Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

"САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ"

Факультет ког	мпьютерных технологий	и управления	
Направление(специальн	ость) управление в	технических си	стемах
Квалификация(степень)	(бакалавр	
Специализация27.0	03.04 Управление в техн	ических систем	ax
Кафедра_ систем управ	вления и информатики	ГруппаР3	340
подсни	ТЕЛЬНА	\mathbf{q}	INCKA
HONCHY	I LUIDIIA.	n JAII	IIICIA
K	курсовому п	роекту	
11 .	ing peoboling in	poemy	
Синтез регулятор	а методом постро	оения жела	емой ЛАЧХ
	-		
Автор курсового проекта	Овчаров А.О.		(подпись)
1 31 1	фами	лия, и.о.)	
Руководитель	Григорьев В.В.		(подпись)
	(фаг	милия, и.о.)	
"" 20_17	_г. Санкт-	Петербург,	20 <u>17</u> Γ.
Курсовой проект выполнен с			
Курсовой проект выполнен с	OHOHROŬ		
	оценкой		
Дата защиты ""			

Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

"САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ"

КАФЕДРА Систем Управления и Информатики

Овианову Алексею

Cmudeumu

УТВЕРЖДАЮ

Зав. кафедрой Бобцов А.А.

ЗАДАНИЕ № 67

на курсовую работу по дисциплине «Теория автоматического управления»

Стубенту Овчарову Алексею					
РУКОВОДИТЕЛЬ Григорьев Валерий Владимирови					
1 Тема проекта	а Синтез рег желаемой «	гулятора методом построения ЛАЧХ			
	о с неизменяемой	гировать регулятор, включённый частью системы. Исходные данн			
Вид неизменяем	иой части системь	$W(s) = \frac{K}{(T_1 s + 1)}$	$\frac{\chi}{(T_2s+1)}$		
Коэффициент по	ередачи неизменя	емой части	210		
Постоянная вре	мени T_1		0.04 c		
Постоянная вре	мени T_2		0.2 c		
Перерегулирова	ние σ		27%		
Время переходн	ого процесса $t_{\scriptscriptstyle \Pi}$		0.1c		
Максимально-д	опустимое значен	ие скорости \dot{g}_{max}	5 1/c		
Максимально-д	опустимое значен	ие скорости \dot{g}_{0max}	0.8 1/c		
Максимально-д	опустимое значен	ие установившейся ошибки e_{max}	0.015		

Содержание 4 Введение 1 Постановка задачи Анализ устойчивости неизменямой части 6 8 Низкочастотный участок ЛАЧХ 3.1 8 3.2 Среднечастотный участок ЛАЧХ 9 3.3 Высокочастотный участок 9 11 5 12 16 18 19 Подп. № дубл. Инв. Ñ Взам. инв. и дата Подп. КСУИ.167.Р3340.001 ПЗ Изм. Лист № докум. Подп. Дата Разраб. Овчаров А.О. Лит. Лист Листов подл. Синтез последовательного 3 Пров. Григорьев В.В. регулятора для замкнутой 1нв. № Университет ИТМО следящей системы методом Н. контр. Петраневский И.В. Кафедра СУиИ желаемых ЛАЧХ

 y_{TB} .

Введение

В данной работе мы синтезируем регулятор методом коррекции ЛАЧХ. Выполяется построение желаемой ЛАЧХ разомкнутой системы на основе ЛА-ЧХ неизменяемой части и заданных показателей качества.

Построение желаемой характерисики разбивается на три части: низкочастотную, среднечастотную и высокочастонтую. Высокочастотная часть не оказывает никакого влияния на систему. Среднечастотная и низкочастотная части влияют на время пререхоного процесса, запас устойчивости по фазе и амплитуде и соотвественно на перерегулирование.

После построения желаемой ЛАЧХ системы, мы можем найти передаточную функцию регулятора, выполняющего "коррекцию" неизменяемой части системы в соотвествии с заданными показаетелями качества.

