Doctoral Dissertation Proposal Defense Data-adaptive SNP-set-based Association Tests of Longitudinal Traits

Yang Yang, M.S

UTSPH

Dec 15, 2014

Table of Contents

- **Background**
 - Introduction to GWAS
 - Gene-based association test
 - Test of a single covariate
 - Test of a group of covariates
- Test of the contrast
- **Regression Diagnostics**
- **Appendix**
 - Types of sums of squares
 - Eqvivalance of LRT and F-test
- References

Background

- Introduction to GWAS
- Gene-based association test
- Longitudinal data analysis strategy
- Gene-set/Pathway based association test

What is SNP?

A Single Nucleotide Polymorphism (SNP) is a DNA sequence variation occurring commonly within a population (e.g. 1%) in which a single nucleotide A, T, C or G in the genome (or other shared sequence) differs between members of a biological species or paired chromosomes.

A simple flowchart

A more detailed flowchart

How does GWAS result look like?

Background 0000

Common variants and rare variants

Allele Frequency

Yang Yang, M.S (UTSPH)

Gene-based association test

Common variants and rare variants

Background

Allele Frequency

Yang Yang, M.S (UTSPH)

Background

The ANOVA table

Source of variation	Sum of squares	Degrees of freedom
Regression	$SSR(x_1)$	1
	$SSR(x_2 x_1)$	1
	<u>:</u>	<u>:</u>
	$SSR(x_k x_{k-1},x_{k-2},\cdots,x_1)$	1
	SSR	k
Error	SSE	n-(k+1)
Total	SST	n-1

SSR = SSR(x₁) + SSR(x₂|x₁) + ··· + SSR(x_k|x_{k-1}, x_{k-2}, ··· , x₁) =
$$\hat{\boldsymbol{\beta}}' \mathbf{X}' \mathbf{y} - n \bar{y}^2$$

SSE = $\mathbf{y}' \mathbf{y} - \hat{\boldsymbol{\beta}}' \mathbf{X}' \mathbf{y}$ (for the full model)
SST = $\mathbf{y}' \mathbf{y} - n \bar{y}^2$ (stays the same for all models)

Under the null hypothesis, $SSR/\sigma^2 \sim \chi_k^2$ and $SSE/\sigma^2 \sim \chi_{n-k-1}^2$ are independent. Therefore we have

$$TS = \frac{SSR/k}{SSE/(n-k-1)} \sim F_{k,n-k-1}$$

$$p - value = Pr(F_{k,n-k-1} > TS).$$

Example:

$$mgp_i = \beta_0 + hp_i\beta_1 + wt_i\beta_2 + \varepsilon_i$$

$$H_0: \beta_1 = \beta_2 = 0$$
, H_1 :at least one $\beta \neq 0$

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
hp	1	678.37	678.37	100.86	0.0000
wt	1	252.63	252.63	37.56	0.0000
Residuals	29	195.05	6.73		

$$TS = \frac{(678.37 + 252.63)/2}{195.05/29} = 69.21 > F_{2,29,0.95} = 3.33$$

Thus, we reject the null at 0.05 significance level and conclude that at least one β_1 and β_2 is not equal to 0.

◆ロ > ◆昼 > ◆ き > ・ き ・ り < ○

Background 0000

Example cont.

The overall F statistic is also available from the output of summary()

```
> summary(fit.all)
Call:
lm(formula = mpg ~ hp + wt, data = mtcars)
Residuals:
  Min
          10 Median
-3.941 -1.600 -0.182 1.050 5.854
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 37.22727
                       1.59879 23.285 < 2e-16 ***
           -0.03177
                       0.00903 -3.519 0.00145 **
hp
           -3.87783
                       0.63273 -6.129 1.12e-06 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 2.593 on 29 degrees of freedom
Multiple R-squared: 0.8268, Adjusted R-squared: 0.8148
F-statistic: 69.21 on 2 and 29 DF, p-value: 9.109e-12
```

Background

Once we have determined that at least one of the regressors is important, a natural next question might be which one(s)?

