Data structure and algorithms lab

SORTING I

Lecturers: Cao Tuan Dung dungct@soict.hust.edu.vn
Dept of Software Engineering
Hanoi University of Science and Technology

Topics of this week

- Elementary Sorting Algorithm
 - Insertion
 - Selection
 - Bubble (exchange)
- Heap sort Algorithm

Insertion sort

- Strategy of Card Players
- Sorts list by
 - Finding first unsorted element in list
 - Moving it to its proper position
 - Efficiency: $O(n^2)$

unsorted

Insertion Sort

```
void insertion sort(element list[], int n)
  int i, j;
  element next;
  for (i=1; i<n; i++) {
    next= list[i];
    for (j=i-1;j>=0 && next.key< list[j].key;</pre>
         j--)
      list[j+1] = list[j];
    list[j+1] = next;
```

Selection sort

- Sorts list by
 - Finding smallest (or equivalently largest) element in the list
 - Moving it to the beginning (or end) of the list by swapping it with element in beginning (or end) position

Selection sort

```
void selection(element a[], int n)
  { int i, j, min, tmp;
    for (i = 0; i < n-1; i++) {
        min = i;
        for (j = i+1; j \le n-1; j++)
            if (a[j].key < a[min].key)
                min = j;
        tmp= a[i];
        a[i] = a[min]);
        a[min] = tmp;
```

Exercise

- We assume that you make a mobile phone's address book.
- At least, we want to write a program that can store about 100 structure data with name and phone number and email address.
- Read about 10 data from an input file to this structure, and write the data that is sorted in ascending order into an output file.
- Use the insertion sort and selection sort
- (1) Write a program that uses array of structure
- (2) Write a program that uses singly-linked list or doubly-linked list.
- In both program, print out the number of comparisons made during the sorting process of each algorithm.

- Heap: a binary tree which
 - The root is guaranteed to hold largest node in tree
 - Smaller values can be on either right or left sub-tree
 - The tree is complete or nearly complete
 - Key value of each node is= to key value in each descendent

Array interpreted as a binary tree

1 2 3 4 5 6 7 8 9 10 26 5 77 1 61 11 59 15 48 19

Heap sort illustration

Heap sort illustration


```
void adjust(element list[], int root, int n)
 int child, rootkey; element temp;
 child=2*root;
 while (child <= n) {
   if ((child < n) &&
       (list[child].key < list[child+1].key))</pre>
          child++;
   if (rootkey > list[child].key) break;
   else {
     list[child/2] = list[child];
     child *= 2;
                                          2i+1
 list[child/2] = temp;
```

```
void heapsort(element list[], int n)
{\ ascending order (max heap)
    int i, j;
    element temp;
                               bottom-up
    for (i=n/2; i>0; i--) adjust(list, i, n);
    for (i=n-1; i>0; i--) { n-1 cylces}
        SWAP(list[1], list[i+1], temp);
        adjust(list, 1, i); top-down
```

Max heap following first for loop of heapsort

Exercise

- We assume that you make a mobile phone's address book.
- At least, we want to write a program that can store the declared about 100 structure data with name and phone number and email address.
- Read the about 10 data from an input file to this structure, and write the data that is sorted in ascending order into an output file.
- Use the heap sort. Print out the number of comparisons.

Exercise: Comparison of running time

- Write a program to initiate an array of 100000 integers by using random function.
- Sort this array using insertion sort and heap sort. Calculate the running time of program in each case and print out the results.

Help

- function for generating random numbers: srand(time(NULL)) and rand()
- Time functions

```
#include <time.h>
time_t t1,t2;
time(&t1);
/* Do something */
time(&t2);
durationinseconds = (int) t2 -t1;
```

Help

Time functions

```
#include <time.h>
```

```
clock_t tic = clock();
dosomething();
clock_t toc = clock();
printf("Elapsed: %f seconds\n",
  (double)(toc - tic) / CLOCKS PER SEC);
```

Exercise

- Input 10 words from the standard input, and load them to a character type array.
- Sort the array by insertion sort, and output the sorted array into the standard output.

Hints

- You can write a program that processes in the following order.
 - 1. Declare char data[10].
 - Read every 1 word from the standard input by fgetc() function and load it on the array "data".
 - -3. Do the insertion sort to the array "data"
 - 4. Output every 1 word of the value of the sorted array "sort" by fputc() function.

Homework

- Create a dynamically allocated array of 2 million integers. Generate randomly value for the array's elements.
- Implement menu-driven program
- Sorting Algorithms Comparison
 - 1. Create dataset (Generate integers)
 - 2. Insertion Sort
 - 3. Selection Sort
 - 4. Bubble Sort
 - 5. Heap Sort
- For each sorting algorithm, display the execution time in seconds.

Homework

 From unsorted PhoneDB.dat, sort the data by the field of phone model using Heapsort and display the result in the screen.

Homework

Implement Heapsort for your
 Student list data for both ascending and descending order.