PHYSIQUE GÉNÉRALE III (SMT) Examen du 1 Février 2017

Problème no. 1

Un disque très mince de rayon R est chargé uniformément avec une densité de charge de surface $\sigma > 0$ (en C/m²). Il est placé dans le plan yz avec son centre à l'origine (0,0,0). Une très petite particule ayant une charge Q<0 et une masse M est aussi présente.

Note:
$$\int \frac{x}{(x^2 + a^2)^{1/2}} dx = (x^2 + a^2)^{1/2} \quad \text{et } \int \frac{x}{(x^2 + a^2)^{3/2}} dx = -\frac{1}{(x^2 + a^2)^{1/2}}$$

1) Déterminer le champ électrique $\mathbf{E} = (\mathbf{E}_x, \mathbf{E}_y, \mathbf{E}_z)$ créé par le disque chargé au point (x,y,z) = (D,0,0) en fonction des paramètres donnés $(\mathbf{R}, \mathbf{D}, \sigma)$ [4 points]

SOLUTION:

Par symmetrie: $E_y(D,0,0) = E_z(D,0,0) = 0$

$$dE_x(D,0,0) = \frac{1}{4\pi\varepsilon_0} \frac{\sigma r d\varphi dr}{r^2 + D^2} \cos\theta \qquad \cos\theta = \frac{D}{\sqrt{r^2 + D^2}}$$

 \Rightarrow

$$E_{x}(D,0,0) = \frac{\sigma D}{4\pi\varepsilon_{0}} \int_{0}^{2\pi} d\varphi \int_{0}^{R} \frac{rdr}{(r^{2} + D^{2})^{3/2}} = \frac{\sigma}{2\varepsilon_{0}} \left[1 - \frac{D}{\sqrt{R^{2} + D^{2}}} \right]$$

 \Rightarrow

$$E_x(D,0,0) = \frac{\sigma}{2\varepsilon_0} \left[1 - \frac{D}{\sqrt{R^2 + D^2}} \right]$$

$$E_{v}(D,0,0)=0$$

$$E_z(D,0,0)=0$$

2) La charge ponctuelle est placée à l'origine (0,0,0). Déterminer le travail W nécessaire pour déplacer la charge ponctuelle de l'origine (0,0,0) au point (D,0,0) en fonction des paramètres donnés (R,D,σ,Q) [2 points]

SOLUTION:

$$W = \int_{0}^{D} F_{x} dx = \int_{0}^{D} Q E_{x} dx = \int_{0}^{D} Q \frac{\sigma}{2\varepsilon_{0}} \left[1 - \frac{x}{\sqrt{R^{2} + x^{2}}} \right] dx = \frac{Q\sigma}{2\varepsilon_{0}} \left[\sqrt{R^{2} + D^{2}} - (R + D) \right]$$

$$\Rightarrow$$

$$W = \frac{Q\sigma}{2\varepsilon_{0}} \left[\sqrt{R^{2} + D^{2}} - (R + D) \right]$$

3) La charge ponctuelle est placée au point (D,0,0) et laissée libre de bouger. Déterminer la vitesse $\mathbf{v}=(v_x,v_y,v_z)$ d'impact de la particule contre le disque chargée (i.e., la vitesse au point (0,0,0)) en fonction des paramètres donnés (R,D,σ,Q,M) [2 points]

SOLUTION:

$$E_y = E_z = 0 \Rightarrow F_y = F_z = 0 \Rightarrow a_y = a_z = 0 \Rightarrow v_y = v_z = 0$$

Conservation de l'énergie:

$$\frac{1}{2}M\left(v_{x}(0,0,0)\right)^{2} = U = W$$

$$\Rightarrow$$

$$v_{x}(0,0,0) = \sqrt{\frac{2W}{M}} = \sqrt{\frac{1}{M}} \frac{Q\sigma}{\varepsilon_{0}} \left[\sqrt{R^{2} + D^{2}} - \left(R + D\right)\right]$$

$$\Rightarrow$$

$$v_{x}(0,0,0) = \sqrt{\frac{1}{M}} \frac{Q\sigma}{\varepsilon_{0}} \left[\sqrt{R^{2} + D^{2}} - \left(R + D\right)\right]$$

$$v_{y}(0,0,0) = 0$$

$$v_{z}(0,0,0) = 0$$

Problème no. 2

Une spire conductrice rectangulaire fermée (largeur W, hauteur L, résistance R, inductance négligeable) est placée à une distance D à côté d'un fil conducteur de longueur infinie (voir figure).

