Équations Différentielles Linéaires d'ordre 2 $_{\rm Corrigé}$

DARVOUX Théo

Novembre 2023

E	Exercices.			
	exercice 12.1	2		
	exercice 12.2	2		
	xercice 12.3	2		
	xercice 12.4	3		
	xercice 12.5	3		
	xercice 12.6	4		
	xercice 12.7	4		
	xercice 12.8	5		

Exercice 12.1 $[\phi \Diamond \Diamond]$

Résoudre le problème de Cauchy ci-dessous :

$$\begin{cases} y'' + 2y' + 10y = 5\\ y(0) = 1 \quad y'(0) = 0 \end{cases}$$

Polynome caractéristique : $r^2 + 2r + 10$. $\Delta = -36$. $r_{\pm} = -1 \pm 3i$.

Solutions de l'équation homogène : $S_0 = \{x \mapsto e^{-x} (\alpha \cos(3x) + \beta \sin(3x)) \mid (\alpha, \beta) \in \mathbb{R}^2 \}$

Solution particulière : $S_p: x \mapsto \frac{1}{2}$.

Solution générale : $S = \{x \mapsto \frac{1}{2} + e^{-x} (\alpha \cos(3x) + \beta \sin(3x)) \mid (\alpha, \beta) \in \mathbb{R}^2 \}.$

Conditions initiales.

Soit $(\alpha, \beta) \in \mathbb{R}^2 \mid \forall x \in \mathbb{R}, \ y(x) = \frac{1}{2} + e^{-x} (\alpha \cos(3x) + \beta \sin(3x)).$

On a $y(0) = 1 \iff \frac{1}{2} + \alpha = 1 \iff \alpha = \frac{1}{2}$.

On a $y'(0) = 0 \iff -\frac{1}{2} + 3\beta = 0 \iff \beta = \frac{1}{6}$.

L'unique solution de ce problème de Cauchy est : $x \mapsto \frac{1}{2} + e^{-x} \left(\frac{1}{2} \cos(3x) + \frac{1}{6} \sin(3x) \right)$

Exercice 12.2 $[\Diamond \Diamond \Diamond]$

Résoudre:

$$y'' - y' - 2y = 2\operatorname{ch}(x)$$

On réecrit d'abord cette équation comme : $y'' - y' - 2y = e^x + e^{-x}$.

Polynome caractéristique : $r^2 - r - 2$. $\Delta = 9$. $r_1 = -1$ et $r_2 = 2$.

Solutions de l'équation homogène : $S_0 = \{x \mapsto \lambda e^{-x} + \mu e^{2x} \mid (\lambda, \mu) \in \mathbb{R}^2\}.$

Équation auxiliaire 1 : $y'' - y' - 2y = e^x$. Solution particulière : $S_{p,1} : x \mapsto Be^x \mid B \in \mathbb{R}$.

Soit $x \in \mathbb{R}$, $B \in \mathbb{R}$ et $y : x \mapsto Be^x$.

On a $y''(x) - y'(x) - 2y(x) = e^x \iff -2Be^x = e^x \iff B = -\frac{1}{2}$.

Ainsi, $S_{p,1}: x \mapsto -\frac{1}{2}e^x$.

Équation auxiliaire $2: y'' - y' - 2y = e^{-x}$. Solution particulière $: S_{p,2}: x \mapsto Cxe^{-x} \mid C \in \mathbb{R}$.

Soit $x \in \mathbb{R}$, $C \in \mathbb{R}$ et $y : x \mapsto Cxe^{-x}$.

On a $y''(x) - y'(x) - 2y(x) = e^{-x} \iff -3Ce^{-x} = e^{-x} \iff C = -\frac{1}{3}$.

Ainsi, $S_{p,2}: x \mapsto -\frac{1}{3}xe^{-x}$.

Par superposition, l'ensemble des solutions est :

$$\{x \mapsto \lambda e^{-x} + \mu e^{2x} - \frac{1}{2}e^x - \frac{1}{3}xe^{-x} \mid (\lambda, \mu) \in \mathbb{R}^2\}$$

Résoudre:

$$y'' + 2y' + y = \cos(2t)$$
 (E).

Polynome caractéristique : $r^2 + 2r + 1$. $\Delta = 0$. r = -1.

