Accelerating Joins with Filters: Keeping a Limited Memory is Robust

Nicholas Corrado Xiating Ouyang

University of Wisconsin-Madison

Star Schema

- Gigantic intermediate tables
- Filtering ahead of time before join

- Using statistics from all previous batches
- Just the previous *k*

- Using statistics from all previous batches
- Just the previous k LIP-k

Implementation and benchmarking

Skewed SSB benchmark

Adversarial SSB benchmark

Experiments

LIP is solving an online problem

- Tuples arriving one at a time
- Upon arrival, decide a sequence of filters
- Minimize the total probes
- Deterministic!

LIP is solving an online problem

- Tuples arriving one at a time
- Upon arrival, decide a sequence of filters
- Minimize the total probes
- Deterministic!

Theorem

Let n be the number of filters in the LIP problem. There is no deterministic mechanism $\mathcal M$ achieving a competitive ratio less than n for the LIP problem.

LIP is solving an online problem

- Tuples arriving one at a time
- Upon arrival, decide a sequence of filters
- Minimize the total probes
- Deterministic!

Theorem

Let n be the number of filters in the LIP problem. There is no deterministic mechanism \mathcal{M} achieving a competitive ratio less than n for the LIP problem.

- Not observed in practice, but a theoretical lower bound
- Randomness?

Competitive ratio vs. k on Uniform

Competitive ratio vs. k on skewed

Conclusion

- Implemented LIP and its variant LIP-k
- LIP-k is better than LIP in the adversarial/skewed settings
- Randomness to achieve better robustness guarantee

Thank you!

Questions?