## Uczenie maszynowe

ZADANIE KLASYFIKACJI CZ. 3

#### Klasyfikatory regułowe

Zbiór reguł IF-THEN

```
if(warunek) → then {wniosek};
w klasyfikacji if(warunek dotyczący danych) → then {klasa}
```

- Różne zasady tworzenia reguł pokrywanie zbioru uczącego (wzajemnie wykluczające się, wyczerpujące...)
- Działanie na zmiennych dyskretnych (najczęściej)

## Klasyfikatory regułowe - przykład

| Name          | Blood Type | Give Birth | Can Fly | Live in Water | Class      |
|---------------|------------|------------|---------|---------------|------------|
| human         | warm       | yes        | no      | no            | mammals    |
| python        | cold       | no         | no      | no            | reptiles   |
| salmon        | cold       | no         | no      | yes           | fishes     |
| whale         | warm       | yes        | no      | yes           | mammals    |
| frog          | cold       | no         | no      | sometimes     | amphibians |
| komodo        | cold       | no         | no      | no            | reptiles   |
| bat           | warm       | yes        | yes     | no            | mammals    |
| pigeon        | warm       | no         | yes     | no            | birds      |
| cat           | warm       | yes        | no      | no            | mammals    |
| leopard shark | cold       | yes        | no      | yes           | fishes     |
| turtle        | cold       | no         | no      | sometimes     | reptiles   |
| penguin       | warm       | no         | no      | sometimes     | birds      |
| porcupine     | warm       | yes        | no      | no            | mammals    |
| eel           | cold       | no         | no      | yes           | fishes     |
| salamander    | cold       | no         | no      | sometimes     | amphibians |
| gila monster  | cold       | no         | no      | no            | reptiles   |
| platypus      | warm       | no         | no      | no            | mammals    |
| owl           | warm       | no         | yes     | no            | birds      |
| dolphin       | warm       | yes        | no      | yes           | mammals    |
| eagle         | warm       | no         | yes     | no            | birds      |

R1: (Give Birth = no)  $\land$  (Can Fly = yes)  $\rightarrow$  Birds

R2: (Give Birth = no)  $\land$  (Live in Water = yes)  $\rightarrow$  Fishes

R3: (Give Birth = yes)  $\land$  (Blood Type = warm)  $\rightarrow$  Mammals

R4: (Give Birth = no)  $\land$  (Can Fly = no)  $\rightarrow$  Reptiles

R5: (Live in Water = sometimes)  $\rightarrow$  Amphibians

#### Klasyfikatory regułowe - przykład

R1: (Give Birth = no)  $\land$  (Can Fly = yes)  $\rightarrow$  Birds

R2: (Give Birth = no)  $\land$  (Live in Water = yes)  $\rightarrow$  Fishes

R3: (Give Birth = yes)  $\land$  (Blood Type = warm)  $\rightarrow$  Mammals

R4: (Give Birth = no)  $\land$  (Can Fly = no)  $\rightarrow$  Reptiles

R5: (Live in Water = sometimes)  $\rightarrow$  Amphibians

| Lemur?         |  |  |  |  |
|----------------|--|--|--|--|
| Turtle?        |  |  |  |  |
| Dogfish shark? |  |  |  |  |

| Name          | Blood Type | Give Birth | Can Fly | Live in Water | Class |
|---------------|------------|------------|---------|---------------|-------|
| lemur         | warm       | yes        | no      | no            | ?     |
| turtle        | cold       | no         | no      | sometimes     | ?     |
| dogfish shark | cold       | yes        | no      | yes           | ?     |

A **lemur** triggers rule  $\mathbb{R}^3 \Rightarrow \text{class} = mammal$ 

A turtle triggers both R4 and R5

→ voting or ordering rules

A **dogfish shark** triggers none of the rules  $\rightarrow$  default rule

Mammal
R4/R5 (głosowanie, priorytet
reguł)

None (domyślna reguła)

