10/511318 #

国

CT/PTO

15 OCT 2004

JAPAN PATENT OFFICE

04.04.03

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月

Date of Application:

2002年 9月26日

REC'D 0 5 JUN 2003

PCT

WIPO

出願 番

Application Number:

特願2002-281723

[ST.10/C]:

ij

[JP2002-281723]

出 . 願 人 Applicant(s):

富士写真フイルム株式会社

SUBMITTED OR TRANSMITTED IN

COMPLIANCE WITH RULE 17.1(a) OR (b)

2003年 5月13日

特許庁長官 Commissioner,

出証特2003-3035971 BEST AVAILABLE COPY

【書類名】

特許願

【整理番号】

31-2599

【提出日】

平成14年 9月26日

【あて先】

特許庁長官殿

【国際特許分類】

C09D 11/00

【発明者】

【住所又は居所】

神奈川県南足柄市中沼210番地 富士写真フイルム株

式会社内

【氏名】

茅野 智裕

【発明者】

【住所又は居所】

神奈川県南足柄市中沼210番地 富士写真フイルム株

式会社内

【氏名】

藤原 淑記

【発明者】

【住所又は居所】

神奈川県南足柄市中沼210番地 富士写真フイルム株

式会社内

【氏名】

矢吹 嘉治

【特許出願人】

【識別番号】

000005201

【氏名又は名称】 富士写真フィルム株式会社

【代理人】

【識別番号】

100105647

【弁理士】

【氏名又は名称】

小栗 昌平

【電話番号】

03-5561-3990

【選任した代理人】

【識別番号】

100105474

【弁理士】

【氏名又は名称】 本多 弘徳 1

【電話番号】

03-5561-3990

【選任した代理人】

【識別番号】

100108589

【弁理士】

【氏名又は名称】 市川 利光

【電話番号】

03-5561-3990

【選任した代理人】

【識別番号】

100115107

【弁理士】

【氏名又は名称】 高松 猛

【電話番号】

03-5561-3990

【選任した代理人】

【識別番号】 100090343

【弁理士】

【氏名又は名称】

栗宇 百合子

【電話番号】

03-5561-3990

【手数料の表示】

【予納台帳番号】

092740

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【包括委任状番号】 0003489

【プルーフの要否】

要

【書類名】

明細書

【発明の名称】

着色組成物及びインクジェット記録方法

【特許請求の範囲】

【請求項1】 水中でのpKa値が-10以上5以下である置換基を2個以上含み、酸化電位が0.8V(vs SCE)より貴であるジスアゾ化合物またはポリアゾ化合物を含有することを特徴とする着色組成物。

【請求項2】 支持体上に白色無機顔料粒子を含有するインク受容層を有する受像材料上に、請求項1に記載の着色組成物を用いて画像形成することを特徴とするインクジェット記録方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、特定の物性を有するアゾ化合物を含むインク組成物などの着色組成物、インクジェット記録用インク組成物及びインクジェット記録方法に関する。

[0002]

【従来の技術】

近年、画像記録材料としては、特にカラー画像を形成するための材料が主流であり、具体的には、インクジェット方式の記録材料、感熱転写方式の記録材料、電子写真方式の記録材料、転写式ハロゲン化銀感光材料、印刷インク、記録ペン等が盛んに利用されている。また、撮影機器ではCCDなどの撮像素子において、ディスプレーではLCDやPDPにおいて、カラー画像を記録、再現するためにカラーフィルターが使用されている。

これらのカラー画像記録材料やカラーフィルターでは、フルカラー画像を再現あるいは記録する為に、いわゆる加法混色法や減法混色法の3原色の色素(染料や顔料)が使用されているが、好ましい色再現域を実現出来る吸収特性を有し、且つさまざまな使用条件、環境条件に耐えうる堅牢な色素がないのが実状であり、改善が強く望まれている。

[0003]

インクジェット記録方法は、材料費が安価であること、高速記録が可能なこと

、記録時の騒音が少ないこと、更にカラー記録が容易であることから、急速に普及し、更に発展しつつある。

インクジェット記録方法には、連続的に液滴を飛翔させるコンティニュアス方式と画像情報信号に応じて液滴を飛翔させるオンデマンド方式が有り、その吐出方式にはピエゾ素子により圧力を加えて液滴を吐出させる方式、熱によりインク中に気泡を発生させて液滴を吐出させる方式、超音波を用いた方式、あるいは静電力により液滴を吸引吐出させる方式がある。

また、インクジェットインク組成物としては、水性インク、油性インク、あるいは固体(溶融型)インクが用いられる。

[0004]

このようなインクジェットインク組成物に用いられる色素に対して、溶剤に対する溶解性あるいは分散性が良好なこと、高濃度記録が可能であること、色相が良好であること、光、熱、環境中の活性ガス(NOx、オゾン等の酸化性ガスの他SOxなど)に対して堅牢であること、水や薬品に対する堅牢性に優れていること、受像材料に対して定着性が良く滲みにくいこと、インクとしての保存性に優れていること、毒性がないこと、純度が高いこと、更には、安価に入手できることが要求されている。

しかしながら、これらの要求を高いレベルで満たす色素を捜し求めることは、極めて難しい。特に、良好なマゼンタ色相を有し、光、湿度、熱に対して堅牢な色素であること、中でも多孔質の白色無機顔料粒子を含有するインク受容層を有する受像材料上に印字する際には環境中のオゾンなどの酸化性ガスに対して堅牢であることが強く望まれている。

[0005]

従来、アゾ色素のカップリング成分として、フェノール、ナフトール、アニリン等が広く使用されてきている。これらのカップリング成分により得られるなアソ色素として、例えば下記特許文献1や特許文献2等に開示された色素が知られているが、これら色素は光堅牢性が劣るという問題点を有する。

[0006]

しかしこれらの先行技術で知られている色素は、何れもオゾンなどの酸化性ガ

本発明者等は、オゾン等の酸化性ガスに対して堅牢な色素を開発すべく、従来のフェノール、ナフトール、アニリン等のカップリング成分から脱却して、含窒素へテロ環化合物をカップリング成分として使用するという考えに至った。これまで、ピリジン、ピラジンをカップリング成分とするアゾ色素に関しては、例えば特許文献3等の公報に記載されているが、当時これらの色素をインクジェット用インクに用いることは知られていなかったばかりか、これらに記載されているアゾ色素では、光、熱、温度および環境中の活性ガスなどに対しての堅牢性が不十分であった。

[0007]

【特許文献1】

欧州特許EPO761771号明細書(一般式(I)、(II))

【特許文献2】

特許第2716541号公報明細書(式I)

【特許文献3】

ドイツ特許2743097号明細書 (式 I)

[0008]

【発明が解決しようとする課題】

本発明は、前記従来における問題を解決し、以下の目的を達成することを課題とする。

即ち、本発明の目的は、

- (1) 黒用の色素として、耐水性に優れ、且つ光,熱,温度および環境中の活性 ガスに対して十分な堅牢性を有する新規なアゾ化合物を用いて、耐水性、堅牢性 に優れた着色画像や着色材料を与える印刷用インク組成物(例えばインクジェッ ト記録用インク)などの各種着色組成物、
- (2) 耐水性に優れ、光及び環境中の活性ガス、特にオゾンガスに対して堅牢性 の高い画像を形成することができるインクジェットインク組成物及びインクジェット記録方法、

を提供することにある。

【課題を解決するための手段】

本発明者等は、耐水性に優れ、且つ光およびオゾンに対する堅牢性の高い色素を目指して詳細に検討したところ、特定の酸化電位を有するアゾ化合物が、予想もできない高い堅牢性を示すことを見出し、本発明を完成するに至った。

本発明によれば、下記構成の着色組成物、インクジェット記録用インク組成物及びインクジェット記録方法が提供され、本発明の上記目的が達成される。

- 1. 水中でのpKa値が-10以上5以下である置換基を2個以上含み、酸化電位が0.8V(vs SCE)より貴であるジスアゾ化合物またはポリアゾ化合物を含有することを特徴とする着色組成物。
 - 2. 水中での p K a 値が 1 0 以上 5 以下である置換基を 2 個以上含み、酸化電位が 0. 8 V (v s SCE) より貴であり、かつ下記一般式 (I) で表されるアゾ化合物を含有することを特徴とする着色組成物。

[0010]

【化1】

[0011]

- 一般式(I)中、A、BおよびCは、それぞれ独立に、置換されていてもよい 芳香族基または置換されていてもよい複素環基を表す(AおよびCは一価の基で あり、Bは二価の基である)。
- 3. 水中での p K a 値が 1 0 以上 5 以下である置換基を 2 個以上含み、酸化電位が 0.8 V (vs SCE) より貴であり、かつ下記一般式 (II) で表されるアゾ化合物を含有することを特徴とする着色組成物。

[0012]

【化2】

[0013]

4. 一般式 (II) のHetで表される複素環が、下記一般式 (III) で表されることを特徴とする上記3に記載の着色組成物。

[0014]

【化3】

Het:
$$\longrightarrow$$
 \longrightarrow N \longrightarrow N \longrightarrow \longrightarrow N \longrightarrow N

一般式(III)中:

 D_1 および D_2 は各々= CR^4 -および= CR^5 -を表すか、または何れか一方が窒素原子を表し、他方が= CR^4 -または= CR^5 -を表す。

R⁴及びR⁵は、それぞれ独立して、水素原子、ハロゲン原子、置換あるいは無置換のアルキル基、アリール基、ハロゲン原子、カルボキシル基、カルバモイル基、シアノ基、アルコキシカルボニル基又はヒドロキシ基を表す。

 R_6 、 R_7 、 R_8 及び R_9 は、それぞれ独立して、水素原子、置換あるいは無置換のアルキル基、アリール基、ヘテロ環基を表す。

- 5. 上記1~4のいずれかに記載の着色組成物からなることを特徴とするインクジェット記録用インク組成物。
- 6. 支持体上に白色無機顔料粒子を含有するインク受容層を有する受像材料上に、上記5に記載のインクジェット記録用インク組成物を用いて画像形成することを特徴とするインクジェット記録方法。
- 7. 支持体上に白色無機顔料粒子を含有するインク受容層を有する受像材料上に、インクジェットインク組成物を用いて画像形成するインクジェット記録方法における堅牢性改良方法において、該インクジェットインク組成物として上記5に記載のインクジェットインク組成物を用いることを特徴とするオゾンガス堅牢性改良方法。

[0016]

以下に本発明について詳細に説明する。

本発明の着色組成物に含有されるアゾ化合物は、酸化電位が 0.8V (vs SCE) よりも貴であることと、水中での pKa 値が -10 以上 5 以下である置換基を 2 個以上含むことを要件とする。

酸化電位は貴であるほど好ましく、酸化電位が 1.0 V (vs SCE) よりも貴であるものがより好ましく、1.1 V よりも貴であるものがさらに好ましく、1.2 V (vs SCE) より貴であるものが最も好ましい。

[0017]

本発明の上記要件は、発明者等が、着色画像のオゾンガス堅牢性について研究したところ、着色画像に用いる化合物の酸化電位とオゾンガス堅牢性との間に相関があり、酸化電位の値が飽和カロメル電極(SCE)に対して0.8 Vよりも貴である化合物を用いることにより、オゾンガス堅牢性が改良されること、並びにアゾ化合物が p K a 値が - 1 0 以上 5 以下である置換基を合計 2 個以上含むアゾ化合物である場合に、予想もできない高いオゾンガス堅牢性を示すことを見出したことに基づくものである。

[0018]

着色画像のオゾンガス堅牢性が改良される理由としては、化合物とオゾンガスのHOMO(最高被占軌道)およびLUMO(最低空軌道)の関係、即ちアゾ化合物のHOMOとオゾンガスのLUMOとの反応により着色化合物が酸化されて分解し、着色画像の濃度が低下すると考えられる。そのため、アゾ化合物を特定の酸化電位とすることによって、該化合物のHOMOが下がり、オゾンガスとの反応性が低下し、オゾンガス堅牢性が向上したと推定される。

[0019]

なお、酸化電位の値は、試料から電極への電子の移りやすさを表わし、その値が大きい(酸化電位が貴である)ほど試料から電極へ電子が移りにくい、言い換えれば、酸化されにくいことを表わす。化合物の構造との関連では、電子求引性基を導入することにより酸化電位はより貴となり、電子供与性基を導入することにより酸化電位はより卑となる。

酸化電位の値は、下記に詳述するが、化合物がボルタンメトリーにおいて陽極で、化合物の電子が引き抜かれる電位を意味し、その化合物の基底状態における HOMOのエネルギーレベルと近似的に一致すると考えられている。

[0021]

酸化電位の測定について具体的に説明する。酸化電位は、過塩素酸ナトリウムや過塩素酸テトラプロピルアンモニウムといった支持電解質を含むジメチルホルムアミドやアセトニトリルのような溶媒中に、被験試料を $1\times10^{-4}\sim1\times10^{-6}$ mo $1\cdot d$ m $^{-3}$ 溶解して、サイクリックボルタンメトリーや直流ポーラログラフィーを用いてSCE (飽和カロメル電極) に対する値として測定する。

また、用いる支持電解質や溶媒は、被験試料の酸化電位や溶解性により適当なものを選ぶことができる。用いることができる支持電解質や溶媒については、例えばP. Delahay著 "New Instrumental Methods in Electrochemistry" (1954年 Interscience Publishers) やA. J. Bard他著 "Electrochemical Methods" (1980年 John Wiley & Sons)、藤嶋昭他著 電気化学測定法 (1984年 技報堂出版社刊) 101~118ページに記載がある。

[0022]

酸化電位の値は、液間電位差や試料溶液の液抵抗などの影響で、数10ミルボルト程度偏位することがあるが、標準試料(例えばハイドロキノン)を用いて校正することにより、測定された電位の値の再現性を保証することができる。

[0023]

本発明における酸化電位は、 $0.1mol·dm^{-3}$ の過塩素酸テトラプロピルアンモニウムを支持電解質として含む水/N, $N-ジメチルホルムアミド=2/98の混合液中(化合物の濃度は<math>1\times10^{-3}mol·dm^{-3}$)で、参照電極としてSCE(飽和カロメル電極)、作用極としてグラファイト電極、対極として白金電極を使用し、直流ポーラログラフィーにより測定した値を使用する。

[0024]

また、本発明において酸化電位を費にする方法としては、化合物自体の構造が費であるものを選択する方法、任意の位置に電子求引性基を導入する方法、即ち

置換基の電子求引性や電子供与性の尺度であるハメットの置換基定数 σ p 値が大きい置換基を導入する方法等が挙げられる。元々酸化電位が貴である色素構造を選択する方法は、オゾンガス堅牢性の観点だけでなく、その他の堅牢性、色相、物性などを調節するために電子求引性基または電子供与性基を任意に導入することができるため、分子設計の観点から好ましい。

[0025]

また、求電子剤であるオゾンとの反応性を下げるために、化合物の構造のうち任意の位置に電子求引性基を導入して酸化電位をより貴とする方法においては、置換基の電子求引性や電子供与性の尺度であるハメットの置換基定数 σ p 値を用いれば、 σ p 値が大きい置換基を導入することにより酸化電位をより貴とすることができる。

[0026]

