

⑯ 公開特許公報 (A)

平3-31266

⑤Int.Cl.⁵C 07 D 239/34
A 01 N 43/54
C 07 D 239/42

識別記号

庁内整理番号

⑬公開 平成3年(1991)2月12日

C

6529-4C
8930-4H
6529-4C※

Z

審査請求 未請求 請求項の数 2 (全14頁)

④発明の名称 ピリミジン誘導体及び除草剤

②特 願 平1-164942

②出 願 平1(1989)6月27日

⑦発明者 畑中 雅隆 千葉県船橋市坪井町722番地1 日産化学工業株式会社中央研究所内

⑦発明者 渡辺 淳一 千葉県船橋市坪井町722番地1 日産化学工業株式会社中央研究所内

⑦発明者 近藤 康夫 千葉県船橋市坪井町722番地1 日産化学工業株式会社中央研究所内

⑦発明者 鈴木 宏一 埼玉県南埼玉郡白岡町大字白岡1470 日産化学工業株式会社生物科学研究所内

⑦出願人 日産化学工業株式会社 東京都千代田区神田錦町3丁目7番地1
最終頁に続く

明細書

1. 発明の名称

ピリミジン誘導体及び除草剤

2. 特許請求の範囲

(I) 一般式 (I)

(式中、Rは水素原子、置換していくてもよい低級アルキル基（この置換基としてはハロゲン原子、低級アルコキシ基、低級アルキルチオ基或いはハロゲン原子、低級アルキル基、低級アルコキシ基、低級アルキルチオ基で置換していくてもよいフェニル基を示す。）、アルカリ金属、アルカリ土類金属もしくは置換されていてもよいアンモニウムカチオンを表す。

R¹、R²は各々同一又は相異なってもよく、

ハロゲン原子、低級アルキル基、低級ハロアルキル基、低級アルコキシ基、低級ハロアルコキシ基もしくは低級ジアルキルアミノ基を表す。

X¹、X²、Y¹およびY²は各々同一又は相異なってもよく、水素原子、シアノ基、カルボキシル基、低級アルコキシカルボニル基、ホルミル基、低級アルコキシ基、置換していくてもよい低級アルキル基（この置換基としてはハロゲン原子、シアノ基、ニトロ基、ホルミル基、低級アルコキシ基、低級アルキルチオ基、カルボキシル基、低級アルコキシカルボニル基、低級ジアルキルアミノ基、フェニル基、フェノキシ基あるいはフェニルチオ基を示す。）、置換していくてもよい低級アルケニル基（この置換基としてはハロゲン原子、シアノ基、ニトロ基、ホルミル基、低級アルコキシ基、カルボキシル基、低級アルコキシカルボニル基、フェニル基もしくはフェノキシ基を示す。）、置換していくてもよいフェニル基（この置換基としてはハロゲン原子、シアノ基、ニトロ基、低級アルキル基、低級アルコキシ基、カルボキシル基あ

るいは低級アルコキシカルボニル基を示す。)を表す。)で表されるビリミジン誘導体もしくは該誘導体の光学異性体。

(2) 請求項(I)記載のビリミジン誘導体もしくは該誘導体の光学異性体の1種又は2種以上を有効成分として含有する除草剤。

3. 発明の詳細な説明

(イ) 産業上の利用分野

本発明は新規なビリミジン誘導体もしくは該誘導体の光学異性体及び該誘導体の1種又は2種以上を有効成分として含有する除草剤に関するものである。

(ロ) 従来の技術

従来、除草剤を使用するにあたっては、単位面積当たりの有効成分処理量の多少により、除草剤を使用する際の経済コストが左右されることが一般的に指摘されており、使用薬量の低い、新規な除草剤の出現が望まれている。

一方、従来の除草剤では、使用時、作物に対して悪影響を及ぼす場合があり、低薬量で高い除草

効果、より高度な作物と雑草間の選択性を有する化合物の研究が長年にわたり続けられてきた。

例えば、ビリミジン核を有する除草剤として特開昭54-55729号公報等が知られている。

(ハ) 発明の態様

本発明者らは、長年にわたる研究を重ねた結果、本発明のビリミジン誘導体もしくは該誘導体の光学異性体が従来の除草剤に比べ著しく除草効果が高く、しかも本発明のビリミジン誘導体もしくは該誘導体の光学異性体の幾つかは、イネ、トウモロコシ、コムギ、ダイズ、ワタ、ピート等の作物に選択性を有し実用的に有用であること、更に重要な雑草であるノビエ、メヒシバ、カヤツリグサ、イヌホースキ、ハキダメギク、イヌガラシ、ホタルイ、コナギ、キカシグサ、ウリカワに優れた活性を有していることを見出し、本発明を完成するに至った。

即ち、本発明のビリミジン誘導体もしくは該誘導体の光学異性体は、従来の公知化合物に比べて単位面積当たりの有効成分投下量を著しく低減さ

せることができ、従来の除草剤と比べ作物に対する薬害は極めて軽微であり、その経済効果は極めて大である。

更に、本発明のビリミジン誘導体もしくは該誘導体の光学異性体は農薬の多量施用による環境汚染の危険性を著しく低減することができ、土壤残留による他の作物への悪影響も少ない画期的な除草剤といえる。

本発明は一般式(I)

(式中、Rは水素原子、置換していくてもよい低級アルキル基(この置換基としてはハロゲン原子、低級アルコキシ基、低級アルキルチオ基或いはハロゲン原子、低級アルキル基、低級アルコキシ基、低級アルキルチオ基で置換していくてもよいフェニ

ル基を示す。)、アルカリ金属、アルカリ土類金属もしくは置換されていてもよいアンモニウムカチオンを表す。

R¹、R²は各々同一又は相異なってもよく、ハロゲン原子、低級アルキル基、低級ハロアルキル基、低級アルコキシ基、低級ハロアルコキシ基もしくは低級ジアルキルアミノ基を表す。

X¹、X²、Y¹およびY²は各々同一又は相異なってもよく、水素原子、シアノ基、カルボキシル基、低級アルコキシカルボニル基、ホルミル基、低級アルコキシ基、置換していくてもよい低級アルキル基(この置換基としてはハロゲン原子、シアノ基、ニトロ基、ホルミル基、低級アルコキシ基、低級アルキルチオ基、カルボキシル基、低級アルコキシカルボニル基、低級ジアルキルアミノ基、フェニル基、フェノキシ基あるいはフェニルチオ基を示す。)、置換していくてもよい低級アルケニル基(この置換基としてはハロゲン原子、シアノ基、ニトロ基、ホルミル基、低級アルコキシ基、カルボキシル基、低級アルコキシカルボニ

ル基、フェニル基もしくはフェノキシ基を示す。)、置換していてもよいフェニル基(この置換基としてはハロゲン原子、シアノ基、ニトロ基、低級アルキル基、低級アルコキシ基、カルボキシル基あるいは低級アルコキシカルボニル基を示す。)を表す。)で表されるビリミジン誘導体もしくは該誘導体の光学異性体に関し、更にビリミジン誘導体もしくは該誘導体の光学異性体の1種又は2種以上を有効成分として含有する除草剤に関するものである。

本発明のビリミジン誘導体もしくは該誘導体の光学異性体は文献未記載の新規化合物であり、且つ除草剤として優れた生理活性を有する。

本発明の一般式(Ⅰ)で表されるビリミジン誘導体もしくは該誘導体の光学異性体は、

一般式(Ⅱ)

(式中、R、X¹、X²、Y¹及びY²は前記と同じ意味を表す。)

で表されるアルコールと

一般式(Ⅲ)

(式中、R³はハロゲン原子、アルキルスルホニル基又は置換されていてもよいベンジルスルホニル基を表し、R¹、R²は前記と同じ意味を表す。)

で表されるビリミジン化合物を、任意の割合、好ましくは一般式(Ⅱ)の環状アルコール1モルに対して一般式(Ⅲ)のビリミジン化合物1モルを混合し、必要ならば、塩基の存在下溶媒中で反応させることによって製造することができる。

溶媒としては、ベンゼン、トルエン、キシレン等の炭化水素系溶媒、塩化メチレン、クロロホル

ム等のハロゲン化炭化水素系溶媒、メチルアルコール、エチルアルコール、イソプロピルアルコール等のアルコール系溶媒、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸メチル、酢酸エチル等のエ斯特系溶媒、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド等の非プロトン性極性溶媒、その他アセトニトリル、水等が挙げられる。

塩基としては、金属ナトリウム、金属カリウム等のアルカリ金属類、水素化ナトリウム、水素化カルシウム等の水素化アルカリ金属及び水素化アルカリ土類金属類、炭酸ナトリウム、炭酸カリウム等の炭酸塩類、水酸化ナトリウム、水酸化カリウム等の水酸化金属類、トリエチルアミン、ビリジン等の有機塩基が挙げられる。

反応は、溶媒の凝固点から沸点までの任意の温度、好ましくは0℃から溶媒の沸点迄の温度で行なうことができ、必要に応じて加熱或いは冷却す

ることができる。

反応時間としては、数分～数十時間、好ましくは0.5～3.5時間がよい。

上記のような製造法により得られた本発明のビリミジン誘導体もしくは該誘導体の光学異性体は、必要に応じて再結晶或いはカラムクロマトグラフィーによって精製することもできる。

以下、本発明を合成例、配合例及び試験例により更に詳しく説明するが本発明はこれらに限られるものではない。

合成例1

の合成

(本発明化合物No.1-2-2)

2-メチル-3-ヒドロキシブタン酸エチルエステル1.46g(0.01モル)および2-メタン

スルホニル-4,6-ジメトキシピリミジン2.0g (0.0092モル) を無水テトラヒドロフラン50mLに溶解し、氷水浴で冷却した。

次に水素化ナトリウム0.5g (55%, 油性) を添加し室温で一晩攪拌した。反応終了を薄層クロマトグラフィーで確認した後、反応混合物を氷水にあけ、酢酸エチルで抽出後、無水硫酸ナトリウムで乾燥し、溶媒を留去した。カラムクロマトグラフィー精製後2.43g (収率93%) の本発明化合物Na122を無色粘稠液体として得た。

