## МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М. В. ЛОМОНОСОВА



## Механико-математический факультет

экономический поток

## МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

3 курс 5-6 семестры

> Лектор к. ф.-м. н., доцент М.В. Болдин «\_\_\_» \_\_\_\_\_ 2021 г.

Семинарист к. ф.-м. н., ассистент А.А. Муромская

Москва, 2021 г.

## Техническая информация

Данный PDF содержит примерную программу осеннего и весеннего семестров 3 курса по предмету «Математическая статистика».

Собрали и напечатали по мотивам лекций и семинаров студенты 3-го курса Конов Марк, Валерий Старцев, Гащук Елизавета.

Авторы выражают огромную благодарность лектору, кандидату ф.-м. наук, доценту Болдину Михаилу Васильевичу, а также семинаристу, кандидату ф.-м. наук, ассистенту Муромской Анастасии Андреевне за прочитанный курс по предмету «Математическая статистика».

Добавления и исправления принимаются на почты vkonov2@yandex.ru, sharfikeg@yandex.ru, gashchuk2011@mail.ru.

## ПРИЯТНОГО ИЗУЧЕНИЯ

## Содержание

| 1 | Предварительные сведения                                          | 6  |  |
|---|-------------------------------------------------------------------|----|--|
|   | 1.1 Мера, распределение                                           | 6  |  |
|   | 1.2 Случайные вектора                                             | 8  |  |
|   | 1.3 Сходимости случайных векторов                                 | 9  |  |
|   | 1.4 ЗБЧ и ЦПТ                                                     | 11 |  |
| 2 | Статистическая модель                                             | 12 |  |
|   | 2.1 Оценка среднего                                               | 12 |  |
|   | 2.2 Проверка однородности данных                                  | 13 |  |
| 3 | Теорема Гливенко-Кантелли. Метод подстановки                      |    |  |
|   | 3.1 Теорема Гливенко-Кантелли                                     | 16 |  |
|   | 3.2 Метод подстановки                                             | 18 |  |
|   | 3.3 Асимптотическая относительная эффективность оценок (АОЭ)      | 19 |  |
| 4 | Параметрическое оценивание                                        | 22 |  |
|   | 4.1 Оптимальные и несмещенные оценки                              | 22 |  |
|   | 4.2 Неравенство Рао-Крамера и информация Фишера                   | 24 |  |
|   | 4.3 Эффикетивные оценки, необходимое и достаточное условия равен- |    |  |
|   | ства в НРК                                                        | 27 |  |
| 5 | Оценивание в многопараметрическом случае                          | 31 |  |
|   | 5.1 Основные понятия                                              | 31 |  |
|   | 5.2 Многомерное неравенство Рао-Крамера                           | 32 |  |
| 6 | УМО и условные распределения                                      |    |  |
|   | 6.1 Определение условного математического ожидания                | 36 |  |
|   | 6.2 Свойства условного математического ожидания                   | 40 |  |
|   | 6.3 УМО и условные распределения относительно сл.в                | 44 |  |
| 7 | Достаточные статистики и оптимальные оценки                       | 49 |  |
|   | 7.1 Определение достаточной статистики                            | 49 |  |

|    | 7.2<br>7.3<br>7.4                   | Критерий факторизации Неймана-Фишера                                                                                                                                                                                                                                          | 51<br>53<br>55                       |
|----|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 8  | Гаус<br>8.1<br>8.2<br>8.3           | Ссовская линейная модель Свойства Гауссовского закона                                                                                                                                                                                                                         | 58<br>58<br>62<br>66                 |
| 9  | Вве<br>9.1<br>9.2<br>9.3<br>9.4     | дение в доверительное оценивание Доверительные интервалы для параметров Гауссовских выборок Оценивание параметров линейной регрессии Ассимптотический доверительный интервал Примеры                                                                                          | 68<br>68<br>71<br>72<br>73           |
| 10 | 10.1<br>10.2<br>10.3                | имптотически оптимальные оценки. Сходимости, лемма Слуцкого                                                                                                                                                                                                                   | 74<br>74<br>75<br>77                 |
|    | <ul><li>10.5</li><li>10.6</li></ul> | Правдоподобие, экстремальное свойство правдоподобия                                                                                                                                                                                                                           | 78<br>79<br>83<br>84                 |
| 11 | 11.1<br>11.2<br>11.3<br>11.4        | рверка статистических гипотез Лемма Неймана-Пирсона Пример построения НМ-критерия Связь между доверительным оцениванием и проверкой гипотез Критерий Фишера (F-критерий) в гауссовской линейной регрессии Построение доверительного множества для линейной гауссовской модели | 86<br>87<br>89<br>91<br>93           |
|    | 11.7<br>11.8<br>11.9<br>11.10       | Пример определения порядка регрессии                                                                                                                                                                                                                                          | 97<br>98<br>100<br>102<br>104<br>105 |

| 12 | Вве                              | дение в робастное оценивание                                                                      | 108 |  |  |
|----|----------------------------------|---------------------------------------------------------------------------------------------------|-----|--|--|
|    |                                  | Пример о выборочном среднем                                                                       | 109 |  |  |
|    |                                  | Пример о выборочной медиане                                                                       | 109 |  |  |
|    |                                  | Нахождение функционала влияния в общем случае                                                     | 113 |  |  |
|    |                                  | М - оценка медианы                                                                                | 114 |  |  |
| 13 | Статистический анализ AR моделей |                                                                                                   |     |  |  |
|    |                                  | Метод максимального правдоподобия и метод наименьших квадратов                                    |     |  |  |
|    |                                  | в авторегрессии                                                                                   | 117 |  |  |
|    | 13.2                             | Случай гауссовских $\{\varepsilon_t\}$ , $\varepsilon \sim N(0,1)$ , теорема о предельном распре- |     |  |  |
|    |                                  | делении о.м.п. в AR(1)                                                                            | 119 |  |  |
|    | 13.3                             | Случай гауссовских $\{\varepsilon_t\}$ , $\varepsilon \sim N(0,1)$ , теорема о предельном распре- |     |  |  |
|    |                                  | делении о.м.п. в AR(1) при гауссовских инновациях при случайной                                   |     |  |  |
|    |                                  | нормировке                                                                                        | 120 |  |  |
|    | 13.4                             | Об оценке наименьших квадратов в авторегрессии                                                    | 125 |  |  |
|    | 13.5                             | Теорема об $AR(1)$ с $ \beta  < 1$ , существование, единственность и свой-                        |     |  |  |
|    |                                  | ства стационарного решения                                                                        | 126 |  |  |
|    | 13.6                             | Замечания о последовательностях с сильным перемешиванием (с.п.)                                   | 129 |  |  |
|    | 13.7                             | Доказательство теоремы об $AR(1)$ с $ \beta  < 1$                                                 | 131 |  |  |
|    |                                  | Ассимптотические доверительные интервалы                                                          | 133 |  |  |
|    | 13.9                             | Проверка гипотез                                                                                  | 133 |  |  |
|    | 13.10                            | ОО робастности о.н.к                                                                              | 134 |  |  |
|    | 13.11                            | l O процедурах наименьших квадратов в AR(p)                                                       | 136 |  |  |
|    |                                  | 2Прогнозирование                                                                                  | 137 |  |  |
|    | 13.13                            | ВПроверка гипотез о порядке авторегрессии                                                         | 142 |  |  |
| Сп | шсоі                             | к используемой литературы                                                                         | 144 |  |  |

## Предварительные сведения

## 1.1 Мера, распределение

Пусть  $\Omega = \{w\}$  - произвольное множество, а  $\mathcal{F}$  - сигма-алгебра его подмножеств. Т.е.  $\mathcal{F}$  такая система множеств, что:

- 1)  $\Omega \in \mathcal{F}$
- $\overset{\circ}{2}$ ) если  $A\in\mathcal{F}$ , то  $\overline{A}:=\Omega-\mathcal{F}\in\mathcal{F}$
- 3) если  $A_1,A_2,\dots\in\mathcal{F},$  то  $\bigcup_i A_i\in\mathcal{F},\ \bigcap^i A_i\in\mathcal{F}$

**Определение 1.1.** Пусть  $\Omega = R$ , а  $\mathcal{F}$  - наименьшая сигма-алгебра, содержащая все интервалы  $(\alpha, \beta)$ . Такая  $\mathcal{F}$  обозначается  $\mathcal{B}(\mathbb{R})$  и называется **борелевской** сигма-алгеброй.

Определение 1.2. Мера  $\mu$ , определенная на  $\mathcal{F}$ , называется **сигма-аддитивной**, если:

- 1) это неотрицательная функция  $\mu(A) \geq 0 \ \forall A \in \mathcal{F}$
- 2) она удовлетворяет условию сигма-аддитивности:

$$\mu(\sum_{i} A_i) = \sum_{i} \mu(A_i), \ A_i \in \mathcal{F}, \ A_i A_j = \emptyset \ npu \ i \neq j$$

Определение 1.3. Мера  $\mu$  называется **сигма-конечной**, если существуют множества  $A_i \in \mathcal{F}$  такие, что  $\bigcup_i A_i = \Omega$  и  $\mu(A_i) < \infty$ .

Считающая мера : пусть  $\Omega$  - счетное,  $\mathcal{F}$  - множество всех подмножеств  $\Omega$ . Положим для  $A \in \mathcal{F}$   $\mu(A) := \{$ число точек  $\Omega$ , попавших в  $A\}$ . Такая мера  $\mu$  называется считающей, она сигма-конечна.

Лебегова мера : пусть  $\Omega = \mathbb{R}$ ,  $\mathcal{F} = \mathcal{B}(\mathbb{R})$ . Существует единственная мера  $\mu$  на  $\mathcal{B}(\mathbb{R})$  такая, что  $\mu$  ( $(\alpha, \beta]$ ) =  $\beta - \alpha$ . Эта мера Лебега, она сигма-конечна.

 $(\Omega, \mathcal{F})$  - измеримое пространство,  $(\Omega, \mathcal{F}, \mu)$  - пространство с мерой.

Определение 1.4.  $Ecnu \ \mu(\Omega) = 1$ , то  $\mu$  - вероятностная мера, она обозначается через P. Тройка  $(\Omega, \mathcal{F}, \mu)$  - вероятностное пространство.

Определение 1.5. Измеримая функция  $\xi:(\Omega,\mathcal{F})\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$  называется **случайной величиной**. Измеримость означает, что:

$$\forall B \in \mathcal{B}(\mathbb{R}) \ \xi^{-1}(B) := (w : \xi(w) \in B) \in \mathcal{F}$$

Измеримая функция  $\varphi: (\mathbb{R}, \mathcal{B}(\mathbb{R})) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$  называется борелевской.

Определение 1.6. Рассмотрим случайную величину  $\xi \in \mathbb{R}^1$ . Для  $x \in \mathbb{R}^1$  функция  $F(x) = P(w : \xi(w) \le x) = P(\xi \le x)$  называется функцией распределения.

Определение 1.7. Мера  $P_{\xi}(A) = P(w : \xi(w) \in A), A \in \mathcal{B}(\mathbb{R}),$  называется распределением случайной величины  $\xi$ .

Тогда  $F(x) = P_{\xi}((-\infty, x])$ , т.е.  $P_{\xi}$  определяет F(x).

Обратно:  $P(\alpha < \xi \leq \beta) = F(\beta) - F(\alpha)$ , и существует единственная вероятностная мера  $P_{\xi}$  такая, что  $P_{\xi}((\alpha,\beta]) = F(\beta) - F(\alpha)$ , т.е. F(x) определяет  $P_{\xi}$ .

Определение 1.8. Пусть на  $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$  задана сигма-конечная мера  $\mu$ . Если существует борелевская функция  $f(x), f(x) \geq 0$ , такая, что

$$P_{\xi}(A) = \int_{A} f(x)\mu(dx) \ \forall A \in \mathcal{B}(\mathbb{R})$$

то f(x) называется **плотностью** вероятности по мере  $\mu$ .

Если  $\mu$  - мера Лебега, то f(x) - обычная плотность случайной величины  $\xi$ , введенная на 2-ом курсе. Если же  $\xi$  дискретна со значениями  $x_1, x_2, \ldots$ , а  $\mu$  - считающая мера, сосредоточенная в этих точках, то, очевидно:

$$P_{\xi}(A) = \int_{A} P(\xi = x) \mu(dx) \ \forall A \in \mathcal{B}(\mathbb{R})$$

Последнее равенство означает, что у дискретной случайной величины  $\xi$  есть плотность вероятности  $f(x) = P(\xi = x), \ x = x_1, x_2, \dots$  по считающей мере. При

 $x \neq x_1, x_2, \dots$  значения этой плотности не важны, их можно положить равными нулю.

Определение 1.9. Математическим ожиданием случайной величины  $\xi$  называется число  $E\xi = \int\limits_{\Omega} \xi(w) P(dw)$  в предположении, что  $\int\limits_{\Omega} |\xi(w)| P(dw) < \infty$ . Если  $\int\limits_{\Omega} |\xi(w)| P(dw) = \infty$ , то будем говорить, что  $E\xi$  не существует.

Если f(x) - плотность вероятности случайной величины  $\xi$  по мере  $\mu$ , а  $\varphi(x)$  - борелевская функция, то:

$$E\varphi(x) = \int_{R} \varphi(x) P_{\xi}(dx) = \int_{R} \varphi(x) f(x) \mu(dx)$$

В частности, если  $\xi$  - абсолютно непрерывная случайная величина в терминологии 2-го курса (т.е.  $\mu$  - мера Лебега), то в случае  $\int\limits_R |\varphi(x)| f(x) dx < \infty$  пишем  $E\varphi(x) =$ 

 $\int_{\mathcal{P}} \varphi(x) f(x) dx.$ 

Если  $\xi$  дискретна со значениями  $x_1, x_2, \ldots$  и соответствующими вероятностями  $p_1, p_2, \ldots$ , то  $E\varphi(\xi) = \sum_{i \geq 1} \varphi(x_i) p_i$  (если ряд сходится абсолютно).

## 1.2 Случайные вектора

Обозначим  $\mathcal{B}(\mathbb{R}^k)$  борелевскую сигма-алгебру подмножеств  $\mathbb{R}^n$ .

Определение 1.10. Вектор  $\xi = (\xi_1, \dots, \xi_k)^T$  называется k-мерным случайным вектором, если  $\xi$  - измеримое отображение  $\xi : (\Omega, \mathcal{F}) \to (\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k)$ 

Известно:  $\xi$  - случайный вектор тогда и только тогда, когда каждая компонента  $\xi_i$  - одномерная случайная величина.

Определение 1.11. Функция распределения случайного вектора  $\xi$ :  $F(x_1, ..., x_k) = P(\xi_1 \leq x_1, ..., \xi_k \leq x_k), \ x_i \in \mathbb{R}, \ a \ pacnpedenenue \ P_{\xi}(A) = P(w : \xi(w) \in A), \ A \in \mathcal{B}(\mathbb{R}^k).$ 

Определение 1.12. Плотность вероятности вектора  $\xi$  по мере  $\mu$  ( $\mu$  pacnpedenena на элементам  $\mathcal{B}(\mathbb{R}^k)$ ) - борелевская функция  $f(x) \geq 0, \ x = (x_1, \dots, x_n),$  такая что:

$$P_{\xi}(A) = \int_{A} f(x)\mu(dx) \ \forall A \in \mathcal{B}(\mathbb{R}^{k})$$

**Определение 1.13.** Случайные величины  $\{\xi_1, \dots, \xi_k\}$  независимы, если

$$P(\xi_1 \in A_1, \dots, \xi_k \in A_k) = \prod_{i=1}^k P(\xi_i \in A_i) \ \forall A_i \in \mathcal{B}(\mathbb{R})$$

Предложение 1.1 (необходимые и достаточные условия независимости).

$$F(x_1, \dots, x_k) = F_{\xi_1}(x_1) F_{\xi_2}(x_2) \dots F_{\xi_k}(x_k) \ \forall (x_1, \dots, x_k)$$
$$f(x_1, \dots, x_k) = f_{\xi_1}(x_1) \dots f_{\xi_k}(x_k)$$

## 1.3 Сходимости случайных векторов

Пусть случайные векторы  $\xi, \xi_1, \xi_2, \ldots$  размера k со значениями в  $(\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k))$  определены на некотором вероятностном пространстве  $(\Omega, \mathcal{F}, P)$ . Пусть  $|\cdot|$  означает евклидову норму вектора, т.е.  $|\xi| = \sqrt{\xi_1^2 + \cdots + \xi_k^2}$ .

Определение 1.14. Говорят, что последовательность  $\{\xi_n\}$  сходится слабо  $\kappa$   $\xi$  ( $\xi_n \xrightarrow[n \to \infty]{W} \xi$ ), если для любой непрерывной и ограниченной функции  $g: \mathbb{R}^k \to \mathbb{R}^1$  имеет место сходимость:

$$\int_{\mathbb{R}^k} g(x) P_n(dx) \xrightarrow[n \to \infty]{} \int_{\mathbb{R}^k} g(x) P(dx) \tag{1}$$

 $(P_n\ u\ P\ -\ pacnpedenehus\ \xi_n\ u\ \xi\ coomsecmsehho)$ 

Определение 1.15. Обозначим  $F_n(x)$  и F(x),  $x = (x_1, ..., x_n)$ , функции распределения векторов  $\xi_n$  и  $\xi$ . Тогда сходимость (1) эквивалентна сходимости в основном:

$$F_n(x) \Rightarrow F(x) \Leftrightarrow F_n(x) \to F(x) \ \forall x \in \mathbb{C}(\mathcal{F})$$
 (2)

Определение 1.16. Пусть  $\varphi_n(t)$  и  $\varphi(t)$ ,  $t \in \mathbb{R}^k$ , будут характеристические функции  $\xi_n$  и  $\xi$ , т.е.  $\varphi(t) := Ee^{it^T\xi}$ . Тогда сходимость (2) эквивалентна сходимости:

$$\varphi_n(t) \xrightarrow[n \to \infty]{} \varphi(t) \ \forall t \in \mathbb{R}^k$$
 (3)

**Определение 1.17.** Если выполнено любое из соотношений (1) - (3), будем nucamb:

$$\xi_n \xrightarrow[n \to \infty]{d} \xi \tag{4}$$

и говорить, что  $\{\xi_n\}$  сходится  $\kappa$   $\xi$  по распределению.

**Замечание.** Сходимость (4) не следует из сходимости  $\xi_{in} \xrightarrow{d} \xi_{i}$ , i = 1, ..., k, компонент векторов  $\xi_{n}$  и  $\xi$ .

Определение 1.18. Говорят, что последовательность  $\{\xi_n\}$  сходится по вероятности  $\kappa$  вектору  $\xi$  ( $\xi_n \xrightarrow{P} \xi$ ), если:

$$\forall \varepsilon > 0 \ P(|\xi_n - \xi| > \varepsilon) \xrightarrow[n \to \infty]{} 0$$
 (5)

**Замечание.** Понятно, что сходимость (5) эквивалентна сходимости компонент  $\xi_{in} \xrightarrow{P} \xi_i$  для всех i = 1, 2, ..., k.

**Замечание.** Сходимость по вероятности (5) влечет сходимость по распределению (4). Обратное верно только в частных случаях.

Определение 1.19. Говорят, что последовательность  $\{\xi_n\}$  сходится n.н. (почти наверно или с вероятностью единица) и пишут  $\xi_n \xrightarrow[n \to \infty]{n.h.} \xi$ , если:

$$P(w:\xi_n(w)\to\xi(w))=1\tag{6}$$

**Замечание.** Сходимость n.н. (6) влечет сходимость по вероятности (5). Значит верна следующая цепочка:

$$\xi_n \xrightarrow[n \to \infty]{n. \mu.} \xi \Rightarrow \xi_n \xrightarrow[n \to \infty]{P} \xi \Rightarrow \xi_n \xrightarrow[n \to \infty]{d} \xi$$

**Теорема 1.1** (непрерывности). Пусть векторы  $\{\xi_n\}$ ,  $\xi$  определены на  $(\Omega, \mathcal{F}, P)$ ,  $\xi_n, \xi_n$ .  $\mathbb{R}^k$ . Пусть  $A \in \mathcal{B}(\mathbb{R}^k)$  и  $P(\xi \in A) = 1$  (т.е. A - носитель  $\xi$ ). Пусть борелевская  $H : \mathbb{R}^k \to \mathbb{R}^1$  непрерывна на множестве A. Тогда:

- 1)  $ecnu \ \xi_n \xrightarrow[n\to\infty]{d} \xi$ ,  $mo \ H(\xi_n) \xrightarrow[n\to\infty]{d} H(\xi)$
- 2)  $ecnu \xi_n \xrightarrow[n\to\infty]{P} \xi$ ,  $mo H(\xi_n) \xrightarrow[n\to\infty]{P} H(\xi)$
- 3)  $ecnu \ \xi_n \xrightarrow[n\to\infty]{n.H.} \xi$ ,  $mo \ H(\xi_n) \xrightarrow[n\to\infty]{n.H.} H(\xi)$

**Доказательство.** Докажем пункт 3. Два других пункта будут доказаны на практических занятиях.

Итак, в силу непрерывности функции H(x) на A:

$$(w: \xi_n(w) \to \xi(w)) \cap (w: \xi(w) \in A) \subseteq (w: H(\xi_n(w))) \to H(\xi(w)) \Rightarrow$$
  
 
$$\Rightarrow 1 = P(\xi_n(w) \to \xi(w)) = P(\xi_n(w) \to \xi(w), \xi(w) \in A) \le P(H(\xi_n(w)) \to H(\xi(w)))$$

## 1.4 3БЧ и ЦПТ

Пусть на  $(\Omega, \mathcal{F}, P)$  задана бесконечная последовательность случайных величин  $\xi_1, \xi_2, \dots$ 

**Определение 1.20.** Если  $\{\xi_i\}$  независимы и одинаково распределены с конечным средним,  $E|\xi_1| < \infty$ , то

$$n^{-1} \sum_{i=1}^{n} \xi_i \xrightarrow[n \to \infty]{n. \text{H.}} E\xi_1 \tag{7}$$

Соотношение (7) - усиленный закон больших чисел Колмогорова.

Определение 1.21. Если  $\{\xi_i\}$  некоррелированные случайные величины, может быть, разнораспределенные, но с одинаковым средним  $m = E\xi_i$  и  $D\xi_i \leq C < \infty$ , то

$$n^{-1} \sum_{i=1}^{n} \xi_i \xrightarrow{P} m = E\xi_i \tag{8}$$

Соотношение (8) - слабый закон больших чисел.

Определение 1.22. *Если*  $\{\xi_i\}$  - н.о.р.с.в.,  $E\xi_1=m,\ 0< D\xi_1=\sigma^2<\infty,\ mo$ 

$$\frac{1}{\sqrt{n}\sigma} \sum_{i=1}^{n} (\xi_i - m) \xrightarrow[n \to \infty]{d} \xi \sim N(0, 1)$$
(9)

Соотношение (9) - **центральная предельная теорема**, точнее ее вариант, m.e.:

$$n^{\frac{1}{2}}(\overline{\xi}-m) \xrightarrow[n\to\infty]{d} N(0,\sigma^2), \ \ r\partial e \ \overline{\xi} := n^{-1} \sum_{i=1}^n \xi_i$$

## Статистическая модель

## 2.1 Оценка среднего

Пример 2.1 (оценка среднего). Будем предполагать, что на некотором вероятностном пространстве  $(\Omega, \mathcal{F}, P)$  определена бесконенчая последовательность  $X_1, X_2, ...$  и  $X_1, ..., X_n$  - ее первые п членов. Интересующий нас параметр, определеяющий (в какой-то мере) срок служсбы, отождествим  $\theta = EX_1$ .

Одна из стандратных статистических задач состоит в том, чтобы выяснить, чему равно  $\theta$ . Вот возможное решение. В силу УЗБЧ Колмогорова

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} \xrightarrow[n \to \infty]{n.n.} EX_1 = \theta$$

Возьмем п готовых изделий и проверим их. Пусть  $x_1, x_2, ..., x_n$  - сроки службы готовых изделий. Это реализации сл.в.  $X_1, ..., X_n$ . Естественно ожидать, что

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 при больших п окажется близким к  $\theta$ . Это **задача точечного**

**оценивания параметра**: пусть  $X_1, ..., X_n$ — случайные наблюдения;  $\overline{X}$ — статистическая оценка (это случайная величина);  $\overline{x}$  - реализация оценки, с ней обычно работают на практике.

Ясно, что нужны оценки, которые в среднем близки к  $\theta$ . Тогда и реализации будут близки.

Пусть в частности  $P(X_1 \leq t) = \begin{cases} 0, \ t \leq 0 \\ 1 - e^{-\frac{t}{\theta}}, \ t > 0 \end{cases}$ , параметр  $\theta > 0$ . Т.е.  $X_1 \sim exp(\frac{1}{\theta})$  и  $E_{\theta}X_1 = \theta$ .

Tогда  $\overline{X}$  **оптимальна** при любом n>0 в следующем смысле.

- 1)  $E_{\theta}\overline{X} = \frac{1}{n}\sum_{i=0}^{n} E_{\theta}X_{i} = \theta \ \forall \theta > 0$  это свойство **несмещенности**. Качественно: реализации  $\overline{x}$  группируются вокруг  $\theta$ .
- 2)  $D_{\theta}\overline{X} \leq D_{\theta}\hat{\theta}_{n}, \ \theta > 0 \ u$  любой несмещенной оценки  $\hat{\theta}_{n} = \hat{\theta}_{n}(X_{1}, \dots, X_{n}).$ Качественно: реализации  $\overline{X}$  в среднем лежат ближе  $\kappa$   $\theta$ , чем у других  $\hat{\theta}_{n}$ .

## 2.2 Проверка однородности данных

**Пример 2.2** (проверка однородности данных). Пусть некоторый эксперимент проводится сначала т раз в условиях A, а затем п раз в условиях B (например, влияет ли некоторый препарат на на развитие растений, лекарство на анализы больного и  $m.\partial.$ ).

Будем считать  $x_i$  реализациями н.о.р.с.в.  $X_i$  с функцией распредления  $X_1 \sim F_X(x) = P(X_1 \leq x)$ . Пусть  $y_i$  - реализации н.о.р.с.в.  $Y_i$ , ф.р.  $Y = F_Y(x)$ . Последовательности  $x_i, y_i$  независимы.

Интерпретируем поставленную задачу как проверку гипотезы  $H: F_X = F_Y$ . Предположение о том, что условие B дает другой результат интерпретируем как гипотезу (альтернативную  $\kappa H$ )  $K: F_X \neq F_Y$ .

**Важно**: ни  $F_X$ , ни  $F_Y$  неизвестны!

Оценкой  $F_X$  возъмем  $\hat{F}_{mX}(x) = \frac{1}{m} \sum_{i=1}^m I(X_i \leq x), \ x \in \mathbb{R}$  - это «хорошая» оценка, т.к. в силу УЗБЧ:  $\hat{F}_{mX}(x) \xrightarrow{n.н.} EI(X_1 \leq x) = F_X(x)$  (у нас  $\{X_i\}$  и  $\{Y_i\}$  определены на одном  $(\Omega, \mathcal{F}, P)$ ).

Теорема 2.1 (Глиненко-Кантелли).

$$\sup_{x} |\hat{F}_{mX}(x) - F_X(x)| \xrightarrow[m \to \infty]{n.u.} 0$$

Очевидно, если гипотеза H верна, то величина  $D_{mn} := \sup_{x} |\hat{F}_{mX}(x) - \hat{F}_{nY}(x)|$  мала при больших m, n. Вот естественное правило:

- если  $D_{mn} \leq c$ , то H принять
- если  $D_{mn} > c$ , то H отвергнуть и принять K

Но как выбрать константу с?

**Лемма 2.1.** Пусть верна гипотеза H и  $F_X = F_Y = F$ . Пусть F непрерывна. Тогда распределение сл.в.  $D_{mn}$  не зависит от F(x) при любом x и конечных m, n.

Доказательство. Докажем лемму при дополнительном предположении: F(x) строго возрастает. Тогда при любом  $t \in (0,1)$  существует  $F^{-1}(t)$ , и эта функция непрерывна и строго возрастает. Сделаем замену переменной  $F(x) = t, x = F^{-1}(t)$ . Тогда при  $x \in \mathbb{R}$  переменная  $t \in (0,1)$  и

$$D_{mn} = \sup_{t \in (0,1)} |\hat{F}_{mX}(F^{-1}(t)) - \hat{F}_{nY}(F^{-1}(t))|.$$

Ho 
$$\hat{F}_{mX}(F^{-1}(t)) = \frac{1}{m} \sum_{i=1}^{m} I(X_i \leq F^{-1}(t)) = \frac{1}{m} \sum_{i=1}^{m} I(F(X_i) \leq t), \ m.\kappa.$$

 $(X_{i} \leq F^{-1}(t)) = (F(X_{i}) \leq t)$ . Осталось заметить, что если  $X_{i} \sim F(x)$  и F(x) строго возрастает, то  $F(X_{i}) = \eta_{i} \sim R(0,1)$ .

Действительно,  $\forall t \in (0,1)$   $P(F(X_i) \leq t) = P(X_i \leq F^{-1}(t)) = F(F^{-1}(t)) = t$ .

Значит 
$$\hat{F}_{mX}(F^{-1}(t)) = \frac{1}{m} \sum_{i=1}^{m} I(\eta_i \leq t)$$
, где  $\eta_i$  - н.о.р.  $R(0,1)$  сл.в., а тогда

 $\hat{F}_{mX}(F^{-1}(t))$  имеет ф.р., которая от F(x) не зависит. Для  $\hat{F}_{nY}(F^{-1}(t))$  имеем то же самое.

Если  $D_{mn}$  свободно от F(x) ( $npu\ H$ ), то его можно вычислить npu любых m, n. Например, полагая, что  $X_1, ..., X_m$  и  $Y_1, ..., Y_n$  распределены как R(0,1). Но особенно красив ответ  $npu\ m, n \to \infty$ .

**Теорема 2.2** (Смирнова). Пусть H верна. Пусть  $F_X = F_Y = F$ , u F непрерывна. Тогда при  $\lambda > 0$ 

$$\lim_{m,n\to\infty} P(\sqrt{\frac{mn}{m+m}}D_{mn} < \lambda) = K(\lambda),$$

 $ede\ K(\lambda) = 1 - 2\sum_{j>1} (-1)^{j+1} e^{-2j^2\lambda^2}$  - функция распредления Колмогорова.

Выберем малое  $0 < \alpha < 1$  и пусть  $\lambda_{1-\alpha}$  такое число, что  $K(\lambda_{1-\alpha}) = 1 - \alpha$  . Число  $\lambda_{1-\alpha}$  называют **квантилью уровня**  $1 - \alpha$ .

Положим  $c_{\alpha}(m,n)=\sqrt{\frac{m+n}{mn}}\lambda_{1-\alpha}$  - это и есть искомая константа c!

Правило: 
$$\begin{cases} ecnu \ D_{mn} \leq c_{\alpha}(m,n), \ mo \ H \ nринимаем \\ ecnu \ D_{mn} > c_{\alpha}(m,n), \ mo \ nринимаем \ K \end{cases}$$

Тогда вероятность ошибки первого рода:

$$P(K|H) = P(\sqrt{\frac{mn}{m+n}}D_{mn} > \lambda_{1-\alpha}) =$$

$$= 1 - P(\sqrt{\frac{mn}{m+n}}D_{mn} \le \lambda_{1-\alpha}) \to 1 - K(\lambda_{1-\alpha}) = \alpha$$

Можно показать, что  $P(H|K) \to 0$  при  $m, n \to \infty$ . Это вероятность **ошибки 2-ого рода**.

$$Uma\kappa$$
, 
$$\begin{cases} P(H|H) \to 1 - \alpha \\ P(K|K) \to 1 \end{cases}$$

(т.е. тест с большой вероятностью выберет правильную гипотезу!)

# Теорема Гливенко-Кантелли. Метод подстановки

## 3.1 Теорема Гливенко-Кантелли

Пусть  $X = (X_1, \ldots, X_n)$  - случайный вектор наблюдений. Дальше n будет расти. Поэтому предполагается, что на некотором вероятностном пространстве  $(\Omega, \mathcal{F}, P)$  определена бесконечная последовательность н.о.р. случайных величин  $X_1, X_2, \ldots$  с неизвестной функцией распределения F(x). Наблюдение X содержит первые n компонент этой последовательности.

Наша цель - оценить  $F(x) = P(X_1 \le x), x \in \mathbb{R}$ . Зафиксируем  $\omega \in \Omega$  и рассмотрим реализации  $x_k = X_k(\omega), \ k = 1, \dots, n$ . Пусть  $x_{(1)} \le x_{(2)} \le \dots \le x_{(n)}$ .

Определение 3.1. Случайная величина  $X_{(k)}$ , равная на упомянутом  $\omega$   $X_{(k)}(\omega) = x_{(k)}$ ,  $k = 1, 2, \ldots, n$  называется **к-ой порядковой статистикой**. Совокупность  $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$  называется вариационным рядом.

Определение 3.2. Оценкой F(x) в точке x возьмем  $\hat{F}_n(x) = \frac{1}{n} \sum_{i=0}^n I(X_i \le x)$ , где I - индикатор.  $\hat{F}_n(x)$  называется эмпирической функцией распределения.

Если  $x_{(1)} \le x_{(2)} \le \cdots \le x_{(n)}$  - реализация вариационного ряда, то график реализации  $\hat{F}_n(x)$  такой:



При каждом  $\omega$   $\hat{F}_n(x) = \hat{F}_n(x,\omega)$  - дискретная ф.р.

При фиксированном x  $\hat{F}_n(x)$  - случайная величина.

В силу УЗБЧ: 
$$\frac{1}{n}\sum_{i=0}^n I(X_i \le x) \xrightarrow[n \to \infty]{\text{п.н.}} EI(X_1 \le x) = F(x).$$
В силу ЦПТ:  $\frac{1}{n}(\hat{F}_n(x) - F(x)) = \frac{1}{\sqrt{n}}\sum_{i=0}^n (I(X_i \le x) - F(x)) \xrightarrow[n \to \infty]{d} N(0, \hat{F}_n(x) - F^2(x)),$  т.к.  $DI(X_1 \le x) = EI^2(X_1 \le x) - (EI(X_1 \le x))^2 = F(x) - F^2(x).$ 

Докажем следующую важнейшую теорему:

**Теорема 3.1** (Гливенко-Кантелли). Пусть  $X_1, \ldots, X_n$  - н.о.р.с.в.,  $X_1 \sim F(x)$ . Тогда

$$\sup_{x} |\hat{F}_n(x) - F(x)| \xrightarrow[n \to \infty]{n.n.} 0$$

**Доказательство.** Пусть F(x) непрерывна. Пусть  $\varepsilon > 0$  - любое малое число, такое что  $N = \frac{1}{\varepsilon}$  - целое. Выберем точки  $-\infty = z_0 < z_1 < \cdots < z_{N-1} < z_N = \infty$  так что  $F(z_k) = \frac{k}{N}, k = 0, 1, \dots, N$ . Для  $x \in [z_k, z_{k+1})$  в силу монотонности  $\hat{F}_n(x)$  имеем:

$$\hat{F}_n(x) - F(x) \le \hat{F}_n(z_{k+1}) - F(z_k) = \hat{F}_n(z_{k+1}) - F(z_{k+1}) + \varepsilon \le \max_k |\hat{F}_n(z_k) - F(z_k)| + \varepsilon$$

$$\hat{F}_n(x) - F(x) \ge \hat{F}_n(z_k) - F(z_{k+1}) = \hat{F}_n(z_k) - F(z_k) - \varepsilon \ge -\max_k |\hat{F}_n(z_k) - F(z_k)| + \varepsilon$$

Из двух последних неравенств получаем:

$$\sup_{x} |\hat{F}_n(x) - F(x)| \le \max_{k} |\hat{F}_n(z_k) - F(z_k)| + \varepsilon \tag{1}$$

Пусть  $A_k = \{\omega: \hat{F}_n(z_k) \to F(z_k)\}$ . Тогда  $P(A_k) = 1$ . Пусть  $A = \bigcap_k A_k$ . Тогда  $\forall \omega \in A \, \max_k |\hat{F}_n(z_k) - F(z_k)| \to 0$ . Значит:

$$\forall \omega \in A \ \exists n_0 = n_0(\omega) : \ n > n_0 \ \max_k |\hat{F}_n(z_k) - F(z_k)| < \varepsilon$$
 (2)

В силу (1) и (2) для этого  $\omega$  при  $n > n_0$  получаем, что:

$$\sup_{x} |\hat{F}_n(x) - F(x)| < 2\varepsilon \tag{3}$$

Так как P(A)=1 и  $\varepsilon$  произвольно, то (3) означает  $\sup_{x}|\hat{F}_{n}(x)-F(x)|\xrightarrow[n\to\infty]{\text{п.н.}}0.$ 

**Задача 3.1.** Доказать теорему Гливенко-Кантелли для разрывной F(x).

(см. [А.А.Боровков. Математическая статистика. Оценка параметров и проверка гипотез. М., Наука, 1984 г.])

### 3.2 Метод подстановки

Пусть надо оценить параметр  $\theta = G(F), G(\cdot)$  - функционал на множестве функций распределения. Естественная оценка подставновки  $\hat{\theta}_n = G(\hat{F}_n)$ .

Пример 3.1. Пусть  $E|X_1|^k < \infty, \quad \nu_k = EX_1^k, \ k \in \mathbb{N}. \ \nu_k$  называют **к-ым** начальным моментом. Тогда  $\nu_k = G(F) = \int\limits_{-\infty}^{\infty} x^k dF(x)$ . Оценка подстановки

для 
$$\theta = \nu_k$$
:  $\hat{\theta}_n = \hat{\nu}_k = \int_{-\infty}^{\infty} x^k d\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n X_{(i)}^k = \frac{1}{n} \sum_{i=0}^n X_i^k$ .

B cusy Y3B4: 
$$\hat{\nu}_k = \frac{1}{n} \sum_{i=0}^n X_i^k \xrightarrow[n \to \infty]{n.n.} EX_1^k = \nu_k.$$

Кроме того, при  $EX_1^{2k} < \infty$  имеем в силу ЦПТ:

$$\sqrt{n}(\hat{\nu}_k - \nu_k) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i^k - \nu_k) \xrightarrow{d} N(0, \nu_{2k} - \nu_k^2), \ n \to \infty$$

Значит  $(\nu_{2k} - \nu_k^2)^{-\frac{1}{2}} \sqrt{n} (\hat{\nu}_k - \nu_k) \to N(0, 1)$ . Отсюда:

$$\forall \varepsilon > 0 \ P\left((\nu_{2k} - \nu_k^2)^{-\frac{1}{2}} |\sqrt{n}(\hat{\nu}_k - \nu_k)| \le \varepsilon\right) \to \Phi(\varepsilon) - \Phi(-\varepsilon) = 2\Phi(\varepsilon) - 1 \tag{4}$$

где  $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{t^2}{2}} dt$  - функция Лапласа. Асимптотическая нормальность позволила оценить в (4) точность оценки  $\hat{\nu}_k$ .

Пример 3.2 (Выборочные квантили). Для 0 и любой (не обязательно непрерывной) функции распредления <math>F(x) полагают  $F^{-1}(p) \equiv \sup x : F(x) \leq p$ . Величина  $F^{-1}(p)$  называется квантилью функции распределения F(x) и обозначается далее  $\xi_p$ .

Если F(x) непрерывна и строго возрастает, то  $F(\xi_p) = p$ .

Пусть  $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$  - вариационный ряд выборки  $X_1, \ldots, X_n$ . Оценка  $\xi_p$  по методу подстановки:

$$\hat{\xi}_p = \hat{F}_n^{-1}(p) = \sup\{x : \hat{F}_n x \le p\} = X_{([np]+1)}$$

**Лемма 3.1.** Пусть функция распределения F(x) непрерывна и строго возрастает. Тогда функционал  $G(F) = \xi_p, \ 0 непрерывен в равномерной метрике.$  $T.e.,\ ecлu\ nocnedoвameльность\ \phi.p.\ F_n(x)\ maкoвa,\ что\ \sup|F_n(x)-F(x)|\to 0,\ mo$  $G(F_n) \to G(F)$ .

Доказательство.  $\forall \varepsilon > 0$  при  $n > n_0(\varepsilon)$  имеем:

$$G(F_n) \equiv \xi_p^n = \sup x : F_n(x) \le p = \sup x : F(x) \le F(x) - F_n(x) + p \le$$
  
 
$$\le \sup x : F(x) \le \sup_y |F_n(y) - F(y)| + p \le \sup x : F(x) \le p + \varepsilon = F^{-1}(p + \varepsilon)$$

Аналогично:  $\xi_p^n \ge F^{-1}(p-\varepsilon), \ n > n_0$ . Значит  $F^{-1}(p-\varepsilon) \le \xi_p^n \le F^{-1}(p+\varepsilon), \ n > n_0$ . Тогда  $F^{-1}(p-\varepsilon) \le \lim_{n \to \infty} \xi_p^n \le \overline{\lim_{n \to \infty}} \xi_p^n \le F^{-1}(p+\varepsilon)$ . Функция  $F^{-1}(t), \ 0 < t < 1$ непрерывна. Устремляя  $\varepsilon$  к нулю получим:

$$\xi_p = \underline{\lim}_{n \to \infty} \xi_p^n \le \overline{\lim}_{n \to \infty} \xi_p^n = \xi_p$$
, r.e.  $\lim_{n \to \infty} \xi_n^p = \xi_p$ 

**Следствие 3.1.** Если F(x) непрерывна и строго возрастает, то  $\hat{\xi}_p \xrightarrow{n.н.} \xi_p$ . Это прямо следует из теоремы Гливенко-Кантелли.

Определение 3.3. Величина  $\xi_{\frac{1}{2}}$  называется медианой, а  $\hat{\xi}_{\frac{1}{2}}$ - выборочной медианой.

**Теорема 3.2.** Пусть F(x) дифференциируема в точке  $\xi_{\frac{1}{2}}$ , и  $g(\xi_{\frac{1}{2}}) \equiv F'(\xi_{\frac{1}{2}}) > 0$ . Тогда:

$$\sqrt{n}(\hat{\xi}_{\frac{1}{2}} - \xi_{\frac{1}{2}}) \xrightarrow{d} N(0, \frac{1}{4g^2(\xi_{\frac{1}{2}})}), \quad n \to \infty.$$

## Асимптотическая относительная эффективность оценок (АОЭ)

Асимптотически нормальные оценки можно сравнивать между собой.

Пусть по вектору наблюдений  $X=(X_1,\dots,X_n)$  оценивается параметр  $\theta,$  и  $\hat{\theta}_{1n}$  - его оценка. Пусть

$$\sqrt{n}(\hat{\theta}_{1n} - \theta) \xrightarrow[n \to \infty]{d} N(0, \sigma^2(\theta))$$
 (5)

Пусть есть другая оценка  $\hat{\theta}_{2n}$ , такая что:

$$\sqrt{n}(\hat{\theta}_{1n'} - \theta) \xrightarrow[n \to \infty]{d} N(0, \sigma^2(\theta))$$
 (6)

где  $n' = n'(n) \xrightarrow[n \to \infty]{} \infty.$ 

Определение 3.4. Асимптотической относительной эффективностью  $(AO\Theta)$  оценки  $\hat{\theta}_{1n}$  относительно оценки  $\hat{\theta}_{2n}$  называется величина

$$l_{1,2} \equiv \lim_{n \to \infty} \frac{n'(n)}{n}.$$

Пусть, например,  $l_{1,2}=3$ . Тогда при больших n  $n'\approx 3n$ . Значит, для  $\hat{\theta}_{2n}$  нужно в три раза больше наблюдений, чем для  $\hat{\theta}_{1n}$ , чтобы достичь одинаковой точности  $\sigma^2(\theta)/n$ . Оценка  $\hat{\theta}_{1n}$  в три раза лучше оценки  $\hat{\theta}_{2n}$ .

Лемма 3.2. Пусть  $\sqrt{n}(\hat{\theta}_{in} - \theta) \xrightarrow[n \to \infty]{d} N(0, \sigma_i^2(\theta)), \ \sigma_i^2(\theta) > 0, \ i = 1, 2.$  Тогда АОЭ существует и равна

$$l_{1,2} = \frac{\sigma_2^2(\theta)}{\sigma_1^2(\theta)}.$$

Доказательство. Пусть  $n' \sim \frac{\sigma_2^2(\theta)}{\sigma_1^2(\theta)} n, \quad n \to \infty$ . Тогда

$$\sqrt{n}(\hat{\theta}_{2n'} - \theta) = \sqrt{\frac{n}{n'}}\sqrt{n'}(\hat{\theta}_{2n'} - \theta) \xrightarrow{d} \frac{\sigma_2(\theta)}{\sigma_1(\theta)}\xi, \quad \xi \sim N(0, \sigma_2^2(\theta))$$

(использовали **лемму Слуцкого**: если  $\xi_n \xrightarrow{d} \xi$ ,  $\eta_n \xrightarrow{d} c$ , то  $\xi_n \eta_n \xrightarrow{d} c \xi$ )

Значит: 
$$\sqrt{n}(\hat{\theta}_{2n'}-\theta) \xrightarrow{d} N(0,\sigma_1^2(\theta))$$
. Получаем:  $\lim_{n\to\infty} \frac{n'(n)}{n} = \frac{\sigma_2^2(\theta)}{\sigma_1^2(\theta)}$ .

Пример 3.3 (Важный). Пусть  $X_i = \theta + \varepsilon_i, \quad i = 1,..,n, \quad \varepsilon_i - \text{ н.о.р..}$  Пусть  $E\varepsilon_1 = 0, \quad D\varepsilon_1 = \sigma^2 < \infty.$  Тогда  $EX_1 = \theta, \quad u$  оценкой  $\theta$  можно взять  $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i.$  Знаем, что  $\sqrt{n}(\overline{X} - \theta) \xrightarrow[n \to \infty]{d} N(0, \sigma^2), \quad m.к. \quad \nu_2 - \nu_1^2 = \sigma^2.$ 

Пусть теперь  $\varepsilon_1$  имеют ф.р. G(x) и существует плотность вероятности g(x) = G'(x). Пусть g(x) = g(-x) и g(0) > 0. Тогда  $G(0) = \frac{1}{2}$ . Значит ф.р.  $X_1$  имеет вид:  $P(X_1 \le \theta) = P(\theta + \varepsilon_1 \le \theta) = P(\varepsilon_1 \le 0) = \frac{1}{2}$ , т.е.  $\theta$ -медиана  $X_1$ .

Возьмем оценкой выборочную медиану  $\hat{\xi}_{\frac{1}{2}}$ . Тогда  $\sqrt{n}(\hat{\xi}_{\frac{1}{2}}-\theta) \xrightarrow[n\to\infty]{d} N\left(0,\frac{1}{4g^2(0)}\right)$ , т.к. плотность вероятности  $X_1$  есть  $g(x-\theta)$ , и  $g(x-\theta)|_{x=\xi_{\frac{1}{2}}=\theta}=g(0)$ .

Значит, АОЭ выборочной медианы относительно выборочного среднего равна

$$l_{\hat{\xi}_{\frac{1}{2}},\overline{X}} = \frac{\sigma^2}{\frac{1}{4g^2(0)}} = 4g^2(0)\sigma^2.$$

- 1) Если  $\varepsilon_1 \sim N(0,\sigma^2)$ , то  $l_{\hat{\xi}_{\frac{1}{2}},\overline{X}} = 4\left(\frac{1}{\sqrt{2\pi}\sigma}\right)^2\sigma^2 = \frac{2}{\pi} \approx 0.637 < 1$ . Т.е. если выборочную медиану построить по n наблюдениям, то ту же точность получим для  $\overline{X}$  по 0.637n наблюдениям!  $\overline{X}$  лучше выборочной медианы в  $\frac{\pi}{2}$  раз.
- 2) Пусть  $\varepsilon_1 \sim Lap(\lambda)$ ,  $\lambda > 0$ . Тогда  $g(x) = \frac{\lambda}{2} e^{-\lambda|x|}$ .  $E\varepsilon_1 = 0, E\varepsilon_1^2 = \frac{2}{\lambda^2}$ .  $l_{\hat{\xi}_{\frac{1}{2}},\overline{X}} = 4\left(\frac{\lambda}{2}\right)^2 \frac{2}{\lambda^2} = 2 > 1$ . Отсюда, медиана в 2 раза лучше выборочного среднего.