#### Drzewo decyzyjne - budowa



#### Reguly drzewa

Reguly dla lewej strony drzewa:

1. IF Outlook is Sunny AND Humidity is High THEN PlayTennis = NO

2. IF Outlook is Sunny AND Humidity is Normal THEN PlayTennis = YES

• • • •



#### Algorytm C4.5

- Nie jest ograniczony do binarnych podziałów
- Dla zmiennych jakościowych algorytm tworzy osobne gałęzie dla każdej wartości atrybutu jakościowego ("rozgałęzienie")
- Metoda mierzenia jednorodności algorytmu opiera się na zysku informacyjnym (do wyboru optymalnego podziału)

Entropia 
$$H(X) = -\sum_{i} p_{i} \log_{2}(p_{i})$$

Sortowanie danych w każdym węźle drzewa w celu znalezienia atrybutu najlepiej dzielącego zbiór. Algorytm C4.5 wybiera w każdym węźle drzewa atrybut na podstawie kryterium znormalizowanego zysku informacyjnego (różnicy w entropii), który wynika z wyboru atrybutu dzielącego dane. Atrybut o najwyższym zysku informacyjnym jest wybierany do węzła.

#### Algorytm C4.5

Algorytm C4.5 wykorzystuje zysk informacyjny (ang.  $information \ gain$ ) do wyboru optymalnego podziału S zbioru uczącego na T podzbiorów:

$$zysk(S) = H(T) - H_s(T), (C.1)$$

gdzie H(T) to entropia zbioru przed podziałem, a  $H_S(T)$  opisuje ważoną sumę entropii dla pojedynczych podzbiorów:

$$H_S(T) = \sum_{i=1}^k P_i H_S(T_i),$$
 (C.2)

gdzie  $P_i$  oznacza procent przypadków w i-tym podzbiorze. W każdym węźle algorytm wybiera podział optymalny - o największym zysku informacyjnym.

#### Algorytm C4.5

- •Obliczenie zysku informacyjnego danego atrybutu, uwzględniając jego istniejące wartości.
- Możliwość wykorzystania danych ciągłych:
- 1. Sortowanie wartości atrybutu rosnąco
- 2. Dla każdej wartości wyznaczenie liczby elementów większych/mniejszych od tej wartości
- 3. Obliczenie dla każdego z podziałów zysku/zysku informacyjnego i wybranie tego o najwyższej wartości.

#### Algorytm C4.5 - overfitting

- Możliwość nadmiernego dopasowania do danych (tzw. przeuczenie),
- Zapobieganie: zmniejszenie rozmiaru drzewa przycięcia (ang. pruning):
- 1. Zmniejszenie złożoności klasyfikatora
- Oparcie algorytmu przycinania na pesymistycznym oszacowaniu liczby błędów E w zbiorze N, nienależących do klas najczęściej występujących; obliczenie górnej granicy prawdopodobieństwa (rozkład binominalny) dla E zdarzeń zaobserwowanych w N próbach z zadanym poziomem ufności (standardowo 0.25)
- 3. Rozpoczęcie przycinania od liści obliczenie dla każdego z mniejszych drzew szacowanego błędu, gdyby przekształcono je w liść (przycięcie w warunku niezwiększającego się błędu)

#### Przeuczenie (overfitting)



#### "Przeuczone" drzewo decyzyjne



#### Zadanie – zbiór PlayTennis

Entropia NO i YES

$$H_{No} = -\frac{5}{14}log_2\left(\frac{5}{14}\right); H_{Yes} = -\frac{9}{14}log_2\left(\frac{9}{14}\right)$$

Całkowita entropia

$$H = H_{No} + H_{Yes}$$

Entropia dla Outlook = Sunny (2 YES, 3 NO)

$$H_{Sunny} = -\frac{2}{5}\log_2\left(\frac{2}{5}\right) - -\frac{3}{5}\log_2\left(\frac{3}{5}\right)$$

