Calculus III TA Session

February 22, 2024

TA: SING-YUAN YEH

- 1. Given the cycloid curve $\{(x,y): x=\theta-\sin\theta, y=1-\cos\theta \text{ and } 0\leq\theta\leq2\pi\}$, find the following value
 - (a) the area of between the cycloid curve and x-axis.
 - (b) the arc-length of the cycloid curve.
 - (c) [Extra] Could you find the value of $\frac{\sin \theta}{\sqrt{y}}$?
 - (d) [Extra] Is it similar to Snell's law?
 - (e) [Extra] Could you find a path in which the particle takes minimal time to move between two places by gravity.

Solution:

(c) Let's consider the following figure

We know $y = D \sin^2 \theta$. Hence,

$$\frac{\sin(\theta)}{\sqrt{y}} = \frac{1}{\sqrt{D}}$$

is a constant. In this case diameter D=1.

(d) Let's consider the following figure

By the conservation of energy, we have $\frac{1}{2}mv^2 = mgy$. Then, $v = \sqrt{2gy}$. By Snell's law,

$$\frac{\sin\left(\theta_{1}\right)}{v_{1}} = \frac{\sin\left(\theta_{2}\right)}{v_{2}}$$

Substitute $v = \sqrt{2gy}$ into above equation,

$$\frac{\sin\left(\theta_{1}\right)}{\sqrt{y_{1}}} = \frac{\sin\left(\theta_{2}\right)}{\sqrt{y_{2}}}$$

According to (c), we know above quantity is a constance.

- 2. **(Parametric Equations)** 1111 (11-14) Midterm Problem 1 A curve C is defined by the parametric equations $x = 2t \pi \sin(t), y = 2 \pi \cos(t)$, where $-\pi < t < \pi$.
 - (a) Find $\frac{dy}{dx}$.
 - (b) Show that C has two tangents at the point (x,y)=(0,2) and find the equations of these tangent lines.
 - (c) Find $\frac{d^2y}{dx^2}$. Is C concave upward or downward near $t=\frac{\pi}{3}$?
 - (d) Find the area of region which is enclosed by the curve $C, x = 2\pi$ and y = 2.

