How to find the median of a large dataset with Spark

Anis Hamroun

Summary

Summary	2
What is a median ?	3
Typical case	3
The case of a Large Dataset	4
Detailed Processus	5
Step 01:	5
Step 02 :	5
Step 03 :	6
Step 04 :	6
Step 05 :	7
Step 06 :	7
Step 07 :	8
Answers :	8

What is a median?

The **median** is the value separating the higher half from the lower half of a data sample. *wikipedia*

Typical case

Let D such as D is included in \mathbb{R}^N such as N isn't considered as a "large number". The typical algorithm is to sort the dataset D and return the $\frac{N}{2}$ ene number of the sorted dataset D.

Pseudo Code
sorted_D = sort(D)
median = sorted_D[N/2]

The case of a Large Dataset

Let D such as D is included in \mathbb{R}^N such as N is considered as a "large number".

Assume D sorting takes too much time, then we have to find another manner to find the median.

schema: Representation of median researching process

The main steps of the process:

- Assume a and b is included in D such as $\forall i \in [1;N], a \leq D[i] \leq b$.
- Let Nb is the number of groups.
- We split the dataset D in several given the ascending order.
 - Let i an Integer such as Di is the iene group of D.
 - $\forall j \in [0; NB-1], \forall u \in [0; len(Dj)-1],$
- $j = roundeddown(Dj[u] * (\frac{Nb}{b-a}) a * (\frac{Nb}{b-a}))$ We have to find u such as $\sum_{j=0}^{u-1} len(Dj) < N/2 < \sum_{j=0}^{u} len(Dj)$
- that mean, the median is included in the group Du
- Then, we have to sort Du.
- Let Du' = sort(Du)
- the median is Du'[$\frac{N}{2} \sum_{j=0}^{u-1} len(Du)$]

Detailed Processus

Step 01:

Map the RDD1 values in key-value pairs such as, for each key-value pair $key = roundeddown(\ V\ alue\ *(\ \frac{Nb}{b-a})\ -\ a\ *(\ \frac{Nb}{b-a}))$. With a and b respectively the minimum and the maximum of the RDD1.

Step 02:

RDD2 is grouped by keys.

Step 03:

During the Step 3, we create a RDD4 from RDD3 such as, let k a key such as, RDD3[k] is the list of values having for key k. So, RDD4[k] = len(RDD3[k])

Step 04:

During the Step 04, we have to find u such as $\sum\limits_{j=0}^{u-1} \text{len(Dj)} < \text{N/2} < \sum\limits_{j=0}^{u} \text{len(Dj)}.$ u is the id_selected_group. That means, the median is included in the u-ene group. Additionnally, id_number = $\frac{N}{2} - \sum\limits_{j=0}^{u-1} \text{len(Du)}.$ id_number is the position of the median in Du', with Du' = sort(Du).

Step 05:

During this step, we choose the selected group.

Step 06:

RDD6 equals to RDD5 after a sorting process.

Step 07:

The Step 07 return the median which equals to Du'[$\frac{N}{2} - \sum_{j=0}^{u-1} len(Du)$]

Answers:

With Default configuration.

Data-1-sample.txt	Data-1.txt
median = 50.64663482	median = 50.00685338