

Entrance Exam 2016 - 2017 The distribution of grades is over 50 **Mathematics**

Duration: 3 hours July 02, 2016

I- (7 points) The complex plane is referred to a direct orthonormal system $(O; \overrightarrow{u}, \overrightarrow{v})$.

Let f be the mapping that associates to each point M with affix z, the point M' with affix z'such that $z'=z^2-4z$.

- 1- Let M_1 and M_2 be two distinct points with respective affixes z_1 and z_2 .
 - a) Prove that, if M_1 and M_2 are symmetric with respect to the axis of abscissas then, their images by f, M_1 ' and M_2 ', are also symmetric with respect to the axis of abscissas.
 - b) Prove that, if M_1 and M_2 are symmetric with respect to the point E of affix 2 then, M_1 and M_2 are confounded.
 - c) Determine the image by f of the point A with affix $z_A = -1 + 2i$. Deduce the image by f of each of the points B and C with respective affixes $z_B = -1 2i$ and $z_C = 5 2i$.
- 2- Verify that $z'+4=(z-2)^2$.
- 3- Let M be a point, with affix z, belonging to the circle (C) of center E and radius 2.
 - a) Justify that $z = 2 + 2e^{i\theta}$ where θ is the measure in radians of an oriented angle.
 - b) As θ traces the interval $[0; \frac{\pi}{2}]$, determine and $\underline{\text{draw}}$ the sets (γ) and (γ') of M and M respectively.
- II- (7 points) Consider the function f defined on the interval]0; $+\infty[$ by $f(x) = \frac{\ln x}{\sqrt{x}} x + 1$.
 - 1- Let g be the function defined on]0; $+\infty[$ by $g(x) = 2 2x\sqrt{x} \ell nx$. Determine the sense of variations of g and calculate g(1). Deduce the sign of g(x).
 - 2- a) Justify that f is differentiable and prove that the sign of f'(x) is that of g(x) in $]0; +\infty[$.
 - b) Set up the table of variations of f and deduce the sign of f(x) in $]0; +\infty[$.
 - 3- Consider the sequence (U_n) of first term U_0 , $U_0 \in [1;2]$, such that, for all n, $U_{n+1} = 1 + \frac{\ell n(U_n)}{\sqrt{U_n}}$.
 - a) Prove that, for all x in [1; 2], $0 \le \frac{\ln x}{\sqrt{x}} \le 1$.
 - b) Prove by induction on n that, for all n in IN, $U_n \in [1; 2]$.
 - 4- a) Verify that, for all n in IN, $U_{n+1} U_n = f(U_n)$ and determine the sense of variations of (U_n) .
 - b) Prove that (U_n) is convergent and calculate its limit.

III- (10 points) The complex plane is referred to a direct orthonormal system $(O; \overrightarrow{u}, \overrightarrow{v})$.

To each point M with affix z, we associate the points N and P of respective affixes z^2 and z^4 .

- 1- Determine the set of values of z so that M, N and P are 3 distinct points.
- 2- a) When the points M, N and P are distinct, prove that the triangle MNP is right at N if and only if $z^2 + z$ is a pure imaginary number.
 - b) Prove that the set (γ) of points M(x; y) such that the triangle MNP is right at N is the hyperbola (H) of equation $\left(x + \frac{1}{2}\right)^2 y^2 = \frac{1}{4}$ deprived of two points to be determined.
- 3- a) Determine the center I, the focus F with positive abscissa and the eccentricity of (H).
 - b) Draw (H) and precise the set (γ) . (Graph unit : 2 cm)
- 4- Let $L(\alpha; \beta)$ be a variable point of (H) other than its vertices.
 - a) Write an equation of the tangent (δ) and an equation of the normal (δ') to (H) at L.
 - b) Determine the points of intersection E and E' of (δ) and (δ') with the focal axis of (H) and prove that $\overline{IE} \times \overline{IE}' = IF^2$.