1) On suppose que le fil conducteur infini est parcouru par un courant <u>indépendant</u> du temps I_1 et la spire conductrice rectangulaire est parcourue par un courant <u>indépendant</u> du temps I_2 . Déterminer la force totale \mathbf{F} =(F_x , F_y , F_z) sur la spire rectangulaire en fonction des paramètres donnés (I_1 , I_2 , D, W, L). [4 points]

SOLUTION:

$$\int_{C} \mathbf{B} \cdot d\mathbf{l} = \mu_0 \int_{S} \mathbf{J} \cdot d\mathbf{s} \Rightarrow 2\pi D B_z(x, y, 0) = \mu_0 I_1 \Rightarrow B_z(x, y, 0) = \frac{\mu_0 I_1}{2\pi x}$$

$$F_{1,x} = B_z(D, y, 0)LI_2 = \frac{\mu_0 I_1 I_2 L}{2\pi D}$$

$$F_{2,x} = -B_z B_z (D+W, y, 0) L I_2 = -\frac{\mu_0 I_1 I_2 L}{2\pi (D+W)}$$

 \Rightarrow

$$F_{TOT,x} = F_{1x} + F_{2x} = \frac{\mu_0 I_1 I_2 L}{2\pi} \left(\frac{1}{D} - \frac{1}{D+W} \right)$$

 \Rightarrow

$$F_{TOT,x} = \frac{\mu_0 I_1 I_2 L}{2\pi} \left(\frac{1}{D} - \frac{1}{D+W} \right)$$

$$F_{TOT,y} = 0$$

$$F_{TOT}$$
, = 0

2) On suppose que le fil conducteur infini est parcouru par un courant <u>dépendant</u> du temps $I_1(t)=A_1t$ (avec $A_1>0$ et indépendant du temps). Déterminer le courant induit $I_2(t)$ et la force totale $\mathbf{F}(t)=(F_x(t),F_y(t),F_z(t))$ sur la spire rectangulaire, en fonction des paramètres donnés (A_1,D,W,L,R) .[4 points]

SOLUTION:

$$\int_{C} \mathbf{B} \cdot d\mathbf{l} = \mu_{0} \int_{S} \mathbf{J} \cdot d\mathbf{s} \Rightarrow 2\pi D B_{z}(x, y, 0) = \mu_{0} I_{1}(t) \Rightarrow B_{z}(x, y, z) = \frac{\mu_{0} I_{1}(t)}{2\pi x}$$

$$\Rightarrow \Phi_{B}(t) = \int_{0}^{L} \int_{D}^{D+W} \frac{\mu_{0} I_{1}(t)}{2\pi x} dx dy = \frac{\mu_{0} L}{2\pi} I_{1}(t) \ln\left(1 + \frac{W}{D}\right)$$

$$\Rightarrow$$

$$\left| \varepsilon \right| = \left| -\frac{d}{dt} \Phi_B(t) \right| = \frac{\mu_0 L}{2\pi} A_1 \ln \left(1 + \frac{W}{D} \right)$$

$$\Rightarrow$$

$$I_2(t) = \frac{\varepsilon}{R} = \frac{\mu_0 L}{2\pi R} A_1 \ln\left(1 + \frac{W}{D}\right)$$

$$\Rightarrow$$

$$F_{TOT,x}(t) = \frac{\mu_0 I_1(t) I_2(t) L}{2\pi} \left(\frac{1}{D} - \frac{1}{D+W} \right) = -\frac{\mu_0 A_1 t}{2\pi} \left(\frac{1}{D} - \frac{1}{D+W} \right) \frac{\mu_0 L^2}{2\pi R} A_1 \ln \left(1 + \frac{W}{D} \right) = \left(\frac{\mu_0 A_1}{2\pi} \right)^2 \frac{L^2}{R} t \left(\frac{1}{D} - \frac{1}{D+W} \right) \ln \left(1 + \frac{W}{D} \right)$$

$$\Rightarrow$$

$$F_{TOT,x}(t) = \left(\frac{\mu_0 A_1}{2\pi}\right)^2 \frac{L^2}{R} t \left(\frac{1}{D} - \frac{1}{D+W}\right) \ln\left(1 + \frac{W}{D}\right)$$

$$F_{TOT,y}(t) = 0$$

$$F_{TOT,z}(t) = 0$$

Questions (une seule réponse correcte par question, 1 point par question)

