Problem Statement

Linear Regression

Import Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

In [2]:
    a=pd.read_csv("wine.csv")
    a
```

Out[2]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	9.8
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	9.8
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4
•••											
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10.5
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	11.2
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	11.0
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	11.0

1599 rows × 12 columns

To display top 10 rows

```
In [3]: c=a.head(15) c
```

Out[3]:		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides		total sulfur dioxide	density	рН	sulphates	alcohol	C
	0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	
	1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	ſ
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	_
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	
5	7.4	0.660	0.00	1.8	0.075	13.0	40.0	0.9978	3.51	0.56	9.4	
6	7.9	0.600	0.06	1.6	0.069	15.0	59.0	0.9964	3.30	0.46	9.4	
7	7.3	0.650	0.00	1.2	0.065	15.0	21.0	0.9946	3.39	0.47	10.0	
8	7.8	0.580	0.02	2.0	0.073	9.0	18.0	0.9968	3.36	0.57	9.5	
9	7.5	0.500	0.36	6.1	0.071	17.0	102.0	0.9978	3.35	0.80	10.5	
10	6.7	0.580	0.08	1.8	0.097	15.0	65.0	0.9959	3.28	0.54	9.2	
11	7.5	0.500	0.36	6.1	0.071	17.0	102.0	0.9978	3.35	0.80	10.5	
12	5.6	0.615	0.00	1.6	0.089	16.0	59.0	0.9943	3.58	0.52	9.9	
13	7.8	0.610	0.29	1.6	0.114	9.0	29.0	0.9974	3.26	1.56	9.1	
14	8.9	0.620	0.18	3.8	0.176	52.0	145.0	0.9986	3.16	0.88	9.2	

To find Missing values

```
In [4]:
         c.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 15 entries, 0 to 14
        Data columns (total 12 columns):
         # Column
                                  Non-Null Count Dtype
                                    -----
                                   15 non-null
             fixed acidity
                                                    float64
             volatile acidity
                                   15 non-null
                                                    float64
             citric acid
                                   15 non-null
                                                    float64
             residual sugar
                                    15 non-null
                                                    float64
             chlorides
                                    15 non-null
                                                    float64
             free sulfur dioxide 15 non-null total sulfur dioxide 15 non-null
         5
                                                    float64
         6
                                                    float64
             density
                                    15 non-null
                                                    float64
         8
             рΗ
                                    15 non-null
                                                    float64
             sulphates
                                    15 non-null
                                                    float64
         10 alcohol
                                    15 non-null
                                                    float64
         11 quality
                                    15 non-null
                                                    int64
        dtypes: float64(11), int64(1)
        memory usage: 1.5 KB
```

To display summary of statistics

In [5]:	a.des	scribe()							
Out[5]:		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	
	count	1599 000000	1599 000000	1599 000000	1599 000000	1599 000000	1599 000000	1599 000000	1

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000
75 %	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000000

To display column heading

Pairplot

```
In [7]: s=a.dropna(axis=1)
s
```

Out[7]:		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
	0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4
	1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8
	2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	9.8
	3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	9.8
	4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4
	•••											
	1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10.5
	1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	11.2
	1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	11.0
	1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2
	1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	11.0

1599 rows × 12 columns

Distribution Plot

```
In [10]: sns.distplot(a['quality'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarn
ing: `distplot` is a deprecated function and will be removed in a future version. Pl
ease adapt your code to use either `displot` (a figure-level function with similar f
lexibility) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[10]: <AxesSubplot:xlabel='quality', ylabel='Density'>

Correlation

Out[11]: <AxesSubplot:>

Train the model - Model Building

```
In [12]:
    g=s[['quality']]
    h=s['quality']
```

To split dataset into training end test

```
from sklearn.model_selection import train_test_split
g_train,g_test,h_train,h_test=train_test_split(g,h,test_size=0.6)
```

To run the model

```
In [14]: from sklearn.linear_model import LinearRegression
In [15]: lr=LinearRegression()
lr.fit(g_train,h_train)
Out[15]: LinearRegression()
In [16]: print(lr.intercept_)
8.881784197001252e-16
```

Coeffecient

Best Fit line

```
In [18]: prediction=lr.predict(g_test)
plt.scatter(h_test,prediction)
```

Out[18]: <matplotlib.collections.PathCollection at 0x1a995931760>

To find score

In [19]: print(lr.score(g_test,h_test))

1.0