Exponential Finite Differences (EFD): A Theoretical Summary

Krishna Chauhan Independent Researcher

May 2025

1 Core Discovery

Theorem 1. For the sequence $S = (x, x^2, ..., x^n)$, the (n-1)-th exponential finite difference is:

$$\Delta^{n-1}S = x(x-1)^{n-1}$$

Proof Sketch

Base Case (n=2):

$$\Delta^1 S = x^2 - x = x(x-1)$$

Inductive Step: Assume true for n = k. For n = k + 1, expand $(x - 1)^k$ using the binomial theorem. The form remains consistent.

2 Theoretical Significance

Generalization: Extends classical finite differences (used for linear spacing) to exponential spacing.

Factorization: For integer $x \ge 2$, $\Delta^{n-1}S$ is always composite since $x(x-1)^{n-1}$ is factored.

Calculus Link: Challenges classical assumptions about polynomial differences and discrete derivatives.

3 Applications

Cryptography: Potential nonlinear pseudorandom number generator:

Dynamical Systems: EFDs may model complex behaviors under exponential discretization.

3.1 Chaotic Maps

For x = 1.5 + 0.1i, EFDs demonstrate:

- Fractal boundaries
- Sensitivity to initial conditions

4 Open Questions

Conjecture 1. EFDs for irrational spacings (e.g., x^{π}) exhibit quasi-periodic or self-similar behavior when $x \in \mathbb{Q}$.

Conjecture 2. There exists a hybrid sequence $S = (x, f(x), f(f(x)), \dots)$ for which EFDs correlate with primality detection.