ÔN THI ĐẦU VÀO MÔN TOÁN

GV: Nguyễn Thị Huyên

BM Toán Giải tích - ĐHGTVT

2021

Nội dung chính

- 1 Đạo hàm và vi phân
- 2 Quy tắc L'Hospital tính giới hạn
- 3 Tích phân
- 4 Đạo hàm riêng và vi phân toàn phần của hàm nhiều biến
- 5 Cực trị của hàm nhiều biến
- 6 Tích phân hai lớp
- Tích phân đường loại 2

1. Đạo hàm và vi phân

1. Đao hàm và vi phân

Đinh nghĩa đao hàm:

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

1. Đao hàm và vi phân

Đinh nghĩa đao hàm:

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

Vi phân:

$$df(x_0) = f'(x_0).\Delta x,$$

$$df = dy = df(x) = f'(x).dx.$$

Bảng đạo hàm của các hàm cơ bản

$$(x^{\alpha})' = \alpha \cdot x^{\alpha - 1}$$
$$(e^x)' = e^x$$

$$(e^x)' = e^x$$

$$(\ln x)' = \frac{1}{x}$$

$$(\sin x)' = \cos x$$

$$(\tan x)' = \frac{1}{\cos^2 x}$$

$$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$$

$$(\arctan x)' = \frac{1}{1+x^2}$$

$$(C)' = 0$$
 với C là hằng số

$$(a^x)' = a^x \cdot \ln a$$
 với $0 < a \neq 1$

$$(a^x)' = a^x \cdot \ln a$$
 với $0 < a \ne 1$
 $(\log_a x)' = \frac{1}{x \ln a}$ với $0 < a \ne 1$

$$(\cos x)' = -\sin x$$

$$(\cot x)' = \frac{-1}{\sin^2 x}$$

$$(\arccos x)' = \frac{-1}{\sqrt{1 - x^2}}$$

$$(arccotx)' = \frac{-1}{1+x^2}$$

Các quy tắc tính đạo hàm

Các quy tắc tính đạo hàm

Định lý 1.1.

Giả sử f(x) và g(x) có đạo hàm tại x. Khi đó tổng, hiệu, tích, thương của chúng cũng có đạo hàm tại x và:

- (f(x) + g(x))' = f'(x) + g'(x);
- (f(x) g(x))' = f'(x) g'(x);
- (k.f(x))' = k.f'(x) với k là hằng số;
- (f(x).g(x))' = f'(x).g(x) + f(x).g'(x);

Các quy tắc tính đạo hàm

Định lý 1.1.

Giả sử f(x) và g(x) có đạo hàm tại x. Khi đó tổng, hiệu, tích, thương của chúng cũng có đạo hàm tại x và:

- (f(x) + g(x))' = f'(x) + g'(x);
- (f(x) g(x))' = f'(x) g'(x);
- (k.f(x))' = k.f'(x) với k là hằng số;
- (f(x).g(x))' = f'(x).g(x) + f(x).g'(x);
- $\bullet \left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x).g(x) f(x).g'(x)}{g^2(x)} \text{ n\'eu } g(x) \neq 0.$

Định lý 1.2.

Cho hàm số u=u(x) có đạo hàm tại x và hàm số f=f(u) có đạo hàm tại u(x). Khi đó hàm hợp f=f[u(x)] có đạo hàm tại x và

$$f'(x) = f'[u(x)].u'(x).$$

Bảng đạo hàm của các hàm hợp

$$(u^{\alpha})' = \alpha \cdot u^{\alpha - 1} \cdot u'$$

$$(e^{u})' = e^{u} \cdot u'$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\sin u)' = u' \cdot \cos u$$

$$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$

$$(a^u)' = a^u \ln a.u' \text{ v\'oi } 0 < a \neq 1$$

$$(log_a u)' = \frac{u'}{u \ln a} \text{ v\'oi } 0 < a \neq 1$$

$$(\cos u)' = -u'. \sin u$$

$$(\tan u)' = \frac{u'}{\cos^2 u}$$

$$(\cot u)' = \frac{-u'}{\sin^2 u}$$

$$(\arcsin u)' = \frac{u'}{\sqrt{1 - u^2}}$$

$$(\arccos u)' = \frac{-u'}{\sqrt{1 - u^2}}$$

$$(\arctan u)' = \frac{u'}{1 + u^2}$$

$$(arccotu)' = \frac{-u'}{1+u^2}$$

• Đạo hàm trái tại x_0

$$f'_{-}(x_0) = \lim_{\Delta x \to 0-0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0}.$$

1 Đạo hàm trái tại x_0

$$f'_{-}(x_0) = \lim_{\Delta x \to 0-0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{x \to x_0 \to 0} \frac{f(x) - f(x_0)}{x - x_0}.$$

② Đạo hàm phải tại x_0

$$f'_{+}(x_0) = \lim_{\Delta x \to 0+0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{x \to x_0+0} \frac{f(x) - f(x_0)}{x - x_0}.$$

• Đạo hàm trái tại x_0

$$f'_{-}(x_0) = \lim_{\Delta x \to 0-0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{x \to x_0 \to 0} \frac{f(x) - f(x_0)}{x - x_0}.$$

② Đạo hàm phải tại x_0

$$f'_{+}(x_0) = \lim_{\Delta x \to 0+0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{x \to x_0+0} \frac{f(x) - f(x_0)}{x - x_0}.$$

Vây
$$\exists f'(x_0) \iff \begin{cases} \exists f'_-(x_0) \\ \exists f'_+(x_0) \\ f'_-(x_0) = f'_+(x_0) \end{cases}$$

Cho
$$f(x) = |x^3|$$
, hãy tính $f'(x) = ?$

Ta có
$$f(x) = \begin{cases} -x^3 & \text{n\'eu } x < 0, \\ x^3 & \text{n\'eu } x \ge 0 \end{cases}$$

Ví dụ 1.1.

Cho
$$f(x) = |x^3|$$
, hãy tính $f'(x) = ?$

Ta có
$$f(x) = \begin{cases} -x^3 & \text{n\'eu } x < 0, \\ x^3 & \text{n\'eu } x \ge 0 \end{cases}$$

• Với x < 0, ta có $f(x) = -x^3$ nên $f'(x) = -3x^2$.

Cho
$$f(x) = |x^3|$$
, hãy tính $f'(x) = ?$

Ta có
$$f(x) = \begin{cases} -x^3 & \text{n\'eu } x < 0, \\ x^3 & \text{n\'eu } x \ge 0 \end{cases}$$

- Với x < 0, ta có $f(x) = -x^3$ nên $f'(x) = -3x^2$.
- Với x > 0, ta có $f(x) = x^3$ nên $f'(x) = 3x^2$.

Cho
$$f(x) = |x^3|$$
, hãy tính $f'(x) = ?$

Ta có
$$f(x) = \begin{cases} -x^3 & \text{n\'eu } x < 0, \\ x^3 & \text{n\'eu } x \ge 0 \end{cases}$$

- Với x < 0, ta có $f(x) = -x^3$ nên $f'(x) = -3x^2$.
- Với x > 0, ta có $f(x) = x^3$ nên $f'(x) = 3x^2$.

• Tại
$$x = 0$$
, ta có: $f'_{-}(0) = \lim_{x \to 0-0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0-0} \frac{-x^3 - 0}{x - 0} = 0$

$$f'_{+}(0) = \lim_{x \to 0+0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0+0} \frac{x^3 - 0}{x - 0} = 0$$

$$\text{Vì } f'_{-}(0) = f'_{+}(0) = 0 \text{ nên } f'(0) = 0.$$

Cho
$$f(x) = |x^3|$$
, hãy tính $f'(x) = ?$

Ta có
$$f(x) = \begin{cases} -x^3 & \text{n\'eu } x < 0, \\ x^3 & \text{n\'eu } x \ge 0 \end{cases}$$

- Với x < 0, ta có $f(x) = -x^3$ nên $f'(x) = -3x^2$.
- Với x > 0, ta có $f(x) = x^3$ nên $f'(x) = 3x^2$.

• Tại
$$x = 0$$
, ta có: $f'_{-}(0) = \lim_{x \to 0-0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0-0} \frac{-x^3 - 0}{x - 0} = 0$

$$f'_{+}(0) = \lim_{x \to 0+0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0+0} \frac{x^3 - 0}{x - 0} = 0$$

$$\text{Vì } f'_{-}(0) = f'_{+}(0) = 0 \text{ nên } f'(0) = 0.$$

Vậy
$$f'(x) = \begin{cases} -3x^2 & \text{n\'eu } x < 0, \\ 3x^2 & \text{n\'eu } x \ge 0. \end{cases}$$

Tính đạo hàm của hàm số
$$f(x) = \begin{cases} 2x^2 + 3x & \text{nếu } x \leq 0, \\ \ln(1+x) - x & \text{nếu } x > 0. \end{cases}$$

Tính đạo hàm của hàm số
$$f(x) = \begin{cases} 2x^2 + 3x & \text{nếu } x \leq 0, \\ \ln(1+x) - x & \text{nếu } x > 0. \end{cases}$$

- Với $x < 0 \Longrightarrow f'(x) = 4x + 3$. Với $x > 0 \Longrightarrow f'(x) = \frac{1}{1+x} 1 = \frac{-x}{1+x}$.

Tính đạo hàm của hàm số
$$f(x) = \begin{cases} 2x^2 + 3x & \text{nếu } x \leq 0, \\ \ln(1+x) - x & \text{nếu } x > 0. \end{cases}$$

- Với $x < 0 \Longrightarrow f'(x) = 4x + 3$.
- $\text{V\'oi } x > 0 \Longrightarrow f'(x) = \frac{1}{1+x} 1 = \frac{-x}{1+x}.$
- \bullet Tại x=0,

•
$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{2x^{2} + 3x}{x} = \lim_{x \to 0^{-}} (2x + 3) = 3,$$

Tính đạo hàm của hàm số
$$f(x) = \begin{cases} 2x^2 + 3x & \text{nếu } x \leq 0, \\ \ln(1+x) - x & \text{nếu } x > 0. \end{cases}$$

- Với $x < 0 \implies f'(x) = 4x + 3$.
- \bullet Tai x=0.

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{2x^{2} + 3x}{x} = \lim_{x \to 0^{-}} (2x + 3) = 3,$$

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{\ln(1 + x) - x}{x} = \lim_{x \to 0^{+}} \frac{\ln(1 + x)}{x} - 1 = 1 - 1 = 0.$$

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{\ln(1 + x) - x}{x} = \lim_{x \to 0^{+}} \frac{\ln(1 + x)}{x} - 1 = 1 - 1 = 0$$

$\overline{ ext{Vi}}$ du 1.2.

Tính đạo hàm của hàm số
$$f(x) = \begin{cases} 2x^2 + 3x & \text{nếu } x \leq 0, \\ \ln(1+x) - x & \text{nếu } x > 0. \end{cases}$$

- Với $x < 0 \implies f'(x) = 4x + 3$.
- $\text{ V\'oi } x>0 \Longrightarrow f'(x)=\frac{1}{1+x}-1=\frac{-x}{1+x}.$
- \bullet Tai x=0,

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{2x^{2} + 3x}{x} = \lim_{x \to 0^{-}} (2x + 3) = 3,$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{2x^{2} + 3x}{x} = \lim_{x \to 0^{-}} (2x + 3) = 3,$$

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{\ln(1 + x) - x}{x} = \lim_{x \to 0^{+}} \frac{\ln(1 + x)}{x} - 1 = 1 - 1 = 0.$$

 \bullet Vì $f'_{-}(0) \neq f'_{+}(0)$ nên hàm số không có đạo hàm tại x = 0.

Tính đạo hàm của hàm số
$$f(x) = \begin{cases} 2^x - 1 & \text{nếu } x \leq 0, \\ \ln(1+x) & \text{nếu } x > 0. \end{cases}$$

Tính đạo hàm của hàm số
$$f(x) = \begin{cases} 2^x - 1 & \text{nếu } x \leq 0, \\ \ln(1+x) & \text{nếu } x > 0. \end{cases}$$

- $\bullet \quad \text{V\'oi } x < 0 \Longrightarrow f'(x) = 2^x \ln 2.$ $\bullet \quad \text{V\'oi } x > 0 \Longrightarrow f'(x) = \frac{1}{1+x}.$

Tính đạo hàm của hàm số
$$f(x) = \begin{cases} 2^x - 1 & \text{nếu } x \leq 0, \\ \ln(1+x) & \text{nếu } x > 0. \end{cases}$$

- $\bullet V\acute{o}i \ x < 0 \Longrightarrow f'(x) = 2^x \ln 2.$
- Tại x = 0, $f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) f(0)}{x 0} = \lim_{x \to 0^{-}} \frac{2^{x} 1}{x} = \ln 2,$

Tính đạo hàm của hàm số
$$f(x) = \begin{cases} 2^x - 1 & \text{nếu } x \leq 0, \\ \ln(1+x) & \text{nếu } x > 0. \end{cases}$$

- Với $x < 0 \Longrightarrow f'(x) = 2^x \ln 2$.
- $\text{V\'oi } x > 0 \Longrightarrow f'(x) = \frac{1}{1+x}.$
- \bullet Tại x=0, $f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{2^{x} - 1}{x} = \ln 2,$ $f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{\ln(1 + x)}{x} = 1.$

$\overline{\mathrm{Vi}}$ du 1.3.

Tính đạo hàm của hàm số
$$f(x) = \begin{cases} 2^x - 1 & \text{nếu } x \leq 0, \\ \ln(1+x) & \text{nếu } x > 0. \end{cases}$$

- $\bullet V\acute{o}i \ x < 0 \Longrightarrow f'(x) = 2^x \ln 2.$
- \bullet Tai x=0,

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{2^{x} - 1}{x} = \ln 2,$$

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{\ln(1 + x)}{x} = 1.$$

Vì $f'_{-}(0) \neq f'_{+}(0)$ nên hàm số không có đạo hàm tại x = 0.

Đạo hàm cấp n

$$f^{(n)}(x) = (f^{(n-1)}(x))', \forall n = 1, 2, 3, \dots$$

Đạo hàm cấp n

$$f^{(n)}(x) = (f^{(n-1)}(x))', \forall n = 1, 2, 3, \dots$$

Vi phân cấp n

$$d^n f(x) = f^{(n)}(x).dx^n, \ \forall n = 1, 2, 3, \cdots$$

Ví dụ 1.4.

Tính đạo hàm và vi phân cấp 2 của hàm số $f(x) = \ln(x + \sqrt{1 + x^2})$.

Ví du 1.4.

Tính đạo hàm và vi phân cấp 2 của hàm số $f(x) = \ln(x + \sqrt{1 + x^2})$.

Đạo hàm cấp 1:

$$f'(x) = \frac{1 + \frac{x}{\sqrt{1 + x^2}}}{x + \sqrt{1 + x^2}} = \frac{1}{\sqrt{1 + x^2}}.$$

Ví du 1.4.

Tính đạo hàm và vi phân cấp 2 của hàm số $f(x) = \ln(x + \sqrt{1 + x^2})$.

Đao hàm cấp 1:

$$f'(x) = \frac{1 + \frac{x}{\sqrt{1 + x^2}}}{x + \sqrt{1 + x^2}} = \frac{1}{\sqrt{1 + x^2}}.$$

Đao hàm cấp 2:

$$f''(x) = \frac{-x}{\sqrt{(1+x^2)^3}}.$$

Đạo hàm và vi phân cấp cao

Ví du 1.4.

Tính đạo hàm và vi phân cấp 2 của hàm số $f(x) = \ln(x + \sqrt{1 + x^2})$.

Đao hàm cấp 1:

$$f'(x) = \frac{1 + \frac{x}{\sqrt{1 + x^2}}}{x + \sqrt{1 + x^2}} = \frac{1}{\sqrt{1 + x^2}}.$$

Đao hàm cấp 2:

$$f''(x) = \frac{-x}{\sqrt{(1+x^2)^3}}.$$

Vi phân cấp 2:

$$d^{2}f(x) = \frac{-x}{\sqrt{(1+x^{2})^{3}}} \cdot dx^{2}.$$

2. Quy tắc L'Hospital tính giới hạn

2. Quy tắc L'Hospital tính giới han

Đinh lý 2.1.

