Titanic Dataset -

It is one of the most popular datasets used for understanding machine learning basics. It contains information of all the passengers aboard the RMS Titanic, which unfortunately was shipwrecked. This dataset can be used to predict whether a given passenger survived or not.

Features: The titanic dataset has roughly the following types of features:

1. Categorical/Nominal: Variables that can be divided into multiple categories but having no order or priority.

```
Eg. Embarked (C = Cherbourg; Q = Queenstown; S = Southampton)
```

2.Binary: A subtype of categorical features, where the variable has only two categories.

```
Eg: Sex (Male/Female)
```

3. Ordinal: They are similar to categorical features but they have an order(i.e can be sorted).

```
Eg. Pclass (1, 2, 3)
```

4.Continuous: They can take up any value between the minimum and maximum values in a column.

```
Eg. Age, Fare
```

5. Count: They represent the count of a variable.

```
Eg. SibSp, Parch
```

6.Useless: They don't contribute to the final outcome of an ML model. Here, Passengerld, Name, Cabin and Ticket might fall into this category.

Importing all required libraries

```
In [1]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
```

Read data from dataset

In [2]:

df=pd.read_csv("train.csv")

Display Data

In [3]:

df

Out[3]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500
891 r	ows × 12 colu	mns								
4										>

Display columns name

In [4]:

```
print(df.columns.values)
```

['PassengerId' 'Survived' 'Pclass' 'Name' 'Sex' 'Age' 'SibSp' 'Parch'
'Ticket' 'Fare' 'Cabin' 'Embarked']

Display rows and columns

In [5]:

print(df.shape)

(891, 12)

Display top 5 data

In [6]:

df.head()

Out[6]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	(
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	-
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	
4)	

Display bottom 5 data

```
In [7]:
```

```
df.tail()
```

Out[7]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cak
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.00	Nŧ
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.00	В
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.45	Na
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.00	C1
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.75	Nŧ
4											•

Display information

In [8]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
dtyp	es: float64(2), int64(5), obj	ect(5)

memory usage: 83.7+ KB

Summary Statistics

In the train data, there're 891 passengers, and the average survival rate is 38%. Age ranges from 0.42 to 80 and the average is approx 30 year old. At least 50% of passengers don't have siblings / spouses , and at least 75% of passengers don't have parents / children .

In [9]:

df.describe()

Out[9]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

to check null value

In [10]:

df.isnull()

Out[10]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	I
0	False	False	False	False	False	False	False	False	False	False	True	
1	False	False	False	False	False	False	False	False	False	False	False	
2	False	False	False	False	False	False	False	False	False	False	True	
3	False	False	False	False	False	False	False	False	False	False	False	
4	False	False	False	False	False	False	False	False	False	False	True	
886	False	False	False	False	False	False	False	False	False	False	True	
887	False	False	False	False	False	False	False	False	False	False	False	
888	False	False	False	False	False	True	False	False	False	False	True	
889	False	False	False	False	False	False	False	False	False	False	False	
890	False	False	False	False	False	False	False	False	False	False	True	

891 rows × 12 columns

Display sum of null value

In the train data, there're 177 in Age, 687 in Cabin, and 2 in Embarked have null values.

In [11]:

df.isnull().sum()

Out[11]:

PassengerId 0 Survived 0 Pclass 0 Name 0 Sex 0 Age 177 SibSp 0 Parch 0 Ticket 0 Fare 0 Cabin 687 Embarked dtype: int64

Covariance

Covariance indicates the direction of the linear relationship between variables.

In [12]:

df.cov()

Out[12]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Far
Passengerld	66231.000000	-0.626966	-7.561798	138.696504	-16.325843	-0.342697	161.88336
Survived	-0.626966	0.236772	-0.137703	-0.551296	-0.018954	0.032017	6.22178
Pclass	-7.561798	-0.137703	0.699015	-4.496004	0.076599	0.012429	-22.83019
Age	138.696504	-0.551296	-4.496004	211.019125	-4.163334	-2.344191	73.84903
SibSp	-16.325843	-0.018954	0.076599	-4.163334	1.216043	0.368739	8.74873
Parch	-0.342697	0.032017	0.012429	-2.344191	0.368739	0.649728	8.66105
Fare	161.883369	6.221787	-22.830196	73.849030	8.748734	8.661052	2469.43684
4							•

Correlated

1. The SibSp and Parch are strong positive correlations. 2. The Pclass and Fare are strong negative corelations.

```
In [13]:
```

```
df.corr()
```

Out[13]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
Passengerld	1.000000	-0.005007	-0.035144	0.036847	-0.057527	-0.001652	0.012658
Survived	-0.005007	1.000000	-0.338481	-0.077221	-0.035322	0.081629	0.257307
Pclass	-0.035144	-0.338481	1.000000	-0.369226	0.083081	0.018443	-0.549500
Age	0.036847	-0.077221	-0.369226	1.000000	-0.308247	-0.189119	0.096067
SibSp	-0.057527	-0.035322	0.083081	-0.308247	1.000000	0.414838	0.159651
Parch	-0.001652	0.081629	0.018443	-0.189119	0.414838	1.000000	0.216225
Fare	0.012658	0.257307	-0.549500	0.096067	0.159651	0.216225	1.000000

Maximum and Minimum Age

In the train data, there'r Minimum age of passenger is 0.42, And Maximum age is 80.

