Les équations différentielles pour trouver la dépendance du temps

Hossein Rahimzadeh www.cafeplanck.com hossein.rahimzadeh@gmail.com

Équation numéro 1:

$$\frac{d}{dt}T(t) + \omega^2 T(t) = 0$$

$$\frac{d}{dt}T(t) + \omega^2 T(t) = 0 \Rightarrow \frac{dT(t)}{dt} = -\omega^2 T(t) \Rightarrow \frac{dT(t)}{T(t)} = -\omega^2 dt$$

$$\int \frac{dT(t)}{T(t)} = \int -\omega^2 dt \Rightarrow \ln T(t) = -\omega^2 t + c \Rightarrow T(t) = e^{-\omega^2 t + c} \Rightarrow T(t) = e^c e^{-\omega^2 t}$$

Alors,

$$T(t) = Ae^{-\omega^2 t}$$

Équation numéro 2:

$$\frac{d^2}{dt^2}T(t) + \omega^2 T(t) = 0$$

Solution en forme réelle

Une solution est $\sin\left(\omega t + \alpha\right)$ pour vérification on remplace dans l'équation:

$$\begin{cases} \frac{d}{dt}\sin(\omega t + \alpha) = \omega\cos(\omega t + \alpha) \\ \frac{d^2}{dt^2}\sin(\omega t + \alpha) = -\omega^2\sin(\omega t + \alpha) \end{cases}$$
 Donc,

$$-\omega^2 \sin(\omega t + \alpha) + \omega^2 \sin(\omega t + \alpha) = 0$$

$$\sin(\omega t + \alpha)(\underline{-\omega^2 + \omega^2}) = 0$$

Donc, $\sin(\omega t + \alpha)$ est une solution et l'autre solution est $\cos(\omega t + \alpha)$.

Alors,

$$T(t) = A\sin(\omega t + \alpha) + B\cos(\omega t + \beta)$$

Solution en forme complexe

Une solution est e^{rt} on remplace dans l'équation et on trouve r:

$$\begin{cases} \frac{d}{dt}e^{rt} = re^{rt} \\ \frac{d}{dt^2}e^{rt} = r^2e^{rt} \end{cases}$$
 Donc,

$$r^{2}e^{rt} + \omega^{2}e^{rt} = 0 \Longrightarrow e^{rt}(r^{2} + \omega^{2}) = 0$$

$$r^2 + \omega^2 = 0 \Rightarrow r = \pm i\omega$$

$$T(t) = C_1 e^{i\omega t} + C_2 e^{-i\omega t}$$

On suppose:

$$C_1 = Ae^{i\alpha}$$
 et $C_2 = Be^{-i\beta}$

Alors,

$$T(t) = Ae^{i(\omega t + \alpha)} + Be^{-i(\omega t + \beta)}$$

Équation numéro 3:

$$\frac{d^2}{dt^2}T(t) - \omega^2 T(t) = 0$$

Une solution est e^{rt} on remplace dans l'équation et on trouve r :

$$\begin{cases} \frac{d}{dt}e^{rt} = re^{rt} \\ \frac{d^2}{dt^2}e^{rt} = r^2e^{rt} \end{cases}$$
 Donc,

$$r^2 e^{rt} - \omega^2 e^{rt} = 0 \Longrightarrow e^{rt} (r^2 - \omega^2) = 0$$

$$r^2 - \omega^2 = 0 \Rightarrow r = \pm \omega$$

Solution exponentiel

$$T(t) = Ae^{\omega t} + Be^{-\omega t}$$

Solution hyperbolique

Avec,
$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$
 et $\cosh(x) = \frac{e^x + e^{-x}}{2}$ on peut écrire:

$$T(t) = A\sinh(kt) + B\cosh(kt)$$

Résumé

Équations différentielles	Solution
$\frac{d}{dt}T(t) + \omega^2 T(t) = 0$	$T(t) = Ae^{-\omega^2 t}$
$\frac{d^2}{dt^2}T(t) + \omega^2 T(t) = 0$	Solution en forme réelle
	$T(t) = A\sin(\omega t + \alpha) + B\cos(\omega t + \beta)$
	Solution en forme complexe
	$T(t) = Ae^{i(\omega t + \alpha)} + Be^{-i(\omega t + \beta)}$
$\frac{d^2}{dt^2}T(t) - \omega^2 T(t) = 0$	Solution exponentiel
	$T(t) = Ae^{\omega t} + Be^{-\omega t}$
	Solution hyperbolique
	$T(t) = A\sinh(kt) + B\cosh(kt)$