Exercise 3.1 . Let V be an n-dimensional complex vector space. If L is Hermitian then V has an orthonormal basis consisting of eigenvectors of L.

Proof. First we must show that *L* **has** an eigenvector. Then we will show how to extend it to a full basis. For this first step, *L* can be any matrix, not necessarily Hermitian.

 $oldsymbol{
ho_L}(\lambda) = \det(oldsymbol{L} - \lambda oldsymbol{I})$ is a polynomial in λ , known as the characteristic polynomial of L. By the Fundamental Theorem of Algebra, there are complex roots λ_i of $oldsymbol{
ho_L}(\lambda)$ of multiplicity $oldsymbol{p}_i$ such that $oldsymbol{
ho_L}(\lambda) = \left(\lambda - \lambda_1\right)^{oldsymbol{
ho}_1} \cdots \left(\lambda - \lambda_r\right)^{oldsymbol{
ho}_r}$ where r is a positive integer and $oldsymbol{
ho}_1 + \cdots + oldsymbol{
ho}_r = n$. In particular, $oldsymbol{
ho_L}(\lambda)$ has at least one root, λ_1 .

By footnote (*), below, there is an eigenvector $\left|\lambda_{_{1}}\right\rangle$ having $\lambda_{_{1}}$ as an eigenvalue. This proves that every matrix L has at least one non-zero eigenvector. WLOG we can assume $\left|\lambda_{_{1}}\right\rangle$ is a unit vector because we can, if necessary, divide $\left|\lambda_{_{1}}\right\rangle$ by its magnitude and it will still be an eigenvector having $\lambda_{_{1}}$ as its eigenvalue.

Define the null space $N = \{ |v\rangle : \langle v|\lambda_1 \rangle = 0 \}$. It is easy to see that N is a vector subspace of V.

Claim dim N = n - 1:

$$|\lambda_1\rangle$$
 can be extended to a basis $\{|\lambda_1\rangle, |e_2\rangle, \cdots, |e_n\rangle\}$ of V, and the sub-basis vectors $\{|e_2\rangle, \cdots, |e_n\rangle\}$ belong to N because $\langle e_i|\lambda_1\rangle = 0$ for all *i*.

Claim $LN \subset N$:

Let
$$|v\rangle \in \mathbb{N}$$
. We need to show that $L|v\rangle \in \mathbb{N}$. Since L is Hermitian, $L|v\rangle = \langle v|L^\dagger = \langle v|L$. So, we need to show that $\langle v|L|\lambda_1\rangle = 0$: $\langle v|L|\lambda_1\rangle = \langle v|\lambda_1|\lambda_1\rangle = \lambda_1\langle v|\lambda_1\rangle = 0$

Let $L_2 = L$ restricted to N. Repeating our logic above, $p_L(L_2)$ has a root λ_2 that is an eigenvalue of L_2 with corresponding unit eigenvector $|\lambda_2\rangle$. Since $|\lambda_2\rangle \in N$, $\langle \lambda_1 | \lambda_2 \rangle = 0 \Rightarrow |\lambda_1\rangle \perp |\lambda_2\rangle$.

Restricting L to the (n-2)-dimensional null space of L_2 , as above we generate unit eigenvector $\left|\lambda_3\right>$ such that $\left|\lambda_3\right> \perp \left|\lambda_2\right>$, and since $\left|\lambda_3\right> \in \mathbb{N}$, $\left|\lambda_3\right> \perp \left|\lambda_1\right>$ also.

Continuing this process, we eventually obtain the orthonormal basis $\left\{ \left| \lambda_i \right\rangle : i = 1, \cdots, n \right\}$.

Footnote (*)

First, suppose we have *n* equations in *n* unknowns:

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = 0 \\ \vdots & \Leftrightarrow A|x\rangle = |0\rangle \\ a_{n1}x_1 + \dots + a_{nn}x_n = 0 \end{cases}$$

By Cramer's Rule, det $A \neq 0 \Leftrightarrow$ there exists a unique vector $|x\rangle$ such that $A|x\rangle = 0$. So, if det A = 0, then while $|x\rangle = |0\rangle$ is a solution, it is not unique. That is, there is an $|x\rangle \neq 0$ such that $A|x\rangle = |0\rangle$.

Now we apply this fact to the characteristic polynomial of matrix L. Let $A = L - \lambda_1 I$. Since λ_1 is a root of $p_L(\lambda)$,

$$\begin{split} & \rho_{_L} \big(\lambda_{_1} \big) \! = \! 0 \quad \Rightarrow \quad \det A \! = \! \det \big(L - \lambda_{_1} I \big) \! = \! \rho_{_L} \big(\lambda_{_1} \big) \! = \! 0 \\ & \quad \Rightarrow \quad \exists \text{ non-zero } \big| x \big\rangle \text{ such that } A \big| x \big\rangle \! = \! \big| 0 \big\rangle. \end{split}$$

So, $\left(L-\lambda_{1}I\right)\left|x\right\rangle=A\left|x\right\rangle=0$, or $L\left|x\right\rangle=\lambda_{1}\left|x\right\rangle$. That is, $\left|x\right\rangle$ is an eigenvector of L, and we denote it as $\left|\lambda_{1}\right\rangle$. Thus, we have found an eigenvector $\left|\lambda_{1}\right\rangle$ having λ_{1} as an eigenvalue.