

FCC 15.247 2.4GHz Test Report

for

MD Biomedical, Inc.

8F., No.222, Sec 4, Chengde Rd., Taipei City 111, Taiwan

Product Name : ECG Pen

Model Name : (1)880E (2)870E

Brand (1)Vion (2)Vian

FCC ID : W3L4713809663050

Prepared by: : AUDIX Technology Corporation,

EMC Department

The test report is based on a single evaluation of one sample of the above-mentioned products. It does not imply an assessment of the whole production and does not permit the use of the test lab logo.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the U.S. Government.

TABLE OF CONTENTS

<u>De</u>	scrip	tion P	<u>age</u>			
TES	ST RE	PORT CERTIFICATION	4			
1.		TSION RECORD OF TEST REPORT				
2.		IMARY OF TEST RESULTS				
3.	GENERAL INFORMATION					
J.						
	3.1. 3.2.	Description of Application Description of EUT				
	3.2. 3.3.	Antenna Information				
	3.4.	EUT Specifications Assessed in Current Report				
	3.5.	Descriptions of Key Components				
	3.6.	Test Configuration				
	3.7.	Tested Supporting System List				
	3.8.	Setup Configuration				
	3.9.	Operating Condition of EUT				
		Description of Test Facility				
	3.11.	Measurement Uncertainty	12			
4.	MEA	ASUREMENT EQUIPMENTLIST	13			
	4.1.	Radiated Emission Measurement	13			
	4.2.	RF Conducted Measurement	13			
5.	CON	DUCTED EMISSION	14			
6.	RADIATED EMISSION					
	6.1.	Block Diagram of Test Setup	15			
	6.2.	Radiated Emission Limits.				
	6.3.	Test Procedure	17			
	6.4.	Measurement Result Explanation	18			
	6.5.	Test Results	18			
7.	6dB/	OCCUPIED BANDWIDTH	19			
	7.1.	Block Diagram of Test Setup	19			
	7.2.	Specification Limits	19			
	7.3.	Test Procedure				
	7.4.	Test Results	19			
8.	MAX	XIMUM PEAK OUTPUT POWER	20			
	8.1.	Block Diagram of Test Setup	20			
	8.2.	Specification Limits				
	8.3.	Test Procedure				
	8.4.	Test Results	21			
9.	EMI	SSION LIMITATIONS	22			
	9.1.	Block Diagram of Test Setup	22			
	9.2.	Specification Limits.	22			
	9.3.	Test Procedure				
	9.4.	Test Results	23			
10.	POV	VER SPECTRAL DENSITY	24			
	10.1.	Block Diagram of Test Setup	24			
		Specification Limits				
File	Numb	er: C1M1909171 Report Number: EM-F19	0380			

Tel:	+886 2	26099301
Fax:	+886 2	26099303

11	DEVIATION TO TEST SPECIFICATIONS	25
	10.4. Test Results	. 24
	10.3. Test Procedure	. 24

APPENDIX A TEST DATA AND PLOTS APPENDIX B TESTPHOTOGRAPHS

TEST REPORT CERTIFICATION

Applicant : MD Biomedical, Inc.
Manufacturer : MD Biomedical, Inc.

EUT Description

(1) Product : ECG Pen

(2) Model : (1)880E (2)870E
 (3) Brand : (1)Vion (2)Vian
 (4) Power Supply: DC 6V (Batteries)

2019. 10. 07

Applicable Standards:

Date of Report:

47CFRFCC Part 15 Subpart C ANSI C63.10:2013

Audix Technology Corp. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report. **Audix Technology Corp.** does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens and samples.

Reviewed by:	Saprine Warg	(Sabrina Wang/Administrator)
Approved by:	Johnny Usueh	(Johnny Hsueh/Section Manager

1. REVISION RECORD OF TEST REPORT

Edition No	Issued Date	Revision Summary	Report Number
0	2019. 10. 07	Original Report	EM-F190380

2. SUMMARY OF TEST RESULTS

Rule	Description	Results
15.207	Conducted Emission	N/A Note 2
15.247(d)/15.205	Radiated Band Edge and Radiated Spurious Emission	PASS
15.247(a)(2)	6dB Bandwidth	PASS
15.247(b)(3)	Maximum Peak Output Power	PASS
15.247(d)	Conducted Band Edges and Conducted Spurious Emission	PASS
15.247 (e)	Peak Power Spectral Density	PASS
15.203	Antenna Requirement	Compliance

Note:

- 1. The uncertainties value is not used in determining the result.
- 2. The EUT only employs battery power for operation, so it is unnecessary to test.

3. GENERAL INFORMATION

3.1. Description of Application

Applicant	MD Biomedical, Inc. 8F., No.222, Sec 4, Chengde Rd., Taipei City 111, Taiwan
Manufacturer	MD Biomedical, Inc. 8F., No.222, Sec 4, Chengde Rd., Taipei City 111, Taiwan
Product	ECG Pen
Brand	(1)Vion (2)Vian
Model	(1)880E (2)870E The details of differences description refer to below table.

Table: Model different list

Model Brand		Bluetooth 4.0 (BLE)	USB Port	USB Extend Seat
880E	(1)Vion (2)Vian	Yes	Yes	Yes
870E	(1)Vion (2)Vian	Yes	No	No

3.2. Description of EUT

Test Model	880E		
Serial Number	N/A		
Power Rating	DC 6V (Batteries)		
Hardware Version	N/A		
Software Version	N/A		
Sample Status	Mass production		
RF Features	Bluetooth Low Energy (BLE)		
Date of Receipt	2019. 09. 12		
Date of Test	2019. 10. 02 ~ 03		
Interface Ports of EUT	For ECG Pen One Micro USB Port For USB Extend Seat One Micro USB Port One USB Port		
Accessories Supplied	USB Extend Seat: Shielded, Undetachable, 0.1m		

3.3. Antenna Information

No.	Antenna Part Number	Manufacture	Antenna Type	Frequency (MHz)	Max Gain(dBi)
1			PCB Antenna	2400~2500	-6.54

3.4. EUT Specifications Assessed in Current Report

Mode	Fundamental Range (MHz)	Channel Number	Modulation	Data Rate (Mbps)
BLE	2402-2480	40	GFSK	1

Channel List							
	BLE						
Channel Number	Frequency (MHz)						
37	2402	09	2422	18	2442	28	2462
00	2404	10	2424	19	2444	29	2464
01	2406	38	2426	20	2446	30	2466
02	2408	11	2428	21	2448	31	2468
03	2410	12	2430	22	2450	32	2470
04	2412	13	2432	23	2452	33	2472
05	2414	14	2434	24	2454	34	2474
06	2416	15	2436	25	2456	35	2476
07	2418	16	2438	26	2458	36	2478
08	2420	17	2440	27	2460	39	2480

3.5. Descriptions of Key Components

None

File Number: C1M1909171 Report Number: EM-F190380

3.6. Test Configuration

Mode	TX _{on} (ms)	1/TX _{on} (kHz)	Duty Cycle (x)
BLE			1.00

Mode		Γ (ms)	
	Coupling DC Corrections: Off Preamp: Off Off Off Preamp: Off Off Off Preamp: Off Off Off Off Off Off Off Off Off Of	Spectrum Analyzer 6 Spectrum Analyzer 6 Swept SA Swept SA	zer 7 , +
	1 Spectrum v	of Levi Offset 1.00 dB of Level 21.00 dBm	Mkr1 2.490 ms 4.52 dBm
BLE	150		
	36 0		
	Center 2.480000000 GHz Res BW 1.0 MHz	#Video BW 3.0 MHz	Span 0 Hz Sweep 15.00 ms (1001 pts)
	Oct 02, 2019		

Item			Data Rate	Test Channel
Radiated Test Case	Radiated Band Edge Note1	BLE	1Mbps	37/39
Radiated Test Case	Radiated Spurious Emission Notel & 2	BLE	1Mbps	37/17/39
Conducted Test Case	Emission Bandwidth	BLE	1Mbps	37/17/39
	Peak Output Power	BLE	1Mbps	37/17/39
	Band Edge	BLE	1Mbps	37/17/39
	Spurious Emission	BLE	1Mbps	37/17/39
	Peak Power Spectral Density	BLE	1Mbps	37/17/39

Note 1: Mobile Device

Portable Device, and 3 axis were assessed. The worst scenario for Radiated Spurious Emission as follow: Lie Side Stand

3.7. Tested Supporting System List

3.7.1. Support Peripheral Unit

No.	Product	Brand	Model No.	Serial No.	Approval
1.	Notebook PC	acer	MS2362	N/A	FCC ID: PPD-AAR5B22
2.	Test Jig	N/A	N/A	N/A	N/A

3.7.2. Cable Lists

No.	Cable Description Of The Above Support Units		
	USB Cable: Shielded, Detachable, 1.0m		
1	Adapter: Chicony, M/N CPA09-A065N1		
1.	Adapter: Chicony, M/N CPA09-A065N1 AC Power Cord: Shielded, Detachable, 1.8m		
	DC Power Cord: Undshielded, Undetachable, 1.8m		
2.	Bus Cable: Unshielded, Detachable, 0.06m		

3.8. Setup Configuration

3.8.1. EUT Configuration for Radiated Emission

3.8.2. EUT Configuration for RF Conducted Test Items

3.9. Operating Condition of EUT

Test program "Smart Studio" is used for enabling EUT RF function under continues transmitting and choosing channel.

File Number: C1M1909171 Report Number: EM-F190380

3.10.Description of Test Facility

Name of Test Firm	Audix Technology Corporation / EMC Department No. 53-11, Dingfu, Linkou Dist., New Taipei City 244, Taiwan Tel: +886-2-26092133 Fax: +886-2-26099303 Website: www.audixtech.com Contact e-mail: attemc_report@audixtech.com
Accreditations	The laboratory is accredited by following organizations under ISO/IEC 17025:2017 (1) NVLAP(USA) NVLAP Lab Code 200077-0 (2) TAF(Taiwan) No. 1724
Test Facilities	FCC OET Designation Number under APEC MRA by NCC is: TW1724 ISED CAB Identifier Number under APEC TEL MRA by NCC is TW1724 (1) No.1 3m Semi Anechoic Chamber (2) Fully Anechoic Chamber

3.11.Measurement Uncertainty

Test Items/Facilities	Frequency Range	Uncertainty
Conduction Test	150kHz~30MHz	±3.50dB
	30MHz-200MHz, 3m, Horizontal	±3.9dB
	200MHz-1000MHz, 3m, Horizontal	±4.3dB
No.1 3m Semi	30MHz-200MHz, 3m, Vertical	±4.5dB
Anechoic Chamber	200MHz-1000MHz, 3m, Vertical	±4.1dB
	1GHz-6GHz, 3m	±5.1dB
	6GHz-18GHz, 3m	±5.5dB
	30MHz-200MHz, 3m, Horizontal	±4.7dB
No.3 3m Semi	200MHz-1000MHz, 3m, Horizontal	±4.5dB
Anechoic Chamber	30MHz-200MHz, 3m, Vertical	±4.3dB
	200MHz-1000MHz, 3m, Vertical	±4.1dB
	30MHz-200MHz, 3m, Horizontal	±4.1dB
	200MHz-1000MHz, 3m, Horizontal	±4.4dB
No.4 3m Semi	30MHz-200MHz, 3m, Vertical	±4.2dB
Anechoic Chamber	200MHz-1000MHz, 3m, Vertical	±5.0dB
	1GHz-6GHz, 3m	±4.4dB
	6GHz-18GHz, 3m	±4.1dB
	30MHz-200MHz, 3m, Horizontal	±4.0dB
	200MHz-1000MHz, 3m, Horizontal	±4.0dB
No.5 3m Semi	30MHz-200MHz, 3m, Vertical	±4.2dB
Anechoic Chamber	200MHz-1000MHz, 3m, Vertical	±4.2dB
	1GHz-6GHz, 3m	±4.3dB
	6GHz-18GHz, 3m	±4.6dB
Fully Anechoic	30MHz~1000MHz	±4.7dB
Chamber	1GHz~18GHz	±5.3dB

Remark : Uncertainty = $ku_c(y)$

Test Item	Uncertainty
6dB Bandwidth	± 0.05kHz
Maximum peak output power	± 0.33dB
Power spectral density	± 0.13dB
Conducted Emission Limitations	± 0.13dB

