Assessing new loan applications using Machine Learning

Exploring machine learning methods for loan assessment

Jeremy Dang

Agenda

- Context
- Objectives
- o Data
 - o Understanding Exploration
 - Preparation
 - o Understanding Correlation
- Modelling
 - Models Chosen
 - Considerations
 - Methodology
- Evaluation
 - Evaluation metrics
 - Model performance
- Conclusion
- Appendices

Context

- Loans provide a means of long term finance for several industries, in return, lenders' profit in the form of interest, payed on top of a loan
- However, loans are a huge risk to lenders', what if the borrower is unable to pay back their agreed loan?
- The business would incur a *loss* and would directly impact revenue streams.
- Worse case scenario A global recession
 - E.g Financial crisis of 2007-2008
- Predicting if applicants default is an important task!

Objectives

- O What do applicants who default look like?
- O What are the factors correlated with default?
- O How can we assist the analysts' in minimising the cost of default?

Data Understanding – What are the amounts we're lending?

Data Understanding – Growth of loans over time

Data Understanding – What do we mean by default?

- o For simplicity, three groups are defined on the *loan status* feature:
 - o Good: An individual who has fully paid their loan back
 - Bad: An individual who has either defaulted, charged-off or late by more than 90 days
 - Ongoing: An individual who is still paying back their loan
- Charged-off represents a stage where we expect the loan to not be paid back → borrower has defaulted.
- Late is grouped according to the definition of default from IRB guidelines (defined by payments late by more than 90 or 180 days)

- The districts were mapped into regions where possible (82% coverage). See appendix for details.
- Regions of largest defaulted applicants: London, North West & South West

- 7% of loans defaulted were on 36month terms
- 4% of loans defaulted were on 60month terms

 11% of loans which defaulted were paying an interest rate between 10%-20%

- 60% of loans were used to finance existing loans
- o Of which 11% had defaulted

- Credit scores were mapped according to Experian Credit bands
- O Credit score isn't everything!
- Many loans that were given, were fully-paid despite a low score

Excellent You should get the best credit cards, loans and mortgages (but there are no guarantees).

Good You should get most credit cards, loans and mortgages 881 - 960 but the very best deals may reject you.

Fair 721 - 880 You might get OK interest rates but your credit limits may not be very high.

Poor 561 - 720 You might be accepted for credit cards, loans and mortgages but they may have higher interest rates.

Very Poor 0 - 560 You're more likely to be rejected for most credit cards, loans and mortgages that are available.

Data Preparation – Summary of data preparation

- Full details are available in the appendix and project files
- A binary response variable (named *class*) was created based <u>slide 8</u>, Ongoing samples were dropped
- o Features that contributed to data leakage were removed i.e features that logically should not be present when there is a new application (e.g. amount payed)
- Features that were text-based like description were removed Natural language processing was not in scope
- Features with many groups such as purpose were re-categorised for simplicity and created as dummy variables
- Features that were ≥50% empty were removed due to lack of information
- Features that were between 20% and 49% empty such as total current balance were imputed based on the median, segmented by district.
- Otherwise, samples were dropped (5% of samples were dropped in total)

Data Understanding – Correlations

- Majority of features seem uncorrelated with each other and the *class* variable
- Some features are correlated such as loan amount & installment
- While others are negatively correlated due to the creation of dummy variables (creation of mutually exclusive variables)

Modelling – Models chosen

- Three models were chosen due to their simplicity, ability to obtain a probability of default and practical implementation:
 - Logistic Regression
 - Huber Regression
 - Decision Tree

Modelling – Considerations

- Data is highly imbalanced and not equally distributed.
- Solution Use Random Over-sampling
 - Initial experiments showed that using SMOTE encountered memory errors
 - Overfitting vs Underfitting → Apply regularisation to reduce overfitting

Method	Advantages	Disadvantages		
Random Oversampling	IntuitiveEasy to implementNo information loss	 May cause overfitting due to duplication of minority class 		
Random Undersampling	IntuitiveEasy to implement	 May cause underfitting, due to information loss 		
SMOTE + variants	Overcomes overfitting by creating samplesNo information loss	 Impractical due to the calculations made to create samples Harder to interpret 		

Distribution of Loan Statuses between 2009-2015

Modelling – Methodology

- Numerical features were normalised with the IQR method to handle any case of outliers (e.g loan amount)
- Samples were shuffled in and minority class was oversampled at random

 The data was split into 75% for model training and optimisation

- Models were trained and optimised on 75% of the data
- Where applicable, Gradient
 Descent was applied for efficient training and optimisation
- To reduce the number of features, Recursive feature elimination (RFE) was used.

- Models were evaluated on the remaining 25% of the data
- Metrics used to evaluate the model was Accuracy, Recall & Area-under-the-curve (AUC)

Evaluation – Evaluation metrics

- Accuracy, easy to understand alone does not provide an adequate evaluation of the task at hand
- Recall attempts to answer the following question:
 - What proportion of loan applicants actually defaulted?
 - Having a low recall could lead to poor customer experience and decrease in revenue
- As a business, recall could help allocate funds to the minimum capital requirements
- AUC, visual representation of recall and precision and is a single metric defining how well the model separates defaulted and fully-paid loan applicants

Evaluation – Model performance using all variables

Model	Accuracy	Recall	AUC
Logistic Regression	65.3%	65%	64.91%
Huber Regression	65.5%	65%	64.92%
Decision Tree	81.3%	53%	53.3%

Evaluation – What are the factors correlated with default? (Huber Regression)

Evaluation – Model performance using five variables

Model	Accuracy	Recall	AUC
Logistic Regression	65.5%	64%	63.83%
Huber Regression	65.2%	63%	62.95%
Decision Tree	80.3%	51%	50.90%

Evaluation – What are the factors correlated with default? (Logistic Regression)

Conclusions

# of Variables	Model	Accuracy	Recall	AUC
5	Logistic Regression	65.5%	64%	63.83%
31 (all variables)	Huber Regression	65.5%	65%	64.92%

- The model that should be used is the simpler model, less is more
- Reduction from 31 features to 5 features, that is 83% reduction
- From a practical perspective, it is much easier to collect 5 features than 31
- Trade-off is 1% pts difference in recall and AUC

Appendix - Approach

- Cross-industry standard process for data mining` (CRISP-DM).
- A process for applying data science methodology to answer business questions

Appendix – Documentation – Project Structure

Project Organization

```
- LICENSE
--- README.md
                     <- The top-level README for developers using this project.
jupyter_setup.sh <- Run this (`sh jupyter_setup.sh`) to enable QoL jupyter extensions, like codefolding.</p>
                     <- Run this (`sh run docs.sh`) to see your documentation locally.
-- run docs.sh
 — data
   - external
                     <- Data from third party sources.
    - interim
                     <- Intermediate data that has been transformed.
   processed
                     <- The final, canonical data sets for modeling.
   └─ raw
                     <- The original, immutable data dump.
 docs
                      <- A default Mkdocs project; see mkdocs.org for details
  models
                      <- Trained and serialized models, model predictions, or model summaries
— notebooks
                      <- Jupyter notebooks. Naming convention is a number (for ordering),
                         the creator's initials, and a short `-` delimited description, e.g.
                         `1.0-jqp-initial-data-exploration`.
 - references
                      <- Data dictionaries, manuals, and all other explanatory materials.
  - reports
                      <- Generated analysis as HTML, PDF, LaTeX, etc.
   └─ figures
                     <- Generated graphics and figures to be used in reporting
requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
                         generated with `pip freeze > requirements.txt`
                      <- makes project pip installable (pip install -e .) so src can be imported</pre>
— setup.py
                     <- Source code for use in this project.
 - src
                     <- Scripts to download, generate data or clean data
    — features
                     <- Scripts to turn raw data into features for modeling
                      <- Scripts to train models and then use trained models to make predictions
     models

    visualization <- Scripts to create exploratory and results oriented visualizations</li>
```


Appendix – Documentation – EDA

- Mapping districts to regions:
 - https://geoportal.statistics.gov.uk/datasets/ward-to-local-authority-district-tocounty-to-region-to-country-december-2017-lookup-in-united-kingdom-version-2
- Experian Credit Rating groups
 - https://www.experian.co.uk/consumer/mortgages/guides/credit-and-mortgages.html

Appendix – Documentation – Data cleansing process

Data Cleansing Process

- Features that had >= 50% nulls were dropped as there is not a significant amount of information to do anything with
- · All textual data was lower cased
- · All trailing and leading whitespaces were removed
- credit score and annual income was changed to numeric type
- earliest_credit_line was changed to datetime format
- employment_length , homw_ownership , inquiries_6m and purpose was re-categorised
- total_current_balance had its values imputed with the median, segmented by district
- credit_age was created from earliest_credit_line by taking subtracting 2015 (latest date in data) from earliest_credit_line
- · class was created from loan_status , 1 if fully paid, 0 if defaulted, charged-off or late
- Textual and leaky features were dropped.
- Remaining samples were dropped, ~5% of data reduced.

Appendix – Documentation – Variables after data cleansing

Variables - Post cleansed

- account_id : See original data-dictionary
- installment : See original data-dictionary
- loan_amount : See original data-dictionary
- interest_rate : See original data-dictionary
- term: See original data-dictionary
- purpose : See original data-dictionary
- home_ownership : See original data-dictionary
- annual_income : See original data-dictionary
- employment_length : See original data-dictionary
- public_records : See original data-dictionary
- delinquency_2y : See original data-dictionary
- inquiries_6m: See original data-dictionary
- open_accounts : See original data-dictionary
- debt_to_income : See original data-dictionary
- credit_card_usage : See original data-dictionary
- credit_card_balance : See original data-dictionary
- total_current_balance : See original data-dictionary
- nr_accounts : See original data-dictionary
- credit_score : See original data-dictionary
- credit_age: Number of years from earliest credit line till 2015
- class: {0,1} 0: Customer paid back loan, 1: Customer defaulted loan payment

Appendix – Documentation – Variables dropped for Machine Learning

Variables that were dropped for Machine Learning

- description : >50% null
- last_record_months : >50% null
- last_delinquency_months : >50% null
- last_derog_months : >50% null
- title: text field, non-NLP task
- job_title : text field, non-NLP task
- district: text field, non-NLP task
- postcode_district : text field, non-NLP task
- loan_status: Data leakage, when predicting new application this would not be known
- year: Data leakage, when predicting new application this would not be known
- amount payed: Data leakage, when predicting new application this would not be known
- earliest_credit_line : Date field, used to create | credit_age

Appendix – Model coefficient using all variables (Logistic Regression)

Appendix – Model feature importances using all variables (Decision Tree)

Appendix – Model performance using five variables Huber Regression

Appendix – Model performance using five variables Decision Tree

