

Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 776 661 A1 (11)

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 04.06.1997 Bulletin 1997/23 (51) Int. Cl.6: A61K 31/135

(21) Application number: 96119031.1

(22) Date of filing: 26.10.1993

(84) Designated Contracting States: AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

(30) Priority: 27.10.1992 JP 310772/92

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 93923058.7 / 0 667 768

(71) Applicants:

NIPPON KAYAKU KABUSHIKI KAISHA Tokyo 102 (JP)

 ORION-YHTYMA OY 02200 Espoo (FI)

(72) Inventors:

 Itoh, Junpei Fukushima-shi, Fukushima-ken, 960 (JP)

· Miyazaki, Osamu Kawaguchi-shi, Saitama 333 (JP)

· Ekimoto, Hisao Kita-ku, Tokyo 115 (JP)

· Koyama, Michinori Adachi-ku, Tokyo 120 (JP) · Saino, Tetsushi Yono-shi, Saitama 338 (JP)

· Kangas, Lauri, c/o Orion-yhtyma Oy 02101 Espoo (FI)

· Warri, Anni, Nat.inst.of Health, Lab.of Tumor Bethesda, Maryland 20892 (US)

· Granberg, Christer, c/o Orion-yhtyma Oy 02101 Espoo (FI)

(74) Representative: Türk, Gille, Hrabal, Leifert Brucknerstrasse 20 40593 Düsseldorf (DE)

Remarks:

- This application was filed on 28 11 1996 as a divisional application to the application mentioned under INID code 62.
- The application is published incomplete as filed (Article 93 (2) EPC). The point in the description or the claim(s) at which the omission obviously occurs has been left blank.

(54)Combined preparation of antiestrogen and glucocorticoid for the treatment of autoimmune

(57)Products containing a nonsteroidal anti-estrogen or a pharmaceutically acceptable salt thereof and a glucocorticoid are disclosed as a combined preparation for concomitant use in treatment of auto-immune diseases.

FIG. I

SURVIVAL TIME (WEEKS)

Description

[Technical Field]

The present invention relates to use of nonsteroidal anti-estrogen compounds (hereinafter referred to as nonsteroidal anti-estrogens) such as toremitiene, expected as a remedy for autoimmune diseases.

The autoimmune diseases include collagen diseases and the like. In light of affected parts by the diseases, there are mentioned, for example, degenerative diseases of supporting tissues and connective tissues; autoimmune degenerative diseases of salivary glands, particularly Sjögren's disease; autoimmune degenerative diseases of kidneys, particularly systemic lupus erythematodes and glomerulonephritis; autoimmune degenerative diseases of joints, particularly rheumatoid arthritis; and autoimmune degenerative diseases of blood vessels such as generalized necrotizing angitis and granulomatous angitis; and multiple sclerosis.

[Background Art]

Immunosuppressants, nucleic acid antagonists, antimetabolites, etc., are used in the medicinal treatment of autoimmune diseases today. Anti-inflammatory agents, anticoagulants, etc., are also used in the symptomatic therapies of the diseases. The effects of these agents are, however, not yet sufficient.

It is known that the immunosuppressants have side effects of provoking diabetes, renal disorders, infectious diseases, etc. Also the use of the nucleic acid antagonist or antimetabolite is frequently accompanied by side effects such as hepatic disorders and medullary disorders. Thus the medicinal treatment of autoimmune diseases is so far very insufficient.

It has been demanded to develop a remedy for autoimmune diseases which acts on the immune system and which has a function mechanism different from that of conventional drugs for the diseases and less serious side effects.

[Disclosure of Invention]

After intensive investigations made for the purpose of finding the above-described remedy, the present inventors have found that nonsteroidal anti-estrogens have an excellent therapeutic effect on the autoimmune diseases and thus, based on this finding, completed the present invention.

The present invention relates to a remedy for autoimmune diseases which comprises as active ingredient a nonsteroidal anti-estrogen or a pharmaceutically acceptable salt thereof.

[Brief Description of Drawings]

35

Fig. 1 shows survival times of animals (NZBxNZW F1 mice:B/W F1 mice) which accepted different doses of toremifene.

[Best Mode for Carrying Out the Invention]

The nonsteroidal anti-estrogen compounds usable in the present invention are those having a triphenyl C_2 - C_5 alkene or triphenyl C_2 - C_5 alkane skeleton. Preferably, they are C_2 - C_5 alkenes or C_2 - C_5 alkanes having three phenyl substituents at the 1-position and 2-position, wherein any of the phenyl groups may have a substituent such as a monoor di-lower alkyl (C_1 - C_3) amino lower alkoxy (C_1 - C_3) group, or a hydroxyl group, or the alkyl group in the above alkenes or alkanes may have a substituent such as a halogen.

Examples of these compounds include toremifene (JP-B-4 19973), tamoxifen (JP-B-59 21861), 4-hydroxytamoxifen (JP-A-54 44644), 3-hydroxytamoxifen (JP-A-57 122049) and N-demethyltoremifene or 4-hydroxytoremifene (JP-A-3 163015). Toremifene is particularly preferred. It is well-known that these compounds have an anti-neoplastic effect (see Cancer Chemotherapy and Pharmacology, <u>17</u>, 109-113 (1986) and the above-mentioned patent publications).

The pharmaceutically acceptable salts thereof include, for example, hydrochlorides, sulfates, citrates and phosphates.

Drugs usable in combination with the nonsteroidal anti-estrogens in the medicinal treatment of autoimmune diseases include glucocorticoids (e.g. prednisolone, prednisone, cortisol). Prednisolone is preferred.

The glucocorticoids themselves have an effect of treating the autoimmune diseases. The nonsteroidal anti-estrogens or a pharmaceutically acceptable salt thereof according to the present invention concomitant with the glucocorticoids synergistically improve the effect of treating.

The remedy of the present invention particularly exhibits an excellent remedial effect on systemic lupus erythematodes.

Therefore the present invention relates to the following:

- (i) a remedy for autoimmune diseases which comprises as active ingredient a nonsteroidal anti-estrogen or a pharmaceutically acceptable salt thereof;
- (ii) a remedy recited in (i), wherein the nonsteroidal anti-estrogen is a compound having a triphenyl C_2 - C_5 alkane or triphenyl C_2 - C_5 alkane skeleton;
- (iii) a remedy recited in (i) or (ii), wherein the active ingredient is toremifene or a pharmaceutically acceptable salt thereof:
- (iv) a remedy recited in (i) or (ii), wherein the autoimmune diseases are collagen diseases, autoimmune degenerative diseases of kidneys such as nephritis, particularly glomerulonephritis, and autoimmune degenerative diseases of blood vessels, salivary glands and joints;
- (v) a remedy recited in (i) or (ii), wherein the autoimmune diseases are systemic lupus erythematodes; and
- (vi) a remedy recited in (i) or (ii) for concomitant use with a glucocorticoid.

The pharmaceutical composition of the present invention is administered orally, parenterally or intravenously.

Usually, a pharmaceutically effective amount of the active ingredient is used in combination with a suitable medicinal carrier or other auxiliaries. The term "pharmaceutically effective amount" herein means an amount capable of exhibiting the intended pharmacological activity without causing unfavorable side effects. The accurate amount varies in each case depending on various factors such as administration methods, individual natures of the patients and situations in which the patient accepts the remedy and, as a matter of course, structures of derivatives to be administered.

Dose of the active ingredient for adult is usually 10 to 1000 mg/day, preferably 20 to 500 mg/day, more preferably 30 to 300 mg/day.

In the case of the concomitant use, dose of the glucocorticoid for adult is 1 to 100 mg/day, preferably 2 to 60 mg, and that of the nonsteroidal anti-estrogen or the pharmaceutically acceptable salt thereof for adult is 10 to 700 mg/day, preferably 20 to 500 mg/day, more preferably 30 to 300 mg/day.

The medicinal carrier or other auxiliaries generally usable in combination with the active ingredient according to the present invention may be any of solid and liquid ones and usually selected in consideration of an administration route. Examples of the solid carrier include lactose, sucrose, gelatin and agar, and those of the liquid carrier include water, syrup, peanut oil and olive oil. Other suitable carriers and auxiliaries known by those skilled in the art are also usable. The active ingredient according to the present invention can be combined with the carrier or other auxiliaries to form any of various acceptable preparations such as tablets, capsules, suppositories, liquid, emulsion and powder.

