	_	
Problem	Set	7

T: R"->R" linear operator, given by A= 03

Find a basis a eR4 s.t. [T]& is in JCF.

Also, find [T]&

STRATEGY

• Find the characteristic polynomial of A • Find "canonical basis" for each of the generalized eigenspaces • Combine these bases to obtain a basis of R".

Solution:
$$P_A(\lambda) = \det(A - \lambda I) = \begin{bmatrix} 1 - \lambda & 1 & 0 & 0 \\ 0 & 1 - \lambda & 1 & 0 \\ 0 & 0 & 1 - \lambda & 1 \\ -1 & 0 & 2 & 1 - \lambda & 1 \end{bmatrix}$$

$$= (1-\lambda) \begin{vmatrix} 1-\lambda & 1 & 0 \\ 0 & 1-\lambda & 1 \\ 0 & 2 & 1 \end{vmatrix} + \begin{vmatrix} 1 & 0 & 0 \\ 1-\lambda & 1 & 0 \\ 0 & 1-\lambda & 1 \end{vmatrix}$$

$$= (1-\lambda)(1-\lambda) \begin{vmatrix} 1-\lambda & 1 \\ 2 & 1-\lambda \end{vmatrix} + \begin{vmatrix} 1 & 0 \\ 1-\lambda & 1 \end{vmatrix}$$

$$= \lambda^{2}(\lambda-2)^{2}$$

Eigenvalue of A: 0,2

dim of gen eigenspace for eigenvalue 0=2

Recall: T:V->V linear transf v f.d. vector space over a field F λ∈ = eigenvalue of T

The dlm of the generalized eigenpace for the eigenvalue) = the algebraic multiplicity of) as a root of the characteristic polynomial.

 $= \ker(T - \lambda I_V)$

The generalized eigenspace of T for λ is $E_{\lambda}^{gen} = \{v \in V : (T - \lambda I_{\nu})^n (v) = 0 \text{ for } I_{\nu} =$ some ny e Z >0) A vector vel belongs to Egen => Some power of T->IV sends v to 0.

Find the generalized eigenspaces for 0 and 2

Eo: Eo=ker(A) dim(kerA)=!	
ker(A²) is 2-dim STOP	
Find a basis for (A^2) $d = \{V_1, V_2\}$	
Compute: $AV_1=V_3$, $AV_2=V_4$ • If $V_3=V_4=0$, then $[V_1],[V_2]$ are cycles of length 1 and together give a "canology" basis for the generalized eigenspace for $\lambda=0$.	nic
•If one of V_3 , V_4 (say V_3) is non-zero. Then (V_1,V_3) is a cycle of length 2 .	
this occurs in our example	
The same occurs for the gen. eigenspace for 1=2. -> obtain 2 cycles of length 2.	
So $\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 2 & 1 \end{pmatrix}$ tells me thereize $\begin{pmatrix} 2 & 0 & 2 \\ 2 & 2 & 2 \end{pmatrix}$ blocks	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	