Подп. и дата		
Инв. № дубл.		
Взам. инв. №		
Подп. и дата		
подл.		
Инв. № подл.		<i>Лист</i> 4
	Копировал	Формат А4

1 Постановка задачи

Задан объект управления, описание которого определяется Wнч(s) – передаточной функцией неизменяемой части системы. Структурная схема следящей системы представлена на рисунке 1.

Рисунок 1 - Структурная схема проектируемой следящей системы

Требуется спроектировать регулятор, включенный последовательно с неизменяемой частью (нч) системы в контуре ошибки, с передаточной функцией $W_{\rm per}(s)$, который обеспечивает в замкнутой следящей системе с единичной обратной связью заданый набор показателей качества. Показатели качества указаны в таблице 1.

Таблица 1 – Данные

$W_{ ext{ iny HY}}(s)$	K	T_1	T_2	$t_{\scriptscriptstyle \Pi}$	σ	\dot{g}_{max}	\dot{g}_{0max}	e_{max}
$\frac{K}{(T_1s+1)(T_2s+1)s}$	210	0.04	0.2	0.1	27	5	0.8	0.015

Здесь К - коэффициент передачи неизменяемой части системы; T_1 , T_2 - постоянные времени (сек.); $t_{\rm II}$ - время переходного процесса (сек.); σ - перерегулирование (%); \dot{g}_{max} - максимально-допустимое значение скорости (м/с); \dot{g}_{0max} - максимально-допустимое значение амплитуды гармонического сигнала; e_{max} - максимально-допустимое значение установившейся ошибки,

Изм.	Лист	№ докум.	Подп.	Дата

Инв. № дубл.

Взам. инв. №

Подп.

КСУИ.167.Р3340.001 ПЗ

Неизменяемая часть НЧ представлена передаточной функцией:

$$W_{\text{HY}} = \frac{210}{(0.04s+1)(0.2s+1)s} = \frac{210}{0.008s^3 + 0.24s^2 + s} \tag{1}$$

Также найдем полюса передаточной функции (1) для оценки устойчивости системы, они представлены ниже:

$$p_1 = 0 p_2 = -25 p_3 = -5$$

Соответственно по корневому критерию устойчивости система находится на границе устойчивости. Переходной процесс при нулевом входном воздействии и ненулевых начальных условиях (y(0)=1) представлен на рисунке 2.

Рисунок 2 - Переходная функция

Как видно из рисунка 2 и полюсов системы (1) системы находится на границе устойчивости нейтрального типа. Давайте замкнем единичной отрицательной обратной связью систему и проведен ее анализ.

Передаточная функция замкнутой системы выглядит следующим образом:

$$W(s) = \frac{W_{\rm HY}}{W_{\rm HY}+1} = \frac{210}{(0.04s+1)(0.2s+1)s+210}$$

Раскрыв скобки получм:

Инв. № дубл.

Взам. инв. №

Подп. и дата

$$W(s) = \frac{210}{0.008s^3 + 0.24s^2 + s + 210} \tag{2}$$

Изм.	Лист	№ докум.	Подп.	Дата

КСУИ.167.Р3340.001 ПЗ

Для анализа устойчивости замкнутой системы построим матрицу гурвица на основании характеристического уравнения.

$$H_3 = \begin{bmatrix} 0.24 & 210 & 0 \\ 0.008 & 1 & 0 \\ 0 & 0.24 & 210 \end{bmatrix} \tag{3}$$

Нейдем главные миноры данной матрицы и воспользуемся критерием Гурвица.

$$\Delta_1 = 0.24 > 0$$

$$\Delta_2 = -1.44 < 0$$

$$\Delta_3 = -302.4 < 0$$

В соответсвии с критерием гурвица, поскольку система имеет отрицательные миноры, она не устойчва. Это также можно увидеть, получив переходную характеристику замкнутой системы, которая изображена ниже.

Рисунок 3 - Переходной процесс замкнутой системы

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп.

Инв. № подл.

3 Синтез регулятора

Регулятор синтузируется методом коррекции ЛАЧХ, для чего нужно построить желаемую ЛАЧХ $L_{\rm ж}$ и по ней найти желаемую передаточную функцию $W_{\rm ж}$. Данная функция ПФ ялвяется произведением ПФ регулятора и незименяемой части (выражение (2)). Из него можем выразить выражение для ПФ регулятора (выражение (3)).

$$W_{ exttt{ iny M}} = W_{ exttt{per}} W_{ exttt{ iny HY}} \ W_{ exttt{per}} = rac{W_{ exttt{ iny M}}}{W_{ exttt{ iny HY}}}$$

3.1 Низкочастотный участок ЛАЧХ

Для системы с астатизмом первого порядка первая низкочастотная асимптота проводится так, чтобы она имела наклон -20 дБ/дек и пересекала желаемую добротность по скорости K_d . При этом вся низкочастотная часть не должна пересекать запрещенную зону, которая формируется из желаемой добротности по скорости K_v и критичксокй частоты гармонического сигнала ω_k .

Давайте найдем все необходимые параметы запретной зоны:

$$K_v = \frac{\dot{g}_{max}}{e_{max}} \approx 333.33$$

$$\omega_k = \frac{\dot{g}_{max}}{\dot{g}_{0max}} = 6.25$$

Для упрощения регулятора можно выбрать сопрягающую частоту $\omega_1=1/T_2=5$, тогда необходимо увеличить желаемую добротность по скорости. Давайте найдем K_d , учитывая ω_1 .

$$K_d = K_v \omega_k T_2 \approx 416.67$$

Изм.	Лист	№ докум.	Подп.	Дата

Инв. № дубл.

Взам. инв. №

КСУИ.167.Р3340.001 ПЗ

3.2 Среднечастотный участок ЛАЧХ

Среднечастотный участок желаемой ЛАЧХ образуется асимптотой с наклоном -20 дБ/дек, проводимой так, чтобы она пересекала ось частот при ω_c . Этот участок проводится влево и вправо до достижения модулей, равных L_1 и L_2 . Затем производится сопряжение средпечастотного участка с низкочастотными асимптотами и высокочастотной частью. Для нахождения частоты среза ω_c необходимо найти частоту положительности ω_n , которую можно найти соотвественно из диаграмм в учебнике Бесекерского.

$$\omega_{\Pi}|_{\sigma=27\%} = \frac{4\pi}{t_{\Pi}} \approx 125.66 \frac{1}{c}$$
 $\omega_{c} = 0.9\omega_{\Pi} \approx 113.1 \frac{1}{c}$

Амплитуды L_1 и L_2 также находятся по диаграммам в учебнике Бесекерского исходя из заданных показателей качества. В нашем случае они имеют следующие значения:

$$L_1 = 18$$
 дБ $L_2 = -18$ дБ

Для качественнго выполнения заданных показателей качества среднечастотаня асимтота может превышать данные значения по модулю, но не наоборот.

Для сопряжения среднечастотного участка и низкочастотного строится прямая, имеющая накол 40 - 60 дБ/дек. Эта прямая определяется сопрягающими частотами ω_1 , ω_2 . Из пересечения среднечастотной асимптоты и сопрягающей можем найти ω_2 .

$$\omega_2 = \sqrt{\frac{K_d w_1^2}{w_c}} \approx 9.6$$

3.3 Высокочастотный участок

Данный участок не вносит большого вклада в показатели качества, поэтому его выбирают максимально удобным для составления регулятора. Теперь

Изм. Лист № докум. Подп. Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп.

подл.

