Options: Basics and Strategies

E-minuted of Eigens L2

Overview

- Option basics
 - Option valuation on expiration date
 - Option strategies
- Next two classes: Option valuation prior to expiration date
 - □ No-arbitrage bounds on option prices
 - □ Black-Scholes-Merton Formula

2

Option Strategies

- Using calls for leverage
- 2. Protective put
- 3. Covered calls
- 4. Straddle/Strangle
- 5. Collars

DIY: 1. Call Options for Leverage

Return = Profit/7000

S	Γ	60	65	70	75	80	85	90
R	eturn A:	-15.4%	- <u>7.1</u> %	0 %	7.1%	14.3%	21.4%	28.6%
R	eturn B:	- 100%	-100%	-100%	-50%	0%	50%	100%
R	eturn C:	-12.6%	-12.6%	-12.6%	-5.4%	1.7%	8.9%	16%

7

Call Option for Leverage: Conclusion

• Holding call options for leverage (portfolio B): when price falls below zero, you lose everything, but when price increases only modestly, e.g. an increase from 85 to 90 (only 6% increase), your return doubles from 50 to 100%! This is called leverage. This is the speculative feature of options.

S_T	60	65	70	75	80	85	90
Return A:	-15.4%	- <u>7.1</u> %	0%	7.1%	14.3%	21.4%	28.6%
Return B:	- 1 <u>00</u> %	- <u>10</u> 0%	- <u>10</u> 0%	- <u>50</u> %	0%	50%	100%

Call Option for insurance: Conclusion

- Holding call options for insurance (portfolio C): when prices fall the option just expires worthlessly, your minimum return is -12%. With holding the stock you can get returns of -15% and worse if the stock falls further below 60. If price goes up you earn the same as portfolio A minus 880.
- This is the insurance feature of options.

S_{T}	60	65	70	75	80	85	90	
Return A:	-15.4%	- <u>7.1</u> %	0 %	7.1%	14.3%	21.4%	28.6%	
Return C:	-12.6%	-12.6%	-12.6%	-5.4%	1.7%	8.9%	16%	

.

2. Protective Put

You own a share of Microsoft with current price S₀=\$70. You are afraid that the stock price will drop. How do you limit your possible losses by trading options?

S _T	40	50	60	70	80	90	100
Pavoff Stock:							

10

2. Protective Put

You own a share of Microsoft with current price S₀=\$70. You are afraid that the stock price will drop. How do you limit your possible losses by trading options?

S _T	40	50	60	70	80	90	100
Payoff Stock:	40	50	60	70	80	90	100

The loss is unlimited.

2. Protective Put

You own a share of Microsoft with current price S₀=\$70. You are afraid that the stock price will drop. How do you limit your possible losses by trading options?

S _T	40	50	60	70	80	90	100
Payoff Stock:	40	50	60	70	80	90	100
Payoff Put,X=70):						

Lets purchase Put option with X=70

12

2. Protective Put

You own a share of Microsoft with current price S₀=\$70. You are afraid that the stock price will drop. How do you limit your possible losses by trading options?

S _T	40	50	60	70	80	90	100
Payoff Stock:	40	50	60	70	80	90	100
Payoff Put,X=70:	30	20	10	0	0	0	0

13

2. Protective Put

You own a share of Microsoft with current price S₀=\$70. You are afraid that the stock price will drop. How do you limit your possible losses by trading options?

S _T	40	50	60	70	80	90	100
Payoff Stock:	40	50	60	70	80	90	100
Payoff Put,X=70:	30	20	10	0	0	0	0
Payoff Total:	70	70	70	70	80	90	100

What does the payoff of this strategy remind you of?

2. Protective Put

■ You own a share of Microsoft with current price S₀=\$70. You are afraid that the stock price will drop. How do you limit your possible losses by trading options?

S _T	40	50	60	70	80	90	100
Payoff Stock:	40	50	60	70	80	90	100
Payoff Put,X=70:	30	20	10	0	0	0	0
Payoff Total:	70	70	70	70	80	90	100

- This payoff is the <u>same</u> as that of a long call with X=70 + a bond with a face value of 70!
- Next week: put-call parity.

15

2. Protective Put

■ You own a share of Microsoft with current price S₀=\$70. You are afraid that the stock price will drop. How do you limit your possible losses by trading options?

S _T	40	50	60	70	80	90	100
Payoff Stock:	40	50	60	70	80	90	100
Payoff Put,X=70:	30	20	10	0	0	0	0
Payoff Total:	70	70	70	70	80	90	100

- Why don't you always protect yourself against down-side risk?
- Because it is costly: it eats in your profits

_	_			Cal
2 1	\sim	M	$r \cap c$	1 (2)

- Covered Call Writing a call on an asset together with buying the asset
- Your potential obligation to deliver the call (short call) is covered by your long position in stock.
- Writing an option without an offsetting stock position is called by contrast naked option writing.

