XLNet: Generalized Autoregressive Pretraining for Language Understanding

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le

Presented by Dawei Zhou & Lecheng Zheng

Background

- Unsupervised representation learning has been successful
 - Pretrain on large-scale unlabeled text corpora → finetuning
 - CoVe (2017) \rightarrow ELMo(2018) \rightarrow GPT(2018) \rightarrow BERT (2018)
- Pretraining methods: Autoregressive v.s Autoencoding

$$\max_{\theta} \quad \log p_{\theta}(\mathbf{x}) = \sum_{t=1}^{T} \log p_{\theta}(x_t \mid \mathbf{x}_{< t}) \qquad \qquad \max_{\theta} \quad \log p_{\theta}(\bar{\mathbf{x}} \mid \hat{\mathbf{x}}) \approx \sum_{t=1}^{T} m_t \log p_{\theta}(x_t \mid \hat{\mathbf{x}})$$

Autoregressive

Autoencoding

Autoregressive v.s Autoencoding

AR model (GPT)

$$\max_{\theta} \log p_{\theta}(x) = \sum_{t=1}^{T} \log p_{\theta}(x_t | x_{< t})$$

Good at text generation

Lack of bidirectional context information

· AE model (BERT)

$$\max_{\theta} \log p_{\theta}(\bar{x} | \hat{x}) \approx \sum_{t=1}^{T} m_{t} \log p_{\theta}(x_{t} | \hat{x})$$

Good at language understanding

Artificial symbols like [MASK]

AR Language Model

 AR performs pretraining by maximizing the likelihood under the forward autoregressive factorization

$$\max_{\theta} \quad \log p_{\theta}(\mathbf{x}) = \sum_{t=1}^{T} \log p_{\theta}(x_t \mid \mathbf{x}_{< t}) = \sum_{t=1}^{T} \log \frac{\exp \left(h_{\theta}(\mathbf{x}_{1:t-1})^{\top} e(x_t)\right)}{\sum_{x'} \exp \left(h_{\theta}(\mathbf{x}_{1:t-1})^{\top} e(x')\right)}$$

- $h_{\theta}(x_{1:t-1})$: context representation produced by neural models.
- e(x): embedding of x.

AE Language Model (BERT)

- BERT first constructs a corrupted version \hat{x} by randomly setting a portion of tokens in x to a special symbol [MASK].
- Then BERT reconstruct masked tokens \bar{x} from \hat{x} :

$$\max_{\theta} \quad \log p_{\theta}(\bar{\mathbf{x}} \mid \hat{\mathbf{x}}) \approx \sum_{t=1}^{T} m_{t} \log p_{\theta}(x_{t} \mid \hat{\mathbf{x}}) = \sum_{t=1}^{T} m_{t} \log \frac{\exp\left(H_{\theta}(\hat{\mathbf{x}})_{t}^{\top} e(x_{t})\right)}{\sum_{x'} \exp\left(H_{\theta}(\hat{\mathbf{x}})_{t}^{\top} e(x')\right)}$$

- Hidden vectors $H_{\theta}(\mathbf{x}) = [H_{\theta}(\mathbf{x})_1, H_{\theta}(\mathbf{x})_2, \cdots, H_{\theta}(\mathbf{x})_T]$
- Masks m_t

Autoregressive v.s Autoencoding

· AR model (GPT)

$$\max_{\theta} \log p_{\theta}(x) = \sum_{t=1}^{T} \log p_{\theta}(x_t | x_{< t})$$

- Pros
 - Estimate the joint probability of a text corpus
- Cons
 - Lack of bidirectional context information

· AE model (BERT)

$$\max_{\theta} \log p_{\theta}(\bar{x} \,|\, \hat{x}) \approx \sum_{t=1}^{T} m_{t} \log p_{\theta}(x_{t} \,|\, \hat{x})$$

- Pros
 - Utilize the bidirectional context information
- Cons
 - Artificial symbols like [MASK]
 - Assume the predicted (masked) tokens are independent given unmasked ones
 - Lacks long-term dependency

Brain Storm (20 mins)

• Do you have any ideas to address the aforementioned issues in AR and AE models? (10 mins)

 Are any ideas/techniques from AR and AE that we can utilized in your research? (10 mins)

XLNet

• Permutation language modeling (Address cons in AR)

Two-stream self-attention (Address cons in AE)

- \bullet Permutations of the length T corpus
 - Z_T : all possible permutations of the length-T index sequence.
 - z_t : t-th element.
 - $z_{< t}$: first t-1 elements of a permutation z.
- Objective:

$$\max_{\theta} \quad \mathbb{E}_{\mathbf{z} \sim \mathcal{Z}_T} \left[\sum_{t=1}^{T} \log p_{\theta}(x_{z_t} \mid \mathbf{x}_{\mathbf{z}_{< t}}) \right]$$

- In expectation, x_t has seen possible element in the sequence.
- Avoid the independence assumption.