4. MEASUREMENT EQUIPMENTLIST

4.1. Radiated Emission Measurement

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Spectrum Analyzer	Agilent	N9010A-526	MY53400071	2019. 09. 11	1 Year
2.	Spectrum Analyzer	Agilent	N9030A-526	MY53310269	2019. 01. 30	1 Year
3.	Test Receiver	R & S	ESCS30	100338	2019. 06. 12	1 Year
4.	Amplifier	HP	8447D	2944A06305	2019. 01. 30	1 Year
5.	Amplifier	HP	8449B	3008A02678	2019. 03. 07	1 Year
6.	Amplifier	Keysight	83051A	MY53010042	2019. 08. 08	1 Year
7.	Bilog Antenna	TESEQ	CBL6112D	33821	2019. 01. 19	1 Year
8.	Loop Antenna	R&S	HFH2-Z2	891847/27	2017.12. 18	2 Years
9	Double-Ridged Waveguide Horn	ETS-Lindgren	3117	00135902	2019. 03. 13	1 Year
10.	Horn Antenna	COM-POWER	AH-840	101092	2019 .05. 14	1 Year
11.	2.4GHz Notch Filter	K&L	7NSL10-2441. 5/E130.5-O/O	1	2019. 07. 23	1 Year
12.	3GHz Notch Filter	Microwave	H3G018G1	484796	2019. 08. 21	1 Year
13.	Coaxial Cable	MIYAZAKI	5D2W	RE-11	2019. 02. 01	1 Year
14.	Coaxial Cable	HUBER+SUH NER	SUCOFLEX 104	RF CABLE-01	2019. 09. 20	1 Year
15.	Coaxial Cable	HUBER+SUH NER	SUCOFLEX 102	MY1493/2	2019. 09. 20	1 Year
16.	Digital Thermo-Hygro Meter	iMax	HTC-1	No.1 3m A/C	2019. 04. 20	1 Year
17.	Digital Thermo-Hygro Meter	EVERY DAY	E-512	RF-02	2019. 04. 20	1 Year
18.	Test Software	Audix	e3	V6.120619c	N.C.R.	N.C.R.
19.	Test Software	Audix	e3	V6.110601	N.C.R.	N.C.R.

4.2. RF Conducted Measurement

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Spectrum Analyzer	Keysight	N9010B-544	MY55460198	2019. 05. 06	1 Year
2.	Power Meter	Anritsu	ML2495A	1145008	2018. 11. 07	1 Year
3.	Power Sensor	Anritsu	MA2411B	1126096	2018. 11. 07	1 Year
4.	Digital Thermo-Hygro Meter	Shenzhen Datronn Electronics	KT-905	RF	2019. 04. 20	1 Year

5. CONDUCTED EMISSION

[The EUT only employs battery power for operation, no conductive emission limits are required according to FCC Part 15 Section §15.207]

6. RADIATED EMISSION

6.1. Block Diagram of Test Setup

6.1.1. Block Diagram of EUT Indicated as section 3.9

6.1.2. Setup Diagram for 9kHz-30MHz

6.1.3. Setup Diagram for 30-1000 MHz

6.1.4. Setup Diagram for above 1GHz

6.2. Radiated Emission Limits

In any 100kHz bandwidth outside the frequency band, the radio frequency power produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level. In addition, radiated emissions which fall in restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified as below

Frequency (MHz)	Distance(m)	Limits		
ricquency (wiriz)	Distance(iii)	dBμV/m	μV/m	
0.009 - 0.490	300	67.6-20 log f(kHz)	2400/f kHz	
0.490 - 1.705	30	87.6-20 log f(kHz)	24000/f kHz	
1.705 - 30	30	29.5	30	
30 - 88	3	40.0	100	
88- 216	3	43.5	150	
216- 960	3	46.0	200	
Above 960	3	54.0	500	
Above 1000	3	74.0 dBμV/m (Peak) 54.0 dBμV/m (Average)		

Remark: (1) $dB\mu V/m = 20 \log (\mu V/m)$

- (2) The tighter limit applies to the edge between two frequency bands.
- (3) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.
- (4) Fundamental and emission fall within operation band are exempted from this section.
- (5) Pursuant to ANSI C63.10: 6.6.4.3, if the maximized peak measured value complies with the average limit, then it is unnecessary to perform an average measurement.

6.3. Test Procedure

Frequency Range 9kHz~30MHz:

The EUT setup on the turntable which has 0.8 m height to the ground. The turn table rotated 360 degrees and antenna fixed to 1 m to find the maximum emission level. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10-2013 regulation.

- (1) RBW = 9kHz with peak and average detector.
- (2) Detector: average and peak (9kHz-490kHz)

Q.P. (490kHz-30MHz)

Frequency Range 30MHz ~ 25GHz:

The EUT setup on the turn table which has 80 cm (for 30-1000 MHz) and 1.5m (for above 1GHz) height to the ground. The turn table rotated 360 degrees and antenna varied from 1 m to 4 m (for 30-1000MHz) or antenna varied from 1 m to 3 m (for above 1GHz) to find the maximum emission level. Both horizontal and vertical polarization are required. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10-2013 regulation.

Frequency below 1GHz:

Spectrum Analyzer is used for pre-testing with following setting:

- (1)RBW = 120KHz
- (2)VBW $\geq 3 \times RBW$.
- (3)Detector = Peak.
- (4)Sweep time = auto.
- (5)Trace mode = max hold.
- (6) Allow sweeps to continue until the trace stabilizes.
- Note 1: When peak-detected value is lower than limit that the measurement using the Q.P. detector is not required, otherwise using Q.P. for final measurement.
- Note 2: When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds.

