An assessment of initial guesses for self-consistent field calculations.

Superposition of Atomic Potentials: simple yet efficient. Supporting information

Susi Lehtola*

Department of Chemistry, University of Helsinki, P.O. Box 55 (A. I. Virtasen aukio 1), FI-00014 University of Helsinki, Finland

E-mail: susi.lehtola@alumni.helsinki.fi

The performance of the GWH, CORE, SAD, SADNO, HUCKEL, GSZ, LDA-X, CAP-X, and CHA-X guesses are shown in

- tables S1 and S2 at HF/STO-3G level of theory
- tables S3 and S4 at revTPSSh/STO-3G level of theory
- tables S5 and S6 at HF/pcseg-0 level of theory
- tables S7 and S8 at revTPSSh/pcseg-0 level of theory
- tables S9 and S10 at HF/pcseg-1 level of theory
- tables S11 and S12 at revTPSSh/pcseg-1 level of theory
- tables S13 and S14 at HF/aug-pcseg-2 level of theory
- tables S15 and S16 at revTPSSh/aug-pcseg-2 level of theory

for the neutral singlets and non-singlet calculations, respectively. The wave functions have been calculated using Q-Chem with stability analysis, while the guess analysis has been performed with Erkale. The results are ordered in each table from most challenging molecule to least challenging molecule, as determined by the largest f value afforded by any of the 9 guesses studied in the present work. On each row, the value for the best guess(es) is shown in bold. The last row of each table counts the number of molecules for which the guess in question was ranked best.

Table S1: Neutral singlet molecules, HF/STO-3G: fraction f of electron density covered.

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
CuMe	0.868	0.852	0.868	0.927	0.861	0.826	0.803	0.779	0.802
CuCN	0.846	0.853	0.861	0.937	0.865	0.861	0.806	0.806	0.806
Ni(C5H5)NO	0.741	0.778	0.878	0.950	0.814	0.870	0.924	0.909	0.925
ED15	0.709	0.736	0.876	0.960	0.773	0.931	0.947	0.945	0.944
Ni(C3H5)2	0.710	0.737	0.875	0.960	0.774	0.933	0.937	0.934	0.935
ED03	0.732	0.762	0.882	0.951	0.912	0.961	0.933	0.929	0.930
Ni(PH3)2	0.839	0.837	0.900	0.940	0.917	0.945	0.962	0.961	0.963
Cr(NO)4	0.714	0.733	0.881	0.941	0.896	0.923	0.963	0.963	0.961
Mn(C5H5)(CO)3	0.668	0.728	0.874	0.963	0.792	0.802	0.944	0.946	0.948
Cr(C6H6)(CO)3	0.656	0.723	0.872	0.964	0.752	0.810	0.939	0.942	0.940
MnCp(CO)3	0.668	0.727	0.873	0.964	0.791	0.803	0.943	0.945	0.948
Mn(NO)3CO	0.713	0.726	0.880	0.930	0.902	0.921	0.963	0.964	0.962
ED02	0.698	0.730	0.875	0.948	0.895	0.940	0.964	0.964	0.963
Co(C3H5)(CO)3	0.693	0.715	0.877	0.963	0.845	0.853	0.963	0.965	0.965
ED01	0.679	0.703	0.872	0.946	0.856	0.939	0.966	0.968	0.964
PR15	0.738	0.746	0.878	0.969	0.815	0.919	0.935	0.933	0.935
Fe(CO)2(NO)2	0.713	0.747	0.879	0.940	0.911	0.933	0.969	0.970	0.968
Fe(C4H6)(CO)3	0.683	0.704	0.874	0.970	0.824	0.822	0.955	0.956	0.957
Fe(C4H4)(CO)3	0.689	0.736	0.875	0.970	0.820	0.833	0.962	0.963	0.965
VCp(CO)4	0.646	0.709	0.873	0.971	0.781	0.794	0.942	0.946	0.944

Table S1– $Continued\ from\ previous\ page$

Malagula	CWH	CODE	CAD	CADNO	HICKEI	087	IDAV	CADV	CHAV
Molecule	GWH	CORE	SAD		HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
Fe(C5Me5)(P5)	0.771	0.755	0.896	0.971	0.767	0.832	0.903	0.906	0.902
Fe(CO)3(tmm)	0.680	0.702	0.874	0.971	0.828	0.826	0.959	0.962	0.964
Fe(CO)4(C2H4)	0.712	0.700	0.875	0.962	0.864	0.861	0.968	0.971	0.972
PR05	0.677	0.705	0.874	0.954	0.890	0.899	0.968	0.972	0.972
Co(CO)3(NO)	0.713	0.746	0.879	0.960	0.912	0.944	0.972	0.972	0.970
Fe(C2H4)(CO)4	0.701	0.700	0.875	0.964	0.865	0.864	0.970	0.973	0.974
ED04	0.702	0.712	0.873	0.974	0.713	0.886	0.962	0.960	0.959
Mn(CO)5CN	0.673	0.716	0.872	0.956	0.883	0.905	0.972	0.975	0.974
ED05	0.674	0.716	0.874	0.956	0.893	0.900	0.973	0.975	0.976
ED14	0.718	0.731	0.878	0.976	0.748	0.840	0.917	0.923	0.913
Mn(CO)4NO	0.685	0.725	0.876	0.949	0.907	0.919	0.973	0.976	0.975
PR12	0.688	0.684	0.871	0.965	0.831	0.838	0.973	0.977	0.974
PR04	0.692	0.722	0.873	0.977	0.735	0.892	0.956	0.956	0.958
Ni(CO)4	0.713	0.750	0.881	0.958	0.916	0.959	0.977	0.976	0.973
PR03	0.713	0.750	0.881	0.958	0.916	0.959	0.977	0.976	0.974
Cr(C6H6)2	0.632	0.737	0.870	0.972	0.636	0.889	0.979	0.961	0.960
PR14	0.696	0.709	0.877	0.979	0.719	0.822	0.949	0.943	0.938
PR02	0.685	0.727	0.876	0.953	0.898	0.925	0.977	0.980	0.980
Fe(CO)5	0.685	0.727	0.876	0.953	0.899	0.925	0.978	0.980	0.980
CoH(CO)4	0.700	0.739	0.879	0.959	0.907	0.933	0.979	0.980	0.980
Ni(acac)2	0.736	0.740	0.878	0.981	0.817	0.918	0.929	0.929	0.929
ocs	0.844	0.844	0.915	0.982	0.944	0.934	0.976	0.975	0.979
beta-lactim	0.725	0.713	0.873	0.983	0.796	0.933	0.978	0.977	0.982
dithiotane	0.839	0.845	0.915	0.983	0.902	0.938	0.980	0.979	0.982
ED40a	0.639	0.651	0.872	0.984	0.745	0.961	0.977	0.976	0.975
acetaldehyde	0.714	0.724	0.872	0.980	0.797	0.926	0.982	0.982	0.984
oxetane	0.698	0.715	0.871	0.985	0.760	0.948	0.979	0.978	0.981
						_	11 01 0		_

Table S1– $Continued\ from\ previous\ page$

					, one proceeds	F ~ 9 °			
Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
methanol	0.736	0.766	0.880	0.982	0.864	0.962	0.984	0.984	0.985
AcCl	0.828	0.833	0.916	0.985	0.903	0.868	0.955	0.954	0.963
ch3ph2	0.765	0.782	0.898	0.986	0.834	0.936	0.983	0.982	0.984
ethanol	0.704	0.730	0.876	0.986	0.793	0.944	0.978	0.977	0.980
ccl2o	0.895	0.868	0.947	0.986	0.971	0.954	0.982	0.981	0.985
oxirane	0.725	0.752	0.874	0.982	0.800	0.962	0.985	0.984	0.986
nh3	0.733	0.799	0.874	0.984	0.978	0.967	0.986	0.986	0.986
cs2	0.858	0.839	0.928	0.983	0.942	0.977	0.986	0.985	0.987
Sc(acac)3	0.697	0.704	0.884	0.987	0.797	0.850	0.981	0.983	0.971
acetic	0.757	0.769	0.885	0.980	0.869	0.951	0.985	0.985	0.987
clcof	0.871	0.838	0.938	0.984	0.965	0.939	0.983	0.983	0.987
ketene	0.725	0.752	0.873	0.985	0.820	0.963	0.985	0.985	0.987
n2h4	0.703	0.753	0.874	0.984	0.980	0.969	0.987	0.986	0.987
Zn(CH3)2	0.782	0.798	0.874	0.952	0.854	0.951	0.988	0.987	0.987
PR06	0.666	0.701	0.873	0.960	0.851	0.894	0.986	0.988	0.986
FeCp2	0.678	0.751	0.874	0.988	0.689	0.909	0.971	0.971	0.970
cis-c2f2cl2	0.846	0.834	0.946	0.988	0.943	0.898	0.978	0.977	0.982
trans-c2f2cl2	0.845	0.823	0.946	0.988	0.943	0.911	0.977	0.977	0.982
clcn	0.830	0.862	0.922	0.987	0.926	0.945	0.986	0.985	0.988
c2h5f	0.738	0.758	0.892	0.988	0.798	0.906	0.981	0.980	0.983
ED27	0.732	0.750	0.888	0.988	0.752	0.920	0.976	0.975	0.976
sio	0.902	0.881	0.890	0.986	0.942	0.974	0.988	0.988	0.988
ED28	0.721	0.742	0.886	0.989	0.741	0.901	0.973	0.973	0.973
ch3nh2	0.685	0.730	0.870	0.989	0.864	0.951	0.979	0.979	0.981
dioxetane	0.768	0.780	0.881	0.978	0.889	0.970	0.987	0.987	0.989
ch2c	0.720	0.729	0.816	0.989	0.671	0.955	0.984	0.983	0.984
PMe3	0.715	0.741	0.885	0.989	0.747	0.916	0.977	0.976	0.978
						_	11 01 0		

Table S1– $Continued\ from\ previous\ page$

		005-	Q.4.=	0.4.5.7.5	TTT : ~	~~-	T.D. 4	Q 4 D ==	OTT 1
Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
cs	0.905	0.868	0.897	0.987	0.920	0.982	0.989	0.989	0.989
c2cl6	0.913	0.892	0.961	0.989	0.978	0.952	0.980	0.979	0.985
c2h3f	0.753	0.764	0.891	0.989	0.808	0.942	0.983	0.982	0.984
PR01	0.663	0.710	0.873	0.966	0.858	0.912	0.987	0.990	0.988
ch3f	0.782	0.804	0.903	0.986	0.871	0.969	0.990	0.989	0.990
$\mathrm{ch2nh}$	0.703	0.732	0.859	0.986	0.854	0.978	0.990	0.989	0.990
ccl2	0.951	0.933	0.946	0.988	0.983	0.981	0.989	0.989	0.990
oxadiazole	0.768	0.724	0.870	0.982	0.848	0.971	0.990	0.989	0.990
formamide	0.724	0.746	0.885	0.981	0.940	0.958	0.989	0.989	0.990
h2o	0.827	0.863	0.893	0.973	0.963	0.980	0.991	0.990	0.991
PR40	0.713	0.722	0.896	0.991	0.790	0.908	0.979	0.979	0.980
MnO3F	0.812	0.815	0.888	0.946	0.934	0.975	0.991	0.990	0.988
furan	0.701	0.722	0.872	0.991	0.729	0.975	0.986	0.985	0.987
hccf	0.771	0.809	0.890	0.991	0.774	0.984	0.991	0.991	0.991
dioxetan2one	0.766	0.750	0.890	0.976	0.917	0.938	0.989	0.988	0.991
ch2clf	0.889	0.883	0.940	0.988	0.948	0.920	0.990	0.989	0.991
Cr(CO)6	0.663	0.710	0.873	0.966	0.859	0.915	0.988	0.991	0.989
c2cl4	0.877	0.866	0.957	0.991	0.955	0.955	0.979	0.978	0.982
s2o	0.885	0.892	0.933	0.984	0.987	0.970	0.990	0.990	0.991
nh2oh	0.757	0.786	0.880	0.976	0.967	0.978	0.991	0.991	0.991
TiCl2Me2	0.807	0.789	0.928	0.992	0.879	0.843	0.984	0.986	0.988
ccl2h2	0.909	0.903	0.952	0.992	0.957	0.959	0.989	0.988	0.990
thiophene	0.736	0.769	0.893	0.992	0.761	0.901	0.965	0.963	0.967
hoclo	0.882	0.890	0.928	0.971	0.981	0.976	0.992	0.991	0.992
PhSH	0.729	0.747	0.885	0.992	0.726	0.875	0.920	0.920	0.921
nh2cl	0.866	0.883	0.934	0.987	0.986	0.966	0.991	0.991	0.992
formic-anhydride	0.751	0.775	0.888	0.977	0.928	0.950	0.990	0.990	0.992
							11 01 0		_

Table S1– $Continued\ from\ previous\ page$

			,	r - 3 -					
Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
ccl3h	0.890	0.898	0.959	0.990	0.979	0.969	0.990	0.989	0.992
ED30	0.708	0.717	0.878	0.992	0.750	0.820	0.976	0.979	0.971
clno	0.882	0.884	0.922	0.985	0.986	0.923	0.988	0.986	0.992
PCy3	0.663	0.682	0.871	0.992	0.661	0.783	0.963	0.964	0.962
hoclo2	0.878	0.872	0.926	0.969	0.979	0.979	0.992	0.992	0.992
glyoxal	0.786	0.769	0.876	0.977	0.882	0.975	0.991	0.991	0.992
CrO2(NO3)2	0.760	0.733	0.890	0.962	0.936	0.939	0.992	0.992	0.990
tetrahedrane	0.663	0.704	0.863	0.993	0.583	0.969	0.983	0.982	0.984
ccl4	0.945	0.908	0.963	0.989	0.984	0.978	0.991	0.990	0.993
cyclobutene	0.643	0.670	0.859	0.993	0.635	0.950	0.975	0.974	0.977
cf2cl2	0.886	0.872	0.955	0.986	0.979	0.949	0.991	0.990	0.993
$\operatorname{cclh3}$	0.852	0.867	0.935	0.993	0.910	0.944	0.986	0.986	0.988
silole	0.703	0.700	0.877	0.993	0.681	0.891	0.954	0.953	0.959
oxirene	0.748	0.800	0.862	0.977	0.789	0.986	0.993	0.992	0.993
hnnn	0.738	0.727	0.870	0.981	0.973	0.967	0.992	0.992	0.993
fccf	0.831	0.848	0.910	0.986	0.837	0.993	0.992	0.993	0.993
cyclobutane	0.634	0.643	0.863	0.993	0.639	0.931	0.968	0.967	0.972
dioxirane	0.806	0.806	0.876	0.974	0.875	0.976	0.993	0.992	0.993
ED31	0.685	0.693	0.871	0.993	0.643	0.816	0.964	0.966	0.954
c2clh5	0.802	0.817	0.919	0.993	0.846	0.831	0.975	0.973	0.978
PhSeH	0.793	0.808	0.911	0.993	0.796	0.902	0.936	0.936	0.937
c2cl2	0.866	0.901	0.944	0.993	0.894	0.941	0.975	0.974	0.978
CrF6	0.787	0.795	0.922	0.969	0.952	0.993	0.993	0.993	0.991
c2f4	0.792	0.825	0.928	0.983	0.925	0.986	0.992	0.992	0.993
cyclobutadiene	0.658	0.702	0.850	0.993	0.608	0.974	0.985	0.984	0.986
t-hcoh	0.779	0.782	0.856	0.982	0.854	0.983	0.993	0.993	0.994
formic	0.791	0.801	0.890	0.977	0.936	0.981	0.993	0.993	0.994
							11 01 0		_

Table S1– $Continued\ from\ previous\ page$

	O33777	CORE	CAD	CADATO	IIII		TDA 37	CADN	OII A 37
Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
Ni(PF3)4	0.878	0.849	0.939	0.973	0.966	0.979	0.993	0.994	0.992
c-hcoh	0.777	0.779	0.856	0.982	0.868	0.987	0.993	0.993	0.994
CrO2Cl2	0.811	0.794	0.926	0.970	0.940	0.912	0.994	0.994	0.992
c2clh3	0.819	0.826	0.919	0.994	0.857	0.862	0.949	0.947	0.955
TiCl3Me	0.817	0.801	0.947	0.992	0.930	0.835	0.991	0.993	0.994
si2h6	0.797	0.786	0.909	0.992	0.784	0.985	0.992	0.993	0.994
c2f6	0.825	0.816	0.936	0.982	0.963	0.980	0.992	0.992	0.994
cyclopropene	0.630	0.684	0.857	0.994	0.626	0.967	0.983	0.982	0.985
ED40b	0.786	0.801	0.914	0.994	0.838	0.875	0.984	0.985	0.985
nccn	0.707	0.682	0.852	0.987	0.814	0.985	0.993	0.993	0.994
hocl	0.892	0.913	0.939	0.982	0.987	0.975	0.994	0.993	0.994
ch2f2	0.852	0.867	0.921	0.983	0.933	0.982	0.994	0.993	0.994
t-hono	0.799	0.753	0.883	0.976	0.972	0.977	0.994	0.994	0.994
ch2-sing	0.753	0.591	0.783	0.775	0.644	0.992	0.994	0.994	0.994
h2co	0.757	0.768	0.873	0.977	0.883	0.985	0.994	0.994	0.994
cyclopropane	0.634	0.653	0.865	0.994	0.636	0.944	0.974	0.973	0.976
n-pentane	0.628	0.662	0.865	0.994	0.657	0.869	0.968	0.968	0.970
cyclopentadiene	0.643	0.688	0.860	0.994	0.618	0.958	0.978	0.977	0.980
n-butane	0.629	0.665	0.864	0.994	0.661	0.910	0.968	0.967	0.971
hcno	0.773	0.798	0.880	0.981	0.887	0.985	0.994	0.993	0.994
hcof	0.836	0.824	0.906	0.980	0.942	0.990	0.994	0.994	0.994
hone	0.780	0.812	0.864	0.983	0.911	0.906	0.994	0.993	0.995
propane	0.625	0.670	0.864	0.995	0.669	0.925	0.969	0.968	0.972
c2clh	0.833	0.857	0.921	0.995	0.835	0.886	0.970	0.969	0.974
c2h6	0.628	0.700	0.863	0.995	0.681	0.933	0.972	0.971	0.974
hooh	0.797	0.849	0.885	0.971	0.971	0.988	0.995	0.994	0.995
pyrrole	0.672	0.663	0.870	0.995	0.718	0.969	0.983	0.983	0.985

Table S1– $Continued\ from\ previous\ page$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
so2	0.868	0.870	0.922	0.982	0.982	0.987	0.995	0.995	0.994
nh2f	0.805	0.824	0.900	0.978	0.972	0.983	0.995	0.994	0.995
c-n2h2	0.764	0.682	0.858	0.984	0.975	0.992	0.995	0.994	0.995
$\sinh 4$	0.750	0.771	0.905	0.992	0.778	0.987	0.994	0.994	0.995
borole	0.659	0.675	0.846	0.995	0.615	0.915	0.983	0.982	0.984
t-n2h2	0.766	0.688	0.858	0.985	0.871	0.989	0.995	0.994	0.995
propene	0.634	0.668	0.860	0.995	0.682	0.944	0.976	0.975	0.978
ch4	0.617	0.727	0.862	0.995	0.718	0.940	0.976	0.976	0.977
hnco	0.751	0.746	0.883	0.983	0.926	0.988	0.995	0.994	0.995
allene	0.640	0.656	0.855	0.995	0.642	0.974	0.984	0.983	0.985
${ m fno}$	0.863	0.828	0.897	0.979	0.977	0.993	0.995	0.995	0.995
c-hono	0.798	0.749	0.883	0.976	0.974	0.985	0.995	0.995	0.995
hclo4	0.881	0.860	0.927	0.967	0.977	0.988	0.995	0.995	0.995
hocn	0.772	0.755	0.874	0.979	0.893	0.974	0.995	0.995	0.996
chf3	0.901	0.893	0.933	0.982	0.966	0.989	0.995	0.995	0.996
propyne	0.645	0.669	0.855	0.996	0.631	0.954	0.982	0.982	0.984
alf	0.929	0.911	0.906	0.988	0.972	0.987	0.996	0.995	0.996
t-butadiene	0.641	0.662	0.857	0.996	0.655	0.950	0.978	0.978	0.980
b2h6	0.561	0.605	0.834	0.996	0.545	0.933	0.977	0.977	0.980
n2o4	0.779	0.773	0.893	0.974	0.969	0.984	0.995	0.995	0.996
f2co	0.836	0.819	0.924	0.980	0.956	0.995	0.996	0.996	0.996
benzene	0.650	0.706	0.862	0.996	0.604	0.967	0.983	0.982	0.984
CrO2F2	0.820	0.807	0.904	0.963	0.923	0.996	0.995	0.995	0.993
hnc	0.796	0.760	0.844	0.994	0.880	0.980	0.996	0.996	0.996
c2h4	0.635	0.748	0.855	0.996	0.670	0.967	0.983	0.983	0.984
ph3	0.817	0.829	0.913	0.982	0.935	0.996	0.996	0.996	0.996
hf	0.917	0.931	0.934	0.979	0.971	0.995	0.997	0.996	0.996

Table S1– $Continued\ from\ previous\ page$

		10		Continued,	jioni precioas	page			
Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
sih3f	0.835	0.838	0.924	0.988	0.884	0.994	0.996	0.996	0.997
VOCl3	0.821	0.796	0.945	0.982	0.956	0.928	0.995	0.996	0.997
cf4	0.889	0.843	0.941	0.982	0.970	0.993	0.996	0.996	0.997
p4	0.990	0.884	0.921	0.985	0.844	0.994	0.996	0.996	0.997
hcn	0.732	0.752	0.848	0.987	0.811	0.990	0.997	0.997	0.997
bhf2	0.882	0.881	0.920	0.986	0.930	0.995	0.996	0.997	0.997
bh3	0.606	0.771	0.801	0.997	0.586	0.977	0.991	0.991	0.991
hof	0.842	0.870	0.906	0.974	0.980	0.990	0.997	0.997	0.997
pf3	0.902	0.883	0.942	0.984	0.980	0.993	0.998	0.998	0.998
hno	0.789	0.786	0.869	0.979	0.961	0.996	0.998	0.998	0.998
cf2	0.918	0.886	0.911	0.984	0.969	0.998	0.997	0.998	0.998
h2s	0.885	0.893	0.936	0.983	0.977	0.998	0.997	0.997	0.997
VOF3	0.823	0.818	0.918	0.974	0.936	0.992	0.998	0.998	0.998
clf	0.923	0.938	0.954	0.982	0.994	0.992	0.998	0.998	0.998
bf3	0.921	0.940	0.936	0.985	0.962	0.998	0.998	0.998	0.998
n2o	0.769	0.749	0.882	0.981	0.975	0.991	0.998	0.998	0.998
ScF3	0.928	0.946	0.937	0.983	0.969	0.996	0.998	0.998	0.998
so3	0.846	0.856	0.924	0.977	0.977	0.998	0.998	0.998	0.998
alcl	0.948	0.939	0.933	0.991	0.981	0.995	0.998	0.998	0.999
c2h2	0.589	0.806	0.845	0.999	0.613	0.990	0.993	0.992	0.993
co2	0.738	0.830	0.893	0.981	0.939	0.999	0.999	0.999	0.999
alh3	0.763	0.785	0.881	0.996	0.817	0.998	0.998	0.999	0.999
bh	0.819	0.592	0.698	0.666	0.711	0.997	0.999	0.999	0.999
sf6	0.899	0.906	0.953	0.983	0.983	0.996	0.999	0.999	0.999
alh	0.886	0.898	0.862	0.860	0.900	0.986	0.999	0.999	0.999
TiCl4	0.846	0.816	0.962	0.992	0.972	0.982	0.998	0.999	0.999
pf5	0.875	0.885	0.952	0.985	0.980	0.998	0.999	0.999	0.999

Table S1– Continued from previous page

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
VF5	0.833	0.838	0.930	0.979	0.955	0.989	0.999	0.999	0.999
TiF4	0.813	0.809	0.934	0.983	0.955	0.998	0.999	0.999	0.999
bf	0.925	0.846	0.866	0.986	0.958	0.996	0.999	0.999	0.999
alf3	0.947	0.957	0.938	0.987	0.967	0.998	0.999	0.999	0.999
p2	0.928	0.880	0.913	0.993	0.865	0.999	0.999	0.999	0.999
sif4	0.897	0.868	0.948	0.986	0.976	0.999	0.999	0.999	0.999
alcl3	0.904	0.893	0.966	0.995	0.982	0.998	0.999	0.999	1.000
hcl	0.952	0.956	0.969	0.992	0.990	0.999	1.000	1.000	1.000
СО	0.862	0.799	0.854	0.988	0.928	0.994	1.000	1.000	1.000
f2	0.889	0.944	0.927	0.975	0.996	0.999	1.000	1.000	1.000
cl2	0.941	0.962	0.968	0.988	0.995	0.999	1.000	1.000	1.000
n2	0.792	0.742	0.852	0.993	0.855	0.999	1.000	1.000	1.000
h2	1.000	1.000	0.829	1.000	1.000	1.000	1.000	1.000	1.000
Best	1	1	0	82	1	7	27	23	87

 ${\it Table S2: Non-neutral\ and/or\ non-singlet\ molecules,\ HF/STO-3G:\ fraction\ f\ of\ electron\ density\ covered.}$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
ch	0.738	0.853	0.732	0.750	0.647	0.892	0.842	0.973	0.973
cn	0.731	0.771	0.813	0.965	0.795	0.971	0.973	0.972	0.972
Cu(acac)2	0.742	0.745	0.880	0.973	0.822	0.904	0.927	0.927	0.928
cch	0.640	0.730	0.810	0.975	0.605	0.947	0.967	0.967	0.968
t-hooo	0.839	0.803	0.876	0.957	0.966	0.947	0.976	0.976	0.976
h2cn	0.725	0.709	0.836	0.967	0.809	0.957	0.976	0.976	0.977
ch2ch	0.628	0.706	0.834	0.979	0.680	0.955	0.970	0.970	0.971
hcnh	0.725	0.748	0.843	0.978	0.840	0.976	0.980	0.980	0.981
h2ccn	0.705	0.683	0.845	0.977	0.774	0.911	0.980	0.979	0.981
no2	0.791	0.770	0.884	0.960	0.958	0.981	0.982	0.982	0.982

Table S2– $Continued\ from\ previous\ page$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
bn3pi	0.811	0.744	0.774	0.892	0.805	0.982	0.907	0.973	0.918
ch3nh	0.689	0.723	0.851	0.979	0.826	0.953	0.982	0.981	0.983
c-hooo	0.842	0.799	0.878	0.961	0.971	0.963	0.985	0.984	0.985
SO	0.892	0.890	0.914	0.983	0.982	0.973	0.985	0.985	0.985
n2h	0.756	0.725	0.847	0.972	0.901	0.980	0.987	0.986	0.987
no	0.830	0.805	0.860	0.974	0.975	0.988	0.930	0.930	0.932
V(NMe2)4	0.681	0.685	0.872	0.988	0.805	0.842	0.975	0.975	0.973
allyl	0.640	0.685	0.850	0.989	0.671	0.956	0.974	0.974	0.976
ch2nh2	0.692	0.742	0.863	0.989	0.860	0.967	0.983	0.982	0.984
clo	0.918	0.934	0.934	0.947	0.989	0.964	0.981	0.959	0.983
hco	0.786	0.784	0.859	0.976	0.865	0.990	0.990	0.990	0.990
h2no	0.759	0.775	0.879	0.964	0.960	0.982	0.992	0.992	0.992
cyclopropyl	0.635	0.671	0.855	0.992	0.647	0.952	0.977	0.976	0.979
ch2-trip	0.756	0.845	0.793	0.992	0.707	0.988	0.992	0.992	0.992
hoo	0.829	0.813	0.876	0.962	0.969	0.989	0.993	0.993	0.993
nh2	0.800	0.745	0.833	0.876	0.965	0.988	0.994	0.994	0.994
s2	0.933	0.921	0.934	0.985	0.991	0.993	0.994	0.994	0.994
Ti(BH4)3	0.636	0.637	0.869	0.994	0.648	0.859	0.983	0.984	0.983
o2	0.863	0.847	0.876	0.979	0.989	0.994	0.994	0.994	0.994
ch3	0.679	0.784	0.834	0.995	0.745	0.969	0.986	0.986	0.987
sif	0.919	0.904	0.905	0.956	0.941	0.955	0.966	0.953	0.996
cf	0.891	0.839	0.866	0.938	0.946	0.944	0.932	0.936	0.996
ssh	0.907	0.894	0.936	0.980	0.983	0.994	0.996	0.996	0.996
oh	0.901	0.889	0.855	0.879	0.969	0.886	0.996	0.997	0.995
\sin	0.848	0.859	0.868	0.974	0.833	0.932	0.981	0.946	0.997
nh	0.886	0.913	0.787	0.916	0.969	0.998	0.998	0.998	0.998
hs	0.900	0.892	0.921	0.934	0.984	0.998	0.941	0.944	0.968

Table S2– $Continued\ from\ previous\ page$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
Best	0	0	0	9	1	3	3	2	19

Table S3: Neutral singlet molecules, revTPSSh/STO-3G: fraction f of electron density covered.

