Announcements

Homework 3 has been posted.

Today's Lecture

- Logistic regression

LOGISTIC REGRESSION

INTRO. (AUGMENTED NOTATION)

REGRESSION (1), LINEAR)
$$y = \#$$

$$\chi = \text{LIVING AREA}$$

$$f(x) = w^{T}x$$

LOGISTIC REGRESSION

$$\widehat{f}(x) = p(y=1|x, \emptyset)$$

Model $P(y|x,w) = Ber(y|sigm(w^{T}x))$ $= \mu I(y=1)(1-\mu)I(y=0) \quad [M 8.2]$ $IN WHICH \mu = sigm(w^{T}x)$ $CHANGE OUTPUT(y) REPRESENTATION:
<math display="block">LET \tilde{y} = 2y-1 =) \quad \tilde{y} \in \S-1,+1$ $P(\tilde{y}|x,w) = \mu I(\tilde{y}=1) \quad (1-\mu) I(\tilde{y}=1)$

$$p(\tilde{y}|x,w) = [sigm(\tilde{y}w^Tx)]^{\#(\tilde{y}=1)}$$
• $[sigm(\tilde{y}w^Tx)]^{\#(\tilde{y}=-1)}$

can show:
$$sigm(-s)=1-sigm(s)$$

$$p(y|x,w)=sigm(yw^Tx)$$

$$-l(w)=NLL(w)=\sum_{i=1}^{N}ln[1+e^{-\frac{2}{3}iw^{2}}]$$

$$=J(w, \delta)$$

JIS CONVEX.

Let:
$$-l(w) = \underbrace{\Xi}_{i=1} E_i, \quad E_i = \ln[1 + e^{-\widetilde{y}_i} w^{T} x]$$

		Ei=ln[Ite-giw 2]
+	>0	0 <e; 2<="" <="" ln="" td=""></e;>
+1	>>0	$\epsilon_i \gtrsim 0$
+(<0	Ei > ln2
+	240	E; >> lm2)
		SE = wtx
1		
	MMIZEJ	? -) J IS CONVEX.

CAN WE $\nabla_{\mathbf{w}} J(\underline{\mathbf{w}}, \underline{\mathbf{b}}) = 0$, Solve

ALGEBRAICALLY?

NOT TRACTIBLE.

HOW ELSE?

- ITERATIVE, GRADIENT-BASED TECHNIQUES.

> GRADIENT DESCENT (STEEPEST DESCENT)

(BATCHUPDATE)

CANSHOW:	y ixi
(e.g., see EESS9 or Discussion3).	He giwt(i) zi
J OTHER TECHN	11 QUES (e.g., Murphy 8,3,2-8,3,5)

-) YES, WOULD DE USEFUL.

-) YES, WE CAN ADD A PRIOR TERM P(W)

-> MAP EST. [>RIDGE REGRESSION]

-> BAYESIAN INFERENCE.

-> LOGISTIC REGRESSION:

-> J(M, A) = NLL(W) + 1 | W|

-> From (IF P(W) = GAUSSIAN

1003istic = N(W|0,t²)

regr., MLE.