

1/19

FIG. 1

WO 98/07748

	Published STSs
D8S510	WI-1155 D8S1151
	D8S260
	WI-943 D8S1075
	D8S1505 D8S1515
	WI-6879 D8S1113
	[D8S11723 [YP7]]
	D8S507 D8S1957
	WI-9507 New STSs

EM73 89 cen

2/19

FIG. 2

FIG. 3A

FIG. 3B

PLAG1 cDNA sequence

5/19

FIG. 4A

GGCAGCGCAT ACAC TACAAT GGCTGCTGGA AAGAGGCGTA AGGAAACAAT 50
 TTCCAGGCC CCGCGTCCA GCCCGAAATA TGAGAAAAAA ATTATTAGAA 100
 ATTCCGCGGG CGGTGTAGAG GCGGCGGACG GGCGGAGGG AGGATGTTAA 150
 AGCCCCGGG TTGCCTCTTG GTGCTGCCTT GGCGTATTG GGCACCCAGA 200
 ATGCTTCATT CTGTGACGGT CTATTAATAA GGTGCCTTG CTAGAGTTG 250
 GAGCAGGGCC TCAGATTGGC CAAAATGGGA AGGATTGGAT TCCACTCTCT 300
 TCCACGAAGA GTCAATGGGA CTGGCTAAGA TCAAAGTCTG AGGCTTTTC 350
 CATCAGTAAT CAGTCCCTT TTGCTTCTT TTACGACCAC ATGAAACTTG 400
 AGAACCCACC TAAAGCTATA TCATTTAGTG GAGTTGGCA GTTCCCAAGT 450
 GTCCAACAAG AAGGCCTGGT TAGGCTGCG ATGCCACTG TCATTCTGG 500
 TGATTTGTCA GAAGTAAGAG ATACCCAGAA AGTCCCTTC GGGAAACGTA 550
 AGCGTGGTGA ACCAAACCA AGAAAAAAACT TTCCTTGCCA ACTGTGTGAC 600
 AAGGCCTTA ACAGTGTGA GAAATTAAAG GTTCACTCCT ACTCTCACAC 650
 AGGAGAGAGG CCCTACAAGT GCATACAACA AGACTGCACC AAGGCCTTG 700
 TTTCTAAGTA CAAATTACAA AGGCACATGG CTACTCATTG TCCTGAGAAA 750
 ACCCACAAGT GTAATTATTG TGAGAAAATG TTTCACCGGA AAGATCATCT 800
 GAAGAATCAC CTCCATACAC ACGACCCTAA CAAAGAGACG TTTAAGTGC 850
 AAGAATGTGG CAAGAACTAC AATACCAAGC TTGGATTTAA ACGTCACTG 900
 GCCTTGCATG CCGCAACAAAG TGGTGACCTC ACCTGTAAGG TATGTTGCA 950
 AACTTTGAA AGCACGGGAG TGCTTCTGGA GCACCTTAA TCTCATGCAG 1000
 GCAAGTCGTC TGGTGGGGTT AAAGAAAAAA AGCACCAGTG CGAACATTGT 1050
 GATGCCGGT TCTACACCCG AAAGGATGTC CGGAGACACA TGGTGGTGCA 1100
 CACTGGAAGA AAGGACTTCC TCTGTCAGTA TTGTGCACAG AGATTTGGC 1050
 GAAAGGATCA CCTGACTCGA CATATGAAGA AGAGTCACAA TCAAGAGCTT 1200
 CTGAAGGTCA AACAGAACCC AGTGGATTC CTTGACCCAT TTACCTGCAA 1250
 TGTGTCTGTG CCTATAAAAG ACGAGCTCCT TCCGGTGATG TCCTTACCTT 1300
 CCAGTGAACT GTTATCAAAG CCATTCAACAA ACACTTGCA GTTAAACCTC 1350
 TACAACACTC CATTTCAGTC CATGCAGAGC TCGGGATCTG CCCACCAAAT 1400
 GATCACAACCT TTACCTTGG GAATGACATG CCCAATAGAT ATGGACACTG 1450
 TTCATCCCTC TCACCACCTT TCTTCAAAT ATCCGTTCAAG TTCTACCTCA 1500
 TATGCAATTG CTATTCTGA AAAAGAACAG CCATTAAAGG GGGAAATTGA 1550
 GAGTTACCTG ATGGAGTTAC AAGGTGGCGT GCCCTCTTCA TCCCAGATT 1600
 CTCAACGCATC GTCATCATCT AAGCTAGGGT TGGATCCTCA GATTGGGTCC 1650
 CTAGATGATG GTGCAGGAGA CCTCTCCCTA TCCAAAAGCT CTATCTCCAT 1700
 CAGTGACCCC CTAACACAC CAGCATTGGA TTTTCTCAG TTGTTTAATT 1750
 TCATACCTT AAATGGTCCT CCCTATAATC CTCTATCAGT GGGGAGCCTT 1800
 GGAATGAGCT ATTCCCAGGA AGAACGACAT TCTTCTGTTT CCCAGCTCCC 1850
 CACACAAACA CAGGATCTC AGGATCCTGC AAACACTATA GGGCTTGGGT 1900
 CTCTGCACTC ACTGTCAGCA GCTTCACCA GCAGTTAAG CACAAGTACC 1950
 ACCCTCCCAC GTTTCCATCA AGCTTTCAAG TAGGATTCTG GGACATGGAT 2000
 TCATTACAGA AATGTATGTG TAGCTGTGCC CTAGATGACC ATTTTTATT 2050
 TAGTGCCTAC TTTAAAACAG TATAAAAATT TCTGTTTTG TATAATACAA 2100
 ATTTTCATTA AGCCAGTATA AAATAGAAAC TAGCTTTAA ACTGAGCTTT 2150
 GGAACCATTG GTGTCAGTT AAGTTACCT GGGTATTTG TCCTGATTCA 2200
 CTGCCAATTG TCACATTAA AGACTTTTT TTTTCCATA TAGGAAAGCC 2250
 ATTATTAGTA GTAAACTTT ACAAAATCCCCTA TTTCAAATT ACTTTAGAT 2300
 CTTAAAATTG TCATTTTGT CTAATAACAG TGGCTCTACC TTTTGACATC 2350
 TGGCTCATTAA AAAAATTAG CAATAGAATG TAAATTGTAT AAAAAGTTG 2400
 TGAATAACTC AAGGGTTTAA ATTTCCTTAC TAGCTTCTAA ATGGATTAAT 2450
 AATCAAGTGC TTCAAATGAA TTAAGAGTCC AGTTTCGGAA GATAATAAT 2500
 GTTTGTTAGA TACACCATAA TTTCAGATCA GTATATTCTG AAGACTCTCT 2550
 GTTGTCTGGC TAAAATATTG GCCATCTTAA TTATGAGCCT TTAAGGAAAA 2600
 CAAACCTAA ACACAAAGCA TCAGTATTAA TAGCAAAAAG AGACTCTGTT 2650

