0.1 Background theory

The stream function is a function of coordinates and time of an inviscid liquid. It allows to determine the components of velocity by differentiating the stream function with respect to the space coordinates. A family of curves $\Psi = const$ represent *streamlines*, i.e. the stream function remains constant along a streamline. Although also valid in 3D, this approach is mostly used in 2D because of its relative simplicity REFERENCES.

In two dimensions the velocity is obtained as follows:

$$\mathbf{v} = \left(\frac{\partial \Psi}{\partial y}, -\frac{\partial \Psi}{\partial x}\right) \tag{1}$$

Provided the function Ψ is a smooth enough function, this automatically insures that the flow is incompressible:

$$\nabla \cdot \mathbf{v} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = \frac{\partial^2 \Psi}{\partial xy} - \frac{\partial^2 \Psi}{\partial xy} = 0$$
 (2)

Assuming constant viscosity, the Stokes equation writes:

$$-\nabla p + \mu \Delta v = \rho g \tag{3}$$

Let us introduce the vector \boldsymbol{W} for convenience such that in each dimension:

$$W_x = -\frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^y} \right) = \rho g_x \tag{4}$$

$$W_y = -\frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial x^y} \right) = \rho g_y \tag{5}$$

Taking the curl of the vector W and only considering the component perpendicular to the xy-plane:

$$\frac{\partial V_y}{\partial x} - \frac{\partial V_x}{\partial y} = \frac{\partial \rho g_y}{\partial x} - \frac{\partial \rho g_x}{\partial y} \tag{6}$$

The advantage of this approach is that the pressure terms cancel out (the curl of a gradient is always zero), so that:

$$\frac{\partial}{\partial x}\mu\left(\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial x^y}\right) - \frac{\partial}{\partial y}\mu\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^y}\right) = \frac{\partial\rho g_y}{\partial x} - \frac{\partial\rho g_x}{\partial y}$$
 (7)

and then replacing u, v by the their stream function derivatives yields (for a constant viscosity):

$$\mu \left(\frac{\partial^4 \Psi}{\partial x^4} + \frac{\partial^4 \Psi}{\partial y^4} + 2 \frac{\partial^4 \Psi}{\partial x^2 y^2} \right) = \frac{\partial \rho g_y}{\partial x} - \frac{\partial \rho g_x}{\partial y}$$
 (8)

or,

$$\nabla^4 \Psi = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \Psi = \frac{\partial \rho g_y}{\partial x} - \frac{\partial \rho g_x}{\partial y}$$
(9)

These equations are also to be found in the geodynamics literature, eee Eq. 1.43 of Tackley book, p 70-71 of Gerya book.

0.2 A simple application

I wish to arrive at an analytical formulation for a 2D incompressible flow in the square domain $[-1:1] \times [-1:1]$ The fluid has constant viscosity $\mu = 1$ and is subject to free slip boundary conditions on all sides. For reasons that will become clear in what follows I postulate the following stream function:

$$\Psi(x,y) = \sin(m\pi x)\sin(n\pi y) \tag{10}$$

We have the velocity being defined as:

$$\mathbf{v} = (u, v) = \left(\frac{\partial \Psi}{\partial y}, -\frac{\partial \Psi}{\partial x}\right) = (n\pi \sin(m\pi x)\cos(n\pi y), -m\pi \cos(m\pi x)\sin(n\pi y)) \tag{11}$$

The strain rate components are then:

$$\dot{\varepsilon}_{xx} = \frac{\partial u}{\partial x} = mn\pi^2 \cos(m\pi x) \cos(n\pi y) \tag{12}$$

$$\dot{\varepsilon}_{yy} = \frac{\partial v}{\partial y} = -mn\pi^2 \cos(m\pi x) \cos(n\pi y)$$
 (13)

$$2\dot{\varepsilon}_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \tag{14}$$

$$= \frac{\partial^2 \Psi}{\partial y^2} - \frac{\partial^2 \Psi}{\partial x^2} \tag{15}$$

$$= -n^2 \pi^2 \Psi + m^2 \pi^2 \Psi \tag{16}$$

$$= (m^2 - n^2)\pi^2 \sin(m\pi x)\sin(n\pi y)$$
 (17)

Note that if m = n the last term is identically zero, which is not desirable (flow is too 'simple') so in what follows we will prefer $m \neq n$.

It is also easy to verify that u = 0 on the sides and v = 0 at the top and bottom and that the term $\dot{\varepsilon}_{xy}$ is nul on all four sides, thereby garanteeing free slip.

Our choice of stream function yields:

$$\nabla^4\Psi=\frac{\partial^4\Psi}{\partial x^4}+\frac{\partial^4\Psi}{\partial y^4}+2\frac{\partial^2\Psi}{\partial x^2y^2}=\pi^4(m^4\Psi+n^4\Psi+2m^2n^2\Psi)=(m^4+n^4+2m^2n^2)\pi^4\Psi$$

We assume $g_x = 0$ and $g_y = -1$ so that we simply have

$$(m^4 + n^4 + 2m^2n^2)\pi^4\Psi = -\frac{\partial\rho}{\partial x}$$
(18)

so that (assuming the integration constant to be zero):

$$\rho(x,y) = \frac{m^4+n^4+2m^2n^2}{m}\pi^3\cos(m\pi x)\sin(n\pi y)$$

The x-component of the momentum equation is

$$-\frac{\partial p}{\partial x} + \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -\frac{\partial p}{\partial x} - m^2 n \pi^3 \sin(m\pi x) \cos(n\pi y) - n^3 \pi^3 \sin(m\pi x) \cos(n\pi y) = 0$$

so

$$\frac{\partial p}{\partial x} = -(m^2n + n^3)\pi^3 \sin(m\pi x)\cos(n\pi y)$$

and the pressure field is then (once again neglecting the integration constant):

$$p(x,y) = \frac{m^2 n + n^3}{m} \pi^2 \cos(\pi x) \cos(\pi y)$$

Note that in this case $\int pdV = 0$ so that volume normalisation of the pressure is turned on (when free slip boundary conditions are prescribed on all sides the pressure is known up to a constant and this undeterminacy can be lifted by adding an additional constraint to the pressure field).

Top to bottom: Velocity components u and v, pressure p, density ρ and strain rate $\dot{\varepsilon}_{xy}$. From left to right: (m,n)=(1,1), (m,n)=(1,2), (m,n)=(2,1), (m,n)=(2,2)

Errors for velocity and pressure for (m,n)=(1,1),(1,2),(2,1),(2,2)

Velocity arrows for (m, n) = (2, 1)