Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Departement Informatik

Theoretische Informatik

Prof. Dr. J. Hromkovič Prof. Dr. E. Welzl

1. Klausur (Midterm 1)

Zürich, 15. November 2007

Aufgabe 1

Betrachten Sie für ein $k \in \mathbb{N}_{\geq 2}$ alle Wörter der Länge k. Beweisen Sie für $i \in \mathbb{N}$, $0 < i \leq k$, dass es mindestens $2^k - 2^i + 2$ Wörter w der Länge k gibt, für die gilt:

$$K(w) \geq i$$
.

Dabei dürfen Sie nicht auf irgendwelche in den Übungen bewiesenen Aussagen zurückgreifen.

Hinweis: Falls es Ihnen nicht gelingt, die angegebene Schranke zu beweisen, können Sie auch den Beweis für einen niedrigeren Wert als $2^k - 2^i + 2$ führen. Die derart erreichbaren Punkte hängen (ausser von der Korrektheit des Beweises) von der Höhe der von Ihnen bewiesenen Schranke ab.

10 Punkte

Aufgabe 2

- (a) Entwerfen Sie einen deterministischen endlichen Automaten für die Sprache $L = \{x \in \{a,b\}^* \mid |x|_a \text{ ist gerade und } x = ybbaz \text{ für irgendwelche } y,z \in \{a,b\}^*\}$ und erläutern Sie Ihren Entwurf.
- (b) Geben Sie die Klassen für den Anfangszustand und alle akzeptierenden Zustände Ihres Automaten an.

7+3 Punkte

Aufgabe 3

Beweisen Sie, dass die nachstehenden Sprachen nicht regulär sind.

- (a) $L_a = \{w \in \{0,1\}^* \mid w = 0^{n^2} \text{ für ein } n \in \mathbb{N}\}$ (also die Menge aller Wörter, die nur aus Nullen bestehen und deren Länge eine Quadratzahl ist);
- (b) $L_b = \{w \in \{0,1\}^* | w = s1t \text{ für } s, t \in \{0,1\}^* \text{ mit } |s| = |t|\}$ (also die Menge aller Wörter mit einer 1 genau in der Mitte).

Sie dürfen sich jeweils eine der folgenden drei Beweismethoden aussuchen, jedoch *nicht* dieselbe für beide Aufgabenteile.

- (i) mithilfe eines angenommenen endlichen Automaten (Verwendung von Lemma 3.3. oder direkt über den Automaten),
- (ii) mittels des Pumping-Lemmas,
- (iii) unter Verwendung von Kolmogorov-Komplexität.

Bitte beachten Sie, dass Lösungen, die dieser Vorgabe nicht entsprechen, nicht bewertet werden. Insbesondere wird bei zwei Lösungen mit derselben Methode nur die erste bewertet.

5+5 Punkte

Aufgabe 4

Entwerfen Sie eine reguläre Grammatik für die Sprache L_3 . Diese enthält alle Wörter über $\{a,b\}$, deren drittletzter Buchstabe ein a ist, formal:

$$L_3 = \{uav \mid u, v \in \{a, b\}^* \text{ und } |v| = 2\}.$$

Beweisen Sie, dass für Ihre Grammatik G_3 auch tatsächlich $L(G_3)=L_3$ gilt. 10 Punkte