## Esercitazione W19D1 - Pratica 1

# Threat intelligence

Fabio Benevento - 12/03/2024

## Traccia

Creare un elenco di minacce comuni che possono colpire un'azienda, ad esempio phishing, malware, attacchi DDoS, furto di dati.

- Inizia raccogliendo informazioni sulle minacce alla sicurezza informatica, utilizzando fonti aperte, i siti web di sicurezza informatica e i forum di discussione.
- Analizza ciascuna minaccia in dettaglio, cercando di comprendere il modo in cui può essere utilizzata per compromettere la sicurezza informatica e i danni che può causare.
- Utilizza queste informazioni per creare un elenco delle minacce più comuni, tra cui malware, attacchi di phishing e attacchi DDoS aggiungendo tutte le informazioni raccolte dall'analisi.

## Implementazione

Secondo il rapporto annuale ENISA, i principali attacchi subiti dalle aziende nel corso del 2023 sono stati gli attacchi di tipo Ransomware, seguiti a stretto giro dagli attacchi di tipo DDos e da quelli di tipo Data, i quali ricoprono nell'insieme circa l'80% del totale degli attacchi come riportato in figura.



Il ransomware è un tipo di malware che cripta i dati dell'azienda e richiede un pagamento di riscatto per ripristinarli. È una delle minacce più dannose per le aziende in quanto può causare gravi interruzioni delle operazioni e perdite di dati irreversibili.

Gli attacchi di DDos sono un tipo di attacco informatico in cui un grande numero di dispositivi, spesso compromessi e parte di una botnet, invia un elevato volume di traffico alla destinazione desiderata, come un sito web o un server. L'obiettivo principale di un attacco DDoS è sovraccaricare le risorse del sistema di destinazione, rendendolo inaccessibile ai suoi utenti legittimi.

Gli attacchi di tipo "data" si concentrano principalmente sulla manipolazione, il furto o la compromissione dei dati aziendali, compresi dati sensibili, informazioni finanziarie, informazioni personali dei clienti e altro ancora. Questi tipi di attacchi mirano a ottenere accesso non autorizzato ai dati o ad alterarli per danneggiare l'azienda o ottenere un vantaggio illegittimo.

Sempre dal rapporto annuale ENISA, è possibile individuare quelle che sono le principali tecniche di attacco per le tipologie indicate in precedenza riportate nella sequente tabella.

In particolare abbiamo:

#### Ramsonware

| Tactic                 | Technique                                    |
|------------------------|----------------------------------------------|
| TA0001: Initial Access | T1190: Exploit Public-Facing<br>Application  |
|                        | T1133: External Remote Services              |
|                        | T1566: Phishing                              |
|                        | T1199: Trusted Relationship                  |
| TA0002: Execution      | T1106: Native API                            |
|                        | T1047: Windows Management<br>Instrumentation |
| TA0003: Persistence    | T1197: BITS Jobs                             |

|                              | T1554: Compromise Client Software<br>Binary     |
|------------------------------|-------------------------------------------------|
|                              | T1136: Create Account                           |
|                              | T1133: External Remote Services                 |
| TA0004: Privilege Escalation | T1134: Access Token Manipulation                |
|                              | T1068: Exploitation for Privilege<br>Escalation |
|                              | T1055: Process Injection                        |
| TA0005: Defence Evasion      | T1134: Access Token Manipulation                |
|                              | T1197: BITS Jobs                                |
|                              | T1140: Deobfuscate/Decode Files or Information  |
|                              | T1480: Execution Guardrails                     |
|                              | T1036: Masquerading                             |
|                              | T1112: Modify Registry                          |
|                              | T1027: Obfuscated Files or Information          |
|                              | T1055: Process Injection                        |
|                              | T1620: Reflective Code Loading                  |
|                              | T1497: Virtualisation/Sandbox Evasion           |
| TA0006: Credential Access    | T1555: Credentials from Password<br>Stores      |
|                              | T1539: Steal Web Session Cookie                 |
| TA0007: Discovery            | T1087: Account Discovery                        |
|                              | T1217: Browser Bookmark Discovery               |
|                              | T1135: Network Share Discovery                  |
|                              | T1069: Permission Groups Discovery              |

