Завдання 4 з премету Спецкурс для ОМ-3

Коломієць Микола

3 червня 2023 р.

Зміст

1	Завдання 1	2
2	Завдання 2	3
3	Завдання 3	5
4	Завдання 4	Ć
5	Завдання 5	7
6	Завдання 6	8
7	Завдання 7	9
8	Завдання 8	10
9	Завдання 9	11
10	Завдання 10	12

Завдання

Покажіть, що лема 1 з лекції 7 справедлива для строго опуклих лінійних нормованих просторів.

Лема

Нехай H — строго опуклий лінійний нормований простір, $C\subseteq H$ — опукла замкнена множина, $T:C\to H$ — нерозтягуючий оператор. Тоді множина F(T) опукла та замкнена.

Завдання

Нехай C непорожня підмножина гільбертового простору H,

 $T_1, T_2, \dots, T_m : C \to H$ - нерозтягуючі оператори, причому

$$\bigcap_{n=1}^{m} F\left(T_{n}\right) \neq \emptyset$$

.

Доведіть, що для довільного набору $\{\lambda_1,\dots,\lambda_m\}$ додатніх чисел з $\sum\limits_{n=1}^m\lambda_n=1$ оператор

$$Tx = \sum_{n=1}^{m} \lambda_n T_n x \quad (x \in C)$$

 ϵ нерозтягуючим та $F(T) = \bigcap_{n=1}^{m} F\left(T_{n}\right)$.

Нехай
$$x \in \bigcap_{n=1}^m F(T_n) \Rightarrow \forall n \in \mathbb{N}, n < m, T_n x = x$$
 тоді

$$Tx = \sum_{n=1}^{m} \lambda_n T_n x = \sum_{n=1}^{m} \lambda_n x = x \sum_{n=1}^{m} \lambda_n = x$$

Отже
$$x \in F(T)$$
 тобто $F(T) \supseteq \bigcap_{n=1}^{m} F(T_n)$

 Нехай $x \in F(T), Tx = x$ і нехай від супротивного $\exists m_1: T_k x \neq x, k \in m_1$ Тоді

$$Tx=\sum_{n=1}^m\lambda_nT_nx=x\sum_{n=1}^{m-|m_1|}\lambda_n+\sum_{k\in m_1}\lambda_kT_kx=x\sum_{n=1}^m\lambda_n$$
 $\sum_{k\in m_1}\lambda_k(T_kx-x)=0\Rightarrow T_kx=x$ протиріччя Отже $\forall x\in F(T), \forall n\leq m, T_nx=x$ Отже $F(T)=\bigcap_{n=1}^mF(T_n)$ Доведено!

Завдання

Нехай С непорожня підмножина гільбертового простору

 $H,T_1,T_2,\dots,T_m:C o H-$ строго квазінерозтягуючі оператори, причому $\bigcap_{n=1}^m F\left(T_n\right)
eq\emptyset$. Доведіть, що оператор

$$Tx = T_1 T_2 \dots T_m x \quad (x \in C)$$

 ϵ строго квазінерозтягуючим та $F(T) = \bigcap_{n=1}^m F\left(T_n\right)$.

Завдання

Нехай неперервне відображення $f:B^n \to \mathbb{R}^n$ має властивість:

$$(f(x), x) \ge 0 \quad \forall x \in S^{n-1}.$$

Доведіть, що існує точка $x_0 \in B^n : f(x_0) = 0.$

Розв'язання:

Доводити будемо від супротивного. Нехай $\forall x \in B^n, f(x) \neq 0.$

Визначимо неперервне відображення $B^n \xrightarrow{\phi} B^n$, $\phi: -\frac{f(x)}{\|f(x)\|}$

За теоремою Брауера
$$\exists x_1 \in B^n, \quad -\frac{f(x_1)}{\|f(x_1)\|} = x_1$$

Тоді маємо
$$(f(x_1),x_1) = -\|f(x_1)\| < 0$$

3 сильної версії теореми Брауера можемо заключити, що $x_1 \in S^{n-1}$ що власне і приводить до протиріччя, завершуючи доведення.

Завдання

Нехай неперервне відображення $f:B^n \to \mathbb{R}^n$ має властивість:

$$f\left(S^{n-1}\right) \subseteq B^n$$

Доведіть, що існує точка $x_{0}\in B^{n}:f\left(x_{0}\right) =x_{0}.$

Завдання

В банахових просторах ℓ_2, c_0 та C([-1,1]) побудувати приклади неперервних відображень, що відображають замкнену кулю в себе, але не мають нерухомих точок.

Розв'язання:

це не можливо за теоремою Брауера, адеж подібне відображження завжди матиме непорожню множину нерухомих точок.

Завдання

Нехай H - нескінченновимірний гільбертовий простір. Доведіть, що оператор проектування на замкнену кулю не ϵ слабко неперервним.

Розв'язання:

В скінченновимірному просторі очевидно, що якщо ррозглядати даниий оператор як функцію то це буде неперервна диференційовна функція з лінійними частковими похідними. При нескінченновимірному просторі особливо нічогго не змінитьяся, отже можемо узагальнити, що данний оператор є неперервним, а не слабко неперервним.

Завдання

Нехай (X,d_X) , (Y,d_Y) — метричні простори, (Y,d_Y) — компактний простір. Нехай $f\in C(X\times Y)$ та $g(x)=\max_{y\in Y}f(x,y)$. Доведіть, що $g\in C(X)$.

Розв'язання:

$$x_n \to x, y_n \to y, f(x_n, y_n) \to f(x, y)$$

$$g(x_n) = \max_{y \in Y} f(x_n, y) = \max_{y_n \in Y} f(x_n, y_n)$$

Yкомпакт а отже $y \in Y$ з визначення компакта ($\forall n \in \mathbb{N}, y_n \in Y$)

Отже $g(x_n) \to g(x)$. Отже ϵ неперервною за Ріманом

Завдання

Нехай функція $\phi: X \times Y \to \mathbb{R}$ неперервна, Y- компакт. Доведіть, що відображення $T: X \to 2^Y$, задане співвідношенням

$$Tx = \left\{ \bar{y} \in Y : \phi(x, \bar{y}) = \inf_{y \in Y} \phi(x, y) \right\}$$

замкнене (X, Y) метричні простори).

Розв'язання:

Доведення від супротивного. Нехай відобреження не є замкненим, тобто

$$\exists x_n \to x, y_n \to y, y_n \in Tx_n, y \notin Tx$$

 $\inf_{y_n \in Y} \phi(x_n, y_n), y_n \to y$ і за аналогією з минулою задачею з того, що Y

компакт випливає, що
$$y\in Y$$
 Отже $\inf_{y_n\in Y}\phi(x_n,y_n)\to\phi(x,y)$

Отже $y \in Tx$ - Суперечність.

Завдання

Нехай A,B - непорожні опуклі компакти з банахових просторів X,Y, відповідно. Функція $L:X\times Y\to \mathbb{R}-$ неперервна на $A\times B$ та опукла по x на A (для всіх $y\in B$), угнута по y на B (для всіх $x\in A$). Доведіть, що існує сідлова точка функції L на $A\times B$, тобто, існує $(x_0,y_0)\in A\times B$

$$L(x_0, y) \le L(x_0, y_0) \le L(x, y_0) \quad \forall x \in A \forall y \in B$$

Розв'язання:

Функція опукла по x це означає, що є точка мінімуму на A. Функція угнута по y тобто є точка максимуму на B. З цього очевидно, що існує сідлова точка.