विध्न विचारत भीरु जन, नहीं आरम्भे काम, विपति देख छोड़े तुरंत मध्यम मन कर श्याम।
पुरुष सिंह संकल्प कर, सहते विपति अनेक, 'बना' न छोड़े ध्येय को, रघुबर राखे टेक।।
रिचतः मानव धर्म प्रणैता
सन्गुरु श्री रणछोड़गसनी महाराज

Subject: MATHEMATICS

Available Online: www.MathsBySuhag.com

HOME ASSIGNMENT

Objective: Vector, 3D & Complex

Subjective: Misc. Topics

Wishing You & Your Family A Very Happy & Prosperous Deepawali

DEEPAWALI ASSIGNMENT

Address: Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal : 0 903 903 7779, 98930 58881, WhatsApp 9009 260 559 www.TekoClasses.com www.MathsBySuhag.com

Q.1_{2/vec} If
$$|\vec{a}| = 11$$
, $|\vec{b}| = 23$, $|\vec{a} - \vec{b}| = 30$, then $|\vec{a} + \vec{b}|$ is:

(A) 10 (B*) 20 (C) 30

- Q.2_{5/vec} The position vector of a point P moving in space is given by $\overrightarrow{OP} = \overrightarrow{R} = (3\cos t)\hat{i} + (4\cos t)\hat{j} + (5\sin t)\hat{k} \cdot \overset{\Theta}{\overset{\Theta}{\overset{\Theta}{O}}}$ The time 't' when the point P crosses the plane 4x - 3y + 2z = 5 is
 - (A) $\frac{\pi}{2}$ sec
- $(B^*) \frac{\pi}{6} \sec$
- (D) $\frac{\pi}{4}$ sec

(D)40

[Hint: put $x = 3 \cos t$; $y = 4 \cos t$; $z = 5 \sin t$ in the equation of the plane, we get $12\cos t - 12\cos t + 10\sin t = 5$

$$\sin t = \frac{1}{2}$$
 \Rightarrow $t = \frac{\pi}{6} \sec 3$

- Q.3_{6/vec} Indicate the correct order sequence in respect of the following:
 - The lines $\frac{x-4}{-3} = \frac{y+6}{-1} = \frac{y+6}{-1}$ and $\frac{x-1}{-1} = \frac{y-2}{-2} = \frac{z-3}{2}$ are orthogonal. I.
 - The planes 3x 2y 4z = 3 and the plane x y z = 3 are orthogonal. II.
 - The function $f(x) = ln(e^{-2} + e^x)$ is monotonic increasing $\forall x \in \mathbb{R}$. III.
 - If g is the inverse of the function, $f(x) = ln(e^{-2} + e^{x})$ then $g(x) = ln(e^{x} e^{-2})$.
 - (A) FTFF
- (C*) FFTT
- (D) FTTT

 L_1 is | | to $-3\hat{i} - \hat{j} - \hat{k} = \vec{V}_1$ [Sol.

$$L_2 \text{ is } || \text{ to } -\hat{i} - 2\hat{j} + 2\hat{k} = \vec{V}_2$$

$$\vec{V}_1 \cdot \vec{V}_2 = 3 + 2 - 2 = 3$$
 \Rightarrow L is not perpendicular to L_2 \Rightarrow False

- $3\cdot 1 (2)(-1) (4)(-1) = 3 + 2 + 4 \neq 0 \implies \text{planes are not perpendicular} \implies \text{False}$ П.
- III. $f(x) = ln(e^{-2} + e^{x})$

$$f'(x) = \frac{1 \cdot e^x}{e^{-2} + e^x} > 0 \implies f \text{ is increasing } \forall x \in R \implies True$$

- IV. $y = ln(e^{-2} + e^{x})$ $e^{-2} + e^x = e^y$
 - $e^x = e^y e^{-2}$
- $f^{-1}(y) = ln(e^y e^{-2})$ $g(x) = ln(e^x - e^{-2}) \implies$
- Q.4_{2/complex} If $\frac{z_1}{z_2}$ is purely imaginary then $\left|\frac{z_1 + z_2}{z_1 z_2}\right|$ is equal to:
 - (A*) 1

- (D) 0

[Hint: $E = \left| \frac{1 + (z_1/z_2)}{(z_1/z_2) - 1} \right| = \left| \frac{1 + xi}{xi - 1} \right| = 1$]

- $Q.5_{7/\mathrm{vec}}$ In a regular tetrahedron, the centres of the four faces are the vertices of a smaller tetrahedron. The ratio of the volume of the smaller tetrahedron to that of the larger is $\frac{m}{n}$, where m and n are relatively prime positive integers. The value of (m+n) is

- (C) 27
- (D*)28

[Hint:
$$V_l = \frac{1}{6} [\vec{a} \ \vec{b} \ \vec{c}] \ ; V_s = \frac{1}{6} \cdot \frac{1}{27} [\vec{a} \ \vec{b} \ \vec{c}]$$

Hence
$$\frac{V_s}{V_l} = \frac{1}{27} = \frac{m}{n}$$
 or $\frac{n}{27} = \frac{m}{1} = k$

$$\frac{n}{27} = \frac{m}{1} =$$

 \Rightarrow k = 1, (m+n) = 28m and n are relatively prime further hint for

0 98930 58881.

- Q.6_{9/vec} If \vec{a} , \vec{b} , \vec{c} are non-coplanar unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{1}{\sqrt{2}} (\vec{b} + \vec{c})$ then the angle between $\vec{a} \& \vec{b}$ is K. Sir), Bhopal Phone: 0 903 903 7779,
 - $(A*) 3 \pi/4$
- (B) $\pi/4$
- (C) $\pi/2$
- (D) π

[JEE '95, 2]

- Q.7_{12/vec} The sine of angle formed by the lateral face ADC and plane of the base ABC of the tetrahedron ABCD where $A \equiv (3, -2, 1)$; $B \equiv (3, 1, 5)$; $C \equiv (4, 0, 3)$ and $D \equiv (1, 0, 0)$ is

- $Q.8_{6/complex}$ Let z be a complex number, then the region represented by the inequality |z+2| < |z+4|is given by:
 - $(A^*) Re(z) > -3$

- (B) Im(z) < -3
- (C) Re(z) < -3 & Im(z) > -3
- (D) Re(z) < -4 & Im(z) > -4
- Q.9_{14/vec} The volume of the parallelpiped whose edges are represented by the vectors $\vec{a} = 2\hat{i} 3\hat{j} + 4\hat{k}$

$$\vec{b}=3\hat{i}-\hat{j}+2\hat{k}$$
 , $\vec{c}=\hat{i}+2\hat{j}-\hat{k}$ is :

$$(A^*)$$
 7

- (D) none
- Teko Classes, Maths: Suhag R. Kariya (S. Q.10_{15/vec} Let \vec{u} , \vec{v} , \vec{w} be the vectors such that \vec{u} + \vec{v} + \vec{w} =0 , if $|\vec{u}|$ =3, $|\vec{v}|$ =4& $|\vec{w}|$ =5 then the value of $\vec{\mathbf{u}}.\vec{\mathbf{v}} + \vec{\mathbf{v}}.\vec{\mathbf{w}} + \vec{\mathbf{w}}.\vec{\mathbf{u}}$ is:
 - (A)47
- (B*) -25
- (C)0
- (D) 25[JEE '95,1]
- Q.11_{16/vec} Let $\vec{a} = \hat{i} \hat{j}$, $\vec{b} = \hat{j} \hat{k}$, $\vec{c} = \hat{k} \hat{i}$. If \vec{d} is a unit vector such that $\vec{a} \cdot \vec{d} = 0 = [\vec{b}, \vec{c}, \vec{d}]$ then \vec{d}

(A*)
$$\pm \frac{1}{\sqrt{6}}(\hat{i}+\hat{j}-2\hat{k})$$
 (B) $\pm \frac{1}{\sqrt{3}}(\hat{i}+\hat{j}-\hat{k})$ (C) $\pm \frac{1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})$ (D) $\pm \hat{k}$

- Q.12_{8/complex} If z be a complex number for which $\left|z + \frac{1}{z}\right| = 2$, then the greatest value of $\left|z\right|$ is:
 - (A*) $\sqrt{2} + 1$ (B) $\sqrt{3} + 1$
- (C) $2\sqrt{2} 1$
- (D) none

[Hint:

$$\left| |z| - \frac{1}{|z|} \right| \le \left| z + \frac{1}{z} \right| \le |z| + \frac{1}{|z|}$$

$$\left| r - \frac{1}{r} \right| \le 2 \le r + \frac{1}{r}$$

Now consider all inequalities

0 98930 58881. Q.13_{22/vec} If the non-zero vectors $\vec{a} \& \vec{b}$ are perpendicular to each other, then the solution of the equation, $\vec{r} \times \vec{a} = \vec{b}$ is:

$$(A^*) \vec{r} = x\vec{a} + \frac{1}{\vec{a} \cdot \vec{a}} (\vec{a} \times \vec{b})$$

(B)
$$\vec{r} = x \vec{b} - \frac{1}{\vec{b} \cdot \vec{b}} (\vec{a} \times \vec{b})$$

(C)
$$\vec{r} = x\vec{a} \times \vec{b}$$

(D)
$$\vec{r} = x \vec{b} \times \vec{a}$$

[Hint:

$$\vec{r} \times \vec{a} = y\vec{b} \times \vec{a} + z(\vec{a} \times \vec{b}) \times \vec{a}$$

$$\vec{b} = y(\vec{b} \times \vec{a}) + z[(\vec{a} \cdot \vec{a})\vec{b} - (\vec{b} \cdot a) \times \vec{a}]]$$

$$\vec{b} = y(\vec{b} \times \vec{a}) + z(\vec{a} \cdot \vec{a})\vec{b}$$

$$\therefore z(\vec{a} \cdot \vec{a}) = 1 \& y = 0$$

$$z = \frac{1}{\vec{a}^2}$$

$$\vec{r} = x \vec{a} + \frac{1}{\vec{a}^2} (\vec{a} \times \vec{b})$$

- Q.14_{23/vec} The lines $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{-k}$ and $\frac{x-1}{k} = \frac{y-4}{2} = \frac{z-5}{1}$ are coplanar if

