5 | First Computations

5.1 Proposition. If $X = \{*\}$ is a space consisting of only one point then $\pi_1(X)$ is the trivial group.

5.2 Proposition. For any $n \ge 1$ the group $\pi_1(\mathbb{R}^n)$ is trivial.

5.3 Proposition. For any $n \ge 1$ the group $\pi_1(D^n)$ is trivial.

5.5 Definition. A space X is <i>simply connected</i> if it is path connected and $\pi_1(X)$ is trivial	5.5	Definition.	A spac	e X	is	simplu	connected	if	it is	path	connected	and	π_1	(X)	l is	trivial
---	-----	-------------	--------	-----	----	--------	-----------	----	-------	------	-----------	-----	---------	-----	------	---------

5.6 Proposition. A space X is simply connected if and only if X is path connected and for any two paths ω , τ : $[0,1] \to X$ satisfying $\omega(0) = \tau(0)$ and $\omega(1) = \tau(1)$ we have $\omega \simeq \tau$.

Proof.	ercise.	

Goal:

5.7 Theorem. $\pi_1(S^1) \cong \mathbb{Z}$.

5.8 Definition. The *universal covering* of S^1 is the map $p: \mathbb{R}^1 \to S^1$ given by $p(s) = (\cos 2\pi s, \sin 2\pi s)$.

5.10 Definition. Let ω be a path in S^1 . We say that a path $\widetilde{\omega}$ in \mathbb{R} is a *lift* of ω if $p \circ \widetilde{\omega} = \omega$.

5.11 Proposition. Let $p: \mathbb{R}^1 \to S^1$ be the universal covering of S^1 , let $x_0 \in S^1$, and let $y_0 \in \mathbb{R}^1$ be a point such that $p(y_0) = x_0$.

1) For any path ω : $[0,1] \to S^1$ such that $\omega(0) = x_0$ there exists a lift $\widetilde{\omega}$: $[0,1] \to \mathbb{R}^1$ satisfying $\widetilde{\omega}(0) = y_0$. Moreover, such lift is unique.

2) Let ω , τ : $[0,1] \to S^1$ be paths such that $\omega(0) = \tau(0) = x_0$, $\omega(1) = \tau(1)$ and $\omega \simeq \tau$. If $\widetilde{\omega}$, $\widetilde{\tau}$ are lifts of ω , τ , respectively, such that $\widetilde{\omega}(0) = \widetilde{\tau}(0) = y_0$ then $\widetilde{\omega}(1) = \widetilde{\tau}(1)$ and $\widetilde{\omega} \simeq \widetilde{\tau}$.

5.12 Definition. Let $x_0 \in S^1$ and $y_0 \in \mathbb{R}$ be points such that $p(y_0) = x_0$. Let ω be a loop in S^1 based at x_0 and let $\widetilde{\omega}$ be the unique lift of ω such that $\widetilde{\omega}(0) = y_0$. The *degree* of ω is the integer $\deg(\omega)$ such that $\widetilde{\omega}(1) = y_0 + \deg(\omega)$.