BUNDESREPUBLIK DEUTSCHLAND

652

Deutsche Kl.:

12 p. 2

(1) (2)	Offenlegungs		hrift	201265 P 20 12 656.1	6
<u>@</u>			Anmeldetag:	17. März 1970	
43		•		: 30. September 1971	
	Ausstellungspriorität Unionspriorität				
39	Datum:	19. 3. 1969 9. 5. 1969	2. 4. 1969 27. 5. 1969	11. 4. 1969 28. 5. 1969	19, 4, 1969
@	Land:	Japan			
33 31 	Aktenzeichen:	21529-69 35919-69	25795-69 41504-69	28585-69 41874-69	30455-69
(54)	Bezeichnung:	N-(3.5-Dihal und ihre Ver	ogenphenyl)-imio wendung als Mil	de. Verfahren zu ihrer Gobieide	Herstellung
61)	Zusatz zu;				
@	Ausscheidung aus:				
0	Anmelder:	Sumitomo CI	nemical Compan	y. Ltd., Osaka (Japan)
	Vertreter:	Jung, H., Dr. Schirdewahn, 8000 Münche	J., DiplPhys. I	; Vossius, V., DiplCl Dr. rer. nat.; Patentan	nem. Dr. rer. nat.; wälte.
@	Als Erfinder benannt:	Fujinami, Akira, Ashiya; Ozaki, Toshiaki; Yamamoto, Sigeo; Toyonaka; Ooba, Shigehiro; Tanaka, Katsutoshi; Kameda, Nobuyuki; Takarazuka; Nodera, Katsuji, Nishinomiya; Akiba, Keiichiro, Ikeda; Ooishi, Tadashi, Minoo (Japan)			

Benachrichtigung gemäß Art. 7 § 1 Abs. 2 Nr. 1 d. Ges. v. 4. 9. 1967 (BGBl. I S. 960); Prüfungsantrag gemäß § 28 b PatG ist gestellt

DIPL. CHEM. DR. ELISABETH JUNG DIPL:-CHEM. DR. VOLKER VOSSIUS DIPL. PHYS. DR. JURGEN SCHIRDEWAHN PATENTANWALTE

17, März 🚓 8 MUNCHEN 23, CLEMENSSTRASSE 30 TELEFON. 345067 TELEGRAMM-ADRESSE: INVENT/MUNCHEN 2012656

u.Z.: F 087 C (Vo/kä)

POS - 20 910

SUMITOMO CHEMICAL COMPANY; LTD.

Osaka, Japan

" N-(3,5-Dihalogenphenyl)-imide, Verfahren zu ihrer Herstellung und ihre Verwendung als Mikrobicide "

Die Erfindung betrifft neue N-(3,5-Dihalogenphenyl)-imide der allgemeinen Formel I

$$\begin{array}{c}
X \\
X \\
X
\end{array}$$

$$\begin{array}{c}
0 \\
C \\
C \\
0
\end{array}$$

$$\begin{array}{c}
C \\
C \\
0
\end{array}$$

in der X und X' Halogenatome bedeuten und A eine substituierte Äthylengruppe der allgemeinen Formel

ist, in der R₁ einen Alkylrest mit 1 bis 4 C-Atomen, ein Halogenatom, einen Alkylthiorest mit 1 bis 10 C-Atomen, einen niederen AlkenyIthiorest, einen niederen Acylthiorest, einen Aralkylthio-, Phenylthio-, halogenierten Phenylthio-, methylierten Phenylthiooder nitrierten Phenylthiorest, einen Dialkylaminorest mit 1 bis

6 C-Atomen in den Alkylresten, den Rest eines cyclischen sekundären Amins mit 4 oder 5 C-Atomen, die Morpholinogruppe, einen Alkylsulfinylrest mit 1 bis 10 C-Atomen, oder einen Aralkylsulfinylrest und R₂ ein Wasserstoff- oder Halogenatom oder einen Alkylrest mit 1 bis 4 C-Atomen bedeuten, mit der Massgabe, dass R₁ ein Alkylrest ist, falls R₂ ein Alkylrest ist, k₁ ein Halogenatom ist, falls R₂ ein Halogenatom ist und R₁ ein anderer der genannten Reste als ein Alkylrest ist, falls R₂ ein Wasserstoff- atom ist, bder A eine Cyclopropylengruppe der allgemeinen Formeel

ist, in der R₃, R₄, R₅ und R₆, die gleich oder verschieden sein können, Wasserstoffatome oder Alkylreste mit 1 bis 4 C-Atomen bedeuten, oder A die Trimethylen-, Cyclohexylen-1,2-, Cyclohexenylen-1,2-, Cyclohexadienylen-1,2- oder o-Phenylengruppe bedeutet.

Beispiele für die Halogenatome sind Fluor-, Chlor-, Brom- und Jodatome. Beispiele für den Rest eines cyclischen sekundären Amins mit 4 oder 5 C-Atomen sind die Pyrrolidino- und Piperidinogruppe.

Die Erfindung betrifft auch Verfahren zur Herstellung der Verbindungen der allgemeinen Formel I. Die verschiedenen Möglichkeiten sind nachstehend angegeben.

Verfahren (a)

Wenn in den Verbindungen der allgemeinen Formel I der Rest A ein anderer

Rest ist als ein Alkylsulfinyläthylen- oder Aralkylsulfinyläthylenrest, d.h. der Rest R₁ ein anderer Rest als ein Alkylsulfinyl- oder Aralkylsulfinylrest ist, können die Verbindungen nach folgendem Reaktionsschema hergestellt werden:

Verfahren (b)

Die Herstellung von Verbindungen der allgemeinen Formel I, in der A eine substituierte Äthylengruppe bedeutet, in der R₂ ein Wasserstoffatom und R₁ einen Alkylthiorest, einen niederen Alkenylthiorest, einen niederen Acylthiorest, einen Aralkylthiorest, einen halogenierten Phenylthiorest, einen methylierten Phenylthiorest, einen nitrierten Phenylthiorest, eine Dialkylaminogruppe, den Rest eines cyclischen sekundären Amins, die Morpholinogruppe oder ein Halogenatom bedeutet, erfolgt die Herstellung nach folgendem Reaktionsschema:

(III) (IV)
$$\begin{array}{c} X \\ X \\ \end{array}$$
 (III) (IV)
$$\begin{array}{c} C \\ C \\ \end{array}$$
 (IP)
$$\begin{array}{c} C \\ C \\ \end{array}$$
 (IP)

Verfahren (c)

Zur Herstellung von Verbindungen der allgemeinen Formel I, in der A eine substituierte Äthylengruppe bedeutet, in der R_2 ein Wasserstoffatom und R_1 ein Chloratom ist, erfolgt das Verfahren schematisch nach folgender Gleichung:

Verfahren (d')

Zur Herstellung von Verbindungen der allgemeinen Formel I, in der A eine substituierte Äthylengruppe bedeutet, in der R_2 ein Wasserstoffatom und R_1 ein Alkylsulfinyl- oder Aralkylsulfinyl-rest ist, erfolgt die Reaktion schematisch nach folgender Gleichung:

In den vorstehend beschriebenen Formeln der Verfahren (a) bis (d) haben X und X' die vorstehende Bedeutung, A' ist eine substituierte Äthylengruppe der allgemeinen Formel

in der R2' die gleiche Bedeutung hat wie R2 und R1' ein Alkylrest mit 1 bis 4 C-Atomen, ein Halogenatom, ein Alkylthiorest
mit 1 bis 10 C-Atomen, ein niederer Alkenylthio- oder Acylthiorest, ein Aralkylthio-, Phenylthio-, halogenierter Phenylthio-,
methylierter Phenylthio- oder nitrierter Phenylthiorest, ein
Dialkylaminorest mit 1 bis 6 C-Atomen in den Alkylresten, der
Rest eines cyclischen sekundären Amins mit 4 oder 5 C-Atomen
oder die Morpholinogruppe ist, mit der Massgabe, dass R1' ein
Alkylrest ist, falls R2 ein Alkylrest ist, R1' ein Halogenatom
ist, falls R2 ein Halogenatom ist und R1' einen anderen Rest bedeutet, als einen Alkylrest, falls R2 ein Halogenatom ist, oder
A' ein Cyclopropylenrest der allgemeinen Formel

ist, in der R₃, R₄, R₅ und R₆ die obige Bedeutung haben, oder A' die Trimethylen-, Cyclohexylen-1,2-, Cyclohexenylen-1,2-, Cyclohexadienylen-1,2- oder o-Phenylengruppe bedeuten, R₁" ein Alkylthiorest mit 1 bis 10 C-Atomen, ein niederer Alkenylthio- oder Acylthiorest, ein Aralkylthio-, Phenylthio- oder halogenierter Phenylthiorest, ein Dialkylaminorest mit 1 bis 6 C-Atomen in den Alkylresten, der Rest eines cyclischen sekundären Amins mit 4 oder 5 C-Atomen, die Morpholinogruppe oder ein Halogenatom ist, und R₁" ein Alkylrest mit 1 bis 10 C-Atomen, ein Aralkyl- oder niederer Alkenylrest ist.

Nachstehend werden die Verfahren der Erfindung eingehender erläutert.

Verfahren (a)

Dieses Verfahren betrifft die cyclisierende Dehydratisierung einer Verbindung der allgemeinen Formel II. Nach diesem Verfahren können sämtliche N-(3,5-Dihalogenphenyl)-imide der Erfindung hergestellt werden, mit Ausnahme derjenigen Verbindungen der allgemeinen Formel I, in der A die Alkylsulfinyläthylen- oder Aralkylsulfinyläthylengruppe bedeutet. Die Cyclisierung wird dadurch erreicht, dass man die Verbindung der allgemeinen Formel II auf 150 bis 250°C, vorzugsweise 180 bis 200°C, erhitzt oder die Verbindung der allgemeinen Formel II bei Temperaturen von 20 bis 150°C, vorzugsweise 60 bis 100°C, mit einem Dehydratisierungsmittel behandelt. Beispiele für verwendbare' Dehydratisierungsmittel sind Säureanhydride, wie Essigsäureanhydrid, Phosphorpentachlorid, Phosphoroxichlorid, Phosphorpentoxid, Acetylchlorid und Thionylchlorid. Besonders bevorsugt ist Essigsäureanhydrid.

109840/:1798

Das Dehydratisierungsmittel wird in mindestens äquimolarer Menge zur Verbindung der allgemeinen Formel II verwendet. Die cyclisierende Dehydratisierung kann in Abwesenheit oder Gegenwart eines Lösungs- oder Verdünnungsmittels durchgeführt werden. Beispiele für derartige Verdünnungsmittel sind Kylol, flüssiges Paraffin, Nitrobenzol und Dichlorbenzol. Beispiele für Lösungsmittel sind Benzol, Toluol, Kylol, Chloroform und Tetrachlorkohlenstoff. Die Umsetzung ist im allgemeinen innerhalb 30 Minuten bis 10 Stunden beendet.

Wenn in den Verbindungen der allgemeinen Formel II die Reste X und X' identisch sind und der Rest A' nicht symmetrisch ist, existiert die Ausgangsverbindung der allgemeinen Formel II in zwei Strukturisomeren. Aus diesen beiden Isomeren erhält man jedoch das identische Produkt der allgemeinen Formel Ia.

Die verfahrensgemäss eingesetzten Verbindungen der allgemeinen Formel II sind neue Verbindungen, die sich leicht z.B. durch Acylierung eines entsprechenden 3,5-Dihalogenanilins mit dem entsprechenden Carbonsäureanhydrid nach folgendem Reaktionsschema herstellen lassen:

Verfahren (b)

Dieses Verfahren besteht in der Anlagerung einer Verbindung der allgemeinen Formel IV an die Doppelbindung der N-(3,5-Dihalogenphenyl)-maleinimide der allgemeinen Formel III. Bei dieser Umsetzung wird die Verbindung der allgemeinen Formel 1V in äquimolarer Menge oder geringem Überschuss verwendet. Die Reaktionstemperatur hängt von der Art des Restes R," ab, sie liegt im allgemeinen bei -10 bis +100°C, vorzugsweise bei 0 bis 30°C, wenn R1" ein Alkylthiorest, ein niederer Alkenylthio- oder Acylthiorest, ein Aralkylthio-, Phenylthio-, halogenierter Phenylthio-, methylierter Phenylthio- oder nitrierter Phenylthiorest, ein Dialkylaminorest, der Rest eines cyclischen sekundären Amins mit 4 oder 5 C-Atomen oder die Morpholinogruppe ist. Die Reaktionstemperatur liegt bei 0 bis 100°C, vorzugsweise 20 bis 50°C, wenn der Rest R₁" ein Halogenatom bedeutet. Die Umsetzung wird vorzugsweise in einem Lösungsmittel durchgeführt. Die Art des verwendeten Lösungsmittels hängt von der Art des Restes R_{γ} " ab. Im allgemeinen wird als Lösungsmittel Benzol, Toluol, Xylol, ein aliphatischer Kohlenwasserstoff, ein schwach polares Lösungsmittel, wie Diäthyläther oder Chloroform, Dioxan, Tetrahydrofuran, Dimethylformamid oder Dimethylsulfoxid verwendet. Wenn der Rest R₁" einen anderen Rest bedeutet als ein Halogenatom, wird ein basischer Katalysator verwendet. Beispiele für basische Katalysatoren sind tertiäre Amine, wie Triäthylamin, Dimethylanilin, Diäthylanilin, Pyridin und N-Methylmorpholin. Triäthylamin ist bevorzugt.

Die verfahrensgemäss eingesetzten N-(3,5-Dihalogenphenyl)maleinimide der allgemeinen Formel III lassen sich leicht durch
Acylierung des entsprechenden 3,5-Dihalogenanilins mit Maleinsäureanhydrid herstellen; vergl. niederländische Offenlegungsschrift 68-17250.

Verfahren (c)

Dieses Verfahren besteht in einer intramolekularen Acylierung unter gleichzeitiger Chlorierung. Die Verbindung der allgemeinen Formel V wird hierbei mit einer äquimolaren Menge oder einem geringen Überschuss an Phosphorpentachlorid oder Thionylchlorid bei Temperaturen von 0 bis 80°C, vorzugsweise 20 bis 80°C, zur Umsetzung gebracht. Die Umsetzung kann in einem Lösungsmittel durchgeführt werden. Beispiele für verwendbare Lösungsmittel sind Chloroform, Tetrachlorkohlenstoff und Chlorbenzol.

Nach beendeter Umsetzung wird das Reaktionsprodukt mit Wasser gewaschen, getrocknet und aus einem Lösungsmittel umkristallisiert. Beispiele für verwendbare Lösungsmittel sind Gemische aus Benzol und Äthanol, Petroläther und Benzol, Ligroin und Benzol oder n-Hexan und Benzol.

Die verfahrensgemäss eingesetzten Verbindungen der allgemeinen Formel V lassen sich leicht durch Acylierung eines entsprechenden 3,5-Dihalogenanilins mit Maleinsäureanhydrid herstellen.

Verfahren (d)

Bei diesem Verfahren erfolgt eine Oxidation des Thioäthers der allgemeinen Formel VI. Es werden mindestens stöchiometrische Mengen eines Oxidationsmittels verwendet, wie Wasserstoffper-

oxid, eine organische Persäure, wie Perameisensäure, Peressigsäure oder Perbenzoesäure, oder Chromsäure oder ein Permanganat. Die Oxidation wird bei Temperaturen von O bis 40°C, vorzugsweise 20 bis 30°C, durchgeführt. Bei Verwendung von Chromsäure oder eines Permanganats wird das Oxidationsmittel vorzugsweise nicht in grossem Überschuss verwendet. Die Umsetzung wird vorzugsweise in einem Lösungsmittel durchgeführt. Beispiele für verwendbare Lösungsmittel sind Wasser und wassermischbare Lösungsmittel, wie Aceton, Äthanol, und Essigsäure.

Die verfahrensgemäss eingesetzten Thioäther der allgemeinen Formel VI werden nach dem Verfahren (a) oder (b) hergestellt.

Die nach dem Verfahren der Erfindung ernaltenen N-(3,5-Dihalogenphenyl)-imide der allgemeinen Formel I werden erforderlichenfalls gereinigt, z.B. durch Umkristallisation aus einem Lösungsmittel.

Die Erfindung betrifft ferner die Verwendung der N-(3,5-Dihalogenphenyl)-imide der allgemeinen Formel I als Microbicide.

Diese Verbindungen besitzen eine starke microbicide Wirkung gegenüber den verschiedensten Microorganismen, einschliesslich pflanzenpathogenen Pilzen und Parasiten. Ferner besitzen einige der Verbindungen der Erfindung eine starke microbicide Aktivität gegenüber pathogenen Microorganismen, wie Piricularia oryzae, Cochliobolus miyabeanus, Xanthomonas oryzae,

Sphaerotheca fulginea, Pellicularia sasakii, Pellicularia filamentosa, Fusarium oxysporum, Corticium rolfsii, Botrytis cinerea, Sclerotinia sclerotiorum, Alternaria kikuchiana,

Alternaria mali, Glomerella cingulata und Pythium

109840/1796

BAD ORIGINAL

aphanidermatum, sowie Parasiten industrieller Produkte, wie Aspergillus niger, und pathogenen Mikroorganismen, wie Staphylococcus aureus, Escherichia coli und Trichophyton rubrum. Dieser Befund ist überraschend, weil analoge Verbindungen, wie die entsprechenden, in der 3,5-Stellung nicht halogenierten Derivate keine nennenswerte mikrobicide Aktivität aufweisen. In diesem Zusammenhang ist es erwähnenswert, dass einige dieser analogen Verbindungen starke herbicide Wirkung entfalten, während die Verbindungen der Erfindung keine herbicide Wirkungen zeigen.

Nachstehend werden Verbindungen der Erfindung hinsichtlich ihrer mikrobiciden Aktivität mit bekannten Verbindungen verglichen.

Versuch 1

Die Testverbindungen werden in Form von benetzbaren Pulvern mit Wasser in bestimmter Menge verdünnt und auf Reispflanzen gespritzt, die in Blumentöpfen mit einem Durchmesser von 9 cm gepflanzt und bis zum 3-blättrigen Stadium gezogen waren. In jeden Blumentopf werden 7 ml des verdünnten Präparates gegeben. Nach einem Tag werden die Pflanzen mit einer Sporensuspension von Piricularia oryzae, dem Erreger der Brusone-Krankheit, infiziert. 5 Tage später wird die Zahl der Flecken auf den Blättern beobachtet. Die Ergebnisse sind in den nachstehenden Tabellen zusammengestellt. Es ist ersichtlich, dass die Verbindungen der Erfindung eine höhere fungicide Aktivität besitzen als Verbindungen analoger Konstitution.

Tabelle I

	·			_
Nr	Testverbindung	Wirk- stoff- konzen- tration, TpM	Zahl der Flecken pro 10 Blätter	
1	C1	1,000	28	-
2	C1	1,000	O	
3	C1	1,000	8	
4	$ \begin{array}{c c} C1 & CH - NO \\ C - CH - NO \\ C - CH_2 \end{array} $	1,000	36	
5	Br C - CH - S - C - CH ₂	1,000	12	

Tabelle II

Nr.	Testverbindung	Wirk- stoff- konzen- tration, TpM	Zahl der Flecken pro 10 Blätter
1	CI CI CI	1,000	38
2		n	56
3	Vergleichsverbindung O C N	35.3 11.	312

	-14 -			
	Vergleichsverbindung '		2012	556
4	CI CI	1,000	264	
5	Vergleichsverbindung	et	281	
	0 unbehandelt	<u>-</u>	285	

Tabelle III

Nr.	Testverbindung	Wirk- stoff- konzen- tration, TpM	Zahl der Flecken pro Blatt
1	CH ₃ CH	500	2.8
2	CH ₃ CH C Br	500	3.7

· · · · · ·	- 15 -		201200
	Vergleichsverbindung		
	CH ₃ C		
3	CH C N	500	36.7
	CH ₃ 0		
	unbehandelt	-	38. 9

Tabelle IV

Nr.	Testverbindung.	Wirk- stoff- konzen- tration	Zahl der Flecken pro Blatt
1	C1	500	0.6
2	Br CH - C C1 C1	500	1.4
3	C1 O Br CH - C N Br	500	1.2

	- 16 -		201265	56
4	Vergleichsverbindung C1	500	33.8	
5	Vergleichsverbindung C1	500	30.3	
6	Vergleichsverbindung C1 O	500	35.1	
	unbehandelt	-	34.5	

Tabelle V

Nr.	Testverbindung	Wirk- stoff- kon- zentra- tion, TpM	Zahl der Flecken pro Blatt
1	C1 C1 CH-SOCH ₂ CH ₃ C - CH ₂ C - CH ₂	500	1.4
	109840/1796	- .	38.8

Versuch 2

Die Testverbindungen in Form von Stäubemitteln werden auf Reispflanzen aufgebracht, die in Blumentöpfen mit einem Durchmesser von 9 cm bis zum 4-blättrigen Stadium gezogen wurden. Mit Hilfe eines Zerstäubers wird jeder Blumentopf mit 100 mg Stäubemittel versetzt. Nach einem Tag werden die Pflanzen mit einer Sporensuspension von Cochliobolus miyabeanus infiziert. 3 Tage später wird die Zahl der Flecken gezählt. Die Ergebnisse sind in den nachstehenden Tabellen zusammengestellt. Es ist ersichtlich, dass die Verbindungen der Erfindung eine stärkere fungicide Aktivität besitzen als bekannte Verbindungen analoger Konstitution.

