# Fluid Thesis

Andrew Martin

April 27, 2019

### Abstract

Just so i don't forget that theres an abstract environment...

### Contents

| 1        | Inti                                   | roduction               | 2  |  |
|----------|----------------------------------------|-------------------------|----|--|
| <b>2</b> | Derivation of the Squire-Long equation |                         |    |  |
|          | 2.1                                    | Homogeneous ODE         | 5  |  |
|          | 2.2                                    | Lamb-Oseen Vortex       | 7  |  |
|          | 2.3                                    | Numerics                | 8  |  |
|          | 2.4                                    | Rankine Body            | 9  |  |
|          | 2.5                                    | Outer vortex breakdown  | 14 |  |
| 3        | 3 Appendix                             |                         | 15 |  |
|          | 3.1                                    | Supplementary Materials | 15 |  |
|          | 3.2                                    | Resources               | 15 |  |

#### 1 Introduction

#### Derivation of the Squire-Long equation 2

Squire-long / Bragg-Hawthorne equation for the stream function of axisymmetric inviscid fluid, using cylindrical coordinates

$$\frac{\partial^2 \Psi}{\partial z^2} + \frac{\partial^2 \Psi}{\partial r^2} - \frac{1}{r} \frac{\partial \Psi}{\partial r} = r^2 \frac{dH}{d\Psi} - C \frac{dC}{d\Psi}$$

radial component u, azimuthal (swirl) is v, axial component w stream function satisfies

 $\nabla \cdot u = 0 \longrightarrow \text{streamfunction exists}$ 

Remember for cylindrical coordinates:

$$u = \frac{1}{r} \frac{\partial \Psi}{\partial z}, \quad w = -\frac{1}{r} \frac{\partial \Psi}{\partial r}$$

 $\Psi$  is the stream function

r is the radius

$$H=\frac{p}{\rho}+\frac{1}{2}(u^2+v^2+w^2)$$
  $H$  is conserved on stream surfaces

C is conserved on stream surfaces

vorticity

$$w = w_r e_r + w_\theta e_\theta + w_z e_z$$

where  $w_r, w_\theta, w_z$  can be written in terms of the velocity

Considering cylindrical coordinates  $(z,r,\theta)$  with corresponding velocity (u,v,w), vorticity components  $(w_z, w_r, w_\theta)$ . Axisymmetric flow as:

$$\omega_z = \frac{1}{r} \frac{\partial rv}{\partial r}, \quad \omega_r = -\frac{\partial rv}{\partial z}, \quad \omega_\theta = \frac{\partial u}{\partial z} - \frac{\partial w}{\partial r}$$

The continuity equation (conservation of mass) is satisfied by setting

$$w = \frac{1}{r} \frac{\partial \Psi}{\partial r}, \quad u = -\frac{1}{r} \frac{\partial \Psi}{\partial z}$$

Where  $\Psi$  is the stream function This gives the azimuthal component for  $w_{\theta}$ :

$$\begin{split} \omega_{\theta} &= \frac{\partial u}{\partial z} - \frac{\partial w}{\partial r} \\ &= -\frac{1}{r} \frac{\partial^2 \Psi}{\partial z^2} - \frac{1}{r} \frac{\partial^2 \Psi}{\partial r^2} + \frac{1}{r^2} \frac{\partial \Psi}{\partial r} \\ &= -\frac{1}{r} \left( \frac{\partial^2 \Psi}{\partial z^2} + \frac{\partial^2 \Psi}{\partial r^2} - \frac{1}{r} \frac{\partial \Psi}{\partial r} \right) \end{split}$$

Use the vorticity equation

$$w \times v - \frac{\partial w}{\partial t} = \nabla H$$

Where

$$H = \frac{1}{2}(w^2 + u^2 + v^2) + \frac{p}{\rho}$$

This gives:

$$u\omega_{\theta} - v\omega_{r} - \frac{\partial w}{\partial t} = \frac{\partial H}{\partial x}$$
$$v\omega_{z} - w\omega_{\theta} - \frac{\partial u}{\partial t} = \frac{\partial H}{\partial r}$$
$$w\omega_{r} - u\omega_{z} - \frac{\partial v}{\partial t} = 0$$

