Vorono i Diagramo

Choose a pt geR2 continuous decide which pep is

a Closert to 9 Voono Diagram * (c) s ax convex

Pixels in Computer

Choose a pixel (iij) and label it up the closert of ste to its center.

Discrete Voronoi Diagram * cells can be disconneted!

RIC for trapezoid maps (input: S, a set of segments) INMALIZE: Bounding box for SR2 that we care about RANDOMLY ORDER S = {S1,S2,..., Sn} labeled by Landom order At any step, we have (Si:= {s,ssz,...,si-17) Add back Si -> update the trapezoids $\Theta(k_i)$, when $k_i = \# of traps in Si, touching Sui.$ -> update the search tree structure ()(6) At worst: kis O(i) => algorithm is O(n2)

At best: k_i is $\Theta(1) = \lambda$ algorithm is $\Theta(n)$, if always "best-case" senano Well show $E(k_i) = \Theta(1) = \lambda$ expected analysis is $\Theta(n)$ nunting

Ti = the trap. of Si

Proof:

$$\frac{1}{i} \sum_{s_j \in S} k_j$$

$$= \frac{1}{i} \sum_{s_j \in S_i} \sum_{t \in T_i} IL(s_j \text{ touches } t)$$

$$= \frac{1}{i} \sum_{s_j \in S_i} \sum_{t \in T_i} Il(s_j \text{ touches } t)$$

$$= \frac{1}{i} \sum_{t \in T_i} \left(\sum_{s_j \in S_i} Il(s_j \text{ touches } t)\right)$$

$$=\frac{4}{i}(3i+1)=0(1)$$

7- 26+ of 2162 in it V-Dam: A (cellulation) of Rd defined by nearest neighbors

V=closest to 21,3,43, equidistant to these 3

1/3 = closest to 133. Unique closest ell of our sites Co-dim O cells (2-rells in R2, 3-rells in R3) have a Unique Closest coding 1 cells have 2 equidist. closest comdim & cells have 3 Agustist closest..

each site has a 3-cell "Walls" of 3-cells are 2-cells + hove 2 unique neighbors (codim 1) "edges of the walls" are I cells (codim 2 hee) have 3 equidist NN Vertices have 4 equidat NN

The dual structure to voronoi diagram is the Delaunary Dulation.

Voronoi in Ra Delaunay a pt sit we use the site cell Vi for sitesi an edge (si, sy) = we we a straight I wall between V: Vj. a triangle (si,s,, s, T) NINVINVK + O -R2 Stops here NV; + Ø Simple Si, Sz, ..., SK

Vi= the closure of Vi,

Vijalong of its boundary

we stay

Properties Observations of DT

1) Over all Aulations of S, DT maximites the min angle (over all angles in all Δs .

 $V \leq =$ the set of all angles in all Δs .

(0,02,..., ON) orders As from smallest to largest

The DT maximizes (0,,02,...,0,) wrt lexicographic order over all Dulations.

(Proof In DMLN-11)

(2) Empty Circle Property

(a) [abc] EDT(S) (=> circumcircle of Earbic3 is empty (no pts of S are inside it)

(b) (ab) an edge in DT(s) (=> circle who diameter at is empty

(3) Closest Pair Property

Pair Sore closest pair in S (a,b) is an edge in DT(s)

4) MST = DT, (S)
one-skeleton

Complete Euclidean - Birt (c) graph whose verts are

Proof: Let T be a MST for CG(S).

Suppose, by contradiction, that T & DT, (S).

I they have same vertex set

Thus, there must be some edge (a,b) ET that

is not in DT, (S).

inside: a consider T'=T \ Scans

(onsider T'=T \ Scans

(onn comp,

b one with lass and one with 563 1 T=T'U((so))

 $\omega(T'') = \omega(T) - \omega(ab) + \omega(bc)$

DTS + CHS

(1) Un bounded cells of VD(5)

wester of CH(5)

endpoint of boundary edge of DT(5).

a) A boundary edge sees one D
b) An interior edge sees two Ds.

(2) DT(5) is the 1 projection of LCH(5)

- 5°: 5 lifted to parabola Z=x2+y2