16

Assignment - 1.

MATH 2201 Group Meory

- I Let 5 be a let having exactly one element. How many different binary operations can be defined on 5?? Answer the question if 5 has exactly 2 elements; 3 elements; n elements.
- 2. How many different commutative binary operations can be defined on so set of 2 elements? on a set of 3 elements? on a set of n elements?
- 3. Retermine whether * defined as follows gives a binary operation on the set or not. If not justify.
 - (a) On zt, define * by a * b = a b
 - (b) On net, define * by a* b = ab
 - (e) on R, define * by a* b = a-b.
 - (d) on R, define * by a* b = lal+1b1
 - (e) on z, define * by a*b = 1a1b
 - (f) Oh Q, define * by a* b = ab+3.

For the binary operations above determine whether they are associative or commutative? Find the identity elements in each of the structures above if they exist.

- 4. Either prove the following statement or give a construence :
 - (a) Every binary operation on a set consisting of a single element is both commutative and associative.
 - (b) Every commutative binary operation on a let having just two elements is associative.
 - 5. In the following cases determine whether the binary * gives a group structure on the given set or not. If not, justify.
 - (i) (Z,*), * given by axb=ab
 - (ii) <22, *>, * given by a*b=a+b

- (iii) (IRT,*), * given by a*b= Vab
- (ir) (1R, *), * given by a*b= 6.
 - (v) (c,*), * given by a*b= |ab|
 - (vi) (Q[V2],+) where Q[V2] = {a+b√2; a,b+02.
 - (vii) (P(x), 1) where P(x) is the power set of x and six

(viii) (Q[vz]-803,*), *is un usual product.

- (ix) (G,*), where G = { (a0): a & IR- 403 } and * is the matrix multiplication.
- 6. Give an example of an abelian group G where G has exactly
 - 7. Let G be a greap with a finite number of elements. Show mat for any a ∈ G, there exists an n ∈ ×+ such that a" = e.
 - 8. Suppose that a group G has an element x such that an = x for all a & G. Show that G contains only identity element.
 - 9. Let G be a group, a, b & G. Show that (aba')"= aba'iff b=b".
 - 10. An element a & G is called idempotent if a' = a. Show mut the only idempotent element in G'is the unit element,
 - 11. Find a solution of the equation ax = b in Sz, where $a = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$ and $b = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$.
 - 12. Af G is a group such that a =e for every a + G. Show that G'is abelian. Is it the if above, +af6.

 - 13. Show that G is abelian iff (ab) = a'b'. + a, b f 6.

 14. Let G be a finite group with even number of elements.

 Show that there is at least one a f G Such that a'=e.

15. Give an example to show that union of two subgroups may not be a subgroup.

16. If Kis a Subgroup of H and His a Subgroup of G.
Show Wat Kis a Subgroup of G.

17. Af G is an abelian group, show that H= {a: a ∈ G, a= e} is a subgroup of G.

18. Show that a group can not be expressed as a union of two proper subgroups.

19. Give an example of a group which is not eyelic but every proper subgroup of which is cyclic.

20. Let a, b & G such that b = xaz' for some x & G. Show

Wat o(a) = o(b).

21. Let a, b & G. Show that o(ab) = o(ba).

22. Write all complex roots of 2621. Show that they form a group under the usual complex untiplication.

25. Let $G = \{a \in IR, -1 < a < 1\}$. Define a kinary operation * on G by $a * b = \frac{a+b}{1+ab}$, $\forall a,b \in G$. Show that (G,*) is

24. Let (G,*) be a group and a, b & G. Suppose that a = e. ar=e, and a*b*a=b. Prove that b = e.

25. Let (G,*) be a group such that (a*b) = a * b Vaib EG, show that G is a commutative group.

26. Prove that a group (G,*) is commutative if $(a*b)^n = a^n*b^n$, for any three consecutive integer n and for all $a,b \in G$.