Algebra e Geometria - Corso di Laurea in Informatica

docente: prof.ssa Marta Morigi

Simulazione di prova parziale

3 aprile 2024

Nota: Le risposte vanno motivate. I calcoli e le motivazioni delle risposte sono parte integrante dello svolgimento dell'esercizio.

Esercizio 1. (10 punti)

Siano

$$p_1 = x^2 + x + 2$$
, $p_2 = x + 1$, $p_3 = x^2 + 2x + 3$, $p_4 = -x^2 + kx$, $p_5 = x^2 - k$.

- a) Si determini per quali valori di k i vettori p_1, p_2, p_3, p_4 generano $\mathbb{R}_2[x]$, lo spazio vettoriale dei polinomi a coefficienti in \mathbb{R} di grado al più 2.
- b) Si determini per quali valori di k i vettori p_1, p_2, p_5 sono una base di $\mathbb{R}_2[x]$.

Esercizio 2. (20 punti)

Al variare del parametro $k \in \mathbb{R}$, sia $F_k : \mathbb{R}^3 \to \mathbb{R}^4$ l'applicazione lineare tale che:

$$F_k(\mathbf{e}_1) = \mathbf{e}_1 + k\mathbf{e}_2 + \mathbf{e}_3 + \mathbf{e}_4,$$

 $F_k(\mathbf{e}_2) = 3\mathbf{e}_1 + 2k\mathbf{e}_2 + k\mathbf{e}_3 + k\mathbf{e}_4,$
 $F_k(\mathbf{e}_3) = \mathbf{e}_1 + 3k\mathbf{e}_2 + \mathbf{e}_3 + \mathbf{e}_4,$

e sia
$$\mathbf{v} = \mathbf{e}_1 + \mathbf{e}_3 + (k-2)\mathbf{e}_4 \in \mathbb{R}^4$$
.

- a) Determinare la dimensione di Ker F_k , al variare di $k \in \mathbb{R}$.
- b) Posto k = 0, trovare una base di Ker F_0 e completarla ad una base \mathcal{B} di \mathbb{R}^3 .
- c) Stabilire per quali valori di k si ha che $\mathbf{v} \in \text{Im } F$ e per tali valori determinare $F^{-1}(\mathbf{v})$.
- d) Determinare le coordinate del vettore $\mathbf{e}_1 2\mathbf{e}_2 \mathbf{e}_3$ rispetto alla base \mathcal{B} del punto b) (l'ordine degli elementi della base \mathcal{B} può essere scelto a piacere).