Análise Exploratória de Dados

Prof. Me. Ricardo Ávila ricardo.avila@outlook.com.br

Conhecendo os dados

O objetivo da análise exploratória de dados é examinar a estrutura subjacente dos dados e aprender sobre os relacionamentos sistemáticos entre muitas variáveis.

A análise exploratória de dados inclui um conjunto de ferramentas gráficas e descritivas, para explorar os dados, como pré-requisito para uma análise de dados mais formal (Predição, Previsão, Estimação, Classificação e Testes de Hipóteses), e como parte integral formal da construção de modelos.

Análise Exploratória de Dados

A AED facilita a descoberta de conhecimento não esperado, como também ajuda a confirmar o esperado.

Como uma importante etapa em Data Mining, a AED emprega técnicas estatísticas descritivas e gráficas para estudar o conjunto de dados, detectando *outliers* e anomalias, e testando as suposições do modelo.

A AED é um importante pré-requisito para se alcançar o sucesso em qualquer projeto de data mining.

Distribuições de Frequências

- organização dos dados de acordo com as ocorrências dos diferentes resultados observados.
 - Pode ser apresentada: em tabela ou em gráfico;
 - com freqüências absolutas, relativas ou porcentagens.

Exemplo (com variável qualitativa)

Grau de instrução do chefe da casa, numa amostra de 40 famílias do Conjunto Residencial Monte Verde, Florianópolis, SC, 1988.

Códigos: 1 – Nenhum grau de instrução completo;

2 – Primeiro grau completo;

3 – Segundo grau completo.

Resultados observados em cada família:

Exemplo (com variável qualitativa)

Grau de instrução (Conjunto Residêncial Monte Verde)

Grau de instrução	Freqüência	Percentagem		
Nenhum	6	15%		
Primeiro Grau	11	27,5%		
Segundo Grau	23	57,5%		
Total	40	100%		

Gráfico de Barras

Grau de Instrução do Chefe da Casa

Gráfico em Colunas

Grau de instrução do chefe da casa

Gráfico de Setores (Proporções)

Grau de Instrução do Chefe da Casa

Exemplo (com variável discreta)

 Numa rede de computadores, a quantidade de máquinas ligadas, por dia

Distribuição de Frequências????

Máquinas em uso	Freqüência (absoluta)	Proporção (%)
20	2	0,10 (10%)
21	4	0,20 (20%)
22	6	0,30 (30%)
23	5	0,25 (25%)
24	2	0,10 (10%)
25	0	0,00 (0 %)
26	1	0,05 (5%)
Total	20	1,00 (100%)

Gráfico de Colunas

Exemplo (com variável contínua)

Tempo (em segundos) para carga de um aplicativo num sistema compartilhado (50 observações):

5,2	6,4	5,7	8,3	7,0	5,4	4,8	9,1
5,5	6,2	4,9	5,7	6,3	5,1	8,4	6,2
8,9	7,3	5,4	4,8	5,6	6,8	5,0	6,7
8,2	7,1	4,9	5,0	8,2	9,9	5,4	5,6
5,7	6,2	4,9	5,1	6,0	4,7	18,1	5,3
4,9	5,0	5,7	6,3	6,0	6,8	7,3	6,9
6,5	5,9						

DADOS

5,2	6,4	5,7	8,3	7,0	5,4	4,8	9,1
5,5	6,2	4,9	5,7	6,3	5,1	8,4	6,2
8,9	7,3	5,4	4,8	5,6	6,8	5,0	6,7
8,2	7,1	4,9	5,0	8,2	9,9	5,4	5,6
5,7	6,2	4,9	5,1	6,0	4,7	18,1	5,3
4,9	5,0	5,7	6,3	6,0	6,8	7,3	6,9
6,5	5,9						

Histograma

Histograma do tempo (em segundos) para carga de um aplicativo num sistema compartilhado (50 observações) - discretização

Histograma

Medidas Descritivas

- Existem medidas quantitativas que servem para descrever, resumidamente, características das distribuições.
- As mais utilizadas são a média e o desvio padrão.

Média (X)

 A média aritmética simples (X) é a soma dos valores dividida pelo número de observações.

$$\overline{X} = \frac{\sum X}{n}$$

Exemplo

 Deseja-se estudar o número de falhas no envio de mensagens, considerando três algoritmos diferentes para o envio dos pacotes:

Algoritmo A (8 observações)
Algoritmo B (8 observações)
Algoritmo C (7 observações)

Exemplo

 Número de falhas a cada 10.000 mensagens enviadas.

