

PLACEMENT PREDICTOR

Group Members

1.Deepak Kumar(19) 2.Kuldeep Saini(26) 3.Mayank Kharab(30) 4.Mohd Shohel(32)

Detailed Overview

PROBLEM STATEMENT

The primary challenge for learning institutions today is enhancing student placement performance. To address this, educational institutes seek more efficient technology, with a focus on improving the quality of knowledge related to educational processes and managerial systems. Machine learning techniques are proposed to extract insights from operational and historical data within educational databases, offering a promising approach to tackling this challenge. • •

DATASET INFORMATION

The dataset used for training as well as testing was obtained from the Kagle. It contains 10000 rows and 11 features.

Features

- Internship
- Projects
- Workshops/Certificates
- Soft Skills assessments
- Academic performance in Secondary School Certificate (SSC)
- ExtracurricularActivities
- PlacementTraining
- Aptitude Scores
- Higher Secondary Certificate Marks.
- CGPA

task.

DATA PRE- PROCESSING

Data preprocessing is a crucial step, encompassing the cleaning and transformation of raw data to render it suitable for analysis. The goal of data preprocessing is to improve the quality of the data and to make it more suitable for the specific data mining

Dropped "StudentId" column because it not relevant for our data analysis.

StudentId does affect our model or is not significant for analysis

All the data in the dataset is in int or float except for 3 columns/variables that are of object data type:

- ExtracurricularActivities
- PlacementTraining
- Placement Status

In sci-kit-learn, the LabelEncoder is a utility class used to encode categorical labels into numerical labels. It essentially converts categorical data (text labels) into numerical labels so that machine learning algorithms can handle them more effectively. For instance, if you have a categorical feature like "Yes" and "No". The LabelEncoder would assign them numerical labels, such as 0 and 1, respectively.

DATA VISUALIZATION

Percentage Distribution

Pie Chart For ExtracurricularActivities

Pie Chart For Internships

HeatMap

CGPA -	1	0.28	0.44	0.35	0.46	0.38	0.44	0.25	0.4	0.46	0.42
Internships -	0.28	1	0.31	0.28	0.32	0.27	0.27	0.15	0.28	0.32	0.26
Projects -	0.44	0.31	1	0.38	0.54	0.45	0.49	0.29	0.5	0.54	0.48
Workshops/Certifications -	0.35	0.28	0.38	1	0.39	0.34	0.37	0.18	0.37	0.42	0.36
AptitudeTestScore -	0.46	0.32	0.54	0.39	1	0.52	0.47	0.31	0.51	0.57	0.52
SoftSkillsRating -	0.38	0.27	0.45	0.34	0.52	1	0.45	0.24	0.43	0.47	0.43
ExtracurricularActivities -	0.44	0.27	0.49	0.37	0.47	0.45	1	0.33	0.52	0.53	0.48
PlacementTraining -	0.25	0.15	0.29	0.18	0.31	0.24	0.33	1	0.26	0.33	0.32
SSC_Marks -	0.4	0.28	0.5	0.37	0.51	0.43	0.52	0.26	1	0.52	0.47
HSC_Marks -	0.46	0.32	0.54	0.42	0.57	0.47	0.53	0.33	0.52	1	0.51
PlacementStatus -	0.42	0.26	0.48	0.36	0.52	0.43	0.48	0.32	0.47	0.51	1
	- CGPA -	Internships -	Projects -	Workshops/Certifications -	AptitudeTestScore -	SoftSkillsRating -	ExtracurricularActivities -	PlacementTraining -	SSC_Marks -	HSC_Marks -	PlacementStatus -

- 1.0 - 0.9 - 0.8 - 0.7 - 0.6 - 0.5 - 0.4 - 0.3 - 0.2

Models used for making predictions

In our project, we have used 4 models to conduct a comparative study, aiming to analyze differences in accuracy. Models that we have used are:

- 1. Logistic Regression
- 2.Decision Tree
- 3.Random Forest
- 4.K- Nearest Neighbor

Logistic Regression

Logistic regression is a statistical method used for binary classification tasks. It predicts the probability of a categorical outcome by fitting data to a logistic function, transforming values into probabilities between 0 and 1.

This model scored an accuracy of approximately 79.28%.

Confusion Matrix

	Precision	Recall	F1-score	Support
Not Placed	0.83	0.81	0.82	1471
Placed	0.74	0.77	0.75	1029
Accuracy			0.7928	2500
Macro Avg	0.79	0.79	079	2500
Weighted Avg	0.80	0.79	079	2500

With Normalization Confusion Matrix

	Precision	Recall	F1-score	Support
Not Placed	.0.83	0.81	0.82	1471
Placed	0.74	0.77	0.75	1029
Accuracy			0.7924	2500
Macro Avg	0.79	0.79	079	2500
Weighted Avg	0.79	0.79	079	2500

Accuracy of Model 79.24%

In machine learning, a decision tree is a model that resembles a tree-like structure used for classification and regression tasks. It starts with a root node that represents the entire dataset and splits the data into branches based on specific features and their values. This process continues down the tree until reaching leaf nodes, which provide final decisions or predictions.

This model scored an accuracy of approximately 72.52%.

Confusion Matrix

	Precision	Recall	F1-score	Support
Not Placed	0.77	0.75	0.76	1471
Placed	0.66	0.68	0.67	1029
Accuracy			0.7252	2500
Macro Avg	0.72	0.72	0.72	2500
Weighted Avg	0.73	0.72	0.73	2500

With Normalization Confusion Matrix

	Precision	Recall	F1-score	Support
Not Placed	0.77	0.76	0.76	1471
Placed	0.66	0.67	0.67	1029
Accuracy			0.7248	2500
Macro Avg	0.72	0.72	0.72	2500
Weighted Avg	0.73	0.72	0.72	2500

Accuracy Of Model Is 72.48%

K Neighbour Classifier

The K-Nearest Neighbors (KNN) Classifier is a straightforward yet effective supervise machine learning algorithm for classification tasks. It operates on the principle of similarity classifying new data points based on their proximity to labeled data points in the trainin set. The algorithm determines the class of a new data point by identifying its K nearest neighbors in the feature space using a distance metric (like Euclidean distance).

This model scored an accuracy of approximately 77.80%.

• • • •

• • • •

• • • •

Confusion Matrix

	Precision	Recall	F1-score	Support
Not Placed	0.81	0.82	0.81	1471
Placed	0.73	0.72	0.73	1029
Accuracy			0.7780	2500
Macro Avg	0.77	0.77	0.77	2500
Weighted Avg	0.78	0.78	0.78	2500

With Normalization Confusion Matrix

	Precision	Recall	F1-score	Support
Not Placed	0.83	0.80	0.81	1471
Placed	0.73	0.77	0.75	1029
Accuracy			0.7864	2500
Macro Avg	0.78	0.78	0.78	2500
Weighted Avg	0.79	0.79	0.79	2500

Accuracy Of Model Is 78.64%

RANDOM FOREST

Random Forest is an ensemble learning method that constructs multiple decision trees during training.

- Each tree in the forest is trained on a random subset of the training data and a random subset of the features.
- During prediction, each tree in the forest independently makes a prediction, and the final prediction is determined by aggregating the predictions of all trees.
- · Random Forest is robust to overfitting and tends to generalize well to unseen data due to the diversity of trees in the forest and the randomness introduced during training.

This model scored an accuracy of approximately 78.48%.

