

Tuning Document

Date	4 july 2025
Team ID	SWTID1750170729
Project Name	Deepfruitveg: Automated Fruit And Veg Identification
Maximum Marks	8 Marks

1. Objective of Tuning

To improve the performance (accuracy, generalization) of the EfficientNetB3 model for fruit and vegetable classification by optimizing key training parameters, addressing class imbalance, and preventing overfitting.

2. Tuning Strategy

Category	Parameter	Final Choice	Reason
Model	Base Architecture	EfficientNetB3	Balanced performance, lower memory footprint, pretrained on ImageNet
Trainable Layers	Fine-tune entire model	Yes (Unfrozen all)	Allowed model to learn domain- specific features
Image Size	Input Dimensions	300×300	Native to EfficientNetB3, ensures performance without resizing overhead
Optimizer	Туре	Adam	Adaptive optimizer, works well with transfer learning
	Learning Rate	1e-5	Prevents large updates during fine- tuning
Loss Function	Туре	Categorical Crossentropy	Suitable for multi-class classification
Class Imbalance	Technique	Class Weights	Computed with sklearn to balance training focus across classes
Data Augmentation	Applied	Yes	To improve generalization & mitigate overfitting
	Techniques Used	Horizontal flip, rotation (20°), zoom (0.2), shift (0.1), shear (0.1)	
Regularization	Dropout	0.4	Reduces overfitting on dense layer
Early Stopping	Monitor Metric	val_accuracy	Stops training when performance plateaus
	Patience	5 epochs	Prevents premature stopping
Model Checkpoint	Save Best Model	Yes	Only best validation accuracy model is saved
Batch Size	Value	32	Balanced performance and memory usage

Category	Parameter	Final Choice	Reason
Epochs	Value	15	Controlled with early stopping

4. Final Configuration Used for Deployment

```
python
CopyEdit
model.compile(
   optimizer=tf.keras.optimizers.Adam(learning_rate=1e-5),
   loss='categorical_crossentropy',
   metrics=['accuracy', tf.keras.metrics.TopKCategoricalAccuracy(k=3)]
)
callbacks = [
   EarlyStopping(patience=5, monitor='val_accuracy', restore_best_weights=True),
   ModelCheckpoint(MODEL_PATH, save_best_only=True, monitor='val_accuracy')
]
```

5. Results Summary

- **Validation Accuracy**: ~90.67%
- **Top-3 Accuracy**: ~98.22%
- Overfitting signs were minimized with dropout + augmentation
- Final model saved and evaluated successfully