Frequency above 1GHz to 10th harmonic(up to 25 GHz): Peak Detector:

- (1)RBW = 1MHz
- (2)VBW $\geq 3 \times RBW$.
- (3)Detector = Peak.
- (4)Sweep time = auto.
- (5)Trace mode = max hold.
- (6) Allow sweeps to continue until the trace stabilizes.

Note: When peak-detected value is lower than limit that the measurement using the average detector is not required, otherwise using average detector for final measurement.

Average Detector:

Option 1:

(1)RBW = 1MHz

 $(2)VBW \ge 1/T$.

Modulation Type	T (ms)	1/T (kHz)	VBW Setting
BLE			10Hz

N/A: 1/ T is not implemented when duty cycle presented in section 3.6 is $\ge 98\%$.

- (1)Detector = Peak.
- (2)Sweep time = auto.
- (3)Trace mode = max hold.
- (4) Allow sweeps to continue until the trace stabilizes.

\square Option 2:

Average Emission Level= Peak Emission Level+ D.C.C.F.

6.4. Measurement Result Explanation

- Peak Emission Level=Antenna Factor + Cable Loss +Meter Reading (including Preamp factor if test used)
- Average Emission Level l=Antenna Factor + Cable Loss + Meter Reading (including Preamp factor if test used)
- Average Emission Level= Peak Emission Level+ DCCF
 - Duty Cycle Correction Factor (DCCF)= 20log(TX on/TX on+off) presented in section 3.6
- ERP= Peak Emission Level-95.2dB-2.14dB

6.5. Test Results

Please refer to Appendix A.

7. 6dB/OCCUPIED BANDWIDTH

7.1. Block Diagram of Test Setup

7.2. Specification Limits

The minimum 6dB bandwidth shall be at least 500kHz.

7.3. Test Procedure

Following measurement procedure is reference to ANSI C63.10:2013:

- (1) Set RBW = 100 kHz.
- (2) Set the video bandwidth (VBW) \geq 3 × RBW.
- (3) Detector = Peak.
- (4) Trace mode = \max hold.
- (5) Sweep = auto couple.
- (6) Allow the trace to stabilize.
- (7) Setting channel bandwidth function x to -6dB or 99% power to record the final bandwidth.

7.4. Test Results

Please refer to Appendix A

8. MAXIMUM PEAK OUTPUT POWER

8.1. Block Diagram of Test Setup

8.2. Specification Limits

The Limits of maximum Peak Output Power for digital modulation in 2400 - 2483.5MHz is: 1Watt. (30dBm), and E.I.R.P.: 4Watt (36dBm)

8.3. Test Procedure

Following measurement procedure is reference to ANSI C63.10:2013:

PKPM1 Peak power meter method:

EUT is connected to power sensor and record the maximum output power.

Maximum peak conducted output power method:

- (1) Set the RBW \geq DTS bandwidth
- (2) Set $VBW > 3 \times RBW$
- (3) Set span $\geq 3 \times RBW$.
- (4) Sweep time = auto couple
- (5) Detector = peak.
- (6) Trace mode = \max hold.
- (7) Allow trace to fully stabilize.
- (8) Use peak marker function to determine the peak amplitude level.

Method AVGPM (Measurement using an RF average power meter):

EUT is connected to power sensor and record the maximum average output power and duty cycle factor is added when duty cycle presented in section 3.6 is < 98%.

■ Method AVGSA-2 (Spectrum channel power)

- (1) Set span to at least 1.5 times the OBW
- (2) Set RBW = 1 5% of OBW
- (3) Set the video bandwidth $(VBW) \ge 3 \times RBW$.
- (4) Detector = RMS.
- (5) Trace mode = trace average at least 100 traces
- (6) Sweep = auto couple.
- (7) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges.
- (8) Duty cycle factor is added when duty cycle presented in section 3.6 is < 98%.

8.4. Test Results

Please refer to Appendix A

9. EMISSION LIMITATIONS

9.1. Block Diagram of Test Setup

9.2. Specification Limits

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, that the required attenuation shall be 30 dB instead of 20 dB.

Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (See Section 15.205(c)).

