Reihen

Ziel. Untersuche "unendliche Summen" $a_0 + a_1 + a_2 + \dots$ für eine gegebene Folge $(a_n)_{n\geq 0}.$

3.1 Konvergenzkriterien

Definition 3.1. Sei $(a_j)_{j\geq 0}$ gegeben und $n\in\mathbb{N}_0$. Dann heißt

$$s_n = \sum_{j=0}^n a_j$$

n-te Partialsumme und die Folge $(s_n)_{n\geq 0}$ heißt Reihe. Man schreibt statt (s_n) $\sum_{j\geq 0} a_j$ (oder $\sum_{j} a_{j}$ oder $\sum a_{j}$). Die Reihe konvergiert (bzw. divergiert), wenn $(s_{n})_{n\geq 0}$ konvergiert (bzw. divergiert).

Wenn Konvergenz vorliegt, dann bezeichnet man den Grenzwert von (s_n) mit $\sum a_j$ ("Reihenwert").

Beispiel 3.2. a) Sei $a_j = \frac{1}{i!}$ $(j \in \mathbb{N}_0)$.

$$\implies s_n = \sum_{j=0}^n \frac{1}{j!} = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \dots + \frac{1}{n!} \longrightarrow e \ (n \to \infty), \text{ nach Bsp. 2.16.}$$

$$\implies \exists \sum_{j=0}^{\infty} \frac{1}{j!} = e.$$

b) Geometrische Reihe: Sei $z \in \mathbb{C}$ mit |z| < 1, $a_j = z^j$.

(Also
$$s_n = \sum_{j=0}^n z^j$$
, $(s_n) = 1, 1 + z, 1 + z + z^2 \cdots$)

Bsp. 0.2:
$$\sum_{j=0}^{n} z^{j} = \frac{1-z^{n+1}}{1-z} = \frac{1}{1-z} - \frac{z^{n+1}}{1-z}$$
, Übung: $z^{n+1} \to 0 \ (n \to \infty)$.

$$\implies \exists \sum_{j=0}^{\infty} z^j = \frac{1}{1-z}, \ |z| < 1.$$

Anderer Beweis: Sei |z| < 1. Setze $b_n = |z^{n+1}| = |z|^{n+1}$.

Dann: $0 \le b_{n+1} = |z| \cdot b_n \le b_n$.

Thm 2.14: $\exists b = \lim_{n \to \infty} b_n \ge 0$. Ferner folgt mit $n \to \infty$:

$$0 \le b = |z| \cdot b \stackrel{|z| < 1}{\Longrightarrow} b = 0.$$

c) Sei
$$a_j = \frac{1}{j(j+1)} = \frac{1}{j} - \frac{1}{j+1}, j \in \mathbb{N}.$$

$$\implies s_n = \sum_{j=1}^n \frac{1}{j(j+1)} = \underbrace{\sum_{j=1}^n \frac{1}{j}}_{k=j} - \underbrace{\sum_{j=1}^n \frac{1}{j+1}}_{k=j+1} = \sum_{k=1}^n \frac{1}{k} - \sum_{k=2}^{n+1} \frac{1}{k}$$
$$= 1 - \frac{1}{n+1} \longrightarrow 1 \ (n \to \infty) \implies \exists \sum_{j=1}^\infty \frac{1}{j(j+1)} = 1.$$

d) Harmonische Reihe: Sei $a_j = \frac{1}{i}, j \in \mathbb{N}.$

$$\implies s_n = \sum_{j=1}^n \frac{1}{j} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}, \ n \in \mathbb{N}.$$

Behauptung: $s_{2^j} \geq 1 + \frac{j}{2} \ \forall j \in \mathbb{N}.$

 $\Rightarrow (s_n)$ unbeschränkt.

 \Rightarrow (s_n) divergiert, also $\sum \frac{1}{i}$ divergiert.

Beweis. (IA) j = 1.

$$s_2 = 1 + \frac{1}{2} \ge 1 + \frac{1}{2}$$

(IS): Es gelte: $s_{2^j} \ge 1 + \frac{j}{2}$ für ein $j \in \mathbb{N}$ (IV).

Dann:
$$s_{2^{j+1}} = \sum_{k=1}^{2^j} \frac{1}{k} + \sum_{k=2^{j+1}}^{2^{j+1}} \frac{1}{k} \stackrel{\text{(IV)}}{\geq} 1 + \frac{j}{2} + \frac{2^j}{2^{j+1}} = 1 + \frac{j+1}{2}$$

(da in zweiter Summe $k \leq 2^{j+1}$).

e) Sei $a_j = (-1)^j, j \in \mathbb{N}_0$. Für $n \in \mathbb{N}_0$:

$$s_n = \sum_{j=0}^n (-1)^j = \begin{cases} 1 - 1 + 1 - \dots + 1 - 1, & n \text{ ungerade} \\ 1 - 1 + 1 - \dots + 1 - 1 + 1, & n \text{ gerade} \end{cases} = \begin{cases} 0, & n \text{ ungerade} \\ 1, & n \text{ gerade} \end{cases}$$

 $\implies (s_n)_n$ hat 2 verschiedene HP, 0 und 1.

Kor. 2.24 \implies (s_n) divergiert, d.h. Reihe divergiert.

Bemerkung. Man definiert und behandelt Reihen, die bei $k_0 \in \mathbb{Z}$ beginnen (statt $k_0 = 0$ in Def. 3.1) genauso.

Satz 3.3. Seien $\sum a_k$, $\sum b_k$ konvergente Reihen und $\alpha, \beta \in \mathbb{C}$. Dann:

$$\exists \sum_{k=0}^{\infty} (\alpha a_k + \beta b_k) = \alpha \sum_{k=0}^{\infty} a_k + \beta \sum_{k=0}^{\infty} b_k.$$

Beweis.
$$\sum_{j=0}^{n} (\alpha a_j + \beta b_j) = \alpha \sum_{j=0}^{n} a_j + \beta \sum_{j=0}^{n} b_j \longrightarrow \alpha \sum_{j=0}^{\infty} a_j + \beta \sum_{j=0}^{\infty} b_j \ (n \to \infty)$$
(nach Voraussetzung und Satz 2.7).

