Первообразная функции

Простейшей, но весьма важной задачей является вопрос об отыскании функции F по известной её производной. Пусть Δ — конечный или бесконечный промежуток числовой оси, на котором заданы f и F.

Определение. Функция F называется первообразной для функции f на промежутке Δ , если F дифференцируема на промежутке Δ и в каждой точке этого промежутка F' = f(x) (1).

Например, функция $F(x)=\frac{x^3}{3}$ является первообразной для функции $f(x)=x^2$. Действительно, $\left(\frac{x^3}{3}\right)'=\frac{3x^2}{3}=x^2$. Однако, $G(x)=\frac{x^3}{3}+1$ также будет первообразной для $f(x)=x^2$. В самом деле, $\left(\frac{x^3}{3}+1\right)'=x^2$.

Первообразная любой функции неперывна, так как она имеет производную. Функция же, у которой существует первообразная, не обязательно непрерывна.

Пемма 1. Для того, чтобы две дифференцируемые на некотором промежутке функции были первообразными одной и той же функции, необходимо и достаточно, чтобы они на этом промежутке отличались на константу.

Доказательство: Функции $F(x), \Phi(x)$ являются первообразными на промежутке Δ одной и той же функции тогда и только тогда, когда $\Phi(x) = F(x) + C$ при $x \in \Delta$.

Достаточность: если F — первообразная функции f(x), то F'(x) = f(x). F(x) + C также является первообразной для f(x), так как (F+C)' = F' + C' = F(x).

Необходимость: если F и Φ — первообразные, то должно выполняться равенство $F' = \Phi' = f$. Тогда $(F - \Phi)' = F' - \Phi' = 0$, а следовательно, согласно следствию из теоремы Лагранжа, разность $F - \Phi = C$, C=const.

Определение. Пусть f задана на некотором промежутке Δ . Совокупность всех её первообразных на этом промежутке называется неопределённым интегралом и обозначается $\int f(x) dx$ (2).

Здесь f(x) — подынтегральная функция, f(x) dx — подынтегральное выражение, x — переменная интегрирования.

Из определения неопределённого интеграла следует, что F(x) — какая-либо первообразная для функции f(x), а $\int f(x) \, \mathrm{d}x = F(x) + C$ (3). Таким образом, неопределённый интеграл от функции f представляет собой общий вид функции c производной f. Кроме того, под знаком интеграла стоит дифференциал функции F: $\mathrm{d}F(x) = F'(x) \, \mathrm{d}x = f(x) \, \mathrm{d}x$. Следовательно, будем считать (по определению дифференциала), что этот дифференциал под знаком интеграла можно записывать в любом из следующих видов: $\int f(x) \, \mathrm{d}x = \int F'(x) \, \mathrm{d}x = \int \mathrm{d}F(x)$ (4).

Основные свойства интегралов:

Будем полагать, что все рассматриваемые функции определены на промежутке Δ .

1. Если F дифференцируема на Δ , то

$$\int dF(x) = F(x) + C \tag{5}$$

2. Пусть f имеет первообразную на Δ . Тогда

$$d \int f(x) dx = f(x) dx \tag{6}$$

Формулы (5) и (6) устанавливают взаимность операций дифференцирования и неопределённого интегрирования. Эти действия взаимно обратны с точностью до константы.

3. Если f_1, f_2 имеют первообразную на промежутке Δ , то $f_1 + f_2$ тоже имеет первообразную на Δ .

$$\int (f_1 + f_2) dx = \int f_1(x) dx + \int f_2(x) dx$$

.

Пусть F_1, F_2 — первообразные функций f_1 и f_2 соответственно. Тогда на промежутке Δ будут справедливы равенства: $F_1'(x) = f_1(x), F_2'(x) = f_2(x)$. Тогда неопределённые интегралы $\int f_1(x) \, \mathrm{d}x, \int f_2(x) \, \mathrm{d}x$ будут состоять из функций вида $F_1(x) + C$ и $F_2(x) + C$.

