

Ficha de Trabalho n.º 5 - Matemática A - 10.º Ano GEOMETRIA ANALÍTICA E CÁLCULO VECTORIAL NO PLANO

"Conhece a Matemática e dominarás o Mundo." Galileu Galilei

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

- **A** 2x + 2y = 0
- 2x-2y=0

2. Num referencial o.n. xOy, considere o segmento de recta [AB] tais que A(0,2) e $B(a-b,a^2-a)$, com $a \in \mathbb{R}^+$ e $b \in \mathbb{R}$. Sabe-se que a bissectriz dos quadrantes ímpares é a mediatriz do segmento de recta $\lceil AB \rceil$.

Quais são os valores de *a* e de *b*?

- **A** a = 0 e b = -2 **B** a = 1 e b = -1

3. Considere, num referencial o.n. xOy, a circunferência definida por $x^2 + y^2 - x + 4y + 4 = 0$.

As coordenadas do centro e do raio da circunferência são, respectivamente:

B $\left(\frac{1}{2}, -2\right); \frac{1}{4}$

 $\boxed{ } \left(\frac{1}{2}, -2 \right); \frac{1}{2}$

4. Considere, num referencial o.n. xOy, a elipse definida por $x^2 + 4y^2 = 16k$, com k > 0, e de eixo maior 8.

uais são as coordenadas dos focos?

A $F_1(-2\sqrt{15},0)$ e $F_2(2\sqrt{15},0)$

B $F_1(-2\sqrt{5},0)$ e $F_2(2\sqrt{5},0)$

 $F_1(-2\sqrt{3},0) \in F_2(2\sqrt{3},0)$

D $F_1(-2\sqrt{17},0)$ e $F_2(2\sqrt{17},0)$

5. Na figura está representada num referencial o.n. xOy uma circunferência centrada no ponto A, de coordenadas (-2,2) e que contém a origem do referencial.

Qual das condições seguintes define o conjunto de pontos da região sombreada da figura?

B
$$(x-2)^2 + (y+2)^2 \le 8 \land (y \le 0 \lor x \ge 0)$$

$$(x-2)^2 + (y+2)^2 \le 8 \land (y \le 0 \land x \ge 0)$$

6. Num referencial xOy considere os pontos A(-24,0) e B(24,0).

Seja P(x,y) um ponto do plano tais que d(P,A)+d(P,B)=50. Então a equação dada é equivalente a:

$$\boxed{A} \quad \frac{x^2}{625} + \frac{y^2}{576} = 1$$

$$\boxed{\mathbf{B}} \quad \frac{x^2}{625} + \frac{y^2}{49} = 1$$

$$\boxed{\mathbf{C}} \quad \frac{x^2}{576} + \frac{y^2}{49} = 1$$

$$\frac{x^2}{24} + \frac{y^2}{625} = 1$$

7. Num referencial o.n. xOy considere os pontos A(k,-2), B(1,k) e P(-k,-k), com k>0.

Qual é o valor de k de que o ponto P pertença à mediatriz do segmento de recta AB?

A 2

C 1

 $\mathbf{D} \frac{1}{2}$

8. Num referencial o.n. xOy considere a condição $\sim (x < -3 \lor x > 2) \land |y| \le 2$.

Em qual dos referenciais está a representação da região do plano definida pela condição?

Α

В

С

D

9. Na figura está representada um rectângulo divido em doze quadrados:

8'2

- **9.1.** O vector $\frac{1}{2} \left(\overrightarrow{AL} \overrightarrow{OQ} + \overrightarrow{JC} \right)$ pode ser representado por:
 - \overrightarrow{AC}
- $\overrightarrow{B} \quad \overrightarrow{GF}$
- \overrightarrow{C} \overrightarrow{PQ}
- \overline{D} \overrightarrow{JH}

- **9.2.** Qual é o valor real de k tal que $\overrightarrow{AQ} \overrightarrow{SR} + \frac{1}{2}\overrightarrow{OE} = k\overrightarrow{AS}$?
 - $\frac{1}{3}$
- $\mathbb{B}^{\frac{2}{3}}$

 $\frac{3}{2}$

- **D** 2
- **9.3.** Suponha agora que o rectângulo está representado num referencial o.n. $(O', \vec{e}_1, \vec{e}_2)$.

Sabendo que M(3,-2), $\overrightarrow{AD} = \overrightarrow{e}_1$ e $\overrightarrow{AP} = -\overrightarrow{e}_2$, quais são as coordenadas do ponto B?

- $\boxed{\mathbf{A} \left(\frac{8}{3}, -\frac{4}{3}\right)} \qquad \boxed{\mathbf{B} \left(\frac{10}{3}, -\frac{4}{3}\right)} \qquad \boxed{\mathbf{C} \left(\frac{8}{3}, \frac{4}{3}\right)}$

10. Considere os vectores não nulos \vec{u} e \vec{v} .

Qual das seguintes proposições é falsa?

- A Se \vec{u} e \vec{v} são perpendiculares, então, $\|\vec{u} \vec{v}\| = \|\vec{u} + \vec{v}\|$.
- **B** Se $\vec{u} = k \vec{v}$, então, $\|\vec{u}\| = |k| \times \|\vec{v}\|$.
- C Se $\vec{u} = k \vec{v}$, então, $2(\vec{u} 3\vec{v}) = 4\vec{u} + \vec{v} < \vec{v}$
- \square Se $\frac{1}{2}\vec{u} \vec{v} = \vec{v}$, então, $\vec{u} = 4\vec{v}$.
- 11. Num referencial o.n. $(O.\vec{e}_1,\vec{e}_2)$ considere os vectores não nulos $\vec{u}(k^2+k,k+1)$ e $\vec{v}=(k+1)\vec{e}_1-2\vec{e}_2$, com
 - **11.1.** Os vectores \vec{u} e \vec{v} são colineares se:

C $k = \frac{1}{2}$

 $D \mid k=1$

- **11.2.** Quais são os valores de k tais que $\|\vec{u}\| = \|\vec{v}\|$?
- **A** $k = -2 \lor k = 1$

B $k = 1 \lor k = 2$

C $k = -3 \lor k = 2$

D $k = -2 \lor k = 3$

11.3. Qual é o valor de k de modo que $\vec{u} - (2k+2)\vec{e}_1 = \vec{v} + 6\vec{e}_2$?

A 1

D 4

12. Considere a recta r definida por r: 2x - a = ay, com $a \in \mathbb{R} \setminus \{0\}$. O ponto P, de coordenadas P(4,1), pertence à recta r.

Uma equação vectorial da recta r é:

A
$$(x,y)=(4,1)+k(-2,1), k \in \mathbb{R}$$

B
$$(x,y)=(0,-1)+k(2,1), k \in \mathbb{R}$$

$$(x,y)=(4,1)+k(1,2), k \in \mathbb{R}$$

$$D(x,y) = (0,4) + k(-2,-1), k \in \mathbb{R}$$

13. Num referencial o.n. xOy sejam r e s as rectas definidas respectivamente por $(x,y)=(2,3)+k(2,a),\ k\in\mathbb{R}$ e $4x-a^2y=3$, com $a\in\mathbb{R}\setminus\{0\}$. As rectas r e s são paralelas.

Qual é o valor de a?

D 5

14. Na figura estão representados, em referencial o n. xOy, as rectas r e s e o quadrilátero ABCO.

Sabe-se que:

- o ponto B pertence às rectas r e s e tem ordenada 5
- o ponto C pertence ao eixo Ox e à recta s
- a recta *r* é definida pelo sistema de equações paramétricas:

$$x=6+3k \wedge y=7+2k, k \in \mathbb{R}$$

$$\overrightarrow{AC} = (5, -3)$$

14.1. Qual é a equação reduzida da recta s?

A $y = -\frac{2}{5}x + 5$ **B** $y = -\frac{5}{2}x + \frac{25}{2}$ **C** $y = -\frac{5}{2}x + 5$ **D** $y = -\frac{2}{5}x + \frac{25}{2}$

14.2. Qual é a área do quadrilátero [ABCO]?

- **A** 17
- **B** 18

C 19

D 20

14.3. Qual das condições seguintes define o conjunto de pontos da região sombreada da figura, incluindo a fronteira?

$$\triangle$$
 $x \ge 0 \land y \ge 0 \land y \le -\frac{2}{5}x + \frac{25}{2} \land y \le \frac{3}{2}x + 3$

B
$$x \ge 0 \land y \ge 0 \land y \le -\frac{5}{2}x + \frac{25}{2} \land y \ge \frac{2}{3}x + 3$$

$$x \ge 0 \land y \ge 0 \land y \le -\frac{2}{5}x + \frac{25}{2} \land y \ge \frac{3}{2}x + 3$$

Adaptado de um exercício da minha sebenta Propostas de Testes Intermédios – Matemática A – 11.º Ano"

GRUPO II - IPENS DE RESPOSTA ABERTA

15. Na figura está representada num referencial o.n. xOy uma circunferência centrada em A que contém o ponto B e de raio igual a $\sqrt{13}$.

Sabe-se que:

- o ponto A pertence à bissectriz dos quadrantes ímpares;
- B(-1,0)
- o ponto C pertence ao eixo Oy e à circunferência;
- $lue{}$ ponto D pertence à circunferência e tem a mesma ordenada que o ponto C.

- **15.1.** Mostre que uma equação da circunferência é $(x-2)^2 + (y-2)^2 = 13$.
- **15.2.** Mostre que as coordenadas do ponto D são (4,5).

- **15.3.** Determine uma equação da mediatriz do segmento de [AD], apresentando-a na forma y = mx + b, com $m,b \in \mathbb{R}$.
- **15.4.** Seja $P(a, a^2 + 4a)$, com $a \in \mathbb{R}$, um ponto do segundo quadrante pertencente à recta CD. Mostre que P pertence à bissectriz dos quadrantes pares.
- 15.5. Defina, por meio de uma condição, a região sombreada da figura.

Nota: as fronteiras a carregado devem ser incluídas e as fronteiras a tracejado devem ser excluídas.

16. Considere, num referencial o.n. xOy, a condição $(x+1)^2 + (y+2)^2 \ge 9 \land -4 \le x \le 2 \land -2 \le y < 3$.

Represente a região do plano definido pela condição e determine a sua área.

17. Na figura estão representadas, em referencial o.n. xOy, uma recta r e duas circunferências: uma centrada no ponto A e que contém o ponto O e outra, de equação $(x-4)^2 + (y-7)^2 = 13$, centrada em B.

Sabe-se que:

- as coordenadas do ponto A são (−2,3);
- o ponto Q pertence às duas circunferências e tem ordenada 5;
- o ponto P pertence à circunferência centrada e B e tem abcissa 6;
- a recta r é tangente às duas circunferências no ponto Q.
- 17.1. Escreve uma condição que defina a circunferência centrada em A e mostre que a abcissa do ponto Q é 1.
- **17.2.** Justifique que $\overline{AQ} = \overline{BQ}$ e escreva uma equação da recta r, apresentando-a na forma y = mx + b, com $m,b \in \mathbb{R}$.
- Mostre que o triângulo $\begin{bmatrix} AOQ \end{bmatrix}$ é rectângulo em A e, usando este facto, determine o valor exacto da área da região sombreada a cinza da figura.
- **17.4.** Mostre que as coordenadas de P são (6,4) e justifique que as áreas regiões sombreadas a cinza e a amarelo são iguais.

- **18.** Num referencial o.n. xOz considere a elipse definida pela equação $x^2 + b(\sqrt{50}y)^2 = a^2$, com $a,b \in \mathbb{R}^+$ e 50b > 1. Sabe-se que:
 - a distância focal é 14
 - o ponto de coordenadas $\left(5, \frac{\sqrt{2}}{2}\right)$ pertence à elipse.

Sejam F_1 e F_2 os focos da elipse e P(x,y) um ponto do plano pertencente à elipse.

