Week8 monday

Acceptance problem

for Turing machines $A_{TM} = \{\langle M, w \rangle \mid M \text{ is a Turing machine that accepts input string } w\}$

Language emptiness testing

for Turing machines $E_{TM} = \{ \langle M \rangle \mid M \text{ is a Turing machine and } L(M) = \emptyset \}$

Language equality testing

for Turing machines EQ_{TM} $\{\langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are Turing machines and } L(M_1) = L(M_2)\}$

Example strings in A_{TM}

Example strings in E_{TM}

Example strings in EQ_{TM}

To prove that a computational problem is **decidable**, we find/ build a Turing machine that recognizes the language encoding the computational problem, and that is a decider.

How do we prove a specific problem is **not decidable**?

How would we even find such a computational problem?

Counting arguments for the existence of an undecidable language:

- The set of all Turing machines is countably infinite.
- Each recognizable language has at least one Turing machine that recognizes it (by definition), so there can be no more Turing-recognizable languages than there are Turing machines.
- Since there are infinitely many Turing-recognizable languages (think of the singleton sets), there are countably infinitely many Turing-recognizable languages.
- Such the set of Turing-decidable languages is an infinite subset of the set of Turing-recognizable languages, the set of Turing-decidable languages is also countably infinite.

Since there are uncountably many languages (because $\mathcal{P}(\Sigma^*)$ is uncountable), there are uncountably many unrecognizable languages and there are uncountably many undecidable languages.

Thus, there's at least one undecidable language!

What's a specific example of a language that is unrecognizable or undecidable?

To prove that a language is undecidable, we need to prove that there is no Turing machine that decides it.

Key idea: proof by contradiction relying on self-referential disagreement.

Theorem: A_{TM} is not Turing-decidable.

Proof: Suppose towards a contradiction that there is a Turing machine that decides A_{TM} . We call this presumed machine M_{ATM} .

By assumption, for every Turing machine M and every string w

- If $w \in L(M)$, then the computation of M_{ATM} on $\langle M, w \rangle$
- If $w \notin L(M)$, then the computation of M_{ATM} on $\langle M, w \rangle$ ______

Define a **new** Turing machine using the high-level description:

D = "On input $\langle M \rangle$, where M is a Turing machine:

- 1. Run M_{ATM} on $\langle M, \langle M \rangle \rangle$.
- 2. If M_{ATM} accepts, reject; if M_{ATM} rejects, accept."

Is D a Turing machine?	
Is D a decider?	
What is the result of the computation of D on $\langle D \rangle$?	