Solutions de l'équation homogène : $S_0 = \{x \mapsto \lambda x e^{-x} + \mu e^{-x} \mid (\lambda, \mu) \in \mathbb{R}^2\}.$

Équation auxiliaire : $y'' + 2y' + y = e^{2ix}$. Solution particulière : $S_{p,aux} : x \mapsto Be^{2ix}$ avec $B \in \mathbb{R}$.

Soit $x \in \mathbb{R}$, $B \in \mathbb{R}$ et $y : x \mapsto Be^{2ix}$.

On a: $y''(x) + 2y'(x) + y(x) = e^{2ix} \iff Be^{2ix}(-3+4i) = e^{2ix} \iff B = \frac{1}{-3+4i} = \frac{-3-4i}{25}$.

Passage à la partie réelle : $\Re(y(x)) = \Re\left(-\frac{3+4i}{25}\left(\cos(2x) + i\sin(2x)\right)\right) = -\frac{3}{25}\cos(2x) + \frac{4}{25}\sin(2x)$. Solution générale : $S = \{x \mapsto \lambda x e^{-x} + \mu e^{-x} - \frac{3}{25}\cos(2x) + \frac{4}{25}\sin(2x) \mid (\lambda, \mu) \in \mathbb{R}^2\}$.

Exercice 12.4 $[\blacklozenge \blacklozenge \lozenge]$ Résonance... ou pas

1. Excitation à une pulsation quelconque. Résoudre

$$y'' + 4y = \cos t$$

2. Excitation à la pulsation propre : résonance. Résoudre

$$y'' + 4y = \cos(2t)$$

1. Polynome caractéristique : $r^2 + 4$. $\Delta = -16$. $r_1 = 2i$, $r_2 = -2i$.

Solutions de l'équation homogène : $S_0 = \{x \mapsto \lambda \cos(2x) + \mu \sin(2x) \mid (\lambda, \mu) \in \mathbb{R}^2\}.$

Equation auxiliaire : $y'' + 4y = e^{it}$. Solution particulière : $S_{p,aux} : x \mapsto Be^{ix}$ avec $B \in \mathbb{R}$.

Soit $x, B \in \mathbb{R}$, et $y : x \mapsto Be^{ix}$.

On a: $y''(x) + 4y(x) = e^{ix} \iff 3Be^{ix} = e^{ix} \iff B = \frac{1}{3}$.

Passage à la partie réelle : $\Re(y(x)) = \frac{1}{3}\cos(x)$.

Solution générale : $S = \{x \mapsto \lambda \cos(2x) + \mu \sin(2x) + \frac{1}{3}\cos(x) \mid (\lambda, \mu) \in \mathbb{R}^2\}$

2. L'ensemble des solutions de l'équation homogène est encore S_0 .

Équation auxiliaire : $y'' + 4y + e^{2it}$. Solution particulière : $S_{p,aux} : x \mapsto Bxe^{2ix}$ avec $B \in \mathbb{R}$.

Soit $x, B \in \mathbb{R}$ et $y : x \mapsto Bxe^{2ix}$.

On a: $y''(x) + 4y(x) = e^{2ix} \iff Be^{2ix}(4i - 4x) + 4Bxe^{2ix} = e^{2ix} \iff B = \frac{1}{4i} = -\frac{i}{4}$

Passage à la partie réelle : $\Re(y(x)) = \Re\left(-\frac{i}{4}x(\cos(2x) + i\sin(2x))\right) = \frac{1}{4}x\sin(2x)$.

Solution générale : $S = \{x \mapsto \lambda \cos(2x) + \mu \cos(2x) + \frac{1}{4}x \sin(2x) \mid (\lambda, \mu) \in \mathbb{R}^2\}.$

Exercice 12.5 $[\blacklozenge \blacklozenge \Diamond]$

Soit $\alpha \in \mathbb{R}$. Résoudre l'équation différentielle

$$2y'' + \alpha y' + \alpha y = 0.$$

On discutera selon les valeurs de α .

On se ramène à l'équation différentielle : $y'' + \frac{\alpha}{2}y' + \frac{\alpha}{2}y = 0$.

