Заняття 3. Динаміка обертального руху.

Аудиторне заняття

- 1. [1.115] Знайти момент інерції I диску масою m і радіусом R відносно осей, що перпендикулярні до його площини і проходять а) через його центр; б) через його обід.
- 2. Циліндр скочується без проковзування по похилій площини, яка утворює кут α з горизонтом. Визначити прискорення а центру мас циліндра. Яким має бути коефіцієнт тертя μ між циліндром та площиною, щоб проковзування не відбувалося?
- 3. [1.131] Через блок у вигляді суцільного диску масою *m* перекинута тонка нерозтяжна нитка, до кінців якої підвішено вантажі масами *m*₁ і *m*₂. Визначити прискорення вантажів, якщо їх відпустити. Тертям і масою нитки знехтувати.
- 4. [1.133] На легкому столику, який вільно обертається з кутовою швидкістю ω_1 , стоїть людина і тримає на випростаних руках на відстані l_1 одна від одної дві однакові гирі масою m кожна. Потім людина зблизила гирі до відстані l_2 і кутова швидкість обертання столика при цьому зросла до ω_2 . Вважаючи момент інерції людини відносно осі обертання столика сталим, знайти роботу A, яку вона виконала.

Домашнє завдання

1. [1.130] На циліндр масою m=10 кг і радіусом R=15 см, закріплений на кронштейні, намотана нитка (див.рис.). В момент часу t=0 до кінця нитки у напрямку дотичної до циліндра почала діяти сила F=10 Н. За який час τ циліндр зробить N=5 обертів?

- 2. [1.132] Пробірка довжиною l = 15 см, яка стояла вертикально, починає падати на стіл. Тертя настільки велике, що її нижній кінець не ковзає. Яку кутову та лінійну швидкість буде мати в кінці падіння середина пробірки?
- 3. [1.120] Молекулу HCl можна уявити у вигляді двох маленьких кульок масами m_l і m_2 , які знаходяться на відстані l одна від одної. Визначити момент інерції l молекули відносно осі, що проходить через центр мас системи перпендикулярно до прямої, що з'єднує атоми.