6/19 FIG. 4A (continued)

AGGTGACATG	GCATTTCGTG	TCACCTTAATA	GTTGGCCCTA	AATTAGTACA	2700
CAGGATATTT	TGTCGTGTTT	CATCCTTCTT	AACATGCTAT	CTTTTCATT	2750
AATAATAGTA	ATAGTGTATG	GCATTGGGGT	CTTCAGAGTC	GATATATAGG	2800
TAGATCTCTT	TAGTCTTTTC	CACCTTCAC	ATCCAAGGGG	TGGGTCAAGT	2850
GCAGCCAGCA	ATTTATTTC	ATTGTTGCC	CACGGTTAGT	CCATAATCTA	2900
GAGCCATTGT	GGAACTGCAG	CCATGAGGTG	TGTTTATCCC	ACAGTGGATT	2950
GACTCAGCCT	CTGTGGGTGA	CAGACTTCTA	AGCAGGAAGA	TAGACGTGAA	3000
GCACATGGTT	ACATTGGGA	ACTTGTGTAG	GGATCATGGC	CCCTGTAGCC	3050
AGGGTTAAAAA	ACTGGACTTT	TTAGAAGTAA	AGTAAAAGCA	TAKCGCTTAT	3100
ATCATTCTT	GCTGAATTG	ATATGTTTT	CTTCCCTTA	AGAATCAAAA	3150
GCAGAAAACA	AAAACAACAG	TCCTACTCCG	ATGTTATCTT	TCTGATTCAA	3200
TGTGAATCCA	TCTTCCCTTG	CAATATTTG	GATGGAGAAT	TTGAAGTTAA	3250
ATGCATTAGA	AAACTACCTG	ATGAACTACC	ACAAAGTTT	AAGTGACTAG	3300
AAATATATAC	AGTAAAATCC	CACTTCATG	CATCTCTGGG	AAATGATAGG	3350
AGTATTGCAA	ATAAGTTGAG	TTTGTAGAGG	GTAACAAAGT	AAAGTAAAAC	3400
AAACCTATCT	TGGTTAACAT	GAAAATAACA	ATTGAGAATA	TATTATATT	3450
ACTGAATAAT	TATAGGCTTT	TCCTCACATT	AGACAACCAA	CATAATCTTC	3500
TTAAAGGTCT	AATTAATATA	TTTTTCTAAG	GTCAGTTGG	GACATTAACC	3550
TAAGAAACAT	ATCTATTAAG	CACTTGTAA	CACCTTATT	TAGGACCCCTT	3600
TCCGTTGGGG	ATGGGGGCAA	GGGTGGGAGG	TTTTTAGAAG	AGTATATATC	3650
TCTTTAAAAA	AAAACAGAAA	GAAAATATT	TCTGAGCACT	CATTAGCCCT	3700
ATATGGAAAC	TTCTTCTT	TTTGTAGGGC	CAGTTATCAC	TGCAGATTGC	3750
AATGTTTACC	AAGAATTCT	AAAATGAGT	GCAGATTACT	GAATATAATA	3800
CATTATTTAA	AATATTGGG	AGTAGTATAA	TTTGTGAGA	AATGTAATT	3850
GTAATAATGT	AAATGGGGGG	CTTCAATATA	TATATATAAT	ACACACACAC	3900
ACACACATGC	ACACATACCG	CACTTCATAG	AATCAAAGTT	GCTCTCTGAA	3950
GGAGCTTGG	CTCCTGATAT	TTTATCATGC	TCCTATATT	TTTTAATCCT	4000