Cho f(x) và g(x) khả vi trong lân cận của (x_0) và

- hoặc $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$,
- hoặc $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = \infty$.

Nếu
$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = A$$
 thì tồn tại $\lim_{x \to x_0} \frac{f(x)}{g(x)} = A$.

2. Quy tắc L'Hospital tính giới hạn

Định lý 2.1.

Cho f(x) và g(x) khả vi trong lân cận của (x_0) và

- hoặc $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$,
- hoặc $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = \infty$.

Nếu
$$\lim_{x\to x_0} \frac{f'(x)}{g'(x)} = A$$
 thì tồn tại $\lim_{x\to x_0} \frac{f(x)}{g(x)} = A$.

Ghi nhớ:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} \left(\frac{0}{0}; \frac{\infty}{\infty} \right) \stackrel{L}{=} \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

Ví dụ 2.1.

Tìm giới hạn: $\lim_{x\to 0} \frac{e^x - 1 - x}{x^2}$.

$\overline{\text{Vi du 2.1.}}$

Tìm giới hạn: $\lim_{x\to 0} \frac{e^x - 1 - x}{x^2}$.

Giới hạn có dạng $\frac{0}{0}$ nên áp dụng quy tắc L'Hospital ta được :

$$I = \lim_{x \to 0} \frac{e^x - x - 1}{x^2} \stackrel{L}{=} \lim_{x \to 0} \frac{e^x - 1}{2x}$$

Ví du 2.1.

Tìm giới hạn: $\lim_{x\to 0} \frac{e^x - 1 - x}{x^2}$.

Giới hạn có dạng $\frac{0}{0}$ nên áp dụng quy tắc L'Hospital ta được :

$$I = \lim_{x \to 0} \frac{e^x - x - 1}{x^2} \stackrel{L}{=} \lim_{x \to 0} \frac{e^x - 1}{2x}$$

$$\begin{split} I = \lim_{x \to 0} \frac{e^x - x - 1}{x^2} &\stackrel{L}{=} \quad \lim_{x \to 0} \frac{e^x - 1}{2x} \\ \text{Giới hạn tiếp tục có dạng } \frac{0}{0} \text{ nên áp dụng quy tắc L'Hospital lần nữa ta được} : \end{split}$$

$$I \stackrel{L}{=} \lim_{x \to 0} \frac{e^x}{2} = \frac{1}{2}$$

Ví du 2.2.

Tìm giới han

$$\lim_{x \to 0} \frac{\sqrt{1+2x} - e^x}{x^2}.$$

Giới hạn có dạng $\frac{0}{0}$ nên áp dụng quy tắc L'Hospital ta được

$\overline{\text{Vi}}$ du 2.2.

Tìm giới han

$$\lim_{x \to 0} \frac{\sqrt{1 + 2x} - e^x}{x^2}.$$

Giới hạn có dạng $\frac{0}{0}$ nên áp dụng quy tắc L'Hospital ta được

$$I = \lim_{x \to 0} \frac{\sqrt{2x+1} - e^x}{x^2} \stackrel{L}{=} \lim_{x \to 0} \frac{(2x+1)^{-\frac{1}{2}} - e^x}{2x}.$$

Ví du 2.2.

Tìm giới han

$$\lim_{x \to 0} \frac{\sqrt{1+2x} - e^x}{x^2}.$$

Giới hạn có dạng $\frac{0}{0}$ nên áp dụng quy tắc L'Hospital ta được

$$I = \lim_{x \to 0} \frac{\sqrt{2x+1} - e^x}{x^2} \stackrel{L}{=} \lim_{x \to 0} \frac{(2x+1)^{-\frac{1}{2}} - e^x}{2x}.$$
 Giới hạn tiếp tục có dạng $\frac{0}{0}$ nên áp dụng quy tắc L'Hospital lần nữa ta được

$$I \stackrel{L}{=} \lim_{x \to 0} \frac{-(2x+1)^{-\frac{3}{2}} - e^x}{2} = -1.$$

Ví dụ 2.3.

Tính giới hạn:

$$\lim_{x \to +\infty} \frac{\ln(1 + e^x)}{e^x}$$

Ví du 2.3.

Tính giới hạn:

$$\lim_{x \to +\infty} \frac{\ln(1 + e^x)}{e^x}$$

Giới hạn có dạng $\frac{\infty}{\infty}$

Ví dụ 2.3.

Tính giới hạn:

$$\lim_{x \to +\infty} \frac{\ln(1 + e^x)}{e^x}$$

Giới hạn có dạng $\frac{\infty}{\infty}$

- Dùng quy tắc L'Hospital: $I = \lim_{x \to +\infty} \frac{e^x}{(1+e^x)e^x} = \lim_{x \to +\infty} \frac{1}{1+e^x}$
- I = 0.

Ví dụ 2.4.

Tìm giới hạn

$$\lim_{x \to 0} \frac{x - \arctan x}{x^2 \sin x}.$$

Ví du 2.4.

Tìm giới han

$$\lim_{x \to 0} \frac{x - \arctan x}{x^2 \sin x}.$$

Giới hạn có dạng $\frac{0}{0}$, áp dụng quy tắc L'Hospital

$$L = \lim_{x \to 0} \frac{x - \arctan x}{x^2 \sin x} = \lim_{x \to 0} \frac{1 - \frac{1}{1 + x^2}}{2x \sin x + x^2 \cos x}.$$

Ví dụ 2.4.

Tìm giới hạn

$$\lim_{x \to 0} \frac{x - \arctan x}{x^2 \sin x}.$$

Giới hạn có dạng $\frac{0}{0}$, áp dụng quy tắc L'Hospital

$$L = \lim_{x \to 0} \frac{x - \arctan x}{x^2 \sin x} = \lim_{x \to 0} \frac{1 - \frac{1}{1 + x^2}}{2x \sin x + x^2 \cos x}.$$

$$L = \lim_{x \to 0} \frac{1}{(1 + x^2) \left(2\frac{\sin x}{x} + \cos x\right)} = \frac{1}{3}.$$

Ví du 2.5.

Tìm giới hạn:

$$\lim_{x \to 1} \frac{e^x - xe}{\cos(1 - x) - 1}.$$

Ví dụ 2.5.

Tìm giới hạn:

$$\lim_{x \to 1} \frac{e^x - xe}{\cos(1 - x) - 1}.$$

Giới hạn có dạng $\frac{0}{0}$ nên áp dụng quy tắc L'Hospital ta được :

$\overline{\text{Ví du 2.5.}}$

Tìm giới han:

$$\lim_{x \to 1} \frac{e^x - xe}{\cos(1 - x) - 1}.$$

Giới hạn có dạng $\frac{0}{0}$ nên áp dụng quy tắc L'Hospital ta được :

$$I = \lim_{x \to 1} \frac{e^x - xe}{\cos(1 - x) - 1} \stackrel{L}{=} \lim_{x \to 1} \frac{e^x - e}{\sin(1 - x)}$$

$\overline{\mathrm{Vi}}$ du 2.5.

Tìm giới han:

$$\lim_{x \to 1} \frac{e^x - xe}{\cos(1 - x) - 1}.$$

Giới hạn có dạng $\frac{0}{0}$ nên áp dụng quy tắc L'Hospital ta được :

$$I = \lim_{x \to 1} \frac{e^x - xe}{\cos(1 - x) - 1} \stackrel{L}{=} \lim_{x \to 1} \frac{e^x - e}{\sin(1 - x)}$$

 $I = \lim_{x \to 1} \frac{e^x - xe}{\cos(1 - x) - 1} \stackrel{L}{=} \lim_{x \to 1} \frac{e^x - e}{\sin(1 - x)}$ Giới hạn tiếp tục có dạng $\frac{0}{0}$ nên áp dụng quy tắc L'Hospital lần nữa ta được :

$$I \stackrel{L}{=} \lim_{x \to 1} \frac{e^x}{-\cos(1-x)} = -e$$

Ví dụ 2.6.

 $\arctan x - x$ $\lim_{x \to 0}$ Tính giới hạn: x^3

Ví dụ 2.6.

Tính giới hạn:
$$\lim_{x\to 0} \frac{\arctan x - x}{x^3}$$

• Áp dụng quy tắc L' Hospital ta được $I=\lim_{x\to 0}\frac{\arctan x-x}{x^3}=\lim_{x\to 0}\frac{\frac{1}{1+x^2}-1}{3x^2}$

Ví du 2.6.

Tính giới hạn:
$$\lim_{x\to 0} \frac{\arctan x - x}{x^3}$$

- Áp dụng quy tắc L' Hospital ta được $I = \lim_{x\to 0} \frac{\arctan x x}{x^3} = \lim_{x\to 0} \frac{\frac{1}{1+x^2} 1}{3x^2}$
- Rút gọn được $I = \lim_{x \to 0} \frac{-x^2}{3x^2(1+x^2)} = \lim_{x \to 0} \frac{-1}{3(1+x^2)} = \frac{-1}{3}$

Với các giới hạn dạng $0\cdot\infty$ ta đưa về $\frac{0}{0}$ hoặc $\frac{\infty}{\infty}$ và áp dụng quy tắc L'Hospital rồi tính.

Với các giới hạn dạng $0\cdot\infty$ ta đưa về $\frac{0}{0}$ hoặc $\frac{\infty}{\infty}$ và áp dụng quy tắc L'Hospital rồi tính.

Ví dụ 2.7.

$$\lim_{x \to 0^+} x \ln^2 x.$$

Với các giới hạn dạng $0\cdot\infty$ ta đưa về $\frac{0}{0}$ hoặc $\frac{\infty}{\infty}$ và áp dụng quy tắc L'Hospital rồi tính.

Ví dụ 2.7.

$$\lim_{x \to 0^+} x \ln^2 x.$$

Giới hạn có dạng $0 \cdot \infty$, ta chuyển về dạng $\frac{\infty}{\infty}$:

$$\lim_{x \to 0^+} x \ln^2 x = \lim_{x \to +0} \frac{\ln^2 x}{1/x} \left(\frac{\infty}{\infty}\right)$$

Với các giới hạn dạng $0\cdot\infty$ ta đưa về $\frac{0}{0}$ hoặc $\frac{\infty}{\infty}$ và áp dụng quy tắc L'Hospital rồi tính.

Ví dụ 2.7.

$$\lim_{x \to 0^+} x \ln^2 x.$$

Giới hạn có dạng $0 \cdot \infty$, ta chuyển về dạng $\frac{\infty}{\infty}$:

$$\lim_{x \to 0^{+}} x \ln^{2} x = \lim_{x \to +0} \frac{\ln^{2} x}{1/x} \left(\frac{\infty}{\infty}\right)$$

$$\stackrel{L}{=} \lim_{x \to 0^{+}} \frac{2 \ln x (1/x)}{-1/x^{2}} = \lim_{x \to +0} \frac{2 \ln x}{-1/x} \left(\frac{\infty}{\infty}\right)$$

Với các giới hạn dạng $0 \cdot \infty$ ta đưa về $\frac{0}{0}$ hoặc $\frac{\infty}{\infty}$ và áp dụng quy tắc L'Hospital rồi tính.

Ví dụ 2.7.

$$\lim_{x \to 0^+} x \ln^2 x.$$

Giới hạn có dạng $0 \cdot \infty$, ta chuyển về dạng $\frac{\infty}{\infty}$:

$$\lim_{x \to 0^+} x \ln^2 x = \lim_{x \to +0} \frac{\ln^2 x}{1/x} \left(\frac{\infty}{\infty}\right)$$

$$\stackrel{L}{=} \lim_{x \to 0^+} \frac{2 \ln x (1/x)}{-1/x^2} = \lim_{x \to +0} \frac{2 \ln x}{-1/x} \left(\frac{\infty}{\infty}\right)$$

$$\stackrel{L}{=} \lim_{x \to +0} \frac{2/x}{1/x^2} = 0$$

Ví du 2.8.

Tìm giới hạn của hàm số:

$$\lim_{x \to \infty} x \left(\frac{\pi}{4} - \arctan \frac{x-1}{x+1} \right)$$

<u>Ví</u> du 2.8.

Tìm giới han của hàm số:

$$\lim_{x \to \infty} x \left(\frac{\pi}{4} - \arctan \frac{x-1}{x+1} \right)$$

Ví dụ 2.8.

Tìm giới hạn của hàm số:

$$\lim_{x \to \infty} x \left(\frac{\pi}{4} - \arctan \frac{x-1}{x+1} \right)$$

$$I = \lim_{x \to \infty} x \left(\frac{\pi}{4} - \arctan \frac{x-1}{x+1} \right) = \lim_{x \to \infty} \frac{\frac{\pi}{4} - \arctan \frac{x-1}{x+1}}{1/x} \left(\frac{0}{0} \right)$$

Ví dụ 2.8.

Tìm giới hạn của hàm số:

$$\lim_{x \to \infty} x \left(\frac{\pi}{4} - \arctan \frac{x-1}{x+1} \right)$$

$$I = \lim_{x \to \infty} x \left(\frac{\pi}{4} - \arctan \frac{x-1}{x+1} \right) = \lim_{x \to \infty} \frac{\frac{\pi}{4} - \arctan \frac{x-1}{x+1}}{1/x} \left(\frac{0}{0} \right)$$

$$\stackrel{L}{=} \lim_{x \to \infty} \frac{-2}{(x+1)^2} \cdot \frac{(x+1)^2}{(x+1)^2 + (x-1)^2}}{-\frac{1}{x^2}}$$

Ví dụ 2.8.

Tìm giới hạn của hàm số:

$$\lim_{x \to \infty} x \left(\frac{\pi}{4} - \arctan \frac{x-1}{x+1} \right)$$

$$I = \lim_{x \to \infty} x \left(\frac{\pi}{4} - \arctan \frac{x-1}{x+1} \right) = \lim_{x \to \infty} \frac{\frac{\pi}{4} - \arctan \frac{x-1}{x+1}}{1/x} \left(\frac{0}{0} \right)$$

$$\stackrel{L}{=} \lim_{x \to \infty} \frac{\frac{-2}{(x+1)^2} \cdot \frac{(x+1)^2}{(x+1)^2 + (x-1)^2}}{-\frac{1}{x^2}}$$

$$= \lim_{x \to \infty} \frac{2x^2}{2x^2 + 2} = 1$$

Ví dụ 2.9.

Tính giới hạn: $I = \lim_{x \to 0^+} x^3 \ln x$

Ví dụ 2.9.

Tính giới hạn:
$$I = \lim_{x \to 0^+} x^3 \ln x$$

 \bullet Đưa về dạng $\frac{\infty}{\infty}$ rồi sử dụng quy tắc L' Hospital ta được:

$$I = \lim_{x \to 0^+} \frac{\ln x}{1/x^3} = \lim_{x \to 0^+} \frac{1/x}{-3/x^4}$$

Ví dụ 2.9.

Tính giới hạn:
$$I = \lim_{x \to 0^+} x^3 \ln x$$

 \bullet Đưa về dạng $\frac{\infty}{\infty}$ rồi sử dụng quy tắc L' Hospital ta được:

$$I = \lim_{x \to 0^+} \frac{\ln x}{1/x^3} = \lim_{x \to 0^+} \frac{1/x}{-3/x^4}$$

•
$$I = \lim_{x \to 0^+} \frac{-x^3}{3} = 0$$

Với giới hạn dạng 1^{∞} ta có công thức sau:

$$\lim_{x \to x_0} f(x)^{g(x)} (1^{\infty}) = e^{\lim_{x \to x_0} g(x)[f(x) - 1]}$$

$Chú \circ 2.$

Với giới hạn dạng 1^{∞} ta có công thức sau:

$$\lim_{x \to x_0} f(x)^{g(x)} (1^{\infty}) = e^{\lim_{x \to x_0} g(x)[f(x) - 1]}$$

Ví du 2.10.

Tìm giới hạn:
$$\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{x^2}}$$
.

Với giới han dang 1^{∞} ta có công thức sau:

$$\lim_{x \to x_0} f(x)^{g(x)} (1^{\infty}) = e^{\lim_{x \to x_0} g(x)[f(x) - 1]}$$

Ví du 2.10.

Tìm giới hạn: $\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{x^2}}$.

Giới hạn có dạng
$$1^{\infty}$$
, áp dụng công thức :
$$A = \lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{x^2}} (1^{\infty}) = e^{\lim_{x \to 0} \frac{1}{x^2} \left(\frac{\sin x}{x} - 1 \right)}$$

Với giới hạn dạng 1^{∞} ta có công thức sau:

$$\lim_{x \to x_0} f(x)^{g(x)} (1^{\infty}) = e^{\lim_{x \to x_0} g(x)[f(x) - 1]}$$

Ví dụ 2.10.

Tìm giới hạn: $\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{x^2}}$.

Giới hạn có dạng 1^{∞} , áp dụng công thức :

$$A = \lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{x^2}} (1^{\infty}) = e^{\lim_{x \to 0} \frac{1}{x^2} \left(\frac{\sin x}{x} - 1 \right)}$$

$$\ln A = \lim_{x \to 0} \frac{\sin x - x}{x^3} \left(\frac{0}{0} \right) \stackrel{L}{=} \lim_{x \to 0} \frac{\cos x - 1}{3x^2} \left(\frac{0}{0} \right) \stackrel{L}{=} \lim_{x \to 0} \frac{-\sin x}{6x} = -\frac{1}{6}$$

Với giới han dang 1^{∞} ta có công thức sau:

$$\lim_{x \to x_0} f(x)^{g(x)} (1^{\infty}) = e^{\lim_{x \to x_0} g(x)[f(x) - 1]}$$

Ví du 2.10.

Tìm giới hạn: $\lim_{x\to 0} \left(\frac{\sin x}{r}\right)^{\frac{1}{x^2}}$.

Giới hạn có dạng 1^{∞} , áp dụng công thức :

$$A = \lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{x^2}} (1^{\infty}) = e^{\lim_{x \to 0} \frac{1}{x^2} \left(\frac{\sin x}{x} - 1 \right)}$$

$$\ln A = \lim_{x \to 0} \frac{\sin x - x}{x^3} \left(\frac{0}{0} \right) \stackrel{L}{=} \lim_{x \to 0} \frac{\cos x - 1}{3x^2} \left(\frac{0}{0} \right) \stackrel{L}{=} \lim_{x \to 0} \frac{-\sin x}{6x} = -\frac{1}{6}$$

$$\text{Vây } A = e^{-1/6}$$

Ví du 2.11.

Tính giới hạn: $I = \lim_{x \to 0^+} (1+x)^{\ln x}$

Ví du 2.11.

Tính giới hạn:
$$I = \lim_{x \to 0^+} (1+x)^{\ln x}$$

- Đây là giới hạn dạng 1^∞ nên ta có $I=e^{\lim\limits_{x\to 0^+}(1+x-1)\ln x}=e^{\lim\limits_{x\to 0^+}x\ln x}$.
- Xét $J = \lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln x}{\frac{1}{x}}$
- Áp dụng quy tắc L' Hospital ta có $J = \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = \lim_{x \to 0^+} (-x) = 0$
- Vây $I = e^0 = 1$.

Đinh nghĩa 3.1.

Hàm F(x) được gọi là một nguyên hàm của f(x) trên tập X nếu $F'(x) = f(x), \forall x \in X$.

Định nghĩa 3.1.

Hàm F(x) được gọi là một nguyên hàm của f(x) trên tập X nếu $F'(x) = f(x), \forall x \in X$.

Định nghĩa 3.2.

Biểu thức F(x) + C được gọi là tích phân của f(x), trong đó F(x) là một nguyên hàm của f(x), C là hằng số bất kỳ.

Định nghĩa 3.1.

Hàm F(x) được gọi là một nguyên hàm của f(x) trên tập X nếu $F'(x) = f(x), \forall x \in X$.

Định nghĩa 3.2.

Biểu thức F(x) + C được gọi là tích phân của f(x), trong đó F(x) là một nguyên hàm của f(x), C là hằng số bất kỳ.

Ký hiệu:

$$\int f(x)dx = F(x) + C$$

x là biến lấy tích phân, f(x) là hàm dưới tích phân.

Bảng tích phân của một số hàm quen thuộc

$$(1). \int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \alpha \neq -1$$

$$(2). \int \frac{dx}{x} = \ln|x| + C$$

$$(3). \int e^{x} dx = e^{x} + C$$

$$(4). \int a^{x} dx = \frac{a^{x}}{\ln a} + C, \quad 0 < a \neq 1$$

$$(5). \int \sin x dx = -\cos x + C$$

$$(6). \int \cos x dx = \sin x + C$$

$$(7). \int \frac{dx}{\cos^{2} x} = \tan x + C$$

$$(8). \int \frac{dx}{\sin^{2} x} = -\cot x + C$$

$$(9). \int \frac{dx}{1+x^{2}} = \arctan x + C$$

$$(10). \int \frac{dx}{a^{2}+x^{2}} = \frac{1}{a} \arctan \frac{x}{a} + C$$

$$(11). \int \frac{dx}{\sqrt{1-x^{2}}} = \arcsin x + C$$

$$(12). \int \frac{dx}{\sqrt{a^{2}-x^{2}}} = \arcsin \frac{x}{a} + C$$

$$(13). \int \frac{dx}{x^{2}-a^{2}} = \frac{1}{2a} \ln \left| \frac{x-a}{x+a} \right| + C$$

$$(14). \int \frac{dx}{\sqrt{x^{2}+A}} = \ln |x + \sqrt{x^{2}+A}| + C$$

• Nếu
$$\int f(x)dx = F(x) + C$$
 thì $\int dF(x) = F(x) + C$.

• Nếu
$$\int f(x)dx = F(x) + C$$
 thì $\int dF(x) = F(x) + C$.

Nếu
$$\int f(x)dx = F(x) + C$$
 thì $\int f(u)du = F(u) + C$.

• Nếu
$$\int f(x)dx = F(x) + C$$
 thì $\int dF(x) = F(x) + C$.

② Nếu
$$\int f(x)dx = F(x) + C$$
 thì $\int f(u)du = F(u) + C$.

• Nếu
$$\int f(x)dx = F(x) + C$$
 thì $\int dF(x) = F(x) + C$.

② Nếu
$$\int f(x)dx = F(x) + C$$
 thì $\int f(u)du = F(u) + C$.

• Nếu
$$\int f(x)dx = F(x) + C$$
 thì $\int dF(x) = F(x) + C$.

② Nếu
$$\int f(x)dx = F(x) + C$$
 thì $\int f(u)du = F(u) + C$.

•
$$\int kf(x)dx = k \int f(x)dx$$
 với k là hằng số.

• Phương pháp đổi biến số: Xét $I = \int f(x)dx$ Đặt $x = \varphi(t) \iff t = \varphi^{-1}(x)$ (tương ứng 1-1).

• Phương pháp đổi biến số: Xét $I = \int f(x)dx$ Đặt $x = \varphi(t) \iff t = \varphi^{-1}(x)$ (tương ứng 1-1). Khi đó $dx = \varphi'(t)dt$. $I = \int f[\varphi(t)] \varphi'(t) dt = \int g(t) dt = G(t) + C = G[\varphi^{-1}(x)] + C.$

• Phương pháp đổi biến số: Xét $I = \int f(x)dx$ Đặt $x = \varphi(t) \iff t = \varphi^{-1}(x)$ (tương ứng 1-1). Khi đó $dx = \varphi'(t)dt$. $I = \int f[\varphi(t)] \varphi'(t) dt = \int g(t) dt = G(t) + C = G[\varphi^{-1}(x)] + C.$

2 Phương pháp tích phân từng phần: u = u(x), v = v(x) $\int udv = uv - \int vdu$

Ví du 3.1.

Ví dụ 3.1.

$$lackbox{0}$$
 Đặt $t=e^x$, thì $dx=rac{dt}{t}$ và tích phân trở thành $I=\int rac{2}{t(t-1)(t-2)}dt.$

Ví dụ 3.1.

- Đặt $t=e^x$, thì $dx=\frac{dt}{t}$ và tích phân trở thành $I=\int \frac{2}{t(t-1)(t-2)}dt$.
- $\text{ Tách } \frac{2}{t(t-1)(t-2)} = \frac{1}{t} \frac{2}{t-1} + \frac{1}{t-2}.$

Ví dụ 3.1.

- Đặt $t = e^x$, thì $dx = \frac{dt}{t}$ và tích phân trở thành $I = \int \frac{2}{t(t-1)(t-2)} dt$.
- ② Tách $\frac{2}{t(t-1)(t-2)} = \frac{1}{t} \frac{2}{t-1} + \frac{1}{t-2}$.
- $I = \ln|t| 2\ln|t 1| + \ln|t 2| + C = \ln\left|\frac{e^x(e^x 2)}{(e^x 1)^2}\right| + C.$

Ví du 3.2.

Tính tích phân:
$$I = \int \frac{x \cdot \arctan x}{\sqrt{1 + x^2}} dx$$

Ví du 3.2.

Tính tích phân:
$$I = \int \frac{x \cdot \arctan x}{\sqrt{1+x^2}} dx$$

• Dùng tích phân từng phần

$$I = \int \arctan x \cdot d\sqrt{1 + x^2} = \arctan x \cdot \sqrt{1 + x^2} - \int \frac{dx}{\sqrt{1 + x^2}}$$

Ví du 3.2.

Tính tích phân:
$$I = \int \frac{x \cdot \arctan x}{\sqrt{1 + x^2}} dx$$

• Dùng tích phân từng phần

$$I = \int \arctan x \cdot d\sqrt{1 + x^2} = \arctan x \cdot \sqrt{1 + x^2} - \int \frac{dx}{\sqrt{1 + x^2}}$$

•
$$I = \arctan x \cdot \sqrt{1 + x^2} - \ln(1 + \sqrt{1 + x^2}) + C$$

lacktriangle Cho f(x) liên tục trên [a,b] và F(x) là một nguyên hàm của nó.

$$\int_{a}^{b} f(x)dx = F(b) - F(a) = F(x)\Big|_{a}^{b}.$$

① Cho
$$f(x)$$
 liên tục trên $[a,b]$ và $F(x)$ là một nguyên hàm của nó.
$$\int\limits_a^b f(x)dx = F(b) - F(a) = F(x)\Big|_a^b.$$

Phương pháp đổi biến số: Xét $I = \int_{-b}^{b} f(x) dx$

Đặt
$$x = \varphi(t) \iff t = \varphi^{-1}(x)$$
, (tương ứng 1-1), $\varphi(\alpha) = a, \varphi(\beta) = b, dx = \varphi'(t)dt$ và

lacktriangle Cho f(x) liên tục trên [a,b] và F(x) là một nguyên hàm của nó.

$$\int_{a}^{b} f(x)dx = F(b) - F(a) = F(x)\Big|_{a}^{b}.$$

Đặt
$$x = \varphi(t) \iff t = \varphi^{-1}(x)$$
, (tương ứng 1-1), $\varphi(\alpha) = a, \varphi(\beta) = b, dx = \varphi'(t)dt$ và

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f[\varphi(t)]\varphi'(t)dt = \int_{\alpha}^{\beta} g(t)dt.$$

• Cho f(x) liên tục trên [a,b] và F(x) là một nguyên hàm của nó.

$$\int_{a}^{b} f(x)dx = F(b) - F(a) = F(x)\Big|_{a}^{b}.$$

2 Phương pháp đổi biến số: Xét $I = \int_{-\infty}^{\infty} f(x) dx$

Đặt $x = \varphi(t) \iff t = \varphi^{-1}(x)$, (tương ứng 1-1), $\varphi(\alpha) = a, \varphi(\beta) = b, dx = \varphi'(t)dt$ và

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f[\varphi(t)]\varphi'(t)dt = \int_{\alpha}^{\beta} g(t)dt.$$

3 Phương pháp tích phân từng phần: $\int u dv = uv \Big|_a^b - \int v du.$

Ví dụ 3.3.

Tính tích phân:

$$I = \int_{0}^{a} \sqrt{a^2 - x^2} dx; \quad a > 0.$$

Ví dụ 3.3.

Tính tích phân:

$$I = \int_{0}^{a} \sqrt{a^2 - x^2} dx; \quad a > 0.$$

$$\bullet$$
 Đổi biến $x=a\sin t:I=a^2\int\limits_0^{\frac{\pi}{2}}\cos^2tdt.$

Ví dụ 3.3.

Tính tích phân:

$$I = \int_{0}^{a} \sqrt{a^2 - x^2} dx; \quad a > 0.$$

- \bullet Đổi biến $x=a\sin t:I=a^2\int\limits_0^{\frac{\pi}{2}}\cos^2tdt.$
- $I = \frac{a^2}{2} \int_{0}^{\frac{\pi}{2}} (1 + \cos 2t) dt = \frac{a^2}{2} \left(t + \frac{\sin 2t}{2} \right) \Big|_{0}^{\frac{\pi}{2}}.$

Ví du 3.3.

Tính tích phân:

$$I = \int_{0}^{a} \sqrt{a^2 - x^2} dx; \quad a > 0.$$

$$\bullet$$
 Đổi biến $x=a\sin t:I=a^2\int\limits_0^{\frac{\pi}{2}}\cos^2tdt.$

•
$$I = \frac{a^2}{2} \int_{1}^{\frac{\pi}{2}} (1 + \cos 2t) dt = \frac{a^2}{2} \left(t + \frac{\sin 2t}{2} \right) \Big|_{0}^{\frac{\pi}{2}}.$$

•
$$I = \frac{a^2\pi}{4}$$
.

Ví dụ 3.4.

Ví dụ 3.4.

Tính tích phân xác định:

$$I = \int_{0}^{\sqrt{3}} \frac{\arctan x}{(\sqrt{1+x^2})^3} dx.$$

Ví dụ 3.4.

Tính tích phân xác đinh:

$$I = \int_{0}^{\sqrt{3}} \frac{\arctan x}{(\sqrt{1+x^2})^3} dx.$$

① Đổi biến, đặt $x = \tan t \Leftrightarrow \arctan x = t; x = 0 \Leftrightarrow t = 0, x = \sqrt{3} \Leftrightarrow t = \frac{\pi}{3}$

Ví du 3.4.

Tính tích phân xác đinh:

$$I = \int_{0}^{\sqrt{3}} \frac{\arctan x}{(\sqrt{1+x^2})^3} dx.$$

- Đổi biến, đặt $x = \tan t \Leftrightarrow \arctan x = t; x = 0 \Leftrightarrow t = 0, x = \sqrt{3} \Leftrightarrow t = \frac{\pi}{2}$
- Whi đó, $dt = \frac{dx}{1+x^2}$, $1+x^2 = 1 + \tan^2 t = \frac{1}{\cos^2 t}$ và $I = \int_{0}^{\sqrt{3}} \frac{\arctan x}{\sqrt{1+x^2}} \cdot \frac{dx}{1+x^2} = \int_{0}^{\frac{\pi}{3}} t \cos t dt$

$$I = \int_{0}^{\sqrt{3}} \frac{\arctan x}{\sqrt{1+x^2}} \cdot \frac{dx}{1+x^2} = \int_{0}^{\frac{\pi}{3}} t \cos t dt$$

Ví du 3.4.

