

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA CR. 141828

(NASA-CR-141828) HEAT TRANSFER TESTS ON A 0.01-SCALE ROCKWELL CONFIGURATION 3 SPACE SHUTTLE ORBITER AND TANK (37-OT) IN THE CALSPAN 48-INCH HYPERSONIC SHOCK TUNNEL (OH12/IH21), VOLUME 1 (Chrysler Corp.)

N76-16141

HC \$11.75

Unclas G3/18 **0**9599

SPACE SHUTTLE

AEROTHERMODYNAMIC DATA REPORT

JOHNSON SPACE CENTER

HOUSTON, TEXAS

DATA MANagement services

DMS-DR-2164 NASA CR-141,828

VOLUME 1 OF 3

HEAT TRANSFER TESTS ON A 0.01-SCALE

ROCKWELL CONFIGURATION 3 SPACE SHUTTLE ORBITER

AND TANK (37-OT) IN THE CALSPAN 48-INCH

HYPERSONIC SHOCK TUNNEL (0H12/IH21)

by

M. Kotch Shuttle Aero Sciences Rockwell International Space Division

Prepared under NASA Contract Number NAS9-13247

bу

Data Management Services Chrysler Corporation Space Division New Orleans, La. 70189

for

Johnson Space Center National Aeronautics and Space Administration Houston, Texas

WIND TUNNEL TEST SPECIFICS:

Test Number:

Calspan 48 HST-173-100

NASA Series Number: Model Number:

0H12/IH21 37-0T

Test Dates:

October 29 through December 15, 1973

FACILITY COORDINATOR:

Ed Heustis Calspan Corporation P. O. Box 235 Buffalo, New York 14221

Phone: (716) 632-7500

PROJECT ENGINEER:

M. Kotch Rockwell International Space Division 12214 Lakewood Blvd. Downey, California 90241

Phone: (213) 922-1463

DATA MANAGEMENT SERVICES:

Prepared by:

Liaison--D. A. Sarver

Operations -- W. B. Meinders

Reviewed by: D. E. Poucher

Approved:

Data Operations

Concurrence:

Data Management Services

Chrysler Corporation Space Division assumes no responsibility for the data presented other than display characteristics.

HEAT TRANSFER TESTS ON A 0.01-SCALE ROCKWELL CONFIGURATION 3 SPACE SHUTTLE ORBITER AND TANK (37-OT) IN THE CALSPAN 48-INCH HYPERSONIC SHOCK TUNNEL (0H12/IH21)

by

M. Kotch, Rockwell International Space Division

ABSTRACT

This report presents model information and data from wind tunnel tests conducted on 0.01-scale models of the Rockwell Space Shuttle Orbiter and External Tank. These tests were conducted in the Calspan 48" Hypersonic Shock Tunnel to determine heating rates on ascent and re-entry configurations at various Reynolds numbers, Mach numbers and angles of attack.

(THIS PAGE INTENTIONALLY LEFT BLANK.)

TABLE, OF CONTENTS

·	Page
ABSTRACT	iii
INDEX OF MODEL FIGURES	2
INDEX OF DATA FIGURES	. 3
INTRODUCTION	7
NOMENCLATURE	8
CONFIGURATIONS INVESTIGATED	1.1
MODEL INSTRUMENTATION	13
TEST FACILITY DESCRIPTION	15
TEST PROCEDURE	17
DATA REDUCTION	18
REFERENCES	20
TABLES	
I. TEST CONDITIONS	21
II. DAŢASET/RUN NUMBER COLLATION SUMMARY	22
III. MODEL DIMENSIONAL DATA	23
IV. HEAT TRANSFER GAGE LOCATIONS	33
FIGURES	
MODEL .,	. 35
DATA	53 [.]
VOLUME 1Figures 4-17	
VOLUME 2Figures 18-35	
APPENDIX TABULATED SOURCE DATA	53
VOLUME 3	

INDEX OF MODEL FIGURES

Figure	Title	Page
1.	Configuration 3 Orbiter/ET	35
2.	Model Instrumentation	
	a. Model 37-T Instrumentation Locations	36
	b. 37-0 Instrumentation Locations	37
3.	Model Photographs	
	a. Installation of Model 37-0 - Orbiter Alone	38
	b. Installation of Model 37-OT - Orbiter/Tank	39
	c. Instrumentation - Orbiter Top View	40
	d. Instrumentation - Orbiter Bottom Surface	41
	e. Instrumentation - Orbiter Nose and Canopy	42
	f. Instrumentation - Orbiter Wing Leading Edge	43
	g. Instrumentation - Tank Top View	44
	h. Instrumentation - Tank Nose	45
	i. Instrumentation - Tank Forward Attachment Strut	46
	j. Instrumentation - Tank Aft Attachment Struts - Side View	47
	k. Instrumentation - Tank Aft Attachment Struts - Top View	48
	1. Sample Schlieren, Tank Alone, Run 4, α - 0°, M_{∞} = 6.99, $R_{\rm e}/{\rm ft}$ = 0.12 x 10 ⁶	49
	m. Sample Schlieren, Orbiter Alone, Run 25, α = 30°, M_{∞} = 7.92, $R_{\rm e}/{\rm ft}$ = 7.55 x 10 ⁶	50
	n. Sample Schlieren, Orbiter/Tank, Run 27, α = 0°, M_{∞} = 7.61, $R_{\rm e}/{\rm ft}$ = 1.20 x 10 ⁶	51

INDEX OF DATA FIGURES

	INDEX OF DATA FI	IGURES		
FIGURE NUMBER	TITLE	CONDITIONS VARYING	PLOTTED . COEFFICIENTS SCHEDULE	PAGES
VOLUME 1 4	EFFECT OF RECOVERY FACTOR ON THE E. TANK HEAT TRANSFER RN/L1 ALPHA = 0	HAW/HT PHI, MACH	А	1-104
5 .	EFFECT OF RECOVERY FACTOR ON THE EXTERNAL TANK HEAT TRANSFER ALPHA = 5	HAW/HT	. A	105-128
6 .	EFFECT OF RECOVERY FACTOR ON E. TANK HEAT TRANSFER WITHOUT PROTUBERANCES	HAW/HT PHI, MACH	Α .	129-152
7	EFFECT OF PROTUBERANCES ON THE EXTERNAL TANK HEAT TRANSFER ALPHA = 0	PHI HAW/HT	Α .	153-184
. 8	EFFECT OF RECOVERY FACTOR ON THE ORBITER BODY HEAT TRANSFER ALPHA = 0	HAW/HT PHI, MACH	· A	185-236
9	EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 0	HAW/HT 2Y/B, MACH	В	237-314
10	EFFECT OF RECOVERY FACTOR ON THE ORBITER TAIL HEAT TRANSFER ALPHA = 0	HAW/HT MACH	С	315-327
11 .	EFFECT OF RECOVERY FACTOR ON THE ORBITER BODY HEAT TRANSFER ALPHA = 5	HAW/HT PHI	Α	328-339
12 .	EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 5	HAW/HT 2Y/B	В	340-357
13	EFFECT OF RECOVERY FACTOR ON THE ORBITER TAIL HEAT TRANSFER ALPHA = 5	HAW/HT	C ··	358÷360°
14	EFFECT OF RECOVERY FACTOR ON THE E. TANK HEAT TRANSFER RN/L2 ALPHA = 0	HAW/HT PHI	ם	361-376

ω

INDEX OF DATA FIGURES (Continued)

FIGURE NUMBER	TITLE	CONDITIONS VARYING	PLOTTED COEFFICIENTS SCHEDULE	PAGES
15	EFFECT OF RECOVERY FACTOR ON THE ORBITER BODY HEAT TRANSFER ALPHA = 0	HAW/HT PHI	D	377-380
. 16	EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 0	HAW/HT 2Y/B	Е	381 - 386
17 VOLUME 2	EFFECT OF RECOVERY FACTOR ON THE ORBITER TAIL HEAT TRANSFER ALPHA = 0	HAW/HT	F	387-387
18	EFFECT OF LOW ALPHA ON UNDISTURBED ORBITER BODY HEAT TRANSFER RN/L1	PHI, ALPHA HAW/HT,MACH	D	388-435
19	EFFECT OF LOW ALPHA ON UNDISTURBED ORBITER WING HEAT TRANSFER RN/L1	2Y/B, ALPHA HAW/HT,MACH	Е	436-507
20	EFFECT OF LOW ALPHA ON UNDISTURBED ORBITER TAIL HEAT TRANSFER RN/L1	HAW/HT ALPHA, MACH	F	508-519
21	EFFECT OF HIGH ALPHA ON UNDISTURBED ORBITER BODY HEAT TRANSFER RN/L1	PHI, ALPHA HAW/HT,MACH	D	520-603
22	EFFECT OF HIGH ALPHA ON UNDISTURBED ORBITER WING HEAT TRANSFER RN/L1	2Y/B, ALPHA HAW/HT,MACH	E	604-729
23	EFFECT OF HIGH ALPHA ON UNDISTURBED ORBITER TAIL HEAT TRANSFER RN/L1	ALPHA, MACH	F	730-750
24	EFFECT OF HIGH ALPHA ON UNDISTURBED ORBITER BODY HEAT TRANSFER RN/L3	PHI, ALPHA HAW/HT,MACH	D	751-774
25	EFFECT OF HIGH ALPHA ON UNDISTURBED ORBITER WING HEAT TRANSFER RN/L3	2Y/B, ALPHA HAW/HT,MACH	Ε	775-810

INDEX OF DATA FIGURES (Continued)

FIGURE NUMBER	TITLE	CONDITIONS VARYING	PLOTTED COEFFICIENTS SCHEDULE	PAGES
26	EFFECT OF HIGH ALPHA ON UNDISTURBED ORBITER TAIL HEAT TRANSFER RN/L3	HAW/HT ALPHA, MACH	F	811-816
27	EFFECT OF REYNOLDS NO. ON UNDISTURBED ORBITER BODY HEAT TRANSFER ALPHA = 25	PHI,RN/L HAW/HT, MACH	. D	817-840
28	EFFECT OF REYNOLDS NO. ON UNDISTURBED ORBITER WING HEAT TRANSFER ALPHA = 25	2Y/B,RN/L HAW/HT, MACH	E	841-876
29 .	EFFECT OF REYNOLDS NO. ON UNDISTURBED ORBITER TAIL HEAT TRANSFER ALPHA = 25	HAW/HT RN/L, MACH	F	877 - 882
30	EFFECT OF REYNOLDS NO. ON UNDISTURBED ORBITER BODY HEAT TRANSFER ALPHA = 30	PHI,RN/L HAW/HT, MACH	D	883-906
31	EFFECT OF REYNOLDS NO. ON UNDISTURBED ORBITER WING HEAT TRANSFER ALPHA = 30	2Y/B, RN/L HAW/HT, MACH	E	907-942
32	EFFECT OF REYNOLDS NO. ON UNDISTURBED ORBITER TAIL HEAT TRANSFER ALPHA = 30	HAW/HT RN/L, MACH	F	943-948
33	EFFECT OF REYNOLDS NO. ON UNDISTURBED ORBITER BODY HEAT TRANSFER ALPHA = 35	PHI, RN/L HAW/HT, MACH	D	949-972
34	EFFECT OF REYNOLDS NO. ON UNDISTURBED ORBITER WING HEAT TRANSFER ALPHA = 35	2Y/B, RN/L HAW/HT, MACH	E .	973-1008
35	EFFECT OF REYNOLDS NO. ON UNDISTURBED ORBITER TAIL HEAT TRANSFER ALPHA = 35	HAW/HT RN/L, MACH	F	1009-1014

INDEX OF DATA FIGURES (Concluded)

PLOTTED COEFFICIENTS SCHEDULE:

- A) H/HREF versus X/L and HI/HU versus X/L
- B) H/HREF versus X/C and HI/HU versus X/C
- C) H/HREF versus Z/BV and HI/HU versus Z/BV
- D) H/HREF versus X/L
- E) H/HREF versus X/C
- F) H/HREF versus Z/BV

INTRODUCTION

A 0.01-scale orbiter/external tank heat transfer model (number 37-0T) was tested in the Calspan 48" Hypersonic Shock Tunnel from October 29 through December 15, 1973. The NASA/Rockwell designation for this test was OH12/IH21, and the Calspan facility test number was I73-100.

