logocn-q.pdf

Foundation Master 2020-2021 Mathematics Françoise Foucher Kiran Kollepara

Second order linear ordinary differential equations

with all solutions

Exercise 1 (Reduction of order for an homogeneous ODE)

For the following second order linear homogeneous ODE, check that the given function y_1 is a solution and find a function u such that $y_2 = uy_1$ is another solution. Deduce the general solution y(x) of the ODE.

1.
$$(x^2 - x)y'' - xy' + y = 0$$
 on $]0, +\infty[$, with $y_1(x) = x$

2.
$$xy'' + 2y' + xy = 0$$
 on $]0, +\infty[$, with $y_1(x) = \frac{\cos(x)}{x}$

3.
$$x^2y'' - 5xy' + 9y = 0$$
 on $]0, +\infty[$, with $y_1(x) = x^3$

4.
$$x^2y'' - xy' + y = 0$$
 on $]0, +\infty[$, with $y_1(x) = x$

Solution Exo. 1:

1. Let's denote (1) the equation $(x^2-x)y''-xy'+y=0$. First, we check that $y_1(x)=x$ is solution of (1) on $]0, +\infty[$. Then, we look for a second linear independent solution $y_2(x) = u(x)y_1(x)$ where u(x) has to be found.

$$y_2$$
 solution $\Leftrightarrow (x^2 - x)(u''y_1 + 2u'y'_1 + uy''_1) - x(u'y_1 + uy'_1) + uy_1 = 0$
 $\Leftrightarrow (x^2 - x)y_1u'' + (2(x^2 - x)y'_1 - xy_1)u' = 0$
 $\Leftrightarrow (x^2 - x)xu'' + (x^2 - 2x)u' = 0$
 $\Leftrightarrow u'' - \frac{2 - x}{x^2 - x}u' = 0$ (first order linear ODE in u')

at $x \notin \{0, 1\}$.

$$y_2$$
 solution $\Leftrightarrow u' = ce^{A(x)}; \ c \in \mathbb{R}, \ A(x)$ primitive of $\frac{2-x}{x^2-x} = \frac{1}{1-x} - \frac{2}{x},$

$$A(x) = \ln|x-1| - 2\ln|x| = \ln(\frac{|x-1|}{x^2})$$

$$\Leftrightarrow u' = c\frac{x-1}{x^2}; \ c \in \mathbb{R}$$

Thus $u'(x) = \frac{x-1}{x^2} = \frac{1}{x} - \frac{1}{x^2}$ is suitable. We deduce $u(x) = \ln|x| + \frac{1}{x}$ is suitable and derive the solution $y_2(x) = x \ln|x| + 1$. Thus the general solution of (1) on $]0, +\infty[$ without 1 is

$$y(x) = c_1 x + c_2(x \ln|x| + 1) ; c_1, c_2 \in \mathbb{R}$$

Finally we check that such a function is also solution on an interval containing 1, since it satisfies -y'(1) + y(1) = 0.

2. Let's denote (2) the equation xy'' + 2y' + xy = 0. First, we check that $y_1(x) = \frac{\cos(x)}{x}$ is solution of (2) on $]0, +\infty[$. Then, we look for a second linear independent solution $y_2(x) = u(x)y_1(x)$ where u(x) has to be found.

$$y_2 \text{ solution } \Leftrightarrow x(u''y_1 + 2u'y_1' + uy_1'') + 2(u'y_1 + uy_1') + xuy_1 = 0$$

$$\Leftrightarrow xy_1u'' + (2xy_1' + 2y_1)u' = 0$$

$$\Leftrightarrow \cos(x)u'' - 2\sin(x)u' = 0$$

$$\Leftrightarrow u'' - 2\frac{\sin(x)}{\cos(x)}u' = 0 \text{ (first order linear ODE in } u')$$

$$\Leftrightarrow u' = ce^{A(x)}; \ c \in \mathbb{R}, \ A(x) \text{ primitive of } 2\frac{\sin(x)}{\cos(x)},$$

$$A(x) = 2\ln|\cos(x)| = \ln(\cos^2(x))$$

$$\Leftrightarrow u' = \frac{c}{\cos^2(x)}; \ c \in \mathbb{R}$$

Thus $u'(x) = \frac{1}{\cos^2(x)}$ is suitable. We deduce $u(x) = \tan(x)$ is suitable and derive the solution $y_2(x) = \tan(x) \frac{\cos(x)}{x} = \frac{\sin(x)}{x}$. Finally, the general solution of (2) on $]0, +\infty[$ is

$$y(x) = c_1 \frac{\cos(x)}{x} + c_2 \frac{\sin(x)}{x} \; ; \; c_1, c_2 \in \mathbb{R}$$

