Causal Inference for ML Practitioners

Colin Gray
Senior Data Scientist @ Netflix
November 2024

My Goal Today

- Data scientists often know some causal inference concepts, but don't have a clear sense of how they fit together.
- This lecture is meant to give you <u>intuition</u> and <u>structure</u>
 - We won't cover all of causal inference in one lecture...
 - ...but if you hear a common causal inference term, you should know what problem it's addressing & where to learn more!

Outline

- 1. Correlation != Causation
- 2. Adjusting for Confounders
- 3. Formal Framework
- 4. Integrating ML

https://xkcd.com/552/

An Extreme Example

Ice Cream Sales vs. Shark Attacks

We want to measure this effect!

A Less Extreme Example

- In raw data, we sometimes see upward-sloping demand curves
 - High prices -> more sales?
 - No! Usually indicates increasing popularity (but data doesn't know that)

Machine Learning (Alone) Doesn't Fix This

- ML is great at model fit...
 - Predict the next word in a sequence
 - Predict orders in specific region
 - Predict likelihood that a customer clicks

- ...but model fit is not the issue here!
 - Fitting patterns doesn't reveal causal drivers

Solution #1: Adjust Using Existing Data

- At each <u>fixed</u> X, do we see a relationship btw D and Y?
 - Section 2 will cover how to do these adjustments

- Pro: Uses existing data (cheap)
- Con: Requires assumptions
 - o Assume D→Y, *not* Y←D
 - Assume we know X

Warning: We don't want to adjust for everything!

• <u>Do</u> Adjust for **Confounders** (Today's Focus)

<u>Do Not</u> Adjust for Colliders

<u>Do Not</u> Adjust for **Mediators**

D = education X = profession Y = income

 We'll stick with confounders today, but always think through your DAG...

Warning: We don't want to adjust for everything!

<u>Do</u> Adjust for **Confounders** (Today's Focus)

Do Not Adjust for **Colliders**

Y = cancer

Do Not Adjust for **Mediators**

D = exerciseX = weight lossY = heart disease

We'll stick with confounders today, but always think through your DAG...

Solution #2: Experiment

- Randomly alter the variable of interest
 - Give people free ice cream.
 - Do shark attacks increase?
 - o Price +/- 5%
 - Do sales respond?
- Pro: Minimal assumptions
 - Don't have to specify D→Y or Y←D
 - Don't have to specify X
- Con: Uses bespoke data (expensive)

Solution #3: Quasi-Experiments

- If we have some external variable that only impacts D, then can we mimic an experiment?
 - Z is an "instrumental variable"

- Pro: Uses existing data (cheap), few assumption on X
- Con: Requires separate assumptions
 - Are we confident that Z affects D, and nothing else?
 - Don't try this until you have a lot of experience... But you should know it exists!

Recap: Correlation != Causation

- Often, raw comparisons do not capture underlying causal impacts
 - We can't just "ML" our way out of the problem
- We might be able to adjust existing data for confounders
 - Very useful bag of tricks (coming up), but convince yourself that you're actually dealing with confounders (not mediators or colliders)
- Experiments sidestep this, but they're expensive
 - Advanced techniques try to mimic experiments, but don't try at home (yet)

Outline

- Correlation != Causation
- 2. Adjusting for Confounders
- 3. Formal Framework
- 4. Integrating ML

A Thought Experiment

- Let's say we knew there was a single confounder X
 - This is a good candidate for Solution #1 in the previous section
 - Let's also imagine our data isn't noisy (for now), just for illustration

- How would we adjust for this in our (non-experimental) data?
 - We have a handful of approaches, which might ring some bells

Bigger dots contain more people (N)

Set Up

Each person (i) has outcome (Y), treatment
 (D), confounder (X), noise (e)

• "True" model:
$$Y_i = \alpha + \beta D_i + \gamma X_i + e_i$$

- Will comparing treatment vs control averages yield the causal effect ("beta")?
- Our example says "no"!
 - True impact is 1
 - E[Y | D=1] E[Y | D=0] = 1.75 0.25 = 1.5 > 1
 - o The problem? X associated with D and Y!

