[ECE30001] Deep Learning Applications

Neural Networks

Injung Kim
Handong Global University

Agenda

- Introduction to Neural Networks
- Single/Multi-Layer Perceptron
- Introduction to PyTorch
- Practical Issues
- Backpropagation

- An artificial neural network is a mathematical model inspired by biological neural networks.
 - Intelligence comes from their connection weights
 - Connection weights are learned from data

- Each layer combines the input information to produce higher-level information
 - Connection weights represent knowledge about how to combine lower-level information
- Feature extraction/abstraction by dot product
 - Connection weights represent filters

target task and data

- Neural networks is a mathematical model to learn mappings
 - Mapping from a vector to another vector (or a scalar value)

input vector (or sequence)

output vector (or sequence)

Examples)

- □ Pattern → class (classification)
- □ Independent variables → dependent variables (regression)
- □ Symptoms → diseases (diagnosis)
- □ Sentence → another sentence (translation, dialogue)
- □ Text → Speech (TTS), Speech → Text (ASR)
- □ State → action (control, game play)

Neural Networks Classifier

Machine Translation

- Sequence-to-sequence model
 - Word embedding + RNN(BiLSTM) + attention model

Neural networks can learn probability distribution from training samples

Examples)

- \square Estimates probability distribution P(x), P(x, y), P(x|y)
- Sample generation
- Restoration
- Transform

$$argmax_{x}P_{\theta}(x)$$

$$argmax_{x_{lost}}P_{\theta}(x_{lost}, x_{preserved})$$

$$argmax_{x_{transformed}}P_{\theta}(x_{transformed} \mid x_{source})$$

BigGAN

- A. Brock, et al., "LARGE SCALE GAN TRAINING FOR HIGH FIDELITY NATURAL IMAGE SYNTHESIS" 2018.
 - Large-scale GAN training using large batch
 - Truncation trick for random noise generation
 - □ Trade-off between variety and fidelity)
 - Orthogonal regularization to the generator

Figure 1: Class-conditional samples generated by our model.

Agenda

- Introduction to Neural Networks
- Single/Multi-Layer Perceptron
- Introduction to PyTorch
- Practical Issues
- Backpropagation

Perceptron Neuron

- Perceptron [Rosenblatt 1958,62]
 - Input signals x_i
 - \blacksquare Connection weights, w_i
 - Activation level $net = \sum_i w_i x_i$
 - □ Called 'logit' or 'net value'
 - Nonlinear activation function $f(\cdot)$
 - Mapping from real value to a binary value (decision)

Ex) If $net \ge \theta$, output = 1, otherwise, -1

Hard-limiting function

Activation Functions

- Non-linearity
- Restrict outputs in a specific range
- Measurement → probability or decision

Hard-limit

$$f(x) = \begin{cases} +1 & if \ x \ge 0 \\ -1 & otherwise \end{cases}$$

Sigmoid

$$f(x) = \frac{1}{(1 + e^{-\lambda x})}$$

ReLU

$$f(x) = \max(x, 0)$$

Ex) Building Neural Network Recognizer

- 1. Design network structure
- 2. Collect or acquire training samples (with labels)
- 3. Train connection weights
 - Given training samples and desired outputs, find weights that minimizes error.
- 4. Apply the trained neural network to target data

Neural Networks Classifier

An Example of Perceptron Classifier

Single layer perceptron classifier

- Decision rule
 - \square If o(X) < 0, X is assigned with class 1
 - \square If o(X) > 0, X is assigned with class 2
- Assume we have two training samples
 - □ $X^1 = (2, 1)$, class 1 \rightarrow $o(X^1) < 0$
 - $\square X^2 = (1, 2), \text{ class } 2 \rightarrow o(X^2) > 0$
- What's the meaning of equation "o(X) = 0"?

Decision Boundary of Perceptron

•
$$o = f\left(\sum w_i x_i\right) = w_1 x_1 + w_2 x_2 = 0$$
 \Rightarrow equation of a line

.. The decision boundary generated by a perceptron is a line.

Limitation of Single-Layer Perception

- Perceptron cannot solve even simple problems such as XOR [Minsky and Paper 1969]
 - A set of perceptron weight corresponds to a line in feature space
 - A perceptron can separate only linearly separable patterns
 - □ XOR is linearly non-separable problem

X ₁	Х ₂	Output
1	1	0
1	0	1
0	1	1
0	0	0

Multi-Layer Perceptron

- Limitation of perceptron
 - A perceptron node corresponds to a line
 - □ Cannot solve linearly non-separable patterns (ex: XOR)
- Idea: classify patterns with multiple lines
 - Classifier composed of two lines H₁ and H₂
 - □ Line H₁
 - Weights: W₁
 - \square Output: $y_1 = f(W_1X)$
 - □ Line H₂
 - □ Weights: W₂
 - \square Output: $y_2 = f(W_2X)$
 - Class 1 vs. class 2
 - \square Class1: $y_1 < 0$ AND $y_2 > 0$
 - □ Class2: otherwise

Multi-Layer Perceptron

sample	y ₁	y ₂	class
1	+	+	class 2
2	-	+	class 1
3	_	_	class 2

[Lipman87]

Network Depth and Decision Region

Multi-Layer Perceptron

- Multi-layer perceptron
 - \blacksquare n^{th} layer integrates the output of $(n-1)^{\text{th}}$ layer

Classification with neural networks

- Softmax output layer $f(net_k) = \frac{exp(net_k)}{\sum_k exp(net_k)}$
- Train by cross entropy loss

$$L_{CE} = -y_k log \hat{y}_k$$
, where $y_k \in \{0,1\}$

- Regression with neural networks
 - No activation function for output layer
 - Train by mean squared error (MSE) loss

$$L_{MSE} = \frac{1}{2K} \sum_{k} (\hat{y}_k - y)^2$$

Neural Networks in scikit-learn

Class for MLP classifier

sklearn.neural_network.MLPClassifier

Example

Reference

https://scikitlearn.org/stable/modules/generated/sklearn.neural_network. MLPClassifier.html#sklearn.neural_network.MLPClassifier

Neural Networks in scikit-learn

Class for MLP regression

sklearn.neural_network.MLPRegressor

Example

Reference

https://scikitlearn.org/stable/modules/generated/sklearn.neural_network. MLPRegressor.html

Agenda

- Introduction to Neural Networks
- Single/Multi-Layer Perceptron
- Introduction to PyTorch
- Practical Issues
- Backpropagation

PyTorch vs. TensorFlow

	TensorFlow	PyTorch
Built by	Google (based on Theano)	Facebook (based on Torch)
Computational graph	Static	Dynamic
Learning curve	Fast	Faster
Community	Huge	Large, Growing
Visualization	Matplotlib TensorBoard (native)	Matplotlib TensorBoard (trick)
Overall	The sun at noon	Rising star

Computational Graphs

Computational graph

- Node: variable (scalar, vector, matrix, tensor, etc.)
- Operation: a simple function of one or more variables
 - □ Returns only a single output variable (e.g. a vector)

Ex)

$$\hat{y} = \sigma \left(\boldsymbol{x}^{\top} \boldsymbol{w} + b \right) \quad \boldsymbol{H} = \max\{0, \boldsymbol{X} \boldsymbol{W} + b\}$$

$$\hat{y} = \boldsymbol{x} \boldsymbol{w}$$

$$\hat{y} = \boldsymbol{x} \boldsymbol{x}$$

$$\hat{y} = \boldsymbol{x} \boldsymbol{x}$$

$$\hat{y$$

Dynamic Graph of PyTorch

A graph is created on the fly

```
from torch.autograd import Variable

x = Variable(torch.randn(1, 10))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 10))
```


 \mathbf{x}

Using Neural Networks on PyTorch

Define a network model

- Define a network class inheriting Module
- Override two methods __init__() and forward()

2. Prepare data

Use DataLoader

Train the model

- Repeat
 - □ Forward propagation
 - Backward propagation
 - Update weights

4. Evaluate / use the model

Image Recognition

MNIST dataset

- Handwritten digit images (28x28)
- Training set: 6,000 * 10 classes = 60,000 images
- Test set: 1,000 * 10 classes = 10,000 images
- Popular dataset for machine learning education

MLP in PyTorch

Class for MLP

```
class HelloMLP(nn.Module):
    def __init__(self, input_size=784, num_classes=10):
        super(HelloMLP, self).__init__()
        self.mlp = nn.Sequential(
                                               # a sequential container
            # 1st layer
            nn.Linear(input_size, 64),
                                               # matrix multiplication (fully connected layer)
                                               # activation function
            nn.ReLU(),
            # 2nd layer
            nn.Linear(64, 64).
                                               # matrix multiplication (fully connected layer)
            nn.ReLU(),
                                               # activation function
            # 3rd (output) layer
            nn.Linear(64, num_classes),
            # nn.Softmax().
                                               # not necessary with CrossEntropyLoss
    def forward(self. x):
        x_{-} = x.view(x.size(0), -1)
                                               # Reshape input tensor (N, 28, 28) --> (N. 784)
        y_{-} = self.mlp(x_{-})
                                               # compute
        return y_
net= HelloMLP()
                                               # create an MLP instance
```

CNN in PyTorch

Defining Loss function and Optimizer

```
import torch.optim as optim

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
```

- Cross entropy (with softmax activation)
 - Softmax activation: $X_c^N = \frac{\exp(net_c^N)}{\sum_c \exp(net_c^N)}$ $E_{CE} = -\sum_c d_c \log(X_c^N)$
- Stochastic gradient descent

$$W^{t+1} = W^t + \Delta W^t$$
$$\Delta W^t = -\eta \frac{\partial Loss}{\partial W^t} + m\Delta W^{t-1}$$

CNN in PyTorch

Training

```
for epoch in range(2): # loop over the dataset multiple times
   running loss = 0.0
   for i, data in enumerate(trainloader, 0):
       # get the inputs
       inputs, labels = data
       # zero the parameter gradients
       optimizer.zero grad()
       # forward + backward + optimize
       outputs = net(inputs)
                                     # feed input to network
       loss = criterion(outputs, labels) # compute loss function
       loss.backward()
                                           # compute gradients
       optimizer.step()
                                           # update weights
       # print statistics
       running loss += loss.item()
       if i % 2000 == 1999:
                                           # print every 2000 mini-batches
           print('[%d, %5d] loss: %.3f' %
                 (epoch + 1, i + 1, running loss / 2000))
           running_loss = 0.0
```

Tensor

- Tensor: a geometric object, either a scalar, a geometric vector, or a multi-linear map from other tensors to a resulting tensor
 - Similar to n-dim array

Computational graph (blue nodes represent tensors)

Tensor in PyTorch

- torch.Tensor: basic data type in pytorch
 - Similar to NumPy's ndarrays
 - Tensors can also be used on a GPU to accelerate computing.
 - Contains ".grad" attribute for autograd

Creating a tensor

- x = torch.tensor(array, dtype=torch.float32) # from an array
- x = torch.FloatTensor(a_list) # from a list
- $\mathbf{x} = \text{torch.rand}(5, 3)$ # 5x3 random tensor (uniform [0,1])
- $\mathbf{x} = \text{torch.zeros}(5, 3)$ # 5x3 zero tensor

Operations

- \blacksquare print(x + y)
- print(x[:, 1])
- $\mathbf{x} = \text{torch.randn}(1)$
- print(x.item())
- b = a.numpy()

- # addition of tensors
- # slicing
- # tensor([-0.3023]) (N(0,1))
- # get value as a python number
- # convert to numpy ndarray

Data Format Shape for PyTorch Modules

- Input/target tensor should have an additional dimension for batch
 - Linear layers: [batch, dim]
 - Convolution/pooling layers: [batch, channel, height, width]
 - RNN/LSTM: [time, batch, dim]

Layers in PyTorch

- torch.nn package contains neural networks layers/modules
 - See https://pytorch.org/docs/stable/nn.html
- Base class
 - torch.nn.Module: base class of all modules
- Feedforward layers (mainly for CNN/MLP)
 - nn.Conv1d, nn.Conv2d, nn.Conv3d
 - nn.MaxPool1d, nn.MaxPool2d, nn.MaxPool3d
 - nn.Linear, nn.Bilinear
- Recurrent layers (for RNN)
 - nn.RNN, nn.LSTM, nn.GRU

