

Moderní jazykové modely

František Kynych 2. 12. 2021 | MVD

Moderní jazykové modely

- Založené na neuronových sítích
- Předchozí přednášky
 - Word2Vec, GloVe
- Tato přednáška se zaměřuje na komplexnější architektury
 - Rekurentní neuronové sítě
 - Transformer

Opakování z předchozích přednášek

Word2Vec

https://towardsdatascience.com/word2vec-made-easy-139a31a4b8ae

Přístup: CBOW vs Skip-gram

Problémy předchozích přístupů

- Použití omezeného kontextu okolo slova
- Každé slovo má pouze jeden embedding
 - Embedding se nemění v závislosti na kontextu, ve kterém je použit
 - Př. 1: Apple (společnost) vs apple (jablko)
 - Př. 2: Elmo (postava z pořadu Sezame, otevři se) vs Elmo (jazykový model)
 - Př. 3: Výslovnost slova read v závislosti na použitém čase (minulý, přítomný čas)

Část I.: ELMo

Rekurentní neuronové sítě

- Opakování z předmětu ANS
- Kromě standardního výstupu obsahují i skrytý stav
 - Skrytý stav je rekurencí průběžně aktualizován

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM

- Long Short-Term Memory
- Zachycují i dlouhodobé závislosti
 - Zároveň řeší problém zanikajícího gradientu

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Bidirectional LSTM

Vstupní sekvence je procházena z obou směrů

http://doc.paddlepaddle.org/develop/doc/_images/bi_lstm.jpg

ELMo: Contextual language embedding

- Embeddings from Language Models (2018, AllenAl)
- Používá bidirectional LSTM pro tvorbu embeddingů
- Embedding je vytvořen v závislosti na kontextu slova
- Model je založen na znacích
 - Lze vytvořit embedding pro slovo, které není ve slovníku
 - => Místo použití slovníku (např. Word2Vec) vytváříme vektory za běhu

Embedding of "stick" in "Let's stick to" - Step #1

Backward Language Model

https://jalammar.github.io/illustrated-bert/

Embedding of "stick" in "Let's stick to" - Step #2

1- Concatenate hidden layers

2- Multiply each vector by a weight based on the task

Forward Language Model

Backward Language Model

ELMo embedding of "stick" for this task in this context

https://jalammar.github.io/illustrated-bert/

TASK	PREVIOUS SOTA		OUR BASELINE	ELMO + BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

https://arxiv.org/pdf/1802.05365.pdf

Část II.: BERT

Transformer

- Opakování z předmětu ANS
- Založeno na attention mechanismu
- Vylepšení oproti RNN
 - Odstranění rekurencí
 - => Paralelní zpracování vstupu (+positional encoding)
- Encoder-Decoder architektura
- Encoder
 - Obsahuje důležité self-attention vrstvy $Softmax\left(\frac{QK^T}{\sqrt{d_L}}\right)V$
 - Zpracovává vstupní informaci a jeho výstup obsahuje vektorovou reprezentaci vstupu

GPT

- Generative Pre-Training
- Pre-training
 - Snaží se predikovat následující slovo
 - Trénováno jako jazykový model
 - Fine-tuning pro jednotlivé aplikace
- Z Transformeru využívá pouze dekodéry

- Bidirectional Encoder Representations from Transformers
- Z Transformeru využívá pouze kodéry (encoder)
 - Neobsahuje Masked self attention
 - Predikce slova při trénování není založena pouze na předchozích, ale i na budoucích slovech
 - Lze vytvořit slovní embedding závislý na kontextu (podobně jako u ELMo modelu)
- Pre-training
 - Jazykový model se učí dvě úlohy
 - Predikce maskovaného slova ve větě
 - Predikce další věty (binární klasifikace)
 - Na vstupu jsou dvě věty a cílem je určit, zda druhá věta následuje za první

- Predikce maskovaného slova ve větě
 - 15 % slov je při trénování náhodně maskováno
 - Postup:
 - V 80 % případů je slovo nahrazeno MASK tokenem
 - V 10 % případů je nahrazeno náhodným jiným tokenem
 - V 10 % případů je ponecháno beze změny
 - Masek může být více v jedné větě

0.1% Aardvark Use the output of the Possible classes: masked word's position All English words 10% Improvisation to predict the masked word Zyzzyva FFNN + Softmax **BERT** Randomly mask 512 15% of tokens [MASK] Let's stick to in this skit Input skit [CLS] Let's stick to improvisation in this

https://jalammar.github.io/illustrated-bert/

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(c) Question Answering Tasks: SQuAD v1.1

(b) Single Sentence Classification Tasks: SST-2, CoLA

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

The output of each encoder layer along each token's path can be used as a feature representing that token.

But which one should we use?

https://jalammar.github.io/illustrated-bert/

What is the best contextualized embedding for "Help" in that context?

For named-entity recognition task CoNLL-2003 NER

ty roodyntion task ooner 20		Dev F1 Score
First Layer	mbedding	91.0
Last Hidden Layer	12	94.9
Sum All 12 Layers	12	95.5
Second-to-Last Hidden Layer	11	95.6
Sum Last Four Hidden	12	95.9
Concat Last Four Hidden	9 10 11	96.1

https://jalammar.github.io/illustrated-bert/

Část III.: HuggingFace

HuggingFace

- Opensource databáze předtrénovaných modelů založených na Transformer architektuře
 - 14 000+ modelů
- Také poskytuje různé datasety a různé nástroje pro usnadnění manipulace s daty
 - U datasetů jsou často odkazy na již natrénované modely
- Poskytována Python knihovna transformers
- => Online ukázka

Užitečná literatura / kurzy

- Články jednotlivých modelů
 - ELMo
 - <u>Transformer</u>
 - GPT
 - BERT
- HuggingFace
- Coursera NLP specializace

