

Year 12 Specialist TEST 1

Friday 9 February 2018
TIME: 5 mins reading 40 minutes working
Classpads allowed!

37 marks 7 Questions

Name:	SOLUTIONS	5)
Teacher:		

Note: All part questions worth more than 2 marks require working to obtain full marks.

Some useful Formulae

Cartesian form		
z = a + bi	$\overline{z} = a - bi$	
$\operatorname{Mod}(z) = z = \sqrt{a^2 + b^2} = r$	$\operatorname{Arg}(z) = \theta$, $\tan \theta = \frac{b}{a}$, $-\pi < \theta \le \pi$	
$ z_1 z_2 = z_1 z_2 $	$\left \frac{z_1}{z_2} \right = \frac{ z_1 }{ z_2 }$	
$\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$	$\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2)$	
$z\bar{z}= z ^2$	$z^{-1} = \frac{1}{z} = \frac{\overline{z}}{ z ^2}$	
$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$	$\overline{z_1}\overline{z_2} = \overline{z_1}\overline{z_2}$	
Polar form		
$z = a + bi = r(\cos \theta + i \sin \theta) = r \cos \theta$	$\overline{z} = r \operatorname{cis}(-\theta)$	
$z_1 z_2 = r_1 r_2 \operatorname{cis} (\theta_1 + \theta_2)$	$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis} \left(\theta_1 - \theta_2 \right)$	
$\operatorname{cis}(\theta_1 + \theta_2) = \operatorname{cis} \theta_1 \operatorname{cis} \theta_2$	$\operatorname{cis}(-\theta) = \frac{1}{\operatorname{cis}\theta}$	
De Moivres theorem		
$z^n = z ^n \operatorname{cis}(n\theta)$	$(\operatorname{cis}\theta)^n = \operatorname{cos} n\theta + i\operatorname{sin} n\theta$	
$z^{\frac{1}{q}} = r^{\frac{1}{q}} \left(\cos \frac{\theta + 2\pi k}{q} + i \sin \frac{\theta + 2}{q} \right)$	$\left(\frac{k\pi k}{k}\right)$, for k an integer	

$\cos^2 x + \sin^2 x = 1$	$1 + \tan^2 x = \sec^2 x$	
	$\cos 2x = \cos^2 x - \sin^2 x$	
$\cos(x \pm y) = \cos x \cos y + \sin x \sin y$	$= 2\cos^2 x - 1$	
	$=1-2\sin^2x$	
$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$	$\sin 2x = 2\sin x \cos x$	
$\tan (x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$	$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$	
$\cos A \cos B = \frac{1}{2} (\cos(A - B) + \cos(A + B))$	$\sin A \cos B = \frac{1}{2} \left(\sin(A+B) + \sin(A-B) \right)$	
$\sin A \sin B = \frac{1}{2} \left(\cos(A - B) - \cos(A + B) \right)$	$\cos A \sin B = \frac{1}{2} \left(\sin(A+B) - \sin(A-B) \right)$	

Note: All part questions worth more than 2 marks require working to obtain full marks.

Q1) (2, 2, 2, 2 & 1 = 9 marks)

If w = 2 - 2i and z = 9 - 5i determine exactly:

a) WZ = 8 - 28i

Real term / Imaginary

- b) $\frac{w}{z}$ $\frac{2-2i}{9-5i} \frac{(9+5i)}{-9^2+25^2} = \frac{28-8i}{706} \sqrt{\text{numerator}}$
- c) zw 8 28+8i / Real / Imagines
- d) WZ 28-8i VReal V Imaginery
- e) What do you notice about (c) and (d)?

 Conjugates

 mentions conjugates

Q2 (2 & 2 = 4 marks)

Express each of the following into Cartesian form, a+bi

a)
$$7cis\left(-\frac{2\pi}{3}\right) = 7\left(\cos\left(-\frac{2\pi}{3}\right) + i\sin\left(-\frac{2\pi}{3}\right)\right) = 7\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = -\frac{7}{2} - \frac{7\sqrt{3}i}{2}i$$

$$\sqrt{\text{expands cis}}$$

$$\sqrt{\text{expands cis}}$$

$$\sqrt{\text{expands cis}}$$

$$\sqrt{\text{expands cis}}$$

$$12\cos 30^\circ - 12\sin 30^\circ 1 = 6\sqrt{3} - 6i$$

Ved part

Virginary part

Q4 (3 marks)

Determine z in polar form given that w and zw have been drawn below.

Q5 (5, 3 & 3 = 11 marks)

$$Z = \sqrt{2cis(-\frac{\pi}{4} + 2n\pi)} \quad n = 0, \pm \frac{1}{2}$$

$$Z = 2 cis(-\frac{\pi}{20} + \frac{2n\pi}{5})$$

$$= 2 \frac{1}{2} cis(-\frac{\pi}{20} + \frac{8n\pi}{20})$$

- b) Plot the roots on the diagram below. (Note: each minor angle is $\frac{1}{20}$ to $\frac{1$

Five egaally spaced points

I all 5 pts have correct angle.

c) The roots form the vertices of a pentagon. Determine the value for the perimeter of the pentagon to two decimal places.

I determines perimeter

Q6 (5 marks)

Determine, using de Moivre's theorem, an expression for $\sin 3\theta$ in terms of $\sin \theta$ only.

{Hint: start with $(\cos\theta + i\sin\theta)^3$ }

$$\left(\cos 0 + \sin 0\right)^{3} = \cos^{3}(0)$$

$$sin30 = sin^30 + 3cos^20 in0$$

 $= sin^30 + 3(1 - sin^20) sin0$
 $= sin^30 + 3sin0 - 3sin^30$
 $= 3sin0 - 2sin^30$

Q7 (5 marks)

Consider the points A and B in the complex plane. The perpendicular bisector of the line AB is represented by ${\rm Im}(z)=3\,{\rm Re}(z)-1$

If point A is 5+ci and point B is d-7i in the complex plane, determine the values of the constants c and d.

Midport AB =
$$(\frac{5 \pm d}{5}, \frac{c-7}{2})$$
 $(\frac{-7}{2} = 3(\frac{5 \pm d}{2}) - 1$
 $M_{AB} = \frac{c+7}{5-d} = -\frac{1}{3}$

Use simultaneous (= -124

d=-10=4

determines midpoint in terms of c = d.

determines gradient in terms of c = d.

determines midpoint in terms of c = d.