magnetic quadrupole fractional transition amplitude DOCUMENT ID TECN COMMENT $-5.4 \begin{array}{l} +1.2 \\ -1.5 \end{array}$ **OUR AVERAGE** Error includes scale factor of 2.4. See the ideogram below. CLEO $\psi(2S) \rightarrow \gamma \gamma \ell^+ \ell^ -6.26\pm0.63\pm0.24$ **ARTUSO** $p\overline{p} \rightarrow \chi_{c1} \rightarrow J/\psi \gamma$ $0.2 \pm 3.2 \pm 0.4$ 2090 AMBROGIANI 02 $-0.2 \begin{array}{c} +0.8 \\ -2.0 \end{array}$ CBAL $\psi(2S) \rightarrow \chi_{c1} \gamma \rightarrow J/\psi \gamma \gamma$ 921 **OREGLIA** WEIGHTED AVERAGE -5.4+1.2-1.5 (Error scaled by 2.4)

MULTIPOLE AMPLITUDES IN $\psi(2S) \rightarrow \gamma \chi_{c1}(1S)$ RADIATIVE DECAY

$b_2 = M2/\sqrt{E1^2 + M2^2}$ Magnetic quadrupole fractional transition amplitude

VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
2.9 ± 0.8 OUR AVERA	GE .				
$2.76\!\pm\!0.73\!\pm\!0.23$	39k	ARTUSO	09	CLEO	$\psi(2S) \rightarrow \gamma \gamma \ell^+ \ell^-$
$7.7 \begin{array}{l} +5.0 \\ -4.5 \end{array}$	921	OREGLIA	82	CBAL	$\psi(2S) \rightarrow \gamma \gamma \ell^+ \ell^-$

MULTIPOLE AMPLITUDE RATIOS IN RADIATIVE DECAYS $\psi(2S) \rightarrow \gamma \chi_{c1}(1S)$ and $\chi_{c1} \rightarrow \gamma J/\psi(1S)$

a_2/b_2 Magnetic quadrupole transition amplitude ratio

<u>VALUE</u>	EVTS	DOCUMENT ID		TECN	COMMENT
$-2.27^{f +0.57}_{f -0.99}$	39k	¹ ARTUSO	09	CLEO	$\psi(2S) \rightarrow \gamma \gamma \ell^+ \ell^-$

 $^{^1}$ Statistical and systematic errors combined. Not independent of $a_2(\chi_{c1})$ and $b_2(\chi_{c1})$ values from ARTUSO 09.

$\chi_{c1}(1P)$ REFERENCES

ABLIKIM	15I	PR D91 092006	M. Ablikim et al.	(BES III Collab.)
ABLIKIM	15M	PR D91 112008	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	14J	PR D89 074030	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	13B	PR D87 012002	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	13D	PR D87 012007	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	13H	PR D87 032007	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	13V	PR D88 112001	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	12I	PR D86 052004	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	12J	PR D86 052011	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	120	PRL 109 172002	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	11A	PR D83 012006	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	11D	PR D83 032003	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	11E	PR D83 112005	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	11F	PR D83 112009	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	11K	PRL 107 092001	M. Ablikim <i>et al.</i>	(BES III Collab.)
ONYISI	10	PR D82 011103	P.U.E. Onyisi et al.	(CLEO Collab.)
ARTUSO	09	PR D80 112003	M. Artuso et al.	(CLEO Collab.)
BENNETT	A80	PRL 101 151801	J.V. Bennett <i>et al.</i>	(CLEO Collab.)
ECKLUND	08A	PR D78 091501	K.M. Ecklund et al.	(CLEO Collab.)
HE	08B	PR D78 092004	Q. He <i>et al.</i>	(CLEO Collab.)
MENDEZ	80	PR D78 011102	H. Mendez <i>et al.</i>	(CLEO Collab.)
NAIK	80	PR D78 031101	P. Naik <i>et al.</i>	(CLEO Collab.)
ATHAR	07	PR D75 032002	S.B. Athar <i>et al.</i>	(CLEO Collab.)
ABLIKIM	06D	PR D73 052006	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	06R	PR D74 072001	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	06T	PL B642 197	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	05G	PR D71 092002	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	05O	PL B630 21	M. Ablikim <i>et al.</i>	(BES Collab.)
ADAM	05A	PRL 94 232002	N.E. Adam <i>et al.</i>	(CLEO Collab.)
ANDREOTTI	05A	NP B717 34	M. Andreotti <i>et al.</i>	(FNAL E835 Collab.)
ABLIKIM	04B	PR D70 012003	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	04H	PR D70 092003	M. Ablikim <i>et al.</i>	(BES Collab.)
ATHAR	04	PR D70 112002	S.B. Athar <i>et al.</i>	(CLEO Collab.)
BAI	04F	PR D69 092001	J.Z. Bai <i>et al.</i>	(BES Collab.)
BAI	04I	PR D70 012006	J.Z. Bai <i>et al.</i>	(BES Collab.)
AULCHENKO	03	PL B573 63	V.M. Aulchenko <i>et al.</i>	(KEDR Collab.)
BAI	03E	PR D67 112001	J.Z. Bai <i>et al.</i>	(BES Collab.)
AMBROGIANI		PR D65 052002	M. Ambrogiani <i>et al.</i>	(FNAL E835 Collab.)
BAI	99B	PR D60 072001	J.Z. Bai <i>et al.</i>	(BES Collab.)
BAI	98D	PR D58 092006	J.Z. Bai <i>et al.</i>	(BES Collab.)

BAI ARMSTRONG Also BAGLIN GAISER LEMOIGNE OREGLIA Also HIMEL Also BRANDELIK BARTEL TANENBAUM Also BIDDICK FELDMAN YAMADA	98I 92 86B 86 82 82 80 79B 78B 77 77	PRL 81 3091 NP B373 35 PRL 68 1468 PL B172 455 PR D34 711 PL 113B 509 PR D25 2259 Private Comm. PRL 44 920 Private Comm. NP B160 426 PL 79B 492 PR D17 1731 Private Comm. PRL 38 1324 PRPL 33C 285 Hamburg Conf. 69	J.Z. Bai et al. T.A. Armstrong et al. T.A. Armstrong et al. C. Baglin (LAPP, CEI J. Gaiser et al. Y. Lemoigne et al. M.J. Oreglia et al. M.J. Oreglia T. Himel et al. G. Trilling R. Brandelik et al. W. Bartel et al. W.M. Tanenbaum et al. G. Trilling C.J. Biddick et al. G.J. Feldman, M.L. Perl S. Yamada	(Crystal Ball Collab.) (SACL, LOIC, SHMP+) (SLAC, CIT, HARV+) (EFI) (LBL, SLAC) (LBL, UCB) (DASP Collab.) (DESY, HEIDP) (SLAC, LBL) (LBL, UCB) (UCSD, UMD, PAVI+) (LBL, SLAC)
				,
YAMADA	77	Hamburg Conf. 69	S. Yamada	(DASP Collab.)
WHITAKER	76	PRL 37 1596	J.S. Whitaker <i>et al.</i>	(SLAC, LBL)
TANENBAUM	75	PRL 35 1323	W.M. Tanenbaum et al.	(LBL, SLAC)