Lineáris Algebra I-II. jegyzet Vághy Mihály

Tartalomjegyzék

1.	Vek	toralgebra	5
	1.1.	Vektor	5
	1.2.	Vektor megadása koordinátákkal	5
			5
	1.4.	Vektorok összeadása	5
			5
			5
			6
			6
			6
			6
			7
			8
			8
			8
			8
		$lackbox{.}{}$	9
			9
			9
			9
		Vegyes szorzat kiszámítása koordinátákkal	
	1.21.	Sík normálvektoros egyenlete	١0
_	3.54		-
2.			1
		Mátrixok összeadása	
		Mátrixok összeadásának tulajdonságai	
		Mátrixok szorzása	
		Mátrixok szorzásának tulajdonságai	
		Mátrix számszorosa	
		Mátrix számszorosának tulajdonságai	
	2.7.	Mátrix inverze	13
	2.8.	Inverz mátrix tulajdonságai	13
	2.9.	Egyenletrendszer megoldás inverz mátrix segítségével	4
	2.10.	Mátrix transzponáltja	4
	2.11.	Transzponált mátrix tulajdonságai	4
	2.12.	Speciális mátrixok	15
	2.13.	Tétel	16
	2.14.	Tétel	16
	2.15.	Tétel	16
		Tétel	
		Mátrix sorrangja	
		Mátrix oszloprangja	
		2 00	17
			L 7
			L 7
	2.21.		- 1
3.	Vek	torterek 1	8
			18
	3.2.		18
			18
	3.4.	·	L9
	3.5.		L9
			гэ [9
	J. 1.	Tétel	ıΤ

	3.8. Tétel	 22
	3.9. Generátorrendszer	 22
	3.10. Kicserélési tétel	 22
	3.11. Bázis	
	3.12. Tétel	
	3.13. Dimenzió	
	ono Bilindado	
4.	Determinánsok	2 4
	4.1. Permutáció inverziószáma	 24
	4.2. Permutáció paritása	
	4.3. Tétel	
	4.4. Determináns	
	4.5. Előjeles aldetermináns	
	4.6. Kifejtési tétel	
	4.7. Ferde kifejtés	
	4.8. Determináns tulajdonságai	 26
5.	Homogén lineáris leképezések	28
٠.	5.1. Homogén lineáris leképezések	
	5.2. Tétel	
	5.3. Tétel	
	5.4. Homogén lineáris leképezés mátrixa	
	5.5. Tétel	
	5.6. Magtér	
	5.7. Képtér	
	5.8. Tétel	
	5.9. Tétel	
	5.10. Dimenzió tétel	
	5.11. Sajátérték, sajátvektor	 30
	5.12. Tétel	 31
	5.13. Tétel	 31
	5.14. Karakterisztikus polinom, karakterisztikus egyenlet	 31
	5.15. Sajátaltér	
	5.16. Geometriai multiplicitás	
	5.17. Tétel	
	5.18. Izomorfia	
	5.19. Izomorfia tulajdonságai	
	5.20. Tétel	33
	5.21. Tétel	
	5.21. Tetel	 90
6.	Bázistranszformáció	34
•	6.1. Áttérés másik bázisra	34
	6.2. Homogén lineáris leképezés mátrixa bázisváltás esetén	$\frac{35}{35}$
	6.3. Tétel	$\frac{35}{35}$
	6.4. Mátrixok hasonlósága	36
	· · · · · · · · · · · · · · · · · · ·	36
	6.6. Tétel	36
	6.7. Diagonizálhatóság	36
	6.8. Tétel	36
	6.9. Tétel	37
	6.10. Tétel	37
	6.11. Bilineáris függvény	37
	6.12. Bilineáris függvény mátrixa	37
	6.13. Tétel	 37
	6.14. Szimmetrikus bilineáris függvény	 38
	6.15. Tétel	 38

	6.16. Kvadratikus alak	38
	6.17. Tétel	38
	6.18. Ortogonális diagonalizálás	38
	6.19. Spektrál tétel	38
	6.20. Főtengely	38
	6.21. Főtengely transzformáció	39
	6.22. Kvadratikus alak definitsége	39
	6.23. Szimmetrikus mátrix definitsége	39
7.	Kúpszeletek	40
	7.1. Parabola	40
	7.2. Parabola középponti egyenlete	40
	7.3. Ellipszis	
	7.4. Ellipszis középponti egyenlete	40
	7.5. Hiperbola	
	7.6. Hiperbola középponti egyenlete	
8.	Komplex számok	41
	8.1. Algebrai alak	41
	8.2. Műveletek algebrai alakban	41
	8.3. Trigonometrikus alak	
	8.4. Átváltás algebrai és trigonometrikus alak között	
	8.5. Műveletek trigonometrikus alakban	
	8.6. Exponenciális alak	43
	8.7. Műveletek exponenciális alakban	43
	8.8. Egységgyök	
	8.9. Tétel	43
	8.10. Primitív egységgyök	43
	8.11. Algebra alaptétele	43

1. Vektoralgebra

1.1. Vektor

A vektor egy irányított szakasz, melyet a hossza és az iránya jellemez.

1.2. Vektor megadása koordinátákkal

Adott bázisú vektortérben megadhatunk egy vektort a bázisok lineáris kombinációjaként. Ekkor a bázisvektorok együtthatói lesznek a vektor koordinátái.

Tehát ha

$$\mathbf{a} = \sum_{k=1}^{n} \alpha_k \cdot \mathbf{b_k}$$

akkor

$$\mathbf{a} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}.$$

Adott bázis mellett a koordináták egyértelműek.

1.3. Vektorok összeadása síkban

Vektorok összeadása a síkban a paralelogramma módszerrel, vagy a háromszög módszerrel történik.

1.4. Vektorok összeadása

Nagyobb dimenziókban koordinátákkal adjuk össze a vektorokat, azaz

$$\mathbf{a} + \mathbf{b} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} + \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix} = \begin{pmatrix} \alpha_1 + \beta_1 \\ \alpha_2 + \beta_2 \\ \vdots \\ \alpha_n + \beta_n \end{pmatrix}.$$

1.5. Tétel

A vektorok Abel-csoportot alkotnak az összeadásra nézve.

1.6. Vektorok felbontása síkban

Adott két nem párhuzamos vektor a síkon, ${\bf a}$ és ${\bf b}$. Ekkor bármely ${\bf c}$ síkbeli vektor egyértelműen előáll a két vektor lineáris kombinációjaként.

Bizonyítás

Húzzunk **c** kezdőpontján át **a**-val párhuzamos egyenest, illetve a végpontján át **b**-vel párhuzamos egyenest. A két egyenes metszeni fogja egymást az M pontban. Ekkor $\exists \alpha, \beta \in \mathbb{R}$, melyre $\overrightarrow{AM} = \alpha \mathbf{a}$, illetve $\overrightarrow{MB} = \beta \mathbf{b}$. Ekkor

$$\mathbf{c} = \overrightarrow{AM} + \overrightarrow{MB} = \alpha \mathbf{a} + \beta \mathbf{b}.$$

Tehát tudjuk, hogy valóban minden vektor előáll a lineáris kombinációjukként.

Az egyértelműséget indirekt módon tudjuk bizonyítani. Legyen ugyanis

$$\mathbf{c} = \alpha' \mathbf{a} + \beta' \mathbf{b} = \alpha'' \mathbf{a} + \beta'' \mathbf{b} \implies \mathbf{a}(\alpha' - \alpha'') + \mathbf{b}(\beta' - \beta'') = \mathbf{0}.$$

Ebből azonnal kapjuk, hogy $\alpha' = \alpha''$, illetve $\beta' = \beta''$.

1.7. Vektorok felbontása térben

Adott három nem egysíkú, páronként nem párhuzamos vektor a térben, \mathbf{a}, \mathbf{b} és \mathbf{c} . Ekkor bármely \mathbf{d} térbeli vektor egyértelműen előáll a három vektor lineáris kombinációjaként.

Bizonyítás

Legyen S az \mathbf{a} és \mathbf{b} vektorokat tartalmazó sík. Ekkor rajzoljunk \mathbf{d} talpontján, T-n egy S síkkal párhuzamos S' síkot. Rajzoljunk továbbá \mathbf{d} végpontjában egy \mathbf{c} -vel párhuzamos egyenest, ami messe az S' síkot D-ben. Legyen továbbá $\mathbf{d}' = \overrightarrow{TD}$. Ekkor valamilyen $\mathbf{c}' = \gamma \mathbf{c}$ vektorra

$$\mathbf{d} = \mathbf{d}' + \mathbf{c}' = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c}$$

hiszen \mathbf{d}' felírható \mathbf{a} és \mathbf{b} lineáris kombinációjaként.

Az egyértelműséget indirekt módon tudjuk bizonyítani. Legyen ugyanis

$$\mathbf{d} = \alpha' \mathbf{a} + \beta' \mathbf{b} + \gamma' \mathbf{c} = \alpha'' \mathbf{a} + \beta'' \mathbf{b} + \gamma'' \mathbf{c} \implies \mathbf{a}(\alpha' - \alpha'') + \mathbf{b}(\beta' - \beta'') + \mathbf{c}(\gamma' - \gamma'') = \mathbf{0}.$$

Ebből azonnal kapjuk, hogy $\alpha' = \alpha'', \beta' = \beta''$, illetve $\gamma' = \gamma''$.

1.8. Skaláris szorzat

Két vektor skaláris szorzata

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| \cdot |\mathbf{b}| \cdot \cos \alpha$$

ahol α a két vektor által közrezárt szög.

1.9. Skaláris szorzat geometriai jelentése

Legyen \mathbf{a} , \mathbf{e} két vektor, ahol \mathbf{e} egységvektor. Ekkor $\mathbf{a} \cdot \mathbf{e}$ az \mathbf{a} vektor \mathbf{e} -re vett előjeles vetületének hosszát adja meg.

Bizonyítás

Legyen O a két vektor közös kezdőpontja, A az **a** vektor végpontja, A' pedig A vetülete **e**-re. Ekkor az OAA' derékszögű háromszögben $\cos \alpha = \frac{OA'}{OA}$, ahol $OA = |\mathbf{a}|$. Ebből azt kapjuk, hogy

$$\cos \alpha \cdot OA = \cos \alpha \cdot |\mathbf{a}| = OA'.$$

1.10. Skaláris szorzat kiszámítása koordinátákkal

Nagyobb dimenziókban ortonormált bázisban

$$\mathbf{a} \cdot \mathbf{b} = \sum_{k=1}^{n} a_k \cdot b_k$$

ahol az a_k és b_k számok a vektorok koordinátái.

Bizonyítás

Legyen a bázis $[\mathbf{i}_k]$, azaz

$$\mathbf{a} = \sum_{k=1}^{n} a_k \mathbf{i_k}$$
 $\mathbf{b} = \sum_{k=1}^{n} b_k \mathbf{i_k}$.

Ekkor

$$\mathbf{a} \cdot \mathbf{b} = \left(\sum_{k=1}^{n} a_k \mathbf{i_k}\right) \left(\sum_{k=1}^{n} b_k \mathbf{i_k}\right).$$

Mivel

 $\mathbf{i_j} \cdot \mathbf{i_k} = \begin{cases} 1, & \text{ha } j = k \\ 0, & \text{ha } j \neq k \end{cases}$

így

$$\mathbf{a} \cdot \mathbf{b} = \left(\sum_{k=1}^{n} a_k \mathbf{i_k}\right) \left(\sum_{k=1}^{n} b_k \mathbf{i_k}\right) = \sum_{k=1}^{n} a_k \cdot b_k.$$

 $Megjegyz\acute{e}s$: Nagyobb dimenziókban szoktuk a skaláris szorzat segítségével definiálni két vektor szögét. Legyen ugyanis $(\mathbf{a},\mathbf{b}) \lhd = \delta$, ekkor

 $\delta := \arccos{\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| \cdot |\mathbf{b}|}\right)}.$

1.11. A skalárszorzat tulajdonságai

1. Kommutatív, azaz

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$$

- 2. Nem asszociatív.
- 3. Disztributív, azaz

$$\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$$

és

$$\lambda(\mathbf{a} \cdot \mathbf{b}) = (\lambda \mathbf{a}) \cdot \mathbf{b} = \mathbf{a} \cdot (\lambda \mathbf{b}).$$

4.

$$\mathbf{a} \cdot \mathbf{b} = \begin{cases} 0, & \text{ha } \alpha = \frac{\pi}{2} \\ > 0, & \text{ha } \alpha \text{ hegyessz\"{o}g} \\ < 0, & \text{ha } \alpha \text{ tompasz\"{o}g} \end{cases}$$

5. **a** irányított vetületvektora **b**-re

$$\mathbf{a_b} = \frac{(\mathbf{a} \cdot \mathbf{b}) \cdot \mathbf{b}}{|\mathbf{b}|^2}.$$

Bizonyítás

1.

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| \cdot |\mathbf{b}| \cdot \cos \alpha = |\mathbf{b}| \cdot |\mathbf{a}| \cdot \cos \alpha = \mathbf{b} \cdot \mathbf{a}$$

2. Látható, hogy

$$\mathbf{a} \cdot (\mathbf{b} \cdot \mathbf{c}) = (\mathbf{a} \cdot \mathbf{b}) \cdot \mathbf{c}$$

esetén a baloldal egy \mathbf{a} -val párhuzamos vektor, a jobboldal pedig egy \mathbf{c} -vel párhuzamos vektor. Így a speciális esetektől eltekintve a két vektor nyilván nem egyezik.

- 3. A geometriai jelentésből triviális.
- 4. A definícióból triviális.
- 5. A geometriai jelentésből triviális.

1.12. Tétel

Két vektor skaláris szorzata akkor és csak akkor nulla, ha merőlegesek egymásra.

Bizonyítás

Tegyük fel először, hogy a két vektor merőleges. Legyen a két vektor a és b. Ekkor

$$\mathbf{ab} = |\mathbf{a}||\mathbf{b}|\cos\frac{\pi}{2} = 0.$$

Tegyük fel továbbá, hogy $\mathbf{ab} = |\mathbf{a}||\mathbf{b}|\cos\alpha = 0$. Ekkor vagy $\alpha = \frac{\pi}{2}$, azaz merőlegesek egymásra, vagy pedig valamelyik vektor nullvektor. Azonban nullvektor állása tetszőleges, így merőlegesek a vektorok.

