Mixture Models and Unsupervised Learning

TTT4185 Machine Learning for Signal Processing

Giampiero Salvi

Department of Electronic Systems NTNU

HT2021

Supervised vs Unsupervised Learning

Supervised

$$\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$$

$$\mathbf{t} = \{t_1, \dots, t_N\}$$

$$\mathbf{x} \xrightarrow{f} t$$

Unsupervised

$$\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$$

- clustering
- distribution estimation
- dimensionality reduction

Mixture Models

Weighted sum of K simple probability distribution functions:

$$p(\mathbf{x}|\theta) = \sum_{k=1}^{K} \pi_k p(\mathbf{x}|\theta_k),$$

with
$$\theta = \{\pi_1, \dots, \pi_k, \theta_1, \dots, \theta_K\}$$

Two main uses:

- Model complex distributions with simpler pdfs
- Clustering (unsupervised classification)

Example: approximating distribution (doughnut data)

Example: approximating distribution (doughnut data)

$$\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$$
$$p(\mathbf{x}|\theta_k), \forall k \in [1, K]$$

Example: approximating distribution (doughnut data)

$$\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$$
$$p(\mathbf{x}|\theta) = \sum_{k=1}^{K} \pi_k p(x|\theta_k)$$

Example: Clustering

$$\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$$

Example: Clustering

$$\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$$
$$p(\mathbf{x}|\theta) = \sum_{k=1}^K \pi_k p(x|\theta_k)$$

Example: Clustering

$$\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$$
$$p(\mathbf{x}|\theta_k), \forall k \in [1, K]$$

Clustering vs Classification

Clustering

Fitting Mixture of distributions

We would like to find the maximum likelihood solution:

$$\begin{split} \arg\max_{\theta} \ln p(\mathbf{X}|\theta) &= \arg\max_{n=1}^{N} \ln p(\mathbf{x}_{n}|\theta) \\ &= \arg\max_{\theta} \sum_{n=1}^{N} \ln \sum_{k=1}^{K} \pi_{k} p(\mathbf{x}_{n}|\theta_{k}), \\ \text{with } \theta &= \{\pi_{1}, \dots, \pi_{k}, \theta_{1}, \dots, \theta_{K}\} \end{split}$$

Fitting Mixture of distributions

We would like to find the maximum likelihood solution:

$$\begin{aligned} \arg \max_{\theta} \ln p(\mathbf{X}|\theta) &= \arg \max \sum_{n=1}^{N} \ln p(\mathbf{x}_{n}|\theta) \\ &= \arg \max_{\theta} \sum_{n=1}^{N} \ln \sum_{k=1}^{K} \pi_{k} p(\mathbf{x}_{n}|\theta_{k}), \\ \text{with } \theta &= \{\pi_{1}, \dots, \pi_{k}, \theta_{1}, \dots, \theta_{K}\} \end{aligned}$$

Problem:

We do not know which point has been generated by which component of the mixture

We cannot optimize $p(\mathbf{X}|\theta)$ directly

No Class Independence Assumption

No Class Independence Assumption

Solution: Expectation Maximization

Expectation Maximization

- introduce latent variables to solve the problem
- very general idea (applies to many different probabilistic models)
- easier to explain in terms of clustering than modelling complex distributions
- We will use *K*-means as introduction

K-means

- ullet given a set of points $\{\mathbf{x}_1,\ldots,\mathbf{x}_N\}$
- describes each class with a centroid μ_k , $k=1,\ldots,K$
- a point belongs to a class if the corresponding centroid is closest (Euclidean distance)
- define binary indicator variable $r_{nk} \in \{0,1\}$ (1-of-K coding)
- find μ_k and r_{nk} by optimizing the distortion measure:

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||\mathbf{x}_n - \boldsymbol{\mu}_n||^2$$

K-means

- iterative procedure (both steps have closed solution):
 - lacksquare optimize J w.r.t. r_{nk} keeping $oldsymbol{\mu}_k$ fixed

$$r_{nk} = egin{cases} 1 & ext{if } k = rg \min_j ||\mathbf{x}_n - oldsymbol{\mu}_j||^2 \ 0 & ext{otherwise}. \end{cases}$$

② optimize J w.r.t. μ_k keeping r_{nk} fixed

$$oldsymbol{\mu}_k = rac{\sum_n r_{nk} \mathbf{x}_n}{\sum_n r_{nk}}$$

- guaranteed to converge
- not guaranteed to find the optimal solution
- used in vector quantization (since the 1950's)