Tabelle VI

Nr.	Testverpingung:	Wirk- stoff- konzen- tration,	Zahl der Flecken pro Blatt
1	C1	500	3
2	C1 C - CH·S·CH ₂ (CH ₂) ₂ CH ₃ C - CH ₂	<u>,</u> 500	0

3	C1	500	0
4	$\begin{array}{c c} C1 & CH - S - C1 \\ C - CH_2 & C1 \end{array}$	500	. 6
5	$\begin{array}{c c} C1 & CH - SCH_2 \\ C - CH - SCH_2 \end{array}$	500	. 8
6	C1 CH - CH - CH2CH3 C - CH - N CH2CH3 C - CH2	500	. 19
7	$ \begin{array}{c c} C1 & C1 & CH - N \\ C - CH - N \\ C - CH_2 \\ 0 \end{array} $	500	· 26
8	C1	500	25

109840/1796

.6		_
\subseteq	-	, i
\	```	•
_	J	•

	o		
9	Br C - CH - S - CH ₂	500	0
	Vergleichsverbindung		
10	C - CH - S-C	500	48
	unbehandelt	-	· 76

Tabelle VII

Nr.	Testverbindung	Wirk- stoff konzen- tration, TpM	Zahl der Flecken pro Blatt
1	H ₂ C CH - C N C1	100	0.8
2	H ₂ C CH - C Br	100	1.2

ORIGINAL INSPECTED

•		- 20 -		ZU. 1 Z·03
	3	CH ₂ C C C C C C C C C C C C C C C C C C C	100	1.0
	4	CH ₃ C - C N C1	100	0
	5	CH ₃ CH - C N C1 CH ₃ CH - C N C1	100	1.9
	6	CH ₃ O Br CH ₃ C - C Br H O Br	100	3.4
•	7		100	3. 8
	8	Vergleichsverbindung CH = C CH = C CH = C O O	100	50.1
•		unbehandelt	•	52.3

Tabelle VIII

Nr.	Testverbindung	Wirk- stoff- konzen- tration, TpM	Zahl der Flecken pro Blatt
1	$CH_{2} - CH_{2} - C$	2	0
2	CH ₂ - CH ₂ Br	2	4.2
3	Vergleichsverbindung CH2 - C CH2 - C CH2 - C O	2	55.3,
	unbehandelt	_	52.9

Tabelle IX

Nr.	Testverbindung	Wirk- stoff- konzen- tration, TpM-	Zahl der Flecken pro Blatt
1		2	7.1

-		L	201203
. 2	C1 C1	2	5.6
3	Br Br	2	, 9.2
4		. 2	8.5
5		2 ·	4.3
6	Vergleichsverbindung C C C C C C C C C C C C C C C C C C	2	78.1
7	Vergleichsverbindung Cl Cl TU9840/1786	2	59.8

ORIGINAL INSPECTED

	4
Vergleichsverbindung	
0	
2 7	5,2
0	
Vergleichsverbindung	
	0.4
	in the
	Vergleichsverbindung

Mahalle Y

-Nr.	Testverbindung	Wirk- Zahl der stoff- Flecken konzen- oro Blat tration, TpM	4
1	CH ₃ CH C C1 CH ₃ CH C C1 CH ₃ CH C C1	2.0 0	
2	CH C Br	2.0 0.9	

109840/1796

				20,120	0 C
1	3	CH ₃ CH C I	2.0	1.8	
	4	CH C C1	2.0	0.3	
	5	Vergleichsverbindung CH3 CH C CH3 CH C CH3 CH C	2.0	68.4	
5	6	Vergleichsverbindung CH - C CH - C CH - C CH - C	2.0	56.2	
	7	Vergleichsverbindung CH - C CH - C CH - C CH - C	2.0	60.1	
		Unbehandelt	_	67.3	

- 25 -Tabelle XI

Nr.	Testverbindung	Wirk- stoff- konzen- tration, TpM	Zahl der Flecken pro Blatt
1	$ \begin{array}{c c} CH & -C \\ CH & -C \end{array} $ $ \begin{array}{c c} CH & -C \end{array} $ $ \begin{array}{c c} C1 \end{array} $	2.0	0
2	CH - C	2.0	0.8
3	CH - C	2.0	2.4
4	CH - C Br	2.0	1:1
5	Br CH - C C1 CH - C C1 CH - C C1	2.0	1.9

	- 20 -		20126
6	Vergleichsverbindung C1	2.0	60.9
7	Vergleichsverbindung C1	2.0	54.6
8	Vergleichsverbindung C1 O O O O O O O O O O O O O O O O O O O	2.0	53.2
9	Vergleichsverbindung CH - C CH ₂ - C CH ₂ - C O O O O O O O O O O O O O	2.0	70.7
10	CH - C NO ₂ CH ₂ - CH	2.0	58.1

-	Vergleichsver	pindung		
11	CH - C N		2,0	63.2
	CH ₂ - C	CH ₃		
	unbehandelt			69.4

Tabelle XII

Nr.	Testverbindung	Wirk- stoff- konzen- tration, TpM	Zahl der Flecken pro Blatt
1	C1	2.0	0
2	C1	2.0	3.5
3	$C1 \longrightarrow K \subset CH - SOCH_2(CH_2)_2CH_3$ $C - CH_2$ 0 0	5.0	,1,8

4	C1	2.0	0.3
	unbehandelt	-	66.7

Versuch 3

Die Testverbindungen in Form von emulgierbaren Konzentraten werden mit Wasser verdünnt und auf Reispflanzen aufgebracht. Die Reispflanzen wurden in Blumentöpfen mit einem Durchmesser von 9 cm bis zu einer Höhe von 50 bis 60 cm gezogen. Jeder Topf wird mit 10 ml des verdünnten Präparates versetzt. Nach 3 Stunden wird auf die Blattscheiden ein Mycel-Scheibeninoculum von Pellicularia sasakii aufgebracht. 5 Tage später wird der Zustand der Blattscheiden untersucht. Die Schädigung wird nach folgender Gleichung berechnet:

Schädigung =
$$\frac{\sum \left(\text{Infektions-} \times \text{Anzahl der} \right)}{\text{Gesamtzahl der Stengel}} \times 100$$

Der Infektionsindex wird nach folgender Bewertungsskala bestimmt:

Infektionsindex	Zustand der Blattscheiden
0	keine infektiösen Flecken
1	infektiöse, fleckenähnliche Schatten
2	infektiöse Flecken unter 3 cm Grösse
3	infektiöse Flecken über 3 cm Grösse.

Die Ergebnisse sind in den nachstehenden Tabellen zusammengestellt. Es ist ersichtlich, dass die Verbindungen der Erfindung eine höhere fungicide Aktivität besitzen als die bekannten Verbindungen analoger Konstitution.

Tabelle XIII

Nr.	Testverbindung	wirk- stoff- konzen- tration,- TpM	Schädi- gung,
1	C1	200	2.7
2	C1 C1 CH-S-CH ₂ (CH ₂) ₂ CH ₃ C - CH ₂ C - CH ₂ O	200	• • • •
3	C1	200	0
4	C1	200	1.8
5	C1	200	3.9

ORIGINAL INSPECTED

-			201
6	C1	200	18.9
7	Br C - CH - S - CH -	200	0
	Vergleicheverbindung		
8	O C - CH - S - CH ₂	200	86.9
9	TUZ *	200	3.6
	unbehandelt	-	100

* TUZ: Gemisch aus 40 Gew.-% Tetramethylthiuramdisulfid, 20 Gew.-% Methylarsin-bis-(dimethyldithiocarbamat) und 20 Gew.-% Zink-dimethyldithiocarbamat.

Tabelle XIV

Nr.	Testverbindung	Wirkstoff- konzentration TnM	Schädi- ,gung,%
1	$H^{5}C < CH - C $	200	8.9

2	CH ₃ 0 C1 H ₂ C C - C N C1 CH ₃ 0 C1	200	5.2
3	CH ² C CH ² C CH ² C CI CI	200	0
4	CH ₃ C CH ₋ C Br CH ₋ C Br O Br	200	13.4
5	Vergleichsverbindung CH - C CH - C CH - C O O O O O O O O O O O O O	200	100
6	TUZ	200	4.7
-	unbehandelt	-	100

- 33 -Tabelle XV

Nr.	Testverbindung	Wirkstoff- konzentration	Schädi- gung, %
1	CH ₂ -CH ₂ -C CH ₂ -CH ₂ -C O	1,000	14.5
2	Vergleichsverbindung O II CH2 - C CH2 - C II O	1,000	100
_	unbehandelt	-	100

Tabelle XVI

 $\{\xi_2^{(i)}\}$

Nr.	Testverbindung	Wirkstoff- konzentration TpM	Schädi- gung, %
1	CH ₃ CH - C C1 CH ₃ CH - C CH ₃ CH - C	200	. 0.8
2	CH ₃ CH - C Br CH - C Br CH - C Br	200	0

 	- 24	مستساعات جاسجوني	
3	CH - C	200	2.8
4	Vergleichsverbindung CH C	200	100
5	Vergleichsverbindung CH - C CH - C	200	100
6	TUZ	200	4.3
-	unbehandelt	•	100

Tabelle XVII

۱	Nr.	Testverbindung	Wirkstoff- konzentration, TpM	Schädi- gung,
	1	CH - C N C1	500	0

109840/1796

ORIGINAL INSPECTED

7	1/2	•	•

			
2	Br CH - C N - C1	500	3.6
3	C1	500	4.5
4	Vergleichsverbindung C1 CH - C CH - C C1 CH - C	500	100
5	Vergleichsverbindung C1	500	100 ,
6.	Vergleichsverbindung CH - C CH - C CH2 - C	500	100

ORIGINAL INSPECTEL

7	Vergleichsverbindung C1 O O O O O O O O O O O O O O O O O O O	500	100
8	TUZ	500	3.7
•	unbehandelt	-	100

Tabelle XVIII

Nr.	Testv-fbindung '	wirkstoff- konzentration,	Schädi- gung, \$
1	C1 CH - SOCH ₂ CH ₃ C - CH - SOCH ₂ CH ₃ O O O O O O O O O O O O O O O O O O O	500	, O
2	C1 CH - SOCH ₂ (CH ₂) ₂ CH C - CH ₂ O	3 500	3. 6
? 3	C1 CH - SOCH ₂ C - CH ₂	500	0.4
4	TUZ	500	; 3.8
_	unbehandelt	-	-100

10984941796

Ackererde wird in Blumentöpfe mit einem Durchmesser von 9 cm eingefüllt. Auf die Oberfläche der Blumentöpfe werden 10 ml einer mit Pellicularia filamentosa infizierten Erde verteilt. Die Test-verbindungen in Form von emulgierbaren Konzentraten werden mit Wasser in bestimmter Menge verdünnt. Jeder Blumentopf wird mit 15 ml des verdünnten Präparates versetzt. Nach 2 Stunden werden 10 Gurkensamen in jedem Blumentopf ausgesät. 5 Tage später wird der Zustand der aufgelaufenen Sämlinge beobachtet und der prozentuale Bestand nach folgender Gleichung berechnet:

Zahl der gesunden Sämlinge bei den

behandelten Proben

Zahl der gekeimten Sämlinge in den
unbehandelten und nicht infizierten
Proben

Die Ergebnisse sind in den nachstehenden Tabellen zusämmengestellt. Die Verbindungen der Erfindung sind stärkere Bodendisinfektionsmittel als die bekannten Verbindungen analoger Konstitution.

