Hoja de problemas 10

16/11/2022

Curvas algebraicas

- 1. Sea $C = V(f) \subset \mathbb{A}^2$ y $\phi : \mathbb{A}^2 \to \mathbb{A}^2$, $\phi(X,Y) = (aX bY, bX + aY)$, donde $a, b \in k$, tal que $a^2 + b^2 = 1$. Suponemos que C tiene una única rama en (0,0), y que $r = \text{mult}_{0,0}(C) \in \mathbb{Z}_{>0}$.
 - (a) Demonstrar que $\phi(C) \subset \mathbb{A}^2$ es una curva afín.
 - (b) ¿Cuál es la recta tangente de C y de $\phi(C)$ en (0,0)?
 - (c) Calcular $\operatorname{mult}_{(0,0)}(C,\phi(C))$.
- 2. Sea $F(X,Y,Z)=X^2Y^2+Y^2Z^2+Z^2X^2$ y $C=V(F)\subset \mathbb{P}^2.$
 - (a) ¿Cuáles son los puntos singulares de C?
 - (b) Demonstrar que cada punto singular de C tiene dos ramas lisas.
- 3. La curva dual de una curva en \mathbb{P}^2 es el conjunto de puntos $(u_0, u_1, u_2) \in \mathbb{P}^2$ tal que la recta $V(u_0X_0 + u_1X_1 + u_2X_2)$ es una recta tangente de un punto de la curva.
 - (a) Encontrar una parametrización de la curva $C = V(X^2Z + Y^3)$.
 - (b) Demonstrar que la curva dual de C es una curva parametrizada, es decir, hay polinomios homogéneos $A,B,C\in k[U,V]$ del mismo grado tal que la curva dual es el conjunto

$$\{ [A(u,v) : B(u,v) : C(u,v)] \in \mathbb{P}^2 \mid [u : v] \in \mathbb{P}^2 \}.$$

4. El semigrupo $S_R \subset \mathbb{Z}_{\geq 0}$ de una rama R es el conjunto de múltiplicidades de intersección de R y cualquier otra curva D,

$$S_R = \{ \text{mult}(R, D) \in \mathbb{Z}_{\geq 0} \mid D \text{ otra curva} \}.$$

Por definición, S_R no contiene el elemento $+\infty = \text{mult}(R, R)$.

- (a) Demonstrar que S_R es un subsemigrupo de $\mathbb{Z}_{\geq 0}$, es decir, si $a, b \in S_R$, entonces $a + b \in S_R$.
- (b) Demonstrar que si $a, b \in S_R$, entonces $\min\{a, b\} \in S_R$.