HiOA Big Data Course

Session 6 - Trees

Dirk Hesse

Wine Quality

Wine Quality Tree

Wine Quality Regression Tree

Why trees?

- Simple.
- Easy to explain.
 - Especially to non-experts.
- Powerful.

Calculating Trees

- ullet Divide your data $R_L(j,s)=\{X|X^{(j)}\leq s\},$ $R_R(j,s)=\{X|X^{(j)}>s\}.$
- Find the best a_R, a_L, j, s to minimize

$$\sum_{i,x_i \in R_L(j,s)} (a_L - y_i)^2 + \sum_{i,x_i \in R_R(j,s)} (a_R - y_i)^2$$

- ullet For given j,s, we find that $a_{R,L}=\displaystyle \sup_{i,x_i\in R_{R,L}}y_i.$
- Repeat on the sub-sets.
 - Until a maximum depth is reached.
 - Until a minimum number of samples is reached.

Regression Tree

Our resulting model reads

$$\hat{f}\left(X
ight)=\sum_{m}c_{m}I\left\{ X\in R_{m}
ight\} .$$

Hence trees are an example of a general class of *additive* models.

Tree Vs Linear Regression

How Deep Should You Go?

- Deep trees have many degrees of freedom and hence high variance.
- Too shallow trees can't capture the shape of the data.
 - Hence have high bias.

Bias-Variance Trade-off for Trees

Training and Test Error

The Best Tree

Trees for Classification

Just modifying our tree formulas to use the mode

$$a_{R,L} = \mathop{\mathrm{mode}}\limits_{i,x_i \in R_{R,L}} y_i$$

yields a classification algorithm.

How Find the Splits for Classification?

Define

$$\hat{p}_{mk} = rac{1}{N_m} \sum_{i; x_i \in R_m} I(y_i = k),$$

such that $k(m) = \operatorname{argmax}_k \hat{p}_{mk}$

- Misclassification: $1-\hat{p}_{mk(m)}$.
- Gini index: $\sum_{k=1}^K \hat{p}_{mk} (1 \hat{p}_{mk})$.
- ullet Cross-entropy: $-\sum_{k=1}^K \hat{p}_{mk} \log \hat{p}_{mk}$.

Two-Class impurity Measures

Tree pruning

- Stopping criteria:
 - \circ Depth d.
 - o Terminal node size.
 - Maximum split size.
 - Minimum impurity.
- Stopping at given d or impurity threshold might miss good splits later on.
- Often better to stop at e.g. minimal node size 10.
- Prune resulting tree.

Pruning by complexity

• Fitted tree T_0 , let T be subtree with |T| terminal nodes R_m .

$$egin{aligned} N_m &= |\{x_i \in R_m\}| \ \hat{c}_M &= rac{1}{N_m} \sum_{x_i \in R_m} y_i \ Q_m(T) &= rac{1}{N_m} \sum_{x_i \in R_m} (y_i - \hat{c}_m)^2 \ C_lpha(T) &= \sum_{m=1}^{|T|} N_m Q_m(T) + lpha |T| \end{aligned}$$

• For each lpha, \exists unique smallest subtree minimizing C_{lpha} .

Practical considerations.

- Categorical inputs.
 - Many possible splits.
 - Easy for binary targets.
- Loss matrix.
 - $\circ \ L_{kl}$ loss for classifying k as l.
 - \circ Classify $k(m) = \operatorname{argmin}_k \sum_l L_{lk} \hat{p}_{ml}$.
- Missing values.
- Multiple child nodes.
- Smoothness.
- Variance.

Ensemble Methods

- Reduce over-fitting and increase accuracy by using multiple models.
 - Reduce variance.
 - Possibly increase bias.
- Most commonly used:
 - Boosting.
 - Bagging.