D	Х	N	Υ
0	0	3	0
0	1	1	1
1	0	1	1
1	1	3	2

Solution #1: "Match" on X

- Compute difference within each value of X, then aggregate
- Let's try this in our example
 - E[Y|D=1, X=0] E[Y|D=0, X=0] = 1 0 = 1
 - E[Y|D=1, X=1] E[Y|D=0, X=1] = 2 1 = 1
 - Average Difference = 1
 - It worked!
- <u>Catch</u>: Tricky if X has continuous and/or many dimensions
 - "Curse of dimensionality"

D	X	N	Y
0	0	3	0
0	1	1	1
1	0	1	1
1	1	3	2

Solution #2: Reweight the Data

- Eliminates relationship btw D and X
 - E[D|X] is called the "propensity score", denoted p(X)
 - Weight "surprising" observations more
 - 1/p(X) if D = 1
 - \blacksquare 1 / (1-p(X)) if D = 0
 - o In practice, often have to estimate the propensity score

- \circ E[D|X=0] = p(0) = 0.25
- \circ E[D|X=1] = p(1) = 0.75
- O Difference (Weighted) Means = 1.5 0.5 = 1
- It worked!
- <u>Catch</u>: Unstable if p(X) close to 0 or 1

D	X	N	Y Divisor		Weighted N
0	0	3	0 1-P = 0.75		4
0	1	1	1 1-P = 0.25		4
1	0	1	1 P = 0.25		4
1	1	3	2	P = 0.75	4

Solution #3: "Tilt" the Data

A reasonable first idea:

- Find "unexpected" part of Y
- $\circ \quad \tilde{Y}_i \equiv Y_i E[Y_i|X_i]$
- o Difference using that value instead...

This doesn't quite work...

- \circ E[Y|X=0] = 0.25
- \circ E[Y|X=1] = 1.75
- o Difference (Adjusted) Means
 - \bullet 0.375 (-0.375) = 0.75 < 1

D	X	N	Y	E[Y X]	Y_tilde
0	0	3	0	0.25	-0.25
0	1	1	1	1.75	-0.75
1	0	1	1	0.25	0.75
1	1	3	2	1.75	0.25

Solution #3: "Tilt" the Data

- Better idea...
 - Find "unexpected" Y and "unexpected" D

$$Y_i - E[Y_i|X_i] = \beta(D_i - E[D_i|X_i]) + e_i$$

$$\Rightarrow Y_i - E[Y_i|X_i] + \beta E[D_i|X_i] = \beta D_i + e_i$$

- Satisfied under correct beta of 1
- (How do we identify correct beta? Next slide.)

D	X	N	Y	E[Y X]	E[D X]	LHS beta=1
0	0	3	0	0.25	0.25	0
0	1	1	1	1.75	0.75	0
1	0	1	1	0.25	0.25	1
1	1	3	2	1.75	0.75	1

Solution #3: Multivariate Regression in Disguise!

To operationalize #3, we don't have to subtract out these expected values...

$$Y_i - E[Y_i|X_i] = \beta(D_i - E[D_i|X_i]) + e_i$$

• If E[.|X] are linear in X, then we get <u>numerically equivalent</u> numbers by controlling for X in a multiple regression!

(Adjusted) Treatment Effect

$$Y_i = lpha + eta \overset{\checkmark}{D_i} + \gamma X_i + u_i$$

- <u>Frisch-Waugh-Lovell Theorem</u> (FWL)
- This is (part of) why people like regression so much!

More Exotic: Mix & Match

- "Doubly-Robust" models
 - o e.g. reweight, then regress
 - o e.g. match, then regress
 - Our estimate will be correct if either model is correct

D	X	N	Y	Weighted N	E[Y X]	E[D X]	LHS
0	0	3	0	4	0.25	0.25	0
0	1	1	1	4	1.75	0.75	0
1	0	1	1	4	0.25	0.25	1
1	1	3	2	4	1.75	0.75	1

Recap: Adjusting for Confounders

 Often, raw comparisons do not capture underlying causal impacts due to confounders

- If we know the confounders, we have multiple ways to "undo" their effects
 - o "Match" on X
 - "Reweight" (or match) on the propensity score
 - "Tilt" the data, operationalized via multivariate regression
 - Some more exotic variants (e.g. doubly-robust models)...

- We haven't discussed <u>what</u> to adjust for
 - What if X impacts Y in complex ways (e.g. nonlinear)?
 - What if we don't even know which X variables matter?
 - We'll come back to this

Outline

- Correlation != Causation
- 2. Adjusting for Confounders
- 3. Formal Framework
- 4. Integrating ML

Benefits of Formality

- Hopefully you have some intuition from graphs & examples
 - Let's solidify our understanding by showing it in math

- This will also let us repurpose some familiar statistical tools
 - e.g. it would be really useful to have some measurements of uncertainty

Potential Outcomes

- Let's posit that two <u>potential outcomes</u> simultaneously exist
 - In one state of the world, person i is not treated
 - In the other, person i is treated
 - (Does this make sense? Ask the philosophers... but it's very useful.)

