jméno a příjmení	login	cvičící
		Fuchs / Hliněná / Tůma

IDM, zadání R

T	1	9	2	1	5	6	\sim
'	1	4	J 3	'1	J 9	0	

Zkouška se skládá ze dvou částí, testu za **20 bodů** a písemky za **60 bodů**. Z testu musíte získat **aspoň 15 bodů**, v opačném případě písemka nebude hodnocena a celá zkouška bude hodnocena 0 body.

TEST

Každá otázka je za 2 body. Odpovědi napište na tento list do vymezeného prostoru pod otázkou.

- 1. Znegujte: $\exists x \in \mathbb{R} \colon x > 2 \Rightarrow (x^2 > 4 \lor x < 3)$. Odpověď:
- 2. Rozhodněte, zda pro relaci $R = \{[1, 2], [1, 3]\}$ platí formule

$$\forall a, b, c : ([a, b] \in R \land [b, c] \in R) \Rightarrow [c, a] \in R.$$

Odpověď:

- 3. Nechť $s_n = (n+3) + (n+4) + \cdots + (4n+2)$. Určete s_2 . Odpověď:
- 4. Rozhodněte, zda pro libovolné množiny A,B,C platí: $C\subseteq A\Rightarrow C\subseteq A\cap B.$ Odpověď:
- 5. $A = \{1\}, B = \{2, \{1\}\}.$ Určete $B \times A.$ Odpověď:
- **6.** $A = \{(1)\}, B = \{(1), 2\}.$ Platí $A \in B$? Odpověď:
- 7. $R = \{[1, 1], [2, 3], [4, 3]\}$. Určete $R \circ R$. Odpověď:
- 8. Napište relaci ekvivalence k rozkladu $S = \{\{a,c\},\{b\},\{d\}\}$ množiny $A = \{a,b,c,d\}$. Odpověď:
- 9. Na množině $\mathbb R$ je dána operace \star následovně: $a\star b=b$. Je operace \star komutativní? Odpověď:
- 10. Nakreslete graf s posloupností stupňů 1,1,1,1,2,2,2,2,4. Graf:

PÍSEMKA

Každý příklad je za 10 bodů. Písemku vypracujte na vlastní papíry. U každého příkladu přehledně napište postup řešení a jasně označte výsledek.

- **1.** a) O množině M víme: $|\mathcal{P}(M)| = 4$, $\{5\} \in \mathcal{P}(M)$, $\{\{\emptyset\}\} \subseteq \mathcal{P}(M)$. Určete množinu M.
 - **b)** Najděte relace R, S, T tak, aby $R \circ (S \cap T) = (R \circ S) \cap (R \circ T)$.
 - c) Najděte relace R, S, T tak, aby $R \circ (S \cap T) \neq (R \circ S) \cap (R \circ T)$.
- ${\bf 2.}\;\;$ Dokažte, že pro všechna přirozená čísla n platí:

$$1+3+5+\cdots+(4n+1)=(2n+1)^2$$
.

3. Na množině $M=\{n\in\mathbb{N}\colon 1\leq n<10\}$ je dána relace R následovně:

$$[a,b] \in R \iff 2|(a-b).$$

Zjistěte, zda relace R je a) reflexivní, b) symetrická, c) antisymetrická, d) tranzitivní, e) relací ekvivalence, f) relací uspořádání. Svoje tvrzení zdůvodněte.

4. Nechť $X=\{1,2,3\},\,Y=\{1,2,3,4\}.$ Na množině $\mathcal{P}(Y)\setminus\mathcal{P}(X)$ je dána relace \sim následovně:

$$A \sim B \iff A \setminus B = \emptyset.$$

Ukažte, že relace \sim je na množině $\mathcal{P}(Y) \setminus \mathcal{P}(X)$ uspořádání, a nakreslete hasseovský diagram.

5. Na množině $M = \{a, b, c, d\}$ je dána operace \circ :

0	a	b	c	d
a	b	b	a	c
b	b	b	b	c
c	a	b	c	d
d	c	c	d	c

- a) Je (M, \circ) pologrupa?
- **b)** Vypište všechny dvouprvkové podgrupoidy (M, \circ) .
- 6. a) Najděte minimální kostru grafu na obrázku. Postup vyznačte do obrázku.

b) Je možné nakreslit graf s posloupností stupňů 3, 3, 3, 3, 3, 3 bez překřížení hran?