$$X' = \begin{pmatrix} u & 1 & 0 \\ 0 & u & 1 \\ 0 & 0 & u \\ 0 & 0 & u \end{pmatrix}$$

$$X' = A X$$

$$X' = A$$

$$K_{2} = R_{3} = 0$$

$$K_{1} = 1$$

$$K_{1} = 1$$

$$K_{2} = R_{3} = 0$$

$$K_{3} = 0$$

$$K_{4} = 1$$

$$K_{5} = 1$$

$$K_{7} = 0$$

$$K_{7} + K_{5} \rightarrow R_{3}$$

$$K_{7} + K_{7} \rightarrow R_{7}$$

$$K_{7} \rightarrow R_{7} \rightarrow R_{7}$$

$$K_{7} \rightarrow R_{7} \rightarrow R_{7} \rightarrow R_{7}$$

$$K_{7} \rightarrow R_{7} \rightarrow R_{7} \rightarrow R_{7} \rightarrow R_{7}$$

$$K_{7} \rightarrow R_{7} \rightarrow$$

 $\lambda = R_{3} = \lambda$ $(A - \lambda_{1} I) G = P$ (A - 2I) G = P (A - 2I) G = P

ġ

 $(n-2) \left[\begin{array}{c} n^{2} - 3n + 12 \\ - 0 \end{array} \right] = 0$ $(n-2) \left[n^{2} - 2n - n + 12 \right] = 0$ $(n-3) \left[(n-1) (n-2) \right] = 0$ $(n-1) \left[(n-2) (n-2) \right] = 0$ $(n-1) \left[(n-2) (n-2) \right] = 0$ $(n-1) \left[(n-2) (n-2) (n-2) \right] = 0$ $(n-1) \left[(n-1) (n-2) (n-2)$

$$P_{1} - P_{2} = -\frac{1}{1/5}$$

$$P_{1} - P_{2} = -\frac{1}{1/5}$$

$$P_{1} = \frac{SP_{2} - 1}{5}$$

$$P_{1} = \frac{SP_{2} - 1}{5}$$

$$P_{1} = \frac{SP_{2} - 1}{5}$$

$$P_{1} = \frac{SY_{2} - 1}{5}$$

$$P_{2} = \frac{SY_{2} - 1}{5}$$

$$P_{3} = \frac{SY_{2} - 1}{5}$$

$$P_{4} = \frac{P_{1}}{P_{1}} = \frac{P_{1}}{P_{2}}$$

$$P_{4} = \frac{P_{1}}{P_{2}} = \frac{P_{2}}{P_{1}}$$

$$X_{2} = \frac{P_{1}}{P_{2}} = \frac{P_{2}}{P_{1}}$$

$$X_{3} = \frac{P_{1} - P_{2}}{P_{2}} = \frac{P_{2}}{P_{1}}$$

$$Y_{2} = \frac{P_{1}}{P_{2}} = \frac{P_{2}}{P_{1}}$$

$$Y_{2} = \frac{P_{1}}{P_{2}} = \frac{P_{2}}{P_{1}} = \frac{P_{2}}{P_{2}}$$

 $X = C_1 X_1 + C_2 X_2$ $= C_1 \begin{bmatrix} 1 \\ 3 \end{bmatrix} e^{-\frac{1}{4}} + C_2 \left[\left(\begin{bmatrix} 1 \\ 3 \end{bmatrix} \right) e^{-\frac{1}{4}} + \left(\begin{bmatrix} 0 \\ 3 \end{bmatrix} \right) e^{-\frac{1}{4}} \right]$

3

$$A = \begin{bmatrix} 5 & -6x + 5y & y \\ -6 & 5 & y \\ -6 & 5 & y \end{bmatrix}$$

$$(e^{A} \times_{X} \times_{K} e^{NA} + \dots \times_{X_{1},N_{2}} \dots \times_{X_{n}} e_{ig_{1}N} \text{ vachors}$$

$$(A-A_{1}) = \begin{pmatrix} -b & 5 \\ .5 & y \end{pmatrix} - N \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$$

$$\begin{cases} x-y & z-b-b \\ z-b & z-b \\ -z & z-b \end{cases} = \begin{vmatrix} z-b-b \\ z-b & z-b \\ -z & z-b \\ -$$

0 = (1+1) (1+1)

1-- 1/2 -1

K:
$$\int dk \ln 3 \ \lambda_1 = -1$$

 $(A - \lambda_1 E) K = 0$
 $(A + I) K = 0$
 $= \begin{bmatrix} -6 & 5 \\ -5 & 4 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -5 & 5 \\ -5 & 5 \end{bmatrix}$

