VITMO

Анализ графовых данных и глубокое обучение

Азимов Рустам Высшая школа цифровой культуры

В предыдущих сериях

В предыдущих сериях

сетей

Вершины агрегируют информацию от соседей с помощью нейронных 😑 😵

Топология графа определяет свой вычислительный граф для каждой вершины

GNN Layer

Message Computation

 Каждая соседняя вершина посылает сообщение, основываясь на своём эмбеддинге с предыдущего слоя

 $m_u^{(l)} = W^{(l)} h_u^{(l-1)}$

Aggregation

- Сообщения от соседей агрегируются $h_v^{(l)} = AGG^{(l)}(\{m_u^{(l)}, u \in N(v)\})$
 - O Например, Sum, Mean, Max

Aggregation

• Информация о вершине v из предыдущих слоев может потеряться

- ullet Поэтому часто добавляют $h_v^{(l-1)}$ при подсчёте $h_v^{(l)}$
- Можно обучать отдельные параметры для таких сообщений

• Также можно использовать отдельную агрегацию

Then aggregate from node itself $\mathbf{h}_{v}^{(l)} = \text{CONCAT}\left(\text{AGG}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}\right), \mathbf{m}_{v}^{(l)}\right)$ First aggregate from neighbors

Архитектура слоя **GNN**

• Вычисления сообщений + Агрегация

- Нелинейность может быть добавлена в любую из этих двух частей
 - o Например, Relu
- Классические архитектуры
 - o GCN
 - GraphSAGE
 - GAT

GCN

• Graph Convolutional Networks (GCNs)

$$\mathbf{h}_{v}^{(l)} = \sigma \left(\mathbf{W}^{(l)} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|} \right)$$

• Что тут сообщения, а что агрегация?

GCN

Message

$$\mathbf{h}_{v}^{(l)} = \sigma \left(\sum_{u \in N(v)} \mathbf{W}^{(l)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|} \right)$$

- ullet Сообщения от соседей: $\mathbf{m}_u^{(l)} = rac{1}{|N(v)|} \mathbf{W}^{(l)} \mathbf{h}_u^{(l-1)}$
- Агрегация:

$$\mathbf{h}_{v}^{(l)} = \sigma\left(\operatorname{Sum}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}\right)\right)$$

• В GCN использовали петли для каждой вершины, чтобы одним из соседей была сама вершина

GraphSAGE

$$\mathbf{h}_{v}^{(l)} = \sigma\left(\mathbf{W}^{(l)} \cdot \text{CONCAT}\left(\mathbf{h}_{v}^{(l-1)}, \text{AGG}\left(\left\{\mathbf{h}_{u}^{(l-1)}, \forall u \in N(v)\right\}\right)\right)\right)$$

- Двухэтапная агрегация
- Агрегация сообщений от соседей:

$$\mathbf{h}_{N(v)}^{(l)} \leftarrow \mathrm{AGG}\left(\left\{\mathbf{h}_{u}^{(l-1)}, \forall u \in N(v)\right\}\right)$$

• Агрегация с сообщением от самой вершины:

$$\mathbf{h}_{v}^{(l)} \leftarrow \sigma\left(\mathbf{W}^{(l)} \cdot \text{CONCAT}(\mathbf{h}_{v}^{(l-1)}, \mathbf{h}_{N(v)}^{(l)})\right)$$

GraphSAGE: Агрегация соседей

• Взвешенная сумма соседей

$$AGG = \sum_{u \in N(v)} \frac{\mathbf{h}_u^{(l-1)}}{|N(v)|}$$
Aggregation Message computation

• Преобразование и агрегация

$$AGG = Mean(\{MLP(\mathbf{h}_u^{(l-1)}), \forall u \in N(v)\})$$

Aggregation Message computation

• Применение LSTM на перемешанных соседях

$$AGG = \underbrace{LSTM}([\mathbf{h}_u^{(l-1)}, \forall u \in \pi(N(v))])$$
Aggregation

GraphSAGE: L2 нормализация

• Опционально можно применять нормализацию для эмеддингов на каждом слое

$$\mathbf{h}_{v}^{(l)} \leftarrow \frac{\mathbf{h}_{v}^{(l)}}{\left\|\mathbf{h}_{v}^{(l)}\right\|_{2}} \ \forall v \in V \ \text{where} \ \left\|u\right\|_{2} = \sqrt{\sum_{i} u_{i}^{2}} \ \left(\ell_{2}\text{-norm}\right)$$

• Так можно масштабировать все эмбеддинги, что иногда приводит к улучшению производительности

Graph Attention Networks (GATs)

