2020/2021 CVHCI Competition

By nöcker (u

Julian Hohenöcker (upqbf) Jonas Steinhäuser (uoxoa) Giulio Broghammer (uorvl)

Judge User: shadow

A1 Skin Detection

1st Approach

- Bayes Classifier with Gaussian Density Model in RGB space 1)
 - Use each skin/non skin pixel to set up mean and covariance matrix for skin/non skin model
 - Classifies pixel as skin if $p(x|skin) >= \theta * p(x|nonskin)$
- Pre-processing
 - Histogram Normalization
- Post-processing
 - Perceptual Grouping
 - First Morphological Closing then Morphological Opening

¹⁾ Phung, Son Lam, Abdesselam Bouzerdoum, and Douglas Chai. "Skin segmentation using color pixel classification: analysis and comparison." IEEE transactions on pattern analysis and machine intelligence 27.1 (2005): 148-154.

2nd Approach

- MLP in RGB space 1)
 - Input nodes for R, G and B value
 - One hidden layer since skin space not linearly separable
 - Best results with hidden layer of 25 nodes
 - Output nodes for skin and not skin rating
 - Classifies pixel as skin if R(skin) R(non skin) >= ϑ
- Pre-processing
 - Better Results without (e.g. RGB Normalization)
- Post-processing
 - Perceptual Grouping

Comparison and results

- Bayes Classifier
 - Even acceptable results on bright lighting conditions
- MLP
 - Good results on images with average conditions
 - **Better** classification **for skin** like coloured objects
 - Could be improved with more training on data with different lighting conditions

Bright Lightning

Normal Lightning

Scores	Validation Set	Test Set
Bayes Classifier	82.1635 %	64.3274 %
MLP	68.838 %	80.753 %

A2 Person Detector

Histogram of Oriented Gradients

HOG Settings:

• Image Size: 64x128 px

• Block Size: 16x16 px

• Cell Size: 8x8 px

• Number of Bins:

Normalization: L2-hys

- These values worked best
- Also shown by
 Dalal & Triggs, 2015 1)

¹⁾ Dalal, Navneet, and Bill Triggs. "Histograms of oriented gradients for human detection." 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05). Vol. 1. IEEE, 2005.

Support Vector Machine

- SVM training from scratch:
 - Bad Accuracy
- Pretrained SVMs (OpenCV)
 - Default People Detector (for 64x128px images) => our task
 - Daimler People Detector (for 48x96px images)
- Object detection > Image classification
 - OpenCV detectors create Bounding Boxes
 - We used Sliding Windows with Stride 2
 - Bounding Boxes are neglected
 - => only yes or no important

HOG + SVM

- Results:
 - Accuracy of 96.97 %
- No False Positives
- Only False Negatives:

&

Big People but somewhat obstructed

Small People and apparently too small

A3 Face Similarity

1st Approach

- Eigen Faces + LBPH
 - Pre-processing: Less Background via Cropping
 - Compute Eigen Faces of Train-Images
 - Create Local Binary Pattern Histogram
 - Add Eigen Faces pairwise
 - Distance Measure: L2 Norm
 - Project Test-Images in Eigen-Face Space
 - Use L2 Norm as Similarity Measure
- Result
 - Accuracy of 65.1899%

2nd Approach

- Dlib DNN-Face-Recognition
 - Detects multiple Faces in one image
 - Creates feature representation for each found face
- Deep Metric Learning with ResNet 1)
 - Use modified ResNet-34 (29 conv layers)
 - Create 128-dim Feature Vector
 - Trained via Metric Loss
- Similarity via Euclidean Distance of Feature Vectors
 - Threshold of 0.6

2nd Approach

- Problem:
 - No face found => No Feature Vector created
 - (10 times in 1000+ images)
- Possible solutions:
 - Return fixed value 0 or random value (bad)
 - Use Alternative approach (e.g.: 1st Approach)
- Result:
 - Accuracy of 97.3732%