12 DOPPLEROV JAV

- 1. Ak stojí človek pri diaľnic, po ktorej prechádza sanitka rýchlosťou w = 20 ms⁻¹ a siréna sanitky má frekvenciu 1000 Hz, tak akú frekvenciu registruje človek ak
 - a) sa sanitka približuje?
 - b) sa sanitka vzďaľuje? Teplota vzduchu je 20°C

f_p =
$$\frac{v}{v+w} \times f_z$$

 $f_p = \frac{344}{344+20} \times 1000$
 $f_p = 945 Hz$

2. Vypočítajte, akou rýchlosťou sa pohybuje sa pohybuje vodič auta, ktorý ide v smere jazdy vlaku, ak počuje približujúci sa vlak s frekvenciou 4 140 Hz, pôvodná frekvencia píšťaly je 3450 Hz. Vlak sa pohybuje rýchlosťou 306 kmh⁻¹. Teplota vzduchu je 20 °C.

- 3. Zdroj zvuku kmitá s frekvenciou f = 1 kHz. Rýchlosť zvuku vo vzduchu je v = 340 ms⁻¹. Určte, akú frekvenciu počuje pozorovateľ a aká je vlnová dĺžka zvuku vo vzduchu, ak: a) pozorovateľ je vzhľadom na vzduch v pokoji a zdroj sa k nemu približuje rýchlosťou w = 30 ms⁻¹
 - b) zdroj je vzhľadom na vzduch v pokoji a pozorovateľ sa k nemu približuje rýchlosťou $u=30~ms^{-1}$. [$f_{p1}=1~097~Hz$, $\lambda_1=0,31~m$, $f_{p2}=1~088~Hz$, $\lambda_1=0,34~m$]
- 4. Z nehybného zdroja sa šíri zvuk s frekvenciou f = 500 Hz a odráža sa od pohyblivej steny, ktorá sa k zdroju približuje rýchlosťou w = 1 ms⁻¹. Určte vlnovú dĺžku odrazeného zvuku. Rýchlosť zvuku je v = 340 ms⁻¹. [λ = 0,676 m]

- 5. Aký je pôvodný tón píšťaly lokomotívy, ktorá sa pohybuje rýchlosťou s veľkosťou 20 ms^{-1} , a človek stojaci pri trati počuje frekvenciu 612 Hz pri teplote t = 20 °C? [f_z = 576,42 Hz]
- 6. Zdroj zvuku vysiela tón s absolútnou výškou 500 Hz a pohybuje sa smerom k pozorovateľovi rýchlosťou s veľkosťou 5 ms⁻¹. Zvuk sa šíri rýchlosťou s veľkosťou 340 ms⁻¹. Akou veľkou rýchlosťou sa pohybuje pozorovateľ, ktorý počuje tón s absolútnou výškou 522 Hz ? [u = 9,74 ms⁻¹]
- 7. Medzi dvomi rovnakými zdrojmi zvuku A a B sa pohybuje pozorovateľ po ich vzájomnej spojnici, zdroje vydávajú tóny s frekvenciou 435 Hz a pozorovateľ sa medzi nimi pohybuje rýchlosťou 54 kmh⁻¹. Akú frekvenciu vníma od zdroja A a od zdroja B ? $[f_{pA} = 454,22 \text{ Hz}, f_{pB} = 415,82 \text{ Hz}]$
- 8. Keď sa približuje parná lokomotíva počujeme zvuk s frekvenciou 538 Hz, a keď sa vzďaľuje, počujeme zvuk s frekvenciou 486 Hz. Vypočítajte rýchlosť lokomotívy. Rýchlosť vzduchu je v = 340 ms⁻¹ [w = 62,2 kmh⁻¹]