The purpose of this test was to determine ascent and entry heat transfer rates for the external tank and the Configuration 3 Orbiter over a range of Mach numbers from 6.95 to 19.5 and Reynolds numbers/foot from 0.0095×10^6 to 6.5×10^6 . Of particular interest was the determination of orbiter wing leading edge heating during entry, with both laminar and turbulent boundary layer conditions.

A total of 58 good program runs was made out of 73 attempts. Fifteen runs were no good because of facility malfunction or off scale heating rate data. This test is also documented in Reference 2 (a Calspan Technical Report).

NOMENCLATURE

Symbol	Plot Symbol	Definition
b ⁻	В	wing span, inches
С	С	local wing chord, inches
c _h		Stanton number $\frac{778 \text{ q}_W}{\rho_\infty \text{U}_\infty (\text{rH}_0 - \text{H}_W)}$
h	H .	heat-transfer coefficient, 778 (32.17) $\dot{q}/(rH_0 - H_W)$, 1bm/ft ² sec
Н.		Enthalpy, ft. lbs/slug
L	L	fuselage length, inches
M	MACH".	Mach number .
OMS	•	Orbital Maneuvering System
P	Ρ	Pressure, psia
$P_{\mathbf{r}}$		Prandtl number
q		Dynamic pressure, psia
ġ	QDOT	heat transfer rate, BTU/ft ² sec
RCS	,	réaction control system
r .	HAW/HT_	recovery factor
R _e /ft	RE/FT	Reynolds number per unit length, $\frac{\rho_{\infty} U_{\infty}}{\mu_{\infty}}$
S	•	wing span, inches
Ţ	T	temperature, °R
t		time, seconds
U		velocity, ft/sec
Х	Χ	longitudinal distance, inches
٠γ	Υ	spanwise distance, inches

NOMENCLATURE (Continued)

Symbol Symbol	Plot Symbol	Definition
Z	Ζ .	vertical distance, inches
α	ALPHA	angle of attack, degrees
β	ВЕТА	angle of sideslip, degrees
Υ		specific heat ratio
μ	,	absolute viscosity, slugs/ft-sec
ρ	· · · · · · · · · · · · · · · · · · ·	density, slugs/ft ³
ф	PHI	Orbiter and external tank fuselage angular coordinate, deg. measured clockwise looking forward, O degrees at bottom centerline
0		nozzle supply conditions
0-		stagnation conditions behind a normal shock
1		initial driven gas condition
ms		model station
4		gas conditions behind reflected shock
i		incident shock in driven gas .
ts		test section initial conditions.
W		initial conditions at model surface
&		free stream or test section conditions
Haw	HAW', ',	adiabatic wall enthalpy
Н _t	нт `	free stream total enthalpy

NOMENCLATURE (Concluded)

Symbol	Plot Symbol	Definition
h _{ref}	HREF .	reference heat-transfer coefficient, - value obtained at stagnation point on a one foot diameter sphere
h/h _{ref}	H/HREF	ratio of model heat-transfer coefficient to heat-transfer coefficient of reference sphere for $H_{aw}/H_t = X.XXX$
	HI/HU	interference to undisturbed heat transfer coefficient ratio
	X/C	chordwise location, fraction of local chord
	X/L	longitudinal location, fraction of body length
	2Y/B -	spanwise location, fraction of semi-span
	Z/BV	spanwise location on vertical tail, fraction of exposed span
	RN/L	Reynolds number per unit length
	RN/L1, RN/L2, RN/L3	designates the Reynolds number schedule defined by table I

CONFIGURATIONS INVESTIGATED

Model 37-OT is a 0.01-scale model of the Space Shuttle configuration 3 Orbiter and external tank.constructed of 17-4 PH stainless steel. The orbiter is a sting mounted full-span model, with OMS/RCS pods. The external tank is equipped with removable protuberances (lines and attachment struts) and was mounted on a separate sting which was either coupled with the orbiter sting or mounted separately on the tunnel support fixture. The figures and photographs at the back of this text illustrate orbiter and external tank details. Model 37-OT was designed and built by Grumman Aerospace Corp. with instrumentation built and installed by Calspan Corporation.

Model nomenclature used for the configuration 3 Orbiter and external tank was as follows:

B ₁₇	•	Orbiter bo	ody		
c ₇		Canopy			
E ₂₂		Elevon			
F ₅		Body flap			
M ₄		OMS pod			
R ₅	-	Rudder			
T ₁₀		External t	ank		
T ₁₆	,	External t	ank w	ithout	protuberances
V ₇ .		Vertical t	ail		
W103	•	Wing			•

Model dimensional data are given in Table III. Table II outlines model configurations and tunnel conditions investigated. The following configuration notation is used:

CONFIGURATIONS INVESTIGATED (Concluded)

0 = Orbiter =
$$B_{17} C_7 E_{22} = M_4 R_5 V_7 W_{103}$$

$$T = external tank = T_{10}$$

T-NP = external tank without protuberances, support structure, or lines = T_{16}

MODEL INSTRUMENTATION

Model instrumentation for 37-OT consisted of 158 thin-film heat transfer gages. Ninety-eight (98) of these gages were on the orbiter, the remaining sixty (60) were on the external tank. Orbiter and tank gage locations are illustrated in figure 2 and tabulated in Table IV. Photographs in figure 3 may clarify questions about gauge locations.

The thin-film gages consisted of a platinum film fused to a pyrex insulating substrate and protected from the free stream by a thin dielectric coating of magnesium fluoride. Transient surface temperature is determined by measuring the instantaneous gage resistance change which varied linearly with temperature. An excellent description of thin-film gage theory and operation can be found in Reference 1.

Tunnel conditions were determined by quick-response pressure transducers and a reference stagnation heat-transfer gage.

Data acquisition equipment, provided by Calspan, consisted of the Calspan NAVCOR 48-channel data acquisition system, one 14-channel high-speed FM tape recorder, and twenty-two 2-channel recording oscilloscopes. The NAVCOR system provided both a temperature and heat-transfer rate history for each channel, while the oscilloscopes recorded only heat-transfer rate. This rate was derived from an analog network which converted the gage temperature signal to a heat transfer rate signal. The tape recorder was used only as a temporary storage of temperature histories and was input into the NAVCOR following each run for a record of temperature and heat transfer rate.

MODEL INSTRUMENTATION (Concluded).

Additional instrumentation consisted of a tunnel Schlieren photograph system, which provided qualitative flow information for each run. Sample Schlieren photographs are included in figure 3.

TEST FACILITY DESCRIPTION

The 48-inch Hypersonic Shock Tunnel (HST) employs a constant-area shock tube with an 8-inch inner diameter. The driver tube is 20 feet long and is externally heated by a resistance heater to temperatures of 1400° R. The driven tube is 50 feet long. The driver gas is generally a mixture of helium and nitrogen with a maximum helium purity of 100% while the driven gas is generally air. Steady-flow test times of duration sufficient to permit accurate measurement of the various parameters of interest are achieved with the tailored-interface technique.

Three axisymmetric nozzles are available to expand the test gas to high volocities:

Nozzle	Туре	Exit Diameter in inches	Test Section Mach Number
. А	Contoured	24	5.5 to 8
D	Contoured	48	10 to 16
E	10-1/2° Semi-angle cone	48 .	9 to 20

The contoured nozzles provide parallel flow with no pressure gradients in the streamwise direction for several feet. This is very important since the presence of a streamwise pressure gradient can have a significant effect on model test results. The nozzles employ replaceable throat inserts of different diameters so that with the particular nozzle, the test Mach number can be varied. Test air passes downstream of the test section into a receiver tank of a size sufficient to maintain the desired flow for durations of 5 to 13 milliseconds. All nozzles have been calibrated using pitot-pressure survey rakes over the Mach number range indicated.

TEST FACILITY DESCRIPTION (Concluded)

The Test Section is equipped with two 16-inch diameter Schlieren windows mounted a short distance aft of the nozzle exit.

TEST PROCEDURE

Model 37-OT was mounted via the model sting(s) to the tunnel support fixture at the tunnel centerline. Instrumentation wiring was routed through the base stings to a tunnel instrumentation patch panel. Figures 2a and b show the orbiter alone and the second stage configuration installations, respectively.

A typical test procedure was as follows:

- Set model angles-of-attack, if necessary.
- 2. Install tunnel diaphrams and proper tunnel nozzle orifice.
- Evacuate test section, set instrumentation gains and calibrate oscilloscopes from heating rate estimates, and check gage resistances for weak or damaged gages.
- 4. Close driver and load driven tube for proper test conditions. Take no-flow Schlieren picture.
- 5. Load driver to proper mixture and pressure for test conditions.
- 6. Fire tunnel for run.
- 7. Evacuate test section for post-run gage checks, then bring test section to atmosphere and break tunnel joints. Read out data.
- 8. Clean tunnel and inspect model.

DATA REDUCTION

Data for this test were reduced according to standard Calspan data reduction procedures. NAVCOR recordings and Polaroid film oscilloscope records of heat transfer rates were made available after each run. Following the test, all data records were read and assembled for computerized data reduction.

This report contains a listing of heat transfer coefficient H/HREF and heat transfer rate QDOT. H/HREF values are presented for three recovery factors r = .85, .9 and 1.0. Plotted data illustrate the effect of recovery factor, angle of attack and Reynolds number on heat transfer. The postscript on RN/L indicates the Reynolds number schedule defined by table I. Heat transfer changes between undisturbed and mated configurations is illustrated by HI/HU plots. The plotted and tabulated data are arranged in the following manner:

VOLUME NO.

CONTENTS

Plots showing the effect of recovery factor on orbiter and external tank heat transfer for both undisturbed and mated configurations.

Figure 4 through Figure 17

Plots showing the effect of angle of attack and Reynolds number on the undisturbed orbiter heat transfer Figure 18 through Figure 35

DATA REDUCTION (Concluded)

VOLUME NO.

Tabular listing of source data
H/HREF ~ heat transfer coefficient data

Component	Fourt Charac		e
orbiter fuselage	В		1
orbiter wing	W	. 7	5
orbiter vertical tail	v	18	0
orbiter wing leading (see Detail A fig.		21	9
orbiter wing leading (see Detail B fig.		. 25	4
external tank	Т	. 32	3
QDOT ~ heat transfer rate in the same manner	is arranged	365-51	2

^{*} The fourth character in each dataset identifier (i.e., RUGBXX, B for Fuselage) represents the individual component.

REFERENCES

- L. Vidal, R. J., "Model Instrumentation Techniques for Heat Transfer and Force Measurements in a Hypersonic Shock Tunnel," Cornell Aeronautical Laboratory Report No. AD-917-A-7, February, 1956.
- 2. Patten, J. S., "An Experimental Investigation of the Ascent and Descent Heating on a 0.01-Scale Model of the Space Shuttle," Calspan Technical Report, March, 1974.
- 3. Foust, J. W., "Pretest Information for Testing the 0.010-Scale Space Shuttle Heat Transfer Model 37-OT in the Calspan Hypersonic Shock Tunnel." SD73-SH-0198, dated July 11, 1973.

TABLE I.