Tính tích phân xác đinh:

$$I = \int_{0}^{\sqrt{3}} \frac{\arctan x}{(\sqrt{1+x^2})^3} dx.$$

- Đổi biến, đặt $x = \tan t \Leftrightarrow \arctan x = t; x = 0 \Leftrightarrow t = 0, x = \sqrt{3} \Leftrightarrow t = \frac{\pi}{2}$
- Whi đó, $dt = \frac{dx}{1+x^2}$, $1+x^2 = 1 + \tan^2 t = \frac{1}{\cos^2 t}$ và $I = \int \frac{1}{\sqrt{1+x^2}} \frac{dx}{1+x^2} dx = \int \frac{\pi}{3} t \cos t dt$

$$t = \int_{0}^{\sqrt{3}} \frac{\arctan x}{\sqrt{1+x^2}} \cdot \frac{dx}{1+x^2} = \int_{0}^{\frac{\pi}{3}} t \cos t dt$$

3 Dùng pp tích phân từng phần $I = (t \sin t + \cos t) \Big|_{0}^{\frac{\pi}{3}} = \frac{\sqrt{3\pi}}{2} - \frac{1}{4}$

4. Đạo hàm riêng và vi phân toàn phần của hàm nhiều biến

4. Đạo hàm riêng và vi phân toàn phần của hàm nhiều biến

Định nghĩa 4.1.

$$f'_x(x_0, y_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x} = \lim_{x \to x_0} \frac{f(x, y_0) - f(x_0, y_0)}{x - x_0}$$

4. Đạo hàm riêng và vị phân toàn phần của hàm nhiều biến

Đinh nghĩa 4.1.

$$f'_{x}(x_{0}, y_{0}) = \lim_{\Delta x \to 0} \frac{f(x_{0} + \Delta x, y_{0}) - f(x_{0}, y_{0})}{\Delta x} = \lim_{x \to x_{0}} \frac{f(x, y_{0}) - f(x_{0}, y_{0})}{x - x_{0}}$$
$$f'_{y}(x_{0}, y_{0}) = \lim_{\Delta y \to 0} \frac{f(x_{0}, y_{0} + \Delta y) - f(x_{0}, y_{0})}{\Delta y} = \lim_{y \to y_{0}} \frac{f(x_{0}, y_{0}) - f(x_{0}, y_{0})}{y - y_{0}}$$

4. Đạo hàm riêng và vị phân toàn phần của hàm nhiều biến

Đinh nghĩa 4.1.

$$f'_x(x_0, y_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x} = \lim_{x \to x_0} \frac{f(x, y_0) - f(x_0, y_0)}{x - x_0}$$
$$f'_y(x_0, y_0) = \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y} = \lim_{y \to y_0} \frac{f(x_0, y_0) - f(x_0, y_0)}{y - y_0}$$

Khi tính đạo hàm riêng của z = f(x, y) theo biến x, ta coi y là hằng số và áp dụng các công thức, quy tắc tính đạo hàm của hàm 1 biến x.

4. Đạo hàm riêng và vị phân toàn phần của hàm nhiều biến

Đinh nghĩa 4.1.

$$f'_{x}(x_{0}, y_{0}) = \lim_{\Delta x \to 0} \frac{f(x_{0} + \Delta x, y_{0}) - f(x_{0}, y_{0})}{\Delta x} = \lim_{x \to x_{0}} \frac{f(x, y_{0}) - f(x_{0}, y_{0})}{x - x_{0}}$$
$$f'_{y}(x_{0}, y_{0}) = \lim_{\Delta y \to 0} \frac{f(x_{0}, y_{0} + \Delta y) - f(x_{0}, y_{0})}{\Delta y} = \lim_{y \to y_{0}} \frac{f(x_{0}, y_{0}) - f(x_{0}, y_{0})}{y - y_{0}}$$

- Khi tính đạo hàm riêng của z = f(x, y) theo biến x, ta coi y là hằng số và áp dụng các công thức, quy tắc tính đạo hàm của hàm 1 biến x.
- \bullet Khi tính đạo hàm riêng của z = f(x, y) theo biến y, ta coi x là hằng số và áp dụng các công thức, quy tắc tính đạo hàm của hàm 1 biến y.

ĐẦU VÀO MÔN TOÁN

Đạo hàm riêng

Ví dụ 4.1.

Tính các đạo hàm riêng của hàm số

$$f(x,y) = x^4y + e^{2x+y^3} + \sqrt{x^3 + y^2} + \sin(4x^2 + 5y).$$

Đao hàm riêng

Ví du 4.1.

Tính các đạo hàm riêng của hàm số

$$f(x,y) = x^4y + e^{2x+y^3} + \sqrt{x^3 + y^2} + \sin(4x^2 + 5y).$$

$$f'_x = 4x^3y + 2e^{2x+y^3} + \frac{3x^2}{2\sqrt{x^3 + y^2}} + 8x\cos(4x^2 + 5y);$$

$$f'_x = 4x^3y + 2e^{2x+y^3} + \frac{3x^2}{2\sqrt{x^3 + y^2}} + 8x\cos(4x^2 + 5y);$$

$$f'_y = x^4 + 3y^2e^{2x+y^3} + \frac{2y}{2\sqrt{x^3 + y^2}} + 5\cos(4x^2 + 5y).$$

Vi phân toàn phần

Vi phân toàn phần

Hàm 2 biến:

$$df(x_0, y_0) = f'_x(x_0, y_0).dx + f'_y(x_0, y_0).dy$$

$$df = df(x,y) = f'_x(x,y).dx + f'_y(x,y).dy$$

Vi phân toàn phần

Hàm 2 biến:

$$df(x_0, y_0) = f'_x(x_0, y_0).dx + f'_y(x_0, y_0).dy$$

$$df = df(x,y) = f'_x(x,y).dx + f'_y(x,y).dy$$

Tương tự, đối với hàm 3 biến:

Hàm 3 biến:

$$df(x, y, z) = f'_x(x, y, z).dx + f'_y(x, y, z).dy + f'_z(x, y, z).dz$$

Tìm vi phân toàn phần của $f(x,y) = \arctan \frac{x+y}{1-xy}$.

Tìm vi phân toàn phần của $f(x,y) = \arctan \frac{x+y}{1-xy}$.

Tìm vi phân toàn phần của $f(x,y) = \arctan \frac{x+y}{1-xy}$.

$$f'_x = \frac{\frac{1 \cdot (1 - xy) - (-y)(x + y)}{(1 - xy)^2}}{1 + \left(\frac{x + y}{1 - xy}\right)^2} = \frac{1 + y^2}{(x + y)^2 + (1 - xy)^2} = \frac{1}{1 + x^2}$$

Tìm vi phân toàn phần của $f(x,y) = \arctan \frac{x+y}{1-m}$.

$$f'_x = \frac{\frac{1 \cdot (1 - xy) - (-y)(x + y)}{(1 - xy)^2}}{1 + \left(\frac{x + y}{1 - xy}\right)^2} = \frac{1 + y^2}{(x + y)^2 + (1 - xy)^2} = \frac{1}{1 + x^2}$$

$$f_y' = \frac{\frac{1 \cdot (1 - xy) - (-x)(x + y)}{(1 - xy)^2}}{1 + \left(\frac{x + y}{1 - xy}\right)^2} = \frac{1 + x^2}{(x + y)^2 + (1 - xy)^2} = \frac{1}{1 + y^2}$$

Ví dụ 4.2.

Tìm vi phân toàn phần của $f(x,y) = \arctan \frac{x+y}{1-xy}$.

•
$$f'_x = \frac{\frac{1 \cdot (1 - xy) - (-y)(x + y)}{(1 - xy)^2}}{1 + \left(\frac{x + y}{1 - xy}\right)^2} = \frac{1 + y^2}{(x + y)^2 + (1 - xy)^2} = \frac{1}{1 + x^2}$$

$$f_y' = \frac{\frac{1 \cdot (1 - xy) - (-x)(x + y)}{(1 - xy)^2}}{1 + \left(\frac{x + y}{1 - xy}\right)^2} = \frac{1 + x^2}{(x + y)^2 + (1 - xy)^2} = \frac{1}{1 + y^2}$$

$$df(x,y) = f'_x.dx + f'_y.dy = \frac{dx}{1+x^2} + \frac{dy}{1+y^2}.$$

Ví dụ 4.3.

Tìm du nếu $u = x^{y^2z}$

Ví dụ 4.3.

Tìm du nếu $u = x^{y^2z}$

•
$$u'_x = y^2 z. x^{y^2 z - 1}$$

$$u_y' = 2yz.x^{y^2z} \ln x$$

$$\bullet \ u_z' = y^2.x^{y^2z} \ln x$$

Ví dụ 4.3.

Tìm du nếu $u = x^{y^2z}$

- $u'_x = y^2 z. x^{y^2 z 1}$
- $u_y' = 2yz.x^{y^2z} \ln x$
- $u'_z = y^2 . x^{y^2 z} \ln x$
- $du = u'_x dx + u'_y dy + u'_z dz = y^2 z \cdot x^{y^2 z 1} dx + u'_y = 2yz \cdot x^{y^2 z} \ln x dy + y^2 \cdot x^{y^2 z} \ln x dz$

Các đao hàm riêng cấp 2

Đinh nghĩa 4.2.

Các đao hàm riêng của các đao hàm riêng cấp 1

$$(f'_x)'_x = \frac{\partial^2 f}{\partial x^2} = f''_{xx} = f''_{x^2}$$
$$(f'_x)'_y = \frac{\partial^2 f}{\partial x \cdot \partial y} = f''_{xy}$$
$$(f'_y)'_x = \frac{\partial^2 f}{\partial y \cdot \partial x} = f''_{yx}$$
$$(f'_y)'_y = \frac{\partial^2 f}{\partial y^2} = f''_{yy} = f''_{y^2}$$

goi là các đao hàm riêng cấp 2.

Các đạo hàm riêng cấp cao

Tương tự, các đạo hàm riêng của các đạo hàm riêng cấp 2 được gọi là các đạo hàm riêng cấp $3, \dots$ Chẳng hạn,

$$(f_{xy}'')_x' = f_{xyx}^{(3)} = \frac{\partial^3 f}{\partial x \cdot \partial y \cdot \partial x}, \ (f_{xx}'')_y' = f_{x^2y}^{(3)} = \frac{\partial^3 f}{\partial x^2 \cdot \partial y}, \dots$$

Các đạo hàm riêng cấp cao

Tương tự, các đạo hàm riêng của các đạo hàm riêng cấp 2 được gọi là các đạo hàm riêng cấp $3, \dots$ Chẳng hạn,

$$(f''_{xy})'_x = f^{(3)}_{xyx} = \frac{\partial^3 f}{\partial x \cdot \partial y \cdot \partial x}, \ (f''_{xx})'_y = f^{(3)}_{x^2y} = \frac{\partial^3 f}{\partial x^2 \cdot \partial y}, \dots$$

Công thức Schwarz:

Nếu $f_{xy}^{\prime\prime}$ và $f_{yx}^{\prime\prime}$ liên tục tại (x_0,y_0) thì :

$$f_{xy}''(x_0, y_0) = f_{yx}''(x_0, y_0)$$

Các đạo hàm riêng cấp cao

Tương tự, các đạo hàm riêng của các đạo hàm riêng cấp 2 được gọi là các đạo hàm riêng cấp $3, \dots$ Chẳng hạn,

$$(f''_{xy})'_x = f^{(3)}_{xyx} = \frac{\partial^3 f}{\partial x \cdot \partial y \cdot \partial x}, \ (f''_{xx})'_y = f^{(3)}_{x^2y} = \frac{\partial^3 f}{\partial x^2 \cdot \partial y}, \dots$$

Công thức Schwarz:

Nếu f''_{xy} và f''_{yx} liên tục tại (x_0, y_0) thì :

$$f_{xy}''(x_0, y_0) = f_{yx}''(x_0, y_0)$$

Tương tự,
$$f_{x^2y}^{(3)} = f_{xyx}^{(3)} = f_{yx^2}^{(3)}, f_{y^2x}^{(3)} = f_{yxy}^{(3)} = f_{xy^2}^{(3)}, \cdots$$

Tính các đạo hàm riêng cấp 1, cấp 2 và vi phân toàn phần của hàm số $f(x,y) = \ln\left(\sqrt{x^2+y^2}\right) + 3\arctan\frac{x}{y}$ tại điểm (1,2).

Tính các đạo hàm riêng cấp 1, cấp 2 và vi phân toàn phần của hàm số $f(x,y) = \ln\left(\sqrt{x^2+y^2}\right) + 3\arctan\frac{x}{y}$ tại điểm (1,2).

<u>Ví du 4.4.</u>

Tính các đạo hàm riêng cấp 1, cấp $\frac{2}{2}$ và vi phân toàn phần của hàm số $f(x,y) = \ln\left(\sqrt{x^2 + y^2}\right) + 3\arctan\frac{x}{y}$ tại điểm (1,2).

Hướng dẫn:

• Viết lại $f(x,y) = \frac{1}{2} \ln (x^2 + y^2) + 3 \arctan \frac{x}{y}$

Tính các đạo hàm riêng cấp 1, cấp 2 và vi phân toàn phần của hàm số $f(x,y) = \ln\left(\sqrt{x^2 + y^2}\right) + 3\arctan\frac{x}{y}$ tại điểm (1,2).

• Viết lại
$$f(x,y) = \frac{1}{2} \ln (x^2 + y^2) + 3 \arctan \frac{x}{y}$$

•
$$f'_x = \frac{x+3y}{x^2+y^2}$$
, $f'_y = \frac{y-3x}{x^2+y^2} \Rightarrow f'_x(1,2) = \frac{7}{5}$, $f'_y(1,2) = -\frac{1}{5}$.

Tính các đạo hàm riêng cấp 1, cấp 2 và vi phân toàn phần của hàm số $f(x,y) = \ln\left(\sqrt{x^2 + y^2}\right) + 3\arctan\frac{x}{x}$ tại điểm (1,2).

• Viết lại
$$f(x,y) = \frac{1}{2} \ln (x^2 + y^2) + 3 \arctan \frac{x}{y}$$

•
$$f'_x = \frac{x+3y}{x^2+y^2}$$
, $f'_y = \frac{y-3x}{x^2+y^2} \Rightarrow f'_x(1,2) = \frac{7}{5}$, $f'_y(1,2) = -\frac{1}{5}$.

•
$$df(1,2) = f'_x(1,2).dx + f'_y(1,2).dy = \frac{7}{5}dx - \frac{1}{5}dy.$$

Tính các đạo hàm riêng cấp 1, cấp 2 và vi phân toàn phần của hàm số $f(x,y) = \ln\left(\sqrt{x^2 + y^2}\right) + 3\arctan\frac{x}{x}$ tại điểm (1,2).

• Viết lại
$$f(x,y) = \frac{1}{2} \ln (x^2 + y^2) + 3 \arctan \frac{x}{y}$$

•
$$f'_x = \frac{x+3y}{x^2+y^2}$$
, $f'_y = \frac{y-3x}{x^2+y^2} \Rightarrow f'_x(1,2) = \frac{7}{5}$, $f'_y(1,2) = -\frac{1}{5}$.

•
$$df(1,2) = f'_x(1,2).dx + f'_y(1,2).dy = \frac{7}{5}dx - \frac{1}{5}dy.$$

•
$$f''_{xx} = \frac{-x^2 + y^2 - 6xy}{(x^2 + y^2)^2} \Rightarrow f''_{xx}(1,2) = -\frac{9}{25}, f''_{xy} = \frac{3x^2 - 3y^2 - 2xy}{(x^2 + y^2)^2}$$

 $\Rightarrow f''_{xy}(1,2) = -\frac{13}{25}, f''_{yy} = \frac{x^2 - y^2 + 6xy}{(x^2 + y^2)^2} \Rightarrow f''_{yy}(1,2) = \frac{9}{25}.$

Vi phân cấp 2

Chú ý 3.

Vi phân cấp 2 của hàm z = f(x, y) tai điểm bất kỳ là

$$d^2f(x,y) = f''_{xx}dx^2 + 2f''_{xy}dxdy + f''_{yy}dy^2$$

Chú ý 3.

Vi phân cấp 2 của hàm z = f(x, y) tai điểm bất kỳ là

$$d^{2}f(x,y) = f''_{xx}dx^{2} + 2f''_{xy}dxdy + f''_{yy}dy^{2}$$

Ví dụ 4.5.

$$z = \sin(2x + 3y)$$

Chú ý 3.

