Homework #0 Report

Deep Learning for Computer Vision 資工碩一 張凱庭 R10922178

1. Mean face and first four eigen faces.

mean face	1st eigen face	2nd eigen face	3rd eigen face	4th eigen face
	890	110		

2. Person₈Image₁ reconstructed face with first $n=3,\,50,\,170,\,240,\,345$ eigenfaces.

n = 3	n = 50	n = 170	n = 240	n = 345
		1300	15.0	0

3. Mean squared error between the reconstructed image and the original image.

n = 3	n = 50	n = 170	n = 240	n = 345
1566.35	134.03	39.85	21.48	3.04

4. k-nearest neighbors algorithm to classify the testing set images.

	Test Set		
(a) origin data set			
Fold 1	Fold 2	Fold 3	Test Set
Fold 1	Fold 2	Fold 3	Test Set
Fold 1	Fold2	Fold 3	Test Set

(b) split the training set into 3-fold

Implement 3-fold cross-validation as above, and record the average validation performance(recognition rate) on different hyperparameters, and the results:

	n = 3	n = 50	n = 170
k = 1	0.727	0.966	0.966
k = 3	0.616	0.9	0.894
k = 5	0.541	0.808	0.8

According to the results, we can tell that it performed best at (k = 1, n = 50) which has the highest average recognition rate on validation rate. Hence I pick (k = 1, n = 50)as my choice of hyperparameters.

5. recognition rate of the testing set.

The result on the test set using (k = 1, n = 50):

recognition rate on test set	0.916
------------------------------	-------