Important considerations:

- Is the increase in the regression sums of squares sufficient to warrant an additional predictor in the model?
- Additional predictors will increase the variance of \hat{y} include only predictors that explain the response (note: we may not know this through hypothesis testing as confounders may not test significant but would still be necessary in the regression model).
- Adding an unimportant predictor may increase the residual mean square thereby reducing the usefulness of the model.

Testing of single β_i

$$y_i = \beta_0 + x_{i1}\beta_1 + \cdots + x_{ij}\beta_i + \cdots + x_{ik}\beta_k + \varepsilon_i$$

- Question to answer: does one particular variable of interest significantly affect the prediction of \mathbf{y} when the other independent variables presented in the model?
- $H_0: \beta_i = 0, H_1: \beta_k \neq 0$
- $TS=rac{\hat{eta}_j}{\hat{se}(\hat{eta}_i)}\sim t_{n-k-1}$, reject H_0 if $|TS|>t_{n-k-1,1-lpha/2}$
- This is a **partial test** because $\hat{\beta}_i$ depends on all of the other predictors x_i , for $i \neq j$, that are in the model. Thus, this is a test of the contribution of x_i given other predictors in the model.

Testing of single β_i

Example cont.:

$$mgp_i = \beta_0 + hp_i\beta_1 + wt_i\beta_2 + \varepsilon_i$$

$$H_0: \beta_2 = 0, H_1: \beta_2 \neq 0$$

From the summary of Im $\hat{\beta}_2 = -3.88$, the variance and covariance matrix of the parameter estimates is

$$TS = \frac{-3.88}{\sqrt{0.40}} = -6.13 < t_{29,0.025} = -2.05$$

Thus, we reject the null and conclude that $\beta_2 \neq 0$.

4日 → 4周 → 4 = → 4 = → 9 Q P

$$y_i = \beta_0 + x_{i1}\beta_1 + \dots + x_{ij}\beta_j + \dots + x_{ip}\beta_p + \dots + x_{ik}\beta_k + \varepsilon_i$$

- Often it is of interest to determine whether a group of predictors contribute to predicting y given another predictor or group of predictors that are in the model.
- $H_0: \beta_j = \cdots = \beta_p = 0$, $H_1: \beta_l \neq 0$ for at least one $l, l = j, \cdots, p$

Testing of a subset of β

Partition the vector of regression coefficient and **X** matrix as

$$oldsymbol{eta} = egin{bmatrix} oldsymbol{eta}_1 \ oldsymbol{eta}_2 \end{bmatrix}, oldsymbol{\mathsf{X}} = [oldsymbol{\mathsf{X}}_1 | oldsymbol{\mathsf{X}}_2]$$

Hypotheses of interest: $H_0: \beta_2 = 0$ v.s. $H_1: \beta_2 \neq 0$

The model can be written as $\mathbf{y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2 + \boldsymbol{\varepsilon}$

$$SSR(\mathbf{X}) = \hat{\boldsymbol{\beta}}'\mathbf{X}'\mathbf{y} \; (k+1 \; \text{degrees of freedom})$$

$$MSE = \frac{\mathbf{y}'\mathbf{y} - \hat{\boldsymbol{\beta}}'\mathbf{X}'\mathbf{y}}{n - k - 1}$$

$$SSR(\mathbf{X}_2|\mathbf{X}_1) = SSR(\mathbf{X}) - SSR(\mathbf{X}_1)$$

= $SSE(reduced) - SSE(full)$ (r degrees of freedom)

Under H_0

$$TS = \frac{SSR(\mathbf{X}_2|\mathbf{X}_1)/r}{MSE} \sim F_{r,n-k-1}$$

Example cont.

