Part 1:

K-means clustering:

Spectral clustering:

Normalize cut

Ratio cut

Part 2 & Part 3:

Clustering with k=2,3,4.

K-means with more clustering result:

Image1: random method

Image1: K-means++ method

Image2: random method

Image2: K-means++ method

Spectral Clustering:

Image1: Normalize cut

(random method)

Image1:Ratio cut

(random method)

Image2: Normalize cut

(random method)

Image2:Ratio cut

(random method)

(kmeans++ method)

From the result of different clustering method, we can see that spectral clustering has the better result than K-means clustering. And with two different initialization method K-means++ has better result than random method.

ML HW06

December 25, 2022

```
[1]: import numpy as np
  import cv2
  import matplotlib.pyplot as plt
  from scipy.spatial.distance import pdist, squareform
  import os
  from PIL import Image

from utils import load_data , kernel_function , gif_function
```

0.1 Kernel K-Means

For kernel k-means clustering, we use two different initialization method. 1. K-means++:

- (1) Choose one center uniformly at random among the data points.
- (2) For each data point x not chosen yet, compute D(x), the distance between x and the nearest center that has already been chosen.
- (3) Choose one new data point at random as a new center, using a weighted probability distribution where a point x is chosen with probability proportional to $D(x)^2$.
- (4) Repeat Steps 2 and 3 until k centers have been chosen.
 - 2. Random:

Randomly pick k data points as the initial centroids.

And we compute the kmeans clustering using the initialize centroids above. The alogorithms of kmeans we used is Lloyd's algorithm. For the E-step (expectation step), we keep μ_k fixed, and minimize $J = \sum_{n+1}^N \sum_{k=1}^K r_{nk} ||x_i - x_j||^2$ with respect to $r_{nk} \in \{0,1\}$. And for the M-step (maximization step), we keep r_{nk} fixed, and minimize J with respect to μ_k . Repeat this procedure, until μ_k is converge.

```
[7]: class Kmeans:
    def __init__(self, cluster, init):
        self.K = cluster
        self.init = init

    def initialization(self , init , data):
        init_mean = np.zeros((self.K , data.shape[1]))
        ## use kmeans++ to find the initral center
        if init == "kmeans++":
```

```
## randomly selected a data point as the first centroid
           init_mean[0] = data[np.random.randint(low = 0 , high = data.
\Rightarrowshape[0], size = 1), :]
           ## find another k-1 centroid
           for k in range(1,self.K):
               k_dist = np.zeros((data.shape[0] , k))
               for i in range(k):
                   k_dist[:,i] = np.sqrt(np.sum((data- init_mean[i])**2 , axis__
\Rightarrow= 1))
               d x = np.min(k dist , axis = 1)
               sum_d = np.sum(d_x)*np.random.rand()
               for j in range(len(data)):
                   sum_d = d_x[j]
                   if sum_d <= 0:</pre>
                       init_mean[k] = data[j]
                       break
       ## randomly choose k initial centroids
       elif init == "random":
           # np.random.seed(5)
           init_mean = data[np.random.randint(low = 0 , high = data.shape[0] ,__
⇔size = self.K) , :]
      return init_mean
  def train(self , png_dir , image_array , h , w):
       if not os.path.exists(png_dir):
           os.makedirs(png_dir)
       cluster = np.zeros((len(image_array)))
       ## find initial center using different method
       init_mean = self.initialization(self.init , image_array)
      mean = np.copy(init_mean)
       eps = 1e-9
       for i in range(1000):
           ## Expectation step
           dist = []
           ## classify all samples according to closet mu_k
           for j in range(self.K):
               dist.append(np.sqrt(np.sum((image_array - mean[j])**2 , axis =__
cluster = np.argmin(dist , axis = 0)
           # Maximization step
           new_mean = np.zeros(mean.shape)
```

```
## recompute as the mean mu_k of the points in cluter C_k
           for j in range(self.K):
               new_mean[j] = np.sum(image_array[np.argwhere(cluster == j),:] ,__
\Rightarrowaxis = 0)
               if np.sum(cluster == j) > 0:
                   new mean[j] /= np.sum(cluster == j)
           diff = np.sum((new_mean - mean)**2)
           mean = new_mean
           ## visualization of current clustering result
           print("iteration: {} diff: {:.6f}".format(i , diff))
           plt.imshow(cluster.reshape(h, w))
           # plt.show()
           plt.savefig(os.path.join(png_dir,'frame_'+str(i)+'.png'),dpi=100)
           plt.close()
           if diff < eps:
               break
       ## creating gif file
      gif_function(png_dir)
```

The kernel function we used is defined below:

$$k(x,x') = e^{-\gamma_s ||S(x) - S(x')||^2} \times e^{-\gamma_c ||C(x) - C(x')||^2}$$

We set the γ_s to 0.001 and γ_c to 0.001.

iteration: 0 diff: 244.525944

iteration: 1 diff: 3.006782

iteration: 2 diff: 2.352987

iteration: 3 diff: 1.759184

iteration: 4 diff: 0.936148

iteration: 5 diff: 0.559892

iteration: 6 diff: 0.263217

iteration: 7 diff: 0.118955

iteration: 8 diff: 0.054253

iteration: 9 diff: 0.046171

iteration: 10 diff: 0.013350

iteration: 11 diff: 0.018588

iteration: 12 diff: 0.018511

iteration: 13 diff: 0.027003

iteration: 14 diff: 0.031106

iteration: 15 diff: 0.019707

iteration: 16 diff: 0.016679

iteration: 17 diff: 0.009625

iteration: 18 diff: 0.003618

iteration: 19 diff: 0.000592

iteration: 20 diff: 0.001087

iteration: 21 diff: 0.000162

iteration: 22 diff: 0.000000

For the result of the two different initialization methods, we can see that by using kmeans++ method the clustering converges much quicker with less iterations and less time.

