RADIX SORT OBLIKOVANJE I ANALIZA ALGORITAMA

Martin Vlahović

Matematički odsjek Prirodoslovno-matematički fakultet Sveučilište u Zagrebu

17. siječnja 2021.

STABILNI ALGORITMI ZA SORTIRANJE

Definicija (Stabilno sortiranje)

Za algoritam sortiranja početnog polja $A[1,2,\ldots,n]$ u polje $A[p(1),p(2),\ldots p(n)]$ po ključu key, gdje je $p:\{1,2,\ldots,n\} \to \{1,2,\ldots,n\}$ permutacija, kažemo da je **stabilan** ako za svaka dva $i < j = 1, \ldots, n$ takva da je A[i].key = A[j].key, vrijedi A[p(i)].key < A[p(j)].key. Drugim riječima, dva elementa početnog polja koja imaju jednak ključ očuvaju svoj prvobitni poredak u sortiranom polju.

Primjer: Pretpostavimo da sortiramo polje A[1, 2, 3, 4] riječi:

$$A[1,2,3,4] = \{"oblikovanje","i","analiza","algoritama"\},$$

po ključu:

$$key = prvo slovo riječi.$$

■ Tada je sortirano polje:

$$A[p(1), p(2), p(3), p(4)] = \{"analiza", "algoritama", "i", "oblikovanje"\}.$$

COUNTING SORT - PRIMJER STABILNOG ALGORITMA

- Osnovni sastojak potreban za implementaciju **Radix sorta** je **neki stabilni sort** na **potpuno uređenom** skupu ključeva Keys, koji je predefiniran i konačan s card(Keys) = k elemenata. Radi jednostavnosti stavljamo $Keys = \{1, 2, ..., k\}$.
- Kao primjer jednog takvog algoritma kojeg ćemo koristiti je tzv. **Counting sort**.
- Pretpostavimo da imamo polje $A[1,2,\ldots,n]\subseteq Keys$. Definiramo pomoćno polje $C[1,2,\ldots,k]\subseteq \mathbb{N}_0$ početno inicijalizirano na nulu, te polje $B[1,2,\ldots,n]\subseteq Keys$ u koje ćemo spremiti sotrirano polje.
- Ideja je "prošetati" se koroz polje A, te u polje C unijeti podatke tako da vrijedi: $C[i] \in \mathbb{N}_0$ sadrži broj elemenata polja A koji su manji ili jednaki od $i \in Keys$. Koristeći tu informaciju, u polje B ćemo konstruirati sortirano polje A.

COUNTING SORT - OPIS ALGORITMA

Algoritam radi u tri koraka:

- 1. Prolaskom $j=1,\ldots,n$, kroz polje A popuniti polje C tako da za svaku incidenciju ključa $A[j]\in Keys$, inkrementiramo C[A[j]]=C[A[j]]+1, koji je u početku nula.
- 2. Prolaskom $j=\mathbf{2},\ldots,k$ kroz polje C izvršavajući: C[i]=C[i]+C[i-1], očito će biti ispunjeno: $C[i]\in\mathbb{N}_0$ sadrži broj elemenata polja A koji su manji ili jednaki od $i\in Keys$.
- 3. Prolaskom **unazad** $j=n,\ldots,1$, kroz polje A, koristeći polje C popuniti polje B. Za svaki ključ A[j] mi znamo da se u sortiranom polju B mora nalaziti na mjestu C[A[j]] kada ne bismo u polju A imali duplikate ključeva. Tada stavljamo B[C[A[j]]]=A[j]. Ako ipak imamo duplikata u originalnom polju A, tada dekrementiranjem: C[A[j]]=C[A[j]]-1, osiguravamo novo mjesto u polju B gdje će biti spremljen ponovljeni ključ.

Algoritam će na kraju u polje B spremiti sortirane ključeve iz polja A. Upravo zbog prolaska **unazad** u trećem koraku, te zbog **dekrementiranja** C[A[j]] će dva **jednaka ključa** iz polja A biti spremljena **u originalnom poretku** u polje B. Dakle, Counting sort je stabilan! *Pitanje*: Što ako bismo išli **unaprijed**?

Lako vidimo da su vremenska i memorijska složenost algoritma: $\Theta(n+k)$.

Counting sort - Ilustracija algoritma 1/11

Counting sort - ilustracija algoritma 2/11

Counting sort - ilustracija algoritma 3/11

Counting sort - ilustracija algoritma 4/11

Counting sort - ilustracija algoritma 5/11

Counting sort - ilustracija algoritma 6/11

Counting sort - ilustracija algoritma 7/11

	1	2	3	4	5	6	7	8
A	2	5	3	0	2	3	0	3
	0	1	2	3	4	5		
C	1	2	3	5	7	8		
	1	2	3	4	5	6	7	8
В		0		2		3	3	

Counting sort - Ilustracija algoritma 8/11

Counting sort - ilustracija algoritma 9/11

	1	2	3	4	5	6	7	8
\boldsymbol{A}	2	5	3	0	2	3	0	3
	0	1	2	3	4	5		
C	0	2	3	4	7	8		
	1	2	3	4	5	6	7	8
В	0	0		2	3	3	3	

Counting sort - Ilustracija algoritma 10/11

	1	2	3	4	5	6	7	8
\boldsymbol{A}	2	5	3	0	2	3	0	3
	0	1	2	3	4	5		
C	0	2	3	4	7	7		
	1	2	3	4	5	6	7	8
В	0	0		2	3	3	3	5

Counting sort - Ilustracija algoritma 11/11

RADIX SORT

- lacktriangle Pretostavimo da imamo polje $A[1,\ldots,n]$ i želimo ga sortirati po ključu $key\in K.$
- Pretpostavimo da skup ključeva *K* možemo zapisati kao:

$$K = \underbrace{Keys \times Keys \times \cdots \times Keys}_{d},$$

dakle svaki ključ možemo shvatiti kao d-znamenkasti broj, gdje je svaka znamenka iz skupa $Keys=\{1,2,\ldots,k\}.$

- Naivna ideja bi bila rekurzivno sortirati polje *A* počevši od **prve znamenke**. Nažalost taj pristup stvori velik broj privremenih polja.
- Bolji pristup je kontraintuitivno sortirati stabilnim sortom, počevši od zadnje znamenke.
- Obično se koristi kada polje A nosi tzv. **satelitske podatke** koje želimo stabilno sortirati po ključu (npr. trojka (godina, mjesec, dan)).

RADIX SORT - ILUSTRACIJA ALGORITMA

■ Primjer:

329		720		720		329
457		355		329		355
657		436		436		436
839	ապիտ	457	ասվիչ	839	աայրու	457
436		657		355		657
720		329		457		720
355		839		657		839

- lacktriangle Koristeći Counting sort koji je stabilan, očito je vremenska složenosti: $\Theta(d(n+k))$.
- Treba pokazati korektnost algoritma koristeći činjenicu da je Counting sort stabilan.
- lacksquare Dokaz provodimo **indukcijom** po broju znamenki $d \in \mathbb{N}$ t.d. $K = (Keys)^d$.

RADIX SORT - KOREKTNOST ALGORITMA

Dokaz:

- Baza indukcije: ako je d = 1, tada očito Radix sort radi korektno i stabilan je zbog toga što je Counting sort korektan i stabilan.
- Pretpostavka indukcije: Pretpostavimo da je Radix sort korektan za $K = (Keys)^{d-1}$.
- **Korak indukcije:** Radix sort d znamenki ekvivalentan je Radix sortiranju najnižih d-1 znamenki, nakon čeka sotrira po prvoj znamenci koristeći zadan stabilan sort. Po pretpostavci, nakon Radix sortiranja po najnižih d-1 znamenki, elementi polja $A[1,\ldots,n]$ su korektno i stabilno sortirani po zadnjih d-1 znamenki. Nakon toga će stabilan sort korektno i stabilno sortirati polje $A[1,\ldots,n]$ po prvoj znamenci. Uzmimo tada dva proizvoljna elementa $a,b\in A[1,\ldots,n]\subseteq (Keys)^d$ i označimo s $a_1,b_1\in Keys$, njihove prve namenke. Tada ako je:
 - $lackbox{ } a_1 \neq b_1$, na kraju Radix sorta će se a i b nalaziti na korektnoj relativnoj poziciji neovisno o poretku nižih znamenki jer će stabilan sort u zanjem koraku obaviti korektno svoj dio posla.
 - $lack a_1=b_1$, tada će stabilan sort u zadnjem koraku ostaviti a i b u jednakoj relativnoj poziciji. Ali obzirom da je taj relativan položaj već korektan (jer je korektan relativan položaj u sortiranom polju elemenata a i b zadan zadnjim d-1 znamenakama), po pretpostavci indukcije slijedi korektnost i stabilnost Radix sorta na d znamenkastim elementima.

RADIX SORT - PRIMJER SA STRINGOVIMA

COW	SEA	T AB	BAR
$DO\mathbf{G}$	TEA	B AR	BIG
SEA	M O B	EAR	BOX
RUG	TAB	T AR	COW
ROW	D O G	S EA	DIG
MOB	RUG	T EA	DOG
BOX	DIG	DIG	EAR
TAB	BIG	BIG	FOX
BA R	BAR	MOB	MOB
EA R	E A R	DOG	NOW
TAR	TAR	COW	ROW
DIG	COW	ROW	RUG
BIG	ROW	NOW	SEA
TEA	NOW	BOX	TAB
NOW	BOX	FOX	TAR
FOX	FOX	RUG	TEA

RADIX SORT - REALAN PRIMJER 1/3

- Pretpostavimo da imamo polje $A[1,\ldots,n]$ od n elemenata tako da je $A[i] \in \{0,1,\ldots,n^3-1\}$. Želimo pronaći algoritam vremenske složenosti O(n).
- Primjerice, tip: unsigned long long int, na uobičajenim modernim računalima zauzima 8 byte-a, što odgovara rasponu brojeva:

$$0, 1, 2, \dots, 2^{8 \times 8} - 1 = 18446744073709551615 \approx 1.84 \times 10^{19}.$$

- lacktriangle U stvarnim primjenama nerijetko imamo posla s poljima primjerice veličine $n=2 imes 10^6.$
- Ako su elementi polja $A[1,\ldots,n]$ tipa unsigned long long int, tada doista vrijedi da je: $A[i] \in \{0,1,2,\ldots,n^3-1\}$, jer je:

$$n^3 - 1 = (2 \times 10^6)^3 - 1 \approx 8 \times 10^{18} < 1.84 \times 10^{19}.$$

RADIX SORT - REALAN PRIMJER 2/3

■ Iskoristimo ideju Radix sorta. Zapišimo svaki $a \in A[1, ..., n] \subseteq \{0, 1, ..., n^3 - 1\}$ element polja u na jedinstven način bazi n:

$$a = a_0 n^0 + a_1 n^1 + a_2 n^2,$$

gdje su $a_0, a_1, a_2 \in \{0, 1, \dots, n-1\}$. Za to nam je potrebno očito $\Theta(n)$ vremena. Nakon toga, uzastopnim Counting sortiranjem prvo po znamenci a_0 , zatim a_1 te onda a_2 , ćemo Radix sortirati cijelo polje $A[1, \dots, n]$.

- \blacksquare Za Counting sortiranje svake od tri znamenke potrebno je $\Theta(n)$ vremena i $\Theta(n)$ dodatne memorije.
- To je u praksi prihvatljivo jer je, kao što smo rekli, pretpostavljamo: $n \approx 2 \times 10^6$.
- \blacksquare Zaključak: Ako imamo polje $A[1,2,\ldots,n]$ nenegativnih cijelih brojeva 8 byte-nog tipa:

unsigned long long int,

t.d. je $n \leq 2 \times 10^6$, moguće ga je sortirati u vremenskoj i memorijskoj složenosti $\Theta(n)$.

RADIX SORT - REALAN PRIMJER 3/3

- Implementacija opisanog algoritma se nalazi na *GitHub* repozitoriju [2].
- Rezultati usporedbe vremena izvršavanja opisanog algoritma i STL std::sort funkcije:

n	time(std::sort) / time(Radix sort)
100	1.154
1000	1.692
10000	1.173
100000	1.133
100000	0.323

■ Dakle, vidimo da je Radix sort na realnim primjerima može biti brži od izuzetno optimizirane std::sort funkcije, iako za dovoljno velik n, Radix sort algoritam postane cache-unfriendly.

RADIX SORT - PREDNOSTI I NEDOSTACI

- Znamo da sortiranje uspoređivanjem **nije moguće** napraviti bolje od $\Omega(n \lg n)$.
- Ipak, Counting i Radix sort su asimptotski brži jer oni ne koriste uspoređivanje nego koriste činjenicu o jako **pravilnoj strukturi** totalno uređenog skupa Keys koji je izomorfan skupu $\{1, 2, \ldots, k\}$.
- U praktičnim implementacijama na tipičnim arhitekturama računala, Quicksort ponekad može biti ipak bolji iako mu je (prosječna) složenosti $O(n \lg n)$ jer efikasnije koristi *cache*-iranje od primjerice Radix sorta [1].
- Također, Counting i Radix sort traže **dodatnu memoriju** za privremena polja, dok je Quicksort in-place algoritam.

REFERENCE

T. H. CORMEN, C. E. LEISERSON, R. L. RIVEST, C. STEIN, Introduction to Algorithms (3rd ed.), MIT Press and McGraw-Hill (2009)

GITHUB REPOZITORIJ S IMPLEMENTACIJOM I TESTOVIMA RADIX SORT ALGORITMA, HTTPS://GITHUB.COM/MAVLAHO/OAA