Prädiktion von Feinstaubdaten in Polen

Projektpräsentation

Inhalt

- Vorstellung der Gruppenmitglieder
- Motivation & interdisziplinäre Grundlagen
- Forschungsfragen
- Datenbeschaffung
- Vorverarbeitung
- Feature Engineering
- Data Windowing
- Neuronales Netz
- Ergebnisse
- Softwaredemo
- Zusammenfassung & Ausblick

Vorstellung der Gruppenmitglieder

Gruppenmitglieder

- Teamaufteilung:
 - Team Datenbeschaffung
 - Niklas Theis, Sarah Flohr, Niklas Lange
 - Team Machine Learning Grundlagen
 - Tobias Kaps, Svea Worms
 - Team Machine Learning Experimente
 - Niklas Theis, Sarah Flohr, Niklas Lange, Tobias Kaps, Svea Worms

Feinstaub

- Gesundheitsrisiko für den Menschen
- Mindestens

 238.000
 vorzeitige
 Todesfälle in der
 EU im Jahr 2020

Feinstaub

- Feinstaub wird nach Größe unterteilt
 - PM₁₀ bezeichnet Partikel mit einem Durchmesser < 10 μm
 - $PM_{2.5}$ ist eine Teilmenge von PM_{10} mit Partikel von einem Durchmesser < 2.5 μ m

Grenzwerte

Feinstaub	EU	WHO	Mitteilungszeitraum
$PM_{\scriptscriptstyle{10}}$	40 μm³	15 μm³	1 Jahr
	50 μm³	45 μm³	24 Stunden
	35 Tage/Jahr	3-4 Tage/Jahr	Erlaubte Überschreitung
PM _{2.5}	25 μm³	5 μm³	1 Jahr
	-	15 μm³	24 Stunden
	-	3-4 Tage/Jahr	Erlaubte Überschreitung

Untersuchungsgebiet Polen PM₁₀

PM ₁₀ Grenzwerte in μg/m³	PM _{2.5} Grenzwerte in μg/m ³	Kategorie	
0-20	0-13	Very good	
20.1-50	13.1-35	Good	
50.1-80	35.1-55	Moderate	
80.1-110	55.1 – 75	Sufficient	
110.1-150	75.1 – 110	Bad	
> 150	>110	Very bad	

Untersuchungsgebiet Polen PM_{2.5}

PM ₁₀ Grenzwerte in μg/m³	PM _{2.5} Grenzwerte in μg/m ³	Kategorie	
0-20	0-13	Very good	
20.1-50	13.1-35	Good	
50.1-80	35.1-55	Moderate	
80.1-110	55.1-75	Sufficient	
110.1–150	75.1 – 110	Bad	
> 150	>110	Very bad	

Forschungsfragen

Forschungsfragen

- Lässt sich mit Hilfe eines neuronalen Netzes unter Verwendung einer CNN-LSTM Kombination eine stündliche Prognose von Feinstaubdaten für die nächsten 14 Tage realisieren?
 - Ist es möglich den PM₁₀ Wert mit einem MAE unter 10 vorherzusagen?
 - Ist es möglich den PM_{2.5} Wert mit einem MAE unter 10 vorherzusagen?
 - Gibt es einen Zusammenhang zwischen PM_{10} und $PM_{2.5}$, sodass $PM_{2.5}$ mit dem Modell für PM_{10} vorhergesagt werden kann?
 - Wie sehen unsere Prognosen im Vergleich mit denen des polnischen Umweltamts aus? (für einen Tag)
 - Ist es sinnvoll, Stationen zu Gebieten zusammenzufassen, sodass die Aussagekräftigkeit der Prädiktion im Vergleich zu den einzelnen Stationen gleich bleibt oder verbessert wird?

