Segmentacija slike

Prof. dr. sc. Sven Lončarić http://www.fer.hr/predmet/obrinf

Uvod

- Segmentacija slike se bavi dekompozicijom scene u njezine sastavne dijelove (regije)
- Segmentirane regije slike imaju sljedeće željene karakteristike:
 - Regije su uniformne s obzirom na neko svojstvo (kao npr. vrijednost točke ili tekstura)
 - Granice regija moraju biti jednostavne
 - Regije ne smiju imati male otvore
 - Susjedne regije se moraju značajno razlikovati

- Amplitudna segmentacija (amplitude thresholding)
- Obilježavanje komponenti (component labeling)
- Metode koje koriste granicu objekta
- Metode koje koriste unutrašnjost objekta
- Metode grupiranja (clustering techniques)
- Segmentacija ekspertnim sustavima
- Segmentacija neuronskim mrežama

- Amplitudna segmentacija je korisna kad amplitudne značajke dovoljno precizno definiraju regije scene
- engl. amplitude thresholding
- Najčešće se za amplitudnu segmentaciju koristi histogram prvog reda

Histogram prvog reda

- Histogram prvog reda predstavlja relativnu frekvenciju svjetlina točaka u slici
- Histogram može biti bimodalan ili multimodalan
- Histogram se može izračunati globalno ili lokalno

- Odrediti pragove pomoću minimuma u histogramu
- Odrediti iznos praga tako da određeni dio točaka ima svjetlinu nižu od praga
- Odrediti prag na osnovu histograma izračunatog samo za točke u slici koje zadovoljavaju neki kriterij (npr. imaju veliki gradijent)
- Koristiti a priori statističko znanje o regijama da bi minimzirali neku veličinu (npr. pogrešku)

- Kod mnogih slika vrijednost točaka pada u jednu od dvije grupe (tamne ili svjetle točke)
- Primjeri: pisani tekst, mikroskopski uzorci, avioni na pisti, kosti na roentgenskom filmu,...
- U takvim slučajevim se objekt može izdvojiti od pozadine na osnovi vrijednosti amplitude
- Praktični problemi kod izbora vrijednosti praga: šum i smetnje, objekt i pozadina imaju širok raspon vrijednosti, neuniformna pozadina

- Ako je poznato da objekt prekriva određeni dio površine slike može se prag odrediti tako da segmentirana regija ima površinu jednaku željenom dijelu ukupne površine slike
- Primjer: Ako crna slova pokrivaju 25% površine stranice onda se prag odabere tako da četvrtina točaka bude crna nakon segmentacije

- engl. adaptive thresholding
- Kod adaptivne tehnike prag za neku točku određuje se na osnovi histograma izračunatog u nekoj okolini te točke, a ne cijele slike
- Okolina točke može biti npr. kvadratnog oblika, dimenzija N×N

Primjer bimodalne segmentacije I

Primjer bimodalne segmentacije II

- Višemodalni histogram je histogram koji ima više od dva globalna maksimuma
- Slika tada sadrži nekoliko dominantnih nivoa amplituda (nekoliko vrsta objekata)
- Ako je razdioba dominantnih amplituda unaprijed poznata onda je lako odrediti pragove
- Ako je razdioba amplituda slike nepoznata sliku je moguće segmentirati raznim iterativnim metodama

CT slika glave

histogram

thr=100

thr=128

thr=150

Amplitudne projekcije

 U nekim slučajevima slika se može segmentirati upotrebom projekcija u smjeru redaka i stupaca:

$$H(k) = \frac{1}{N} \sum_{j=1}^{N} F(j,k)$$
$$V(j) = \frac{1}{N} \sum_{k=1}^{N} F(j,k)$$

 Pravokutni segment se definira primjenom praga na projekcijama slike (amplitude thresholding)

- GL: projekcija uzduž redaka
- GD: originalna slika
- DL: segmentirana slika
- DD: projekcija uzduž stupaca

- engl. component labeling
- Ako se slika segmentira u dvije regije (npr. pozadina i objekt) onda je se rezultat segmentacije može prikazati kao binarna slika
- Dobiveni objekt može se sastojati od više nepovezanih regija (komponenti)
- U tom slučaju je potrebno obilježiti (labelirati) dobivene komponente tako da svaka komponenta ima svoju oznaku

- Jednostavna i efikasna metoda labeliranja binarnih slika je na osnovi ispitivanja povezanosti točke s njezinim susjedima i obilježavanja povezanih skupova točaka
- U nastavku je prikazan algoritam za obilježavanje komponenti koji radi tako što obilježava piksele

- Binarnom slikom se prolazi liniju po liniju (slijeva na desno i odozgo prema dolje)
- Trenutna točka X može biti objekt (vrijednost 1) ili pozadina (vrijednost 0)
- Ako je X=1 (objekt) točka se obilježi ispitivanjem susjeda A,B,C,D kako slijedi:

C	A	D
В	X	

- Ako je neki od susjeda A,B,C,D već obilježen da pripada nekom objektu onda i X dobiva istu oznaku (labelu)
- Ako neki od susjeda imaju razne oznake onda se pripadni objekti stapaju (ekvivalentni objekti)
- Nova oznaka se stvara kod svakog prijelaza iz vrijednosti 0 na izoliranu točku 1 (novi objekt)
- Rezultat pretraživanja je segmentacija slike u regije (skupina objekata slike)

Metode segmetnacije koje koriste granicu objekta

- engl. boundary methods
- Ova grupa metoda vrši segmentaciju objekata u slici na osnovi granica objekata
- Granice objekata se mogu izdvojiti metodama:
 - Interpolacije krivulja
 - Hough-ova transformacija

Interpolacija krivulja

- Nekad je moguće točke rasporeda rubova (edge map) povezati metodama interpolacije da bi se dobila zatvorena kontura koja definira regiju
- Potrebno je razbiti konturu u dijelove koji se interpoliraju
- Za interpolaciju moguće je koristiti polinomske ili spline metode
- Jednostavni iterativni algoritam za interpolaciju krivulje linearnim segmentima je opisan u nastavku

Interpolacija linearnim segmentima

- Početna i završna točka su A i B
- U svakom koraku mjeri se maksimalna pogreška i ako ona prelazi granicu onda se segment razbija u dva segmenta
- Postupak se ponavlja dok se ne postigne željena točnost

- HT se koristi za detekciju linija u slici
- Pravac se može opisati slijedećom jednadžbom:

$$x\cos\theta + y\sin\theta = \rho$$

gdje je ρ udaljenost pravca od ishodišta a ϑ kut nagiba

- Hough transformacija pravca je točka u koordinatnom sustavu (ρ, ϑ)
- Familija pravaca koji prolaze kroz jednu točku se preslikava u skup točaka koje leže na sinusoidi

Ilustracija Hough-ove transformacije I

- Pravac se preslikava u točku
- Familija
 pravaca kroz
 točku se
 preslikava u
 sinusoidu

Ilustracija Hough-ove transformacije Il

- Ako imamo tri kolinearne točke onda pravac na kojem one leže ima parametre sjecišta triju sinusoida
- Svaka sinusoida u parametarskom prostoru odgovara snopu pravaca određenog točkom

Algoritam Hough transformacije

- 1. Inicijaliziraj Houghovo polje na nulu: A(p,q)=0
- **Za** svaku točku (j,k) u slici za koju je F(j,k)=1