1.13. Vektoriális szorzat

Adott a és b térbeli vektor. Ekkor a vektoriális szorzat

$$\mathbf{a} \times \mathbf{b} = |\mathbf{a}| \cdot |\mathbf{b}| \cdot \sin \alpha \cdot \mathbf{e}$$

ahol α a két vektor által bezárt szög, e merőleges az a és b vektorokra, és a három vektor jobbrendszert alkot.

1.14. Vektoriális szorzat geometriai jelentése

Két vektor vektoriális szorzatának hossza egyenlő az általuk kifeszített paralelogramma előjeles területével.

Bizonyítás

$$|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| \cdot |\mathbf{b}| \cdot \sin \alpha$$

Látható, hogy $|\mathbf{b}| \cdot \sin \alpha$ éppen egyenlő a paralelogramma előjeles magasságával. Így $|\mathbf{a}| \cdot |\mathbf{b}| \cdot \sin \alpha$ valóban egyenlő a paralelogramma területével.

1.15. Vektoriális szorzat kiszámítása koordinátákkal

Legyen $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ és $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$. Ekkor

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}.$$

Bizonyítás

Mivel $\mathbf{i}, \mathbf{j}, \mathbf{k}$ jobbrendszert alkotnak, így

$$\mathbf{i} \times \mathbf{i} = \mathbf{0}$$
 $\mathbf{i} \times \mathbf{j} = \mathbf{k}$ $\mathbf{i} \times \mathbf{k} = -\mathbf{j}$ $\mathbf{j} \times \mathbf{i} = -\mathbf{k}$ $\mathbf{j} \times \mathbf{j} = \mathbf{0}$ $\mathbf{j} \times \mathbf{k} = \mathbf{i}$ $\mathbf{k} \times \mathbf{i} = \mathbf{j}$ $\mathbf{k} \times \mathbf{j} = -\mathbf{i}$ $\mathbf{k} \times \mathbf{k} = \mathbf{0}$.

Ebből

$$\mathbf{a} \times \mathbf{b} = \mathbf{i}(a_2b_3 - a_3b_2) - \mathbf{j}(a_1b_3 - a_3b_1) + \mathbf{k}(a_1b_2 - a_2b_1) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}.$$

1.16. Vektoriális szorzat tulajdonságai

1. Antikommutatív, azaz

$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$$
.

2. Jobbról, és balról is disztributív, azaz

$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$$

és

$$(\mathbf{a} + \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c}.$$

3. Nem asszociatív.

Bizonyítás

- 1. A definícióból triviális.
- 2. A geometriai jelentésből triviális.
- 3. A definícióból triviális.

1.17. Tétel

Két vektor vektoriális szorzata akkor és csak akkor nulla, ha párhuzamosak egymással.

Bizonyítás

Tegyük fel először, hogy a két vektor merőleges. Legyen a két vektor a és b. Ekkor

$$|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin 0 = 0.$$

Tegyük fel továbbá, hogy $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \alpha = 0$. Ekkor vagy $\alpha = 0$, azaz párhuzamosak egymással, vagy pedig valamelyik vektor nullvektor. Azonban nullvektor állása tetszőleges, így párhuzamosak a vektorok.

1.18. Vegyes szorzat

Legyen
$$\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$
 és $\mathbf{c} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$. Ekkor

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = |\mathbf{a}| \cdot |\mathbf{b}| \cdot |\mathbf{c}| \cdot \sin \gamma \cdot \cos \delta$$

ahol
$$(\mathbf{a}, \mathbf{b}) \triangleleft = \gamma$$
 és $(\mathbf{a} \times \mathbf{b}, \mathbf{c}) \triangleleft = \delta$.

1.19. Vegyes szorzat geometriai jelentése

Három vektor vegyes szorzata egyenlő a vektorok által kifeszített paralelepipedon előjeles térfogatával.

Bizonyítás

Tudjuk, hogy két vektor vektoriális szorzata egyenlő az általuk kifeszített paralelogramma előjeles területével. Továbbá

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = |\mathbf{a} \times \mathbf{b}| \cdot |\mathbf{c}| \cdot \cos \delta$$

ahol $|\mathbf{c}| \cdot \cos \delta$ éppen egyenlő lesz a kifeszített paralelepipedon előjeles magasságával. Tehát a szorzat valóban egyenlő lesz az előjeles térfogattal.

1.20. Vegyes szorzat kiszámítása koordinátákkal

Legyen

$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$$
 $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$ $\mathbf{c} = c_1 \mathbf{i} + c_2 \mathbf{j} + c_3 \mathbf{k}$.

Ekkor

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = \begin{vmatrix} c_1 & c_2 & c_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}.$$

Bizonyítás

Mivel

$$\mathbf{a} \times \mathbf{b} = \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ -(a_1 b_3 - a_3 b_1) \\ a_1 b_2 - a_2 b_1 \end{pmatrix}$$

így

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = c_1(a_2b_3 - a_3b_2) - c_2(a_1b_3 - a_3b_1) + c_3(a_1b_2 - a_2b_1) = \begin{vmatrix} c_1 & c_2 & c_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}.$$

1.21. Sík normálvektoros egyenlete

Legyen S sík egy tartópontja a $P_0(x_0, y_0, z_0)$ pont, továbbá legyen P(x, y, z) egy futópont a síkon, és \mathbf{n} a sík normálvektora. Ekkor

$$S: n_1x + n_2y + n_3z = n_1x_0 + n_2y_y + n_3z_0$$

ahol $\mathbf{n}(n_1, n_2, n_3)$.

Bizonyítás

Tudjuk, hogy

$$S: \mathbf{n} \cdot \overrightarrow{P_0 P} = 0$$

hiszen $\mathbf{n} \perp \overrightarrow{P_0P}$. A skalárszorzat koordinátás kiszámítása alapján

$$S: n_1(x-x_0) + n_2(y-y_0) + n_3(z-z_0) = 0$$

amiből azonnal kapjuk a bizonyítandót.

2. Mátrixalgebra

2.1. Mátrixok összeadása

Legyen

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1m} \\ b_{21} & b_{22} & \cdots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nm} \end{pmatrix}$$

 $n \times m$ -es mártixok. Ekkor

$$\mathbf{A} + \mathbf{B} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1m} + b_{1m} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2m} + b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} + b_{n1} & a_{n2} + b_{n2} & \cdots & a_{nm} + b_{nm} \end{pmatrix}.$$

2.2. Mátrixok összeadásának tulajdonságai

1. Zárt, azaz $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times m}$ esetén

$$\mathbf{A} + \mathbf{B} \in \mathbb{R}^{n \times m}$$
.

2. Kommutatív, azaz

$$A + B = B + A.$$

3. Asszociatív, azaz

$$\mathbf{A} + (\mathbf{B} + \mathbf{C}) = (\mathbf{A} + \mathbf{B}) + \mathbf{C}.$$

4. Létezik egység, hiszen az $n \times m$ -es nullmátrixra

$$\mathbf{A} + \mathbf{0} = \mathbf{A}.$$

5. Minden elemnek létezik inverze, legyen ugyanis $\mathbf{A}^{-1} = -\mathbf{A}$, ekkor

$$\mathbf{A} + \mathbf{A}^{-1} = \mathbf{A} + (-\mathbf{A}) = \mathbf{0}.$$

Tehát $(\mathbb{R}^{n \times m}, +)$ Abel-csoport.

Bizonyítás

- 1. A definícióból triviális.
- 2. Vizsgáljuk meg az egyes elemeket!

$$(\mathbf{A} + \mathbf{B})_{ij} = a_{ij} + b_{ij} = b_{ij} + a_{ij} = (\mathbf{B} + \mathbf{A})_{ij}$$

3. Vizsgáljuk meg az egyes elemeket!

$$(\mathbf{A} + (\mathbf{B} + \mathbf{C})_{ij} = a_{ij} + (b_{ij} + c_{ij}) = (a_{ij} + b_{ij}) + c_{ij} = ((\mathbf{A} + \mathbf{B}) + \mathbf{C})_{ij}$$

4. Vizsgáljuk meg az egyes elemeket!

$$(\mathbf{A} + \mathbf{0})_{ij} = a_{ij} + 0 = a_{ij} = (\mathbf{A})_{ij}$$

5. Vizsgáljuk meg az egyes elemeket!

$$(\mathbf{A} + \mathbf{A}^{-1})_{ij} = a_{ij} + (-a_{ij}) = 0 = (\mathbf{0})_{ij}$$

2.3. Mátrixok szorzása

Legyen $\mathbf{A} = [a_{ij}]$ egy $n \times p$ típusú, $\mathbf{B} = [b_{ij}]$ egy $p \times n$ típusú mátrix. Ekkor

$$\mathbf{AB} = \left[\sum_{k=1}^{p} a_{ik} b_{kj} \right]$$

egy $n \times m$ típusú mátrix.

2.4. Mátrixok szorzásának tulajdonságai

1. Nem kommutatív, azaz

$$AB \neq BA$$
.

2. Asszociatív, azaz

$$\mathbf{A} \cdot (\mathbf{BC}) = (\mathbf{AB}) \cdot \mathbf{C}.$$

3. Azonos típusú mátrixok esetén a szorzás és az összeadás között teljesül a kétoldali disztributivitás, azaz

$$\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{C}$$

$$(\mathbf{A} + \mathbf{B}) \cdot \mathbf{C} = \mathbf{AC} + \mathbf{BC}.$$

Bizonyítás

- 1. A definícióból triviális.
- 2. Legyen $\mathbf{A} \in \mathbb{R}^{m \times r}, \mathbf{B} \in \mathbb{R}^{r \times s}$ és $\mathbf{C} \in \mathbb{R}^{s \times n}$. Vizsgáljuk meg az egyes elemeket!

$$\left(\mathbf{A} \cdot \left(\mathbf{BC}\right)\right)_{ij} = \sum_{p=1}^{r} a_{ip} \left(\sum_{q=1}^{s} b_{pq} c_{qj}\right)$$

$$\left((\mathbf{AB}) \cdot \mathbf{C} \right)_{ij} = \sum_{q=1}^{s} \left(\sum_{p=1}^{r} a_{ip} b_{pq} \right) c_{qj}$$

Látható, hogy az első egyenletben lévő elemek mindegyike megtalálható a második egyenlet elemei között, és fordítva. Tehát a két összeg valóban egyenlő, azaz

$$\mathbf{A} \cdot (\mathbf{BC}) = (\mathbf{AB}) \cdot \mathbf{C}.$$

3. Vizsgáljuk meg az egyes elemeket!

$$(\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}))_{ij} = a_{ij}(b_{ij} + c_{ij}) = a_{ij}b_{ij} + a_{ij}c_{ij} = (\mathbf{AB} + \mathbf{AC})_{ij}$$

$$((\mathbf{A} + \mathbf{B}) \cdot \mathbf{C})_{ij} = (a_{ij} + b_{ij}) \cdot c_{ij} = a_{ij}c_{ij} + b_{ij}c_{ij} = (\mathbf{AC} + \mathbf{BC})_{ij}$$

2.5. Mátrix számszorosa

Legyen $\mathbf{A} = [a_{ij}]$. Ekkor $\mathbf{B} = \lambda \mathbf{A} = [\lambda a_{ij}]$.

2.6. Mátrix számszorosának tulajdonságai

1.

$$1 \cdot \mathbf{A} = \mathbf{A} \cdot 1 = \mathbf{A}$$

2. Teljesül a vegyes asszociativitás, azaz

$$\lambda(\mu \mathbf{A}) = (\lambda \mu) \mathbf{A}.$$

3. Teljesül a vegyes disztributivitás, azaz

$$(\lambda + \mu)\mathbf{A} = \lambda\mathbf{A} + \mu\mathbf{A}$$

és

$$\lambda(\mathbf{A} + \mathbf{B}) = \lambda \mathbf{A} + \lambda \mathbf{B}.$$

Bizonyítás

1. Vizsgáljuk meg az egyes elemeket!

$$(1 \cdot \mathbf{A})_{ij} = 1 \cdot a_{ij} = a_{ij} = (\mathbf{A})_{ij}$$

2. Vizsgáljuk meg az egyes elemeket!

$$(\lambda(\mu \mathbf{A}))_{ij} = \lambda(\mu a_{ij}) = (\lambda \mu) a_{ij} = ((\lambda \mu) \mathbf{A})_{ij}$$

3. Vizsgáljuk meg az egyes elemeket!

$$((\lambda + \mu)\mathbf{A})_{ij} = (\lambda + \mu)a_{ij} = \lambda a_{ij} + \mu a_{ij} = (\lambda \mathbf{A} + \mu \mathbf{A})_{ij}$$

$$(\lambda(\mathbf{A} + \mathbf{B}))_{ij} = \lambda(a_{ij} + b_{ij}) = \lambda a_{ij} + \lambda b_{ij} = (\lambda \mathbf{A} + \lambda \mathbf{B})_{ij}$$

2.7. Mátrix inverze

Adott **A** $n \times n$ típusú mátrix inverze az az \mathbf{A}^{-1} $n \times n$ típusú mátrix, amelyre

$$\mathbf{A} \cdot \mathbf{A}^{-1} = \mathbf{E}.$$

Megjegyzés: Nem kvadratikus mátrixnak is létezhet jobboldali és baloldali inverze, de ekkor nem mondjuk, hogy a mátrix invertálható.