物性 液体 n_{D}^{20} 1.4864

$^1\text{H-NMR}$ [δ 値 (ppm), CDCl_3]
 1.03 ~ 1.50 (9H, m)
 2.63 ~ 3.12 (1H, m)
 3.87 (6H, s) 4.10 (2H, q, $J=6.5\text{Hz}$)
 5.09 ~ 5.59 (1H, m)
 5.61 (1H, s)

1.30 (6H, s) 3.68 (3H, s)
 3.90 (6H, s) 4.38 (2H, s)
 5.67 (1H, s)

合成例3

(本発明化合物Na261)

エチルトリフルオロアセトアセテート2g (0.0109モル) を無水ジエチルエーテルに溶かし氷水浴で冷却した。次にボランアンモニアコンプレックス0.18gを加え室温で一晩攪拌した。反応終了後希塩酸で中和し、ジエチルエーテルで抽出し、無水硫酸ナトリウムで乾燥した。溶媒留去後1.66g (収率80%) のエチル-3-ヒドロキシ-4,4,4-トリフルオロブチレートを得た。

上記で得た化合物及び2-メタンスルホニル-

合成例2

の合成

(本発明化合物Na200)

メチル2,2-ジメチル-3-ヒドロキシプロピオネート0.93g (0.007モル) 及び2-メタノスルホニル-4,6-ジメトキシピリミジン1.5g (0.0069モル) を無水テトラヒドロフラン80mLに溶かし、氷水浴にて冷却した。

次に水素化ナトリウム0.44g (55%, 油性) を加え室温で一晩攪拌した。反応混合物を氷水にあけ、ジエチルエーテルで抽出後、無水硫酸ナトリウムで乾燥し、溶媒を留去した。カラムクロマトグラフィー精製後1.65g (0.006モル、収率87%) の本発明化合物Na200を得た。

物性 固体 融点 76.0 ~ 80.0°C

$^1\text{H-NMR}$ [δ 値 (ppm), CDCl_3]

4,6-ジメトキシピリミジン1.94gを無水テトラヒドロフラン80mLに溶かし、氷水冷で冷却した。

次に水素化ナトリウム0.52g (55%, 抽出) を加え室温で一晩攪拌した。カラムクロマトグラフィー精製後、目的化合物0.53g (収率18%)を得た。

物性 液体 n_{D}^{20} 1.4535

$^1\text{H-NMR}$ [δ 値 (ppm), CDCl_3]
 1.20 (3H, t, $J=7.0\text{Hz}$)
 2.85 ~ 3.00 (2H, m)
 3.90 (6H, s) 4.10 (2H, q, $J=7.0\text{Hz}$)
 5.75 (1H, s) 6.1 ~ 6.40 (1H, m)

合成例4

の合成

(本発明化合物Na305)

メチル3-ヒドロキシ-4,4,4-トリクロロブチレート1.52g及び2-メタンスルホニル-4,6-ジメトキシピリミジン1.5g(0.0069モル)を無水テトラヒドロフラン80mLに溶かし氷水浴にて冷却した。次に水素化ナトリウム0.45g(55%、油性)を加え室温で一晩搅拌した。

反応溶液を氷水にあけ、ジエチルエーテルで抽出後、無水硫酸ナトリウムで乾燥し、溶媒を留去した。カラムクロマトグラフィーで精製後1.31g(0.00364モル、収率53%)の本発明化合物No.305を得た。

物性 固体 融点 61.0~63.0°C

¹H-NMR [δ値(ppm), CDCl₃] :

3.15(2H, d, d, d, J=4.0Hz, 7.0Hz, 3.0Hz)
3.62(3H, s) 3.92(6H, s)
5.75(1H, s) 6.45(1H, dd, J=4Hz, 7Hz)

合成例5

の合成

(本発明化合物No.476)

メチル3-オキソ-4,4-ジメチルベンタネート2gを合成例3と同様の方法でメチル3-ヒドロキシ-4,4-ジメチルベンタネート1.8g(収率89%)を合成し、さらに合成例3と同様の操作を経て本発明化合物No.476を0.55g(収率16%)を得た。

物性 液体 n_D²⁰ 1.4878

¹H-NMR [δ値(ppm), CDCl₃] :

1.00(9H, s) 2.67(2H, d, J=7.0Hz)
3.60(3H, s) 3.95(6H, s)
5.60(1H, t, J=7.0Hz)
5.70(1H, s)

合成例6

の合成

(本発明化合物No.618)

D,L-リンゴ酸ジメチル0.74g(0.0046モル)及び2-メタンスルホニル-4,6-ジメトキシピリミジン1g(0.0046モル)を無水テトラヒドロフラン50mLに溶かし氷水浴にて冷却した。次に水素化ナトリウム0.25g(55%、油性)を加え室温で一晩搅拌した。

反応混合物を氷水にあけジエチルエーテルで抽出後、無水硫酸ナトリウムで乾燥し、溶媒を留去した。カラムクロマトグラフィー精製後1.08g(0.0036モル、収率78%)の本発明化合物No.618を得た。

物性 固体 融点 57.0~61.0°C

¹H-NMR [δ値(ppm), CDCl₃] :

2.97(2H, d, J=8.6Hz)
3.70(6H, s) 3.85(6H, s)
5.65(1H, t, J=8.0Hz) 5.67(1H, s)

合成例7

の合成

(本発明化合物No.622)

ジエチル1,3-アセトンジカルボキシレート20g(0.10モル)の200mLジエチルエーテル溶液にボランーターシャリーブチルアミンコンプレックス3.2gを加え、室温で一昼夜搅拌した。

それに希塩酸水溶液を加え弱酸性とした後、分液し、有機溶液を乾燥濃縮して、粗3-ヒドロキシグルタル酸ジエチルエステル14.1gを得た。

この3-ヒドロキシグルタル酸ジエチルエステル2.0gおよび2-メタンスルホニル-4,6-ジ

メトキシピリミジン2.0 gを無水テトラヒドロフラン50 mlに溶解し、氷水浴で冷却した。以後合成例1と同様の方法により、本発明化合物No. 622を2.80 g(収率90%)で得た。

物性 液体 n_{D}^{20} 1.4823

$^1\text{H-NMR}$ [δ 値(ppm), CDCl_3]

1.20 (3H, t, $J=7.0\text{Hz}$)
1.23 (3H, t, $J=7.0\text{Hz}$)
2.31 (2H, d, $J=7.0\text{Hz}$)
2.34 (2H, d, $J=7.0\text{Hz}$)
3.87 (6H, s) 4.08 (4H, q, $J=7.0\text{Hz}$)
5.65 (1H, s) 5.83 (1H, 5th, $J=7.0\text{Hz}$)

又、合成例1から合成例7と同様な合成法によって得られる本発明化合物を第1表に示す。

また物性値を前記実施例を含めて第2表に示す。

本発明化合物No.は、以下の配合例及び試験例について参照される。

本発明のピリミジン誘導体もしくは該誘導体の光学異性体を除草剤として施用するにあたっては一般には適当な担体、例えばクレー、タルク、ベ

ントナイト、珪藻土等の固体担体或いは水、アルコール類(メタノール、エタノール等)、芳香族炭化水素類(ベンゼン、トルエン、キシレン等)塩素化炭化水素類、エーテル類、ケトン類、エステル類(酢酸エチル等)、酸アミド類(ジメチルホルムアミド等)等の液体担体と混用して適用することができ、所望により乳化剤、分散剤、懸濁剤、浸透剤、展着剤、安定剤等を添加し、液剤、乳剤、水和剤、粉剤、粒剤、フロアブル剤等任意の剤型にて実用に供することができる。

これらの製剤中における有効成分化合物の含有量は特に限定されるものではないが、一般に0.10~90.0重量%の範囲が望ましい。

又、必要に応じて製剤化又は散布時に他種の除草剤、各種殺虫剤、殺菌剤、植物生長調節剤、共力剤等と混合施用してもよい。

例えば、ファーム・ケミカルズ・ハンドブック (Farm Chemicals Handbook), 第75版、1989年に記載されている化合物等がある。

尚、本発明のピリミジン誘導体もしくは該誘導

体の光学異性体は畠地、水田、果樹園等の農園芸分野以外に運動場、空地、線路端等非農耕地における各種雑草の防除にも適用することができ、その施用薬量は適用場面、施用時期、施用方法、対象草種、栽培作物等により差異はあるが、一般には有効成分量としてヘクタール当たり0.005~1.0 kg程度が適当である。

次に、本発明のピリミジン誘導体もしくは該誘導体の光学異性体を有効成分とする除草剤の配合例を示すが、これらのみに限定されるものではない。

尚、以下の配合例において「部」は重量部を意味する。

液 剤

有効成分 : 5~75部、望ましくは10~50部、特に15~40部が好ましい。

液体担体 : 95~25部、望ましくは88~30部、特に82~40部が好ましい。

界面活性剤 : 1~30部、望ましくは2~20部。

乳 剤

有効成分 : 1~50部、望ましくは5~45部、特に10~40部が好ましい。

界面活性剤 : 1~30部、望ましくは2~25部、特に3~20部が好ましい。

液体担体 : 20~95部、望ましくは30~93部、特に57~85部が好ましい。

粉 剂

有効成分 : 0.5~10部、特に15~40部が好ましい。

固体担体 : 95.5~90部。

フロアブル剤

有効成分 : 5~75部、望ましくは10~50部。

水 : 94~25部、望ましくは90~30部。

界面活性剤 : 1~30部、望ましくは2~20部。

水 和 剂

有効成分 : 2.5~90部、望ましくは10~80部、特に20~75部が好ましい。

界面活性剤 : 0.5~20部、望ましくは1~15部、特に2~10部が好ましい。

液体担体 : 5 ~ 90部、望ましくは7.5 ~ 88部、特に16~56部が好ましい。

粒 剂

有効成分 : 0.1 ~ 30部。

固体担体 : 95.5~70部。

液剤及び乳剤は界面活性剤を含む液体担体に有効成分を溶解して調整する。水和剤は界面活性剤、固体担体及び有効成分を混合し、更に粉碎することにより調整する。

粉剤は界面活性剤、固体担体及び有効成分を混合し、必要ならば、更に粉碎することにより調整する。

フロアブル剤は、界面活性剤を含む水溶液に有効成分を懸濁、分散して調整する。粒剤は有効成分と補助剤を混合して調整する。

配合例1 水和剤

本発明化合物 No.122 50部
ジークライトPFP 43部
(カオリン系クレインジークライト工業品名)	

