

Algorithmen & Datenstrukturen

Hashing

Wolfgang Auer

Motivation

- Suchen ist eine der häufigsten Aufgabenstellungen in der Informatik
- Lösungsansätze
 - Lineares Suchen O(n)
 - Die zu durchsuchende Menge besitzt keine festgelegte Ordnung und wird sequentiell durchsucht.
 - Binäres Suchen O(log n)
 - Elemente werden sortiert eingefügt. Die Suche erfolgt mittels Devide-and-Conquer.
 - Binärer Suchbaum O(log n)
 - Daten werden in einer Baumstruktur gespeichert, wobei auch hier wieder eine Ordnung der Elemente besteht.
 - Hash-Suche O(1)
 - Suchkriterium (Schlüssel) wird "direkt" auf eine Adresse abgebildet.

Hashing

- Idee
 - Abbildung des Suchkriteriums (Schlüssels) auf eine natürliche Zahl im Bereich von 0 ... m-1
 - Diese natürliche Zahl dient als Index in einem Feld (Hash-Tabelle)
- Die Abbildung wird als die Hash-Funktion bezeichnet
 - Idealer Fall
 - Anzahl der möglichen Schlüssel = Größe der Hash-Tabelle ⇒ Direkte
 Adressierung
 - Allgemeiner Fall

Kardinalität der Menge der Schlüssel >> Karidinalität der Menge der Hash-Werte

Hash-Funktion (1)

- Hash-Funktion
 - h: K → T,
 K.. Menge von Schlüsseln {k₀, k₁, ..., k_{n-1}}
 T.. Menge der Hash-Werte {0, 1, ..., m 1}
 - h(K) wird als der Hash-Wert des Schlüssels K bezeichnet.
- Wichtige Eigenschaften
 - Effiziente Berechnung
 - Gleichverteilung der Ergebnisse
- Bsp: Speicherung von Buchstaben in einer Tabelle der Größe 7
 - Als Schlüssel eines Buchstabens wird seine Position im Alphabet verwendet.

$$A_1, B_2, ..., Z_{26}$$

- h(key) = key Mod 7
- Einfügen von B₂, J₁₀, S₁₉

0	1	2	3	4	5	6
		B ₂	J ₁₀		S ₁₉	

Hash-Funktion (2)

- Die Wahl der Hash-Funktion ist im Prinzip beliebig
- Beispiele für mögliche Hash-Funktionen auf Zeichenketten
 - h(key) = ORD(key[1]) Mod m
 - h(key) = (ORD(key[1]) + Len(key)) Mod m
 - If (len(key) == 1) h(key) = ORD(key[1]) * 7 + 1) * 17 Mod m else h(key) = ORD(key[1]) * 7 + ORD(key[2]) + Len(key)) * 17 Mod m

Hash-Funktionen sind nach zunehmender Güte der Ergebnisse gereiht

Kollision

 Kardinalität der Schlüsselmenge größer als die Kardinalität der Menge der Hash-Werte
 ⇒ Unterschiedliche Schlüssel ergeben den gleichen Hash-Wert.

h(key) ist nicht injektiv, da $h(key_1) = h(key_2)$ nicht bedeutet, dass $key_1 = key_2$ ist.

- Versucht man verschiedene Schlüssel auf eine Tabellenposition abzubilden, tritt eine Kollision auf.
- Die Behebung einer Kollision wird als Kollisionsbehandlung bezeichnet

"Offenes Hashing"

- Kollisionsbehandlung durch Verkettung. Man spricht auch vom Separate Chaining
- Alle Schlüssel, die denselben Hash-Wert h liefern, werden in einer linearen Liste gespeichert. Diese Liste wird in der Hash-Tabelle an der Position h verankert.

- Einfügen erfolgt mit O(1)
- Suchen mit O(Länge der Kollisionskette)

"Geschlossenes Hashing"

- Im Gegensatz zum Offenen Hashing enthält hier die Hash-Tabelle direkt die Werte
- Bei einer Kollision muss eine alternative Stelle zum Einfügen des Elements mit dem Schlüssel K gesucht werden. Man spricht von der Sondierung.
 Die Folge der untersuchten Stellen wird als Sondierungsfolge bezeichnet.
- Zur Bestimmung der alternativen Stellen können verschiedene Strategien angewendet werden
 - Lineare Kollisionsstrategie
 - Quadratische Kollisionsstrategie
 - Doppeltes Hashing

- ...

Lineare Kollisionsstrategie

Tritt eine Kollision auf, wird die Tabelle solange sequentiell durchsucht, bis eine freie Stelle gefunden wird, oder festgestellt wird, dass die Hash-Tabelle voll ist.

Man wertet die Hash-Funktion h(key, i) = (h(key) + i) Mod m für alle i ≥ 0 solange aus, bis eine leere Stelle gefunden wurde und i < m ist.</p>

Probleme der Linearen Kollisionsstrategie

- Primäres Clustering: Durch die sequentielle Abarbeitung entstehen große, zusammenhängende Blöcke von Elementen. Je größer die Cluster werden, desto wahrscheinlicher werden Kollisionen.
 Diese Tendenz wird bei steigendem Belegungsgrad (loadfactor) der Tabelle noch verstärkt
- Sekundäres Clustering: Sondierungsfolge für synonyme Schlüssel ist immer identisch.

Quadratische Kollisionsstrategie

- Anpassung der Hash-Funktion zur Vermeidung des primären Clusterings
- h(key, 0) = h(key)

Problem des sekundären Clusterings bleibt weiterhin bestehen

Doppeltes Hashing

- Doppeltes Hashing verwendet bei einer Kollision eine zweite, von h unabhängige Hash-Funktion p zur Bestimmung einer alternativen Position.
- h(key, i) = (h(key) + i * p(key)) Mod m
- Bsp:

$$h(k) = k \mod m$$

$$p(k) = 1 + k \mod (m-1)$$

0	N ₁₄
1	
2	
3	
4	U ₂₁
5	
6	

Einfügen von N_{14} in die leere Hash-Tabelle $h(14) = 14 \mod 7 = 0$ $p(14) = 1 + 14 \mod 6 = 3$ $\Rightarrow h(14,0) = 0$

Einfügen von
$$U_{21}$$

h(21) = 21 mod 7 = 0
p(21) = 1 + 21 mod 6 = 4

Kollision mit N₁₄

Pitfalls

- Wahl einer schlechten Hash-Funktion
 - **z**.B. wird $m = 2^n$ gewählt, bewirkt die Verwendung von $h(k) = k \mod m$, dass nur die letzten n-bits des Schlüssels berücksichtigt werden.
- Wahl des Sondierungsschritts
 - Bei schlechter Wahl der Schrittweite für die nächste Sondierung, kann es dazu kommen, dass nicht alle Tabelleneinträge angesprochen werden können. D.h. man nützt nicht die gesamte Hash-Tabelle aus.
 - p(k) muss prim zu m sein. D.h. p(k) und m haben keinen gemeinsamen Teiler. Daher wird m oft eine Primzahl sein. Wird $m = 2^n$ gewählt, dann muss p(k) eine ungerade Zahl liefern, damit das Doppelte Hashing funktioniert.

Suchen und Löschen

- Suchen
 - Separate Chaining
 - Mittels der Hash-Funktion wird der Anker der linearen Liste, die das Element hält (enthalten kann) in O(1) gefunden. Die Suche in der Liste erfolgt sequentiell in O(Anzahl der Listeneinträge)
 - Geschlossenes Hashing
 - Der Sondierungspfad wird solange gefolgt, bis das Element gefunden wurde, oder alle Elemente geprüft worden sind.
- Löschen
 - Separate Chaining
 - Entfernen des entsprechenden Listenelements
 - Geschlossenes Hashing
 - Entfernen eines Elements zerstört den Sondierungspfad. Eine Lücke auf dem Pfad bedeutet, dass das Element nicht enthalten ist, sonst würde es an dieser Position stehen!
 - "Gelöschte" Elemente werden nur als gelöscht markiert. Beim nächsten Einfügeversuch an dieser Stelle kann das markierte Element überschrieben werden

Hashing Bewertung

- Allgemein
 - ▲ Aufwand für Zugriff auf ein Element im besten Fall konstant O(1)
 - Kollisionsbehandlung erfordert zusätzlichen Aufwand
 - Bei hohem Belegungsgrad steigt die Wahrscheinlichkeit von Kollisionen
 - Kein Zugriff in sortierter Reihenfolge
- Offenes Hashing
 - Dynamische Datenstruktur, die beliebig viele Elemente befassen kann
 - ▼ Kann zur Linearen Suche degenerieren
- Geschlossenes Hashing
 - Schnelles Suchen
 - Speicherplatz wird gut ausgenützt (abhängig vom Belegungsgrad)
 - Statische Datenstruktur
 - ▼ Löschen von Elementen umständlich