Machine Learning and Data Mining Ordinary Regression & Ridge Regression

Patricia Hoffman, PhD

Most Slides taken from
Stanford Professor Robert Tibshirani's
Statistic 315a Course
Slides also taken from
Stanford Professor Trevor Hastie

Regression Resources Main Sources

- Stanford Professor Robert Tibshirani
 - http://www-stat.stanford.edu/~tibs/stat315a/LECTURES/chap3.pdf
- Stanford Professor Trevor Hastie
 - http://www.stanford.edu/~hastie/index.html
 - http://www-stat.stanford.edu/~tibs/stat315a/LECTURES/linear.pdf

- Patricia Hoffman, PhD Section 1.2
 - RoadmapW1stChapter.pdf

More Resources

- Introduction to Data Mining
 - By Tan, Steinbach, Kumar
 - Appendix D & Section 5.8
- Elements of Statistical Learning
 - By Hastie, Tibshirani, Friedman
 - http://www-stat.stanford.edu/~tibs/ElemStatLearn/
 - Chapters 3 & 4

Project Suggestions

- Project Paper Suggestion: Elastic Net
 - Fast Algorithm for combination of
 - Ridge Regression & Lasso Regression
 - http://www.jstatsoft.org/v33/i01/paper
 - http://www.sfbayacm.org/event/advances-regularization-bridgeregression-and-coordinate-descent-algorithms
- R Package glmnet implements Elastic Net
 - http://cran.r-project.org/web/packages/glmnet/glmnet.pdf
- Basis Expansions
 - ESL Hastie, Tibshirani, Friedman
 - Chapter 5 Second Edition
 - Polynomials and Splines
 - Example Code in ImvsridgeConcrete.R

Regression – Example Code

- MyFirstRLesson .R & UserDefnFunction.R
 - Solve Ax = b
 - Simple Example of R function Im
 - Scale Function
- ImvsridgeSonarData.R
 - Illustrates Ordinary Linear Regression Im
 - Compared with Ridge Regression Im.ridge
- MulticlassRegressionIrisData.R
 - Use Regression on a Multi-classification Problem
- basicExpansion.R

Preliminaries

Data $(x_1, y_1), \ldots (x_N, y_N)$.

 x_i is the predictor (regressor, covariate, feature, independent variable)

 y_i is the response (dependent variable, outcome)

We denote the *regression function* by

$$f(\mathbf{X}) = \mathbf{E}(Y|x)$$

This is the conditional expectation of Y given x.

The linear regression model assumes a specific linear form for $f(\mathbf{X})$

$$f(\mathbf{X}) = \beta_0 + \Sigma_j \mathbf{X} \beta_j$$

which is usually thought of as an approximation to the truth.

Linear Regression

Goal – Find the Best Betas

Find the betas which will make the difference between $f(x_i)$ and y_i the smallest where

$$f(\mathbf{X}) = \beta_0 + \Sigma_j \mathbf{X} \beta_j$$

That is minimize the root mean square error

$$\sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij}\beta_j)^2$$

Regular Calculus: Take the derivative, set it equal to zero, and solve for the betas Solution is in Appendix D of our text

Geometry of Least Squares

 $\hat{y} = X\hat{\beta}$ is the orthogonal projection of y onto the subspace $\mathcal{M} \subset \mathbf{R}^n$ spanned by the columns of X. This is true even if X is not of full column rank.

Proof: Pythagoras.

See Figure 3.1 of ESL Text

http://www-stat.stanford.edu/~tibs/stat315a/LECTURES/linear.pdf

Ordinary Least Squares Normal Equation & Solution

Find best function f (where X is the input matrix of N observations of p factors)

$$f(\mathbf{X}) = \beta_0 + \sum_j \mathbf{X} \beta_j$$

Oservations: $X^T = (X_1, X_2, ... X_p)$

Regression Coef: $\widehat{\beta} = (\beta_0...\beta_p)$

minimize RSS
$$\sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2$$

Solution:

$$\widehat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Note: β_0 is included in the beta vector and the constant value 1 is added to X. That is $x_{i0} = 1$ for all i and the matrix X is a $N \times p + 1$ matrix

Ridge Regression

 λ penalizes the sum-of-squares of the parameters. $\lambda \geq 0$ is the complexity parameter which controls shrinkage. $\lambda = 0 \Rightarrow$ solution is the same as regular regression.