2.8. Inverz mátrix tulajdonságai

- 1. Ha az A mátrix invertálható, akkor a jobboldali és a baloldali inverze megegyezik.
- 2. Ha az \mathbf{A} mátrix invertálható, akkor $\left(\mathbf{A}^{-1}\right)^{-1} = \mathbf{A}$.
- 3. Ha az **A** és **B** mátrixok invertálhatók, akkor

$$\left(\mathbf{A} \cdot \mathbf{B}\right)^{-1} = \mathbf{B}^{-1} \cdot \mathbf{A}^{-1}.$$

4. Ha a ${f C}$ mátrix invertálható, akkor mátrixegyenletben lehet osztani vele, azaz

$$AC = BC \implies A = B$$

és

$$CA = CB \implies A = B.$$

Bizonyítás

1. Legyen az A baloldali inverze A' és a jobboldali inverze A''. Ekkor

$$A' = A' \cdot E = A' \cdot (AA'') = A'AA'' = EA'' = A''.$$

2.

$$(\mathbf{A}^{-1})^{-1} = (\mathbf{A}^{-1})^{-1} \cdot \mathbf{E} = (\mathbf{A}^{-1})^{-1} \cdot (\mathbf{A}\mathbf{A}^{-1}) = (\mathbf{A}^{-1})^{-1}\mathbf{A}^{-1}\mathbf{A} = \mathbf{E}\mathbf{A} = \mathbf{A}$$

3. Mivel

$$(\mathbf{A}\mathbf{B}) \cdot (\mathbf{B}^{-1}\mathbf{A}^{-1}) = \mathbf{A} \cdot (\mathbf{B}\mathbf{B}^{-1}) \cdot \mathbf{A}^{-1} = \mathbf{A}\mathbf{E}\mathbf{A}^{-1} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{E}$$

teljesül, így ($\mathbf{A}\mathbf{B}$) inverze valóban $\mathbf{B}^{-1}\mathbf{A}^{-1}$.

4. Legyen AC = BC. Ekkor

$$\mathbf{A} = \mathbf{A}\mathbf{E} = \mathbf{A}(\mathbf{CC}^{-1}) = (\mathbf{AC})\mathbf{C}^{-1} = (\mathbf{BC})\mathbf{C}^{-1} = \mathbf{B}(\mathbf{CC}^{-1}) = \mathbf{BE} = \mathbf{B}.$$

2.9. Egyenletrendszer megoldás inverz mátrix segítségével

Adott a

$$\begin{cases} \sum_{k=1}^{n} a_{1k} x_k = b_1 \\ \sum_{k=1}^{n} a_{2k} x_k = b_2 \\ \vdots \\ \sum_{k=1}^{n} a_{nk} x_k = b_n \end{cases}$$

egyenletrendszer. Ekkor ez átirható

$$\mathbf{A}\mathbf{x} = \mathbf{h}$$

alakba, ahol

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \qquad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}.$$

Ekkor ha ${\bf A}$ invertálható, akkor balról való beszorzás után

$$\mathbf{A}^{-1}\mathbf{A}\mathbf{x} = \mathbf{x} = \mathbf{A}^{-1}\mathbf{b}.$$

2.10. Mátrix transzponáltja

Adott az $\mathbf{A} = [a_{ij}] \ n \times m$ típusú mátrix. Ekkor a mátrix transzponáltja

$$\mathbf{A}^{\mathrm{T}} = [a_{ii}]$$

 $m \times n$ típusú mátrix.

2.11. Transzponált mátrix tulajdonságai

1.

$$(\mathbf{A} + \mathbf{B})^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}} + \mathbf{B}^{\mathrm{T}}$$

2.

$$\left(\mathbf{A}\cdot\mathbf{B}\right)^{\mathrm{T}}=\mathbf{B}^{\mathrm{T}}\cdot\mathbf{A}^{\mathrm{T}}$$

3.

$$\left(\mathbf{A}^{\mathrm{T}}\right)^{-1} = \left(\mathbf{A}^{-1}\right)^{\mathrm{T}}$$

Bizonyítás

1. Vizsgáljuk meg az egyes elemeket!

$$\left(\left(\mathbf{A} + \mathbf{B} \right)^{\mathrm{T}} \right)_{ij} = a_{ji} + b_{ji} = \left(\mathbf{A}^{\mathrm{T}} \right)_{ij} + \left(\mathbf{B}^{\mathrm{T}} \right)_{ij}$$

2. Vizsgáljuk meg az egyes elemeket!

$$\left(\left(\mathbf{A} \mathbf{B} \right)^{\mathrm{T}} \right)_{ij} = \left(\sum_{k=1}^{n} a_{ik} b_{kj} \right)^{\mathrm{T}} = \sum_{k=1}^{n} a_{jk} b_{ki} = \sum_{k=1}^{n} b_{ki} a_{jk} = \left(\mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \right)_{ij}$$

3.

$$\begin{split} \left(\mathbf{A}^{\mathrm{T}}\right)^{-1} &= \left(\mathbf{A}^{\mathrm{T}}\right)^{-1}\mathbf{E} = \left(\mathbf{A}^{\mathrm{T}}\right)^{-1}\mathbf{E}^{\mathrm{T}} = \left(\mathbf{A}^{\mathrm{T}}\right)^{-1}\left(\mathbf{A}^{-1}\mathbf{A}\right)^{\mathrm{T}} = \\ &= \left(\mathbf{A}^{\mathrm{T}}\right)^{-1}\mathbf{A}^{\mathrm{T}}\left(\mathbf{A}^{-1}\right)^{\mathrm{T}} = \left(\mathbf{A}^{-1}\right)^{\mathrm{T}} \end{split}$$

2.12. Speciális mátrixok

1. Az A mátrix szimmetrikus, ha

$$\mathbf{A} = \mathbf{A}^{\mathrm{T}}$$
.

2. Az ${\bf A}$ mátrix ferdén szimmetrikus, vagy antiszimmetrikus, ha

$$\mathbf{A} = -\mathbf{A}^{\mathrm{T}}$$
.

3. A **A** mátrix kvadratikus mátrix, ha $n \times n$ típusú.

4. A D kvadratikus mátrix diagonálmátrix, ha a főátlón kívüli összes eleme zérus. Ekkor a mátrix jelölése

$$\mathbf{D} = \langle d_i \rangle.$$

5. Az E diagonálmátrix egységmátrix, ha a főátló összes eleme 1.

Α

$$\delta_{ij} = \begin{cases} 1, & \text{ha } i = j \\ 0, & \text{ha } i \neq j \end{cases}$$

Kronecker-féle szimbólumot használva $\mathbf{E} = [\delta_{ij}].$

6. Az **A** mátrix permutáló mátrix, ha minden sorában és oszlopában pontosan egy darab egyes áll, a többi elem pedig zérus.

7. Az $\bf A$ mátrix alsó (felső) háromszögmátrix, ha az összes főátló feletti (alatti) elem zérus.

8. Az A kvadratikus mátrix ortogonális mátrix, ha

$$\mathbf{A} \cdot \mathbf{A}^{\mathrm{T}} = \mathbf{E}$$
.

9. Az $\mathbf{V}(q_1, q_2, \dots, q_n)$ kvadratikus mátrix Vandermonde-mátrix, ha

$$\mathbf{A} = \begin{pmatrix} 1 & q_1 & \cdots & q_1^{n-1} \\ 1 & q_2 & \cdots & q_2^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & q_n & \cdots & q_n^{n-1} \end{pmatrix}$$

alakú.

10. Az ${\bf A}$ mátrix adjungáltja az ${\bf A}$ mátrix előjeles aldeterminánsaiból alkotott mátrix transzponáltja, jele adj ${\bf A}$.

2.13. Tétel

Az A mátrix akkor és csak akkor ortogonális, ha

$$\mathbf{A}^{\mathrm{T}} = \mathbf{A}^{-1}.$$

Bizonyítás

Legyen először ${\bf A}$ ortogonális. Ekkor

$$\mathbf{A}\mathbf{A}^{\mathrm{T}} = \mathbf{E}.$$

Szorozzunk be balról \mathbf{A}^{-1} -el!

$$\mathbf{A}^{-1}\mathbf{A}\mathbf{A}^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}} = \mathbf{A}^{-1}\mathbf{E} = \mathbf{A}^{-1}$$

Legyen továbbá $\mathbf{A}^{\mathrm{T}} = \mathbf{A}^{-1}$. Szorozzunk be **E**-vel!

$$\mathbf{E}\mathbf{A}^{\mathrm{T}} = \mathbf{A}^{-1}\mathbf{A}\mathbf{A}^{\mathrm{T}} = \mathbf{E}\mathbf{A}^{-1}$$

Mivel invertálható mátrix esetén lehet mátrixegyenletben osztani kapjuk, hogy

$$\mathbf{A}\mathbf{A}^{\mathrm{T}}=\mathbf{E}.$$

2.14. Tétel

Minden kvadratikus mátrix előáll egy szimmetrikus és egy antiszimmetrikus mátrix összegeként.

Bizonyítás

Konstruktív módon bizonyítunk. Legyen ugyanis

$$\mathbf{A} = \frac{1}{2} (\mathbf{A} + \mathbf{A}^{\mathrm{T}}) + \frac{1}{2} (\mathbf{A} - \mathbf{A}^{\mathrm{T}}).$$

Ekkor $\frac{1}{2}(\mathbf{A} + \mathbf{A}^{\mathrm{T}})$ szimmetrikus, hiszen

$$\left(\frac{1}{2}\big(\mathbf{A}+\mathbf{A}^{\mathrm{T}}\big)\right)^{\mathrm{T}}=\frac{1}{2}\big(\mathbf{A}^{\mathrm{T}}+\mathbf{A}\big)=\frac{1}{2}\big(\mathbf{A}+\mathbf{A}^{\mathrm{T}}\big)$$

illetve $\frac{1}{2}(\mathbf{A} - \mathbf{A}^{\mathrm{T}})$ antiszimmetrikus, hiszen

$$\left(\frac{1}{2}(\mathbf{A} - \mathbf{A}^{\mathrm{T}})\right)^{\mathrm{T}} = \frac{1}{2}(\mathbf{A}^{\mathrm{T}} - \mathbf{A}) = -\frac{1}{2}(\mathbf{A} - \mathbf{A}^{\mathrm{T}}).$$

2.15. Tétel

$$\det \mathbf{V}(q_1, q_2, \dots, q_n) = \prod_{i < j} (q_j - q_i)$$

2.16. Tétel

Ha az A mátrix invertálható, akkor

$$\mathbf{A}^{-1} = \frac{\text{adj } \mathbf{A}}{\det \mathbf{A}}.$$

Bizonyítás

Vizsgáljuk meg $\mathbf{A} \cdot \text{adj } \mathbf{A}$ értékét!

$$\mathbf{A} \cdot \text{adj } \mathbf{A} = \begin{pmatrix} \sum_{k=1}^{n} a_{1k} D_{1k} & 0 & \cdots & 0 \\ 0 & \sum_{k=1}^{n} a_{2k} D_{2k} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sum_{k=1}^{n} a_{nk} D_{nk} \end{pmatrix} = \det \mathbf{A} \cdot \mathbf{E}$$

Feltéve, hogy det $\mathbf{A} \neq \mathbf{0},$ rendezés után

$$\mathbf{A}^{-1} = \frac{\operatorname{adj} \, \mathbf{A}}{\det \mathbf{A}}.$$

2.17. Mátrix sorrangja

Egy mátrix sorrangja a sorvektorok által generált altér dimenziója.

2.18. Mátrix oszloprangja

Egy mátrix oszloprangja az oszlopvektorok által generált altér dimenziója.

2.19. Mátrix determináns rangja

Egy mátrix determináns rangja a legnagyobb méretű nemnulla determináns mérete.

2.20. Tétel

Egy mátrix sorrangja, oszloprangja, illetve determináns rangja megegyezik. Emiatt beszélhetünk a mátrix rangjáról, ami ekkor rang (\mathbf{A}) .

2.21. Tétel

Egy $\mathbf{A} \in \mathbb{R}^{n \times n}$ mátrix akkor és csak akkor invertálható, ha rang $(\mathbf{A}) = n$.

3. Vektorterek

3.1. Vektortér

Adott T test és V nemüres halmaz. Legyen értelmezve V-n egy + művelet. Legyen továbbá értelmezve egy olyan skalárral való szorzás, $\cdot: T \times V \mapsto V$ függvény, ami $\forall \lambda \in T$ és $\mathbf{v} \in V$ -hez egyértelműen hozzárendel egy $\lambda \cdot \mathbf{v} \in V$ elemet. Ekkor azt mondjuk, hogy V vektortér a T test felett, ha

- 1. (V, +) Abel-csoport
- 2. a · skalárral való szorzásra és a + műveletre $\forall \lambda, \mu \in T$ és $\mathbf{v}, \mathbf{u} \in V$ esetén

(a) $(\lambda + \mu) \cdot \mathbf{v} = \lambda \cdot \mathbf{v} + \mu \cdot \mathbf{v}$

(b) $\lambda(\mathbf{v} + \mathbf{u}) = \lambda \mathbf{v} + \lambda \mathbf{u}$

(c) $(\lambda \mu) \mathbf{v} = \lambda(\mu \mathbf{v})$

 $1\mathbf{v} = \mathbf{v}$

ahol 1 a T test (multiplikatív) egysége.

3.2. Altér

Egy T test feletti V vektortér W nemüres részhalmaza akkor és csak akkor altér, ha zárt az összeadásra, és a skalárral való szorzásra nézve. Ekkor azt mondjuk, hogy W altere V-nek, azaz $W \leq V$.

