DEVOIR À LA MAISON N°06

- ▶ Le devoir devra être rédigé sur des copies *doubles*.
- ▶ Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- ▶ Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

EXERCICE 1.

Soit $n \in \mathbb{N}$.

1. Montrer que

$$\frac{1}{\sqrt{1-x}} \underset{x\to 0}{=} \sum_{k=0}^{n} \frac{1}{2^{2k}} {2k \choose k} x^k + o(x^n)$$

2. En déduire un développement limité à l'ordre 2n + 1 en 0 de arcsin.

EXERCICE 2.

- **1.** Soient a et b des fonctions de classe C^{∞} sur un intervalle I. Montrer que toute solution sur I de l'équation différentielle y' + ay = b est de classe C^{∞} sur I.
- **2.** Soient a, b et c des fonctions de classe C^{∞} sur un intervalle I. Montrer que toute solution sur I de l'équation différentielle y'' + ay' + by = c est de classe C^{∞} sur I.

EXERCICE 3.

On considère sur $\mathbb R$ l'équation différentielle :

(E)
$$(1 + x^2)y' = 1 + 3xy$$

1. Démontrer que les solutions réelles de (E) sont les fonctions f_{λ} telles que :

$$\forall x \in \mathbb{R}, \ f_{\lambda}(x) = P(x) + \lambda (1 + x^2)^{r}$$

où λ est un nombre réel, r un nombre rationnel à préciser et P une fonction polynôme à expliciter.

- **2.** Montrer qu'il existe une unique solution g de (E) admettant une limite finie en $+\infty$.
- **3.** Calculer g' et déterminer son signe.
- **4.** Déterminer, si elle existe, la limite de $\frac{g(x)}{x^3}$ quand x tend vers $-\infty$.
- 5. Représenter graphiquement la fonction g.

EXERCICE 4.

On rappelle que si f est dérivable en α , alors la courbe représentative de f admet pour tangente au point d'abscisse α la droite d'équation $y = f'(\alpha)(x-\alpha) + f(\alpha)$. On considère l'équation différentielle

(E):
$$(1 + x^2)y' + 2xy = \frac{1}{x}$$

- **1.** Dans cette question, on ne cherchera pas à résoudre (E). On note f_{λ} l'unique solution de (E) telle que $f_{\lambda}(1) = \lambda$.
 - a. Former une équation cartésienne de la tangente D_{λ} à la courbe représentative de f_{λ} au point d'abscisse 1.
 - **b.** Montrer que les droites D_{λ} passent toutes par un même point lorsque λ décrit \mathbb{R} .
- **2. a.** Résoudre (E) sur \mathbb{R}_+^* .
 - **b.** Soit $\lambda \in \mathbb{R}$. Déterminer l'unique solution f_{λ} de (E) sur \mathbb{R}_{+}^{*} telle que $f_{\lambda}(1) = \lambda$.
- 3. On se place maintenant dans un cadre plus général. Soient a,b,c trois fonctions continues sur un intervalle I. On suppose que a ne s'annule pas sur I. On se donne $x_0 \in I$ et on considère l'équation différentielle

$$(\mathcal{E})$$
: $ay' + by = c$

Pour $\lambda \in \mathbb{R}$, on note f_{λ} l'unique solution de (\mathcal{E}) sur I telle que $f_{\lambda}(x_0) = \lambda$. On note enfin \mathcal{D}_{λ} la tangente à la courbe représentative de f_{λ} au point d'abscisse x_0 .

Montrer que, lorsque λ décrit \mathbb{R} , les droites \mathcal{D}_{λ} sont soit toutes concourantes soit toutes parallèles.