 $X = C_1X_1 + C_2X_2$ $= C_1 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + C_2 \begin{bmatrix} \frac{1}{4} \end{bmatrix} + C_2 \begin{bmatrix} \frac{1}{4} \end{bmatrix}$

isuoconta ha Assignment: 03

Section: A Nume - ADUN-HAIDER

1D: FAZI-65E-133

TASR: Ex 8.6 Q(B9-33)

$$A = \begin{bmatrix} 3 & -1 \\ 3 & -1 \end{bmatrix}, \quad X = \begin{bmatrix} 4 \\ 9 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & -1 \\ \alpha & -3 \end{bmatrix}$$
, $X = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$

$$X = Ke^{\Delta t}$$

$$X = eigen vectors$$

			of take my none new	t - 3
Picking $\lambda = \lambda$, $ (A - \lambda, 1) K = 0 $ $ (A - 0) K = 0 $ $ \begin{bmatrix} A - 0 \end{bmatrix} K = 0 $ $ \begin{bmatrix} A - 0 \end{bmatrix} K = 0 $ $ \begin{bmatrix} 3 & -1 \\ 4 & -3 \end{bmatrix} \begin{bmatrix} R_1 \\ R_2 \end{bmatrix} = 0 $	$\frac{1}{3}R_{1}-3R_{1}$ $\begin{bmatrix} 1 & -1/3 & 0 \\ 0 & -3 & 0 \end{bmatrix}$ $R_{2}-4R_{1}-3R_{2}$ $\begin{bmatrix} 1 & -1/3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $R_{1}-\frac{1}{3}R_{2}=0$	RIT SRI	$k_{1} = 1$ $k_{2} = \binom{k_{1}}{k_{2}} = \binom{1}{3}$	4, = Kent = [1] ent

 $\frac{-5}{-5} \quad \frac{5}{5} \quad \frac{10}{6}$ $\frac{-1}{7} \quad R_{1} \rightarrow R_{1}$ $R_{1} + R_{2} = 0$ $R_{1} + R_{2} = 1$ $R_{1} = R_{2} = 1$ $R_{1} = R_{2} = 1$ $R_{1} = R_{2} = 1$ $R_{2} = R_{2} = 1$ $R_{1} = R_{2} = 1$ $R_{2} = R_{2} = 1$ $R_{1} = R_{2} = 1$ $R_{2} = R_{2} = 1$ $R_{1} = R_{2} = 1$ $R_{2} = R_{2} = 1$ $R_{3} = R_{4} = 1$ $R_{4} = R_{4} = 1$ $R_{5} = R_{5} = 1$ $R_{7} = R_{7} = 1$

 $\frac{c_{1}}{c_{1}} = \frac{1}{2} \quad i_{1} \quad i_{2} \quad i_{3} \quad i_{4} \quad i_{5} \quad$

 $R_{1} - R_{2} = 0$ $R_{1} = R_{1}$ $Cd^{2}R_{2} = 0$ $R_{1} = Y$ $R_{1} = Y$ $R_{2} = I$ $R_{3} = I$ $R_{4} = I$ $R_{5} = I$ $R_{7} = I$

31)
$$\frac{d\kappa}{dt} = -\kappa + 3y$$
, $\frac{dy}{dt} = -3\kappa + 5y$
 $A = \begin{bmatrix} -1 & 3 \\ -3 & 5 \end{bmatrix}$, $X = \begin{bmatrix} 4y \\ 4y \end{bmatrix}$

X= Kent

$$|A - n I| = \left| \begin{bmatrix} -1 & 3 \\ -3 & 5 \end{bmatrix} - n \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right|$$

$$= \left| \begin{bmatrix} -1 - n & 3 \\ -3 & 5 - n \\ -3 & 5 - n \end{bmatrix} \right|$$

$$(-1 - n)(5 - n) - (-3)(3)$$

$$-5 + n - 5n + 1^{2} + 9 = 0$$

$$n^{2} - 4n + 4 = 0$$

$$n^{2} - 2n - 2n + 4 = 0$$

$$n(n - 1) - 2n(n - 2) = 0$$

$$n(n - 2) - 2n(n - 2) = 0$$

$$n(n - 2) - 2n(n - 2) = 0$$

$$n(n - 2) - 2n(n - 2) = 0$$

$$n(n - 2) - 2n(n - 2) = 0$$

K: Picking
$$R_1 = 3$$

 $(A - 2I)K = 0$
 $\begin{bmatrix} -3 & 3 & 0 \\ -3 & 3 & 0 \\ -3 & 3 & 0 \end{bmatrix} = 5$