3.3. Vektortér axiómák következményei

Adott $\lambda \in T$ és $\mathbf{v} \in V$. Ekkor

1. $0 \cdot \mathbf{v} = \mathbf{0}$

ahol0a Ttest össze
adás egysége, ${\bf 0}$ pedig a Vhalmazbeli össze
adás egysége

2. $\lambda \cdot \mathbf{0} = \mathbf{0}$

3. $\mathbf{v}^{-1} = (-1)\mathbf{v}$

4. $\lambda \mathbf{v} = \mathbf{0} \iff \mathbf{v} = \mathbf{0} \quad \text{vagy} \quad \lambda = 0$

Bizonyítás

1. $\lambda \mathbf{v} = (0 + \lambda)\mathbf{v} = \lambda \mathbf{v} + 0\mathbf{v}$ $\lambda \mathbf{v} + (\lambda \mathbf{v})^{-1} = \lambda \mathbf{v} + (\lambda \mathbf{v})^{-1} + 0\mathbf{v}$ $\mathbf{0} = \mathbf{0} + 0\mathbf{v} = 0\mathbf{v}$

2.

$$\mathbf{v} = \mathbf{v} + \mathbf{0}$$
$$\lambda \mathbf{v} = \lambda (\mathbf{v} + \mathbf{0}) = \lambda \mathbf{v} + \lambda \mathbf{0}$$
$$\lambda \mathbf{v} + (\lambda \mathbf{v})^{-1} = \lambda \mathbf{v} + (\lambda \mathbf{v})^{-1} + \lambda \mathbf{0}$$
$$\mathbf{0} = \mathbf{0} + \lambda \mathbf{0} = \lambda \mathbf{0}$$

3.

$$\mathbf{0} = 0\mathbf{v} = (1 + (-1))\mathbf{v} = \mathbf{v} + (-1)\mathbf{1}$$
$$\mathbf{0} + \mathbf{v}^{-1} = \mathbf{v}^{-1} = (-1)\mathbf{v} + \mathbf{v} + \mathbf{v}^{-1} = (-1)\mathbf{v} + \mathbf{0} = (-1)\mathbf{v}$$
$$\mathbf{v}^{-1} = (-1)\mathbf{v}$$

4. Legyen $\mathbf{v} \neq \mathbf{0}$. Ekkor $\lambda \mathbf{v} = \mathbf{0}$ csak akkor lehet, ha $\lambda = 0$. Legyen $\lambda \neq 0$.

$$\lambda \mathbf{v} = \mathbf{0}$$
$$\lambda^{-1} \lambda \mathbf{v} = \mathbf{v} = \lambda^{-1} \mathbf{0} = \mathbf{0}$$
$$\mathbf{v} = \mathbf{0}$$

3.4. Triviális és nem triviális lineáris kombináció

Adott T test feletti V vektortér. Ekkor a $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n} \in V$ lineáris kombinációja

$$\sum_{i=1}^{n} \lambda_i \mathbf{v_i}$$

ahol $\lambda_1, \lambda_2, \dots, \lambda_n \in T$. A lineáris kombináció triviális, ha $\forall \lambda_i = 0$.

3.5. Lineáris függetlenség

Adott egy T test feletti V vektortér. Ekkor a $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n} \in V$ vektorok lineárisan függetlenek, ha

$$\sum_{i=1}^n \lambda_i \mathbf{v_i} = \mathbf{0}$$

csak akkor lehet, ha a lineáris kombináció triviális, azaz $\forall \lambda_i = 0$.

Ha nem csak triviális kombináció esetén teljesül az egyenlőség, akkor a $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$ vektorok lineárisan összefüggők.

3.6. Tételek

Adott egy T test feletti V vektortér, és $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n} \in V$ vektorok és $\lambda_1, \lambda_2, \dots, \lambda_n \in T$ számok.

1. A vektorok akkor és csak akkor összefüggők, ha van olyan $\mathbf{v_i}$ vektor, amire

$$\mathbf{v_i} = \sum_{\substack{k=1\\k\neq i}}^n \lambda_k \mathbf{v_k}$$

teljesül.

- 2. Ha a vektorok összefüggők, akkor tetszőleges $\mathbf{v} \in V$ vektort hozzávéve továbbra is összefüggők maradnak.
- 3. Ha a vektorok függetlenek, akkor tetszőleges vektort elhagyva továbbra is függetlenek maradnak.

4. Ha a vektorok függetlenek, és egy ${\bf v}$ vektort hozzávéve összefüggőkké válnak, akkor

$$\mathbf{v} = \sum_{k=1}^{n} \lambda_k \mathbf{v_k}$$

teljesül.

5. Adott $\mathbf{v} \in V$ vektorra

$$\mathbf{v} = \sum_{k=1}^{n} \lambda_k \mathbf{v_k}$$

akkor és csak akkor egyértelmű, ha a vektorok függetlenek.

Bizonyítás

1. Tegyük fel, hogy a vektorok összefüggők. Ekkor $\exists \lambda_i \neq 0$, mégis

$$\sum_{k=1}^{n} \lambda_k \mathbf{v_k} = \mathbf{0}.$$

Ekkor

$$-\lambda_i \mathbf{v_i} = \sum_{\substack{k=1\\k \neq i}}^n \lambda_k \mathbf{v_k}$$

és mivel $\lambda_i \neq 0$

$$\mathbf{v_i} = \sum_{\substack{k=1\\k \neq i}}^{n} -\frac{\lambda_k}{\lambda_i} \mathbf{v_k}.$$

Most tegyük fel, hogy $\exists \mathbf{v_i}$ amire

$$\mathbf{v_i} = \sum_{\substack{k=1\\k\neq i}}^n \alpha_k \mathbf{v_k}.$$

Ebből átrendezve kapjuk, hogy

$$-\mathbf{v_i} + \sum_{\substack{k=1\\k\neq i}}^n \alpha_k \mathbf{v_k} = \mathbf{0}$$

azaz a nullvektor előáll a vektorok nem triviális kombinációjaként is, tehát összefüggők.

2. Tudjuk, hogy

$$\sum_{k=1}^{n} \lambda_k \mathbf{v_k} = \mathbf{0}$$

előáll nem triviális kombinációként is. Ekkor legyen ${\bf v}$ együtthatója 0, ekkor

$$0\mathbf{v} + \sum_{k=1}^{n} \lambda_k \mathbf{v_k} = \mathbf{0}$$

továbbra is előáll nem triviális kombinációként.

3. Az előző tételből egyértelműen következik.

4. Legyen v együtthatója a kombinációban λ . Világos, hogy ekkor $\lambda=0$ nem lehet, különben

$$\sum_{k=1}^{n} \lambda_k \mathbf{v_k} = \mathbf{0}$$

lenne, ami nem lehet hiszen, független vektorokról van szó. Ekkor

$$\mathbf{v} = \sum_{k=1}^{n} -\frac{\lambda_k}{\lambda} \mathbf{v_k}.$$

5. Tegyük fel, hogy a vizsgált vektorok függetlenek. Ekkor

$$\mathbf{v} = \sum_{k=1}^{n} \alpha_k \mathbf{v_k} = \sum_{k=1}^{n} \beta_k \mathbf{v_k} \implies \sum_{k=1}^{n} (\alpha_k - \beta_k) \mathbf{v_k} = \mathbf{0}.$$

Mivel a $\mathbf{v_k}$ vektorok függetlenek, ez csak akkor lehet, hogy $\forall \alpha_k = \beta_k$. Most tegyük fel, hogy egyértelmű az előállítás, de nem függetlenek. Ekkor $\exists \mathbf{v_i}$ amire

$$\mathbf{v_i} = \sum_{\substack{k=1\\k \neq i}}^n \alpha_k \mathbf{v_k}.$$

Ekkor

$$\mathbf{v} = \sum_{k=1}^{n} \lambda_k \mathbf{v_k} = \sum_{\substack{k=1\\k \neq i}}^{n} (\lambda_k + \lambda_i \alpha_k) \mathbf{v_k}$$

tehát nem egyértelmű az előállítás. Ellentmondásra jutottunk, tehát a vektorok függetlenek.

3.7. Tétel

A $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$ n dimenziós vektorok akkor és csak akkor lineárisan függetlenek, ha

$$\det (\mathbf{v_1}|\mathbf{v_2}|\dots|\mathbf{v_n}) \neq 0.$$

Bizonyítás

A függetlenség definíciójából kiindulva akkor függetlenek a $\mathbf{v_k}$ vektorok, ha a $\mathbf{0}$ csak triviális lineáris kombinációjukként áll elő. Azt kell belátnunk tehát, hogy ha a

$$\sum_{k=1}^{n} \lambda_k \mathbf{v_k} = \mathbf{0}$$

egyenletnek csak triviális megoldása van, akkor

$$\det (\mathbf{v_1}|\mathbf{v_2}|\dots|\mathbf{v_n}) \neq 0.$$

Legyen

$$\mathbf{v_k} = \begin{pmatrix} v_{1k} \\ v_{2k} \\ \vdots \\ v_{nk} \end{pmatrix}.$$

Ekkor a fenti egyenlet átírható

$$\begin{cases} \sum_{k=1}^{n} \lambda_k v_{1k} = 0\\ \sum_{k=1}^{n} \lambda_k v_{2k} = 0\\ \vdots\\ \sum_{k=1}^{n} \lambda_k v_{nk} = 0 \end{cases}$$

alakra. Ekkor az együtthatómátrix kibővített mátrixára alkalmazva a Gauss-eliminációt

$$\begin{pmatrix} v_{11} & v_{12} & \cdots & v_{1n} & 0 \\ v_{21} & v_{22} & \cdots & v_{2n} & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ v_{n1} & v_{n2} & \cdots & v_{nn} & 0 \end{pmatrix} \rightarrow \begin{pmatrix} v'_{11} & v'_{12} & \cdots & v'_{1n} & 0 \\ 0 & v'_{22} & \cdots & v'_{2n} & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & v'_{nn} & 0 \end{pmatrix}.$$

Ekkor két eset lehetséges. Ha valamelyik $v'_{kk} = 0$, akkor 4.8. miatt det $\mathbf{V} = 0$. Azonban tudjuk, hogy ekkor vagy nincs egy megoldás sem, vagy végtelen sok megoldás van, hiszen det $\mathbf{V} = 0$ miatt \mathbf{V} szinguláris. Emiatt a

$$\mathbf{V}egin{pmatrix} \lambda_1 \ \lambda_2 \ dots \ \lambda_n \end{pmatrix} = \mathbf{0}$$

egyenletből nem lehet egyértelműen kifejezni a

$$\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}$$

mátrixot. Továbbá tudjuk, hogy van legalább egy megoldás, a triviális megoldás. Tehát végtelen sok megoldás van, azaz létezik a triviálison kívül más megoldás is. Ez azt jelenti, hogy a $\mathbf{v_k}$ vektorok összefüggők. Legyen továbbá $\forall v'_{kk} \neq 0$. Ekkor 4.8. miatt det $\mathbf{V} \neq 0$. Ekkor $\lambda_n v'_{nn} = 0$ miatt $\lambda = 0$. Továbbá $\lambda_{n-1} + v'_{n-1n-1} + \lambda_n v_{nn'} = 0$ miatt $\lambda_{n-1} = 0$. Hasonlóan az összes $\lambda_k = 0$, azaz csak a triviális megoldás létezik.

3.8. Tétel

Homogén lineáris egyenletrendszernek akkor és csak akkor van triviálistól különböző megoldása, ha együtthatómátrixának determinánsa nulla.

3.9. Generátorrendszer

Adott $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n} \in V$ vektorok generátorrendszert alkotnak, ha a vektortér összes vektora előáll a lineáris kombinációjukként.

3.10. Kicserélési tétel

Adott az $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$ független rendszer bármely $\mathbf{v_k}$ vektorához található a $\mathbf{g_1}, \mathbf{g_2}, \dots, \mathbf{g_m}$ generetárrendszerben olyan $\mathbf{g_i}$ vektor, amire $\mathbf{v_k}$ -t $\mathbf{g_i}$ -re cserélve a rendszer független marad.

Bizonyítás

Indirekt úton bizonyítunk. Tegyük fel, hogy a $\mathbf{v_k}$ vektorok függetlenek, azonban $\exists \mathbf{v_i}$ amire bármely $\mathbf{g_i}$ vektort lecserélve összefüggő rendszert kapunk, azaz

$$\mathbf{g_i} = \sum_{k=1}^n \lambda_{ik} \mathbf{v_k}.$$

Mivel a $\mathbf{g}_{\mathbf{k}}$ vektorok generálják a vektorteret, ezért

$$\mathbf{v_1} = \sum_{l=1}^{n} \phi_l \mathbf{g_l} = \sum_{l=1}^{m} \phi_l \sum_{k=1}^{n} \lambda_{lk} \mathbf{v_k}$$

azaz $\mathbf{v_1}$ előáll a $\mathbf{v_k}$ vektorok lineáris kombinációjaként, ezért a rendszer összefüggő, ez viszont ellentmondás. Ezzel beláttuk a tételt.

3.11. Bázis

Független generátorrendszer, azaz olyan $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n} \in V$ független vektorok rendszere, amelyek lineáris kombinációjaként a vektortér összes vektora előáll.

3.12. Tétel

Egy vektortér összes bázisának elemszáma egyenlő.

Bizonyítás

A kicserélési tétel miatt tudjuk, hogy bármely generátorrendszerben lévő vektorok száma legalább annyi, mint bármely független rendszerben, hiszen a független rendszerben az összes vektort kicserélve továbbra is független marad a rendszer. Azonban ha a generátorrendszerben kevesebb vektor lenne, mint a független rendszerben, akkor lenne két független rendszerbeli vektor, amelyek helyére ugyanaz a generátorrendszerbeli vektor került volna. Ekkor azonban nem lenne független a rendszer.

Legyen két bázis B_1 és B_2 . Ekkor

 $\dim B_1 \leq \dim B_2$

ugyanakkor

 $\dim B_1 \ge \dim B_2$

tehát

 $\dim B_1 = \dim B_2.$

3.13. Dimenzió

Egy vektortér dimenziója bármely bázisának elemszáma.

Lineáris Algebra I-II. 4. DETERMINÁNSOK

4. Determinánsok

4.1. Permutáció inverziószáma

Két elem inverzióban áll egymással, ha a σ permutáció során i>j és $\sigma(i)<\sigma(j)$. Ekkor a σ permutáció inverziószáma $I(\sigma)$ az inverzióban álló elempárok száma.

4.2. Permutáció paritása

Egy σ permutáció paritása megegyezik $I(\sigma)$ paritásával.

4.3. Tétel

- 1. Ha egy permutációban két szomszédos elemet felcserélünk, akkor az inveriószám eggyel változik.
- 2. Ha egy permutációban két elemet felcserélünk, akkor az inverziószám páratlannal változik.