1нв. №

КСУИ.167.Р3340.001 ПЗ

только осталось найти сопрягающую частоту ω_3 :

$$\omega_3 = \frac{\omega_c}{10^{L_2/20}} \approx 898.36 \frac{1}{c}$$

По найденым ниже параметрам можем построить желаемую ЛАЧХ, изображенную на рисунке ниже.

Теперь можем построить передаточную функцию желаемой системы:

$$W_{\mathsf{x}} = \frac{K_d \left(\frac{1}{\omega_2} s + 1\right)^2}{s(T_2 s + 1)^2 \left(\frac{1}{\omega_3} s + 1\right)^2}$$

И соответсвенно передаточную функцию регулятора:

$$W_{\text{per}} = \frac{K_d/K \left(\frac{1}{\omega_2} s + 1\right)^2 (T_1 s + 1)}{\left(\frac{1}{\omega_3} s + 1\right)^2 (T_2 s + 1)}$$

Подп.

№ дубл.

Инв.

 $N_{ar{Q}}$

Взам. инв.

Подп.

№ подл.

4 Проверочный расчет

Выполним проверочный расчет на заданные показатели качества. А именно посчитаем предельное значение ошибки при линейно возрастающем воздействии со скоростью g_{max} .

$$\begin{split} \varepsilon_1 &= \frac{1}{1 + W_{\mathbb{m}}(s)} G(s) \bigg|_{s \to 0} = \\ &= \frac{s (T_2 s + 1)^2 \left(\frac{1}{\omega_3} s + 1\right)^2}{s (T_2 s + 1)^2 \left(\frac{1}{\omega_3} s + 1\right)^2 + K_d \left(\frac{1}{\omega_2} s + 1\right)^2} \frac{g_{max}}{s} \bigg|_{s \to 0} = \frac{g_{max}}{K_d} = 0.012 < e_{max} \end{split}$$

Теперь нужно убедиться, что разомкнутая система обладает достаточным запасом устойчивости по фазе и амплитуде.

$$\mu=180-90-2 \arctan \frac{\omega_c}{\omega_3}-2 \arctan \omega_c T_2+2 \arctan \frac{\omega_c}{\omega_2} \approx 90^\circ$$
 $L=23.8$ дБ

где μ - запас по фазе, L - запас по амплитуде при частоте $\omega=889$ 1/c.

в. № подл. Подп. и дата Взам. инв. № Инв. № дубл. Подп. и да

Изм.	Лист	№ докум.	Подп.	Дата

5 Реализация регулятора

На рисунке ниже представлена электрическая схема передаточной функции регулятора.

Рисунок 5 – Принципиальная схема регулятора

Давайте покажем, что указанная схема действительно представляет регулятор. Условно схему можно резделить на 3 части. Первые две идентичны. Давайте составим передаточную функцию первой части (U_1 - $R_1 || C_1$ - R_2 - U_1), тогда не сложно будет представить и функцию всей системы. Выпишем первое и второе правила Кирхгофа:

$$\begin{cases} I_{R_2} = I_{R_1} + C_1 \frac{dU_{C_1}}{dt} \\ I_{R_1}R_1 = U_{C_1} \\ U_1 = U_{C_1} + U_{R_2} \end{cases} \Leftrightarrow \begin{cases} I_{R_2} = \frac{U_{C_1}}{R_1} + C_1 \frac{dU_{C_1}}{dt} \\ I_{R_1} = \frac{U_{C_1}}{R_1} \\ U_1 = U_{C_1} + I_{R_2}R_2 \\ U_{R_2} = I_{R_2}R_2 \end{cases}$$

из полученной системы можем выразить отдельно U_1 и U_{R_2} :

$$\begin{cases} U_1 = U_{C_1} + \frac{R_2}{R_1} U_{C_1} + R_2 C_1 \frac{dU_{C_1}}{dt} \\ U_{R_2} = \frac{R_2}{R_1} U_{C_1} + R_2 C_1 \frac{dU_{C_1}}{dt} \end{cases}$$

Полученное выражение теперь представим в операторном виде:

$$\begin{cases} U_1 = \left(1 + \frac{R_2}{R_1} + R_2 C_1 p\right) U_{C_1} \\ U_{R_2} = \left(\frac{R_2}{R_1} + R_2 C_1 p\right) U_{C_1} \end{cases}$$

Изм.	Лист	№ докум.	Подп.	Дата

Подп. и дата

№ дубл.

