

Faculty of Computing and Information Technology

Department of Information Technology

Spring 2018

CPIT-340 Syllabus

Catalog Description

CPIT-340 Database (II)

Credit: 3 (Theory: 3, Lab: 0, Practical: 1)

Prerequisite: CPIT-240 **Classification:** Elective

The objective of this course is to study advanced topics in the domain of databases. Topics include distributed databases and client-server architectures, concepts for object databases, enhanced data models for advanced applications, database tuning in relational database systems, concurrency control techniques, and database security.

Class Schedule

Lab/Tutorial 90 minutes 1 times/week

Meet 50 minutes 3 times/week or 80 minutes 2 times/week

Textbook

Ramez Elmasri, Shamkant B. Navathe, , "Fundamentals of Database Systems", Addison-Wesley; 7 edition (2015-06-19)

ISBN-13 9780133970777 **ISBN-10** 0133970779

Grade Distribution

Week	Assessment	Grade %
3	Graded Lab Work 1	1
5	Quiz 1	2.5
5	Graded Lab Work 2	2
7	Graded Lab Work 3	1
8	Exam 1	15
8	Quiz 2	2.5
8	Graded Lab Work 4	2
10	Graded Lab Work 5	1
11	Graded Lab Work 6	2
12	Project (Individual)	15
12	Graded Lab Work 7	1
12	Exam 2	15
16	Comprehensive Final Exam	40
	•	

Last Articulated

December 18, 2017

Relationship to Student Outcomes

a	b	c	d	e	f	g	h	i	j	k	1	m	n
				X		X		X	X				

Course Learning Outcomes (CLO)

By completion of the course the students should be able to

- 1. Develop distributed database concepts using data fragmentation and replication (i)
- 2. Apply concurrency control and recovery in distributed databases (e)
- 3. Create active databases using triggers (i)
- 4. Analyze enhanced data models for advanced application using temporal, spatial and multimedia databases (j)
- 5. Define deductive databases (j)
- 6. Design database security using discretionary or mandatory access controls (e)
- 7. Describe encryption and public key infrastructure (i)
- 8. Apply tuning with practical databases (i)
- 9. Apply object oriented database concept (j)
- 10. Evaluate class hierarchies and complex objects (j)
- 11. Evaluate transactional processing in single or multi user system and concurrent execution (g)
- 12. Describe two phase locking techniques for concurrency control (i)
- 13. List multi version concurrency control techniques (j)
- 14. Analyze granularity of data (j)

Coordinator(s)

Dr. Mutasem Jarrah, Associate Professor

Topics Coverage Durations

_			
Topics	Weeks		
Distributed Databases and Client-Server Architectures	3		
Concepts for Object Databases	2		
Database Tuning in Relational Database Systems			
Concurrency Control Techniques	2		
Database Security	4		