```
In [2]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [3]: | df = pd.read_csv(r'C:\Users\ssd\OneDrive\Documents\Numpy notes\11_Pandas_3\11_Pandas_3\aerofit_treadmill.csv')

In [4]: df

Out[4]:

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
0	KP281	18	Male	14	Single	3	4	29562	112
1	KP281	19	Male	15	Single	2	3	31836	75
2	KP281	19	Female	14	Partnered	4	3	30699	66
3	KP281	19	Male	12	Single	3	3	32973	85
4	KP281	20	Male	13	Partnered	4	2	35247	47
175	KP781	40	Male	21	Single	6	5	83416	200
176	KP781	42	Male	18	Single	5	4	89641	200
177	KP781	45	Male	16	Single	5	5	90886	160
178	KP781	47	Male	18	Partnered	4	5	104581	120
179	KP781	48	Male	18	Partnered	4	5	95508	180

180 rows × 9 columns

```
In [7]: # No null values
    df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 180 entries, 0 to 179
Data columns (total 9 columns):

Data	COLUMNIS (COCAL	o corumns).	
#	Column	Non-Null Count	Dtype
0	Product	180 non-null	object
1	Age	180 non-null	int64
2	Gender	180 non-null	object
3	Education	180 non-null	int64
4	MaritalStatus	180 non-null	object
5	Usage	180 non-null	int64
6	Fitness	180 non-null	int64
7	Income	180 non-null	int64
8	Miles	180 non-null	int64
44		(2)	

dtypes: int64(6), object(3)

memory usage: 12.8+ KB

In [8]: df.describe()

Out[8]:

	Age	Education	Usage	Fitness	Income	Miles
count	180.000000	180.000000	180.000000	180.000000	180.000000	180.000000
mean	28.788889	15.572222	3.455556	3.311111	53719.577778	103.194444
std	6.943498	1.617055	1.084797	0.958869	16506.684226	51.863605
min	18.000000	12.000000	2.000000	1.000000	29562.000000	21.000000
25%	24.000000	14.000000	3.000000	3.000000	44058.750000	66.000000
50%	26.000000	16.000000	3.000000	3.000000	50596.500000	94.000000
75%	33.000000	16.000000	4.000000	4.000000	58668.000000	114.750000
max	50.000000	21.000000	7.000000	5.000000	104581.000000	360.000000

Out[12]: "\nInsights:\n\n-> There are no missing values in the data.\n-> There are 3 unique products in the dataset.\n-> KP281 is the most frequent product.\n-> Minimum & Maximum age of the person is 18 & 50, mean is 28.79 and 75% of persons ha ve age less than or equal to 33.\n-> Most of the people are having 16 years of education i.e. 75% of persons are having education <= 16 years.\n-> Out of 180 rows, 104's gender is Male and rest are the female.\n-> Standard deviation for Income & Miles is very high. These variables might have the outliers in it.\n\n"

```
In [ ]: # Univariate analysis
# Checking for the distribution of each colmmn in the data set
# Validating the factors like age, Education, usage, fitness, income, miles using a subplot
# entire univariate analysis are categorized and divided into the sub plots below
```

```
In [13]:
    fig, axis = plt.subplots(3,2 , figsize = (12,10))
    sns.histplot(data = df, x='Age',kde = True, ax = axis[0,0] ,color = 'blue')
    sns.histplot(data = df, x='Education',kde = True, ax = axis[0,1] ,color = 'blue')
    sns.histplot(data = df, x='Usage',kde = True, ax = axis[1,0] ,color = 'black')
    sns.histplot(data = df, x='Fitness',kde = True,ax = axis[1,1] , color = 'black')
    sns.histplot(data = df, x='Income',kde = True,ax = axis[2,0] ,color = 'red')
    sns.histplot(data = df, x='Miles',kde = True, ax = axis[2,1] ,color = 'red')
    plt.show()
```


30000 40000 50000 60000 70000 80000 90000 100000 50 100 150 200 250 300 350 Income

In []: # checking for outliers among the multiple columns in the data set
there are some heavy outliers in miles and incomes columns

```
In [14]: fig, axis = plt.subplots(3,2, figsize = (12,14))
    sns.boxplot(data = df, x = 'Age',orient = 'h',ax = axis[0,0])
    sns.boxplot(data = df, x = 'Education',orient = 'h',ax = axis[0,1])
    sns.boxplot(data = df, x = 'Usage',orient = 'h',ax = axis[1,0])
    sns.boxplot(data = df, x = 'Fitness',orient = 'h',ax = axis[1,1])
    sns.boxplot(data = df, x = 'Income',orient = 'h',ax = axis[2,0])
    sns.boxplot(data = df, x = 'Miles',orient = 'h',ax = axis[2,1])
    plt.show()
```



```
In [ ]:
```

Insights:

- -> from box plot outlier detection it is evident that income and miles have large number of outliers
- -> Age, education and usage has less outliers compared to income and miles

1.1.1

In []: # checking for the distribution of qualitative data in the data set # Product, Gender, Marital Status

In []: ''' Insights:

- -> KP281 is the largest selling product among the tread mill cateogry
- -> out of total propotion of gender data, we have dominant amount males in the gender category
- -> comapared to single, there are more number of people who are married and interested in buying the tread mill equipm

111

value

```
In [16]:
```

```
# checking for the categorized data among Gender, Marital Status and Product in the data set.
melted_data = df[['Product','Gender','MaritalStatus']].melt()
melted_data.groupby(['variable','value'])[['value']].count() / len(df)
```

Out[16]:

variable	value	
Gender	Female	0.422222
Gender	Male	0.577778
MaritalStatus	Partnered	0.594444
MaritaiStatus	Single	0.405556
	KP281	0.444444
Product	KP481	0.333333
	KP781	0.222222

```
In []: Insights:
    Product:
    -> 44.44% of the customers have purchased KP2821 product.
    -> 33.33% of the customers have purchased KP481 product.
    -> 22.22% of the customers have purchased KP781 product.

Gender:
    -> 57.78% of the customers are Male.
    -> 42% of the customers are female

MaritalStatus:
    -> 59.44% of the customers are Partnered.
    -> 40.12% of the customers are single
    ....
```

In []: # checking the relation between product vs age and product vs Gender and product vs Marital Status

```
In [17]: sns.set_style(style = 'whitegrid')
fig, axs= plt.subplots(1,2,figsize=(15,6.5))
sns.countplot(data=df,x="Product",hue="Gender",palette=["#7fcdbb","#edf8b1"],ax=axs[0])
axs[0].set_title("Product vs Gender")
sns.countplot(data=df,x="Product",hue="MaritalStatus",palette=['#432371',"#FAAE7B"],ax=axs[1])
axs[1].set_title("Product vs MaritalStatus")
plt.show()
```


Out[18]:

	Product	KP281	KP481	KP781	All
MaritalStatus	Age				
Partnered	19	1	0	0	1
	20	2	1	0	3
	21	2	3	0	5
	22	1	0	0	1
	23	4	5	0	9
	24	2	0	1	3
	25	5	6	7	18
	26	5	1	1	7
	27	2	0	2	4
	28	4	0	2	6
	29	3	1	1	5
	30	1	0	3	4
	31	1	2	1	4
	32	1	1	0	2
	33	1	4	1	6
	34	0	2	0	2
	35	2	3	1	6
	37	1	1	0	2
	38	3	2	1	6
	39	1	0	0	1
	40	1	2	0	3
	41	1	0	0	1
	43	1	0	0	1
	45	0	1	0	1
	46	1	0	0	1

	Product	KP281	KP481	KP781	All
MaritalStatus	Age				
	47	1	0	1	2
	48	0	1	1	2
	50	1	0	0	1

	Product	KP281	KP481	KP781	All
MaritalStatus	Age				
	18	1	0	0	1
	19	2	1	0	3
	20	0	2	0	2
	21	2	0	0	2
	22	3	0	3	6
	23	4	2	3	9
	24	3	3	3	9
	25	2	5	0	7
	26	2	2	1	5
	27	1	1	1	3
	28	2	0	1	3
Single	29	0	0	1	1
Gg.0	30	1	2	0	3
	31	1	1	0	2
	32	1	1	0	2
	33	1	1	0	2
	34	2	1	1	4
	35	1	1	0	2
	36	1	0	0	1
	38	1	0	0	1
	40	0	1	1	2
	42	0	0	1	1
	44	1	0	0	1
	45	0	0	1	1
All		80	60	40	180

```
In [19]: plt.figure(figsize = (16,6))
sns.countplot(data = df, x = 'Age', hue = 'Product',palette=['#E50914',"#000000",'#000049'])
plt.legend(loc = 'upper right',frameon = True, ncol = 2)
plt.show()
```



```
In [92]: # performing bivariate analysis on multiple factors that contribute to the purchase of product

var= ['Age','Education','Usage','Fitness','Income','Miles']
sns.set_style("whitegrid")
fig,axs=plt.subplots(2,3,figsize=(18,12))
fig.subplots_adjust(top=1.3)
count=0
for i in range(2):
    for j in range(3):
        sns.boxplot(data=df,x='Product',y=var[count],ax=axs[i,j],hue='Product',palette="Set2")
        axs[i,j].set_title(f"Product vs {var[count]}}",pad=12,fontsize=13)
        count+=1
```


