Matrix Calculus Practice Questions

2023-07-09

Questions compiled by <u>Salman Naqvi</u>. All questions in this paper are based of the <u>The Matrix Calculus You Need For Deep Learning</u> paper by <u>Terence Parr</u> and <u>Jeremy Howard</u>. Do let me know of any corrections.

Questions	1
Answers	-

Questions

- 1. Find $\frac{d}{dx} 9(x + x^2)$.
- 2. $f(x,y) = 3x^2y$. Find $\nabla f(x,y)$.
- 3. $f(x,y) = 3x^2y$ and $g(x,y) = 2x + y^8$.
 - a. Find the Jacobian containing $\nabla f(x,y)$ and $\nabla g(x,y)$ in numerator layout.
 - b. Find the Jacobian containing $\nabla f(x,y)$ and $\nabla g(x,y)$ in denominator layout.
- 4. Let $\vec{{
 m y}}=\vec{{
 m f}}(\vec{{
 m x}})=f_i(x_i)=x_i.$ Show that $\frac{\partial \vec{{
 m y}}}{\partial \vec{{
 m x}}}=I.$
- 5. $\vec{\mathrm{y}}=\vec{\mathrm{f}}(\vec{\mathrm{w}}) \odot \vec{\mathrm{g}}(\vec{\mathrm{x}})=f_i(w_i) \odot g_i(x_i).$ Prove the following identities.
 - a. If $\vec{y} = \vec{f}(\vec{w}) \oplus \vec{g}(\vec{w})$,
 - i. show that $\frac{\partial (\vec{\mathbf{w}} \oplus \vec{\mathbf{x}})}{\partial \vec{\mathbf{w}}} = I$.
 - ii. show that $\frac{\partial (\vec{\mathbf{w}} \oplus \vec{\mathbf{x}})}{\partial \vec{\mathbf{x}}} = I$.
 - b. If $\vec{y} = \vec{f}(\vec{w}) \ominus \vec{g}(\vec{w})$,
 - i. show that $\frac{\partial (\vec{w} \ominus \vec{x})}{\partial \vec{w}} = I$.
 - ii. show that $\frac{\partial (\vec{\mathbf{w}} \ominus \vec{\mathbf{x}})}{\partial \vec{\mathbf{x}}} = -I$.
 - c. If $\vec{y} = \vec{f}(\vec{w}) \otimes \vec{g}(\vec{w})$,
 - i. show that $\frac{\partial (\vec{w} \otimes \vec{x})}{\partial \vec{w}} = \mathrm{diag}(\vec{x}).$

- ii. show that $\frac{\partial (\vec{w} \otimes \vec{x})}{\partial \vec{x}} = diag(\vec{w}).$
- d. If $\vec{y} = \vec{f}(\vec{w}) \oslash \vec{g}(\vec{w})$,
 - i. show that $\frac{\partial (\vec{\mathbf{w}} \odot \vec{\mathbf{x}})}{\partial \vec{\mathbf{w}}} = I$.
 - ii. show that $\frac{\partial (\vec{w} \odot \vec{x})}{\partial \vec{x}} = I$.
- 6. $\vec{y} = \vec{f}(\vec{x}) \bigcirc \vec{g}(z) = \vec{x} \bigcirc \vec{1}z$. Prove the following identities once with matricies and once with a general form of the equation.
 - a. $\frac{\partial (\vec{\mathbf{x}} \oplus z)}{\partial \vec{\mathbf{x}}} = I$
 - b. $\frac{\partial (\vec{\mathbf{x}} \oplus z)}{\partial z} = \vec{1}$
 - c. $\frac{\partial (\vec{\mathbf{x}} \otimes z)}{\partial \vec{\mathbf{x}}} = Iz$
 - d. $\frac{\partial(\vec{\mathbf{x}}\otimes z)}{\partial z} = \vec{\mathbf{x}}$
- 7. $y = \operatorname{sum}(\vec{\mathbf{f}}(\vec{\mathbf{x}})) = \sum_{i=1}^{n} f_i(\vec{\mathbf{x}}),$ where $f_i(\vec{\mathbf{x}}) \neq x_i$. Show that $\frac{\partial y}{\partial \vec{\mathbf{x}}} = \left[\sum_{i} \frac{\partial f_{i(\vec{\mathbf{x}})}}{\partial x_1} \sum_{i} \frac{\partial f_{i(\vec{\mathbf{x}})}}{\partial x_2} \cdots \sum_{i} \frac{\partial f_{i(\vec{\mathbf{x}})}}{\partial x_n} \right].$
- 8. $y = \text{sum}(\vec{x})$. Show that $\nabla y = \vec{1}^T$.
- 9. $y = \operatorname{sum}(\vec{\mathbf{x}}z)$.
 - a. Show that $\frac{\partial y}{\partial \vec{x}} = \vec{1}^T z$.
 - b. Show that $\frac{\partial y}{\partial z} = \text{sum}(\vec{x})$.
- 10. Find $\frac{\mathrm{d}}{\mathrm{d}x}\sin(x^2)$.
- 11. $y = \ln(\sin^2(x^3))$. Find $\frac{dy}{dx}$.
- 12. $y = f(x) = x + x^2$. Solve for $\frac{dy}{dx}$ using total derivatives.
- 13. Show that $\frac{\partial f(x_1,u_1,...,u_n)}{\partial x} = \frac{\partial f}{\partial x} + \sum_{i=1}^n \frac{\partial f}{\partial u_i} \frac{\partial u_i}{\partial x}$, where $u_1,u_2,...,u_n$ are all functions of x.
 - a. Further simplify $\frac{\partial f}{\partial x} + \sum_{i=1}^{n} \frac{\partial f}{\partial u_i} \frac{\partial u_i}{\partial x}$ to $\sum_{i=1}^{n+1} \frac{\partial f}{\partial u_i} \frac{\partial u_i}{\partial x}$.
- 14. $f(x) = \sin(x + x^2)$. Solve for $\frac{\partial f(x)}{\partial x}$.
- 15. $y = x \cdot x^2$. Solve for $\frac{dy}{dx}$ using total derivatives.

16.
$$\vec{\mathbf{y}} = \vec{\mathbf{f}}(x) = \begin{bmatrix} y_1(x) \\ y_2(x) \end{bmatrix} = \begin{bmatrix} f_1(x) \\ f_2(x) \end{bmatrix} = \begin{bmatrix} \ln(x^2) \\ \sin(3x) \end{bmatrix}$$
. Find $\frac{\partial \vec{\mathbf{y}}}{\partial x}$.

17.
$$\vec{y} = \vec{f}(\vec{g}(x))$$
. Show that $\frac{\partial \vec{y}}{\partial x} = \frac{\partial \vec{f}}{\partial \vec{g}} \frac{\partial \vec{g}}{\partial x}$.

18.
$$\vec{\mathbf{y}} = \vec{\mathbf{f}}(\vec{\mathbf{g}}(\vec{\mathbf{x}}))$$
, where $f_i(\vec{\mathbf{x}}) = g_i(\vec{\mathbf{x}}) = x_i$.

- a. Show that $\frac{\partial \vec{f}}{\partial \vec{g}} = \text{diag}\left(\frac{\partial f_i}{\partial g_i}\right)$.
- b. Show that $\frac{\partial \vec{g}}{\partial \vec{x}} = \text{diag}\left(\frac{\partial g_i}{\partial x_i}\right)$.
- c. Show that $\frac{\partial}{\partial \vec{\mathbf{x}}} \vec{\mathbf{f}}(\vec{\mathbf{g}}(\vec{\mathbf{x}})) = \operatorname{diag}\left(\frac{\partial f_i}{\partial g_i} \frac{\partial g_i}{\partial x_i}\right)$
- 19. $y = \max(0, \vec{w} \cdot \vec{x} + b)$.
 - a. Find $\frac{\partial(\vec{w}\otimes\vec{x})}{\partial\vec{w}}$.
 - b. Now find $\frac{\partial \text{ sum}(\vec{\mathbf{u}})}{\partial \vec{\mathbf{u}}}$, where $\vec{\mathbf{u}} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$.
 - c. Therefore, find
 - i. $\frac{\partial (\vec{\mathbf{w}} \cdot \vec{\mathbf{x}} + b)}{\partial \vec{\mathbf{w}}}$.
 - ii. $\frac{\partial(\vec{\mathbf{w}}\cdot\vec{\mathbf{x}}+b)}{\partial b}$.
 - d. Let $z=\vec{\mathrm{w}}\cdot\vec{\mathrm{x}}+b,$ $\therefore y=\max(0,z).$ Find $\frac{\partial y}{\partial z}.$
 - e. Finally, find
 - i. $\frac{\partial y}{\partial \vec{\mathbf{w}}}$.
 - ii. $\frac{\partial y}{\partial h}$.
- 20. The MSE (Mean Squared Error) for two values is given by $\frac{(\hat{y}-y)^2}{2}$, where y denotes a prediction and \hat{y} denotes the corresponding target.
 - a. If we have multiple data samples that are stored in another vector, $\vec{\mathbf{X}} = \begin{bmatrix} \vec{\mathbf{x}}_1 & \vec{\mathbf{x}}_2 & \cdots & \vec{\mathbf{x}}_n \end{bmatrix}^T$, and the targets for each sample are stored in $\vec{\mathbf{y}} = \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix}^T$, and that a prediction is given by $\max(\vec{\mathbf{w}} \cdot \vec{\mathbf{x}}_i + b)$, show that the MSE simplifies to $\frac{1}{N} \sum_{i=1}^N \left(y_i \max(0, \vec{\mathbf{w}} \cdot \vec{\mathbf{x}}_i + b) \right)^2$, where N = |X|.

