数学每日一题

高 2023 级 1 班 宽

2025年6月12日

•	已知函数 $f(x) = 4\sin x - 4\sin^3 x - a\sin 2x$	$-2a\cos^2 x + 2a^2\cos x,$	若 $f(x) \ge 0$ 在 $x \in [0, \frac{\pi}{4}]$
	上成立,则实数 a 的取值范围为	0	

- 平面上五点 A, B, C, D, E 满足 $\overrightarrow{AB} = \overrightarrow{BC} = \overrightarrow{CD}, \overrightarrow{EA} \cdot \overrightarrow{EB} = 4, \overrightarrow{EB} \cdot \overrightarrow{EC} = 5, \overrightarrow{EC} \cdot \overrightarrow{ED} = 8,$ 则 $|\overrightarrow{EA} \cdot \overrightarrow{ED}| = \underline{\underline{\underline{CD}}}$ 。
- (多选) 已知直线 $l_1 \parallel l_2$, $A \not\in l_1$, l_2 之间的一定点并且点 $A \ni l_1$, l_2 的距离分别为 1,2, $B \not\in$ 直线 l_2 上一动点,作 $AC \perp AB$,且使 AC 与直线 l_1 交于点 C, $\overrightarrow{AG} = \frac{1}{3}(\overrightarrow{AB} + \overrightarrow{AC})$,则 ()
 - A. $\triangle ABC$ 面积的最小值为 2
 - B. 点 G 到直线 l_1 的距离为定值
 - C. 当 $|\overrightarrow{GB}| = |\overrightarrow{GC}|$ 时, $\triangle GAB$ 的外接圆半径为 $\frac{5\sqrt{2}}{3}$
 - D. $\overrightarrow{GB} \cdot \overrightarrow{GC}$ 的最大值为 -2
- 已知锐角 $\triangle ABC$ 满足 $\sin B + \sin C = \sqrt{3}\sin(C + \frac{\pi}{6})$ 且 $BC = 2\sqrt{3}$, $\angle BAC$ 角平分线交 BC 于点 D,求 AD 的最大值______。
- 设 i 为虚数单位,|z|(3z+2i)=2(iz-6),则 |z|=_____。
- 已知直角 $\triangle ABC$ 的两条直角边 AC=4, BC=3, D 为斜边 AB 上的动点,现沿 CD 将此三角形折成直二面角 A-CD-B,则当 AB 取最小值时,二面角 B-AC-D 的正切值为_____。
- 若方程 $\lg(kx) = 2\lg(x+1)$ 只有一个实数解,则 k 的取值范围为_____。
- (较难) 已知 $\triangle ABC$ 三边长均为有理数,求证:
 - $-(1)\cos A$ 为有理数;
 - (2) 对任意 $n \in N^*$, 均有 $\cos nA$ 为有理数。
- 已知 x, y, z 均为实数, A, B, C 是 $\triangle ABC$ 的三个内角, 证明:

$$x^2 + y^2 + z^2 \ge 2yz\cos A + 2zx\cos B + 2xy\cos C$$

- 已知二次函数 $f(x) = ax^2 + bx + c \ge 0 (a < b)$ 恒成立,则 $|\frac{a+3b+9c}{b-a}|$ 的最小值为______。
- (20 分) 对于任意实数 x 和任意 $\theta \in [\pi, \frac{3}{2}\pi]$, 均有 $(x+3+2\sin\theta\cos\theta)^2 + (x+a\sin\theta + a\cos\theta)^2 \ge \frac{1}{8}$, 求实数 a 的取值范围_____。

- 在梯形 \overrightarrow{ABCD} 中, $\overrightarrow{AB} = 2\overrightarrow{DC}$, $|\overrightarrow{BC}| = 6$,P 为梯形 \overrightarrow{ABCD} 所在平面上一点,且满足 $\overrightarrow{AP} + \overrightarrow{BP} + 4\overrightarrow{DP} = 0$, $\overrightarrow{DA} \cdot \overrightarrow{CB} = |\overrightarrow{DA}| \cdot |\overrightarrow{DP}|$,Q 为边 AD 上的一个动点,则 $|\overrightarrow{PQ}|$ 的最小值为_____。
- 设 $\alpha, \beta, \gamma \in R$,且满足 $\sin \alpha \cdot \cos \beta + |\cos \alpha \cdot \sin \beta| = \sin \alpha \cdot |\cos \alpha| + |\sin \beta| \cdot \cos \beta$,则 $(\tan \gamma \sin \alpha)^2 + (\cot \gamma \cos \beta)^2$ 的最小值为_____。
- 已知数列 $\{a_n\}$ 的首项 $a_1 = 1$,且满足 $a_{n+1} + a_n = 4 \times 3^n (n \in N^*)$,求数列 $\{a_n\}$ 的前 n 项 和 $S_n =$ ______。
- (较难) 已知正数列 $\{a_n\}$ 满足 $a_1 = 1$, $a_n = 2 + \sqrt{a_{n-1}} 2\sqrt{1 + \sqrt{a_{n-1}}}$, S_n 为数列 $\{2^n a_n\}$ 的前 n 项的和,求 $S_{2023} =$ ______。
- 已知数列 $\{a_n\}$ 满足 $a_1 = 1$, $S_{n+1} = 2S_n \frac{n(n+1)}{2} + 1$,其中 S_n 表示数列前 n 项的和。若定义 $\Delta a_n = a_{n+1} a_n$,则集合 $S = \{n \in N^* | \Delta(\Delta a_n) \ge -2015\}$ 中的元素的个数为______。
- 设正数 $a_1, a_2, a_3, b_1, b_2, b_3$ 满足: a_1, a_2, a_3 成公差为 b_1 的等差数列, b_1, b_2, b_3 成公比为 a_1 的等比数列,且 $a_3 = b_3$ 。求 a_3 的最小值,并确定当 a_3 取到最小值时 a_2b_2 的值______。
- 在边长为 1 的正六边形的六个顶点中随机取出三个顶点,则这三点中有两点的距离为 $\sqrt{3}$ 的 概率为_____。
- 定义域为 R 的函数 f(x) 满足: 当 $x \in [0,1)$ 时, $f(x) = 2^x x$,且对任意实数 x,均有 f(x) + f(x+1) = 1。记 $a = \log_2 3$,则表达式 f(a) + f(2a) + f(3a) 的值为_____。
- 已知锐角 α, β 满足 $\frac{\sin \alpha}{\sin \beta} = \cos(\alpha + \beta)$,则 $\tan \alpha$ 的最大值为______。
- 若实数 x 满足 $\sqrt{1-x^2} + \sqrt{2-x^2} = \frac{1}{x}$,则 $x = \underline{\hspace{1cm}}$ 。
- 在 $\triangle ABC$ 中,O 为 $\triangle ABC$ 的外心,I 为 $\triangle ABC$ 的内心,已知 $OI \parallel BC$, $\cos B = \frac{1}{7}$,则 $\cos C =$ ______。
- 若存在直线与 $f(x) = x^3 x$ 和 $g(x) = x^2 + a$ 都相切,则 a 的取值范围为_____。
- 正整数 a_1, a_2, \dots, a_7 满足 $a_1 < a_2 < \dots < a_7$, $a_1 + a_2 + \dots + a_7 = 2023$, 且最大公因子 $d = (a_1, a_2, \dots, a_7) > 1$,则当 d 取最小值时, a_7 的最大值为_____。
- 已知实数 x, y 满足 $2^x + 2^y = 4^x + 4^y$,则 $z = 8^x + 8^y$ 的取值范围为
- 设点 A(1,-1), B(4,0), C(2,2)。 由所有满足 $\overrightarrow{AP} = \lambda \overrightarrow{AB} + \mu \overrightarrow{AC} (1 < \lambda \le a, 1 < \mu \le b)$ 的点 P(x,y) 组成平面区域 D。 若区域 D 的面积为 8,则 $\frac{1}{a} + \frac{1}{b} = ______$ 。
- 已知函数 $f(x) = (x-1)e^x x \ln x$,若对 $\forall x_1, x_2 \in (0, +\infty)$ 且 $x_1 \neq x_2$ 有 $\frac{f(x_1) f(x_2)}{x_1^2 x_2^2} > a$ 恒成立,则 a 的取值范围为_____。
- 在锐角 $\triangle ABC$ 中,内角 A,B,C 所对的边分别是 a,b,c,且 $2c\cos A=b-c$,则 $\frac{\sin(B-C)}{2\sin A}$ 的取值范围是_____。
- 计算: $\lim_{h\to 0} \frac{\sqrt{(4+h)^3-7(4+h)}-6}{h} = \underline{\hspace{1cm}}$
- 已知实数 a,b,c,m,n 满足 $3m+n=\frac{b}{a},\ mn=\frac{c}{a},\$ 若 a,b,c 均为奇数,证明: m,n 不都为整数。