Boosting

Additive Models

Instead of using one complex predictor, use many instances of a very basic one b (e.g. a tree with one split).

$$f(x) = \sum_{m=1}^M eta_m b(x; \gamma_m)$$

The parameters are given by

$$\min_{eta,\gamma} \sum_{i=1}^N L\left(y_i,\sum_{m=1}^M eta_m b(x;\gamma_m)
ight).$$

Forward stepwise additive modeling

- 1. Set $f_0 \equiv 0$.
- 2. For $m=1m\ldots,M$
 - Set

$$(eta_m, \gamma_m) = rgmin_{eta, \gamma} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + eta b(x_i; \gamma).$$

Set

$$f_m(x) = f_{m-1}(x) + eta_m b(x; \gamma_m).$$

3. Return f_m .

FSAM and Square Error loss

For square error loss, we fit in each step to the residuals of the previous step.

$$egin{aligned} L\left(y_{i}, f_{m-1}(x_{i}) + eta b(x_{i}; \gamma)
ight) &= \left[y_{i} - f_{m-1}(x_{i}) - eta b(x_{i}, \gamma)
ight]^{2} \ &= \left[r_{im} - eta b(x_{i}, \gamma)
ight]^{2} \end{aligned}$$

ADABOOST

Using

$$L(y, f(x)) = \exp(-yf(x))$$

for targets $y \in \{-1, 1\}$, gives raise to the AdaBoost algorithm.

AdaBoost

- 1. Initialize $w_i=1/N,\ i=1,\ldots,N.$
- 2. For $m=1,\ldots,M$
 - \circ Fit classifier $b_m(x)$ to data with weights w_i .
 - Set

$$e_m = rac{\sum_i w_i I(y_i
eq b_m(x_i))}{\sum_i w_i}.$$

- \circ Set $lpha_m = \log((1-e_m)/e_m)$.
- \circ Set $w_i \leftarrow w_i \exp[lpha_m I(y_i
 eq b_m(x_i))]$.
- 3. Return $f(x) = \mathrm{sign} \Big[\sum_{m=1}^{M} lpha_m b_m(x) \Big]$.

This can be adapted to regression as well.

Generated Data

- Taken from Elements of Statistical Learning.
- X_1, \ldots, X_{10} standard Gaussians.

•
$$Y = \begin{cases} 1 & \text{if } \sum_{j} X_{j}^{2} > 9.34 = \chi_{10}^{2}(0.5) \\ 1 & \text{else} \end{cases}$$

• 2k training cases, 10k test cases.

Single Tree on Generated Data

AdaBoost on Generated Data

More on Loss Functions

- Let's compare some loss functions for classification.
- We'll classify to $\operatorname{sign}(f)$.
- Misclassification: $I(\operatorname{sign}(f) \neq y)$.
- Exponential: $\exp(-yf)$.
- Binomial: $\log(1 + \exp(-2fy))$.
- Squared error: $(y-f)^2$.

Loss functions for classification

Conclusion

AdaBoost works great, but we'd like to plug in arbitrary loss functions. This seems like a hard task looking at

$$\min_{eta,\gamma} \sum_{i=1}^N L\left(y_i, \sum_{m=1}^M eta_m b(x;\gamma_m)
ight).$$

The way out: **Gradient boosting**.

Questions?

Regression Algorithms
for Anomaly Detection
in Time Series Data

Time series data

- ullet Given $x_i=x(t_i), i=1,\ldots,n$.
 - Quantities measured at a given time.
 - E.g. number of users.
 - Bike trips taken.
- Want to predict an $x(t_i)$ in the future.
- ullet Assume that t_i are periodic and equidistant.

Auto-regressive models

• Fit

$$x(t)pprox\hat{f}\left(x(t)
ight)=\hat{f}\left(x(t-\Delta_1),\ldots,x(t-\Delta_p)
ight)$$

for chosen shifts Δ_k .

- Need to take into account periodicity in data.
 - \circ E.g. $\Delta_1=1$ day, $\Delta_2=1$ week.

Detecting Anomalies

- Predict values using \hat{f} , compare to actuals.
- Let $\delta_i=\hat{f}\left(x(t_i)
 ight)-x(t_i)$. Let $\sigma=\sqrt{rac{1}{N_t}\sum_i(\delta_i-\hat{\delta})^2}$.
- Let $z_i = \delta_i/\sigma$.
- Flag data points as anomalous if $z_i > z_{\max}$.