TEST : OH-12, IH-2	1		DATE : 5/3/74
	TEST COND	ITIONS	
	REYNOLDS NUMBER	DYNAMIC PRESSURE	STAGNATION TEMPERATURE
MACH NUMBER	(per unit length) (1/ft)	(pounds/sq. inch)	(degrees Rankine)
6.95	0.10 x 10 ⁶	1.35	5575
7.6	1.19 x 10 ^b	2.75	2000
7.9	6.5×10^6	10.2	1550
8.0	1.19×10^{6}	3,22	2600
10.2	2.0×10^6	4.03	· 2725
10.5	0.86×10^{6}	2.71	3200
12.0(sch 1)	0.20×10^{6}	0.73	3925
12.0(sch 3)	0.86×10^{6}	0.26	3475
15.6(sch 1)	0.035×10^{6}	0.07	3650
15.6(sch 3)	0.20×10^{0}	0.36	3500
18.5	0.0095×10^{6}	0.017	4400
19.5	0.035 x 10 ⁶	0.065	4650
15.6(sch 2)	0.3×10^6	0.61	3841
>			
٠			
BALANCE UTILIZED:		·····	
	CAPACITY:	ACCURACY:	COEFFICIENT
	DATACIT.	ACCURACT.	TOLERANCE:
. NF			
SF			
AF			
PM			
RM		***	
YM			·
Ł			
COMMENTS:			
*			
		•	
}			

TEST: OH/	12/IH21		C	ATA	SET/RUN NU	ABLE JMBEF		_ATIO	4 SUMM	IARY		DATE	: 6	- 18-7	5	
DATA SET IDENTIFIER	CONFIGURATION			ARAN SCH	METERS/VALUE T/C Hoonup	S NO. OF RUNS		7.61					15.8		3 19.1	—
RUGOOI	37T	o	0	1		5	4	2			<u> </u>	ļ	73	49		-
02		5				1]				<u> </u>			50)
03	37 T-NP	0			T			<u> </u>		ļ	ļ	<u> </u>	-	51	,	-
04	37 OT-NP	0			· \p/_	2		<u> </u>		ļ	<u>.</u>	<u> </u>		36/3	5 20/	_
05	37 OT .	0	Ш		$\phi_{/T}$	8	28/31	27/30)		 			3/34	38/3	2
06		5			Φ/Τ	2	 			ļ	ļ	ļ	<u> </u>		39/3	
07	370 .	0			Φ	5	5	8				ļ <u>-</u>	52	42		ST R
08		5				1		ļ		ļ					40	
09		10				1				ļ	ļ	ļ <u></u>		43		L ZOMBE
10		25				7	9		26	10	53	55	57		44	_1 7
		30				7	12		14,25		63	61	62		46	0
12		35				7	20	<u> </u>	22	21	64	67	65		47	4
13		40		1	_ V	2			24	23						
14	37-0T	0	\coprod	2	ϕ_T	3	·					ļ	79/11/2			
15	37 0	25		3	Φ	2	<u></u>					54	56		<u> </u>	
16		30				2		<u> </u>	<u></u>			58	60			
17		35	V	V		2			·			68	66		<u> </u>	
																L
1 7	13 19		25	5	31	37		43	49		55		61	67		75 7
		1.1.		1.1.1	COEFF	ICENT	s	111.				<u> </u>	lizz 10VA		AR (2)	NOV
SCHEDULE	is										a se at sign a select					

NP denotes ET without protuberonces
* Nominal Values-check individual runs for Values

22

Table III Model Dimensional Data

MODEL COMPONENT : BODY - B17		•
GENERAL DESCRIPTION : Fuselage, 3	configuration,	lightweight orbiter
		,
	•	-
MODEL SCALE: 0.010	·	
DRAWING NUMBER: VL70-000139		
DIMENSIONS:	FULL SCALE	MODEL SCALE
Length, In.	1290.3	12.903
Max Width , In.	267.6	2.676
Max Depth: In.	244.5	2.445
Fineness Ratio	4.822	4.822
Area - Ft ²		
Max. Cross-Sectional	386.67	3.867
Planform		
Wetted		_
Base	-	<u>.</u>

MODEL COMPONENT : CANOPY - C7		
GENERAL DESCRIPTION : Configuration	ı 3	
	·	
MODEL SCALE: 0.010		
DRAWING NUMBER: VL70-000139		
Y		- · · · · · ·
DIMENSIONS:	FULL SCALE	MODEL SCALE
Length ($X_0 = 433 \text{ to } X_0 = 578$), In.	145.00	1.450
Max Width		
Max Depth		
Fineness Ratio	**************************************	
Area		
Max. Cross-Sectional		
Planform		<u> </u>
Wetted	-	
Base		<u>.</u>

Table III (Cont'd)

MODEL COMPONENT: ELEVON - E22	·	<u> </u>
GENERAL DESCRIPTION: Configuration 3. Data	a for 1 of 2 sides.	
	·	,
MODEL SCALE: 0:010	· · · · · · · · · · · · · · · · · · ·	
DRAWING NUMBER: VL70-000;139	٠.	
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Area - Ft ²	205.52	0.0206
Span (equivalent) , In.	353.34	3.533
Inb'd equivalent chord, In-	114.78	1.148
Outb'd equivalent chord , In.	55.00	0.550
Ratio movable surface chord/ total surface chord		
At Inb'd equiv. chord	0.208	0.208
At Outb'd equiv. chord	0.400	0.400
Sweep Back Angles, degrees	: •	
Leading Edgé	0.00	0.00
Tailing Edge	-10.24	-10.24
Hingeline — — (Product of area & c) Area Moment (NOTHER ** 表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表	0.00 1548.07	0.00

MODEL COMPONENT : BODY FLA	AP - F ₅	
GENERAL DESCRIPTION : Configur	ation 3	
MODEL SCALE: 0.010		
DRAWING NUMBER: VL70-000139	9	
		,
DIMENSIONS :	FULL SCALE	MODEL SCALE
Length , In.	84.70	0.847
Max Width, In.	267.6	2.676
Max Depth		
Fineness Rátio		
$Area - Ft^2$		
Max. Cross-Sectional		
Planform	142.5	0.014
Wetted	***************************************	
Base	38.096	0.0038

MODEL COMPONENT : OMS POD - M	4	
GENERAL DESCRIPTION : Configura	ition 3	
NOTE: Identical to M3, except in	te section to fuse	lage.
MODEL SCALE: 0.010		
DRAWING NUMBER: VL70~00013	9	
•		•
DIMENSIONS:	FULL SCALE	MODEL SCALE
Length, In.	346.0	3.460
Max Width , In.	108.0	1.080
Max Depth 5 In	113.0	1.130
Fineness Ratio	·	
Area		
Max. Cross-Sectional		
Planform	120-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
Weited	·	
Rase		•

MODEL COMPONENT: RUDDER - R ₅		
GENERAL DESCRIPTION: Configuration 2A, 3,	3A and 140A/B	
	· · · · · · · · · · · · · · · · · · ·	·
MODEL SCALE: 0.010		
DRAWING NUMBER: VL70-000146A, -00	00095, -000139	
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Area - Ft ²	100, 15	0.0100
Span (equivalent), ln.	201.0	2.010
Inb'd equivalent chord, In.	91.585	0.916
Outb'd equivalent chord, In.	50.833	0.508
Ratio movable surface chord/ total surface chord		
At Inb'd equiv. chord	0.400	0.400
At Outb'd equiv. chord	0.400	0.400
Sweep Back Angles, degrees		,
Leading Edge	34.83	34.83
Tailing Edge	26.25	26. 25
Hingeline (Product of area & \overline{c})	34.83	34.83
Area Moment (Normalxtaxhingexkine), Ft ³	610.92	0.0006
Mean Aerodynamic Chord, In.	73.2	0.732

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

MODEL COMPONENT : EXTERNAL TA	NK - T ₁₀	
GENERAL DESCRIPTION : External or	xygen-hydrogen	tank, configuration
_		
-		
MODEL SCALE: 0.010		
DRAWING NUMBER: VL72-000088, VL7	8-000041	
		•
DIMENSIONS:	FULL SCALE	MODEL SCALE
Length (Nose at $X_T = 309$)	1865.0	18.650
Max Width (Dia.), In.	324.00	3,240
Max Depth	**************************************	
Fineness Ratio	5.756	5.756
Area - Ft ²	***************************************	·
Max. Cross-Sectional	572.555	0.057
Planform	***************************************	
Wetted		•
Base	**************************************	
W. P. of Tank Centerline (Xm). In	400.0	4. 00

MODEL COMPONENT : EXTERNAL TAI	NK - T ₁₆	
GENERAL DESCRIPTION : External oxyge	en-hydrogen tan	k. Has a 2416-
inch radius secant ogive nose.		,
MODEL SCALE: 0.010		
DRAWING NUMBER: SS-A01167	-	
·		
DIMENSIONS :	FULL SCALE	MODEL SCALE
Length, In. (Nose At $X_T = 276$)	1898.0	18.980
Max Width	324.0	3.240
Max Depth	·	
Fineness Ratio	5.858	5.858
Area - Ft ²		***************************************
Max. Cross-Sectional	572.555	0.057
Planform .		
Wetted		
. Base ·		
W.P. of tank centerline ($Z_{ m T}$), In.	400.0	4.00
L.E. nose radius	. 16.5	0.165
Origin of 2416" radius at 2231 fro tank centerline	om 1181.0	11.810

MODEL COMPONENT: VER	TICAL - V 7		
GENERAL DESCRIPTION:	Centerline vertical	tail, doublewedg	e airfoil with
rounded leading e	dge.		
NOTE: Same as	V_5 , but with manipulato	r housing remove	ed
MODEL SCALE: 0.	010		
DRAWING NUMBER:	VL70-000139		
DIMENSIONS:		FULL SCALE	MODEL SCALE
TOTAL DATA			
Leading E Trailing 0.25 Elem Chords: Root (The Tip (Theo MAC Fus. Sta. W.P. of . B.L. of .	In. gles, Degrees. dge Edge ent Line o) WP) WP .of .25 MAC 25 MAC	425.92 315.72 1.675 0.507 0.404 45.000 26.249 41.130 268.50 108.47 199.81 1463.50 635.522 0.00	0,043 3,157 1,675 0,507 0,404 45,000 26,249 41,130 2,685 1,085 1,998 14,635 6,355 0,00
Trailing	on Odge Angle - Deg. Wedge Angle - Deg. Odge Radius	$ \begin{array}{r} 10,00 \\ \hline 14,920 \\ \hline 2.00 \end{array} $	10.00 14.920 0.020
Void Area	•	<u>13.17</u>	0.0013
Blanketed Are	a	0.0	0.0

Table IIÌ (Conl'd)

MODEL COMPONENT: WING-W 103		
GENERAL DESCRIPTION: Configuration 3 orbiter v	ving.	
NOTE: Same planform as Work except of	lihedral at traili	ng edge.
,	,	
MODEL SCALE: 0.010		
TEST NO.	DWG. NO. V	L70-000139
DIMENSIONS:	FULL-SCALE	MODEL SCALE
TOTAL DATA		
Area (.neo.). Ft2		•
planform .	<u> 2690.00</u> -	0.2690
Span (Theo In. Aspect Ratio	936.68	· 9.367 2.265
Rate of Taper.	2.265 1.177	2,265 1.177
Taper Ratio	0,200	0.200
Dihedral Angle, degrees	3,500	3,500
Incidence Anglé, degrees	3.000 3.000	$\frac{3.000}{3.000}$
Aerodynamic Twist, degrees Sweep Back Angles, degrees	3.000	3,000
Leading Edge	45,000	45.000
Trailing Edge	- 10.24	-10.24
0.25 Element Line	<u>35.209</u>	35.209
Chords: Root (Theo) B.P.O.O.	689.24	6.892
Tip, (Theo) B.P.	137,85	. <u>1.379</u>
MAC	474.81	4.748
Fus. Sta. of .25 MAC	1136.89	14.369
W.P. of .25 MAC B.L. of .25 MAC	299.20 182.13	2,992 1.821
	·	
Area (Theo) Ft	1752.29	9.175
Span, (Inco) in prioc	720.68	7.207
Aspect Ratio	2.058	2.058
Taper Ratio Chords	0.245	0.245
Root BP108	562.40	5.624
Tip 1.00 <u>b</u>	137.85	1.379
MAC 2.	393.03	3.930
Fus. Sta. of .25 MAC	1185.31	11,853
W.P. of .25 MAC	300.20	3,002
B.L. of .25 MAC Airfoil Section (Rockwell Mod NASA)	<u>251.76</u> .	2.518
. XXXX-64	*	
Root b	0.10	0.10
Tip <u>b</u> =	0.12	0.12
Data for (1) of (2) Sides	-	
Leading Edge Cuff 2	**************************************	
Planform Area ⁵ t ² Leading Edge Intersects Fus M . L. 0 Sta	120.33 560.0	0.012 5.600
leading Edge Intersects Wing @ Sta	1035.0	10.350
32	**************************************	

Table IV.