9.3. Test Procedure

Following measurement procedure is reference to ANSI C63.10:2013:

Reference Level

- (1) Set analyzer center frequency to DTS channel center frequency.
- (2) Set the span to 1.5 times the DTS bandwidth.
- (3) Set the RBW to: 100 kHz.
- (4) Set the VBW \geq 3 × RBW.
- (5) Detector = peak.
- (6) Sweep time = auto couple.
- (7) Trace mode = \max hold.
- (8) Allow trace to fully stabilize to find the max PSD as reference level.

Emission Level Measurement

- (1) Set analyzer center frequency to DTS channel center frequency.
- (2) Set the span to 1.5 times the DTS bandwidth.
- (3) Set the RBW: 100 kHz.
- (4) Set the VBW \geq 3 × RBW.
- (5) Detector = peak.
- (6) Sweep time = auto couple.
- (7) Trace mode = \max hold.
- (8) Allow trace to fully stabilize to find the max level.

9.4. Test Results

Please refer to Appendix A

10.POWER SPECTRAL DENSITY

10.1.Block Diagram of Test Setup

10.2.Specification Limits

The peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band.

10.3. Test Procedure

Following measurement procedure is reference to ANSI C63.10:2013:

Method PKPSD (peak PSD)

- (1) Set analyzer center frequency to DTS channel center frequency.
- (2) Set the span to 1.5 times the DTS bandwidth.
- (3) Set the RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- (4) Set the VBW \geq 3 × RBW.
- (5) Detector = peak.
- (6) Sweep time = auto couple.
- (7) Trace mode = \max hold.
- (8) Allow trace to fully stabilize.
- (9) Use the peak marker function to determine the maximum amplitude level.
- (10) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Method AVGPSD-2

- (1) Using peak PSD procedure step 1 to step 4.
- (2) Detector= RMS detector
- (3) Sweep time = auto couple
- (4) Trace mode = trace averaging over a minimum of 100 traces
- (5) Use the peak marker function to determine the maximum amplitude level.
- (6) Duty cycle factor is added when duty cycle presented in section 3.7< 98%.
- (7) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

10.4.Test Results

Please refer to Appendix A

11.DEVIATION TO TEST SPECIFICATIONS

[NONE]

APPDNDIX A

TEST DATA AND PLOTS

(Model: 880E)

New Taipei City244, Taiwan

Tel: +886 2 26099301 Fax: +886 2 26099303

TABLE OF CONTENTS

A.1	RAD	ATED EMISSION	2
	A.1.1	Emissions within Restricted Frequency Bands	2
	A.1.2	Emissions outside the frequency band:	7
	A.1.3	Emissions in Non-restricted Frequency Bands:	7
A.2	6dB/0	Occupied Bandwidth	8
	A.2.1	Emission Bandwidth Result	8
	A.2.2	Measurement Plots	8
A.3	MAX	IMUM PEAK OUTPUT POWER	9
	A.3.1	Peak Output Power	9
	A.3.2	Measurement Plots	9
A.4	EMIS	SSION LIMITATIONS	. 10
A.5	POW	ER SPECTRAL DENSITY	. 13
	A.5.1	Power Spectral Density Result	13
	A 5 2	Measurement Plots	13

New Taipei City244, Taiwan

Tel: +886 2 26099301 Fax: +886 2 26099303

A.1 RADIATED EMISSION

Test Date	2019/10/03	Temp./Hum.	23~25°C/51~43%
Test Voltage	DC 4V (Via Pottorias)	Tested By	Kuper Hsu
Test Voltage	DC 6V (Via Batteries)	Test Model	880E

A.1.1 Emissions within Restricted Frequency Bands

A.2.1.1 Frequency 9kHz~30MHz

The emissions (9kHz~30MHz) not reported for there is no emission be found.

A.2.1.2 Frequency Below 1GHz

A.2.1.2 I	requericy bere	W TOTIZ					
Mode		BLE		Frequency	7	TX 2402	MHz
Antenna at Hori	izontal Polariz	zation					
Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
84.32	14.35	2.09	20.84	37.28	40.00	2.72	Peak
87.23	14.87	2.12	20.93	37.92	40.00	2.08	Peak
195.87	16.10	3.38	20.84	40.32	43.50	3.18	Peak
336.52	20.76	4.96	15.74	41.46	46.00	4.54	Peak
888.45	27.21	8.39	6.56	42.16	46.00	3.84	Peak
959.26	27.77	8.80	3.93	40.50	46.00	5.50	Peak
Antenna at Vert	ical Polarizati	on					
Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
85.29	14.53	2.10	17.03	33.66	40.00	6.34	Peak
194.90	16.07	3.37	10.52	29.96	43.50	13.54	Peak
566.41	24.43	6.84	2.19	33.46	46.00	12.54	Peak
667.29	25.24	7.20	4.01	36.45	46.00	9.55	Peak
913.67	27.41	8.53	3.81	39.75	46.00	6.25	Peak
995.15	28.04	9.01	3.32	40.37	54.00	13.63	Peak

