

Institutt for matematiske fag

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger					
Faglig kontakt under eksamen: Anton Evgrafov Tlf: 4503 0163					
Eksamensdato: 06. juni 2016					
Eksamenstid (fra-til): 09:00-13:00 Hjelpemiddelkode/Tillatte hjelpemidler: B: Spesifiserte trykte og håndskrevne hjelpemidle tillatt:					
K. Rottmann: Matematisk formelsamling					
Bestemt, enkel kalkulator tillatt.					
Målform/språk: bokmål					
Antall sider: 3					
Antall sider vedlegg: 0					
Kontrollert av					

Sign

Dato

Oppgave 1 Vi ser på likningen

$$e^x - y = 0,$$

hvor y > 0 er gitt, og $x \in \mathbb{R}$ er ukjent.

a) Formuler Newtons metode for å løse denne likningen. Gjør to iterasjoner for hånd for y = e. Start med $x_0 = 0$.

Oppgave 2

a) Finn det polynomet p(x) av lavest mulig grad som interpolerer funksjonen $f(x) = \sqrt{|x|}$ i punktene $x_1 = 0, x_2 = 4, x_3 = 9.$

Vi bruker samme notasjon for f(x) og p(x) som i **a**) i resten av oppgaven.

b) Funksjonen F(x) = x er lik med $(f(x))^2$ for $x \ge 0$. Derfor interpolerer $P(x) = (p(x))^2$ funksjonen F(x) i punktene $x_1 = 0, x_2 = 4$ og $x_3 = 9$.

Forklar hvorfor formelen for estimatet av interpolasjonsfeilen, gitt av

$$F(x) - P(x) = \frac{(x - x_1)(x - x_2)(x - x_3)}{3!}F'''(c),$$

med $c \in [\min\{x, x_1\}, \max\{x, x_3\}]$, ikke holder i denne situasjonen.

Oppgave 3

- a) Approksimer integralet $\int_0^1 \ln(x) \, \mathrm{d}x$ ved å bruke midtpunktskvadraturer med n=1 og n=2 delintervaller.
- **b)** Hvis vi antar at f'' er kontinuerlig på intervallet [a,b], er feilestimatet for midtpunktskvadraturet $Q_{[a,b]}f$ gitt av

$$\int_{a}^{b} f(x) dx = Q_{[a,b]} f + \frac{h^{3}}{24} f''(c),$$

der c er et punkt mellom a og b, og h = b - a.

Bruk nå adaptive kvadraturer til å estimere forskjellen $\int_0^1 \ln(x) dx - Q_{[0,1]} \ln$. (Ignorer det at ln på intervallet [0,1] ikke oppfyller deriverbarhetskravet i feilestimatet.) Du kan gjenbruke de numeriske beregningene fra **a**).

¹delintervaller = "panels" i boken

Oppgave 4 Vi skal nå se på et initialverdiproblem:

$$y'(t) = -(y(t))^2, y(0) = 1.$$

Løsningen av differensiallikningen er $y(t) = (t+1)^{-1}$.

- a) Regn ut to steg av y numerisk ved hjelp av den eksplisitte Eulermetoden. Bruk steglengde h = 1.
- b) Formuler den implisitte Eulermetoden (med tilfeldig $h_i = t_{i+1} t_i > 0$) for problemet. Vis at andregradslikningen som framkommer i metoden har to reelle røtter for approksimasjonen $w_{i+1} \approx y(t_{i+1})$ gitt av $w_i \approx y(t_i)$ og h_i , gitt at h_i er "liten nok". Finn de eksplisitte utrykkene for røttene og forklar hvilken av dem som bør velges i metoden.

Oppgave 5

- a) Beregn den diskrete Fouriertransformasjonen av $x = [1, 2, 3]^{T}$.
- b) La $y = [y_0, y_1, \dots, y_{n-1}]^T \in \mathbb{C}^n$ være den diskrete Fouriertransformasjonen av vektoren $x = [x_0, x_1, \dots, x_{n-1}]^T \in \mathbb{C}^n$. Nå konstruerer vi vektoren $\hat{x} = [x_0, x_{n-1}, x_{n-2}, \dots, x_1]^T$. Vis at den har en diskret Fouriertransformasjon gitt som $\hat{y} = [y_0, y_{n-1}, y_{n-2}, \dots, y_1]^T$.
- c) La $n = 2^p$, $p \in \mathbb{N}$, og $t_j = c + j(d c)/n$, $j = 0, \ldots, n-1$ være en samling av uniformt distribuerte punkter på intervallet [c, d]. Vi vil finne en kurve som passerer gjennom(interpolerer) punktene i datasettet $(t_0, x_0), \ldots, (t_{n-1}, x_{n-1})$. I dette kurset har vi sett på to mulige metoder for å gjøre dette: polynominterpolasjon, (her vist i Newtons form)

$$P(t) = f[t_0] + f[t_0, t_1](t - t_0) + \dots + f[t_0, \dots, t_{n-1}](t - t_0) + \dots + f[t_0, \dots, t_n](t - t_0) + \dots + f[t_0$$

og trigonometrisk interpolasjon:

$$Q(t_j) = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} y_k \exp\{i2\pi k j/n\} = \sum_{k=0}^{n-1} y_k \exp\left\{\frac{i2\pi k (t_j - c)}{d - c}\right\} / \sqrt{n}.$$

Gi et overslag på antallet av elementære operasjoner 2 som trengs til å beregne:

 $^{^2}$ Elementære operasjoner \approx addisjon, subtraksjon, multiplikasjon, divisjon

- alle Newtons differenser³ $f[t_0], f[t_0, t_1], \dots, f[t_0, \dots, t_{n-1}];$
- alle trigonometriske interpolasjonskoeffisientene y_0,\ldots,y_{n-1} ved hjælp av FFT algoritmen.

Sammenlign to vurderingene og bestem, hva er raskest for store n.

³Newton's divided differences