Datenbeschaffung

Feinstaub

- Bereitstellung durch REST-API
- Crawling
 - Beschaffung der:
 - Station-IDs
 - Mit dazugehörigen Sensoren
 - Stationen durchlaufen
 - Jeden Sensor abfragen
 - Ergebnisse sind Paginiert
- Restriktionen durch Timeout
 - Zwei Anfragen pro Minute

```
id":114,"stationName":"Wrocław, ul. Bartnicza","gegrLat":"51.115933","gegrLon":"17.141125","city":
 "id":1064,"name":"Wrocław","commune":
 communeName":"Wrocław","districtName":"Wrocław","provinceName":"DOLNOŚLASKIE"}},"addressStreet":"ul"
Bartnicza"},{"id":117,"stationName":"Wrocław, wyb. Conrada-
. "Gorzeniowskiego","gegrLat":"51.129378","gegrLon":"17.029250","city":{"id":1064,"name":"Wrocław","commune
 "communeName":"Wrocław","districtName":"Wrocław","provinceName":"DOLNOŚLĄSKIE"}},"addressStreet":"ul. Wyb.
 .Conrada-Korzeniowskiego 18"},{"id":129,"stationName":"Wrocław, al.
Wiśniowa","gegrLat":"51.086225","gegrLon":"17.012689","city":{"id":1064,"n<u>ame":"Wrocław","commune":</u>
 "communeName": "Wrocław", "districtName": "Wrocław", "provinceName": "DOLNOŚLĄSKIE"}}, "addressStreet": "al.
Wiśniowa/ul. Powst. Śląskich"},{"id":52,"stationName":"Legnica, al.
Rzeczypospolitej","gegrLat":"51.204503","gegrLon":"16.180513","city":{"id":453,"name":"Legnica","commune":
 communeName":"Legnica","districtName":"Legnica","provinceName":"DOLNOŚLĄSKIE"}},"addressStreet":"al.
Rzeczypospolitej 10/12"},{"id":109,"stationName":"Wałbrzych, ul.
ysockiego","gegrLat":"50.768729","gegrLon":"16.269677","city":{"id":998,"name":"Wałbrzych","commune":
 ommuneName":"Wałbrzych","districtName":"Wałbrzych","provinceName":"DOLNOŚLĄSKIE"}},"addressStreet":"ul.
["id":142,"name":"Czerniawa","commune":{"communeName":"Świeradów-
Zdrój", "districtName": "lubański", "provinceName": "DOLNOŚLĄSKIE"}}, "addressStreet": "ul. Strażacka 7"},
 id":38,"stationName":"Kłodzko, ul. Szkolna","gegrLat":"50.433493","gegrLon":"16.653660","city":
 "id":368, "name": "Kłodzko", "commune":
 "communeName":"Kłodzko","districtName":"kłodzki","provinceName":"DOLNOŚLASKIE"}},"addressStreet":"ul. Szkolna
8"},{"id":70,"stationName":"Oława, ul. Żołnierzy Armii
<u>| Krajowej", "gegrLat":"50.942073", "geg</u>rLon":"17.291333", "city":{"id":642, "name":"0ława", "commune":
 "communeName": "Oława", "districtName": "oławski", "provinceName": "DOLNOŚLASKIE"}}, "addressStreet": "ul. Żołnierzy AK
 '},{"id":74,"stationName":"Osieczów","gegrLat":"51.317630","gegrLon":"15.431719","city":
 "id":648,"name":"Osieczów","commune":
 communeName":"Osiecznica","districtName":"bolesławiecki","provinceName":"DOLNOŚLĄSKIE"}},"addressStreet":"bez"
ulicy"},{"id":84,"stationName":"Śnieżka","gegrLat":"50.736389","gegrLon":"15.739722","city":
 "id":346,"name":"Karpacz","commune":
 "communeName":"Karpacz","districtName":"karkonoski","provinceName":"DOLNOŚLASKIE"}},"addressStreet":"Śnieżka"}
```

Datenbeschaffung

Feinstaub

- Stündliche Feinstaubdaten
- Für Zeitraum 2018 bis 2021 aus Excel Daten extrahiert
 - 2018: 98 Stationen
 - 2019: 108 Stationen
 - 2020: 125 Stationen
 - 2021: 153 Stationen
 - 2022: 160 Stationen
- 99 Stationen mit validen Werten für mindestens Hälfte der Jahre
- Einige Stationen im Zeitraum neu aufgebaut
- Einige Stationen im Zeitraum abgeschaltet

Datenbeschaffung

Wetterdaten

- Daten von Open-Meteo Modellbasierte Interpolation für alle Koordinaten
- Modell verwendet Daten von Wetterstation, Flugzeugen und Satelliten
- Dadurch genauere Werte, wenn Wetterstation weit von Feinstaubstation entfernt
- Model liefert vergleichbare Werte zu Messstationen

Vorverarbeitung – Visualisierung Datenanalyse

Korrelationplots

Correlation analysis 2022, station 813 (Katowice), spearman

Vorverarbeitung – Visualisierung Datenanalyse

Korrelationplot alle Stationen

- Korrelation für alle Stationen
- Sinus and Cosinus Features
 - Tag
 - Jahr
 - Windrichtung
- Keine sinnvollen Korrelationen in den Daten vorhanden

Vorverarbeitung – Visualisierung Datenanalyse

Heatmaps

Vorverarbeitung

Interpolation PM₁₀

- Maximalwerte aller Stationen valide
 - Outlier Detection nicht notwendig
- Inkorrekte Werte
 - Fehlende Werte

 NaN
 - Negative PM₁₀ Werte
- Interpolation inkorrekter Werte für bis zu 5 aufeinander folgende Stunden
- Entfernen der restlichen Zeiträume

Minimalwerte der Datasets einiger Stationen:

Maximalwerte der Datasets einiger Stationen:

Vorverarbeitung

Interpolation PM₁₀

Original Daten für PM₁₀

Interpolierte Daten für PM₁₀

Zeit

- Zeit periodisch angeben statt absolut
- Perioden für Tag und Jahr
- Für Modell besser verwendbar
- Periode durch Sin und Cos abbilden

Windrichtung

Windrichtung in Grad

Windrichtung in Radiant (Sinus)

Windrichtung in Radiant (Cos)

Feature Vector

- Temperatur (°C)
- Luftfeuchtigkeit (%)
- Windgeschwindigkeit (m/s)
- Niederschlag (l/m²)
- Windrichtung (sin & cos)
- Tag (sin & cos)
- Jahr (sin & cos)
- PM₁₀
- ➤ 11 Features

Normalisierung

- Normalisierung der numerischen Werte mittels Standard Skalierung
 - (value mean) / sqrt(var)
- Skalierung durch Normalization-Layer im neuronalen Netz
- Mittelwert und Varianz der Daten werden während des Trainings gelernt

Data Windowing

Window Generator

- Erstellen von 8-tägigen
 Trainingswindows aus den Daten
 - Generierung von N Windows mit vollständigen Feature Vektoren
 - Keine Zeitsprünge vorhanden
- Länge des Windows variabel einstellbar
 - Definition von Input- und Labelbreite der Daten

Window Generator und ML-Vorbereitungen

Window Generator

- Erstellung des Windows in stündlichen Schritten
 - Überprüfung auf zeitliche Lücken

Data Windowing

Window Generator

Neuronales Netz

Architektur des Neuronalen Netzes

Neuronales Netz

Architektur des Neuronalen Netzes

```
# Convolution
cnn lstm model = tf.keras.models.Sequential()
cnn_lstm_model.add(tf.keras.layers.Normalization())
cnn_lstm_model.add(tf.keras.layers.Lambda(lambda x: x[:, -6:, :]))
cnn lstm model.add(tf.keras.layers.Conv1D(128, activation="relu", kernel size=(24), padding="same"))
cnn lstm model.add(tf.keras.layers.MaxPooling1D())
cnn_lstm_model.add(tf.keras.layers.BatchNormalization())
cnn lstm model.add(tf.keras.layers.Conv1D(256, activation="relu", kernel size=(12), padding="same"))
cnn lstm model.add(tf.keras.layers.MaxPooling1D())
cnn_lstm_model.add(tf.keras.layers.BatchNormalization())
cnn lstm model.add(tf.keras.layers.Conv1D(256, activation="relu", kernel size=(6), padding="same"))
cnn lstm model.add(tf.keras.layers.Reshape((-1, 256)))
# LSTM
cnn lstm model.add(tf.keras.layers.LSTM(32, return sequences=True))
# Dense
cnn lstm model.add(tf.keras.layers.Dense(512))
cnn lstm model.add(tf.keras.layers.Dropout(0.2))
cnn_lstm_model.add(tf.keras.layers.Dense(24, kernel_initializer=tf.initializers.zeros()))
# Output
cnn lstm model.add(tf.keras.layers.Reshape([24, 1]))
```

Neuronales Netz

Training

- Training auf Daten von Station 814
- Trainingsdaten von 2019 2022
- Windows:
 - Trainingswindows: 70 %
 - Validierungswindows: 10 %
 - Testwindows: 20 %
- Testwindows am Ende der Trainingsdaten Zeitspanne
- Train und Validation Windows werden geshuffelt

Versuchsergebnisse – Training MAE aller Modelle

Versuchsergebnisse – Training MAE aller Modelle

Versuchsergebnisse – Validation MAE aller Modelle

Versuchsergebnisse – Validation MAE aller Modelle

Bestes Modell

- Parametrisierung von IMT-14:
 - zwei LSTM-Layer mit Größe 64
 - 200 Epochen
 - Dropout 0.2
 - 7 Tage Eingabe
 - 24 Stunden Vorhersage
- Auswertung
 - Train MAE = 4,91
 - Val MAE = 8,05
 - Test MAE = 10,21

Voraussage durch Modell einer naheliegenden Station

- Drei Modelle trainiert:
 - Für Station 538, 530 und Kombination beider
 - Testen auf Daten beider Stationen
- Ziel:
 - Vorhersage der PM10 Daten
 - Auf naheliegender Station trainierten Modell
- Ergebnis:
 - Performance schlecht bis medium
- Erkenntnisse:
 - Verschiedene Standort Begebenheiten

Lage der Station 530 und 538

Stationstyp: Background

Stationstyp: Traffic

Klassifikationsmodell

- Feinstaubwerte können in 6 verschiedene Gruppen aufgeteilt werden
 - 6 Luftqualitätsgruppen für PM10 Werte
- Gleiche Gruppierung wie polnisches Bundesamt
- Feature Vector um Kategorie ergänzt

PM ₁₀ Grenzwerte in μg/m³	Kategorie	
0 – 20	Very good	
20.1-50	Good	
50.1-80	Moderate	
80.1 – 110	Sufficient	
110.1–150	Bad	
> 150	Very bad	

Klassifikationsmodell

- Änderungen im Vergleich zum besten Modell
 - Dropout 0.4
 - Letzter Dense Layer angepasst auf Klassifikation
 - Softmax Aktivierungsfunktion
- Metriken:

Train Accuracy: 0.97

Validation Accuracy: 0.96

Test Accuracy: 0.59

PM₁₀ Vorhersage auf Train Daten (Station 538)

Softwaredemo

Softwaredemo

Forschungsfragen - Ergebnisse

- Lässt sich mit Hilfe eines neuronalen Netzes unter Verwendung einer CNN-LSTM Kombination eine stündliche Prognose von Feinstaubdaten für die nächsten 14 Tage realisieren?
 - Nein, eine Prognose über 14 Tage ist nicht umsetzbar, der Prädiktionszeitraum ist zu lang
 - Daher die weiteren Forschungsfragen mit Prädiktion von 1 Tag evaluiert
- Ist es möglich den PM₁₀ Wert mit einem MAE unter 10 vorherzusagen?
 - Ja, eine Vorhersage von einem Tag ist möglich

Forschungsfragen - Ergebnisse

- Gibt es einen Zusammenhang zwischen PM₁₀ und PM_{2.5}, sodass PM_{2.5} mit dem Modell für PM₁₀ vorhergesagt werden kann?
 - Aufgrund der starken Korrelation (>0,9) von PM₁₀ und PM_{2.5} kann davon ausgegangen werden, dass PM_{2.5} wie PM₁₀ funktioniert
- Ist es möglich den PM_{2.5} Wert mit einem MAE unter 10 vorherzusagen?

