ÉQUATION FONCTIONNELLE

Soit $n \geqslant 1$ un entier et p un nombre premier. Dans la suite, on notera $G = GL_n(\mathbb{Q}_p)$, dg une mesure de Haar sur G et (π,V) une représentation admissible irréductible de G.

Les coefficients de π sont les fonctions de la forme

$$g \in G \mapsto \langle \pi(g)\nu, \tilde{\nu} \rangle$$

où $v \in V$ et $\tilde{v} \in \tilde{V}$.

On note M l'ensemble des matrices $n \times n$ et S l'ensemble des fonctions $\phi: M \to \mathbb{C}$ localement constantes à support compact.

Si f est un coefficient de π , $\phi \in S$ et $s \in \mathbb{C}$, on pose

$$\zeta(f, \varphi, s) = \int_{G} \varphi(g) f(g) |\det g|^{s} dg.$$

On fixe un caractère ψ de \mathbb{Q}_p^{\times} et on pose

$$\hat{\varphi}(y) = \int_{M} \varphi(x) \psi(\mathsf{Tr}(xy)) dx,$$

où dx est une mesure de Haar sur M

On veut montrer l'équation fonctionnelle suivante

$$\zeta(f, \Phi, s) = \gamma(s)\zeta(\check{f}, \hat{\Phi}, 1 - s).$$

où γ est une fonction rationnelle et $\check{f}(q) = f(q^{-1})$.

Pour montrer cette équation fonctionnelle, on va utiliser la

Propriété 1. Les opérateurs $\zeta(...,s)$ et $\zeta(\check{.},\hat{.},1-s)$ sont des éléments de

$$\mathsf{Hom}_{\mathsf{G}\times\mathsf{G}}((\pi\boxtimes\tilde{\pi})\otimes\mathcal{S},|\det|^s\boxtimes|\det|^{-s}).$$

On précise que l'action de $G \times G$ sur S est $(g_1, g_2).\phi(x) = \phi(g_1^{-1}xg_2)$. De plus, on identifie l'ensemble des coefficients de π avec l'espace $V \otimes \tilde{V}$; l'action de $G \times G$ sur $\pi \boxtimes \tilde{\pi}$ est $(g_1, g_2).f(g) = f(g_1^{-1}gg_2)$.

Démonstration. L'action de $G \times G$ sur $\zeta(f, \phi, s)$ donne

$$\int_{G} \varphi(g_1^{-1}gg_2) f(g_1^{-1}gg_2) |\det g|^s dg.$$

On effectue le changement de variable $g\mapsto g_1gg_2^{-1}$, le groupe G étant unimodulaire l'intégrale devient

$$|\det g_1g_2^{-1}|^s\int_G \varphi(g)f(g)|\det g|^sdg.$$

D'autre part, l'action de $G \times G$ sur $\zeta(\check{f}, \hat{\phi}, 1-s)$ donne

$$\int_{G} \hat{\phi_{g_1,g_2}}(g) f_{g_1,g_2}(g) |\det g|^{1-s} dg,$$

où l'on note $\phi_{g_1,g_2}(x) = \phi(g_1^{-1}xg_2)$ et $f_{g_1,g_2}(g) = f(g_1^{-1}gg_2)$.

Un calcul immédiat, montre que $f_{q_1,q_2}(g) = f(g_2^{-1}g^{-1}g_1)$. De plus,

$$\phi_{g_1,g_2}(g) = \int_M \phi(g_1^{-1}xg_2)\psi(\mathsf{Tr}(xg))dx.$$

Après le changement de variable $x\mapsto g_1xg_2^{-1}$ l'intégrale devient

$$|\det g_1^{-1}g_2| \int_M \varphi(x) \psi(\text{Tr}(xg_2^{-1}gg_1)) dx,$$

qui n'est autre que $|\det g_1g_2^{-1}|\hat{\varphi}(g_2^{-1}gg_1.$ L'intégrale

$$\int_{G} \hat{\phi_{g_1,g_2}}(g) f_{g_1,g_2}(g) |\det g|^{1-s} dg$$

devient donc, après le changement de variable $g\mapsto g_2gg_1^{-1},$

$$[\det g_1^{-1}g_2||\det g_2g_1^{-1}|^{1-s}\int_G \hat{\varphi}(g)\check{f}(g)|\det g|^{1-s}dg.$$

Proposition 1. Pour r = n, $S_r = G$, on a

$$\dim \mathsf{Hom}_{\mathsf{G}\times\mathsf{G}}((\pi\boxtimes\tilde{\pi})\otimes C_{\mathsf{c}}^{\infty}(\mathsf{G}),|.|^{\mathsf{s}})=1;$$

 $et \ pour \ r < n, \ on \ a$

$$\operatorname{\mathsf{Hom}}_{\mathsf{G}\times\mathsf{G}}((\pi\boxtimes\tilde{\pi})\otimes\mathsf{C}_c^\infty(\mathsf{S}_r),|.|^s)=0.$$

$$\begin{split} \mathsf{Hom}_{\mathsf{G}\times\mathsf{G}}((\pi\boxtimes\tilde{\pi})\otimes C_c^\infty(\mathsf{G}),|.|^s) &= \mathsf{Hom}_{\mathsf{G}\times\mathsf{G}}((\pi\boxtimes\tilde{\pi})\otimes|.|^{-s},C^\infty(\mathsf{G})) \\ &= \mathsf{Hom}_\mathsf{H}((\pi\boxtimes\tilde{\pi})\otimes|.|^{-s},\mathbb{C}) \\ &= \mathsf{Hom}_\mathsf{G}(\pi,\pi); \end{split}$$

où le groupe H désigne la diagonale de $G \times G$. Ce dernier espace est bien de dimension 1 d'après le lemme de Schur.

La première égalité provient de la dualité entre $C_c^\infty(G)$ et $C^\infty(G)$. Pour la deuxième égalité, on utilise la réciprocité de Frobenius et l'identification $C^\infty(G) = \operatorname{Ind}_H^{G \times G}(\mathbb{C})$.