BUS 41204 Review Session 5

Variable Selection

Siying Cao siyingc@uchicago.edu

Plan

- ▶ Why variable selection
- ► Two main approaches
 - wrapper methods
 - filter methods
- ▶ Example using recursive feature elimination method

Why Variable Selection

- ▶ Determining which predictors to include in a model is crucial
 - model is more interpretable with fewer predictors
 - some models negatively affected by non-informative/redundant predictors
 - some models such as regression trees and LASSO are naturally resistant to non-informative predictors

Main Approaches For Reducing the Number of Predictors

Wrapper methods

- Evaluate multiple models using procedures that add and/or remove predictors to find the optimal combination that maximizes model performance
- Pros: Selection criterion directed related to model effectiveness
- Cons: computationally intensive; risk of over-fitting

Filter methods

- Evaluate the relevance of predictors outside of the predictive models and subsequently model only the predictors that pass some threshold criterion
- Correlation matrix is helpful for detecting relevant predictors
- Pros: computationally efficient
- Cons: redundant predictors may be selected; interactions hard to quantify

Wrapper Methods

- Classical forward selection for linear regression
 - Problems
 - 1. Greedy search algorithm, hence does not reevaluate past solutions
 - 2. Repeated hypothesis tests invalidates many statistical properties since the same data are being evaluated multiple times
 - 3. Maximizing statistical significant \neq predictive accuracy
- Stepwise selection
- Backward selection via recursive feature elimination (RFE)

Naive Recursive Feature Elimination

► Algorithm

```
1 Tune/train the model on the training set using all P predictors
 2 Calculate model performance
 3 Calculate variable importance or rankings
 4 for each subset size S_i, i = 1 \dots S do
       Keep the S_i most important variables
 5
       [Optional] Pre-process the data
 6
      Tune/train the model on the training set using S_i predictors
 7
       Calculate model performance
 8
       [Optional] Recalculate the rankings for each predictor
 9
10 end
   Calculate the performance profile over the S_i
12 Determine the appropriate number of predictors (i.e. the S_i
   associated with the best performance)
13 Fit the final model based on the optimal S_i
```

Selection Bias

- ➤ The same idea as over-fitting. Feature selection is part of the model selection process!!
- ▶ The risk of over-fitting increases if
 - 1. The dataset is small
 - 2. The number of predictors is large
 - The predictive model is powerful, which is more likely to overfit the data
 - 4. No independent test set is available
- Solution
 - For large data set, separate data sets for selecting features (training set), tuning models (validation set), and validating the final model (test set)
 - ► For small data set, use cross-validation

Recursive Feature Elimination with Cross Validation

► Algorithm

1 for each resampling iteration do	
2	Partition data into training and test/hold-back set via
	resampling
3	Tune/train the model on the training set using all P predictors
4	Calculate model performance
5	Calculate variable importance or rankings
6	for Each subset size S_i , $i = 1 \dots S$ do
7	Keep the S_i most important variables
8	[Optional] Pre-process the data
9	Tune/train the model on the training set using S_i predictors
10	Calculate model performance using the held-back samples
11	[Optional] Recalculate the rankings for each predictor
12	end
13 end	
14 (Calculate the performance profile over the S_i using the held-back
s	amples
15 I	Determine the appropriate number of predictors
16 I	Determine the final ranks of each predictor
17 H	Fit the final model based on the optimal S_i using the original
t	raining set

Hands-on Implementation

See the companion R file

- ► TA5_code_my.R: coding from scratch (to demonstrate what's inside the blackbox)
- ► TA5_code_caret.R: using caret package

References

▶ RFE implmentation in R: caret package

```
https://topepo.github.io/caret/recursive-feature-elimination.html
```

 RFE implementation in Python: sklearn.feature_selection.RFECV module

http:

```
//scikit-learn.org/stable/modules/feature_selection.html
```

Book on feature selection

Kuhn, Max, and Kjell Johnson. Applied predictive modeling. Vol. 26. New York: Springer, 2013