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
CuCN	0.834	0.849	0.861	0.945	0.867	0.868	0.817	0.816	0.817
CuMe	0.852	0.849	0.867	0.955	0.867	0.810	0.801	0.798	0.801
Ni(C3H5)2	0.716	0.738	0.876	0.961	0.779	0.933	0.951	0.947	0.947
ED15	0.715	0.738	0.876	0.961	0.778	0.933	0.955	0.952	0.951
ED03	0.734	0.763	0.880	0.947	0.909	0.963	0.944	0.940	0.941
Ni(PH3)2	0.839	0.837	0.901	0.942	0.919	0.946	0.965	0.964	0.965
Cr(C6H6)(CO)3	0.659	0.725	0.872	0.966	0.749	0.809	0.945	0.947	0.945
MnCp(CO)3	0.671	0.730	0.873	0.969	0.784	0.802	0.948	0.950	0.953
Mn(C5H5)(CO)3	0.671	0.731	0.874	0.969	0.785	0.801	0.949	0.951	0.953
PR15	0.739	0.746	0.877	0.971	0.812	0.919	0.937	0.935	0.937
Zn(CH3)2	0.788	0.800	0.877	0.952	0.860	0.944	0.971	0.970	0.970
VCp(CO)4	0.650	0.712	0.873	0.972	0.776	0.794	0.947	0.950	0.949
Fe(C5Me5)(P5)	0.771	0.756	0.896	0.973	0.770	0.831	0.903	0.907	0.903
Ni(C5H5)NO	0.740	0.778	0.879	0.974	0.815	0.875	0.924	0.913	0.928
Co(C3H5)(CO)3	0.698	0.718	0.878	0.971	0.844	0.855	0.971	0.973	0.975
ED14	0.719	0.734	0.878	0.977	0.748	0.841	0.918	0.924	0.914
Fe(CO)4(C2H4)	0.717	0.704	0.875	0.977	0.859	0.863	0.971	0.974	0.976
Fe(C2H4)(CO)4	0.706	0.704	0.876	0.978	0.860	0.866	0.973	0.976	0.977
Ni(acac)2	0.737	0.742	0.878	0.978	0.815	0.918	0.933	0.933	0.933
PR12	0.693	0.689	0.871	0.969	0.824	0.841	0.975	0.978	0.977
PR05	0.681	0.709	0.874	0.964	0.881	0.900	0.975	0.979	0.979
ED04	0.703	0.713	0.872	0.979	0.714	0.888	0.977	0.975	0.974
PR14	0.697	0.709	0.876	0.980	0.717	0.822	0.955	0.944	0.941

Table S3– $Continued\ from\ previous\ page$

				Fuge					
Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
Fe(C4H6)(CO)3	0.686	0.707	0.874	0.980	0.820	0.822	0.958	0.960	0.961
Cr(C6H6)2	0.634	0.737	0.870	0.972	0.637	0.891	0.981	0.963	0.962
PR04	0.693	0.723	0.873	0.981	0.734	0.890	0.964	0.967	0.969
Fe(C4H4)(CO)3	0.694	0.739	0.875	0.982	0.816	0.832	0.964	0.965	0.968
ED40a	0.641	0.652	0.872	0.982	0.742	0.961	0.977	0.976	0.975
Mn(CO)5CN	0.677	0.719	0.872	0.967	0.875	0.907	0.979	0.983	0.982
Fe(CO)3(tmm)	0.686	0.706	0.874	0.983	0.824	0.825	0.962	0.964	0.967
dithiotane	0.839	0.846	0.915	0.982	0.901	0.939	0.981	0.980	0.983
ocs	0.839	0.838	0.914	0.979	0.938	0.939	0.980	0.979	0.983
oxetane	0.698	0.715	0.871	0.983	0.759	0.949	0.979	0.978	0.981
ED05	0.678	0.721	0.875	0.966	0.881	0.902	0.980	0.982	0.983
AcCl	0.828	0.833	0.915	0.984	0.901	0.870	0.959	0.957	0.967
beta-lactim	0.725	0.713	0.872	0.981	0.793	0.938	0.981	0.980	0.984
Sc(acac)3	0.699	0.706	0.883	0.984	0.793	0.850	0.982	0.984	0.971
ethanol	0.704	0.731	0.875	0.985	0.791	0.945	0.978	0.978	0.980
ED02	0.699	0.736	0.876	0.973	0.890	0.945	0.984	0.985	0.985
ch3ph2	0.767	0.784	0.898	0.985	0.832	0.938	0.984	0.983	0.985
methanol	0.735	0.766	0.879	0.980	0.862	0.962	0.984	0.984	0.985
acetaldehyde	0.714	0.724	0.871	0.979	0.796	0.930	0.984	0.983	0.986
sio	0.892	0.876	0.888	0.981	0.936	0.971	0.986	0.985	0.985
cis-c2f2cl2	0.848	0.835	0.945	0.986	0.943	0.900	0.980	0.979	0.984
trans-c2f2cl2	0.845	0.824	0.945	0.986	0.943	0.912	0.980	0.979	0.984
nh3	0.733	0.799	0.874	0.983	0.977	0.967	0.986	0.986	0.986
FeCp2	0.679	0.750	0.873	0.986	0.689	0.911	0.980	0.981	0.981
oxirane	0.723	0.751	0.873	0.980	0.799	0.963	0.985	0.985	0.986
c2h5f	0.737	0.758	0.891	0.987	0.796	0.909	0.982	0.981	0.984
n2h4	0.703	0.754	0.874	0.982	0.979	0.969	0.987	0.986	0.987
						_			

Table S3– $Continued\ from\ previous\ page$

					, on process	P ~ 9 °			
Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
c2h3f	0.752	0.763	0.889	0.987	0.806	0.949	0.987	0.986	0.988
ED27	0.734	0.751	0.888	0.988	0.750	0.922	0.977	0.977	0.978
ccl2o	0.896	0.868	0.946	0.984	0.969	0.957	0.985	0.985	0.988
PR02	0.689	0.731	0.877	0.971	0.895	0.929	0.985	0.988	0.988
c2cl6	0.914	0.893	0.960	0.988	0.977	0.953	0.981	0.981	0.986
ED28	0.722	0.743	0.886	0.988	0.740	0.902	0.975	0.975	0.974
ch3nh2	0.685	0.730	0.870	0.988	0.863	0.952	0.980	0.979	0.981
Mn(CO)4NO	0.689	0.727	0.877	0.958	0.891	0.923	0.985	0.988	0.988
Fe(CO)5	0.689	0.731	0.877	0.971	0.895	0.930	0.986	0.988	0.988
PMe3	0.717	0.742	0.885	0.989	0.745	0.917	0.978	0.977	0.979
acetic	0.757	0.769	0.883	0.977	0.865	0.953	0.987	0.987	0.989
dioxetane	0.766	0.779	0.880	0.975	0.887	0.970	0.988	0.987	0.989
PR40	0.715	0.723	0.895	0.989	0.788	0.909	0.980	0.980	0.980
furan	0.699	0.721	0.871	0.989	0.727	0.976	0.987	0.986	0.988
ketene	0.722	0.753	0.872	0.983	0.815	0.966	0.988	0.987	0.989
${\rm TiCl2Me2}$	0.808	0.789	0.927	0.989	0.876	0.847	0.986	0.988	0.989
cs2	0.853	0.844	0.928	0.981	0.938	0.981	0.989	0.988	0.989
clcof	0.870	0.839	0.936	0.981	0.962	0.941	0.986	0.986	0.990
h2o	0.826	0.861	0.891	0.971	0.960	0.979	0.990	0.990	0.990
ch2c	0.719	0.730	0.817	0.990	0.665	0.956	0.985	0.984	0.986
c2cl4	0.878	0.867	0.957	0.990	0.955	0.957	0.981	0.981	0.984
clen	0.830	0.862	0.921	0.986	0.927	0.950	0.989	0.988	0.990
thiophene	0.735	0.768	0.893	0.990	0.760	0.903	0.967	0.966	0.970
ch3f	0.781	0.804	0.901	0.983	0.870	0.970	0.990	0.989	0.990
$\mathrm{ch2nh}$	0.702	0.732	0.858	0.984	0.853	0.978	0.990	0.989	0.990
PhSH	0.729	0.747	0.885	0.991	0.725	0.877	0.922	0.922	0.923
ED30	0.708	0.717	0.877	0.991	0.748	0.820	0.977	0.980	0.972
						_	11 60 6		_

Table S3– $Continued\ from\ previous\ page$

		10		Continued,	jioni predidus	page			
Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
ED01	0.683	0.707	0.872	0.961	0.848	0.955	0.990	0.991	0.986
nh2oh	0.757	0.785	0.879	0.974	0.964	0.978	0.991	0.990	0.991
formamide	0.723	0.745	0.884	0.979	0.936	0.960	0.990	0.990	0.991
ccl2h2	0.909	0.903	0.951	0.991	0.957	0.961	0.990	0.989	0.991
$\mathrm{ch}2\mathrm{clf}$	0.888	0.883	0.939	0.986	0.947	0.922	0.990	0.990	0.992
PCy3	0.664	0.683	0.870	0.992	0.660	0.784	0.964	0.965	0.963
cs	0.901	0.864	0.896	0.983	0.918	0.986	0.992	0.992	0.992
nh2cl	0.866	0.883	0.934	0.985	0.985	0.967	0.991	0.991	0.992
$\operatorname{cclh3}$	0.852	0.867	0.934	0.992	0.909	0.946	0.987	0.987	0.988
tetrahedrane	0.664	0.705	0.863	0.992	0.583	0.970	0.984	0.982	0.985
c2clh5	0.802	0.817	0.918	0.993	0.844	0.833	0.976	0.974	0.980
PR06	0.670	0.705	0.873	0.965	0.844	0.897	0.990	0.993	0.992
c2cl2	0.864	0.899	0.944	0.993	0.895	0.946	0.978	0.978	0.981
oxadiazole	0.766	0.724	0.869	0.978	0.845	0.975	0.992	0.992	0.993
PR01	0.668	0.714	0.873	0.969	0.851	0.916	0.990	0.993	0.992
PhSeH	0.793	0.808	0.911	0.993	0.796	0.903	0.937	0.937	0.938
cyclobutene	0.644	0.671	0.859	0.993	0.634	0.951	0.976	0.975	0.978
ED31	0.685	0.693	0.871	0.993	0.642	0.817	0.964	0.966	0.955
$\operatorname{ccl3h}$	0.890	0.899	0.959	0.989	0.978	0.971	0.991	0.991	0.993
CrO2(NO3)2	0.760	0.735	0.888	0.958	0.931	0.943	0.993	0.993	0.990
silole	0.705	0.700	0.877	0.993	0.681	0.891	0.956	0.954	0.960
CoH(CO)4	0.704	0.743	0.879	0.966	0.905	0.937	0.991	0.993	0.993
cyclobutane	0.635	0.644	0.863	0.993	0.638	0.932	0.969	0.968	0.972
cyclobutadiene	0.659	0.702	0.850	0.993	0.609	0.974	0.985	0.985	0.987
c2clh3	0.818	0.826	0.919	0.993	0.856	0.864	0.952	0.950	0.958
dioxetan2one	0.766	0.751	0.888	0.973	0.912	0.941	0.991	0.991	0.993
ED40b	0.787	0.802	0.914	0.993	0.837	0.877	0.985	0.985	0.986

Table S3– $Continued\ from\ previous\ page$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
s2o	0.891	0.896	0.932	0.981	0.984	0.974	0.993	0.992	0.993
formic-anhydride	0.749	0.772	0.886	0.974	0.924	0.954	0.992	0.992	0.993
ccl2	0.950	0.931	0.944	0.984	0.982	0.985	0.992	0.992	0.993
cyclopropene	0.632	0.685	0.857	0.994	0.626	0.968	0.984	0.983	0.985
glyoxal	0.787	0.769	0.875	0.974	0.880	0.977	0.992	0.992	0.994
hoclo	0.883	0.886	0.927	0.966	0.976	0.980	0.994	0.994	0.993
oxirene	0.747	0.798	0.861	0.975	0.788	0.987	0.993	0.993	0.994
c-hcoh	0.770	0.774	0.854	0.977	0.864	0.985	0.993	0.993	0.994
ccl4	0.945	0.908	0.962	0.988	0.983	0.979	0.992	0.991	0.994
Cr(CO)6	0.668	0.715	0.873	0.969	0.852	0.919	0.991	0.994	0.993
CrO2Cl2	0.812	0.796	0.924	0.966	0.937	0.917	0.994	0.994	0.992
c2clh	0.833	0.856	0.921	0.994	0.835	0.890	0.974	0.972	0.977
t-hcoh	0.773	0.776	0.855	0.977	0.848	0.981	0.994	0.993	0.994
cf2cl2	0.886	0.873	0.954	0.984	0.977	0.950	0.992	0.991	0.994
heef	0.768	0.808	0.889	0.988	0.775	0.988	0.994	0.994	0.994
dioxirane	0.804	0.804	0.875	0.970	0.872	0.978	0.993	0.993	0.994
alf	0.918	0.906	0.903	0.982	0.966	0.985	0.994	0.994	0.994
ch2-sing	0.754	0.594	0.782	0.774	0.643	0.992	0.994	0.994	0.994
hocl	0.891	0.913	0.938	0.979	0.985	0.976	0.994	0.993	0.994
cyclopropane	0.636	0.654	0.865	0.994	0.636	0.945	0.975	0.974	0.977
MnO3F	0.819	0.812	0.887	0.942	0.930	0.984	0.994	0.993	0.991
n-pentane	0.629	0.663	0.865	0.994	0.656	0.870	0.969	0.969	0.971
so2	0.875	0.874	0.920	0.977	0.976	0.986	0.994	0.994	0.994
h2co	0.755	0.767	0.871	0.975	0.883	0.986	0.994	0.994	0.994
pyrrole	0.671	0.662	0.869	0.994	0.717	0.970	0.984	0.983	0.985
hnnn	0.743	0.731	0.870	0.982	0.975	0.968	0.994	0.993	0.994
n-butane	0.630	0.666	0.864	0.994	0.660	0.912	0.969	0.968	0.971

 ${\it Table S3-}\ {\it Continued\ on\ next\ page}$

Table S3– $Continued\ from\ previous\ page$

					j. o process as	F ~ 9 °			
Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
hooh	0.796	0.851	0.884	0.967	0.967	0.988	0.994	0.994	0.994
propane	0.627	0.672	0.864	0.995	0.667	0.926	0.970	0.969	0.973
cyclopentadiene	0.644	0.687	0.860	0.995	0.617	0.959	0.979	0.978	0.981
borole	0.660	0.675	0.845	0.995	0.615	0.915	0.983	0.983	0.985
c-n2h2	0.764	0.684	0.857	0.982	0.973	0.992	0.994	0.994	0.995
c2h6	0.630	0.701	0.863	0.995	0.680	0.934	0.973	0.972	0.974
si2h6	0.800	0.789	0.908	0.991	0.783	0.986	0.993	0.994	0.995
t-n2h2	0.766	0.690	0.857	0.982	0.870	0.989	0.994	0.994	0.995
formic	0.784	0.797	0.888	0.974	0.931	0.982	0.994	0.994	0.995
TiCl3Me	0.819	0.802	0.945	0.989	0.926	0.840	0.993	0.994	0.995
nh2f	0.806	0.824	0.899	0.976	0.969	0.983	0.995	0.994	0.995
Fe(CO)2(NO)2	0.716	0.748	0.879	0.951	0.914	0.938	0.993	0.995	0.994
propene	0.635	0.669	0.859	0.995	0.681	0.946	0.977	0.976	0.979
ch2f2	0.850	0.865	0.919	0.980	0.931	0.984	0.995	0.994	0.995
nccn	0.707	0.682	0.851	0.985	0.814	0.987	0.994	0.994	0.995
ch4	0.619	0.729	0.862	0.995	0.717	0.941	0.977	0.977	0.977
Cr(NO)4	0.715	0.734	0.881	0.962	0.883	0.942	0.995	0.995	0.992
Co(CO)3(NO)	0.716	0.749	0.880	0.968	0.913	0.950	0.994	0.995	0.994
hoclo2	0.878	0.867	0.925	0.964	0.973	0.985	0.995	0.995	0.995
honc	0.776	0.808	0.863	0.980	0.909	0.907	0.995	0.994	0.995
allene	0.642	0.658	0.855	0.996	0.640	0.975	0.985	0.984	0.986
b2h6	0.564	0.608	0.834	0.996	0.544	0.935	0.979	0.979	0.981
sih4	0.754	0.774	0.905	0.992	0.776	0.988	0.995	0.995	0.996
hnc	0.792	0.758	0.843	0.992	0.877	0.979	0.996	0.995	0.996
Ni(CO)4	0.717	0.753	0.882	0.962	0.915	0.964	0.996	0.995	0.993
PR03	0.716	0.753	0.882	0.962	0.915	0.965	0.996	0.995	0.994
benzene	0.652	0.706	0.862	0.996	0.604	0.968	0.983	0.983	0.985
						_	11 60 6		

Table S3– $Continued\ from\ previous\ page$

		10		Continued,	jioni predidus	page			
Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
t-butadiene	0.643	0.663	0.857	0.996	0.654	0.951	0.979	0.979	0.981
hf	0.915	0.929	0.933	0.978	0.969	0.994	0.996	0.996	0.996
Mn(NO)3CO	0.715	0.724	0.881	0.932	0.897	0.929	0.994	0.996	0.995
propyne	0.647	0.669	0.855	0.996	0.630	0.955	0.983	0.982	0.985
c2h4	0.637	0.749	0.855	0.996	0.670	0.967	0.984	0.983	0.985
fccf	0.825	0.841	0.908	0.983	0.838	0.996	0.996	0.996	0.996
ScF3	0.920	0.938	0.932	0.976	0.962	0.992	0.996	0.996	0.996
sih3f	0.834	0.839	0.922	0.986	0.882	0.994	0.996	0.996	0.996
hocn	0.770	0.753	0.873	0.977	0.891	0.976	0.996	0.996	0.997
clno	0.883	0.884	0.921	0.981	0.983	0.927	0.993	0.992	0.997
bh3	0.608	0.773	0.801	0.997	0.586	0.978	0.991	0.991	0.992
hnco	0.749	0.747	0.881	0.980	0.919	0.990	0.996	0.996	0.997
c2f4	0.792	0.820	0.926	0.980	0.924	0.991	0.996	0.996	0.997
t-hono	0.799	0.755	0.881	0.972	0.968	0.980	0.997	0.996	0.997
ph3	0.820	0.831	0.913	0.981	0.932	0.996	0.996	0.997	0.997
heno	0.771	0.795	0.879	0.977	0.885	0.990	0.997	0.996	0.997
c2f6	0.828	0.816	0.934	0.979	0.960	0.985	0.995	0.995	0.997
hcof	0.830	0.821	0.904	0.976	0.939	0.994	0.997	0.997	0.997
hen	0.732	0.751	0.847	0.986	0.811	0.991	0.997	0.997	0.997
hof	0.842	0.871	0.905	0.970	0.977	0.990	0.997	0.997	0.997
VOCl3	0.824	0.799	0.943	0.979	0.952	0.933	0.997	0.997	0.997
hno	0.790	0.786	0.867	0.975	0.958	0.996	0.997	0.997	0.998
chf3	0.898	0.889	0.931	0.979	0.962	0.992	0.997	0.997	0.998
CrO2F2	0.821	0.806	0.901	0.957	0.917	0.998	0.994	0.994	0.991
c-hono	0.798	0.751	0.881	0.972	0.969	0.988	0.998	0.997	0.998
hclo4	0.886	0.855	0.925	0.962	0.972	0.992	0.998	0.998	0.997
alf3	0.939	0.949	0.935	0.982	0.959	0.995	0.998	0.998	0.997

Table S3– $Continued\ from\ previous\ page$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
so3	0.853	0.860	0.922	0.973	0.972	0.997	0.998	0.998	0.997
p4	0.989	0.887	0.920	0.982	0.842	0.995	0.998	0.997	0.998
c2h2	0.589	0.806	0.845	0.998	0.614	0.990	0.993	0.993	0.993
h2s	0.886	0.894	0.936	0.982	0.976	0.998	0.997	0.998	0.998
clf	0.923	0.939	0.953	0.981	0.993	0.992	0.998	0.998	0.998
VOF3	0.826	0.818	0.914	0.968	0.929	0.996	0.998	0.998	0.997
bhf2	0.875	0.873	0.917	0.981	0.923	0.997	0.998	0.998	0.998
alcl	0.944	0.937	0.932	0.989	0.979	0.995	0.998	0.998	0.999
n2o4	0.781	0.777	0.891	0.969	0.964	0.989	0.998	0.998	0.999
pf3	0.906	0.883	0.940	0.980	0.976	0.994	0.999	0.999	0.999
f2co	0.834	0.817	0.921	0.977	0.951	0.998	0.999	0.999	0.999
cf4	0.894	0.843	0.939	0.979	0.966	0.996	0.998	0.998	0.999
bh	0.821	0.596	0.697	0.666	0.713	0.998	0.999	0.999	0.999
TiF4	0.818	0.807	0.930	0.977	0.947	0.999	0.999	0.999	0.998
n2o	0.768	0.749	0.881	0.977	0.973	0.991	0.999	0.999	0.999
alh3	0.766	0.788	0.880	0.995	0.816	0.997	0.999	0.999	0.999
Ni(PF3)4	0.882	0.850	0.938	0.971	0.963	0.983	0.999	0.999	0.997
VF5	0.838	0.836	0.926	0.972	0.947	0.994	0.999	0.999	0.998
hcl	0.951	0.955	0.968	0.992	0.989	0.999	0.999	0.999	0.999
со	0.856	0.795	0.852	0.985	0.925	0.993	1.000	0.999	0.999
alh	0.887	0.899	0.861	0.860	0.898	0.986	1.000	0.999	0.999
CrF6	0.803	0.790	0.919	0.964	0.946	1.000	0.991	0.991	0.988
bf3	0.913	0.932	0.932	0.980	0.955	0.999	0.999	1.000	1.000
p2	0.927	0.882	0.912	0.992	0.865	0.999	1.000	1.000	1.000
cf2	0.912	0.879	0.909	0.977	0.965	0.999	1.000	1.000	1.000
fno	0.857	0.827	0.896	0.975	0.974	0.999	1.000	1.000	1.000
bf	0.914	0.840	0.864	0.980	0.952	0.995	1.000	1.000	1.000

 ${\it Table S3-}\ {\it Continued\ on\ next\ page}$

Table S3– Continued from previous page

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
TiCl4	0.849	0.819	0.960	0.989	0.968	0.986	0.999	1.000	1.000
co2	0.728	0.821	0.891	0.976	0.931	0.999	1.000	1.000	1.000
sif4	0.904	0.869	0.945	0.982	0.970	0.999	1.000	1.000	1.000
pf5	0.879	0.886	0.949	0.982	0.975	0.999	1.000	1.000	1.000
sf6	0.905	0.907	0.951	0.980	0.979	0.998	1.000	1.000	1.000
alcl3	0.904	0.892	0.965	0.993	0.979	0.999	1.000	1.000	1.000
cl2	0.941	0.963	0.968	0.987	0.994	1.000	1.000	1.000	1.000
f2	0.889	0.946	0.926	0.973	0.996	1.000	1.000	1.000	1.000
n2	0.792	0.745	0.851	0.992	0.855	1.000	1.000	1.000	1.000
h2	1.000	1.000	0.829	1.000	1.000	1.000	1.000	1.000	1.000
Best	1	1	0	75	1	6	30	17	98

Table S4: Non-neutral and/or non-singlet molecules, revTPSSh/STO-3G: fraction f of electron density covered.

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
cf	0.881	0.835	0.864	0.934	0.942	0.955	0.933	0.953	0.968
Cu(acac)2	0.743	0.746	0.879	0.969	0.822	0.900	0.922	0.922	0.923
sif	0.909	0.878	0.904	0.951	0.968	0.972	0.959	0.972	0.954
ch3nh	0.690	0.725	0.851	0.979	0.825	0.955	0.984	0.983	0.985
V(NMe2)4	0.682	0.685	0.871	0.986	0.800	0.843	0.975	0.975	0.973
ch	0.748	0.864	0.731	0.736	0.612	0.888	0.985	0.884	0.987
\sin	0.849	0.860	0.868	0.979	0.842	0.990	0.949	0.981	0.933
h2ccn	0.698	0.681	0.848	0.984	0.777	0.919	0.988	0.988	0.990
h2cn	0.710	0.713	0.840	0.979	0.812	0.968	0.989	0.989	0.990
so	0.897	0.887	0.915	0.987	0.986	0.977	0.990	0.990	0.990
ch2nh2	0.687	0.738	0.863	0.990	0.857	0.968	0.985	0.985	0.986
clo	0.915	0.932	0.934	0.942	0.991	0.954	0.987	0.959	0.988

Table S4– $Continued\ from\ previous\ page$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
Ti(BH4)3	0.640	0.641	0.869	0.992	0.645	0.862	0.985	0.986	0.985
ch2ch	0.645	0.715	0.837	0.993	0.681	0.967	0.985	0.984	0.985
cyclopropyl	0.637	0.671	0.855	0.993	0.646	0.953	0.979	0.978	0.980
hcnh	0.724	0.746	0.846	0.988	0.844	0.986	0.993	0.993	0.993
nh2	0.800	0.745	0.832	0.875	0.962	0.988	0.993	0.993	0.993
ch2-trip	0.758	0.845	0.793	0.992	0.706	0.989	0.993	0.993	0.993
t-hooo	0.827	0.805	0.879	0.967	0.978	0.961	0.994	0.993	0.994
h2no	0.765	0.781	0.880	0.969	0.965	0.982	0.994	0.994	0.994
bn3pi	0.813	0.747	0.774	0.898	0.818	0.975	0.922	0.992	0.995
allyl	0.641	0.687	0.852	0.995	0.668	0.962	0.981	0.980	0.983
cch	0.657	0.752	0.816	0.995	0.596	0.965	0.988	0.988	0.989
ch3	0.680	0.784	0.834	0.995	0.744	0.970	0.987	0.987	0.987
oh	0.901	0.888	0.854	0.878	0.967	0.966	0.996	0.887	0.995
n2h	0.765	0.728	0.849	0.982	0.912	0.989	0.996	0.996	0.996
c-hooo	0.831	0.802	0.879	0.966	0.977	0.975	0.996	0.996	0.996
cn	0.762	0.780	0.818	0.979	0.829	0.990	0.996	0.996	0.997
hco	0.783	0.779	0.859	0.976	0.866	0.995	0.997	0.997	0.997
hoo	0.820	0.817	0.876	0.968	0.974	0.990	0.997	0.997	0.997
nh	0.886	0.913	0.787	0.915	0.968	0.998	0.998	0.998	0.998
hs	0.936	0.940	0.921	0.941	0.972	0.967	0.999	0.960	0.994
ssh	0.905	0.896	0.936	0.983	0.986	0.995	0.999	0.999	0.999
no	0.827	0.796	0.862	0.980	0.984	0.996	0.999	0.934	0.934
s2	0.935	0.925	0.935	0.990	0.997	0.999	1.000	1.000	1.000
no2	0.790	0.781	0.886	0.972	0.968	0.999	1.000	1.000	1.000
02	0.871	0.852	0.876	0.982	0.994	0.999	1.000	1.000	1.000
Best	0	0	0	9	1	2	5	1	19

Table S5: Neutral singlet molecules, $\mathrm{HF/pcseg}$ -0: fraction f of electron density covered.

