Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Εργαστήριο Επεξεργασίας Σημάτων και Τηλεπικοινωνιών

Κινητά Δίκτυα Επικοινωνιών

Μέρος Α: Τηλεπικοινωνιακά Θέματα:

Ενότητα Νο 4

Τεχνικές Ισοστάθμισης Διαύλου

Βασικές αρχές Ισοστάθμισης

- Το φαινόμενο της πολυδιόδευσης στα κανάλια των δικτύων κινητών επικοινωνιών προκαλεί την εμφάνιση διασυμβολικής παρεμβολής (ISI -Intersymbol Interference).
- Έστω *f(t)* η κρουστική απόκριση του συνολικού καναλιού (φίλτρο πομπού, κανάλι, φίλτρο δέκτη). Το λαμβανόμενο σήμα θα έχει τη μορφή:

$$y(t) = x(t) * f(t) + n_b(t)$$

- Στο δέκτη, μια ειδική διάταξη που καλείται ισοσταθμιστής (equalizer), αναλαμβάνει την αντιμετώπιση της ISI.
- Ισοστάθμιση, με μια ευρεία έννοια, ονομάζεται οποιαδήποτε λειτουργία επεξεργασίας σήματος που μειώνει δραστικά τη διασυμβολική παρεμβολή.

Βασικές αρχές Ισοστάθμισης

Τυπικό σύστημα επικοινωνίας με ενσωματωμένο ισοσταθμιστή

- \blacksquare Η έξοδος του ισοσταθμιστή έχει τη μορφή: $\hat{d}(t) = x(t) * f(t) * h_{eq}(t) + n_b(t) * h_{eq}(t)$
- **Στόχος:** ο σχεδιασμός της $h_{eq}(t)$, ώστε η έξοδος d(t) του ισοσταθμιστή να τείνει στο x(t).
- Σε αρκετές εφαρμογές ο ισοσταθμιστής πρέπει να είναι χρονικά μεταβαλλόμενος για να παρακολουθεί τις αλλαγές του καναλιού

Κατηγοριοποίηση Ισοσταθμιστών

Με βάση το κριτήριο βελτιστοποίησης:

- Κριτήριο μέγιστης πιθανοφάνειας (Maximum Likelihood Criterion ML): Σε κάθε χρονική στιγμή, ο ανιχνευτής παίρνει απόφαση υπέρ ενός συμβόλου, ώστε να μεγιστοποιείται η πιθανότητα σωστής απόφασης, δεδομένης της τιμής του λαμβανόμενου σήματος. Είναι βέλτιστοι ισοσταθμιστές, αλλά μεγάλης πολυπλοκότητας.
- Κριτήριο μηδενισμού της διασυμβολικής παρεμβολής (Zero-forcing Criterion ZF): Ο ισοσταθμιστής μηδενίζει τη διασυμβολική παρεμβολή. Είναι πολύ απλό κριτήριο αλλά με βασικό μειονέκτημα ότι δεν λαμβάνει υπόψη το θόρυβο.
- Κριτήριο ελάχιστου μέσου τετραγωνικού σφάλματος (Minimum Mean Square Error Criterion MMSE): Ελαχιστοποιεί το μέσο τετραγωνικό σφάλμα της εξόδου του ισοσταθμιστή, σε σχέση με την αποστελλόμενη ακολουθία. Λαμβάνει υπόψη του τόσο τη διασυμβολική παρεμβολή όσο και τον προσθετικό θόρυβο.

Κατηγοριοποίηση Ισοσταθμιστών

Με βάση τη δομή του ισοσταθμιστή:

- Εγκάρσιοι Ισοσταθμιστές (transversal equalizers): Κλασικά FIR φίλτρα, με σταθερό αριθμό συντελεστών, μέσα από τα οποία διέρχεται το λαμβανόμενο σήμα.
- Ισοσταθμιστές με δομή lattice: Ισοσταθμιστές με ειδική κλιμακωτή δομή που τους δίνει μεγαλύτερη ευελιξία (άγνωστη τάξη ισοσταθμιστή / δομή pipelinable). Αποτελούνται από έναν αριθμό όμοιων βαθμίδων, που αντιστοιχεί στον αριθμό των συντελεστών ενός εγκάρσιου ισοσταθμιστή. Η προσθήκη επιπλέον βαθμίδων γίνεται εύκολα. Οι παράμετροι του φίλτρου lattice είναι διαφορετικές από τις παραμέτρους του εγκάρσιου αλλά υπάρχει ένα-προς-ένα αντιστοιχία.

