Logarithmic Functions

Objectives

Calculate logarithmic values

2 Find the domain of logarithmic functions

Logarithms as Inverse Exponents

The inverse of the exponential function $f(x) = b^x$ is the **logarithmic function**.

Logarithms as Inverse Exponents

The inverse of the exponential function $f(x) = b^x$ is the **logarithmic function**.

It is denoted

$$f^{-1}(x) = \log_b x$$

Special Bases

The common logarithm of a real number x is $\log_{10} x$ and is usually written

 $\log x$

.

Special Bases

The common logarithm of a real number x is $\log_{10} x$ and is usually written

 $\log x$

.

The natural logarithm of a real number x is $\log_e x$ and is usually written

In x

.

Graphs

Graphs

• The domain of $\log_b x$ is $(0,\infty)$ and the range is $(-\infty,\infty)$

- The domain of $\log_b x$ is $(0,\infty)$ and the range is $(-\infty,\infty)$
- (1,0) is on the graph of $\log_b x$ and x=0 is a vertical asymptote.

- The domain of $\log_b x$ is $(0,\infty)$ and the range is $(-\infty,\infty)$
- (1,0) is on the graph of $\log_b x$ and x=0 is a vertical asymptote.
- $\log_b x$ is one-to-one (has an inverse, passes HLT), continuous, and smooth.

- The domain of $\log_b x$ is $(0,\infty)$ and the range is $(-\infty,\infty)$
- (1,0) is on the graph of $\log_b x$ and x=0 is a vertical asymptote.
- $\log_b x$ is one-to-one (has an inverse, passes HLT), continuous, and smooth.
- $b^a = c$ if and only if $\log_b c = a$.

- The domain of $\log_b x$ is $(0,\infty)$ and the range is $(-\infty,\infty)$
- (1,0) is on the graph of $\log_b x$ and x=0 is a vertical asymptote.
- log_b x is one-to-one (has an inverse, passes HLT), continuous, and smooth.
- $b^a = c$ if and only if $\log_b c = a$.
 - In other words, $\log_b c$ is the exponent you put on b to get c.

- The domain of $\log_b x$ is $(0,\infty)$ and the range is $(-\infty,\infty)$
- (1,0) is on the graph of $\log_b x$ and x=0 is a vertical asymptote.
- log_b x is one-to-one (has an inverse, passes HLT), continuous, and smooth.
- $b^a = c$ if and only if $\log_b c = a$.
 - In other words, $\log_b c$ is the exponent you put on b to get c.
- $\log_b b^x = x$ for all x and $b^{\log_b x} = x$ for all x > 0

For
$$f(x) = \log_b x$$
 when $b > 1$:

For
$$f(x) = \log_b x$$
 when $b > 1$:

• f is always increasing.

For
$$f(x) = \log_b x$$
 when $b > 1$:

- f is always increasing.
- $\lim_{x \to 0^+} f(x) = -\infty$ and $\lim_{x \to \infty} f(x) = \infty$

For
$$f(x) = \log_b x$$
 when $b > 1$:

- f is always increasing.
- $\lim_{x\to 0^+} f(x) = -\infty$ and $\lim_{x\to \infty} f(x) = \infty$

For
$$f(x) = \log_b x$$
 when $0 < b < 1$:

For
$$f(x) = \log_b x$$
 when $b > 1$:

- f is always increasing.
- $\lim_{x\to 0^+} f(x) = -\infty$ and $\lim_{x\to \infty} f(x) = \infty$

For
$$f(x) = \log_b x$$
 when $0 < b < 1$:

• f is always decreasing.

For
$$f(x) = \log_b x$$
 when $b > 1$:

- f is always increasing.
- $\lim_{x\to 0^+} f(x) = -\infty$ and $\lim_{x\to \infty} f(x) = \infty$

For
$$f(x) = \log_b x$$
 when $0 < b < 1$:

- f is always decreasing.
- $\lim_{x\to 0^+} f(x) = \infty$ and $\lim_{x\to \infty} f(x) = -\infty$

Simplify each of the following.

(a) $\log_3 81$

Simplify each of the following.

(a) $\log_3 81$

$$3^{???} = 81$$

Simplify each of the following.