- **18.1.** Mostre que $d(P, F_1) + d(P, F_2) = 10\sqrt{2}$ e escreva a equação da elipse na forma reduzida.
- **18.2.** Determine a área do losango [ABCD], onde A, B, C e D são os vértices da elipse.
- 19. Na figura está representada, num referencial o.n. xOy, a elipse de focos F_1 e F_2 e o triângulo $[PF_1F_2]$

Sabe-se que as coordenadas de ponto P são $\left(-\frac{3}{4}, -\frac{5\sqrt{5}}{4}\right)$ e que a área do triângulo $\left[PF_1F_2\right]$ é $5\sqrt{5}$.

- 19.1. Determine as coordenadas dos focos e o comprimento do eixo maior.
- 15.2 Mostre que uma equação da elipse é $x^2 + 3y^2 = 24$.
- **9.3.** Sejam *A* e *B* os pontos de intersecção da elipse com a bissectriz dos quadrantes pares. O ponto *A* tem abcissa positiva e o ponto *B* tem abcissa negativa.
 - a) Determine as coordenadas de A e de B e justifique que o quadrilátero $\left[AF_1BF_2\right]$ é um paralelogramo.
 - **b)** Determine a área do paralelogramo $[AF_1BF_2]$.

20. Na figura está representado um quadrilátero [ABCD] e um triângulo [ABG].

Sabe-se que:

- os pontos E e F pertencem ao lado $\lceil CD \rceil$
- ullet o ponto E pertence ao lado igl[BGigr] e o ponto F ao lado igl[AGigr]
- $\overline{EF} = k \times \overline{CD}$, $\overline{FG} = k \times \overline{AG}$ e $\overline{EG} = k \times \overline{BG}$, com $k \in \mathbb{R}^+$

Usando cálculo vectorial, mostre que o quadrilátero [ABCD] é um paralelogramo.

- **21.** Considere num referencial o.n. $(O, \vec{e}_1, \vec{e}_2)$ os vectores $\vec{u}(5, -3)$ e $\vec{v} = -2\vec{e}_1 + 3\vec{e}_2$ e os pontos P(0, 3) e Q(-1, k+1), com $k \in \mathbb{R}$.
 - **21.1.** Considere que k = 8 e seja $\vec{w} = 3\overrightarrow{QP} 2(\vec{u} + 3\vec{v})$.
 - **a)** Mostre que $\vec{w} = (5, -30)$.
 - b) Seja T um ponto tais que $\overrightarrow{TQ} = \overrightarrow{w} + 2\overrightarrow{u} + 3\overrightarrow{v}$. Determine as coordenadas do ponto T.
 - **21.2.** Determine as coordenadas do ponto Q de modo que $\left\| 2\overrightarrow{PQ} + \overrightarrow{v} \right\| = 5$.
 - **21.3.** Determine um vector de norma $\sqrt{17}$ e colinear com o vector $\vec{u} \vec{v}$.
 - **21.4.** Determine k de modo que $\overrightarrow{QP} = k^2 (\vec{v} + 3\vec{e}_1)$.
 - **21.5.** Escreva um sistema de equações paramétricas que defina a recta que contém o ponto P e tem a direcção do vector $\vec{u} \vec{w}$.
- 22. Considere num referencial o.n. xOy a circunferência definida por $x^2 + y^2 + 6x 7y + 19 = 0$ e a recta r definida pelo sistema de equações paramétricas $r: x = -2 + 2k \land y = 1 5k$, $k \in \mathbb{R}$.
 - **22.1.** Mostre que o centro da circunferência pertence à recta r.
 - **22.2.** O ponto P(-4,4) pertence a um semicírculo limitado pela circunferência e pela recta r.

Defina, por meio de uma condição, o referido semicírculo.

23. Na figura está representado, em referencial o.n. xOy, um quadrilátero $\begin{bmatrix} ABCD \end{bmatrix}$.

Sabe-se que:

- os pontos A e D são simétricos em relação à bissectriz dos quadrantes ímpares

- o vector \overrightarrow{BC} tem de coordenadas (7,-3) e o vector \overrightarrow{DC} tem de coordenadas (6,2)
- o ponto B pertence ao eixo Oy e tem ordenada 2
- **23.1.** Mostra que as coordenadas do ponto A são (-3,1) e que as coordenadas do ponto C são (7,-1)
- 23.2. Escreva uma equação vectorial da mediatriz do segmento de recta [AC]
- 23.3. Defina por uma condição a região sombreada da figura, incluindo a fronteira.

