

Under standing the Metropolis - Hastings Algorithm Journal of American Statistical Association - Corx lation can be introduced in sampling making the observations dependent rather than independent as a tool to reduce variance. Eg-Markov samples Acception or Rejection Sampling , x & 1Rd target density - $\pi(\pi) = f(\pi)$ Density from which we want to sample the observations. h(x) - some other density [Researcher has to chose it] which can be simulated using some method & $\exists c \ s.t \ f(x) \le ch(x) \ \forall \ x$ Then to obtain one random variate from sc() Stop 1: Grenvrate a candidate Z Jrom h(n)
Grencrate a value u Jrom U(0,1) If $\frac{f(x)}{ch(x)} \leq u$ - reject Z and go to stop | Stip 2: $\frac{f(n)}{ch(n)} \ge u - accept Z - sampled from <math>\pi(.)$ Objective - Chose run c that satisfy condition for school to decrease numbers of sujections

Drawback - Joo many rejections, hence mefficient Markov Chain Monte Carlo Simulation P(x,A) is toansition kernal for $x \in \mathbb{R}^d$ $A \in \mathcal{B}$ S = box1 = algebra S = algebra = algebra = algebra S = algebra = algebState space is continuous P(n, A) - conditional probability of moving in set A Invariant distribution $\pi^*(dy) = \int_{\mathbb{R}^d} P(x, dy) \pi(x) dx$ si*(dy)= ri(y) dy [ri*(dy) is debesque] $\pi (y) dy = \int_{\mathbb{R}^d} P(x, dy) \pi(x) dx$ nth iterat converges to the invarient distribution under cortain conditions Idea - Jo generaly samples from $\pi(\cdot)$, the algorithm while a transition kernel P(n, dy) whose n^{th} iterate converges to $\pi(\cdot)$ for large n. Now we have to find appropriate P(x, dy) which converges to r.l.) Suppose Jor some playy)

P(x)dy) = p(x,y) dy + r(n) 8x (dy) $\xi_{x}(dy) = 1$ y $x \in dy$ probability stays in $r(x) = 1 - \int_{\mathbb{R}^{d}} \rho(x,y) dy - 1$ probability x = 1 $\rho(\pi_0\pi)=0$

If $\rho(x,y)$ satisfies reversibility condition $\pi(x) \rho(x,y) = \pi(y) \rho(y,x)$ Then $\pi(\cdot)$ is invarient distribution of $\rho(x)$ Prove: $\int_{A} P(n,A) \pi(n) dn$ $n, y \in A$ $= \iint_{A} \left[\int_{A} p(x, y) dy + \gamma(x) \delta_{x}(A) \right] \pi(x) dx$ = $\iint \int \rho(n,y) dy \pi(n) dn + \int r(n) S_n(A) \pi(n) dn$ = $\int_{A} \left[\int_{A} \rho(y,n) \pi(y) dy dx + \int_{A} r(n) \pi(n) dx \right]$ = $\int_{A} \int_{A} \rho(y, n) dn \pi(y) dy + \int_{A} \sigma(n) \pi(n) dn$ $= \int_{A} \left[1 - \sigma(y) \right] \pi(y) dy + \int_{A} \sigma(n) \pi(n) dx$ $= \int_{A} J(y) dy$ Metropolis - Hastings Algorithm Candidali generating density = \int g(x,y) dy = 1 of (2,y). is at x, this density generate y from Objective > q(x,y) satisfy yever sibility condition J not then

π(n) q(n,y) > π(y) q(y,n) prob of going from n > y is higher than y -> n

Jo corxed it, introduct a night 2 (n,y)<1 which is multiplied on LHS to reduce probability of going from n to y. In A·R > ij xjechon, a new pair was drawn.
independently of the princes value as draws
are independent In MM-) the current value is not independendent of previous value. Thus we have q(x,y) interpreted as conditional probability rather than h(y) undependent of parcious rather a) $\pi(n) q(n,y) \alpha(n,y) = \pi(y) q(y,n) \alpha(y,n)$ Jhus $p_{MH}(n,y) = q(x,y) \omega(n,y)$ [P(n, A) in derivation]
is a new density that we created
using q(x,y) and $\omega(x,y)$ which satisfy reversibility Jhin pw d(y,x) = 1 [manimum probability] & solve for **くしれ,y)**. $d(n,y) = \frac{T(y) q(y,x)}{I(n) q(n,y)}$ generally for both > & < care. Jhus $d(n,y) = \min \left[\frac{\pi(y) \varphi(y,n)}{\pi(n)}, 1 \right]$ Conditions required for convergence to invariant distri-

			Мι	1	al	903	ni th	Μ																		
c	h .	1		<i>(</i>	011	ПА	tı			امدا			a (~t	. `											
	υρ	'		G	eni	ئا د		y	·	120	1~1		4 (ראי	ı)											
				01	t iu i	. W				Jou	,,,,,		0 (رں	י ו											
ď	L -	2		4			_	,	/	t	`	-7	Ce	-	t+	١,,										
٥	υp	_		ري	se	u	 t		ر بر س t	νy	J	-)	30		X -	y										
				C	se		X	_																		
			(ء	ρ.	łw			L1			0		ς.	u)		(2)			ر،	-) 2						
				74	Hω	, , ,		ι~		VW		د	2 /	,	, ,,	ر			л							
		ח~	۸. ۵	λ.	0.5	7 A	~ .		ر لم د	٦	_		c	A M (N.		e n l	1	6.1	l. -	11.	das	Ь .	دوما	4	
		bo	uw.	^ ر	Ch	ı d	,	j th.		ر ا	1 4 4	^ <i>†</i>	2	L	0		``	J	9	(0)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~ 00	,H0,		
		710	رر	r	wyy	· u		0.4		1001	0,00		٠.	-3	-											