Layers in PyTorch

Normalization / Dropout

- nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d
- nn.GroupNorm
- nn.lnstanceNorm1d, nn.lnstanceNorm2d, nn.lnstanceNorm3d
- nn.Dropout1d, nn.Dropout2d, nn.Dropout3d

Activation functions

- nn.Softmax, nn.Sigmoid, nn.Tanh
- nn.ReLU, nn.LeakyReLU, nn.PReLU

Loss functions

- nn.MSELoss()
- nn.CrossEntropyLoss()
- nn.BCELoss()

Optimizers in PyTorch

Base class

optim.Optimizer

Optimizers

- optim.SGD
- optim.Adadelta
- optim.Adagrad
- optim.RMSprop
- optim.Adam
- optim.LBFGS

Saving and Loading Models

- state_dict: dictionary containing learnable parameters
- Saving state_dict
 - torch.save(model.state_dict(), PATH)
- Loading state_dict
 - model = TheModelClass(*args, **kwargs)
 - model.load_state_dict(torch.load(PATH))
 - model.eval()
- Saving entire model
 - torch.save(model, PATH)
- Loading entire model
 - model = torch.load(PATH)
 - model.eval()

Agenda

- Introduction to Neural Networks
- Single/Multi-Layer Perceptron
- Introduction to PyTorch
- Practical Issues
- Backpropagation

Activation Functions

- A.k.a. "Non-linearity functions"
- Why activation functions?
 - Non-linearity
 - Restrict outputs in a specific range
 - Measurement → probability or decision

Non-linearity

- $X_1 = f(W_1X_0 + b_1)$
- $X_2 = f(W_2X_1 + b_2)$
- 2-layer neural network w/o activation function
 - $X_1 = W_1 X_0 + b_1$
 - $X_2 = W_2 X_1 + b_2$
- Then,

Activation Functions

Output units

- Identity function: unbounded value (for regression)
- Sigmoid: Bernoulli distribution, values in range (0,1)
- Tanh: Sigmoid scaled to range (-1,1)
- Softmax: probabilities of categories (for classification)

Softmax Output Units

Probability distribution over n different classes

$$\operatorname{softmax}(\boldsymbol{z})_i = \frac{\exp(z_i)}{\sum_j \exp(z_j)}$$

Activation Functions

- Hidden units
 - Sigmoid, Tanh
 - ReLU, LReLU, PReLU, RReLU, ELU, max-out
 - Linear, gated linear unit (GLU)

ReLU Activation Function [Hinton10]

ReLU (Rectified Linear Unit)

- Faster than Sigmoid or Tanh
- Makes network activation sparse
- No 'saturated regime'

Problems

- No gradient for negative input
- Unbounded in positive direction

Learning Rate

- Gradient descent: $\theta_{t+1} = \theta_t \eta \nabla_{\theta} J(\theta_t)$
- Learning rate decides amount of movement in learning
 - Too small: slow, easy to fall in a local minima
 - Too large: fail to converge

Popular strategy

Start training with a large η and decrease η as the training

Learning Rate

 Change of loss according to learning rate (and batch size)

General Guideline for Learning Rate

- If the error keeps getting worse or oscillates wildly
 - → Reduce learning rate
- If the error is falling fairly consistently but slowly
 - → Increase learning rate
- Towards the end of mini-batch learning, it nearly always helps to turn down the learning rate.
- Turn down the learning rate when the validation error stops decreasing.

General Guideline for Learning Rate

- Turning down the learning rate reduces the random fluctuations
- Don't turn down the learning rate too soon
- Shifting and scaling input values makes a big difference.

