Lecture 4

Lecture 4 Outline

- Focus on separating individual-level and cluster-level covariate effects in multi-level models
 - This continues our discussion from Lecture 3 where we utilized graphical displays to separate the within and between cluster effects for a level-1 covariate
 - Focus will be on estimation and interpretation of fixed effects within a random intercept model (for now)
 - Begg and Parides 2003 Statistics in Medicine paper
- We will also consider the case where the goal is to estimate the effect of a Level-2 covariate while adjusting for level-1 covariates.
- Example: Inner London School Data
 - Students (level 1) nested within schools (level 2)
 - OUTCOME: GCSE score, age 16 exam score
 - Level-1 Covariate: LRT score, age 11 reading test score

Scientific Questions

For now, focus on fixed effects; i.e. interpretation of regression coefficients within mixed model (not interpretation of variance of random effects).

- 1. Quantify the relationship between GCSE score and LRT score
- Within a school, quantify the relationship between GCSE score and LRT score
- Does the "context" of the school matter? i.e. do students from schools with higher school-average LRT scores fair better than otherwise similar students in schools with lower school-average LRT scores
 - Defined as the "contextual" effect (see "Brief conceptual..."

Exploratory Data Analysis

```
* Create some new variables
sort school student
* Generate the number of students within each school
by school: egen totalstudents = count(student)
* Generate a counter for the number of students within each school
by school: gen withinschoolcount = n
* EDA
* What is the distribution of number of students in each school
summ totalstudents if withinschoolcount==1
```

Variable	Obs	Mean	Std. Dev.	Min	Max
totalstude~s	+ 65	62.44615	29.74844	 2	198

65 schools in the dataset:

Number of students ranges from 2 to 198, average 62

Exploratory Data Analysis

- * What is the distribution of the gcse and lrt scores
- . summ gcse

Variable	Obs	Mean	Std. Dev.	Min	Max
gcse	4059	69.99527	9.977929	33.339	100

. summ lrt

Variable	Obs	Mean	Std. Dev.	Min	Max
lrt	4059	60.0181	9.93223	30.65	90.16

NOTE: This data was extracted from your textbook. The data is provided as z-scores with standard deviation of 10 instead of 1. I added 60 to the LRT scores and 70 to the GCSE scores. So we will interpret the data in the lecture as the raw test score.

Exploratory Data Analysis

 Relationship between gcse and lrt among two schools (1 and 2)

School-specific relationships among schools with at least 5 students

- One of our objectives is to estimate the within cluster association.
- There appears to be variation in this association across schools
- Lecture 6

- For now, we want to estimate the average of these slopes!

Possible Models to Consider

Model 1:
$$E(Y_{ij}|X_{ij}) = \alpha_{1i} + \beta_1 X_{ij}$$

Model 2: $E(Y_{ij}|X_{ij}, \bar{X}_{i.}) = \alpha_{2i} + \beta_2 X_{ij} + \gamma_2 \bar{X}_{i.}$
Model 3: $E(Y_{ij}|X_{ij}, \bar{X}_{i.}) = \alpha_{3i} + \beta_3 (X_{ij} - \bar{X}_{i.}) + \gamma_3 \bar{X}_{i.}$
Model 4: $E(Y_{ij}|X_{ij}, \bar{X}_{i.}) = \alpha_{4i} + \beta_4 (X_{ij} - \bar{X}_{i.})$
Model 5: $E(Y_{ij}|X_{ij}, \bar{X}_{i.}) = \alpha_{5i} + \gamma_5 \bar{X}_{i.}$

where

$$Y_{ij} = E(Y_{ij}|...) + \varepsilon_{ij}, \varepsilon_{ij} \sim N(0, \sigma_k^2)$$

 $\alpha_{ki} \sim N(\alpha_k, \tau_k^2)$, for each model k

Notes on the possible models

Model 1:
$$E(Y_{ij}|X_{ij}) = \alpha_{1i} + \beta_1 X_{ij}$$

• Ignores the clustering of the data when it is estimating β_1 , this is the "total effect"

Model 2:
$$E(Y_{ij}|X_{ij}, \bar{X}_{i.}) = \alpha_{2i} + \beta_2 X_{ij} + \gamma_2 \bar{X}_{i.}$$

Model 3: $E(Y_{ij}|X_{ij}, \bar{X}_{i.}) = \alpha_{3i} + \beta_3 (X_{ij} - \bar{X}_{i.}) + \gamma_3 \bar{X}_{i.}$

- These two models are mathematically equivalent
- In Model 3, we have chosen to "center" the level-1 covariate
 - "cluster-mean" or "cluster-specific" or "within-cluster" centering
- The choice of centering or not will change the interpretation of the intercept and also the interpretation of γ_2 and γ_3
- We will also discuss the option to "grand-mean center" later in the lecture and the impact this can have.