Κατηγοριοποίηση Ισοσταθμιστών

Με βάση τη χρονική μεταβολή του ισοσταθμιστή:

- Σταθεροί Ισοσταθμιστές (fixed or preset equalizers): Οι συντελεστές υπολογίζονται μια φορά στην αρχή της λειτουργίας τους και παραμένουν σταθεροί.
- Προσαρμοστικοί Ισοσταθμιστές (adaptive equalizers): Οι συντελεστές μεταβάλλονται συνεχώς ώστε να παρακολουθούν τις χρονικές μεταβολές του καναλιού.

Με βάση τη γραμμικότητα ή μη της δομής τους:

- Γραμμικοί Ισοσταθμιστές: Η έξοδος είναι γραμμική συνάρτηση της εισόδου τους.
- Μη-γραμμικοί Ισοσταθμιστές: Η έξοδος δεν είναι γραμμική συνάρτηση της εισόδου τους (π.χ. οι ισοσταθμιστές που στηρίζονται στο κριτήριο ML).

Το κριτήριο ΜL

Δομή ενός ισοσταθμιστή MLSE (Maximum Likelihood Sequence Estimation)

$$\max P\{\mathbf{a}_m/\mathbf{r}\} \equiv \max f\{\mathbf{r}/\mathbf{a}_m\}$$

- Ελέγχει όλες τις πιθανές ακολουθίες δεδομένων και επιλέγει εκείνη με τη μέγιστη πιθανοφάνεια του λαμβανόμενου σήματος
- Απαιτεί γνώση του καναλιού μετάδοσης και της κατανομής του θορύβου.
- Μεγάλη πολυπλοκότητα. Η χρήση του αλγορίθμου Viterbi μειώνει δραστικά τους υπολογισμούς και επιτρέπει την εφαρμογή σε μικρού μήκους κανάλια. Πολυπλοκότητα: από $O(N^L)$ σε $O(NM^L)$, όπου: L το μήκος καναλιού, M η τάξη του αλφαβήτου και N το πλήθος των συμβόλων

MLSE

- Παράδειγμα: έστω κανάλι μήκους L=2 , $\{f(0), f(1)\}$, και δυαδική διαμόρφωση $(\pi.\chi.$ δυαδικό PAM α_m =+1, -1)
- Αν εξαιρέσουμε το θόρυβο, τότε η τιμή που λαμβάνουμε είναι:

$$y(m) = f(0)a_m + f(1)a_{m-1}$$

• Και ανάλογα με τα σύμβολα που στάλθηκαν, μπορούμε να πάρουμε τους παρακάτω συνδυασμούς:

$$y_1(m) = f(0)(+1) + f(1)(+1)$$

$$y_2(m) = f(0)(+1) + f(1)(-1)$$

$$y_3(m) = f(0)(-1) + f(1)(+1)$$

$$y_4(m) = f(0)(-1) + f(1)(-1)$$

MLSE (συνέχεια)

- Εφόσον:
 - έχουμε το y(m)
 - και με κάποιο τρόπο έχουμε υπολογίσει το κανάλι, δηλαδή γνωρίζουμε τα f(0), f(1)
- Τότε, μπορούμε:
 - να υπολογίσουμε όλα τα δυνατά y_i(m)
 - να δούμε ποιο είναι πιο κοντά στο ληφθέν y(m)
 - και να αποφασίσουμε ποια ήταν τα σύμβολα που στάλθηκαν
- Μεγιστοποίηση της συνάρτησης κόστους: log[f(y/a)]
 (για ακολουθία Ν συμβόλων απαιτεί: M^N)
- Προσέξτε ότι:
 - θεωρούμε ότι το κανάλι είναι γνωστό με κάποιο τρόπο
 - την επόμενη χρονική στιγμή (που θα λάβουμε το y(m+1)), θα εμπλέκεται και πάλι το σύμβολο α_m, και αυτή η πληροφορία θα πρέπει να αξιοποιηθεί

