Eficiencia

(Transparencia 23)

5 diferentes algoritmos para resolver un mismo problema. La siguiente tabla establece el **tamaño máximo** de datos que han podido ser procesados:

Sabiendo un elemento de la tabla se puede calcular el resto. Por ejemplo, si sabemos que con complejidad n en un segundo podemos resolver un problema, por ejemplo de ordenación de un vector de tamaño 1000, entonces:

Algoritmo	Complejidad	1 segundo	1 minuto	1 hora
A^1	n	$1000 = 10^3 \text{elm}$	60 x 10 ³ elm	60 ² x 10 ³ elm
A^2	nlogn	140	4893	2 x 10 ⁵
A^3	n ²	31	244	1897
A ⁴	n ³	10	39	153
A^5	2 ⁿ	9-10	15-16	21

• Forma 1: si la complejidad es n² y conocemos la complejidad en n:

1 segundo: si el algoritmo de **complejidad n** procesa **10³ elementos en 1 segundo**, ¿cuántos podrá procesar el de complejidad n²?

$$n^2 = 10^3$$

$$n = \sqrt{10^3}$$

$$n = 10 x \sqrt{10}$$

$$n = 31,62$$

1 minuto: si el algoritmo de **complejidad n** procesa $60 \times 10^3 \, \text{en} \, 1 \, \text{minuto}$, ¿cuántos el de complejidad n^2 ?

$$n^{2} = 60 \times 10^{3}$$

$$n = \sqrt{60 \times 10^{3}}$$

$$n = 10 \times \sqrt{60 \times 10}$$

$$n = 244,95$$

1 hora: si el algoritmo de **complejidad n** procesa $3600 \times 10^3 \, en \, 1$ hora, ¿cuántos el de complejidad n^2 ?

$$n^{2} = 3600 \times 10^{3}$$

$$n = \sqrt{60^{2} \times 10^{3}}$$

$$n = 10 \times \sqrt{60^{2} \times 10}$$

$$n = 1897.37$$

- Forma 2: si, por el contrario, conocemos el tamaño de elementos procesados para un algoritmo con complejidad n² para 1 segundo, valor 31.
 - 1 minuto: ¿cuál sería el tamaño en 1 minuto?

$$1 seg \rightarrow 31^2$$

$$60 seg \rightarrow \xi n^2$$
?

Linealmente sería: $60 \text{ seg x } 31^2 = 57660 \text{ operaciones que se realizan.}$

$$n^{2} = 31^{2} x 60$$

$$n = \sqrt{57660}$$

$$n = \sqrt{31^{2} x 60}$$

$$n = 31 x \sqrt{60}$$

$$n = 240,12$$

es decir, aprox. 240 elementos son procesados.

Nota: en los apuntes pone: 244 al hacer la $\sqrt{60\ x\ 10^3}$ (suponiendo que conocemos este dato en complejidad n)

1 hora: ¿ cuál sería el tamaño en 1 hora?

1 seg → 31²
3600 = 60 x 60→
$$\frac{1}{2}$$
 $\frac{1}{2}$?

Linealmente sería: $60^2 \times 31^2 = 3459600$ operaciones que se realizan.

$$n^{2} = 31^{2} \times 60^{2}$$

$$n = \sqrt{3459600}$$

$$n = \sqrt{31^{2} \times 60^{2}}$$

$$n = 60 \times 31$$

O como en la expresión anterior:

$$n = 31\sqrt{60^2}$$
$$n = 1860$$

es decir, aprox. 1860

Nota: en los apuntes pone: 1897 al hacer la $\sqrt{60^2 \ x \ 10^3}$ (suponiendo que conocemos este dato en complejidad n)

2

• Forma 1: si la complejidad es n³ y conocemos la complejidad en n:

1 segundo: si el algoritmo de **complejidad n** procesa **10³ en 1 segundo**, ¿cuántos podrá procesar el de complejidad n³?

$$n^3 = 10^3$$

$$n = \sqrt[3]{10^3}$$

$$n = 10$$

1 minuto: si el algoritmo de **complejidad n** procesa **60 x 10^3 en 1 minuto**, ¿cuántos el de complejidad n^3 ?

$$n^{3} = 60 \times 10^{3}$$

 $n = \sqrt[3]{60 \times 10^{3}}$
 $n = 10 \times \sqrt[3]{60}$
 $n = 39,15$

1 hora: si el algoritmo de **complejidad n** procesa **3600 x 10^3 en 1 hora**, ¿cuántos el de complejidad n^3 ?

$$n^{3} = 3600 \times 10^{3}$$

$$n = \sqrt[3]{60^{2} \times 10^{3}}$$

$$n = 10 \times \sqrt[3]{60^{2}}$$

$$n = 153$$

• Forma 2: si, por el contrario, conocemos el tamaño de elementos procesados para un algoritmo con complejidad n³ para 1 segundo, valor 10.