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
Mn(NO)3CO	0.590	0.645	0.892	0.948	0.953	0.914	0.948	0.950	0.949
Fe(CO)2(NO)2	0.596	0.655	0.890	0.953	0.955	0.929	0.957	0.959	0.957
b2h6	0.509	0.545	0.878	0.959	0.961	0.897	0.962	0.961	0.965
Ni(C5H5)NO	0.625	0.663	0.892	0.959	0.965	0.872	0.961	0.961	0.961
Fe(C2H4)(CO)4	0.586	0.632	0.890	0.964	0.964	0.848	0.960	0.964	0.965
Fe(CO)4(C2H4)	0.584	0.630	0.890	0.964	0.965	0.844	0.958	0.962	0.963
Fe(C4H4)(CO)3	0.597	0.631	0.892	0.965	0.962	0.820	0.940	0.946	0.951
Cr(NO)4	0.592	0.634	0.893	0.951	0.960	0.907	0.962	0.965	0.965
Fe(C4H6)(CO)3	0.576	0.643	0.890	0.966	0.964	0.819	0.946	0.953	0.954
Mn(C5H5)(CO)3	0.589	0.635	0.893	0.963	0.966	0.794	0.937	0.944	0.945
Mn(CO)5CN	0.580	0.630	0.887	0.953	0.966	0.898	0.955	0.960	0.958
Fe(CO)3(tmm)	0.592	0.613	0.891	0.966	0.963	0.810	0.934	0.942	0.947
MnCp(CO)3	0.588	0.633	0.893	0.963	0.966	0.794	0.934	0.941	0.943
Co(C3H5)(CO)3	0.599	0.644	0.890	0.966	0.967	0.840	0.960	0.964	0.966
PR05	0.574	0.633	0.890	0.955	0.967	0.889	0.958	0.962	0.960
VCp(CO)4	0.570	0.624	0.895	0.962	0.967	0.782	0.926	0.938	0.934
Mn(CO)4NO	0.590	0.656	0.890	0.955	0.965	0.913	0.965	0.967	0.966
ED05	0.593	0.657	0.890	0.956	0.967	0.890	0.965	0.968	0.968
PR04	0.588	0.649	0.893	0.970	0.964	0.877	0.938	0.940	0.944
ch4	0.405	0.618	0.881	0.966	0.972	0.907	0.965	0.964	0.965
ED15	0.623	0.648	0.890	0.959	0.966	0.932	0.970	0.971	0.972
Ni(C3H5)2	0.622	0.648	0.889	0.957	0.966	0.933	0.971	0.971	0.972
ED14	0.577	0.624	0.899	0.956	0.973	0.840	0.929	0.933	0.931
Co(CO)3(NO)	0.615	0.678	0.889	0.963	0.964	0.948	0.971	0.973	0.971
ED04	0.610	0.659	0.891	0.973	0.962	0.876	0.953	0.954	0.961
Cr(C6H6)(CO)3	0.580	0.637	0.893	0.963	0.973	0.800	0.931	0.947	0.953

Table S5– $Continued\ from\ previous\ page$

					,	1 ~J~			
Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
PR12	0.562	0.622	0.890	0.960	0.973	0.823	0.970	0.974	0.972
tetrahedrane	0.511	0.612	0.890	0.971	0.971	0.944	0.972	0.971	0.974
PR02	0.598	0.623	0.891	0.962	0.967	0.921	0.971	0.974	0.973
propyne	0.471	0.590	0.881	0.972	0.972	0.929	0.972	0.971	0.974
Fe(CO)5	0.598	0.623	0.890	0.962	0.967	0.922	0.972	0.974	0.974
cyclopropene	0.489	0.586	0.883	0.974	0.974	0.941	0.973	0.972	0.975
ch3nh2	0.478	0.608	0.885	0.969	0.975	0.929	0.972	0.971	0.973
PR14	0.555	0.594	0.900	0.965	0.976	0.807	0.952	0.958	0.927
oxetane	0.512	0.621	0.895	0.970	0.976	0.931	0.972	0.971	0.974
propene	0.476	0.584	0.885	0.972	0.976	0.919	0.966	0.965	0.968
c2h6	0.485	0.591	0.887	0.971	0.976	0.906	0.960	0.959	0.962
allene	0.465	0.584	0.880	0.971	0.972	0.948	0.975	0.974	0.976
cyclobutene	0.524	0.586	0.887	0.971	0.976	0.927	0.966	0.965	0.969
ED40a	0.600	0.655	0.886	0.967	0.956	0.939	0.976	0.975	0.973
ethanol	0.467	0.621	0.895	0.971	0.976	0.927	0.971	0.970	0.973
MnO3F	0.648	0.700	0.895	0.946	0.961	0.944	0.975	0.975	0.976
cyclopropane	0.511	0.561	0.890	0.973	0.976	0.920	0.964	0.963	0.966
c2h4	0.487	0.553	0.878	0.974	0.976	0.938	0.974	0.973	0.974
PR15	0.592	0.641	0.893	0.966	0.966	0.918	0.976	0.976	0.976
ch2c	0.528	0.639	0.839	0.965	0.965	0.930	0.976	0.975	0.977
FeCp2	0.597	0.661	0.897	0.977	0.960	0.900	0.956	0.958	0.960
CoH(CO)4	0.619	0.677	0.890	0.966	0.968	0.931	0.975	0.977	0.977
Ni(acac)2	0.582	0.637	0.897	0.950	0.968	0.914	0.977	0.962	0.974
propane	0.470	0.579	0.889	0.972	0.978	0.901	0.958	0.957	0.961
PR40	0.618	0.650	0.915	0.978	0.974	0.883	0.955	0.959	0.967
cyclopentadiene	0.534	0.608	0.889	0.975	0.978	0.935	0.969	0.968	0.971
beta-lactim	0.495	0.633	0.895	0.971	0.975	0.930	0.975	0.974	0.978

Table S5– $Continued\ from\ previous\ page$

		, one proceeds	P ~ 9 °						
Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
Fe(C5Me5)(P5)	0.641	0.680	0.918	0.978	0.970	0.823	0.898	0.901	0.897
t-butadiene	0.475	0.590	0.883	0.977	0.978	0.926	0.968	0.968	0.970
cyclobutadiene	0.525	0.610	0.879	0.976	0.978	0.950	0.976	0.975	0.978
n-butane	0.450	0.582	0.891	0.974	0.978	0.892	0.957	0.956	0.960
cyclobutane	0.517	0.564	0.891	0.973	0.979	0.910	0.959	0.958	0.962
borole	0.514	0.596	0.877	0.977	0.979	0.894	0.973	0.972	0.975
c2h5f	0.489	0.642	0.911	0.975	0.979	0.909	0.975	0.974	0.977
acetaldehyde	0.484	0.618	0.893	0.968	0.973	0.913	0.977	0.976	0.979
n-pentane	0.449	0.584	0.891	0.974	0.979	0.857	0.957	0.957	0.959
Cr(C6H6)2	0.581	0.652	0.898	0.979	0.972	0.883	0.963	0.966	0.968
oxirane	0.517	0.641	0.894	0.969	0.973	0.944	0.979	0.978	0.980
methanol	0.506	0.634	0.895	0.969	0.974	0.944	0.979	0.979	0.980
CuCN	0.750	0.751	0.860	0.930	0.973	0.980	0.947	0.941	0.949
ED31	0.533	0.595	0.901	0.981	0.981	0.790	0.960	0.959	0.940
benzene	0.533	0.624	0.891	0.980	0.981	0.944	0.973	0.973	0.975
furan	0.520	0.639	0.896	0.978	0.980	0.956	0.980	0.979	0.981
pyrrole	0.505	0.628	0.894	0.979	0.981	0.947	0.975	0.975	0.977
PMe3	0.572	0.654	0.909	0.977	0.981	0.899	0.971	0.970	0.972
ED02	0.618	0.662	0.885	0.950	0.965	0.939	0.979	0.981	0.981
nh3	0.442	0.646	0.877	0.965	0.973	0.946	0.981	0.981	0.981
Sc(acac)3	0.532	0.603	0.906	0.978	0.982	0.836	0.975	0.978	0.963
bh3	0.509	0.689	0.830	0.966	0.967	0.939	0.981	0.981	0.982
PR06	0.585	0.640	0.890	0.958	0.974	0.883	0.978	0.981	0.982
ED28	0.559	0.649	0.911	0.978	0.982	0.884	0.967	0.967	0.966
ch3ph2	0.620	0.689	0.922	0.978	0.982	0.921	0.978	0.977	0.980
ED27	0.564	0.657	0.913	0.979	0.982	0.905	0.971	0.970	0.971
PCy3	0.493	0.578	0.901	0.978	0.982	0.752	0.954	0.956	0.953
						_	11 0- 0		

Table S5– $Continued\ from\ previous\ page$

						Tronc process	F ~ 9 °			
_	Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
	ED30	0.547	0.617	0.904	0.980	0.982	0.800	0.969	0.973	0.963
	PR01	0.578	0.641	0.889	0.959	0.975	0.898	0.979	0.982	0.981
	silole	0.582	0.673	0.907	0.980	0.983	0.875	0.947	0.945	0.951
	c2h3f	0.519	0.652	0.909	0.979	0.980	0.939	0.982	0.981	0.983
	PhSH	0.571	0.677	0.911	0.982	0.983	0.859	0.913	0.913	0.915
	AcCl	0.605	0.708	0.931	0.980	0.983	0.859	0.953	0.951	0.960
	Ni(PH3)2	0.740	0.767	0.908	0.961	0.972	0.968	0.983	0.983	0.983
	acetic	0.506	0.648	0.904	0.973	0.976	0.937	0.982	0.981	0.983
	dithiotane	0.660	0.728	0.933	0.980	0.983	0.925	0.975	0.974	0.978
	${\rm TiCl2Me2}$	0.683	0.727	0.934	0.983	0.983	0.831	0.916	0.931	0.948
	Cr(CO)6	0.578	0.648	0.889	0.959	0.974	0.901	0.980	0.984	0.983
	thiophene	0.601	0.688	0.916	0.983	0.984	0.885	0.959	0.958	0.962
	ketene	0.511	0.649	0.893	0.974	0.977	0.948	0.983	0.982	0.984
	ch2nh	0.477	0.619	0.874	0.972	0.974	0.956	0.984	0.983	0.984
	Zn(CH3)2	0.685	0.696	0.885	0.949	0.980	0.960	0.984	0.984	0.984
	n2h4	0.446	0.622	0.883	0.971	0.977	0.954	0.983	0.983	0.984
	c2h2	0.514	0.590	0.869	0.979	0.974	0.965	0.984	0.984	0.984
	dioxetane	0.516	0.635	0.901	0.970	0.974	0.955	0.983	0.983	0.985
	c2clh5	0.592	0.700	0.933	0.982	0.985	0.845	0.970	0.968	0.973
	CuMe	0.751	0.761	0.864	0.929	0.976	0.965	0.985	0.984	0.985
	c2clh3	0.620	0.712	0.933	0.984	0.985	0.862	0.949	0.946	0.955
	ocs	0.646	0.756	0.930	0.985	0.985	0.921	0.972	0.971	0.976
	ch3f	0.534	0.663	0.917	0.975	0.978	0.952	0.985	0.984	0.985
	PhSeH	0.670	0.727	0.928	0.984	0.986	0.891	0.931	0.931	0.932
	cclh3	0.653	0.734	0.944	0.984	0.986	0.939	0.983	0.983	0.985
	cs2	0.740	0.783	0.943	0.986	0.986	0.970	0.985	0.984	0.985
	ED40b	0.638	0.700	0.933	0.983	0.987	0.868	0.980	0.980	0.981

Table S5– $Continued\ from\ previous\ page$

					Jioni picolous				
Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
formamide	0.495	0.647	0.899	0.974	0.978	0.944	0.986	0.985	0.987
clcn	0.650	0.754	0.933	0.986	0.983	0.944	0.985	0.984	0.987
clcof	0.629	0.746	0.949	0.987	0.986	0.933	0.982	0.981	0.986
CrO2(NO3)2	0.584	0.643	0.904	0.966	0.976	0.900	0.987	0.987	0.987
c2clh	0.642	0.743	0.935	0.988	0.984	0.882	0.972	0.970	0.975
VOC13	0.731	0.772	0.949	0.983	0.988	0.895	0.966	0.970	0.978
oxadiazole	0.539	0.650	0.892	0.978	0.981	0.960	0.987	0.986	0.988
ED01	0.588	0.649	0.887	0.954	0.973	0.920	0.986	0.988	0.987
ccl2o	0.682	0.770	0.956	0.988	0.988	0.951	0.982	0.981	0.985
oxirene	0.505	0.677	0.884	0.968	0.968	0.969	0.988	0.987	0.988
$\mathrm{ch}2\mathrm{clf}$	0.638	0.739	0.950	0.985	0.986	0.915	0.987	0.986	0.989
TiCl3Me	0.718	0.767	0.950	0.988	0.989	0.814	0.956	0.961	0.971
Ni(CO)4	0.628	0.687	0.888	0.967	0.974	0.968	0.988	0.989	0.988
cis-c2f2cl2	0.677	0.758	0.957	0.989	0.988	0.896	0.976	0.975	0.981
PR03	0.629	0.687	0.888	0.967	0.974	0.968	0.988	0.989	0.988
trans-c2f2cl2	0.676	0.755	0.957	0.989	0.988	0.908	0.976	0.975	0.981
hccf	0.534	0.693	0.909	0.984	0.980	0.976	0.989	0.989	0.989
dioxetan2one	0.515	0.650	0.909	0.974	0.976	0.927	0.987	0.987	0.989
ccl2h2	0.698	0.768	0.960	0.988	0.989	0.955	0.988	0.987	0.989
glyoxal	0.538	0.687	0.893	0.977	0.979	0.963	0.988	0.988	0.990
clno	0.665	0.732	0.931	0.986	0.990	0.918	0.981	0.980	0.988
h2co	0.519	0.648	0.888	0.974	0.977	0.967	0.990	0.989	0.990
c2cl6	0.723	0.778	0.968	0.989	0.990	0.944	0.980	0.979	0.985
formic-anhydride	0.561	0.651	0.905	0.977	0.978	0.940	0.989	0.988	0.990
hnnn	0.513	0.616	0.884	0.973	0.974	0.953	0.989	0.989	0.990
dioxirane	0.515	0.670	0.894	0.969	0.975	0.964	0.990	0.989	0.990
CrO2Cl2	0.710	0.746	0.932	0.973	0.989	0.887	0.981	0.982	0.990

 ${\it Table S5-}\ {\it Continued on next page}$

Table S5– $Continued\ from\ previous\ page$

					•	, 1				
_	Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
	nh2cl	0.639	0.743	0.939	0.984	0.988	0.959	0.990	0.989	0.991
	nh2oh	0.474	0.648	0.890	0.971	0.976	0.967	0.990	0.990	0.991
	CS	0.701	0.760	0.911	0.990	0.991	0.978	0.990	0.990	0.990
	nccn	0.547	0.689	0.873	0.982	0.978	0.973	0.990	0.989	0.991
	c2cl2	0.693	0.784	0.955	0.991	0.988	0.940	0.976	0.976	0.979
	c2c14	0.732	0.785	0.966	0.991	0.990	0.952	0.979	0.978	0.982
	h2o	0.489	0.689	0.896	0.969	0.974	0.970	0.991	0.991	0.991
	s2o	0.702	0.766	0.943	0.986	0.990	0.964	0.990	0.990	0.991
	si2h6	0.678	0.717	0.943	0.986	0.989	0.969	0.989	0.990	0.991
	hnc	0.529	0.646	0.858	0.981	0.978	0.962	0.991	0.990	0.991
	ch2-sing	0.505	0.523	0.795	0.758	0.972	0.971	0.992	0.991	0.991
	c-hcoh	0.538	0.656	0.868	0.973	0.978	0.972	0.991	0.991	0.992
	ccl3h	0.722	0.800	0.966	0.989	0.990	0.966	0.990	0.989	0.992
	honc	0.524	0.685	0.880	0.976	0.974	0.888	0.991	0.990	0.992
	TiCl4	0.746	0.783	0.962	0.991	0.992	0.917	0.982	0.985	0.990
	t-hcoh	0.537	0.659	0.868	0.972	0.973	0.968	0.992	0.991	0.992
	formic	0.532	0.698	0.904	0.976	0.978	0.969	0.991	0.991	0.992
	hcno	0.527	0.676	0.897	0.978	0.978	0.975	0.992	0.991	0.992
	sih4	0.660	0.704	0.937	0.982	0.986	0.968	0.991	0.991	0.992
	cf2cl2	0.675	0.746	0.964	0.989	0.989	0.946	0.989	0.989	0.992
	ch2f2	0.538	0.692	0.934	0.980	0.981	0.972	0.991	0.991	0.992
	fccf	0.560	0.724	0.927	0.986	0.983	0.985	0.992	0.992	0.992
	ED03	0.655	0.704	0.883	0.944	0.974	0.978	0.991	0.992	0.991
	c- $n2h2$	0.508	0.572	0.869	0.976	0.980	0.977	0.992	0.992	0.992
	hnco	0.531	0.676	0.899	0.980	0.981	0.976	0.992	0.992	0.992
	hen	0.532	0.640	0.865	0.979	0.975	0.975	0.993	0.992	0.992
	t-n2h2	0.509	0.576	0.869	0.976	0.972	0.976	0.992	0.992	0.993

Table S5– $Continued\ from\ previous\ page$

		~		~	G A D 3.10		7 7		C 1 D II	OTT 1 TT
Mole	ecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
cc	14	0.744	0.784	0.970	0.989	0.990	0.976	0.991	0.990	0.993
cc	12	0.719	0.793	0.954	0.990	0.993	0.982	0.991	0.991	0.993
c2	f4	0.581	0.758	0.942	0.986	0.985	0.981	0.992	0.992	0.993
ho	cn	0.525	0.697	0.891	0.976	0.975	0.965	0.993	0.992	0.993
si	О	0.706	0.780	0.897	0.989	0.993	0.968	0.988	0.987	0.988
ho	clo	0.628	0.740	0.936	0.977	0.984	0.974	0.994	0.993	0.994
nh	2f	0.507	0.675	0.910	0.976	0.981	0.972	0.993	0.993	0.994
c2	f6	0.556	0.681	0.950	0.986	0.985	0.976	0.992	0.992	0.994
hc	of	0.551	0.717	0.920	0.981	0.981	0.982	0.994	0.993	0.994
n2	o4	0.514	0.633	0.909	0.978	0.980	0.974	0.993	0.992	0.994
ho	ocl	0.650	0.758	0.944	0.983	0.990	0.972	0.994	0.994	0.994
hoo	elo2	0.616	0.727	0.935	0.975	0.981	0.975	0.995	0.994	0.995
t-ho	ono	0.522	0.617	0.896	0.977	0.981	0.970	0.995	0.994	0.995
sih	ı3f	0.643	0.726	0.942	0.983	0.986	0.981	0.994	0.994	0.995
a	lf	0.713	0.801	0.910	0.990	0.994	0.980	0.994	0.994	0.995
ch	f3	0.560	0.738	0.945	0.984	0.983	0.983	0.994	0.994	0.995
Cr	F6	0.624	0.720	0.931	0.977	0.984	0.973	0.995	0.995	0.995
pł	13	0.668	0.732	0.937	0.981	0.984	0.981	0.995	0.995	0.995
ho	oh	0.494	0.664	0.897	0.972	0.979	0.981	0.995	0.995	0.995
c-he	ono	0.519	0.614	0.897	0.978	0.982	0.977	0.996	0.995	0.996
bh	ıf2	0.564	0.726	0.931	0.986	0.984	0.987	0.995	0.995	0.996
n2	2o	0.516	0.684	0.897	0.980	0.980	0.979	0.996	0.995	0.996
f2	co	0.548	0.718	0.937	0.985	0.984	0.989	0.996	0.995	0.996
SC	2	0.635	0.735	0.930	0.982	0.986	0.983	0.996	0.996	0.996
cc	2	0.555	0.752	0.909	0.984	0.984	0.988	0.996	0.996	0.996
p	4	0.779	0.798	0.941	0.986	0.991	0.986	0.996	0.995	0.996
CrO	2F2	0.642	0.735	0.913	0.969	0.986	0.984	0.997	0.997	0.996

Table S5– $Continued\ from\ previous\ page$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
hno	0.524	0.659	0.880	0.979	0.981	0.986	0.997	0.996	0.997
hclo4	0.609	0.719	0.935	0.974	0.980	0.980	0.996	0.996	0.997
Ni(PF3)4	0.616	0.713	0.946	0.980	0.986	0.980	0.996	0.997	0.995
cf4	0.595	0.678	0.953	0.987	0.985	0.989	0.996	0.996	0.997
${ m fno}$	0.567	0.675	0.911	0.983	0.987	0.990	0.997	0.997	0.997
VOF3	0.625	0.726	0.927	0.980	0.984	0.960	0.995	0.996	0.997
co	0.563	0.677	0.864	0.985	0.988	0.983	0.997	0.997	0.997
hof	0.517	0.698	0.917	0.977	0.985	0.983	0.997	0.997	0.997
alh3	0.704	0.679	0.912	0.988	0.988	0.986	0.997	0.997	0.997
h2s	0.695	0.766	0.950	0.985	0.986	0.988	0.997	0.997	0.997
alcl	0.775	0.824	0.939	0.993	0.995	0.988	0.997	0.997	0.998
bf3	0.581	0.762	0.945	0.990	0.987	0.992	0.997	0.997	0.998
hf	0.537	0.739	0.938	0.984	0.983	0.991	0.998	0.998	0.998
cf2	0.567	0.730	0.922	0.985	0.988	0.992	0.998	0.998	0.998
bh	0.609	0.546	0.711	0.856	0.978	0.979	0.998	0.997	0.997
n2	0.588	0.616	0.864	0.986	0.989	0.990	0.998	0.998	0.998
pf3	0.613	0.730	0.949	0.986	0.990	0.987	0.998	0.998	0.998
VF5	0.618	0.727	0.939	0.986	0.987	0.955	0.996	0.997	0.998
bf	0.589	0.719	0.873	0.985	0.988	0.988	0.998	0.998	0.998
so3	0.612	0.703	0.935	0.981	0.986	0.992	0.998	0.998	0.998
alh	0.782	0.735	0.875	0.890	0.993	0.973	0.998	0.998	0.999
TiF4	0.615	0.710	0.940	0.991	0.990	0.979	0.997	0.998	0.999
sf6	0.603	0.742	0.962	0.987	0.989	0.991	0.998	0.998	0.999
clf	0.669	0.776	0.958	0.986	0.994	0.990	0.998	0.998	0.999
ScF3	0.622	0.699	0.943	0.994	0.992	0.994	0.999	0.999	0.999
p2	0.769	0.784	0.929	0.994	0.997	0.993	0.999	0.999	0.999
pf5	0.591	0.726	0.961	0.989	0.990	0.993	0.998	0.998	0.999

 ${\it Table S5-}\ {\it Continued on next page}$

Table S5– Continued from previous page

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
sif4	0.614	0.712	0.956	0.990	0.989	0.994	0.999	0.999	0.999
alcl3	0.761	0.829	0.974	0.996	0.995	0.995	0.999	0.999	0.999
alf3	0.654	0.801	0.946	0.992	0.990	0.994	0.999	0.999	0.999
hcl	0.718	0.797	0.971	0.992	0.991	0.994	0.999	0.999	0.999
f2	0.545	0.713	0.936	0.980	0.992	0.997	1.000	1.000	1.000
h2	0.546	0.973	0.855	0.950	0.950	0.973	1.000	0.999	0.999
cl2	0.737	0.803	0.972	0.992	0.996	0.996	1.000	1.000	1.000
Best	0	0	0	15	62	1	23	20	101

Table S6: Non-neutral and/or non-singlet molecules, HF/pcseg-0: fraction f of electron density covered.

	~	~~~	~	~.====		~~~		~	
Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
ch	0.501	0.557	0.739	0.877	0.937	0.862	0.851	0.868	0.843
cch	0.504	0.693	0.833	0.962	0.945	0.931	0.966	0.965	0.966
ch2ch	0.493	0.603	0.856	0.960	0.960	0.934	0.968	0.968	0.969
Ti(BH4)3	0.608	0.614	0.897	0.972	0.924	0.809	0.959	0.963	0.967
cyclopropyl	0.515	0.576	0.880	0.970	0.973	0.929	0.968	0.967	0.970
bn3pi	0.568	0.643	0.789	0.900	0.901	0.970	0.973	0.907	0.938
cn	0.532	0.674	0.829	0.959	0.944	0.962	0.974	0.973	0.973
allyl	0.475	0.598	0.874	0.971	0.974	0.933	0.968	0.967	0.969
Cu(acac)2	0.575	0.641	0.896	0.954	0.974	0.926	0.940	0.925	0.954
cf	0.583	0.680	0.874	0.942	0.976	0.943	0.954	0.966	0.946
h2cn	0.494	0.616	0.853	0.957	0.959	0.942	0.976	0.975	0.976
ch3nh	0.474	0.604	0.867	0.957	0.964	0.934	0.976	0.975	0.977
t-hooo	0.516	0.657	0.889	0.959	0.967	0.940	0.977	0.977	0.977
ch2nh2	0.477	0.624	0.876	0.970	0.974	0.946	0.979	0.978	0.979
h2ccn	0.527	0.615	0.866	0.967	0.967	0.898	0.978	0.978	0.980
ch3	0.458	0.661	0.849	0.969	0.974	0.941	0.980	0.979	0.980
h2ccn	0.527	0.615	0.866	0.967	0.967	0.898	0.978	0.978	0.980

Table S6– $Continued\ from\ previous\ page$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
V(NMe2)4	0.511	0.574	0.893	0.974	0.981	0.839	0.957	0.969	0.948
clo	0.676	0.777	0.939	0.982	0.964	0.956	0.963	0.972	0.982
hcnh	0.508	0.634	0.860	0.970	0.965	0.963	0.983	0.982	0.983
c-hooo	0.517	0.655	0.892	0.964	0.972	0.955	0.986	0.985	0.985
sif	0.702	0.782	0.909	0.986	0.950	0.962	0.981	0.970	0.974
n2h	0.524	0.598	0.859	0.969	0.967	0.971	0.988	0.988	0.988
ch2-trip	0.510	0.693	0.803	0.973	0.975	0.968	0.990	0.990	0.990
no2	0.546	0.644	0.900	0.975	0.977	0.983	0.991	0.991	0.991
h2no	0.489	0.653	0.889	0.967	0.973	0.969	0.992	0.992	0.992
nh2	0.490	0.611	0.836	0.861	0.972	0.973	0.992	0.992	0.992
SO	0.680	0.761	0.922	0.987	0.992	0.971	0.989	0.989	0.989
hco	0.540	0.663	0.874	0.979	0.978	0.981	0.994	0.993	0.994
hoo	0.517	0.655	0.888	0.967	0.974	0.982	0.995	0.995	0.995
no	0.552	0.674	0.872	0.917	0.928	0.937	0.946	0.954	0.995
ssh	0.729	0.780	0.947	0.985	0.988	0.988	0.997	0.997	0.997
oh	0.530	0.661	0.858	0.921	0.974	0.989	0.998	0.997	0.969
$_{ m nh}$	0.550	0.655	0.789	0.957	0.978	0.990	0.998	0.998	0.998
sih	0.745	0.727	0.879	0.972	0.944	0.917	0.984	0.999	0.998
o2	0.558	0.680	0.889	0.984	0.991	0.993	0.999	0.999	0.999
hs	0.731	0.773	0.930	0.942	0.932	0.965	0.961	0.958	0.999
s2	0.745	0.797	0.945	0.993	0.996	0.995	0.999	0.999	0.999
Best	0	0	0	2	7	0	11	1	16

Table S7: Neutral singlet molecules, revTPSSh/pcseg-0: fraction f of electron density covered.

 Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
b2h6	0.512	0.550	0.876	0.957	0.959	0.902	0.966	0.965	0.968
ch4	0.409	0.621	0.880	0.964	0.970	0.909	0.966	0.965	0.966

Table S7– $Continued\ from\ previous\ page$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	$rac{page}{\mathbf{GSZ}}$	LDA-X	CAP-X	CHA-X
Mn(CO)5CN	0.577	0.631	0.888	0.965	0.971	0.901	0.959	0.963	0.961
MnCp(CO)3	0.588	0.636	0.894	0.903	0.969	0.792	0.939	0.903	0.901
- 、									
Co(C3H5)(CO)3	0.599	0.646	0.891	0.971	0.968	0.842	0.963	0.967	0.969
Mn(C5H5)(CO)3	0.589	0.638	0.894	0.971	0.969	0.792	0.940	0.948	0.949
PR05	0.573	0.634	0.891	0.965	0.971	0.892	0.964	0.967	0.966
Ni(C5H5)NO	0.626	0.666	0.892	0.967	0.971	0.876	0.968	0.968	0.968
VCp(CO)4	0.570	0.627	0.895	0.966	0.972	0.783	0.930	0.942	0.938
Fe(C2H4)(CO)4	0.585	0.635	0.891	0.972	0.967	0.851	0.965	0.968	0.969
Fe(CO)4(C2H4)	0.583	0.633	0.891	0.972	0.967	0.848	0.962	0.966	0.967
ED04	0.610	0.661	0.891	0.972	0.963	0.876	0.953	0.955	0.964
Fe(CO)2(NO)2	0.599	0.655	0.892	0.972	0.970	0.935	0.970	0.972	0.970
Fe(C4H6)(CO)3	0.577	0.645	0.891	0.973	0.966	0.820	0.950	0.957	0.958
PR04	0.590	0.651	0.893	0.973	0.967	0.877	0.939	0.941	0.946
ED05	0.591	0.655	0.892	0.967	0.971	0.893	0.971	0.973	0.973
Fe(C4H4)(CO)3	0.598	0.634	0.893	0.973	0.966	0.820	0.942	0.948	0.954
ED14	0.579	0.626	0.898	0.954	0.973	0.842	0.934	0.937	0.936
Mn(CO)4NO	0.590	0.654	0.892	0.966	0.971	0.916	0.971	0.974	0.973
ch3nh2	0.479	0.611	0.884	0.967	0.974	0.930	0.972	0.971	0.974
Fe(CO)3(tmm)	0.592	0.616	0.892	0.974	0.964	0.810	0.937	0.946	0.951
ethanol	0.469	0.624	0.894	0.970	0.974	0.929	0.972	0.971	0.974
c2h6	0.488	0.595	0.885	0.969	0.974	0.908	0.962	0.961	0.964
Mn(NO)3CO	0.595	0.648	0.894	0.969	0.975	0.921	0.966	0.969	0.968
FeCp2	0.598	0.664	0.896	0.975	0.963	0.903	0.962	0.964	0.966
PR40	0.621	0.653	0.913	0.975	0.972	0.887	0.957	0.961	0.970
cyclopropane	0.513	0.564	0.889	0.971	0.975	0.922	0.966	0.964	0.968
oxetane	0.513	0.624	0.894	0.968	0.974	0.933	0.973	0.972	0.975
propene	0.478	0.587	0.884	0.972	0.975	0.922	0.967	0.966	0.970
						TT.	11 07 0	,	,

Table S7– $Continued\ from\ previous\ page$

				The state of the s					
Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
Cr(C6H6)(CO)3	0.580	0.639	0.894	0.967	0.975	0.799	0.936	0.952	0.958
tetrahedrane	0.512	0.617	0.889	0.970	0.969	0.946	0.974	0.973	0.976
cyclobutene	0.525	0.590	0.886	0.971	0.976	0.930	0.968	0.967	0.970
c2h4	0.488	0.557	0.876	0.973	0.975	0.941	0.975	0.974	0.976
propyne	0.473	0.594	0.880	0.972	0.972	0.932	0.974	0.973	0.976
ED15	0.624	0.649	0.889	0.960	0.968	0.936	0.975	0.975	0.976
cyclopropene	0.489	0.591	0.881	0.972	0.973	0.944	0.975	0.974	0.976
PR14	0.555	0.595	0.899	0.965	0.976	0.808	0.953	0.959	0.928
propane	0.471	0.582	0.888	0.971	0.976	0.903	0.959	0.958	0.962
Ni(C3H5)2	0.624	0.650	0.888	0.958	0.968	0.937	0.975	0.976	0.977
PR02	0.595	0.624	0.892	0.970	0.969	0.924	0.975	0.977	0.977
n-butane	0.451	0.585	0.890	0.972	0.977	0.895	0.959	0.958	0.961
PR12	0.562	0.625	0.891	0.966	0.977	0.828	0.973	0.977	0.976
cyclobutane	0.519	0.567	0.890	0.972	0.978	0.912	0.960	0.959	0.964
Fe(CO)5	0.595	0.624	0.892	0.970	0.969	0.925	0.975	0.978	0.977
c2h5f	0.491	0.644	0.909	0.973	0.977	0.913	0.976	0.975	0.978
n-pentane	0.451	0.587	0.891	0.973	0.978	0.860	0.958	0.958	0.961
t-butadiene	0.478	0.592	0.882	0.976	0.978	0.928	0.970	0.969	0.972
cyclopentadiene	0.534	0.612	0.889	0.975	0.978	0.938	0.971	0.970	0.973
borole	0.514	0.599	0.876	0.977	0.978	0.896	0.975	0.974	0.976
ED40a	0.601	0.659	0.884	0.962	0.954	0.942	0.978	0.976	0.975
allene	0.468	0.588	0.880	0.971	0.972	0.952	0.977	0.976	0.978
CuCN	0.750	0.748	0.860	0.932	0.975	0.979	0.951	0.945	0.953
ch2c	0.529	0.643	0.840	0.966	0.967	0.933	0.979	0.977	0.979
Cr(C6H6)2	0.581	0.653	0.897	0.979	0.972	0.886	0.966	0.969	0.971
Co(CO)3(NO)	0.615	0.675	0.891	0.975	0.970	0.951	0.978	0.979	0.978
cyclobutadiene	0.526	0.615	0.878	0.975	0.978	0.953	0.978	0.977	0.979

Table S7– $Continued\ from\ previous\ page$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X	
Sc(acac)3	0.534	0.602	0.904	0.976	0.979	0.838	0.976	0.979	0.965	
Fe(C5Me5)(P5)	0.643	0.682	0.918	0.980	0.971	0.824	0.899	0.902	0.898	
PMe3	0.574	0.657	0.909	0.976	0.980	0.901	0.972	0.971	0.973	
benzene	0.533	0.628	0.890	0.979	0.980	0.947	0.975	0.975	0.977	
beta-lactim	0.498	0.636	0.894	0.969	0.974	0.935	0.978	0.977	0.980	
methanol	0.507	0.636	0.893	0.967	0.972	0.946	0.980	0.979	0.980	
acetaldehyde	0.486	0.621	0.891	0.966	0.972	0.918	0.979	0.978	0.981	
Ni(acac)2	0.583	0.636	0.896	0.950	0.967	0.915	0.981	0.965	0.977	
pyrrole	0.506	0.631	0.893	0.979	0.981	0.949	0.977	0.976	0.979	
ch3ph2	0.622	0.693	0.920	0.977	0.981	0.924	0.979	0.978	0.981	
PR15	0.594	0.644	0.891	0.963	0.967	0.917	0.981	0.981	0.981	
oxirane	0.518	0.644	0.892	0.967	0.970	0.946	0.980	0.979	0.981	
CoH(CO)4	0.618	0.676	0.892	0.972	0.970	0.933	0.979	0.981	0.981	
ED28	0.561	0.652	0.911	0.977	0.981	0.886	0.968	0.969	0.968	
nh3	0.446	0.649	0.875	0.963	0.971	0.946	0.981	0.980	0.981	
ED31	0.534	0.597	0.901	0.981	0.981	0.791	0.962	0.960	0.941	
ED27	0.565	0.659	0.913	0.978	0.981	0.907	0.972	0.971	0.972	
${\rm TiCl2Me2}$	0.686	0.729	0.932	0.979	0.981	0.835	0.922	0.937	0.954	
PCy3	0.493	0.579	0.901	0.977	0.982	0.753	0.956	0.957	0.955	
AcCl	0.607	0.711	0.930	0.978	0.982	0.861	0.956	0.954	0.963	
ED30	0.547	0.618	0.904	0.980	0.982	0.801	0.971	0.974	0.964	
CuMe	0.750	0.758	0.863	0.921	0.975	0.959	0.982	0.981	0.982	
dithiotane	0.662	0.731	0.932	0.979	0.982	0.928	0.977	0.975	0.979	
PhSH	0.572	0.680	0.911	0.982	0.983	0.861	0.915	0.915	0.917	
furan	0.521	0.642	0.895	0.977	0.979	0.958	0.981	0.981	0.983	
silole	0.583	0.676	0.906	0.980	0.983	0.877	0.949	0.948	0.954	
thiophene	0.601	0.691	0.916	0.982	0.983	0.888	0.962	0.961	0.965	
						_	~- ~			

Table S7– $Continued\ from\ previous\ page$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
bh3	0.514	0.694	0.828	0.963	0.965	0.942	0.983	0.983	0.983
Zn(CH3)2	0.686	0.697	0.884	0.949	0.980	0.958	0.984	0.983	0.983
c2clh5	0.594	0.702	0.932	0.981	0.984	0.848	0.971	0.970	0.975
ED02	0.616	0.659	0.887	0.955	0.966	0.940	0.982	0.984	0.984
n2h4	0.450	0.625	0.882	0.969	0.976	0.954	0.983	0.983	0.984
ocs	0.647	0.756	0.929	0.983	0.984	0.927	0.977	0.975	0.979
c2clh3	0.621	0.714	0.932	0.984	0.985	0.866	0.952	0.950	0.958
$\mathrm{ch2nh}$	0.480	0.621	0.873	0.970	0.973	0.958	0.984	0.984	0.985
PR06	0.585	0.640	0.891	0.965	0.978	0.887	0.981	0.984	0.985
PR01	0.575	0.640	0.891	0.966	0.978	0.902	0.982	0.985	0.984
VOCl3	0.734	0.776	0.946	0.979	0.985	0.900	0.971	0.975	0.983
c2h3f	0.520	0.654	0.908	0.977	0.979	0.945	0.984	0.984	0.985
dioxetane	0.518	0.638	0.899	0.967	0.972	0.956	0.984	0.983	0.985
acetic	0.508	0.651	0.902	0.971	0.974	0.941	0.984	0.983	0.985
PhSeH	0.671	0.729	0.928	0.984	0.985	0.892	0.933	0.933	0.934
$\operatorname{cclh3}$	0.654	0.736	0.943	0.983	0.985	0.941	0.985	0.984	0.986
Ni(PH3)2	0.740	0.765	0.908	0.961	0.972	0.970	0.986	0.986	0.986
c2h2	0.518	0.596	0.868	0.978	0.974	0.968	0.986	0.985	0.986
ch3f	0.535	0.665	0.915	0.973	0.976	0.954	0.985	0.985	0.986
Cr(CO)6	0.576	0.647	0.891	0.966	0.978	0.906	0.983	0.986	0.986
ED40b	0.640	0.703	0.932	0.982	0.986	0.871	0.981	0.981	0.982
TiCl3Me	0.720	0.771	0.948	0.984	0.986	0.821	0.964	0.968	0.977
ketene	0.511	0.654	0.892	0.973	0.976	0.952	0.986	0.985	0.987
c2clh	0.642	0.746	0.934	0.987	0.984	0.887	0.975	0.974	0.978
ccl2o	0.684	0.773	0.955	0.987	0.987	0.954	0.985	0.984	0.988
cis-c2f2cl2	0.678	0.758	0.956	0.988	0.987	0.899	0.978	0.978	0.983
formamide	0.497	0.650	0.898	0.973	0.976	0.946	0.987	0.986	0.988

Table S7– $Continued\ from\ previous\ page$

$\overline{\mathbf{N}}$	Iolecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
tra	ns-c2f2cl2	0.678	0.756	0.956	0.988	0.987	0.910	0.978	0.978	0.983
	clcof	0.631	0.750	0.948	0.985	0.985	0.936	0.985	0.984	0.988
	cs2	0.741	0.784	0.942	0.985	0.986	0.974	0.988	0.987	0.989
ľ	Ni(CO)4	0.626	0.684	0.889	0.968	0.973	0.969	0.988	0.989	0.988
	PR03	0.626	0.684	0.889	0.968	0.973	0.969	0.988	0.989	0.988
	c2cl6	0.724	0.780	0.968	0.988	0.989	0.945	0.981	0.981	0.986
	clcn	0.651	0.758	0.933	0.985	0.983	0.949	0.988	0.987	0.989
	oxirene	0.507	0.682	0.882	0.966	0.966	0.972	0.989	0.989	0.990
	ch2clf	0.639	0.741	0.949	0.984	0.985	0.917	0.988	0.987	0.990
	h2o	0.492	0.691	0.895	0.967	0.971	0.969	0.990	0.990	0.990
	c2cl4	0.733	0.787	0.965	0.990	0.990	0.955	0.981	0.981	0.984
OZ	xadiazole	0.539	0.653	0.891	0.976	0.979	0.964	0.989	0.989	0.990
	c2cl2	0.694	0.784	0.954	0.990	0.988	0.945	0.980	0.979	0.982
	h2co	0.520	0.649	0.886	0.972	0.975	0.969	0.990	0.990	0.990
	nh2oh	0.478	0.650	0.888	0.968	0.974	0.968	0.990	0.990	0.990
	ccl2h2	0.700	0.771	0.959	0.987	0.988	0.957	0.989	0.988	0.990
	nh2cl	0.642	0.745	0.938	0.982	0.987	0.960	0.990	0.990	0.991
	ED01	0.588	0.649	0.888	0.960	0.977	0.924	0.989	0.991	0.991
	c-hcoh	0.539	0.656	0.867	0.971	0.977	0.970	0.991	0.991	0.991
	glyoxal	0.541	0.688	0.892	0.975	0.977	0.966	0.990	0.990	0.991
dio	xetan2one	0.519	0.655	0.908	0.972	0.974	0.931	0.989	0.989	0.991
	hnc	0.531	0.648	0.857	0.980	0.978	0.962	0.991	0.991	0.991
	sio	0.708	0.779	0.896	0.986	0.991	0.965	0.985	0.984	0.985
d	lioxirane	0.518	0.672	0.892	0.966	0.972	0.967	0.991	0.991	0.992
(ch2-sing	0.509	0.526	0.792	0.732	0.968	0.972	0.992	0.991	0.991
	hccf	0.534	0.696	0.908	0.982	0.980	0.979	0.992	0.991	0.992
(Cr(NO)4	0.599	0.638	0.895	0.971	0.985	0.919	0.988	0.991	0.992

Table S7– $Continued\ from\ previous\ page$

					,	r ~J~			
Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
t-hcoh	0.538	0.659	0.867	0.970	0.972	0.967	0.991	0.991	0.992
formic-anhydride	0.563	0.652	0.904	0.975	0.976	0.945	0.990	0.990	0.992
hnnn	0.516	0.621	0.883	0.974	0.974	0.955	0.991	0.990	0.992
ED03	0.651	0.699	0.884	0.943	0.972	0.976	0.991	0.992	0.991
CrO2(NO3)2	0.588	0.648	0.903	0.964	0.978	0.908	0.991	0.992	0.992
c-n2h2	0.509	0.577	0.867	0.973	0.977	0.978	0.992	0.992	0.992
s2o	0.705	0.769	0.942	0.983	0.986	0.967	0.991	0.991	0.992
honc	0.525	0.687	0.879	0.975	0.976	0.889	0.992	0.991	0.992
$\operatorname{ccl3h}$	0.724	0.803	0.966	0.988	0.989	0.968	0.991	0.990	0.993
clno	0.668	0.736	0.929	0.982	0.986	0.922	0.987	0.986	0.993
nccn	0.553	0.693	0.872	0.981	0.978	0.976	0.992	0.992	0.993
t-n2h2	0.511	0.581	0.867	0.973	0.969	0.977	0.993	0.992	0.993
si2h6	0.681	0.720	0.942	0.985	0.988	0.972	0.991	0.992	0.993
formic	0.534	0.698	0.903	0.974	0.976	0.971	0.993	0.992	0.993
cs	0.702	0.761	0.910	0.987	0.991	0.982	0.993	0.993	0.993
CrO2Cl2	0.713	0.750	0.930	0.969	0.988	0.891	0.985	0.986	0.993
ch2f2	0.539	0.694	0.932	0.978	0.979	0.975	0.993	0.992	0.993
cf2cl2	0.676	0.748	0.963	0.987	0.987	0.948	0.991	0.990	0.993
hen	0.537	0.644	0.864	0.977	0.975	0.978	0.994	0.993	0.994
nh2f	0.510	0.677	0.908	0.973	0.978	0.973	0.994	0.994	0.994
ccl4	0.746	0.786	0.969	0.989	0.989	0.977	0.992	0.991	0.994
TiCl4	0.749	0.787	0.960	0.988	0.989	0.920	0.987	0.990	0.994
sih4	0.664	0.709	0.936	0.981	0.985	0.971	0.993	0.993	0.994
alf	0.712	0.800	0.908	0.987	0.993	0.979	0.994	0.993	0.994
hocl	0.653	0.761	0.943	0.982	0.988	0.973	0.994	0.994	0.994
heno	0.529	0.678	0.895	0.975	0.976	0.980	0.994	0.994	0.994
hnco	0.532	0.682	0.897	0.978	0.979	0.979	0.994	0.994	0.994
						_	11 0- ~		_

Table S7– $Continued\ from\ previous\ page$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
hocn	0.527	0.700	0.889	0.975	0.975	0.968	0.994	0.994	0.995
hoclo	0.630	0.741	0.935	0.972	0.979	0.977	0.995	0.995	0.995
fccf	0.560	0.723	0.926	0.984	0.982	0.988	0.995	0.995	0.995
so2	0.638	0.741	0.928	0.978	0.981	0.981	0.995	0.995	0.995
hooh	0.497	0.666	0.895	0.969	0.976	0.981	0.995	0.995	0.995
ccl2	0.722	0.795	0.952	0.987	0.992	0.985	0.994	0.994	0.995
sih3f	0.645	0.728	0.940	0.981	0.984	0.982	0.994	0.994	0.995
hcof	0.552	0.718	0.918	0.979	0.979	0.985	0.996	0.995	0.996
c2f4	0.582	0.757	0.941	0.984	0.983	0.985	0.995	0.995	0.996
c2f6	0.558	0.684	0.948	0.984	0.982	0.980	0.995	0.995	0.996
ph3	0.672	0.736	0.935	0.979	0.982	0.983	0.996	0.996	0.996
t-hono	0.527	0.622	0.894	0.974	0.978	0.973	0.996	0.996	0.996
hno	0.527	0.661	0.878	0.975	0.977	0.987	0.996	0.996	0.996
hoclo2	0.617	0.728	0.933	0.970	0.976	0.979	0.997	0.996	0.996
chf3	0.562	0.738	0.944	0.982	0.981	0.985	0.996	0.996	0.997
bhf2	0.565	0.725	0.930	0.984	0.983	0.988	0.996	0.996	0.997
c-hono	0.524	0.619	0.895	0.975	0.979	0.980	0.997	0.997	0.997
hf	0.538	0.739	0.937	0.983	0.982	0.991	0.997	0.997	0.997
n2o4	0.520	0.638	0.907	0.974	0.977	0.980	0.996	0.996	0.997
CO	0.564	0.678	0.863	0.982	0.987	0.983	0.997	0.997	0.997
Ni(PF3)4	0.620	0.715	0.946	0.978	0.982	0.982	0.997	0.997	0.996
n2o	0.522	0.688	0.895	0.977	0.978	0.980	0.997	0.997	0.997
hof	0.519	0.701	0.915	0.974	0.983	0.985	0.998	0.998	0.998
alcl	0.776	0.825	0.939	0.992	0.995	0.988	0.997	0.997	0.998
h2s	0.698	0.769	0.949	0.983	0.985	0.989	0.998	0.998	0.998
p4	0.783	0.803	0.940	0.983	0.988	0.989	0.997	0.997	0.998
f2co	0.550	0.721	0.936	0.983	0.982	0.991	0.998	0.998	0.998

Table S7– $Continued\ from\ previous\ page$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
co2	0.554	0.751	0.907	0.981	0.982	0.990	0.998	0.998	0.998
hclo4	0.615	0.721	0.933	0.970	0.976	0.984	0.998	0.998	0.998
CrF6	0.628	0.724	0.928	0.971	0.981	0.986	0.998	0.998	0.995
cf4	0.598	0.681	0.952	0.985	0.983	0.991	0.998	0.998	0.998
so3	0.618	0.706	0.933	0.978	0.982	0.991	0.998	0.998	0.998
bf	0.589	0.718	0.871	0.982	0.989	0.987	0.998	0.998	0.998
clf	0.671	0.779	0.957	0.984	0.993	0.990	0.998	0.998	0.998
pf3	0.614	0.733	0.948	0.983	0.987	0.987	0.998	0.998	0.998
alh3	0.708	0.680	0.911	0.986	0.987	0.987	0.998	0.998	0.998
alf3	0.656	0.799	0.944	0.990	0.988	0.992	0.999	0.998	0.998
bh	0.615	0.550	0.709	0.944	0.975	0.981	0.999	0.998	0.998
bf3	0.583	0.760	0.944	0.988	0.986	0.993	0.999	0.999	0.999
n2	0.592	0.624	0.862	0.983	0.987	0.992	0.999	0.999	0.999
ScF3	0.626	0.703	0.939	0.989	0.987	0.995	0.999	0.999	0.998
alh	0.785	0.736	0.875	0.855	0.993	0.974	0.999	0.999	0.999
MnO3F	0.650	0.699	0.897	0.953	0.985	0.956	0.998	0.998	0.999
CrO2F2	0.646	0.739	0.910	0.964	0.984	0.991	0.999	0.999	0.997
cf2	0.568	0.729	0.921	0.982	0.986	0.993	0.999	0.999	0.999
hcl	0.721	0.799	0.971	0.991	0.990	0.995	0.999	0.999	0.999
VOF3	0.629	0.731	0.923	0.975	0.981	0.970	0.999	0.999	0.999
fno	0.569	0.679	0.909	0.979	0.983	0.994	0.999	0.999	0.999
sif4	0.617	0.714	0.955	0.988	0.987	0.995	0.999	0.999	0.999
p2	0.772	0.789	0.928	0.993	0.995	0.994	0.999	0.999	0.999
VF5	0.622	0.731	0.935	0.979	0.983	0.966	0.999	0.999	1.000
pf5	0.594	0.729	0.960	0.987	0.987	0.994	0.999	0.999	1.000
sf6	0.609	0.745	0.961	0.985	0.986	0.993	0.999	0.999	1.000
TiF4	0.620	0.714	0.935	0.984	0.985	0.987	1.000	1.000	0.999

Table S7– Continued from previous page

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
alcl3	0.763	0.830	0.973	0.995	0.994	0.996	1.000	1.000	1.000
cl2	0.739	0.805	0.971	0.990	0.995	0.997	1.000	1.000	1.000
f2	0.547	0.714	0.936	0.978	0.991	0.997	1.000	1.000	1.000
h2	0.557	0.976	0.851	0.945	0.945	0.976	1.000	1.000	1.000
Best	0	0	0	20	45	1	28	18	110

Table S8: Non-neutral and/or non-singlet molecules, revTPSSh/pcseg-0: fraction f of electron density covered.

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
ch	0.508	0.555	0.737	0.711	0.888	0.847	0.877	0.885	0.857
bn3pi	0.571	0.646	0.789	0.901	0.902	0.972	0.929	0.909	0.909
cyclopropyl	0.517	0.579	0.879	0.970	0.972	0.931	0.970	0.969	0.972
Cu(acac)2	0.577	0.641	0.896	0.953	0.973	0.928	0.941	0.926	0.955
Ti(BH4)3	0.611	0.619	0.894	0.969	0.919	0.815	0.968	0.971	0.974
allyl	0.477	0.601	0.876	0.974	0.977	0.939	0.973	0.972	0.975
ch2ch	0.494	0.610	0.859	0.969	0.969	0.943	0.978	0.977	0.979
ch3nh	0.476	0.607	0.866	0.958	0.965	0.936	0.978	0.977	0.979
V(NMe2)4	0.513	0.575	0.891	0.971	0.979	0.841	0.960	0.970	0.952
ch2nh2	0.478	0.625	0.876	0.971	0.976	0.947	0.980	0.979	0.981
ch3	0.461	0.665	0.847	0.968	0.973	0.943	0.981	0.980	0.981
cch	0.512	0.696	0.840	0.979	0.965	0.946	0.982	0.981	0.982
h2ccn	0.528	0.619	0.868	0.970	0.971	0.904	0.985	0.984	0.986
h2cn	0.497	0.621	0.856	0.965	0.968	0.951	0.986	0.985	0.986
clo	0.677	0.777	0.939	0.977	0.973	0.966	0.976	0.988	0.984
hcnh	0.511	0.635	0.861	0.974	0.971	0.968	0.989	0.988	0.989
SO	0.682	0.763	0.921	0.986	0.991	0.972	0.990	0.989	0.990
sif	0.703	0.783	0.909	0.974	0.992	0.970	0.965	0.970	0.964

Table S8– ${\it Continued from previous page}$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
nh2	0.493	0.613	0.834	0.858	0.969	0.973	0.992	0.991	0.992
cn	0.548	0.675	0.837	0.983	0.980	0.976	0.991	0.991	0.992
ch2-trip	0.514	0.694	0.802	0.972	0.975	0.969	0.992	0.991	0.991
h2no	0.493	0.659	0.889	0.970	0.976	0.968	0.993	0.992	0.993
t-hooo	0.523	0.660	0.892	0.969	0.978	0.951	0.993	0.993	0.994
hco	0.542	0.662	0.873	0.976	0.976	0.981	0.994	0.994	0.994
n2h	0.530	0.601	0.861	0.975	0.973	0.977	0.994	0.994	0.995
c-hooo	0.524	0.659	0.894	0.969	0.978	0.965	0.996	0.996	0.996
oh	0.531	0.662	0.857	0.926	0.978	0.988	0.996	0.997	0.890
hoo	0.515	0.659	0.888	0.971	0.978	0.982	0.997	0.997	0.997
hs	0.734	0.775	0.929	0.941	0.987	0.987	0.942	0.998	0.995
nh	0.552	0.656	0.788	0.966	0.977	0.991	0.998	0.998	0.998
no	0.553	0.673	0.872	0.917	0.923	0.971	0.954	0.933	0.999
\sin	0.747	0.729	0.879	0.966	0.924	0.971	0.999	0.998	0.985
no2	0.550	0.650	0.900	0.977	0.980	0.992	0.999	0.999	0.999
ssh	0.730	0.783	0.947	0.986	0.989	0.988	0.999	0.999	0.999
cf	0.583	0.682	0.873	0.982	0.981	0.941	0.999	0.935	0.966
02	0.560	0.685	0.887	0.982	0.990	0.994	1.000	1.000	1.000
s2	0.746	0.801	0.944	0.992	0.995	0.996	1.000	1.000	1.000
Best	0	0	0	0	7	1	8	3	18

Table S9: Neutral singlet molecules, HF/pcseg-1: fraction f of electron density covered.

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
Mn(NO)3CO	0.564	0.619	0.892	0.950	0.948	0.914	0.951	0.953	0.951
Ni(C5H5)NO	0.613	0.617	0.893	0.957	0.956	0.867	0.956	0.955	0.956
Fe(CO)2(NO)2	0.580	0.611	0.891	0.953	0.949	0.929	0.958	0.959	0.958
Mn(CO)5CN	0.568	0.547	0.889	0.950	0.958	0.900	0.956	0.960	0.958

Table S9– $Continued\ from\ previous\ page$

			,	r ~J~					
Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
b2h6	0.494	0.560	0.865	0.942	0.946	0.897	0.958	0.957	0.960
Mn(C5H5)(CO)3	0.573	0.578	0.893	0.961	0.958	0.790	0.934	0.941	0.943
ch4	0.466	0.633	0.872	0.953	0.960	0.904	0.961	0.960	0.961
MnCp(CO)3	0.574	0.564	0.893	0.961	0.958	0.790	0.931	0.938	0.940
ED14	0.571	0.587	0.897	0.951	0.961	0.830	0.924	0.927	0.926
Fe(C4H4)(CO)3	0.583	0.579	0.893	0.962	0.955	0.817	0.936	0.942	0.948
Fe(CO)4(C2H4)	0.573	0.555	0.892	0.961	0.957	0.842	0.957	0.961	0.962
Fe(C4H6)(CO)3	0.570	0.560	0.891	0.962	0.956	0.806	0.943	0.950	0.952
PR05	0.563	0.551	0.892	0.952	0.960	0.877	0.958	0.962	0.961
Fe(CO)3(tmm)	0.573	0.565	0.892	0.963	0.956	0.806	0.932	0.940	0.944
PR04	0.585	0.568	0.893	0.963	0.957	0.871	0.933	0.934	0.939
Co(C3H5)(CO)3	0.582	0.571	0.892	0.960	0.958	0.838	0.958	0.962	0.964
tetrahedrane	0.512	0.614	0.880	0.962	0.964	0.934	0.961	0.959	0.963
Fe(C2H4)(CO)4	0.573	0.556	0.892	0.961	0.957	0.846	0.960	0.963	0.964
Cr(C6H6)(CO)3	0.563	0.578	0.893	0.961	0.965	0.795	0.937	0.945	0.950
ED04	0.600	0.587	0.892	0.966	0.954	0.868	0.945	0.947	0.954
c2h6	0.464	0.595	0.877	0.959	0.966	0.901	0.955	0.954	0.957
ED15	0.604	0.592	0.890	0.954	0.956	0.925	0.964	0.965	0.966
Ni(C3H5)2	0.604	0.592	0.890	0.953	0.955	0.926	0.965	0.965	0.967
cyclopropene	0.503	0.592	0.875	0.964	0.967	0.934	0.965	0.964	0.967
Mn(CO)4NO	0.570	0.574	0.892	0.953	0.957	0.913	0.965	0.968	0.967
propene	0.498	0.592	0.877	0.962	0.968	0.913	0.959	0.958	0.962
cyclopropane	0.486	0.563	0.881	0.962	0.968	0.911	0.955	0.954	0.958
cyclobutene	0.502	0.590	0.879	0.962	0.968	0.918	0.957	0.955	0.960
ED05	0.576	0.574	0.892	0.954	0.959	0.892	0.966	0.968	0.968
c2h4	0.492	0.638	0.870	0.964	0.968	0.932	0.967	0.966	0.968
oxetane	0.527	0.623	0.887	0.961	0.969	0.924	0.965	0.964	0.968
							11 00 0		_

Table S9– $Continued\ from\ previous\ page$

		jioni preddas	Page						
Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
PR14	0.543	0.548	0.897	0.961	0.969	0.792	0.946	0.953	0.921
propyne	0.505	0.604	0.876	0.963	0.965	0.925	0.967	0.966	0.969
propane	0.485	0.585	0.880	0.962	0.969	0.895	0.952	0.951	0.955
ch3nh2	0.502	0.621	0.877	0.959	0.967	0.923	0.967	0.966	0.969
Cr(NO)4	0.554	0.591	0.893	0.953	0.957	0.909	0.967	0.969	0.969
ethanol	0.548	0.635	0.888	0.963	0.969	0.921	0.967	0.966	0.969
VCp(CO)4	0.553	0.550	0.895	0.959	0.970	0.779	0.924	0.936	0.933
allene	0.523	0.594	0.875	0.962	0.965	0.942	0.968	0.967	0.970
n-butane	0.492	0.588	0.882	0.964	0.970	0.884	0.951	0.950	0.954
cyclobutane	0.492	0.565	0.882	0.964	0.971	0.900	0.950	0.948	0.954
n-pentane	0.507	0.591	0.883	0.965	0.971	0.847	0.951	0.951	0.954
cyclopentadiene	0.511	0.613	0.882	0.967	0.971	0.926	0.960	0.959	0.963
PR15	0.598	0.610	0.892	0.957	0.958	0.912	0.971	0.971	0.971
FeCp2	0.596	0.585	0.895	0.972	0.952	0.890	0.948	0.950	0.953
beta-lactim	0.540	0.646	0.889	0.964	0.969	0.922	0.968	0.967	0.972
ch2c	0.525	0.656	0.835	0.954	0.956	0.927	0.972	0.970	0.972
t-butadiene	0.519	0.597	0.877	0.968	0.972	0.920	0.961	0.961	0.964
cyclobutadiene	0.519	0.619	0.872	0.968	0.972	0.941	0.967	0.966	0.969
PR40	0.617	0.603	0.913	0.972	0.972	0.881	0.954	0.957	0.965
Co(CO)3(NO)	0.589	0.596	0.892	0.961	0.956	0.947	0.971	0.973	0.971
borole	0.543	0.605	0.871	0.913	0.973	0.886	0.965	0.964	0.967
Fe(C5Me5)(P5)	0.637	0.661	0.916	0.973	0.964	0.816	0.894	0.897	0.894
c2h5f	0.570	0.656	0.904	0.967	0.972	0.906	0.971	0.970	0.973
ED40a	0.558	0.524	0.885	0.961	0.957	0.936	0.973	0.971	0.970
Ni(acac)2	0.570	0.592	0.895	0.956	0.961	0.908	0.973	0.957	0.969
PMe3	0.565	0.566	0.901	0.968	0.973	0.893	0.966	0.966	0.968
PR02	0.582	0.562	0.893	0.959	0.960	0.922	0.971	0.973	0.973

Table S9– $Continued\ from\ previous\ page$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
PR12	0.554	0.533	0.891	0.957	0.964	0.822	0.970	0.974	0.972
Fe(CO)5	0.582	0.562	0.893	0.959	0.960	0.922	0.972	0.974	0.973
furan	0.546	0.648	0.890	0.971	0.974	0.947	0.972	0.971	0.974
silole	0.599	0.668	0.900	0.970	0.974	0.868	0.938	0.936	0.942
ED28	0.596	0.592	0.904	0.970	0.974	0.878	0.962	0.963	0.962
oxirane	0.537	0.648	0.886	0.961	0.966	0.937	0.973	0.972	0.974
acetaldehyde	0.544	0.633	0.887	0.960	0.967	0.911	0.972	0.971	0.974
ED27	0.591	0.576	0.906	0.970	0.975	0.898	0.966	0.966	0.967
pyrrole	0.516	0.637	0.887	0.972	0.975	0.937	0.967	0.965	0.969
ch3ph2	0.670	0.681	0.914	0.968	0.973	0.914	0.974	0.973	0.976
Cr(C6H6)2	0.581	0.569	0.895	0.976	0.964	0.873	0.957	0.960	0.962
PCy3	0.500	0.502	0.894	0.971	0.976	0.739	0.949	0.950	0.947
ED31	0.531	0.539	0.896	0.974	0.976	0.781	0.955	0.953	0.934
CoH(CO)4	0.593	0.582	0.894	0.963	0.959	0.932	0.975	0.976	0.976
MnO3F	0.564	0.620	0.895	0.947	0.941	0.941	0.976	0.976	0.976
benzene	0.518	0.630	0.885	0.973	0.976	0.935	0.965	0.964	0.967
Sc(acac)3	0.545	0.571	0.902	0.972	0.976	0.826	0.969	0.973	0.958
ED30	0.566	0.570	0.898	0.974	0.977	0.790	0.964	0.967	0.957
methanol	0.536	0.649	0.888	0.961	0.967	0.939	0.976	0.975	0.977
c2h2	0.515	0.612	0.866	0.972	0.970	0.958	0.978	0.977	0.978
dithiotane	0.721	0.739	0.927	0.973	0.978	0.915	0.969	0.967	0.972
nh3	0.459	0.667	0.872	0.958	0.967	0.938	0.978	0.977	0.978
thiophene	0.654	0.680	0.910	0.976	0.978	0.881	0.953	0.952	0.956
PhSH	0.623	0.684	0.906	0.976	0.979	0.853	0.907	0.907	0.910
acetic	0.559	0.671	0.899	0.966	0.971	0.933	0.977	0.976	0.979
CuCN	0.733	0.711	0.860	0.931	0.953	0.979	0.951	0.944	0.953
AcCl	0.669	0.739	0.927	0.975	0.979	0.854	0.946	0.944	0.953

Table S9– $Continued\ from\ previous\ page$

		10		Continuea,	from predious	page			
Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
c2h3f	0.577	0.666	0.904	0.972	0.975	0.937	0.978	0.977	0.979
c2clh5	0.678	0.658	0.927	0.975	0.979	0.838	0.963	0.961	0.968
$\mathrm{ch2nh}$	0.545	0.635	0.869	0.965	0.968	0.950	0.979	0.978	0.979
bh3	0.508	0.715	0.818	0.950	0.953	0.943	0.980	0.979	0.980
ketene	0.562	0.667	0.890	0.968	0.971	0.945	0.979	0.978	0.980
dioxetane	0.577	0.650	0.893	0.962	0.968	0.948	0.978	0.977	0.980
n2h4	0.497	0.638	0.877	0.962	0.970	0.944	0.979	0.978	0.980
ED40b	0.677	0.657	0.929	0.976	0.980	0.858	0.976	0.976	0.977
ED02	0.588	0.605	0.887	0.947	0.955	0.938	0.979	0.980	0.980
c2clh3	0.689	0.685	0.928	0.979	0.981	0.859	0.944	0.941	0.949
cclh3	0.710	0.691	0.939	0.978	0.981	0.924	0.979	0.978	0.981
PR06	0.561	0.600	0.892	0.954	0.964	0.885	0.978	0.980	0.982
oxadiazole	0.584	0.658	0.886	0.972	0.976	0.952	0.981	0.979	0.982
Zn(CH3)2	0.653	0.651	0.887	0.947	0.965	0.956	0.982	0.981	0.981
PR01	0.566	0.543	0.891	0.955	0.966	0.900	0.979	0.982	0.981
formamide	0.545	0.670	0.894	0.968	0.973	0.937	0.981	0.980	0.982
TiCl2Me2	0.626	0.653	0.936	0.979	0.982	0.828	0.913	0.928	0.945
ocs	0.705	0.797	0.929	0.982	0.982	0.918	0.966	0.965	0.969
oxirene	0.562	0.692	0.879	0.962	0.964	0.962	0.982	0.981	0.983
clcn	0.706	0.770	0.932	0.983	0.980	0.938	0.979	0.978	0.981
PhSeH	0.677	0.671	0.924	0.979	0.983	0.886	0.927	0.926	0.928
ch3f	0.574	0.677	0.910	0.968	0.972	0.949	0.982	0.982	0.983
CuMe	0.734	0.733	0.863	0.944	0.959	0.962	0.983	0.982	0.983
Cr(CO)6	0.567	0.543	0.891	0.955	0.965	0.904	0.981	0.983	0.983
c2clh	0.702	0.742	0.932	0.983	0.981	0.880	0.965	0.963	0.968
cs2	0.776	0.828	0.941	0.983	0.984	0.963	0.979	0.978	0.980
clcof	0.685	0.762	0.946	0.985	0.984	0.926	0.977	0.976	0.981

Table S9– $Continued\ from\ previous\ page$

				communaca,	,. o p. octowo	Pago			
Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
ch2clf	0.707	0.774	0.946	0.981	0.983	0.908	0.982	0.981	0.985
dioxetan2one	0.582	0.665	0.904	0.969	0.972	0.923	0.982	0.982	0.985
heef	0.585	0.712	0.907	0.980	0.977	0.971	0.985	0.985	0.986
glyoxal	0.581	0.714	0.890	0.908	0.974	0.957	0.984	0.983	0.986
ccl2h2	0.777	0.807	0.956	0.984	0.986	0.943	0.983	0.982	0.985
ccl2o	0.750	0.792	0.954	0.986	0.986	0.945	0.977	0.976	0.980
clno	0.707	0.777	0.929	0.983	0.986	0.912	0.974	0.972	0.981
trans-c2f2cl2	0.693	0.774	0.954	0.986	0.986	0.903	0.969	0.969	0.975
cis-c2f2cl2	0.705	0.785	0.954	0.986	0.986	0.907	0.970	0.969	0.975
cs	0.759	0.794	0.910	0.986	0.986	0.971	0.984	0.983	0.984
formic-anhydride	0.555	0.672	0.901	0.972	0.974	0.936	0.985	0.984	0.987
h2co	0.583	0.666	0.882	0.968	0.971	0.962	0.986	0.986	0.987
dioxirane	0.585	0.694	0.887	0.963	0.970	0.957	0.986	0.985	0.987
ED01	0.564	0.608	0.889	0.950	0.963	0.922	0.985	0.987	0.986
CrO2(NO3)2	0.560	0.617	0.903	0.964	0.976	0.906	0.986	0.986	0.987
Ni(PH3)2	0.708	0.705	0.906	0.952	0.959	0.971	0.987	0.987	0.987
ncen	0.534	0.741	0.872	0.978	0.976	0.969	0.986	0.986	0.987
c2cl2	0.768	0.819	0.952	0.988	0.986	0.935	0.970	0.969	0.973
hnnn	0.517	0.649	0.881	0.969	0.970	0.950	0.987	0.986	0.988
nh2oh	0.543	0.672	0.885	0.965	0.971	0.959	0.987	0.987	0.988
hnc	0.536	0.664	0.855	0.974	0.972	0.959	0.988	0.987	0.987
TiCl3Me	0.670	0.689	0.952	0.985	0.988	0.814	0.954	0.958	0.968
CrO2Cl2	0.648	0.677	0.933	0.973	0.987	0.885	0.977	0.978	0.988
ccl3h	0.807	0.821	0.963	0.986	0.988	0.956	0.984	0.983	0.987
Ni(CO)4	0.597	0.587	0.892	0.964	0.964	0.966	0.987	0.988	0.987
PR03	0.598	0.587	0.892	0.964	0.964	0.966	0.987	0.988	0.987
cf2cl2	0.707	0.782	0.961	0.986	0.987	0.938	0.985	0.984	0.988
						_	11 00 0		_

Table S9– $Continued\ from\ previous\ page$

				•	, 1				
Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
p4	0.829	0.811	0.936	0.981	0.986	0.977	0.986	0.985	0.988
nh2cl	0.720	0.780	0.936	0.980	0.985	0.950	0.987	0.986	0.988
c2cl4	0.755	0.798	0.963	0.988	0.988	0.943	0.973	0.972	0.976
hcno	0.557	0.699	0.893	0.973	0.974	0.969	0.988	0.987	0.988
formic	0.563	0.720	0.900	0.972	0.974	0.962	0.987	0.987	0.988
c2cl6	0.753	0.790	0.966	0.987	0.988	0.937	0.972	0.972	0.978
hone	0.564	0.710	0.877	0.970	0.969	0.883	0.987	0.986	0.988
hen	0.555	0.662	0.863	0.974	0.972	0.970	0.988	0.988	0.988
hnco	0.572	0.679	0.897	0.976	0.977	0.970	0.988	0.987	0.988
ccl4	0.788	0.817	0.967	0.987	0.988	0.967	0.985	0.984	0.988
t-hcoh	0.569	0.676	0.864	0.966	0.966	0.961	0.988	0.988	0.988
c-hcoh	0.569	0.674	0.864	0.966	0.971	0.965	0.988	0.988	0.989
t-n2h2	0.526	0.594	0.865	0.969	0.967	0.967	0.988	0.988	0.989
c-n2h2	0.522	0.591	0.865	0.970	0.974	0.969	0.989	0.988	0.989
si2h6	0.736	0.727	0.931	0.970	0.973	0.972	0.987	0.987	0.989
s2o	0.757	0.797	0.939	0.982	0.985	0.960	0.988	0.987	0.989
h2o	0.535	0.717	0.893	0.967	0.972	0.962	0.989	0.989	0.989
fccf	0.614	0.745	0.925	0.984	0.981	0.981	0.989	0.989	0.990
hocn	0.562	0.738	0.889	0.972	0.972	0.959	0.989	0.988	0.990
sio	0.741	0.807	0.896	0.985	0.990	0.967	0.987	0.987	0.987
ccl2	0.796	0.835	0.951	0.988	0.990	0.975	0.987	0.987	0.989
ch2-sing	0.514	0.543	0.788	0.918	0.965	0.731	0.990	0.989	0.990
ch2f2	0.630	0.717	0.929	0.976	0.977	0.968	0.989	0.989	0.990
$\sinh 4$	0.713	0.762	0.924	0.964	0.967	0.973	0.989	0.989	0.991
c2f4	0.637	0.785	0.939	0.983	0.983	0.977	0.989	0.989	0.991
ED03	0.617	0.608	0.885	0.941	0.963	0.974	0.990	0.991	0.990
VOCl3	0.673	0.698	0.950	0.983	0.991	0.894	0.963	0.967	0.975

Table S9– $Continued\ from\ previous\ page$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
n2o4	0.539	0.672	0.906	0.974	0.977	0.967	0.990	0.989	0.991
hcof	0.590	0.731	0.916	0.978	0.977	0.977	0.991	0.991	0.992
c2f6	0.599	0.704	0.947	0.983	0.983	0.971	0.990	0.989	0.992
TiCl4	0.700	0.716	0.965	0.991	0.992	0.916	0.980	0.983	0.988
nh2f	0.579	0.701	0.906	0.971	0.977	0.965	0.992	0.991	0.992
t-hono	0.568	0.644	0.892	0.973	0.976	0.963	0.992	0.991	0.992
hoclo	0.671	0.773	0.932	0.974	0.981	0.970	0.993	0.992	0.993
hocl	0.722	0.802	0.941	0.981	0.988	0.966	0.993	0.992	0.993
n2o	0.548	0.710	0.895	0.976	0.976	0.974	0.993	0.992	0.993
c-hono	0.561	0.642	0.893	0.974	0.978	0.970	0.993	0.992	0.993
co2	0.551	0.756	0.907	0.981	0.980	0.983	0.993	0.993	0.993
ph3	0.744	0.778	0.929	0.970	0.974	0.974	0.993	0.993	0.993
chf3	0.627	0.770	0.941	0.981	0.981	0.978	0.993	0.992	0.993
hoclo2	0.601	0.693	0.929	0.971	0.977	0.970	0.993	0.993	0.994
hooh	0.540	0.692	0.892	0.968	0.976	0.974	0.994	0.993	0.994
f2co	0.587	0.713	0.935	0.983	0.982	0.984	0.993	0.993	0.994
sih3f	0.706	0.750	0.935	0.973	0.976	0.983	0.993	0.993	0.994
hno	0.578	0.684	0.876	0.974	0.976	0.979	0.994	0.994	0.994
alf	0.770	0.828	0.909	0.986	0.990	0.978	0.994	0.993	0.994
bhf2	0.640	0.754	0.929	0.984	0.981	0.984	0.994	0.994	0.994
hclo4	0.562	0.636	0.930	0.970	0.976	0.974	0.994	0.993	0.994
so2	0.693	0.762	0.925	0.976	0.980	0.980	0.995	0.994	0.994
cf4	0.641	0.708	0.950	0.985	0.984	0.984	0.994	0.994	0.995
СО	0.597	0.698	0.863	0.979	0.982	0.980	0.995	0.994	0.995
CrF6	0.549	0.645	0.932	0.977	0.985	0.972	0.995	0.995	0.994
p2	0.824	0.814	0.928	0.990	0.993	0.990	0.995	0.994	0.995
n2	0.566	0.638	0.862	0.981	0.985	0.985	0.995	0.995	0.995

Table S9– $Continued\ from\ previous\ page$

_					•	, 1				
	Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
	Ni(PF3)4	0.562	0.612	0.947	0.980	0.983	0.976	0.995	0.995	0.993
	fno	0.588	0.707	0.908	0.979	0.983	0.986	0.996	0.995	0.996
	alh3	0.757	0.767	0.903	0.975	0.974	0.986	0.996	0.996	0.996
	bf3	0.657	0.798	0.944	0.989	0.986	0.989	0.996	0.996	0.996
	h2s	0.782	0.815	0.946	0.980	0.981	0.981	0.996	0.996	0.996
	so3	0.620	0.722	0.931	0.977	0.981	0.987	0.996	0.996	0.996
	hof	0.579	0.733	0.914	0.974	0.983	0.978	0.996	0.996	0.996
	alcl	0.846	0.846	0.938	0.990	0.991	0.986	0.996	0.996	0.996
	cf2	0.637	0.759	0.919	0.982	0.984	0.989	0.996	0.996	0.997
	pf3	0.710	0.758	0.946	0.983	0.988	0.983	0.996	0.996	0.997
	alcl3	0.847	0.866	0.972	0.994	0.993	0.992	0.996	0.996	0.997
	VOF3	0.530	0.583	0.927	0.980	0.988	0.959	0.995	0.996	0.997
	sf6	0.590	0.688	0.958	0.985	0.987	0.986	0.996	0.996	0.997
	bf	0.646	0.731	0.872	0.980	0.982	0.985	0.997	0.996	0.997
	CrO2F2	0.545	0.595	0.913	0.969	0.983	0.982	0.997	0.997	0.996
	bh	0.609	0.568	0.706	0.951	0.971	0.978	0.997	0.997	0.997
	pf5	0.625	0.741	0.958	0.987	0.989	0.989	0.997	0.997	0.997
	hf	0.609	0.770	0.937	0.985	0.984	0.987	0.997	0.997	0.997
	VF5	0.528	0.611	0.939	0.985	0.988	0.954	0.996	0.997	0.998
	sif4	0.691	0.737	0.954	0.989	0.989	0.992	0.998	0.998	0.998
	alh	0.830	0.851	0.872	0.972	0.987	0.973	0.998	0.998	0.998
	clf	0.740	0.820	0.956	0.984	0.993	0.988	0.998	0.998	0.998
	ScF3	0.643	0.671	0.945	0.995	0.992	0.991	0.998	0.998	0.998
	TiF4	0.527	0.570	0.942	0.991	0.990	0.977	0.997	0.998	0.998
	alf3	0.710	0.835	0.945	0.993	0.989	0.992	0.998	0.998	0.998
	cl2	0.811	0.848	0.969	0.990	0.994	0.994	0.999	0.999	0.999
	hcl	0.813	0.852	0.969	0.990	0.990	0.990	0.999	0.999	0.999

Table S9– Continued from previous page

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
f2	0.606	0.783	0.935	0.978	0.991	0.995	0.999	0.999	0.999
h2	-0.000	0.969	0.840	0.929	0.929	0.969	0.999	0.999	0.999
Best	0	0	0	18	57	1	23	22	101

Table S10: Non-neutral and/or non-singlet molecules, HF/pcseg-1: fraction f of electron density covered.