Factorization order: $3 \rightarrow 2 \rightarrow 4 \rightarrow 1$

Factorization order: $1 \rightarrow 4 \rightarrow 2 \rightarrow 3$

Factorization order: $2 \rightarrow 4 \rightarrow 3 \rightarrow 1$

Factorization order: $4 \rightarrow 3 \rightarrow 1 \rightarrow 2$

Permutation

$$\max_{\theta} \quad \mathbb{E}_{\mathbf{z} \sim \mathcal{Z}_T} \left[\sum_{t=1}^T \log p_{\theta}(x_{z_t} \mid \mathbf{x}_{\mathbf{z}_{< t}}) \right]$$

Masked Language Model

Permutation Language Model

• Issue of naïve implementation with standard Transformer

- Issue of naïve implementation with standard Transformer
 - The representation $h_{\theta}(x_{z < t})$ does not depend on which position it will predict.
 - The same distribution is predicted regardless of the target position.
- · Re-parameterize the next-token distribution

$$p_{\theta}(X_{z_t} = x \mid \mathbf{x}_{z_{< t}}) = \frac{\exp\left(e(x)^{\top} g_{\theta}(\mathbf{x}_{\mathbf{z}_{< t}}, z_t)\right)}{\sum_{x'} \exp\left(e(x')^{\top} g_{\theta}(\mathbf{x}_{\mathbf{z}_{< t}}, z_t)\right)}$$

Intuitions

- The content representation $g_{\theta(x_{z< t})}$ should only use the position z_t and not the content x_z .
- To predict the other tokens x_{z_j} (j > t) should also encode the content x_z to provide full contextual information.

Permutation LM

Two-Stream Self Attention

not used when fine-tuning

Query Stream
$$g_{z_t}^{(m)} \leftarrow \operatorname{Attention}(\mathbf{Q} = g_{z_t}^{(m-1)}, \mathbf{KV} = \mathbf{h}_{\mathbf{z}_{< t}}^{(m-1)}; \theta),$$

$$\text{Content Stream} \ \ h_{z_t}^{(m)} \leftarrow \text{Attention}(\mathbf{Q} = h_{z_t}^{(m-1)}, \mathbf{K}\mathbf{V} = \mathbf{h}_{\mathbf{z}_{\leq t}}^{(m-1)}; \theta),$$

Similar to the role of standard hidden states in Transformer

Figure 2: (a): Content stream attention, which is the same as the standard self-attention. (b): Query stream attention, which does not have access information about the content x_{z_t} . (c): Overview of the permutation language modeling training with two-stream attention.

Experiments

- Pretraining datasets
 - BERT: BookCorpus + English Wikipedia
 - XLNet: BookCorpus + English Wikipedia + Giga5 + ClueWeb + Common Crawl
- Model size
 - XLNet similar to BERT
- Training time
 - 512 TPU v3 (batch size 2048) → 2.5 days

Experiments

Text classification

Model	IMDB	Yelp-2	Yelp-5	DBpedia	AG	Amazon-2	Amazon-5
CNN [14]	-	2.90	32.39	0.84	6.57	3.79	36.24
DPCNN [14]	-	2.64	30.58	0.88	6.87	3.32	34.81
Mixed VAT [30, 20]	4.32	-	-	0.70	4.95	-	-
ULMFiT [13]	4.6	2.16	29.98	0.80	5.01	-	-
BERT [35]	4.51	1.89	29.32	0.64	-	2.63	34.17
XLNet	3.79	1.55	27.80	0.62	4.49	2.40	32.26

Table 3: Comparison with state-of-the-art error rates on the test sets of several text classification datasets. All BERT and XLNet results are obtained with a 24-layer architecture with similar model sizes (aka BERT-Large).

Experiments

Reading comprehension task

RACE	Accuracy	Middle	High
GPT [25]	59.0	62.9	57.4
BERT [22]	72.0	76.6	70.1
BERT+OCN* [28]	73.5	78.4	71.5
BERT+DCMN* [39]	74.1	79.5	71.8
XLNet	81.75	85.45	80.21

Table 1: Comparison with state-of-the-art results on the test set of RACE, a reading comprehension task. * indicates using ensembles. "Middle" and "High" in RACE are two subsets representing middle and high school difficulty levels. All BERT and XLNet results are obtained with a 24-layer architecture with similar model sizes (aka BERT-Large). Our single model outperforms the best ensemble by 7.6 points in accuracy.

