Minigrid – Door Key – Uma análise de modelos (DQN x PPO)

Giancarlo Vanoni Ruggiero, Luciano Felix Dias, Tales Ivalque

Engenharia da Computação, INSPER

Prof. Fabrício Barth

Abstract—Neste projeto foi desenvolvido e validado um agente capaz de atuar no ambiente Door Key. O método de treinamento empregado foi ... Os resultados obtidos foram ...

keywords-Reinforcement Learning, DQN, PPO, Minigrid, Door Key

1. Introdução

projeto tem como objetivo comparar o desempenho do ambiente single-agent Minigrid – Doorkey utilizando os algoritmos DQN (*Deep Q-Network*) e PPO (*Proximal Policy Optimization*). Neste ambiente, há uma chave que o agente deve adquirir para destrancar uma porta e chegar ao objetivo no quadrado verde.

2. Ambiente

Table 1. Direções do espaço de observação

ID	Vetor direção
0	(1,0)
1	(0,1)
2	(-1,0)
3	(0, -1)

O espaço de observação é descrito por um dicionário contendo a direção do agente *direciton*, a imagem observável *image* e o espaço de missão *mission*. Sendo: *direction* um atributo discreto de valor como descrito na tabela 1; *image* sendo uma matriz RGB quadrada de valores inteiros contidos no intervalo [0, 255] do tamanho do campo de visão do agente, e sendo este parametrizável como numero inteiro ímpar maior que 2 por padrão 7; e *mission* sendo o universo de ação do agente como uma matriz retangular de tamanho arbitrário contendo trincas seguindo a seguinte estrutura, respectivamente:

Table 2. Objetos do espaço de observação

ID	Nome	Objeto
0	UNSEEN	Não visível
1	EMPTY	Vazio
2	$W\!ALL$	Parede
3	FLOOR	Chão
4	DOOR	Porta
5	KEY	Chave
6	BALL	Bola
7	BOX	Caixa
8	GOAL	Objetivo
9	LAVA	Lava
10	AGENT	Agente

- ID do objeto contido no latrilho atual, descrito como na tabela
- ID da cor do latrilho atual, descrito como na tabela 3;
- ID do estado do objeto condito no latrilho atual, descrito como na tabela 4.

O espaço de ação é discreto com ações de movimento e poucas interações com elementos do ambiente. O espaço de ação é implementado conforme especificado na tabela 5.

Table 3. Cores do espaço de observação

ID	Nome	Vetor RGB
0	RED	(255, 0, 0)
1	GREEN	(0, 255, 0)
2	BLUE	(0,0,255)
3	PURPLE	(112, 39, 195)
4	YELLOW	(255, 255, 0)
5	GREY	(100, 100, 100)

Table 4. Estados do espaço de observação

ID	Nome	Estado
0	OPEN	Aberto
1	CLOSED	Fechado
2	LOCKED	Trancado

A função de recompensa é definida no domínio contínuo do intervalo [0, 1] e proporcional a razão entre o número de passos e o número máximo de passos permitido para o agente atingir o estado final com sucesso, caso contrário a recompensa é anulada. Esta razão é definida com maior rigor na equação 1.

$$RECOMPENSA = \begin{cases} 1 - 0.9 \cdot \frac{\text{\#PASSOS}}{\text{max}(\text{\#PASSOS})}, & \text{se sucesso} \\ 0, & \text{caso contrário} \end{cases}$$
 (1)

3. Método

Para encontrar os resultados serão realizados treinamentos com diferentes números de episódios para cada algoritmo. Também será realizada a modificação do reward para que o agente consiga o reward não só chegando ao final mas realizando as ações necessárias para chegar lá, comparando os resultados.

Atenção

Para treinamento será utilizado a biblioteca stable baselines.

Também é importante destacar a implementação utilizada. Se foi uma implementação feita do zero pela equipe ou se foi utilizada uma biblioteca. Se a equipe optou por utilizar uma biblioteca é importante citar a biblioteca. Em ambos os casos, se a equipe fez a sua própria implementação ou se utilizou uma biblioteca, é importante **citar o repositório** onde os scripts se encontram.

Table 5. Espaço de ação

Número	Nome	Ação
0	LEFT	Vira para a esquerd
1	RIGHT	Vira para a direita
2	<i>FORWARD</i>	Move para a frente
3	PICKUP	Pega um objeto
4	DROP	Não utilizado
5	TOGGLE	Alternar/ativar um objeto
6	DONE	Não utilizado

Reinforcement Learning INSPER 10 de maio de 2024 1–2

Nesta seção também é importante descrever quais são os principais **indicadores** que a equipe está avaliando. Isto está diretamente relacionado com a função que pretende-se otimizar - que foi descrita na introdução deste relatório.

Eventualmente, a equipe deseja adicionar algum trecho de código nesta parte do relatório. Isto pode ser feito da seguinte maneira:

Code 1. Exemplo de código em Python

4. Resultados

O objetido desta pararte do relatório é descrever os resultados obtidos. Durante a disciplina nós vimos as principais técnicas para mostrar o aprendizado do agente e o desempenho do mesmo para realizar a tarefa. Esta seção precisa mostrar dados quantitativos que descrevem isto: a curva de aprendizagem e as validações feitas depois do treinamento.

Para apresentar os resultados obtidos com certeza a equipe terá que fazer uso de figuras, como a apresenta em 1.

Além de tabelas, como a apresentada em 6.

Figure 1. Exemplo de figura obtido a partir de *PGFPlots - A LaTeX package to create plots*. [Online]. Available: https://pgfplots.sourceforge.net/).

Table 6. Exemplo de tabela

1	
Column 1	Column 2
Data 1	Data 2
Data 3	Data 4

5. Considerações finais

objetivo deste trabalho foi ...