1
$$1^{2} + 2^{2} + n^{2} = \frac{1}{6}n(n+1)(2n+1)$$

135 $n = 1$
 $RS = 1 \cdot 1 \cdot (1+()(2+1+1) = 1)$

14 $1^{2} + 2^{2} + k^{2} = \frac{1}{6}k(k+1)(2k+1)$

15. $1^{2} + 2^{2} + k^{2} = \frac{1}{6}k(k+1)(k+2)(2k+3) + (k+1)^{2} = (k+1)\left(\frac{1}{6}k(k+1)(2k+1) + (k+1)^{2} = (k+1)\left(\frac{1}{3}k^{2} + \frac{1}{4}k + k + 1\right) = (k+1)\left(\frac{1}{6}(2k+1) + (k+1)\right) = (k+1)\left(\frac{1}{6}(2k+2) + 3(k+2)\right) = (k+1)\frac{1}{6}(2k(k+2) + 3(k+2)) = \frac{1}{6}(k+1)(k+2)(2k+3)$

15. $RS = 3$

16. $RS = 3$

17. $RS = 3$

18. $RS = 3$

19. $RS = 3$

19. $RS = 3$

19. $RS = 3$

19. $RS = 3$

10. $RS = 3$

11. $RS = 3$

12. $RS = 3$

13. $RS = 3$

14. $RS = 3$

15. $RS = 3$

16. $RS = 3$

17. $RS = 3$

18. $RS = 3$

19. $RS = 3$

19. $RS = 3$

19. $RS = 3$

19. $RS = 3$

10. $RS = 3$

11. $RS = 3$

12. $RS = 3$

13. $RS = 3$

14. $RS = 3$

15. $RS = 3$

16. $RS = 3$

17. $RS = 3$

18. $RS = 3$

19. $RS = 3$

19. $RS = 3$

19. $RS = 3$

19. $RS = 3$

10. $RS = 3$

10. $RS = 3$

11. $RS = 3$

12. $RS = 3$

13. $RS = 3$

14. $RS = 3$

15. $RS = 3$

16. $RS = 3$

17. $RS = 3$

18. $RS = 3$

19. $RS = 3$

2b)
$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}} > \sqrt{n}$$
, $\forall n \geq 2$

BS: $n = 2$
 $LS = 1 + \sqrt{2}$
 $RS = \sqrt{2}$

IH: $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}} > \sqrt{k}$, $\forall k \geq 2$

IS: $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n}} > \sqrt{k+1}$
 $\sqrt{k} + \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n}} > \sqrt{k+1}$
 $\sqrt{k} + \frac{1}{\sqrt{n}} = \sqrt{k+1} + 1 > \sqrt{k+1}$
 $\sqrt{k+1} = \sqrt{k+1}$
 $\sqrt{k+1} =$

c) BS:
$$n = 0$$

$$RS = 2^{1-2} \cdot \chi^{2^{c}} = 1$$

$$LS = 0$$

$$IH = 2^{1-2R} \cdot \chi^{2R} = P_{R}$$

$$IS = P_{R+1} = 2^{1-2(R+1)} \cdot \chi^{2R+1}$$

$$= 2^{1-2R} \cdot \chi^{2R} \cdot \chi^{2R}$$

$$= 2^{1-2R} \cdot \chi^{2R} \cdot \chi^{2R}$$

$$= 2^{1-2R} \cdot \chi^{2R} \cdot \chi^{2R}$$

$$= 2^{1-2k} \cdot 2^{2k} \cdot 2^{2k} \cdot 2^{2k} = 2^{1-2k} \cdot 2^{2k} \cdot 2^{2$$

$$(4.a) y_{n+2} - 3y_{n+1} - 10y_n = 0$$
 $(y_n = r^n)$

$$(=) r^{n+2} - 3r^{n+1} - 10r^{n} = 0$$

$$(=) r^{n} (r^{2} - 3r - 10) = 0$$

$$=) r((r-3r-10)=0$$

$$r^{2} - 3r - 10 = 0$$
(=) $\Gamma r_{1} = -2$
 $\Gamma r_{2} = 5$

4b)
$$3y_{n+2} - 6y_{n+1} + y_n = 0$$
, $y_0 = 2$, $y_1 = 3$
(a) $y_1 = 0$
(b) $y_1 = 0$
(c) $y_1 = 0$
(d) $y_1 = 0$
(e) $y_1 = 0$
(f) $y_1 = 0$
(g) y

Sb)
$$y_{n+2} - 3y_{n+1} + 2y_n = 5$$
 $r^2 - 3r + 2r = 0$

(a) $[v_1 = 1]$
 $[v_1 = 2]$
 $[v_1 = 1]$
 $[v_1 = 2]$
 $[v_1 = 1]$
 $[v_2 = 2]$
 $[v_1 = 1]$
 $[v_1 = 2]$
 $[v_1 = 1]$
 $[v_2 = 2]$
 $[v_1 = 1]$
 $[v_1 = 2]$
 $[v_1 = 2]$
 $[v_1 = 2]$
 $[v_2 = 3]$
 $[v_3 = 2]$
 $[v_4 = -1]$
 $[v_4 = -1]$