0.2 Spectral Clustering

For Spectral Clustering, we also used two different methods to cluster which is normalize cut and ratio cut.

```
[3]: class Spectral_Cluster:
    def __init__(self , cluster , image_array ):
        self.K = cluster
        self.image_array = image_array

def normalize_cut(self , eig_path , vec_path):
    if os.path.exists(eig_path) and os.path.exists(vec_path):
        eigenvalue = np.load(eig_path)
        eigenvector = np.load(vec_path)

else:
    ## similarity matrix
    W = self.image_array
    ## degree matrix
    D = np.diag(np.sum(W , axis = 1))
```

```
L_sym = np.diag(1/np.diag(np.sqrt(D)))@L@np.diag(1/np.diag(np.
       ⇔sqrt(D)))
                  eigenvalue , eigenvector = np.linalg.eig(L_sym)
                  np.save(eig_path , eigenvalue)
                  np.save(vec_path , eigenvector)
              sort_idx = np.argsort(eigenvalue)
              U = eigenvector[:,sort_idx[:self.K]]
              T = U/np.sqrt(np.sum(U**2, axis = 1)).reshape(-1, 1)
              return T
          def ratio_cut(self , eig_path , vec_path):
              if os.path.exists(eig_path) and os.path.exists(vec_path):
                  eigenvalue = np.load(eig_path)
                  eigenvector = np.load(vec_path)
              else:
                  ## similarity matrix
                  W = self.image_array
                  D = np.diag(np.sum(W , axis = 1))
                  ## compute unormalize laplacian matrix
                  L = D - W
                  eigenvalue , eigenvector = np.linalg.eig(L)
                  np.save(eig_path , eigenvalue)
                  np.save(vec_path , eigenvector)
              sort_idx = np.argsort(eigenvalue)
              U = eigenvector[:,sort_idx[:self.K]]
              return U
[10]: data, height, width = load_data("/Users/cindychen/Documents/ML_HW06/image1.

¬png")
      gamma_s = 0.001
      gamma_c = 0.001
      ## compute kernel function with gamma s equals to 0.001 and gamma c equals to 0.
       →001
      image_array = kernel_function(data, gamma_s , gamma_c)
```

compute normalize laplacian matrix $L_sym = D^{(-1/2)}LD^{(-1/2)}$

L = D - W

```
eig_path = "/Users/cindychen/Documents/ML_HW6_310657012__/eigenvalue_image1_0.
        →001_0.001_ratio.npy"
       vec_path = "/Users/cindychen/Documents/ML_HW6_310657012_ /eigenvector_image1_0.
       ⇔001 0.001 ratio.npy"
       spectral = Spectral_Cluster(4 , image_array)
       ## using normalize cut and ratio cut to compute the spectral clustering
       process_array = spectral.normalize_cut(eig_path , vec_path)
       process_array = spectral.ratio_cut(eig_path , vec_path)
       ## after using spectral clustering put the pre-processed data into kmeans for
       \hookrightarrow classification
       model 2 = Kmeans(4, "random")
       gif_dir = "/Users/cindychen/Documents/ML_HW06_output/spectral_4_ratio"
      model_2.train(gif_dir , process_array , height , width)
      iteration: 0 diff: 0.000002
      iteration: 1 diff: 0.000016
      iteration: 2 diff: 0.000043
      iteration: 3 diff: 0.000009
      iteration: 4 diff: 0.000005
      iteration: 5 diff: 0.000001
      iteration: 6 diff: 0.000000
      iteration: 7 diff: 0.000000
      iteration: 8 diff: 0.000000
[142]: data, height, width = load_data("/Users/cindychen/Documents/ML_HW06/image2.
       ⇔png")
       gamma_s = 0.001
       gamma_c = 0.001
       image_array = kernel_function(data, gamma_s , gamma_c)
       eig_path = "/Users/cindychen/Documents/ML_HW6_310657012__/eigenvalue_image2_0.
       ⇒001_0.001.npy"
       vec_path = "/Users/cindychen/Documents/ML_HW6_310657012_ /eigenvector_image2_0.
       0.001.npy
       spectral = Spectral_Cluster(4 , image_array)
       # process_array = spectral.ratio_cut(eig_path , vec_path)
       process_array = spectral.normalize_cut(eig_path , vec_path)
       model_2 = Kmeans(4, "kmeans++")
       gif dir = "/Users/cindychen/Documents/ML HW06 output/spectral++2 4"
       model_2.train(gif_dir , process_array , height , width)
      iteration: 0 diff: 0.184725
```


iteration: 1 diff: 0.011629

iteration: 2 diff: 0.001115

iteration: 3 diff: 0.000098

iteration: 4 diff: 0.000007

iteration: 5 diff: 0.000001

iteration: 6 diff: 0.000000

iteration: 7 diff: 0.000000

[]: