

**THE ADLER-SHIOTA-VAN MOERBEKE FORMULA
FOR THE BKP HIERARCHY**

JOHAN VAN DE LEUR*

Abstract

We study the BKP hierarchy and prove the existence of an Adler–Shiota–van Moerbeke formula. This formula relates the action of the $BW_{1+\infty}$ –algebra on tau–functions to the action of the “additional symmetries” on wave functions.

1. Introduction and main result

1.1. Adler, Shiota and van Moerbeke [ASV1-2] obtained for the KP and Toda lattice hierarchies a formula which translates the action of the vertex operator on tau–functions to an action of a vertex operator of pseudo-differential operators on wave functions. This relates the additional symmetries of the KP and Toda lattice hierarchy to the $W_{1+\infty}^-$, respectively $W_{1+\infty} \times W_{1+\infty}$ –algebra symmetries. In this paper we investigate the existence of such an Adler–Shiota–van Moerbeke formula for the BKP hierarchy.

1.2. The BKP hierarchy is the set of deformation equations

$$\frac{\partial L}{\partial t_k} = [(L^n)_+, L], \quad k = 3, 5, \dots$$

for the first order pseudo-differential operator

$$L \equiv L(x, t) = \partial + u_1(x, t)\partial^{-1} + u_2(x, t)\partial^{-2} + \dots,$$

here $\partial = \frac{\partial}{\partial x}$ and $t = (t_3, t_5, \dots)$. It is well-known that L dresses as $L = P\partial P^{-1}$ with

$$\begin{aligned} P \equiv P(x, t) &= 1 + a_1(x, t)\partial^{-1} + a_2(x, t)\partial^{-2} + \dots \\ &= \frac{\tau(x - 2\partial^{-1}, t - 2[\partial^{-1}])}{\tau(x, t)}, \end{aligned}$$

where τ is the famous τ –function, introduced by the Kyoto group [DJKM1-3] and $[z] = (\frac{z^3}{3}, \frac{z^5}{5}, \dots)$.

The wave or Baker–Akhiezer function

$$w \equiv w(x, t, z) = W(x, t, \partial)e^{xz},$$

where

$$W \equiv W(x, t, z) = P(x, t)e^{\xi(x, t, z)} \quad \text{with} \quad \xi(x, t, z) = \sum_{k=1}^{\infty} t_{2k+1}\partial^{2k+1}$$

* The research of Johan van de Leur is financially supported by the “Stichting Fundamenteel Onderzoek der Materie (F.O.M.)”. E-mail: vdleur@math.utwente.nl

is an eigenfunction of L , viz.,

$$Lw = zw \quad \text{and} \quad \frac{\partial w}{\partial t_k} = (L^k)_+ w.$$

Now introduce, following Orlov and Schulman [OS], the pseudo-differential operator $M \equiv M(x, t) = WxW^{-1}$ which action on w amounts to

$$Mw = \frac{\partial w}{\partial z},$$

then $[L, M] = 1$ and

$$\frac{\partial M}{\partial t_k} = [(L^n)_+, M], \quad k = 3, 5, \dots$$

Let

$$Y(y, w) = \sum_{\ell=0}^{\infty} \frac{(y-w)^\ell}{\ell!} \sum_{k \in \mathbf{Z}} w^{-k-\ell-1} (M^\ell L^{k+\ell} - (-)^{k+\ell} L^{k+\ell-1} M^\ell L), \quad (1.1)$$

then one has the following main result

Theorem 1.1.

$$2(w-y)Y(y, w)_- w(x, t, z) = (w+y)(e^{-\eta(x, t, z)} - 1) \left(\frac{X(y, w)\tau(x, t)}{\tau(x, t)} \right) w(x, t, z), \quad (1.2)$$

where $X(y, w)$ is the following vertex operator

$$X(y, w) = w^{-1} \exp(x(y-w)) + \sum_{j>2, \text{odd}} t_j (y^j - w^j) \exp(-2 \frac{\partial}{\partial x} (y^{-1} - w^{-1}) - 2 \sum_{j>2, \text{odd}} \frac{\partial}{\partial t_j} \frac{y^{-j} - w^{-j}}{j}). \quad (1.3)$$

Formula (1.2) is the Adler–Shiota–van Moerbeke formula for the BKP hierarchy, we will give a proof of this formula in section 6. This formula relates the “additional symmetries” of the BKP hierarchy, generated by $Y(y, w)$, to the $BW_{1+\infty}$ –algebra, generated by $X(y, w)$. This $BW_{1+\infty}$ –algebra is a subalgebra of $W_{1+\infty}$, which is defined as the -1 –eigenspace of an anti–involution on $W_{1+\infty}$.

2. The Lie algebras o_∞ , B_∞ and $BW_{1+\infty}$

2.1. Let $\overline{gl_\infty}$ be the Lie algebra of complex infinite dimensional matrices such that all nonzero entries are within a finite distance from the main diagonal, i.e.,

$$\overline{gl_\infty} = \{(a_{ij})_{i,j \in \mathbf{Z}} \mid g_{ij} = 0 \text{ if } |i - j| >> 0\}.$$

The elements E_{ij} , the matrix with the (i, j) -th entry 1 and 0 elsewhere, for $i, j \in \mathbf{Z}$ form a basis of a subalgebra $gl_\infty \subset \overline{gl_\infty}$. The Lie algebra gl_∞ has a universal central extension $A_\infty = \overline{gl_\infty} \oplus \mathbf{C}c_A$ with the Lie bracket defined by

$$[a + \alpha c_A, b + \beta c_A] = ab - ba + \mu(a, b)c_A, \quad (2.1)$$

for $a, b \in \overline{gl_\infty}$ and $\alpha, \beta \in \mathbf{C}$; here μ is the following 2-cocycle:

$$\mu(E_{ij}, E_{kl}) = \delta_{il}\delta_{jk}(\theta(i) - \theta(j)), \quad (2.2)$$

where the function $\theta : \mathbf{R} \rightarrow \mathbf{R}$ is defined by

$$\theta(i) = \begin{cases} 0 & \text{if } i > 0, \\ 1 & \text{if } i \leq 0. \end{cases} \quad (2.3)$$

The Lie algebra gl_∞ and $\overline{gl_\infty}$ both have a natural action on the space of column vectors, viz., let $\mathbf{C}^\infty = \bigoplus_{k \in \mathbf{Z}} e_k$, then $E_{ij}e_k = \delta_{jk}e_i$. By identifying e_k with t^{-k} , we can embed the algebra \mathbf{D} of differential operators on the circle, with basis $-t^{j+k}(\frac{\partial}{\partial t})^k$ ($j \in \mathbf{Z}, k \in \mathbf{Z}_+$), in $\overline{gl_\infty}$:

$$\begin{aligned} \rho : \mathbf{D} &\rightarrow \overline{gl_\infty}, \\ \rho(-t^{j+k}(\frac{\partial}{\partial t})^k) &= \sum_{m \in \mathbf{Z}} -m(m-1)\cdots(m-k+1)E_{-m-j,-m}. \end{aligned} \quad (2.4)$$

It is straightforward to check that the 2-cocycle μ on $\overline{gl_\infty}$ induces the following 2-cocycle on \mathbf{D} :

$$\mu(-t^{i+j}(\frac{\partial}{\partial t})^j, -t^{k+\ell}(\frac{\partial}{\partial t})^\ell) = \delta_{i,-k}(-)^j j! \ell! \binom{i+j}{j+\ell+1}. \quad (2.5)$$

This cocycle was discovered by Kac and Peterson in [KP] (see also [R], [KR]). In this way we have defined a central extension of \mathbf{D} , which we denote by $W_{1+\infty} = \mathbf{D} \oplus \mathbf{C}c_A$, the Lie bracket on $W_{1+\infty}$ is given by

$$\begin{aligned} &[-t^{i+j}(\frac{\partial}{\partial t})^j + \alpha c_A, -t^{k+\ell}(\frac{\partial}{\partial t})^\ell + \beta c_A] = \\ &\sum_{m=0}^{\max(j,\ell)} m! \left(\binom{i+j}{m} \binom{\ell}{m} - \binom{k+\ell}{m} \binom{j}{m} \right) (-t^{i+j+k+\ell-m}(\frac{\partial}{\partial t})^{j+\ell-m}) + \delta_{i,-k}(-)^j j! \ell! \binom{i+j}{j+\ell+1} c_A. \end{aligned} \quad (2.6)$$

Let $D = t\frac{\partial}{\partial t}$, then we can rewrite the elements $-t^{i+j}(\frac{\partial}{\partial t})^j$, viz. ,

$$-t^{i+j}(\frac{\partial}{\partial t})^j = -t^i D(D-1)(D-2)\cdots(D-j+1). \quad (2.7)$$

Then

$$\rho(t^k f(D)) = \sum_{j \in \mathbf{Z}} f(-j) E_{j-k,j}, \quad (2.8)$$

and the 2-cocycle is as follows [KR]:

$$\mu(t^k f(D), t^\ell g(D)) = \begin{cases} \sum_{-k \leq j \leq -1} f(j)g(j+k) & \text{if } k = -\ell \geq 0, \\ 0 & \text{otherwise,} \end{cases} \quad (2.9)$$

hence the bracket is

$$[t^k f(D), t^\ell g(D)] = t^{k+\ell} (f(D+\ell)g(D) - g(D+k)f(D)) + \mu(t^k f(D), t^\ell g(D)). \quad (2.10)$$

2.2. Define on $\overline{gl_\infty}$ the following linear anti-involution:

$$\iota(E_{jk}) = (-)^{j+k} E_{-k,-j}. \quad (2.11)$$

Using this anti-involution we define the Lie algebra $\overline{o_\infty}$ as a subalgebra of $\overline{gl_\infty}$:

$$\overline{o_\infty} = \{a \in \overline{gl_\infty} \mid \iota(a) = -a\}. \quad (2.12)$$

