Advanced Stochastic Processes - Ex. 7

Alireza Jamalie June 2023 1. Shift invariance: If $\{W(t)\}$ is standard Brownian motion (sBm), then $W_1(t) = W(t+h) - W(t)$ is also sBm.

Proof:

Let s < t and consider the increment $W_1(t) - W_1(s) = (W(t+h) - W(t)) - (W(s+h) - W(s)) = W(t+h) - W(s+h)$. By the independence of increments in sBm, this increment is independent of $W_1(u)$ for $u \le s$. Moreover, W(t+h) - W(s+h) has the same distribution as W(t-s), which is normal with mean 0 and variance t-s. This proves that $W_1(t)$ is sBm.

2. Scaling property: If $\{W(t)\}$ is sBm, then $W_2(t) = hW(t/h^2)$ is also sBm. Proof:

The process $\{W(t)\}\$ is sBm if it satisfies these two conditions:

- (a) W(0) = 0 almost surely.
- (b) For any $0 \le s < t$, the increment W(t) W(s) is normally distributed with mean 0 and variance t s, and is independent of the sigma-field generated by $\{W(u), u \le s\}$.

Now let's consider the process $\{W_2(t)\}$. We have $W_2(0) = hW(0/h^2) = 0$ almost surely, satisfying condition (a). For any $0 \le s < t$, the increment $W_2(t) - W_2(s) = hW(t/h^2) - hW(s/h^2) = h(W(t/h^2) - W(s/h^2))$. This increment is normally distributed with mean 0 and variance $h^2(t-s)/h^2 = t-s$ (by the properties of sBm), and is independent of the sigma-field generated by $\{W_2(u), u \le s\}$, satisfying condition (b). This proves that $W_2(t)$ is sBm.

3. Time-inversion property: If $\{W(t)\}$ is sBm, then $W_3(t) = tW(1/t)$ with $W_3(0) = 0$ is also sBm.

Proof:

We define the time inversion process $W_3(t) = tW(1/t)$ for $t \neq 0$, and $W_3(0) = 0$.

The time inversion property is a bit more complex to prove. We'll provide an informal sketch of the proof:

- (i) We need to show that for any fixed t, $W_3(t)$ follows a normal distribution with mean 0 and variance t. This can be shown by a change of variables in the integral representation of W(t).
- (ii) We then need to show that for any $0 \le s < t$, the increment $W_3(t) W_3(s)$ is independent of the sigma-field generated by $\{W_3(u), u \le s\}$. This is nontrivial and requires advanced measure theory to prove rigorously.
- 4. The reflection process $W_4(t) = |W(t)|$ is not a sBm, but its expected value and variance can be calculated:

Expectation:

$$E\{W_4(t)\} = \sqrt{\frac{2t}{\pi}}$$

Proof:

$$E\{|W(t)|\} = \int_{-\infty}^{\infty} |x| \frac{1}{\sqrt{2\pi t}} e^{-x^2/(2t)} dx$$

This is equivalent to 2 times the integral from 0 to ∞ , since the absolute value function is symmetric about 0:

$$E\{|W(t)|\} = 2\int_0^\infty x \frac{1}{\sqrt{2\pi t}} e^{-x^2/(2t)} dx$$

Let $u = x^2/(2t)$, then du = xdx/t, and the integral becomes:

$$E\{|W(t)|\} = \sqrt{\frac{2}{\pi}} \int_0^\infty u e^{-u} du = \sqrt{\frac{2t}{\pi}}$$

Variance:

$$Var\{W_4(t)\} = \left(1 - \frac{2}{\pi}\right)t$$

Proof:

The variance can be calculated by the formula $Var(X) = E[X^2] - (E[X])^2$.

$$E[X^2] = \int_{-\infty}^{\infty} x^2 \frac{1}{\sqrt{2\pi t}} e^{-x^2/(2t)} dx = t$$

So,
$$Var\{W_4(t)\} = t - \left(\sqrt{\frac{2t}{\pi}}\right)^2 = \left(1 - \frac{2}{\pi}\right)t$$