(a)
$$\log_3 81$$

$$3^{???} = 81$$
 $3^4 = 81$

$$3^4 = 81$$

Simplify each of the following.

(a)
$$\log_3 81$$

$$3^{???} = 81$$

$$3^4 = 81$$

$$\log_3 81 = 4$$

(b)
$$\log_2\left(\frac{1}{8}\right)$$

(b)
$$\log_2\left(\frac{1}{8}\right)$$

$$2^{???} = \frac{1}{8}$$

(b)
$$\log_2\left(\frac{1}{8}\right)$$

$$2^{???} = \frac{1}{8}$$

$$2^{-3} = \frac{1}{8}$$

(b)
$$\log_2\left(\frac{1}{8}\right)$$

$$2^{???} = \frac{1}{8}$$
 $2^{-3} = \frac{1}{8}$
 $\log_2\left(\frac{1}{8}\right) = -3$

(c) $\log_{\sqrt{5}} 25$

(c)
$$\log_{\sqrt{5}} 25$$

$$\left(\sqrt{5}\right)^{???}=25$$

(c)
$$\log_{\sqrt{5}} 25$$

$$\left(\sqrt{5}\right)^{???} = 25$$
$$\left(\sqrt{5}\right)^4 = 25$$

$$\left(\sqrt{5}\right)^4 = 25$$

(c)
$$\log_{\sqrt{5}} 25$$

$$\left(\sqrt{5}\right)^{???} = 25$$
$$\left(\sqrt{5}\right)^4 = 25$$
$$\log_{\sqrt{5}} 25 = 4$$

$$\left(\sqrt{5}\right)^4 = 25$$

$$\log_{\sqrt{5}} 25 = 4$$

(d)
$$\ln\left(\sqrt[3]{e^2}\right)$$

(d)
$$\ln\left(\sqrt[3]{e^2}\right) = \ln e^{2/3}$$

(d)
$$\ln \left(\sqrt[3]{e^2} \right) = \ln e^{2/3} = \log_e e^{2/3}$$

(d)
$$\ln\left(\sqrt[3]{e^2}\right) = \ln e^{2/3} = \log_e e^{2/3}$$

$$e^{???} = e^{2/3}$$

(d)
$$\ln\left(\sqrt[3]{e^2}\right) = \ln e^{2/3} = \log_e e^{2/3}$$

$$e^{???} = e^{2/3}$$

$$e^{2/3} = e^{2/3}$$

(d)
$$\ln\left(\sqrt[3]{e^2}\right) = \ln e^{2/3} = \log_e e^{2/3}$$

$$e^{???} = e^{2/3}$$

$$e^{2/3} = e^{2/3}$$

$$\ln\left(\sqrt[3]{e^2}\right) = \frac{2}{3}$$

(e) log 0.001

(e)
$$\log 0.001 = \log_{10} 0.001$$

(e)
$$\log 0.001 = \log_{10} 0.001 = \log_{10} 10^{-3}$$

(e)
$$\log 0.001 = \log_{10} 0.001 = \log_{10} 10^{-3}$$

$$10^{???} = 10^{-3}$$

(e)
$$\log 0.001 = \log_{10} 0.001 = \log_{10} 10^{-3}$$

$$10^{???} = 10^{-3}$$

$$10^{-3} = 10^{-3}$$

(e)
$$\log 0.001 = \log_{10} 0.001 = \log_{10} 10^{-3}$$

$$10^{???} = 10^{-3}$$

$$10^{-3} = 10^{-3}$$

$$\log 0.001 = -3$$

(f) $2^{\log_2 8}$

(f)
$$2^{\log_2 8}$$

$$\log_2 8 = ???$$

(f)
$$2^{\log_2 8}$$

$$\log_2 8 = ???$$

 $2^{???} = 8$

$$2^{???} = 8$$

(f)
$$2^{\log_2 8}$$

$$\log_2 8 = ???$$
$$2^{???} = 8$$
$$2^3 = 8$$

(f)
$$2^{\log_2 8}$$

$$\log_2 8 = ???$$
 $2^{???} = 8$
 $2^3 = 8$
 $\log_2 8 = 3$

(f)
$$2^{\log_2 8}$$

$$\log_2 8 = ???$$

$$2^{???} = 8$$

$$2^3 = 8$$

$$\log_2 8 = 3$$

$$2^{\log_2 8} = 2^3$$

(f)
$$2^{\log_2 8}$$

$$\log_2 8 = ???$$
 $2^{???} = 8$
 $2^3 = 8$
 $\log_2 8 = 3$
 $2^{\log_2 8} = 2^3$
 $= 8$

(g) $117^{-\log_{117}6}$

$$(g) \quad 117^{-\log_{117}6}$$

$$117^{-\log_{117}6} = \frac{1}{117^{\log_{117}6}}$$

$$(g) \quad 117^{-\log_{117}6}$$

$$117^{-\log_{117} 6} = \frac{1}{117^{\log_{117} 6}}$$
$$= \frac{1}{6}$$

Objectives

Calculate logarithmic values

2 Find the domain of logarithmic functions

Domains of Logarithmic Functions

Up until now, the only domain restrictions we have had have been

- Denominator can't = 0
- Can't take even root of a negative number

Domains of Logarithmic Functions

Up until now, the only domain restrictions we have had have been

- Denominator can't = 0
- Can't take even root of a negative number

For logarithms:

 \log_b (positive value)

Domains of Logarithmic Functions

Up until now, the only domain restrictions we have had have been

- Denominator can't = 0
- Can't take even root of a negative number

For logarithms:

$$\log_b$$
 (positive value)

$$\log_b (>0)$$

(a)
$$f(x) = 2\log(3-x) - 1$$

(a)
$$f(x) = 2\log(3-x) - 1$$

 $3-x > 0$

(a)
$$f(x) = 2\log(3-x) - 1$$

$$3-x > 0$$

$$x < 3$$

(a)
$$f(x) = 2\log(3-x) - 1$$
$$3-x > 0$$
$$x < 3$$
$$(-\infty, 3)$$

(b)
$$g(x) = -\frac{2}{3}\log_8(x^2 + 6x - 7)$$

(b)
$$g(x) = -\frac{2}{3} \log_8 (x^2 + 6x - 7)$$

 $x^2 + 6x - 7 > 0$

(b)
$$g(x) = -\frac{2}{3} \log_8 (x^2 + 6x - 7)$$
 $x^2 + 6x - 7 > 0$ $x^2 + 6x - 7 = 0$

(b)
$$g(x) = -\frac{2}{3} \log_8 (x^2 + 6x - 7)$$

 $x^2 + 6x - 7 > 0$
 $x^2 + 6x - 7 = 0$
 $x = -7, 1$

(b)
$$g(x) = -\frac{2}{3} \log_8 (x^2 + 6x - 7)$$

 $x^2 + 6x - 7 > 0$
 $x^2 + 6x - 7 = 0$
 $x = -7, 1$

(b)
$$g(x) = -\frac{2}{3} \log_8 (x^2 + 6x - 7)$$

 $x^2 + 6x - 7 > 0$
 $x^2 + 6x - 7 = 0$
 $x = -7, 1$

(b)
$$g(x) = -\frac{2}{3} \log_8 (x^2 + 6x - 7)$$

 $x^2 + 6x - 7 > 0$
 $x^2 + 6x - 7 = 0$
 $x = -7, 1$

(b)
$$g(x) = -\frac{2}{3} \log_8 (x^2 + 6x - 7)$$

 $x^2 + 6x - 7 > 0$
 $x^2 + 6x - 7 = 0$
 $x = -7, 1$

(c)
$$h(x) = \ln\left(\frac{x}{x-1}\right)$$

(c)
$$h(x) = \ln\left(\frac{x}{x-1}\right)$$

$$\frac{x}{x-1} > 0$$

(c)
$$h(x) = \ln\left(\frac{x}{x-1}\right)$$

$$\frac{x}{x-1} > 0$$

(c)
$$h(x) = \ln\left(\frac{x}{x-1}\right)$$

$$\frac{x}{x-1} > 0$$

(c)
$$h(x) = \ln\left(\frac{x}{x-1}\right)$$

$$\frac{x}{x-1} > 0$$

(c)
$$h(x) = \ln\left(\frac{x}{x-1}\right)$$

$$\frac{x}{x-1} > 0$$

(c)
$$h(x) = \ln\left(\frac{x}{x-1}\right)$$

$$\frac{x}{x-1} > 0$$