Tabelle XIX

Br.	. Testver		Wirkstoff- konzentration	Bestand
	9			
i a	ZX:	- CH - N'CH - CH -	500	98.0
	0			

	2	C1	500	100
	3	C1	500	97. 6
	4	C1	500	83.4
	5	C1 CH - H CH2CH3 C - CH - H CH2CH3 C - CH2 CH2CH3	500	78.8
<u>(2)</u>	6	Br C - CH - S - CH ₂	500	91.0
		infisiert und unbehandelt	•	: 0
	•	nicht infisiert und unbehandelt	•	100

/	

	Tabelle, AX		
Nr.	Testverbindung	Wirkstoff- konzentration TpM	Bestand,
1	H ₂ C CH - C Br O Br O Br	1,000	-93.8
, 2	CH ₃ C CH ₂ CO	1,000	100.0
3	CH ₃ C CH ₋ C C C C C C C C C C C C C C C C C C C	1,000	90.1
4	Vergleichsverbindung CH - C CH - C GH - C O	1,000	0
5	Vergleicheverbindung C1 C1 C1 W02 C1 C1	1,000	93.7
	infisiert und unbehandelt nicht infisiert und unbeh		100.0

* als Bodensterflightlonsmittel verwendet 109840/1796

·- 40 -Tabelle XXI

Nr.	Testverbindung	Wirkstoff- konzentra- tion TDM	Bestand %
1	CH ₂ CH ₂ - C C1	500	92.5
. 2	CH ₂ - CH ₂ Br	500	88.7
3	Vergleichsverbindung CH2 - C CH2 - C O O O O O O O O O O O O O	500	0
4	Vergleichsverbindung C1 C1 * C1 NO2 C1 C1	500	90.4
-	infiziert und unbehandelt	: -	0
-	nicht infiziert und unbehandelt	-	100

* als Bodensterilisationsmittel verwendet

		TRUETIE AAII			• .
N	r.	Testverbindung	kon	kstoff- zentra- on, TpM	Bestand,
1		© = 0 C1 C1		500	87.8
	2	0 CJ CJ CJ		500	87.3
3	3	H C H C1		500	90.2
4		Vergleichsverbindung		500	b
5	,	Yergleichsverbindung C1 C1 C1 NO2 C1 C1		500	86.4
	•	infiziert und unbehandelt		-	0
77 -		nicht infiziert und unbehande	16		100

-		Tabelle XX	<u> </u>	201265 +& -
	Nr.	Testverbindung	Wirkstoff- kinzentra- tion.TpM	Bestand,
÷.	1	CH - C N C1	500	100
	'2	CH - C Br CH - C CH - C Br	500	97.3
	3	CH 2 CH - C C1 CH 2 CH - C C1 CH 2 CH - C C1	500	98.4
	4.	Vergleichsverbindung CH - C CH - C CH - C CH - C	500	0
	5	Vergleicheverbindung C1 C1 C1 NO2 C1 C1	500	88.6
	-	infisiert und unbehandelt	: :	, 0

nicht infiziert und unbehandelt

ORIGINAL INSPECTED

100

		•
-	•	•
	•	

Tabelle XX	IV:
------------	-----

	Tabelle XXIV	•	
.Nr.	Testverbindung	Wirkstoff- konzentra- tion, TpM	Bestand,
1	CH ₂ - C H C C1	500	98.5
2	CI O Br CH - C O H - C Br	500	74.3
. 3	Br CH - C R C1 CH - C R C1 CH - C C1	500	91.2
4	Vergleichsverbindung C1 CH - C N C1 C1 CH - C N C1 C1 C1 C1	500	5.6
5	Vergleichsverbindung C1	500	0,8,

		- 44	
6	Vergleichsverbindung C1 CH - C CH2- C CH3	500	0
7	Vergleichsverbindung C1 C1 C1 C1 C1 C1 C1 C1 C1 C	500	96.6
-	infiziert und unbehandelt	. -	0
-	nicht infiziert und unbehandelt	•	100

Tabelle-XXV

. i . i

Nr.	Testverbindung	Wirkstoff- konzentra- tion Tom	Bestand,
1	C1 C-CH-SOCH ₂ CH ₃ C-CH ₂ C0	500	92.4
2	C1 O C-CH-SOCH ₂ (CH ₂) ₂ CH ₃ C-CH ₂ O	500	87.3

		حن صحب محب من عرب	2012
3	C1 C-CH-SOCH ₂ C-CH ₂ 0	500	98.6
4	Vergleichsverbindung C1 C1 NO2 C1 C1	500	94.3
-	Infiziert und unbehandelt	- ·	0
-	nicht infiziert und unbehandelt	- .	100

Die Testverbindungen in Form von benetzbaren Pulvern werden mit Wasser in bestimmter Menge verdünnt und auf Kürbissämlinge aufgebracht, die in Blumentöpfen mit einem Durchmesser von 12 cm bis zum 3- bis 4-blättrigen Stadium gezogen wurden. Jeder Blumentopf wurde mit 7 ml des verdünnten Präparates versetzt. Nach einem Tag werden die Sämlinge mit einer Sporensuspension von Sphaerotheca fulginea infiziert. 10 Tage später wird das Aussehen der oberen 4 Blätter der Sämlinge beobachtet und die Schädigung nach folgender Gleichung berechnet:

Schädigung =
$$\frac{\sum (\text{Infektionsindex x Zahl der Blätter})}{\text{Gesamtzahl der Blätter x 5}} \times 100$$

Der Infektionsindex wird nach folgender Bewertungsskala bestimmt:

109840/1798

Infektionsindex	Grösse der infizierten Blattfläche
0 :	0
ı	klein
3	mittel
5	gross

Die Ergebnisse sind in den nachstehenden Tabellen zusammengestellt. Die Verbindungen der Erfindung haben eine stärkere fungicide Aktivität gegenüber Mehltau als die Verbindungen analoger Konstitution.

Tabelle XXVI

Nr.	Testverbindung	Wirkstoff- konzentra- tion, TpM	
1	$\begin{array}{c} CH_{3} & O \\ CH_{3} & C - C \\ C - C & C \\ C - C$	1,000	9.1
2	CH -	1,000	41.7
	unbehandelt	-	52.9

2

11.1

Tabelle XXVII

Nr.	Testverbindung	Wirkstoff- konzentra- tion. TpM	Schadi- gung,
1		500	2.3
2	O All Br	5 00	6.7
3	H C C1	500	14.6
4	Vergleichsverbindung C C C C C C C C C C C C C	500	45.8
-	unbehandelt	-	42.3

Nr.	Testverbindung	Wirkstoff- konzentra- tion. TpM	Schädi- gung, %
1	CH - C C1 CH ₃ CH - C C1 CH ₃ CH - C C1	1,000	2.3
2	Vergleichsverbindung CH - C	1,000	48•2
-	unbehandelt	•	56.3

Tabelle XXIX

Nr.	Testverbindung	Wirkstoff- konzentra- tion, TpM	Schädi- gung,
1	CH - C	1,000	0.8
2	C1	1,000	2.3

	T)		2012
	Vergleichsverbindung		
3	CH - C N - O	1,000	40.2
- .	unbehandelt	-	43.3

Tabelle XXX

Nr.	Testverbindung	Wirkstoff- konzentra- tion, TpM	Schädi- gung,
1	C1	1,000	6.3
-	unbehandelt	_	58.4

Versuch 6

Nach der Reihenverdünnungsmethode wurde die Mindesthemmkonzentration von Verbindungen der Erfindung gegenüber pflanzenpathogenen Pilzen bestimmt. Typische Versuchsergebnisse mit N-(3',5'-Di-chlorphenyl)-cyclopropandicarboximid sind in Tabelle XXXI angegeben.

Tabelle XXXI

Testorganismus	Mindesthemmkonzentration, TpM
Piricularia oryzae	200
Pellicularia filamentosa	40
Botrytis cinerea	8
Sclerotinia sclerotiorum	40
Alternaria kikuchiana	. 40
Alternaria mali . A.	40
Glomerella cingulata	200

Gemäss Versuch 6 wird die wachstumshemmende Wirkung von N-(3',5'-Dichlorphenyl)-cyclopropandicarboximid gegenüber Aspergillus niger ATCC 9642 bestimmt. Die Ergebnisse sind in Tabelle 32 wiedergegeben.

Tabelle XXXII

Nr.	Testverbindung	Mindesthemmkon- sentration, TpM
1	$H_{2}C < \begin{matrix} CH - C \\ I \\ CH - C \\ I \\ O \end{matrix} $ C1	2,000
2	Vergleichsverbindung O CH - C CH - C CH - C O	2,000,<

Anm.: "2000 (" bedeutet keine Aktivität bei 2000 TpM

Nach der Reihenverdünnungsmethode wird die wachstumshemmende Wirkung von N-(3,5-Dichlorphenyl)-glutarimid gegenüber verschiedenen pflanzenpathogenen Pilzen bestimmt. Die Ergebnisse sind in Tabelle XXXIII wiedergegeben.

Tabelle XXXIII

Mindesthemmkonzentration, TpM
200
200
40
40
200
200

Versuch 9

Nach der Reihenverdünnungsmethode wird die wachstumshemmende Wirkung von N-(3,5-Dichlorphenyl)-glutarimid gegenüber Aspergillus niger ATCC 9642 bestimmt. Die Ergebnisse sind in der nachstehenden Tabelle wiedergegeben.

Tabelle XXXIV

Testverbindung	Mindesthemmkonzen tration, TpM
CH ₂ - C N C1	5,000
CH ₂ - C Br CH ₂ - C Br O	5,000
Vergleichsverbindung O CH2 - C CH2 - C O	5,000 <

Anm.: "5000 < " bedeutet keine Aktivität bei 5000 TpM.

- Versuch 10

Nach der Reihenverdünnungsmethode wird die wachstumshemmende Wirkung von N-(3,5-Dichlorphenyl)-d-succinimid gegenüber verschiedenen pflanzenpathogenen Pilzen bestimmt. Die Ergebnisse sind in der nachstehenden Tabelle wiedergegeben.

