24.2 Example 2 (Proof by Induction)

Proof:

Conjecture: $P(n): 0+1+2+\cdots+n = \frac{n(n+1)}{2}$

We will proceed with a proof by induction to prove P(n) for all $n \in \mathbb{N}$.

Base Case: P(0)

When n = 0:

$$P(0) = 0 + 1 + 2 + \dots + n = 0$$
$$\frac{n(n+1)}{2} = \frac{0(0+1)}{2} = 0$$

Therefore, the base case holds.

Inductive Case:

To prove the inductive case, we must prove that $P(k) \to P(k+1)$. We will do so with a direct proof. Direct Proof:

Statement	Reasoning
$1+2+\cdots+k=\frac{k(k+1)}{2}$	Assume inductive hypothesis
$1+2+\cdots+k+(k+1)=\frac{k(k+1)}{2}+k+1$	Add $k+1$ to both sides
$=\frac{k(k+1)}{2}+\frac{2(k+1)}{2}$	Multiply term by 1
$=\frac{k(k+1)+2(k+1)}{2}$	Add fractions
$=\frac{(k+1)(k+2)}{2}$	Factor out $k+2$
$1+2+\cdots+k+(k+1)=\frac{(k+1)(k+1+1)}{2}$	Substitute 2 with $1+1$

Therefore, we have proven by direct proof that $P(k) \to P(k+1)$.

Conclusion:

Since we have shown that P(n) is true for the case n = 0, and we have proven that $P(k) \to P(k+1)$ for any arbitrary k, then we have proven that P(n) is true for all $n \in \mathbb{N}$ by mathematical induction.

25 Lecture 25 (2024-03-08 Fri) - Induction (cont.)

25.1 Towers of Hanoi solution, inductively

Proof: Towers of Hanoi

Conjecture:

Solving the Towers of Hanoi problem for n disks, for any $n \in \mathbb{Z}^+$, takes $2^n - 1$ moves.

Proof:

We will proceed with a proof by induction to prove that solving the Towers of Hanoi problem for n disks, for any $n \in \mathbb{Z}^+$, takes $2^n - 1$ moves.

Base case:

When n = 1, then it takes one move to move the entire tower from one peg to another. Since $2^n - 1 = 2^1 - 1 = 1$, then the base case holds.

Inductive step: