

Робот-боксёр и датчик касания

Версия документа: 1.0

Внешний вид:

Оборудование: базовый набор Lego Mindstorms Education EV3.

Механизмы: кривошипно-шатунный механизм.

Описание.

Маятник — это твердое тело, совершающее под действием силы тяжести колебания вокруг некоторой точки подвеса. В этой работе ты соберешь модель робота-боксёра из конструктора Lego Education EV3, левая и правая нога которого — два маятника.

В положении верхней и нижней мертвой точки кривошипно-шатунного механизма ноги будут максимально отдалены друг от друга. Исходное положение модели перед запуском программы — нижняя мертвая точка кривошипно-шатунного механизма.

При включении мотора на нужной мощности поршень в виде оси тянет модель боксёра вверх, а ноги под действием силы тяжести устремляются навстречу друг-другу, работая как ножницы. При этом руки боксёра связаны с ногами с помощью двух тяг и также участвуют в анимации модели.

Модель боксёра совершает возвратно-поступательное движение в результате работы кривошипно-шатунного механизма.

Задача:

Подбери мощность среднего мотора и высоту крепления боксёра так, чтобы его руки и ноги работали без сбоев. Реши задачи из второй части этой работы. В качестве подсказки для составления программ приведены блок-схемы алгоритма.

Вопросы:

1. Назовите составные части кривошипно-шатунного механизма, пронумерованные на фотографии:

Содержание

Часть 1. Сборка конструкции	стр. 4
Часть 2. Залачи	стр. 19

Часть 1. Сборка конструкции

Установи балку на 5 модулей — будущий **шатун** в кривошипно-шатунном механизме

x1 5M

x1

Установи длинную ось. Она будет совершать возвратно-поступательное движение и выполнять роль **поршня** в кривошипно-шатунном механизме

x1 12M

16

15

Закрепи боксёра на горизонтальном рычаге на нужной высоте. Высоту крепления подбери так, чтобы модель работала без сбоев

34

Соедини средний мотор и датчик касания с помощью кабеля:

35

«А» - средний мотор;

«1» - датчик касания.

Часть 2. Задачи

Задача О. Настройка модели. Установи кривошипно-шатунный механизм в положение нижней мертвой точки. Запускай программу на разной мощности среднего мотора и с разной высотой крепления модели боксёра. Выбери ту мощность и положение, при котором боксёр не спотыкается.

Задача 1. После запуска программы ждём щелчка по кнопке. После этого события включаем боксёра и производим 10 ударов. Каждый удар — 1 оборот среднего мотора.

Задачу можно выполнить с помощью блока «Ожидание» или с помощью цикла с постусловием. Блок-схема алгоритма для двух способов:

Задача 2. После запуска программы ждём щелчка по кнопке. После этого события включаем боксёра до повторного щелчка.

Задачу можно выполнить с помощью двух блоков «Ожидание» или с помощью цикла с постусловием. Блок-схема алгоритма для двух способов:

Задача 3. Считайте количество щелчков по датчику касания с выводом этого значения на экран, пока не будет щелчка по центральной кнопке блока EV3. После этого события включаем боксёра и производим столько ударов, сколько было щелчков по датчику.

Для подсчета количества щелчков заведите числовую переменную к.

Блок-схема алгоритма:

Задача 4. Считайте количество щелчков по датчику касания с выводом этого значения на экран, пока интервал времени между щелчками < 3 секунд. Если после последнего щелчка по датчику касания прошло больше 3 секунд, включите боксёра и произведите столько ударов, сколько было щелчков по датчику.

Для подсчета количества щелчков заведите числовую переменную k. Интервал между щелчками измеряйте с помощью таймера.

Блок-схема алгоритма:

