TD2 : Groupes abéliens finis

Exercice 1.

Montrer que les groupes $\mathbb{Z}/12\mathbb{Z} \times \mathbb{Z}/90\mathbb{Z} \times \mathbb{Z}/25\mathbb{Z}$ et $\mathbb{Z}/100\mathbb{Z} \times \mathbb{Z}/30\mathbb{Z} \times \mathbb{Z}/9\mathbb{Z}$ sont isomorphes.

Solution

On utilise le lemme chinois pour voir que les deux groupes sont isomorphes au groupe

$$(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}) \times (\mathbb{Z}/3\mathbb{Z} \times /Z/9\mathbb{Z}) \times (\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/25\mathbb{Z}).$$

Cette écriture est la décomposition en composantes p-primaire. On peut aussi écrire la décomposition en facteurs invariants de ces deux groupes, et l'on trouve :

$$\mathbb{Z}/30\mathbb{Z} \times \mathbb{Z}/900\mathbb{Z}$$
.

Exercice 2.

Montrer qu'un groupe abélien fini non cyclique possède un sous-groupe isomorphe à $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ pour un certain nombre premier p.

Solution

Le théorème du cours assure qu'un tel groupe G est isomorphe à un produit $\mathbb{Z}/d_1\mathbb{Z} \times \cdots \times \mathbb{Z}/d_r\mathbb{Z}$, avec $d_i \geq 2$ et $d_i|d_{i+1}$. Comme G n'est pas cyclique, on a $r \geq 2$. Il existe un facteur premier p de d_1 , alors p divise tous les d_i , et $\mathbb{Z}/p\mathbb{Z}$ est isomorphe à un sous-groupe de chacun des $\mathbb{Z}/d_i\mathbb{Z}$ (c'est le sous-groupe de p-torsion). Alors le sous-groupe de p-torsion de G est isomorphe à $(\mathbb{Z}/p\mathbb{Z})^r$, qui contient clairement un sous-groupe isomorphe à $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.

Exercice 3.

- 1. Combien y a-t-il de groupes abéliens de cardinal 360? Faire la liste complète de ces groupes.
- 2. Plus généralement, pour tout entier n, combien y a-t-il de groupes abéliens de cardinal n?

Solution

1. On écrit la décomposition en facteurs premiers de $360 = 2^3.3^2.5$. Alors si G est un groupe de cardinal 360, $T_2(G)$ est un groupe abélien de cardinal 2^3 , il y a donc 3 classes d'isomorphisme de tels groupes, à savoir $\mathbb{Z}/8\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ et $(\mathbb{Z}/2\mathbb{Z})^3$. De même, il y a exactement deux classes d'isomorphisme possibles pour $T_3(G)$, à savoir $\mathbb{Z}/9\mathbb{Z}$ et $(\mathbb{Z}/3\mathbb{Z})^2$, et $T_5(G)$ est isomorphe à $\mathbb{Z}/5\mathbb{Z}$. Par conséquent, il y a exactement 3.2 = 6 classes d'isomorphisme de groupes abéliens d'ordre 360, dont les décompositions p-primaires et en facteurs invariants sont les suivantes :

$$\mathbb{Z}/8\mathbb{Z} \times \mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \cong \mathbb{Z}/360\mathbb{Z}$$

$$(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}) \times \mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/180\mathbb{Z}$$

$$(\mathbb{Z}/2\mathbb{Z})^3 \times \mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/90\mathbb{Z}$$

$$\mathbb{Z}/8\mathbb{Z} \times (\mathbb{Z}/3\mathbb{Z})^2 \times \mathbb{Z}/5\mathbb{Z} \cong \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/120\mathbb{Z}$$

$$(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}) \times (\mathbb{Z}/3\mathbb{Z})^2 \times \mathbb{Z}/5\mathbb{Z} \cong \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/60\mathbb{Z}$$

$$(\mathbb{Z}/2\mathbb{Z})^3 \times (\mathbb{Z}/3\mathbb{Z})^2 \times \mathbb{Z}/5\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/30\mathbb{Z}.$$

