Algorithm Miscellany

Jiyue Wang jiyue@stanford.edu

March 13, 2015

1 Job Scheduling / Makespan problem

Given m machines and n jobs with workload $p_1, ..., p_n$, give a schedule that

min max{workload for a single machine}

This problem is NP hard. We can use a Greedy algorithm to achieve 4/3 approximation. If the number of distinct workload is restricted to k, there is a DP solution of $O(n^{2k})$ which gives the exact solution to the corresponding decision problem : Can the m machines finish the job within T times. (Suppose the workload is the time it takes to complete the job for one machine.)

Suppose there are b_i jobs for workload p_i , and we have $(b_1, ..., b_k)$ jobs in total. Let $M(c_1, ..., c_k)$ denote the minimum number of machines needed to complete $(c_1, ..., c_k)$ jobs within time T. Then it's easy to check whether $M(c_1, ..., c_k) > 1$ and quitely clearly, M(0, ..., 0) = 0