

题目:	轴系设计	
赵日:	一 	

学号: _____3150105533

指导教师: ______顾大强_____

专业: ______机械电子工程

学院:______机械工程学院

目录

1	问题	描述	2
2	轴的	设计	2
	2.1	选择轴的材料	2
	2.2	按转矩估算轴的最小直径	3
	2.3	轴的结构设计	3
	2.4	计算齿轮受力	3
	2.5	计算轴承反力	4
	2.6	绘制弯矩图	5
	2.7	绘制扭矩图	7
	2.8	绘制当量弯矩图	7
	2.9	分别计算截面的直径	8
3	强度	校核	8
4	其他	2零件	9
	4.1	轴承选择	9
	4.2	套筒	10
	4.3	键	10
	4.4	轴承寿命	11
		4.4.1 计算轴承受力	11
		4.4.2 计算当量载荷	11
		4.4.3 计算 <i>L_h</i>	12
5	装配	· · · · · · · · · · · · · · · · · · ·	12
参	考文献		12

1 问题描述

设计二级斜齿圆柱齿轮减速器,已知参数如表1所示。

参数	具体要求	
轴输入功率	P = 40kW	
轴转速	n = 100r/min	
齿轮 2 分度圆直径	688mm	
齿轮2螺旋角	$12^{\circ}50'$	
齿轮 3 分度圆直径	$d_3 = 170 \text{mm}$	
齿轮 3 螺旋角	10°29′	

表 1: 设计参数

图 1: 齿轮减速器示意图

需要设计的内容有

- 1. 中间轴的结构设计;
- 2. 中间轴的强度校核
- 3. 中间轴的轴承类型和型号,以及寿命
- 4. 绘制中间轴的装配结构草图

2 轴的设计

2.1 选择轴的材料

减速器的功率为 40kW,转速为 40kW,无其他特殊要求,故选用最常用的 45 号钢并做正火处理,查表可得 $\sigma_B=600MPa$ 。 1

¹陈秀宁, 顾大强. 机械设计. 浙江大学出版社,2010, 表 (12-1)

2.2 按转矩估算轴的最小直径

使用转矩估算轴的最小直径,计算公式为2

$$d \ge C\sqrt[3]{\frac{P}{n}} \quad (mm) \tag{1}$$

式中,由于轴受弯矩和扭矩,因此C宜取较大的值,此处取C=118。于是有

$$d \ge C\sqrt[3]{\frac{P}{n}} = 118\sqrt[3]{\frac{40kW}{100r/min}} = 86.94 \quad (mm)$$
 (2)

计算所得的应是最小直径(即安装轴承的直径)。该轴段因有键槽,应加大 (3-7)% 并圆整,取 d=90 mm。

2.3 轴的结构设计

由于轴的最小直径为 90,在此基础上适当增加直径,同时考虑到题目所给结构信息,初步设计周的结构如图所示。

图 2: 轴的初步设计

2.4 计算齿轮受力

齿轮 2 分度圆直径: $d_2 = 688mm$

齿轮 2 所受转矩:

$$T = 9.55 \times 10^6 \frac{P}{n} = 9.55 \times 10^6 \cdot \frac{40kW}{100r/min} = 3820000$$

齿轮 2 所受圆周力:

$$F_{2t} = \frac{2T}{d_2} = \frac{2 \times 3820000}{688mm} = 11105(N)$$

²陈秀宁, 顾大强. 机械设计. 浙江大学出版社,2010, 式 (12-2)

齿轮 2 所受径向力:

$$F_{2r} = \frac{F_{2t} \tan \alpha_n}{\cos \beta_2} = \frac{11105 \tan 20^{\circ}}{\cos 12^{\circ} 50'} = 4145(N)$$

齿轮 2 所受轴向力:

$$F_{2a} = F_{2t} \tan\beta_2 = 11105 \times \tan 12^{\circ} 50' = 2530(N)$$

齿轮 3 分度圆直径: $d_2 = 170mm$

齿轮 3 所受转矩:

$$T = 9.55 \times 10^6 \frac{P}{n} = 9.55 \times 10^6 \cdot \frac{40kW}{100r/min} = 3820000$$

齿轮 3 所受圆周力:

$$F_{3t} = \frac{2T}{d_3} = \frac{2 \times 3820000}{170mm} = 44941(N)$$

齿轮 3 所受径向力:

$$F_{3r} = \frac{F_{3t} \tan \alpha_n}{\cos \beta_3} = \frac{F_{3t} \tan 20^{\circ}}{\cos 10^{\circ} 29'} = 16635(N)$$