ソルボール5039 5部
(非イオン性界面活性剤とアニオン性界面活性剤との混合物: 東邦化学工業品名)	
カップレックス(固結防止剤) 2部
(界面活性剤とホワイトカーボンの混合物: 塩野義製薬品名)	

以上を均一に混合粉碎して水和剤とする。使用に際しては上記水和剤を10~10,000倍に希釈して、有効成分量がヘクタール当たり0.005kg~10kgになるように散布する。

配合例2 乳剤

本発明化合物 No.305 10部
キシレン 70部
ジメチルホルムアミド 10部
ソルボール2680 10部

(非イオン性界面活性剤とアニオン性界面活性剤との混合物: 東邦化学工業品名)

以上を均一に混合して乳剤とする。使用に際しては上記乳剤を10~10,000倍に希釈して、有効成分量がヘクタール当たり0.005kg~10kgに

なるように散布する。

配合例3 粒剤

本発明化合物 No.261 5部
ペントナイト 54部
タルク 40部

リグニンスルホン酸カルシウム..... 1部

以上を均一に混合粉碎して少量の水を加えて搅拌混合し、押出式造粒機で造粒し、乾燥して粒剤とする。使用に際しては上記乳剤を有効成分量がヘクタール当たり0.005kg~10kgになるように散布する。

配合例4 フロアブル剤

本発明化合物 No.476 25部
ソルボール3353 10部
(非イオン性界面活性剤: 東邦化学工業品名)	
ルノックス1000C 0.5部
(陰イオン性界面活性剤: 東邦化学工業品名)	
1%サンサンガム水溶液 20部
(天然高分子)	

水 44.5部

ソルボール3353、ルノックス1000C及び1%サンサンガム水溶液を水に均一に溶解し、次に本発明化合物No.38を加えよく搅拌した後、サンドミルにて湿式粉碎してフロアブル剤を得る。

使用に際しては、上記フロアブル剤を10~10,000倍に希釈して有効成分量がヘクタール当たり0.005kg~10kgになるように分散する。

次に、本発明化合物の除草剤としての有用性を以下の試験例において具体的に説明する。

試験例1 土壌処理による除草効果試験

縦30cm、横22cm、深さ6cmのプラスチック製箱に殺菌した洪積土壌を入れ、ノビエ、メヒシバ、カヤツリグサ、イヌホースキ、ハキダメギク、イヌガラシ、ワタを播種し、約1.5cm覆土した後有効成分量が所定の割合となるように土壌表面へ均一に散布した。散布の際の薬液は、前記配合例の液剤、水和剤、乳剤又はフロアブル剤を水で希釈して小型スプレーで全面に散布した。薬液散布4週間後に各種雑草に対する除草効果を下記の判

定基準に従い調査した。

判定基準

- 5 … 殺草率 90% 以上 (殆ど完全枯死)
- 4 … 殺草率 70 ~ 90%
- 3 … 殺草率 40 ~ 70%
- 2 … 殺草率 20 ~ 40%
- 1 … 殺草率 5 ~ 20%
- 0 … 殺草率 5% 以下 (殆ど効力なし)

但し、上記の殺草率は、薬剤処理区の地上部生草重及び無処理区の地上部生草重を測定して下記の式により求めたものである。

$$\text{殺草率} = \left(1 - \frac{\text{処理区の地上部生草重}}{\text{無処理区の地上部生草重}} \right) \times 100$$

結果を第3表に示す。

試験例 2 莖葉処理による除草効果試験

縦 30 cm、横 22 cm、深さ 6 cm のプラスチック製箱に殺菌した洪積土を入れ、ノビエ、メヒシバ、カラスムギ、カヤツリグサ、イヌホースキ、イスガラシ、ハキダメギクの種子をそれぞれスポット状に播種し、約 1.5 cm 覆土した。各種植物が

2 ~ 3 葉期に達したとき、有効成分量が所定の割合となるように莖葉部へ均一に散布した。

散布の際の薬液は、前記配合例の液剤、水和剤、乳剤又はフロアブル剤を水で希釈して小型スプレーで各種雑草及び作物の莖葉部の全面に散布した。薬液散布 4 週間後に各種雑草に対する除草効果を試験例 1 の判定基準に従い調査した。結果を第 4 表に示す。

一般式

第 1 表

No.	X ¹	X ²	Y ¹	Y ²	R	R'	R''
1	H			H		OMe	OMe
2	H	H		H	Na	OMe	OMe
3	H		H	H	ⁱ PrNH ₂	OMe	OMe
4				H	Me	OMe	OMe
5	H	H		H	Et	OMe	OMe
6				H	-CH ₂ OCH ₃	OMe	OMe
7				H	-CH ₂ SCl ₂	OMe	OMe
8				H	-CH ₂ C ₆ H ₅	OMe	OMe
9				H	-CH ₂ C ₆ H ₄ -Cl-2	OMe	OMe
10	H	H		H	-CH ₂ C ₆ H ₄ -Cl-3	OMe	OMe
11	H	H		H	-CH ₂ C ₆ H ₄ -Cl-4	OMe	OMe
12	H	H		H	-CH ₂ Cl ₂ C ₆ H ₅	OMe	OMe
13	H	Me		H	H	OMe	OMe
14	H	H	Me		Na	OMe	OMe
15	H	H	Me		ⁱ PrNH ₂	OMe	OMe
16	H	H	Me	H	Me	OMe	OMe
17	H	H	Me	H	Et	OMe	OMe
18	H	H	Me	H	-CH ₂ OCH ₃	OMe	OMe
19	H	H	Me	H	-CH ₂ SCl ₂	OMe	OMe
20	H	Me	H	H	-CH ₂ C ₆ H ₅	OMe	OMe
21	H	H	Me	H	-CH ₂ C ₆ H ₄ -Cl-2	OMe	OMe
22	H	H	Me	H	-CH ₂ C ₆ H ₄ -Cl-3	OMe	OMe

No.	X ¹	X ²	Y ¹	Y ²	R	R'	R''
23	H		Me	H	-CH ₂ C ₆ H ₄ -Cl-4	OMe	OMe
24	H		Me	H	-CH ₂ Cl ₂ C ₆ H ₅	OMe	OMe
25			Me	H	H	OMe	OMe
26		H	Me	H	Na	OMe	OMe
27		H	Me	H	ⁱ PrNH ₂	OMe	OMe
28		H	Me	H	Me	OMe	OMe
29		H	Me	H	Et	OMe	OMe
30		H	Me	H	-CH ₂ OCH ₃	OMe	OMe
31		H	Me	H	-CH ₂ SCl ₂	OMe	OMe
32		H	Me	H	-CH ₂ C ₆ H ₅	OMe	OMe
33		H	Me	H	-CH ₂ C ₆ H ₄ -Cl-2	OMe	OMe
34		H	Me	H	-CH ₂ C ₆ H ₄ -Cl-3	OMe	OMe
35		H	Me	H	-CH ₂ Cl ₂ C ₆ H ₅	OMe	OMe
36		H	Me	H	-CH ₂ Cl ₂ C ₆ H ₅	OMe	OMe
37		H	Me	H	H	OMe	OMe
38		H	Me	H	Na	OMe	OMe
39		H	Me	H	ⁱ PrNH ₂	OMe	OMe
40		H	Me	H	Me	OMe	OMe
41		H	Me	H	Et	OMe	OMe
42		H	Me	H	-CH ₂ OCH ₃	OMe	OMe
43		H	Me	H	-CH ₂ SCl ₂	OMe	OMe
44		H	Me	H	-CH ₂ C ₆ H ₅	OMe	OMe
45		H	Me	H	-CH ₂ C ₆ H ₄ -Cl-2	OMe	OMe
46		H	Me	H	-CH ₂ C ₆ H ₄ -Cl-3	OMe	OMe
47		H	Me	H	-CH ₂ C ₆ H ₄ -Cl-4	OMe	OMe
48		H	Me	H	-CH ₂ Cl ₂ C ₆ H ₅	OMe	OMe
49	Me			H	H	OMe	OMe
50	Me			H	Na	OMe	OMe
51	Me			H	ⁱ PrNH ₂	OMe	OMe
52	Me			H	Me	OMe	OMe
53	Me			H	Et	OMe	OMe
54	Me			H	-CH ₂ OCH ₃	OMe	OMe
55	Me			H	-CH ₂ SCl ₂	OMe	OMe
56	Me			H	-CH ₂ C ₆ H ₅	OMe	OMe
57	Me			H	-CH ₂ C ₆ H ₄ -Cl-2	OMe	OMe
58	Me			H	-CH ₂ C ₆ H ₄ -Cl-3	OMe	OMe