The last one is equivalent to the material derivative of rw set to 0:

$$\frac{D(rv)}{Dt} = 0$$

From the Bernoulli equation:

$$rv = C(\Psi)$$
 
$$\frac{\partial \Psi}{\partial t} + \frac{1}{2}|\vec{w}|^2 + \frac{p}{\rho} = H(\Psi)$$

Where  $H(\Psi)$  and  $C(\Psi)$  are arbitrary functions.

Rewriting  $\omega$ :

$$\omega_z = w \frac{dC}{d\Psi}, \quad \omega_r = u \frac{dC}{d\Psi}$$

Giving

$$\frac{\omega_{\theta}}{r} = \frac{v\omega_{r}}{ru} + \frac{1}{ru}\frac{dH}{d\Psi}\frac{\partial\Psi}{\partial z} = \frac{C}{r^{2}}\frac{dC}{d\Psi} - \frac{dH}{d\Psi}$$

Which is the form taken by the second of the dynamic equations. Now, combining this last statement with the equation for  $\omega_{\theta}$ :

$$\frac{\partial^2 \Psi}{\partial z^2} + \frac{\partial^2 \Psi}{\partial r^2} - \frac{1}{r} \frac{\partial \Psi}{\partial r} = r^2 \frac{dH}{d\Psi} - C \frac{dC}{d\Psi}$$

Taken from Batchelor's An Introduction to Fluid Dynamics

Considering the flow far upstream where there is constant uniform axial velocity and rotates with angular velocity  $\Omega$ 

$$\Psi_{\text{upstream}} = \frac{1}{2}Wr^2$$
$$v = \Omega r, w = W$$

And

$$C = rv = \frac{v^2}{\Omega} = \Omega r^2 = 2\Omega \Psi/W$$
 
$$\frac{dC}{d\Psi} = 2\Omega/W$$

Since the flow is steady, the radial equation of motion yields:

$$\frac{1}{\rho}\frac{dp}{dr} = \frac{w^2}{r} = \frac{C^2}{r^3}$$

$$\begin{split} H &= \frac{1}{2}(u^2 + v^2 + w^2) + \frac{p}{\rho} \\ &= \frac{1}{2}(\Omega^2 r^2 + W^2) + \frac{p}{\rho} \\ &= \frac{\Omega^2 \Psi}{W} + \frac{1}{2}W^2 + \frac{p}{\rho} \\ &= \frac{\Omega^2 \Psi}{W} + \frac{1}{2}W^2 + \int \frac{1}{\rho} \frac{dp}{dr} dr \\ &= \frac{\Omega^2 \Psi}{W} + \frac{1}{2}W^2 + \int \frac{C^2}{r^3} dr \\ &= \frac{\Omega^2 \Psi}{W} + \frac{1}{2}W^2 + \int \frac{\Omega^2 r^4}{r^3} dr \\ &= \frac{\Omega^2 \Psi}{W} + \frac{1}{2}W^2 + \int \Omega^2 r dr \\ &= \frac{\Omega^2 \Psi}{W} + \frac{1}{2}W^2 + \frac{1}{2}\Omega^2 r^2 \\ &= \frac{2\Omega^2 \Psi}{W} + \frac{1}{2}W^2 \end{split}$$

$$\frac{dH}{d\Psi} = \frac{\partial \frac{2\Omega^2 \Psi}{W}}{\partial \Psi}$$
$$= \frac{2\Omega^2}{W}$$

$$\begin{split} \frac{\partial^2 \Psi}{\partial z^2} + \frac{\partial^2 \Psi}{\partial r^2} - \frac{1}{r} \frac{\partial \Psi}{\partial r} &= r^2 \frac{dH}{d\Psi} - C \frac{dC}{d\Psi} \\ \frac{\partial^2 \Psi}{\partial z^2} + \frac{\partial^2 \Psi}{\partial r^2} - \frac{1}{r} \frac{\partial \Psi}{\partial r} &= \frac{2r^2 \Omega^2}{W} - \frac{4\Omega^2}{W^2} \Psi \end{split}$$

Or in a more 'standard' form

$$\frac{\partial^2 \Psi}{\partial z^2} + \frac{\partial^2 \Psi}{\partial r^2} - \frac{1}{r} \frac{\partial \Psi}{\partial r} + \frac{4\Omega^2}{W^2} \Psi = \frac{2r^2\Omega^2}{W}$$

#### 2.1 Homogeneous ODE

Considering the case where  $\Psi$  is just a function of the radius, r. So  $\Psi$  does not depend on z, and  $\frac{\partial^2 \Psi}{\partial z^2} = 0$ 

To simplify it into a homogeneous ODE, a change of variables is used:

$$\Psi=\frac{1}{2}Wr^2+\psi=\frac{1}{2}Wr^2+rF$$

$$\begin{split} \frac{\partial \Psi}{\partial r} &= Wr + F + r \frac{\partial F}{\partial r} \\ \frac{\partial^2 \Psi}{\partial r^2} &= W + 2 \frac{\partial F}{\partial r} + r \frac{\partial^2 F}{\partial r^2} \end{split}$$

$$\frac{\partial^2 \Psi}{\partial r^2} - \frac{1}{r} \frac{\partial \Psi}{\partial r} + \Psi (\frac{4\Omega^2}{W^2} - \frac{1}{r^2}) = 0$$

$$r^{2}\frac{d^{2}F}{dr^{2}} - r\frac{dF}{dr} + F(r^{2}k^{2} - 1) = 0$$

Letting  $k = \frac{2\Omega}{W}$  If we take x = kr,  $\frac{dF}{dr} = \frac{dF}{dx}\frac{dx}{dr} = k$  and  $\frac{d^2F}{dr^2} = k^2\frac{d^2F}{dx^2}$ 

$$\frac{x^2}{k^2}k^2\frac{d^2F}{dx^2} - \frac{x}{k}k\frac{dF}{dx} + F(\frac{x^2}{k^2}k^2 - 1) = 0$$
$$x^2\frac{d^2F}{dx^2} - x\frac{dF}{dx} + F(x^2 - 1) = 0$$

Which is the form of a bessel differential equation of order  $\nu = 1$ , giving solutions

$$F = AJ_1(kr) + BY_1(kr)$$

Returning to the streamfunction:

$$\Psi = \frac{1}{2}Wr^2 + r(AJ_1(kr) + BY_1(kr))$$

And hence

$$w = \frac{1}{r} \frac{\partial \Psi}{\partial r} = W + AkJ_0(kr) + BkY_0(kr)$$

A, and B rely on boundary conditions. In this case, it is necessary forthe streamlines to be the same as at the inlet along the boundary. Also introduce a vortex breakdown condition in the core of the stream, i.e. a region  $0 < r < r_*$  where the streamfunction becomes zero:

$$\Psi(R) = \frac{1}{2}WR^2$$

$$\Psi(r_*) = 0$$

Consider it as a matrix system

$$\begin{pmatrix} r_* J_1(kr_*) & r_* Y_1(kr_*) \\ R J_1(kR) & R Y_1(kR) \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} -\frac{1}{2}Wr_*^2 \\ 0 \end{pmatrix}$$

Giving

$$\begin{pmatrix} A \\ B \end{pmatrix} = \frac{1}{r_* R \left(J_1(kr_*) Y_1(kR) - Y_1(kr_*) J_1(kR)\right)} \begin{pmatrix} R Y_1(kR) & -r_* Y_1(kr_*) \\ -R J_1(kR) & r_* J_1(kr_*) \end{pmatrix} \begin{pmatrix} -\frac{1}{2} W r_*^2 \\ 0 \end{pmatrix}$$

$$A = \frac{-\frac{1}{2}RWr_*^2Y_1(kR)}{r_*R\left(J_1(kr_*)Y_1(kR) - Y_1(kr_*)J_1(kR)\right)}$$
$$B = \frac{\frac{1}{2}RWr_*^2J_1(kR)}{r_*R\left(J_1(kr_*)Y_1(kR) - Y_1(kr_*)J_1(kR)\right)}$$

