

planetmath.org

Math for the people, by the people.

ping-pong lemma

Canonical name PingpongLemma
Date of creation 2013-03-22 17:11:21
Last modified on 2013-03-22 17:11:21

Owner uriw (288) Last modified by uriw (288)

Numerical id 8

Author uriw (288) Entry type Theorem Classification msc 20F65

Synonym table-tennis lemma

Theorem (Ping Pong Lemma). Let $k \geq 2$ and let G be a group acting on a space X. Suppose we are given a class $\mathcal{M} = \{A_1, A_2, \ldots, A_k, B_1, B_2, \ldots, B_k\}$ of 2k pairwise disjoint subsets of X and suppose y_1, y_2, \ldots, y_k are elements of G such that

$$B_i^c \subseteq y_i(A_i) \quad i = 1, 2, \dots, k$$

 $(B_i^c \text{ is the complement of } B_i \text{ in } X)$. Then, the subgroup of G generated by y_1, y_2, \ldots, y_k is free.

Before turning to prove the lemma let's state three simple facts:

Fact 1. For all i = 1, ..., k we have $y_i(A_i^c) \subseteq B_i$ and $y_i^{-1}(B_i^c) \subseteq A_i$

Proof.
$$B_i^c \subseteq y_i(A_i) \implies B_i \supseteq y_i(A_i)^c = y_i(A_i^c)$$

Fact 2. If $i \neq j$ then $A_i \cup B_i \subseteq A_i^c \cap B_i^c$.

Proof. A_i and A_j are disjoint therefore $A_j \subseteq A_i^c$. Similarly, $A_j \subseteq B_i^c$ so $A_j \subseteq A_i^c \cap B_i^c$. In the same way, $B_j \subseteq A_i^c \cap B_i^c$ so $A_j \cup B_j \subseteq A_i^c \cap B_i^c$.

Fact 3. If $R, S \in \mathcal{M}$ then $R^c \not\subseteq S$

Proof. Assume by contradiction that $R^c \subseteq S$. Then, $X = R \cup S$ and therefore any element of M intersects with either R or S. However, the elements of M are pairwise disjoint and there are at least 4 elements in M so this is a contradiction.

Using the above 3 facts, we now turn to the proof of the Ping Pong Lemma:

Proof. Suppose we are given $w = z_n^{\epsilon_n} \cdots z_2^{\epsilon_2} z_1^{\epsilon_1}$ such that $z_\ell \in \{y_1, y_2, \dots, y_k\}$ and $\epsilon_\ell \in \{-1, +1\}$. and suppose further that w is freely reduced, namely, if $z_i = z_{i+1}$ then $\epsilon_i = \epsilon_{i+1}$. We want to show that $w \neq 1$ in G. Assume by contradiction that w = 1. We get a contradiction by giving $R, S \in \mathcal{M}$ such that $w(S^c) \subseteq R$ and therefore contradicting Fact ?? above since $S^c = w(S^c) \subseteq R$.

The set S is chosen as follows. Assume that $z_1 = y_i$ then:

$$S = \begin{cases} A_i & \text{if } \epsilon_1 = 1\\ B_i & \text{if } \epsilon_1 = -1 \end{cases}$$

Define the following subsets P_0, P_1, \ldots, P_n of X:

$$P_0 = S^c; \quad P_1 = z_1^{\epsilon_1}(P_0), \dots, P_n = z_n^{\epsilon_n}(P_{n-1}) = w(S^c)$$

To complete the proof we show by induction that for $\ell = 1, 2, ..., n$ if $z_{\ell} = y_i$ then:

- 1. if $\epsilon_{\ell} = 1$ then $P_{\ell} \subseteq B_i$.
- 2. if $\epsilon_{\ell} = -1$ then $P_{\ell} \subseteq A_i$.

For $\ell = 1$ the above follows from Fact ?? and the specific choice of P_0 . Assume it is true for $\ell - 1$ and assume that $z_{\ell} = y_i$. We have two cases to check:

1. $z_{\ell-1} \neq z_{\ell}$: by the induction hypothesis $P_{\ell-1}$ is a subset of $A_j \cup B_j$ for some $j \neq i$. Therefore, by Fact ?? we get that $P_{\ell-1}$ is a subset of $A_i^c \cap B_i^c$. Consequently, we get the following:

$$P_{\ell} = z_{\ell}^{\epsilon_{\ell}}(P_{\ell-1}) = y_{i}^{\epsilon_{\ell}}(P_{\ell-1}) \subseteq y_{i}^{\epsilon_{\ell}}(A_{i}^{c} \cap B_{i}^{c})$$

Hence, if $\epsilon_{\ell} = 1$ then:

$$P_{\ell} \subseteq y_i(A_i^c \cap B_i^c) \subseteq y_i(A_i^c) \subseteq B_i$$

And if $\epsilon_{\ell} = -1$ then:

$$P_{\ell} \subseteq y_i^{-1}(A_i^c \cap B_i^c) \subseteq y_i^{-1}(B_i^c) \subseteq A_i$$

2. $z_{\ell-1}=z_{\ell}$: by the fact that w is freely reduced we get an equality between $\epsilon_{\ell-1}$ and ϵ_{ℓ} . Hence, if $\epsilon_{\ell}=1$ then $P_{\ell-1}\subseteq B_i\subseteq A_i^c$ and therefore:

$$P_{\ell} = z_{\ell}^{\epsilon_{\ell}}(P_{\ell-1}) = y_i(P_{\ell-1}) \subseteq y_i(A_i^c) \subseteq B_i$$

Similarly, if $\epsilon_{\ell} = -1$ then $P_{\ell-1} \subseteq A_i \subseteq B_i^c$ and therefore:

$$P_{\ell} = z_{\ell}^{\epsilon_{\ell}}(P_{\ell-1}) = y_{i}^{-1}(P_{\ell-1}) \subseteq y_{i}^{-1}(B_{i}^{c}) \subseteq A_{i}$$