$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

Attention weights

- B GCN/GraphSAGE: $\alpha_{vu} = \frac{1}{|N(v)|}$
 - Эти веса определяются по структуре графа
 - Важность всех соседей одинакова
 - Основная идея GAT обучать эти параметры и фокусироваться на важных частях данных

Let α_{vu} be computed as a byproduct of an attention mechanism α :

• (1) Let a compute attention coefficients e_{vu} across pairs of nodes u, v based on their messages:

$$e_{vu} = a(\mathbf{W}^{(l)}\mathbf{h}_u^{(l-1)}, \mathbf{W}^{(l)}\mathbf{h}_v^{(l-1)})$$

• e_{vu} indicates the importance of u's message to node v

$$e_{AB} = a(\mathbf{W}^{(l)}\mathbf{h}_{A}^{(l-1)}, \mathbf{W}^{(l)}\mathbf{h}_{B}^{(l-1)})$$

- **Normalize** e_{vu} into the final attention weight $lpha_{vu}$
 - Use the **softmax** function, so that $\sum_{u \in N(v)} \alpha_{vu} = 1$:

$$\alpha_{vu} = \frac{\exp(e_{vu})}{\sum_{k \in N(v)} \exp(e_{vk})}$$

• Weighted sum based on the final attention weight α_{mi} :

$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

Weighted sum using α_{AB} , α_{AC} , α_{AD} :

$$\mathbf{h}_{A}^{(l)} = \sigma(\alpha_{AB}\mathbf{W}^{(l)}\mathbf{h}_{B}^{(l-1)} + \alpha_{AC}\mathbf{W}^{(l)}\mathbf{h}_{C}^{(l-1)} + \alpha_{AD}\mathbf{W}^{(l)}\mathbf{h}_{D}^{(l-1)})$$

 Пробуйте различные способы вычислить эти коэффициенты, например линейный слой

$$\begin{aligned} & \boldsymbol{e}_{AB} = a \left(\mathbf{W}^{(l)} \mathbf{h}_{A}^{(l-1)}, \mathbf{W}^{(l)} \mathbf{h}_{B}^{(l-1)} \right) \\ &= \operatorname{Linear} \left(\operatorname{Concat} \left(\mathbf{W}^{(l)} \mathbf{h}_{A}^{(l-1)}, \mathbf{W}^{(l)} \mathbf{h}_{B}^{(l-1)} \right) \right) \end{aligned}$$

 Для стабилизации обучения можно параллельно обучать несколько коэффициентов

$$\mathbf{h}_{v}^{(l)}[1] = \sigma(\sum_{u \in N(v)} \alpha_{vu}^{1} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

$$\mathbf{h}_{v}^{(l)}[2] = \sigma(\sum_{u \in N(v)} \alpha_{vu}^{2} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

$$\mathbf{h}_{v}^{(l)}[3] = \sigma(\sum_{u \in N(v)} \alpha_{vu}^{3} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

• Такие эмбеддинги агрегируются, суммой или конкатенацией

$$\mathbf{h}_{v}^{(l)} = AGG(\mathbf{h}_{v}^{(l)}[1], \mathbf{h}_{v}^{(l)}[2], \mathbf{h}_{v}^{(l)}[3])$$

VITMO GNN Advanced Modules

GNN Layer Design

- Для улучшения производительности можно использовать современные модули глубокого обучения
- Batch Normalization стабилизация обучения
 Transformation
- Dropout борьба с переобучением
- Attention/Gating контроль важности сообщений
- Любые другие модули глубокого обучения

Batch Normalization

Input: $\mathbf{X} \in \mathbb{R}^{N \times D}$

N node embeddings

Trainable Parameters:

 $\gamma, \beta \in \mathbb{R}^D$

Output: $\mathbf{Y} \in \mathbb{R}^{N \times D}$

Normalized node embeddings

Step 1:

Compute the mean and variance over N embeddings

$$\mu_j = \frac{1}{N} \sum_{i=1}^{N} \mathbf{X}_{i,j}$$

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{X}_{i,j} - \mu_j)^2$$

Step 2:

Normalize the feature using computed mean and variance

$$\widehat{\mathbf{X}}_{i,j} = \frac{\mathbf{X}_{i,j} - \mathbf{\mu}_j}{\sqrt{\mathbf{\sigma}_j^2 + \epsilon}}$$

$$\mathbf{Y}_{i,j} = \mathbf{\gamma}_j \widehat{\mathbf{X}}_{i,j} + \mathbf{\beta}_j$$

Dropout

VITMO

Dropout

• Например, для линейного слоя: $\mathbf{m}_{u}^{(l)} = \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)}$

Функции активации

• Часто используют ReLU

$$ReLU(\mathbf{x}_i) = \max(\mathbf{x}_i, 0)$$

 Сигмоида, когда хотим ограничить область значений эмбеддингов

$$\sigma(\mathbf{x}_i) = \frac{1}{1 + e^{-\mathbf{x}_i}}$$

 Параметрический ReLU часто на практике эффективнее ReLU

$$PReLU(\mathbf{x}_i) = \max(\mathbf{x}_i, 0) + \frac{a_i}{a_i}\min(\mathbf{x}_i, 0)$$

Как связывать слои GNN?