Bizonyítás

- Mivel a két szomszédos elemnek csak az egymáshoz viszonyított helyzete változik meg, így ha korábban inverzióban álltak, akkor a csere után nem fognak inverzióban állni, és fordítva. Tehát az inverziószám valóban ±1-el változik.
- 2. Legyen a két vizsgált elem a és b, melyek között pontosan k darab elem áll. Tegyük fel, hogy a előrébb van, mint b. Ekkor cserélgessük a-t a mögötte lévő szomszédos elemekkel addig, amíg el nem érjük b-t. Ez pontosan k darab cserét igényel. Ezután cseréljük ki a-t és b-t, majd cserélgessük b-t az előtte lévő szomszédos elemekkel addig, amíg el nem érjük a eredeti helyét. Ez pontosan k+1 cserét igényel. Tehát összesen 2k+1-szer változott meg az inverziószám, minden alkalommal ± 1 -el. Tehát valóban páratlannal változik az inverziószám.

4.4. Determináns

Az $\mathbf{A} \ n \times n$ típusú mátrix determinánsa

$$\det \mathbf{A} = \sum (-1)^{I(\sigma)} \prod_{i=1}^{n} a_{i\sigma(i)}$$

illetve

$$\det \mathbf{A} = \sum_{i=1}^{n} (-1)^{I(\sigma)+I(\pi)} \prod_{i=1}^{n} a_{\pi(i)\sigma(i)}.$$

4.5. Előjeles aldetermináns

Legyen A egy $n \times n$ típusú mátrix. Ekkor az a_{ij} elem előjeles aldeterminánsa

$$D_{ij} = (-1)^{i+j} \cdot \det \mathbf{A}_{ij}$$

ahol \mathbf{A}_{ij} egy olyan $(n-1) \times (n-1)$ típusú mátrix, melyet úgy kapunk, hogy az eredeti \mathbf{A} mátrix *i*-edik sorát és *j*-edik oszlopát elhagyjuk.

4.6. Kifejtési tétel

Legyen \mathbf{A} egy $n \times n$ típusú mátrix. Ekkor a mátrix determinánsa az i-edik sor szerint kifejtve

$$\det \mathbf{A} = \sum_{j=1}^{n} a_{ij} D_{ij}$$

illetve a j-edik oszlop szerint kifejtve

$$\det \mathbf{A} = \sum_{i=1}^{n} a_{ji} D_{ji}.$$

Bizonyítás

Tudjuk, hogy

$$\det \mathbf{A} = \sum (-1)^{I(\sigma)} \prod_{i=1}^{n} a_{i\sigma(i)}.$$

Ebből azonnal látszik, hogy

$$\begin{vmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = a_{11}D_{11}.$$

Ekkor 4.8. miatt

$$\begin{vmatrix} 0 & \cdots & a_{1k} & \cdots & 0 \\ a_{21} & \cdots & a_{2k} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nk} & \cdots & a_{nn} \end{vmatrix} = (-1)^{k-1} a_{1k} D_{1k}$$
 (1)

illetve

$$\begin{vmatrix} 0 & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & a_{n2} & \cdots & a_{nn} \end{vmatrix} = (-1)^{l-1} a_{l1} D_{l1}.$$
 (2)

Ekkor (1) és (2) miatt

$$\begin{vmatrix} a_{11} & \cdots & a_{1k} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & a_{jk} & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nk} & \cdots & a_{nn} \end{vmatrix} = (-1)^{j+k} a_{jk} D_{jk}.$$

Ekkor 4.8. miatt

$$\det \mathbf{A} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum_{j=1}^{n} a_{ij} D_{ij} = \sum_{i=1}^{n} a_{ij} D_{ij}.$$

A tétel hasonlóan belátható az oszlop szerinti kifejtésre.

Lineáris Algebra I-II. 4. DETERMINÁNSOK

4.7. Ferde kifejtés

Legyen A egy kvadratikus mátrix. Ekkor a mátrixra

$$\sum_{j=1}^{n} a_{rj} D_{kj} = 0$$

illetve

$$\sum_{i=1}^{n} a_{jr} D_{jk} = 0$$

teljesül, ha $r \neq k$.

Bizonyítás

Legyen \mathbf{A}' az a mátrix, melynek a k-adik sora ugyanaz, mint az \mathbf{A} mátrix r-edik sora, a többi elem pedig azonos. Ekkor az \mathbf{A}' mátrix determinánsa kifejtve a k-adik sora szerint

$$\det \mathbf{A}' = \sum_{j=1}^{n} a_{rj} D_{kj}.$$

Továbbá az A' mátrixban van két azonos sor, így 4.8. miatt

$$\det \mathbf{A}' = \sum_{j=1}^{n} a_{rj} D_{kj} = 0.$$

A tétel hasonlóan belátható az oszlop szerinti kifejtésre.

4.8. Determináns tulajdonságai

- 1. Egy determináns egy sorát vagy oszlopát λ -val megszorozva a determináns értéke az eredeti λ -szorosa lesz.
- 2. Egy determináns két sorát vagy oszlopát felcserélve a determináns az eredeti (-1)-szerese lesz.
- 3. Ha egy determináns két sora vagy oszlopa megegyezik, akkor a determináns értéke 0.
- 4. Ha egy determináns egy sora vagy oszlopa kéttagú összeg, akkor a determinánst két determinánsa lehet bontani úgy, hogy csak az adott sor vagy oszlop elemei változzanak, és az összegük kiadja az eredeti determináns adott sorát vagy oszlopát.
- 5. Ha egy determináns egy sora vagy oszlopa egy másik sor vagy oszlop λ -szorosa, akkor a determináns értéke 0.
- 6. Egy determináns sorához vagy oszlopához másik sor vagy oszlop $\lambda\text{-szorosát}$ hozzáadva a determináns értéke nem változik.
- 7. Egy alsó vagy felső háromszögdetermináns értéke a főátlóbeli elemek szorzata.

8.

$$\det \mathbf{A}^T = \det \mathbf{A}$$

Bizonyítás

1. Fejtsük ki a λ -val megszorzott sor (oszlop) szerint a determinánst!

$$\det \mathbf{A}' = \sum_{j=1}^{n} \lambda a_{ij} \cdot D_{ij} = \lambda \sum_{j=1}^{n} a_{ij} \cdot D_{ij} = \lambda \det \mathbf{A}$$

$$\left(\det \mathbf{A}' = \sum_{i=1}^{n} \lambda a_{ij} \cdot D_{ij} = \lambda \sum_{i=1}^{n} a_{ij} \cdot D_{ij} = \lambda \det \mathbf{A}\right)$$

Lineáris Algebra I-II. 4. DETERMINÁNSOK

2. Mivel

$$\det \mathbf{A} = \sum (-1)^{I(\sigma)+I(\pi)} \prod_{i=1}^{n} a_{\pi(i)\sigma(i)}$$

látható, hogy két sor vagy két oszlop cseréjével $I(\sigma)$ vagy $I(\pi)$ páratlannal változik, így valóban a determináns az eredeti (-1)-szerese lesz.

- 3. Cseréljük fel a két azonos sort vagy oszlopot! Ekkor egyrészt a determináns a (-1)-szeresére változik az előző tétel miatt, másrészt a determináns nem változik, hiszen önmagát kaptuk vissza. Tehát det $\mathbf{A} = -\det \mathbf{A}$ ami csak akkor lehetséges, ha det $\mathbf{A} = 0$.
- 4. Mivel az első tétel miatt kiemelhetjük a λ szorzót, az előző tételt kapjuk.
- 5. Legyen a vizsgált sor vagy oszlop elemei a $b_i + c_i$ számok. Ekkor az adott sor vagy oszlop szerint kifejtve

$$\det \mathbf{A} = \sum_{i=1}^{n} (b_i + c_i) \cdot D_{ij} = \sum_{i=1}^{n} b_i \cdot D_{ij} + \sum_{i=1}^{n} c_i \cdot D_{ij}$$

$$\left(\det \mathbf{A} = \sum_{i=1}^{n} (b_i + c_i) \cdot D_{ji} = \sum_{i=1}^{n} b_i \cdot D_{ji} + \sum_{i=1}^{n} c_i \cdot D_{ji} \right).$$

6. Legyen

$$\det \mathbf{A} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}.$$

Ekkor

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} + \lambda a_{j1} & a_{i2} + \lambda a_{j2} & \cdots & a_{in} + \lambda a_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} =$$

$$= \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \lambda \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \det \mathbf{A}$$

- 7. A kifejtési tételt ismételten alkalmazva triviális.
- 8. Triviális.

5. Homogén lineáris leképezések

5.1. Homogén lineáris leképezések

Adottak a T test feletti V, W vektorterek, és egy $\mathcal{A}: V \mapsto W$ függvény. Legyen továbbá $\mathbf{v_1}, \mathbf{v_2} \in V, \lambda \in T$. Ekkor a leképezést homogén lineáris leképezésnek nevezzük, ha teljesül a linearitás vagy additivitás, azaz

$$\mathcal{A}(\mathbf{v_1} + \mathbf{v_2}) = \mathcal{A}(\mathbf{v_1}) + \mathcal{A}(\mathbf{v_2})$$

és a homogenitás, azaz

$$\mathcal{A}(\lambda \mathbf{v_1}) = \lambda \mathcal{A}(\mathbf{v_1}).$$

A $\mathcal{A}:V\mapsto V$ homogén lineáris leképezés, akkor homogén lineáris transzformációnak nevezzük.

5.2. Tétel

Ha az \mathcal{A} homogén lineáris leképezés, akkor $\mathbf{0} \in V$ képe $\mathbf{0} \in W$.

Bizonvítás

Tudjuk, hogy $\mathbf{0} = 0\mathbf{v}$, így a V-beli nullvektor képe

$$\mathcal{A}(\mathbf{0}) = \mathcal{A}(0\mathbf{v}) = 0\mathcal{A}(\mathbf{v}) = \mathbf{0} \in W.$$

5.3. Tétel

Az A akkor és csak akkor homogén lineáris leképezés, ha

$$\mathcal{A}(\lambda \mathbf{v_1} + \mu \mathbf{v_2}) = \lambda \mathcal{A}(\mathbf{v_1}) + \mu \mathcal{A}(\mathbf{v_2})$$

ahol $\mathbf{v_1}, \mathbf{v_2} \in V$ és $\lambda, \mu \in T$.

Bizonyítás

Először tegyük fel, hogy a leképezés homogén lineáris. Ekkor

$$\mathcal{A}(\lambda \mathbf{v_1} + \mu \mathbf{v_2}) = \lambda \mathcal{A}(\mathbf{v_1}) + \mu \mathcal{A}(\mathbf{v_2})$$

nyilván teljesül.

Most tegyük fel, hogy

$$\mathcal{A}(\lambda \mathbf{v_1} + \mu \mathbf{v_2}) = \lambda \mathcal{A}(\mathbf{v_1}) + \mu \mathcal{A}(\mathbf{v_2})$$

teljesül. Ekkor valamilyen $\delta \in T$ esetén

$$\mathcal{A}(\delta(\lambda \mathbf{v_1} + \mu \mathbf{v_2})) = \mathcal{A}(\delta \lambda \mathbf{v_1} + \delta \mu \mathbf{v_2}) = \delta \lambda \mathcal{A}(\mathbf{v_1}) + \delta \mu \mathcal{A}(\mathbf{v_2}) = \delta \mathcal{A}(\lambda \mathbf{v_1} + \mu \mathbf{v_2})$$

tehát a leképezés valóban homogén. Továbbá valamilyen v_1^\prime és v_2^\prime vektorokra

$$A(v'_1 + v'_2) = A(v'_1) + A(v'_2)$$

tehát a leképezés lineáris.

5.4. Homogén lineáris leképezés mátrixa

Adott $\mathcal{A}: V_1^n \mapsto V_2^k$ homogén lineáris leképezés. Legyen V_1 egy bázisa

$$[a] = \{\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_n}\}\$$

 V_2 egy bázisa pedig

$$[b] = \{\mathbf{b_1}, \mathbf{b_2}, \dots, \mathbf{b_k}\}.$$

Ekkor a leképezés mátrixa

$$\mathbf{A}_{[a][b]} = \Big(\mathcal{A}(\mathbf{a_1})_{[b]} \big| \mathcal{A}(\mathbf{a_2})_{[b]} \big| \dots \big| \mathcal{A}(\mathbf{a_n})_{[b]} \Big).$$

5.5. Tétel

Adott $\mathcal{A}: V_1^n \mapsto V_2^k$ lineáris leképezés, melynek mátrixa $\mathbf{A}_{[a][b]}$. Ekkor $\forall \mathbf{v} \in V$ esetén

$$A(\mathbf{v}) = \mathbf{A}\mathbf{v}$$

teljesül.

Bizonyítás

Legyen az

$$[a] = \{\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_n}\}$$

 V_1 -beli bázisvektorok képe a

$$[b] = \{\mathbf{b_1}, \mathbf{b_2}, \dots, \mathbf{b_k}\}$$

 V_2 -beli bázis szerint felirva

$$\mathcal{A}(\mathbf{a_i}) = \sum_{j=1}^k \beta_{ji} \mathbf{b_j}.$$

Legyen

$$\mathbf{x} = \sum_{i=1}^{n} \alpha_i \mathbf{a_i}$$

egy V_1 -beli vektor. Ekkor

$$\mathcal{A}(\mathbf{x}) = \mathcal{A}\left(\sum_{i=1}^{n} \alpha_i \mathbf{a_i}\right) = \sum_{i=1}^{n} \alpha_i \mathcal{A}(\mathbf{a_i}) = \sum_{i=1}^{n} \alpha_i \sum_{j=1}^{k} \beta_{ji} \mathbf{b_j} = \sum_{j=1}^{k} \mathbf{b_j} \sum_{i=1}^{n} \alpha_i \beta_{ji}.$$

Vegyük észre, hogy

$$\begin{pmatrix} \beta_{11} & \beta_{12} & \cdots & \beta_{1n} \\ \beta_{21} & \beta_{22} & \cdots & \beta_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{k1} & \beta_{k2} & \cdots & \beta_{kn} \end{pmatrix} \cdot \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}_{[a]} = \begin{pmatrix} \sum_{i=1}^n \alpha_i \beta_{1i} \\ \sum_{i=1}^n \alpha_i \beta_{2i} \\ \vdots \\ \sum_{i=1}^n \alpha_i \beta_{ki} \end{pmatrix}_{[b]}$$

azaz ha az \mathbf{x} mátrix [a] bázis szerinti koordináta mátrixát megszorozzuk $\mathbf{A}_{[a][b]}$ -vel, akkor megkapjuk $\mathcal{A}(\mathbf{x})$ [b] bázis szerinti koordináta mátrixát. Éppen ezt akartuk bebizonyítani.