Satz 3.4. Sei $a_j \geq 0$ für alle $j \in \mathbb{N}_0$ und die Partialsummen $(s_n)_{n \in \mathbb{N}_0}$ seien beschränkt. Dann:

$$\exists \sum_{j=0}^{\infty} a_j = \sup s_n.$$

Beweis. Es gilt
$$s_{n+1} - s_n = \sum_{j=0}^{n+1} a_j - \sum_{j=0}^n a_j = a_{n+1} \ge 0 \implies (s_n)$$
 wächst. Da (s_n) beschränkt, folgt Beh. aus Thm. 2.14.

Satz 3.5 (CAUCHY-Kriterium). Sei $(a_j)_{j\geq 0}$ gegeben. Die Reihe $\sum_j a_j$ konvergiert genau dann, wenn:

$$\forall \varepsilon > 0 \ \exists N_{\varepsilon} \in \mathbb{N} \ \forall n > m \ge N_{\varepsilon} : \left| \sum_{j=n+1}^{n} a_{j} \right|.$$
 (3.1)

Beweis.
$$\sum a_j$$
 konvergiert \iff $(s_n)_n = \left(\sum_{j=0}^n a_j\right)_n$ ist CF.

$$\iff \forall \varepsilon > 0 \; \exists N_\varepsilon \in \mathbb{N} \; \forall n > m \geq N_\varepsilon : \varepsilon \geq |s_n - s_m| = \left|\sum_{j=m+1}^n a_j\right|.$$

Korollar 3.6. Wenn $\sum a_j$ konvergiert, dann gilt $a_j \longrightarrow 0$ für $(j \rightarrow \infty)$.

Bemerkung. Umkehrung ist falsch! $\frac{1}{j} \longrightarrow 0$, aber $\sum \frac{1}{j}$ divergiert.

Beweis des Korollars. Wähle in (3.1)
$$n = m + 1 > N_{\varepsilon}$$
 und erhalte $\forall \varepsilon > 0 \ \exists N_{\varepsilon} \in \mathbb{N} \ \forall m \geq N_{\varepsilon} : |a_{m+1}| \leq \varepsilon.$

Beispiel 3.7. Für $|z| \ge 1$ ist $\sum_{j\ge 0} z^j$ divergent, da dann $|z^j| = |z|^j \ge 1$ keine Nullfolge (NF). (Speziallfall: z = -1, schon im Bsp. 3.25 behandelt.)

Satz 3.8 (Leibniz-Kriterium). Sei $b_k \geq b_{k+1} \geq 0$ für alle $k \in \mathbb{N}_0$ und $b_k \longrightarrow 0$ für $(k \to \infty)$. Dann:

$$\exists \sum_{k=0}^{\infty} (-1)^k b_k.$$

Beweis. Sei $n \in \mathbb{N}_0$. Dann:

$$s_{2n+2} - s_{2n} = \sum_{j=0}^{2n+2} (-1)^j b_j - \sum_{j=0}^{2n} (-1)^j b_j$$
$$= (-1)^{2n+2} b_{2n+2} + (-1)^{2n+1} b_{2n+1}$$
$$= b_{2n+2} - b_{2n+1} \le 0 \text{ n.V.}$$
$$\implies (s_n)_n \text{ fällt.}$$

Ebenso:

$$s_{2n+3} - s_{2n+1} = (-1)^{2n+3}b_{2n+3} + (-1)^{2n+2}b_{2n+2}$$

= $-b_{2n+3} + b_{2n+2} \ge 0$ n.V.
 $\Longrightarrow (s_{2n+1})_n$ wächst.

Damit:
$$s_1 \le s_{2n+1} = \underbrace{(-1)^{2n+1}b_{2n+1}}_{\le 0} + s_{2n} \le s_{2n} \le s_2.$$

$$\implies (s_{2n})_n, (s_{2n+1})_n \text{ sind beschränkt.}$$

Thm.
$$2.14 \Longrightarrow \exists s = \lim_{n \to \infty} s_{2n}, t = \lim_{n \to \infty} s_{2n+1}.$$

Thm.
$$2.14 \Longrightarrow \exists s = \lim_{n \to \infty} s_{2n}, t = \lim_{n \to \infty} s_{2n+1}.$$

Ferner: $t - s = \lim_{n \to \infty} (s_{2n+1} - s_{2n}) = \lim_{n \to \infty} (-1)^{2n+1} b_{2n+1} = 0$ (weil

$$\left| (-1)^{2n+1} b_{2n+1} \right| = b_{2n+1} \longrightarrow 0$$

nach Voraus.).

Lemma 2.22 $\implies s = t$ ist einziger HP von $(s_n)_n$. Nach Kor. 2.24 konvergiert (s_n) .

Beispiel 3.9. $\exists \sum_{k=1}^{\infty} (-1)^k \frac{1}{k} \stackrel{!}{=} -\ln 2$]. Denn: $b_k = \frac{1}{k}$ ist fallende NF ("alternierende Reihe").

Beachte: $\sum_{k} |(-1)^{k} \frac{1}{k}| = \sum_{k} \frac{1}{k}$ divergiert nach Bsp. 3.2.

Definition 3.10. Eine Reihe $\sum a_k$ konvergiert absolut, wenn die Reihe $\sum_k |a_k|$ der Beträge konvergiert.

a) Konv. ⇒ absolute Konvergenz (siehe Bsp. 3.9). Bemerkung 3.11.

- b) $a_k \ge 0$: Konvergenz = absolute Konvergenz.
- c) absolute Konvergenz \implies Konvergenz.

Beweis. Nach Satz 3.5 und der absoluten Konvergenz gilt: $\forall \varepsilon > 0 \ \exists N_{\varepsilon} \in \mathbb{N}$.

$$\forall n > m \ge N_{\varepsilon} : \varepsilon \ge \sum_{k=m+1}^{n} |a_k| \stackrel{\Delta\text{-Ungl.}}{\ge} \left| \sum_{k=m+1}^{n} a_k \right| \stackrel{3.5}{\Longrightarrow} \text{Beh.}$$

Satz 3.12 (Majorantenkriterium). Gegeben seien a_k, b_k für $k \in \mathbb{N}_0$. Dann:

a) Wenn $0 \le |a_k| \le |b_k| \ \forall k \in \mathbb{N}_0 \ und \ \sum_k b_k \ konvergiert, \ dann \ konvergiert \ \sum a_k \ absolut \ und$

$$\sum_{k=0}^{\infty} |a_k| \le \sum_{k=0}^{\infty} b_k.$$

b) Wenn $a_k \ge b_k \ge 0 \ \forall k \in \mathbb{N}_0 \ und \sum b_k \ divergiert, \ dann \ divergiert \sum a_k$.

Beweis. a)
$$\sum_{j=0}^{n} |a_j| \stackrel{\text{n.V.}}{\leq} \sum_{j=0}^{n} b_j \stackrel{\text{n.V.}}{\leq} \sum_{j=0}^{\infty} b_j$$
.

Satz 3.4
$$\Longrightarrow \exists \sum_{j=0}^{\infty} |a_j| \le \sum_{j=0}^{\infty} b_j$$
.

b) Annahme: $\sum a_k$ konvergiere $\stackrel{1}{\Longrightarrow} \sum b_k$ konvergiert \nleq Voraussetzung in 2. \Longrightarrow Beh. 2.

Beispiel 3.13. Beh. Sei $p \in \mathbb{Q}$. Dann konvergiert $\sum_{k\geq 1} k^{-p}$ für $p\geq 2$ und divergiert für $p\leq 1$.

Beweis.
$$p=2$$
: Sei $k\in\mathbb{N}$. Dann $k(k+1)\leq 2k^2\implies \frac{1}{k^2}\leq \frac{2}{k(k+1)}=b_k$

Bsp. 3.2, Satz 3.4
$$\Longrightarrow \exists \sum_{k=1}^{\infty} b_k = 2$$
. Satz 3.121 $\Longrightarrow \exists \sum_{k=1}^{\infty} \frac{1}{k^2} \le 2$.

Sei
$$p > 2$$
: $k^p = \underbrace{k^{p-2}}_{\geq 1_{p-2} = 1} k^2 \geq k^2$. $\Longrightarrow \frac{1}{k^p} \leq \frac{1}{k^2} \stackrel{3.121}{\Longrightarrow} \exists \sum_{k=1}^{k=1} \frac{1}{k^p}$

Sei
$$p \le 1$$
: Dann: $k^p = \underbrace{k^{p-1}}_{\le 1} k \le k \implies \frac{1}{k} \le \frac{1}{k^p}$. Bsp. 3.2: $\sum \frac{1}{k}$ div. $\xrightarrow{3.121}$ $\sum \frac{1}{k^p}$ div. \square

- **Satz 3.14** (Quotientenkriterium). Sei $(a_k)_{k\geq 0}$, sodass es ein $k_0 \geq 0$ gibt mit $a_k \neq 0$ für $k \geq k_0$ und sodass $\left(\frac{|a_{k+1}|}{|a_k|}\right)_{k\geq k_0}$ beschränkt sei. Dann gelten:
 - a) $\overline{\lim}_{k\to\infty} \frac{|a_{k+1}|}{|a_k|} < 1 \implies \sum_k a_k \text{ konvergient absolut.}$

b)
$$\lim_{k \to \infty} \frac{|a_{k+1}|}{|a_k|} < 1 \implies \sum_k a_k \text{ divergient.}$$

Beweis. a) Wähle $\varepsilon > 0$, sodass $q = \varepsilon + \overline{\lim_{k \to \infty} \frac{|a_{k+1}|}{|a_k|}} < 1$.

Nach Lemma 2.27 $\implies \exists K \in \mathbb{N} : \frac{|a_{k+1}|}{|a_k|} \le q$ für alle $k \ge K$, wobei $K \ge k_0$. Sei $k \ge K$. Dann:

$$|a_{k+1}| \le q \cdot |a_k| \le q^2 |a_{k-1}| \le \ldots \le q^{k-K+1} |a_K|$$
.

$$\operatorname{Bsp} 3.2 \colon \exists \sum_{k=K}^{\infty} q^{k-K+1} \stackrel{3.121}{\Longrightarrow} \exists \sum_{k=K}^{\infty} |a_{k+1}| \implies \exists \sum_{k=0}^{\infty} |a_k| \; (\operatorname{da} \, q < 1).$$

b) Ähnlich: $\exists K \ge k_0 \text{ mit } \frac{|a_{k+1}|}{|a_k|} \ge 1 \text{ für alle } k \ge K.$

$$\implies |a_j| \ge |a_k| \ne 0 \ \forall j \ge K$$

 $\implies (a_k)_k$ ist keine Nullfolge $\stackrel{3.6}{\Longrightarrow} \sum a_k$ divergiert.

Beispiel 3.15. a) Sei $z \in \mathbb{C}$ und $a_k = \frac{z^k}{k!}$ $(k \in \mathbb{N}_0)$. Damit:

$$\frac{|a_{k+1}|}{|a_k|} = \left| \frac{a_{k+1}}{a_k} \right| = \frac{\left| \frac{z^{k+1}}{(k+1)!} \right|}{\left| \frac{z^k}{k!} \right|} = \frac{z^{k+1}k!}{(k+1)!|z|^k} = \frac{|z|}{k+1} \longrightarrow 0 \ (k \to \infty) \ \forall z \in \mathbb{C}.$$

$$\xrightarrow{3.141} \sum_{k=0}^{\infty} \frac{z^k}{k!}$$
 konvergiert absolut $\forall z \in \mathbb{C}$.

b) Wenn $\lim_{k\to\infty} \frac{|a_{k+1}|}{|a_k|} \le 1 \le \overline{\lim_{k\to\infty}} \frac{|a_{k+1}|}{|a_k|}$, (*) dann ist in 3.14 keine allgemeine Aussage möglich, denn (vgl. Bsp. 3.13):

a)
$$a_k = \frac{1}{k}$$
. Dann $\left| \frac{a_{k+1}}{a_k} \right| = \frac{k}{k+1} \longrightarrow 1 \ (k \to \infty) \implies (*)$ gilt, also $\sum \frac{1}{k}$ divergiert.

b)
$$a_k = \frac{1}{k^2}$$
. Dann $\left| \frac{a_{k+1}}{a_k} \right| = \frac{k^2}{(k+1)^2} \longrightarrow 1 \ (k \to \infty) \implies (*)$ gilt, aber $\sum \frac{1}{k^2}$ konvergiert.

