

T.C. Karabük Üniversitesi Mühendislik Fakültesi Mekatronik Mühendisliği Bölümü

MEM315 – Mikrodenetleyiciler ve Programlanması Laboratuvarı

1. Deneyde kullanılacak malzemeler

- ADuC842 Evalution Board
- Keil µVision C51 IDE
- Osiloskop

2. Deneyin amacı ve tanımı

ADuC842 mikrodenetleyicisinde serial ve timer interrupt özelliklerini beraber kullanmayı ve interrupt priority özelliğini öğrenmek.

- ADuC842 ile P3.5'den x KHz frekansında kare dalgayı Timer 0 mod-1 ile üretilirken, aynı zamanda Pin 3.4'de bağlı olan LED'i PC'den seri protokolle gönderilen veriye göre kontrol ediniz. Gelen veri "y" ise led sönsün, "z" ise led yansın. Bu iki değer haricinde bir değer gelirse "FF" ile cevap versin. Seri protokolle veri okuma ve yazma işlemini serial interrupt ile yapınız. Kare dalga üretmeyi de Timer 0 interrupt'ı ile yapınız. Mikrodenetleyici 16.78 MHz çalışma frekansında olacak ayarlayınız.
- x KHz = Öğrenci numaranızın son iki hanesi. Eğer son iki hanesi "00" ise sondan üçüncü ve sondan ikinci hanesini kullanınız.
- y = Öğrenci numaranızın son hanesi. Eğer son iki hanesi "00" ise y = sondan ikinci hanesini seçiniz.
- z = Öğrenci numaranızın sondan ikinci hanesi. Eğer son iki hanesi "00" ise y = sondan üçüncü hanesini seçiniz.

Interrupt

7

ADuC842 toplamda 9 interrupt kaynağına ve bu interrupt'ların önceliğini belirlemek için 2 öncelik seviyesine sahiptir. Interrupt sisteminlerinin konfigürasyonları ve kontrolleri 3 Interrupt SFR'leri ile yapılmaktadır. Bunlar;

- IE: Interrupt Enable register
- IP: Interrupt Priority register
- IEIP2: Secondary Interrupt Enable register

Tablo 1. Interrupt Enable register bit tanımlaması

0

,							U		
EA	EADC	ET2	ES	ET1	EX1	ET0	EX0		
IE SFR adr	esi: A8H								
İsim	Açıklaması								
EX0	External Inte	External Interrupt 0 aktif/pasif seçme biti							
ET0	Timer 0 akti	Timer 0 aktif/pasif seçme biti							
EX1	External Inte	External Interrupt 1 aktif/pasif seçme biti							
ET1	Timer 1 akti	Timer 1 aktif/pasif seçme biti							
ES	UART seri p	UART seri port kesmesi aktif/pasif seçme biti							
ET2	Timer 2 aktif/pasif seçme biti								
EADC	ADC aktif/pasif seçme biti								
EA	Bütün Interr	upt kaynakla	arının aktif/p	pasif seçme b	iti				

Interrupt Vectors

Interrupt meydana geldiğinde, program sayacı stack'a push edilir ve interrupt vektör adresine karşılık gelen değer program sayacının içerisine yüklenir. Interrupt vektör adresleri Tablo 2'de gösterilmiştir.

Tablo 2. Interrupt vektör adresleri

Kaynak	Vektör Adresi
IEO	0003H
TF0	000BH
IE1	0013H
TF1	001BH
RI + TI	0023H
TF2 + EXF2	002BH
ADCI	0033H
ISPI / I2SCI	003BH
PSMI	0043H
TII	0053H
WDS	005BH

IP (Interrupt Priority) SFR adresi: B8H

Tablo 3. Interrupt Priority register bit tanımlaması

7								0
		PADC	PT2	PS	PT1	PX1	PT0	PX0
	İsim	Açıklaması						
	PX0	External Inte	errupt 0 üstüi	nlük tanımla	ama biti (1 =	High, $0 = Lc$	ow)	
	PT0	Timer 0 üstünlük tanımlama biti $(1 = High, 0 = Low)$						
	PX1	External Interrupt 1 üstünlük tanımlama biti (1 = High, 0 = Low)						
	PT1	Timer 1 üstü	ınlük tanımla	ıma biti (1 =	= High, 0 = L	ow)		
	PS	UART seri p	ort kesmesi	üstünlük tar	nımlama biti ((1 = High, 0)	= Low)	
	PT2	Timer 2 üstü	ınlük tanımla	ıma biti (1 =	= High, 0 = L	ow)		
	PADC	ADC üstünl	lük tanımlam	na biti (1 = I	High, $0 = Lov$	v)		
		Rezerve edi	lmiş					

Interrupt Priority

ADuC842'de toplamda 9 farklı interrupt kesmesi olduğu belirtilmişti. Bu kesmelerin aynı anda olması durumuna karşı bir üstünlük sıralarının olması gerekmektedir. Interrupt Priority bu işi yapmaktadır. ADuC842 tarafından kesmeler arasındaki üstünlük seviyesi Tablo 4'de gösterilmiştir.

