UFLA – Universidade Federal de Lavras Departamento de Ciência da Computação COM162 – Linguagens Formais e Autômatos Prof. Rudini Sampaio

Monitor: Rodrigo Pereira dos Santos

Primeira Lista de Exercícios – 2004/2

Exercício 1 Temos um Homem (H), um Lobo (L), uma Cabra (C) e um Repolho (R). Todos estão de um mesmo lado do rio. Há um barco capaz de atravessar o rio com o Homem e mais apenas L, ou C ou R de cada vez. É preciso atravessar todos para a outra margem de forma que L e C, ou C e R não fiquem sozinhos sem o Homem na mesma margem. Desenvolva um diagrama de transições para a solução do problema.

RESPOSTA = Subjetivo. É um exercício interessante para ser feito, uma vez que está associado à teoria de autômatos e diagrama de estados vistos na disciplina até o momento. Uma das formas de fazer seria colocar sobre as transições os elementos que estão de um lado do rio, e sob as mesmas, aqueles que estivessem do outro lado. A figura exibe isso:

Um exemplo pode ser visto a seguir, onde: h = homem; c = cabra; r = repolho; l = lobo.

Figura 2.1: Diagrama de estados para Leão, Coelho e Repolho.

Exercício 2 Construa um DFA M que aceita L(N), a partir do NFA $N = (\{q_0,q_1\},\{0,1\},\delta,q_0,\{q_1\})$ onde $\delta(q_0,0) = \{q_0,q_1\},\delta(q_0,1) = \{q_1\},\delta(q_1,0) = \emptyset,\delta(q_1,1) = \{q_0,q_1\}.$

$$\begin{aligned} \text{RESPOSTA} &= \text{Dado o NFA N} = (\{q_0,\,q_1\},\,\{0,\,1\},\,\delta,\,q_0,\,\{q_1\}),\,\text{onde:} & \delta\;(q_0,\,0) = \{q_0,\,q_1\} \\ \delta\;(q_0,\,1) &= \{q_1\} \\ \delta\;(q_1,\,0) &= \varnothing \\ \delta\;(q_1,\,1) &= \{q_0,\,q_1\} \end{aligned}$$

Podemos construir um DFA M equivalente, que reconhece a mesma linguagem de N, ou seja, L(M) = L(N). Vamos representar $p_1 = \emptyset$, $p_2 = \{q_0\}$, $p_3 = \{q_1\}$ e $p_4 = \{q_0, q_1\}$, onde o estado inicial é p_2 e os estados finais são p_3 e p_4 .

Exercício 3 Prove que se uma linguagem L é aceita por um NFA com transições vazias, então L é também aceita por um NFA sem transições vazias. Transições vazias são as transições ε (*epsilon*).

RESPOSTA = Seja o NFA N = $(Q, \Sigma, \delta, q_i, F), \{b,c\} \in \Sigma$:

Considere que ele possui uma transição ϵ : $\delta(q_1,\,\epsilon)=\{q_2\}$ e L(N)=L. Seja o NFA N' = (Q', Σ , δ ', q_1 ', F'):

Considere que ele não possui transição ϵ e que L(N') = L'. Queremos provar que se L(N) = L e L(N') = L', então L' = L.

Construção de N':

- Q' = Q
- $$\begin{split} \bullet \quad \delta'(q,\,a) &= \delta(q,\,a),\, se\,\, q \neq q_1\,\,,\, ou \\ &= \delta(q,\,a) \{q_2\},\, se\,\, q = q_1\,\, e\,\, a = \epsilon\,\,,\, ou \\ &= \delta(q,\,a) \cup \bigcup \delta(q_i,\,a),\, se\,\, q = q_1\,\, e\,\, a \neq \epsilon,\, onde\,\, q_i\,\, \varepsilon\,\, E(q)\,\, e\,\, E(q) = \{p\,\,\varepsilon\,\, Q\mid p\,\, pode\,\, ser\,\, atingido\,\, de\,\, q\,\, usando\,\, zero\,\, ou\,\, mais\,\, transições\,\, \epsilon\} \end{split}$$
- $q_1' = q_1$
- F' = F, se q_2 não pertence a F = F \cup { q_1 }, se q_2 € F

