

Rank

All Domains > Algorithms > Implementation > The Grid Search

The Grid Search

Problem

Submissions

Leaderboard

Discussions

Editorial A

Given a 2D array of digits, try to find the occurrence of a given 2D pattern of digits. For example, consider the following 2D matrix:

1234567890

0987654321

11**11111**111

1111111111

222222222

Assume we need to look for the following 2D pattern:

876543

111111

111111

If we scan through the original array, we observe that the 2D pattern begins at the second row and the third column of the larger grid (the 8 in the second row and third column of the larger grid is the top-left corner of the pattern we are searching for).

So, a 2D pattern of $m{P}$ digits is said to be present in a larger grid $m{G}$, if the latter contains a contiguous, rectangular 2D grid of digits matching with the pattern P, similar to the example shown above.

Input Format

The first line contains an integer, T, which is the number of test cases. T test cases follow, each having a structure as described below: The first line contains two space-separated integers, R and C_i indicating the number of rows and columns in the grid G_i respectively.

This is followed by R lines, each with a string of C digits, which represent the grid G.

The following line contains two space-separated integers, r and c, indicating the number of rows and columns in the pattern grid P. This is followed by r lines, each with a string of c digits, which represent the pattern P.

Constraints

 $1 \le T \le 5$

 $1 \le R, r, C, c \le 1000$

 $1 \le r \le R$

 $1 \le c \le C$

Test Case Generation

Each individual test case has been generated by first specifying the size (R and C) of the large 2D matrix, and then randomly generating the digits in it. A limited number of digits in the larger matrix may be changed by the problem setter (no more than 5% of the total number of digits in the matrix). So the larger 2D matrix is almost-random. The pattern matrix has been manually-curated by the problem setter.

Output Format

Display 'YES' or 'NO', depending on whether (or not) you find that the larger grid G contains the rectangular pattern P. The evaluation will be case sensitive.

Sample Input

10 10

7283455864

9/10/2016

Sample Output

YES NO

Explanation

The first test in the input file is:

As one may see, the given 2D grid is indeed present in the larger grid, as marked in bold below.

The second test in the input file is:

```
15 15
400453592126560
114213133098692
474386082879648
522356951189169
887109450487496
252802633388782
502771484966748
075975207693780
511799789562806
404007454272504
549043809916080
962410809534811
445893523733475
768705303214174
650629270887160
2 2
99
99
```

The search pattern is:

99 99

This cannot be found in the larger grid.

```
in y f
Submissions: 23961
Max Score: 30
Difficulty: Medium
Rate This Challenge:
☆☆☆☆☆
```

```
Python 3
                                                                                                                             \Diamond
   #!/bin/python3
 3
   import sys
 5
   t = int(input().strip())
 7 ▼ for a0 in range(t):
 8
        R,C = input().strip().split(' ')
 9
        R,C = [int(R),int(C)]
10
        G = []
        G_i = 0
11
        for G_i in range(R):
12 ▼
           G_t = str(input().strip())
13
14
           G.append(G_t)
15
        r,c = input().strip().split(' ')
        r,c = [int(r),int(c)]
16
17
        P = []
18
        P_i = 0
19 🔻
        for P_i in range(r):
20
           P_t = str(input().strip())
21
           P.append(P_t)
22
                                                                                                                     Line: 1 Col: 1
```

Test against custom input

Run Code

Submit Code

Copyright © 2016 HackerRank. All Rights Reserved

Join us on IRC at #hackerrank on freenode for hugs or bugs.

Contest Calendar | Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Terms Of Service | Privacy Policy | Request a Feature