Premier examen - le 16 mai 2009

Durée: 4.5 heures

Chaque exercice vaut 7 points.

- 1. Soit GERMANYISHOT un dodécagone régulier et soit P le point d'intersection de GN et MI. Montrer que
 - (a) le cercle circonscrit du triangle GIP a la même taille que le cercle circonscrit de GERMANYISHOT.
 - (b) le segment PA a la même longueur qu'un côté de GERMANYISHOT.
- 2. Trouver toutes les paires (m,n) de nombres naturels impairs tels que

$$m \mid n^2 + 8, \qquad n \mid m^2 + 8.$$

3. Soit n un nombre naturel. Trouver le nombre de permutations (a_1, \ldots, a_n) de l'ensemble $\{1, 2, \ldots, n\}$ qui ont la propriété suivante :

$$2(a_1 + \ldots + a_k)$$
 est divisible par $k \quad \forall k \in \{1, 2, \ldots, n\}.$

Deuxième examen - le 17 mai 2009

Durée: 4.5 heures

Chaque exercice vaut 7 points.

- **4.** Pour quels nombres naturels n existe-t-il un polynôme P(x) à coefficients entiers tel que pour tout diviseur positif d de n on a $P(d) = (n/d)^2$?
- 5. Soit ABCD un quadrilatère convexe et soient P et Q des points à l'intérieur de ABCD tels que PQDA et QPBC sont des quadrilatères inscrits. Supposons qu'il existe un point E sur le segment PQ tel que $\angle PAE = \angle QDE$ et $\angle PBE = \angle QCE$. Montrer que ABCD est un quadrilatère inscrit.
- **6.** Soit P l'ensemble des premiers 2009 nombres premiers et soit X l'ensemble de tous les nombres naturels qui possèdent uniquement des diviseurs premiers qui sont dans P. Trouver tous les nombres naturels k pour lesquels il existe une fonction $f: X \to X$ qui satisfait l'équation suivante pour tout $m, n \in X$:

$$f(mf(n)) = f(m)n^k.$$

Troisième examen - le 23 mai 2009

Durée: 4.5 heures

Chaque exercice vaut 7 points.

- 7. Considérer un ensemble A de 2009 points dans le plan parmi lesquels il n'y a pas trois qui sont colinéaires. Un triangle dont tous les sommets appartiennent à A s'appelle triangle intérieur. Montrer que chaque point de A est contenu dans un nombre pair de triangles intérieurs.
- 8. Trouver toutes les fonctions $f:\mathbb{R}\to\mathbb{R}$ telles que pour tous les nombres réels x,y l'équation suivante est satisfaite :

$$f(f(x) - f(y)) = (x - y)^2 f(x + y).$$

9. Soient BE et CF les hauteurs dans un triangle ABC à angles aigus. Deux cercles passant par A et F touchent la droite BC en P et Q de telle manière que B se trouve entre C et Q. Montrer que le point d'intersection de PE et QF est sur le cercle circonscrit de AEF.

Quatrième examen - le 24 mai 2009

Durée: 4.5 heures

Chaque exercice vaut 7 points.

- 10. Soit n un nombre naturel et soient a, b deux nombres entiers distincts avec la propriété suivante : Pour tout nombre naturel m, $a^m b^m$ est divisible par n^m . Montrer que les deux nombres a et b sont divisibles par n.
- 11. On considère n points colinéaires P_1, \ldots, P_n et tous les cercles avec diamètre P_iP_j pour $1 \leq i < j \leq n$. Chacun de ces cercles est coloré avec une de k couleurs. Un tel ensemble de cercles colorés s'appelle un (n,k)-fouillis. Un huit unicolore consiste en deux cercles de même couleur qui sont tangents de l'extérieur. Montrer que tout (n,k)-fouillis contient un huit unicolore si et seulement si on a $n > 2^k$.
- 12. Soient x, y, z des nombres réels satisfaisant l'équation x+y+z=xy+yz+zx. Montrer que

$$\frac{x}{x^2+1} + \frac{y}{y^2+1} + \frac{z}{z^2+1} \ge -\frac{1}{2}.$$