Exercise 1.38.

In 1737, the Swiss mathematician Leonhard Euler published a memoir De Fractionibus Continuis, which included a continued fraction expansion for e-2, where e is the base of the natural logarithms. In this fraction, the N_i are all 1, and the D_i are successively 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, Write a program that uses your cont-frac procedure from exercise 1.37 to approximate e, based on Euler's expansion.

Answer.

Obviously, in order to the cont-frac procedure to approximate e, we first have to find out the pattern submerged in the series of D_i

$$1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, \dots$$

As is shown in Table 1, the value of i diverses from 1 whenever $i \mod 3 = 2$. Further more, the value of D_i can

i	1	2	3	4	15	6	7	8	9	10	11	
D_i	1	2	1	1	4	1	1	6	1	1	8	

Table 1. Reflection between i and D_i

be obtained through

$$D_i = \frac{i+1}{3} \times 2$$

Notice that what we obtained from the program uses cont-frac based on Euler's expansion is e-2, not e. So, we have to add the value returned by cont-frac by 2 to approximate e.