TGGAGCAGTA	GTTTTATAC	TTATGTATT	AAATTTATT	ATGAAAAATT	4050
ACATTATTAA	AAAAAGTGTG	TTCCAAGGC	ATTAATTA	TATATGTTAA	4100
TAAGGAAGTA	CATTTTAAA	TTTTCAAAC	TGCTCCTAGC	TTTGATTAG	4150
GAGAATATT	TTTCTGAAAG	TAGGCTTTTC	GCTCTGCTTC	ATTACTGCTT	4200
CCTTTAGTT	CTATGAAACA	GATTGCTTAC	CTAAATCTT	AGTTGAATGA	4250
TTAGTGTCA	ATATTGCTT	AATCACCATA	AAAAGGAAA	AAAATTGGTG	4300
ACAGAGCACA	AATAGAAAAC	CTATTTTAA	ATAGAAATCA	CAAATAGCAA	4350
GTGTGGAAGC	ACTACTTTAT	CTGTTTAA	ATGTACTTAA	GAAGTCATCA	4400
AATTAGTGA	CTGAGACATT	GGCCTTAGTA	GGCTGTATT	ACTGCTAATT	4450
AAAAAAAGGG	AGTACCAAGGA	TTTATTAAGT	AAAGCATT	GGAAATGGGG	4500
AATAGCGCCA	TATATGTATG	TATGTGTATG	TGTGTGTGTG	GTGTGTGTAT	4550
ATATACACAC	ACACATACAT	ACTTAAATCT	TGCCCTGCAT	GAATTCAAA	4600
TACATGGAGG	CACATCTTCA	GGGCACCACT	GTAAAATT	TGGAGTCTTA	4650
ATTTCATGT	GTACACCTCT	TTGCCCTGTC	CCACCCCCAG	ACTGAAATA	4700
ACACTTCAGA	GTAAGAGGGG	ATTCAGCTAA	TTGTTTTA	AAATTGACTG	4750
TAGTGGTCAC	TAACCCCTT	TTGAGAGAAT	TTCTATTAA	GATGAGGCAG	4800
ACTCGCTTAT	TTGAATTGCA	CAATGTTCTA	ACAAGGATGT	AACACAGAAT	4850
TGGCTTTTT	TTCCCTAGAA	AAAGATTGTT	TGTTTCTATG	TCAACTAGAT	4900
ATGATTAAAA	ATAAGTATTG	CCAATGCTGT	TTTCATTCTC	TAGTGGCCAG	4950
AATCATTATC	CTTGAAATT	CTGGTAGTGC	CTTAGCTTG	TTAAAAAAA	4500
AAAAAAAAAA	AAAAAAAAG	GGATTAACAT	TAAATAAAAG	TAGTTAGAA	4550
TTGGGCCTC	AGACAAGATA	TTGAACCTCA	TTCAAGTTCA	CTTCCACATG	5100
TATGTACAAG	TTAGGTCAACC	AAACACGGAA	GTTGAGTGTG	GAAGGATCTT	5150
GGCACTGTAA	GCAATGCTAT	CCATTGATGT	ATACAAGTAC	CTTATAGTT	5200
ATCGATCACT	GTAAAACCT	TCATTTAAA	ATCCTATTAC	CAAGTTCACT	5250
TTTTAAAC	TTCAATTGTC	CTGGCTGATT	ATGCATCACT	CTGTGTGCAA	5300
CTTTTTATT	TCATTTAGTG	TTCTTCTCAA	GCTGTGTATT	TTTGCTATT	5350
TGTTGCTTGT	GCTTTATT	TCTTAGTCAT	TTGTGGAATA	TAGTGATATA	5400

7/19

FIG. 4A (continued)

TTGTGTTAAT	TTGGACAGTA	GCGGTTTTA	AAAACCATA	ACTGACTGAA	5450
ACATGAGCCA	GAGCCGATTG	CTTTATTAAG	CTAATAATGA	ATGTTAAAGA	5500
GTACATATTT	TCAGGATCGT	TCATCTAGTG	AGCAATACAC	ATATTATAGG	5550
CCAATATTTT	TTTAAAAAAAT	AGAGCTTGGT	CAACCTCTAT	ACTACACATA	5600
TTACAAGATA	TAGCACTTTC	AAAATGAATC	TAACACCTTA	CAGAAACTTT	5650
CTTATAGGTT	ATGCCTTTA	TTTTAAGACT	TATTATAATT	CAAGTGCCAT	5700
TAGATGATAT	ATATGTAGGC	CTTTGATATA	TAATGCTTG	TGTACAAAAA	5750
TGGTAGATGG	TATTTTAAAC	AGGTACATT	TTACAGTGT	TTCTTATCAA	5800
TTTGCTATAT	TGCACAGAAT	CAGTGTGT	CTTTTCATAA	GGTTTTACAA	5850
TGGTTTATTT	TTTTACAAGG	TTTACGTGTC	TCAAAGCACA	CTGTCTTCCC	5900
AGTACGTAAG	TTAAAAAAATA	CCAGTTCAC	CAAGTTGCTT	CTAGCCTACT	5950
GAGATCCATG	TGACATTGGA	GGAGATCTT	TAAATGTTA	GTATTGTC	6000
TTAGCAATGG	CTGGCTGTTA	GTTCTGGTAA	ATGTGTGCCT	AAGTTGAATT	6050
TGTCTTGT	TTCTCACACT	GTGTCA	CCATGTCTAC	AACACAGATA	6100
AGTCTGTTGT	GATCACATAG	ATCTACATAA	GTTGTGCAGT	TTTGTGCTAA	6150
AAACCCATAG	GGAGCTCCTT	TGGGATCATA	GAAAAGAAGA	TCATGCAACC	6200
AGCATTGGTG	AAGGCACACT	CAGATTGCAC	TTAGGGCCTT	TCTATGATGT	6250
TGTCAACCCCT	CTGAGGATGG	AAGGCAGTGT	CTTTTGATGT	TATCTAGCCT	6300
AGAAATGACA	CAGAACTATT	GCTAATGTAT	AAAACACTTC	ATTATATAAG	6350
CTTCAGTGGT	ACAGATGAAC	CAGAACAT	GTTTATCTTC	TCAGAAACAC	6400
TCCTTCATAA	TTATATTGGA	TCATGCTGCT	AATGTAAC	GGGCTACAAC	6450
TCTTCATGGT	GCTACAAACT	TCTCTGTCTC	ATTCA	TTTGTGCTAA	6500
CCATAGAAAAA	AGGACTACAT	TAGGTGTAA	AGTGTACAAT	ATATTTTAT	6550
ACTGTGACTT	AATTTGT	TAACAAACT	TTACACCACC	ACAATGTATT	6600
CATGTGCACT	TGCAAAAGGA	GATCTCGGAC	ATGCAAATGT	TACCAAGAAC	6650
AACCCAGCTT	TTGTCCACAA	GGTGA	ACTCAGAATG	GAAAGTGGGC	6700
TTTATAATAG	GGTGTGGAGT	GAAGAACATG	CTGTATGTTA	CTAACAGCCC	6750
TTTGAATT	ACAAAAACTG	GGAATCCATT	AGGAAACGG	TTGCATCATA	6800
CCTGAACATA	AGCTGGACTG	CTGAAATTGT	ATTTTTAGCT	AATGAAAAAG	6850
TGTTTGGACT	AGTACTCTAA	AAATGTTCTA	ATGATAAAGT	TTTGAGTCAA	6900
AATAGAAAAG	AAAAAAATCT	GCATTCCAGG	CCGAATT	TATATTTTA	6950
TTGCATTAA	AATTGCTATT	CTGTAATATT	GGGAAATCAA	GTGGCTTATC	7000
ATGTATATCG	TGTACTTAAA	ATGTATT	AAACTACTGT	TGTATTTGTA	7050
AAAATATAG	ACAAAGATCA	TATTTTTGT	GTGTGTATAA	GCTCTGTAAA	7100
ATAGCAATCA	CATTATGAAG	CTGCAGTGT	ACTACATT	AAACATTAC	7150
ATCCAAAGAA	GCAGACTATT	TATTGTCAT	ATACCAGATT	TAAAATATTA	7200
ATTTGCTGCT	AATTAATAA	TAGTACTGCA	GCTTCTTGTG	GCCTACAGT	7250
TTATGTTGC	TGTAAGAATA	AGATATGTGA	ATTCCACAAA	ATATATGAAT	7300
AAAATCTCGT	GCC	7313			

8/19

PLAG1 Finger 1	FPC..	QLCDKAFNSVEKLKVHSSY.	HTGERP
PLAG1 Finger 2	YKC1QQDCTKAFAVSKYKLQRHMAT.	HSPEKT	
PLAG1 Finger 3	HKC..	NYCEKMFHRKDHLKNHLHT.	
PLAG1 Finger 4	FKCEE..	HDPNKET	
PLAG1 Finger 5	CGKNNNTKLGEFKHLAL.	HAATSGD	
PLAG1 Finger 6	LTC..	KVCLQTFFESTGVILLEHLKS.	
PLAG1 Finger 7	HQCEH..	HAGKSSGGVKEKK	
	FLC..	QYCAQRFGRKDHLTRMVKSHNQELL	
PLAG1 Consensus	..C....C....F.....L..H....H.....		
C2H2 Consensus	FxCxxxxCxXXFxxxxxxLxxHxxxxxHxxxxx	Y	

FIG. 4B

09/242772

WO 98/07748

PCT/EP97/04759

9 / 19

Normal				CG368			
B	E	H	P	B	E	H	P

FIG. 5

SUBSTITUTE SHEET (RULE 26)

09/242772

PCT/EP97/04759

WO 98/07748

10/19

CG368
CG588
CG644
CG682.
CG752
CG753
T9587
CG580

1 2 3 4 5 6 7 8

↑↑
A B

1 2 3 4 5 6 7 8

↑↑
C D

FIG. 6A

11/19

FIG. 6B

09/242772

PCT/EP97/04759

WO 98/07748

12/19

FIG. 7

13/19

FIG. 8A**PLAG2 cDNA and Open Reading Frame (underlined)**

AGGCTCAAGATAAGACCTTAAGATAACTTTGTGTCTCCCTTCTAGTATTGCATAGGAATCAGAGGA
 GTTAATCTTGTCTCTTCACAGGTTGAATCTCAGACAACACTCTGGGAGGACTCGGTCCCTGCCAGCA
 GATGTTCCCTGTCACTCAGTAGGCATATGGCTACCCATTCTCCCAGAAATCTCACCGAGCTCAGTGAGA
 AGACGTTCAACCGGAAAGACCAACTCCAGACCCACGACCCAAACAAATGGCCTTGGGTGTCAGCTGTG
 AGGAGTGTGGAAAGAAGTACAACCATGCTGGCTATAAGGCCACCTGGCCCTCCATGGGGCCAGGAGTGGG
 ACCTCACCTGTGGGTCTGTGCCCTAGGGCTAGGGACCCACTGGGAGGCTAGGGACCCACTCAAGGCCATGGG
 AAGAGAAAGCCCCCTAGGGAAACCAAGGAAAGACCAAGGACCCAGTGGGACCCACTGTGAAGATGCTTCAACCCGA
 AGGATGTGGCAACGCCACCTGGTGTCCACAGGATGCAAGGACTTCCGTGCCAGTCTGTGCCAGAGATTC
 GGCGCAAGGTTCACTTCACCCGGCATACCAAAGAACCCACTCACAGGAGCTGATGAAAGAGAGCTTGCAGACCC
 GAGACCTTCAGGACACTCCACCCATCTGCCCTCATTCACCTCATACTGCCACTTGCAGGCTGCTGCCCTGCCCT
 TAGGAGCTTCTGCCCCAGAACGGGCTTGGCAAGTAGGTCTGGCCAGCTGAGGTCCATAGGCCCTCAGTCCCCAG
 AACAAAGCCGCCAGCCCATGCAAGGCCAGACTCCCTGGCTCCACCCCTGGTATCCCTGGCTCT
 CTCGGCCACCCCTTCCCAATCACAAAGTAAACACCACCTTCACTCTCACCCATCTGCCCTGCCCT
 AAGCAGATACTTAAAGGTTTGGCAATATCAAGTTGGCTTCAAGGACTCTGGCTCTGCCAGGCTTCACTCTCAA
 AGCTCAACCCAGGTTGATCTGGCTAAGGGAATGCTGGTAAGATAACCTGGCCAAGGGCTGCGCTGAGATC
 CTGTGAACCTTAACAAATACCTGCCCTCTGGACCTGTCCCCCTGTGGCTTCTGGCACCTGGCCCTCTGGCTA
 CCCAAATACTTGGGAATAGGCACTCTGGCCATGGCCACTTGGCTCTGCCATCTGCCCTCATITCCATGGCCTGGGA
 GGCAGGCGAGGCCAGAACCCCCAACCTTGGCAATGGCCATCTGCCATCTGCCCTGGCCAGCTGCCCTGCCATGCC
 ATGTGTTCTCAAGCTGGCACTGGCTCTGCCATCTGCCCTCATITCCATGGCCTGGGAATCTTGGCTTCAAGGCT
 TGTTATTTTCCGTATTCTGGTAAGAAGCTTAAATGTCAGTTAACATGGTACAAATGGAAAGATTGGAA
 AACGAGACTGGACTATGGCTTATTCACTGAGTGTGTTCACTGCTTGTACCAATTAAATGAACGGCTGTTCTGTA
 GTGCAATCTGTCTGAGTGTGTTCACTGCTTGTACCAATTAAATGAACGGCTGTTCTGTAATCCAAACTGCA
 ATTGTCAACCAACATCCAAATGACGGCTGCTATATAAAGTGTGTTGTCCATATGGAAATTAAATGTA
 CCATGGATCCATAATGTTAAACTAAATCACTTATGGCTTAAGGAAAGACTAACTGGCTTAACTGAGTGTGTT
 TTCTCCTCAATCTGGAGAATTCAAAATAACCTTATGTTCTACCTCTCAGGGGTTGGATCTAGTTAGT
 TCTTTTCAGGGATTCTTCTACCTCTCAGGGGTTGGATCTAGTTAGTACTATTACCAATAGCCAACTGTAGTT
 CATATACATTCTTGTGGAGCAATAGGTTAACAGGGAAATTAACTGAGCTTCACTTAACTGAAATTAAATATATA
 ACAAGATGCTGCAATGTGAGTTACCTCATTATCTGGCTTAAGGAAATAATTCACCTGGGAATTAAAGCTT
 AGAAAATTTTCAACAGGGAAATTAACTGTTAACAGGGAAATTAACTGAGCTTAAACTGAGTCTTAAAGCTT
 CTGACTTAAATATTGATTATTTTCAACAGGGAAATTAACTGAGCTTAAACTGAGTCTTAAAGCTTAAAGCTT
 TTGTTTGTAAATCACCAATAATAAGTGCATTGTAAATTCACTAGTCATTATAGCTTTTAAAGAAGATTAC
 GTTTACAAATGTAACCTAATCTGTGAATTGGTATCTTAAATGAGTTCTTAAAGATGTAAACATATCTTAC
 TTTAAAGCTCCATTGTCTTATGTTTAGAGGCTTTCCTGGCTAAACATATCTTACATAAACTTTCAA
 TCTTGGCAATT

PLAG2_protein

MATHSPQKSHQCAHCEKTFRNPKDHHLKNHLQTHDPNPKMAFGCEE~~CGKKYNTMLGYKRHLALHAASSGDLTCGVCAL~~
ELGSTEVLLDHLKAHAEEKPPSGTKEKKHQCDHCERCFYTRKDVRRLHVVTGCKDFLCQFCAQRFGRKVHLTRH
TKKTHSQELEMKESLQTGDLLSFTFHTISPSFQLKAALALPPFPLGASAONGGLASSLPAEVHSLTLSPPEQAAQPMQP
LPESLASLHPSVSPGSVSPPLPNHKYNTTTSYSPLASLPLKADTKGFCNIISLFEDLPLQEPLQHRSCLGQQQQEPLA
KGNAGKVNLPKELPADAVNLTIPASLDLSPLLGFWQLPPPATQNTFGNSTLAILGPGESLPHRLSCLGQQQQEPLA
AMGTVSLGQLPLPPIP HVFSAGTGSAILPHFHAFR.

FIG. 8B

15/19

FIG. 9Nucleotide sequence of cDNA of CTNNB1 (β -catenin)

1 aaggcctctcg gtctgtggca gcagcgttgg cccggcccg ggaggggaga gcgaggggag
 61 gcgggagacgg aggaagggtct gaggagcagg tcagtcggc caccgcagg
 121 cgaggacggt cggactcccg cggcgggagg agccctttc cctgagggtt ttgaagtat
 181 accataacaac tggtttgaaa atccaggctg gacaatggct actaaagctg atttgatgg
 241 gttggacatg gccatggAAC cagacagAAA agcggtttt agtactggc agcaacagt
 301 ttacctggac tctggaatcc attctgtgc cactaccaca gttttttctc tgatgtttaa
 361 aggcaatccct gaggaaggagg atgtggatac ctcccAAAGTC ctgtatgtatg gggAACAGGG
 421 attttctcag tccttcactc aagaacaAGT agctgtatatt gatggacagt atgcaatgac
 481 tcgagctcag aggttacgg ctgctatgtt ccctgagaca tttagatggg gcatgttgg
 541 cccatctaca cagtttgcg ctgctcatcc cactaatgtc cagcggttgg ctgaacccatc

 601 acagatgtcg aaacatgcg ttgttaaactt gattaactat caagatgtcg cagaacttgtc
 661 cacacgtgca atccctgaaac tgacaaaact gctaataatgc gaggaccagg tggtggttaa
 721 taaggctgca gttatggtcc atcaagtttc atcaagtttc taaaaggaa gcttccaggac acgttatcat
 781 gcggttctcc ttagatgggtt ctgtctttttt acgttacatgt cagaatacaa atgtatgtaga
 841 aacagctcgt tgtaccgcgt ggaccttgca taaccctttcc catcatcggtt agggcttact
 901 ggccatcttt aagtctggag gcattctgtc cctgggtgaaa atgctttgggtt caccagtgg
 961 ttctgtgttg ttcatgcctt ttacaactt ccacaaccc ttattacatc aagaaggagg
 1021 taaaatggca gtgcgttttag ttacgcacaga ctgccttcaa atttttagctt atggcaacca
 1081 aaatgttaaa ttcttgctt
 1141 agaaaggcaag ctcatcatac tggcttagtgg tgacccccaa gcttttagtaa atataatgag

 1201 gactataact tacaaaaaac tactgtggac cacaaggaga gtgtctgaagg tgctatctgt
 1261 ctgctcttag aataaggccgg ctatgttaga agtctgttga atgcaagctt taggacttca
 1321 cctgacagat ccaagtcac gttttttca gaactgtttt tggactctca ggaatcttc
 1381 agatgtctcg actaaacagg aagggtatggaa agtctccctt gggactcttgg
 1441 gggttcagat gatataaatg tggtcacctg tgcaatgttca attctttcttta accttcaacttgc
 1501 caataattat aagaacaaga tgatggctgt ccaatgtgggt ggtatagagg ctcttgc
 1561 tactgtccctt cgggctgggt acagggaaaga catcaactgag cctgcccattt gtgtcttcg
 1621 tcaatctgacc agccgacacc aagaaggaga gatggcccaag aatgcgttcc
 1681 tggactacca gttgtgttta agcttcttaca ccaccatcc cactggccctc tgataaaggc
 1741 tactgttggaa ttgtatcgaat atcttgcctt ttgtcccgca aatcatgcac ctttgcgtga

16/19

FIG. 9 (continued)

1801 gcagggtgcc attccacgac tagttcaagtt gcttgcgt gcacatcagg ataccqaqcg
 1861 ccgtacgtcc atgggtggaa cacagcagca attttgtggag ggggtccgca tggaaagaaat
 1921 agtttaagggt tgtacccggg cccttcacat ctagctgg gatgttcaca accgaatttgt
 1981 tatcagagga ctaaatacca ttccatgtt ttgcagctg ctatttctc ccattgaaaa
 2041 catccaaaga gtagtgtcgag ggttccctcg tgaacttgtt cggacaagg aagctgcaga
 2101 agcttatgtaa gctgaggagg ccacagtcc tctgacagag ttacttcaat ctaggaatga
 2161 agggtgtggg acatatgcag tgctgtttt gtccgaaatg tctgaggaca agccacaaga
 2221 ttacaagaaa cggctttag ctagtgac cagctctc ttcaagaacag agccaatggc
 2281 ttggaatgtgg actgtctgtat ttggacttga tattgggcc cagggagaac cccttggata
 2341 tcgcccaggat gatccatgtat atcggttcttt tcactctgtt ggatatggcc aggatgcctt
 2401 gggtatggac cccatgtatgg aacatggat ggttggccac caccctgtt ctgactatcc
 2461 agttgtatgg ctgcccggatc tggggcatgc ccaggaccc tcatggatggc tgccctccagg
 2521 tgacagcaat cagctggccct ggtttgatc tgacctgtaa atcattcctt agctgtattg
 2581 tctgaacttgc cattgtgatt ggccctgtaga gttgctgagaa ggtggctgg
 2641 tatctcagaa agtgccctgac acactaaacca agctgagtt cctatggaa caattgaagt
 2701 aaacctttttt ttctggccct ttctggcga ggagtaacaa tacaaatggaa ttttggagt
 2761 gactcaagaa gtgaagaatg cacaagaatg gatcacaaga tggaaattttag caaaccctaa

