Εργασία σε πρόγραμμα προσομοίωσης LTSpice

Ιωάννης Τσαντήλας Α.Μ.: 03120883

Άσκηση 1

Θεωρητική Ανάλυση

DC Analysis

Ανοιχτοκυκλώνουμε τους πυκνωτές και προκύπτει από Θεώρημα Thevenin:

$$V_{th} = \frac{R_2}{R_1 + R_2} V_{dd}$$

$$R_{th} = \frac{R_1 R_2}{R_1 + R_2}$$

<u>Για το Q1</u>

Από Νόμο Τάσεων Kirchhoff:

$$V_{th} - I_{b1}R_{th} - V_{be} - I_{e1}R_{e1} = 0$$

Και αφού $I_{e1} = (b+1)*I_{b1}$:

$$I_{b1} = \frac{V_{th} - V_{be}}{R_{th} + (b+1)R_{e1}}$$

Και από Νόμο Ρευμάτων Kirchhoff:

$$I_1 = I_{c1} + I_{b2} \rightarrow \frac{V_{dd} - V_{c1}}{R_{c1}} = bI_{b1} + I_{b2}$$

Για το Q2

Από Νόμο Τάσεων Kirchhoff:

$$V_{b2} - V_{be} - I_{e2}R_{e2} = 0$$

Δηλαδή:

$$V_{b2} = V_{be} + (b+1)I_{b2}R_{e2}$$

Και από Νόμο Ρευμάτων Kirchhoff:

$$I_2 = I_{c2} + I_{b3} \rightarrow \frac{V_{dd} - V_{c2}}{R_{c2}} = bI_{b2} + I_{b3}$$

Για το Q3

Από Νόμο Τάσεων Kirchhoff:

$$V_{b3} - V_{be} - I_{e3} R_{e3} = 0$$

Δηλαδή:

$$V_{b3} = V_{be} + (b+1)I_{b3}R_{e3}$$

Και από Νόμο Ρευμάτων Kirchhoff:

$$I_2 = I_{c2} + I_{b3} \rightarrow \frac{V_{dd} - V_{c2}}{R_{c2}} = bI_{b2} + I_{b3}$$

Και επειδή $V_{c1} = V_{b2}$ και $V_{c2} = V_{b3}$ καταλήγουμε:

$$I_{b2} = \frac{V_{dd} - V_{be} - bI_{b1}R_{c1}}{R_{c1} + (b+1)R_{e2}}$$

$$I_{b3} = \frac{V_{dd} - V_{be} - bI_{b2}R_{c2}}{R_{c2} + (b+1)R_{e3}}$$

$$I_{b1} = \frac{V_{th} - V_{be}}{R_{th} + (b+1)R_{e1}}$$

AC Analysis

Ισχύει πως:

$$\frac{u_0}{u_s} = \frac{u_0}{u_1} * \frac{u_1}{u_2} * \frac{u_2}{u_i} * \frac{u_i}{u_s}$$

Θα υπολογίσουμε επομένως 4 λόγους:

$$\frac{u_0}{u_1}$$
, $\frac{u_1}{u_2}$, $\frac{u_2}{u_i}$, $\frac{u_i}{u_s}$

Έχουμε:

$$\frac{u_0}{u_1} = \frac{\frac{R_{e3}R_l}{R_{e3} + R_l}}{r_{e3} + \frac{R_{e3}R_l}{R_{e3} + R_l}}$$

$$\frac{u_1}{u_2} = -a \frac{R_{c2}R_{i3}}{(R_{e2} + r_{e3})(R_{c2} + R_{i3})}$$

Με:

$$R_{i3} = \left(r_{e3} + \frac{R_{e3}R_l}{R_{e3} + R_l}\right)(b+1)$$

Επιπλέον:

$$\frac{u_2}{u_i} = -a \frac{R_{c1}R_{i2}}{(R_{e1} + r_{e1})(R_{c1} + R_{i2})}$$

Mε:

$$R_{i2} = (r_{e3} + R_{e2})(b+1)$$

Τέλος:

$$\frac{u_i}{u_s} = \frac{R_{in}}{R_{in} + R_s}$$

Mε:

$$R_{in} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_{i1}}}$$

$$R_{i1} = (r_{e1} + R_{e1})(b+1)$$

Με:

$$r_{ei} = \frac{(b+1)V_T}{I_{hi}}$$
, $\mu \varepsilon i = 1,2,3$

LTSpice Κύκλωμα

Δοκιμάζουμε διάφορες τιμές για τα στοιχεία ώστε:

- $u_0/u_s > 50$
- $f_L > 100 \text{ Hz}$
- $5 < V_{e3} < 10$

και καταλήγουμε στις εξής:

R_1	R_2	R_{c1}	R_{c2}	R_{e3}	\mathbf{R}_{L}	C_1	C_2
$100 \mathrm{k}\Omega$	$100 \mathrm{k}\Omega$	33kΩ	220kΩ	6.8kΩ	$10 \mathrm{k}\Omega$	10uF	10uF