Correlation analysis 2022, station 813 (Katowice), spearman

Forschungsfragen - Ergebnisse

 Wie sehen unsere Prognosen im Vergleich mit denen des polnischen Umweltamts aus? (für einen Tag)

- Input

- Predictions
- Umweltamt

PM ₁₀ Grenzwerte in μg/m³	Kategorie	
0 – 20	Very good	
20.1-50	Good	

Uhrzeit	Modell	Umweltamt	Echte Daten
28.06. 12:00	0	0	0
28.06. 13:00	0	0	0
28.06. 14:00	0	0	0
28.06. 15:00	0	0	0
28.06. 16:00	0	0	1
28.06. 17:00	0	0	0
28.06. 18:00	0	0	0
28.06. 19:00	0	0	0
28.06. 20:00	0	1	0
28.06. 21:00	0	1	0
28.06. 22:00	0	1	0
28.06. 23:00	0	1	0
29.06. 00:00	0	1	0
29.06. 01:00	0	1	0
29.06. 02:00	0	1	0
29.06. 03:00	0	1	0
29.06. 04:00	0	1	1
29.06. 05:00	0	1	1
29.06. 06:00	0	1	1
29.06. 07:00	0	1	1
29.06. 08:00	0	1	1
29.06. 09:00	0	1	1
29.06. 10:00	0	1	1
29.06. 11:00	0	1	0

https://api.gios.gov.pl/pjp-api/v1/rest/data/getData/5376?size=500

Forschungsfragen - Ergebnisse

- Ist es sinnvoll, Stationen zu Gebieten zusammenzufassen, sodass die Aussagekräftigkeit der Prädiktion im Vergleich zu den einzelnen Stationen gleich bleibt oder verbessert wird?
 - Die Prädiktion von Daten einer benachbarten Station ist nicht möglich
 - Aufgrund der Menge an Stationen sind benachbarte Stationen dennoch meist mehrere Kilometer voneinander entfernt
 - Benachbarte Stationen stehen meist auch in unterschiedlichen Umgebungen
 - Trainieren eines Modells mit Daten von zwei Stationen liefert gute Ergebnisse für beide Stationen, die aber schlechter als die stationsspezifischen Modelle sind

Zusammenfassung & Ausblick

Zusammenfassung

- Feinstaub schädlich für Gesundheit
 - Prognose von zukünftigen Werten relevant
- Korrelationsanalyse zwischen verschiedenen Wetterdaten und Feinstaubwerten
 - Keine ausschlaggebende Korrelation
- Feinstaubdaten gefiltert, vorbereitet und interpoliert
- Data-Windowing
- Neuronales Netz mit den Daten trainiert
- Model jeweils nur für eine Station
 - Zusammenfassen mehrerer Stationen liefert nicht erfolgreiche Ergebnisse
 - Klassifikation liefert bessere Ergebnisse
 - Deutliche Differenz zwischen Ergebnissen von Validation- und Testset
 - Overfitting
 - Verursacht durch Corona-Pandemie?

Zusammenfassung & Ausblick

Ausblick

- Einteilung von Feinstaubdaten in Kategorien sinnvoll
 - Weitere Experimente mit Klassifikationsmodell
- Modelle für PM_{2.5} trainieren
- Inwiefern spiegelt sich die Corona Pandemie in den Feinstaubdaten wider?
- Kann die Feinstaubbelastung in bestimmten Gebieten vorausgesagt werden?
 - Ähnlichkeit der Feinstaubbelastung in ländlichen und/oder urbanen Gebieten
- Wettervorhersagen in den Prädiktionszeitpunkten mit einbinden
- Für genauere Prädiktionen ist Aufstellung weiterer Sensoren nötig