And hence

$$A = \frac{-\frac{1}{2}Wr_*Y_1(kR)}{(J_1(kr_*)Y_1(kR) - Y_1(kr_*)J_1(kR))}$$
$$B = \frac{\frac{1}{2}Wr_*J_1(kR)}{(J_1(kr_*)Y_1(kR) - Y_1(kr_*)J_1(kR))}$$

Using

$$w = \frac{1}{r} \frac{\partial \Psi}{\partial r}$$

Gives

$$w = W + k(AJ_0(kr) + BY_0(kr))$$

Solving this for a given k (or alternatively a desired  $r_*$ ) is done numerically using MATLAB.

#### 2.2 Lamb-Oseen Vortex

The Lamb-Oseen vortex (or Q' vortex)

$$\frac{\partial^2 \psi}{\partial z^2} + \frac{\partial^2 \psi}{\partial r^2} - \frac{1}{r} \frac{\partial \psi}{\partial r} = r^2 \frac{dH}{d\psi} - C \frac{dC}{d\psi}$$

Q' vortex

$$v = \frac{2\pi\Gamma}{r}(1 - e^{-r^2/\delta^2})$$

same w = W.

$$C = rv = r \left( \frac{2\pi\Gamma}{r} (1 - e^{-r^2/\delta^2}) \right)$$
$$= 2\pi\Gamma(1 - e^{-r^2/\delta^2})$$

have to assume things for outside of the region for  $\Psi$ . I.e. if we go above the maximum input value then some assumption, and if we go below the minimum then it is a stagnation point

see if we can do it for the wall stagnation zones (i.e. psi goes to 0 near R) so when  $\Psi > \frac{1}{2}WR^2$  Plug it into H and C

$$H = (\Omega R)^2 + \frac{1}{2}W^2$$

$$\frac{\partial H}{\partial \psi} = 0$$

$$C = \Omega R^2$$

$$\frac{\partial C}{\partial \Psi} = 0$$

Which then yields the separable first order ODE

$$\frac{\partial^2 \Psi}{\partial r^2} - \frac{1}{r} \frac{\partial \Psi}{\partial r} = 0$$

And hence

$$\frac{\partial \Psi}{\partial r} = Ar$$
 
$$\Psi = \frac{1}{2}Ar^2 + B$$

our left hand side could be written as

$$r\frac{\partial}{\partial r}\left(\frac{1}{r}\frac{\partial\Psi}{\partial r}\right)$$

using staggered grid

$$\frac{\partial^2 \Psi}{\partial r^2} = \frac{1}{r} \frac{\partial \Psi}{\partial r}$$

at the boundary r=0

### 2.3 Numerics

Solving the ODE numerically:

$$\frac{\partial^2 \Psi}{\partial r^2} - \frac{1}{r} \frac{\partial \Psi}{\partial r} = r^2 \frac{\partial H}{\partial \Psi} + C \frac{\partial C}{\partial \Psi}$$

finite difference - divide r as a grid of N intervals. So our grid spaces over R,

$$r_i = \Delta r_i, \quad \Delta = \frac{R}{N}$$

So (check this)

$$\frac{\partial^2 \Psi}{\partial r^2} = \frac{\Psi_{i+1} - 2\Psi_i + \Psi_{i-1}}{\Delta^2}$$
$$\frac{\partial \Psi}{\partial r} = \frac{\Psi_{i+1} - \Psi_{i-1}}{2\Delta}$$
$$\Psi_0 = 0, \quad \Psi_N = \frac{1}{2}WR^2$$

Which should work for the index i until we reach the bifurcations/stagnations Should end up with a matrix equation

$$\begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ & \mathbf{A} & & \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} \begin{pmatrix} \Psi_0 \\ \mathbf{\Psi} \\ \Psi_N \end{pmatrix} = \begin{pmatrix} 0 \\ \mathbf{f} \\ \frac{1}{2}WR^2 \end{pmatrix}$$