 ε_0 $\varepsilon_0 \cong 8.85 \times 10^{-12} \text{ F/m}$ μ_0 $\mu_0 \cong 1.26 \times 10^{-6} \text{ H/m}$

Accélération de la pesanteur (gravité) $g \cong 9.8 \text{ m/s}^2$ (à la surface de la Terre)

Masse de l'électron $m_e \cong 9.11 \times 10^{-31} \text{ kg}$ (au repos)

Charge de l'électron $e \cong -1.6 \times 10^{-19} \text{ C}$

Masse du proton $m_p \cong 1.67 \times 10^{-27} \text{ kg}$ (au repos)

Charge du proton $q_p \cong 1.6 \times 10^{-19} \text{ C}$

Question 1

Un récipient contient un tube en deux parties, une de section S_1 et l'autre de section S_2 =(1/2) S_1 , immergé dans une huile à viscosité non nulle au repos. Quelle est la proposition vraie?

- A. $P_A=P_B=P_C$
- B. $P_B=P_E$ et $P_A=(1/2)P_C$
- C. $P_B=P_E$ et $P_A=2P_C$
- D. $P_B=P_E$ et $P_B< P_C< P_A$

On considère un système à l'équilibre composé d'un tuyau en U en position verticale, avec une extrémité fermée et l'autre ouverte, contenant deux liquides L1 et L2 immiscibles (qui ne se mélangent pas). Calculer la pression p_1 du gaz emprisonné en considérant les données suivantes: p_0 =10⁵ Pa, g= 9.8 m/s², ρ_1 =3060 kg/m³, ρ_2 =1530 kg/m³, h_1 - h_3 =6.67 m, h_2 - h_3 =1.67 m.

- A. 0.5×10⁵ Pa
- B. 1.5×10⁵ Pa
- C. 2.5×10⁵ Pa
- D. 1.0×10⁵ Pa
- E. 0

On considère un fluide incompressible et non-visqueux (densité 4000 kg/m^3) qui s'écoule dans un tuyau horizontal à section variable (voir dessin). En particulier, on a que v1 = 2.4 m/s, p1 = 1200 Pa et p2 = 5p1. On néglige la force de la pesanteur. Quelle est la proposition vraie?

- A. $S_2 = 0.76S_1$
- **B**. $S_2 = 1.31S_1$
- C. $S_2 = 1.67S_1$
- D. $S_2 = 2.31S_1$
- F. $S_2 = 3.67S_1$

Question 4

Un iceberg sphérique (densité 992 kg/m³) flotte à la surface de la mer (densité 1025 kg/m³). Calculer la fraction du volume immergé (sous l'eau) de l'iceberg.

- A. 50%
- B. 97%
- C. 69%
- D. 84%
- E. 3%
- F. 6%

Question 5

On considère un écoulement défini dans le repère (x, y, z) par le champ de vitesse $\mathbf{v} = (2x-3z+t, 5/2-8t, 5x-2z)$ où t est le temps. Quelle est la seule proposition vraie?

- A. L'écoulement est irrotationnel.
- B. L'écoulement est stationnaire.
- C. Le flux du champ v à travers une surface fermée arbitraire est nul.
- D. L'écoulement est laminaire.
- E. Aucune des réponses précédentes.

Question 6

Considérez dans le plan xy un carré de côté 2d avec son centre placé à l'origine (0,0,0), et sur l'axe z une charge +Q à z=d. Le flux du champ électrique Φ_E à travers le carré s'exprime:

- A. 0
- B. $\frac{Q}{\varepsilon_0}$
- C. $\frac{Q}{4\varepsilon_0}$
- D. $\frac{Q}{4\pi\varepsilon_0}$
- E. $\frac{Q}{6\varepsilon_0}$
- F. Aucune de ces réponses.