Tablo 4. Interrupt üstünlük sıralaması

1 ubio il interi ubi ubiunium bir unimum							
Üstünlük	Açıklama						
1 (En yüksek)	Güç kaynağı izleme kesmesi						
2	Watchdog timer kesmesi						
3	Harici kesme 0						
4	ADC kesmesi						
5	Timer/Counter 0 kesmesi						
6	Harici kesme 1						
7	Timer/Counter 1 kesmesi						
8	SPI / I ² C kesmesi						
9	Seri haberleşme kesmesi						
10	Timer/Counter 2 kesmesi						
	Üstünlük 1 (En yüksek) 2 3 4 5 6 7 8 9						

UART

ADuC842 full-duplex seri porta sahiptir. Yani eş zamanlı olarak her gönderme hemde veri alma işlemini yapabilmektedir. Veri alma ve gönderme işlemlerinin aynı anda yapılması durumunda, veriler SBUF'a alınacağından dolayı veri kayıpları olmaması adına gönderme ve alma işlemlerini iyi planlamak gerekmektedir. Seri port ADuC842'de Pin RxD (P3.0) ve Pin TxD(P3.1) üzerinde çalışmaktadır. UART haberleşme protokolünü kullabilmek için SBUF, SCON register adreslerini iyi bir şekilde anlamamız gerekmektedir.

- SBUF; Seri porttan gönderilecek ve alınacak verilerin register alanıdır.
- SCON; Seri port kontrol registeri.

Tablo 1. SCON SFR bit tanımlaması

7							0
SM0	SM1	SM2	REN	TB8	RB8	TI	RI

- RI: Seri port alma kesme bayrağı
- TI: Seri port gönderme kesme bayrağı
- RB8: 9.bit seri port haberleşmesinde alma biti
- TB8: 9.bit seri port haberleşmesinde gönderme biti
- REN: Seri port alma izin biti
- SM2: Çoklu işlemci uygulamalarında izin biti
- SM1: UART seri port mod seçim biti
- SM0: UART seri port mod seçim biti

SM0	SM1	Seçilen işlem		
0	0	od 0: Shift register, sabit baud-rate		
0	1	Mod 1: 8-bit UART, değişken baud-rate		
1	0	Mod 2: 9-bit UART, sabit baud-rate		
1	1	Mod 3: 9-bit UART, değişken baud-rate		

Örnek SCON ataması; (a) MOV SCON, #51H

Örnekteki atama ile 8-bit UART, değişken baud-rate ve seri port alma işlemi yapılacağı belirtilmiştir.

Timer 3 baud-rate üretme

ADuC842'de Timer 3 genellikle baud-rate üretmek için kullanılmaktadır. Timer 3, Timer 1 veya Timer 2 yerine 115200 ve 230400 UART baud-rate oranları da dahil olmak üzere oldukça yüksek hızlarda baud-rate üretmek için kullanılmaktadır. Timer 3 ayrıca geniş bir aralıkta baud-rate üretmeye izin vermektedir. Aslında, 12 bit/s'den 393216 bit/s'ye kadar ±0.8 % hata oranıyla baud-rate üretmektedir. Timer 3'ün blok diyagramı Şekil 1'de gösterilmiştir.

Şekil 1. Timer 3 ile UART baud-rate üretilmesi

Tablo 1. Timer 3 baud-rate register değerleri

İdeal Baud Rate	CD	DIV	T3CON	T3FD	% Hata			
9600	0	6	86H	2DH	0.2			
9600	1	5	85H	2DH	0.2			
9600	2	4	84H	2DH	0.2			
9600	3	3	83H	2DH	0.2			
9600	4	2	82H	2DH	0.2			
9600	5	1	81H	2DH	0.2			

Devre Şeması

Deneyin Değerlendirilmesi

- Keil µVision C51 IDE konfigürasyon ayarlarının yapılması,
- Kaynak kodu ve proje dosyalarının doğru isimlendirilmesi,
- Kaynak kodunda gerekli açıklama satırlarının olması,
- Kodun doğru çalışması,

Şeklinde olacaktır.

Deneyinizi belirtilen talimatlara uygun ve belirtilen süre içerisinde <u>mem315odev@gmail.com</u> adresine gönderiniz.

- 1. Deney-8 teslim süresi: 13 Ocak 2021 23:59
- 2. Atılacak mailin konusu deneyin adı olacaktır. Örnek: Deney8.
- 3. Atılacak maili son teslim tarih ve saatinden önce gönderiniz.
- 4. Gönderilecek dosyanın ismi; deney numarası, birinci veya ikinci öğretimde olduğunuz ve öğrenci numarasından oluşacaktır. Örnek: Deney8_1_xxxxxx.zip veya Deney8_2_xxxx.rar biçiminde olacaktır.