A should be the finite difference version of

$$\frac{\partial^2 \Psi}{\partial r^2} - \frac{1}{r} \frac{\partial \Psi}{\partial r} = 0$$

I.e. for the  $i^{th}$  row of **A** 

$$A(i) = \frac{A(i+1) - 2 * A(i) + A(i-1)}{\Delta^2} - \frac{A(i+1) - A(i-1)}{2r(i)\Delta}$$

$$A_{ij} = \begin{cases} 1 & j = i = 1\\ 1/\Delta^2 + 1/(2r_i\Delta) & j = i - 1\\ 2/\Delta^2 & j = i\\ 1/\Delta^2 - 1/(2r_i\Delta) & j = i + 1\\ 1 & j = i = N \end{cases}$$
orthogonies

For the full equation

$$\begin{split} \frac{\partial^2 \Psi}{\partial z^2} + \frac{\partial^2 \Psi}{\partial r^2} - \frac{1}{r} \frac{\partial \Psi}{\partial r} + \Psi (\frac{4\Omega^2}{W^2} - \frac{1}{r^2}) &= 0 \\ \Psi = \frac{1}{2} W r^2 + r F \\ F = \frac{\Psi}{r} - \frac{1}{2} W r \end{split}$$

Boundary conditions for F relate to those for  $\Psi$ .

$$\Psi(R) = \frac{1}{2}WR^2 \implies F(R) = 0$$

$$\Psi(r_*) = 0 \implies F(r_*) = \frac{1}{2}Wr_*^2$$

when we look at the vortex breakdown problem, introduce a coordinate transformation

$$\begin{split} \eta &= \frac{r - r_*}{R - r_*} \\ \eta &= 0, r = r_*, \eta = 1 r = R \\ \frac{\partial \Psi}{\partial r} &= \frac{\partial \Psi}{\partial \eta} \frac{\partial \eta}{\partial r} = \frac{1}{R - r_*} \frac{\partial \Psi}{\partial \eta} \\ \frac{\partial^2 \Psi}{\partial r^2} &= \frac{1}{(R - r_*)^2} \frac{\partial^2 \Psi}{\partial \eta^2} \end{split}$$

use the same conditions we have used anyway where  $\Psi(r_*) = w(r_*) = 0$  Rankine body problem: At some point on the radius  $r_0$ , we get  $v = K/r_0$  for some constant K find  $K = \Omega r_0^2$ ?

#### 2.4 Rankine Body

w = W,

$$v = \begin{cases} \frac{\Gamma}{2\pi r}, & r > r_0\\ \Omega r, & r \le r_0 \end{cases}$$

Where the second condition was the previous solution. Since the velocity profile is now piecewise defined, the streamfunction must also be, i.e. it is necessary to split the streamfunction into 2 regions to solve this problem. The upstream regions:

$$\begin{cases} \Psi_{inner}, & 0 \le r \le r_0 \\ \Psi_{outer}, & r_0 \le r \le R \end{cases}$$

Note that  $r_0$  is defined upstream, so the position of the region may have moved downstream to a new radius,  $\hat{r}$ , and hence, downstream, these regions will become around  $\hat{r}$  instead of  $r_0$ . We enforce some similar conditions as to the normal problem:

$$\Psi(r_*) = 0,$$
  

$$\Psi(R) = \frac{1}{2}WR^2,$$
  

$$w(r_*) = 0$$

With the added condition that  $\Psi$  must remain continuous around  $\hat{r}$  I.e.

$$\lim_{r^- \to \hat{r}} \Psi(r^-) = \lim_{r^+ \to \hat{r}} \Psi(r^+)$$

And

$$\lim_{r^- \to \hat{r}} v(r^-) = \lim_{r^+ \to \hat{r}} v(r^+)$$

Where  $\Psi(r^-)$  is  $\Psi$  defined for  $r \leq \hat{r}$  and  $\Psi(r^+)$  is defined in the region  $r \geq \hat{r}$ . The region for  $\Psi(r)$  with  $r \in [0, r_0]$  will be the same as before, i.e.