K-means: algorithm

initialization

iteration 1, update clusters

iteration 2, update centroids

iteration 2, update clusters

iteration 3, update centroids

iteration 3, update clusters

iteration 20, update centroids

iteration 20, update clusters

Example: data compression

N pixels, 8 bits RGB $\rightarrow 24N$ bits

K-means $o 24K + N \log_2 K$

If 1 Megapixel, 24N=24 millions, $K\text{-means},\ K=10 \rightarrow \infty$ 3 millions

initialization

iteration 1, update clusters

iteration 2, update centroids

iteration 2, update clusters

iteration 3, update centroids

iteration 3, update clusters

iteration 20, update centroids

iteration 20, update clusters

K-means: limits of Euclidean distance

- the Euclidean distance is isotropic (same in all directions in \mathbb{R}^p)
- this favours spherical clusters
- the size of the clusters is controlled by their distance

two non-spherical classes

Rethinking Mixture Models: Latent Variables

$$p(\mathbf{x}|\theta) = \sum_{k=1}^{K} \pi_k p(\mathbf{x}|\theta_k) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

We introduce a *latent* variable **z** with a 1-of-K representation: $\mathbf{z} \in \{0,1\}^K$, $\sum_{k=1}^K z_k = 1$.

Alternative formulation: $h \in \{1, ..., K\}$.

Latent Variable: responsibilities

$$p(\mathbf{x}|\theta) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k),$$

Marginal (w.r.t. z):

$$p(z_k = 1) = \pi_k, \text{ or}$$

$$p(\mathbf{z}) = \prod_{k=1}^K \pi_k^{z_k},$$

Conditional:

$$p(\mathbf{x}|z_k = 1) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k), \text{ or }$$

 $p(\mathbf{x}|\mathbf{z}) = \prod_{k=1}^K \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_k},$

Latent Variable: important probabilities

$$p(\mathbf{x}|\theta) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k),$$

Posterior:

$$\gamma(z_k) \equiv p(z_k = 1|\mathbf{x}) = \frac{p(z_k = 1)p(\mathbf{x}|z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1)p(\mathbf{x}|z_j = 1)}$$
$$= \frac{\pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

This is also called the responsibility of the term k in the mixture.

Mixture of Gaussians as a marginalization

Marginal (w.r.t. x):

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}) = \sum_{k=1}^{K} p(\mathbf{x}, z_k = 1)$$
$$= \sum_{k=1}^{K} p(z_k = 1) p(\mathbf{x} \mid z_k = 1)$$
$$= \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Figures taken from Computer Vision: models, learning and inference by Simon Prince.

Set of N i.i.d. points

Set of N i.i.d. points

Ancestral Sampling

We assume the data is generated as follows:

For $n \in [1, N]$, do:

- **①** sample the value of \mathbf{z}_n from the distribution $\{\pi_1, \dots, \pi_K\}$
- ② given that $z_{nk}=1$, sample \mathbf{x}_n from $\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)$

Maximum Likelihood for Mixture of distributions

We would like to find the maximum likelihood solution:

$$\ln p(\mathbf{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k \boldsymbol{\Sigma}_k),$$

Problems:

- ullet log of sum hard to optimize o Expectation Maximization
- singularities
- identifiability

Singularities

- set a lower threshold for variance, or
- detect collapsing Gaussian and reinitialize

Figure from Bishop

Identifiability

Any permutation of the K distributions is an equivalent solution

Irrelevant if we are interested in $p(\mathbf{x})$ only, but

Important if we are interested in clustering.

Maximum Likelihood

Setting

$$\frac{d \ln p(\mathbf{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{d \boldsymbol{\mu}} = 0$$

we obtain:

$$\boldsymbol{\mu}_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n$$

with

$$N_k = \sum_{n=1}^{N} \gamma(z_{nk})$$

Maximum Likelihood

Similarly for Σ and π :

$$\begin{split} \boldsymbol{\mu}_k &= \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n, \\ \boldsymbol{\Sigma}_k &= \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^\mathsf{T}, \\ \boldsymbol{\pi}_k &= \frac{N_k}{N}, \text{with} \\ N_k &= \sum_{n=1}^N \gamma(z_{nk}). \end{split}$$

Maximum Likelihood

Similarly for Σ and π :

$$\boldsymbol{\mu}_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{x}_{n},$$

$$\boldsymbol{\Sigma}_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma(z_{nk}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{\mathsf{T}},$$

$$\boldsymbol{\pi}_{k} = \frac{N_{k}}{N}, \text{ with}$$

$$N_{k} = \sum_{n=1}^{N} \gamma(z_{nk}).$$

Not a closed form solution!