3. Let's denote (3) the equation $x^2y'' - 5xy' + 9y = 0$. First, we check that $y_1(x) = x^3$ is solution of (3) on $]0, +\infty[$. Then, we look for a second linear independent solution $y_2(x) = u(x)y_1(x)$ where u(x) has to be found.

$$y_2 \text{ solution } \Leftrightarrow x^2(u''y_1 + 2u'y_1' + uy_1'') - 5x(u'y_1 + uy_1') + 9uy_1 = 0$$

$$\Leftrightarrow x^2y_1u'' + (2x^2y_1' - 5xy_1)u' = 0$$

$$\Leftrightarrow x^5u'' + x^4u' = 0$$

$$\Leftrightarrow xu'' + u' = 0 \text{ (first order linear ODE in } u')$$

$$\Leftrightarrow u' = ce^{A(x)}; \ c \in \mathbb{R}, \ A(x) \text{ primitive of } -\frac{1}{x},$$

$$A(x) = -\ln|x| = \ln(\frac{1}{|x|})$$

$$\Leftrightarrow u' = \frac{c}{|x|}; \ c \in \mathbb{R}$$

Thus $u'(x) = \frac{1}{x}$ is suitable on $]0, +\infty[$. We deduce $u(x) = \ln(x)$ is suitable and derive the solution $y_2(x) = x^3 \ln(x)$. Finally, the general solution of (3) on $]0, +\infty[$ is

$$y(x) = (c_1 + c_2 \ln(x))x^3 ; c_1, c_2 \in \mathbb{R}$$

4. Let's denote (4) the equation $x^2y'' - xy' + y = 0$. First, we check that $y_1(x) = x$ is solution of (4) on $]0, +\infty[$. Then, we look for a second linear independent solution $y_2(x) = u(x)y_1(x)$ where u(x) has to be found.

$$y_2 \text{ solution } \Leftrightarrow x^2(u''y_1 + 2u'y_1' + uy_1'') - x(u'y_1 + uy_1') + uy_1 = 0$$

$$\Leftrightarrow x^2y_1u'' + (2x^2y_1' - xy_1)u' = 0$$

$$\Leftrightarrow xu'' + u' = 0 \text{ (first order linear ODE in } u')$$

$$\Leftrightarrow u' = ce^{A(x)}; \ c \in \mathbb{R}, \ A(x) \text{ primitive of } -\frac{1}{x},$$

$$A(x) = -\ln|x| = \ln(\frac{1}{|x|})$$

$$\Leftrightarrow u' = \frac{c}{|x|}; \ c \in \mathbb{R}$$

Thus $u'(x) = \frac{1}{x}$ is suitable on $]0, +\infty[$. We deduce $u(x) = \ln(x)$ is suitable and derive the solution $y_2(x) = x \ln(x)$. Finally, the general solution of (4) on $]0, +\infty[$ is

$$y(x) = (c_1 + c_2 \ln(x))x \; ; \; c_1, c_2 \in \mathbb{R}$$

Exercise 2 (Homogeneous linear ODEs with constant coefficients)

Determine the general solution y(x) of the following equations and derive the particular solution y(x) with initial conditions if they are given.

