Consider 3 securities with expected return given in Table
 7.1 and with covariance given in Table
 7.2

Table 7.1 Expected security returns

expected return	security 1 (i=1)	security 2 (i=2)	security 3 (i=3)
μ_i	9.73%	6.57%	5.37%

Table 7.2 Covariance of returns

covariance σ_{ij}	i = 1	i = 2	i = 3
i = 1	0.02553	0.00327	0.00019
i = 2		0.013400	-0.00027
i = 3			0.00125

• If the goal return of portfolio is 5.5%, and short selling is allowed, then the corresponding MVO is

min
$$(0.02553)x_1^2 + (0.01340)x_2^2 + (0.00125)x_3^2$$

 $+ 2(0.00327)x_1x_2 + 2(0.00019)x_1x_3 + 2(-0.00027)x_2x_3$
s.t. $(0.0972)x_1 + (0.0657)x_2 + (0.0537)x_3 \ge 0.055$
 $x_1 + x_2 + x_3 = 1$

Solving the model give the optimal portfolio

$$x_1 = 0.0240$$
, $x_2 = 0.0928$, $x_1 = 0.8832$ with risk (variance) $\sigma_p^2 = 0.033069$.

• Table 7.3 lists the optimal portfolio under different *R*:

Table 7.3 Optimal Portfolio for different *R*

return goal R	X_1	X_2	<i>X</i> ₃	σ_P
5.50%	0.02398119	0.09280359	0.88321522	0.03291684
6.00%	0.11419877	0.11007779	0.77572344	0.03629413
6.50%	0.22313676	0.13093644	0.64592680	0.04714421
7.00%	0.33207475	0.15179509	0.51613017	0.06172131
7.50%	0.44101273	0.17265374	0.38633353	0.07796214
8.00%	0.54995072	0.19351238	0.25653690	0.09501737
8.50%	0.65888871	0.21437103	0.12674026	0.11251728
9.00%	0.76782669	0.23522968	-0.00305637	0.13028280
9.50%	0.87676468	0.25608833	-0.13285301	0.14821845

• Figure 7.1 shows the efficient frontier of MVO:

Solving QP using MATLAB

The statement

[x, fval] = quadprog(Q, f, A, b, Aeq, beq, lb, ub) returns optimal solution x and optimal objective value fval for quadratic program.

Consider above MVO example with

$$f = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, Q = \begin{bmatrix} 0.02553 & 0.00327 & 0.00019 \\ 0.00327 & 0.01340 & -0.00027 \\ 0.00019 & -0.00027 & 0.00125 \end{bmatrix},$$

$$A = \begin{bmatrix} -0.0972 & -0.0657 & -0.0537 \end{bmatrix}, b = \begin{bmatrix} -0.055 \end{bmatrix},$$

$$Aeq = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}, beq = \begin{bmatrix} 1 \end{bmatrix}$$

Solving QP using MATLAB

Solving the problem by following Matlab code:

```
>> Q=[0.02553, 0.00327, 0.00019;
       0.00327, 0.013400, -0.00027;
       0.00019, -0.00027, 0.00125];
>> f=[0,0,0];
>> A=[-0.0972,-0.0657,-0.0537]; b=[-0.055];
>> Aeq=[1,1,1]; beq=[1];
>> [x, fval] = quadprog(Q,f, A, b, Aeq, beq, [], [])
   \mathbf{x} =
    0.0240
    0.0928
    0.8832
  fval=
    5.4176e-004
```

Solving QP using MATLAB

Generating Table 7.3 and efficient frontier Figure 7.1 by following code: n=3;mu=[9.73 6.57 5.37]/100; % expected returns of assets Q=[.02553 .00327 .00019; .00327 .01340 -.00027; .00019 -.00027 .00125]; % covariance matrix goal_R=[5.5:.5:9.5]/100; % expected return goals range from 5.5% to 9.5% c=zeros(n,1);for a=1:length(goal_R) A=-mu; b=-goal_R(a); Aeq=[ones(1,n)]; beq=[1]; [x(a,:), fval(a,i)] = quadprog(Q, c, A,b, Aeq,beq, [],[]); $std_{evi}(a,1)=(x(a,:)^*Q^*x(a,:)')^*.5;$ % standard deviation = $(x'^*Q^*x)^*.5$ end plot(std_devi, goal_R, '-k*') xlabel('volatility \sigma') ylabel('expected return goal R') title('The efficient frontier of MVO')