The relationship between early phonological and lexical development

Mits Ota
University of Edinburgh

Summer School of Linguistics, 2019 mits-ota.github.io/SSoL2019.html

Last time

Can sounds be learned independent of words?

This lecture

Can sounds be learned independent of words?

How do phonological representations develop?

What phonological information is encoded in a word form?

/ p a n / [-son] [+syll] [+son] [-cont] [+high] [+nas [+lab] [+back] [+cor] [-voice]

'pan' [pʰãn]

Articulatory: phonology

Exemplar theory

For our purpose: Any information necessary to maintain lexical contrasts

Part 1

How do infant begin to learn word forms?

Identifying word forms in fluent speech (word segmentation) is not a trivial task

- Single word utterances in infant-directed speech ≈ 9% (Brent & Siskind, 2001).
- No consistent silences between words.

Three types of information infants can use to segment words

- 1. Transitional probabilities
- 2. Learned phonological patterns
- 3. Learned words

Transitional probabilities (TPs) can tell which sequences are more likely to be part of the same word

Transitional probabilities of /pri/ to /ti/ and /ti/ to /be/ in infant-directed speech (Saffran, Aslin, & Newport, 1996)

Infants as young as 5- to 8-months can track TPs between syllables

Training stimuli in Saffran, Aslin & Newport (1996) for 8-montholds

> daropitibudopabikugolatudaropi pabikutibudogolatupabikudaropi tibudogolatutibudo ...

Infants as young as 5- to 8-months can track TPs between syllables

Training stimuli in Saffran, Aslin & Newport (1996) for 8-moonth-olds

daropitibudopabikugolatudaropi pabikutibudogolatupabikudaropi tibudogolatutibudo ...

Cf. Stimuli in Thiessen and Erickson (2013) for 5-month-olds: diti, bugo, dapu, dobi

Infants as young as 5- to 8-months can track TPs between syllables

Heard-Turn Preference Procedure

Mean listening times

Already learned phonological patterns can be used to identify word onset/offset

The most common prosodic word type in English: Strong—weak disyllables (Cutler & Carter, 1987). Strong syllable = word onset 95% of time in infant-directed speech (Kelly & Martin, 1994)

Infants use predominant prosodic patterns to segment words

Familiarisation	Testing
Your hámlet lies just over the hill. Another hámlet is in the country	Respond to 'hamlet'
The man put away his old guitár . Your guitár is in the studio	Do not respond to 'guitar'
That red gui<u>tár</u> is brand new. The pink gui<u>tár</u> is mine	Do not respond to 'guitar', but to 'taris'

^{7.5-}month-olds English-learning infants' segmentation patterns (Jusczyk, Houston, & Newsome, 1999)

Infants are sensitive to phonotactic probabilities in words

	Type of cluster		
	Between-word		
	Within-word	Α	В
	[ŋ.k]	[ŋ.t]	[m.k]
	[f.t]	[f.h]	[v.t]
	[v.n]	[v.m]	[z.n]
	[m.θ]	[m.h]	[n.θ]
	[k.ʧ]	[k.ʃ]	[p.ʧ]
	[ŋ.g]	[ŋ.b]	[n.g]
Between-word frequency:	1.00	19.17	18.83
Within-word frequency:	22.33	0.17	0.00

9-month-olds English-learning infants' segmentation patterns (Mattys et al, 1999). Frequency counts based on the Bernstein corpus (1982)

Already-learned words can be used to identify other words

Infants use familiar words for further segmentation

Familiarisation	Testing
The girl laughed at mommy's feet. Even the toes on mommy's feet are large	Respond to feet.
The girl laughed at Hannah's feet. Even the toes on Hannah's feet are large	Respond to feet.
The girl laughed at Lola's feet. Even the toes on Lola's feet are large	Do not respond to feet.

6-month-olds' segmentation. Example of a child named *Hannah* (Bortfeld et al., 2005)

Summary: How do infants begin to learn word forms?

- Different strategies of word segmentation
 - Transitional probabilities
 - Learned phonological patterns
 - Learned words
- Learning builds upon learning

Part 2

How accurate are the phonological representations in early words?

