

Professor: Me. André Cruz

Curso: Engenharia Elétrica Disciplina: Laboratório de Eletrônica

Analógica I

Aluno 1: Oséias Dias de Farias Matricula: 201733940002

Aluno 2: Thalia Damasceno Barroso Matricula: 201633940040

Experimento 3: Filtro Passa Baixa e Filtro Passa Alta

Experimento 2: Conversor Digital/Analógico

RELATÓRIO DE EXPERIMENTOS

Experimento 3: Filtro Passa Baixa e Filtro Passa Alta

1. Instrumentos e Materiais utilizados

- $\sqrt{1 \text{ Resistor de } 1 \text{k}\Omega}$;
- $\sqrt{1 \text{ Resistor de } 10\text{k}\Omega}$;
- $\sqrt{2}$ Resistores com valores a serem definidos;
- √ 2 Capacitores com valores a serem definidos;
- √ 1 Amp Op CI 741;
- √ 1 Protoboard;
- √ 1 Osciloscópio;
- √ 1 Gerador de Funções;
- √ 2 Fontes de Alimentação DC;

PARTE A: Filtro Passa-Baixas

II. Procedimento Teóricos

- **2.1** Projete o circuito da Figura, determinando R_i , R_f e C_f , utilize:
 - \triangleright Resistência de entrada 1k Ω ;
 - ➤ Ganho CC de 20dB;
 - ightharpoonup Frequência de corte de baixa $f_L = 4 \text{kHz}$

RESPOSTA:

Encontrando R_i :

$$Z_i = R_i = 1k\Omega$$

Encontrando R_f :

$$20 \log_{10} |K_{CC}| = 20 dB; \log_{10} |K_{CC}| = \frac{20}{20}$$
 $K_{CC} = 10^{\frac{20}{20}} = 10$
 $K_{CC} = -\frac{R_f}{R_i};$
 $R_f = |K_{CC}|R_i = 10 \times 1k\Omega = 10k\Omega$

Encontrando C_f :

$$C_f = \frac{1}{2\pi R_f f_L} = \frac{1}{2\pi \times 10^4 \times 4 \times 10^3} = 3,97 nF$$

 $C_f = 3,97 nF$

III. Procedimentos Experimentais

3.1 Monte o circuito da figura 01.

RESPOSTA:

Figure 1: Circuito Filtro ativo passa-baixas de primeira ordem

3.2 Configure no gerador de funções a amplitude do sinal de entrada v_i com frequência de 1kHz, para se obter o máximo sinal de saída v_o sem distorção. Calcule o ganho de tensão $\frac{v_o}{v_i}$.

RESPOSTA:

$$V_o = 9.9V; V_i = 1.2V$$

 $G = \frac{V_o}{V_i} = \frac{9.9}{1.2} = 8.25$

Figure 2: Grtáfico - Filtro ativo passa-baixas de primeira ordem

3.3 Manter a amplitude de entrada constante e aumentar a frequência até que $v'_o = 0.7v_o$ $v'_o = 0.7x8.7 = 6.09V$.(O v o a ser utilizado nesse produto é o encontrado no item 5.2). **RESPOSTA:**

$$f_L = 4kHz$$

Figure 3: Grtáfico - Filtro ativo passa-baixas de primeira ordem

3.4 Deseja-se ajustar apenas uma nova frequência de corte $f_L = 3 \text{kHz}$ para o filtro passa baixas. Qual componente deverá ser alterado? E qual é o seu novo valor?

RESPOSTA:

o Capacitor deve ser alterado

$$f_L = 3\text{kHz}$$

$$f_L = \frac{1}{2\pi R_f C_f}$$

$$C_f = \frac{1}{2\pi R_f f_L} = \frac{1}{2\pi \times 3 \times 10^3 \times 10^4}$$

$$C_f = 5.3 \times 10^{-9} F \text{ OU } 5.3 nF$$

PARTE B: Filtro Passa-Altas

IV. Procedimento Teóricos

- **4.1** Projete o circuito da Figura, determinando R_i , R_f e C_i , utilize:
 - \triangleright Resistência de entrada $10k\Omega$;
 - ➤ Ganho HF de 40dB;
 - ightharpoonup Frequência de corte de alta $f_H = 1 \text{kHz}$

RESPOSTA:

Encontrando R_i :

$$R_1 = R_i = 10k\Omega$$

Encontrando R_f :

$$20 \log_{10} |K_{HF}| = 40 dB; \log_{10} |K_{HF}| = \frac{40}{20}$$
 $K_{HF} = 10^{\frac{40}{20}} = 100$
 $K_{HF} = -\frac{R_f}{R_i};$
 $R_f = |K_{HF}|R_i = 100 \times 10 k\Omega = 1 M\Omega$
 $R_f = 1 M\Omega$

Encontrando C_f :

$$C_i = \frac{1}{2\pi R_1 f_H} = \frac{1}{2\pi \times 10^4 \times 1 \times 10^3} = 15,91nF$$

$$C_i = 15,91nF$$

V. Procedimentos Experimentais

5.1 Monte o circuito da figura 02.

RESPOSTA: OK

5.2 Configure no gerador de funções a amplitude do sinal de entrada v_i com frequência de 4 kHz, para se obter o máximo sinal de saída v_o sem distorção. Calcule o ganho de tensão $\frac{v_o}{v_i}$.

RESPOSTA:

$$V_o = 10,2V; V_i = 124mV$$

 $G = \frac{V_o}{V_i} = \frac{10,2}{124 \times 10^{-3}} = 82,25$

Figure 4: Grtáfico - Filtro ativo passa-altas de primeira ordem

5.3 Manter a amplitude de entrada constante e aumentar a frequência até que $v'_o = 0.7v_o$ $v'_o = 0.7x10.2 = 7.14V$.(O vo a ser utilizado nesse produto é o encontrado no item 5.2).

$$f_H = 889,96$$
Hz

RESPOSTA:

Figure 5: Grtáfico - Filtro ativo passa-altas de primeira ordem

5.4 Deseja-se ajustar apenas uma nova frequência de corte $f_H = 2$ kHz para o filtro passa altas. Qual componente deverá ser alterado? E qual é o seu novo valor?

RESPOSTA:

O Capacitor deve ser alterado

$$f_{H} = 2kHz$$

$$f_{H} = \frac{1}{2\pi R_{1}C_{i}}$$

$$C_{i} = \frac{1}{2\pi R_{1}f_{H}} = \frac{1}{2\pi \times 2\times 10^{3} \times 10^{4}}$$

$$C_{i} = 7,95\times 10^{-9}F \text{ OU } 7,95nF$$

Experimento 4: Conversor Digital/Analógico

VI. Instrumentos e Materiais utilizados

- $\sqrt{1 \text{ Resistor de } 10\text{k}\Omega}$;
- $\sqrt{1 \text{ Resistor de } 20\text{k}\Omega}$;
- $\sqrt{1 \text{ Resistor de } 40\text{k}\Omega}$;
- $\sqrt{3}$ Resistores com valores a serem definidos;
- √ 1 Amp Op CI 741;
- √ 1 Protoboard;
- √ 1 Multímetro;
- √ 2 Fontes de Alimentação DC;

VII. Procedimento Teóricos

5.1 Para
$$V_i = 1V$$
, determinar V_o ; RESPOSTA:

$$V_{i} = \frac{R_{1}}{R_{1} + R_{f}} V_{o}$$

$$V_{o} = \frac{V_{i}}{\frac{R_{1}}{R_{1} + R_{f}}} = V_{i} \frac{R_{1} + R_{f}}{R_{1}}$$

$$V_{i} = 1V; R_{1} = 10 \times 10^{3}; R_{f} = 27 \times 10^{3}$$

$$V_{o} = 1 \frac{10 \times 10^{3} + 27 \times 10^{3}}{10 \times 10^{3}} = 3,7V$$

$$V_{o} = 3,7V$$

VIII. Procedimentos Experimentais

6.1 Monte o circuito da figura 01 na protoboard RESPOSTA:

Figura 1 - Circuito com AMPOP na configuraço não-inversora montado na protoboard

Considerações Finais:

Os Experimentos nos possibilitou observar o comportamento do Amplificador Operacional em malha fechada com a configuração inversora e não-inversora. Na configuração inversora, pudemos constatar através dos gráficos no osciloscópio que a tensão de saída está defasada em 180 graus em relação à tensão de entrada, além disso, observamos o comportamento do ganho do sistema que se comporta como na teoria, já para a configuração não-inversora, observamos que o sinal de saída está

em fase com o sinal de entrada, assim como observamos na teoria, e o ganho é aproximadamente igual ao calculado. Dessa forma, portanto, aprendemos a trabalhar com o Amplificador Operacional para aumentar o ganho (G) ou atenua-lo na forma inversora e não-inversora.