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
cch	0.517	0.681	0.832	0.957	0.944	0.930	0.963	0.962	0.963
cyclopropyl	0.498	0.582	0.871	0.960	0.964	0.920	0.960	0.958	0.962
ch2ch	0.530	0.637	0.851	0.951	0.953	0.930	0.964	0.963	0.965
bn3pi	0.601	0.661	0.790	0.898	0.899	0.893	0.935	0.912	0.965
Ti(BH4)3	0.560	0.518	0.898	0.965	0.942	0.807	0.955	0.959	0.964
ch	0.507	0.724	0.735	0.827	0.927	0.833	0.966	0.861	0.861
allyl	0.517	0.607	0.868	0.963	0.967	0.927	0.962	0.961	0.964
Cu(acac)2	0.573	0.597	0.895	0.949	0.968	0.919	0.937	0.922	0.950
V(NMe2)4	0.510	0.526	0.888	0.967	0.972	0.836	0.953	0.965	0.945
ch3nh	0.532	0.619	0.860	0.948	0.956	0.929	0.972	0.971	0.973
h2cn	0.562	0.634	0.849	0.950	0.954	0.938	0.973	0.972	0.974
cn	0.544	0.693	0.830	0.956	0.946	0.960	0.974	0.973	0.973
ch2nh2	0.529	0.638	0.869	0.960	0.966	0.938	0.973	0.972	0.974
t-hooo	0.563	0.688	0.886	0.955	0.962	0.937	0.975	0.975	0.976
ch3	0.472	0.680	0.839	0.957	0.964	0.937	0.977	0.976	0.977
h2ccn	0.565	0.634	0.863	0.961	0.963	0.895	0.976	0.975	0.977
oh	0.595	0.691	0.856	0.899	0.870	0.881	0.977	0.946	0.891
clo	0.746	0.796	0.936	0.963	0.973	0.949	0.967	0.973	0.979
hs	0.804	0.815	0.927	0.949	0.980	0.933	0.940	0.980	0.942
hcnh	0.540	0.652	0.857	0.964	0.960	0.957	0.980	0.979	0.980
c-hooo	0.564	0.686	0.888	0.959	0.968	0.948	0.983	0.983	0.983

Table S10– $Continued\ from\ previous\ page$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
n2h	0.540	0.624	0.856	0.964	0.962	0.966	0.986	0.985	0.986
sif	0.761	0.808	0.908	0.974	0.988	0.941	0.952	0.955	0.953
ch2-trip	0.547	0.726	0.796	0.964	0.968	0.962	0.989	0.988	0.988
h2no	0.555	0.678	0.884	0.963	0.970	0.961	0.989	0.988	0.989
SO	0.745	0.802	0.919	0.983	0.989	0.971	0.990	0.989	0.990
nh2	0.528	0.635	0.832	0.963	0.969	0.967	0.991	0.990	0.990
hco	0.586	0.682	0.871	0.974	0.972	0.975	0.991	0.990	0.991
no	0.580	0.704	0.871	0.934	0.925	0.981	0.971	0.991	0.978
hoo	0.578	0.687	0.884	0.964	0.971	0.976	0.993	0.993	0.993
no2	0.584	0.678	0.899	0.976	0.979	0.983	0.994	0.994	0.995
ssh	0.800	0.830	0.943	0.981	0.984	0.981	0.995	0.995	0.995
cf	0.633	0.726	0.872	0.939	0.917	0.927	0.996	0.954	0.997
s2	0.819	0.855	0.942	0.989	0.992	0.991	0.997	0.997	0.997
02	0.591	0.706	0.885	0.981	0.988	0.988	0.997	0.997	0.997
$_{ m nh}$	0.600	0.768	0.787	0.855	0.978	0.987	0.997	0.997	0.997
sih	0.799	0.832	0.876	0.866	0.938	0.922	0.998	0.995	0.934
Best	0	0	0	1	6	0	14	1	15

 ${\it Table S11: Neutral singlet molecules, revTPSSh/pcseg-1: fraction } f \ of \ electron \ density \ covered.$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
ED14	0.571	0.588	0.896	0.950	0.960	0.833	0.929	0.931	0.931
ch4	0.471	0.637	0.871	0.952	0.959	0.906	0.962	0.961	0.962
Mn(CO)5CN	0.569	0.547	0.891	0.961	0.963	0.902	0.959	0.963	0.962
b2h6	0.495	0.564	0.864	0.941	0.945	0.901	0.961	0.960	0.963
Ni(C5H5)NO	0.613	0.617	0.893	0.964	0.962	0.870	0.962	0.962	0.963
tetrahedrane	0.513	0.616	0.879	0.961	0.963	0.937	0.963	0.961	0.965
c2h6	0.467	0.598	0.877	0.959	0.966	0.903	0.957	0.955	0.959

Table S11– $Continued\ from\ previous\ page$

	00700070000	j. o p. ooto ao	Page						
Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
PR04	0.586	0.569	0.893	0.967	0.961	0.870	0.934	0.935	0.942
ED04	0.599	0.588	0.891	0.967	0.956	0.869	0.947	0.949	0.958
Co(C3H5)(CO)3	0.582	0.569	0.893	0.965	0.960	0.840	0.961	0.965	0.967
cyclopropane	0.487	0.566	0.880	0.961	0.967	0.914	0.957	0.955	0.960
Cr(C6H6)(CO)3	0.563	0.577	0.894	0.966	0.968	0.795	0.942	0.950	0.955
propene	0.499	0.595	0.877	0.963	0.968	0.916	0.962	0.960	0.964
PR05	0.563	0.551	0.894	0.963	0.964	0.880	0.965	0.968	0.968
Fe(CO)4(C2H4)	0.573	0.555	0.894	0.968	0.959	0.846	0.962	0.966	0.967
Fe(C2H4)(CO)4	0.573	0.556	0.894	0.968	0.959	0.850	0.964	0.968	0.968
propane	0.487	0.588	0.880	0.962	0.969	0.897	0.954	0.952	0.957
cyclobutene	0.503	0.593	0.879	0.963	0.969	0.921	0.959	0.957	0.962
cyclopropene	0.504	0.596	0.874	0.963	0.966	0.937	0.967	0.966	0.969
Mn(C5H5)(CO)3	0.574	0.577	0.894	0.969	0.962	0.788	0.937	0.945	0.947
MnCp(CO)3	0.575	0.565	0.894	0.969	0.962	0.788	0.934	0.941	0.944
oxetane	0.527	0.625	0.886	0.960	0.968	0.926	0.966	0.965	0.969
Fe(C4H6)(CO)3	0.571	0.561	0.893	0.970	0.960	0.806	0.947	0.955	0.957
ch3nh2	0.503	0.624	0.877	0.959	0.966	0.924	0.968	0.967	0.970
Fe(C4H4)(CO)3	0.584	0.578	0.894	0.970	0.958	0.818	0.939	0.945	0.951
PR14	0.543	0.549	0.897	0.961	0.970	0.793	0.948	0.955	0.923
ethanol	0.549	0.637	0.888	0.962	0.968	0.923	0.968	0.967	0.970
Fe(CO)3(tmm)	0.574	0.563	0.893	0.970	0.959	0.807	0.935	0.943	0.949
n-butane	0.494	0.591	0.882	0.964	0.970	0.887	0.953	0.952	0.956
Mn(NO)3CO	0.567	0.619	0.895	0.970	0.966	0.922	0.967	0.970	0.969
c2h4	0.493	0.643	0.870	0.964	0.968	0.935	0.969	0.968	0.970
cyclobutane	0.494	0.567	0.882	0.964	0.970	0.902	0.951	0.950	0.956
FeCp2	0.595	0.586	0.895	0.971	0.956	0.893	0.954	0.956	0.959
propyne	0.506	0.607	0.875	0.963	0.965	0.928	0.969	0.968	0.971
							1 011 0		

Table S11– $Continued\ from\ previous\ page$

		J F	r *** 3 **						
Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
n-pentane	0.509	0.593	0.883	0.965	0.971	0.849	0.953	0.952	0.955
PR40	0.620	0.605	0.912	0.970	0.971	0.884	0.957	0.960	0.967
ED15	0.603	0.594	0.890	0.956	0.958	0.928	0.969	0.970	0.971
Ni(C3H5)2	0.604	0.594	0.889	0.955	0.958	0.930	0.970	0.970	0.972
cyclobutadiene	0.519	0.623	0.872	0.968	0.972	0.944	0.969	0.968	0.971
cyclopentadiene	0.511	0.616	0.883	0.968	0.972	0.929	0.963	0.962	0.966
t-butadiene	0.520	0.599	0.877	0.968	0.972	0.923	0.964	0.963	0.966
Fe(CO)2(NO)2	0.582	0.609	0.894	0.973	0.962	0.935	0.970	0.972	0.971
borole	0.543	0.607	0.871	0.913	0.973	0.889	0.967	0.966	0.969
allene	0.527	0.598	0.874	0.962	0.966	0.946	0.971	0.970	0.973
PMe3	0.567	0.567	0.902	0.968	0.973	0.895	0.968	0.967	0.969
ED05	0.575	0.573	0.894	0.965	0.963	0.895	0.971	0.973	0.974
VCp(CO)4	0.553	0.553	0.895	0.963	0.974	0.779	0.929	0.941	0.938
beta-lactim	0.543	0.648	0.889	0.963	0.969	0.927	0.971	0.970	0.974
Mn(CO)4NO	0.571	0.573	0.894	0.965	0.964	0.917	0.972	0.974	0.973
c2h5f	0.570	0.658	0.903	0.966	0.972	0.910	0.972	0.971	0.974
ED28	0.598	0.593	0.904	0.970	0.975	0.880	0.964	0.965	0.963
ED27	0.593	0.577	0.906	0.970	0.975	0.900	0.967	0.968	0.968
Fe(C5Me5)(P5)	0.638	0.660	0.916	0.975	0.966	0.817	0.895	0.898	0.895
ch2c	0.526	0.661	0.836	0.957	0.959	0.930	0.975	0.974	0.975
Cr(C6H6)2	0.581	0.569	0.895	0.976	0.965	0.876	0.960	0.963	0.965
pyrrole	0.517	0.639	0.888	0.972	0.976	0.940	0.969	0.968	0.971
ED40a	0.562	0.529	0.884	0.957	0.956	0.939	0.976	0.974	0.972
Sc(acac)3	0.545	0.571	0.901	0.970	0.976	0.828	0.972	0.975	0.961
silole	0.600	0.670	0.900	0.971	0.976	0.871	0.941	0.939	0.945
oxirane	0.538	0.650	0.885	0.959	0.965	0.940	0.974	0.973	0.976
furan	0.546	0.649	0.890	0.970	0.974	0.950	0.974	0.973	0.976
							1 011 ~		

Table S11– $Continued\ from\ previous\ page$

		J. o p. octows	P ~ 9 °						
Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
benzene	0.519	0.633	0.885	0.973	0.976	0.939	0.968	0.967	0.970
Ni(acac)2	0.571	0.593	0.894	0.956	0.961	0.910	0.976	0.961	0.972
PR15	0.598	0.611	0.891	0.956	0.960	0.912	0.976	0.976	0.976
acetaldehyde	0.545	0.636	0.886	0.959	0.967	0.916	0.975	0.974	0.977
PCy3	0.500	0.503	0.895	0.971	0.977	0.740	0.951	0.952	0.949
ED30	0.567	0.571	0.899	0.974	0.977	0.791	0.966	0.969	0.959
PR12	0.553	0.535	0.892	0.964	0.967	0.828	0.974	0.977	0.976
PR02	0.581	0.561	0.895	0.968	0.962	0.925	0.975	0.977	0.977
ED31	0.531	0.540	0.897	0.975	0.977	0.782	0.957	0.955	0.936
ch3ph2	0.672	0.684	0.914	0.968	0.973	0.916	0.975	0.974	0.977
methanol	0.537	0.652	0.887	0.960	0.966	0.940	0.977	0.976	0.977
dithiotane	0.723	0.740	0.926	0.973	0.978	0.917	0.971	0.969	0.973
Fe(CO)5	0.582	0.561	0.894	0.968	0.962	0.925	0.976	0.978	0.977
nh3	0.462	0.669	0.871	0.957	0.966	0.938	0.978	0.977	0.978
CuCN	0.730	0.707	0.859	0.933	0.956	0.978	0.954	0.947	0.956
AcCl	0.671	0.741	0.927	0.974	0.978	0.857	0.950	0.948	0.956
thiophene	0.655	0.681	0.910	0.976	0.979	0.884	0.956	0.955	0.959
c2clh5	0.679	0.659	0.927	0.975	0.979	0.840	0.965	0.963	0.969
PhSH	0.625	0.685	0.906	0.976	0.979	0.856	0.910	0.910	0.912
Co(CO)3(NO)	0.590	0.594	0.894	0.972	0.962	0.950	0.978	0.979	0.978
c2h2	0.516	0.617	0.865	0.971	0.969	0.962	0.980	0.979	0.980
n2h4	0.501	0.640	0.876	0.961	0.969	0.945	0.979	0.978	0.980
CoH(CO)4	0.593	0.579	0.896	0.969	0.962	0.934	0.979	0.980	0.980
c2clh3	0.690	0.687	0.928	0.978	0.981	0.862	0.947	0.945	0.953
ED40b	0.678	0.657	0.929	0.976	0.981	0.860	0.978	0.978	0.978
ch2nh	0.548	0.637	0.868	0.963	0.967	0.952	0.980	0.979	0.981
CuMe	0.730	0.729	0.861	0.941	0.959	0.958	0.980	0.979	0.981
							1 011 0		

Table S11– $Continued\ from\ previous\ page$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
TiCl2Me2	0.629	0.656	0.934	0.976	0.981	0.833	0.919	0.934	0.951
dioxetane	0.577	0.651	0.892	0.961	0.966	0.950	0.979	0.978	0.981
acetic	0.560	0.673	0.898	0.966	0.970	0.937	0.979	0.979	0.981
bh3	0.511	0.719	0.816	0.948	0.951	0.945	0.981	0.981	0.981
Zn(CH3)2	0.652	0.650	0.887	0.947	0.964	0.955	0.982	0.981	0.981
c2h3f	0.577	0.668	0.904	0.971	0.975	0.943	0.981	0.980	0.982
$\operatorname{cclh3}$	0.711	0.692	0.938	0.978	0.981	0.927	0.981	0.980	0.982
ocs	0.706	0.795	0.928	0.981	0.982	0.924	0.971	0.969	0.973
c2clh	0.702	0.743	0.932	0.983	0.981	0.885	0.969	0.967	0.972
PhSeH	0.678	0.672	0.925	0.980	0.983	0.887	0.928	0.928	0.930
ketene	0.562	0.672	0.889	0.967	0.971	0.950	0.982	0.982	0.983
ED02	0.588	0.603	0.889	0.953	0.957	0.940	0.982	0.983	0.983
clcof	0.687	0.762	0.946	0.984	0.984	0.929	0.979	0.978	0.983
clen	0.707	0.772	0.931	0.982	0.981	0.943	0.982	0.981	0.984
formamide	0.546	0.671	0.894	0.968	0.972	0.941	0.983	0.982	0.984
ch3f	0.574	0.679	0.910	0.967	0.971	0.951	0.983	0.983	0.984
cs2	0.778	0.828	0.940	0.982	0.984	0.968	0.983	0.982	0.984
oxirene	0.563	0.695	0.877	0.960	0.962	0.965	0.984	0.983	0.985
oxadiazole	0.583	0.660	0.886	0.970	0.975	0.956	0.984	0.983	0.985
PR01	0.567	0.543	0.893	0.963	0.969	0.905	0.983	0.985	0.985
PR06	0.561	0.600	0.893	0.962	0.968	0.889	0.982	0.984	0.985
ccl2o	0.752	0.793	0.953	0.985	0.986	0.948	0.980	0.979	0.983
trans-c2f2cl2	0.694	0.774	0.954	0.986	0.986	0.905	0.972	0.972	0.978
cis-c2f2cl2	0.707	0.785	0.954	0.986	0.986	0.909	0.973	0.972	0.977
ch2clf	0.708	0.775	0.945	0.980	0.982	0.910	0.984	0.983	0.986
Cr(CO)6	0.567	0.544	0.893	0.963	0.969	0.908	0.984	0.986	0.986
TiCl3Me	0.674	0.693	0.950	0.982	0.986	0.821	0.961	0.965	0.975

Table S11– $Continued\ from\ previous\ page$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	$\frac{1}{\text{GSZ}}$	LDA-X	CAP-X	CHA-X
ccl2h2									
	0.779	0.808	0.955	0.984	0.985	0.945	0.984	0.984	0.986
c2cl2	0.770	0.818	0.952	0.987	0.986	0.940	0.974	0.973	0.976
clno	0.708	0.779	0.928	0.980	0.984	0.916	0.980	0.979	0.987
Ni(PH3)2	0.706	0.703	0.906	0.951	0.958	0.970	0.987	0.987	0.987
cs	0.761	0.794	0.909	0.984	0.987	0.976	0.987	0.986	0.987
dioxetan2one	0.582	0.668	0.903	0.967	0.970	0.928	0.985	0.984	0.987
h2co	0.585	0.666	0.881	0.966	0.970	0.965	0.987	0.987	0.987
c2cl6	0.755	0.791	0.965	0.986	0.988	0.940	0.974	0.974	0.980
nh2oh	0.544	0.674	0.884	0.963	0.970	0.960	0.987	0.987	0.988
glyoxal	0.581	0.713	0.889	0.907	0.974	0.961	0.987	0.986	0.988
c2cl4	0.757	0.801	0.962	0.987	0.988	0.946	0.975	0.974	0.979
hccf	0.584	0.714	0.906	0.979	0.977	0.975	0.988	0.988	0.988
Ni(CO)4	0.595	0.583	0.894	0.965	0.964	0.967	0.987	0.988	0.987
PR03	0.597	0.583	0.894	0.965	0.964	0.967	0.987	0.988	0.987
nh2cl	0.723	0.783	0.935	0.978	0.984	0.951	0.987	0.987	0.988
hnc	0.538	0.666	0.855	0.974	0.973	0.959	0.988	0.987	0.988
ccl3h	0.810	0.822	0.963	0.986	0.987	0.958	0.986	0.985	0.988
dioxirane	0.585	0.695	0.886	0.960	0.968	0.961	0.988	0.987	0.988
h2o	0.537	0.718	0.893	0.966	0.971	0.962	0.989	0.988	0.988
c-hcoh	0.570	0.674	0.863	0.965	0.972	0.964	0.989	0.988	0.989
t-hcoh	0.569	0.675	0.864	0.965	0.966	0.961	0.989	0.988	0.989
formic-anhydride	0.556	0.671	0.900	0.971	0.973	0.942	0.987	0.987	0.989
c-n2h2	0.524	0.596	0.864	0.968	0.972	0.970	0.989	0.988	0.989
cf2cl2	0.708	0.784	0.961	0.986	0.986	0.940	0.986	0.985	0.989
t-n2h2	0.528	0.598	0.864	0.967	0.964	0.969	0.989	0.988	0.989
ccl4	0.789	0.819	0.966	0.987	0.988	0.969	0.987	0.986	0.990
p4	0.833	0.811	0.935	0.979	0.985	0.980	0.988	0.987	0.990
							1 011 0		

Table S11– $Continued\ from\ previous\ page$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
formic	0.563	0.720	0.900	0.971	0.973	0.965	0.989	0.989	0.990
honc	0.566	0.710	0.876	0.970	0.971	0.884	0.989	0.987	0.990
neen	0.534	0.746	0.871	0.976	0.975	0.973	0.989	0.988	0.990
hnnn	0.521	0.657	0.880	0.969	0.971	0.953	0.989	0.988	0.990
sio	0.743	0.807	0.896	0.984	0.990	0.965	0.985	0.984	0.985
hen	0.555	0.665	0.862	0.972	0.971	0.973	0.990	0.989	0.990
ch2-sing	0.518	0.546	0.787	0.951	0.963	0.732	0.990	0.990	0.990
ED01	0.563	0.607	0.890	0.955	0.967	0.926	0.989	0.990	0.990
s2o	0.761	0.800	0.939	0.980	0.983	0.963	0.989	0.989	0.990
VOCl3	0.677	0.703	0.948	0.980	0.990	0.898	0.968	0.972	0.980
heno	0.563	0.701	0.892	0.971	0.973	0.974	0.990	0.990	0.991
si2h6	0.738	0.730	0.931	0.971	0.975	0.975	0.989	0.989	0.991
hnco	0.573	0.680	0.896	0.975	0.976	0.974	0.991	0.990	0.991
CrO2Cl2	0.652	0.682	0.931	0.970	0.989	0.889	0.982	0.983	0.991
ED03	0.615	0.604	0.886	0.941	0.963	0.973	0.991	0.991	0.990
CrO2(NO3)2	0.563	0.616	0.902	0.963	0.978	0.911	0.990	0.991	0.991
hocn	0.562	0.742	0.888	0.972	0.972	0.963	0.991	0.990	0.991
ch2f2	0.630	0.718	0.928	0.975	0.976	0.971	0.991	0.990	0.992
Cr(NO)4	0.558	0.594	0.895	0.971	0.977	0.920	0.988	0.991	0.992
TiCl4	0.704	0.720	0.963	0.988	0.990	0.919	0.985	0.988	0.992
ccl2	0.797	0.835	0.950	0.986	0.990	0.979	0.991	0.990	0.992
fccf	0.615	0.743	0.924	0.982	0.980	0.984	0.992	0.992	0.992
nh2f	0.579	0.702	0.905	0.969	0.975	0.967	0.992	0.992	0.992
sih4	0.716	0.766	0.925	0.965	0.968	0.975	0.991	0.991	0.992
hocl	0.725	0.804	0.941	0.980	0.987	0.967	0.992	0.992	0.993
c2f4	0.639	0.784	0.939	0.982	0.982	0.980	0.992	0.992	0.993
hcof	0.591	0.730	0.916	0.977	0.976	0.980	0.993	0.993	0.994

Table S11– $Continued\ from\ previous\ page$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
hooh	0.542	0.693	0.891	0.966	0.974	0.974	0.994	0.993	0.994
hoclo	0.673	0.775	0.931	0.970	0.977	0.972	0.994	0.994	0.994
c2f6	0.604	0.707	0.946	0.982	0.982	0.975	0.992	0.992	0.994
alf	0.769	0.827	0.908	0.985	0.991	0.978	0.994	0.993	0.994
ph3	0.748	0.781	0.929	0.970	0.974	0.976	0.994	0.994	0.994
t-hono	0.568	0.648	0.891	0.970	0.974	0.967	0.994	0.994	0.994
hno	0.580	0.685	0.875	0.972	0.974	0.981	0.995	0.994	0.995
so2	0.699	0.768	0.925	0.974	0.977	0.979	0.995	0.994	0.994
sih3f	0.707	0.752	0.934	0.973	0.976	0.984	0.994	0.994	0.995
chf3	0.628	0.769	0.941	0.980	0.980	0.981	0.994	0.994	0.995
c-hono	0.565	0.646	0.892	0.971	0.976	0.973	0.995	0.994	0.995
n2o4	0.545	0.678	0.904	0.971	0.974	0.973	0.994	0.993	0.995
n2o	0.554	0.713	0.893	0.974	0.976	0.977	0.995	0.995	0.995
hoclo2	0.605	0.696	0.928	0.967	0.972	0.973	0.995	0.995	0.995
bhf2	0.639	0.752	0.928	0.983	0.981	0.985	0.995	0.995	0.995
со	0.598	0.698	0.862	0.978	0.982	0.980	0.996	0.995	0.995
co2	0.548	0.754	0.906	0.979	0.979	0.985	0.996	0.995	0.995
f2co	0.588	0.714	0.934	0.982	0.981	0.987	0.996	0.995	0.996
p2	0.826	0.816	0.927	0.989	0.992	0.992	0.996	0.995	0.996
hclo4	0.567	0.642	0.928	0.967	0.973	0.978	0.996	0.996	0.996
Ni(PF3)4	0.566	0.613	0.947	0.979	0.981	0.978	0.996	0.996	0.994
cf4	0.644	0.709	0.949	0.984	0.983	0.986	0.996	0.996	0.997
n2	0.566	0.644	0.861	0.979	0.983	0.988	0.997	0.996	0.996
h2s	0.785	0.818	0.945	0.979	0.981	0.983	0.997	0.996	0.997
hof	0.580	0.735	0.913	0.972	0.981	0.980	0.997	0.997	0.997
hf	0.609	0.769	0.937	0.984	0.983	0.987	0.997	0.997	0.997
alcl	0.847	0.846	0.938	0.989	0.991	0.987	0.997	0.996	0.997

Table S11– $Continued\ from\ previous\ page$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
alh3	0.759	0.768	0.903	0.975	0.975	0.987	0.997	0.997	0.997
so3	0.627	0.731	0.930	0.976	0.980	0.988	0.997	0.997	0.997
bf3	0.658	0.795	0.944	0.989	0.986	0.990	0.997	0.997	0.997
bf	0.644	0.730	0.871	0.978	0.984	0.985	0.997	0.997	0.997
pf3	0.714	0.759	0.946	0.982	0.986	0.984	0.997	0.997	0.998
alcl3	0.850	0.866	0.972	0.994	0.993	0.993	0.997	0.997	0.998
CrF6	0.561	0.656	0.929	0.972	0.986	0.985	0.998	0.997	0.994
clf	0.742	0.822	0.956	0.984	0.992	0.988	0.998	0.998	0.998
bh	0.613	0.571	0.704	0.646	0.968	0.981	0.998	0.998	0.998
sf6	0.598	0.691	0.958	0.984	0.985	0.988	0.997	0.997	0.998
cf2	0.636	0.757	0.919	0.980	0.984	0.990	0.998	0.998	0.998
alf3	0.712	0.832	0.945	0.992	0.989	0.991	0.998	0.998	0.998
fno	0.589	0.710	0.907	0.976	0.981	0.990	0.998	0.998	0.998
ScF3	0.649	0.675	0.942	0.990	0.989	0.992	0.998	0.998	0.998
pf5	0.632	0.743	0.958	0.986	0.987	0.991	0.998	0.998	0.998
sif4	0.695	0.737	0.954	0.988	0.988	0.992	0.998	0.998	0.999
MnO3F	0.567	0.614	0.898	0.954	0.957	0.954	0.997	0.998	0.999
alh	0.832	0.853	0.872	0.982	0.986	0.974	0.999	0.998	0.999
VOF3	0.537	0.590	0.924	0.975	0.986	0.968	0.998	0.999	0.999
CrO2F2	0.551	0.602	0.911	0.965	0.983	0.988	0.999	0.999	0.997
hcl	0.815	0.854	0.969	0.990	0.989	0.990	0.999	0.999	0.999
VF5	0.536	0.618	0.935	0.980	0.986	0.964	0.999	0.999	0.999
cl2	0.813	0.850	0.969	0.989	0.994	0.994	0.999	0.999	0.999
TiF4	0.535	0.577	0.938	0.986	0.987	0.984	0.999	0.999	0.999
h2	0.000	0.971	0.836	0.924	0.924	0.971	1.000	0.999	0.999
f2	0.607	0.786	0.934	0.976	0.990	0.995	1.000	1.000	1.000
Best	0	0	0	16	46	1	30	18	111

Table S12: Non-neutral and/or non-singlet molecules, revTPSSh/pcseg-1: fraction f of electron density covered.

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
ch	0.512	0.736	0.734	0.739	0.890	0.851	0.879	0.856	0.941
bn3pi	0.605	0.664	0.790	0.898	0.900	0.910	0.910	0.952	0.921
cyclopropyl	0.499	0.585	0.871	0.960	0.965	0.923	0.962	0.960	0.964
no	0.584	0.683	0.870	0.967	0.946	0.922	0.937	0.940	0.933
Cu(acac)2	0.574	0.597	0.895	0.949	0.967	0.921	0.938	0.922	0.951
Ti(BH4)3	0.565	0.522	0.897	0.963	0.941	0.812	0.963	0.967	0.970
allyl	0.519	0.611	0.869	0.966	0.971	0.933	0.967	0.966	0.969
ch2ch	0.532	0.643	0.854	0.959	0.962	0.937	0.973	0.972	0.973
V(NMe2)4	0.512	0.527	0.888	0.965	0.974	0.838	0.956	0.966	0.948
ch3nh	0.533	0.622	0.860	0.950	0.958	0.931	0.974	0.973	0.975
ch2nh2	0.530	0.639	0.870	0.962	0.968	0.939	0.975	0.974	0.976
cch	0.519	0.693	0.838	0.972	0.962	0.943	0.978	0.977	0.978
ch3	0.474	0.683	0.838	0.957	0.963	0.938	0.978	0.977	0.978
clo	0.744	0.799	0.937	0.977	0.951	0.966	0.969	0.960	0.980
h2cn	0.567	0.639	0.852	0.958	0.962	0.947	0.982	0.981	0.983
h2ccn	0.568	0.637	0.865	0.964	0.967	0.901	0.982	0.981	0.983
cf	0.631	0.725	0.872	0.922	0.984	0.941	0.979	0.957	0.983
hcnh	0.545	0.652	0.858	0.968	0.965	0.961	0.985	0.984	0.985
cn	0.554	0.695	0.838	0.979	0.978	0.971	0.988	0.987	0.988
ch2-trip	0.551	0.728	0.795	0.963	0.968	0.963	0.990	0.989	0.990
SO	0.746	0.804	0.919	0.983	0.989	0.971	0.990	0.989	0.990
h2no	0.559	0.683	0.885	0.966	0.972	0.960	0.990	0.989	0.990
nh2	0.531	0.637	0.831	0.961	0.968	0.967	0.991	0.990	0.990
hco	0.587	0.681	0.870	0.972	0.972	0.976	0.991	0.991	0.991
n2h	0.541	0.628	0.858	0.969	0.968	0.972	0.992	0.991	0.992

Table S12– $Continued\ from\ previous\ page$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
t-hooo	0.559	0.690	0.889	0.966	0.974	0.948	0.992	0.992	0.993
c-hooo	0.562	0.690	0.890	0.966	0.975	0.959	0.995	0.994	0.995
sif	0.761	0.808	0.908	0.944	0.975	0.942	0.995	0.953	0.982
hoo	0.576	0.690	0.885	0.968	0.976	0.976	0.996	0.996	0.996
oh	0.596	0.691	0.855	0.971	0.920	0.983	0.963	0.997	0.896
no2	0.590	0.683	0.897	0.974	0.977	0.986	0.997	0.997	0.997
ssh	0.803	0.830	0.943	0.982	0.985	0.983	0.997	0.997	0.997
s2	0.821	0.857	0.941	0.989	0.992	0.993	0.998	0.998	0.998
nh	0.602	0.769	0.786	0.854	0.977	0.988	0.998	0.998	0.998
sih	0.802	0.834	0.876	0.862	0.919	0.925	0.935	0.991	0.998
hs	0.800	0.857	0.927	0.936	0.979	0.942	0.999	0.948	0.999
o2	0.592	0.710	0.885	0.979	0.987	0.990	0.999	0.999	0.999
Best	0	0	0	1	5	0	10	2	19

Table S13: Neutral singlet molecules, $\mathrm{HF/aug\text{-}pcseg\text{-}2}$: fraction f of electron density covered.