Adaptado de um exercício da minha ebenta "Propostas de Testes Intermédios – Matemática A – 11.º Ano"

24. Na figura está representada num referencial o.n. xOy uma circunferência centrada em D que contém o ponto A e o paralelogramo ABCD.

Sabe-se que:

- o ponto *B* pertence à bissectriz dos quadrantes pares;
- A(-2,-1)
- $\overrightarrow{AC} = \left(\frac{13}{2}, 3\right)$
- a recta AB é paralela a Ox.
- **24.1.** Mostre que as coordenadas do ponto D são $\left(\frac{3}{2},2\right)$ e escreva uma equação da circunferência.
- **24.2.** Determine $a \in \mathbb{R}$ de modo que o ponto de coordenadas $\left(a^2, a \frac{1}{8}\right)$ pertença à mediatriz do segmento de recta $\left[BD\right]$.
- **24.3.** Escreva uma equação vectorial do segmento de recta $\begin{bmatrix} AC \end{bmatrix}$.

- **24.4.** Seja $\vec{u} = (k\sqrt{2}, (k-1)\sqrt{2})$, com $k \in \mathbb{R}$. Determine k de modo que os vectores \vec{u} e \overrightarrow{BC} sejam colineares.
- **24.5.** Seja M o ponto médio do segmento de recta [CD]. Determine $x, y \in \mathbb{R}$ tais que $\overrightarrow{AB} + y\overrightarrow{DB} = x\overrightarrow{MA}$.
- **24.6.** Defina, por meio de uma condição, a região sombreada da figura, incluindo a fronteira, começando por escrever a equação reduzida da recta *BC*.
- **25.** Num referencial o.n. xOy considere as rectas $r \in s$, estritamente paralelas, definidas respectivamente por $y + a^2x = x + 6$ e (x, y) = (0, a + 4) + k(2, -6), $k \in \mathbb{R}$, com $a \in \mathbb{R} \setminus \{0\}$.
 - **25.1.** Mostre que a = -2.
 - **25.2.** A recta r intersecta o eixo Oy no ponto A e a recta s intersecta o eixo Ox no ponto B.
 - a) Determine a área do triângulo [AOB].
 - **b)** Escreva uma equação do círculo de diâmetro [AB].
 - c) Escreva uma equação vectorial da recta r.
- **26.** Na figura está representada, num referencial o.n., xOy o triângulo isósceles $\begin{bmatrix} ABC \end{bmatrix}$ e a circunferência, centrada em D que contém os pontos A e B.

Sabe-se que:

- o ponto D pertence ao eixo Ox e à mediatriz do segmento de recta $\begin{bmatrix} AB \end{bmatrix}$

- o ponto B tem abcissa igual a 3
- uma equação da recta AC é 9x + 8y + 49 = 0
- uma equação vectorial da recta AB é $(x,y)=(1,-1)+k(1,2),\ k\in\mathbb{R}$
- **26.1.** Mostre que a ordenada do ponto $B \neq 3$ e escreva a equação reduzida da recta AB.
- **26.2.** Mostre que as coordenadas do ponto A são (-1,-5).
- **26.3.** Determine a equação reduzida da mediatriz do segmento de recta [AB] e mostre que as coordenadas do ponto C são (-9,4) e as do ponto D são (-1,0).

26.4. Determine a área do triângulo [ABC]

26.5. Defina por uma condição a região sombreada da figura, incluindo a fronteira.

Solucionário

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

16.

