CLAIMS:

- 1. A method for synthesizing a peptide dimer, comprising:
- (a) providing a linking moiety L_K having first and second functional groups capable
 of serving as initiation sites for peptide synthesis, and a third functional group attachable to a solid support;
 - (b) binding the linking moiety L_K to a solid support through the third functional group;
 - (c) synthesizing a first peptide segment at the first functional group and a second peptide segment at the second functional group, wherein each of said first and second peptide segments contain two cysteine residues positioned to allow intramolecular cyclization through a disulfide bond:
 - (d) oxidizing the compound provided in step (c) in a manner effective to promote formation of disulfide bonds between cysteine residues in the same peptide segment while minimizing formation of disulfide bonds between cysteine residues in different peptide segments.
 - 2. The method of claim 1, wherein step (d) comprises treatment with an oxidizing composition containing an oxidizing reagent of a type and in an amount effective to minimize reaction products in which a cysteine residue of the first peptide segment binds to a cysteine residue of the second peptide segment.
 - 3. The method of claim 2, wherein the oxidizing reagent is dimethyl sulfoxide.
- 4. The method of claim 3, wherein the oxidizing composition comprises approximately 15% to 100% (v/v) dimethyl sulfoxide.
 - 5. The method of claim 4, wherein the oxidizing composition comprises approximately 50% to 100% (v/v) dimethyl sulfoxide.
 - 6. The method of claim 5, wherein the oxidizing composition comprises approximately 50% to 100% (v/v) dimethyl sulfoxide.

30

10

15

20

- 7. The method of claim 6, wherein the oxidizing composition comprises approximately 80% to 100% (v/v) dimethyl sulfoxide.
- 8. The method of claim 7, wherein the oxidizing composition comprises approximately 100% (v/v) dimethyl sulfoxide.

9. The method of claim 1, wherein:

5

20

the first peptide segment is approximately 10 to 40 amino acid residues in length,

binds to the erythropoietin receptor, and contains a sequence of amino acids

X₃X₄X₅GPX₆TX₇X₈X₉ (SEQ ID NO: 1) wherein each amino acid is indicated by standard oneletter abbreviation, X₃ is C or homocysteine (Hoc), X₄ is R, H, L or W, X₅ is M, F, I or norleucine (J), X₆ is selected from any one of the 20 genetically coded L-amino acids and J, X₇ is

W, 1-naphthylalanine (B) or 2-naphthylalanine (U), X₈ is D, E, I, L or V, and X₉ is C or Hoc;

and

the second peptide segment is approximately 10 to 40 amino acid residues in length, binds to the erythropoietin receptor, and contains a sequence of amino acids $X'_3X'_4X'_5GPX'_6TX'_7X'_8X'_9$ (SEQ ID NO: 2) wherein each amino acid is indicated by standard one-letter abbreviation, X'_3 is C or Hoc, X'_4 is R, H, L or W, X'_5 is M, F, I or J, X'_6 is selected from any one of the 20 genetically coded L-amino acids and J, X'_7 is W, B or U, X_8' is D, E, I, L or V, and X'_9 is C or Hoc.