Последовательные слои

 Классическое решение – последовательно применять слои и трансформировать эмбеддинги вершин

Over-smoothing Problem

 При росте количества слоев эмбеддинги вершин становятся похожими

- Похожие эмбеддинги → слабо различимые вершины → плохое качество модели
- Почему так происходит?

Receptive Field of a Node

Receptive Field Overlap

1-hop neighbor overlap Only 1 node

2-hop neighbor overlap About 20 nodes

3-hop neighbor overlap Almost all the nodes!

GNN Expressive Power

слишком много

• Для увеличения выразительности GNN добавляем GNN слои, но не

- Смотрим на диаметр графа и receptive fields
- Если хочется усложнить GNN, но слоёв больше не добавить, то можно
 - Усложнить сами GNN слои (например, 3-слойные MLP)
 - Добавить слои предобработки и постобработки

Дополнительные слои

- Препроцессинг полезен для первичной обработки данных в вершинах, например изображения/текст
- Постпроцессинг для решения задачи, с использованием эмбеддингов вершин, например классификация графов

Skip Connections

- Информация с более ранних слоёв может быть важна и позволяет лучше различать вершины
- Напрямую передаём их в последующие слои

Idea of skip connections:

Before adding shortcuts:

$$F(\mathbf{x})$$

After adding shortcuts:

$$F(\mathbf{x}) + \mathbf{x}$$

GCN with Skip Connections

VİTMO

- A standard GCN layer
- $\mathbf{h}_{v}^{(l)} = \sigma\left(\sum_{u \in N(v)} \mathbf{W}^{(l)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|}\right)$

This is our F(x)

A GCN layer with skip connection

$$\mathbf{h}_{v}^{(l)} = \sigma \left(\sum_{u \in N(v)} \mathbf{W}^{(l)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|} + \mathbf{h}_{v}^{(l-1)} \right)$$

$$\mathbf{F}(\mathbf{x}) + \mathbf{x}$$

Другой способ

VITMO

VITMO Graph Manipulation in GNNs

Graph Manipulation

- Изначальный граф вряд ли оптимален для построения вычислительного графа
- Граф слишком разрежен → слабая передача информации
- Граф слишком плотный → большая вычислительная нагрузка
- Граф слишком большой → не влезает на GPU

Graph Manipulation

- Граф слишком разрежен → добавить искусственные вершины/рёбра

- Граф слишком плотный → делать выборку из соседей.
- Граф слишком большой → обучаться только на подграфе
- Также можно добавить аугментацию самих данных, если изначально мало признаков в вершинах

Добавление рёбер

• Например, использовать вместо матрицы смежности A использовать $A + A^2$

Добавление вершин

- Существенно улучшить передачу сообщений в разреженном графе можно добавив вершину, связанную со всеми остальными
- Кратчайшие расстояния в таком графе станут равны 2

Выборка соседей

• Существенно улучшить производительность можно сэмплированием соседей случайным образом каждый раз, вычисляя эмбеддинги

Feature augmentation

Feature augmentation: constant vs. one-hot

	Constant node feature	One-hot node feature
Expressive power	Medium. All the nodes are identical, but GNN can still learn from the graph structure	High. Each node has a unique ID, so node-specific information can be stored
Inductive learning (Generalize to unseen nodes)	High. Simple to generalize to new nodes: we assign constant feature to them, then apply our GNN	Low. Cannot generalize to new nodes: new nodes introduce new IDs, GNN doesn't know how to embed unseen IDs
Computational cost	Low. Only 1 dimensional feature	High. High dimensional feature, cannot apply to large graphs
Use cases	Any graph, inductive settings (generalize to new nodes)	Small graph, transductive settings (no new nodes)

Feature augmentation

GNN трудно различать некоторые структуры без дополнительной информации, например длина цикла, в котором находится вершина

Можно добавить такую информацию как признак вершины

 v_1 resides in a cycle with length 3 v_1 resides in a cycle with length 4

Можно также добавить другие признаки (Clustering coefficient, centrality, PageRank)

Заключение