|                             | <del>.</del>                                 |
|-----------------------------|----------------------------------------------|
|                             | T1057: Process Discovery                     |
|                             | T1012: Query Registry                        |
|                             | T1518: Software Discovery                    |
|                             | T1614: System Location Discovery             |
|                             | T1033: System Owner/User Discovery           |
|                             | T1124: System Time Discovery                 |
|                             | T1497: Virtualisation/Sandbox Evasion        |
| TA0008: Lateral Movement    | T1210: Exploitation of Remote Services       |
|                             | T1080: Taint Shared Content                  |
| TA0009: Collection          | T1560: Archive Collected Data                |
|                             | T1530: Data from Cloud Storage<br>Object     |
|                             | T1213: Data from Information<br>Repositories |
|                             | T1039: Data from Network Shared<br>Drive     |
|                             | T1113: Screen Capture                        |
| TA0011: Command and Control | T1568: Dynamic Resolution                    |
|                             | T1095: Non-Application Layer Protocol        |
|                             | T1071: Non-Standard Port                     |
|                             | T1072: Protocol Tunnelling                   |
|                             | T1090: Proxy                                 |
|                             | T1102: Web Service                           |
| TA0010: Exfiltration        | T1041: Exfiltration Over C2 Channel          |
| TA0040: Impact              | T1485: Data Destruction                      |
|                             | T1499: Endpoint Denial of Service            |
|                             |                                              |

T1489: Service Stop

Gli attacchi di tipo ransomware ricoprono la gran parte delle tattiche del MITRE. In primo luogo, troviamo la tattica "Initial Access" ovvero l'insieme delle tecniche per ottenere il primo accesso al sistema. Per quanto concerne il 2023, le tecniche più utilizzate in questo ambito sono state quelle dello sfruttamento di servizi remoti (External Remote Services) o applicazioni (Exploit Public-Facing Application) che presentano bug software o errori di configurazione che consentono l'accesso al sistema. Altre tecniche sono quelle di Phishing, ovvero l'invio di messaggi tramite vari canali spacciandosi servizio/organizzazione conosciuto, o quelle di Trusted Relationship, sfruttando quindi per l'accesso sistemi di terze parti conosciuti dal target e quindi con minori controlli.

La tattica di "Execution" riguarda invece le tecniche utilizzate per l'esecuzione del codice malevolo. Tra queste troviamo l'esecuzione diretta tramite API del sistema operativo (Native API) e quella di Windows Management Instrumentation, ovvero mediante i sistemi di amministrazione dei sistemi Windows.

Per quanto riguarda la persistenza (Persistence), ovvero il mantenimento dell'accesso ai sistemi anche in caso di riavvio, modifica delle credenziali e altre interruzioni che potrebbero interrompere l'accesso, le tecniche più in voga nello scorso anno sono state quelle di BITS job sempre nei sistemi Windows, quella di creazione di account (Create account) o utilizzo di servizi esposti (External Remote Services) o l'utilizzo di backdoor modificando il sorgente binario di un software sul client.

La tattica di "Defence evasion" consiste nelle tecniche che gli avversari utilizzano per evitare il rilevamento durante la loro compromissione. Le tecniche utilizzate per l'evasione della difesa includono la disinstallazione/disabilitazione del software di sicurezza o l'offuscamento/crittografia di dati e script. Gli avversari sfruttano e abusano anche dei processi affidabili per nascondere e mascherare il loro malware.

Per quanto riguarda i ransomware, le tecniche più utilizzate sono state quelle di BITS Job vista in precedenza, quella di Access Token Manipulation, ovvero di modifica dei token per eludere i controlli nell'accesso al sistema, o di modifica del registro di sistema nei sistemi Windows (Modify Registry), così come l'utilizzo di malware (Deobfuscate/Decode Files and Information) o tramite l'intrusione in un processo esistente (Process Injection). Un'altra tecnica è quella di Virtualization/Sandbox evasion, ovvero di evasione dell'attacco da una macchina virtuale al sistema host.