5.6. Magtér

Adott $A: V_1 \mapsto V_2$ homogén lineáris leképezés magtere azon V_1 -beli vektorok halmaza, melyeknek képe nullvektor, azaz

$$\ker \mathcal{A} = \{ \mathbf{v} \big| \mathbf{v} \in V_1 \land \mathcal{A}(\mathbf{v}) = \mathbf{0} \}.$$

5.7. Képtér

Adott $A: V_1 \mapsto V_2$ homogén lineáris leképezés képtere azon V_2 -beli vektorok összessége, melyek előállnak V_1 -beli vektorok képeként, azaz

$$\operatorname{im} \mathcal{A} = \left\{ \mathbf{v_2} \middle| \mathbf{v_2} \in V_2 \land \mathbf{v_1} \in V_1 \land \mathbf{v_2} = \mathcal{A}(\mathbf{v_1}) \right\}$$

5.8. Tétel

Adott $\mathcal{A}:V_1\mapsto V_2$ homogén lineáris leképezés. Ekkor ker \mathcal{A} altere V_1 -nek.

Bizonvítás

Legyen $\mathbf{v_1}, \mathbf{v_2} \in \ker \mathcal{A}$. Ekkor

$$\mathcal{A}(\mathbf{v_1}+\mathbf{v_2}) = \mathcal{A}(\mathbf{v_1}) + \mathcal{A}(\mathbf{v_2}) = \mathbf{0}$$

és

$$\mathcal{A}(\lambda \mathbf{v_1}) = \lambda \mathcal{A}(\mathbf{v_1}) = \mathbf{0}.$$

Tehát valóban altér.

5.9. Tétel

Adott $\mathcal{A}: V_1 \mapsto V_2$ homogén lineáris leképezés. Ekkor és im \mathcal{A} altere V_2 -nek.

Bizonyítás

Mivel homogén lineáris a leképezés, egyből kapjuk a bizonyítandót.

5.10. Dimenzió tétel

Adott $\mathcal{A}: V_1^n \mapsto V_2^k$ homogén lineáris leképezés esetén

$$\dim (\ker A) + \dim (\operatorname{im} A) = \dim V_1.$$

Bizonyítás

Legyen

$$[a] = \{\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_m}\}$$

bázisa ker A-nak és

$$[a'] = \{\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_m}, \mathbf{a_{m+1}}, \dots, \mathbf{a_n}\}$$

bázisa V_1 -nek. Ekkor tetszőleges $\mathbf{y} \in \text{im } \mathcal{A}$ -hoz létezik olyan $\mathbf{x} \in V_1$ vektor, melyre $\mathcal{A}(\mathbf{x}) = \mathbf{y}$. Legyen

$$\mathbf{x} = \sum_{k=1}^{n} x_k \mathbf{a_k}.$$

Ekkor

$$\mathbf{y} = \mathcal{A}(\mathbf{x}) = \sum_{k=1}^{n} x_k \mathcal{A}(\mathbf{a_k}) = \sum_{k=m+1}^{n} x_k \mathcal{A}(\mathbf{a_k}).$$

Ez azt jelenti, hogy $\forall \mathbf{y} \in \operatorname{im} \mathcal{A}$ előáll az $\mathcal{A}(\mathbf{a_{m+1}}), \mathcal{A}(\mathbf{a_{m+2}}), \dots, \mathcal{A}(\mathbf{a_n})$ lineáris kombinációjaként, tehát ezek a vektorok generátorrendszert alkotnak im \mathcal{A} -ban. Ha belátjuk, hogy függetlenek, akkor kész vagyunk. Legyen

$$\sum_{k=m+1}^{n} \alpha_k \mathcal{A}(\mathbf{a_k}) = \mathbf{0}.$$

Ez azt jelenti, hogy az

$$\mathbf{x}' = \sum_{k=m+1}^{n} \alpha_k \mathbf{a_k}$$

vektor benne van a magtérben. Ekkor nyilván

$$\mathbf{x}' = \sum_{k=m+1}^{n} \alpha_k \mathbf{a_k} = \sum_{k=1}^{m} \alpha_k \mathbf{a_k} \implies \sum_{k=1}^{m} \alpha_k \mathbf{a_k} - \sum_{k=m+1}^{n} \alpha_k \mathbf{a_k} = \mathbf{0}.$$

Mivel [b'] bázis, ezért $\forall \alpha_k = 0$, így a $\mathcal{A}(\mathbf{a_{m+1}}), \mathcal{A}(\mathbf{a_{m+2}}), \dots, \mathcal{A}(\mathbf{a_n})$ vektorok függetlenek. Mivel generátorrendszert alkotnak im \mathcal{A} -ban, így ezek a vektorok bázist alkotnak im \mathcal{A} -ban. Ekkor

$$\dim(\ker A) + \dim(\operatorname{im} A) = m + (n - m) = n = \dim V_1.$$

5.11. Sajátérték, sajátvektor

Adott egy T test feletti V vektortér, és egy $\mathcal{A}:V\mapsto V$ homogén lineáris transzformáció. Ekkor $\lambda\in T$ sajátértéke az \mathcal{A} transzformációnak, ha $\exists \mathbf{v}\neq\mathbf{0}\in V$ amire

$$\mathcal{A}(\mathbf{v}) = \lambda \mathbf{v}.$$

Ekkor ${\bf v}$ a transzformáció λ sajátértékéhez tartozó sajátvektora.

5.12. Tétel

Adott ${\bf A}$ mátrix, melynek egy ${\bf v}$ sajátvektorához tartozó sajátértéke λ . Ekkor az ${\bf A}^n$ mátrix ${\bf v}$ -hez tartozó sajátértéke λ^n .

Bizonyítás

Teljes indukcióval bizonyítunk. Tudjuk, hogy

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$
.

Ekkor n=2 esetén

$$\mathbf{A}^2 \mathbf{v} = \mathbf{A} \mathbf{A} \mathbf{v} = \mathbf{A} \lambda \mathbf{v} = \lambda \mathbf{A} \mathbf{v} = \lambda^2 \mathbf{v}.$$

Tegyük fel, hogy valamilyen n-re $\mathbf{A}^n \mathbf{v} = \lambda^n \mathbf{v}$. Ekkor

$$\mathbf{A}^{n+1}\mathbf{v} = \mathbf{A}\mathbf{A}^n\mathbf{v} = \mathbf{A}\lambda^n\mathbf{v} = \lambda^n\mathbf{A}\mathbf{v} = \lambda^{n+1}\mathbf{v}.$$

5.13. Tétel

Adott **A** mátrix, melynek egy **v** sajátvektorához tartozó sajátértéke λ . Ekkor az \mathbf{A}^{-1} mátrix **v**-hez tartozó sajátértéke $\frac{1}{\lambda}$.

Bizonyítás

Tudjuk, hogy

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v}.$$

Ekkor, ha A invertálható, akkor balról való beszorzás után

$$\mathbf{A}^{-1}\mathbf{A}\mathbf{v} = \mathbf{v} = \mathbf{A}^{-1}\lambda\mathbf{v}.$$

Ebből

$$\mathbf{A}^{-1}\mathbf{v} = \frac{1}{\lambda}\mathbf{v}.$$

5.14. Karakterisztikus polinom, karakterisztikus egyenlet

Adott $\mathcal{A}: V^n \mapsto V^n$ homogén lineáris leképezés, melynek mátrixa **A**. Ekkor a transzformáció sajátértékei a

$$P(\lambda) = \det (\mathbf{A} - \lambda \mathbf{E})$$

karakterisztikus polinom gyökei, tehát a

$$\det\left(\mathbf{A} - \lambda \mathbf{E}\right) = 0$$

karakterisztikus egyenlet megoldásai. A sajátértékek ismeretében a ${\bf v}$ sajátvektorokat a

$$(\mathbf{A} - \lambda \mathbf{E})\mathbf{v} = \mathbf{0}$$

egyenletből számolhatjuk.

5.15. Sajátaltér

Adott egy T test feletti V vektortér, és egy $\mathcal A$ homogén lineáris transzformáció. Ekkor a transzformáció valamilyen $\lambda \in T$ sajátértékéhez tartozó sajátvektorok és a $\mathbf 0$ vektor alteret alkotnak. Ezt az alteret a λ -hoz tartozó sajátaltérnek nevezzük.

Bizonyítás

Legyen $\mathbf{v_1},\mathbf{v_2} \in V$ ugyanazon sajátértékhez tartozó vektorok. Ekkor

$$\mathcal{A}(\mathbf{v_1} + \mathbf{v_2}) = \mathcal{A}(\mathbf{v_1}) + \mathcal{A}(\mathbf{v_2}) = \lambda \mathbf{v_1} + \lambda \mathbf{v_2} = \lambda(\mathbf{v_1} + \mathbf{v_2})$$

és

$$\mathcal{A}(\mu \mathbf{v_1}) = \mu \mathcal{A}(\mathbf{v_1}) = \mu \lambda \mathbf{v_1} = \lambda(\mu \mathbf{v_1}).$$

Tehát valóban alteret alkotnak az ugyanazon sajátértékhez tartozó vektorok és a nullvektor.

5.16. Geometriai multiplicitás

Adott sajátérték geometriai multiplicitása a sajátalterének dimenziója.

5.17. Tétel

Adott $A:V\mapsto V$ homogén lineáris transzformáció különböző sajátértékeihez tartozó sajátvektorok függetlenek.

Bizonvítás

Vegyünk k darab független $\mathbf{s_1}, \mathbf{s_2}, \dots, \mathbf{s_k}$ független sajátvektort. Legyenek az egyes vektorokhoz tartozó sajátértékek $\lambda_1, \lambda_2, \dots, \lambda_k$, ahol $\forall \lambda_i \neq \lambda_j$. Ekkor tudjuk, hogy

$$\sum_{i=1}^k \alpha_i \mathbf{s_i} = \mathbf{0} \Longleftrightarrow \forall \alpha_i = 0.$$

Vegyünk még egy $\mathbf{s_{k+1}}$ vektort. Ekkor legyen

$$\sum_{i=1}^{k+1} \alpha_i \mathbf{s_i} = \mathbf{0}$$

ahol már nem feltétlenül $\forall \alpha_i = 0$. Ekkor tudjuk, hogy

$$\sum_{i=1}^{k+1} \alpha_i \lambda_{k+1} \mathbf{s_i} = \mathbf{0}$$

és

$$\mathcal{A}\left(\sum_{i=1}^{k+1} \alpha_i \mathbf{s_i}\right) = \sum_{i=1}^{k+1} \alpha_i \lambda_i \mathbf{s_i} = \mathbf{0}.$$

Ekkor nyilván

$$\sum_{i=1}^{k} \alpha_i \left(\lambda_i - \lambda_{k+1} \right) \mathbf{s_i} = \mathbf{0}$$

ami viszont csak akkor lehet, hogy

$$\forall \alpha_i \left(\lambda_i - \lambda_{k+1} \right) = 0.$$

Mivel $\forall \lambda_i \neq \lambda_j$ azt kapjuk, hogy $\forall \alpha_i = 0$. Ebből azt kapjuk, hogy

$$\alpha_{k+1}\mathbf{s_{k+1}} = \mathbf{0}$$

és mivel nullvektor nem lehet sajátvektor, $\alpha_{k+1} = 0$. Tehát az $\mathbf{s_1}, \mathbf{s_2}, \dots, \mathbf{s_{k+1}}$ vektorok továbbra is független vektorok.

5.18. Izomorfia

Ha $\mathcal{A}: V_1 \mapsto V_2$ homogén lineáris leképezés bijektív, akkor izomorf leképezésnek nevezzük. Ekkor a vektorterek is izomorfak, azaz

$$V_1 \cong V_2$$
.

5.19. Izomorfia tulajdonságai

1. Reflekív

$$V_1 \cong V_1$$

2. Szimmetrikus

$$V_1 \cong V_2 \implies V_2 \cong V_1$$

3. Tranzitív

$$V_1 \cong V_2 \quad \land \quad V_2 \cong V_3 \implies V_1 \cong V_3$$

5.20. Tétel

 $V_1\cong V_2$ akkor és csak akkor, ha $\dim V_1=\dim V_2.$

5.21. Tétel

 $\mathcal{A}: V_1 \mapsto V_2$ homogén lineáris leképezés akkor és csak akkor izomorfia, ha ker $\mathcal{A} = \{\mathbf{0}\}$ és im $\mathcal{A} = V_2$.

6. Bázistranszformáció

6.1. Áttérés másik bázisra

Legyen V egy n-dimenziós vektortér, és

$$[a] = \{\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_n}\}\$$

$$[b] = \{\mathbf{b_1}, \mathbf{b_2}, \dots, \mathbf{b_n}\}$$

két bázis V-ben. Legyen adott $\mathbf{x}_{[a]}$ az \mathbf{x} vektor koordináta mátrixa az [a] bázisra. Ekkor a vektor koordináta mátrixa a [b] bázisra

$$\mathbf{x}_{[b]} = \mathbf{B}^{-1} \mathbf{x}_{[a]}$$

ahol

$$\mathbf{B} = \left(\mathbf{b_1}_{[a]} \middle| \mathbf{b_2}_{[a]} \middle| \dots \middle| \mathbf{b_n}_{[a]} \right)$$

az áttérési mátrix.

