ickground State Space ACE NLSY Analyses Conclusions

A Dynamic Mixture Biometric Model of Cognitive Development in the NLSYC

Michael Hunter*,**, David Bard**, William Beasley***, Kelly Meredith****, & Joseph Rodgers****

*University of Oklahoma

**University of Oklahoma Health Sciences Center

*** Howard Live Oak, LLC

**** Oklahoma City University

***** Vanderbilt University

Behavior Genetics Association Charlottesville, VA June 19. 2014

In search of windows

Gene's. like Leibniz's monads, have no windows; the higher properties of life are emergent. ... And once assembled, organisms have no windows. -Edward O. Wilson "Sociobiology" Chapter 2

State Space ACE NLSY Analyses Conclusions

Outline

Background

- Role of the individual
- Individual Behavior Genetics Modeling
- ► Examine NLSY79C Cognitive Development
 - NlsyLinks
 - OpenMx
- Dynamic Mixture ACE Modeling

Background State Space ACE NLSY Analyses Conclusion

Perspective

Background State Space ACE NLSY Analyses Conclusions

Where to go from here?

No, it's not dinner time yet.

- ► Between-person models are valid, but (generally) only between people.
- Model individuals and processes.
- Balance the Idiographic/Nomothetic trade-off
- Options
 - 1. Assume complete heterogeneity: Separate processes
 - 2. Assume complete homogeneity: Same process
 - 3. Assume a mixture of homogeneous groups

Background

Where to go from here?

No, it's not dinner time yet.

- Between-person models are valid, but (generally) only between people.
- Model individuals and processes.
- Balance the Idiographic/Nomothetic trade-off
- Options
 - 1. Assume complete heterogeneity: Separate processes
 - 2. Assume complete homogeneity: Same process
 - 3. Assume a mixture of homogeneous groups

Background State Space ACE NLSY Analyses Conclusions

Where to go from here?

No, it's not dinner time yet.

- ▶ Between-person models are valid, but (generally) only between people.
- Model individuals and processes.
- Balance the Idiographic/Nomothetic trade-off
- Options
 - 1. Assume complete heterogeneity: Separate processes
 - 2. Assume complete homogeneity: Same process
 - 3. Assume a mixture of homogeneous groups
- How do you model behavior genetic variability within people?

Neale & Cardon (1992)

Neale & Cardon (1992)

ckground State Space ACE NLSY Analyses Conclusions

Molenaar (2010) "On the limits ..."

State Space Model

Measurement

Structural Equation Measurement Model

$$\mathbf{y}_{i} = \Lambda \boldsymbol{\eta}_{i} + K \mathbf{x}_{i} + \boldsymbol{\varepsilon}_{i}$$
 with $\boldsymbol{\varepsilon}_{i} \sim \mathcal{N}\left(\mathbf{0}, \Theta\right)$ (1)

State Space Measurement Model

$$y_i = \Lambda \eta_i + K x_i + \varepsilon_i$$
 with $\varepsilon_i \sim \mathcal{N}(\mathbf{0}, \Theta)$ (2)

State Space Model

Transition/Structural

► Structural Equation Structural Model

$$\boldsymbol{\eta}_{i} = B\boldsymbol{\eta}_{i} + \Gamma\boldsymbol{x}_{i} + \boldsymbol{\zeta}_{i} \quad \text{with} \quad \boldsymbol{\zeta}_{i} \sim \mathcal{N}\left(\mathbf{0}, \Psi\right)$$
(3)

State Space Structural Model

$$\eta_{i+1} = B\eta_i + \Gamma x_i + \zeta_i \text{ with } \zeta_i \sim \mathcal{N}(0, \Psi)$$
 (4)

State Space Model

Transition/Structural

► Structural Equation Structural Model

$$\boldsymbol{\eta}_{i} = B\boldsymbol{\eta}_{i} + \Gamma\boldsymbol{x}_{i} + \boldsymbol{\zeta}_{i} \quad \text{with} \quad \boldsymbol{\zeta}_{i} \sim \mathcal{N}\left(\mathbf{0}, \Psi\right)$$
(3)