齿轮 3 所受轴向力:

$$F_{3a} = F_{3t} \tan 10^{\circ} 29' = 8315(N)$$

2.5 计算轴承反力

图 3: 受力分析示意图

由受力分析图(该图为俯视图),计算轴承受力,可得 垂直面:

$$F_{2v} = \frac{F_{3t} \times 340 + F_{2t} \times 115}{505} = 32786N \tag{3}$$

$$F_{1v} = F_{3t} + F_{2t} - F_{2h} = 23260(N) \tag{4}$$

水平面:

$$F_{2h} = \frac{340F_{3t} - F_{3a}d_3/2 - 115F_{2r} - F_{2a}d_2/2}{505} \tag{5}$$

$$= \frac{340 \times 16635 - 8316 \times 85 - 115 \times 4145 - 2530 \times 344}{505} = 7133(N) \tag{6}$$

$$F_{1h} = F_{3r} - F_{2r} - F_{2v} = 5357(N) (7)$$

2.6 绘制弯矩图

计算垂直面弯矩图,如图4所示。主要计算如下:

截面 b:

$$M_{bv} = 165F_{2v} = 165 \times 32786 = 5409690$$

截面 c:

$$M_{cv} = 115F_{1v} = 115 \times 23260 = 2674900$$

图 4: 垂直面弯矩图

计算水平面弯矩图,如图5所示。主要计算如下:截面 b:

$$M'_{bh} = 165F_{2h} = 165 \times 7133 = 1176945 \tag{8}$$

$$M_{bh}^{"} = M_{bh}^{"} + \frac{F_{3a}d_3}{2} = 1176945 + \frac{8316 \times 170}{2} = 1883805$$
 (9)

截面 c:

$$M'_{ch} = 115F_{1h} = 115 \times 5357 = 616055 \tag{10}$$

$$M_{ch}^{"} = M_{ch}^{\prime} - \frac{F_{2a}d_2}{2} = 616055 - \frac{2530 \times 688}{2} = -254265 \tag{11}$$

图 5: 水平面弯矩图

计算合成弯矩图,如图6所示。主要计算如下: 截面 b:

$$M_b' = \sqrt{M_{bH}'^2 + M_{bV}^2} = \sqrt{1176945^2 + 5409690^2} = 5536239(N \cdot mm)$$
 (12)

$$M_b'' = \sqrt{M_{bH}''^2 + M_{bV}^2} = \sqrt{1883805^2 + 5409690^2} = 5728304(N \cdot mm)$$
 (13)

截面 c:

$$M'_{c} = \sqrt{M'^{2}_{cH} + M^{2}_{cV}} = \sqrt{616055^{2} + 2674900^{2}} = 2744925(N \cdot mm)$$
 (14)

$$M_c^{"} = \sqrt{M_{cH}^{"2} + M_{cV}^2} = \sqrt{254265^2 + 2674900^2} = 2686958(N \cdot mm) \tag{15}$$

图 6: 合成弯矩图

2.7 绘制扭矩图

由所给条件可知, $T=3.82\times 10^6(N\cdot mm)$,采用的材料为正火处理的 45 号钢,其 $\sigma_B=600MPa$,查得数据 $^3[\sigma_{-1}]_b=55Mpa$, $[\sigma_0]_b=95MPa$,故 $\alpha=\frac{55}{95}\approx 0.58$,

$$\alpha T = 0.58 \times 3.82 \times 10^6 = 2.2156 \times 10^6 (N \cdot mm)$$

图 7: 扭矩图

2.8 绘制当量弯矩图

计算当量弯矩图,计算结果如图8所示。主要计算如下: 截面 b:

$$M_{be}^{'} = 5536239(N \cdot mm) \tag{16}$$

$$M_{be}^{"} = \sqrt{M_b^{"2} + (\alpha T)^2} = \sqrt{5728304^2 + (2.2156 \times 10^6)^2} = 6141852(N \cdot mm) \tag{17}$$

截面 c:

$$M_{ce}^{'} = 2744925(N \cdot mm) \tag{18}$$

$$M_{ce}^{"} = \sqrt{M_{c}^{"2} + (\alpha T)^{2}} = \sqrt{2686958^{2} + (2.2156 \times 10^{6})^{2}} = 3482618(N \cdot mm)$$
 (19)

³陈秀宁, 顾大强. 机械设计. 浙江大学出版社,2010, 表 (12-3)

