ECON 4190: Industrial Organization

Fall 2021

Homework 4

Collaborators: Alex Shen (as5gd), Sean Velhagen (spv5hq), Max Bresticker (mtb9sex)

Pledge: On my honor, I pledge that I have neither given nor received help on this assignment Signature: Alex Shen, Sean Velhagen, Max Bresticker

1.

2. (a) Given Q = 200 - 2P, we know that $P = 100 - \frac{1}{2}Q$. If Apple is a monopolist with MC = 4, its profit can be determined by $\pi(Q) = (P - C)Q = (100 - \frac{1}{2}Q - 4)(Q)$. Thus, the first order condition for this equation is $\frac{d\pi}{dP} = 96 - Q = 0$, meaning that $Q^M = 96$. Plugging this value back into our previous equations gives us $P^M = 52$ and $\pi^M = 96 * (52 - 4) = 4608$.

Solution: $Q^M = 96$, $P^M = 52$, $\pi^M = 4608$

(b) Since a competitive firm supplies along its MC curve (meaning that p = MC, which we know to be true in perfect competition), to solve for a given firm's quantity produced, q, we simply substitute in price and invert their MC function to get $q = \frac{p-20}{6}$. Since there are 12 identical firms in the fringe, the fringe supply is in total $12 * (\frac{p-20}{6}) = 2p - 40$. Importantly, we have to also add the constraint that this curve only holds when $p \ge 20$, as otherwise the firm would be producing a negative quantity which is impossible.

Solution: $Q_{fringe} = 2p - 40$ if $p \ge 20$, otherwise 0

(c) We first find the residual demand for Apple's product (Q_{Apple}) by subtracting the quantity the fringe will produce (Q_{fringe}) at a given price from the total market demand (Q_{market}) at a given price.

$$Q_{Apple} = Q_{market} - Q_{fringe}$$

$$= 200 - 2P - (2P - 40)$$

$$= 240 - 4P$$

$$\therefore P = 60 - \frac{1}{4}Q_{Apple}$$

We then maximize the resulting profit function to determine Q_{Apple} :

$$max_{Q_{Apple}}\pi = (60 - \frac{1}{4}Q_{Apple} - 4) * Q_{Apple}$$
$$\frac{d\pi}{dQ_{Apple}} = 56 - \frac{1}{2}Q_{Apple} = 0$$
$$\therefore Q_{Apple} = 56 * 2 = 112$$

From there, everything else is straightforward - plug in Q_{Apple} to find $P=60-\frac{112}{4}=32$, which then gives us $Q_{fringe}=2(32)-40=24$ and $\pi_{Apple}=(56-\frac{112}{4})*112=3136$.

Solution: $Q_{Apple} = 112, P = 32, Q_{fringe} = 24, \pi_{Apple} = 3136$

- (d) TODO: graph 2C
- 3. From TC(Q) = 8Q, we know that MC = 8. Total quantity demanded by the market is Q = 56 P, so subtracting Q_{fringe} to find Britney's residual demand gives us $Q_B = 56 P (2P y) = 56 3P + y$. We then maximize her derived profit function as follows to find the relationship between y and P^* :

$$max_p \pi_B = (56 - 3P + y) * (p - 8)$$

$$FOC : \frac{d\pi}{dp} = (56 - 3P + y) - (-3)(p - 8) = 0$$

$$0 = 56 - 3P + y - 3P + 24$$

$$0 = 80 - 6P + y$$

$$y = 6P - 80$$

Since we know that P = 16, simple substitution yields that y = 6 * 16 - 80 = 16, which gives us $Q_B = 56 - 3 * 16 + 16 = 24$ and $Q_{fringe} = 2 * 16 - 16 = 16$.

Solution: $y = 16, Q_B = 24, Q_{fringe} = 16$