State Space Structural Model

$$\eta_{i+1} = B\eta_i + \Gamma x_i + \zeta_i \text{ with } \zeta_i \sim \mathcal{N}(0, \Psi)$$
 (4)

Differential Equation in Discrete Time

ackground State Space ACE NLSY Analyses Conclusions

State Space Model

Transition/Structural

► Structural Equation Structural Model

$$\eta_i = B\eta_i + \Gamma x_i + \zeta_i \text{ with } \zeta_i \sim \mathcal{N}(\mathbf{0}, \Psi)$$
 (3)

State Space Structural Model

$$\eta_{i+1} = B\eta_i + \Gamma x_i + \zeta_i \text{ with } \zeta_i \sim \mathcal{N}(0, \Psi)$$
(4)

- Differential Equation in Discrete Time
- ▶ Implemented by me in OpenMx 2.0 Beta Release
- Uses Kalman filter

Check out the 2.0 Beta Release

and State Space Models

```
source('http://openmx.psyc.virginia.edu/getOpenMxBeta.R') \\ require(OpenMx) \\ ?mxExpectationStateSpace
```


ckground State Space ACE NLSY Analyses Conclusions

Longitudinal Behavior Genetics Models

Short Story

- ▶ Does this work? ... Yes!
- Moreover
 - Can be idiographic: different heritabilities for Sibling 1 versus Sibling 2
 - ► Able to estimate additive genetics *or* common environments correlation parameter
 - Extendable to time-varying heritabilities with extended Kalman filter time-varying loadings

State Space ACE NLSY Analyses Conclusion

NLSY

National Longitudinal Survey of Youth

- ▶ Original 1979 Generation 1 Sample
 - Nationally representative household probability sample
 - ▶ 12,686 young men and women
 - ▶ 14-22 years old
- Children (NLSYC, Generation 2)
 - ► Children of Generation 1 Females
 - Beginning 1986
 - ▶ 3276 different mothers
 - ▶ 11,075 NLSY-Children kinship links

State Space ACE NLSY Analyses Conclusions

NlsyLinks

The R Package

- Uses responses by children and parents to lots of questions about
 - parentage
 - relatedness
 - cohabitation
 - so on
- Makes a deterministic, accurate classification of
 - siblings (full, half)
 - cousins
 - aunt/niece
 - parent/child
 - so on

Links79Pair

```
> require (NlsyLinks)
Loading required package: NlsyLinks
> data(Links79Pair)
> head(Links79Pair)
  ExtendedID Subject1Tag Subject2Tag R RelationshipPath
                                                Parent Child
1
                      200
                                  201 0.5
                      200
                                  202 0.5
                                                Parent.Child
                      201
                                  202 0.5
                                               Gen2Siblings
4
                      300
                                  301 0.5
                                                Parent Child
                     301
                                  302 0.5
                                               Gen2Siblings
                                  302 0.5
                                                Parent Child
                      300
```


Analyses

Present Analyses

- Goal: look at longitudinal variation in cognitive ability using biometrically informed models
- 5 cognitive variables
 - ▶ PIAT Math, Reading Comp, Reading Recog (Ages 5-14)
 - PPVT (Ages 3-14)
 - WISC Memory for Digit Span (Ages 7-11)
- Modal Number of Occasions: 2-4

ackground State Space ACE NLSY **Analyses** Conclusions

Longitudinal Factor Scores

method of Estabrook & Neale (2013)

Repeated Cross Sections

ACE Slice at Different Ages

Haworth et al., 2010

 h^2 (childhood) = .41, h^2 (adolescence) = .55, h^2 (YA)=.66

Multisubject State Space ACE

	Α	С	Е
AREG	0.82	0.89	0.85
DIGIT	0.14	0.66	0.19
MATH	0.27	0.71	0.02
RECOG	0.03	0.74	0.24
COMP	0.07	0.79	0.15
PPVT	0.00	1.00	0.00

Multisubject State Space ACE

	Α	С	Е
AREG	0.87	0.88	0.84
DIGIT	0.19	0.57	0.24
MATH	0.15	0.80	0.05
RECOG	0.00	0.68	0.32
COMP	0.05	0.78	0.17
PPVT	0.00	1.00	0.00

