

DHARMSINH DESAI UNIVERSITY, NADIAD FACULTY OF TECHNOLOGY B.TECH. SEMESTER IV CE

SUBJECT: (CE 417) Computer System Architecture

E	camination	: 3 rd Sessional		Seat No.	:(CE 103	
	ite	: 28/03/2017 : 10.30 AM to 11.45	DDI	Chat Marks		they On	_ _
	me			THE VIEW	i Ci i e.	COLL	
Q. a	1 Do as dire	cted ache coherence problem					[12]
b	State the	difference between antic	ipatory swapping	and demand swap	ping.		[2] [2]
c		e expression to find the					[2]
đ		e require Interrupt Flag					[2]
e f	Give an ex What is th	kample where write inva e difference between NI	lidate is good with MI and simple into	th respect to write errupt? Explain w	through protoco with an example.	ol.	[2] [2]
Q.2 a	What is in example w	y two of the following nterrupt vector table? E rith Conventional Interr	upt Vector Table	· i	of "Keyboard	ISR" with an	[12] [6]
ь		ESI protocol in detail w					[6]
C	-	w we can generate prio		he priority in all t	he Arbitration	l'echniques.	[6] Davy
	Explain ea	ch arbitration technique	in detail.	1			La la se
0.3	Do as direc	had					[12]
a a		nemory has a page of	size 1K words	. There are eight	pages and for	ur blocks. Th	
		memory page table con		_	. •		
			Page	Block			
			0	3			
	And the second		1	+ 1			
	•		6	2		1	4x P
	Make a list	of all virtual addresses			e fault if used h	v the CPU.	128
b	A CPU gen can hold a t of TLB tag	erates 32 bit virtual adotated of 128 page table of	dresses, the page entries and is 4 v	size is 4KB, the way set associative	processor has a	TLB which	
C	Describe the	e ways to increase the	speed of RAM in	nterface.		_	[4]
ď	What is the	function of TLB? Whi			implement TL	В.	[2]
4.			OF	K ,			ſ
Q.3 a	Do as direct How many many lines of	ted 128 X 8 RAM chips of the address bus mus	are needed to p t be used to acce	rovide a memory ess 2048 bytes of	capacity of 2 the memory?	048 bytes? H	ow [3]
b.	A CPII has	32 bit memory address	and a 256Kb ca	ache memory, the	e cache is organ	nized as a 4 w	nay [5]
.	set associati	ve cache with cache bl	ock size of 16 b	ytes.			
		e number of sets in the		1		7 16	12-14
	ii) What is t	he size of tag filled per	cache block?_			T AV	J(21)
	iii) What is t	the number and size of	comparators re	quired for tag ma	atching?		at cord
-	iv) How may	nv address bits are req	uired to find the	byte offset with	in a cache bloc	K? Sill	01
	v) What is the	ne total amount of extr	a memory (in b	ytes) required for	the tag bits?		(A)
. 1	Determine th	ne average access time	for the specific	ation given belo	w:		[4]
	A societ time	of the cache = 5 ns.	Cache hit rate =	= 80 percent.			
	Access time	of the main memory =	=100ns. Main m	emory hit rate =	99.5 percent.		
	ccess time	of the virtual memory	r=10 ms.	1 3			
			W. G.				
	ta	2 H, ta,	+ (۱-۲) حسر	141		tai =	- 100 mg
	16.		-				