Инв.

Взам. инв. №

Подп.

КСУИ.167.Р3340.001 ПЗ

Остается только найти саму передаточную функцию:

$$W_1(p) = \frac{U_{R_2}}{U_1} = \frac{\frac{R_2}{R_1} + R_2 C_1 p}{1 + \frac{R_2}{R_1} + R_2 C_1 p} = \frac{\frac{R_2}{R_1 + R_2} (R_1 C_1 p + 1)}{\left(\frac{R_1 R_2}{R_1 + R_2} C_1 p + 1\right)}$$

Передаточная функция $W_2(p)$ аналогична первой. Теперь рассмотрим часть, содержащую операционный усилитель. Запишем выражения для входного U_{R_2} и выходного U_2 напряжения.

$$U_{R_2} = \frac{R_3}{R_3 C_2 p + 1}$$

$$U_2 = -\frac{R_4}{R_4 C_3 p + 1}$$

В итоге получи передаточную функцию:

$$W_3(p) = -\frac{R_4/R_3(R_3C_2p+1)}{R_4C_3p+1} \tag{4}$$

Как видно, из выражения (4), последняя часть регулятора инвертирует входной сигнал. Далее вход объекта управления будет подключаться инверсно к выходу регулятора.

Теперь можем записать итоговое выражения для передаточной функции регулятора:

$$W(p) = \frac{U_2}{U_1} = \frac{K (T_1 p + 1)^2 (T_3 p + 1)}{(T_2 p + 1)^2 (T_4 p + 1)}$$

$$\begin{cases}
K = \frac{R_2^2 R_4}{(R_1 + R_2)^2 R_3} \\
T_1 = R_1 C_1 \\
T_2 = \frac{R_1 R_2}{R_1 + R_2} C_1 \\
T_3 = R_3 C_2 \\
T_4 = R_4 C_3
\end{cases}$$
(5)

Изм. Лист № докум. Подп. Дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

подл.

1нв. №

КСУИ.167.Р3340.001 ПЗ

Поскольку в системе (5) 7 неизвестных и 5 уравнений, зададим $C_1=10^{-6}$ Ф. Тогда можем найти R_1 и R_2 .

$$R_1 = rac{T_1}{C_1} pprox 104166 \; ext{Om}$$
 $R_2 = rac{T_1 T_2}{(T_1 - T_2)C_1} = 1125 \; ext{Om}$

Теперь выразим R_3 и R_4 , подставив $C_3 = 10^{-9} \ \Phi$.

$$R_3=rac{T_3}{C_2}$$

$$R_4=rac{T_4}{C_3}=2\cdot 10^8 \; \mathrm{Om}$$

Подставим все в выражение для K системы (5), получим:

$$K = 570967.85C_2 \Rightarrow C_2 = 3.48 \cdot 10^{-6} \ \Phi$$
 $R_3 \approx 11510 \ \mathrm{Om}$

В итоге получим схему в Multisim, представленную ниже на рисунке.

Рисунок 6 – Принципиальная хема регулятора

Подп. и дата

Š

Инв.

Взам. инв.

Подп.

подл.

1нв. №

Тажке построим передаточную функцию данного регулятора в Matlab.

Рисунок 7 – Схема регулятора в Matlab

Теперь для выполнения качественного сравенения представлим переходные характеристики системы, построенной в Matlab и системы в Multisim.

