试题整理 (回忆版) Nicolas-Keng

数分二期末

- 1 (1) 计算极限 $\lim_{x\to 0} \frac{x^2}{\int_{\cos x}^1 e^{-t^2} dt}$;
- (2) 设 $f(x) = \sin \frac{1}{x}, x \in (0,1]$, 且补充定义 f(0) = 0. 则: (i) 证明 f(x) 在 [0,1] 上 Riemann 可积;
- (ii) 令 $F(x) = \int_0^x f(t) dt$, 那么 F(x) 在 [0,1] 上是否可导? 如果可导, 计算 F'(x).
- 2 设 $f(x,y) = \frac{(y^2 x)^2}{y^4 + x^2}$, $(x,y) \in \mathbb{R}^2 (0,0)$, 那么 $\lim_{(x,y)\to(0,0)} f(x,y)$ 是否存在? 计算之或给出证明.
- 3(1) 设 f(x) 在 [a,b] 上连续可导, 求 $\lim_{n\to\infty}\int_a^b f(x)\sin nx\,\mathrm{d}x=0$. 当 f(x) 可积时, 结论如何?
- (2) 设 f(x) 在 $[0, 2\pi]$ 上连续, 证明 $\lim_{n\to\infty} \int_0^{2\pi} f(x) |\sin nx| dx = \frac{2}{\pi} \int_0^{2\pi} f(x) dx$.
- 4~(1) 讨论级数 $\sum_{n=2}^{\infty} n^p \left(\frac{1}{\sqrt{n-1}} \frac{1}{\sqrt{n}} \right)$ 的敛散性, 其中 $p \in \mathbb{R}$.
- (2) 如果级数 $\sum_{n=1}^{\infty} a_n$ 收敛且 $\lim_{n\to+\infty} \frac{b_n}{a_n} = 1$, 那么级数 $\sum_{n=1}^{\infty} b_n$ 是否一定收敛?
- (3) 讨论级数 $\sum_{n=2}^{\infty} \frac{\sin n}{n^p + \sin n}$, $p \in \mathbb{R}$ 的敛散性 (包括绝对收敛, 条件收敛和发散), 其中 p > 0.
- 5(1) 叙述无穷积分 $\int_{1}^{+\infty} f(x) dx$ 收敛的 Cauchy 收敛原理.
- (2) 讨论无穷积分 $\int_1^{+\infty} x \sin(x^p) dx$ 的敛散性, 包括绝对收敛, 条件收敛和发散, 其中 $p \in \mathbb{R}$.
- (3) 设 f(x) 在 $[0, +\infty)$ 上连续且 $\lim_{x \to +\infty} f(x) = k$. 任取 0 < a < b, 反常积分 $\int_0^{+\infty} \frac{f(ax) f(bx)}{x} \, \mathrm{d}x$ 是否收敛?
 - 6(1) 叙述函数项级数 $\sum_{n=1}^{\infty} u_n(x)$ 在区间 I 上一致收敛于和函数 S(x) 的定义;
 - (2) 举例说明 (0,1) 上的连续函数列 $f_n(x)$ 的逐点收敛极限 f(x) 在 (0,1) 上不一定连续;
 - (3) 讨论函数项级数 $\sum_{n=1}^{\infty} x^{\alpha} e^{-nx}$ 在 $(0,+\infty)$ 上的一致收敛性, 其中 $\alpha \in \mathbb{R}$.
 - (4) 讨论函数项级数 $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^{\alpha}}$ 在 $x \in (0, 2\pi)$ 上的一致收敛性, 其中 $\alpha > 0$.