### Steepest Descent

Dr. Kalidas Y.

In this lecture you will understand intuition behind steepest descent

#### Method of Steepest Descent

• 
$$f(x-a+a) = f^{(0)}(a) \frac{(x-a)^0}{0!} + f^{(1)}(a) \frac{(x-a)^1}{1!}$$

- *x is a*
- x a is  $\delta$

• 
$$f(x + \delta) = f(x) + f'(x) \times \delta$$

- When is  $f(x + \delta) < f(x)$ ?
  - $\delta = -\eta f'(x) (\exists \eta > 0)$
  - $f(x + \delta) = f(x) \eta f'(x)^2$
  - $f(x + \delta) < f(x)$
- $x_{(new)}$  is  $x + \delta$

$$x_{(new)} = x_{(old)} - \eta f'(x_{(old)})$$





(C) Dr. Kalidas Y., IIT Tirupati



Present position = x New position = x + 1 or x -1 ???

### Present position = x New position = x + 1 IF danger is on *the Left*

# Present position = x New position = x -1 IF danger is on the Right

# Present position = x New position = ... x - sign(danger(x+1) - danger(x))

#### Steepest Descent Interpretation

- Left, Current, Right values:  $L(x \delta)$ , L(x),  $L(x + \delta)$
- STEP:  $\delta$
- Imagine locally it is a line,  $(x \in [x \delta, x + \delta])$  i.e. L(x) = m x + c
- Slope:  $m = \frac{L(x+\delta)-L(x)}{\delta}$
- Positive slope (m>0)
  - LOSS INCREASES if you go along  $+\delta$
  - LOSS DECREASES if you go along  $-\delta$
- Negative slope (m<0)</li>
  - LOSS INCREASES if you go along  $-\delta$
  - LOSS DECREASES if you go along  $+\delta$

- ullet m and  $\delta$  are inversely related
- Loss decreases

• 
$$x_{(new)} = x_{(old)} + \delta$$

• 
$$x_{(new)} = x_{(old)} - m$$

$$x_{(new)} = x_{(old)} - \eta L'(x)$$