Name: 张海

#1 Points possible: 3			
memory allocation scheme may produce external fragmentation.			
Demand			
o system halts			
• Multiple-partition			
O None of above			
#2 Points possible: 3			
A demand paging system adopts the LRU page replacement algorithm. Consider a reference string 1 8 1 7 8 2 7 2 1 8 3 8 2 1 3 1 7 1 3 7. The total number of page faults given 4 initially empty page frames is			
O 4			
O 5			
6			
O 7			
#3 Points possible: 3			
After a page fault handled, should be executed.			
 the instruction just before interruption 			
the instruction caused interruption			
 the instruction just after interruption 			
 The first instruction of this process 			

#4 Points possible: 3
Assume that the probability of page fault is 0.1%, memory access time is 100ns, and the average page fault service time is 25 ms, then the effective access time is
125μs
O 115ms
25μs
25ms
#5 Points possible: 3
Considering a system, which uses virtual memory. At what point can address binding be done?
o compile time
O load time
execution time
ocan be any of the above
#6 Points possible: 3
Consider a paging system that mappes logical address space of 8 pages with 1024 bytes each page to a physical memory of 32 frames, the logical address is of and the physical address is of
10 bits, 5 bits
3 bits, 15 bits
13 bits ,5 bits
13 bits, 15 bits
#7 Points possible: 3
Dynamic relocation relies on
a relocation register

- object code
- dynamic link libraries
- relocation program

#8 Points possible: 3

In a paging memory management system, there is a page table as

Page No.↓	Frame No.₽
04	2.
1.	1.
2₊□	6₊
3₽	3₊
4	7₊

following: —

If the page size is 4KB, then paging address hardware will convert logical address 10 into physical address _______.

- 8202
- **4106**
- 0 2058
- 0 1034

#9 Points possible: 3

assume that a task is divided into 4 equal-sized segments, and that the system builds an 8-entry page table for each segment. Therefore, the system has a combination of segmentation and paging. Assume also that the page size is 2Kbytes.

What is the maximum size of each segment?

- 2Kbytes
- 4Kbytes

- 8Kbytes
 16Kbytes
 #10 Points possible: 3
 assume that a task is divided into 4 equal-sized segments, and that the system builds an 8-entry page table for each segment. Therefore, the system has a combination of segmentation and paging. Assume also that the page size is 2Kbytes.
 What is the maximum logical address space for the task?
 8Kbytes
 - 16Kbytes
 - 32Kbytes
 - 64Kbytes

#11 Points possible: 3

Implementing LRU precisely in an OS is expensive, so practical implementations often use an approximation called .

- MRU
- MFU
- LFU
- NRU

#12 Points possible: 3

The second-chance (clock) algorithm is an efficient approximation technique for _____.

- LRU page replacement
- LFU page replacement
- benchmarking file system performance
- benchmarking raw disk I/O performance

#13 Points possible: 3

Which of the following memory management is not suitable for a multi-programming environment?

- single contiguous memory allocation
- fix-sized partitions allocation
- variable-sized partitions allocation
- segmentation with paging

#14 Points possible: 3

Suppose that the TLB has a 90% hit ratio, if the times for TLB searching is 20 nanoseconds, access memory is 100 nanoseconds, what is the effective emory-access time?

- 120 nanoseconds
- 130 nanoseconds
- 140 nanoseconds
- 220 nanoseconds

#15 Points possible: 3

_____ may have not internal fragmentation.

- Paging memory management
- Segmentation memory management
- Fix-sized partition memory management
- Segmentation with paging memory management

#16 Points possible: 3

Which of the following page replacement algorithms may produce Belady's anomaly?

- FIFO
- LRU

OPT
 None of the above
#17 Points possible: 3
The fundamental basis for virtual memory management is
virtuality
locality
globality
dynamics
#18 Points possible: 3
To fetch a data from main memory in a demand paging system requires accesses to the physical memory.
O 1
2
O 3
O 4
#19 Points possible: 3
With demand paging, have worst system performance.
stacks
lists
hash tables
o arrays
#20 Points possible: 3
In a demanding paging system, the size of a page is 4KB. A process access the logical address 12345 (0x3039) will if the page table is as the following:

Page 0 1	# Frame # Validity 3 V 4 V 2 V
3	– I
	access physical address 4*4096+57
	access physical address 3*4096+57
	access physical address 2*4096+57
	cause a page-fault interrupt
#21 Pc	pints possible: 2
为使原	显存系统有效地发挥其预期的作用,所运行的程序应具有的特性是
 °	
	○ 该程序不应含有过多的I/O操作
	○ 该程序的大小不应超过实际的内存容量
	● 该程序应具有较好的局部性(Locality)
	○ 该程序的指令相关不应过多
#22 Pc	pints possible: 2
	上说,请求分页(demand-paging)是个很好的虚拟内存管理策略。 ,有些程序设计技术并不适合于这种环境。例如,。
	○ 堆栈

- 线性搜索
- 矢量运算
- 二分法搜索

#23 Points possible: 2

考虑页面置换算法,系统有m个页帧供调度,初始时全空;引用串长度为p,包含了n个不同的页面,无论用什么缺页算法,缺页次数不会少于

_____c

- \circ m
- p
- n
- min(m,n)

#24 Points possible: 2

首次适应算法的空闲区是____。

- 按地址递增顺序连在一起
- 始端指针表指向最大空闲区
- 按大小递增顺序连在一起
- 寻找从最大空闲区开始

#25 Points possible: 2

下述____页淘汰算法会产生Belady现象。

- 先进先出
- 最近最少使用
- 最不经常使用
- 最佳页面置换

#26 Points possible: 2

在虚拟分页存储管理系统中,若进程访问的页面不在主存,且主存中没有可用的空闲帧时,系统正确的处理顺序为 _____。

- 决定淘汰页→页面调出→缺页中断→页面调入
- 决定淘汰页→页面调入→缺页中断→页面调出
- 缺页中断→决定淘汰页→页面调出→页面调入
- 缺页中断→决定淘汰页→页面调入→页面调出