$^{\prime}$ תורת החישוביות (236343) חורת חורף תשפ"א

31/01/2021

מרצה: פרופ' יובל ישי (אחראי).

מתרגלים: נטע דפני (אחראית), אוהד טלמון, דור קצלניק, עידו רפאל, שחר רומם פלד.

הנחיות:

- הבחינה היא עם חומר סגור ומתקיימת באופן וירטואלי לפי הנהלים הטכניוניים.
- משך הבחינה שלוש שעות. בבחינה יש 4 שאלות. השתדלו לא להתעכב יתר על המידה על סעיף מסוים, כדי לצבור את מרב הנקודות בזמן העומד לרשותכם.
 - לשימושכם מצורף למחברת זו דף עזר (בעמוד האחרון).
 - אפשר להשתמש בעט או בעפרון בתנאי שהכתב נראה היטב בסריקת התשובות.
 - מספיק לכתוב תשובות תמציתיות ולעניין, נסו לא לבזבז זמן על כתיבה מיותרת. לכל השאלות יש תשובות נכונות קצרות.
- בשאלות בהן יש לתאר מכונת טיורינג, ניתן להסתפק בתיאור מילולי משכנע של אופן פעולת המכונה, ואין צורך להגדיר פונקציית מעברים.
- מותר להשתמש בכל טענה שהוכחה בהרצאה או בתרגול, בתנאי שמצטטים אותה באופן מדויק, אלא אם נדרשתם במפורש להוכיחה.
 - ניתן לקבל בכל שאלה 20% מהניקוד עבור כתיבת "לא יודע/ת".

בהצלחה!

1 סיווג שפות (35 נק')

REאו לא ב־RE או או או $RE \setminus R$, ב- $R \setminus P$, ב- $R \setminus R$ או לא ב-RE בהנחה איז עבור כל אחת מהשפות הבאות האם היא

- (נקי) 5) . $L_1 = \{\langle M \rangle \mid$ מ"ט בינארית עם בדיוק 50 מצבים שעוצרת על כל מ"ט M $\}$.1
- נק') גוני (אין בדיוק 3 מילים שאורכן אוגי (אין דרישה לגבי מספר המילים מאורך אי אוגי) אוגין מילים שאורכן אוגי (אין דרישה M } .2
- (נק') נק') גרף א מכוון ארף א מכוון שקיים בו מסלול פשוט המכיל בדיוק וווא ארף א מכוון שקיים בו מסלול (קו') גרף א מכוון שקיים בו מסלול פשוט המכיל בדיוק G=(V,E) .3
 - ע 10) ביבוכיות קולמוגורוב. (10 נק'), אור K כאשר K כאשר $L_4 = \{(x,m) \mid K(x) < m\}$

2 סיווג פונקציות (20 נק')

לכל אחת מהפונקציות f הבאות, קבעו האם הטענה כי f ניתנת לחישוב בזמן פולינומי היא: (א) נכונה; (ב) לא נכונה; או (ג) שקולה ל-P = NP

בסעיפים בהם הטענה שקולה ל־ $P=\mathrm{NP}$, יינתן ניקוד חלקי לסטודנטים שיוכיחו את אחד הכיוונים.

הערה: כרגיל, אנו מניחים כאן שכל מחרוזת מתפרשת כקלט מהפורמט המצופה.

- 10. על קלט (a,b) (שני מספרים טבעיים בייצוג בינארי), f_1 פולטת את (שני מספרים טבעיים בייצוג בינארי). (a,b) 1.
- לא $I\subseteq [m]$ של מספרים שלמים שלמים ($x_1,...,x_m$) בייצוג בינארי, בינארי, f_2 פולטת את הערך המוחלט הכי קטן של סכום של תת קבוצה ($x_1,...,x_m$) בייצוג בינארי, בינארי, $f_2(x_1,...,x_m)=\min_{\emptyset\subseteq I\subset [m]}\left|\sum_{i\in I}x_i\right|$ ריקה. כלומר, ריקה.

(30) SAT וריאציות על 3(50) SAT וריאציות

. נאמר ששתי פסוקיות CNF הן k־קשירות אם יש להן k (או יותר) משתנים משותפים.

. נאמר שפסוק C_i,C_j בי φ הוא $\varphi=C_1\wedge C_2\wedge\cdots\wedge C_m$ בי $\varphi=C_1\wedge C_2\wedge\cdots\wedge C_m$ ביק נאמר שפסוק נאמר שפסוק $\varphi=(x_1\vee x_2\vee x_3)\wedge(\overline{x_1}\vee x_4)\wedge(x_3\vee\overline{x_4})$ ביקשיר אבל לא ביקשיר לדוגמה: הפסוק

. ב-או (ב- NP או (ב- NP או ב-P או (ב- NP

בשאלה זו: שייכות ל- NP ניתן להראות ע"י הגדרת יחס דו מקומי מתאים ללא הוכחת קיום התכונות, או תיאר מ"ט א"ד יעילה ללא הוכחת נכונות ויעילות.

- - (נק') בסוק CNF פסוק בסוק פסוק שהוא Cיקשיר אפיק פסוק (נק') פסוק 2.
- נק'). $L_3=\{(\varphi,k)\mid$ לא בהכרח ספיק), ויש לו תת־פסוק בעל k פסוקיות פסוק (לא בהכרח ספיק), ויש לו תת־פסוק פסוקיות מי φ הוא פסוק שהפסוקיות בו הן פסוקיות מי φ הוא פסוק שהפסוקיות בו הן פסוקיות מי

שאלה 4 – בעמוד הבא

מכונות טיורינג לומדות (15 נק')

תהי $g\left(x
ight)$ של פונקציה המתוארת ע"י געטואיטיבית, אינטואיטיביה מלאה. פונקציה המתוארת פונקציה את הפלט $F:\{0,1\}^* imes\{0,1\}^* o f:\{0,1\}^*$ המחרוזת g על קלט x.

תהי g' מ"ט שמקבלת כקלט סדרת זוגות $(x_1,g\left(x_1\right)),...,(x_m,g\left(x_n\right))$ ופולטת מחרוזה g' אינטואיטיבית, g' היא פונקציה לא ידועה ומטרת g' היא להשתמש בדוגמאות הקלט־פלט כדי לפלוט השערה g' לגבי מהי g, שעקבית עם כל הדוגמאות.

 $\langle (x_1,F\left(g,x_1
ight)),...,(x_m,F\left(g,x_m
ight))
angle$ על M על אם לכל M, אם לכל $g\in\{0,1\}^*$ ולכל $g\in\{0,1\}^*$ ולכל M על M על M על M אם היא M בורמלית: נאמר ש־M הוא M כך ש־M לכל M לכל

לדוגמה: עבור g שמייצגת פולינום באמצעות וקטור מקדמים ועבור מספר שלם x, תהי F(g,x) הפונקציה שמחזירה את פלט הפולינום אמייצג ע"י g על הקלט x עבור x צריכה להחזיר פולינום שעובר בכל הנקודות הנתונות. למשל, על הקלט x עבור x צריכה להחזיר פולינום שיוצג ע"י x על הקלט שייצג את הפולינום x יכולה להחזיר כוללים בין היתר את x (2,1) (שמייצג את הפולינום x (1,0,1) ואת x יכולה להחזיר כוללים בין היתר את x (2,1)

שימו לב כי הדרישה על הפלט של M מתייחסת רק למקרה שהדוגמאות הגיעו מפונקציה g כלשהי, ובמקרה ש"אין פתרון" אין הגבלה על התנהגות M.

הוכיחו/הפריכו:

נק") איש לומדת. (5 נק') פונקציה מלאה וניתנת לחישוב $F\left(g,x\right)$ יש לומדת.

נאמר שלומדת L עבור F היא לומדת יעילה אם היא רצה בזמן פולינומי (על כל הקלטים, גם במקרה ש"אין פתרון").

. בהנחה ש־P \neq NP, קבעו עבור כל אחת מהפונקציות הבאות עבור לומדת יעילה.

הערה: כרגיל, אנו מניחים כאן שכל מחרוזת מתפרשת כקלט מהפורמט המצופה.

- ו־ α השמה למשתנים של arphi. (5 נק') א כאשר arphi כאשר arphi כאשר arphi בחוק וו־ α השמה למשתנים של arphi. (5 נק')
- (ז נק'). כאשר α היא השמה ל־m משתנים המשתנים (המכילה ליטרל אחד או יותר). (5 נק'). אותר). היא השמה היא הארגומנט הראשון של F_3 , בניגוד לסעיף הקודם.

אוסף שפות (כולן מעל א"ב $\{0,1\}$) והסווג שלהן:

- HP = $\{(\langle M \rangle, x) | M \text{ halts on } x\}.$
- $L_U = \{(\langle M \rangle, x) | M \text{ accepts } x\}.$
- $L_D = \{ \langle M \rangle | M \text{ accepts } \langle M \rangle \}.$
- $L_{\Sigma^*} = \{ \langle M \rangle | L(M) = \Sigma^* \}.$
- $L_{\varepsilon} = \{ \langle M \rangle | \varepsilon \in L(M) \}.$
- $L_{\emptyset} = \{ \langle M \rangle | L(M) = \emptyset \}.$
- $L_{>3} = \{ \langle M \rangle \, | \, |L(M)| \ge 3 \}.$
- $L_{\leq 3} = \{ \langle M \rangle \, | \, |L(M)| \leq 3 \}.$
- $L_{=3} = \{ \langle M \rangle \, | \, |L(M)| = 3 \}.$
- $L_{EQ} = \{(\langle M_1 \rangle, \langle M_2 \rangle) | L(M_1) = L(M_2)\}.$

x את את שעל קלט $\Gamma=\{0,1,\emptyset\}$ שעל מכונת טיורינג בעלת את המצבים המינימלי של הוא מספר המצבים המינימלי של מכונת טיורינג בעלת אינה ניתנת לחישוב.

אוסף שפות NP־שלמות:

- $SAT = \{ \varphi \mid$ ספיק CNF פסוק $\varphi \} \bullet$
- $3SAT = \{ \varphi \mid$ ספיקן $3CNF \in \varphi \} \bullet$
 - $3\mathrm{COL} = \{G \mid$ ביען 3 הוא גרף G
- $\mathrm{HC} = \{G \mid$ הוא גרף לא מכוון בו קיים מעגל המילטוני $G\} ullet$
- $\mathrm{HL} = \{G \mid$ הוא גרף לא מכוון בו קיים מסלול המילטוני $G\}$
 - $\mathrm{DHC} = \{G \mid$ הוא המילטוני בו קיים מעגל המילטוני הוא $G\}$
- $\mathrm{DHL} = \{G \mid$ המילטוני מסלול קיים מכוון בו הוא גרף הוא הוא $G\}$
 - $\mathrm{VC} = \{(G,k) \mid k$ קיים בגודל צמתים כיסוי G \bullet
- $IS = \{(G, k) \mid k$ ב־ קיימת קבוצת צמתים בלתי מתלויה בגודל G -ב
 - $\mathrm{CLIQUE} = \{(G,k) \mid k$ ב קיים קליק בגודל G ב G
- $\mathrm{SC} = \{(C_1, C_2, \dots, C_l \subseteq [n], n, k) \mid (C_1, \dots, C_l)$ עם k עם k עם k עם אקנים כיסוי של
 - $01 ext{IP} = \{(A,b) \mid Ax \geq b$ עבורה ל x עבורה בינארית קיימת הצבה וכן קיימת ארית ל $A \in \mathbb{Z}^{M \times N}$, $b \in \mathbb{Z}^M\}$
- PARTITION = $\{(x_1, x_2, ..., x_n) \mid x_i \in \mathbb{N} \setminus \{0\} : \exists I \subseteq \{1, ..., n\}, \sum_{i \in I} x_i = \sum_{i \notin I} x_i \}$
 - SS = $\{(x_1, x_2, ..., x_n, k) \mid x_i \in \mathbb{N} \setminus \{0\} : \exists I \subseteq \{1, ..., n\}, \sum_{i \in I} x_i = k\} \bullet$

רשימת שאלות פתוחות:

- $P \stackrel{?}{=} NP \bullet$
- $NP \stackrel{?}{=} coNP \bullet$
- $P \stackrel{?}{=} PSPACE \bullet$
- $NP \stackrel{?}{=} PSPACE \bullet$

בהצלחה!