No.	X ¹	X ²	Y ¹	Y ²	R	R ¹	R ²
59	Me	II	H	II	-Cl ₂ C ₆ H ₄ -Cl-4	OMe	OMe
60	Me	II	H	II	-Cl ₂ CH ₂ C ₆ H ₅	OMe	OMe
61	Me	II	H	II	Na	OMe	OMe (+)
62	Me	II	H	II	ⁱ PrNH ₂	OMe	OMe (+)
63	Me	II	H	II	Me	OMe	OMe (+)
64	Me	II	H	II	Et	OMe	OMe (+)
65	Me	II	H	II	-Cl ₂ OCH ₃	OMe	OMe (+)
66	Me	II	H	II	-CH ₂ SCl ₂	OMe	OMe (+)
67	Me	H	H	H	-CH ₂ SCl ₂	OMe	OMe (+)
68	Me	H	H	H	-CH ₂ C ₆ H ₅	OMe	OMe (+)
69	Me	H	H	H	-Cl ₂ C ₆ H ₄ -Cl-2	OMe	OMe (+)
70	Me	H	H	H	-Cl ₂ C ₆ H ₄ -Cl-3	OMe	OMe (+)
71	Me	H	H	H	-Cl ₂ C ₆ H ₄ -Cl-4	OMe	OMe (+)
72	Me	H	H	H	-Cl ₂ Cl ₂ C ₆ H ₅	OMe	OMe (+)
73	Me	H	H	H	II	OMe	OMe (-)
74	Me	H	H	H	Na	OMe	OMe (-)
75	Me	H	H	H	ⁱ PrNH ₂	OMe	OMe (-)
76	Me	H	H	H	Me	OMe	OMe (-)
77	Me	H	H	H	Et	OMe	OMe (-)
78	Me	H	H	H	-Cl ₂ OCH ₃	OMe	OMe (-)
79	Me	H	H	H	-CH ₂ SCl ₂	OMe	OMe (-)
80	Me	H	H	H	-CH ₂ C ₆ H ₅	OMe	OMe (-)
81	Me	H	H	H	-Cl ₂ C ₆ H ₄ -Cl-2	OMe	OMe (-)
82	Me	H	H	H	-Cl ₂ C ₆ H ₄ -Cl-3	OMe	OMe (-)
83	Me	H	H	H	-Cl ₂ C ₆ H ₄ -Cl-4	OMe	OMe (-)
84	Me	H	H	H	-Cl ₂ Cl ₂ C ₆ H ₅	OMe	OMe (-)
85	Me	H	Me	H	II	Me	Me
86	Me	H	Me	H	Na	Me	Me
87	Me	H	Me	H	K	Me	Me
88	Me	H	Me	H	1/2Ca	Me	Me
89	Me	H	Me	H	NH ₄	Me	Me
90	Me	H	Me	H	MeNH ₂	Me	Me
91	Me	H	Me	H	ⁱ PrNH ₂	Me	Me
92	Me	H	Me	H	NH ₂ CONH ₂	Me	Me
93	Me	H	Me	H	Me	Me	Me
94	Me	H	Me	H	Et	Me	Me

No.	X ¹	X ²	Y ¹	Y ²	R	R ¹	R ²
95	Me	H	Me	II	Pr	Me	Me
96	Me	H	Me	II	-Cl ₂ CH ₂ Cl	Me	Me
97	Me	H	Me	II	-Cl ₂ OCl ₂	Me	Me
98	Me	H	Me	II	-Cl ₂ OCl ₃	Me	Me
99	Me	H	Me	H	-Cl ₂ CH ₂ OCl ₂	Me	Me
100	Me	H	Me	H	-Cl ₂ CH ₂ Cl	Me	Me
101	Me	H	Me	H	-Cl ₂ CH ₂ H	Me	Me
102	Me	H	Me	H	-Cl ₂ C ₆ H ₅	Me	Me
103	Me	H	Me	H	-Cl ₂ C ₆ H ₄ -Cl-2	Me	Me
104	Me	H	Me	H	-Cl ₂ C ₆ H ₄ -Cl-3	Me	Me
105	Me	H	Me	H	-Cl ₂ C ₆ H ₄ -Cl-4	Me	Me
106	Me	H	Me	H	-Cl ₂ C ₆ H ₄ -Me-2	Me	Me
107	Me	H	Me	H	-Cl ₂ C ₆ H ₄ -Me-3	Me	Me
108	Me	H	Me	H	-Cl ₂ C ₆ H ₄ -Me-4	Me	Me
109	Me	H	Me	H	-Cl ₂ C ₆ H ₄ -OMe-2	Me	Me
110	Me	H	Me	H	-Cl ₂ C ₆ H ₄ -OMe-3	Me	Me
111	Me	H	Me	H	-Cl ₂ C ₆ H ₄ -OMe-4	Me	Me
112	Me	H	Me	H	-Cl ₂ Cl ₂ C ₆ H ₅	Me	Me
113	Me	H	Me	H	II	OMe	OMe
114	Me	H	Me	H	Na	OMe	OMe
115	Me	H	Me	H	K	OMe	OMe
116	Me	H	Me	H	1/2Ca	OMe	OMe
117	Me	H	Me	H	NH ₄	OMe	OMe
118	Me	H	Me	H	MeNH ₂	OMe	OMe
119	Me	H	Me	H	ⁱ PrNH ₂	OMe	OMe
120	Me	H	Me	H	NH ₂ CONH ₂	OMe	OMe
121	Me	H	Me	H	Et	OMe	OMe
122	Me	H	Me	H	Pr	OMe	OMe
123	Me	H	Me	H	ⁱ Pr	OMe	OMe
124	Me	H	Me	H	-Cl ₂ Cl ₂ Cl	OMe	OMe
125	Me	H	Me	H	-Cl ₂ OCl ₂	OMe	OMe
126	Me	H	Me	H	-Cl ₂ OCl ₃	OMe	OMe
127	Me	H	Me	H	-Cl ₂ CH ₂ OCl ₂	OMe	OMe
128	Me	H	Me	H	-Cl ₂ SCl ₂	OMe	OMe
129	Me	H	Me	H	-Cl ₂ SCl ₂	OMe	OMe
130	Me	H	Me	H	-Cl ₂ C ₆ H ₅	OMe	OMe

No.	X ¹	X ²	Y ¹	Y ²	R	R ¹	R ²
131	Me	II	Me	H	-Cl ₂ C ₆ H ₄ -Cl-2	OMe	OMe
132	Me	H	Me	H	-Cl ₂ C ₆ H ₄ -Cl-3	OMe	OMe
133	Me	H	Me	H	-Cl ₂ C ₆ H ₄ -Cl-4	OMe	OMe
134	Me	II	Me	H	-Cl ₂ C ₆ H ₄ -Me-2	OMe	OMe
135	Me	II	Me	H	-Cl ₂ C ₆ H ₄ -Me-3	OMe	OMe
136	Me	H	Me	H	-Cl ₂ C ₆ H ₄ -Me-4	OMe	OMe
137	Me	H	Me	H	-Cl ₂ C ₆ H ₄ -OMe-2	OMe	OMe
138	Me	H	Me	H	-Cl ₂ C ₆ H ₄ -OMe-3	OMe	OMe
139	Me	H	Me	H	-Cl ₂ C ₆ H ₄ -OMe-4	OMe	OMe
140	Me	H	Me	H	-Cl ₂ Cl ₂ C ₆ H ₅	OMe	OMe
141	Me	H	Me	H	II	Cl	Cl
142	Me	H	Me	H	Na	Cl	Cl
143	Me	H	Me	H	K	Cl	Cl
144	Me	H	Me	H	1/2Ca	Cl	Cl
145	Me	H	Me	H	NH ₄	Cl	Cl
146	Me	H	Me	H	MeNH ₂	Cl	Cl
147	Me	H	Me	H	ⁱ PrNH ₂	Cl	Cl
148	Me	H	Me	H	NH ₂ CONH ₂	Cl	Cl
149	Me	H	Me	H	Me	Cl	Cl
150	Me	H	Me	H	Et	Cl	Cl
151	Me	H	Me	H	Pr	Cl	Cl
152	Me	H	Me	H	ⁱ Pr	Cl	Cl
153	Me	H	Me	H	-Cl ₂ Cl ₂ Cl	Cl	Cl
154	Me	H	Me	H	-Cl ₂ OCl ₂	Cl	Cl
155	Me	H	Me	H	-Cl ₂ OCl ₃	Cl	Cl
156	Me	H	Me	H	-Cl ₂ CH ₂ OCH ₃	Cl	Cl
157	Me	H	Me	H	-Cl ₂ SCl ₂	Cl	Cl
158	Me	H	Me	H	-Cl ₂ C ₆ H ₅	Cl	Cl
159	Me	H	Me	H	-Cl ₂ C ₆ H ₄ -Cl-2	Cl	Cl
160	Me	H	Me	H	-Cl ₂ C ₆ H ₄ -Cl-3	Cl	Cl
161	Me	H	Me	H	-Cl ₂ C ₆ H ₄ -Cl-4	Cl	Cl
162	Me	H	Me	H	-Cl ₂ C ₆ H ₄ -Me-2	Cl	Cl
163	Me	H	Me	H	-Cl ₂ C ₆ H ₄ -Me-3	Cl	Cl
164	Me	H	Me	H	-Cl ₂ C ₆ H ₄ -OMe-4	Cl	Cl
165	Me	H	Me	H	-Cl ₂ C ₆ H ₄ -OMe-2	Cl	Cl
166	Me	H	Me	H	-Cl ₂ C ₆ H ₄ -OMe-3	Cl	Cl

No.	X ¹	X ²	Y ¹	Y ²	R	R ¹	R ²
167	Me	II	Me	H	-Cl ₂ C ₆ H ₄ -OMe-4	Cl	Cl
168	Me	H	Me	H	-Cl ₂ Cl ₂ C ₆ H ₅	Cl	Cl
169	Me	H	Me	H	H	OCH ₂ F	OCH ₂ F
170	Me	H	Me	H	Na	OCH ₂ F	OCH ₂ F
171	Me	H	Me	H	K	OCH ₂ F	OCH ₂ F
172	Me	H	Me	H	1/2Ca	OCH ₂ F	OCH ₂ F
173	Me	H	Me	H	NH ₄	OCH ₂ F	OCH ₂ F
174	Me	H	Me	H	MeNH ₂	OCH ₂ F	OCH ₂ F
175	Me	H	Me	H	ⁱ PrNH ₂	OCH ₂ F	OCH ₂ F
176	Me	H	Me	H	NH ₂ CONH ₂	OCH ₂ F	OCH ₂ F
177	Me	H	Me	H	Me	OCH ₂ F	OCH ₂ F
178	Me	H	Me	H	Et	OCH ₂ F	OCH ₂ F
179	Me	H	Me	H	Pr	OCH ₂ F	OCH ₂ F
180	Me	H	Me	H	ⁱ Pr	OCH ₂ F	OCH ₂ F
181	Me	H	Me	H	-Cl ₂ CH ₂ Cl	OCH ₂ F	OCH ₂ F
182	Me	H	Me	H	-Cl ₂ OCl ₂	OCH ₂ F	OCH ₂ F
183	Me	H	Me	H	-Cl ₂ OCH ₃	OCH ₂ F	OCH ₂ F
184	Me	H	Me	H	-Cl ₂ CH ₂ OCl ₂	OCH ₂ F	OCH ₂ F
185	Me	H	Me	H	-Cl ₂ SCl ₂	OCH ₂ F	OCH ₂ F
186	Me	H	Me	H	-Cl ₂ C ₆ H ₅	OCH ₂ F	OCH ₂ F
187	Me	H	Me	H	-Cl ₂ C ₆ H ₄ -Cl-2	OCH ₂ F	OCH ₂ F
188	Me	H	Me	H	-Cl ₂ C ₆ H ₄ -Cl-3	OCH ₂ F	OCH ₂ F
189	Me	H	Me	H	-Cl ₂ C ₆ H ₄ -Me-2	OCH ₂ F	OCH ₂ F
190	Me	H	Me	H	-Cl ₂ C ₆ H ₄ -Me-3	OCH ₂ F	OCH ₂ F
191	Me	H	Me	H	-Cl ₂ C ₆ H ₄ -Me-4	OCH ₂ F	OCH ₂ F
192	Me	H	Me	H	-Cl ₂ C ₆ H ₄ -OMe-2	OCH ₂ F	OCH ₂ F
193	Me	H	Me	H	-Cl ₂ C ₆ H ₄ -OMe-3	OCH ₂ F	OCH ₂ F
194	Me	H	Me	H	-Cl ₂ C ₆ H ₄ -OMe-4	OCH ₂ F	OCH ₂ F
195	Me	H	Me	H	-Cl ₂ C ₆ H ₄ -OMe-4	OCH ₂ F	OCH ₂ F
196	Me	H	Me	H	-Cl ₂ CH ₂ C ₆ H ₅	OCH ₂ F	OCH ₂ F
197	Me	H	Me	H	H	Ome	OMe
198	Me	H	Me	H	H	Na	OMe
199	Me	H	Me	H			