Testorganismus		Mindesthemmkonzentration,
Piricularia orysae	•	200
Pellicularia filamentosa	•	200
Corticium rolfsii	• •	200
Botrytis cinerea		200
Scleratinia sclerotiorum.		200
Glomerella cingulata		200
	-	

Nach der Reihenverdünnungsmethode wird die wachstumshemmende Wirkung von N-(3,5-Dichlorphenyl)-O-chlorsuccinimid gegenüber Aspergillus niger bestimmt. Die Ergebnisse sind in der folgenden Tabelle wiedergegeben.

Tabelle IXIVI

Testverbindung	Mindesthemmkonzen- tration, TpM
CH - C CI	1,000

109840/174

Nach der Reihenverdünnungsmethode wird die wachstumshemmende Wirkung von N-(3,5-Dichlorphenyl)-äthylsulfinylsuccinimid (A) und von N-(3,5-Dichlorphenyl)-n-butylsulfinylsuccinimid (B) gegenüber verschiedenen pflanzenpathogenen Bakterien und Pilzen untersucht. Die Ergebnisse sind in der nachstehenden Tabelle wiedergegeben.

Tabelle XXXVII

ት Testorganismus	Mindesthemmkonzentration, TpM		
	A	. В	
Piricularia orysae	200	200	
Kanthomonas orysae	200	200 🕻	
Pellicularia filamentosa	200	200	
Pythium aphanidermatum	200	200 (
Botrytis cinerea	200	40	
Sclerotinia sclerotiorum	200	200	
Alternaria kikuchiana	200	40	
Glomerella cingulata	200	40	
Cochliobolus miyabeanus	200	200	
Helminthosporium sigmoideum	200	•	
Fusarium pisi	200	•	
Xanthomonas pruni	200	200 (
Xanthomonas citri	200	200 ′	
Erwinia aroidae	200	200 🕻	

Nach der Reihenverdünnungsmethode wird die wachstumshemmende Wirkung von N-(3,5-Dichlorphenyl)-äthylsulfinylsuccinimid und N-(3,5-Dichlorphenyl)-n-butylsulfinylsuccinimid gegenüber Aspergillus niger ATCC 9642 bestimmt. Die Ergebnisse sind in der nachstehenden Tabelle wiedergegeben.

Tabelle XXXVIII

Testverbindung	Mindesthemmkonzen- tration, TpM
C1 CH - SOCH ₂ CH ₃ C - CH ₂ O	200
C1	200

Aus dem Vorstehenden ist ersichtlich, dass die Verbindungen der Erfindung wegen ihrer mikrobiciden Aktivität besonders für land-wirtschaftliche, industrielle und pharmazeutische Zwecke eingesetzt werden können. In der Landwirtschaft können sie zur Verhinderung oder Bekämpfung von Pflanzenkrankheiten durch pflanzenpathogene Pilze und Bakterien eingesetzt werden. In der Industrie können sie zur Verhinderung oder Bekämpfung des Vertottens von industriellen Produkten verwendet werden.

Für die vorgenannten Zwecke können die Verbindungen der Erfindung entweder als solche oder zusammen mit einem geeigneten Trä109840/1796

COURSE OF SHIRE

gerstoff, z.B. in Form von Stäubemitteln, benetzbaren Pulvern, Ölspritzmitteln, Aerosolen, Tabletten, emulgierbaren Konzentraten, Plätzchen, Granulaten oder salbenartigen Pulvern verwendet werden. Die mikrobiciden Mittel können ausser den Verbindungen der Erfindung auch noch eines oder mehrere bekannte Fungicide, Insekticide und Herbicide enthalten, wie z.B. Blasticidin S, Kasugamycin, Polyoxyn, Cellocidin, Chloramphenicol, Ø,O-Diäthyl-S-benzylthiophosphat, 0-Xthyl-S, S-diphenyldithiophosphat, O-n-Butyl-S-athyl-S-benzyldithiophosphat, O,O-Diisopropyl-Sbenzylthiophosphat, 0-Xthyl-S-benzylphenylthiophosphonat, Pentachlorbenzaldoxim, Pentachlorbenzylalkohol, Pentachlormandelsäurenitril, Pentachlorphenylacetat, Eisenmethylarsonat, Eisen(III)ammoniummethylarsonat, r-1,2,3,4,5,6-Hexachlorcyclohexan. 1,1,1-Trichlor-2,2-bis-(p-chlorphenyl)-athan, 0,0-Dimethyl-0-(p-nitrophenyl)-thionophosphat, S-/1,2-Bis-(athoxycarbonyl)-#thy17-0,0-dimethylthionothiophosphat, 0-Xthyl-0-p-nitrophenylphenylthionophosphonat, &-Naphthyl-N-methylcarbamat, 0,0-Dimethyl-O-(p-nitro-m-methylphenyl)-thionophosphat, das 3,4,5,6-Tetrahydrophthalimid des Chrysanthemumdicarbonsäuremonomethylesters, 3,4-Dimethylphenyl-N-methylcarbamat, 0,0-Diathyl-0-(2-'isopropyl/6-methyl-4-pyrimidyl)-thiophosphat, 0.0-Dimethyl-2.2dichlorvinylphosphat, 1,1-Bis-(p-chlorphenyl)-2,2,2-trichloräthanol, 1,2-Dibromäthan, 1,2-Dibrom-3-chlorpropan, Zink-äthylenbis-(dithiocarbamat), Mangan-athylen-bis-(dithiocarbamat), 2,3-Dichlor-1,4-naphthochinon, N-(Trichlormethylthio)-4-cyclohexen-1,2-dicarboximid, H-(1,1,2,2-Tetrachlorathylthio)-4-cyclohexen-1,2-dicarboximid, das cyclische Carbonat von 6-Methyl-2,3-; chinoxalindithiol, Tetrachlorisophthalonitril, Matrium-p-diethylaminobensol-diasosulfonat, 2,4-Dichlor-6-(2-chloranilino)-

s-triazin, 2,4-Dichlorphenoxyessigsäure, 4-Chlor-2-methylphenoxyessigsäure, 3,4-Dichlorpropionanilid, 2,4-Dichlorphenyl-4'
-nitrophenyläther, 2-Chlor-4,6-bis-(äthylamino)-s-triazin und
Natrium-N-(1-naphthyl)-phthalamat. Die microbiciden Mittel können auch noch eine oder mehrere Verbindungen enthalten, die als
Nematicide, Acaricide, Düngemittel, Bodenbehandlungsmittel, Bodensterilisationsmittel und Pflanzenwuchsregulatoren wirken.

Nachstehend werden typische microbicide Mittel angegeben, die Wirkstoffe der Erfindung enthalten.

- (a) Stäubemittel, die durch Dispergieren mindestens einer Verbindung der allgemeinen Formel I als Wirkstoff in einer Menge von 0,1 bis 50 Gew.-%, in einem inerten Trägerstoff, wie Talcum; Diatomeenerde, Sägemehl oder Ton, erhalten werden.
- (b) Benetzbare Pulver, die durch Dispergieren mindestens einer Verbindung der allgemeinen Formel I als Wirkstoff in einer Menge von 0,1 bis 95 Gew.-\$, vorzugsweise 0,1 bis 80 Gew.-\$, in einem inerten adsorbierenden Trägerstoff, wie Diatomeenerde, zusammen mit einem Netzmittel und bzw. oder Dispergiermittel, z.B. einem Alkalimetallsalz eines langkettigen aliphatischen Sulfats, eines teilweise neutralisierten Schwefelsäurederivats entweder eines Erdöls oder eines natürlich vorkommenden Glycerids oder eines Kondensationsproduktes eines Alkylenoxids mit einer organischen Säure erhalten werden.
- (c) Emulgierbare Konzentrate, die durch Dispergieren mindestens einer Verbindung der allgemeinen Formel I als Wirkstoff in einer Menge von 0,1 bis 50 Gew. in einem organischen Lösungsmittel, wie Dimethylsulfoxid, sowie einem Emulgator, sowie einem Alkali-

metallsalz eines langkettigen alipiatischen Eulfats, einem teilweise neutralisierten Echweftlastrederivat eines Erdöls oder eines natürlich vorkommenden Glyceralis oder einem Kondensationsprodukt eines Alkylenoxids mit einer organischen Säure erhalten werden.

(d) Verbindungen der allgemeinen Formel I enthaltende Präparate, die in üblicher Weise zur Herstellung von microbiciden Granulaten, Stäubemittela und Aerosolen verarbeitet werden.

Die Beispiele erläutern die Erfindung. Teile und Prozentangaben beziehen sich auf des Sewicht. Die Beispiele 1 bis 59 betreffen die Herstellung von Verbindungen der Erfindung.

Beispiele 1 bis 13

Standardverfahren zur Herstellung der Verbindungen der Erfindung.

Ein Gemisch aus 0,1 Mol N-(3,5-Dihalogenphenyl)-bernsteinsäuremonoamid, 50 ml Essigsäureanhydrid und 1 g wasserfreies Natriumacetat wird in einem 100 ml fassenden Vierhalskolben 1 Stunde
auf 100°C erhitzt und gerührt. Danach werden die Essigsäure und
das Essigsäureanhydrid unter vermindertem Druck abdestilliert,
und der Rückstand wird mit Wasser gewaschen und getrocknet.
Man erhält das entsprechende N-(3,5-Dihalogenphenyl)-succinimid
in guter Ausbeute. Zur Reinigung kann das Produkt aus Äthanol
umkristallisiert werden.

