2

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-144526

(43) Date of publication of application: 28.05.1999

(51)Int.CI.

H01B 1/12 H05B 33/14

H05B 33/22 // C09K 11/06 C09K 19/06

(21)Application number : **09-316656**

(71)Applicant: DAINIPPON PRINTING CO LTD

(22)Date of filing:

04.11.1997

(72)Inventor: HANNA JUNICHI

KOGO KYOKO

KAFUKU MASAAKI

(54) FLUORESCENT LIQUID CRYSTALLINE CHARGE TRANSPORT MATERIAL

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a charge transport material having charge transportability of high quality and excellent in thin layer forming property and various durabioities by providing a structure represented by a specified formula which include a skeleton structure having liquid crystallinity and showing fluorescent property and a core of liquid crystal.

X2 represents oxygen atom, sulfur atom, or -CO-, -OCO-, -COO-, -N=CH-, -CONH-, -NH-, -NHCO- or -CH2- group) is used. In this case, the charge transport material has a skeleton structure (A) having liquid crystallinity in which Y shows fluorescent property and Z is the core of liquid crystal.

LEGAL STATUS

[Date of request for examination]

01.11.2004

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-144526

(43)公開日 平成11年(1999) 5月28日

(51) Int.Cl. ⁶	識別記号		FΙ	
H01B 1/12			H01B	1/12 z
H05B 33/14			H05B 3	33/14 B
33/22			3	33/22 B
				D
# C09K 11/06			C09K 1	11/06 Z
		審查請求	未請求 請求項	質の数11 FD (全 56 頁) 最終頁に続く
(21)出顧番号	特願平9-316656		(71)出願人	000002897
				大日本印刷株式会社
(22) 出顧日	平成9年(1997)11月4日			東京都新宿区市谷加賀町-丁目1番1号
			(72)発明者	半那 純一
				神奈川県横浜市緑区上山町541 - 5
			(72)発明者	古後 恭子
				東京都新宿区市谷加賀町 -丁目1番1号
				大日本印刷株式会社内
			(72)発明者	加福 公明
				東京都新宿区市谷加賀町一丁目1番1号
				大日本印刷株式会社内
			(74)代理人	弁理士 吉田 勝広 (外1名)

(57)【要約】

【目的】 構造柔軟性と大面積にわたる均一性を有する アモルファス材料の利点と、分子配向性を有する結晶性 材料の利点を同時に有し、高品位の電荷輸送性、薄層形 成性、各種耐久性等に優れた新規な電荷輸送材料を提供 すること。

【解決手段】 液晶性を有し、Yが蛍光性を示す骨格構造、Zが液晶のコアである骨格構造(A)を有することを特徴とする電荷輸送材料。

【特許請求の範囲】

【請求項1】 液晶性を有し、Yが蛍光性を示す骨格構造、Zが液晶のコアであるような(A)の構造を持つことを特徴とする電荷輸送材料。

$$R_1 - X_1 - Z - X_2 - Y$$
 (A)

(但し、上記式中の R_1 は、炭素数 $1\sim 22$ の直鎖、分岐鎖又は環状構造を有する飽和又は不飽和の炭化水素基であり、 R_1 は X_1 を介さずに直接Zに結合してもよい。 X_1 及び X_2 は、酸素原子、硫黄原子、-CO-基、-CO-基、-CO-基、-CO-B、-CO-B -CO-B -CO-B

【請求項2】 Zが、 Z_1 又は $Z_1-Z_2-Z_3$ からなる構 造であり、 Z_1 及び Z_3 が(6 π 電子系芳香環) $_1$ 、(1 Οπ電子系芳香環)。又は(14π電子系芳香環)。(1 +m+n=1~4、1、m及びnは夫々0~4の整数を 表す)であり、Z₂が-CH=CH-基、-C≡C-基、-N=N-基、-CH=N-基、-COO-基又は 直接結合である請求項1に記載の液晶性電荷輸送材料。 【請求項3】 Yが、金属キレート化合物、多環縮合又 は共役芳香族炭化水素、ジフェニルエチレン誘導体、ト リフェニルアミン誘導体、ジアミノカルバゾール誘導 体、ビススチリル誘導体、ベンゾチアゾール誘導体、ベ ンゾオキサゾール誘導体、芳香族ジアミン誘導体、キナ クリドン系化合物、ペリレン系化合物、オキサジアゾー ル誘導体、クマリン系化合物及びアントラセン誘導体の 基から選ばれる請求項1又は2に記載の液晶性電荷輸送 材料。

【請求項4】 請求項1、2又は3に記載の材料の少なくとも1種を駆動経路に有することを特徴とするエレクトロルミネッセンス素子。

【請求項5】 電荷輸送部及び発光部が請求項1、2又は3に記載の材料の少なくとも1種からなることを特徴とするエレクトロルミネッセンス素子。

【請求項6】 請求項1、2又は3に記載の材料の少なくとも1種を駆動経路に有し、且つ電荷輸送部と発光部が単層構造であることを特徴とするエレクトロルミネッセンス素子。

【請求項7】 請求項1、2又は3に記載の材料の少な くとも1種を駆動経路に有することを特徴とする光セン サ。

【請求項8】 請求項1、2又は3に記載の材料の少なくとも1種を駆動経路に有することを特徴とする光導電体。

【請求項9】 請求項1、2又は3に記載の材料の少な くとも1種を駆動経路に有することを特徴とする画像表示素子。

【請求項10】 請求項1、2又は3に記載の材料の少なくとも1種を駆動経路に有することを特徴とする空間

光変調素子。

【請求項11】 請求項1、2又は3に記載の材料の少なくとも1種を駆動経路に有することを特徴とする薄膜トランジスタ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、蛍光性を有する液 晶性電荷輸送材料に関し、更に詳しくは液晶性とともに 蛍光性及び電荷輸送性を有する有機材料と、該有機材料 を使用した各種素子或いは装置に関する。

[0002]

【従来の技術】従来、電荷輸送材料としては、電荷を輸送するサイトとなる電荷輸送性分子を、ポリカーボネート樹脂等のマトリックス材料中に溶解或いは分散させた材料や、ポリビニルカルバゾール等の如くポリマー主鎖に電荷輸送性分子構造をペンダントさせた材料が知られている。これらの材料は、複写機やプリンタ等の感光体の材料として広く使用されている。

[0003]

【発明が解決しようとしている課題】上記従来の電荷輸送材料において、分散型の電荷輸送材料の場合には、電荷輸送分子がマトリックスであるポリマーに高い溶解性を有することが電荷輸送性能を向上させるためには望ましいが、実際にはマトリックス中における電荷輸送分子を高濃度にすると、電荷輸送分子がマトリックスにおいて結晶化し、電荷輸送分子の濃度は、種類によって異なるが、一般的には20~50重量%の濃度が限界である。その結果、全体の50重量%以上が電荷輸送性のないマトリックスが占めることになり、成膜した場合に十分な電荷輸送性や十分な応答速度が、マトリックスによって制限されるという問題がある。

【0004】一方、前記ペンダント型の電荷輸送性ポリマーの場合には、電荷輸送性を有するペンダントの占める割合が高いが、成膜した膜の機械的強度、環境安定性、耐久性及び成膜性の点で実用上の問題が多い。又、この種の電荷輸送材料は、電荷輸送性ペンダントが局所的に近接配置をとるために、このような局所近接部分が電荷をホッピングする際に安定サイトとなり、一種のトラップとして作用するために電荷の移動度を低下させるという問題がある。

【0005】又、上記いずれの材料においても、上記の如きアモルファス材料の電気特性からみた特徴は、結晶性材料とは異なり、ホッピングサイトが空間的にばかりでなく、エネルギー的にも揺らぎを有するという問題が存在する。そのために電荷輸送サイトの濃度に大きく依存し、その移動度は一般に $10^{-6}\sim10^{-6}\,\mathrm{cm^2/v\,s}$ 程度で、分子性結晶の $0.1\sim1\,\mathrm{cm^2/v\,s}$ に比較して著しく小さい。更には電荷の輸送特性に対して強い温度依存性や電界強度依存性があるという問題がある。この点は結晶性の電荷輸送材料と大きく異なる点である。

又、大面積の電荷輸送性層が必要とされる用途において は、大面積で電荷輸送性膜を均一に形成し得るという点 で多結晶の電荷輸送性材料が期待されているが、多結晶 材料はミクロ的には本質的に不均一な材料であって、例 えば、粒子界面に形成される欠陥を抑制する必要がある 等の問題がある。

【0006】従って本発明の目的は、上記従来技術の問 題を解決し、構造柔軟性と大面積にわたる均一性を有す るアモルファス材料の利点と、分子配向性を有する結晶 性材料の利点を同時に有し、高品位の電荷輸送性、薄層 形成性及び各種耐久性等に優れた新規な電荷輸送材料を 提供することである。更に、本発明者は、上記新規な電 荷輸送材料の一部は、それ自身が蛍光性を有することも 見出した。このことから、該電荷輸送材料を用いてエレ クトロルミネッセンス等の表示素子を構成する場合、液 晶分子の並びを阻害する蛍光材料の導入が不要となるた め、電荷輸送性の低下や液晶性の変化が起こらず、高い 移動度が実現できる電荷輸送材料の提供も併せて行う。 更に、本発明の液晶性材料は、電荷輸送性と蛍光性を併 せ持つため、例えば、エレクトロルミネッセンス素子と して使用する場合、通常のエレクトロルミネッセンス素 子がエレクトロン輸送性、ホール輸送性、蛍光性を有す る材料を用いてエレクトロン輸送層、ホール輸送層、及 び発光層からなる2層又は3層で構成する必要があるの に対し、該液晶性材料単独でエレクトロルミネッセンス 素子が形成可能なため素子形成の工程の簡略化が可能と なる。

[0007]

【課題を解決するための手段】上記目的は以下の本発明によって達成される。即ち、本発明は、液晶性を有し、 Yが蛍光性を示す骨格構造、Zが液晶のコアであるような(A)の構造を持つことを特徴とする電荷輸送材料である。

$$R_1$$
— X_1 — Z — X_2 — Y (A)

(但し、上記式中の R_1 は、炭素数 $1\sim 22$ の直鎖、分岐鎖又は環状構造を有する飽和又は不飽和の炭化水素基であり、 R_1 は X_1 を介さずに直接Zに結合してもよい。 X_1 及び X_2 は、酸素原子、硫黄原子、-CO-基、-OCO-基、-COO-基、-COO-B、-COO

-基、-NH-基、-NHCO-基又は-CH₂-基である。)

【0008】液晶性分子は、その分子構造により自己配向性を有するため、これをホッピングサイトとする電荷輸送は、前述の分子分散系材料とは異なり、ホッピングサイトの空間的且つエネルギー的な分散が抑制され、分子性液晶にみられるバンドライクな輸送特性が実現する。このために従来の分子分散系材料に比べて極めて大きな移動度が実現でき、更にその電界依存性がみられないという特徴が現れる。又、上記の自己配向性を有する液晶性分子に蛍光性を示す骨格構造を導入することによって、自己配向性が蛍光材料の添加によって阻害されることがない液晶性電荷輸送材料となる。

[0009]

【発明の実施の形態】次に好ましい発明の実施の形態を 挙げて本発明を更に詳細に説明する。本発明の液晶性電 荷輸送材料を以下に列挙する。以下に例示する電荷輸送 材料のうちで好ましい材料は、前記の基準を満たすとと もに、(6π電子系芳香環)1、(10π電子系芳香 環) _n又は(14π電子系芳香環)_n(1+m+n=1~ 4、1、m、nは夫々0~4の整数を表す)のコアを有 し、且つ液晶性を有する電荷輸送材料の中の6π電子系 芳香環が炭素ー炭素二重結合又は炭素ー炭素三重結合を 有する連結基で連結されている電荷輸送材料が挙げられ る。芳香環の連結数は移動度の観点から制限される。6 π電子系芳香環としては、例えば、ベンゼン環、ピリジ ン環、ピリミジン環、ピリダジン環、ピラジン環、トロ ポロン環、10π電子系芳香環としては、例えば、ナフ タレン環、アズレン環、ベンゾフラン環、インドール 環、インダゾール環、ベンゾチアゾール環、ベンゾオキ サゾール環、ベンゾイミダゾール環、キノリン環、イソ キノリン環、キナゾリン環、キノキサリン環、14π電 子系芳香環としては、例えば、フェナントレン環、アン トラセン環等が挙げられる。これらのπ電子系芳香族環 は、又、電圧印加や光照射等により蛍光性を示すことが 知られており、本発明において好ましく使用される電荷 輸送材料は、これらのπ電子系芳香族環を連結させた構 造を有しており、蛍光性を示すうえでより好ましい。

[0010]

【表1】

L	R		Cr	LC
C5H11-	-CO-NH-NH-CO-CH2-CN	_	K 124	\$ 141 1
C6H13-	-CO-NH-NH-CO-CH ₂ -CN		K 121	S 162 I
C7H15-	-CO-NH-NH-CO-CH2-CN		K 125	S 184 I
C ₈ H ₁₇ -	-CO-NH-NH-CO-CH2-CN		K 130	S 178 I
C4Hy-O-	-CO-NH-NH-CO-CH2-CN		K 141	8 130 1
C6H11-O-	-CO-NH-NH-CO-CH2-CN		K 138	S 149 I
C6H13-O-	-CO-NH-NH-CC-CH2-CN		K 133	S 167 I
C7H15-O-	-CO-NH-NH-CO-CH2-CN		K 134	8 179 1
CgH17-O-	·CO-NH-NH-CC-CH₂-CN		K 131	S 188 I
C ₀ H ₁₉ -O-	-CH=CH-CO-NH-NH-CO-CH2-CN		K 142	S 215 I

【0011】 【表2】

L	[A	Cr	l rcl
C ₆ H ₁₃ -	-O-C ₄ H ₉	K 26	S 44.51
C ₈ H ₁₇ -	-O-C ₆ H ₁₃	K 57	1 37 C 58 A 79 I
CeH ₁₇ -	-O-C ₈ H ₁₇	K 22	9 37 G 51 F 62 C 77 A 85 !
C ₆ H ₁₇ -	-OOC-C6H11	K 64	C 69 N 70 I
C ₈ H ₁₇ -	-00C-C ₆ H ₁₃	K 61	· C771
CeH ₁₇	-00C-C7H15	K 41	ਜੋ 77 C 85 ।
C ₈ H ₁₇ -	-00C-C ₆ H ₁₇	K 58	G 46 i 85 C 88 i
C8H17-	-00C-C ₉ H ₁₉	K 36	G 60 F 92 I
C _B H ₁₇ -	-00C-C ₁₀ H ₂₁	K 13	G 66 F 93 I
C ₆ H ₁₇ -	-00C-C ₁₁ H ₂₃	K 26	G 43 7 96 I
C4H9-O-	-C ₄ H ₉	K 43	S 62 1
C4H0-O-	-CeH13	K 50	\$ 54 N 61 I
C4H9-O-	-C ₈ H ₁₇	K 33	B 57.3 C 06.8 A 59.4 I
C5H11-O-	-CeH ₁₃	K 20.5	H 31.5 G 45 F 48.5 C 58 N 50.8 I
C5H11-O-	-C7H15	K 28.5	G 35 F 48 C 67.5 N 68.7 I
C5H11-O-	-CeH ₁₇	K 37.4	B 52 C 70.1 I
C5H11+O-	-C ₉ H ₁₈	K 42.5	8 65 C 72.4 A /4.5 I
C ₅ H ₁₁ -O-	-C10H21	K 44.4	B 66.7 C 70.4 A 74.7 I
C6H13-O-	-C ₃ H ₇	K 50	S 721
Cel 113-O-	-C ₆ H ₁₃	K 22	C 56 N 69 B
C6113-O-	-C7H15	K 34	H 31.2 G 44.4 F 53 C 74.4 N 75.2 I
Ce: 113-O-	-C ₈ H ₁₇	K 30	G 23 58 C 77
Cel113-O-	-C ₉ H ₁₉	K 36	B 64.4 C 50.5 I
Ce: 113-O-	-C10H21	K 30	B 67.6 C 80 I
C7:115-O-	-C ₅ H ₁₁	K 56.9	S 61.8 N 68.2 I
C7:115-O-	-C ₆ H ₁₃	K 40	C 68 B
C7:115-O-	-C7H15	K 31	G 40 1 52 C /7 1
C7H15-O-	-C ₈ H ₁₇	K 38.5	F 56 C 76.5 I
C7H15-O-	-C ₉ H ₁₉	K 33	B 64 C 81.5 I
C7H15-O-	-C ₁₀ H ₂₁	K 41	B 67.8 C 30.8 I

【0012】 【表3】

$$L \longrightarrow R$$

L	l Ri	Cr	LC
C3H7-	-CO-C ₇ H ₁₅	K 118	A 1191
C4Ho-	-CO-C ₆ H ₁₃	K 114	A 1231
C5H11-	-CO-C ₅ H ₁₁	K 107	E 83 A 127 I
C ₆ H ₁₃ -	-CO-C4H6	K 92	E 92 A 1261
C7H15-	-CO-C ₃ H ₇	K 75	- E 73 A 107 I
C ₀ H ₁₇ -	-CO-C ₂ H ₅	K 80	E 56 A 117
C9H19*	-CO-C ₂ H ₅	K 75	A 120 I
C9H1g-	-CO-C ₃ H ₇	K 74	E 64 A 104
C ₉ H ₁₉ -	-CO-C ₄ H ₉	X 71	A 1181
C ₉ H _{1g} .	-CO-C ₅ H ₁₁	K 98	A 1181
C ₆ H ₁₃ -O-	-O-C ₆ H ₁₃	K 114	\$ 1251
C7H15-O-	-O-C7H13	K 99	S 101 S 123 I
C ₈ H ₁₇ -O-	-O-C ₈ H ₁₇	K 90	\$ 93 S 122 I
C ₉ H ₁₉ -O-	-O-C ₀ H ₁₉	K 93	S 119 I
C10H21-O-	-O-C ₁₀ H ₂₁	K 94	S 117 I
C ₁₁ H ₂₃ -O-	-O-C ₁₁ H ₉₃	K 98	\$ 1131
C12H25-O-	-O-C ₁₂ H ₂₅	K 99	S 109 I
C4:18-CO-	-∞-C₄H ₉	K 130	E 108 A 157 I
C51111-CO-	-CO-C ₅ :111	K 149	A 164 I
CeH13-CO-	-CO-C ₆ H ₁₃	K 146.5	A 166 I
C7:115-CO-	-CO-C ₇ :1 ₁₅	K 140	A 167 I
C5H11-COO-	-00C-C ₅ : 1 ₁₁	K 109	A 117 B
C6113-COO-	-OOC-C ₆ ; 1 ₁₃	K 72	X 105 A 119 B
C7H15-COO-	-00C-C7H15	K 57	X 83 X 93 A 123 B
C9H19-COO-	-OOC-C ₉ H ₁₉	K 88	A 126 B

[0013]

【表4】

L	R		Cr	LC
C ₅ H ₁₁ -O-	-C;H ₁₅	Γ	K 78	A731
C ₆ H ₁₃ -C-	-CeH ₁₃		K 79.	A741
C ₆ H ₁₃ -O-	-C,H ₁₈		K 83	A 82 I
C7H15-O-	-C ₅ H ₁₁	L	K 72	C 74 A 79 I
C7H15-O-	-C ₈ H ₁₃		K 74	C81 I
C7H18-O-	-C,H ₁₅		K 79	C 89 I
C7H15-O-	-CgH ₁ ,		K 70	C 85 I
C7H15-O-	-C ₉ H ₁₉		K77	C 89 I
C7H15-O-	-C ₁₀ H ₂₁	l	K 75	C 86 I
C ₈ H ₁₇ -O-	-C ₅ H ₁₁		K 73	C 69 A 81 I
C ₈ H ₁₇ -O-	-CaH13		K 73	C 80 A 83 I
C ₈ H ₁₇ -O-	-C7:119		K 80	C 87 I
C ₈ H ₁₇ -O-	-CaH ₁₇		K 80	C 90 (
C ₀ H ₁₇ -O-	-C ₉ H ₁₉		K7/	C 90 I
C ₈ H ₁₇ -O-	-C ₁₀ H ₂₁	l	K 78	G 70 C 90 I
C ₉ H _{1g} -O-	-C ₅ H ₁₁		K 69	G 53 C 66 A 82 I
C ₀ H ₁₀ -O-	-C ₆ H ₁₃	l	K 62	G 81 C 81 A 83 I
C ₉ H ₁₉ -O-	-C7H15		K 72	C 87 I
C ₉ H ₁₉ -O-	-CgH ₁₉	١.	K 76	C 90 I
C10H21-O-	-C ₅ H ₁₁	1	K 73	F 55 C 57 A 84 I
C10H21-O-	-C ₆ H ₁₃		K 50.6	S 65.4 C 81.1 A 85.41
C10H21-O-	-C7H15		K 70	C 89 I
C10H21-O-	-C ₉ H ₁₉		K 79	C 92 I
C4Hg-CMe2-C4Hg-O-	-C7H15		K 49	C 33 I
C ₄ H ₉ -CMe ₂ -C ₅ H ₁₂ -O-	-C7H15		K 54	C 55 t
C7H15-COO-	-C7H15		K 79	B 68 A 73 I
C ₈ H ₁₇ -COO-	-C ₉ H ₁₉		K 85	C 84.51
C ₁₁ H ₂₃ -COO-	-C11H23		K 88	8 85 (
C61117-O-	-CHMe-C ₂ H ₅	1	K 52	A 191
C7H15-	-C ₄ H ₈ -CHMe-C ₂ H ₅	S	K 42.6	C* 27.5 A 34 I

【0014】 【表5】

L	ਸ	_	Cr	LC
C ₆ H ₁₃ -O-	-CH=CH-CH2-O-CH3		K 16	B 30 N 38 I
C7H15-O-	-CH≖CH-CH2-O-CH3		K 14	B 38 I
CH3-CO-	-C ₃ : I ₇	1	K 45	3 54 1
C4Ho-CO-	-Caid ₁₁	ı	K 60.7	B 52.5 N 58 I
C4H9-CO-	-C71115		K 55.5	A 50.5 N 64.3 I
C ₆ H ₁₃ -CO-	-C7:118		K 70	B 71.5 I
Calf17-CO-	-C7H15		K 70.2	E 43 B 80.1 I
C3:17-CF2-CO-	-Csii ₁₁		K 20	. B 33 N 53.9 I
CH3-NH-CH%CH-CO-	-Ceitra		K 107.8	A 144.3 N 153 I
C2116-NH-CH%CH-CO-	-C ₆ H ₁₃	H	K 68.4	A 79.8 N 120 I
Callia-NH-CH%CH-CO-	-C ₆ H ₁₃		K 61	C 35 N 104.2 I
C7H15-NH-CH%CH-CO-	-C ₆ H ₁₃		K 55.2	H 40 C 68.9 N 107.8 I
C ₈ H ₁ -NH-CH%CH-CO-	-C ₆ H ₁₃	li	K 50.B	H 57.8 C 80.3 N 104 I
C9H18-NH-CH%CH-CO-	-C ₆ H ₁₃		K'54	H 74.6 C 94.1 N 107.3 I
C10H21-NH-CH%CH-CO-	-C ₆ H ₁₃		K 61.3	H 83.3 C 100.1 N 105.2 I
C11H23-NH-CH%CH-CO-	-C ₆ H ₁₃		K 68.7	H 94.3 C 106.6 N 109.3 I
C ₁₂ H ₂₅ -NH-CH%CH-CO-	-CaH ₁₃		K 64.1	H 97.8 C 109 N 109.4 I
C13H27-NH-CH%CH-CO-	-C ₆ H ₁₃		K 65	H 103.2 C 111.4 I
C14H29-N:1-CH%CH-CO-	-C ₆ H ₁₃		K 55	H 102.1 C 109.8 I
C ₁₅ H ₃₁ -NH-CH%CH-CO-	-C ₆ H ₁₃		K 54.2	H 106.1 C 110.6 I
C18H37-NH-CH%CH-CO-	-C ₆ H ₁₃		X 54.1	H 107.4 I
C4H9-OOC-	-C ₅ H ₁₁		K 11	A -4 N -3.2 I
C ₅ H ₇ -COO-	-C ₃ H ₇		K 11	B 26.1 N 30.3 I
C4H9-COO-	-C ₃ H,		K 32.3	B 42.7 I
C5H11-COO-	-C7H15		K 34.2	B 64.5 I
C8H17-O-	-OOC-CH2-CHMe-C3H6-CHMe-CH3	S	K 53	B 39 I
C10H21-O-	-OOC-CHF-C4He	s	K 42.5	8 41
C5H11-COO-	-OOC-CHF-C4H9	R	K 42	. B 59 I
C0H13-COO-	-OCC-CHF-C4H9		K 52	B 59 I
C7H15-COO-	-COC-CHF-C₄H ₈	R	K 42	B 64 I

【0015】 【表6】

lu	R	Cr	LC
C ₂ H ₅ -O-	-CN	K 150	S 144 N 189 I
C ₈ H ₁₇ -	-C ₆ H ₁₃	K 68	C 108 N 116 I
C ₅ H ₃₁ .	-O-C ₄ H ₆	K 77	S 76 N 113 I
C ₅ H ₁₁ -O-	-C ₅ H ₁₁	K 73	C /7 N 118 I
C ₅ H ₁₁ -O-	C ₆ H ₁₃	K 73	C 88 N 114 I
C ₅ H ₁₁ -O-	-C7H15	K 71	C 98 A 98 N 118 I
C ₅ H ₁₁ -O-	-C ₈ H _{1/}	K 73	C 92 A 105 N 112 I
CeH13-O-	-C ₅ H ₁₁	K 68	C 93 N 125 I
C6H13-O-	-CoH ₁₃	K 66	C 98 N 11/1
C ₆ H ₁₃ -O-	-C7H15	K 65	C 104 A 106 N 121 I
C ₀ H ₁₃ -O-	-CeH ₁₇	K 59	C 104 A 113 N 117 I
C7H15-O-	-C ₅ H ₁₁	K 73	C 98 N 121 I
C7H16-O-	-C ₆ H ₁₃	K 70	C 105 N 1181
C7H15-O-	-C7H15	K 70	C 109 A 113 N 120 I
C7H15-O-	-C ₈ H ₁₇	K 71	C 109 A 115 N 116 I
C8H17-O-	-C ₅ H ₁₁	K 72	C 104 N 120 I
C ₈ H ₁₇ -O-	-CeH ₁₃	K 68	C 106 N 116 I
C9H17-O-	-C7H15	K /0	C 109 A 117-N 120 I
C ₈ H ₁₇ -O-	-C ₈ H ₁₇	K 59	C 113 A 118 I
C ₉ H ₁₉ -O-	-C ₅ H ₁₁	K /6	C 107 A 109 N 118 I
C ₉ H ₁₉ -O-	-C ₆ H ₁₃	K /6	C 111 A 113 N 116 I
C ₉ H ₁₉ -O-	-C ₇ H ₁₅	K 76	C 113 A 119 I
C ₉ H ₁₉ -O-	-C ₈ H ₁₇	K 75	C 114 A 117 I
C ₁₀ H ₂₁ -O-	-C ₅ H ₁₁	K /7	C 10/A 113 N 118 I
C ₁₀ H ₂₁ -O-	-C ₆ H ₁₃	K 75	C 110 A 114 N 116 I
C ₁₀ H ₂₁ -O-	-C ₇ H ₁₅	K 74	C 114 A 119 I
G ₁₀ H ₂₁ -O-	-C ₈ H ₁₇	K 68	C 114 A 116 I
C ₁₁ H ₂₃ -O-	-C ₅ H ₁₁	K 83	C 105 A 114 N 116 I
C11H23-O-	-C ₆ H ₁₃	K 82	C 110 A 115 I
C ₁₁ H ₂₃ -O-	-C ₇ H ₁₅	K 81 .	C 113 A 118 I

[0016]

[0017]

[L]	R	1	Cr	LC
C7H15	-CN	1	K 125.6	S 154.1 N 163.7 I
CeH17-O-	-O-C ₈ H ₁₇		K 93	C 106 A 111 N 129 I
C ₇ H ₁₅ - C ₈ H ₁₇ -O- C ₈ H ₁₇ -O-	-O-C: (g-CH/O/CH(t)-C4Hg	s	K 85	C* 128.4 A 130.5 N* 141 I
	·	_ '	表81	•

ir	R		Cr	ιc
NC-	-O-C5H10-SiM3Ck		K 119.4	S 191.41
C10H21-O-	· +		K 103.8	8 94 1
C,H15-	-CN		K 61.5	\$73.571 981
Cetter	-CN		K 52	\$ 57.5 A 80 N 89 B
C ₂ H ₁₉ -	-CN		X 56.2	A 94.4 N 96.7 I
C10H21-	-CN		X 47.2	A 95.1 I
C11H28-	-CN		∺ 65.5	A 100.2 I
C7H15-O-	-CN		K 80	A 89.5 N 126 B
C ₈ H ₁₂ -O-	-CN		K 103	A 110 N 128 B
C10H21-O-	-CN		K 87	A 129 B
C ₁₇ H ₃₅ -CON:I-	-CN		17 144	3 159 1
C2H5-CHM5-C4H8-	-CN	1	K 59.4	S 6/21
C2H5-C: 1M9-C5H10-	-CN	1	K 44.7	S 68.31
C7H15-O-	-NO ₂		∺ 77.5	A 94 N 106.5 B
C ₆ H ₁₇ -O-	-NO₂		K 111	A 111 N 114 I
C10H21-O-	-NO ₂		K 97	A 118 I
C12H25-O-	-NO ₂	-	K 85	A 1151
C12H25-NH-	-NO ₂		K 109	E 141 (
C18H37-N:1-	-NO ₂		K 112.1	€ 132 (
C17H36-CONH-	-NO₂		K 139	A 160 B
C ₈ H ₁₇ -	-C ₈ H ₁₇		HC 46	H 106 G 108 I
C ₉ H ₁₉ -	-C ₉ H ₁₉		K 41	H 93 G 109 I
C10H21-	-C10H21		K 64	H 92 G 106 L
C ₁₁ H ₂₃ -	C11H23		K 61	S 70 H 85 G 1u6 l
C12H25*	-C ₁₂ H ₂₅		K 75	577 H 81 G 103 I
C5H11-	-0-CH ₃		K 118	B 109.8 N 124.7 I
C5H11-	-O-C ₈ H ₁₇		K 121.3	S 121.1 S 125.5 S 131 I
CH ₂ -O-	-O-CgH ₁₉		K 149	S 142.5 N 142.6 I
CH ₃ -O-	-O-C ₁₂ H ₂₅		K 142	S 136 I
CH ₃ -O-	-O-C ₁₄ H ₂₉		K 139	S 132 I