Satz 3.16 (Wurzelkriterium). Sei $(a_k)_{k\geq 0}$ eine Folge, sodass $\left(\sqrt[k]{|a_k|}\right)_{k\geq 0}$ beschränkt ist. Dann:

a)
$$\overline{\lim}_{k\to\infty} \sqrt[k]{|a_k|} < 1 \implies \sum a_k \text{ konvergient absolut.}$$

b)
$$\overline{\lim}_{k\to\infty} \sqrt[k]{|a_k|} > 1 \implies \sum a_k \text{ divergient.}$$

Beweis. a) Wähle $q \in \left(\overline{\lim}_{k \to \infty} \sqrt[k]{|a_k|}, 1\right)$.

Lemma 2.27 $\Longrightarrow \exists K \in \mathbb{N} : |a_k|^{\frac{1}{K}} \leq q, \, \forall k \geq K \implies |a_k| \leq q^k \, (\forall k \geq K).$

$$q < 1$$
: Bsp. 3.2 $\Longrightarrow \exists \sum_{k=0}^{\infty} q^k \stackrel{3.141}{\Longrightarrow} \exists \sum_{k=0}^{\infty} |a_k|$.

b) Nach Voraussetzung \exists TF mit $|a_{kj}|^{\frac{1}{k_j}} \ge 1$ $(\forall j)$.

$$\implies |a_{kj}| \ge 1 \ (\forall j \in \mathbb{N}) \implies (a_k)_k \text{ ist keine NF.} \stackrel{3.6}{\implies} \sum a_k \text{ divergiert.}$$

Beispiel 3.17. a) Sei $a_k = 2^k z^k$ für $k \in \mathbb{N}_0$ und ein festes $z \in \mathbb{C}$. Dann:

$$\sqrt[k]{|a_k|} = (2^k |z|^k)^{\frac{1}{k}} = 2|z| \begin{cases} <1, & |z| < \frac{1}{2} \\ >1, & |z| > \frac{1}{2} \end{cases}.$$

Satz 3.16 $\Longrightarrow \sum_{k\geq 0} 2^k z^k$ konvergiert absolut wenn $|z| < \frac{1}{2}$ und divergiert, wenn $|z| > \frac{1}{2}$.

b) Es ist keine allgemeine Aussage in 3.16 möglich, wenn $\overline{\lim}_{k\to\infty} \sqrt[k]{|a_k|} = 1$. (Gleiches Beispiel wie in Bsp. 3.152).

3.2 Einige Vertiefungen/Vermischtes

Beispiel 3.18 (Dezimaldarstellung). Sei $r \in \mathbb{R}$. Setze $m := \max \{k \in \mathbb{Z} : k \le r\} =: [r]$ ("Gaußklammer"). $\Longrightarrow x := r - m \in [0,1) \Longrightarrow \exists ! \ x_1 \in \{0,\ldots,9\} \ \text{mit} \ x_1 \cdot 10^{-1} \le x < (x_1+1) \cdot 10^{-1}$. Induktiv findet man für jedes n eine "Ziffer" $x_n \in \{0,\ldots,9\}$ mit

$$x_n \cdot 10^{-n} \le x - x_1 \cdot 10 - 1 - \dots - x_{n-1} \cdot 10^{-(n-1)} \le (x_n + 1) \cdot 10^{-n}$$

$$\implies 0 \le x - \sum_{j=1}^{n} x_j 10^{-j} < 10^n$$

$$\xrightarrow{n\to\infty} \exists x = \sum_{j=1}^{\infty} x_j 10^{-j} \text{ und } r = \lim_{n\to\infty} \underbrace{\left(m + \sum_{j=1}^{n} x_j 10^{-j}\right)}_{\in \mathbb{O}} = m + \sum_{j=0}^{\infty} x_j 10^{-j}.$$

Schreibweise: $r = m, x_1 x_2 x_3 \dots$

Frage: Hat r genau eine solche Darstellung?

Problem: Sei $x_k = 9$ für alle $k \ge l + 1$ und $x_l < 9$ für ein $l \in \mathbb{N}$, also

$$r = m, x_1 \dots x_l 9999 \dots \tag{*}$$

Beachte

$$\sum_{k=l+1}^{\infty} 9 \cdot 10^{-k} = 9 \left(\sum_{k=0}^{\infty} \left(\frac{1}{10} \right)^k - \sum_{k=0}^{l} \left(\frac{1}{10} \right)^k \right)$$

$$\stackrel{0.2,3.2}{=} 9 \left(\frac{1}{1 - \frac{1}{10}} - \frac{1 - 10^{-(l+1)}}{1 - \frac{1}{10}} \right) = 9 \frac{10^{-l-1}}{\frac{9}{10}} = 10^{-l}$$

r hat also zwei verschiedene Darstellungen, nämlich (*) und

$$r = m + \sum_{k=1}^{l-1} x_k 10^{-k} + (x_k + 1)10^{-l} = m, x_1 \dots x_{l-1}(x_l + 1)$$
 (**)

Man verwendet (**) statt (*). Also setzt man

$$\widetilde{x_k} = \begin{cases} x_k & , k = 1, \dots, l-1 \\ x_l + 1 & , k = l \\ 0 & , k > l \end{cases}$$

und verwendet $\widetilde{x_k}$ statt x_k . Entsprechend schreibt man statt $r=m,999\ldots$ nun r=m+1. Behauptung. Mit dieser Vereinbarung hat jedes $r\in\mathbb{R}$ genau eine Dezimaldarstellung $r=m,x_1x_2\ldots$ Umgekehrt definiert jede Folge $(x_k)_{k\geq 1}$ mit $x_k\in\{0,\ldots,9\}$ ein $x=\sum_{k=0}^{\infty}x_k10^{-k}\in[0,1]$.