Entropia dla Outlook = Overcast (4 YES, 0 NO)

$$H_{Overcast} = -\frac{4}{4}\log_2\left(\frac{4}{4}\right) - -\frac{0}{4}\log_2\left(\frac{0}{4}\right)$$

| Outlook  | Temperature | Humidity | Windy | PlayTennis |
|----------|-------------|----------|-------|------------|
| Sunny    | Hot         | High     | False | No         |
| Sunny    | Hot         | High     | True  | No         |
| Overcast | Hot         | High     | False | Yes        |
| Rainy    | Mild        | High     | False | Yes        |
| Rainy    | Cool        | Normal   | False | Yes        |
| Rainy    | Cool        | Normal   | True  | No         |
| Overcast | Cool        | Normal   | True  | Yes        |
| Sunny    | Mild        | High     | False | No         |
| Sunny    | Cool        | Normal   | False | Yes        |
| Rainy    | Mild        | Normal   | False | Yes        |
| Sunny    | Mild        | Normal   | True  | Yes        |
| Overcast | Mild        | High     | True  | Yes        |
| Overcast | Hot         | Normal   | False | Yes        |
| Rainy    | Mild        | High     | True  | No         |

#### Zadanie – zbiór PlayTennis

Entropia dla Outlook = Rainy (2 YES, 3 NO)

$$H_{Rainy} = H_{Sunny}$$

Całkowita entropia gałęzi

$$H_S = H_{Sunny} + H_{Overcast} + H_{Rainy}$$

Redukcja niepewności – zysk informacyjny

$$zysk = H - H_s$$

| Outlook  | Temperature | Humidity | Windy | PlayTennis |
|----------|-------------|----------|-------|------------|
| Sunny    | Hot         | High     | False | No         |
| Sunny    | Hot         | High     | True  | No         |
| Overcast | Hot         | High     | False | Yes        |
| Rainy    | Mild        | High     | False | Yes        |
| Rainy    | Cool        | Normal   | False | Yes        |
| Rainy    | Cool        | Normal   | True  | No         |
| Overcast | Cool        | Normal   | True  | Yes        |
| Sunny    | Mild        | High     | False | No         |
| Sunny    | Cool        | Normal   | False | Yes        |
| Rainy    | Mild        | Normal   | False | Yes        |
| Sunny    | Mild        | Normal   | True  | Yes        |
| Overcast | Mild        | High     | True  | Yes        |
| Overcast | Hot         | Normal   | False | Yes        |
| Rainy    | Mild        | High     | True  | No         |

#### Support Vector Machines - SVM

- Polskie tłumaczenie maszyna wektorów/podpierających
- Klasyfikator binarny oparty o optymalizację (odnalezienie hiperpłaszczyzny separującej liniowo)
- Zastosowanie jąder do transformowania nieliniowych problemów do liniowych → kernel trick
- Margines zaufania odległość między optymalną hiperpłaszczyzną a najbliższym jej wektorem nośnym



#### Wektory nośne

- Wektory nośne to punkty leżące najbliżej płaszczyzny decyzyjnej
- Najtrudniejsze do sklasyfikowania
- Maksymalizacja marginesu wokół hiperpłaszczyzny



## Separacja przez hiperpłaszczyzny

- Liniowa separowalność:
- -2 wymiary → linia
- więcej wymiarów → hiperpłaszczyzna



Find a,b,c, such that  $ax + by \ge c$  for red points  $ax + by \le c$  for green points



#### Liniowa separowalność

 Dwie klasy są liniowo separowalne, jeśli istnieje hiperpłaszczyzna H postaci g(x)

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

przyjmująca wartości

$$\begin{cases} g(\mathbf{x}_i) > 0 & \mathbf{x}_i \in 1 \\ g(\mathbf{x}_i) < 0 & \mathbf{x}_i \in -1 \end{cases}$$

## Wybór hiperpłaszczyzny

- Hiperpłaszczyzny b<sub>i1</sub> i b<sub>i2</sub> są otrzymane przez równoległe przesuwanie hiperpłaszczyzny granicznej aż do pierwszych punktów z obu klas.
- Odległość między nimi margines klasyfikatora liniowego



Figure 5.22. Margin of a decision boundary.

