第二周作业

董仕强

Sunday 2nd March, 2025

0 说明

可以将作业中遇到的问题标注在此. 如有, 请补充.

目录

0	说明	brack	C	
1	Problem Set for 24-Feb-2025			
	1.1	Problem 1	1	
	1.2	Problem 2	1	
2 P	Pro	Problem Set for 24-Feb-2025		
	2.1	Exercise 1.1	2	
	2.2	Exercise 4.1	2	
	2.3	Exercise 4.3	3	

1 Problem Set for 24-Feb-2025

1.1 Problem 1

Let \mathbb{F} be any field, and let $\{u_i\}_{i=1}^n$ and $\{v_j\}_{j=1}^m$ be bases of U and V, respectively. Define $\mathrm{Hom}_{\mathbb{F}}(U,V)$ as the set of \mathbb{F} -linear maps from U to V.

- 1. Endow $\operatorname{Hom}_{\mathbb{F}}(U,V)$ with the structure of a vector space over \mathbb{F} .
- 2. Determine the dimension of $\operatorname{Hom}_{\mathbb{F}}(U,V)$ and provide a basis for it.

解答

1. 由于 $\operatorname{Hom}_{\mathbb{F}}(U,V)$ 是从 U 到 V 的线性映射的集合, 因此我们可以定义加法和数乘如下:

$$(f+g)(u) = f(u) + g(u)$$
$$(\lambda f)(u) = \lambda f(u)$$

其中 $f, g \in \text{Hom}_{\mathbb{F}}(U, V), \lambda \in \mathbb{F}, u \in U.$

2. 由于 $\{u_i\}_{i=1}^n$ 和 $\{v_j\}_{j=1}^m$ 分别是 U 和 V 的基, 因此我们可以定义一个线性映射 f_{ij} 如下:

$$f_{ij}(u_k) = v_j \delta_{ik}$$

显然, $\{f_{ij}\}_{i=1,j=1}^{n,m}$ 是 $\mathrm{Hom}_{\mathbb{F}}(U,V)$ 的一个基. 由此我们可以得到 $\mathrm{Hom}_{\mathbb{F}}(U,V)$ 的维数为 nm.

1.2 Problem 2

(Blank-Filling Question) Throughout, \mathbb{F} is an arbitrary field, and $\{u_i\}_{i=1}^l$, $\{b_j\}_{j=1}^m$, and $\{c_k\}_{k=1}^n$ are bases of U, V and W, respectly. Carefully endow the following spaces with \mathbb{F} -linear structures. and write down their dimensions along with the corresponding distinguished bases.

- 1. $U \oplus V$ as subspace.
- 2. $U \times V$ as the usual Cartesian product.
- 3. $\operatorname{Hom}_{\mathbb{F}}(U,V)$ as the set of linear maps.
- 4. $\operatorname{Hom}_{\operatorname{Sets}}(U,V)$ as the set of maps.
- 5. $\operatorname{Hom}_{\mathbb{F}}(U \times V, W)$, where $U \times V$ is defined a priori.
- 6. $Bil_{\mathbb{F}}(U, VlW)$, the set of bilinear maps from U and V to W.
- 7. $\operatorname{Hom}_{\mathbb{F}}(U, \operatorname{Hom}_{\mathbb{F}}(V, W))$, also known as the currying of bilinear maps.

解答

1. $U \oplus V$ 是 U 和 V 的直和,

$$(u_1, v_1) + (u_2, v_2) = (u_1 + u_2, v_1 + v_2), \qquad \lambda(u_1, v_1) = (\lambda u_1, \lambda v_1)$$

维数为 l+m, 基为 $\{u_i\}_{i=1}^l \cup \{v_j\}_{j=1}^m$.

