Heat Equation on Vector Bundles

Junrong Yan

1 Basic Settings

Let (M,g) be a closed Riemannian manifolds with Levi-Civita connection ∇^{LC} , $E \to M$ be a hermitian bundle with hermitian metric h. Let ∇^E a unitary connection on E, then the connection Laplacian $\Delta^E : \Gamma(E) \to \Gamma(E)$ is defined as

$$\Delta^E := -\sum_i \nabla^E_{e_i} \nabla^E_{e_i} + \nabla^E_{\nabla^{LC}_{e_i} e_i},$$

where $\{e_i\}$ is a local orthonormal frame.

Let s be a smooth section of $E \to M$, denote $|s|^2 = h(s,s)$. Let Δ^{LC} be the Laplace–Beltrami operator on (M,g), then

Theorem 1.1 (Bochner formula).

$$\Delta^{LC}|s|^2 = 2h(\Delta^E s, s) - 2\sum_i h(\nabla^E_{e_i} s, \nabla^E_{e_i} s)$$

By Bochner Formula, one has

Theorem 1.2 (Maximal Principle). Let $\Omega \subset M$ be a connected domain in M with smooth boundary. Assume that $s \in \Gamma(E)$ solves

$$\begin{cases} \Delta^E s = 0 \ in \ \Omega \\ s = 0 \ on \ \partial \Omega. \end{cases}$$

Then $\sup_{p \in \Omega} |s|^2(p) = \sup_{p \in \partial \Omega} |s|^2(p)$.

2 Heat Equation

It follows from Bochner Formula again that

Theorem 2.1 (Maximal Principle). Let s(t) be a time dependent section solves

$$\begin{cases} (\partial_t + \Delta^E)s(t) = 0 \text{ in } M \times [0, \infty) \\ s(0) = s_0 \\ \lim_{t \to \infty} s(t) = 0. \end{cases}$$
 (1)

for some $s_0 \in \Gamma(E)$. Then $\sup_{(p,t) \in M \times [0,\infty)} |s|^2 = \sup_{p \in M} |s_0|^2$.

Set $p_i: M \times M \to M$, $(p_1, p_2) \to p_i$, i = 1, 2, and let $E^* \to M$ be the dual bundle of $E \to M$, then heat kernel K(t, x, y) with respect to Δ^E is a time-dependent section of $p_1^*E \otimes p_2^*E^*$, such that

$$s(t,x) := \int_{M} (K(t,x,y), s_0(y)) dy$$

solves (1), where (\cdot, \cdot) is the nature pairing of E^* and E.

Proposition 2.2. 1. K(t, x, y) solves

$$\begin{cases} \partial_t - \Delta_y^E K(t, x, y) = 0, \\ \lim_{t \to 0} K(t, x, y) = \delta_x(y) \sum_i e_i(x) \otimes \widetilde{e}_j(y), \end{cases}$$

where $\{e_i\}, \{\widetilde{e}_j\}$ are orthonormal basis of E and E* near x and y respectively.

- 2. $K(t, x, y) = K(t, y, x)^*$.
- 3. $K(t+s,x,y) = \int_M (K(s,x,z),K(s,z,y)) dz$. Hence, $K(2t,x,x) = \int_M (K(s,x,y),K(s,x,y)^*) dy$.

Theorem 2.3. Let k(t, x, y) be the heat kernel with respect to Δ^{LC} , then $|K(t, x, y)|^2 = h(K(t, x, y), K(t, x, y)) \le nk(t, x, y)$, where h is the metric on $p_1^*E \otimes p_2^*E^*$ induced by h on $E \to M$, n = rank(E).

Proof. By Bochner formula,

$$\begin{cases} (\partial_t - \Delta_y^{LC}) (|K(t, x, y)|^2 - nk(t, x, y)) \le 0, \\ \lim_{t \to 0} (|K(t, x, y)|^2 - nk(t, x, y)) = 0. \end{cases}$$

By Theorem 2.1, the result follows.

3 Heat equation for Hodge Laplacian

Let Δ^H be the Hodge Laplacian, Δ^C be the connection laplacian on $\Lambda^*(T^*M) \to M$, then one has Bochner-Lichnerowicz-Weitzenbock formula

$$\Delta^{H} = \Delta^{C} + \sum_{e_i, e_j} c(e_i)c(e_j)R(e_i, e_j),$$

where $\{e_i\}$ is a local orthonormal frame, $\{e^i\}$ is its dual frame, $c(e_i) = e^i \wedge -\iota_{e_i}$, R is the curvature operator.

Theorem 3.1. Let $K^H(t, x, y)$ be the heat kernel with respect to Δ^H , then there exists C = C(n, R) > 0, such that

$$|K^H(t, x, y)|^2 \le e^{Ct} 2^n k(t, x, y),$$

where $n = \dim(M)$.

Proof. By Bochner formula and Bochner-Lichnerowicz-Weitzenbock formula, there exists C = C(n, R) > 0, such that

$$\begin{cases} (\partial_t - \Delta_y^{LC}) \left(e^{-Ct} |K(t, x, y)|^2 - nk(t, x, y) \right) \le 0, \\ \lim_{t \to 0} \left(e^{-Ct} |K(t, x, y)|^2 - nk(t, x, y) \right) = 0. \end{cases}$$

By Theorem 2.1, the result follows.

Corollary 3.2. There exists C(n,R) > 0, such that for all $t \in (0,1)$,

$$\int_{M} |K(t, x, y)|^{2} dy \le C(n, R).$$

Proof. This is because

$$\int_{M} k(t, x, y) dy = 1.$$