Notes on the possible models

Model 4:
$$E(Y_{ij}|X_{ij}, \bar{X}_{i.}) = \alpha_{4i} + \beta_4(X_{ij} - \bar{X}_{i.})$$

- This model ignores the cluster mean covariate
- Includes only the cluster-mean centered level-1 covariate

Model 5:
$$E(Y_{ij}|X_{ij}, \bar{X}_{i.}) = \alpha_{5i} + \gamma_5 \bar{X}_{i.}$$

- This model ignores the cluster-mean centered level-1 covariate
- Includes only the cluster-mean covariate

Recall the EDA: Separation of Between and Within Effects

Fit the models using (xt)mixed in Stata

```
* Generate the cluster-mean variable and cluster-mean centered
* Irt score
bys school: egen mean | Irt = mean(Irt)
gen lrt within = lrt - mean lrt
**** Model 1
mixed gcse Irt || school:
**** Model 2
mixed gcse Irt mean_Irt || school:
**** Model 3
mixed gcse Irt_within mean_Irt || school:
**** Model 4
mixed gcse Irt within || school:
**** Model 5
mixed gcse mean_lrt || school:
```

Results

Model	$oldsymbol{eta}_k$	γ_k
1	0.563 (0.538, 0.587)	
2	0.559 (0.534, 0.583)	0.357 (0.142, 0.573)
3	0.559 (0.534, 0.583)	0.916 (0.702, 1.131)
4	0.559 (0.534, 0.583)	
5		0.925 (0.712, 1.138)

We note first the difference in estimates in the $oldsymbol{eta}_k$ column.

- The estimate from Model 1 (0.563) is the total effect
- This estimate basically ignores the cluster membership
- This estimate is a distorted estimate of the within cluster effect due to confounding by the cluster-average LRT
 - Can show that cluster-average LRT is correlated with both individual LRT and the GCSE score.

Model 2:
$$E(Y_{ij}|X_{ij}, \overline{X}_{i.}) = \alpha_{2i} + \beta_2 X_{ij} + \gamma_2 \overline{X}_{i.}$$

Model 3:
$$E(Y_{ij}|X_{ij}, \bar{X}_{i.}) = \alpha_{3i} + \beta_3(X_{ij} - \bar{X}_{i.}) + \gamma_3 \bar{X}_{i.}$$

Model	$oldsymbol{eta}_k$	γ_k
2	0.559 (0.534, 0.583)	0.357 (0.142, 0.573)
3	0.559 (0.534, 0.583)	0.916 (0.702, 1.131)

 β_2 and β_3 have the same estimated values and interpretation.

The effect of LRT score on GCSE within a given cluster:

Within a school, the student's average GCSE scores differ by 0.559 points per additional point on the LRT.

Model 2:
$$E(Y_{ij}|X_{ij}, \overline{X}_{i.}) = \alpha_{2i} + \beta_2 X_{ij} + \gamma_2 \overline{X}_{i.}$$

Model 3:
$$E(Y_{ij}|X_{ij}, \bar{X}_{i.}) = \alpha_{3i} + \beta_3(X_{ij} - \bar{X}_{i.}) + \gamma_3 \bar{X}_{i.}$$

Model	$oldsymbol{eta}_k$	γ_k
2	0.559 (0.534, 0.583)	0.357 (0.142, 0.573)
3	0.559 (0.534, 0.583)	0.916 (0.702, 1.131)

 γ_2 and γ_3 have different values, what do they represent?

Model 2: γ_2 represents the contextual effect!

Model 3: γ_3 represents the between effect!

Model 2:
$$E(Y_{ij}|X_{ij}, \overline{X}_{i.}) = \alpha_{2i} + \beta_2 X_{ij} + \gamma_2 \overline{X}_{i.}$$

Model	$oldsymbol{eta}_k$	γ_k
2	0.559 (0.534, 0.583)	0.357 (0.142, 0.573)

Model 2: Holding X_{ij} fixed, the mean difference in Y_{ij} per unit increase in \overline{X}_{i} .

Consider two students with the same LRT score but who come from schools that differ in school average LRT score by 1 point.

The student from the school with higher average LRT score is expected to have a GCSE score that is 0.357 points higher than the other student.

Model 3:
$$E(Y_{ij}|X_{ij}, \bar{X}_{i.}) = \alpha_{3i} + \beta_3(X_{ij} - \bar{X}_{i.}) + \gamma_3 \bar{X}_{i.}$$

Model	$oldsymbol{eta}_k$	γ_k
3	0.559 (0.534, 0.583)	0.916 (0.702, 1.131)

Consider the full model:

$$Y_{ij} = \alpha_{3i} + \beta_3 (X_{ij} - \bar{X}_{i.}) + \gamma_3 \bar{X}_{i.} + \varepsilon_{3ij}$$

Take the cluster mean:

$$\begin{split} \bar{Y}_{i.} &= \alpha_{3i} + \beta_3 (\bar{X}_{i.} - \bar{X}_{i.}) + \gamma_3 \bar{X}_{i.} + \bar{\varepsilon}_{3i.} \\ \bar{Y}_{i.} &= \alpha_{3i} + \gamma_3 \bar{X}_{i.} + \bar{\varepsilon}_{3i.} \end{split}$$

This is the between effect: The difference in school average GCSE per unit increase in school average LRT score.

- Why do these effects occur?
 - Normative effects associated with the cluster/organization/level-2 factor
 - i.e. persons within the cluster tend to be much more like each other than otherwise similar persons from other clusters
 - The mean X within a cluster may act as a proxy for other important cluster level characteristics that are not measured
 - They may signal a statistical artifact if the mean X within a cluster may carry some information if X is measured with error
- Posted a few references for with todays lecture that explore these ideas.

Within-effect: Expected difference in Y between two subjects from the same cluster but who differ in X by one unit

Inner London School EX:
expected difference in
GCSE score between two
students from the same
school but who differ in
LRT by one point

Between-effect: Expected difference in mean Y between two clusters that differ in average X by one unit

Inner London School EX: expected difference in mean GCSE score between two schools that differ in average LRT by one point

Contextual-effect:
Expected difference in Y
between two subjects who
have the same value of X
but who come from
clusters that differ by one
unit in mean X

Inner London School EX:
expected difference in
GCSE scores between two
students with the same
LRT score but who come
from two schools that
differ in average LRT by
one point

Model 2:
$$E(Y_{ij}|X_{ij}, \bar{X}_{i.}) = \alpha_{2i} + \beta_2 X_{ij} + \gamma_2 \bar{X}_{i.}$$

Model 3:
$$E(Y_{ij}|X_{ij}, \bar{X}_{i.}) = \alpha_{3i} + \beta_3(X_{ij} - \bar{X}_{i.}) + \gamma_3 \bar{X}_{i.}$$

Model	$oldsymbol{eta}_k$	γ_k
2	0.559 (0.534, 0.583)	0.357 (0.142, 0.573)
3	0.559 (0.534, 0.583)	0.916 (0.702, 1.131)

 γ_2 is the contextual effect; estimated directly within Model 2

 β_3 is the within cluster effect and γ_3 is the between cluster effect.

The contextual effect can be estimated within Model 3 by taking:

$$\gamma_2 = \gamma_3 - \beta_3$$

Model 3:
$$E(Y_{ij}|X_{ij},\bar{X}_{i.}) = \alpha_{3i} + \beta_3(X_{ij} - \bar{X}_{i.}) + \gamma_3\bar{X}_{i.}$$

Model 4:
$$E(Y_{ij}|X_{ij},\bar{X}_{i.}) = \alpha_{4i} + \beta_4(X_{ij} - \bar{X}_{i.})$$

Model 5:
$$E(Y_{ij}|X_{ij}, \overline{X}_{i.}) = \alpha_{5i} + \gamma_5 \overline{X}_{i.}$$

Model	$oldsymbol{eta}_k$	γ_k
3	0.559 (0.534, 0.583)	0.916 (0.702, 1.131)
4	0.559 (0.534, 0.583)	
5		0.925 (0.712, 1.138)

Models 3 and 4, β_k are both estimating the within effect.