Vi phân cấp 2 của hàm z = f(x, y) tai điểm bất kỳ là

$$d^{2}f(x,y) = f''_{xx}dx^{2} + 2f''_{xy}dxdy + f''_{yy}dy^{2}$$

Ví du 4.5.

$$z = \sin(2x + 3y)$$

Ta có
$$z'_x = 2\cos(2x + 3y), \ z'_y = 3\cos(2x + 3y)$$

$$z_{xx}'' = -4\sin(2x+3y), \ z_{xy}'' = -6\sin(2x+3y), \ z_{yy}'' = -9\sin(2x+3y)$$

$$d^{2}f(x,y) = f''_{xx}dx^{2} + 2f''_{xy}dxdy + f''_{yy}dy^{2} = -(4dx^{2} + 12dxdy + 9dy^{2})\sin(2x + 3y).$$

Ví du 4.6.

$$f(x,y) = x\cos(3x + y^2) + e^{2x+3y}.$$

Ví du 4.6.

$$f(x,y) = x\cos(3x + y^2) + e^{2x+3y}.$$

- $f'_x(x,y) = \cos(3x+y^2) 3x\sin(3x+y^2) + 2e^{2x+3y}$
- $f_{y}'(x,y) = -2xy\sin(3x+y^{2}) + 3e^{2x+3y}$

Ví du 4.6.

$$f(x,y) = x\cos(3x + y^2) + e^{2x+3y}.$$

- $f'_x(x,y) = \cos(3x+y^2) 3x\sin(3x+y^2) + 2e^{2x+3y}$
- $f'_{y}(x,y) = -2xy\sin(3x+y^2) + 3e^{2x+3y}$

Ví du 4.6.

$$f(x,y) = x\cos(3x + y^2) + e^{2x+3y}.$$

- $f'_x(x,y) = \cos(3x+y^2) 3x\sin(3x+y^2) + 2e^{2x+3y}$
- $f_{y}'(x,y) = -2xy\sin(3x+y^{2}) + 3e^{2x+3y}$
- $f''_{xx} = -6\sin(3x + y^2) 9x\cos(3x + y^2) + 4e^{2x+3y}$

Ví du 4.6.

$$f(x,y) = x\cos(3x + y^2) + e^{2x+3y}.$$

- $f'_x(x,y) = \cos(3x+y^2) 3x\sin(3x+y^2) + 2e^{2x+3y}$
- $f_{y}'(x,y) = -2xy\sin(3x+y^{2}) + 3e^{2x+3y}$
- $f''_{xx} = -6\sin(3x + y^2) 9x\cos(3x + y^2) + 4e^{2x+3y}$
- $f''_{yy} = -2x\sin(3x+y^2) 4xy^2\cos(3x+y^2) + 9e^{2x+3y}$

Ví du 4.6.

$$f(x,y) = x\cos(3x + y^2) + e^{2x+3y}.$$

- $f'_x(x,y) = \cos(3x+y^2) 3x\sin(3x+y^2) + 2e^{2x+3y}$
- $f'_{y}(x,y) = -2xy\sin(3x+y^2) + 3e^{2x+3y}$
- $f''_{xx} = -6\sin(3x + y^2) 9x\cos(3x + y^2) + 4e^{2x+3y}$
- $f''_{yy} = -2x\sin(3x+y^2) 4xy^2\cos(3x+y^2) + 9e^{2x+3y}$ Vi phân cấp 2:

$$d^{2}f(x,y) = f''_{xx}dx^{2} + 2f''_{xy}dxdy + f''_{yy}dy^{2} = \dots$$

Tính $d^2 f(0,1)$, biết: $f(x,y) = \arctan \frac{x}{y}$.

Tính
$$d^2 f(0,1)$$
, biết: $f(x,y) = \arctan \frac{x}{y}$.

• Các đạo hàm riêng cấp 1: $f'_x = \frac{y}{x^2 + y^2}$, $f'_y = \frac{-x}{x^2 + y^2}$.

Tính
$$d^2 f(0,1)$$
, biết: $f(x,y) = \arctan \frac{x}{y}$.

- Các đạo hàm riêng cấp 1: $f'_x = \frac{y}{x^2 + y^2}$, $f'_y = \frac{-x}{x^2 + y^2}$.
- Các đạo hàm riêng cấp 2:

$$f''_{xx} = \frac{-2xy}{(x^2 + y^2)^2}, \quad f''_{xy} = \frac{x^2 - y^2}{(x^2 + y^2)^2}, \quad f''_{yy} = \frac{2xy}{(x^2 + y^2)^2}.$$

Tính
$$d^2 f(0,1)$$
, biết: $f(x,y) = \arctan \frac{x}{y}$.

- Các đạo hàm riêng cấp 1: $f'_x = \frac{y}{x^2 + y^2}$, $f'_y = \frac{-x}{x^2 + y^2}$.
- Các đao hàm riêng cấp 2:

$$f''_{xx} = \frac{-2xy}{(x^2 + y^2)^2}, \quad f''_{xy} = \frac{x^2 - y^2}{(x^2 + y^2)^2}, \quad f''_{yy} = \frac{2xy}{(x^2 + y^2)^2}.$$

• Vi phân cấp 2:
$$d^2 f(x,y) = \frac{-2xy}{(x^2+y^2)^2} dx^2 + \frac{x^2-y^2}{(x^2+y^2)^2} dx dy + \frac{2xy}{(x^2+y^2)^2} dy^2$$
.

Tính
$$d^2 f(0,1)$$
, biết: $f(x,y) = \arctan \frac{x}{y}$.

- Các đạo hàm riêng cấp 1: $f'_x = \frac{y}{x^2 + y^2}$, $f'_y = \frac{-x}{x^2 + y^2}$.
- Các đao hàm riêng cấp 2:

$$f''_{xx} = \frac{-2xy}{(x^2 + y^2)^2}, \quad f''_{xy} = \frac{x^2 - y^2}{(x^2 + y^2)^2}, \quad f''_{yy} = \frac{2xy}{(x^2 + y^2)^2}.$$

- Vi phân cấp 2: $d^2 f(x,y) = \frac{-2xy}{(x^2 + y^2)^2} dx^2 + \frac{x^2 y^2}{(x^2 + y^2)^2} dx dy + \frac{2xy}{(x^2 + y^2)^2} dy^2$.
- Vi phân cấp 2 của hàm số tai (0,1) là $d^2 f(0,1) = -dx.dy$.

•
$$f'_x(x,y) = 2x + y - \frac{4}{x}$$
, $f'_y(x,y) = 2y + x - \frac{2}{y}$, $\forall x > 0$, $y > 0$.

•
$$f"_{xx} = 2 + \frac{4}{x^2}$$
, $f"_{xy} = 1$, $f"_{yy} = 2 + \frac{2}{y^2}$.

•
$$f'_x(x,y) = 2x + y - \frac{4}{x}$$
, $f'_y(x,y) = 2y + x - \frac{2}{y}$, $\forall x > 0$, $y > 0$.

•
$$f"_{xx} = 2 + \frac{4}{x^2}$$
, $f"_{xy} = 1$, $f"_{yy} = 2 + \frac{2}{y^2}$.

•
$$d^2 f(x,y) = \left(2 + \frac{4}{x^2}\right) dx^2 + 2dxdy + \left(2 + \frac{2}{y^2}\right) dy^2$$
.

•
$$f'_x(x,y) = 2x + y - \frac{4}{x}$$
, $f'_y(x,y) = 2y + x - \frac{2}{y}$, $\forall x > 0$, $y > 0$.

•
$$f"_{xx} = 2 + \frac{4}{x^2}$$
, $f"_{xy} = 1$, $f"_{yy} = 2 + \frac{2}{y^2}$.

•
$$d^2 f(x,y) = \left(2 + \frac{4}{x^2}\right) dx^2 + 2dxdy + \left(2 + \frac{2}{y^2}\right) dy^2$$
.

•
$$d^2f(1,1) = 6dx^2 + 2dxdy + 4dy^2$$
.

Cho hàm số f(x,y) xác định trong miền D và điểm $M_0(x_0,y_0)$.

Cho hàm số f(x,y) xác định trong miền D và điểm $M_0(x_0,y_0)$.

Định nghĩa 5.1.

Cho hàm số f(x,y) xác định trong miền D và điểm $M_0(x_0,y_0)$.

Định nghĩa 5.1.

• M_0 được gọi là điểm cực đại của f nếu tồn tại một lân cận V của M_0 sao cho $f(M) \leq f(M_0), \forall M \in V$. Nếu dấu bằng không xảy ra thì M_0) gọi là điểm cực đại chặt.

Cho hàm số f(x,y) xác định trong miền D và điểm $M_0(x_0,y_0)$.

Định nghĩa 5.1.

- M_0 được gọi là điểm cực đại của f nếu tồn tại một lân cận V của M_0 sao cho $f(M) \leq f(M_0), \forall M \in V$. Nếu dấu bằng không xảy ra thì M_0) gọi là điểm cực đại chặt.
- ② M_0 được gọi là điểm cực tiểu của f nếu tồn tại một lân cận V của M_0 sao cho $f(M) \geq f(M_0), \forall M \in V$. Nếu dấu bằng không xảy ra thì M_0) gọi là điểm cực tiểu chặt.

Cho hàm số f(x,y) xác định trong miền D và điểm $M_0(x_0,y_0)$.

Đinh nghĩa 5.1.

- \bullet M_0 được gọi là điểm cực đại của f nếu tồn tại một lân cân V của M_0 sao cho $f(M) \leq f(M_0), \forall M \in V$. Nếu dấu bằng không xảy ra thì M_0) gọi là điểm cực đại chăt.
- $f(M) \geq f(M_0), \forall M \in V$. Nếu dấu bằng không xảy ra thì M_0) gọi là điểm cực tiểu chăt.
- 3 Các điểm cực đại và cực tiểu gọi chung là điểm cực tri.

Cho hàm số f(x,y) xác định trong miền D và điểm $M_0(x_0,y_0)$.

Đinh nghĩa 5.1.

- \bullet M_0 được gọi là điểm cực đại của f nếu tồn tại một lân cân V của M_0 sao cho $f(M) \leq f(M_0), \forall M \in V$. Nếu dấu bằng không xảy ra thì M_0) gọi là điểm cực đại chăt.
- $f(M) \geq f(M_0), \forall M \in V$. Nếu dấu bằng không xảy ra thì M_0) gọi là điểm cực tiểu chăt.
- 3 Các điểm cực đại và cực tiểu gọi chung là điểm cực tri.

Nếu $M_0(x_0, y_0)$ là điểm cực đại của hàm số thì $f(x_0, y_0)$ gọi là giá trị cực đại (cực đại) của hàm số. Tương tư ta cũng có giá tri cực tiểu.

Định lý 5.1.

Định lý 5.1.

Nếu hàm f(x,y) đạt cực trị tại điểm trong $M_0(x_0,y_0)$ của D và có các đạo hàm riêng tại

đó thì

Định lý 5.1.

Nếu hàm f(x,y) đạt cực trị tại điểm trong $M_0(x_0,y_0)$ của D và có các đạo hàm riêng tại

dó thì
$$\begin{cases} \frac{\partial f}{\partial x}(x_0, y_0) &= 0, \\ \frac{\partial f}{\partial y}(x_0, y_0) &= 0. \end{cases}$$

Nếu hàm f(x,y) đạt cực trị tại điểm trong $M_0(x_0,y_0)$ của D và có các đạo hàm riêng tại $\begin{cases} \frac{\partial f}{\partial x}(x_0,y_0) &= 0,\\ \\ \frac{\partial f}{\partial y}(x_0,y_0) &= 0. \end{cases}$

Điểm mà tại đó các đạo hàm riêng đều bằng 0 được gọi là điểm dừng của hàm số. Từ định lý trên, nếu một điểm trong của D là điểm cực tri thì nó là điểm dừng. Điều ngược lai của định lý chưa chắc đúng.

Giả sử hàm số z = f(x, y) có điểm dùng là $M_0(x_0, y_0)$ và các đạo hàm riêng cấp hai liên tục trong một lân cận của M_0 , ta đặt

$$A = f''_{xx}(M_0), B = f''_{xy}(M_0), C = f''_{yy}(M_0)$$
 và $\Delta = B^2 - AC$.

Giả sử hàm số z = f(x, y) có điểm dùng là $M_0(x_0, y_0)$ và các đạo hàm riêng cấp hai liên tục trong một lân cận của M_0 , ta đặt

$$A = f''_{xx}(M_0), B = f''_{xy}(M_0), C = f''_{yy}(M_0)$$
 và $\Delta = B^2 - AC$.

Khi đó

• Nếu $\Delta < 0$ và A > 0 thì M_0 là điểm cực tiểu của hàm số f(x,y),

Giả sử hàm số z = f(x, y) có điểm dùng là $M_0(x_0, y_0)$ và các đạo hàm riêng cấp hai liên tục trong một lân cận của M_0 , ta đặt

$$A = f_{xx}''(M_0), B = f_{xy}''(M_0), C = f_{yy}''(M_0) \text{ và } \Delta = B^2 - AC.$$

- Nếu $\Delta < 0$ và A > 0 thì M_0 là điểm cực tiểu của hàm số f(x,y),
- riangle Nếu $\Delta < 0$ và A < 0 thì M_0 là điểm cực đại của hàm số f(x,y),

$\underline{\text{Dinh ly } 5.2.}$

Giả sử hàm số z = f(x, y) có điểm dùng là $M_0(x_0, y_0)$ và các đạo hàm riêng cấp hai liên tục trong một lân cận của M_0 , ta đặt

$$A = f_{xx}''(M_0), B = f_{xy}''(M_0), C = f_{yy}''(M_0)$$
 và $\Delta = B^2 - AC$.

- Nếu $\Delta < 0$ và A > 0 thì M_0 là điểm cực tiểu của hàm số f(x,y),
- Nếu $\Delta < 0$ và A < 0 thì M_0 là điểm cực đại của hàm số f(x, y),
- Nếu $\Delta > 0$ thì M_0 không phải là điểm cực trị của hàm số f(x,y),

Giả sử hàm số z = f(x, y) có điểm dùng là $M_0(x_0, y_0)$ và các đạo hàm riêng cấp hai liên tục trong một lân cận của M_0 , ta đặt

$$A = f_{xx}''(M_0), B = f_{xy}''(M_0), C = f_{yy}''(M_0)$$
 và $\Delta = B^2 - AC$.

- Nếu $\Delta < 0$ và A > 0 thì M_0 là điểm cực tiểu của hàm số f(x,y),
- Nếu $\Delta < 0$ và A < 0 thì M_0 là điểm cực đại của hàm số f(x, y),
- Nếu $\Delta > 0$ thì M_0 không phải là điểm cực trị của hàm số f(x,y),
- Nếu $\Delta = 0$ thì ta chưa thể kết luân được gì về điểm M_0 .

Ví du 5.1.

Tìm cực trị của hàm số $f(x,y) = \frac{xy}{8} + \left(\frac{1}{x} + \frac{1}{y}\right)$.

Ví dụ 5.1.

Tìm cực trị của hàm số
$$f(x,y) = \frac{xy}{8} + \left(\frac{1}{x} + \frac{1}{y}\right)$$
.

Hướng dẫn: Hàm số xác định khi $x \neq 0, y \neq 0$.

Ví du 5.1.

Tìm cực trị của hàm số
$$f(x,y) = \frac{xy}{8} + \left(\frac{1}{x} + \frac{1}{y}\right)$$
.

Hướng dẫn: Hàm số xác định khi $x \neq 0, y \neq 0$.

$$\bullet$$
 Tính các đạo hàm riêng cấp 1, cấp 2:
$$f_x' = \frac{y}{8} - \frac{1}{x^2}, \ f_y' = \frac{x}{8} - \frac{1}{y^2}, \ f_{xx}'' = \frac{2}{x^3}, \ f_{xy}'' = \frac{1}{8}, \ f_{yy}'' = \frac{2}{y^3}$$

Ví du 5.1.

Tìm cực trị của hàm số
$$f(x,y) = \frac{xy}{8} + \left(\frac{1}{x} + \frac{1}{y}\right)$$
.

Hướng dẫn: Hàm số xác định khi $x \neq 0, y \neq 0$.

$$\bullet$$
 Tính các đạo hàm riêng cấp 1, cấp 2:
$$f_x' = \frac{y}{8} - \frac{1}{x^2}, \ f_y' = \frac{x}{8} - \frac{1}{y^2}, \ f_{xx}'' = \frac{2}{x^3}, \ f_{xy}'' = \frac{1}{8}, \ f_{yy}'' = \frac{2}{y^3}$$

• Tìm tọa độ điểm dừng, ta giải hệ: $\begin{cases} f'_x &= 0 \\ f'_y &= 0 \end{cases} \iff \begin{cases} \frac{y}{8} - \frac{1}{x^2} = 0 \\ \frac{x}{9} - \frac{1}{2} = 0 \end{cases} \Rightarrow \text{hàm số có 1}$

điểm dừng là M=(2,2).

Ví du 5.1.

Tìm cực trị của hàm số
$$f(x,y) = \frac{xy}{8} + \left(\frac{1}{x} + \frac{1}{y}\right)$$
.

Hướng dẫn: Hàm số xác đinh khi $x \neq 0, y \neq 0$.

