324 formula sheet Maxwell's Equations: Everything we need when working in $\underline{\text{vacuum}}.$

	vacuum	matter			or
1. Gauss's Law	$\nabla \cdot \vec{E} = \frac{1}{\epsilon_0} \rho$	$ abla \cdot \vec{E} = \frac{1}{\epsilon} (\rho_f - \nabla \cdot \vec{P})$)	$\nabla \cdot \vec{D} = \rho_f \text{ if } \vec{D} \equiv \epsilon_0 \vec{E} + \vec{P}$
2. No mag monopoles	$\nabla \cdot \vec{B} = 0$	$1 \colon abla \cdot \vec{E} = rac{ ho_{free}}{\epsilon}$			
3. Faraday's Law	$\nabla imes \vec{E} = -rac{\partial \vec{B}}{\partial t}$	4: $\nabla \times \vec{B} = \mu \vec{J}_{free} + \mu \sigma \vec{E} + \mu \epsilon \frac{\partial \vec{E}}{\partial t}$		$\mu\epsilon \frac{\partial \vec{E}}{\partial t}$	
4. Ampere's Law	$\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t}$	$\nabla \times \vec{B} = \mu_0(\vec{B})$	$\vec{V} \times \vec{B} = \mu_0 (\vec{J}_f + \nabla \times \vec{M} + \frac{\partial \vec{P}}{\partial t}) + \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t}$		$\nabla \times \vec{H} = \vec{J}_f + \frac{\partial \vec{D}}{\partial t}$ if $\vec{H} = \frac{1}{\mu_0} \vec{B} - \vec{M}$
0. Continuity	$\nabla \cdot \vec{J} = -\frac{\partial \rho}{\partial t} = -\nabla \cdot (\epsilon_0 \frac{\partial \vec{E}}{\partial t})$	Vac, no cl	harges or current	ts: $\nabla^2 \vec{E}$	$=\mu_0\epsilon_0\frac{\partial^2\vec{E}}{\partial t^2}$ and $\nabla^2\vec{B}=\mu_0\epsilon_0\frac{\partial^2\vec{B}}{\partial t^2}$
Boundary Conditions:	$\epsilon_1 E_1^{\perp} = \epsilon_2 E_2^{\perp}$ B_1^{\perp}	$=B_2^{\perp}$	$E_1^{\parallel} = E_2^{\parallel}$		$\frac{1}{\mu_1}B_1^{\parallel} = \frac{1}{\mu_2}B_2^{\parallel}$
Wave Equation:	$\frac{\partial^2 f}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 f}{\partial t^2}$ Standing Wave to sum of waves: $A \sin kz \cos kvt = \frac{A}{2} (\sin kz + kvt + \sin kz - kvt)$				
Standing Wave:	$kL = n\pi$ for $n = 1$, 2, 3 A	and frequency:		$V = \frac{1}{T} = \frac{kv}{2\pi} = \frac{nv}{nI}$
String boundary conditions: Position cannot change across boundary, and neither can first derivative.					
2 connected strings, $\omega_1 = \omega_2$ must be, $v = \frac{\omega}{k}$, then $r = \frac{A_R}{A_I} = \frac{k_1 - k_2}{k_1 + k_2} = \frac{v_2 - v_1}{v_1 + v_2}$ and $t = \frac{A_T}{A_I} = \frac{2k_1}{k_1 + k_2} = \frac{2v_2}{v_1 + v_2}$					
Monochromatic plane waves: $\vec{E} = E_0 \hat{n} e^{i(\vec{k}\cdot\vec{r}-\omega t)}$ and $\vec{B} = \frac{E_0}{c} \hat{k} \times \hat{n} e^{i(\vec{k}\cdot\vec{r}-\omega t)}$					