If $\lambda \to \infty$, then $\beta_{j=1...p} \to 0$ and the solution is the average y

Minimize the following:

$$\sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

Solution:

$$\widehat{\beta}_{\lambda}(\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^T\mathbf{y}$$
 where \mathbf{I} is the identity matrix

Ridge Regression - Solution Normal Equation

 $\lambda \geq 0$ complexity parameter controls shrinkage.

$$\lambda = 0 \Rightarrow$$
 solution is the same as regular regression.

 λ penalizes the sum-of-squares of the parameters.

if
$$\lambda \to \infty$$
, then $\hat{\beta} \to 0$ the solution becomes the average y

Minimize the following:

$$\sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij}\beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

The Solution:

$$\hat{\beta}_{\lambda} = (X^T X + \lambda I)^{-1} X^T y$$

Compare OLS with Ridge Regression

Ordinary Linear Regression

$$\widehat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Ridge Regression

$$\hat{\beta}_{\lambda} = (X^T X + \lambda I)^{-1} X^T y$$

The lambda parameter is used to control the fit of the model

Ridge Regression Benefits

- Over fitting results in models that are more complex than necessary
- Ridge Regression provides a tuning parameter lambda which is used to adjust the fit of the model to the data
- Use cross validation to find the best value for lambda

Model Complexity

FIGURE 2.11. Test and training error as a function of model complexity.

From Elements of Statistical Learning by Hastie, Tibshirani, Friedman

ImvsridgeSonarData.R Example Code

```
Linear Regression
ImSonar <- Im(V61~., data = sonarTrain)
```

Ridge Regression ImSonar <- Im.ridge(V61~., data = SonarIn)

Note: ridge regression does not have a predict function in R

Basis Expansion

(basisExpansion.r)

Basis Expansion

(basisExpansion.r)

error = 1.929327

x y -1 1.30 0 0.00 1 0.07 2 4.20 3 8.80 error = 0.3590002

 x
 x2
 y

 -1
 1
 1.30

 0
 0
 0.00

 1
 1
 0.07

 2
 4
 4.20

 3
 9
 8.80

Ridge Regression Linear Terms Concrete Data

Error vs Log(Lambda)

Ridge Regression Basis Expansion Spline Terms Concrete Data

Error vs Log(Lambda)

Ridge Regression Basis Expansion 4th Degree Polynomial Concrete Data

Multiclass Problem

The Target $Y = \{y1, y2, ..., yk\}$ has multiple values – Iris Data is Example

- One-Against-Rest (1-r)
 - K binary classifiers, one for each yi in Y
 - yi is the positive example rest are negative examples
- One-Against-One (1-1)
 - K(K-1)/2 binary classifiers
 - each classifier distinguishes between a pair of classes (yi, yj)
 - instances that do not belong to either yi or yj are ignored

Test Instances Classified

- combine predictions
- from binary classifiers
- voting scheme or probability estimate

Iris Data: 50 samples from each of three species Setosa, Versicolor, Virginica

5 columns of data: sepal length, sepal width, petal length, petal width, species

MulticlassRegressionIrisData.R Example Code

Y1 has ones in the first 50 entries and -1 in the rest: indicates Setosa

Y2 has ones in entries 51 to 100 and -1 in the rest: indicates Versicolor

Y3 has ones in entries 101 to 150 and -1 in the rest: indicates Virginica

Use Ridge Regression to create 3 models

Homework 03 Problem 3

Discussion

Project

Spend Time talking about Project Ideas