#### Margines – węższy czy szerszy?

- Szerszy margines → lepsze własności generalizacji, mniejsza podatność na ew. przeuczenie (overfitting)
- Wąski margines mała zmiana granicy, radykalne zmiany klasyfikacji



#### Działanie SVM

Vapnik – poszukuj "maximal margin classifier"

$$\mathbf{w} \cdot \mathbf{x} + \mathbf{b} = 0$$

gdzie w i b są parametrami modelu

$$y = \begin{cases} 1 & \mathbf{w} \cdot \mathbf{x} + \mathbf{b} > 0 \\ -1 & \mathbf{w} \cdot \mathbf{x} + \mathbf{b} < 0 \end{cases}$$

 Parametry granicy wyznaczaj tak, aby maksymalne marginesy b<sub>i1</sub> i b<sub>i2</sub> były miejscem geometrycznym punktów x spełniających warunki

$$b_{i1} \quad \mathbf{w} \cdot \mathbf{x} + \mathbf{b} = 1$$
$$b_{i2} \quad \mathbf{w} \cdot \mathbf{x} + \mathbf{b} = -1$$

Margines – odległość między płaszczyznami b<sub>i1</sub> i b<sub>i2</sub>

# Poszukiwanie parametrów hiperpłaszczyzny

$$\mathbf{margin} = \frac{2}{\parallel \mathbf{w} \parallel}$$

$$||\mathbf{w}|| \equiv \sqrt{w_1^2 + \dots + w_p^2}$$

$$\frac{2}{\|\mathbf{w}\|} \longrightarrow \frac{\|\mathbf{w}\|}{2} \longrightarrow \frac{\|\mathbf{w}\|^2}{2}$$

maximize minimize minimize



$$f(\vec{x}) = \begin{cases} 1 & \text{if } \vec{w} \bullet \vec{x} + b \ge 1 \\ -1 & \text{if } \vec{w} \bullet \vec{x} + b \le -1 \end{cases}$$

Sformulowanie mat. problemu:

$$\min_{\mathbf{w}} = \frac{\|\mathbf{w}\|^2}{2}$$

Przy warunkach ograniczających

$$y_i(w \cdot x_i + b) \ge 1$$
  $i = 1, 2, ..., N$ 

 Jest to problem optymalizacji kwadratowej z liniowymi ogr. → uogólnione zadanie optymalizacji rozwiązywany metodą mnożników Lagrange'a (tak aby np. nie dojść do w → 0)

#### **LSVM**

Minimalizuj funkcję Lagrange'a

$$L(w,b,\alpha) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{N} \alpha_i (y_i (\mathbf{w} \mathbf{x}_i + b) - 1)$$

- parametry α ≥0 mnożniki Lagrange'a
- Powinno się różniczkować L po w i b nadal trudności w rozwiązaniu

- Nadal zbyt wiele parametrów w,b,α do oszacowania
- Przechodzi się na postać dualną zadania optymalizacji
- Maksymalizuj L( $\alpha$ )  $\sum_{i=1}^{N} \alpha_i \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i \cdot \mathbf{x}_j)$
- Przy ograniczeniach

$$\alpha_i \ge 0, \ \forall i \ \sum_{i=1}^N \alpha_i y_i = 0$$

Rozwiązanie (α>0 dla i∈SV) ; b – odpowiednio uśredniane

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$$

Hiperpłaszczyzna decyzyjna 
$$\sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i \cdot \mathbf{x} + b = 0$$

#### SVM - klasyfikacja

Klasyfikacja – funkcja decyzyjna

$$f(x) = sign(\sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i \cdot \mathbf{x} + b)$$