- 三位数 123,363 具有这样的特征: 其中任意两个数字之和均可以被第三个数整除,则具有此性质的三位数共有____。
- (较难) 已知 $\triangle ABC$ 的三边长均为整数, $\angle A=2\angle B$, $\angle C>90°$,求 $\triangle ABC$ 周长的最小值_____。
- (较难) 已知函数 $f(x) = \frac{xe^x}{e^x-1}$,若方程 $(\ln x + m) f(x) = e^x$ 有两个不同的实数解 $x_1, x_2(x_1 < x_2)$,证明: $\ln x_1 + x_2 + \frac{1}{e} < m$ (参考数据: $e \approx 2.718$)。
- 已知在四面体 P-ABC 中,PA=BC=2, $PB=AC=\sqrt{7}$, $PC=AB=\sqrt{5}$, $\overrightarrow{PM}=\overrightarrow{MC}$, $\overrightarrow{AN}=\overrightarrow{NB}$,平面 β 满足 $MN\perp\beta$,记平面 β 截得该四面体 P-ABC 的多边形的面积为 S,则 S 的最大值为______。
- 在平面上, $PA \perp PB$, $\overrightarrow{PQ} = \overrightarrow{PA} + \overrightarrow{PB}$,且 $|\overrightarrow{OA}| = |\overrightarrow{OB}| = 1$,若 $|\overrightarrow{OQ}| < \frac{1}{2}$,则 $|\overrightarrow{OP}|$ 的取值范围为_____。
- 在平面四边形 ABCD 中,已知 AB = BC = CD, $\angle ABC = 70^\circ$, $\angle BCD = 170^\circ$,则 $\angle BAD = _$ _____。
- 已知函数 y = f(x) 的图像既关于点 (1,1) 中心对称,又关于直线 x + y = 0 轴对称。若 $x \in (0,1)$ 时, $f(x) = \log_2(x+1)$,则 $|f(\log_2 10)| =$ _____。
- 已知定义在正实数集上的函数 f(x) 满足 $f(2) \neq 0$,且对任意的实数 b,有 $f(x^b) = bf(x)$ 。若 方程 $f(mx) \cdot f(mx^2) = 4f^2(2)$ 的所有解大于 1,求正实数 [m] 的取值范围_____。
- (较难) 已知正四棱锥 P-ABCD 的底面边长为 $4\sqrt{6}$,高为 $6\sqrt{2}$,其内切球与面 PAB 切于 点 M,球面上与 P 距离最近的点记为 N,若平面 α 过点 M, N 且与 AB 平行,则平面 α 截 该正四棱锥所得截面的面积为_____。
- 若 $\sin \frac{\pi}{10}$ 是函数 $f(x) = ax^3 bx + 1(a, b \in N^*)$ 的一个零点,则 f(1) =_______。
- 已知 a,b 均为实数,若不等式 $|2ax^2 + (4a+b)x + 4a + |b|| \le 2|x+1|$ 对任意 $x \in [-\frac{1}{4},1]$ 恒成立,则 3a+b 的最大值为_____。
- (难) 定义在数轴上的开区间 (α, β) 的长度为 $\beta \alpha$ 。设 $a\cos A + b\sin A + c = 0 (a \neq 0)$,其中 bc < 0, $A \in (0, \frac{\pi}{4})$,试给出一个长度小于 1 的开区间 (s,t),使得二次方程 $ax^2 + bx + c = 0$ 在区间 (s,t) 上至少有一个实根。