Projet: Journal

Raphaël Vock Lomàn Vezin

28 mai 2019

1 Progression

Tâches à effectuer :	Temps imparti :
Création du journal	1 min
Création du répertoire GitHub	5 min
🗹 Lecture complète du descriptif général	1h
☑ Inscription en binôme	10 min
✓ Makefile	2h
Classe Vecteur finie (pleinement opérationnelle, revisitée et testée)	4h
✓ Fichiers REPONSES et CONCEPTION	20 min / semaine
Classe Particule finie (avec tous les ajouts)	5h
☑ Implémentation de Barnes-Hut	6h
☑ Premiers éléments	3h
\sim Plus d'éléments (mailles FODO : oui ; sextupôle : non)	2h
Classe Accélérateur finie	3h
☑ Graphismes : Premiers pas	5h
☑ Graphismes : Particules	1h
🗹 Graphismes : Élements et accélérateur	4h
☑ Graphismes : Derniers ajouts	4h
Classe Faisceaux finie (avec coordonnée curviligne)	4h
☑ Interractions interparticules	4h
☑ Implémentation de Barnes–Hut	4h
Résolution de beugues	4h

2 Suivi:

Semaine 1

- Création du module Vector3D.
- Testé et presque finalisé.
- Mise en place du répertoire GitHub.

Semaine 2

- Mise en place de l'environnement Qt et réalisation du tutoriel graphisme P12.
- Prise en main plus poussée de l'environnement graphique, implémentation de plusieurs exemples simples (polygônes plans, cubes, sphères, sphères en mouvement).
- Création du répertoire Github qui sera, à terme, le répertoire du projet final.
- Résolution d'un bug très pénible du à QMake sur Macintosh qui rendait la compilation de librairie impossible (ouf!).
- Création du module 'physics' contenant la classe Particle.
- Conception d'une toute première (et fort rudimentaire) simulation physique en temps réel à sortie graphique : un simulateur de problème à n corps (Calculs par somme direct, donc $\mathcal{O}(n^2)$. Devient très couteux à partir de 1,000 particules.).
- Modification des opérateurs de calcul algébrique sur les vecteurs et surcharge des opérateurs d'affichage
- Ajout de la méthode rotate à la classe Vector3D.
- Ajout de la méthode force magnétique à la classe Particule.
- Création d'un fichier test pour la classe Particule, ce dernier écrit en sortie sur un fichier au format txt.

Semaine 3

- Cela sort un peu du cadre du projet mais je décide d'essayer d'implémenter l'algorithme de Barnes-Hut pour accélérer les calculs des interactions gravitationnelles des particules. Celui-ci est en $\mathcal{O}(n \log n)$ donc très intéressant si on a un grand nombre de particules en jeu.
- Après avoir résolu un bug fort pénible, l'implémentation de Barnes-Hut est un succès. La simulation de problème à n corps pour 10^4 voire 10^5 particules peut maintenant être exécutée aisément même sur un ordinateur peu puissant. Évidemment l'algorithme peut facilement être adapté pour le calcul de forces électromagnétiques.
- Finalisation de la classe Particle et écriture d'un fichier test.
- Modification du fichier test des vecteurs, on préfère qu'il écrive en sortie sur une fenêtre terminal.

Semaine 4

- Première implémentation des éléments, une classe abstraite représente les éléments en général, de cette classe héritent deux sous classes pour les éléments droits et courbes.
- Nous modifions par la suite notre conception des éléments afin d'éviter une duplication de code.
- Premier fichier test pour la classe accélérateur, erroné.
- Correction du fichier test.
- Début de la conception de la classe accélérateur.

Semaine 5

- Complétion de la classe élément et finalisation (temporaire) de la classe représentant l'accélérateur.
- Premiers dessins de cylindres et sections de tore sur l'environnement Qt.
- Ajout d'une classe pour la gestion des couleurs afin d'alléger le code.

Semaine 6

- Finalisation des dessins de cylindres et sections de tore, adaptation des méthodes au cas de notre projet.
- Affichage des premiers éléments à l'aide des méthodes précédentes.
- Révision de la conception des méthodes afin de rendre plus naturelle et pratique la construction graphique des éléments.
- Ajout de namespace pour une gestion centralisée des exceptions ainsi que des constantes physiques.

Semaine 7

- Gestion des déplacements à la souris.
- Ajout de la classe Faisceaux.
- Révision complète des anciennes classes pour implémenter les faisceaux.
- Première simulation en mode texte.

Semaine 8

- Révision de la classe Particule, ajout d'une classe Point Charge pour rendre le code plus léger et intuitif.
- Fin de l'implémentation des méthodes relatives aux faisceaux (émittance, coefficients des ellipses).
- Ajout de la coordonnée curviligne de l'accélérateur (ainsi que la coordonnée propre à chaque élément).
- Utilisation de cette dernière pour la conception des faisceaux circulaires.

Semaine 9

- Ajout de la cavité radiofréquence et des mailles Fodo.
- Réorganisation de la classe accélérateur.
- Mise à jour de la simulation en mode texte.

Semaine 10

- Dernière révision de l'affichage graphique, nous optons pour un rendu plus épuré.
- Ajout de différents points de vue afin de pouvoir mieux suivre l'évolution des particules (touches 1, 2, 3).
- Révision complète de la gestion des évènements clavier en conséquence.

Semaine 11

- Début de l'implémentation des interractions interparticulaires à l'aide de l'algorithme de Barnes-Hut implémenté en semaine 3 pour une meilleure complexité.
- Test avec 7,500 particules, quelques ralentissements mais résultat très satisfaisant.
- Ajout du mode matrice affichant les boites de l'algotithme relatives à l'implémentation de Barnes–Hut (touche M).

Semaine 12

- Mise en page du fichier Réponses sur LATEX, dessin des schémas représentant les différentes classes du projet.
- Mise en page du fichier Journal sur LATEX.
- Relecture du code et ajout d'annotations, corrections mineures.
- Révision des fichiers tests.

Semaine 13

- Résolution de quelques beugues et segfaults.
- Dernières finalisations, relecture et affinement de la documentation.