CS & IT

ENGINEERING

Lecture No. 1

By- CHANDAN SIR

TOPICS TO BE COVERED **01** THEOREM

02 D-MORGAN'S Law

03 QUESTION PRACTICE

04 DUAL & SELF DUAL

05 DISCUSSION

Laws of Boolean Algebra

1854- George Boole

"An Investigation of Law of Thoughts"

Laws of Boolean Algebra

BOOLEAN ALGEBRA

$$f(A,B) = AB$$

$$f(A_{1}B) = AB$$

Boolean Function- It is the combination of inputs on which output is depends.

BOOLEAN ALGEBRA

Standard (anonical form

-> Each term should contain all the Varjables.

Laws of Boolean Algebra

7 aise hi likha hai.

Decimal	ABC	Min Term	Max Term	Function
0	000	ĀBC	A+B+c	1 4
1	001	ABC	A+B+C	0
2	010	JOB T	A+B+C	1 /
3	011	FBC	A+B+c	1 🗸
4	100	58A	A+B+c	0
5	101	MBC	A+B+c	0
6	110	ABE	A+B+c	0
7	111	ABC	AtBtc	1

Standard cononical sop form 3-

$$f(A_1B_1C) = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

= $m_0 + m_2 + m_8 + m_7$
= $\geq m(0,2,3,7)$
= $\geq (0,2,3,7)$

Standard cononical Pos form

$$F(A_{1}B_{1}C) = (A+B+C) \cdot (\overline{A}+B+C) \cdot (\overline$$

Number of terms present in standard canonical sop form? f(A,B,C) = A+BC

5

(1) DISTRIBUTION THEOREM :->

$$A+Bc=(A+B)\cdot (A+c)$$

$$A+BCD = (A+B)(A+c)(A+D)$$

Ex
$$A+AB$$

 $(A+A)(A+B)$
 $L(A+B)$
 $= A+B$

$$\oint f(A_1B) = \overline{A} + A\overline{B}$$

$$= (\overline{A} + A)(\overline{A} + \overline{B})$$

$$= \overline{A} + \overline{B}$$

2) Concensus Theorem

$$f(A,B,C) = AB + \overline{AC} + BC$$

$$=AB[1+c]+Ac[1+B]$$

$$= AB + \overline{A}c$$

BC -> Redundant term

- / 3 Variable function
- ~ each term consist of a Variable
- Lach Variable Repealed Twice Except one.
- one variable repeated in form of complement

Ex

$$(AB)+(B)+AC$$

AB+BC

AM

AC-Redundant

EX

AC+ BC

AB -> Redundant term

3) TRANPOSE THEOREM

4 B-Morgans Law.

$$\overline{A+B+C} = \overline{A} \cdot \overline{B} \cdot \overline{C}$$

Laws of Boolean Algebra

Theorem

Distribution theorem

$$(A + B) (A + C) = A + B C$$

$$A \cdot (B + C) = AB + AC$$

Consensus theorem

$$(AB + \overline{AC}) + BC = AB + \overline{AC}$$

Transpose theorem

$$(A + B) + (\overline{A} + C) = AC + AB$$

D-Morgan's Law

$$ABC = A + B + C$$

 $A + B + C = A \cdot B \cdot C$

Laws of Boolean Algebra

$$A \cdot 0 = 0$$

$$A + 1 = 1$$

Identity Law

$$A + 0 = A$$

$$A \cdot 1 = A$$

Idempotent Law

$$A + A = A$$

$$A \cdot A = A$$

8) Absorptive Law

$$A + AB = A$$

 $A \cdot (A + B) = A$

Q.1

Find the minimum number of the NAND gate required to implement the Boolean function given below:

$$f(A, B, C) = A + ABC + AB\overline{C}$$

$$\begin{array}{ccc}
(B) 1 & = A \\
(C) 2 & P & OP \\
(D) T & A & P
\end{array}$$

$$f(A, B) = A + AB$$

$$f(A, B) = \overline{A} \overline{B} + \overline{A}B + AB$$

$$f(A, B) = \overline{A} \overline{B} + \overline{A}B + A\overline{B} + AB$$

$$f(A, B) = \overline{A}B + A\overline{B}$$

$$f(A, B) = AB + \overline{A}C + BC$$

$$f(A, B, C) = \overline{A} \overline{B} + \overline{A}C + \overline{B} \overline{C}$$

$$f(A, B, C) = (A + B)(A + C)(\overline{B} + C)$$

Thank you

Seldiers!