No.	X ¹	X ²	Y ¹	Y ²	R	R ¹	R ²
203	Me	Me	H	H	-Cl ₂ SCl ₃	OMe	OMe
204	Me	Me	H	H	-Cl ₂ C ₆ H ₅	OMe	OMe
205	Me	Me	H	H	-CH ₂ C ₆ H ₄ -Cl-2	OMe	OMe
206	Me	Me	H	H	-CH ₂ C ₆ H ₄ -Cl-3	OMe	OMe
207	Me	Me	H	H	-CH ₂ C ₆ H ₄ -Cl-4	OMe	OMe
208	Me	Me	H	H	-CH ₂ Cl ₂ C ₆ H ₅	OMe	OMe
209	H	H	Me	Me	H	OMe	OMe
210	H	H	Me	Me	Na	OMe	OMe
211	H	H	Me	Me	PrNH ₂	OMe	OMe
212	H	H	Me	Me	Me	OMe	OMe
213	H	H	Me	Me	Et	OMe	OMe
214	H	H	Me	Me	-Cl ₂ OCH ₃	OMe	OMe
215	H	H	Me	Me	-Cl ₂ SCl ₃	OMe	OMe
216	H	H	Me	Me	-CH ₂ C ₆ H ₅	OMe	OMe
217	H	H	Me	Me	-CH ₂ C ₆ H ₄ -Cl-2	OMe	OMe
218	H	H	Me	Me	-CH ₂ C ₆ H ₄ -Cl-3	OMe	OMe
219	H	H	Me	Me	-CH ₂ C ₆ H ₄ -Cl-4	OMe	OMe
220	H	H	Me	Me	-CH ₂ Cl ₂ C ₆ H ₅	OMe	OMe
221	Me	Me	Me	H	H	OMe	OMe
222	Me	Me	Me	H	Na	OMe	OMe
223	Me	Me	Me	H	PrNH ₂	OMe	OMe
224	Me	Me	Me	H	Me	OMe	OMe
225	Me	Me	Me	H	Et	OMe	OMe
226	Me	Me	Me	H	-Cl ₂ OCH ₃	OMe	OMe
227	Me	Me	Me	H	-Cl ₂ SCl ₃	OMe	OMe
228	Me	Me	Me	H	-CH ₂ C ₆ H ₅	OMe	OMe
229	Me	Me	Me	H	-CH ₂ C ₆ H ₄ -Cl-2	OMe	OMe
230	Me	Me	Me	H	-CH ₂ C ₆ H ₄ -Cl-3	OMe	OMe
231	Me	Me	Me	H	-CH ₂ C ₆ H ₄ -Cl-4	OMe	OMe
232	Me	Me	Me	H	-CH ₂ Cl ₂ C ₆ H ₅	OMe	OMe
233	H	H	Me	Me	H	OMe	OMe
234	H	H	Me	Me	Na	OMe	OMe
235	H	H	Me	Me	PrNH ₂	OMe	OMe
236	H	H	Me	Me	Me	OMe	OMe
237	H	H	Me	Me	Et	OMe	OMe
238	H	Me	Me	Me	-Cl ₂ OCH ₃	OMe	OMe

No.	X ¹	X ²	Y ¹	Y ²	R	R ¹	R ²
239	H	Me	Me	Me	-Cl ₂ SCl ₃	OMe	OMe
240	H	Me	Me	Me	-CH ₂ C ₆ H ₅	OMe	OMe
241	H	Me	Me	Me	-CH ₂ C ₆ H ₄ -Cl-2	OMe	OMe
242	H	Me	Me	Me	-CH ₂ C ₆ H ₄ -Cl-3	OMe	OMe
243	H	Me	Me	Me	-CH ₂ C ₆ H ₄ -Cl-4	OMe	OMe
244	H	Me	Me	Me	-CH ₂ Cl ₂ C ₆ H ₅	OMe	OMe
245	Me	Me	Me	Me	H	OMe	OMe
246	Me	Me	Me	Me	Na	OMe	OMe
247	Me	Me	Me	Me	PrNH ₂	OMe	OMe
248	Me	Me	Me	Me	Me	OMe	OMe
249	Me	Me	Me	Me	Et	OMe	OMe
250	Me	Me	Me	Me	-Cl ₂ OCH ₃	OMe	OMe
251	Me	Me	Me	Me	-Cl ₂ SCl ₃	OMe	OMe
252	Me	Me	Me	Me	-CH ₂ C ₆ H ₅	OMe	OMe
253	Me	Me	Me	Me	-CH ₂ C ₆ H ₄ -Cl-2	OMe	OMe
254	Me	Me	Me	Me	-CH ₂ C ₆ H ₄ -Cl-3	OMe	OMe
255	Me	Me	Me	Me	-CH ₂ C ₆ H ₄ -Cl-4	OMe	OMe
256	Me	Me	Me	Me	-CH ₂ Cl ₂ C ₆ H ₅	OMe	OMe
257	H	H	CF ₃	H	H	OMe	OMe
258	H	H	CF ₃	H	Na	OMe	OMe
259	H	H	CF ₃	H	PrNH ₂	OMe	OMe
260	H	H	CF ₃	H	Me	OMe	OMe
261	H	H	CF ₃	H	Et	OMe	OMe
262	H	H	CF ₃	H	-Cl ₂ OCH ₃	OMe	OMe
263	H	H	CF ₃	H	-Cl ₂ SCl ₃	OMe	OMe
264	H	H	CF ₃	H	-CH ₂ C ₆ H ₅	OMe	OMe
265	H	H	CF ₃	H	-CH ₂ C ₆ H ₄ -Cl-2	OMe	OMe
266	H	H	CF ₃	H	-CH ₂ C ₆ H ₄ -Cl-3	OMe	OMe
267	H	H	CF ₃	H	-CH ₂ C ₆ H ₄ -Cl-4	OMe	OMe
268	H	H	CF ₃	H	-CH ₂ Cl ₂ C ₆ H ₅	OMe	OMe
269	H	H	CCl ₃	H	H	Me	Me
270	H	H	CCl ₃	H	Na	Me	Me
271	H	H	CCl ₃	H	K	Me	Me
272	H	H	CCl ₃	H	1/2Ca	Me	Me
273	H	H	CCl ₃	H	NH ₄ ⁺	Me	Me
274	H	H	CCl ₃	H	MeNH ₂	Me	Me

No.	X ¹	X ²	Y ¹	Y ²	R	R ¹	R ²
275	H	H	CCl ₃	H	PrNH ₂	Me	Me
276	H	H	CCl ₃	H	NH ₂ CONH ₂	Me	Me
277	H	H	CCl ₃	H	Me	Me	Me
278	H	H	CCl ₃	H	Et	Me	Me
279	H	H	CCl ₃	H	Pr	Me	Me
280	H	H	CCl ₃	H	Pr	Me	Me
281	H	H	CCl ₃	H	-CH ₂ Cl ₂ Cl	Me	Me
282	H	H	CCl ₃	H	-CH ₂ CCl ₃	Me	Me
283	H	H	CCl ₃	H	-Cl ₂ OCH ₃	Me	Me
284	H	H	CCl ₃	H	-CH ₂ Cl ₂ OCH ₃	Me	Me
285	H	H	CCl ₃	H	-CH ₂ SCl ₃	Me	Me
286	H	H	CCl ₃	H	-CH ₂ C ₆ H ₅	Me	Me
287	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -Cl-2	Me	Me
288	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -Cl-3	Me	Me
289	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -Cl-4	Me	Me
290	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -Me-2	Me	Me
291	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -Me-3	Me	Me
292	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -Me-4	Me	Me
293	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -O-Me-2	Me	Me
294	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -O-Me-3	Me	Me
295	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -O-Me-4	Me	Me
296	H	H	CCl ₃	H	-CH ₂ Cl ₂ C ₆ H ₅	Me	Me
297	H	H	CCl ₃	H	H	OMe	OMe
298	H	H	CCl ₃	H	Na	OMe	OMe
299	H	H	CCl ₃	H	K	OMe	OMe
300	H	H	CCl ₃	H	1/2Ca	OMe	OMe
301	H	H	CCl ₃	H	NH ₄ ⁺	OMe	OMe
302	H	H	CCl ₃	H	NH ₂ Me	OMe	OMe
303	H	H	CCl ₃	H	PrNH ₂	OMe	OMe
304	H	H	CCl ₃	H	NH ₂ CONH ₂	OMe	OMe
305	H	H	CCl ₃	H	Me	OMe	OMe
306	H	H	CCl ₃	H	Et	OMe	OMe
307	H	H	CCl ₃	H	Pr	OMe	OMe
308	H	H	CCl ₃	H	Pr	OMe	OMe
309	H	H	CCl ₃	H	-CH ₂ Cl ₂ Cl	OMe	OMe
310	H	H	CCl ₃	H	-CH ₂ OCH ₃	OMe	OMe