IV- (5 points) Given an urn containing 6 red balls and 4 blue balls.

A game consists in two parts:

- 1- In the first part the player draws randomly and simultaneously 3 balls from the urn. Consider the events R_2 : "The player gets only 2 red balls" and R_3 : "The player gets 3 red balls". Prove that $p(R_2) = 0.5$ and calculate $p(R_3)$. Deduce the probability that the player gets at most one red ball.
- 2- If the player gets at least 2 red balls, he is qualified for the second part that consists in drawing one ball at random from the seven remaining balls in the urn.
 - a) Calculate the probability that the player gets one red ball in the second part of the game knowing that he got 3 red balls in the first part of the game.
 - b) Calculate the probability of the event R: " the player gets one red ball in the second part".
 - c) Calculate the probability that the player has got 2 red balls in the first part knowing that he got one red ball in the second part.

V- (8 points) Given in an oriented plane, a triangle \overrightarrow{ABC} such that $(\overrightarrow{AB}; \overrightarrow{AC}) = \frac{\pi}{2}$ (2 π),

AB = 1 and $AC = \lambda$ where λ is a given real number such that $\lambda > 1$.

Let S be the similar transforms B into A and A into C.

- 1- Determine the ratio and a measure of the angle of S.
- 2- Let I be the center of S.
 - a) Determine the nature and the elements of $S \circ S$. Deduce that I belongs to BC.
 - b) Prove that I belongs to the circle of diameter [AB] and plot I.

- 3- Let D be the image of C by S.
 - a) Calculate CD in terms of λ .
 - b) Prove that the points A, I and D are collinear.
 - c) Prove that (CD) and (AB) are parallel. Construct D.
- 4- Let E be the orthogonal projection of B on (CD) and F = S(E).

Describe the construction of F and determine the nature of the quadrilateral BFDE.

- **VI** (13 points) Consider the function f defined on]0; $+\infty[$ by $f(x) = (3 + \ln x)e^{-x}$.
 - 1- Let h be the function defined on]0; $+\infty[$ by $h(x) = \frac{1}{x} 3 \ln x$.
 - a) Calculate h'(x) and prove that h'(1) = h(1).
 - b) Set up the table of variations of h.
 - c) Prove that the equation h(x) = 0 has in]0; $+\infty[$ a unique solution α and that $\alpha \in]0.45$; 0.46[.
 - d) Determine the sign of h(x).
 - 2- Let (C) be the representative curve of the function f in an orthonormal system.
 - a) Calculate $\lim_{x\to 0^+} f(x)$.
 - b) Verify that, for all x > 0, $f(x) = 3e^{-x} + \frac{\ln x}{x} \times \frac{x}{e^x}$ and determine $\lim_{x \to +\infty} f(x)$.
 - c) Determine the function f', the derivative of f, and verify that, for all x > 0, $f'(x) = h(x)e^{-x}$.
 - d) Set up the table of variations of f.
 - 3- a) Prove that $f''(x) = (h'(x) h(x))e^{-x}$.
 - b) Prove that the function g defined on]0; $+\infty[$ by g(x) = h'(x) h(x) vanishes once by changing sign.
 - c) Deduce that (C) has a point of inflection to be determined.
 - d) Prove that $f(\alpha) = \frac{1}{\alpha e^{\alpha}}$ and determine the approximate value of $f(\alpha)$ corresponding to $\alpha = 0.45$.
 - e) Determine the point of intersection of (C) with the axis of abscissas. Draw (C) (Graph unit: 4 cm).