Το κύκλωμα:

DC Operating Point

Εκτελούμε DC OP και λαμβάνουμε τις παρακάτω τιμές:

V(sig):	0	voltage			
V(b1):	1.2214	voltage			-
V(c3):	15	voltage	Ib(Q1):	0.000125572	device_current
V(p001):	6.10698e-016	voltage	Ie(Q1):	-0.000562394	device_current
V(c1 b2):	0.582353	voltage	I(C2):	-8.06772e-017	device_current
V(e1):	0.562394	voltage	I(C1):	1.2214e-017	device_current
V(c2 b3):	8.72587	voltage	I (Rc2) :	2.85188e-005	device_current
V(e2):	0.0248752	voltage	I(R1):	8.06772e-017	device_current
V(e3):	8.06772	voltage	I(Re3):	0.00118643	device_current
V(out):	8.06772e-013	voltage	I(Re2):	2.48752e-005	device_current
Ic(Q3):	0.00118271	device current	I(Re1):	0.000562394	device_current
Ib(Q3):	3.71994e-006	device current	I (Rc1) :	0.000436898	device_current
Ie (Q3):	-0.00118643	device current	I(Rsig):	1.2214e-017	device_current
Ic(Q2):	2.47988e-005	device current	I(R1):	0.000137786	device_current
Ib(Q2):	7.64347e-008	device current	I(R2):	-1.2214e-005	device_current
Ie (Q2):	-2.48752e-005	device current	I(Vdd):	-0.00178591	device_current
Ic(Q1):	0.000436822	device_current	I(Vs):	1.2214e-017	device_current

Η τάση του εκπομπού του Q3 βρίσκεται στα περίπου 8V, όπως και θέλαμε.

Προκειμένου να εξακριβώσουμε εάν τα transistors βρίσκονται στην ορθή ενεργό περιοχή θα πρέπει:

- 1. $V_{be} > 0.7$
- 2. $0.2 < V_{ce} < V_{dd}$
- 3. I_b , $I_c > 0$

Οι DC τάσεις των στοιχείων είναι:

V(b1)	V(c1_b2)	V(e1)	V(c2_b3)	V(e2)	V(c3)	V(e3)
1.2214	0.582353	0.562394	8.72587	0.0248752	15	8.06772

$1. V_{be} > 0.7$

- $V_{be1} = 0.659006 \text{ V}$
- $V_{be2} = 0.5574778 \text{ V}$
- $V_{be3} = 0.65815 \text{ V}$

Οι διαφορές προσεγγίζουν καλά την τιμή των 0.7 Volts.

$2.0.2 < V_{ce} < 15$

- $V_{ce1} = 0.019959 V$
- $V_{ce2} = 8.7009948 V$
- $V_{ce3} = 6.93228 \text{ V}$

Οι διαφορές προσεγγίζουν καλά τα απαιτούμενα όρια.

3. I_{b} , $I_{c} > 0$

Ib(Q1)	Ic(Q1)	Ie(Q1)	Ib(Q2)	Ic(Q2)	Ie(Q2)
0.000125572	0.000436822	-0.000562394	7.64347e-008	2.47988e-005	-2.48752e-005
Ib(Q3)	Ic(Q3)	Ie(Q3)			

Το αρνητικό πρόσημο στα ρεύμα των εκπομπών εξηγείται λόγω της εκτέλεσης του LTSpice, όπου τα θέτει ανάποδα από την κανονική φορά.

Όλα τα ρεύματα έχουν θετικό πρόσημο. Επομένως, εξετάσαμε όλες τις συνθήκες ώστε τα transistors να βρίσκονται στην ορθή ενεργό περιοχή και αυτές επαληθεύτηκαν.

Bode Diagrams

Για συχνότητες 1 έως 500Hz, παρατηρούμε ότι το κέρδος ξεπερνά την τιμή των 50 V/V, με $f_{\rm L}{>}100{\rm Hz}{:}$

Και το ζητούμενο διάγραμμα κέρδους και φάσης για συχνότητες 1 έως 1GHz:

<u>Αντίσταση εισόδου R_{in1}</u>

Βραχυκυκλώνουμε τον πυκνωτή C_1 και εκτελούμε ac analysis με όρια 1 έως 1GHz. Προκύπτει:

Transient Simulation

Transient προσομοίωση για ημιτονοειδές σήμα πλάτους 2mV, συχνότητας 1kHz, σε διάστημα 5 περιόδων (περίπου 5msec):