- Q.15_{24/vec} Which one of the following statement is INCORRECT?
- $\vec{f} \times \vec{a} = \vec{b} \text{ is :} \\ (A^*) \ \vec{f} = x\vec{a} + \frac{1}{\vec{a} \cdot \vec{a}} \left(\vec{a} \times \vec{b} \right) \qquad (B) \ \vec{f} = x\vec{b} \frac{1}{\vec{b} \cdot \vec{b}} \left(\vec{a} \times \vec{b} \right) \\ (C) \ \vec{f} = x\vec{a} \times \vec{b} \qquad (D) \ \vec{f} = x\vec{b} \times \vec{a} \\ \text{where } x \text{ is any scalar.} \\ \vec{r} = x\vec{a} + y\vec{b} + 2\vec{a} \times \vec{b} \\ \text{take cross with } \vec{a} \\ \vec{b} = y(\vec{b} \times \vec{a}) + z(\vec{a} \cdot \vec{a}) \vec{b} (\vec{b} \cdot \vec{a}) \times \vec{a} \end{bmatrix} \\ \vec{b} = y(\vec{b} \times \vec{a}) + z(\vec{a} \cdot \vec{a}) \vec{b} (\vec{b} \cdot \vec{a}) \times \vec{a} \end{bmatrix} \\ \vec{b} = y(\vec{b} \times \vec{a}) + z(\vec{a} \cdot \vec{a}) \vec{b} (\vec{b} \cdot \vec{a}) \times \vec{a} \end{bmatrix} \\ \vec{b} = y(\vec{b} \times \vec{a}) + z(\vec{a} \cdot \vec{a}) \vec{b} (\vec{b} \cdot \vec{a}) \times \vec{a} \end{bmatrix} \\ \vec{b} = y(\vec{b} \times \vec{a}) + z(\vec{a} \cdot \vec{a}) \vec{b} (\vec{b} \cdot \vec{a}) \times \vec{a} \end{bmatrix} \\ \vec{b} = y(\vec{b} \times \vec{a}) + z(\vec{a} \cdot \vec{a}) \vec{b} (\vec{b} \cdot \vec{a}) \times \vec{a} \end{bmatrix} \\ \vec{b} = y(\vec{b} \times \vec{a}) + z(\vec{a} \cdot \vec{a}) \vec{b} (\vec{b} \cdot \vec{a}) \times \vec{a} \end{bmatrix} \\ \vec{b} = y(\vec{b} \times \vec{a}) + z(\vec{a} \cdot \vec{a}) \vec{b} (\vec{b} \cdot \vec{a}) \times \vec{a} \end{bmatrix} \\ \vec{b} = y(\vec{b} \times \vec{a}) + z(\vec{a} \cdot \vec{a}) \vec{b} (\vec{b} \cdot \vec{a}) \times \vec{a} \end{bmatrix} \\ \vec{b} = y(\vec{b} \times \vec{a}) + z(\vec{a} \cdot \vec{a}) \vec{b} (\vec{b} \cdot \vec{a}) \times \vec{a} \end{bmatrix} \\ \vec{b} = y(\vec{b} \times \vec{a}) + z(\vec{a} \cdot \vec{a}) \vec{b} (\vec{b} \cdot \vec{a}) \times \vec{a} \end{bmatrix} \\ \vec{b} = y(\vec{b} \times \vec{a}) + z(\vec{a} \cdot \vec{a}) \vec{b} (\vec{b} \cdot \vec{a}) \times \vec{a} \end{bmatrix}$ $\vec{b} = y(\vec{b} \times \vec{a}) + z(\vec{a} \cdot \vec{a}) \vec{b} (\vec{b} \cdot \vec{a}) \times \vec{a}$ $\vec{b} = y(\vec{b} \times \vec{a}) + z(\vec{a} \cdot \vec{a}) \vec{b} (\vec{b} \cdot \vec{a}) \times \vec{a}$ $\vec{b} = y(\vec{b} \times \vec{a}) + z(\vec{a} \cdot \vec{a}) \vec{b} (\vec{b} \cdot \vec{a}) \times \vec{a}$ $\vec{b} = y(\vec{b} \times \vec{a}) + z(\vec{a} \cdot \vec{a}) \vec{b} (\vec{b} \cdot \vec{a}) \times \vec{a}$ $\vec{b} = y(\vec{b} \times \vec{a}) + z(\vec{a} \cdot \vec{a}) \vec{b} (\vec{b} \cdot \vec{a}) \times \vec{a}$ $\vec{b} = y(\vec{b} \times \vec{a}) + z(\vec{a} \cdot \vec{a}) \vec{b} (\vec{b} \cdot \vec{a}) \times \vec{a}$ $\vec{b} = y(\vec{b} \times \vec{a}) + z(\vec{a} \cdot \vec{a}) \vec{b} (\vec{b} \cdot \vec{a}) \times \vec{a}$ $\vec{b} = y(\vec{b} \times \vec{a}) + z(\vec{a} \cdot \vec{a}) \vec{b} (\vec{b} \cdot \vec{a}) \times \vec{a}$ $\vec{b} = y(\vec{b} \times \vec{a}) + z(\vec{a} \times \vec{b}) \times \vec{a}$ $\vec{b} = y(\vec{b} \times \vec{a}) + z(\vec{a} \times \vec{b}) \times \vec{a}$ $\vec{b} = y(\vec{b} \times \vec{a}) + z(\vec{a} \times \vec{b}) + z(\vec{a} \times \vec{b}) \times \vec{a}$ $\vec{b} = y(\vec{b} \times \vec{a}) + z(\vec{a} \times \vec{b}) + z(\vec{b} \times \vec{a}) + z(\vec{b} \times \vec{a}) + z(\vec{b} \times \vec{a}) + z(\vec{b} \times \vec{a})$ $\vec{b} = y(\vec{b} \times \vec{a}) + z(\vec{b} \times \vec{a}) + z(\vec{b} \times \vec{a$
 - (D) In a regular tetrahedron OABC where 'O' is the origin, the vector $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$ is perpendicular to the plane ABC.

- (A) $\therefore \vec{n}$ is perpendicular to \vec{a} , \vec{b} as well as $\vec{c} \Rightarrow \vec{a}$, \vec{b} , \vec{c} must be in the same plane $\Rightarrow [\vec{a} \ \vec{b} \ \vec{c}] = 0$
- (B) If one direction angle is θ then the remaining two cannot be less than 90θ

(D) verify that
$$\left(\vec{a} - \frac{\vec{a} + \vec{b} + \vec{c}}{3}\right)$$
. $\left(\vec{a} + \vec{b} + \vec{c}\right) = 0$ where $|\vec{a}| = |\vec{b}| = |\vec{c}|$

- Q.16_{12/complex} Given that the equation, $z^2 + (p + iq)z + r + is = 0$ has a real root where $p, q, r, s \in R$. Then which one is correct
 - (A) $pqr = r^2 + p^2s$
- (B) $prs = q^2 + r^2p$ (C) $qrs = p^2 + s^2q$ (D*) $pqs = s^2 + q^2r$

0 98930 58881.

K. Sir), Bhopal Phone: 0 903 903 7779,

껕

Hint: Let

$$z = \alpha \text{ be the real root } \Rightarrow \alpha^2 + (p + iq)\alpha + r + is = 0$$

$$(\alpha^2 + p\alpha + r) + i(q\alpha + s) = 0 + 0 i \Rightarrow q\alpha + s = 0 \qquad(1) \text{ and}$$

$$\alpha^2 + p\alpha + r = 0 \dots (2)$$

From (1) $\alpha = -\frac{s}{a}$. Put in (2) to get the result

- Q.17 $_{27/\text{vec}}$ The distance of the point (3, 4, 5) from x-axis is
 - (A)3
- (C) $\sqrt{34}$
- (D*) $\sqrt{41}$

[Hint: distance from x-axis of x, y, z = $\sqrt{y_1^2 + z_1^2}$

- Q.18_{29/vec} Given non zero vectors \vec{A} , \vec{B} and \vec{C} , then which one of the following is false?
 - (A) A vector orthogonal to $\vec{A} \times \vec{B}$ and \vec{C} is $\pm (\vec{A} \times \vec{B}) \times \vec{C}$
 - (B) A vector orthogonal to $\vec{A} + \vec{B}$ and $\vec{A} \vec{B}$ is $\pm \vec{A} \times \vec{B}$
 - (C) Volume of the parallelopiped determined by \vec{A} , \vec{B} and \vec{C} is $|\vec{A} \times \vec{B} \cdot \vec{C}|$
 - (D*) Vector projection of \vec{A} onto \vec{B} is $\frac{\vec{A} \cdot \vec{B}}{\vec{A} \cdot \vec{B}}$

- [Hint: It should be $\frac{(\vec{A} \cdot \vec{B})}{\vec{B}^2} \vec{B}$] ...• $_{30/\text{vec}}$ Given three vectors \vec{a} , \vec{b} , \vec{c} such that they are non-zero, non-coplanar vectors, then which of the following are non coplanar.

 (A*) $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$, $\vec{c} + \vec{a}$ (B) $\vec{a} \vec{b}$, $\vec{b} + \vec{c}$, $\vec{c} + \vec{a}$ (C) $\vec{a} + \vec{b}$, $\vec{b} \vec{c}$, $\vec{c} + \vec{a}$ (D) $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$, $\vec{c} \vec{a}$ [Hint: Verify $\vec{v}_1 + \vec{v}_2 = \vec{v}_3$ in order to quickly answer]

 Q.20 $_{16/\text{complex}}$ The sum $i + 2i^2 + 3i^3 + \dots + 2002i^{2002}$, where $i = \sqrt{-1}$ is equal to (A) 999 + 1002*i* (B) 1002 + 999*i* (C) 1001 + 1000*i* (D*) 1002 + 1001*i* (Sol. S = $i + 2i^2 + 3i^3 + \dots + 200i^{2002}$ i Sol. S = $i^2 + 2i^3 + \dots + 200i^{2002}$ i Sol. S = $i^2 + 2i^3 + \dots + 200i^{2002}$ i Sol. S = $i^2 + 2i^3 + \dots + 200i^{2002}$ i Sol. S = $i^2 + 2i^3 + \dots + 200i^{2002}$ S = $i^2 + 2i^3 + \dots + 200i^{2002}$ S = $i^2 + 2i^3 + \dots + 200i^{2002}$ S = $i^2 + 2i^3 + \dots + 200i^{2002}$ S = $i^2 + 2i^3 + \dots + 200i^{2002}$ S = $i^2 + 2i^3 + \dots + 200i^{2002}$ S = $i^2 + 2i^3 + \dots + 200i^{2002}$ S = $i^2 + 2i^3 + \dots + 200i^{2002}$ S = $i^2 + 2i^3 + \dots + 200i^{2002}$

- Q.20_{16/complex} The sum $i + 2i^2 + 3i^3 + \dots + 2002i^{2002}$, where $i = \sqrt{-1}$ is equal to

$$S = i + 2i^2 + 3i^3 + \dots + 200i^{2002}$$

 $S = i^2 + 2i^3 + \dots + 2001i^{2002} + 2002i$

 $S(1-i) = i + i^2 + i^3 + \dots + i^{2002} - 2002i^{2003}$

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

$$= \frac{i(1-i^{2002})}{1-i} + 2002 i = \frac{2i}{1-i} + 2002 i = i(1+i) + 2002i$$

$$S = \frac{-1+2003i}{1-i} = \frac{(-1+2003i)(1+i)}{2} = -1-i + 2003i - 2003 = \frac{-2004+2002i}{2}$$

$$= -1002 + 1001i$$

- $Q.21_{31/vec}$ Locus of the point P, for which \overrightarrow{OP} represents a vector with direction cosine $\cos \alpha = \frac{1}{2}$ ('O' is the origin) is:

 - (A) A circle parallel to yz plane with centre on the x-axis
 (B*) a cone concentric with positive x-axis having vertex at the origin and the slant height equal to the magnitude of the vector
 (C) a ray emanating from the origin and making an angle of 60° with x-axis

 (D) a disc parallel to yz plane with centre on x-axis & radius equal to $|\overrightarrow{OP}| \sin 60^\circ$

K. Sir), Bhopal Phone: 0 903 903 7779, Q.22_{38/vec} A line with direction ratios (2, 1, 2) intersects the lines $\vec{r} = -\hat{j} + \lambda(\hat{i} + \hat{j} + \hat{k})$ and $\vec{r} = -\hat{i} + \mu(2\hat{i} + \hat{j} + \hat{k})$ at A and B, then l (AB) is equal to

$$(A*)3$$

(B)
$$\sqrt{3}$$

(C)
$$2\sqrt{2}$$

(D)
$$\sqrt{2}$$

[Hint:
$$L_1: \frac{x-1}{1} = \frac{y+1}{1} = \frac{z-0}{1} = \lambda;$$
 $L_2: \frac{x+1}{2} = \frac{y-0}{1} = \frac{z-0}{1} = \mu$

Hence any point on L_1 and L_2 can be $(\lambda, \lambda-1, \lambda)$ and $(2\mu-1, \mu, \mu)$

$$\therefore \frac{2\mu-1-\lambda}{2} = \frac{\mu-\lambda+1}{1} = \frac{\mu-\lambda}{1}$$

solving $\mu = 1$ and $\lambda = 3$

$$A = (3, 2, 3)$$
 and $B = (1, 1, 1)$

Teko Classes, Maths: Suhag R. Kariya (S. Q.23_{47/vec} The vertices of a triangle are A (1, 1, 2), B (4, 3, 1) & C (2, 3, 5). The vector representing the internal bisector of the angle A is:

(A)
$$\hat{i} + \hat{j} + 2\hat{k}$$

(B)
$$2\hat{i} - 2\hat{j} + \hat{k}$$

(C)
$$2\hat{i} + 2\hat{j} - \hat{k}$$

(B)
$$2\hat{i} - 2\hat{j} + \hat{k}$$
 (C) $2\hat{i} + 2\hat{j} - \hat{k}$ (D*) $2\hat{i} + 2\hat{j} + \hat{k}$

껕

Q.24_{28/complex} Lowest degree of a polynomial with rational coefficients if one of its root is, $\sqrt{2} + i$ is $(B^*)4$

[Sol. Let
$$x = \sqrt{2} + i$$

$$\Rightarrow \qquad \left(x - \sqrt{2}\right)^2 = -1$$

$$\Rightarrow \qquad \left(x - \sqrt{2}\right)^2 = -1 \qquad \Rightarrow \qquad x^2 + 2 - 2\sqrt{2} x = -1$$

$$\Rightarrow$$
 $x^2 + 3 = 2\sqrt{2}x$ \Rightarrow $x^4 + 9 + 6x^2 = 8x^2$ \Rightarrow $x^4 - 2x^2 + 9 = 0$

$$\Rightarrow x^4 + 9 + 6x^2 = 8x^2$$

$$x^4 - 2x^2 + 9 = 0$$

FREE Download Study Package from website:www.TekoClasses.com & www.MathsBySuhag.com

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com

 $Q.25_{55/\text{vec}}$ A plane vector has components 3 & 4 w.r.t. the rectangular cartesian system. This system is rotated

through an angle $\frac{\pi}{4}$ in anticlockwise sense. Then w.r.t. the new system the vector has components:

(B*)
$$\frac{7}{\sqrt{2}}$$
, $\frac{1}{\sqrt{2}}$ (C) $\frac{1}{\sqrt{2}}$, $\frac{7}{\sqrt{2}}$

(C)
$$\frac{1}{\sqrt{2}}$$
, $\frac{7}{\sqrt{2}}$

[Hint: $\cos \theta = \frac{3}{5}$

$$\cos \theta = \frac{3}{5} \qquad \sin \theta = \frac{4}{5}$$

now w.r.t. new system X'Y'

X component is $5 \cos (\theta - 45^{\circ})$

Y component is $5 \sin (\theta - 45^{\circ})$

For a right hand set $[\vec{a} \ \vec{b} \ \vec{c}] > 0$ and for a left handed system $[\vec{a} \ \vec{b} \ \vec{c}] < 0$

$$\left[\csc^{2}\frac{\alpha}{2} + \csc^{2}\frac{\beta}{2} + \csc^{2}\frac{\gamma}{2}\right]$$
 equal to

$$(B^*) 2$$

[Sol. For a right hand set $[\vec{a} \ \vec{b} \ \vec{c}\] > 0$ and for a left handed system $[\vec{a} \ \vec{b} \ \vec{c}\] < 0$] $Q.27_{73/\text{vec}} \text{ If } \cos\alpha\hat{i} + \hat{j} + \hat{k} \ , \ \hat{i} + \cos\beta\hat{j} + \hat{k} \ \& \ \hat{i} + \hat{j} + \cos\gamma\hat{k} \ (\alpha \neq \beta \neq \gamma \neq 2\,n\,\pi) \text{ are coplanar then the value of } \begin{cases} \cos^2\alpha + \csc^2\frac{\beta}{2} + \csc^2\frac{\gamma}{2} \\ \exp(\alpha\beta) + \cos^2\alpha + \cos^2\alpha$

$$-2\sin^2\frac{\alpha}{2} \quad 2\sin^2\frac{\beta}{2} \quad 0$$

$$0 \quad -2\sin^2\frac{\beta}{2} \quad 2\sin^2\frac{\gamma}{2} = 0$$

$$1 \quad 1 \quad \cos\gamma$$

$$+2\sin^2\frac{\alpha}{2}\left(+2\sin^2\frac{\beta}{2}\cos\gamma+2\sin^2\frac{\gamma}{2}\right)+2\sin^2\frac{\beta}{2}2\sin^2\frac{\gamma}{2}$$

$$\sin^2\frac{\alpha}{2}\left[\sin^2\frac{\beta}{2}\left(1-2\sin^2\frac{\gamma}{2}\right)+\sin^2\frac{\gamma}{2}\right]+\sin^2\frac{\beta}{2}\sin^2\frac{\gamma}{2}=0$$

multiply by
$$\csc^2 \frac{\alpha}{2} \csc^2 \frac{\beta}{2} \csc^2 \frac{\gamma}{2}$$
 $\csc^2 \frac{\gamma}{2} - 2 + \csc^2 \frac{\beta}{2} + \csc^2 \frac{\alpha}{2} = 0$

Teko Classes, Maths: Suhag R. Kariya (S.

Alternatively: Expand number 2

$$(\cos \alpha - 1) \left[\cos \gamma (\cos \beta - 1) - (1 - \cos \gamma)\right] + (1 - \cos \beta) (1 - \cos \gamma) = 0$$
or $(1 - \cos \alpha) (1 - \cos \beta) \cos \gamma + (1 - \cos \beta) (1 - \cos \gamma) + (1 - \cos \gamma) (1 - \cos \alpha) = 0$
Now proceed]

- Q.28_{34/complex} The straight line $(1+2i)z + (2i-1)\overline{z} = 10i$ on the complex plane, has intercept on the imaginary axis equal to
 - (A*)5
- (B) $\frac{5}{2}$
- $(C) \frac{5}{2}$
- (D) 5

|Hint: put z = iy

$$(1 + 2i) iy - (2i - 1) i y = 10 i$$

y + 0 y = 10 \Rightarrow y = 5

- Q.29_{75/vec} The perpendicular distance of an angular point of a cube of edge 'a' from the diagonal which does not pass that angular point, is
 - (A) $\sqrt{3}$ a
- (B) $\sqrt{2}$ a
- (C) $\sqrt{\frac{3}{2}}$ a
- (D*) $\sqrt{\frac{2}{3}}$ a

0 98930 58881.

[Sol. Consider a unit cube

equation of AB is
$$\vec{r} = \hat{k} + \lambda(\hat{i} + \hat{j} - \hat{k})$$

p.v. of N λ , λ , $(-1 - \lambda)$

$$\overrightarrow{ON} = \lambda \hat{i} + \lambda \hat{j} - (1 + \lambda) \hat{k}$$

$$|\overrightarrow{ON}| = \sqrt{\frac{1}{9} + \frac{1}{9} + \frac{4}{9}} = \sqrt{\frac{2}{3}}$$

[Hint:
$$az_1 + bz_2 + cz_3 = z_0(a + b + c) \implies z_0 = \frac{az_1 + bz_2 + cz_3}{a + b + c} \implies z_0$$
 is the incentre]

equation of AB is $\vec{r} = \hat{k} + \lambda(\hat{i} + \hat{j} - \hat{k})$ p.v. of N λ , λ , $(-1 - \lambda)$ $\overrightarrow{ON} = \lambda \hat{i} + \lambda \hat{j} - (1 + \lambda) \hat{k}$ now $\overrightarrow{ON} \cdot \overrightarrow{AB} = 0$ $\lambda + \lambda + 1 + \lambda = 0 \Rightarrow \lambda = -1/3$ Hence $\overrightarrow{ON} = -\frac{1}{3}\hat{i} - \frac{1}{3}\hat{j} - \frac{2}{3}\hat{k}$; $|\overrightarrow{ON}| = \sqrt{\frac{1}{9} + \frac{1}{9} + \frac{4}{9}} = \sqrt{\frac{2}{3}}$ 1

Q.30_{88/vec} Which one of the following does not hold for the vector $\vec{V} = \vec{a} \times (\vec{b} \times \vec{a})$?

