

Cálculo Avanzado - Espacios métricos 3

Primer cuatrimestre de 2020

Daniel Carando

Dto. de Matemática - FCEN - UBA

Casi todo los resultados de esta clase están en las secciones 6.1 y 5.3 del apunte.

Dado $A \subset E$, un punto $x \in A$ se dice aislado si existe r > 0 tal que $B(x, r) \cup A = \{x\}$.

Dado $A \subset E$, un punto $x \in A$ se dice aislado si existe r > 0 tal que $\beta(x,r) \cup A = \{x\}$. $\beta(x,r) \cap A : \{x\}$

Dado $A \subset E$, un punto $x \in A$ se dice aislado si existe r > 0 tal que $B(x, r) \cup A = \{x\}$.

Dado $A \subset E$, un punto $x \in A$ se dice aislado si existe r > 0 tal que $B(x,r) \cup A = \{x\}$.

Observación

Un punto aislado de A es un punto de A. Un punto de acumulación de A no tiene por qué estar en A (pero está en \bar{A}).

Dado $A \subset E$, un punto $x \in A$ se dice aislado si existe r > o tal que $B(x,r) \cup A = \{x\}$.

Observación

Un punto aislado de A es un punto de A. Un punto de acumulación de A no tiene por qué estar en A (pero está en \bar{A}).

Observación

Un punto de A puede ser un punto de aculumación de A, puede ser un punto aislado de A y.... ¿hay otra posibilidad? ¿Puede un mismo punto ser aislado y de acumulación?

Dado $A \subset E$, un punto $x \in A$ se dice aislado si existe r > 0 tal que $B(x,r) \cup A = \{x\}$.

Observación

Un punto aislado de A es un punto de A. Un punto de acumulación de A no tiene por qué estar en A (pero está en \bar{A}).

Observación

Un punto de A puede ser un punto de aculumación de A, puede ser un punto aislado de A y.... ¿hay otra posibilidad? ¿Puede un mismo punto ser aislado y de acumulación?

Observación

En Ā están todos los puntos de acumulación de A y todos los puntos aislados de A.

Dado $A \subset E$, un punto $x \in A$ se dice aislado si existe r > 0 tal que $A \subset E$, un punto $A \subset E$, u

Observación

Un punto aislado de A es un punto de A. Un punto de acumulación de A no tiene por qué estar en A (pero está en \bar{A}).

Observación

Un punto de A puede ser un punto de aculumación de A, puede ser un punto aislado de A y.... ¿hay otra posibilidad? — ¿Puede un mismo punto ser aislado y de acumulación?

Observación

En Ā están todos los puntos de acumulación de A y todos los puntos aislados de A. ¿Será cierto que Ā es la unión (disjunta) de los puntos de acumulación de A y los puntos aislados de A?

Decimos que una sucesión $(x_n)_{n\in\mathbb{N}}\subset E$ converge a $x\in E$ si dado cualquier $\varepsilon>$ o existe $n_0\in\mathbb{N}$ tal que $d(x,x_n)<\varepsilon$ para todo $n\geq n_0$.

Decimos que una sucesión $(x_n)_{n\in\mathbb{N}}\subset E$ converge a $x\in E$ si dado cualquier $\varepsilon>$ o existe $n_0\in\mathbb{N}$ tal que $d(x,x_n)<\varepsilon$ para todo $n\geq n_0$.

Ejercicio

Sea (E, d) un espacio métrico, $A \subset E$ y $x \in E$. Entonces:

- (i) $x \in \overline{A}$ si y sólo si existe $(a_n)_n \subset A$ tal que $\lim_{n \to \infty} a_n = a$.
- (ii) $x \in A'$ si y sólo si existe una sucesión $(a_n)_n \subset A$ de elementos distintos tal que $\lim_{n\to\infty} a_n = a$.

Decimos que una sucesión $(x_n)_{n\in\mathbb{N}}\subset E$ converge a $x\in E$ si dado cualquier $\varepsilon>$ o existe $n_0\in\mathbb{N}$ tal que $d(x,x_n)<\varepsilon$ para todo $n\geq n_0$.

Ejercicio

Sea (E, d) un espacio métrico, $A \subset E$ y $x \in E$. Entonces:

- (i) $x \in \overline{A}$ si y sólo si existe $(a_n)_n \subset A$ tal que $\lim_{n \to \infty} a_n = a$.
- (ii) $x \in A'$ si y sólo si existe una sucesión $(a_n)_n \subset A$ de elementos distintos tal que $\lim_{n\to\infty} a_n = a$.

Ejercicio

Sean d, d' dos métricas sobre E. Decidir si hay implicaciones entre las siguientes afirmaciones.

- · Las métricas son equivalentes
- Las sucesiones convergentes en (E, d) coinciden con las sucesiones convergentes en (E, d').

Sucesiones de Cauchy

Definición

Decimos que un conjunto $A \subset E$ es acotado si existen $x \in E$, r > o tal que $A \subset B(x, r)$.

Sucesiones de Cauchy

Definición

Decimos que un conjunto $A \subset E$ es acotado si existen $x \in E$, r > 0 tal que $A \subset B(x, r)$.

