大学语文上册速记

5eqn

2023年2月11日

1 集合

定义 1 对称差集是两个集合的并集去掉交集.

$$A \oplus B = (A - B) \cup (B - A)$$

定义 2 对于集合的非空集合,广义交是集合内所有集合的交.

$$\cap A = \{x | \forall z, z \in A \to x \in z\}$$

定义 3 幂集 P(A) 是 A 的所有可能子集.

2 二元关系

定义 4 笛卡尔积将集合视为非确定性,因此最终结果为两个集合的任意组合.

$$A \times B = \{ \langle x, y \rangle \, | x \in A \land y \in B \}$$

定义 5 空关系是不包含任何有序对的集合. 全域关系 E_A 是所有可能的有序对. 恒等关系 I_A 是所有左右相同的有序对. 此外还有小于等于关系 L_A ,整除关系 D_A ,包含关系 R_C .

定义 6 对于关系 R, 关系矩阵 M_R 是用 0 和 1 表示集合中两元素是否存在 关系的矩阵.

定义 7 定义域 dom R 是有序对所有第一元素构成的集合. 值域 ran R 是有序对所有第二元素构成的集合. 域 $fld R = dom R \cup ran R$.

定义 8 R 在 A 上的限制 $R \upharpoonright A$ 是左侧涉及 A 的关系子集. A 在 R 下的像 R[A] 是 $R \upharpoonright A$ 的值域.

2 二元关系 2

2.1 闭包

定义 9 自反闭包 $r(R) = R \cup R^0$, 对称闭包 $s(R) = R \cup R^{-1}$, 传递闭包 $t(R) = R \cup R^2 \cup R^3 \cup \ldots$

定义 10 Warshall 算法求传递闭包通过每次计算式子前缀和来减小计算量. 具体地,这个算法将会依次计算 R, $R + R^2$ 等.

2.2 等价关系

定义 11 如果 R 是自反对称传递的, 那么 R 是等价关系. x 等价于 y 记作 $x \sim y$.

定义 12 x 关于 R 的等价类 $[x]_R$ 是非空集合 A 中所有满足 xRy 的元素.

定义 13 A 关于 R 的商集 A/R 是 A 中所有可能的等价类.

定义 14 若 π 不含空集, $\cup \pi = A$, $\cap \pi = \emptyset$, 那么 π 是 A 的一个划分, π 中的元素是 A 的划分块.

2.3 偏序关系

定义 15 如果 R 是自反反对称传递的, 那么 R 是偏序关系. x"小于等于"y 记作 $x \preccurlyeq y$.

定义 16 $x \prec y$ 即 $x \preccurlyeq y \land x \neq y$, x 与 y 可比即 $x \preccurlyeq y \lor y \preccurlyeq x$.

定义 17 $\forall x, y \in A, x 与 y$ 可比, 那么 R 是全序关系或线序关系.

定义 18 集合 A 和 A 上的偏序关系 \preceq 的有序对是偏序集.

定义 19 如果 $x \prec y$ 并且不存在 $z \in A$ 使得 $x \prec z \prec y$, 那么 y 覆盖 x. 画 哈斯图就是用覆盖关系画图, 保证被覆盖的在下面.

定义 20 最小元和所有元素可比且更小,极小元和所有可比的元素相比更小.

定义 21 如果 B 中所有元素 x 满足 $x \leq y$, 那么 y 为 B 的上界. 所有 B 的上界组成的集合的最小元是最小上界或上确界.

3

3 函数

定义 22 对于定义域中任何一个元素 x, 只存在唯一元素 y 使得 xFy 成立,则 F 是函数.

定义 23 若 $f: A \to B, A_1 \subseteq A, B_1 \subseteq B, A_1$ 在 f 下的像 $f(A_1)$,是参数取 A_1 中的元素 x 时 f(x) 的所有可能取值. B_1 在 f 下的完全原像 $f^{-1}(B_1)$,是值取到 B_1 中的元素时参数的所有可能取值.

定义 24 对任意 $A' \subseteq A$, A' 的特征函数 $\xi_{A'}: A \to \{0,1\}$ 用 0 和 1 表示元素是否在 A' 中, 其定义如下:

$$\xi_{A'}(a) = \begin{cases} 1, & a \in A' \\ 0, & a \in A - A' \end{cases}$$

定义 25 g(a) = [a] 是 A 到商集 A/R 的自然映射.

定义 26 如果存在 A 到 B 的双射函数, 那么 A 和 B 是等势的, 记为 $A \approx B$.

定义 27 康托定理即 (1) N $st \mathbb{R}$ (2) $\forall A, A \not\approx P(A)$.

定义 28 如果存在 A 到 B 的单射函数, 那么 B 优势于 A, 记为 $A \preceq \cdot B$. 在此基础上如果 $A \not\approx B$, 那么 B 真优势于 A, 记为 $A \prec \cdot B$.

定义 29 自然数的集合定义中,后继 $n^+ = n \cup \{n\}$.

定义 30 基数 cardA 在 A 有穷时为等势的自然数, $cardN = \aleph_0$, $cardR = \aleph$.