

# Event Organization 101:

# Understanding Latent Factors of Event Popularity



Department of Computer Science, University of Colorado Boulder



## 1. Event-based Social Networks (EBSNs)

In the popular Meetup EBSN, the following figure illustrates three key elements. *Users* can join different Meetup *group*, which usually have specific themes such as hiking, writing or health. Each *group* can organize various types of real-world *events* and invite users to attend.



### 2. Meetup Datasets

We collected two years of Meetup data in three major cities, representing diverse cultures and group/event/user characteristics.

Table: Statistics of Meetup Datasets

| City     | #groups | #users  | #events | #rsvps    |
|----------|---------|---------|---------|-----------|
| New York | 2,802   | 248,211 | 270,321 | 1,613,634 |
| London   | 1,534   | 155,883 | 117,862 | 945,669   |
| Sydney   | 706     | 55,768  | 55,295  | 353,149   |

## 5. Temporal Preference

Temporal preference refers to how well event start time matches group members' temporal references. We measure the overall satisfaction for event e by adding up the Jaccard similarity between event's start time and each member's temporal preference.

$$\hat{S1}_{temporal}(e) = \sum_{u \in E_u} Jaccard(\vec{e_t}, \vec{u_t})$$

$$Jaccard(\vec{e_t}, \vec{u_t}) = \frac{|\vec{e_t} \cap \vec{u_t}|}{|\vec{e_t} \cup \vec{u_t}|}$$

#### References

[1]. Jensen, P. 2009. Analyzing the localization of retail stores with complex systems tools. In Proc. of the 8th Intl. Symposium on Intelligent Data Analysis, 10–20.

[2]. Hutto, C. J., and Gilbert, E. 2014. Vader: A parsimonious rule-based model for sentiment analysis of social media text. In ICWSM, 216–225.

#### 3. Spatial Features

Location Quality refers to the co-location frequency of venues in different group categories.

According to Jensen's [1] attractiveness value between different group categories, we can define the quality of location for each event e.

Table: Top 4 most (and least) attractive group categories for category "Women", "Movies/Films", and "Sports/Recreation" based on Jensen's attractiveness value (New York dataset).

| Women          |      | Movies/Film      |      | Sports/Recreation |      |
|----------------|------|------------------|------|-------------------|------|
| Support        | 4.49 | Literature/Write | 7.84 | Photography       | 2.93 |
| Fashion/Beauty | 3.04 | Sci-fi/Fantasy   | 2.62 | Music             | 1.66 |
| Parents/Family | 2.65 | Tech             | 2.12 | Food/Drink        | 1.62 |
| Environment    | 2.48 | food/drink       | 2.01 | Paranormal        | 1.60 |
| LGBT           | 0.53 | Support          | 0.44 | Career            | 0.48 |
| Games          | 0.43 | Paranormal       | 0.42 | New age           | 0.39 |
| Sports/Rec     | 0.38 | Cars/Motor       | 0.39 | Support           | 0.28 |
| Cars/Motor     | 0.27 | Fitness          | 0.36 | Fashion/Beauty    | 0.16 |

Location Competitiveness refers to the frequency that groups with similar topics choose to meet in the same area, such events compete with each other to attract a shared pool of users.

#### 6. Semantic Features

Sentiment Analysis: To capture the sentiment of event content, we implemented Vader [2], a lexicon and rule-based sentiment analysis tool.

**Part-of-Speech Features:** The POS features we used are: adjective, adposition, adverb, conjuction, determiner, noun, numeral, particle, pronoun, verb and punctuation marks.

**Text Novelty:** We use Jaccard similarity to Identify the novelty of event titles by comparing with previous event titles.

### 7. Group-based Social Influence

To utilize group-specific information in EBSNs, we propose a new social propagation network to model people's social influences on event popularity that are specific to event's group organizers.

We define user v's direct influence credit on user u as follows:

$$w_{v,u}(e) = \sum_{e'} \frac{infl(u)}{|N(u,e')|} [\delta(G(e) = G(e')) \cdot \lambda_g \cdot decay_{v,u}(e'))] + \delta(G(e) \neq G(e)) \cdot \lambda_g \cdot decay_{v,u}(e)]$$

Using the social proporgation graph we can compute the total influence of user v on user u on event e:

$$\Omega_{v,u}(e) = \sum_{z \in N(u,e)} \Omega_{v,z}(e) w_{z,u}(e)$$

## 4. Group Features

Group Member Entropy refers to the diversity of group members' interests. Given a group g, its member diversity is based on the probability of a single user u attending its offline events.

Figure: group entropy vs. group's average event size



Group Loyalty Entropy refers to what extent are the users focused on attending events within the same category. The following figure shows

Figure: group loyalty vs. group's average event size



## 8. Results

To integrate all context features that we have discovered, we fit them into Classification and Regression Tree model. We apply R square as the evaluation metric.

Table: Performance comparisons of different Models (R square)

|     | NM    | SVD-MFN | Cont  | CASINO(-) | CASINO |
|-----|-------|---------|-------|-----------|--------|
| NYC | 0.240 | 0.319   | 0.730 | 0.744     | 0.758  |
| LON | 0.140 | 0.305   | 0.672 | 0.692     | 0.723  |
| SYD | 0.117 | 0.289   | 0.653 | 0.685     | 0.718  |

#### 9. Conclusions

- 1. Our combined CASINO framework achieves high prediction accuracy for real world Meetup event popularity.
- 2. Our study offers initial new insights for event organizers as well as targeted advertising strategies for EBSN service providers.