ハメットの置換基定数σρ値について説明する。ハメット則は、ベンゼン誘導体の反応又は平衡に及ぼす置換基の影響を定量的に論ずるために1935年L. P. Hammettにより提唱された経験則であるが、これは今日広く妥当性が認められている。ハメット則に求められた置換基定数にはσρ値とσm値があり、これらの値は多くの一般的な成書に見出すことができるが、例えば、J. A. Dean編 "Lange's Handbook of Chemistry"第12版 (1979年 McGraw—Hill) や「化学の領域」増刊、122号、96~103頁 (1979年 南光堂) に詳しい。尚、本発明において各置換基をハメットの置換基定数σρにより限定したり、説明したりするが、これは上記の成書で見出せる、文献既知の値がある置換基にのみ限定されるという意味ではなく、その値が文献未知であってもハメット則に基づいて測定した場合にその範囲内に包まれるであろう置換基をも含むことはいうまでもない。また、本発明の一般式(I)及び(II)で表される化合物の中には、ベンゼン誘導体ではないものも含まれるがが、置換基の電子効果を示す尺度として、置換位置に関係なくσρ値を使用する。本発明において、σρ値をこのような意味で使用する。

[0027]

また、前述したように、本発明において着色組成物に含有されるアゾ化合物は

、水中でのpKa値が-10以上5以下である置換基を2個以上含むことを要件とする。好ましくはpKa値は、-9以上5以下であり、より好ましくは-8以上5以下である。

ここで、pKa値が-10以上5以下である置換基とは、水中で測定したpKa値が-10以上5以下である化合物のプロトン解離性基部分を表す置換基である。

[0028]

PKa値は、沢木泰彦著、基礎化学コース 物理有機化学(1999年 丸善)47~60ページなどに記載されている定義に従って表わされる値で、さまざまな化合物のPKa値は、M.B. Smith, J. March著 "March's Advanced Organic Chemistry 5th edition" (2001年 John Wiley & Sons) 329ページのTable8. 1およびその引用文献に記載されており、ここから置換基のPKa値が導出される。記載されていない化合物のPKa値は、日本化学会編、第4版 実験化学講座1 基本操作I"P.115(1990年 丸善)に記載の測定法によってPKa値の定義より求めることができる。弱い酸のPKa値は、沢木泰彦著、基礎化学コース 物理有機化学(1999年 丸善)50ページに記載の方法を用いて相対的な値を求めることもできる。また、PKa値は溶媒などの環境によっても異なる値となるため、日本化学会編第4版 実験化学講座9 電気・磁気286ページ(1991年 丸善)に記載されている方法を用いて求めることもできる

ただし、化合物中における任意の置換基のpKa値は、その化合物の構造に大きく影響されるため、実際の値は別の化合物から類推した値とは異なることもある。前述の方法を用いて実際に化合物中の解離性基のpKa値を測定することも可能であるが、得られた値の帰属や、測定が解離性基以外の部分に影響を与える場合もあり、系統的に理解するのは容易ではない。

[0029]

そこで本発明においては、任意の置換基の p K a 値は化合物における実測値で表わすのではなく、該当する官能基の一般的な p K a 値をそのまま用いて表わすこととする。

この場合、置換基効果や立体効果などによる影響が少ないもの、すなわち解離性基近傍の構造が類似した構造を有する化合物上の解離性基の p K a 値を使用して評価することが好ましい。例えば、ある化合物 A 中に存在するベンゼン環に結合したカルボキシル基の p K a 値は、安息香酸の p K a 値(4.2)あるいは化合物 A 中のベンゼン環と置換基や置換位置が類似した安息香酸誘導体の p K a 値を用いて表わすことができる。

本発明において、化合物の物性の範囲を規定するために用いるpKa値は、水中でのpKa値を用いることとする。

[0030]

pKa値が-10以上5以下の置換基の具体的な例としては、スルホ基、カルボキシル基、チオカルボキシル基、スルフィノ基、ホスホノ基、ジヒドロキシホスフィノ基などが挙げられる。好ましくはスルホ基、カルボキシル基である。

[0031]

なお、本発明において解離基は非解離の形あるいは対塩が存在した形で記載しているが、実際の化合物の存在状態は、解離の形で存在していても、非解離の形で存在することも、またそれらの任意の割合での混合状態で存在することも可能である。実際には、化合物の置かれた環境により存在状態は異なる。

[0032]

本発明において、pKa値が-10以上5以下の置換基の数は2個以上であるが、好ましくは3個以上であり、より好ましくは4個以上である。

p K a 値が-10以上5以下の置換基は、化合物中の任意の位置に置換していることが可能であり、そのそれぞれは互いに独立して置換位置を選択することができる。

ただし、近藤一夫監修染色 三訂版 (1987年 東京電機大学出版局)の セルロース繊維に対する直接性の要因に関する記述によれば、置換基が水溶性基 である場合には、隣接した位置ではなく、適当な間隔を置いた方が望ましい。

[0033]

化合物中に2個以上存在するpKa値が-10以上5以下の置換基は、少なくとも2つ以上の環に、すくなくとも1個ずつ存在している場合が好ましく、それ

ぞれに2個以上存在している場合がより好ましい。例えば、下記に詳述する本発明において好ましいアゾ化合物である一般式(I)で表される化合物の場合、環の中に少なくとも1個は存在している環が2つある場合が好ましく、2個以上存在している環が2つある場合がより好ましい。

[0034]

特定のアゾ化合物を含有する本発明の着色組成物を用いた着色画像が耐オゾンガス性に優れている理由は、上記した推定に加えて、適切な解離性基が分子中の適切な位置に適切な数含まれることによってアゾ化合物の直接性が向上し、インク中のアゾ化合物が受像材料中の所望の位置で固定化できるようになり、アゾ化合物が受像材料または受像層に強固に媒染されているためであると考えられる。このことは、以下に詳述する実施例における耐水性試験の結果とも矛盾がない。

即ち、アゾ化合物が受像材料または受像層に強固に媒染されているために耐水性の良い着色画像を与えるとすれば、染着の強さは耐水性試験によって見積もることができる。実際、以下に詳述する本発明における実施例において、耐オゾンガス性の良好なものは耐水性も良く、媒染と耐オゾンガス性に関係があることが分かる。

[0035]

一般式(II)において、Bが複素環の場合、好ましい複素環としては、チオフェン環、チアゾール環、イミダゾール環、ベンゾチアゾール環、チエノチアゾール環などが挙げられる。中でも下記一般式(a)から(e)で表されるチオフェン環、チアゾール環、イミダゾール環、ベンゾチアゾール環、チエノチアゾール環が好ましい。なお、Bが(a)で表されるチオフェン環が最も好ましい。

[0036]

【化4】

(a)
$$R_{11}$$
 R_{10} (b) R_{12} N (c) R_{14} R_{15} R_{15} R_{16} R_{17} (e) R_{18} R_{18} R_{19} R_{19}

上記一般式(a)から(e)において、 R_{10} から R_{18} は、一般式(III)における R^4 、 R^5 と同義の置換基を表す。

Bは更に置換基を有していても良く、置換基としては、ハロゲン原子、アルキル基(シクロアルキル基、ビシクロアルキル基を含む)、アルケニル基(シクロアルケニル基、ビシクロアルケニル基を含む)、アルキニル基、アリール基、ヘテロ環基、シアノ基、ヒドロキシル基、ニトロ基、カルボキシル基、アルコキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ、アミノ基(アニリノ基を含む)、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキルスルホニルアミノ基、アリールスルホニルアミノ基、メルカプト基、アルキルスルホニルアミノ基、アリールスルフィニル基、アリールスルカコィニル基、アルキルスルホニル基、アリールスルフィニル基、アリールスルホニル基、アリールスルカコィニル基、アリールスルボニルをシカルボニル基、アリールスルボニルをシカルボニル基、アリールアゾ基、ヘテロ環アゾ基、イミド基、ホスフィール素、シリル基が例として挙げられる。

[0038]