## Параметрическое оценивание

## 4.1 Оптимальные и несмещенные оценки

Пусть  $X=(X_1,\ldots,X_n)$  - случайное наблюдение, т.е. случайным вектор со значениями в  $(\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n))$ . Пусть  $P_X$  - распределение X, т.е.:

$$P_X(A) = P(X \in A), A \in \mathcal{B}(\mathbb{R}^n)$$

Будем предполагать, что  $P_X \in \{P_\theta \colon \theta \in \Theta \subseteq \mathbb{R}^1\}$ .

Тройка  $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \{P_\theta \colon \theta \in \Theta\})$  - статистическая модель.

Распределение  $P_{\theta}$  известно с точностью до параметра  $\theta$ . Его надо оценить.

Определение 4.1. Оценка параметра  $\theta$  - это любая борелевскя функция  $\hat{\theta}_n = \varphi(x) \in \mathbb{R}^1$ , зависящая только от наблюдений, но не от  $\theta$ .

Определение 4.2. *Качество оценки* будем характеризовать средне квадратическим риском:

$$R_n(\hat{\theta}_n, \theta) := E_{\theta}(\hat{\theta}_n - \theta)^2$$

#### Напоминание 4.1.

$$E_{\theta}\varphi(x) = \int_{\mathbb{R}^n} \varphi(x) P_{\theta}(dx)$$

**Замечание.** Пусть наблюдение  $X = (X_1, ..., X_n)$  имеет распределение  $P_X$ , и определено на вероятностном пространстве  $(\Omega, \mathcal{F}, P)$ . Обычно явный вид этого пространства в рассмотрении не участвует, но иногда его удобно конкретизировать. Например, пусть X имеет плотность по мере  $\mu$ , т.е.:

$$P_X(A) = \int_A p(x)\mu(dx), \ a \in \mathcal{B}(\mathbb{R}^n)$$

Пусть  $N_P = \{x : p(x) > 0\}$  - носитель плотности. Тогда полагают:

$$(\Omega, \mathcal{F}, P) = (N_P, \mathcal{B}(N_P), P_X), \quad X(w) = X(x) = x$$

Здесь  $\mathcal{B}(N_p)$  - сигма-алгебра борелевских подмножеств  $N_P$ . При таком выборе распределение случайного вектора X(x) = x есть  $P_X$ .

При  $P_X \in \{P_\theta : \theta \in \Theta \subseteq \mathbb{R}^1\}$  получаем:

$$(\Omega, \mathcal{F}, P) = (N_P, \mathcal{B}(N_P), P_{\theta})$$
 при некотором неизвестном  $\theta \in \Theta$ 

**Определение 4.3.** Оценка  $\hat{\theta}_n$  называется **оптимальной** (наилучшей) в средне квадратическом смысле, если:

$$R_n(\hat{\theta}_n, \theta) \le R_n(\tilde{\theta}_n, \theta) \ \forall \theta \in \Theta \ u \ \forall \tilde{\theta}_n \ c \ конечной дисперсией$$
 (7)

**HO:** оптимальные оценки в смысле (7) существуют лишь в вырожденных случаях.

Действительно, положим  $\tilde{\theta}_n = \theta_0 \in \Theta$ . Тогда  $R_n(\tilde{\theta}_n, \theta_0) = 0$ , и если (7) верно, то  $R_n(\hat{\theta}_n, \theta_0) = E_{\theta_0}(\hat{\theta}_n - \theta_0)^2 = 0$ . Т.к.  $\theta_0$  может быть любой точкой  $\Theta$ , получаем:

$$E_{\theta}(\hat{\theta}_n - \theta)^2 = 0 \ \forall \theta \in \Theta$$

Значит,  $\hat{\theta}_n = \hat{\theta}_n(X) = \theta$  п.н. по  $P_{\theta}$  мере. Это и означает, что ситуация вырожденная, и наблюдение X полностью определяет  $\theta$ .

Пример 4.1.  $X = (X_1), X_1 \sim R(\theta, \theta + 1), \theta \in \Theta = \mathbb{N}$ . Тогда, если  $\hat{\theta}_n = [X_1], mo$   $\hat{\theta}_n = \theta$  n.н..

Сузим класс оценко, и будем искать оптимальные внутри более узкого класса. Ради общности будем далее оценивать  $\tau(\theta) \in \mathbb{R}^1$ . Оценка  $\hat{\tau}_n = \hat{\tau}_n(X) \in \mathbb{R}^1$ . Тогда:

$$R_n(\hat{\tau}_n, \tau(\theta)) := E_{\theta}(\hat{\tau}_n - \tau(\theta))^2 =$$

$$= E_{\theta}(\hat{\tau}_n - E_{\theta}\hat{\tau}_n + E_{\theta}\hat{\tau}_n - \tau(\theta))^2 = D_{\theta}\hat{\tau}_n + (E_{\theta}\hat{\tau}_n - \tau(\theta))^2$$
(1)

Определение 4.4. Величина  $b(\theta) := E\hat{\theta}_n - \tau(\theta)$  называется смещением оценки  $\hat{\tau}_n$  в точке  $\theta$ . Если  $b(\theta) = 0 \ \forall \theta \in \Theta$ , то  $\hat{\tau}_n$  называется несмещенной оценкой.

Для несмещенной оценки в силу (1):  $R_n(\hat{\tau_n}, \tau(\theta)) = D_{\theta}\hat{\tau_n}$ .

Пример 4.2.  $X=(X_1,\ldots,X_n),\ \{X_i\}$  н.о.р.,  $X_1\sim N(\theta,\sigma^2),\ \theta\in\Theta=\mathbb{R}^1,\ \overline{X}=n^{-1}\sum_{i=1}^n X_i.$  Тогда  $\overline{X}$  - несмещенная оценка  $\tau(\theta)=\theta.$ 

Пример 4.3.  $X = (X_1, \dots, X_n), \{X_i\}$  - н.о.р.,  $X_1 \sim Pois(\theta), \theta > 0, m.e.$   $\Theta = \mathbb{R}^+$ . Пусть  $\tau(\theta) = \frac{1}{\theta}$ . Условие несмещиности для  $\tau_1(\hat{X}_1)$ :

$$E_{\theta}\hat{\tau}_1(X_1) = \sum_{k>0} \hat{\tau}_1(k) \frac{\theta^k}{k!} e^{-\theta} = \frac{1}{\theta} \,\forall \theta > 0$$

Значит:

$$\sum_{k\geq 0} \hat{\tau}_1(k) \frac{\theta^{k+1}}{k!} = e^{\theta} = \sum_{r\geq 0} \frac{\theta^r}{r!} \,\forall \theta > 0$$

Но это невозможно, т.е. все коэффициенты рядов должны совпадать, а слева коэффициенты при  $\theta^0$  есть ноль, а справа - единица.

T.o. нет несмещенный оценок для  $au( heta)=rac{1}{ heta}.$ 

Определение 4.5. Несмещенная оценка с конечной дисперсией  $\hat{\tau}_n = \hat{\tau}_n(X)$  функции  $\tau(\theta)$  называется **с.к. оптимальной**, если:

$$D_{\theta}\hat{\tau_n} \leq D_{\theta}\tilde{\tau_n} \ \forall \theta \in \Theta \ u \ \forall \ несмещенной \ \tilde{\tau_n} \ c \ конечной \ ducnpecueй$$

**Замечание.** Иногда рассмтаривают класс  $\mathbb{C}$  несмещенный оценок с конечной дисперсией и некоторым дополнительным условием, например:

$$E_{\theta}\hat{\tau_n}^2 = \alpha < \infty \ \forall \theta \in \Theta$$

Тогда в определение надо добавить  $\hat{\tau_n}, \tilde{\tau_n} \in \mathbb{C}$ . Это с.к. оптимальность в  $\mathbb{C}$ .

## 4.2 Неравенство Рао-Крамера и информация Фишера

Пусть распределение  $P_{\theta}$  имеет плотность  $p(x,\theta)$  в абсолютно непрерывном случае по мере  $\mu$ . Тогда:

$$E_{ heta} arphi(x) = \int\limits_{N_P} arphi(x) p(x, heta) \mu(dx) = egin{cases} \int\limits_{N_p} arphi(x) p(x, heta) dx \ ext{в абс. непр. случае} \ \sum\limits_{i} arphi(x_i) P(X = x_i) \ ext{в дискретном случае} \end{cases}$$

**Условие 4.1** (R). Перечислим ряд условий:

(i) Hocument  $N_P = \{x \colon p(x,\theta) > 0\}$  не зависит от  $\theta$ .

- (ii)  $\Theta$  интервал,  $u \ \forall x \in N_P$  существует производная  $\frac{\partial}{\partial \theta} \ln p(x, \theta)$  при любом  $\theta \in \Theta$ .
- (iii) (a) Верно равенство:

$$\frac{\partial}{\partial \theta} \int_{N_P} p(x,\theta) \mu(dx) = \int_{N_P} \frac{\partial}{\partial \theta} p(x,\theta) \mu(dx) = 0 \; \forall \theta \in \Theta$$

(b) Верно соотношение:

$$\tau'(\theta) = \frac{\partial}{\partial \theta} \int_{N_P} \hat{\tau_n}(x) p(x,\theta) \mu(dx) = \int_{N_P} \hat{\tau_n}(x) \frac{\partial}{\partial \theta} p(x,\theta) \mu(dx) = 0 \ \forall \theta \in \Theta$$

*(iv) Существует величина:* 

$$I(\theta) := E_{\theta} \left( \frac{\partial}{\partial \theta} \ln p(X, \theta) \right)^2, \quad 0 < I(\theta) < \infty$$

 $I(\theta)$  называется **информацией Фишера** о  $\theta$ , содержащейся в X.

**Теорема 4.1** (**неравенство Рао-Крамера**). Пусть  $\hat{\tau}_n(x)$  - несмещенная оценка для  $\tau(\theta)$  с конечной при всех  $\theta \in \Theta$  диспресией. Пусть выполнено условие (R). Тогда:

$$D_{\theta}\hat{\tau_n}(x) \ge \frac{(\tau'(\theta))^2}{I(\theta)} \, \forall \theta \in \Theta$$

**Доказательство.** В силу условия (iii)(a):

$$E_{\theta} \frac{\partial}{\partial \theta} \ln p(X, \theta) = \int_{N_P} (\ln p(x, \theta)) p(x, \theta) \mu(dx) = \int_{N_P} \frac{\partial}{\partial \theta} p(x, \theta) \mu(dx) = 0 \ \forall \theta \in \Theta \quad (2)$$

В силу условия (iii)(b) и (2):

$$\tau'(\theta) = \int_{N_P} \hat{\tau}_n(x) \frac{\partial p(x,\theta)}{\partial \theta} \mu(dx) = E_\theta \left( \hat{\tau}_n(x) \frac{\partial}{\partial \theta} \ln p(X,\theta) \right) =$$

$$= E_\theta \left\{ \left( \hat{\tau}_n(x) - \tau(\theta) \right) \frac{\partial}{\partial \theta} \ln p(X,\theta) \right\}$$
(3)

В силу неравенства Коши-Буняковского:  $\{E(\xi\eta)\}^2 \leq E\xi^2 \cdot E\eta^2$ .

Равенство достигается тогда и только тогда, когда  $\eta \stackrel{\text{п.н.}}{=} a\xi$ . Тогда из (3) следует:

$$(\tau'(\theta))^{2} = \left\{ E_{\theta} \left\{ (\hat{\tau}_{n}(x) - \tau(\theta)) \frac{\partial}{\partial \theta} \ln p(x, \theta) \right\} \right\}^{2} \le$$

$$\le E_{\theta} (\hat{\tau}_{n}(x) - \tau(\theta))^{2} \cdot E_{\theta} \left( \frac{\partial}{\partial \theta} \ln p(x, \theta) \right)^{2}$$

Т.е. получаем  $D_{\theta}\hat{\tau_n}(x)I(\theta) \geq (\tau'(\theta))^2 \ \forall \theta \in \Theta$ . Значит  $D_{\theta}\hat{\tau_n}(x) \geq \frac{(\tau'(\theta))^2}{I(\theta)} \ \forall \theta \in \Theta$ .

Замечание. Пусть  $X = (X_1, \dots, X_n)$  и  $\{X_i\}$  - н.о.р.,  $X_1 \sim f(x, \theta)$  по мере  $\nu$ . Тогда  $p(x_1, \dots, x_n, \theta) \stackrel{n.н.}{=} \prod_{i=1}^n f(x_i, \theta)$  по мере  $\nu$ .

Предположим, что  $\forall \theta \in \Theta$  имеем:

$$E_{\theta} \frac{\partial}{\partial \theta} \ln f(x, \theta) = 0$$
 и  $0 < E_{\theta} \left( \frac{\partial}{\partial \theta} \ln f(X_1, \theta) \right)^2 < \infty$ 

Определение 4.6. Величина  $i(\theta) = E_{\theta} \left( \frac{\partial}{\partial \theta} \ln f(X_1, \theta) \right)^2$  называется **информа- цией Фишера** о параметре  $\theta$ , содержащейся в одном наблюдении  $X_1$ .

Очевидно, что  $i(\theta) = D_{\theta} \left( \frac{\partial}{\partial \theta} \ln f(X_1, \theta) \right)$ . Имеем:

$$I(\theta) = E_{\theta} \left( \frac{\partial}{\partial \theta} \ln f(X_1, \theta) \right)^2 = E_{\theta} \left( \frac{\partial}{\partial \theta} \ln \prod_{i=1}^n f(X_i, \theta) \right)^2 = E_{\theta} \left( \sum_{i=1}^n \frac{\partial}{\partial \theta} \ln f(X_i, \theta) \right)^2 = D_{\theta} \left( \sum_{i=1}^n \frac{\partial}{\partial \theta} \ln f(X_i, \theta) \right)^2 = nD_{\theta} \left( \frac{\partial}{\partial \theta} \ln f(X_1, \theta) \right)^2 = ni(\theta)$$

Итак:  $I(\theta) = ni(\theta)$  и неравенство Рао-Крамера имеет вид:

$$D_{\theta}\hat{\tau_n}(x) \ge \frac{(\tau'(\theta))^2}{ni(\theta)} \, \forall \theta \in \Theta$$

# 4.3 Эффикетивные оценки, необходимое и достаточное условия равенства в НРК

Обозначим  $\mathbb{C}_R$  класс несмещенных оценок для  $\tau(\theta)$  с конечной дисперсией и удовлетворяющих условию (R).

**Определение 4.7.** Если для оценки  $\hat{\tau_n} \in \mathbb{C}_R$  в неравенстве Рао-Крамера достигается равенство, т.е.

$$D_{\theta}\hat{\tau_n} = \frac{(\tau'(\theta))^2}{I(\theta)} \,\forall \theta \in \Theta$$

то  $\hat{\tau_n}$  называется **эффективной** в  $\mathbb{C}_R$ .

Тогда:

$$\forall \tilde{\tau_n} \in \mathbb{C}_R \ D_{\theta} \tilde{\tau_n} = \frac{(\tau'(\theta))^2}{I(\theta)} = D_{\theta} \hat{\tau_n} \ \forall \theta \in \Theta$$

Значит, эффективная в  $\mathbb{C}_R$  оценка является оптимальной в  $\mathbb{C}_R$ .

Каковы условия равенства в неравенстве Рао-Крамера?

**Определение 4.8.** Пусть вектор X имеет плотность  $p(x,\theta), \ \theta \in \Theta \subseteq \mathbb{R}^k,$  относительно меры  $\mu$ . Если эта плотность представима в виде:

$$p(x,\theta) = exp\left\{\sum_{j=1}^{k} a_j(\theta)u_j(x) + b(\theta)\right\} \overline{h}(x), \ x \in N_P$$

то распределение  $P_{\theta}$  вектора X принадлежит экспоненциальному семейству.

Обычно требуют, чтобы функции  $a_0(\theta) = 1, a_1(\theta), \dots, a_k(\theta)$  были именно независимы на  $\Theta$ .

Задача 4.1. Пусть  $X = (X_1, \ldots, X_n)$ ,  $\{X_i\}$  - н.о.р. Показать: если  $X_1 \sim N(\theta, \sigma^2)$ ,  $N(c_1, \theta)$ ,  $N(\theta_1, \theta_2)$ ,  $Exp(\theta)$ ,  $Pois(\theta)$ ,  $Bin(1, \theta)$ , то распределение X принадлежит экспоненциальному семейству.

Теорема 4.2 (необходимое условие равенства в неравенстве Рао-Крамера). Пусть  $\hat{\tau}_n$  - несмещенная оценка  $\tau(\theta)$ ,  $0 < D_{\theta}\hat{\tau}_n < \infty \ \forall \theta \in \Theta$ . Пусть выполнено условие (R). Пусть функции  $\frac{\partial}{\partial \theta} \ln p(x,\theta)$  для  $x \in N_P$ ,  $I(\theta)$  и  $\tau'(\theta)$  непрерывны по  $\theta$ . Тогда, если в неравенстве Рао-Крамера достигается равенство, то:

$$p(x,\theta) = exp\left\{\sum_{j=1}^{k} a_j(\theta)u_j(x) + b(\theta)\right\} \overline{h}(x), \ x \in N_P, \ \theta \in \Theta$$
 (4)

**Замечание.** Теорема 11.1 означает, что если эффективная в  $\mathbb{C}_R$  оценка для  $\tau(\theta)$  существует, то  $p(x,\theta)$  есть плотность из экспоненциального семейства специального вида (4).

**Доказательство.** Из доказательства неравенства Рао-Крамера следует, что равенство в этом неравенстве достигается тогда и только тогда, когда при фиксированном  $\theta \in \Theta$ :

$$\hat{\tau}_n(x) - \tau(\theta) = a(\theta) \frac{\partial}{\partial \theta} \ln p(X, \theta) \quad (P_{\theta} - \text{п.н.})$$
 (5)

Таким образом, из последнего равенства надо получить (4). У нас  $(\Omega, \mathcal{F}, P) = (N_P, \mathcal{B}(N_P), P_{\theta}), X(x) = x$ . Поэтому упомянутое равенство (5) эквивалентно:

$$\hat{\tau}_n(x) - \tau(\theta) = a(\theta) \frac{\partial}{\partial \theta} \ln p(x, \theta)$$
 для  $P_{\theta}$ -п.в.,  $x \in N_P$  (6)

При фиксированном  $\theta$  соотношение (6) не выполнено при  $x \in A_{\theta}$ ,  $P_{\theta}(A_{\theta}) = 0$ . При  $x \in \overline{A_{\theta}}$  (6) выполнено,  $P_{\theta}(\overline{A_{\theta}}) = 1$  ( $A_{\theta} \in N_P$ ,  $\overline{A_{\theta}} = N_P \setminus A_{\theta}$ ).

Рассмотрим (5). Домножим (5) на  $\frac{\partial}{\partial \theta} \ln p(X, \theta)$  и возьмем среднее:

$$E_{\theta} \left\{ \hat{\tau_n}(x) \frac{\partial}{\partial \theta} \ln p(X, \theta) \right\} = a(\theta) I(\theta) = \tau'(\theta)$$
(воспользовались условием  $(R)$ )

Значит,  $a(\theta) = \frac{\tau'(\theta)}{I(\theta)}$  - непрерывная функция, и  $a(\theta) \neq 0$ , т.к.  $\tau'(\theta) \neq 0$  из-за условия  $D_{\theta}\hat{\tau_n} > 0$ .

Рассмотрим (6). 
$$P_{\theta}(A_{\theta}) = \int_{A_{\theta}} p(x,\theta)\mu(dx) = 0 \implies \mu(A_{\theta}) = 0$$
. Пусть  $A = \bigcup_{\theta \in \mathbb{Q}} A_{\theta}$ ,

тогда  $\mu(A)=0$ , но  $\overline{A}=\bigcap_{\theta\in\mathbb{Q}}\overline{A_{\theta}}$ , и при  $x\in\overline{A}$  соотношение (6) выполнено при всех

рациональных  $\theta$ . Но левая и правая части (6) непрерывны по  $\theta$ . Значит, при  $x \in \overline{A}$  (6) верно при всех  $\theta$ . Тогда при любом  $x \in \overline{A}$  из (6) следует:

$$\frac{\partial}{\partial \theta} \ln p(x, \theta) = \frac{\hat{\tau}_n(x)}{a(\theta)} - \frac{\tau(\theta)}{a(\theta)} \Rightarrow$$

$$\Rightarrow \ln p(x, \theta) = \hat{\tau}_n(x) \int_{\theta_1}^{\theta} \frac{d\theta}{a(\theta)} - \int_{\theta_1}^{\theta} \frac{\tau'(\theta)}{a(\theta)} d\theta + \ln p(x, \theta_1)$$

$$\int_{\theta_1}^{\theta} \frac{d\theta}{a(\theta)} = A(\theta), \quad -\int_{\theta_1}^{\theta} \frac{\tau'(\theta)}{a(\theta)} d\theta = B(\theta), \quad \ln p(x, \theta_1) = \overline{h}(x)$$

Отсюда:  $p(x,\theta) = exp\{\hat{\tau}_n(x)A(\theta) + B(\theta)\}\overline{h}(x), x \in \overline{A}$ . На множестве  $A, \mu(A) = 0$ , значения плотности вещественны. Т.о. (4) верно при всех  $x \in N_P, \theta \in \Theta$ .

Теорема 4.3 (достаточное условие равенства в неравенстве Рао-Крамера). Пусть  $\hat{\tau}_n$  - несмещенная оценка  $\tau(\theta)$ ,  $0 < D_{\theta}\hat{\tau}_n < \infty \ \forall \theta \in \Theta$ . Пусть выполнено условие (R). Тогда, если:

$$p(x,\theta) = \exp\{\hat{\tau}_n(x)A(\theta) + B(\theta)\}\overline{h}(x), \ x \in N_P$$
 (7)

то в неравенстве Рао-Крамера достигается равенство.

Доказательство. В силу (7) при  $x \in N_p$ ,  $\theta \in \Theta$ :

$$\ln p(x,\theta) = \hat{\tau}_n(x)A(\theta) + B(\theta) + \ln \overline{h}(x)$$

Значит:

$$\frac{\partial}{\partial \theta} \ln p(x, \theta) = \hat{\tau}_n(x) A'(\theta) + B'(\theta) = A'(\theta) \left( \hat{\tau}_n(x) + \frac{B'(\theta)}{A'(\theta)} \right) =$$
$$= A'(\theta) (\hat{\tau}_n(x) - \tau(\theta)), \ x \in N_P, \ \theta \in \Theta$$

Последнее соотношение влечет (6), а значит и (5).

Итак, в силу теорем 2 и 3 равенство в неравенстве Рао-Крамера достигается лишь для плотностей

$$p(x,\theta) = \exp\left\{\hat{\tau_n}(x)A(\theta) + B(\theta)\right\} \overline{h}(x), \ x \in N_P, \ \theta \in \Theta,$$
 причем 
$$-\frac{B'(\theta)}{A'(\theta)} = \tau(\theta)$$

Это очень специальный вид плотности из экспоненциального семейства. Т.о., эффикетивных оценок мало.

Пример 4.4.  $X = (X_1, \dots, X_n), \{X_i\}$  - н.о.р.,  $X_1 \sim N(\theta, \sigma^2), \theta \in \Theta = \mathbb{R}^1$ .  $\tau(\theta) = \theta$ . Найти эффективную оценку.

**Решение.** Здесь  $\tau(\theta) = \theta$ .

$$p(x,\theta) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n exp\left\{-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \theta)^2\right\} =$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n exp\left\{\overline{X} \cdot \frac{n\theta}{\sigma^2} - \frac{n\theta^2}{2\sigma^2}\right\} \cdot exp\left\{-\frac{1}{2\sigma^2}\sum_{i=1}^n x_i^2\right\}, \ \overline{X} = n^{-1}\sum_{i=1}^n x_i$$

Здесь 
$$\hat{\tau_n}(x) = \overline{X}$$
,  $A(\theta) = \frac{n\theta}{\sigma^2}$ ,  $B(\theta) = \frac{n\theta^2}{2\theta^2}$ ,  $-\frac{B'(\theta)}{A'(\theta)} = \theta = \tau(\theta)$ .

Прочие условия теоремы 3 выполнены. В силу теоремы 3  $\hat{\tau}_n(x) = \overline{X}$  - эффективная оценка  $\tau(\theta) = \theta$ .

Можно показать, что если некоторая функция  $\tau(\theta)$  допускает эффективное оценивание  $\hat{\tau}_n(x)$ , то эффективно можно оценить еще функцию  $a\tau(\theta)+b$  (a,b)-константы) и никакие другие. Оценка -  $a\hat{\tau}_n(x)+b$ .

Значит, в последнем примере все функции, допускающие эффективное оценивание, имеют вид  $\tau(\theta)=a\theta+b$ , а их оценки  $\hat{\tau_n}(x)=a\overline{X}+b$ .

# Оценивание в многопараметрическом случае

#### 5.1 Основные понятия

Пусть  $A=(a_{ij})_{i,j=1,2,\ldots,m}$  -  $m\times m$ -матрица,  $a_{ij}\in\mathbb{R}^1.$ 

- A симметрическая (симметричная), если  $A=A^T$
- симметрическая матрица A неотрицательно определена  $(A \ge 0)$ , если  $\alpha^T A \alpha \ge 0 \ \forall \alpha \in \mathbb{R}^m$

 $A \geq 0 \Leftrightarrow$  собственные числа  $\lambda_i \geq 0, i = 1, 2, \dots, m$ 

• симметрическая A>0, если  $\alpha^T A \alpha>0 \ \forall \alpha \in \mathbb{R}^m, \ \alpha \neq 0$   $A>0 \Leftrightarrow$  собственные числа  $\lambda_i>0, \ i=1,2,\ldots,m$ 

Пусть случайный вектор  $\xi$  определен на  $(\Omega, \mathcal{F}, P)$  и принимает значения в  $(\mathbb{R}^m, \mathcal{B}(\mathbb{R}^m)), \xi = (\xi_1, \dots, \xi_m)^T$ .

- ullet случайный вектор  $\Leftrightarrow \xi_i$  случайные величины,  $i=1,2,\ldots,m$
- $E\xi := (E\xi_1, \dots, E\xi_m)^2, E|\xi| < \infty \Leftrightarrow E|\xi_i| < \infty$
- $cov(\xi, \dot{\xi}) = D\xi := E(\xi E\xi)(\xi E\xi)^T$  $D\xi$  существует  $\Leftrightarrow D\xi_i < \infty$
- $D\xi = (D\xi)^T$ , т.е. ковариационная матрица является симметрической
- $D\xi \geq 0$ , r.e.  $\alpha^T D\xi \alpha \geq 0 \ \forall \alpha \in \mathbb{R}^m$

Пусть  $X = (X_1, ..., X_n)$  - случайное наблюдение со значениями в  $(\mathbb{R}^m, \mathcal{B}(\mathbb{R}^m))$ . Пусть  $X \sim P_X$  - распределение. Будем предполагать далее, что  $P_X \in \{P_\theta, \theta \in \Theta \subseteq \mathbb{R}^k\}$ .

Необходимо оценить функцию  $\tau(\theta) = (\tau_1(\theta), \dots, \tau_m(\theta))^T$ . Оценка -  $\hat{\tau}_n(X) = (\hat{\tau}_{1n}(X), \dots, \hat{\tau}_{mn}(X))^T$ , скалярные борелевские функции  $\hat{\tau}_{in}(X)$  не зависят от  $\theta$ , но зависят от X.

Определение 5.1. Оценка  $\hat{\tau}_n(X)$  функции  $\tau(\theta)$  называется несмещенной, если

$$E_{\theta}\hat{\tau}_n(X) := (E_{\theta}\hat{\tau}_{1n}(X), \dots, E_{\theta}\hat{\tau}_{mn}(X))^T = (\tau_1(\theta), \dots, \tau_m(\theta))^T \ \forall \theta \in \Theta \subseteq \mathbb{R}^m$$

Ковариационная матрица несмещенной оценки:  $D_{\theta}\hat{\tau}_{n} := E_{\theta}(\hat{\tau}_{n} - \tau(\theta))(\hat{\tau}_{n} - \tau(\theta))^{T}$  - это симметрическая неотрицательная определенная  $(m \times m)$ -матрица.

**Определение 5.2.** Если  $\hat{\tau_n}$  - несмещенная оценка для  $\tau(\theta)$  с конечной ковариационной матрицей и

$$D_{\theta}\hat{\tau_n}(X) \le D_{\theta}\tilde{\tau_n}(X) \ \forall \theta \in \Theta \tag{1}$$

 $( \epsilon \partial e \ \tilde{\tau_n} - n \delta \delta a s \ n \epsilon \epsilon \epsilon \epsilon \epsilon \epsilon \epsilon \epsilon )$  оценка  $\tau(\theta)$  с конечной ковариационной матрицей), то  $\hat{\tau_n}(X)$  называется **оптимальной** в с.к. смысле.

Неравенство (1) означает, что  $\alpha^T D_{\theta} \hat{\tau_n} \alpha \leq \alpha^T D_{\theta} \tilde{\tau_n} \alpha \ \forall \alpha \in \mathbb{R}^n \ \forall \theta \in \Theta$ . Разумеется, если  $\hat{\tau_n}$  - с.к. оптимальная оценка  $\tau(\theta)$ , то  $\hat{\tau_{in}}$  - оптимальные оценки для  $\tau_i(\theta)$ .

Существует ли равномерная нижняя граница для  $D_{\theta}\hat{\tau_n}$ ?

## 5.2 Многомерное неравенство Рао-Крамера

#### Многомерное неравенство Рао-Крамера

• Если  $\theta = (\theta_1, \dots, \theta_k)^T$ ,  $\varphi(x, \theta) \in \mathbb{R}^1$ , то

$$\frac{\partial}{\partial \theta} \varphi(x, \theta) := \left( \frac{\partial}{\partial \theta_1} \varphi(x, \theta), \dots, \frac{\partial}{\partial \theta_k} \varphi(x, \theta) \right)^T$$

(вектор-столбец размера k)

• Если  $\varphi(x,\theta) = (\varphi_1(x,\bar{\theta}),\ldots,\varphi_m(x,\theta))^T$ , то

$$\frac{\partial}{\partial \theta}\varphi(x,\theta) := \left(\frac{\partial}{\partial \theta}\varphi_1(x,\theta), \dots, \frac{\partial}{\partial \theta}\varphi_m(x,\theta)\right) = \left(\frac{\partial}{\partial \theta_i}\varphi_j(x,\theta)\right)$$

 $((k \times m)$ -матрица)

### **У**словие (RM)

- (i)  $\Theta$  прямоугольник, т.е.  $a_i < \theta_i < b_i, \ i = 1, 2, \dots, k$
- (ii)  $X \sim p(x,\theta)$  по мере  $\mu$ ; носитель  $N_p = \{x \colon p(x,\theta) > 0\}$  не зависит от  $\theta$ , и  $\forall x \in N_p$  существует  $\frac{\partial}{\partial \theta} \ln p(x,\theta)$  при всех  $\theta \in \Theta$

(iii) (a) 
$$\frac{\partial}{\partial \theta} \int_{N_p} p(x,\theta) \mu(dx) = \int_{N_p} \frac{\partial p(x,\theta)}{\partial \theta} \mu(dx) = 0 \ \forall \theta \in \Theta$$
(b)  $\left(\frac{\partial}{\partial \theta} \int_{N_p} \hat{\tau}_n(x) p(x,\theta) \mu(dx)\right)^T = \int_{N_p} \hat{\tau}_n(x) \left(\frac{\partial}{\partial \theta} p(x,\theta)\right)^T \mu(dx) \ \forall \theta \in \Theta,$ 
где  $\left(\frac{\partial}{\partial \theta} \int_{N_p} \hat{\tau}_n(x) p(x,\theta) \mu(dx)\right)^T - (m \times k)$ -матрица

(iv) если 
$$I(\theta) := E_{\theta} \left( \frac{\partial}{\partial \theta} \ln p(x, \theta) \right) \left( \frac{\partial}{\partial \theta} \ln p(x, \theta) \right)^T$$
 - информация Фишера, то  $0 < I(\theta) < \infty \ \forall \theta \in \Theta, \left( \frac{\partial}{\partial \theta} \ln p(x, \theta) \right)$  -  $(k \times k)$ -матрица.

$$I(\theta) = \left( E_{\theta} \frac{\partial}{\partial \theta_i} \ln p(x, \theta) \frac{\partial}{\partial \theta_j} \ln p(x, \theta) \right)_{i, j = 1, 2, \dots, k}$$

**Теорема 5.1** (векторное неравенство Рао-Крамера). Пусть  $\hat{\tau}_n(X)$  - несмещенная оценка  $\tau(\theta)$  с конечной ковариационной матрицей  $D_{\theta}\hat{\tau}_n(X)$ . Пусть выполнено условие (RM). Тогда:

$$D_{\theta}\hat{\tau_n}(X) \ge \left(\frac{\partial \tau(\theta)}{\partial \theta}\right)^T I^{-1}(\theta) \frac{\partial \tau(\theta)}{\partial \theta} \, \forall \theta \in \Theta$$

Если в этом неравенстве достигается равенство, то  $\hat{\tau}_n(X)$  называется эффективной в классе  $\mathbb{C}_{RM}$ . Тогда  $p(x,\theta) = exp\{\hat{\tau}_n^T(x)A(\theta) + B(\theta)\}h(x)$  для некоторых специальных  $A(\theta), B(\theta), x \in N_p, \ \theta \in \Theta$ , т.е. распределение X принадлежит экспоненциальному семейству очень специального вида. (см. про матричное неравенство Коши-Буняковского в пар. 16, гл. 2, А.А. Боровков, Мат. стат. оценка пов., пров. гип.).

Пусть  $X = (X_1, \dots, X_n)$  - наблюдение, и  $\{X_i\}$  - н.о.р.с.в. Пусть  $X_1$  имеет плотность  $f(x,\theta), \ \theta \in \Theta \subseteq \mathbb{R}^k$ , по мере  $\nu$ .

Предположим, что при  $x \in N_f$  существует  $\frac{\partial}{\partial \theta} \ln f(x,\theta)$ ,  $E_{\theta} \frac{\partial}{\partial \theta_i} \ln f(X_1,\theta) = 0$ ,  $E_{\theta} \left\{ \frac{\partial}{\partial \theta_i} \ln f(X_1,\theta) \right\}^2 < \infty$ ,  $\theta \in \Theta$ ,  $i = 1, 2, \dots, k$ .

Тогда существует информация фишера о параметре  $\theta$ , содержащаяся в одном наблюдении  $X_1$  (матрица информации фишера):

$$I_1(\theta) := \left( E_{\theta} \frac{\partial}{\partial \theta_i} \ln f(x_1, \theta) \cdot \frac{\partial}{\partial \theta_j} f(x_1, \theta) \right), \ i, j = 1, 2, \dots, k$$

Поскольку  $I_1(\theta)$  - ковариационная матрица вектора  $\frac{\partial}{\partial \theta} \ln f(x,\theta)$ , то  $I_1(\theta) \geq 0 \ \forall \theta \in$ 

 $\Theta$ . Если  $det I(\theta) \neq 0$ , то  $I_1(\theta) > 0$ .

Рассуждая как в одномерном случае (т.е. при k=1) получим:  $I(\theta)=nI_1(\theta)$ . Для н.о.р. наблюдений информация  $I(\theta)$  есть сумма информаций  $I_1(\theta)$ . Тогад неравенство Рао-Крамера (2) приобретает вид:

$$D_{\theta}\hat{\tau}_n(x) \ge \left(\frac{\partial \tau(\theta)}{\partial \theta}\right)^T (nI_1(\theta))^{-1} \frac{\partial \tau(\theta)}{\partial \theta}, \ \theta \in \Theta$$
 (3)

#### Важный пример

Пусть  $X = (X_1, \dots, X_n)$ ,  $\{X_i\}$  - н.о.р.с.в.,  $n \geq 2$ ,  $X_1 \sim N(\theta_1, \theta_2)$ , где  $\theta_1 \in \mathbb{R}^1$ ,  $\theta_2 > 0$  (т.е. из  $\mathbb{R}^+$ ). Пусть  $\tau(\theta) = (\theta_1, \theta_2)^T$ , оценка  $\hat{\tau}_n(X) = (\overline{X}, S^2)^T$ , где  $\overline{X} = n^{-1} \sum_{i=1}^n X_i$ ,  $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ .

Определение 5.3. Если  $\xi_1, \ldots, \xi_k$  - н.о.р. стандартные гауссовские N(0,1) сл.в., то сл.в.  $\eta_k := \xi_1^2 + \cdots + \xi_k^2$  имеет распределение **хи-квадрат Пирсона** с k степенями свободы. Пишем  $\eta_k \sim \chi^2(k)$ .

Очевидно, что  $E\eta_k = kE\xi_1^2 = k$ ,  $D\eta_k = kD\xi_1^2 = k\left(E\xi_1^4 - (E\xi_1^2)^2\right) = k(3-1) = 2k$ .

Задача 5.1. Пусть  $\xi \sim N(0, \sigma^2)$ . Проверить, что  $E\xi^{2k} = 1 \cdot 3 \cdot \dots \cdot (2k-1)\sigma^{2k}$ .

Очевидно, что  $\overline{X} \sim N(\theta_1, \frac{\theta_2}{n})$ . Вскоре будет показано, что  $\frac{(n-1)S^2}{\theta_2} \sim \chi^2(n-1)$ , и величины  $\overline{X}$  и  $S^2$  независимы. Значит,  $D_{\theta} \frac{(n-1)S^2}{\theta_2} = \frac{(n-1)^2}{\theta_2^2} D_{\theta} S^2 = 2(n-1)$ , т.е.

 $D_{\theta}S^{2} = \frac{2\theta_{2}^{2}}{n-1}$ . Значит, ковариационная матрица  $D_{\theta}\hat{\tau_{n}} = \begin{pmatrix} \frac{\theta_{2}}{n} & 0\\ 0 & \frac{2\theta_{2}^{2}}{n-1} \end{pmatrix}$ .

Найдем информационную матрицу фишера  $I_1(\theta) = (i_{ij}(\theta)), i, j = 1, 2$ . Имеем:

$$f(x,\theta) = \frac{1}{\sqrt{2\pi\theta_2}} e^{-\frac{1}{2\theta_2}(x-\theta_1)^2}$$

$$\ln f(x,\theta) = -\frac{1}{2} \ln(2\pi) - \frac{1}{2} \ln \theta_2 - \frac{1}{2\theta_2}(x-\theta_1)^2$$

$$\frac{\partial \ln f(x,\theta)}{\partial \theta_1} = \frac{x-\theta_1}{\theta_2}, \ \frac{\partial \ln f(x,\theta)}{\partial \theta_2} = \frac{(x-\theta_1)^2 - \theta_2}{2\theta_2^2}$$

$$i_{1,1}(\theta) = E_{\theta} \frac{(x_1-\theta_1)^2}{\theta_2^2} = \frac{1}{\theta_2}, \ i_{2,2} = E_{\theta} \left\{ \frac{(x-\theta_1)^2 - \theta_2}{2\theta_2^2} \right\}^2 = \frac{1}{3\theta_2^2} D_{\theta} \frac{(x_1-\theta_1)^2}{\theta_2} = \frac{1}{2\theta_2^2}$$

$$i_{1,2}(\theta) = i_{2,1}(\theta) = E_{\theta} \frac{x_1-\theta_1}{\theta_2} \cdot \frac{(x_1-\theta_1)^2 - \theta_2}{2\theta_2} = 0$$

$$I_1(\theta) = \begin{pmatrix} \frac{1}{\theta_2} & 0\\ 0 & \frac{1}{2\theta_2^2} \end{pmatrix}$$

Т.к.  $\frac{\partial \tau(\theta)}{\partial \theta} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E_2$ , то неравенство Рао-Крамера имеет вид:

$$\begin{pmatrix} \frac{\theta_2}{n} & 0\\ 0 & \frac{2\theta_2^2}{n-1} \end{pmatrix} \ge \begin{pmatrix} \frac{\theta_2}{n} & 0\\ 0 & \frac{2\theta_2^2}{n} \end{pmatrix} \ \forall \theta \in \Theta$$

Неравенство верное, но равенства нет, т.е.  $\hat{\tau}_n(X) = (\overline{X}, S^2)^T$  неэффективная оценка  $\tau(\theta) = (\theta_1, \theta_2)^T$ .

Далее покажем, что  $\hat{\tau_n}(X)$  - оптимальная оценка для  $\tau(\theta)$ .

## УМО и условные распределения

## 6.1 Определение условного математического ожидания

#### ШАГ 1:

Пусть имеются вероятностное пространство  $(\Omega, \mathcal{F}, P)$ , случайная величина  $\xi: (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ , причем  $E|\xi| < \infty$ , где  $E\xi = \int\limits_{\Omega} \xi(\omega) P(d\omega)$ .

Пусть 
$$A \in \mathcal{F}$$
 . Тогда для  $C \in \mathcal{F}$   $P(C|A) = \frac{P(CA)}{P(A)} = P_A(C)$ .

Если  $CA = \emptyset$ , то  $P_A(C) = 0$ , а если  $C \subset A$ , то  $P_A(C) = \frac{P(C)}{P(A)}$ .

Имеем новое вероятностное пространство  $(\Omega, \mathcal{F}, P_A)$ .

Естественно положить  $E(\xi|A) = \int\limits_{\Omega} \xi(\omega) P_A(d\omega)$ . Тогда:

$$E(\xi|A) = \int_{A} \xi(\omega) P_A(d\omega) + \int_{\overline{A}} \xi(\omega) P_A(d\omega) = \frac{1}{P(A)} \int_{A} \xi(\omega) P(d\omega)$$

Итак: 
$$E(\xi|A) = \frac{1}{P(A)} \int_A \xi(\omega) P(d\omega) = \frac{E(\xi I(A))}{P(A)} = \frac{E(\xi,A)}{P(A)}.$$

**ШАГ** 2: Рассмотрим  $(\Omega, \mathcal{F}, P)$ , и пусть  $\{A_1, A_2, ...\}$  - разбиение  $\Omega$ , т.е.

$$A_1 + A_2 + ... = \Omega$$
,  $A_i A_j = \emptyset$   $i \neq j$ ,  $P(A_i) > 0$ .

Рассмотрим сигма-алгебру  $U = \sigma\{A_1, A_2, ...\}$ . Элементы U - всевозможные объединения  $A_1, A_2, ...$ 

Пусть  $\xi$  - сл.в., определенная на  $(\Omega, \mathcal{F})$  со значениями в  $(\mathbb{R}, B(\mathbb{R})), E|\xi| < \infty$ .

Определение 6.1. Условным математическим ожиданием сл. вел.  $\xi$  относитльно U называется случайная величина

$$\hat{\xi} = E(\xi|U) = \sum_{k \ge 1} \frac{E(\xi, A_k)}{P(A_k)} I(A_k) \tag{1}$$

где 
$$E(\xi, A_k) = \int_{A_k} \xi(\omega) P(d\omega)$$
. T.e.  $E(\xi|U) = \sum_{k>1} E(\xi|A_k) I(A_k)$ .

Имеем следующую лемму (без доказательства):

**Лемма 6.1.** Пусть  $U_{\xi}$  - сигма-алгебра, порожденная  $\xi$ . Тогда сл.в.  $\eta$  является  $U_{\xi}$ - измеримой тогда и только тогда, когда  $\eta = \varphi(\xi)$  для некторой борелевской  $\varphi$ .

С помощью этого утверждения можно вывести два свойства УМО из (1):

1) Сл.в.  $\hat{\xi}$  измерима относительно U.

Доказательство. U порождается сл.в.  $\xi = \sum_{k \geq 1} c_k I(A_k)$ , где все  $c_k$  различны. Тогда сл.в.  $\eta$  будет U-измерима тогда и только тогда, когда  $\eta = \phi(\xi) = \sum_{k \geq 1} b_k I(A_k)$ . Но именно такой вид имеет  $\hat{\xi}$  из (1).

2)  $\forall A \in U \ E(\hat{\xi}, A) = E(\xi, A).$ 

**Доказательство.** Так как имеется представление  $A = \sum_{k} A_{jk}$ , то

$$E(\hat{\xi}, A) = \sum_{k} E(\hat{\xi}, A_{jk}) = \sum_{k} E(\hat{\xi}I(A_{jk})) =$$

$$= \sum_{k} E(\frac{E(\xi I(A_{jk}))}{P(A_{jk})} I(A_{jk})) = \sum_{k} E(\xi I(A_{jk})) = E(\xi, A).$$

**Лемма 6.2.** Свойства 1) и 2) выше однозначно определяют УМО и эквивалентны определению (1).

Доказательство. Уже доказано, что определение (1) влечет свойства 1), 2).

Обратно, пусть для некоторой сл.в.  $\hat{\xi}$  выполнены свойства 1) и 2) Тогда в силу 1):  $\hat{\xi} = \sum_{k\geq 1} c_k I(A_k)$ . В силу 2):  $E(\hat{\xi},A_j) = E(\xi,A_j) = E(c_j I(A_j)) = c_j P(A_j)$ , т.е.  $c_j = E(\xi,A_j)/P(A_j)$ .

**ШАГ** 3 (определение УМО для произвольных U):

Определение 6.2. Пусть  $\xi$  есть сл.вел. (или сл. вектор) на  $(\Omega, \mathcal{F}, P)$ , и  $U \subset \mathcal{F}$ . Пусть  $E|\xi| < \infty$ . Тогда условным математическим ожиданием  $\xi$  относиительно U называется сл.в. (или сл.вектор той же размерности, что и  $\xi$ ), которая обладает двумя свойствами:

1)  $\hat{\xi}$  измерима относительно U;

2) 
$$\forall A \in U \ E(\hat{\xi}, A) = E(\xi, A), \ m.e. \int_{A} \hat{\xi}(\omega) P(d\omega) = \int_{A} \xi(\omega) P(d\omega).$$

УМО будет обозначаться так же  $E(\xi|U)$ . Заметим, что если  $E|\xi|<\infty$ , то  $E\hat{\xi}=\int\limits_{\Omega}\hat{\xi}(\omega)P(d\omega)=\int\limits_{\Omega}\xi(\omega)P(d\omega)=E\xi$  и, значит,  $E|\hat{\xi}|<\infty$ .

**Теорема 6.1.** Если  $E|\xi| < \infty$ , то УМО  $\hat{\xi}$  в определении 11.16 всегда существует и единственно с точностью до значений на множестве меры нуль.

#### О производной Радона-Никодима

Определение 6.3. Пусть на измеримом пространстве  $(\Omega, \mathcal{F})$  заданы сигмаконечные меры  $\mu$  и  $\lambda$ . Меру  $\lambda$  называют **абсолютно непрерывной относительно меры**  $\mu$ , если из равенства  $\mu(A) = 0, \ A \in \mathcal{F}$ , следует  $\lambda(A) = 0$ . Пишут  $\lambda \prec \mu$ .

**Теорема 6.2** (Радона-Никодима). Пусть на  $(\Omega, \mathcal{F})$  заданы  $\sigma$ -конечные меры  $\mu$  и  $\lambda$ . Тогда  $\lambda \prec \mu$  тогда и только тогда, когда существует  $\mathcal{F}$ -измеримая функция  $f(\omega) \geq 0$ , для которой  $\lambda(A) = \int\limits_A f(\omega)\mu(d\omega) \ \forall \ A \in \mathcal{F}$ . Функция  $f(\omega)$  единственна с точностью до значений на множестве  $\mu$ -меры нуль. Функция  $f(\omega)$  называется производной Радона-Никодима меры  $\lambda$  по мере  $\mu$ . Пишут  $f(\omega) = \frac{d\lambda}{du}(\omega)$ .

Докажем теорему 6.1.

#### Доказательство.

1)  $\xi$  - скалярная сл.в.,  $\xi \ge 0$ . Введем функцию множеств

$$Q(A) = \int_{A} \xi(\omega)P(d\omega) = E(\xi, A), \quad A \in U$$

Тогда [Ширяев, Вероятность, гл. III, § 6]:

$$-a) Q(A) \ge 0, Q(\Omega) = E\xi < \infty;$$

– b) Если 
$$A = \sum_i A_i$$
,  $A_i A_j = \emptyset$   $i \neq j$ , то  $Q(A) = \sum_i Q(A_i)$ ;

$$-$$
 c) Если  $P(A) = 0$ , то  $Q(A) = 0$ .

Свойства а)-с) означают, что Q(A) есть конечная  $\sigma$ -аддитивная мера, и  $Q \prec P$ . В силу **теоремы Радона -Никодима** существует U-измеримая функция  $\hat{\xi}$ , такая что

$$Q(A) = \int_{A} \xi(\omega)P(d\omega) = \int_{A} \hat{\xi}(\omega)P(d\omega).$$

Эта функция почти наверное единственна.

