Síntesis de redes activas Laboratorio $N^{0}2$: Amplificadores operacionales reales: Errores

Profesor Titular: Dr. Ing. Pablo Ferreyra Profesor Adjunto: Ing. César Reale Alumnos: Campos Mariano, Enzo Verstraete

18 de febrero de 2025

Resumen

Introducir al estudiante en el diseño, armado, medición y análisis de circuitos amplificadores lineales, teniendo en cuenta las fuentes de error del AO real, y como se relacionan con las condiciones de entorno del circuito.

1. Circuito I: Sumador inversor

En esta sección se diseña un amplificador operacional (LM741 o LM324) en configuración sumador inversor, alimentado con Vcc=10[V], la ganancia en la banda media debe ser de 30 veces, la impedancia de entrada no debe cargar la fuente de señal:

Figura 1: Esquemático del circuito

1.1. Análisis de la ganancia de tensión en la banda media

Aplicamos el teorema de superposición, obteniendo la ganancia de tensión respecto a una entrada anulando la otra, y luego sumando los efectos:

Tanto para V_o/V_2 como para V_o/V_1 la ganancia resulta la expresión del OPAM inversor:

$$V_o = \frac{-Rf}{R}V1\tag{1}$$

$$V_o = \frac{-Rf}{R}V2\tag{2}$$

La ganancia resulta:

$$V_o = \frac{-Rf}{R}(V_1 + V_2)$$
 (3)

Para obtener una ganancia aproximada de 30 veces seleccionamos las resistencias de valores comerciales con los siguientes valores Rf=1[Mohm] y R=33[Kohm]

Figura 2: Ganancia de tensión

1.2. Análisis de errores en continua

Para obtener la expresión total de los errores en continua tomamos del datasheet los valores de tensión/ corriente offset, ganancia en continua a lazo abierto y RRMC:

Error de corriente:

$$\triangle V(ipol-) = \frac{(Ipol-)(R//Rf)(-Ad)}{1-T} \tag{4}$$

Agregamos una resistencia de ecualización en el terminal positivo para reducir el error:

$$Z = (R//R//Rf) \tag{5}$$

$$\Delta V(ipol+) = \frac{(Ipol+)(R//Rf)(Ad)}{1-T}$$
 (6)

$$T = \frac{-R//R(Ad)}{R//R + Rf} \tag{7}$$

Resultando:

$$\Delta V = \frac{[(Ipol+)(R//Rf)(Ad)] - [(Ipol-)(R//Rf)(-Ad)]}{1 + \frac{R//R(Ad)}{R//R+Rf}}$$
(8)

Simplificando la expresión y teniendo en cuenta que IOS = (Ipol+) - (Ipol-) tenemos:

$$\Delta V = \frac{(R//R//Rf)(R//R + Rf)IOS}{R//R} \tag{9}$$

Con los valores de resistencias obtenidos en la sección anterior y teniendo en cuanta que la corriente de offset para el amplificador operacional LM324 es de 50[pA], el error de corriente resulta en 0.05[V]

Error de tensión:

$$\Delta V = \frac{AdVOS}{1 + \frac{R//R(Ad)}{R//R + Rf}} \tag{10}$$

Simplificando la expresión:

$$\Delta V = \frac{(R//R + Rf)VOS}{R//R} \tag{11}$$

Teniendo en cuenta que la tensión de offset del amplificador operacional es de 2[mV] el error de tension resulta en 0.123[mV]

Error de ganancia no infinita:

$$\triangle V = \frac{FS}{|T|} \tag{12}$$

$$\Delta V = \frac{FS}{\frac{R//R(Ad)}{R//R + Rf}} \tag{13}$$

La ganancia no infinita para el LM324 es de 100dB el error resulta en 6.2[mV]

Error de relación de rechazo en modo común no infinita: En este caso tenemos el terminal positivo del amplificador operacional a masa por lo que el error de RRMC es nulo

1.3. Simulación de error en continua

Para aproximar cuando es el error de continua se pasivo las entradas del operacional y se mide la tensión de salida, en este caso es de 20[mV]

Figura 3: Simulación del error en DC

1.4. Ancho de banda de pequeña señal

$$F_H = \frac{FT}{Avf} \tag{14}$$

Teniendo en cuenta que FT=1[MHz] y la ganancia a lazo cerrado es 30 tenemos que la frecuencia de corte en alta es de $F_H=33,3[KHz]$

Figura 4: Ancho de banda

1.5. Ancho de banda a plena potencia

Para calcular el ancho de banda a plena potencia obtenemos del datashe et el valor de "slew rate" del operacional en este caso, para el LM324 es de 0.3[V/uS], luego:

$$F[Hp] = \frac{SR}{2\pi FS} = 4775[Hz]$$
 (15)

