

LIFO63 – Algorithme numérique – TD 3

Interpolation

Exercice 1

Trouver le polynôme passant par les points A=(0,0), B=(-2,4), C=(3,6) en utilisant la méthode d'interpolation de Lagrange.

Exercice 2

Calculer la valeur à x=2 en utilisant l'interpolation de Lagrange aux points suivant :

1.
$$(-4,1)$$
 et $(3,2)$

2.
$$(-2, -2)$$
, $(3, -4.5)$ et $(1, -0.5)$

Conclusion?

Exercice 3

Nous souhaitons approcher la fonction cosinus.

- 1. Avec un polynôme de degré 1 en utilisant les points particuliers pour les deux angles 0 et π . Donner ce polynôme et calculer l'erreur au point 2π .
- 2. Avec un polynôme de degré 2 en utilisant les points particuliers pour les trois angles : $0, \pi, 2\pi$. Donner ce polynôme et calculer l'erreur au point $\frac{\pi}{2}$.

Exercice 4

Soient les points A = (1,3), B = (2,5), C = (3,3). Calculer le polynôme P de degré 2 passant par ces points.

- 1. En résolvant un système d'équation linéaire.
- 2. En utilisant la méthode d'interpolation de Lagrange.
- 3. En utilisant les différences divisées de Newton.

Exercice 5

On donne les valeurs numériques suivantes :

x	f(x)
1	0
1.5	1

2	2
2.5	-1.5

- 1. En utilisant les différences divisées de Newton, déterminer le polynôme qui interpole la fonction f(x) sur les points de support donnés.
- 2. Évaluer f(1.8)

Exercice 6

On considère une fonction $f:[-1,1]\to\mathbb{R}$. Soit p le polynôme de degré 1 qui interpole f pour le support $\{x_0,x_1\}$.

- 1. Quels points de support doit-on choisir entre $\{-1,1\}$ et $\left\{-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right\}$ et pourquoi ?
- 2. Déterminer le polynôme d'interpolation de degré 1 qui interpole $f(x) = x^3$ sur le support $\left\{-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right\}$ et donner une majoration de l'erreur pour tout $x \in [-1,1]$.

Exercice 7

Soient $f(x) = \cos x$ et $g(x) = e^{3x}$ définies sur [0,1]. Estimer le nombre minimum de points pour que l'erreur entre la fonction et son polynôme d'interpolation de Lagrange soit inférieur à 0.1, 0.01 et 0.001.

Exercice 8

Soient les fonctions définies par $f(x) = \sqrt{x-1}$ et $g(x) = \sin\left(\frac{\pi}{2}(x-1)\right)$ et trois points $x_0 = 1$, $x_1 = \frac{3}{2}$, $x_2 = 2$.

- 1. Montrer, sans le calculer, que f et g ont le même polynôme d'interpolation sur le support $\{x_0, x_1, x_2\}$.
- 2. Calculer le polynôme de Lagrange qui interpole f et g sur le support donné.
- 3. Trouver la valeur approchée de g au point x=1.75 et donner une majoration de l'erreur d'interpolation sur l'intervalle [1,2].

Exercice 9

On veut représenter la fonction $f(x) = e^x$ par un polynôme sur l'intervalle [-1,1]. On choisit les 3 points $x_0 = -1, x_1 = 0, x_2 = 1$.

- 1. Donner le polynôme d'interpolation de Lagrange sur le support donné.
- 2. Donner une majoration de l'erreur.

3. Donner les valeurs approchées aux points x = -0.5, 0.5, -0.75, 0.75 ainsi que les erreurs de précisions commises en ces points et comparer avec le résultat obtenu en question 2.

Exercice 10

Soit la fonction $f(x) = x^3 \text{ sur } [0,1]$

- 1. Écrire l'interpolation polynomiale P de degré 1 sur le support $\{(0,0),(1,1)\}$.
- 2. Calculer la valeur du point $c \in [0,1]$ tel que $f(x) p(x) = \frac{f''(c)}{2}x(x-1)$.

Exercice 11

Soit la fonction $f(x) = 4^x - x - 2$ définie sur $[0,1] \to R$. L'équation f(x) = 0 admet une solution $x^* \in [0,1]$.

- 1. À l'aide des différences divisées, calculer le polynôme P qui interpole f aux points 0, 0.5, 1.
- 2. En utilisant le polynôme P, donner une valeur approchée de x^* .

Exercice 12

Soit la fonction $f(x) = (2x - \alpha)^4$ définie sur $[0, \alpha]$.

- 1. Donner le polynôme P de degré 1 interpolée aux bornes de l'intervalle.
- 2. Calculer la ou les valeurs du point $c \in [0, \alpha]$ tel que $f(x) P(x) = \frac{f''(c)}{2}x(x \alpha)$.

Exercice 13

On veut approcher la fonction $f(x) = e^{2x}$ par un polynôme d'interpolation P avec points équidistants x_0, \dots, x_n dans l'intervalle [0,1].

- 1. Rappeler la formule d'erreur.
- 2. Montrer que la formule d'erreur est monotone décroissante en fonction de n.

Exercice 14

On étudie l'interpolation polynômiale de la fonction $f(x) = |x| \sin [-1,1]$. On connaît les cinq valeurs pour les abscisses $-1, -\frac{1}{2}, 0, \frac{1}{2}, 1$.

1. Déterminer le polynôme d'interpolation de Lagrange et l'erreur associée.

- 2. Confirmer le résultat par la méthode des différences divisées.
- 3. Le polynôme de Tchebychev donne les abscisses optimales pour minimiser l'erreur d'approximation. Ces n abscisses sur [a,b] (pas nécessairement équidistantes) sont données par :

$$\forall i \in \{0, \cdots, n\}, x_i = \frac{a+b}{2} + \frac{b-a}{2} \cos \frac{(2(n-i)+1)\pi}{2(n+1)}$$

Déterminer le polynôme d'interpolation de f obtenu en utilisant cinq abscisses optimales sur [-1,1].

4. Déterminer sur l'intervalle [-1,1] la spline cubique naturelle d'interpolation de f passant par les points de support donnés en plus des bornes de l'intervalle. En déduire la valeur approchée de [0.75] et [-0.25].