The elements $F_{jk} = E_{-j,k} - (-)^{j+k} E_{-k,j} = -(-)^{j+k} F_{kj}$ with $j < k$ form a basis of $o_\infty = \overline{o_\infty} \cap gl_\infty$. The 2-cocycle μ on gl_∞ induces a 2-cocycle on $\overline{o_\infty}$, and hence we can define a central extension $B_\infty = \overline{o_\infty} \oplus \mathbf{C}c_B$ of $\overline{o_\infty}$, with Lie bracket

$$[a + \alpha c_B, b + \beta c_B] = ab - ba + \frac{1}{2}\mu(a, b)c_B, \quad (2.13)$$

for $a, b \in \overline{o_\infty}$ and $\alpha, \beta \in \mathbf{C}$. It is then straightforward to check that the anti-involution ι induces

$$\iota(t) = -t, \quad \iota(D) = -D. \quad (2.14)$$

Hence, it induces the following anti-involution on \mathbf{D} :

$$\iota(t^k f(D)) = f(-D)(-t)^k. \quad (2.15)$$

Define $\mathbf{D}^B = \mathbf{D} \cap \overline{o_\infty} = \{w \in \mathbf{D} \mid \iota(w) = -w\}$, it is spanned by the elements

$$W_k(f) := t^k f(D) - f(-D)(-t)^k = t^k (f(D) - (-)^k f(-D - k)). \quad (2.16)$$

It is straightforward to check that

$$\rho(W_k(f)) = \sum_{j \in \mathbf{Z}} f(-j) F_{k-j,j}.$$

The restriction of the 2-cocycle μ on \mathbf{D} , given by (2.5) or (2.9), induces a 2-cocycle on \mathbf{D}^B , which we shall not calculate explicitly here. It defines a central extension $BW_{1+\infty} = \mathbf{D}^B \oplus \mathbf{C}c_B$ of \mathbf{D}^B , with Lie bracket

$$[a + \alpha c_B, b + \beta c_B] = ab - ba + \frac{1}{2}\mu(a, b)c_B,$$

for $a, b \in \mathbf{D}^B$ and $\alpha, \beta \in \mathbf{C}$.

3. The spin module

3.1. We now want to consider highest weight representations of o_∞ , B_∞ and $BW_{1+\infty}$. For this purpose we introduce the Clifford algebra BCl as the associative algebra on the generators ϕ_j , $j \in \mathbf{Z}$, called *neutral free fermions*, with defining relations

$$\phi_i \phi_j + \phi_j \phi_i = (-)^i \delta_{i,-j}. \quad (3.1)$$

We define the spin module V over BCl as the irreducible module with highest weight vector the *vacuum vector* $|0\rangle$ satisfying

$$\phi_j |0\rangle = 0 \quad \text{for } j > 0. \quad (3.2)$$

The elements $\phi_{j_1} \phi_{j_2} \cdots \phi_{j_p} |0\rangle$ with $j_1 < j_2 < \cdots < j_p \leq 0$ form a basis of V . Then

$$\begin{aligned} \pi(F_{jk}) &= \frac{(-)^j}{2} (\phi_j \phi_k - \phi_k \phi_j), \\ \hat{\pi}(F_{jk}) &= (-)^j : \phi_j \phi_k :, \\ \hat{\pi}(c_B) &= I, \end{aligned} \quad (3.3)$$

where the normal ordered product $: \cdot :$ is defined as follows

$$: \phi_j \phi_k : = \begin{cases} \phi_j \phi_k & \text{if } k > j, \\ \frac{1}{2} (\phi_j \phi_k - \phi_k \phi_j) & \text{if } j = k, \\ -\phi_k \phi_j & \text{if } k < j, \end{cases} \quad (3.4)$$

define representations of o_∞ , respectively B_∞ .

When restricted to o_∞ and B_∞ , the spin module V breaks into the direct sum of two irreducible modules. To describe this decomposition we define a \mathbf{Z}_2 -graduation on V by introducing a chirality operator χ satisfying $\chi|0\rangle = |0\rangle$, $\chi\phi_j + \phi_j\chi = 0$ for all $j \in \mathbf{Z}$, then

$$V = \bigoplus_{\alpha \in \mathbf{Z}_2} V_\alpha \quad \text{where } V_\alpha = \{v \in V | \chi v = (-)^\alpha v\}.$$

Each module V_α is an irreducible highest weight module with highest weight vector $|0\rangle$, $|1\rangle = \sqrt{2}\phi_0|0\rangle$ for V_0 , V_1 , respectively, in the sense that $\hat{\pi}(c_B) = 1$ and

$$\begin{aligned} \pi(F_{-i,j})|\alpha\rangle &= \hat{\pi}(F_{-i,j})|\alpha\rangle = 0 \quad \text{for } i < j, \\ \pi(F_{-i,i})|\alpha\rangle &= -\frac{(-)^i}{2}|\alpha\rangle \quad \text{for } i > 0, \\ \hat{\pi}(F_{-i,i})|\alpha\rangle &= 0. \end{aligned} \quad (3.5)$$

Clearly V_α is also a highest weight module for $BW_{1+\infty}$, viz

$$\hat{\pi} \cdot \rho(W_k(f)) = \sum_{j \in \mathbf{Z}} (-)^{k+j} f(-j) : \phi_{k-j} \phi_j :, \quad (3.6)$$

and

$$\hat{\pi} \cdot \rho(W_k(f))|\alpha\rangle = 0 \quad \text{for } k \geq 0. \quad (3.7)$$

From now on we will omit o_∞ , $\hat{\pi}$ and $\hat{\pi} \cdot \rho$, whenever no confusion can arise.

4. Vertex operators

4.1. Using the boson fermion correspondence (see e.g. [DJKM 3], [K], [tKL] and [Y]), we can express the fermions in terms of differential operators, i.e. there exists an isomorphism $\sigma : V \rightarrow \mathbf{C}[\theta, t_1, t_3, \dots]$, where $\theta^2 = 0$, $t_i t_j = t_j t_i$, $\theta t_j = t_j \theta$ and $V_\alpha = \theta^\alpha \mathbf{C}[t_1, t_3, \dots]$. such that $\sigma(|0\rangle) = 1$. Define the following two generating series (fermionic fields):

$$\phi^\pm(z) = \sum_{j \in \mathbf{Z}} \phi_j^\pm z^{-j} = \sum_{j \in \mathbf{Z}} (\pm)^j \phi_j z^{-j}, \quad (4.1)$$

then one has the following vertex operator for these fields:

$$\sigma \phi^\pm(z) \sigma^{-1} = \frac{\theta + \frac{\partial}{\partial \theta}}{\sqrt{2}} \exp(\pm \sum_{j > 0, \text{ odd}} t_j z^j) \exp(\mp 2 \sum_{j > 0, \text{ odd}} \frac{\partial}{\partial t_j} \frac{z^{-j}}{j}). \quad (4.2)$$

4.2. Define

$$\begin{aligned} W(y, w) &= \sum_{\ell=0}^{\infty} \frac{(y-w)^\ell}{\ell!} W^{(\ell+1)}(w) \\ &= \sum_{\ell=0}^{\infty} \frac{(y-w)^\ell}{\ell!} \sum_{k \in \mathbf{Z}} W_k^{(\ell+1)} w^{-k-\ell-1} \\ &:= \frac{:\phi^+(y)\phi^-(w):}{w}, \end{aligned} \quad (4.3)$$

then

$$W^{(\ell+1)}(z) =: \frac{\partial^\ell \phi^+(z)}{\partial z^\ell} \frac{\phi^-(z)}{z} : \quad (4.4)$$

and

$$\begin{aligned} W_k^{(\ell+1)} &= W_k(-\ell! \binom{D}{\ell}) \\ &= -t^k D(D-1) \cdots (D-\ell+1) + (-D)(-D-1) \cdots (-D-\ell+1) (-t)^k \\ &= -t^{k+\ell} \left(\frac{\partial}{\partial t}\right)^\ell + (-)^{k+\ell} t \left(\frac{\partial}{\partial t}\right)^\ell t^{k+\ell-1}. \end{aligned} \quad (4.5)$$

Using (4.2), we find that for $|w| < |y|$

$$W(y, w) = \frac{1}{2} \frac{y+w}{y-w} (X(y, w) - w^{-1}), \quad (4.6)$$

where $X(y, w)$ is the vertex operator defined in (1.3). Hence,

$$W^{(\ell)}(z) = \frac{w}{\ell} \frac{\partial^\ell X(y, z)}{\partial z^\ell} \Big|_{y=z} + \frac{1}{2} \frac{\partial^{\ell-1} X(y, z) - z^{-1}}{\partial z^{\ell-1}} \Big|_{y=z}. \quad (4.7)$$

Define

$$\alpha_j(z) = \begin{cases} \frac{1}{2}x & \text{if } j = -1, \\ -\frac{j}{2}t_{-j} & \text{if } j < 2 \text{ odd}, \\ \frac{\partial}{\partial x} & \text{if } j = 1, \\ \frac{\partial}{\partial t_j} & \text{if } j > 2 \text{ odd}, \end{cases} \quad (4.8)$$

and their generating series by

$$\alpha(z) = \sum_{j \in \mathbf{Z}} \alpha_j z^{-j-1}, \quad (4.9)$$

then $[\alpha_j, \alpha_k] = \frac{j}{2} \delta_{j,-k}$. Since $X(z, z) = z^{-1}$, one finds the following expression for $W^{(\ell)}(z)$:

$$W^{(\ell)}(z) = \frac{2}{\ell} : (2\alpha(z) + \frac{\partial}{\partial z})^{\ell-1} \alpha(z) : + \frac{1}{z} : (2\alpha(z) + \frac{\partial}{\partial z})^{\ell-2} \alpha(z) : . \quad (4.10)$$

For $\ell = 1, 2, 3$ one finds respectively

$$\begin{aligned} W^{(1)}(z) &= 2\alpha(z), \\ W^{(2)}(z) &= 2 : \alpha(z)^2 : + \frac{\partial \alpha(z)}{\partial z} + \frac{\alpha(z)}{z}, \\ W^{(3)}(z) &= \frac{8}{3} : \alpha(z)^3 : + \frac{8}{3} : \alpha(z) \frac{\partial \alpha(z)}{\partial z} : + \frac{2}{z} : \alpha(z)^2 : + \frac{\partial \alpha(z)}{\partial z} + \frac{2}{3} \frac{\partial^2 \alpha(z)}{\partial z^2}. \end{aligned}$$

5. The BKP hierarchy

5.1. The BKP hierarchy is the following equation for $\tau = \tau(t_1, t_3, \dots)$ (see e.g [DJKM3], [K], [L2], [Y]):

$$\text{Res}_{z=0} \frac{dz}{z} \phi^+(z) \tau \otimes \phi^-(z) \tau = \frac{1}{2} \theta \tau \otimes \theta \tau. \quad (5.1)$$

Here $\text{Res}_{z=0} dz \sum_j f_j z^j = f_{-1}$. We assume that τ is any solution of (5.1), so we no longer assume that τ is a polynomial in t_1, t_3, \dots

We proceed now to rewrite (5.1) in terms of formal pseudo-differential operators. We start by multiplying (5.1) from the left with $\frac{\partial}{\partial \theta} \otimes \frac{\partial}{\partial \theta}$ and divide both the first and the last component of the tensor product by $\tau(t)$. Let $x = t_1$ and $\partial = \frac{\partial}{\partial x}$, then (5.1) is equivalent to the following bilinear identity:

$$\text{Res}_{z=0} \frac{dz}{z} w(x, t, z) w(x', t', -z) = 1, \quad (5.2)$$

where

$$\begin{aligned} w(x, t, \pm z) &= W(x, t, \pm z) e^{xz} = W(x, t, \partial) e^{xz} \quad \text{with} \\ W(x, t, z) &= P(x, t, z) e^{\xi(t, z)}, \quad \xi(t, z) = \sum_{i \geq 3} t_i z^i \quad \text{and} \end{aligned} \quad (5.3)$$

$$\begin{aligned} P(x, t, z) &= \frac{e^{-\eta(x, t, z)} \tau(x, t)}{\tau(x, t)} \\ &= \frac{\tau(x - \frac{2}{z}, t_3 - \frac{2}{3z^3}, t_5 - \frac{2}{5z^5}, \dots)}{\tau(x, t)} =: \frac{\tilde{\tau}(x, t, z)}{\tau(x, t)}, \end{aligned} \quad (5.4)$$

where $\eta(x, t, z) = 2(\frac{\partial}{\partial x} z^{-1} + \sum_{j > 2} \frac{\partial}{\partial t_j} \frac{z^{-j}}{j})$, for convenience we also define $\xi(x, t, z) = \xi(t, z) e^{xz}$.

5.2. As usual one denotes the differential part of a pseudo-differential operator $P = \sum_j P_j \partial^{-j}$ by $P_+ = \sum_{j \geq 0} P_j \partial^{-j}$ and writes $P_- = P - P_+$. The anti-involution $*$ is defined as follows $(\sum_j P_j \partial^{-j})^* = \sum_j (-\partial)^{-j} P_j$. One has the following fundamental lemma.

Lemma 5.1. *Let $P(x, t, \partial)$ and $Q(x, t, \partial)$ be two formal pseudo-differential operators, then*

$$(P(x, t, \partial) Q(x, t', \partial))_- = \pm \sum_{i > 0} R_i(x, t, t') \partial^{-i}$$

if and only if

$$\text{Res}_{z=0} dz P(x, t, \partial) e^{\pm xz} Q(x', t', \partial) e^{\mp x' z} = \sum_{i > 0} R_i(x, t, t') \frac{(x - x')^{i-1}}{(i-1)!}.$$

The proof of this lemma is analogous to the proof of Lemma 4.1 of [L1] (see also [KL]).

5.3. Now differentiate (5.2) to t_k , where we assume that $x = t_1$, then we obtain

$$\text{Res}_{z=0} \frac{dz}{z} \left(\frac{\partial P(x, t, z)}{\partial t_k} + P(x, t, z) z^k \right) e^{\xi(x, t, z)} P(x', t', -z) e^{-\xi(x', t', z)} = 0. \quad (5.5)$$

Now using lemma 5.1 we deduce that

$$((\frac{\partial P}{\partial t_k} + P\partial^k)\partial^{-1}P^*)_ - = 0.$$

From the case $k = 1$ we then deduce that $P^* = \partial P^{-1}\partial^{-1}$, if $k \neq 1$, one thus obtains

$$\frac{\partial P}{\partial x_k} = -(P\partial^k P^{-1}\partial^{-1})_- \partial P. \quad (5.6)$$

Since k is odd, $\partial^{-1}(P\partial^k P^{-1})^*\partial = -P\partial^k P^{-1}$ and hence $(P\partial^k P^{-1}\partial^{-1})_- \partial = (P\partial^k P^{-1})_-$. So (5.6) turns into Sato's equation:

$$\frac{\partial P}{\partial t_k} = -(P\partial^k P^{-1})_- P. \quad (5.7)$$

5.4. Define the operators

$$\begin{aligned} L &= W\partial W^{-1} = P\partial P^{-1}, \quad \Gamma = x + \sum_{j>2} jt_j \partial^{j-1}, \\ M &= WxW^{-1} = P\Gamma P^{-1} \quad \text{and} \quad N = ML. \end{aligned} \quad (5.8)$$

Then $[L, M] = 1$ and $[L, N] = L$. Let $B_k = (L^k)_+$, using (5.7) one deduces the following Lax equations:

$$\frac{\partial L}{\partial t_k} = [B_k, L], \quad \frac{\partial M}{\partial t_k} = [B_k, M] \quad \text{and} \quad \frac{\partial N}{\partial t_k} = [B_k, N]. \quad (5.9)$$

The first equation of (5.9) is equivalent to the following Zakharov Shabat equation:

$$\frac{\partial B_j}{\partial t_k} - \frac{\partial B_k}{\partial t_j} = [B_k, B_j], \quad (5.10)$$

which are the compatibility conditions of the following linear problem for $w = w(x, t, z)$:

$$Lw = zw, \quad Mw = \frac{\partial w}{\partial z} \quad \text{and} \quad \frac{\partial w}{\partial t_k} = B_k w. \quad (5.11)$$

5.5. The formal adjoint of the wave function w is (see [DJKM]):

$$w^* = w^*(x, z) = P^{*-1}e^{-\xi(x, t, z)} = \partial P\partial^{-1}e^{-\xi(x, t, z)}. \quad (5.12)$$

Now $L^* = -\partial L\partial^{-1} = -\partial P\partial P^{-1}\partial^{-1}$ and $M^* = \partial P\partial^{-1}\Gamma\partial P^{-1}\partial^{-1}$, so $[L^*, M^*] = -1$ and

$$L^*w^* = zw^*, \quad M^*w^* = -\frac{\partial w^*}{\partial z} \quad \text{and} \quad \frac{\partial w^*}{\partial x_k} = -(L^{*k})_+ w^* = -B_k^* w^*. \quad (5.13)$$

Finally, notice that by differentiating the bilinear identity (5.2) to x'_1 we obtain

$$\text{Res}_{z=0} dz w(x, t, z) w^*(x', t', z) = 0. \quad (5.14)$$

6. Proof of Theorem 1

6.1. In this section we prove Theorem 1.1. We start from the bilinear identity (5.14) and multiply it by $\tau(x, t)$, which gives

$$\text{Res}_{z=0} dz e^{-\eta(x, t, z)} \tau(x, t) e^{\xi(x, t, z)} \frac{\partial}{\partial x'} \left(\frac{e^{\eta(x', t', z)} \tau(x', t')}{\tau(x', t')} e^{-\xi(x', t', z)} \right) = 0. \quad (6.1)$$

Now let $(1 - w/y)^{-1}(1 + w/y)X(y, w)$ act on this identity, then one obtains

$$\begin{aligned} \text{Res}_{z=0} \frac{dz}{wz} \frac{1+w/y}{1-w/y} \frac{1-z/y}{1+z/y} \frac{1+z/w}{1-z/w} e^{-\eta(x, t, z) - \eta(x, t, y) + \eta(x, t, w)} \tau(x, t) e^{\xi(x, t, z) + \xi(x, t, y) - \xi(x, t, w)} \times \\ \frac{\partial}{\partial x'} \left(\frac{e^{\eta(x', t', z)} \tau(x', t')}{\tau(x', t')} e^{-\xi(x', t', z)} \right) = 0. \end{aligned} \quad (6.2)$$

Next use the fact that $(1 - u)^{-1}(1 + u) = 2\delta(u, 1) - (1 - u^{-1})^{-1}(1 + u^{-1})$, where $\delta(u, v) = \sum_{j \in \mathbf{Z}} u^{-j} v^{j-1}$, then (6.2) is equivalent to

$$\begin{aligned} - \text{Res}_{z=0} \frac{dz}{wz} \frac{1+w/y}{1-w/y} \frac{1-y/z}{1+y/z} \frac{1+w/z}{1-w/z} e^{-\eta(x, t, z) - \eta(x, t, y) + \eta(x, t, w)} \tau(x, t) e^{\xi(x, t, z) + \xi(x, t, y) - \xi(x, t, w)} \times \\ \frac{\partial}{\partial x'} \left(\frac{e^{\eta(x', t', z)} \tau(x', t')}{\tau(x', t')} e^{-\xi(x', t', z)} \right) = \frac{2}{w} (e^{-\eta(x, t, y)} \tau(x, t) e^{\xi(x, t, y)} \frac{\partial}{\partial x'} \left(\frac{e^{\eta(x', t', w)} \tau(x', t') e^{-\xi(x', t', w)}}{\tau(x', t')} \right) \\ - e^{\eta(x, t, w)} \tau(x, t) e^{-\xi(x, t, w)} \frac{\partial}{\partial x'} \left(\frac{e^{-\eta(x', t', y)} \tau(x', t')}{\tau(x', t')} e^{\xi(x', t', y)} \right)). \end{aligned} \quad (6.3)$$

Divide this formula by $\tau(x, t)$, then it turns into

$$\begin{aligned} - \text{Res}_{z=0} \frac{dz}{z} e^{-\eta(x, t, z)} \left(\frac{1+w/y}{1-w/y} \frac{X(y, w) \tau(x, t)}{\tau(x, t)} \right) \frac{e^{-\eta(x, t, z)} \tau(x, t)}{\tau(x, t)} e^{\xi(x, t, z)} \frac{\partial}{\partial x'} \left(\frac{e^{\eta(x', t', z)} \tau(x', t') e^{-\xi(x', t', z)}}{\tau(x', t')} \right) \\ = 2 \text{Res}_{z=0} \frac{dz}{z} \delta(w, z) \left(\frac{e^{-\eta(x, t, y)} \tau(x, t)}{\tau(x, t)} e^{\xi(x, t, y)} \frac{\partial}{\partial x'} \left(\frac{e^{\eta(x', t', z)} \tau(x', t')}{\tau(x', t')} e^{-\xi(x', t', z)} \right) \right. \\ \left. - \frac{e^{\eta(x, t, z)} \tau(x, t)}{\tau(x, t)} e^{-\xi(x, t, z)} \frac{\partial}{\partial x'} \left(\frac{e^{-\eta(x', t', y)} \tau(x', t')}{\tau(x', t')} e^{\xi(x', t', y)} \right) \right) \\ = 2 \text{Res}_{z=0} \frac{dz}{w^2} \sum_{\ell=0}^{\infty} \frac{(y-w)^\ell}{\ell!} \sum_{k \in \mathbf{Z}} \left(\left(\frac{z}{w} \right)^{k+\ell-1} \left(\frac{\partial}{\partial z} \right)^\ell (W(x, t, z) e^{xz}) \frac{\partial}{\partial x'} (W(x', t', -z) e^{-x'z}) \right. \\ \left. - W(x, t, -z) e^{-xz} \left(\frac{z}{w} \right)^{k+\ell-1} \left(\frac{\partial}{\partial z} \right)^\ell \frac{\partial}{\partial x'} (W(x', t', z) e^{x'z}) \right) \\ = 2 \text{Res}_{z=0} dz \sum_{\ell=0}^{\infty} \frac{(y-w)^\ell}{\ell!} \sum_{k \in \mathbf{Z}} w^{-k-\ell-1} (W(x, t, z) x^\ell \partial^{k+\ell-1} e^{xz}) \frac{\partial}{\partial x'} (W(x', t', -z) e^{-x'z}) \\ - W(x, t, -z) e^{-xz} \frac{\partial}{\partial x'} (W(x', t', z) x^\ell \partial^{k+\ell-1} e^{x'z})). \end{aligned} \quad (6.4)$$

Now define

$$\sum_{j=0}^{\infty} c_j(x, t, y, w) z^{-j} = e^{-\eta(x, t, z)} \left(\frac{1+w/y}{1-w/y} \frac{X(y, w) \tau(x, t)}{\tau(x, t)} \right), \quad (6.5)$$

then the first line of (6.4) is equal to

$$- \text{Res}_{z=0} dz \sum_{j=0}^{\infty} c_j(x, t, y, w) L^{-j-1} (W(x, t, z) e^{xz}) \frac{\partial}{\partial x'} (W(x', t', -z) e^{-x'z}).$$

Now using Lemma 5.1 with $t = t'$, one deduces that

$$\begin{aligned} \frac{1}{2} \sum_{j=1}^{\infty} c_j(x, t, y, w) L^{-j} = \\ - \sum_{\ell=0}^{\infty} \frac{(y-w)^\ell}{\ell!} \sum_{k \in \mathbf{Z}} w^{-k-\ell-1} (W(x, t, z) x^\ell \partial^{k+\ell} W(x, t, z)^{-1} - (-)^{k+\ell} W(x, t, z) \partial^{k+\ell-1} x^\ell \partial W(x, t, z)^{-1})_- \end{aligned} \quad (6.6)$$

So finally one has

$$\begin{aligned} \frac{1}{2} (e^{-\eta(x, t, z)} - 1) \left(\frac{1+w/y}{1-w/y} \frac{X(y, w) \tau(x, t)}{\tau(x, t)} \right) w(x, t, z) = \\ - \sum_{\ell=0}^{\infty} \frac{(y-w)^\ell}{\ell!} \sum_{k \in \mathbf{Z}} w^{-k-\ell-1} (M^\ell L^{k+\ell} - (-)^{k+\ell} L^{k+\ell-1} M^\ell L)_- w(x, t, z), \end{aligned}$$

which is equal to the Adler–Shiota–van Moerbeke formula (1.2) for the BKP case:

$$(w+y)(e^{-\eta(x, t, z)} - 1) \left(\frac{X(y, w) \tau(x, t)}{\tau(x, t)} \right) w(x, t, z) = 2(w-y)Y(y, w)_- w(x, t, z).$$

6.2. Since the left-hand-side of (1.2) is also equal to

$$(w+y)(e^{-\eta(x, t, z)} - 1) \left(\frac{(X(y, w) - 1) \tau(x, t)}{\tau(x, t)} \right) w(x, t, z),$$

we have the following corollary of Theorem 1.1:

Corollary 6.1. *For $k \in \mathbf{Z}$ and f some polynomial one has*

$$\frac{\sigma \cdot \hat{\pi} \cdot \rho(W_k(f)) \tau(x, t)}{\tau(x, t)} = \frac{(f(N)L^k - (-L)^k f(-N))_- w(x, t, z)}{w(x, t, z)}. \quad (6.7)$$

References

- [ASV1] M. Adler, T. Shiota and P. van Moerbeke, From the w_∞ -algebra to its central extension: a τ -function approach, to appear in Physics Letters A.
- [ASV2] M. Adler, T. Shiota and P. van Moerbeke, A Lax representation of the vertex operator and the central extension, to appear in Comm. Math. Phys.
- [DJKM1] E. Date, M. Jimbo, M. Kashiwara and T. Miwa, Transformation groups for soliton equations. Euclidean Lie algebras and reduction of the KP hierarchy, Publ. Res. Inst. Math. Sci. **18** (1982), 1077–1110.
- [DJKM2] E. Date, M. Jimbo, M. Kashiwara and T. Miwa, Transformation groups for soliton equations, in: Nonlinear integrable systems—classical theory and quantum theory eds M. Jimbo and T. Miwa, World Scientific, 1983), 39–120.
- [DJKM3] E. Date, M. Jimbo, M. Kashiwara and T. Miwa, Transformation groups for soliton equations IV. A new hierarchy of soliton equations of KP type, Physica 4D (1982), 343–365.
- [K] V.G. Kac, Infinite dimensional Lie algebras, Progress in Math., vol. 44, Birkhäuser, Boston, 1983; 2nd ed., Cambridge Univ. Press, 1985; 3d ed., Cambridge Univ. Press, 1990.
- [KL] V. Kac and J. van de Leur, The n -Component KP hierarchy and Representation Theory., in Important Developments in Soliton Theory, eds. A.S. Fokas and V.E. Zakharov. Springer Series in Nonlinear Dynamics, (1993), 302–343.
- [KP] V.G. Kac and D.H. Peterson, Spin and wedge representations of infinite dimensional Lie algebras and groups, Proc. Nat. Acad. Sci U.S.A. (1981), 3308–3312.

[KR] V. Kac and A. Radul, Quasifinite highest weight modules over the Lie algebra of differential operators on the circle , Comm. Math. Phys. **157** (1993), 429-457.

[tKL] F. ten Kroode and J. van de Leur, Level one representations of the twisted affine algebras $A_n^{(2)}$ and $D_n^{(2)}$, Acta Appl. Math. **27** (1992), 153 – 224.

[L1] J. van de Leur, The $W_{1+\infty}(gl_s)$ -symmetries of the s -component KP hierarchy. hep-th 9411069.

[L2] J. van de Leur, The n -th reduced BKP hierarchy, the string equation and $BW_{1+\infty}$ -constraints. hep-th 9411067.

[OS] A.Yu. Orlov and E.I. Schulman, Additional symmetries for integrable and conformal algebra representations, Lett. Math. Phys. 12 (1986), 171-.

[R] A.O. Radul, Lie algebras of differential operators, their central extensions, and W-algebras , Funct. Anal. and its Appl. **25** (1991), 33-49.

[Y] Y.-C. You, Polynomial solutions of the BKP hierarchy and projective representations of symmetric groups, in: Infinite dimensional Lie algebras and groups, ed. V.G. Kac, Adv, Ser. in Math. phys. 7, world Sci., 1989, 449–466.

JOHAN VAN DE LEUR
 FACULTY OF APPLIED MATHEMATICS
 UNIVERSITY OF TWENTE
 P.O. BOX 217
 7500 AE ENSCHEDE
 THE NETHERLANDS