Bemerkung. Hier kann man 10 durch jedes $b \in \mathbb{N}$ mit $b \geq 2$ ersetzen. Dann gilt $x_k \in \{0, 1, \dots, b-1\}$.

Beachte. Wir haben gezeigt: $\forall r \in \mathbb{R} \, \exists q_n \in \mathbb{Q} : q_n \to r \ (n \to \infty).$

Definition 3.19 (Cantor). Eine Menge M heißt $abz\ddot{a}hlbar$ unendlich, wenn sie gleichmächtig zu \mathbb{N} ist. M heißt $\ddot{u}berabz\ddot{a}hlbar$, wenn M weder abzählbar unendlich noch endlich ist.

Bemerkung. Wenn M abzählbar unendlich ist, dann setze $x_n = \varphi^{-1}(n), n \in \mathbb{N}$, wenn φ bijektive Abbildung $m \to \mathbb{N}$ ist, und schreibe $M = (x_1, x_2, x_3, \dots)$ als Folge.

Beispiel 3.20. a) Behauptung. \mathbb{Z} ist abzählbar unendlich.

Beweis. Betrachte

$$\varphi: \mathbb{N} \to \mathbb{Z}$$

$$n \mapsto \begin{cases} \frac{n}{2} &, n \text{ gerade} \\ -\frac{n-1}{2} &, n \text{ ungerade} \end{cases} \quad (n \in \mathbb{N})$$

zeige: φ ist bijektiv

TODO hier scheint in meinen Mitschrieb was zu fehlen...

b) $Behauptung. \mathbb{Q}$ ist abzählbar.

Beweis. Schreibe \mathbb{Q} in einem Schema (streiche ungekürzte Brüche).

- \leadsto Bild für Bijektion $\varphi:\mathbb{N}\to\mathbb{Q}$
- \Rightarrow \mathbb{Q} ist abzählbar, d.h. mit $q_n = \varphi(n), n \in \mathbb{N}$ gilt $\mathbb{Q} = (q_n)_{n \geq 1} = (0, 1, \frac{1}{2}, -\frac{1}{2}, -1, -2, \dots)$. Nach Bsp. 3.17 ist \mathbb{R} die Menge aller Häufungspunkte von \mathbb{Q} .
- c) Behauptung. (Cantor) M=(0,1) ist überabzählbar. (Damit ist auch $\mathbb R$ überabzählbar, da es eine Bijektion $f:\mathbb R\to (0,1)$ gibt, z.B. $f(x)=\frac12+\frac{x}{1+2|x|}$.

Beweis. Annahme: (0,1) sei abzählbar. Also existiert bijektives $\varphi : \mathbb{N} \to (0,1)$ mit $(0,1) = (x_n)_{n \geq 1}$, wobei $x_n = \varphi(n)$. Sei ξ_n die n-te Dezimalstelle von $x_n, n \in \mathbb{N}$. Setze

$$\eta_n = \begin{cases} 0, & \xi_n = 0 \\ 1, & \xi_n \neq 0 \end{cases} \neq \xi_n$$

Bsp. 3.17
$$\Longrightarrow \begin{cases} y = 0, \eta_1 \eta_2 \eta_3 \dots & \in (0, 1) \\ \text{Da } \eta_k \neq \xi_k \, \forall k \in \mathbb{N}, \, \text{ist} y \neq x_n \, \forall n \in \mathbb{N} \implies y \notin (0, 1) \end{cases}$$

Umordnung von Reihen

Beispiel 3.21. Nach Bsp. 3.9 konvergiert $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} \cdots$. Definiere rekursiv eine "Umordnung" $(b_k)_{k\geq 1}$ von $a_k = (-1)^{k+1} \frac{1}{k}, k \in \mathbb{N}$.

Setze:
$$m=1$$
: $b_1:=1,\ b_2:=-\frac{1}{2} \Longrightarrow b_1+b_2 \geq \frac{1}{4}$
 $m=2$: $b_3:=\frac{1}{3},\ b_4:=\frac{1}{5},\ b_5:=-\frac{1}{4} \Longrightarrow b_3+b_4+b_5 \geq \frac{1}{2}$

Definiert seien $b_{n_m} = -\frac{1}{2m}$ für ein $m \in \mathbb{N}$ mit $m \ge 2$, sowie

$$b_{n_{m-1}+1} = \frac{1}{2l_{m+1}+1}, \dots, b_{n_{m-1}} = \frac{1}{2l_{m}-1}$$

für ein $l_m \in \mathbb{N}$. Da $\sum_{k \geq l_m} \frac{1}{2k+1}$ divergiert (Übung) finden wir ein $j \in \mathbb{N}$

$$b_{n_m+1} = \frac{1}{2l_m+1}, \dots, b_{n_m+j} = \frac{1}{2l+j},$$

sodass: $b_{n_m+1} + \dots + b_{n_m+j} \ge \frac{1}{4} + \frac{1}{2m+2}$.

Setze $n_{m+1}=n_m+j+1$ und $b_{n_{m+1}}=-\frac{1}{2m+2}$ \Longrightarrow erhalten rekursiv $(b_k)_{k\geq 1}$ mit

$$\sum_{k=1}^{n_m+1} b_n \ge (m+1)\frac{1}{4} \to \infty, \quad (m \to \infty)$$

Fazit. $\sum_{k\geq 0} a_k$ divergiert, obwohl die Reihe $\sum_{k=1}^{\infty} a_k$ mit den gleichen Summanden konvergiert! Also: Hier gilt kein "unendliches Kommutativgesetz".

Definition 3.22. Sei $\sum_{k\geq 0} a_k$ eine Reihe und $\varphi: \mathbb{N}_0 \to \mathbb{N}_0$ eine Bijektion. Setze $b_k = a_{\varphi(k)}$ für $k \in \mathbb{N}_0$. Die Reihe $\sum_k b_k$ heißt Umordnung von $\sum_k a_k$.

Satz 3.23. Sei $\sum_k a_k$ eine absolut konvergente Reihe. Dann konvergiert jede Umordnung von $\sum_k a_k$ gegen den Wert $\sum_k^{\infty} a_k$.