Q.31_{53/compkx} Let $z_1, z_2 \& z_3$ be the complex numbers representing the vertices of a triangle ABC respectively. Yellow the point representing the complex number z_0 satisfying; a $(z_1 - z_0) + b(z_2 - z_0) + c(z_3 - z_0) = 0$, then w.r.t. the triangle ABC, the point P is its:

(A) centroid (B) orthocentre (C) circumcentre (D*) incentre

P. [Hint: $az_1 + bz_2 + cz_3 = z_0(a + b + c) \Rightarrow z_0 = \frac{az_1 + bz_2 + cz_3}{a + b + c} \Rightarrow z_0$ is the incentre]

Q.32_{96/vec} Given the position vectors of the vertices of a triangle ABC, $A = (\vec{a})$; $B = (\vec{b})$; $C = (\vec{c})$. A vector \vec{r} is sprallel to the altitude drawn from the vertex A, making an obtuse angle with the positive Y-axis. If $\vec{r} = 2\sqrt{34}$; $\vec{a} = 2\hat{i} - \hat{j} - 3\hat{k}$; $\vec{b} = \hat{i} + 2\hat{j} - 4\hat{k}$; $\vec{c} = 3\hat{i} - \hat{j} - 2\hat{k}$, then \vec{r} is

(A*) $-6\hat{i} - 8\hat{j} - 6\hat{k}$ (B) $6\hat{i} - 8\hat{j} + 6\hat{k}$ (C) $-6\hat{i} - 8\hat{j} + 6\hat{k}$ (D) $6\hat{i} + 8\hat{j} + 6\hat{k}$

$$|\vec{r}| = 2\sqrt{34} \ ; \vec{a} = 2\hat{i} - \hat{j} - 3\hat{k} \ ; \vec{b} = \hat{i} + 2\hat{j} - 4\hat{k} \ ; \vec{c} = 3\hat{i} - \hat{j} - 2\hat{k}$$
, then \vec{r} is

Equation of line BC: $\hat{i} + 2\hat{j} - 4\hat{k} + \lambda \left(\underbrace{2i - 3j + 2k}_{BC}\right)$

p.v. of N is $2\lambda + 1$, $2 - 3\lambda$, $2\lambda - 4$

vector
$$\overrightarrow{AN} = (2\lambda - 1)\hat{i} + (3 - 3\lambda)\hat{j} + (2\lambda - 1)\hat{k}$$

$$now \quad \overrightarrow{AN} \cdot \overrightarrow{BC} = 0$$

$$2(2\lambda - 1) - 3(3 - 3\lambda) + 2(2\lambda - 1)$$

 $(4\lambda + 9\lambda + 4\lambda) = 2 + 9 + 2 = 13 \Rightarrow \lambda = 13/17$

$$\vec{AN} = \frac{9\hat{i} + 12\hat{j} + 9\hat{k}}{17} ; |\vec{AN}| = \frac{\sqrt{306}}{17} = \frac{3\sqrt{34}}{17}$$

$$\vec{r} = P(\overrightarrow{AN}) \Rightarrow |\vec{r}| = |P| . |\overrightarrow{AN}| \text{ hence } 2\sqrt{34} = |P| \frac{3\sqrt{34}}{17}$$

$$|P| = \frac{34}{3} \implies P = \frac{34}{3} \text{ or } -\frac{34}{3}$$

$$\vec{r} = \pm \frac{34}{3} \left(\frac{9\hat{i} + 12\hat{j} + 9\hat{k}}{17} \right) = \pm 2 \left(3\hat{i} + 4\hat{j} + 3\hat{k} \right)$$

 \therefore angle with y axis is -ve \Rightarrow +ve sign to be rejected

$$\vec{r} = -6\hat{i} - 8\hat{j} - 6\hat{k} \implies (A)$$

Q.33_{72/complex} The complex number, z = 5 + i has an argument which is nearly equal to:

(A)
$$\pi/32$$

$$(B^*) \pi/16$$

(C)
$$\pi/12$$

(D)
$$\pi/8$$

 (\vec{a}) A(2,-1,-3)

0 98930 58881.

K. Sir), Bhopal Phone: 0 903 903 7779,

α.

Teko Classes, Maths: Suhag R. Kariya (S.

[Hint: z = 5 + i

$$5 + i = \sqrt{26} (\cos\theta + i \sin\theta)$$

$$+24 + 10i = 26(\cos 2\theta + i \sin 2\theta)$$

$$+476 + 480i = 676(\cos 4\theta + i \sin 4\theta)$$

$$\Rightarrow \frac{676 \sin 4\theta = 476}{\text{and } 676 \cos 4\theta = 480} \Rightarrow \tan 4\theta = \frac{476}{480} \approx 1$$

$$1 676 \cos 4\theta = 480$$
 $\Rightarrow \tan 4\theta = \frac{\pi}{480} \approx 1$

$$4\theta = \frac{\pi}{4} \implies \theta = \frac{\pi}{16}$$

Q.34_{97/vec} If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} - \hat{j} + \hat{k}$, $\vec{c} = \hat{i} + 2\hat{j} - \hat{k}$, then the value of $\begin{vmatrix} \vec{a}.\vec{a} & \vec{a}.\vec{b} & \vec{a}.\vec{c} \\ \vec{b}.\vec{a} & \vec{b}.\vec{b} & \vec{b}.\vec{c} \\ \vec{c}.\vec{a} & \vec{c}.\vec{b} & \vec{c}.\vec{c} \end{vmatrix}$ equal to

(A) 2

(B)4

(C*) 16

(D) 64

[Hint: $\left[\vec{a}\ \vec{b}\ \vec{c}\right]^2 = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 2 & -1 \end{vmatrix}^2 = 16$]

FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com

 $x^2 + ax + b = 0$ where a, $b \in R$ has a non real root whose cube is 343 then $Q.35_{96/complex}$ If the equation (7a + b) has the value

(A*)98

(B) - 49

(C) - 98

(D)49

the cube root of 343 are the roots of $x^3 - 343 = 0$ [Sol.

 $(x-7)(x^2+7x+49)=0$

where a = 7 and $b = 49 \implies 7a + b = 98$ Ans.]

Direction for Q.36 to Q.40.

 $\vec{A} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{B} = 3\hat{i} + 4\hat{j} + 5\hat{k}$

 $Q.36_{3(i)/vec}$ The value of the scalar $\sqrt{|\vec{A} \times \vec{B}|^2 + (\vec{A} \cdot \vec{B})^2}$ is equal to

Q.36_{3(i)/vec} The value of the scalar $\sqrt{|\vec{A} \times \vec{B}|^2 + (\vec{A} \cdot \vec{B})^2}$ is equal to (A) 8 (B) $7\sqrt{10}$ (C*) $10\sqrt{7}$ (D) 64 [Sol. $|\vec{a}|^2 |\vec{b}|^2 = 50 \cdot 14 = 700 = 10\sqrt{7}$ Ans] Q.37_{3(ii)/vec} Equation of a line passing through the point with position vector $2\hat{i} + 3\hat{j}$ and orthogonal to the plane 60

containing the vectors
$$\vec{A}$$
 and \vec{B} , is

$$(A^*) \vec{r} = (\lambda + 2)\hat{i} - (2\lambda - 3)\hat{j} + \lambda \hat{k} \qquad (B) \vec{r} = (\lambda - 2)\hat{i} - (2\lambda - 3)\hat{j} + \lambda \hat{k} \qquad (E) \vec{r} = \lambda \hat{i} + (2\lambda - 3)\hat{j} - \lambda \hat{k} \qquad (D) \text{ none}$$

[Sol. $\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ 3 & 4 & 5 \end{vmatrix} = (10 - 12)\hat{i} - (5 - 9)\hat{j} + (4 - 6)\hat{k} = -2\hat{i} + 4\hat{j} - 2\hat{k} = -2(\hat{i} - 2\hat{j} + \hat{k})$

Here $\vec{r} = 2\hat{i} + 3\hat{j} + \lambda(\hat{i} - 2\hat{j} + \hat{k}) = \vec{r} = (2 + \lambda)\hat{i} + (3 - 2\lambda)\hat{j} + \lambda \hat{k} \quad Ans.$]

Q.38_{3(iiii)/vec} Equation of a plane containing the point with position vector $(\hat{i} - \hat{j} + \hat{k})$ and parallel to the vectors \vec{A} and \vec{B} , is

(A) $x + 2y + z = 0$

(B) $x - 2y - z - 2 = 0$

(C*) $x - 2y + z - 4 = 0$

(D) $2x + y + z - 1 = 0$

Here
$$\vec{r} = 2\hat{i} + 3\hat{j} + \lambda(\hat{i} - 2\hat{j} + \hat{k}) = \vec{r} = (2 + \lambda)\hat{i} + (3 - 2\lambda)\hat{j} + \lambda\hat{k}$$
 Ans.]

 $(C^*) x - 2y + z - 4 = 0$

(D) 2x + y + z - 1 = 0

 $\vec{n} = \hat{i} - 2\hat{i} + \hat{k}$ [Sol.

 $\vec{a} = \hat{i} - \hat{j} + \hat{k}$

 $(\vec{r} - \vec{a}) \cdot \vec{n} = 0$

 $\vec{r} \cdot (\hat{i} - 2\hat{i} + \hat{k}) = \vec{a} \cdot \vec{n} = 4$

x - 2y + z = 4

Q.39_{3(iv)/vec} Volume of the tetrahedron whose 3 coterminous edges are the vectors \vec{A} , \vec{B} and $\vec{C} = 2\hat{i} + \hat{j} - 4\hat{k}$

(A) 1

(C) 8/3

(D) 8

α.

Teko Classes, Maths: Suhag R. Kariya (S.

[Sol. $\frac{1}{6}[\vec{a}\,\vec{b}\,\vec{c}] = \frac{1}{6}\begin{bmatrix} 1 & 2 & 3\\ 3 & 4 & 5\\ 2 & 1 & -4 \end{bmatrix}$

$$= \frac{1}{6} \left[1(-16 - 5) - 2(-12 - 10) + 3(3 - 8) \right] = \frac{1}{6} \left[-21 + 44 - 15 \right] = \frac{8}{6} = \frac{4}{3}$$

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

 $Q.40_{3(y)/yec}$ Vector component of \vec{A} perpendicular to the vector \vec{B} is given by

$$(A^*) \frac{\vec{B} \times (\vec{A} \times \vec{B})}{\vec{B}^2} \qquad (B) \frac{\vec{A} \times (\vec{A} \times \vec{B})}{\vec{B}^2} \qquad (C) \frac{\vec{B} \times (\vec{A} \times \vec{B})}{\vec{A}^2} \qquad (D) \frac{\vec{A} \times (\vec{A} \times \vec{B})}{\vec{A}^2}$$

(B)
$$\frac{\vec{A} \times (\vec{A} \times \vec{B})}{\vec{B}^2}$$

(C)
$$\frac{\vec{B} \times (\vec{A} \times \vec{B})}{\vec{A}^2}$$

(D)
$$\frac{\vec{A} \times (\vec{A} \times \vec{B})}{\vec{A}^2}$$

page 11

[Sol.
$$\vec{x} = \vec{A} - \left(\frac{\vec{A} \cdot \vec{B}}{\vec{B}^2}\right) \vec{B}$$
 \Rightarrow (A)

Select the correct alternatives: (More than one are correct)

- Q.41_{501/vec} If a, b, c are different real numbers and a $\hat{i} + b\hat{j} + c\hat{k}$; b $\hat{i} + c\hat{j} + a\hat{k}$ & c $\hat{i} + a\hat{j} + b\hat{k}$ are position vectors of three non-collinear points A, B & C then:

 (A*) centroid of triangle ABC is $\frac{a+b+c}{3}(\hat{i}+\hat{j}+\hat{k})$ (B*) $\hat{i}+\hat{j}+\hat{k}$ is equally inclined to the three vectors (C*) perpendicular from the origin to the plane of triangle ABC meet at centroid (D*) triangle ABC is an equilateral triangle.

