

Thermo
Prof. Dr.-Ing. habil. Jadran Vrabec
Fachgebiet Thermodynamik
Fakultät III – Prozesswissenschaften

Aufgabe 4.1

Benennen Sie verschiedene (idealisierte) Zustandsänderungen und geben Sie eine Anschauung, welche Prozesse in der Realität (näherungsweise) dieser Idealisierung entsprechen. Erkären Sie das Konzept der Polytropen Zustandsänderung.

Aufgabe 4.2

Der Zustand von $m=1\,\mathrm{kg}$ Luft soll in zwei Schritten von $p_1=1\,\mathrm{bar}$, $T_1=300\,\mathrm{K}$ auf $p_2=2.5\,\mathrm{bar}$, $T_2=1200\,\mathrm{K}$ verändert werden. Wie viel Arbeit W_{12} und wie viel Wärme Q_{12} wird dabei übertragen, wenn

- a) zunächst eine isochore und danach eine isobare Temperaturerhöhung stattfindet?
- b) zunächst eine isobare und danach eine isochore Temperaturerhöhung stattfindet?

<u>Hinweis:</u> Die Luft soll als ideales Gas mit $R = 0.287 \,\mathrm{kJ/(kg\,K)}$ und $c_v = 0.714 \,\mathrm{kJ/(kg\,K)}$ betrachtet werden.

Aufgabe 4.3

Im Folgenden soll ein ideales Gas mit $R = 0.287 \,\mathrm{kJ/(kg\,K)}$ bei folgenden Zustandspunkten betrachtet werden:

$T = 100\mathrm{K}$		
Zustand	$oldsymbol{v}$	p [bar]
A	$0.8\mathrm{m}^3/\mathrm{kg}$	
В	$0.4\mathrm{m}^3/\mathrm{kg}$	
С	$20 \ell/\mathrm{kg}$	

$T=1000\mathrm{K}$			
Zustand	$oldsymbol{v}$	p [bar]	
D	$0.8\mathrm{m}^3/\mathrm{kg}$		
Е	$0.4\mathrm{m}^3/\mathrm{kg}$		
F	$200\ell/\mathrm{kg}$		

- a) Berechnen Sie für die Zustandspunkte A bis F den jeweiligen Druck in bar.
- b) Tragen Sie die in a) berechneten Zustandspunkte A bis F in ein p-v-Diagramm ein und skizzieren Sie mit Hilfe dieser Punkte die beiden Isothermen für $T = 100 \,\mathrm{K}$ und $T = 1000 \,\mathrm{K}$.
- c) Tragen Sie in das p-v-Diagramm außerdem folgende Zustandsänderungen (ZÄ) ein:
 - i) Isobare ZÄ von einem Zustand mit der Temperatur 726.85°C zum Zustand C
 - ii) Isochore ZÄ vom Zustand B zu einem Zustand mit dem Druck 14.4 bar
 - iii) Isotherme ZÄ vom Zustand D zum Zustand F
 - iv) Reversibel adiabate ZÄ von A zu einem Zustand mit dem spezifischen Volumen $0.08\,\mathrm{m}^3/\mathrm{kg}$. Die isochore Wärmekapazität des idealen Gases soll $c_v=717.5\,\mathrm{J/(kg\,K)}$ betragen.

Thermo

Fachgebiet Thermodynamik
Fakultät III – Prozesswissenschaften

- d) Tragen Sie in das Diagramm die spezifische reversible Volumenänderungsarbeit und die spezifische reversible technische Arbeit für die ZÄ c).iii) ein. Diskutieren Sie beide Begriffe.
- e) Wie viel Wärme wird bei der ZÄ c).iv) übertragen?