Une charge Q est placée à l'intérieur d'un objet isolant de constante diélectrique ϵ_r et sans autres charges libres. Le flux du champ ${\bf D}$ à travers la surface extérieure de l'objet est :

(Attention: la question concerne le champ **D** et pas le champ **E**)

- A. 0
- **B**. *Q*
- C. Dépend de la position de la charge Q.
- D. Dépend des dimensions de l'objet.
- E. Q/ε_0
- F. $Q/\varepsilon_0\varepsilon_r$
- F. Aucune de ces réponses.

Question 8

Trouver l'amplitude du champ électrique **E** à la surface d'un cylindre infini de rayon R ayant une densité de charge uniforme ρ (en C/m³) à l'intérieur.

- A. $E = \frac{\rho}{2\varepsilon_0}$
- B. E = 0
- $\mathbf{C}. \ E = \frac{\rho R}{2\varepsilon_0}$
- D. $E = \frac{\rho R}{4\pi\varepsilon_0}$
- E. $E = \frac{\rho R}{2}$
- F. $E = \frac{\rho R}{\varepsilon_0}$

Question 9

Deux charges ponctuelles $Q_A = 1 \times 10^{-8}$ C et $Q_B = 2 \times 10^{-8}$ C sont placées à une distance d=1 m le long de l'axe x (Q_A en x=0 et Q_B en x=1 m). Le long de l'axe x, le champ électrique **E** est nul en:

- A. $x \cong -0.2 \text{ m}$
- B. $x \approx 0.4 \text{ m}$
- C. $x \cong 0.4$ m et $x \cong -2.4$ m
- D. $x \approx 0.6 \text{ m}$
- E. $x \approx 0.3 \text{ m}$

Question 10

Deux sphères chargées ayant une charge Q et une masse m sont suspendues par deux fils de longueurs égales L, fixés en un même point. La masse des deux fils est négligeable. En supposant que $\theta=45^{\circ}$, la distance d'équilibre D est:

- A. $\sqrt{\frac{1}{4\pi\varepsilon_0}}\frac{Q}{mg}$
- B. $\sqrt{\frac{Q^2}{4\pi\varepsilon_0}} \frac{mg}{L^2}$
- C. $\sqrt{\frac{1}{4\pi\varepsilon_0}}\frac{Q^2}{mg}$
- D. $\sqrt{\frac{1}{4\pi\varepsilon_0}}\frac{Q^2}{L^2mg}$
- F. $\frac{1}{4\pi\varepsilon_0} \frac{Q^2}{mg}$

Un condensateur variable a une capacité maximale de C_i =100 pF et une capacité minimale de C_f =10 pF. La variation de capacité est obtenue en faisant tourner ses plaques mobiles. On suppose que le condensateur est chargé avec une différence de potentiel V_i =300 V dans la situation initiale où la capacité est maximale C_i . Suite à la rotation des plaques on arrive à la capacité minimale C_f (sans perdre de charges).

Déterminer la différence de potentiel finale $V_{\rm f}$ et le travail W effectué afin de tourner les plaques de la position initiale à la position finale:

A.
$$V_{\rm f} = 3000~V~W \cong 2 \times 10^{-5}~J$$

B.
$$V_{\rm f} = 0 \ V$$
 $W \cong 1 \times 10^{-5} \ J$

C.
$$V_{\rm f} = 3000~V~W \cong 4 \times 10^{-5}~J$$

D.
$$V_f = 3000 \text{ V}$$
 W=0

E.
$$V_{\rm f} = 3~V~W \cong 4 \times 10^{-5}~J$$

F.
$$V_f = 300 \text{ V}$$
 $W \cong 4 \times 10^{-5} \text{ J}$

Question 12

Un câble coaxial comporte deux conducteurs concentriques (voir figure). Les conducteurs sont parcourus par des courants I, indépendants du temps égaux et de direction opposée. Le champ magnétique B dans la région entre les deux conducteurs (i.e., pour a < r < b) et très loin des extrémités du câble est :

A.
$$B = 0$$

B.
$$B = \frac{\mu_0 I}{\pi r^2}$$

C.
$$B = \frac{\mu_0 I}{\pi a^2}$$

D.
$$B = \frac{\mu_0 I}{2\pi r}$$

E.
$$B = \frac{\mu_0 I}{2\pi a}$$

$$F. B = \frac{\mu_0 I}{2\pi (c-a)}$$

Ouestion 13

Dans une certaine région de l'espace un champ électrique \mathbf{E} dans la direction +x et un champ magnétique \mathbf{B} dans la direction +z sont présents. Un électron traverse cette région en ligne droite dans la direction -y avec une vitesse v. Déterminer l'amplitude du champ \mathbf{E} .

A.
$$E = 2vB$$

B.
$$E = vB$$

C.
$$E = (v^2 / c) B$$

D.
$$E = cB$$

E.
$$E = v / B$$

F.
$$E = eB$$

H. La situation est impossible.

Un électron se déplace à une vitesse $v_0=1.4x10^7$ m/s lorsqu'il pénètre par un très petit trou dans la région comprise entre deux plaques chargées d'un condensateur. Quelle est la tension minimale négative qui doit être appliquée

à la deuxième plaque pour que l'électron n'entre pas en collision avec la deuxième plaque? (négliger les effets des bords du trou et des plaques).

- A. Approx. -100 V
- B. Approx. -140 V
- C. Approx -560 V
- D. Aapprox. -1000 V
- E. Est dépendant de la distance entre les plaques.

Question 15

Une goutte sphérique d'eau ayant un diamètre de 1 cm est en «lévitation» dans un champ magnétique B vertical non uniforme ayant une valeur d'environ 2 T où la goutte est située. (Susceptibilité de l'eau $\chi \cong -10^{-5}$, densité de l'eau $\rho \cong 1000~{\rm kg/m^3}$). Le gradient de B est approximativement donné par:

- A. 61.6 T/m
- B. 616 T/m
- C. 6160 T/m
- D. 490 MT/m
- E. 490 T/m
- F. 4900 T/m
- G. 49 T/m
- H. 0

Question 16

Un aimant permanent ayant une magnétisation M (en A/m), une masse m (en kg), et une densité de masse ρ (en kg/m³) est en «lévitation instable» dans un champ magnétique B vertical non uniforme. Le gradient de B est approximativement donné par:

- A. $\frac{\rho gm}{M}$
- B. $\frac{M\rho g}{m}$
- C. $\frac{M}{m\rho g}$
- $\frac{\rho g}{M}$
- E. ρgM

Question 17

Dans un solénoïde «infini» (avec axe central le long de l'axe z) circule un courant I qui augmente linéairement avec le temps (i.e., $I=\alpha t,\ \alpha>0,\ \alpha$ est indépendant du temps). Le champ électrique ${\bf E}$ en un point ${\bf r}$ à l'extérieur du solénoïde est :

- A. Nul
- B. Non-nul mais indépendant du temps.
- C. Non-nul mais seulement si le solénoïde est en mouvement.
- D. Non-nul et dépendent du temps.

Une bobine tourne à vitesse constante autour de l'axe y dans un champ magnétique uniforme **B**=(B_x,0,0). La force électromotrice induite $\varepsilon(t)$ dans la bobine est:

- A. $\varepsilon(t) = 0 \quad \forall t$
- B. $\varepsilon(t) = 0$ pour $\theta(t) = 0^{\circ}$
- C. $\varepsilon(t) = 0$ pour $\theta(t) = 90^{\circ}$
- D. $\varepsilon(t) = 0$ pour $\theta(t) = 45^{\circ}$
- E. $\varepsilon(t) \neq 0 \quad \forall t$

Question 19

Une spire conductrice fermée de résistance R=10 Ohms, inductance négligeable, et d'aire A=0.050 m² dans le plan de la feuille se trouve dans un champ B uniforme perpendiculaire à la feuille, qui augmente linéairement avec le temps (i.e., $B = \alpha t$, $\alpha = 0.001 \text{ T/s}$). Le courant induit dans la spire est :

- A. I = 0
- B. $I \cong 5$ A
- C. $I \cong 5 \times 10^{-6} \text{ A}$.
- D. $I \cong 1 \times 10^{-4} \text{ A}$
- E: $I \cong 5 \times 10^{-3} \text{ A}$.