3. **Za**
$$p = 0$$
 do $p = p_{max}$

3.
$$\rho = x_k \cos \theta_p + y_j \sin \theta_p$$

- Kvantiziraj dobiveni ρ na vrijednost q
- 5. A(p,q) = A(p,q) + 1

- Rezultat Hough-ove transformacije je polje brojeva A(p,q)
- Vrijednost A(p,q)=M znači da postoji M točaka koje leže na pravcu određenom parametrima ρ_q , Θ_p
- Ako slika sadrži liniju (niz kolinearnih točaka) onda će Houghovo polje imati lokalni maksimum na mjestu koje odgovara parametrima pravca ρ_{a} , Θ_{p}

Primjer Hough transformacije II

Primjer Hough transformacije III

Segmentacija izrastanjem područja

- Problem segementacije izrastanjem područja sastoji se u određivanju uniformnih skupina točaka slike (regija)
- Algoritmi za izrastanje područja uspoređuju svojstva neklasificirane točke s dotad segmentiranom regijom da bi odlučili da li točka pripada regiji ili ne

Podjela tehnika izrastanja područja

- Tehnike izrastanja područja mogu se podijeliti (Haralick) u tri grupe s obzirom na način uspoređivanja točaka:
 - na osnovi sličnosti dvaju susjednih točaka
 - na osnovi sličnosti okolina dvaju susjednih točaka
 - na osnovi sličnosti točke i centroida regije

- engl. single linkage region growing
- svaka točka slike predstavlja čvor grafa
- susjedne točke sličnih svojstava povezuju se granom
- segmenti slike su maksimalni skupovi točaka koje pripadaju jednoj povezanom skupu

Primjer

- Primjer gdje se točke smatraju sličnima ako je razlika vrijednosti manja od 5
- Korišteno je 4-susjedstvo za definiciju povezanog područja

50	51	50	102	50 - 51 - 50 102
51	49	50	102	51 - 49 - 50 102
240	240	102	102	240 240 102 102
241	240	103	103	241-240 103-103

Metode koje ispituju sličnost točke i regije

- engl. centroid-linkage region growing
- kod ovih metoda ne uspoređuju se susjedne točke
- Slikom se prolazi nekim redoslijedom i vrijednost točke se uspoređuje s srednjom vrijednosti dosad klasificiranih točaka u regiji

Primjer

2	3	4
1	y	

- Slikom se prolazi red po red radeći T-test
- Neka točka y predstavlja trenutnu poziciju i neka točke 1, 2, 3 i 4 pripadaju respektivnim regijama
- Točka y klasificira se u regiju i ako ima svjetlinu najbližu srednjoj vrijednosti točaka u regiji i
- Ako dvije regije imaju slične srednje vrijednosti onda se te dvije regije stope (spoje)

- engl. clustering segmentation methods
- Formulacija problema: Neka je x N-dimenzionalni vektor značajki slike u točki (j,k). Segmentacija treba grupirati vektore tako da značajke unutar jedne grupe budu uniformne

Grupiranje s K srednjih vrijednosti

- engl. K-means clustering
- Neka je broj grupa K poznat i neka je u_k(n) centar kte grupe u n-toj iteraciji
- Inicijalno $\mathbf{u}_k(0)$ se postave na bilo koju vrijednost
- U n-toj iteraciji odabere se jedan vektor x_i i dodjeli se grupi čijem je centru najbliži:

$$\mathbf{x}_i \in R_k \iff d(\mathbf{x}_i, \mathbf{u}_k(n)) = \min_{j=1,\dots,K} \{d(\mathbf{x}_i, \mathbf{u}_j(n))\}$$

Grupiranje s K srednjih vrijednosti

 Zatim se ponovo izračunaju centri grupa kao vektori koji minimiziraju udaljenost za vektore iz pojedine grupe:

$$\mathbf{u}_{k}(n+1): \sum_{x_{i} \in R_{k}} d(\mathbf{x}_{i}, \mathbf{u}_{k}(n+1)) = \min_{\mathbf{y}} \{d(\mathbf{x}_{i}, \mathbf{y})\}, \quad k = 1, ..., K$$

 Postupak se ponavlja sve dok se položaj centara više ne mijenja

Segmentacija ekspertnim sustavima

- Ideja ekspertnih sustava je da se umjetnim sustavom imitira znanje ljudskog eksperta odnosno omogući rješavanje raznih problema
- Najčešće su korišteni ekspertni sustavi temeljeni na pravilima (engl. rule-based expert systems)
- Ekspertni sustavi obično su usko specijalizirani
- Ekspertni sustavi koriste se u obradi, analizi i razumijevanju slika

- engl. inference mechanism
- Ulaz je skup činjenica (tvrdnji) iz kojih se procesom logičkog zaključivanja (inferencije) dolazi do zaključka
- Znanje je predstavljeno skupom pravila (logičkih implikacija)

Struktura ekspertnog sustava

Primjer sustava za segmentaciju ekspertnim sustavom

- Inicijalna segmentacija dijeli sliku u manje regije upotrebom grupiranja s K srednjih vrijednosti
- Baza znanja ekspertnog sustava sadrži moguće odnose među susjednim regijama i neke karakteristike regija

originalna slika (gore)

segmentirane slike: pozadina, lubanja, mozak, izljev krvi

Segmentacija neuronskom mrežom

- Umjetne neuronske mreže su nelinearne mreže koje pokušavaju imitirati funkcioniranje bioloških neuronskih mreža
- Umjetne neuronske mreže se sastoje od modela neurona koji su međusobno povezani
- Postoji mnogo vrsta neuronskih mreža raznih topologija i načina rada i načina učenja
- Proces učenja koristi se za određivanje nepoznatih parametara mreže da bi se dobio željeni odziv

Biološki neuron

 dendriti prenose akcijski potencijal preko aksona do slijedećeg neurona

Međusobni spoj neurona

McCulloch-Pitts model neurona

 McCulloch i Pitts su predložili ovaj jednostavan model biološkog neurona

$$y = S(\sum_{i} a_{i} x_{i} - b)$$

Generalizacija modela neurona

 Generalizacija McCulloch-Pitts modela je zamjena step funkcije s aktivacijskom funkcijom proizvoljnog oblika

Perceptron

• engl. multi-layer feed-forward network

Učenje

- Problem učenja neuronske mreže sastoji se u određivanju vrijednosti nepoznatih konstanti w_{ij}
- Učenje pod nadzorom (supervised learning) se obavlja parovima vrijednosti ulaz-izlaz te iterativnim modificiranjem konstanti dok se ne dobije željeni izlaz za svaki dani ulaz u mrežu
- Za perceptron se najčešće koristi algoritam učenja s povratnom propagacijom pogreške
- Nakon što je učenje završeno, u fazi eksploatacije, mreža daje izlaz za nenaučene vrijednosti ulaza

Segmentacija neuronskom mrežom

- Neuronske mreže se mogu upotrijebiti u mnogim područjima digitalne obrade slike
- Primjer: segmentacija slika pomoću perceptrona
- Na ulaz mreže treba postaviti vrijednost točke (odnosno vrijednosti iz nekog susjedstva) koja se želi klasificirati te kroz postupak učenja mreže "naučiti" mrežu kojoj klasi dana točka pripada
- Nakon što je učenje gotovo na ulaz mreže dovede se nova slika koju mreža onda segmentira

Primjer 1: Segmentacija MR/CT slika neuronskom mrežom

Primjer 2: Segmentacija CT slika neuronskom mrežom

ulazna slika

segmentirana slika

Rezultati segmentacijeeksploatacija

ulazna slika

segmentirana slika

- Predstavljene su neke karakteristične metode za segmentaciju slike:
 - Amplitudna segmentacija
 - Obilježavanje komponenti
 - Metode koje koriste granicu objekta
 - Metode koje koriste unutrašnjost objekta
 - Metode grupiranja
 - Segmentacija ekspertnim sustavima
 - Segmentacija neuronskom mrežom