上記の官能基の中で、水素原子を有するものは、これを取り去り更に上記の基で置換されていても良い。そのような置換基の例としては、アルキルカルボニルアミノスルホニル基、アリールカルボニルアミノスルホニル基、アルキルスルホニルアミノカルボニル基、アリールスルホニルアミノカルボニル基などが挙げられる。

これらのヘテロ環上の置換基同士が結合することで、炭化水素環またはヘテロ環との縮合環を形成しても良く、さらに縮合環上に置換基を有していてもよい。 含窒素ヘテロ環の場合には、窒素原子は4級化されていてもよい。また、互変異性となり得るヘテロ環については、互変異性体の1つのみを記載している場合でも、他の互変異性体も合わせて含まれる。

[0039]

また、Hetは、芳香族含窒素6員複素環を表すが、上記一般式(III) に記載される構造式を有する場合が好ましい。

一般式(III)中、 D_1 および D_2 は各々置換されていてもよい炭素原子(すなわち= CR^4 -および= CR^5 -)を表すか、または何れか一方が窒素原子を表し、他方が= CR^4 -および= CR^5 -のいずれかを表す。 D_1 および D_2 が共にそれぞれ= CR^4 -および= CR^5 -である骨格が最も好ましい。

[0040]

式中、R⁴及びR⁵は、水素原子、ハロゲン原子、置換あるいは無置換のアルキル基、アリール基、ハロゲン原子、カルボキシル基、カルバモイル基、シアノ基、アルコキシカルボニル基、ヒドロキシ基を表す。

 R^4 および R^5 として好ましくは、各々水素原子、ハロゲン原子、炭素数 1 から 3 までのアルキル基、置換または無置換のアリール基、カルボキシル基(さらに炭素数 1 から 3 までのアルキル基により置換されてもよい)、アルコキシカルボニル基、カルバモイル基、シアノ基である。さらに好ましくは、水素原子、メチル基、エチル基、シアノ基、カルバモイル基、カルボキシ基である。 R^4 として好ましくは、水素原子、置換あるいは無置換のアルキル基、アリール基、カルボキシル基、アルコキシカルボニル基である。より好ましくは、水素原子、置換あるいは無置換のアルキル基である。 R^5 として好ましくは、水素原子、シアノ基

[0041]

 R_6 、 R_7 、 R_8 及び R_9 は、それぞれ独立して、水素原子、置換あるいは無置換のアルキル基、アリール基、ヘテロ環基を表わす。

 R_6 、 R_7 、 R_8 、 R_9 として、好ましくはそれぞれ独立して、水素原子、置換あるいは無置換のアリール基、ヘテロ環基である。より好ましくは、 R_6 、 R_7 が置換あるいは無置換のアリール基、 R_8 が置換あるいは無置換のヘテロ環基、 R_9 が水素原子の場合である。

[0042]

p K a 値が-1 O以上 5以下の置換基がH e t に存在している場合、好ましくはその位置は、 R_4 \sim R_9 の何れかであり、より好ましくは R_6 \sim R_9 の何れかであり、特に R_6 または R_7 に 1 個置換し、 R_8 または R_9 に 1 個置換するのが好ましい

[0043]

p K a 値が - 1 0 以上 5 以下の置換基は、一般式(I)のAまたはBに直接結合していても、任意の2 価の連結基を介していてもよい。 2 価の連結基としては、上述のB が有してもよい置換基(1 価の置換基)からさらに水素原子や置換基を取り除いた形で記述される連結基が挙げられる。例えば、アルキレン基(例えば、メチレン、エチレン、プロピレン、ブチレン、ペンチレン)、アリーレン基(例えば、フェニレン、ナフチレン、2,4,6-トリメチルフェニレン)、アルケニレン基(例えば、エテニレン、プロペニレン)、アルキニレン基(例えば、エテニレン、プロペニレン)、アルキニレン基(例えば、エチニレン、プロオピニレン)、アミド基、エステル基、スルホアミド基、スルホン酸エステル基、ウレイド基、スルホニル基、スルフィニル基、チオエーテル基、エーテル基、カルボニル基、-N(R q)-(R q は水素原子、置換又は無置換のアルキル基、置換又は無置換のアリール基を表す。)、複素環 2 価基(例えば、ベンゾチアゾールー2,6-ジイル基、6-クロロー1,3,5-トリアジン-2,4-ジイル基、ピリミジン-2,4-ジイル基、キノキサリン-2,3-ジイル基)を1つ又はそれ以上組み合わせて構成される2 価の連結基などが挙げられる。また、2 価の連結基上に任意の置換基を有していてもよい。

[0044]

本発明の着色組成物に含有されるアゾ化合物中のアゾ基は、化合物の構造によってアゾ型(-N=N-)およびヒドラゾ型(-NH-N=)を取り得るが、本発明においては、すべてアゾ型で記載している。

また、このアゾ化合物は、その置かれた環境によってさまざまな互変異性体を取り得る。本発明においては1種類の互変異性体のみを記載しているが、その他の互変異性体として存在していてもよく、これらも本発明に含まれる。

[0045]

本発明において、特に好ましい構造は、下記一般式 (IV) で表されるものである。

[0046]

【化5】

[0047]

一般式(IV)中:

[0048]

一般式(IV)中の R_4 ~ R_9 は、一般式(III)の場合と同義である。一般式(III)で説明した各基は更に置換基を有していても良い。これらの各基が更に置換基を有する場合、該置換基としては、一般式(I)で説明した置換基、 R_4 、 R_5 で例示した基やイオン性親水性基が挙げられる。

[0049]

 Z_1 におけるハメット置換基定数 σ p 値が 0. 6 0以上の電子吸引性基としては、シアノ基、ニトロ基、アルキルスルホニル基(例えばメタンスルホニル基、アリールスルホニル基(例えばベンゼンスルホニル基)を例として挙げることができる。

ハメット σ P 値が O . 4 5以上の電子吸引性基としては、上記に加えアシル基(例えばアセチル基)、アルコキシカルボニル基(例えばドデシルオキシカルボニル基)、アリールオキシカルボニル基(例えば、m-クロロフェノキシカルボニル)、アルキルスルフィニル基(例えば、n-プロピルスルフィニル)、アリールスルフィニル基(例えばフェニルスルフィニル)、スルファモイル基(例えば、N-エチルスルファモイル、N, N-ジメチルスルファモイル)、ハロゲン化アルキル基(例えば、トリフロロメチル)を挙げることができる。

ハメット置換基定数 σ p 値が 0. 3 0 以上の電子吸引性基としては、上記に加え、アシルオキシ基(例えば、アセトキシ)、カルバモイル基(例えば、N - エチルカルバモイル、N , N - ジブチルカルバモイル)、ハロゲン化アルコキシ基(例えば、トリフロロメチルオキシ)、ハロゲン化アリールオキシ基(例えば、ペンタフロロフェニルオキシ)、スルホニルオキシ基(例えばメチルスルホニルオキシ基)、ハロゲン化アルキルチオ基(例えば、ジフロロメチルチオ)、2つ以上の σ p 値が 0. 1 5 以上の電子吸引性基で置換されたアリール基(例えば、2 、4 - ジニトロフェニル、ペンタクロロフェニル)、およびヘテロ環(例えば、2 - ベンゾオキサゾリル、2 - ベンゾチアゾリル、1 - フェニルー2 - ベンズイミダゾリル)を挙げることができる。

σ p 値が 0. 2 0 以上の電子吸引性基の具体例としては、上記に加え、ハロゲ

ン原子などが挙げられる。

[0050]

本発明の着色組成物に含有されるアゾ化合物の具体例を下記に示すが、本発明に用いられるアゾ化合物は、下記の例に限定されるものではない。

[0051]

【表1]

A-N=N-B-N=N-C

$$(a-5)$$

$$O_2N$$

H₃C CN H N

【表2]