$$Y_i(0) = lpha + \gamma X_i + e_i \ Y_i(1) = lpha + eta D_i + \gamma X_i + e_i$$

- We (the scientist) only get to see one potential outcome per person
 - The "fundamental problem of causal inference"

What We Want != What We Have

 Our <u>estimand</u> (or "target parameter") is the difference we <u>would</u> see if we could observe both potential outcomes

$$E[Y_i(1)-Y_i(0)]=E[(lpha+eta+\gamma X_i+e_i)-(lpha+\gamma X_i+e_i)]=eta$$

But we're stuck with our <u>estimator</u> (observed averages) instead…

$$egin{aligned} E[Y_i|D_i = 1] - E[Y_i|D_i = 0] \ &= (lpha + eta + \gamma E[X_i|D_i = 1]) - (lpha + \gamma E[X_i|D_i = 0]) \ &= eta + \gamma (E[X_i|D_i = 1] - E[X_i|D_i = 0]) \end{aligned}$$

Reinforcing Our Intuition

- Look closer... here are the principles we developed in Section 2!
 - This is sometimes called "omitted variable bias" (OVB)

$$E[Y_i|D_i=1]-E[Y_i|D_i=0]$$

$$=(\alpha+\beta+\gamma E[X_i|D_i=1])-(\alpha+\gamma E[X_i|D_i=0])$$

$$=\beta+\gamma(E[X_i|D_i=1]-E[X_i|D_i=0])$$
 True Effect ("Estimand" we want) X impacts D

Use regression to eliminate this relationship

kill (.) term

After Adjusting for Confounders

- Suppose we already did our preferred confounder adjustment
 - e.g. matching, pscore reweighting, regression adjustment

 Our estimated effect is back on track, and is the difference approximates two (adjusted) averages

$$\hat{eta}
ightarrow E[Y_i(1)] - E[Y_i(0)]$$

Quantifying Uncertainty

- We know how sample averages behave (in large samples)!
 - Thanks to the <u>Central Limit Theorem</u> they are approximately Gaussian
 - Difference between two Gaussian random variables is also Gaussian
 - So we can use familiar t-tests and z-scores to measure uncertainty, even after adjustments!

Operationalizing

- If you're matching or pscore reweighting, then you can either:
 - (1) Use standard t-tests (on matched/weighted data)
 - (2) Get a z-score by running a simple regression (on matched/weighted data)

$$Y_i = lpha + eta D_i + e_i$$
Control Group Average Treatment Effect w/ Standard Errors

- If you're adjusting for confounders in a regression, you can simply add your X variables
 - Thanks to FWL Theorem

$$Y_i = lpha + eta D_i + \gamma X_i + u_i$$
 (Adjusted) Treatment Effect w/ Standard Errors

Example

```
Df Residuals:
# Import packages
                                                           Df Model:
                                                           Covariance Type:
                                                Not that
import numpy as np
                                                                        coef
                                                close...
import pandas as pd
                                                           Intercent
                                                                      1.2981
import statsmodels.api as sm
                                                           Omnibus:
                                                           Prob(Omnibus):
                                                           Skew:
# Generate fake data
                                                           Kurtosis:
N=1000
X = np.random.uniform(size=N)
D = (X + np.random.uniform(size=N) > 1).astype(int)
e = np.random.normal(size=N)/4
Y = 1 + D + X + e
df = pd.DataFrame({'Y': Y, 'D': D, 'X': X})
                True effect = 1
# Models
unadjusted = sm.OLS.from formula('Y ~ 1 + D', data=df).fit(cov type='HC1')
print(f"\n UNADJUSTED: \n {unadjusted.summary()}")
adjusted = sm.OLS.from formula('Y ~ 1 + D + X', data=df).fit(cov type='HC1')
print(f"\n REGRESSION ADJUSTED: \n {adjusted.summary()}")
```

```
OLS Regression Results
Dep. Variable:
                                       R-squared:
Model:
                                       Adj. R-squared:
                                                                         0.777
Method:
                       Least Squares F-statistic:
                                                                         3512.
                     Thu, 29 Aug 2024
                                      Prob (F-statistic):
                                                                          0.00
Date:
Time:
                             10:03:49
                                      Log-Likelihood:
                                                                       -359.57
No. Observations:
                                                                         723.1
                                 1000
                                       AIC:
                                  998
                                       BIC:
                                                                         733.0
                                  HC1
                        std err
                                                 P>|z|
                                                            [0.025
                                                                        0.9751
                           0.016
                                     86.069
                                                 0.000
                                                            1.310
                                                                         1.371
                           0.022
                                     59.261
                                                 0.000
                                                            1.255
                                                                         1.341
                                3.874 Durbin-Watson:
                                                                         1.969
                                       Jarque-Bera (JB):
                                                                         3.894
                               -0.132
                                       Prob(JB):
                                                                         0.143
                                2.844
                                       Cond. No.
                                                                          2.71
```

[1] Standard Errors are heteroscedasticity robust (HC1)

UNADJUSTED:

Confidence interval covers true value

	REGRESSION /	AD HISTED:					COVCI3 truc
			OLS Re	egression Re	esults		
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model:		Thu ions: :	Y R-squared: OLS Adj. R-squared: Least Squares F-statistic: Thu, 29 Aug 2024 Prob (F-statistic 10:03:49 Log-Likelihood: 1000 AIC: 997 BIC: 2 HC1		:):	0.885 0.885 3645 0.00 -29.181 64.36 79.09	
	uite ^{Covariance} Ty ose!	coef	std err	Z	P> z	[0.025	0.975]
	Intercept D X	0.9847 1.0200 0.9882	0.017 0.018 0.032	57.388 58.238 31.242	0.000 0.000 0.000	0.951 0.986 0.926	1.018 1.054 1.050
)	Omnibus: Prob(Omnibus Skew: Kurtosis:):	0.4				1.929 1.440 0.487 5.80

Notes: [1] Standard Errors are heteroscedasticity robust (HC1)

Recap

- We posit the existence of "potential outcomes"
 - Gives us a clear "estimand" that we're targeting
 - The "estimator" we have may or may not align with that target
 - This distinction (what we want vs what we have) is critical in causal inference!

- This framework reinforces our intuition from Section 2
 - "Omitted variable bias" puts daylight between our estimand vs our estimator
 - Our various corrections try to re-align them

- This framework puts us back in a familiar statistical sampling paradigm
 - Averaging samples of (potential) outcomes lets us use familiar CLT theorems to quantify uncertainty

Outline

- 1. Correlation != Causation
- 2. Adjusting for Confounders
- 3. Formal Framework
- 4. Integrating ML

What if we don't know X?

- Up until now, we've assumed we know X and its functional form (e.g. "linear")
 - This isn't a very common situation out in the wild
- "Causal ML" techniques are an increasingly popular way to get a handle on this problem
 - I'll give you a flavor of how a couple popular techniques work
 - Generally fall under the header of "causal meta-learners"

T-Learners

 Directly predict E[Y|D=0, X] and E[Y|D=1, X] using ML techniques, then compare them

- This works okay in practice
 - Standard errors may be less reliable
 - Can result in overly complex treatment effects, since prediction models both have independent swings
 - Some modifications (e.g. <u>X-Learner</u>) can help

Double Machine Learning (DML)

Perhaps the most popular Causal ML technique right now

Based off of the expression we mentioned in Section 2:

$$Y_i - E[Y_i|X_i] = \beta(D_i - E[D_i|X_i]) + e_i$$

- Big Insight: If we have lots of candidate Xs, can we use ML to predict E[Y|X] and E[D|X], then plug those in directly?
 - Yes! But only under certain conditions (e.g. good predictors, sample-splitting)
 - Extensions to model how effects vary across individuals (e.g. <u>R-Learner</u>)

Words of Caution

- These ML techniques are not magic
 - o In some cases, help us sort through candidate X variables & functional forms
 - They do <u>not</u> help us prove causality, avoid mediators/colliders, or ensure we've caught all confounders
 - o Read up, take a course, use with care...

Recap: Integrating ML

- Techniques using ML to address causal questions are increasingly popular
 - You should recognize their names & know how they fit into our framework

- They do <u>not</u> negate the need for careful causal thinking
 - Typically used to sort through candidate confounders and/or model varying effects
 - The rest of our core causal concerns are alive & well
 - What direction does causality run?
 - Have we captured all confounders?
 - Are we accidentally adjusting for colliders or mediators?
 - Do we have enough data to get a signal?
 - etc...

Outline

Sharks (probably) don't like ice cream

- 1. Correlation != Causation
- 2. Adjusting for Confounders

Matching, pscore-weighting, regressions, etc

3. Formal Framework

Sampling potential outcomes

4. Integrating ML

Helps in some tasks, not magic

Resources to Learn More

- Causal Inference for the Brave and True (Facure)
- <u>Mastering 'Metrics</u> (Angrist & Pischke)
- <u>Business Data Science</u> (Taddy)
- <u>EconML Documentation</u> (Microsoft)
- <u>Causal ML Book</u> (Chernezhukov et al)