Assignment -3 Build CNN model for classification of Flowers

Assignment Date	03 October 2022
Team ID	PNT2022TMID52869
Project Name	AI BASED DISCOURSE FOR BANKING
	INDUSTRY
Student Name	Umapriya Selvam
Student Roll Number	CITC1904119
Maximum Marks	2 Marks

Question-1. Load the dataset

Solution:

!unzip Flowers-Dataset.zip

```
inflating: flowers/daisy/1396526833 fb867165be n.jpg
inflating: flowers/daisy/13977181862 f8237b6b52.jpg
inflating: flowers/daisy/14021430525_e06baf93a9.jpg
inflating: flowers/daisy/14073784469 ffb12f3387 n.jpg
inflating: flowers/daisy/14087947408 9779257411 n.jpg
inflating: flowers/daisy/14088053307 1a13a0bf91 n.jpg
inflating: flowers/daisy/14114116486 0bb6649bc1 m.jpg
inflating: flowers/daisy/14147016029_8d3cf2414e.jpg
inflating: flowers/daisy/14163875973 467224aaf5 m.jpg
inflating: flowers/daisy/14167534527 781ceb1b7a n.jpg
inflating: flowers/daisy/14167543177_cd36b54ac6_n.jpg
inflating: flowers/daisy/14219214466 3ca6104eae m.jpg
inflating: flowers/daisy/14221836990 90374e6b34.jpg
inflating: flowers/daisy/14221848160 7f0a37c395.jpg
inflating: flowers/daisy/14245834619_153624f836.jpg
inflating: flowers/daisy/14264136211 9531fbc144.jpg
inflating: flowers/daisy/14272874304 47c0a46f5a.jpg
inflating: flowers/daisy/14307766919_fac3c37a6b_m.jpg
inflating: flowers/daisy/14330343061 99478302d4 m.jpg
inflating: flowers/daisy/14332947164 9b13513c71 m.jpg
inflating: flowers/daisy/14333681205 a07c9f1752 m.jpg
inflating: flowers/daisy/14350958832 29bdd3a254.jpg
inflating: flowers/daisy/14354051035 1037b30421 n.jpg
inflating: flowers/daisy/14372713423 61e2daae88.jpg
inflating: flowers/daisy/14399435971_ea5868c792.jpg
inflating: flowers/daisy/14402451388 56545a374a n.jpg
inflating: flowers/daisy/144076848 57e1d662e3 m.jpg
```



```
#importing required libraries to build a CNN classification model with
accuracy import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.models import
Sequential import matplotlib.oyplot as
plt
batch s1ze = 32 im
height = 186
im uidtfi =
180
data dir - "/content/flowens"
```

Question-2. Image Augmentation

Solution:

from tensorflow.keras.preprocessing.image import ImageDataGenerator

```
train_datagen = ImageDataGenerator(rescale = 1./255, horizontal_flip = True, vertical_flip = True, z oom_range = 0.2)
```

```
x_train = train_datagen.flow_from_directory(r"/content/flowers", target_size = (64,64), class_mode = "categorical", batch_size = 100)
```

Found 4317 images belonging to 5 classes.

```
#Image Augumentation accuracy
data_augmentation = Sequential(
[
    layers.RandomFlip("horizontal",input_shape=(img_height, img_width, 3)),
    layers.RandomRotation(0.1),
    layers.RandomZoom(0.1),
]
)
```

Question-3. Create model - Model Building and also Split dataset into training and testing sets

Solution:

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import
Convolution2D,MaxPooling2D,Flatten,Dense model = Sequential()

```
train_ds =

tf.keras.utils.image_dataset_from_directory(
data_dir,
validation_split=0
.2,
subset="training"
, seed=123,
image_size=(img_height,
img_width),
batch_size=batch_size)
```

```
Found 4317 files belonging to 5 classes.
   Using 3454 files for training.
val_ds
tf.keras.utils.image_dataset_from_directory(
data_dir,
validation_split=0
.2,
subset="validatio
n", seed=123,
image_size=(img_height,
img_width),
batch_size=batch_size)
 Found 4317 files belonging to 5 classes.
 Using 863 files for validation.
class_names =
train_ds.class_names
print(class_names)
['daisy', 'dandelion', 'rose', 'sunflower', 'tulip']
plt.figure(figsize=(10, 10))
for images, labels in
train_ds.take(1): for i in
range(9):
 ax = plt.subplot(3, 3, i + 1)
 plt.imshow(images[i].numpy().astype("ui
 nt8")) plt.title(class_names[labels[i]])
```

plt.axis("off")

Question-4. Add the layers (Convolution, MaxPooling, Flatten, Dense-(HiddenLayers), Output)

Solution:

```
model.add(Convolution2D(32, (3,3), activation = "relu", input_shape =
(64,64,3) )) model.add(MaxPooling2D(pool_size = (2,2)))
model.add(Flatten())
model.add(Dense(300, activation =
"relu"))
model.add(Dense(150, activation = "relu")) #mulitple
dense layers model.add(Dense(5, activation = "softmax"))
#output layer
```

```
#Adding the layers for accuracy
num_classes = len(class_names)

model = Sequential([
   data_augmentation,
   layers.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
   layers.Conv2D(16, 3, padding='same', activation='relu'),
   layers.MaxPooling2D(),
   layers.Conv2D(32, 3, padding='same', activation='relu'),
   layers.MaxPooling2D(),
   layers.Conv2D(64, 3, padding='same', activation='relu'),
   layers.MaxPooling2D(),
   layers.Flatten(),
   layers.Dense(128, activation='relu'),
   layers.Dense(num_classes)
])
```

