HARDY-WEINBERG EN DOS LOCI: Desequilibrio de ligamiento

En poblaciones con apareamiento aleatorio, los alelos en cualquier *locus* alcanzan las frecuencias esperadas en H-W en una generación. Sin embargo, éste no es el caso cuando los alelos de dos loci distintos no se distribuyen de manera aleatoria en los gametos.

Veremos ahora el efecto de la asociación no aleatoria de los genes (los alelos) en las frecuencias genotípicas. Los resultados mostrarán que cuando los genes no se asocian aleatoriamente:

- 1) las frecuencias de equilibrio se alcanzarán de manera gradual
- 2) La tasa de aproximación al equilibrio es proporcional a la tasa de recombinación (*r*) entre ambos *loci*.

El significado de la asociación aleatoria en los gametos se ilustra a continuación.

Suponga que analizamos dos loci, cada uno con dos alelos (A₁, A₂, B₁, B₂) y con las siguientes frecuencias de alelos: Los tipos de gametos que pueden producirse y sus *frecuencias* observadas podemos simbolizarlas de la siguiente forma:

Cuadro 6A. Frecuencia de gametos

Gametos	A_1B_1		A_1B_2		A_2B_1		A_2B_2		
Frecuencias gaméticas	P_{11}	+	P_{12}	+	P_{21}	+	P_{22}	=	1

Cuadro 6B. Frecuencia de alelos

Alelo	A_1	A_2	B ₁	B_2
Frecuencia	p_1	p_2	q_1	q_2

Asimismo, la frecuencia *esperada* de tipos gaméticos para ambos loci se obtiene como el producto de las frecuencias de los alelos:

Cuadro 7.

		Alelos del locus A				
Alelos del locus B		A_1	A_2			
	Frecuencia alélica	p_1	p_2			
B ₁	q_1	A ₁ B ₁ (genotipo)	A_2B_1			
		p_1q_1 (frecuencia)	p_2q_1			
\mathbf{B}_2	q_2	A_1B_2	A_2B_2			
	- 2	p_1q_2	p_2q_2			

Y a partir de las frecuencias esperadas de los tipos gaméticos podemos definir el equilibrio de ligamiento:

$$\mathbf{A}_1\mathbf{B}_1 = p_1q_1$$

$$A_1B_2 = p_1q_2$$

$$\mathbf{A}_2\mathbf{B}_1 = p_2q_1$$

$$A_2B_2 = p_2q_2$$

Donde
$$p_1 + p_2 = 1$$
 y $q_1 + q_2 = 1$

Es muy importante hacer notar que las combinaciones de A's y B's se refieren a los gametos y no a los genotipos de los individuos diploides.

La asociación aleatoria entre los alelos de diferentes genes se denomina **equilibrio de ligamiento** (D = 0). En esta simbología, el equilibrio de ligamiento podemos definirlo como el estado en el cual las frecuencias gaméticas observadas y esperadas son iguales: Σ

$$P_{11} = p_1 q_1$$

$$P_{12} = p_1 q_2$$

$$P_{21} = p_2 q_1$$

$$P_{22} = p_2 q_2$$

$$D = 0$$

Equilibrio:
$$D = P_{11} - p_1 q_1 = 0$$
 ó $P_{21} = p_2 q_1$

Lo interesante ocurre cuando no hay equilibrio (D $\not\equiv$ 0).

Modelo

Suponga:

- 1. que los genes **no están en equilibrio**. Si es así, se dice que hay desequilibrio de ligamiento
- 2. y queremos encontrar las frecuencias gaméticas de la generación siguiente (t_1) :

Tomemos un tipo gamético A_1B_1 y veamos cómo pueden formarse y dar lugar a gametos de la generación siguiente.

En cada generación existen dos posibilidades para el cromosoma que lleva A₁ y B₁:

- (1) Pude sufrir recombinación entre los genes con una probabilidad *r* o fracción recombinante, o bien
- (2) No recombinarse, con una probabilidad (1-r).

Esto puede visualizarse si pensamos que la población se compone de **dos partes**, una en la cual existe recombinación (r) y otra en la que no (1-r), de forma que r + (1-r) = 1, o sea, r = 1-(1-r).

En aquellos cromosomas **que no se recombinaron** la frecuencia de A_1B_1 será la misma que la de la generación previa (P_{11}) En aquellas que sí hubo recombinación la frecuencia de A_1B_1 debe ser la de los genotipos A_1 ?/? B_1 en la generación previa y es igual a p_1q_1 , debido a que el apareamiento (o asociación de alelos) es aleatorio. Por lo tanto, podemos escribir la frecuencia de ese tipo gamético en la generación siguiente la frecuencia (P'):

$$P'_{11} = (1-r)P_{11} + rp_1q_1$$

Restando p_1q_1 en ambos lados

$$P'_{11} - p_1 q_1 = [(1-r)P_{11} + rp_1 q_1] - p_1 q_1$$

Sustituyendo r = 1 - (1 - r)

$$P'_{11} - p_1 q_1 = (1 - r) P_{11} + [1 - (1 - r) p_1 q_1 - p_1 q_1]$$

$$= (1 - r) P_{11} + p_1 q_1 - p_1 q_1 (1 - r) - p_1 q_1$$

$$= P'_{11} - p_1 q_1 = (1 - r) (P_{11} - p_1 q_1)$$

La ecuación muestra que la **desviación** de una frecuencia gamética (P_{ij}) respecto del producto de sus frecuencias alélicas constitutivas, *decrece* por un factor de (1-r) cada generación.

Usemos ahora P'' para indicar la frecuencia gamética en F_2 , y t para indicar n las generaciones posteriores:

$$P''_{11} - p_1 q_1 = (1 - r)(P'_{11} - p_1 q_1)$$

$$P''_{11} - p_1 q_1 = (1 - r)(1 - r)(P_{11} - p_1 q_1)$$

$$P''_{11} - p_1 q_1 = (1 - r)^2(P_{11} - p_1 q_1)$$

$$P'_{11} - p_1 q_1 = (1 - r)^t (P_{11}^{t-1} - p_1 q_1)$$

$$P'_{11} - p_1 q_1 = (1 - r)^t (P_{11}^{t-1} - p_1 q_1)$$

Así las frecuencias de A_1B_1 en la generación inicial es P^0_{11} . Esta ecuación predice las frecuencias gaméticas en t y por tanto la aproximación al equiñibio, es decir, cuando dicha desviación sea 0.

Ya que (1-r) < 1, $(1-r)^t$ tiende a cero conforme t se es más grande. ¿Pero qué tan rápido ocurre ésto?, depende de r.

Resultado

Mientras más pequeña sea r, menor será la tasa de recombinación. r=1/2 corresponde a genes separados en el mismo cromosoma o a genes en diferentes cromosomas, ya que $(1-r)^t$ tiende a cero, P_{11} tiende a p_1q_1

Lo mismo puede decirse para los cromosomas que portan A₁B₂, A₂B₁ o A₂ B₂.

El equilibrio de ligamiento se alcanza a una tasa determinada por r, que es la tasa de recombinación.

Es muy conveniente tener una medida de la cantidad del desequilibrio de ligamiento, mediante un parámetro denominado D y se define como:

$$D = P_{11}P_{22}-P_{12}P_{21}$$

Veamo cómo la fusión aleatoria de de los gametos, cad uno con alelos de dos loci, producen los genotipos:

Cuadro. Fusión entre gametos (generación 0) Hembras

Machos	$(P_{11)})$ A_1B_1	$(P_{12)})$ A_1B_2	$(P_{21)})$ A_2B_1	$(P_{22)})$ A_2B_2
$(P_{11}) A_1 B_1$	A_1B_1 / A_1B_1	A_1B_2 / A_1B_1	A_2B_1 / A_1B_1	A_2B_2 / A_1B_1
$(P_{12}) A_1 B_2$	A_1B_1/A_1B_2	A_1B_2 / A_1B_2	$A_{2}B_{1} / A_{1}B_{2}$	A_2B_2 / A_1B_2
$(P_{21}) A_2 B_1$	$A_{1}B_{1} / A_{2}B_{1}$	A_1B_2 / A_2B_1	$A_{2}B_{1}$ / $A_{2}B_{1}$	A_2B_2 / A_2B_1
$(P_{22)}) A_2 B_2$	$A_{1}B_{1} / A_{2}B_{2}$	A_1B_2 / A_2B_2	A_2B_1 / A_2B_2	A_2B_2 / A_2B_2

Cuadro 8. Genotipos para dos genes *dialélicos* y sus frecuencias gaméticas, con iguales frecuencias de recombinación

	Frecuencia	P ₁₁	P ₁₂	P ₂₁	P ₂₂
Genotipo	Gametos	A_1B_1	A ₁ B ₂	A_2B_1	A ₂ B ₂
	Frecuencia				
A_1B_1/A_1B_1	$P_{11}/P_{11} = P_{11}^2$	1	0	0	0
A_1B_1/A_1B_2	2P ₁₁ /P ₁₂	1/2	1/2	0	0
A_1B_1/A_2B_1	2P ₁₁ /P ₂₁	1/2	0	1/2	0
A_1B_1/A_2B_2	2P ₁₁ /P ₂₂	(½)(1-r)	(½)r	(½)r	(½)(1-r)
A_1B_2/A_1B_2	$P_{12}/P_{12} = P_{12}^2$	0	1	0	0
A_1B_2/A_2B_1	2P ₁₂ /P ₂₁	(½)r	(½)(1-r)	(½)(1-r)	(½)r
A_1B_2/A_2B_2	2P ₁₂ /P ₂₂	0	1/2	0	1/2
A_2B_1/A_2B_1	$P_{21}/P_{21} = P_{11}^2$	0	0	1	0
A_2B_1/A_2B_2	P ₂₁ /P ₂₂	0	0	1/2	1/2
A_2B_2/A_2B_2	$P_{22}/P_{22} = P_{22}^2$	0	0	0	1

 Σ = Frecuencias gaméticas en t_1

Las frecuencias de los gametos, por ejemplo A₁B₁, de la generación siguiente se obtienen multiplicando la frecuencia de cada genotipo por la frecuencia gamética y sumando:

$$P'_{11} = P_{11}^{2} + P_{11}P_{12} + P_{11}P_{21} + (1-r)P_{11}P_{22} + rP_{12}P_{21}$$

$$= P_{11}^{2} + P_{11}P_{12} + P_{11}P_{21} + P_{11}P_{22} - P_{11}P_{22}r + rP_{12}P_{21}$$

$$= P_{11}(P_{11} + P_{12} + P_{21} + P_{22}) - r(P_{11}P_{22} - P_{12}P_{21})$$

$$P'_{11} = P_{11} - rD$$

Para A₁B₂:

$$P'_{12} = P^{2}_{12} + P_{11}P_{12} + rP_{11}P_{22} + (1-r)P_{12}P_{21} + P_{12}P_{22}$$

$$P'_{12} = P^{2}_{12} + P_{11}P_{12} + rP_{11}P_{22} + P_{12}P_{21} - rP_{12}P_{21} + P_{12}P_{22}$$

$$P'_{12} = P_{12}[P_{12} + P_{11} + P_{21} + P_{22}] + r[P_{11}P_{22} - P_{12}P_{21}]$$

$$P'_{12} = P_{12} + rD$$

De manera similar:

$$P'_{11} = P_{11} - rD$$

$$P'_{12} = P_{12} + rD$$

$$P'_{21} = P_{21} + rD$$

$$P'_{22} = P_{22} - rD$$

Para apreciar cómo cambia D en el tiempo obtenemos la ecuación de recursión:

$$D' = P'_{11} P'_{22} - P'_{12} P'_{21}$$

Si sustituimos las frecuencias gaméticas de t₁ por las de t₀, entonces,

$$\begin{split} D' &= (P_{11} - rD)(P_{22} - rD) - \left[(P_{12} + rD)(P_{21} + rD) \right] \\ D' &= P_{11}P_{22} - P_{11}rD - P_{22}rD + r^2D^2 - \left[P_{12}P_{21} + P_{12}rD + rDP_{21} + r^2D^2 \right] \\ D' &= P_{11}P_{22} - P_{11}rD - P_{22}rD + r^2D^2 - P_{12}P_{21} - P_{12}rD - P_{21}rD - r^2D^2 \\ D' &= P_{11}P_{22} - P_{12}P_{21} - rD\underbrace{\left(P_{11} + P_{12} + P_{21} + P_{22} \right)}_{\mathbf{I}} \\ D' &= D - rD \\ D' &= (1 - r)D \end{split}$$

De manera general: $D^t = (1-r)^t D_0$.

Cada generación, el desequilibrio de ligamiento se reduce por un factor de (1-r), por tanto D converge a un valor de $D^t = 0$.

En términos de frecuencias alélicas y gaméticas, tenemos:

$$\begin{split} P_{11} &= p_1 q_1 - D \\ P_{12} &= p_1 q_2 + D \\ P_{21} &= p_2 q_1 + D \\ P_{22} &= p_2 q_2 - D \end{split}$$

Estas ecuaciones miden la desviación en las frecuencias gaméticas del producto simple de sus frecuencias alélicas:

$$D = \underbrace{p_{11}}_{observadas} - \underbrace{p_{1}}_{esperadas} q_{1}$$

Usando esta ecuación y recordando que $P'_{11} - p_1 q_1 = (1 - r)(P_{11} - p_1 q_1)$ y

$$D' = (1 - r)D$$

Sin embargo, la magnitud absoluta de *D* depende de las frecuencias de los alelos; por tanto, para apreciar su magnitud relativa, es conveniente definir ésta como la proporción de la *D* observada, absoluta, respecto de la *D máxima o mínima*, dadas ciertas frecuencias (Lewontin 1964, *Genetics* 49: 49-67).

 $D_{m\acute{a}x}$ es el valor **más pequeño** de los productos: $+(p_1q_2)$ ó $+(p_2q_1)$ si D es positiva: $D' = D/D_{m\acute{a}x}$

 D_{min} , es el valor **más grande** de los productos $-p_1q_1$ ó $-p_2q_2$ si D **es negativa:** $D' = D/D_{min}$

$$\begin{array}{c|cccc} D_{mín} & D & D_{máx} \\ \hline & & \downarrow & \\ \hline & \downarrow & \\ \hline$$

Nótese que el valor máximo que D puede tener es 0.25 y el mínimo -0.25

Ejemplos:

Si, por ejemplo,

Gametos	A_1B_1		A_1B_2		A_2B_1		A_2B_2		
Frecuencias gaméticas	P_{11}	+	P_{12}	+	P_{21}	+	P_{22}		1
Fca. Obs.	0.3		0.3		0.3		0.1		

Alelo	A_1	A_2	B_1	B_2
Frecuencia	p_1	p_2	q_1	q_2
	0.6	0.4	0.6	0.4

$$D = P_{11}P_{22} - P_{12}P_{21}$$

Entonces, $\mathbf{D} = (0.3)(0.1) - (0.3)(0.3) = 0.03 - 0.09 = -0.06$

Fca. Esp.	$p_1 q_1$	$p_1 q_2$	$p_2 q_1$	p_2q_2
	0.36	0.24	0.24	0.16

$$D' = D/D_{min} = -0.08/-0.16 = 0.5 \text{ ó } 50\%$$

Ejemplo 2:

Si tenemos:

$$P_{11} = P_{22} = 0.5$$

$$P_{12} = P_{21} = 0.0$$

$$P_{12} = P_{21} = 0.5$$

$$P_{11} = P_{22} = 0.0$$

En el máximo y en el mínimo $p_1 = q_1 = p_2 = q_2 = 0.5$

Solución final de la alfa amilasa:

Drelativa = 0.92%