

Programming, Data Structures and Algorithms using Python

Prof. Madhavan Mukund

Director
Chennai Mathematical Institute

Mr. Omkar Joshi

Course Instructor
IITM Online Degree Programme

Programming, Data Structures and Algorithms using Python

Summary of weeks 1 to 3

Content

- Timing our code
- Analysing an algorithm
- Asymptotic notations
- Orders of magnitude
- Calculating complexity
- Searching algorithms
- Selection sort
- Insertion sort

- Merge sort
- Quicksort
- Comparing sorting algorithms
- Lists vs. Arrays
- Implementation of lists in Python
- Implementation of dictionaries in Python

Timing our code

```
import time
start = time.perf_counter()
. . .
# Execute some code
. . .
end = time.perf_counter()
time_elapsed = end - start
```

Analysing an algorithm

- Two parameters to measure an algorithm
 - Running time (time complexity)
 - Memory requirement (space complexity)
- Running time T(n) is a function of input size n
- Upper bound on worst case gives us an overall guarantee on performance

Asymptotic notations

Big O notation:

```
f(n) is O(g(n)) means g(n) is an upper bound for f(n)
```

 $lue{\Omega}$ notation:

```
f(n) is \Omega(g(n)) means g(n) is a lower bound for f(n)
```

 \bullet Onotation:

f(n) is $\Theta(g(n))$ means we have found matching upper and lower bounds (optimal solution)

Orders of magnitude

- Commonly encountered classes of functions
- In each case c is a positive constant and n increases without bound
- The slower-growing functions are listed first

Notation	Name
O(c)	Constant
$O(\log \log n)$	Double logarithmic
$O(\log n)$	Logarithmic
$O((\log n)^c), c > 1$	Polylogarithmic
$O(n^c), 0 < c < 1$	Fractional power
O(n)	Linear
$O(n \log n)$	Loglinear
$O(n^2)$	Quadratic
$O(n^c)$	Polynomial
$O(c^n), c > 1$	Exponential
O(n!)	Factorial

Calculating complexity

- Depends on the type of algorithm
- Iterative programs
 - Focus on loops
- Recursive programs
 - Write and solve a recurrence relation

Searching algorithms

Linear search

- Naïve solution
- Check every element in the list one by one
- Worst case is when element is not present in the list

Best case	Average case	Worst case
0(1)	O(n)	O(n)

Binary search

- Prerequisite: list must be sorted
- Compare with midpoint element
- Halve the list till interval becomes empty
- Recurrence: T(n) = T(n/2) + 1

Best case	Average case	Worst case
0(1)	$O(\log n)$	$O(\log n)$

Selection sort

- It is an intuitive algorithm
- Repeatedly find the minimum/maximum element and append it to the sorted list
- Swapping elements helps us avoid use of second list
- Number of comparisons: T(n) = n + (n-1) + ... + 1= n(n+1) / 2
- The time complexity of Selection sort remains the same irrespective of the sequence of elements

Insertion sort

- It is another intuitive algorithm
- Repeatedly pick an element and insert it into the sorted list
- Number of comparisons: $T(n) = n + (n-1) + \dots + 1$ = n(n+1) / 2
- The time complexity of Insertion sort varies based on the sequence of elements

Merge sort

- Divide the list into two halves
- Separately sort the left and right half
- Combine the two sorted lists A and B to get a fully sorted list C
 - If A is empty, copy B into C
 - If B is empty, copy A into C
 - Otherwise, compare first elements of A and B
 - Move the smaller of the two to C
 - Repeat till you exhaust A and B
- Recurrence: T(n) = 2T(n/2) + n

Quicksort

- Choose a pivot element (typically the first element)
- Partition the list into lower and upper parts with respect to the pivot
- Move the pivot between the lower and upper partition
- Recursively sort the two partitions
- This allows an in-place sort
- Iterative implementation is possible to avoid the cost of recursive calls

Comparing sorting algorithms

Parameter	Selection sort	Insertion sort	Merge sort	Quicksort
Best case	$O(n^2)$	O(n)	$O(n \log n)$	$O(n \log n)$
Average case	$O(n^2)$	$O(n^2)$	$O(n \log n)$	$O(n \log n)$
Worst case	$O(n^2)$	$O(n^2)$	$O(n \log n)$	$O(n^2)$
In-place	Yes	Yes	No	Yes
Stable	No	Yes	Yes	No

Lists vs. Arrays

Lists	Arrays
Flexible length	Fixed size
Values are scattered in memory	Allocate a contiguous block of memory
Need to follow links to access	Random access
Insertion and deletion is easy	Insertion and deletion is expensive
Swapping elements takes constant time	Swapping elements takes linear time

Implementation of lists in Python

- Python lists are NOT implemented as flexible linked lists
- Underlying interpretation maps the list to an array
 - Assign a fixed block when you create a list
 - Double the size if the list overflows the array
- Keep track of the last position of the list in the array
 - l.append() and l.pop() are constant time, amortized -0(1)
 - Insertion/deletion require time O(n)
- Effectively, Python lists behave more like arrays than lists

Implementation of dictionaries in Python

- A dictionary is implemented as a hash table
 - An array plus a hash function
- Creating a good hash function is important (and hard!)
- Need a strategy to deal with collisions
 - Open addressing/closed hashing probe for free space in the array
 - Open hashing each slot in the hash table points to a list of key-value pairs