Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №1
Вариант 310803
Выполнил:
Горин Семён Дмитриевич
Группа Р3108
Проверила:
Наумова Надежда Александровна

Содержание

Задание	3
Исходный код программы	3
Результат выполнения программы	3
Выводы	3

Задание

Текст задания представлен на рисунке(рис.1).

- 1. Программа должна корректно запускаться, выполняться и выдавать результат. Программа не должна выдавать ошибки. Программа должна быть работоспособной именно во время проверки, то, что она работала 5 минут назад, дома или в параллельной вселенной оправданием не является.
- 2. Выражение должно вычисляться в соответствии с правилами вычисления математических выражений (должен соблюдаться порядок выполнения действий и т.д.).
- 3. Программа должна использовать математические функции из стандартной библиотеки Java.
- 4. Вычисление очередного элемента двумерного массива должно быть реализовано в виде отдельного статического метода
- Результат вычисления выражения должен быть выведен в стандартный поток вывода в виде матрицы с элементами в указанном в варианте формате. Вывод матрицы реализовать в виде отдельного статического метода.
- 6. Программа должна быть упакована в исполняемый јаг-архив.
- 7. Выполнение программы необходимо продемонстрировать на сервере helios.

Примечания:

- 1. В случае, если в варианте будут предложены одинаковые имена массивов, для одного из них к имени добавить "1".
- 2. Если в результате вычислений иногда получается NaN возможно так и должно быть

Введите вариант: 310803

- 1. Создать одномерный массив z типа int. Заполнить его числами от 2 до 15 включительно в порядке убывания.
- 2. Создать одномерный массив x типа double. Заполнить его 20-ю случайными числами в диапазоне от -9.0 до 11.0.
- 3. Создать двумерный массив z размером 14x20. Вычислить его элементы по следующей формуле (где x = x[j]):

$$\circ$$
 если $z[i] = 10$, то $z[i][j] = \cos\left(\sin\left(\left(\frac{1-x}{x}\right)^x\right)\right)$; \circ если $z[i] \in \{2, 4, 11, 12, 13, 14, 15\}$, то $z[i][j] = \left(\arcsin\left(\left(\frac{x+1}{2}E+1\right)^2\right) \cdot \left(0.5 + \tan(x) \cdot \left(\cos(x) + \frac{1}{4}\right)\right)\right)^3$; \circ для остальных значений $z[i]$: $z[i][j] = \left(\frac{\sin(\cos(\cos(x))) - 1}{\pi}\right)^2$.

4. Напечатать полученный в результате массив в формате с пятью знаками после запятой.

рис.1

Исходный код программы

Исходный код доступен для просмотра на Github.

Результат выполнения программы

Результат выполнения программы представлен на рисунке(рис.2).

[=	[s465592@helios ~/programming/firstlab]\$ java Main																			
Picked up _JAVA_OPTIONS: -XX:MaxHeapSize=1G -XX:MaxMetaspaceSize=128m																				
	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0,94900	0,85398	NaN	NaN
6	0,00791	0,00409	0,00275	0,01550	0,00389	0,00255	0,00630	0,00879	0,01922	0,00255	0,00375	0,00725	0,00286	0,00269	0,01510	0,00323	0,00946	0,01194	0,02232	0,00261
6	0,00791	0,00409	0,00275	0,01550	0,00389	0,00255	0,00630	0,00879	0,01922	0,00255	0,00375	0,00725	0,00286	0,00269	0,01510	0,00323	0,00946	0,01194	0,02232	0,00261
6	0,00791	0,00409	0,00275	0,01550	0,00389	0,00255	0,00630	0,00879	0,01922	0,00255	0,00375	0,00725	0,00286	0,00269	0,01510	0,00323	0,00946	0,01194	0,02232	0,00261
6	0,00791	0,00409	0,00275	0,01550	0,00389	0,00255	0,00630	0,00879	0,01922	0,00255	0,00375	0,00725	0,00286	0,00269	0,01510	0,00323	0,00946	0,01194	0,02232	0,00261
6	0,00791	0,00409	0,00275	0,01550	0,00389	0,00255	0,00630	0,00879	0,01922	0,00255	0,00375	0,00725	0,00286	0,00269	0,01510	0,00323	0,00946	0,01194	0,02232	0,00261
	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
6	0,00791	0,00409	0,00275	0,01550	0,00389	0,00255	0,00630	0,00879	0,01922	0,00255	0,00375	0,00725	0,00286	0,00269	0,01510	0,00323	0,00946	0,01194	0,02232	0,00261
	NaN	MaN	NaN	NaN	MaM	NaN	NaN	MaM	NaN	NaN	MaM	MaN	NaN	MaM	MaN	NaN	MaN	MaN	NaN	NaN

рис.2

Выводы

В процессе выполнения лабораторной работы я узнал, как инициализировать массивы и использовать циклы и условные операторы в Java. Также я изучил библиотеку Math и применил её на практике. Я узнал, как подключаться к удаленному серверу и загружать на него файлы.