1.
$$y'' + y' - 2y = 0$$
 with $y(0) = 4$ and $y'(0) = -5$

$$2. \ y'' + 6y' + 9y = 0$$

3.
$$y'' + 0.4y' + 9.04y = 0$$
 with $y(0) = 0$ and $y'(0) = 3$

4.
$$y'' + 9y' + 20y = 0$$
 with $y(0) = 2$ and $y'(0) = -1$

5.
$$9y'' - 30y' + 25y = 0$$
 with $y(0) = 1$ and $y'(0) = 0$

6.
$$y'' + 2y' + 5y = 0$$
 with $y(0) = -1$ and $y'(0) = 1$

Solution Exo. 2:

1. Let's denote (1) the ODE y'' + y' - 2y = 0. The characteristic equation is

$$r^2 + r - 2 = 0$$
; roots $\{-2, 1\}$

We deduce that $y_1(x) = e^{-2x}$ and $y_2(x) = e^x$ form a basis of solutions of (1), that is the general solution of (1) is

$$y(x) = c_1 e^{-2x} + c_2 e^x ; c_1, c_2 \in \mathbb{R}$$

Then we look for c_1 and c_2 defining the particular solution satisfying the initial conditions y(0) = 4 and y'(0) = -5.

$$\begin{cases} y(0) = 4 \\ y'(0) = -5 \end{cases} \Leftrightarrow \begin{cases} c_1 + c_2 = 4 \\ -2c_1 + c_2 = -5 \end{cases} \Leftrightarrow \begin{cases} c_1 = 3 \\ c_2 = 1 \end{cases}$$

We conclude that the solution of (1) with the given initial condition is

$$y(x) = 3e^{-2x} + e^x$$

2. Let's denote (2) the ODE y'' + 6y' + 9y = 0. The characteristic equation is

$$r^2 + 6r + 9 = 0$$
; double root {3}

We deduce that $y_1(x) = e^{3x}$ and $y_2(x) = xe^{3x}$ form a basis of solutions of (2), that is the general solution of (2) is

$$y(x) = (c_1 + c_2 x)e^{3x} ; c_1, c_2 \in \mathbb{R}$$

3. Let's denote (3) the ODE y'' + 0.4y' + 9.04y = 0. The characteristic equation is

$$r^2 + 0.4r + 9.04 = 0$$
; complex roots $\{-0.2 + 3i, -0.2 - 3i\}$

We deduce that $y_1(x) = e^{-0.2x}e^{3ix}$ and $y_2(x) = e^{-0.2x}e^{-3ix}$ form a basis of solutions of (3). Since $\cos(3x) = \frac{e^{3ix} + e^{-3ix}}{2}$ and $\sin(3x) = \frac{e^{3ix} - e^{-3ix}}{2i}$, we can consider the basis $z_1(x) = e^{-0.2x}\cos(3x)$ and $z_2(x) = e^{-0.2x}\sin(3x)$. Thus the general solution of (3) is

$$y(x) = e^{-0.2x}(c_1\cos(3x) + c_2\sin(3x)) \; ; \; c_1, c_2 \in \mathbb{R}$$

Then we look for c_1 and c_2 defining the particular solution satisfying the initial conditions y(0) = 0 and y'(0) = 3. We calculate $y'(x) = e^{-0.2x}(-0.2c_1\cos(3x) - 0.2c_2\sin(3x) - 3c_1\sin(3x) + 3c_2\cos(3x))$.

$$\begin{cases} y(0) = 0 \\ y'(0) = 3 \end{cases} \Leftrightarrow \begin{cases} c_1 = 0 \\ -0.2c_1 + 3c_2 = 3 \end{cases} \Leftrightarrow \begin{cases} c_1 = 0 \\ c_2 = 1 \end{cases}$$

We conclude that the solution of (3) with the given initial condition is

$$y(x) = e^{-0.2x} \sin(3x)$$

4. Let's denote (4) the ODE y'' + 9y' + 20y = 0. The characteristic equation is

$$r^2 + 9r + 20 = 0$$
; roots $\{-4, -5\}$

We deduce that $y_1(x) = e^{-4x}$ and $y_2(x) = e^{-5x}$ form a basis of solutions of (4), that is the general solution of (4) is

$$y(x) = c_1 e^{-4x} + c_2 e^{-5x} ; c_1, c_2 \in \mathbb{R}$$

Then we look for c_1 and c_2 defining the particular solution satisfying the initial conditions y(0) = 2 and y'(0) = -1.

