- 1. В правильной четырехугольной пирамиде SABCD с вершиной S все ребра равны 5. На ребрах SA, AB, BC взяты точки K, M, N соответственно, причем KA = AM = NC = 2.
 - а) Докажите, что плоскость KNM перпендикулярна ребру SD.
 - б) Найдите расстояние от вершины D до плоскости KNM.
- **2.** Дан куб $ABCDA_1B_1C_1D_1$, длина диагонали которого равна 3. На луче A_1C отмечена точка P так, что $A_1P=4$.
 - а) Докажите, что многогранник $DBPC_1$ правильный тетраэдр.
 - б) Найдите длину отрезка AP.
- **3.** Дан прямоугольный параллелепипед $ABCDA_1B_1C_1D_1$. Через прямую BD_1 параллельно прямой AC проведена плоскость π , причем сечение параллелепипеда плоскостью π представляет собой ромб.
 - а) Докажите, что ABCD квадрат.
 - б) Найдите угол между плоскостью π и плоскостью (BCC_1), если AD=4 и $AA_1=6$.
- **4.** На ребрах AB и BC треугольной пирамиды ABCD отмечены точки M и N соответственно, причем AM: MB = CN: NB = 4: 1. Точки P и Q середины ребер DA и DC соответственно.
 - а) Докажите, что точки P, Q, M и N лежат в одной плоскости.
 - б) Найдите, в каком отношении эта плоскость делит объем пирамиды ABCD.
- **5.** Основанием прямой треугольной призмы $ABCA_1B_1C_1$ является прямоугольный треугольник ABC, причем $\angle C=90^\circ$. Диагонали боковых граней AA_1B_1B и BB_1C_1C равны соответственно 26 и 10, AB=25.
 - а) Докажите, что $\triangle BA_1C_1$ прямоугольный.
 - б) Найдите объем пирамиды AA_1C_1B .
- **6.** Дана четырехугольная пирамида PABCD, в основании которой лежит трапеция ABCD с большим основанием AD. Известно, что сумма углов BAD и CDA равна 90° . Грани PAB и PCD перпендикулярны плоскости основания. K точка пересечения прямых AB и CD.
 - а) Докажите, что грани РАВ и РСО перпендикулярны.
- б) Найдите объем пирамиды PBCK, если известно, что AB = BC = CD = 2, а высота пирамиды PABCD равна 12.
- 7. Основанием четырехугольной пирамиды SABCD является прямоугольник ABCD, причем $AB=3\sqrt{2},\ BC=6.$ Основанием высоты пирамиды является центр прямоугольника. Из вершин A и C опущены перпендикуляры AP и CQ на ребро SB.
 - а) Докажите, что P середина отрезка BQ.
 - б) Найдите угол между гранями SBA и SBC, если SD=9.
- 8. В треугольной пирамиде SABC боковые рёбра SA и SB равны. Основанием высоты этой пирамиды является середина медианы CM треугольника ABC.
 - а) Докажите, что треугольник ABC равнобедренный.
- б) Найдите объём пирамиды SABC, если $SA=SB=17, SC=5\sqrt{10},$ а высота пирамиды равна 15.

- 9. Основанием прямой четырехугольной призмы $ABCDA_1B_1C_1D_1$ является ромб ABCD, при этом $AB=AA_1$.
 - а) Докажите, что прямые A_1C и BD перпендикулярны.
 - б) Найдите объем призмы, если $A_1C = BD = 2$.
- **10.** В правильном тетраэдре ABCD точка H центр грани ABC, а точка M середина ребра CD.
 - а) Докажите, что прямые AB и CD перпендикулярны.
 - б) Найдите угол между прямыми DH и BM.
- **11.** В правильном тетраэдре ABCD точки K и M середины рёбер AB и CD соответственно. Плоскость α содержит прямую KM и параллельна прямой AD.
 - а) Докажите, что сечение тетраэдра плоскостью α квадрат.
 - б) Найдите площадь сечения тетраэдра ABCD плоскостью α , если $AB=2\sqrt{3}$.
- **12.** В правильной треугольной пирамиде SABC сторона основания AB равна 6, а боковое ребро SA равно 7. На рёбрах AB и SC отмечены точки K и M соответственно, причём AK: KB = SM: MC = 1:5. Плоскость α содержит прямую KM и параллельна прямой BC.
 - а) Докажите, что плоскость α параллельна прямой SA.
 - б) Найдите угол между плоскостями α и (SBC).
- **13.** В правильной треугольной пирамиде SABC сторона основания AB равна 6, а боковое ребро SA равно 5. На рёбрах AB и SC отмечены точки K и M соответственно, причём AK: KB = SM: MC = 5:1. Плоскость α содержит прямую KM и параллельна SA.
 - а) Докажите, что сечение пирамиды SABC плоскостью α прямоугольник.
- б) Найдите объём пирамиды, вершиной которой является точка A, а основанием сечение пирамиды SABC плоскостью α .
- **14.** В правильной треугольной призме $ABCA_1B_1C_1$ сторона основания равна 4, а боковое ребро равно 2. Точка M середина ребра A_1C_1 , а точка O точка пересечения диагоналей боковой грани ABB_1A_1 .
- а) Докажите, что точка пересечения диагоналей четырёхугольника, являющегося сечением призмы $ABCA_1B_1C_1$ плоскостью (AMB), лежит на отрезке OC_1 .
 - б) Найдите угол между прямой OC_1 и плоскостью (AMB).

Ответы shkotkovo.ontine

1. 6)
$$3.5$$
2. 6) $\sqrt{11}$

1. 6) 3,5
2. 6)
$$\sqrt{11}$$
3. 6) $\arctan \frac{5}{3}$
4. 6) 8: 17

5. 6)
$$28\sqrt{51}$$

4. 6)
$$8:17$$
5. 6) $28\sqrt{51}$
6. 6) 4
7. 6) $\arccos\left(-\frac{\sqrt{34}}{68}\right)$
8. 6) $50\sqrt{39}$
9. 6) $\frac{4\sqrt{6}}{5}$

8. 6)
$$50\sqrt{39}$$

9. 6)
$$\frac{4\sqrt{6}}{5}$$

8. 6)
$$50\sqrt{39}$$
9. 6) $\frac{4\sqrt{6}}{5}$
10. 6) $\arccos \frac{\sqrt{2}}{3}$
11. 6) 3

10. 6)
$$\arccos \frac{\sqrt{2}}{3}$$
11. 6) 3
12. 6) $\arccos \frac{31\sqrt{10}}{140}$
13. 6) $\frac{25\sqrt{39}}{36}$
14. 6) $\arccos \frac{8\sqrt{91}}{91}$

13. б)
$$\frac{25\sqrt{39}}{36}$$

13. 6)
$$\frac{25\sqrt{39}}{36}$$
14. 6) $\arccos \frac{8\sqrt{91}}{91}$