9. Foundations of processor design: memory elements

EECS 370 – Introduction to Computer Organization – Winter 2015

Robert Dick, Andrew Lukefahr, and Satish Narayanasamy

EECS Department University of Michigan in Ann Arbor, USA

© Dick-Lukefahr-Narayanasamy, 2015

The material in this presentation cannot be copied in any form without our written permission

Recap: Combinational Circuits – implement Boolean expressions

- No memory: Output a function only of input
- Undefined input implies undefined output
 - Adder is the basic gate of the ALU
 - Decoder is the basic gate of indexing
 - MUX is the basic gate controlling data movement

EECS 370: Introduction to Computer Organization

The University of Michigan

Recap:

Building combinational circuits: Half and Full adder

Half Adder

Α	В	S	<u>C</u>
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Full Adder

Next topic:

Sequential logic:

giving memory to circuits

Why do they need memory – Example: register file

Let's look at the following circuit

What is the value of Q if \overline{R} is 1 and \overline{S} is 0?

Building the Truth Table

What is the value of Q if \overline{R} is 0 and \overline{S} is 1?

For a Basic Memory Cell

What is the value of Q if \overline{R} is 1 and \overline{S} is 1?

As long as R and S remain 1 then the value Q (and Q) will remain unchanged. This value is stored in this circuit. This is a basic memory cell.

With unstable inputs 0,0

What is the value of Q if \overline{R} is 0 and \overline{S} is 0?

Transparent D Latch

Q

Adding a clock to the mix

- We can design more interesting circuits if we have a clock signal
- The use of a clock enables a sequential circuit to predictably change state (and store information).
- A clock signal alternates between 0 and 1 states at a fixed frequency (e.g., 100MHz)
- What should the clock frequency be?

Clocks

- Clock signal
 - Periodic pulse
 - Generated using oscillating crystal or ring oscillator
 - Distributed throughout chip using clock distribution net

- With clock signals we can create a new class of circuits called sequential
 - Output determined by inputs & previous state

Edge Triggered D Flip-flop

Value should remain valid and stable during latching!

Q

Why edge-triggered flip-flops?

In edge-triggered flip-flops, the latching edge provides convenient abstraction of "instantaneous" change of state.

Tri-state Logic

- □ The output of a gate can be any of three different states: one, zero or not connected
 - Need to disconnect the circuit. How?

Implemented as a single transistor

A Static Memory Cell

A 4-Bit Register

Addressing Memory Arrays

16:1 BIT MEMORY

A Scheme with Fewer Components

16 X 1 BIT MEMORY

Putting it in a package

18-bit X 2M MEMORY (36 MBits)

Other Memories

- Static RAM
 - Built from sequential circuits
 - Takes 4-6 transistors to store 1 bit
 - Fast access (< 1 ns access possible)
- Dynamic RAM
 - Built using a single transistor and a capacitor
 - 1's must be refreshed often to retain value
 - Slower access than static RAM
 - Much more dense layout than static RAM
- ROM, PROM, Flash memory, etc. Later