Figura 5: Slew rate

1.6. Tabla de error normalizado

El Error Vectorial Normalizado (EVN), también conocido como Normalizado Error Vector (NEV) en inglés, es una medida utilizada en la caracterización de amplificadores operacionales (op-amps) para evaluar su desempeño en términos de precisión y linealidad. Es una forma de cuantificar la desviación de la salida real del op-amp con respecto a la salida ideal para una determinada condición de operación. Para el calculo de dicho error, utilizamos el siguiente script de matlab:

La salida por la consola resulta:

Figura 6: Script para calcular el EVN

Frecuencia (Hz)	Error normalizado
3300.00	0.0995 < -95.71°
6600.00	0.1961 < -101.31°
9900.00	0.2873 < -106.70°
13200.00	0.3714 < -111.80°
16500.00	0.4472 < -116.57°
19800.00	0.5145 < -120.96°
23100.00	0.5735 < -124.99°
26400.00	0.6247 < -128.66°
29700.00	0.6690 < -131.99°
33000.00	0.7071 < -135.00°

Figura 7: Tabla de error

2. Circuito II: Amplificadores en cascada con puente de Wheatstone

En este circuito tenemos un puente de Wheastone que produce una tensión diferencial, esta se amplifica mediante dos etapas, una no inversora (primera) y otra no inversora (segunda).

Figura 8: Ganancia de tension en la banda media

2.1. Análisis de la ganancia de tensión en la banda media

Para la primera etapa tenemos amplificador en configuración no inversora, la ganancia resulta:

$$\frac{Vx}{Vin} = \left(1 + \frac{R1}{aR1}\right) \tag{16}$$

Teniendo en cuenta que aR1=47[Kohm] y R1=2,2[Kohm], la ganancia resulta: 1,046

Para la segunda etapa tenemos un inversor donde la ganancia de tensión resulta:

$$\frac{Vo}{Vx} = \frac{-aR2}{R2} \tag{17}$$

Teniendo en cuenta que aR2 = 47[Kohm] y R2 = 2,2[Kohm], la ganancia resulta: -21,36 Por lo tanto la ganancia resultante es de -22,34, aproximadamente.

2.2. Análisis de error en continua

Error de corriente del primer amplificador:

$$V(Ipol+) = \frac{(Ipol+)(Rp//Rp)(Ad)(-aR2/R2)}{(1-T1)}$$
(18)

$$V(Ipol-) = \frac{(Ipol-)(aR1//R1)(-Ad)(-aR2/R2)}{(1-T1)}$$
 (19)

$$T1 = \frac{-aR1(Ad)}{R1} \tag{20}$$

Simplificando la expresión queda:

$$\Delta V = \frac{(Ipol)(-aR2/R2)[aR1//R1 - Rp//Rp]}{\frac{aR1}{R1}}$$
 (21)

Reemplazando los valores de las resistencias y conociendo el valor de la corriente de polarización del amplificador operacional, Ipol = 90[nA], el error de corriente para la primera etapa es de 40,04[uV]

Error de corriente del segundo amplificador:

$$V(Ipol+) = \frac{(Ipol+)(Rp//Rp)(Ad)}{(1-T2)}$$
 (22)

$$V(Ipol-) = \frac{(Ipol-)(aR2//R2)(-Ad)}{(1-T2)}$$
 (23)

$$T2 = \frac{-R2(Ad)}{aR2} \tag{24}$$

Simplificando la expresión queda:

$$\Delta V = \frac{(Ipol)[(Rp//Rp) - (R2//aR2)]}{\frac{R2}{aR2}}$$
 (25)

El error de corriente para el segundo operacional resulta 0.86[mV]Error de tensión de offset para el primer operacional

$$\Delta V = \frac{VOS(aR2//R2)}{\frac{aR1}{R1}} \tag{26}$$

Para una tensión de offset de 2[mV] el error resulta 2[mV]Error de tensión para el segundo operacional

$$\Delta V = \frac{VOS}{\frac{R2}{aB2}} \tag{27}$$

Error resulta 42,7[mV]

Error de ganancia no infinita:

$$\Delta V = \frac{FS}{|T1|} = 2.36[uV] \tag{28}$$

$$\triangle V = \frac{FS}{|T2|} = 1,068[mV]$$
 (29)

Error en relación de rechazo en modo común no infinita (solo para el segundo operacional):

$$\Delta V = \frac{\left(\frac{Vc}{RRMC}\right)}{\frac{R2}{aR2}} \tag{30}$$

La relación de rechazo en modo común para el LM324 es de 70[dB] error resultante es de 33,7[mV]

El error total en continua resulta: 80,3[mV], calculamos la resolución en bits para el ADC:

$$\Delta V <= \frac{FE}{2^n} \tag{31}$$

$$n = \log(\frac{FS}{\triangle V}) = 6bits \tag{32}$$

Figura 9: Error en DC