Tomando $q_4 \in \delta(q_2, c)$ e $q_5 \in \delta(q_2, b)$, respectivamente, pela construção, $q_4 \in \delta'(q_1, c)$ e $q_5 \in \delta'(q_1, b)$. Logo,

Exercício 4 Descreva com suas palavras os conjuntos que denotam as seguintes expressões regulares:

a.
$$(11 \cup 0)*(00 \cup 1)*$$

RESPOSTA = São sequências de zero ou mais 11's ou 0's, seguidas de sequências de zero ou mais 00's ou 1's.

b.
$$(1 \cup 01 \cup 001)*(\epsilon \cup 0 \cup 00)$$

RESPOSTA = São sequências de zero ou mais 1's ou 01's ou 001's, seguidas de menos de três 0's.

c.
$$(00 \cup 11 \cup (01 \cup 10)(00 \cup 11)*(01 \cup 10))*$$

RESPOSTA = São sequências de zero ou mais 00's ou 11's ou sequências iniciando e terminando em 01 ou 10, contendo zero ou mais 00's ou 11's no meio.

Exercício 5 Construa um autômato finito equivalente para as seguintes expressões regulares:

a.
$$10 \cup (0 \cup 11)0*1$$

RESPOSTA = NFA otimizado. Recomenda-se seguir os passos para a construção do autômato conforme teorema visto em aula.

b.
$$01(((10)^* \cup 111)^* \cup 0)^*1$$

RESPOSTA = NFA otimizado. Recomenda-se seguir os passos para a construção do autômato conforme teorema visto em aula.

c.
$$((0 \cup 1)(0 \cup 1))^* \cup ((0 \cup 1)(0 \cup 1)(0 \cup 1))^*$$

RESPOSTA = NFA otimizado. Recomenda-se seguir os passos para a construção do autômato conforme teorema visto em aula.

Exercício 6 Prove ou disprove para as seguintes expressões regulares R, S e T:

a.
$$(RS \cup R)*R = R(SR \cup R)*$$

RESPOSTA = Provaremos por indução que $(RS \cup R)^n R = R(SR \cup R)^n$

Base da indução: $n = 0 \Rightarrow R = R$ (verdadeiro)

<u>Hipótese de indução:</u> vamos supor que para algum k \in IN, temos que $(RS \cup R)^k R = R(SR \cup R)^k$

<u>Passo da indução</u>: vamos provar que $(RS \cup R)^{k+1}R = R(SR \cup R)^{k+1}$

$$\left(RS \cup R\right)^{k+1}R = \left(RS \cup R\right)\left(RS \cup R\right)^{k}R = \left(RS \cup R\right)R\left(SR \cup R\right)^{k} = R(S \cup \epsilon)R\left(SR \cup R\right)^{k} = R(S \cup \epsilon)R\left(SR \cup R\right)^{k} = R(S \cup \epsilon)R\left(SR \cup R\right)^{k}$$

$$= R(SR \cup R)(SR \cup R)^k = R(SR \cup R)^{k+1}$$

Logo, para todo n \in IN, $(RS \cup R)^nR = R(SR \cup R)^n$, por indução.

b.
$$R(RS \cup S)*S = RR*S(RR*S)*$$

RESPOSTA = Provaremos que essa igualdade não é válida usando prova direta com um contra-exemplo.

Sejam R e S expressões regulares. Sejam R = 0 e S = 1, vamos verificar os resultados:

1°)
$$R(RS \cup S)*S = 0(01 \cup 1)*1$$

2°) $RR*S(RR*S)* = 00*1(00*1)*$

Seja o contra-exemplo w = 00101.

1°)
$$0(01 \cup 1)*1$$
 não gera 00101 2°) $00*1(00*1)*$ gera 00101

Logo, por prova direta, usando o contra-exemplo w = 00101, $R(RS \cup S)*S \neq RR*S(RR*S)*$

c.
$$(R \cup S)^* = R^* \cup S^*$$

RESPOSTA = Provaremos que essa igualdade não é válida usando prova direta com um contra-exemplo.