- 2. $U \times V$ 是 U 和 V 的笛卡尔积, 维数为 l + m, 基为 $\{(u_i, 0)\}_{i=1}^l \cup \{(0, v_j)\}_{j=1}^m$.
- 3. $\operatorname{Hom}_{\mathbb{F}}(U,V)$ 是从 U 到 V 的线性映射的集合, 维数为 lm, 基为 $\{f_{ij}\}_{i=1,j=1}^{l,m}$.
- 4. $\operatorname{Hom}_{\operatorname{Sets}}(V,W)$ 是从 U 到 V 的映射的集合, 维数为 m^l , 基为 $\{g_i\}_{i=1}^l$.
- 5. $\operatorname{Hom}_{\mathbb{F}}(U \times V, W)$ 是从 $U \times V$ 到 W 的线性映射的集合, 维数为 (l+m)n, 基为 $\{h_{ijk}\}_{i=1,k=1}^{l,n} \cup \{h_{ijk}\}_{j=1,k=1}^{m,n}$.
- 6. $Bil_{\mathbb{F}}(U,V;W)$ 是从 U 和 V 到 W 的双线性映射的集合, 维数为 lmn, 基为 $\{f_{ijk}\}_{i=1,j=1,k=1}^{l,m,n}$.
- 7. $\operatorname{Hom}_{\mathbb{F}}(U,\operatorname{Hom}_{\mathbb{F}}(V,W))$ 是从 U 到 $\operatorname{Hom}_{\mathbb{F}}(V,W)$ 的线性映射的集合, 维数为 lmn, 基为 $\{g_{ijk}\}_{i=1,j=1,k=1}^{l,m,n}$.

2 Problem Set for 24-Feb-2025

2.1 Exercise 1.1

Let $P_n := \{ f(x) \in \mathbb{F}[x] \mid \deg f(x) < n \}$. Pick $a_1, a_2, \dots, a_n \in \mathbb{F}$ such that $a_i \neq a_j$ for any $i \neq j$. Show that

$$f_j(x) := \prod_{i \neq j} (x - a_i) (1 \le i \le n)$$

from a basis of P_n .

解答 Lagrange 插值公式告诉我们, 对于任意的 $f(x) \in P_n$, 我们有

$$f(x) = \sum_{i=1}^{n} f(a_i) \prod_{j \neq i} \frac{x - a_j}{a_i - a_j} = \sum_{i=1}^{n} \frac{f(a_i) f_j(x)}{\prod_{j \neq i} (a_i - a_j)}$$

2.2 Exercise 4.1

Assume $f(x) = x^3 + px + q \in \mathbb{Z}[x]$ is irreducible and $\alpha \in \mathbb{C}$ is a root of f.

- 1. Show that $\mathbb{Q}[\alpha] := \{g(\alpha) \mid g(x) \in \mathbb{Q}[x]\}$ is a linear space over \mathbb{Q} and $1, \alpha, \alpha^2$ from a basis.
- 2. Prove that $\phi: \beta \mapsto f'(\alpha)\beta$ gives a linear map on $\mathbb{Q}[\alpha]$ and find its matrix under $1, \alpha, \alpha^2$.

解答

1. $0 \in \mathbb{Q}[\alpha], (f+g)(\alpha) = f(\alpha) + g(\alpha), (\lambda f)(\alpha) = \lambda f(\alpha)$ For $\alpha^n (n \geq 3)$, 利用等式 $\alpha^3 = -p\alpha - q$ 反复代换可以表示成 $1, \alpha, \alpha^2$ 的线性组合. 2. 由于 $\phi(\beta) = \beta f'(\alpha)$, 因此我们有

$$\phi(1) = f'(\alpha), \quad \phi(\alpha) = \alpha f'(\alpha), \quad \phi(\alpha^2) = \alpha^2 f'(\alpha)$$

因此我们有

$$\begin{pmatrix} f'(\alpha) \\ \alpha f'(\alpha) \\ \alpha^2 f'(\alpha) \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -q & -p & -3 \end{pmatrix} \begin{pmatrix} 1 \\ \alpha \\ \alpha^2 \end{pmatrix}$$

2.3 Exercise 4.3

Prove that if $f, g \in \mathbb{Z}[x]$ are primitive, then so is fg.

解答 Let $f(x) = \sum_{i=0}^{n} a_i x^i$, $g(x) = \sum_{i=0}^{m} b_i x^i$, then we have $fg(x) = \sum_{i=0}^{n+m} c_i x^i$, where $c_i = \sum_{j=0}^{i} a_j b_{i-j}$.

Suppose fg is not primitive, then there exists a prime p such that $p|c_i$ for all i. Let a_i is the smallest index such that $p \nmid a_i$, b_j is the smallest index such that $p \nmid b_j$, so c_{i+j} is not divide by p