Entrance Exam 2016 - 2017 The distribution of grades is over 50 Solution of Mathematics

Duration: 3 hours July 02, 2016

Exercise 1

- 1- a) If M_1 and M_2 are symmetric with respect to the axis of abscissas x'x then, $z_2 = \overline{z_1}$. the affixes of the images M_1 and M_2 of M_1 and M_2 are $z_1' = \overline{z_1}^2 4z_1$ and $z_2' = \overline{z_2}^2 4z_2$. $z_2' = \overline{z_1}^2 4\overline{z_1} = \overline{z_1}^2 4\overline{z_1} = \overline{z_1}^2$; therefore, M_1 and M_2 are also symmetric with respect to x'x.
 - b) If M_1 and M_2 are symmetric with respect to E with affix 2 then, $z_2 = 4 z_1$. $z_2' = z_2^2 - 4z_2 = (4 - z_1)^2 - 4(4 - z_1) = z_1^2 - 4z_1 = z_1'$; therefore, M_1' and M_2' are confounded.
 - c) A is the point with affix $z_A = -1 + 2i$; its image is the point A' with affix $z' = (-1 + 2i)^2 4(-1 + 2i) = 1 12i$. $z_B = -1 2i = \overline{z_A}$ then, B is the symmetric of A with respect to x'x; therefore the image of B by f is the point B' symmetric of A' with respect to x'x which is the point of affix -1 12i. $z_C = 5 2i$, $z_A + z_C = 4 = 2z_E$ then, C is the symmetric of A with respect to E; therefore C' = A'.
- 2- $z'+4=z^2-4z+4=(z-2)^2$.
- 3- a) If M belongs to (C) then EM = 2; therefore |z-2| = 2. If θ is an argument of z-2 then, $z-2=2e^{i\theta}$; that is $z=2+2e^{i\theta}$.
 - b) As θ traces the interval $[0; \frac{\pi}{2}]$, the set (γ) of M is the quarter of circle (C) corresponding to $x \ge 2$ and $y \ge 0$.

 $z'+4=(z-2)^2$ then |z'+4|=4 and $\arg(z'+4)=2\arg(z+2)=2\theta$.

If F is the point with affix 4 then, FM'=4 and $(\overrightarrow{u}; \overrightarrow{FM'})=2\theta$.

As θ traces the interval $[0; \frac{\pi}{2}]$, 2θ traces the interval $[0; \pi]$; therefore, the set (γ') of M' is the semi circle of center F and radius 4 lying above the axis of abscissas. Drawing (γ) and (γ') .

Exercise 2

1- The function g is defined on]0; $+\infty[$ by $g(x) = 2 - 2x\sqrt{x} - \ell nx$.

$$g'(x) = -3\sqrt{x} - \frac{1}{x}$$
; for all x in $]0$; $+\infty[$, $g'(x) < 0$ then, g is strictly decreasing; $g(1) = 0$.

For all x in]0;1[, g(x)>g(1); that is, g(x)>0;

For all x in $]1; +\infty[, g(x) < g(1);$ that is, g(x) < 0.

2- a) Each of the functions $x \to x\sqrt{x}$ and $x \to \ell n x$ is differentiable on]0; $+\infty[$ then, f is differentiable.

$$f'(x) = \frac{2 - \ln x - 2x\sqrt{x}}{2x\sqrt{x}} = \frac{g(x)}{2x\sqrt{x}}$$
 then, the sign of $f'(x)$ is that of $g(x)$ in $]0; +\infty[$.

b) $\lim_{x\to 0^+} f(x) = -\infty.$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(2 \frac{\ln \sqrt{x}}{\sqrt{x}} - x + 1 \right) = -\infty.$$

Table of variations of f

The function f has an absolute maximum equals 0

then, for all x in $]0; +\infty[-\{1\}, f(x) < 0]$.

3- a) For all x in [1, 2], $1 \le \sqrt{x} \le \sqrt{2}$ and $0 \le \ln x \le 1$ then $0 \le \frac{1}{\sqrt{x}} \le 1$ and $0 \le \ln x \le 1$;

therefore $0 \le \frac{\ln x}{\sqrt{x}} \le 1$.

