

DAYANANDA SAGAR COLLEGE OF ENGINEERING

(An Autonomous Institute Affiliated to VTV, Belagavi)
Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru-560078

DEPARTMENT OF MATHEMATICS

COURSE: MATHEMATICAL STRUCTURES COURSE CODE: 21MAT41A

MODULE-2: Fundamentals of Logic Multiple Choice Questions

SI.No	QUESTIONS
1.	Which of the following satisfies commutative law?
	a) \wedge b) v c) \leftrightarrow d) All of the mentioned
2.	Which of the following propositions is tautology?
	a) $(p \lor q) \rightarrow q$ b) $p \lor (q \rightarrow p)$ c) $p \lor (p \rightarrow q)$ d) Both (b) & (c)
3.	If there are 'M' switches in series numbered from 1, 2,, M. For circuit to be complete and bulb to glow which of the following is necessary? a) $1 \land 2 \land 3 \land \land M$ should be on b) $1 \land 2 \land 3 \land \land M$ should be off c) $1 \lor 2 \lor 3 \lor \lor M$ should be on d) None of the mentioned
4.	The statement," Every comedian is funny" where $c(x)$ is "x is a comedian" and $f(x)$ is "x is funny" and the domain consists of all people. a) $\exists x, (c(x) \land f(x))$ b) $\forall x, (c(x) \land f(x))$ c) $\exists x, (c(x) \rightarrow f(x))$ d) $\forall x, (c(x) \rightarrow f(x))$
5.	The premises $(p \land q) \lor r$ and $r \rightarrow s$ implies which of the conclusion? a) $p \lor r$ b) $p \lor s$ c) $q \lor s$ d) $q \lor r$
6.	The proposition $(P \Rightarrow Q) \land (Q \Rightarrow P)$ is a (a) Tautology (b) Contradiction (c) Contingency (d) None of the above
7.	
	Which of the following pairs of propositions are not logically equivalent?
	(a) $((p \rightarrow r) \land (q \rightarrow r))$ and $((p \lor q) \rightarrow r)$
	(b) $((p \land q) \land (\neg p \land \neg q))$ and $p \leftrightarrow q$
	(c) $((p \land q) \land (\neg p \land \neg q))$ and $p \leftrightarrow q$
	(d) $((p \land q) \rightarrow r)$ and $((p \rightarrow r) \land (q \rightarrow r))$

D

DAYANANDA SAGAR COLLEGE OF ENGINEERING

(An Autonomous Institute Affiliated to VTV, Belagavi)

Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru-560078

DEPARTMENT OF MATHEMATICS

8. Consider the following two statements.

S1: If a candidate is known to be corrupt, then he will not be elected

S2: If a candidate is kind, he will be elected Which one of the following statements follows from S1 and S2 as per sound inference rules of logic?

- a) If a person is known to be corrupt, he is kind
- b) If a person is not known to be corrupt, he is not kind
- c) If a person is kind, he is not known to be corrupt
- d) If a person is not kind, he is not known to be corrupt
- **9.** The symbolization for a conjunction is...

a) $p \rightarrow q$ b) p & q

c) $p \vee q$ d) $\sim p$

10. A conditional is symbolized like this...

a) $p \lor q$ b) $p \rightarrow q$ c) p * q d) p & q