Definición

Una sucesión $(x_n)_n$ se dice de Cauchy si para todo $\varepsilon > 0$ existe $n_0 \in \mathbb{N}$ (que depende de ε) tal que si $n, m \ge n_0$, entonces $d(x_n, x_m) < \varepsilon$.

Sucesiones de Cauchy

Definición

Decimos que un conjunto $A \subset E$ es acotado si existen $x \in E$, r > 0 tal que $A \subset B(x, r)$.

Definición

Una sucesión $(x_n)_n$ se dice de Cauchy si para todo $\varepsilon > 0$ existe $n_0 \in \mathbb{N}$ (que depende de ε) tal que si $n, m \ge n_0$, entonces $d(x_n, x_m) < \varepsilon$.

Teorema 6.1.3

Sea (E, d) un e.m. $y(x_n)_n \subset E$.

- (1) Si $(x_n)_n$ es de Cauchy, entonces el conjunto $\{x_n : n \in \mathbb{N}\}$ es acotado.
- (2) Si $(x_n)_n$ es de Cauchy y contiene alguna subsucesión convergente, entonces $(x_n)_n$ es convergente.
- (3) Si $(x_n)_n$ es convergente, entonces es de Cauchy.

Teorema 6.1.3 Sea (E, d) un e.m. $y(x_n)_n \subset E$. Si $(x_n)_n$ es de Cauchy, entonces el conjunto $\{x_n : n \in \mathbb{N}\}$

- es acotado. (2) Si $(x_n)_n$ es de Cauchy y contiene alguna subsucesión
- convergente, entonces $(x_n)_n$ es convergente.

d(xn, xm) < 1

Teorema 6.1.3 Sea (E, d) un e.m. y $(x_n)_n \subset E$. (1) Si $(x_n)_n$ es de Cauchy, ent

- (1) Si $(x_n)_n$ es de Cauchy, entonces el conjunto $\{x_n:n\in\mathbb{N}\}$ es acotado.
 - (2) Si $(x_n)_n$ es de Cauchy y contiene alguna subsucesión convergente, entonces $(x_n)_n$ es convergente.
- convergente, entonces $(x_n)_n$ es convergente. (3) Si $(x_n)_n$ es convergente, entonces es de Cauchy.

Distancia entre conjuntos

Definición

Dados $x \in E$, $A \subset E$ no vacío, la distancia del punto x al conjunto A se define como

$$d(x,A) = \inf \{ d(x,a) : a \in A \}.$$

Distancia entre conjuntos

Definición

Dados $x \in E$, $A \subset E$ no vacío, la distancia del punto x al conjunto A se define como

$$d(x,A) = \inf\{d(x,a) : a \in A\}.$$

Teorema 5.3.1

Dado $A \subset E$, para todo $x, y \in E$ se tiene

$$|d(x,A)-d(y,A)|\leq d(x,y).$$

$$d(x_i a) \leq d(x_i a) + d(y_i a)$$

$$d(x, a) \leq d(x, y) + d(y, a)$$

$$\inf_{a \in A} d(x, a) \leq d(x, y) + \inf_{a \in A} d(y, a)$$

$$d(x, A) \leq d(x, y) + d(y, A) \leq d(x, y) + d(y, y)$$

$$calculo Avanzado S \in M : d(y, y) + d(y, y) \leq d(x, y) + d(x, y) \leq d(x, y)$$

Se tiene d(x, A) = o si y sólo si $x \in \overline{A}$.

$$A = (0,1)$$

$$d(0,A) = 0$$

$$d(1,A) = 0$$

$$d(1,$$

Se tiene d(x, A) = o si y sólo si $x \in \overline{A}$.

Definición

Dados A, $B \subset E$, no vacíos, definimos la distancia entre ambos conjuntos como

$$d(A,B) = \inf\{d(x,y) : x \in A, y \in B\}.$$

Se tiene d(x, A) = o si y sólo si $x \in \overline{A}$.

Definición

Dados A, $B \subset E$, no vacíos, definimos la distancia entre ambos conjuntos como

$$d(A,B) = \inf\{d(x,y) : x \in A, y \in B\}.$$

Observación

 La distancia entre dos conjuntos no vacíos es siempre finita.

Se tiene d(x, A) = o si y sólo si $x \in \overline{A}$.

Definición

Dados A, $B \subset E$, no vacíos, definimos la distancia entre ambos conjuntos como

$$d(A, B) = \inf\{d(x, y) : x \in A, y \in B\}.$$

Observación

- La distancia entre dos conjuntos no vacíos es siempre finita.
- La distancia entre dos conjuntos puede ser cero aunque no se intersequen.

Se tiene d(x, A) = o si y sólo si $x \in \overline{A}$.

Definición

Dados A, $B \subset E$, no vacíos, definimos la distancia entre ambos conjuntos como

$$d(A, B) = \inf\{d(x, y) : x \in A, y \in B\}.$$

Observación

- La distancia entre dos conjuntos no vacíos es siempre finita.
- La distancia entre dos conjuntos puede ser cero aunque no se interseguen.
- La distancia entre dos conjuntos puede ser cero aunque no se intersequen y ambos sean cerrados.