• Tính các đạo hàm riêng cấp 1, cấp 2:
$$f'_x = \frac{y}{8} - \frac{1}{x^2}, \ f'_y = \frac{x}{8} - \frac{1}{y^2}, \ f''_{xx} = \frac{2}{x^3}, \ f''_{xy} = \frac{1}{8}, \ f''_{yy} = \frac{2}{y^3}$$

- Tìm tọa độ điểm dừng, ta giải hệ: $\begin{cases} f'_x & = 0 \\ f'_y & = 0 \end{cases} \iff \begin{cases} \frac{y}{8} \frac{1}{x^2} = 0 \\ \frac{x}{6} \frac{1}{2} = 0 \end{cases} \Rightarrow \text{hàm số có 1}$
 - điểm dừng là M=(2,2).
- Xét tại điểm dùng M(2,2):

$$A = f_{xx}''(M) = \frac{2}{2^3}, \ B = f_{xy}''(M) = \frac{1}{8}, \ C = f_{yy}''(M) = \frac{2}{2^3} \Rightarrow B^2 - AC < 0, \ A > 0.$$

Hàm số đạt cực tiểu tại M và $f_{\rm ct} = f(2,2) = \frac{3}{2}$.

Tìm cực trị của hàm số $f(x,y) = y\sqrt{x} - 2y^2 - x + 7y + 5$.

Tìm cực trị của hàm số $f(x,y) = y\sqrt{x} - 2y^2 - x + 7y + 5$.

Hướng dẫn:Hàm số xác định khi $x > 0, \forall y$.

+) Các đạo hàm riêng cấp 1, cấp 2 : $f_x'=\frac{y}{2\sqrt{x}}-1, \quad f_y'=-4y+\sqrt{x}+7,$

Tìm cực trị của hàm số $f(x,y) = y\sqrt{x} - 2y^2 - x + 7y + 5$.

Hướng dẫn: Hàm số xác đinh khi $x > 0, \forall y$.

+) Các đạo hàm riêng cấp 1, cấp 2 :
$$f_x' = \frac{y}{2\sqrt{x}} - 1$$
, $f_y' = -4y + \sqrt{x} + 7$,
$$f_{xx}'' = -\frac{y}{4\sqrt{x^3}}, \quad f_{xy}'' = \frac{1}{2\sqrt{x}}, \quad f_{yy}'' = -4.$$

Ví dụ 5.2.

Tìm cực trị của hàm số $f(x,y) = y\sqrt{x} - 2y^2 - x + 7y + 5$.

Hướng dẫn: Hàm số xác định khi $x > 0, \forall y$.

- +) Các đạo hàm riêng cấp 1, cấp 2 : $f'_x = \frac{y}{2\sqrt{x}} 1$, $f'_y = -4y + \sqrt{x} + 7$, $f''_{xx} = -\frac{y}{4\sqrt{x^3}}, \quad f''_{xy} = \frac{1}{2\sqrt{x}}, \quad f''_{yy} = -4.$
- +) Tọa độ các điểm dừng là nghiệm của hệ:

$$\begin{cases} f'_x = 0 \\ f'_y = 0 \end{cases} \Longleftrightarrow \begin{cases} \frac{y}{2\sqrt{x}} - 1 = 0 \\ -4y + \sqrt{x} + 7 = 0 \end{cases} \Longleftrightarrow \begin{cases} x = 1 \\ y = 2 \end{cases}$$

Tìm cực trị của hàm số $f(x,y) = y\sqrt{x} - 2y^2 - x + 7y + 5$.

Hướng dẫn: Hàm số xác đinh khi $x > 0, \forall y$.

- +) Các đạo hàm riêng cấp 1, cấp 2 : $f_x' = \frac{y}{2\sqrt{x}} 1$, $f_y' = -4y + \sqrt{x} + 7$, $f_{xx}'' = -\frac{y}{4\sqrt{x^3}}, \quad f_{xy}'' = \frac{1}{2\sqrt{x}}, \quad f_{yy}'' = -4.$
- +) Toa đô các điểm dùng là nghiệm của hệ:

$$\begin{cases} f'_x = 0 \\ f'_y = 0 \end{cases} \Longleftrightarrow \begin{cases} \frac{y}{2\sqrt{x}} - 1 = 0 \\ -4y + \sqrt{x} + 7 = 0 \end{cases} \Longleftrightarrow \begin{cases} x = 1 \\ y = 2 \end{cases}$$

+) Xét tại
$$M(1,2),$$
 ta có $A=f''_{xx}(M)=-\frac{1}{2},\ B=f''_{xy}(M)=\frac{1}{2},\ C=f''_{yy}(M)=-4$

Ví dụ 5.2.

Tìm cực trị của hàm số $f(x,y) = y\sqrt{x} - 2y^2 - x + 7y + 5$.

Hướng dẫn: Hàm số xác định khi $x > 0, \forall y$.

- +) Các đạo hàm riêng cấp 1, cấp 2: $f'_x = \frac{y}{2\sqrt{x}} 1$, $f'_y = -4y + \sqrt{x} + 7$, $f''_{xx} = -\frac{y}{4\sqrt{x^3}}$, $f''_{xy} = \frac{1}{2\sqrt{x}}$, $f''_{yy} = -4$.
- +) Tọa độ các điểm dùng là nghiệm của hệ :

$$\begin{cases} f'_x = 0 \\ f'_y = 0 \end{cases} \Longleftrightarrow \begin{cases} \frac{y}{2\sqrt{x}} - 1 = 0 \\ -4y + \sqrt{x} + 7 = 0 \end{cases} \Longleftrightarrow \begin{cases} x = 1 \\ y = 2 \end{cases}$$

- +) Xét tại M(1,2), ta có $A = f''_{xx}(M) = -\frac{1}{2}$, $B = f''_{xy}(M) = \frac{1}{2}$, $C = f''_{yy}(M) = -4$
 - Ta thấy $B^2 AC < 0$, A < 0, nên M là điểm cực đại của hàm số.
 - Giá trị cực đại là f(1,2) = 12.

Ví dụ 5.3.

Tìm cực trị của hàm số
$$z(x,y) = x^2 + \frac{y^2}{4} - \frac{\ln(xy)}{2}$$
.

Ví dụ 5.3.

Tìm cực trị của hàm số $z(x,y) = x^2 + \frac{y^2}{4} - \frac{\ln(xy)}{2}$

Hướng dẫn:

• Với xy > 0 có các đạo hàm riêng cấp 1, cấp 2 là:

Tìm cực trị của hàm số $z(x,y) = x^2 + \frac{y^2}{4} - \frac{\ln(xy)}{2}$.

Hướng dẫn:

① Với xy > 0 có các đạo hàm riêng cấp 1, cấp 2 là: $z_x' = 2x - \frac{1}{2x}$, $z_y' = \frac{y}{2} - \frac{1}{2y}$, $z_{xx}'' = 2 + \frac{1}{2x^2}$, $z_{xy}'' = 0$, $z_{yy}'' = \frac{1}{2} + \frac{1}{2y^2}$.

Tìm cực trị của hàm số $z(x,y) = x^2 + \frac{y^2}{4} - \frac{\ln(xy)}{2}$.

Hướng dẫn:

- Với xy > 0 có các đạo hàm riêng cấp 1, cấp 2 là: $z'_x = 2x \frac{1}{2x}, z'_y = \frac{y}{2} \frac{1}{2y},$ $z_{xx}'' = 2 + \frac{1}{2x^2}, \ z_{xy}'' = 0, \ z_{yy}'' = \frac{1}{2} + \frac{1}{2v^2}.$
- Tọa độ các điểm dừng là nghiệm của hệ: $\begin{cases} z'_x &= 0 \\ z'_x &= 0 \end{cases}$ Vì xy > 0 nên hàm số có hai điểm dừng là $M_1 = (\frac{1}{2}, 1)$, $M_2 = (-\frac{1}{2}, -1)$.

Tìm cực trị của hàm số
$$z(x,y) = x^2 + \frac{y^2}{4} - \frac{\ln(xy)}{2}$$
.

Hướng dẫn:

- Với xy > 0 có các đạo hàm riêng cấp 1, cấp 2 là: $z'_x = 2x \frac{1}{2x}, z'_y = \frac{y}{2} \frac{1}{2y}$ $z_{xx}'' = 2 + \frac{1}{2x^2}, z_{xy}'' = 0, z_{yy}'' = \frac{1}{2} + \frac{1}{2u^2}.$
- ② Tọa độ các điểm dừng là nghiệm của hệ: $\begin{cases} z'_x &= 0 \\ z' &= 0 \end{cases}$ Vì xy > 0 nên hàm số có hai điểm dừng là $M_1 = (\frac{1}{2}, 1)$, $M_2 = (-\frac{1}{2}, -1)$.
- Tại $M_1 = \left(\frac{1}{2}, 1\right)$ có $A = 4, B = 0, C = 1, B^2 AC < 0$ nên M_1 là điểm cực tiểu của hàm số và $z_{CT} = z(M_1) = \frac{1}{2} + \frac{\ln 2}{2}$.

Tìm cực trị của hàm số $z(x,y) = x^2 + \frac{y^2}{4} - \frac{\ln(xy)}{2}$.

Hướng dẫn:

- Với xy > 0 có các đạo hàm riêng cấp 1, cấp 2 là: $z'_x = 2x \frac{1}{2x}, z'_y = \frac{y}{2} \frac{1}{2y},$ $z_{xx}'' = 2 + \frac{1}{2x^2}, z_{xy}'' = 0, z_{yy}'' = \frac{1}{2} + \frac{1}{2y^2}.$
- Tọa độ các điểm dừng là nghiệm của hệ: $\begin{cases} z'_x &= 0 \\ z' &= 0 \end{cases}$ Vì xy > 0 nên hàm số có hai điểm dừng là $M_1 = (\frac{1}{2}, 1)$, $M_2 = (-\frac{1}{2}, -1)$.
- Tại $M_1 = \left(\frac{1}{2},1\right)$ có $A=4, B=\bar{0}, C=1, B^2-AC<0$ nên M_1 là điểm cực tiểu của hàm số và $z_{CT} = z(M_1) = \frac{1}{2} + \frac{\ln 2}{2}$.
- **1** Tại $M_2 = (-\frac{1}{2}, -1)$ có $A = 4, B = 0, C = 1, B^2 AC < 0$ nên M_2 là điểm cực tiểu của hàm số và $z_{CT} = z(M_2) = \frac{1}{2} + \frac{\ln 2}{2}$.

Ví dụ 5.4.

Tìm cực trị của hàm $f(x,y) = x^3 + 3xy^2 - 30x - 18y$.

Tìm cực trị của hàm $f(x,y) = x^3 + 3xy^2 - 30x - 18y$.

• Các đạo hàm riêng cấp 1, cấp 2 :

Tìm cực trị của hàm $f(x,y) = x^3 + 3xy^2 - 30x - 18y$.

• Các đạo hàm riêng cấp 1, cấp 2: $f'_x = 3x^2 + 3y^2 - 30$, $f'_y = 6xy - 18$, $f''_{xx} = 6x$, $f''_{xy} = 6y$, $f''_{yy} = 6x$

Tìm cực trị của hàm $f(x, y) = x^3 + 3xy^2 - 30x - 18y$.

• Các đạo hàm riêng cấp 1, cấp 2: $f'_x = 3x^2 + 3y^2 - 30$, $f'_y = 6xy - 18$, $f''_{xx} = 6x$, $f''_{xy} = 6y$, $f''_{yy} = 6x$

② Tìm các điểm dừng: $\begin{cases} f'_x = 0 \\ f'_x = 0 \end{cases} \iff \begin{cases} x^2 + y^2 = 10 \\ xy = 3 \end{cases}.$

m Ví du m 5.4.

Tìm cực trị của hàm $f(x, y) = x^3 + 3xy^2 - 30x - 18y$.

- Các đạo hàm riêng cấp 1, cấp 2: $f'_{x} = 3x^{2} + 3y^{2} - 30$, $f'_{y} = 6xy - 18$, $f''_{xx} = 6x$, $f''_{xy} = 6y$, $f''_{yy} = 6x$
- ② Tìm các điểm dừng: $\begin{cases} f'_x = 0 \\ f'_y = 0 \end{cases} \iff \begin{cases} x^2 + y^2 = 10 \\ xy = 3 \end{cases}$. Hàm số có 4 điểm dừng $M_1(1,3), M_2(3,1), M_3(-1,-3), M_4(-3,-1).$

Ví dụ 5.4.

Tìm cực trị của hàm $f(x,y) = x^3 + 3xy^2 - 30x - 18y$.

- ② Tìm các điểm dừng: $\begin{cases} f'_x &= 0 \\ f'_y &= 0 \end{cases} \iff \begin{cases} x^2 + y^2 &= 10 \\ xy &= 3 \end{cases}$. Hàm số có 4 điểm dừng $M_1(1,3), M_2(3,1), M_3(-1,-3), M_4(-3,-1)$.
- 3 Xét tại các điểm dừng:

Ví dụ 5.4.

Tìm cực trị của hàm $f(x,y) = x^3 + 3xy^2 - 30x - 18y$.

- ① Các đạo hàm riêng cấp 1, cấp 2: $f'_x = 3x^2 + 3y^2 30, \quad f'_y = 6xy 18, \quad f''_{xx} = 6x, \quad f''_{xy} = 6y, \quad f''_{yy} = 6x$
- ② Tìm các điểm dừng: $\begin{cases} f'_x &= 0 \\ f'_y &= 0 \end{cases} \iff \begin{cases} x^2 + y^2 &= 10 \\ xy &= 3 \end{cases}$. Hàm số có 4 điểm dừng $M_1(1,3), M_2(3,1), M_3(-1,-3), M_4(-3,-1)$.
- 3 Xét tại các điểm dừng:
 - \bullet Tại $M_1(1,3)$, ta có $A=6,\,B=18,\,C=6$, $B^2-AC>0$, nên M_1 không phải là điểm cực trị của hàm số.

Tìm cực trị của hàm $f(x, y) = x^3 + 3xy^2 - 30x - 18y$.

- Các đạo hàm riêng cấp 1, cấp 2: $f'_{x} = 3x^{2} + 3y^{2} - 30$, $f'_{yy} = 6xy - 18$, $f''_{xx} = 6x$, $f''_{xy} = 6y$, $f''_{yy} = 6x$
- Tìm các điểm dừng: $\begin{cases} f'_x = 0 \\ f'_y = 0 \end{cases} \iff \begin{cases} x^2 + y^2 = 10 \\ xy = 3 \end{cases}$. Hàm số có 4 điểm dừng $M_1(1,3), M_2(3,1), M_3(-1,-3), M_4(-3,-1).$
- 3 Xét tại các điểm dừng:
 - Tai $M_1(1,3)$, ta có A=6, B=18, C=6, $B^2-AC>0$, nên M_1 không phải là điểm cực tri của hàm số.
 - **2** Tại $M_2(3,1)$, ta có A=18, B=6, C=18, $B^2-AC<0$, nên M_2 là điểm cực tiểu của hàm số. Giá tri cực tiểu là f(3,1) = -72

Ví dụ 5.4.

Tìm cực trị của hàm $f(x,y) = x^3 + 3xy^2 - 30x - 18y$.

- Các đạo hàm riêng cấp 1, cấp 2: $f'_x = 3x^2 + 3y^2 30$, $f'_y = 6xy 18$, $f''_{xx} = 6x$, $f''_{xy} = 6y$, $f''_{yy} = 6x$
- ② Tìm các điểm dừng: $\begin{cases} f'_x &= 0 \\ f'_y &= 0 \end{cases} \iff \begin{cases} x^2 + y^2 &= 10 \\ xy &= 3 \end{cases}$. Hàm số có 4 điểm dừng $M_1(1,3), M_2(3,1), M_3(-1,-3), M_4(-3,-1)$.
- 3 Xét tại các điểm dừng:
 - \bullet Tại $M_1(1,3)$, ta có $A=6,\,B=18,\,C=6$, $B^2-AC>0$, nên M_1 không phải là điểm cực trị của hàm số.
 - \bullet Tại $M_2(3,1)$, ta có $A=18,\ B=6,\ C=18,\ B^2-AC<0,$ nên M_2 là điểm cực tiểu của hàm số. Giá trị cực tiểu là f(3,1)=-72
 - $\mathbf{3}$ $M_3(-1,-3)$ không phải là điểm cực trị của hàm số.
 - $\mathbf{0}$ $M_4(-3,-1)$ là điểm cực đại của hàm số. Giá trị cực đại là f(-3,-1)=72

Ví du 5.5.