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
Mn(NO)3CO	0.470	0.494	0.888	0.945	0.943	0.912	0.950	0.952	0.951
Ni(C5H5)NO	0.414	0.509	0.890	0.956	0.954	0.865	0.954	0.952	0.954
Mn(C5H5)(CO)3	0.337	0.458	0.889	0.958	0.955	0.787	0.931	0.939	0.941
b2h6	0.284	0.504	0.854	0.932	0.936	0.889	0.956	0.955	0.958
Fe(C4H4)(CO)3	0.340	0.467	0.889	0.959	0.954	0.813	0.935	0.941	0.947
ED14	0.317	0.479	0.894	0.951	0.959	0.821	0.922	0.925	0.923
Fe(CO)2(NO)2	0.456	0.488	0.888	0.949	0.946	0.928	0.957	0.959	0.957
MnCp(CO)3	0.329	0.459	0.889	0.959	0.956	0.787	0.929	0.935	0.938
Fe(CO)3(tmm)	0.331	0.463	0.889	0.959	0.955	0.803	0.930	0.938	0.944
Mn(CO)5CN	0.299	0.453	0.886	0.947	0.955	0.898	0.955	0.959	0.958
Fe(C4H6)(CO)3	0.333	0.464	0.888	0.959	0.954	0.803	0.941	0.948	0.950

Table S13– $\it Continued from previous page$

	00700070000	J. o p. ooto ao	Page						
Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
Cr(C6H6)(CO)3	0.326	0.445	0.888	0.958	0.960	0.793	0.927	0.944	0.948
c2h6	0.385	0.556	0.869	0.951	0.960	0.899	0.954	0.952	0.956
$\mathrm{ch4}$	0.370	0.590	0.862	0.942	0.951	0.902	0.960	0.959	0.960
PR04	0.336	0.461	0.889	0.960	0.957	0.867	0.931	0.932	0.937
Fe(CO)4(C2H4)	0.322	0.466	0.889	0.958	0.956	0.837	0.956	0.960	0.961
tetrahedrane	0.184	0.582	0.873	0.956	0.961	0.933	0.960	0.958	0.962
PR05	0.307	0.445	0.888	0.949	0.957	0.873	0.958	0.962	0.961
propene	0.336	0.555	0.870	0.956	0.963	0.912	0.958	0.957	0.961
Co(C3H5)(CO)3	0.349	0.481	0.890	0.957	0.956	0.828	0.957	0.961	0.963
cyclopropane	0.320	0.531	0.873	0.956	0.963	0.909	0.954	0.952	0.957
ED04	0.354	0.485	0.888	0.963	0.954	0.864	0.945	0.946	0.953
Fe(C2H4)(CO)4	0.323	0.465	0.889	0.957	0.955	0.841	0.959	0.963	0.963
propane	0.321	0.547	0.873	0.956	0.964	0.893	0.950	0.949	0.954
cyclobutene	0.350	0.560	0.872	0.957	0.964	0.916	0.955	0.953	0.958
ED15	0.393	0.511	0.887	0.955	0.954	0.922	0.963	0.963	0.965
Ni(C3H5)2	0.386	0.510	0.887	0.954	0.954	0.923	0.963	0.964	0.965
n-butane	0.283	0.553	0.875	0.958	0.966	0.882	0.949	0.949	0.953
cyclopropene	0.311	0.560	0.868	0.957	0.962	0.933	0.964	0.962	0.966
VCp(CO)4	0.279	0.435	0.889	0.956	0.966	0.775	0.922	0.935	0.932
oxetane	0.304	0.593	0.879	0.956	0.965	0.921	0.963	0.962	0.966
cyclobutane	0.269	0.535	0.874	0.958	0.967	0.897	0.948	0.946	0.952
n-pentane	0.264	0.556	0.876	0.959	0.967	0.846	0.949	0.949	0.952
c2h4	0.381	0.523	0.864	0.958	0.964	0.930	0.966	0.964	0.967
ch3nh2	0.323	0.581	0.870	0.952	0.961	0.920	0.965	0.964	0.967
Mn(CO)4NO	0.371	0.468	0.888	0.949	0.953	0.912	0.965	0.967	0.966
ethanol	0.374	0.597	0.882	0.957	0.965	0.919	0.965	0.964	0.967
cyclopentadiene	0.348	0.585	0.876	0.962	0.967	0.924	0.958	0.956	0.961
							1 010 0		

Table S13– $Continued\ from\ previous\ page$

			010 010		J. o p. ooto ao	P ~ 9 °			
Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
Cr(NO)4	0.450	0.491	0.888	0.948	0.948	0.908	0.965	0.968	0.968
propyne	0.419	0.567	0.869	0.957	0.960	0.923	0.966	0.965	0.968
PR14	0.257	0.458	0.894	0.963	0.968	0.782	0.944	0.950	0.919
ED05	0.326	0.467	0.888	0.951	0.956	0.889	0.965	0.968	0.968
t-butadiene	0.334	0.565	0.871	0.963	0.968	0.919	0.960	0.959	0.963
cyclobutadiene	0.312	0.588	0.866	0.963	0.968	0.940	0.965	0.964	0.967
FeCp2	0.348	0.459	0.890	0.968	0.951	0.885	0.946	0.947	0.951
Fe(C5Me5)(P5)	0.343	0.559	0.914	0.968	0.963	0.814	0.893	0.896	0.892
allene	0.455	0.560	0.869	0.956	0.960	0.941	0.967	0.966	0.968
borole	0.316	0.577	0.865	0.964	0.969	0.885	0.963	0.962	0.965
PMe3	0.400	0.521	0.896	0.963	0.969	0.891	0.964	0.963	0.966
beta-lactim	0.332	0.616	0.883	0.959	0.966	0.921	0.966	0.965	0.970
PR15	0.384	0.464	0.889	0.955	0.956	0.911	0.970	0.970	0.970
silole	0.361	0.564	0.895	0.965	0.971	0.867	0.935	0.934	0.939
PR40	0.384	0.542	0.908	0.969	0.971	0.879	0.955	0.958	0.964
ch2c	0.431	0.618	0.830	0.947	0.950	0.925	0.971	0.969	0.971
Ni(acac)2	0.325	0.473	0.891	0.953	0.958	0.907	0.971	0.955	0.968
ED28	0.276	0.518	0.899	0.966	0.972	0.874	0.960	0.961	0.959
c2h5f	0.357	0.618	0.897	0.961	0.968	0.907	0.969	0.968	0.972
ED27	0.280	0.515	0.901	0.966	0.972	0.896	0.964	0.964	0.964
furan	0.380	0.619	0.885	0.966	0.971	0.946	0.970	0.969	0.972
Co(CO)3(NO)	0.446	0.498	0.889	0.957	0.954	0.946	0.971	0.972	0.971
pyrrole	0.324	0.606	0.882	0.967	0.972	0.936	0.964	0.963	0.967
Sc(acac)3	0.253	0.501	0.897	0.967	0.972	0.819	0.968	0.971	0.956
ED40a	0.385	0.489	0.879	0.957	0.949	0.935	0.972	0.971	0.969
PR12	0.272	0.439	0.886	0.953	0.958	0.818	0.969	0.973	0.972
oxirane	0.386	0.613	0.879	0.954	0.962	0.935	0.971	0.970	0.973
							1 010 0		

Table S13– $Continued\ from\ previous\ page$

		J. o. r. p. o o o ao	Pwgo						
Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
PR02	0.355	0.477	0.890	0.957	0.958	0.920	0.971	0.973	0.973
Cr(C6H6)2	0.305	0.443	0.890	0.973	0.959	0.867	0.954	0.957	0.960
acetaldehyde	0.383	0.599	0.881	0.954	0.962	0.910	0.971	0.970	0.973
benzene	0.399	0.603	0.880	0.969	0.973	0.934	0.963	0.962	0.966
Fe(CO)5	0.371	0.476	0.890	0.957	0.958	0.921	0.971	0.974	0.973
PCy3	0.222	0.460	0.889	0.968	0.974	0.726	0.947	0.948	0.940
ch3ph2	0.507	0.507	0.908	0.963	0.969	0.912	0.972	0.970	0.974
ED31	0.239	0.484	0.892	0.972	0.975	0.772	0.953	0.952	0.930
ED30	0.246	0.526	0.894	0.971	0.975	0.772	0.962	0.965	0.953
methanol	0.368	0.609	0.882	0.955	0.962	0.937	0.974	0.974	0.975
thiophene	0.433	0.587	0.906	0.972	0.976	0.880	0.951	0.950	0.954
dithiotane	0.524	0.556	0.923	0.970	0.976	0.912	0.965	0.963	0.969
CoH(CO)4	0.424	0.504	0.892	0.959	0.958	0.930	0.974	0.976	0.976
c2clh5	0.514	0.540	0.922	0.971	0.976	0.833	0.960	0.958	0.965
PhSH	0.424	0.587	0.902	0.973	0.976	0.852	0.906	0.906	0.908
nh3	0.359	0.627	0.866	0.952	0.962	0.935	0.976	0.975	0.976
AcCl	0.507	0.577	0.924	0.971	0.976	0.853	0.945	0.943	0.951
c2h2	0.467	0.581	0.862	0.966	0.965	0.957	0.977	0.975	0.976
ED40b	0.438	0.573	0.925	0.972	0.977	0.854	0.975	0.975	0.976
CuCN	0.626	0.655	0.862	0.935	0.945	0.977	0.948	0.942	0.950
acetic	0.377	0.632	0.894	0.962	0.968	0.932	0.975	0.974	0.978
$\mathrm{ch2nh}$	0.394	0.598	0.864	0.959	0.964	0.948	0.977	0.976	0.978
c2clh3	0.531	0.543	0.925	0.975	0.978	0.859	0.942	0.940	0.948
n2h4	0.371	0.600	0.871	0.956	0.966	0.942	0.977	0.976	0.978
c2h3f	0.385	0.631	0.900	0.967	0.971	0.937	0.977	0.976	0.978
dioxetane	0.418	0.620	0.887	0.957	0.964	0.946	0.976	0.975	0.978
cclh3	0.543	0.554	0.935	0.974	0.978	0.918	0.977	0.976	0.979
							1 010 0		

Table S13– $Continued\ from\ previous\ page$

		J. o. r. p. o o o ao	Page						
Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
ketene	0.414	0.632	0.885	0.963	0.967	0.944	0.978	0.977	0.979
bh3	0.405	0.652	0.807	0.938	0.942	0.939	0.979	0.979	0.980
${\rm TiCl2Me2}$	0.549	0.588	0.931	0.977	0.980	0.825	0.920	0.927	0.944
ED02	0.426	0.496	0.884	0.944	0.952	0.937	0.978	0.980	0.980
c2clh	0.559	0.559	0.929	0.980	0.978	0.879	0.962	0.960	0.966
oxadiazole	0.400	0.634	0.881	0.968	0.973	0.950	0.979	0.977	0.980
formamide	0.405	0.628	0.890	0.964	0.970	0.936	0.979	0.978	0.981
clcn	0.599	0.559	0.930	0.981	0.979	0.936	0.977	0.975	0.979
PhSeH	0.504	0.615	0.921	0.977	0.981	0.884	0.926	0.925	0.927
PR06	0.335	0.455	0.887	0.949	0.958	0.883	0.977	0.980	0.981
oxirene	0.397	0.655	0.873	0.956	0.960	0.960	0.981	0.980	0.981
ocs	0.605	0.540	0.927	0.980	0.981	0.918	0.965	0.963	0.967
Zn(CH3)2	0.596	0.595	0.886	0.946	0.957	0.956	0.981	0.981	0.981
CuMe	0.673	0.671	0.864	0.939	0.947	0.960	0.981	0.980	0.981
PR01	0.271	0.448	0.887	0.950	0.960	0.899	0.979	0.982	0.981
ch3f	0.377	0.638	0.904	0.962	0.967	0.947	0.981	0.981	0.982
$\mathrm{ch}2\mathrm{clf}$	0.537	0.551	0.943	0.978	0.980	0.905	0.980	0.979	0.982
Cr(CO)6	0.272	0.448	0.887	0.949	0.959	0.902	0.980	0.983	0.982
dioxetan2one	0.419	0.631	0.900	0.966	0.970	0.920	0.981	0.980	0.983
clcof	0.534	0.585	0.945	0.983	0.983	0.925	0.974	0.973	0.978
cs2	0.654	0.648	0.940	0.982	0.984	0.961	0.977	0.976	0.978
CS	0.648	0.601	0.908	0.984	0.984	0.969	0.982	0.981	0.982
ccl2h2	0.605	0.615	0.953	0.982	0.984	0.937	0.980	0.979	0.983
cis-c2f2cl2	0.549	0.569	0.952	0.984	0.984	0.906	0.967	0.966	0.972
trans-c2f2cl2	0.544	0.568	0.952	0.984	0.984	0.901	0.967	0.966	0.972
glyoxal	0.418	0.676	0.886	0.905	0.972	0.956	0.983	0.982	0.985
clno	0.563	0.543	0.927	0.981	0.985	0.911	0.971	0.969	0.979
							1 010 0		

Table S13– $\it Continued from previous page$

	00700070000	j. o p. ooto ao	Pago						
Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
p4	0.713	0.717	0.934	0.979	0.985	0.974	0.983	0.981	0.985
heef	0.432	0.673	0.903	0.975	0.974	0.971	0.985	0.984	0.985
c2cl2	0.590	0.606	0.950	0.985	0.984	0.933	0.968	0.967	0.971
ccl2o	0.610	0.580	0.952	0.984	0.985	0.942	0.974	0.973	0.978
formic-anhydride	0.407	0.637	0.898	0.970	0.972	0.935	0.983	0.983	0.985
dioxirane	0.415	0.658	0.882	0.958	0.967	0.955	0.985	0.984	0.985
h2co	0.434	0.628	0.878	0.964	0.968	0.961	0.985	0.985	0.986
nh2oh	0.363	0.630	0.880	0.959	0.967	0.957	0.985	0.985	0.986
cf2cl2	0.550	0.582	0.960	0.985	0.986	0.935	0.981	0.980	0.985
ED01	0.359	0.462	0.884	0.944	0.955	0.921	0.985	0.986	0.986
nh2cl	0.559	0.552	0.933	0.977	0.982	0.945	0.985	0.984	0.986
ccl3h	0.633	0.650	0.962	0.985	0.987	0.951	0.981	0.980	0.984
hnc	0.466	0.630	0.853	0.970	0.969	0.957	0.987	0.985	0.986
hnnn	0.460	0.612	0.877	0.964	0.966	0.949	0.986	0.985	0.987
TiCl3Me	0.621	0.631	0.948	0.984	0.987	0.810	0.951	0.956	0.967
CrO2Cl2	0.626	0.614	0.930	0.975	0.986	0.883	0.975	0.977	0.987
formic	0.409	0.686	0.897	0.969	0.972	0.961	0.986	0.985	0.987
nccn	0.496	0.674	0.869	0.973	0.972	0.969	0.986	0.985	0.987
c2cl4	0.622	0.644	0.961	0.986	0.987	0.939	0.969	0.968	0.973
t-hcoh	0.393	0.640	0.860	0.961	0.961	0.959	0.987	0.986	0.987
sio	0.618	0.702	0.896	0.982	0.987	0.965	0.986	0.985	0.986
s2o	0.643	0.611	0.937	0.980	0.983	0.958	0.986	0.985	0.987
t-n2h2	0.383	0.558	0.860	0.963	0.962	0.965	0.987	0.986	0.987
honc	0.451	0.672	0.873	0.966	0.966	0.882	0.986	0.985	0.987
c-hcoh	0.401	0.638	0.860	0.962	0.967	0.850	0.987	0.986	0.987
heno	0.452	0.662	0.889	0.968	0.970	0.968	0.987	0.986	0.987
hnco	0.437	0.655	0.893	0.972	0.974	0.969	0.987	0.986	0.987
							1 010 0		

Table S13– $Continued\ from\ previous\ page$

		J. o p. octows	P ~ 9 °						
Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
Ni(CO)4	0.466	0.515	0.891	0.962	0.963	0.966	0.986	0.987	0.986
PR03	0.466	0.515	0.891	0.962	0.963	0.966	0.986	0.987	0.986
c-n $2h2$	0.392	0.555	0.861	0.965	0.970	0.967	0.987	0.986	0.988
c2cl6	0.627	0.683	0.965	0.986	0.988	0.931	0.967	0.966	0.974
CrO2(NO3)2	0.449	0.488	0.900	0.965	0.974	0.900	0.986	0.987	0.988
hen	0.466	0.629	0.860	0.970	0.969	0.969	0.988	0.987	0.988
ccl4	0.646	0.672	0.966	0.986	0.988	0.963	0.982	0.981	0.985
Ni(PH3)2	0.608	0.662	0.904	0.949	0.952	0.970	0.988	0.988	0.987
h2o	0.340	0.674	0.890	0.964	0.970	0.959	0.988	0.987	0.987
ccl2	0.636	0.647	0.949	0.986	0.988	0.973	0.985	0.984	0.987
si2h6	0.646	0.594	0.926	0.965	0.970	0.967	0.987	0.987	0.988
hocn	0.468	0.678	0.886	0.969	0.969	0.958	0.988	0.988	0.989
fccf	0.430	0.710	0.922	0.980	0.978	0.981	0.989	0.989	0.989
ch2-sing	0.438	0.502	0.782	0.708	0.959	0.731	0.989	0.989	0.989
ch2f2	0.402	0.679	0.925	0.973	0.974	0.967	0.989	0.988	0.989
MnO3F	0.551	0.521	0.895	0.956	0.970	0.944	0.988	0.989	0.990
c2f4	0.419	0.744	0.936	0.981	0.981	0.976	0.989	0.988	0.990
ED03	0.507	0.542	0.884	0.940	0.959	0.974	0.990	0.990	0.989
c2f6	0.399	0.669	0.944	0.982	0.982	0.969	0.988	0.988	0.990
sih4	0.632	0.576	0.919	0.957	0.962	0.967	0.989	0.989	0.991
n2o4	0.436	0.633	0.902	0.971	0.975	0.966	0.989	0.988	0.991
hcof	0.429	0.706	0.914	0.976	0.976	0.976	0.990	0.990	0.991
nh2f	0.388	0.659	0.901	0.967	0.974	0.963	0.991	0.990	0.991
VOCl3	0.654	0.640	0.947	0.984	0.991	0.889	0.960	0.964	0.973
t-hono	0.422	0.602	0.889	0.969	0.973	0.962	0.991	0.990	0.991
hoclo	0.526	0.538	0.929	0.971	0.979	0.967	0.992	0.991	0.992
hocl	0.563	0.550	0.940	0.979	0.986	0.963	0.991	0.991	0.992
							1 010 0		

Table S13– $\it Continued from previous page$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
 TiCl4	0.672	0.664	0.962	0.991	0.992	0.924	0.977	0.980	0.985
c-hono	0.410	0.601	0.890	0.971	0.976	0.969	0.992	0.991	0.992
ph3	0.635	0.587	0.925	0.966	0.970	0.969	0.992	0.991	0.992
hooh	0.358	0.651	0.889	0.965	0.974	0.972	0.992	0.992	0.992
hoclo2	0.510	0.568	0.926	0.969	0.974	0.969	0.992	0.992	0.992
chf3	0.381	0.727	0.939	0.979	0.980	0.977	0.992	0.991	0.993
n2o	0.464	0.670	0.891	0.972	0.974	0.973	0.992	0.992	0.993
co2	0.474	0.723	0.905	0.979	0.978	0.982	0.993	0.992	0.993
hclo4	0.504	0.588	0.928	0.968	0.974	0.972	0.992	0.992	0.993
f2co	0.427	0.705	0.933	0.982	0.981	0.983	0.993	0.992	0.993
sih3f	0.548	0.666	0.931	0.969	0.973	0.979	0.992	0.992	0.993
hno	0.398	0.646	0.873	0.971	0.973	0.978	0.993	0.993	0.993
so2	0.564	0.533	0.923	0.973	0.977	0.978	0.994	0.993	0.993
bhf2	0.379	0.715	0.926	0.982	0.978	0.983	0.993	0.993	0.994
alf	0.646	0.778	0.908	0.984	0.987	0.977	0.993	0.993	0.994
p2	0.710	0.702	0.927	0.989	0.991	0.988	0.994	0.993	0.994
cf4	0.408	0.662	0.948	0.984	0.984	0.983	0.993	0.993	0.994
CO	0.479	0.665	0.861	0.976	0.979	0.979	0.995	0.994	0.994
Ni(PF3)4	0.509	0.488	0.946	0.980	0.982	0.974	0.994	0.995	0.992
n2	0.446	0.600	0.859	0.976	0.980	0.985	0.995	0.995	0.995
fno	0.432	0.664	0.905	0.977	0.981	0.985	0.995	0.995	0.995
alcl3	0.662	0.706	0.971	0.994	0.992	0.991	0.995	0.995	0.995
sf6	0.461	0.636	0.957	0.984	0.986	0.984	0.994	0.994	0.995
bf3	0.377	0.753	0.943	0.988	0.985	0.988	0.995	0.995	0.996
so3	0.537	0.547	0.929	0.975	0.979	0.986	0.995	0.995	0.996
h2s	0.626	0.603	0.943	0.977	0.979	0.978	0.996	0.995	0.996
pf3	0.501	0.582	0.945	0.982	0.987	0.982	0.995	0.995	0.996

Table S13– $Continued\ from\ previous\ page$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
hof	0.410	0.683	0.910	0.971	0.981	0.977	0.996	0.995	0.996
alcl	0.685	0.714	0.937	0.989	0.990	0.985	0.995	0.995	0.996
CrF6	0.496	0.528	0.928	0.977	0.986	0.972	0.996	0.996	0.995
alh3	0.658	0.628	0.900	0.969	0.968	0.983	0.995	0.995	0.996
cf2	0.448	0.719	0.917	0.980	0.982	0.988	0.996	0.996	0.996
VOF3	0.519	0.538	0.923	0.981	0.986	0.958	0.994	0.995	0.996
bf	0.485	0.701	0.870	0.977	0.978	0.984	0.996	0.996	0.996
CrO2F2	0.538	0.527	0.909	0.970	0.979	0.981	0.996	0.996	0.996
pf5	0.469	0.608	0.957	0.987	0.988	0.988	0.996	0.995	0.996
VF5	0.500	0.537	0.935	0.986	0.988	0.952	0.994	0.996	0.997
bh	0.558	0.518	0.700	0.701	0.961	0.977	0.997	0.997	0.997
sif4	0.469	0.579	0.953	0.988	0.988	0.991	0.997	0.997	0.997
hf	0.391	0.724	0.935	0.984	0.983	0.985	0.997	0.997	0.997
clf	0.565	0.551	0.954	0.983	0.991	0.986	0.997	0.997	0.997
TiF4	0.504	0.528	0.938	0.991	0.987	0.977	0.996	0.997	0.997
ScF3	0.541	0.475	0.942	0.994	0.988	0.990	0.998	0.998	0.997
alh	0.745	0.683	0.870	0.848	0.983	0.971	0.998	0.997	0.998
alf3	0.464	0.690	0.945	0.991	0.987	0.990	0.998	0.998	0.998
cl2	0.648	0.680	0.968	0.989	0.994	0.993	0.998	0.998	0.998
hcl	0.610	0.708	0.968	0.990	0.989	0.988	0.999	0.998	0.999
f2	0.426	0.702	0.932	0.975	0.990	0.994	0.999	0.999	0.999
h2	0.000	0.969	0.827	0.910	0.910	0.969	0.999	0.999	0.999
Best	0	0	0	16	54	1	20	23	108

 ${\it Table S14: Non-neutral\ and/or\ non-singlet\ molecules,\ HF/aug-pcseg-2:\ fraction\ f\ of\ electron\ density\ covered.}$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
cf	0.479	0.679	0.870	0.910	0.914	0.957	0.942	0.951	0.948
cyclopropyl	0.318	0.547	0.863	0.953	0.959	0.918	0.958	0.956	0.961
Ti(BH4)3	0.340	0.484	0.886	0.955	0.939	0.802	0.953	0.958	0.962
cch	0.456	0.633	0.828	0.949	0.938	0.929	0.962	0.961	0.962
allyl	0.377	0.571	0.862	0.957	0.963	0.926	0.960	0.959	0.962
ch	0.473	0.541	0.730	0.715	0.847	0.833	0.849	0.931	0.963
ch2ch	0.404	0.551	0.845	0.944	0.947	0.928	0.963	0.961	0.963
V(NMe2)4	0.285	0.417	0.883	0.964	0.954	0.829	0.955	0.963	0.943
Cu(acac)2	0.326	0.475	0.891	0.946	0.965	0.917	0.935	0.920	0.948
sih	0.707	0.644	0.874	0.854	0.935	0.964	0.971	0.939	0.954
ch3nh	0.383	0.580	0.853	0.940	0.950	0.926	0.971	0.969	0.972
ch2nh2	0.367	0.599	0.863	0.954	0.960	0.936	0.971	0.970	0.972
h2cn	0.432	0.600	0.844	0.944	0.949	0.937	0.972	0.971	0.972
cn	0.458	0.662	0.827	0.949	0.940	0.959	0.973	0.972	0.972
t-hooo	0.408	0.643	0.882	0.952	0.960	0.935	0.974	0.974	0.975
clo	0.573	0.566	0.935	0.946	0.953	0.960	0.957	0.975	0.961
ch3	0.396	0.637	0.831	0.949	0.957	0.935	0.976	0.975	0.976
h2ccn	0.424	0.598	0.859	0.955	0.959	0.894	0.975	0.974	0.976
hcnh	0.406	0.616	0.852	0.958	0.955	0.955	0.978	0.977	0.978
bn3pi	0.495	0.631	0.788	0.894	0.895	0.914	0.976	0.982	0.974
c-hooo	0.408	0.642	0.885	0.956	0.966	0.947	0.982	0.981	0.982
n2h	0.434	0.580	0.852	0.958	0.958	0.964	0.984	0.983	0.984
oh	0.384	0.641	0.854	0.977	0.978	0.946	0.891	0.985	0.898
no	0.450	0.669	0.868	0.976	0.980	0.940	0.988	0.984	0.978
h2no	0.412	0.636	0.880	0.959	0.967	0.959	0.988	0.987	0.988
ch2-trip	0.411	0.658	0.789	0.957	0.962	0.960	0.988	0.987	0.987

Table S14– $Continued\ from\ previous\ page$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
SO	0.583	0.569	0.917	0.980	0.987	0.969	0.989	0.988	0.989
hco	0.429	0.647	0.868	0.970	0.969	0.974	0.990	0.989	0.990
nh2	0.391	0.593	0.828	0.958	0.966	0.965	0.990	0.989	0.990
sif	0.614	0.752	0.907	0.951	0.974	0.955	0.955	0.992	0.955
hoo	0.376	0.639	0.881	0.961	0.969	0.974	0.992	0.992	0.992
ssh	0.652	0.656	0.942	0.980	0.983	0.978	0.993	0.993	0.994
no2	0.430	0.632	0.896	0.974	0.977	0.982	0.994	0.993	0.994
s2	0.669	0.682	0.940	0.988	0.991	0.990	0.996	0.995	0.996
o2	0.452	0.662	0.883	0.978	0.985	0.987	0.997	0.996	0.997
hs	0.628	0.600	0.925	0.930	0.928	0.929	0.958	0.975	0.997
$_{ m nh}$	0.430	0.637	0.783	0.968	0.975	0.986	0.997	0.997	0.997
Best	0	0	0	1	2	1	13	4	16

Table S15: Neutral singlet molecules, revTPSSh/aug-pcseg-2: fraction f of electron density covered.