Per quanto concerne la tattica di Credential Access le tecniche sono l'accesso tramite password salvate in precedenza dall'utente o tramite cookies.

La fase di Discovery consiste nelle tecniche che un avversario può utilizzare per acquisire conoscenze sul sistema e sulla rete interna. Queste tecniche aiutano gli avversari a osservare l'ambiente e a orientarsi prima di decidere come agire.

La ricerca può riguardare gli account (Account Discovery), i bookmark dell'utente nel browser (Browser Bookmark Discovery), la rete (Network Share Discovery), i permessi utente (Permission Groups Discovery), i software presenti sulla macchina e i processi in esecuzione, così come il file sistem locale.

Tramite la tattica di Lateral movement è possibile, una volta violata una prima macchina, attaccare altri dispsotivi sulla stessa rete. In questo caso le tecniche più utilizzate sono quelle di accesso mediante servizi esposti (Exploitation of Remote Services ) o tramite l'iniezione di codice malevolo che punta a cartelle condivise (Taint Shared Content).

La raccolta (Collection) consiste nelle tecniche che gli avversari utilizzano per raccogliere e rubare le informazioni. La raccolta può riguardare dispositivi di rete (Data from Network Shared Drive), cloud (Data from Cloud Storage Object) o repository di informazioni (Data from Information Repositories). Rientrano in questa categoria anche lo screenshot dello schermo dell'utente. Il comando e il controllo consistono in tecniche che gli avversari possono utilizzare per comunicare con i sistemi sotto il loro controllo all'interno di una rete vittima. Di solito gli avversari cercano di simulare il traffico normale e previsto per evitare il rilevamento. Esistono molti modi in cui un avversario può stabilire il comando e il controllo, con vari livelli di furtività a seconda della struttura e delle difese della rete della vittima. Relativamente ai Ransomware. le tecniche più utilizzate sono state mediante Web Service, Proxy, Protocol Tunneling, Non-standard Port, Non-ApplicationLayer protocol, e di Dynamic Resoluton.

La fase di Exfiltration riguarda invece la fase di prelievo delle informazioni raccolte vero e proprio. Relativamente ai Ransonware tipicamente questa fase avviene mediante un C2 channel ovvero un doppio canale dati e controllo

instaurato in precedenza.

Infine troviamo la tattica di Impact ovvero delle tecniche per malipolare, interropere o distruggere il sistema target.

Tramite i Ransomware cià avviene mediante distruzione dei dati (Service Stop), interruzione di un servizio (Service stop) o inizibione dell'accesso tramite rete (Endpoint Denial of Service).

### **DDos**

| Tactic                       | Technique                         |
|------------------------------|-----------------------------------|
| TA0042: Resource Development | T1583: Acquire Infrastructure     |
|                              | T1584: Compromise Infrastructure  |
| TA0005: Defence Evasion      | T1553: Subvert Trust Controls     |
| TA0040: Impact               | T1485: Data Destruction           |
|                              | T1489: Service Stop               |
|                              | T1499: Endpoint Denial of Service |
|                              | T1498: Network Denial of Service  |

La tattica di "Resource Development" è una tattica all'interno del MITRE ATT&CK Framework che riguarda lo sviluppo e l'ottenimento di risorse aggiuntive o strumenti che possono essere utilizzati dagli attaccanti per sostenere e facilitare ulteriori attività dannose. Questa tattica è utilizzata dagli attaccanti per preparare il terreno per attacchi futuri o per migliorare l'efficacia delle loro operazioni di hacking.

Tra di esse troviamo la tecnica "Acquire Infrastructure" e la tecnica "Compromise Infrastructure". La prima tecnica consiste, da parte degli attaccanti, nell' acquistare, affittare o noleggiare infrastrutture che possono essere utilizzate durante il targeting. Una tecnica alternativa invece è quella di compromettere l'infrastruttura per utilizzarla successivamente per gli attacchi, evitando quindi l'acquisto/affitto illustrato in precedenza.

La tattica di "Defence evasion" consiste nelle tecniche che gli avversari utilizzano per evitare il rilevamento durante la loro compromissione. Le tecniche utilizzate per l'evasione della difesa includono la disinstallazione/disabilitazione del software di sicurezza o l'offuscamento/crittografia di dati e script. Gli avversari sfruttano e abusano anche dei processi affidabili per nascondere e mascherare il loro malware.

La tecnica più utilizzata nel 2023 è quella di "Subvert Trust Control".

L'avversario sta cercando di manipolare, interrompere o distruggere i vostri sistemi e dati.

La tattica "Impact" consiste nelle tecniche che gli avversari utilizzano per interrompere la disponibilità o compromettere l'integrità manipolando i processi aziendali e operativi. Tra le tecniche più utilizzate nell'anno scorso troviamo quella di distruzione dei dati (Data Destruction), di interruzione di un servizio (Service Stop), di degrado o blocco di accesso ad un servizio tramite attacco DDos al target (Endpoint Denial of Service) o alla rete, saturando la banda disponibile (Network Denial of Service)

#### **Data**

| Tactic                  | Technique                                |
|-------------------------|------------------------------------------|
| TA0003: Persistence     | T1197: BITS Jobs                         |
| TA0005: Defence Evasion | T1197: BITS Jobs                         |
|                         | T1599: Network Boundary Bridging         |
| TA0009: Collection      | T1560: Archive Collected Data            |
|                         | T1005: Data from Local System            |
|                         | T1039: Data from Network Shared<br>Drive |
|                         | T1025: Data from Removable Media         |
|                         | T1074: Data Staged                       |
| TA0010: Exfiltration    | T1020: Automated Exfiltration            |

| T1048: Exfiltration Over Alternative Protocol |
|-----------------------------------------------|
| T1041: Exfiltration Over C2 Channel           |
| T1052: Exfiltration Over Physical<br>Medium   |
| T1567: Exfiltration Over Web Service          |
| T1029: Scheduled Transfer                     |
| T1537: Transfer Data to Cloud Account         |

La persistenza ("Persistence") è costituita da tecniche che gli avversari utilizzano per mantenere l'accesso ai sistemi anche in caso di riavvio, modifica delle credenziali e altre interruzioni che potrebbero interrompere l'accesso.

Tra di esse troviamo la tecnica BITS job che sfrutta il Background Intelligent Transfer Service (BITS) di Windows .

Questa tecnica viene utilizzata anche per la tattica Defence Evasion che consiste nelle tecniche utilizzate dall'attaccante per evitare di essere rilevato durante la sua attività. Un'altra tecnica fortemente utilizzata nel 2023 è quella di Network Boundary Bridging tramite la quale gli avversari possono superare i confini della rete compromettendo i dispositivi di rete del perimetro o i dispositivi interni responsabili della segmentazione della rete.

La raccolta (Collection) consiste nelle tecniche che gli avversari possono utilizzare per raccogliere informazioni e nelle fonti da cui vengono raccolte le informazioni rilevanti per il conseguimento degli obiettivi dell'avversario. Spesso, l'obiettivo successivo alla raccolta dei dati è il loro furto (esfiltrazione). Questa fase di raccolta può riguardare il file system locale (Data from Local System), dispositivi di rete (Data from Shared Drive) o dispositivi rimovibili (Data from Removable Device).

Gli avversari possono conservare i dati raccolti in una locazione centralizzata in proprio possesso prima della fase di esfiltrazione (Data Stage). I dati possono essere archiviati prima di essere trasferiti al fine di offuscare i dati rubati e velocizzare la fase di trasferimento (Archive Collected Data).

Infine troviamo la tattica di "Exfiltration" ovvero la vera e propria fase in cui i dati vengono rubati. Questa fase può essere automatizzata ("Automated Exfiltration") o

svolta manualmente tramite dispositivi fisici ("Exfiltration Over Physical Medium"), web service ("Exfiltration Over Web Service"), tramite un C2 channel ovvero un doppio canale, uno per i comandi e uno per i dati ("Exfiltration Over C2 Channel") o tramite un protocollo proprietario ("Exfiltration Over Alternative Protocol"). Il processo di esfiltrazione può venire schedulato successivamente ("Scheduled transfer"). I dati rubati possono venire copiati su cloud ("Transfer Data to Cloud Account").