2. On utilise la classification des classes d'isomorphisme de groupes abéliens finis. Notons $n = p_1^{\alpha_1} \dots p_r^{\alpha_r}$ la décomposition de n en facteurs premiers. Alors on sait que la classe d'isomorphisme d'un groupe abélien d'ordre n est caractérisée par ses facteurs invariants (d_1, \dots, d_s) qui sont des entiers > 1 tels que $d_i | d_{i+1}$ et $d_1 \dots d_s = n$. Par conséquent, chaque d_i se décompose $d_i = p_1^{\alpha_{i,1}} \dots p_1^{\alpha_{i,r}}$, avec les contraintes suivantes : pour tout j, $\alpha_{i,j} \le \alpha_{i+1,j}$ (pour tout i) et $\sum_{i=1}^s \alpha_{i,j} = \alpha_j$. Par conséquent, le nombre de choix possibles pour les a_i est exactement $\prod_{j=1}^r p(\alpha_j)$, où $p(\alpha)$ désigne le nombre de partitions de α , i.e. le nombre de façons d'écrire l'entier α comme une somme croissante d'entiers strictement positifs.

Exercice 4.

- 1. Le nombre de classes de conjugaison dans \mathfrak{S}_5 est le même que le nombre de groupes abéliens de cardinal 32 à isomorphisme près. Pourquoi?
- 2. Généraliser au nombre de classes de conjugaison dans \mathfrak{S}_n .

Solution

- 1. Les deux ensembles en question sont naturellement en bijection avec l'ensemble des partitions de 5.
- 2. Soit p un nombre premier. Notons G_n l'ensemble des classes d'isomorphisme de groupes abéliens de cardinal p^n , P_n l'ensemble des partitions de l'entier n et C_n l'ensemble des classes de conjugaison dans \mathfrak{S}_n . On dispose des applications suivantes

$$\varphi: P_n \to G_n$$

et

$$\psi: P_n \to C_n$$

où pour toute partition (n_1, \ldots, n_r) de n, $\varphi((n_1, \ldots, n_r))$ est la classe d'isomorphisme de $\prod_{i=1}^r \mathbb{Z}/n_i\mathbb{Z}$ et $\psi((n_1, \ldots, n_r))$ est la classe de conjugaison de la permutation $(1, 2, \ldots, n_1)(n_1 + 1, \ldots, n_1 + n_2) \ldots (n_1 + \cdots + n_{r-1} + 1, \ldots, n)$. On voit alors facilement que φ et ψ sont des bijections, donc $|C_n| = |G_n|$, i.e. il y a autant de classes de conjugaison dans \mathfrak{S}_n que de classes d'isomorphisme de groupes abéliens d'ordre p^n .

Exercice 5.

Soit G un groupe abélien fini. Montrer qu'il existe dans G un élément d'ordre égal à l'exposant de G (c'est-à-dire au ppcm des ordres des éléments de G).

Solution

— On commence par une preuve "élémentaire": montrons d'abord que pour tous $x, y \in G$ d'ordres respectifs m et n premiers entre eux, le produit xy est d'ordre m.n. Il est clair que $(xy)^{mn} = 1$ donc l'ordre de xy divise mn. Soit maintenant $k \geq 1$ tel que $(xy)^k = 1$. En élevant à la puissance n, on obtient $x^{kn} = 1$, donc m divise kn. Or m et n sont premiers entre eux, donc m divise k. Par symétrie, on a aussi que n divise k, donc mn divise k, donc mn divise k donc mn divise m

On décompose l'exposant de G en facteurs premiers : $\exp(G) = p_1^{\alpha_1} \dots p_r^{\alpha_r}$, avec les p_i premiers distincts. Par définition de l'exposant de G, pour tout $1 \le i \le r$, il existe $g_i \in G$ dont l'ordre est divisible par $p_i^{\alpha_i}$, disons égal à $p_i^{\alpha_i}.m_i$. Alors $g_i^{m_i}$ est d'ordre $p_i^{\alpha_i}$, et on a vu qu'alors l'élément $g := g_1^{m_1} \dots g_r^{m_r} \in G$ est d'ordre exactement $p_1^{\alpha_1} \dots p_r^{\alpha_r} = \exp(G)$.

— Une preuve moins élémentaire : le théorème de classification des groupes abéliens finis assure qu'il existe des entiers $2 \le d_1 | \dots | d_s$ tels que G soit isomorphe à $\mathbb{Z}/d_1\mathbb{Z} \times \dots \times \mathbb{Z}/d_r\mathbb{Z}$. Il est alors clair que $\exp(G) = d_r$ et que l'élément $(0, \dots, 0, 1) \in \mathbb{Z}/d_1\mathbb{Z} \times \dots \times \mathbb{Z}/d_r\mathbb{Z}$ est d'ordre d_r .

Exercice 6.

Soit G un groupe et soient H et K des sous-groupes de G. On suppose que :

- 1. $H \triangleleft G$ et $K \triangleleft G$;
- 2. HK = G;
- 3. $H \cap K = e$.

Montrer que G est isomorphe à $H \times K$.

Solution

Montrons d'abord que H et K commutent. Soient $h \in H$ et $k \in K$. Comme H est distingué dans G, on a $kh^{-1}k^{-1} \in H$, donc $hkh^{-1}k^{-1} \in H$. De même, K est distingué dans G, donc $hkh^{-1} \in K$, donc $hkh^{-1}k^{-1} \in K$. Donc $hkh^{-1}k^{-1} \in H \cap K = \{e\}$, donc hk = kh.

Montrons maintenant que pour tout $g \in G$, il existe un unique couple $(h,k) \in H \times K$ tel que g = hk. L'existence est assurée par l'hypothèse b). Pour l'unicité, soient $h,h' \in H$ et $k,k' \in K$ tels que hk = h'k'. Alors $kk'^{-1} = h^{-1}h'$ est dans $H \cap K$, donc l'hypothèse c) assure que $kk'^{-1} = h^{-1}h' = e$, donc h = h' et k = k', d'où l'unicité.

On considère alors l'application $\varphi: H \times K \to G$ définie par $\varphi(h,k) := hk$. Le fait que H et K commutent assure que φ est un morphisme de groupes. L'existence et l'unicité prouvée plus haut assurent que φ est une bijection. Donc G est bien isomorphe au groupe $H \times K$.

Exercice 7.

Soit K un corps et soit $G \subset K^*$ un sous-groupe fini d'ordre n. On va montrer que G est un groupe cyclique.

1. Montrer que l'ordre de tout élément de G divise n.

- 2. Soit d un diviseur de n et $x \in G$ d'ordre d. Soit H le sous-groupe cyclique de G engendré par x. Montrer que tout élément d'ordre d est dans H.
- 3. On note N(d) le nombre d'éléments de G d'ordre d. Montrer que N(d)=0 ou $\varphi(d)$, et que $\sum_{d|n,\ d>0} N(d)=n$.
- 4. Conclure.

En particulier, si p est un nombre premier, $(\mathbb{Z}/p\mathbb{Z})^* \simeq \mathbb{Z}/(p-1)\mathbb{Z}$, et si K est un corps fini, K^* est un groupe cyclique.