A: 20 21 21 22 22 23 23 24

B: 16 18 20 22 22 24 26 28

C: 15 22 23 23 24 24

Comparação dos três algoritmos pela média

algoritmo					falhas					média
	Α	20	21	21	22	22	23	23	24	22
	В	16	18	20	22	22	24	26	28	22
	С	15	22	23	23	23	24	24		22

Diagramas de Pontos

Número de falhas

Como medir a dispersão?

Exemplo: A (20 21 21 22 22 23 23 24)

distância (desvio) em relação à média

Desvios

Valores	X	20 21 21 22 22 23 23 24
Média	\bar{X}	22
Desvios	(X - X)	-2 -1 -1 0 0 1 1 2

Desvios

Desvios: -2 -1 0 1 2 Soma = 0

Desvios Quadráticos

Soma

Valores	X	20 21 21 22 22 23 23 24	176
Média	X	22	-
Desvios	X - X	-2 -1 -1 0 0 1 1 2	0
Desvios quadráticos	$(X-X)^2$	4 1 1 0 0 1 1 4	12

Variância (S²)

 A variância (S²) é uma média dos desvios quadráticos. Usa-se no denominador n-1 ao invés de n quando trabalhamos com amostras e não a população completa.

$$S^2 = \frac{\sum (X - \overline{X})^2}{n - 1}$$

No exemplo apresentado (algoritmo A), a variância é:

$$S^2 = \frac{12}{7} = 1,71$$

Desvio Padrão (S)

 O desvio padrão (S) é a raiz quadrada da variância.

$$S = \sqrt{S^2}$$

No exemplo apresentado (algoritmo A), o desvio padrão é:

$$S = \sqrt{1,71} = 1,31$$

Comparação dos três algoritmos pela média e desvio padrão

Algoritmo	Falhas	X	S
Α	20 21 21 22 22 23 23 24	22	1,31
В	16 18 20 22 22 24 26 28	22	4,00
С	15 22 23 23 23 24 24	22	3,16

Diagramas de pontos e valores de S

Número de falhas

Exemplo

TABELA Medidas descritivas das notas finais dos alunos de três turmas

Turma	Número de alunos	Média	Desvio padrão
Α	20	6,0	3,3
В	40	8,0	3,3 1,5
С	30	9,0	2,6

Medida relativa de dispersão - Exemplo

Coeficiente de variação = desvio padrão / média

```
X_1:123média = 2<br/>desvio padrão = 1<br/>coeficiente de variação = 0,5X_2:100101102média = 101<br/>desvio padrão = 1<br/>coeficiente de variação = 0,01X_3:100200300média = 200<br/>desvio padrão = 100<br/>coeficiente de variação = 0,5
```

Conjunto de dados: preços de fechamento de ações da telebrás

1	2	3	4	1	2	3	4	1	2	3	4
Mês	dia	id	Telebras	Mês	dia	id	Telebras	Mês	dia	id	Telebras
jan	2	1	34,99	fev	2	22	30,78	mar	8	42	16,84
jan	4	2	32,09	fev	3	23	31,44	mar	9	43	15,06
jan	5	3	32,56	fev	6	24	30,59	mar	10	44	21,05
jan	6	4	30,31	fev	7	25	28,63	mar	13	45	20,77
jan	9	5	28,91	fev	8	26	27,6	mar	14	46	23,3
jan	10	6	26,1	fev	9	27	26,38	mar	15	47	21,99
jan	11	7		fev	10	28	25,26	mar	16	48	23,75
jan	12	8	30,41	fev	13	29	24,98	mar	17	49	22,08
jan	13	9	32	fev	14	30	24,56	mar	20	50	21,14
jan	16	10		fev	1	31	23,02	mar	21	51	22,45
jan	17	11	32,37	fev	16	32	20,96	mar	22	52	22,36
jan	18	12	30,87	fev	17	33	22,45	mar	23	53	23,67
jan	19	13	28,63	fev	20	34	21,61	mar	24 27	54 55	25,63
jan	20	14	29,56	fev	21	35	19,74	mar	28	55 56	25,73 24,61
jan	23	15	28,44	fev	22	36	20,49	mar mar	29	57	24,51
jan	24	16		fev	23	37	23,02	mar	30	58	22,13
jan	26	17	29,84	fev	24	38	23,48	mar	31	59	22,64
jan	27	18	28,35	mar	2	39	20,96	IIIai	31	33	22,04
	30	19	20,33	mar	6	40	20,4				
jan	31	20	30,41	mar	7	41	18,43				
jan	31	20	30,41			40	10.04				

