(fik)-cohomology of tempered reps. Apr 5, 21

Sug Woo Shin I. Setup G conneded reductive pp /IR. SIn GLn Upg (slightly move peneral) f := Lie G K C G (IR) morninal compact. On Up × Ug 50n Po CG minimal parabolic. Fix Ao maximal split tome in Po (ap Ro = 1Rth) (conneded) (P,A) Standard p-pair: P > Po, (Ao > A.) $\longrightarrow P = M \times N$, $M = {}^{\circ}M \times A$ ($M \neq M$) $Ex G = GL_n \supset P_o = () > A_o = ()$ $=: P_{n_1,\dots,n_r} > A \simeq (\mathbb{R}^{\times})^r$ $\underset{n_1 \dots n_r}{\longleftrightarrow} \dots \longleftrightarrow$ $^{\circ}M = \begin{pmatrix} \boxed{A_{i}} & 0 \\ 0 & \boxed{A_{i}} \end{pmatrix}$, $|\det A_{i}| = |$ $|\det A_{i}| = |$ $|\det A_{i}| = |$ $|\det A_{i}| = |$ $|\det A_{i}| = |$

Fundamental Stuff (fun.)
(fun.)
Def A Cartan subgp TCG /pp is frm.
Def A Cartan subsp $T \subset G$ / is frm. $(\approx max. + onus)$
if rkpT is minimal (= rkG-rk K = lo)
Fact Such T form a single G(IR)-conj. class.
Def · P is fun. if minimal among parabolics containing fun. Cartan. · (P, A) (or P) is cuspidal if $M/A = {}^{\circ}M$ contains cpt Cartan.
$\frac{\text{containing run, carrian,}}{\text{containing run, carrian,}} = \frac{1}{100} \text{ containing run, carrian,}$
Contains.
90, 00,
Fact P frm. (=) P arepidal + Mrs 1 Grea + .
Fact P frm. (P, A) cuspidal (P, A) cuspidal (P) M has disc. series reps
$5x(G=Gln)$ P is fun. $(n_1, -, n_r) = \{2, -, 2, 1, -, 2\}$
for. Cartan arepidal ← YE, n; ≤ 2.
(Risk) mod
(D) center X = tur.
50(2)
VI, = VI2 = 1
$(G = U_{p,q})$ $P = G$ is fim. $(\frac{E_r}{R_{eq}})$ $G(r) \subset U_{r,n}$
$(G = U_{P,G})$ $P = G$ is fun. $(\frac{E_{P}}{P_{P}})$ $G(n \subset U_{n,n})$ $G(n)$ $G(n)$ $G(n)$ $G(n)$ $G(n)$ $G(n)$ $G(n)$ $G(n)$
/

Numerical	28_		
g-(G):=			
L₀(G):=	lo J &		
q. (G):=	780		
,	0		
Ex	9	Lo	90
G = A spl. torus	± dimA	dim A	0
SLn	$\frac{1}{2} \left(\frac{n(n+1)}{2} - 1 \right)$	$n-\lfloor \frac{n}{2} \rfloor - \lfloor \frac{n}{2} \rfloor$	

Ex	9	l lo	90
G=A spl. torus	± dimA	dim A	0 5
SLn	$\frac{1}{2} \left(\frac{n(n+1)}{2} - 1 \right)$	$n-\lfloor \frac{n}{2} \rfloor - \lfloor \frac{n}{2} \rfloor$	two
GLn	上n(n+1)	$n-\lfloor \frac{n}{2} \rfloor$	extremes
$U_{\rho,\gamma}$	pq		pg /

	ulen			
II. Statement of Thm (twisting	Ly	fin. dim	reps)

Main Thm	< P, A)	cuspidal.	P=/	N X N
	6 dirc.	senies rep		6, = 60 Cv
	vein*	~ A	(IR) (mittory	J 1 7
			$\mathbb{C}_{\mathcal{V}}$	$M = ^{\circ} M \times A$

If
$$H^*(s,K; I_p(s)) \neq 0$$
.
 $\Rightarrow (i) \quad \nu = 0$

(ii) P is from unique (ii)

(iii) $\chi_s = -sp$ for $s \in W^p (= W/w_m)$

and $f(iv)$
 $dim H^i(s,K,I_p(s)) = (s-s_0)$, $s \in [s_0,s_0+l_0]$


```
E_{2}^{p,\delta} = H^{p}(m, K_{p}; H^{\delta}(n, \delta_{p+r})) \Rightarrow H^{p+\delta}(p, K_{p}, \delta_{p+r})
                           Ho(n,C) & Op+v
     Kostowt H^{\mathfrak{F}}(n,\mathbb{C}) = \bigoplus_{s \in W^{\mathcal{P}}} \mathbb{E}_{sp-\mathcal{P}} as M_{\mathbb{C}}-mod.

L(s) = \mathfrak{F} highest at rep.
 M = M \times A \qquad M \qquad A
H^{*}(m, Kp; Esp-p \otimes 6 \otimes C_{p+\nu})
= H^{*}(m, Kp, Esp-p | M \otimes 0) \otimes H^{*}(n, C_{sp-p+p+\nu})
K \text{ in refh}
By CDS), (1) is concentrated in H<sup>q(M)</sup>, dim=1.
```