CSDS302 HW1 - Trevor Swan (tcs94)

Section 1.2

Problem 3

a. Is
$$4 = \{4\}$$
?

No, because number while {4} is a set containing 4.

b. How many elements are in the set $\{3, 4, 3, 5\}$?

There are 3 elements in the set. 3 is repeated, but it only counts as one element.

c. How many elements are in the set $\{1, \{1\}, \{1, \{1\}\}\}\}$?

This set has 3 distinct elements, 2 of which are sets while one is a number.

Problem 6

For any integer n, let $T_n = \{n, n^2\}$. How many elements are in each of T_2 , T_{-3} , T_1 , and T_0 ? Justify your answers.

There are 2 elements in T_2 and T_{-3} , $T_2 = \{2,4\}$ and $T_{-3} = \{-3,9\}$. T_1 has one element, though it repeated once. T_0 is an empty set $\{0,0\}$ containing one element.

Problem 7

Use the set-roster notation to indicate the elements in each of the following sets.

a. $S = \{n \in \mathbb{Z} \mid n = (-1)^k, for some integer k\}.$

$$-1^1 = -1, -1^2 = 1, -1^3 = -1$$
 : $S = \{-1, 1\}$.

e.
$$W = \{s \in \mathbb{Z} \mid 1 < t < -3\}$$

1 < t < -3 is not valid as -3 < 1.

f.
$$X = \{u \in \mathbb{Z} \mid u \le 4 \text{ or } u \ge 1\}$$

 $u \leq 4$ and $u \geq 1$ encompasses all integer values $\therefore X = \mathbb{Z}$.

Problem 9

c. Is
$$\{2\} \in \{1,2\}$$
?

No, $\{1,2\}$ contains the numbers 1 and 2, but $\{2\}$ is a set $\therefore \{2\} \notin \{1,2\}$.

g. is
$$\{1\} \subseteq \{1,2\}$$
?

Yes, $\{1,2\}$ contains the numbers 1 and 2, so it has the subset $\{1\}$: $\{1\} \subseteq \{1,2\}$.

Problem 10

b. Is
$$(5, -5) = (-5, 5)$$
?

No, mirrors of coordinates (a,b) where $a \neq b$ are not equivalent as they amp to different regions in a plane

d. Is
$$((\frac{-2}{-4},(-2)^3=(\frac{3}{6},-8))$$
?

Yes, both simplify to $(\frac{1}{2}, -8)$.

Problem 12

Let $S = \{2,4,6\}$ and $T = \{1,3,5\}$. Use the set roster notation to write each of the following sets, and indicate the number of elements that are in each set.

$$\mathbf{a.} \; S \; X \; T$$

$$=\{(2,1),(2,3),(2,5),(4,1),(4,3),(4,5),(6,1),(6,3),(6,5)\}$$

$$\mathbf{c.}\;S\;X\;S$$

$$=\{(2,2),(2,4),(2,6),(4,2),(4,4),(4,6),(6,2),(6,4),(6,6)\}$$

Section 1.3

Problem 2

Let $C=D=\{-3,-2,-1,1,2,3\}$ and define a relation S from C to D as follows. For every $(x,y)\in C$ X $D,(x,y)\in S$ means that $\frac{1}{x}-\frac{1}{y}$ is an integer.

a. Is 2 S 2? Is -1 S -1? Is $(3,3) \in S$? Is $(3,-3) \in S$?

$$\begin{array}{l} (2,2): \frac{1}{2} - \frac{1}{2} = 0 \in \mathbb{Z}, \, \text{yes} \\ (-1,-1): \frac{1}{-1} - \frac{1}{-1} = 0 \in \mathbb{Z}, \, \text{yes} \\ (3,3): \frac{1}{3} - \frac{1}{3} = 0 \in \mathbb{Z}, \, \text{yes} \\ (3,-3): \frac{1}{3} - \frac{1}{-3} = \frac{2}{3} \not \in \mathbb{Z}, \, \text{no} \end{array}$$

b. Write S as a set of ordered pairs.

$$(x,y) \in C \ X \ D : S = \{(-3,-3), \ (-2,-2), \ (-1,-1), \ (1,1), \ (2,2), \ (3,3), \ (-2,-2), \ (2,-2), \ (1,-1), \ (-1,1)\}$$

c. Write the domain and co-domain of S.

Domain: $\{-3, -2, -1, 1, 2, 3\}$ Co-domain: $\{-3, -2, -1, 1, 2, 3\}$ d. Draw an arrow diagram for S.

Problem 8

Let $A = \{2,4\}$ and $B = \{1,3,5\}$ and define relations U, V, and W from A to B as follows:

For every $(x,y) \in A X B$

- $(x,y) \in U$ means that y-x>2
- $(x,y) \in V$ means that $y-1=rac{x}{2}$
- $W = \{(2,5), (4,1), (2,3)\}$

a. Draw Arrow Diagrams for U, V, and W.

$$A=\{2,4\}$$
 and $B=\{1,3,5\}$

For Relation U: y-x>2 : $R_U=\{(2,5)\}$.