$$\begin{cases} y(0) = 2 \\ y'(0) = -1 \end{cases} \Leftrightarrow \begin{cases} c_1 + c_2 = 2 \\ -4c_1 - 5c_2 = -1 \end{cases} \Leftrightarrow \begin{cases} c_1 = 9 \\ c_2 = -7 \end{cases}$$

We conclude that the solution of (4) with the given initial condition is

$$y(x) = 9e^{-4x} - 7e^{-5x}$$

5. Let's denote (5) the ODE 9y'' - 30y' + 25y = 0. The characteristic equation is

$$9r^2 - 30r + 25 = 0$$
; double root $\{\frac{5}{3}\}$

We deduce that $y_1(x) = e^{\frac{5}{3}x}$ and $y_2(x) = xe^{\frac{5}{3}x}$ form a basis of solutions of (5), that is the general solution of (5) is

$$y(x) = (c_1 + c_2 x)e^{\frac{5}{3}x} ; c_1, c_2 \in \mathbb{R}$$

Then we look for c_1 and c_2 defining the particular solution satisfying the initial conditions y(0) = 1 and y'(0) = 0.

$$\begin{cases} y(0) = 1 \\ y'(0) = 0 \end{cases} \Leftrightarrow \begin{cases} c_1 = 1 \\ \frac{5}{3}c_1 + c_2 = 0 \end{cases} \Leftrightarrow \begin{cases} c_1 = 1 \\ c_2 = -\frac{5}{3} \end{cases}$$

We conclude that the solution of (5) with the given initial condition is

$$y(x) = (1 - \frac{5}{3}x)e^{\frac{5}{3}x}$$

6. Let's denote (6) the ODE y'' + 2y' + 5y = 0. The characteristic equation is

$$r^2 + 2r + 5 = 0$$
; complex roots $\{-1 + 2i, -1 - 2i\}$

We deduce that $y_1(x) = e^{-x}e^{2ix}$ and $y_2(x) = e^{-x}e^{-2ix}$ form a basis of solutions of (6). Since $\cos(2x) = \frac{e^{2ix} + e^{-2ix}}{2}$ and $\sin(2x) = \frac{e^{2ix} - e^{-2ix}}{2i}$, we can consider the basis $z_1(x) = e^{-x}\cos(2x)$ and $z_2(x) = e^{-x}\sin(2x)$. Thus the general solution of (6) is

$$y(x) = e^{-x}(c_1\cos(2x) + c_2\sin(2x)) ; c_1, c_2 \in \mathbb{R}$$

Then we look for c_1 and c_2 defining the particular solution satisfying the initial conditions y(0) = -1 and y'(0) = 1. We calculate $y'(x) = e^{-x}(-c_1\cos(2x) - c_2\sin(2x) - 2c_1\sin(2x) + 2c_2\cos(2x))$.

$$\begin{cases} y(0) = -1 \\ y'(0) = 1 \end{cases} \Leftrightarrow \begin{cases} c_1 = -1 \\ -c_1 + 2c_2 = 1 \end{cases} \Leftrightarrow \begin{cases} c_1 = -1 \\ c_2 = 0 \end{cases}$$

We conclude that the solution of (6) with the given initial condition is

$$y(x) = -e^{-x}\cos(2x)$$

Exercise 3 (Euler-Cauchy equations)

We consider the Euler-Cauchy equation

$$x^{2}y'' + axy' + by = 0 \text{ for } x > 0$$
 (1)

where a and b are constant real numbers.

1. We set $y(x) = x^m$.

Prove that y(x) is solution of (1) if and only if $m^2 + (a-1)m + b = 0$. We denote m_1 and m_2 the two roots

$$m_1 = \frac{1 - a - \sqrt{\Delta}}{2}, \ m_2 = \frac{1 - a + \sqrt{\Delta}}{2} \text{ where } \Delta = (a - 1)^2 - 4b$$