Άσκηση 2

Εύρεση συνάρτησης μεταφοράς Η(s)

$$I_1 = \frac{V_{in} - V_A}{R_1} \ (1)$$

$$I_1' = \frac{V_A - 0}{\frac{1}{sC_1}}$$
 (2)

$$I_F = \frac{V_A - V_{out}}{R_F}$$
 (3)

$$I_2 = \frac{V_A - V^+}{\frac{1}{sC_2}}$$
 (4)

$$I_2' = \frac{V^+ - 0}{R_2}$$
 (5)

$$I_b = \frac{V_{out} - V^-}{R_b} \tag{6}$$

$$I_a = \frac{V^- - 0}{R_a} \tag{7}$$

$$\frac{V_{out} - V^{-}}{R_b} = \frac{V^{-}}{R_a} \rightarrow V^{-} = V_{out} \frac{R_a}{R_b + R_a}$$
 (8)

Από I₂ = I₂' και τις (4), (5):

$$\frac{V_A - V^+}{\frac{1}{sC_2}} = \frac{V^+}{R_2} \rightarrow V^+ = V_A \frac{R_2}{\frac{1}{sC_2} + R_2}$$
 (9)

Από V-=V+ και τις (8), (9):

$$V_{out} \frac{R_a}{R_b + R_a} = V_A \frac{R_2}{\frac{1}{sC_2} + R_2} \rightarrow V_A = V_{out} \frac{R_a}{R_b + R_a} \left(\frac{1}{sR_2C_2} + 1\right)$$
 (10)

• Anó $I_1 = I_1' + I_F + I_2 \kappa \alpha \iota \tau \iota \varsigma (1), (2), (3), (4)$:

$$\frac{V_{in} - V_A}{R_1} = sC_1V_A + \frac{V_A - V_{out}}{R_E} + (V_A - V^+)sC_2$$

Μέσω της (9):

$$\frac{V_{in}}{R_1} = V_A \left(sC_1 + \frac{1}{R_1} + \frac{1}{R_F} + sC_2 - \frac{sR_aC_2}{\frac{1}{sC_2} + R_2} \right) - \frac{V_{out}}{R_F}$$

Μέσω τις **(10)**:

$$\frac{V_{in}}{V_{out}} = \frac{R_a R_1}{R_b + R_a} \left(\frac{1}{sR_2 C_2} + 1\right) \left(sC_1 + \frac{1}{R_1} + \frac{1}{R_F} + sC_2 - \frac{sR_a C_2}{\frac{1}{sC_2} + R_2}\right) - \frac{1}{R_F}$$

Τελικά, πράγματι, προκύπτει ότι:

$$H(s) = \frac{V_{in}}{V_{out}} = \frac{\left(1 + \frac{R_b}{R_a}\right) \frac{s}{R_1 C_1}}{s^2 + s\left(\frac{1}{R_1 C_1} + \frac{1}{R_2 C_1} + \frac{1}{R_2 C_2} - \frac{R_b}{R_a R_F C_1}\right) + \frac{R_1 + R_F}{R_1 R_2 R_F C_1 C_2}}$$

Υπολογισμός Στοιχείων

$$f_0 = 10k + 83k = 93k$$

Θεωρούμε $R_1=R_f=R$, $R_2=2*R$ και $C_1=C_2=C$ στον κάτωθι τύπο:

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{R_f + R_1}{C_1 C_2 R_1 R_2 R_f}}$$

Και προκύπτει:

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{2R}{2C^2R^2}} = \frac{1}{2\pi RC} \to$$

$$RC = \frac{1}{2\pi f_0} \approx 0.001818 * 10^{-3}$$

Για standard value C=3.3uF:

$$R \approx 12.79 \ Ohms$$

Υπάρχει διαθέσιμη standard value αντίσταση των 15 Ωμ, επομένως έχουμε σχετικά καλή προσέγγιση, της τάξεως λάθος περίπου 0.1475. Συνολικά τα στοιχεία:

$$R_1 = R_f = 12.75 \Omega$$

 $R_2 = 25.5 \Omega$
 $C_1 = C_2 = 3.3 uF$

Όσον αφορά τις τιμές των Ra, Rb:

$$\frac{3-G}{2} = \frac{1}{2Q}$$

Με Q=0.707 προκύπτει G≈1.5855 και αφού:

$$G = 1 + \frac{R_b}{R_a}$$

Προκύπτει:

$$\frac{R_b}{R_a} \approx 0.5855$$

 Γ ια R_a = 18k Ω προκύπτει R_b = 10.539k Ω , η οποία υπάρχει σαν standard value 10k Ω . Άρα:

$$R_a = 18k\Omega, R_b = 10.539k\Omega$$

<u>Διαγράμματα Bode</u>

Δημιουργούμε το κύκλωμα στο πρόγραμμα LTSpice:

Και προκύπτει το ζητούμενο διάγραμμα:

Transient Ανάλυση

Αφού f_0 = 93kHz, T = 0.01075 msec και επειδή θέλουμε duty cycle 50%, θα πάρουμε παλμό με περίοδο 0.005375 msec.

Επιπλέον, θα βάλουμε μία (αμελητέα) καθυστέρηση, της τάξεως των 0.001075 nsec, ώστε να προσομοιώσουμε πιο «πραγματικές» συνθήκες:

Οι προδιαγραφές της πηγής Vin:

