EEE104 – Digital Electronics (I) Lecture 8

Dr. Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

In This Session

- Combinational Logic
 - Basic Combinational Logic Circuits
 - Implementation
 - Universal NAND and NOR Gates
 - Using NAND and NOR Gates

Basic Combinational Logic Circuits

- A combinational logic circuit is one in which
 - Logic gates are connected together to implement a certain function (in contrast to basic logic gates).
 - There is no storage involved (in contrast to sequential circuits).
- Examples of combinational logic
 - Exclusive-OR gates
 - The AND-OR logic in an SOP implementation.

Basic Combinational Logic Circuits

Exclusive-OR Logic

 The output X is HIGH only when the two inputs are at opposite levels.

$$X = \overline{A}B + A\overline{B}$$
$$= A \oplus B$$

Exclusive-NOR Logic

- The output of an Exclusive-OR circuit is inverted.
- The output X is HIGH only when the two inputs are at the same levels.

$$X = \overline{A\overline{B} + \overline{A}B} = \overline{(A\overline{B})}\overline{(\overline{A}B)} = (\overline{A} + B)(A + \overline{B}) = \overline{A}\overline{B} + AB$$

Basic Combinational Logic Circuits

AND-OR Logic

- The outputs of a number of AND gates connect to the inputs of an OR gate.
- It implements an SOP (sum-of-products) expression.

An AND-OR-Invert logic implements a POS (product-of –sums) expression.

$$\overline{AB + CD} = \overline{AB} \ \overline{CD} = (\overline{A} + \overline{B})(\overline{C} + \overline{D})$$

Implementation

From a Boolean Expression to a Logic Circuit

 The NAND and NOR gates are universal because they can be used to produce any of other logic functions

NAND gate	NOR gate
– NOT	– NOT
– AND	- AND
– OR	– OR
– NOR	– NAND

NAND Gate as an Inverter

Two NAND Gates as an AND Gate

Three NAND Gates as an OR Gate

Four NAND Gates as a NOR Gate

NOR Gate as an Inverter

Two NOR Gates as an OR Gate

Three NOR Gates as an AND Gate

Four NOR Gates as a NAND Gate

Using NAND and NOR Gates

The NAND gate is equivalent to the negative-OR gate. (dual symbols)

NAND Negative-OR

The NOR gate is equivalent to the negative-AND gate. (dual symbols)

NOR Negative-AND

 To use the appropriate symbols will make "reading" a logic diagram easier.

Using NAND and NOR Gates

To read this logic diagram.

 If a negative-OR symbol is used for G₁, the two bubbles (inversion) will cancel each other.

Using NAND and NOR Gates

To read this logic diagram.

If a negative-AND symbol is used for G₁, the two bubbles (inversion) will cancel each other.

