Série 10

David Wiedemann

5 mai 2021

1

Montrons d'abord que la fonction f(x,y) est intégrable au sens de Riemann sur $[0,1]^2$.

Nous allons montrer que pour tout $\epsilon > 0$, il existe une partition P_{ϵ} de $[0,1]^2$ satisfaisant

$$\overline{S}(f, P_{\epsilon}) - \underline{S}(f, P_{\epsilon}) < \epsilon.$$

Faisons d'abord l'observation que $\underline{S}(f, P) = 0$ pour toute partition P de $[0,1]^2$, en effet on peut supposer que tous les éléments $Q\in P$ sont des pavés non dégénérés (si ils l'étaient, ils ne contribueraient pas à la somme), et alors

$$\underline{S}(f, P) = \sum_{Q \in P} \inf_{z \in Q} f(z) \operatorname{Vol}(Q)$$

et $\inf_{z\in Q} f(z) = 0$ pour tout $Q\in P$ car par densité des irrationnels, il existe $(a,b) \in Q$ tel que $a,b \notin \mathbb{Q}$, on en déduit que $\underline{S}(f,P)$

Soit donc $\epsilon > 0$, et soit $n \in \mathbb{N}^*$ satisfaisant $\frac{1}{n} < \frac{\epsilon}{2}$.

Soit $k = \frac{\epsilon}{4(n-1)}$. Considérons la partition

$$P_{\epsilon} = \left\{ [0, \frac{1}{n}], [\frac{1}{n}, \frac{1}{n-1} - k], [\frac{1}{n-1} - k, \frac{1}{n-1} + k], [\frac{1}{n-1} + k, \frac{1}{n-2} - k], \dots, [1-k, 1] \right\} \times [0, 1]$$

La somme de Darboux supérieure est

$$\overline{S}(f, P_{\epsilon}) - \underline{S}(f, P_{\epsilon}) = \overline{S}(f, P_{\epsilon})$$

$$= \sum_{Q \in P_{\epsilon}} \sup_{z \in Q} f(z) \operatorname{Vol}(Q)$$

$$= \frac{1}{n} + \sum_{i=1}^{n-1} \sup_{z \in \left[\frac{1}{n-i} - k, \frac{1}{n-i} + k\right] \times [0, 1]} f(z) \operatorname{Vol}\left(\left[\frac{1}{n-i} - k, \frac{1}{n-i} + k\right] \times [0, 1]\right)$$

$$= \frac{1}{n} + (n-1)2k$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

2

Et ant donné que l'intégrale existe, et que pour toute partition P de $[0,1]^2,$ la somme de Darboux inférieure est nulle, on en déduit que

$$\int_{[0,1]^2} f = 0.$$