In the preparations of the remedy of the present invention, the amount of the nonsteroidal anti-estrogen or the pharmaceutically acceptable salt thereof can widely vary depending on the preparation, etc. Usually, the amount is $0.01 \sim 100\%$ by weight, preferably $0.1 \sim 70\%$ by weight, and the balance contains the medicinal carrier or other auxiliaries.

MRL/Mp-lpr/lpr mice spontaneously develop a lethal glomerulonephritis, angitis, sialadenitis, polyarthritis, etc., concurrently with the deposition of an immune complex with age. Therefore, they are widely used as experimental models for human systemic lupus erythematodes, Sjögren's disease, rheumatoid arthritis and autoimmune angitis such as multiple arteritis.

The present invention will be explained referring to examples on suppression of lymphadenopathy glomerulone-phritis, angitis, sialadenitis and arthritis of MRL/Mp-lpr/lpr mice with the nonsteroidal anti-estrogen compound according to the present invention.

The nonsteroidal anti-estrogen such as toremifene and the pharmaceutically acceptable salt thereof according to the present invention exhibit an excellent remedial effect on degenerative diseases such as autoimmune diseases, for example, systemic lupus erythematodes.

Example 1

5

10

15

35

45

50

<u>Treatment of spontaneous autoimmune diseases of MRL/Mp-lpr/lpr mice by administration of 2[4-(Z)-4-chloro-1,2-diphenyl-1-butenyl]phenoxy-N,N-dimethylethylamine citrate (toremifene citrate)</u>

Eight-week old female MRL/Mp-lpr/lpr mice (Clea Japan, Inc.) were used in this examination. Toremifene citrate (JP-B-4 19973) was suspended in carboxymethylcellulose to prepare a 0.5% suspension. This compound (100 mg/kg) was orally administered to each mouse once a day for 13 weeks.

(A) Inhibition of swelling of spleen and lymph node of MRL/Mp-lpr/lpr mice with toremifene citrate

Repeated oral administration of 100 mg/kg of toremifene citrate once a day for 13 weeks inhibited the swelling of the spleen and lymph node of each mouse (see Table 1).

The spleen and lymph nodes of the MRL/Mp-lpr/lpr mice are seriously swollen with age due to the presence of the

lymphoproliferation gene (lpr). The lpr codes for the Fas antigen in each mouse. However, in the MRL/Mp-lpr/lpr mice, an abnormality of the genes disturbs the expression of the Fas antigen. As a result, autoreactive T-cells are not subjected to negative selection through the Fas antigen in the thymus and appear in the peripheral tissues to cause the swelling of the lymphoid organs and autoimmune symptoms. The presence of the autoreactive T-cells was confirmed also in the autoimmune diseases of human beings, such as rheumatoid arthritis.

The results of this study indicated that the nonsteroidal anti-estrogen compounds such as toremifene citrate are capable of inhibiting the appearance of the autoreactive T-cells, thereby suppressing the swelling of spleen and lymph node to treat the autoimmune diseases.

Table 1: Effect of toremifene citrate¹⁾ on swelling of spleen and lymph node MRE/Mp-lpr/lpr mice

Group	Number of animals	Spleen weight 4) Body weight	Lymph node ⁵⁾ weight Body weight
Control 2)	11	2.34±0.74 ³⁾	6.77±1.70
Toremifene citrate treatment	12	1.38±1.06	3.11±1.43

- 1) Toremifene citrate (100 mg/kg) was orally administered to 8-week old mice once a day for 13 weeks.
- 2) Only 0.5% carboxymethylcellulose was given to the mice of the control group.
- 3) Standard deviation
- 4) Spleen weight/body weight = Weight of spleen × 100 mouse
- 5) Lymph node weight/body = $\frac{\text{Weight of lymph node}}{\text{Body weight of mouse}} \times 100$

(B) Suppression of renal disorder of MRL/Mp-lpr/lpr mouse with toremifene citrate

An autopsy was performed on the mice of the control group and the toremifene citrate treated group after the completion of the administration to examine their kidneys pathohistologically. The blood urea nitrogen (BUN) of the serum in each group was examined to confirm changes in the renal function. As shown in Table 2, toremifene citrate ameliorated the glomerulonephritis and healed the renal function in the MRL/Mp-lpr/lpr mice.

