UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2007 question paper

9702 PHYSICS

9702/02

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

-	i age z	OOF A/AO LEVEL Mand laws 0007	0700	1 apci	
		GCE A/AS LEVEL – May/June 2007	9702	2	
1	pos	positions (accept 20, 40, 60, 80) marked to within $\pm 5^\circ$ itions are 40°, 70°, 90° and 102° for each error or omission)		B2	
	(ii) allo	w 107° → 113°		B1	[3]
		re sensitive at <u>low</u> volumes allow reference to 'accuracy')		B1	[1]
2	(a) force pe	r unit positive charge (on a small test charge)		B1	[1]
	(b) field stre	ength = $(210/\{1.5 \times 10^{-2}\} =) 1.4 \times 10^{4} \text{ N C}^{-1}$		A1	[1]
	. , , ,	eleration = Eq / m = $(1.4 \times 10^4 \times 1.6 \times 10^{-19}) / (9.1 \times 10^{-31})$ = 2.5×10^{15} m s ⁻² (2.46×10^{15}) ards positive plate / upwards (and normal to plate)		C1 C1 A1 B1	[4]
	(ii) time	$e = 2.4 \times 10^{-9} \text{ s}$		A1	[1]
	$= \frac{1}{2} \times 2$. $= 7.1 \times (0.71 \text{ cm}$ <i>i.e.</i> valid or 0. t is time (2.4 ns)	ertical displacement after acceleration for 2.4×10^{-9} s $46 \times 10^{15} \times (2.4 \times 10^{-9})^2$ 10^{-3} m in < 0.75 cm and) so will pass between plates at conclusion based on a numerical value $75 \times 10^{-2} = \frac{1}{2} \times 2.46 \times 10^{15} \times t^2$ to travel 'half-way across' plates = 2.47×10^{-9} s < 2.47 ns) so will pass between plates at conclusion based on a numerical value		C1 A1 A1 (C1) (A1) (A1)	[3]
3	(a) mass/v	rolume (ratio idea essential)		B1	[1]
	(b) (i) mas	$ss = Ah\rho$		B1	[1]
	, , , wei	ssure = force/area ght (of liquid)/force (on base) = $Ah\rho g$ ssure = $h\rho g$		B1 B1 A0	[2]
	(c) (i) ratio	o = 1600 or 1600:1		A1	[1]
	(ii) ratio	$0 = \sqrt[3]{1600}$ = 11.7 (allow 12)		C1 A1	[2]

Mark Scheme

Syllabus

Paper

Page 2

	Page 3		3	Mark Scheme	Syllabus	Paper	
			GCE A/AS LEVEL – May/June 2007 9702		9702	2	
	(d)	(i)	dens	sity of solids and liquids are (about) equal		B1	[1]
		(ii)	rigid	ng forces: fixed volume forces: retains shape / does not flow / little deformation w 1 mark for fixed volume, fixed shape)	n	B1 B1	[2]
4	(a)	(i)		nge in) potential energy = mgh 056 × 9.8 × 16		C1	
				78 J (<i>allow 8.8</i>)		A1	[2]
		(ii)	(initia	al) kinetic energy = $\frac{1}{2}mv^2$ = $\frac{1}{2} \times 0.056 \times 18^2$		C1	
			total	= 9.07 J (allow 9.1) kinetic energy = 8.78 + 9.07 = 17.9 J		C1 A1	[3]
	(b)			nergy = $\frac{1}{2}mv^2$ $\times 0.056 \times v^2$ and $v = 25(.3) \text{ m s}^{-1}$		B1	[1]
	(c)	hori	izonta	al velocity = 18 m s ⁻¹		B1	[1]
	(d)	(i)		ect shape of diagram sides of right-angled triangle with correct orientation)		B1	
		(ii)	_	e = $41^{\circ} \rightarrow 48^{\circ}$ (allow trig. solution based on diagram) angle $38^{\circ} \rightarrow 41^{\circ}$ or $48^{\circ} \rightarrow 51^{\circ}$, allow 1 mark)		A2	[3]
5	(a)	(i)	vibra	ations (in plane) <u>normal</u> to direction of energy propaga	tion	B1	[1]
		(ii)	vibra	ations in <u>one</u> direction (normal to direction of propagation	on)	B1	[1]
	(b)	(i) at (displacement) antinodes / where there are no heaps, wave he maximum amplitude (of vibration) at (displacement) nodes/where there are heaps, amplitude of vibration		•	B1		
			zero	/minimum is pushed to / settles at (displacement) nodes	ac or vibration is	B1 B1	[3]
		(ii)	v = f			C1 C1	
				$2.14 \times 10^{3} \times 15.6 \times 10^{-2}$ 334 m s ⁻¹ (allow 330, not 340)		A1	[3]
	(c)	Stationary wave formed by interference / superposition / overlap of either wave travelling down tube and its reflection or two waves of same (type and) frequency travelling in opposite directions speed is the speed of the incident / reflected waves				B1	
						B1 B1	[3]

			GCE A/AS LEVEL – May/June 2007	9702	2	
6	(a) (. ,	otal resistance = 0.16 Ω .m.f. = either (14 – E) or (E – 14)		A1 A1	[2]
	(i		$er 14 - E = 42 \times 0.16$ or $(E - 14) = -42 \times 0.16$ 7.3 V		C1 A1	[2]
	(b) (charge = It = $12.5 \times 4 \times 60 \times 60$ = 1.8×10^5 C	C1		
				A1	[2]	
	(i		er energy = EQ or energy = Eit er energy = $14 \times 1.8 \times 10^5$ or energy = $14 \times 12.5 \times 10^5$	√	C1	
		Citro	$= 2.52 \times 10^{6} \mathrm{J}$	4 ^ 3000	A1	[2]
(iii)		ii) ener	energy = I^2Rt or $Vit \underline{and} V = IR$ = $12.5^2 \times 0.16 \times 4 \times 3600$		C1	
			$= 3.6 \times 10^5 \mathrm{J}$		A1	[2]
	(c) e	efficiency	$y = (2.52 \times 10^6 - 3.6 \times 10^5)/(2.52 \times 10^6)$ = 86%		C1 A1	[2]
7	(a) ß	3(-decay)		B1	[1]
	(b) γ(-decay) either any two of Z, N and A do not change or it is loss of energy only			B1		
	C	 or it is loss of energy only or it is an electromagnetic wave Allow 'α(-decay) as change of 4 in the nucleon number cannot be shown on t 		he shown on the	B1	[2]
	C	diagram [;]	ive credit for a 'bald' α (-decay)	DO SHOWIT OIT LITE	(B2)	

Mark Scheme

Syllabus

Paper

Page 4