Лекции Прохорова М. Н. по математическому анализу

Лекция 16.

Обозначим $\Delta X_i = (0,...,0,\Delta x_i,0,...,0)$ и назовём приращением функции f(X) по -той переменной величину $\Delta_i f(X) = f(X + \Delta X_i) - f(X)$.

Определение. Частной производной по переменной x_i в точке X называется предел $f'_{x_i} = \frac{\partial f}{\partial x_i} = \lim_{\Delta x_i \to 0} \frac{\Delta_i f(X)}{\Delta x_i}$, если он существует.

Частную производную функции можно рассматривать, как производную функции одной переменной x_i , когда все остальные переменные фиксированы.

Рисунок.

Примеры.

Частные производные $\left\{\frac{\partial f}{\partial x_i}\right\}$ можно рассматривать, как функции на тех подмножествах в \mathbf{R}^n , где они определены. И можно, в свою очередь, рассмотреть частные производные этих функций $\frac{\partial^2 f(X)}{\partial x_j \partial x_i} = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i}\right)$, которые назовём вторыми частными производными функции f(X).

Пример. Для n=2 имеются две частные производные 2-го порядка $\frac{\partial^2 f}{\partial x^2}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)$ и $\frac{\partial^2 f}{\partial y^2}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)$ по переменным x и y и две «смешанные» производные второго порядка $\frac{\partial^2 f(X)}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)$ и $\frac{\partial^2 f(X)}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)$.

Определение. Смешанной частной производной n -того порядка назовём частную производную от производной (n-1)–го порядка.

Пример.
$$\frac{\partial}{\partial y} \left(\frac{\partial^2 f}{\partial x \partial y} \right) = \frac{\partial^3 f}{\partial y \partial x \partial y} , \frac{\partial}{\partial y} \left(\frac{\partial^2 f}{\partial y \partial x} \right) = \frac{\partial^3 f}{\partial y^2 \partial x}.$$

Пример.

Возникает вопрос, будут ли равны частные производные, взятые по одним и тем же переменным одинаковое число раз, но в разном порядке, как в примере выше? Ответ даётся следующей теоремой:

Теорема (о смешанных производных).

Пусть функция f(X)=f(x,y) определена вместе со своими производными $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial x\partial y}$, $\frac{\partial^2 f}{\partial y\partial x}$ в некоторой окрестности точки X_0 и пусть функции $\frac{\partial^2 f}{\partial x\partial y}$ и $\frac{\partial^2 f}{\partial y\partial x}$ непрерывны в точке X_0 . Тогда

$$\frac{\partial^2 f(X_0)}{\partial x \partial y} = \frac{\partial^2 f(X_0)}{\partial y \partial x}.$$
 (*)

Доказательство.

Замечание. Если вторые частные производные разрывны в точке, то равенство неверно. Пример – для функции f(x,y) =

$$\begin{cases} 0, \text{ при } (x, y) = (0,0); \\ \frac{x^2 y}{x^2 + y^2} & \text{при } (x, y) \neq (0,0). \end{cases}$$

в точке $X_0=0\,$ равенство (*) неверно, т.к. вторые производные разрывны.

Замечание. Эта теорема легко распространяется на любые смешанные производные, отличающиеся лишь порядком дифференцирования.

Например
$$\frac{\partial^3 f}{\partial y \partial x \partial y} = \frac{\partial^3 f}{\partial y^2 \partial x}$$
.

Определение. Пусть $\vec{\delta}=(\delta_1,...,\delta_n)$ единичный вектор $|\vec{\delta}|=1$, производной функции f(X) по направлению $\vec{\delta}$ в точке $X\in \pmb{R^n}$ называется правая производная по t функции $F(t)=f(x_1+t\delta_1,...,x_n+t\delta_1)$ в точке t=0 и обозначается $\frac{\partial f(X)}{\partial \vec{\delta}}=F'_+(0)$.

Замечание. Частные производные 1-го порядка функции совпадают с производными функции по направлению соответствующих базисных ортов.

Теорема. Если функция f(X) имеет в точке X_0 все непрерывные частные производные первого порядка, то приращение функции в точке X_0 соответствующее приращению аргумента $\Delta X = (\Delta x_1, ..., \Delta x_n)$ можно записать в виде $\Delta f(X_0) = \frac{\partial f}{\partial x_1}(X_0)\Delta x_1 + \cdots + \frac{\partial f}{\partial x_n}(X_0)\Delta x_n + o(\Delta \rho)$, где $\Delta \rho = |\Delta X| = \sqrt{\Delta x_1^2 + \cdots + \Delta x_n^2}$.

Доказательство.

Определение. Функция называется дифференцируемой в точке X_0 , если приращение функции в точке X_0 соответствующее приращению аргумента

 $\Delta X=(\Delta x_1,\dots,\Delta x_n)$ можно записать в виде $\Delta f(X_0)=A_1\Delta x_1+\dots+A_n\Delta x_n+o(\Delta\rho)$, где $\Delta\rho=|\Delta X|=\sqrt{\Delta x_1^2+\dots+\Delta x_n^2}$, $A_i\in {\pmb R}^n$ для всех i.

Теорема. Для того, чтобы функция была дифференцируема в точке, необходимо, чтобы она имела в этой точке частные производные первого порядка и достаточно, чтобы эти производные были непрерывны в точке.

Доказательство.

Примеры.

Определение. Главная линейная часть приращения дифференцируемой функции f(X) называется дифференциалом функции и обозначается, как $df(X) = \frac{\partial f}{\partial x_1}(X)\Delta x_1 + \dots + \frac{\partial f}{\partial x_n}(X)\Delta x_n = \frac{\partial f}{\partial x_1}(X)dx_1 + \dots + \frac{\partial f}{\partial x_n}(X)dx_n.$

Замечание. Последнее равенство верно в силу $\Delta x_i = dx_i$.

Касательная плоскость. Геометрический смысл дифференциала.

Рассмотрим поверхность, заданную уравнением z=f(x,y) в ${\it R}^3$. Кривые на поверхности, заданные уравнениями $x=x_0$ и $y=y_0$ обе проходят через точку $X_0=(x_0,y_0,f(x_0,y_0))$ и, если существуют частные производные $\frac{\partial f(X_0)}{\partial x}$, $\frac{\partial f(X_0)}{\partial y}$,

то касательные к этим кривым в точке X_0 задаются уравнениями:

$$\begin{cases} x = x_0 \\ z = f(X_0) + \frac{\partial f(X_0)}{\partial y}(y - y_0) \end{cases}$$

$$\begin{cases} y = y_0 \\ z = f(X_0) + \frac{\partial f(X_0)}{\partial x}(x - x_0) \end{cases}$$

Касательная плоскость к поверхности, если таковая существует, должна содержать обе эти прямые, откуда немедленно получаем уравнение касательной плоскости:

$$Z - z_0 = \frac{\partial f(X_0)}{\partial x}(x - x_0) + \frac{\partial f(X_0)}{\partial y}(y - y_0)$$
, где $z_0 = f(X_0)$. (**)

Если функции $\frac{\partial f(X)}{\partial x}$, $\frac{\partial f(X)}{\partial y}$ непрерывны в окрестности точки (x_0,y_0) , то расстояние между точкой поверхности $P\big(x,y,f(x,y)\big)$ и точкой касательной плоскости Q(x,y,Z), с теми же координатами (x,y) равно:

$$PQ=f(x,y)-rac{\partial f(X_0)}{\partial x}(x-x_0)+rac{\partial f(X_0)}{\partial y}(y-y_0)=o(
ho)$$
, где $ho=\sqrt{(x-x_0)^2+(y-y_0)^2}$, и мы видим, что это расстояние есть $o(
ho)=PQ \underset{
ho o 0}{\longrightarrow} 0.$

Рисунок.

Примеры.

Лекция 17.

Теорема.

Пусть функция f(X) дифференцируема в точке $X=(x_1,x_2,\dots,x_n)\in \pmb{R^n}$, а функции $x_i=\varphi_i(t)$ дифференцируемы в точке t, тогда производная функции $F(t)=f(\varphi_1(t),\dots,\varphi_n(t)$) равна

$$F'(t) = \frac{\partial f(X(t))}{\partial x_1} \varphi_1'(t) + \dots + \frac{\partial f(X(t))}{\partial x_n} \varphi_n'(t) = \frac{\partial f}{\partial x_1} \frac{dx_1}{dt} + \dots + \frac{\partial f}{\partial x_n} \frac{dx_n}{dt}.$$

Доказательство.

Теорема. Если в предыдущих обозначениях $x_i = \varphi_i(t_1, ..., t_m)$ функции от m переменных , то

$$\frac{\partial f(\varphi_1(t_1,\dots,t_m),\dots,\varphi_n(t_1,\dots,t_m))}{\partial t_j} = \sum_{k=1}^n \frac{\partial f}{\partial x_k} \frac{dx_k}{dt_j} \,.$$

Доказательство.

Примеры.

Теорема. Если f(X) дифференцируема в точке $X=(x_1,x_2,...,x_n)\in \pmb{R^n}$, то для неё имеет смысл производная по направлению любого единичного вектора $\vec{\theta}=(\theta_1,\theta_2,...,\theta_n), \left|\vec{\theta}\right|=1$ и

$$\frac{\partial f}{\partial \vec{\theta}} = \frac{\partial f}{\partial x_1} \theta_1 + \dots + \frac{\partial f}{\partial x_n} \theta_n .$$

Доказательство.