In [14]:

```
d=df['Age'].min(),df['Age'].max()
d1=pd.DataFrame(d)
d2=d1.rename(columns={0:'Age'})
d2
```

Out[14]:

Age 0 0.42

1 80.00

Sorting Fare

In [15]:

```
df.sort_values("Fare", ascending = False, inplace = True)
df.head()
```

Out[15]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	C
258	259	1	1	Ward, Miss. Anna	female	35.0	0	0	PC 17755	512.3292	_
737	738	1	1	Lesurer, Mr. Gustave J	male	35.0	0	0	PC 17755	512.3292	
679	680	1	1	Cardeza, Mr. Thomas Drake Martinez	male	36.0	0	1	PC 17755	512.3292	
88	89	1	1	Fortune, Miss. Mabel Helen	female	23.0	3	2	19950	263.0000	
27	28	0	1	Fortune, Mr. Charles Alexander	male	19.0	3	2	19950	263.0000	
4										I	>

Number of people who survived

0 - Not Survived, 1 - Survived

In In the train data, there'r 342 passengers survived, and 549 passengers not survived.

In [16]:

```
df['Survived'].value_counts()
```

Out[16]:

0 5491 342

Name: Survived, dtype: int64

Survived in %

In In the train data, 61% of passengers not survived, and 38% of passengers survived. Most of the passengers died in the titanic.

In [17]:

```
plt.title('Survived',fontsize=20)
df['Survived'].value_counts().plot.pie(autopct='%1.1f%%',shadow=True,labels=['Not Survived'
plt.show()
```

Survived

Class wise passenger count

In [18]:

```
c=df['Pclass'].value_counts()
c
```

Out[18]:

3 4911 2162 184

Name: Pclass, dtype: int64

In [19]:

```
plt.title('Class wise Passanger Count',fontsize=20)
df['Pclass'].value_counts().plot.pie(autopct='%1.1f%%',shadow=True, labels=['Class 3', 'Cla
plt.show()
```

Class wise Passanger Count

Passanger count (by gender)

```
In [20]:
```

```
d=df['Sex'].value_counts()
d
```

Out[20]:

male 577 female 314

Name: Sex, dtype: int64

In [34]:

```
plt.title('Gender',fontsize=20)
df['Sex'].value_counts().plot.pie(autopct='%1.1f%%',shadow=True, labels=['Male', 'Female'],
plt.show()
```


Pivot Table

In Pclass, here we can see a lot more people survived from the First class than the Second or the Third class, even though the total number of passengers in the First class was less than the Third class.

```
In [22]:
```

```
pivot_1=pd.pivot_table(df, index = 'Survived', columns = 'Pclass', values = 'Ticket' , aggfun
pivot_1
```

Out[22]:

Pclass	1	2	3
Survived			
0	80	97	372
1	136	87	110

Sex: Most of the women survived, and the majority of the male died.

```
In [23]:
```

```
pivot_2=pd.pivot_table(df, index = 'Survived', columns = 'Sex', values = 'Ticket' ,aggfunc
pivot_2
```

Out[23]:

	Sex	temale	male
_			

Survived

0	81	468

1 233 109

Embarked - Port of Embarkation (C = Cherbourg; Q = Queenstown; S = Southampton)

Embarked: if someone was from "Southampton" had a higher chance of surviving.

In [24]:

```
pivot_3=pd.pivot_table(df, index = 'Survived', columns = 'Embarked', values = 'Ticket' ,aggf
pivot_3
```

Out[24]:

Embarked	С	Q	S
Survived			
0	75	47	427
1	93	30	217

Group by Parent Child

In Train Data, ther'r 678 passangers don't have Parent/Child relation. And there'r 1 Passanger who have maximum Parent/Child relation.

```
In [25]:
```

```
df.groupby(["Parch", "Survived"])[["Survived"]].count()
```

Out[25]:

Survived

Parch	Survived		
0	0	445	
	1	233	
1	0	53	
	1	65	
2	0	40	
	1	40	
3	0	2	
	1	3	
4	0	4	
5	0	4	
	1	1	
6	0	1	

Group by sibling

In [26]:

```
df.groupby(["SibSp", "Survived"])[["Survived"]].count()
```

Out[26]:

Survived

SibSp	Survived	
0	0	398
	1	210
1	0	97
	1	112
2	0	15
	1	13
3	0	12
	1	4
4	0	15
	1	3
5	0	5
8	0	7

Data Visualization

Countplot of Survived Male and Female

- 1. Maximum number of Male are not Survived
- 2. Maximum number of female are Survived

In [27]:

```
sns.set_style("whitegrid")
sns.countplot(x='Survived',data=df,hue='Sex',palette='tab10')
plt.show()
```


Class wise Survived

1. Most of the Class-3 Passengers not survived

In [28]:

```
sns.set_style("whitegrid")
sns.countplot(x='Survived',data=df,hue='Pclass',palette='tab10')
plt.show()
```


Sibling

Most of the passengers don't have siblings

In [29]:

```
sns.set_style("whitegrid")
sns.countplot(x='SibSp',data=df,palette='tab10')
plt.show()
```


histogram of Age Distribution

In [30]:

Histogram

Large number of 20-30 year olds did not survive.

In [35]:

```
a1 = sns.FacetGrid(df, col='Survived')
a1.map(plt.hist, 'Age')
plt.show()
```

<Figure size 576x504 with 0 Axes>

Corrleation Heatmap

1.The strongest positive (Orange) and strongest negative correlations (Black). 2.The SibSp and Parch are strong positive correlations. 3.The Pclass and Fare are strong negative correlations.

In [32]:

```
plt.figure(figsize=(12,7))
sns.heatmap(df.corr(), annot=True)
plt.show()
```


Conclusion:

In In the train data, 61% of passengers not survived, and only 38% of passengers survived. Most of the passengers died in the titanic.(i.e. Maximum number of Male are not Survived.)

In []:		