Sejam R e S expressões regulares. Sejam R = 0 e S = 1, vamos verificar os resultados:

1°)
$$(R \cup S)^* = (0 \cup 1)^*$$

2°) $R^* \cup S^* = 0^* \cup 1^*$

Seja o contra-exemplo w = 01.

1°)
$$(0 \cup 1)^*$$
 gera 01
2°) $0^* \cup 1^*$ não gera 01

Logo, por prova direta, usando o contra-exemplo w = 01, $(R \cup S)^* \neq R^* \cup S^*$.

Exercício 7 Desenhe o diagrama de estados de um autômato finito determinístico para cada uma das linguagens abaixo. Obtenha ainda a expressão regular correspondente.

a. $\{w \mid w \text{ \'e qualquer palavra, exceto } 01, 101, 0100\}$

RESPOSTA = Para construir o diagrama de estados de um DFA para reconhecer esta linguagem, construiremos um autômato que aceita 01, 101 e 0100, e depois ajustaremos os estados finais de modo a rejeitar aquelas palavras (complemento):

Assim, o DFA pedido é o complemento deste acima:

 $\underline{Express\~{ao}\ Regular:}\ \epsilon \cup \Sigma \cup 1\Sigma \cup 00 \cup 0\Sigma\Sigma \cup 11\Sigma \cup 100 \cup 1\Sigma\Sigma\Sigma \cup 00\Sigma\Sigma \cup 011\Sigma \cup 0101 \cup \Sigma\Sigma\Sigma\Sigma\Sigma\Sigma^*$

b. $\{w \mid w \text{ tem comprimento par ou termina em } 01\}$

RESPOSTA = Para construir o diagrama de estados de um DFA para reconhecer esta linguagem, construiremos um autômato para reconhecer palavras sob cada condição e faremos a união dos dois (já que a classe de linguagens regulares é fechada sob união, por teorema).

DFA que reconhece palavras de comprimento par:

DFA que reconhece palavras terminadas em 01:

Utilizando a idéia da prova do teorema que afirma que a classe de linguagens regulares é fechada sob união (ver caderno), obtemos:

Expressão Regular: $(\Sigma\Sigma)^* \cup \Sigma^*01$

c. $\{w \mid w \text{ contém pelo menos três 0s}\}$

RESPOSTA = DFA que reconhece esta linguagem:

Vamos encontrar a expressão regular "removendo" os estados um a um, a partir de um GNFA:

• removendo o 2º estado:

• removendo o 3º estado:

• removendo o 4º estado:

• removendo o 5° estado:

Expressão Regular: $1*01*01*0(0 \cup 1)*$

Exercício 8 Para qualquer palavra $w = w_1 w_2 ... w_n$, o **reverso** de w, denotado por w^R , é a palavra $w^R = w_n ... w_2 w_1$. Para qualquer linguagem A, seja $A^R = \{w^R \mid w \in A\}$. Mostre que se A é regular, então A^R também é regular.

RESPOSTA = <u>Dados do Problema:</u>

- para qualquer palavra $w = w_1 w_2 ... w_n$, $w^R = w_n ... w_2 w_1$ para qualquer linguagem A, $A^R = \{w^R \mid w \in A\}$

Temos que mostrar que se A é regular, A^R também é regular. $(\{c,d\} \in \Sigma)$

Seja um NFA $N = (Q, \Sigma, \delta, q_0, F)$ com linguagem L(N) = A.

Seja um NFA N' = (Q', Σ , δ ', q_0 ', F') com linguagem $L(N') = A^R$.

Construção de N':

- $Q' = Q \cup \{q_0'\}$
- $\delta'(q, a) = \{t \in Q \mid s \in \delta(t, a)\}, \text{ se } q \neq q_0', \text{ ou}$ = F, se q = q_0' e a = ϵ , ou $=\emptyset, \text{ se } q = q_0 \text{ 'e a } \neq \epsilon$ $q_0 = q_0 \text{ '(novo estado)}$
- $F' = \{ q_0 \}$

Logo, pela construção, $L(N') = A^R$, e como N' é uma NFA, por definição, A^R é regular.