Bizonyítás

Tudjuk, hogy

$$\mathbf{x} = \mathbf{x}_{[a]} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}_{[a]} = x_1 \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}_{[a]} + x_2 \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}_{[a]} + \dots + x_n \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}_{[a]}.$$

Vegyük észre, hogy az összeg éppen

$$\mathbf{E}\mathbf{x}_{[a]} = \mathbf{x}_{[a]}.$$

Írjuk fel az \mathbf{x} vektort a másik bázis szerint is, csak most a [b] bázis vektorait ne a [b], hanem az [a] bázis szerint írjuk fel!

$$\mathbf{x} = \mathbf{x}_{[b]} = \begin{pmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_n \end{pmatrix}_{[b]} = x'_1 \begin{pmatrix} \beta_{11} \\ \beta_{21} \\ \vdots \\ \beta_{n1} \end{pmatrix}_{[a]} + x'_2 \begin{pmatrix} \beta_{12} \\ \beta_{22} \\ \vdots \\ \beta_{n2} \end{pmatrix}_{[a]} + \dots + x'_n \begin{pmatrix} \beta_{1n} \\ \beta_{2n} \\ \vdots \\ \beta_{nn} \end{pmatrix}_{[a]} = \begin{pmatrix} \sum_{k=1}^n x'_k \beta_{1k} \\ \sum_{k=1}^n x'_k \beta_{2k} \\ \vdots \\ \sum_{k=1}^n x'_k \beta_{nk} \end{pmatrix}_{[a]}.$$

Ismét vegyük észre, hogy

$$\begin{pmatrix} \sum_{k=1}^{n} x_k' \beta_{1k} \\ \sum_{k=1}^{n} x_k' \beta_{2k} \\ \vdots \\ \sum_{k=1}^{n} x_k' \beta_{nk} \end{pmatrix}_{[a]} = \mathbf{B} \mathbf{x}_{[b]}$$

ahol

$$\mathbf{B} = \left(\mathbf{b_1}_{[a]} \middle| \mathbf{b_2}_{[a]} \middle| \dots \middle| \mathbf{b_n}_{[a]} \right)$$

az áttérési mátrix. Ekkor azt kaptuk, hogy

$$\mathbf{x}_{[a]} = \mathbf{B}\mathbf{x}_{[b]}.$$

Mivel a ${\bf B}$ mátrix oszlopai a [b] bázis vektorai, ezért det ${\bf B} \neq 0$, így létezik ${\bf B}^{-1}$. Ekkor

$$\mathbf{x}_{[b]} = \mathbf{B}^{-1}\mathbf{x}_{[a]}.$$

6.2. Homogén lineáris leképezés mátrixa bázisváltás esetén

Adott $\mathcal{A}: V_1^n \mapsto V_2^k$ homogén lineáris leképezés mátrixa az $[a] \in V_1$ és $[b] \in V_2$ bázisokra $\mathbf{A}_{[a][b]}$. Ekkor áttérve az $[a'] \in V_1$ és $[b'] \in V_2$ bázisokra az új mátrix

$$\mathbf{A}_{[a'][b']} = \mathbf{T}^{-1} \mathbf{A}_{[a][b]} \mathbf{S}$$

ahol

$$\mathbf{S} = \left(\mathbf{a_{1[a]}'}ig|\mathbf{a_{2[a]}'}ig|\dotsig|\mathbf{a_{n[a]}'}
ight)$$

és

$$\mathbf{T} = \Big(\mathbf{b_{1[b]}'} ig| \mathbf{b_{2[b]}'} ig| \dots ig| \mathbf{b_{k[b]}'} \Big).$$

Homogén lineáris transzformáció esetén

$$\mathbf{A}_{[a']} = \mathbf{S}^{-1} \mathbf{A}_{[a]} \mathbf{S}.$$

Bizonyítás

Tudjuk, hogy $\mathbf{A}_{[a][b]}$ -re

$$\mathbf{A}_{[a][b]}\mathbf{x}_{[a]} = \mathbf{y}_{[b]}.$$

Tudjuk továbbá, hogy

$$\mathbf{x}_{[a]} = \mathbf{S}\mathbf{x}_{[a']}$$

és

$$\mathbf{y}_{[b]} = \mathbf{T}\mathbf{y}_{[b']}$$

ahol ${f S}$ és ${f T}$ a kiindulási vektortér, és az érkezési vektortér áttérési mátrixa. Ekkor

$$\mathbf{A}_{[a][b]}\mathbf{x}_{[a]} = \mathbf{A}_{[a][b]}\mathbf{S}\mathbf{x}_{[a']} = \mathbf{T}\mathbf{y}_{[b']}$$

amiből rendezéssel

$$\mathbf{T}^{-1}\mathbf{A}_{[a][b]}\mathbf{S}\mathbf{x}_{[a']} = \mathbf{y}_{[b']}.$$

Ekkor a definícióból

$$\mathbf{A}_{[a'][b']} = \mathbf{T}^{-1} \mathbf{A}_{[a][b]} \mathbf{S}.$$

6.3. Tétel

Tegyük fel, hogy az $\mathcal{A}:V\mapsto V$ homogén lineáris transzformáció sajátvektorai bázist alkotnak. Ekkor a transzformáció mátrixa erre a bázisra vonatkozóan egy diagonális mátrix, melynek főátlójában a sajátértékek állnak.

Bizonyítás

Legyenek a sajátvektorok az $\mathbf{s_1}, \mathbf{s_2}, \dots, \mathbf{s_n}$ vektorok. Ekkor

$$\mathcal{A}(\mathbf{s_i}) = \lambda_i \mathbf{s_i} = egin{pmatrix} 0 \ 0 \ dots \ \lambda_i \ dots \ 0 \end{pmatrix}_{[s]}$$

így

$$\mathbf{A}_{[s]} = \langle \lambda_i \rangle.$$

6.4. Mátrixok hasonlósága

Azt mondjuk, hogy $\mathbf{A} \cong \mathbf{B}$, hogyha létezik egy olyan \mathbf{C} mátrix, amelyre

$$A = C^{-1}BC$$

6.5. Kvadratikus mátrixok hasonlóságának tulajdonságai

1. Reflexiv

$$\mathbf{A} \cong \mathbf{A}$$

2. Szimmetrikus

$$\mathbf{A} \cong \mathbf{B} \implies \mathbf{B} \cong \mathbf{A}$$

3. Tranzitív

$$\mathbf{A} \cong \mathbf{B} \quad \wedge \quad \mathbf{B} \cong \mathbf{C} \implies \mathbf{A} \cong \mathbf{C}$$

6.6. Tétel

Hasonló mátrixok sajátértékei megegyeznek, továbbá ha $\mathbf{A} \cong \mathbf{B}$ akkor \mathbf{A} adott sajátértékéhez tartozó \mathbf{s} sajátvektorra a \mathbf{B} ugyanezen sajátértékéhez tartozó sajátvektora $\mathbf{C}\mathbf{s}$, ahol

$$\mathbf{A} = \mathbf{C}^{-1} \mathbf{B} \mathbf{C}.$$

Bizonyítás

Tudjuk, hogy

$$\mathbf{A}\mathbf{s} = \lambda \mathbf{s}.$$

Ekkor

$$As = C^{-1}BCs = \lambda s \implies BCs = \lambda Cs$$

amiből kapjuk is a bizonyítandót.

6.7. Diagonizálhatóság

Azt mondjuk, hogy az A mátrix diagonizálható, ha hasonló egy diagonális mátrixhoz.

6.8. Tétel

Az $\mathcal{A}:V\mapsto V$ homogén lineáris transzformáció mátrixa akkor és csak akkor diagonizálható, ha van sajátvektorokból álló bázisa.

Bizonyítás

Először tegyük fel, hogy a transzformációnak van sajátvektorokból álló bázisa. Ekkor már beláttuk, hogy a transzformáció mátrixa diagonizálható.

Most tegyük fel, hogy diagonizálható a mátrix. Ez azt jelenti, hogy hasonló egy $\mathbf D$ diagoniális mátrixhoz, azaz $\exists \mathbf S$ mátrix, amire

$$\mathbf{D} = \mathbf{S}^{-1} \mathbf{A} \mathbf{S} \implies \mathbf{S} \mathbf{D} = \mathbf{A} \mathbf{S}.$$

Ekkor tudjuk, hogy $\mathbf S$ oszlopai, mint vektorok, függetlenek, így ha belátjuk, hogy sajátvektorok, akkor azzal együtt belátjuk, hogy létezik sajátvektorokból álló bázis. Ekkor

$$\mathbf{SD} = (\mathbf{s_1} | \mathbf{s_2} | \dots | \mathbf{s_n}) \cdot \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix} = (\lambda_1 \mathbf{s_1} | \lambda_2 \mathbf{s_2} | \dots | \lambda_n \mathbf{s_n})$$

és

$$\mathbf{AS} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} s_{11} & s_{12} & \cdots & s_{1n} \\ s_{21} & s_{22} & \cdots & s_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ s_{n1} & s_{n2} & \cdots & s_{nn} \end{pmatrix} =$$

$$= \begin{pmatrix} \sum_{k=1}^{n} a_{1k} s_{1k} & \sum_{k=1}^{n} a_{1k} s_{2k} & \cdots & \sum_{k=1}^{n} a_{1k} s_{nk} \\ \sum_{k=1}^{n} a_{2k} s_{1k} & \sum_{k=1}^{n} a_{2k} s_{2k} & \cdots & \sum_{k=1}^{n} a_{2k} s_{nk} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{k=1}^{n} a_{nk} s_{1k} & \sum_{k=1}^{n} a_{nk} s_{2k} & \cdots & \sum_{k=1}^{n} a_{nk} s_{nk} \end{pmatrix} = (\mathbf{As_1} | \mathbf{As_2} | \dots | \mathbf{As_n}).$$

Mivel SD = AS így

$$\lambda_i \mathbf{s_i} = \mathbf{A} \mathbf{s}$$

tehát valóban sajátvektorok az $\mathbf{s_i}$ vektorok.

6.9. Tétel

Ha az $\mathcal{A}:V\mapsto V$ homogén lineáris transzformáció \mathbf{A} mátrixának sajátértékei mind különbözők, akkor a mátrix diagonizálható.

Bizonyítás

Mivel különböző sajátértékekhez tartozó sajátvektorok függetlenek, így bázist alkotnak. Emiatt valóban diagonizálható a mátrix.

6.10. Tétel

Ha az $\mathcal{A}:V\mapsto V$ homogén lineáris transzformáció **A** mátrixának összes sajátértékének geometriai multiplicitása megegyezik az algebrai multiplicitásával, akkor a mátrix diagonizálható.

6.11. Bilineáris függvény

A
odtt V vektortér. Ekkor $\mathcal{L}:V\times V\mapsto\mathbb{R}$ bilineáris függvény, ha mind
két változójában lineáris.

6.12. Bilineáris függvény mátrixa

Adott \mathcal{L} bilineáris függvény és $[b] = \{\mathbf{b_1}, \mathbf{b_2}, \dots, \mathbf{b_n}\}$ bázis. Ekkor függvény [b] bázis szerinti \mathbf{L} mátrixára

$$\mathbf{L} = [\mathcal{L}(b_i, b_i)].$$

6.13. Tétel

Adott $\mathcal{L}: V \times V \mapsto \mathbb{R}$ bilineáris függvény, és annak **L** mátrixa. Ekkor

$$\mathcal{L}(\mathbf{x}, \mathbf{y}) = \mathbf{x}^{\mathrm{T}} \mathbf{L} \mathbf{y}$$

ahol $\mathbf{x}, \mathbf{y} \in V$.

Bizonyítás

Legyen

$$\mathbf{x} = \sum_{k=1}^{n} x_k \mathbf{b_k}$$

$$\mathbf{y} = \sum_{j=1}^{n} y_j \mathbf{b_j}.$$

Ekkor

$$\mathcal{L}(\mathbf{x}, \mathbf{y}) = \mathcal{L}\left(\sum_{k=1}^{n} x_k \mathbf{b_k}, \sum_{j=1}^{n} y_j \mathbf{b_j}\right) = \sum_{k=1}^{n} \sum_{j=1}^{n} x_k y_j \mathcal{L}(\mathbf{b_k}, \mathbf{b_j}) = \mathbf{x}^{\mathrm{T}} \mathbf{L} \mathbf{y}.$$

Éppen ezt kellett bizonyítanunk.

6.14. Szimmetrikus bilineáris függvény

Adott $\mathcal{L}: V \times V \mapsto \mathbb{R}$ bilineáris függvény szimmetrikus, ha $\forall \mathbf{x}, \mathbf{y} \in V$ esetén

$$\mathcal{L}(\mathbf{x}, \mathbf{y}) = \mathcal{L}(\mathbf{y}, \mathbf{x})$$

teljesül.

6.15. Tétel

Az \mathcal{L} bilineáris függvény akkor és csak akkor szimmetrikus, ha az \mathbf{L} mátrixa szimmetrikus.

6.16. Kvadratikus alak

Az $\mathcal{L}: V \times V \mapsto \mathbb{R}$ bilineáris függvényhez tartozó $\mathcal{Q}: V \mapsto \mathbb{R}$ függvény az \mathcal{L} kvadratikus alakjának nevezzük, ahol

$$\mathcal{Q}(\mathbf{x}) = \mathcal{L}(\mathbf{x}, \mathbf{x}) = \mathbf{x}^T \mathbf{Q} \mathbf{x}$$

ahol \mathbf{Q} a bilineáris függvény szimmetrikus mátrixa.

6.17. Tétel

Szimmetrikus mátrix különböző sajátértékeihez tartozó sajátvektorok merőlegesek.

Bizonyítás

Legyen a mátrix \mathbf{A} , és két különböző sajátérték λ_1, λ_2 , illetve a hozzájuk tartozó sajátvektorok $\mathbf{s_1}, \mathbf{s_2}$. Ekkor

$$\mathbf{A}\mathbf{s_1}\mathbf{s_2} = \lambda_1\mathbf{s_1}\mathbf{s_2}$$

$$\mathbf{A}\mathbf{s_2}\mathbf{s_1} = \lambda_2\mathbf{s_2}\mathbf{s_1}.$$

Mivel $\mathbf{s_1s_2} = \mathbf{s_2s_1}$, így a két egyenletet kivonva egymásból

$$(\lambda_1 - \lambda_2)\mathbf{s_1}\mathbf{s_2} = 0.$$

Mivel $\lambda_1 \neq \lambda_2$, így $\mathbf{s_1} \perp \mathbf{s_2}$.