- b. Find $\frac{\partial (\vec{\mathbf{w}} \cdot \vec{\mathbf{x}}_i + b)}{\partial \vec{\mathbf{w}}}.$
- c. Find $\frac{\partial \max(\vec{\mathbf{w}} \cdot \vec{\mathbf{x}}_i + b)}{\partial \vec{\mathbf{w}}}$.
- d. Find $\frac{\partial (y_i \max(\vec{\mathbf{w}} \cdot \vec{\mathbf{x}}_i + b))}{\partial \vec{\mathbf{w}}}$.
- e. Find $\frac{\partial (y_i \max(\vec{\mathbf{w}} \cdot \vec{\mathbf{x}}_i + b))}{\partial \vec{\mathbf{w}}}^2$.
- f. Finally, find $\frac{\partial \text{ MSE}}{\partial \vec{\mathbf{w}}} = \frac{\partial}{\partial \vec{\mathbf{w}}} \Big(\frac{1}{N} \sum_{i=1}^{N} \big(y_i \max(0, \vec{\mathbf{w}} \cdot \vec{\mathbf{x}}_i + b) \big)^2 \Big)$. Simplify the answer by letting $e_i = \vec{\mathbf{w}} \cdot \vec{\mathbf{x}}_i + b y_i$.
- g. Similarly, solve for $\frac{\partial \text{ MSE}}{\partial b}$ and simplify with $e_i.$
- h. Instead of finding the partial derivative with respect to $\vec{\mathbf{w}}$ and b separately, we can let $\hat{\mathbf{w}} = \begin{bmatrix} \vec{\mathbf{w}}^T & b \end{bmatrix}^T$ and let $\hat{\mathbf{x}}_i = \begin{bmatrix} \vec{\mathbf{x}}_i^T & 1 \end{bmatrix}$, and instead solve for $\frac{\partial \text{ MSE}}{\partial \hat{\mathbf{w}}}$. Solve for $\frac{\partial \text{ MSE}}{\partial \hat{\mathbf{w}}}$ and simplify by letting $e_i = \hat{\mathbf{w}} \cdot \hat{\mathbf{x}}_i y$.

Answers

1.
$$\frac{\mathrm{d}}{\mathrm{d}x}9(x+x^2) = 9 + 18x$$

2.
$$\nabla f(x,y) = \begin{bmatrix} 6xy \\ 3x^2 \end{bmatrix}$$

3.

a.
$$J = \begin{bmatrix} 6xy & 3x^2 \\ 2 & 8y^7 \end{bmatrix}$$

b.
$$J = \begin{bmatrix} 6xy & 2 \\ 3x^2 & 8y^7 \end{bmatrix}$$

$$10. \ \frac{\mathrm{d}}{\mathrm{d}x}\sin(x^2) = 2x\cos(x^2)$$

11.
$$\frac{dy}{dx} = \frac{6x^2 \cos(x^3)}{\sin(x^3)}$$

$$12. \ \frac{\mathrm{d}y}{\mathrm{d}x} = 1 + 2x$$

13.

a. Let
$$x=u_{n+1}.$$
 Then $\frac{\partial f(u_1,\ldots,u_{n+1})}{\partial x}=\sum_{i=1}^{n+1}\frac{\partial f}{\partial u_i}\frac{\partial u_i}{\partial x}.$

14.
$$\frac{\mathrm{d}f(x)}{\mathrm{d}x} = \cos(x+x^2)(1+2x)$$

$$15. \ \frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2$$

17.
$$\frac{\mathrm{d}\vec{\mathrm{y}}}{\mathrm{d}x} = \begin{bmatrix} \frac{2}{x} \\ 3\cos(3x) \end{bmatrix}$$

19.

a.
$$\frac{\partial (\vec{w} \otimes \vec{x})}{\partial \vec{w}} = diag(\vec{x})$$

b.
$$\frac{\partial \operatorname{sum}(\vec{\mathbf{u}})}{\partial \vec{\mathbf{u}}} = \vec{\mathbf{1}}^T$$

c. i.
$$\frac{\partial y}{\partial \vec{\mathbf{w}}} = \vec{\mathbf{x}}^T$$

ii.
$$\frac{\partial y}{\partial b} = 1$$

d.
$$\frac{\partial y}{\partial z} = \begin{cases} 0 & z \le 0 \\ 1 & z > 0 \end{cases}$$

e. i.
$$\frac{\partial y}{\partial \vec{\mathbf{w}}} = \begin{cases} \vec{\mathbf{0}}^T \ \vec{\mathbf{w}} \cdot \vec{\mathbf{x}} + b \le 0 \\ \vec{\mathbf{x}}^T \ \vec{\mathbf{w}} \cdot \vec{\mathbf{x}} + b > 0 \end{cases}$$

ii.
$$\frac{\partial y}{\partial b} = \begin{cases} 0 \ \vec{\mathbf{w}} \cdot \vec{\mathbf{x}} + b \le 0 \\ 1 \ \vec{\mathbf{w}} \cdot \vec{\mathbf{x}} + b > 0 \end{cases}$$