HEAT TRANSFER GAGE LOCATIONS

ORBITER ($L_{oms} = 12.903$)

FUSELAGE

GAGE NO,	X _m /L _{oms}	X _{orns} (FROM NOSE)	ACTUAL *oms	DESIRED Y _{oms}	ACTUAL Y _{oms}	ф
1	0	0	0	0	+.012	0
2	0.005	065	086	1 × 1	012	
3	0 02	.258	249	1 7 1	012	i f
4	0.04	516	539	1 1	020	1
5	0.06	.774	797	1 }	017	1
6	0.08	1 032	1 051	1 1 1	019	1 1
7.	0 10	1,290	1.324	1 1 .	019	
8	0.12	1,548	1,570		019	1 1
9	0 14	1,806	1 831	1 4 1	018	ľ l l
10	. 0.16	2 065	2.078	1 1	.016	1 1
11	0.20	2 580	2 578	;	009	
12	0.25	3,226	3 221	1 ! :	800	i
13	J 30	3 871	3 873	¹ ;	005	1 1
14	0.35	4,516	4 520	, ,	006	;
15	0.40	5,161	5 172	ו ו	006	
16	0.45	i 5 806	5 795		005	
17	0 50	6 452	6 452	, , ,	005	,
18	0.60	7 742	7 698	ī ; j	003	i 1
19	0 70	9,032	9 033]	006	
20	0.80	10 322	10 320		004	
21	0 90	11 613	11616		.011	} 🛉
22	1.00	12 903	12 907		010	
23	0 03	387	391		.016	180°
24	0 06	774	780] . [.014	1 1 1
25	6.09	1.161	1 171		004	
26	0.125	1 613	1 623	1	.006	
27	0 15	1 935	1.940]]]	006) [
28	0 130	2 323	2 333	1	.007	
29	0 160	2 065	2 067	1 1	009	
30	0 170	2 194	2 200	į	009	
31	0.50	6 452	6,461		003	Y .
32	0.70	9 032	9 023	0	.001	180°
33	010	1 290	1.284		.569	30°
34	0 20 .	2 580	. 2,593		.638	30°
35	0 30	3 871	3.875	500	490	
36	0.40	5 161	5.151	500	494	
37	0 60	7,742	7 749	.500	.494	
38	0 80	10 322	10,323	500	.497	

VERTICAL TAIL

GAGE NO.	DESIRED Z _{oms}	ACTUAL ^z oms
39	6 096	6 091
40	6 961	6 970
41	7 867	7 861
42	8 157	8 156

WING LOWER SURFACE

	WING COVER COTT AGE					
GAGE "	DESIRED X _{oms} (FROM NOSE)	ACTUAL *oms	DESIRED Y _{oms}	ACTUAL Y _{oms}		
43	5.161	5.165	1 171	1 159		
44	6 451	6.442	A	1.156		
45	7.742	7 750]]	1,161		
46	9 032	9 040	₩ .	1.166		
47 '	11 613	11 615	1.171	1.163		
48	- 7 742	7 780	1 873	1 930		
49	9,032	9.029	Å	1,867		
50	10 322	10 322	4	1,871		
51	12 037	12 035	1873	1 867		
52	8 399	8 407	2 342	2 337		
53	9 032 .	9 044	i 🛊	2,332		
54	10 322	. 10 326		2 338		
55	11 211 .	11219	2 342	2,341		
56	9 500	9 499	2810	2,804		
57	10,322	10 322	İ	2,804		
58	10 940	10 941	2.810	2,811		
59	12 020	12 018	2 810	2.804		
60	9,554	9 563	3 5 1 3	3 455		
61	10,322	10 321	3 5 1 3	3 5 1 0		
62	11424	11 429	3,512	3 507		
. 63	10,172	10 145	3 981	3 972		
64	11060	11 066	3 981	3 967		
65	8 520	8,503	1,373	1 854		
66	10 658	10 666	4 449	4,436		
67	11 293	11 293	4 449	4 448		
68	11 345	11 347	TIP	TIP		

WING LEADING EDGE

	LOCA]	
GAGE NO.	DESIRED	ACTUAL	X ACTUAL
69-70	Y _o = 1.171	Y _o = 1.155	
71-72	X = 5 160	X = 5,164	1
73 74	X = 6503	X = 6508	1 .
75 76	X = 7,742	X = 7.753	1
77-78	Y _o = 2.342	Y = 2.351	8.332
79-86*	Y _o = 2.810	Y - 2.823	8.801
89-90	Y _o = 3,513	Y = 3.517	9.487
91 98*	Y _o = 3981	Y = 4 033	10.016
101-102	Y _o = 4.449	Y = 4.466	10.577

*GAGE NU ABERS 87, 88 & 99, 100 WERE NOT FABRICATED BECAUSE OF SPACE LIMITATIONS.

Table IV. (Con1'd) TANK ($L_{tms} = 18.650$)

GAGE NO.	X _{ms} /L _{tms}	X _{ms} (FROM NOSE)	ACTUAL X	ø
103	0.00	0	0	
104	.005	.080	.076	220
105	01	186	,196	199
106	04	.746	.760	180
107	08	1 492	1 498)
108	.15	2.798	2 802	1
109	.20	3.730	3 744	1 🕴
110	21	3 917	3 932	180
111	.04	746 -	740	1 0
112	25	4 663	4 686	180
113	35	6 528	6 545	1 🛊
114	375	6.994	7 009	1 1
115	40	7,460	7 478	1 1
116	425	7.926	7,953	1
117	.45	8 393	8 414	1
118	475	8 859	8 877	1 ↓
119	50	9.325	9.341	180
120	343	6 397	6 407	225
121	55	10 258	10 271	180 -
122	475	7 572	7.590	193
123	.60	11 190	11 215	180
124	.65	12 123	12,145	l i
125	70	13 055	13 083	1 T
126	80	14,920	14 940	!
127	90	16 785	16 818	1 1
129	937	17 475	17 458	180
		7.572	7,594	167
129	406	2 798	2 800	0
130	44	8 206	8,223	199
131				
132	08	1,492	1.492	199
133	475	8 859 9 325	8 871 9 335	
134	90	16 785	416.796	199.
136	40	7,460	7 464	199 221,5
		·	9 344	421.5
137	.50	9 325		↑
138 _	60	11,190	11,205	
139	.70	13 055	13 073	
140	80	14 920	14 940	L
141	.85	15 853	15 882	7
142	.90	16 785	16.818	221 5
143	825	15 386	15 386	2 14.
144	85	15.853	15 874	†
145	875	16 319	16 339	
146	90	16 785	16.805	.
147	.925	17.251	17.280	*
148	960	17.904	17 902	241.
149	.85	15 853	15 874	247.5
150	.90	16.785	16.795	247 5
151	20	3 730	3,729	270.
152	40	7.460	7,465	•
153	.50	9 325	9 322	
154	.60	11 190	11 200	1
155	70	13 055	13 066	ı
156	80	14 920	14 930	₩
157	90	16 785	16810	270.
158	60	11 190	11 196	315
159	80	14 920	14 930	315.
160	40	7 460	7.459	0
161	.60	11 190	11 191	

Figure 1. Configuration 3 Orbiter/ET

a. Model 37-T. Instrumentation Locations

Figure 2. - Model instrumentation.

b. 37-0 Instrumentation LocationsFigure 2. - Concluded.

a. Installation of model 37-0 - Orbiter Alone Figure 3.- Model photographs.

b. Installation of Model 37-OT - Orbiter/TankFigure 3. - Continued.

c. Instrumentation - Orbiter Top ViewFigure 3. - Continued.

d. Instrumentation - Orbiter Bottom Surface
Figure 3. - Continued.

e. Instrumentation - Orbiter Nose and Canopy
Figure 3. - Continued.

f. Instrumentation - Orbiter Wing Leading EdgeFigure 3. - Continued.

g. Instrumentation - Tank Top ViewFigure 3. - Continued.

h. Instrumentation - Tank NoseFigure 3. - Continued.

 Instrumentation - Tank Forward Attachment Strut Figure 3. - Continued.

j. Instrumentation - Tank Aft Attachment Struts - Side View
Figure 3. - Continued.

k. Instrumentation - Tank Aft Attachment Struts - Top View Figure 3. - Continued.

1. Sample Schlieren, Tank Alone, Run 4, α = 0°, M_{∞} = 6.99, R_{e}/ft = 0.12 x 10° Figure 3. - Continued.

m. Sample Schlieren, Orbiter Alone, Run 25, α = 30°, M_{∞} = 7.92, $R_{\rm e}/{\rm ft}$ = 7.55 x 10⁶ Figure 3. - Continued.

n. Sample Schlieren, Orbiter/Tank, Run 27, α = 0°, M_{∞} = 7.61, $R_{\rm e}/{\rm ft}$ = 1.20 x 10⁶ Figure 3. - Concluded.

DATA FIGURES

VOLUME 1--Figures 4-17

PRECEDING PAGE BLANK NOT FILMED

PAGE

OH12/IH21 (CAL HST I73-100) 37 T TANK (SUGTO1) PARAMETRIC VALUES SYMBOL HAW/HT PHI MACH 000 .000 .850 270.000 18.370 ALPHA .000 BETA .900 1.000 RATIO OF LOCAL TO REFERENCE HEAT TRANSFER COEFFICIENT. H/HREF 1.000 purpurpurpurpurp .100 .010 -.2 0 .2 .4 .6 .8 1.0 LONGITUDINAL LOCATION AS A FRACTION OF BODY LENGTH. X/L FIG. 4 EFFECT OF RECOVERY FACTOR ON THE E. TANK HEAT TRANSFER RN/L1 ALPHA = 0 PAGE 31

OH12/1H21 (CAL HST 173-100) 37 0 T TANK (RUGT05)

SYMBOL HAY/HT PH! MACH PARAMETRIC VALUES 000 .850 180.000 7.010 **ALPHA** .000 BETA .000 .900 1.000

PAGE 42

SYMBOL HAW/HT PHI MACH PARAMETRIC VALUES 000 .850 180.000 7.617 .000 ALPHA ATEB COO. .900 1.000 LOCAL TO REFERENCE HEAT TRANSFER COEFFICIENT, H/HREF 1.000 pmp-mm-m-A .100 -.010 L RATIO OF

FIG. 4 EFFECT OF RECOVERY FACTOR ON THE E. TANK HEAT TRANSFER RN/L1 ALPHA = 0 PAGE 50

FIG. 4 EFFECT OF RECOVERY FACTOR ON THE E. TANK HEAT TRANSFER RN/L1 ALPHA = 0 PAGE 52

OH12/IH21 (CAL HST 173-100) 37 0 T TANK (RUGTO5) SYMBOL HAW/HT PHI MACH PARAMETRIC VALUES 000 .850 180.000 18,170 ALPHA .000 BETA .000 ,900 1.000 TO REFERENCE HEAT TRANSFER COEFFICIENT, H/HREF 1.000 pmp .100

A

.010

RATIO OF LOCAL

LONGITUDINAL LOCATION AS A FRACTION OF BODY LENGTH. X/L FIG. 4 EFFECT OF RECOVERY FACTOR ON THE E. TANK HEAT TRANSFER RN/L1 ALPHA = 0 PAGE 58

OH12/IH21 (CAL HST 173-100) 37 0 T TANK (RUGTO5)

SYMBOL HAV/HT PHI MACH
O .850 247.000 18.170
□ .900
♦ 1.900

FIG. 4 EFFECT OF RECOVERY FACTOR ON THE E. TANK HEAT TRANSFER RN/L1 ALPHA = 0
PAGE 62

OH12/1H21 (CAL HST 173-100) 37 0 T TANK (RUGTO5) SYMBOL HAVAHT PH PARAMETRIC VALUES .850 18 170 315.000 **ALPHA** .000 BETA .900 1.000