- b) $U_0 \in [1; 2]$.
 - If, for a certain n, $U_n \in [1; 2]$ then, $0 \le \frac{\ell n(U_n)}{\sqrt{U_n}} \le 1$; $1 \le 1 + \frac{\ell n(U_n)}{\sqrt{U_n}} \le 2$; that is $1 \le U_{n+1} \le 2$.

Therefore, for all n in IN, $U_n \in [1, 2]$.

- 4- a) For all n in IN, $U_{n+1} U_n = 1 U_n + \frac{\ell n(U_n)}{\sqrt{U_n}} = f(U_n)$ and for all x in [1; 2], $f(x) \le 0$ then, for all n in IN, $U_{n+1} U_n \le 0$ and (U_n) is a decreasing sequence.
 - b) (U_n) is decreasing and bounded then , it converges to a limit $\ell \in [1, 2]$ such that $\ell = 1 + \frac{\ell n \, \ell}{\sqrt{\ell}}$. Therefore $\frac{\ell n \, \ell}{\sqrt{\ell}} \ell + 1 = 0$; $f(\ell) = 0$; $\ell = 1$.

Exercise 3

- 1- M = N if and only if $z^2 = z$; that is z = 0 or z = 1.
 - N = P if and only if $z^4 = z^2$; that is $z^2 = 0$ or $z^2 = 1$; z = 0 or z = 1 or z = -1.
 - M = P if and only if $z^4 = z$; that is z = 0 or $z^3 = 1$; z = 0 or z = 1 or z = j or $z = \overline{j}$.

Finally, the points M, N and P are distinct in pairs if and only if z a complex not belonging to the $1 \cdot \sqrt{3}$.

set
$$S = \{0; 1; -1; j; \bar{j}\}$$
 where $j = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$.

- 2- a) If the points M, N and P are distinct in pairs, the triangle MNP is right at N if and only if $\frac{z^4 z^2}{z z^2}$ is a pure imaginary number; that is $-\frac{(z^2 z)(z^2 + z)}{z^2 z}$ is a pure imaginary number; $z^2 + z$ is a pure imaginary number.
 - b) The triangle MNP is right at N if and only if $z \notin S$ and $z^2 + z$ is a pure imaginary number. $z^2 + z = x^2 - y^2 + x + (2x + 1)yi$

When $z \notin S$, $z^2 + z \neq 0$ then, $z^2 + z$ is a pure imaginary number if and only if

$$x^{2} - y^{2} + x = 0$$
; $\left(x + \frac{1}{2}\right)^{2} - y^{2} = \frac{1}{4}$.

The set (γ) of points M(x; y) is the hyperbola (H) of equation $\left(x + \frac{1}{2}\right)^2 - y^2 = \frac{1}{4}$ deprived from the points O(0; 0) and A(-1; 0), the points of (H) whose affixes belong to S.

3- a) For the hyperbola (H):

- The center is $I(-\frac{1}{2};0)$;
- $a^2 = b^2 = \frac{1}{4}$ then (H) is a rectangular hyperbola with eccentricity is $e = \sqrt{2}$
- The focal axis is x'x and $c = a\sqrt{2} = \frac{\sqrt{2}}{2}$ then, the focus with positive abscissa is $F(-\frac{1}{2} + \frac{\sqrt{2}}{2}; 0)$.
- b) The vertices of (H) are O(0;0) and A(-1;0).

The asymptotes are the straight lines of equations $y = -x - \frac{1}{2}$ and $y = x + \frac{1}{2}$

Drawing (H). (Graph unit: 2 cm)

The set (γ) is the hyperbola (H) deprived from its vertices.

4- Let $L(\alpha; \beta)$ be a variable point of (H) other than its vertices.

a) An equation of the tangent (δ) to (H) at L is $\left(\alpha + \frac{1}{2}\right)\left(x + \frac{1}{2}\right) - \beta y = \frac{1}{4}$;

An equation of the normal (δ') to (H) at L is $\frac{1}{4} \times \frac{x + \frac{1}{2}}{\alpha + \frac{1}{2}} + \frac{1}{4} \times \frac{y}{\beta} = c^2 = \frac{1}{2}$.

b) (
$$\delta$$
) and (δ ') cut the focal axis $x'x$ at $E(\frac{1}{4\alpha+2} - \frac{1}{2}; 0)$ and $E'(2\alpha + \frac{1}{2}; 0)$.
$$\overline{IE} = \frac{1}{4\alpha+2}, \quad \overline{IE}' = 2\alpha+1 \text{ then }, \quad \overline{IE} \times \overline{IE}' = \frac{1}{2} = IF^2.$$

Exercise 4

The urn contains 10 balls then, there are $_{10}C_3$ equiprobable ways of selecting 3 balls from the urn.

1- There are 6 red and 4 blue balls in the urn then

$$p(R_2) = \frac{{}_{6}C_2 \times {}_{4}C_1}{{}_{10}C_3} = \frac{60}{120} = 0.5 \text{ and } p(R_3) = \frac{{}_{6}C_3}{{}_{10}C_3} = \frac{20}{120} = \frac{1}{6}.$$

Let L be the event: "The player gets at most one red ball".

$$L = \overline{R_3 \cup R_2}$$
 where R_2 and R_3 are incompatible; therefore $p(L) = 1 - p(R_2) - p(R_3) = \frac{1}{3}$.

- 2- a) If 3 red balls are drawn in the first part of the game then, for the second part, the urn contains 3 red and 4 blue balls; the required probability is $p_1 = \frac{3}{7}$.
 - b) If 2 red balls are extracted in the first part of the game then, for the second part, the urn contains 4 red and 3 blue balls and $p_2 = p(selecting\ one\ red\ ball\ from\ this\ urn) = \frac{4}{7}$.

Therefore,
$$p(R) = p(R_3) \times p_1 + p(R_2) \times p_2 = \frac{1}{6} \times \frac{3}{7} + \frac{1}{2} \times \frac{4}{7} = \frac{5}{14}$$
.

c) The required probability is $p(R_2/R) = \frac{p(R_2 \cap R)}{p(R)} = \frac{1}{2} \times \frac{4}{7} \div \frac{5}{14} = \frac{4}{5}$.

Exercise 5

- 1- S(B) = A and S(A) = C then, the ratio of S is $\frac{AC}{AB} = \lambda$ and its angle is $(\overrightarrow{BA}; \overrightarrow{AC}) = -\frac{\pi}{2}$ (2π)
- 2- a) $S = S(I; \lambda; -\frac{\pi}{2})$ then, $S \circ S$ is the similar of center I, ratio λ^2 and angle $-\pi$.

Therefore $S \circ S$ is the negative dilation of center I and ratio $-\lambda^2$.

$$S \circ S(B) = S(S(B)) = S(A) = C$$
 then, $\overrightarrow{IC} = -\lambda^2 \overrightarrow{IB}$; therefore, I belongs to $]BC[$.

b) S(B) = A then, $(\overrightarrow{IB}; \overrightarrow{IA}) = -\frac{\pi}{2}$ (2π); therefore I belongs to the circle (γ) of diameter [AB]. I is the point of intersection of the segment]BC[and circle (γ).

- 3- a) S(C) = D and S(A) = C then, $CD = \lambda AC = \lambda^2$.
 - b) $S \circ S(A) = S(S(A)) = S(C) = D$ where $S \circ S$ is a dilation of center I then, A, I and D are collinear.
 - c) $S \circ S(A) = D$ and $S \circ S(B) = C$ where $S \circ S$ is a dilation then, (CD) and (AB) are parallel. D is the point of intersection of (AI) and the parallel to (AB) passing through C.
- 4- E is the orthogonal projection of B on (CD).

An angle of S is $-\frac{\pi}{2}$ then, any straight line and its image by S are perpendicular.

S(C) = D then, S(CE) is the perpendicular to CE at D which is the perpendicular to CE passing through D.

S(B) = A then, S(BE) is the perpendicular to BE passing though A which is AB.

Therefore F is the orthogonal projection of D on (AB).

BFDE is a rectangle for having 4 right angles.

Exercise 6

1- The function h is defined on]0; $+\infty[$ by $h(x) = \frac{1}{x} - 3 - \ln x$.

a)
$$h'(x) = \frac{-1}{x^2} - \frac{1}{x}$$
; $h'(1) = h(1) = -2$

$$\begin{array}{c|c}
x & 0 & +\infty \\
\hline
h'(x) & - & \\
\hline
h(x) & +\infty & \\
\end{array}$$

b)
$$\lim_{x\to 0^+} h(x) = +\infty$$
 and $\lim_{x\to +\infty} h(x) = -\infty$.

Table of variations of h.

- c) The function h is continuous and strictly decreasing on]0; $+\infty[$ and 0 belongs to h(]0; $+\infty[$) which is IR then, the equation h(x) = 0 has a unique solution α in]0; $+\infty[$. $h(0.45) \approx 0.02 > h(\alpha) = 0 > h(0.46) \approx -0.05$ and h is strictly decreasing then, $\alpha \in]0.45$; 0.46[.
- d) h is strictly decreasing then: for all $x < \alpha$, $h(x) > h(\alpha)$; h(x) > 0 and for all $x > \alpha$, $h(x) < h(\alpha)$; h(x) < 0.
- 2- a) $\lim_{x \to 0^+} f(x) = -\infty$.
 - b) For all x > 0, $f(x) = 3e^{-x} + e^{-x} \ln x = 3e^{-x} + \frac{\ln x}{x} \times \frac{x}{e^x}$.

 $\lim_{x \to +\infty} e^{-x} = 0$, $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$ and $\lim_{x \to +\infty} \frac{x}{e^x} = 0$ then, $\lim_{x \to +\infty} f(x) = 0$.

c) $f'(x) = \frac{1}{x}e^{-x} - (3 + \ln x)e^{-x} = h(x)e^{-x}$.

 $\begin{array}{c|ccccc}
x & 0 & \alpha & +\infty \\
\hline
f'(x) & + & 0 & - \\
\hline
f(x) & -\infty & & 0
\end{array}$

d) The sign of f'(x) is that of h(x).

Table of variations of f.

- 3- a) $f'(x) = h(x)e^{-x}$ then $f''(x) = h'(x)e^{-x} h(x)e^{-x}$ $f''(x) = (h'(x) - h(x))e^{-x}$.
 - b) $g(x) = h'(x) h(x) = \frac{-1}{x^2} \frac{2}{x} + 3 + \ell n x$.

 $g'(x) = \frac{2}{x^3} + \frac{2}{x^2} + \frac{1}{x}$; for all x > 0, g'(x) > 0 then, g is strictly increasing.

The function g is continuous, strictly increasing and g(1) = h'(1) - h(1) = 0 then, g(x) changes sign at 1 from negative to positive.

- c) $f''(x) = g(x)e^{-x}$ then, the sign of f''(x) which is that of g(x), changes also at 1; therefore, the point $I(1; 3e^{-1})$ is the point of inflection of (C).
- d) $f(\alpha) = (3 + \ln \alpha)e^{-\alpha}$ with $\ln \alpha = \frac{1}{\alpha} 3$ then, $f(\alpha) = \frac{1}{\alpha e^{\alpha}}$. For $\alpha = 0.45$, $f(\alpha) \approx 1.42$.
- e) f(x) = 0 is equivalent to $\ln x = -3$; $x = e^{-3}$.
 - (C) cuts the axis of abscissas at the point $(e^{-3}; 0)$.

 $\lim_{x\to 0^+} f(x) = -\infty$ and $\lim_{x\to +\infty} f(x) = 0$ then, the asymptotes of (C) are the axes of coordinates.

Drawing (C) in an orthonormal system (Unit: 4 cm)