15.3.
$$y = -\frac{2}{3}x + \frac{11}{2}$$

15.5.
$$(x-2)^2 + (y-2)^2 \le 13 \land 0 \le x < 4 \land y \le x$$

$$A_{regi\tilde{a}o} = \frac{60 - 9\pi}{2}$$

17.1.
$$(x+2)^2 + (y-3)^2 = 13$$

17.2.
$$y = -\frac{3}{2}x + \frac{13}{2}$$

17.3.
$$\frac{13\pi - 26}{4}$$

18.1.
$$\frac{x^2}{50} + y^2 = 1$$

1) 2.
$$A_{[ABCD]} = 10\sqrt{2}$$

19.1.
$$F_1(4,0)$$
; $F_2(-4,0)$; $4\sqrt{6}$

19.2. a)
$$A(\sqrt{6}, -\sqrt{6})$$
; $B(-\sqrt{6}, \sqrt{6})$

19.3. b)
$$A_{[ABCD]} = 8\sqrt{6}$$

21.1. b)
$$T(-10,36)$$

21.2.
$$Q(-1,0)$$
 ou $Q(-1,3)$

21.1. b)
$$T(-10,36)$$
 21.2. $Q(-1,0)$ ou $Q(-1,3)$ **21.3.** $\left(\frac{7\sqrt{5}}{5}, -\frac{6\sqrt{5}}{5}\right)$ ou $\left(-\frac{7\sqrt{5}}{5}, \frac{6\sqrt{5}}{5}\right)$

$$k = -1$$

21.5. Por exemplo,
$$x = 0 \land y = 3 + 27k$$
, $k \in \mathbb{R}$

22.2.
$$y \le -\frac{5}{2}x - 4 \wedge (x + 3)^2 + \left(y - \frac{7}{2}\right)^2 \le \frac{9}{4}$$

23.2. Por exemplo,
$$(x, y) = (0, -10) + k(1, 5), k \in \mathbb{R}$$

23.3.
$$y \le \frac{1}{3}x + 2 \land y \le -\frac{3}{7}x + 2 \land y \ge \frac{1}{3}x - \frac{10}{3} \land y \ge -x - 2$$

24.1.
$$\left(x-\frac{3}{2}\right)^2 + \left(y-2\right)^2 = \frac{85}{4}$$

24.2.
$$a = -3 - \sqrt{14} \lor a = -3 + \sqrt{14}$$

24.3.
$$(x,y) = (-2,-1) + k(\frac{13}{2},3), k \in [0,1]$$

2.4.
$$k = 3$$

24.5.
$$x = y = -\frac{2}{3}$$

24.6.
$$BC: y = \frac{6}{7}x - \frac{13}{7}$$

$$\left(\left(x - \frac{3}{2}\right)^2 + \left(y - 2\right)^2 \le \frac{85}{4} \quad \land \quad y \ge 2 \quad \land \quad y \le \frac{6}{7}x - \frac{13}{7}\right) \quad \lor \quad \left(\left(x - \frac{3}{2}\right)^2 + \left(y - 2\right)^2 \le \frac{85}{4} \quad \land \quad y \le -1 \quad \land \quad y \ge \frac{6}{7}x - \frac{13}{7}\right)$$

ou
$$\left(x - \frac{3}{2}\right)^2 + \left(y - 2\right)^2 \le \frac{85}{4} \wedge \left(\left(y \ge 2 \wedge y \le \frac{6}{7}x - \frac{13}{7}\right) \vee \left(y \le -1 \wedge y \ge \frac{6}{7}x - \frac{13}{7}\right) \right)$$
a) $A_{[AOB]} = 2$ **25.2. b)** $\left(x - \frac{1}{3}\right)^2 + \left(y - 3\right)^2 \le \frac{82}{9}$

25.2. a)
$$A_{[AOB]} = 2$$

25.2. a)
$$A_{[AOB]} = 2$$
 25.2. b) $\left(x - \frac{1}{3}\right)^2 + \left(y - 3\right)^2 \le \frac{82}{9}$

25.2. c)
$$(x,y) = (0,6) + k(1,-3), k \in \mathbb{R}$$

26.1.
$$y = 2x - 3$$

26.1.
$$y = 2x - 3$$
 26.3. $y = -\frac{1}{2}x - \frac{1}{2}$

26.4.
$$A_{[ABC]} = 50$$

26.5.
$$x \le 0 \land y \ge 0 \ y \le -\frac{1}{12}x + \frac{13}{4} \land y \ge -\frac{9}{8}x - \frac{49}{8} \land (x+1)^2 + y \le 25$$