Agenda

- Introduction to Neural Networks
- Single/Multi-Layer Perceptron
- Introduction to PyTorch
- Practical Issues
- Backpropagation

MLP Learning

- Given a training sample X^0 and its label c,
 - Desired output $D = \{d_i \ 's\}, \ d_i = 1 \ \text{if} \ i = c, \ \text{otherwise}, \ d_i = 0$
- Define a loss function E(W)
- Find connection weights W* usually by gradient-based algorithm

$$W^* = \underset{W}{argmin} E(W)$$

Neural Networks Classifier

Loss Function (Error Criteria)

Given

- X_c^N : the output of the top level layer for the c^{th} class
- $D = (d_1, d_2, \dots, d_C)$: desired output
- Mean squared error

$$E_{MSE} = \frac{1}{2} \frac{\sum_{c} (X_{c}^{N} - d_{c})^{2}}{C}$$

- Cross entropy (with softmax activation)
 - Softmax activation: $X_c^N = \frac{\exp(net_c^N)}{\sum_c \exp(net_c^N)}$

$$E_{CE} = -\sum_{c} d_{c} \log(X_{c}^{N})$$

Gradient Descent

- Starting from an initial values, to move the weight vector in a direction that decreases error (negative gradient) repeatedly
 - Update rule

$$W \leftarrow W - \eta \nabla E(W) = W - \eta \frac{\partial E(W)}{\partial W}$$
 (η : learning rate)
$$\nabla E(W) = \frac{\partial E(W)}{\partial W} = (\frac{\partial E}{\partial w_1}, \frac{\partial E}{\partial w_2}, \dots, \frac{\partial E}{\partial w_n})$$

For real numbers x, y, and z

$$y = g(x), z = f(y) = f(g(x))$$

Chain rule

$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}$$

Back-Propagation

 Back-propagation: a method for computing gradient of any function (cost function or other functions)

Forward propagation (inference)

feature

Backward propagation (training)

gradient

Example [Stanford cs224n]

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Chain rule:

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \, \frac{\partial q}{\partial y}$$

Example [Stanford cs224n]

Multiple Paths Chain Rule [Stanford cs224n]

Matrix Notation

Propagation

- $y_j = f(\sum_i w_{ij} x_i + b_j) = f(a_j)$
- $a_j = \sum_i w_{ij} x_i + b_j$

Vector/matrix notation

$$X = (x_1, x_2, ..., x_N)^T, Y = (y_1, y_2, ..., y_M)^T, A = (a_1, a_2, ..., a_M)^T$$

$$W = \begin{pmatrix} w_{11} & \cdots & w_{N1} \\ \vdots & \ddots & \vdots \\ w_{1M} & \cdots & w_{NM} \end{pmatrix}, B = (b, b_2, \dots, b_M)^T$$

$$A = WX + B = \begin{pmatrix} w_{11} & \cdots & w_{N1} \\ \vdots & \ddots & \vdots \\ w_{1M} & \cdots & w_{NM} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \cdots \\ x_N \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \\ \cdots \\ b_M \end{pmatrix} = \begin{pmatrix} \sum_i w_{i1} x_i + b_1 \\ \sum_i w_{i2} x_i + b_2 \\ \cdots \\ \sum_i w_{iM} x_i + b_M \end{pmatrix}$$

$$Y = F(A) = F(WX + B)$$

- For vectors $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$
 - Chain rule

$$\frac{\partial z}{\partial x_i} = \sum_{j} \frac{\partial z}{\partial y_j} \frac{\partial y_j}{\partial x_i}$$

$$x \quad y \quad z$$

- For tensors of arbitrary dim?
 - Flatten the tensor into a vector

Gradient and Jacobian

 Gradient vector: a multi-variable generalization of the derivative. (f is a scalar-valued function)

$$\frac{\partial f}{\partial \mathbf{x}} = \nabla_{\mathbf{x}} f = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)$$

Jacobian matrix: matrix of all 1st order partial derivatives of a vector-valued function

$$rac{\partial oldsymbol{f}}{\partial oldsymbol{x}} = \left[egin{array}{cccc} rac{\partial f_1}{\partial x_1} & \cdots & rac{\partial f_1}{\partial x_n} \ dots & \ddots & dots \ rac{\partial f_m}{\partial x_1} & \cdots & rac{\partial f_m}{\partial x_n} \end{array}
ight]$$

Back-Propagation

Backpropagation of gradient via chain-rule

Lower layers

Forward propagation **Back-propagation Desired Desired** Loss L Loss output output ∂L Output X_N ∂X^N Weight Layer $\partial L \partial X^N$ ∂L Layer $\frac{\partial W^N}{\partial W^N} = \frac{\partial W^N}{\partial W^N}$ (eg. $X^N=W^NX^{N-1}$) (eg. $X^N=W^NX^{N-1}$) WN $\partial L \quad \partial X^N$ Input ∂L X^{N-1} $\frac{\partial X^{N-1}}{\partial X^N} = \frac{\partial X^N}{\partial X^{N-1}}$ **X**N-1 (input of Nth layer)