Models 3 and 5, γ_k are both estimating the between effect.

What does this imply about
$$(X_{ij} - \bar{X}_{i.})$$
 and $\bar{X}_{i.}$?

What does this imply about $(X_{ij} - \bar{X}_{i.})$ and $\bar{X}_{i.}$?

Level-2 covariates and cluster-mean centered level-1 covariates are independent!

```
corr gcse lrt lrt_within mean_lrt girl schgend
(obs=4059)
```

		1	2	3	4	5	6
1 2	gcse	1.0000	1.0000				
	lrt lrt_within	0.5277	0.9484	1.0000			
4 5	<pre>mean_lrt girl </pre>	0.2879 0.1144	0.3170 0.0532	-0.0000 0.0425	1.0000 0.0407	1.0000	
6	schgend	0.1115	0.0067	-0.0000	0.0210	0.4365	1.0000

Estimating level-2 effects while adjusting for level-1 covariates

- One of the most common applications of MLM!
- Here it is commonly assumed that no contextual effect exists.
- In this setting, cluster-mean centering is not appropriate
- If you want to center the level-1 covariates, you should grandmean center

Example: School Type

- Estimate the difference in school-average GCSE score across school-type adjusting for the composition of the schools
- Composition measured by gender and LRT score

Unadjusted model:
$$Y_{ij} = \beta_{0i} + \varepsilon_{ij}$$

$$\beta_{0i} = \beta_0 + \beta_1 I(boys_i) + \beta_2 I(girls_i) + b_i$$

Adjusted models add main effects to the level-1 equation

Adjusted 1:
$$Y_{ij} = \beta_{0i} + \alpha_{11}LRT_{ij} + \alpha_{21}girl_{ij} + \varepsilon_{ij}$$

Adjusted 2: $Y_{ij} = \beta_{0i} + \alpha_{12}(LRT_{ij} - \overline{LRT}_{..}) + \alpha_{22}(girl_{ij} - \overline{girl}_{..}) + \varepsilon_{ij}$
Adjusted 3: $Y_{ij} = \beta_{0i} + \alpha_{13}(LRT_{ij} - \overline{LRT}_{i.}) + \alpha_{23}(girl_{ij} - \overline{girl}_{i.}) + \varepsilon_{ij}$

Adjusted Model	All Boys (eta_1)	All Girls (eta_2)
Unadjusted	0.644 (-2.282, 3.569)	2.562 (0.275, 4.849)
1, main effects	1.176 (-0.392, 3.945)	1.575 (-0.133, 3.284)
2, grand mean centered	1.176 (-0.392, 3.945)	1.575 (-0.133, 3.284)
3, cluster mean centered	0.617 (-2.311, 3.546)	2.550 (0.255, 4.845)

Unadjusted model:

- The school average GCSE score is 0.644 points higher among all boys schools compared to mixed gender schools.
- Adjusted model:
 - After accounting for the composition of the school, the school average GCSE score is 1.176 points higher among all boys schools compared to mixed gender schools.

NOTE: The adjustment for the level-1 covariates occurs only in the models with no centering or with grand-mean centering.

Lecture 4 Summary

- In linear models, we considered 5 different models that allowed us to estimate
 - The total effect
 - Within-cluster effect
 - Among-cluster effect
 - Contextual effect
- We reviewed the interpretation of these effects within an example; Inner London School data
- We noticed that cluster-mean centered level-1 covariates are independent of level-2 covariates
 - Explored the impact of this observation for studies where our goal is to estimate the association between a level-1 outcome and level-2 covariate but adjusting for the composition of the clusters.

Lecture 5 Introduction

- Our example at the end of the lecture brings up an important topic for MLMs
 - CENTERING!
- In the next lecture, we will consider:
 - the choice of centering and how this choice can affect your solutions in MLMs
 - how the choice of centering can affect your estimates of random intercept and slope variances!