	Model 1				Model 2	
	$\pi = .11$			$\pi = .89$		
	A1 C1 E1		A2	A2 C2		
AREG	0.80	0.89	0.84	-	-	-
DIGIT	0.00	0.16	0.84	0.03	0.83	0.14
MATH	0.02	0.98	0.00	0.28	0.69	0.03
RECOG	0.26	0.39	0.35	0.04	0.76	0.14
COMP	0.63	0.37	0.00	0.07	0.79	0.14
PPVT	0.00	1.00	0.00	0.00	1.00	0.00

		NA - J - L 1			Madala		
	Model 1				Model 2		
	$\pi = .11$			$\pi = .89$			
	A1	C1	E1	A2	C2	E2	
AREG	0.80	0.89	0.84	-	=	-	
DIGIT	0.00	0.16	0.84	0.03	0.83	0.14	
MATH	0.02	0.98	0.00	0.28	0.69	0.03	
RECOG	0.26	0.39	0.35	0.04	0.76	0.14	
COMP	0.63	0.37	0.00	0.07	0.79	0.14	
PPVT	0.00	1.00	0.00	0.00	1.00	0.00	

	Model 1			Model 2		
	$\pi = .001$			$\pi = .999$		
	A1	C1	E1	A2	C2	E2
AREG	0.84	0.89	0.85	-	-	-
DIGIT	0.28	0.01	0.71	0.33	0.54	0.13
MATH	0.04	0.25	0.72	0.27	0.71	0.02
RECOG	0.25	0.15	0.60	0.04	0.70	0.26
COMP	0.30	0.21	0.49	0.08	0.77	0.15
PPVT	0.30	0.37	0.33	0.00	1.00	0.00

	Model 1				Model 2	
	$\pi = .001$			$\pi = .999$		
	A1	C1	E1	A2	C2	E2
AREG	0.84	0.89	0.85	-	-	-
DIGIT	0.28	0.01	0.71	0.33	0.54	0.13
MATH	0.04	0.25	0.72	0.27	0.71	0.02
RECOG	0.25	0.15	0.60	0.04	0.70	0.26
COMP	0.30	0.21	0.49	0.08	0.77	0.15
PPVT	0.30	0.37	0.33	0.00	1.00	0.00

State Space ACE NLSY Analyses Conclusions

Summary

- ▶ Within- & Between-person moments are often different
- ▶ Within-person behavior genetic models are possible
- Cross-sectional ACE results do not resemble homogeneous longitudinal ACE results
- Population might not be homogeneous
- Dynamic Mixture ACE modeling could find unknown homogeneous groups

State Space ACE NLSY Analyses Conclusions

Future Work

- ► Incorporation of SES
- Mixture on larger sample: memory issues
- Combinations of growth trends and autoregressive dynamics in state space ACE models
- Feedback between environment and phenotype?
- Further autoregressive relationships between ACE components?

Development and Psychopathology 25 (2013), 7–16 © Cambridge University Press 2013 doi:10.1017/S0954579412000867

SPECIAL SECTION ARTICLE

Phenotype–environment correlations in longitudinal twin models

CHRISTOPHER R. BEAM AND ERIC TURKHEIMER

University of Virginia

- Simulations that suggest feedback loop between environments and phenotype
- Changing the Gene-Environment correlation within families

State Space ACE NLSY Analyses Conclusions

Acknowledgments

- "NLSY Kinship Links: Reliable and Valid Sibling Identification" NIH R01 HD065865
- Advisors: Joseph L. Rodgers & Hairong Song
- NlsyLinks Development Team: Will Beasley, Joe Rodgers, David Bard, Kelly Meredith
- OpenMx Development Team: Steven Boker, Michael Neale, Hermine Maes, Timothy Brick, Ryne Estabrook, Timo von Oertzen, Joshua Pritikin

Thank You mhunter@ou.edu

iFACE

Molenaar (2010) "On the limits ..."

A Single Simulated Twin Pair with an Idiographic Filter ACE (iFACE) Model Fit as a State Space Model in OpenMx

Table : Autoregressive Parameters

Name	True Value	Est Value	True Prop	Est Prop
$areg_1$	0.7	0.646	-	-
$areg_2$	0.7	0.670	-	-
$creg_1$	0.7	0.750	-	-
$creg_2$	0.7	0.781	-	-
$ereg_1$	0.7	0.699	-	-
$ereg_2$	0.7	0.727	-	-
addcor: R	0.5	0.507	-	=

iFACE

Molenaar (2010) "On the limits ..."