Beweis. Sei $\varepsilon > 0$ gegeben. Da $\sum |a_k|$ konvergiert, gilt:

$$\exists N_{\varepsilon} \in \mathbb{N} : \forall n \ge N_{\varepsilon} : \sum_{J=N_{\varepsilon}+1}^{n} |a_{J}| \le \varepsilon \quad \text{nach Satz 3.5}$$
 (*)

Sei $\varphi: \mathbb{N}_0 \to \mathbb{N}_0$ bijektiv. Sei $M_{\varepsilon} = \max \{ \varphi^{-1}(0), \dots, \varphi^{-1}(N_{\varepsilon}) \} \implies \{0, \dots, N_{\varepsilon} \} \subseteq \{ \varphi(0), \dots, \varphi(M_{\varepsilon}) \}.$

Seien $n \geq N_{\varepsilon}, m \geq M_{\varepsilon}$. Setze

$$D_{m,n} = \sum_{j=0}^{m} a_{\varphi(j)} + \sum_{j=0}^{n} (-a_j).$$

Als Summanden treten in $D_{m,n}$ nur $\pm a_k$ auf mit $k > N_{\varepsilon}$. (alle a_k mit $k \leq N_{\varepsilon}$ treten doppelt auf und kürzen sich).

$$\implies |D_{m,n}| \le \sum_{k=N_{\varepsilon}+1}^{\infty} |a_k| \stackrel{(*)}{\le} \varepsilon \quad \forall n \ge N_{\varepsilon}, m \ge M_{\varepsilon}$$

Da $\sum_{j=0}^{\infty} a_j$ existiert, folgt mit $n \to \infty$ und Satz 2.9, dass:

$$\exists \lim_{n \to \infty} |D_{m,n}| = \left| \sum_{j=0}^{m} a_{\varphi(j)} - \sum_{j=0}^{\infty} a_j \right| \le \varepsilon, \forall m \ge M_{\varepsilon}$$

Das ist die Behauptung.

Cauchyprodukte

Frage: Wie multipliziert man Reihen?

$$\left(\sum_{j=0}^{\infty} a_j\right) \left(\sum_{k=0}^{\infty} a_k\right) = \lim_{n \to \infty} \left(\sum_{j=0}^{n} a_j\right) \cdot \lim_{n \to \infty} \left(\sum_{k=0}^{n} a_k\right)$$

$$=:A_n$$

$$=:B_n$$
(3.2)

$$\stackrel{2.7}{=} \lim_{n \to \infty} A_n B_n = \lim_{n \to \infty} (a_0 + \dots + a_n)(b_0 + \dots + b_n)$$

Schema für Summanden $a_i b_k$:

TODO

Setze $Q_n = \{0, \ldots, n\}^n$, $D_n = \{(j, k) \in Q_n, k + j \le n\}$. Summiere $A_n B_n$ "diagonal", das heißt bilde zuerst

$$c_n = \sum_{l=0}^n a_l b_{n-l}, n \in \mathbb{N}$$
(3.3)

 $c_n = \text{Summe "uber } a_j b_k \text{ mit } j + k = n.$

Satz 3.24. Seien $\sum_k a_k$, $\sum_k b_k$ absolut konvergente Reihen. Seien c_n $(n \in \mathbb{N})$ in (3.3) definiert. Dann konvergiert $\sum_{n\geq 0} c_n$ absolut und es gilt:

$$\left(\sum_{j=0}^{\infty} a_j\right) \left(\sum_{k=0}^{\infty} a_k\right) = \sum_{n=0}^{\infty} c_n = \sum_{j=0}^{\infty} \sum_{j=0}^{n} a_j b_{n-j}$$
 (3.4)

Bemerkung. Satz ist (im Allgemeinen) falsch für konvergente, nicht absolut konvergente Reihen (siehe Übung).

Beweis. Seien A_n , B_n aus (3.2), $A_n^* = \sum_{j=0}^n |a_j|$, $B_n^* = \sum_{k=0}^n |b_k|$, $C_n = \sum_{j=0}^n c_j$. Nach Vorraussetzung $\exists A^* = \sum_{j=0}^\infty |a_j|$, $B^* = \sum_{k=0}^\infty |b_k|$. Dann:

$$|A_n B_n - C_n| = \left| \sum_{(j,k) \in Q_n \backslash D_n} a_j b_k \right| \le \sum_{(j,k) \in Q_n \backslash Q_{(\frac{n}{2})}} |a_j| \, |b_k|$$

$$= \sum_{(j,k) \in Q_n} |a_j| \, |b_k| - \sum_{(j,k) \in Q_{(\frac{n}{2})}} |a_j| \, |b_k|$$

$$= \underbrace{A_n^* B_n^*}_{\to A^* B^* \text{ nach Satz } 2.7} - \underbrace{A_{(\frac{n}{2})}^* B_{(\frac{n}{2})}^*}_{\to A^* B^* \text{ (da TF) } (n \to \infty)}$$

$$\implies \exists \lim_{n \to \infty} |A_n B_n - C_n| = 0$$

Da $A_n B_n \to AB(n \to \infty)$, folgt $\exists \sum_{n=0}^{\infty} C_n - AB \implies (3.4)$. Ferner:

$$\sum_{n=0}^{N} |c_n| \stackrel{(3.3)}{\leq} \sum_{n=0}^{N} \sum_{j=0}^{n} |a_j| |b_{n-j}| \leq A_N^* B_N^* \leq A^* B^*$$

für alle $N \in \mathbb{N}$. Nach Satz 3.4 folgt die absolute Konvergenz von $\sum c_n$.