[0053]

【表3】

【表4】

[0055]

2 1

【表 5]

【表 6]

[0057]

【表7】

[0058]

本発明の着色組成物は、上記した特定のアゾ化合物を含有するものであれば、特に限定されるものではないが、着色組成物の用途に応じて種々のものを含有させることができる。例えば、インク組成物としては、媒体(油溶性又は水溶性媒体)に溶解/又は分散させて、さらに適宜、インク組成物として所望する性質や性能を満たすための後述する添加物を添加するのが好ましい。

また、例えば、特開平7-209912号公報記載のカラートナー組成物、特開平6-35182号公報記載のカラーフィルター用レジスト組成物、特開平7-137466号公報記載の熱転写色素供与材料に用いられているものを含有させることができる。

[0059]

本発明の着色組成物に含有される特定のアゾ化合物は、その用途に適した溶解性、分散性、熱移動性などの物性を、置換基で調整して使用する。また、本発明の着色組成物に含有される特定のアゾ化合物は、用いられる系に応じて溶解状態、乳化分散状態、さらには固体分散状態でも使用することが出来る。

[0060]

特定のアゾ化合物を含有する本発明の着色組成物の用途としては、画像、特にカラー画像を形成するための画像記録材料が挙げられ、具体的には、以下に詳述するインクジェット方式記録材料を始めとして、感熱記録材料、感圧記録材料、電子写真方式を用いる記録材料、転写式ハロゲン化銀感光材料、印刷インク、記録ペン、インク組成物等があり、好ましくはインク組成物、インクジェット方式記録材料である。

また、CCDなどの固体撮像素子やLCD,PDP等のディスプレーで用いられるカラー画像を記録・再現するためのカラーフィルター、各種繊維の染色のための染色液にも適用できる。

[0061]

次に、上記した着色組成物からなる好ましい組成物であるインク組成物、特にインクジェット記録用インク組成物について詳述する。

[0062]

[インク組成物]

インク組成物、例えばインクジェット記録用インク組成物は、親油性媒体や水性媒体中に上記した特定のアゾ化合物を溶解及び/又は分散させることによって作製することができる。好ましくは、水性媒体を用いる場合である。必要に応じてその他の添加剤を、本発明の効果を害しない範囲内において含有される。その他の添加剤としては、例えば、乾燥防止剤(湿潤剤)、乳化安定剤、浸透促進剤、紫外線吸収剤、褪色防止剤、防黴剤、pH調整剤、表面張力調整剤、消泡剤、防腐剤、粘度調整剤、分散剤、分散安定剤、防錆剤、キレート剤等の公知の添加剤が挙げられる。これらの各種添加剤は、水溶性インクの場合にはインク液に直接添加する。油溶性染料を分散物の形で用いる場合には、染料分散物の調製後分散物に添加するのが一般的であるが、調製時に油相または水相に添加してもよい

[0063]

前記乾燥防止剤はインクジェット記録方式に用いるノズルのインク噴射口においてインクジェット記録用インクが乾燥することによる目詰まりを防止する目的で好適に使用される。

[0064]

前記乾燥防止剤としては、水より蒸気圧の低い水溶性有機溶剤が好ましい。具体的な例としてはエチレングリコール、プロピレングリコール、ジエチレングリコール、ポリエチレングリコール、チオジグリコール、ジチオジグリコール、2ーメチルー1,3ープロパンジオール、1,2,6ーへキサントリオール、アセチレングリコール誘導体、グリセリン、トリメチロールプロパン等に代表される多価アルコール類、エチレングリコールモノメチル(又はエチル)エーテル、ジエチレングリコールモノメチル(又はエチル)エーテル、トリエチレングリコールモノエチル(又はゴチル)エーテル等の多価アルコールの低級アルキルエーテル類、2ーピロリドン、Nーメチルー2ーピロリドン、1,3ージメチルー2ーイミダゾリジノン、Nーエチルモルホリン等の複素環類、スルホラン、ジメチルスルホキシド、3ースルホレン等の含硫黄化合物、ジアセトンアルコール、ジエタノールアミン等の多官能化合物、尿素誘導体が挙げられる。これらのうちグリセリン、ジエチレングリコール等の多価アルコールがより好ましい。また上記の

[0065]

前記浸透促進剤は、インクジェット記録用インクを紙により良く浸透させる目的で好適に使用される。前記浸透促進剤としてはエタノール、イソプロパノール、ブタノール、ジ(トリ)エチレングリコールモノブチルエーテル、1,2ーへキサンジオール等のアルコール類やラウリル硫酸ナトリウム、オレイン酸ナトリウムやノニオン性界面活性剤等を用いることができる。これらはインク中に5~30質量%含有すれば通常充分な効果があり、印字の滲み、紙抜け(プリントスルー)を起こさない添加量の範囲で使用するのが好ましい。

[0066]

前記紫外線吸収剤は、画像の保存性を向上させる目的で使用される。前記紫外線吸収剤としては特開昭58-185677号公報、同61-190537号公報、特開平2-782号公報、同5-197075号公報、同9-34057号公報等に記載されたベンゾトリアゾール系化合物、特開昭46-2784号公報、特開平5-194483号公報、米国特許第3214463号等に記載されたベンゾフェノン系化合物、特公昭48-30492号公報、同56-21141号公報、特開平10-88106号公報等に記載された桂皮酸系化合物、特開平4-298503号公報、同8-53427号公報、同8-239368号公報、同10-182621号公報、特表平8-501291号公報等に記載されたトリアジン系化合物、リサーチディスクロージャーNo.24239号に記載されたトリアジン系化合物、リサーチディスクロージャーNo.24239号に記載されたトリアジン系化合物、リサーチディスクロージャーNo.24239号に記載されたトリアジン系化合物、リサーチディスクロージャーNo.24239号に記載された化合物やスチルベン系、ベンズオキサゾール系化合物に代表される紫外線を吸収して蛍光を発する化合物、いわゆる蛍光増白剤も用いることができる。

[0067]

前記褪色防止剤は、画像の保存性を向上させる目的で使用される。前記褪色防止剤としては、各種の有機系及び金属錯体系の褪色防止剤を使用することができる。有機の褪色防止剤としてはハイドロキノン類、アルコキシフェノール類、ジアルコキシフェノール類、フェノール類、アニリン類、アミン類、インダン類、クロマン類、アルコキシアニリン類、ヘテロ環類などがあり、金属錯体としては

ニッケル錯体、亜鉛錯体などがある。より具体的にはリサーチディスクロージャーNo. 17643の第VIIのIないしJ項、同No. 15162、同No. 18716の650頁左欄、同No. 36544の527頁、同No. 307105の872頁、同No. 15162に引用された特許に記載された化合物や特開昭62-215272号公報の127頁~137頁に記載された代表的化合物の一般式及び化合物例に含まれる化合物を使用することができる。

[0068]

前記防黴剤としてはデヒドロ酢酸ナトリウム、安息香酸ナトリウム、ナトリウムピリジンチオン-1-オキシド、p-ヒドロキシ安息香酸エチルエステル、1,2-ベンズイソチアゾリン-3-オンおよびその塩等が挙げられる。これらはインク中に0.02~1.00質量%使用するのが好ましい。

[0069]

前pH調整剤としては前記中和剤(有機塩基、無機アルカリ)を用いることができる。前記pH調整剤はインクジェット記録用インクの保存安定性を向上させる目的で、該インクジェット記録用インクがpH6~10となるように添加するのが好ましく、pH7~10となるように添加するのがより好ましい。

[0070]

前記表面張力調整剤としてはノニオン、カチオンあるいはアニオン界面活性剤が挙げられる。尚、本発明のインクジェット記録用インク組成物の表面張力は20~60mN/mが好ましい。さらに25~45mN/mが好ましい。また本発明のインクジェット記録用インク組成物の粘度は30mPa・s以下が好ましい。更に20mPa・s以下に調整することがより好ましい。

界面活性剤の例としては、脂肪酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキル硫酸エステル塩等のアニオン系界面活性剤や、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレンアルまかとまり、ポリオキシエチレンルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセ

リン脂肪酸エステル、オキシエチレンオキシプロピレンブロックコポリマー等のノニオン系界面活性剤が好ましい。また、アセチレン系ポリオキシエチレンオキシド界面活性剤であるSURFYNOLS(AirProducts&Chemicals社)も好ましく用いられる。また、N,NージメチルーNーアルキルアミンオキシドのようなアミンオキシド型の両性界面活性剤等も好ましい。更に、特開昭59-157636号公報の第37~38頁、リサーチディスクロージャーNo.308119(1989年)記載の界面活性剤として挙げたものも使うことができる。

[0071]

前記消泡剤としては、フッ素系、シリコーン系化合物やEDTAに代表される キレート剤等も必要に応じて使用することができる。

[0072]

上記した特定のアゾ化合物を水性媒体に分散させる場合は、特開平11-286637号、特願2000-78491号、同2000-80259号、同2000-62370号の各公報に記載されるように、色素と油溶性ポリマーとを含有する着色微粒子を水性媒体に分散させたり、特願2000-78454号、同2000-78491号、同2000-203856号、同2000-203857号の各公報に記載されるように、高沸点有機溶媒に溶解した本発明の色素を水性媒体中に分散させることが好ましい。

上記した特定のアゾ化合物を水性媒体に分散させる場合の具体的な方法,使用する油溶性ポリマー、高沸点有機溶剤、添加剤及びそれらの使用量は、前記公報に記載されたものを好ましく使用することができる。あるいは、前記アゾ色素を固体のまま微粒子状態に分散してもよい。分散時には、分散剤や界面活性剤を使用することができる。

分散装置としては、簡単なスターラーやインペラー攪拌方式、インライン攪拌方式、ミル方式 (例えば、コロイドミル、ボールミル、サンドミル、アトライター、ロールミル、アジテーターミル等)、超音波方式、高圧乳化分散方式 (高圧ホモジナイザー; 具体的な市販装置としてはゴーリンホモジナイザー、マイクロフルイダイザー、DeBEE2000等)を使用することができる。上記のイン

クジェット記録用インク組成物の調製方法については、先述の公報以外にも特開平5-148436号、同5-295312号、同7-97541号、同7-82515号、同7-118584号、特開平11-286637号、特願2000-87539号の各公報に詳細が記載されていて、本発明のインクジェット記録用インク組成物の調製にも利用できる。

[0073]

前記水性媒体は、水を主成分とし、所望により、水混和性有機溶剤を添加した 混合物を用いることができる。前記水混和性有機溶剤の例には、アルコール (例 えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール 、イソブタノール、secーブタノール、t-ブタノール、ペンタノール、ヘキ サノール、シクロヘキサノール、ベンジルアルコール)、多価アルコール類(例 えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、 ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポ リプロピレングリコール、ブチレングリコール、ヘキサンジオール、ペンタンジ オール、グリセリン、ヘキサントリオール、チオジグリコール)、グリコール誘 導体(例えば、エチレングリコールモノメチルエーテル、エチレングリコールモ ノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングルコ ールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレ ングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、 ジプロピレングリコールモノメチルエーテル、トリエチレングリコールモノメチ ルエーテル、エチレングリコールジアセテート、エチレングリコールモノメチル エーテルアセテート、トリエチレングリコールモノメチルエーテル、トリエチレ ングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、 テトラエチレングリコールモノブチルエーテル)、アミン(例えば、エタノール アミン、ジエタノールアミン、トリエタノールアミン、Nーメチルジエタノール アミン、N-エチルジエタノールアミン、モルホリン、N-エチルモルホリン、 エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、ポリエチ レンイミン、テトラメチルプロピレンジアミン)及びその他の極性溶媒(例えば 、ホルムアミド、N, Nージメチルホルムアミド、N, Nージメチルアセトアミ

[0074]

本発明のインク組成物は、例えばインクジェット記録用インク組成物100質量部中に、上記した特定のアゾ化合物を0.2質量部以上10質量部以下含有するのが好ましい。また、本発明のインク組成物には、上記したアゾ化合物とともに、他の色素を併用してもよい。他の色素を併用する場合は、上記したアゾ化合物と他の色素の含有量の合計が前記範囲となっているのが好ましい。

[0075]

本発明のインク組成物は、単色の画像形成のみならず、フルカラーの画像形成に用いることができる。フルカラー画像を形成するために、マゼンタ色調インク、シアン色調インク、及びイエロー色調インクを用いることができ、また、色調を整えるために、更にブラック色調インクを用いてもよい。

適用できるイエロー染料としては、任意のものを使用する事が出来る。例えばカップリング成分(以降カプラー成分と呼ぶ)としてフェノール類、ナフトール類、アニリン類、ピラゾロンやピリドン等のようなヘテロ環類、開鎖型活性メチレン化合物類、などを有するアリールもしくはヘテリルアゾ染料;例えばカプラー成分として開鎖型活性メチレン化合物類などを有するアゾメチン染料;例えばベンジリデン染料やモノメチンオキソノール染料等のようなメチン染料;例えばナフトキノン染料、アントラキノン染料等のようなキノン系染料などがあり、これ以外の染料種としてはキノフタロン染料、ニトロ・ニトロソ染料、アクリジン染料、アクリジノン染料等を挙げることができる。

[0076]

適用できるマゼンタ染料としては、任意のものを使用する事が出来る。例えば カプラー成分としてフェノール類、ナフトール類、アニリン類などを有するアリ ールもしくはヘテリルアソ染料;例えばカプラー成分としてピラゾロン類、ピラ ゾロトリアゾール類などを有するアゾメチン染料;例えばアリーリデン染料、ス

[0077]

適用できるシアン染料としては、任意のものを使用する事が出来る。例えばカプラー成分としてフェノール類、ナフトール類、アニリン類などを有するアリールもしくはヘテリルアゾ染料;例えばカプラー成分としてフェノール類、ナフトール類、ピロロトリアゾールのようなヘテロ環類などを有するアゾメチン染料;シアニン染料、オキソノール染料、メロシアニン染料などのようなポリメチン染料;ジフェニルメタン染料、トリフェニルメタン染料、キサンテン染料などのようなカルボニウム染料;フタロシアニン染料;アントラキノン染料; インジゴ・チオインジゴ染料などを挙げることができる。

前記の各染料は、クロモフォアの一部が解離して初めてイエロー、マゼンタ、シアンの各色を呈するものであっても良く、その場合のカウンターカチオンはアルカリ金属や、アンモニウムのような無機のカチオンであってもよいし、ピリジニウム、4級アンモニウム塩のような有機のカチオンであってもよく、さらにはそれらを部分構造に有するポリマーカチオンであってもよい。

適用できる黒色材としては、ジスアゾ、トリスアゾ、テトラアゾ染料のほか、 カーボンブラックの分散体を挙げることができる。

[0078]

[インクジェット記録方法]

次に、インクジェット記録方法について説明する。

本発明のインクジェット記録方法は、支持体上に白色無機顔料粒子を含有するインク受容層を有する受像材料上に上記した本発明のインクジェット記録用インク組成物を用いて画像形成することを要件とする。

[0079]

本発明のインクジェット記録方法で使用され得る支持体としては、限定される

ものではないが、LBKP、NBKP等の化学パルプ、GP、PGW、RMP、TMP、CTMP、CMP、CGP等の機械パルプ、DIP等の古紙パルプ等、合成紙、プラスチックフィルムシート等が挙げられる。

