DISCRETE STRUCTURES Lecture 6. Mathematical Induction

Bui Anh Tuan

Advanced Program in Computer Science

Fall, 2018

Content

- Mathematical Induction
- Strong Induction and Well-Ordering

Examples

Example 1.1

Show that if n is an integer greater than 1, then n can be written as the product of primes.

Strong Induction

Principle of Strong Induction

To prove that P(n) is true for all positive integers n, where P(n) is a propositional function, we complete two steps:

- **1** Basis step: Verify that the proposition P(1) is true.
- **2 Inductive step:** We show that the conditional statement $[P(1) \land P(2) \land \cdots \land P(k)] \rightarrow P(k+1)$ is true for all positive integers k.

Strong induction is sometimes called the second principle of mathematical induction or complete induction.

Examples

Example 1.2

Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps.

Method 1: Using Mathematical Induction

Method 2: Using Strong Induction

• A **polygon** consisting of a sequence of line segments $s_1, s_2, ..., s_n$, called **sides**. Each pair (s_i, s_{i+1}) , i = 1, 2, ..., n-1, and (s_n, s_1) , of the polygon meet at a common endpoint, called a **vertex**.

Page

Bui Anh Tuan

- A **polygon** consisting of a sequence of line segments $s_1, s_2, ..., s_n$, called **sides**. Each pair (s_i, s_{i+1}) , i = 1, 2, ..., n-1, and (s_n, s_1) , of the polygon meet at a common endpoint, called a **vertex**.
- A polygon is called **simple** if no two nonconsecutive sides intersect.

- A **polygon** consisting of a sequence of line segments $s_1, s_2, ..., s_n$, called **sides**. Each pair (s_i, s_{i+1}) , i = 1, 2, ..., n-1, and (s_n, s_1) , of the polygon meet at a common endpoint, called a **vertex**.
- A polygon is called **simple** if no two nonconsecutive sides intersect.
- A diagonal of a simple polygon is a line segment connecting two nonconsecutive vertices of the polygon.

□▶ 4個 ▶ 4 種 ▶ 4 種 ▶ ■ 9 Q @

- A **polygon** consisting of a sequence of line segments $s_1, s_2, ..., s_n$, called **sides**. Each pair (s_i, s_{i+1}) , i = 1, 2, ..., n-1, and (s_n, s_1) , of the polygon meet at a common endpoint, called a **vertex**.
- A polygon is called **simple** if no two nonconsecutive sides intersect.
- A diagonal of a simple polygon is a line segment connecting two nonconsecutive vertices of the polygon.
- A diagonal is called an interior diagonal if it lies entirely inside the polygon.

4□ + 4□ + 4□ + 4□ + 3
 9

Page

Bui Anh Tuan

Two different triangulations of a simple polygon with seven sides into five triangles, shown with dotted lines and with dashed lines, respectively

• A **polygon** consisting of a sequence of line segments $s_1, s_2, ..., s_n$, called **sides**. Each pair (s_i, s_{i+1}) , i = 1, 2, ..., n-1, and (s_n, s_1) , of the polygon meet at a common endpoint, called a **vertex**.

Two different triangulations of a simple polygon with seven sides into five triangles, shown with dotted lines and with dashed lines, respectively

- A **polygon** consisting of a sequence of line segments $s_1, s_2, ..., s_n$, called **sides**. Each pair (s_i, s_{i+1}) , i = 1, 2, ..., n-1, and (s_n, s_1) , of the polygon meet at a common endpoint, called a **vertex**.
- A polygon is called simple if no two nonconsecutive sides intersect.

Two different triangulations of a simple polygon with seven sides into five triangles, shown with dotted lines and with dashed lines, respectively

- A **polygon** consisting of a sequence of line segments $s_1, s_2, ..., s_n$, called **sides**. Each pair (s_i, s_{i+1}) , i = 1, 2, ..., n-1, and (s_n, s_1) , of the polygon meet at a common endpoint, called a **vertex**.
- A polygon is called simple if no two nonconsecutive sides intersect.
- A diagonal of a simple polygon is a line segment connecting two *nonconsecutive* vertices of the polygon.

ロト 4回ト 4 重ト 4 重ト 重 の90

Two different triangulations of a simple polygon with seven sides into five triangles, shown with dotted lines and with dashed lines, respectively

- A **polygon** consisting of a sequence of line segments $s_1, s_2, ..., s_n$, called **sides**. Each pair (s_i, s_{i+1}) , i = 1, 2, ..., n-1, and (s_n, s_1) , of the polygon meet at a common endpoint, called a **vertex**.
- A polygon is called simple if no two nonconsecutive sides intersect.
- A diagonal of a simple polygon is a line segment connecting two *nonconsecutive* vertices of the polygon.
- A diagonal is called an interior diagonal if it lies entirely inside the polygon.

(ロ) (部) (主) (主) (主) のQの

Theorem 1.3

A simple polygon with n sides, where n is an integer with $n \ge 3$, can be triangulated into n-2 triangles.

Bui Anh Tuan

Theorem 1.3

A simple polygon with n sides, where n is an integer with $n \ge 3$, can be triangulated into n-2 triangles.

Lemma 1.4

Every simple polygon with at least four sides has an interior diagonal.

Page

Bui Anh Tuan

Lemma 1.5

Every simple polygon with at least four sides has an interior diagonal.

• Suppose that P is a simple polygon drawn in the plane.

Lemma 1.5

Every simple polygon with at least four sides has an interior diagonal.

- Suppose that P is a simple polygon drawn in the plane.
- Let b be the point of P or in the interior of P with the least y-coordinate among the vertices with the smallest x-coordinate. Then b must be a vertex of P.

Page

Lemma 1.5

Every simple polygon with at least four sides has an interior diagonal.

- Suppose that P is a simple polygon drawn in the plane.
- Let b be the point of P or in the interior of P with the least y-coordinate among the vertices with the smallest x-coordinate. Then b must be a vertex of P.
- Let a and C be adjacent vertices of b. Then the angle abc is less than 180 degree. Let T be the triangle abc.

Lemma 1.5

Every simple polygon with at least four sides has an interior diagonal.

- Suppose that P is a simple polygon drawn in the plane.
- Let b be the point of P or in the interior of P with the least y-coordinate among the vertices with the smallest x-coordinate. Then b must be a vertex of P.
- Let a and C be adjacent vertices of b. Then the angle abc is less than 180 degree. Let T be the triangle abc.
- Case 1: There is no vertex inside T then ac is a interior diagonal.

Lemma 1.5

Every simple polygon with at least four sides has an interior diagonal.

- Suppose that P is a simple polygon drawn in the plane.
- Let b be the point of P or in the interior of P with the least y-coordinate among the vertices with the smallest x-coordinate. Then b must be a vertex of P.
- Let a and C be adjacent vertices of b. Then the angle abc is less than 180 degree. Let T be the triangle abc.
- Case 1: There is no vertex inside T then ac is a interior diagonal.
- Case 2: Select a vertex p such that the angle bap is smallest. the triangle baq cannot contain any vertices of P in its interior. Hence, we can connect b and p to produce an interior diagonal of P.

◆ロト ◆部ト ◆注ト ◆注ト 注 ・ から(

T is the triangle abcp is the vertex of P inside T such that the $\angle bap$ is smallest bp must be an interior diagonal of P

Theorem 1.6

A simple polygon with n sides, where n is an integer with $n \ge 3$, can be triangulated into n-2 triangles.

Theorem 1.6

A simple polygon with n sides, where n is an integer with $n \ge 3$, can be triangulated into n-2 triangles.

Let T(n) be the statement that every simple polygon with n sides can be triangulated into n-2 triangles.

Theorem 1.6

A simple polygon with n sides, where n is an integer with $n \ge 3$, can be triangulated into n-2 triangles.

Let T(n) be the statement that every simple polygon with n sides can be triangulated into n-2 triangles.

Basis step: T(3) is true because a simple polygon with three sides is a triangle.

Theorem 1.6

A simple polygon with n sides, where n is an integer with $n \ge 3$, can be triangulated into n-2 triangles.

Let T(n) be the statement that every simple polygon with n sides can be triangulated into n-2 triangles.

- **9** Basis step: T(3) is true because a simple polygon with three sides is a triangle.
- **2 Inductive step:** Assume that T(j) is true for all integers j with $3 \le j \le k$.

Theorem 1.6

A simple polygon with n sides, where n is an integer with $n \ge 3$, can be triangulated into n-2 triangles.

Let T(n) be the statement that every simple polygon with n sides can be triangulated into n-2 triangles.

- **9** Basis step: T(3) is true because a simple polygon with three sides is a triangle.
- **2** Inductive step: Assume that T(j) is true for all integers j with $3 \le j \le k$. Suppose that we have a simple polygon P with k+1 sides. Because $k+1 \ge 4$, then P has an interior diagonal ab.

Theorem 1.6

A simple polygon with n sides, where n is an integer with $n \ge 3$, can be triangulated into n-2 triangles.

Let T(n) be the statement that every simple polygon with n sides can be triangulated into n-2 triangles.

- Basis step: T(3) is true because a simple polygon with three sides is a triangle.
- **2 Inductive step:** Assume that T(j) is true for all integers j with $3 \le j \le k$. Suppose that we have a simple polygon P with k+1 sides. Because $k+1 \ge 4$, then P has an interior diagonal ab. Now ab splits P into two smaller simple polygons Q and S. Use inductive hypothesis we have completed the proof.

Exercise

Question: How many lattice points (points with integer coordinates) inside a simple polygon?

Bui Anh Tuan

Exercise

Pick's Theorem

Pick's theorem says that the area of a simple polygon P in the plane with vertices that are all lattice points (that is, points with integer coordinates) equals I(P) + B(P)/2 - 1, where I(P) and B(P) are the number of lattice points in the interior of P and on the boundary of P, respectively. Use strong induction on the number of vertices of P to prove Pick's theorem.

- Prove the theorem for rectangles.
- Prove the theorem for right triangles.
- Prove the theorem for all triangles.
- Use induction to prove the general case.