 2821 ccttgcttgtt taaaattttt ttttaagaat atctgttaatg gtactgtactt
 2881 tgcttgctt gaagtagctc ttttttttt tttttttt tttttttt gtaactgtt ctaattttta
 2941 tttaaagtctc tcgttagtgtt aagttatagt gaaatactgtt acagcaattt ctaattttta

 3001 agaatttgagt aatgggttag aacacttaat aattcataat cactctaatt aattgttaatc
 3061 tgaataaaatgt gtaacaatgt tgtagccctt ttgtataaaa tagacaataa gaaaatggcc
 3121 caatttagttt ccttttttaat atgcttaaaa taagcagggt gatctatttc atgttttga
 3181 tcaaaaacta ttgggatat gtatgggttag ggttaaatcag taagagggtt tatttggaaac
 3241 ctggttttgg acagtttacc agttgcctt tatttgcctt tttttttttt tttttttttt tttttttttt
 3301 acgatgcttc aagagaaaat gcggttataaa aaaatggtttca agaaattaaac ttttaattca
 3361 tt

FIG. 10

17/19

STSs used to generate the 300 kb cosmid contig mapping at chromosome 8q12 and encompassing PLAG1

STS CH129

```
GAATTCTAAAACCATTATAAATCATACTGAATCCCAGAACAAATATTTAAACAACCTAA
AAAAAAGAACAAAATAAGCAAAACATTAAAGAGTGTAGATTCTTGAAATTAAAGG
ACATACTTACCCCTGTAGT
```

STS CH280

```
GAATTCTGCACCGGTTTTCTTATCAGTGTGGCTGATGTTCCATTAACACTGTGGTGTAA
TTGAGTATAGTCACTGACTGATTCTAGATATTTCAGAGGGTCAAGACTTTCTAAGACCT
TTATATGTGGTTGAATTCTTGTCTGGTTCACAGAAGGTATATTAGCAAAGCATTGG
TGTTGAAGCTTGGTCTGTGATCTAGT
```

STS CH33

```
GAATTCTTTTATTTGACAAGCACATGAAGCCTTATCAGACGGAGGCCAATCCTTGGC
TGGGTTTATAAGCAGGTAGCGCTAGACCTCCCATTCTACATAAGCTGATGGCACGGTAA
TAGCTGGGGTTTCTCACAAAGTCAAAGACAAATTGTCTGTTCAAGCGTGTGAAACAGTT
WAAWACGTTGAGGTCTCTCTGTTCATAGGCCATCTGGCTCAGACATTCTACAGMCA
```

STS EM156

```
TCTGAGCAACAAGAGCGAAACTCCATCTAAAATATATATATAGGTAAATTGTTGTCAT
TAATATTAATGTAGTAGCAGCAGCACAGTCATGGTAGCAATATTGCTCTATTGGGAGGCA
ACTTATAATTATTAACTGTGGAATATCTTGGAAAATGTTTNGCAGAMGTTATGTTCCA
TTCCTGACTGGMGCTCATTATAAATACCCATCTCTGAATAGCGCAAGGACTTTGAAA
AGTGTCTGAGTAAAC
```

STS EM195

```
ACAATCAATTAGAAAGTAATCATTACCCCCAAACTGAAACCTGTACCTGTTAGCA
CTCACTCCCCTTTCATTAACTTTTATTATTTTTGAGAGAGACTTGCTCTATC
GCCCNNGCNVCAGTCAGTGGCACAACTCAACTGCAACCTCTGCCGCCAGGGTCAA
GTGATTCTTGTGCCTCAGAGTCCAAAGTACCTGGATTACAGGCATAAGCCACACGCCCTGG
CTAAATTGTTGATTTCAGTAGTGAAGGGTTTCACCATGTTGCCAGGCTGTCTCAAACCTG
CTGACCTCAGGTAAATCCACCCCTCCTCAGCCTCCCAGAGTTCTGGGATTACAGGCGTGACACC
GTGCCTGGCTCATTTATTAGAGATCTCACTCKWTGCCCAGGCTTCAGTGC
ATTGGCGTCATGATGGCTCACTGCAGGCTTCAGCTGGCTCAAAGCATCCTCCGCCTCA
```

STS EM208

```
CTAGGCGACAGAGCAAGACTCTGTCTCAARGAAAAAAVRAAAAAAATTACCAAAAC
TGACTACAGAAAAAVGVARGGTGAATAGCCTTACATTGGVAAATAATTAAATTAAAT
TAAAGATATTAAATAAAAAVTACTCTAGGCCATAAGGCTTCACAGGTTAATTGTATTAA
TATTTAAGGAAAAATAATACCAATCTTATTCAAGTCTTCAAGAAAATAGAGGCATCCA
TTTTCTAACCTTAAAGAAATAGCATTCTAACATATCAAAGCAACAAAGGMCAATTGC
AAAGAAGAAGGGAAAGAAGGAAGAGGAGAGGGAGAAAGGAGCAGGAGATGGAGAAGA
AGGAAGCCAGGTACAGTGAATATTCTCATGAACATAAACACAATTAAAGTATTAM
CAGGCTGGCTTGGCTCTCACCCGTAAATCCCAGCMCTTGGAAAGGCCAAGGCAGGGTGG
GHCACAAGGTCAAGGGTTCGAG
```