K:
$$\rho_{i}ck_{in}g \quad \Lambda_{i} = 6$$
 $(A - \Lambda_{i}E) \quad K = 0$
 $(A - bI) \quad K = 0$
 $(A - bI)$

$$\begin{bmatrix} -2 & 3 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ -2 R_1 + 3 R_2 & = 0 \\ -2 R_1 = -3 R_2 \\ R_1 = -3 R_2 \\ R_2 = -3 \\ R_1 = -3 \\ R_2 = -3 \\ R_3 = -3 \\ R_4 =$$

Picking $R=R_{L=}6$ $(A-R_{2}I)P=K$ (A-6I)P=K

$$\begin{bmatrix} b & -q & 1 & 3 \\ 4 & -b & 1 & 2 \\ 4 & -b & 1 & 2 \end{bmatrix} & I_{L}R_{1} > R_{1}$$

$$\begin{bmatrix} 1 & -3_{1}L & 1'_{1}L \\ 0 & 0 & 1'_{2} \end{bmatrix} & P_{L} - 4R_{1} > R_{2}$$

$$\begin{bmatrix} 1 & -3_{1}L & 1'_{2}L \\ 0 & 0 & 1'_{2} \end{bmatrix} \\ P_{1} - \frac{3}{2}P_{L} = \frac{1}{2}$$

$$R_{1} = \frac{1}{2} + \frac{3}{2}P_{L}$$

$$R_{1} = \frac{1}{2} + \frac{3}{2}P_{L}$$

$$R_{2} = \frac{1}{2} + \frac{3}{2}P_{L}$$

$$R_{1} = \frac{1}{2} + \frac{3}{2}P_{L}$$

$$R_{2} = \frac{1}{2} + \frac{3}{2}P_{L}$$

$$R_{2} = \frac{1}{2} + \frac{3}{2}P_{L}$$

$$R_{3} = \frac{1}{2} + \frac{1}{2}P_{L}$$

$$R_{4} = \frac{1}{2} + \frac{3}{2}P_{L} + \frac{1}{2}P_{L}$$

$$R_{4} = \frac{1}{2} + \frac{3}{2}P_{L} + \frac{1}{2}P_{L}$$

$$R_{4} = \frac{1}{2} + \frac{3}{2}P_{L} + \frac{1}{2}P_{L}$$

$$R_{5} = \frac{1}{2} + \frac{1}{2}P_{L} + \frac{1}{2}P_{L}$$

$$R_{5} = \frac{1}{2}P_{L} + \frac{1}{2}P_{L} + \frac{1}{2}P_{L} + \frac{1}{2}P_{L} + \frac{1}{2}P_{L}$$

$$R_{5} = \frac{1}{2}P_{L} + \frac{1}{2}P_{L} +$$

33) $\frac{1}{nt} = 3x - y - 2$, $\frac{c/y}{nt} = n + y - 2$ $\frac{a/z}{a(t)} = n - y + 2$ X' = AX $A = \begin{bmatrix} 3 & -1 & -1 \\ 1 & 1 & -1 \end{bmatrix}, X = \begin{bmatrix} n \\ y \\ 2 \end{bmatrix}$

(3-1) (2-4)+ (12-21)=D

(n+2) [n(3-1)-3]=0

Q=(2-0) = + [(12-2)](1-8)

1.

 $(A - n_2 I) P = K$ (A - 2I) P = K (A - 2I

ë.

4,-92-93= 1

$$Q_{1} = \alpha_{2} + \beta_{3} + 1$$

$$Ld \quad \alpha_{2} = Y + 5 + 1$$

$$13 \quad V = C_{1} S = 1 \Rightarrow q_{1} = 3$$

$$Q_{1} = Y + 5 + 1$$

$$13 \quad V = C_{1} S = 1 \Rightarrow q_{1} = 3$$

$$X_{3} = 4 P_{e} P_{1} + Q_{e} P_{2} + Q_{e} P_{3} + Q_{e} P_{3} + Q_{e} P_{3} + Q_{e} P_{4} + Q$$

= (3-2) |-2 2 | 2-2 | 44 2 -2 | 44 2 -2 | = (3-v) | -r(3-n)-4 | -2 [6-2n-2] +4 [4+4n] = (3-r)[-3r+r2-4]-2(-2r-2)+4(4r+4) = (3-n) [n(n-u)+1(n-u)] +20 n+20 = (3-1) [4-32-4] +4 14 +161+16 = (3-h) [n2-42+20 (02+Un+2V-18-US) (1+V) = (3-n) (n+1)(n-4)+20(n+1) (2+1) (3-U)(1+Z) = [(8-8)+1(8-8)] (r+1) (r+1) (r-3) = (r+1) [2--3x+1-8] = (r+1) (-r+1r+3) = (8-NT-1N) (1+N) = 11= 8 1 22 = 13=-1 $\lambda = \lambda_1 = 3$ $(A - \lambda_1 I) | X = D$ (A - 3I) | X = D