000

FIG. 4 EFFECT OF RECOVERY FACTOR ON THE E. TANK HEAT TRANSFER RN/L1 ALPHA = 0 PAGE 64

OH12/IH21 (CAL HST 173-100) 37 0 T TANK (RUGTO5) PARAMETRIC VALUES SYMBOL. HAYZHT PHI MACH AT38 000. .000 ALPHA 000 221.000 18.950 .900 1.000 REFERENCE HEAT TRANSFER COEFFICIENT, H/HREF 1 .000 բողու-.100 .010 LOCAL RATIO .001 հահ -.2 0 .2 .4 .6 .8 0 1.0 LONGITUDINAL LOCATION AS A FRACTION OF BODY LENGTH. X/L

FIG. 4 EFFECT OF RECOVERY FACTOR ON THE E. TANK HEAT TRANSFER RN/L1 ALPHA = 0
PAGE 68

FIG. 4 EFFECT OF RECOVERY FACTOR ON THE E. TANK HEAT TRANSFER RN/L1 ALPHA = 0 PAGE 70

(RUGTO5) OH12/IH2! (CAL HST I73-100) 37 0 T TANK SYMBOL PARAMETRIC VALUES HAW/HT HACH PHI ALPHA .000 .850 270.000 18.950 .900 1.000 RATIO OF LOCAL TO REFERENCE HEAT TRANSFER COEFFICIENT, H/HREF 1.000 թուրուց .100 .010 -.2 0 .2 .4 .6 .8 1.0 LONGITUDINAL LOCATION AS A FRACTION OF BODY LENGTH, X/L FIG. 4 EFFECT OF RECOVERY FACTOR ON THE E. TANK HEAT TRANSFER RN/L1 ALPHA = 0 71 PAGE

OH12 + IH21 MODEL 37 OT(05)/T(01) TANK (IUGT05)

 SYMBOL
 HAW/HI
 PHI
 MACH
 PARAMETRIC VALUES

 O
 .900
 .000
 7.000
 ALPHA
 .000
 BETA
 .000

FIG. 4 EFFECT OF RECOVERY FACTOR ON THE E. TANK HEAT TRANSFER RN/L1 ALPHA = 0
PAGE 73

PARAMETRIC VALUES **ALPHA**

.000 BETA .000

FIG. 4 EFFECT OF RECOVERY FACTOR ON THE E. TANK HEAT TRANSFER RN/L1 ALPHA = 0 PAGE 74

SYMBOL HAW/HT PH1 MACH
O .900 199.000 7.000

PARAMETRIC VALUES
ALPHA .000 BETA

.000

GH12 + IH2! MODEL 37 OT(05)/T(C1) TANK (1UGT05)

SYMBOL PARAMETRIC VALUES 0 .900 241.000 7.000 ALPHA .000 BETA .000

FIG. 4 EFFECT OF RECOVERY FACTOR ON THE E. TANK HEAT TRANSFER RN/L1 ALPHA = C PAGE 77

 SYMBOL
 HAW/HT
 PHI
 MACH
 PARAMETRIC VALUES

 O
 .900
 247,000
 7,000
 ALPHA
 .000
 BETA

.000

FIG. 4 EFFECT OF RECOVERY FACTOR ON THE E. TANK HEAT TRANSFER RN/L1 ALPHA = 0
PAGE 78

OH12 + IH21 MODEL 37 OT(05)/T(01) TANK (IUGTO5) SYMBOL HAW/HT PARAMETRIC VALUES .900 270.000 7.000 ALPHA .000 BETA

.000

0

HAW/HT PHI MACH PARAMETRIC VALUES 0 .900 315.000 .000

FIG. 4 EFFECT OF RECOVERY FACTOR ON THE E. TANK HEAT TRANSFER RN/L1 ALPHA = 0 PAGE 80

SYMBOL HAW/HT PHI MACH PARAMETRIC VALUES
O .900 180.000 7.610 ALPHA .000 BETA .000

SYMBOL O 7.610 199,000

PARAMETRIC VALUES ALPHA .000 BETA

.000

FIG. 4 EFFECT OF RECOVERY FACTOR ON THE E. TANK HEAT TRANSFER RN/L1 ALPHA = 0 PAGE 83

OH12 + IH21 MODEL 37 OT(05)/T(01) TANK (IUGT05)

 SYMBOL
 HAW/HT
 PHT
 MACH
 PARAMETRIC VALUES

 O
 .900
 241,000
 7,610
 ALPHA
 .000
 BETA
 .000

 SYMBOL
 HAW/HT
 PHI
 MACH
 PARAMETRIC VALUES

 O
 .900
 247.000
 7.610
 ALPHA
 .000
 BETA
 .000

FIG. 4 EFFECT OF RECOVERY FACTOR ON THE E. TANK HEAT TRANSFER RN/L1 ALPHA = 0 PAGE 87

SYMBOL HAY/HT PHI MACH PARAMETRIC VALUES

O .900 315.000 7.610 ALPHA .000 BETA .000

 SYMBOL
 HAW/HT
 PHI
 MACH
 PARAMETRIC VALUES

 O
 .900
 180.000
 18.300
 ALPHA
 .000
 BETA
 .000

FIG. 4 EFFECT OF RECOVERY FACTOR ON THE E. TANK HEAT TRANSFER RN/L1 ALPHA = 0
PAGE 90

 SYMBOL
 HAV/HT
 PHI
 MACH
 PARAMETRIC VALUES

 ○
 .900
 221.000
 18.300
 ALPMA
 .000
 BETA

FIG. 4 EFFECT OF RECOVERY FACTOR ON THE E. TANK HEAT TRANSFER RN/L1 ALPHA = 0
PAGE 92

FIG. 4 EFFECT OF RECOVERY FACTOR ON THE E. TANK HEAT TRANSFER RN/L1 ALPHA = 0 PAGE 93

RATIO OF

 SYMBOL
 HAYHI
 PHI
 MACH
 PARAMETRIC VALUES

 O
 .900
 247.000
 18.330
 ALPHA
 .000
 BETA
 .000

PAGE 95

SYMBOL HAV/H] PHI MACH PARAMETRIC VALUES

O .900 315.000 18.300 ALPHA .000 BETA

FIG. 4 EFFECT OF RECOVERY FACTOR ON THE E. TANK HEAT TRANSFER RN/L1 ALPHA = 0 PAGE 97

FIG. 4 EFFECT OF RECOVERY FACTOR ON THE E. TANK HEAT TRANSFER RN/L1 ALPHA = 0
PAGE 98

 SYMBOL
 HAW/HT
 PHI
 MACH
 .
 PARAMETRIC VALUES

 Q
 .900
 199.000
 19.180
 ALPHA
 .000
 BETA

SYMBOL HAY/HT. PHI MACH PARAPETRIC VALUES

O .900 221,000 19,180 ALPHA .000 BETA

OH12 + IH21 MODEL 37 OT(05)/T(01) TANK (IUGTO5) SYMBOL PARAMETRIC VALUES Ō .900 241,000 19.180 .000 BETA .000 ALPHA

PAGE 101

 SYMBOL
 HAW/HI
 PHI
 MACH
 PARAMETRIC VALUES

 O
 .900
 247.000
 19.180
 ALPHA
 .000 ' BETA
 .000

 SYMBOL
 HAW/HT
 PH
 MACH
 PARAMETRIC VALUES

 O
 .900
 315.000
 19.180
 ALPHA
 .000
 BETA

OH12/IH21 (CAL HST I73-100) 37 0 T TANK (RUGTO6) SYMBOL HAW/HT PHI MACH PARAMETRIC VALUES .850 221.000 18.790 5.000 BETA .000 ALPHA .900 1.000 TO REFERENCE HEAT TRANSFER COEFFICIENT, HZHREF 1.000 proper .100 .010 RATIO OF LOCAL -.2 0 .2 .4 .6 %8 1.0 LONGITUDINAL LOCATION AS A FRACTION OF BODY LENGTH. X/L FIG. 5 EFFECT OF RECOVERY FACTOR ON THE EXTERNAL TANK HEAT TRANSFER ALPHA = 5

PAGE 116

FIG. 5 EFFECT OF RECOVERY FACTOR ON THE EXTERNAL TANK HEAT TRANSFER ALPHA = 5

LONGITUDINAL LUCATION AS A FRACTION OF BODY LENGTH, X/L

RATIO OF

FIG. 5 EFFECT OF RECOVERY FACTOR ON THE EXTERNAL TANK HEAT TRANSFER ALPHA = 5
PAGE 120

OH12 + IH21 MODEL 37 OT(06)/T(02) TANK (IUGT06)

SYMBOL HAW/HT PHI MACH
O .900 .000 18.980

PARAMETRIC VALUES
ALPHA 5.000 BETA .000

FIG. 5 EFFECT OF RECOVERY FACTOR ON THE EXTERNAL TANK HEAT TRANSFER ALPHA = 5
PAGE 121

PAGE 122

PARALITRIC VALUES

.000

5.000 BETA

MBOL HAW/HT PH] MACH
○ .900 221.000 18.980 ALPHA

0H12 + IH21 MODEL 37 0T(06)/T(02) TANK (IUGT06)

 SYMBOL
 HAW/HT
 PHI
 MACH
 PARAMETRIC VALUES

 ○
 .900
 241.000
 18.980
 ALPMA
 5.000
 BETA
 .000

INTERFERENCE TO UNDISTURBED HEAT TRANSFER COEFFICIENT, HIZHU

Ä

RATIO

FIG. 5 EFFECT OF RECOVERY FACTOR ON THE EXTERNAL TANK HEAT TRANSFER ALPHA = 5
PAGE 125

 SYMBOL
 HAW/HT
 PHI
 MACH
 PARAMETRIC VALUES

 O
 .900
 247.003
 18.950
 ALPHA
 \$.000
 BETA

.000

FIG. 5 EFFECT OF RECOVERY FACTOR ON THE EXTERNAL TANK HEAT TRANSFER ALPHA = 5

 SYMBOL
 HAV/HT
 PHI
 MACH
 PARAMETRIC VALUES

 O
 .900
 270.000
 18.980
 ALPHA
 5.000
 BETA
 .000

 SYMBOL
 HAW/HT
 PHI
 MACH
 PARAMETRIC VALUES

 O
 .900
 315.000
 18.980
 ALPHA
 5.000
 BETA
 .000

FIG. 5 EFFECT OF RECOVERY FACTOR, ON THE EXTERNAL TANK HEAT TRANSFER ALPHA = 5
PAGE 128

. FIG. 6 EFFECT OF RECOVERY FACTOR ON E. TANK HEAT TRANSFER WITHOUT PROTUBERANCES PAGE 130

OH12/IH21 (CAL HST [73-100) 37 T-NP TANK (RUGTO3) PARAMETRIC VALUES SYMBOL THYMAH PHI MACH 000 .003 .000 BETA .850 199.000 18.430 ALPHA .900 1.000 TO REFERENCE HEAT TRANSFER COEFFICIENT, H/HREF 1.000 թույր .100 .010 RATIO OF LOCAL -.2 C .2 .4 .6 .8 1.0 LONGITUDINAL LOCATION AS A FRACTION OF BODY LENGTH. X/L 1.2

FIG. 6 EFFECT OF RECOVERY FACTOR ON E. TANK HEAT TRANSFER WITHOUT PROTUBERANCES

131

PAGE

SYMBOL

000

FIG. 6 EFFECT OF RECOVERY FACTOR ON E. TANK HEAT TRANSFER WITHOUT PROTUBERANCES
PAGE 132

OH12/IH21 (CAL HST 173-100) 37 T-NP TANK (RUGTO3)