2) Пусть  $\xi$  - скалярная и не обязательно неотрицательная. Тогда  $\xi = \xi^+ - \xi^-$ , где  $\xi^+ = \max(0,\xi) \geq 0, \, \xi^- = \max(0,-\xi)$ . Положим  $\hat{\xi} = \hat{\xi^+} - \hat{\xi^-}$ . Очевидно,  $\hat{\xi} - U$ -измерима, т.к.  $\hat{\xi^+}$  и  $\hat{\xi^-}$  - U-измеримы. Далее:

$$E(\hat{\xi}, A) = E(\hat{\xi}^+, A) - E(\hat{\xi}^-, A) = E(\xi^+, A) - E(\xi^-, A) = E(\xi, A), \ A \in U$$

Наконец, если  $\overline{\xi}$  - U-измерима и  $E(\overline{\xi},A) = E(\xi,A) \ \forall A \in U$ , то  $\overline{\xi} = \hat{\xi}$  почти наверное [Ширяев, Вероятность, гл. II, § 6]. Здесь использовалось предположение  $E|\hat{\xi}| < \infty, \ E|\overline{\xi}| < \infty.$ 

3) Пусть  $\xi = (\xi_1, \dots, \xi_s)^T$ . Тогда  $\hat{\xi} = (\hat{\xi}_1, \dots, \hat{\xi}_s)^T$ . Измеримость следует из измеримости  $\hat{\xi}_i, \ i = 1, \dots, s$ . Далее:

$$E(\hat{\xi}, A) = (E(\hat{\xi}_1, A), \dots, E(\hat{\xi}_s, A))^T = (E(\xi_1, A), \dots, E(\xi_s, A))^T = E(\xi, A)$$

Наконец, если  $E(\overline{\xi},A)=E(\hat{\xi},A), \ \forall \ A\in F, \text{ то } E(\overline{\xi_i},A)=E(\hat{\xi_i},A) \Rightarrow \overline{\xi_i}\stackrel{\text{п.н.}}{=} \hat{\xi_i}, \text{ т.е. } \overline{\xi}\stackrel{\text{п.н.}}{=} \hat{\xi}.$ 

## 6.2 Свойства условного математического ожидания

Далее всегда  $E|\xi| < \infty$ . Следующие 6 утверждений верны и для скаляров и для векторов, причем соотношения  $\xi_1 \leq \xi_2$ ,  $\xi_n \uparrow \xi$  понимаются для векторов покомпонентно. Пусть также сигма-алгебра  $U \subset \mathcal{F}$ .

Утверждение 6.1. Имеем следующие свойства:

- a)  $E(c\xi|U) = cE(\xi|U)$  п.н.
- b)  $E(\xi_1 + \xi_2|U) = E(\xi_1|U) + E(\xi_2|U)$  n.H.
- c) Если  $\xi_1 \leq \xi_2$  п.н.,  $E(\xi_1|U) \leq E(\xi_2|U)$  п.н.

#### Доказательство.

a) Напомним, что  $\hat{\xi} = E(\xi|U)$  такая сл.величина (вектор), что:

$$\hat{\xi}$$
 -  $U$  — измеримая сл.в. (5)

$$E(\hat{\xi}, A) = E(\xi, A) \ \forall A \in U, \text{ r.e. } \int_{A} \hat{\xi}(\omega) P(d\omega) = \int_{A} \xi(\omega) P(d\omega)$$
 (6)

Значит, надо показать, что:

- 1)  $c\hat{\xi}$  U—измерима,
- 2)  $\forall A \in U \ E(c\hat{\xi}, A) = E(c\xi, A)$

Соотношение 1) очевидно, если  $\hat{\xi}$  - U-измерима. Докажем 2):  $E(c\hat{\xi},A)=cE(\hat{\xi},A)=cE(\xi,A)$ .

- b) Доказательство b) аналогично доказательству a).
- c) Пусть  $\hat{\xi}_i = E(\xi_i|U), i = 1, 2.$

Тогда 
$$\forall A \in UE(\hat{\xi}_1, A) = \int\limits_A \hat{\xi}_1 P(d\omega) = E(\xi_1, A) \leq E(\xi_2, A) = \int\limits_A \hat{\xi}_2 P(d\omega).$$

Значит, 
$$\int_A (\hat{\xi}_2 - \hat{\xi}_1) P(d\omega) \ge 0 \ \forall A \in U$$
 и  $\hat{\xi}_2 - \hat{\xi}_1 \ge 0$  п.н.

**Утверждение 6.2.** Если сигма-алгебра U и сигма-алгебра  $\sigma(\xi)$  независимы, то  $E(\xi|U) = E\xi$  n.н.

**Доказательство.** Надо проверить, что  $E\xi$ - вариант УМО. Так как константа U-измерима, то достаточно проверить, что  $E(E\xi,A)=E(\xi,A) \ \forall \ A\in U$ . Имеем  $E(\xi,A)=E(\xi I(A))=E\xi P(A)=E(E\xi,A)$ .

Утверждение 6.3 (теорема о монотонной сходимости). *Если п.н.*  $0 \le \xi_n \uparrow \xi$ , то  $E(\xi_n|U) \uparrow E(\xi|U)$  п.н.

**Доказательство.** Из  $\xi_{n+1} \geq \xi_n$  п.н. следует в силу пункта c) утвреждения 6.1, что  $\hat{\xi}_{n+1} \geq \hat{\xi}_n \geq 0$  п.н. Значит (т.2, §4 , гл.2. [Ширяев, Вероятность]) существует U-измеримая случайная величина  $\hat{\xi}$ , такая что  $\hat{\xi}_n \uparrow \hat{\xi}$  п.н. Почему  $\hat{\xi}$  - УМО?

В силу теоремы о монотонной сходимости:

$$\forall A \in U \int_{A} \hat{\xi_n} P(d\omega) \rightarrow \int_{A} \hat{\xi} P(d\omega), \int_{A} \xi_n P(d\omega) \rightarrow \int_{A} \xi P(d\omega)$$

Т.к. левые части в двух последних равенствах совпадают (т.к.  $\hat{\xi}_n$  - УМО для  $\xi$ ), то совпадают правые. Т.е.  $\int\limits_A \hat{\xi} P(d\omega) = \int\limits_A \xi P(d\omega)$ . Значит,  $\hat{\xi}$  - УМО для  $\xi$ .

**Утверждение 6.4.** Если  $\eta$  - скалярная сл.в. и U-измерима,  $E|\xi|<\infty,\ E|\xi\eta|<\infty,$  то

$$E(\xi \eta | U) = \eta E(\xi | U)$$
 п.н.

Доказательство. Докажем в 4 шага.

1) Если  $\eta = I(B), \ B \in U,$  то утверждение верно. Действительно,  $\eta E(\xi|U)$  - U-измерима, и  $\forall A \in U$ 

$$\int_{A} E(I(B)\xi|U)P(d\omega) = \int_{A} I(B)\xi P(d\omega) = \int_{AB} \xi P(d\omega) =$$

$$= \int_{AB} E(\xi|U)P(d\omega) = \int_{A} I(B)E(\xi|U)P(d\omega).$$

Значит (см. §6, гл.2 [Ширяев, Вероятность])  $E(I(B)\xi|U)=I(B)E(\xi|U)\,$  п.н.

- 2) Значит, утверждение верно для простых U-измеримых функций  $\eta = \sum_{i=1}^{\kappa} c_i I(B_i)$ ,  $B_i \in U$  в силу линейности УМО.
- 3) Пусть  $\xi \geq 0$ ,  $\eta \geq 0$ . Возьмем последовательность простых U-измеримых  $0 \leq \eta_n \uparrow \eta$  (см теорему 1 в §4 гл.II [Ширяев, Вероятность]).

Тогда в силу шага 2) имеем:

$$E(\eta_n \xi | U) = \eta_n E(\xi | U) \uparrow \eta E(\xi | U) \quad \text{п.н.}$$
 (7)

Отсюда в силу утверждения 6.3, т.к.  $\eta_n \xi \uparrow \eta \xi$ , имеем:

$$E(\eta_n \xi | U) \uparrow E(\eta \xi)$$
 п.н. (8)

В соотношениях (7),(8) левые части совпадают, значит совпадают и правые части, т.е.  $E(\eta \xi | U) = \eta E(\xi | U)$  п.н..

4) Пусть  $\xi$  и  $\eta$  произвольные. Тогда:

$$E(\xi\eta|U) = E((\eta^+ - \eta^-)(\xi^+ - \xi^-)|U) = \eta^+ E(\xi^+|U) - \eta^- E(\xi^+|U) - \eta^- E(\xi^-|U) + \eta^- E(\xi^-|U) = \eta^+ E(\xi|U) - \eta^- E(\xi|U) = \eta E(\xi|U)$$
 п.н.

Утверждение 6.5 (формула полной вероятности).  $EE(\xi|U) = E\xi$ .

Доказательство. 
$$EE(\xi|U)=\int\limits_{\Omega}E(\xi|U)P(d\omega)=\int\limits_{\Omega}\xi P(d\omega)=E\xi.$$

Утверждение 6.6 (формула последовательного усреднения).  $Ecnu\ U \subset U_1 \subset F,\ mo\ E(\xi|U) = E(E(\xi|U_1)|U)\ n.н.$ 

**Доказательство.** Если  $A \in U$ , то  $A \in U_1$ . Значит,  $\forall A \in U$ 

$$\int_A E(E(\xi|U_1)|U)P(d\omega) = \int_A E(\xi|U_1)P(d\omega) = \int_A \xi P(d\omega) = \int_A E(\xi|U)P(d\omega).$$

Значит  $E(E(\xi|U_1)|U) = E(\xi|U)$  п.н. U-измеримость  $E(E(\xi|U_1)|U)$  - следствие определения.

**Утверждение 6.7.** Пусть  $\xi$ - скалярная сл. вел.,  $E\xi^2 < \infty$ . Пусть  $H_U$  есть множество U-измеримых сл. величин c конечным вторым моментом. Тогда решение задачи  $E(\xi(\omega) - a(\omega))^2 \to \min_{a(\omega) \in H_U} ecmь \ a^*(\omega) = E(\xi|U)$ .

Доказательство. Имеем:

$$E(\xi - a(\omega))^{2} = E(\xi - E(\xi|U))^{2} + 2E(\xi - E(\xi|U))(E(\xi|U) - a(\omega)) + E(E(\xi|U) - a(\omega))^{2}$$

Для среднего члена имеем:

$$2E(\xi - E(\xi|U))(E(\xi|U) - a(\omega)) = 2EE(\xi - E(\xi|U))(E(\xi|U) - a(\omega)|U) =$$

$$= 2E(E(\xi|U) - a(\omega))E(\xi - E(\xi|U)|U) = 0$$

Т.е.  $E(\xi - a(\omega))^2 = E(\xi - E(\xi|U))^2 + E(E(\xi|U) - a(\omega))^2$ . Минимум последнего выражения достигается при  $a^*(\omega) = E(\xi|U)$ . Осталось проверить, что  $E(a^*(\omega))^2 = E(E(\xi|U))^2 < \infty$  при  $E\xi^2 < \infty$ .

Задача 6.1. Доказать неравенство Коши-Буняковского:

$$npu \ E\xi^2 < \infty \ (E(\xi|U))^2 \le E(\xi^2|U) \ n.н.$$

Тогда в силу неравенства Коши-Буняковского имеем:

$$E(E(\xi|U))^2 \le EE(\xi^2|U) = E\xi^2 < \infty$$

Пример 6.1 (оптимальный среднеквадратический прогноз в авторегрессии). Пусть  $S_t$ ,  $t=0,1,\ldots$  - стоимости ценных бумаг в момент времени t. Введем логарифмические приращения  $u_t:=\ln\frac{S_t}{S_{t-1}}=\ln S_t-\ln S_{t-1}$ . Для описании динамики последоватльности  $\{u_t\}$  используют стохастические разностные уравнения. Например, AR(1) уравнение имеет вид:

$$u_t = \beta u_{t-1} + \varepsilon_t, \ t = 1, 2, \dots, \ \beta \in \mathbb{R}^1$$

 $\{\varepsilon_t\}$  - н.о.р.с.в.,  $E\varepsilon_1 = 0$ ,  $0 < D\varepsilon_1 = \sigma^2 < \infty$ . Начальное значение  $u_0$  от  $\{\varepsilon_t\}$  не зависит,  $Eu_0 = 0$ ,  $Eu_0^2 < \infty$ . Параметры  $\beta$  и  $\sigma^2$  обычно неизвестны, распределение сл.в.  $\varepsilon_1$  тоже неизвестны.

Из AR(1) уравнения следует:

$$u_t = \varepsilon_t + \beta(\varepsilon_{t-2} + \beta u_{t-2}) = \varepsilon_t + \beta \varepsilon_{t-2} + \beta^2 u_{t-2} =$$
  
= ... = \varepsilon\_t + \beta \varepsilon\_{t-1} + ... + \beta^{t-1} \varepsilon\_1 + \beta^t u\_0

Поэтому  $Eu_0=0$ ,  $Du_t=\sigma^2(1+\beta^2+...+\beta^{2(t-1)})+\beta^{2t}Eu_0^2<\infty$ . Сл. величина  $\varepsilon_{t+1}$  от  $u_t,u_{t-1,...,u_1}$  не зависит.

Пусть  $u_1, \ldots, u_n$  - наблюдения,  $\mathcal{F}_n = \sigma\{u_1, \ldots, u_n\}$ . Оптимальный среднеквадратический прогноз ненаблюдаемой величины  $u_{n+1}$  по наблюдениям - есть  $peшение u_{n+1}^*$  задачи

$$E(u_{n+1}-u_{n+1}^*)^2 \to \min, \ u_{n+1}^*$$
 -  $\mathcal{F}_n$  – измерима,  $E(u_{n+1}^*)^2 < \infty$ 

Тогда  $u_{n+1}^* = \varphi(u_1, \dots, u_n) = E(u_{n+1}|\mathcal{F}_n)$  в силу утверждения 6.7. Имеем:

$$E(u_{n+1}|F_n) = E(\beta u_n + \varepsilon_{t+1}|F_n) = E(\beta u_n|F_n) + E(\varepsilon_{n+1}|F_n) = \beta u_n + E\varepsilon_{n+1} = \beta u_n$$

Пусть  $L^2$  будет множество сл.в. с коненчным вторым моментом. Отождествим сл.в., равные п.н. Получим множество классов эквивалентных сл.в. Для класса  $\tilde{\xi}$  норма  $|\tilde{\xi}| := (E\xi^2)^{\frac{1}{2}}$ ,  $\xi$  - любой элемент  $\tilde{\xi}$ .

Множество классов эквивалентных сл.в. с такой нормой есть банаховское линейное пространство  $\mathbb{L}^2$ . Для  $\xi, \eta \in \mathbb{L}^2$  можно ввести скалярное произведение  $(\xi, \eta) := E\xi \eta$ . Если  $(\xi, \eta) = 0$ , то  $\xi \perp \eta$ .

Если  $H_U$  есть линейное подпространство сл.в. в  $\mathbb{L}^2$ , которые U-измеримы, то решение задачи  $E(\xi - a(\omega))^2 \to \min_{a(\omega) \in H_U} ecmь \ a^* = proj_{H_U} \xi$ . В силу утверждения 6.7 имеем:

$$a^*(\omega) = proj_{H_U}\xi = E(\xi|U)$$

Это соотношение может служить определением УМО  $E(\xi|U)$  в случае  $E\xi^2 < \infty$ . Но у нас только  $E|\xi| < \infty!$ 

## 6.3 УМО и условные распределения относительно сл.в.

Пусть на  $(\Omega, \mathcal{F}, P)$  заданы сл. векторы  $\xi \in \mathbb{R}^s$ ,  $\eta \in \mathbb{R}^k$ . Пусть  $U_{\eta} = \sigma\{\omega : \eta(\omega) \in B, B \in \mathcal{B}(\mathbb{R}^k)\}$ .

Определение 6.4.  $E(\xi|\eta) := E(\xi|U_{\eta})$  - **УМО**  $\xi$  относительно  $\eta$ . Т.к.  $E(\xi|\eta)$  -  $U_{\eta}$ -измерима, то  $E(\xi|\eta) = m(\eta)$  для некоторой борелевской функции  $m(y), y \in \mathbb{R}^k$ , обозначается  $E(\xi|\eta=y)$  или короче  $E(\xi|y)$ .

Ясно, что  $m(\eta)$  такая функция, что (она автоматически  $U_{\eta}$ -измерима):

$$\int_{W} m(\eta)P(d\omega) = \int_{W} \xi P(d\omega) \ \forall B \in \mathcal{B}(\mathbb{R}^{k}), \ W = \{\omega : \eta(\omega) \in B\}$$
 (9)

Делая замену  $\eta(\omega)=y$  и заменяя  $m(\eta)$  на  $E(\xi|y)$ , получим для (9) эквивалентное

выражение:

$$\int_{B} E(\xi|y) P_{\eta}(dy) = \int_{W} \xi P(d\omega) \ \forall B \in \mathcal{B}(\mathbb{R}^{k}), \ W = \{\omega : \eta(\omega) \in B\}$$
 (10)

Итак,  $E(\xi|y)$  - борелевская функция, удовлетворяющая (10). Она определена на множестве  $P_{\eta}$ -вероятности ноль.

Определение 6.5. Поскольку  $P(C) = EI(C), C \in \mathcal{F}$ , то естественно определение  $P(C|\eta) := E(I(C)|U_{\eta}), C \in \mathcal{F}$ . Тогда  $P(C|\eta) = g_C(\eta)$ . Функцию  $g_C(y), y \in \mathbb{R}^k$  обозначим  $P(C|\eta = y)$  или короче P(C|y).

Ясно, что  $g_C(\eta)$  такая функция, что (это переписанное соотношение (9)):

$$\int_{W} g_{C}(\eta) P(d\omega) = \int_{W} I(C) P(d\omega) \ \forall B \in \mathcal{B}(\mathbb{R}^{k}), \ W = \{\omega : \eta(\omega) \in B\}$$
 (11)

Делая в (11) замену  $\eta(\omega)=y$ , получим, что P(C|y) такая функция, что:

$$\int_{B} P(C|y) P_{\eta}(dy) = P(C, \eta \in B) \ \forall B \in \mathcal{B}(\mathbb{R}^{k})$$
 (12)

Функция P(C|y) определена с точностью до значений на множестве  $P_{\eta}$ -вероятности ноль.

Определение 6.6. Функция P(A|y) множества  $A \in \mathcal{B}(\mathbb{R}^s)$  и  $y \in \mathbb{R}^k$  называется условным распределением  $\xi$  при условии  $\eta = y$ , если выполнены два условия:

- 1) При каждом фиксированном  $A\ P(A|y)$  есть условная веростность события  $C = (\omega : \xi(\omega \in A))$  при условии  $\eta = y$ , т.е.  $P(A|y) = P(\xi(\omega) \in A|\eta = y)$ .
- 2) Для любого  $y \in \mathbb{R}^k$ , за исключением, быть может, множества y-ов  $P_{\eta}$ -веростности ноль, P(A|y) есть распределение веростностей по A, т.е. выполняется счетная аддитивность по A.

Условное распределение существует (см. [Ширяев, Вероятность, §7, гл. II]). Условное распределение обозначается также  $P(\xi \in A|y), P(\xi \in A|\eta = y).$ 

**Определение 6.7.** Пусть скалярная функция  $f(x|y) \ge 0$  и измерима по паре (x,y) (т.е. борелевская). Если для  $P_{\eta}$ -п.в.  $y \in \mathbb{R}^k$  условное распределение

$$P(\xi \in A | \eta = y) = \int_{x \in A} f(x|y)\mu(dx) \ \forall A \in \mathcal{B}(\mathbb{R}^s)$$

то f(x|y) называется условной плотностью  $\xi$  при условии  $\eta=y$  относительно меры  $\mu$ .

**Замечание.** Если f(x|y) - неотрицательная борелевская функция, удовлетворяющая условию:

$$\forall A \in \mathcal{B}(\mathbb{R}^s), \ B \in \mathcal{B}(\mathbb{R}^k) \int_{y \in B} \left( \int_{x \in A} f(x|y) \mu(dx) \right) P_{\eta}(dy) = P(\xi \in A, \eta \in B) \quad (13)$$

то f(x|y) - условная плотность вероятность. Действительно, если (13) выполнено, то в силу (12)  $\int_{x\in A} f(x|y)\mu(dx)$  есть условная вероятность  $P(\xi\in A|\eta=y)$ .

Но этот интеграл счетно-аддитивен по A, т.е.  $\int\limits_{x\in A} f(x|y)\mu(dx)$  есть условное распределение  $\xi$  при условии  $\eta=y$ , но тогда f(x|y) - условная плотность!

**Замечание.** Пусть на  $\mathbb{R}^s$  и  $\mathbb{R}^k$  заданы меры  $\mu$  и  $\lambda$ . Произведение этих мер называется такая мера  $\mu \times \lambda$  на  $\mathbb{R}^s \times \mathbb{R}^k$ , что

$$\forall A \in \mathcal{B}(\mathbb{R}^s), \ B \in \mathcal{B}(\mathbb{R}^k) \ \mu \times \lambda(A \times B) = \mu(A) \times \lambda(B)$$

Если  $\mu$  и  $\lambda$  - меры Лебега, то  $\mu \times \lambda$  - мера Лебега на  $\mathbb{R}^s \times \mathbb{R}^k = \mathbb{R}^{s+k}$ . Если  $\mu$  и  $\lambda$  - считающие меры, то  $\mu \times \lambda$  - «считающая мера на  $\mathbb{R}^{s+k}$ ».

**Теорема 6.3.** Если совместное распределение  $\xi$  и  $\eta$  в  $\mathbb{R}^s \times \mathbb{R}^k$  имеет плотность f(x,y) относительно меры  $\mu \times \lambda$ , то функция

$$f(x|y) = \begin{cases} \frac{f(x,y)}{q(y)}, & q(y) \neq 0\\ 0, & q(y) = 0 \end{cases}$$
 (14)

есть условная плотность вероятности  $\xi$  при условии  $\eta=y$ . Здесь

$$q(y) = \int_{\mathbb{R}^s} f(x, y)\mu(dx)$$
 (15)

есть плотность  $\eta$  относительно меры  $\lambda$ . Кроме того:

$$E(\xi|\eta=y) = \int_{\mathbb{R}^s} x f(x|y) \mu(dx) \, \partial n \, R \, P_{\eta} - n. \, s. \, y \tag{16}$$

#### Доказательство.

• Докажем (15).

$$P(\eta \in A) = P(\eta \in A, \xi \in \mathbb{R}^s) = \iint_{y \in A, x \in \mathbb{R}^s} f(x, y) \mu(dx) \lambda(dy) =$$

$$= \left| \text{по теореме Фубини} \right| = \int_{y \in A} \left( \int_{x \in \mathbb{R}^s} f(x, y) \mu(dx) \right) \lambda(dy)$$

Отсюда  $q(y) = \int_{\mathbb{D}^s} f(x,y) \mu(dx)$  есть плотность  $\eta$  относительно  $\lambda$ .

• Докажем (14). Т.к.  $f(x|y) \ge 0$ , f(x|y) - борелевская и  $\eta$  имеет плотность q(y), достаточно проверить (13). Для f(x|y) из (14) имеем:

$$\int_{y \in B, q(y) \neq 0} \left( \int_{x \in A} \frac{f(x, y)}{q(y)} \mu(dx) \right) q(y) \lambda(dy) = \iint_{x \in A, y \in B} f(x, y) \mu(dx) \lambda(dy) =$$

$$= P(\xi \in A, \eta \in B)$$

Значит, (13) выполянется, и f(x|y) из (14) есть условная плотность вер-ти.

• Докажем (16). Достаточно проверить (10) с  $E(\xi|\eta=y)$  из (16). Имеем:

$$\int_{y \in B} \left( \int_{\mathbb{R}^s} x f(x|y) \mu(dx) \right) q(y) \lambda(dy) = \int_{y \in B, q(y) \neq 0} \left( \int_{\mathbb{R}^s} x \frac{f(x,y)}{q(y)} \mu(dx) \right) q(y) \lambda(dy) = \iint_{x \in \mathbb{R}^s, y \in B} x f(x,y) \mu(dx) \lambda(dy) = E\left(\xi I(y \in B)\right) = \int_{(\omega: \eta(\omega) \in B)} \xi P(d\omega) \, \forall B \in \mathcal{B}(\mathbb{R}^k)$$

Т.е. (10) с  $E(\xi|\eta=y)$  из (16) верно и (16) доказано.

Пример 6.2. Пусть  $\xi$  и  $\eta$  дискретные векторы со значениями  $X=(x_1,x_2,\dots)$  и  $Y=(y_1,y_2,\dots)$ . Тогда  $f(x,y)=P(\xi=x,\eta=y),\ q(y)=P(\eta=y)$ . Для  $y\in Y$   $f(x|y)=\frac{P(\xi=x,\eta=y)}{P(\eta=y)}=P(\xi=x|\eta=y)$ . При  $y\not\in Y$  f(x|y)=0. Условное распределение:

$$P(\xi \in A | \eta = y) = \int_A f(x|y)\mu(dx) = \sum_{x_i \in A} P(\xi = x_i | \eta = y), \ y \in Y$$

При  $y \not\in Y$   $P(\xi \in A | \eta = y) = 0$ . Наконец:

$$E(\xi|y) = \int_{\mathbb{R}^s} x f(x|y)\mu(dx) = \sum_i x_i P(\xi = x_i|\eta = y), \ y \in Y$$

 $\Pi pu \ y \not\in Y \ E(\xi|y) = 0.$ 

**Пример 6.3.** Говорят, что вектор  $(\xi, \eta)$  имеет двумерный невырожденный гауссовский закон, если:

$$f(x,y) = \frac{1}{2\pi\sqrt{1 - \rho_{\xi\eta}^2}\sigma_{\xi}\sigma_{\eta}} exp \left\{ -\frac{1}{2(1 - \rho_{\xi\eta}^2)} \left[ \frac{(x - m_{\xi})^2}{\sigma_{\xi}^2} + \frac{(y - m_{\eta})^2}{\sigma_{\eta}^2} - \frac{(x - m_{\xi})(y - m_{\eta})}{\sigma_{\xi}\sigma_{\eta}} \right] \right\}$$

Здесь  $m_{\xi}, m_{\eta} \in \mathbb{R}; \ \sigma_{\xi}^{2}, \sigma_{\eta}^{2} > 0; \ |\rho_{\xi\eta}| < 1.$  Прямым вычислением показывается:

$$f_{\eta}(y) \sim N(m_{\eta}, \sigma_{\eta}^{2}), \ f_{\xi}(x) \sim N(m_{\xi}, \sigma_{\xi}^{2}), \ \rho_{\xi\eta} = corr(\xi, \eta) = \frac{cov(\xi, \eta)}{\sigma_{\xi}\sigma_{\eta}}$$

$$f(x|y) \sim N\left(E(\xi|\eta = y), D(\xi|\eta = y)\right),$$

$$e \partial e \ E(\xi|\eta = y) = m_{\xi} + \rho_{\xi\eta}(y - m_{\eta}), \ D(\xi|\eta = y) = (1 - \rho_{\xi\eta}^{2})\sigma_{\xi}^{2}$$

При  $\rho_{\xi\eta} = 0 \ \xi \ u \ \eta$  независимы!

## Достаточные статистики и оптимальные оценки

#### 7.1 Определение достаточной статистики

Пример 7.1. Пусть  $X = (X_1, ..., X_n)$  - н.о.р.,  $X_1 \sim Pois(\theta), \ \theta > 0$ . Т.е.:

$$f(y,\theta) = P_{\theta}(X_1 = y) = \frac{\theta^y}{y!}e^{-\theta}, \ y \in \mathcal{X} = \{0, 1, 2, \dots\}$$

Пусть  $T(X) = X_1 + \cdots + X_n$ . Тогда  $T(X) \sim Pois(n\theta)$ . Обозначим реализацию X через  $x = (x_1, \dots, x_n)$ . Тогда условное распределение:

$$P_{\theta}\left(X \in A | T(X) = t\right) = \sum_{x \in A} f_{\theta}(x|t), \ \text{ede } f_{\theta}(x|t) = \begin{cases} P_{\theta}\left(X = x | T(X) = t\right), \ t \in \mathcal{X} \\ 0, \ t \notin \mathcal{X} \end{cases}$$

Покажем, что условное распределение не зависит от  $\theta$  . Достаточно проверить, что  $f_{\theta}(x|t)$  не зависит от  $\theta$  . Дальше  $t \in \mathcal{X}$  .

a) Если 
$$T(x) = \sum_{i=1}^{n} x_i \neq t$$
, то  $f_{\theta}(x|t) = \frac{P(X = x, T(X) = t)}{P(T(X) = t)} = \emptyset$ 

b) Ecnu T(x) = t, mo:

$$f_{\theta}(x|t) = \frac{P(X = x, T(X) = T(x))}{P_{\theta}(T(X) = t)} = \frac{P_{\theta}(X = x)}{P_{\theta}(T(X) = t)} = \frac{\prod_{i=1}^{n} P_{\theta}(X_{i} = x_{i})}{P_{\theta}(T(X) = t)} = \frac{\theta^{\sum_{i=1}^{n} x_{i}} e^{-n\theta} t!}{x_{1}! \dots x_{n}! (n\theta)^{t} e^{-n\theta}} = \frac{t!}{x_{1}! \dots x_{n}!} \cdot \frac{1}{n^{t}} - \text{ne saeucum om } \theta$$

Покажем, что  $I^X(\theta) = I^T(\theta)$ 

$$i(\theta) = E_{\theta} \left( \underbrace{\frac{\partial}{\partial \theta} \left( \underbrace{\ln \frac{\theta^{X_1}}{X_1!} e^{-\theta}}_{=f(X_1, \theta)} \right)}^{2} \right) = E_{\theta} \left( \frac{X_1}{\theta} - 1 \right)^{2} = \frac{D_{\theta} X_1}{\theta^{2}} = \frac{\theta}{\theta^{2}} = \frac{1}{\theta}$$

Значит  $I^X(\theta) = ni(\theta) = \frac{n}{\theta}$ .

$$I^{T}(\theta) = E_{\theta} \left( \frac{\partial}{\partial \theta} \left( \ln \frac{(n\theta)^{T}}{T!} e^{-n\theta} \right) \right)^{2} = E_{\theta} \left( \frac{T}{\theta} - n \right)^{2} = \frac{D_{\theta}T}{\theta^{2}} = \frac{n\theta}{\theta^{2}} = \frac{n}{\theta}$$

 $T.e.\ nonyчаем,\ что\ I^X(\theta)=I^T(\theta).\ T.e.\ T(X)=X_1+\cdots+X_n\ coдержит\ всю информацию\ Фишера\ om\ \theta,\ что\ u\ X!.$ 

Пусть  $X = (X_1, \dots, X_n)$  - наблюдение,  $P_X \in \{P_\theta : \theta \in \Theta \subseteq \mathbb{R}^k\}$ . Скалярные или векторные функции T(X) называется статистиками.

Определение 7.1. Статистика T(X) называется **достаточной** для параметра  $\theta$ , если существует вариант условного распределения  $P_{\theta}(X \in A|T(X) = t)$ , не зависящий от  $\theta$  при любом t.

Замечание. Сделаем несколько комментариев:

- 1) Условное распределение  $P_{\theta}(X \in A|T(X) = t)$  можно интерпретировать как распределение X на поверхности T(x) = t. Тогда, если T(X) достаточная, то знание, где выборочная точка X находится на поверзности, не дает никакой дополнительной информации о параметре  $\theta$ . Т.е. вся информация о параметре  $\theta$  содержится в T(X). Для построения оценки  $\theta$  достаточно знать T(X), остальные данные, содержащиеся в X, бесполезны.
- 2) Если T(X) некоторая (необязательно достаточная) статистика, то при некоторых условиях регулярности (см. [А.А.Боровков. Матем. статист., §17, теорема 1])  $I^T(\theta) \leq I^X(\theta) \ \forall \theta \in \Theta$ , где  $I^T(\theta)$  и  $I^X(\theta)$   $(k \times k)$ -матрицы. Равенство здесь достигается тогда и только тогда, когда T достаточная. Это точный смысл слов: «достаточная статистика содержит всю информацию о параметре  $\theta$ », применительно к информации Фишера.

### 7.2 Критерий факторизации Неймана-Фишера

**Теорема 7.1** (критерий факторизации Неймана-Фишера). Пусть X имеет плотность  $p(x,\theta)$  относительно меры  $\mu$ . Тогда T(X) будет достаточной статистикой для  $\theta$  тогда и только тогда, когда

$$p(x,\theta) = \psi(T(x),\theta)\hbar(x)$$
 для  $\mu$ -n.в.  $x$  (1)

Здесь  $\psi \ge 0$  и  $\hbar \ge 0$  зависят только от своих аргументов,  $\psi(s,\theta)$  измерима по  $s, \, \hbar(x)$  измерима по x.

**Следствие 7.1.** Если T достаточная,  $u = \varphi(v)$  взаимооднозначна u измерима в обе стороны, то  $T_1 = \varphi(T)$  тоже достаточна.

Доказательство. 
$$\psi(T,\theta) = \psi(\varphi^{-1}(T_1),\theta)$$
. Значит, представление (1) неоднозначно!

Докажем теорему 7.1.

**Доказательство.** Докажем для дискретного X. Пусть X имеет носитель  $\mathcal{X} = (x_1, x_2, \dots)$ , не зависящий от  $\theta$ . Тогда  $\mathcal{X}_T = (T(x_1), T(x_2), \dots)$ . Условное распределение:

$$P_{\theta}(X \in A|T(X) = t) = \begin{cases} \sum_{x_i \in A} P_{\theta}(X = x_i|T(X) = t), \ t \in \mathcal{X}_t \\ 0, \ t \notin \mathcal{X}_t \end{cases}$$

Значит, условное распределение не зависит от  $\theta$  тогда и только тогда, когда условная вероятность  $P_{\theta}(X=x|T(X)=t)$  не зависит от  $\theta$  для всех  $t \in \mathcal{X}_t$ ,  $x \in \mathcal{X}$ . Но при  $x \in \mathcal{X}$ ,  $t \in \mathcal{X}_t$ :

$$P_{\theta}(X = x | T(X) = t) = \frac{P_{\theta}(X = x, T(X) = t)}{P_{\theta}(T(X) = t)} = \begin{cases} \frac{(X = x)}{P_{\theta}(T(X) = T(x))} \\ \frac{P_{\theta}(X = x, T(X) = T(x))}{P_{\theta}(T(X) = T(x))}, & T(x) = t \end{cases} = \begin{cases} \frac{P_{\theta}(X = x)}{P_{\theta}(T(X) = T(x))}, & T(x) = t \\ 0, & T(x) \neq t \end{cases}$$

Итак, T(X) - достаточная тогда и только тогда, когда

$$\frac{P_{\theta}(X=x)}{P_{\theta}(T(X)=T(x))}$$
 не зависит от  $\theta \ \forall x \in \mathcal{X}$  (2)

1) Пусть выполнено (1). Тогда, учитывая  $P_{\theta}(X=x) = p(x,\theta)$ , имеем:

$$\frac{P_{\theta}(X=x)}{P_{\theta}(T(X)=T(x))} = \frac{\psi(T(x),\theta)\hbar(x)}{\sum\limits_{y:T(y)=T(x)} p(y,\theta)} = \frac{\psi(T(x),\theta)\hbar(x)}{\sum\limits_{y:T(y)=T(x)} \psi(T(y),\theta)\hbar(y)} = \frac{\hbar(x)}{\sum\limits_{y:T(y)=T(x)} \hbar(y)}$$

Это выражение от  $\theta$  не зависит, т.е. T - достаточная (выполнено (2)).

2) Наоборот, пусть выполнено (2). Обозначая дробь в (2) через  $\hbar(x)$ , получим:

$$P_{\theta}(X=x) = \hbar(x)P_{\theta}(T(X)=T(x))$$
, T.e. 
$$p(x,\theta) = \hbar(x)\sum_{y:T(y)=T(x)}p(y,\theta) = \hbar(x)\psi(T(x),\theta)$$

#### Примеры

1) T(X) = X всегда достаточная статистика, ее называют тривиальной. Здесь  $\psi(T(x), \theta) = p(x, \theta), \ \hbar(x) = 1.$ 

2)  $X = (X_1, \dots, X_n), \{X_i\}$  - H.O.p.,  $X_1 \sim Pois(\theta), \theta > 0$ .

$$p(x,\theta) = \prod_{i=1}^{n} P_{\theta}(X_i = x_i) = \frac{\theta^{\sum x_i}}{x_1! \dots x_n!} e^{-n\theta}, \ x = (x_1, \dots, x_n)$$

$$T(X) = \sum_{i=1}^{n} X_i$$
 - достаточная,  $\psi(T(x), \theta) = \theta^{\sum x_i} e^{-n\theta}$ ,  $\hbar(x) = \frac{1}{x_1! \dots x_n!}$ .

3)  $X = (X_1, \dots, X_n), \{X_i\}$  - H.O.p.,  $X_1 \sim R(0, \theta), \ \theta > 0$ .

$$p(x,\theta) = \begin{cases} \frac{1}{\theta^n}, \ x_{(1)} \ge 1, \ x_{(n)} \le \theta \\ 0, \ \text{в противном случае} \end{cases} = \frac{1}{\theta^n} I(x_{(n)} \le \theta) \cdot I(x_{(1)} \ge 0)$$

Здесь  $\psi(T(x),\theta) = \frac{1}{\theta^n} I(x_{(n)} \le \theta)$  с  $T(x) = x_{(n)}, \ \hbar(x) = I(x_{(1)} \ge 0), \ x = 0$ 

 $(x_1,\ldots,x_n),\ x_{(1)}\leq x_{(2)}\leq \cdots \leq x_{(n)}.$  4)  $X=(X_1,\ldots,X_n),\ \{X_i\}$  - н.о.р.,  $X_1\sim N(\theta_1,\theta_2)$  с  $\theta_1\in\mathbb{R}^1$  и  $\theta_2>0$ . Здесь  $\theta = (\theta_1, \theta_2)^T$ .

Пусть 
$$T(X) = \left(\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2\right)^2$$
, тогда  $T(X)$  - достаточная статистика для

 $\theta$ . Действительно:

$$p(x,\theta) = \left(\frac{1}{\sqrt{2\pi\theta_2}}\right)^n e^{-\frac{1}{2\theta_2}\sum_{i=1}^n(x_i-\theta_1)^2} =$$

$$= \left(\frac{1}{\sqrt{2\pi\theta_2}}\right)^n exp \left\{-\frac{1}{2\theta_2} \left[\sum x_i^2 - 2\theta_1 \sum x_i + n\theta_1^2\right]\right\} = \psi(T(x),\theta)\hbar(x), \ \hbar(x) = 1$$
Пусть  $T_1 = (\overline{X}, S^2)$ , где  $\overline{X} = n^{-1}\sum_i X_i, \ S^2 = \frac{1}{n-1}\sum (X_i - \overline{X})^2$ . Поскольку 
$$S^2 = \frac{n}{n-1} \left(n^{-1}\sum X_i^2 - \overline{X}^2\right), \text{ то отображение } T(x) \leftrightarrow T_1(x) \text{ взаимноодно-}$$

значно и измеримо в обе стороны. Значит,  $T_1(x) = \left(\overline{X}, S^2\right)^T$  - достаточная статистика.

### 7.3 Теорема Блекуэла-Рао-Колмогорова

**Теорема 7.2** (Блекуэл-Рао-Колмогоров). Пусть T = T(X) - достаточная статистика, и  $\hat{\tau}_n$  - несмещенная оценка  $\tau(\theta) \in \mathbb{R}^m$  с конечной ковариационной матрицей. Тогда функция  $au_n^* := E_{\theta}(\hat{ au}_n|T)$  обладает свойствами:

- 1)  $\tau_n^*$  несмещенная оценка  $\tau(\theta)$  с конечной ковариационной матрицей. 2)  $\tau_n^*$  зависит от X лишь через T(X).
- 3)  $D_{\theta}\tau_{n}^{*} \leq D_{\theta}\hat{\tau}_{n}$  при всех  $\theta \in \Theta$ . Равенство возможно тогда и только тогда, когда  $\hat{\tau}_n = \tau_n^* P_{\theta}$ -п.н. при всех  $\theta \in \Theta$ .

**Доказательство.** Докажем 1) и 2). Если T - достаточная статистика, то борелевская функция  $m(t) = E_{\theta}(\hat{\tau}_n | T(x) = t \text{ от } \theta$  не зависит, т.к. условное распределение Xпри условии T(x)=t от  $\theta$  не зависит. Значит, и  $m(T(X))=E_{\theta}(\hat{\tau}_n|T(X))= au_n^*(X)$ от  $\theta$  не зависит (т.е.  $\tau_n^*$  - оценка), а от X зависит лишь через T(X).

Далее,  $E_{\theta}\tau_n^*=E_{\theta}E_{\theta}(\hat{\tau}_n|T)=E_{\theta}\hat{\tau}_n=\tau(\theta)$  при всех  $\theta$  в силу формулы полной вероятности и несмещенности  $\hat{\tau}_n(\theta)$ .

Наконец, если  $E_{\theta}\hat{\tau}_{in}^2 < \infty$ , то (см. доказательство утверждения 6.7):

$$E_{\theta}\left(\tau_{in}^{*}\right)^{2} = E_{\theta}\left(E_{\theta}\left(\hat{\tau}_{in}|T\right)\right)^{2} \leq E_{\theta}E_{\theta}\left(\hat{\tau}_{in}^{2}|T\right) = E_{\theta}\hat{\tau}_{in}^{2} < \infty$$

(использовали неравенство Коши-Буняковского)

Докажем 3). Достаточно проверить, что:

$$\alpha^T D_{\theta} \tau_n^* \alpha \leq \alpha^T D_{\theta} \hat{\tau}_n \alpha \ \forall \alpha \in \mathbb{R}^m, \ \forall \theta \in \Theta$$

Но также мы имеем:

$$\alpha^T D_{\theta}^* \alpha = \alpha^T E(\tau^* - \tau) (\tau^* - \tau)^T \alpha = E_{\theta} (\alpha^T \tau_n^* - \alpha^T \tau)^2 = D_{\theta} (\alpha^T \tau_n^*)$$

Значит, достаточно проверить, что:

$$D_{\theta}(\alpha^T \tau_n^*) \le D_{\theta}(\alpha^T \hat{\tau}_n) \ \forall \alpha \in \mathbb{R}^m, \ \forall \theta \in \Theta$$

Но также имеем:

$$D(\alpha^t \hat{\tau}_n) = E_{\theta} \left( \alpha^T \hat{\tau}_n - \alpha^T \tau - \alpha^t \tau_n^* + \alpha^T \tau_n^* \right) =$$

$$= E_{\theta} \left( \alpha^T \hat{\tau}_n - \alpha^T \tau_n^* \right)^2 + E_{\theta} \left( \alpha^T \tau_n^* - \alpha^T \tau \right)^2 + 2E_{\theta} \left( \alpha^T \hat{\tau}_n - \alpha^T \tau_n^* \right) \left( \alpha^T \tau_n^* - \alpha^T \tau \right)$$

Заметим, что:

$$2E_{\theta}E_{\theta}\left(\left(\alpha^{T}\hat{\tau}_{n}-\alpha^{T}\tau_{n}^{*}\right)\left(\alpha^{T}\tau_{n}^{*}-\alpha^{T}\tau\right)|T\right)=$$

$$=2E_{\theta}\left(\left(\alpha^{T}\hat{\tau}_{n}-\alpha^{T}\tau_{n}^{*}\right)\underbrace{E_{\theta}\left(\alpha^{T}\tau_{n}^{*}-\alpha^{T}\tau|T\right)}_{=0}\right)=0$$

Значит:

$$D(\alpha^t \hat{\tau}_n) = D_{\theta}(\alpha^T \tau_n^*) + E_{\theta} \left(\alpha^T \hat{\tau}_n - \alpha^T \tau_n^*\right)^2$$

Следовательно,  $D(\alpha^t \hat{\tau}_n) \geq D_{\theta}(\alpha^T \tau_n^*)$  и равенство возможно, если  $\alpha^T \hat{\tau}_n = \alpha^T \tau_n^*$   $P_{\theta}$ -п.н.  $\forall \theta \in \Theta$ . Это равносильно  $\hat{\tau}_n = \tau_n^*$   $P_{\theta}$ -п.н.  $\forall \theta \in \Theta$ .

Следствие 7.2. Пусть T - достаточная статистика, и существует оптимальная оценка  $\hat{\tau}_n(X)$  для функции  $\tau(\theta) \in \mathbb{R}^m$ . Тогда  $\hat{\tau}_n(X) = \varphi(T)$   $P_{\theta}$ -п.н. для некоторой борелевской функции  $\varphi$ .

**Доказательство.** Если  $\hat{\tau}_n$  - оптимальная, то и  $\tau_n^* = E_{\theta}(\hat{\tau}_n | T)$  тоже. Тогда  $D_{\theta}\tau_n^* = D_{\theta}\hat{\tau}_n \ \forall \theta \in \Theta$ . Значит, в силу пункта 3) теоремы 7.2 получаем, что  $\tau_n^* = \hat{\tau}_n \ P_{\theta}$ -п.н., но  $\tau_n^* = \varphi(T)$ .

Итак, если T - достаточная статистика, то оптимальную оценку  $\hat{\tau}_n = \varphi(T)$  функции  $\tau(\theta) \in \mathbb{R}^m$  можно искать как решения уравнения несмещенности:

$$E_{\theta}\varphi(T) = \tau(\theta) \ \forall \theta \in \Theta \tag{3}$$

Определение 7.2. Статистика T(X) называется **полной**, если из равенства  $E_{\theta}\varphi(T(X)) = 0 \ \forall \theta \in \Theta \subseteq \mathbb{R}^k$  следует, что  $\varphi(T(X)) = 0$  п.н. по  $P_{\theta}$ -вероятности  $\forall \theta \in \Theta$ .

Пусть T(X) имеет плотность  $q(x,\theta)$  по мере  $\mu$ . Тогда  $\varphi(T(X))=0$   $P_{\theta}$ -п.н. тогда и только тогда, когда

$$\forall \theta \in \Theta \ 0 = P_{\theta} \left( \varphi(T(X)) \neq 0 \right) = E_{\theta} I \left( \varphi(T(X)) \neq 0 \right) = \int_{N_q^{\theta}} I(\varphi(s) \neq 0) q(s, \theta) \mu(ds)$$

Отсюда следует, что  $I(\varphi(s) \neq 0) = 0$   $\mu$ -п.в. на  $N_q^{\theta}$ , т.е.:

$$\varphi(s) = 0$$
  $\mu$ -п.в. на  $N_q^{\theta}$  (4)

- 1) Пусть T(X) дискретна с множеством значений  $\mathcal{X}_t^{\theta}$ . Тогда (4) (т.е. полнота) эквивалентна условию  $\varphi(s)=0 \ \forall s\in \mathcal{X}_t^{\theta}$ . Т.е.  $\varphi(s)$  равна нулю на множетсве значений T.
- 2) Пусть T(X) абсолютно непрерывна по мере Лебега. Тогда (4) эквивалентна условию  $\varphi(s) = 0$  п.в. по мере Лебега на  $N_q^{\theta} \ \forall \theta \in \Theta$ .

# 7.4 Оптимальные оценки при полной статистике и лемма Лемана-Шеффе

Лемма 7.1 (об оптимальных оценках при наличии полной достаточной статистики). Пусть T - полная достаточная для  $\theta$  статистика. Тогда:

- 1) Если уравнение несмещенности (3) имеет решение, то оно  $P_{\theta}$ -п.н. единственно. Если это решение имеет конечную ковариационную матрицу, то это опатимальная оценка  $\tau(\theta)$ .
- 2) Если уравнение несмещенности (3) не имеет решений, то нет оптимальных оценков для  $\tau(\theta)$ . Более того, нет даже несмещенных оценок  $\tau(\theta)$ .
- 3) Если  $\hat{\tau}_n$  несмещенная оценка  $\tau(\theta)$  с конечной ковариационной матрицей, то  $\tau_n^* := E_{\theta}(\hat{\tau}_n | T)$  есть оптимальная оценка для  $\tau(\theta)$ .

Доказательство. Докажем утверждения по пунктам.

1) Пусть  $\varphi(T)$  и  $\varphi_1(T)$  - два решения уравнения (3). Тогда  $E_{\theta}\left[\varphi(T) - \varphi_1(T)\right] = 0 \ \forall \theta \in \Theta$ . В силу полноты статистики  $T \ \varphi(T) = \varphi_1(T) \ P_{\theta}$ -п.н.  $\forall \theta \in \Theta$ . Т.е. решение (3)  $P_{\theta}$ -п.н. единственно, но если решение одно (т.е. есть одна

- несмещенная оценка вида  $\varphi(T)$ ) и имеет конечную ковариацию, то это и есть оптимальная оценка.
- 2) Если бы существовала несмещенная оценка  $\hat{\tau}_n(X)$ , то  $\varphi(T) := E_{\theta}(\hat{\tau}_n|T)$  тоже была бы несмещенной оценкой  $\tau(\theta)$ , т.к.  $E_{\theta}\varphi(T) = E_{\theta}E_{\theta}(\hat{\tau}_n|T) = E_{\theta}\hat{\tau}_n = \tau(\theta) \ \forall \theta \in \Theta$ . Но тогда  $\varphi(T)$  решение (3) получаем противоречие.
- 3)  $E_{\theta}\tau_n^* = E_{\theta}E_{\theta}(\hat{\tau}_n|T) = E_{\theta}\hat{\tau}_n = \tau(\theta)$ . Т.е.  $\tau_n^* = \tau_n^*(T)$  удовлетворяет (3) и имеет конечную ковариационную матрицу. Осталось применить пункт 1).

Лемма 7.2 (Лемана-Шеффе). Пусть T - полная достаточная статистика, а борелевская функция g(T) имеет конечную ковариационную матрицу. Тогда g(T) есть оценка своего математического ожидания  $\tau(\theta) = E_{\theta}g(T)$ .

Утверждение леммы 7.2 следует из пункта 1) леммы 7.1, т.к. g(T) удовлетворяет уравнению несмещенности (3).

Пример 7.2. Пусть  $X = (X_1, ..., X_n)$ ,  $\{X_i\}$  - н.о.р.,  $X_1 \sim Pois(\theta)$ ,  $\theta > 0$ . Указать полную достаточную статистику и найти оптимальные оценки функций  $\tau_1(\theta) = \theta^2$ ,  $\tau_2(\theta) = \theta$ .

**Решение.** Мы знаем, что  $T(X) = \sum_{i=1}^{n} X_i$  - достаточная статистика,  $T(X) \sim Pois(n\theta)$ .

- Проверим полноту T(X). Если  $E_{\theta}\varphi(T) = 0 \ \forall \theta > 0$ , то ёто эквивалентно условию  $\sum_{k\geq 0} \varphi(k) \frac{(n\theta)^k}{k!} e^{-n\theta} = 0 \ \forall \theta > 0$ . Т.е.  $\sum_{k\geq 0} \frac{\varphi(k) n^k}{k!} \theta^k = 0 \ \forall \theta > 0$ . Но если степенной ряд на невырожденном множетсве равен тождественно нулю, то его коэффициенты равны нулю, т.е.  $\frac{\varphi(k) n^k}{k!} = 0$ ,  $\varphi(k) = 0$ . Таким образом, полнота доказана.
- Уравнение несмещенности для  $\tau_1(\theta)$ :

$$E_{\theta}\varphi(T) = \tau_1(\theta), \sum_{k \ge 0} \varphi(k) \frac{(n\theta)^k}{k!} e^{-n\theta} = \theta^2$$
$$\sum_{k \ge 0} \frac{\varphi(k)n^k}{k!} \theta^k = \theta^2 e^{n\theta} = \sum_{s \ge 0} \frac{n^s}{k!} \theta^{s+2} = \sum_{l \ge 2} \frac{n^{l-2}}{(l-2)!} \theta^l \ \forall \theta > 0$$

Значит, 
$$\varphi(0)=\varphi(1)=0$$
. Для  $k\geq 2$   $\frac{\varphi(k)n^k}{k!}=\frac{n^{k-2}}{(k-2)!}$ , т.е.  $\varphi(k)=\frac{k(k-1)}{n^2}$ ,

 $\varphi(T)=rac{T(T-1)}{n^2}$ . Очевидно, что  $E_{ heta} arphi^2(T)<\infty$ , т.е. arphi(T) - оптимальная оценка  $arphi_1( heta)$ .

•  $\hat{\tau}_n(X) = X_1$  - несмещенная оценка для  $\tau_2(\theta) = \theta$ . Оптимальная оценка для  $\tau_2(\theta) = \theta$  есть  $\varphi(T) = E_{\theta}(X_1 | \sum X_i) = \overline{X}$ . Т.к.  $D_{\theta}\overline{X} = \frac{\theta}{n} < \infty$ , то  $\overline{X}$  - оптимальная оценка для  $\tau_2(\theta) = \theta$ .

Пример 7.3.  $X = (X_1, \dots, X_n), \{X_i\}$  - н.о.р.,  $X_1 \sim R(0, \theta), \theta > 0$ . Построить оптимальную оценку  $\tau(\theta) = \theta$ .

**Решение.** Знаем, что  $X_{(n)} = T(X)$  - достаточная статистика. Здесь  $X_{(1)} \le X_{(2)} \le \cdots \le X_{(n)}$  - вариационный ряд.

• Докажем, что  $T(X) = X_{(n)}$  - полная статистика.

$$F_T(x) = P_{\theta}(X_{(n)} \le x) = P_{\theta}(X_1 \le x, \dots, X_n \le x) =$$

$$= \prod_{i=1}^n P(X_i \le x) = \left(\frac{x}{\theta}\right)^n \text{ при } 0 \le x \le \theta$$

Плотность вероятности (существует!):

$$f_T(x,\theta) = \begin{cases} F_t'(x,\theta) = \frac{nx^{n-1}}{\theta^n} \text{ при } 0 \le x \le \theta \\ 0, \text{ при прочих } x \end{cases}$$

Если  $E_{\theta}\varphi(T)=\int\limits_{0}^{\theta}\varphi(x)f_{T}(x,\theta)dx=\int\limits_{0}^{\theta}\varphi(x)\frac{nx^{n-1}}{\theta^{n}}dx=0\ \forall\theta>0,$  то  $\varphi(\theta)\theta^{n-1}=0$  п.в., т.е.  $\varphi(\theta)=0$  п.в. для  $\theta>0.$  Таким образом, статистика  $T(X)=X_{(n)}$  - полная!

• Уравнение несмещенности для  $\tau(\theta) = \theta$  имеет вид  $E_{\theta}\varphi(T) = \int_{0}^{\theta} \varphi(x) \frac{nx^{n-1}}{\theta^n} dx = \theta$ , т.е.  $\int_{0}^{\theta} \varphi(x) nx^{n-1} dx = \theta^{n+1}$ ,  $\varphi(\theta)\theta^{n-1} = (n+1)\theta^n$  п.в. Отсюда получаем:  $\varphi(X_{(n)}) = \frac{n+1}{n} X_{(n)}$ .



#### Гауссовская линейная модель

Определение 8.1. Случайный вектор  $\xi = (\xi_1, \dots, \xi_n)^T$  имеет **гауссовское** (нормальное) распределение, если его характеристическая функция имеет вид:

$$\varphi_{\xi}(t) = Ee^{it^T\xi} = e^{it^Ta - \frac{1}{2}t^TKt}$$

где  $t = (t_1, \ldots, t_n)^T \in \mathbb{R}^n$ ,  $a = (a_1, \ldots, a_n)^T$ ,  $K = (k_{ij})$  c  $i, j = 1, \ldots, n$ ,  $k_{ij} \in \mathbb{R}$ ,  $K = K^T$ ,  $K \geqslant 0$ ,  $i^2 = -1$ . Обозначение:  $\xi \sim N(a, K)$ .

### 8.1 Свойства Гауссовского закона

- 1)  $\xi_j \sim N(a_j, k_{jj})$  Доказательство. Действительно,  $\varphi_{\xi_j}(t_j) = \varphi(0, \dots, t_j, 0, \dots, 0) = e^{it_j a_j \frac{1}{2}t_j^2 k_{jj}}$ , а это характеристическая функция  $N(a_j, k_{jj})$
- 2)  $k_{ij} = Cov(\xi_i, \xi_j), \ k_{ii} = D\xi_i, \ K$  ковариационная матрица  $\xi$ . Доказательство. Из свойства 1) следует, что  $a = E\xi$  и, если  $\tilde{\xi} = \xi a$ , то  $E\tilde{\xi} = 0.$   $\varphi_{\tilde{\xi}}(t) = e^{-it^T a} \varphi_{\xi}(t) = e^{-\frac{1}{2}t^T K t}$ . Отсюда имеем:

$$E\tilde{\xi}_i\tilde{\xi}_j = Cov(\xi_i, \xi_j) = -\frac{\partial^2 \varphi_{\tilde{\xi}}(0)}{\partial t_i \partial t_j} = k_{ij}$$

3) Если  $\xi \sim N(a,K)$ , то  $\{\xi_1,\ldots,\xi_n\}$  независимы тогда и только тогда, когда K – диагональная матрица.

**Доказательство.** K – диагональная тогда и только тогда, когда:

$$\varphi_{\xi}(t) = e^{it^T a - \frac{1}{2} \sum_{t=1}^{n} k_{ii} t_i^2} = \prod_{i=1}^{n} e^{it_i a_i - \frac{1}{2} k_{ii} t_i^2} = \prod_{i=1}^{n} \varphi_{\xi_i}(t)$$

Это есть необходимое и достаточное условие независимости.

Следствие 8.1. Если  $\eta \sim N(0, E_n)$ , то  $\{\eta_1, \dots, \eta_n\}$  – н.о.р. N(0, 1) сл.в.

4) Если  $\xi \sim N(a,K)$ , а  $\eta = A\xi + b$ , где A – матрица размера  $(m \times n)$ ,  $b = (b_1,\ldots,b_m)^T \in \mathbb{R}^m$ , то  $\eta \sim N(Aa+b,AKA^T)$  Доказательство.

$$\varphi_{\eta}(s) = E e^{is^T (A\xi+b)} = e^{is^T b} E e^{i(A^T s)^T \xi} = e^{is^T b} e^{i(A^T s)^T a - \frac{1}{2}(A^T s)^T K(A^T s)} =$$

$$= e^{is^T (Aa+b) - \frac{1}{2} s^T (AKA^T) s} - \text{х.ф., соответствующая сл.в.} \sim N(Aa+b, AKA^T)$$

Пусть C такая ортогональная матрица ( $CC^T = E_n$ , т.е. стр. орт.), что

$$CKC^T = D$$
, где  $D = \begin{pmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n \end{pmatrix}$ ,  $d_i \geqslant 0$  — собственные числа  $K$ .

Тогда 
$$K=C^TDC$$
. Положим  $D^{\frac{1}{2}}:=\begin{pmatrix} \sqrt{d_1} & 0 & \dots & 0 \\ 0 & \sqrt{d_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sqrt{d_n} \end{pmatrix}, \ K^{\frac{1}{2}}:=C^TD^{\frac{1}{2}}C.$ 

Тогда имеем следующие свойства:

- $K^{\frac{1}{2}} = (K^{\frac{1}{2}})^T$ ;
- $K^{\frac{1}{2}}K^{\frac{1}{2}} = K;$
- Если K > 0, то  $K^{\frac{1}{2}}KK^{-\frac{1}{2}} = E_n$ ;
- $det(K^{\frac{1}{2}}) = (detK)^{\frac{1}{2}}$
- 5) Если  $\xi \sim N(a,K)$  и K>0, то существует плотность вероятности по мере Лебега  $p_{\xi}(x)=\frac{1}{(2\pi)^{\frac{n}{2}}det(K^{\frac{1}{2}})}e^{-\frac{1}{2}(x-a)^TK^{-1}(x-a)}.$

Доказательство. Положим  $\eta := K^{-\frac{1}{2}}(\xi - a)$ . Тогда  $E\eta = K^{-\frac{1}{2}}E(\xi - a) = 0$ ,  $E\eta\eta^T = K^{-\frac{1}{2}}E(\xi - a)(\xi - a)^TK^{-\frac{1}{2}} = K^{-\frac{1}{2}}KK^{-\frac{1}{2}} = E_n$ . В силу свойства 2) имеем  $\eta_n \sim N(0, E_n)$ , а также:

$$\xi = K^{\frac{1}{2}}\eta + a \tag{1}$$

**Задача 8.1.** Если Z и Y – случайные векторы размерности n, A – матрица  $(n \times n)$  такая, что  $det(A) \neq 0$ , Z = AY + a, то:

$$p_z = \frac{1}{\det(A)} p_y(A^{-1}(x-a))$$
 (2)

Если  $\eta \sim N(0, E_n)$ , то

$$p_{\eta}(x) = \prod_{i=1}^{n} p_{\eta_i}(x_i) = \frac{1}{(2\pi)^{\frac{1}{2}}} e^{-\frac{1}{2} \sum_{i=1}^{n} x_i^2} = \frac{1}{(2\pi)^{\frac{n}{2}}} e^{-\frac{1}{2}x^T x}$$

. В силу (1), (2) имеем

$$p_{\xi}(x) = \frac{1}{(2\pi)^{\frac{n}{2}} det(K^{\frac{1}{2}})} p_{\eta}(K^{-\frac{1}{2}}(x-a)) = \frac{1}{(2\pi)^{\frac{n}{2}} (detK)^{\frac{1}{2}}} e^{-\frac{1}{2}(x-a)^{T}K^{-1}(x-a)}$$

**Напоминание 8.1.** Из раздела 4. Если  $\{\xi_1,\ldots,\xi_k\}$  — н.о.р. N(0,1) сл.в., то  $\eta_k=\xi_1^2+\ldots+\xi_k^2$  имеет распределение  $\chi^2$  Пирсона (хи-квадрат Пирсона) с k степенями свободы:  $\eta_k\sim\chi^2(k)$ . Тогда  $E\eta_k=k,\ D\eta_k=2k$ .

Лемма 8.1. Пусть  $\xi \sim N(0, \sigma^2 E_n), \sigma^2 > 0$ . Тогда:

1) если C – ортогональная матрица размера  $n \times n$ , а  $\eta = C\xi$ , то:

$$\eta \sim N(0, \sigma^2 E_n), \text{ m.e. } \xi \stackrel{d}{=} \eta$$

2) если  $h_1$ ,  $h_2$  – линейные подпространства  $\mathbb{R}^n$ ,  $h_1 \perp h_2$ , то  $\{proj_{h_i}\xi\}$ , i=1,2 являются независимыми гауссовскими векторами:

$$E \ proj_{h_i}\xi = 0, \ \frac{1}{\sigma^2}|proj_{h_i}\xi|^2 \sim \chi^2(dim \ h_i)$$

**Доказательство.** Докажем по пунктам.

- 1)  $E\eta = EC\xi = CE\xi = 0$ ,  $E\eta\eta^T = C(\sigma^2 E_n)C^T = \sigma^2 E_n$ . Значит,  $\eta \sim N(0, \sigma^2 E_n)$  по свойству 4.
- 2) Выберем в  $\mathbb{R}^n$  ортонормированный базис  $\underbrace{e_1, \dots, e_p, e_{p+1}, \dots, e_{p+m}, \dots, e_n}_{\text{базис } h_1}$  гда  $dim(h_1) = p$ . Имеем:

$$proj_{h_1}\xi = \sum_{i=1}^{p} \underbrace{(\xi^T e_i)}_{=\eta_i} e_i = \sum_{i=1}^{p} \eta_i e_i$$
(3)



Действительно,  $proj_{h_1}\xi=\sum_{i=1}^pb_ie_i$ . Также  $(\xi-proj_{h_1}\xi^Te_j=0)$  для  $j=1,\ldots,p,$   $\xi^Te_j=b_j=\eta_j,$  тогда (3) верно. Аналогично получаем:

$$proj_{h_2}\xi = \sum_{i=n+1}^{p+m} \eta_i e_i \tag{4}$$

Если  $\eta=(\eta_1,\ldots,\eta_n)^T=(e_1^T,\ldots,e_n^T)^T\xi$ , то  $(e_1^T,\ldots,e_n^T)^T$  – ортонормированная матрица. В силу пункта 1) этой леммы  $\eta\sim N(0,\sigma^2E_n)$ . По (3), (4)  $proj_{h_1}\xi$  и  $proj_{h_2}\xi$  независимы, так как определяются  $\eta_1,\ldots,\eta_p$  и  $\eta_{p+1},\ldots,\eta_{p+m}$  соответственно.

Очевидно, что  $\{proj_{h_i}\xi\}$ , i=1,2 – гауссовские векторы, т.е. получаются линейным преобразованием гауссовского вектора  $\eta$ . Например:

$$proj_{h_1}\xi = \underbrace{(e_1, \dots, e_p)}_{\text{матрица }(n \times p)} (\eta_1, \dots, \eta_p)^T$$

Так же очевидно, что  $E\ proj_{h_1}\xi=0$ , т.к.  $E\eta=0$ . Наконец:

$$\frac{1}{\sigma^2}|proj_{h_1}\xi|^2 = \frac{1}{\sigma^2} \left| \sum_{i=1}^p \eta_i e_i \right|^2 = \frac{1}{\sigma^2} \sum_{i=1}^p \eta_i^2 = \sum_{i=1}^p \left( \frac{\eta_i}{\sigma} \right)^2 \sim \chi^2(p = dim(h_1))$$

#### 8.2 Линейная Гауссовская модель.

 $X \sim N(l, \sigma^2 E_n), \ \sigma^2 > 0, \sigma^2$  — неизвестно,  $l \in h$  — неизвестно. h — известное линейное подпространство  $\mathbb{R}^n, \ dimh = p < n$ . Если  $\varepsilon := x - l$ , то:

$$X = l + \varepsilon, \ \varepsilon \sim N(0, \sigma^2 E_n), l \in h$$
 (5)

Неизвестный параметр  $\theta \in \mathbb{R}^{n+1}$ ,  $\theta^T = (l^T, \sigma^2)$ . Пусть  $h^{\perp}$  – ортогональное дополнение к h в  $\mathbb{R}^n$ , то есть множество векторов из  $\mathbb{R}^n$ , перпендикулярных h. Тогда  $dim(h^{\perp}) = n - p$ , и имеем:

$$\forall x \in \mathbb{R}^n \ x = proj_h x + proj_{h^{\perp}} \tag{6}$$

Найдем достаточную статистику для  $\theta$ . Плотность X засчет (5), (6) есть

$$p(x,l,\sigma^2) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n e^{-\frac{1}{2\sigma^2}|x-l|^2} \stackrel{\text{в силу}(6)}{=} \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n e^{-\frac{1}{2\sigma^2}|(proj_hx-l)+proj_{h^{\perp}}|^2} = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n e^{-\frac{1}{2\sigma^2}(|proj_hx-l|^2+|proj_{h^{\perp}}|^2)} = \psi(T(x),\theta)h(x)$$

где  $T(x) = ((proj_h x)^T, |proj_{h^{\perp}}|^2)^T, h(x) = 1$ . В силу критерия факторизации T(x) – достаточная статистика. Примем без доказательства, что это – полная статистика.

- 1) Оптимальная оценка l.  $proj_hX = proj_hl = proj_h\varepsilon$ , тогда E  $proj_hX = l + E$   $proj_h\varepsilon = l$  в силу пункта 2) леммы 7.1. Итак,  $proj_hX$  есть функция полной достаточной статистики  $Eproj_hX = l$ . По лемме 7.2 Лемана-Шеффе  $l^{\hat{n}} := proj_hX$  оптимальная оценка l.
- 2) Оптимаьная оценка  $\sigma^2$ .  $proj_{h^{\perp}}X = proj_{h^{\perp}}l + proj_{h^{\perp}}\varepsilon = proj_{h^{\perp}}\varepsilon$ . В силу пункта 2) леммы 7.1 имеем:

$$\frac{1}{\sigma^2}|proj_{h^{\perp}}X|^2 = \frac{1}{\sigma^2}|proj_{h^{\perp}}\varepsilon|^2 \sim \chi^2(n-p)$$
 (7)

Значит,  $E\frac{1}{\sigma^2}|proj_{h^{\perp}}\varepsilon|^2=n-p,\ E\frac{1}{n-p}|proj_{h^{\perp}}X|^2=\sigma^2$ . В силу леммы 7.2 Лемана-Шеффе  $\hat{s_n}^2:=\frac{1}{n-p}|proj_{h^{\perp}}X|^2$  – оптимальная оценка  $\sigma^2$ . Кроме того, по (7) имеем:

$$\frac{(n-p)\hat{s_n}^2}{\sigma^2} = \frac{1}{\sigma^2} |proj_{h^{\perp}} X|^2 \sim \chi^2(n-p)$$
 (8)

3) Независимость  $\hat{l_n}$  и  $\hat{s_n}^2$ . В силу пункта 2) леммы 7.1  $proj_h X = l + proj_h \varepsilon$  и  $proj_{h^{\perp}} X = proj_{h^{\perp}} \varepsilon$  независимы, значит  $\hat{l_n}$  и  $\hat{s_n}^2$  независимы.

В силу леммы 7.2 Лемана-Шеффе  $(\hat{l_n}^T, \hat{s_n}^2)^T$  – оптимальная оценка вектора  $\theta = (l^T, \sigma^2)^T$ .

$$\hat{l_n} = proj_h X = \underset{Y \in h}{argmin} |X - Y| = \underset{Y \in h}{argmin} |X - Y|^2 = \underset{Y \in h}{argmin} \sum_{i=1}^n (X_i - Y_i)^2$$

Поэтому  $\hat{l_n}$  и  $\hat{s_n}^2 = \frac{1}{n-p}|X - proj_h X|^2$  называются **оценками по методу наименьших квадратов**.



Выберем в h базис, пусть столбцы матрицы размера  $(n \times p)$   $Z = \{z_{ij}\}, i = 1, \ldots, n, j = 1, \ldots, p$  будут базисными векторами. Тогда для некоторого  $c = (c_1, \ldots, c_p)^T$  имеем l = Zc, и линейная модель (5) получает вид:

$$X = Zc + \varepsilon \tag{9}$$

Если  $z_i^T$  – строки матрицы Z, то (9) эквивалентно:

$$X_i = z_i^T c + \varepsilon_i, \ i = 1, \dots, n \tag{10}$$

Соотношения (9) и (10) задают гауссовскую линейную регрессию, это – еще одна форма записи линейной модели (5).

В (9) неизвестный параметр  $\theta$ ,  $\theta^T = (c^T, \sigma^2), dim(\theta) = p + 1$ . Матрица Z – регрессионная матрица, она известна. X – наблюдение.  $Hado\ ouehumb\ \theta$ , то есть  $\sigma^2$ .

Определение 8.2. Оценкой наименьших квадратов  $(\mathbf{n}.\mathbf{k}.)$   $\hat{c_n}$  вектора cназывается решение задачи  $|X-Z\alpha|^2=\sum\limits_{i=1}^n(X_i-z_i^T\alpha)^2\longrightarrow \min_{\alpha\in\mathbb{R}^p},$  то есть  $\hat{c_n}=$  $argmin|X - Z\alpha|$ .

Пусть h – линейное пространство столбцов Z, то есть столбцы Z – базисные векторы h. Ясно, что  $|X-Z\alpha|^2$  достигает минимума при  $\alpha=\hat{c_n}$  таком, что  $X - Z\hat{c_n} \perp h$ , то есть  $Z^T(X - Z\hat{c_n}) = 0$ ,  $Z^TX = Z^TZ\hat{c_n}$ , тогда получаем:

$$\hat{c_n} = (Z^T Z)^{-1} Z^T X \tag{11}$$



Oтметим еще раз:  $Z\hat{c_n}=proj_hX$ . Матрица  $Z^TZ$  в (11) невырождена, так как при  $\alpha \neq 0$   $\alpha^T Z^T Z \alpha = |Z\alpha|^2 > 0$  из-за независимости столбцов Z.

Оценка н.к. для  $\sigma^2$  :  $\hat{s_n}^2 = \frac{1}{n-n} |X - Z\hat{c_n}|^2$ . Разумеется:

$$\hat{s_n}^2 = \frac{1}{n-p} \sum_{i=1}^n (x_i - z_i^T \hat{c_n})^2, \ \hat{s_n}^2 = \frac{1}{n-p} |proj_{h^{\perp}} X|^2$$

Определение 8.3.  $Bектор X - Z\hat{c_n} = (\hat{c_1}, \dots, \hat{c_n})^T$  называют вектором остатью, а  $\hat{s_n}^2$  – остаточной дисперсией.

Теорема 8.1. Имеем несколько утверждений:

- 1)  $\hat{c_n} \sim N(c, \sigma^2(Z^TZ)^{-1}), \frac{(n-p)\hat{s_n}^2}{\sigma^2} \sim \chi^2(n-p), E_{c,\sigma^2}\hat{s_n}^2 = \sigma^2, D_{c,\sigma^2}\hat{s_n}^2 =$  $\frac{2\sigma^4}{n-p}.$  2)  $\hat{c_n}$  u  $\hat{s_n}^2$  независимы.

3) Оценки  $\hat{c_n}$  и  $\hat{s_n}^2$  – оптимальные оценки c и  $\sigma^2$  соответственно.

#### Доказательство.

1) Распределение  $\hat{c_n}$ . В силу (11)  $\hat{c_n}$  есть линейное преобразование гауссовского вектора X. В силу свойства 4 для гауссовких векторов,  $\hat{c_n}$  – гауссовский вектор.

$$E_{c,\sigma^2}\hat{c_n} = E_{c,\sigma^2}(Z^TZ)^{-1}Z^TX = (Z^TZ)^{-1}Z^TE_{c,\sigma^2}X = (Z^TZ)^{-1}Z^TZc = c$$

То есть  $\hat{c_n}$  – несмещенная оценка.

$$D_{c,\sigma^2}\hat{c_n} = E_{c,\sigma^2}(\hat{c_n} - c)(\hat{c_n} - c)^T = E_{c,\sigma^2}(Z^T Z)^{-1} Z^T (\varepsilon \varepsilon^T) Z (Z^T Z)^{-1} =$$

$$= (Z^T Z)^{-1} Z^T (\sigma^2 E_n) Z (Z^T Z)^{-1} = \sigma^2 (Z^T Z)^{-1}$$

Итак,  $\hat{c_n} \sim N(0, \sigma^2(Z^TZ)^{-1}).$ 

Распределение  $\hat{s_n}^2$ . Модель (9) эквивалентна  $X=l+\varepsilon$ , где  $l=Zc,\ l\in$ 

h, h – пространство столбцов Z. В силу (13) и (8)  $\frac{(n-p)\hat{s_n}^2}{\sigma^2} \sim \chi^2(n-p)$ .

Значит,  $E_{c,\sigma^2} \hat{s_n}^2 = \frac{\sigma^2}{n-p} \eta_{n-p} = \sigma^2$ . То есть  $\hat{s_n}^2$  – несмещенная оценка  $\sigma^2$ .

2) В силу (12) имеем:

$$\hat{c_n} = (Z^T Z)^{-1} Z^T Z \hat{c_n} = (Z^T Z)^{-1} Z^T proj_h X$$
(14)

Т.к.  $proj_hX$  и  $proj_{h^{\perp}}X$  независимы, то  $\hat{c_n}$  и  $\hat{s_n}^2$  независимы.

3) Докажем оптимальность  $\hat{c_n}$ , оптимальность  $\hat{s_n}^2$  доказывается аналогично. Уже имеем, что  $\hat{c_n}$  – несмещенная. Надо доказать, что:

$$D_{c,\sigma^2}\hat{c_n} = D_{l,\sigma^2}\hat{c_n} \,\forall l, \, \sigma^2 > 0 \tag{15}$$

где  $\widehat{c_n}$  – любая несмещенная оценка с.

У нас l = Zc, то есть  $Z^T l = Z^T Zc$ ,  $c = (Z^T Z)^{-1} Z^T l$ . Имеем взаимно однознаное отображение  $c \longleftrightarrow l$ ,  $l \in h$ ,  $c \in \mathbb{R}^p$ . Иогда левая часть (15) в силу (14) равна  $D_{c,\sigma^2}(Z^T Z)^{-1} Z^T proj_h X$  – ковариация функции полной достаточной статистики  $((proj_h x)^T, |proj_{h^{\perp}}|^2)^T$  для параметра  $(l^T, \sigma^2)^T$ . Правая часть (15) есть  $E_{l,\sigma^2} \widehat{c_n}$ . В силу леммы 7.2 Лемана-Шеффе  $D_{l,\sigma^2}(Z^T Z)^{-1} Z proj_h X \leq D_{l,\sigma^2} \widehat{c_n} \ \forall l \in h$ ,  $\sigma^2$ . Значит, (15) – верно.

### 8.3 Пример(Гауссовская выборка.)

Пример 8.1. Пусть  $X = (X_1, \dots, X_n)^T$ , где  $\{X_i\}$  – н.о.р.,  $X_1 \sim N(a, \sigma^2)$ . Построим оптимальные оценки a и  $\sigma^2$ , исследуем их свойства.

Пусть  $\varepsilon_i = X_i - a, \ i = 1, \dots, n.$  Тогда:

$$X_i = a + \varepsilon_i, \ i = 1, \dots, n; \ \{\varepsilon_i\} - \text{n.o.p.}, \ \varepsilon_1 \sim N(0, \sigma^2)$$
 (16)

Уравнение (16) — частный случай линейной регрессии (10), где  $z_i^T=1,\ c=a,\ p=1.$  Значит, оптимальная оценка для a — о.н.к., которая получается решением задачи  $\sum\limits_{i=1}^{n}(X_i-\alpha)^2\longrightarrow \min\limits_{\alpha}$ . Эта задача эквивалентна решениюуравнения  $-2\sum\limits_{i=1}^{n}(X_i-\alpha)=0,\$ корень —  $\hat{\alpha_n}=\bar{X}.$ 

Оптимальная оценка для  $\sigma^2$  – остаточная дисперсия:  $\hat{s_n}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2 = S^2$ . Матрица  $Z = (z_1^T, \dots, z_n^T)^T = (1, \dots, 1)$ , линейное пространство столбиов матрицы Z – линейное пространство, натянутое на вектор  $(1, \dots, 1)^T$ ,  $l = (a_1, \dots, a_n)^T$ , оптимальная оценка  $l - \hat{l} = Z\hat{c_n} = (\bar{X}, \dots, \bar{X})^T$ . Из теоремы 8.1  $\bar{X} \sim N(a, \frac{\sigma^2}{n}), \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$ .

 $\bar{X}$  и  $S^2$  независимы.  $D_{a,\sigma^2}S^2=rac{2\sigma^2}{n-1}$ . Ковариационная матрица вектора

$$\hat{ heta_n}=(ar{X},S^2)^T\ ecm b\ D_{a,\sigma^2}\hat{ heta_n}=egin{pmatrix} \dfrac{\sigma^2}{n} & 0 \ 0 & \dfrac{2\sigma^2}{n-1} \end{pmatrix}$$
. Напомним, **матрица информации**

Фишера (смотри раздел 5) равна  $I(\theta) = \begin{pmatrix} \frac{n}{\sigma^2} & 0 \\ 0 & \frac{n}{2\sigma^2} \end{pmatrix}$ , поэтому:

$$D_{a,\sigma^2}\hat{\theta_n} = \begin{pmatrix} \frac{\sigma^2}{n} & 0\\ 0 & \frac{2\sigma^2}{n-1} \end{pmatrix} > I^{-1}(\theta) = \begin{pmatrix} \frac{\sigma^2}{n} & 0\\ 0 & \frac{2\sigma^2}{n} \end{pmatrix}$$

Значит, оценка  $(\bar{X}, S^2)^T$  является оптимальной оценкой  $(a, \sigma^2)^T$ , но не является эффективной в  $C_{\mathbb{R}}$ .

Определение 8.4. Пусть  $\xi_0, \dots, \xi_k$  – н.о.р. N(0,1) сл.в. Случайная величина

$$t_k = \frac{\xi_0}{\sqrt{\frac{1}{k}(\xi_1^1 + \dots + \xi_k^2)}}$$

имеет распределение Стьюдента с к степенями свободы.

То есть 
$$t_k = \frac{\xi_0}{\sqrt{\frac{1}{k}\eta_k}}$$
, где  $\xi_0 \sim N(0,1), \ \eta_k \sim \chi^2(k), \ \xi_0$  и  $\eta_k$  независимы.

Поскольку 
$$\frac{n^{\frac{1}{2}}(X-a)}{\sigma} \sim N(0,1)$$
, а  $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$ , то:

$$\frac{n^{\frac{1}{2}}(\bar{X} - a)}{\sigma} \sqrt{\frac{1}{n-1} \frac{(n-1)S^2}{\sigma^2}} = \frac{n^{\frac{1}{2}}(\bar{X} - a)}{S} \sim S(n-1)$$

Величина  $\frac{n^{\frac{1}{2}}(\bar{X}-a)}{S}$  называется **стьюдентовой дробью**.

9

## Введение в доверительное оценивание

Пусть наблюдение  $X = (X_1, \dots, X_n), \ X \sim P_{\theta}, \ \theta \in \Theta \in \mathbb{R}^1, \ \Theta$  – интервал. Пусть  $T_1(X) \leq T_2(X), \ (T_1(X), T_2(X)) \subseteq \Theta$ .

Определение 9.1. Если  $P_{\theta}(T_1(X) < \theta < T_2(X)) \ge 1 - \alpha \ \forall \theta \in \Theta$ , то случайный интервал  $(T_1(X), T_2(X))$  называется доверительным интервалом уровня  $1 - \alpha$ ,  $0 < \alpha < 1$ .

Интервал  $(T_1(X), T_2(X))$  можно понимать как интервальную оценку (в отличие от точечной) параметра  $\theta$ . Он покрывает неизвестное  $\theta$  с вероятностью, не меньшей, чем  $1-\alpha$ .

# 9.1 Доверительные интервалы для параметров Гауссовских выборок

Доверительный интервал для среднего a при известной дисперсии  $\sigma^2$ 

$$X=(X_1,\dots,X_n),\ \{X_i\}$$
 – н.о.р.,  $X_1\sim N(a,\sigma^2)$ .  
Оптимальная оценка для  $a-\bar{X}\sim N(a,\frac{\sigma^2}{n})$ . Значит,  $\frac{n^{\frac{1}{2}}(\bar{X}-a)}{\sigma}\sim N(0,1)$ .  
Пусть  $\phi(x)$  – функция распределения  $N(0,1)$ , то есть  $\phi(x)=\frac{1}{\sqrt{2\pi}}\int\limits_{-\inf}^x e^{-\frac{t^2}{2}}dt$ .  
Пусть  $\xi_\alpha:\phi(\xi_\alpha)=\alpha,\ 0<\alpha<1$ .

Тогда  $\forall a \ P_a(|\frac{n^{\frac{1}{2}}(\bar{X}-a)}{\sigma}|<\xi_{1-\frac{\alpha}{2}})=1-\alpha,$  то есть с вероятностью  $1-\alpha$ :

$$-\xi_{1-\frac{\alpha}{2}} < \frac{n^{\frac{1}{2}}(\bar{X} - a)}{\sigma} < \xi_{1-\frac{\alpha}{2}}, \ \bar{X} - \frac{\sigma \xi_{1-\frac{\alpha}{2}}}{\sqrt{n}} < a < \bar{X} + \frac{\sigma \xi_{1-\frac{\alpha}{2}}}{\sqrt{n}}$$



Интервал:

$$(\bar{X} - \frac{\sigma \xi_{1-\frac{\alpha}{2}}}{\sqrt{n}}, \bar{X} + \frac{\sigma \xi_{1-\frac{\alpha}{2}}}{\sqrt{n}}) \tag{1}$$

называется доверительным интервалом уровня  $1-\alpha$ , его длина  $ln=\frac{2\sigma\xi_{1-\frac{\alpha}{2}}}{\sqrt{n}}$ ю

Свойство 9.1. Имеем несколько свойств:

1)  $\alpha \to 0 \Rightarrow \xi_{1-\frac{\alpha}{2}} \to \inf \Rightarrow ln \to \inf$ .

**Замечание.** Обычно  $\alpha = 0.05, 0.01, \dots u \alpha \phi$ иксировано.

- 2)  $n \to \inf \Rightarrow ln \to 0$ .
- 3)  $\sigma \to 0 \Rightarrow ln \to 0$ .

**Замечание.** Доверительных интервалов много. Например,  $\frac{X_1 - \theta}{\sigma} \sim N(0, 1)$ , и на этой статистике можно построить доверительный интервал уровня  $1 - \alpha$ .

Какой доверительный интервал наилучший?

Определение 9.2. Доверительный интервал  $(T_1, T_2)$  уровня  $1 - \alpha$  называется несмещенным, если  $P_{\theta}(T_1 < \theta' < T_2) \le 1 - \alpha \ \forall \theta, \ \theta' \ maких, что \ \theta \ne \theta'.$  То есть вероятность накрытия неверного параметра всегда не больше вероятности накрытия верного параметра.

Определение 9.3. Несмещенный доверительный интервал  $(T_1, T_2)$  уровня  $1 - \alpha$  называется наиболее точным, если он минимизирует вероятность  $P_{\theta}(T_1 < \theta' < T_2) \ \forall \theta, \ \theta' \ makux, что <math>\theta \neq \theta'$  в классе всех несмещенных доверительных интервалов  $(T_1, T_2)$  уровня  $1 - \alpha$ .

Можно показать, что (1) является наиболее точным несмещенным доверительным интервалом уровня  $1-\alpha$ , то есть *оптимальным*.

## Доверительный интервал для среднего a при неизвестной дисперсии $\sigma^2$

$$X = (X_1, \dots, X_n), \{X_i\}$$
 - H.o.p.,  $X_1 \sim N(a, \sigma^2), n \ge 2$ .

Определение 9.4.  $Ecnu \xi_0, \ldots, \xi_k - n.o.p. N(0, 1) cn.e., mo cn.e.$ 

$$t_k = \frac{\xi_0}{\sqrt{\frac{1}{k}(\xi_1^2 + \ldots + \xi_k^2)}}$$

имеет распределение Стьюдента с к степенями свободы. Обозначение:  $t_k \sim S(k)$ .

Очевидно, 
$$t_k = \frac{\xi_0}{\sqrt{\frac{1}{k}\eta_k}}$$
, где  $\xi_0$ ,  $\eta_k$  независимы,  $\eta_k \sim \chi^2(k)$ .

Пусть  $S_k(x) := P(t_k \le x)$  – ф.р.  $t_k$ . Пусть  $S_k(t_\alpha(k)) = \alpha$ ,  $0 < \alpha < 1$ , то есть  $t_\alpha(k)$  – **квантиль уровня**  $\alpha$  **ф.р.**  $S_k(x)$ . Поскольку  $t_k$   $t_k$ , то плотность вероятности  $S_k(x)'$  – четная функция. Значит,  $-t_\alpha(x) = t_{1-\alpha}(x)$ .

Известно, что  $\bar{X}$  и  $s^2$  – оптимальные оценки  $a,\ \sigma^2,\ \bar{X}$  и  $s^2$  независимы,

$$\frac{n^{\frac{1}{2}}(\bar{X}-a)}{\sigma} \sim N(0,1), \ \frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1)$$

Здесь  $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})$ . Значит:

$$\frac{n^{\frac{1}{2}}(\bar{X}-a)}{\sigma} / \sqrt{\frac{1}{n-1} \frac{(n-1)s^2}{\sigma^2}} = \frac{n^{\frac{1}{2}}(\bar{X}-a)}{s} \sim S(n-1).$$

Значит:

$$P_{a,\sigma^2}(|\frac{n^{\frac{1}{2}}(\bar{X}-a)}{s}|) < t_{1-\frac{\alpha}{2}}(n-1) = 1-\alpha.$$

Получаем доверительный интервал уровня  $1 - \alpha$ :

$$\bar{X} - \frac{st_{1-\frac{\alpha}{2}}(n-1)}{\sqrt{n}} < a < \bar{X} + \frac{st_{1-\frac{\alpha}{2}}(n-1)}{\sqrt{n}}$$

## Доверительный интервал для дисперсии $\sigma^2$ при неизвестном среднем a

$$X=(X_1,\dots,X_n),\ \{X_i\}$$
 – н.о.р.,  $X_1\sim N(a,\sigma^2),\ n\geq 2.$  Знаем, что  $\frac{(n-1)s^2}{\sigma^2}\sim \chi^2(n-1).$  Обозначим за  $\chi_{(n-1)}(x)$  ф.р.  $\chi^2(n-1),\ x_\alpha(n-1)$  – квантиль уровня  $\alpha$ , то есть  $\chi_{(n-1)}(x_\alpha(n-1))=\alpha,\ 0<\alpha<1.$  Тогда  $P_{a,\sigma^2}(x_{\frac{\alpha}{2}})<\frac{(n-1)s^2}{\sigma^2}< x_{1-\frac{\alpha}{2}}(n-1))=1-\alpha.$  Доверительный интервал уровня  $1-\alpha$ :

$$\frac{(n-1)s^2}{x_{1-\frac{\alpha}{2}}(n-1)} < \sigma^2 < \frac{(n-1)s^2}{x_{\frac{\alpha}{2}}(n-1)}$$

# 9.2 Оценивание параметров линейной регрессии

Если  $\eta_k \sim \chi^2(k)$ ,  $\upsilon_m \sim \chi^2(m)$ ,  $\eta_k$  и  $\upsilon_m$  независимы, то сл.в.  $f_{k,m} = \frac{\frac{1}{k}\eta_k}{\frac{1}{m}\upsilon_m}$  имеет распределение Фишера с (k,m) степенями свободы. Пишем  $f_{k,m} \sim F(k,m)$ . Пусть  $F_{k,m}(x)$  – ф.р., то есть  $F_{k,m}(f_{\alpha}(k,m)) = \alpha$ ,  $0 < \alpha < 1$ .

Лемма 9.1. Если  $\xi \in \mathbb{R}^k$ ,  $\xi \sim N(0, \Sigma)$ ,  $\Sigma > 0$ , то  $\sigma^T \Sigma^{-1} \sigma \sim \chi^2(k)$ .

Доказательство.

$$\sigma^T \Sigma^{-1} \sigma = (\Sigma^{-\frac{1}{2}} \xi)^T (\Sigma^{-\frac{1}{2}} \xi) = |\Sigma^{-\frac{1}{2}} \xi|^2$$

При этом  $\eta := \Sigma^{-\frac{1}{2}} \xi \sim N(0, E_k)$ , так как  $\eta$  – гаусс. Тогда:

$$E\eta = \Sigma^{-\frac{1}{2}}E\eta = 0, \ Cov(\eta, \eta) = E\eta\eta^T = \Sigma^{-\frac{1}{2}}\Sigma\Sigma^{-\frac{1}{2}} = E_k,$$
  
T.e.  $|\Sigma^{-\frac{1}{2}}\xi|^2 = |\eta|^2 = \eta_1^1 + \ldots + \eta_k^2 \sim \chi^2(k)$ 

Рассмотрим регрессию  $X=Zc+\varepsilon,\ \varepsilon\sim N(0,\sigma^2E_n)$ . Пусть  $\hat{c_n}$  – о.н.к. для  $c,\ \hat{s_n}^2$  – о.н.к. для  $\sigma^2$ .

Тогда известно,  $\hat{c_n} \sim N(c, \sigma^2(Z^TZ)^{-1}), \frac{(n-p)\hat{s_n}}{\sigma^2} \sim \chi^2(n-p), \hat{c_n}$  и  $\hat{s_n}^2$  независимы. Значит, в силу леммы 9.1:

$$\frac{1}{\sigma^2}(\hat{c_n} - c)^T (Z^T Z)(\hat{c_n} - c) \sim \chi^2(p),$$

$$f_{p,n-p} := \frac{\frac{1}{p} \frac{1}{\sigma^2} (\hat{c_n} - c)^T (Z^T Z)(\hat{c_n} - c)}{\frac{1}{n-p} \frac{(n-p)\hat{s_n}^2}{\sigma^2}} = \frac{(\hat{c_n} - c)^T (Z^T Z)(\hat{c_n} - c)}{p\hat{s_n}^2} \sim F(p, n-p)$$

Значит:

$$P_{c,\sigma^2}((\hat{c_n} - c)^T(Z^TZ)(\hat{c_n} - c) \le p\hat{s_n}^2 f_{1-\alpha}(p, n-p)) = 1 - \alpha$$

Доверительный эллипсоид уровня  $1 - \alpha$ :

$$\{c: (\hat{c_n} - c)^T (Z^T Z)(\hat{c_n} - c) < p\hat{s_n}^2 f_{1-\alpha}(p, n-p)\}$$

Он накрывает неизвестный с с вероятностью  $1-\alpha$ .

Пусть  $c=(c_1,\ldots,c_p)^T,\;\hat{c_n}=(\hat{c_1},\ldots,\hat{c_p})^T,\;$  тогда  $\hat{c_{in}}\sim N(c_i,\sigma^2a_{ii}),\;$  где  $(Z^TZ)^{-1}=(a_{ij}),\;i,j=1,\ldots,p.$  Так как  $\hat{c_{in}}$  и  $\hat{s_n}^2$  независимы, то

$$t_{n-p} := \frac{\hat{c_{in}} - c_i}{\sqrt{\sigma^2 a_{ii}}} / \sqrt{\frac{1}{n-p} \frac{(n-p)\hat{s_n}^2}{\sigma^2}} = \frac{\hat{c_{in}} - c_i}{\hat{s_n} \sqrt{a_{ii}}} \sim S(n-p).$$

Доверительный интервал для  $c_i$  уровня  $1-\alpha$ :

$$\hat{c}_{in} - \hat{s}_{n} \sqrt{a_{ii}} t_{1-\frac{\alpha}{2}}(n-p) < c_{i} < \hat{c}_{in} + \hat{s}_{n} \sqrt{a_{ii}} t_{1-\frac{\alpha}{2}}(n-p)$$

# 9.3 **А**ссимптотический доверительный интервал

Пусть для неизвестного параметра  $\theta \in \Theta \in \mathbb{R}^1$  существует ассимптотически нормальная оценка  $\hat{\theta_n}$ , то есть:

$$n^{\frac{1}{2}}(\hat{\theta_n} - \theta) \xrightarrow{d} N(0, \sigma^2(\theta)), \ n \to \inf$$
 (2)

.

Предположим, что  $\sigma^2(\theta) > 0 \ \forall \theta \in \Theta$  и  $\sigma^2(\theta)$  непрерывна по  $\theta$ . В силу (2)  $\hat{\theta_n} - \theta = n^{-\frac{1}{2}} n^{\frac{1}{2}} (\hat{\theta_n} - \theta) \xrightarrow{P} 0$ ,  $n \to \inf$ , то есть  $\hat{\theta_n}$  – состоятельная оценка  $\theta$ . Значит:

$$\hat{\sigma_n}^2 := \sigma^2(\theta), \ n \to \inf$$
 (3)

В силу (2), (3)  $\frac{n^{\frac{1}{2}}(\hat{\theta_n} - \theta)}{\hat{\sigma_n}} \stackrel{d}{\to} N(0, 1), n \to \inf$ . Значит,  $P_{\theta}(|\frac{n^{\frac{1}{2}}(\hat{\theta_n} - \theta)}{\hat{\theta_n}}| < \xi_{1-\frac{\alpha}{2}}) \to 1-\alpha, n \to \inf$ .

Ассимптотический доверительный интервал уровня  $1-\alpha$  имеет вид:

$$\hat{\theta_n} - \frac{\hat{\sigma_n}\xi_{1-\frac{\alpha}{2}}}{\sqrt{n}} < \theta < \hat{\theta_n} + \frac{\hat{\sigma_n}\xi_{1-\frac{\alpha}{2}}}{\sqrt{n}}$$

Он накрывает неизвестный параметр  $\theta$  прмерно с вероятностью  $1-\alpha$  при больших n.

#### 9.4 Примеры

Пример 9.1.  $X = (X_1, \dots, X_n), \ \{X_i\}$  – н.о.р.,  $X_1 \sim Pois(\theta), \ \theta > 0$ . Тогда  $n^{\frac{1}{2}}(\bar{X} - \theta) \xrightarrow{d} N(0, \theta), \ a \ m.\kappa. \ \bar{X} \xrightarrow{P} \theta, \ mo \ \frac{n^{\frac{1}{2}}(\bar{X} - \theta)}{\sqrt{\bar{X}}} \xrightarrow{d} N(0, 1)$ . Ассимптотический доверительный интервал уровня  $1 - \alpha$ :

$$\bar{X} - \frac{\sqrt{\bar{X}}\xi_{1-\frac{\alpha}{2}}}{\sqrt{n}} < \theta < \bar{X} + \frac{\sqrt{\bar{X}}\xi_{1-\frac{\alpha}{2}}}{\sqrt{n}}$$

Пример 9.2.  $X_1 \sim R(0, \theta), \ \theta > 0.$ 

$$E_{\theta}X_{1} = \frac{\theta}{2}, \ D_{\theta}X_{1} = \frac{\theta^{2}}{12}, \ 2\bar{X} \stackrel{P}{\to} \theta, \ \frac{n^{\frac{1}{2}}(\bar{X} - \frac{\theta}{2})}{\frac{\theta}{2}\sqrt{3}} \stackrel{d}{\to} N(0, 1), \ n \to \inf$$

Значит:

$$\frac{\sqrt{3n}(2\bar{X}-\theta)}{\theta} \stackrel{d}{\to} N(0,1), \ \frac{\sqrt{3n}(2\bar{X}-\theta)}{2\bar{X}} \stackrel{d}{\to} N(0,1)$$

Ассимптотический доверительный интервал:

$$2\bar{X} - \frac{2\bar{X}\xi_{1-\frac{\alpha}{2}}}{\sqrt{3n}} < \theta < 2\bar{X} + \frac{2\bar{X}\xi_{1-\frac{\alpha}{2}}}{\sqrt{3n}}$$

#### Ассимптотически оптимальные оценки.

#### 10.1 Сходимости, лемма Слуцкого

Пусть случайные величины  $\xi_n, \xi \in \mathbb{R}^n$  определены на колмогоровой тройке  $(\Omega, F, P)$ .  $F_n(x)$  - функция распределения  $\xi_n, \varphi_n(t)$  - характеристическая функция,  $Q_n$  - распределение (мера на множестве борелевских подмножеств).