Tel: +886 2 26099301 Fax: +886 2 26099303

A.2.1.3 Frequency Above 1 GHz to 10th harmonics

Band Edge:

Antenna at Horizontal Polarization

 III COI	ina at Home	oman i omineat	1011					
E	mission	Antenna	Cable	Meter	Emission	Limits	Margin	
Fr	equency	Factor	Loss	Reading	Level			Detector
((MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
	2348.40	32.00	8.48	6.76	47.24	74.00	26.76	Peak
	2390.00	32.00	8.52	5.16	45.68	74.00	28.32	Peak
@	2402.50	32.00	8.52	39.23	79.75			Peak

Antenna at Horizontal Polarization

7 Mile	iiia at 110112	ontai i otarizati	1011					
I	Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
F	requency	Factor	Loss	Reading	Level			Detector
	(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
	2350.20	32.00	8.48	-7.12	33.36	54.00	20.64	Average
	2390.00	32.00	8.52	-7.88	32.64	54.00	21.36	Average
@	2402.20	32.00	8.52	38.76	79.28			Average

Tel: +886 2 26099301 Fax: +886 2 26099303

Antenna at Vertical Polarization

2320.

2330.

2340.

2350.

0 2310

1 111100	mia at verti	car r orarreamon						
I	Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
F	requency	Factor	Loss	Reading	Level			Detector
	(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
	2336.40	32.00	8.48	6.48	46.96	74.00	27.04	Peak
	2390.00	32.00	8.52	3.77	44.29	74.00	29.71	Peak
@	2402.50	32.00	8.52	30.18	70.70			Peak

2360. Frequency (MHz)

2370.

2380.

2390.

2400.

2410

Antenna at Vertical Polarization

	Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
I	Frequency	Factor	Loss	Reading	Level			Detector
	(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
	2352.00	32.00	8.49	-6.93	33.56	54.00	20.44	Average
	2390.00	32.00	8.52	-7.84	32.68	54.00	21.32	Average
@	2402.20	32.00	8.52	28.89	69.41			Average

Tel: +886 2 26099301 Fax: +886 2 26099303

Antenna at Horizontal Polarization

7 XIIIC	mia at 110112	ontai i olarizati	1011					
]	Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
F	requency	Factor	Loss	Reading	Level			Detector
	(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
@	2480.10	32.57	8.58	41.15	82.30			Peak
	2483.50	32.57	8.58	5.93	47.08	74.00	26.92	Peak
	2483.70	32.57	8.58	4.54	45.69	74.00	28.31	Peak

Antenna at Horizontal Polarization

	Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
I	Frequency	Factor	Loss	Reading	Level			Detector
	(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
@	2480.20	32.57	8.58	40.84	81.99			Average
	2483.50	32.57	8.58	-3.78	37.37	54.00	16.63	Average
	2483.70	32.57	8.58	-5.65	35.50	54.00	18.50	Average

Tel: +886 2 26099301 Fax: +886 2 26099303

Antenna at Vertical Polarization

7 11110	omia at verti	cai i olalization						
]	Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
F	Frequency	Factor	Loss	Reading	Level			Detector
	(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
@	2479.90	32.57	8.58	30.81	71.96			Peak
	2483.50	32.57	8.58	3.31	44.46	74.00	29.54	Peak
	2519.00	32.30	8.59	5.01	45.90	74.00	28.10	Peak

Antenna at Vertical Polarization

	Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
]	Frequency	Factor	Loss	Reading	Level			Detector
	(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
@	2480.20	32.57	8.58	30.12	71.27			Average
	2483.50	32.57	8.58	-8.29	32.86	54.00	21.14	Average
	2490.90	32.50	8.59	-8.64	32.45	54.00	21.55	Average

Tel: +886 2 26099301 Fax: +886 2 26099303

A.1.2 Emissions outside the frequency band:

The emissions (up to 25GHz) not reported for there is no emission be found.