$$mgp_i = \beta_0 + disp_i\beta_1 + hp_i\beta_2 + qsec_i\beta_3 + wt_i\beta_4 + \varepsilon_i$$

```
fit.sub<-lm(mpg~disp+hp+qsec+wt,data=mtcars)
> summary(fit.sub)
Call:
lm(formula = mpg ~ disp + hp + qsec + wt. data = mtcars)
Residuals:
   Min
            10 Median
                                  Max
-3.8664 -1.5819 -0.3788 1.1712 5.6468
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 27.329638 8.639032 3.164 0.00383 **
disp
           0.002666
                      0.010738 0.248 0.80576
           -0.018666
                      0.015613 -1.196 0.24227
hp
qsec
           0.544160
                      0.466493
                               1.166 0.25362
           -4 609123
                       1.265851 -3.641 0.00113 **
wt.
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 2.622 on 27 degrees of freedom
Multiple R-squared: 0.8351, Adjusted R-squared: 0.8107
F-statistic: 34.19 on 4 and 27 DF, p-value: 3.311e-10
```

20 / 28

Background

Testing of a subset of β

$$H_0: \beta_1 = \beta_2 = \beta_3 = 0, \ H_1: \beta_j \neq 0, j = 1, 2, 3$$

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
disp	1	808.89	808.89	117.65	0.0000
hp	1	33.67	33.67	4.90	0.0356
qsec	1	6.71	6.71	0.98	0.3321
wt	1	91.15	91.15	13.26	0.0011
Residuals	27	185.64	6.88		

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
wt	1	847.73	847.73	91.38	0.0000
Residuals	30	278.32	9.28		

$$SSR(disp, hp, qsec|wt) = 278.32 - 185.64 = 92.68$$

$$TS = \frac{92.68/3}{6.88} = 4.49 > F_{3,27,0.95} = 2.96$$

Thus we reject the null and conclude that disp, hp and asec are jointly significant, a

Yang Yang, M.S (UTSPH) Hypothesis Testing Dec.15 2014

Many functions in R can be used to test the contrasts.

function	package	description
fit.contrast	{gmodels}	Compute and test arbitrary contrasts for regression objects
contrast.lm	$\{contrast\}$	computes one or more contrasts of the estimated regression coefficients
glht	$\{multcomp\}$	generalized linear hypothesis test
linear.hypothesis	{car}	Generic function for testing a linear hypothesis

A simple example.

Regression Diagnostics

Frequently used functions provide information used with model diagnostics

fitted.values() residuals()	Returns fitted values Returns residuals
rstandard()	Standardized residuals, variance one; residual standardized using overall error variance (9.25)
rstudent()	Studentized residuals, variance one; residual standardized using leave-one-out measure of the error variance (9.26)
qqnorm()	Normal quantile plot
qqline()	Add a line to the normal quantile plot
plot.lm()	Given a lm object it produces six diagnostic plots, selected using the 'which' argument; default is plots 1-3 and 5
	1.Residual versus fitted values
	2. Normal quantile-quantile plot
	3. $\sqrt{ Standardized\ residuals }$ versus fitted values
	4. Cook's distance versus row labels
	5.Standardized residuals versus leverage along with contours of

Cook's distance

plot.lm()		distance versus	leverage/(1-leverage)
dffits()	Return DFFITS		
dfbeta()	Return DFBETAS	,	
covratio()		ts of the estimated	<i>i</i> th element is the ratio covariance matrix with
cooks.distance()	Returns Cook's di	stance	
hatvalues()	Diagonal of the ha	at matrix	
influence.measures()	Returns the previous fluential points	ous five measure of	influence and flags in-
<pre>lm.influence()</pre>	Returns four meas	sures of influence:	
hat	Diagonal of the ha	at matrix, measure	of leverage
coefficients		row contains the c the <i>i</i> th case is rem	hange in the estimated oved
sigma	,	n element contains error when the <i>i</i> th	the estimated of the case is removed
wt.res	Vector of weighte	d residuals or raw	residuals if weights are
	not set.	4 □ ▶ 4 8	□ ★ □ ★ □ ★ □ ★ ○ ○ ○ ○