fev

Medidas baseadas na ordenação dos dados

Cálculo da mediana

Dados:

```
\{2, 0, 5, 7, 9, 1, 3, 4, 6, 8\}
n = 10; (n+1)/2 = 5,5
```

0 1 2 3 4 5 6 7 8 9
$$M_d = 4.5$$

Cálculo dos Quartis

Exercício:

Cálculo da mediana

Dados:

```
\{2, 0, 5, 7, 9, 1, 3, 4, 6, 8, 100\}
n = 11; (n+1)/2 = 6
```

Exercício:

Cálculo dos quartis

Medida de dispersão: Distância interquartílica

O desvio inter-quartílico é uma medida <u>robusta</u> de dispersão. Ele é calculado por:

$$Q_3 - Q_1$$

Onde Q_3 é o percentil 75, também chamado de quartil superior, e o Q_1 é o percentil 25, também chamado de quartil inferior. Ele é uma boa medida de dispersão para distribuições assimétricas. Para dados normalmente distribuídos, o desvio inter-quartílico é aproximadamente igual a 1,35 vezes o desvio padrão.

Medidas da variável IDADE de funcionários de uma empresa, do setor de tecidos:

Descriptive Statistics (Planilha_funcionarios_AED_Statistica)						
Valid N	Mean	Median	Lower	Upper	Quartile	Std.Dev.
			Quartile	Quartile	Range	
			a dantino	additio	rtango	
45	32,68889	32,00000				8,920921

Média e Mediana

Cálculo dos Outliers

$$Q_{I} - 1.5(Q_{S} - Q_{I})$$

 $Q_{S} + 1.5(Q_{S} - Q_{I})$

Onde Q_l é o quartil inferior ou primeiro quartil da distribuição; Q_S é o quartil superior ou terceiro quartil da distribuição. O valor 1,5 pode ser alterado.

TRANSFORMAÇÃO DE DADOS

Objetivo: obter os dados em uma forma mais apropriada para os algoritmos de mineração

- Alisamento
- Generalização
- Normalização
- Transformação numérico para categórico
- Transformação categórico para numérico

Alisamento

Eliminação de ruídos, exceções, ouliers, que são prejudiciais a muitos algoritmos de mineração

Generalização

Utilizado quando os dados são muito esparsos e não se consegue bons resultados.

Então, dados primitivos são substituídos por conceitos de ordem superior via uma hierarquia de conceitos.

Exemplo:

- calça, blusa, saia, etc. são substituídos por roupa
- nomes de cidades são substituídas pelo nome do estado ao qual pertencem

O propósito da normalização é minimizar os problemas oriundos do uso de unidades e dispersões distintas entre as variáveis.

Alguns algoritmos de mineração são beneficiados com a normalização (redes neurais, kNN, k-medias, ...)

Objetivo: ajustar as escalas de valores dos atributos para o mesmo intervalo : [-1 a 1] , [0 a 1],...

- Evita maior influência, em determinados métodos, de atributos com grande intervalo de valores
- Normalização linear
- Normalização por desvio padrão
- Normalização pelo valor máximo dos elementos
- Normalização por escala decimal

Normalização linear no intervalo [0,1]

$$f(X) = \frac{X - Min}{Max - Min}$$

CPF	Despesa	Despesa_normalizada
9999999999	1000	0,14
11111111111	2000	0,43
33333333333	3000	0,71
555555555	1500	0,29
2222222222	1500	0,29
0000000000	1000	0,14
8888888888	3000	0,71
7777777777	500	0
6666666666	4000	1
4444444444	1000	0,14

