In [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib
from matplotlib import pyplot as plt
import statistics as sts
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn import linear_model
import warnings
warnings.filterwarnings('ignore')
```

In [2]:

```
url=r"C:\Users\DELL\Desktop\insrance.csv"
cost=pd.read_csv(url)
cost
```

Out[2]:

	age	sex	bmi	children	smoker	region	charges
0	19.0	female	27.900	0.0	yes	southwest	16884.92400
1	18.0	male	33.770	1.0	no	southeast	1725.55230
2	28.0	male	33.000	3.0	no	southeast	4449.46200
3	33.0	male	22.705	0.0	no	northwest	21984.47061
4	32.0	male	28.880	0.0	no	northwest	3866.85520
1341	50.0	male	30.970	3.0	no	northwest	10600.54830
1342	18.0	female	31.920	0.0	no	northeast	2205.98080
1343	18.0	female	36.850	0.0	no	southeast	1629.83350
1344	21.0	female	25.800	0.0	no	southwest	2007.94500
1345	61.0	female	29.070	0.0	yes	northwest	29141.36030

1346 rows × 7 columns

In [3]:

```
cost.isna().sum()
```

Out[3]:

```
age 5
sex 6
bmi 6
children 6
smoker 6
region 6
charges 8
dtype: int64
```

In [4]:

```
cost.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1346 entries, 0 to 1345
Data columns (total 7 columns):
              Non-Null Count Dtype
    Column
              -----
0
              1341 non-null
                             float64
    age
1
              1340 non-null object
    sex
2
              1340 non-null float64
    bmi
                            float64
3
    children 1340 non-null
4
              1340 non-null object
    smoker
5
    region
              1340 non-null
                             object
    charges 1338 non-null
                             float64
dtypes: float64(4), object(3)
```

In [5]:

memory usage: 73.7+ KB

```
cost.interpolate(inplace=True)
cost
```

Out[5]:

	age	sex	bmi	children	smoker	region	charges
0	19.0	female	27.900	0.0	yes	southwest	16884.92400
1	18.0	male	33.770	1.0	no	southeast	1725.55230
2	28.0	male	33.000	3.0	no	southeast	4449.46200
3	33.0	male	22.705	0.0	no	northwest	21984.47061
4	32.0	male	28.880	0.0	no	northwest	3866.85520
1341	50.0	male	30.970	3.0	no	northwest	10600.54830
1342	18.0	female	31.920	0.0	no	northeast	2205.98080
1343	18.0	female	36.850	0.0	no	southeast	1629.83350
1344	21.0	female	25.800	0.0	no	southwest	2007.94500
1345	61.0	female	29.070	0.0	yes	northwest	29141.36030

1346 rows × 7 columns

In [6]:

```
cost.isna().sum()
```

Out[6]:

age 0
sex 6
bmi 0
children 0
smoker 6
region 6
charges 0
dtype: int64

In [7]:

```
cost.fillna(method='ffill', inplace=True)
cost
```

Out[7]:

	age	sex	bmi	children	smoker	region	charges
0	19.0	female	27.900	0.0	yes	southwest	16884.92400
1	18.0	male	33.770	1.0	no	southeast	1725.55230
2	28.0	male	33.000	3.0	no	southeast	4449.46200
3	33.0	male	22.705	0.0	no	northwest	21984.47061
4	32.0	male	28.880	0.0	no	northwest	3866.85520
1341	50.0	male	30.970	3.0	no	northwest	10600.54830
1342	18.0	female	31.920	0.0	no	northeast	2205.98080
1343	18.0	female	36.850	0.0	no	southeast	1629.83350
1344	21.0	female	25.800	0.0	no	southwest	2007.94500
1345	61.0	female	29.070	0.0	yes	northwest	29141.36030

1346 rows × 7 columns

In [8]:

```
cost.isna().sum()
```

Out[8]:

age 0
sex 0
bmi 0
children 0
smoker 0
region 0
charges 0
dtype: int64

In [9]:

In the above plots it says that the sex and region are almost equally divided but the Smokers ration is 80:20

```
In [10]:
```

```
features = ['sex', 'children', 'smoker', 'region']

plt.subplots(figsize=(20, 10))
for i, col in enumerate(features):
    plt.subplot(2, 2, i + 1)
    cost.groupby(col).mean()['charges'].plot.bar()
plt.show()
```


In the above plots we can observe that the charges for males is more as compared to female.

Here smokers are charged more premium than the non-smokers

Premium charges are almost same for region wise

In [11]:

Here we can observe that smokers are charged with higher premium

In [12]:

```
features = ['age', 'bmi']

plt.subplots(figsize=(17, 7))
for i, col in enumerate(features):
    plt.subplot(1, 2, i + 1)
    sns.boxplot(cost[col])
plt.show()
```


Here in the box plot we can see the outliers in the BMI column

```
In [13]:
```

```
cost.shape, cost[cost['bmi']<45].shape</pre>
```

Out[13]:

```
((1346, 7), (1326, 7))
```

#Now lets over write the dataset without the outliers

In [14]:

```
cost1= cost[cost['bmi']<45]
cost1</pre>
```

Out[14]:

	age	sex	bmi	children	smoker	region	charges
0	19.0	female	27.900	0.0	yes	southwest	16884.92400
1	18.0	male	33.770	1.0	no	southeast	1725.55230
2	28.0	male	33.000	3.0	no	southeast	4449.46200
3	33.0	male	22.705	0.0	no	northwest	21984.47061
4	32.0	male	28.880	0.0	no	northwest	3866.85520
1341	50.0	male	30.970	3.0	no	northwest	10600.54830
1342	18.0	female	31.920	0.0	no	northeast	2205.98080
1343	18.0	female	36.850	0.0	no	southeast	1629.83350
1344	21.0	female	25.800	0.0	no	southwest	2007.94500
1345	61.0	female	29.070	0.0	yes	northwest	29141.36030

1326 rows × 7 columns

#As we can see previously there were 1346 rows now its reduced to 1326 that means the outliers are removed from the dataset

In [15]:

```
for col in cost1.columns:
    if cost1[col].dtype == object:
        le = LabelEncoder()
        cost1[col] = le.fit_transform(cost1[col])
```

#The above step is done to convert the labels into a numeric form so as to machine-readable form

```
In [16]:
```


The above heatmap shows that there are no highly correlated features in it.

Model Building

```
In [17]:
```

```
cost2=linear_model.LinearRegression()
cost2.fit(cost1[['age','sex','bmi','children','smoker','region']],cost1.charges)
```

Out[17]:

LinearRegression()

```
In [18]:
cost2.coef_ # ([ m1, m2, m3, m4, m5, m6)] respectively
Out[18]:
array([ 257.37510507, -55.03290946,
                                         351.66773022,
                                                         507.76470292,
       23358.10722297, -380.51865906])
In [21]:
cost2.intercept_
Out[21]:
-12316.674496613427
In [23]:
cost2.predict([[26,1,32,1,0,2]]) #[(m1*age)+(m2*sex)+(m3*bmi)+(m4*children)+(m5*smoker)+(
Out[23]:
array([5320.14007743])
In [24]:
cost2.predict([[37,0,22,3,1,1.123]])
Out[24]:
array([29396.97333332])
```