PROF. RAMON CASTAÑOS

Matricula:		Nombre:		Sección:
Matricula:		_ Nombre:		Sección:
A.	SELECCIONAR LA F	RESPUESTA CORREC	CTA:	
1.	Si la gráfica <i>y=f(x)</i> es una) Se duplican b) Se cuadruplican c) Se reduce a la mitad d) Se reduce a la cuarta		on los valores de y cuando los d	e x se duplican?
2.	Si la gráfica <i>y=f(x)</i> es una) Se duplican b) Se cuadruplican c) Se reduce a la mitad d) Se reduce a la cuarta		on los valores de y cuando los de	x se duplican?
3.	Si la gráfica <i>y=f(x)</i> es una) Se duplican b) Se cuadruplican c) Se reduce a la mitad d) Se reduce a la cuarta		el origen. ¿Qué pasa con los valo	ores de y cuando los de x se duplica
4.	En cual operación matem a) Suma b) Resta c) Multiplicación d) División	ática que utilizando la n	otación científica es que los exp	onentes se suman algebraicamente.
5.	¿Cuál de las siguientes ca a) 3102 b) 1.5x10 ² c) 0.23x10 ⁻² d) 200x10 ⁴	ntidades esta expresada	correctamente en notación cient	ífica?
6.	Al realizar la operación (a) 1 b) 2 c) 3 d) 4	578.4 <i>m</i> ÷ 3.46 <i>seg</i> el núm	nero de cifras significativas que o	debe tener el resultado es:
7.	Al dividir dos cantidades a) Igual exponente que d b) Igual decimal que el d c) Igual exponente que d d) Ningunas de las anter	el divisor lividendo el dividendo	cifras significativas el resultado s	se debe expresar con:
8.	Si se expresa la siguiente a) 3 b) 2 c) 5 d) 4	medida 4624.26 m en n	otación científica, el exponente	de la base 10 será:

- 9. El prefijo centi representa una:
 - a) Milésima
 - b) Décima
 - c) Centésima
 - d) Ninguna de las anteriores
- 10. Si la gráfica y=f(x) es una hipérbola. Para determinar la constante de proporcionalidad del gráfico, las variables se deben:
 - a) Sumar
 - b) Restar
 - c) Multiplicar
 - d) Dividir
- 11. Si la gráfica y=f(x) es una parábola. Para determinar la constante de proporcionalidad del gráfico, las variables se deben:
 - a) Sumar
 - b) Restar
 - c) Multiplicar
 - d) Dividir
- 12. Para determinar la constante de proporcionalidad entre dos variables que son proporcionales, las variables se deben:
 - a) Sumar
 - b) Restar
 - c) Multiplicar
 - d) Dividir
- 13. Si dos variables son proporcionales entonces su grafico será una:
 - a) Línea recta que no parte del origen
 - b) Línea recta inclinada hacia arriba
 - c) Parábola
 - d) Hipérbola
- 14. Si dos variables son proporcionales al cuadrado entonces su grafico será una:
 - a) Línea recta que no parte del origen
 - b) Línea recta inclinada hacia arriba
 - c) Parábola
 - d) Hipérbola
- 15. Si dos variables son inversamente proporcionales entonces su grafico será una:
 - a) Línea recta que no parte del origen
 - b) Línea recta inclinada hacia arriba
 - c) Parábola
 - d) Hipérbola
- 16. Es un proceso basado en comparación que nos permite determinar el valor de una cantidad física:
 - a) El metro
 - b) Medir
 - c) Contar
 - d) Cronometrar
- 17. La parte entera del coeficiente de una cantidad expresada en notación científica:
 - a) Debe ser cero
 - b) Debe tener un solo digito (no cero)
 - c) Puede ser tener cualquier cantidad de dígitos
 - d) Siempre es positiva

B. DESARROLLAR LOS SIGUIENTES EJERCICIOS

1.	Esc	Escriba las siguientes cantidades mediante la notación científica.		
	a) .	380000000 m		
	b) (600000000000 Kg		
	c) (0.000001 s		
	d) (0.000000035 Kg		
2.	Escriba las siguientes cantidades en el modo normal			
	a)	$4x10^8m$		
	b)	$5.6x10^{-6}m$		
	c)	$2.7x10^5 kg$		
	d)	$1.0x10^{-14}m$		
3.	Esc	criba la cantidad de cifras significativas que tiene cada una de las siguientes medida		
	a)	2804 m		
	b)	2.84 m		
	c)	0.0029 cm		
	d)	0.003068 seg		
	e)	$4.06 x 10^3 \text{ kg}$		
	f)	$3.57 \times 10^{-3} \text{ seg}$		

4. Utilizando su calculadora con los ángulos en grados, realice las siguientes operaciones

a) Sen 0°

b) Cos 0°

c) Sen 15°

d) Cos 30°

e) Sen 45°

f) Cos 45°

g) Sen 60°

h) Cos 60°

i) Cos 90°

j) Cos 90°

k) Tan 20°

1) Tan 30°

m) Tan 45°

n) Tan 60°

5. Utilizando el modo de grado en su calculadora realice las siguientes operaciones

a) Sen⁻¹(0.25)

b) Cos⁻¹(0.25)

c) Sen⁻¹(0.50)

d) Cos⁻¹(0.60)

e) Tan-1(0.25)

f) Tan-1(0.50)

g) Tan-1(1.0)

h) Cos⁻¹(1.52)

i) Sen⁻¹(1.25)

j) Cos⁻¹(1.75)

k) Sen-1(0)