 SYMBOL
 HAW/HT
 PHI
 MACH
 PARAMETRIC VALUES

 ○
 .850
 247.000
 18.430
 ALPHA
 .000
 BETA
 .000

 ◆
 1.000

FIG. 6 EFFECT OF RECOVERY FACTOR ON E. TANK HEAT TRANSFER WITHOUT PROTUBERANCES
PAGE 134

PAGE 136

.000

C, 3

OH12/1H21 (CAL HST 173-100) 37 0 T-NP TANK (RUGTQ4) SYMBOL THYMAH PHI MACH 17.920 PARAMETRIC VALUES **0**□**◊** .850 199,000 ALPHA .000 BETA .000 .900 LOCAL TO REFERENCE HEAT TRANSFER COEFFICIENT, HIHREF 1 .000 բուցույրու .100 .010 RATIO OF -.2 0 .2 .4 .6 .8 1.0 LONGITUDINAL LOCATION AS A FRACTION OF BODY LENGTH, X/L FIG. 6 EFFECT OF RECOVERY FACTOR ON E. TANK HEAT TRANSFER WITHOUT PROTUBERANCES 139 PAGE

.010

LOCAL

RATIG OF

FIG. 6 EFFECT OF RECOVERY FACTOR ON E. TANK HEAT TRANSFER WITHOUT PROTUBERANCES PAGE 140

000

FIG. 6 EFFECT OF RECOVERY FACTOR ON E. TANK HEAT TRANSFER VITHOUT PROTUBERANCES PAGE 142

(RUGTO4) OH12/IH21 (CAL HST 173-100) 37 0 T-NP TANK PHI 315.000 MACH 17.920 PARAMETRIC VALUES SYMBOL HAVZHT .000 BETA .000 ALPHA 000 .850 .900 1.000 RATIO OF LOCAL TO REFERENCE HEAT TRANSFER COEFFICIENT. HYHREF 1.000 pm .100 .010 -.2 O .2 .4 .5 .8 1.0 LONGITUDINAL LOCATION AS A FRACTION OF BODY LENGTH. X/L FIG. 6 EFFECT OF RECOVERY FACTOR ON E. TANK HEAT TRANSFER WITHOUT PROTUBERANCES 144 PAGE

 SYMBOL
 HAV/HT
 PHI
 MACH
 PARAMETRIC VALUES

 O
 .900
 .000
 18.200
 ALPHA
 .000
 BETA
 .000

OH12 + IH21 MODEL 37 OT-NP(4)/T-NP(3) TANK (IUGTO4)

SYMBOL HAW/HT PHI MACH PARAMETRIC VALUES
O .900 180.000 18,200 ALPHA .000 BETA .000

FIG. 6 EFFECT OF RECOVERY FACTOR ON E. TANK HEAT TRANSFER WITHOUT PROTUBERANCES
PAGE 146

 SYMBOL
 HAV/HT
 PHI
 MACH
 PARAMETRIC VALUES

 O
 .900
 199.000
 18.200
 ALPHA
 .000
 BETA
 .000

SYMBOL HAW/HT PH1 MACH PARAMETRIC VALUES 0 .900 221.000 18.200 ALPHA .000 BETA .000

FIG. 6 EFFECT OF RECOVERY FACTOR ON E. TANK HEAT TRANSFER WITHOUT PROTUBERANCES PAGE 148

 SYMBOL
 HAW/HT
 PHI
 MACH
 PARAMETRIC VALUES

 O
 .900
 270.000
 18.200
 ALPHA
 .000
 BETA
 .000

 SYMBOL
 HAW/HT
 PHI
 MACH
 PARAMETRIC VALUES

 O
 .900
 315,000
 18,200
 ALPHA
 .000
 BETA
 .000

BETA

ALPHA

BETA

DATA SET SYMBOL CONFIGURATION DESCRIPTION

DATA SET SYMBOL . CONFIGURATION DESCRIPTION | ALPHA | BETA | (RUGTO1) | OH12/[H2] (CAL HST 173-100) 37 T | TANK | .000 | .000 | .000 | .000 | .000 |

FIG. 7 EFFECT OF PROTUBERANCES ON THE EXTERNAL TANK HEAT TRANSFER ALPHA = 0

MACH = 18.400 HAW/HT= .900 PHI = 247.000 PAGE 166

 SYMBOL
 HAW/HT
 PHI
 MACH
 PARAMETRIC VALUES

 ○
 .900
 180.000
 18.400
 ALPMA
 .000
 BETA
 .000

RIPRODUCELLE OF THE ORIGINAL PAGE B POOR

 SYMBOL
 HAW/HT
 PHI
 MACH
 PARAMETRIC VALUES

 O
 .900
 199.000
 18.400
 ALPHA
 .000
 BETA
 .000

(IUGTO1)

 SYMBOL
 HAW/HT
 PARAMETRIC VALUES

 O
 .900
 221,000
 18.400
 ALPHA
 .000
 BETA

.000

SYMBOL HAW/HT PHI MACH

○ .900 247.000 18.400

PARAMETRIC VALUES

ALPHA .000 BETA .

 SYPBOL
 HAV/HI
 PHI
 MACH
 PARAMETRIC VALUES

 O
 .900
 270.000
 18.400
 ALPHA
 .000
 BETA
 .000

 SYMBOL
 HAW/HT
 PH
 MACH
 PARAMETRIC VALUES

 Q
 .900
 315.000
 18.400
 ALPHA
 .000
 BETA
 .000

.010

-.2 0 .2 .4 .6 .8 1.0 LONGITUDINAL LOCATION AS A FRACTION OF BODY LENGTH, X/L FIG. 8 EFFECT OF RECOVERY FACTOR ON THE ORBITER BODY HEAT TRANSFER ALPHA = 0 PAGE 193

FIG. 8 EFFECT OF RECOVERY FACTOR ON THE ORBITER BODY HEAT TRANSFER ALPHA = 0
PAGE 202

OH12/IH21 (CAL HST 173-100) 37 0 T FUSELAGE (RUGB05) SYMBOL HAY/HT PH! MACH PARAMETRIC VALUES 000 .000 .850 180.000 6.999 ALPHA AT38 000. .900 1.000 1.000

FIG. 8- EFFECT OF RECOVERY FACTOR ON THE ORBITER BODY HEAT TRANSFER ALPHA = 0
PAGE 208

209

PAGE

0H12/IH21 (CAL HST 173-100) 37 0 T FUSELAGE (RUGBO5) HAW/HT PH! PARAMETRIC VALUES 7.616 .850 25.000 ALPHA. .000 BETA .900

.000

FIG. 8 EFFECT OF RECOVERY FACTOR ON THE ORBITER BODY HEAT TRANSFER ALPHA = 0 PAGE 210

FIG. 8 EFFECT OF RECOVERY FACTOR ON THE ORBITER BODY HEAT TRANSFER ALPHA = 0
PAGE 211

OH12/IH21 (CAL HST 173-100) 37 0 T FUSELAGE (RUGBO5) MACH 18.330 PHI 25.000 PARAMETRIC VALUES SYMBOL HAW/HT 000 .000 .850 ALPHA .000 .900 1.000 RATIO OF LOCAL TO REFERENCE HEAT TRANSFER COEFFICIENT, HZHREF 1.000 թարադապապապապ .100 .010

LONGITUDINAL LOCATION AS A BRACTION OF BODY LENGTH. X/L

FIG. 8 EFFECT OF RECOVERY FACTOR ON THE ORBITER BODY HEAT TRANSFER ALPHA = 0

PAGE 214

OH12/IH21 (CAL HST 173-100) 37 0 T FUSELAGE (RUGBO5)

0H12/IH21 (CAL HST 173-100) 37 0 T FUSELAGE (RUGBOS)

SYMBOL HAW/HT MACH PARAMETRIC VALUES 000 30.000 .850 19.200 ALPHA .000 .900 1.000 RATIO OF LOCAL TO REFERENCE HEAT TRANSFER COEFFICIENT, H/HREF 1.000 թարարար .100 .010 -.2 O .2 .4 .6 .8 1.0 LONGITUDINAL LOCATION AS A FRACTION OF BODY LENGTH, X/L FIG. 8 EFFECT OF RECOVERY FACTOR ON THE ORBITER BODY HEAT TRANSFER ALPHA = 0

PAGE

219

LONGITUDINAL LOCATION AS A FRACTION OF BODY LENGTH. X/L

FIG. 8 EFFECT OF RECOVERY FACTOR ON THE ORBITER BODY HEAT TRANSFER ALPHA = 0

PAGE 220

 SYMBOL
 HAW/HT
 PHI
 MACH
 ,7AGMETRIC VALUES

 O
 .900
 .000
 7.000
 ALPHA
 .000
 BETA
 .000

 SYMBOL
 HAY/HT
 PHI
 MACH
 PARAMETRIC VALUES

 O
 .900
 .25.000
 7.000
 ALPHA
 .000
 BETA
 .000

 SYMBOL
 HÀY/HT
 PH1
 MACH
 PARAMETRIC VALUES

 O
 .900
 30.000
 7.000
 ALPHA
 .000
 BETA
 .000

FIG. 8 EFFECT OF RECOVERY FACTOR ON THE ORBITER BODY HEAT TRANSFER ALPHA = 0
PAGE 223

 SYMBOL
 HAW/HT
 PHI
 MACH
 PARAMETRIC VALUES

 O
 .900
 180.000
 7.000
 ALPHA
 .000
 BETA
 .000

SYMBOL MACH PARAMETRIC VALUES 0 .000 7.610 ALPHA BETA .000 MATIG OF INTERFERENCE TO UNDISTURBED HEAT TRANSFER COEFFICIENT, HI/HU سبسا ٥٠ 100 10.0 -.2 0 .2 .4 .6 .8 1.0 LONGITUDINAL LOCATION AS A FRACTION OF BODY LENGTH, X/L FIG. 8 EFFECT OF RECOVERY FACTOR ON THE ORBITER BODY HEAT TRANSFER ALPHA = 0

PAGE

225

 SYMBOL
 HAW/HT
 PHI
 MACH
 PARAMETRIC VALUES

 O
 .900
 30.000
 7.610
 ALPHA
 .000
 BETA
 .000

SYMBOL HAY/HT PHI PARAMETRIC VALUES .900 180.000 7.610 ALPHA .000 BETA .000 UNDISTURBED HEAT TRANSFER COEFFICIENT, HIZHU 100.0 թարարարարար 10.0 1.0 INTERFERENCE TO --2 0 .2 .4 .6 .8 1.0 LONGITUDINAL LOCATION AS A FRACTION OF BODY LENGTH. X/L R 1.2 FIG. 8 EFFECT OF RECOVERY FACTOR ON THE ORBITER BODY HEAT TRANSFER ALPHA = 0 PAGE 228

 SYMBOL
 HAW/HT
 PHI
 MACH
 PARAMETRIC VALUES
 **

 O
 .900
 25,000
 18,300
 ALPHA
 .000
 BETA
 .000

.000

FIG. 8 EFFECT OF RECOVERY FACTOR ON THE ORBITER BODY HEAT TRANSFER ALPHA = 0 PAGE 231

 SYMBOL
 HAW/HT
 PHI
 MACH
 PARAMETRIC VALUES

 O
 .900
 25.000
 19.180
 ALPHA
 .000
 BETA
 .000

ORIGINAL PAGE IS POOR

OH12 + IH21 MODEL 37 OT(05)/O(07) FUSELAGE (IUGB05)

HAW/HT PHI MACH PARAMETRIC VALUES

FIG. 9 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 0
PAGE 242

FIG. 9 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 0
PAGE 250

CHORDWISE LOCATION AS A FRACTION OF LOCAL CHORD, X/C

FIG. 9 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 0

OH12/IH21 (CAL HST 173-100) 37 0 WING L.S.(RUGWO7) SYMBOL O O O PACH 18.310 HAW/HT 2Y/B PARAMETRIC VALUES .85C AT38 .000 .500 ALPHA .000 .900 1.000 RATIO OF LOCAL TO REFERENCE HEAT TRANSFER COEFFICIENT. HZHREF 1.000 pm .100 .010 O .2 .4 .6 .8 1.0 1.2 CHORDWISE LOCATION AS A FRACTION OF LOCAL CHORD. X/C -.2

FIG. 9 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER

ALPHA = 0

257

PAGE

CHORDWISE LOCATION AS A FRACTION OF LOCAL CHORD, X/C

FIG. 9 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 0

PAGE 258

CHORDWISE LOCATION AS A FRACTION OF LOCAL CHORD, X/C FIG. 9 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 0 260 PAGE

ىلستا 100.

