Effector Array: data and analysis

Margie Ackerman 2/21/13

Luminex Bead Assay

<500 Ag-specificities

simultaneously

~20 Fc features

separately

Current Status (Antigens)

HIV gp120s	Other Env	Other HIV	Flu Antigens	Other Viral	Controls
gp120 YU2 (37)	gp41 (HXBc2) (27)	p24 (HXBc2) (26)	Flu MNA (13)	HAV P2C-P3A (4)	ahulgG (34)
gp120 Chiang Mai (14)	gp140 (HXBc2) (52)	p24 IIIb (33)	Flu N2 (15)	HSV-1 gG (5)	ahulGM (12)
gp120 from Ecoli(54)	gp140 CN54 (39)	HIV1 Integrase (28)	Flu BNA (18)	HCV E2 (6)	ahulgA (51)
gp120 93TH975 (19)	gp140 Du151 (75)	HIV1 Nef (29)	HA Brisbane/10/07 (44)	PV1 (polio vaccine)	tetanus Ag (54)
gp120 BAL (65)	SOSIP (45)	HIV1 Rev (wt) (36)	HA NewCal/20/99 (42)	PV2	
gp120 IIIB (CHO) (25)		Vif (Ecoli) (38)	HA Wisconsin/67/05 (43)	PV3	
gp120 PVO (35)		HIV pr55 Gag (20)	HA (ΔTM) Perth/16/09 (1)		
gp120 CM235 (77)			HA (ΔTM) Florida/06 (2)		
gp120 CM244 (78)			HA1 SolomonIsI/06 (3)		
gp120 JRCSF (63)					
gp120 MN (72)					
gp120 Du151 (73)					
gp120 SF162 (74)					
gp120 ZM109F (76)					
gp120 TRO (61)					
gp120 Du156.12 (62)					
gp120 RSC3 (55)					

~50 Ag; currently working on whole HIV virus bead sets

Current Status (detection)

Subclassing Reagents	FcgRs	Complement Proteins	Lectins
anti-lgG1	FcgRIIa	C1q	SNA
anti-IgG2	FcgRIIb	MBL	WGA
anti-IgG3	FcgRIIIa	C3b	ConA
anti-IgG4	FcgRIIIb	C4b	GNL
	FcgRI		MAL1
	FcRn		LCA
			RCA
Key			PNL
Works on all bead sets			
Works on some bead sets			AAL
Some issues			VVL
Currently not working			UAE1

Validating FcgR Data

- Fc-mutant B12 antibodies from Brian Moldt (Burton Lab -Scripps).
- Compare published ELISA binding to Luminex MFI.

FcgRIIIa luminex vs ELISA

Clinical samples exhibit differential FcgR binding

Validating lectin binding

AAL and LCA (fucose binding lectins)

Lectin signals on array correlate with HPLC glycan data

Lectin binding differs among subjects

Similarities among features

subject-normalized values (slice of Ab pie per specificity)

Dominant p24 vs. dominant gp120

Subject-subject correlations, clustered

correlation coefficient

0

0.5

-0.5

Their antigen-specific MFIs

Feature: function relationships

correlation coefficient

Features seem predictive

Another view

■ FcgRIIIa ■ IgG1 □ IgG2 ■ IgG3 ■ IgG4
--

HIV1 IIIb Gag	Π
HIV1 Integrase	\Box
HIV1 Vif (Ecoli)	\Box
gp120	0
gp140	
gp41	Δ
p24	\forall

Clusters driven by combination of readout and antigen

Particular feature relationships (for a particular gp120 antigen)

Correlations among FcgR, IgG1&3; bimodality

Supervised learning

Lasso / logistic regression / random forest / support vector machine / Gaussian process

Classification: high vs. low function

Classification example results

Regularized random forest; similar results with logistic- and kernel-based methods

Models effectively use Ab features to qualitatively characterize functions

Regression: quantitative function

Regression example results

Lasso; similar results with tree- and kernel-based methods (LOOCV)

Models effectively use Ab features to quantitatively characterize functions