Aerofit - Jupyter Notebook

In []: Insights: Product vs Age: -> Customers purchasing products KP281 & KP481 are having same Age median value. -> Customers whose age lies between 25-30, are more likely to buy KP781 product Product vs Education: -> Customers whose Education is greater than 16, have more chances to purchase the KP781 product. -> While the customers with Education less than 16 have equal chances of purchasing KP281 or KP481. Product vs Usage: -> Customers who are planning to use the treadmill greater than 4 times a week, are more likely to purchase the KP781 -> While the other customers are likely to purchasing KP281 or KP481. Product vs Fitness: -> The more the customer is fit (fitness >= 3), higher the chances of the customer to purchase the KP781 product. Product vs Income: -> Higher the Income of the customer (Income >= 60000), higher the chances of the customer to purchase the KP781 produ Product vs Miles: -> If the customer expects to walk/run greater than 120 Miles per week, it is more likely that the customer will buy K 1.1.1

```
In [93]: # performing marginal and conditional probability to ensure our analysis is number proof before we reach the business.

pd.concat(
    [ df.Product.value_counts(), df.Product.value_counts(normalize=True)
    ],
    keys=['counts', 'Marginal_Prob'],
    axis=1,
)
```

Out[93]:

	counts	Marginal_Prob
KP281	80	0.44444
KP481	60	0.333333
KP781	40	0.222222

```
In [94]: def p prod given gender(gender, print marginal=False):
             if gender!= "Female" and gender!= "Male":
                 return "Invalid gender value."
             df1= pd.crosstab(index=df['Gender'],columns=[df['Product']])
             p 781= df1['KP781'][gender] / df1.loc[gender].sum()
             p 481= df1['KP481'][gender] / df1.loc[gender].sum()
             p_281= df1['KP281'][gender] / df1.loc[gender].sum()
             if print marginal:
                 print(f"P(Male): {df1.loc['Male'].sum()/len(df):.2f}")
                 print(f"P(Female): {df1.loc['Female'].sum()/len(df):.2f}")
             print(f"P(KP781/{gender}):{p_781:.2f}")
             print(f"P(KP481/{gender}):{p 481:.2f}")
             print(f"P(KP281/{gender}):{p 281:.2f}\n")
         p prod given gender('Male',True)
         p prod given gender('Female')
         P(Male): 0.58
         P(Female): 0.42
         P(KP781/Male):0.32
         P(KP481/Male):0.30
         P(KP281/Male):0.38
         P(KP781/Female):0.09
         P(KP481/Female):0.38
         P(KP281/Female):0.53
```

```
In [95]: def p prod given MaritalStatus(status, print marginal=False):
             if status!= "Single" and status!= "Partnered":
                 return " invalid MaritalStatus value."
             df1= pd.crosstab(index=df['MaritalStatus'],columns=[df['Product']])
             p 781= df1['KP781'][status] / df1.loc[status].sum()
             p 481= df1['KP481'][status] / df1.loc[status].sum()
             p_281= df1['KP281'][status] / df1.loc[status].sum()
             if print marginal:
                 print(f"P(Single): {df1.loc['Single'].sum()/len(df):.2f}")
                 print(f"P(Partnered): {df1.loc['Partnered'].sum()/len(df):.2f}\n")
             print(f"P(KP781/{status}):{p 781:.2f}")
             print(f"P(KP481/{status}):{p 481:.2f}")
             print(f"P(KP281/{status}):{p 281:.2f}\n")
         p prod given MaritalStatus('Single',True)
         p prod given MaritalStatus('Partnered')
         P(Single): 0.41
         P(Partnered): 0.59
```

P(Single): 0.41 P(Partnered): 0.59 P(KP781/Single):0.23 P(KP481/Single):0.33 P(KP281/Single):0.44 P(KP781/Partnered):0.21 P(KP481/Partnered):0.34 P(KP281/Partnered):0.45

In []: '

Recommendations:

-> KP781 should be a marketed as a premium model and marketing it to high income groups and educational over 20 years segmenets could result in more sales.

-> Aerofit should conduct market research to determine if it can attract customers with income under 40000 to expand i customer base.

-> The KP781 is a premium model, so it is ideally suited for sport people who have a high weekly average mileage

 $\mathbf{r}_{-1}, \mathbf{r}_{-1}$