

processing is that a an INOIF.

- =) Combining Vectors which would then be squished through an activation fuction which could be sigmoid or tanh.
- Drawbacks. It bear appeared a while ago and recent images were a an tree , Iquirel but those images don't give much information. And information coming in gets repeatedly squished through activation and training a network vsing back propagation all the way leads to vanishing gradient problem: Bear information lost. RNN memory Short term memory.

=> Basics & LSTM:
Gates:
- Forget gate
- Learn gate
- Remember gate
- Use gate
Outputs
- New Long-term memory
- New Short-term memory
Inputs:
- Long term Memory
- Short term Memory
- Input Vector (Event)
- In updating long term memory we add a bit
a remove a bit to the long term memony
- In updating long term memory we add a bit a remove a bit to the long term memory. - In updating Short term memory we remember some bit and forget some bit.
bit and formet, some bit
output

RNN:

In RNN, Mt-1 or STMt-1 vector is multiplied to Weight matrix and Et vector is multiplied to weight matrix and both vectors are then added together plus a b (bias) Their result squished

through tanh function, which gives us output m_t or St. This further can be multiplied to a neight matrix to give output Yt or can be fed to another iteration of neural network.

=) The output at this neuron acts as prediction and also memory that we carry to the next node.

Learn Gate:

| Selement wise | Nt. it |
| Combine | Combine | Multiplication |
| STMt-1 | tanh | Nt = tanh (Mi[STMt-1, Et] + bn) | X

| Ignore |
| Et | T | it = T(Wi[STMt-1, Et] + bi)

- them through a linear function, which consists g joining the vectors (by addition) and multiplying joined vector by weight mattrix Wn and adding bias-but to it and squishing the result with tanh activation function.
- Second, we calculate ignore factor it, which gets (multiplied element-wise to Nt (new in fo)).

 The it is calculated by joining vectors CTM t-1

 and Et and multiplying new weight matoix-Wi

 and then adding a bias bi and then squishing the

 result through an activation function.

(STM t-1 and Et) LTM (info) Remember Grate: Add output g torget gate and learn gate returns output for new LTM - LTME Use Grate (output gate): Uses Longtern memory just came out a forget gate and short term me mory just came Ut = tanh (Wu [LIMt-1xft]+ba) $LTM_{t-1} \longrightarrow Forget gate$ tanh $V_{t} = \mathcal{O}\left(W_{v}\left[STM_{t-1}, E_{t}\right] + bv\right)$ Et Learn gate + forget gate (retained info) -> output

Prediction

Training	- neural	network	on se	eries g	pairs g	
(movie	- neural review (t	ext)	rating	(1-5)) => and	after
training	- for e	valuation	sim a	review	and let	neural
network	- for e e predic	t rating	(wo	rds play a	an importa	nt role)
	I	0		, ,	/	