2. Case $\Delta > 0$. Give the general solution of (1) depending on m_1 and m_2 . Apply to

$$x^2y'' + 1.5xy' - 0.5y = 0$$
 for $x > 0$

3. Case $\Delta = 0$. In this case, $m_1 = m_2$. Give a first solution $y_1(x)$ of (1) depending on m_1 . Then look for a second solution $y_2(x)$ by the method of reduction of order, setting $y_2 = uy_1$ where u(x) is a suitable function to determine. Conclude by giving the general solution of (1) depending on m_1 . Apply to

$$x^2y'' - 5xy' + 9y = 0$$
 for $x > 0$

4. Case $\Delta < 0$. In this case, m_1 and m_2 are complex conjugate numbers, $m_1 = \alpha + i\beta$ and $m_2 = \alpha - i\beta$. Give a basis of solutions depending on α and β , using $\cos(\beta \ln(x))$ and $\sin(\beta \ln(x))$. Hint: $x^{i\beta} = (e^{\ln(x)})^{i\beta} = e^{i\beta \ln(x)}$. Apply to

$$x^2y'' + 0.6xy' + 16.04y = 0$$
 for $x > 0$

Solution Exo. 3:

1. Putting $y(x) = x^m$ into (1), we get

$$m(m-1)x^{m} + amx^{m} + bx^{m} = 0, \ \forall x > 0$$

which is equivalent to $m^2 + (a-1)m + b = 0$.

2. Case $\Delta > 0$. In this case, $m_1 \neq m_2$ so that $y_1(x) = x^{m_1}$ and $y_2(x) = x^{m_2}$ are linearly independent and form a basis of solutions of (1). The general solution of (1) is

$$y(x) = c_1 x^{m_1} + c_2 x^{m_2}$$
, for $x > 0$ $c_1, c_2 \in \mathbb{R}$

For the example $x^2y'' + 1.5xy' - 0.5y = 0$, we calculate $\Delta = \frac{9}{4}$, $m_1 = -1$, $m_2 = \frac{1}{2}$, and deduce the general solution

$$y(x) = c_1 \frac{1}{x} + c_2 \sqrt{x}$$
, for $x > 0$ $c_1, c_2 \in \mathbb{R}$

3. Case $\Delta = 0$. In this case, $m_1 = m_2 = \frac{1-a}{2}$. We deduce a first solution $y_1(x) = x^{m_1}$. Then setting $y_2 = uy_1$, we get

$$y_2 \text{ solution } \Leftrightarrow x^2(u''y_1 + 2u'y_1' + uy_1'') + ax(u'y_1 + uy_1') + buy_1 = 0$$

$$\Leftrightarrow x^2y_1u'' + (2x^2y_1' + axy_1)u' = 0$$

$$\Leftrightarrow x^{2+m_1}u'' + (2m_1x^{1+m_1}y_1' + ax^{1+m_1})u' = 0$$

$$\Leftrightarrow xu'' + (2m_1 + a)u' = 0$$

$$\Leftrightarrow xu'' + u' = 0 \text{ (first order linear ODE in } u')$$

$$\Leftrightarrow u' = ce^{A(x)}; \ c \in \mathbb{R}, \ A(x) \text{ primitive of } -\frac{1}{x},$$

$$A(x) = -\ln|x| = \ln(\frac{1}{|x|})$$

$$\Leftrightarrow u' = \frac{c}{|x|}; \ c \in \mathbb{R}$$

Thus $u'(x) = \frac{1}{x}$ is suitable on $]0, +\infty[$. We deduce $u(x) = \ln(x)$ is suitable and derive the solution $y_2(x) = x \ln(x)$. Finally, the general solution of (1) is in this case

$$y(x) = (c_1 + c_2 \ln(x))x^{m_1}$$
, for $x > 0$; $c_1, c_2 \in \mathbb{R}$

For the example $x^2y'' - 5xy' + 9y = 0$ for x > 0, we calculate $\Delta = (-6)^4 - 4*9 = 0$, and $m_1 = m_2 = 3$, and deduce the general solution

$$y(x) = (c_1 + c_2 \ln(x))x^3$$
, for $x > 0$; $c_1, c_2 \in \mathbb{R}$

4. Case $\Delta < 0$. In this case, m_1 and m_2 are complex conjugate numbers, $m_1 = \alpha + i\beta$ and $m_2 = \alpha - i\beta$. Since $m_1 \neq m_2$, we derive that $y_1(x) = x^{m_1}$ and $y_2(x) = x^{m_2}$ form a basis of the solutions of (1). As

