Exercice 1. Déterminer les limites suivantes :

a)
$$\lim_{n \to +\infty} n^2 + n$$

b)
$$\lim_{n \to +\infty} \left(\frac{1}{\sqrt{n}} + 1 \right) (n^2 + 3)$$

c)
$$\lim_{n \to +\infty} \frac{2}{-n^2 - 3}$$

Exercice 2. Déterminer les limites suivantes :

$$\lim_{n \to +\infty} n^2 + (-1)^n$$

$$\lim_{n\to+\infty}1+\frac{\sin n}{n}$$

Exercice 3. Déterminer les limites suivantes :

a)
$$\lim_{n \to +\infty} 2^n - 3^n$$

a)
$$\lim_{n \to +\infty} 2^n - 3^n$$
 b) $\lim_{n \to +\infty} 1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3 + \dots + \left(\frac{1}{2}\right)^n$

Exercice 4. On considère la suite (w_n) définie pour tout entier $n \ge 1$ par $w_n = 5 + \frac{1}{n}$. Montrer que la suite (w_n) converge vers 5.

Exercice 5. Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par $u_n = -n^2 + 5$. Montrer la suite (u_n) a pour limite $-\infty$ quand n tend vers $+\infty$

Exercice 6. Soit (u_n) la suite définie pour tout $n \in \mathbb{N}^*$ par $u_n = \frac{1}{n^2}$. Montrer la suite (u_n) converge vers 0.

Exercice 7.

- 1. Déterminer la limite de la suite (u_n) définie, pour tout entier naturel n, par $u_n=-7n^3+5n+3$.
- 2. Déterminer la limite de la suite (v_n) définie, pour tout entier $n\geqslant 1$, par $v_n=\frac{5n^2+n}{n^3+4n}$.
- 3. Déterminer la límite de la suite (w_n) définie, pour tout entier naturel n, par $w_n = \frac{6n+5}{2n-7}$
- **4.** Déterminer la limite de la suite (t_n) définie, pour tout entier $n\geqslant 1$, par $t_n=\frac{1}{n^2}\times (n^3+2n)$.
- 5. Déterminer la limite de la suite (k_n) définie pour tout entier $n \ge 0$, par $k_n = n 3\sqrt{n}$
- 6. Déterminer la limite de la suite (z_n) définie pour tout entier naturel n par $z_n = \sqrt{n+2} \sqrt{n}$

Exercice 8. On considère la suite (u_n) définie sur \mathbb{N} par

$$\begin{cases} u_0 = \frac{3}{4} \\ u_{n+1} = u_n^2 \end{cases}$$

- 1-Dans un repère orthonormé, tracer la droite D d'équation y = x ainsi que la courbe représentative de la fonction $f: x \mapsto x^2$.
- 2-Placer (sans effectuer de calcul) les termes u_o , u_1 , u_2 et u_3 .
- 3-Emettre des conjectures sur le comportement de la suite (u_n) (variation et convergence).

Exercice 1. Déterminer la limite de chacune des suites ci-dessous

1- Pour tout
$$n \in \mathbb{N}$$
, $u_n = n + \sqrt{\frac{1}{n+1}}$

2- Pour tout
$$n \in \mathbb{N}$$
 , $v_n = \sqrt{3n+1}$

Exercice 2.

1- Déterminer la limite de la suite (w_n) définie pour tout entier n > 1 par : $w_n = \frac{1}{n + cos(n)}$ 2- Étudier la convergence de la suite (z_n) définie pour tout entier naturel n par : $z_n = 1 + \frac{2 + (-1)^n}{n^2 + 1}$

Exercice 3. Déterminer la limite des suites ci-dessous, définies pour tout $n \in \mathbb{N}$ par :

1)
$$u_n = \frac{1}{2^n}$$

2)
$$v_n = \frac{5^n}{3^n}$$

Exercice 4. Etudier la convergence de chacune des suites suivantes définies sur N.

 $1.(w_n)$ suite géométrique de raison $-\frac{5}{3}$ et de premier terme égal à 5.

 $2.(t_n)$ suite géométrique de raison e et de premier terme égal à -2.

Exercice 5.

1-Montrer que la suite (u_n) définie pour tout entier naturel n par $u_n = n^2 - 6n + 5$ est minorée par -4

2-La suite (v_n) est définie par $v_0 = 1$ et pour tout entier naturel n, $v_{n+1} = 2v_n - 3$.

Montrer par récurrence que la suite (v_n) est majorée par 3.

Exercice 6. On considère la suite (u_n) définie par $u_0 = 4$ et pour tout entier naturel n, $u_{n+1} = \frac{1}{2}u_n + 1$ 1-Montrer par récurrence que la suite (u_n) est minorée par 2.

2-En déduire que la suite (u_n) est décroissante. Que peut-on en déduire pour la convergence de cette suite?

Exercice 7.

1-Montrer que la suite (u_n) définie pour tout entier naturel n, par $u_n = n^2 + 3n$ est croissante.

2- Montrer que la suite (v_n) définie pour tout entier naturel n, par $v_n = (\frac{1}{4})^n \times n^2$ est décroissante.

Exercice 8.

Soit la suite (u_n) définie par $u_0 = 1$ et pour tout entier naturel n, par $u_{n+1} = \frac{1}{3}u_n - 2$. Montrer par récurrence sur l'entier naturel n, que la suite $(u_n$) est décroissante.

Exercice 9.

Soit la suite (u_n) définie par $u_0 = 2$ et pour tout entier $n \in \mathbb{N}$, $u_{n+1} = 3u_n$

1) A l'aide de la calculatrice, conjecturer la limite de la suite (u_n).

2) On veut déterminer le plus petit entier naturel n tel que $u_n > 1000$

a) Recopier et compléter le programme en langage Python suivant pour qu'il réponde au problème.

b) Déterminer cet entier à l'aide de la calculatrice.

n = 0print(n)