Normalização por desvio padrão

- Objetivo: considera a posição média dos valores e os graus de dispersão em relação à posição média
- Útil quando mínimo e máximo são desconhecidos

$$f(X) = (X - média) / \sigma$$

onde $\sigma = desvio padrão$

média =
$$1850$$

 $\sigma = 1131,62$

CPF	Despesa	Despesa_normalizada
9999999999	1000	-0,75
11111111111	2000	0,13
3333333333	3000	1,02
5555555555	1500	-0,31
2222222222	1500	-0,31
0000000000	1000	-0,75
8888888888	3000	1,02
7777777777	500	-1,19
6666666666	4000	1,90
4444444444	1000	-0,75

Normalização pelo valor máximo dos elementos

- Dividir cada valor pelo maior valor
- Resultado similar à normalização linear
 - Igual se mínimo = 0 (zero)

$$f(X) = X / máximo$$

CPF	Despesa	Despesa_normalizada
9999999999	1000	0,25
11111111111	2000	0,50
33333333333	3000	0,75
555555555	1500	0,38
2222222222	1500	0,38
0000000000	1000	0,25
8888888888	3000	0,75
7777777777	500	0,13
6666666666	4000	1
4444444444	1000	0,25

Objetivo: transformação de valores numéricos para categóricos ou discretos

- Mapeamento direto
- Mapeamento em intervalos (discretização)

Mapeamento direto

 Objetivo: substituição de valores numéricos por valores categóricos

Exemplo: sexo
1 → M
0 → F

Mapeamento em intervalos (discretização)

- Objetivo: substituição de valores dentro de um intervalo por um identificador
- Identificador de intervalo:
 - Categórico: nome (sugestão: mneumônico)
 - Numérico
- Exemplo: número de dependentes

Num_Dep:	0 a 1	2 a 5	6 a 99	
categórico	poucos_dep	media_dep	muitos_dep	
numérico	0	1	2	

Mapeamento em intervalos (discretização): formas

Intervalos com tamanho pré-definidos (domínio da aplic.)

```
0a1 \rightarrow 0, 2a5 \rightarrow 1, 6a99 \rightarrow 2
```

 Intervalos de igual tamanho (conhecimento dos limites do intervalo)

```
2 intervalos / 10 valores: 0 \text{ a } 4 \rightarrow 0, 5 \text{ a } 9 \rightarrow 1
```

- Intervalos com o mesmo número de elementos
- Intervalos por meio de clusterização

Utiliza algum algoritmo de agrupamento de dados para descobrir automaticamente a distribuição dos dados

Objetivo: transformação de valores categóricos em numéricos

- Mapeamento direto
- Representação binária 1-de-N

Mapeamento direto

Mapeamento em valores de 1 a N

Est_Civil	mapeamento	
Casado	1	
Solteiro	2	
Viúvo	3	
Divorciado	4	
Outro	5	

Mapeamento direto

Quando o atributo categórico for **ordinal**, é importante que os valores numéricos sigam a mesma ordem

conceito	mapeamento	
Ruim	1	
Regular	2	
Bom	3	
Ótimo	4	

Representação binária 1-de-N

- Mapeamento em número cuja representação binária tenha N dígitos
 - Somente um dígito é "1"

Est_Civil	Representação binária 1-de-N
Casado	00001
Solteiro	00010
Viúvo	00100
Divorciado	01000
Outro	10000

Outros tipos de dados: outras transformações

- Texto (ex: categorização de textos; "exame" de e-mails, ...)
- internet
 - conteúdo
 - estrutura
 - USO
- imagens
- seqüências de genes
- séries temporais
- dados de trajetórias
- dados de redes sociais

•

Exercícios

- Dado o conjunto {1, 2, 3, 4, 5, 80}, calcular:
 - Média
 - Mediana
- Dados os números abaixo, calcular a mediana, o quartil inferior e o quartil superior

23, 7, 12, 6, 10, 23, 7, 12, 6, 10, 7

Exercícios

 Converter os dados abaixo para valores numéricos e normalizá-los em [0, 1]

Febre Enjô	o Mancha	Dor	Diagnóstico
baixa sim média não alta sim alta não baixa não média não	média n grande o pequena o grande	ODABOD	doente saudável saudável doente saudável doente

Exercícios

 Discretizar o atributo que possui os valores abaixo em 3 intervalos

0, 1, 1, 1, 2, 2, 2, 3, 4, 6, 6, 9, 10, 13, 20, 20, 21, 21, 22, 23, 23

Usar:

- Tamanhos iguais
- Freqüências iguais