图 8: 当量弯矩图

2.9 分别计算截面的直径

根据当量弯矩计算截面 b 和 c 处的直径, 4

$$d_b \ge \sqrt[3]{\frac{M_{be}''}{0.1[\sigma_{-1}]_b}} = \sqrt[3]{\frac{6141852}{0.1 \times 60}} = 100.78(mm)$$
 (20)

$$d_c \ge \sqrt[3]{\frac{M_{ce}''}{0.1[\sigma_{-1}]_b}} = \sqrt[3]{\frac{3482618}{0.1 \times 60}} = 83.42(mm)$$
 (21)

初步设计时这两个地方的直径均设置为110mm,因此满足条件。

3 强度校核

对截面 b 进行疲劳强度校核,查表⁵可得, $\sigma_{-1}=240MPa$, $\tau_{-1}=140MPa$ 。其弯曲应力为

$$\sigma_a = \frac{M_b^{"}}{W} = \frac{32M_b^{'}}{\pi d^3} = \frac{32 \times 5728304}{3.14 \times 108^3} = 46.34(MPa)$$
 (22)

$$\sigma_m = 0 \tag{23}$$

其扭转应力为

$$\tau_a = \frac{1}{2}\tau = \frac{T}{2W_T} = \frac{8T}{\pi d^3} = \frac{8 \times 3.82 \times 10^6}{3.14 \times 108^3} = 7.73(Mpa)$$
 (24)

$$\tau_m = \frac{1}{2}\tau = 7.73(MPa) \tag{25}$$

⁴陈秀宁, 顾大强. 机械设计. 浙江大学出版社,2010, 式 (12-4)

⁵陈秀宁, 顾大强. 机械设计. 浙江大学出版社,2010, 表 (12-1)

所选用的材料为 45 号钢,则其弯曲等效系数 $\psi_{\sigma}=0.1\sim0.2$,此处取 0.2,轴的剪切 等效系数, $\psi_{\tau} = 0.5\psi_{\sigma} = 0.1$ 。

查表 6 ,此处采用的是 A 型键槽,则得键槽处的弯曲、扭转有效应力集中系数为, $k_\sigma=$ 1.76, $k_{\tau} = 1.54$.

查表⁷得到,轴的直径在100-120之间,则弯曲、扭剪时轴的绝对尺寸系数为, $\varepsilon_{\sigma}=0.70$, $\varepsilon_{\tau} = 0.70$ °

查表⁸得到,选择轴的表面质量系数 $\beta = 0.90$ 。

按无限寿命考虑,取寿命系数 $K_N=1$,此时材质均匀,载荷与应力计算精确,故取 [s] = 1.5,带入式子计算

$$S_{\sigma} = \frac{K_N \sigma_{-1}}{\frac{k_{\sigma}}{\varepsilon_{\sigma} \beta} \sigma_{\alpha} + \psi_{\sigma} \sigma_{m}} = \frac{1 \times 240 \times 0.70 \times 0.90}{1.82 \times 46.34} = 1.79$$

$$S_{\tau} = \frac{K_N \tau_{-1}}{\frac{k_{\tau}}{\varepsilon_{\tau} \beta} \tau_{\alpha} + \psi_{\tau} \tau_{m}} = \frac{1 \times 140}{\frac{1.62}{0.70 \times 0.90} \times 7.73 + 0.1 \times 7.73} = 6.78$$

$$S = \frac{S_{\sigma} S_{\tau}}{\sqrt{S_{\sigma}^2 + S_{\tau}^2}} = \frac{2.05 \times 7.51}{\sqrt{2.05^2 + 7.51^2}} = 1.73 > [S]$$

$$(26)$$

$$(27)$$

$$S_{\tau} = \frac{K_N \tau_{-1}}{\frac{k_{\tau}}{\varepsilon_{\tau} \beta} \tau_{\alpha} + \psi_{\tau} \tau_{m}} = \frac{1 \times 140}{\frac{1.62}{0.70 \times 0.90} \times 7.73 + 0.1 \times 7.73} = 6.78$$
 (27)

$$S = \frac{S_{\sigma}S_{\tau}}{\sqrt{S_{\sigma}^2 + S_{\tau}^2}} = \frac{2.05 \times 7.51}{\sqrt{2.05^2 + 7.51^2}} = 1.73 > [S]$$
 (28)

因此、轴的b截面具有足够的疲劳强度、安全。

b 截面与 c 截面相同, 但 c 截面的合成弯矩比 b 截面小, 同时两个截面所受的扭矩相 同, 所以 c 截面也有足够的疲劳强度、安全。

其他零件

4.1 轴承选择

根据估算的直径,轮毂宽度,分别在轴的两端安装一对 7218C⁹角接触轴承,轴承宽度 为 30mm, 两端的轴承均使用套筒定位。

图 9: 角接触轴承示意图

⁶陈秀宁, 顾大强. 机械设计. 浙江大学出版社,2010, 表 (12-4)