 $P = \begin{pmatrix} P_1 \\ P_2 \\ P_3 \end{pmatrix} = \begin{pmatrix} 0 \\ -A \\ 1 \end{pmatrix}$ X_2

 $\lambda = \lambda_1 = -1$ $(A - \lambda_1 \Gamma) P = 0$ $(A + \Gamma) P = 0$

X, +C3 X3) c-t (-2) c-t
$X = C_1 X_1 + C_2 X$ $X = C_1 \begin{bmatrix} 2 \\ 2 \end{bmatrix} e^{-\frac{1}{2}}$	+63 [t(-3)

(A-R.I) Q=P

N=13=-1

ö

9 = 0 (1+ A)

28,-R,> 62 R3-R, > R5 4, R, > R5

 $a_{1} + a_{2}/_{2} + a_{3} = 0$ $a_{1} = -a_{2}/_{2} - a_{3}$ $(cd a_{3} = x, a_{5} = s)$ 4, = -12 -5
if 12-2; 5=0
9, = -12-0=1

 $X_{5} = \left\{\begin{bmatrix} 0 \\ -1 \end{bmatrix} e^{-\frac{1}{4}} \left[\begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-\frac{1}{4}} \right] \right\}$ $Q = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}$ Ks = tPerit + Qerst

$$X' = \begin{pmatrix} 5 & -4 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 5 \end{pmatrix} X$$

$$X' = AX$$

$$X' = AX$$

$$X' = AX$$

$$A = \begin{pmatrix} 5 & -4 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 5 \end{pmatrix}, X = \begin{pmatrix} 4 \\ 1 \\ 2 \\ 0 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & -4 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 5 \end{pmatrix}, X = \begin{pmatrix} 4 \\ 1 \\ 2 \\ 0 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & -4 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 5 \end{pmatrix}, X = \begin{pmatrix} 4 \\ 1 \\ 0 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & -4 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 5 \end{pmatrix}, X = \begin{pmatrix} 4 \\ 1 \\ 0 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & -4 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 5 \end{pmatrix}, X = \begin{pmatrix} 4 \\ 1 \\ 0 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & -4 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 7 & 0 & 4 \\ 1 & 0 & 2 \\ 0 & 2 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & -4 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 1 \\ 1 & 0 & 2 \\ 0 & 2 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 1 \\ 1 & 0 & 2 \\ 0 & 2 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 1 \\ 1 & 0 & 2 \\ 0 & 2 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 0 \\ 1 & 0 & 3 \\ 0 & 2 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 2 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 2 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 3 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 3 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 3 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 3 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 3 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 3 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 3 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 3 & 3 \\ 0 & 3 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 3 & 3 \\ 0 & 3 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 3 & 3 \\ 0 & 3 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 3 & 3 \\ 0 & 3 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 3 & 3 \\ 0 & 3 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 3 & 3 \\ 0 & 3 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 3 & 3 \\ 0 & 3 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 3 & 3 \\ 0 & 3 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 3 & 3 \\ 0 & 3 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 3 & 3 \\ 0 & 3 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 3 & 3 \\ 0 & 3 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 3 & 3 \\ 0 & 3 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 3 & 3 \\ 0 & 3 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 3 & 3 \\ 0 & 3 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 3 & 3 \\ 0 & 3 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 3 & 3 \\ 0 & 3 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 3 & 3 \\ 0 & 3 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 3 & 3 \\ 0 & 3 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 3 & 3 \\ 0 & 3 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 3 & 3 \\ 0$$