$$x^{m_1} = x^{\alpha + i\beta} = x^{\alpha} x^{i\beta} = x^{\alpha} e^{i\beta \ln(x)} = x^{\alpha} (\cos(\beta \ln(x)) + i \sin(\beta \ln(x))))$$

and the same for x^{m_2} with -i instead of +i, we deduce a new basis $z_1(x) = \frac{y_1(x) + y_2(x)}{2} = x^{\alpha} \cos(\beta \ln(x))$ and $z_2(x) = \frac{y_1(x) - y_2(x)}{2i} = x^{\alpha} \sin(\beta \ln(x))$. Thus the general solution of (1) is

$$y(x) = (c_1 \cos(\beta \ln(x)) + c_2 \sin(\beta \ln(x)))x^{\alpha}, \text{ for } x > 0 ; c_1, c_2 \in \mathbb{R}$$

For the example $x^2y'' + 0.6xy' + 16.04y = 0$, we calculate $\Delta = -64$, $m_1 = 0.2 + 4i$, $m_2 = 0.2 - 4i$, and we deduce the general solution

$$y(x) = (c_1 \cos(4\ln(x)) + c_2 \sin(4\ln(x)))x^{0.2}$$
, for $x > 0$; $c_1, c_2 \in \mathbb{R}$

Exercise 4 (Method of undetermined coefficients)

For the following ODEs, solve the associated homogeneous equation, find a solution $y_p(x)$ of the non-homogeneous equation by the method of the undetermined coefficients, and conclude by giving the general solution.

1.
$$y'' - y' - 2y = e^{-x}$$

2.
$$y'' + 2y' + y = e^{-x}$$

3.
$$y'' + 2y' + y = e^{-x} + x$$

4.
$$y'' + 3y' + 2y = 12x^2$$

5.
$$y'' + 5y' + 4y = 10e^{-3x}$$

6.
$$y'' + 4y' + 4y = e^{-x}\cos(x)$$

7.
$$y'' - 3y' + 2y = e^x + \cos(x)$$

8. $x^4y'' + 2x^3y' - y = \cosh(1/x)$. First transform this equation by using the new variable t = 1/x and the new unknown function z(t) = y(x).

Solution Exo. 4:

1. The characteristic equation associated to (1) $y'' - y' - 2y = e^{-x}$, is $r^2 - r - 2 = 0$, with roots $r_1 = -1$ and $r_2 = 2$. We deduce the general solution of the homogeneous ODE associated to (1) on \mathbb{R}

$$y_h(x) = c_1 e^{-x} + c_2 e^{2x} ; c_1, c_2 \in \mathbb{R}$$

Considering the right side of (1), putting $y_p(x) = cxe^{-x}$ in (1) (we multiply e^{-x} by x because e^{-x} is solution of the homogeneous ODE), we get

$$(-2ce^{-x} + cxe^{-x}) - (ce^{-x} - cxe^{-x}) - 2cxe^{-x} = e^{-x}$$

and deduce $c = -\frac{1}{3}$, so that $y_p(x) = -\frac{1}{3}xe^{-x}$ is a solution of (1). In conclusion, the general solution of (1) is defined on \mathbb{R} by

$$y(x) = y_h(x) + y_p(x) = c_1 e^{-x} + c_2 e^{2x} - \frac{1}{3} x e^{-x} ; c_1, c_2 \in \mathbb{R}$$

2. The characteristic equation associated to (2) $y'' + 2y' + y = e^{-x}$, is $r^2 + 2r + 1 = 0$, with the double root $r_1 = -1$. We deduce the general solution of the homogeneous ODE associated to (2) on \mathbb{R}

$$y_h(x) = c_1 e^{-x} + c_2 x e^{-x} ; c_1, c_2 \in \mathbb{R}$$

Considering the right side e^{-x} , as e^{-x} and xe^{-x} are solutions of the homeneous ODE, we put $y_p(x) = cx^2e^{-x}$ in (2). We get after simplification $c = \frac{1}{2}$, so that $y_p(x) = \frac{1}{2}x^2e^{-x}$ is a solution of (2). In conclusion, the general solution of (2) is defined on \mathbb{R} by

$$y(x) = y_h(x) + y_p(x) = c_1 e^{-x} + c_2 x e^{-x} + \frac{1}{2} x^2 e^{-x} ; c_1, c_2 \in \mathbb{R}$$

