

Part II
COMPUTING AND COMMUNICATIONS Written Exam [2.5 hours]
SCC.201 DATABASES

Candidates are asked to answer **THREE** questions from **FOUR**; each question is worth 25 marks.

Use a <u>separate</u> answer book for <u>each</u> question.

Question 1

Entity relationship diagrams

Please draw the ER diagram for the given description. 1.a.

> InfoLab21 corp plans to introduce a new chapter for the Zork Nemesis series. As in the case of Zork Nemesis 2: The revenge of the fallen, in the new game Zork Nemesis 3: Uraz's game, a player has a unique playerID, with a Name, and an email address. A player must have at least one character, and a character may have at most one associated player. A character has a unique characterName, with Power, Rating, Money, and ExperienceScore. A character may own several inventory items. An inventory item has a unique Item_type, with a Price, and a Wearable attribute. An inventory item belongs to one character; the inventory information must be removed from the database when a character is deleted.

> > [5 marks]

1.b. Please provide the Relational Schema and Integrity Constraints for the relations derived from your ER diagram.

[5 marks]

- **1.c.** Select True or False.
 - True / False A relational database requires integrity constraints to create relations between different entity sets.

[1 mark]

ii. **True / False** Relational algebra allows designers to set participation constraints.

[1 mark]

iii. *True / False* A superkey contains the set of all possible keys for a given relation.

[1 mark]

iv. *True / False* A Foreign Key references another relation's primary key.

[1 mark]

v. *True / False* If all foreign keys are set, we achieve domain constraint.

[1 mark]

vi. *True / False* Prime attribute is an attribute that has no functional dependencies.

[1 mark]

vii. True / False A relation having multivalued attributes is in 1st Normal Form

[1 mark]

viii. *True / False* DML stands for data management language

[1 mark]

Question 1 continues on the next page...

Question 1 continued.

1.d. Provide the names of given ER symbols.

A)		[0.5 mark]	 	
B)		[0.5 mark]	厚	
C)	\Diamond	[0.5 mark]	厚	
D)		[0.5 mark]	-	
E)		[0.5 mark]	-	
F)		[0.5 mark]	厚	
G)	Attribute	[0.5 mark]	P	
н) (Attribute	[0.5 mark]	戸	
ı) (Attribute	[0.5 mark]	厚	
J) -		1	[0.5 mark]	F
к) _		N	[0.5 mark]	F
L) =		=======================================	[0.5 mark]	F
M)		7	[0.5 mark]	-
N)	\wedge		[0.5 mark]	F

Question 2

Functional Dependencies and Normal forms

2.a. Let R(A,B,C,D) be a relation with functional dependencies $\{A->C,C->D\}$. By using the Armstrong's Axioms prove that {AB->ABCD}. Show all the steps involved. [5 marks] **2.b.** What is the normalisation level of relation *R*? [2 marks] 2.c. By decomposing the relation R, create relations in the Boyce-Codd normal form and show that they are indeed in the Boyce-Codd normal form. [7 marks] **2.d.** Fill in the blanks A between attributes X, Y (X -> Y) holds over relation R if, for every allowable instance r of R given two tuples in r, if the X values agree, then the Y values must also agree. [2 marks] If a table is. ______, and decomposed into smaller tables, it is known that certain kinds of problems are avoided/minimised. [2 marks] Normal Form: No set-valued attributes.

[2 marks]

Question 2 continued.

EMP_ID	PROJECT_ID	MANAGER
1	23	Mr.X
1	67	Mr.Z
2	45	Mr.X
3	78	Mr.Y
3	23	Mr.X
4	23	Mr.X
5	78	Mr.Y
5	67	Mr.Z

2.e. The above given instance of relation *R(EMP_ID,PROJECT_ID, MANAGER)* has a primary key {EMP_ID,PROJECT_ID}. Identify:

I. Give the Functional dependencies of R.

[2.5 marks]

II. Print the non-prime attributes of R.

[2.5 marks]

Question 2 TOTAL 25pts.

SELECT charName FROM Character JOIN Players ON Players.AccountNo = Characters.AccountNo WHERE playerId = 'xxx'

Question 3

SQL and relational algebra

Consider the tables:

Players (playerId, AccountNo, email)
Characters (AccountNo, CharName, Power, Rating, Money, ExperienceScore, Item_type)
Inventory (Item_type, Price, Wearable)

- **3.a**. Write the SQL statements for the given queries:
 - I. Find the ID of a player who uses all items. [3 marks]

SELECT p.playerId
FROM Players p
JOIN Characters c ON p.AccountNo = c.AccountNo
GROUP BY p.playerId
HAVING COUNT(DISTINCT c.Item_type) = (SELECT COUNT(DISTINCT Item_type) FROM Inventory);

II. Find the Account number of a player having playerId>20 for each rating with at least 5 characters. [5 marks]

SELECT p.AccountNo, c.Rating
FROM Players p
JOIN Characters c ON p.AccountNo = c.AccountNo
WHERE p.playerId > 20
GROUP BY p.AccountNo, c.Rating
HAVING COUNT(*) >= 5;

III. Find the emails for the player whose id begins with "007".
[3 marks]

SELECT email FROM Players WHERE playerId LIKE '%007%';

IV. Find the email for the player whose id is "007".

[4 marks]

SELECT email FROM Players WHERE playerId = '007';

Question 3 continued.

b. Write the Relational Algebra statements for the given queries:	3.b.
I. Retrieve the email address of the player with AccountNo 18811938.	I.
[5 marks]	
I. Retrieve the playerId of the player who uses item type where Wearable=1.	II.
[4 marks]	
III. Retrieve the email address of players who use all wearable items.	III.
[1 mark]	
Question 3 TOTAL 25pts	

Question 4

Database Management Systems

3	0011
6	0110
12	1100
13	1101
4	0100
14	1110

4.a. Starting from empty buckets where each bucket can have two items, **insert given values following their order** {3, 6, 12, 13, 4, 14} to a hash using Extendible Hashing where the global depth is one (i.e., d=1). Please work with the binary representations (given). **Please draw the final directory for the Extendible Hashing Algorithm.**

[5 marks]

4.b. Explain and discuss three query optimisation techniques, and state the use of internal and leaf nodes of a canonical query tree.

[5 marks]

Question 4 continued.
4.c. Explain three properties of internal nodes of B+ trees. [6 marks]
4.d. Consider the different states a database transaction can be in and the possible transitions between them and answer the following questions.
 Please draw a diagram showing the different states and transitions between these states.
[4 marks]

Question 4 continues on the next page...

Question 4 continued.

II. Explain these states.

[5 marks]

Q4 TOTAL 25pts