⁷陈秀宁, 顾大强. 机械设计. 浙江大学出版社,2010, 表 (12-7)

⁸陈秀宁, 顾大强. 机械设计. 浙江大学出版社,2010, 表 (12-8)

⁹GB/T 292-1994

d, D, B	C_r, C_0	d_2, D_2, a, r, r_1	d_a, D_a, r_a
90,160,30	122,105	111.7,138.4,31.7,2,2	100,150,2

表 2: 角接触轴承参数

4.2 套筒

取套筒外径为110mm,内径与轴承内径相同,取90mm,套筒与齿轮配合处应高于齿轮,取齿轮孔径为110mm,套筒与齿轮接触处增加其外径,方便与齿轮配合。套筒尺寸如图所示。

图 10: 套筒结构示意图

4.3 键

轴与两齿轮直接均采用平键连接,键槽的尺寸根据轴的直径确定,查机械设计手册¹⁰,键的尺寸为 $b \times h = 32 \times 18$,键槽的宽度基本尺寸为 32,采用正常连接,轴 N9.0 -0.062,载 JS9, ± 0.031 ,深度尺寸,轴 11.0+0.20,载 7.4+0.20,半径 r 取 0.5。

¹⁰GB/T 1095/2003

图 11: 键的剖面尺寸示意图

键的长度根据式子29确定。

$$L_c \ge \frac{4T}{dh[\sigma_p]} \tag{29}$$

带入数据计算得到

$$L_c \geq 88mm$$

取输入齿轮处的平键长度为 100mm,输出齿轮处的平键长度为 150mm。

4.4 轴承寿命

所选轴承为单列角接触轴承,型号为7218C, $C_0 = 105$ 。

4.4.1 计算轴承受力

轴承所受总径向力为

$$F_1 = \sqrt{F_{h1}^2 + F_{v1}^2} = 23543N \tag{30}$$

$$F_2 = \sqrt{F_{h2}^2 + F_{v2}^2} = 33878N \tag{31}$$

主轴受到的轴向力为

$$F_a = F_{a3} - F_{a2} = 5786N (32)$$

计算可得

$$\frac{F_a}{C_0} = 0.0551 \tag{33}$$

查表得 $e = 0.43^{11}$,左右两轴承的附加轴向力为

$$S_1 = 10124N, S_2 = 14508N \tag{34}$$

。由于 $S_1 - F_a \le S_2$,所以右边轴承被压紧,左边轴承被放松,由此可得:

$$F_{a1} = S_2 + F_a = 20354N (35)$$

$$F_{a2} = S_2 = 14568N \tag{36}$$

¹¹陈秀宁, 顾大强. 机械设计. 浙江大学出版社,2010, 表 (14-10)

4.4.2 计算当量载荷

对于轴承 1, 取 $K_p = 1$,

$$\frac{F_{a1}}{C_0} = 0.1938 \tag{37}$$

查表取值得: $e_1 = 0.51^{12}$, 计算

$$\frac{F_{a1}}{F_1} = \frac{20354}{23543} = 0.86 > 0.51 \tag{38}$$

查表取值得: $X_1 = 0.44, Y_1 = 1.09$,则

$$P_1 = K_p(X_1F_1 + Y_1F_{a1} = 32545N$$

对于轴承 2, 取 $K_p = 1$,

$$\frac{F_{a2}}{C_0} = 0.1387\tag{39}$$

查表取值得: $e_1 = 0.51^{13}$, 计算

$$\frac{F_{a2}}{F_2} = \frac{14568}{33878} = 0.43 < 0.48 \tag{40}$$

查表取值得: $X_1 = 1, Y_1 = 0$, 则

$$P_1 = K_p(X_1F_1 + Y_1F_{a1} = 33878N$$

4.4.3 计算 *L_h*

因为 $P_1 < P_2$, 故按轴承 2 计算轴承寿命

$$L_{10h} = \frac{10^6}{60n} (\frac{C}{P})^{\varepsilon} = \frac{10^6}{60 \times 100} (\frac{198000}{55046})^3 = 7783h \tag{41}$$

即轴承寿命为7783h。

5 装配结构草图

见附件。

参考文献

- [1] 陈秀宁, 顾大强. 机械设计. 浙江大学出版社,2010
- [2] 谭建荣,张树有,陆国栋,施岳定编.图学基础教程.北京:高等教育出版社,2006

¹²陈秀宁, 顾大强. 机械设计. 浙江大学出版社,2010,表 (14-10)

¹³陈秀宁, 顾大强. 机械设计. 浙江大学出版社,2010, 表 (14-10)