- O ostatecznej postaci hiperpłaszczyzny decydują wyłącznie wektory nośne (α<sub>i</sub> >0)
- Im większa wartość  $\alpha_{\rm i}$  tym większy wpływ wektora na granicę decyzyjną
- Klasyfikacja zależy od iloczynu skalarnego nowego x z wektorami nośnymi x; ze zbioru uczącego
- Pewne założenie metody starać się zbudować klasyfikator liniowy używając możliwie minimalną liczbę wektorów z danych treningowych (wektory nośne)

## Problem separowalny nieliniowo

Mapowanie danych do przestrzeni wielowymiarowych



 The following set can't be separated by a linear function, but can be separated by a quadratic one



#### Funkcje jądrowe (kernel functions)

#### Przykład prostego przekształcenia wielomianowego

The kernel trick:

$$K(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i \cdot \mathbf{x}_j)^2 = (x_{i1}^2, \sqrt{2}x_{i1}x_{i2}, x_{i2}^2) \cdot (x_{j1}^2, \sqrt{2}x_{j1}x_{j2}, x_{j2}^2)$$

$$= \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_j)$$

Original optimization function:

$$\sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i \cdot \mathbf{x}_j)$$

Nie musimy znać funkcji Φ, wystarczy znać jądro (kernel)

i można pracować w powai przestrzeni

#### Dopuszczalne typy jąder związane z SVM

| Normalne<br>(Gaussowskie) | $K(\mathbf{x}_i, \mathbf{x}_j) = \exp\{-\frac{(\mathbf{x}_i - \mathbf{x}_j)}{2\sigma^2}\}$ |
|---------------------------|--------------------------------------------------------------------------------------------|
| Wielomianowe              | $K(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i \cdot \mathbf{x}_j + d)^p$                  |
| sigmoidalne               | $K(\mathbf{x}_i, \mathbf{x}_j) = tgh(\kappa \mathbf{x}_i \cdot \mathbf{x}_j - \delta)$     |

Wykorzystanie funkcji jądrowych

$$f(\mathbf{x}) = sign\left(\sum_{i=1}^{N} \alpha_i y_i \Phi(\mathbf{x}_i) \Phi(\mathbf{x}) + b\right)$$
$$sign\left(\sum_{i=1}^{N} \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}) + b\right)$$

Model klasyfikacji binarnej rozszerza się na zagadnienie wieloklasowe K > 2

#### Kernel trick



#### Kernel 1

#### **Example: SVM with Polynomial of Degree 2**

Kernel:  $K(\overset{\triangleright}{x}_i,\overset{\triangleright}{x}_j) = [\overset{\triangleright}{x}_i\cdot\overset{\triangleright}{x}_j+1]^2$ 

plot by Bell SVM applet



#### Kernel 2

#### **Example: SVM with RBF-Kernel**

Kernel:  $K(\vec{x}_i, \vec{x}_j) = \exp(-|\vec{x}_i - \vec{x}_j|^2 / \sigma^2)$ 

plot by Bell SVM applet



#### SVM - zalety

Stopień skomplikowania/pojemność jest niezależna od liczby wymiarów.

Bardzo dobra podbudowa statystyczno-teoretyczna

Znajdowanie minimum glonalnego. Minimalizujemy funkcję kwadratową co gwarantuje zawsze znalezienie minimum. Algorytm jest wydajny i SVM generuje prawie optymalny klasyfikator. Nie jest tez czuły na przetrenowanie.

Dobre uogólnianie dzięki wielowymiarowej "feature space".

Najważniejsze: poprzez użycie odpowiedniej funkcji jądra SVM bardzo duża skuteczność w praktyce

#### SVM - wady

Powolny trening – minimalizacja funkcji, szczególnie dokuczliwy przy dużej ilości danych użytych do treningu.

Rozwiązania też są skomplikowane (normalnie >60% wektorów użytych do nauki staje się wektorami wspierającymi), szczególnie dla dużych ilości danych.

Przykład (Haykin): poprawa o 1.5% ponad wynik osiągnięty przez MLP. Ale MLP używał 2 ukrytych węzłów, a SVM 285 wektorów.

Trudno dodać własną wiedzę (prior knowledge)