Interazione e Multimedia 9 marzo 2009

DOMANDA 1

Siano date le immagini I e J così definite:

l=						J=					
20	200	240	200	20	21	213	255	213	21		
		240			64	255	21	21	64		
60	240		20	60	21	255	213	213	21		
20	240	200	200	20	21	255	21	0	2.1		
20	240	20	0	20	21		21				
20	200	20	0	20	21	213	21		21		

L'immagine J si ottiene a partire dall'immagine I applicando un determinato operatore (non importa sapere quale).

- 1. [1] Tale operatore è shift invariant? Perché?

 Si perché si ottiene sempre lo stesso risultato per un determinato valore indipendentemente dalla posizione in cui esso si trova. Ad esempio, nella matrice I c'è il valore 20 in diverse posizioni, ma esso assume sempre lo stesso valore in J.
- 2. [1] Tale operatore è puntuale? Perché? Si, perché chiaramente il valore in output dipende solo dal valore in input. Se così non fosse, dovrebbe assumere un valore sempre diverso nella matrice J perché l'intorno di un dato valore varia sempre nella matrice I.
- 3. [3] Disegnare la LUT dell'operatore applicato.

DOMANDA 2

1. [3] Applicare l'operatore MEDIANO 3x3 all'immagine J

- 2. [1] Qual è il kernel dell'operatore mediano?

 L'operatore non può essere rappresentato da un kernel perché non è lineare.
- 3. [1] L'operatore mediano è shift invariant? Perché?

 E'shift invariant perché il valore di output dipende dall'intorno di quello in input che è sempre differente ma non dalla posizione che occupa.

DOMANDA 3

1. [3] Scrivere le singole componenti CMY della seguente immagine RGB

	R		G			В				
20	0	200		0	100	0		0	0	100
0	150	10		0	20	20		50	200	0
20	250	0		200	200	0		10	0	200

С				M				Υ			
235	255	55		255	155	255		255	255	155	
255	105	245		255	235	235		205	55	255	
235	5	255		55	55	255		245	255	55	

- 2. [2] Qual è la formula per ottenere l'immagine a scala di grigio da una RGB? Se si passa allo spazio YC_bC_r , la matrice Y è proprio l'immagine a scala di grigio. Y=0,30*R+0,60*G+0,10*B
- 3. [2] Proponete una formula per ottenere l'immagine a scala di grigio da CMY. Y=0.30*(255-C)+0.60*(255-M)+0.10*(255-Y)
- 4. [2] Scrivere l'immagine a scala di grigio ottenuta a partire dall'immagine nel punto 1 di questa domanda.

DOMANDA 4

- 1. [1] Che cosa è l'istogramma di una immagine?

 L'istogramma è un grafico che ci da informazioni statistiche su i pixel di una immagine.
- 2. [3] Disegnare l'istogramma dell'immagine I

e dell'immagine J:

DOMANDA 5

1. [3] Codificare la stringa "Viva le donne!" usando la codifica di Huffman. *Una possibile codifica è:*

```
V = 0010

i = 0011

v = 1000

a = 1001

_ = 010

l = 1010

e = 011

d = 1011

o = 0000

n = 11

! = 0001
```

- 2. [1] Quali sono i pregi della codifica di Huffman rispetto alla codifica RLE? È a lunghezza variabile e non ha codici prefissi. Con questo sistema richiede meno bit di una codifica a lunghezza fissa.
- 3. [3] Quanti sono i bit suggeriti dal teorema di Shannon?

Secondo Shannon ci vorrebbero 40,54 -> 41 bit.