Universidade de Brasília Instituto de Ciências Exatas Departamento de Ciência da Computação

Algoritmos e Programação de Computadores

Atividades a serem desenvolvidas nas sessões de Laboratório

Sessão 4:

Objetivos:

- 1. Aprender a elaborar programas que utilizam as estruturas de repetição **while, for** e **do...while,** além de estruturas de repetição aninhadas.
- 2. Aprender a solicitar os dados do usuário, por meio de mensagens explicativas.
- 3. Aprender a imprimir os resultados para o usuário, usando mensagens explicativas.

Atividades:

1. O programa abaixo lê a variável SEXO. Enquanto o valor fornecido não for dentro do esperado (M,m,F,f) exibe uma mensagem de erro e solicita novamente a leitura. Quando o valor fornecido estiver correto, o programa lê a variável ANO, e escreve ANO e SEXO. Digite o programa abaixo.

```
#include <stdio.h>
int main () {
    int ano;
    char sexo;
    printf("Informe o sexo: ");
    scanf("%c", &sexo);
    while ((sexo != 'f') && (sexo != 'F') && (sexo != 'm') &&
       (sexo != 'M')){
       printf("Erro! ");
       printf("Informe o sexo novamente: ");
       getchar();
        scanf("%c", &sexo);
    printf("Informe o ano: ");
    scanf("%d", &ano);
    printf("Saida - Ano = %d e Sexo = %c", ano, sexo);
    getchar();
    getchar();
    return (0);
```

- a. a) Corrija todos os erros sintáticos.
- b. b) Insira as quebras de linha dentro dos printfs, onde necessário. Compile e execute novamente.
- c. c) Caso seja desnecessário você pode retirar os comandos getchar do seu programa.

2. Criar o programa abaixo

while (i<j) {

```
/* descrição: imprimir os números de 1 a 5, cinco vezes.
                 Entrada: não tem
                 Saída: 1
                         1 2
                         1 2 3
                         1 2 3 4
                         1 2 3 4 5
                                       */
      #include <stdio.h>
      int main () {
          int i, j;
          for (j=1;j<=5;j++) {
               i = 0;
               while (i<j) {
                  i++;
                  printf ("%d ",i);
               printf("\n ");
          getchar();
          return (0);
      }
a. Corrija todos os erros sintáticos;
b. Execute o programa duas vezes, das seguintes formas:
¥ exatamente como está, observando a saída;
\forall retire o comando i = 0, escrevendo-o ANTES do comando for e observe a saída;
a. Substituir o comando while pelo do...while, da seguinte forma:
```

i++;
printf("%d ",i); ====>>>> printf("%d ",i);
} while(i<j);</pre>

do {

a. Execute novamente o programa observando a saída (que deve ser a mesma da execução utilizando o comando **while**).

Em todos os programas abaixo, quando necessário, solicite os dados de entrada e imprima os dados de saída usando mensagens explicativas adequadas. Lembre-se de validar a entrada do usuário, informando-o de valores de entrada inadequados (valores numéricos inesperados).

3. Imprima o valor de $\sum i$, i=1,...k, com valores de k sendo fornecidos pelo usuário. Não se sabe a priori quantos valores de k serão informados, sendo que a indicação de final de leitura é dada pelo valor de k menor do que zero. (Dica: uma das alternativas é utilizar um **while** ou **do ... while**, e dentro dele um **for.**)

Execute o programa com os seguintes dados:

¥	k = 10	resposta correta: 55
¥	k = 5	resposta correta: 15
¥	k = 7	resposta correta: 28
¥	k = -1	final do programa

4. Imprima o valor de n! para um valor n, e repita este cálculo t vezes. Os valores de t e n deverão ser informados pelo usuário.

Execute o programa, com os seguintes dados:

¥	t = 4	
¥	n = 0	resposta correta: 1
¥	n = 1	resposta correta: 1
¥	n = 3	resposta correta: 6
¥	n = 5	resposta correta: 120

5. Imprima o valor de x^k, para valores de x e k (ambos maiores ou iguais a zero) informados pelo usuário. Informe quatro pares de valores. (Dica: utilize "for (i=1;i<=4;i++)" para ler os 4 pares de valores, dentro dele utilize do... while para garantir que os valores de x e k sejam >= 0, e "for (j=1;j<=k;j++)" para implementar a exponenciação após a leitura de cada par de valores.)

Execute o programa, com os seguintes dados:

```
Y=0 Y=0
```

- 6. Modifique o problema anterior para, além do que foi solicitado:
- a. aceitar o coeficiente k negativo (exemplo: $2^{-3}=1/2^3=1/8=0.125$);
- b. aceitar os valores de x e k negativos (exemplos: $(-2)^2 = 4$, $(-2)^3 = -8$, $(-2)^{-2} = 1/4 = 0.25$).
- 7. Escreva um algoritmo que leia uma sequência de valores inteiros (assuma pelo menos

dois elementos na sequência) e determine a maior soma de dois elementos consecutivos. Escreva o valor da soma. O valor zero indica o fim da sequência e não entra nos cálculos da sequência.