FIG. 9 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 0
PAGE 262

OH12/IH21 (CAL HST 173-100) 37 0 T WING L.S.(RUGWO5)

SYMBOL O O O HAW/HT 21/8 MACH PARAMETRIC VALUES .850 .250 6.999 .000 BETA .000 .900 1.000 RATIO OF LOCAL TO REFERENCE HEAT TRANSFER COEFFICIENT, H/HREF 1.000 gmg .100 .010 CHORDWISE LOCATION AS A FRACTION OF LOCAL CHORD, X/C FIG. 9 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 0

267

PAGE

OH12/IH21 (CAL HST 173-100) 37 0 T WING L.S.(RUGWO5) SYMBOL O O HAW/HT 2Y/B HACH PARAMETRIC VALUES .850 **-400** 6.939 ALPHA .000 BETA .000 .900 .100 F

FIG. 9 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 0 PAGE 268

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

WING L.S. (RUGWO5)

269

PAGE

OH12/IH21 (CAL HST 173-100) 37 0 T

SYMBOL HAW/HT 2Y/B MACH

○ .850 .600 6.999

○ .900

○ .900

○ .900

○ .900

○ .900

FIG. 9 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 0
PAGE 270

OH12/IH21 (CAL HST 173-100) 37 0 T WING L.S.(RUGW05) 2Y/B MACH PARAMETRIC VALUES THYMAH 000 .000 .000 BETA .850 .750 6.999 ALPHA .900 1.000 TO REFERENCE HEAT TRANSFER COEFFICIENT, H/HREF 1.000 pm .100 .010 LOCAL F) O .2 .4 .6 .8 1.0 1.2 CHORDWISE LOCATION AS A FRACTION OF LOCAL CHORD, X/C

FIG. 9 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 0

PAGE 271

SYMEGL O 2Y/B -MACH PARAMETRIC VALUES HAVZHT .000 BETA .000 6.999 **ALPHA** .950 .850 .900 1.000 RATIO OF LOCAL TO REFERENCE HEAT TRANSFER COEFFICIENT, H/HREF 1.000 թուդասի . 100 .010 CHORDWISE LOCATION AS A FRACTION OF LOCAL CHORD. X/C FIG. 9 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 0 PAGE 272

SYMBOL O O O HAW/HT 2Y/B MACH PARAMETRIC VALUES 7.616 .850 .750 ALPHA .000 BETA .000 .900 1.000 RATIO OF LOCAL TO REFERENCE HEAT TRANSFER COEFFICIENT, H/HREF 1.000 թուրա .100 -010} -.2 O .2 .4 .6 .8 1.0 1 CHORDWISE LOCATION AS A FRACTION OF LOCAL CHORD, X/C 1.2 1.4 FIG. 9 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 0

PAGE

277

FIG. 9 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 0
PAGE 278

 SYMBOL
 HAW/HT
 2Y/B
 MACH
 PARAMETRIC VALUES

 ○
 .850
 .250
 18.330
 .
 ALPHA
 .000
 BETA
 .000

 ◇
 1.000
 .000
 .000
 .000
 .000
 .000
 .000
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 <

FIG. 9 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = . 0
PAGE 279

PAGE

283

OH12/IH21 (CAL HST I73-100) 37 0 T WING L.S.(RUGWO5)

.850 .950 18.330 .000 ВЕТА .000
1.000

1.000

SYMBOL

000

FIG. 9 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 0
PAGE 284

FIG. 9 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 0.

PAGE 287

PARAMETRIC VALUES SYMBOL HAYZHT 2Y/B **0**□**◊** BETA .000 .850 .750 19.200 .900 1.000 TO REFERENCE HEAT TRANSFER COEFFICIENT. H/HREF 1.000 pm .100} .010 RATIO OF LOCAL O 2 .4 .6 .8 1.0 1.2 CHORDWISE LOCATION AS A FRACTION OF LOCAL CHORD. X/C FIG. 9 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = .0 289 PAGE

SYMBOL HAVZHT 21/9 MACH PARAMETRIC VALUES 0□0 .000 .850 .950 19.200 AL,PHA .000 BETA .900 1.000 -OF LOCAL TO REFERENCE HEAT TRANSFER COEFFICIENT, H/HREF 1 .000 բողուդ .100 F .010 RATIO .001 բողու CHORDWISE LOCATION AS A FRACTION OF LOCAL CHORD. X/C -.4 FIG. 9 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 0 PAGE '290

 SYMBOL
 HAW/HT
 2Y/B
 MACH
 PARAMETRIC VALUES

 O
 .900
 .250
 7.000
 ALPHA
 .000
 BETA
 .000

HAYZHT PARAMETRIC VALUES Ö .900 .400 7.000 .000 ALPHA ATER 000. TO UNDISTURBED HEAT TRANSFER COEFFICIENT, HIZHU 100.0 10.0 1.0 INTERFERENCE CHORDWISE LOCATION AS A FRACTION OF LOCAL CHORD, X/C FIG. 9 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 0 292 PAGE

OH12 + IH21 MODEL 37 OT(05)/0(07) WING L.S. (IUGW05)

SYMBOL PARAMETRIC VALUES õ .900 7.000 .500 BETA .000 **ALPHA** .000 RATIO OF INTERFERENCE TO UNDISTURBED HEAT TRANSFER COEFFICIENT, HIZHU 100.0 pmpm 10.0 1.0 -.2 O .2 .4 .6 .8 1.0 1.2 CHORDWISE LOCATION AS A FRACTION OF LOCAL CHORD, X/C FIG. 9 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 0 PAGE 293

FIG. 9 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 0 PAGE 294

RATIO OF

SYMBOL O HAW/HT PARAMETRIC VALUES .900 7,000 .750 ALPHA .000 BETA .000

FIG. 9 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 0 PAGE

 SYMBOL
 HAW/HT
 2Y/B
 HACH
 PARAMETRIC VALUES

 O
 .990
 .950
 7.000
 ALPHA
 .000
 BETA
 .000

SYMBOL HAW/HT 27/8 MACH PARAMETRIC VALUES
O .900 .400 7.610 ALPHA .000 BETA .000

FIG. 9 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 0
PAGE 298

SYMBOL HAW/HT PARAMETRIC VALUES O .900 .500 7.610 .000 BETA .000

FIG. 9 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 0 PAGE 299

 SYPBOL
 HAW/HT
 2Y/B
 MACH
 PARAMETRIC VALUES

 O
 .900
 .750
 7.610
 ALPHA
 .000
 BETA
 .000

MACH 7.610 2Y/B .950 SYMBOL HAWZHT PARAMETRIC VALUES 0 , 900 ATE9 000. .000 RATIO OF INTERFERENCE TO UNDISTURBED HEAT TRANSFER COEFFICIENT, HI/HU 100.0 բողուդ 10.0 1.0 O .2 .4 .6 .8 1.0 1
CHORDWISE, LOCATION AS A FRACTION OF LOCAL CHORD, X/C FIG. 9 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 0 PAGE 302

SYMBOL **THYRAH** PARAMETRIC VALUES .900 .000 BETA .000 RATIO OF INTERFERENCE TO UNDISTURBED HEAT TRANSFER COEFFICIENT, HIZHU 100.0 10.0 O .2 .4 .6 .8 1.0 1.2
CHORDWISE LOCATION AS A FRACTION OF LOCAL CHORD. X/C FIG. 9 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 0

PAGE

303

SYMBOL HAW/HT PARAMETRIC VALUES 0 **`.900** .400 18.300 .000 BETA .000 RATIO OF INTERFERENCE TO UNDISTURBED HEAT TRANSFER COEFFICIENT, HI/HU 100.0 <u>management</u>

FIG. 9 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 0 PAGE 304

 SYMBOL
 HAW/HT
 2Y/B
 HACH
 PARAMETRIC VALUES

 O
 .900
 .500
 18.300
 ALPHA
 .000
 BETA
 .000

SYMBOL HAY/HT 2Y/8 MACH PARAMETRIC VALUES 0 .900 .600 18.300 .000 BETA .000 ALPHA

306 PAGE

SYMBOL HAW/HT 2Y/B MACH PAPAMETRIC VALUES

O .900 .750 18.300 .000 ALPMA .000 BETA .000

SYMBOL HAW/HT 29/8 MACH PARAPETRIC VALUES
O .900 .950 18.300 ALPHA .000 BETA .000

 SYMBOL
 HAW/HT
 2Y/B
 MACH
 PARAMETRIC VALUES

 O
 .900
 .250
 19.180
 ALPHA
 .000
 BETA
 .000

REPRODUCIBILITY OF THE ORIGINAL PACE IS POOR

SYMBOL HAW/HT PARAMETRIC VALUES 0 .900 .400 19,180 ATER COO. .000 ALPHA

PAGE 310

MACH PARAMETRIC VALUES 900 .500 19.180 .000 **ALPHA** .000 BETA

FIG. 9 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER. ALPHA = .0 PAGE 311

MACH 19.100 SYMBOL **TH/WAH** PARAMETRIC VALUES Ö .900 .600 BETA .000 INTERFERENCE TO UNDISTURBED HEAT TRANSFER COEFFICIENT, HI/HU 100 -0 լույրու 10.0 1.0 RATIO OF O .2 .4 .6 .8 1.0 1
CHORDWISE LOCATION AS A FRACTION OF LOCAL CHORD, X/C FIG. 9 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 0 PAGE 312

SYMBOL PARAMETRIC VALUES 0 .900 BETA .750 19.180 .000 .000 AL PHA

PAGE 313

8\YS TH\WAH SYMBOL MACH PARAMETRIC VALUES 0 19.100 ALPHA .000 BETA .000

FIG. 9 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 0 PAGE 314

ىلىساسىلىساسىلىساسىلىساسىلىساسىلىساسىلىساسىلىساسىلىساسىلىساسىلىساسىلىساسىلىساسىلىساسىلىساسىلىساسىلىسا 1رى 70. 100. 15. 98. 99. 96. 1.00. 189. SPANWISE VERTICAL TAIL LOCATION AS A FRACTION OF EXPOSED SPAN, Z/BV

FIG. 10 EFFECT OF RECOVERY FACTOR ON THE ORBITER TAIL HEAT TRANSFER ALPHA = 0

PAGE

315

PAGE

319

OH12/IH21 (CAL HST 173-100) 37 0 T VERTICAL (RUGVO5)

OH12/IH21 (CAL HST 173-100) 37 0 T VERTICAL (RUGVOS)

OH12/IH21 (CAL HST 173-100) 37 O T VERTICAL (RUGVO5)

REPRODUCIBILITY OF THE OBJECTIVE AND POOR

SYMBOL GAGENO PARAMETRIC VALUES 40.000 0 7.000 ALPHA .000 BETA .000

FIG. 10 EFFECT OF RECOVERY FACTOR ON THE ORBITER TAIL HEAT TRANSFER ALPHA = 0 PAGE 324

 SYMBOL
 HAW/HT
 GAGENO
 MACH
 PARAMETRIC VALUES

 O
 .900
 40.000
 7.610
 ALPHA
 .000
 BETA
 .000

SYMOOL HAYZHT GAGENO 40.000 PARAMETRIC VALUES 0 .900 18.300 ALPHA .000 BETA .000 RATIO OF INTERFERENCE TO UNDISTURBED HEAT TRANSFER COEFFICIENT, HIZHU 100.0 10.0 1.0 .1 tolerate the find and to th FIG. 10 EFFECT OF RECOVERY FACTOR ON THE ORBITER TAIL HEAT TRANSFER ALPHA = 0 PAGÉ 326