Определение 10.1. Говорят, что  $F_n$  сходится  $\kappa$  F в основном ( $F_n(x) \Rightarrow F(x)$ ), если  $F_n(x) \to F(x) \ \forall x \in \mathbb{C}(F)$ .

Определение 10.2. Говорят, что  $Q_n$  сходится слабо  $\kappa$  Q  $(Q_n \xrightarrow{W} Q)$ , если для любой непрерывной и ограниченной функции  $g: \mathbb{R}^k \to \mathbb{R}^1$ 

$$\int_{\mathbb{R}^k} g(x)Q_n(dx) \to \int_{\mathbb{R}^1} g(x)Q(dx) \iff Eg(\xi_n) \to Eg(\xi)$$

**Теорема 10.1.** Следующие условия эквивалентны:

- 1.  $F_n \Rightarrow F$ 2.  $Q_n \xrightarrow{W} Q$ 3.  $\varphi_n(t) \to \varphi(t) \ \forall t \in \mathbb{R}^k$

**Определение 10.3.** Если выполнено одно из условий 1)-3) из предыдущей теоремы, то говорят, что  $\xi_n$  сходится  $\kappa \ \xi$  по распределению  $(\xi_n \xrightarrow{d} \xi)$ .

**Теорема 10.2** (о наследовании сходимости). Пусть  $\xi_n, \xi \in \mathbb{R}^k$  и отображение  $H:\mathbb{R}^k\to\mathbb{R}^1$  непрерывно. Тогда:

- 1.  $ecnu \ \xi_n \xrightarrow{d} \xi$ ,  $mo \ H(\xi_n) \xrightarrow{d} H(\xi)$
- 2.  $ecnu \ \xi_n \xrightarrow{P} \xi$ ,  $mo \ H(\xi_n) \xrightarrow{P} H(\xi)$

Лемма 10.1 (Слуцкого). Пусть  $\xi_n, \xi, \eta_n, a \in \mathbb{R}^1$  и  $\xi_n \xrightarrow{d} \xi, \eta_n \xrightarrow{P} a$ . Тогда:

$$I) \ \xi_n + \eta_n \xrightarrow{d} \xi + a$$

$$II) \ \xi_n \eta_n \xrightarrow{d} a\xi$$

Доказательство. Достаточно, чтобы была следующая сходимость:

$$(\xi_n, \eta_n)^T \xrightarrow{d} (\xi, a)^T \tag{1}$$

Действительно, если (1) верно, то при H(x,y)=x+y по теореме 1.2 получаем I, а при H(x,y)=xy получаем II.

Докажем (1) :  $(\xi_n, \eta_n)^T \xrightarrow{d} (\xi, a)^T$ . Проверим, что характеристическая функция  $(\xi_n, \eta_n)^T$  сходится к характеристической функции  $(\xi, a)^T$ :

$$|Ee^{it\xi_n+is\eta_n}-Ee^{it\xi+isa}| \leq |Ee^{it\xi_n+is\eta_n}-Ee^{it\xi_n+isa}| + |Ee^{it\xi_n+isa}-Ee^{it\xi+isa}| = \alpha_n+\beta_n$$
 
$$\alpha_n \leq E|e^{it\xi_n}(e^{is\eta_n}-e^{isa})| = E|e^{is\eta_n}-e^{isa}| = Eg(\eta_n)$$
 
$$g(x) = |e^{isx}-e^{isa}| \text{ - непрерывная и ограниченная, } \eta_n \xrightarrow{d} a \Rightarrow$$
 по теореме 1.2  $Eg(\eta_n) \to Eg(a) = 0 \Rightarrow \alpha_n \to 0$ 

$$\beta_n = |Ee^{isa}(e^{it\xi_n} - e^{it\xi})| = |e^{isa}E(e^{it\xi_n} - e^{it\xi})| = |Ee^{it\xi_n} - Ee^{it\xi}| \to 0, \text{ т.к. } \xi_n \xrightarrow{d} \xi.$$
T.o.  $\varphi_n(t) \to \varphi(t)$ .

## 10.2 Асимптотически нормальные, состоятельные оценки, асимптотический доверительный интервал

Пусть наблюдение  $X \sim P_{\theta}, \; \theta \in \Theta \subseteq \mathbb{R}^k$ .  $\hat{\theta_n}$  - оценка  $\theta$ .

Определение 10.4.  $Ecnu \sqrt{n}(\hat{\theta_n} - \theta) \stackrel{d}{\to} N(0, \Sigma(\theta)) \ \forall \theta \in \Theta \ u \ 0 < \Sigma(\theta) < \infty, \ mo$   $\hat{\theta_n}$  называется асимптотически нормальной оценкой.

Определение 10.5.  $Ecnu \ \hat{\theta_n} \xrightarrow{P} \theta \ \forall \theta \in \Theta, \ mo \ \hat{\theta_n} \ называется \ cocmosmeльной оценкой.$ 

Пусть  $\theta \in \Theta \subseteq \mathbb{R}^1$ , т.е.  $\theta$  и  $\hat{\theta_n}$  - скаляры.

Если  $\hat{\theta_n}$  - состоятельная оценка  $\theta$ , то при больших n  $\hat{\theta_n} \simeq \theta$  с вероятностью, близкой к единице.

Если  $\hat{\theta_n}$  - асимптотически нормальная оценка  $\theta$ , то есть  $\sqrt{n}(\hat{\theta_n}-\theta) \xrightarrow{d} N(0,\sigma^2(\theta)), 0 < 0$  $\sigma^2(\theta) < \infty \ \forall \theta \in \Theta, \text{ To:}$ 

- 1.  $\hat{\theta_n}$  состоятельная оценка  $\theta$ , т.к.  $\hat{\theta_n} \theta = \frac{1}{\sqrt{n}} \sqrt{n} (\hat{\theta_n} \theta) \xrightarrow{P} 0$  в силу пункта II леммы Слуцкого.
- 2. скорость сходимости  $\hat{\theta_n}$  к  $\theta$  есть  $\mathcal{O}(\sqrt{n})$
- 3. при больших n случайную величину  $\sqrt{n}(\hat{\theta_n} \theta)$  можно рассматривать как гауссовскую величину.

**Пример 10.1.** Пусть  $\sigma^2(\theta)$  - непрерывная функция, а  $\theta$  неизвестно. Тогда:

$$\frac{\sqrt{n}(\hat{\theta_n}-\theta)}{\sigma(\hat{\theta_n})} = \frac{\sqrt{n}(\hat{\theta_n}-\theta)}{\sigma(\theta)} \cdot \frac{\sigma(\theta)}{\sigma(\hat{\theta_n})}$$
 
$$\frac{\sqrt{n}(\hat{\theta_n}-\theta)}{\sigma(\theta)} \xrightarrow{d} N(0,1), \ \frac{\sigma(\theta)}{\sigma(\hat{\theta_n})} \xrightarrow{P} 1 \ \Rightarrow$$
 
$$\Rightarrow \frac{\sqrt{n}(\hat{\theta_n}-\theta)}{\sigma(\hat{\theta_n})} \xrightarrow{d} \eta \sim N(0,1) \ \textit{в силу пункта II}) \ \textit{леммы Слуцкого.}$$
 Значит:  $P_{\theta} \left( \left| \frac{\sqrt{n}(\hat{\theta_n}-\theta)}{\sigma(\hat{\theta_n})} \right| < \xi_{1-\frac{\alpha}{2}} \right) \rightarrow P(|\eta| < \xi_{1-\frac{\alpha}{2}}) = 1 - \alpha$   $T.e. \ \textit{примерно с вероятность } 1 - \alpha \ \textit{выполнено неравенство:}$ 

$$\hat{\theta_n} - \frac{1}{\sqrt{n}} \sigma(\hat{\theta_n}) \xi_{1 - \frac{\alpha}{2}} < \theta < \hat{\theta_n} + \frac{1}{\sqrt{n}} \sigma(\hat{\theta_n}) \xi_{1 - \frac{\alpha}{2}}$$

Это называется **асимптотическим доверительным интервалом**  $\partial$ ля  $\theta$  ировня  $1-\alpha$ .

4. асимтотические гауссовские оценки можно сравнивать между собой: если  $\sqrt{n}(\hat{\theta_{in}}-\theta) \xrightarrow{d} N(0,\sigma_i^2(\theta)) \ \forall i=1,2,\ldots,$  то можно определить **асимто**тическую нормальную эффективность:

$$e_{1,2} = \frac{\sigma_2^2(\theta)}{\sigma_1^2(\theta)}$$
 напоминание:  $e_{1,2} = \lim_{n \to \infty} \frac{n'(n)}{n}$ , где 
$$\begin{cases} \sqrt{n}(\hat{\theta_{1n}} - \theta) \xrightarrow{d} N(0, \sigma_1^2(\theta)) \\ \sqrt{n}(\hat{\theta_{2n'}} - \theta) \xrightarrow{d} N(0, \sigma_1^2(\theta)) \end{cases}$$

Вопрос: существует ли  $\theta_n^*$  такая, что  $e_{\theta_n^*,\hat{\theta_n}}(\theta) \ge 1 \ \forall \hat{\theta_n} \ \forall \theta \in \Theta$ ?

Если есть, то  $\theta_n^*$  требует не больше наблюдений, чем любая  $\hat{\theta_n}$ , чтобы достичь одинаковой с  $\hat{\theta_n}$  точности.

Предельная дисперсия  $\sqrt{n}(\theta_n^* - \theta)$  должна быть не больше асимптотической дисперсии  $\sqrt{n}(\hat{\theta}_n - \theta)$  для любой асимптотической гауссовской оценки  $\hat{\theta}_n$ .

### 10.3 Теорема Бахадура, асимптотически эффективная оценка

**Теорема 10.3** (Бахадура). Пусть  $X_1, ..., X_n$  - н.о.р.с.в.,  $X_1$  имеет плотность вероятности  $f(x, \theta), \theta \in \Theta \subseteq \mathbb{R}^1$  по мере  $\nu$ . Пусть выполнены условия:

- (i)  $\theta$  интервал
- (ii) носитель  $N_f = \{x \colon f(x,\theta) > 0\}$  не зависит от  $\theta$
- (iii)  $\forall x \in N_f$  плотность  $f(x,\theta)$  дважды непрерывно дифференцируема по  $\theta$
- (iv) интеграл  $\int f(x,\theta) \nu(dx)$  можно дважды дифференцировать по  $\theta$ , внося знак дифференцирования под знак интеграла
- (v) информация Фишера  $0 < i(\theta) < \infty \ \forall \theta \in \Theta$
- $(vi) \mid \frac{\partial^2}{\partial \theta^2} \ln f(x,\theta) \mid \le M(x) \ \forall x \in N_f, \theta \in \Theta \ u \ E_\theta M(X_1) < \infty$

Тогда если  $\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{d}{\to} N(0, \sigma^2(\theta))$ , то  $\sigma^2(\theta) \ge \frac{1}{i(\theta)}$  всюду за исключением множества Лебеговой меры нуль.

Замечание. Если вдобавок  $\sigma^2(\theta)$  и  $i(\theta)$  непрерывны, то  $\sigma^2(\theta) \geq \frac{1}{i(\theta)} \ \forall \theta \in \Theta$ .

Определение 10.6. Если  $\theta, \hat{\theta_n} \in \mathbb{R}^1$  и  $\sqrt{n}(\hat{\theta_n} - \theta) \xrightarrow{d} N(0, \frac{1}{i(\theta)}), n \to \infty, \forall \theta \in \Theta,$  причем  $0 < i(\theta) < \infty$ , то  $\hat{\theta_n}$  называется асимтотически эффективной оценкой (асимптотически оптимальной оценкой).

### 10.4 Правдоподобие, экстремальное свойство правдоподобия

Пусть далее  $X = (X_1, \dots, X_n), \ X \sim P_{\theta}, \theta \in \Theta \subseteq \mathbb{R}^1.$ 

#### Условие (А)

- (i)  $\theta$  интервал,  $P_{\theta_1} \neq P_{\theta_2}$  при  $\theta_1 \neq \theta_2$
- (ii)  $X_1, ..., X_n$  н.о.р.с.в.,  $X_1$  имеет плотность вероятности  $f(x, \theta)$  по мере  $\nu$ , носитель  $N_f = \{x \colon f(x, \theta) > 0\}$  не зависит от  $\theta$ .

Плотность вектора X есть  $p(x,\theta) = \prod_{i=1}^{n} f(x_i,\theta)$ .

**Определение 10.7.** Функция  $p(x,\theta)$  как функция  $\theta$  при фиксированном x называется **правдоподобием**.

Определение 10.8. Функция  $Ln(x,\theta) = \ln p(x,\theta) = \sum_{i=1}^{n} \ln f(x_i,\theta)$  называется логарифмическим правдоподобием.

Пусть  $\theta_0$  - истинное значение параметра.

**Теорема 10.4** (экстремальное свойство правдоподобия). Пусть выполнено условие (A), пусть  $E_{\theta_0} |\ln f(x_1, \theta)| < \infty \Rightarrow P_{\theta_0} (p(x, \theta_0) > p(x, \theta)) \xrightarrow[n \to \infty]{} 1$ , когда  $\theta_0 \neq \theta$ .

Доказательство.

$$p(x,\theta_0) > p(x,\theta) \Leftrightarrow \ln p(x,\theta_0) > \ln p(x,\theta) \Leftrightarrow$$
  $\Leftrightarrow \eta_n := \frac{1}{n} \sum_{i=1}^n \ln \left( \frac{f(x_i,\theta)}{f(x_i,\theta_0)} \right) < 0$ , где  $\ln \left( \frac{f(x_i,\theta)}{f(x_i,\theta_0)} \right)$  - борелевские функции.   
Т.е. надо показать, что  $P_{\theta_0}(\eta_n < 0) \to 1$  но  $\eta_n = \frac{1}{n} \sum_{i=1}^n \ln \left( \frac{f(x_i,\theta)}{f(x_i,\theta_0)} \right) \stackrel{P}{\to} E_{\theta} \ln \left( \frac{f(x_1,\theta)}{f(x_1,\theta_0)} \right)$  (в силу слабого ЗБЧ в форме Чебышева).

**Неравенство Йенсена**: пусть g(x) выпуклая снизу борелевская функция,  $E|\xi| < \infty$ ,  $E|g(\xi)| < \infty \Rightarrow g(E\xi) \leq Eg(\xi)$ . Если  $\xi$  не является почти наверно константой и g строго выпукла, то неравенство строгое.

Функция —  $\ln x$  строго выпукла и  $\frac{f(x_1,\theta)}{f(x_1,\theta_0)}$  не является почти наверно константой в силу пункта (i) условия (A). Тогда в силу неравенства Йенсена получаем:

$$E_{\theta_0} \ln \frac{f(x_1,\theta)}{f(x_1,\theta_0)} < \ln E_{\theta_0} \frac{f(x_1,\theta)}{f(x_1,\theta_0)} =$$
 
$$= \ln \int_{N_f} \frac{f(x,\theta)}{f(x,\theta_0)} f(x,\theta_0) \nu(dx) = \ln 1 = 0 \text{ (из условия нормировки)}$$

Но если  $\eta_n$  сходится по вероятности к отрицательному числу, то

$$P_{\theta_0}(\eta_n < 0) \rightarrow 1.$$

# 10.5 Оценка максимального правдоподобия, состоятельность решения уравнения правдоподобия, обобщенный корень уравнения правдоподобия

В силу теоремы 2.2 естественно брать оценкой то значение  $\theta$ , которое максимизирует  $p(x,\theta)$  при данном x.

Определение 10.9. Случайная величина  $\hat{\theta_n} \in \Theta$  называется оценкой максимального правдоподобия, если

$$p(x, \hat{\theta_n}) = \max_{\theta \in \Theta} p(x, \theta) \iff Ln(x, \hat{\theta_n}) = \max_{\theta \in \Theta} Ln(x, \theta)$$
$$m.o. \ OM\Pi \ \hat{\theta_n} = arg \ \max_{\theta \in \Theta} Ln(x, \theta)$$

Определение 10.10. Если  $\theta$  - интервал, а  $Ln(x,\theta)$  - гладкая по  $\theta$  функция, то  $\theta$  удовлетворяет уравнению правдоподобия:

$$\frac{\partial}{\partial \theta} Ln(x,\theta) = 0 \tag{2}$$

Теорема 10.5 (о состоятельности решения уравнения правдоподобия). Пусть выполнено условие (A), пусть  $\forall x \in N_f$  существует непрерывная производная  $f'_{\theta}(x,\theta) \Rightarrow$  уравнение правдоподобия (2) с вероятностью, стремящейся к единице при  $n \to \infty$ , имеет решение, принадлежащее  $\Theta$ . При этом среди всех таких решений (2) есть такой корень  $\hat{\theta_n}$ , что он явялется состоятельной оценкой  $\theta_0$ .

**Доказательство.** Пусть  $S_n = \{w\}$ , при которых уравнение (2) имеет решение для  $\theta \in \Theta$ . Теорема 2.3 утверждает:

- 1.  $P_{\theta_0}(S_n) \to 1$
- 2. существует такое решение  $\hat{\theta_n} \in \Theta$ , что  $\forall \varepsilon > 0 \ P_{\theta_0}(|\hat{\theta_n} \theta_0| < \varepsilon, S_n) \xrightarrow[n \to \infty]{} 1$
- 1. выберем малое a > 0 так, что  $(\theta_0 a, \theta_0 + a) \subseteq \Theta$ . Тогда:

$$S_n^a = \{w : Ln(x, \theta_0) > Ln(x, \theta_0 - a), Ln(x, \theta_0) > Ln(x, \theta_0 + a)\}$$

В силу теоремы 2.2  $P_{\theta_0}(S_n^a) \to 1$ . При  $w \in S_n^a$  функция  $Ln(x,\theta)$  имеет локальный максимум  $\hat{\theta_n}^a$  в интервале  $(\theta_0 - a, \theta_0 + a)$ , значит  $\frac{\partial}{\partial \theta} Ln(x, \hat{\theta_n}^a) = 0 \Rightarrow P_{\theta_0}(S_n) \geq P_{\theta_0}(S_n^a) \to 1$ , т.к.  $S_n^a \subseteq S_n \Rightarrow$  доказали пункт 1.



2.  $\forall n$  при  $w \in S_n$  может существовать целое множество корней  $\{\theta_n^*\}$ . Выберем в этом множестве корень  $\hat{\theta_n}$ , ближайший к  $\theta_0$  (инфимум в множестве корней). Это можно сделать, т.к. функция  $\frac{\partial}{\partial \theta} Ln(x,\theta)$  непрерывна по  $\theta$ , и последовательность корней есть тоже корень. Этот корень  $\hat{\theta_n}$  и есть состоятельная оценка  $\theta$ , покажем это.

Т.к.  $S_n^{\varepsilon} \subseteq S_n$ ,  $(w:|\hat{\theta_n}^{\varepsilon} - \theta_0| < \varepsilon) \subseteq (w:|\hat{\theta_n} - \theta_0| < \varepsilon)$ , то для любого малого  $\varepsilon > 0$ :

$$P_{\theta_0}(|\hat{\theta_n} - \theta_0| < \varepsilon, S_n) \ge P_{\theta_0}(|\hat{\theta_n}^{\varepsilon} - \theta_0| < \varepsilon, S_n^{\varepsilon})$$

$$\text{Ho } P_{\theta_0}(|\hat{\theta_n}^{\varepsilon} - \theta_0| < \varepsilon, S_n^{\varepsilon}) = P_{\theta_0}(S_n^{\varepsilon}) \to 1 \implies$$

$$(3)$$

 $\Rightarrow$  в силу (3)  $P_{\theta_0}(|\hat{\theta_n} - \theta_0| < \varepsilon, S_n) \to 1 \Rightarrow$  пункт (2) доказан.

Замечание. Определим следующую величину:

$$\theta_n^* = \begin{cases} cocm. \ \kappa openb \ \hat{\theta_n} \ yp\text{-}ния \ npaвдonoдобия, если он∃ \\ \theta', \ \theta' \in \Theta, \ в \ npomuвном \ cлучае. \end{cases}$$
(4)

Тогда случайная величина  $\theta_n^*$  всегда определена и  $\theta_n^* \xrightarrow{P} \theta_0$ , т.к.

$$P(|\theta_n^* - \theta_0| < \varepsilon) = P(|\hat{\theta_n} - \theta_0| < \varepsilon, S_n) + P(|\theta' - \theta| < \varepsilon, \overline{S_n}) \to 1.$$

Ясно, что  $\frac{\partial}{\partial \theta} Ln(x, \theta_n^*) = o(1)$ , т.к. производная отлична от нуля только на  $\overline{S_n}$ .

Определение 10.11. Будем называть  $\theta_n^*$  обощенным корнем уравнения правоподобия (2).

Теорема 10.6 (об асимптотической эффективности состоятельного решения). Пусть  $X = (X_1, \dots, X_n), \{X_i\}$  - н.о.р.с.в. Удовлетворяются условия теоремы Бахадура, в которых условия (iii) и (vi) заменены на предположение о третьей, а не второй производной, т.е.  $|\frac{\partial^3}{\partial \theta^3} \ln f(x,\theta)| < M(x) \ \forall x \in N_f, \theta \in \Theta$  и  $E_{\theta_0}M(x_1) < \infty$ . Тогда, если  $\theta_n^*$  - обощенный состоятельный корень уравнения правдоподобия из (4), то  $\sqrt{n}(\theta_n^* - \theta_0) \xrightarrow{d} N(0, \frac{1}{i(\theta)})$ , т.е.  $\theta_n^*$  - асимптотически эффективная оценка.

**Доказательство.** Будем обозначать  $\frac{\partial}{\partial \theta} Ln(x,\theta), \frac{\partial^2}{\partial \theta^2} Ln(x,\theta), \dots$  через  $Ln'(\theta), Ln^{(2)}(\theta), \dots$  Для фиксированного X в силу формулы Тейлора и замечания из предыдущей лекции:

$$\overline{o_p}(1) = Ln'(\theta_n^*) = Ln'(\theta_0) + Ln^{(2)}(\theta_0)(\theta_n^* - \theta_0) + \frac{1}{2}Ln^{(3)}(\tilde{\theta_n})(\theta_n^* - \theta_0)^2, \ \tilde{\theta_n} \in (\theta_0, \theta_n^*)$$

После преобразований получаем выражение:

$$\sqrt{n}(\theta_n^* - \theta_0) = -\frac{n^{-\frac{1}{2}} L n'(\theta_0) + \overline{o_p}(1)}{n^{-1} L n^{(2)}(\theta_0) + \frac{1}{2n} L n^{(3)}(\tilde{\theta_n})(\theta_n^* - \theta_0)}$$
 (5)

Рассмотрим числитель (5):

$$n^{-\frac{1}{2}}Ln'(\theta_0) = n^{-\frac{1}{2}} \sum_{i=1}^n \frac{f'_{\theta}(x_i, \theta_0)}{f(x_i, \theta_0)} \xrightarrow{d} \xi \sim N(0, i(\theta_0))$$
 (6)

Действительно:

$$E_{\theta_0} \frac{f'_{\theta}(x_1, \theta_0)}{f(x_1, \theta_0)} = \int_{N_f} \frac{f'_{\theta}(x, \theta_0)}{f(x, \theta_0)} f(x, \theta_0) \nu(dx) = 0$$

где  $N_f$ носитель плотности вероятности  $f, f \ge 0$ 

$$D_{\theta_0} \frac{f_{\theta}'(x_1, \theta_0)}{f(x_1, \theta_0)} = E_{\theta_0} \left(\frac{\partial}{\partial \theta} \ln f(x_1, \theta_0)\right)^2 = i(\theta_0)$$

Получаем, что величины  $\{\frac{f_{\theta}'(x_i,\theta_0)}{f(x_i,\theta_0)}, i=1,2,\ldots,n\}$  - н.о.р. и соотношение (6) следует из ЦПТ. Т.о. в силу леммы Слуцкого числитель (5) сходится по вероятности к  $N(0,i(\theta_0))$ .

Рассмотрим знаменатель (5):

$$n^{-1}Ln^{(2)}(\theta_0) = n^{-1}\sum_{i=1}^n \left[ \frac{f_{\theta}^{(2)}(x_i, \theta_0)}{f(x_i, \theta_0)} - (\frac{f_{\theta}'(x_i, \theta_0)}{f(x_i, \theta_0)})^2 \right] \xrightarrow{P} -i(\theta_0)$$
 (7)

$$\frac{f_{\theta}^{(2)}(x_i,\theta_0)}{f(x_i,\theta_0)} - (\frac{f_{\theta}'(x_i,\theta_0)}{f(x_i,\theta_0)})^2$$
 - производная от 1-ой производной по правилу Лейбница

Действительно, в силу ЗБЧ - хотелось бы применить слабый ЗБЧ в форме Чебышева, но там нужна дисперсия, поэтому воспользуемся ЗБЧ в форме Колмогорова, из которого получим сходимость почти наверно:

$$\frac{1}{n} \sum_{i=1}^{n} \frac{f_{\theta}^{(2)(x,\theta_{0})}}{f(x_{i},\theta_{0})} \xrightarrow{P} E_{\theta_{0}} \frac{f_{\theta}^{(2)}(x_{1},\theta_{0})}{f(x_{1},\theta_{0})} = \int_{N_{f}} \frac{f_{\theta}^{(2)}(x,\theta_{0})}{f(x,\theta_{0})} f(x,\theta_{0}) \nu(dx) = 0$$

$$\left(\frac{f_{\theta}^{(2)(x,\theta_{0})}}{f(x_{i},\theta_{0})} - \text{борелевские функции, н.о.р.с.в.}\right)$$

$$\frac{1}{n} \sum_{i=1}^{n} \left(\frac{f_{\theta}'(x_{i},\theta_{0})}{f(x_{i},\theta_{0})}\right)^{2} \xrightarrow{P} E_{\theta_{0}} \left(\frac{\partial}{\partial \theta} \ln f(x_{1},\theta_{0})\right)^{2} = i(\theta_{0})$$

Применяя лемму Слуцкого, получаем (7) (сходимость к $-i(\theta_0)$ ).

Рассмотрим второе слагаемое в знаменателе (5):

$$\left| \frac{1}{2n} Ln^{(3)}(\tilde{\theta_n})(\theta_n^* - \theta_0) \right| \leq \frac{1}{n} |\theta_n^* - \theta_0| \cdot \frac{1}{n} \sum_{i=1}^n M(x_i)$$

$$\left( Ln^{(3)}(\tilde{\theta_n}) \leq \sum_{i=1}^n M(x_i) \text{ (из условия)} \right)$$

$$|\theta_n^* - \theta_0| \xrightarrow{P} 0, \ \frac{1}{n} \sum_{i=1}^n M(x_i) \xrightarrow{P} M \text{ - число (в силу ЗБЧ)}$$

Тогда в силу леммы Слуцкого:

$$\left| \frac{1}{2n} L n^{(3)}(\tilde{\theta_n}) (\theta_n^* - \theta_0) \right| \xrightarrow{P} 0 \tag{8}$$

В силу (7) и (8) и леммы Слуцкого знаменатель в (5) сходится по вероятности к  $-i(\theta_0)$ .

Значит, по лемме Слуцкого вся дробь (5) сходится по распределению к  $\frac{1}{i(\theta_0)}\xi \sim N(0,\frac{i(\theta_0)}{i^2(\theta_0)}) = N(0,\frac{1}{i(\theta_0)})$ , где  $\xi$  - гауссовская случайная величина.

#### 10.6 ОМП для векторного параметра

Пусть  $X = (X_1, ..., X_n)$  - н.о.р.,  $X_1 \sim f(x, \theta), \ \theta \in \Theta \subseteq \mathbb{R}^k, \ \Theta$  - открытое множество.

Логарифмическое правдоподобие имеет вид:

$$Ln(x,\theta) = \sum_{i=1}^{n} \ln f(x_i,\theta)$$

Система уравнений правдоподобия имеет вид:

$$\frac{\partial Ln(x,\theta)}{\partial \theta_i} = 0, \ i = 1, 2, \dots, k \tag{9}$$

При условиях регулярности, похожих на условия теоремы 3.1, показывается:

1. с вероятностью, стремящейся к 1 при  $n \to \infty$ , система уравнений (9) имеет такое решение  $\hat{\theta_n} \in \Theta$ , что  $\hat{\theta_n}$  сходится к истинному значению  $\theta_0$ 

2. соответствующая оценка  $\theta_n^*$  асимптотически нормальна, а именно:

$$\sqrt{n}(\theta_n^* - \theta_0) \xrightarrow[n \to \infty]{d} N(o, I^{-1}(\theta_0))$$
  $I(\theta) > 0$  - матрица информации Фишера,  $I(\theta) = (I_{ij}(\theta))$  
$$I_{ij}(\theta) = E_{\theta} \left( \frac{\partial \ln f(x, \theta)}{\partial \theta_i} \cdot \frac{\partial \ln f(x, \theta)}{\partial \theta_j} \right)$$

#### 10.7 АЭО для интервала

Пример 10.2. Пусть  $X = (X_1, \dots, X_n)$ , где  $\{X_i\}$  - н.о.р.,  $X_1 \sim N(\theta, \sigma^2)$ ,  $a < \theta < b$ , т.е.  $\Theta = (a, b)$ . a u b - известные конечные числа,  $\theta$  неизвестно,  $\sigma^2$  известно. Необходимо построить  $A \ni O$ .

**Решение.** Построим АЭО  $\theta_n^*$  для  $\theta$ .

$$p(x,\theta) = (\frac{1}{\sqrt{2\pi}\sigma})^n e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n(x_i-\theta)^2} - \text{плотность вероятности гауссовской сл. в.}$$
 
$$Ln(x,\theta) = \ln(\frac{1}{\sqrt{2\pi}\sigma})^n - \frac{1}{2\sigma^2}\sum_{i=1}^n(x_i-\theta)^2$$
 
$$-\frac{1}{2\sigma^2}\sum_{i=1}^n(x_i-\theta)^2 - \text{парабола ветвями вниз}$$

Уравнение правдоподобия имеет вид:

$$\frac{\partial Ln(x,\theta)}{\partial \theta} = \frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - \theta) = 0$$

Решение существует и единственно - это  $\overline{X}$ , причем в точке  $\theta = \overline{X}$  функция  $Ln(x,\theta)$  достигает максимума, т.к.:

$$\frac{\partial^2 Ln(x,\overline{X})}{\partial \theta^2} = -\frac{1}{\sigma^2} < 0$$

Т.о., если  $a<\overline{X}< b$ , то ОМП существует с вероятностью, стремящейся к 1 и равна  $\overline{X}$ , в противном случае ОМП не существует.

Если положить:

$$\theta_n^* = \begin{cases} \overline{X}, \ a < \overline{X} < b \\ \frac{a+b}{2} \ (\text{любое число}), \ \overline{X} \not\in (a,b) \end{cases}$$
 (9)

то в силу теоремы 3.1 (условия выполнены)  $\theta_n^*$  - AЭО, т.е.:

$$\sqrt{n}(\theta_n^* - \theta_0) \xrightarrow{d} N(0, \sigma^2), \ i(\theta) = \frac{1}{\sigma^2}$$
 (10)

(также (10) можно проверить непосредственно)

**Замечание.** Если  $\theta \in [a, b]$ , то по тоереме Вейерштрасса непрерывная функция на компакте достигает максимума и минимума. Тогда:

$$\theta_n^* = \begin{cases} \overline{X}, \ \overline{X} \in (a, b) \\ a, \ \overline{X} < a \\ b, \ \overline{X} > b \end{cases}$$

 $B \theta = a \ unu \ \theta = b \ нет \ acumnmomuческой гауссовости, поэтому надо рассматривать только открытые множества.$ 

#### Проверка статистических гипотез

Пусть  $X = (X_1, \dots, X_n)$  (н.о.р.) имеет плотность вер-ти по мере  $\mu, \theta \in \Theta \subseteq \mathbb{R}^k$ .

Определение 11.1. Предположение вида  $H_0: \theta \in \Theta_0$ , где  $\Theta_0 \subseteq \Theta$ , называется параметрической гипотезой.

Определение 11.2. *Альтернатива*  $H_1: \theta \in \Theta_1, \Theta_1 = \Theta \setminus \Theta_0$ .

Определение 11.3. Если  $\Theta_0(\Theta_1)$  состоит из одной точки, то гипотеза  $H_0$  (альтернатива  $H_1$ ) называется простой. В противном случае  $H_0(H_1)$  - сложная.

#### Постановка задачи

Необходимо построить правило (**статистический критерий**), который позволяет заключить, согласуется ли X с  $H_0$  или нет.

#### Правило

Выберем в множестве значений x вектора X (либо  $x = \mathbb{R}^n$ , либо  $x = N_p \subseteq \mathbb{R}^n$ ) подмножество S.

- если  $X \in \underline{S},$  то  $H_0$  отвергается и принимается  $H_1$
- если  $X \in \overline{S} = X \setminus S$ , то  $H_0$  принимается

Определение 11.4. *Множество* S называется **критическим множеством** или **критерием**,  $\overline{S}$  - **область принятия гипотезы**.

#### Возможные ошибки

Определение 11.5. Ошибка 1-го рода - принять  $H_1$ , когда верна  $H_0$ . Вероятность ошибки 1-го рода:  $\alpha = P(H_1|H_0)$ .

Определение 11.6. Ошибка 2-го рода - принять  $H_0$ , когда верна  $H_1$ . Вероятность ошибки 2-го рода:  $\beta = P(H_0|H_1)$ .

Определение 11.7. Мощностью критерия S называется функция  $W(S,\theta) = W(\theta) := P_{\theta}(X \in S)$ , т.е. мощность есть вероятность отвергнуть  $H_0$ , когда параметр равен  $\theta$ .

$$\alpha = \alpha(\theta) = W(\theta), \theta \in \Theta_0$$
$$\beta = \beta(\theta) = 1 - W(\theta), \theta \in \Theta_1$$

**Замечание.** Обычно  $H_0$  более важна  $\Rightarrow$  рассматривают критерии такие, что:

$$\alpha(\theta) = W(\theta) = P_{\theta}(X \in S) \le \alpha \ \forall \theta \in \Theta_0$$

Определение 11.8. Число  $\alpha$  называют уровнем значимости критерия и  $numym\ S_{\alpha}$ .

Определение 11.9. Если критерий  $S_{\alpha}^* \in \{S_{\alpha}\}\ u \ \forall \theta \in \Theta_1 \ u \ \forall S_{\alpha} \ W(S_{\alpha}*,\theta) \geq W(S_{\alpha},\theta)$ , то критерий  $S_{\alpha}^*$  называется **РНМ-критерием** (равномерно наиболее мощным).

Если  $H_0: \theta = \theta_0, \ H_1: \theta = \theta_1, \ \text{т.e.} \ H_0$  и  $H_1$  - простые, то задача отыскания РНМ-критерия заданного уровня  $\alpha$  имеет вид:

$$P_{\theta_0}(X \in S_{\alpha}^*) \le \alpha$$

$$P_{\theta_1}(X \in S_{\alpha}^*) \ge P_{\theta_1}(X \in S_{\alpha}) \ \forall S_{\alpha}$$

#### 11.1 Лемма Неймана-Пирсона

Положим для краткости:

$$p_0(x) := p(x, \theta_0), p_1(x) = p(x, \theta_1), E_0 = E_{\theta_0}, E_1 = E_{\theta_1}$$

Введем множество:  $S(\lambda) = \{x : p_1(x) - \lambda p_0(x) > 0\}, \ \lambda > 0.$ 

**Теорема 11.1** (демма Неймана-Пирсона). Пусть для некоторого  $\lambda > 0$  и критерия R выполнено:

(a) 
$$P_0(X \in R) \le P_0(X \in S(\lambda))$$

Тогда:

(b) 
$$P_1(X \in R) \le P_1(X \in S(\lambda))$$

(c) 
$$P_1(X \in S(\lambda)) \ge P_0(X \in S(\lambda))$$

Замечание.  $x \in S(\lambda) \Leftrightarrow \frac{p_1(x)}{p_0(x)} > \lambda$ 

Определение 11.10.  $T.\kappa.$   $p_1(x)$  и  $p_0(x)$  - правдоподобие, то критерий  $S(\lambda)$  называется критерием отношения правдоподобия Неймана-Пирсона.

**Замечание.** Утверждение (c) для  $S(\lambda)$  означает, что

$$P(H_1|H_1) \ge P(H_1|H_0) \iff W(S(\lambda), \theta_1) \ge W(S(\lambda), \theta_0)$$

Это свойства называется **несмещенностью** критерия  $S(\lambda)$ .

**Доказательство.** Для краткости обозначим  $S(\lambda) = S$ .

Пусть 
$$I_R(x) = \begin{cases} 1, x \in R \\ 0, x \notin R \end{cases}$$
 Тогда:

$$(a) \Leftrightarrow E_0 I_R(x) \le E_0 I_S(x) \tag{1}$$

Докажем (b). Верно неравенство:

$$I_R(x)[p_1(x) - \lambda p_0(x)] \le I_S(x)[p_1(x) - \lambda p_0(x)] \tag{2}$$

Действительно:

- если  $p_1(x) \lambda p_0(x) > 0$ , то  $I_S(x) = 1$  и (2) очевидно
- если  $p_1(x) \lambda p_0(x) \le 0$ , то правая часть (2) есть ноль, а левая меньше либо равна нуля

Итак, (2) верно. Интегрируем (2) по  $x \in \mathbb{R}^n$ , получаем:

$$E_{1}I_{R}(x) - \lambda E_{0}I_{R}(x) \leq E_{1}I_{S}(x) - \lambda E_{0}I_{S}(x)$$

$$E_{1}I_{S}(x) - E_{1}I_{R}(x) \geq \lambda [E_{0}I_{S}(x) - E_{0}I_{R}(x)]$$

$$(E_{0}I_{S}(x) - E_{0}I_{R}(x) \geq 0)$$
(3)

В силу (3) и (1) и условия  $\lambda > 0$  получаем  $E_1I_S(x) \geq E_1I_R(x)$ , т.е. (b) доказано.

Докажем (c).

1) Пусть  $\lambda \geq 1$ . Из определения  $S: p_1(x) > p_0(x) \ \forall x \in S \Rightarrow$ 

$$\Rightarrow P_0(X \in S) = \int_{\mathbb{R}^n} I_S(x) p_0(x) \mu(dx) \le \int_{\mathbb{R}^n} I_S(x) p_1(x) \mu(dx) = P_1(X \in S)$$
T.e.  $P(H_1|H_0) \le P(H_1|H_1)$ 

2) Пусть 
$$\lambda < 1, p_1(x) < p_0(x) \ \forall x \in \overline{S} \Rightarrow$$

$$\Rightarrow P_1(X \in \overline{S}) = \int_{\mathbb{R}^n} I_{\overline{S}}(x) p_1(x) \mu(dx) \le \int_{\mathbb{R}^n} I_{\overline{S}}(x) p_0(x) \mu(dx) = P_0(X \in \overline{S})$$

$$\text{T.e. } 1 - P_1(X \in S) \le 1 - P_0(x \in S) \Rightarrow P_1(X \in S) \ge P_0(X \in S)$$

#### 11.2 Пример построения НМ-критерия

Пример 11.1.  $X = (X_1, \dots, X_n), \{X_i\}$  - н.о.р.,  $X_1 \sim N(\theta, \sigma^2), \ \partial ucnepcus \ \sigma^2$  известна. Построим НМ-критерий для проверки:  $\begin{cases} H_0: \theta = \theta_0 \\ H_1: \theta = \theta_1, \theta_1 > \theta_0 \end{cases}$  Уровень значимости возьмем  $\alpha$ .

#### Доказательство.

1) Имеем:

$$p_{0}(x) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^{n} e^{-\frac{1}{2\sigma^{2}}\sum_{i=1}^{n}(X_{i}-\theta_{0})^{2}}$$

$$p_{1}(x) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^{n} e^{-\frac{1}{2\sigma^{2}}\sum_{i=1}^{n}(X_{i}-\theta_{1})^{2}}$$

$$S(\lambda) = \left\{x : p_{1}(x) - \lambda p_{0}(x) > 0\right\} \Leftrightarrow$$

$$\Leftrightarrow exp\left\{-\frac{1}{2\sigma^{2}}\sum_{i=1}^{n}[(X_{i}-\theta_{1})^{2} - (X_{i}-\theta_{0})^{2}]\right\} > \lambda \Leftrightarrow$$

$$\Leftrightarrow \sum_{i=1}^{n}[(X_{i}-\theta_{1})^{2} - (X_{i}-\theta_{0})^{2}] < \lambda_{1}, \ \lambda_{1} = -2\sigma^{2}\ln\lambda \Leftrightarrow$$

$$\Leftrightarrow (\theta_{0}-\theta_{1})\sum_{i=1}^{n}X_{i} < \lambda_{2} \Leftrightarrow$$

$$\Leftrightarrow \sum_{i=1}^{n}X_{i} > \tilde{\lambda}, \ \tilde{\lambda} = \tilde{\lambda}(\lambda, n, \sigma^{2}, \theta_{0}, \theta_{1})$$

Итак:

$$S(\lambda) = \left\{ x \colon \sum_{i=1}^n X_i > \tilde{\lambda} \right\}$$
 при некотором  $\tilde{\lambda}$ 

2) Определим  $\tilde{\lambda} = \tilde{\lambda_{\alpha}}$  из уравнения:

$$\alpha = P_{\theta_0}(X \in S(\tilde{\lambda_\alpha})) = P_{\theta_0}(\sum_{i=1}^n X_i > \tilde{\lambda_\alpha})$$

Тогда:

$$\alpha = P_{\theta_0}(\frac{1}{\sqrt{n}\sigma}\sum_{i=1}^n(X_i - \theta_0) > \frac{\lambda_\alpha - n\theta_0}{\sqrt{n}\sigma}) = 1 - \Phi(\frac{\lambda_\alpha - n\theta_0}{\sqrt{n}\sigma})$$
 т.к.  $\frac{\sum\limits_{i=1}^n(X_i - \theta_0)}{\sqrt{n}\sigma} \sim N(0,1)$ . Значит,  $\Phi(\frac{\lambda_\alpha - n\theta_0}{\sqrt{n}\sigma}) = 1 - \alpha$ ,  $\frac{\lambda_\alpha - n\theta_0}{\sqrt{n}\sigma} = \xi_{1-\alpha}$   $\xi_{1-\alpha}$  - квантиль норм. закона уровня  $\alpha$   $\Phi(\dots)$  - функция Лампласа

Итак:

$$\tilde{\lambda_{\alpha}} = n\theta_0 + \sqrt{n}\sigma\xi_{1-\alpha}$$

3) Положим:

$$S_{\alpha}^* = \left\{ x : \sum_{i=1}^n X_i > \tilde{\lambda_{\alpha}} \right\} \implies \left\{ P_{\theta_0}(X \in S_{\alpha}^*) = \alpha \atop \forall S_{\alpha} \ P_{\theta_0}(X \in S_{\alpha}) \le \alpha = P_{\theta_0}(X \in S_{\alpha}^*) \right\}$$

Значит выполнено условие (a) леммы Неймана-Пирсона, тогда в силу пункта (b) этой леммы:

$$P_{\theta_1}(X \in S_{\alpha}) \le P_{\theta_1}(X \in S_{\alpha}^*)$$

Таким образом,  $S_{\alpha}^*$  - НМ-критерий.

Т.к.  $S_{\alpha}^*$  не зависит от  $\theta_1$ , то  $S_{\alpha}^*$  - РНМ-критерий для  $\begin{cases} H_0: \theta = \theta_1 \\ H_1^+: \theta > \theta_1 \end{cases}$ 

Мощность критерия  $S^*_{\alpha}$  для  $H_0$  при альтернативе  $H_1^+$ :

$$W(\theta, S_{\alpha}^*) = P_{\theta}(\sum_{i=1}^n X_i > n\theta_0 + \sqrt{n}\sigma\xi_{1-\alpha}) =$$

$$= P_{\theta_0}\left(\frac{\sum_{i=1}^n (X_i - \theta_0)^2}{\sqrt{n}\sigma} > \frac{\sqrt{n}(\theta_0 - \theta)}{\sigma} + \xi_{1-\alpha}\right) = 1 - \Phi(\xi_{1-\alpha} + \frac{\sqrt{n}(\theta_0 - \theta)}{\sigma})$$



### 11.3 Связь между доверительным оцениванием и проверкой гипотез

Определение 11.11. Случайное подмножество  $\Theta^* = \Theta^*(X, \alpha) \subseteq \Theta$  называется доверительным интервалом уровня  $1 - \alpha, 0 < \alpha < 1$ , если

$$P_{\theta}(\theta \in \Theta^*(X, \alpha)) \ge 1 - \alpha \ \forall \theta \in \Theta$$

Теорема 11.2. Докажем два пункта:

- 1. пусть  $\forall \theta_0 \in \Theta$  гипотеза  $H_0: \theta = \theta_0$  при альтернативе  $H_1: \theta \neq \theta_0$  имеет  $S_{\alpha}(\theta_0)$  критерий уровня  $\alpha$ . Пусть  $\Theta^*(X, \alpha) = \{\theta: x \in \overline{S_{\alpha}}(\theta_0)\}$ . Тогда  $\Theta^*(X, \alpha)$  доверительное множество уровня  $1 \alpha$ .
- 2. Если  $\Theta^*(X,\alpha)$  доверительное множество уровня  $1-\alpha$ , то  $\overline{S_{\alpha}}(\theta_0) = \{x \colon \theta_0 \in \Theta^*(X,\alpha)\}$  область принятия гипотезы  $H_0$ .

**Замечание.** Пункт 2) означает, что если  $\theta_0$  попало в доверительное множество  $\Theta^*(X,\alpha)$ , то  $H_0$  надо принимать.

#### Доказательство.

- 1.  $P_{\theta}(\theta \in \Theta^*(X, \alpha)) = P_{\theta}(x \in \overline{S_{\alpha}}(\theta)) = 1 P_{\theta}(x \in S_{\alpha}(\theta)) \ge 1 \alpha \ \forall \theta \in \Theta, \text{ t.k.}$  $P_{\theta}(x \in S_{\alpha}(\theta)) \le \alpha.$
- 2.  $P_{\theta_0}(x \in S_{\alpha}(\theta_0)) = 1 P_{\theta_0}(x \in \overline{S_{\alpha}}(\theta_0)) = 1 P_{\theta_0}(\theta_0 \in \Theta^*(X, \alpha)) \le 1 (1 \alpha) = \alpha$ , т.к.  $P_{\theta_0}(\theta_0 \in \Theta^*(X, \alpha)) \ge 1 \alpha$ , т.е.  $S_{\alpha}(\theta_0)$  критерий уровня  $\alpha$ .

Пример 11.2. Пусть  $X = (X_1, ..., X_n), \{X_i\}$  - н.о.р.,  $X_1 \sim N(\theta, \sigma^2), \theta \in \mathbb{R}^1$ . Построим критерий для  $H_0: \theta = \theta_0$  против  $H_1: \theta \neq \theta_0$ . Уровень значимости будет  $\alpha, 0 < \alpha < 1$ .