Question 20

Un émetteur produit une onde électromagnétique sphérique. A une distance L de la source, on mesure une intensité I_L et un champ électrique d'amplitude E_L. Que peut-on dire de l'intensité I_{2L} et de l'amplitude E_{2L} à une distance 2L de la source?

- $E_{2L}=E_{L}$ A. $I_{2L}=I_{L}$
- B. $I_{2L}=(\frac{1}{2})I_{L}$ $E_{2L} = (\frac{1}{2})E_{L}$
- C. $I_{2L}=(1/4)I_{L}$ $E_{2L}=(1/4)E_{L}$
- D. $I_{2L}=(1/4)I_{L}$ $E_{2L}=(1/2)E_{L}$
- E. $I_{2L} = (\frac{1}{4})I_{L}$ $E_{2I}=E_{I}$

Question 21

L'effet Doppler se traduit par une augmentation de la fréquence perçue par le récepteur par rapport à la fréquence émise par l'émetteur si :

- A. L'émetteur s'approche du récepteur.
- B. L'émetteur s'éloigne du récepteur.
- C. Le récepteur et l'émetteur ont la même vitesse.
- D. Le récepteur et l'émetteur sont immobiles.

Question 22

L'effet Doppler peut être utilisé pour mesurer la vitesse d'un fluide dans une conduite. La vitesse du fluide est constante dans toute la conduite. Un émetteur E envoie des ultrasons à une fréquence f=1 MHz. Une partie de l'onde est réfléchie par le fluide en mouvement et revient vers le détecteur D. L'émetteur E et le détecteur D sont immobiles et placés très proche l'un de l'autre. On peut considérer que la vitesse du sang est beaucoup plus petite que la vitesse du son qui est de 1500 m/s. On mesure une fréquence f''=1.002 MHz. Quelle est la vitesse du fluide?

- A. 0.75 m/s
- **B.** 1.5 m/s
- C. 3 m/s
- D. 6 m/s

Un faisceau de lumière monochromatique passe de l'air (indice de réfraction n=1) à un bloc de verre (indice de réfraction n=1.5). Il subit une variation de :

- A. Fréquence.
- B. Vitesse mais pas de longueur d'onde.
- C. Vitesse et fréquence.
- D. Ni de vitesse, ni de fréquence.
- E. Vitesse et longueur d'onde.
- F. Fréquence et longueur d'onde.
- G. Ni de vitesse, ni de longueur d'onde.
- H. Longueur d'onde mais pas de vitesse.

Question 24

Voici la trajectoire d'un rayon lumineux traversant trois milieux d'indices de réfraction différents n_1 , n_2 , n_3 . La figure est à l'échelle. Que peut-on conclure ?

- A. $n_1 > n_2 > n_3$
- B. $n_2 < n_1 < n_3$
- C. $n_3 < n_1 < n_2$
- D. $n_2 < n_3 < n_1$
- E. $n_1 < n_3 < n_2$

Question 25

Soit le schéma ci-dessous la vue supérieure d'une prisme régulier en verre. La face supérieure de ce prisme est un triangle équilatéral. Un rayon monochromatique arrive avec un angle de θ_1 =30°. Quelle est la valeur de l'angle θ_4 formé entre le dernier rayon réfracté et la normale:

- A. ≅ 30°
- B. $\cong 40^{\circ}$
- C. $\cong 45^{\circ}$
- D. $\approx 51^{\circ}$
- E. $\approx 60^{\circ}$
- **F**. ≅ 77°
- $G. \cong 86^{\circ}$
- H. 90°

Question 26

On fait passer de la lumière non polarisée à travers 2 filtres polarisants, le premier avec axe vertical, le deuxième horizontal. La lumière qui ressort au final est:

- A. Polarisée verticalement.
- B. Polarisée horizontalement.
- C. Non polarisée.
- D. Pas de lumière.
- E. Polarisée à 45°.

Dans une expérience d'interférence, de la lumière verte est incidente sur deux fentes et la figure d'interférence est observée sur un écran. Parmi les changements suivants, lequel causerait un resserrement des franges d'interférences ?

- A. Réduire la distance entre les fentes
- B. Remplacer la lumière verte par de la lumière bleue.
- C. Remplacer la lumière verte par de la lumière rouge.
- D. Réduire l'intensité de la lumière verte.
- E. Eloigner l'écran des fentes.

Question 28

