Prompting is Not All You Need! Evaluating LLM Agent Simulation Methodologies with Real-World Online Customer Behavior Data

Yuxuan Lu^{1,2}, Jing Huang¹, Yan Han¹, Bingsheng Yao², Sisong Bei¹, Jiri Gesi¹, Yaochen Xie¹, Zheshen (Jessie) Wang¹, Qi He¹, Dakuo Wang^{1,2}

¹Amazon.com, Inc., ²Northeastern University

June 18, 2025

- Large Language Models (LLMs) have enabled the simulation of "believable" human behavior¹.
- Many application areas have emerged:
 - Social Science Studies²
 - UX Studies³
 - A/B Testing Studies⁴

¹ Joon Sung Park et al. "Generative Agents: Interactive Simulacra of Human Behavior". In: *Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology.* UIST '23. New York, NY, USA: Association for Computing Machinery, Oct. 2023, pp. 1–22.

 $^{^2}$ Joon Sung Park et al. Generative Agent Simulations of 1,000 People. Nov. 2024. arXiv: 2411.10109 [cs].

³Yuxuan Lu et al. *UXAgent: A System for Simulating Usability Testing of Web Design with LLM Agents.* Apr. 2025. arXiv: 2504.09407 [cs].

⁴Dakuo Wang et al. *AgentA/B: Automated and Scalable Web A/BTesting with Interactive LLM Agents*. Apr. 2025. arXiv: 2504.09723 [cs].

- However, current systems are primarily optimized for and evaluated by their "believability":
 - "how much people feel it is like a human"
- rather than their "accuracy":
 - "how much it acts like a human"

⁵Shunyu Yao et al. ReAct: Synergizing Reasoning and Acting in Language Models. Mar. 2023. arXiv: 2210.03629 [cs].

- However, current systems are primarily optimized for and evaluated by their "believability":
 - "how much people feel it is like a human"
- rather than their "accuracy":
 - "how much it acts like a human"
- Some work evaluates the final outcomes of tasks (e.g., item purchases)⁵

⁵Shunyu Yao et al. ReAct: Synergizing Reasoning and Acting in Language Models. Mar. 2023. arXiv: 2210.03629 [cs].

- However, current systems are primarily optimized for and evaluated by their "believability":
 - "how much people feel it is like a human"
- rather than their "accuracy":
 - "how much it acts like a human"
- Some work evaluates the final outcomes of tasks (e.g., item purchases)⁵
- The fidelity of intermediate actions in the sequences are not quantitatively evaluated.

⁵Shunyu Yao et al. ReAct: Synergizing Reasoning and Acting in Language Models. Mar. 2023. arXiv: 2210.03629 [cs].

How can we better evaluate and improve

LLM Agents' action accuracy in simulating human behavior?

How can we better evaluate and improve

LLM Agents' action accuracy in simulating human *shopping* behavior?

Task & Method

Task Definition

- We focus on the human behavior simulation task
 - Generate the next user action based on the context and past actions.
 - Specifically, in the online shopping scenario.

Figure 1: Overview of the next action prediction task.

Task & Method 3 / 17

Dataset

- Collected from a real-world online shopping platform.
- 31,865 sessions from 3,526 users
- 230,965 user actions
- 4,432 purchases, 27,433 terminations

Task & Method 4 / 17

Context

- Context (or the "observation space") is defined as the a "simplified" HTML-based representation of the current page.
- JS and CSS are removed.
- Important structural information (Table, List, etc.) is preserved.
- LLM already understands the HTML format, no need to re-define "button" and "input" etc.

Task & Method 5 / 17

Context

- Context (or the "observation space") is defined as the a "simplified" HTML-based representation of the current page.
- JS and CSS are removed.
- Important structural information (Table, List, etc.) is preserved.
- LLM already understands the HTML format, no need to re-define "button" and "input" etc.
- Each interactable element is assigned a unique "name" (e.g. product_form.add_to_cart)

Task & Method 5 / 17

- Action is defined as the next raw browser action conducted by the user.
 - Generalizable to other domains beyond online shopping.
- click (click on an element)
- type_and_submit (type text and submit a form by hitting enter)
- terminate (user ends the session by closing the browser window)

Task & Method 6 / 17

- **Reasoning** is defined as a natural language sentence that describes the reasoning behind an action.
 - "I want to find a comfortable piece of clothing, so I'm looking for options with high ratings."
- Enhances the explainability of the model.
- Not present in existing datasets.

