# ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Московский институт электроники и математики им. А.Н. Тихонова

Пискунов Андрей Дмитриевич, группа БИВ186

### ОТЧЕТ

ПО ДОМАШНЕЙ РАБОТЕ №1

по дисциплине «Электротехника» Вариант 20

Дата сдачи отчета\_\_\_\_\_

# Домашнее задание 1 «Расчёт электрических схем по законам Кирхгофа» группа БИВ-186

- Указания с оформующих.

  1) Решение выполняется на белых листах формата А4 с одной стороны.

  2) Решение выполняется на белых листах формата А4 с одной стороны.

  2) Решение каждой задачи должно быть проверено с помощью программы ехемотехнического моделиров. (следует придожить описание электрической схемы и листині трафии с регультатами машинного расчёта).

  3) Системы уравичений должно решалься только с помощью программ математического моделирования (следует придожить листині решения).

|  | ва | риант | 20 |
|--|----|-------|----|
|--|----|-------|----|

|   | Bapha |     |     |    |    |    |    |    |    |    |    |    |    |    |    |
|---|-------|-----|-----|----|----|----|----|----|----|----|----|----|----|----|----|
|   | J, A  | E.6 | E.S | E4 | E3 | E2 | E1 | R8 | R7 | R6 | R5 | R4 | R3 | R2 | R1 |
|   |       |     |     |    |    |    |    | м  | 0  |    |    |    |    |    |    |
| 1 | - 1   | 30  | 50  | 40 | 30 | 50 | 20 | 3  | 2  | 7  | 6  | 6  | 4  | 5  | 8  |

- Написать по законам Кирхгофа систему уравнений для определения неизвестных токов и напряжений в ветвях схемы.
- Определить неизвестные токи и напряжения в вствях схемы, решив полученную систему уравнений.
- Составить баланс мощностей для исходной схемы.
- Определить напряжение измеряемое вольтметрами
- Рассчитать режим схемы с помощью программы SPICE.

#### Указания

- Номер схемы соответствует порядковому номеру, под которым фамилия студента занесена в групповом журнале.
  2. Числовые данные параметров схем приведены в таблице и выбираются в соответствии с номером группы.





Преобразовав исходную, получим следующую схему. Вольтметры были убраны, т.к. их сопротивление бесконечно большое, что аналогично разрыву. Для нахождения значений вольтметров необходимо найти разность потенциалов между точками В и С, и А и В.

Ток на R4 равен току на R5.

С учётом J имеем 8 токов, соответственно необходимо составить 8 уравнений. Имеем 5 узлов, отсюда 5 узлов — 1 = 4 уравнения ЗТК.

8 уравнений — 4 уравнения 3TK = 4 уравнения 3HK = 4 контура из которых лишь один включает J. Составим систему уравнений

3ТК

1) 
$$I_1 - I_6 + I_3 = 0$$
  
2)  $-I_1 - J + I_{23} = 0$   
3)  $-I_{23} + I_2 - I_7 = 0$   
4)  $I_7 - I_4 - I_3 = 0$   
3HK  
1)  $E_3 - E_1 = I_3R_3 + I_7R_7 - I_1R_1$   
II)  $E_4 + E_2 - E_5 = I_4R_4 + I_7R_7 + I_2R_2 + I_4R_5$   
III)  $E_6 = -I_6R_6 - U_J - I_1R_1$   
IV)  $E_6 - E_2 - E_1 = -I_6R_6 - I_2R_2 - I_1R_1$ 

После подставновки всех известных значений и пребразования системы:

$$\begin{cases} I_1 + I_3 - I_6 = 0 \\ -I_1 + I_{23} = 1 \\ I_2 - I_{23} - I_7 = 0 \\ -I_3 - I_4 + I_7 = 0 \\ -8I_1 + 4I_3 + 2I_7 = 10 \\ 5I_2 + 12I_4 + 2I_7 = 40 \\ -8I_1 - 7I_6 - U_J = 30 \\ -8I_1 - 5I_2 - 7I_6 = -40 \end{cases}$$

Решим данную систему уравнений с помощью Octave:



## Получаем

 $I_1 = 0.38702 \,\mathrm{A}$ 

 $I_2 = 4.2812 \,\mathrm{A}$ 

 $I_{23} = 1.387 \text{ A}$ 

 $I_3 = 1.8270 \,\mathrm{A}$ 

 $I_4 = 1.0672 \,\mathrm{A}$ 

 $I_6 = 2.214 \,\mathrm{A}$ 

 $I_7 = 2.8941 \,\mathrm{A}$ 

 $U_I = -48.594 \text{ B}$ 

Для проверки выполним расчёт баланса мощностей.

$$P_{\Pi} = R_1 * I_1^2 + R_2 * I_2^2 + R_3 * I_3^2 + R_4 * I_4^2 + R_5 * I_4^2 + R_6 * I_6^2 + R_7 * I_7^2$$

При расчёте мощности источников учитываем, что если ток противонаправлен ЭДС источника, то он потребляет мощность, а не отдаёт.

$$P_0 = E_1 * I_{23} + E_2 * I_2 + E_3 * I_3 + E_4 * I_4 - E_5 * I_4 - E_6 * I_6 + U_J * J$$

Расчеты

$$P_{\Pi} = 8 \text{ Om } * 0.38702^2 \text{ A}^2 + 5 \text{ Om } * 4.2812^2 A^2 + 4 \text{ Om } *$$

$$1.8270^2 \,A^2 + 200 \,Om * 1.0672^2 A^2 + 6 \,Om * 1.0672^2 A^2 + 7 \,Om * 2.214^2 A^2 + 2 \,Om * 2.8941^2 A^2 = 170.92 \,Bt$$

$$P_0 = 20 \text{ B} * 1.387 \text{ A} + 50 \text{ B} * 4.2812 \text{ A} + 30 \text{ B} * 1.827 \text{ A} + 40 \text{ B} * 1.0672 \text{ A} - 50 \text{ B} * 1.0672 \text{ A} - 30 \text{ B} * 2.2140 \text{ A} - 48.594 \text{ B} * 1 \text{ A} = 170.92 \text{ BT}$$

 $P_{\Pi} \, = \, P_{o}$  , баланс мощностей выполняется  $\, = > \,$  расчёты верны.

Расчитаем напряжения показываемые вольтметрами:

$$V_1 = E_1 - I_1 R_1 = 20 \text{ B} - 0.38702 \text{ A} * 8 \text{ OM} = 16.904 \text{ B}$$
 $V_2 = I_2 R_2 - E_2 + E_5 - R_5 I_4$ 
 $= 4.2812 \text{ A} * 5 \text{ OM} - 50 \text{ B} + 50 \text{ B} - 1.0672 \text{ A} * 6 \text{ OM}$ 
 $= 27.809 \text{ B}$ 

Проверим правильность полученных значений в LTSPYCE



|          | Operating Point |                |
|----------|-----------------|----------------|
| V(n001): | -52.8059        | voltage        |
| V(c):    | -45.498         | voltage        |
| V(n002): | -22.8059        | voltage        |
| V(b):    | -28.5942        | voltage        |
| V(n003): | -48.5942        | voltage        |
| V(n005): | -62.8059        | voltage        |
| V(a):    | -56.403         | voltage        |
| V(n007): | -50             | voltage        |
| V(n004): | -50             | voltage        |
| V(n006): | -15.498         | voltage        |
| I(J):    | 1               | device current |
| I(R1):   | -0.387023       | device_current |
| I (R6):  | 2.214           | device_current |
| I (R2):  | 4.28116         | device_current |
| I(R5):   | -1.06716        | device_current |
| I(R4):   | -1.06716        | device_current |
| I(R7):   | 2.89414         | device_current |
| I (R3):  | -1.82698        | device_current |
| I(E6):   | 2.214           | device_current |
| I(E2):   | -4.28116        | device_current |
| I(E5):   | 1.06716         | device_current |
| I(E4):   | -1.06716        | device_current |
| I(E1):   | -1.38702        | device_current |
| I(E3):   | -1.82698        | device_current |
|          |                 |                |

Напряжения на вольтметрах равны:

$$V_1 = V(b) - V(c) = -28.5942 \text{ B} + 45.498 \text{ B} = 16.904 \text{ B}$$
  
 $V_2 = V(b) - V(a) = -28.5942 \text{ B} + 56.403 \text{ B} = 27.809 \text{ B}$ 

Таким образом, значения полученные по Кирхгофу совпадают с результатами симуляции.

# Ответ:

| Величина    | Значение              |
|-------------|-----------------------|
| $I_1$       | 0.38702 A             |
| $I_2$       | 4.2812 A              |
| $I_{23}$    | 1.387 A               |
| $I_3$       | 1.8270 A              |
| $I_4$       | 1.0672 A              |
| $I_5$       | 1.0672 A              |
| $I_6$       | 2.2140 A              |
| $I_7$       | 2.8941 A              |
| $U_J$       | -48.594 B             |
| $P_{\Pi}$   | 170.92 B <sub>T</sub> |
| $P_{\rm o}$ | 170.92 B <sub>T</sub> |
| $V_1$       | 16.904 B              |
| $V_2$       | 27.809 B              |