MLSE με τον αλγόριθμο Viterbi

- Viterbi: αλγόριθμος υλοποίησης του φωρατή MLSE
- MLSE: είναι ο βέλτιστης εκτιμητής της ακολουθίας των συμβόλων:
 - αντιμετωπίζει πλήρως την ISI
 - πλήττεται μόνο από την επίδραση του AWGN θορύβου που είναι τυχαίος
- Η πολυπλοκότητα του αλγ. Viterbi είναι **O**(**M**^L)/**symbol**
- Λόγω της εκθετικής πολυπλοκότητας, ο MLSE χρησιμοποιείται πρακτικά μόνο σε περιπτώσεις
 - μικρών M, L
 - π.χ. συστήματα κινητής επικοινωνίας με σχετικά χαμηλό ρυθμό δεδομένων [M=2:4, L=2:5]
- Για μεγάλα Μ και L, χρησιμοποιούνται άλλες υπο-βέλτιστες μέθοδοι
- O MLSE αποτελεί benchmark

• Ο ισοσταθμιστής σχεδιάζεται έτσι ώστε να μηδενίζει τη διασυμβολική παρεμβολή (απαιτείται: εκτίμηση του καναλιού)

$$y(t) = x(t) * h_{ch}(t) + n_b(t)$$

$$\hat{d}(t) = x(t) * h_{ch}(t) * h_{eq}(t) + n_b(t) * h_{eq}(t)$$

$$h_{eq}(t) * h_{ch}(t) = \delta(t) \quad \text{if} \quad H_{eq}(f) H_{ch}(f) = 1$$

• Δηλαδή ένας ισοσταθμιστής ZF άπειρου μήκους είναι ένα αντίστροφο φίλτρο για το σύστημα του καναλιού:

$$H_{eq}(f) = \frac{1}{H_{ch}(f)}$$

 Βασικό μειονέκτημα: δε λαμβάνει υπόψη το θόρυβο με αποτέλεσμα να προκαλεί ενίσχυση στις συχνότητες όπου η απόκριση συχνότητας του καναλιού παρουσιάζει μεγάλες βυθίσεις.

• Ο ισοσταθμιστής σχεδιάζεται έτσι ώστε να ελαχιστοποιεί το μέσο τετραγωνικό σφάλμα στην έξοδό του:

$$y(t) = x(t) * h_{ch}(t) + n_b(t)$$

$$\hat{d}(t) = x(t) * h_{ch}(t) * h_{eq}(t) + n_b(t) * h_{eq}(t)$$

$$\min\{E(|e(t)|^2)\} = \min\{|\hat{d}(t) - x(t)|^2\}$$

• Αν ο ισοσταθμιστής έχει άπειρο μήκος και ο θόρυβος είναι AWG:

$$H_{eq}(f) = \frac{1}{H_{ch}(f) + N_0}$$

• Πλεονέκτημα: ελαχιστοποιεί το άθροισμα της ισχύος της ISI και του προσθετικού θορύβου και πετυχαίνει μικρότερο ρυθμό σφαλμάτων.

Γραμμική Ισοστάθμιση

Βασική δομή ενός γραμμικού εγκάρσιου ισοσταθμιστή

■ Η είσοδος στη διάταξη απόφασης είναι ένας γραμμικός συνδυασμός των εισόδων του ισοσταθμιστή στην τρέχουσα και τις προηγούμενες χρονικές στιγμές, με βάρη που καθορίζονται από το εκάστοτε κριτήριο:

$$\hat{d}_k = \sum_{n=-N_1}^{N_2} (c_n^*) y_{k-n}$$

- Ένας γραμμικός ισοσταθμιστής μπορεί να είναι είτε ZF είτε MMSE.
- Μπορεί να υλοποιηθεί και στη δομή lattice.

Μη Γραμμική Ισοστάθμιση

Βασική δομή ενός ισοσταθμιστή με επανατροφοδότηση αποφάσεων (DFE)

- Βασική ιδέα: Η ΙSΙ που οφείλεται σε προηγούμενα σύμβολα (που έχουν ανιχνευθεί) μπορεί να εκτιμηθεί και να αφαιρεθεί από το λαμβανόμενο σήμα πριν από την ανίχνευση των επόμενων συμβόλων.
- Η έξοδος του ισοσταθμιστή δίνεται από τη σχέση:

$$\hat{d}_k = \sum_{n=-N_1}^{N_2} (c_n^*) y_{k-n} + \sum_{n=1}^{N_3} (F_n^*) d_{k-n}$$
 14

- Ένας μη-γραμμικός ισοσταθμιστής μπορεί να είναι είτε ZF είτε MMSE, ανάλογα με το κριτήριο που χρησιμοποιείται στον υπολογισμό των συντελεστών του.
- Αν οι προηγούμενες αποφάσεις είναι σωστές και το μήκος του feedback φίλτρου αρκετά μεγάλο, επιτυγχάνεται πλήρης εξάλειψη της ISI.
- Πρόβλημα αποτελεί το φαινόμενο της διάδοσης λαθών: Λάθη σε προηγούμενες αποφάσεις διαδίδονται στα επόμενα σύμβολα μέσω του φίλτρου ανάδρασης (feedback) προκαλώντας ενδεχομένως νέα λάθη.
- Γενικά ο DFE παρουσιάζει καλύτερη συμπεριφορά από τους γραμμικούς ισοσταθμιστές.