Question-5. Compile The Model

Solution:

```
model.compile(loss = "categorical_crossentropy", metrics = ["accuracy"], optimizer = "adam") len(x_train)

#Compile the model for further accuracy

model.compile(optimizer='adam',
```

```
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_lo gits=True), metrics=['accuracy'])
epochs=10
history = model.fit(
train_ds,
validation_data=val_
ds, epochs=epochs
)
```

```
Epoch 1/10
  108/108 [==
                   =========] - 132s 1s/step - loss: 1.2821 - accuracy: 0.4537 - val_loss: 1.0988 - val_accuracy: 0.5458
  Epoch 2/10
  108/108 [==:
            108/108 [==
            =======] - 129s 1s/step - loss: 0.9000 - accuracy: 0.6642 - val_loss: 0.9264 - val_accuracy: 0.6419
  108/108 Γ==
           108/108 [====
  108/108 [==
                  :========] - 130s 1s/step - loss: 0.8166 - accuracy: 0.6888 - val_loss: 0.8714 - val_accuracy: 0.6732
  Epoch 7/10
108/108 [===
           =========] - 130s 1s/step - loss: 0.7262 - accuracy: 0.7250 - val_loss: 0.7957 - val_accuracy: 0.6860
  Epoch 9/10
              =========] - 1285 1s/step - loss: 0.7094 - accuracy: 0.7284 - val_loss: 0.7960 - val_accuracy: 0.7068
  Epoch 10/10
108/108 [===
                   ========] - 130s 1s/step - loss: 0.6820 - accuracy: 0.7383 - val_loss: 0.7914 - val_accuracy: 0.6941
```

#To find the Training and Validation- Accuracy & Loss (Visualization)

```
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss =
history.history['val_loss']
epochs_range =
range(epochs)
plt.figure(figsize=(8, 8))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training
Accuracy') plt.plot(epochs_range, val_acc,
label='Validation Accuracy') plt.legend(loc='lower
right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training
Loss') plt.plot(epochs_range, val_loss,
label='Validation Loss') plt.legend(loc='upper
right')
plt.title('Training and Validation
Loss') plt.show()
```


Question-6. Fit The Model

Solution:

model.fit(x_train, epochs = 15, steps_per_epoch = len(x_train))

```
Epoch 1/15
  44/44 [============ - 31s 684ms/step - loss: 1.7914 - accuracy: 0.3588
  Epoch 2/15
  44/44 [============ ] - 29s 648ms/step - loss: 1.1730 - accuracy: 0.5045
  Epoch 3/15
  44/44 [=========== ] - 29s 650ms/step - loss: 1.0967 - accuracy: 0.5529
  Epoch 4/15
  44/44 [===========] - 29s 648ms/step - loss: 1.0351 - accuracy: 0.5939
  Epoch 5/15
  44/44 [=========== ] - 29s 645ms/step - loss: 0.9920 - accuracy: 0.6127
  Epoch 6/15
  44/44 [=========] - 30s 677ms/step - loss: 0.9659 - accuracy: 0.6259
  Epoch 7/15
  Epoch 8/15
  44/44 [============ ] - 29s 647ms/step - loss: 0.9085 - accuracy: 0.6433
  Epoch 9/15
  Epoch 10/15
  44/44 [============] - 30s 674ms/step - loss: 0.8350 - accuracy: 0.6824
  Epoch 11/15
  Epoch 12/15
  Epoch 13/15
  44/44 [============ ] - 29s 649ms/step - loss: 0.7868 - accuracy: 0.7000
  Epoch 14/15
  44/44 [============] - 29s 650ms/step - loss: 0.7542 - accuracy: 0.7132
  Epoch 15/15
  44/44 [===========] - 30s 676ms/step - loss: 0.7467 - accuracy: 0.7107
  <keras.callbacks.History at 0x7f602ce90090>
```

Question-7. Save The Model

Solution:

model.save("flowers.h1")

model.save("flowers.m5")#another model to show the accuracy

Question-8. Test The Model

Solution:

from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image import numpy as np

```
model = load_model("/content/flowers.h1")
# Testing with a random rose image from Google
img = image.load_img("/content/rose.gif", target_size = (64,64) )
img
x =
image.img_to_array(img)
 3
x.ndim
x = np.expand_dims(x,axis)
= 0) x.ndim
4
pred =
model.predict(x)
pred
 array([[0., 0., 1., 0., 0.]], dtype=float32)
labels = ['daisy','dandelion','roses','sunflowers','tulips']
labels[np.argmax(pred)]
'roses'
```

#Testing the alternative model with accuracy

```
sunflower_url =
"https://storage.googleapis.com/download.tensorflow.org/example_images/592
px-Red_sunflower.jpg"
sunflower_path = tf.keras.utils.get_file('Red_sunflower',
origin=sunflower_url) img = tf.keras.utils.load_img(
  sunflower_path, target_size=(img_height, img_width)
)
img_array = tf.keras.utils.img_to_array(img)
img_array = tf.expand_dims(img_array, 0) # Create a batch
predictions =
model.predict(img_array) score =
tf.nn.softmax(predictions[0])
print(
  "This image most likely belongs to {} with a {:.2f} percent confidence."
  .format(class_names[np.argmax(score)], 100 * np.max(score))
)
 Downloading data from <a href="https://storage.googleapis.com/download.tensorflow.org/example_images/592px-Red_sunflower.jpg">https://storage.googleapis.com/download.tensorflow.org/example_images/592px-Red_sunflower.jpg</a>
 122880/117948 [-----] - 0s Ous/step
131072/117948 [-----] - 0s Ous/step
 This image most likely belongs to sunflower with a 99.85 percent confidence.
```