Solution

- 1. C'est le théorème de Lagrange.
- 2. Considérons le polynôme $P = X^d 1 \in K[X]$. Comme K est un corps, le polynôme P a au plus d racines dans K. Or tout élément du groupe H est d'ordre divisant d, donc tous les éléments de H sont des racines de P. Or le cardinal de H est égal à l'ordre de x, c'est-à-dire à d. Donc H contient toutes les racines de P dans K.
 - Soit maintenant $y \in G$ d'ordre d. Alors y est racine de P, donc y est dans H.
- 3. Supposons $N(d) \neq 0$. Alors il existe $x \in G$ d'ordre d. La question b) assure que tout les éléments d'ordre d dans G sont exactement les éléments d'ordre G dans G qui est un groupe cyclique d'ordre G. Or un groupe cyclique d'ordre G a exactement G0 éléments d'ordre G1, donc G2.
 - En outre, on peut partitionner G selon l'ordre des éléments, i.e. G est la réunion disjointe, pour d divisant n (par la question a)), des ensembles G_d formés des éléments d'ordre d. En calculant les cardinaux, on trouve donc $|G| = \sum_{d|n} |G_g|$, i.e. $n = \sum_{d|n} N(d)$.
- 4. La question c) assure que $n = \sum_{d|n} N(d)$. Or on sait que $n = \sum_{d|n} \varphi(d)$. Donc $\sum_{d|n} N(d) = \sum_{d|n} \varphi(d)$. Or pour tout $d|n, \ N(d) \leq \varphi(d)$, donc on a bien pour tout $d|n, \ N(d) = \varphi(d)$. En particulier, $N(n) = \varphi(n) > 0$, donc il existe un élément d'ordre n dans G, i.e. G est cyclique.

Exercice 8.

Si A est un anneau, on note A^{\times} le groupe (multiplicatif) des éléments inversibles de A.

- 1. Soit G un groupe monogène. Montrer que le groupe des automorphismes de G est en bijection avec l'ensemble des générateurs de G.
- 2. Montrer que pour tout $n \in \mathbb{N}$, on a un isomorphisme de groupes $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$.
- 3. Soit p un nombre premier impair et soit $\alpha \geq 1$. Quel est l'ordre de 1+p dans $(\mathbb{Z}/p^{\alpha}\mathbb{Z})^{\times}$? En déduire que $(\mathbb{Z}/p^{\alpha}\mathbb{Z})^{\times} \simeq \mathbb{Z}/p^{\alpha-1}(p-1)\mathbb{Z}$.
- 4. Expliciter $(\mathbb{Z}/2^{\alpha}\mathbb{Z})^{\times}$ pour $\alpha \geq 1$.
- 5. En déduire $(\mathbb{Z}/n\mathbb{Z})^{\times}$ pour $n \in \mathbb{N}$.

Solution

- 1. Soit G_0 l'ensemble des générateurs de G et soit g_0 un élément de G_0 . Alors si φ est un automorphisme de G, l'image de φ est engendrée par $\varphi(g_0)$; ce qui veut dire que $\varphi(g_0)$ est un générateur de G. On définit alors une application $\varphi \mapsto \varphi(g_0)$ de $\operatorname{Aut}(G)$ vers G_0 . Comme g_0 est générateur, l'application est bijective.
- 2. Dans \mathbb{Z} , montrons par récurrence sur $k \geq 1$ qu'il existe λ_k premier à p vérifiant $(1+p)^{p^k} = 1 + \lambda_k p^{k+1}$. L'étape d'initialisation pour k = 1 est claire via la formule du binôme, puisque p divise $\binom{p}{2}$. Montrons l'hérédité : soit $k \geq 1$, on a $(1+p)^{p^k} = 1 + \lambda_k p^{k+1}$ par hypothèse de récurrence, donc on obtient $(1+p)^{p^{k+1}} = 1 + p^{k+2}(\lambda_k + \sum_{i=2}^p \binom{p}{i}\lambda_k^i p^{(i-1)(k+1)-1})$ et le résultat est montré par récurrence.
 - En particulier, 1 + p est d'ordre $p^{\alpha-1}$ dans $(\mathbb{Z}/p^{\alpha}\mathbb{Z})^{\times}$.
 - En utilisant l'exercice, on sait que $(\mathbb{Z}/p\mathbb{Z})^{\times}$ est cyclique, d'ordre p-1. Notons x_0 un générateur de $(\mathbb{Z}/p\mathbb{Z})^{\times}$ et prenons un relèvement x_1 de x_0 dans $(\mathbb{Z}/p^{\alpha}\mathbb{Z})^{\times}$. L'ordre de x_1 est le la forme $(p-1)p^s$ pour un certain $s \leq \alpha$, de sorte que $x := x_1^{p^s}$ est d'ordre p-1. Comme x et 1+p ont des ordres premiers entre eux et comme le groupe $(\mathbb{Z}/p^{\alpha}\mathbb{Z})^{\times}$ est abélien, on a vu que x(1+p) est donc d'ordre $p^{\alpha-1}(p-1) = \varphi(p)$ et $(\mathbb{Z}/p^{\alpha}\mathbb{Z})^{\times}$ est donc cyclique.
- 3. Remarquons d'abord que $(\mathbb{Z}/2\mathbb{Z})^{\times} = \{1\}$ et $(\mathbb{Z}/4\mathbb{Z})^{\times} \simeq \mathbb{Z}/2\mathbb{Z}$. Supposons maintenant $\alpha \geq 2$. Par une récurrence semblable à celle effectuée au b), on montre que 5 est d'ordre $2^{\alpha-2}$ dans $(\mathbb{Z}/2^{\alpha}\mathbb{Z})^{\times}$. Observons maintenant le morphisme surjectif $\pi : (\mathbb{Z}/2^{\alpha}\mathbb{Z})^{\times} \to (\mathbb{Z}/4\mathbb{Z})^{\times} :$ son noyau est exactement $\langle 5 \rangle$, et $\pi(-1) = -1$. Par conséquent, les sous-groupes $\langle 5 \rangle$ et $\langle -1 \rangle$ vérifient les hypothèses de l'exercice, donc $\langle 5 \rangle \times \langle -1 \rangle \cong (\mathbb{Z}/2^{\alpha}\mathbb{Z})^{\times}$. On obtient donc finalement $(\mathbb{Z}/2^{\alpha}\mathbb{Z})^{\times} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{\alpha-2}\mathbb{Z}$.
- 4. Si $n = \prod_p p^{\alpha_p}$ est la décomposition en facteurs premiers de n, alors le lemme chinois nous donne

$$(\mathbb{Z}/n\mathbb{Z})^{\times} \simeq (\mathbb{Z}/2^{\alpha_2}\mathbb{Z})^{\times} \times \prod_{p \neq 2, \alpha_p \geq 1} (\mathbb{Z}/(p-1)\mathbb{Z} \times \mathbb{Z}/p^{\alpha_p-1}\mathbb{Z}).$$

Exercice 9.

Déterminer les entiers $n \in \mathbb{Z}$ pour lesquels $(\mathbb{Z}/n\mathbb{Z})^{\times}$ est cyclique.

Solution

Si $n=\prod_p p^{\alpha_p}$ est la décomposition en facteurs premiers de n, la question d) de l'exercice assure que

$$(\mathbb{Z}/n\mathbb{Z})^{\times} \simeq (\mathbb{Z}/2^{\alpha_2}\mathbb{Z})^{\times} \times \prod_{p \neq 2, \, \alpha_p \geq 1} (\mathbb{Z}/(p-1)\mathbb{Z} \times \mathbb{Z}/p^{\alpha_p-1}\mathbb{Z}).$$

En remarquant qu'un groupe cyclique ne peut pas contenir plus d'un élément d'ordre 2, on conclut que $(\mathbb{Z}/n\mathbb{Z})^{\times}$ est cyclique si et seulement si $n=p^{\alpha}$ ou $2p^{\alpha}$ avec p un nombre premier impair et $\alpha \geq 0$ ou n=4.

Exercice 10.

Décomposer le groupe $G = (\mathbb{Z}/187\mathbb{Z})^{\times}$ sous la forme donnée par le théorème de structure des groupes abéliens finis.

Solution

Comme 187 = 11.17, l'exercice assure que

$$G \cong (\mathbb{Z}/11\mathbb{Z})^{\times} \times (\mathbb{Z}/17\mathbb{Z})^{\times} \cong \mathbb{Z}/10\mathbb{Z} \times \mathbb{Z}/16\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/80\mathbb{Z}.$$

Les facteurs invariants de G sont donc 2 et 80.