**Доказательство.** Построим доверительное множество для  $\theta$  уровня  $1-\alpha$ . Пусть  $\overline{X} = n^{-1} \sum_{i=1}^{n} X_i$  - оптимальная оценка  $\theta$ , тогда:

$$\frac{n^{\frac{1}{2}}(\overline{X} - \theta)}{\sigma} \sim N(0, 1), \quad P_{\theta} \left( \left| \frac{n^{\frac{1}{2}}(\overline{X} - \theta)}{\sigma} \right| < \xi_{1 - \frac{\alpha}{2}} \right) = 1 - \alpha, \quad \Phi(\xi_{1 - \frac{\alpha}{2}}) = 1 - \frac{\alpha}{2}$$

$$\text{T.e. } \Theta^*(X, \alpha) = \left\{ \theta : \left| \frac{n^{\frac{1}{2}}(\overline{X} - \theta)}{\sigma} \right| < \xi_{1 - \frac{\alpha}{2}} \right\}$$

В силу замечания к теореме 11.2:

$$S_{\alpha}(\theta_0) = \left\{ x : \left| \frac{n^{\frac{1}{2}}(\overline{X} - \theta)}{\sigma} \right| \ge \xi_{1 - \frac{\alpha}{2}} \right\}$$

 $S_{lpha}( heta_0)$  - есть критическое множество для  $H_0$ 

$$S_{\alpha}(\theta_{0})$$
 - есть критическое множество для  $H_{0}$  мощность  $W(\theta) = P_{\theta}(x \in S_{\alpha}(\theta_{0})) = P_{\theta}\left(\left|\frac{n^{\frac{1}{2}}(\overline{X} - \theta)}{\sigma}\right| \geq \xi_{1-\frac{\alpha}{2}}\right) =$ 

$$= 1 - P_{\theta}\left(\left|\frac{n^{\frac{1}{2}}(\overline{X} - \theta)}{\sigma}\right| < \xi_{1-\frac{\alpha}{2}}\right) =$$

$$= 1 - P_{\theta}\left(-\xi_{1-\frac{\alpha}{2}} + \frac{n^{\frac{1}{2}}(\theta_{0} - \theta)}{\sigma} \leq \frac{n^{\frac{1}{2}}(\overline{X} - \theta)}{\sigma} \leq \xi_{1-\frac{\alpha}{2}} + \frac{n^{\frac{1}{2}}(\theta_{0} - \theta)}{\sigma}\right) =$$

$$\left(\frac{n^{\frac{1}{2}}(\overline{X} - \theta)}{\sigma} \sim N(0, 1)\right)$$

$$= 1 - \left[\Phi\left(\xi_{1-\frac{\alpha}{2}} + \frac{n^{\frac{1}{2}}(\theta_{0} - \theta)}{\sigma}\right) - \Phi\left(-\xi_{1-\frac{\alpha}{2}} + \frac{n^{\frac{1}{2}}(\theta_{0} - \theta)}{\sigma}\right)\right] =$$

$$= \Phi\left(\xi_{1-\frac{\alpha}{2}} + \frac{n^{\frac{1}{2}}(\theta_{0} - \theta)}{\sigma}\right) + \Phi\left(\xi_{1-\frac{\alpha}{2}} + \frac{n^{\frac{1}{2}}(\theta - \theta_{0})}{\sigma}\right)$$



$$W'(\theta_0) = 0$$

$$W(\theta) \xrightarrow[n \to \infty]{} 1 \ \forall \theta \neq \theta_0$$

Т.е.  $S_{\alpha}(\theta_0)$  состоятелен против любой фиксированной инициативы.

### 11.4 Критерий Фишера (F-критерий) в гауссовской линейной регрессии

Определение 11.12. Если  $\xi \sim N(0,1), \ \eta_k \sim \chi^2(k), \ \xi \ u \ \eta_k$  независимы, константа  $\mu \in \mathbb{R}^1, \ mo$ 

c.s. 
$$t_k(\mu) \stackrel{\mathrm{d}}{=} \frac{\xi + \mu}{\sqrt{\frac{1}{k}\eta_k}} \sim S(k,\mu)$$

имеет **нецентральное распределение Стьюдента** с k степенями свободы и параметром нецентральности  $\mu$ .

Определение 11.13. Если  $\xi_i \sim N(a_i, 1), i = 1, 2, \dots, k$  и  $\{\xi_1, \dots, \xi_k\}$  независимы,  $\triangle^2 = a_1^2 + \dots + a_k^2$ , то

c.s. 
$$\eta_k(\triangle) \stackrel{\mathrm{d}}{=} \xi_1^2 + \dots + \xi_k^2 \sim \chi^2(k, \triangle^2)$$

имеет нецентральное распределение xu-квадрат c k cmененями cвободы u nараметром нецентральности  $\triangle^2$ .

Определение 11.14. Если  $\eta_k \sim \chi^2(k, \triangle^2), \ \nu_m \sim \chi^2(m), \ u \ \eta_k \ u \ \nu_m$  независимы, то

сл.в. 
$$f_{k,m}(\Delta) \stackrel{\mathrm{d}}{=} \frac{\frac{1}{k}\eta_k}{\frac{1}{m}\nu_m} \sim F(k,m,\Delta^2)$$

имеет **нецентральное распределение Фишера** c(k,m) степенями свободы и параметром нецентральности  $\Delta^2$ .

Лемма 11.1. Докажем два пунтка:

1. распределение сл.в.  $\eta_k \sim \chi^2(k, \triangle^2)$  зависит лишь от  $\triangle$ , но не от  $a_1, \ldots, a_k$ , а именно

$$\eta_k \stackrel{\text{d}}{=} (z_1 + \triangle)^2 + z_2^2 + \dots + z_k^2$$

где  $\{z_1,\ldots,z_k\}$  - н.о.р. N(0,1) сл.в.

2. echu bermop  $\xi \in \mathbb{R}^k$ ,  $\xi \sim N(a, \Sigma)$ ,  $\Sigma > 0$ , mo

$$\xi^T \Sigma^{-1} \xi \sim \chi^2(k, \triangle^2), \ \triangle^2 = a^T \Sigma^{-1} a$$

Доказательство.

#### 1. По определению:

$$\eta_k=\eta_k(\triangle)\stackrel{\mathrm{d}}{=}\xi_1^2+\cdots+\xi_k^2$$
  $\{\xi_1,\ldots,\xi_k\}$  - независимые  $N(a_i,1)$  сл.в.

Пусть 
$$\xi = (\xi_1, \dots, \xi_k)^T$$
.

Ортогональная матрица 
$$C = \begin{pmatrix} \frac{a_1}{\triangle} & \cdots & \frac{a_k}{\triangle} \\ \cdots & \cdots \end{pmatrix}, \ \nu = C\xi.$$

Тогда  $\eta_k \stackrel{\mathrm{d}}{=} |\xi|^2 = |\nu|^2$ , т.к. C - ортогональная, но

$$\nu = C \begin{pmatrix} a_1 \\ \vdots \\ a_k \end{pmatrix} + C \xi^o = \begin{pmatrix} \triangle \\ 0 \\ \vdots \\ 0 \end{pmatrix} + Z$$

где 
$$\overset{o}{\xi} = \xi - E\xi$$
,  $Z = C\overset{o}{\xi} \sim N(0, E_k)$ , таким образом:  $\eta_k \stackrel{\mathrm{d}}{=} |\nu|^2 = (z_1 + \triangle)^2 + z_2^2 + \dots + z_k^2$ 

2. 
$$\xi^T \Sigma^{-1} \xi = |\Sigma^{-\frac{1}{2}} \xi|^2$$
, причем  $\Sigma^{-\frac{1}{2}} \xi \sim N(\Sigma^{-\frac{1}{2}} a, E_k)$ , тогда:

$$|\Sigma^{-\frac{1}{2}}\xi|^2 \sim \chi^2(k, \triangle^2), \ \triangle^2 = |\Sigma^{-\frac{1}{2}}a|^2 = a^T \Sigma^{-1}a$$

**Лемма 11.2.** Случайная величина  $t_k(\mu)$  обладает следующим свойством стохастической упорядоченности:

- (4)  $npu \ \mu_2 > \mu_1 \ u \ npu \ \forall x \in \mathbb{R}^1 \ P(t_k(\mu_2) > x) > P(t_k(\mu_1) > x)$
- (5)  $P(\eta_k(\Delta_2) > x) > P(\eta_k(\Delta_1) > x), \ \Delta_2 > \Delta_1$
- (6)  $P(f_{k,m}(\Delta_2) > x) > P(f_{k,m}(\Delta_1) > x), \ \Delta_2 > \Delta_1$

**Доказательство.** Заметим, что если  $\xi$  и  $\eta$  - независимые сл. вел. и  $E[\varphi(\xi,\eta)]<\infty,\ \varphi$  – борелевская функция, то

$$E\varphi(\xi,\eta) = E\{(E\varphi(\xi,\eta))|_{y=\eta}\}\tag{7}$$

В силу (7):

$$P(t_k(\mu_2) > x) = P\left(\frac{\xi + \mu_2}{\sqrt{\frac{1}{k}\eta_k}} > x\right) = E\mathbb{I}\left(\xi > x\sqrt{\frac{1}{k}\eta_k} - \mu_2\right) =$$

$$= E\left\{1 - \mathbb{I}\left(\xi \le x\sqrt{\frac{1}{k}\eta_k} - \mu_2\right)\right\} = 1 - E\left\{(E\mathbb{I}(\xi \le y)) \mid_{y = x\sqrt{\frac{1}{k}\eta_k} - \mu_2}\right\} =$$

$$= 1 - E\Phi\left(x\sqrt{\frac{1}{k}\eta_k} - \mu_2\right) > 1 - E\Phi\left(x\sqrt{\frac{1}{k}\eta_k} - \mu_1\right) = P\left(t_k(\mu_1) > x\right)$$

$$\left(\text{т.к. } E\Phi\left(x\sqrt{\frac{1}{k}\eta_k} - \mu_2\right) < E\Phi\left(x\sqrt{\frac{1}{k}\eta_k} - \mu_1\right) \text{ в силу возрастания } \Phi\right)$$

### 11.5 Построение доверительного множества для линейной гауссовской модели

Пусть  $X = Zc + \varepsilon$ , где  $X = (X_1, \dots, X_n)^T$  - наблюдение. Z -  $(n \times p)$ -матрица регрессора,  $rkZ = p, \ p < n$ .  $\varepsilon \sim N(0, \sigma^2 E_n), \ c = (c_1, \dots, c_p)^T, \ c$  и  $\sigma^2$  неизвестны.

Рассмотрим новый вектор  $\beta = Ac$ , A -  $(k \times p)$ -матрица,  $rkA = k \le p$ , т.е. строки A линейно независимы. Построим для  $\beta$  доверительное множество уровня  $1 - \alpha$ . **Решение.** Пусть  $\hat{c_n}$  - о.н.к. для c (также оптимальная).

Пусть  $\hat{S_n}^2$  - о.н.к. для  $\sigma^2$ . Пусть  $\hat{\beta_n} = A\hat{c_n}$  - оптимальная оценка для  $\beta$ . Т.к.  $\hat{c_n} \sim N(c, \sigma^2(Z^TZ)^{-1})$ , то  $\hat{\beta_n} \sim N(Ac, \sigma^2D)$ , где  $Ac = \beta$ ,  $D = A(Z^TZ)^{-1}A^T$ .

Заметим, что D>0, т.к. для  $\alpha\in\mathbb{R}^k$ ,  $\alpha\neq 0$ ,  $\alpha^TD\alpha=(A^T\alpha)^T(Z^TZ)^{-1}(A^T\alpha)>0$ , поскольку  $(Z^TZ)^{-1}>c$ ,  $A^T\alpha\neq 0$  при rkA=k и  $\alpha\neq 0$ .

В силу пункта 2) леммы 11.1:  $\frac{1}{\sigma^2}(\hat{\beta_n} - \beta)^T D^{-1}(\hat{\beta_n} - \beta) \sim \chi^2(k)$ 

Т.к. 
$$\frac{(n-p)\hat{S_n}^2}{\sigma^2} \sim \chi^2(n-p), \; \hat{\beta_n} \; \text{и} \; \hat{S_n}^2$$
 независимо, то

$$f_{k,n-p}(X,\beta) := \frac{\frac{\frac{1}{k}(\hat{\beta}_n - \beta)D^{-1}(\hat{\beta}_n - \beta)}{\sigma^2}}{\frac{\frac{1}{n-p}(n-p)\hat{S}_n^2}{\sigma^2}} = \frac{(\hat{\beta}_n - \beta)D^{-1}(\hat{\beta}_n - \beta)}{k\hat{S}_n^2} \sim F(k,n-p) \implies P_{\beta,\sigma^2}\left((\hat{\beta}_n - \beta)D^{-1}(\hat{\beta}_n - \beta) \leq k\hat{S}_n^2 f_{1-\alpha}(k,n-p)\right) = 1 - \alpha$$
  $f_{1-\alpha}(k,n-p)$  - квантиль уровня  $1 - \alpha$  распределения  $F(k,n-p)$ 

Доверительное множество для  $\beta$  уровня  $1-\alpha$ :

$$\Theta^*(X,\alpha) = \left\{ eta \colon (\hat{eta}_n - eta) D^{-1}(\hat{eta}_n - eta) < k \hat{S_n}^2 f_{1-lpha}(k,n-p) \right\}$$
 (доверительный эллипсоид)

Рассмотрим теперь проверку гипотезы  $H_0: \beta = \beta_0$  против  $H_1: \beta \neq \beta_0$ .

Определение 11.15.  $H_0$  называется **линейной гипотезой**,  $m.\kappa.$   $\beta = Ac$  получается линейным преобразованием c.

В силу замечания 11.3  $H_0$  надо принимать, если  $\beta_0 \in \Theta^*(X, \alpha)$ , т.е. область принятия  $H_0$ :

$$\overline{S_{\alpha}}(\beta_0) = \{x \colon f_{k,n-p}(x,\beta_0) \le f_{1-\alpha}(k,n-p)\}$$

т.е. критическое множество (критерий уровня  $\alpha$ ):

$$S_{\alpha}(\beta_0) = \{x \colon f_{k,n-p}(x,\beta_0) > f_{1-\alpha}(k,n-p)\}$$
 (7)

Определение 11.16. Критерий (7) называется критерием Фишера (F-критерие а  $f_{k,n-p}(x,\beta_0)$  - статистикой F-критерия.

Рассмотрим поведение F-критерия при альтернативе  $H_1$ : при  $H_1$  в силу пункта 2 леммы 11.1:

$$f_{k,n-p}(x,\beta_0) = \frac{\frac{\frac{1}{k}(\hat{\beta}_n - \beta)D^{-1}(\hat{\beta}_n - \beta)}{\sigma^2}}{\frac{\frac{1}{n-p}(n-p)\hat{S}_n^2}{\sigma^2}}, \frac{(\hat{\beta}_n - \beta)D^{-1}(\hat{\beta}_n - \beta)}{\sigma^2} \sim \chi^2(k,\Delta^2)$$
$$\frac{(n-p)\hat{S}_n^2}{\sigma^2} \sim \chi^2(n-p), \text{ тогда } f_{k,n-p}(x,\beta_0) \sim F(k,n-p,\Delta^2)$$

Параметр нецентральности:  $\triangle^2 = \frac{1}{\sigma^2} (\beta - \beta_0) D^{-1} (\beta - \beta_0)$ 

Мощность F-критерия:

$$W(\beta, S_{\alpha}(\beta_0)) = P_{\beta,\sigma^2}(f_{k,n-p}(x,\beta_0) > f_{1-\alpha}(k,n-p)) = 1 - F_{k,n-p}(f_{1-\alpha}(k,n-p),\Delta^2)$$
 при  $\beta = \beta_0 \ W(\beta_0, S_{\alpha}(\beta_0)) = \alpha$ 

#### Свойства 11.1. Свойства мощности:

- 1.  $\triangle = \triangle(\beta) > 0 = \triangle(\beta_0)$  при  $\beta \neq \beta_0$ , тогда из соотношения (6) леммы 11.2:  $P_{\beta,\sigma^2}(f_{k,n-p}(x,\beta_0) > f_{1-\alpha}(k,n-p)) > P_{\beta_0,\sigma^2}(f_{k,n-p}(x,\beta_0) > f_{1-\alpha}(k,n-p)) = \alpha$  т.е. при  $\beta \neq \beta_0$   $P(H_1|H_1) > P(H_1|H_0)$ , т.е. F-критерий **несмещенный**
- 2. мощность  $W(\beta, S_{\alpha}(\beta_0))$  строго монотонна по  $\triangle$  из соотношения (8)

#### 11.6 Пример определения порядка регрессии

Пусть  $c^T=(c_{(1)}^T,c_{(2)}^T),\ c_{(1)}$  - m-вектор,  $c_{(2)}$  - p-m-вектор,  $1\leq m\leq p$ .  $H_0:c_{(2)}=0$  (т.е. порядок  $\leq m$ ),  $H_1:c_{(2)}\neq 0$ .

Пусть матрица 
$$A=\begin{pmatrix} \frac{1}{0} & \frac{\cdots}{m} & \frac{m}{m+1} & \frac{\cdots}{m} & \frac{p}{0} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 1 \end{pmatrix}$$
, тогда  $Ac=c_{(2)}$  и

 $H_0$  эквивалентна гипотезе  $Ac = 0 = \beta_0 - p - m$ -вектор.

Пусть  $\hat{c_n}^T = (\hat{c_{(1)}}_n^T, \hat{c_{(2)}}_n^T)$ , где  $\hat{c_{(1)}}_n^T - m$ -вектор,  $\hat{c_{(2)}}_n^T - p - m$ -вектор. Тогда  $\hat{\beta_n} = A\hat{c_n} = \hat{c_{(2)}}_n$ .

Если 
$$(Z^T Z)^{-1} = {1 \times m | \choose (m+1) \times p} {B_{11} \choose B_{21} \choose B_{21}},$$
 то  $D = A(Z^T Z)^{-1} A^T = B_{22}.$ 

Тогда:

$$f_{p-m,n-p}(x,\beta_0=0) = \frac{\hat{c_{(2)}}_n^T B_{22}^{-1} \hat{c_{(2)}}_n}{(p-m)\hat{S_n}^2}$$

- при  $H_0$   $f_{p-m,n-p}(x,0) \sim F(p-m,n-p)$
- $H_0$  отвергается, если  $f_{p-m,n-p}(x,0) > f_{1-\alpha}(p-m,n-p)$ , т.е.

$$S_{\alpha}(0) = \left\{ x : \frac{\hat{c}(2)_n^T B_{22}^{-1} \hat{c}(2)_n}{(p-m)\hat{S}_n^2} > f_{1-\alpha}(p-m, n-p) \right\}$$
(9)

• при  $H_1$   $f_{p-m,n-p}(x,0) \sim F(p-m,n-p,\triangle^2)$ , где

$$\Delta^2 = \frac{\hat{c}_{(2)}^T B_{22}^{-1} \hat{c}_{(2)}}{\sigma^2} \tag{10}$$

• критерий (9) несмещенный, т.е.  $P(H_1|H_1) > P(H_1|H_0) = \alpha$ . Его мощность:

$$W(c_{(2)}, S_{\alpha}(0)) = P_{c_{(2)}, \sigma^2}(f_{p-m, n-p}(x, 0) > f_{1-\alpha}(p-m, n-p)) =$$

$$= 1 - F_{p-m, n-p}(f_{1-\alpha}(p-m, n-p), \triangle^2)$$
т.е. мощность строго возрастает по  $\triangle^2$ 

Параметр нецентральности  $\triangle^2$  определен в (10)

### 11.7 Пример проверки однородности двух выборок

Пусть  $X=(X_1,\ldots,X_m),\ Y=(Y_1,\ldots,Y_m)$  - две независимые гауссовские выборки, т.е.  $\{X_i\}$  - н.о.р.,  $X_1\sim N(a,\sigma^2),\ \{Y_j\}$  - н.о.р.,  $Y_1\sim N(b,\sigma^2)$ . Совокупности  $\{X_i\}$  и  $\{Y_j\}$  независимы, m+n>2. Дисперсии  $DX_1=DY_1=\sigma^2$  и неизвестны, средние a и b неизвестны.

Проверим гипотезу  $H_0: a=b$  против  $H_1: a\neq b$  по наблюдениям X и Y. Гипотеза  $H_0$  называется **гипотезой однородности**.

При  $DX_1 \neq DX_2$  описанная задача называется проблемой Беренса-Фишера.

Итак:

$$\begin{cases} X_i = a + \varepsilon_i, & i = 1, 2, \dots, m, & \varepsilon_i := X_i - a \\ Y_j = b + \tilde{\varepsilon_j}, & j = 1, 2, \dots, n, & \tilde{\varepsilon_j} := Y_j - b \end{cases}$$

Тогда  $\varepsilon_1, \dots, \varepsilon_m, \tilde{\varepsilon_1}, \dots, \tilde{\varepsilon_n}$  - н.о.р.  $N(0, \sigma^2)$  с.в. Пусть  $\tilde{X} = (X_1, \dots, X_m, Y_1, \dots, Y_n)^T, \ c = (a, b)^T, \ \varepsilon^T = (\varepsilon_1, \dots, \varepsilon_m, \tilde{\varepsilon_1}, \dots, \tilde{\varepsilon_n})^T$ 

$$Z = \begin{array}{c} 1 \\ \vdots \\ m \\ m+1 \\ \vdots \\ m+n \end{array} \begin{vmatrix} 1 & 0 \\ \vdots & \vdots \\ 1 & 0 \\ 0 & 1 \\ \vdots & \vdots \\ 0 & 1 \end{vmatrix} \Rightarrow \tilde{X} = Zc + \varepsilon \tag{11}$$

Соотношение (11) определяет гауссовскую линейную регрессию.

Положим  $A = (1, -1) \Rightarrow Ac = a - b = \beta$ .

$$H_0: Ac = a - b = \beta = 0 \ (= \beta_0)$$
  
 $H_1: Ac = a - b \neq 0 \ (\text{r.e. } \beta \neq 0)$ 

Тогда, о.н.к. для вектора c - это решение задачи.

$$\sum_{i=1}^{m} (X_i - a)^2 + \sum_{j=1}^{n} (Y_j - b)^2 \to \min_{a,b}$$
 (12)

Задача (12) эквивалентна системе уравнений:

$$\begin{cases}
-2\sum_{i=1}^{m} (X_i - a) = 0 \\
-2\sum_{j=1}^{n} (Y_j - b) = 0
\end{cases}$$

Решения этой системы  $\hat{a_n} = \overline{X}$ ,  $\hat{b_n} = \overline{Y}$  - оптимальные оценки a и b.  $\hat{c_n} = (\overline{X}, \overline{Y})^T$  - оптимальная оценка c. Оптимальная оценка для  $\sigma^2$ :

$$\hat{S_{m+n}}^2 = \frac{1}{m+n-2} \left[ \sum_{i=1}^m (X_i - \overline{X})^2 + \sum_{j=1}^n (Y_j - \overline{Y})^2 \right]$$

Тогда  $\hat{\beta_n} = A\hat{c_n} = \overline{X} - \overline{Y}$ .

$$Z^{T}Z = \begin{pmatrix} \frac{1}{1} & \cdots & \frac{m}{n} & \frac{m+1}{n} & \cdots & \frac{m+n}{n} \\ 1 & \dots & 1 & 0 & \dots & 0 \\ 0 & \dots & 0 & 1 & \dots & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \vdots & \vdots \\ 1 & 0 \\ 0 & 1 \\ \vdots & \vdots \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} m & 0 \\ 0 & n \end{pmatrix}$$
$$D = A(Z^{T}Z)^{-1}A^{T} = \begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{m} & 0 \\ 0 & \frac{1}{n} \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{1}{n} + \frac{1}{m}$$

Значит:

$$f_{1,m+n-2}(X,\beta_0=0) = \frac{(\overline{X} - \overline{Y})^2}{(\frac{1}{n} + \frac{1}{m}) \hat{S}_{m+n}^2}$$

F-критерий для  $H_0$  имеет вид:

$$S_{\alpha}(0) = \left\{ x \in \mathbb{R}^{m+n} : f_{1,m+n-2}(X,0) > f_{1-\alpha}(1,m+n-2) \right\}$$

При  $H_0$  (т.е. при a=b)  $f_{1,m+n-2}(X,0)\sim F(1,m+n-2)$ . При  $H_1$  (т.е. при  $a\neq b$ )  $f_{1,m+n-2}(X,0)\sim F(1,m+n-2,\triangle^2)$ . Параметр нецентральности:

$$\triangle^2 = \triangle^2(\beta) = \triangle^2(a-b) = \frac{(a-b)^2}{\sigma^2\left(\frac{1}{m} + \frac{1}{n}\right)}$$

- 1. если |a-b| возрастает, то мощность F-теста тоже возрастает 2. если  $\sigma \to 0$  или  $\frac{1}{m} + \frac{1}{n} \to 0$ , то мощность возрастает

#### Проверка простой гипотезы в схеме Бернулли

Пусть проводится n независимых испытаний и в каждом испытании возможны m исходов,  $m \geq 2, A_1, \ldots, A_m$  таких, что  $A_i A_j = \emptyset$  при  $i \neq j, \sum A_i = \Omega$ .  $P(A_j) =$  $p_j > 0, \; \sum_{i=1}^m p_j = 1. \; \text{Пусть } \nu = (\nu_1, \dots, \nu_m)^T, \, \text{а} \; \nu_j$  - число появлений  $A_j$  в n опытах  $X \Rightarrow \sum_{i=1}^{m} \nu_j = n.$ 

По вектору наблюдений  $\nu$  необходимо проверить гипотезу  $H_0$ :

 $H_0: p_j = p_j^0, \ j = 1, \dots, m.$ 

Альтернатива  $H_1: p_j \neq p_j^0$  хотя бы при одном j.

Подчеркнем, что  $H_0$  - простая гипотеза, т.к. она полностью определяет распределение вектора  $\nu$ , а именно при  $H_0$ :

$$P(
u_1=k_1,\dots,
u_m=k_m)=rac{n!}{k_1!\dots k_m!}(p_1^0)^{k_1}\dots(p_m^0)^{k_m}$$
 – это полиномиальное распределение  $\Pi(n,p_1^0,\dots,p_m^0)$ 

Статистика хи-квадрат Пирсона для  $H_0$  имеет вид:

$$\chi_n^2 := \sum_{j=1}^m \frac{(\nu_j - np_j^0)^2}{np_j^0}$$

Поведение при альтернативе: очевидно, что

$$\chi_n^2 = n \sum_{j=1}^m \frac{(\frac{\nu_j}{n} - p_j^0)^2}{p_j^0}$$

В силу теоремы Бернулли:

$$\frac{\nu_j}{n} \xrightarrow{P} p_j \Rightarrow \sum_{i=1}^m \frac{(\frac{\nu_j}{n} - p_j^0)^2}{p_j^0} \xrightarrow{P} \sum_{i=1}^m \frac{(p_j - p_j^0)^2}{p_j^0} > 0$$
 при  $H_1$ 

(по теореме о наследовании сходимости по вероятности)

Значит, при  $H_1$   $\chi_n^2 \xrightarrow[n \to \infty]{P} \infty$ , поэтому большие значения  $\chi_n^2$  свидетельстуют против  $H_0$ . Но что такое большие значения?

Теорема 11.3 (Пирсона). При  $H_0$  и  $n \to \infty$   $\chi_n^2 \xrightarrow{d} \chi^2(m-1)$ .

Правило 11.1. Если  $\chi_n^2 > \chi_{1-\alpha}(m-1)$ , то  $H_0$  отвергаем и принимаем  $H_1$ . Если  $\chi_n^2 \leq \chi_{1-\alpha}(m-1)$ , то принимаем  $H_0$ .

$$P(H_1|H_0) = P(\chi_n^2 > \chi_{1-\alpha}(m-1)) \to \alpha$$

$$P(H_0|H_1) = P(\chi_n^2 \le \chi_{1-\alpha}(m-1)|H_1) \xrightarrow[n \to \infty]{} 0$$

$$m.e. \begin{cases} P(H_0|H_0) \to 1 - \alpha \\ P(H_1|H_1) \to 1 \end{cases}$$

Вероятность принять правильную гипотезу близка к единице.

### 11.9 Проверка простой гипотезы о виде функции распределения

Пусть  $X = (X_1, \dots, X_n), \{X_i\}$  - н.о.р.,  $X_1 \sim F(x)$ .

 $H_0: F(x) = F_0(x), F_0$  полностью известна.

 $H_1: F(x) = F_1(x) \text{ if } F_1(x) \neq F_0(x).$ 

Разобьем носитель  $X_1$  на непересекающиеся отрезки  $\Delta_1, \ldots, \Delta_m$  так, что  $(m \ge 2) \ X_1 \in \Delta_1 \bigcup \cdots \bigcup \Delta_m$ .

$$p_j^0 := P(x_1 \in \triangle_j | H_0) = \int_{\triangle_j} dF_0(x) > 0 \ \forall j \ \Rightarrow \ \sum_{j=1}^m p_j^0 = 1$$

С каждой величиной  $X_i$  свяжем испытание с исходами  $A_1, \ldots, A_m$ , причем  $A_j$  происходит тогда и только тогда, когда  $X_i \in \Delta_j$ .

При  $H_0$   $P(A_j) = p_j^0$ , тогда наблюдения  $X_1, \ldots, X_n$  порождают полиномиальную схему независимых испытаний.

Пусть  $\nu_j$  - число исхода  $A_j$  в этих испытаниях, т.е. число наблюдений среди  $X_1,\dots,X_n$ , попавших в  $\Delta_j$ .

В силу теоремы Пирсона при  $H_0$ :

$$\chi_n^2 := \sum_{j=1}^m \frac{(\nu_j - np_j^0)^2}{np_j^0} \xrightarrow{d} \chi^2(m-1)$$

**Правило 11.2.**  $H_0$  будем отвергать, если  $\chi_n^2 > \chi_{1-\alpha}(m-1) \Rightarrow P(H_1|H_0) \xrightarrow[n \to \infty]{} \alpha$ .

 $\alpha$ . Если верна  $H_1$  и хотя бы при одном j  $p_j:=P(X_1\in \triangle_j|H_1)=\int\limits_{\triangle_j}dF_1(x)\neq p_j^0,$  то  $P(H_0|H_1)=P(\chi_n^2<\chi_{1-\alpha}(m-1)|H_0)\to 0$ 

**Замечание.** Если  $F_0 \not\equiv F_1$ , но  $p_j = p_j^0 \, \forall j$ , то  $P(H_0|H_1) = P(H_0|H_0) \to 1 - \alpha \neq 0$ . Например:



$$m = 2$$

$$P(X_1 \in \Delta_1 | H_0) = F_0(0) =$$

$$= P(X_1 \in \Delta_1 | H_1) = F_1(0)$$

$$P(X_1 \in \Delta_2 | H_0) = 1 - F_0(0) =$$

$$= P(X_1 \in \Delta_2 | H_1) = 1 - F_1(0)$$

Доказательство. (доказательство теоремы Пирсона)

Покажем, что вектор  $\nu = (\nu_1, \dots, \nu_m)^T$  асимптотически нормален, т.е.

$$n^{\frac{1}{2}}(n^{-1}\nu - p) \xrightarrow{d} N(0, P - pp^T)$$
 (13)

где 
$$P = \begin{pmatrix} p_1^0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & p_m^0 \end{pmatrix}, \, p = (p_1^0, \dots, p_m^0)^T.$$

Для этого введем вектора  $X_1, \ldots, X_n$ , где  $X_i = (0, \ldots, 0, 1, 0, \ldots, 0)^T$  с 1 на ј-ом месте, если в i-ом испытании произошло  $A_j$ , тогда:  $\nu = \sum_{i=1}^n X_i$ ,

$$n^{\frac{1}{2}}(n^{-1}\nu - p) = n^{\frac{1}{2}} \sum_{i=1}^{n} (X_i - p)$$
(14)

В (14)  $\{X_i\}$  - н.о.р.,  $EX_1 = p$ .

$$cov(X_1, X_1) = E(X_1 - p)(X_1 - p)^T = EX_1X_1^T - pp^T = P - pp^T$$

Поэтому соотношение (13) следует из представления (14) и ЦПТ. Матрица  $P - pp^T$  вырождена, т.к. сумма r столбцов есть ноль: если  $e = (1, ..., 1)^T$ , то  $(P - pp^T)e = p - p(p^Te) = p - p = 0$ .

Пусть 
$$P^{-\frac{1}{2}} = \begin{pmatrix} \frac{1}{\sqrt{p_1^0}} & \dots & 0\\ \vdots & \ddots & \vdots\\ 0 & \dots & \frac{1}{\sqrt{p_m^0}} \end{pmatrix}, \quad \xi_n := n^{\frac{1}{2}} P^{-\frac{1}{2}} (n^{-1}\nu - p).$$

В силу теоремы о наследовании слабой сходимости и соотношения (13):

$$(H(x) = P^{-\frac{1}{2}}x, \ x \in \mathbb{R}^m)$$
$$\xi_n \xrightarrow{d} N(0, P^{-\frac{1}{2}}(P - pp^T)(P^{-\frac{1}{2}})^T)$$

Но 
$$P^{-\frac{1}{2}}(P-pp^T)(P^{-\frac{1}{2}})^T=E_m-ZZ^T$$
, где  $Z=(\sqrt{p_1^0},\dots,\sqrt{p_m^0})^T$ . Тогда: 
$$\xi_n \xrightarrow{d} N(0,E_m-ZZ^T) \tag{15}$$

Пусть ортогональная матрица  $U = \begin{pmatrix} \sqrt{p_1^0} & \dots & \sqrt{p_m^0} \\ \dots & \dots & \dots \end{pmatrix}$ . Тогда:

$$U(E_{m} - ZZ^{T})U^{T} = E_{m} - (UZ)(UZ)^{T} = \begin{pmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} (1 \quad 0 \quad \dots \quad 0) = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix} = \tilde{E}_{1}$$

В силу (15) и теоремы о наследовании слабой сходимости:

$$U\xi_n \xrightarrow{d} N(0, \tilde{E}_1) \tag{16}$$

т.е.  $U\xi_n \xrightarrow{d} (0, \eta_2, \dots, \eta_m)^T$ ,  $\{\eta_2, \dots, \eta_m\}$  - нез. N(0, 1) с.в.

Из (16) опять в силу теоремы о наследовании слабой сходимости:

$$|U\xi_n|^2 \xrightarrow{d} \eta_2^2 + \dots + \eta_m^2 \sim \chi^2(m-1)$$
 (17)

Осталось заметить, что:

$$|U\xi_n|^2 = |\xi_n|^2 = \sum_{j=1}^m \left[ \frac{1}{\sqrt{p_j^0}} n^{\frac{1}{2}} (n^{-1}\nu_j - p_j^0) \right]^2 = \sum_{j=1}^m \frac{(\nu_j - np_j^0)^2}{np_j^0} = \chi_n^2$$

Последнее равенство и соотношение (17) доказывают теорему Пирсона.

### 11.10 Проверка сложной гипотезы в схеме испытаний Бернулли

Пусть проводится n независимых испытаний, исходы  $A_1,\dots,A_m, \nu=(\nu_1,\dots,\nu_m)^T$  - вектор наблюдений.

Пусть  $H_0: p(A_j) = p_j(\theta), \ \theta \in \Theta \subseteq \mathbb{R}^k, \ k < m-1.$ 

#### Условия регулярности:

(i) 
$$\sum_{j=1}^{m} p_j(\theta) = 1 \ \forall \theta \in \Theta$$

(ii) 
$$p_j(\theta) \ge c > 0$$
 для  $j = 1, 2, \dots, m$  и  $\exists \frac{\partial p_j(\theta)}{\partial \theta_l}, \ \frac{\partial^2 p_j(\theta)}{\partial \theta_l \partial \theta_r}$ 

(iii) 
$$rk\left(\frac{\partial p_j(\theta)}{\partial \theta_l}\right) = k \ \forall \theta \in \Theta, \frac{\partial p_j(\theta)}{\partial \theta_l}$$
 -  $m \times k$ -матрица

В качестве оценки  $\theta$  при  $H_0$  будем использовать мультиноминальные оценки максимального правдоподобия:

$$P(\nu_1 = k_1, \dots, \nu_m = k_m) = \frac{n!}{k_1! \dots k_m!} p_1^{k_1}(\theta) \dots p_m^{k_m}(\theta)$$

Логарифм правдоподобия:

$$Ln(\nu,\theta) = \ln \frac{n!}{\nu_1! \dots \nu_m!} + \sum_{j=1}^m \nu_j \ln p_j(\theta)$$

О.м.п. (мультиномиальная):  $Ln(\nu,\theta) \to \max_{\theta \in \Theta}$ 

**Теорема 11.4** (Фишера). Пусть верна  $H_0$ , пусть выполнены условия (i)-(iii), пусть  $\theta_n$  - мультиномиальная о.м.п.,  $\hat{\chi_n}^2 := \sum_{j=1}^m \frac{(\nu_j - np_j(\hat{\theta_n}))^2}{np_j(\hat{\theta})}$ .

Тогда 
$$\hat{\chi_n}^2 \xrightarrow{d} \chi(m-k-1)$$
.

**Правило 11.3.** Если  $\hat{\chi_n}^2 > \chi_{1-\alpha}(m-k-1)$ , то  $H_0$  отвергаем, тогда  $P(\overline{H_0}|H_0) \to \alpha$ .

#### 11.11 Проверка независимости признаков

Пусть объект классифицирован по двум признакам A и B,  $A = \{A_1, \ldots, A_s\}$ ,  $B = \{B_1, \ldots, B_r\}$ , причем s, r > 1.

Проводится n опытов, пусть  $\nu_{ij}$  - число объектов, имеющих признаки  $A_iB_j$ , пусть  $p_{ij}=P(A_iB_j).$ 

Гипотеза независимости  $H_0: p_{ij}=p_{i\cdot}p_{\cdot j}$  для положительных  $p_{i\cdot}$  и  $p_{\cdot j}$  таких, что  $\sum_{i=1}^s p_{i\cdot}=1, \ \sum_{j=1}^r p_{\cdot j}=1.$ 

При  $H_0$  логарифимческое правдоподобие:

$$Ln(\nu, p_{i\cdot}, p_{\cdot j}) = \ln \frac{n!}{\prod\limits_{ij} \nu_{ij}} + \sum_{i=1}^{s} \sum_{j=1}^{r} \nu_{ij} (\ln p_{i\cdot} + \ln p_{\cdot j})$$

Максимизируя эту функцию по  $p_i$ ,  $p_{\cdot j}$  при условиях  $\sum_{i=1}^s p_i = 1$  и  $\sum_{j=1}^r p_{\cdot j} = 1$ , находим оценки:

$$\hat{p_{i\cdot}} = \frac{\nu_{i\cdot}}{n}, \; \hat{p_{\cdot j}} = \frac{\nu_{\cdot j}}{n}, \;$$
где  $\nu_{i\cdot} = \sum_{j=1}^r \nu_{ij}, \; \nu_{\cdot j} = \sum_{i=1}^s \nu_{ij}$ 

Статистика хи-квадрат имеет вид:

$$\hat{\chi_n}^2 = \sum_{i=1}^s \sum_{j=1}^r \frac{(\nu_{ij} - n\hat{p_i}.\hat{p_{.j}})^2}{n\hat{p_i}.\hat{p_{.j}}}$$

При  $H_0$   $\hat{\chi_n}^2 \xrightarrow{d} \chi$  ((s-1)(r-1)), т.к. число разбиений m-k-1 = sr-(s+r-2)-1 = (s-1)(r-1).

**Правило 11.4.** Если  $\hat{\chi_n}^2 > \chi_{1-\alpha}((s-1)(r-1))$ , то  $H_0$  отвергается, асимптотический уровень теста равен  $\alpha$ .

#### Числовой пример (W.H. Gilby, Biometrika)

1725 школьников классифицировали (1) в соответствии с качеством их одежды и (2) в соответствии с их умственными способностями. Использовали следующую градацию:

| градация | характеристика         |  |  |  |  |
|----------|------------------------|--|--|--|--|
| A        | умственно отсталый     |  |  |  |  |
| В        | медлительный и тупой   |  |  |  |  |
| С        | тупой                  |  |  |  |  |
| D        | медлительный, но умный |  |  |  |  |
| E        | достаточно умный       |  |  |  |  |
| F        | явно способный         |  |  |  |  |
| G        | очень способный        |  |  |  |  |

 $H_0$ : признаки независимы.

| как одевается? | АиВ | C   | D   | $\mathbf{E}$ | $\mathbf{F}$ | G  | Сумма |
|----------------|-----|-----|-----|--------------|--------------|----|-------|
| очень хорошо   | 33  | 48  | 113 | 209          | 194          | 39 | 636   |
| хорошо         | 41  | 100 | 202 | 255          | 138          | 15 | 751   |
| СНОСНО         | 39  | 58  | 70  | 61           | 33           | 4  | 265   |
| очень плохо    | 17  | 13  | 22  | 10           | 10           | 1  | 73    |
| сумма          | 130 | 219 | 407 | 535          | 375          | 59 | 1725  |

Здесь  $\chi_n^2=174.92>\chi_{0.999}(15)=37.697,$  здесь (s-1)(r-1)=(4-1)(6-1)=15, т.е.  $H_0$  отвергается.

#### Введение в робастное оценивание

Схема, предложенная Мартином-Йохаи (Martin, Yohai, 1986), имеет вид:

$$y_t = u_t + z_t^{\gamma} \xi_t, \ t = 1, 2, \dots, n$$

- ullet здесь  $\{u_t\}$  «полезный сигнал» (временной ряд)
- $\{z_t^\gamma\}$  н.о.р.с.в.,  $z_1^\gamma \sim Bin(1,\gamma)$  с  $0 \le \gamma \le 1,\ \gamma$  уровень засорения
- $\xi_t$  н.о.р.с.в. грубые выбросы,  $\xi_1$  имеет распределение  $\mu_{\xi} \in M_{\xi}$ , распределение  $\mu_{\xi}$  неизвестно, а множество  $M_{\xi}$  известно
- $\bullet$  последовательности  $\{u_t\}, \{z_t^\gamma\}, \{\xi_t\}$  независимы между собой

Пусть  $y_1, \ldots, y_n$  - наблюдения, и распределение вектора  $Y_n = (y_1, \ldots, y_n)$  зависит от неизвестного параметра  $\beta$ . Пусть  $\hat{\beta}_n$  - некоторая оценка  $\beta$ .

#### Основное предположение

При любом  $0 \le \gamma \le 1$  существует предел  $\hat{\beta_n} \xrightarrow[n \to \infty]{P} \theta_{\gamma}$ ,  $\theta_0 = \beta$ , т.е.  $\hat{\beta_n}$  состоятельна.

Определение 12.1. Если существует предел

$$IF(\theta_{\gamma}, \mu_{\xi}) := \lim_{\gamma \to +0} \frac{\theta_{\gamma} - \theta_{0}}{\gamma}$$

то  $IF(\theta_{\gamma}, \mu_{\xi})$  называется функционалом влияния (influence function) оценки  $\hat{\beta}_n$ .

Если функционал влияния существует, то

$$\theta_{\gamma} = \theta_0 + IF(\theta_{\gamma}, \mu_{\xi})\gamma + \overline{o}(\gamma), \ \gamma \to +0$$

т.е.  $IF(\theta_{\gamma}, \mu_{\xi})$  характеризует главный линейный по  $\gamma$  член в разложении по  $\gamma$  асимптотического смещения  $\theta_{\gamma} - \theta_{0} = \theta_{\gamma} - \beta$ .

Определение 12.2. Величина  $CES(\theta_{\gamma}, M_{\xi}) := \sup_{\mu_{\xi} \in M_{\xi}} |IF(\theta_{\gamma}, \mu_{\xi})|$  (cross error sensivity) называется **чувствительностью** оценки  $\hat{\beta}_n$  к засорениям (выбросам).

Если  $CES(\theta_{\gamma}, M_{\xi}) < \infty$ , то главный член по  $\gamma$  асимптотического смещения  $IF(\theta_{\gamma}, \mu_{\xi})\gamma$  равномерно мал при малых  $\gamma$ .

Определение 12.3. Если  $CES(\theta_{\gamma}, M_{\xi}) < \infty$ , то оценка  $\hat{\beta}_n$  называется **робаст-**ной по смещению, или **B-робастной**.

### 12.1 Пример о выборочном среднем

$$\begin{cases} u_t = a + \varepsilon_t, \ \varepsilon_t \text{ - ошибки измерений} \\ y_t = u_t + z_t^{\gamma} \xi_t, \ t = 1, 2, \dots, n, \ E|\xi_1| < \infty \end{cases}$$

 $\{\varepsilon_t\}$  - H.O.P.C.B.,  $E\varepsilon_1=0 \implies Eu_t=a$ .

Возьмем оценкой a эмпирическое среднее  $\overline{y} = n^{-1} \sum_{t=1}^n y_t$  - о.н.к.  $(\sum_{t=1}^n (y_t - \theta)^2 \to min)$ , тогда:

$$\overline{y} \xrightarrow{P} E(u_1 + z_1^{\gamma} \xi_1)$$
(по теореме Колмогорова)
$$E(u_1 + z_1^{\gamma} \xi_1) = a + \gamma E \xi_1 = \theta_{\gamma}^{LS}$$

Функция  $\theta_{\gamma}^{LS}$  (least square) определена при всех  $\gamma$ .

$$\frac{\partial \theta_{\gamma}^{LS}}{\partial \gamma} = E\xi_1 = IF(\theta_{\gamma}, \mu_{\xi})$$

Если  $M_1$  - класс распределений с конечным первым моментом, то

$$CES(\theta_{\gamma}^{LS}, M_1) = \sup_{\mu_{\xi} \in M_1} |E\xi_1| = \infty$$

т.е.  $\overline{y}$  - не B-робастна на классе  $M_1$ .

# 12.2 Пример о выборочной медиане

Пусть

$$u_t = a + \varepsilon_t, \ t = 1, 2, \dots, n \tag{1}$$

где  $\{\varepsilon_t\}$  - н.о.р.с.в.,  $\varepsilon_t \sim G(x)$  и ф.р. G(x) неизвестна,  $G(0) = \frac{1}{2}$ . Тогда ф.р.  $u_t$  есть F(x) = G(x-a), т.е.  $F(a) = \frac{1}{2}$ . Итак, ноль - медиана G(x), а a - медиана F(x).

Если  $\varepsilon_t$  имеет симметричное относительно нуля распределение (т.е.  $\varepsilon_t \stackrel{\mathrm{d}}{=} -\varepsilon_t$ , что для непрерывной G(x) равносильно условию G(x) + G(-x) = 1 при всех x), то условия выше выполняются автоматически.

Т.о. при сформулированных условиях оценку медианы можно использовать как оценку математического ожидания.

Пусть  $u_{(1)} \leq u_{(2)} \leq \cdots \leq u_{(n)}$  будет вариационный ряд наблюдений  $u_1, \ldots, u_n$ .

Определение 12.4. Величина  $\hat{m_n} = \begin{cases} u_{(k+1)}, & n=2k-1 \\ \frac{u_{(k+1)}+u_{(k)}}{2}, & n=2k \end{cases}$ ,  $k=1,2,\ldots$  называется выборочной медианой наблюдений  $u_1,\ldots,u_n$ .

Мы знаем, что если G(x) дифференцируема в нуле, и g(0) = G'(0) > 0, то для выборочной медианы справедлива асимптотическая нормальность:

$$n^{\frac{1}{2}}(\hat{m_n} - a) \xrightarrow[n \to \infty]{d} N\left(0, \frac{1}{4g^2(0)}\right)$$

Если в (1)  $\{\varepsilon_t\}$  - н.о.р.,  $E\varepsilon_t=0,\ 0< E\varepsilon_t^2=\sigma^2<\infty,\ {\rm to}\ n^{\frac{1}{2}}(\overline{u}-a)\xrightarrow[n\to\infty]{d} N(0,\sigma^2).$  Значит АОЭ выборочной медианы относительно  $\overline{u}$  равна  $e_{\hat{m_n},\overline{X}}=4g^2(0)\sigma^2.$ 

Изучим В-робастность выборочной медианы. Пусть:

$$\begin{cases} u_t = a + \varepsilon_t \\ y_t = u_t + z_t^{\gamma} \xi_t, \ t = 1, 2, \dots, n \end{cases}$$
$$\hat{m}_n^y = \begin{cases} y_{(k+1)}, n = 2k - 1 \\ \frac{y_{(k)} + y_{(k+1)}}{2}, n = 2k \end{cases}$$

**Теорема 12.1.** Пусть существует производная g(x) = G'(x), g(x) непрерывна и ограничена, g(0) > 0,  $G(0) = \frac{1}{2}$ . Тогда:

- 1)  $\hat{m}_n^y \xrightarrow[n \to \infty]{P} \theta_\gamma^m$ ,  $\theta_0 = a$
- 2) существует функционал влияния выборочной медианы

$$IF(\theta_{\gamma}^{m}, \mu_{\xi}) = \frac{1 - 2EG(-\xi_{1})}{2g(0)}$$

3) чувствительность выборочной медианы на классе всех возможных распределений  $M_{\mathcal{E}}$ 

$$GES(\theta_{\gamma}^{m}, M_{\xi}) = \sup_{\mu_{\xi} \in M_{\xi}} |IF(\theta_{\gamma}^{m}, \mu_{\xi})| = \frac{1}{2g(0)} < \infty$$

т.е. выборочная медиана В-робастна.