We do not know $\gamma(z_{nk})$ until we know π, μ, Σ .

Expectation Maximization

Solve problem with iterative procedure:

1 Expectation: given π, μ, Σ estimate responsibilities:

$$\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

- ② Maximization: given $\gamma(z_{nk})$, maximise likelihood (formulae from previous slide)
- very general idea (applies to many different probabilistic models)
- ullet optimize the Likelihood of the complete data over N data points

$$p(\mathbf{x}_1,\ldots,\mathbf{x}_N,\mathbf{z}_1,\ldots,\mathbf{z}_N|\theta)=p(\mathbf{X},\mathbf{Z}|\theta)$$

EM and K-means

EM is very similar to K-means, but:

- $\gamma(z_{nk})$ can be non-zero for all $n \Rightarrow$ all points contribute to all distributions
- probability distribution functions are used instead of Euclidean distance: more flexible cluster shapers

Illustration: EM for two univariate Gaussians

For each sample x_n introduce a hidden variable \mathbf{z}_n

$$\mathbf{z}_n = \begin{cases} [1,0] & \text{if sample } x_n \text{ was drawn from } \mathcal{N}(x|\mu_1,\sigma_1^2) \\ [0,1] & \text{if sample } x_n \text{ was drawn from } \mathcal{N}(x|\mu_2,\sigma_2^2) \end{cases}$$

Initialize the model parameters (random, or using K-means):

$$\Theta^{(0)} = (\pi_1^{(0)}, \mu_1^{(0)}, \sigma_1^{(0)}, \mu_2^{(0)}, \sigma_2^{(0)})$$

Update the parameters iteratively with Expectation and Maximization steps. . .

EM for two Gaussians: E-step

Estimate the responsibility $\gamma(z_{nk})$ of k-th Gaussian for each sample x_n (indicated by the size of the projected data point)

Figure from Prince.

EM for two Gaussians: E-step (cont.)

E-step: Compute the *posterior probability* that x_n was generated by component k given the current estimate of the parameters $\Theta^{(t)}$. (responsibilities)

for
$$n = 1, \dots N$$

$$\text{for } k = 1, 2$$

$$\gamma_{nk}^{(t)} = P(z_{nk} = 1 \,|\, x_n, \Theta^{(t)})$$

$$= \frac{\pi_k^{(t)} \, \mathcal{N}(x_n | \mu_k^{(t)}, \sigma_k^{(t)})}{\pi_1^{(t)} \, \mathcal{N}(x_n | \mu_1^{(t)}, \sigma_1^{(t)}) + \pi_2^{(t)} \, \mathcal{N}(x_n | \mu_2^{(t)}, \sigma_2^{(t)})}$$

Note:
$$\gamma_{n1}^{(t)} + \gamma_{n2}^{(t)} = 1$$
 and $\pi_1 + \pi_2 = 1$

EM for two Gaussians: M-step

Fitting the Gaussian model for each of k-th constituent. Sample x_n contributes according to the responsibility γ_{nk} .

(dashed and solid lines for fit before and after update)

Figure from Prince.

EM for two Gaussians: M-step (cont.)

M-step: Compute the *Maximum Likelihood* of the parameters of the mixture model given out data's membership distribution, the $\gamma_i^{(t)}$'s:

for
$$k = 1.2$$

$$\mu_k^{(t+1)} = \frac{\sum_{i=1}^n \gamma_{ik}^{(t)} x_i}{\sum_{i=1}^n \gamma_{ik}^{(t)}},$$

$$\sigma_k^{(t+1)} = \sqrt{\frac{\sum_{i=1}^n \gamma_{ik}^{(t)} (x_i - \mu_k^{(t+1)})^2}{\sum_{i=1}^n \gamma_{ik}^{(t)}}},$$

$$\pi_k^{(t+1)} = \frac{\sum_{i=1}^n \gamma_{ik}^{(t)}}{N}.$$

EM in practice

EM properties

Similar to K-means

- guaranteed to find a local maximum of the complete data likelihood
- somewhat sensitive to initial conditions

Better than K-means

- Gaussian distributions can model clusters with different shapes
- all data points are smoothly used to update all parameters