

ECE 57000

Gradient Descent Algorithm

Chaoyue Liu Fall 2024

- Linear regression: MSE has a closed-form solution $\mathbf{w}^* = (X^T X)^{-1} X^T \mathbf{y}$
 - time complexity: $\sim O(d^3 + nd^2)$; space complexity: $\sim O(d^2)$
- Most models have **no** closed-form solutions

Must resort to numerical optimization

- The mostly used algorithm is **gradient descent** (or its variants, e.g., SGD)
 - intuitive
 - Relatively low computation cost
 - Parallel computable
- Other algorithms: Newton's method, expectation—maximization (EM), ...

Gradient descent is like taking steps down the steepest descent into a valley

Gradient Descent

Goal: minimize the loss function (a.k.a. objective function) $\mathcal{L}(\mathbf{w})$

• i.e., find the \mathbf{w}^* such that $\mathcal{L}(\mathbf{w}^*) \leq \mathcal{L}(\mathbf{w})$ for all \mathbf{w}

Step 1: Start with a guess of the weights \mathbf{w}^0 (can be random)

Step 2: evaluate the gradient of loss $\nabla \mathcal{L}(\mathbf{w}^t)$ at the current position \mathbf{w}^t $(t \in \mathbb{N})$

Step 3: update parameter via <u>negative gradient</u> of loss function (η_t is step size or

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta_t \nabla \mathcal{L}(\mathbf{w}^t)$$

• η_t is called the <u>learning rate</u>

Step 4: repeat <u>Step 2 & 3</u> until convergence

Gradient computation

Gradient is basically the first-derivative:

$$\nabla \mathcal{L} = \frac{d\mathcal{L}}{d\mathbf{w}} = \left(\frac{\partial \mathcal{L}}{\partial w_1}, \frac{\partial \mathcal{L}}{\partial w_2}, \frac{\partial \mathcal{L}}{\partial w_3}, \cdots, \frac{\partial \mathcal{L}}{\partial w_p}\right)^T$$

For <u>linear regression</u>:

MSE loss is
$$\mathcal{L}(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \mathbf{w} - y_{i})^{2} = \frac{1}{2n} \|\mathbf{X} \mathbf{w} - \mathbf{y}\|_{2}^{2}$$

$$\nabla \mathcal{L}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \mathbf{w} - y_{i}) \cdot \mathbf{x}_{i} = \frac{1}{n} \mathbf{X}^{T} (\mathbf{X} \mathbf{w} - \mathbf{y})$$

$$\frac{d\ell}{df}$$

It is basically the *chain rule*:
$$\frac{d\ell}{d\mathbf{w}} = \frac{d\ell}{df} \cdot \frac{df}{d\mathbf{w}}$$

Gradient computation

For <u>logistic regression</u>, the loss function is

$$\mathcal{L}(\mathbf{w}) = -\frac{1}{n} \sum_{i=1}^{n} y_i \log \sigma(\mathbf{w}^T \mathbf{x}_i) + (1 - y_i) \log (1 - \sigma(\mathbf{w}^T \mathbf{x}_i))$$

We can still use the *chain rule*:

A composition of these functions:

•
$$\ell_i(\mathbf{w}) = -y_i \log f(\mathbf{w}; \mathbf{x}_i) - (1 - y_i) \log(1 - f(\mathbf{w}; \mathbf{x}_i))$$

•
$$f(\mathbf{w}; \mathbf{x}) = \sigma(\tilde{f}(\mathbf{w}; \mathbf{x}))$$

$$\bullet \quad \tilde{f}(\mathbf{w}; \mathbf{x}) = \mathbf{w}^T \mathbf{x}_i$$

$$\nabla \mathcal{L}(\mathbf{w}) \equiv \frac{d\mathcal{L}}{d\mathbf{w}} = \frac{1}{n} \sum_{i=1}^{n} \frac{d\ell_{i}}{df} \cdot \frac{d\tilde{f}}{d\tilde{g}} \cdot \frac{d\tilde{f}}{d\mathbf{w}}$$

$$= \frac{1}{n} \sum_{i=1}^{n} -\left(y_{i} \frac{1}{f(\mathbf{w}; \mathbf{x}_{i}) \cdot (1 - f(\mathbf{w}; \mathbf{x}_{i}))} - \frac{1}{1 - f(\mathbf{w}; \mathbf{x}_{i})}\right) \cdot f(\mathbf{w}; \mathbf{x}_{i}) \cdot (1 - f(\mathbf{w}; \mathbf{x}_{i})) \cdot \mathbf{x}_{i}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (f(\mathbf{w}; \mathbf{x}_{i}) - y_{i}) \cdot \mathbf{x}_{i}$$

Gradient Descent

Goal: minimize the loss function (a.k.a. objective function) $\mathcal{L}(\mathbf{w})$

• i.e., find the \mathbf{w}^* such that $\mathcal{L}(\mathbf{w}^*) \leq \mathcal{L}(\mathbf{w})$ for all \mathbf{w}

Step 1: Start with a guess of the weights \mathbf{w}^0 (can be random)

Step 2: evaluate the gradient of loss $\nabla \mathcal{L}(\mathbf{w}^t)$ at the current position \mathbf{w}^t $(t \in \mathbb{N})$

Step 3: update parameter via <u>negative gradient</u> of loss function (η_t is step size or

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta_t \nabla \mathcal{L}(\mathbf{w}^t)$$

• η_t is called the <u>learning rate</u>

Step 4: repeat <u>Step 2 & 3</u> until convergence

Learning rate η

- If learning rate is **too high**, the algorithm could diverge.
 - Diverge means to get farther away from the solution.
- If learning rate too low, the algorithm could take a very long time to converge.

