2019-2 DM midterm solutions

P1. FFFFT. (1 pt each)

(1) 10 (2 pt) Pa.

> (2) $(1+2+\cdots+7)+(1+2+3)+(=35)$ (4 pt) (3) 3+4+6=13 (4 pt)

P3 (1) The.

Let $\alpha \in X \times (Y-x)$. Then $\alpha = (a,b)$ for some $a \in X$, $b \in Y-x$. Since $b \in Y$ and $b \notin Z$, we have $(a_1b) \in X \times Y$ and $(a_1b) \in X \times Z$.

Thus $x = (a,b) \in (X \times Y) - (X \times Z)$, and $X \times (Y-2) \subseteq (X \times Y) - (X \times Z)$ (3 pt) Let $\chi \in (\chi_{X}) - (\chi_{X})$. Then $\chi = (a,b)$ for some $a \in \chi$, $b \in \gamma$ such that

(a,b) \$ XxZ. Since a \(X \) and (a,b) \$ XxZ we have b\$2.

Thus $b \in Y-2$ and we get $(q_1b) \in X \times (Y-Z)$. Therefore $(X \times Y) - (X \times Z) \subseteq X \times (Y - Z)$ (3 pt)

(2) False. A counterexample: X=Y=2=314. (3 pt) (3) False. A counterexample: X={(1,1)} Y=Z={1}. (3 pt)

(4) False. A counter example: X = {1, (1,1)}. (3 pt)

P4 Induction on n.

If n=1, both sides are 1. (2 pt)

Suppose that the statement is true for n=k.

Then for M=k+1,

 $\sum_{i=1}^{k+1} (-1)^{i-1} i^2 = \sum_{i=1}^{k} (-1)^{i+1} i^2 + (-1)^{k} (k+1)^2 \qquad (2 pt)$

$$= (-1)^{k-1} \frac{k(k+1)}{2} + (-1)^k (k+1)^2$$
 (3 pt)

= $(-1)^k (k+1) (k+1 - \frac{k}{2}) = (-1)^k \frac{(k+1)(k+2)}{2}$ (3 pt). Thus it is also true for M=k+1.

By induction it is true for all n ?1.

P5 (1) reflexive: $\forall f \in X^X$, $(f, f) \in R$ because f(i) = f(i). (3 pt) Symmetric: Let $(f,g) \in R$. Then f(n=g(i)). Since g(n)=f(n) we get $(g,f)\in R$ (3pt)fransitive: let (fig), (g, h) ER. Then fcn=g(1), g(n=hcn). Since for=hor, we get (f,h) ER. (3 pt) (2) $[f] = \{g: X \rightarrow X: g(n) = 1\}.$ Since g(i) can be any element in X for 25i52019, [f] has 2019²⁰¹⁸ elements. (3 pt) (3) Each equivalence class is determined by the value f(1) of any element of in the equivalent class. Thus there are 2019 equivalence classes. (3 pt) P6 (1) True. Suppose R in reflexive. Then $(\alpha x) \in R \quad \forall x \in X$. Since $(\alpha, \alpha), (\alpha, \alpha) \in \mathbb{R}$, $(\alpha, \alpha) \in \mathbb{R}^2$. (3pt) (2) False A counterexample: X= {1,2}, R= {(1,2), (2,1)} (3 pt) Then $R^2 = \{(1,1), (2,2)\}$ is reflexive, but R is not (3) True. Suppose R is symmetric. Let $(7,7) \in \mathbb{R}^2$. Then $\exists z \in X \text{ s.t. } (x,z), (z,y) \in \mathbb{R}$. (3 pt) Since R is symmetric, (z/a), (y, z) ER. Since (y, 2), $(2/x) \in \mathbb{R}$ we get $(y, x) \in \mathbb{R}^2$. (3 pt)

(4) False. Let X=11,2}, R={(1,2)}. (3 pt)

Then $R^2 = \emptyset$ is symmetric but R is not.

P7 (1) True. Suppose f(m) = O(g(n)). Then $\exists c_1, c_2 > 0$ s.t. $|f(n)| \leq c_1 |g(n)|$ for sufficiently large n, $\binom{2}{2}$ pt) $|f(n)| \geqslant c_2 |g(n)|$ " (2 pt) Then |f(n)2019 | \le C,2019 | g(n)2019 | (2 pt) [fcn]2019 [> c22019] g(n)2019 [. (2 pt) Thus $f(n)^{20/9} = \Theta(g(n)^{20/9})$ (2 pt) (2) False. A counterexample: f(n) = n, g(n) = 2n. (5 pt) Then $n = \Theta(2n)$, but $2019^n \neq \Theta(2019^{2n})$. Pf If n=p,e(...pk, where pi's are distinct plimes, then $O(n) = (e_i + i) \cdots (e_k + i) . \qquad (3 pt)$ Thus 3 form if and only if 3 feit1 Vi=1,...k. (3 pt)

Since $12! = 2^{10}3^{5}5^{2}\eta'11'$, if n is a divisor of 12! then $M = 2^{a}3^{b}5^{c}7^{d}11^{e}$, $0 \le a \le 10$, $0 \le b \le 5$, $0 \le c \le 2$, $0 \le d \le 1$, $0 \le e \le 1$. (3 pt)

Thus if n satisfies both n/12! and 3/0(n), we must have

 $a \in \{0,1,...,10\} - \{2,5,8\}$ b = {0,1,..,5} - {2,5},

··· (3 pt) C∈ {0,1,22 - 123.

d € 30,13 e e 30,13

Therefore the number of such n's is (11-3).(6-2).(3-1).2.2

= 8.4.2.2 = (28. (3 pt).