18/19

FIG. 10 (continued)

STS EM216

TACTRACTGCTGTGCAGTTBTCCTGCAGTCAGTCCAGAGGTCAATTCTAACGTTGCACTAT
 GGGKCTATTTAATAGGTTCTAAAGAACAAACATATCTCTTAbAGTTACTCAGAGGGTAC
 ACAATGATGATGTCACACAATTAAATTACCTATTAAAGACTGAAATCCAGCAATGCATAGKGTG
 TGGAACCTTACGCACATCCAGAAAAAGTTCTAGCACAAATTGTTTHGTMTYATATATTCAG
 AAGCCATAGAAACACTATTAAAGCCCTCCATACTTAGGGATGCAAAaTCAATAT

STS EM317

GACCAACAAAGGCACACAAAGATTGGTTGCTTCTGAAGAATCTAAAATGGCATTGGGTAT
 AGGAGTTGGGAAGCAAGTTGATAGGCACCTACACTTAAGATAATTGTCATTATACAAA
 TAATTTTAAAGTTAACGCCCTTCTGACATGACACGTCCATGGTCCTTCACCCCTTYttK
 KTCTCCTSCAGAGCTCCAGTCTGCCYYTTTKSCTCTGAGCTCCAAAAMCAGTGAWTCCCC
 TGAAGTTACCTAGMCCCACATACAGTTGTGACTCCCTAWMcGGGGTACCyTCCCATGY
 CTGGCTAATAyTGABTYTTGTDACCCTGGCTTCTGTGTTACTACATTGTTARTGGAAT
 TWATwAArgGGGAAGCCTATCAA

STS EM416

GAGCAACTGAAcCDNAGATTGGGTGAGGTAAAGATGTGGGCTGCACAGGTGAGGCTGGAGAGGT
 GGGGAGTGCCTCCAGTCGGGGAGAAGAAAGAAAAGGGCAGACTAGGGTAGAAATGCTTATW
 ACTcCTGTGACTGGAGCTGATGGTGTCTTAAGGAAAGTGGTGGGAAGGGAGGVCTGCAGAAA
 GGCAAGGCTGGAGTCGACTGAAGGCTGGAGAGGCCACTGCTTAAACAAGTGTAMCTGGAGATG
 GAAGGGGCTGCAGGACAGGTCACTCAGCCAGTKGTGTGGARGCAATCTCACCC

STS EM443

TTGATATTGTTCTAACTCCACATTAACATTGACAAATACTCTAAATTGAGCTACCATCT
 GTTACGTAGCTAGCAGGTACCCCTAACAGCAATGGGTAGCTTTGAGTAGCGTTCAACCAT
 GTTACCTCGAGTACGGTGTGGTGAGGCCAGACGCAGATGGAGAGAAAGAAACAGAATCGAGC
 ATTTCATTTGTTGCTCACAGTCCCAGGGCAAACACAGCACAGCCTACAGGACCATG
 AAGGGGAGCACTGGGTCACTCATGAAGCAGGGAGGTGGGCCAGTGGTGGGGgCCTTTAT
 GTGTTTCCTCAGGAAGGAATGGCAAGGCAGGGTAAGCATGTTAGGACTGGTTAATTGAA
 ATAACCTCAGGGGGgCTCTAGGGCTGgRGGCTGCCCTGGTTCTGGTACCYgGSCCTG

STS EM46

ATATCAATCTGGGTCTATGTATGTTTGCTTTCCCCAGTGTCCAGGCATGATGCTAAG
 GATATAGGGATGATGAAATATATGCTGCTGAATATGGGAATAAGAATTATTTATGATCA
 GAHTTTTTTTTTGAGATGGAGTCTCGCTCTGTCACNMAGGCTVGTGTGCAGTGGCATGAT
 CTCAGCTCACWGCAACCTCTGVCTCCTGGTTCAAGTGTATT

STS EM47

GTAGAGACACACTAGGCATGCCACAGACCAAGTGCAGAATGAACAAATTTGTTACATGTGTAG
 TTCTTATGGTTACAAAACCTCCCAGCCATTATCTTCTTCAGCCTTATAAAAGACAGAG
 CATATTTATTATCCTCATTACCTWHTCTAGTAAGGCATTTTCTTTCTTACTAGA
 GATATAAGGCTTAGGAAAAAGTGAATACTACGATAAAATGAATACTAGGAAAAGACATCACA
 ATCACAAATTATTAATATCAGAAAACAGDTTTAAGAATAAAATWTTCAAWAARgAAA

19/19

FIG. 10 (continued)

STS END2

TAATTTATCACTACCGAATTCTGTGCAGTGAGATCAAAGAGCTGTGTATGCCATAATGTGA
TTTACAGCCATTTGTAAAAACTGTAAAATACCTTAATATTCAATTGGCTTAAGGTACAT
TGAGGACTCTGGTTGAAAATTACAGAGTGGTGAAGATTC

Known STSs

PENK

D8S285

MOS

STSs part of PLAG1

EM265

KK64

KK63/EM209

KK55/CH283

EM224

EM387