No.	X ¹	X ²	Y ¹	Y ²	R	R ¹	R ²
311	H	H	CCl ₃	H	-CH ₂ OCH ₃	OMe	OMe
312	H	H	CCl ₃	H	-CH ₂ Cl ₂ OCH ₃	OMe	OMe
313	H	H	CCl ₃	H	-CH ₂ SCl ₃	OMe	OMe
314	H	H	CCl ₃	H	-CH ₂ C ₆ H ₅	OMe	OMe
315	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -Cl-2	OMe	OMe
316	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -Cl-3	OMe	OMe
317	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -Cl-4	OMe	OMe
318	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -Me-2	OMe	OMe
319	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -Me-3	OMe	OMe
320	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -Me-4	OMe	OMe
321	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -O-Me-2	OMe	OMe
322	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -O-Me-3	OMe	OMe
323	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -O-Me-4	OMe	OMe
324	H	H	CCl ₃	H	-CH ₂ Cl ₂ C ₆ H ₅	OMe	OMe
325	H	H	CCl ₃	H	H	OMe	OMe
326	H	H	CCl ₃	H	Na	OMe	OMe
327	H	H	CCl ₃	H	K	OMe	OMe
328	H	H	CCl ₃	H	1/2Ca	OMe	OMe
329	H	H	CCl ₃	H	NH ₄ ⁺	OMe	OMe
330	H	H	CCl ₃	H	NH ₂ Me	OMe	OMe
331	H	H	CCl ₃	H	PrNH ₂	OMe	OMe
332	H	H	CCl ₃	H	NH ₂ CONH ₂	OMe	OMe
333	H	H	CCl ₃	H	Me	OMe	OMe
334	H	H	CCl ₃	H	Et	OMe	OMe
335	H	H	CCl ₃	H	Pr	OMe	OMe
336	H	H	CCl ₃	H	Pr	OMe	OMe
337	H	H	CCl ₃	H	-CH ₂ Cl ₂ Cl	OMe	OMe
338	H	H	CCl ₃	H	-CH ₂ OC ₂	OMe	OMe
339	H	H	CCl ₃	H	-CH ₂ OC ₂ Cl	OMe	OMe
340	H	H	CCl ₃	H	-CH ₂ Cl ₂ OCH ₃	OMe	OMe
341	H	H	CCl ₃	H	-CH ₂ SCl<sub		

No.	X ¹	X ²	Y ¹	Y ²	R	R ¹	R ²
347	H	H	CCl ₃	H	-Cl ₂ C ₆ H ₄ -Me-3	OMe	OMe (+)
348	H	H	CCl ₃	H	-Cl ₂ C ₆ H ₄ -Me-4	OMe	OMe (+)
349	H	H	CCl ₃	H	-Cl ₂ C ₆ H ₄ -OMe-2	OMe	OMe (+)
350	H	H	CCl ₃	H	-Cl ₂ C ₆ H ₄ -OMe-3	OMe	OMe (+)
351	H	H	CCl ₃	H	-Cl ₂ C ₆ H ₄ -OMe-4	OMe	OMe (+)
352	H	H	CCl ₃	H	-Cl ₂ CH ₂ CCl ₃	OMe	OMe (+)
353	H	H	CCl ₃	H	H	OMe	OMe (-)
354	H	H	CCl ₃	H	Na	OMe	OMe (-)
355	H	H	CCl ₃	H	K	OMe	OMe (-)
356	H	H	CCl ₃	H	1/2Ca	OMe	OMe (-)
357	H	H	CCl ₃	H	NH ₄	OMe	OMe (-)
358	H	H	CCl ₃	H	MeNH ₂	OMe	OMe (-)
359	H	H	CCl ₃	H	PrNH ₂	OMe	OMe (-)
360	H	H	CCl ₃	H	NH ₂ CONH ₂	OMe	OMe (-)
361	H	H	CCl ₃	H	Me	OMe	OMe (-)
362	H	H	CCl ₃	H	Et	OMe	OMe (-)
363	H	H	CCl ₃	H	Pr	OMe	OMe (-)
364	H	H	CCl ₃	H	Pr	OMe	OMe (-)
365	H	H	CCl ₃	H	-Cl ₂ CH ₂ Cl	OMe	OMe (-)
366	H	H	CCl ₃	H	-Cl ₂ CCl ₃	OMe	OMe (-)
367	H	H	CCl ₃	H	-Cl ₂ OCH ₃	OMe	OMe (-)
368	H	H	CCl ₃	H	-Cl ₂ CH ₂ OCH ₃	OMe	OMe (-)
369	H	H	CCl ₃	H	-Cl ₂ SCl ₃	OMe	OMe (-)
370	H	H	CCl ₃	H	-Cl ₂ CH ₂ Br	OMe	OMe (-)
371	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -Cl-2	OMe	OMe (-)
372	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -Cl-3	OMe	OMe (-)
373	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -Cl-4	OMe	OMe (-)
374	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -Me-2	OMe	OMe (-)
375	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -Me-3	OMe	OMe (-)
376	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -Me-4	OMe	OMe (-)
377	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -OMe-2	OMe	OMe (-)
378	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -OMe-3	OMe	OMe (-)
379	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -OMe-4	OMe	OMe (-)
380	H	H	CCl ₃	H	-Cl ₂ CH ₂ C ₆ H ₅	OMe	OMe (-)
381	H	H	CCl ₃	H	Cl	Cl	Cl
382	H	H	CCl ₃	H	Na	Cl	Cl

No.	X ¹	X ²	Y ¹	Y ²	R	R ¹	R ²
383	H	H	CCl ₃	H	K	Cl	Cl
384	H	H	CCl ₃	H	1/2Ca	Cl	Cl
385	H	H	CCl ₃	H	NH ₄	Cl	Cl
386	H	H	CCl ₃	H	MeNH ₂	Cl	Cl
387	H	H	CCl ₃	H	PrNH ₂	Cl	Cl
388	H	H	CCl ₃	H	NH ₂ CONH ₂	Cl	Cl
389	H	H	CCl ₃	H	Me	Cl	Cl
390	H	H	CCl ₃	H	Et	Cl	Cl
391	H	H	CCl ₃	H	Pr	Cl	Cl
392	H	H	CCl ₃	H	-Cl ₂ CH ₂ Cl	Cl	Cl
393	H	H	CCl ₃	H	-Cl ₂ CCl ₃	Cl	Cl
394	H	H	CCl ₃	H	-CH ₂ OCH ₃	Cl	Cl
395	H	H	CCl ₃	H	-CH ₂ CH ₂ OCH ₃	Cl	Cl
396	H	H	CCl ₃	H	-CH ₂ SCl ₃	Cl	Cl
397	H	H	CCl ₃	H	-CH ₂ SCl ₃	Cl	Cl
398	H	H	CCl ₃	H	-CH ₂ C ₆ H ₅	Cl	Cl
399	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -Cl-2	Cl	Cl
400	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -Cl-3	Cl	Cl
401	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -Cl-4	Cl	Cl
402	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -Me-2	Cl	Cl
403	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -Me-3	Cl	Cl
404	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -Me-4	Cl	Cl
405	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -OMe-2	Cl	Cl
406	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -OMe-3	Cl	Cl
407	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -OMe-4	Cl	Cl
408	H	H	CCl ₃	H	-Cl ₂ CH ₂ CCl ₃	Cl	Cl
409	H	H	CCl ₃	H	H	OC(=O)F	OC(=O)F
410	H	H	CCl ₃	H	Na	OC(=O)F	OC(=O)F
411	H	H	CCl ₃	H	K	OC(=O)F	OC(=O)F
412	H	H	CCl ₃	H	1/2Ca	OC(=O)F	OC(=O)F
413	H	H	CCl ₃	H	NH ₄	OC(=O)F	OC(=O)F
414	H	H	CCl ₃	H	MeNH ₂	OC(=O)F	OC(=O)F
415	H	H	CCl ₃	H	PrNH ₂	OC(=O)F	OC(=O)F
416	H	H	CCl ₃	H	NH ₂ CONH ₂	OC(=O)F	OC(=O)F
417	H	H	CCl ₃	H	Me	OC(=O)F	OC(=O)F
418	H	H	CCl ₃	H	Et	OC(=O)F	OC(=O)F

No.	X ¹	X ²	Y ¹	Y ²	R	R ¹	R ²
419	H	H	CCl ₃	H	Pr	OC(=O)F	OC(=O)F
420	H	H	CCl ₃	H	Pr	OC(=O)F	OC(=O)F
421	H	H	CCl ₃	H	-Cl ₂ CH ₂ Cl	OC(=O)F	OC(=O)F
422	H	H	CCl ₃	H	-Cl ₂ CCl ₃	OC(=O)F	OC(=O)F
423	H	H	CCl ₃	H	-CH ₂ OCH ₃	OC(=O)F	OC(=O)F
424	H	H	CCl ₃	H	-CH ₂ CH ₂ OCH ₃	OC(=O)F	OC(=O)F
425	H	H	CCl ₃	H	-Cl ₂ SCl ₃	OC(=O)F	OC(=O)F
426	H	H	CCl ₃	H	-Cl ₂ CCl ₃	OC(=O)F	OC(=O)F
427	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -Cl-2	OC(=O)F	OC(=O)F
428	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -Cl-3	OC(=O)F	OC(=O)F
429	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -Cl-4	OC(=O)F	OC(=O)F
430	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -Me-2	OC(=O)F	OC(=O)F
431	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -Me-3	OC(=O)F	OC(=O)F
432	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -Me-4	OC(=O)F	OC(=O)F
433	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -OMe-2	OC(=O)F	OC(=O)F
434	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -OMe-3	OC(=O)F	OC(=O)F
435	H	H	CCl ₃	H	-CH ₂ C ₆ H ₄ -OMe-4	OC(=O)F	OC(=O)F
436	H	H	CCl ₃	H	-Cl ₂ CH ₂ CCl ₃	OC(=O)F	OC(=O)F
437	H	H	CN	H	H	OMe	OMe
438	H	H	CN	H	Na	OMe	OMe
439	H	H	CN	H	PrNH ₂	OMe	OMe
440	H	H	CN	H	Me	OMe	OMe
441	H	H	CN	H	Et	OMe	OMe
442	H	H	CN	H	-Cl ₂ OCH ₃	OMe	OMe
443	H	H	CN	H	-Cl ₂ SCl ₃	OMe	OMe
444	H	H	CN	H	-Cl ₂ CCl ₃	OMe	OMe
445	H	H	CN	H	-CH ₂ C ₆ H ₄ -Cl-2	OMe	OMe
446	H	H	CN	H	-CH ₂ C ₆ H ₄ -Cl-3	OMe	OMe
447	H	H	CN	H	-CH ₂ C ₆ H ₄ -Cl-4	OMe	OMe
448	H	H	CN	H	-CH ₂ CH ₂ CCl ₃	OMe	OMe
449	H	H	C ^{Hex}	H	H	OMe	OMe
450	H	H	C ^{Hex}	H	Na	OMe	OMe
451	H	H	C ^{Hex}	H	PrNH ₂	OMe	OMe
452	H	H	C ^{Hex}	H	Me	OMe	OMe
453	H	H	C ^{Hex}	H	Et	OMe	OMe
454	H	H	C ^{Hex}	H	-Cl ₂ OCH ₃	OMe	OMe
455	H	H	C ^{Hex}	H	-Cl ₂ SCl ₃	OMe	OMe