Regression Diagnostics

```
Example:
```

```
fit<-lm(mpg~wt,data=mtcars)</pre>
#influential points are labeled
par(mfrow=c(2,2))
plot(fit) #returns four diagnostics plot (1-3 and 5)
par(mfrow=c(2,3))
plot(fit,which=1:6) #returns all six diagnostic plots
par(ask=T)
plot(residuals(fit),fitted.values(fit))
qqnorm(residuals(fit));qqline(residuals(fit))
plot(cooks.distance(fit),rownames(fit),type="h")
#influence measures
influence.measures(fit)
#extract influential points, uses $is.inf
inf.temp<-influence.measures(fit)
inf.pts<-which(apply(inf.temp$is.inf,1,any))</pre>
mtcars[inf.pts,]
#Influence measures
lm.influence(fit)
```

Hypothesis Testing

Regression Diagnostics

```
#Extract points that cause the greatest change in the estimates
lm.inf.coef<-lm.influence(fit)$coefficients</pre>
lm.inf.pts<-apply(lm.inf.coef[,2,drop=F],2,</pre>
+ FUN=function(x)which.max(abs(x)))
lm.inf.coef[lm.inf.pts,]
#this gives the same results with the diagnostic plots
#Get the five points that cause the greatest
#change in the estimates
lm.inf.pts.top5<-apply(lm.inf.coef,2,</pre>
+ FUN=function(x)names(rev(sort(abs(x)))[1:5]))
lm.inf.pts.top5
```

Type I

- Also called "sequential" sum of squares
- Can be viewed as the reduction in SSE obtained by adding additional term to a fit that already includes the terms listed before it.
- Pros: a complete decomposition of the predicted SS for the whole model; Preferable when some factors should be taken out before other factors
- Cons:Lack of invariance to order of entry into the model; not appropriate for factorial designs.

Type II

- The reduction in SSE due to adding the term to the model after all other terms except those that contain it (interaction terms).
- Pros: Appropriate for model building and natural choice for regression; Most powerful when no interaction: Invariant to the order when the factors are entered to the model.
- Cons:Not appropriate for factorial designs

Type III

- Effect of each variable is evaluated after all other factors have been accounted for.
- Pros: Appropriate for unbalanced data;
- Cons: Testing main effects when interactions presence; not appropriate with missing cells.

LRT and F test

The F-test of the null hypothesis $H_0: \mathbf{C}\beta = \mathbf{t}$ is a likelihood ratio test (LRT) because the F-ratio is a monotone transformation of the likelihood ratio λ .

The log-likelihood is given by

$$\begin{split} \log L(\boldsymbol{\beta}, \sigma^2) &= -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})' (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) \\ &= -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} SSE(\mathbf{X}) \\ \lambda &= -2 \log \frac{\max_{H_0} L(\boldsymbol{\beta})}{\max_{H_1 U H_0} L(\boldsymbol{\beta})} &= -2 \log \frac{L(\hat{\boldsymbol{\beta}}_1)}{L(\hat{\boldsymbol{\beta}}_1, \hat{\boldsymbol{\beta}}_2)} \\ &= \frac{SSE(\mathbf{X}_1) - SSE(\mathbf{X}_1 + \mathbf{X}_2)}{\sigma^2}, \end{split}$$

for a fixed value of σ^2 .

Since σ^2 is unknown, we can use $\hat{\sigma}^2_{MLF} = SSE(X_1 + X_2)/n$, then

$$F = C * \lambda = \frac{[SSE(\mathbf{X}_1) - SSE(\mathbf{X}_1 + \mathbf{X}_2)]/r}{SSE(\mathbf{X}_1 + \mathbf{X}_2)/(n-k-1)} \sim F_{r,n-k-1},$$

where $C = \frac{n-k-1}{nr}$.

Yang Yang, M.S (UTSPH)

References

- Elizabeth R. Brown, Introduction to Regression Models
- Nicholas Christian, Statistical Computing in R
- Langsrud, ϕ . (2003), ANOVA for Unbalanced Data: Use Type II Instead of Type III Sums of Squares, Statistics and Computing, 13, 163-167.