【0018】 【表9】

$$L \longrightarrow \bigcup_{O \longrightarrow \mathbb{R}} R$$

Cahier Cohier C	L	A	Cr	l.C]
Cahier Cohier C	Callin	-O-C7H15	K 46	C 41 N 51 I
Cohie Cohi		-O-C ₆ H ₁₇	K 53	C 48 N 64 I
CgHier -O-Croiter K 58.7 K 58.7 K 52.1 S 7.9 N 55.8 I S 5.7 C 65.1 A 63.8 N 55.5 I S 5.7 C 65.1 A 63.8 N 55.5 I S 5.7 C 65.1 A 63.8 N 55.5 I S 5.7 C 65.4 A 56.8 I B 61.3 C 69.4 A 67.8 I S 5.7 C 65.4 A 68.8 I B 61.3 C 69.4 A 67.8 I S 5.7 C 65.4 A 68.8 I B 61.3 C 69.4 A 67.8 I S 5.7 C 65.4 A 68.8 I B 61.3 C 69.4 A 67.8 I S 5.7 C 65.4 A 68.8 I B 61.3 C 69.4 A 67.8 I S 5.7 C 65.4 A 68.8 I S 5.7 C 65.4 A 68.8 I S 61.3 C 69.4 A 67.8 I S 61.4 A 67.8 I S 62.8 I S 61.7 N 68.7 I S 62.8 I S 62.5 I S 62.6 I S 62.	CoH ₁₀	-O-Cei 119	K 54	C 52 N 69 I
CgH10° -O-C12*425 K 62.1 34.5 C 63.1 A 63.8 N 36.5 I CgH10° -O-C14H29 K 63.7 K 63.7 B 55.7 C 65.4 A 36.8 I CgH10° -O-C14H29 K 63.4 B 61.3 C 36.4 A 67.6 I B 61.3 C 36.4 A 67.6 I CgH21° -O-C2H11 K 52.5 B 33.6 A 47.7 N 59.1 B 33.6 A 47.7 N 59.1 CgH21° -O-C2H12 K 52.8 B 38.2 C 40.8 A 61.7 N 58.7 I B 33.6 A 47.7 N 59.1 CgH21° -O-C2H12 K 52.8 B 40.5 C 52.4 A 55.9 N 62.5 I K 51.4 CgH21° -O-C10H21 K 51.4 B 46.9 C 80.5 A 92.1 N 64.5 I CgH21° -O-C10H23 K 57.2 B 45.9 C 80.5 A 92.1 N 64.5 I CgH21° -O-C10H23 K 57.2 B 51. C 64.1 A 65.7 I CgH21° -O-C10H23 K 57.2 B 58.1 C 66.7 I CgH13° -O-C10H23 K 57.2 B 58.1 C 66.7 I CgH13° -O-C2H13 K 57.2 B 58.1 C 66.7 I CgH13° -O-C3H2 K 57.2 B 58.1 C 66.7 I CgH13° -O-C3H2 K 57.2 B 58.1 C 68.7 I		-O-C ₁₀ : 121	K 58.7	C 57.9 N 55.8 I
Cohie	* '-	-O-C12:125	K 62.1	:) 47.5 C 69.1 A 63.8 N 56.51
CgH1gr C10H21- C10H21		-O-C ₁₄ H ₂₉	K 69.7	B 55.7 C 65.4 A 56.81
C10H21- C10H21- C-C2H13 K 44.1 B 33.6 A 47.7 N 59 I	C ₀ H ₁₈	-O-C ₁₈ H ₃₉	K 89.4	B 61.3 C 56.4 A 67.5 I
-O-C7H15 K 52.8 B 38.2 C 40.8 A 51.7 N 58.7 I C10H21- C-C7H15 K 55.2 B 40.5 C 52.4 A 55.9 N 62.5 I B 40.5 C 52.4 A 55.9 N 62.5 I B 40.5 C 52.4 A 55.9 N 62.5 I B 40.5 C 52.4 A 55.9 N 62.5 I B 40.5 C 52.4 A 55.9 N 62.5 I B 40.5 C 52.4 A 55.9 N 62.5 I B 40.5 C 52.4 A 55.9 N 62.5 I B 40.5 C 52.4 A 55.9 N 62.5 I B 40.5 C 52.4 A 55.9 N 62.5 I B 40.5 C 52.4 A 55.9 N 62.5 I B 51 C 64.1 A 65.7 I C10H21- C-C10H21- C-C10H23 K 57.2 B 58.1 C 66.7 I B 51 C 64.1 A 65.7 I B 51 C 64.1 A 65.7 I B 68.9 C 7 I B 68.9 C 7 I B 68.9 C 7 I C10H21- C-C-C4H2 K 80 A 76 I C 64.1 A 80.4 I C 64.1 A	C10H21	-O-C ₀ H ₁₁	K 52.5	A 42.4 N 52.5 I
C10H211	C10H21-	-O-C _{ij} H ₁₃	K 44.1	B 33.6 A 47.7 N 59 I
CobH21- CroH21	C10H21.	-O-C7H15	K 52.8	B 38.2 C 40.8 A 51.7 N 58.7 I
C10H21- C-C12H05 K €4.5 B €1 C 64.1 A 65.7 I	C10H21-	-O-C:H ₁ /	K 55.2	B 40.5 C 52.4 A 55.9 N 62.5 1
C₁₀H₂1· -O-C₁₂H₂5 K €4.5 B 51 C 64.1 A 65.7 I C₁₀H₂1· -O-C₁₃H₂5 K €5.2 B 58.1 C 66.7 I C₁₀H₂1· -O-C₁₃H₂5 K 57.2 B 68.9 C 7 I C₃H₂5· -O-C₁₃H₂5 K 73.7 B 68.9 C 7 I C₃H₁3· -CO-C₄H₂ K 80 A 76 I C₃H₁3· -CO-C₃H₁1 K 91.6 A 80.4 I C₃H₁5· -CO-C₃H₁1 K 81.4 A 85.8 I C₃H₂1· -CO-C₃H₁1 K 81.4 A 87.3 I C₁₀H₂1· -CO-C₃H₁1 K 87.8 A 93.3 I C₃H₂1· -CO-C₃H₁1 K 87.8 A 93.3 I C₃H₂1· -CO-C₂H₁5 K 80.2 S 90.4 N 95.6 I C₃H₂1· -CO-C₂H₁5 K 80.2 S 90.4 N 95.6 I C₃H₁2·O- -C₀H₁3· -C₀H₁3· A 36.7 N 59.6 I C₃H₁3·O- -C₀H₁1 K 83.3 C 26.1 A 40 N 65.2 I C₃H₁3·O- -C₀H₁2·O- -C₀H₁2·O- A 42.1 N 81.6 I C₃H₁3·O- -C₀H₁2·O- -C₀H₁2·O- A 42.1 N 81.6 I	C10H21-	-O-C10Ho1	K 31.4	B 45.9 C 80.5 A 82.1 N 64.5 I
C10H21	C10H21-	-O-C12H25	K 24.5	B 51 C 64.1 A 65.7 I
C12H20- C12H20- C12H20- C12H20- C0-C4H0- C6H13- C0-C6H11- C6H13- C0-C6H11- C0-C7H15- C0-C7H15- C0-C7H15- C0-C8H11- C0-C8H11- C0-C8H11- C0-C8H11- C0-C8H11- C0-C8H11- C0-C8H11- C0-C8H11- C0-C8H11- C0-C7H15- C0-C8H11- C0-C8H11- C0-C8H11- C0-C7H15- C	C10Ho1-	-O-C ₁₄ H ₂₀	K 35.2	B 58.1 C 66.7 I
C ₀ H ₁₃ * -CO-C ₀ H ₀ K80 A 76 I C ₀ H ₁₃ * -CO-C ₀ H ₁ K 91.6 A 80.4 I C ₀ H ₁₃ * -CO-C ₀ H ₁ K 91.6 A 80.8 I C ₀ H ₁₂ * -CO-C ₀ H ₁ K 89.7 A 88.5 I C ₁ OH ₂₁ * -CO-C ₀ H ₁ K 89.7 A 89.3 I C ₁ OH ₂₁ * -CO-C ₀ H ₁ K 87.8 A 99.3 I C ₁ OH ₂₁ * -CO-C ₁ H ₁ K 87.1 A 83 I C ₀ H ₁ * -CO-C ₁ H ₁ K 80.2 S 90.4 N 95.6 I C ₁ OH ₂₁ * -CO-C ₁ H ₁ K 80.2 S 90.4 N 95.6 I C ₁ OH ₂₁ * -CO-C ₁ H ₁ K 69 C 61.7 N 70.4 I C ₂ OH ₁₃ * -C ₂ OH ₁₃ K 43.7 A 36.7 N 59.6 I C ₃ H ₁ *-O- -C ₃ H ₁ * K 43.7 A 42.1 N 61.6 I C ₃ H ₁₃ *-O- -C ₃ H ₁₉ K 51 A 42.1 N 61.6 I C ₃ H ₁₃ *-O- -C ₁₀ H ₂ K 51 A 49 N 62.2 I	C10H21-	-O-C16H33	K 57.2	B 54.2 C 69.61
C ₀ H ₁₃ · -CO-C ₀ H ₁₁ K 91.6 A 80.4 I C ₀ H ₁₃ · -CO-C ₂ H ₁₁ K 91.4 A 86.8 I C ₀ H ₁₃ · -CO-C ₂ H ₁₁ K 88.7 A 88.5 I C ₁ 0H ₂₁ · -CO-C ₂ H ₁₁ K 81.4 A 87.3 I C ₁ 0H ₂₁ · -CO-C ₂ H ₁₁ K 87.8 A 93.3 I C ₁ 0H ₂₁ · -CO-C ₂ H ₁₁ K 87.8 A 93.3 I C ₂ H ₁₂ · -CO-C ₂ H ₁₂ K 87.1 A 83 I C ₄ H ₂ · -CO-C ₂ H ₁₂ K 80.2 S 90.4 N 95.6 I C ₁ 0H ₂₁ · -CO-C ₂ H ₁₅ K 80.2 S 90.4 N 95.6 I C ₁ 0H ₂₁ · -CO-C ₂ H ₁₅ K 80.2 S 90.4 N 95.6 I C ₂ 0H ₁₂ · -C ₂ H ₁₃ K 80.2 S 90.4 N 95.6 I C ₂ 0H ₁₃ · -C ₂ H ₁₃ K 43.7 A 36.7 N 59.6 I C ₂ 0H ₁₃ · -C ₂ H ₁₃ K 43.7 A 42.1 N 81.6 I C ₂ 0H ₁₃ · -C ₂ H ₁₃ K 43.7 A 42.1 N 81.6 I C ₃ H ₁₃ · -C ₂ H ₁₃ K 51 A 49.N 65.2 I C ₃ H ₁₃ · -C ₁ 0H ₂ K 51	C12H25-	-O-C ₁₀ H ₉₃	K 73.7	B 68.9 C 711
C ₀ H ₁₃ * -CC-C ₇ H ₁₅ K 81.4 A 86.8 I C ₀ H ₁₉ * -CO-C ₃ H ₁₁ K 88.7 A 88.5 I C ₁₀ H ₂₁ * -CO-C ₄ H ₂ K 81.4 A 87.3 I C ₁₀ H ₂₁ * -CO-C ₆ H ₁₁ K 87.8 A 93.3 I C ₁₀ H ₂₁ * -CO-C ₇ H ₁₅ K 87.1 A 83 I C ₄ H ₆ * -CO-CH ₂ -OOC-C ₃ H ₇ K 80.2 S 90.4 N 95.6 I C ₁₀ H ₂₁ * -OOC-C ₇ H ₁₅ K 80.2 S 90.4 N 95.6 I C ₁₀ H ₂₁ * -C ₀ H ₁₃ K 69 C 51.7 N 70.4 I C ₆ H ₁₃ *-O- -C ₆ H ₁₃ K 43.7 A 36.7 N 59.6 I C ₆ H ₁₃ *-O- -C ₆ H ₁₂ K 49.0 A 42.1 N 81.6 I C ₆ H ₁₃ *-O- -C ₉ H ₁₉ K 38.3 C 26.1 A 40 N 65.2 I C ₆ H ₁₃ *-O- -C ₁₀ H ₂₁ K 51 A 49 N 62.2	CeH ₁₃ -	-CO-C ₄ H ₉	K 80	A761
CoH19* CO-C3H11 C10H21* CO-C4H9 CO-C4H9 CO-C4H9 CO-C4H9 CO-C4H9 CO-C6H11 CO-C6H11 CO-C6H11 CO-C7H15 CO-C7H15 CO-C7H15 CO-C7H15 CO-C7H15 CO-C7H15 CO-C7H16 CO-C7H16 CO-C7H17 CO-C7H18 CO	C _B H ₁₃ -	-CO-C ₅ H ₁₁	K 91.6	A 80.4 I
C10H21- C10H21	C6H13-	-CC-C ₇ H ₁₅	K 91.4	A 85.8 H
C10H21· C10H21· C10H21· C10H21· C4H2· C4H2· C4H2· C5C-C4H13 C4H2· C5C-C4H13 C5H13· C6H13· C7C C6H13· C7C C6H13· C7C C7C C7C C7C C7C C7C C7C C7C C7C C7	C ₀ H ₁ g-	-CO-C ₅ H ₁₁	K 86.7	A 88.5 I
G10H21* CO-C7H15 K 97.1 A 83 I CuHg* -CO-CH2**-OOC**-C3H7 K 80.2 S 90.4 N 95.6 I C10H21* -OOC**-C7H16 K 69 C 51.7 N 70.4 I C6H13**-O* -C6H13 K 43.7 A 36.7 N 59.6 I C6H13**-O* -C6H17 K 49.0 A 42.1 N 81.6 I C6H13**-O* -C10H21 K 51 A 49 N 62.1	C10H21-		K 81.4	A 87.3 I
C _H Br -CO-CH ₂ -OOC-C ₃ Hr K 80.2 S 90.4 N 95.6 I C ₁₀ H ₂₁ - -OOC-C ₇ H ₁₈ K 69 C 51.7 N 70.4 I C ₆ H ₁₉ -O- -C ₆ H ₁₉ K 43.7 A 36.7 N 59.6 I C ₆ H ₁₉ -O- -C ₆ H ₁₇ K 49.0 A 42.1 N 81.6 I C ₆ H ₁₉ -O- -C ₆ H ₁₉ K 38.3 C 26.1 A 40 N 65.2 I C ₆ H ₁₉ -O- -C ₁₀ H ₂₁ K 51 A 49 N 62 I	C10H21-	-CO-C ₅ H ₁₁	K 87.8	A 99.31
C ₁₀ H ₂₁ .	C10H21-	-CO-C ₇ H ₁₅	K 97.1	1 ER A
C ₆ H ₁₅ -O- C ₆ H ₁₅ -O- K 43.7 A 36.7 N 59.6 I C ₆ H ₁₅ -O- C ₆ H ₁₇ -C ₆ H ₁₇ K 43.0 A 42.1 N 81.6 I C ₆ H ₁₅ -O- -C ₆ H ₁₆ K 38.3 C 26.1 A 40 N 65.2 I C ₆ H ₁₅ -O- -C ₁₀ H ₂₁ K 51 A 49 N 62 I	C4Hg-	-CO-CH2-OOC-C3H7	K 80.2	S 90.4 N 95.6 I
C ₀ H ₁₃ -O- -C ₀ H ₁₇ K 49.0 A 42.1 N 61.6 I C ₀ H ₁₃ -O- -C ₀ H ₁₀ K 38.3 C 26.1 A 40 N 65.2 I C ₀ H ₁₃ -O- -C ₁₀ H ₂₁ K 51 A 49 N 62 I	C10H21-	-OOC-C7H15	K 69	C 61.7 N 70.41
C ₆ H ₁₉ -OC ₆ H ₁₉	CeH13-O-	-C ₆ H ₁₃	K 43.7	A 36.7 N 59.6 I
C ₆ H ₁₃ -OC ₁₀ H ₂₁ K 51 A 49 N 62 I	C6H15-O-	-C ₈ H ₁₇	₭ 43.0	A 42.1 N 61.6 I
CeH13-OC10H21 K 51 A 49 N 62 I	C6H13-O-	-CoHto	∺ 38.3	C 26.1 A 40 N 65.2 I
	CeH13-O-	-C ₁₀ H ₂₁	K 51	A 49 N 62 I
	C6H15-O-	-C ₁₂ H ₂₅	K 61.2	A 51.4 N 62.2 I

【0019】 【表10】

$$L \longrightarrow N \longrightarrow R$$

L	R	Cr	LC
C ₄ H ₈ -O-	-CH ₃	K 65	G 45 N /2 I
Cri le-O-	-C ₂ H ₅	K 40.5	G 51 N 65.5
C4H9-O-	-C ₁ H ₂	K8	G 41 B 45 A 45.5 N 75 I
C4Hg-O-	-C ₅ :1 ₁₁	K 28	S 30 S 41.5 A 44.4 N 84.6 I
C4He-O-	-C ₆ l 1 ₁₃	K 26	3 47.3 A 54.7 N 76.91
C4Hg-O-	-C7+115	K 20	S 29 3 45.8 A 56.6 N 83.3 I
C4Hg-O-	-CaH ₁₇	K 33	B 49.5 A 64.5 N 79 I
C4Hg-O-	-C ₉ H ₁₉	K?	B 48 A 64.7 N 80.2 I
C ₄ H ₀ -O-	-C10H21	K 44.3	- B 46.8 A 64.7 N 76.7 I
C4He-O-	-C12Hes	K 37.5	G 45.6 3 52,5 A 69,4 N 76.7 I
C5H11-O-	-CH ₃	K 56	G 44 N 70.5 I
C6H11-O-	-C₂H₅	K 49.2	G 54.2 N 59 I
C5H11-O-	-C ₃ H ₇	K 24	A 58 N 77.7 B
C6H11-O-	-C₄H ₈	K 50	G 51.9 A 52.4 N 69.2 I
C6H11-O-	-C ₅ H ₁₁	K 28	G 46.1 B 48 C 52 A 53 N 77.5 I
C5H11-O-	-C ₆ H ₁₉	K 34.5	G 41 F 44.3 B 51.6 C 53 A 61.1 N /2.9 I
C5H11-O-	-C,H ₁₅	K 29.5	G 33.0 B 51 C 53.1 A 62.8 N 78 I
C6H11-O-	-C ₈ H ₁₇	K 43.2	G 26.2 B 53.7 A 67.8 N /5.1 I
C5H11-O-	-CgH ₁₉	K?	B 52.9 A 68.7 N 76.7 I
C5H11-O-	-CigHei	K 41	B 54 A 67 N 76.2 I
C5H11-O-	-C ₁₁ H ₂₈	К?	B 53 A 70.4 N 75.1 I
C5H11-O-	-C ₁₉ H ₉₅	K 37	8 53.3 A 71 N /3.91
C ₅ H ₁₁ -O-	-С ₁₃ Н ₂₇	K?	B 52.9 A 70.2 N 73.2 I
C5H11-O-	-C14H29	K?	B 52.7 A 69.5 N 71.2
C ₆ H ₁₃ -O-	-CH _s	K 58	G 44 8 53 N 76 I
C ₆ H ₁₃ -O-	-C ₂ H ₅	K 47	. G 58 N 70 I
C ₆ H ₁₃ -O-	-C ₃ H ₇	K 29	G 65.7 A 08 N 85.61
C6H13-O-	-C ₄ H ₀	K 33.5	G 58.5 B 59.8 A 70.1 N 77.8 I
CeH13-O-	-C ₅ H ₁₁	K 41.9	G 45.6 B 62 A 75.1 N 85 I
C6H13-O-	-CeH ₁₃	K 15	G 35 B 69 A 77 N 82 1

【0020】 【表11】

L	R	Cr	LC
C _B H ₁₇ -	-C ₈ H ₁₇	K 47.9	A 36.4 N 41.8 I
C _B H ₁₉ -	-C ₉ H ₁₉	∺ 37	ઇ 40.5 A 53.2 I
C10H21-	-C ₁₀ H ₂₁	K 42.3	5 44.6 A 53.71
CH ₃ -	-O-C ₆ H ₁₁	X 61	S 49 N 63 I
C ₄ H ₈ -	O-C ₇ H ₁₅	∺ 59.7	C 40.3 N 70.2 I
C ₄ H ₉ -	O-C8H17	₭ 55.2	B 35 C 54.2 A 57.6 N 75.2 I
C ₄ H _p -	-O-C ₀ H ₁₉	K 62.1	C 58.9 A 63.8 N 73.2 I
C ₄ H _g .	-O-C ₁₀ H ₂₁	K 54.4	B 50.3 C 61.5 A 69.4 N 76.8 I
C ₄ H ₉ -	-O-C ₁₂ H ₂₅	K 62	1 60 C 64 A 75 N 76.2 I
C4Hir-	-O-C ₁₄ H ₂₉	K 64	S 66 C 69 A 77 I
C ₄ H ₉ -	-O-C ₁₈ H ₃₇	K 72.6	S72 A7/1
C _B H ₁₇	-O-C ₇ H ₁₅	K 53.2	C 56.6 A 60.2 N 77.5 I
C ₀ H ₁₀ -	-O-C ₆ H ₁₇	K 49.2	144.8 C 06 A 77.8 N 84.7 I
C ₉ H ₁₉ -	-O-C ₆ H ₁₉	K 51	151.5 C /2.5 A 80.5 N 84.7 I
C ₉ H ₁₉ -	-O-C10H21	K 42.5	1 52.3 C 77.2 A 87.3 I
C ₉ H ₁₀ -	-O-C ₁₂ H ₂₅	K 41.5	G 52 172.2 C 83 A 88.3 I
C _g H ₁₉ -	-O-C ₁₄ H ₂₉	K 51	G 68 81.1 C 88.2
C ₉ H ₁₉ -	-O-C ₁₆ H ₃₃	K 57.5	G 77.7 86.2 C 88.6
CeH ₁₈ .	-O-C ₁₈ H ₃₇	K 63	G 81.31891
C:13-OOC-CH=CH-	-CH=CH-COO-CH3	K 23/	S 246 S 249 I
CH2-OOC-CH=CH-	-CH=CH-COO-C2H5	K 237	S 246 S 249 I
C₂H₅-OOC-CHCH-	-Cil=CH-COO-C₂H ₅	K 150	A 240 I
C3:17-00C-C:1-CH-	-CH=CH COO-C ₃ H ₇	K 120	S 209 I
CH ₃ -O-	-CH=CH COO-C₂H5	K 117./	A 124.2 N 142.8 I
C₂H₅-O-	-CH=CH-COC-C₂H₅	K 110	\$ 137 S 147 N 160 I
C ₅ H ₁₁ -O-	-CH=CH-COO-C5H11	K 87	E 91 A 133 I
C ₅ H ₁₁ -Q-	-CH=CH-COO-C10H21	K 50.5	E64A1191
C101 121-17-	-CH=CH-COO-C5H11	K 54	3 94.5 C 95 A 127.5 I
C10H21+O-	-CH=CH-COO-C10H21	K 59	E 60 B 72 C 95 A 116.5 I
CH3-COO-	-CH=Ci1-COC-C₂H5	K 138.3	A 153.2 N 102.2 I

【0021】 【表12】

	į Rį	1	Cr	. LC
C2H18-O-CHM9-CH2-OOC-	-COO-CHg-CHMe-O-C7H15	3	K 57.8	A 80.1
CaH17-O-CHM3-CH3-OOC-	-COO-CH2-CHMa-O-CgH17	3	K 63	A 84.1
CHarCOO	-000-CH ₃		K 229	S 282,5 X 284.5
CH*-OCOO-	-0C00-CH2		K 229	S 257 N 277
CaHs-OCOO-	-0C00-C ₂ H ₅		K 213	S 225.5 X 242.5
GeH11-	-CHCN-OOC-CHMe-C2Hs	5	K 124	A<7
CapHair	-O-CHMa-C ₅ H ₁₁	R	K 76.5	S 101.5 S 116 C* 122.5 A 126
Caltion	-COO-CHMe-CeH13	1	K 116.5	A 1:23.4
CeH17	-COO-C: Iz-CHMa-CzHa	1	K 104.7	S 125.1 G* 126.9 B 147.6 A 173.5
CaH ₁₇ -	-COO-CHg-CHCI-C: Ig-CHMo-CHa	1	K 114.2	G* 106 F 114.2 A 153.5
CeHir	-COO-CH2-CHCN-CH2-CHMe-CH3	1	K 81.8	B 83.9 A ¥6.7
Cellii-	-O-C ₃ : I ₆ -CHMe-C ₂ H ₆	S	K?	B 198 A 215.5
CigHzi-	-O-C ₃ H ₆ -CHMo-C ₂ H ₈	S	K 65	S 181.5 C* 188.5 A 191
CaH ₁₇ -	-coo-ci (2-cHa-cH ₃	1	K 54.9	S 111.7 G* 148.5 C* 149.1 A 185.4
CaH ₁₇	-COO-CH ₂ -CHCl-C ₄ H ₆	1	K 123.8	G* 130,0 C* 139.7 A 169.5
CaH ₁₇	-COO-CH ₂ -CHCN-CH ₃	1	K 138	C* 151.4 A 168.5
CeH 17"	COO-C: Iz-CHCN-C2H5	1	K 77.8	G* 99.7 I* 118.6 A 139.6
Cailsy-	-COO-C: 12-CHCN-C3H7	1	K 97	6 92.8 A 112.7
C ₂ H ₁₇	-COO-CH2-CHCN-C4H9	1	K 78.8	B 86.7 A 101.2
C ₅ H ₁₁	O.C. 1		K 211	B 221 A 239
CsH ₁₁ -	-O-CFg-H	1	K 223	· A 241
C ₃ H ₂ -O-CH ₂ -	-O-CH2-CH/O\CH(1)-C3H7	s	K 210	₫ 227.8 A 257.8
C ₆ H ₁₃ -CHMe-OOC-	-COO-CHg-CHCI-CHMa-CgHs	١٠	K 55.2	C* 57.9 A 79.1
Certis-CHMe-OOC-	-COO-CH2-CHCI-CH2-CHMa-Cills	3	K 58.9	C* 54.8 A 61.9
C ₆ H ₁₃ -CHMe-OUC-	-COO-CH ₂ -CHCl-Ci l ₂	3	K 79.5	C* 90.4 A 120.2
C6H13-CHMe-OOC-	-COO-CH2-CHCI-C3I I7	3	K 84.9	C* 78.3 A 84.3
C6H13-CHMe-OOC-	-COO-CHg-CHCl-C4i le	3	K 91.8	A 83.6
C2H5-CHMe-C: I2-OOC-	-COO-CH ₂ -CHMe-C ₂ H ₆	3	K 132	. A 143 Nº 145
CH-CHC+CH2-OOC-	-COO-CH2-CHCI-Ci Is	3	K 123	A 135 N° 138
C2H3-CHCI-C: 12-COC-	-COO-CH ₂ -CHCI-C ₃ I ₈	3	K 137.3	A 188.9 N° 151.5 BP 152.2

[0022]

L	R		Cr	<u> </u>
C ₂ H ₂ -COO-CHMa-CH ₂ -O-	-C ₉ H ₁₉	S	K 82.9	\$ 101.2 C* 121.7 I
C.Hr-COO-CH2-CHM0-CH2-O-	-CeH13	P	K ?	5 59 \$ 114 S 13? C* 145 A 145.5 I
C.HO-CHMs-COO-Ci IMs-CH ₂ -O-	-CsH11	s	K 76.2	C* 101 A 113.3 N* 114.9 I
C.HO-CHMa-COO-CHMa-CH-O-	-CeHte	s	K 75.1	C" 100,7 A 105.6 N° 109.2 I
C _e H ₂ -O-CHMe-DOO-C; IMe-CH ₂ -O-	-C,H ₁₅	s	K 73.5	C* 104.2 N* 111.2 I
C-H-O-CHMe-COO-C: (Me-CH-O-	-CoH10	s	K 70.1	C" 102.7 A 107.9 N° 109.5 I
C ₄ H _e -O-C:+Me-COO-C: (Me-CH ₂ -O-	-CsH ₁₁	s	K 78	C* 93.4 A 111.1 I
C ₂ H ₂ -O-CHMa-COO-C; (Ma-CH ₂ -O-	-C oʻl 13	s	K 67.6	C* 94 A 106.1 I
CaHe-O-CHMe-COO-C! (Me-CH2-O-	-Crihs	s	K 63.5	C* 97.8 A 108.8 I
CaHa-O-CHMa-COO-CHMa-CHa-O-	ا اح-C	s	K 68.9	C* 107 I
CaHa-O-CHa-COO-CI Ia-CHMa-CHa-O-	-Cei-lag	я	K 63	8 77.6 9 122.3 C* 132.3 A 136.8 I
C ₃ H ₇ -O-CHMe-COO-Ci b-CHMe-CH ₂ -O-	-Cei I ₁₃	Ħ	K?	S 62 S 99 C* 118 A 117.41
C ₉ H ₇ -O-CHMe-COO-	-Cei 1 ₁₃	н	K 110	\$ 118 \$ 13º C* 181.4 1
C ₅ H _{7.1} -	-O-CHMe-Cei I13	1	K 78	A 139 I
CsH11*	-O-CHIMe-C10H21	1	K 70	A 127 I
CsH ₁₁ -O-	-O-CHMe-Ce I13	1	K 104	S 117 8 132 C* 142 A 185 I
Calla-	O-CHF-CHWe-CFHP	F	K ?	H 118.5 G" 139.2 F" 144.4 B 158.7 C" 185.8 A 191.4 I
C ₇ H ₁₈ -O-	-O-CHg-CHMa-CgHs	1	K 114	E 127 ; " 168 C" 215 A 215 I
CoH17-O-	-O-Ci-I2-CHMe-C2H5	1	K 110	E 122 F1 164 C1 212 A 214 I
C ₉ H ₁ g-O-	-O-CH2-CHM8-C2H3	1	K 97	E 117;" 160 C' 207 A 208 I
C10H21-O-	-O-CH2-CHMe-C2H5	1	K 85	E 108 F' 148 C' 205 A 206 I
CaH ₁₇ -	-O-C4Hg-CHMe-C3H7	2	K 67	S 109 S 180 C 194 A 215 I
C4H9-	-OOC-C4H8-CHMe-C2H8	F	KT:	G* 111.3 F* 152.4 8 182.8 A 207 I
C ₄ Hg-	-O-CaHto-CHMo-CaHs	Ħ	K 61	S 98.8 S 102.5 S 170 C* 182.3 A 196.3 I
C _B H ₁₇ -	-O-CHg-CHF-Cgi I13	P	K 75.4	S 106 B 153.7 C* 158.5 A 183.3 I
C ₆ H ₁₃ -CHMe-O-	-CeH11	1	K 58	C' 115 A 116 N' 117 I
C ₂ H ₆ -CHMe-COO-CHMe-CH ₂ -O-	-Cei I ₁₃	3	K 107	C* 112 I
C ₂ H ₅ -CHM ₈ -COO-CHM ₈ -CH ₂ -O-	-C7i 118	3	K 101	C* 113.1
C ₂ H ₅ -CHMe-COO-CHMe-CH ₂ -O-	-Cgi l ₁₉	3	K 92.3	C* 108.6 N* 110.8 I
CeH13-CHMe-OOC-	-Cei Isa	F	K 57.4	\$ 80 S 90.3 C* 94 A 118.5 I

【0023】 【表14】

CoH1r COO-CHo-C: Me-CoHo 1 K 37 C° 101 A 133 I CoH10r -COO-CHo-C: Me-CoHo 1 K 53 C° 100 A 151 I C1pHar -COO-CHo-C: Me-CoHo 1 K 57 C° 102 A 148 I C1pHar -COO-CHo-C: Me-CoHo 1 K 42 C° 81 A 175 U C6H1r -COO-CHo-C: Me-CoHo 2 K 108.5 A 133 I C6H1r -COC-CHo-C: Me-CoHo 2 K 68.8 I 51.4 C 103.6 A 164.5 I C6H1r -COC-CHo-C: Me-CoHo 2 K 57.2 I 36.4 C 83.7 A 150.4 I C6H1r -COC-CHo-C: Me-CoHo 2 K 57.2 I 36.4 C 83.7 A 150.4 I C7H1b -OCOC-CHo-C: Me-CoHo 3 K 63.3 A 150.2 N° 163.8 I C9H1r -OCOC-CHo-C: Me-CoHo 3 K 78.3 A 150.2 N° 163.8 I C9H1r -OCOC-CHo-C: Me-CoHo 3 K 68.8 B 106 A 160.7 N° 163.8 I C9H1r -OCOC-CHo-C: Me-CoHo 3 K 70.3 K 100.7 N° 163.8 I C9H1r -OCOC-CHo-C: Me-CoHo 3 K 60.7 B 106 A 160.7 N° 163.8 I	L	l R	1	[Cr	I.C
CgH18* COO_CH2*CiMe-CaH3 1 K 88 C 88 A 157 I CyM15* COO_CH2*CiMe-CaH5 1 K 62 C 90 A 158 I CyM19* COO_CH2*CiMe-CaH6 1 K 63 C* 101 A 133 I CyM19* COO_CH2*CiMe-CaH6 1 K 57 C* 100 A 151 I CyM19* COO_CH2*CiMe-CaH6 1 K 57 C* 100 A 151 I CyM19* COO_CH2*CiMe-CaH6 1 K 57 C* 100 A 151 I CyM19* COO_CH2*CiMe-CaH6 1 K 57 C* 100 A 151 I CyM19* COO_CH2*CiMe-CaH6 2 K 108.5 A 133 I CyM19* COO_CH2*CiMe-CaH6 2 K 63.9 I 51.4 C 103.6 A 164.5 I CyM19* COO_CH2*CiMe-CaH6 2 K 63.9 I 51.4 C 103.6 A 164.5 I CyM19* COO_CH2*CiMe-CaH6 3 K 63.8 B 105 A 160.7 N* 163.8 I CyM19* COO_CH2*CiMe-CaH6 3 K 73.3 K 73.3 B 105 A 160.7 N* 163.8 I CyM19* CH2*CHMe-CaH6 3 K 73.3 K 73.3 K 74.3	C ₃ H _/ -	-COC-CH2-CHMe-C2H8	1	K 127	A 158 N° 166 I
CyHist COO-CH₂-Ci IMe-C₂H₂ 1 K 52 C 90 A 158 I CeHir COO-CH₂-Ci IMe-C₂H₂ 1 K 57 C* 101 A 133 I CoHir COO-CH₂-Ci IMe-C₂H₂ 1 K 57 C* 102 A 148 I CipH₂-Ci COO-CH₂-Ci IMe-C₂H₂ 1 K 57 C* 102 A 148 I CipH₂-Ci COO-CH₂-Ci IMe-C₂H₂ 2 K 57 C* 103 A 151 I K 57 CeHir COO-CH₂-Ci IMe-C₂H₂ 2 K 58.5 C* 103 A 164 I K 42 C* 11 A 175 U	C ₅ H ₁₁ -	-CCO-CH ₂ -Ci-IMe-C ₂ H ₅	1	K 89	A 161.6 Nº 162.3 I
CoH1;r COO-CHo-C: Ma-CoH2 1 K 37 C° 101 A 133 I CoH10r -COO-CH2-C: Ma-CoH2 1 K 33 C° 100 A 151 I C10H21- -COO-CH2-C: Ma-CoH2 1 K 57 C° 102 A 148 I C12H23- -COO-CH2-C: Ma-CoH2 1 K 42 C° 81 A 175 U C6H1;r -COO-CH2-C: Ma-CoH2 2 K 108.5 A 103 I C6H1;r -COC-CH2-C: Ma-CoH2 2 K 08.8 I 51.4 C 103.6 A 164.5 I C6H1;r -COC-CH2-C: Ma-CoH2 2 K 07.2 I 36.4 C 83.7 A 150.4 I C6H1;r -COC-CH2-C: Ma-CoH3 2 K 54.5 I 35.7 C 81.7 A 145 I C7H16* -OCOC-CH2-C: Ma-CoH3 3 K 72.2 I 36.4 C 83.7 A 150.4 I C8H1;r -COC-CH2-C: Ma-CoH3 3 K 74.3 A 1502 N* 163.8 I C9H1;r -OCOC-CH2-C: Ma-CoH3 3 K 78.3 A 1502 N* 163.8 I C9H1;r -OCOC-CH2-C: Ma-CoH3 3 K 78.3 A 1502 N* 163.8 I C9H1;r -OCOC-CH2-C: Ma-CoH3 3 K 79.3 K 79.3	C ₆ H ₁₈ -	-COO-CH ₂ -CHMe-C ₂ H ₅	1	K 58	C' 89 A 157 I
CoHigr -COC-CH₂-CiMe-C₂H₀ 1 K 53 C° 100 A 151 I Ci0H₂1- -COC-CH₂-CiMe-C₂H₀ 1 K 57 C° 102 A 148 I Ci₂H₂2- -COC-CH₂-CiMe-C₂H₀ 1 K 42 C° 81 A 175 U CgH17- -COC-CH₂-CiMe-C₂H₀ 2 K 106.5 A 133 I CgH17- -COC-CH₂-CiMe-C₂H₀ 2 K 08.9 I 51.4 C 103.6 A 164.6 I CgH17- -COC-CH₂-CiMe-C₂H₀ 2 K 08.9 I 51.4 C 103.6 A 164.6 I CgH17- -COC-CH₂-CiMe-C₂H₀ 2 K 54.5 I 35.7 C 91.7 A 145 II CgH17- -COC-CH₂-CiMe-C₂H₀ 2 K 68.8 B 106 A 160.7 N° 169.8 I CgH17- -COC-CH₂-CiMe-C₂H₀ 3 K 68.8 B 106 A 160.7 N° 169.8 I CgH17- -COC-CH₂-CiMe-C₂H₀ 3 K 68.8 B 106 A 160.7 N° 169.8 I CgH17- -CH₂-CiMe-C₂H₀ 3 K 107 E 102 A 174 N° 183 I CgH17- -CH₂-CiMe-C₂H₀ 3 K 69.8 B 106 A 160.7 N° 169.8 I CgH17- -CH₂-CiMe-C₂H₀ 3 K 69.1 J 84 C° 103.5 A 172 N	C7H15-	-COO-CH ₂ -C; IMe-C ₂ H ₈	1	K 32	C¹ 90 A 158 I
C10H21- C10H22- C10H22- C10H23- CCOCCH2-C16Me-CeH2 C6H17- CCOCCH2-C16Me-CeH2 C6H17- CCOCCH2-C16Me-CeH2 C6H17- CCOCCH2-C16Me-CeH3 C6H3-C- CH2-C16Me-CeH3 C6H3-C- C6H3-C- C6H3-C- C6H3-C- C6H3-C- C6H3-C- C6H3-C- C6H3-C6H3-C- C6H3-C6H3-C6H3 C6H3-C6H3-C6H3 C7H3-C6H3-C6H3-C6H3 C7H3-C6H3-C6H3-C6H3 C7H3-C6H3-C6H3-C6H3 C7H3-C6H3-C6H3 C7H3-C6H3-C6H3-C6H3 C7H3-C6H3-C6H3-C6H3 C7H3-C6H3-C6H	C ₉ H ₁₇ -	-COO-CHo-Ci fMa-CaHa	1	K 37	C*101 A 1531
C12H2S° -COO-CH2-Ci 8M8-CoH2 1 K 42 C*81 A 175 U C8H1T° -COO-CH2-Ci 8M8-CoH2 2 K 108.5 A 133 I C8H1T° -COO-CH2-Ci 8M8-CoH3 2 K 08.9 I 51.4 C 103.6 A 164.5 I C8H1T° -COO-CH2-Ci 8M8-CoH3 2 K 07.2 I 38.4 C 83.7 A 150.4 I C8H1T° -COO-CH2-Ci 8M8-CoH3 2 K 54.5 I 35.7 C 91.7 A 145 I C7H18° -OCOO-CH2-Ci 8M8-CoH3 K 68.8 B 106 A 160.7 N° 163.8 I C9H1T° -OCOO-CH2-Ci 8M8-CoH3 K 78.3 A 150.2 N° 185.2 I C4H0-O -CH2-CHM6-CoH3 K 68.8 B 106 A 160.7 N° 163.8 I C6H1TO -CH2-CHM6-CoH3 K 78.3 A 150.2 N° 185.2 I C6H13-O- -CH2-CHM6-CoH3 K 78.5 K 78.5 J° 84 C° 103.5 A 172 N° 183 I C6H1TO- -CH2-CHM6-CoH3 K 78.5 K 68.5 K 77 K 68.5	C ₉ H ₁₉ -	-COO-CH2-CHMe-C2H6	1	K 59	C* 100 A 151 I
C ₅ H ₁₁ ** -CCO-CH ₂ -C; tMe-C ₂ H ₂ 2 K 106.5 A 103 I C ₆ H ₁₇ ** -CCO-CH ₂ -C; tMe-C ₂ H ₂ 2 K 08.9 I 51.4 C 103.6 A 164.5 I C ₆ H ₁₇ ** -CCO-CH ₂ -C; tMe-C ₂ H ₃ 2 K 07.2 I 35.7 C 91.7 A 145 I C ₇ H ₁₆ ** -CCO-CH ₂ -C; tMe-C ₂ H ₃ K 54.5 B 106 A 160.7 N* 163.8 I C ₆ H ₁₇ ** -OCOO-CH ₂ -C; tMe-C ₂ H ₅ K 88.8 B 106 A 160.7 N* 163.8 I C ₆ H ₁₇ ** -OCOO-CH ₂ -C; tMe-C ₂ H ₅ K 68.3 A 150.2 N* 185.2 I C ₄ H ₀ -O -CH ₂ -C; tMe-C ₂ H ₅ K 70.7 E 102 A 174 N* 183 I C ₆ H ₁₇ **O* -CH ₂ -CHMe-C ₂ H ₅ K 89.5 J* 84 C* 103.5 A 172 N* 182 I C ₇ H ₁₆ **O* -CH ₂ -CHMe-C ₂ H ₅ K 88.5 K 88.5 J* 84 C* 103.5 A 172 N* 182 I C ₇ H ₁₆ **O* -CH ₂ -CHMe-C ₂ H ₅ K 88.5	C10H21-	-COO-CH2-Ci IMe-CoH5	1	K 57	C*102 A 148 I
CeH1T -COC-CH2-Ci Me-C2Hz 2 K 68.9 i 51.4 C 103.6 A 164.5 i CeH1T -CCC-CH2-Ci Me-C3Hz 2 K 57.2 i 35.7 C 91.7 A 145 i CeH1T -CCC-CH2-Ci Me-C2H3 2 K 54.5 i 35.7 C 91.7 A 145 i CrH16* -OCOC-CH2-Ci Me-C2H3 5 K 88.8 B 105 A 160.7 N° 163.8 i CeH17* -OCOC-CH2-Ci Me-C2H3 5 K 78.3 A 150.2 N° 163.2 i C4H0-C- -CH2-Ci Me-C2H3 5 K 78.3 A 150.2 N° 163.8 i CeH17* -OCOC-CH2-Ci Me-C2H3 5 K 78.3 A 150.2 N° 163.8 i CeH17* -OCOC-CH2-Ci Me-C2H3 5 K 78.3 A 150.2 N° 163.8 i CeH17* -OCOC-CH2-Ci Me-C2H3 5 K 78.3 A 150.2 N° 163.8 i CeH17* -OCOC-CH2-Ci Me-C2H3 5 K 79.1 E 70.8 9.6 i 70.1 79.1 193.8 i CeH18* -OH2-CHM6-C2H3 5 K 88.5 K 88.5 K 88.5 K 88.5 K 77.1 N° 193.1	C ₁₂ H ₂₅ -	-COO-CH ₂ -Ci fMe-C ₀ H ₅	1	K 42	C*81 A 175 U
CeH17 -CCC CH2-C; IMe-CeH2; 2 K 57.2 I 36.4 C 83.7 A 150.4 I CeH17 -CCC CH2-C; IMe-CeH3; K 54.5 I 35.7 C 81.7 A 145.I I 35.7 C 81.7 A 145.I CrH18* -OCOO-CH2-C; IMe-CeH3; K 88.8 B 105 A 160.7 N* 163.8 I A 150.2 N* 165.2 I CeH17* -OCOO-CH2-C; IMe-CeH3; K 78.3 A 150.2 N* 165.2 I E 102 A 174 N* 183.I CeH17* -CH2-CHM6-CeH3; K 107 E 102 A 174 N* 183.I E 70 B 96 A 172 N* 198.I CeH18* -CH2-CHM6-CeH3; K 80.5 J* 84 C* 103.5 A 172 N* 198.I J* 84 C* 103.5 A 172 N* 198.I CeH18* -CH2-CHM6-CeH5; K 88.5 K 88.5 J* 84 C* 103.5 A 172 N* 198.I CeH18* -CH2-CHM6-CeH5; K 88.5 K 88.5 K 88.5 J* 84 C* 103.5 A 172 N* 192.I CeH18* -CH2-CHM6-CeH5; K 77 K 61 J* 70 I* 79 C* 128 A 170 N* 177.I K 88.5 K 77 K 61 J* 70 I* 79 C* 133 A 169 N* 171.I K 60 J* 70 I* 79 C* 133 A 169 N* 171.I K 60 J* 70 I* 79 C* 133 A 169 N* 171.I K 60 J* 70 I* 79 C* 133 A 167 N* 171.I K 60 J* 70 I* 79 C* 133 A 167 N* 171.I K 74 J* 68 I* 79 C* 134 A 167 N* 162.I K 74 J* 68 I* 79 C	C5H11-	-CCO-CH ₂ -C: IMa-C ₂ H ₂	2	K 108.5	A 103 I
C ₈ H ₁₇ -CCO-CH ₈ -CHMa-C ₄ H ₈ 2 K 54.5 I 35.7 C 91.7 A 145 I C ₇ H ₁₈ * -OCOO-CH ₂ -CHMa-C ₂ H ₅ K 88.8 B 105 A 160.7 N° 163.8 I C ₈ H ₁₇ * -OCOO-CH ₂ -C; IMa-C ₂ H ₅ K 78.3 A 150.2 N° 185.2 I C ₄ H ₁₇ -O -CH ₂ -CHMa-C ₂ H ₅ K 107 E 102 A 174 N° 133 I C ₆ H ₁₃ -O -CH ₂ -CHMa-C ₂ H ₅ K 89.5 J° 84 C° 103.5 A 172 N° 188 I C ₇ H ₁₆ -O -CH ₂ -CHMa-C ₂ H ₅ K 88.5 K 88.5 J° 84 C° 103.5 A 172 N° 182 I C ₇ H ₁₆ -O -CH ₂ -CHMa-C ₂ H ₅ K 88.5 K 88.5 K 88.5 K 88.5 J° 84 C° 103.5 A 172 N° 182 I C ₇ H ₁₆ -O -CH ₂ -CHMa-C ₂ H ₅ K 88.5 K 77 K 86.5 K 86.5 K 87.7 K 86.5 K 87.7 K 86.5 <	C ₆ H ₁₇	-COC-CH2-C: IMa-C2H5	2	K 08.9	I 51.4 C 103.6 A 164.5 I
C7H18* -OCOO-CH2*-CHMa*-C2H5 6 K 88.8 B 105 A 160.7 № 163.8 I C6H17* -OCOO-CH2*-Ci IMA*-C2H5 6 K 88.8 B 105 A 160.7 № 163.8 I C4H0*-C -OCOO-CH2*-Ci IMA*-C2H5 6 K 88.8 B 105 A 160.7 № 163.8 I C4H0*-C -OCOO-CH2*-Ci IMA*-C2H5 6 K 88.8 B 105 A 160.7 № 163.8 I C6H11*-O -CH2*-CHM*-C2H5 5 K 91 E 102 A 174 № 138 I C7H18*-O -CH2*-CHM*-C2H5 5 K 88.5 J* 84 C* 103.5 A 172 № 138 I C8H17*-O -CH2*-CHM*-C2H5 5 K 77 K 61 J* 70 I* 79 C* 128 A 170 № 177 I C9H18*-O -CH2*-CHM*-C2H5 5 K 52 K 60 J* 70 I* 79 C* 133 A 169 № 171 I C10H2*-O -CH2*-CHM*-C2H5 5 K 74 K 60 J* 70 I* 79 C* 133 A 169 № 171 I C10H2*-O -CH2*-CHM*-C2H5 5 K 73 K 61 J* 70 I* 79 C* 133 A 167 I C18H3*-O -CH2*-CHM*-C2H5 5 K 68 J* 67 I* 79 C* 124 A 157 I C4H3*-O -CH2*-CHM*-C2H5 5 K 68 J* 65 I* 79 C* 126 A 160 I C8H1*-O	C ₈ H ₁₇	-CCC-CH2-Ci (Me-C3H)	2	K 37.2	I 36.4 C 83.7 A 150.4 I
C ₆ H ₁₇ -OCOO-GH ₂ -Gi (Me-C ₂ H ₅) S K /8.3 A 150.2 N° 165.2 I C ₄ H ₀ -O -CH ₂ -Ci (Me-C ₂ H ₅) S K 107 E 102 A 174 N° 183 I C ₆ H ₁₁ -O -CH ₂ -CHMe-C ₂ H ₅ S K 91 E /0 B 96 A 172 N° 198 I C ₆ H ₁₃ -O -CH ₂ -CHMe-C ₂ H ₅ S K 8.5 J° 84 C° 103.5 A 172 N° 192 I C ₇ H ₁₀ -O -CH ₂ -CHMe-C ₂ H ₅ S K 86.5 K 86 J° 70 I° 79 C° 128 A 170 N° 177 I C ₉ H ₁₇ -O -CH ₂ -CHMe-C ₂ H ₅ S K 77 K C1 J° 72 I° 80 C° 132 A 171 N° 174 I C ₁₀ H ₁₉ -O -CH ₂ -CHMe-C ₂ H ₅ S K 52 K 60 J° 70 I° 79 C° 133 A 169 N° 171 I C ₁₀ H ₁₉ -O -CH ₂ -CHMe-C ₂ H ₅ S K 74 K 60 J° 70 I° 79 C° 133 A 169 N° 171 I C ₁₀ H ₁₉ -O -CH ₂ -CHMe-C ₂ H ₅ S K 74 J° 63 I° 79 C° 133 A 167 I C ₁₀ H ₂₉ -O -CH ₂ -CHMe-C ₂ H ₅ S K 73 J° 67 I° 79 C° 124 A 157 I C ₁₀ H ₃₉ -O -CH ₂ -CHMe-C ₂ H ₅ S K 68 J° 65 I° 79 C° 120 A 154 I C ₁₀ H ₃₉ -O -CH ₂ -CHMe-C ₂ H ₅ S	C ₈ H ₁₇ -	-COO-CH ₂ -CHM ₂ -C ₄ H ₂	2	K 54.5	1 35.7 C 91.7 A 145 i
C₄H₀-O CHg-Ci Ma-CgH₂ SK 107 E 102 Å 17Å N° 183 I C₀H₁-O· CH₂-CHMe-C₂H₂ SK 91 E /0 B 96 Å 172 N° 196 I C₀H₁₂-O· CH₂-CHMe-C₂H₂ SK 91 E /0 B 96 Å 172 N° 196 I C₀H₁₂-O· CH₂-CHMe-C₂H₂ SK 98.5 J° 84 C° 103.5 Å 172 N° 102 I C₀H₁₂-O· CH₂-CHMe-C₂H₂ SK 98.5 K 86 J° 70 I° 79 C° 128 Å 170 N° 177 I C₀H₁₂-O· CH₂-CHMe-C₂H₂ SK 52 K 61 J° 70 I° 79 C° 132 Å 171 N° 174 I C₀H₂-CHMe-C₂H₂ SK 52 K 60 J° 70 I° 79 C° 133 Å 169 N° 171 I C₁gH₂₁-O· CH₂-CHMe-C₂H₂ SK 54 J° 63 I° 79 C° 133 Å 167 I C₁gH₂₂-O· CH₂-CHMe-C₂H₂ SK 74 J° 63 I° 79 C° 133 Å 167 I C₁gH₂₂-O· CH₂-CHMe-C₂H₂ SK 68 J° 65 I° 79 C° 124 Å 157 I C₁gH₂-O· CH₂-CHMe-C₂H₂ SK 68 J° 65 I° 79 C° 120 Å 154 I C₃H₃-O· -CH₂-CHMe-C₂H₂ SK 69 J° 65 I° 79 C° 113 Å 160 I C₃H₃-O· -CH₂-CHMe-C₂H₂ SK 69 J° 65 I° 79 C° 120 Å 154 I C₃H₃-O· -CH₂-CHMe-C₂H₂ SK 69 J° 65 I° 79 C° 113 Å 174 N° 192 I C₃H	C7H18-	-OCOO-CH2-CHMa-C2H5	8	K 88.8	5 105 A 160.7 N° 169.8 I
C ₅ H ₁₁ -O· CH ₂ -CHM⊕-C ₂ H ₅ S K 91 E /D B 98 A 172 N° 198 I C ₆ H ₁₃ -O· CH ₂ -CHM⊕-C ₂ H ₅ S K 98.5 J° 84 C° 103.5 A 172 N° 102 I C ₇ H ₁₅ -O· CH ₂ -CHM⊕-C ₂ H ₅ S K 98.5 K 98.5 K 98.5 C ₈ H ₁₇ -O· CH ₂ -CHM⊕-C ₂ H ₅ S K 98.5 K 98.5 K 98.5 K 98.5 K 98.5 K 98.5 K 99.7 Y 97.2 Y 98.0 Y 97.1	C ₈ H ₁₇ -	-OCOO-CH2-Ci (Me-C2H5	8	K /8.3	A 1502 N° 165.2 I
C6H13*O· CH2-CHM6-C3H3 S K 88.5 J* 84 C* 103.5 A 172 N* 182 I C7H16*O· CH2-CHM6-C3H5 S K 88.5 K 68 J* 70 I* 79 C* 128 A 170 N* 177 I C8H17*O· CH2-CHM6-C3H5 S K 77 K 61 J* 70 I* 79 C* 128 A 171 N* 174 I C9H16*O· CH2-CHM6-C3H5 S K 62 K 61 J* 70 I* 79 C* 133 A 169 N* 171 I C10H3*O· CH2-CHM6-C2H5 S K 74 K 60 J* 70 I* 79 C* 133 A 167 I C12H35*O· CH2-CHM6-C2H5 S K 74 J* 68 I* 79 C* 131 A 162 I C12H35*O· CH2-CHM6-C3H5 S K 79 J* 67 I* 79 C* 124 A 157 I C12H35*O· CH2-CHM6-C2H5 S K 79 J* 65 I* 79 C* 120 A 154 I C12H3*O· CH2-CHM6-C2H5 S K 71 J* 64.5 I* 79 C* 110 A 150 I C4H2*O· CH2-CHM6-C2H5 S K 70 E 103 A 174 N 192 I C5H11*O· CH2-CHM6-C2H5 K 50 E 72 B 98 A 172 N 188 I C6H15*O· CH2-CHM6-C2H5 K 50 E 72 B 98 A 172 N 182 I C7H16*O· CH2-CHM6-C2H5 K 58 H 66 G 70	C ₄ H ₀ -O-	-CHg-Ci IM a -CeHs	9	K 107	E 102 A 174 N° 183 I
C7H16-O- CH2-CHM9-C2H6 S K 88.5 K 68.5 " 70 1" 79 C" 128 A 170 N" 177 I C8H17-O- CH2-CHM6-C2H8 S K 77 K C1 J" 72 1" 80 C" 132 A 171 N" 174 I C9H18-O- CH2-CHM6-C2H8 S K 52 K 61 J" 70 1" 79 C" 133 A 189 N" 171 I C10H21-O- CH2-CHM6-C2H8 S K 58 K 60 J" 70 1" 79 C" 133 A 167 I C12H25-O- CH2-CHM6-C2H8 S K 74 J" 68 I" /8 C" 131 A 162 I C12H25-O- CH2-CHM6-C2H8 S K 73 J" 67 I" 79 C" 124 A 157 I C12H33-O- CH2-CHM6-C2H5 S K 68 J" 65 I" /9 C" 120 A 154 I C12H3-O- CH2-CHM6-C2H5 S K 71 J" 64.5 I" /9 C" 110 A 150 I C4H2-O- CH2-CHM6-C2H5 K 50 E 103 A 174 N 192 I E 103 A 174 N 192 I C5H11-O- CH2-CHM6-C2H5 K 50 E 72 B 98 A 172 N 188 I E 72 B 98 A 172 N 182 I C6H13-O- CH2-CHM6-C2H6 K 58 H 66 G 70 F 79 C 126 A 170 N 177 I	C5H11-O-	-CH ₂ -CHMa-C ₂ H ₃	8	K 91	E 70 B 96 A 172 N* 196 I
CgH17*O· CH2*CHM6*C2H3 S K 77 K C1 J* 72 I* 80 C* 192 A 171 N* 174 I CgH18*O· CH2*CHM6*C2H3 S K 52 K 51 J* 70 I* 79 C* 133 A 189 N* 171 I C1gH19*O· CH2*CHM6*C2H3 S K 58 K 60 J* 70 I* 79 C* 133 A 167 I C1gH19*O· CH2*CHM6*C2H3 S K 74 J* 68 I* 79 C* 131 A 162 I C1gH3*O· CH2*CHM6*C2H3 S K 73 J* 67 I* 79 C* 124 A 157 I C1gH3*O· CH2*CHM6*C2H3 S K 73 J* 65 I* 79 C* 120 A 154 I C1gH3*O· CH2*CHM6*C2H3 S K 71 J* 64.5 I* 79 C* 116 A 150 I C4H2*O· CH2*CHM6*C2H3 K 50 E 103 A 174 N 192 I C5H11*O· CH2*CHM6*C2H3 K 50 E 72 B 98 A 172 N 188 I C6H13*O· CH2*CHM6*C2H3 K 58 H 66 G 70 F 79 C 126 A 170 N 177 I	CeH13-O-	-CH ₂ -CHM 2 -C ₂ H ₃	s	K 38.5	J" 84 C" 103.5 A 172 N° 182 i
CpH₁g-O- CH2-CHM6-G2H5 S K 52 K 51 J* 70 I* 79 C* 133 A 189 N* 171 I C₁₀H₂₁-O- CH2-CHM6-C2H5 S K 58 K 60 J* 70 I* 79 C* 133 A 167 I C₁₂H₂₅-O- CH2-CHM6-C2H5 S K 74 J* 68 I* 79 C* 131 A 162 I C₁₄H₂g-O- CH2-CHM6-C2H5 S K 73 J* 67 I* 79 C* 124 A 157 I C₁gH3r-O- CH2-CHM6-C2H5 S K 73 J* 65 I* 79 C* 120 A 154 I C₁gH3r-O- CH2-CHM6-C2H5 S K 71 J* 64.5 I* 79 C* 116 A 160 I C₄H₂-O- CH2-CHM6-C2H5 S K 70 E 103 A 174 N 192 I C₃H₁-O- CH2-CHM6-C2H5 Z K 50 E 72 B 98 A 172 N 188 I C₀H₁-CHM6-C2H6 Z K 58 G 84 C 103 A 172 N 182 I C₀H₁-CHM6-C2H6 Z K 58 H 66 G 70 F 79 C 126 A 170 N 177 I	C7H15-O-	-ÇH₂-CHM a-C _ē H ₆	s	K 88.5	K 86 J* 70 I* 79 C* 128 A 170 N* 177 I
C10H21-O- CH2-CHMG-C2H8 S K 48 K 60 J 70 I 70 I 70 C 133 A 167 I C12H25-O- CH2-CHMG-C2H8 S K 74 J 68 I 70 C 131 A 162 I C14H25-O- CH2-CHMG-C2H8 S K 73 J 67 I 70 C 124 A 157 I C16H33-O- CH2-CHMG-C2H5 S K 68 J 65 I 70 C 124 A 157 I C16H37-O- CH2-CHMG-C2H5 S K 71 J 64 5 I 70 C 120 A 164 I J 64 5 I 70 C 110 A 160 I C4H5-O- CH2-CHMG-C2H5 Z K 50 E 103 A 174 N 192 I C5H11-O- CH2-CHMG-C2H5 Z K 50 E 72 B 98 A 172 N 188 I C6H13-O- CH2-CHMG-C2H5 Z K 58 H 66 G 70 F 79 C 126 A 170 N 177 I	CaH17-O-	-CH ₂ -CHMe-C ₂ H ₅	s	K 77	K 01 J* 72 I* 80 C* 132 A 171 N* 174 I
C12H05-O- CH2-CHM0-C2H5 C14H29-O- CH2-CHM0-C2H5 CH2-CHM0-	C ₀ H ₁₀ -O-	-CH ₂ -CHMe-C ₂ H ₅	s	K 82	K 81 J* 70 I* 79 C* 133 A 169 N* 171 I
C14H2grO- CH2-CHM6-C2H5 S K 73 J* 67 I* 78 C* 124 A 157 I C16H33-O- CH2-CHM6-C2H5 S K 68 J* 65 I* 79 C* 120 A 154 I C16H37-O- CH2-CHM6-C2H5 S K 71 J* 64.5 I* 79 C* 116 A 160 I C4H3rO- CH2-CHM6-C3H5 Z K 107 E 103 A 174 N 192 I C5H11-O- CH2-CHM6-C2H5 Z K 107 E 72 B 98 A 172 N 188 I C6H13-O- CH2-CHM6-C2H6 Z K 108 G 84 C 109 A 172 N 182 I C7H16-O- CH2-CHM6-C2H5 Z K 108 H 66 G 70 F 79 C 126 A 170 N 177 I	C10H21-O-	-CH ₂ -CHM 2 -C ₂ H ₈	s	K 348	K 60 J* 70 I* 79 C* 133 A 167 I
C16H33-O- CH2-CHM0-C2H5 S K 68 J* 65 I* 79 C* 120 A 154 I C16H37-O- -CH2-CHM0-C2H5 S K 71 J* 64.5 I* 79 C* 116 A 160 I C4H3-O- -CH2-CHM0-C3H5 2 K 107 E 103 A 174 N 192 I C5H11-O- -CH2-CHM0-C2H5 2 K 90 E 72 B 98 A 172 N 188 I C6H13-O- -CH2-CHM0-C2H6 2 K 98 G 84 C 109 A 172 N 182 I C7H16-O- -CH2-CHM0-C2H6 2 K 98 H 66 G 70 F 79 C 126 A 170 N 177 I	C12H25-O-	-CH ₂ -CHMe-C ₂ H ₅	s	K 74	J" 68 I" /9 C' 131 A 162 I
C1BH37*O- -CH2*CHM6*-C2H5 S K 71 J* 64.5 I* 79 C* 116 A 150 I C4H2*O- -CH2*-CHM6*-C2H5 2 K 107 E 103 A 174 N 192 I C5H11*-O- -CH2*-CHM6*-C2H5 2 K 90 E 72 B 98 A 172 N 188 I C6H13*-O- -CH2*-CHM6*-C2H6 2 K 98 G 84 C 103 A 172 N 182 I C7H16*-O- -CH2*-CHM6*-C2H6 2 K 98 H 66 G 70 F 79 C 126 A 170 N 177 I	C14H29-O-	-CH2-CHMe-C2H8	8	K 79	J 67 I 79 C 124 A 157 I
C₄H₂-O- CH₂-CHMB-C₃H₂ 2 K 107 E 103 A 174 N 192 I C₃H₁₁-O- -CH₂-CHMB-C₂H₂ 2 K 90 E 72 B 98 A 172 N 188 I C₃H₁₃-O- -CH₂-CHMB-C₂H₂ 2 K 98 G 84 C 109 A 172 N 182 I C₃H₁₃-O- -CH₂-CHMB-C₂H₃ 2 K 98 H 66 G 70 F 79 C 126 A 170 N 177 I	C16H33-O-	-CH ₂ -CHMe-C ₂ H ₅	s	K 68	J* 65 I* /9 C* 120 A 154 I
C ₅ H ₁₁ -O- CH ₂ -CHMe-C ₂ H ₅ 2 K 90 E 72 B 98 A 172 N 186 I C ₆ H ₁₃ -O- CH ₂ -CHMe-C ₂ H ₅ 2 K 98 G 84 C 103 A 172 N 182 I C ₇ H ₁₈ -O- CH ₂ -CHMe-C ₂ H ₅ 2 K 98 H 66 G 70 F 79 C 126 A 170 N 177 I	C18H37-O-	-CHg-CHMe-CgH5	8	K71	J* 64.5 I* 79 C* 118 A 150 I
C ₀ H ₁₃ -OCH ₂ -CHMe-C ₂ H ₅ 2 K 88 G 84 C 103 A 172 N 182 I C ₇ H ₁₈ -OCH ₂ -CHMe-C ₂ H ₅ 2 K 88 H 66 G 70 F 79 C 126 A 170 N 177 I	C ₄ H ₉ -O-	-CH ₂ -CHMe-C ₂ H ₅	2	K 107	E 103 A 174 N 192 I
C7H18-OCH2-CHM9-C2H8 2 K 36 H 66 G 70 F 79 C 126 A 170 N 177 I	C ₅ H ₁₁ -O-	-CHg-CHMe-C ₂ H ₅	2	K 90	E /2 B 98 A 172 N 186 I
	C6H13-O-	-CH ₂ -CHMe-C ₂ H ₅	2	K ö8	G 84 C 103 A 172 N 162 I
C ₈ H ₁₇ -O- -CH ₂ -CHMe-C ₂ H ₃ 2 K 74 K 61 J 72 I 79 C 132 A 171 N 174 I	C7H16-O-	-CH ₂ -CHMe-C ₂ H ₅	2	K 36	H 66 G 70 F 79 C 126 A 170 N 177 I
	C8H17-O-	-CH ₂ -CHM 9-C ₂ H ₅	2	K74	K 61 J 72 I 79 C 132 A 171 N 174 I

【0024】 【表15】

$$L \longrightarrow \bigcup_{O} \bigcup_{R}$$

L	l R	l lCr	· LCI
C2H5-CHMe-CH2-	-O-Crilis	S K 95	J 85 F 91 C* 110 N* 154 I
CaHe-CHMe-CH2-	-O-GaH17	8 K 80	J* 90 F 92 C* 114 N* 163 I
CgHg-CHMa-Ct Ig-	-O-CoHto	SKOS	J* 88 F 90 C* 116 N* 152 I
CeHe-CHMo-C: Ig-	-O-CigHzi	S K &S	J* 78 F 87 C* 117 N* 148 I
C _E H ₀ -C:1Me-C:1 _E -	-0-C ₁₂ H ₂₃		J* 70 F 87 C* 116 N* 138 I
C _E H ₀ -CHMa-CH ₂ -	-0-0 ₁₄ H ₂₄	1 K 50.8	C* 93.1 A 190.8 U
CgHg-Ci IMe-CHg-	-O-C10Hz1	2 K 15	J 78.8 (90 C 117.5 N 151.8 (
CeHa-C: IME-CH2-O-CeHa-	-O-C ₁₀ H ₂₁	B K79.5	875C' 115.5 I
CaHa-CHa-O-CHMa-	-D-C ₁₀ H ₂₁	а к ≑9	C* 95 1
Calla-CHMe-CH_NMe-Cita-	-O-C ₀ H ₁₇	S K 68	5 103 C* 114 N* 128 I
Calle-CHMs-CHg-NIMs-City-	-O-C ₁₂ H ₂₅	S K <25	8 83 C' 111 N' 115 1
CaHa-CHMe-CHa-TIMe-CHa-	-O-C ₁₄ H ₂₉	S K 48	S 83 C* 105 N* 109 I
C2H5-CHM9-CH2-NM6-CH2-	-O-C ₁₆ H ₃₉	8 K 85	8 82 C' 104 N° 107 I
C ₂ H ₆ -CHMa-CH ₂ -NNta-CH ₂ -	-O-C ₁₈ H ₈₇	S K 72	\$ 76 C' 104 Nº 107 I
CgHg-CHM5-CHg-O-	-O-C ₆ H ₁₇	S K 133.5	C* 129.8 N* 174 I
CeHta-CHMô-CHa C.	-O-C _B H ₁ ,	1 K 108.2	C* 125.8 N* 141.3 I
C2He-CHM#-CH# OOC-	-O-CeH13	1 K 94	E 121.3 B.125.8 A 165.9 N° 177,5 (
C2H6-CHM6-CH2-OOC-	-O-C ₆ H ₁₇	1 K 85.3	E 102 B 118 C* 126.9 A 162.9 N* 170.41
C2Hg-CHMa-CHg-OOC-	-C-C ₁₀ H ₂₁	1 K 85.5	8 97.9 C* 149.5 A 158.8 N* 162.7 I
CaHe-CHE-ICHg-COO-	-O-CaHir	S K 110	C* 148:8 N* 189,9 I
Calle-CHMe-CH2-O-CHMe-COO-	-O-C7H15	3 K 120	C° 130 N° 134 I
C2He CHMe-CH2-C-CHE4e-COC-	-O-C ₀ H ₁₇	3 K 115	C" 195 N" 139 I
Carty-CHMs-CH2-CI-CHMs-COC-	-O-CoH ₁₀	3 K 104	C* 131 N* 193 I
Cattle-CHMe-CHa-O-CHMe-COO-	-O-C ₁₀ H ₂₁	3 K 103	C* 1941
Cattle-CHMe-CHg-CI-CHMe-COO-	-O-C ₁₂ H ₂₅	3 K 108	C* 139 I
C2H6-CHM6-CH2-OCOO-	-O-C _e H _{ts}	S K 99.7	C* 125.1 N* 185 I
C2H3-CHM6-CI (p-OCOO-	-O-C ₆ H ₁₇	S K 104	C* 135.9 N* 173.8 (
C2H2-CHM6-C16-OCOO-	-0-CeH10	S K 102.8	C* 189.8 N* 170.4 I
CoHs-CHWa-Ci-lo-OCOO-	1 - '-'	S K 105.6	C* 142.9 N* 168.8 I
C3H5-CHM0-CI F-	0-C2H4-O-C4H6	S K?	S 64 C* 76 A 92 N* 126 I

[0025]

iL I	RI .	Cr	LC
C ₅ H ₁₁ -	-O-C ₆ H ₁₇	K 86.9	C 88.3 N 132.4 I
CeH ₁₃	-O-C ₈ H ₁₇	K 87	C 102.2 N 125.8 I
C ₇ H ₁₅ -	-O-C _B H ₁₇	K 87.3	1 76.4 C 112.6 A 128 N 130.9 I
CaH ₁₇	-O-C ₈ H ₁₇	K 87.0	
CeH19-	-O-C ₈ H ₁₇	K 84.3	B 92.3 C 124.7 A 129 N 129.5 I
C10H21-	-O-C ₈ H ₁₇	K 87.8	G 94.3 C 127.2 A 128.3 I
C10H21-O-	-COO-CHMe-CeH13 1	K?	CA7C~g7C'?I
C ₁₂ H ₂₅ -O-	-COO-CHMe-C ₆ H ₁₈	1 K?	CA 7 C-g 7 C' 7 I

$$\begin{array}{c|c} L & & \\ \hline \\ L & & \\ \hline \\ L & & \\ \hline \\ R & & \\ \end{array}$$

[0026]

【表17】

$$L = \begin{cases} 0 \\ 0 \\ 0 \end{cases}$$
 R

L	R	Cr.	1.0
C ₆ H ₁₃ -	-Br	K 104.5	S 141.5 N 146.5 I
C10H21-	-Br	K 95	9 143 1
C ₁₂ H ₂₅ -	-Br	K 100.5	S 144.6 I
C3H7-	-CN	K 133.1	. A 107.3 N 209.1 I
C ₁₂ H ₂₅ -	-CN	K 98.5	S 165 I
C6H13-	-COO-C ₉ H ₆ -SiMe₂C₄H ₉	K 45	S-17 C 41 A 70 I
H-	-O-Cat117	K 116.7	F 93 N 115.5 I
H-	-O-Cgi 1 ₁₉	K 113	F 94.6 N 114.5 I
H-	-O-C10H21	K 110.8	F 96.5 N 116 I
H-	-O-C ₁₂ H ₂₅	K 114.6	B 99.6 C 99.7 N 115.2 I
C2H5-	-CgH ₁₉	K 89.7	G 95 N 114.6 I
C2H6-	-C10H21	K 72	G 68.4 N 109.7 I
C ₃ H ₇ -	-C ₈ H ₁₇	K 88.9	G 73.6 N 110.8 I
C3H7-	-C ₉ H ₁₉	K 88.2	G 76.7 N 113.3 I
C ₃ H ₇ -	-C ₁₀ H ₂₁	K 83	G 74.1 N 110:84
CaHg-	-C ₈ H ₁₇	K 90	G 79 N 104.3 I
C4H9-	-C ₉ H ₁₉	K 71.1	G 81.6 N 108.6 I
C ₄ H ₉ -	-C ₁₀ H ₂₁	K 70	K 79.5 J 80.5 F 81.5 I 82.7 N 103.7 I
C5H11-	-C ₆ H ₁₇	K 82.4	G 82.3 N 108.5 I
C5111-	-C ₈ H ₁₉	K 80	G 85.8 N 110.2 I
C51111-	-C ₁₀ H ₂₁	K 73.2	K 78.9 J 82.5 F 84.3 I 86.3 C 87. / N 106.7 I
C6:113-	-C ₈ H ₁₇	K 78	K 80.7 J 82.2 I 85 C 88.7 N 104.5 I
CeH13-	-C ₈ H ₁₉	K 74.5	K 82.0 J 85.4 ; 87 I 88.3 C 91.4 N 107.2 I
C6H13-	-C ₁₀ H ₂₁	K 57.4	K 79.2 J 80.9 F 85 (88 C 92.8 N 103.8)
C7H15-	-C ₈ H ₁₇	K 88	K 63 J 78 I 81.8 C 91.6 N 107.4 I
C7H15-	-C ₉ H ₁₉	K 86.3	K 79 J 82.2 F 84.8 I 86.4 C 96 N 110.2 I
C71115-	-CtoHet	K 76.8	K 76.6 J 78.1 F 83.4 I 86.5 C 96.6 N 103.7 I
CeH17	-C ₈ H ₁₇	K 97.3	J 71.1 I 80 C 96.3 N 106.7 I
Cai 117-	-C ₉ H ₁₉	K 38.8	J 76.4 F 82.6 84.9 C 100.6 N 108,1
Callin	-C ₁₀ H ₂₁	K 75.8	K 38.1 J 74 F 83.9 I \$6.7 C 103 N 107 I

[0027]

【表18】

$$L \longrightarrow \bigcup_{S} \bigcup_{Q} \bigcup_{Q} \bigcup_{R}$$

L	R	Cr	LC
C ₈ H ₁₇ -	-C7H15	K 30	E 54.6 B 81.8 A 128.2 N 128.6 I
C6H17-	-CgH ₁₇	K /0	E 47.7 8 82.2 A 126.6 I
C4H9-	-O-C ₈ H ₁₇	K 84.4	C 73.9 N 149.5 I
C ₄ H ₉ -	-O-C9H19	K 92	C 78.5 N 141.7 I
C ₄ H ₉ -	-O-C ₁₀ H ₂₁	K 88.8	C 82.8 N 143.8 I
C ₈ H ₁₇ -	-O-C ₅ H ₁₁	K 88.9	E 84.3 B 99.7 A 137.5 N 147.3 I
C ₆ H ₁₇	-O-C6H13	K 86.1	E 75.9 B 99.7 C 120.7 A 138.8 N 148.9 I
C ₈ H ₁₇ -	-O-C7H15	K 91.7	E 73.3 B 97.8 C 125.6 A 138.8 N 146.2 I
C ₆ H ₁₇ -	-O-C ₈ H ₁₇	K 87	E /0.1 B 95.2 C 130.5 A 139.5 N 146.4 I
C ₈ H ₁₇ -	-O-C ₉ H ₁₉	K 95.6	E 88.9 B 95.5 C 130 A 139.5 N 143.2 I
C ₈ H ₁₇ -	-O-C ₁₀ H ₂₁	K 92.3	E 66.2 B 93.6 C 131 A 138.9 N 142.6 I
C10H21-	-C-CgH ₁₁	K 90.1	#181.5 B 102.8 C 119.6 A 141.1 N 143.2 I
C10H21-	-O-C ₆ H ₁₃	K 89.5	H 70 B 99.4 C 131.5 A 142.7 N 145.3 I
C ₁₀ H ₂₁ -	-O-C7H15	K 94.2	H 65.5 B 100.5 C 135.7 A 141.7 N 143.1 I
C ₁₀ H ₂₁ -	-O-C ₈ H ₁₇	K 93	H 62.2 tl 99.5 C 138 A 142 N 142.9 I
C ₁₀ H ₂₁ -	-O-C9H19	K 97	11 60.5 B 99.9 C 137.8 A 141.1 I
C10H21-	-O-C10H21	K 96.5	B 99.5 C 136.3 A 140.7 I
C12H95-	-O-C ₅ H ₁₁	K 95.8	H 83.2 G 93.4 B 103.8 C 123.9 A 140.4 I
C ₁₉ H ₂₅ -	-O-C6H13	K 95.8	H 86.5 B 103.1 C 134 A 142.1 I
C12H25-	-O-C7H15	K 97.4	H 82 B 102.5 C 137.1 A 140.4 I
C12 125-	-O-C ₈ H ₁₇	K 97.4	H 69 B 101.3 C 139.6 A 140.9 I
C12H25-	-O-C9H19	K 99.8	H 63.7 B 102.2 C 139.6 I
C ₁₂ H ₂₅ -	-Q-C ₁₀ H ₂₁	K 97.9	B 102.2 C 139.3 I

[0028]

【表19】

$$L \longrightarrow \bigcap_{O} \bigcap_{R}$$

<u> </u> L	R		Cr	LO
Me ₃ Si-O-M ₂ Si-C ₄ H ₈ -	-C₃H ₇	2	K 65	G 85 C 93 I
Me ₃ Si-Ci 1 ₂ -SiMe ₂ -C ₄ H ₈ -	-C3H7	2	K 45	C 86 I
Me ₃ SI-C ₂ H ₄ -SIMe ₂ -C ₄ H ₈ -	•C₃H ₇	2	K 73	E77 C 84 I
Me ₃ SI-(CH ₂ -SIM ₂) ₂ -C ₄ H ₈ -	-CsH ₇	2	K7	G 43 C 71 I
(Me ₃ Si-CH ₂) ₂ -SiMɔ-C ₂ H ₄ -SiMe ₂ -C ₄ H ₈ -	·C ₃ H ₇	2	K7	G 45 C 55 1
Me ₃ Si-C ₂ H ₄ -SiMe ₂ -O-SiMe ₂ -C ₄ H ₈ -	-C ₃ H ₇	2	K 28	C721

L	R	Cr	LC
C7H16"	-O-C ₀ H ₁₃	K74	C 77.9 A 123.3 I
C7H15-	-O-C ₈ H ₁₇	K 79.6	C 77.9 A 122 I
C ₆ H ₁₇	-O-C ₈ H ₁₃	K70	C 99 A 122.3 I
C ₆ H ₁₇ -	-O-C ₆ H ₁₇	K 77.3	C 100.2 A 120.3 I
C ₉ H ₁₉ -	-O-C ₆ H ₁₃	K 63.5	C 103.5 A 123.8 I
C9H19-	-O-C8H17	K729	C 107.4 A 121.7

[0029]

【表20】

L	R		Cr	LC
Cgi 110-O-	-CsH ₁₁		K 74	S 40 S 70.5 F 74 C 102 N 124.5 I
C10+121-O-	-C ₆ H ₁₁		K 75	\$ 56.6 B 83.5 C 111 N 125 I
C11H23-O-	-C ₆ H ₁₁		K 74.	S 65 B 94 C 118 A 120 N 123 I
C12H25-O-	-C ₅ H ₁₁		K 78	B 90 C 115 N 124 I
C7H15-	-CO-CH3		K 125	S 132 N 140.51
C4Hg-O-	-co-cH ₉		K 134	S 144 N 176 I
C ₆ H ₁₃ -O-	-co-ch ₃		K 149.5	C 154.5 N 169 I
C ₅ H ₁₁ -COO-	-co-cH ₃		K 143	S 150 N 179 I
C ₄ H _g -	-C00-C ₂ H ₅		K 118	B 119.5 N 125 I
C4Hg-O-	-C00-C ₂ H ₅		K 121	A 129 N 156.5 I
C ₆ H ₁₃ -CHM9-OOC-	-Q-G ₆ H ₁₃	R	K 51	. 6821
C6H13-CHM9-OOC-	40-C7H18	R	K 62	5811
C ₆ H ₁₃ -CHM ₂ -OOC-	-O-C ₆ H ₁ ,	A	K 73	S 83 1
C ₆ H ₁₃ -CHM9-OOC-	-O-C ₀ H ₁₉	R	K 70	\$771
CeH13-CHM9-OOC-	-Q-C ₁₀ H ₂₁	R	K 72	S 75 A B1 I
C ₆ H ₁₃ -CHM9-OOC-	-Q-C ₁₁ H ₂₃	R	K 55	S 70 C' 74 A 79 I
C ₆ H ₁₃ -CHM9-OOC-	-O-C ₁₂ H ₂₅	R	K 54	S 69 C* 75 A 79 I
CH3-CHMe-CHCI-COO-	-O-C ₆ H ₁₃	1	K 59	S 84 B 96 C* 106 N* 125 I
CH3-CHM9-CHCI-COO-	-O-C7H15	1	K 69	S 96 C* 110 A 111 N* 122 I
C: Ia-CHMe-CHCI-COO-	-O-C ₈ H ₁₇	1	K 81	S 98 C* 112 A 115 N* 121.7 I
CH3-CHMe-CHCHCOO-	-O-CeH10	1	K 49	I" 96.5 C" 114 A 117 N" 120 I
C: 13-CHMe-C: ICI-COO-	O-C ₁₀ H ₂₁	1	K 48	I* 96 C* 114 A:118 N* 119.5 I
C: I3-CHMe-C! ICI-COO-	-O-C ₁₁ H ₂₃	1	K 57	I° 95.5 C° 114 A 119 I
Ci-13-CHMe-Ci ICI-COO-	-O-C ₁₂ H ₂₅	1	K 60	l' 95.2 C' 114 A 118 l
C ₂ H ₅ -CHM3-C ₃ H ₅ -C	-O-C ₀ H ₁₉	1	K 65	J* 82 I* 95 C* 111 N* 123 I
C ₂ H ₅ -CHM9-C ₄ H ₈ -C	-O-C ₀ H ₁₀	1	K 60	J 79 F 93 C 111 A 118 I
C ₂ H ₅ -CHM9-C ₅ H ₁₀ -O-	-O-C ₉ H ₁₉	1	K 72	J* 82 I* 99 C* 121 N* 123 I
C ₆ H ₁₃ -O-	-COO-CHIMe-C ₆ H ₁₃	R	K 50	C* 65 A 100 t
C7H15-O-	-COO-CHMe-CeH13	F	K 62	C* 78 A 97 (
C ₆ H ₁₇ -O-	-COO-CHM8-CeH13	F	K 68	C* 83 A 99 I

[0030]

$$L - \left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right) - \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) - \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) - \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) - \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) - \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) - \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) - \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) - \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) - \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) - \left(\begin{array}{c} \\ \\ \\ \\ \end{array}$$

lu .	R Cr	tcl
C7H15*	-Q-CgH ₁₇ K 84.4	C 79.3 N 104.61
CeH17"	-O-CeH ₁₇ K 87.1	B 58 C 91.7 N 104.5 I
C ₉ H ₁₉ -	-O-C ₈ H ₁₇ K 76.8	B 65.6 C 97.2 N 105 I
C ₁₀ H ₂₁ -	-O-C ₆ H ₁₇ K 91	B 72.2 C 102.7 N 104.7 I

14	j R	1	Cr	LC
C,H13-O-	-COO-CHMe-CeH13	1	K 92.3	*73.7 CA 87.5 C-g 90 C* 95.1 C-a 95.4 A 135 I
C ₂ H ₁₇ -O-	-COO-CHMa-CaH13	1	K 87.6	*71.5 CA 95.1 C-g 97 C* 104 C-a 105.5 A 135.3 I
CoH10-O-	-COO-CHMs-CeH13	1	K 62.2	*64 CA 92.5 C-g 95 C* 107.8 C-a 108.5 A 129.8 I
C10H21-O-	-COO-CHIMe-CeH13	R	K 58.2	CA 94.6 C-g 96.1 C* 111.2 A 129.8 I
C11H22FO-	-COO-CHMe-CgH13	1	K 68	CA 89 C-9 92.3 C* 112.4 A 123 I
G12H25-O-	-COO-CHMe-CeH13	1	K 73.4	CA 92 C-g 94.3 C* 113.2 A 121.3 I
C10H21-O-	-COO-CHg-CHMe-CgHe	s	K 53	S 54 C* 131 A 169 N* 172 I
C ₆ H ₁₃ -CHMa-UOC-	-O-C _e H ₁₃	R	K 92	C* 6º A 122 I
CaH12-CHM6-OOC-	-O-C7H15	R	K 83	C"85A1171
C ₄ H ₁₃ -CHM _B -OOC-	-O-C ₀ H ₁₇	Ħ	K 84	C* 90 A 1171
C6H15-CHM6-OOC-	-O-CgH _{1B}	P	K 87	C* 99 A 1121
C ₆ H ₁₅ -CHMe-OOC-	-O-C ₁₀ H ₂₁	Ħ	K 87	C* 100 A 1121
CIHI3-CHM6-OOC-	-O-C11H23	P	K 91	C* 10/ A 1091
CaH13-CHMe-OOC-	-O-C ₁₂ H _{ES}	퉈	K 91	C* 105 A 109 l
C ₂ H ₅ -CHMa-CH ₂ -OOC-	-O-C ₈ H ₁₇	s	K 84	C* 120 A 159 N* 176 I
CaHa-CHMa-CHa-OOC-	-O-C ₁₈ H ₂₁	s	K 91	C" 122 A 158 N° 168 I

[0031]

$$L \longrightarrow \bigcup_{O} \bigcup_{N} \bigcap_{R}$$

լ	[a]	Cr	rc
C10:121-O-	-CH ₃	K 108.5	S 121.5 N 202.5 I
C10H21-O-	-C2H3	K 84	S 138.5 N 197 I
C10-121-O-	-Calle	K 69	B 88 C 151 N 192 I
C12H25-O-	-Ci 13	K 99.5	S 142.5 N 1¥3.51
C12H29-O-	-C2+ 45	K 90	S 150 N 186.5 I
C12H25-O-	-C₄H ₉	K 63	B 91 C 159 N 185 I
C14H29-C-	-CH3	K 95	\$ 155 N 184 I
C14H29-O-	-C ₂ H ₅	K 94	S 155 N 180 I
C14H29-O-	-C4He	K 64	8 95 C 162 N 178 I
C16H33-O-	-CH ₆	K 91	S 160.5 N 178 I
C18H35-O-	-C ₂ H ₅	K 94	3 157 N 172 I
C18H33-O-	-C ₄ H ₉	K 63	B 53 C 163 N 172 I
C18H37-O-	-CH ₃	K 88	S 159 N 1/1.51
C18H37-O-	-C ₀ H ₅	K 95	\$ 157.5 N 166.5 I
C5H11-O-	-O-C ₈ H ₁₇	K 95	9 138 N 226 I
CeH15-O-	-O-Ce1117	K 90	S 151-N-221 I
CrH15-O-	-O-C ₂ H ₅	K 101.5	C 73.8 N 250 I
C7H15-O-	-O-C;H7	K 114.3	S 84.5 C 108 N 235 I
C7H16-O-	-O-C4H9	K 90.4	8 \$8.4 C 129.4 N 234.6 I
C7H15-O-	-O-C5H11	K 89.4	S ∂5.5 C 141.5 N 221.5 I
C7H15-O-	-O-C6H13	K 92	S 83 S 84 C 150 N 221.7 I
C7H15-O-	-O-C7H15	K 101.4	\$ 85 C 157 N 215.5 I
C,H15-O-	-O-C ₆ H ₁₇	K 89.7	\$ 84 S 88 C 182.3 N 213.4 I
C7H15-O-	-O-C ₀ H ₁₉	K 92.9	S 81.2 S 85.8 C 168.8 N 208.7 I
C7:115-O-	-O-C ₁₀ H ₂₁	K 90.4	S 80 S 85.5 C 167.4 N 205.3 I
C8H17-O-	-O-C ₆ H ₁₇	K 94	9 169 N 215.5 I
C9H19-Q-	-0-C2H5	K 104.2	C 99 N 238 I
C9H19-Q-	-O-C ₃ H ₇	K 105.4	S 79 C 134.6 N 224 I
CeH19-O-	-C-C*H*	K 94.6	S 80 C 148.6 N 221.8 I
C ₈ H ₁₉ -O-	-C-C ₈ H ₁₁	K 91.2	S 79 S 80.5 C 158.8 N 215.3 I

[0032]

$$L \longrightarrow N \longrightarrow R$$

CeHs ⁻ CeHs ⁻ CeHs ⁻ CeHs ⁻ S 136 S 149 N 251 I CaHy CeHy CeHs ⁻ CeHs K 199.2 K 199.2 H 114.5 G 143 C 150.7 A 180.6 N 258 I CaHy CeHs CeHs K 199.2 K 199.2 H 114.5 G 143 C 150.7 A 180.6 N 258 I H 114.5 G 143 C 150.7 A 180.6 N 258 I H 114.5 G 143 C 150.7 A 180.6 N 258 I H 114.5 G 143 C 150.7 A 180.6 N 258 I H 114.5 G 143 C 150.7 A 180.6 N 258 I K 118.5 C 149 N 251 I K 118.5 C 14	IL 1	R	Cr	LC
C3H7		-C2H6	K 127	S 136 S 149 N 251 I
CaHer	1	-CaHy	K 109.2	H 114.5 G 143 C 150.7 A 180.6 N 255 I
CgH11* CgH13* CgH13* C7.8 H 62.8 G 139 F 148.8 C 178.3 A 212 N 233.3 I CgH13* CgH13* CgH13* K 71.3 H 64.5 G 141.6 F 152.4 C 180.2 A 207.5 N 215.5 I CgH17* CgH19* CgH19* K 23.5 H 48 G 138.5 F 156.8 C 192.5 A 202.5 I CgH19* CgH19* CgH19* K 73.3 G 132.5 F 155.5 I 157.5 C 192.7 A 199 I Cloth21* Cloth22* Cloth24* K 73.3 G 112.9 F 139.9 I 151 C 180.3 I Cloth22* Cloth24* K 80.7 G 112.9 F 139.9 I 151 C 180.3 I G 112.9 F 139.9 I 153 C 178 I Cloth24* Cloth25* K 80.7 G 115.7 F 139.1 I 153 C 178 I K 80.7 Cloth26* Cluth26* K 80.7 G 117.1 I 47 C 170 I G 117.1 I 47 C 170 I Cloth37* Cloth34* K 80.7 G 117.1 I 47 C 170 I G 117.1 I 47 C 170 I Cloth37* Cloth34* K 80.7 G 117.1 I 47 C 170 I G 117.1 I 47 C 170 I Cloth37* Ch=Ch-COO C2H5 K 80.8 K 80.7 G 117.1 I 47 C 170 I Cloth37* Ch=Ch-COO C2H5 K 180.6 K 180.6 B 130.7 C 232		- 1	K 113	S 74 H 69.2 Q 144.5 C 172 A 199 N 235 I
Cellis Cellis K 71.3 H 84.5 G 141.6 F 152.4 C 180.2 A 207.5 N 215.5 I Cyflis Cyflis Cyflis K 21.8 H 48.6 G 143.6 F 152.4 C 180.2 A 207.5 N 215.5 I Cyflis Cyflis Cyflis K 21.8 H 48.6 G 143.6 F 152.4 C 180.2 A 207.5 N 215.5 I Cyflis Cyflis Cyflis K 23.5 H 48.6 G 143.6 F 152.4 C 180.2 A 207.5 N 215.5 I Cyflis Cyflis Cyflis K 23.5 H 48.6 G 143.6 F 152.4 C 180.2 A 207.5 N 215.5 I Cyflis Cyflis Cyflis G 112.7 F 152.5 C 182.7 A 189.1 K 23.5 Cyflis Cyflis K 23.5 K 24.7 G 111.5 F 149.1 150.C 180.3 I Cyfly Cyflis K 80.7 G 115.F 130.1 153.C 178.1 K 89.7 G 115.F 130.1 153.C 178.1 Cyfly Cyflis K 89. F 120.1 144.C 170.1 K 89. F 120.1 144.C 170.1 Cyfly Cyflis K 89. F 133.8 i 138.8 C 180.8 K 89. F 133.8 i 138.8 C 180.8 Cyfly Cyflis Cyflis K 180.8 K 180.8 B 139.7 C 232.A 305 N ? Z Cyfly Cyflis Cyflis		-C ₅ H ₁₁	K 72.8	H 62.8 G 139 F 148.8 C 178.3 A 212 N 233.3 1
Cyilis	1 * ''	-C ₆ H ₁₃	K 71.3	H 64.5 G 141.6 F 152.4 C 186.2 A 207.5 N 215.5 I
CgH17 CgH18 CgH19 CgH19 CgH19 CgH25 K 23.5 H 48 G 138.5 F 156.8 C 182.5 A 202.5 I CgC 182.5 A 202.5 I CgH19 CgH19 CgH19 CgH19 CgH19 CgGH25 C 132.5 F 155.5 I 157.5 C 182.5 A 202.5 I CgGH27 A 189.1 IST C 182.5 A 202.5 I CgGH27 A 189.1 IST C 182.5 A 202.5 I CgGH27 A 189.1 IST C 182.5 A 202.5 I CgGH27 A 189.1 IST C 182.5 A 202.5 I CgGH27 A 189.1 IST C 182.5 A 202.5 I CgGH15 A 188.5 I 157.5 C 192.7 A 189.1 IST C 180.3 I CgGH15 A 188.5 I 157.5 C 192.7 A 189.1 IST C 180.3 I CgGH15 C 182.5 A 202.5 I CgGH17 C 182.5 A 202.5 A 205.5 I CgGH17 C 182.5 A 202.5 A 205.5 I CgGH17 C 222.5 A 205.5 I CgGH17 C	1 ' ' '	-C ₇ H ₁₅	K 81.8	H 48 G 143 F 156.9 C 191.4 A 210 N 211.5 I
CgH1gr CgH1gr CgH1gr CgH1gr CgH1gr CgH1gr CgH2gr C10H2gr C70H2gr C70H		-C ₆ H ₁₇	K \$3.5	H 46 G 138.5 F 156.8 C 192.5 A 202.5 i
CrioH2:-		- ' '	K 57.3	G 132.5 F 155.5 I 157.5 C 192.7 A 199 I
C12H23- C13H27 C13H27 C14H29- C14H29- C14H29- C14H29- C16H31 C16H31- C16H31- C16H32- C16H33- C16H3- C16H33- C16H3-		-C10H21	K 73	G 115 F 149 I 150 C 198 A 198 i
C13H27- C13H27- C14H29- C14H29- C14H29- C14H29- C14H29- C14H31- C14H31- C16H37- C16H37- C16H31- C2H3-OOC-CH=CH- C3H3-OOC-CH=CH- C4H-COO-C3H1- C4H-COO-C3H1- C6H3-O- C		-C12H25	K 80.7	G 112.9 F 136.9 I 151 C 180.3 I
C14Hear C14Hear C14Hear C14Hear F 120.1 1 144 C 170 I C15Har C16Har C16Har K 90 F 120.1 1 144 C 170 I C16Har C16Har C16Har G 117 1 147 C 170 I C2HarOO-CH=CH-CH-COO CaHar CH=CH-COO CaHar K 180.6 B 193.7 C 232 A 305 N 7 Z C3HarOO-CHBECH-CAHCH-COO CaHar CH=CH-COO CaHar K 180.6 B 133 C 247 A 307 N 314 Z C3HarOO-CHBECH-CAHCH-COO CaHar CH=CMe COO CaHar K 180.6 B 133 C 247 A 307 N 314 Z C4HarOO-CAHBECH-CAHAR CH=CMe COO CaHar K 180.6 B 133 C 247 A 307 N 314 Z C4HarOO-CAHAR CH=CMe COO CaHar K 180.6 B 133 C 247 A 307 N 314 Z C4HarOO-CAHAR K 191 K 159 S 241 S 249 N 308 Z C4HarOO-CAHAR K 191 K 159 S 176 S 232 S 239 N 262 I K 191 K 159 K 144 S 172 S 234 S 241 N 248 I K 192 K 144 S 172 S 234 S 241 N 248 I K 193 K 144 S 172 S 234 S 241 N 248 I K 193 K 182 S 215.1 I A 204.5 N 236.2 I CHI-CH-COC-CHAROH K 136.2		-C13H2,	K 95	G 115 F 130 I 153 C 178 I
C16H31- C16H31- C16H31- C16H33- C16H3- C16		-C14H25	K 90	F 120.1 I 144 C 170 I
C1eH33		-C15H31	K 91	G 117 I 147 C 170 I
C₂H₃-OOC-CH=CH- C₂H₁-OOC-CH=CH- C₂H₂-OOC-CM⇒CH- C₂H₂-OOC-CM⇒CH- C₂H₂-OOC-CM⇒CH- C₂H₁-OOC- C₂H₂- C₂H₁-OOC- C₂H₂- C₂H₂-OOC- C₂H₂- C₂H₂-OOC- C₂H₂- C₂H₂-OOC- C₂H₂- C₂H₂-OOC- C₂H₂- C₂H₂-OOC- C₂H₂- C₂H₂-OOC- C₂H₂- C₂H₂-OOC- C₂H₂- C₂H₂-OOC- C₂H₂- C₂H₂-OOC- C₂H₂- C₂H₂-OOC- C₂H₂- C₂H₂-OOC- C₂H₂- C₂H₂-OOC- C₂H₂- C₂H₂-OOC- C₂H₂- C₂H₂-OOC- C₂H₂- C₂H₂-OOC- C₂H₂- C₂H₂-OOC- C₂H₂- C₂H₂-OOC- C₂H₂- C₂H₂-OOC- C₂H₂- C₂H₂-OOC- C₂H₂- C₂C-C₂H₂- C₂C-C₂H₂- C₂C-C₂H₂- C₂C-C₂H₂- C₂C-C₂C- C₂C-C₂C- C₂C-C₂C- C₂C-C₂C- C₂C-C₂C-		-C ₁₈ H ₃₃	K 89	F 133.8 I 138.8 C 160 I
C2HG-OOC-CM0=CH- C2HG-OOC-CM0=CH- C2HG-OOC-CM0=CH- C2HG-OOC-CM0=CH- C2HG-OOC-CM0=CH- C2HG-OOC-CM0=CH- C2HG-OOC- C4HG-O- C4HG-O-CH- C4HG-O-CH- C4HG-O-CH- C4HG-OOC- C4HG-O-CH- C4HG-OOC- C4HG-OOC- C5HG-O-CH- C5HG-OOC- C5HG-O-CH- C5HG-OOC-		-CH=CH-COO C2H5	K 180.6	B 109.7 C 232 A 905 N 7 Z
C2Hg-OC	CsH11-OOC-CH=CH-	-CH-CH-COO-C3H11	K 124.7	B 133 C 247 A 307 N 314 Z
Categor O-Categor K 191 C 221 N 2951 Ceitig-O- -O-Cetts K 159 S 176 S 232 S 239 N 262 I Cettig-O- -O-Cetts K 144 S 172 S 234 S 241 N 248 I Cights-O- -O-Cights K 130 S 162 S 215. I Cht-O-Chg-O- -O-Cit-O-Chg K 175.8 A 204.5 N 236.2 I Cht-O-Chg-O- -O-Cit-O-Chg K 136.2 B 140.9 A 147.1 N 222 I Cht-O-Chg-O- -CChg-O-Chg K 153 A 189 N 258 I Cht-OOC- -COO-Cetts K 52 C 137 A 190 N 209 I Cettig-OOC- -COO-Cetts K 100 A 208 N 216 I Cettig-OOC- -COO-Cetts K 100 A 208 N 216 I Cettig-OOC- -COO-Cetts K 113 C 148 A 189 I Cettig-OOC- -COO-Cetts K 123 C 148 A 189 I Cettig-OOC- -COO-Cetts K 123 C 148 A 189 I Cettig-OOC- -COO-Cetts K 123 C 148 A 189 I	C2H5-OOC-CMD=CH-	-CH=CMe COO-C2H5	K 169	
Cai 1:3 O- O-Cai 1:3 O- S 178 S 232 S 239 N 262 I Cai 1:3 O- Cai 1:3 O- S 178 S 232 S 239 N 262 I Cai 1:3 O- Cai 1:3 O- S 172 S 234 S 241 N 248 I Ciz 1:4 S- S 162 S 215.1 I S 162 S 215.1 I Cai 1:3 O- Chig-O- Chig-O-Chig-O- K 175.8 S 162 S 215.1 I Cai 1:4 O- Chig-O- Chig-O-Chig-O- K 136.2 B 140.9 A 147.1 N 222 I Cai 1:4 O- Chig-O- Chig-O-Chig-O- K 165.2 A 199.0 250 I Cai 1:4 O- Co- Cai 1:4 Ca		-O-C4He	K 191	
CgH₁T·O· CGH₁T·O· CGH₁T·O· K 144 S 172 S 234 S 241 N 248 I C1gHq5-O· COC1gHq5 K 130 S 162 S 215.1 I CgHg-S· -G-CGHq K 175.8 A 204.5 N 236.2 I CHg-O-CHg-O· -G-CHg-O-CGHq K 136.2 B 140.9 A 147.1 N 222 I CgHg-OOC- -COC-CgHq K 153 A 199 N 259 I CgHq-OOC- -COO-CgHq K 92 C 137 A 190 N 209 I CgHq-OOC- -COO-CgHq K 100 A 205 N 216 I CgHq-OOC- -COO-CgHq K 113 C 148 A 189 I CgHq-OOC- -COO-CgHq K 113 C 148 A 189 I CgHq-OOC- -COO-CgHq K 192 C 140 A 198 I		-O-C ₈ H ₁₃	K 159	S 176 S 232 S 239 N 262 I
C12H13-O- C2H3-S- C2H3-S- C3H3-O-CH2-O- C3H3-O-CH2-O- C3H3-O-CH3-O- C3H3-O-CH3-O- C3H3-O-CH3-O- C3H3-O-CH3-O- C3H3-O-CH3-O- C3H3-O-CH3-O- C3H3-O-CH3-O- C3H3-O-CC- C3H3-O-C- C3H	CeH17-O-	-O-C ₈ H ₁₇	K 144	S 172 S 234 S 241 N 248 I
C2H3*S- -S-C2H3 K 175.8 A 204.5 N 236.2 I CH3*O-CH2*O- -O-CH2*O-CH3 K 136.2 B 140.9 A 147.1 N 222 I CH4*O-CH2*O- -C-CH2*O-CH4 K 106.2 A 189.1 N 258 I CH4*OOC- -CO-C3H7 K 153 A 199 N 258 I CH4*OOC- -COO-C4H1 K 92 C 137 A 190 N 209 I C3H1*OOC- -COO-C3H3 K 100 A 208 N 216 I C3H1*OOC- -COO-C3H3 K 113 C 148 A 189 I C3H16*OOC- -COO-C7H16 K 82 C 140 A 198 I	C12H25-O-	-O-C ₁₂ H ₂₅	K 130	8 162 S 215.1 I
C ₁ H ₀ -O-CH ₂ -O-C ₂ H ₀ C ₃ H ₇ -OOC- C ₄ H ₇ -OOC- C ₄ H ₇ -OOC- C ₄ H ₇ -OOC- C ₅ H ₁ -OOC- C ₆ H ₁₃ C ₇ H ₁₆ -OOC- C ₇ H ₁₆ C ₇ H ₁₆ -OOC- C ₇ H ₁₆ C ₇ H ₁₆ -OOC- C ₇ H ₁₆ C ₇ H ₁₆ -OOC- C ₇ H ₁₆ C ₇ H ₁₆ -OOC- C ₇ H ₁₆ C ₇ H ₁₆ -OOC- C ₇ H ₁₆ C ₇ H ₁₆ -OOC- C ₇ H ₁₆ C ₇ H ₁₆ -OOC- C ₇ H ₁₆ C ₇ H ₁₆ C ₇ H ₁₆ -OOC- C ₇ H ₁₆ C ₇ H ₁₆ -OOC- C ₇ H ₁₆ C ₇ H ₁₆ -OOC- C ₇ H ₁₆ C ₇ H ₁₆ -OOC- C ₇ H ₁₆ C ₇ H ₁₆ -OOC- C ₇ H ₁₆ C ₇ H ₁₆ -OOC- C ₇ H ₁₆ C ₇ H ₁₆ -OOC- C ₇ H ₁₆ C ₇ H ₁₆ -OOC- C ₇ H ₁₆ C ₇ H ₁₆ -OOC- C ₇ H ₁₆ C ₇ H ₁₆ -OOC- C ₇ H ₁₆ C ₇ H ₁₆ -OOC- C ₇ H ₁₆ C ₇ H ₁₆ -OOC- C ₇ H ₁₆ C ₇ H ₁₆ -OOC- C ₇ H ₁₆ C ₇ H ₁₆ -OOC- C ₇ H ₁₆ C ₇ H ₁₆ -OOC- C ₇ H ₁₆ C	C2H5-S-	-S-C2Ms	K 175.8	
C3H ₂ -OOC- C3H ₂ -OOC- C3H ₂ -OOC- C3H ₂ -OOC- C3H ₃	CH3-O-CH2-O-	-O-CH2-O-CH3	K 136.2	8 140.8 A 147.1 N 222 I
K 92 C 137 A 190 N 293	C4Hg-O-CHz-O-	-C-CH2-O-C4H0	K 106.2	A 118.7 I
C9H11-OOC- C9H13-	C3H7-00C-	-COO-C ₂ H ₇	K 153	A 199 N 258 I
C ₂ H ₁₃ -OOCCOO-C ₂ H ₁₃ K 113 C 148 A 189 I C 140 A 196 I	C4H2-00C-	-000-C ₄ H ₈	K 92	C 137 A 190 N 209 I
C7H18-OOC - C0O-C7H18 K B2 C 140 A 198 I	C ₅ H ₁₁ -OOC-	-coo-c ₅ H ₁₁	K 100	
O/H8-000-	C6H15-OOC-	-COO-C6H13	K 113	
C ₄ D ₉	C7H18-00C	-COO-C7H18	K 92	
	C ₄ D ₉ -	-C ₄ D ₉	K 112	S 148 C 1/4 A 201 N 238 I

$$L \longrightarrow 0 \longrightarrow R$$

[L	[R]	1	Cr	LC
C ₆ H ₁₇ -O-	-CH=C(COO-C ₀ H ₁₃) ₀	П	K 52	C 51 A 85 N 101 I
C8H17-O-	-CH=C(COO-C7H15)2	1	K 58	C 51.5 A 83 N 97 I
C ₈ H ₁₇ -O-	-CH=C(COO-C8H17)2	١	K 59	C 53 A 84 N 94 1
C8H17-O-	-CH=C(COO-C ₉ H ₁₉) ₂	1	K 58	C 53 A 86 N 94 I
C8H17-O-	-CH=C(COO-C10H21)2	١	K 63	C 55 A 84 N 91 I
C8H17-O-	-CH=C(COO-C11H23)9	١	K 61	C 56 A 84 N 90 1
C ₈ H ₁₇ -O-	-CH=C(COO-C12H25)2	-	K 67	C 57 A 85 N 89 I
C ₈ H ₁₇ -O-	-CH=C(COO-C10H33)2	١	K \$3	C 65 A 85 N 86 I
C ₈ H ₁₇ -O-	-CH=C(COO-C ₁₈ H ₃₇)9	ı	K 66	C 69 A 83 I
C9H19-O-	-CH=C(COO-C6H11)2	ı	K 70	C 56 A 88 N 107 I
C ₈ H ₁₇ -O-	-CHCN-CH(COO-C3H,)2	2	K 60	A 100 N 131 I
CaHg-O-	-O-C ₈ H ₁₇		K ?	C 65 N 207 I
C5H11-O-	-O-C ₈ H ₁₇	1	K 97	C 101 N 201 I
C ₆ H ₁₃ :O-	-Q-C ₈ H ₁₇		K 96	C 132 A 144 N 198 I
C7H15-O-	-O-C7H15		K 87	C 143 A 162 N 193 I
C7H15-O-	-O-C81117	- [K 7 🕝	C 142 A 155 N 193 !
C _B H ₁₇ -O-	-0-CH ₃	1	K 107	A 122 N 226 I
C _B H ₁₇ -O-	-O-C ₂ :15	- [K 110	A 130 N 213 I
C9H17-O-	-O-C ₈ ;1 ₁₇		K 87	C 145 A 163 N 189.5 I
C ₈ H ₁ ,-O-	-O-CHMe-COO-C2H3	s	K 85	A 117 N° 122 I
C _B H ₁₇ -O-	-O-CHM9-COO-Cg1117	s	K 71	A 94 N* 113 I
C ₈ H ₁₇ -O-	-CO-C: 1 ₃	- 1	K 131	A 210 N 227 I
C ₆ H ₁₃ -O-	-COO-C ₃ -1 ₇	-	K 101.5	C 188.5 N 193 I
C ₈ H ₁ ,-O-	-CO-N(-CH ₃) ₂	- 1	K 127	A 144 N 204 I
C ₈ H ₁₇ -O-	-COO-N=C(-CH ₃) ₂	٠	K 116	A 180 N 230 Z
C8H17-O-	-COO-NC(-C2H5)2	-	K 77.5	A 155.5 N 192 Z
C8H17-O	-COO-N∋C(-C ₃ H ₇) ₂	- [K 91	A 128 N 165 I
Cel 117-O-	-COO-N=C(-C7: 115)2	1	K 78	A 83 N 116.5 I
Cet117-O-	-COO-N=C(-C11 123)2		K 73	A 78 N 99 I
C ₈ H ₁₇ -Q-	-COO-N=C(-C ₁₃ ; 1 ₂₇) ₂		K 59	A 78 N 93 I

【0034】 【表25】

$$L = \bigcup_{N \in \mathbb{N}} N = \bigcup_{N \in \mathbb{N}} R$$

L	R	Cr	LC
C8H13-O-	-O-C ₆ -1 ₁₃	K 122.4	B 132.8 N 243 I
C ₈ H ₁₇ -O-	-O-Ca-117	K 61.2	H 100.2 G 121.2 C 158.4 N 223,1 I
C10H21-O-	-O-C101121	K 89.9	H 8/.2 G 95.5 C 173.4 N 202.1 I

$$L$$
 R

<u> L</u>	R	Cr	LC
C ₄ H ₉ -	-C4H9	K 69	P 107 I
CeH13-	-C ₆ H ₁₃	K 70	P 112 I
C71115-	-C7H15	K 60	P 114 I
C ₁₂ H ₂₅ -	-C12H25	K 53	P 108.8 I
C16: 133-	-C16H33	K 39	P 102.5 I

$$L$$
 R

L	R		LC
C ₈ H ₁₇ -	-Co'(1)	K 57	P 61 I
C ₉ H ₁₉ -			P 68 I

[0035]

【表26】

L	H	Cr	LC	Ref
H-O-C ₆ H ₁₂ -O-	-O-C ₆ H ₁₂ -O-H	K 97.9	S 178.81	5165
H-CONH-	-NHOC-H	K 274	S 286 I	4109
Br-C ₃ H ₆ -COO-	-OOC-C3H6-Br	K 114	8 142 1	7455
Br-C ₄ H ₈ -COO-	-OOC-C4Ha-Br	K 96	S 1161	7455
Br-C5H10-COO-	-OOC-C6H10-Br	K 57	S 103 I	7455
Br-C7H14-COO-	-00C-C7H14-Br	K 71	3 99 1	

$$L$$
 R

L	R]	_](Cr	rc
Br-C ₁₀ H ₂₀ -COO-	-OOC-C10H20-B1	Т	K 83	S 100 I
C6H11	-; (K 11.5	N -34 E
C6H11-	-C2H4-O-H	- 1	K /2	'S 112.51
C2H5-O-	-0-11		K 169	X 176 I
C ₈ H ₁₇ -O·	-O-CH2-CHIBu-O-H	8	K 85	6 58 8 103 S 113.1 S 113.6 S 115.6 A 119.5 I
CH ₃ -O-	-O-C ₆ H ₁₂ -OOC-CMe=CH-i1	-1	K 66	8731
C ₂ H ₅ -O-	-O-CeH12-OOC-CM8=CH-11	H	K 63.1	N 87.6 I
C6H11-O-	-O-C ₆ H ₁₂ -OOC-CMe=CH-H		K 53	S 57 I
C ₆ H ₁₃ -O-	-O-C ₂ H ₁₂ -OOC-CMe=CH-H	- [K 79	3841
C ₄ H ₉ -	-со-н	ļ	K 4.5	N21
C ₅ H ₁₁ .	сон	ı	K 21.5	N 23.51
CeH13-	-со-н	ı	K -5.5	N 17.51
C7H15-	-co-н	- 1	K 4.5	N 33 I
G ₈ H ₁₇ -	-со-н	- 1	K 20.5	S 30 N 36 I
CgH ₁₉ -	. со-н		K 31	S 42 N 45 I

[0036]

【表27】

$$\Gamma$$

L	R		Cr	1.01
C10H21-	-со-н		K 42	S 44 I
C ₆ H ₁₇ -O-	-COO-CH ₂ -CHMe-O-H	ε	K 119	A 1181
C2H5-O-	-OOC-CMe=Ci1-H		K 95	X 105 i
C ₆ H ₁₇ -O-	-OOC-C4H8-OOC-CM8=Ci4-H	ľ	K 80.6	S 80.2 I
C ₈ H ₁₇ -O-	-OOC-C2: 4-CHMe CH2-OOC-CMB=C:1-H	1	K 46	S 64.1 I
C ₆ H ₁₃ -O-	-OOC C11H22-NHOC-CM8=CH-H		K 111	S 132 X ? I
C2H5-Ci (M0-CHF-CH2-DOC-	-0-н	3	K 127.5	d
CH ₃ -CHM ₉ -CH ₂ -CHCl-CH ₂ -OOC-	-O-H	S	K 48.9	- 1
C2H5-C: 1Me-CH2-O-	-O-C ₆ H ₁₂ -OOC-CMe=CH-H	8	K 42.5	5 49 1
C ₈ F _{1/} -C ₁₁ H ₂₂ -O-	-con:t-H		K 224	1
H ₂ C≡CH-C ₄ H ₈ -O-	-0-н		K 138	1
H ₂ C=CH-C ₉ H ₁₈ -O-	-О-Н		K 134	S 139 I
C ₅ H ₁₁ -	-CH⊐CH-F		K?	S 123 I
C ₃ H ₇ -	-SO _e -F		K 94	N-100 E
C ₄ H ₉ -C:::C-	-F		K?	S 73.7 I
C ₅ H ₁₁ -	-C₂H₄-CI		K 49	N 14 E
C ₄ H ₉ -O-	-CO-CH ₂ -CI		K 115	E 110 I
CsH11-O-	-CO-CH₂-CI		K 98	E 72 A 103 I
CeH13-O-	-CC-CH ₂ -CI		K 87	E 107 A 116 I
C7H15-O-	-∞-cH₂-CI		K 93	E 106 A 122 I
CgH ₁₇ -O-	-CO-CH ₂ -CI		K 88	E 105 A 126 I

[0037]

【表28】

<u>L</u> .	l a		Cr	l cl
C ₉ H ₁₉ -O-	-CO-CHg-CI		K 95	E 102 A 126 I
C ₁₀ H ₂₁ -O-	-co-ch _z -ci	1	K 89	E 101 A 128 I
C ₅ H ₁₁ -CO-C ₂ H ₄ -CO-	-Br		K 119	A 123.8 i
C ₆ H ₁₃ -CO-C₂H ₄ -CO-	-Br		K 120.3	A 127.5 I
C ₃ H ₇ -COO-CH ₂ -CO-	-Br		K 94.4	\$ 112
C5H11-COO-	-Br		K 70	E 83 B 103 I
C ₆ H ₁₃ -COO-	-81	١.	K 08.5	E 74 B 104 I
C7H15-COO-	-Br	li	K 76	8 59./ B 104.5 I
C ₆ H ₁₇ -COO-	-Br		K 69	E 46 B 103 I
CgH1g-COO-	-Br		K 73.5	B 102.51
C5H11-	-Cilg-Br		K 76	N 1.5 E
C5H11-	-C:::C-Br		K 88	X 108 I
CH3-O-	-O-Cgi I ₁₈ -Br		K 38.4	7.100
C ₆ H ₁₂ -	-CO-Cilg-Br		K 64	A 52 I
C7H16-	-CO-CH ₂ -Br		K 60.5	A 59.5 I
C _B H ₁₇	-CO-Ci1 ₂ -Br		K 65.5	A 64 I
C ₀ H ₁₀ -	-CO-Ci1 ₂ -Br		K 64	A 07 I
C10H21-	-CO-Ci I ₂ -Br	Н	K 72.5	
C ₂ H ₅ -O-	-CO-Ci 1 ₂ -Br		K 137	A /0 I
C ₃ H ₇ -O-	-CO-CH2-Br		K 124	S 112.5 I
C ₄ H ₉ -O-	-CO-Ci l ₂ -Br		K 107	S 118.5 I
C5H11:O-	-CO-Ci I ₂ -Br	ŀ	K 93	E 106 I
C ₆ H ₁₃ -O-	-CO-Ci 1 ₂ -Br		K 79	E 101 I
C ₇ H ₁₅ -O-	-CO-Ci l ₂ -Br		K 96	E 98 A 104 I
CaH ₁₇ -O-	-CO-Ci 12-Br		K80	E 92 A 104 I
C ₉ H ₁₉ -O-	-CO-CH ₂ -Br		K 95	E 95 A 107 I
C10H21-O-	-CO-CH ₂ -Br		K 91	E 100 A 116 I
C7H15-O-	-CO-CHCI-Br	2	K 95	E 98 A 116 I
C ₈ H ₁₇ -O-	-CO-CHCI-Br		K 68	A 56 I
C ₀ H ₁₀ -O	-CO-CHCI-Br		K 68	A 71 I
C ₁₀ H ₂₁ -O-	-co-chci-br	2	K 65	A 78 I
C2H5-CHMe-C2H4-COO-	-Br	2	K 58	A 06 I
C ₆ H ₁₁ -O-	-NO ₂	'	K 54.5	S 28 I N <42 I
C ₆ H ₁₃ -O-	-NO ₂		K 67	N 32.51
C7H15-O-	-NO ₂		K 36.5	A 30.5 N 38.5 B
C ₈ H ₁₇ -O-	-NO ₂		K 51.5	A 49.5 N 51.5 B
H ₂ C=CH-O-C ₁₁ H ₂₂ -O-	NO ₂		K 97	1
C ₈ H ₁₃ -	-CH=Ci-2		K 59	S 95.8 I
C5H11-	-CH ₂ -CH=CF ₂		K 36.9	S 53.1 I
C ₅ H ₁₁ -	-CgH4-CH=CFg	[K -25.4	S 30.8 S 50.6 I
C ₉ H ₁₉ -O-	-COO-isopinocampheyl	n	K 67.5	A 48.7 N* 55.7 I
CH ₃ -	-C ₆ H ₁₁		K 48	N-11

[0038]

