Segunda Lista de Preparação para a LIII IMO e XXVII Olimpíada Iberoamericana de Matemática

Nível III

PROBLEMA 1

Um país tem várias cidades ligadas por 2006 estradas. Sabe-se que, dadas duas cidades, existe uma sequência de estradas que as ligam e que nenhum ciclo é formado pelas estradas (ou seja, não podem existir estradas ligando c_1 a c_2 , c_2 a c_3 , ..., c_k a c_1).

Esmeralda mora na cidade Preciosa e quer ir até a cidade Valiosa, onde mora sua colega Jade. Para fazer isso, ao deixar cada cidade ela ecolhe aleatoriamente por qual estrada ela seguirá. Ela não segue a estrada por onde chegou, e a escolha da próxima estrada é feita de modo que todas as outras estradas que saem da cidade onde ela estava têm a mesma probabilidade.

Infelizmente, as estradas e as cidades do país foram desenhadas de modo que a probabilidade de Esmeralda chegar à cidade Valiosa é mínima. Qual é essa probabilidade mínima?

PROBLEMA 2

Sejam x_1, x_2, x_3, x_4 números reais tais que $\frac{1}{2} \le x_1^2 + x_2^2 + x_3^2 + x_4^2 \le 1$. Determine o maior e o menor valor possível da expressão $A = (x_1 - 2x_2 + x_3)^2 + (x_2 - 2x_3 + x_4)^2 + (x_2 - 2x_1)^2 + (x_3 - 2x_4)^2$.

PROBLEMA 3

Dizemos que duas pessoas A e B são quase conhecidos se existem pessoas C_1, C_2, \cdots, C_n tais que A conhece C_1, C_1 conhece C_2 , assim por diante, até que C_n conhece B. Em particular, se A conhece B, então A e B são quase conhecidos. Entre os participantes de uma olimpíada de matemática, alguns já se conheciam antes da olimpíada. Durante a olimpíada, algumas pessoas fazem novos conhecidos, de modo que ao finalizar a competição, cada participante tem ao menos um conhecido entre os participantes. Diremos que um participante é especial se o número de seus conhecidos indiretos ao finalizar a olimpíada é exatamente o dobro do número de antes da olimpíada. Demonstrar que o número de participantes especiais é menor ou igual a $\frac{2}{3}$ do número total de participantes.

Observação: Se A conhece B, então B conhece A.

PROBLEMA 4

Sejam $n_1 < n_2 < \cdots < n_k$ inteiros positivos. Prove que todas as raízes reais do polinômio $P(x) = 1 + x^{n_1} + x^{n_2} + \cdots + x^{n_k}$ são maiores que $\frac{1-\sqrt{5}}{2}$.

PROBLEMA 5

O ponto D está no interior do triângulo ABC de maneira que os círculos inscritos nos triângulos ABD, BCD e CAD tangenciam-se uns aos outros. Nas retas BC, CA, AB, AD, BD, CD, denote os pontos de tangência por A_1 , B_1 , C_1 , A_2 , B_2 , C_2 respectivamente. As retas B_1C_2 e B_2C_1 se encontram em E e as retas A_1C_2 e A_2C_1 se encontram em E. Prove que as retas AF, E e E0 são concorrentes.

PROBLEMA 6

Encontre todos os inteiros positivos n que satisfazem $\sigma(n!) = \frac{(n+1)!}{2}$, onde $\sigma(n)$ denota a soma dos divisores positivos de n.

PROBLEMA 7

Seja $f(k) = 2^k + 1$ para qualquer inteiro positivo k. Existe algum inteiro positivo n que divide f(f(n)), mas não divide f(f(f(n)))?

PROBLEMA 8

Em um triângulo ABC, $\angle BAC = 60^\circ$ e a circunferência inscrita do triângulo ABC tangencia AB e AC em P e Q, respectivamente. As retas PC e QB se intersectam em G. Seja R o raio da circunferência circunscrita ao triângulo BGC. Encontre o menor valor possível de $\frac{R}{BG}$.