$$\Psi(r) = \frac{1}{2}Wr^2 + r(AJ_1(kr) + BY_1(kr))$$

For the region  $r_0 < r < R$  the problem must be resolved from the SL equation

$$\frac{\partial^2 \Psi}{\partial r^2} - \frac{1}{r} \frac{\partial \Psi}{\partial r} = r^2 \frac{dH}{d\Psi} - C \frac{dC}{d\Psi}$$

$$C = rv = \frac{\Gamma}{2\pi}$$
 
$$\frac{dC}{d\Psi} = 0$$

$$\begin{split} H &= \frac{1}{2}(u^2 + v^2 + w^2) + \frac{p}{\rho} \\ &= \frac{1}{2}(0 + \frac{\Gamma^2}{4\pi^2 r^2} + W^2) + \int \frac{C^2}{r^3} dr \\ &= \frac{1}{2}(\frac{\Gamma^2}{4\pi^2 r^2} + W^2) + \int \frac{\Gamma^2}{4\pi^2 r^3} dr \\ &= \frac{1}{2}(\frac{\Gamma^2}{4\pi^2 r^2} + W^2) - \frac{\Gamma^2}{8\pi^2 r^2} \\ &= \frac{W^2}{2} \end{split}$$

And hence the SL equation gives

$$\begin{split} \frac{\partial^2 \Psi}{\partial r^2} - \frac{1}{r} \frac{\partial \Psi}{\partial r} &= r^2 \frac{dH}{d\Psi} - C \frac{dC}{d\Psi} \\ \frac{\partial^2 \Psi}{\partial r^2} - \frac{1}{r} \frac{\partial \Psi}{\partial r} &= r^2 \frac{dH}{d\Psi} - C \frac{dC}{d\Psi} \\ \frac{\partial^2 \Psi}{\partial r^2} - \frac{1}{r} \frac{\partial \Psi}{\partial r} &= 0 \end{split}$$

Which results in:

$$\Psi = Cr^2 + D, \quad r \ge \hat{r}$$
 
$$w = \frac{1}{r} \frac{\partial \Psi}{\partial r} = 2C$$

With the requirement that there is no discontinuity at  $\hat{r}$ , i.e.

$$\Psi = \frac{1}{2}W\hat{r}^2 + \hat{r}(AJ_1(k\hat{r}) + BY_1(k\hat{r})) = C\hat{r}^2 + D$$

And using the same for w

$$w(\hat{r}) = W + k(AJ_0(k\hat{r}) + BY_0(k\hat{r})) = 2C$$

And lastly the wall condition

$$\Psi(R) = \frac{1}{2}WR^2 = C\hat{r}^2 + D$$

Still have

$$w(r_*) = 0$$

$$\frac{\Gamma}{2\pi r_0} = \Omega r_0 \implies \Omega = \frac{\Gamma}{2\pi r_0^2}$$

$$k = \frac{2\Gamma}{2\pi W r_0^2} = \frac{\Gamma}{\pi W r_0^2}$$

Noting that the values for A and B are obtained from the  $r_*$  condition.

The coefficients for  $\Psi$  have to be resolved, since the condition  $\Psi_{inner}(R) = \frac{1}{2}WR^2$  cannot be imposed.

Parameters

$$r_0, \hat{r}, r_*, R, k, \Gamma, W, A, B, C, D$$

We can fix  $r_0$ , R, k, W and  $\Gamma$ . This is 11 parameters, where 5 are fixed. This means 6 equations are. So impose:

- 1).  $w(r_*) = 0$  (as before)
- 2).  $\Psi_{inner}(r_*) = 0$  (as before)
- 3). Since at the wall  $\Psi$  must remain the same, this applies to where v is changed, i.e.  $\Psi_{inner}(\hat{r}) = \frac{1}{2}Wr_0^2$
- 4). For continuity,  $\Psi_{outer}(\hat{r}) = \frac{1}{2}Wr_0^2$
- 5).  $w_{outer}(\hat{r}) = w_{inner}(\hat{r})$
- 6).  $\Psi_{outer}(R) = \frac{1}{2}WR^2$

Should be able to solve C and D by subtracting 6) from 4):

$$\Psi_{outer}(\hat{r}) = C\hat{r}^2 + D = \frac{1}{2}Wr_0^2$$
  
$$\Psi_{outer}(R) = CR^2 + D = \frac{1}{2}WR^2$$

$$\begin{split} CR^2 - C\hat{r}^2 &= \frac{1}{2}WR^2 - \frac{1}{2}Wr_0^2 \\ C(R^2 - \hat{r}^2) &= \frac{1}{2}W(R^2 - r_0^2) \\ C &= \frac{W(R^2 - r_0^2)}{2(R^2 - \hat{r}^2)} \end{split}$$

Now just using 6):

$$\begin{split} \Psi_{outer}(R) &= \frac{1}{2}WR^2 \\ \frac{1}{2}\frac{W(R^2 - r_0^2)}{R^2 - \hat{r}^2}R^2 + D &= \frac{1}{2}WR^2 \\ D &= \frac{1}{2}WR^2 - \frac{1}{2}\frac{W(R^2 - r_0^2)}{R^2 - \hat{r}^2}R^2 \\ D &= \frac{1}{2}WR^2(1 - \frac{R^2 - r_0^2}{R^2 - \hat{r}^2}) \\ D &= \frac{1}{2}WR^2(\frac{R^2 - \hat{r}^2}{R^2 - \hat{r}^2} - \frac{R^2 - r_0^2}{R^2 - \hat{r}^2}) \\ D &= \frac{1}{2}WR^2\left[\frac{r_0^2 - \hat{r}^2}{R^2 - \hat{r}^2}\right] \end{split}$$

Hence giving:

$$\begin{split} \Psi_{outer}(r) &= Cr^2 + D \\ &= \frac{W(R^2 - r_0^2)}{2(R^2 - \hat{r}^2)} r^2 + \frac{1}{2} W R^2 \left[ \frac{r_0^2 - \hat{r}^2}{R^2 - \hat{r}^2} \right] \\ &= \frac{W\left( (R^2 - r_0^2) r^2 + (r_0^2 - \hat{r}^2) R^2 \right)}{2(R^2 - \hat{r}^2)} \\ w_{outer}(r) &= 2C \\ &= \frac{W(R^2 - r_0^2)}{(R^2 - \hat{r}^2)} \end{split}$$

A and B can be obtained using 5) and 2).

$$W\left[\frac{R^2 - r_0^2}{R^2 - \hat{r}^2}\right] = W + k(A(J_0(k\hat{r}) + BY_0(k\hat{r})))$$

And

$$\frac{1}{2}Wr_*^2 + r_*(AJ_1(kr_*) + BY_1(kr_*)) = 0$$
$$Ar_*J_1(kr_*) + Br_*Y_1(kr_*) = -\frac{1}{2}Wr_*^2$$

Which can be written as the system

$$\begin{pmatrix} kJ_0(k\hat{r}) & kY_0(k\hat{r}) \\ r_*J_1(kr_*) & r_*Y_1(kr_*) \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} 2C - W \\ -\frac{1}{2}Wr_*^2 \end{pmatrix}$$
 
$$\begin{pmatrix} A \\ B \end{pmatrix} = \frac{1}{kr_* \left(J_0(k\hat{r})Y_1(kr_*) - Y_0(k\hat{r})J_1(kr_*)\right)} \begin{pmatrix} r_*Y_1(kr_*) & -kY_0(k\hat{r}) \\ -r_*J_1(kr_*) & kJ_0(k\hat{r}) \end{pmatrix} \begin{pmatrix} 2C - W \\ -\frac{1}{2}Wr_*^2 \end{pmatrix}$$
 Giving 
$$A = \frac{r_*Y_1(kr_*)(2C - W) + kY_0(k\hat{r})\frac{1}{2}Wr_*^2}{kr_* \left(J_0(k\hat{r})Y_1(kr_*) - Y_0(k\hat{r})J_1(kr_*)\right)}$$
 
$$= \frac{Y_1(kr_*)(2C - W) + \frac{1}{2}Wr_*kY_0(k\hat{r})}{k \left(J_0(k\hat{r})Y_1(kr_*) - Y_0(k\hat{r})J_1(kr_*)\right)}$$