3. As in the previous ODE, the solution of the associated homogeneous ODE of (3) $y'' + 2y' + y = e^{-x} + x$ on \mathbb{R} is

$$y_h(x) = c_1 e^{-x} + c_2 x e^{-x} ; c_1, c_2 \in \mathbb{R}$$

First, considering the terms e^{-x} of the right side, putting $y_p(x) = cx^2e^{-x}$ in $y'' + 2y' + y = e^{-x}$, we get $y_p(x) = \frac{1}{2}x^2e^{-x}$ (already done for (2)). Second, considering the term x of the right side of (3), putting $z_p(x) = c_0 + c_1 x$ in y'' + 2y' + y = x, we get

$$2c_1 + c_0 + c_1 x = x$$

and deduce $c_1 = 1$ and $c_0 = -2$, so that $z_p(x) = -2 + x$. In conclusion, the general solution of (3) is defined on \mathbb{R} by

$$y(x) = y_h(x) + y_p(x) + z_p(x) = (c_1 + c_2 x + \frac{1}{2}x^2)e^{-x} + x - 2 \; ; \; c_1, c_2 \in \mathbb{R}$$

4. The characteristic equation associated to (4) $y'' + 3y' + 2y = 12x^2$, is $r^2 + 3r + 2 = 0$, with roots $r_1 = -1$ and $r_2 = -2$. We deduce the general solution of the homogeneous ODE associated to (4) on \mathbb{R}

$$y_h(x) = c_1 e^{-x} + c_2 e^{-2x} ; c_1, c_2 \in \mathbb{R}$$

Putting $y_p(x) = a_0 + a_1 x + a_2 x^2$ in (4) we get

$$(2a_2 + 3a_1 + 2a_0) + (6a_2 + 2a_1)x + 2c_2x^2 = 12x^2$$

and deduce $a_2 = 6$, $a_1 = -18$, $a_0 = 21$, so that $y_p(x) = 21 - 18x + 6x^2$ is a solution of (4). In conclusion, the general solution of (4) is defined on \mathbb{R} by

$$y(x) = y_h(x) + y_p(x) = c_1 e^{-x} + c_2 e^{-2x} + 21 - 18x + 6x^2$$
; $c_1, c_2 \in \mathbb{R}$

5. The characteristic equation associated to (5) $y'' + 5y' + 4y = 10e^{-3x}$, is $r^2 + 5r + 4 = 0$, with roots $r_1 = -1$ and $r_2 = -4$. We deduce the general solution of the homogeneous ODE associated to (5) on \mathbb{R}

$$y_h(x) = c_1 e^{-x} + c_2 e^{-4x} ; c_1, c_2 \in \mathbb{R}$$

Putting $y_p(x) = ce^{-3x}$ in (5) we get

$$9e^{-3x} - 15e^{-3x} + 4e^{-3x} = 10e^{-3x}$$

and deduce c = -5, so that $y_p(x) = -5e^{-3x}$ is a solution of (5). In conclusion, the general solution of (5) is defined on \mathbb{R} by

$$y(x) = y_h(x) + y_p(x) = c_1 e^{-x} + c_2 e^{-4x} - 5e^{-3x} ; c_1, c_2 \in \mathbb{R}$$

6. The characteristic equation associated to (6) $y'' + 4y' + 4y = e^{-x}\cos(x)$, is $r^2 + 4r + 4 = 0$, with the double root $r_1 = -2$. We deduce the general solution of the homogeneous ODE associated to (6) on \mathbb{R}

$$y_h(x) = c_1 e^{-2x} + c_2 x e^{-2x} ; c_1, c_2 \in \mathbb{R}$$

Putting $y_p(x) = e^{-x}(a_1\cos(x) + a_2\sin(x))$ in (6), we get after simplification

$$e^{-x}(-2a_1\sin(x) + 2a_2\cos(x)) = e^{-x}\cos(x)$$

and we deduce $a_2 = \frac{1}{2}$, $a_1 = 0$, so that $y_p(x) = \frac{1}{2}e^{-x}\sin(x)$ is a solution of (6). In conclusion, the general solution of (6) is defined on \mathbb{R} by

$$y(x) = y_h(x) + y_p(x) = c_1 e^{-2x} + c_2 x e^{-2x} + \frac{1}{2} e^{-x} \sin(x) \; ; \; c_1, c_2 \in \mathbb{R}$$

