MAT157 Lecture 3 Notes

Anatoly Zavyalov

September 16, 2020

1 Set Theory

- DO NOT use ∴ or ∵! They are not used in this course, or just generally in mathematics.
- $X \cap Y$ represents the intersection between set X and Y.
- $X \cup Y$ represents the union between set X and Y.
- Ø represents an empty set.
- $X \subseteq Y$ means that X is a subset of Y, and possibly equal to Y (we will avoid writing $X \subset Y$ as to avoid confusion).
 - For X a propert subset of Y, we will write $X \subseteq Y, X \neq Y$ or $X \subsetneq Y$.
- #X or represents the **cardinality** (number of elements) in the set X (some authors use |X|).
- To describe a set, sometimes we list elements: $\{1,2,3\}, 1,2,...,1000,$ or $\{x \in \mathbb{R} | x > 0\},$ or $\{x \in \mathbb{R} : x > 0\}$
- Something like $\{x|x>0\}$ is vague, as we do not state what x belongs to.
- A set like $\{1,2,3\} = \{1,1,2,3,2,3\}$, as duplicate elements are ignored.
- Infinite intersections/unions. Consider $X_t = \{x \in \mathbb{R} | 1 + \frac{1}{t} < x < 2 + \frac{1}{t} \}$, where t > 0 and $t \in \mathbb{R}$

$$\bigcap_{t>0} X_t = \emptyset$$

$$\bigcap_{t>1} X_t = \{2\}$$

$$\bigcup_{t>0} X_t = \{x|x>1\}$$

2 Logic

You can use symbols like \Rightarrow , \Leftarrow , \forall , \exists , ..., (assuming that you know what they mean) but don't overuse!

Let A, B, \dots true/false statements.

' $A \implies B$ ' means 'A implies B'. Something more accurate is 'if A, then B'. This is, itself, a true/false statement, which is true if A is true and B is true, or if A is false (this is called a **vacuous truth**).

2.0.1 Example

The moon is made of cheese $\Rightarrow \sqrt{2}$ is rational. This is a true statement, as the moon is **not** made of cheese (trust me!).

The moon is made of cheese $\Rightarrow \sqrt{2}$ is irrational. This is also true for the exact same reason as the previous statement (note that this is not a valid proof that $\sqrt{2}$ is irrational).

2.0.2 Back to abstraction

In short, $A \Rightarrow B$ is true if A is false or B is true.

 $A \Leftarrow B$ has the same true/false meaning as $B \Rightarrow A$.

 $A \Leftrightarrow B$ means $A \Rightarrow B$ and $B \Rightarrow A$. In this case, we say that 'A and B are equivalent' or 'A if and only if B'.

2.1 Negations

 $\neg A = \text{not } A$ is the statement which is true exactly when A is false.

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$
$$\neg (A \implies B) \Leftrightarrow \neg (\neg A \text{ or } B) \Leftrightarrow (A \text{ and } \neg B)$$

2.2 'For all' and 'Exists' Symbols

 \forall means 'for all'. \exists means 'there exists'.

Example

Given $S \subseteq \mathbb{R}$, consider

$$A = \forall \epsilon > 0, \forall x \in S, \exists n \in \mathbb{N} : x^n < \epsilon$$

Statements like this are to be left from left to right.

Negation of \forall , \exists

$$\neg(\forall a: P(a)) \Leftrightarrow \exists a: \neg P(a)$$

$$\neg(\exists a: P(a)) \Leftrightarrow \forall a: \neg P(a)$$

The negation of the above statement A will be:

$$\neg A = \exists \epsilon > 0, \exists x \in S, \forall n \in \mathbb{N} : x^n \ge \epsilon$$