

MÁQUINA DE C.C.

Formas constructivas

Esquema básico

Elementos móviles:

- Rotor o inducido
- Colector
- Delgas
- Escobillas
- Arrollamiento del inducido

Parte fija (estator):

- Corona del estator (culata)
- Polos inductores (núcleo polar y expansiones polares)
- Polos de conmutación
- Devanados de excitación y conmutación.

Esquema básico

Parámetros:

• potencia [kW], tensión, velocidad, forma de conexión, número de polos inductores.

Motor para corriente contínua tetrapolar.

Estator de una máquina de gran potencia

Fig. Polos principales y de conmutación de un motor de tracción

Fig. Máquina con polos auxiliares y arrollamiento com pensador en las ranuras de las expansiones polares.

Fig. Disposiciones de polos principales y de conmutación

Principio de funcionamiento

Generación de la fem.

Consideremos:

- una máquina bipolar, con un inducido que posee una bobina, cuyos extremos se conectan a dos anillos.
- que gira en sentido antihorario como generador.

$$e = B.l.v$$

- **de 2 a 3:** la bobina recorre el entrehierro donde:
- de 3 a 4: decrece B y decrece la fem.
- zonas 1 y 4: bobina paralela a líneas de campo, entonces no genera fem.

Generación de la fem.

- zona neutra ZN: entre líneas 1 y 4.
- paso polar: distancia entre dos zonas neutras o entre líneas medias polares, medida sobre el perímetro del inducido.

$$t_p = \frac{\pi . D}{2 . p}$$
 p: número de pares de polos.

En una máquina multipolar, la bobina generará un ciclo cada vez que pase bajo un par de polos.

 convención: en los generadores el borne por el cual sale la corriente se lo designa como (+); el otro será el (-).

Generación de la f.e.m.

Conclusión: Dado que los bornes cambian de polaridad en el ejemplo estudiado, concluimos que:

Las bobinas del inducido generan corrientes alternas, no senoidales.

colector: rectificador mecánico. Constituido por delgas:

- dispuestas de modo que la inversión de la conexión se produzca sobre la ZN.
- cada delga contiene el fin de una bobina y el ppio de la siguiente.

Generación de la fem.

Conclusión: para tener una onda lo más continua posible, <u>conviene</u> disponer de <u>muchas bobinas</u> en el inducido.

circuito equivalente:

siendo: a: n° de pares de ramas.

N: n° de conductores activos.

- conductor => 1V
- bobina => 2V (2 conductores por bobina)
- · la tensión generada en escobillas:

$$\frac{N}{2a} = \frac{12}{2} = 6V$$

Expresión del valor medio de la f.e.m. continua

$$e_{med} = B_{med}.l.v$$
 (f.e.m. inducida en un conductor)

$$E = \frac{N}{2a}.e_{med} = \frac{N}{2a}.B_{med}.l.v$$
 (f.e.m. inducida en el total N de conductores)

siendo:

$$\Phi = B_{med}.t_p.l [Wb]$$

$$t_p = \frac{\pi d}{2p}[m]$$

$$v = \frac{\pi Dn}{60} [m/s]$$

$$E = \frac{pN}{60a}$$
. Φ . n [V]

Excitación del campo inductor

Excitación del campo inductor

- a) Imanes permanentes: débiles, para pequeñas potencias, no regulables, no permite variar el flujo.
- b) Electroimanes: de uso general. Las distintas formas de alimentación dan lugar a distintas máquinas (en cuanto a su funcionamiento, no a su construcción).
 - máquinas de excitación independiente;
 - máquinas de excitación propia;
 - máquinas auto excitadas (serie, derivación y compuerta)

Principio de autoexcitación

• La máquina que gira en sentido antihorario; sus polos tienen un magnetismo remanente considerable:

> La máquina genera por sí sola, al hacerlo girar, debido al magnetismo remanente preexistente.

• Cuando se establece el equilibrio: $E = I_{ex} R_{ex} [V]$

$$E = I_{ex}.R_{ex}[V]$$

Principio de autoexcitación

Consideraciones:

- 1. Deben concordar el sentido del flujo del arrollamiento excitador con el del magnetismo remanente.
- 2. Debe haber concordancia entre el magnetismo remanente, el sentido de giro y el sentido del arrollamiento de los polos inductores.
- 3. Causas de no excitación de la máquina:
 - a) Falta de magnetismo remanente
 - b) Falta de concordancia entre los elementos mencionados en el punto 2°.
 - c) En algunas conexiones (derivación) por cortocircuito exterior.
 - d) Poca presión en los resortes de escobillas (falso contacto)

Forma de conexión

Distintas conexiones entre excitación e inducido dan lugar a distintas máquinas (en lo funcional).

Máquinas con excitación separada • Excitación independiente • Excitación propia

Máquinas autoexcitadas

- Excitación derivación
 Excitación serie
 Excitación compuesta
 Corta
 Larga

CIRCUITO EQUIVALENTE

- resistencia de inducido R_i
- fem. que genera E

- polos de conmutación R_C
- polos principales R_{ex}, R_d, R_s

Generador excitación independiente

Generador excitación propia

$$E = U + (Ri + Rc).I$$

Los polos son alimentados por un generador independiente, acoplado al mismo eje, denominado excitatriz. Cuando la excitatriz es muy grande, suele necesitar ser alimentada a su vez, por otra máquina pequeña, llamada excitatriz piloto, también montada sobre el mismo eje

Generador excitación derivación

Generador excitación serie

$$E = U + \left(R_C + R_i + R_S\right)I$$

Generador excitación compuesta corta

$$I_{i} = I + I_{d}$$
 $E = U + R_{S}I + (R_{C} + R_{r})I_{i}$ $(R_{d} + R_{r})I_{d} = U + R_{S}I$

Generador excitación compuesta larga

$$U = \left(R_d + R_r\right)I_d \qquad \text{Figura 22}$$

$$E = U + \left(R_S + R_c + R_i\right)I_i$$

$$I_i = I + I_d$$

Bornera Tipo

Reacción del inducido

Consecuencias de la reacción de inducido

Reacción de Inducido

Características de funcionamiento

- •Característica magnética: $\Phi = f(\theta)$, relaciona las variaciones de flujo, en función de la fmm.
- •Características en vacío: $E = f(I_{ex})$ relaciona las variaciones de Fem. en función de la excitación.
- •Característica en carga: $U = f(I_{ex})$, variación de tensión en función de corriente de excitación.
- •Característica externa: U = f(I), variación de la tensión en función de la corriente de carga.
- •Curva de regulación: $I_{ex} = f(I)$, variación de la excitación en función de la corriente de carga.

Característica magnética

$$\Phi = f(\theta)$$

$$\Phi = \Lambda \cdot NI = \Lambda \cdot \theta$$

$$\theta = N I_{ex}$$

Aumentando la excitación, aumenta el flujo, pero la variación no es lineal porque:

- 1. Hay flujo debido al magnetismo remanente (tramo A-B de la curva), aunque no haya excitación.
- 2. En valores normales de excitación crece el flujo aproximadamente en forma lineal. (Tramo B-C).
- 3. Para grandes excitaciones, el circuito magnético se satura y no se obtiene mayor ganancia de flujo (Tramo C-D).

Exagerar la excitación no nos resulta en más flujo, y nos aumenta las pérdidas R_{ex} . I_{ex}^2

Característica en vacío

$$E = f(Iex)$$

$$I_{ex} \quad \Longrightarrow \quad \theta = N I_{ex} \quad \Longrightarrow \quad \Phi = \Lambda \cdot \theta$$

$$\Phi = \Lambda \cdot \theta \implies E = \frac{p.N}{60 \, a} \cdot \Phi \cdot n$$

La curva es semejante a la característica magnética, pero a escala diferente.

- La máquina genera cierta E aún sin excitación debido al magnetismo remanente.
- Aumentando I_{ex} , aumenta E, hasta cierto límite, que es cuando se satura.

Característica en carga $U = f(I_{ex})$

Elementos que ligan E con U:

- reacción de inducido: un punto cualquiera va desde A hasta B.
- caídas de tensión interna: el punto se desplaza de B hasta C.

$$\Delta U = (R_i + R_c) I_i$$

No parte del origen dado que la máquina requiere, antes de entregar tensión a sus bornes, cierta excitación primero para vencer la reacción de inducido.

Característica externa

$$U = f(I)$$

- Máquina ideal: la tensión de bornes no debería variar con la carga (línea punteada).
- ➤ Máquina real: la reacción de inducido y a las caídas de tensión aumentan con la corriente, entonces:

- al aumentar la corriente I cae la tensión U.
- en el límite, el cortocircuito, la corriente I_{cc} es máxima y la tensión es cero.
- rango de trabajo normal: zona ≈ recta hasta In.

Este tipo de conexión tiene una tensión muy constante con la carga.

Curva de regulación

$$I_{ex} = f(I)$$

Para tener tensión constante a medida que aumenta la carga, se debe aumentar la excitación.

R_c U

Necesidad de tener un dispositivo automático que regule la excitación.

Característica en vacío $E = f(I_d)$

• RECTA DE TENSIÓN:

$$U = (R_d + R_r) I_d$$

$$tg \alpha = U/I_d = R_d + R_r$$

• La corriente de excitación I_d aumentará cuando:

f.e.m. del tensión del inducido > circuito derivación

• En el equilibrio (punto A) éstas se igualan, y se obtiene la tensión de régimen.

Característica en vacío $E = f(I_d)$

Conclusiones

- 1) Pequeñas ΔR_r provocan grandes ΔU no lineales (desplazamiento del punto de interacción A)
- 2) Para cierto valor de R_r coinciden la recta con la parte rectilínea de la característica en vacío, hay indeterminación \Longrightarrow no se pueden regular bajas tensiones.
- 3) Al bajar la velocidad, manteniendo la recta de tensión constante llega un momento en que ésta no corta a la curva, no hay punto de equilibrio, no habrá tensión.

Las máquinas derivación sin R_r no generan a bajas velocidades.

Característica carga y regulación

Prácticamente iguales a las de excitación independiente.

La tensión en el circuito de excitación proviene de los bornes de la máquina, la que puede sufrir variaciones.

Característica externa

$$U = f(I)$$

Máquina real: dado que está alimentada por la tensión de bornes (tramo A - B):

- presenta una disminución más rápida que la de excitación independiente, porque la $I_d = cte$.
- para cargas elevadas, se llega al cortocircuito en el cual U = 0, se anula I_d y se hace I = 0.
- 1) Estas máquinas soportan cortocircuitos sin deteriorarse.
- 2) Esto explica porqué un cortocircuito exterior a la máquina, hace que la misma no genere.

Generador serie

Características magnéticas y en vacío

La corriente de carga es igual a la de excitación y solo podrá funcionar teniendo conectada una carga (para que cierre el circuito).

$$I = I_s$$

Por ello no se pueden trazar las características magnéticas y en vacío.

Generador serie

Característica en carga o externa $U = f(I_s) = f(I)$

- tramo A-B: Al aumentar la carga, aumenta la excitación y por lo tanto, la tensión.
- tramo C-D: Grandes cargas. La reacción de inducido y las caídas de tensión crecen considerablemente, reduciendo la tensión de bornes.
- ${f \cdot}$ cortocircuito : carga máxima, la tensión es cero y la corriente máxima I_{cc} .

No sirve como generador.

Generador compuesto

Característica magnética y en vacío

Dos arrollamientos en los polos ppales, el derivación $R_{\rm d}\,$ y el serie $R_{\rm s}.$

Tres máquinas distintas, según predominancia de un arrollamiento respecto al otro:

- $\theta_{d} > \theta_{s}$ devanados en igual sentido: compuesta normal
- $\theta_{\rm d} < \theta_{\rm s}$ devanados en igual sentido: sobre compuesta
- $\theta_d > \theta_s$ devanados en sentido contrario: compuesta diferencial

Característica:

- No trabaja el arrollamiento serie en estas condiciones.
- Para los 3 casos, es igual a la de excitación derivación.

Generador compuesto

Característica en carga

$$U = f(I_{ex})$$

Compuesta normal y sobre compuesta: la influencia del arrollamiento serie hace que la reacción del inducido sea menor.

Generador compuesto

Características externas U = f(I)

Compuesta normal (curva 1): Máquina para carga de baterías, y generadores en general.

Sobre compuesta (curva 2): Mientras más carga posee, más tensión entrega.

Compuesta diferencial (curva 3): Máquinas para soldadura eléctrica en corriente continua.

Motor de C.C.

Parámetros

Ecuación de la velocidad

$$E = \frac{\phi.n.N.p}{60.a}$$

$$U = E + RI$$

$$I = \frac{U - E}{R}$$

$$n = \frac{60.a}{\phi.N.p}.(U - R.I)$$

- Para variar la velocidad, se puede actuar sobre la tensión U, flujo Φ , o caídas internas R.I
- Con mayor o menor excitación (flujo Φ) se obtiene menor o mayor velocidad.
- Si un motor se queda sin excitación, la velocidad tiende a infinito, la máquina se "embala".

Parámetros

Corriente de arranque

$$I = \frac{U - E}{R}$$
 (corriente absorbida, máquina en marcha)

$$I_{Arr} = \frac{U}{R}$$
 ; $E = 0$ (corriente absorbida grande, momento del arranque)

• Reducción por resistencias de arranque R_A :

$$I_{Arr} = \frac{U}{R + R_A}$$

Parámetros

Ecuación del Momento resistente y de rotación

En forma general:

$$M = F.r$$

Fuerza en los N conductores del inducido:

$$F = N.l.i.B$$

Considerando:

$$B = \frac{\phi}{S}$$

$$S = t_p . l$$

$$B = \frac{\phi}{S}$$
 $S = t_p l$ $t_p = \frac{\pi . D}{2.p}$ $D = 2.r$ $i = \frac{I_i}{2.a}$

$$D=2.r$$

$$i = \frac{I_i}{2.a}$$

$$M = \frac{p.N}{2.\pi.a}.\phi.I_i$$

$$[N-m] = [Wb][A]$$

Motor de excitación independiente

Arranque

- Toda la R_A está incluida (punto A).
- Una vez en marcha, se elimina (punto M) para tener pleno par (I_i) y no tener pérdidas inútiles $(R_A I_i^2)$.

Velocidad

Se regula:

- Variando la tensión U (motores pequeños).
- Variando la excitación Φ con resistencia de regulación R_r .
- Desde valores nominales en adelante.

Momento

- En el arranque conviene tener mucho par, o sea gran excitación, punto A de R_r .
- Este motor arranca con gran par a baja velocidad.

Motor de excitación independiente

Inversión de marcha

Por cambio de polaridad en los bornes.

Frenado

- 1. Por disipación de energía.
- 2. Por contracorriente. La detención es muy brusca.

Curvas características

$$n = f(M)$$
, $\phi = cte$;

la velocidad es independiente del par. Las caídas *RI* son pequeñas. Es un motor de velocidad muy constante.

$$I = f(M)$$
;

La *I* crece proporcionalmente a *M*, no es rectilínea por reacción de inducido.

Motor derivación

Arranque

- La R_A debe colocarse en la rama del inducido.
- No igual al motor de excitación independiente, Max porque de ser así reduciría el Φ y por consiguiente el par de arranque.

Velocidad y momento

- Idem excitación independiente.
- Velocidad varía con la tensión en menor grado que en las de excitación independiente, porque:
 cuando disminuye U,

$$n = f(U/\Phi)$$

• disminuva /

- disminuye I_d ,
- disminuye el flujo,
- aumenta la velocidad.

Motor derivación

Inversión de marcha

- Si se invierte la polaridad de los bornes, continúa girando en el mismo sentido.
- Se deben invertir entre si la excitación y el inducido, con la misma polaridad de bornes.

Max - Ncm R_A M

Frenado

- 1. Por disipación de energía.
- 2. Por contracorriente. La detención es muy brusca.

Curvas características

- n = f(M): n varía poco con el par, debido a la R_i pequeña.
- I = f(M): la corriente crece con el par $M = \phi I$

Motor serie

Arranque

- De necesitarse arranque con corriente reducida, la R_A va en serie con el motor.
- Considerar la reducción de par que trae aparejada.

Velocidad

- 1. Variando la tensión U.
- Variando la excitación Φ.
 - a) Con R_r en paralelo con la excitación: en tracción eléctrica. Se puede embalar.

b) Con R_r en paralelo con el inducido: ventaja de no embalarse. $I_{ex} = I_i + I_r$

Motor serie

Curvas características

- n = f(M)
 - aumenta el par M,
 - aumenta la corriente absorbida I
 - aumenta el flujo ϕ ,
 - disminuye la velocidad *n*, según una hipérbola.

$$n = f\left(\frac{1}{\phi}\right) = f\left(\frac{1}{M}\right)$$

•
$$I = f(M)$$

$$M = \phi I$$

La curva es una parábola.

Gran par a baja velocidad, ideal en el arranque.

Motor serie

Inversión de marcha

- Idem anterior.
- Al invertir la polaridad de los bornes gira en igual sentido. Motor universal.

Frenado

· Idem derivación.

Frenado como generador en igual sentido (vehículo)

Motor compuesto

Arranque, par y velocidad

Idem casos anteriores.

Idem casos anteriores.
Inversión de marcha y frenado

Curvas características

- Este motor no se embala porque al tener arrollamiento derivación las curvas siempre cortan el eje de ordenadas.
- No se usa el motor compuesto diferencial porque al disminuir el flujo le quita par.