The glomerulonephritis of the MRL/Mp-lpr/lpr mice is caused by the deposition of immunocomplexes. Also in the

10 ,

15

20

25

30

35

45

50

case of the autoimmune diseases such as systemic lupus erythematodes (SLE) of human, the patients suffer from glomerulonephritis concurrent with the deposition of the immunocomplex. The results indicated that the nonsteroidal anti-estrogen compounds such as toremifene citrate are effective remedies for the degenerative diseases of the kidney, such as the SLE with renal syndrome and glomerulonephritis.

Table 2

Improvement of renal function and amelioration of glomerulonephritis of MRL/Mp-lpr/lpr mice with toremifene citrate						
Group Number of animals Glomerulonephritis 1) BUN (mg/dl)2)						
Control	11	$2.4 \pm 0.7^{(3)}$	43.1±23.9			
Toremifene citrate treatment	12	1.2 ± 0.7	24.6±4.9			

¹⁾ The kidney was fixed in 10% buffered formalin, and then paraffin sections thereof were prepared by an ordinary method to prepare HE and PAS stained specimens. The extent of the disorder of the renal glomeruli was scored and classified into the following groups:

Twenty-five renal glomeruli were observed for each mouse and the average thereof was calculated.

25

30

5

10

15

(C) Inhibition by toremifene citrate of sialadenitis, angitis and arthritis of MRL/Mp-lpr/lpr mice

The salivary gland, renal blood vessel and knee joint of each mouse in the control group and the toremifene citrate treated group were histopathologically examined.

As shown in Table 3, toremifene citrate prevented the mice from being attacked by sialadenitis, angitis and arthritis. These results indicated that the nonsteroidal anti-estrogen compounds such as toremifene citrate and tamoxifen citrate can be used as the remedy for autoimmune sialadenitis (Sjögren's disease), autoimmune arthritis (chronic articular rheumatism) and autoimmune angitis (necrotizing angitis and granulomatous angitis).

Table 3

Effect of toremifene citrate for preventing MRL/Mp-lpr/lpr mice from being attacked by sialadenitis, angitis and arthritis						
Group Number of animals Sialadenitis 1) Angitis 1) Arthritis						
Control	11	2.2±0.6 ²⁾	2.1±0.7	1.6±0.9		
Toremifene citrate treatment	12	0. 9± 0.8	0.9±0.8	0.4±0.5		

¹⁾ The salivary gland, kidney and knee joint were fixed in 10% buffered formalin, and then paraffin sections thereof were prepared by an ordinary method to prepare HE and PAS stained specimens. The extent of the disorder was scored and classified into the following groups:

1 (slight disorder),

2 (medium disorder), and

3 (heavy disorder).

2) Standard deviation.

55

45

^{0 (}no disorder),

^{1 (}slight disorder),

^{2 (}medium disorder), and

^{3 (}heavy disorder).

²⁾ The BUN was determined with a Fuji Dry Chem Analyzer.

Standard deviation.

^{0 (}no disorder),

Example 2

Effect of concomitant use of toremifene citrate with glucocorticoid on MRL/Mp-lpr/lpr mice

Twelve-week old female MRL/Mp-lpr/lpr mice were used in the examination. Thirty miligrams per kg or 15 mg/kg of toremifene citrate (TOR) was orally administered to each mouse twice a day for 9 weeks from the 12th week to the 21st week. A glucocorticoid (prednisolone), 8, 4 and 2 mg/kg/day, were subcutaneously administered to mice once a day as a positive control drug. The concomitant use of tremifene with the glucocorticoid was also carried out according to the same regimen as above. The kidney was taken out from each mouse the day after the completion of the whole administration period and fixed in a PLP fixative. Frozen sections were made from the fixed kidney and used for an immunostaining with an anti-Mac-2 monoclonal antibody (Hybritec Inc., San Diego, USA). The number of Mac-2 positive cells (activated macrophages) invading each of 10 to 20 glomeruli of the kidney, which is hereinafter referred to as Mac 2 number, was counted under a microscopy to determine an average Mac 2 number per glomerulus. The degree of severeness of glomerulonephritis was estimated in terms of the average Mac 2 number (n = 13 for each group). Table 4 shows the results.