#### Доказательство.

ШАГ 1.

Выборочная медиана  $\hat{m}_n^y$  удовлетворяет уравнению:

$$l_n(\theta) := n^{-1} \sum_{t=1}^n sign(y_t - \theta) = 0$$
 (2)

где 
$$sign(x) = \begin{cases} -1, x < 0 \\ 0, x = 0 \\ 1, x > 1 \end{cases}$$

Справедливость (2) легко понять из рисунков:



Так бывает всегда: при нечетном n решение уравнения (2) всегда существует и единственно - это  $\hat{m}_n^y$ ; при четном n решений целый интервал и  $\hat{m}_n^y$  - его середина. В силу ЗБЧ при любом  $\theta$  и любом  $0 \le \gamma \le 1$ :

$$l_n(\theta) = n^{-1} \sum_{t=1}^n sign(y_t - \theta) \xrightarrow[n \to \infty]{P} Esign(y_1 - \theta) =: \Lambda_M(\gamma, \theta)$$

**Задача 12.1.** Пусть  $\xi$ ,  $\eta$  – независимые случайные векторы, причем  $\eta$  – дискретный вектор со значениями  $\eta_1, \eta_2, \dots$  Необходимо проверить, что

$$E\varphi(\xi,\eta) = \sum_{k\geq 1} E\varphi(\xi,\eta_k) P(\eta=\eta_k) = \sum_{k\geq 1} E(\varphi(\xi,\eta)|H_k) P(H_k),$$

где гипотеза  $H_k = (\eta = \eta_k)$ .

Найдем удобный вид для  $\Lambda_M(\gamma, \theta)$ . Имеем

$$\Lambda_M(\gamma, \theta) = E(1 - 2I(y_1 - \theta \le 0)) = 1 - 2EI(\varepsilon_1 \le \theta - a - z_1^{\gamma} \xi_1) = 1 - 2EG(\theta - a - z_1^{\gamma} \xi_1),$$
(3)

т.к. sign(x) = 1 - 2I(x < 0) при  $x \neq 0$ .

Чтобы упростить (3), введем две гипотезы:  $H_1=(z_1^{\gamma}=0),\ H_2=(z_2^{\gamma}=1).$  Тогда, используя задачу, получим из (3), что

$$\Lambda_M(\gamma, \theta) = 1 - 2(1 - \gamma)G(\theta - a) - 2\gamma EG(\theta - a - \xi_1).$$

Функция  $\Lambda_M(\gamma, \theta)$  определена при всех  $\gamma$ ,  $\theta$ , в том числе для отрицательных  $\gamma$ . ШАГ 2.

Функция  $\Lambda_M(\gamma, \theta)$  в окрестности точки (0, a) удовлетворяет всем предположениям теоремы о неявной функции. А именно:

- 1.  $\Lambda_M(0,a) = 1 2G(0) = 0;$
- 2. Существуют и непрерывнф по паре  $(\gamma, \theta)$  фикции  $\frac{\partial \Lambda_M(\gamma, \theta)}{\partial \gamma}$ ,  $\frac{\partial \Lambda_M(\gamma, \theta)}{\partial \theta}$ ;

3. 
$$\frac{\partial \Lambda_M(\gamma, \theta)}{\partial \theta} = -2g(0) \neq 0.$$

Значит, в окрестности точки (0, a) определена функция  $\theta_m(\gamma) = \theta_{\gamma}^m$  такая, что  $\Lambda_M(\gamma, \theta_{\gamma}^m) = 0$ . Кроме того,  $\theta_0^m = a, \theta_{\gamma}^m \longrightarrow \theta_0$  при  $\gamma \longrightarrow 0$ . Функция  $\theta_{\gamma}^m$  дифференцируема в точке  $\gamma = 0$ , и

$$\frac{d\theta_{\gamma}^{m}}{d\gamma}|_{\gamma=0} = -\left(\frac{\partial \Lambda_{M}(0, a)}{\partial \theta}\right)^{-1} \frac{\partial \Lambda_{M}(0, a)}{\partial \gamma} = \frac{1 - 2EG(-\xi_{2})}{2g(0)} \tag{4}$$

ШАГ 3.

Покажем, что

$$\hat{m}_n^y \longrightarrow \theta_\gamma^m, \ n \longrightarrow \infty$$
 (5)

Тогда из (4), (5) будет следовать, что функционал влияния выборочной медианы равен

$$IF(\theta_{\gamma}^{m}, \mu_{\xi}) = \frac{1 - 2EG(-\xi_{1})}{2q(0)} \tag{6}$$

Модуль числителя в (6) не больше 1, причем, если  $\xi_1$  неслучайно и  $\xi_1 \longrightarrow +\infty$ , то числитель стремится к 1. Значит,

$$GES(\theta_{\gamma}^m, M_{\xi}) = \sup_{\mu_{\xi} \in M_{\xi}} |IF(\theta_{\gamma}^m, \mu_{\xi})| = \frac{1}{2g(0)}.$$

Итак, докажем (5). Имеем при малых  $\gamma$  ( $\gamma$  фиксированно!) и  $\theta$  вблизи а:

$$\frac{\partial \Lambda_M(\gamma, \theta)}{\partial \theta} = -2(1 - \gamma)g(\theta - a) - 2\gamma Eg(\theta - a - \xi_1) < 0$$

То есть  $\Lambda(\gamma, \theta)$  убывает по  $\theta$ . Значит,

$$\begin{cases} \Lambda_M(\gamma, \theta_{\gamma}^m - \Delta) > 0 \\ \Lambda_M(\gamma, \theta_{\gamma}^m + \Delta) < 0 \end{cases},$$

HO

$$\begin{cases} l_n(\theta_{\gamma}^m - \Delta) \xrightarrow{P} \Lambda_M(\gamma, \theta_{\gamma}^m - \Delta) > 0 \\ l_n(\theta_{\gamma}^m + \Delta) \xrightarrow{P} \Lambda_M(\gamma, \theta_{\gamma}^m + \Delta) < 0 \end{cases}$$
 (7)

Функция  $l_n(\theta)$  монотонно убывает (точнее, не возрастет) по  $\theta$ . В силу (7) с вероятностью сколь угодно близкой к единице при достаточно больших п все корни уравнения  $l_n(\theta) = 0$  лежат в интервале ( $\theta_{\gamma}^m - \Delta, \theta_{\gamma}^m + \Delta$ ). Выборочная медиана  $\hat{m}_n^y$  тоже лежит в этом интервале! Поскольку  $\Delta > 0$  любое, получаем, что

$$\hat{m_n^y} \stackrel{P}{\longrightarrow} \theta_{\gamma}^m, \ n \longrightarrow \infty.$$

# 12.3 Нахождение функционала влияния в общем случае

Пусть оценка  $\hat{\beta}_n$  ищется как корень уравнения

$$l_n(\theta) := n^{-1} \sum_{t=1}^n \varphi(\mathcal{I}_n, \theta) = 0$$
 (1)

Пусть выполнены следующие условия:

$$(i)l_n(\theta)=n^{-1}\sum_{t=1}^n \varphi(\mathcal{I}_n,\theta) \stackrel{P}{\longrightarrow} \Lambda(\gamma,\theta)$$
 при всех  $|\theta-\beta|<\delta,\ 0\geq\gamma<\gamma_0$ 

$$(ii)\Lambda(0,\beta)=0$$

(iii)Пусть  $\Lambda(\gamma,\theta)$  можно продолжить на отрицательные малые  $\gamma$  так, что при  $|\theta-\beta|<\delta,\ |\gamma|<\gamma_0$  существуют и непрерывны по паре  $(\gamma,\theta)$  функции

$$\frac{\partial \Lambda(\gamma, \theta)}{\partial \gamma}, \ \frac{\partial \Lambda(\gamma, \theta)}{\partial \theta}$$
$$(iV) Пусть \ \lambda(\beta) := \frac{\partial \Lambda(\gamma, \theta)}{\partial \theta} \neq 0$$

**Теорема 12.2.** Пусть выполнены условия (i)-(iV), функции  $\varphi(\mathcal{I}_n, \theta)$  непрерывны по  $\theta$ . Тогда уравнение (1) с вероятностью, стремящейся к 1 при  $n \longrightarrow \infty$ , имеет при достаточно малых  $\gamma \ge 0$  такое решение  $\hat{\beta}_n$ , что соответствующая оценка  $\hat{\beta}_n \stackrel{P}{\longrightarrow} \theta_{\gamma}$ ,  $\theta_0 = 0$ ,  $u \exists \phi$ ункционал влияния

$$IF(\theta_{\gamma}, \mu_{\xi}) = -(\lambda(\beta))^{-1} \frac{\partial}{\partial \gamma} \Lambda(0, \beta).$$

## 12.4 М - оценка медианы

Пусть

$$\begin{cases} u_t = a + \varepsilon_t \\ y_t = u_t + z_t^g \xi_t, \end{cases}$$

где  $\{\varepsilon_t\}$  – н.о.р.,  $\varepsilon_1 \sim g(x) = G'(x), \ g(x) = g(-x).$  Тогда a – медиана ф.р. сл.в.  $u_1$ . Будем искать оценку a (обозначим ее  $\hat{a_n}$ ) как корень уравнения

(9) 
$$\sum_{t=1}^{n} \psi(y_t - \theta) = 0$$

Такая оценка называется **M** - оценкой. Вчастности, при  $\psi(x) = x, \ \hat{a_n} = \bar{y}$ , при  $\psi(x) = sign(x) \ \hat{a_n} = \hat{m_n}^y$ .

Пусть выполнены условия:

1.  $\psi(x)$  – нечетная строго возрастающая функция,  $\lim_{x\to +\infty} \psi(x) = c_1 > 0$ ,  $\lim_{x\to -\infty} \psi(x) = c_2 < \infty$ 

2.  $\exists$  непрерывная и ограниченная  $\psi'(x)$ ,  $E\psi'(\varepsilon_1) \neq 0$ 

Тогда уравнение (9) всегда имеет единственное решение. Условия 1, 2 выполнены, например, для  $\psi(x) = \arctan(x)$ ,  $\lim_{x \to +\infty} \psi(x) = \frac{\pi}{2}$ ,  $\lim_{x \to -\infty} \psi(x) = -\frac{\pi}{2}$ ,  $\psi'(x) = \frac{1}{x^2 + 1}$ .

Найдем функционал влияния и чувствительность M - оценки. Используем теорему 12.2. Проверим условия:

$$n^{-1} \sum_{t=1}^{n} \psi(y_t - \theta) \xrightarrow{P} E\psi(y_1 - \theta) =: \Lambda(\gamma, \theta)$$
 при всех  $\theta, \ 0 \le \gamma \le 1$  (i)

Введем гипотезы  $H_1=(z_1^{\gamma}=0),\; H_2=(z_2^{\gamma}=1).$  Тогда:

$$\Lambda(\gamma, \theta) = \sum_{i=2}^{n} E(\psi(\underbrace{\varepsilon_1 + a + z_1^{\gamma} \xi_1}_{=y_1} - \theta) \mid H_i) \times P(H_i) =$$

$$= (1 - \gamma)E\psi(\varepsilon_1 + a - \theta) + \gamma E\psi(\varepsilon_1 + \xi_1 + a - \theta)$$

$$\Lambda(0, a) = E\psi(\varepsilon_1) = 0 \tag{ii}$$

т.к.  $\Lambda(\gamma, \theta)$  определена при всех  $\gamma$  и  $\theta$ .  $\frac{\partial \Lambda(\gamma, \theta)}{\partial \gamma}$ ,  $\frac{\partial \Lambda(\gamma, \theta)}{\partial \theta}$  существуют при условиях (i), (ii) и непрерывна по паре  $(\gamma, \theta)$ . В частности,

$$\frac{\partial \Lambda(\gamma, \theta)}{\partial \gamma} = -E\psi(\varepsilon_1) + E\psi(\varepsilon_1 + \xi_1) = 0 + E\psi(\varepsilon_1 + \xi_1).$$

$$\frac{\partial \Lambda(0, a)}{\partial \theta} = -E\psi'(\varepsilon_1) \neq 0 \tag{iii}$$

В силу теоремы 12.2  $\hat{a_n} \xrightarrow{P} \theta_{\gamma}, \ \theta_0 = a,$ 

$$IF(\theta_{\gamma}, \mu_{\xi}) = \frac{E\psi(\varepsilon_{1} + \xi_{1})}{E\psi'(\varepsilon_{1})},$$

$$GES(\theta_{\gamma}, M_{\xi}) \leq \frac{max(|c_{1}|, |c_{2}|)}{E\psi'(\varepsilon_{1})} < \infty,$$

 $M_{\xi}$  – класс всех вер. распределений.

# Статистический анализ АР моделей

Пусть ...,  $S_{-1}, S_0, S_1, \ldots$  – стоимости ценных бумаг, например, акций. Величины  $u_t = \log \frac{S_t}{S_{t-1}} = \log S_t - \log S_{t-1}$  называются **логарифмическими приращения**ми и для описания их поведения часто используют стохастические разностные уравнения.

Например, AR(p) - уравнение имеет вид

$$u_t = \beta_1 u_{t-1} + \beta_2 u_{t-2} + \ldots + \beta_p u_{t-p} + \varepsilon_t, \ t \in \mathbb{Z}, \ \{\varepsilon_t\}$$
 – н.о.р.сл.в.,  $E\varepsilon_1 = 0$ ,  $0 < E\varepsilon_1^2 = \sigma^2 < \infty, \ \beta_1, \ldots, \beta_p \in \mathbb{R}^1$  – неизвестные коэффициенты авторегрессии,  $\beta_p \neq 0$ .

Иногда удобно рассматривать AR(p) - уравнение для  $t=1,2,\ldots$  при начальных условиях  $w_{1-p},\ldots,w_n$ .

ARCH(p) - уравнение имеет вид

$$u_t = \sigma_t \varepsilon_t$$
, где  $\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \ldots + \alpha_p u_{t-p}^2$ ,  $t \in \mathbb{Z}$ ,  $\alpha_0 > 0$ ,  $\alpha_i \ge 0$ ,  $\alpha_p > 0$ ,  $\{\varepsilon_t\}$  – н.о.р.,  $E\varepsilon_1 = 0$ ,  $E\varepsilon_1^2 = 1$ .

# 13.1 Метод максимального правдоподобия и метод наименьших квадратов в авторегрессии

### AR(1) - модель

$$u_{t} = \beta u_{t-1} + \varepsilon_{t}, \ t = 1, 2, \dots, \ \{\varepsilon_{t}\}$$
 – н.о.р.сл.в.,  $E\varepsilon_{1} = 0$ ,  $0 < E\varepsilon_{1}^{2} = \sigma^{2} < \infty, \beta \in \mathbb{R}^{1}, \ u_{0} = 0$ . Тогда  $u_{t} = \beta(\beta u_{t-2} + \varepsilon_{t-1}) + \varepsilon_{t} = \varepsilon_{t} + \beta \varepsilon_{t-1} + \beta^{2} u_{t-2} = \dots = \varepsilon_{t} + \beta \varepsilon_{t-1} + \dots + \beta^{t-1} \varepsilon_{1}$ .

1. Стационарный случай  $|\beta| < 1$ .

Лебега. Положим:

- $u_t \xrightarrow{c.\kappa.} u_t^0 := \sum_{j \geq 0} \beta^j \varepsilon_{t-j}$  (это строго стационарная последовательность, стационарная по Хинчину в широком смысле) и ряд с.к. сходится, так как  $E(u_t u_t^0)^2 = E(\sum_{j \geq t} \beta^j \varepsilon_{t-j})^2 = E\varepsilon_1^2 \sum_{j \geq t} \beta^{2j} = \mathcal{O}(\beta^{2t}) = \mathcal{O}(1), \ t \longrightarrow \infty.$
- 2. Критический случай (неустойчивая авторегрессия)  $|\beta| = 1$ .
- 3. Взрывающаяся авторегрессия  $|\beta| > 1$ .

$$Du_t = D\sum_{j=0}^{t-1} \beta^j \varepsilon_{t-j}$$
 (как дисперсия суммы независимых)  $= E\varepsilon_1^2 \sum_{j=0}^{t-1} \beta^{2t} =$   $= \frac{E\varepsilon_1^2(1-\beta^{2t})}{1-\beta^2}$  (по формуле геометрической прогрессии)  $= \mathcal{O}(\beta^{2t}) \longrightarrow \infty$  при  $t \longrightarrow \infty$  экспоненциально быстро. Мы знаем, что оптимальный с.к. прогноз  $u_{n+1}$  по  $u_1, \ldots, u_n$  есть  $u_{n+1} = \beta u_n$  Надо уметь оценивать  $\beta$ . Пусть  $\varepsilon_1 \sim g(x)$  – плотность вероятности по мере

 $\varepsilon := (\varepsilon_1, \dots, \varepsilon_n)^T, \ u = (u_1, \dots, u_n)^T, B = \begin{pmatrix} 1 & 0 & \dots & 0 \\ -\beta & 1 & \dots & 0 \\ 0 & -\beta & \dots & 0 \\ \dots & \dots & \ddots & \dots \\ 0 & & -\beta & 1 \end{pmatrix}$ 

Тогда из (1) 
$$\varepsilon=Bu$$
, имеем (2)  $u=B^{-1}\varepsilon$ . Плотность вероятности вектора  $\varepsilon$ 

есть  $g_{\varepsilon}(x_1,\ldots,x_n)=\prod_{i=1}^n g(x_i)$ . Тогда плотность вероятности вектора u в силу (2):

$$g_u(y,B) = \frac{1}{|B^{-1}|} g_{\varepsilon}(By) = \prod_{t=1}^n g(y_t - \beta y_{t-1}), \ y = (y_1, \dots, y_n), \ y_0 = 0.$$

О.м.п. для  $\beta$  – решение задачи

$$\log g_u(u,\theta) = \sum_{t=1}^n \log g(u_t - \theta u_{t-1}) \to \max_{\theta \in \mathbb{R}^1}$$
 (3)

Для гладкой д уравнение максимального правдоподобия

$$\sum_{t=1}^{n} u_{t-1} \frac{g'(u_t - \theta u_{t-1})}{g(u_t - \theta u_{t-1})} = 0$$
(4)

Пример 13.1 ( $\varepsilon \sim N(0, \sigma^2)$ ). Тогда  $g(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}}$  и задача (3) имеет вид

$$\sum_{t=1}^{n} \log \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(u_t - \theta u_{t-1})^2}{2\sigma^2}} \to \max_{\theta \in \mathbb{R}^1}.$$

Последняя задача эквивалентна следующей:

$$\sum_{t=1}^{n} (u_t - \theta u_{t-1})^2 \longrightarrow \min_{\theta \in \mathbb{R}^1}$$
 (5)

Решение (5) – о.м.п.:

$$\hat{\beta}_{n,Mh} = \frac{\sum_{t=1}^{n} u_{t-1} u_t}{\sum_{t=1}^{n} u_{t-1}^2}$$
(6)

Если мы не предполагаем гауссовость  $\varepsilon_1$ , то решение задачи (5) есть о.н.к.

$$\hat{\beta}_{n,hS} = \frac{\sum_{t=1}^{n} u_{t-1} u_t}{\sum_{t=1}^{n} u_{t-1}^2}$$
(7)

Oценка  $\hat{\beta}_{n,Mh}$  – параметрическая,  $\hat{\beta}_{n,hS}$  – непараметрическая.

Пример 13.2 ( $\varepsilon \sim Lap(\lambda)$ ). Тогда  $g(x) = \frac{\lambda}{2}e^{-\lambda|x|}$ ,  $\lambda > 0$ . Задача (5) имеет вид  $\sum_{t=1}^n \log \frac{\lambda}{2}e^{-\lambda|u_t-\theta u_{t-1}} \longrightarrow \max_{\theta \in \mathbb{R}^1}$ , что эквивалентно задаче

$$\sum_{t=1}^{n} |u_t - \theta u_{t-1}| \longrightarrow \min_{\theta \in \mathbb{R}^1}$$
 (8)

Решение (8) — о.м.п.  $\hat{\beta}_{n,Mh}$ . Если распределение  $\varepsilon_1$  неизвестно, то решение (8) — о.н.м.  $\hat{\beta}_{n,hD}$ .

**Замечание.** Оценка  $\hat{\beta}_{n,hD}$  не выписывается явно!

# 13.2 Случай гауссовских $\{\varepsilon_t\},\ \varepsilon \sim N(0,1)$ , теорема о предельном распределении о.м.п. в AR(1)

Теорема 13.1. Пусть

$$d_n^2(\beta) = \begin{cases} \frac{n}{1 - \beta^2}, & |\beta| < 1\\ \frac{n^2}{2}, & |\beta| = 1\\ \frac{\beta^{2n}}{(\beta^2 - 1)^2}, & |\beta| > 1 \end{cases}$$

Покажем, что  $d_n^2(\beta) \sim \mathbb{J}_n(\beta) \ n \longrightarrow \infty$ ,  $\mathbb{J}_n(\beta)$  – информация Фишера о параметре  $\beta$ , содержащаяся в  $u_1, \ldots, u_n$ 

Доказательство. Если  $u=(u_1,\ldots,u_n),\ y=(y_1,\ldots,y_n),$  то плотность вероятности

$$g_u(y,\beta) = \left(\frac{1}{\sqrt{2\pi}}\right)^n e^{-\frac{1}{2}\sum_{t=1}^n (y_t - \beta y_{t-1})^2},$$

а потому

$$\mathbb{J}_{n}(\beta) = E_{\beta}(\frac{\partial}{\partial \beta} \log(g_{u}(y,\beta))^{2} = E_{\beta}(\frac{\partial}{\partial \beta}(-\frac{1}{2}\sum_{t=1}^{n}(u_{t} - \beta u_{t-1})^{2})) = E_{\beta}(\sum_{t=1}^{n}u_{t-1}(u_{t} - \beta u_{t-1}))^{2} = E_{\beta}(\sum_{t=1}^{n}u_{t-1}\varepsilon_{t})^{2} = \sum_{t=1}^{n}E_{\beta}u_{t-1}^{2} = \sum_{t=1}^{n-1}E_{\beta}u_{t}^{2},$$

но 
$$u_t = \sum\limits_{j=1}^{t-1} \beta^j arepsilon_{t-j},$$
 и

$$Eu_t^2 = E(\sum_{j=1}^{t-1} \beta^j \varepsilon_{t-j})^2 = \sum_{j=0}^{t-1} \beta^{2j} = \begin{cases} \frac{1-\beta^{2t}}{1-\beta^2}, & |\beta| \neq 1\\ t, & |\beta| = 1 \end{cases}$$

Значит,

$$\mathbb{J}_n(\beta) = \begin{cases} \frac{n-1}{1-\beta^2} - \frac{\beta^2(1-\beta^{\frac{2}{n-1}})}{(1-\beta^2)^2}, & |\beta| \neq 1\\ \frac{(n-1)(1+(n-1))}{2}, & |\beta| = 1 \end{cases}$$

Отсюда

$$\mathbb{J}_n(\beta) \sim \begin{cases} \frac{n}{1 - \beta^2}, & |\beta| < 1\\ \frac{n^2}{2}, & |\beta| = 1\\ \frac{\beta^{2n}}{(\beta^2 - 1)^2}, & |\beta| > 1 \end{cases} = d_n^2(\beta)$$

13.3 Случай гауссовских  $\{\varepsilon_t\}$ ,  $\varepsilon \sim N(0,1)$ , теорема о предельном распределении о.м.п. в AR(1) при гауссовских инновациях при случайной нормировке

Распределение Коши с параметрами (0,1) обозначим  $\mathbb{K}$ , то есть  $f(x) = \frac{1}{\pi} \frac{1}{1+x^2}$ . Пусть  $w(s), s \in [0,1], -cmandapmnый винеровский процесс.$ 

#### Напоминание 13.1.

Определение 13.1. Случайный процесс  $w_t$ ,  $t \ge 0$ , называется винеровским процессом, если:

- 1.  $w_0 = 0$  почти наверное
- $2. \ w_t$   $npoyecc\ c$  независимыми npupaщениями
- 3.  $w_t w_s \sim N(0, \sigma^2(t-s)) \ \forall \ 0 \le s < t \le \infty$

Обозначим за  $H(\beta)$ ,  $|\beta| = 1$ , распределение случайной величины

$$\beta \frac{w^2(1) - 1}{2^{\frac{3}{2}} \int\limits_{0}^{1} w^2(s) ds}.$$

 $u_t = \beta u_{t-1} + \varepsilon_t, \ t = 1, 2, \dots, \ \beta \in \mathbb{R}.$ 

**Теорема 13.2.** Пусть  $\{\varepsilon_t\}$  – н.о.р.сл.в.,  $\varepsilon_1 \sim N(0,1)$ . Тогда

$$d_n(\beta)(\hat{\beta}_{n,Mh} - \beta) \xrightarrow[n \to \infty]{d} \begin{cases} N(0,1), |\beta| < 1 \\ H(\beta), |\beta| = 1 \\ \mathbb{K}(0,1), |\beta| > 1 \end{cases}$$

Доказательство.

$$\hat{\beta}_{n,Mh} = \frac{\sum_{t=1}^{n} u_{t-1} u_t}{\sum_{t=1}^{n} u_{t-1}^2} = \frac{\sum_{t=1}^{n} u_{t-1} (\beta u_{t-1} + \varepsilon_t)}{\sum_{t=1}^{n} u_{t-1}^2} = \beta + \frac{\sum_{t=1}^{n} \varepsilon_t u_{t-1}}{\sum_{t=1}^{n} u_{t-1}^2}.$$

Положим для краткости  $M_n:=d_n^{-1}(\beta)\sum_{t=1}^n \varepsilon_t u_{t-1},\ V_n:=d_n^{-2}(\beta)\sum_{t=1}^n u_{t-1}^2,$  Тогда

$$d_n(\beta)(\hat{\beta}_{n,Mh} - \beta) = \frac{M_n}{V_n}.$$

Пусть  $f_n(t,s)$  – совместная характеристическая функция  $M_n$ ,  $V_n$ . Тогда(см. [Rao Statist., 1978, v.6, pp 185 - 190]). Рао доказал, что

$$f_n(t,s) \to f(t,s) = \begin{cases} e^{is - \frac{t^2}{2}}, \ |\beta| < 1\\ (1 + t^2 - 2is)^{-\frac{1}{2}}, \ |\beta| > 1 \end{cases}$$
(9)

1.  $|\beta| < 1$ . Тогда  $f_n(t,s)$  есть характеристическая функция вектора  $(\xi,1)^T$ , где  $\xi \sim N(0,1)$ . Действительно:

$$\varphi(t,s) = Ee^{i(t\xi+s1)} = e^{is}\varphi_{\xi}(t) = e^{is-\frac{t^2}{2}}.$$

**Теорема 13.3** (**Теорема о наследовании слабой сходимости**). Пусть сл.в.  $S_n \stackrel{d}{\to} S$ ,  $n \to \infty$ ,  $S_n$ ,  $S \in \mathbb{R}^k$ ,  $a H : \mathbb{R}^k \to \mathbb{R}$  – борелевская функция, непрерывная на множестве A таком, что  $P(S \in A) = 1$ . Тогда  $H(S_n) \stackrel{d}{\to} H(S)$ ,  $n \to \infty$ 

У нас в силу (9)  $(M_n, V_n)^T \stackrel{d}{\to} (\xi, 1)^T$  (из сходимости х.ф. имеем сходимость по распределению). Если  $H(x, y) = \frac{x}{y}$ , то H(x, y) непрерывна при у > 0. Можно взять  $A = \{y : y > 0\}$ ,  $P((\xi, 1)^T \in A) = 1$ . В силу теоремы о наследовании слабой сходимости:

$$d_n(\beta)(\hat{\beta}_{n,Mh} - \beta) = \frac{M_n}{V_n} = H(M_n, V_n) \xrightarrow{d} H(\xi, 1) = \xi.$$

2.  $|\beta| > 1$ . Тогда f(t, s) есть х.ф. вектора  $(\xi \eta, \eta^2)^T$ , где  $\xi, \eta \sim N(0, 1), \, \xi, \eta$  независимы. Действительно,

$$\varphi(t,s)=Ee^{i(t\xi\eta+s\eta^2))}=EE(e^{i(t\xi\eta+s\eta^2))}|\eta), \text{ т.е. считаем, что }\eta-\text{ константа,}$$
 
$$is\eta^2-\eta\text{-измеримая, поэтому}=Ee^{is\eta^2}E(e^{i(t\eta)\xi)}|\eta)=e^{is\eta^2}\varphi_\xi(t\eta), \ \varphi_\xi-\text{ х.ф. }\xi:=$$
 
$$:=e^{is\eta^2}e^{-\frac{t^2\eta^2}{2}}=Ee^{i(s+\frac{it^2}{2})\eta^2}, \text{ т.к. } \eta^2\sim\chi^2(1) \ (\text{х.ф. для хи-квадрат: } Ee^{ilx_1^2}=$$
 
$$=(1-2il)^{-\frac{1}{2}})=(1-2is+\frac{2t^2}{2})^{-\frac{1}{2}}=(1-2is+t^2)^{-\frac{1}{2}}=\varphi(t,s).$$

Значит,  $(M_n, V_n)^T \stackrel{d}{\to} (\xi \eta, \eta^2)^T$  и:

$$d_n(\beta)(\hat{\beta}_{n,Mh} - \beta) = \frac{M_n}{V_n} \xrightarrow{d} \frac{\xi \eta}{\eta^2} = \frac{\xi}{\eta} \sim K(0, 1)$$

3.  $\beta=1$ , случай  $\beta=-1$  аналогичен. Тогда:

$$M_n = \frac{\sqrt{2}}{n} \sum_{t=1}^n \varepsilon_t u_{t-1}, V_n = \frac{2}{n^2} \sum_{t=1}^n u_{t-1}^2$$

Далее,  $u_t = u_{t-1} + \varepsilon_t = \varepsilon_1 + \ldots + \varepsilon_t$ . Введем винеровский последовательный

процесс:

$$W_n(s) := n^{-\frac{1}{2}} \sum_{i \le ns} \varepsilon_i, \ s \in [0, 1],$$

$$W_n(s) = 0$$
 при  $0 \le s \le \frac{1}{n}$ .

Тогда  $n^{-\frac{1}{2}}u_{t-1}=W_n(\frac{t-1}{n})$ . Пусть  $\Delta W_n(\frac{t}{n}):=W_n(\frac{t}{n})-W_n(\frac{t-1}{n})=\frac{\varepsilon_t}{\sqrt{n}}$ , тогда

$$M_n = \sqrt{2} \sum_{t=1}^n W_n(\frac{t-1}{n}) \Delta W_n(\frac{t}{n}),$$
$$V_n = 2 \sum_{t=1}^n W_n(\frac{t-1}{n})^2 \frac{1}{n}.$$

Пусть  $U_n = (W_n(\frac{1}{n}), W_n(\frac{2}{n}), \dots, W_n(\frac{n}{n}))^T = (\frac{\varepsilon_1}{\sqrt{n}}, \frac{\varepsilon_1 + \varepsilon_2}{\sqrt{n}}, \dots, W_n(\frac{\varepsilon_1 + \varepsilon_2 + \dots + \varepsilon_n}{\sqrt{n}}))^T$ . Это есть гауссовский вектор со средним 0,  $Cov(W_n(\frac{i}{n}), W_n(\frac{j}{n})) = \frac{min(i,j)}{n}$ . Действительно:

$$U_n = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 1 & 1 & \dots & 0 \\ \dots & \dots & \ddots & \dots \\ 1 & 1 & \dots & 1 \end{pmatrix} \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \dots \\ \varepsilon_n \end{pmatrix}$$

Для  $i \leq j$  имеем:

$$Cov(W_n(\frac{i}{n}), W_n(\frac{j}{n})) = E(\frac{1}{n} \sum_{t=1}^i \varepsilon_t \sum_{k=1}^j \varepsilon_k), (\text{ t.k. } E\varepsilon_s \varepsilon_p = 0) = \frac{1}{n} E(\sum_{t=1}^i \varepsilon_t)^2 = \frac{i}{n} = \frac{min(i, j)}{n}.$$

Введем вектор  $U=(W(\frac{1}{n}),W(\frac{2}{n}),\ldots,W(\frac{n}{n}))^T$ , где W(s) – стандартный винеровский. U – гауссовский вектор со средним 0,  $Cov(W(\frac{i}{n}),W(\frac{j}{n}))=\frac{min(i,j)}{n}$ . Значит,

$$U_n \stackrel{d}{=} U$$
, следовательно,  $\forall$  борелевской  $\varphi : \varphi(U_n) \stackrel{d}{=} \varphi(U)$  (10)

Действительно, пусть  $\xi \stackrel{d}{=} \eta$ ,  $\xi \eta \in \mathbb{R}^k$ . Тогда  $f(\xi) \stackrel{d}{=} f(\eta)$ , т.к.  $P(f(\xi) \in A) =$ 

$$P(\xi \in f^{-1}(A)) = P(\eta \in f^{-1}(A)) = P(f(\eta) \in A)$$
. Пусть

$$\bar{M}_n = \sqrt{2} \sum_{t=1}^n W(\frac{t-1}{n}) \Delta W(\frac{t}{n}),$$

$$\bar{V}_n = 2 \sum_{t=1}^n W(\frac{t-1}{n})^2 \frac{1}{n}.$$

Из (10) следует, что

$$\frac{M_n}{V_n} \stackrel{d}{=} \frac{\bar{M}_n}{\bar{V}_n},\tag{11}$$

т.к.  $M_n, V_n$  — борелевские функции от  $U_n, \ \bar{M}_n, \bar{V}_n$  — борелевские функции от U. Но  $\bar{M}_n \overset{\text{с.к.}}{\to} \sqrt{2} \int\limits_0^1 W(s) dW(s), \ \bar{V}_n \overset{\text{с.к.}}{\to} 2 \int\limits_0^1 W^2(s) ds$ . Значит,  $(M_n, V_n)^T \overset{d}{\to} (\sqrt{2} \int\limits_0^1 W(s) dW(s), \int\limits_0^1 W^2(s) ds)^T$ , следовательно,

$$\frac{\bar{M}_n}{\bar{V}_n} \to \frac{\sqrt{2} \int_0^1 W(s) dW(s)}{\int_0^1 W^2(s) ds} = \frac{W^2(1) - 1}{2^{\frac{3}{2}} \int_0^1 W^2(s) ds}.$$
 (12)

Поскольку  $d_n(\beta)(\hat{\beta}_{n,Mh}-\beta)=\frac{\bar{M}_n}{\bar{V}_n}$ , соотношения (11), (12) влекут утверждение теоремы.

**Теорема 13.4.**  $\{\varepsilon_t\}$  – н.о.р. N(0,1). Тогда

$$\sqrt{\sum_{t=1}^{n} u_{t-1}^{2}} (\hat{\beta}_{n,Mh} - \beta) \stackrel{d}{\to} \begin{cases} N(0,1), |\beta| \neq 1, \\ \tilde{H}(\beta), |\beta| = 1 \end{cases}$$

 $3 dec b \; \tilde{H}(eta) - pacnpedenenue \; cлучайной величины$ 

$$\frac{\sqrt{2}\int_{0}^{1}W(s)dW(s)}{2\sqrt{\int_{0}^{1}W^{2}(s)ds}} = \frac{W^{2}(1)-1}{\sqrt{\int_{0}^{1}W^{2}(s)ds}}.$$

Доказательство.

$$\sqrt{\sum_{t=1}^{n} u_{t-1}^2} (\hat{\beta}_{n,Mh} - \beta) = \frac{M_n}{\sqrt{V_n}},$$

где 
$$M_n = d_n^{-1}(\beta) \sum_{t=1}^n \varepsilon_t u_{t-1}, \ V_n = d_n^{-2}(\beta) \sum_{t=1}^n u_{t-1}^2$$

1. 
$$|\beta| < 1$$
. Тогда  $(M_n, V_n)^T \xrightarrow{d} (\xi, 1)^T \Longrightarrow \frac{M_n}{\sqrt{V_n}} \xrightarrow{d} \frac{\xi}{\sqrt{1}} \sim N(0, 1)$ .

2. 
$$|\beta| > 1$$
. Тогда  $(M_n, V_n)^T \xrightarrow{d} (\xi \eta, \eta^2)^T \Longrightarrow \frac{V^* n}{M_n} \xrightarrow{d} \frac{V^* \eta}{\sqrt{\eta^2}} = \xi sign(\eta) \sim N(0, 1)$ .

3. 
$$|\beta| = 1$$
. Тогда  $(M_n, V_n)^T \stackrel{d}{\to} (\frac{1}{\sqrt{2}}(W^2(1) - 1), 2\int_0^1 W^2(s)ds)^T \Longrightarrow \frac{M_n}{\sqrt{V_n}} \stackrel{d}{\to} \frac{W^2(1) - 1}{2\sqrt{\int\limits_0^1 W^2(s)ds}}$ .

# 13.4 Об оценке наименьших квадратов в авторегрессии

Если  $\{\varepsilon_t\}$  в AR(1) уравнении

$$u_t = \beta u_{t-1} + \varepsilon_t, \ u_0 = 0, \ t = 1, 2, \dots, \ \beta \in \mathbb{R}^1,$$
 (13)

есть н.о.р. N(0,1) случайные величины, то о.н.к. - решение задачи

$$\sum_{t=1}^{n} (u_t - \theta u_{t-1})^2 \to \min_{\theta \in \mathbb{R}^1}.$$

Если же  $\{\varepsilon_t\}$  – н.о.р. с неизвестным распределением, то задача (14) определяет о.н.к.

$$\hat{\beta}_{n,hS} = \frac{\sum_{t=1}^{n} u_{t-1} u_t}{\sum_{t=1}^{n} u_{t-1}^2}.$$

О.н.к.  $\hat{eta}_{n,hS}$  — непараметрическая!

# 13.5 Теорема об $\mathsf{AR}(1)$ с $|\beta| < 1$ , существование, единственность и свойства стационарного решения

Теорема 13.5 (Теорема об AR(1) с  $|\beta| < 1$ , существование, единственность и свойства стационарного решения). Пусть  $u_t = \beta u_{t-1} + \varepsilon_t$ ,  $|\beta| < 1$ ,  $t \in \mathbb{Z}$ . Если  $\{\varepsilon_t\}$  – н.о.р.,  $E\varepsilon_1 = 0$ ,  $0 < E\varepsilon_1^2 < \infty$ , то

$$n^{\frac{1}{2}}(\hat{\beta}_{n,hS}-\beta) \stackrel{d}{\to} N(0,1-\beta^2), \ n \to \infty$$

Замечание. Сделаем несколько замечаний:

1. Если  $|\beta| = 1$ , то при  $E\varepsilon_1 = 0$ ,  $0 < E\varepsilon_1^2 < \infty$ ,  $\{\varepsilon_t\}$  – н.о.р. в схеме (13), то

$$d_n(\beta)(\hat{\beta}_{n,hS} - \beta) \stackrel{d}{\to} \tilde{H}(\beta), \ n \to \infty$$

2. Если  $|\beta| > 1$ , то при  $E\varepsilon_1 = 0$ ,  $0 < E\varepsilon_1^2 < \infty$ ,  $\{\varepsilon_t\}$  – н.о.р. в схеме (13), то

$$d_n(\beta)(\hat{\beta}_{n,hS} - \beta) \xrightarrow{d} \frac{\sum\limits_{j\geq 1} \beta^{-j} \varepsilon_j}{\sum\limits_{j\geq 1} \beta^{-j} \varepsilon'_j},$$

 $\{\varepsilon_t\},\ \{\varepsilon_t'\}$  – независимые последовательности с н.о.р. компонентами.

Рассмотрим стационарное AR(1) уравнение

$$u_t = \beta u_{t-1} + \varepsilon_t, \ t \in \mathbb{Z}, \ |\beta| < 1, \tag{15}$$

 $\{\varepsilon_t\}$  – независимые н.о.р.,  $E\varepsilon_1 = 0, \ 0 < E\varepsilon_1^2 < \infty.$ 

Определение 13.2. Любая последовательность  $\{u_t\}$ , для которой в (15) левая часть равна правой почти наверное, называется решением уравнения (15).

Определение 13.3 (Стационарность в узком смысле (строгая стационарность)). Случайный процесс  $\{x(t)\}$  называется стационарным случайным процессом в узком смысле, если  $\forall n \in N, \ \forall t_i, \tau : t_i, t_i + tau \in T$  выполнено условие

$$F(x_{t_1},\ldots,x_{t_n}) = F(x_{t_1+\tau},\ldots,x_{t_n+\tau})$$

Определение 13.4 (Стационарность в широком смысле). Случайный процесс  $\{x(t)\}$  называется стационарным случайным процессом в широком смысле, если

- 1.  $x(t) \in L_2(d\mathbb{P}) \ \forall \ t \in T$
- 2.  $\forall t,s \in T, \ \forall \ h: \ t+h,s+h \in T$  выполнены условия

$$Ex(t+h) = Ex(t), Cov(x(t+h), x(s+h)) = Cov(x(t), x(s))$$

#### Напоминание 13.2.

Для доказательства теоремы 13.5 сформулируем следующую теорему.

**Теорема 13.6.** При  $|\beta| < 1 \; \exists \; noчmu \; наверное единственное строго стационарное решение уравнения (15). Оно имеет вид$ 

$$u_t = \sum_{j \ge 0} \beta^j \varepsilon_{t-j},\tag{16}$$

ряд сходится в средне квадратическом  $(c.\kappa.)$ , то есть сходится в  $L^2$ . Решение (16) является также стационарным в широком смысле, причем

$$Eu_t = 0, \ R(\tau) = Cov(u_t, u_{t+\tau}) = \frac{\sigma^2 \beta^{|\tau|}}{1 - \beta^2}$$

Доказательство. Доказательство теоремы 13.6.

#### 1. Существование.

Пусть  $u_t^{(n)} := \sum_{j=0}^n \beta^j \varepsilon_{t-j}$  – астная сумма ряда (16). Ряд с.к. сходится, если для некоторой сл.в.  $S_t$ ,  $ES_t^2 < \infty \ \exists \lim_{n \to \infty} u_t^{(n)} = S_t$ ,  $S_t$  есть сумма ряда (т.е.  $E|u_t^{(n)} - S_t|^2 \to 0$ ,  $n \to \infty$ ). Из критерия Коши извесно, что эта с.к. сходимость эквивалентна с.к. фундаментальности, т.е.

$$\lim_{n,m \to \infty} E|u_t^{(n)} - u_t^{(m)}|^2 = 0.$$

Пусть l = min(n, m), k = max(n, m). Тогда

$$E|u_t^{(n)} - u_t^{(m)}| = E|\sum_{j=l+1}^k \beta^j \varepsilon_{t-j}|^2 = \delta^2 \sum_{j=l+1}^k \beta^j \to 0,$$

т.к.  $l,k \to \infty, \ |\beta| < 1.$  Значит, ряд с.к. сходится. Имеем почти наверное

$$u_t = \sum_{j \ge 0} \beta^j \varepsilon_{t-j} = \varepsilon_t + \beta \sum_{j \ge 1} \beta^{j-1} \varepsilon_{t-j} = \varepsilon_t + \beta \sum_{s \ge 0} \beta^s \varepsilon_{t-s-1} = \varepsilon_t + \beta u_{t-1}.$$

Значит,  $\{u_t\}$  из (16) есть решение (15).

#### 2. Строгая стационарность.

Пусть  $U(\tau) = (u_{t_1+\tau}, u_{t_k+\tau})$ . Надо показать, что  $U(\tau) \stackrel{d}{=} U(0)$ . Пусть  $U_n(\tau) = (u_{t_1+\tau}^{(n)}, u_{t_k+\tau}^{(n)})$ .

**Задача 13.1.** Если  $\{\xi_t\}$  – строго стационарная последовательность, а  $\eta_t = f(\xi_t, \dots, \xi_{t-k}), f$  – борелевская, то  $\{\eta_t\}$  – строго стационарная последовательность.

В силу этой задачи  $\{u_t^{(n)}\}$  – строго стационарная последовательность (т.к.  $\{\varepsilon_t\}$  – строго стационарная последовательность,  $\{u_t^{(n)}\}$  – последовательность частных сумм), то есть распределение вектора  $U_n(\tau)$  от  $\tau$  не зависит. Но

$$U_n(\tau) \stackrel{d}{\to} U(\tau), \ n \to \infty,$$
 (17)

т.к.  $u_t^{(n)} \stackrel{\text{с.к.}}{\to} u_t$ . Значит, в силу (17), распределение  $U(\tau)$  от  $\tau$  не зависит.

#### 3. Единственность.

Пусть  $\{\tilde{u}_t\}$  – любое строго стационарное решение (15). Тогда почти наверное  $\tilde{u}_t = \beta \tilde{u}_{t-1} + \varepsilon_t = \varepsilon_t + \beta \varepsilon_{t-1} + \ldots + \beta^{k-1} \varepsilon_{t-k+1} + \beta^k \tilde{u}_{t-k}$ . Имеем

$$P(|\beta^k \tilde{u}_{t-k}| > \delta) = \beta^k \tilde{u}_0| > \delta) \to 0, \ k \to \infty,$$

т.к. распределение  $\tilde{u}_k$  не зависит от времени,  $|\beta| < 1$ . Знаем, что  $u_t^{(k)} \stackrel{\text{с.к.}}{\to} u_t = \sum_{j \geq 0} \beta^j \varepsilon_{t-j}, \ E u_t^2 < \infty$ . Значит,  $u_t^{(k)} + \beta^k \tilde{u}_{t-k} \stackrel{P}{\to} u_t, \ k \to \infty$ , так как, раз  $u_t^{(k)} \stackrel{\text{с.к.}}{\to} u_t$ , то  $u_t^{(k)} \stackrel{P}{\to} u_t$ ,  $\beta^k \tilde{u}_{t-k} \stackrel{P}{\to} 0$ . Следовательно, п.н.  $\tilde{u}_t = \lim_{k \to \infty} (u_t^k + \beta^k \tilde{u}_{t-k}) = u_t = \sum_{j \geq 0} \beta^j \varepsilon_{t-j}$ .

#### 4. Стационарность в широком смысле.

Последовательность  $\{u_t\}$  из (16) стационарна в широком смысле, так как она стационарна в узком смысле и есть моменты до 2-ого порядка. Тогда из (15)  $Eu_t = \beta Eu_{t-1} + E\varepsilon_t$ ,  $E\varepsilon_t = 0$ ,  $Eu_t = Eu_0$ , так как она строго стационарна, тогда возьмем  $u_0: (1-\beta)Eu_0 = 0 \Longrightarrow Eu_0 = 0$ . Найдем дисперсию:

$$Eu_t^2 = \beta^2 E u_{t-1}^2 + 2\beta E(u_{t-1}\varepsilon_t) + E\varepsilon_t^2$$
, то есть  $(1 - \beta^2)Eu_0^2 = (1 - \beta^2)R(0) =$   
=  $E\varepsilon_t^2 = \delta^2 \Longrightarrow R(0) = \frac{\delta^2}{1 - \beta^2}$ .

Для  $\tau > 0$   $Eu_{t+\tau}u_t = \beta Eu_{t+\tau-1}u_t + E\varepsilon_{t+\tau}u_t.E\varepsilon_{t+\tau}u_t = E\varepsilon_{t+\tau}Eu_t = 0$ , т.к.  $\varepsilon_{t+\tau}$ ,  $u_t$  независимы (взяли  $u_{t+\tau} = \beta u_{t+\tau-1} + \varepsilon_{t+\tau}$ , умножили равенство на  $u_t$ ,

взяли мат.ожидание от равентсва). Получаем, что

$$R(\tau) = \beta R(\tau - 1), \ R(0) = \frac{\sigma^2}{1 - \beta^2} \Longrightarrow R(\tau) = \frac{\sigma^2 \beta^{\tau}}{1 - \beta^2},$$

а т.к. 
$$R(\tau)$$
 – четная, то  $\forall \ \tau \ R(\tau) = \frac{\sigma^2 \beta^{|\tau|}}{1 - \beta^2}.$ 

# 13.6 Замечания о последовательностях с сильным перемешиванием (с.п.)

Определение 13.5 (Условие сильного перемешивания). Пусть  $\{u_t\}, t \in \mathbb{Z},$  – строго стационарная последовательность. Если

$$\alpha(\tau) := \sup_{\substack{A \in M_{-\infty}^0, \\ B \in M_{\tau}^{\infty}}} |P(AB) - P(A)P(B)| \to 0, \ \tau \to \infty,$$

то  $\{u_t\}$  удовлетворяет условию сильного перемешивания с коэффициентом перемешивания  $\alpha(\tau)$ . Здесь  $M_a^b = \sigma(u_t, a \le t \le b)$ .

