Index (parte 3)

• search e advertising:

- search combinata ad advertising: mercato lucrativo
- interessi utenti specificati nella query
- advertising basato su keywords e query
- genera mercato da ricerca utente
- genera quasi tutto profitto Google
- ads basati su keywords mostrati di fianco a risultati ricerca
- molti risultati a pagamento per singolo termine query: motore di ricerca ha venduto ad a molti inserzionisti per query
- slot alti più costosi
- pay per click: inserzionisti pagano per click su loro ad
- cliccare su ad è intenzione più forte di effettuare query
- come settare prezzo per click:
 - o soluzione 1: pubblicare prezzi come nei markets
 - o inammissibile, troppe keyword e combinazioni di keywords
 - o soluzione 2: offerte da parte degli inserzionisti
 - o soluzione adottata
 - o 2 implementazioni:
 - matching markets
 - o aste

• **sponsored search** (advertising come matching market):

- insieme di slots per posizionare ads per ciascuna query
- slot numerati $1, 2, \ldots$ partendo dall'alto della pagina
- r_i : frequenza di click slot i (n. click per ora)
- v_j : profitto per click inserzionista j (profitto per click su ad)
- $r_1 > r_2 > \dots$: frequenza click sono non-crescenti
- $r_i \cdot v_j$: guadagno inserzionista j per essere mostrato in slot i
- assunzioni semplificanti:
 - 1. inserzionisti conoscono frequenze click
 - 2. frequenza click dipende solo da slot, non da qualità ad mostrato
 - 3. frequenza click non dipende da ads in altri slots
 - 4. profitto per click dipende da inserzionista e non dipende da pagina dove utente ha cliccato sull'ad
 - 5. numero slot = numero inserzionisti:
 - \circ se slots > inserzionisti: aggiungiamo inserzionisti con $v_i=0$
 - $\circ \;\;$ se inserzionisti > slots: aggiungiamo slots con $r_i=0$
- allocazione slot a inserzionisti modellata come matching market

matching market:

- o insieme buyers (inserzionisti) e insieme sellers (slots)
- \circ ciascun buyer j ha valutazione v_{ij} per item offerto da seller i
- o goal: abbinare opportunamente buyers e sellers
- o quindi:
 - sellers = slots
 - buyers = inserzionisti
 - \circ valutazioni $v_{ij} = r_i \cdot v_j$
- o primo esempio di interazione strutturata in forma di rete tra agenti

- o principi base:
 - 1. agenti hanno preferenze diverse per tipi diversi di merce
 - 2. i prezzi possono decentralizzare allocazione merce ad agenti
 - 3. i prezzi possono portare ad allocazioni che sono socialmente ottime
- il miglior matching è ottenuto assegnando:
 - il primo slot (quello con frequenza di click maggiore) al primo inserzionista (quello con profitto per click maggiore)
 - o il secondo slot al secondo inserzionista
 - o ...

qualità dell'ad:

- \circ abbiamo assunto nelle assunzioni che semplificano che le frequenze di click r_i dipendono solo dallo slot e non dalla qualità dell'ad mostrato
- o ma in realtà l'anteprima dell'ad è importante: se gli utenti non si fidano della compagnia non cliccano
- o il motore è pagato per click non per ad
- o scenario brutto:
 - o gli inserzionisti di bassa qualità fanno offerte alte e prendono i primi slots
 - o gli utenti non cliccano sui loro ad perchè non si fidano di loro
 - o il motore di ricerca perde soldi
- o introduzione del fattore di qualità:
 - \circ fattore di qualità q_j per l'inserzionista j
 - \circ se l'inserzionista j appare nello slot i, allora la frequenza di click dello slot i è $q_i \cdot r_i$
 - \circ le valutazioni quindi sono: $v_{ij} = q_i \cdot r_i \cdot v_j$
 - o come si computano le qualità?
 - dipendono dalla frequenza di click sull'ad, dalla rilevanza del testo dell'ad e dalla rilevanza della landing page dell'ad
 - o i motori di ricerca non condividono questi dettagli agli inserzionisti
- con le qualità computate dai motori di ricerca senza condividere dettagli, il motore di ricerca ha potere illimitato nei confronti dell'ordinamento degli inserzionisti
- o altri problemi:
 - il market non sorge soltanto da una query ma ci sono market simultanei per keywords diverse sul web:
 - o inserzionista dovrebbe dividere budget tra differenti markets, ma non si sa come farlo hene
 - o inserzionisti devono comunicare i loro interessi in specifiche keywords ma è possibile che nessun inserzionista crei frasi di keywords complesse:
 - motore di ricerca può mostrare ads solo su frasi esplicitamente specificate, quindi inserzionista e motore di ricerca perdono soldi
 - o quali ad mostrare è difficile:
 - o cattiva idea considerare la valutazione massima per ciascuna keyword
 - quando devono pagare gli inserzionisti rilevanti per click dato che loro non hanno specificato interesse per una data query:
 - o accordi tra motori di ricerca e inserzionisti:
 - i motori di ricerca estrapolano prezzi basandosi sui prezzi che gli inserzionisti
 vogliono pagare per e query che hanno specificato, ma non si sa come farlo bene
- matching markets: informazioni finali
 - o possono modellare in maniera adatta la sponsored search
 - sono abbastanza generali da incorporare raffinamenti nella valutazione dei buyers (quality factors)
 - o problemi:

- o motori di ricerca non conoscono le valutazioni degli inserzionisti
- o i motori di ricerca possono chiedere ma gli inserzionisti possono barare per avere migliori payoffs
 - o dichiarando valutazioni più basse
- o soluzioni: le aste

• scenario 1: assegnamento camere

- assegnamento stanze a studenti
- ciascuna stanza associata a singolo studente
- studenti hanno preferenze dievrse per le stanze
- grafo bipartito, l'assegnamento è un matching perfetto
- valutazioni: numeri che esprimono preferenze di agente verso un oggetto
- qualità assegnamento = somma delle valutazioni di quello che l'agente prende, per ogni agente
- **assegnamento ottimo**: un assegnamento che massimizza la felicità totale di tutti
- qualità assegnamento: somma delle valutazioni dell'assegnamento ottimo
- prezzi market-clearing:
 - nello scenario 1 c'è un'amministrazione centrale che determina un matching perfetto (assegnamento ottimo)
 - o ma in un mercato ci sono individui che fanno scelte libere basate sui prezzi e sulle valutazioni
 - o utilizzo dei prezzi per decentralizzare il market

• recap:

- grafi bipartiti:
 - o nodi divisi in 2 categorie
 - o gli archi connettono i nodi di una categoria all'altra categoria
- matching perfetto:
 - o scelta di archi nel grafo bipartito tale che:
 - o ciascun nodo è endpoint di esattamente 1 arco tra quelli scelti (matching senza nodi isolati)
- constricted set:
 - o insieme di nodi tale che i loro archi restringono la formazione di un perfect matching
 - o implica la non esistenza di un perfect matching
 - \circ se grafo bipartito G ha un constricted set, allora non ammette un matching perfetto
 - \circ se G non ha un perfect matching allora G ha un constricted set o teorema Hall's Matching
- lacktriangledown teorema Hall's Matching: un grafo bipartito G non ha un matching perfetto \iff ha un constricted set
 - o dimostrazione:
 - \Leftarrow : ha constricted set, non ha matching perfetto:
 - \circ se G ha constricted set dalla sua definizione non ha un matching perfetto
 - ∘ ⇒ non ha matching perfetto, ha constricted set:
 - \circ se G non ha matching perfetto come identifichiamo un contricted set
 - 1. iniziamo da qualsiasi matching non perfetto M
 - 2. cerchiamo di ingrandire
 - 3. IF success:
 - o switchiamo al matching ingrandito
 - 4. ELSE:
 - o identifichiamo un constricted set
 - \circ archi matching: archi usati in M
 - o archi non matching: gli altri archi
 - o cammino alternante: cammino che alterna archi matching e non matching

- \circ cammino aumentante: cammino alternante i cui endpoints sono nodi unmatched (non contenuti nel matching): M può essere ingrandito
- o dobbiamo cercare un cammino aumentante partendo da un matching non perfetto ${\cal M}$
- usiamo alternating BFS:
 - \circ inizio da qualsiasi nodo unmatched W a destra (layer 0)
 - esploriamo grafo layer su layer usando archi non-matching a step dispari e archi matching a step pari
 - o ad ogni step aggiungiamo nodi al layer se ci sono archi corrispondenti
 - o dopo aver eseguito alternating BFS, cerchiamo un cammino alternante
 - torniamo al grafo originale e swappiamo archi matching e non matching al cammino aumentante trovato
- o albero BFS:
 - o layer pari nodi lato destro grafo (buyers)
 - o layer dispari nodi lato sinistro grafo (sellers)
 - ° se c'è nodo unmatched Z in un layer dispari, allora il cammino da W a Z in albero BFS è aumentante e quindi matching è ingrandibile
- \circ se nell'albero BFS non c'è alcun nodo unmatched in un layer dispari (solo W è nodo unmatched):
 - \circ numero nodi in ogni layer dispari = numero nodi in ogni layer pari +1
 - \circ non contando W nel layer 0, numero nodi in ogni layer dispari = numero nodi in ogni layer pari
 - ciascun nodo in un layer pari ha tutti i suoi neighbors che occorrono nei layers dispari
 - o i neighbors matched nel layer precedente gli altri nel layer successivo
 - \circ constricted set: W e tutti i nodi nei layers pari

computare matching perfetto:

- 1. iniziamo da matching vuoto
- 2. cerchiamo unmatched node ${\it W}$ sulla destra
- 3. usiamo alternating BFS per cercare cammino aumentante che inizia da $\it W$
- 4. SE trovato: usiamo il cammino aumentante ed iteriamo
- 5. Altrimenti: indichiamo il constricted set
- ullet computare matching massimo: se non c'è cammino aumentante partendo da uno specifico unmatched node W
 - sulla destra non significa che il matching è massimo:
 - \circ se non si cono cammini aumentanti partendo da ciascun unmatched node W sulla destra, il matching corrente ha grandezza massima
 - per trovarlo, dobbiamo modificare alternating BFS:
 - \circ mettiamo tutti gli unmatched node W sulla destra nel layer 0

scenario 2: vendita di case

- \blacksquare insieme S di sellers
- lacktriangle insieme B di buyers
- decisioni libere di buyers basate sui prezzi e sulle loro valutazioni
- abbiamo:
 - o seller
 - prezzo (associato ad ogni seller)
 - buyer
 - valutazioni (associate ad ogni buyer per ogni seller)

- lacktriangle ciascun seller vende casa a prezzo $p_i \geq 0$
- lacksquare payoff buyer è: $v_{ij}-p_i$
- sellers preferiti del buyer j:
 - o sellers che massimizzano il suo payoff
 - o se payoff è negativo per ogni seller, non c'è seller preferito
- grafo preferred-seller: archi tra i buyers e i loro sellers preferiti
- lacksquare assunzione: $v_{ij} \geq 0$ e $p_i \geq 0$
- scopo: assegnare a ciascun buyer una delle case a lui più conventienti:
 - o trovare un matching perfetto nel grafo preferred-seller
- questo pricing è chiamato market-clearing: pricing che risolve i conflitti
- in caso di cravatte (più di un seller preferito per qualche buyer), è richiesta coordinazione
- esistenza dei prezzi market-clearing:
 - o teorema: i prezzi market-clearing esistono per ogni possibile insieme di valutazioni
 - o dimostrazione:
 - o dimostriamo teorema fornendo procedura adatta che termina con prezzi market-clearing
 - o idea 1: aumento prezzi
 - $\circ \;$ se un insieme di prezzi P non è market-clearing, allora esiste un constricted set di buyers C
 - o sia N(C) l'insieme dei neighbors dei buyers in C nel grafo preferred-seller, allora |N(C)| < C
 - o incrementiamo di 1 i prezzi di N(C), in questo modo si cerca di dissuadere qualche buyer in C e quindi si cerca di eliminare il constricted set
 - o idea 2: argomento di riduzione
 - \circ prima dell'inizio di ciascun round, tutti i prezzi sono decrementati di un quantità fissata δ in maniera che il prezzo più piccolo diventi 0
 - o questo aumenta i payoffs $(v_{ij}-p_i)$ di ogni buyer a causa dei prezzi P diminuiti di δ . Il nuovo insieme di prezzi P' non modifica l'ordine dei payoffs
 - questa idea garantisce che ciascun buyer ha payoff almeno 0 per almeno 1 seller
 (quello con prezzo 0) e quindi ciascun buyer ha almeno 1 seller preferito all'inizio di ciascun round e alla fine della procedura
 - o procedura (prezzi market-clearing):
 - 1. sia $p_i = 0, \forall i$
 - 2. costruisci grafo preferred-seller G
 - 3. IF c'è matching perfetto in G:
 - o STOP: i prezzi sono market-clearing
 - 4. ELSE:
 - \circ sia C constricted set di buyers ed N(C) i loro neighbors
 - 5. incrementa di 1 i prezzi di ciascun seller in N(C)
 - 6. decrementa **tutti** i prezzi di δ in modo che il prezzo più piccolo diventa 0
 - 7. ripetiamo da 2
 - \circ alla fine di esecuzione procedura, da idea 2 il prezzo più basso è 0
 - o quindi, ogni buyer ha payoff almeno 0 per almeno 1 seller
 - quindi ogni buyer ha almeno 1 seller preferito e non ci sono constricted set: c'è un
 matching perfetto e quindi l'insieme finale dei prezzi e market-clearing
 - o ma aumentare i prezzi anche se elimina constricted set può anche crearne di nuovi
 - ° dobbiamo dimostrare che la procedura termina: usiamo una funzione potenziale ϕ definita sui prezzi P
 - \circ P_0 : insieme iniziale dei prezzi (tutti 0)
 - \circ P_k : insieme dei prezzi all'inizio del round k:
 - o dimostriamo che:

- $\circ \phi(P_0) \geq 0$
- $\circ \ \phi(P_k) \geq 0, \forall k$
- $\circ \ \phi(P_{k+1}) < \phi(P_k), \forall k$
- \circ argomento di ϕ :
 - o dato P, sia i(j) un seller preferito del buyer j in accordo a P
 - o potenziale del buyer j: massimo payoff del buyer j, quindi $v_{i(j),j}-p_{i(j)}$
 - \circ potenziale del seller *i*: prezzo del seller *i*, quindi p_i
 - \circ potenziale di P: somma dei potenziali per buyer e seller, quindi $(\sum_{i \in B} v_{i(i)} - p_{i(i)}) + (\sum_{i \in S} p_i) = \phi(P)$
- dimostriamo $\phi > 0$:
 - \circ consideriamo qualsiasi round k con prezzi P_k
 - \circ dato che, il prezzo minimo in P_k è 0 e quindi il massimo payoff di ciascun buyer è ≥ 0 $: (\sum_{j \in B} v_{i(j)} - p_{i(j)}) + (\sum_{i \in S} p_i) \geq 0$
- dimostriamo $\phi(P_{k+1}) < \phi(P_k)$:
 - o i soli steps che modificano i prezzi sono 5 e 6
 - o per 5:
 - \circ i prezzi dei sellers in N(C) sono incrementati di 1, quindi in totale ϕ viene incrementato di |N(C)|
 - \circ i payoffs dei buyers sono decrementati di 1, quindi in totale ϕ viene decrementato di |C|
 - \circ dato che |N(C)| < |C|, allora ϕ è decrementato di almeno 1
 - o per **6**:
 - \circ tutti i prezzi dei sellers sono decrementati di δ , quindi in totale ϕ viene decrementato di $\delta \cdot |S|$
 - \circ tutti i payoffs dei buyers sono incrementati di δ , quindi in totale ϕ viene incrementato di $\delta \cdot |B| = \delta \cdot |S|$
 - quindi ϕ non viene cambiato dallo step **6**
 - \circ quindi abbiamo dimostrato che ϕ decresce strettamente ad ogni round

ottimalità dei prezzi market-clearing:

- valutazione assegnamento
- o assumiamo che i sellers quadagnano i loro prezzi, il payoff dei sellers è il loro prezzo
- o denotiamo con i(j) un seller preferito i del buyer j, cioè il seller i è abbinato al buyer j in M
- o social welfare: felicità globale di tutti i partecipanti: somma dei payoffs di buyers e sellers $SW(M) = (\sum_{i \in B} v_{i(j)} - p_{i(j)}) + (\sum_{i \in S} P_i) = \sum_{j \in B} v_{i(j)}$: valutazione totale di M
- \circ **teorema**: per ogni insieme di prezzi market-clearing, qualsiasi matching perfetto M nel grafo preferred-seller ha massimo social welfare di qualsiasi altro assegnamento, cioè massimizza SW(M)
- o dimostrazione:
 - \circ dato che M abbina ogni buyer al suo seller preferito, M massimizza il payoff totale dei buyers in M
 - \circ il payoff totale in M è: $\sum_{i \in B} v_{i(j)} p_{i(j)} = (\sum_{i \in B} v_{i(j)}) (\sum_{i \in S} p_i) = SW(M) (\sum_{i \in S} p_i) = SW(M)$ somma dei prezzi
 - \circ dato che la **somma dei prezzi** non dipende da M, ed M massimizza il payoff totale, allora M massimizza SW(M)
- \circ **revenue**: revenue totale dei sellers, cioè $REV(M) = \sum_{i \in S} p_i$, terribile, dato che la procedura potrebbe ritornare tutti i prezzi a 0 (caso in cui ogni buyer ha la stessa valutazione per tutti i sellers)