Table 4

Suppression of glomerulonephritis of MRL/Mp-lpr/lpr mice by con- comitant use of toremifene citrate with glucocorticoid				
Group	-	Mac 2 number		
Control		7.5 ± 1.5		
Toremifene citrate (TOR)	30 mg/kg	6.2 ± 1.0		
	15 mg/kg	6.5 ± 1.2		
Prednisolone (P)	8 mg/kg	5.8 ± 0.8		
	4 mg/kg	7.9 ± 0.7		
	2 mg/kg	9.4 ± 1.0		
Control		11.3 ± 1.2		
Prednisolone (P)	4 mg/kg	9.1 ± 1.4		
	2 mg/kg	7.7 ± 1.0		
P 4 mg/kg & TOR 30 mg/kg	(concomitant use)	4.1 ± 0.5*		
P 4 mg/kg & TOR 15 mg/kg	(concomitant use)	4.3 ± 0.5*		
P 4 mg/kg & TOR 7.5 mg/k	3.5 ± 0.5*			
P 2 mg/kg & TOR 30 mg/kg	3.6 ± 0.7*			
P 2 mg/kg & TOR 15 mg/kg	2.8 ± 0.5*			
P 2 mg/kg & TOR 7.5 mg/kg	g (concomitant use)	4.3 ± 0.6*		

^{*} P < 0.01 (t-test)

All the groups treated by concomitant use of toremifene citrate (TOR) with prednisolone (P) exhibited significant decrease in Mac 2 number as compared with the control and the prednisolone treated group. On the other hand, the prednisolone treated group and the toremifene citrate treated group did not exhibit any significant decrease in Mac 2 number as compared with the control. The results of these tests indicates that the concomitant use of the both drugs synergistically suppresses the glomerulonephritis.

Example 3

Comparison of survival time

NZB x NZW mice (E/W F1 mice) were used as a pathological model of autoimmune diseases (systemic lupus erythematodes). Effect of toremifene citrate on the survival time of the animals was investigated.

Experimental animals:

FI-hybrids of NZB (female) and NZW (male) mice (B/W F1 mice): Imported from Bomholtgaard, Denmark at the age of five weeks.

Test groups and doses:

Control (male):

administration polyethyleneglycol (peg) 3 times a week per os

Control (female):

20

35

45

50

administration peg 3 times a week per os

Toremifene citrate 30 mg/kg/day:

administration 70 mg/kg in polyethylene glycol solution 3 times a week per os to female NZB x NZW F1 mice Toremifene citrate 3 mg/kg/day:

administration 7 mg/kg in polyethylene glycol solution 3 times a week per os to female NZB x NZW F1 mice

The survival time of the animals in different test groups is presented in Fig. 1. All but two female control animals have died during the almost two years' follow-up time. Fifty percents of the animals in this group died before/at the age of 40 weeks, and 20% (4/20) were alive after one year.

In the male control group, five animals died during the first 24 weeks (not shown in Fig. 1) due to aggressive behaviour and thereby acquired infection. These five were excluded from the results. Forty-seven percents of the male control mice are still alive after almost two years' time.

In both toremifene treatment groups the life span of the animals has lengthened clearly when compared to the female control animals. In the 3 mg/kg toremifene treatment group only one (1/20) animal had died at/before the age of 40 weeks and three (3/20) animals in the 30 mg/kg toremifene group.

After one year 80% and 85% of the animals were alive in the 3 mg/kg and 30 mg/kg to remifere treated groups, respectively, which is nearer the percentage of the male control animals (\approx 90%) than that of the female control group (20%).

Moreover, 25% (5/20) and 10% (2/20) of the animals are still alive after almost two years' time in the lower and higher toremifene dosage group, respectively.

The follow-up data of 60 female and 15 male F1-hybrids of NZB x NZW F1 mice (B/W F1 mice) show that toremifene treatment has clearly extended the life span of female mice.

Example 4

Examples of preparations comprising the nonsteroidal anti-estrogen or the pharmacologically acceptable salt thereof as active ingredient will be given below, which by no means limit the preparations of the present invention.