Stochastic Gradient Descent (SGD)

GD can be computationally costly: $\sim O(n)$ per iteration

$$\mathcal{L}(\mathbf{w}; \mathcal{D}) = \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{w}; \mathbf{x}_i, y_i) \longrightarrow \nabla \mathcal{L}(\mathbf{w}; \mathcal{D}) = \frac{1}{n} \sum_{i=1}^{n} \nabla \ell(\mathbf{w}; \mathbf{x}_i, y_i)$$

- when training set size *n* is large, huge cost for each iteration
- SGD: Use <u>one</u> training sample to estimate the full gradient $\nabla \ell(\mathbf{w}; \mathbf{x}_i, y_i) \approx \nabla \mathcal{L}(\mathbf{w}; \mathcal{D})$
- update rule: $\mathbf{w}^{t+1} = \mathbf{w}^t \eta_t \nabla \ell(\mathbf{w}^t; \mathbf{x}_i, y_i)$
- the data (\mathbf{x}_i, y_i) is <u>randomly</u> sampled in each update
- no bias introduced: $\mathbb{E}_i[\nabla \ell(\mathbf{w}; \mathbf{x}_i, y_i)] = \nabla \mathcal{L}(\mathbf{w}; \mathcal{D})$

Stochastic Gradient Descent (SGD)

Although no bias, stochastic gradient introduces noise

$$\nabla \ell(\mathbf{w}; \mathbf{x}_i, y_i) = \nabla \mathcal{L}(\mathbf{w}; \mathcal{D}) + \boldsymbol{\xi_i}$$

mini-batch SGD

One sample may be too noisy, why not use several samples to estimate?

Randomly sample b training data points: $\{(\mathbf{x}_{i_1}, y_{i_1}), (\mathbf{x}_{i_2}, y_{i_2}), \dots, (\mathbf{x}_{i_b}, y_{i_b})\}$

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta_t \frac{1}{b} \sum_{k=1}^b \nabla \ell(\mathbf{w}; \mathbf{x}_{i_k}, y_{i_k})$$

- Intermediate level computation cost per iteration: $\sim O(b)$
- Less noisy than SGD

One pass (a.k.a. epoch) through dataset

- GD: 1 update
- SGD: *n* updates
- Mini-batch SGD: $\frac{n}{b}$ updates

Learning rate η_t

The learning rate does not have to be a constant

- decreasing step sizes, for example $\eta_t = \frac{1}{t}$
 - Sum of η_t has to cover an infinite distance, $\lim_{T\to\infty}\sum_{t=1}^T\eta_t=\infty$
 - Helps to reduce stabilize SGD near convergence
- Cosine scheduler is another possibility, which works well in some cases

Momentum method

- Imagine putting a small metal ball at starting point A, and set it free
- The ball accelerates, due to accumulation of momentum

Momentum method

Heavy ball momentum:

momentum:
$$\mathbf{m}^t = -\nabla \mathcal{L}(\mathbf{w}^t) + \boldsymbol{\beta} \cdot \mathbf{m}^{t-1}$$

parameters:
$$\mathbf{w}^{t+1} = \mathbf{w}^t + \eta \cdot \mathbf{m}^t$$

learning rate: η

momentum parameter: β

$$(0 < \beta < 1)$$

Nesterov momentum:

look ahead:
$$\widetilde{\mathbf{w}}^t = \mathbf{w}^t + \eta \beta \mathbf{m}^{t-1}$$

momentum:
$$\mathbf{m}^t = -\nabla \mathcal{L}(\widetilde{\mathbf{w}}^t) + \boldsymbol{\beta} \cdot \mathbf{m}^{t-1}$$

parameters:
$$\mathbf{w}^{t+1} = \mathbf{w}^t + \eta \cdot \mathbf{m}^t$$

learning rate: η

momentum parameter: β

$$(0 < \beta < 1)$$

- These momentum methods are proven to accelerate training for convex problems
- Can be used together with SGD/mini-batch SGD (not guaranteed to accelerate)

Momentum method

Implementation:

- (heavy ball) momentum: optimizer = optim. SGD (model. parameters(), 1r=0.01, momentum=0.9)
- Nesterov momentum: optimizer = optim. SGD (model. parameters(), 1r=0.01, momentum=0.9, Nesterov=True)