【表29】

C3H7* C5H11 K-18 8 47.81 C3H7* C6H13 K-10.5 E481 C3H7* C7H15 K-14 E2B 8 50.51 C4H8* C6H13 K-2 E40.5 8 48.51 C6H11* C6H13 K-15 E16.5 8 38.51 C6H11* C6H13 K 7 E41.7 E42.6 L 53.71 C6H11* C6H13 K 7 E11.7 E41.7 E42.6 L 53.71 C6H11* C7H15 K 7 E46.1 E47.1 L 52.31 C6H13* C7H15 K 7 E46.1 E47.1 L 52.31 C6H13* C7H15 K 7 E46.1 E47.1 L 52.31 C6H13* C7H15 K 7 E22.7 E30.2 L 58.11 C7H15* K 7 E29.7 E 30.2 L 58.11 E19.5 E 35.1 L 61 C7H16* C7H15 K 7 E19.5 E 35.1 L 61 C7H16* C7H16 K 7 E19.5 E 35.1 L 61 C8H17* C9H19 K 87 K 87 C8H11* CH2-O-C8H1 K 87 S 21 C9H11* CH2-O-C8H1 K 18 S 31 <th><u> L</u></th> <th>R</th> <th>Cr</th> <th>LC </th>	<u> L</u>	R	Cr	LC
Caily -CaH13 K -10.5 E 48 I Cyily -CyH15 K -14 E 29 B 50.6 I Cailg -CgH13 K -2 E 40.5 B 48.5 I Callg -CyH15 K -15 E 16.5 B 39.5 I Cah11 -CaH11 K 25.1 E 46.1 E 47.1 L 52.3 I Cah11 -CaH15 K 7 E 11.7 E 41.7 E 42.6 L 53.7 I Cah11 -CyH16 K 7 E 36 B 63 I Cah13 -CyH16 K 7 E 46.1 E 47.1 L 52.3 I Cah13 -CyH16 K 7 E 46.1 E 47.1 L 52.3 I Cah13 -CyH16 K 7 E 29.7 E 30.2 L 58.1 I Cah13 -CyH16 K 7 E 19.5 E 35.1 L 61 I CyH16 -CyH16 K 7 E 19.5 E 35.1 L 61 I CyH17 -CyH16 K 7 E 19.5 E 35.1 L 61 I CyH17 -CyH16 K 7 E 19.5 E 35.1 L 61 I CyH17 -CyH16 K 7 E 19.5 E 35.1 L 61 I CyH17 -CyH16 K 7 E 19.5 E 35.1 L 61 I CyH17 -CyH18 <td>C2:15-</td> <td>-C₅H₅₁</td> <td>K <20</td> <td>\$ 33.91</td>	C2:15-	-C ₅ H ₅₁	K <20	\$ 33.91
C3H7- C9H15 K-14 E 20 B 50.5 I C4H8- C8H15 K-2 E 40.5 B 48.5 I C6H17- C9H15 K-15 E 16.5 B 38.5 I C6H17- C9H15 K 25.1 E 46.1 E 47.1 L 52.3 I C6H17- C9H15 K 7 F 11.7 E 41.7 E 42.6 L 53.7 I C6H19- C7H15 K 7 E 11.7 E 41.7 E 42.6 L 53.7 I C6H19- C7H15 K 7 E 11.7 E 41.7 E 42.6 L 53.7 I C6H19- C7H15 K 7 E 29.7 E 30.2 L 58.1 I C6H19- C7H15 K 7 E 29.7 E 30.2 L 58.1 I C7H15 K 7 E 29.7 E 30.2 L 58.1 I K 7 C8H19- C9H16 K 7 E 19.5 E 35.1 L 61 K 7 E 19.5 E 35.1 L 61 K 67 E 19.5 E 35.1 L 61 K 67 E 19.5 E 35.1 L 61 K 67 P 681 K 67 P 681 K 67 E 19.5 E 35.1 L 61 K 67 E 19.5 E 35.1 L 61 K 67 E 19.5 E 35.1 L 61 K 67 K 67 E 19.5 E 35.1 L 61 K 67 K 67 E 19.5 E 35.1 L 61 K 67 K 67 K 67	C ₃ H ₇ -	-C ₅ H ₁₁	K-18	\$ 47.81
Caitig- CeH13 K-2 E 40.5 B 48.5 i CaHe- -CrH15 K-15 E 16.5 B 38.5 i CeH11- -CeH11 K 25.1 E 46.1 E 47.1 L 52.3 i CeH11- -CeH13 K 7 E 11.7 E 41.7 E 42.6 L 53.7 i CeH11- -CeH15 K 7 E 36 B 63 i CeH13- -CeH15 K 7 E 29.7 E 30.2 L 58.1 i CeH13- -CeH15 K 7 E 19.5 E 35.1 L 61 i CeH13- -CeH15 K 7 E 19.5 E 35.1 L 61 i CeH13- -CeH16 K 7 E 19.5 E 35.1 L 61 i CeH16- -CeH16 K 67 E 19.5 E 35.1 L 61 i CeH17- -CeH16 K 67 E 19.5 E 35.1 L 61 i CeH19- -CeH17- K 67 E 19.5 E 35.1 L 61 i CeH19- -CeH17- K 67 E 19.5 E 35.1 L 61 i CeH19- -CeH17- K 67 E 19.5 E 35.1 L 61 i CeH19- -CH2-O-CeH1 K 48 S 27 i CeH11- -CH2-O-CeH1 K 72 S 80.1 S 80.1 i CeH11- <td>Cally-</td> <td>-CeH₁₃</td> <td>K -10.5</td> <td>E 481</td>	Cally-	-CeH ₁₃	K -10.5	E 481
CaHe- -C7H1s K-15 E 16.5 B 38.5 I CeH11- -C6H11 K 25.1 E 46.1 € 47.1 L 52.3 I CeH11- -CeH13 K 7 E 36 B 63 I CeH13- -C7H1s K 7 E 36 B 63 I CeH13- -CeH1s K 7 E 46.1 E 47.1 L 52.3 I CeH13- -C7H1s K 7 E 29.7 E 30.2 L 58.1 I CeH13- -C7H1s K 7 E 19.5 E 35.1 L 61 I CeH13- -C7H1s K 7 E 19.5 E 35.1 L 61 I CeH13- -C7H1s K 7 E 19.5 E 35.1 L 61 I CeH11- -CH1s K 67 E 19.5 E 35.1 L 61 I CeH11- -CH2-O-CH3 K 87 E 19.5 E 35.1 L 61 I CeH11- -CH2-O-CH3 K 48 S 47I CeH11- -CH2-O-CH3 K 48 S 47I CeH11- -CH2-O-CH3 K 27 S 811 CeH11- -CH2-O-CH3 K 72 S 811 CeH11- -CH2-O-CH3 K 9 E 68 B 83.9 I CeH11- -COH13 CEH1	C3:17	-C7H15	K-14	E 29 B 50.5 I
C ₆ H ₁₁ · K? E 11.7 € 41.7 € 42.6 ⊾ 53.7 I C ₆ H ₁₃ · C ₇ H ₁₅ · K? € 36 B 63 I E 11.7 € 41.7 € 42.6 ⊾ 53.7 I C ₈ H ₁₃ · C ₇ H ₁₅ · K? € 36 B 63 I E 46.1 € 47.1 ⊾ 52.3 I E 46.1 € 47.1 և 52.3 I E 59.1 € E 67.1 €	C4Hg-	-CeH13	K-2	E 40.5 B 48.5 1
C _B H ₁₁ · C _B H ₁₂ · C _B H ₁₃ · K? E 11.7 E 41.7 E 42.6 L 53.7 I C _B H ₁₃ · C _C H ₁₅ · K? E 36 B 63 I C _B H ₁₃ · C _C H ₁₅ · K 25.1 E 46.1 E 47.1 L 52.3 I C _B H ₁₃ · C _C H ₁₅ · K? E 29.7 E 30.2 L 58.1 I C ₇ H ₁₅ · C ₇ H ₁₅ · K? E 19.5 E 35.1 L 61 I C ₈ H ₁₇ · C ₈ H ₁₇ · K 67 P 61 I C ₈ H ₁₉ · C ₉ H ₁₉ · K 97 P 68 I C ₈ H ₁₁ · C ₁ H ₂ O-CH ₃ · K 48 S 47 I C ₈ H ₁₁ · CH ₂ O-C ₃ H ₇ · K 27 S 21 I C ₈ H ₁₁ · CH ₂ O-C ₃ H ₁ · K 16 S 10 I C ₈ H ₁₁ · CH ₂ O-C ₃ H ₁ · K 18 S 10 I C ₈ H ₁₁ · CH ₂ O-C ₃ H ₁ · K 18 S 80.1 S 83.1 I C ₈ H ₁₁ · CO-C ₂ H ₆ · K 72 S 80.1 S 83.1 I C ₈ H ₁₁ · CO-C ₈ H ₁₃ · K 9 E 68 B 83.3 P C ₈ H ₁₁ · CO-C ₈ H ₁₃ · K 58 B 86.5 I C ₈ H ₁₇ · CO-C ₈ H ₁₃ · K 57 E 86 I C ₈ H ₁₇ · CO-C ₈ H ₁₃ ·	C4Hg-	-C7H15	K-15	E 16.5 B 38.5 i
C _B H ₁₁ · C ₇ H ₁₅ K 7 ○ 36 B 6 3 I C _B H ₁₃ · C _B H ₁₅ · K 25.1 E 46.1 E 47.1 L 52.3 I C _B H ₁₃ · C ₇ H ₁₅ · K ? E 29.7 E 30.2 L 58.1 I C ₇ H ₁₅ · C ₇ H ₁₅ · K ? E 19.5 E 35.1 L 61 I C ₈ H ₁₇ · C ₉ H ₁₉ · K 67 P 61 I C ₈ H ₁₁ · C ₉ H ₁₉ · K 97 P 68 I C ₈ H ₁₁ · CH ₂ O-CH ₃ K 48 S 47 I C ₈ H ₁₁ · CH ₂ O-C ₃ H ₁ K 27 S 21 I C ₈ H ₁₁ · CH ₂ O-C ₃ H ₁ K 16 S 10 I C ₈ H ₁₁ · CH ₂ O-C ₃ H ₁ K 18 S 10 I C ₈ H ₁₁ · CH ₂ O-C ₃ H ₁ K 18 S 80.1 S 83.1 I C ₈ H ₁₁ · CO-C ₄ H ₅ K 72 S 80.1 S 83.1 I C ₈ H ₁₁ · CO-C ₄ H ₅ K 9 E 68 B 83.1 S 83.1 I C ₈ H ₁₁ · CO-C ₆ H ₁₃ K 9 E 68 B 83.1 S 83.1 I C ₈ H ₁₁ · CO-C ₆ H ₁₃ K 58 B 86.5 I C ₈ H ₁₇ · CO-C ₈ H ₁₃ K 57 E 8	C6H11-	-C ₅ H ₁₁	K 25.1	E 46.1 € 47.1 L 52.3 I
CoH13 -CoH13 K 25.1 E 46.1 E 47.1 L 52.3 I CoH13 -C7H15 K ? E 29.7 E 30.2 L 58.1 I CrH16 -C7H16 K ? E 19.5 E 35.1 L 61 I CeH17 -CeH17 K 67 P 61 I CeH19 C-OH19 K 97 P 68 I CeH11 -CH2-O-CH3 K 48 S 47 I CeH11 -CH2-O-CH3 K 48 S 47 I CeH11 -CH2-O-CH3 K 27 S 21 I CeH11 -CH2-O-CH11 K 18 S 10 I CeH11 -CH2-O-CeH11 K 18 S 10 I CeH11 -C-CeH6 K 72 S 80.1 S 83.1 I CeH11 -O-CeH6 K 92 S 80.1 S 83.1 I CeH11 -O-CeH13 K 9 E 68 B 83.9 I CeH12 -O-CeH13 K 58 E 68 B 83.9 I CeH17 -O-CeH13 K 46 B 84 I CeH17 -O-CeH13 K 57 E 86 I CeH17 -O-CeH13 K 54 B 82 I CeH11 </td <td>C5H11-</td> <td>-Cei 113</td> <td>K?</td> <td>E 11.7 & 41.7 5 42.6 L 53.7 I</td>	C5H11-	-Cei 113	K?	E 11.7 & 41.7 5 42.6 L 53.7 I
C8H3- -C7H15 K? E 29.7 E 30.2 L 58.1 I CrH16- -C7H16 K? E 19.5 E 35.1 L 61 I C8H17- -C8H17 K 67 P 61 I C9H19- K 97 P 68 I S 47 I C9H11- -CH2-O-CH3 K 48 S 47 I C5H11- -CH2-O-C8H11 K 18 S 10 I C5H11- -CH2-O-C8H11 K 18 S 10 I C5H11- -C-C2H5 K 72 S 81 I C5H11- -O-C3H5 K 37 S 80.1 S 83.1 I C5H11- -O-C4H6 K 37 S 80.1 S 83.1 I C5H11- -O-C6H13 K 52 S 80.1 S 83.1 I C6H11- -O-C6H13 K 52 S 80.1 S 83.1 I C8H13- -O-C6H13 K 58 E 68 B 83.9 I C9H15- -O-C6H13 K 46 B 86.5 I C9H17- -O-C6H13 K 46 B 84 I C9H17- -O-C6H13 K 57 E 86 I C9H7- -O-C6H13 K 54 B 82 I	C5H11.	-C7H15	K7	₫ 36 B 63 I
CrH15- -CrH15- K? E 19.5 E 35.1 L 61 I CgH17- -CgH17- K 67 P 61 I CgH19- CgH19- K 97 P 68 I CgH11- -CH2-O-CH3- K 48 S 47 I CgH11- -CH2-O-CgH1- K 18 S 10 I CgH11- -CH2-O-CgH1- K 18 S 10 I CgH11- -C-CgH6- K 72 S 80.1 S 83.1 I CgH11- -O-CgH6- K 37 S 80.1 S 83.1 I CgH11- -O-CgH13 K 62 S 84.1 I CgH13- -O-CgH13 K 9 E 68 B 83.9 I CgH17- -O-CgH13 K 58 B 86.5 I CgH17- -O-CgH13 K 46 B 84 I CgH17- -O-CgH13 K 57 E 86 I CgH19- -O-CgH13 K 34 B 82 I CgH11- -NH-CgH6 K 45 A 78 I CgH11- -NH-CgH6 K 45 A 78 I CgH11- -O-CgH3 K 42 S 130 I CgH11- <	C6H13-	-C ₆ H ₁₃	K 25.1	E 46.1 E 47.1 L 52.3 l
C ₈ H ₁ /- C ₈ H ₁ /- C ₈ H ₁ /- P611 C ₉ H ₁₉ - C ₉ H ₁₉ - K 57 P681 C ₈ H ₁₁ - CH ₂ -O-CH ₃ K 48 S 471 C ₅ H ₁₁ - -CH ₂ -O-C ₈ H ₁₁ K 27 S 211 C ₅ H ₁₁ - -CH ₂ -O-C ₈ H ₁₁ K 18 S 101 C ₅ H ₁₁ - -C-C ₂ H ₅ K 72 S 81 1 C ₅ H ₁₁ - -O-C ₄ H ₅ K 37 S 80.1 S 83.1 1 C ₅ H ₁₁ - -O-C ₆ H ₁₃ K 32 S 80.1 S 83.1 1 C ₅ H ₁₁ - -O-C ₆ H ₁₃ K 52 S 80.1 S 83.1 1 C ₈ H ₁₂ - -O-C ₆ H ₁₃ K 52 S 80.1 S 83.1 1 C ₈ H ₁₃ - -O-C ₆ H ₁₃ K 52 S 80.1 S 83.1 1 C ₈ H ₁₂ - -O-C ₆ H ₁₃ K 52 S 80.1 S 83.1 1 C ₈ H ₁₇ - -O-C ₆ H ₁₃ K 46 B 86.51 C ₈ H ₁₇ - -O-C ₆ H ₁₃ K 46 B 841 C ₈ H ₁₇ - -O-C ₆ H ₁₃ K 34 B 821 C ₈ H ₁ - -O-C ₆ H ₁₃ K 34 B 821 <t< td=""><td>C₆H₁₃-</td><td>-C7H15</td><td>K?</td><td>E 29.7 E 30.2 L 58.1 I</td></t<>	C ₆ H ₁₃ -	-C7H15	K?	E 29.7 E 30.2 L 58.1 I
CoH19- CoH19- K 97 P 68 I CoH11- -CH2-O-CH3 K 48 S 47 I CoH11- -CH2-O-Ch11 K 27 S 21 I CoH11- -CH2-O-Ch11 K 18 S 10 I CoH11- -C-CaH6 K 72 S 81 I CoH11- -O-CaH6 K 37 S 80.1 S 83.1 I CoH11- -O-CaH13 K 52 S 84.1 S 83.9 I CoH13- -O-CaH13 K 9 E 68 B 83.9 I CoH17- -O-CaH13 K 58 B 86.5 I CoH17- -O-CaH13 K 56 B 84 I CoH17- -O-CaH13 K 57 E 86 I CoH11- -O-CaH13 K 57 E 86 I CoH11- -O-CaH13 K 57 E 86 I CoH11- -O-CaH13 K 54 B 82 I CoH11- -NH-CaH6 K 75 S 74.1 I CoH11- -NH-CaH6 K 45 A 78 I CoH11- -NH-CaH6 K 45 S 130 I CoH11- -CO-CaH3 <td>C₇H₁₅-</td> <td>-C₇H₁₅</td> <td>K?</td> <td>E 19.5 E 35.1 L 61 I</td>	C ₇ H ₁₅ -	-C ₇ H ₁₅	K?	E 19.5 E 35.1 L 61 I
C ₈ H ₁₁ - CH ₂ -O-CH ₉ K 48 S 47 I C ₉ H ₁₁ - -CH ₂ -O-C ₉ H ₁ K 27 S 21 I C ₉ H ₁₁ - -CH ₂ -O-C ₈ H ₁ K 18 S 10 I C ₉ H ₁₁ - -C-C ₂ H ₆ K 72 S 81 I C ₉ H ₁₁ - -O-C ₄ H ₉ K 37 S 80.1 S 83.1 I C ₉ H ₁₁ - -O-C ₉ H ₁₃ K 9 E 68 B 83.9 I C ₉ H ₁₃ - -O-C ₉ H ₁₃ K 9 E 68 B 83.9 I C ₉ H ₁₇ - -O-C ₉ H ₁₃ K 58 B 86.5 I C ₉ H ₁₇ - -O-C ₉ H ₁₃ K 46 B 84 I C ₉ H ₁₇ - -O-C ₉ H ₁₃ K 57 E 86 I C ₉ H ₁₂ - -O-C ₉ H ₁₃ K 34 B 82 I C ₃ H ₂ - -NH-C ₄ H ₉ K 45 S 74.1 I C ₉ H ₁₁ - -NH-C ₄ H ₉ K 45 S 73.1 I C ₉ H ₁₁ - -O-C ₂ H ₃ K 42 S 130 I C ₉ H ₁₁ - -CO-C ₂ H ₃ K 77 B 84 I	C8H1/-	-C ₆ H ₁ ,	K 57	P 61 I
C₃H₁1- -CH₂-C C₃H₂1 K 27 S 21 I C₃H₁1- -CH₂-O-C₃H₁1 K 16 S 10 I C₅H₁1- -O-C₂H₂6 K 72 S 81 I C₅H₁1- -O-C₂H₂3 K 37 S 80.1 S 83.1 I C₅H₁1- -O-C₃H₁3 K 92 S 84 I C₅H₁3- -O-C₃H₁3 K 9 E 68 B 83.9 I CゥH₁5- -O-C₃H₁3 K 58 B 86.5 I C₃H₁7- -O-C₃H₁3 K 46 B 84 I C₃H₁7- -O-C₃H₁3 K 57 E 85 I C₃H₁7- -O-C₃H₁3 K 34 B 82 I C₃H₁7- -NH-C₄H₂9 K 75 S 74.1 I C₃H₁1- -NH-C₄H₂9 K 45 A 78 I C₃H₁1- -CO-C₂H₃ K 42 S 130 I C₃H₁1- -CO-C₂H₃ K 77 B 84 I	C ₉ H ₁₉ -	-C ₉ H ₁₉	K 57	P 68 I
C5H₁1· CH₂-O-C₅H₁1 K 18 S 10 I C6H₁1· C-C₂H₅ K 72 S 81 I C5H₁1· -O-C₄H₅ K 37 S 80.1 S 83.1 I C₅H₁1· -O-C₆H₁3 K 52 S 84 I C₅H₁3· -O-C₆H₁3 K 9 E 68 B 83.9 I Crht.5· -O-C₆H₁3 K 58 B 86.5 I C₅H₁7· -O-C₆H₁3 K 46 B 84 I C₆H₁7· -O-C₆H₁3 K 57 E 86 I C₆H₁1· -O-C₆H₁3 K 34 B 82 I C₃H₂· -NH-C₄H₃ K 75 S 74.1 I C₆H₁1· -NH-C₄H₃ K 45 A 78 I C₃H₂· -CO-C₂H₃ K 42 S 130 I C₅H₁1· -CO-CcH₃ K 77 B 84 I	C8H11-	-CH ₂ -O-CH ₃	K 48	S 47 I
C5H₁1· CH₂-O-C₅H₁1 K 18 S 10 I C6H₁1· C-C₂H₅ K 72 S 81 I C5H₁1· -O-C₄H₅ K 37 S 80.1 S 83.1 I C₅H₁1· -O-C₆H₁3 K 52 S 84 I C₅H₁3· -O-C₆H₁3 K 9 E 68 B 83.9 I Crht.5· -O-C₆H₁3 K 58 B 86.5 I C₅H₁7· -O-C₆H₁3 K 46 B 84 I C₆H₁7· -O-C₆H₁3 K 57 E 86 I C₆H₁1· -O-C₆H₁3 K 34 B 82 I C₃H₂· -NH-C₄H₃ K 75 S 74.1 I C₆H₁1· -NH-C₄H₃ K 45 A 78 I C₃H₂· -CO-C₂H₃ K 42 S 130 I C₅H₁1· -CO-CcH₃ K 77 B 84 I	C5H11-	-CH ₂ -C-C ₃ H ₇	K 27	S 21 I
C5H11- -O-C4H9 K 37 S 80.1 S 83.1 I C6H11- -O-C6H13 K 52 S 841 C8H13- -O-C6H13 K 9 E 68 B 83.9 I C7H15- -O-C6H13 K 58 B 86.5 I C8H17- -O-C6H13 K 46 B 84 I C9H17- -O-C6H13 K 57 E 86 I C9H19- -O-C6H13 K 34 B 82 I C3H7- -NH-C4H9 K 75 S 74.1 I C6H11- -NH-C4H9 K 45 A 78 I C3H7- -CO-C2H3 K 42 S 130 I C5H11- -CO-CC13 K 77 B 84 I	C5H11-	-CH ₂ -O-C ₅ H ₁₁	K 16	8 10 1
C6H11- -O-C6H13 K 52 S 84 1 C8H13- -O-C6H13 K 9 E 68 B 83.9 I C7H15- -O-C6H13 K 58 B 86.5 I C8H17- -O-C6H13 K 46 B 84 I C8H17- -O-C6H17 K 57 E 86 I C9H19- -O-C6H13 K 34 B 82 I C3H7- -NH-C4H9 K 75 S 74.1 I C6H11- -NH-C4H9 K 45 A 78 I C3H7- -CO-C2H3 K 42 S 130 I C5H11- -CO-CC13 K 77 B 84 I	C6H11* .	-C-C₂H₅	K 72	S 81 i
C ₈ H ₁₃ - -O-C ₈ H ₁₃ K 9 E 68 ± 83.9 i C ₇ H ₁₅ - -O-C ₈ H ₁₃ K 58 B 86.5 i C ₈ H ₁₇ - -O-C ₈ H ₁₃ K 46 B 84 i C ₈ H ₁₇ - -O-C ₈ H ₁₇ K 57 E 86 i C ₉ H ₁₂ - -O-C ₈ H ₁₃ K 34 B 82 i C ₃ H ₇ - -NH-C ₄ H ₉ K 75 3 74.1 i C ₉ H ₁₁ - -NH-C ₄ H ₉ K 45 A 78 i C ₃ H ₇ - -CO-C ₂ H ₅ K 42 S 130 i C ₅ H ₁₁ - -CO-CH ₃ K 77 B 84 i	C5H11-	-O-C4H9	K 37	S 80.1 S 83.1 I
C7H15- -O-C6H13 K 58 B 86 51 C8H17- -O-C6H13 K 46 B 84 1 C8H17- -O-C6H17 K 57 E 86 1 C9H13- -O-C6H13 K 34 B 82 1 C3H7- -NH-C4H9 K 75 3 74.1 1 C6H11- -NH-C4H9 K 45 A 78 1 C3H7- -CO-C2H3 K 42 S 130 1 C5H11- -CO-CCH3 K 77 B 84 1			K 52	. 5841
C _B H ₁₇ - -O-C _B H ₁₃ K 46 B B4 I C _B H ₁₇ - -O-C _B H ₁₇ K 57 E 86 I C _B I ₁₂ - -O-C _B H ₁₃ K 34 B 82 I C ₃ H ₂ - -NH-C ₄ H ₉ K 75 S 74.1 I C ₅ I ₁₁ - -NH-C ₄ H ₉ K 45 A 78 I C ₃ H ₂ - -CO-C ₂ H ₃ K 42 S 130 I C ₅ H ₁₁ - -CO-CH ₃ K 77 B 84 I	C ₈ H ₁₃ -	-O-C ₆ H ₁₃	K9	E 68 tl 83.9 l
CeH17 O-CeH17 K 57 E 86 I CeH19 O-CeH13 K 34 B 82 I C3H7 -NH-C4H9 K 75 S 74.1 I CeH11 -NH-C4H9 K 45 A 78 I C3H7 -CO-C2H3 K 42 S 130 I C5H11 -CO-CH3 K 77 B 84 I	C7H15-		K 58	B 86 ⊅ l
Coiling. -O-CoH13 K 34 B 82 I C3H2- -NH-C4H9 K 75 S 74.1 I Coiling. -NH-C4H9 K 45 A 78 I C3H2- -CO-C2H3 K 42 S 130 I C5H11- -CO-CH3 K 77 B 84 I		-O-C ₆ H ₁₃	K 46	· B B4 I
C ₃ H ₇ -NH·C ₄ H ₉ K /5 S 74.11 C ₆ H ₁₁ -NH·C ₄ H ₉ K 45 A 78 1 C ₃ H ₇ -CO-C ₂ H ₃ K 42 S 130 1 C ₃ H ₁₁ -CO-CH ₃ K 77 B 84 1		-O-C ₈ H ₁₇	K 57	E 86 I
C6H11 -NH-C4H8 K 45 A 781 C3H7- -CO-C2H8 K 42 S 1301 C5H11- -CO-CH3 K 77 B 841	Call 19	-O-C ₆ H ₁₃	K 34	B 821
C ₃ H ₇ CO-C ₂ H ₃ K 42 S 130 I C ₅ H ₁₁ -CO-CH ₃ K 77 B 84 I	• •	-NH-C4H9	K /5	8 74.1 (
C ₅ H ₁₁ CO-CH ₃ K 77 B 841	Cetter.	-NH-C4H9	K 45	A 781
	CaH7-	-CO-C ₂ H ₅	K 42	S 130 I
C ₆ H ₁₁ CO-C ₄ H ₆ K 90 S 106.2 S 110.5 I	C5H11-	-co-cH ₃	K 77	B 84 I
	C8H11-	-CO-C4He	K 90	\$ 106.2 \$ 110.5 I

【0039】 【表30】

L	l al	Cr	LCI
C6H11"	-CO-C ₅ H ₁₁	K 106	B 104 A 109.51
C5H11-	-CO-C ₈ H ₁₂	K 96	A 111 I
Celf13	-CO-CH ₃	K 79	9 85.51
Cgi l ₁₃ -	-co-c ₅ H ₁₁	K 108	A 105.9 I
C7H15-	-co-ch ₃	K 76.5	B 84.5 I
C7H15-	-CO-C ₅ H ₁₁	K 94.3	8 95.6 A 103.8 I
C ₈ H ₁₇ -	-co-ch ₃	K 86.5	9841
C ₈ H ₁₇	-CO-C ₅ H ₁₁	K 87.5	B 92.2 A 101.31
CoH19	-CO-CH ₃	K 85	B 82.51
C ₉ H ₁₉ -	-co-c ₆ (1 ₁₁	K 80.2	B 88.1 A 99.7 I
C10H21-	-co-c _s (1 ₁₁	K 77.5	B 88.8 A 98.71
C10H21-	-CO-C ₀ H ₁₉	K 57.8	E 1101
C5H11-	-CO-CH ₂ -CO-CH ₃	K 110	X 1351
C10H21-	-CO-CH ₂ -CO-CH ₃	K 86	E 97 B 107 A 135 I
C5H11-	-co-chooc-cah	K 85	\$ 147 1
C8H17-	-CO-CH2-OOC-C3H7	K 70	S 144 I
C6H13-	-CO-CH=CH-COO-C2H5	K 40	\$ 59 1
C ₆ H ₁₃ -	-CO-CH=CH-COO-C3H7	K 40	8 66 1
C ₆ H ₁₃ -	-co-ch=cH-coo-c⁴H ⁶	K 34	S.68-I.
C ₆ H ₁₃ -	-CO-CH=CH-COO-C5H11	K 25	S 57 I
C ₈ H ₁₇ -	-CO-CH=CH-COO-C3H7	K 62	\$ 72 1
C ₈ H ₁₇ -	-CO-CH=CH-COO-C4He	K 56	\$ 69 1
C ₈ H ₁₇ -	-CO-CH=CH-COO-C ₆ H ₁₁	K 54	S 70 I
C8H17-	-CO-CH=CH-COO-C6H13	K 36	S 71 I
C ₈ H ₁₇	-CO-CH_CH-COO-C7H15	K 40	\$ 72.1
C ₈ H ₁₇ .	-CO-CH-CH-COO-C8H17	K 35	S711
C₃H ₇ -	-COO-C ₃ H ₇	K 63	X 61 1
C5H11-	-COO-C ₃ H ₇	K-55	X 58 I
C ₅ H ₁₁ -	-coo-c ₈ H ₁₇	K 29	B 25 I
C ₈ H ₁₇	-COO-C₂H₅	K 84	B 61.4 A 61.4

【0040】 【表31】

L	R	L	Cr	LC)
C ₈ H ₁₇ -	-COO-C ₃ H ₇		K 60	A 57 I
C5H11-	-COS-C₂H ₅		K?	E 103.5 L 113 A 121.4 U
C5H11-	-COS-C ₃ H ₇		K?	E 90 L 110.3 A 118.5 I
C5H11-	-COS-C₄H ₀		K?	E 75 L 109 A 120.5 I
C ₆ H ₁₁ -	-COS-C ₅ H ₁₁		K?	E 59.8 L 104.5 A 120 I
C5H11-	-COS-C ₆ H ₁₃	l	K?	E 50 L 102 A 118 I
C ₆ H ₁₁ -	-COS-C7H15		K?	E 40.1 L 100.2 A 116.7 I
C5H11-	-COS-C _B H ₁₇		K?	E 33 L 99.8 A 118.3 I
C5H11-	-COS-C ₉ H ₁₉		K?	E 25 L 95.4 A 113.8 I
C ₅ H ₁₁ -	-COS-C10H21		K?	E 15 L 94 A 113.2 I
C5H11-	-00C-C5H11		K 45.7	S 87.4 I
C ₈ H ₁₇ -	-OOC-C7H15		K 65	E 83 B 91 I
C7H15-	: -COC-CHMo-CHMe-O-CHa	1	K •18	C*9A131
C ₆ H ₁₇ -	-COC-CHMa-CHMa-O-CHa	1	K 32	C' 10 A 15 I
C5H11+	-CMe=N-O-C₂H ₅		K 73	A 91 I
C ₈ H ₁₃ -	-CMe=N-OOC-C4Hg		K 89	1 88 A
C6H13-	-CMe=N-COC-CeH ₁₇		K 70	A 86 I
C ₈ H ₁₇ -O-	-C5H10-CHMe-O-C3H7	1	K 14	9 18 9 37 C* 41 I
C101121-O-	-C ₅ H ₁₀ -CHMe-O-CH ₃	1	K 41	\$ 49 C* 53 1
C10H21-O-	-C ₅ H ₁₀ -CHMe-O-C₂H ₅	1	K 31	S 32 S 38 C* 48 I
C10H21-O-	-C5H10-CHMe-O-C3H7	1	K 28	S 23 S 35 C* 44 I
C ₁₀ H ₂₁ -O-	-C ₅ H ₁₀ -CHMe-O-C ₄ H ₀	1	K 33	S 25 C* 35 A 39 I
C10H21-O-	-C5H10-CHMe-O-C8H11	1	K 32	S 27 C 30 A 30 I
C ₁₂ H ₂₅ -O-	-C ₆ H ₁₀ -CHMe-O-C ₃ H ₇	1	K 40	C' 44 U
C10H21-O-	-C ₆ H ₁₂ -CHMe-O-C ₂ H ₇	1	K 43	S 46 S 56 I
C2i 15-O-	-O-C ₂ H ₅		K 178	X 1851
Cel 113-O-	-O-C ₆ H ₁₃		K 124	. พ. 130 ป
Cei 117-O-	-O-CHMe-COO-CH ₃		K 57	A 49.2 I
CeH17-O-	-O-CHMe-COO-C ₂ H ₅	s	K 39	A 42 I
CH ₃ -O-	-CO-C ₂ H ₅		K 145.7	E 143.4 I

[0041]

【表32】

$$L \longrightarrow R$$

IL .	R R	Cr	1.0
CH ₃ -O-	-CO-C ₃ H ₇	K 128.2	E 122.2 A 125.9 I
CH ₃ -O-	-CO-C4H9	ド 120.5	A 117.71
CH ₃ -O-	-CO-C5H11	K 123	A 1191
CH ₃ -O-	-CO-C6H13	K 118	A 1171
CH ₃ -O-	-CO-C7H15	K 120	A 117.7 I
CH3-O-	-CO-C81117	K 116	A 116.21
CH ₃ -O-	-CO-C ₉ H ₁₉	K 118	A 116.7 I
C ₂ H ₅ -O-	-CO-CH ₃	K 96	E 156.21
C2H5-O-	-CO-C₂H ₅	K 124	E 172.4 I
C₂H₅-O-	-CO-C ₃ H ₇	K 123	E 156.21
C2H5-O-	-CO-C ₄ H ₀	K 106	E 136 A 153 I
C2H5-O-	-CO-C ₅ H ₁₁	K 110	: 129.9 A 150.6 I
C₂H₅-O-	-CO-C ₈ H ₁₃	K 107	E 124 A 148 I
C ₂ H ₅ -O-	-CO-C,H15	K 111.5	E 121 A 146.4 I
C ₂ H ₅ -O-	-CO-C ₈ H ₁₇	K 108	E 120.2 A 144.8 I
C ₂ H ₅ -O-	-CO-C9H19	K 116	E 121.7 A 143.1 I
C ₃ H ₇ -O-	-CO-CH ₃	K 107	E 155.6 I
C ₃ H ₇ -O-	CO-C₂H₅	K 119	E 177.3 i
C ₃ H ₇ -O-	-CO-C ₃ H ₇	K 138.5	E 153.9 A 158.21
C ₃ H ₇ -O-	-CO-C ₄ H ₉	K 128	E 135.7 A 154.0 l
C ₃ H ₇ -O-	-co-c2H11	K 116	E 125.9 A 150.3 I
C ₃ H ₇ -O-	-CO-C ₆ H ₁₃	K 113	E 120.1 A 147.3 I
C ₃ H ₇ -O-	-CO-C ₇ H ₁₅	K 118	E 121 A 145.2 I
C ₃ H ₇ -O-	-CO-CaH17	K 115	E 120.3 A 143 I
C ₃ H ₇ -O-	-CO-C ₉ H ₁₉	K 108	E 119.5 A 141 I
C ₄ H _B -O-	-co-c:13	K 97	E 144 I
C ₄ H ₉ -O-	-CO-C2H5	K 114	E 167.3 A 171.4 I
C ₄ H ₈ -O-	-CO-C ₃ H ₇	K 101.5	₫ 145.7 A 156.9 I
C ₄ H ₉ -O-	-CO-C ₄ H ₉	K 124	② 136.2 A 156.8 I
C4H9-O-	-CO-C ₅ H ₁₁	K 115	E 120 A 150.8 I

【0042】 【表33】

<u>L</u> .	R	Cr	rcl
C ₄ H ₉ -O-	-CO-C6113	K 109	E 115 A 151.5 I
C4H9-O-	-CO-C71115	K 99	E 113./ A 148.3 I
C4H9-O-	-∞-C ₈ H ₁₇	K 102.5	E 111.8 A 146.8 I
C4H9-O-	-CO-C9H19	K 107	E 111.5 A 144.7 I
C ₅ H ₁₁ -O-	-CO-CH ₃	K 90	E 139.5 I
C5H11*O-	-CO-C2H5	K 91	÷: 155.6 A 169 I
C6H11-O-	-co-c₃H,	K 93	∺ 129.5 A 150.8 I
C ₆ H ₁₁ -O-	-CO-C4H9	K 124	€ 121 A 152.1 I
C ₅ H ₁₁ -O-	-CO-C5H11	K 128.8	亞 127 A 147.B I
C ₅ H ₁₁ -O-	-CO-C ₆ H ₁₃	K 117	€ 113 A 146.3 i
C5H11-O-	-CO-C7H15	K 111	€ 108 A 143.8 I
C ₅ H ₁₁ -O-	-CO-C ₈ H ₁₇	K 104	E 101 A 144 I
C ₅ H ₁₁ -O-	-CO-C ₉ H ₁₉	K 102.7	€ 101.5 A 141.8 I
C ₈ H ₁₃ -O-	-CO-CH ₃	K 91	E 137 I
C6H13-O-	-CC-C₂H5	K 78	E 149 A 165.5 I
C ₆ H ₁₃ -O-	-CO-C ₃ H ₇	K 82	E 121.8 A 147 I
C ₈ H ₁₃ -O-	-CO-C4H9	K 109	E 116 A 149.6 I
C ₆ H ₁₃ -O-	-CO-C ₅ H ₁₁	K 120.5	A 145.3 I
C ₆ H ₁₃ :O-	-CO-C ₆ H ₁₃	K 124.5	A 145.2 I
C ₆ H ₁₃ -O-	-CO-C7H15	K 123	A 142.5 I
C ₈ H ₁₃ -O-	-CO-C ₆ H ₁₇	K 113.5	A 141.21
C ₆ H ₁₃ -O-	-CO-C ₉ H ₁₉	K 110.2	A 139.5 I
C,H ₁₅ -O-	-со-сн ₃	K 99	E 136 I
C ₇ H ₁₅ -O-	-CO-C ₂ H ₆	K 98	E 146.8 A 163.7 I
C7H15-O-	-CO-C ₃ H ₇	K 87	E 120.2 A 145.2 I
C7H15-O-	-CO-C4H9	K 106	E 110 A 147 I
C7H15-O-	-CO-C ₆ H ₁₁	K 112.5	A 142.31
C7H15-O-	-CO-C ₆ H ₁₃	K 123	A 138 I
C7H15-O-	-CO-C7H15	K 126.5	A 139.7 I
C ₇ H ₁₅ -O-	-CO-C ₈ H ₁₇	K 119	A 138.7 I

【0043】 【表34】

L	l RI	Cr	Lcl
C71118-O-	-CO-C ₈ H ₁₉	K 114	A 134.7 I
C6117 O-	-CO-CH ₃	K 98	E 135.5
C81117-O-	-CO-C ₂ H ₄	K 104	E 144.8 A 161.8 i
C ₈ H ₁₇ -C)-	-CO-C ₃ H ₇	K 96	E 118.9 A 142.91
C6H17-O-	-CO-C4H9	K 108.5	E 107 A 145.71
C ₈ H ₁₇ -O-	-CO-C ₈ H ₁₁	K 104	1
Cg: 117-CI-	-co-ceH13	K 118	A 140 I
C6H17-O-	-CO-C7H15	K 125	A 140.3 I
C8H17-O-	-CO-C ₈ H ₁₇	K 124.5	A 138.5 I A 137.4 I
C ₈ H ₁₇ -O-	-CO-C ₉ H ₁₉	K 124.5	A 137.41
C ₉ H ₁₉ -O-	-CO-CH ₃	K 104.2	E 1351
C9H19-O-	-CO-C ₂ H ₅	K 112	E 144.3 A 160 I
C9H19-O-	-CO-C ₃ H ₇	K 103.5	E 118.2 A 141 I
C9H19-O-	CO-C4Hg	K 101	E 106.4 A 143.9 I
CgH ₁₉ -O-	-CO-C ₅ H ₁₁	K 106	A 138.5 [
C ₉ H ₁₉ -O-	-CO-C ₀ H ₁₃	K 112.8	
CoH19-O-	-CO-C7H15	K 124	A 139 I
C ₉ H ₁₉ -O-	-CO-C ₈ H ₁₇	K 124.5	A 136 I
C ₉ H ₁₉ -O-	-CO-C ₆ H ₁₉	K 128.5	A 135.4 I
C10H21-O-	-CO-CH ₃	K 103	A 132.8 I
C10H21-O-	-∞-C ₂ H ₅	K 92	E 132 I
C10H21-O-	-00-C ₃ H ₇	K 90	E 143.4 A 157.5 I E 117.5 A 138.8 I
C10H21-O-	-CO-C4H9	K 97	
C10H21-O-	-CO-C ₅ H ₁₁	K-101.9	E 108 A 141.21
C10H21-O-	-CO-C ₆ H ₁₅	K 108.7	A 136.6 I
C10H21-O-	-CO-C,H ₁₅	K 110.5	A 137 I
C ₁₀ H ₂₁ -O-	-CO-C ₈ H ₁ ,	K 118	A 134 I
C10: 121-O-	-CO-C ₃ H ₁₈	K 123.5	A 133.3 I
C ₁₁ H ₂₃ -C)-	-CO-CH ₃	K 110.5	A 130.9 I
C ₁₂ H ₂₅ -O-	-CO-CH ₃	K 109.8	E 130.6
	1 -00-013	n 109.0	E 129.9 I

【0044】 【表35】

ĮĹ	A	Cr	rc
C ₁₂ H ₂₅ -O-	-CO-C ₂ H ₅	K 95.5	E 139.3 A 151.5 I
C ₁₂ H ₂₅ -O-	-CO-C ₃ H ₇	K 105.5	E 115.5 A 134.8 I
C ₁₂ H ₂₅ -O-	-CO-C₄H _D	K 102	E 105 S 115 A 141 I
C ₁₂ H ₂₅ -O-	-CO-C ₅ H ₁₁	K 98	A 132.5 I
C12H25-O-	-CO-C6H13	K 106	A 131 I
C12H25-O-	-CO-C7H15	K 108.5	A 129.7 I
C12H25-O-	-CO-C6H17	K 112.5	A 129.8 I
C12H25-O-	CO-C9H19	K 115.5	A 127.4 I
C14H29-O-	-co-cH ₃	K 112.1	E 123.2 B
C ₁₈ H ₃₃ -O-	-CO-CH ₃	K 116.8	E 122.5 I
C ₄ H ₉ -O-	-CO-CH2-CO-C4119	K 126.1	A 155.4 I
CeH13-O-	-CO-CH2-CO-C2H5	K 108.6	E 128.1 A 175.2 I
C ₈ H ₁₇ -O-	-CO-CH2-CO-CH3	K 108.7	E 140.7 A 176.51
C8H17-O-	-CO-CH ₂ -CO-C ₂ H ₅	K 101	E 124.3 A 179.1 I
C ₉ H ₁₇ -O-	-CO-CH2-CO-C4H9	K 110.2	A 152.5 I
C ₈ H ₁₇ -O-	-CO-CH2-CO-C6H17	K 125.3	A 137 I
C ₉ H ₁₉ -O-	-CO-CH2-CO-CH3	K 104.5	E 141 A 175.5 I
C10H21-O-	-CO-CH2-CO-CH3	K 100.5	E 137.4 A 173.8 I
C10H21-O-	-CO-C112-CO-C2H5	K 98.5	E 123.4 A 188.3 I
C ₁₁ H ₂₃ -O-	-CO-Ci1z-CO-CH3	K 108.5	E 135.6 A 172 I
C ₁₁ H ₂₃ -O-	-CO-CH2-CO-C2H5	K 105.1	₫ 123.7 A 166.8 I
C ₁₂ H ₂₅ -O-	-CO-CH ₂ -CO-CH ₃	K 105	E 135 A 167.5 I
C ₁₂ H ₂₅ -O-	-CC-CH2-CO-C2H5	K 95.8	E 120 A 161.5 I
C12H25-O-	-CC-CH2-CO-C3H7	K 112.5	£ 103.3 A 147 I
C12 125-O-	-CO-CH2-CO-C4H9	K 105.2	A 133.61
C ₁₂ H ₂₅ -O-	-CO-CH ₂ -CO-C ₁₂ H ₂₅	K 124.4	A 125.8 I
C14i 129-O-	-CO-CH ₂ -CO-C ₂ H ₅	K 108	E 120.5 A 158.5 I
C181133-O-	-CO-CH ₂ -CO-CH ₃	K 118.9	E 139.1 A 1821
C18: 137-O-	-CO-CH2-CO-CH3	K 121.7	E 137 A 157.8 I
C18:137-O-	-CO-CH2-CO-C2H5	K 113	F: 114.5 A 150.7 I