Preparation Example 1

Formulation of prepared 200 mg tablet.				
Toremifene citrate	20 mg			
Starch	85 mg			
Lactose	90 mg			
Magnesium stearate	5 mg			

Preparation Example 2

d	5		

Formulation of prepared 200 mg tablet.			
Tamoxifen citrate	20 mg		
Starch	85 mg		
Lactose	90 mg		
Magnesium stearate	· 5 mg		

15

45

Claims

- 1. Products containing a nonsteroidal anti-estrogen or a pharmaceutically acceptable salt thereof and a glucocorticoid as a combined preparation for concomitant use in treatment of auto-immune diseases.
- 2. A product according to claim 1, wherein said nonsteroidal anti-estrogen is a compound having a triphenyl C₂-C₅ alkene or triphenyl C₂-C₅ alkane skeleton.
- 3. A product according to claim 1, wherein said nonsteroidal anti-estrogen compound is toremifene.
- A product according to claim 1, wherein said autoimmune diseases are autoimmune degenerative diseases of kidneys.
- A product according to claim 1, wherein said autoimmune diseases are autoimmune degenerative diseases of salivary glands.
- A product according to claim 1, wherein said autoimmune diseases are autoimmune degenerative diseases of blood vessels.
- 7. A product according to claim 1, wherein said autoimmune diseases are systemic lupus erythematodes.
- 8. A product according to claim 1, wherein said autoimmune diseases are glomerulonephritis.
- 9. A product according to claim 1, wherein said nonsteroidal anti-estrogen compound is toremifene and said autoimmune diseases are autoimmune degenerative diseases of
- 10. Use of a nonsteroidal anti-estrogen or a pharmaceutically acceptable salt thereof for the preparation of a medicament for concomitant use with a glucocorticoid for treating autoimmune diseases.
- 11. A use according to claim 10, wherein said nonsteroidal anti-estrogen is a compound having a triphenyl C₂-C₅ alkene or triphenyl C₂-C₅ alkane skeleton.
- 12. A use according to claim 10, wherein said nonsteroidal anti-estrogen compound is toremifene.
 - A use according to claim 10, wherein said autoimmune diseases are autoimmune degenerative diseases of kidneys.
 - 14. A use according to claim 10, wherein said autoimmune diseases are autoimmune degenerative diseases of salivary glands.
 - 15. A use according to claim 10, wherein said autoimmune diseases are autoimmune degenerative diseases of blood vessels.

- 16. A use according to claim 10, wherein said autoimmune diseases are systemic lupus erythematodes.
- 17. A use according to claim 10, wherein said autoimmune diseases are glomerulonephritis.
- 18. A use according to claim 10, wherein said nonsteroidal anti-estrogen compound is toremifene and said autoimmune diseases are autoimmune degenerative diseases of joints.

EUROPEAN SEARCH REPORT

Application Number EP 96 11 9031

Category	Citation of document wit of relevant	h indication, where appropriate, passages	Relevant to claim	CLASSIFICATION OF TH APPLICATION (Int.CL6)
E	WO 93 22685 A (GO USA/DEPARTMENT OF * the whole docum	3 1-9	A61K31/135	
A		983, 000646451 T AL.: "Treatment of ocytopenic purpura."		
		•		
	·			
				TECHNICAL FIELDS SEARCHED (Int.Cl.6)
				A61K
			. `	·
			1.	
		· :		χ.
				·
		8		
			1	·
			1	
	The amount of the control of the con	a hanna dannar ann Fan alle a deile a	┪	
	Place of search	s been drawn up for all claims Date of completion of the search		Examiner
	THE HAGUE	24 March 1997	Kla	iver, T
X: par Y: par doc	CATEGORY OF CITED DOCUM ticularly relevant if taken alone ticularly relevant if combined with ument of the same category	AENTS T: theory or princi E: earlier patent 6 after the filing another D: document cited L: document cited	ple underlying the ocument, but publidate in the application for other reasons	invention lished on, or
A: tecl	nological background -written disclosure			

	27		9.			•	
7 . 1			_			19	•
·					÷		
				a. #			
	÷						
				<u></u>			
			•				-
	3.4	• • • • • • • • • • • • • • • • • • •		, C.,			,
Ť							
				(4)			
					<i>-</i>		
•		engile, e engile, e			8	16.	
			*				
		at in			,		
	4						
						•	
					20		
*							

SURVIVAL TIME (WEEKS)

			•
			•
			• 7
			⇔
4			•
· ·		• 9	**
	,	*	V.,
,		•	
			`
, i	<i>h.</i>		•
	*		÷.
	•	9	•
		-	
		. i	Ž.
			. ·
			4.4
			4.
		·	y e
	; (*)	*	
		4	
	•		*
		*	,
* .		1	
	, ž		
*	4.5	•	