 W^N

Lower layers

Back-Propagation

■ Gradient descent: $w^n \leftarrow w^n - \eta \frac{\partial L}{\partial w^n}$

Backward propagation (training)

gradient

Back-Propagation on MLP

$$E_{MSE} = \frac{1}{2} \frac{\sum_{k} (\boldsymbol{o}_{k} - d_{k})^{2}}{K}$$

- Training algorithm
 - 2nd layer

$$\square$$
 $W^{t+1} = W^t + \Delta W$

$$\Delta w_{jk} = -\eta \frac{\partial E}{\partial w_{jk}}$$

1st layer

$$\Box$$
 $\bigvee^{t+1} = \bigvee^t + \Delta \bigvee$

$$\Delta v_{ij} = -\eta \frac{\partial E}{\partial v_{ij}}$$

Training of 2nd Layer

- Update formula for 2nd layer

Training of 2nd Layer

Gradient for weight update

Actually, $\frac{\partial NET}{\partial W}$ is a |NET| * |W| matrix, because W is flatten as a vector

$$\frac{\partial E}{\partial W} = \frac{\partial E}{\partial O} \frac{\partial O}{\partial NET} \frac{\partial NET}{\partial W} = \left(\frac{\partial E}{\partial o_1}, \frac{\partial E}{\partial o_2}, \dots, \frac{\partial E}{\partial o_K}\right) \begin{pmatrix} \frac{\partial o_1}{\partial net_1} & 0 & \dots \\ 0 & \frac{\partial o_2}{\partial net_2} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} \frac{\partial net_1}{\partial w_{11}} & \frac{\partial net_1}{\partial w_{21}} & \dots \\ \frac{\partial net_2}{\partial w_{12}} & \frac{\partial net_2}{\partial w_{22}} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

$$\frac{\partial \mathbf{E}}{\partial \mathbf{o_k}} = \frac{\partial}{\partial \mathbf{o_k}} \frac{1}{2} \frac{\sum_k (\mathbf{o_k} - d_k)^2}{K} = \frac{1}{K} (\mathbf{o_k} - \mathbf{d_k})$$

$$\frac{\partial o_k}{\partial net_k} = \frac{\partial f(net_k)}{\partial net_k} = f'(net_k) \qquad \qquad \frac{\partial net_k}{\partial w_{jk}} = \frac{\partial \sum_j w_{jk} y_j}{\partial w_{jk}} = y_j$$

 \blacksquare Gradient with respect to w_{ik}

$$\frac{\partial E}{\partial w_{jk}} = \frac{1}{K}(o_k - d_k)f'(net_k)y_j$$

Training of 2nd Layer

Net value

$$NET = (net_1, net_2, ..., net_K)$$

Weight as 1D vector

$$W = (w_{11}, w_{21}, \dots, w_{I1}, w_{12}, \dots, w_{I2}, \dots, w_{1K}, \dots, w_{IK})$$

Jaccobian

$$\frac{\partial NET}{\partial W} = \begin{pmatrix} \frac{\partial net_1}{\partial W_{11}}, \frac{\partial net_1}{\partial W_{21}}, \dots, \frac{\partial net_1}{\partial W_{J1}}, \frac{\partial net_1}{\partial W_{12}}, \dots, \frac{\partial net_1}{\partial W_{J2}}, \dots, \frac{\partial net_1}{\partial W_{JK}}, \dots, \frac{\partial net_1}{\partial W_{JK}}, \dots, \frac{\partial net_2}{\partial W_{JK}}, \frac{\partial net_2}{\partial W_{J1}}, \frac{\partial net_2}{\partial W_{J1}}, \frac{\partial net_2}{\partial W_{J2}}, \dots, \frac{\partial net_2}{\partial W_{J2}}, \dots, \frac{\partial net_2}{\partial W_{JK}}, \dots, \frac{\partial net_K}{\partial W_{$$

