-
Corrections to Systems of Equations Notes
1/. Page 2: Transpose is obtained by soluting about the diagonal clement of a square matrix.
2/ Page 4: In Row Operations. the se cond operation is ii) (row2) x (-1) + 10w1 and (10w2) x (-1) + 10w3.
3/. Page 5: At the top of the page, (1001) x(-2) + (1003).
4/ Page 5: The Kronecker Delta and ORTHONORMALITY.
Consider unit vectors in 3-D space 2, 5, 2.
Consider unit vectors in 3-D space $\hat{x}, \hat{y}, \hat{z}$. Rewrite $\hat{\chi}, \hat{y}, \hat{z} \rightarrow \hat{\chi}_1, \hat{\chi}_2, \hat{\chi}_3$. Now we know
9. x = 9.9 = 2.2=1 and x.y=5.2=2.x=0.
We can recast the above products as, (product)
We can recast the above products as, [zerognal) $\hat{\chi}_1 \cdot \hat{\chi}_1 = \hat{\chi}_2 \cdot \hat{\chi}_2 = \hat{\chi}_3 \cdot \hat{\chi}_3 = 1$, $\hat{\chi}_1 \cdot \hat{\chi}_2 = \hat{\chi}_2 \cdot \hat{\chi}_3 = \hat{\chi}_3 \cdot \hat{\chi}_1$
Compactly we can write $\hat{x}_i \cdot \hat{x}_j = S_{ij}$ the knoweder 1) If $i=j$, $S_{ij}=1$ (normalisation Condition) Delta.
i) If (i=j, Sij=1 (normalisation condition) Delta.
ii) If [i + j, Sij = 0] (org orthogonality condition)
Together $[\hat{x}_i, \hat{x}_j] = Sij$ (or thonormality)
(orthonormality)
57. Egell: akk xk + + akn xn = bk - (2k)
1. Page 13: Af the bottom 7 n=7.
H. Page 15: In the middle [x11:2].
Page 18: \(\mathbb{\chi}_2(\kappa+1) = \frac{1}{10} \left[\beta_2 - 2\pi_1(\kappa+1) - 3\pi_3(\kappa) \right] \].