Tìm cực trị của hàm: f(x,y) = (x-y)(1-xy).

Ví du 5.5.

Tìm cực trị của hàm: f(x,y) = (x-y)(1-xy).

• Tính:

$$f'_x = 1 - 2xy + y^2$$
, $f'_y = -1 - x^2 + 2xy$, $f''_{xx} = -2y$, $f''_{xy} = -2x + 2y$, $f''_{yy} = 2x$.

Ví dụ 5.5.

Tìm cực trị của hàm: f(x,y) = (x-y)(1-xy).

• Tính :

$$f'_x = 1 - 2xy + y^2$$
, $f'_y = -1 - x^2 + 2xy$, $f''_{xx} = -2y$, $f''_{xy} = -2x + 2y$, $f''_{yy} = 2x$.

• Giải hệ $\begin{cases} 1-2xy+y^2=0\\ -1-x^2+2xy=0 \end{cases}$ \Rightarrow hàm số có 2 điểm dừng là $M_0=(1,1)$ và $M_1=(-1,-1).$

Ví dụ 5.5.

Tìm cực trị của hàm: f(x,y) = (x-y)(1-xy).

• Tính :

$$f'_x = 1 - 2xy + y^2$$
, $f'_y = -1 - x^2 + 2xy$, $f''_{xx} = -2y$, $f''_{xy} = -2x + 2y$, $f''_{yy} = 2x$.

- Giải hệ $\begin{cases} 1-2xy+y^2=0\\ -1-x^2+2xy=0 \end{cases}$ \Rightarrow hàm số có 2 điểm dùng là $M_0=(1,1)$ và $M_1=(-1,-1).$
- Tại $M_0(1,1) \Rightarrow A = -2$, B = 0, C = 2. Hàm số không đạt cực trị tại M_0 .

Ví dụ 5.5.

Tìm cực trị của hàm: f(x,y) = (x-y)(1-xy).

• Tính :

$$f'_x = 1 - 2xy + y^2$$
, $f'_y = -1 - x^2 + 2xy$, $f''_{xx} = -2y$, $f''_{xy} = -2x + 2y$, $f''_{yy} = 2x$.

- Giải hệ $\begin{cases} 1-2xy+y^2=0\\ -1-x^2+2xy=0 \end{cases}$ \Rightarrow hàm số có 2 điểm dùng là $M_0=(1,1)$ và $M_1=(-1,-1).$
- Tại $M_0(1,1) \Rightarrow A = -2$, B = 0, C = 2. Hàm số không đạt cực trị tại M_0 .
- Tại $M_1(-1,-1) \Rightarrow A=2,\ B=0,\ C=-2.$ Hàm số không đạt cực trị tại $M_1.$ Vậy hàm số không có cực trị.

6. Tích phân hai lớp.

Xét tích phân hai lớp $I = \iint_D f(x,y) dx dy$

TH1. Miền lấy tích phân là hình chữ nhật có các cạnh song song với trục tọa độ. $D = \begin{cases} a \leq x \leq b, & d \\ c \leq y \leq d, \end{cases}$ và hàm f(x,y) liên tục trong miền D. Khi đó:

$$I = \int_{a}^{b} \left[\int_{c}^{d} f(x, y) dy \right] dx = \int_{a}^{b} dx \int_{c}^{d} f(x, y) dy$$

Chú ý: Khi tính tích phân đơn $\int_{-a}^{a} f(x,y)dy$, ta coi x là hằng số.

Cách tính tích phân hai lớp

TH1. Miền lấy tích phân là hình chữ nhật có các cạnh song song với trực tọa độ. $D = \begin{cases} a \leq x \leq b, \\ c \leq y \leq d, \end{cases}$ và hàm f(x,y) liên tực trong miền D.

Tích phân cũng có thể tính bằng cách

$$I = \int_{c}^{d} \left[\int_{a}^{b} f(x, y) dx \right] dy = \int_{c}^{d} dy \int_{a}^{b} f(x, y) dx$$

Khi tính tích phân đơn $\int_{a}^{b} f(x,y)dx$, ta coi y là hằng số.

Cách tính tích phân hai lớp

TH2. Miền D là hình thang cong:

$$D = \begin{cases} a \le x \le b, \\ y_1(x) \le y \le y_2(x), \end{cases}$$

và các hàm $y_1(x), y_2(x)$ liên tục và đơn trị, $y_1(x) \leq y_2(x)$ với mọi $x \in [a, b]$.

$$I = \int_{a}^{b} dx \int_{y_1(x)}^{y_2(x)} f(x, y) dy$$

Khi tính tích phân đơn $\int_{y_1(x)}^{g_2(x)} f(x,y)dy$, ta coi x là hằng số.

Cách tính tích phân hai lớp

TH3. Miền D là hình thang cong:

$$D = \begin{cases} c \leq y \leq d, \\ x_1(y) \leq x \leq x_2(y), \end{cases}$$
 và các hàm $x_1(y), x_2(y)$ liên tục và đơn trị, $x_1(y) \leq x_2(y)$ với mọi $y \in [c, d].$
$$I = \int_c^d dy \int_{x_1(y)}^{x_2(y)} f(x, y) dx$$

Khi tính tích phân đơn $\int_{-\infty}^{-\infty} f(x,y)dx$, ta coi y là hằng số.

Ví du 6.1.

Tính
$$I = \iint_D (x^2 + y^2) dx dy$$
, với D là hình chữ nhật $D = \begin{cases} 0 \le x \le 2, \\ 0 \le y \le 1. \end{cases}$

Ví du 6.1.

Tính
$$I = \iint_D (x^2 + y^2) dx dy$$
, với D là hình chữ nhật $D = \begin{cases} 0 \le x \le 2, \\ 0 \le y \le 1. \end{cases}$

$$I = \int_{0}^{1} dy \int_{0}^{2} (x^{2} + y^{2}) dx = \int_{0}^{1} \left(\frac{x^{3}}{3} + y^{2}x\right) \Big|_{0}^{2} dy$$
$$I = \int_{0}^{1} \left(\frac{8}{3} + 2y^{2}\right) dy = \left(\frac{8y}{3} + \frac{2y^{3}}{3}\right) \Big|_{0}^{1} = \frac{10}{3}$$

Ví du 6.1.

Tính
$$I = \iint_D (x^2 + y^2) dx dy$$
, với D là hình chữ nhật $D = \begin{cases} 0 \le x \le 2, \\ 0 \le y \le 1. \end{cases}$

$$I = \int_{0}^{1} dy \int_{0}^{2} (x^{2} + y^{2}) dx = \int_{0}^{1} \left(\frac{x^{3}}{3} + y^{2}x\right) \Big|_{0}^{2} dy$$
$$I = \int_{0}^{1} \left(\frac{8}{3} + 2y^{2}\right) dy = \left(\frac{8y}{3} + \frac{2y^{3}}{3}\right) \Big|_{0}^{1} = \frac{10}{3}$$

Hoặc
$$I = \int_{0}^{2} dx \int_{0}^{1} (x^2 + y^2) dy = \int_{0}^{2} \left(x^2 y + \frac{y^3}{3} \right) \Big|_{0}^{1} dx$$

$$I = \int_{0}^{2} \left(x^{2} + \frac{1}{3} \right) dx = \frac{10}{3}$$

Ví du 6.2.

Tính tích phân hai lớp $\iint_D (2x+3y)dxdy$, D là miền phẳng ygiới hạn bởi các đường: $y = \sqrt{x}, x + y = 2, y = 0.$

Ví du 6.2.

Tính tích phân hai lớp $\iint_D (2x+3y)dxdy$, D là miền phẳng y giới hạn bởi các đường: $y=\sqrt{x},\ x+y=2,\ y=0.$

• Vẽ hình và xác định cận của tích phân $D = \begin{cases} 0 \le y \le 1, \\ y^2 \le x \le 2 - y. \end{cases}$

Ví dụ 6.2.

Tính tích phân hai lớp $\iint_D (2x+3y)dxdy$, D là miền phẳng y giới hạn bởi các đường: $y=\sqrt{x}, \ x+y=2, \ y=0$.

- Vẽ hình và xác định cận của tích phân $D = \begin{cases} 0 \leq y \leq 1, \\ y^2 \leq x \leq 2-y. \end{cases}$
- $I = \int_{0}^{1} dy \int_{y^{2}}^{2-y} (2x+3y)dx = \int_{0}^{1} (x^{2}+3xy)|_{y^{2}}^{2-y} dy$

Ví du 6.2.

Tính tích phân hai lớp $\iint_D (2x+3y)dxdy$, D là miền phẳng y giới hạn bởi các đường: $y=\sqrt{x},\ x+y=2,\ y=0$.

- Vẽ hình và xác định cận của tích phân $D = \begin{cases} 0 \le y \le 1, \\ y^2 \le x \le 2 y. \end{cases}$
- $I = \int_{0}^{1} dy \int_{y^{2}}^{2-y} (2x+3y)dx = \int_{0}^{1} (x^{2}+3xy)|_{y^{2}}^{2-y} dy$

$$I = -\int_{0}^{1} \left(y^4 + 3y^3 + 2y^2 - 2y - 4 \right) dy = -\left(\frac{y^5}{5} + 3\frac{y^4}{4} + 2\frac{y^3}{3} - y^2 - 4y \right) \Big|_{0}^{1} = \frac{203}{60}.$$

Ví du 6.3.

Tính tích phân hai lớp $\iint_D (2x+3y)dxdy$, D là miền phẳng y giới hạn bởi các đường: $y=\sqrt{x},\ x+y=2,\ y=0.$ (Tính theo y trước , x sau).

Ví du 6.3.

Tính tích phân hai lớp $\iint_D (2x+3y)dxdy$, D là miền phẳng y giới hạn bởi các đường: $y=\sqrt{x},\ x+y=2,\ y=0.$ (Tính theo y trước , x sau).

• Xác định
$$D = D_1 \cup D_2 = \begin{cases} 0 \le x \le 1, \\ 0 \le y \le \sqrt{x}. \end{cases} \cup \begin{cases} 1 \le x \le 2 \\ 0 \le y \le 2 - x \end{cases}$$

Ví dụ 6.3.

Tính tích phân hai lớp $\iint_D (2x+3y)dxdy$, D là miền phẳng y giới hạn bởi các đường: $y=\sqrt{x},\ x+y=2,\ y=0.$ (Tính theo y trước , x sau).

• Xác định
$$D = D_1 \cup D_2 = \begin{cases} 0 \le x \le 1, \\ 0 \le y \le \sqrt{x}. \end{cases}$$
 $\cup \begin{cases} 1 \le x \le 2, \\ 0 \le y \le 2 - x \end{cases}$

•
$$I = \int_{0}^{1} dx \int_{0}^{\sqrt{x}} (2x+3y)dy + \int_{1}^{2} dx \int_{0}^{2-x} (2x+3y)dy$$

Ví du 6.3.

Tính tích phân hai lớp $\iint (2x+3y)dxdy$, D là miền phẳng ygiới hạn bởi các đường: $y = \sqrt{x}$, x + y = 2, y = 0. (Tính theo y trước , x sau).

• Xác định
$$D = D_1 \cup D_2 = \begin{cases} 0 \le x \le 1, \\ 0 \le y \le \sqrt{x}. \end{cases}$$
 $\cup \begin{cases} 1 \le x \le 2, \\ 0 \le y \le 2 - x \end{cases}$

$$I = \int_{0}^{1} dx \int_{0}^{\sqrt{x}} (2x+3y)dy + \int_{1}^{2} dx \int_{0}^{2-x} (2x+3y)dy$$

$$I = \int_{0}^{1} \left(2xy + \frac{3y^{2}}{2} \right) \Big|_{0}^{\sqrt{x}} .dx + \int_{1}^{2} \left(2xy + \frac{3y^{2}}{2} \right) \Big|_{0}^{2-x} .dx = \frac{203}{60}.$$

Ví du 6.4.

Tính tích phân
$$I = \iint_D (x - y) dx dy$$
,

D là miền giới hạn bởi: $y=x,\,y=2-x^2.$

Ví dụ 6.4.

Tính tích phân
$$I = \iint_D (x - y) dx dy$$
,

D là miền giới hạn bởi: y = x, $y = 2 - x^2$.

• Cận
$$D = \begin{cases} -2 \le x \le 1 \\ x \le y \le 2 - x^2 \end{cases}$$
 và $I = \int_{-2}^{1} dx \int_{x}^{2-x^2} (x - y) dy$

Ví dụ 6.4.

Tính tích phân
$$I = \iint_D (x - y) dx dy$$
,

D là miền giới hạn bởi: y = x, $y = 2 - x^2$.

• Cận
$$D = \begin{cases} -2 \le x \le 1 \\ x \le y \le 2 - x^2 \end{cases}$$
 và $I = \int_{-2}^{1} dx \int_{x}^{2-x^2} (x - y) dy$

•
$$I = \int_{2}^{1} \left(xy - \frac{y^2}{2} \right) \Big|_{x}^{2-x^2} dx = \frac{1}{2} \int_{2}^{1} \left(-x^4 - 2x^3 + 3x^2 + 4x - 4 \right) dx = \cdots$$

Ví du 6.5.

Tính tích phân
$$I = \iint_D (x^2 + 2y) dx dy$$
,

D là miền giới hạn bởi: $y = x^2 - 1$, y = x + 1.

Ví dụ 6.5.

Tính tích phân
$$I = \iint_D (x^2 + 2y) dx dy$$
,

D là miền giới hạn bởi: $y = x^2 - 1$, y = x + 1.

$$D = \begin{cases} -1 \le x \le 2 \\ x^2 - 1 \le y \le x + 1 \end{cases} \text{ và } I = \int_{-1}^{2} dx \int_{x^2 - 1}^{x+1} (x^2 + 2y) dy$$

Ví du 6.6.

Tính tích phân $I = \iint_D (x+y) dx dy$, D là miền giới hạn

bởi: y = x, y = 0, x + y = 2, x + y = 4.

Ví dụ 6.6.

Tính tích phân
$$I = \iint\limits_D (x+y) dx dy, \, D$$
 là miền giới hạn

$$D = \begin{cases} 1 \le x \le 2 \\ 2 - x \le y \le x \end{cases} \cup \begin{cases} 2 \le x \le 4 \\ 0 \le y \le 4 - x \end{cases}$$

bởi: y = x, y = 0, x + y = 2, x + y = 4.

và

Ví du 6.6.

Tính tích phân
$$I = \iint\limits_D (x+y) dx dy, \, D$$
 là miền giới hạn

bởi: y = x, y = 0, x + y = 2, x + y = 4.

$$D = \begin{cases} 1 \le x \le 2 \\ 2 - x \le y \le x \end{cases} \cup \begin{cases} 2 \le x \le 4 \\ 0 \le y \le 4 - x \end{cases}$$

và $I = \int_{1}^{2} dx \int_{2-x}^{x} (x+y)dy + \int_{2}^{4} dx \int_{0}^{4-x} (x+y)dy = \cdots$

Tính tích phân
$$I = \iint_D (x^3 + 4y) dx dy$$
, D là miền giới hạn bởi: y $y = 0, x = \sqrt{y}, y = 2 - x$.

Tính tích phân
$$I = \iint_D (x^3 + 4y) dx dy$$
, D là miền giới hạn bởi: y $y = 0, x = \sqrt{y}, y = 2 - x$.