Polynome caractéristique : $r^2 + \frac{\alpha}{2}r + \frac{\alpha}{2}$. $\Delta = \alpha(\frac{\alpha}{4} - 2)$

On a alors trois cas...

 \odot Cas $\alpha \in \{0, 8\}$.

Alors $\Delta = 0$ et $r = -\frac{\alpha}{4}$.

Solution générale : $S = \{x \mapsto \lambda x e^{-\frac{\alpha}{4}x} + \mu e^{-\frac{\alpha}{4}x} \mid (\lambda, \mu) \in \mathbb{R}^2\}.$

 \odot Cas $\alpha \in]0,8[$.

Alors $\Delta < 0$ et $r_{\pm} = -\frac{\alpha}{4} \pm i\sqrt{-\Delta}$.

Solution générale : $S = \{x \mapsto e^{-\frac{\alpha}{4}x} \left(\lambda \cos(\sqrt{-\Delta}x) + \mu \sin(\sqrt{-\Delta}x)\right) \mid (\lambda, \mu) \in \mathbb{R}^2 \}$

 \odot Cas $\alpha \notin [0, 8]$.

Alors $\Delta > 0$ et $r_1 = -\frac{\alpha}{4} + \sqrt{\Delta}$, $r_2 = -\frac{\alpha}{4} - \sqrt{\Delta}$.

Solution générale : $S = \{x \mapsto \lambda e^{r_1 x} + \mu e^{r_2 x} \mid (\lambda, \mu) \in \mathbb{R}^2 \}.$

Trop la flemme de remplacer les Δ et r_{\pm} , ça sert à rien.

On a vu les cas pour toutes les valeurs possibles de α .

Soit $a \in \mathbb{R}$. En discutant selon la valeur de a, résoudre

$$y'' - 2ay' + (1 + a^2)y = \sin x.$$

 \odot On suppose $a \neq 0$.

Polynome caractéristique : $r^2 - 2ar + (1+a^2)$. $\Delta = -4$. $r_1 = 1+i$, $r_2 = 1-i$.

Solutions de l'équation homogène : $S_0 = \{x \mapsto e^x (\lambda \cos(x) + \mu \sin(x)) \mid (\lambda, \mu) \in \mathbb{R}^2\}.$

Équation auxiliaire : $y'' - 2ay' + (1 + a^2)y = e^{ix}$. Solution particulière : $x \mapsto Be^{ix}$.

Soit $x, B \in \mathbb{R}$ et $y: x \mapsto Be^{ix}$.

On a: $-Be^{ix} - 2aiBe^{ix} + (1+a^2)Be^{ix} = e^{ix} \iff B = \frac{1}{a^2 - 2ai} = \frac{a+2i}{a^3 + 4a}$.

Passage à la partie imaginaire : $\Im(y(x)) = \Im\left(\frac{a+2i}{a^3+4a}(\cos(x)+i\sin(x))\right) = \frac{a}{a^3+4a}\sin(x) + 2\cos(x)$. Solution générale : $S = \{x \mapsto e^x(\lambda\cos(x)+\mu\sin(x)) + \frac{a}{a^3+4a}\sin(x) + 2\cos(x) \mid (\lambda,\mu) \in \mathbb{R}^2\}$.

 \odot On suppose a=0. Polynome caractéristique : r^2+r . $\Delta=-4$. $r_1=i$ et $r_2=-i$.

Solutions de l'équation homogène : $\{x \mapsto \lambda \cos(x) + \mu \sin(x) \mid (\lambda, \mu) \in \mathbb{R}^2\}$.

Équation auxiliaire : $y'' + y = e^{ix}$. Solution particulière : $x \mapsto Bxe^{ix}$.

Soit $x, B \in \mathbb{R}$ et $y : x \mapsto Bxe^{ix}$.

On a: $y''(x) + y(x) = e^{ix} \iff 2iBe^{ix} = e^{ix} \iff B = \frac{1}{2i} = -\frac{i}{2}$.

Passage à la partie imaginaire : $\Im(y(x)) = \Im(-\frac{ix}{2}(\cos(x) + i\sin(x))) = -\frac{x}{2}\cos(x)$ Solution générale : $S = \{x \mapsto \lambda\cos(x) + \mu\sin(x) - \frac{x}{2}\cos(x) \mid (\lambda, \mu) \in \mathbb{R}\}.$

Exercice 12.7 $[\blacklozenge \blacklozenge \lozenge]$

On considère l'équation différentielle à coefficients non constants ci-dessous :

(E)
$$t^2y'' + 4ty' + (2+t^2)y = 1 \text{ sur } \mathbb{R}_+^*.$$

Soient y une fonction définie sur \mathbb{R}_+^* et $z:t\mapsto t^2y(t)$.

- 1. Justifier que y est deux fois dérivable sur \mathbb{R}_+^* si et seulement si z est deux fois dérivable sur \mathbb{R}_+^* .
- 2. Démontrer que y est solution de l'équation si est seulement si z est solution d'une équation différentielle très simple que l'on précisera.
- 3. Donner l'ensemble des solutions de (E).
- 1. Soit $t \in \mathbb{R}_+^*$.

Supposons z deux fois dérivable.

Alors $z'(t) = 2ty(t) + t^2y'(t)$ et $z''(t) = 2y(t) + 4ty'(t) + t^2y''(t)$.

Ainsi, y est deux fois dérivable.

Supposons y deux fois dérivable.

- z est dérivable une fois comme produit de fonctions dérivable et une deuxième fois comme somme et produit de fonctions dérivables.
- 2. Supposons y solution de (E), y est alors deux fois dérivable, z aussi. On a $t^2y'' + 4ty' + 2y + t^2y = 1$. Par identification, z'' + z = 1 (E')
- 3. Polynome caractéristique : $r^2 + 1$. $\Delta = -4$. $r_1 = i$ et $r_2 = -i$.

Solutions de l'équation homogène : $S_0 = \{x \mapsto \lambda \cos(x) + \mu \sin(x) \mid (\lambda, \mu) \in \mathbb{R}^2\}.$

Solution particulière : $S_p : x \mapsto 1$.

Solution générale : $S = \{x \mapsto \lambda \cos(x) + \mu \sin(x) + 1 \mid (\lambda, \mu) \in \mathbb{R}^2\}.$

Ainsi, les solution de (E) sur \mathbb{R}_+^* sont : $S_E = \{x \mapsto \frac{\lambda}{x^2}\cos(x) + \frac{\mu}{x^2}\sin(x) + \frac{1}{x^2} \mid (\lambda, \mu) \in \mathbb{R}^2\}$

Trouver toutes les fonctions f dérivables sur \mathbb{R} et telles que

$$\forall x \in \mathbb{R}, \ f'(x) = f(\pi - x).$$

Analyse.

Supposons qu'il existe f dérivable sur \mathbb{R} telle que $\forall x \in \mathbb{R}, f'(x) = f(\pi - x)$.

Soit $x \in \mathbb{R}$.

Alors, $f''(x) = -f'(\pi - x) = -f(\pi - \pi + x) = -f(x)$.

Ainsi, f''(x) + f(x) = 0

Polynome caractéristique : $r^2 + 1$. $\Delta = -4$, $r_1 = i$ et $r_2 = -i$.

Solution générale : $S = \{x \mapsto \lambda \cos(x) + \mu \sin(x) \mid (\lambda, \mu) \in \mathbb{R}^2\}.$

Synthèse.

Soit $x, \lambda, \mu \in \mathbb{R}$ et $y: x \mapsto \lambda \cos(x) + \mu \sin(x)$ dérivable comme somme et produit.

On a : $y'(x) = -\lambda \sin(x) + \mu \cos(x)$.

Et:

$$y'(x) = y(\pi - x) \iff -\lambda \sin(x) + \mu \cos(x) = \lambda \cos(\pi - x) + \mu \sin(\pi - x)$$
$$\iff -\lambda \sin(x) + \mu \cos(x) = -\lambda \cos(x) + \mu \sin(x)$$
$$\iff (\lambda + \mu)(\cos(x) - \sin(x)) = 0$$

Conditions initiales : pour x = 0.

$$(\lambda + \mu) = 0$$

$$\iff \lambda = -\mu$$

Ainsi, les solutions sont : $\{x \mapsto \lambda(\cos(x) - \sin(x)) \mid \lambda \in \mathbb{R}\}.$