Σύγκριση Viterbi και DFE (Proakis, κανάλι Β)

• Για να υπολογίσουμε τους συντελεστές του MMSE ισοσταθμιστή, απαιτείται να λύσουμε ένα γραμμικό σύστημα

$$\mathbf{R}_{y}\mathbf{c} = \mathbf{r}_{ay}$$

• Η λύση του συστήματος είναι

$$\mathbf{c}_{opt} = \mathbf{R}_{y}^{-1} \mathbf{r}_{ay}$$

- Σε πρακτικές εφαρμογές ισοσταθμιστών:
 - για να βρούμε τον ισοσταθμιστή συνήθως εφαρμόζουμε μια επαναληπτική διαδικασία
 - $-\,$ αποφεύγουμε την άμεση αντιστροφή του $\boldsymbol{R}_{\!\boldsymbol{y}}$
- Η ιδέα της επαναληπτικής διαδικασίας θα οδηγήσει στους προσαρμοστικούς ισοσταθμιστές
- Με παρόμοιο τρόπο μπορούν να σχεδιαστούν προσαρμοστικοί ισοσταθμιστές
 βασισμένοι στο κριτήριο ZF

Προσαρμοστική Ισοστάθμιση (2/3)

Βασική δομή ενός προσαρμοστικού γραμμικού ισοσταθμιστή

- Οι συντελεστές του ισοσταθμιστή δεν είναι σταθεροί αλλά ενημερώνονται με τη βοήθεια κατάλληλου αλγορίθμου ώστε να παρακολουθούν τις αλλαγές του καναλιού.
- Υπάρχει μια πληθώρα αλγορίθμων για την προσαρμογή των συντελεστών.

Προσαρμοστική Ισοστάθμιση (3/3)

Βασικές αρχές προσαρμοστικής ισοστάθμισης:

- Συνήθως πριν τη μετάδοση της πληροφορίας, μεταδίδεται μια ακολουθία εκμάθησης που βοηθάει στην αρχική προσαρμογή των συντελεστών του ισοσταθμιστή.
- Διαδικασία σύγκλισης: με βάση το σήμα λάθους e_k , ανανεώνονται συνεχώς οι συντελεστές του ισοσταθμιστή και μειώνεται επαναληπτικά η συνάρτηση ελαχιστοποίησης.
- Μετά τη σύγκλιση, ο αλγόριθμος είτε "παγώνει" τους συντελεστές (μέχρι να λάβει νέα ακολουθία εκμάθησης) είτε μεταβαίνει στην καθοδηγούμενη από τις αποφάσεις λειτουργία (χρησιμοποιεί τις αποφάσεις για τα σύμβολα πληροφορίας ως ακολουθία εκμάθησης).
- Τυφλοί προσαρμοστικοί αλγόριθμοι: σχετικά πρόσφατη κατηγορία αλγορίθμων που αξιοποιούν τα χαρακτηριστικά του μεταδιδόμενου σήματος και δεν απαιτούν ακολουθία εκμάθησης.

Επιλογή προσαρμοστικού αλγορίθμου

Βασικοί παράγοντες της απόδοσης προσαρμοστικών αλγορίθμων:

- Ρυθμός σύγκλισης: Ο αριθμός των απαιτούμενων επαναλήψεων ώστε ο αλγόριθμος να συγκλίνει αρκετά κοντά στη βέλτιστη λύση, όταν η είσοδος είναι στάσιμη.
- Misadjustment: Παράμετρος που μετράει την απόκλιση του τελικού μέσου σφάλματος ενός αλγορίθμου (σφάλμα σταθερής κατάστασης) από το βέλτιστο ελάχιστο τετραγωνικό σφάλμα.
- Tracking: Σχετίζεται με την ικανότητα του αλγορίθμου να παρακολουθεί τις μεταβολές στο κανάλι.
- Υπολογιστική πολυπλοκότητα: Ο αριθμός των απαιτούμενων πράξεων για την εκτέλεση μιας επανάληψης του αλγορίθμου. Ιδιαίτερα σημαντική για αλγορίθμους πραγματικού-χρόνου.
- Αριθμητικές ιδιότητες: Αναφέρεται σε σφάλματα στρογγυλοποίησης ή σφάλματα αναπαράστασης που προκύπτουν κατά την υλοποίηση ενός αλγορίθμου. Συσσώρευση λαθών μπορεί να οδηγήσει σε αστάθεια.

Επιλογή προσαρμοστικού αλγορίθμου

Κριτήρια επιλογής ισοσταθμιστή στις κινητές επικοινωνίες:

- Κόστος υπολογιστικής πλατφόρμας.
- Κατανάλωση ισχύος.
- Ρυθμός δεδομένων και ταχύτητα κίνησης (επιδρούν στα χαρακτηριστικά του καναλιού, άρα καθορίζουν τις απαιτήσεις από τον ισοσταθμιστή).
- Μέγιστη αναμενόμενη χρονική διασπορά του καναλιού (υπαγορεύει τον απαιτούμενο αριθμό συντελεστών του ισοσταθμιστή, άρα επηρεάζει το κόστος του, το χρόνο επεξεργασίας κλπ).

Παραδείγματα προσαρμοστικών αλγορίθμων

Ο αλγόριθμος LMS (Least Mean Square)

- Χρησιμοποιεί το κριτήριο MMSE.
- Αποτελεί απλοποίηση του αλγορίθμου "steepest descent". Απαιτεί μόλις 2N+1 πολ/σμούς ανά επανάληψη (για N+1 συντελεστές):

$$\hat{d}(n) = \mathbf{w}_{N}^{T}(n)\mathbf{y}_{N}(n)$$

$$e(n) = x(n) - \hat{d}(n)$$

$$\mathbf{w}_{N}(n+1) = \mathbf{w}_{N}(n) - \mu \cdot e^{*}(n)\mathbf{y}_{N}(n)$$

- Το βήμα μ ελέγχει το ρυθμό σύγκλισης και την ευστάθεια.
- Το *x(n)* σχηματίζεται είτε από την ακολουθία εκμάθησης είτε από την έξοδο του στοιχείου απόφασης.

Παραδείγματα προσαρμοστικών αλγορίθμων

Ο αλγόριθμος RLS (Recursive Least Squares)

Ελαχιστοποιεί το χρονικό μέσο όρο του σφάλματος:

$$J(n) = \sum_{i=1}^{n} \lambda^{n-i} e^{*}(i, n) e(i, n)$$

$$\hat{d}(n) = \mathbf{w}^{T}(n-1)\mathbf{y}(n), \qquad e(n) = x(n) - \hat{d}(n)$$

$$\mathbf{k}(n) = \frac{\mathbf{R}^{-1}(n-1)\mathbf{y}(n)}{\lambda + \mathbf{y}^{T}(n)\mathbf{R}^{-1}(n-1)\mathbf{y}(n)}, \qquad \mathbf{R}^{-1}(n) = \frac{1}{\lambda} \left[\mathbf{R}^{-1}(n-1) - \mathbf{k}(n)\mathbf{y}^{T}(n)\mathbf{R}^{-1}(n-1) \right]$$

$$\mathbf{w}(n) = \mathbf{w}(n-1) + \mathbf{k}(n)e^{*}(n)$$

- Η παράμετρος λ καθορίζει την ικανότητα παρακολούθησης αλλαγών.
- Ο ρυθμός σύγκλισης καθορίζεται από τον πίνακα R.
- Πιο γρήγορη σύγκλιση από τον LMS, αλλά και μεγαλύτερη πολυπλοκότητα (2.5N²+4.5N)

Σύνοψη τεχνικών ισοστάθμισης

Ειδικότερα θέματα

• Ισοστάθμιση Μη-Γραμμικών Καναλιών:

```
y(t) = NL\{a_n\}, όπου NL μη-γραμμικός τελεστής
```

π.χ. δορυφορικές ζεύξεις / οπτικά κανάλια κλπ.

Πιθανές μέθοδοι αντιμετώπισης:

- Μη-Γραμμικά μοντέλα (Volterra Series Expansion)
- Νευρωνικά Δίκτυα (Μη-Γραμμική Απεικόνιση)
- MLSE (Viterbi) (απαιτεί εκτίμηση μη-γραμμικού καναλιού)
- Blind (and Semi-Blind) Equalization:
 - Ισοστάθμιση χωρίς χρήση (ή με ελάχιστη χρήση) ακολουθίας εκμάθησης