【0045】 【表36】

L ,	R	Cr	LC!
C:13-O-	-COO-CeH13	K 61.7	E 45.4 I
C2115-O-	-COO-C3H7	K 102	9 103 1
C3:17-O-	-COO-C ₃ H ₇	K 105	S 107 I
C ₄ H ₉ -O-	-COO-C ₃ H ₇	K 97	A 113.5 I
C ₄ H ₉ -O-	-COO-C4H9	K 93	E 92 A 102 I
C ₅ H ₁₁ -O-	-COO-C2H6	K 114.5	A 123.5 I
C ₅ H ₁₁ -O-	-COO-C ₃ H ₇	K 80	A 106.5 I
C6H11-O-	-COO-C ₆ H ₁₃	K 53.7	E 63.3 B 58.4 A 85.41
C ₅ H ₁₁ -O-	-COO-C7H15	K?	E 59 B 65 A 81 I
C ₆ H ₁₁ -O-	-COO-C ₁₂ H ₂₅	K /0.4	E 54.4 A 70.01
C ₆ H ₁₃ -O-	-COO-CH ₃	K 124	€ 132 B 139 A 139 I
C ₆ H ₁₃ -O-	-COO-C₂H5	K 81	E 92 B 97 A 119
C ₆ H ₁₃ -O-	-COO-C ₃ H ₇	K 50	E 67 B 74 A 107 I
C ₆ H ₁₃ -O-	-COO-C4H9	K 58	B 64 A 92 I
C ₆ H ₁₃ -O-	-COO-C ₅ H ₁₁	K 83	B 58 A 90 E
C ₆ H ₁₃ -O-	-COO-C ₆ H ₁₃	K 79	8 57.5 A 86 E
C ₆ H ₁₃ -O-	-COO-C7H15	K 76	8 67 A 84 G
C ₆ H ₁₃ -O-	-COO-C ₈ H ₁₇	K 74	B 56 A 82 I
C6H15-O-	-COO-CaHie	K71	B 55-A 80 I
C ₆ H ₁₃ -O-	-COO-C ₁₀ H ₂₁	K 59	₩ 54.5 A 78 I
C ₇ H ₁₅ -O-	-COO-CH ₃	K 124	E 127 B 133 A 133 t
C7H15-O-	-COO-C2H5	K 52	E 88 B 94 A 111 I
C,H15-O-	-COO-C ₃ H ₇	K 78	E 54 B 64 A 102 I
C7H15-O-	-COO-C4Hg	K 62	C 59 A 89 I
C,H15-O-	-COO-C ₆ H ₁₁	K 79	C 50 A 87 E
C ₇ H ₁₅ -O-	-COO-C ₆ H ₁₃	K 86	C 60 A 84 E
C7: 115-O-	-COO-C7H15	K 86	C 55 A 82 S
C ₇ H ₁₅ -O-	-COO-C ₈ H ₁₇	K 76	A 80 I
C7H15-O-	-COO-CoHis	K 69	A 78 I
C7H15-O-	-COO-C ₁₀ H ₂₁	K 69	A 761

【表37】

[0046]

<u> </u>	[R	Cr	LC
C ₈ H ₁₇ -O-	-COO-CH3	K 117	E 126 B 132 A 132 i
C _B H ₁₇ -O-	-COO-C2H5	K 75	F. 88 B 96 A 112 I
C _B H ₁₇ -O-	-COO-C ₃ H ₇	K 83	B 64 A 101 I
C ₆ H ₁₇ -O-	-COO-C4H9	K 56	C 56 A 86 I
C ₈ H ₁₇ -O-	-COO-C5H11	K 66	C 55 A 88 E
CaH ₁₇ O-	-COO-C6H13	K 72	C 56 A 82 E
C ₈ H ₁₇ -O-	-COO-C7H15	K 87	C 46 A 83 E
C _B H ₁₇ -O-	-COO-C8H17	K 80	A 60 I
C ₆ H ₁₇ -O-	-COO-C ₉ H ₁₉	K 79	A 80 I
C ₆ H ₁₇ -O	-COO-C ₁₀ H ₂₁	K 75	A 791
C ₈ H ₁₇ -O-	-COO-C11H23	K 74	A 79 I
C ₆ H ₁₇ -O-	-COO-C12H25	K 78	A 76 I
C ₈ H ₁₇ -O-	-COO-C131127	K 77	A 761
C _B H ₁₇ -O-	-COO-C14H29	K 80	A 74 I
C ₆ H ₁₇ -O-	-COO-C ₁₆ H ₃₁	K 77	A741
C6H17-O-	-COO-C ₁₆ H ₃₃	K 83	A 72 I
C ₆ H ₁₇ -O-	-COO-C ₁₇ H ₃₅	K 81	A 72 E
C ₆ H ₁₇ -O-	-COO-C ₁₈ H ₈ ;	-K 80	A 70 E
C ₆ H ₁₇ -O-	-COO-C 19H39	K 81	A 69 E
C ₉ H _{1g} -O-	-COO-CH₃	K 124	€ 123 B 129 A 129 I
C ₀ H ₁₉ -O-	-COO-C2H8	K 78	E 81 B 91 A 106 I
C ₉ H ₁₉ -O-	-COO-C ₃ H ₇	K 67	B 63 A 99 I
C9H19-O-	-COO-C₄H ₉	K 64	C 56 A 88 I
C ₉ H ₁₉ -O-	-COO-C ₆ H ₁₁	K 62	C 55 A 86 E
C _B H ₁₉ -O-	-COO-C6H13	K71	C 57 A B3 E
C ₉ H ₁₉ -O-	-COO-C7H15	K 84	C 54 A 82 E
C ₉ H ₁₆ -O-	-COO-C8H17	K 86	C 36 A <84 E
C ₁₀ H ₂₁ -O-	-COO-CH₃	K 122	E 117 B 124 A 124 I
C10H21-O-	-COO-C ₂ i I ₅	K71	E 80 B 90 A 104 I
C10H21-O-	COO-C ₃ 1 ₇	K7	B 07.9 A 99 I

【0047】 【表38】

LC	Cr	R)	<u> L</u>
C 49 A 82 I	K 54	-COO-C4He	C10H21-O-
C 53 A 82 I	K 66	-COO-C5H12	C10H21-O-
C87 A 84 I	K 60	-COO-C ₆ H ₁₃	C10H21-O-
C 66 A 80 E	K 74	-COO-C7H15	C10H21-O-
C 67 A 78 E	K 83	-COO-C8H17	C ₁₀ H ₂₁ -O-
C 52 A ? E	K 86	-COO-C ₆ H ₁₉	C101121-O-
C 54 A ? E	K 85	-COO-C10H21	C101121-O.
S 124 I	K 122.5	-COO-CH ₃	C ₁₂ H ₂₅ -O-
\$ 102.51	K 80.5	-COO-C ₂ H ₅	C ₁₂ ; I ₂₅ -O-
S 97 (K71	-COO-C ₃ H ₇	C ₁₂ H ₂₅ -O-
G 57.8 C 67.5 A 80 I	K 69	-COO-C6H13	C ₁₂ H ₂₅ -O-
G 72 C 74 A 81 I	K77	-COO-C7H15	C ₁₂ H ₂₅ -O-
C 72.6 A 80 I	K 76.3	-COO-C ₆ H ₁₇	C ₁₂ H ₂₅ -O-
G 58.8 C 68.2 A 81 I	K 68	-COO-C6H13	C ₁₄ H ₂₉ -Q-
C 72.5 A 82.5 I	K 71.2	-COO-C7H15	C ₁₄ H ₂₉ -O-
C (4.5 A 80.5 I	K 78	-COO-C ₈ H ₁₇	C ₁₄ H ₂₉ -O-
B 82 A 94 I	K 88	-COO-C ₂ H ₅	C ₁₆ H ₃₃ -O-
B 46 A 89 E	K 80	-COO-C ₃ H ₇	C ₁₆ H ₃₃ -O-
A 791	K 78	-COO-C4H9	C ₁₆ H ₃₃ -O-
G 40 A 81 E	K 79	-COO-C51111	C ₁₆ H ₃₃ -O-
G 60 A 78 E	K 75	-COO-C ₆ H ₁₃	C ₁₆ H ₃₃ -O-
G 72 A 80 I	K77	-COO-C7H15	C ₁₆ H ₃₃ -O-
G 76 A 78	K74	-COO-C8H17	C ₁₆ H ₃₃ -O-
G 78 A 80 (K 83	-COO-C ₀ H ₁₉	C ₁₈ H ₃₃ -O-
G 77 A /8 E	K 83	-COO-C10H21	C ₁₈ H _{3a} -O-
G 72 A /9 E	K 86	-COO-C11H23	C ₁₀ H ₃₃ -O-
G 64 A 77 E	K 89	-COO-C12H25	C ₁₆ H ₃₃ -O-
G 40 A /8 E	K 91	-COO-C ₁₃ H ₂₇	C ₁₆ H ₃₃ -O-
B 55 A 87 E	K72	-COO-C2H5	C ₁₈ :1 ₃₇ -O-
A 86 I	K 83	COO-C ₃ : 17	C18: 137-O-

【0048】 【表39】

$$L$$
 R

L.	[17]	١	Cr	l LC
C ₉ H ₁₉ -O-	-OOC-CHCi-CHMe-CH ₃	1	K 80	S 62.5 C* 68 A 82.51
C10H21+O-	-OOC-CHCI-CHMe-CH3	1	K 82	C* 69 A 81 I
C11H23-O-	-OOC-CHCI-CHMe-CH3	s	K 88	A 851
C ₁₂ H ₂₅ -O-	-OOC-CHCI-CHMe-CH ₃	1	K 92	A 851
C7H15-O-	-OOC-CHCI-CHMe-CH3	2	K ?	G 70.2 C 72.4 A 82 I
C5H11-O-	-OOC-CHCFCHMe-C2H5	3	K ?	C* 55 A 64 B
C6H13-O-	-OOC-CHCI-CHMe-C₂H5	Ġ	K 4/	S 48 C* 51.5 A 61 I
C7H15-O-	-OOC-CHCI-CHMe-C2H5	3	K 55	C* 55 A 62 I
C ₈ H ₁₇ -O-	-OOC-CHCI-CHMe-C2115	3	K 48	S 36 C* 56 A 66 I
C ₉ H ₁₉ -O-	-OOC-CHCI-CHMe-C2115	3	K 52	C* 53.5 A 65 I
C ₁₀ H ₂₁ -O-	-OOC-CHCI-CHMe-C2H5	3	K 50	C* 43 A 49 U
C12H25-O-	-OOC-CHCI-CHMe-C2H5	3	K 62	C' 66 A 67 I
C14H29-O-	-OOC-CHCI-CHMe-C2H5	3	K 68	A 58 i
C ₆ H ₁ ,-O-	-OOC-CHCI-CHMe-C2H3	€	K ?	C. 28 V 80 I
C ₆ H ₁₃ -O-	-OOC-CHBr-CHMe-C: 13	S	K 64	C* 07 I
C ₈ H ₁₇ -O-	-OOC-CHBr-CHMe-CH ₃	s	K 35	C* 48 A 56 I
C10H21-O-	-OOC-CHBr-CHMe-CH3	S	K 55	C* 57 A 68 I
C12H25-O-	-OOC-CHBr-CHMe-CH3	8	K 69	A 70 I
C ₆ H ₁₃ -O-	-OQC-CHBr-CHMe-C2:16	٤	K 7	C* 55 B
C ₆ H ₁₇ -O-	-OOC-CHBr-CHMe-C2115	3	K 20	C* 42 A 53 I
C ₁₀ H ₂₁ -O-	-OOC-CHBr-CHMe-C2: 15	ġ	K ?	C* 49 A 58 f)
C12H25-O-	-OOC-CHBr-CHMe-C2H5	3	K ?	C* 47 A 59 B
C ₈ H ₁₇ -O-	-OOC-CHMe-CHMe-C2115	3	K 48	1° 36 C° 53 A 64 I
C ₈ H ₁ ,-O-	-OCOO-CH2-CHCHCHM8-C2115	3	K 43	C* 50 I
2(C ₂ H ₅ -OOC)-CH-C ₆ H ₁₂ -O-	-O-CHMe-Cellia	s	K -20	. X 19 I
C5H11-COO-	-CO-CHMe-CzHs	s	K ?	S 15 S 32 A 57 I
C8H17-COO-	-CO-CHMe-C2:15	s	K 47.8	A 65.1 I
C ₁₃ H ₂₇ -COO-	-CO-CHMe-C2115	s		A 66.7 I
C7H15-COO-	-COO-CHMe-C ₂ H ₅	·R	K 46.7	C* 22.4 A 44.6 I
C ₈ H _{1/} -COO-	-COO-CHMe-C2its			C* 20.4 A 45.6 I

【0049】 【表40】

$$L$$
 R

L		Cr	LC)
C ₁₈ H ₃₇ -O-	-COO-C4H ₁	K 83	A 781
C18H37-O-	-coo-c ₄ H ₁₁	K 63	A 7911
Св. Н.37-О-	-COO-C ₈ H ₁₃	K 84	G 50 A 76 E
C ₁₀ H ₃₇ -O-	-COO-C ₇ H ₁₈	K 82	G 67 A 78 E
CsaHay-O-	-COO-C ₈ H ₁₇	KB4	G 75 A 76 E
CteH37-O-	-coo-c ₉ H ₁₈	K 80	G 77 A 781
C ₁₈ H ₃₇ -O-	-COO-C ₁₀ H ₂₁	K 84	G /5 A 78 E
C18H37-O-	-COO-C11H21	KB1	G & A 78 E
C ₁₈ H ₃₇ -O-	-COO-C ₁₂ H ₂₅	K 58	A78E
C ₆ H ₁₁ -O-	-cos-c _e H ₁₁	K 91	L 121 A 149.51
C ₆ H ₁₁ -O-	-00C-C ₆ H ₁₁	K?	5 97.7 B 106 I
C _E H ₁₇ -O-	-00C-C ₉ H ₁₉	K 57	G 107 F 108.51
C ₆ H ₁ ;-Q-	-OUC-C11H23	K /8	G 105 (* 108.5 I
C8H17-O-	-OOC-C ₁₂ H ₂₇	K 82	G 104 F 108 I
C7H15-NH-	-NH-C ₇ H ₁₁	K 96.8	C 93 N 103.8 I
C ₈ H ₁₇ -NH-	-NH-CgH17	K 99	198.1 C 110 N 110.41
CgH ₁₉ -NH-	-NH-CgH1p	K 93.8	1 102 C 112.81
C10H21-NH-	-NH-C10H21	K 97.1	1 108.8 C 116.81
C ₁₅ H ₂₂ -NH-	-NH-C11Hgs	K 95.4	F 92.8 109.9 C 117
C ₁₂ H ₂₅ -NH-	-NH-C18H2s	K 96.4	1113.5 C 117.8 i
C ₁₆ H ₃₃ -NH-	-NH-C18H33	K 103	1115.61
C ₁₆ H ₃₇ -NH-	-NH-C10H37	K 105.2	1114.61
CH3-O-C2H4-O-	-O-C2H4-O-CH3	K 127	K 139 I
C2H2-O-C2H4-O-	-O-C2-14-O-C2H4	K /5	K 1181
C6H13-OCOO-C6H4-O-	-O-C-HOCOO-C-H12	K83	8 100 (
C>H16-OCOO-C>H1-O-	O-C2H4-OCOO-C2H15	K 77	\$ 85 1
C ₈ H ₁₇ OCOO-C ₂ H ₄ -O-	-O-CaHa-OCOO-CaHa7	K 63	S 88 1
CH3-OCOO-C6H12-O-	-O-CaH12-OCOO-CH1	K 107	S 159 I
C2H5-OCOO-C6H15 O-	-O-CeH12-OCOO-C2H6	K98	S 166 I
C3H7-OCOO-C6H12-O-	-O-C ₆ H ₁₉ -OCOO-C ₂ H ₇	K 95	8 15/1
C4H9-0C00-C6H12-O-	O-C4H10-OCOO-C4H0	K 90	S 170 I
CoH11-0000-CoH12-0-	O-CaH12-OCOO-CaH11	K 89	S 150 I
CeH12-OCOO-CeH12-O-	O-CaHIR-OCUO CaHI	K 89	\$ 168 (
C7H15-OCOO-C6H15-O-	-O-C ₆ H ₁₂ -OCOO-C ₇ H ₁₅	K 85	S 150 I
C ₆ H ₁₇ -OCOO-C ₆ H ₁₂ -O-	-O-CaH12-OCOO-CaH17	K 88	S 172 I
CoHig-CO-	-CO-C ₀ H _{1D}	K 149.3	C 147.81
C ₁₀ H ₂₁ -CO-	-CO-C10H21	K 141	S 142 I
C ₅ H ₁₁ -CO-	-00C-C ₃ H ₁₁	K 87.5	E 81 B 111.5 A 140
Carlo CO	-NHOC-C3H7	K 233	S 225
C2H6-OOC-	-coo-c _z ,	K 114	X <7 U

【0050】 【表41】

$$\tilde{L} = \bigcap_{i \in \mathcal{A}} R$$

· LCI	[Cr	R	L
S 112 L 1161	K 86.5	-000-C ₄ H ₈	CH3-OOC-
L 100 (K96 .	-00C-C ₄ H ₉	C ₂ H ₈ -OOC-
B 83.5 A 81 I	K 69.6	-00C-C ₄ H ₈	C ₂ H ₇ -OOC-
S 63.4 L 64.9 A 74.4 I	K 60.3	-00С-С,Н,	C#H0-00C-
S 52.8 L 55.4 A 70.2 I	K 49.7	00C-C ₄ H ₈	C ₂ H ₁₁ -OOC-
L 56.7 A 68.4 I	K 49.1	-00C-C ₄ H ₆	C ₆ H ₁₃ -OOC-
L 52.8 A 66.8 I	K 47.3	-00C-C ₄ H ₈	C2H15-00C-
B 80.5 A 83 I	K 50	-00C-C ₅ H ₁₁	C+H15-00C-
B 76.5 A 78 I	K 57	-00C-C7H15	CH13-OOC-
L 52.3 A 66.6 I	K 01.4	-00C-C,H,	C4H17-00C-
B 70.5 A 761	K 52	-00C-C ₇ H ₁₄	C ₂ H ₁₇ -00C-
8 82 A 85 I	K 49	-00C-C ₀ H ₁₀	C ₂ H ₁₇ -OOC-
B 48.4 A 61.8 I	K 49.6	-00C-C ₆ H ₉	CgH1g-OOC-
A 80.2 I	K 58.4	-00C-C ₄ H ₂	C10H21-OOC-
8 65 A 68 I	K 35	-00C-C ₅ H ₁₁	C10H21-00C-
B 77.5 A 81	K 52.5	-00C-C ₉ H ₁₉	C10H21-OOC-
. A 82.8 I	K 59.5	-00C-C ₄ H ₁	C11H22-OOC-
A 48.31	K 49.8	-COO-CH ₂ -CHM ₂ -O-CH ₃	CgH ₁₇ -CUO-
P 21.1 A 44.2 I	K 28	COO-CH ₂ -CI #As-O-C ₆ H ₇	CgH17-C0O-
A 89.7 I	K7	-COO-CH3-CHM6-O-C6H13	C ₈ H ₁₇ -COO-
A 52.6 I	K 35.8	COO-CH ₂ -CHMe-O-CH ₃	CgH1g-COO-
l' 28 A 50 I	K 33.1		CgH1g-COO-
A 44.4 I	K35.7	-COO-CH ₂ -CHMa-O-CaH ₁₃	CgH18-COO-
A 54.4 I	K 53	-COO-CH2-CHMa-O-CH3	C10H21-COO-
F 32.1 A 49.61	K 39.8		C10H21-COO-
A 46.31	K38.9	-COO-CHg-CHMe-O-CeH11	C10Hg1-COO-
1 83 A	K 47		C11H22-COO-
A 58 I	K 47	-COO-CH ₂ -C; tMe-O-C ₂ -H ₂	C11H22-COO-
A 48.4 I	K 47.1	-COO-CH2-CHM8-O-CaH11	C11H22-COO-
A 60.4 I		-COO-CH2-CHMe-O-C3H7	C13H27-COO-

【0051】 【表42】

$$L$$
 R

-00C-CH ₃	K 163	X 1</th
-00C-C ₅ H ₁₁	K 117	3 118 1
-OOC-C ₆ H ₁₃	K 105	S 1181
-OOC-C7H15	K 95	\$ 122 1
-000-C ₆ H ₁₇	K 95	8 121 1
-OOC-CeH ₁₉	K 98	S 122 I
-00C-CHMe-C: (Me-0-C: I ₃	K 47	C* 55 I
-OOC-CHMe-CHMe-O-CH ₃	K 23	S 31 C* 39 I
-OOC-C: IMe-CHMe-O-C: Ia	K 37	C' 48 I
-OOC-CHMe-CHMe-O-CH ₂ 1	1 K 38	C* 47 I
-OOC-CHMe-CHMe-O-C4ifg	1 K 47	S 49 C* 56 I
-OCOO-C: (3	K 148	X <71
-0C00-C ₂ : I ₅	K 95	X I</td
-CMe=N-OOC-C4i fg	K 111	A 121 I
-CMe=N-OOC-C ₈ H ₁₇	K 104	A 132 I
-O-CHMe-Cell ₁₃	K ?-	1
-OOC-CHMe-C2: 15 1	K 28.5	5 57.9 1
		N° 145.9 U
-CO-CHMa-C ₃ H ₇	K 47	A 49 I
-COO-CHMe-C2H5	1 K 43	A 36 U
-COO-CHMe-C2H8	K 84.5	C* 30 A 53 I
-COO-CHMe-CeH ₁₃	1 K7	C. 3 N. 3 A
-COO-CHMe-CH ₃	K75	C 41 A 69 I
-COO-C: IMe-C ₂ H ₅	2 K 87	C 31 A 50 I
-COO-C: IMe-C3H7	2 K 43	C 26 A 36 I
-COO-C: (Ma-C4Ha 2	2 K 49	A 34 E
-COO-CHMe-C ₅ H ₁₁	2 K 61	A 30 E
	2 K 57	A 37 E
-COO-CHMe-C,H15	2 K 81	A 37 E
-COO-CH2-CHCI-CHMe-CH3	1 X 46	C* 15 A 15 U
	-OOC-C ₆ H ₁₇ -OOC-C ₆ H ₁₈ -OOC-C ₆ H ₁₈ -OOC-CHMe-Ci (Me-O-Ci I ₃ -OOC-CHMe-CHMe-O-Ci I ₃ -OOC-Ci (Me-CHMe-O-Ci I ₃ -OOC-Ci (Me-CHMe-O-Ci I ₃ -OCO-Ci I ₃ -OCO-C ₂ I I ₆ -CMe=N-OOC-C ₆ I I ₇ -CMe=N-OOC-C ₆ I I ₇ -O-CHMe-C ₆ I I ₁₃ -OC-CHMe-C ₆ I I ₁₄ -CO-CHMe-C ₆ I I ₁₅ -CO-CHMe-C ₆ I I ₁₇ -CO-CHMe-C ₆ I I ₁₇ -CO-CHMe-C ₆ I I ₁₈ -CO-CI (Me-C ₆ I I ₁₉ -	-OOC-C ₄ H ₁₇ -OOC-C ₆ H ₁₈ -OOC-CHMe-C; (Me-O-C; I ₃ -OOC-CHMe-CHMe-O-C; I ₃ -OOC-CHMe-CHMe-O-C; I ₃ -OOC-CHMe-CHMe-O-C; I ₃ -OOC-CHMe-CHMe-O-C; I ₄ -OCOO-C; I ₅ -COOC-C; I ₆ -CMe-N-OOC-C ₆ I ₁₈ -CMe-N-OOC-C ₆ I ₁₉ -CMe-N-OOC-C ₆ I ₁₇ -O-CHMe-C ₆ I ₁₇ -O-CHMe-C ₆ I ₁₇ -O-C-CHMe-C ₆ I ₁₇ -OOC-CHMe-C ₆ I ₁₇ -OOC-CHMe-C ₆ I ₁₇ -COO-CHMe-C ₆ I ₁₇ -C

[0052]

L	R	į	Cr	LC
Cel 117-O-	-COO-CH ₂ -CHCI-CHM9-CH ₃	1	K 34	C* 34 A 54 I
Cgi 1 ₁₉ -O-	-COO-CH ₂ -CHCI-CHMB-CH ₃	1	K 39	C* 44 A 58 I
C10H21-O-	-COO-CH ₂ -CHCI-CHMe-CH ₃	1	K 38	C* 45 A 58 I
C11H23-O-	-COO-CH ₂ -CHCI-CHMe-CH ₃	1	K 55	C* 49 A BO I
C12H25-O-	-COO-CHg-CHCI-CHMe-CH3	1	K 52	C* 47 A 61 I
C13H27-O-	-COO-CH₂-CHCI-CHMe-CH₃	1	K 57	A 61 I
C ₀ H ₁₃ -O-	COO-CH2-CHCI-CHM3-C2H5	3	K 31	C* 10 A 40 I
C,H15-O-	-COO-CH₂-CHCI-CHMɔ-C₂H₅	3	K 75	C* 39 A 561
C ₈ H ₁₇ -O-	-COO-CH2-CHCI-CHM3-C2H5	3	K 15	S 16 C* 32 A 50 I
C ₀ H ₁₉ -O-	-COO-CH₂-CHCl-CHMɔ-C₂H₅	3	K 27	C' 40 A 53 I
C10H21-O-	-COO-CH ₂ -CHCI-CHM3-C ₂ H ₅	3	K 39	C* 41 A 54 i
C11H23-O-	-COO-CH2-CHCI-CHM3-C2H5	3	K 35	C- 42 A 55 I
C12H25-O-	-COO-CH ₂ -CHCI-CHMe-C ₂ H ₅	3	K 40	C* 43 A 57 I
C13H27-O-	-COO-CH2-CHCI-CHM3-C2H5	3	K 45	C* 47 A 00 I
C8H17-O-	-COO-CHMe-COO-CHM9-C6H13	Э	K 42	A 21 I
C ₈ H ₁₇ -O-	-OCC-CHM9-C₂H ₅	1	K 69.4	C* 84.41
C10H21-O-	-OOC-CHMa-C₂H ₅	s	K 74.8	H 75.8 C* 79.4 A 83.2 I
C ₁₁ H ₂₃ -O-	-OOC-CHM8-C2H5	1	K 70	C* 721
C12H26-O-	-OOC-CHMe-CgH ₅	1	K 08	C* 69 I
C14H29-O-	-OOC-CHMe-C₂H ₅	1	K 84	A 81.4 I
C7H15-O-	-OOC-CHF-CHMa-CH3	S	K 89	S 105 A 107 I
C8H17-O-	-OOC-CHF-CHMe-CH ₃	s	K 95	S 103 N* 109 I
C ₈ H ₁₇ -O-	-OCC-CHF-CHMe-C2H5	3	K?	C- 71
C10H21-O-	-OOC-CHF-CHMe-C₂H ₅	3	K ?	1
C ₁₂ H ₂₅ -O-	-OOC-CHF-CHMe-C₂H ₅	3	K 61	A 72 I
C8H17-O-	-OOC-CHF-CHMe-C₂H ₅	5	K 84	C* 86 A 94 I
C12H25-O-	-OOC-CHF-CHMe-C₂H ₅	5	'K 71	C* 81 A 93 I
C ₆ H ₁₃ -O-	-OOC-CHCI-CHMe-CH ₃	1		G* 77.6 A 83.31
C7H15-O-	-OOC-CHCI-CHMe-CH ₃	1	K 72	H 64 G* 71 C* 73 A 81.5 I
C8H17-O-	-OOC-CHCI-CHMe-CH₃	1	K 76	S 66 C' 71 A 83 I

[0053]

$$L$$
 R

L	<u> </u>		Cr	l tot
C ₆ H ₁₇ -COO-	-СОО-СНИВ-С3Н7	1	K 46.2	A 38.4 I
C ₈ H ₁₇ -COO-	-COO-CHMe-C ₄ H _g	1	K 29.5	A 32.61
C ₈ H ₁₇ -COO-	-COO-CHMe-C ₆ H ₁₁	1	K 37	A 31.91
C ₈ H ₁₇ -COO-	-COO-CHMe-C ₈ H ₁₃	1	K 34.3	A 26.31
C ₈ H ₁₇ -COO-	-COO-CHMe-C ₇ H ₁₆	1	K 34	A 26 I
CoHio-COO-	-COO-CHMe-C ₂ H ₆	R	K 31.3	J* 21.1 C* 35.2 A 48.9 [
C10H21-COO-	-COO-CHMe-C ₂ H ₅		K 44.6	J* 31.1 C* 36.9 A 48.5 I
C ₁₁ H ₂₃ -COO-	-COO-CHMe-C ₂ H ₅	R	K 41.2	J* 38.6 C* 41.2 A 50.5 I
C ₁₂ H ₂₅ -COO-	-COO-CHMe-C ₂ H ₅	R	K 43.5	J* 41.3 A 50 I
C13H27-COO-	-COO-CHMa-C ₂ H ₅	R	K 49.8	J* 46.7 A 52.7 I
C ₆ H ₁₃ -COO-	-COO-CH2-CHCI-CHMe-CH3	1	K 48	C' 15 A 45 I
C ₈ H ₁₇ -COO-	-COO-CH ₂ -CHCI-CHMe-CH ₃	1	K 37	I' 10 C' 40 A 54 I
C9H19-COO-	-COO-CH2-CHCI-CHMe-CH3	1	K?	C* ? I
C10H21-COO-	-COO-CH2-CHCI-CHMe-CH3	1	K 38	C' 45 A 58 I
C ₆ H ₁₃ -COO-	-COO-CH2-CHCI-CHMe-C2H5	3	K 31	C' 10 A 40 I
C6H17-COO-	-COO-CH2-CHCI-CHM0-C2H6	3	K 36	S 13 C' 36 A 49 I
C ₁₀ H ₂₁ -COO-	-COO-CH2-CHCI-Ci 1MB-CoH6	3	K 36	C' 41 A 52 I
Ce 117-COO-	-COO-CH2-CHCI-CHM9-C2H5	5	K 6	C' 37 A 47 I
Cal 117-COO-	-COO-CH2-CH(OMe)-CHMe-CH3	R	K 25	S 10 C' 19 A 39 I
C ₈ H ₁₇ -COO-	-COO-CH2-CH(OMe)-CHMe-C2H5	3	K 38	C' 18 A 37 I
Cgi 117-COO-	-OOC-CHCI-CHM9-CH3	1	K 66	S 85 C* 85 I
Cal 119-COO-	-OOC-CHCI-CHMe-CHa	1	K 68	S 82 C' 91 A 92 I
Cel 13-COO-	-OOC-CHCI-CHMe-C2Hs	3	K 36	S 51 C* 67 I
C7H15-COO-	-OOC-CHO-CHMe-C2Hs	3	К?	C. 31
C ₈ H ₁₇ -COO-	-OOC-CHO-CHMe-C2H5	3	K 41	S 49 C 71 1
C10H21-COO-	-OOC-CHCI-CHMB-C₂H₅	3	K 48	S 53 C* 80 I
C6H13-COO-	-OCOO-CH2-CHCI-CHM6-C2H5	- 1		5 49 1
C6H17-COO-	-OCOO-CH2-CHCHCHMe-C2H5	-1	K 46	S 46 C* 53 I
C ₉ H ₁₉ -COO-	-OCOO-CH2-CHCI-CHMa-C2H5	- 1		S 54 C* 56 I
C ₈ H ₁₇ -OCOO-	-CO-CHMe-C2H3	- 1		A 41.6 I

