Title: Pursuit of Accurate Semantic Pixel Labeling via Markov Random Field Optimization

Name: Le Lu

Home University: University of California, San Diego

Laboratory: Matsushita Lab

Supervisor: Yasuyuki Matsushita

School at Osaka University: Graduate School of Information Science and Technology

Research Background

Semantic pixel labeling, which partitions a digital image into multiple semantic segments, is important for computationally understanding the real-world environment. Once it matured, this capability would enable applications such as safe autonomous driving and self-navigation of robots; therefore, it is wanted to improve the accuracy of such automated annotation. Recent advancement of deep convolutional neural networks (CNN) shows promising results by automatically learning discriminative features; however, the results still have the potential for further improvements.

Purpose of Study

Our work aims at further improving the accuracy of semantic pixel labeling.

Methods

We applied pairwise Markov Random Field (MRF) on top of the CNN output. Meanwhile, we optimized unary potentials and pairwise potentials, the two main potential functions of pairwise MRF models.

Results

Visual improvements were obvious: CNN output's cleanness and smoothness improved significantly.

Statistical improvements were acceptable: global accuracy was improved by 0.131%; class average accuracy was improved by 0.015%; mean intersection over union (MIOU) accuracy was improved by 0.243%.

Conclusion

Our optimization achieved initial success with space for further improvements.