Solutions for Discussion 1, 09/11/13

Compiled by Mai Le

1 Alternate Expressions for Sequences

Let $x[n] = \begin{cases} \left(\frac{1}{2}\right)^n, & n \text{ nonnegative multiple of 4} \\ -\left(\frac{1}{2}\right)^n, & n \text{ nonnegative multiple of 2, but not a nonnegative multiple of 4} \\ 0, & \text{otherwise} \end{cases}$

Express x[n] mathematically in three different ways.

1.
$$x[n] = \{\underline{1}, 0, \frac{-1}{4}, 0, \frac{1}{16}, 0, \frac{-1}{64}, ...\}$$

2.
$$x[n] = \delta[n] - \frac{1}{4}\delta[n-2] + \frac{1}{16}\delta[n-4] - \frac{1}{64}\delta[n] + \dots$$

3.
$$x[n] = \sum_{k=0}^{\infty} (-1)^k (\frac{1}{4})^k \delta[b-2k]$$

4.
$$x[n] = u[n]\cos\left(\frac{\pi}{2}n\right)\left(\frac{1}{2}\right)^n$$

2 Nonlinear Systems

Give an example of a system that is nonlinear but satisfies $\mathcal{T}\{\alpha x[n]\} = \alpha \mathcal{T}\{x[n]\}$ for all sequences x[n] and for all scalars $\alpha \in \mathbb{R}$.

$$y[n] = \begin{cases} \frac{x^2[n]}{x[n-1]}, & x[n-1] \neq 0 \\ x[n], & x[n-1] = 0 \end{cases}$$

Then

$$\mathcal{T}\{\alpha x[n]\} = \begin{cases} \frac{\alpha^2 x^2[n]}{\alpha x[n-1]}, & x[n-1] \neq 0 \\ \alpha x[n], & x[n-1] = 0 \end{cases}$$

$$= \begin{cases} \frac{\alpha x^2[n]}{x[n-1]}, & x[n-1] \neq 0 \\ \alpha x[n], & x[n-1] = 0 \end{cases}$$

$$= \alpha \begin{cases} \frac{x^2[n]}{x[n-1]}, & x[n-1] \neq 0 \\ x[n], & x[n-1] = 0 \end{cases}$$

$$= \alpha \mathcal{T}\{x[n]\}$$

but the system fails the addition property:

$$\mathcal{T}\{x_1[n] + x_2[n]\} \neq \mathcal{T}\{x_1[n]\} + \mathcal{T}\{x_2[n]\}$$

example: Let $x_1[n] = \delta[n]$ and $x_2[n] = \delta[n-1]$. Then $\mathcal{T}\{x_1[n]\} = \delta[n]$ and $\mathcal{T}\{x_2[n]\} = \delta[n-1]$. But $\mathcal{T}\{x_1[n] + x_2[n]\} = \mathcal{T}\{\delta[n] + \delta[n-1]\} =$

3 Length of Convolution

Let x[n] be non-zero only over $N_1 \leq n \leq N_2$ and h[n] be non-zero only over $M_1 \leq n \leq M_2$. Let y[n] = x[n] * h[n]. Then y[n] is only non-zero over $L_1 \leq n \leq L_2$. Define L_1 and L_2 in terms of N_1 , N_2 , M_1 , and M_2 .

For convenience, let h[n] be shorter than x[n]. To answer this, we'll envision the "flip and slide", where we flip h[n] and slide it over x[n]. Then it goes through three stages.

For $M_1 - M_2$ steps, the reversed h is entering into x[n]. For $N_1 - N_2 - (M_1 - M_2) - 1$ steps, h[n] moves within/across x[n]. Finally, h[n] takes $M_1 - M_2$ steps to exit x[n].

The total length,
$$L_1 - L_2 = (M_1 - M_2) + (N_1 - N_2 - (M_1 - M_2) - 1) + (M_1 - M_2) = N_1 - N_2 + M_1 - M_2 - 1$$
.

More specifically, L_1 is when h[n] is just beginning to enter x[n], so $L_1 = N_1 + M_1$, and L_2 is when h[n] has finished exiting x[n] so $L_2 = N_2 + M_2 + 1$.

4 Distributivity of Convolution

Prove the distributive property of convolution.

$$x_{1}[n] * (x_{2}[n] + x_{3}[n]) = \sum_{k=-\infty}^{\infty} x_{1}[k] (x_{2}[n-k] + x_{3}[n-k]) \text{ from definition of convolution}$$

$$= \sum_{k=-\infty}^{\infty} x_{1}[k] (x_{2}[n-k]) + \sum_{k=-\infty}^{\infty} x_{1}[k] (x_{3}[n-k])$$

$$= x_{1}[n] * x_{2}[n] + x_{1}[n] * x_{3}[n]$$

5 Computing Discrete Convolution

Let y[n] = x[n] * h[n]. Find an expression for y[n].

(a)

$$x[n] = \begin{cases} 1, & n = -2, 0, 1 \\ 2, & n = -1 \\ 0, & otherwise \end{cases}$$

$$h[n] = \delta[n] - \delta[n-1] + \delta[n-4] + \delta[n-5]$$
cry

(b)

$$x[n] = u[n+1] - u[n-4] - \delta[n-5]$$

$$h[n] = (u[n+2] - u[n-3]) (3 - |n|)$$

cry

6 Convolution and Signal Energy

Let
$$y[n] = x[n] * h[n]$$
. Prove that $\left(\sum_{n=-\infty}^{\infty} y[n]\right) = \left(\sum_{n=-\infty}^{\infty} x[n]\right) \left(\sum_{n=-\infty}^{\infty} h[n]\right)$.

$$y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

$$\left(\sum_{n=-\infty}^{\infty} y[n]\right) = \sum_{n=-\infty}^{\infty} \left(\sum_{k=-\infty}^{\infty} h[k]x[n-k]\right)$$

$$= \sum_{k=-\infty}^{\infty} \left(\sum_{n=-\infty}^{\infty} h[k]x[n-k]\right) \text{ switch order of sums}$$

$$= \sum_{k=-\infty}^{\infty} h[k] \left(\sum_{n=-\infty}^{\infty} x[n-k]\right) \text{ part in parentheses has same value for all } k$$

$$= \left(\sum_{k=-\infty}^{\infty} h[k]\right) \left(\sum_{m=-\infty}^{\infty} x[m]\right) \text{ change of indexing variable for } x, m = n-k$$

NOT REALLY ENERGY

7 Impulse Response of a BIBO Stable System

Let h[n] be the impulse response of a BIBO stable system. (Remember that impulse responses are only defined for LSI systems, so this system is also LSI.) What must hold true for h[n]?

Let x[n] be a bounded input with bound B_x . Then $|x[n]| \leq B_x$ for all n.

$$|y[n]| = \left| \sum_{k=-\infty}^{\infty} h[k]x[n-k] \right| \le \sum_{k=-\infty}^{\infty} \left| h[k]x[n-k] \right| \text{ from triangle inequality}$$

$$\sum_{k=-\infty}^{\infty} \left| h[k]x[n-k] \right| \le \sum_{k=-\infty}^{\infty} \left| h[k] \right| \left| x[n-k] \right| \le \sum_{k=-\infty}^{\infty} \left| h[k] \right| B_x = B_x \left(\sum_{k=-\infty}^{\infty} \left| h[k] \right| \right) = B_y$$

We choose $B_x\left(\sum_{k=-\infty}^{\infty}|h[k]|\right)$ as our bound B_y . Since $B_x<\infty$, we can ensure $B_y<\infty$ if $\sum_{k=-\infty}^{\infty}|h[k]|<\infty$. In other words, if h[n] is absolutely summable (the sum of its absolute values is finite), the output of a bounded input is also bounded. Thus, a system is BIBO stable if its impulse response is absolutely summable. (It is also true that a LSI system with an absolutely summable impulse response is BIBO stable.)

8 Impulse Response of a Causal System

Let h[n] be the impulse response of a causal system. What must hold true for h[n]?

$$y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

$$= \sum_{k=-\infty}^{-1} h[k]x[n-k]$$

$$+ h[0]x[n-0]$$

$$+ \sum_{k=1}^{\infty} h[k]x[n-k]$$

$$= \sum_{k=1}^{\infty} h[-k]x[n+k] \quad \text{future values of } x[n]$$

$$+ h[0]x[n-0] \quad \text{present value of } x[n]$$

$$+ \sum_{k=1}^{\infty} h[k]x[n-k] \quad \text{past values of } x[n]$$

The first term is a sum of future values of x[n]. For the system to be causal, y[n] cannot depend on any of these values- we want each term in that sum to be zero, regardless of the input x[n]. We can guarantee that by choosing h[n] = 0 for n < 0. Thus, a causal system has a causal impulse response. (It is also true that an LSI system with a causal impulse response is a causal system.)

9 Impulse Response of an Invertible System

A system \mathcal{T}_1 is invertible if there exists a system \mathcal{T}_2 such that $\mathcal{T}_2\{\mathcal{T}_1\{x[n]\}\} = x[n]$ for all $n \in \mathbb{Z}$. Let h[n] be the impulse response of an invertible system. What must hold true for h[n]?

For this problem, you can take for granted that the inverse of an LSI system is also LSI.

If h[n] is the impulse response of an invertible system \mathcal{T}_1 , then there also exists an LSI system \mathcal{T}_2 such that $\mathcal{T}_2\{\mathcal{T}_1\{x[n]\}\}=x[n]$.

```
 \mathcal{T}_2\{\mathcal{T}_1\{x[n]\}\} = x[n] 
 \mathcal{T}_2\{h_1[n] * x[n]\} = x[n] 
 h_2[n] * (h_1[n] * x[n]) = x[n] \text{ where } h_2[n] \text{ is the impulse response of } \mathcal{T}_{\in} 
 (h_2[n] * h_1[n]) * x[n]) = x[n] \text{ associativity of convolution } 
 (h_2[n] * h_1[n]) * x[n]) = \delta[n] * x[n] \text{ property of Kronecker delta}
```

The Kronecker delta has the property that $\delta[n]*x[n] = x[n]$ for all n. It is also the only discrete signal with that property. Therefore, $(h_2[n]*h_1[n]) = \delta[n]$. In conclusion, if a system is invertible with impulse response $h_1[n]$, then there exists some other sequence $h_2[n]$ such that $(h_2[n]*h_1[n]) = \delta[n]$, and $h_2[n]$ is the impulse response of the inverse system.

10 Eigensequences

A sequence x[n] is an eigensequence of a system \mathcal{T} if $\mathcal{T}\{x[n]\} = \lambda x[n]$ for some non-zero scalar $\lambda \in \mathbb{C}$. What are the eigensequences for the following systems?

10.1
$$\mathcal{T}\{x[n]\} = 3x[n]$$

Any sequence is an eigensequence of this system!

10.2
$$\mathcal{T}\{x[n]\} = x[n]u[n]$$

Any causal sequence is an eigensequence of this system.

10.3 causal moving average:
$$\mathcal{T}\{x[n]\} = \frac{1}{M} \sum_{k=0}^{M-1} x[n-k]$$

Any constant sequence is an eigensequence of this system. Complex exponentials of the form $x[n] = Ae^{j\omega n}$ are also eigenfunctions (because this is an LSI system).

10.4 general LSI system:
$$\mathcal{T}\{x[n]\} = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

We showed this in lecture 3.

Any sequence of the form $x[n] = Ae^{j\omega n}$ is an eigensequence:

$$\mathcal{T}\{Ae^{j\omega n}\} = \sum_{k=-\infty}^{\infty} h[k]Ae^{j\omega(n-k)}$$
$$= Ae^{j\omega n} \left(\sum_{k=-\infty}^{\infty} h[k]e^{-j\omega k}\right)$$
$$= Ae^{j\omega n}\lambda$$

Since $\sum_{k=-\infty}^{\infty} h[k]e^{-j\omega k}$ is not a function of n, we can rewrite is as a constant λ and see that the output is a scaled version of the input.

11 Geometric Basis for Sequences

Consider the signal $\gamma[n] = a^n u[n]$ for 0 < a < 1.

(a)

Show that any sequence x[n] can be decomposed as $x[n] = \sum_{n=-\infty}^{\infty} c_k \gamma[n-k]$ and express c_k in terms of x[n].

(b)

Use the properties of linearity and time invariance to express the output $y[n] = \mathcal{T}\{x[n]\}$ in terms of the input x[n] and the signal $g[n] = \mathcal{T}\{y[n]\}$, where \mathcal{T} is an LTI system.

(c)

Express the impulse response $h[n] = \mathcal{T}\{\delta[n]\}$ in terms of g[n].

12 Steady State of Stable Systems

Let \mathcal{T} be an LTI, BIBO stable system. Show if x[n] is bounded and tends to a constant, the corresponding output, y[n], will also tend to a constant.

If x[n] tends towards a constant, then $\lim_{n\to\infty}x[n]=c_x<\infty$. Since the system is LSI, we also know it has an impulse response h[n]. Since it is BIBO stable, we also know from Problem 7 that $\sum_{n=-\infty}^{\infty}\left|h[n]\right|<\infty.$

$$\lim_{n\to\infty}y[n]=\lim_{n\to\infty}\sum_{k=-\infty}^{\infty}h[k]x[n-k]=\sum_{k=-\infty}^{\infty}\lim_{n\to\infty}h[k]x[n-k]=\sum_{k=-\infty}^{\infty}h[k]\left(\lim_{n\to\infty}x[n-k]\right)=c_y$$

Since $\lim_{n\to\infty}x[n-k]=\lim_{n\to\infty}x[n]=c_x$ and $\sum_{k=-\infty}^{\infty}h[k]\leq\sum_{k=-\infty}^{\infty}|h[k]|<\infty$, their product, called c_y is also finite. Thus, the corresponding output y[n] also tends toward a constant.