1) $Cos^{-1}(0)$

m) Tan-1(1.6)

n) Cos⁻¹(1.7)

6. Escriba el nombre de la siguiente figura y la ecuación para calcular su área.

7. Escriba el nombre de la siguiente figura y la ecuación para calcular su área.

8. Escriba el nombre de la siguiente figura y la ecuación para calcular su área.

9. Escriba el nombre del siguiente cuerpo y la ecuación para calcular el área y la ecuación para calcular su volumen

10. Escriba el nombre del siguiente cuerpo y la ecuación para calcular el área y la ecuación para calcular su volumen

11. Escriba el nombre del siguiente cuerpo y la ecuación para calcular el área y la ecuación para calcular su volumen

12. Despeje a "B" en cada una de las ecuaciones.

a)
$$A = BC$$

b)
$$A = 2B + CD$$

c)
$$A = \frac{C}{B}$$

d)
$$A = 2BD + C$$

e)
$$A = B^2C$$

$$f) A = 2B^2 + CD$$

g)
$$A = B^2 + C$$

$$h) A = \frac{B^2}{C} + CD$$

i)
$$A = DB^2 + C$$

$$j) A = \frac{KB^2}{C} + CD$$

13. Despeje a "t" en cada una de las ecuaciones.

a)
$$x = v \cdot t$$

b)
$$v_f = v_i + a \cdot t$$

c)
$$x = \frac{a \cdot t^2}{2}$$

d)
$$v_f = v_i - a \cdot t$$

$$e) d = \frac{(v_i + v_f)}{2}t$$

f)
$$I = F \cdot t$$

g)
$$P = \frac{E}{t}$$

14. Despeje "a" en cada una de las ecuaciones.

a)
$$x = \frac{a \cdot t^2}{2}$$

b)
$$v_f^2 = v_i^2 + 2 \cdot a \cdot x$$

c)
$$x = v \cdot t + \frac{1}{2}a \cdot t^2$$

d)
$$v_f = v_i + a \cdot t$$

15. Despeje a " v_i " en cada una de las ecuaciones.

a)
$$v_f^2 = v_i^2 + 2a \cdot x$$

$$b) \quad x = v_i t + \frac{a \cdot t^2}{2}$$

c)
$$x = \frac{(v_i + v_f)}{2}t$$

d)
$$v_f = v_i + a \cdot t$$

16. Despeje a " θ " en cada una de las ecuaciones.

a)
$$A = \cos \theta$$

b)
$$A = B \cos \theta$$

c)
$$y = Rsen \theta$$

d)
$$x = R \cos \theta$$

e)
$$y = x \tan \theta$$

f)
$$z = y - x \tan \theta$$

17.	. Una persona recorre una distancia de 2.5 Km, exprese esta longitud en:		
	a)cm		
	b)m		
18.	Una cuadra de un residencial es de 245 m. Expresar esta longitud en:		
	a)cm		
	b)km		
19.	Un bloque tiene una masa de 7.45 kg. Expresar esta masa en:		
	a) gr		
	b) mgr		
20.	0. Un bloque tiene una masa de 2450 gr. Expresar esta masa en:		
	a) kg		
	b) mgr		
21.	Una ciudad tiene un área de 4.0 Km², exprese esta área en:		
	a) m^2		
	b) pies ²		
22.	Un auto puede alcanzar una velocidad máxima de 320 km/h, exprese esta velocidad en:		
	a) m/s		
	b)cm/s		

23. Si un cilindro tiene un diámetro de 24 cm y una altura de 15 cm, utilizando la siguiente ecuación determine el volumen del cilindro.

$$V = \frac{\pi d^2 h}{4}$$

24. Si un cilindro tiene un volumen de 5000 cm³ y un diámetro de 20 cm, utilizando la siguiente ecuación determine la altura del cilindro.

$$V = \frac{\pi d^2 h}{4}$$

25. Si un cilindro tiene un volumen de 5000 cm³ y una altura de 15 cm, utilizando la siguiente ecuación determine el diámetro del cilindro.

$$V = \frac{\pi d^2 h}{4}$$

26. Si un cilindro tiene un radio de 18 cm y una altura de 15 cm, utilizando la siguiente ecuación determine el volumen del cilindro.

$$V = \pi \cdot r^2 \cdot h$$

27. Si un cilindro de 2500 gramos de masa y tiene un diámetro de 8 cm y una altura de 15 cm, utilizando la siguiente ecuación determine la densidad del cilindro.

$$D = \frac{m}{\pi \cdot r^2 \cdot h}$$

28. Si una esfera de 3500 gramos tiene un diámetro de 7.5 cm, utilizando la siguiente ecuación determine la densidad de la esfera.

$$D = \frac{6m}{\pi \cdot d^3}$$

29. Si una esfera tiene una densidad de 3.5 gr/cm³, un diámetro de 7.5 cm, utilizando la siguiente ecuación determine la masa de la esfera.

$$D = \frac{6m}{\pi \cdot d^3}$$

30. Si una esfera tiene una densidad de 4.5 gr/cm³, una masa de 2650 gr, utilizando la siguiente ecuación determine el diámetro de la esfera.

$$D = \frac{6m}{\pi \cdot d^3}$$