Additive Genetics Parameters

Name	True Value	Est Value	True Prop	Est Prop
$\alpha_{tw1, v1}$	1.73	1.32	0.33	0.19
$\alpha_{tw1, v2}$	3.64	3.46	0.86	0.73
$\alpha_{tw1, v3}$	1.30	1.01	0.35	0.21
$\alpha_{tw1, v4}$	2.65	2.30	0.57	0.40
$\alpha_{tw2, v1}$	2.61	2.82	0.74	0.80
$\alpha_{tw2, v2}$	1.03	1.18	0.20	0.26
$\alpha_{tw2, v3}$	1.68	1.81	0.54	0.62
$\alpha_{tw2, v4}$	1.57	1.74	0.50	0.57

iFACE

Molenaar (2010) "On the limits ..."

Common Environments Parameters

Name	True Value	Est Value	True Prop	Estimated Prop
β_{v1}	1.00	0.96	0.11	0.10
β_{v2}	1.00	0.95	0.06	0.06
β_{v3}	1.00	0.91	0.21	0.17
β_{v4}	1.00	0.93	0.08	0.06
β_{v1}	1.00	0.96	0.11	0.09
β_{v2}	1.00	0.95	0.19	0.17
β_{v3}	1.00	0.91	0.19	0.16
β_{v4}	1.00	0.93	0.20	0.16

iFACE

Molenaar (2010) "On the limits ..."

Common Environments Parameters

Name	True Value	Est Value	True Prop	Est Prop
$\gamma_{tw1, v1}$	2.27	2.59	0.56	0.71
$\gamma_{tw1, v2}$	1.10	1.84	0.08	0.21
$\gamma_{tw1, v3}$	1.46	1.72	0.44	0.62
$\gamma_{tw1, v4}$	2.08	2.66	0.35	0.53
$\gamma_{tw2, v1}$	1.20	1.05	0.16	0.11
$\gamma_{tw2, v2}$	1.79	1.75	0.61	0.57
$\gamma_{tw2, v3}$	1.17	1.08	0.26	0.22
$\gamma_{tw2, v4}$	1.22	1.17	0.30	0.26

Linear Growth

Explicit and Recursive

Explicit

► Recursive

Linear Growth

Explicit and Recursive

- Explicit
- Linear

$$y_i = b_0 + b_1 t_i + e_i (5)$$

- Recursive
- Linear

$$y_{t+1} = y_t + b_1 + e_t \quad \text{with} \quad y_0 = b_0$$
 (7)

Linear Growth

Explicit and Recursive

- Explicit
- ► Linear

$$y_i = b_0 + b_1 t_i + e_i (5)$$

Quadratic

$$y_i = b_0 + b_1 t_i + b_2 t_i^2 + e_i (6)$$

- Recursive
- Linear

$$y_{t+1} = y_t + b_1 + e_t \quad \text{with} \quad y_0 = b_0$$
 (7)

Quadratic

$$y_{t+1} = y_t + b_1 + b_2 + 2b_2t + e_t$$
 with $y_0 = b_0$ (8)

Polynomial Growth

Explicit and Recursive

Explicit

$$y_i = b_0 + b_1 t_i + e_i (9)$$

$$y_i = b_0 + b_1 t_i + b_2 t_i^2 + e_i (10)$$

$$y_i = b_0 + b_1 t_i + b_2 t_i^2 + b_3 t_i^3 + e_i$$
 (11)

Recursive

$$y_{t+1} = y_t + b_1 + e_t \quad \text{with} \quad y_0 = b_0$$
 (12)

$$y_{t+1} = y_t + b_1 + b_2 + 2b_2t + e_t$$
 with $y_0 = b_0$ (13)

$$y_{t+1} = y_t + b_1 + b_2 + b_3 + 2b_2t + 2b_3t + 3b_3t^2 + e_t$$
 with $y_0 = b_0$

100 Time

Time-Varying Parameter 0.5

0.0

-0.2

Ó

50