数学分析与线性代数例题

佚名

2019年12月6日

目录

1 微分中值定理及其应用

1

2 行列式

 $\mathbf{2}$

1 微分中值定理及其应用

定理 1 (极限的第二充分条件). 设 f(x) 在 $(x_0 - \delta, x_0 + \delta)$ 可导且 $f'(x_0) = 0$,又 f''(x) 存在.

- 1) 若 $f''(x_0) < 0$, 则 $f(x_0)$ 是严格极大值;
- 2) 若 $f''(x_0) > 0$,则 $f(x_0)$ 是严格极小值.

例 1. 求 $y = \frac{1}{3}x\sqrt[3]{(x-5)^2}$ 的极值点与极值¹.

解. 函数在 $(-\infty, +\infty)$ 上连续, 当 $x \neq 5$ 时有

$$y' = \frac{1}{3} \left((x-5)^{\frac{2}{3}} + \frac{2x}{3} (x-5)^{-\frac{1}{3}} \right) = \frac{5(x-3)}{9(x-5)^{1/3}}$$
 (1)

令 y'=0 得稳定点 x=3, 现列表如下:

x	(-, 3)	3	(3, 5)	5	(5, +)
y'	+	0	_	不存在	+
y	7	$\sqrt[3]{4}$	×	0	7

从表中可见 x=3 是极大值点,极大值为 $f(3)=\sqrt[3]{4}; x=5$ 为极小值点,极小值为 f(5)=0. 我们可以大致地画出函数的图形,如图 1所示.

¹原题摘自《数学分析简明教程》(上册)P142.

图 1: $y = \frac{1}{3}\sqrt[3]{(x-5)^2}$ 的函数图像

2 行列式

例 2. 若 $a,b \in \mathbb{R}^2$, 求由方程 $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = 1$ 的椭圆为边界的区域 E 的面积²

解. 断言 D 是单位圆盘 D 在线性变换 T 下的像. 这里 T 由矩阵 $A=\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ 确定,这是因为若

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \ \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \ \mathbb{L} \ \mathbf{x} = A\mathbf{u}, \ \mathbb{M}$$

$$u_1 = \frac{x_1}{a}, u_2 = \frac{x_2}{b}$$

从而得 ${\bf u}$ 在此单位圆内,即满足 $u_1^2+u_2^2\leq 1$,当且仅当 ${\bf x}$ 在 E 内,即满足 $(x_1/a)^2+(x_2/b)^2\leq 1$. 进

$$\{$$
椭圆的面积 $\} = \{T(D)$ 的面积 $\}$
 $= |det A| \cdot \{D$ 的面积 $\}$
 $= a \cdot b \cdot \pi \cdot (1)^2$
 $= \pi ab$

²原题摘自《线性代数及其应用》(第三版)P183.