Das verfahrensgemäss eingesetzte Bernsteinsäuremonoamid lässt sich durch Acylierung des entsprechenden Anilins mit dem entsprechenden Bernsteinsäureanhydrid herstellen. Typische, Bei-

spiele für verwendbare Bernsteinsäureanhydride und Aniline sind nachstehend angegeben:

Bernsteinsäureanhydride:

```
2-Methylthiobernsteinsäureanhydrid.
2-Äthylthiobernsteinsäureanhydrid,
2-n-Propylthiobernsteinsäureanhydrid,
2-Isopropylthiobernsteinsäureanhydrid.
2-n-Butylthiobernsteinsäureanhydrid,
2-n-Isobutylthiobernsteinsäureanhydrid,
2-sek.-Butylthiobernsteinsäureanhydrid,
2-tert.-Butylthiobernsteinsäureanhydrid,
2-n-Amylthiobernsteinsäureanhydrid,
2-Isoamylthiobernsteinsäureanhydrid,
2-tert.-Amylthiobernsteinsäureanhydrid,
2-Hexylthiobernsteinsäureanhydrid,
2-Heptylthiobernsteinsäureanhydrid.
2-Octylthiobernsteinsäureanhydrid,
2-Nonylthiobernsteinsäureanhydrid,
2-Decylthiobernsteinsäureanhydrid,
2-Phenylthiobernsteinsäureanhydrid.
2-(o-Chlorphenylthio)-bernsteinsäureanhydrid,
2-(m-Chlorphenylthio)-bernsteinsäureanhydrid,
2-(p-Chlorphenylthio)-bernsteinsäureanhydrid,
2-(o-Methylphenylthio)-bernsteinsäureanhydrid,
2-(m-Methylphenylthio)-bernsteinsäureanhydrid,
2-(p-Methylphenylthio)-bernsteinsäureanhydrid,
2-(p-Nitrophenylthio)-bernsteinsäureanhydrid,
2-Benzylthiobernsteinskureanhydrid,
2-Dimethylaminobernateinsaureanhydrid;
2-(Di-n-propylamino)-bernsteinsaureanhydrid,
2-(Di-isopropylamino)-bernsteinsäureanhydrid.
2-(Di-n-butylamino)-bernsteinsäureanhydrid,
2-(Di-isobutylamino)-bernsteinskureanhydrid,
2-(Di-n-amylamino)-bernsteinsäureanhydrid,
2-(Di-isoamylamino)-bernsteinsäureanhydrid.
2-Dihexylaminobernsteinsäureanhydrid,
2-Pyrrolidinobernstelnsäureanhydrid,
```

109840/1788

- 2-Piperidinobernsteinsäureanhydrid,
- 2-Morpholinobernsteinsäureanhydrid,

Aniline:

- 3,5-Difluoranilin,
- 3,5-Dichloranilin,
- 3,5-Dibromanilin,
- 3,5-Dijodanilin,

Die Ergebnisse sind in der nachstehenden Tabelle zusammengestellt.

•	, - o	Fp. 104 – 106	파 50 = 61.e.5			
	Aus-	95	8			
	Formel Formel	C1 C-CHSCH CH CH C C-CHSCH CH C-CCH	C1 C1 C-CHSCH (CH2) CH3 C1 C-CH2 0 0			
	Ausgangsverbindung	CH ₃ CH ₂ S-CHCOOH CH ₂ CONH-C1 CH ₃ CH ₂ COOH CH ₃ CH ₃ COOH C1 CH ₃ CH ₃ COOH C1	CH ₃ (CH ₂) ₂ CH ₂ CHCOOH C1 CH ₂ CONH-C1 CH ₂ CONH-C1 CH ₂ CH ₂ S-CHCONH-C1 CH ₃ (CH ₂) ₂ CH ₂ S-CHCONH-C1 C1 C1 C1 C1 C1 C1 C1 C1 C1			
.÷5	Bei- spiel Nr.	H	N			

	de artista carres compressos actividades como es mo ste con en compressos de compress	· · · · · · · · · · · · · · · · · · ·
Pp. 47 51.	#p. 150 151	Fp. 90 119 -
96	.86	8
C1 C-CHSCH (CH) CH C1 C1 C1 C1 C2 C5 C3 C2 C5 C3 C2 C5	C1 C-CH-S C1	C1 C-CH-S C-C1 C1 C-CH-S C1
CH ₃ (CH ₂) ₆ CH ₂ S CHCONH C1 CH ₂ CONH-C1 CH ₂ CONH-C1	CHCOCH CH CANH	C1-C)-S, CHCCOH C1 CH, CONH—C1 C1-C)-S-CH-CONH—C1 C1-C)-S-CH-CNH—C1 C1-C)-S-CH-CNH—C
w		5

		<u></u>
Pp. 145 – 147	.Κρ. 0.1mm/g 197 – 200	900 970 1 rv
16	716	26
C1 C-CH-S-CH ₃ C1 C-CH-S-CH ₃ C1 C-CH-S-CH ₃	C1 C-CH-SCH ₂ C1	C1 CH
CH ₃ CHCCOH CH ₂ CHCCOH CH ₃ CH ₂ CONH CH ₃ Ch ₃ CD	CH CONH C1 OT CH C2 OT CH CONH C1 OT CH CONH C1 CH C2 CH CONH C1 C1 CH C2 CH CONH C1	CH ₃ CH ₂ CHCCOH CH ₃ CH ₂ CH ₂ CONH CH ₃ CH ₂ CH ₂ CONH CH ₃ CH ₂ CH ₂ CONH CH ₃ CH ₂ CH ₂ CH CH ₃ CH ₂ CH ₂ CH CH ₃ CH ₂ CH ₃ CH CH ₃ CH ₃ CH ₃ CH CH ₃ CH ₃ CH ₃ CH CH CH ₃ CH C
, 9		•

FD. 89 - 91	85 - 87 -	79. 118 - 121
93	6	8
C1 C-CH-N CH ₂ CH ₃ CH ₃ CH ₃ C1		€ 5 0= 0 5 5 5 6 8
$ \left[(CH_3 (CH_2)_2 CH_2)_2 K_C CHCCOH \right] $ $ \left[(CH_3 (CH_2)_2 CH_2)_2 K_C CHCCOW \right] $ $ \left[(CH_3 (CH_2)_2 CH_2)_2 K_C CHCCOW \right] $ $ CH_2 (CH_3 (CH_2)_2 CH_2)_2 K_C CHCCOW \right] $	CH_CORRECTOR CH	CH CONH CI OF CH CONH CI
6	8	. #

医位门

- 65 -			
70- 209 - 210	Fp. 159.5 -161		
95	8		
C1	Br C-cH-S-C		
CHCOOH CH CONH CH CONH CH COOH CH COOH CO N-CHCONH CO	CH_CONH-CH_Br or CH_CONH-CH_Br or CH_CONH-CH_Br Br Br Br Br		
ង	13		

09840/1796

Beispiele 14 bis 20

Standardverfahrensvorschrift zur Herstellung der Verbindungen der Erfindung

Ein Gemisch aus O,1 Mol eines M-Phenylcyclopropandicarbonsäuremonoamids, 50 g Essigsäureanhydrid und 1 g wasserfreiem Natriumacetat wird in einen 100 ml fassenden Vierhalskolben gegeben und
30 Minuten auf 100°C erhitzt und gerührt. Danach werden die Essigsäure und das Essigsäureanhydrid unter vermindertem Druck abdestilliert, und der Plassatand wird mit Wasser gewaschen und
getrocknet. Man erhält in guter Ausbeute das entsprechende
N-Phenylcyclopropandicarboximid der allgemeinen Formel I. Zur
Reinigung kann das Produkt aus Äthanol umkristallisiert werden.

Das verfahrensgemäss eingesetzte N-Phenylcyclopropandicarbonsäure-monoamid lässt sich durch Acylierung des entsprechenden
Anilins mit dem entsprechenden Cyclopropandicarbonsäureanhydrid
herstellen. Beispiele für verwandbare Cyclopropandicarbonsäureanhydride sind:

Anhydride:

Cyclopropandicarbonsaureanaydrid,

- 1-Methylcyclopropandicarbonsaureanhydrid,
- 3-Methylcyclopropandicarbonsäureanhydrid,
- 1.2-Dimethylcyclopropandicarbonsäureanhydrid.
- 1.3-Dimethylcyclopropandicarbonsaureanhydrid.
- 3,3-Dimethylcyclopropandicarbonsäureanhydrid,
- 1,3,3-Trimethylcyclopropandicarbonsäureanhydrid,
- 1,2,3,3-Tetramethylcyclopropandicarbonsäureanhydrid,

Die verwendbaren Aniline sind:

- 3,5-Difluoranilin,
- 3,5-Dichloranilin,
- 3,5-Dibromanilin,
- 3,5-Dijodanilin.

In der nachstehenden Tabelle sind die verfahrensgemäss hergestellten Verbindungen wiedergegeben.

109840/1788

		· · · · · · · · · · · · · · · · · · ·	 	
	FD - 00	130.5 -	133.5 -	165.0 -
	kus- beute	8	93	88
X	Produk Formel	H ₂ C H _{-C}	H ₂ C Br Br Br Br Br Br	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Tabelle XI	Ausgangsverbindung	H-(7',5'-Dichlorphenyl)- cyclopropan-dicarbon- säure-monoamid	W-(3',5'-Dibromphenyl)- cyclopropan-dicarbon- saure-monoamid	1,2-Dimethyl-N-(3',5'-dichlorphenyl)-cyclopro-pan-dicarbonsäure-monoamid
	Bet- spiel Mr.	ដ	15	Ä

			Ī	
17	1,3- oder 2,3-Dimethyl-N- (3',5'-dichlorphenyl)-cy- clopropan-dicarbonsäure- monoamid	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₄		127.5 -
138	7,3-Dimethyl-N-(3',5'-di- chlorphenyl)-cyclopropan- dicarbonsaure-	CH ₃ CH-C CH-C CI	. 3	134.5 -
19	1,3- oder 2,3-Dimethyl-N- (31,5'-dibromphenyl)= cyclopropan-dicarbonsäure- monoamid	CH ₃		161.0 - 162.5
8	1,3- oder 2,3-Dimethyl-N- (31,5:-dijod)-cyclopropan- dicarbonsäure- monosmid	$CH_3 > C + \frac{C}{2} - \frac{0}{4} $ $H > C + \frac{0}{4} - \frac{1}{6} $ $H > C + \frac{0}{4} - \frac{1}{6} $ $H > C + \frac{0}{4} - \frac{1}{6} - \frac{1}{6$	86	170 - 172

Bei piel 21

N-(3,5-Dichlorpheryl)-gluteriala

Ein Gemisch aus 27,6 g N-(3,5-Dichtarphenyl)-glutarsäuremonoamid, 50 g Essigsäussänhydrid und 1 g wasserfreiem Natriumacetat" wird in einem 100 ml fassenden Vieshalskolben 1 Stunde auf 80 bis 90°C erhitzt und gerührt. Danach werden Essigsäure und Essigsäureanhydrid unter vermindertem Druck abdestilliert, und der Rückstand wird mit Wasser geweschen und getrocknet. Ausbeute 24,8 g weisse Kristalle von Fp. 172,5 bis 174,5°C.

Beispiel 22

N-(3,5-Dibromphenyl)-glutarimid

36,5 g N-(3,5-Dibromphenyl)-glutarsäuremonoamid werden in einen 50 ml fassenden Claisen-Kolben gegeben und 30 Minuten auf 170 bi 180°C erhitzt. Das entstehende Wasser wird abdestilliert. Das Rohprodukt wird aus einer hischung von Athanol und Benzol umkristallisiert. Ausbeute 28,4 g weisse Kristalle vom Fp. 151,5 bis 153,5°C.