#### Пример 13.3. Приведем несколько примеров:

- 1.  $\{\varepsilon_t\}$  н.о.р.сл.в., здесь  $\alpha(\tau)=0,\ \tau>0,\ m.к.\ \{\varepsilon_t\}$  независимы;
- 2. (Скользящее среднее порядка q)  $u_t = \varepsilon_t + \alpha_1 \varepsilon_{t-1} + \ldots + \alpha_q \varepsilon_{t-q}, \ \{\varepsilon_t\} \text{н.о.р.},$  здесь  $\alpha(\tau) = 0, \ \tau > q;$
- 3.  $(ARIMA(p, 0, 0)) u_t = \beta_1 u_{t-1} + \ldots + \beta_p u_{t-p} + \varepsilon_t, \{\varepsilon_t\} \text{н.о.р.}, \varepsilon_1 \text{ име-}$ ет Лебегову плотность вероятности,  $E\varepsilon_1 = 0, E\varepsilon_1^2 < \infty$ , строго стационарное решение  $\{u_t\}$  удовлетворяет условию с.п. с коэффициентом  $\alpha(\tau) \leq c\lambda^{\tau}, 0 < \lambda < 1$ . Это результата Mokkadem, 1998.

Задача 13.2. Если  $\{u_t\}$  удовлетворяет условию с.п. с коэффициентом  $\alpha(\tau)$ , а  $\eta_t = f(u_t, \ldots, u_{t-k})$ , то  $\eta_t$  удовлетворяет условию с.п. с коэффициентом  $\alpha_\tau \le \alpha(t-\tau)$ ,  $\tau > k$ , f – борелевская (пояснение устное: просто сигма-алгебры сдвигаются на  $\tau$ ).

ЗБЧ (док-ва не было)

Если  $\{u_t\}$ ,  $t \in \mathbb{Z}$ , – строго стационарная последовательность с с.п.,  $E|u_1| < \infty \Longrightarrow n^{-1} \sum_{t=1}^n u_t \stackrel{\text{п.н.}}{\to} Eu_1, \ n \to \infty.$ 

<u>ЦПТ</u> (Ибрагимов, Ленник, независимые и стационарные сл.в., Т 18.5.3., у нас док-ва не было)

Пусть  $\{u_t\}$ ,  $t \in \mathbb{Z}$ , – строго стационарная последовательность с с.п.,  $E|u_1| = 0$ ,  $E|u_1|^{2+\delta} < \infty$ , при некотором  $\delta > 0$ . Пусть  $\sum_{\tau \geq 1} (\alpha(\tau))^{\frac{2}{2+\delta}} < \infty$ , тогда:

- 1. Ряд  $\Delta^2 = Eu_0^2 + 2\sum_{\tau \geq 1} Eu_0u_{\tau}$  сходится абсолютно;
- 2. Если  $\Delta^2 > 0$ , то  $n^{-\frac{1}{2}} \sum_{t=1}^n u_t \stackrel{d}{\to} N(0, \Delta)$ .

Следствие 13.1. Если  $\{u_t\}$  удовлетворяет условию с.п.,  $Eu_1=m,\ E|u_1-m|^{2+\delta}<\infty,\ \sum_{\tau\geq 1}(\alpha(\tau))^{\frac{2}{2+\delta}}<\infty,\ mo\ \Delta^2$  из пункта 1 ЦПТ можно переписать как  $\bar{\Delta}^2=Du_0+2\sum_{\tau\geq 1}R(\tau),$ то при  $\bar{\Delta}>0$  по ЦПТ имеем

$$\sup_{x} |P(n^{\frac{1}{2}}(\bar{u}-m) \le x) - \varphi(\frac{x}{\bar{\Delta}}| \to 0, \ n \to \infty.$$

**Напоминание 13.3.** Хотим доказать теорему 13.5. Мы рассматриваем AR(1)-модель

$$u_t = \beta u_{t-1} + \varepsilon_y, \ t \in \mathbb{Z},\tag{18}$$

в которой  $\{\varepsilon_t\}$  – н.о.р.,  $E\varepsilon_1=0$ ,  $0<\sigma^2=E\varepsilon_1^2<\infty$ ,  $|\beta|<1$ . Пусть функция распределения  $\varepsilon_1=G(x)$ , g(x)=G(x) – плотность, G(x), g(x) – неизвестны. Пусть наблюдения  $u_0,u_1,\ldots,u_n$  – выборка из стационарного решения AR(1)-уравнения. В качестве оценки неизвестного параметра  $\beta$  берем о.н.к, которая получена из решения задачи

$$\sum_{t=1}^{n} (u_t - \theta u_{t-1})^2 \to \min_{\theta}.$$

Обозначили эту оценку  $\hat{\beta}_{n,hS}$ . Очевидно, что

$$\hat{\beta}_{n,hS} = \frac{\sum_{t=1}^{n} u_t u_{t-1}}{\sum_{t=1}^{n} u_{t-1}^2}.$$
(18')

аша ближайшая цель – доказать теорему 13.5, в силу которой при  $|\beta| < 1, \ E\varepsilon_1 = 0, \ 0 < E\varepsilon_1^2 < \infty$  имеем

$$n^{\frac{1}{2}}(\hat{\beta}_{n,hS}-\beta) \stackrel{d}{\to} N(0,1-\beta^2), \ n \to \infty$$

# 13.7 Доказательство теоремы об $\mathsf{AR}(1)$ с $|\beta| < 1$

**Теорема 13.7** (Теорема об AR(1) с  $|\beta| < 1$ , существование, единственность и свойства стационарного решения.). Пусть  $u_t = \beta u_{t-1} + \varepsilon_t$ ,  $|\beta| < 1$ ,  $t \in \mathbb{Z}$ . Если  $\{\varepsilon_t\} - \text{н.o.p.}$ ,  $E\varepsilon_1 = 0$ ,  $0 < E\varepsilon_1^2 < \infty$ , то

$$n^{\frac{1}{2}}(\hat{\beta}_{n,hS} - \beta) \stackrel{d}{\to} N(0, 1 - \beta^2), \ n \to \infty$$

**Доказательство.** Доказательство теоремы 13.7. Сначала проверим условия ЦПТ. Предположим, что  $E|\varepsilon_1|^{2+\delta} < \infty$  при некотором  $\delta > 0$ . Пусть также  $\exists$  плотность вероятности для  $\varepsilon_1 : g(x)$  по мере Лебега.

1. При  $|\beta| < 1$  в силу теоремы 13.6 существует строго стационарное решение уравнения AR(1), оно имеет вид

$$u_t = \sum_{j \ge 1} \beta^j \varepsilon_{t-j},$$

ряд сходится в  $L^2$ . Покажем, что этот ряд сходится также в  $L^{2+\delta}$ , тогда  $E|u_1|^{2+\delta}<\infty$ .

Справедливо неравенство Миньковского: если  $E|\xi|^{2+\delta}<\infty,\ E|\eta|^{2+\delta}<\infty,\ \delta>0,$  то

$$\{E|\xi+\eta|^{2+\delta}\}^{\frac{1}{2+\delta}} \le \{E|\xi|^{2+\delta}\}^{\frac{1}{2+\delta}} + \{E|\eta|^{2+\delta}\}^{\frac{1}{2+\delta}},$$

это было неравенство треугольника. Рассмотрим частную сумму  $S_n = \sum_{j=1}^n \beta_j \varepsilon_{t-j}$ .

$$\begin{split} \{E|S_n - S_m|^{2+\delta}\}^{\frac{1}{2+\delta}} &= \{E|\sum_{j=min(n,m)+1}^{max(n,m)}\beta_j\varepsilon_{t-j}|^{2+\delta}\}^{\frac{1}{2+\delta}} \leq \\ &\leq \sum_{j=min(n,m)+1}^{max(n,m)} \{E|\beta_j\varepsilon_{t-j}|^{2+\delta}\}^{\frac{1}{2+\delta}} &= E\{|\varepsilon_1|^{2+\delta}\}^{\frac{1}{2+\delta}} \sum_{j=min(n,m)+1}^{max(n,m)} |\beta|^j \to 0, \\ &\text{при } |\beta| < 1 \; (min(m,n) \to \infty). \end{split}$$

Значит, последовательность частных сумм  $\{S_n\}$  – фундаментальная последовательность, и ряд  $u_t = \sum_{j\geq 1} \beta^j \varepsilon_{t-j}$  ряд сходится в  $L^{2+\delta} \Longrightarrow E|u_1|^{2+\delta} < \infty$ .

2. Знаем, что

$$\hat{\beta}_{n,hS} = \frac{\sum_{t=1}^{n} u_{t} u_{t-1}}{\sum_{t=1}^{n} u_{t-1}^{2}} \stackrel{\text{\tiny II.H.}}{=} \beta + \frac{\sum_{t=1}^{n} \varepsilon_{t} u_{t-1}}{\sum_{t=1}^{n} u_{t-1}^{2}},$$

$$n^{\frac{1}{2}}(\hat{\beta}_{n,hS} - \beta) = n^{\frac{1}{2}} \frac{\sum_{t=1}^{n} \varepsilon_t u_{t-1}}{\sum_{t=1}^{n} u_{t-1}^2}.$$

3. В силу результатов Моккаdem 13.3 последовательность  $\{u_t\}$  удовлетворяет условию с.п. с  $\alpha(\tau) \leq c\lambda^{\tau}$ ,  $0 < \lambda < 1$ . Последовательность  $\{\varepsilon_t u_{t-1} = (u_t - \beta u_{t-1})u_{t-1} = f(u_t, u_{t-1})\}$  тоже удовлетворяет условию с.п. с  $\alpha'(\tau) \leq c'\lambda^{\tau} \Longrightarrow$ 

$$\sum_{\tau \ge 1} (\alpha'(\tau))^{\frac{\delta}{2+\delta}} \le \sum_{\tau \ge 1} (c'\lambda^{\tau})^{\frac{\delta}{2+\delta}} = \frac{(c'\lambda)^{2+\delta}}{1-\lambda^{2+\delta}} < \infty.$$

$$E\varepsilon_t u_{t-1} = E\varepsilon_t E u_{t-1} = 0, \ E|\varepsilon_t u_{t-1}|^{2+\delta} = E|\varepsilon_t|^{2+\delta} E|u_{t-1}|^{2+\delta} < \infty,$$

тгда в силу ЦПТ для последовательности с с.п. имеем

$$n^{-\frac{1}{2}} \sum_{t=1}^{n} \varepsilon_t u_{t-1} \stackrel{d}{\to} N(0, \Delta^2),$$

где

$$\Delta^2 = E(\varepsilon_1 u_0)^2 + 2 \sum_{\tau > 1} E(\varepsilon_1 u_0 \varepsilon_{1+\tau} u_\tau) = E\varepsilon_1^2 E u_0^2$$

4.  $n^{-1} \sum_{t=1}^{n} u_{t-1}^2 \stackrel{\text{п.н.}}{\to} Eu_0^2$  в силу ЗБЧ для последовательности с с.п. Значит,

$$n^{\frac{1}{2}}(\hat{\beta}_{n,hS} - \beta) \xrightarrow{d} \frac{1}{Eu_0^2} N(0, E\varepsilon_1^2 Eu_0^2),$$
$$\frac{E\varepsilon_1^2 Eu_0^2}{(Eu_0^2)^2} = \frac{E\varepsilon_1^2}{Eu_0^2} = 1 - \beta^2.$$

# 13.8 Ассимптотические доверительные интервалы

В силу (18')

$$\frac{n^{\frac{1}{2}}(\hat{\beta}_{n,hS} - \beta)}{\sqrt{1 - \hat{\beta}_{n,hS}^2}} = \frac{n^{\frac{1}{2}}(\hat{\beta}_{n,hS} - \beta)}{\sqrt{1 - \beta^2}} \frac{\sqrt{1 - \beta^2}}{\sqrt{1 - \hat{\beta}_{n,hS}^2}} \xrightarrow{d} N(0, 1), \ n \to \infty,$$

T.K.

$$\frac{n^{\frac{1}{2}}(\hat{\beta}_{n,hS} - \beta)}{\sqrt{1 - \beta^2}} \xrightarrow{d} N(0,1), \ \frac{\sqrt{1 - \beta^2}}{\sqrt{1 - \hat{\beta}_{n,hS}^2}} \xrightarrow{P} 1.$$

Применим лемму Слуцкого. Пусть  $\xi_{1-\frac{\alpha}{2}}$  – квантиль уровня  $1-\frac{\alpha}{2}$  функции распределения  $\Phi(x)\sim N(0,1),$  тогда

$$P(|\frac{n^{\frac{1}{2}}(\hat{\beta}_{n,hS} - \beta)}{\sqrt{1 - \hat{\beta}_{n,hS}^2}}| < \xi_{1 - \frac{\alpha}{2}}) \to 1 - \alpha, \ n \to \infty,$$

т.е. при больших n примерно c вероятностью  $1-\alpha$ 

$$\hat{\beta}_{n,hS} - \sqrt{\frac{1 - \hat{\beta}_{n,hS}^2}{n}} \xi_{1 - \frac{\alpha}{2}} < \beta < \hat{\beta}_{n,hS} + \sqrt{\frac{1 - \hat{\beta}_{n,hS}^2}{n}} \xi_{1 - \frac{\alpha}{2}}$$

Получили доверительный интервал для  $\beta$  уровня  $1-\alpha$ .

### 13.9 Проверка гипотез

Проверим гипотезу  $H_0: \beta = \beta_0$  против альтенативы  $H_1: \beta \neq \beta_0$ . Критическое множество

$$S_{\alpha} = \{u_0, u_1, \dots : |\frac{n^{\frac{1}{2}}(\hat{\beta}_{n,hS} - \beta_0)}{\sqrt{1 - \hat{\beta}_{n,hS}^2}}| < \xi_{1 - \frac{\alpha}{2}}\}.$$

тогда, очевидно, что  $P(H_1|H_0) \to \alpha$ , а т.к. при  $H_1$ :

$$\frac{n^{\frac{1}{2}}(\hat{\beta}_{n,hS} - \beta_0)}{\sqrt{1 - \beta_0}} = \frac{n^{\frac{1}{2}}(\hat{\beta}_{n,hS} - \beta_0)}{\sqrt{1 - \beta}} + \frac{n^{\frac{1}{2}}(\beta - \beta_0)}{\sqrt{1 - \beta_0^2}} \xrightarrow{P} \infty, \ n \to \infty,$$

то  $P(H_0|H_1)$ . Значит,

$$\begin{cases} P(H_0|H_0) \to 1 - \alpha \\ P(H_1|H_1) \to 1, \ n \to \infty \end{cases}$$

Вероятность принять правильную гипотезу близка к единице!

## 13.10 О робастности о.н.к.

 $u_t = \beta u_{t-1} + \varepsilon_t, \ t \in \mathbb{Z}, \ |\beta| < 1, \ \{\varepsilon_t\}$  – н.о.р.,  $E\varepsilon_1 = 0, \ 0 < \varepsilon_1^2 < \infty$ . Пусть наблюдаются  $y_t = u_t + z_t^{\gamma} \xi_t, \ t = 0, 1, \dots, n, \ \{u_t\}$  – стационарное решение,  $\{z_t^{\gamma}\}$  – н.о.р.,  $z_1^{\gamma} \sim Br(\gamma), \ 0 \le \gamma \le 1, \ \{\xi_t\}$  – н.о.р.,  $\xi_1 \sim \mu_{\xi}, \ \mu_{\xi} \in M_2: \ E\xi_1^2 < \infty$ , последовательности  $\{\xi_t\}, \{u_t\}, \{z_t^{\gamma}\}$  независимы между собой. Пусть

$$\hat{\beta}_{n,hS}^{y} = \frac{\sum_{t=1}^{n} y_{t-1} y_{t}}{\sum_{t=1}^{n} y_{t-1}^{2}}$$

– о.н.к., построенная по засоренным данным  $\{y_t\}$ . Найдем ее функционал влияния. Первый способ. Предположим дополнительно, что у  $\varepsilon_1 \exists$  плотность, вероятности g(x) = G'(x). Тогда последовательность  $\{u_t\}$  удовлетворяет условию с.п., а т.к.  $\{z_t^{\gamma}\xi_t\},\ t\in\mathbb{Z},$  – последовательность н.о.р.сл.в., которые не зависят от  $\{u_t\}$ , то  $\{y_t\}$  строго стационарная последовательность с с.п. Кроме того,  $E|y_1|<\infty$ , т.к.

$$Ey_1^2 = E(u_1 + z_1^{\gamma} \xi_1)^2 = Eu_1^2 + 2Eu_1 Ez_1^{\gamma} E\xi_1 + E(z_1^{\gamma} \xi_1)^2 = Eu_1^2 + \gamma E\xi_1^2 < \infty.$$

Значит, в силу ЗБЧ для последовательностей с с.п.

$$\hat{\beta}_{n,hS}^{y} = \frac{n^{-1} \sum_{t=1}^{n} y_{t-1} y_{t}}{n^{-1} \sum_{t=1}^{n} y_{t-1}^{2}} \xrightarrow{P} \theta_{\gamma}^{hS} = \frac{E y_{0} y_{1}}{E y_{0}^{2}} = \frac{E (u_{0} + z_{0}^{\gamma} \xi_{0}) (u_{1} + z_{1}^{\gamma} \xi_{1})}{E (u_{0} + z_{0}^{\gamma} \xi_{0})^{2}} = \frac{E u_{0} u_{1} + \gamma^{2} (E \xi_{0})^{2}}{E u_{0}^{2} + \gamma E \xi_{0}^{2}}$$

$$\implies IF(\theta_{\gamma}^{hS}, \mu_{\xi}) = \frac{d\theta_{\gamma}^{hS}}{d\gamma}|_{\gamma=0} = -\beta (1 - \beta^{2}) \frac{E \xi_{0}^{2}}{E \varepsilon_{1}^{2}}.$$

Если  $M_2$  – множество распределений с конечным вторым моментом, то при  $\beta \neq 0$   $GES(\theta_{\gamma}^{hS}, M_2) = \sup_{\mu_{\xi} \in M_2} |IF(\theta_{\gamma}^{hS}, \mu_{\xi})| = \infty \Longrightarrow$  о.н.к. неробастна!

Второй способ. Предположим, что  $\varepsilon_1$  имееет плотность вероятности g(x) по нор-

ме Лебега. Тогда  $\{y_t\}$  удовлетворяет условию с.п. Оценка  $\hat{\beta}_{n,hS}^y$  – корень уравнения

$$l_{n,hS}(\theta) = n^{-1} \sum_{t=1}^{n} y_{t-1} (y_t - \theta y_{t-1}) = 0.$$

1.  $l_{n,hS}(\theta) \xrightarrow{P} Ey_0(y_1 - \theta y_0), \ \forall \theta, \ 0 \leq \gamma \leq 1$ . Т.е.  $\Lambda_{hS}(\gamma, \theta) = Ey_0(y_1 - \theta y_0)$ . Пусть  $H_{00} = (z_0^{\gamma} = 0, z_1^{\gamma} = 0), H_{01} = (z_0^{\gamma} = 0, z_1^{\gamma} = 1), H_{10} = (z_0^{\gamma} = 1, z_1^{\gamma} = 0), H_{00} = (z_0^{\gamma} = 1, z_1^{\gamma} = 1)$ . Тогда

$$\Lambda_{hS}(\gamma,\gamma) = \sum_{i,j=0}^{1} E(y_0(y_1 - \theta y_0)|H_{ij})P(H_{ij}) = (1 - \gamma)^2 E u_0(u_1 - \theta u_0) + (1 - \gamma)\gamma E u_0(u_1 + \xi_1 - \theta u_0) + \gamma(1 - \gamma)E(u_0 + \xi_0)(u_1 - \theta u_0 - \theta \xi_0) + \gamma^2 E(u_0 + \xi_0)(u_1 + \xi_1 - \theta u_0 - \theta \xi_1) \Longrightarrow$$

 $\Lambda_{hS}(\gamma,\theta)$  определена  $\forall \gamma,\theta$ .

- 2.  $\Lambda_{hS}(0,\beta) = Eu_0(u_1 \beta u_0) = Eu_0\varepsilon_1 = 0.$
- 3.  $\frac{\partial \Lambda_{hS}(\gamma,\theta)}{\partial \gamma}$ ,  $\frac{\partial \Lambda_{hS}(\gamma,\theta)}{\partial \theta}$  существуют и непрерывны по паре  $(\gamma,\theta)$ ,  $\gamma,\theta\in\mathbb{R}^1$ ,

$$\frac{\partial \Lambda_{hS}(\gamma, \theta)}{\partial \gamma} = -\beta E \xi_0^2, \ \frac{\partial \Lambda_{hS}(\gamma, \theta)}{\partial \theta} = -E u_0^2.$$

4.  $\lambda(\beta)=-Eu_0^2=-rac{Earepsilon_1^2}{1-eta^2}<0,$  т.к.  $arphi(\mathbb{I}, heta)$  непрерывна, то

$$IF(\theta_{\gamma}^{hS}, \mu_{\xi}) = -\left(\frac{\partial \Lambda_{hS}(0, \beta)}{\partial \theta}\right)^{-1} \frac{\partial \Lambda_{hS}(0, \beta)}{\partial \gamma} = -\frac{-\beta E \xi_0^2}{-\frac{E \varepsilon_1^2}{1 - \beta^2}} = -\beta (1 - \beta^2) \frac{E \xi_0^2}{E \varepsilon_1^2}.$$

Очевидно, при  $\beta \neq 0$   $GES(\theta_{\gamma}^{hS}, M_2) = \infty$ , т.е.  $\hat{\beta}_{n,hS}^y$  не  $\beta$ -робастна.

Задача 13.3.  $u_t = \beta u_{t-1} + \varepsilon_t, \ t \in \mathbb{Z}, \ |\beta| < 1, \ \beta \neq 0 \ \{\varepsilon_t\} - \textit{н.o.p.}, \ E\varepsilon_1 = 0, \ 0 < \varepsilon_t^2 < \infty.$ 

 $y_t = u_t + z_t^{\gamma} \xi_t$ . Оценка  $\hat{\beta}_n$  ищется как корень уравнения

$$\sum_{t=1}^{n} y_{t-2}(y_t - \theta y_{t-1}) = 0$$

1. Будет ли оценка  $\hat{\beta}_n$   $\beta$ -робастной?

2. Чему равен функционал влияния второго порядка?

# 13.11 О процедурах наименьших квадратов в AR(p)

**Определение 13.6.** Авторегрессия порядка p (AR(p) - модель) описывается стохастическим разностным уравнением

$$u_t = \beta_1 u_{t-1} + \beta_2 u_{t-2} + \ldots + \beta_p u_{t-p} + \varepsilon_t, \ t \in \mathbb{Z}.$$
 (20)

 $\{\varepsilon_t\}$  – н.о.р.,  $E\varepsilon_1=0,\ 0<\varepsilon_1^2=\sigma^2<\infty,\ \beta_1,\ldots,\beta_p\in\mathbb{R}$  – неизвестные коэффициенты авторегрессии.

Определение 13.7. Уравнение

$$x^p = \beta_1 x^{p-1} + \ldots + \beta_p \tag{21}$$

называется характеристическим уравнением, соответствующим уравнению (20).

**Теорема 13.8.** Пусть корни характеристического уравнения (21) по модулю меньше 1. Тогда уравнение (20) имеет почти наверное единственное строго стационарное решение. Ряд

$$u_t = \sum_{j \ge 0} \gamma_j varepsilon_{t-j} \tag{22}$$

ходится с.к. Коэффициенты  $\{\gamma_t\}$  определяются рекурентным соотношением

$$\gamma_j = \beta_1 \gamma_{j-1} + \ldots + \beta_p \gamma_{j-p}$$

 $j = 1, 2, \dots, \gamma_0 = 1, \gamma_j = 0 \text{ npu } j < 0, |\gamma_j| \le c\lambda^j, 0 < \lambda < 1.$ 

Ряд (22) также определяет стационарную в широком смысле последовательность с нулевым средним.

Доказательство. Для p=1 условие теоремы совпадает с утверждением 13.6. Для p>1доказательство идейно не отличается, тно технически громоздко, мы его опускаем.

Следствие 13.2. Поскольку из (22)  $u_t = u_t(\varepsilon_t, \varepsilon_{t-1}, \ldots)$ , то сл.в.  $\varepsilon_{t+1}$  не зависит от множества сл.в.  $\{u_t, u_{t-1}, \ldots\}$ .

### 13.12 Прогнозирование

Пусть наблюдения  $u_1, u_2, \ldots, u_n$  будут выборкой из стационарного решения (22). Пусть  $n \geq p$ . птимальный с.к. прогноз ненаблюдаемой величины  $u_{n+1}$  по наблюдениям  $u_1, u_2, \ldots, u_n$  есть решение задачи

$$E|u_{n+1} - \varphi(u_1, u_2, \dots, u_n)|^2 \to \min_{\text{fop.} \Phi. \ \varphi: E\varphi^2(u_1, \dots, u_n) < \infty}$$

Мы знаем, что решение этой задачи есть

$$u_{n+1}^* = \varphi^*(u_1, u_2, \dots, u_n) = E(u_{n+1}|u_1, u_2, \dots, u_n).$$

Имеем:

$$E(u_{n+1}|u_1,u_2,\ldots,u_n)=E(\sum_{j=1}^p\beta_ju_{n+1-j}+\varepsilon_{n+1}|u_1,u_2,\ldots,u_n)=$$
 
$$=E(\sum_{j=1}^p\beta_ju_{n+1-j}|u_1,u_2,\ldots,u_n)+E(\varepsilon_{n+1}|u_1,u_2,\ldots,u_n)=\beta_1u_n+\ldots+\beta_pu_{n+1-p},$$
 т.к.  $E(\varepsilon_{n+1}|u_1,u_2,\ldots,u_n)=E(\varepsilon_{n+1})=0$  в силу замечания.

Итак, оптимальный с.к. прогноз

$$u_{n+1}^* = \beta_1 u_n + \ldots + \beta_p u_{n+1-p}.$$

Чтобы построить  $u_{n+1}^*$  надо оценить  $\beta_1, \ldots, \beta_p$ . Построим о.н.к. неизвестных  $\beta_1, \ldots, \beta_p$  по наблюдениям  $u_p, \ldots, u_{n-p}$ . Положим,  $\tilde{u}_{t-1} := (u_{t-1}, \ldots, u_{t-p})^T$ ,  $\beta = (\beta_1, \ldots, \beta_p)^T \Longrightarrow (20)$  имеет вид

$$u_t = \tilde{u}_{t-1}\beta + \varepsilon_t, \ t \in \mathbb{Z}.$$

O.н.к. вектора  $\beta$  – решение задачи

$$\sum_{t=1}^{n} (u_t - \tilde{u}_{t-1}^T \theta)^2 \to \min_{\theta \in \mathbb{R}^1}, \tag{23}$$

 $\theta = (\theta_1, \dots, \theta_p)^T$ . Решение задачи (23) совпадает с решением системы уравнений

$$\sum_{t=1}^{n} u_{t-j}(u_t - \tilde{u}_{t-1}^T \theta) = 0, \ j = 1, \dots, p.$$

Запишем эту систему в векторном виде

$$\sum_{t=1}^{n} \tilde{u}_{t-1}(u_t - \tilde{u}_{t-1}^T \theta) = 0.$$
 (23')

Решение (23') есть

$$\hat{\beta}_{n,hS} = (\sum_{t=1}^{n} \tilde{u}_{t-1} \tilde{u}_{t-1}^{T})^{-1} \sum_{t=1}^{n} \tilde{u}_{t-1} u_{t}.$$

Если  $p \times p$ -матрица  $\sum_{t=1}^{n} \tilde{u}_{t-1} \tilde{u}_{t-1}^{T}$  вырождена, то полагаем, что  $\hat{\beta}_{n,hS} = 0$ .

# Оценка наименьших квадратов в AR(p). Формулировка теоремы об ассимптотической нормальности

**Теорема 13.9** (Теорема об ассимптотической нормальности.). Пусть  $\{\varepsilon_t\}$  – н.о.р.сл.в.,  $E\varepsilon_1=0,\ 0<\varepsilon_2^2=\sigma^2<\infty.$  усть корни характеристического уравнения (21) по модулю меньше 1. Тогда

$$n^{\frac{1}{2}}(\hat{\beta}_{n,hS} - \beta) \stackrel{d}{\to} N(0, \sigma^2 \mathcal{K}^{-1}), \ n \to \infty,$$

 $e \partial e \mathcal{K} = E \tilde{u}_0 \tilde{u}_0^T > 0.$ 

**Следствие 13.3.** В 13.9 речь идет о сходимости по распределению вектора  $\xi_n = n^{\frac{1}{2}}(\hat{\beta}_{n,hS} - \beta)$  к гауссовскому вектору  $\xi \sim N(0, \sigma^2 \mathcal{K}^{-1})$ . Напомним, что если  $\xi_n, \xi \in \mathbb{R}^p$ , то  $\xi_n \stackrel{d}{\to} \xi$ , если

$$\int_{\mathbb{R}^p} g(x)dP_n(x) \to \int_{\mathbb{R}^p} g(x)dP(x) \tag{24}$$

 $\forall$  непрерывной и ограниченной функции  $g: \mathbb{R}^p \to \mathbb{R}^1$ .  $P_n, P$  – распределения векторов  $\xi_n, \xi$ . Можно проверить, что это определение равносильно следующему: для любой непрерывной и ограниченной функции  $g: \mathbb{R}^p \to C$  выполнено (24). Разумеется, (24) означает, что  $Eg(\xi_n) \to Eg(\xi)$ . Мы знаем, что если  $\xi_n \stackrel{d}{\to} \xi$ , то для любого постоянного вектора  $\lambda \in \mathbb{R}^p$ 

$$\lambda^T \xi_n \stackrel{d}{\to} \lambda^T \xi \tag{25}.$$

Действительно, функция  $\pi(x) := \lambda^T x$  непрерывна и (25) следует из Теоремы о наследовании слабой сходимости.

Верно и обратное: если выполнено соотношение (25), то  $\xi_n \stackrel{d}{\to} \xi$ . Действительно, функция  $g(x) = e^{ix}, \ x \in \mathbb{R}^1$  – непрерывная и ограниченная функция  $\mathbb{R} \to C$ . Тогда из (25) следует, что

$$Eg(\xi_n) = Ee^{i\lambda^T \xi_n} \to Ee^{i\lambda^T \xi} = Eg(\xi) \ \forall \ \lambda \in \mathbb{R}^p.$$

Последние соотношения означают, что характеристическая функция вектора  $\xi_n - Ee^{i\lambda^T\xi_n}$  и  $\forall \lambda$  ходится к характеристической функции  $Ee^{i\lambda^T\xi}$  вектора  $\xi \Longrightarrow \xi_n \stackrel{d}{\to} \xi$ .

Лемма 13.1 (Прием Крамера-Уолда.). Если сл. векторы  $\xi_n, \xi \in \mathbb{R}^p$ , то  $\xi_n \stackrel{d}{\to} \xi \iff \lambda^T \xi_n \stackrel{d}{\to} \lambda^T \xi \ \forall \lambda \in \mathbb{R}^p$ .

Этот прием сводит сходимость по распределению векторов  $\xi_n \stackrel{d}{\to} \xi$  к сходимости скаляров  $\forall \lambda \ \lambda^T \xi_n \stackrel{d}{\to} \lambda^T \xi$ .

Следствие 13.4. Пусть  $\{\xi_t\}$  — случайные вектора,  $\xi_n \in \mathbb{R}^k$ . Будем писать  $\xi_n = o_p(1)$  (о-малое от 1 по вероятности),  $n \to \infty$ , если  $\xi_n \stackrel{P}{\to} 0$ . Будем говорить, что последовательность  $\{\xi_t\}$  ограничена по вероятности  $(\xi_n = O_p(1))$ , если  $\forall \ \varepsilon > 0 \exists A = A(\varepsilon) : \sup_n P(|\xi_n| > A) < \varepsilon$ .

Задача 13.4. 1. Если  $\xi_n = O_p(1)$ , а  $\eta_n = o_p(1)$ , то  $\xi_n \eta_n = o_p(1)$ ,  $\xi_n \in \mathbb{R}^k$ ,  $\eta_n \in \mathbb{R}^1$ .

2. Ecnu  $\xi_n \stackrel{d}{\to} \xi$ , mo  $\xi_n = O_p(1), \ \xi_n, \xi \in \mathbb{R}$ .

# Оценка наименьших квадратов в AR(p). Докозательство теоремы об ассимптотической нормальности

Доказательство. Предположим, что  $E|\varepsilon_1|^{2+\delta} < \infty$  для некоторого  $\delta > 0, \; \exists g(x)$  – плотность вероятности по мере Лебега.

1. Покажем, что матрица  $\mathcal{K} = E\tilde{u}_0\tilde{u}_0^T > 0$ . Для  $\alpha \in \mathbb{R}^p$ ,  $\alpha \neq 0$ , имеем  $\alpha^T\mathcal{K}\alpha = E(\alpha^T\tilde{u}_0)(\tilde{u}_0^T\alpha) = E|\alpha^T\tilde{u}_0|$ . Но ряд

$$u_t = \sum_{s>0} \gamma_s \varepsilon_{t-s} = \varepsilon_t + \sum_{s>1} \gamma_s \varepsilon_{t-s}$$

сходится в  $L^{2+\delta} \Longrightarrow$ 

$$\alpha^T \tilde{u}_0 = \alpha^T (u_{-1}, \dots, u_{-p})^T = \alpha_1 \varepsilon_{-1} + \sum_{s \ge 1} \gamma_s \varepsilon_{-1} + \alpha_2 u_{-2} + \dots + \alpha_p u_{-p}.$$

Сл.в.  $\varepsilon_{-1}$  абсолютно непрерывна и не зависит от остальных слагаемых. Значит, при  $\alpha_1 \neq 0$   $\alpha^T \tilde{u}_0$  абсолютно непрерывна,  $P(\alpha^T \tilde{u}_0 \neq 0) = 1$ , и  $E|\alpha^T \tilde{u}_0|^2 > 0$ . Если  $\alpha_1 = 0$ , то повторим рассуждения для первой ненулевой компоненты вектора  $\alpha$ .

2. Рассмотрим вектор  $\mathcal{K}^{-1}n^{-\frac{1}{2}}\sum_{t=1}^{n}\tilde{u}_{t-1}\varepsilon_{t}$ . Покажем, что он сходится по распределению к  $N(0,\sigma^{2}\mathcal{K}^{-1})$ . Для этого достаточно показать, что

$$n^{-\frac{1}{2}} \sum_{t=1}^{n} \tilde{u}_{t-1} \varepsilon_t \stackrel{d}{\to} N(0, \sigma^2 \mathcal{K})$$

и применить Теорему о наследовании слабой сходимости. В силу леммы 13.1 достаточно проверить, что при  $\forall \lambda \in \mathbb{R}^p$ .

$$n^{-\frac{1}{2}} \sum_{t=1}^{n} \lambda^{T} \tilde{u}_{t-1} \varepsilon_{t} = n^{-\frac{1}{2}} \sum_{t=1}^{n} \eta_{t} \stackrel{d}{\to} N(0, \sigma^{2} \lambda^{T} \mathcal{K} \lambda)$$

Последовательность  $\eta_t$  – функция от  $\{u_t\}$ , это строго стационарная последовательность с с.п., коэффициент перед  $\alpha(\tau) \leq c\lambda^{\tau}$ ,  $0 < \lambda < 1$ ,

$$E\eta_t = E(\lambda^T \tilde{u}_{t-1}) E\varepsilon_t = 0, \ E|\eta|^{2+\delta} = E|\lambda^T \tilde{u}_{t-1}|^{2+\delta} E|\varepsilon_t|^{2+\delta} < \infty,$$

т.к. по условию  $E|\varepsilon_1|^{2+\delta} < \infty$  (см. док-во теоремы 13.7), т.к.

$$\{E|\lambda^T \tilde{u}_{t-1}|^{2+\delta}\}^{\frac{1}{2+\delta}} \le \sum_{i=1}^p |\lambda_i| \{E|\tilde{u}_1|^{2+\delta}\}^{\frac{1}{2+\delta}} < \infty$$

в силу неравенства Миньковского. Кроме того, при t < s

$$E\eta_t\eta_s = E\{(\lambda^T \tilde{u}_{t-1}\varepsilon_t) \times (\lambda^T \tilde{u}_{s-1})\}\varepsilon_s = 0.$$

Кроме того,  $\sum_{\tau \geq 1} (\alpha(\tau))^{\frac{2}{2+\delta}} < \infty$ . силу ЦПТ для последовательностей с с.п.

$$n^{\frac{1}{2}} \sum_{t=1}^{n} \eta_t \xrightarrow{d} N(0, E\eta_0^2), \ E\eta_0^2 = \sigma^2 \lambda^T \mathcal{K} \lambda.$$

Соотношение (26) доказано  $\Longrightarrow$ 

$$\mathcal{K}^{-1} n^{-\frac{1}{2}} \sum_{t=1}^{n} \tilde{u}_{t-1} \varepsilon_t \stackrel{d}{\to} N(0, \sigma^2 \mathcal{K}^{-1}). \tag{27}$$

3. Пусть  $\mathcal{K}_n := n^{-1} \sum_{t=1}^n \tilde{u}_{t-1} \tilde{u}_{t-1}^T$ . Если  $det(\mathcal{K}_n) > 0$ , то

$$\hat{\beta}_{n,hS} = \mathcal{K}_n^{-1} n^{-1} \sum_{t=1}^n \tilde{u}_{t-1} u_t = \mathcal{K}_n^{-1} n^{-1} \sum_{t=1}^n \tilde{u}_{t-1} (\tilde{u}_{t-1}^T \beta + \varepsilon_t) = \beta + \mathcal{K}_n^{-1} n^{-1} \sum_{t=1}^n \tilde{u}_{t-1} \varepsilon_t \Longrightarrow$$

при невырожденном  $\mathcal{K}_n$ :  $n^{\frac{1}{2}}(\hat{\beta}_{n,hS}-\beta)=\mathcal{K}_n^{-1}n^{-\frac{1}{2}}\sum \tilde{u}_{t-1}\varepsilon_t$ .

В силу ЗБЧ для последовательностей с с.п.

$$\mathcal{K}_n \stackrel{\text{\tiny II.H.}}{\to} \mathcal{K} = E\tilde{u}_0\tilde{u}_0^T > 0, \ \det(\mathcal{K}) > 0 \Longrightarrow \det(\mathcal{K}_n) > 0 \stackrel{\text{\tiny II.H.}}{\to} \det(\mathcal{K}) > 0,$$

если  $S_n := \{\omega : \det(\mathcal{K}_n) > 0\}$ , то  $P(S_n) \to 1$ . Напомним:

$$\begin{cases} \mathcal{K}_n^{-1} n^{-\frac{1}{2}} \sum_{t=1}^n \tilde{u}_{t-1} u_t, \ \omega \in S_n, \\ 0, \ \omega \in \bar{S}_n. \end{cases}$$

Покажем, что

$$\gamma_n := n^{\frac{1}{2}} (\hat{\beta}_{n,hS} - \beta) - \mathcal{K}_n^{-1} n^{-\frac{1}{2}} \sum_{t=1}^n \tilde{u}_{t-1} \varepsilon_t \stackrel{P}{\to} 0.$$
 (28)

Из (27), (28) следует, что

$$n^{\frac{1}{2}}(\hat{\beta}_{n,hS} - \beta) \stackrel{d}{\to} N(0, \sigma^2 \mathcal{K}^{-1}).$$

Действительно, если  $\xi_n, \eta_n$  – юбые случайные векторы, такие, что  $\xi_n$  =  $\eta_n + \alpha_n, \ \eta_n \xrightarrow{d} \xi, \ \alpha_n = o_p(1) \Longrightarrow \forall \ \lambda \in \mathbb{R}^p \lambda \xi_n = \lambda \eta_n + \lambda^T \alpha_n \xrightarrow{d} \lambda^T \xi$  в силу леммы Слуцкого. Значит,  $\xi_n \stackrel{d}{\to} \xi$  в силу леммы 13.1. Пусть  $S_n^{\Delta} := \{\omega: \det(\mathcal{K}_n) \geq \Delta = \frac{1}{2} \det(\mathcal{K})\} \Longrightarrow P(\bar{S}_n^{\Delta}) \leq P(|\det(\mathcal{K}_n) - \mathcal{K}_n^{\Delta}) = 0$ 

Пусть 
$$S_n^{\Delta} := \{ \omega : \det(\mathcal{K}_n) \ge \Delta = \frac{1}{2} \det(\mathcal{K}) \} \Longrightarrow P(\bar{S_n^{\Delta}}) \le P(|\det(\mathcal{K}_n) - \mathcal{K}_n|)$$

 $det(\mathcal{K})|>\Delta)\to 0\Longrightarrow P(S_n^\Delta)\to 1$ . Далее,  $|\dot|$  – Евклидова норма матрицы или вектора. На  $S_n^\Delta$ 

$$n^{\frac{1}{2}}(\hat{\beta}_{n,hS} - \beta) = \mathcal{K}_n^{-1} n^{-\frac{1}{2}} \sum_{t=1}^n \tilde{u}_{t-1} \varepsilon_t \Longrightarrow \forall \ \delta > 0$$

$$P(|\gamma_n| > \delta, S_n^{\Delta} + \bar{S_n^{\Delta}}) = P(|(\mathcal{K}_n^{-1} - \mathcal{K}^{-1})n^{-\frac{1}{2}} \sum_{t=1}^n \tilde{u}_{t-1}\varepsilon_t| > \delta, S_n^{\Delta}) + P(|\gamma_n| > \delta, \bar{S_n^{\Delta}}).$$

Вторая вероятность не больше  $P(\bar{S_n^{\Delta}}) \to 0$ , первая не больше, чем

$$P(|\mathcal{K}_n^{-1}||\mathcal{K} - \mathcal{K}_n||\mathcal{K}^{-1}||n^{-\frac{1}{2}}\sum_{t=1}^n \tilde{u}_{t-1}\varepsilon_t| > \delta, S_n^{\Delta}).$$
(29)

В (29)  $|\mathcal{K}_n - \mathcal{K}| \stackrel{P}{\to} 0$ ,  $|\mathcal{K}^{-1}|$  – конечное число,  $|n^{-\frac{1}{2}} \sum_{t=1}^n \tilde{u}_{t-1} \varepsilon_t| = O_p(1)$ . Почему  $|\mathcal{K}_n^{-1}| = O_p(1)$ ? Рассмотрим  $|\mathcal{K}_n^{-1}|$  на  $S_n^{\Delta}$ . Элемент  $a_{ij}^n$  матрицы  $\mathcal{K}_n^{-1}$  имеет вид:

$$a_{ij}^n = \frac{A_{ij}^n}{\det(\mathcal{K}_n)}, \ A_{ij}^n$$
 – алгебраическое дополнение  $a_{ij}^n$ .

На  $S_n^{\Delta} |a_{ij}^n| \leq \frac{|A_{ij}^n|}{\Delta}$ . Пусть  $B_n - p \times p$  матрица с элементами  $b_{ij}^n = \frac{|A_{ij}^n|}{\Delta}$ , а  $B: b_{ij} = \frac{|A_{ij}|}{\Delta}$ ,  $A_{ij}$  – алгебраическое дополнение  $a_{ij}$  в  $\mathcal{K}$ . Т.к.  $b_{ij}^n \stackrel{\text{п.н.}}{\to} b_{ij}$ , то  $|B_n| \stackrel{\text{п.н.}}{\to} |B| \Longrightarrow |\mathcal{K}_n^{-1}| \leq |B_n| = O_p(1) \Longrightarrow$  вероятность в (29) не больше

$$P(|B_n||\mathcal{K} - \mathcal{K}_n||\mathcal{K}^{-1}||n^{-\frac{1}{2}}\sum_{t=1}^n \tilde{u}_{t-1}\varepsilon_t| > \delta) \to 0.$$

Соотношение (28) доказано.

# 13.13 Проверка гипотез о порядке авторегрессии

Пусть  $\beta^T = (\beta_1^T, \beta_2^T), \ \beta_1 - -$  m-вектор,  $m < p, \ \beta_2 - -(p-m)$ -вектор.  $H_0: \beta_2 = 0, \ H_1: \beta_2 \neq 0.$  Гипотеза  $H_0$  означает, что порядок авторегрессии не больше m.

Лемма 13.2. Пусть  $\xi_n, \xi \in \mathbb{R}^p, \ \xi_n \stackrel{d}{\to} \xi \sim N(a, \Sigma), \ \Sigma > 0$ . Пусть оценка  $\hat{\Sigma}_n \stackrel{P}{\to} \Sigma$ ,

$$\tilde{\Sigma}_{n}^{-1} = \begin{cases} \hat{\Sigma}_{n}, & ecnu \; \hat{\Sigma}_{n} \; heвырождена; \\ E_{p}, & uhaчe. \end{cases}$$
(13.1)

Тогда

$$(\xi - a)^T \tilde{\Sigma}_n^{-1} (\xi - a) \stackrel{d}{\to} \chi^2(p).$$

Возьмем оценкой матрицы  $\mathcal{K} = E\tilde{u}_0\tilde{u}_0^T$  матрицу  $\mathcal{K}_n := n^{-1}\sum_{t=1}^n \tilde{u}_{t-1}\tilde{u}_{t-1}^T \Longrightarrow \mathcal{K} > 0$ . Пусть  $\hat{\beta}_{n,hS} = (\hat{\beta}_{1n}^T, \hat{\beta}_{2n}^T)^T$ ,  $\hat{\beta}_{1n}$  – m-вектор,  $\hat{\beta}_{2n}$  – (p-m)-вектор. силу теоремы 13.9

$$n^{\frac{1}{2}}(\hat{\beta}_{2n}-\beta_2) \xrightarrow{d} N(0,\sigma^2B_{22}),$$

где

$$\mathcal{K}^{-1} = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}. \tag{13.2}$$

Тогда при  $H_0: \beta_2 = 0$  в силу леммы 13.2 для

$$\tilde{\mathcal{K}}_{n}^{-1} = \begin{pmatrix} \tilde{B}_{11} & \tilde{B}_{12} \\ \tilde{B}_{21} & \tilde{B}_{22} \end{pmatrix} = \begin{cases} \mathcal{K}_{n}^{-1}, \text{ если } \mathcal{K} \text{ невырождена;} \\ E_{p}, \text{ если } \mathcal{K} \text{ вырождена;} \end{cases}$$
(13.3)

имеем

$$\frac{n\hat{\beta}_{2n}^T \tilde{B}_{22}^{-1} \hat{\beta}_{2n}}{\sigma^2} \xrightarrow{d} \chi(p-m).$$

Задача 13.5. Пусть  $\hat{s}_n^2 := n^{-1} \sum_{t=1}^n (u_t - \tilde{u}_{t-1}^T \hat{\beta}_{n,hS})^2$ . Необходимо показать, что  $\hat{s}_n^2 \stackrel{P}{\to} \sigma^2$ .

Тестовая статистика для  $H_0$ :

$$t_n := \frac{n\hat{\beta}_{2n}^T \tilde{B}_{22}^{-1} \hat{\beta}_{2n}}{\hat{s}_n^2}.$$

При  $H_0$   $t_n \stackrel{d}{\to} \chi^2(p-m)$ , критическое множество  $t_n > \chi_{1-\alpha}(p-m)$ ,  $\chi_{1-\alpha}(p-m)$  – квантиль уровня  $1-\alpha \Longrightarrow P(H_1|H_0) \to \alpha$ ,  $P(H_0|H_1) \to 0$ , т.е.

$$\begin{cases} P(H_0|H_0) \to 1 - \alpha, \\ P(H_1|H_1) \to 1. \end{cases}$$

### Литература

- [1] Курс лекций М.В.Болдина, механико-математический факультет МГУ им. М.В.Ломоносова, 2020-2021 гг.
- [2] Курс семинаров А.А.Муромской, механико-математический факультет МГУ им. М.В.Ломоносова, 2020-2021 гг.
- [3] Ивченко Г.И., Медведев Ю.И. Математическая статистика. М.б Высшая школа, 1984.
- [4] Боровков А.А., Математическая статистика. М., Наука. 1984.
- [5] Болдин М.В., Симонова Г.И., Тюрин Ю.Н. Знаковый анализ линейных моделей. М., Наука, 1997.
- [6] Ширяев А.Н. Основы стохастической финансовой математики. Факты. Модели. М., Фазис, 1998.
- [7] Леман Э. Теория точечного оценивания. М., Наука, 1991.
- [8] Ширяев А.Н. Вероятность, 5-ое изд. МЦНМО, М., 2011.