Пусть $F(x) = F_1(x) + F_2(x)$. Тогда F(x) — первообразная функции $(f_1 + f_2)$, так как $F'(x) = (F_1 + F_2)' = F_1' + F_2' = f_1 + f_2$, а интеграл $\int (f_1 + f_2) \, \mathrm{d}x = F(x) + C = F_1(x) + F_2(x) + C$, в то время как $\int f_1 \, \mathrm{d}x + \int f_2 \, \mathrm{d}x = F_1(x) + C_1 + F_2(x) + C_2$. В силу того, что C, C_1, C_2 — произвольные постоянные, то оба множества совпадают.

4. Если f имеет первообразную и k — некоторое число, то $k \cdot f$ также имеет первообразную при $k \neq 0$, тогда $\int (k \cdot f(x)) dx = k \cdot \int f(x) dx$.

Пусть F — первообразная функции f(x). Тогда $k \cdot F(x)$ — первообразная для $k \cdot f(x)$, поскольку $(k \cdot F(x))' = k \cdot F'(x) = k \cdot f(x)$. Поэтому $\int (k \cdot f(x)) \, \mathrm{d}x = k \cdot F(x) + C = k \cdot \int f(x) \, \mathrm{d}x = k \cdot (F(x) + C) = k \cdot F(x) + k \cdot C$.

Следствие (линейность). Если f_1, f_2 имеют первообразную на $\Delta, \ a \ \lambda_1 \in \mathbb{R}, \lambda_2 \in \mathbb{R}, \ mo$

$$\int (\lambda_1 f_1 + \lambda_2 f_2) dx = \lambda_1 \int f_1(x) dx + \lambda_2 \int f_2(x) dx$$

Интеграл и задача об определении площади

Пусть дана y=f(x) на отрезке [a;b], принимающая лишь положительные значения. Рассмотрим фигуру ABCD, которая ограничена кривой DC, двумя ординатами x=a и x=b и отрезком оси Ox. Такую фигуру будем называть криволинейной трапецией.

Желая определить величину площади этой фигуры, изучим поведение площади переменной фигуры AKLD, которая заключена между ординатой a и ординатой, соответствующей произвольной x из отрезка [a;b]. При изменении x площадь этой фигуры будет изменяться соответствующе. Следовательно, площадь трапеции AKLD — некоторая функция, зависящая от x. $S_{AKLD} = S(x)$.

Сначала найдём производную этой функции. Придадим x некоторое приращение Δx , тогда площадь получит приращение ΔS . Обозначим через m и M наименьшее и наибольшее значение f(x) в промежутке $[x;x+\Delta x]$. Сравним площадь ΔS с площадью прямоугольников, построенных на основании Δx и имеющих высоты m и M. $m \cdot \Delta x < \Delta S < M \cdot \Delta x$. Разделим всё на Δx : $m < \frac{\Delta S}{\Delta x} < M$. Если $\Delta x \to 0$, то, в силу непрерывности функции, m и M будут стремиться к f(x), тогда $S'(x) = \lim_{\Delta x \to 0} \frac{\Delta S}{\Delta x} = f(x)$. Таким образом, приходим к теореме Ньютона-Лейбница:

Теорема (Ньютона-Лейбница). Производная от переменной площади ΔS по конечной абсциссе равна конечной ординате y = f(x).

Другими словами, переменная площадь S(x) представляет собой первообразную фнукцию для заданной функции y = f(x).

Если известна какая-либо первообразная F(x) для функции f(x), то площадь S(x) равна F(x)+C. Постоянную C легко определить, положив x=a. F(a)+C=0, следовательно, C=-F(a). S(x)=F(x)-F(a), и, в частности, для получения площади трапеции ABCD необходимо принять x=b. Получим:

$$S_{ABCD} = F(b) - F(a)$$