• le aste:

usata dalle compagnie per vendere prodotti

- portata nella vita di tutti i giorni da internet: eBay, sponsored web search
- ambientazione:
 - o 1 seller vende all'asta 1 item ad un insieme di buyers che fanno offerte per prendere l'item
 - seller = banditore
 - buyers = offerenti
- lacktriangle ciascun offerente ha valore v_i per l'item offerto dal banditore
- lacktriangle ciascun offerente è interessato a comprare l'item ad un prezzo fino a v_i
- v_i è il true value dell'offerente
- asta inutile se banditore conosce i true values degli offerenti: il banditore venderebbe l'item all'offerente con piàù alto true value per un prezzo vicino al suo true value

tipi di aste:

asta ascending-bid:

- o interattivo in tempo reale
- o banditore gradualmente alza il prezzo
- o offerenti abbandonano fino a quando solo 1 rimane
- o il rimanente vince l'item al prezzo finale

• asta descending-bid:

- o interattivo in tempo reale
- o banditore gradualmente abbassa il prezzo
- o quando un offerente accetta, vince al prezzo corrente

• asta first-price sealed-bid:

- o offerenti sottomettono offerte sigillate al banditore
- o l'offerta più alta vince
- o chi vince paga la sua offerta

o asta second-price sealed-bid:

- o offerenti sottomettono offerte sigillate al banditore
- o l'offerta più alta vince
- o chi vince paga la seconda offerta più alta

relazioni tra tipi:

o ascending-bid e second-price sealed-bid:

- o ascending-bid: prezzo alzato gradualemente fino a che solo 1 offerente rimane: per ogni offerente i c'è prezzo b_i al quale abbandonerà, offerente più alto paga il prezzo dell'ultimo offerente che ha abbandonato, cioè paga il prezzo del secondo offerente più alto
- \circ equivalente a second-price: i prezzi b_i giocano il ruolo delle offerte

o descending-bid e first-price sealed-bid:

- o descending-bid: prezzo abassato gradualmente fino a che qualcuno accetta: per ogni offerente i c'è prezzo b_i al quale romperà il silenzio e accetterà il prezzo b_i
- \circ equivalente a first-price: i prezzi b_i giocano il ruolo delle offerte
- aste first-price sono simulazioni sealed-bid di aste descending-bid
- aste second-price sono simulazioni sealed-bid di aste ascending-bid
- analizziamo comportamento offerenti aste second-price usando ascending-bid, quando offerente dovrebbe abbandonare:
 - \circ dopo che il prezzo raggiunge il true value v_i :
 - \circ stando dentro: paga più di v_i oppure perde
 - o meglio abbandonare
 - \circ prima che il prezzo raggiunge il true value v_i :
 - \circ stando dentro: potrebbe vincere l'item ad un prezzo più basso di v_i
 - o abbandonando: non vince nulla
 - meglio rimanere
 - \circ deve abbandonare quando il prezzo diventa esattamente uguale al suo true value v_i

- tornando alle aste second-price, la soluzione migliore per l'offerente è settare la sua offerta $b_i=v_i$: **truthful bidding**
- per le aste first-price:
 - $\circ~$ gli offerenti tenderanno ad offrire meno per fare un affare: $b_i < v_i$
- l'abbassamento delle offerte compensa la differenza tra il primo prezzo e il secondo prezzo: stessa rendita attesa al seller

aste second-price:

- o ampiamente utilizzate: eBay, sponsored web search
- o truthful: offrire il true value è la strategia più conveniente
- o ciascun offerente *i*:
 - \circ ha true value v_i
 - \circ la sua strategia è selezionare b_i :
 - \circ se b_i non è l'offerta vincente: payoff =0
 - \circ se b_i è l'offerta vincente, sia b_j la seconda offerta più alta: payoff $=v_i-b_j$
 - o se ci sono cravatte (ties):
 - o 2 o più offerenti offrono la stessa offerta più alta
 - \circ l'offerente i con minimo i vince
 - \circ il secondo prezzo più alto sarà quindi uguale al primo: i ha payoff =0

aste first-price:

- o ciascun offerente *i*:
 - \circ ha true value v_i
 - \circ la sua strategia è selezionare b_i :
 - \circ se b_i non è l'offerta vincente: payoff =0
 - \circ se b_i è l'offerta vincente: payoff $=v_i-b_i$
 - \circ **non truthful**: offrire il true value porta sempre a payoff =0
 - o gli offerenti devono offreire meno per prendere payoffs positivi, quanto di meno?
 - o offrire vicino al true value porta a payoff piccoli in caso di vittoria
 - o offerte più basse riducono le possibiiltà di vittoria
 - o compromesso difficile:
 - o richiede conoscenza degli altri offerenti (delle loro valutazioni)