1110 01111881	ons (up to 23	GIIZ) HOUN	eported for t	incre is no en	11551011 00 10	uliu.	
Mode		BLE		Frequency	y	TX 2402	MHz
Antenna at Horiz	ontal Polariz	zation					
Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
4804.00	33.90	10.22	2.93	47.05	54.00	6.95	Peak
Antenna at Vertic	cal Polarizati	on					
Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level		· ·	Detector
(MHz)	(dB/m)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
4804.00	33.90	10.22	-1.00	43.12	54.00	10.88	Peak
Mode		BLE		Frequency	y	TX 2440	MHz
Antenna at Horiz	ontal Polariz	zation					
Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level		C	Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
4880.00	34.37	10.24	5.31	49.92	54.00	4.08	Peak
Antenna at Vertic	cal Polarizati	on					
Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
4880.00	34.37	10.24	2.78	47.39	54.00	6.61	Peak
Mode		BLE		Frequency	y	TX 2480	MHz
Antenna at Horiz	ontal Polariz	zation					
Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
4960.00	34.27	10.27	6.39	50.93	54.00	3.07	Peak
Antenna at Vertic	cal Polarizati	on					
Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level		J	Detector
(MHz)	(dB/m)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
4960.00	34.27	10.27	0.03	44.57	54.00	9.43	Peak

A.1.3 Emissions in Non-restricted Frequency Bands:

Pursuant to ANSI C63.10:2013 that emission levels below the FCC 15.209(a)table 4 general radiated emissions limits is not required.

Tel: +886 2 26099301 Fax: +886 2 26099303

A.2 6dB/Occupied Bandwidth

Test Date	2019/10/02	Temp./Hum.	23°C/58%
Cable Loss	1.00dB	Tested By	Kuper Hsu
Test Voltage	DC 6V (Via Batteries)	Test Model	880E

A.2.1 Emission Bandwidth Result

Mode	Centre Frequency (MHz)	6 dB Bandwidth (MHz)	Occupied (99%) Bandwidth (MHz) (Reference only)	Limit
	2402	0.6799	1.0770	
BLE	2440	0.6749	1.0739	>500kHz
	2480	0.6887	1.0766	

A.2.2 Measurement Plots

Tel: +886 2 26099301 Fax: +886 2 26099303

A.3 MAXIMUM PEAK OUTPUT POWER

Test Date	2019/10/02	Temp./Hum.	23°C/58%
Cable Loss	1.00dB	Tested By	Kuper Hsu
Test Voltage	DC 6V (Via Batteries)	Test Model	880E

A.3.1 Peak Output Power

Mode	Centre Frequency	Peak Output Power (dBm)		Limit
Mode	(MHz)	(dBm)	(W)	Lillit
	2402	4.82	0.003	<30dBm (1W)
BLE	2440	4.67	0.003	(Maximum Peak Output Power)
	2480	4.62	0.003	<36dBm (4W) (E.I.R.P)

Note: The results have been included cable loss.

A.3.2 Measurement Plots

Tel: +886 2 26099301 Fax: +886 2 26099303

A.4 EMISSION LIMITATIONS

Test Date	2019/10/02	Temp./Hum.	23°C/58%
Cable Loss	1.00dB	Tested By	Kuper Hsu
Test Voltage	DC 6V (Via Batteries)	Test Model	880E
Mode	BLE	Frequency	TX 2402MHz

Tel: +886 2 26099301 Fax: +886 2 26099303

Test Date	2019/10/02	Temp./Hum.	23°C/58%
Cable Loss	1.00dB	Tested By	Kuper Hsu
Test Voltage	DC 6V (Via Batteries)	Test Model	880E
Mode	BLE	Frequency	TX 2440MHz

Tel: +886 2 26099301 Fax: +886 2 26099303

Test Date	2019/10/02	Temp./Hum.	23°C/58%
Cable Loss	1.00dB	Tested By	Kuper Hsu
Test Voltage	DC 6V (Via Batteries)	Test Model	880E
Mode	BLE	Frequency	TX 2480MHz

Tel: +886 2 26099301 Fax: +886 2 26099303

A.5 POWER SPECTRAL DENSITY

Test Date	2019/10/02	Temp./Hum.	23°C/58%
Cable Loss	1.00dB	Tested By	Kuper Hsu
Test Voltage	DC 6V (Via Batteries)	Test Model	880E

A.5.1 Power Spectral Density Result

Mode	Centre Frequency (MHz)	Power Spectral Density (dBm)	Limit
	2402	4.66	
BLE	2440	4.52	<8 dBm/3kHz
	2480	4.18	

Note: 1. All results have been included cable loss and Simultaneous Factor.

2. For KDB558074 D01V04, in the test result, when RBW set at 100kHz is stricter than 3kHz.

A.5.2 Measurement Plots

Note: All results have been included cable loss and Simultaneous Factor.

APPDNDIX B

TEST PHOTOGRAPHS

(Model: 880E)