Lecture Summary: March 3, 2023

• Adjusted R^2

$$R^2 = 1 - \frac{\text{SSE}}{\text{SSTO}}$$

cannot be directly used in variable selection, because, if so, "larger model always wins".

Some modification of \mathbb{R}^2 is needed. The modification is

$$R_{\rm a}^2 = 1 - \frac{\rm MSE}{\rm MSTO},$$

where MSTO = SSTO/(n-1) [and MSE = SSE/(n-p)].

Select the model that maximizes $R_{\rm a}^2$, or, equivalently, the model that minimizes MSE.

• Mallow's C_p

Suppose that x_1, \ldots, x_{K-1} are all the candidate predictors.

For any subset of predictors $x_{i_1}, \ldots, x_{i_{p-1}} \in \{x_1, \ldots, x_{K-1}\}$, define

$$C_p = C_p(x_{i_1}, \dots, x_{i_{p-1}}) = \frac{SSE(x_{i_1}, \dots, x_{i_{p-1}})}{MSE(x_1, \dots, x_{K-1})} - (n-2p),$$

where $SSE(x_{i_1}, \ldots, x_{i_{p-1}}) = SSE$ of fitting the regression with $x_{i_1}, \ldots, x_{i_{p-1}}$ being the predictors, and $MSE(x_1, \ldots, x_{K-1}) = MSE$ of fitting the regression with all of the candidate predictors.

The best subset of predictors (model) corresponds to the one such that C_p is small and close to p.

Note: C_K is always equal to K.

• AIC and BIC (SBC) criteria

$$AIC_p = n \log(SSE_p/n) + 2p,$$

$$SBC_p = n \log(SSE_p/n) + (\log n)p.$$

Choose a subset of predictors (model) that minimizes AIC_p (SBC_p).

- \bullet Forward stepwise selection:
- 1. Choose the first predictor, $x_{(1)}$, that has the largest |t| for the slope under a simple linear regression with the predictor.