Замечание. Если функция имеет производную по любому направлению, то она может быть не дифференцируемой. **Пример.**

Замечание. Если $\vec{\theta}=(\cos\alpha_1,...,\cos\alpha_n)$ где $\{\alpha_i\}$ – углы между вектором $\vec{\theta}$ и осями OX_i , то предыдущая формула имеет вид

$$\frac{\partial f}{\partial \vec{\theta}} = \frac{\partial f}{\partial x_1} \cos \alpha_1 + \dots + \frac{\partial f}{\partial x_n} \cos \alpha_n . \tag{*}$$

Определение. Градиентом функции f(X) в точке $X=(x_1,x_2,...,x_n)\in \textbf{\textit{R}}^n$ называется вектор $\overrightarrow{grad}\ f(X)=(\frac{\partial f(X)}{\partial x_1},...,\frac{\partial f(X)}{\partial x_n}).$

Примеры.

Следствие. Производная по направлению вектора $\vec{\theta}$ от функции f(X) равна скалярному произведению вектора $\overrightarrow{grad} \ f(X)$ на вектор $\vec{\theta}$:

$$\frac{\partial f}{\partial \vec{\theta}} = \left(\overrightarrow{grad} \ f(X), \vec{\theta} \right) = grad_{\vec{\theta}} \ f(X).$$

Следствие. $\frac{\partial f}{\partial \vec{\theta}} \leq |\overrightarrow{grad} \ f(\vec{X})|$

Свойства вектора $\overrightarrow{grad} \ \overrightarrow{f(X)}$:

- 1) Его длина равна максимальному значению производной $\frac{\partial f}{\partial \vec{\theta}}$ по направлению функции f(X);
- 2) Если он ненулевой, то направлен в сторону максимального возрастания функции f(X);
- 3) Он перпендикулярен гиперповерхности уровня f(X) = c (будет доказано позднее).

Примеры.

Дифференциалы.

Рассмотрим функцию $U = f(X) = f(x_1, x_2, ..., x_n)$ независимых переменных $\{x_i\}$. Дифференциал функции f(X) равен

$$dU = \sum_{k=1}^{n} \frac{\partial U}{\partial x_k} dx_k$$

И зависит, вообще говоря, от $\{x_i\}$ и от $\{dx_i\}$.

Теорема. Пусть U(X) и W(X) функции, имеющие непрерывные частные производные 1-го порядка в точке X, тогда:

- 1) $d(\alpha U + \beta W) = \alpha dU + \beta dW$;
- 2) d(UW) = UdW + WdU;
- 3) $d\left(\frac{U}{W}\right) = \frac{WdU UdW}{W^2}$, если только $W(X) \neq 0$.

Доказательство.

Определение. Дифференциалом -го порядка функции U(X) называется $d^n U(X) = d \big(d^{n-1} U(X) \big).$

Примеры. a) $d^2U=\sum_{k=1}^n\sum_{l=1}^n\frac{\partial^2U}{\partial x_k\partial x_l}dx_kdx_l$. При вычислении полагаем $d(dx_i)=0$.

6)
$$d^k U(X) = \left(\frac{\partial}{\partial x_1} dx_1 + \dots + \frac{\partial}{\partial x_n} dx_n\right)^k U(X)$$

доказывается по индукции.

Теорема. Дифференциал k-го порядка функции U(X), где $X=(x_1,x_2,...,x_n)$ независимые переменные, равен

$$d^k U(X) = \left(\frac{\partial}{\partial x_1} dx_1 + \dots + \frac{\partial}{\partial x_n} dx_n\right)^k U(X).$$

Доказательство.

Если теперь $W(u_1, ..., u_m)$ функция зависимых переменных, и

$$u_{i} = u_{i}(x_{1}, x_{2}, ..., x_{n})$$
, то

$$dW = \sum_{i=1}^{m} \frac{\partial W}{\partial u_i} du_i = \sum_{i=1}^{m} \frac{\partial W}{\partial u_i} \left(\sum_{j=1}^{n} \frac{\partial u_i}{\partial x_j} dx_j \right) = \sum_{j=1}^{n} \left(\sum_{i=1}^{m} \frac{\partial W}{\partial u_i} \frac{\partial u_i}{\partial x_j} \right) dx_j = \sum_{j=1}^{n} \frac{\partial W}{\partial x_j} dx_j ,$$

и мы видим, что формула для 1-го дифференциала осталась прежней. Это свойство инвариантности 1-го дифференциала.

Но уже для второго дифференциала имеем:

$$d^{2}W = d(dW) = d\left(\sum_{i=1}^{m} \frac{\partial W}{\partial u_{i}} du_{i}\right) = \sum_{j=1}^{m} \sum_{i=1}^{m} \frac{\partial^{2}W}{\partial u_{j} \partial u_{i}} du_{j} du_{i} + \sum_{i=1}^{m} \frac{\partial W}{\partial u_{i}} d^{2}u_{i},$$

и видим, что в отличие от случая независимых переменных, появилось второе ненулевое слагаемое.

Примеры.