1 -5 2 0 0 -4 0 0 0 0 0 0 -4 R2 > R2	$ \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \end{bmatrix} $ $ R_3 - R_2 \times 2 \Rightarrow R_3 $	$X_{t} = Pe^{2t}t$ $X_{t} = \begin{bmatrix} -2 \\ 1 \end{bmatrix} e^{5t}$	
P: $(A-R_{L}I)P = 0$ (A-SI)P = 0 $\begin{pmatrix} 0 & -4 & 0 & 0 \\ 1 & -5 & 2 & 0 \\ 0 & 2 & 0 & 0 \end{pmatrix} = 3$	$\begin{bmatrix} 1 & -5 & 2 & 10 \\ 0 & 1 & 0 & 10 \\ 0 & 3 & 0 & 10 \end{bmatrix} \Rightarrow $ $R_1 + 5R_1 \rightarrow R_1$	$ \begin{pmatrix} 1 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} $ $ \mathbf{P}_{1} + 2\mathbf{P}_{2} = 0 $ $ \mathbf{P}_{2} = 0 $ $ \mathbf{P}_{1} = -2\mathbf{P}_{2} $ $ \mathbf{P}_{3} = \mathbf{Y}_{4} $	$\begin{vmatrix} P_{1} = -2Y \\ 1f & P_{2} = 1 \end{vmatrix}$ $\begin{vmatrix} P_{1} = -2Y \\ P_{2} & P_{3} \end{vmatrix} = \begin{vmatrix} -2Y \\ P_{2} \\ P_{3} \end{vmatrix}$

(1-1) $\begin{cases} x' = 0 \\ 0 = 1 \end{cases}$ $\begin{cases} x' = 0 \\ 0 = 1 \end{cases}$ $\begin{cases} x' = Ax \\ 0 = 1 \end{cases}$ $\begin{cases} x' = Ax \\ 0 = 1 \end{cases}$ $\begin{cases} x' = Ax \\ 0 = 1 \end{cases}$ $\begin{cases} x' = Ax \\ 0 = 1 \end{cases}$ $\begin{cases} x' = Ax \\ 0 = 1 \end{cases}$ $\begin{cases} x' = Ax \\ 0 = 1 \end{cases}$ $\begin{cases} x' = Ax \\ 0 = 1 \end{cases}$ $\begin{cases} x' = Ax \\ 0 = 1 \end{cases}$ $\begin{cases} x' = Ax \\ 0 = 1 \end{cases}$ $\begin{cases} x' = Ax \\ 0 = 1 \end{cases}$ $\begin{cases} x' = Ax \\ 0 = 1 \end{cases}$ $\begin{cases} x' = Ax \\ A = Ax \end{cases}$ $\begin{cases} x' = Ax \\ Ax \end{aligned}$ $\begin{cases} x' = Ax \\ A = Ax \end{cases}$ $\begin{cases} x' = Ax \\ A = Ax \end{cases}$ $\begin{cases} x' = Ax \end{aligned}$ $\begin{cases} x' = Ax \\ A = Ax \end{cases}$ $\begin{cases} x' = Ax \end{cases}$ \begin{cases}

P:
$$(A - R_2 I) P = 0$$
 $(A - I_2 I) P = K$
 $(A - I_2 I) P = K$
 $(A - I_2 I) P = K$
 $(A - I_2 I_2) P = K$
 $(A - I_2 I_3) P = K$
 $(A - I_2 I_4) P = K$
 $(A - I_2 I_4) P = K$
 $(A - I_3 I_4) P = K$
 $(A - I_4) P = K$

(2 1 -1 0) 0 0 0 0 0 0 1 -1 0 0 1 -1 0	$= > \begin{cases} 2 & 1 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$		0			
0 7 7 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$R_1 = 0$, $-k_2 + k_3 = -k_3$ $-k_2 = -k_3$ $k_2 = k_3$	$lef k_3 = 8$ $if x = 1$ $k_2 = k_3 = 1$	K = (k,) = (0)	$X_{i} = Ke^{\lambda_{i}t}$ $X_{i} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{t}$

X = C, x, + G, X, +C3 X3

= CIX,+GX,+C3X3

 $A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 2 & -1 \\ 0 & 1 & 0 \end{pmatrix}, \quad X \leftarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

= (1-4) (11-2-1-11)=> (1-4) [v(1-1)-1(2-1)] [1+ve-1] (-v) (-v) (-v) [v-v+1] => (v-v) [v-ov+1] = (-v)(v-c)(v-)=

= (1-1)(1-1) =

21-12-12-1 (A- RII)K=0 (A-I)K=0

30				01	, e		+	
	2 - 0 - 2 F			1,t+	+	++	o) tet	
	1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 -1 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\int_{a+1}^{a+1} \left(\frac{1}{a} \right)^{-1} dt$	2 1 2 1 2 2 4 2 4 2 4 4 4 4	462	1 ct + (et
	000	(400	-00	= 12 Ke			(c) (c)	00
	<u></u>	- 00 4	- 0 C	×	×	ļ	+	_)
9 (- T	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	0 7 0	$R_1 \rightarrow R_1$	43 = 0	13.7 . Y	= 43=0	
(A-N3I)Q=P	0 %	(400)	400	1/2 R1	-92+93	92= 7 92= 7 17 7= 0	6 2 2 2 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
Ġ							9	