Рисунок 8 – Переходная функция регулятора

Как видно из рисунка 8, переходной процесс в Matlab проходит много быстрее, чем при симуляции электрической схемы. Также сигнал на рисунке 8 (а) ограничен в пределах ± 12 вольт из-за операционного усилителя (ОУ).

Неидеальность элементов в системе Multisim также сыграло роль в расхождении переходных процессов. Не были учтены такие ялвления как обратные токи OУ, которые могут оказывать существенное влияния.

Изм. Лист № докум. Подп. Дата

Подп.

№ дубл.

Инв.

Ņ

Взам. инв.

и дата

Подп.

подл.

Ž

КСУИ.167.Р3340.001 ПЗ

6 Математическое моделирование

В ходе работы была построяна схема моделирования полученноой желаемой передаточной функции, она указана на рисунке ниже:

Рисунок 9 - Схема моделирования

В результате мы получили различные графики при линейно нарастающем входном воздействии и синусоидальном а также переходная функция.

Из рисунка 10 были получены следующие показатели:

$$t_{\scriptscriptstyle \Pi} = 0.06 \text{ c}$$
 $\sigma = 6 \%$

Изм. Лист № докум. Подп. Дата

Инв. № дубл.

Взам. инв. №

Подп.

№ подл.

КСУИ.167.Р3340.001 ПЗ

Далее не рисунке 11 представлен график при линейно нарастающем входном воздействии, здесь $\pmb{\varepsilon}=0.012$, как и получилось при проверочном расчете.

Рисунок 11 – Графики переходных процессов при g=5t

Осталось рассмотреть реакцию системы на синусоидально воздействие $g=0.8\sin 3t.$ Как видно из рисунка 12, при синусоидально воздействии и $\omega=3$ ошибка e меньше 0.015.

Рисунок 12 – Графики переходных процессов при $g=0.8\sin3t$

Изм.	Лист	№ докум.	Подп.	Дата	

Подп. и дата

Инв. № дубл.

Взам. инв. №

и дата

Подп.

Инв. № подл.

Вывод

В данной работе мы синтезировали регулятор, корректирующий характеристики объекта управления. Для синтеза использовался метод коррекции ЛАЧХ, разработанный Солодовниковым В. В.

Удалось добиться следующих параметров переходного процесса: времени переходного процесса $t_{\rm п}=0.06$ с, перегулирования $\sigma=6$ %, максимальной установившейся ошибки $\varepsilon=0.012$. Эти факры подтвердают указанные выше проверочне рассчеты и графики переходных процессов 10, 11 и 12.

При гармоническом входном воздействии $g = g_{0max} \sin{(\omega t)}$ на замкнутую систему с построкнным регулятором, параметры гармонического сигнала ограничиваются из условия \dot{g}_{0max} и выглядит следующим образом: $g_{0max}\omega < \dot{g}_{0max}$.

Была построена электрическая схема, характерезующая регулятор, выведенная на основе законов Электростатики. Сравнив полученные переходные функции регулятора в Matlab и Multisim, установили их несоотвествие. Так происходит из-за неучтенных физических процессов при использовании операционного усилителя, который ограничивает выходное напряжение реулятора. Данные процессы были учтены в модели Multisim, что и создало такое большое расхождение.

Инв. № подл. Подп. и дата Взам. инв. № Инв. № дубл. Подп. и дата

Изм. Лист № докум. Подп. Дата

КСУИ.167.Р3340.001 ПЗ

Список использованных источников

- 1. Бесекерский В.А., Попов Е.П. Теория систем автоматического управления - СПб.: Профессия, 2003. - 752 с.
- 2. Блинников А.А, Бойков В.И., Быстров С.В., Николаев Н.А., Нуйя О. С. Правила оформления пояснительной записки и конструкторской документации.-СПб: Университет ИТМО, 2014.-55 с.

Подп. и дата		
Инв. № дубл.		
Взам. инв. №		
Подп. и дата		
нодл.		
Инв. № подл.		Лист 19
	Копировал	Формат А4