Confusion Matrix

	Precision	Recall	F1-score	Support
Not Placed	0.81	0.83	0.82	1471
Placed	0.75	0.72	0.73	1029
Accuracy			0.7848	2500
Macro Avg	0.78	0.77	0.78	2500
Weighted Avg	0.78	0.78	0.78	2500

With Normalization Confusion Matrix

	Precision	Recall	F1-score	Support
Not Placed	0.81	0.82	0.82	1471
Placed	0.75	0.72	0.73	1029
Accuracy			0.7804	2500
Macro Avg	0.77	0.77	0.77	2500
Weighted Avg	0.78	0.78	0.78	2500

Accuracy Of Model Is 78.04%

Comparision Between Models

PyCaret Library

	Description	Value
0	Session id	123
1	Target	PlacementStatus
2	Target type	Binary
3	Original data shape	(10000, 11)
4	Transformed data shape	(10000, 11)
5	Transformed train set shape	(7000, 11)
6	Transformed test set shape	(3000, 11)
7	Numeric features	10
8	Preprocess	True
9	Imputation type	simple
10	Numeric imputation	mean
11	Categorical imputation	mode
12	Fold Generator	StratifiedKFold
13	Fold Number	10
14	CPU Jobs	-1
14		
15	Use GPU	False
	Use GPU Log Experiment	False False
15		False

PyCaret Library

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	мсс
ada	Ada Boost Classifier	0.8020	0.8813	0.7549	0.7692	0.7619	0.5925	0.5927
lr	Logistic Regression	0.8019	0.8806	0.7685	0.7617	0.7650	0.5937	0.5939
gbc	Gradient Boosting Classifier	0.8000	0.8801	0.7430	0.7719	0.7570	0.5872	0.5877
lda	Linear Discriminant Analysis	0.7996	0.8795	0.7839	0.7502	0.7665	0.5911	0.5917
ridge	Ridge Classifier	0.7993	0.0000	0.7828	0.7501	0.7660	0.5904	0.5910
nb	Naive Bayes	0.7981	0.8781	0.7941	0.7432	0.7676	0.5896	0.5909
lightgbm	Light Gradient Boosting Machine	0.7951	0.8747	0.7352	0.7673	0.7507	0.5770	0.5776
rf	Random Forest Classifier	0.7934	0.8712	0.7223	0.7714	0.7457	0.5721	0.5733
qda	Quadratic Discriminant Analysis	0.7929	0.8680	0.7454	0.7576	0.7511	0.5738	0.5742
svm	SVM - Linear Kernel	0.7907	0.0000	0.7492	0.7622	0.7474	0.5698	0.5784
et	Extra Trees Classifier	0.7880	0.8658	0.7134	0.7658	0.7383	0.5605	0.5619
knn	K Neighbors Classifier	0.7749	0.8348	0.7260	0.7349	0.7301	0.5370	0.5374
dt	Decision Tree Classifier	0.7097	0.7041	0.6658	0.6513	0.6582	0.4060	0.4063
dummy	Dummy Classifier	0.5803	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000

Conclusion & Future Work

- Primary objective achieved: Successfully predicted students' placement status post-final year using four classification algorithms (LR, DTC, KNN, RFC).
- In Future work we can apply this predictor Model on real time application instead of synthetic data.
- System's efficacy: Elevates institution's placement rates. Enhances institution's reputation.
- Signifies a substantial advancement in classification techniques for placement prediction.
- Stands as a pivotal tool to improve placement prediction methodologies significantly.

References and bibliography

engineering-colleges/code?datasetId=3678158&sortBy=voteCount

1.Senthil Kumar Thangavel, Divya Bharathi P and Abijith Sankar: Student Placement Analyzer: A Recommendation System Using Machine Learning 2017 International Conference on Advanced Computing and Communication Systems. 2. Student Placement Prediction Model: A Data Mining Perspective for **Outcome-Based Education System** Article in International Journal of Recent Technology And Engineering(IRJTE) September 2019:-By Abhishek Rao, NMAM Institute of Technology 3.2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS) A Review on Student Placement Chance Prediction 4.2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN) Campus Placement Predictive Analysis using Machine Learning 5.https://www.kaggle.com/datasets/chandhurubaskar/campus-placement-data-for-

THANKYOU

