Problem Set 3 MATH 25800

3 Properties of Ideals

When solving a particular problem Y, you may appeal to the result of any problem X that has occurred before Y (earlier problem sheets included) whether or not you submitted a solution of problem X.

- 1/25: 3.1. How many maximal ideals does the ring $\mathbb{Z}/a\mathbb{Z}$ possess under the following conditions?
 - (i) a = 81.
 - (ii) a = 44.
 - (iii) a = 42.
 - **3.2.** Given ring homomorphisms $f: R \to A$ and $g: R \to B$, check that h(v) = (f(v), g(v)) for all $v \in R$ gives a ring homomorphism $h: R \to A \times B$.
 - **3.3.** In particular, let I_1, I_2 be ideals of a commutative ring R, and let $\pi_i : R \to R/I_i$ (i = 1, 2) be canonical surjections. Consider the ring homomorphism $h : R \to (R/I_1) \times (R/I_2)$ given by $h(a) = (\pi_1(a), \pi_2(a))$ for all $a \in R$.
 - (i) Describe ker(h) in terms of I_1, I_2 .
 - (ii) Prove that $A \Longrightarrow B \Longrightarrow C \Longrightarrow A$.
 - (A) h is a surjection.
 - (B) (0,1) is in the image of h.
 - (C) $I_1 + I_2 = R$.
 - (iii) Assume that $I_1+I_2=R$. Prove that $I_1I_2=I_1\cap I_2$. Deduce that $\phi:R/(I_1I_2)\to (R/I_1)\times (R/I_2)$ is an isomorphism.
 - **3.4.** Prove that a nonzero ideal $I \subset F[[X]]$, where F is a field, is the principal ideal generated by X^n for some $n \geq 0$. (This is a continuation of Exercise 7.2.3c of Dummit and Foote (2004), addressed in HW2 Q2.2.)
 - **3.5.** Recall that R[X,Y] := R[X][Y]. Regard R as a subring of R[X,Y]. Let R be a commutative ring. The **universal property of** R[X,Y] states: Let A be commutative. Given a ring homomorphism $\alpha: R \to A$ and $x,y \in A$, prove that there is a unique ring homomorphism $\beta: R[X,Y] \to A$ that satisfies $\beta(c) = \alpha(c)$ for all $c \in R$, $\beta(X) = x$, and $\beta(Y) = y$.

Deduce this statement from the universal property of R[X].

- **3.6.** (i) For any $a \in R$, we may define the ring homomorphism $\phi : R[X] \to R$ by $\phi(f(X)) = f(a)$. Prove that $\ker \phi$ is a principal ideal, and find a generator of this ideal.
 - (ii) Let $g \in R[X]$. Define $\phi : R[X,Y] \to R[X]$ by $\phi(f(X,Y)) = f(X,g(X))$. Prove that ker ϕ is a principal ideal, and find a generator of this ideal.
- **3.7.** Let a, b be elements of R a commutative ring, and let a be a unit of R. Consider the ring homomorphism $\phi: R[X] \to R[X]$ given by $\phi(f) = f(aX + b)$. Prove that ϕ is an isomorphism. *Hint*: It's inverse can be written down explicitly.
- **3.8.** Let R be an integral domain. Prove that every isomorphism $\phi: R[X] \to R[X]$ that satisfies $\phi(c) = c$ for all $c \in R$ is of the type given in Q3.7.
- **3.9.** (i) Exercise 7.1.11 of Dummit and Foote (2004): Prove that if R is an integral domain and $x^2 = 1$ for some $x \in R$, then $x = \pm 1$.
 - (ii) Deduce that $\{a^2 \mid 0 \neq a \in \mathbb{F}_p\}$ has cardinality (p-1)/2. Here, p is an odd prime, and \mathbb{F}_p is the field of cardinality p.

Problem Set 3 MATH 25800

3.10. Prove that there are exactly four rings of cardinality p^2 , where p is a prime (p=2 is included). Identify which of them is a field, which is a product of two fields, and find a nonzero nilpotent in both of the remaining cases.

Hint: First show that there are only two possibilities for the characteristic of such a ring. If the characteristic is an odd prime p, show that there is some θ in the ring with the two properties: (i) $\theta^2 \in \mathbb{F}_p$ and (ii) $1, \theta$ form a basis for the given ring viewed as an \mathbb{F}_p vector space. Now apply the previous problem.