• Hoặc
$$D = \begin{cases} 0 \le y \le 1 \\ \sqrt{y} \le x \le 2 - y \end{cases}$$
 và $I = \int_{0}^{1} dy \int_{\sqrt{y}}^{2-y} (x^3 + 4y) dx = \cdots$

Tính tích phân
$$I = \iint_D (x^3 + 4y) dx dy$$
, D là miền giới hạn bởi: y

$$y = 0, x = \sqrt{y}, y = 2 - x.$$

• Hoặc
$$D = \begin{cases} 0 \le y \le 1 \\ \sqrt{y} \le x \le 2 - y \end{cases}$$
 và $I = \int_0^1 dy \int_{\sqrt{y}}^{2-y} (x^3 + 4y) dx = \cdots$

• Hoặc
$$D = \begin{cases} 0 \le x \le 1 \\ 0 \le y \le x^2 \end{cases} \cup \begin{cases} 1 \le x \le 2 \\ 0 \le y \le 2 - x \end{cases}$$
 và

Tính tích phân
$$I=\iint\limits_D(x^3+4y)dxdy,\,D$$
 là miền giới hạn bởi: y $y=0,\,x=\sqrt{y},\,y=2-x.$

• Hoặc
$$D = \begin{cases} 0 \le y \le 1 \\ \sqrt{y} \le x \le 2 - y \end{cases}$$
 và $I = \int_{0}^{1} dy \int_{2}^{2-y} (x^3 + 4y) dx = \cdots$

• Hoặc
$$D = \begin{cases} 0 \le x \le 1 \\ 0 \le y \le x^2 \end{cases} \cup \begin{cases} 1 \le x \le 2 \\ 0 \le y \le 2 - x \end{cases}$$
 và
$$I = \int_0^1 dx \int_0^{x^2} (x^3 + 4y) dy + \int_1^2 dx \int_0^{2-x} (x^3 + 4y) dy = \cdots$$

Tính tích phân
$$I=\iint\limits_D(x^3+4y)dxdy,\,D$$
 là miền giới hạn bởi: y $y=0,\,x=\sqrt{y},\,y=2-x.$

• Hoặc
$$D = \begin{cases} 0 \le y \le 1 \\ \sqrt{y} \le x \le 2 - y \end{cases}$$
 và $I = \int_{0}^{1} dy \int_{2}^{2-y} (x^3 + 4y) dx = \cdots$

• Hoặc
$$D = \begin{cases} 0 \le x \le 1 \\ 0 \le y \le x^2 \end{cases} \cup \begin{cases} 1 \le x \le 2 \\ 0 \le y \le 2 - x \end{cases}$$
 và
$$I = \int_0^1 dx \int_0^{x^2} (x^3 + 4y) dy + \int_1^2 dx \int_0^{2-x} (x^3 + 4y) dy = \cdots$$

Ví du 6.8.

Tính tích phân
$$I = \iint_D (3x + 4y) dx dy$$
,

D là $\triangle OBC$ với $O(0,0);\,B(-2,2);\,C(2,0).$

Ví du 6.8.

Tính tích phân
$$I = \iint_D (3x + 4y) dx dy$$
,

D là $\triangle OBC$ với O(0,0); B(-2,2); C(2,0).

$$D = \begin{cases} 0 & \leq y \leq 2 \\ -y & \leq x \leq 2 - 2y \end{cases} \text{ hoặc } D = \begin{cases} -2 \leq x \leq 0 \\ -x \leq y \leq 1 - x/2 \end{cases} \cup \begin{cases} 0 \leq x \leq 1 \\ 0 \leq y \leq 1 - x/2 \end{cases}$$

$$I = \int_{0}^{2} dy \int_{0}^{2-2y} (3x + 4y) dx = \cdots \text{ hoặc } I = \int_{0}^{2} dx \int_{0}^{1-x/2} (3x + 4y) dy + \int_{0}^{2} dx \int_{0}^{1-x/2} (3x + 4y) dy.$$

7. Tích phân đường loại 2

• Nếu \widetilde{AB} có phương trình $y = y(x), x : x_A \to x_B$ thì $dy = y'(x) \cdot dx$ và

$$I = \int_{x_A}^{x_B} [P(x, y(x)) + Q(x, y(x))y'(x)] dx.$$

2 Nếu \overrightarrow{AB} có phương trình $x = x(y), y : y_A \to y_B$ thì $dx = x'(y) \cdot dy$ và

$$I = \int_{y_A}^{y_B} [P(x(y), y)x'(y) + Q(x(y), y)] dy.$$

Nếu \widetilde{AB} có phương trình tham số $\begin{cases} x = x(t) \\ y = y(t) \end{cases} (t: t_A \to t_B) \text{ thì } \begin{cases} dx = x'(t)dt \\ dy = y'(t)dt \end{cases}$ và

$$I = \int_{-\infty}^{t_B} \{ P[x(t), y(t)] x'(t) + Q[x(t), y(t)] y'(t) \} dt.$$

Ví du 7.1.

Tính tích phân đường:
$$I = \int_{L} (e^{x} + y)dx + (y+2)dy;$$

trong đó L là cung đường cong $x^2 - y + 2x = 1$ từ A(0, -1) đến B(1, 2).

Ví du 7.1.

Tính tích phân đường:
$$I = \int_L (e^x + y) dx + (y+2) dy$$
;

trong đó L là cung đường cong $x^2 - y + 2x = 1$ từ A(0, -1) đến B(1, 2).

- Đường cong có phương trình $y = x^2 + 2x 1$; x từ 0 đến 1
- dy = (2x+2)dx

•
$$I = \int_{0}^{1} \left[(e^x + x^2 + 2x - 1) + (x^2 + 2x - 1 + 2)(2x + 2) \right] dx$$

Ví dụ 7.1.

Tính tích phân đường:
$$I = \int_{L} (e^{x} + y)dx + (y + 2)dy;$$

trong đó L là cung đường cong $x^2 - y + 2x = 1$ từ A(0, -1) đến B(1, 2).

- Đường cong có phương trình $y = x^2 + 2x 1$; x từ 0 đến 1
- dy = (2x + 2)dx

•
$$I = \int_{0}^{1} \left[(e^{x} + x^{2} + 2x - 1) + (x^{2} + 2x - 1 + 2)(2x + 2) \right] dx$$

•
$$I = \left[e^x + \frac{x^3}{3} + x^2 - x + \frac{(x+1)^4}{2} \right]_0^1 = e + \frac{41}{6}$$

Tính tích phân đường:

$$I = \int_{L} x^2 y dx + x^3 dy;$$

L là đoạn thẳng từ A(0,1) đến B(2,5).

Tính tích phân đường:

$$I = \int_{L} x^2 y dx + x^3 dy;$$

L là đoạn thẳng từ A(0,1) đến B(2,5).

Đoạn thẳng AB có phương trình $y=2x+1;\ x$ từ 0 đến 2, dy=2dx.

Tính tích phân đường:

$$I = \int_{L} x^2 y dx + x^3 dy;$$

L là đoạn thẳng từ A(0,1) đến B(2,5).

Đoạn thẳng AB có phương trình y=2x+1; x từ 0 đến 2, dy=2dx.

$$I = \int_{0}^{2} \left[x^{2}(2x+1) + x^{3}.2 \right] dx$$

Tính tích phân đường:

$$I = \int_{L} x^2 y dx + x^3 dy;$$

L là đoạn thẳng từ A(0,1) đến B(2,5).

Đoạn thẳng AB có phương trình $y=2x+1;\ x$ từ 0 đến 2, dy=2dx.

$$I = \int_{0}^{2} \left[x^{2}(2x+1) + x^{3}.2 \right] dx$$

$$I = \int_{-\pi}^{2} \left[4x^3 + x^2 \right] dx = \left[4 \cdot \frac{x^4}{4} + \frac{x^3}{3} \right] \Big|_{0}^{2} = \frac{56}{3}$$

Ví du 7.3.

Tính tích phân đường $\int_C xy^2 dy - x^2 y dx,$

C là nửa trên của đường tròn : $x^2+y^2 \leq 4, \ y \geq 0$ từ A(2,0) đến B(-2,0).

Ví dụ 7.3.

Tính tích phân đường
$$\int\limits_C xy^2 dy - x^2y dx,$$

C là nửa trên của đường tròn : $x^2+y^2 \leq 4, \ y \geq 0$ từ A(2,0) đến B(-2,0).

• Phương trình tham số của C là $\begin{cases} x = 2\cos t \\ y = 2\sin t \end{cases}, \quad 0 \le t \le \pi \Longrightarrow \begin{cases} dx = -2\sin t dt \\ dy = 2\cos t dt \end{cases}$

Ví dụ 7.3.

Tính tích phân đường $\int_C xy^2 dy - x^2 y dx,$

C là nửa trên của đường tròn : $x^2+y^2 \leq 4, \ y \geq 0$ từ A(2,0) đến B(-2,0).

- Phương trình tham số của C là $\begin{cases} x = 2\cos t \\ y = 2\sin t \end{cases}, \quad 0 \le t \le \pi \Longrightarrow \begin{cases} dx = -2\sin t dt \\ dy = 2\cos t dt \end{cases}$
- $I = \int_{0}^{\pi} \left[(2\cos t)(2\sin t)^{2}(2\cos t) (2\cos t)^{2}(2\sin t)(-2\sin t) \right] dt = 2^{5} \int_{0}^{\pi} \cos^{2} t \cdot \sin^{2} t \cdot dt$

Ví dụ 7.3.

Tính tích phân đường $\int_C xy^2 dy - x^2y dx$,

C là nửa trên của đường tròn : $x^2+y^2 \leq 4, \ y \geq 0$ từ A(2,0) đến B(-2,0).

- Phương trình tham số của C là $\begin{cases} x = 2\cos t \\ y = 2\sin t \end{cases}, \quad 0 \le t \le \pi \Longrightarrow \begin{cases} dx = -2\sin t dt \\ dy = 2\cos t dt \end{cases}$
- $I = \int_{0}^{\pi} \left[(2\cos t)(2\sin t)^{2}(2\cos t) (2\cos t)^{2}(2\sin t)(-2\sin t) \right] dt = 2^{5} \int_{0}^{\pi} \cos^{2} t \cdot \sin^{2} t \cdot dt$
- $I = 2^5 \int_0^{\pi} \frac{(\sin 2t)^2}{4} dt = 4 \int_0^{\pi} (1 \cos 4t) dt = (4t \sin 4t) \Big|_0^{\pi} = 8\pi.$

Ví du 7.4.

Tính tích phân đường $\int_{L^+} (x+y)dx + (3x-2y)dy$, L^+ là biên của tam giác ABC với $A(0,0),\ B(6,-3),\ C(1,2).$

Ví du 7.4.

Tính tích phân đường $\int_{L^+} (x+y)dx + (3x-2y)dy$, L^+ là biên của tam giác ABC với $A(0,0),\ B(6,-3),\ C(1,2).$

Viết phương trình 3 cạnh của tam giác ABC

 \bullet Phương trình của cạnh AB là $x=-2y,\ y:0\rightarrow -3$

Ví dụ 7.4.

Tính tích phân đường
$$\int_{L^+} (x+y)dx + (3x-2y)dy$$
, L^+ là biên của tam giác ABC với $A(0,0),\ B(6,-3),\ C(1,2).$

Viết phương trình 3 cạnh của tam giác ABC

- Phương trình của cạnh AB là $x=-2y,\ y:0\to -3$
- \bullet Phương trình của cạnh BC là $y=3-x,\ x:6\to 1$
- \bullet Phương trình của canh CA là $y=2x,\ x:1\rightarrow 0$
- $\mathbb{L}^+ = \overline{AB} \cup \overline{BC} \cup \overline{CA}$ và $I = I_1 + I_2 + I_3$.

+) Phương trình của cạnh
$$AB$$
 là $x = -2y, y: 0 \to -3$

$$\implies I_1 = \int_{AB} = \int_0^{-3} \{-2(-2y+y) + (-6y-2y)\} dy = \int_0^{-3} (-6y) dy = -27$$

+) Phương trình của cạnh
$$AB$$
 là $x=-2y,\ y:0\to -3$

+) Phương trình của cạnh
$$AB$$
 là $x = -2y, y: 0 \to -3$ $\implies I_1 = \int_{\overline{AB}} \int_0^{-3} \{-2(-2y+y) + (-6y-2y)\} dy = \int_0^{-3} (-6y) dy = -27$

+) Phương trình của cạnh
$$BC$$
 là $y = 3 - x$, $x: 6 \rightarrow 1$

$$\implies I_2 = \int_{\overline{BC}} = \int_{6}^{1} \{(x+3-x) - (3x-6+2x)\} dx = \int_{6}^{1} (-5x+9) dx = \frac{85}{2}$$

+) Phương trình của cạnh
$$AB$$
 là $x=-2y,\ y:0\to -3$

$$\implies I_1 = \int_{\overline{AB}} \int_0^{-3} \{-2(-2y+y) + (-6y-2y)\} dy = \int_0^{-3} (-6y) dy = -27$$

+) Phương trình của cạnh BC là y = 3 - x, $x: 6 \rightarrow 1$

$$\implies I_2 = \int_{\overline{BC}} \int_{6}^{1} \{(x+3-x) - (3x-6+2x)\} dx = \int_{6}^{1} (-5x+9) dx = \frac{85}{2}$$

+) Phương trình của cạnh CA là $y=2x, x:1\to 0$

$$\implies I_3 = \int_{CA} (x+y)dx + (3x-2y)dy = \int_1^0 \{(x+2x) + (3x-2.2x) \, 2\}dx = \int_1^0 xdx = -\frac{1}{2}$$

+) Phương trình của cạnh
$$AB$$
 là $x=-2y,\ y:0\to -3$

$$\implies I_1 = \int_{\overline{AB}} = \int_0^{-3} \{-2(-2y+y) + (-6y-2y)\} dy = \int_0^{-3} (-6y) dy = -27$$

+) Phương trình của cạnh BC là y = 3 - x, $x: 6 \rightarrow 1$

$$\implies I_2 = \int_{\overline{PC}} \int_{6}^{1} \{(x+3-x) - (3x-6+2x)\} dx = \int_{6}^{1} (-5x+9) dx = \frac{85}{2}$$

+) Phương trình của cạnh CA là $y=2x, x:1\rightarrow 0$

$$\implies I_3 = \int_{\overline{CA}} (x+y)dx + (3x-2y)dy = \int_1^0 \{(x+2x) + (3x-2.2x) \ 2\}dx = \int_1^0 xdx = -\frac{1}{2}$$

Vậy $I = I_1 + I_2 + I_3 = 15$.

Ví du 7.5.

Tính tích phân đường:
$$\oint\limits_{\mathbb{L}^+} (3x+x^2+xy)dx + (4y+y^2+5x)dy,$$

$$\mathbb{L}^+ \text{ là biên của } \Delta ABC \text{ với } A(2,0), \, B(1,1), \, C(1,-1), \text{ theo chiều dương.}$$

Ví du 7.5.

Tính tích phân đường:
$$\oint\limits_{\mathbb{L}^+} (3x+x^2+xy)dx + (4y+y^2+5x)dy,$$

 \mathbb{L}^+ là biên của $\triangle ABC$ với A(2,0), B(1,1), C(1,-1), theo chiều dương.

• Vẽ hình và viết phương trình 3 cạnh của tam giác $AB:y=2-x,\ x:2\to 1,$ $BC:x=1,\ y:1\to -1,$

 $CA: y = x - 2, \ y: 1 \rightarrow 2.$ $\mathbb{L}^+ = \overline{AB} \cup \overline{BC} \cup \overline{CA} \text{ và } I = I_1 + I_2 + I_3.$

•
$$I_1 = \int_{1}^{1} (3x + x^2 + xy)dx + (4y + y^2 + 5x)dy = \int_{2}^{1} (-x^2 + 8x - 12)dx = \frac{7}{3}$$
.

•
$$I_1 = \int_{\overline{AB}} (3x + x^2 + xy)dx + (4y + y^2 + 5x)dy = \int_2^1 (-x^2 + 8x - 12)dx = \frac{7}{3}.$$

•
$$I_2 = \int_{\overline{PC}} (3x + x^2 + xy)dx + (4y + y^2 + 5x)dy = \int_1^{-1} (y^2 + 4y + 5)dy = -\frac{32}{3}.$$

•
$$I_1 = \int_{\overline{AB}} (3x + x^2 + xy)dx + (4y + y^2 + 5x)dy = \int_2^1 (-x^2 + 8x - 12)dx = \frac{7}{3}.$$

•
$$I_2 = \int_{\overline{BC}} (3x + x^2 + xy)dx + (4y + y^2 + 5x)dy = \int_1^{-1} (y^2 + 4y + 5)dy = -\frac{32}{3}.$$

•
$$I_3 = \int_{\overline{CA}} (3x + x^2 + xy)dx + (4y + y^2 + 5x)dy = \int_1^{\infty} (3x^2 + 6x - 4)dx = 12.$$

•
$$I = I_1 + I_2 + I_3 = \frac{7}{3} + 12 - \frac{32}{3} = \frac{11}{3}$$
.