CHEM202 Organic Chemistry

Nick Green

nick.green@otago.ac.nz, 3n11

Module 1: Spectroscopy and Characterisation

Lecture 3: 1H NMR Spectroscopy

What molecule is being observed by NMR in a MRI scan?

¹H NMR Spectroscopy

 For ¹H's, I = 1/2, which in a magnetic field generates two energy levels (2I + 1)

• In an applied magnetic field, B_o the nuclei with spin 1/2 are aligned either parallel (α state) or antiparallel (β state) to the

field.

$$v = \gamma B_0 / 2 \pi$$

$$\Delta E = h \gamma B_0 / 2 \pi$$

NMR active nuclei

Properties of NMR active isotopes of commonly encountered nuclides. Resonance frequencies are for a field strength of 11.74 tesla and the relative sensitivity includes a term for the intrinsic sensitivity of a nuclide and its natural abundance.

Nucleus	Natural Abundance %	Nuclear Spin (I)	Magnetogyric ratio /10 ⁷ rad T ⁻¹ s ⁻¹	Resonant frequency / MHz	Relative sensitivity
¹H	99.98	1/2	26.75	500.00	1.00
² H	0.02	ĩ	4.11	76.75	1.45×10^{-6}
¹³ C	1.11	1/2	6.73	125.72	1.76×10^{-4}
¹⁴ N	99.63	î	1.93	36.12	1.01×10^{-3}
¹⁵ N	0.37	1/2	-2.71	50.66	3.85×10^{-6}
¹⁷ O	0.04	5	-3.63	67.78	1.08×10^{-5}
¹⁹ F	100.00	1/2	25.18	470.39	0.83
31P	100.00	1 2	10.84	202.40	6.63×10^{-2}

NMR Spectra of Ethanol

Shielding

The exact extent of the magnetic field that any nucleus experiences is a sum of:

- The (large) external magnetic field
- Small local variations in the magnetic field

These small local variations arise from the movement of electrons, which generate their own tiny magnetic fields

CH₃

Depending on the local environment, nuclei will experience a magnetic field slightly higher or lower than the external one

Shielding reduces the strength of the magnetic field experienced.

Deshielding increases it.

These effects depend on structure.

¹H NMR Spectroscopy

 For ¹H's, I = 1/2, which in a magnetic field generates two energy levels (2I + 1)

• In an applied magnetic field, B_o the nuclei with spin 1/2 are aligned either parallel (α state) or antiparallel (β state) to the

field.

$$v = \gamma B_0 / 2 \pi$$

$$\Delta E = h \gamma B_0 / 2 \pi$$

Given this energy difference the two spin states will be unequally populated (Boltzman distribution)

$$N_{\alpha}/N_{\beta} = e^{-\Delta E/RT}$$

The low frequency radiation required indicates that ΔE is relative small, and correspondingly there will only be a small population difference between the α and β states

For protons at 200 MHz the population difference is remarkably small ($\Delta E=6.6x10-26J$)

$$105 N_{\beta}$$
 $1 + 105 N_{\alpha}$

Features of the ¹H NMR Spectrum

 \Rightarrow a typical 1-D ¹H-nmr spectrum is a plot of intensity vs chemical shift (δ)

Deshielded (higher freq)

Shielded (lower freq)

Information from data

Analysis yields detailed information regarding molecular structure and in particular a map of the C/H framework. Spatial information can also be ascertained *ie* analysis of a molecules conformation.

- number of different absorptions ⇒ how many different proton environments are present in the molecule
- the frequency of absorption, chemical shift $(\delta) \Rightarrow$ the environment of the respective nuclei
- the intensities of the signals ⇒ relative number of nuclei of each type
- the splitting of the signals ⇒ information about neighboring nuclei, molecular geometry

Chemical Shift

 \Rightarrow a typical 1-D ¹H-nmr spectrum is a plot of intensity vs chemical shift (δ)

The chemical shift (δ, ppm) is a universal, relative measure of frequency that is independent of B_0

$$\delta = (\mathbf{v} - \mathbf{v}_{ref}) / \mathbf{v}_0$$

 v_0 = operating frequency of the spectrometer (MHz) v_{ref} = frequency of absorption for a reference compound (Hz)

The reference compound for both ¹H and ¹³C nmr is tetramethylsilane (TMS) whose chemical shift is defined as 0.00 ppm

TMS, is volatile, inert, soluble in a majority of solvents, and displays a single resonance with a convenient δ .

Shielding and deshielding

A nucleus is shielded or deshielded whenever it is influenced by the magnetic fields of nearby electrons. The applied magnetic field induces circulation of electrons in both the single and multiple bonds. Circulation of charge results in a magnetic field which opposes B₀ thus shielding the nucleus from the applied magnetic field.

The larger the electron density \Rightarrow the greater the shielding, and the lower the frequency

Nomenclature used when describing chemical shift

high frequency
deshielded
shielded
increasing chemical shift (δ, ppm)

Chemical shift is characteristic of structure

What influences shielding?

Inductive effects
Anisotropic effects
Mesomeric effects
H-bonding

Inductive Effects

- the degree of shielding about a nucleus is strongly influenced by the electron density surrounding it, which will be affected by electronegative and electropositive substituents in the immediate vicinity
- electron withdrawing groups will draw electron density away (- I effect) from the nucleus
- ⇒ reduce the shielding effect and move the resonance frequency to higher values (higher ppm)
- electropositive groups have the opposite effect (+ I effect)
- the inductive effect is a short range effect (Through bond effect)

Inductive Effects

Proton Chemical Shifts of Methyl Derivatives

Compound	(CH ₃) ₄ C	(CH ₃) ₃ N	(CH ₃) ₂ O	CH ₃ F
δ	0.9	2.1	3.2	4.1
Compound	(CH ₃) ₄ Si	(CH ₃) ₃ P	(CH ₃) ₂ S	CH ₃ CI
δ	0.0	0.9	2.1	3.0

Proton Chemical Shifts (ppm)

Cpd. / Sub.	X=CI	X=Br	X=I	X=OR	X=SR
CH ₃ X	3.0	2.7	2.1	3.1	2.1
CH ₂ X ₂	5.3	5.0	3.9	4.4	3.7
CHX ₃	7.3	6.8	4.9	5.0	

Inductive Effects

XC1	H ₂ C ²	H ₂ C	3Ha
~~	1 120	1 120	1 13

x	C ¹ H ₂	C ² H ₂	C ³ H ₃
Et	1.3	1.3	0.9
HOOC	2.3	1.7	1.0
SH	2.5	1.6	1.0
NH_2	2.6	1.5	0.9
Ph	2.6	1.6	0.9
Br	3.4	1.9	1.0
CI	3.5	1.8	1.0
ОН	3.6	1.6	0.9
NO_2	4.4	2.1	1.0

The influence of electronegative substituents on chemical shift (in ppm). The greater the electron withdrawing effect of the sustituent, the greater the chemical shift of adjacent protons.

The hybridisation of a carbon atom has a substantial effect on the δ for attached protons

sp^3	δ 0.8 - 2 ppm
sp^2	δ 4.5 - 6 ppm
sp	δ 2 - 3 ppm

This is partially a consequence of the increasing 'electron withdrawing nature' of the C on going from sp^3 to sp hybridisation.

An sp carbon is the most electronegative, but there is an additional effect at play! (tbc...)