1

EE5609: Matrix Theory Assignment-11

Y.Pranaya AI20MTECH14014

Abstract—This document has an example of finding the Transpose or adjoint \mathbf{T}^t of a linear operator \mathbf{T} for a given function.

Download the latex-tikz codes from

https://github.com/pranaya14014/EE5609/tree/master/Assignment12

1 PROBLEM

Let, **V** be the space of all $n \times n$ matrices over a field **F** and let **B** be a fixed $n \times n$ matrix. If **T** is the linear operator on **V** defined by $\mathbf{T}(\mathbf{A}) = \mathbf{A}\mathbf{B} - \mathbf{B}\mathbf{A}$, and if f is the trace function, what is $\mathbf{T}^t f$?

2 SOLUTION

$$\mathbf{T}^t f(\mathbf{A}) = f(\mathbf{T}(\mathbf{A})) \tag{2.0.1}$$

$$= f(\mathbf{AB} - \mathbf{BA}) \tag{2.0.2}$$

$$= trace(\mathbf{AB} - \mathbf{BA}) \tag{2.0.3}$$

using $trace(\mathbf{AB}) = trace(\mathbf{BA})$ in (2.0.3),

$$\mathbf{T}^{t} f(\mathbf{A} = trace(\mathbf{AB}) - trace(\mathbf{BA}) = 0 \qquad (2.0.4)$$

Hence $\mathbf{T}^t f = 0$