No.	X ¹	X ²	Y ¹	Y ²	R	R ¹	R ²
456	H	H	C ^{Hex}	H	-Cl ₂ C ₆ H ₅	OMe	OMe
457	H	H	C ^{Hex}	H	-Cl ₂ C ₆ H ₄ -Cl-2	OMe	OMe
458	H	H	C ^{Hex}	H	-Cl ₂ C ₆ H ₄ -Cl-3	OMe	OMe
459	H	H	C ^{Hex}	H	-Cl ₂ C ₆ H ₄ -Cl-4	OMe	OMe
460	H	H	C ^{Hex}	H	-Cl ₂ CH ₂ CCl ₃	OMe	OMe
461	H	H	Pr	H	H	OMe	OMe
462	H	H	Pr	H	Me	OMe	OMe
463	H	H	Pr	H	Me	OMe	OMe
464	H	H	Pr	H	Me	OMe	OMe
465	H	H	Pr	H	Et	OMe	OMe
466	H	H	Pr	H	Me	OC(=O)F	OC(=O)F
467	H	H	Pr	H	Me	OC(=O)F	OC(=O)F
468	H	H	Pr	H	Me	OC(=O)F	OC(=O)F
469	H	H	Pr	H	Me	OC(=O)F	OC(=O)F
470	H	H	Pr	H	Me	OC(=O)F	OC(=O)F
471	H	H	Pr	H	Me	OC(=O)F	OC(=O)F
472	H	H	Pr	H	Me	OC(=O)F	OC(=O)F
473	H	H	Pr	H	H	OMe	OMe
474	H	H	Pr	H	H	OMe	OMe
475	H	H	Pr	H	H	PrNH ₂	PrNH ₂
476	H	H	Pr	H	H	Me	OMe
477	H	H	Pr	H	H	Et	OMe
478	H	H	Pr	H	H	-CH ₂ OCH ₃	OMe
479	H	H	Pr	H	H	-Cl ₂ SCl ₃	OMe
480	H	H	Pr	H	H	-Cl ₂ C ₆ H ₅	OMe
481	H	H	Pr	H	H	-CH ₂ C ₆ H ₄ -Cl-2	OMe
482	H	H	Pr				

No.	X ¹	X ²	Y ¹	Y ²	R	R ¹	R ²
492	II	II	iPr	II	-Cl ₂ CH ₂ CH ₃	Ome	Ome
493	II	H	iPr	II	-Cl ₂ CH ₂ Cl-Cl-2	Ome	Ome
494	II	H	iPr	II	-Cl ₂ CH ₂ Cl-Cl-3	Ome	Ome
495	H	H	iPr	II	-Cl ₂ CH ₂ Cl-Cl-4	Ome	Ome
496	II	H	iPr	II	-Cl ₂ CH ₂ CH ₂ CH ₃	Ome	Ome
497	^t Bu	II	^t Bu	II	II	Ome	Ome
498	^t Bu	H	^t Bu	II	Na	Ome	Ome
499	^t Bu	II	^t Bu	II	^t PrNII ₃	Ome	Ome
500	^t Bu	H	^t Bu	II	Me	Ome	Ome
501	H	H	^t Bu	II	Et	Ome	Ome
502	^t Bu	II	^t Bu	II	-Cl ₂ OCH ₃	Ome	Ome
503	^t Bu	II	^t Bu	II	-Cl ₂ SCl ₃	Ome	Ome
504	^t Bu	II	^t Bu	II	-Cl ₂ CH ₂ CH ₃	Ome	Ome
505	^t Bu	H	^t Bu	II	-Cl ₂ CH ₂ Cl-Cl-2	Ome	Ome
506	^t Bu	II	^t Bu	II	-Cl ₂ CH ₂ Cl-Cl-3	Ome	Ome
507	^t Bu	II	^t Bu	II	-Cl ₂ CH ₂ Cl-Cl-4	Ome	Ome
508	^t Bu	II	^t Bu	II	-Cl ₂ CH ₂ CH ₂ CH ₃	Ome	Ome
509	II	II	-CH ₂ Ome	H	H	Ome	Ome
510	II	II	-CH ₂ Ome	H	Na	Ome	Ome
511	H	II	-CH ₂ Ome	H	^t PrNII ₃	Ome	Ome
512	H	II	-CH ₂ Ome	H	Me	Ome	Ome
513	H	II	-CH ₂ Ome	H	Et	Ome	Ome
514	H	II	-CH ₂ Ome	H	-Cl ₂ OCH ₃	Ome	Ome
515	H	H	-CH ₂ Ome	H	-Cl ₂ SCl ₃	Ome	Ome
516	H	H	-CH ₂ Ome	H	-Cl ₂ CH ₂ CH ₃	Ome	Ome
517	II	II	-CH ₂ Ome	H	-Cl ₂ CH ₂ Cl-Cl-2	Ome	Ome
518	H	II	-CH ₂ Ome	H	-Cl ₂ CH ₂ Cl-Cl-3	Ome	Ome
519	H	II	-CH ₂ Ome	H	-Cl ₂ CH ₂ Cl-Cl-4	Ome	Ome
520	II	II	-CH ₂ Ome	H	-Cl ₂ CH ₂ CH ₂ CH ₃	Ome	Ome
521	H	II	-CH ₂ SM ₂	H	H	Ome	Ome
522	H	II	-CH ₂ SM ₂	H	Na	Ome	Ome
523	H	II	-CH ₂ SM ₂	H	^t PrNII ₃	Ome	Ome
524	H	II	-CH ₂ SM ₂	H	Me	Ome	Ome
525	H	H	-CH ₂ SM ₂	H	Et	Ome	Ome
526	H	H	-CH ₂ SM ₂	H	-Cl ₂ OCH ₃	Ome	Ome
527	II	H	-CH ₂ SM ₂	H	-Cl ₂ SCl ₃	Ome	Ome

No.	X ¹	X ²	Y ¹	Y ²	R	R ¹	R ²
528	II	H	-Cl ₂ SM ₂	II	-Cl ₂ CH ₂ CH ₃	Ome	Ome
529	II	H	-Cl ₂ SM ₂	H	-Cl ₂ CH ₂ Cl-Cl-2	Ome	Ome
530	II	H	-Cl ₂ SM ₂	H	-Cl ₂ CH ₂ Cl-Cl-3	Ome	Ome
531	II	H	-Cl ₂ SM ₂	H	-Cl ₂ CH ₂ Cl-Cl-4	Ome	Ome
532	II	H	-Cl ₂ SM ₂	H	-Cl ₂ CH ₂ CH ₂ CH ₃	Ome	Ome
533	II	H	-Cl ₂ N(Me) ₂	H	II	Ome	Ome
534	II	H	-Cl ₂ N(Me) ₂	H	Na	Ome	Ome
535	II	H	-Cl ₂ N(Me) ₂	H	^t PrNII ₃	Ome	Ome
536	II	H	-Cl ₂ N(Me) ₂	H	Me	Ome	Ome
537	II	H	-Cl ₂ N(Me) ₂	H	Et	Ome	Ome
538	II	H	-Cl ₂ N(Me) ₂	H	-Cl ₂ OCH ₃	Ome	Ome
539	II	H	-Cl ₂ N(Me) ₂	H	-Cl ₂ SCl ₃	Ome	Ome
540	II	H	-Cl ₂ N(Me) ₂	H	-Cl ₂ CH ₂ CH ₃	Ome	Ome
541	II	H	-Cl ₂ N(Me) ₂	H	-Cl ₂ CH ₂ Cl-Cl-2	Ome	Ome
542	II	H	-Cl ₂ N(Me) ₂	H	-Cl ₂ CH ₂ Cl-Cl-3	Ome	Ome
543	II	H	-Cl ₂ N(Me) ₂	H	-Cl ₂ CH ₂ Cl-Cl-4	Ome	Ome
544	II	H	-Cl ₂ N(Me) ₂	H	-Cl ₂ CH ₂ CH ₂ CH ₃	Ome	Ome
545	Ph	II	II	II	II	Ome	Ome
546	Ph	II	II	II	Na	Ome	Ome
547	Ph	II	II	II	^t PrNII ₃	Ome	Ome
548	Ph	II	II	II	Me	Ome	Ome
549	Ph	II	II	II	Et	Ome	Ome
550	Ph	II	II	II	-Cl ₂ OCH ₃	Ome	Ome
551	Ph	II	II	II	-Cl ₂ SCl ₃	Ome	Ome
552	Ph	II	II	II	-Cl ₂ CH ₂ CH ₃	Ome	Ome
553	Ph	II	II	II	-Cl ₂ CH ₂ Cl-Cl-2	Ome	Ome
554	Ph	II	II	II	-Cl ₂ CH ₂ Cl-Cl-3	Ome	Ome
555	Ph	II	II	II	-Cl ₂ CH ₂ Cl-Cl-4	Ome	Ome
556	Ph	II	II	II	-Cl ₂ CH ₂ CH ₂ CH ₃	Ome	Ome
557	Ph	H	H	H	H	Ome	Ome
558	Ph	H	H	H	Na	Ome	Ome
559	Ph	H	H	H	^t PrNII ₃	Ome	Ome
560	Ph	H	H	H	Me	Ome	Ome
561	Ph	H	H	H	Et	Ome	Ome
562	Ph	H	H	H	-Cl ₂ OCH ₃	Ome	Ome
563	Ph	H	H	H	-Cl ₂ SCl ₃	Ome	Ome

No.	X ¹	X ²	Y ¹	Y ²	R	R ¹	R ²
564	Ph	II	Me	II	-Cl ₂ CH ₂ CH ₃	Ome	Ome
565	Ph	II	Me	H	-Cl ₂ CH ₂ Cl-Cl-2	Ome	Ome
566	Ph	II	Me	H	-Cl ₂ CH ₂ Cl-Cl-3	Ome	Ome
567	Ph	II	Me	H	-Cl ₂ CH ₂ Cl-Cl-4	Ome	Ome
568	Me	II	Me	H	-Cl ₂ CH ₂ CH ₂ CH ₃	Ome	Ome
569	Me	Me	Ph	II	H	Ome	Ome
570	Me	Me	Ph	II	Na	Ome	Ome
571	Me	Me	Ph	H	^t PrNII ₃	Ome	Ome
572	Me	Me	Ph	H	Me	Ome	Ome
573	Me	Me	Ph	H	Et	Ome	Ome
574	Me	Me	Ph	II	-Cl ₂ OCH ₃	Ome	Ome
575	Me	Me	Ph	H	-Cl ₂ SCl ₃	Ome	Ome
576	Me	Me	Ph	H	-Cl ₂ CH ₂ CH ₃	Ome	Ome
577	Me	Me	Ph	H	-Cl ₂ CH ₂ Cl-Cl-2	Ome	Ome
578	Me	Me	Ph	H	-Cl ₂ CH ₂ Cl-Cl-3	Ome	Ome
579	Me	Me	Ph	H	-Cl ₂ CH ₂ Cl-Cl-4	Ome	Ome
580	Me	Me	Ph	II	-Cl ₂ CH ₂ CH ₂ CH ₃	Ome	Ome
581	-Cl ₂ Ph	II	Me	H	H	Ome	Ome
582	-Cl ₂ Ph	II	Me	H	Na	Ome	Ome
583	-Cl ₂ Ph	II	Me	H	^t PrNII ₃	Ome	Ome
584	-Cl ₂ Ph	H	Me	H	Me	Ome	Ome
585	-Cl ₂ Ph	H	Me	H	Et	Ome	Ome
586	-Cl ₂ Ph	H	Me	H	-Cl ₂ OCH ₃	Ome	Ome
587	-Cl ₂ Ph	H	Me	H	-Cl ₂ SCl ₃	Ome	Ome
588	-Cl ₂ Ph	H	Me	H	-Cl ₂ CH ₂ CH ₃	Ome	Ome
589	-Cl ₂ Ph	H	Me	H	-Cl ₂ CH ₂ Cl-Cl-2	Ome	Ome
590	-Cl ₂ Ph	H	Me	H	-Cl ₂ CH ₂ Cl-Cl-3	Ome	Ome
591	-Cl ₂ Ph	H	Me	H	-Cl ₂ CH ₂ Cl-Cl-4	Ome	Ome
592	-Cl ₂ Ph	H	Me	H	-Cl ₂ CH ₂ CH ₂ CH ₃	Ome	Ome
593	-Cl ₂ CH ₂ Cl ₂	H	Me	H	H	Ome	Ome
594	-Cl ₂ CH ₂ Cl ₂	H	Me	H	Na	Ome	Ome
595	-Cl ₂ CH ₂ Cl ₂	H	Me	H	^t PrNII ₃	Ome	Ome
596	-Cl ₂ CH ₂ Cl ₂	H	Me	H	Me	Ome	Ome
597	-Cl ₂ CH ₂ Cl ₂	H	Me	H	Et	Ome	Ome
598	-Cl ₂ CH ₂ Cl ₂	H	Me	H	-Cl ₂ OCH ₃	Ome	Ome
599	-Cl ₂ CH ₂ Cl ₂	H	Me	H	-Cl ₂ SCl ₃	Ome	Ome

No.	X ¹	X ²	Y ¹	Y ²	R	R ¹	R ²
600	-Cl ₂ CH ₂ Cl ₂	H	Me	II	-Cl ₂ CH ₂ CH ₃	Ome	Ome
601	-Cl ₂ CH ₂ Cl ₂	H	Me	H	-Cl ₂ CH ₂ Cl-Cl-2	Ome	Ome
602	-Cl ₂ CH ₂ Cl ₂	H	Me	H	-Cl ₂ CH ₂ Cl-Cl-3	Ome	Ome
603	-Cl ₂ CH ₂ Cl ₂	H	Me	H	-Cl ₂ CH ₂ Cl-Cl-4	Ome	Ome
604	-Cl ₂ CH ₂ Cl ₂	H	Me	H	-Cl ₂ CH ₂ CH ₂ CH ₃	Ome	Ome
605	Ome	H	II	II	H	Ome	Ome
606	Ome	H	Me	II	Na	Ome	Ome
607	Ome	H	Me	II	^t PrNII ₃	Ome	Ome
608	Ome	H	Me	II	Me	Ome	Ome
609	Ome	H	Me	II	Et	Ome	Ome
610	Ome	H	Me	II	-Cl ₂ OCH ₃	Ome	Ome
611	Ome	H	Me	II	-Cl ₂ SCl ₃	Ome	Ome
612	Ome	H	Me	II	-Cl ₂ CH ₂ CH ₃	Ome	Ome
613	Ome	H	Me	II	-Cl ₂ CH ₂ Cl-Cl-2	Ome	Ome
614	Ome	H	Me	II	-Cl ₂ CH ₂ Cl-Cl-3	Ome	Ome
615	Ome	H	Me	II	-Cl ₂ CH ₂ Cl-Cl-4	Ome	Ome
616	Ome	H	Me	II	-Cl ₂ CH ₂ CH ₂ CH ₃	Ome	Ome
617	II	H	-COOH	II	H	Ome	Ome
618	II	H	-COOH	H	Me	Ome	Ome
619	II	H	-COOH	H	Et	Ome	Ome
620	II	H	-CH ₂ COOH	H	H	Ome	Ome
621	II	H	-CH ₂ COOH	H	Me	Ome	Ome
622	II	H	-CH ₂ COOH	H	Et	Ome	Ome
623	Me	H	-COOH	H	H	Ome	Ome
624	Me	H	-COOH	H	Me	Ome	Ome
625	Me	H	-COOH	H	Et	Ome	Ome
626	-COOH	H	Ph	H	H	Ome	Ome
627	-Cl ₂ COOH	H	Me	H	Me	Ome	Ome
628	-Cl ₂ COOH	H	Me	H	Et</		

第2表

No.	X ¹	X ²	Y ¹	Y ²	R	R ¹	R ²
636	-COOEt	-CH ₂ COOEt	II	H	Et	OEt	OEt
637	-COOEt	-CH ₂ COOMe	Me	II	Me	OEt	OEt
638	-COOEt	-CH ₂ COOEt	Me	H	Et	OEt	OEt
639	-COOEt	-CH ₂ COOMe	Ph	H	Me	OEt	OEt
640	-COOEt	-CH ₂ COOEt	Ph	II	Et	OEt	OEt

上記第1表において (+) は光学活性体で右旋性を表し、
 (-) は左旋性を表す。Meはメチル基、Etはエチル基、
 Phはプロピル基、^tPrはイソプロピル基、^tBuはターシ
 ャリーピチル基、Phはフェニール基を表す。

(以下余白)

物性値

28	n_D^{20}	1.4095	$[\alpha]_D^{25.3}$	+12.83 (C=1.091 CHCl ₃)
40	n_D^{20}	1.4915	$[\alpha]_D^{25.3}$	-13.61 (C=1.109 CHCl ₃)
64	n_D^{20}	1.4890	$[\alpha]_D^{25.4}$	+6.18 (C=1.099 CHCl ₃)
76	n_D^{20}	1.4873	$[\alpha]_D^{25.4}$	-6.27 (C=1.074 CHCl ₃)
122	n_D^{20}	1.4864		
200	融点	76.0 ~ 80.0°C		
261	n_D^{20}	1.4535		
305	融点	61.0 ~ 63.0°C		
476	n_D^{20}	1.4878		
618	融点	57.0 ~ 61.0°C		
622	n_D^{20}	1.4823		
625	融点	56.0 ~ 58.0°C		
627	融点	65.0 ~ 70.0°C		
637	n_D^{20}	1.4864		

第3表

化 合 物 No.	有の 効処 成理 分量	ノ ビ エ 工 分量	メ ヒ シ エ バ リ グ サ	カ ヤ ツ リ ウ メ ズ キ	イ ヌ ホ ウ メ ジ ク	ハ ヌ ダ ウ メ ジ ク	イ ヌ ガ ラ シ
122	25.0	5	5	5	5	3	5
	6.3	5	5	4	5	5	4
305	12.5	5	5	5	5	5	5
	25.0	5	5	5	5	5	5

第4表

化 合 物 No.	有の 効処 成理 分量	ノ ビ エ 工 分量	メ ヒ シ エ バ リ グ サ	カ ヤ ツ リ ウ メ ズ キ	カ ヌ ホ ウ メ ジ ク	イ ヌ ダ ウ メ ジ ク	ハ ヌ ガ ラ シ
122	25.0	4	3	3	5	5	5
305	25.0	5	3	5	4	5	3

特許出願人 日産化学工業株式会社

第1頁の続き

⑤Int.Cl.⁵ 識別記号 庁内整理番号
C 07 D 239/60 6529-4C

⑦発明者 繩 巻 勤 埼玉県南埼玉郡白岡町大字白岡1470 日産化学工業株式会
社生物科学研究所内

⑦発明者 渡辺 重臣 埼玉県南埼玉郡白岡町大字白岡1470 日産化学工業株式会
社生物科学研究所内

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.