20.

a. For a single sample, $\mathrm{MSE} = \frac{(y - (\vec{\mathbf{w}} \cdot \vec{\mathbf{x}} + b))^2}{2}$. Therefore, for multiple samples,

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - (\vec{\mathbf{w}} \cdot \vec{\mathbf{x}}_i + b))^2.$$

b.
$$\frac{\partial (\vec{\mathbf{w}} \cdot \vec{\mathbf{x}}_i + b)}{\partial \vec{\mathbf{w}}} = \vec{\mathbf{x}}_i^T$$

c.
$$\frac{\partial \max(0,\vec{\mathbf{w}}\cdot\vec{\mathbf{x}}_i+b)}{\partial \vec{\mathbf{w}}} = \begin{cases} \vec{\mathbf{0}}^T \ \vec{\mathbf{w}}\cdot\vec{\mathbf{x}}+b \\ \vec{\mathbf{x}}_i^T \ \vec{\mathbf{w}}\cdot\vec{\mathbf{x}}_i+b \end{cases}$$

$$\text{d. } \frac{\partial (y_i - \max(0, \vec{\mathbf{w}} \cdot \vec{\mathbf{x_i}} + b))}{\partial \vec{\mathbf{w}}} = \begin{cases} \vec{\mathbf{0}}^T & \vec{\mathbf{w}} \cdot \vec{\mathbf{x_i}} + b \leq 0 \\ -\vec{\mathbf{x}_i}^T & \vec{\mathbf{w}} \cdot \vec{\mathbf{x}_i} + b > 0 \end{cases}$$

$$\text{e. } \frac{\partial (y_i - \max(0,\vec{\mathbf{w}}\cdot\vec{\mathbf{x}_i} + b))^2}{\partial \vec{\mathbf{w}}} = \begin{cases} \vec{\mathbf{0}}^T & \vec{\mathbf{w}}\cdot\vec{\mathbf{x}} + b \leq 0 \\ -2(y_i - \max(\vec{\mathbf{w}}\cdot\vec{\mathbf{x}_i} + b))\vec{\mathbf{x}}_i^T \ \vec{\mathbf{w}}\cdot\vec{\mathbf{x}_i} + b > 0 \end{cases}$$

$$\text{f. } \frac{\partial}{\partial \vec{\mathbf{w}}} \Big(\frac{1}{N} \sum\nolimits_{i=1}^{N} \big(y_i - \max(0, \vec{\mathbf{w}} \cdot \vec{\mathbf{x}_i} + b) \big)^2 \Big) = \begin{cases} \vec{\mathbf{0}}^T & \vec{\mathbf{w}} \cdot \vec{\mathbf{x}_i} + b \leq 0 \\ \frac{2}{N} \sum\nolimits_{i=1}^{N} e_i \vec{\mathbf{x}}_i^T \ \vec{\mathbf{w}} \cdot \vec{\mathbf{x}_i} + b > 0 \end{cases}$$

$$\text{g. } \frac{\partial}{\partial b} \Big(\frac{1}{N} \sum_{i=1}^N \big(y_i - \max(0, \vec{\mathbf{w}} \cdot \vec{\mathbf{x}_i} + b) \big)^2 \Big) = \begin{cases} \vec{\mathbf{0}}^T & \vec{\mathbf{w}} \cdot \vec{\mathbf{x}_i} + b \leq 0 \\ \frac{2}{N} \sum_{i=1}^N e_i \ \vec{\mathbf{w}} \cdot \vec{\mathbf{x}_i} + b > 0 \end{cases}$$

h.
$$\tfrac{\partial}{\partial \hat{\mathbf{w}}} \Big(\tfrac{1}{N} \sum_{i=1}^N \big(y_i - \max(0, \hat{\mathbf{w}} \cdot \hat{\mathbf{x}}) \big)^2 \Big) = \begin{cases} \vec{\mathbf{0}}^T & \hat{\mathbf{w}} \cdot \hat{\mathbf{x}} \leq 0 \\ \tfrac{2}{N} \sum_{i=1}^N e_i \hat{\mathbf{x}}_i^T & \hat{\mathbf{w}} \cdot \hat{\mathbf{x}} > 0 \end{cases}$$