Beispiel 3.25 (Exponentialreihe). Sei $z, w \in \mathbb{C}$, $\exp(z) := \sum_{k=0}^{\infty} \frac{z^k}{k!}$. Die Reihe konvergiert absolut nach Bsp. 3.15 ($\forall z \in \mathbb{C}$). Beachte: $\exp(0) = 1$, $\exp(1) = e$ (Bsp. 3.17)

Behauptung:

a)
$$\exp(z+w) = \exp(z)\exp(w)$$

b)
$$\exp(z) \neq 0, \exp(-z) = \frac{1}{\exp(z)}$$

c) Sei $p \in \mathbb{Q}$: $\exp(p) = e^p$

Beweis. a)

$$\exp(z) \exp(w) \stackrel{\text{Satz 3.24}}{=} \sum_{n=0}^{\infty} \sum_{j=0}^{\infty} \frac{z^{j}}{j!} \frac{w^{n-j}}{(n-j)!} \frac{n!}{n!} = \sum_{n=0}^{\infty} \frac{1}{n!} \underbrace{\sum_{j=0}^{n} \binom{n}{j} z^{j} w^{n-j}}_{= \text{Bsp. 0.3: } (z+w)^{n}} = \exp(z+w)$$

b)
$$1 = \exp(0) = \exp(z - z) \stackrel{\text{a}}{=} \exp(z) \exp(-z) \implies \text{b}$$

c) Sei $p = \frac{m}{n}, m \in \mathbb{Z}.$ $n \in \mathbb{N}.$ Dann gilt für m > 0

$$\exp(p)^n = \underbrace{\exp(p) \cdots \exp(p)}_{n-\text{mal}} \stackrel{\text{a)}}{=} \exp(\underbrace{np}_{m}) = \exp(\underbrace{1 + \cdots + 1}_{m-\text{mal}}) = \exp(1)^m = e^m$$

$$\implies \exp(p) = e^{\frac{m}{n}}$$
. Fall $m < 0$ mit b).

3.3 Potenzreihen

Definition 3.26. Es sei $(a_k)_{k\geq 0}$ gegeben. Für $z\in\mathbb{C}$ heißt $\sum_{k\geq 0}a_kz^k$ Potenzreihe.

Bemerkung. Sei D die Menge der $z \in \mathbb{C}$, sodass die Potenzreihe konvergiert, dann ist $f: D \to \mathbb{C}$, $f(z) = \sum_{k=0}^{\infty} a_k z^k$ eine Funktion. Es gilt stets $0 \in D$, $f(0) = a_0$. (Man setzt $0^0 := 1$)

Definition 3.27. Der *Konvergenzradius* ϱ von $\sum a_k z^k$ ist gegeben durch:

$$\varrho = \begin{cases} \frac{1}{\lim\limits_{k \to \infty} \sqrt[k]{|a_k|}}, & \text{wenn } \left(\sqrt[k]{|a_k|}\right) \text{beschränkt und keine NF,} \\ 0, & \text{wenn } \left(\sqrt[k]{|a_k|}\right) \text{unbeschränkt,} \\ \infty, & \text{wenn } \left(\sqrt[k]{|a_k|}\right) \text{NF.} \end{cases}$$

Theorem 3.28. Sei ϱ der Konvergenzradius von $\sum_{k\geq 0} a_k z^k$. Dann gelten:

- a) $0 < \varrho < \infty$, dann konvergiert $\sum a_k z^k$ absolut für $|z| < \varrho$ und divergiert für $|z| > \varrho$, wobei $z \in \mathbb{C}$.
- b) Wenn $\varrho = 0$, dann divergiert $\sum a_k z^k$ für alle $z \in \mathbb{C} \setminus \{0\}$
- c) Wenn $\varrho = \infty$, dann konvergiert $\sum a_k z^k$ absolut für alle $z \in \mathbb{C}$

Also: $\varrho = \sup \{r \geq 0 : \sum a_k z^k \text{ konvergient } \forall z \in \mathbb{C} \text{ mit } |z| \leq r \} \text{ (dabei ist } \sup \mathbb{R}_+ := \infty).$

Beweis. Es gilt $\sqrt[k]{|a_k z^k|} = \left(|a_k| |z|^k\right)^{\frac{1}{k}} = |z| \sqrt[k]{|a_k|} =: b_k$

a) $\overline{\lim}_{k\to\infty} b_k \stackrel{5}{=} |z| \overline{\lim}_{k\to\infty} \sqrt[k]{|a_k|}$. Nach Wurzelkriterium:

$$\implies \begin{cases} |z| < \varrho \iff \overline{\lim} \, b_k < 1 \implies \sum a_k z^k \text{ konvergiert absolut} \\ |z| > \varrho \iff \overline{\lim} \, b_k > 1 \implies \sum a_k z^k \text{ divergiert} \end{cases}$$

- c) $\overline{\lim}_{k\to\infty} b_k = \lim_{k\to\infty} b_k = 0 \implies \sum a_k z^k$ konvergiert absolut $\forall z \in \mathbb{C}$ nach Wurzelkriterium
- b) Falls $|z| \neq 0$, dann ist (b_k) unbeschränkt $\implies (b_k^k)$ ist unbeschränkt $\implies (a_k z^k)$ ist keine NF. Nach Kor. 3.6 $\implies \sum a_k z^k$ divergiert

Beispiel 3.29. a) Polynome $p(z) = a_0 + a_1 z + \cdots + a_n z^n \ (z \in \mathbb{C})$, wobei a_1, \ldots, a_n gegeben. Setze $a_j = 0$ für $j > n \implies \varrho = \infty \implies$ konvergiert $\forall z \in \mathbb{C}$

b) $\exp(z) = \sum_{k=0}^{\infty} \frac{z^k}{k!}$ konvergiert $\forall z \in \mathbb{C}$ nach Bsp. 3.15. Nach Thm. 3.28 gilt:

$$0 = \lim_{k \to \infty} \sqrt[k]{\frac{1}{k!}} = \lim_{k \to \infty} \frac{1}{\sqrt[k]{k!}}$$