Training of 2nd Layer

Gradient for back-propagation

$$\frac{\partial E}{\partial Y} = \frac{\partial E}{\partial O} \frac{\partial O}{\partial NET} \frac{\partial NET}{\partial Y} = \begin{pmatrix} \frac{\partial E}{\partial o_1}, \frac{\partial E}{\partial o_2}, \dots, \frac{\partial E}{\partial o_K} \end{pmatrix} \begin{pmatrix} \frac{\partial o_1}{\partial net_1} & 0 & \dots \\ 0 & \frac{\partial o_2}{\partial net_2} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} \frac{\partial net_1}{\partial y_1} & \frac{\partial net_1}{\partial y_2} & \dots \\ \frac{\partial net_2}{\partial y_1} & \frac{\partial net_2}{\partial y_2} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

$$\frac{\partial \mathbf{E}}{\partial \mathbf{o_k}} = \frac{\partial}{\partial \mathbf{o_k}} \frac{1}{2} \frac{\sum_{k} (\mathbf{o_k} - d_k)^2}{K} = \frac{1}{K} (\mathbf{o_k} - \mathbf{d_k})$$

$$\frac{\partial o_k}{\partial net_k} = \frac{\partial f(net_k)}{\partial net_k} = f'(net_k) \qquad \frac{\partial net_k}{\partial y_j} = \frac{\partial \sum_j w_{jk} y_j}{\partial y_j} = w_{jk}$$

 \blacksquare Gradient with respect to y_j

$$\frac{\partial E}{\partial y_j} = \sum_{k} \frac{1}{K} (o_k - d_k) f'(net_k) w_{jk}$$

Training of 2nd Layer

Gradients

$$\frac{\partial E}{\partial w_{jk}} = \frac{1}{K} (o_k - d_k) f'(net_k) y_j$$

$$\frac{\partial E}{\partial y_j} = \sum_k \frac{1}{K} (o_k - d_k) f'(net_k) w_{jk}$$

When using Sigmoid nonlinearity

$$f(net) = \frac{1}{1+e^{-net}}, f'(net) = \frac{e^{-net}}{(1+e^{-net})^2} = o(1-o)$$

$$\frac{\partial E}{\partial w_{jk}} = \frac{1}{K} (o_k - d_k) o_k (1 - o_k) y_j$$

$$\frac{\partial E}{\partial y_j} = \sum_k \frac{1}{K} (o_k - d_k) o_k (1 - o_k) w_{jk}$$

Training of 1st Layer

Training of hidden layers

Training of 1st Layer

Gradient for weight update

Actually, $\frac{\partial NET}{\partial V}$ is a |NET| * |V| matrix, because V is flattened as a vector

$$\frac{\partial E}{\partial V} = \frac{\partial E}{\partial Y} \frac{\partial Y}{\partial NET} \frac{\partial NET}{\partial V} = \begin{pmatrix} \frac{\partial E}{\partial y_1}, \frac{\partial E}{\partial y_2}, \dots, \frac{\partial E}{\partial y_J} \end{pmatrix} \begin{pmatrix} \frac{\partial y_1}{\partial net_1} & 0 & \dots \\ 0 & \frac{\partial y_2}{\partial net_2} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} \frac{\partial net_1}{\partial v_{11}} & \frac{\partial net_1}{\partial v_{21}} & \dots \\ \frac{\partial net_2}{\partial v_{12}} & \frac{\partial net_2}{\partial v_{22}} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

$$\frac{\partial E}{\partial y_j} = \frac{1}{K} \sum_{k} (o_k - d_k) f'(net_k) w_{jk}$$

$$\frac{\partial y_j}{\partial net_j} = \frac{\partial f(net_j)}{\partial net_j} = f'(net_j) \qquad \frac{\partial net_j}{\partial v_{ij}} = \frac{\partial \sum_i v_{ij} x_i}{\partial v_{ij}} = x_i$$

General formula for delta learning

$$\frac{\partial E}{\partial v_{ij}} = \sum_{k} \left[\frac{1}{K} (o_k - d_k) f'(net_k) w_{jk} \right] f'(net_j) x_i$$

Thank you for your attention!