7. The characteristic equation associated to (7) $y'' - 3y' + 2y = e^x + \cos(x)$, is $r^2 - 3r + 2 = 0$, with roots $r_1 = 1$ and $r_2 = 2$. We deduce the general solution of the homogeneous ODE associated to (7) on \mathbb{R}

$$y_h(x) = c_1 e^x + c_2 e^{2x} \; ; \; c_1, c_2 \in \mathbb{R}$$

First, considering the term e^x of the right side of (7), putting $y_p(x) = cxe^x$ in $y'' - 3y' + 2y = e^x$ (in the expression of $y_p(x)$ we multiply e^x by x since e^x is solution of the homogeneous ODE), we get

$$ce^x(x+2-3(x+1)+2x) = e^x$$

and deduce c = -1, so that $y_p(x) = -xe^x$.

Second, considering the term $\cos(x)$ of the right side of (7), putting $z_p(x) = a_1 \cos(x) + a_2 \sin(x)$ in $y'' - 3y' + 2y = \cos(x)$, we get

$$(-a_1 - 3a_2 + 2a_1)\cos(x) + (-a_2 + 3a_1 + 2a_2)\sin(x) = \cos(x)$$

and deduce $a_1 = 0.1$ and $a_2 = -0.3$, so that $z_p(x) = 0.1 \cos(x) - 0.3 \sin(x)$. In conclusion, the general solution of (7) is defined on \mathbb{R} by

$$y(x) = y_h(x) + y_p(x) + z_p(x) = c_1 e^x + c_2 e^{2x} - x e^x + 0.1 \cos(x) - 0.3 \sin(x)$$
; $c_1, c_2 \in \mathbb{R}$

8. Let's denote (8) $x^4y'' + 2x^3y' - y = \cosh(1/x)$. We put t = 1/x and z(t) = y(x). Then, $y(x) = z(t) = z(\frac{1}{x})$ so that

$$y'(x) = -\frac{1}{x^2}z'(\frac{1}{x}) = -t^2z'(t)$$

and

$$y''(x) = (-\frac{1}{x^2})^2 z''(\frac{1}{x}) + \frac{2}{x^3} z'(\frac{1}{x}) = t^4 z''(t) + 2t^3 z'(t)$$

Rewriting (8) with t and z(t) we get

$$\frac{1}{t^4}(t^4z'' + 2t^3z') + \frac{2}{t^3}(-t^2z') - z = \cosh(t)$$

which can be reduced in

$$z'' - z = \cosh(t)$$

The general solution of z'' - z = 0 is well known as

$$z_h(t) = c_1 \cosh(t) + c_2 \sinh(t) ; c_1, c_2 \in \mathbb{R}$$

Then putting $z_p(t) = t(a_1 \cosh(t) + a_2 \sinh(t))$ in (8) (in the expression of $z_p(t)$ we multiply by t the linear combination of $\cosh(t)$ and $\sinh(t)$ since $\cosh(t)$ is solution of the homogeneous ODE), we get, after simplification

$$2a_1 \cosh(t) + 2a_2 \sinh(t) = \cosh(t)$$

and deduce $a_1 = 0$ and $a_2 = 0.5$, so that $z_p(t) = \frac{t}{2} \sinh(t)$. In conclusion, the general solution of (8) is defined on \mathbb{R}^* by

$$z(t) = z_h(t) + z_p(t) = c_1 \cosh(t) + c_2 \sinh(t) + \frac{t}{2} \sinh(t) ; c_1, c_2 \in \mathbb{R}$$

and the general solution of (8) is defined on \mathbb{R}^* by

$$y(x) = z(\frac{1}{x}) = c_1 \cosh(\frac{1}{x}) + c_2 \sinh(\frac{1}{x}) + \frac{1}{2x} \sinh(\frac{1}{x}) ; c_1, c_2 \in \mathbb{R}$$