SYMBOL HAW/HT GAGENO PARAMETRIC VALUES .000. ATBS 000. 0 .900 40.000 19.180 RATIO OF INTERFERENCE TO UNDISTURBED HEAT TRANSFER COEFFICIENT, HI/HU 100.0 10.0 1.0 .1 interpretability of the control o FIG. 10 EFFECT OF RECOVERY FACTOR ON THE ORBITER TAIL HEAT TRANSFER ALPHA = 0 PAGE 327

OH12/IH21 (CAL HST 173-100) 37 0 T FUSELAGE (RUGBO6) PARAMETRIC VALUES MACH SYMBOL HAW/HT 5.000 BETA .000 ALPHA 19.220 000 .850 .900 1.000 TO REFERENCE HEAT TRANSFER COEFFICIENT. HZHREF .100

PAGE 332

RATIO OF LOCAL

OH12/IH21 (CAL HST 173-100) 37 0 T FUSELAGE (RUGBO6) SYHBOL O O PARAMETRIC VALUES .850 .900 1.000 ALPHA 5.000 BETA .000 25,000 19.220 RATIO OF LOCAL TO REFERENCE HEAT TRANSFER COEFFICIENT, H/HREF .100 .010 LONGITUDINAL LOCATION AS A FRACTION OF BODY LENGTH. X/L 1.2 FIG. 11 EFFECT OF RECOVERY FACTOR ON THE ORBITER BODY HEAT TRANSFER ALPHA = 5 PAGE 333

OH12/IH21 (CAL HST 173-100) 37 0 T FUSELAGE (RUGBO6) PARAMETRIC VALUES SYMBOL THVWAH 5.000 BETA .000 000 .850 30.000 19.220 1.000 .100 }

PAGE 334

0H12/IH21 (CAL HST 173-100) 37 0 T FUSELAGE (RUGB06)

335

PAGE

SYMBOL HAWHT PHI MACH PARAMETRIC VALUES
O .900 .000 19.170 ALPHA 5.000 BETA .000

PHI PARAMETRIC VALUES . 25.000 5.000 BETA .000 RATIO OF INTERFERENCE TO UNDISTURBED HEAT TRANSFER COEFFICIENT, HIZHU 100.0 10.0 -.2 0 .2 .4 .6 .8 1.0 LONGITUDINAL LOCATION AS A FRACTION OF BODY LENGTH, X/L FIG. 11 EFFECT OF RECOVERY FACTOR ON THE ORBITER BODY HEAT TRANSFER ALPHA = 5

PAGE

337

SYM80L HAW/HT MACH PARAMETRIC VALUES 0 30.000 19.170 ,900 ALPHA 5,000 BETA .000

FIG. 11 EFFECT OF RECOVERY FACTOR ON THE ORBITER BODY HEAT TRANSFER ALPHA = 5 PAGE 338

SYMBOL MACH PARAMETRIC VALUES 180,000 19.170 ALPHA 5.000 BETA .000

FIG. 11 EFFECT OF RECOVERY FACTOR ON THE ORBITER BODY HEAT TRANSFER ALPHA = 5 PAGE 339

O .2 .4 .6 .8 1.0 1 CHORDWISE LOCATION AS A FRACTION OF LOCAL CHORD, X/C FIG. 12 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 5 PAGE 342

1.2

لسلسا 2 **.** −

PAGE

343

FIG. 12 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 5
PAGE 344

OH12/IH21 (CAL HST 173-100) 37 0 T WING L.S.(RUGWO6)

SYMBOL O O HAV/HT 2Y/B PARAMETRIC VALUES .850 .250 19.220 ALPHA 5.000 BETA .000 900 LOCAL TO REFERENCE HEAT TRANSFER COEFFICIENT, H/HREF .100 -.010 RATIO OF O .2 .4 .6 .8 1.C 1.2 CHORDWISE LOCATION AS A FRACTION OF LOCAL CHORD, X/C FIG. 12 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 5 PAGE 346

OH12/IH21 (CAL HST 173-100). 37 0 T WING L.S.(RUGWO6)

SYMBOL HAMZHT 2Y/B MACH PARAMETRIC VALUES 19.220 .850 .400 5.000 BETA .000 .900 1.000 RATIO OF LOCAL TO REFERENCE HEAT TRANSFER COEFFICIENT, H/HREF 1.000 pmp .100 .010 CHORDWISE LOCATION AS A FRACTION OF LOCAL CHORD, X/C - . 2 FIG. 12 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 5 PAGE 347

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

OH12/IH21 (CAL HST 173-100) 37 0 T WING L.S.(RUGWO6) HAVZHT 2Y/B HACH PARAMETRIC VALUES 19.220 .850 .600 5.000 BETA .000 AL PHA .900 1,000 RATIO OF LOCAL TO REFERENCE HEAT TRANSFER COEFFICIENT, HZHREF 1.000 բողադ .100 [--.010 سنا 00<u>1 أسنا</u> -.2 O .2 .4 .6 .8 1.0 1 CHORDWISE LOCATION AS A FRACTION OF LOCAL CHORD, X/C 1.2

FIG. 12 EFFECT OF RECOVERY, FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 5

PAGE

349

OH12/IH21 (CAL HST 173-100) 37 0 T WING L.S.(RUGW06)

SYH8OL HAVZHT 2Y/B PARAMETRIC VALUES .000 000 5.000 BETA .950 .750 19.220 ALPHA .900 1.000 RATIO OF LOCAL TO REFERENCE HEAT TRANSFER COEFFICIENT, H/HREF .100 .010 CHORDWISE LOCATION AS A FRACTION OF LOCAL CHORD, X/C FIG. 12 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 5 350 PAGE

OH12/IH21 (CAL HST I73-100) 37 0 T WING L.S.(RUGW06)

PAGE

351

 SYMBOL HAW/HT
 2Y/B
 MACH
 PARAMÈTRIC VALUES

 O
 .900
 .250
 19.170
 ALPHA
 5.000
 BETA
 .000

OH12 + IH21 MODEL 37 OT(06)/O(08) WING L.S. (IUGWO6)

 SYMBOL
 HAW/HT
 29/8
 MACH
 PARAMETRIC VALUES

 O
 .900
 .500
 19.170
 ALPHA
 5.000
 BETA
 .000

0H12 + IH21 MODEL 37 OT(06)/0(08) WING L.S. (JUGW06)

SYMBOL PARAMETRIC VALUES 5.000 BETA .600 19.170 ALPHA .000 MATIO OF INTERFERENCE TO UNDISTURBED HEAT TRÂNSFER COEFFICIENT. HIZHU 1/00 ./0 mmm 10.0 1.0 CHORDWISE LLOCATION AS A FRACTION OF LOCAL GHORD. XAC -,,2 IFILG. 112 LEFFECT OF RECOVERY FRACTOR ON THE LORBITTER WING HEAT TRANSFER ALIPHA = 5

REPRODUCIBILITY OF THE OBJECTIVE OF THE

 SYMBOL
 HAW/HT
 2Y/B
 MACH
 PARAMETRIC VALUES

 O
 .900
 .750
 19.170
 ALPHA
 5.000
 BETA
 .000

MACH 19.170 PARAMETRIC VALUES .900 5.000 BETA ALPHA .000

FIG. 12 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 5 PAGE 357

SYMBOL GAGENO MACH PARAMETRIC VALUES HAW/HT **0**□◊ 5,000 BETA .000 .850 40.000 19.180 .900 1.000 TO REFERENCE HEAT TRANSFER COEFFICIENT. H/HREF 1 .000 թարարադադ .100 .010 RATIO OF LOCAL

OH12/IH21 (CAL HST 173-100) 37 0 VERTICAL (RUGVO8)

SPANWISE VERTICAL TAIL LOCATION AS A FRACTION OF EXPOSED SPAN, Z/BV

FIG. 13 EFFECT OF RECOVERY FACTOR ON THE ORBITER TAIL HEAT TRANSFER ALPHA = 5

PAGE 358

 SYMBOL
 HAY/HT
 GAGENO
 MACH
 PARAMETRIC VALUES

 O
 .900
 40.000
 19.170
 ALPHA
 5.000
 BETA
 .000

0412/1421 (CAL HST 173-100) 37 0 T TANK (RUGT14)

SYMBOL. HAVH 19H1 HACH

000. 850 180.000 16.000

000. ALPHA 0000 EETA

000. □

000. 1.000

FIG. 14 EFFECT OF RECOVERY FACTOR ON THE E. TANK HEAT TRANSFER RN/L2 ALPHA = 0
PAGE 370

OH12/IH21 (CAL HST I73-100) 37 € T TANK (RUGT14)

SYMBOL HAW/HT PHI MACH

O .850 270.000 16.000

□ .900

○ 1.000

BERODUCTBILITY OF THE ORIGINAL PAGE IS POOK

FIG. 14 EFFECT OF RECOVERY FACTOR ON THE E. TANK HEAT TRANSFER RN/L2 ALPHA = 0
PAGE 375

. 0H12/[H21 (CAL HST 173-100) 37 0 T FUSELAGE (RUGB14)

PAGE

378

RATIO OF LOCAL

0H12/IH21 (CAL HST 173-100) 37 0 T FUSELAGE (RUGB14)

SYMBOL HAWZHT MACH PARAMETRIC VALUES 000 .850 30.000 16.050 ALPHA .000 BETA .000 .900 1.000 H/HREF 1.000 pmg RATIO OF LOCAL TO REFERENCE HEAT TRANSFER COEFFICIENT 100 .010 LONGITUDINAL LOCATION AS A FRACTION OF BODY LENGTH. X/L FIG. 15 EFFECT OF RECOVERY FACTOR ON THE ORBITER BODY HEAT TRANSFER ALPHA = 0

PAGE

379

FIG. 15 EFFECT OF RECOVERY FACTOR ON THE ORBITER BODY HEAT TRANSFER ALPHA = 0
PAGE 380

OH12/IH21 (CAL HST-173-100) 37 0 T WING L.S.(RUGW14)

FIG. 16 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 0
PAGE 382

OH12/IH21 (CAL HST 173-100) 37 0 T WING L.S.(RUGW14)

SYMBOL THVAVH 2Y/B MACH PARAMETRIC VALUES 000 .500 16.050 ALPHA .000 BETA .000 .850 .900 1.000 TO REFERENCE HEAT TRANSFER COEFFICIENT, HIMREF 1.000 .1001 .010 -OF LOCAL RATIO O .2 .4 .6 .8 1.0 1 CHORDWISE LOCATION AS A FRACTION OF LOCAL CHORD, X/C FIG. 16 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 0 PAGE 383

OH12/IH21 (CAL HST 173-100) 37 0 T WING L.S.(RUGW14)

S1MBOL HAY/HT 2Y/B MACH PARAMETRIC VALUES .000 .850 .600 16.050 .000 BETA .200 1.000 10 REFERENCE HEAT TRANSFER COEFFICIENT, HZHREF 1 **.**000 թարարա .1001 .0101-LOCAL RATIO OF .001 Firm O .2 .4 .6 .8 1.0 1 CHORDWISE LOCATION AS A FRACTION OF LOCAL CHORD, X/C FIG. 16 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 0 PAGE 384

OH12/IH21 (CAL HST 173-100) 37 0 T WING L.S.(RUGW]4)

SYMBOL 2Y/8 .750 MACH 16.050 HAWZHT PARAMETRIC VALUES .830 .COO BETA .000 .900 1.000 RATIO OF LOCAL TO REFERENCE HEAT TRANSFER COEFFICIENT. H/HREF .100 .010 CHORDWISE LOCATION AS A FRACTION OF LOCAL CHORD, X/C FIG. 16 EFFECT OF RECOVERY FACTOR ON THE ORBITER WING HEAT TRANSFER ALPHA = 0

PAGE

385

DESIGNAL PAGE IS POOR.

OH12/IH21 (CAL HST 173-100) 37 0 T WING L.S.(RUGW14)

SYMBOL

000

FIG. 17 EFFECT OF RECOVERY FACTOR (IN THE ORBITER TAIL HEAT TRANSFER ALPHA = 0
PAGE 387