また、こられには、必要に応じて従来公知の顔料、バインダー、サイズ剤、定着剤、カチオン剤、紙力増強剤等の添加剤を混合することや、長網抄紙機、円網 抄紙機等の各種装置で製造されたもの等が使用可能である。

支持体の厚みは $10\sim250\mu$ m、坪量は $10\sim250$ g/m²が望ましい。

[0080]

支持体には、インク受容層、必要に応じてバックコート層が設けられるが、これらの層はそのまま設けてもよいし、デンプン、ポリビニルアルコール等でサイズプレスやアンカーコート層を設けた後、インク受容層及びバックコート層を設けてもよい。更に支持体には、マシンカレンダー、TGカレンダー、ソフトカレンダー等のカレンダー装置により平坦化処理を行ってもよい。

本発明では支持体としては、両面をポリオレフィン(例えば、ポリエチレン、ポリスチレン、ポリエチレンテレフタレート、ポリブテン及びそれらのコポリマー)でラミネートした紙及びプラスチックフィルムがより好ましく用いられる。ポリオレフィン中に、白色顔料(例えば、酸化チタン、酸化亜鉛)又は色味付け染料(例えば、コバルトブルー、群青、酸化ネオジウム)を添加することが好ましい。

[0081]

支持体上に設けられるインク受容層には、顔料や水性バインダーが含有される。 顔料としては、白色顔料が好ましく、白色顔料としては、炭酸カルシウム、カオリン、タルク、クレー、珪藻土、合成非晶質シリカ、珪酸アルミニウム、珪酸マグネシウム、珪酸カルシウム、水酸化アルミニウム、アルミナ、リトポン、ゼオライト、硫酸バリウム、硫酸カルシウム、二酸化チタン、硫化亜鉛、炭酸亜鉛等の白色無機顔料、スチレン系ピグメント、アクリル系ピグメント、尿素樹脂、メラミン樹脂等の有機顔料等が挙げられる。

インク受容層に含有される白色顔料としては、多孔性無機顔料が好ましく、特に細孔面積が大きい合成非晶質シリカ等が好適である。合成非晶質シリカは、乾

[0082]

インク受容層に含有される水性バインダーとしては、ポリビニルアルコール、シラノール変性ポリビニルアルコール、デンプン、カチオン化デンプン、カゼイン、ゼラチン、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルピロリドン、ポリアルキレンオキサイド、ポリアルキレンオキサイド誘導体等の水溶性高分子、スチレンブタジエンラテックス、アクリルエマルジョン等の水分散性高分子等が挙げられる。これらの水性バインダーは単独又は2種以上併用して用いることができる。本発明においては、これらの中でも特にポリビニルアルコール、シラノール変性ポリビニルアルコールが顔料に対する付着性、インク受容層の耐剥離性の点で好適である。

インク受容層は、顔料及び水性バインダーの他に媒染剤、耐水化剤、耐光性向 上剤、界面活性剤、その他の添加剤を含有することができる。

[0083]

インク受容層中に添加する媒染剤は、不動化されていることが好ましい。その ためには、ポリマー媒染剤が好ましく用いられる。

ポリマー媒染剤については、特開昭48-28325号、同54-74430号、同54-124726号、同55-22766号、同55-142339号、同60-23850号、同60-23851号、同60-23852号、同60-23853号、同60-57836号、同60-60643号、同60-1188334号、同60-122941号、同60-122941号、同60-122942号、同60-122942号、同60-122942号、同60-122942号、同60-122942号、同60-122942号、同60-122942号、同60-1336号の各公報、米国特許2484430号、同2548564号、同3148061号、同3309690号、同4115124号、同4124386号、同4193800号、同4273853号、同4282305号、同4450224号の各明細書に記載がある。

特開平1-161236号公報の212~215頁に記載のポリマー媒染剤を 含有する受像材料が特に好ましい。同公報記載のポリマー媒染剤を用いると、優

[0084]

前記耐水化剤は、画像の耐水化に有効であり、これらの耐水化剤としては、特にカチオン樹脂が望ましい。このようなカチオン樹脂としては、ポリアミドポリアミンエピクロルヒドリン、ポリエチレンイミン、ポリアミンスルホン、ジメチルジアリルアンモニウムクロライド重合物、カチオンポリアクリルアミド、コロイダルシリカ等が挙げられ、これらのカチオン樹脂の中で特にポリアミドポリアミンエピクロルヒドリンが好適である。これらのカチオン樹脂の含有量は、インク受容層の全固形分に対して1~15質量%が好ましく、特に3~10質量%であることが好ましい。

[0085]

前記耐光性向上剤としては、硫酸亜鉛、酸化亜鉛、ヒンダーアミン系酸化防止剤、ベンゾフェノン等のベンゾトリアゾール系の紫外線吸収剤等が挙げられる。 これらの中で特に硫酸亜鉛が好適である。

[0086]

前記界面活性剤は、塗布助剤、剥離性改良剤、スベリ性改良剤あるいは帯電防止剤として機能する。界面活性剤については、特開昭62-173463号、同62-183457号の各公報に記載がある。界面活性剤の代わりに有機フルオロ化合物を用いてもよい。有機フルオロ化合物は、疎水性であることが好ましい。有機フルオロ化合物の例には、フッ素系界面活性剤、オイル状フッ素系化合物(例えば、フッ素油)及び固体状フッ素化合物樹脂(例えば、四フッ化エチレン樹脂)が含まれる。有機フルオロ化合物については、特公昭57-9053号(第8~17欄)、特開昭61-20994号、同62-135826号の各公報に記載がある。

インク受容層に添加されるその他の添加剤としては、顔料分散剤、増粘剤、消 泡剤、染料、蛍光増白剤、防腐剤、pH調整剤、マット剤、硬膜剤等が挙げられ る。尚、インク受容層は1層でも2層でもよい。

[0087]

本発明の方法において、上記した通り必要に応じて支持体にはバックコート層

添加可能な成分としては、白色顔料、水性バインダー、その他の成分が挙げられる。バックコート層に含有される白色顔料としては、例えば、軽質炭酸カルシウム、重質炭酸カルシウム、カオリン、タルク、硫酸カルシウム、硫酸バリウム、二酸化チタン、酸化亜鉛、硫化亜鉛、炭酸亜鉛、サチンホワイト、珪酸アルミニウム、ケイソウ土、珪酸カルシウム、珪酸マグネシウム、合成非晶質シリカ、コロイダルシリカ、コロイダルアルミナ、擬ベーマイト、水酸化アルミニウム、アルミナ、リトポン、ゼオライト、加水ハロイサイト、炭酸マグネシウム、水酸化マグネシウム等の白色無機顔料、スチレン系プラスチックピグメント、アクリル系プラスチックピグメント、ポリエチレン、マイクロカプセル、尿素樹脂、メラミン樹脂等の有機顔料等が挙げられる。

[0088]

バックコート層に含有される水性バインダーとしては、スチレン/マレイン酸塩共重合体、スチレン/アクリル酸塩共重合体、ポリビニルアルコール、シラノール変性ポリビニルアルコール、デンプン、カチオン化デンプン、カゼイン、ゼラチン、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルピロリドン等の水溶性高分子、スチレンブタジエンラテックス、アクリルエマルジョン等の水分散性高分子等が挙げられる。バックコート層に含有されるその他の成分としては、消泡剤、抑泡剤、染料、蛍光増白剤、防腐剤、耐水化剤等が挙げられる。

[0089]

本発明における受像材料(必要に応じてバックコート層を含む)には、ポリマーラテックスを添加してもよい。ポリマーラテックスは、光沢性や耐水性を与えたり耐候性を改善したり、寸度安定化、カール防止、接着防止、膜のひび割れ防止のような膜物性改良の目的で使用される。

ポリマーラテックスを受像材料に付与する時期については、着色剤を付与する 前であっても、後であっても、また同時であってもよく、したがって添加する場 所も受像紙中であっても、インク中であってもよく、あるいはポリマーラテック ス単独の液状物として使用しても良い。