1 minuto:

$$1 \sec \rightarrow 10^{3}$$

$$60 \sec \rightarrow \frac{10^{3}}{2}$$

Linealmente sería: $60 \text{ seg x } 10^3 = 60000 \text{ operaciones que se realizan.}$

$$n^{3} = 60000$$

$$n = \sqrt[3]{60 \times 10^{3}}$$

$$n = 10 \times \sqrt[3]{60}$$

$$n = 39$$

1 hora:

1 seg
$$\rightarrow$$
 10³
3600 seg = 60² \rightarrow ¿n³?

• Linealmente sería: 60 x 60 x 10 x 10 x 10 = 3600000 elementos que se pueden recorrer. ¿Pero en cuantas filas de n x n?

$$n^{3} = 3600000$$

$$n = \sqrt[3]{60^{2} \times 10^{3}}$$

$$n = 10 \times \sqrt[3]{60^{2}}$$

$$n = 153$$

Forma 1: si la complejidad es 2ⁿ y conocemos la complejidad en n:

Si el algoritmo de **complejidad n** procesa **10³ en 1 segundo**, ¿cuántos podrá procesar el de complejidad 2ⁿ?

$$2^{n} = 10^{3}$$
 $log 2^{n} = log 10^{3}$
 $nlog 2 = log 10^{3}$

$$n = \frac{log 10^{3}}{log 2}; \quad por propiedades de los log$$
 $n = log_{2}10^{3}$

$$n = 9,96$$

1 minuto: si el algoritmo de **complejidad n** procesa **60 x 10³ en 1 minuto**, ¿cuántos el de complejidad 2ⁿ?

$$2^{n} = 60 \times 10^{3}$$

 $log 2^{n} = log(60 \times 10^{3})$
 $nlog 2 = log(60 \times 10^{3})$
 $n = \frac{log(60 \times 10^{3})}{log 2}$; por propiedades de los log
 $n = log_{2}60 \times 10^{3}$
 $n = 15,87$

1 hora: si el algoritmo de **complejidad n** procesa **3600 x 10³ en 1 hora**, ¿cuántos el de complejidad 2ⁿ?

$$2^{n} = 60^{2} \times 10^{3}$$

$$log 2^{n} = log(60^{2} \times 10^{3})$$

$$nlog 2 = log(60^{2} \times 10^{3})$$

$$n = \frac{log(60^{2} \times 10^{3})}{log 2}; \quad por \ propiedades \ de \ los \ log$$

$$n = log_{2}60^{2} \times 10^{3}$$

$$n = 21.77$$

• Forma 2: si, por el contrario, conocemos el tamaño de elementos procesados para un algoritmo con complejidad 2ⁿ para 1 segundo, valor 10.

1 minuto:

1 seg
$$\rightarrow$$
 2¹⁰
60 eg \rightarrow ¿2ⁿ?

Linealmente sería: $60 \text{ seg x } 2^{10} = 61440 \text{ operaciones que se realizan.}$

$$2^{10}x 60 = 2^n$$

 $log(2^{10}x 60) = log 2^n$
 $log(2^{10}x 60) = nlog 2$

$$n = \frac{\log (2^{10}x 60)}{\log 2}; \quad por propiedades de los log$$

$$n = log_2(2^{10}x 60)$$

$$n = 15,90$$

1 hora:

1 seg
$$\rightarrow$$
 2¹⁰
3600 = 60² \rightarrow ¿2ⁿ?

Linealmente sería: 60^2x 2^{10} = 3686400 operaciones que se realizan.

$$2^{10}x 60^2 = 2^n$$

 $log(2^{10}x 60^2) = log 2^n$
 $log(2^{10}x 60^2) = nlog 2^n$

$$n = \frac{\log (2^{10}x 60^2)}{\log 2}; \quad por propiedades de los log$$

$$n = log_2(2^{10}x 60^2)$$

$$n = 21,81$$

(y así sucesivamente para otros órdenes de complejidad)

• Si la complejidad es nlog₂n y conocemos la complejidad en n:

Si el algoritmo de **complejidad n** procesa 10^3 en 1 segundo, ¿Cuántos procesará el de complejidad nlog $_2$ n?

$$nlog_2n = 10^3$$

 $n = 140$