Task & Method 7 / 17

Rationale Synthesis

- Reasoning traces are crucial for understanding users' action choices
- Difficult to collect; thus, they are often not available in behavioral datasets.
- Reasoning Synthesis Pipeline:
 - Record a real human customer's think-aloud shopping sessions as in-context learning examples.
 - Provide an LLM with the observation context and the corresponding action.
 - Use LLM to generate a free-text reasoning explaining the user's decision.

Task & Method 8 / 17

Finetuning LLMs

- To enhance LLMs' accuracy in simulating human behavior, we finetune them on the task.
 - Input: $\langle Context, Reasoning, Action \rangle_{1:t-1} + \langle Context \rangle_t$
 - **Output:** $\langle Reasoning, Action \rangle_t$
- Training:
 - Entire session is inputed as a whole.
 - Minimize the loss of the predicted action and reasoning tokens
- Inference:
 - Input the context, past actions and corresponding reasoning.
 - Output the next action and reasoning.

Task & Method 9 / 17

Evaluation and Experiments

Evaluation Metrics

- Two tasks:
- Next Action Generation
 - Exact Match
 - Predicted action is only considered correct if both the action type (click, terminate, etc.) and the action attribute (the click target / the input text) match the ground truth.

Evaluation Metrics

- Two tasks:
- Next Action Generation
 - Exact Match
 - Predicted action is only considered correct if both the action type (click, terminate, etc.) and the action attribute (the click target / the input text) match the ground truth.
- Shopping Outcome Prediction
 - Essentially predicting the last action based on the session history.
 - One of click on a buy_now button or terminate the session.
 - F1 score

Models

- Baseline Models:
 - Claude
 - Llama
 - Mistral
 - DeepSeek-R!
- Fine-tuned Models:
 - Llama
 - Qwen
 - Mistral

Results – Accuracy & F1

Model	Action Gen. (Acc.)	Outcome (F1)
Llama 3.1 70B	8.19%	12.69%
Claude 3.5 Sonnet Claude 3.7 Sonnet	9.72% 9.34%	15.91% 12.81%
DeepSeek-R1	11.86%	20.01%
Qwen2.5-7B	4.25%	11.94%
Mistral-7B-v0.3	4.25%	11.27%
Llama 3.2 3B	2.93%	8.60%
Qwen2.5-7B SFT	17.26%	33.86%
Mistral-7Bv0.3 SFT	15.84%	30.12%
Llama-3.2-3B SFT	15.77%	33.99%

Table 1: Model performance.

Results - Distribution

Figure 2: Distribution of the action types in the dataset.

Ablation Study

 To evaluate the impact of training model with synthesized reasoning trace, we conduct an ablation study to remove the reasoning trace from the training data.

Model		Action Gen. (Acc.)	Outcome (F1)
Qwen2.5-7B SFT		17.26%	33.86%
	w/o reasoning	16.67%	26.92%
Mistral-7Bv0.3 SFT		15.84%	30.12%
	w/o reasoning	14.17%	17.99%
Llama-3.2-3B SFT		15.77%	33.99%
	w/o reasoning	9.31%	4.73%

Table 2: Ablation study result.

Error Analysis

- We analyze the errors made by the models: Claude and Qwen 2.5 7B.
- Error types⁶:
 - Didn't terminate
 - Didn't click
 - Didn't search
 - Searched wrong keyword
 - Clicked wrong button

⁶Illegal actions generated by models are excluded from this analysis.

Error Analysis

Figure 3: Error analysis.

Conclusion

Conclusion

- We present the first quantative, process-centric evaluation of LLMs for simulating human behavior in online shopping.
- State-of-the-art models cannot simulate human behavior accurately, i.e. Prompting is not all-you-need!
- Fine-tuning with reasoning traces significantly improves the accuracy of LLMs in simulating human behavior.

Conclusion 17 / 17

Questions? [todo] add QR Code / final conclusions