[0090]

具体的には、特開昭62-245258号、同62-1316648号、同62-110066号の各公報、特願2000-363090号、同2000-315231号、同2000-354380号、同2000-343944号、同2000-268952号、同2000-299465号、同2000-297365号の各明細書に記載された方法を好ましく用いることができる。

[0091]

本発明の方法において、上記した支持体とインク受容層とからなる受像材料は 公知の受像材料を使用することができる。

即ち、普通紙、樹脂コート紙、例えば特開平8-169172号公報、同8-27693号公報、同2-276670号公報、同7-276789号公報、同9-323475号公報、特開昭62-238783号公報、特開平10-153989号公報、同10-217473号公報、同10-235995号公報、同10-337947号公報、同10-217597号公報、同10-337947号公報、同10-217597号公報、同10-337947号公報等に記載されているインクジェット専用紙、フィルム、電子写真共用紙、布帛、ガラス、金属、陶磁器等が挙げられる。

[0092]

本発明のインクジェット記録方法は、前記インクジェット記録用インク組成物にエネルギーを供与して、受像材料に画像を形成するものであるが、そのインクジェットの記録方式に制限はなく、公知の方式、例えば静電誘引力を利用してインクを吐出させる電荷制御方式、ピエゾ素子の振動圧力を利用するドロップオンデマンド方式(圧力パルス方式)、電気信号を音響ビームに変えインクに照射して、放射圧を利用してインクを吐出させる音響インクジェット方式、及びインクを加熱して気泡を形成し、生じた圧力を利用するサーマルインクジェット方式等に用いられる。

[0093]

【実施例】

以下、本発明を実施例に基づき具体的に説明するが、本発明はこれらの実施例 に何ら限定されるものではない。

〔実施例1〕

(水性インクの調製)

下記の成分に脱イオン水を加え1リッターとした後、 $30\sim40$ $\mathbb C$ で加熱しながら1 時時間撹拌した。その後LiOH 10mol/LにてpH=9に調製し、平均孔径 0.25μ mのミクロフィルターで減圧濾過し色素インク液を調製した。

ーインク液Aの組成ー

本発明の色素 (a-1)	2 5 g
ジエチレングリコール	2 0 g
グリセリン	1 2 0 g
ジエチレングリコールモノブチルエーテル	230 g
2ーピロリドン	8 0 g
トリエタノールアミン	17.9g
ベンゾトリアゾール	0.06g
サーフィノールTG	8. 5 g
PROXEL XL2	1.8g
[0094]	

前記色素を、下記表8に示すように変更した以外は、インク液Aの調製と同様にして、比較用のインク液B及びCを調製した。尚、色素として用いた化合物例の番号は、上記で具体例として示したアゾ化合物に付した番号を意味し、比較色素は、下記構造式を有する化合物である。

[0095]

インク液A~Cを用いて、インクジェットプリンター(PM-700C、セイコーエプソン(株)製)で、でフォト光沢紙(セイコーエプソン社製PM写真紙〈光沢〉(KA420PSK)に画像を記録した後、得られた画像について、下記方法で光堅牢性、耐オゾンガス性を評価した。

[0096]

<耐光性>

前記画像を形成したフォト光沢紙に、ウェザーメーター(アトラスC. I65)を用いて、キセノン光(850001x)を7日間照射し、キセノン照射前後の画像濃度を反射濃度計(X-Rite310TR)を用いて測定し、色素残存率として評価した。なお、前記反射濃度は、1、1.5及び2.0の3点で測定した

何れの濃度でも色素残存率が70%以上の場合をA、1又は2点が70%未満をB、全ての濃度で70%未満の場合をCとして、三段階で評価した。

[0097]

<耐オゾンガス性>

前記画像を形成したフォト光沢紙を、オゾンガス濃度が 0.5 p p m、室温、暗所に設定されたボックス内に 7日間放置し、オゾンガス下放置前後の画像濃度を反射濃度計 (X-Rite 3 1 O T R) を用いて測定し、色素残存率として評価した。なお、前記反射濃度は、1、1.5及び 2.0の3点で測定した。ボックス内のオゾンガス濃度は、APPLICS製オゾンガスモニター(モデル:OZG-EM-01)を用いて設定した。

何れの濃度でも色素残存率が70%以上の場合をA、1又は2点が70%未満をB、全ての濃度で70%未満の場合をCとして、三段階で評価した。

[0098]

(色素の酸化電位)

実施例・比較例で用いた色素の酸化電位を下記の方法で求めた。

 $0.1 \text{ mol} \cdot \text{dm}^{-3}$ の過塩素酸テトラプロピルアンモニウムを支持電解質として含むN, Nージメチルホルムアミド中(色素の濃度は $1 \times 10^{-3} \text{mol} \cdot \text{d}$

 m^{-3})でグラファイト電極を使用し、POLAROGRAPHIC ANALY ZER P-100を用いて直流ポーラログラフィーにより測定した。測定結果を下記表 8に示す。

[0099]

【表8】

	インク	色素	光堅牢性	耐オゾン性	酸化電位	
	Α	化合物例	Α	Α	1.3	本発明
ĺ	В	比較色素 1	В	C	0.69	比較例
	С	比較色素 2	В	С	0.71	比較例

[0100]

表8に記載される比較色素は下記の通りである。

[0101]

【化6】

比較色素1

$$NaO_2C$$
 $N=N$
 $N=N$
 NH_2
 NaO_2C

比較色素 2

$$N=N$$
 $N=N$
 $N=N$

[0102]

表8に示されるように、インク液Aを用いて得られた画像は、インク液B、Cから得られた画像よりも光堅牢性および耐オゾンガス性において優れていることが明らかである。

[0103]

更に、インク液A~Cを用いて、インクジェットプリンター(PM-700C、セイコーエプソン(株)製)により、スーパーファイン専用光沢紙(MJA4S3P、セイコーエプソン(株)製)に画像を記録した。得られた画像の色相、光堅牢性、耐オゾンガス性を評価したところ、いずれも表8と同様の結果が得られた。

[0104]

【発明の効果】

本発明の着色組成物は、黒用の色素として、耐水性に優れ、且つ光,熱,湿度 および環境中の活性ガスに対して十分な堅牢性を有する新規なアゾ化合物を用い ているので、耐水性、堅牢性に優れた着色画像が得られ、印刷用インク組成物、 例えばインクジェット記録用インク組成物として好適に用いられる。

また、本発明のインクジェット記録用インク組成物及びこの組成物を用いたインクジェット記録方法により、耐水性に優れ、光及び環境中の活性ガス、特にオゾンガスに対して堅牢性の高い画像を形成することができる。

【書類名】

要約書

【要約】

【課題】黒用の色素として、耐水性に優れ、かつ光,熱,温度および環境中の活性ガスに対して十分な堅牢性を有するアゾ化合物を用い、耐水性、堅牢性に優れた着色画像や着色材料を与える着色組成物、並びに上記特性に優れる画像を形成することができるインクジェットインク組成物及びインクジェット記録方法を提供する。

【解決手段】水中でのpKa値が-10以上5以下である置換基を2個以上含み、酸化電位が0.8V(vs SCE)より貴であるジスアゾ化合物またはポリアゾ化合物を含有する着色組成物、並びにこの着色組成物からなるインクジェット記録用インク組成物、及び支持体上に白色無機顔料粒子を含有するインク受容層を有する受像材料上に、インクジェット記録用インク組成物を用いて画像形成するインクジェット記録方法。

【選択図】

なし

出願人履歴情報

識別番号

[000005201]

1. 変更年月日 1990年 8月14日

[変更理由] 新規登録

住 所 神奈川県南足柄市中沼210番地

氏 名 富士写真フイルム株式会社