19

3. Covered Call

 Suppose that you buy a share of Microsoft for S₀=\$70. You think that at-the-money call options trading at \$10 seem excessively expensive, and you want to profit from this.

S _T	40	50	60	70	80	90	100
Payoff Stock:							

20

3. Covered Call

■ Suppose that you buy a share of Microsoft for S_0 =\$70. You think that at-the-money call options trading at \$10 seem excessively expensive, and you want to profit from this.

S _T	40	50	60	70	80	90	100
Payoff Stock:	40	50	60	70	80	90	100
Payoff Short Ca	ill:						

3. Covered Call

■ Suppose that you buy a share of Microsoft for S₀=\$70. You think that at-the-money call options trading at \$10 seem excessively expensive, and you want to profit from this.

S _T	40	50	60	70	80	90	100
Payoff Stock:	40	50	60	70	80	90	100
Payoff Short Ca	II: 0	0	0	0	-10	-20	-30
Payoff Total:							

22

3. Covered Call

 Suppose that you buy a share of Microsoft for S₀=\$70. You think that at-the-money call options trading at \$10 seem excessively expensive, and you want to profit from this.

ſ	S _T	40	50	60	70	80	90	100
l	Payoff Stock:	40	50	60	70	80	90	100
l	Payoff Short Call:	0	0	0	0	-10	-20	-30
l	Payoff Total:	40	50	60	70	70	70	70
1	Profit Total:							

23

3. Covered Call

■ Suppose that you buy a share of Microsoft for S_0 =\$70. You think that at-the-money call options trading at \$10 seem excessively expensive, and you want to profit from this.

S _T	40	50	60	70	80	90	100
Payoff Stock:	40	50	60	70	80	90	100
Payoff Short Ca	II: 0	0	0	0	-10	-20	-30
Payoff Total:	40	50	60	70	70	70	70
Profit Total:	50	60	70	80	80	80	80

3. Covered Call

 Suppose that you buy a share of Microsoft for S₀=\$70. You think that at-the-money call options trading at \$10 seem excessively expensive, and you want to profit from this.

S _T	40	50	60	70	80	90	100
Payoff Stock:	40	50	60	70	80	90	100
Payoff Short Call:	0	0	0	0	-10	-20	-30
Payoff Total:	40	50	60	70	70	70	70
Profit Total:	50	60	70	80	80	80	80

- You sold your upside.
- Compare: "naked option writing"

25

3. Covered Call

- Why doing that?
- Institutional investors use this strategy a lot. They are getting extra revenue from the option premium. Of course they don't profit anymore if the stock goes above the strike price, but they set the strike price at a level at which they would want to sell anyways.
- The option generates some extra cash for them in the process.

Fundamental of Finance I.25

4. Straddle and Strangle

- You have private information that a particular stock's price will change dramatically soon, but you do not know if it will go up or down. So you buy
 - □ Straddle: Put (X=X₁) + Call (X=X₂), X₁=X₂
 □ Strangle: Put (X=X₁) + Call (X=X₂), X₁<X₂

S _T	30	40	50	60	70	80	90
Payoff Call:							
Payoff Put:							
Payoff Total:							

■ Illustrated a straddle with X₁=X₂ =60:

29

4. Straddle and Strangle

- You have private information that a particular stock's price will change dramatically soon, but you do not know if it will go up or down. So you buy
 - □ Straddle: Put $(X=X_1)$ + Call $(X=X_2)$, $X_1=X_2$ □ Strangle: Put $(X=X_1)$ + Call $(X=X_2)$, $X_1<X_2$
 - S_T 30 40 50 60 70

| S_T | 30 | 40 | 50 | 60 | 70 | 80 | | Payoff Call: 0 | | Payoff Put: | | Payoff Total:

Illustrated a straddle with X₁=X₂ =60:

30

90

4. Straddle and Strangle

- You have private information that a particular stock's price will change dramatically soon, but you do not know if it will go up or down. So you buy
 - \Box Straddle: Put (X=X₁) + Call (X=X₂), X₁=X₂
 - \Box Strangle: Put (X=X₁) + Call (X=X₂), X₁<X₂

 S_T
 30
 40
 50
 60
 70
 80
 90

 Payoff Call:
 0
 0
 0
 0
 0
 0
 90
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

■ Illustrated a straddle with X₁=X₂ =60:

4. Straddle and Strangle

- You have private information that a particular stock's price will change dramatically soon, but you do not know if it will go up or down. So you buy
 - □ Straddle: Put $(X=X_1)$ + Call $(X=X_2)$, $X_1=X_2$

 $\hfill \Box$ Strangle: Put (X=X1) + Call (X=X2), X1<X2

S _T	30	40	50	60	70	80	90
Payoff Call:	0	0	0	0	10	20	30
Payoff Put:							
Payoff Total:							

■ Illustrated a straddle with X₁=X₂ =60:

32

4. Straddle and Strangle

- You have private information that a particular stock's price will change dramatically soon, but you do not know if it will go up or down. So you buy
 - \Box Straddle: Put (X=X₁) + Call (X=X₂), X₁=X₂
 - \Box Strangle: Put (X=X₁) + Call (X=X₂), X₁<X₂

S _T	30	40	50	60	70	80	90
Payoff Call:	0	0	0	0	10	20	30
Payoff Put:	30						
Payoff Total:							

■ Illustrated a straddle with X₁=X₂ =60:

33

4. Straddle and Strangle

- You have private information that a particular stock's price will change dramatically soon, but you do not know if it will go up or down. So you buy
 - \square Straddle: Put (X=X₁) + Call (X=X₂), X₁=X₂
 - \Box Strangle: Put (X=X₁) + Call (X=X₂), X₁<X₂

S.	30	40	50	60	70	80	90
Payoff Call:	0	0	0	0	10	20	30
Payoff Put:	30	20	10	0	0	0	0
Payoff Total:							

■ Illustrated a straddle with X₁=X₂ =60:

4. Straddle and Strangle

- You have private information that a particular stock's price will change dramatically soon, but you do not know if it will go up or down. So you buy
 - \Box Straddle: Put (X=X₁) + Call (X=X₂), X₁=X₂
 - □ Strangle: Put $(X=X_1)$ + Call $(X=X_2)$, $X_1 < X_2$

S _T	30	40	50	60	70	80	90
Payoff Call:	0	0	0	0	10	20	30
Payoff Put:	30	20	10	0	0	0	0
Payoff Total:	30	20	10	0	10	20	30

■ Illustrated a straddle with X₁=X₂ =60:

35

4. Straddle and Strangle

- Straddle: Long a call and long a put with same exercise price.
- Gives you a V shaped combined payoff diagram and a V below that for profits.
- Is expensive because you have to pay two options.
- A cheaper way of doing a similar bet on volatility is by buying out of the money calls and puts.
 They are a lot cheaper (Strangle).

Fundamental of Finance I.25

_			
-			
-			
-			
-			
-			
-			
-			
-			
-			
-		 	
_			
-			
_			

EWAN McGregor ROGUE TRADER The beginning *,* 16, 1995, when Nichold **e** in the Stock Exchange of anges, essentially be arket would not move sigi ne Kobe earthquake h ry 17, sending Asian ents, into a tailspin. Reali Leeson left a note reading ry 23. Losses twice the eventually red bank's availal bailout attempt, Barii olderst merchant ban bruary 26. 39

DIY: 5. Collar

- What should you do if
 - you want to buy shares of Microsoft for \$70 per share
 - you want to make sure that in 6 months the value of your position is at least \$60 per share
 - you think that the stock price will go up, but that it will at most reach (about) \$80

	ST	40	50	60	70	80	90	100
	Payoff Stock:	40	50	60	70	80	90	100
ong Put	Payoff X=60	: 20	10	0	0	0	0	0
	Payoff X=80		0	0	0	0	-10	-20
	Pavoff Total:	60	60	60	70	80	80	80

Overview of Option Strategies

- 1. Calls get you leverage
- 2. Protective put = stock + put
- 3. Covered call = stock + short call
- 4. Straddle (Strangle) = ATM (OTM) put + call
- 5. Collar = stock + put + short call
- 6. Bull spread: long call X1 + short call X2, with X1<X2
- 7. Bear spread: long call X2 + short call X1, with X1<X2
- 8. Butterfly spread: long call X1 + 2*short call X2 + long call X3, X1<X2<X3</p>

44

Bull Spreads A bull spread is a position with the following profit shape. Profit (5) It is a bet that the price of the underlying asset will increase, but not too much Profit (5) Profit (5) Profit (5) Profit (5) Profit (5) A bull spread Profit (5) A bull spread A

Bear Spreads • It is a bet that the price of the underlying asset will decrease, but not too much X_1 X_2 S_T Pundamental of Finance 1.25 47

Concepts to Know

- Option basics
 - □ Call option
 - □ Put option
 - □ Draw payout profile
- Option strategies
 - □ Which are common option strategies?
 - □ What are they used for?