Infants can remember some phonetic details of word forms by 7 months

The **cup** was bright and shiny. A clown drank from the red **cup**. The other one picked up the big **cup**. His **cup** was filled with milk. Meg put her **cup** back on the table. Some milk from your **cup** spilled on the rug

tup, tup, tup, ... tup,

Juszyk & Aslin (1995)

Some phonologically-relevant phonetic details are encoded in familiar word forms by 12m

Familiar words	C1 change	Rare words
bubbles	mubbles	budget
tummy	summy	tenor
парру	dappy	piffle
dirty	nirty	monger

HTPP results

11-month-olds treat familiar word forms with onset C mispronunciation as unfamiliar forms (Vihman et al., 2004)

But some contrast manipulations do not block word recognition

Familiar words	C2 change	Rare words
bubbles	bummles	budget
tummy	tuvvy	tenor
парру	nammy	piffle
dirty	dirny	monger

Similar effects with stress change (e.g., 'baby \rightarrow ba'by; Vihman et al., 2004) and offset change (e.g., Dutch: sxazp 'sheep' $\rightarrow sxazf$; Swingley, 2005)

Interpretations

- Encoding is less robust for certain phonological features/ positions.
 - Onset-bias in infant perception (Jusczyk, Goodman, & Baumann, 1999)
- Some phonological mismatches are more likely to cause lexical activation.
 - [be'bi]/['bemi] are not equated with *baby*, but they activate lexical access it.
 - Incremental activation (Marslen-Wilson, 1987)

By 14m, some phonologically-relevant phonetic details are encoded in familiar words (with referents)

 Detection of 'mispronunciations' of known word-meaning mappings (Swingley & Aslin, 2002):

 Detection of pairing violations between two known words and their referents (Fennell & Werker, 2003):

But until 17m, infants have difficulties in immediately encoding contrasts in novel words

Habituation-dishabituation paradigm (a.k.a. the 'switch' test): Stager & Werker, 1997; Werker et al., 1998; Pater, Stager, & Werker 2004)

Part 3

What drives encoding of phonological representations in early words?

Pressure from the lexicon? The lexical restructuring hypothesis (Metsala & Walley, 1998)

"[T]he increased size of the lexicon may serve as an impetus for the child to develop more detailed, adult-like representations of the words in the lexicon in order to keep individual items distinct in memory" (Logan, 1992)

C[a]C is sufficient to separate 'cat' from others

'cat' now needs enough phonetic details for [k] vs. [h, m, p]

Is it true that young learners need to differentiate fewer phonologically contrastive words?

Phonological neighborhood density = Number of words that differ from the target word by a one-phoneme substitution, deletion or addition (Landaurer & Streeter, 1973)

Density around 'cat': 5

Density around 'cat': 9

Yes, lexical input to children has sparser phonological neighborhoods

Neighborhood density for 3-, 4- and 5-phoneme words in a child lexicon (unfilled squares) versus adult lexicon (filled diamonds) (Charles-Luce & Luce, 1995)

But measures of phonological encoding are not related to vocabulary size

Mispronunciation effects by 14/15-month-olds receptive vocabulary and age in days (Swingley & Aslin, 2002)

Mispronunciation effects are found even when there is no direct lexical pressure

- In Dutch, [g] does not have a phonemic status.
- [deːʁ] is not a word and [dal] ('valley') is not a word that 19-montholds know.

Mispronunciation effects by 19-month-old Dutch learners (Swingley, 2003)

Exposure effect?

- Infants' phonological representations of words may become more accurate as a function of exposure to individual words.
- Fairly accurate phonological representations of familiar words (Vihman et al., 2004; Swingley & Aslin, 2002).
- Fragile representations of novel words learned in lab experiments (Stager & Werker, 1997; Pater, Stager, & Werker, 2004)

Exposure frequency is related to accuracy of representation

Difference in mispronunciation effects by 18-20-month-olds: Exposure x22 vs 8 (Swingley, 2007)

What does exposure of c20 times mean in real life?

Word frequency in infant-directed speech based on the Brent Corpus (Swingley, 2007). In 10 months, children are likely to be exposed to about 5000 word forms at least 20 times each.

Summary

- Infants can employ various strategies to segment words from running speech.
- Phonological representations of early familiar words are fairly accurate, but until about 17 months, infants do not instantly acquire representations of novel word forms. The process takes many exposures.
- Acquisition of phonological representations does not seem to be driven by the need to maintain lexical contrasts.