And

$$B = \frac{-r_* J_1(kr_*)(2C - W) - \frac{1}{2}Wr_*^2 k J_0(k\hat{r})}{kr_* (J_0(k\hat{r})Y_1(kr_*) - Y_0(k\hat{r})J_1(kr_*))}$$
$$\frac{-J_1(kr_*)(2C - W) - \frac{1}{2}Wr_*k J_0(k\hat{r})}{kr_* (J_0(k\hat{r})Y_1(kr_*) - Y_0(k\hat{r})J_1(kr_*))}$$

To obtain  $r_*$  and  $\hat{r}$ , solve 3) and 1). Since both equations implicitly contain  $r_*$  and  $\hat{r}$ , solve using numerics. Note the solution of 1) would depend on whether  $r_*$  was in the inner or outer region. Solving the outer region will only give trivial solutions as:

$$w(r_*) = 2C = 0$$
$$\frac{W(R^2 - r_0^2)}{R^2 - \hat{r}^2} = 0$$

only has solutions W=0 and  $R=r_0$ 

This gives the implicit system of equations that has to be solved for  $\hat{r}$  and  $r_*$ :

$$\Psi_{inner}(\hat{r}) = \frac{1}{2}W\hat{r}^2 + \hat{r}(AJ_1(k\hat{r}) + BY_1(k\hat{r})) = \frac{1}{2}Wr_0^2$$
$$w(r_*) = W + k(AJ_0(kr_*) + BY_0(kr_*)) = 0$$

Where  $r_* < \hat{r}$ .

#### 2.5 Outer vortex breakdown

Considering the initial problem ffor vortex breakdown, except perhaps the breakdown is a pocket expanding from R rather than 0. I.e. the breakdown occurs about the wall rather than the center. So assuming  $r^{\dagger}$  is our outer vortex breakdown radius

This simply means obtaining a new A, B and k.

$$\Psi(r) = \frac{1}{2}Wr^2 + r(AJ_1(kr) + BY_1(kr))$$
$$w(r) = W + k(AJ_0(kr) + BY_0(kr))$$

Such that

$$w(r^\dagger) = 0, \qquad \Psi(0) = 0, \quad and \quad \Psi(r^\dagger) = 0$$

To enforce  $\Psi(0)=0$  note that  $\lim_{r\to 0}\frac{Y_1(kr)}{r}=-\infty$ . Hence it is necessary to set B=0.

$$\Psi(r) = \frac{1}{2}Wr^2 + rAJ_1(kr), \quad w(r) = W + kAJ_0(kr)$$

And to enforce  $\Psi(r^{\dagger}) = 0$ 

$$\implies Ar^{\dagger}J_1(kr^{\dagger}) = -\frac{1}{2}Wr^{\dagger 2}$$
$$A = \frac{-Wr^{\dagger}}{2J_1(kr^{\dagger})}$$

And obtain k using

$$w(r^{\dagger}) = 0$$
$$kAJ_0(kr) = -W$$

$$\Psi(r^{\dagger}) = \Psi(R) = \frac{1}{2}WR^2$$

## 3 Appendix

### 3.1 Supplementary Materials

This is where all the basic fluid mechanics knowledge should be (definitions, etc.)

#### 3.2 Resources

Books: An Introduction to Fluid Dynamics Batchelor

Swirling flow states in finite-length diverging or contracting circular pipes Zvi Rusak Wall-separation and vortex-breakdown zones in a solid-body rotation flow in a rotating finite-length straight circular pipe Zvi Rusak, and Shixiao Wang