【0054】 【表45】

L	R	10	Gr	ıcı
CH2-OCOO-	-COO-CHM0-C6H13	1	K <20	
C9H19-OCOO-	-COO-CH ₂ -CHCI-CHMe-CH ₃	1	K 69	C* 38 I
C ₉ H ₁₉ -OCOO-	-OOC-CHCI-CHMe-CH ₃	1	K 50	1° 55 C° 58 1
C8H17-OCOO-	-OOC-CHCI-CHMe-C₂H ₆	3	K 29	C* 29 A 41 [
C9H19-OCOO- ·	-OOC-CHCI-CHMe-C2H5	3	K 25	1° 27 C° 43 I
CBH12-OCOO-	-UOC-CHCI-CHMe-C₂H ₆	5	K 22	i* 25 C* 37 I
C9H19-OCOO-	-OOC-CHCI-CHMe-C₂H ₆	5	K 15	1, 52 C. 38 1
C ₈ H ₁₇ -	-CO-CH=CH-COO-CH2-CHMe-CH3		K 68.5	N 43 I
C7H15-	-OOC-CH2-CHM9-C2H8	s	K 40.4	S 68.7 I
C ₈ H ₁₇ -O-	-O-CH ₂ -CHMe-C ₂ H ₅	s	K 70.2	S 83.7 H 86 I
C ₁₀ H ₂₁ -O-	-O-CH ₂ -CHMe-C ₂ H ₅	s	K 78	H 78.3 C* 80.3 I
C ₁₂ H ₂₅ -O-	-O-CH2-CHMe-C2H6	s	K 75.3	S 73.9 H 77.4 C* 78.9 A 79.8 I
CaH17-O-	-CO-CH ₂ -CHMe-C ₂ H ₅	S	K 70.4	C* 58.3 A 98.3 I
C ₁₂ H ₂₅ -O-	-CO-CH ₂ -CHMa-C ₂ H ₅	2	K 74	A 86 1
C ₄ H ₀ -O-	-COO-CH2-CHM9-C2H5	s	K 55.5	S 73.8 I
C5H11-O-	-COO-CH ₂ -CHMe-C ₂ H ₅	S	K 57.5	. A 35.3 I
C _B H ₁₃ -O-	-COO-CH ₂ -CHMa-C ₂ H ₅	3	K 48	A 66 I
C7H16-O-	-COO-CH ₂ -CHMe-C ₂ H ₆	S	K 41.5	C* 43 A 64.21
C _B H ₁₇ -O-	-COO-CI (2-CHMe-C2He	s	K 49.2	C* 44 A 65:9 I
C ₀ H ₁₉ -O-	-COO-Ci 12-CHMe-C2H5	s	K 60	C* 38 A 84.4 I
C ₁₀ H ₂₁ -O-	-COO-Ci 12-CHMB-C2H5	s	K 48.2	C* 41.2 A 66.2 I
C ₁₁ H ₂₃ -O-	-COO-CH2-CHMe-C2H8	8	K 40	C* 50 A 63 U
C ₁₂ H ₂₅ -O-	-COO-CH2-CHMe-C2H5	ន	K 53.2	C* 39 A 63.8 I
C ₁₅ H ₂₇ -O-	-COO-CH2-CHMe-C2+18	s	K 50	C' 51 A 64 U
C ₁₄ H ₂₉ -O-	-COO-CH2-CHMe-C2H5	s	K 61.1	A 61.7 I
C6H13-O-	-COO-CH2-CHCI-CH2-Ci IM5-CH3	1	K 36	C-4 A 30 I
C ₈ H ₁₇ -O-	-COO-CH2-CHCI-CH2-Ci IMe-CH3	1	K 35	S 0 C* 30 A 40 I
C ₉ H ₁₉ -O-	-COO-CH2-CHCI-CH2-CHMe-CH3	1	K 50	C* 36 A 45 I
C10H21-O-	-COO-CH2-CHCI-CH2-CHMe-CH3	1	K 28	C* 40 A 47 I
C ₁₁ H ₂₃ -O-	-COO-CH ₂ -CHCI-CH ₂ -CHMe-CH ₃	1	K 35	A 47 I

【0055】 【表46】

L	R C	اعا ا
C12H26-O-	-COO-Ci I2-CHCI-CH2-CHMe-CH3 1 K	18 C* 42 A :8 I
C6H17-O-	-OOC-CH2-CHMe-C2H5 SIK	58.2 S 91.8 C* 94.8 I
C10H21-O-	-OOC-CH2-CHMB-C2-15 S K	55.7 H 63.4 C' 83.9 A 99.8 I
C14H28-O-	-OOC-C:12-CHMe-C2-16 S K	77.5 C' 83.4 A 89.5 I
C6H11-O-	-OOC-CHCI-CH2-CHMe-CH 1 K	E 62.9 L 71.3 A 74.5 I
C ₆ H ₁₃ -O-	-OOC-CHCI-C; Iz-CHMe-C; Is 1 K	(1 C' 65 A 74 I
C7H15-O-	-OOC-CHCI-CH2-CHMe-Cits 1 K	C* 57 A 67.5 I
C8H17-O-	-OOC-CHCI-CH-CHMB-Ci to 1 K	
CoH19-O-	-OOC-CHCI-CHg-CHMe-CHg 1 K	7 C* 64 A 66.5 I
C2H4-OOC-	-000-CHM9-O-CH2-CHM9-C2-19 8 K	
C7H15-COO-	-CH2-CHM3-C2115 S K	30 B 66 I
C4Hg-COO-	-O-CH2-CHMa-C2H5 S K	36 B 85 I
C ₂ H ₁₉ -COO-	-O-CH2-CHM9-C2-15 1 K	B 117
C ₆ H ₁₃ -COO-	-COO-CHg-CHMa-CgHa S K	2.4 C* 18.4 A 51.9 I
C7H15-COO-	-COO-CH2-CHM9-C2H3 S K	33.7 C* 33.1 A 57.1 I
C ₈ H ₁₇ -COO-	-COO-CH2-CHMa-C2115 S K S	35.9 C* 41.8 A 59.7 I
C9H19-COO-	-COO-CH2-CHMa-C2115 S K	34.2 C* 47.4 A 61.6 I
C10H21-COO-	-COO-CH2-CHM9-C2H5 S K	13.9 C* 49.6 A 62.31
C11H02-COO-	-COO-CH2-CHM9-C2H3 S K	6 C* 50.4 A 63.8 I
C12H25-COO-	-COO-CH2 CHM3-C2H3 8 K	
C13H27-COO	-COO-CH2-CHM3-C315 S K	2.9 C* 51.1 A 64.8 I
C ₁₅ H ₃₁ -COO-	-COO-CH2-CHM2-C2H6 S K	
C ₈ H ₁₃ -COO-	-COO-CH2-CHCI-CH2-CHM4-CH, 1 KS	
CBH17-COO-	-COO-CH2-CHCI-CH2-CHMe-CH3 1 K3	
C10H21-COO-	-COO-CH2-CHCI-CH2-CHMe-CH3 1 K2	
C61117-COO-		11.7 A 31.71
C9H19-COO-		8.2 A 37.2 I
C10H21-COO-	1 1	11.5 A 43.41
C12H25-COO-		1.7 A 39.8 E
C8H17-COO-	-OOC-CHCI-CH2-CHMe-CH3 1 K	

【0056】 【表47】

LC	Cr		<u> </u>	L
8 55 C* 68 A 71 I	K 54	1	-OOC-CHCI-CH2-CHMa-CH3	C ₉ H ₁₉ ·COO-
C' 24.5 N' 27 I	K 36.8	8	-CH ₂ -CHMe-C ₂ H ₆	C#H12-OCOU-
C' 46 I	K49	s	-O-CH ₂ -CHMe-C ₂ H ₃	C9H13-OCOO-
C' 47 N° 49.5 I	K 55	s	-O-CH ₂ -CHMa-C ₂ H ₅	C8H17-OCOO-
C' 46 N' 49 I	K 59	s	-O-CH2-CHMa-C2H4	C9H19-OCOO-
l' 22 C' 94 I	K 20	1	-OOC-CHCI-CHg-CHMa-CHa	C ₈ H ₁₇ -OCOO-
l' 21 C' 35 I	ко	1	-OOC-CHCI-CH2-CHMa-CH3	C ₂ H ₁₈ -OCOO-
S 54 S 64.9 I	K 14.1	В	-C2H4-CHMe-C2Hs	C7H15-O-
8 57.9 H 62.5 C* 65.1 I	K43	lε	-C ₂ H ₄ -CHMe-C ₂ H ₈	C ₀ H ₁₇ -O-
6 49.9 H 50 C* 62.7 A 63.5 I	K 58.4	s	-CgH4-CHMe-CgHs	C ₀ H ₁₀ -O-
9 51 H 53.6 C* 58.9 A 82.9	K 47.3	s	-CoH4-CHMe-CoH4	C ₁₀ H ₂₁ -D-
A 113 I	K 98	П	-co-c _a H ₄ -cHM ₉ -cH ₃	C ₁₂ H ₂₅ -O-
C* 58 A 72 I	K 59	s	-COO-C2H4-CHMe-C2H4	CeHir-O-
S 45 C* 63 A 67 U	K 41	1	-COO-C2H4-CHMe-C2H4	CgH ₁ g-O-
8 53 C* 67 A 74 I	K 45	1	-COO-C2H4-CHMo-C2H5	C ₁₀ H ₂₁ -O-
G' 92.5 A 93	K9	1	OOC-C2H4-CHMe-C2H4	CeH17-O-
A 112 U	K 74.2	1	-OOC-CeH4-CHMe-CeH4	CaH17-CO-
S 68 C 99.8 A 114.2 U	K?	1	OOC-CoH4-CHMo-CoH5	CoH10-CO-
G* 62.2 A 68 I	K 38	1	-COO-CaHa-CHMe-CoHa	CeH17-O-
C* 48 A 58 I	K 45	1	-COO-Carta-CHMa-Carta-CHMa-CHs	CeH17-O-
A 54 1	K 53		-COO-C2H4-CHM6-C3H6-CHM8-CH3	CgH ₁₀ -O-
C* 47 A 53 I	K 50		-COO-Catta-CHMa-Catta-CHMa-CHs	C12H25-O-
B 41.3 A 55.7 I	K 24.2		-COO-Catty-CHMo-CyHa-CHMo-CH3	C ₇ H ₁₈ -COO-
J* 38.5 C* 43.9 A 55 I	K 38.6		-COO-CaHa-CHMe-CaHa-CHMe-CHa	CaH17-COO-
J* 39.6 C* 51.5 A 56.4)	K 40.9		-COO-C2H4-CHM9-C3H6-CHM9-CH2	CoHig-COO-
J' 42.9 C' 53.6 A 56.9 I			-COO-CaHa-CHMa-CaHa-CHMa-CHa	C10H21-COO-
J' 46.6 C* 55.9 A 56.6 I	K 51.2		-COO-CaHa-CHMa-CaHa-CHMa-CHa	C ₁₁ H ₂₃ -COO-
A 55.5 i	K 57.8		-COO-C2H4-CHM6-C3H6-CHM6-CH3	C ₁₂ H ₂₅ -COO-
C 80.5 I	K 22		-O-C ₄ H ₄ -CHMe-C ₃ H ₇	C10H21-
C 69.5 1			-O-C ₆ : I ₁₈ -CHMe-C ₂ H ₆	C10H21-

【848】

<u>L</u>	ก		Cr	ις
CoH17-O-	-OOC-CHF-C6H13	1	K?	C' ?
C5H11-O-	-00C-CHCI-C2H5	1	K 103.5	G' 107
C ₆ H ₁₃ -O-	-OOC-CHCI-C2H5	1	K 96	H 87 G* 103 A 107 I
C7H15-O-	-00C-CHCI-C2H3	1	K 91.5	H 80 G* 93 F* 96 A 104 I
C ₆ H ₁₇ -O-	-00C-CHCI-C2H5	1	K 98	H 71 G* 91 F* 95 A 104 I
C ₉ H ₁₉ -O-		S	K?	G* </td
C ₉ H ₁₉ -O-	OOC-CHCLC2Ha	1	K 100	G* 85 F* 96 A 102.5 I
C10H21-O-	-00C-CHCI-C2H6	1	H 100	G* 82 F* 95 A 101 I
C ₁₂ H ₂₅ -O-		.1	K 96	G* 74 F* 95 A 100 I
C ₀ H ₁₉ -COO-	-OOC-CHCI-C2H5	1		8 132 1
C8H17-OCOO-	-00C-CHC+C2H5	1	K 62	1° 70 C° 80 I
C _B H ₁₇ -	-COO-CH2-CHCI-CH3	1	K 38.5	A 34 I
C5H11-O-		R	K 80	A 92.5 I
C _B H ₁₃ -O-	-COO-CI12-CHCI-CH3	H	K 73	A 86.4 I
C7H15-O-	-COO-Ci I2-CHCI-CH3	Н	K 79	A 83.7 I
CaH17-O-	-COO-CH2-CHCI-CH3	Ы	K 77.5	A 83.21
C ₀ H ₁₀ -O-	-COO-CH2-CHCI-CH3	A	K 84	A 83.7 I
C ₁₀ H ₂₁ -O-	-COO-CH2-CHCI-CH3	H	K 82.8	A 87 I
C12H25-O-	-COO-CH2-CHCI-CH3			A 86.11
C10H21-O-	-OOC-CH2-CHCI-CH3	1	K 96	S 95 S 108 I
C8H17-COO-	-COO-CH2-CHCI-CH2	1		5 30.5 B 69.7 A 90.2 I
C ₈ H ₁₇ -COO-		- 1	K 25	C' 22 A 53 I
C ₈ H ₁₈ -COO-		1		A 80 I
C8H17-COO-	-COO-C2H4-CHCI-CH3	- 1		J* 53.2 I* 53.2 A 65 I
C ₉ H ₁₉ -COO-	-COO-C2H4-CHCI-CH3			J* 57.4 A 67.51
C10H21-COO-		- 1	K 58.4	J* 60.3 A 68.21
C11H23-COO-		- 1	K 56.2	J* 63.7 A 69.31
C13H97-COO-		_	K70.6	A 69.6 II
C _t H _B -O-	-CO-CHBr-CH3	-1		A 103 I
C ₅ H ₁₁ -O-	-CO-CH3r-CH3			A 99 J

【0058】 【表49】

$$L \longrightarrow R$$

L	13		Cr	LC
C ₈ H ₁₃ -O-	-CO-CHBr-CH ₃			A 99 I
C7H15-O-	-CO-CHBr-CH ₃	2	K 78	A 103 I
C ₈ H ₁₇ -O-	-CO-CHBr-CH ₃	2	K 84	A 103 I
C ₉ H ₁₉ -O-	-CO-CHBr-CH ₃	2	K 80	A 103 I
C10H21-O-	-CO-CHBr-CH ₃			A 103 I
C ₁₂ H ₂₅ -O-	-CO-CHBr-C₃H ₇	2	K 95	A 781
C ₃ H ₇ -	-CF ₃		K 97	N-80 E
C ₃ H ₇ -	-0.CF ₃		K 92	N-60 E
C5H11-	-9-CF ₃		K 3,1	N-80 E
C ₅ H ₁₁ -	-O-CH ₂ -CF ₃		K 107	N-30 E
C6H11-	-CO-CF ₃		K 13	N-40 f
C ₄ H ₈ -O-	-C ₆ F ₁₃		K 86	\$ 104
C1H15-O-	-CF ₂		K 69	B 114.51
C ₈ H _{1/} -O-	-CF ₃		K 115	N -20 ::
C ₄ H ₉ -O-	-S-CF ₃		K 82	N-40 E
C _B H ₁₇ -O-	-COO-CH ₂ -C ₆ F ₁₃		K 85	C 109 A 119 I
C ₈ H ₁₇ -O-	-COC-C ₂ H ₄ -C ₄ F ₉	1	K 108	C 1121
C81117-O-	-COO-C2H4-C6F13		K 114	C 125 A 127 I
C ₈ H ₁₇ -O-	-COO-C ₂ H ₄ -C ₈ F ₁₇		K 122	C 132 A 141 J
C ₈ H ₁₇ -O-	-COO-C ₂ H ₄ -C ₁₀ F ₂₁		K 141	A 1521
CH ₃ -NH-	-C ₆ F ₁₃		K 142	S 168 I
C ₂ H ₅ -NH-	-CeF ₁₃		K 122	S 174 I
C ₃ H ₇ -NH-	-C ₆ F ₁₃	i	K110	6 134 1
C ₄ H ₈ -NH-	-C ₃ F ₇		K 117	5 123 1
C ₄ H ₉ -NH-	-C ₆ F ₁₃		K 107	S 145 I
C ₈ H ₁₁ -NH-	-C ₃ F ₇		K 108	8 111 1
C5H11-NH-	-C ₆ F ₁₃		K 108	S 133 I
C ₈ H ₁₇ -NH-	-CeF ₁₃		K 115	S 113 I
C ₈ H _{1/} -OOC-	-O-C ₂ H ₄ -C ₆ F ₁₃		K?	CTATI
C ₉ H ₁₉ -COO-	-CF ₃		K 63.3	E 74 B 108.3 I

[0059]

【表50】

L	ŔĮ		Ċr	LC
CH3 CHMe-CH2-CHCI-COO-	-O-CH ₂ -C ₇ F ₁₅	1	K 88	188A
C2H6-CHM8-CH2-O-	-0-C ₁₁ H ₂₂ -00C-CH=CH ₂	8	K 62	A 69 I
C2H5-CHMe-CH2 OOC-	-O-C ₆ H ₁₆ -O-CH=CH ₂	S	K 37.8	C* 90.2 A 53.3 I
C2H5-CHMe-CH2-OOC-	-O-C ₂ H ₄ -OOC-CH=OH ₂	8	K 63	A491
C2H6-CHMe-CH2-COC-	-O-C ₀ : 112-OOC-CH=CH2	S	K 28	C* 13 A 36 I
C2H3-CHMa-CH2-COC-	-O-C ₁₀ 1 leg-OOC-CH=CHg	s	K 48	C* 42 A 64 (
C ₂ H ₆ -CHMa-CH ₂ -OOC-	-O-C12 Par-COC-CH=CH2	s	K 54.B	A 43.7 I
C ₂ H ₅ -CHM ₈ -CH ₂ -OOC-	-O-C ₆ H ₁₂ -CH=C)-b	s	K 20	C* 29 A 58 I
C2H5-CHM8-CH2-COC-	-OOC-CeH1e-CH=Ci b	s	K 44.5	C* 41.7 A 7 I
C ₂ H ₅ -CHF-COO-	-000-CHF-C21 6	3	K?	6 162.1 S 167 I
Cathy-OHF-COO-	-00C-CHF-C ₅ ; t ₇	3	K 102.4	,S 131.51
CaH15-CHF-CH2-O-	-O-C ₄ H ₆ -C ₄ F ₉	١ ا	K7	8 47 9 8 / S 91 S 97 C* 112 A 130 I
CH+CHCI-COO-	-DOC-CHCI-CH	3	K 132.7	8 182,4 9 183.9
CzHs-CHCI-COO-	-00C-CHCI-C ₀ H ₆	3	K 82.8	S 83 S 102.2 I
CH3-CHCI-COO-	-O-CaHa-CH=CHo	1	K 89	E 112.58 1181
CH2-CHCI-COO-	-O-CoH:8-CH=CH2	1	K 119	A 106 I
Ca: 17-C11H22 O-	-COO-CH ₂ -CF ₂	ĺ	K 85	8 82 A 113 I
Car17-C11H22-O-	-COO-CH2-C7F16		K 108	C 115 I
HgC=CH-CHg-OOC-CgHgO-O-	-COO-C ₆ H ₁₀ -O-CH ₂ -CH=CH ₂	ı	K 78	1
H ₂ C=CH-C ₄ H ₈ -O-	-O-C4He-CH=CH2	ı	K 51.2	8 119.51
C ₅ H ₁₁ -C::C-	-C=:C-C ₆ H ₁₁	ı	K 67.5	8881
C7H18-CEIC-	-C:::C-C ₂ H ₁₆		K7	8731

[0060]

L	R		Cr	rcl
CH2-COC-	-Ö-C ₈ H ₁₈ -CH=CH ₆		K 95	E 116)
CH₂ OOC-	-OOC-CaH18-CH=CH		K 82	
C2Hs-OOC-CHIME-OOC-	-O-CaHia-CH=Cile	1	K 48	ASOU
C6H13-Q-	-O-CoH12-CH=CHo		K 102	\$ 102 \$ 106
C5H11-	-C:::C+H		K 58.4	S 82.71
C5H11-	-C:::C-CH ₃		K 60.5	\$ 83.41
CH*-O-	-000-0:::0-0:::0-0:::0Hg1		K 54	N 66 I
CH2-O-	-0-C6H12-00G-CH(-CH2-C:::C-H)2		K 75	\$ 1061
CH=O-	-000-C ₂ H ₆ -C:::C-H	i	K 92	N 68.1 I
CH*O-	-000-C ₆ H ₁₆ :C:::C-H		K 78.7	N 65.61
C2H5-CHM6-CHF-CH2-OOC-	-O-C; H22-C CH=CH3	3	K 48.5	\$ 32 C* 34.7 A 54.3 I
C2H6-CHM9-CHCI-C; I2-OOC-	-O-C2H4-O CH=CH2	3	K 56.2	
C3H8-CHM9-CHCI-CI I2-OOC-	-O-C ₆ H ₁₂ -O-CH=CH ₂	3	K 40	C* 28.5 A 55 I
C2H6-CHMe-CHCI-CI I2-OOC-	-O-CaH16-O-CH=CH2	3	K 39	C 7 A 51.31
CSH8-CHMe-CHCI-CI P-OOC-	-O-C11H22-O-CH=CH2	5	K41.9	C* 21 A 38.3 I
C ₀ H ₁₃ -CHMo-O-	-O-CH2-CH=CH2	1	K77	9.581
C9H5-CHM6-CHCI-COC-	-O-CH ₂ -CH=CH ₂	3	K 91	ii
C ⁵ H ⁶ -CHMe-CHCI 2000-	-O-CeH1E-CH=CH2	3	K 41	C* 35 A 51 I
C₂H₅-C; IMe-CHCI-COO-	-D-C ₀ H ₁₀ -CH=CH ₂	3	K 49	C* 33 A 52 I
C2H6-CHMe-CHCI-COCI-	O-C ₈ H ₁₈ -CH=CH ₂	3	K 38	C* 48 A 59 I
C2H3-CHMe-CH2-	-COO-CH2-CHM6-C2H6			N° -70 E
C ₂ H ₅ -CHMe-CH ₂ -	-COO-CH2-C7F15			A 101 I
CgH5-CHMe-CH2-O-	-COO-CH ₂ -C ₇ F ₁₅			H 85 A 1151

[0061]

【表52】

$$L \longrightarrow R$$

L	R		Cr	l LCI
C ₃ H ₇ -	-О-СГ ₂ -Н	_	K 84	N -30 E
C₃H ₇ -	-8-C₁₂-H		K 58	N-70 E
C7H18-	- I	2		N-70 E
C7H15-	-SO ₂ -Ci-2-H		K 50	N-110 E
C ₆ H ₁₇ -O-	-O-C; 2-H	-	K 104	N 20 E
C ₆ H ₁₇ -O-		1	K 45.5	E 69 A 741
C ₈ H ₁₇ -OCOO-	-OOC-CH2-CHC13-C4Ha	1	Κγ	\$5 \$ 251
C ₆ H ₁₇ -O-	-COO-C2H4-CHCF3-C4H9	1	K 42	A 351
C ₆ H ₁₁ -	-Ci1=CH ₂		K 122	N 51.5 U
C ₈ H ₁₇	-OOC-CH=CH-CeH11		K 36	E 59 B 66 N 75 I
CH₃-O-	-O-C11H22-O-CH=CH2	į	K 95	-30-3011151
C ₄ H ₉ -C-	-COO-C4Hg-OOC-CH=CH2	ı	K ?	S 55 1
C ₈ H ₁₇ -O-	-00C-C4H8-00C-CH=CH2		K B4.1	8 91.7 1
C _B H ₁₇ -O-	000 0 14 0001 244 0	1	K 48.7	8 73.9 1
C _B H ₁₇ -	-O-CH ₂ -CH=CH-C ₆ H ₁ ,		K 75	E 93 I
СН₃ О-	-O-C ₈ H ₁₂ -O-CH ₂ -CH=CH ₂		K 101	N 98 I
C ₆ H ₁₃ -O-	-O-C ₆ H ₁₂ -O-CH ₂ -CH=CH ₂		K 100	\$ 991
CH ₃ -O-	-O-C ₂ H ₄ -O-C ₂ H ₄ -O-CH ₂ -CH=CH ₂	ı	K 73	X 83 I
C4H8-OOC-CHM6-COC-	0 0 11 0 011 011	7		A 20 I
Ci 1 ₃ -O-	-OOC-C9H6-CH=C112		K 70	N 76 I
C ₂ H ₅ -	-C4H8-CH=CH2	1	K ?	8 26.3 1
C4t1g-	-C4H8-CH=CH2	١	K 24.4	8 38.5 1
C2H5-	-Cellie CH-CH2	ı	K 9.4	B 28.2 I
C₄Hg-	-Cai 112-CH=C: 12	-	K -24.6	B 42.4 I
Cils-O-	-O-C ₆ H ₁₂ CH=CH ₂	- [K 98	E 108 i
Cgi 113-O-	-O-C ₆ H ₁₂ -CH=C; I ₂	ļ	K 113	S 112 I
CH ₃ -OCC-	-O-C ₈ H ₁₂ -CH=CH ₂	1	K 103	E 123 S 127 I
CH ₃ -O-	-O-C ₈ H ₁₆ -CH=CH ₂	ļ	K 81	E 108 I
CH3+O+	-OOC-CeH16-CH=CH2	١	K 75	N 79 I

【0062】以上の如き本発明の液晶性電荷輸送材料は、光センサ、エレクトロルミネッセンス素子、光導電体、空間変調索子、薄膜トランジスタ等の種々の用途に有用である。本発明の液晶性電荷輸送材料は、高速な移動度と構造的なトラップの形成が抑制されることから、先ず第一の応用として、高速応答性の光センサが挙げられる。次に電荷輸送性能に優れ、且つそれ自身が蛍光性を示すため、高い移動度を保持したままで作成可能なエレクトロルミネッセンス素子の電荷輸送層として使用でき、又、電場配向性と光導電性とが同時にスイッチングできることから、画像表示素子に用いることが可能である。

【0063】図1~4は、本発明の電荷輸送材料のエレクトロルミネッセンス素子への応用を代表例として説明する図である。素子の最も簡単な構造は図1に示したように、発光層及び電荷輸送層を1層として陰極と陽極で挟んだものであり、本発明の液晶性電荷輸送材料のような、電荷輸送性と蛍光性とを併せ持つ場合のみ、この層構成でのエレクトロルミネッセンス素子の作製が可能となる。この時、強い発光を得るためには、電子注入の役

割を果たす陰極材料は仕事関数の小さいもの、陽極材料 は逆に仕事関数の値が陰極と同じ値又はより大きなもの を選択することが好ましい。

【0064】陽極材料としては、一般的に例えば、ITO、酸化インジウム、酸化錫(アンチモン、砒素、又はフッ素ドープ)、 Cd_2SnO_4 、酸化亜鉛、沃化銅、又は、アルカリ金属又はアルカリ土類金属を基本とするナトリウム、カリウム、マグネシウム、リチウム、ナトリウムーカリウム合金、マグネシウムー4ンジウム合金、マグネシウムー銀合金、アルミニウム、金、銀、ガリウム、インジウム、銅等、更に陽極に使用した材料と同一のものが挙げられる。

【0065】発光層及び電荷輸送層に用いる材料は、電荷輸送材料と発光材料とからなる。電荷輸送材料は、電子及び正孔両輸送性材料又は両輸送性材料の混合物、若しくは電子輸送性材料と正孔輸送性材料の混合物が好ましいが、電極界面での発光を利用する場合には一方の輸送性材料だけでもよい。本発明では、本発明の電荷輸送材料自身が蛍光性を有するため、発光材料は特に必要としないが併用してもよい。又、図3及び4に示したよう

な層構成とした場合には、発光層 (発光材料)の厚みは電子又は正孔の移動を妨げない程度とする。発光層の膜厚は、好ましくは0.2~15μmとし、材料中へのスペーサ粒子の散布、或いはセルの周囲に設ける封止剤で膜厚を調整することができる。

【0066】図5~図7は光センサへの応用を代表例として説明する図である。光センサの構成条件としては、電極13、13、と本発明の液晶性電荷輸送材料14とからなる。光センサとして利用し得る性質としては、光照射による電流値の変化が利用できる。

【0067】図8は、画像表示素子への応用を代表例として説明する図である。画像表示素子においては、ガラス等の透明基板、ITO(インジウムチタンオキサイド)等の透明電極、露光に応じてキャリアを発生する電荷発生層、本発明の液晶性電荷輸送材料、対向電極(金電極等)を順次積層した素子に、模式図下部から画像露光(入力画像)とすると、露光に応じて液晶性電荷輸送材料が配向して対向電極(金電極)にキャリアが流れる。この液晶の配向を光学的に読みとることによって入力画像を再生することができる。上記液晶のスメクチック性が大きければ液晶の配向は長時間保存されて入力情報が長時間保存されることとなる。

【0068】図9は、画像記録装置の電荷輸送層に本発明の液晶性電荷輸送材料を適用した例を説明する図である。図9に示すように上下の電極13、13'に電圧を印加しつつ、図面上部よりパターン露光を行なう。14'においてパターン状にキャリアが発生し、電荷輸送層14により輸送された電荷が、空間19において放電し、情報記録層11の表面に達する。

【0069】情報記録層は、例えば、スメクチック液晶と高分子の複合体からなる液晶高分子複合体層であり、蓄積された電荷による電界で液晶がパターン状に配向し、蓄積され、光学的読み取りを行なうことができる。図10は、図9の場合と同様に電圧印加露光を行なう。発生した電荷(像)は誘電体層20の上部表面に蓄積され、光学的読み取りを行なうことができる。更に本発明の液晶性電荷輸送材料は、図11に模式的に説明するように空間光変調素子にも使用することができる。又、本発明の液晶性電荷輸送材料は、薄膜トランジスタの活性層として用いることも可能である。例えば、図12に示すように、ソース、ドレイン、ゲートの各電極を配置した基板に上記液晶材料を配置して用いることができる。【0070】

【実施例】次に実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例に制限されるわけではない。

実施例1

4-Heptyroxybiphenylcarbon ic acid(帝国化学産業(株)製)と、7-Hy droxy-4-methyl-Cumarin(文 献: J. Chem. Soc. Chem. Commun. (2) 225-6, 1995に従って合成した)を4-ピリジルフェノールに溶解し、1, 3-Dicyclohexylcarbodiimideを用いて90℃で脱水縮合を行い、7-Hydroxy-6-(4-Heptyroxybiphenylcarboxy)-4-methylcumarinを合成した。

【0071】実施例2

真空成膜によりITO電極(表面抵抗:100~200 Ω/□)を設けたガラス基板を、ITO電極が対向するように、スペーサー粒子によってギャップを設け、張り合せたセルを作成した。そのセルに実施例1で得られた7-Hydroxy-6-(4-Heptyroxybiphenylcarboxy)-4-methylcumarinを110℃の条件下で注入した。上記セルに250Vの直流電界をかけたところ、上記化合物に由来する発光が見られた。

【0072】実施例3

【0073】実施例4

実施例1で得られた化合物と同じ液晶材料を用いて、図2に示した層構成を有するセルを作成した。このセルには、液晶材料を110℃の条件でセルに注入した。暗所中、上記セルに250 Vの直流電界をかけたところ上記液晶材料に由来する発光が見られた。

【0074】実施例5

実施例1で得られた化合物と同じ液晶材料を用いて、図 3に示した層構成を有するセルを作成した。このセルに は、液晶材料を110℃の条件でセルに注入した。暗所 中、上記セルに250∨の直流電界をかけたところ上記 液晶材料に由来する発光が見られた。

【0075】実施例6

実施例1で得られた化合物と同じ液晶材料を用いて、図4に示した層構成を有するセルを作成した。このセルには、液晶材料を110℃の条件でセルに注入した。暗所中、上記セルに250∨の直流電界をかけたところ上記液晶材料に由来する発光が見られた。

[0076]

【発明の効果】以上の如き本発明によれば、液晶性を有するとともに、電荷輸送性および蛍光性を有する新規液晶性化合物が提供される。該新規液晶性化合物は従来の液晶としての用途に加えて、電荷輸送性を利用した光セ

ンサ、エレクトロルミネッセンス素子、光導電体、空間 変調素子、薄膜トランジスター、その他のセンサー等の 材料として有用である。特に本発明の液晶性化合物は、 エレクトロルミネッセンス素子の材料として使用した場 合、蛍光性を示す骨格構造を導入することによる電荷輸 送性の低下、液晶性の変化を防いで、発光を得ることが できる。

【図面の簡単な説明】

- 【図1】エレクトロルミネッセンス素子の模式図
- 【図2】エレクトロルミネッセンス素子の模式図 (電極パターン例)
- 【図3】エレクトロルミネッセンス素子の模式図
- 【図4】エレクトロルミネッセンス素子の模式図
- 【図5】光センサの模式図
- 【図6】光センサの模式図
- 【図7】光センサの模式図

13:透明電極

13′:電極(対向電極) 14:液晶性電荷輸送材料

【図8】画像表示素子の模式図

【図9】画像記録装置の模式図

【図10】画像記録装置の模式図

【図11】空間変調素子の模式図

【図12】薄膜トランジスタの模式図

14′:電荷発生層

15:透明基板

【符号の説明】

11:情報記錄層

15′:基板

19:空間

20:誘電体層

【図1】

【図2】

【図3】

【図5】

【図4】

【図6】

フロントページの続き

(51) Int. Cl. 6 C O 9 K 19/06 識別記号

FΙ

CO9K 19/06