6.18. Ortogonális diagonalizálás

Egy mátrix ortogonálisan diagonalizálható, ha diagonalizálható ortogonális mátrixszal.

6.19. Spektrál tétel

Négyzetes mátrix akkor és csak akkor diagonalizálható ortogonálisan, ha szimmetrikus.

6.20. Főtengely

Aodtt $Q = \mathbf{x}^{\mathrm{T}}\mathbf{Q}\mathbf{x}$ kvadratikus alak $\mathbf{Q} \in \mathbb{R}^{n \times n}$ szimmetrikus mátrix n különböző sajátértékéhez tartozó sajátaltereit a kvadratikus alak főtengelyeinek nevezzük.

6.21. Főtengely transzformáció

Adott $Q = \mathbf{x}^T \mathbf{Q} \mathbf{x}$ kvadratikus alak. Legyen \mathbf{S} olyan mátrix, amellyel a \mathbf{Q} mátrix ortogonálisan diagonalizálható. Ekkor az $\mathbf{x} = \mathbf{S} \mathbf{u}$ transzformációt alkalmazva

$$\mathcal{Q} = \mathbf{x}^{\mathrm{T}} \mathbf{Q} \mathbf{x} = \mathbf{u}^{\mathrm{T}} \mathbf{D} \mathbf{u} = \sum_{k=1}^{n} \lambda_{k} \mathbf{u_{k}}^{2}$$

ahol λ_k a ${\bf Q}$ mátrix sajátértékei. Tehát áttérve ${\bf Q}$ ortonormált sajátbázisára, a kvadratikus alak a fenti alakra hozható.

Bizonyítás

Mivel $\mathbf{x} = \mathbf{S}\mathbf{u}$, így $\mathbf{x}^{\mathrm{T}} = \mathbf{u}^{\mathrm{T}}\mathbf{S}^{\mathrm{T}}$. Mivel $\mathbf{D} = \mathbf{S}^{-1}\mathbf{Q}\mathbf{S}$, így $\mathbf{Q} = \mathbf{S}\mathbf{D}\mathbf{S}^{-1}$. Ekkor

$$Q = \mathbf{x}^{\mathrm{T}} \mathbf{Q} \mathbf{x} = \mathbf{u}^{\mathrm{T}} \mathbf{S}^{\mathrm{T}} \mathbf{S} \mathbf{D} \mathbf{S}^{-1} \mathbf{S} \mathbf{u} = \mathbf{u}^{\mathrm{T}} \mathbf{E} \mathbf{D} \mathbf{E} \mathbf{u} = \mathbf{u}^{\mathrm{T}} \mathbf{D} \mathbf{u} = \sum_{k=1}^{n} \lambda_{k} \mathbf{u_{k}}^{2}.$$

6.22. Kvadratikus alak definitsége

- 1. Azt mondjuk, hogy a \mathcal{Q} kvadratikus alak pozitív (szemi)definit, ha $\forall \mathbf{x} \neq \mathbf{0}$ esetén $\mathcal{Q} > 0$ ($\mathcal{Q} \geq 0$).
- 2. Azt mondjuk, hogy a \mathcal{Q} kvadratikus alak negatív (szemi)definit, ha $\forall \mathbf{x} \neq \mathbf{0}$ esetén $\mathcal{Q} < 0$ ($\mathcal{Q} \leq 0$).
- 3. Azt mondjuk, hogy a Q kvadratikus alak indefinit, ha pozitív és negatív értékeket is felvesz.

6.23. Szimmetrikus mátrix definitsége

- 1. Azt mondjuk, hogy a \mathbf{Q} szimmetrikus mátrix pozitív (szemi)definit, ha minden sajátértéke pozitív (nemnegatív). Ekkor $\mathbf{Q} > 0$ ($\mathbf{Q} \ge 0$).
- 2. Azt mondjuk, hogy a \mathbf{Q} szimmetrikus mátrix negatív (szemi)definit, ha minden sajátértéke negatív (nempozitív). Ekkor $\mathbf{Q} < 0$ ($\mathbf{Q} \le 0$).
- 3. Azt mondjuk, hogy a Q szimmetrikus mátrix indefinit, ha van pozitív és negatív sajátértéke is.

Lineáris Algebra I-II. 7. KÚPSZELETEK

7. Kúpszeletek

7.1. Parabola

- 1. Parabola azon pontok halmaza a síkon, amelyek egy adott fókuszponttól és egy direkrixttől egyenlő távolságra vannak.
- 2. Parabolát kapunk akkor, ha egy kúpot az alkotókkal párhuzamos síkkal metszünk.
- 3. Parabola olyan kúpszelet, amelynek egy Dandelin-gömbje van.

7.2. Parabola középponti egyenlete

Parabola középponti egyenlete

$$y = \frac{1}{2p}x^2.$$

7.3. Ellipszis

- 1. Ellipszis azon pontok halmaza a síkon, amelyek két fókuszponttól vett távolságának összege állandó.
- 2. Ellipszist kapunk akkor, ha egy kúpot metszünk olyan síkkal, amely nem párhuzamos sem az alkotókkal, sem a tengellyel.
- 3. Ellipszis olyan kúpszelet, amelynek két Dandelin-gömbje van azonos félkúpban.

7.4. Ellipszis középponti egyenlete

Ellipszis középponti egyenlete

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

7.5. Hiperbola

- 1. Hiperbola azon pontok halmaza a síkon, amelyek két fókuszponttól vett távolságának különbsége állandó.
- 2. Hiperbolát kapunk akkor, ha egy kúpot a tengellyel párhuzamos síkkal metszünk.
- 3. Hiperbola olyan kúpszelet, amelynek két Dandelin-gömbje van különböző félkúpokban.

7.6. Hiperbola középponti egyenlete

Hiperbola középponti egyenlete

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$$

8. Komplex számok

8.1. Algebrai alak

Adott z komplex szám algebrai alakja z=x+iy, ahol a valós rész $\Re(z)=x$ és a képzetes rész $\Im(z)=y$, továbbá $i^2=-1$.

8.2. Műveletek algebrai alakban

$$z_1 = x_1 + iy_1$$
 $z_2 = x_2 + iy_2$

1. $z_1 \pm z_2 = x_1 \pm x_2 + i(y_1 \pm y_2)$

2. $z_1 z_2 = x_1 x_2 - y_1 y_1 + i(x_1 y_2 + x_2 y_1)$

3. $\frac{z_1}{z_2} = \frac{x_1x_2 + y_1y_2}{x_2^2 + y_2^2} + i\frac{x_2y_1 - x_1y_2}{x_2^2 + y_2^2}$

4. $z_1^n = (x_1 + iy_1)^n = \sum_{k=1}^n \binom{n}{k} x_1^k (iy_1)^{n-k}$

 $\overline{z_1} = x_1 - iy_1$

Bizonyítás

1. Triviális.

2. $z_1 z_2 = (x_1 + iy_1)(x_2 + iy_2) = x_1 x_2 + i^2 y_1 y_2 + i x_1 y_2 + i x_2 y_1 = x_1 x_2 - y_1 y_1 + i (x_1 y_2 + x_2 y_1)$

3. $\frac{z_1}{z_2} = \frac{x_1 + iy_1}{x_2 + iy_2} = \frac{(x_1 + iy_1)(x_2 - iy_2)}{(x_2 + iy_2)(x_2 - iy_2)} = \frac{x_1x_2 + y_1y_2}{x_2^2 + y_2^2} + i\frac{x_2y_1 - x_1y_2}{x_2^2 + y_2^2}$

8.3. Trigonometrikus alak

Adott z komplex szám trigonometrikus alakja $z = r(\cos \varphi + i \sin \varphi)$, ahol r = |z| a szám távolsága az origótól, és $\varphi = \arg z$ a valós tengelytől mért pozitív irányszög.

8.4. Átváltás algebrai és trigonometrikus alak között

Legyen $z = x + iy = r(\cos \varphi + i \sin \varphi)$. Ekkor $r = \sqrt{x^2 + y^2}$ és

$$\varphi = \arcsin \frac{y}{\sqrt{x^2 + y^2}} = \arccos \frac{x}{\sqrt{x^2 + y^2}} = \operatorname{arctg} \frac{y}{x}$$

továbbá $x = r \cos \varphi$ és $y = r \sin \varphi$.

8.5. Műveletek trigonometrikus alakban

$$z_1 = r_1(\cos\varphi_1 + i\sin\varphi_2)$$
 $z_2 = r_2(\cos\varphi_2 + i\sin\varphi_2)$

1.

$$z_1 z_2 = r_1 r_1 (\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2))$$

2.

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left(\cos \left(\varphi_1 - \varphi_2 \right) + i \sin \left(\varphi_1 - \varphi_2 \right) \right)$$

3.

$$z_1^n = r_1^n \left(\cos\left(n\varphi_1\right) + i\sin\left(n\varphi_1\right)\right)$$

4.

$$\sqrt[n]{z_1} = \sqrt[n]{r_1} \left(\cos \left(\frac{\varphi_1 + 2k\pi}{n} \right) + i \sin \left(\frac{\varphi_1 + 2k\pi}{n} \right) \right) \qquad k = 0, 1, \dots, n-1$$

5.

$$\overline{z_1} = r_1(\cos\varphi_1 - i\sin\varphi_1)$$

Bizonyítás

1.

$$z_1 z_2 = r_1(\cos\varphi_1 + i\sin\varphi_1)r_2(\cos\varphi_2 + i\sin\varphi_2) = r_1 r_2(\cos\varphi_1\cos\varphi_2 - \sin\varphi_1\sin\varphi_2) + r_1 r_2 i(\cos\varphi_1\sin\varphi_2 + \cos\varphi_2\sin\varphi_1) = r_1 r_1 (\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2))$$

2.

$$\begin{split} \frac{z_1}{z_2} &= \frac{r_1(\cos\varphi_1 + i\sin\varphi_1)}{r_2(\cos\varphi_2 + i\sin\varphi_2)} = \\ &= \frac{r_1}{r_2} \left(\frac{\cos\varphi_1\cos\varphi_2 + \sin\varphi_1\sin\varphi_2}{\cos^2\varphi_2 + \sin^2\varphi_2} + i\frac{\cos\varphi_1\sin\varphi_2 - \cos\varphi_2\sin\varphi_1}{\cos^2\varphi_2 + \sin^2\varphi_2} \right) = \\ &= \frac{r_1}{r_2} \Big(\cos\left(\varphi_1 - \varphi_2\right) + i\sin\left(\varphi_1 - \varphi_2\right) \Big) \end{split}$$

3. Teljes indukcióval bizonyítunk. Láthatjuk, hogy n=1-re teljesül az állítás. Ekkor tegyük fel, hogy valamilyen n-re

$$z_1^n = r_1^n \left(\cos\left(n\varphi_1\right) + i\sin\left(n\varphi_1\right)\right)$$

teljesül. Ekkor kéne, hogy n+1-re is teljesüljön. Felhasználva a szorzatra vonatkozó képletet, kapjuk, hogy

$$z_1^{n+1} = z_1^n z_1 = r_1^{n+1} (\cos(n+1)\varphi_1 + i\sin(n+1)\varphi_1).$$

Ezzel az indukciós eljárást befejeztük.

4. Legyen $\sqrt[n]{z_1} = z$. Ekkor nyilván $z^n = z_1$ teljesül. Tehát $z = r(\cos \alpha + i \sin \alpha)$ esetén $r^n = r_1$, $\cos(n\alpha) = \cos \varphi_1$, illetve $\sin(n\alpha) = \sin \varphi_1$. Ezek alapján $r = \sqrt[n]{r_1}$. Továbbá n különböző argumentum esetén is teljesülhetnek az összefüggések, emiatt

$$\alpha = \frac{\varphi_1 + 2k\pi}{n} \qquad k = 0, 1, \dots, n - 1.$$

Tehát valóban

$$\sqrt[n]{z_1} = \sqrt[n]{r_1} \left(\cos \left(\frac{\varphi_1 + 2k\pi}{n} \right) + i \sin \left(\frac{\varphi_1 + 2k\pi}{n} \right) \right) \qquad k = 0, 1, \dots, n - 1.$$

8.6. Exponenciális alak

Adott z trigonometrikus alakja $z=re^{i\varphi}$, ahol r=|z| a szám távolsága az origótól, és $\varphi=\arg z$ a valós tengelytől mért pozitív irányszög.

8.7. Műveletek exponenciális alakban

$$z_1 = r_1 e^{i\varphi_1} \qquad z_2 = r_2 e^{i\varphi_2}$$

1.

$$z_1 z_2 = r_1 r_2 e^{i(\varphi_1 + \varphi_2)}$$

2.

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\varphi_1 - \varphi_2)}$$

3.

$$z_1^n = r_1^n e^{in\varphi_1}$$

4.

$$\sqrt[n]{z_1} = \sqrt[n]{r_1} e^{i\left(\frac{\varphi_1 + 2k\pi}{n}\right)}$$
 $k = 0, 1, \dots, n-1$

5.

$$\overline{z_1} = r_1 e^{-i\varphi_1}$$

8.8. Egységgyök

A z komplex szám n-edik egységgyök, ha $z^n=1$. A gyökvonás képletéből tudjuk, hogy ebből pontosan n darab van. Ekkor

$$\varepsilon_k = \cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n} = e^{i\frac{2k\pi}{n}} \qquad k = 0, 1, \dots, n - 1.$$

8.9. Tétel

Az n-edik egységgyökök Abel-csoportot alkotnak a szorzásra nézve.

8.10. Primitív egységgyök

- 1. ε_k primitív n-edik egységgyök, ha az összes többi egységgyök előáll a hatványaként.
- 2. ε_k primitív n-edik egységgyök, ha 0 < m < nesetén $\varepsilon_k^m \neq 1.$
- 3. ε_k primitív *n*-edik egységgyök, ha (n, k) = 1.

8.11. Algebra alaptétele

Egy n-edfokú komplex együtthatós polinomnak van gyöke a komplex számok körében.