$$(3.5)$$

da $\varrho = \infty$ und $a_k = \frac{1}{k!}$

- c) Geometrische Reihe $\sum_{k\geq 0} z^k$. Hier ist $a_k=1 \implies \varrho=1$. Genauer: Bsp. 3.2 liefert $\exists \sum_{k=0}^{\infty} z^k = \frac{1}{1-z}$ für |z|<1. Bsp. 3.7 \implies Divergenz wenn $|z|\geq 1$.
- d) Sei $a_k = k!$. Nach (3.5) $\forall n \in \mathbb{N} \exists K_n \in \mathbb{N} : \frac{1}{\sqrt[k]{k!}} \leq \frac{1}{n} \ (\forall k \geq K_n) \implies n \leq \sqrt[k]{k!}$ ($\forall k \geq K_n$) $\Longrightarrow (\sqrt[k]{k!})_k$ ist unbeschränkt. Thm. 3.28 $\Longrightarrow \sum_k k! z^k$ konvergiert nur für z = 0, da $\rho = 0$.
- e) Betrachte $\sum_{k\geq 1} \frac{1}{k} (2z)^k$, d. h. $a_k = \frac{2^k}{k}$. Damit $\sqrt[k]{|a_k|} = \frac{2}{\sqrt[k]{k}} \to 2$ $(k \to \infty, \text{ Üb.})$ $\implies \varrho = \frac{1}{2}$. Also absolute Konvergenz für $|z| < \frac{1}{2}$, Divergenz für $|z| > \frac{1}{2}$. Hier gilt Konvergenz für $z = -\frac{1}{2}$, Divergenz für $z = \frac{1}{2}$ (nach Bsp. 3.9 und 3.2)

Bemerkung. Im Fall $|z| = \varrho \in (0, \infty)$ ist keine allgemeine Aussage möglich.

Satz 3.30. Es seien $\sum a_k z^k$, $\sum b_k z^k$ Potenzreihen mit Konvergenzradius ϱ_a , $\varrho_b > 0$ und $\alpha, \beta \in \mathbb{C}$. Dann gelten für $z \in \mathbb{C}$ mit $|z| < \min\{\varrho_a, \varrho_b\}$ (wobei $\min\{x, \infty\} = x$ für $x \in \mathbb{R}$)

a)
$$\exists \sum_{k=0}^{\infty} (\alpha a_k + \beta b_k) z^k = \alpha \sum_{k=0}^{\infty} a_k z^k + \beta \sum_{k=0}^{\infty} b_k z^k$$

$$b) \exists \sum_{n=0}^{\infty} \left(\sum_{j=0}^{n} a_j b_{n-j} \right) z^n = \left(\sum_{k=0}^{\infty} a_k z^k \right) \left(\sum_{k=0}^{\infty} b_k z^k \right)$$

Beweis. a) Thm. 3.28 und Satz 3.3

b) Thm. 3.28 und Satz 3.24, wobei in (3.3) gilt:

$$c_n = \sum_{j=0}^n a_j z^j b_{n-j} z^{n-j} = z^n \sum_{j=0}^n a_j b_{n-j}$$

Beispiel 3.31 (Sinus und Cosinus). Für $z \in \mathbb{C}$ konvergieren absolut:

$$\sin(z) := \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} z^{2k+1}, \quad \cos(z) := \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} z^{2k}$$

Das sind Potenzreihen mit Koeffizienten

$$\sin\colon a_n = \begin{cases} \frac{(-1)^k}{(2k+1)!}, & n=2k+1 \text{ ungerade} \\ 0, & n \text{ gerade} \end{cases}, \quad \cos\colon a_n = \begin{cases} 0, & n \text{ ungerade} \\ \frac{(-1)^k}{(2k)!}, & n=2k \text{ gerade} \end{cases}$$

Beweis. Zeige $\rho = \infty$.

$$\sin: \sqrt[k]{|a_k|} = \begin{cases} 0, & n \text{ gerade} \\ \frac{1}{\sqrt[k]{n!}}, & n \text{ ungerade} \end{cases} \xrightarrow{(3.5)} 0, \quad n \to \infty$$

 \Box cos genauso.

Aus Reihen folgt:

$$\forall x \in \mathbb{R} \colon \cos x, \sin x \in \mathbb{R} \tag{3.6}$$

$$\forall z \in \mathbb{C} \colon \cos(-z) = \cos z, \quad \sin(-z) = -\sin z \tag{3.7}$$

Satz 3.32. Sei $z \in \mathbb{C}$. Dann gelten:

Euler:
$$\exp(iz) = \cos(z) + i\sin(z)$$
, $(\cos z)^2 + (\sin z)^2 = 1$

$$\cos z = \frac{1}{2}(\exp(iz) + \exp(-iz)), \quad \sin z = \frac{1}{2i}(\exp(iz) - \exp(-iz))$$
 (3.8)

 $F\ddot{u}r \ x \in \mathbb{R} \ folgt \ mit \ (3.6) \ \operatorname{Re} \exp(ix) = \cos x, \ \operatorname{Im} \exp(iz) = \sin x, \ |\exp(iz)| = 1, \ |\cos x|, \ |\sin x| \le 1.$

Beweis. Es gilt:
$$\exp(iz) = \sum_{n=0}^{\infty} \frac{(iz)^n}{n!} = \sum_{k=0}^{\infty} \frac{(i^2)^k z^{2k}}{(2k)!} + \sum_{k=0}^{\infty} \frac{i(i^2)^k z^{2k+1}}{(2k+1)!} \stackrel{i^2=-1}{=} \cos z + i \sin z$$
. Ferner $1 = \exp(iz - iz) \stackrel{(3.25)}{=} exp(iz) \cdot exp(i(z-z)) \stackrel{(3.7), \text{ Euler}}{=} (\cos z + i \sin z)(\cos z - i \sin z) = (\cos z)^2 + (\sin z)^2$. (3.8) folgt ähnlich aus Euler, (3.7)

Korollar 3.33. Seien $z, w \in \mathbb{C}$. Dann:

$$\begin{aligned} &-2\sin\left(\frac{z+w}{2}\right)\cdot\sin\left(\frac{z-w}{2}\right) \stackrel{3.8}{=} \\ &\frac{-2}{(2i)^2}\left(\exp\left(\frac{i}{2}(z+w)\right)-\exp\left(-\frac{i}{2}(z+w)\right)\right)\cdot\left(\exp\left(\frac{i}{2}(z+w)\right)\right)-\exp\left(-\frac{i}{2}(z-w)\right) \\ &\stackrel{(3.25)}{=} \frac{1}{2}\left(\exp\left(\frac{i}{2}2z\right)-\exp\left(\frac{i}{2}2w\right)-\exp\left(\frac{i}{2}(-2w)\right)+\exp\left(\frac{i}{2}(-2z)\right)\right) \end{aligned}$$