For Relation V: $y-1>\frac{x}{2}\mathrel{\dot{.}.} R_V=\{(4,3)\}.$

For Relation W: $\{(2,5), (4,1), (2,3)\}.$

b. Indicate whether any of the relations U, V, and W are functions.

Functions require the elements of the domain to be mapped to an element in the co-domain. Relations U and V are not functions because they violate this rule. W is not a function because the element 2 has two mapped elements, $\{(2,3),(2,5)\}$.

Problem 13

Let $A=\{-1,0,1\}$ and $B=\{t,u,v,w\}$. Define a function $F:A\to B$ by the following arrow diagram:

a. Write the domain and co-domain of F.

$$\begin{aligned} & \text{Domain} = \{-1, 0, 1\} \\ & \text{Co-domain} = \{t, u, v, w\} \end{aligned}$$

b. Find
$$F(-1)$$
, $F(0)$ and $F(1)$.

By the arrow diagram, we can see that F(-1) = u, F(0) = w and F(1) = u. The input of F represents the preimage to a corresponding image.

Problem 14

Let $C=\{1,2,3,4\}$ and $D=\{a,b,c,d\}$. Define a function $G:C\to D$ by the following arrow diagram:

a. Write the domain and co-domain of G.

Domain = $\{1, 2, 3, 4\}$ Co-domain = $\{a, b, c, d\}$

b. Find G(1), G(2), G(3), and G(4).

All elements of the domain are mapped to the same element in the co-domain $\therefore G(1) = G(2) = G(3) = G(4) = c$.

Let $X=\{2,3,5\}$ and $Y=\{1,2,4,6\}$. Which of the following arrow diagrams determine functions from X to Y.

d.

Yes, all elements in x have one corresponding element in Y.

e.

No, not all of the elements in X are mapped to an element in Y.

Problem 18

Let h be the constant function defined in example 1.3.6. Find $h(-\frac{12}{5}), h(\frac{0}{1})$ and $h(\frac{9}{17})$.

• In 1.3.6 the constant function is defined as h(r)=2. h:r o 2 $\therefore h(\frac{-12}{5})=h(\frac{0}{1})=h(\frac{0}{1})=2$.

Problem 20

Define functions H and K from R to R by the following formulas:

ullet For every $x\in R, H(x)=(x-2)^2$ and K(x)=(x-1)(x-3)+1

Does H = K? Explain.

$$H(x)=(x-2)^2$$
 $\overrightarrow{algebraic}$ $H(x)=x^2-4x+4$ $K(x)=(x-1)(x-3)+1$ \overrightarrow{FOIL} $K(x)=x^2-3x-x+3+1$ $\overrightarrow{simplify}$ $K(x)=x^2-4x+4$ H and K both simplify/expand out to be the same function, and since they have the same domain $x\in\mathbb{R}$ and co-domain $(x-2)^2$, $H=K$ as they are the same function.

Section 7.1

Problem 2

Let $X=\{1,3,5\}$ and $Y=Y=\{a,b,c,d\}$. Define $g:X\to Y$ by the following arrow diagram:

Function g

a.

 $\begin{aligned} & \text{Domain} = \{1, 3, 5\} \\ & \text{Co-domain} = \{a, b, c, d\} \end{aligned}$

b.

All elements in the domain map to the same element in the co-domain $\therefore g(1) = g(3 = g(5) = b$.

c.

Their is only one mapped image and it is $b : Range = \{b\}$.

d.

3 is an inverse image of b, not a.

1 is an inverse image of b, as b is the image of 1.

e.

 $\{1,3,5\}$ is the inverse image of b. c has no inverse as there is no preimage that corresponds to c. $\{0\}$

f.

 $\{(1,b),(3,b),(5,b)\}$

Problem 4

b. Find all functions from $X=\{a,b,c\}$ to $Y=\{u\}$.

There is only one function f(X) = Y because there is only one element in the co-domain. This function can be defined as: $x \in X$, F(x) = u.

Section 7.2

Problem 7

Let $X = \{a, b, c, d\}$ and $Y = \{e, f, g\}$. Define function G by the arrow diagram below.

b. Is G one-to-one? Why or why not? Is it onto? Why or why not?

a and b have the same image and $a \neq b$, so it is not one-to-one. g does not have a pre-image, so the function is not onto either.

Problem 8

Let $X = \{a, b, c\}$ and $Y = \{d, e, f, g\}$. Define function H and K by the arrow diagrams below.

a. Is H one-to-one? Why or why not? Is it onto? Why or why not?

b and c have the same image, but $b \neq c$, so H is not one-to-one. g does not have a pre-image, so the function is not onto.

b. Is K one-to-one? Why or why not? Is it onto? Why or why not?

Function K

a,b and c all have their own image, so K is one-to-one. g has no pre-image, so K is not onto.