 Q.42_{504/vec} The vectors \vec{a} , \vec{b} , \vec{c} are of the same length & pairwise form equal angles. If $\vec{a}=\hat{i}+\hat{j}$ & $\vec{b}=\hat{j}+\hat{k}$, the pv's of \vec{c} can be:

 (A*) (1,0,1) (B) $\left(-\frac{4}{3},\frac{1}{3},-\frac{4}{3}\right)$ (C) $\left(\frac{1}{3},-\frac{4}{3},\frac{1}{3}\right)$ (D*) $\left(-\frac{1}{3},\frac{4}{3},-\frac{1}{3}\right)$ [Hint: Let $\vec{c}=x\hat{i}+y\hat{j}+z\hat{k}$ $x^2+y^2+z^2=2$ —(1)

 now $\vec{a}\cdot\vec{b}=\vec{b}\cdot\vec{c}=\vec{c}\cdot\vec{a}$ \Rightarrow I=y+z=x+y—(2) \therefore z=x y=1-x put z and y in terms of x in (1) to get x and then get y and z

$$(A^*)(1,0,1)$$

(B)
$$\left(-\frac{4}{3}, \frac{1}{3}, -\frac{4}{3}\right)$$

(C)
$$\left(\frac{1}{3}, -\frac{4}{3}, \frac{1}{3}\right)$$

$$(D^*)\left(-\frac{1}{3}, \frac{4}{3}, -\frac{1}{3}\right)$$

now
$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} \implies I = y + z = x + y - (2)$$

$$\therefore z = x \quad y = 1 - x$$

Q.43_{512/complex} Which of the following locii of z on the complex plane represents a pair of straight lines? \vec{x} :

(A*) Re $z^2 = 0$ (B*) Im $z^2 = 0$ (C) |z| + z = 0 (D) |z - 1| = |z - i| (i) [Hint: C \Rightarrow negative real axis: Teko Classes, Maths: Suhag R. Kariya (S.

- $D \Rightarrow \text{ perpendicular bisector of the line joining } (0, 1) & (1, 0)$
- Q.44_{506/vec} If \vec{a} , \vec{b} , \vec{c} & \vec{d} are linearly independent set of vectors & $K_1\vec{a} + K_2\vec{b} + K_3\vec{c} + K_4\vec{d} = 0$ then :

$$(A^*) K_1 + K_2 + K_3 + K_4 = 0$$

$$(B^*) K_1 + K_3 = K_2 + K_4 = 0$$

$$(C^*) K_1 + K_4 = K_2 + K_3 = 0$$

(D) none of these

 $k_1 \vec{a} + k_2 \vec{b} + k_3 \vec{c} + k_4 \vec{d} = 0$ \vec{a} , \vec{b} , \vec{c} , \vec{d} are linearly independent [Hint:

- $k_1 = k_2 = k_3 = k_4 = 0$
- Q.45_{507/yec} If \vec{a} , \vec{b} , \vec{c} & \vec{d} are the pv's of the points A, B, C & D respectively in three dimensional space & satisfy the relation $3\vec{a} - 2\vec{b} + \vec{c} - 2\vec{d} = 0$, then:
 - (A*) A, B, C & D are coplanar
 - (B) the line joining the points B & D divides the line joining the point A & C in the ratio 2:1.
 - (C*) the line joining the points A & C divides the line joining the points B & D in the ratio 1:1
 - (D^*) the four vectors \vec{a} , \vec{b} , \vec{c} & \vec{d} are linearly dependent.

[Hint:
$$\frac{3\vec{a} + \vec{c}}{4} = \frac{2\vec{b} + 2\vec{d}}{4} = \frac{\vec{b} + \vec{d}}{2}$$

Hence line joining A & C intersect line joining B & C]

Q.46_{519/complex} If
$$z^3 - iz^2 - 2iz - 2 = 0$$
 then z can be equal to:
(A) $1 - i$ (B*) i (C*) $1 + i$

$$(A)^{1} 1 - i$$

$$(C^*)$$
 1+

$$(D^*) - 1 - i$$

[Hint:
$$(z-i)(z^2-2i) = 0 \implies z=i \text{ or } z^2=2i=2e^{i\pi/2} \implies z=1+i \text{ or } -1-i$$

Q.47_{509/vec} If \vec{a} & \vec{b} are two non collinear unit vectors & \vec{a} , \vec{b} , $x \vec{a} - y \vec{b}$ form a triangle, then:

(A*) x = -1; y = 1 &
$$|\vec{a} + \vec{b}| = 2 \cos \left(\frac{\vec{a} \cdot \vec{b}}{2}\right)$$

(B*)
$$x = -1$$
; $y = 1 & cos(\vec{a} \cdot \vec{b}) + |\vec{a} + \vec{b}| cos(\vec{a}, -(\vec{a} + \vec{b})) = -1$

(C)
$$|\vec{a} + \vec{b}| = -2 \cot \left(\frac{\vec{a} \cdot \vec{b}}{2}\right) \cos \left(\frac{\vec{a} \cdot \vec{b}}{2}\right) & x = -1, y = 1$$

(D) none

R. K. Sir), Bhopal Phone: 0 903 903 7779, 0 98930 58881.

Teko Classes, Maths: Suhag R. Kariya (S.

[Hint: \hat{a} , \hat{b} & $x\hat{a}$ – $y\hat{b}$ form a triangle hence, \hat{a} + \hat{b} + $x\hat{a}$ – $y\hat{b}$ = 0

$$\Rightarrow$$
 $(x+1)\hat{a} + (1-y)\hat{b} = 0$ Since $\hat{a} \& \hat{b}$ are collinear $\Rightarrow x = -1 \& y = 1$

Also
$$\left| \hat{\mathbf{a}} + \hat{\mathbf{b}} \right|^2 = 2 + 2\hat{\mathbf{a}} \cdot \hat{\mathbf{b}} = 2(1 + \cos\theta)$$
. $\left| \hat{\mathbf{a}} + \hat{\mathbf{b}} \right| = 2\cos\frac{\theta}{2} = 2\cos\left(\frac{\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}}{2}\right) \implies \mathbf{A}$

Also
$$\cos \phi = -\frac{\hat{a}.(\hat{a}+\hat{b})}{\left|\hat{a}+\hat{b}\right|} = -\frac{1+\cos\theta}{\left|\hat{a}+\hat{b}\right|}$$
 (where ϕ is the angle between $-\hat{a}$ & $\hat{a}+\hat{b}$)

$$\therefore |\hat{a} + \hat{b}| \cos \phi = -(1 + \cos \theta) \Rightarrow |\hat{a} + \hat{b}| \cos \phi + \cos \theta = -1]$$

Q.48_{510/vec} The lines with vector equations are; $\vec{r}_1 = -3\hat{i} + 6\hat{j} + \lambda \left(-4\hat{i} + 3\tilde{j} + 2\hat{k}\right)$ and

$$\vec{r}_2 = -2\hat{i} + 7\hat{j} + \mu \left(-4\hat{i} + \tilde{j} + \hat{k}\right)$$
 are such that :

(A) they are coplanar

(B*) they do not intersect

(C*) they are skew

 (D^*) the angle between them is $tan^{-1}(3/7)$

Q.49_{523/complex} Given a, b, $x, y \in R$ then which of the following statement(s) hold good?

(A*) (a + ib)
$$(x + iy)^{-1} = a - ib \implies x^2 + y^2 = 1$$

$$(B^*)(1-ix)(1+ix)^{-1} = a - ib \implies a^2 + b^2 = 1$$

$$(C^*)$$
 $(a + ib)$ $(a - ib)^{-1} = x - iy \implies |x + iy| = 1$

$$(D^*)(y-ix)(a+ib)^{-1} = y+ix \implies |a-ib| = 1$$

[Hint: Modulus of a complex number, which is the ratio of two conjugates is unity.

e.g. in A,
$$\frac{a+ib}{a-ib} = x + iy$$
 \Rightarrow $\left| \frac{a+ib}{a-ib} \right| = |x+iy| \Rightarrow x^2 + y^2 = 1$

 $Q.50_{514/vec}$ The acute angle that the vector $2\hat{i} - 2\hat{j} + \hat{k}$ makes with the plane contained by the two vectors $2\hat{i} + 3\hat{j} - \hat{k}$ and $\hat{i} - \hat{j} + 2\hat{k}$ is given by:

(A)
$$\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$$
 (B*) $\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$ (C) $\tan^{-1}\left(\sqrt{2}\right)$ (D*) $\cot^{-1}\left(\sqrt{2}\right)$

$$(B^*) \sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

(C)
$$\tan^{-1}\left(\sqrt{2}\right)$$

$$(D^*) \cot^{-1} \left(\sqrt{2} \right)$$

[Hint:
$$\vec{n}_1 = \vec{a} \times \vec{b} = (2\hat{i} + 3\hat{j} - \hat{k}) \times (\hat{i} - \hat{j} + 2\hat{k}) = 5(\hat{i} - \hat{j} + \hat{k})$$

$$\vec{n}_1 = \frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}} \quad \vec{v} = 2\hat{i} - 2\hat{j} + \hat{k} \implies \vec{v} = \frac{2\hat{i} - 2\hat{j} + \hat{k}}{3}$$

$$\cos(\frac{\pi}{2} - \theta) = \sin\theta = \hat{v} \cdot \hat{n} = \frac{1}{\sqrt{3}}$$
Q.51_{518/vec} The volume of a right triangular prism ABCA₁B₁C₁ is equal to 3. If the position vectors of the vertices of the base ABC are A(1, 0, 1): B(2, 0, 0) and C(0, 1, 0) the position vectors of the vertex A. \vec{x}

$$(A*)(2,2,2)$$

$$(C)(0,-2,2)$$

$$(D^*)(0, -2, 0)$$

[Hint: knowing the volume of the prism we find its altitude $H = (AA_1) = \sqrt{6}$ and designating the vertex

$$\overrightarrow{AA}_1$$
 perpendicular to \overrightarrow{AC}

compute
$$\pm \frac{\overrightarrow{AB} \times \overrightarrow{AC}}{\begin{vmatrix} \overrightarrow{AB} \times \overrightarrow{AC} \end{vmatrix}} = i$$

$$\therefore \sqrt{6} \hat{\mathbf{n}} = \mathbf{A} \mathbf{A}_1 = \pm \left(\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}} \right)$$

=
$$(x_1 - 1)\hat{i} + (y_1 - 1)\hat{j} + (z_1 - 1)\hat{k}$$

 $Q.52_{528/complex} \, If \ x_r = CiS \left(\frac{\pi}{2^r} \right) \ for \ 1 \le r \le n \quad r, \, n \in \, N \ then:$

(A*)
$$\underset{n\to\infty}{\text{Limit}} \operatorname{Re}\left(\prod_{r=1}^{n} x_{r}\right) = -1$$

(B)
$$\underset{n \to \infty}{\text{Limit}} \operatorname{Re} \left(\prod_{r=1}^{n} x_r \right) = 0$$

(C)
$$\lim_{n \to \infty} \operatorname{Im} \left(\prod_{r=1}^{n} x_r \right) = 1$$

(D*)
$$\lim_{n \to \infty} \operatorname{Im} \left(\prod_{r=1}^{n} x_r \right) = 0$$

Q.53_{524/vec} If a line has a vector equation, $\vec{r} = 2\hat{i} + 6\hat{j} + \lambda \left(\hat{i} - 3\hat{j}\right)$ then which of the following statements holds good?

- (A) the line is parallel to $2\hat{i} + 6\hat{j}$
- (B*) the line passes through the point $3\hat{i} + 3\hat{j}$
- (C*) the line passes through the point $\hat{i} + 9\hat{j}$ (D*) the line is parallel to xy plane

[Hint: Line is parallel to $\hat{i} - 3\hat{j} \Rightarrow D$

Also put

$$\vec{r}_1 = 3\hat{i} + 3\hat{j}$$
 for which $\lambda = 1$

 $\vec{r}_1 = \hat{i} + 9\hat{j}$ for which $\lambda = -1$ \Rightarrow B & C]

 $Q.54_{525/\text{vec}}$ If \vec{a} , \vec{b} , \vec{c} are non-zero, non-collinear vectors such that a vector

$$\vec{p} = a b \cos(2\pi - (\vec{a} \wedge \vec{b})) \vec{c}$$
 and a vector $\vec{q} = a c \cos(\pi - (\vec{a} \wedge \vec{c})) \vec{b}$ then $\vec{p} + \vec{q}$ is

(A) parallel to \vec{a}

 (B^*) perpendicular to \vec{a}

(C*) coplanar with \vec{b} & \vec{c}

(D) coplanar with \vec{a} and \vec{c}

[Sol. $\vec{p} = a b \cos(2\pi - \theta) \vec{c}$ where θ is the angle between \vec{a} and \vec{b} and

 $\vec{q} = a \cos(\pi - \phi) \vec{b}$ where ϕ is the angle between \vec{a} and \vec{c}

 $\vec{p} + \vec{q} = (ab\cos\theta)\vec{c} - ac\cos\phi\vec{b} = (\vec{a}.\vec{b})\vec{c} - (\vec{a}.\vec{c})\vec{b} = \vec{a} \times (\vec{c} \times \vec{b}) \Rightarrow B \text{ and } C$

 $Q.55_{539/complex}$ The greatest value of the modulus of of the complex number 'z' satisfying the equality

is

(A)
$$\frac{-1+\sqrt{5}}{2}$$

- $\sqrt{5} + 1$ (D*)

page 14

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopal Phone: 0 903 903 7779, 0 98930 58881.

SUBJECTIVE:

Q.1_{90/5} Let $\vec{a} = \sqrt{3} \hat{i} - \hat{j}$ and $\vec{b} = \frac{1}{2} \hat{i} + \frac{\sqrt{3}}{2} \hat{j}$ and $\vec{x} = \vec{a} + (q^2 - 3)\vec{b}$, $\vec{y} = -p\vec{a} + q\vec{b}$. If $\vec{x} \perp \vec{y}$, then express \vec{p}

as a function of q, say p = f(q), $(p \ne 0 \& q \ne 0)$ and find the intervals of monotonicity of f(q).

 $\vec{x} = \left(\sqrt{3}\,\hat{i} - \hat{j}\right) + (q^2 - 3)\left(\frac{1}{2}\,\hat{i} + \frac{\sqrt{3}}{2}\,\hat{j}\right) = \left(\sqrt{3} + \frac{q^2 - 3}{2}\right)\hat{i} - \left(1 - \frac{\sqrt{3}}{2}(q^2 - 3)\right)\hat{j}$

$$\vec{y} = -p(3\hat{i} - \hat{j}) + q(\frac{1}{2}\hat{i} + \frac{\sqrt{3}}{2}\hat{j})$$

 $\vec{x} \cdot \vec{y} = 0$ gives

$$p = \frac{q(q^3 - 3)}{4}$$
 Ans.

$$\frac{dp}{dq} = \frac{1}{4} [3q^2 - 3] > 0$$
$$q^2 - 1 > 0$$

$$q > 1$$
 or $q < -1$
and decreasing in $q \in (-1, 1), q \neq 0$ **Ans.**]

Q.2_{25/3} Using only the limit theorems $\lim_{x \to 1} \frac{\ln x}{x-1} = 1$ and $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$. Evaluate $\lim_{x \to 1} \frac{x^x - x}{\ln x - x + 1}$. [Ans. -2]

[Sol.
$$\lim_{x \to 1} \frac{x^x - x}{\ln x - x + 1}$$

$$l = \lim_{x \to 1} \frac{e^{x \ln x} - e^{\ln x}}{\ln x - x + 1} = \lim_{x \to 1} e^{\ln x} \cdot \frac{[e^{x \ln x - \ln x} - 1]}{(x \ln x - \ln x)} \cdot \frac{x \ln x - \ln x}{\ln x - x + 1}$$

$$= (1) (1) \cdot \lim_{x \to 1} \frac{\ln x(x-1)(x-1)}{(x-1)(\ln x - x + 1)} = (1) (1) (1) \cdot \lim_{x \to 1} \frac{(x-1)^2}{\ln x - x + 1}$$

$$= \lim_{h \to 0} \frac{h^2}{ln(1+h) - h}$$

$$= \lim_{y \to 0} \frac{(e^y - 1)^2}{y - (e^y - 1)} = \lim_{y \to 0} \left(\frac{e^y - 1}{y}\right)^2 \cdot \lim_{y \to 0} \frac{y^2}{y - e^y + 1} = -(1) \lim_{y \to 0} \frac{y^2}{y - e^y - 1}$$

$$l = -2$$
 and $\lim_{y \to 0} \frac{e^y - y - 1}{y^2} = \frac{1}{2}$ Ans.]

[Sol. $\lim_{x \to 1} \frac{A - A}{\ln x - x + 1}$ | $\int_{x \to 1}^{\infty} \frac{e^{x \ln x} - e^{\ln x}}{\ln x - x + 1} = \lim_{x \to 1} \frac{e^{\sin x} \cdot \frac{[e^{x \ln x - \ln x} - 1]}{(x \ln x - \ln x)} \cdot \frac{x \ln x - \ln x}{\ln x - x + 1}$ | $\int_{x \to 1}^{\infty} \frac{e^{x \ln x} - e^{\ln x}}{(x - 1)((n - x - x + 1))} = (1)(1)(1) \cdot \lim_{x \to 1} \frac{(x - 1)^2}{\ln x - x + 1}$ | $\int_{x \to 1}^{\infty} \frac{e^{x \ln x} - e^{\ln x}}{(x - 1)((n - x - x + 1))} = (1)(1)(1) \cdot \lim_{x \to 1} \frac{(x - 1)^2}{\ln x - x + 1}$ | $\int_{x \to 1}^{\infty} \frac{e^{x \ln x} - \ln x}{(x - 1)((n - x - x + 1))} = \lim_{x \to 0} \frac{(x - 1)^2}{\ln (x - x + 1)}$ | $\int_{x \to 1}^{\infty} \frac{e^{x \ln x} - \ln x}{\ln x - \ln x} = \lim_{x \to 1} \frac{(x - 1)^2}{\ln x - x + 1}$ | $\int_{x \to 1}^{\infty} \frac{e^{x \ln x} - \ln x}{\ln x - \ln x} = \lim_{x \to 1} \frac{(x - 1)^2}{\ln x - x + 1}$ | $\int_{x \to 1}^{\infty} \frac{e^{x \ln x} - 1}{\ln x - x + 1}$ | $\int_{x \to 1}^{\infty} \frac{e^{x \ln x} - 1}{\ln x - x + 1}$ | $\int_{x \to 1}^{\infty} \frac{e^{x \ln x} - 1}{\ln x - x + 1}$ | $\int_{x \to 1}^{\infty} \frac{e^{x \ln x} - 1}{\ln x - x + 1}} = \lim_{x \to 1} \frac{e^{x \ln x} - 1}{\ln x - \ln x} = \lim_{x \to 1} \frac{e^{x \ln x} - 1}{\ln x - 1} = \lim_{x \to 1} \frac{e^{x \ln x} - 1}{\ln x - 1} = \lim_{x \to 1} \frac{e^{x \ln x} - 1}{\ln x - 1} = \lim_{x \to 1} \frac{e^{x \ln x} - 1}{\ln x - 1} = \lim_$

[Ans.
$$(2\hat{i} + 2\hat{j} - \hat{k}) \cdot \vec{r} = 3$$
]

$$4\hat{i} - 2\hat{j} + \hat{k} \quad A(a_1, a_2, a_3) (5, -3, 1)$$

$$B(b_1, b_2, b_3) (3, -2, -1)$$

$$C(c_1, c_2, c_3) (3, -1, 1)$$

page 15

$$Q.4_{222/3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{(\cos^{2n-1} x - \cos^{2n+1} x)} \ dx \ where \ n \in N$$

[Sol.
$$I = 2 \int_{0}^{\frac{\pi}{2}} \sqrt{(\cos x)^{2n-1} (1-\cos^2 x)} dx$$
 as f is even

$$=2\int\limits_{0}^{\frac{\pi}{2}}(\cos x)^{\frac{2n-1}{2}}.\sin x\ dx=2\int\limits_{0}^{1}t^{\frac{2n-1}{2}}.dt\quad \text{ when } \cos x=t=\frac{2\cdot 2}{2n+1}\left[t^{\frac{2n+1}{2}}\right]_{0}^{1}=\frac{4}{2n+1}$$

Q.5_{97/5} Let points P, Q & R have position vectors, $\vec{r}_1 = 3i - 2j - k$; $\vec{r}_2 = i + 3j + 4k$ & $\vec{r}_3 = 2i + j - 2k$ respectively, relative to an origin O. Find the distance of P from the plane OQR.

[Ans: 3 units]

[Sol.
$$\vec{n} = \vec{r}_2 \times \vec{r}_3 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 3 & 4 \\ 2 & 1 & -2 \end{vmatrix}$$

$$\hat{i} (-6-4) - \hat{j} (-2-8) + \hat{k} (1-6)$$

$$= -10\hat{i} + 10\hat{j} - 5\hat{k}$$

$$\hat{n} = \frac{2\hat{i} - 2\hat{j} + \hat{k}}{3}$$

$$\therefore d = \left| \text{Projection of } \overrightarrow{OP} \text{ on } \overrightarrow{n} \right| = \left| \frac{(3\hat{i} - 2\hat{j} + \hat{k}) \cdot (2\hat{i} - 2\hat{j} + \hat{k})}{3} \right| = \frac{6 + 4 - 1}{3} = 3 \text{ units} \right]$$

Q.6_{228/3} Evaluate:
$$\int_{1}^{3} |(x-1)(x-2)(x-3)| dx$$

[Ans. 1/2]

[Sol.
$$I = \int_{1}^{3} |(x-1)(3-x)(x-2)| dx$$

let
$$x = \cos^2\theta + 3\sin^2\theta$$

 $dx = 2\sin 2\theta d\theta$

$$x - 1 = 2\sin^2\theta$$
; $3 - x = 2\cos^2\theta$ and $x - 2 = \cos^2\theta + 3\sin^2\theta - 2 = 2\sin^2\theta - 1 = -\cos 2\theta$

$$I = \int\limits_{0}^{\pi/2} \left| 2\sin\theta \cdot 2\cos^2\theta \cdot \cos 2\theta \right| 2\sin 2\theta \, d\theta = \int\limits_{0}^{\pi/2} 4\sin^2\theta \cdot \cos^2\theta \cdot 2\sin 2\theta |\cos 2\theta| \, d\theta$$

$$= \int_{0}^{\pi/2} 2\sin^3 2\theta \left|\cos 2\theta\right| d\theta$$

put
$$2\theta = t$$

$$I = \int_{0}^{\pi} 2 \sin^{3} t |\cos t| \frac{dt}{2} = 2 \int_{0}^{\pi/2} (\sin^{3} t \cdot \cos t) dt$$

put $\sin t = y$

page 16

$$I = 2 \int_{0}^{1} y^{3} dy = 2 \cdot \frac{y^{4}}{4} \Big|_{0}^{1} = \frac{1}{2} \text{ Ans. }]$$

Q.7_{98/5} Given that vectors \vec{A} , \vec{B} , \vec{C} form a triangle such that $\vec{A} = \vec{B} + \vec{C}$, find a,b,c,d such that the area of the triangle is $5\sqrt{6}$ where $\vec{A} = ai + bj + ck$; $\vec{B} = di + 3j + 4k$ & $\vec{C} = 3i + j - 2k$.

[Sol. $\vec{A} = \vec{B} + \vec{C}$ $a\hat{i} + b\hat{j} + c\hat{k} = (d+3)\hat{i} + (3+1)\hat{j} + (4-2)\hat{k}$ $= (d+3)\hat{i} + 4\hat{j} + 2\hat{k}$ Hence d+3=a; b=4 and c=2

again $|\vec{B} \times \vec{C}| = 5\sqrt{6}$

$$|\vec{B}|^2 |\vec{C}|^2 - (\vec{B} \cdot \vec{C})^2 = 150$$

 $(25 + d^2)14 - (3d + 3 - 8)^2 = 150$
 $(26 + d^2) - (3d - 5)^2 - 150$ now proceed to get to

$$14(25 + d^2) - (3d - 5)^2 = 150$$
 now proceed to get two values of d

$$Q.8_{246/3} \underset{n\to\infty}{\text{Lim}} n \sum_{k=0}^{n-1} \underbrace{\int\limits_{\frac{k}{n}}^{\frac{k+1}{n}} \sqrt{\left(x-\frac{k}{n}\right) \left(\frac{k+1}{n}-x\right) dx}}_{}$$

[Ans.
$$\frac{\pi}{8}$$
]

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopal Phone: 0 903 903 7779, 0 98930 58881.

[Sol. Let
$$\int_{\alpha}^{\beta} \sqrt{(x-\alpha)(\beta-x)} \, dx \text{ where } \alpha = \frac{k}{n}; \beta = \frac{k+1}{n}$$

$$x = \alpha \cos^{2}\alpha + \beta \sin^{2}\theta$$
$$dx = (\beta - \alpha)2 \sin \theta \cos \theta$$
$$x - \alpha = (\beta - \alpha)\sin^{2}\theta$$

$$I = 2(\beta - \alpha)^{2} \int_{0}^{\pi/2} (\sin^{2}\theta \cos^{2}\theta) d\theta = \frac{(\beta - \alpha)^{2}}{2} \int_{0}^{\pi/2} \sin^{2}2\theta d\theta$$

put
$$2\theta = t$$

$$I = \frac{(\beta - \alpha)^2}{4} \int_0^{\pi} \sin^2 t \, dt = \frac{(\beta - \alpha)^2}{4} \cdot 2 \cdot \int_0^{\pi/2} \sin^2 t \, dt$$

$$=\frac{(\beta-\alpha)^2}{8}\pi=\frac{\pi}{8}(\beta-\alpha)^2=\frac{\pi}{8}\cdot\frac{1}{n^2} \ \ \text{which is independent of } k.$$

$$\therefore \qquad l = \lim_{n \to \infty} n \cdot \sum_{k=0}^{n-1} \frac{\pi}{8} \cdot \frac{1}{n^2} = \lim_{n \to \infty} \frac{1}{n} \frac{\pi}{8} \sum_{k=0}^{n-1} (1) = \lim_{n \to \infty} \frac{\pi}{8n} \cdot n = \frac{\pi}{8} \text{ Ans. }]$$

 $Q.9_{114/5}$ Find the distance of the point P(i+j+k) from the plane L which passes through the three points A(2i+j+k), B(i+2j+k), C(i+j+2k). Also find the pv of the foot of the perpendicular from P on the plane L.

B(1,2,1)

A(2,1,1)

[Sol.

$$\vec{a} = 0\hat{i} - \hat{j} + \hat{k}$$
$$\vec{b} = \hat{i} - \hat{j} + 0\hat{k}$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & -1 & 1 \\ 1 & -1 & 0 \end{vmatrix}$$

$$= \hat{i}(1) - \hat{j}(-1) + \hat{k}(1)$$

$$\vec{a} \times \vec{b} = \hat{i} + \hat{j} + \hat{k} = \vec{n}$$
 (say)

$$\overrightarrow{BP} = 0\hat{i} - \hat{j} + 0\hat{k} = \vec{c}$$

$$\overrightarrow{PN}$$
 = Projection of \overrightarrow{c} on \overrightarrow{n} = $\left| \frac{\overrightarrow{c} \cdot \overrightarrow{n}}{\overrightarrow{n}} \right|$ = $\left| \frac{-1}{\sqrt{1+1+1}} \right|$ = $\frac{1}{\sqrt{3}}$

Now equation of a line through P and $|\vec{n}|$ is $\vec{r} = \hat{i} + \hat{j} + \hat{k} + \lambda(\hat{i} + \hat{j} + \hat{k}) = 1 + \lambda[\hat{i} + \hat{j} + \hat{k}]$ Let the position vector of $N = (1+\lambda), (1+\lambda), (1+\lambda)$

$$\overrightarrow{AN} = (\lambda - 1)\hat{i} + \lambda\hat{j} + \lambda\hat{k}$$

Now \vec{a} , \vec{b} and \vec{AN} must be copalnar

$$\begin{vmatrix} 0 & -1 & 1 \\ 1 & -1 & 0 \\ \lambda - 1 & \lambda & \lambda \end{vmatrix} = 0$$

$$1[\lambda] + 1[\lambda + \lambda - 1] = 0$$
$$3l = 1 \Rightarrow \lambda = 1/3$$

$$\therefore$$
 Position vector of N $\left(\frac{4}{3}, \frac{4}{3}, \frac{4}{3}\right)$]

Q.10 Evaluate: **(a)**
$$\int \frac{\sqrt{\sin^4 x + \cos^4 x}}{\sin^3 x \cos x} dx$$
, $x \in \left(0, \frac{\pi}{2}\right)$; **(b)** $\int \frac{\sqrt{\sin^4 x + \cos^4 x}}{\sin x \cos^3 x} dx$

$$[Sol.(\mathbf{a})\mathbf{I} = \int \frac{\sqrt{\sin^4 x + \cos^4 x}}{\sin^3 x \cos x} \, dx \,, \quad x \in \left(0, \frac{\pi}{4}\right) \quad [$$

$$= \int \frac{\cos^2 x \sqrt{1 + \tan^4 x}}{\sin^3 x \cos x} \, dx = \int \frac{\cos x \sqrt{1 + \tan^4 x}}{\sin^3 x} \, dx = \int \frac{\sqrt{1 + \cot^4 x}}{\cot^2 x} \cdot \cot x \cdot \csc^2 x \, dx$$

$$\text{put } \cot^2 x = \mathbf{t} \Rightarrow \quad 2 \cot x \cdot \csc^2 x \, dx = -d\mathbf{t}$$

$$\mathbf{I} = -\frac{1}{2} \int \frac{\sqrt{1 + \mathbf{t}^2}}{\mathbf{t}} \, d\mathbf{t}$$

$$\text{put } 1 + \mathbf{t}^2 = \mathbf{y}^2 \Rightarrow \quad \mathbf{t} \, d\mathbf{t} = \mathbf{y} \, d\mathbf{y}$$

$$\mathbf{I} = -\frac{1}{2} \int \frac{\mathbf{y} \cdot \mathbf{y}}{\mathbf{t}^2} \, d\mathbf{y} = -\frac{1}{2} \int \frac{\mathbf{y}^2 - 1 + 1}{\mathbf{y}^2 - 1} \, d\mathbf{y} = -\frac{1}{2} \left(\int d\mathbf{y} + \int \frac{d\mathbf{y}}{\mathbf{y}^2 - 1} \right) = \mathbf{C} - \frac{\mathbf{y}}{2} - \frac{1}{4} \ln \frac{\mathbf{y} - 1}{\mathbf{y} + 1}$$

$$= \mathbf{C} - \frac{\sqrt{1 + \mathbf{t}^2}}{2} - \frac{1}{4} \ln \frac{\sqrt{\mathbf{t}^2 + 1} - 1}{\sqrt{\mathbf{t}^2 + 1} + 1} \quad \text{where } \mathbf{t} = \cot^2 x \, \mathbf{Ans}(\mathbf{a}).$$

$$(b) \quad \mathbf{I} = \int \frac{\sqrt{\sin^4 x + \cos^4 x}}{\sin x \cos^3 x} \, dx = \int \frac{\sin^2 x \sqrt{1 + \cot^4 x}}{\sin x \cos^3 x} \, dx = \int \frac{\sqrt{1 + \tan^4 x}}{\tan^2 x} \cdot \tan x \cdot \sec^2 x \, dx$$

$$\text{put } \tan^2 x = \mathbf{t}$$

$$= \frac{1}{2} \int \frac{\sqrt{1 + \mathbf{t}^2}}{\mathbf{t}} \, d\mathbf{t} \quad \Rightarrow \quad \frac{\sqrt{1 + \mathbf{t}^2}}{2} + \frac{1}{4} \ln \frac{\sqrt{\mathbf{t}^2 + 1} - 1}{\sqrt{\mathbf{t}^2 + 1} + 1}}{\mathbf{t}} + \mathbf{C}, \text{ where } \mathbf{t} = \tan^2 x \, \mathbf{Ans}(\mathbf{b}).$$

$$\mathbf{Q}. \mathbf{11}_{115/5} \text{ Find the equation of the straight line which passes through the point with position vector } \bar{\mathbf{a}} \,, \text{ meets the } \frac{\overline{\mathbf{b}}}{\mathbf{b}} \, dx$$

$$\mathbf{g} = \mathbf{g} \, \mathbf{g} \,$$

(b)
$$I = \int \frac{\sqrt{\sin^4 x + \cos^4 x}}{\sin x \cos^3 x} dx = \int \frac{\sin^2 x \sqrt{1 + \cot^4 x}}{\sin x \cos^3 x} dx = \int \frac{\sqrt{1 + \tan^4 x}}{\tan^2 x} \cdot \tan x \cdot \sec^2 x dx$$
put $\tan^2 x = t$

$$= \frac{1}{2} \int \frac{\sqrt{1 + t^2}}{t} dt \implies \frac{\sqrt{1 + t^2}}{2} + \frac{1}{4} \ln \frac{\sqrt{t^2 + 1} - 1}{\sqrt{t^2 + 1} + 1} + C, \text{ where } t = \tan^2 x \text{ Ans(b).}$$

- $Q.11_{115/5}$ Find the equation of the straight line which passes through the point with position vector \vec{a} , meets the
- Teko Classes, Maths: Suhag R. Kariya (S.

$$[(\vec{b} - \vec{a}) + t\vec{c}] \cdot \vec{n} = 0 \implies t = \frac{(\vec{a} - \vec{b}) \cdot \vec{n}}{\vec{c} \cdot \vec{n}}$$

Hence equation of the line is

$$\vec{r} = \vec{a} + \lambda (\vec{b} - \vec{a} + t\vec{c})$$

$$\vec{r} = \vec{a} + \lambda \left[\vec{b} - \vec{a} + \frac{(\vec{a} - \vec{b}) \cdot \vec{n}}{\vec{c} \cdot \vec{n}} \vec{c} \right]$$

$$\vec{r} = \vec{a} + \lambda \left[(\vec{a} - \vec{b}) - \frac{(\vec{a} - \vec{b}) \cdot \vec{n}}{\vec{c} \cdot \vec{n}} \vec{c} \right] Ans]$$

Q.12 Integrate:
$$\int \frac{dx}{\cos^3 x - \sin^3 x}. \quad [Ans. \ 2 \left[\tan^{-1} (\sin x + \cos x) + \frac{1}{2\sqrt{2}} \ ln \left| \frac{\sqrt{2} + \sin x + \cos x}{\sqrt{2} - \sin x - \cos x} \right| + C \right]$$

[Sol.
$$I = \int \frac{dx}{\cos^3 x - \sin^3 x} = \int \frac{dx}{(\cos x - \sin x)(1 + \sin x \cos x)} = 2\int \frac{(\cos x - \sin x)dx}{(\cos x - \sin x)^2 (2 + \sin 2x)}$$
$$= 2\int \frac{(\cos x - \sin x)dx}{(1 - \sin 2x)(2 + \sin 2x)}$$

$$I = \int \frac{(\cos x - \sin x) dx}{(2 - (\sin x + \cos x)^{2})(1 + (\sin x + \cos x)^{2})}$$

put $\sin x + \cos x = t$ \Rightarrow $(\cos x - \sin x) dx = dx$

hence
$$I = \int \frac{dt}{(2-t^2)(1+t^2)} = \int \frac{(2-t^2)+(1+t^2)}{(2-t^2)(1+t^2)} dt = \int \frac{dt}{1+t^2} + \int \frac{dt}{2-t^2}$$
$$= \tan^{-1}(t) + \frac{1}{2\sqrt{2}} \ln \frac{\sqrt{2}+t}{\sqrt{2}-t} + C$$
$$= 2 \left[\tan^{-1}(\sin x + \cos x) + \frac{1}{2\sqrt{2}} \ln \left| \frac{\sqrt{2}+\sin x + \cos x}{\sqrt{2}-\sin x - \cos x} \right| + C \text{ Ans. } \right]$$

 $Q.13_{147/5}$ Find the equation of the line passing through the point (1, 4, 3) which is perpendicular to both of the lines

$$\frac{x-1}{2} = \frac{y+3}{1} = \frac{z-2}{4}$$
 and $\frac{x+2}{3} = \frac{y-4}{2} = \frac{z+1}{-2}$

Also find all points on this line the square of whose distance from (1, 4, 3) is 357.

[Ans.
$$\frac{x-1}{-10} = \frac{y-4}{16} = \frac{z-3}{1}$$
, ; (-9, 20, 4); (11, -12, 2)]

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopal Phone: 0 903 903 7779, 0 98930 58881.

[Sol. Equation of the line passing through (1, 4, 3)

$$\frac{x-1}{a} = \frac{y-4}{b} = \frac{z-3}{c}$$
(1)

since (1) is perpendicular to $\frac{x-1}{2} = \frac{y+3}{1} = \frac{z-2}{4}$ and $\frac{x+2}{3} = \frac{y-4}{2} = \frac{z+1}{-2}$

hence 2a + b + 4c = 0and 3a + 2b - 2c = 0

$$\therefore \frac{a}{-2-8} = \frac{b}{12+4} = \frac{c}{4-3} \Rightarrow \frac{a}{-10} = \frac{b}{16} = \frac{c}{1}$$

hence the equation of the lines is $\frac{x-1}{-10} = \frac{y-4}{16} = \frac{z-3}{1}$ (2) Ans.

now any point P on (2) can be taken as

$$1 - 10\lambda ; 16\lambda + 4 ; \lambda + 3$$

distance of P from Q(1, 4, 3)

$$(10\lambda)^2 + (16\lambda)^2 + \lambda^2 = 357$$

Ans.]

FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com Q.14 $\lim_{n \to \infty} \left(\frac{\sqrt{n^2 + n} - 1}{n} \right)^{2\sqrt{n^2 + n} - 1}$

[Ans. e^{-1}]

Horizontal plane

 $L = e^{\lim_{n \to \infty} 2\sqrt{n^2 + n} - 1(\frac{\sqrt{n^2 + n} - 1}{n} - 1)} = e^l, \text{ where } l = \lim_{n \to \infty} \left(2\sqrt{n^2 + n} + 1\right) \left(\frac{\sqrt{n^2 + n} - (1 + n)}{n}\right)$

 $= \lim_{n \to \infty} \frac{n \left[2\sqrt{1 + \frac{1}{n} + \frac{1}{n}} \right]}{n} \cdot \lim_{n \to \infty} \left(\sqrt{n^2 + n} - (n+1) \right)$

 $= 2 \cdot \lim_{n \to \infty} \left(\frac{(n^2 + n) - (n + 1)^2}{\sqrt{n^2 + n} + (n + 1)} \right)$ (rationalisation) = $2 \cdot \lim_{n \to \infty} \frac{n^2 + n - n^2 - 2n - 1}{\sqrt{n^2 + n} + n + 1}$

$$= 2 \cdot \lim_{n \to \infty} \frac{-(n+1)}{n \left[\left(\left(1 + \frac{1}{n} \right) + 1 + \frac{1}{n} \right) \right]} = 2 \cdot \lim_{n \to \infty} \frac{-n \left(1 + \frac{1}{n} \right)}{n \left[\left(1 + \frac{1}{n} \right) + 1 + \frac{1}{n} \right]} = -2 \left(\frac{1}{2} \right) = -1$$

 $L = e^{-1}$ ans.]

Q.15_{151/5} If z-axis be vertical, find the equation of the line of greatest slope through the point (2, -1, 0) on the plane 2x + 3y - 4z = 1.

[Sol. Equation of the line of greatest slope

$$\frac{x-2}{a} = \frac{y+1}{b} = \frac{z}{c}$$

where 2a + 3b - 4c = 0

now equation of the horizontal plane is z = 0

i.e.
$$0 \cdot x + 0 \cdot y + 1 \cdot z = 0$$

now a vector along the line of intersection of given plane and horizontal plane is

$$\vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 0 & 1 \\ 2 & 3 & -4 \end{vmatrix} = -(3\hat{i} - 2\hat{j}) = 3\hat{i} + 2\hat{j} + 0\hat{k}$$

since the line of greatest slope is also perpendicular to the vector \vec{v} hence

$$-3a + 2b + 0 \cdot c = 0$$

...(2)

from (1) and (2)

$$2a + 3b - 4c = 0$$

 $-3a + 2b + 0 \cdot c = 0$

$$\frac{a}{0+8} = \frac{b}{12} = \frac{c}{4+9}$$
 \Rightarrow $\frac{a}{8} = \frac{b}{12} = \frac{c}{13}$

 $\therefore \qquad \text{equation of the line of greatest slope} = \frac{x-2}{8} = \frac{y+1}{12} = \frac{z}{13}$] Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

Q.16 Let
$$I = \int_{0}^{\pi/2} \frac{\cos x}{a \cos x + b \sin x} dx$$
 and $J = \int_{0}^{\pi/2} \frac{\sin x}{a \cos x + b \sin x} dx$, where $a > 0$ and $b > 0$.

Compute the values of I and J.

[Sol.
$$aI + bJ = \frac{\pi}{2}$$
(1)

and
$$bI - aJ = \int_{0}^{\pi/2} \frac{b\cos x - a\sin x}{a\cos x + b\sin x} dx$$

$$\therefore \qquad bI - aJ = ln \left[a\cos x + b\sin x \right]_0^{\pi/2} \qquad \Rightarrow \qquad bI - aJ = ln \left(\frac{b}{a} \right) \qquad \dots (2)$$

from (1) and (2)

$$a^2I + abJ = \frac{a\pi}{2}$$

$$b^2I - abJ = b \ln(b/a)$$

$$I = \frac{1}{a^2 + b^2} \left(\frac{a\pi}{2} + b \ln \left(\frac{b}{a} \right) \right) \quad \mathbf{Ans}.$$

again
$$abI + b^2I = \frac{b\pi}{2}$$

and
$$abI - a^2J = a \ln (b/a)$$

subtract

$$J = \frac{1}{a^2 + b^2} \left(\frac{b\pi}{2} - a \ln \left(\frac{b}{a} \right) \right) Ans.$$

Alternatively: convert $a \cos x + b \sin x$ into a single cosine say $\cos(x + f)$ and put x - f = t

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopal Phone: 0 903 903 7779, 0 98930 58881.