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
ED14	0.316	0.479	0.893	0.950	0.958	0.824	0.927	0.929	0.929
c2h6	0.386	0.560	0.869	0.952	0.961	0.901	0.955	0.954	0.958
b2h6	0.284	0.509	0.854	0.932	0.937	0.893	0.959	0.958	0.961
ch4	0.370	0.594	0.862	0.943	0.952	0.904	0.961	0.960	0.962
Mn(CO)5CN	0.302	0.452	0.888	0.959	0.959	0.900	0.959	0.963	0.961
tetrahedrane	0.184	0.585	0.872	0.956	0.961	0.935	0.962	0.959	0.963
Cr(C6H6)(CO)3	0.327	0.445	0.890	0.964	0.962	0.792	0.932	0.948	0.953
cyclopropane	0.321	0.534	0.873	0.956	0.964	0.912	0.956	0.954	0.958
propene	0.336	0.559	0.871	0.957	0.964	0.914	0.960	0.959	0.963
Ni(C5H5)NO	0.415	0.510	0.890	0.964	0.961	0.868	0.960	0.959	0.960
propane	0.321	0.551	0.873	0.957	0.964	0.895	0.952	0.951	0.955
ED04	0.354	0.485	0.888	0.965	0.956	0.864	0.947	0.948	0.957

Table S15– $Continued\ from\ previous\ page$

Molecule	CWH	CODE	SAD	SADNO	HUCKEL	$\frac{\mathbf{GSZ}}{\mathbf{GSZ}}$	IDAV	CADV	сил у
	GWH	CORE					LDA-X	CAP-X	CHA-X
PR04	0.336	0.463	0.890	0.965	0.961	0.867	0.932	0.933	0.940
cyclobutene	0.350	0.564	0.872	0.958	0.965	0.919	0.957	0.955	0.960
Fe(CO)4(C2H4)	0.324	0.465	0.890	0.964	0.958	0.841	0.961	0.965	0.966
Co(C3H5)(CO)3	0.352	0.480	0.891	0.962	0.959	0.829	0.960	0.964	0.966
Fe(CO)3(tmm)	0.333	0.464	0.890	0.966	0.959	0.804	0.933	0.942	0.948
n-butane	0.284	0.556	0.875	0.959	0.967	0.885	0.951	0.950	0.954
Fe(C4H4)(CO)3	0.341	0.468	0.890	0.967	0.958	0.814	0.937	0.943	0.950
Fe(C4H6)(CO)3	0.335	0.463	0.889	0.967	0.958	0.803	0.945	0.953	0.955
Mn(C5H5)(CO)3	0.338	0.458	0.890	0.967	0.959	0.784	0.934	0.942	0.945
MnCp(CO)3	0.331	0.458	0.890	0.967	0.960	0.785	0.931	0.939	0.942
cyclopropene	0.311	0.563	0.867	0.957	0.962	0.935	0.966	0.964	0.967
cyclobutane	0.270	0.538	0.874	0.959	0.967	0.899	0.949	0.947	0.954
oxetane	0.305	0.596	0.879	0.956	0.964	0.923	0.964	0.963	0.967
Fe(C2H4)(CO)4	0.326	0.464	0.890	0.964	0.958	0.844	0.963	0.967	0.967
ch3nh2	0.323	0.584	0.870	0.952	0.961	0.922	0.966	0.965	0.968
PR05	0.309	0.444	0.890	0.960	0.961	0.876	0.964	0.968	0.967
n-pentane	0.265	0.559	0.877	0.960	0.968	0.848	0.951	0.951	0.954
ethanol	0.375	0.600	0.882	0.957	0.964	0.920	0.966	0.965	0.968
c2h4	0.382	0.527	0.864	0.958	0.964	0.933	0.968	0.966	0.969
FeCp2	0.347	0.461	0.890	0.969	0.956	0.887	0.952	0.953	0.957
t-butadiene	0.333	0.568	0.872	0.964	0.969	0.922	0.962	0.962	0.965
cyclopentadiene	0.348	0.588	0.877	0.963	0.969	0.927	0.960	0.959	0.963
cyclobutadiene	0.312	0.591	0.865	0.963	0.969	0.942	0.967	0.966	0.969
borole	0.316	0.579	0.865	0.965	0.969	0.887	0.965	0.964	0.967
PR14	0.258	0.458	0.894	0.965	0.969	0.783	0.946	0.952	0.921
VCp(CO)4	0.280	0.435	0.890	0.960	0.970	0.775	0.926	0.939	0.936
ED15	0.395	0.512	0.887	0.957	0.957	0.926	0.968	0.968	0.970
							1 012 ~		

Table S15– $Continued\ from\ previous\ page$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
propyne	0.418	0.571	0.869	0.958	0.961	0.926	0.968	0.967	0.970
Mn(NO)3CO	0.472	0.496	0.891	0.966	0.961	0.920	0.967	0.970	0.969
Ni(C3H5)2	0.389	0.511	0.886	0.956	0.957	0.927	0.969	0.969	0.970
PMe3	0.401	0.521	0.897	0.964	0.970	0.892	0.966	0.965	0.967
allene	0.454	0.564	0.869	0.957	0.961	0.944	0.970	0.969	0.971
Fe(C5Me5)(P5)	0.343	0.560	0.914	0.971	0.965	0.815	0.894	0.897	0.893
Fe(CO)2(NO)2	0.460	0.490	0.890	0.969	0.960	0.933	0.970	0.972	0.970
beta-lactim	0.333	0.618	0.883	0.959	0.966	0.925	0.968	0.967	0.972
silole	0.362	0.565	0.896	0.967	0.972	0.869	0.938	0.936	0.942
ED28	0.277	0.520	0.900	0.967	0.972	0.876	0.961	0.962	0.961
ED27	0.281	0.516	0.902	0.967	0.972	0.898	0.965	0.966	0.966
pyrrole	0.323	0.609	0.882	0.968	0.973	0.938	0.966	0.965	0.969
PR40	0.384	0.543	0.908	0.968	0.973	0.883	0.957	0.960	0.966
ED05	0.328	0.466	0.890	0.961	0.960	0.892	0.970	0.972	0.973
Cr(C6H6)2	0.304	0.444	0.890	0.973	0.962	0.870	0.957	0.960	0.962
c2h5f	0.358	0.620	0.898	0.961	0.968	0.910	0.971	0.970	0.973
Sc(acac)3	0.253	0.501	0.896	0.966	0.972	0.821	0.970	0.973	0.959
benzene	0.398	0.607	0.880	0.969	0.973	0.937	0.965	0.965	0.968
Mn(CO)4NO	0.374	0.468	0.890	0.961	0.960	0.915	0.971	0.973	0.973
furan	0.380	0.621	0.885	0.966	0.971	0.948	0.972	0.971	0.974
oxirane	0.387	0.616	0.878	0.953	0.961	0.937	0.972	0.971	0.974
ED40a	0.382	0.493	0.878	0.954	0.950	0.938	0.974	0.972	0.971
ch2c	0.431	0.622	0.831	0.950	0.954	0.928	0.974	0.972	0.974
Ni(acac)2	0.325	0.473	0.891	0.953	0.959	0.908	0.975	0.959	0.971
PCy3	0.223	0.461	0.890	0.969	0.975	0.727	0.948	0.950	0.942
PR15	0.385	0.466	0.888	0.956	0.958	0.910	0.975	0.975	0.975
acetaldehyde	0.384	0.602	0.881	0.954	0.963	0.915	0.973	0.972	0.975
							1 017 0		

Table S15– $Continued\ from\ previous\ page$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
dithiotane	0.524	0.557	0.923	0.970	0.975	0.914	0.967	0.965	0.970
ch3ph2	0.506	0.508	0.909	0.964	0.970	0.915	0.973	0.972	0.976
nh3	0.360	0.629	0.866	0.952	0.962	0.935	0.976	0.975	0.975
methanol	0.369	0.612	0.881	0.954	0.961	0.937	0.975	0.974	0.976
ED30	0.246	0.527	0.895	0.972	0.976	0.773	0.964	0.967	0.955
ED31	0.238	0.485	0.893	0.973	0.976	0.773	0.955	0.953	0.933
CuCN	0.626	0.652	0.861	0.938	0.947	0.976	0.952	0.945	0.954
PR12	0.274	0.438	0.888	0.960	0.961	0.823	0.973	0.976	0.975
thiophene	0.432	0.587	0.906	0.972	0.976	0.883	0.954	0.953	0.957
c2clh5	0.514	0.541	0.922	0.971	0.976	0.835	0.962	0.960	0.967
AcCl	0.507	0.578	0.924	0.971	0.976	0.855	0.948	0.946	0.954
PhSH	0.423	0.588	0.902	0.973	0.976	0.854	0.908	0.908	0.911
PR02	0.357	0.475	0.892	0.966	0.961	0.923	0.974	0.976	0.976
Fe(CO)5	0.373	0.475	0.892	0.966	0.961	0.924	0.975	0.977	0.977
n2h4	0.372	0.603	0.871	0.955	0.965	0.942	0.977	0.975	0.978
ED40b	0.439	0.573	0.925	0.973	0.978	0.856	0.976	0.976	0.977
c2clh3	0.531	0.544	0.925	0.975	0.978	0.862	0.946	0.943	0.951
Co(CO)3(NO)	0.449	0.497	0.892	0.969	0.961	0.949	0.977	0.978	0.977
c2h2	0.465	0.586	0.861	0.965	0.965	0.960	0.978	0.977	0.978
dioxetane	0.419	0.621	0.887	0.956	0.963	0.947	0.977	0.976	0.979
$\mathrm{ch2nh}$	0.396	0.600	0.863	0.958	0.963	0.950	0.978	0.977	0.979
acetic	0.379	0.634	0.894	0.962	0.968	0.935	0.978	0.977	0.979
CoH(CO)4	0.428	0.503	0.894	0.965	0.961	0.932	0.978	0.980	0.980
c2clh	0.557	0.559	0.929	0.980	0.979	0.884	0.966	0.964	0.969
CuMe	0.672	0.668	0.863	0.939	0.948	0.956	0.979	0.978	0.980
cclh3	0.543	0.555	0.935	0.974	0.978	0.920	0.978	0.977	0.980
c2h3f	0.386	0.633	0.899	0.967	0.971	0.942	0.979	0.978	0.980
							1 01 - 0		

Table S15– $\,$ Continued from previous page

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
PhSeH	0.502	0.616	0.921	0.977	0.981	0.886	0.927	0.927	0.929
bh3	0.405	0.656	0.807	0.937	0.942	0.941	0.981	0.980	0.981
${\rm TiCl2Me2}$	0.548	0.591	0.930	0.975	0.981	0.830	0.927	0.933	0.950
Zn(CH3)2	0.595	0.593	0.885	0.946	0.958	0.954	0.981	0.980	0.980
clcn	0.599	0.559	0.929	0.980	0.980	0.941	0.980	0.978	0.981
ocs	0.605	0.541	0.926	0.980	0.982	0.923	0.969	0.967	0.971
formamide	0.406	0.631	0.890	0.964	0.970	0.939	0.981	0.980	0.982
ketene	0.414	0.636	0.885	0.963	0.968	0.949	0.981	0.980	0.982
oxirene	0.397	0.658	0.872	0.954	0.958	0.962	0.982	0.981	0.983
ED02	0.431	0.495	0.886	0.950	0.954	0.938	0.981	0.983	0.983
clcof	0.536	0.585	0.944	0.983	0.983	0.927	0.977	0.976	0.981
ch3f	0.377	0.640	0.904	0.962	0.966	0.948	0.982	0.982	0.983
oxadiazole	0.401	0.636	0.881	0.967	0.972	0.954	0.982	0.981	0.983
cs2	0.654	0.649	0.939	0.981	0.984	0.965	0.980	0.979	0.981
ch2clf	0.539	0.552	0.942	0.978	0.980	0.907	0.981	0.980	0.984
ccl2h2	0.605	0.616	0.953	0.982	0.984	0.939	0.982	0.980	0.984
cis-c2f2cl2	0.550	0.569	0.952	0.984	0.984	0.907	0.969	0.968	0.974
trans-c2f2cl2	0.545	0.569	0.952	0.984	0.984	0.903	0.969	0.969	0.975
PR01	0.272	0.447	0.889	0.957	0.963	0.903	0.982	0.984	0.984
PR06	0.337	0.454	0.889	0.957	0.961	0.887	0.981	0.983	0.984
clno	0.564	0.544	0.926	0.978	0.983	0.915	0.978	0.976	0.984
c2cl2	0.592	0.606	0.950	0.985	0.984	0.938	0.971	0.970	0.974
ccl2o	0.611	0.580	0.952	0.984	0.985	0.945	0.977	0.976	0.980
cs	0.648	0.602	0.907	0.982	0.984	0.973	0.985	0.984	0.985
nh2oh	0.364	0.632	0.879	0.958	0.966	0.956	0.985	0.984	0.985
Cr(CO)6	0.273	0.446	0.889	0.957	0.963	0.906	0.983	0.985	0.985
dioxetan2one	0.421	0.635	0.899	0.965	0.969	0.924	0.983	0.982	0.985

Table S15– $Continued\ from\ previous\ page$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
p4	0.712	0.717	0.933	0.977	0.983	0.976	0.985	0.983	0.986
h2co	0.436	0.630	0.877	0.962	0.967	0.963	0.986	0.985	0.986
ccl3h	0.632	0.650	0.961	0.985	0.986	0.953	0.983	0.982	0.986
h2o	0.341	0.675	0.889	0.962	0.969	0.957	0.986	0.986	0.986
glyoxal	0.420	0.676	0.885	0.904	0.971	0.960	0.985	0.984	0.987
cf2cl2	0.551	0.583	0.959	0.985	0.985	0.937	0.983	0.982	0.987
nh2cl	0.559	0.553	0.933	0.976	0.982	0.946	0.986	0.985	0.987
dioxirane	0.417	0.660	0.880	0.956	0.965	0.958	0.986	0.985	0.987
c2cl4	0.622	0.644	0.961	0.986	0.987	0.942	0.972	0.971	0.976
t-hcoh	0.394	0.640	0.860	0.961	0.962	0.958	0.987	0.986	0.987
hnc	0.466	0.631	0.852	0.970	0.970	0.957	0.987	0.986	0.987
c-hcoh	0.403	0.638	0.860	0.961	0.968	0.851	0.987	0.986	0.987
heef	0.431	0.676	0.903	0.975	0.974	0.973	0.987	0.986	0.987
c2cl6	0.627	0.684	0.964	0.986	0.987	0.934	0.969	0.968	0.976
TiCl3Me	0.620	0.633	0.947	0.982	0.987	0.816	0.959	0.963	0.973
formic-anhydride	0.409	0.637	0.897	0.969	0.971	0.940	0.986	0.985	0.987
Ni(PH3)2	0.608	0.661	0.904	0.948	0.951	0.968	0.987	0.987	0.987
ccl4	0.646	0.673	0.966	0.986	0.987	0.965	0.983	0.982	0.987
Ni(CO)4	0.469	0.512	0.893	0.964	0.964	0.966	0.987	0.987	0.987
PR03	0.469	0.512	0.893	0.964	0.964	0.966	0.987	0.987	0.987
t-n2h2	0.385	0.562	0.859	0.962	0.960	0.966	0.987	0.986	0.988
c-n2h2	0.394	0.560	0.860	0.963	0.969	0.968	0.987	0.987	0.988
sio	0.618	0.701	0.896	0.982	0.988	0.963	0.984	0.983	0.984
formic	0.411	0.686	0.897	0.969	0.971	0.963	0.988	0.987	0.988
honc	0.450	0.673	0.873	0.967	0.968	0.882	0.988	0.986	0.988
s2o	0.644	0.614	0.937	0.978	0.981	0.961	0.987	0.987	0.988
hnnn	0.459	0.620	0.876	0.965	0.968	0.952	0.988	0.987	0.989

Table S15– $Continued\ from\ previous\ page$

						P ~ 9 °			
Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
hcn	0.465	0.632	0.859	0.969	0.969	0.972	0.989	0.988	0.989
ncen	0.497	0.678	0.868	0.972	0.972	0.972	0.988	0.988	0.989
ch2-sing	0.439	0.505	0.781	0.708	0.957	0.732	0.989	0.989	0.989
ED01	0.361	0.462	0.886	0.950	0.959	0.925	0.988	0.989	0.989
hnco	0.439	0.661	0.892	0.972	0.974	0.972	0.989	0.989	0.990
heno	0.450	0.664	0.888	0.966	0.970	0.973	0.989	0.988	0.990
CrO2Cl2	0.628	0.617	0.928	0.971	0.988	0.888	0.980	0.981	0.990
ccl2	0.637	0.647	0.948	0.984	0.988	0.977	0.988	0.988	0.990
hocn	0.469	0.682	0.885	0.969	0.970	0.961	0.990	0.989	0.990
CrO2(NO3)2	0.447	0.491	0.898	0.962	0.976	0.906	0.989	0.990	0.990
ED03	0.509	0.539	0.886	0.940	0.960	0.972	0.990	0.990	0.990
ch2f2	0.405	0.679	0.924	0.972	0.973	0.968	0.990	0.989	0.990
si2h6	0.645	0.594	0.927	0.967	0.971	0.970	0.989	0.989	0.991
nh2f	0.389	0.660	0.900	0.965	0.972	0.964	0.991	0.990	0.991
Cr(NO)4	0.451	0.492	0.890	0.967	0.968	0.920	0.988	0.991	0.991
fccf	0.432	0.708	0.921	0.979	0.978	0.983	0.991	0.991	0.992
hocl	0.564	0.551	0.939	0.978	0.985	0.963	0.991	0.990	0.992
hooh	0.359	0.652	0.888	0.962	0.972	0.971	0.992	0.991	0.992
VOCl3	0.654	0.643	0.945	0.980	0.992	0.894	0.966	0.970	0.978
TiCl4	0.671	0.667	0.960	0.988	0.992	0.931	0.983	0.985	0.990
sih4	0.630	0.576	0.919	0.959	0.963	0.970	0.991	0.991	0.992
hcof	0.432	0.706	0.913	0.975	0.975	0.978	0.992	0.992	0.992
hoclo	0.527	0.542	0.928	0.968	0.975	0.969	0.992	0.992	0.992
c2f4	0.422	0.743	0.936	0.980	0.980	0.979	0.991	0.991	0.993
c2f6	0.402	0.670	0.944	0.981	0.981	0.972	0.991	0.990	0.993
t-hono	0.424	0.606	0.888	0.967	0.972	0.965	0.993	0.992	0.993
hno	0.400	0.647	0.872	0.968	0.971	0.978	0.993	0.993	0.993
							1 017 0		

Table S15– $\,$ Continued from previous page

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
ph3	0.633	0.587	0.925	0.967	0.971	0.971	0.993	0.993	0.993
so2	0.567	0.536	0.923	0.971	0.975	0.978	0.994	0.993	0.993
alf	0.647	0.777	0.908	0.982	0.988	0.976	0.993	0.993	0.994
c-hono	0.413	0.605	0.889	0.969	0.974	0.971	0.994	0.993	0.994
chf3	0.384	0.727	0.938	0.978	0.978	0.978	0.993	0.992	0.994
n2o4	0.436	0.639	0.901	0.969	0.973	0.972	0.993	0.992	0.994
hoclo2	0.511	0.574	0.925	0.965	0.970	0.971	0.994	0.994	0.994
$\sinh 3f$	0.548	0.665	0.931	0.969	0.973	0.980	0.993	0.993	0.994
p2	0.709	0.702	0.927	0.988	0.991	0.989	0.994	0.994	0.994
bhf2	0.383	0.714	0.926	0.981	0.979	0.983	0.994	0.994	0.994
n2o	0.463	0.674	0.890	0.971	0.974	0.976	0.994	0.994	0.995
co2	0.477	0.722	0.904	0.978	0.978	0.984	0.995	0.994	0.995
co	0.481	0.665	0.860	0.975	0.979	0.978	0.995	0.994	0.994
hclo4	0.504	0.592	0.926	0.965	0.971	0.975	0.994	0.994	0.995
f2co	0.430	0.707	0.932	0.981	0.980	0.985	0.995	0.994	0.995
cf4	0.411	0.664	0.948	0.983	0.982	0.984	0.995	0.994	0.996
Ni(PF3)4	0.512	0.487	0.946	0.979	0.981	0.976	0.995	0.996	0.993
hof	0.410	0.685	0.909	0.969	0.980	0.977	0.996	0.996	0.996
h2s	0.626	0.603	0.943	0.978	0.979	0.979	0.996	0.996	0.996
alcl3	0.663	0.706	0.971	0.994	0.992	0.991	0.996	0.996	0.996
n2	0.448	0.606	0.858	0.974	0.978	0.986	0.996	0.996	0.996
bf3	0.382	0.751	0.942	0.988	0.985	0.988	0.996	0.996	0.996
so3	0.539	0.552	0.929	0.974	0.978	0.987	0.996	0.996	0.996
hf	0.392	0.723	0.935	0.982	0.982	0.983	0.996	0.996	0.996
alcl	0.685	0.713	0.937	0.988	0.990	0.986	0.996	0.996	0.997
pf3	0.504	0.587	0.945	0.980	0.985	0.982	0.996	0.996	0.997
sf6	0.464	0.636	0.956	0.983	0.985	0.986	0.996	0.996	0.997

Table S15– $Continued\ from\ previous\ page$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
bf	0.487	0.699	0.869	0.975	0.980	0.984	0.997	0.996	0.997
alh3	0.658	0.628	0.899	0.969	0.969	0.983	0.996	0.996	0.997
pf5	0.472	0.609	0.956	0.985	0.986	0.989	0.997	0.997	0.997
cf2	0.451	0.718	0.916	0.978	0.982	0.988	0.997	0.997	0.997
clf	0.566	0.552	0.954	0.982	0.991	0.986	0.997	0.997	0.997
CrF6	0.500	0.536	0.925	0.972	0.988	0.983	0.997	0.997	0.994
alf3	0.467	0.689	0.944	0.991	0.987	0.988	0.997	0.997	0.997
fno	0.434	0.667	0.904	0.974	0.979	0.988	0.998	0.997	0.998
sif4	0.472	0.582	0.953	0.987	0.987	0.990	0.998	0.997	0.998
ScF3	0.544	0.479	0.938	0.990	0.987	0.991	0.998	0.997	0.997
MnO3F	0.554	0.524	0.894	0.955	0.978	0.952	0.996	0.997	0.998
VOF3	0.523	0.541	0.920	0.976	0.987	0.968	0.997	0.998	0.998
bh	0.557	0.521	0.698	0.641	0.959	0.979	0.998	0.997	0.998
CrO2F2	0.542	0.531	0.906	0.966	0.980	0.987	0.998	0.998	0.996
alh	0.744	0.681	0.870	0.973	0.982	0.972	0.998	0.998	0.998
VF5	0.504	0.542	0.931	0.980	0.987	0.963	0.998	0.998	0.998
TiF4	0.509	0.531	0.934	0.985	0.987	0.984	0.998	0.998	0.998
cl2	0.648	0.682	0.968	0.988	0.993	0.993	0.998	0.998	0.998
hcl	0.610	0.709	0.968	0.989	0.989	0.988	0.999	0.999	0.999
f2	0.426	0.702	0.931	0.974	0.989	0.994	0.999	0.999	1.000
h2	0.000	0.971	0.824	0.907	0.907	0.971	1.000	0.999	0.999
Best	0	0	0	14	47	1	26	20	114

Table S16: Non-neutral and/or non-singlet molecules, revTPSSh/aug-pcseg-2: fraction f of electron density covered.

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
cyclopropyl	0.319	0.550	0.864	0.954	0.961	0.920	0.960	0.958	0.962

Table S16– $Continued\ from\ previous\ page$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
V(NMe2)4	0.285	0.419	0.883	0.962	0.959	0.831	0.958	0.964	0.947
Cu(acac)2	0.326	0.476	0.891	0.946	0.965	0.919	0.936	0.921	0.949
allyl	0.378	0.574	0.864	0.961	0.967	0.931	0.965	0.964	0.967
Ti(BH4)3	0.339	0.486	0.886	0.955	0.942	0.807	0.961	0.965	0.968
bn3pi	0.503	0.634	0.789	0.894	0.896	0.959	0.909	0.968	0.910
ch2ch	0.406	0.550	0.849	0.952	0.956	0.935	0.971	0.970	0.972
ch2nh2	0.368	0.600	0.864	0.956	0.963	0.936	0.973	0.971	0.974
ch3nh	0.383	0.584	0.854	0.943	0.953	0.928	0.973	0.971	0.974
cch	0.461	0.635	0.835	0.965	0.957	0.941	0.976	0.975	0.976
ch3	0.396	0.641	0.831	0.949	0.957	0.936	0.977	0.976	0.977
h2cn	0.433	0.604	0.848	0.953	0.958	0.945	0.981	0.980	0.981
h2ccn	0.425	0.601	0.861	0.959	0.963	0.900	0.981	0.980	0.982
hcnh	0.408	0.617	0.854	0.962	0.961	0.959	0.983	0.982	0.983
sif	0.614	0.752	0.907	0.968	0.956	0.940	0.985	0.974	0.957
cn	0.468	0.663	0.837	0.974	0.973	0.969	0.987	0.986	0.987
clo	0.573	0.567	0.935	0.946	0.952	0.952	0.988	0.986	0.964
h2no	0.413	0.641	0.881	0.962	0.969	0.957	0.988	0.987	0.988
ch	0.480	0.533	0.730	0.698	0.823	0.917	0.941	0.989	0.973
ch2-trip	0.413	0.658	0.789	0.957	0.963	0.961	0.989	0.988	0.989
no	0.452	0.644	0.868	0.910	0.915	0.925	0.954	0.945	0.989
so	0.584	0.570	0.918	0.980	0.987	0.969	0.989	0.989	0.989
nh2	0.393	0.595	0.827	0.886	0.965	0.964	0.990	0.989	0.989
hco	0.432	0.647	0.867	0.968	0.969	0.974	0.990	0.990	0.990
n2h	0.435	0.583	0.855	0.964	0.964	0.970	0.991	0.990	0.991
hs	0.628	0.599	0.925	0.984	0.987	0.976	0.991	0.975	0.949
t-hooo	0.409	0.646	0.886	0.963	0.973	0.946	0.991	0.990	0.991
c-hooo	0.409	0.646	0.887	0.963	0.973	0.957	0.993	0.993	0.993

Table S16– $Continued\ from\ previous\ page$

Molecule	GWH	CORE	SAD	SADNO	HUCKEL	GSZ	LDA-X	CAP-X	CHA-X
hoo	0.377	0.641	0.882	0.966	0.974	0.973	0.995	0.994	0.995
cf	0.481	0.679	0.870	0.910	0.916	0.937	0.996	0.932	0.942
ssh	0.652	0.657	0.942	0.981	0.984	0.979	0.996	0.995	0.996
no2	0.431	0.637	0.894	0.971	0.975	0.985	0.996	0.996	0.996
oh	0.386	0.641	0.853	0.978	0.978	0.874	0.890	0.978	0.996
s2	0.668	0.682	0.940	0.988	0.991	0.991	0.997	0.996	0.997
$_{ m nh}$	0.432	0.637	0.783	0.971	0.975	0.986	0.998	0.998	0.998
sih	0.706	0.642	0.874	0.855	0.934	0.962	0.956	0.954	0.998
02	0.454	0.666	0.883	0.977	0.985	0.988	0.998	0.998	0.998
Best	0	0	0	0	1	0	12	3	21