Beispiel 23

N-(3,5-Dijodphenyl)-glutarimid

Ein Gemisch aus 23,0 g N-(3,5-Dijodphenyl)-glutarsäuremonoamid, 50 g Essigsäureanhydrid und 1 g wasserfreiem Natriumacetat wird in einem 100 ml fassenden Vierhalskolben eine Stunde auf 80 bis 90°C erhitzt und gerührt. Danach werden Essigsäure und Essigsäureanhydrid unter vermindertem Druck abdestilliert, und der Rück stand wird mit Wasser gewaschen und getrocknet. Ausbeute 21,2 g weisse Kristalle vom Fp. 177 bis 178,5°C.

Beispiele 24 bis 28

 \leftarrow

Standardverfahrensvorschrift zur Herstellung der Verbindungen der Erfindung

Ein Gemisch aus 0,1 Mol eines N-Phenylphthalsäuremonoamids,
50 g Essigsäureanhydrid und 1 g wasserfreiem Natriumacetat wird
in einem 100 ml fassenden Vierhalskolben 1 Stunde auf 80 bis
100°C erhitzt und gerührt. Danach werden Essigsäure und Essigsäureanhydrid unter vermindertem Druck abdestilliert, und der
Rückstand wird mit Wasser gewaschen und getrocknet. Man erhält
in guter Ausbeute das entsprechende N-Phenylphthalimid der allgemeinen Formel I. Zur Reinigung kann das Produkt aus Äthanol
umkristallisiert werden.

Die verfahrensgemäss eingesetzten N-Phenylphthalsäuremonoamide lassen sich durch Acylierung des entsprechenden Anilins mit dem entsprechenden Phthalsäureanhydrid herstellen. Typische Beispiede für verwendbare Phthalsäureanhydride und Aniline sind nachstehend aufgeführt:

Phthalsäureanhydride:

- 1,2-Dihydrophthalsäureanhydrid,
- 1,4-Dihydrophthalsaureanhydrid,
- 1,6-Dihydrophthalsäureanhydrid,
- 3,4-Dihydrophthalsaureanhydrid,
- 3,6-Dihydrophthalsaureanhydrid,
- 4,5-Dihydrophthalsäureanhydrid,
- 1,2,3,4-Tetrahydrophthalsäureanhydrid,
- 1,2,3,6-Tetrahydrophthalsaureanhydrid,
- 1,4,5,6-Tetrahydrophthalsaureanhydrid,
- 3,4,5,6-Tetrahydrophthalsäureanhydrid, Hexahydrophthalsäureanhydrid.

109840/1796

Aniline:

- 3,5-Difluoranilin,
- 3,5-Dichloranilin,
- 3,5-Dibromanilin,
- 3,5-Dijodanilin.

Die verfahrensgemäss hergestellten Verbindungen sind in der nachstehenden Tabelle aufgeführt.

- 73 - .
Tabelle XLI

Bei-		Produkt		
spiel Nr.	Ausgangsverbin- dung	Formel	Fpoc	Aus- beute,
24,	CONH	C1 C1	96 - 97	% %
25	COOH COOH		174 - 176	94
26	CONH C1		204 - 205	97
27	COOH COOH	H C N C1	112.5 - 115	95
28	COOH Br		112 - 115	93

109840/1786

Beispiele 29 bis 32

Standardverfahrensvorschrift

Ein Gemisch aus C.1 Mcl eines N-(). Dihalogenphenyl)-bernsteinsäuremonoamid, 50 ml Essigsäureanhydrid und 1 g wasserfreiem
Natriumacetat wird in einem 100 ml iassenden Vierhalskolben 1
Stunde auf 80 bis 100°C erhitzt und gerührt. Danach werden Essigsäure und Essigsäureanhydrid unter vermindertem Druck abdestilliert, und der Rückstand wird mit Wasser gewaschen und getrocknet. Man erhält in guter Ausbeute das entsprechende
N-(3,5-Dihalogenphenyl)- uccinimid der allgemeinen Formel I. Zur Reinigung kann die Verbindung aus Äthanol umkristallisiert werden.

Die verfahrensgemäss eingesetzten N-(3,5-Dihalogenphenyl)-bernsteinsäuremonoamide können durch Acylierung des entsprechenden Anilins mit dem entsprechenden Bernsteinsäureanhydrid hergestellt werden. Typische Beispiele für verwendbare Bernsteinsäureanhydrid und Aniline sind nachstanend aufgeführt.

Bernsteinsäureanhydride:

- 2,3-Dimethylbernsteinsäureanhydrid,
- 2-Athyl-3-methylbernsteinsäureannydrid,
- 2,3-Diäthylbernsteinsäureanhydrid,
- 2-Methyl-3-propylbernsteinsäureanhydrid und
- 2,3-Dipropylbernsteinsäureanhydrid.

Aniline:

- 3,5-Difluoranilin,
- 3,5-Dichloranilin,
- 3,5-Dibromanilin und
- 3.5-Dijodanilin.

Die verfahrensgemäss hergestellten Verbindungen sind in der nachstehenden Tabelle wiedergegeben.
109840/1796

- 75 Tabelle XLII

Bei-		Produkt		
spie 'Nr.	l Ausgangsver- bindung	Formel	Fp. OC	Aus- beyte,
29	CH CHCONH-C1 CH CHCONH-C1	CH ₃ -CH C C1	110 - 116°C	96
30	CHCONH Br	CH3 CH C Br	125 - 132°0	93
31	CH CONH I	CH ₃ CH C I	137 - 140°C	95
32	CH ₃ CHCOOH C1 C2H ₅ CHCOOH C1 CH ₃ CHCOOH C1 CH ₂ CHCOOH C1 C2H ₅ COOH	CH ₃ -CH-C C1	99 - 102°C	92

Beispiele 33 bis 37

Standardverfahrensvorschrift

Ein Gemisch aus 0,1 Mol eines N-(3',5'-Dihalogenphenyl)-bernsteinsäuremonoamids, 50 ml Essigsäureanhydrid und 1 g wasserfreiem Natriumacetat wird in einem 100 ml fassenden Vierhalskolben 1 Stunde auf 80 bis 100°C erhitzt und gerührt. Danach werden Essigsäure und Essigsäureanhydrid unter vermindertem Druck abdestilliert, und der Rückstand wird mit Wasser gewaschen und getrocknet. Man erhält in guter Ausbeute das entsprechende N-(3',5'-Dihalogenphenyl)-succinimid. Zur Reinigung kann die Verbindung aus Äthanol umkristallisiert werden.

Die verfahrensgemäss eingesetzten N-(3',5'-Dihalogenphenyl)bernsteinsäuremonoamide
/ können durch Acylierung der entsprechenden Aniline
mit dem entsprechenden Bernsteinsäureanhydrid hergestellt werden.

Typische Beispiele für verwendbare Bernsteinsäureanhydride und Aniline sind nachstehend aufgeführt.

Bernsteinsäureanhydride:

- 2-Fluorbernsteinsäureanhydrid.
- 2-Chlorbernsteinsäureanhydrid,
- 2-Brombernsteinsäureanhydrid,
- 2-Jodbernsteinsäureanhydrid,

GRO CLARGO ROBORTO

- 2,3-Difluorbernsteinsäureanhydrid,
- 2,3-Dichlorbernsteinsäureanhydrid,
- 2.3-Dibrombernsteinsäureanhydrid,
- 2,3-Dijodbernsteinsäureanhydrid und Bernsteinsäureanhydrid.

109840/1796

Aniline:

3,5-Difluoranilin,

3,5-Dichloranilin,

3,5-Dibromaniling und

3,5-Dijodanilin.

Die verfahrensgemäss hergestellten Verbindungen sind in der nachstehenden Tabelle wiedergegeben.

109840/1796

								
	A 118 -	beute,		ま			8	Α.
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	מ	Fp., °c		128.5 -	25.		132 —	136°C
Tabelle XLIII	Prod	. Formel . ;	0= / /	50 - E	= o		PF CH - C / N CI	15 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
	Ausgangsver-		c1-chccoh	් _ස	C1-CHCONH-C1 CH2COOH	вт-сиссон	CH2CONH-C1	Br-chconh-c1 ch ₂ cooh
	-199	Mr.		33			چ .	t

	- 79 -	
8	8	16
188 – 190°c	153.0 — 156.0°C	186 – 190°C
C1 CH-C C1	C1 CH - C N Br Br CH2 - C Br	Br CH-C NC1
C1-CHCOOH C1 C1-CHONH C1 C1	C1-CHCOOH CR CR CR CR CR CL-CHCONH Br CH CH CCOOH Br	Вт-сиссон вт-сиссоми-СТ с1
35	*	37

Beispiele 38 bis 47

Standardverfahrensvorschrift

Ein Gemisch aus O,l Mol eines N-Phenylmaleinimids, O,l Mol eines IV, in der R," ein Alkylthiorest ist Mercaptans der allgemeinen Formel / und 100 ml Benzol wird in einem 200 ml fassenden Vierhalskolben unter Rühren mit 5 ml Benzol versetzt, das eine katalytische Menge Triäthylamin enthält.

Das Gemisch wird weitere 30 Minuten gerührt, danach wird das Benzol unter vermindertem Druck abdestilliert. Man erhält in guter Ausbeute das entsprechende N-Phenylsuccinimid der allgemeinen Formel I. Zur Reinigung kann das Produkt aus einer Mischung von Benzol und Ligroin umkristallisiert werden. Typische Beispiele für verwendbare N-Phenylmaleinimide und Mercaptane sind nachstehend aufgeführt.

N-Phenylmaleinimide:

N-(3,5-Difluorphenyl)-maleinimid,

N-(3,5-Dichlorphenyl)-maleinimid,

N-(3.5-Dibromphenyl)-maleinimid, und

N-(3,5-Dijodphenyl)-maleinimid.

. Carronates o servicios de

Mercaptane:

Methylmercaptan, Äthylmercaptan, n-Propylmercaptan,
Isopropylmercaptan, n-Butylmercaptan, Isobutylmercaptan,
tert.-Butylmercaptan, n-Amylmercaptan, Isoamylmercaptan,
tert.-Amylmercaptan, act-Amylmercaptan, Hexylmercaptan,
Heptylmercaptan, Octylmercaptan, Nonylmercaptan, Decylmercaptan, Thiophenol, o-Thiocresol, m-Thiocresol, p-Thiocresol, o-Chlorthiophenol, m-Chlorthiophenol, p-Chlorthiophenol, p-Nitrothiophenol, Benzylmercaptan, Allylmercaptan
und Thioessigsäure.
109840/1796

Die verfahrensgemäss hergestellten Verbindungen sind in der nachstehenden Tabelle aufgeführt.

Tabelle XLIV

	**************************************	. Produk	t	
Bei- spiel Nr.	Mercaptan	Formel	Aus- beyte,	Fp./Kp.,
38	сн ₃ сн ₂ ѕн	C1 C-CH-SCH_CH_CH_CH_CH_CH_CH_CH_CH_CH_CH_CH_CH_C	85	(°C) Fp. 104 - 106
39	сн ₃ (сн ₂) ₂ сн ₂ sн	C1 C-CH·SCH ₂ (CH ₂) ₂ ·CH ₃ C-CH ₂ 0	83	Fp. 60 - 61.5
Ю	сн ₃ (сн ₂) ₆ сн ₂ sн	C1 C-CH-SCH ₂ (CH ₂) ₆ ·CH ₃ C-CH ₂ 0	86	Fp. 47 - 51

ħ	⊘ -sh	C1 C-CH·S-C C-CH ₂ C-CH ₂ C-CH ₂	95	Fp. 150 - 151
42	C1—SH	C1 C-CH-S-C1 C-CH ₂ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	90	Fp. , 119 - 120.5
43	.\ Сн ₃ -{	C1 C-CH-S-CH ₃ C-CH ₂ O	90	Pp. ' 145 – 147
44	С -сн ₂ sн	C1 C-CH-SCH ₂ -C-CH ₂ -C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C	85	Kp. 0.lmmHg 197 - 200
45	⊘ -ѕн	Br C-CH-S-C Br C-CH-S-C O	93	Fp. 159.5 - 161
46	CH ₂ =CH−CH ₂ S	C1 C-CH-S-CH ₂ -CH=CH ₂ C-CH ₂ C1 C1 C-CH ₂ C0 C-CH ₂ C1	93	Fp. / 81 - 82
47	СН ₃ -С-SH 0	C1 C-CH-S-C-CH ₃ C-CH ₂ 0	95	Fp. 129.5 -131.0

MI

Beispiele 48 bis 52

Standardverfahrensvorschrift

Ein Gemisch aus 0,1 Mol eines N-Phenylmaleinimids, 0,1 Mol eines!

Amins der allgemeinen Formel IV, in der R₁ⁿ ein Dialkylamino-,

cyclisch sekundärer Amino- oder ein heterocyclischer Aminorest

ist, und 100 ml Benzol wird in einem

200 ml fassenden Vierhalskolben 1 Stunde gerührt und erwärmt. Danach wird das Bensol unter vermindertem Druck abdestilliert. Man
erhält in guter Ausbeute das entsprechende N-Phenylsuccinimid der
allgemeinen Formel I. Zur Reinigung kann die Verbindung aus einer
Mischung von Benzol und Ligroin umkristallisiert werden.

Typische Beispiele für verfahrensgemäss verwendbare N-Phenylmaleinimide und Amine sind nachstehend aufgeführt:

N-Phenylmaleinimide:

N-(3,5-Difluorphenyl)-maleinimid, N-(3,5-Dichlorphenyl)maleinimid, N-(3,5-Dibromphenyl)-maleinimid und
N-(3,5-Dijodphenyl)-maleinimid.

Amine:

Dimethylamin, Diäthylamin, Di-n-propylamin, Di-n-butylamin, Di-isobutylamin, Di-n-amylamin, Di-isoamylamin, Dihexylamin, Dicyclohexylamin, Diphenylamin, Pyrrolidin, Piperidin und Morpholin.

Die verfahrensgemäss hergestellten Verbindungen sind in der nachstehenden Tabelle aufgeführt.

109840/1796

Tabelle XIV

Be1-		Produkt		
spiel	Amin :	Formel	Aus- beute	Fp., OC
48	CH ₃ CH ₂ NH CH ₃ CH ₂ NH	C1 C-CH-N CH ₂ CH ₃ C-CH ₂ C-CH ₂ CO CH ₂ CH ₃ CO CH ₂ CH ₃ CO CH ₂ CH ₃	83	95 – 96.5
49	СН ₃ (СН ₂) ₂ СН ₂ СН ₃ (СН ₂) ₂ СН ₂	C1 C1 CH ₂ (CH ₂) ₂ ·CH ₃ C-CH-N CH ₂ (CH ₂) ₂ ·CH ₃ C-CH ₂ C-CH	85	89 - 91
50	MH	C1 C-CH-N C-CH-N C-CH ₂	87	85 – 87
51	WH	C1 C-CH-N C-CH ₂ 0	90	118 -
52	O_NH	C1 C1-NO C-CH-NO O	98	209 - 210

Beispiele 53 nis 55

Standardverfahrensvorschrift

In eine Lösung von 0,1 Mol eines N-(3',5'-Dihalogenphenyl)maleinimids in 100 ml Tetrahydrofuran wird 1 Stunde bei 25°C
wasserfreier Chlorwasserstoff eingeleitet. Danach wird das
Gemisch 3 Stunden gerührt. Nach beendeter Umsetzung wird das Lösungsmittel unter vermindertem Druck abdestilliert. Man erhält
in guter Ausbeute das entsprechende N-(3,5-Dihalogenphenyl)succinimid der allgemeinen Formel I. Zur Reinigung kann die Verbindung aus einer Mischung von Benzol und Äthanol umkristallisiert werden.

Beispiele für verfahrensgemäss verwendbare N-(3',5'-Dihalogenphenyl)-maleinimide sind:

N-(3',5'-Difluorphenyl)-maleinimid, N-(3',5'-Dichlorphenyl)-maleinimid, N-(3',5'-Dibromphenyl)-maleinimid und N-(3',5'-Dijodphenyl)-maleinimid.

Die verfahrensgemäss hergestellten Verbindungen sind in der nachstehenden Tabelle aufgeführt.

Tabelle XLVI

	• • • • • • • • • •		Prod	u k t	
Bei- spiel Nr.	Ausgangsver- bindung	Halogen- wasser- Stoff	Formel	Fp., °C	Aus- beyte,
53		HC1	C1-CH-C CH ₂ -C CH C1	128.0 - 129.0°C	93
54		HBr	O	131 — 134°C	86
55		HCl	C1-CH-C CH2-C O Br	157 159.5°C	91

Beispiele 56 bis 57

Standardverfahrensvorschrift

O,1 Mol eines N-(3',5'-Dihalogenphenyl)-maleinsäuremonoamids in einem 100 ml fassenden Vierhalskolben werden tropfenweise und unter Rühren mit 50 g Thionylchlorid versetzt. Danach wird das Gemisch 1 Stunde unter Rückfluss gekocht und gerührt. Nach beendeter Umsetzung wird das Reaktionsgemisch in Eiswasser eingegossen, und überschüssiges Thionylchlorid zersetzt. Die sich abscheidenden Kristalle werden abfiltriert, mit Wasser gewaschen und getrocknet. Man erhält in guter Ausbeute das entsprechende N-(3',5'-Dihalogenphenyl)-3-chlorsuccinimid der allgemeinen Formel I. Zur Reinigung kann die Verbindung aus einer Mischung von Benzol und Äthanol umkristallisiert werden.

Beispiele für verfahrensgemäss eingesetzte Maleinsäuremonoamide sind:

N-(3',5'-Difluorphenyl)-maleinsäuremonoamid,

N-(3',5'-Dichlorphenyl)-maleinsäuremonoamid,

N-(3',5'-Dibromphenyl)-maleinsäuremonoamid und

N-(3',5'-Dijodphenyl)-maleinsäuremonoamid.

Die verfahrensgemäss hergestellten Verbindungen sind in der nachstehenden Tabelle aufgeführt.

Tabelle XLVII

	Ausgangsver- Denydrati-		Produ	k t
Bel- spiel Nr.	Ausgangsver- verbindung	sierungs- mittel	Formel	Fp., C hus-
56	CHCOOH C1	Phosphor- penta- chlorid	C1-CH-C CH ₂ -C N-C1	127.0 129.0°C
57	CHCOOH CHCONH- Br	Thionyl chlorid	C1-CH - C N- Br CH ₂ -C N- Br 0	152.5 - 155.5°C

Beispiele 58 bis 61

Standardverfahrensvorschrift

Ein Gemisch aus 0,1 Mol eines N-Phenylsuccinimids und 100 ml Aceton wird in einen 300 ml fassenden Vierhalskolben mit 0,3 Mol 10 %-iger wässriger Wasserstoffperoxidlösung versetzt und 5 Stunden bei 50°C gerührt. Danach wird das Reaktionsgemisch in Eiswasser eingegossen, die sich abscheidenden Kristalle werden abfiltriert, mit Wasser gewaschen und getrocknet. Man erhält in guter Ausbeute das entsprechende N-Phenylsuccinimid der allgemeinen Formel I.

Die verfahrensgemäss eingesetzten N-Phenylsuccinimide lassen sich nach üblichen Verfahren durch Umsetzung eines Mercaptans mit einem N-(3,5-Dihalogenphenyl)-maleinimid herstellen. Beispiele für verwendbare N-(3,5-Dihalogenphenyl)-maleinimide und Mercaptane sind nachstehend aufgeführt.

N-(3,5-Dihalogenphenyl)-maleinimide:

N-(3,5-Difluorphenyl)-maleinimid, N-(3,5-Dichlorphenyl)-maleinimid, N-(3,5-Dibromphenyl)-maleinimid und N-(3,5-Dijodphenyl)-maleinimid.

Mercaptane:

Methylmercaptan, Athylmercaptan, n-Propylmercaptan, Isopropylmercaptan, n-Butylmercaptan, Isobutylmercaptan, tert.-Butylmercaptan, n-Amylmercaptan, Isoamylmercaptan, tert.-Amylmercaptan, captan, act-Amylmercaptan, Hexylmercaptan, Heptylmercaptan, Octylmercaptan, Nonylmercaptan, Decylmercaptan und Benzylmercaptan.

Die verfahrensgemäss hergestellten Verbindungen sind in der nachstehenden Tabelle aufgeführt.

Bel- spiel	Ausgangsverbindung	Produkt Formel	Fp., C beu-	Aus- beu- te.%
88	C1 C-CH-SCH ₂ CH ₃ C1	C1 C-CH-SO CH ₂ CH ₃ C1 C-CH-SO CH ₂ CH ₃ C1 C-CH ₂	150- 151 ^o c	96
26	C1 C-CH-S CH ₂ (CH ₂) ₂ CH ₃ C1 C-CH-S CH ₂ (CH ₂) ₂ CH ₃ 0 1 0 0	C1 C-CH-SO CH ₂ (CH ₂) ₂ CH ₃ C1 C1 C C CH ₂ (CH ₂) ₂ CH ₃ C1 C C C CH ₂ (CH ₂) ₂ CH ₃ C1 C C C C C C C C C C C C C C C C C C	144°C	93
8	c1	C1 CH-SO CH ₂ (CH ₂) ₆ CH ₃ C1 CH-SO CH ₂ (CH ₂) ₆ CH ₃ C1 CH ₂	122- 124°C	92

Die Beispiele 62 bis 110 erläutern die Verwendung von Verbindungen der Erfindung in microbiciden Mitteln.

Beispiel 62

3 Teile 1-(3',5'-Dichlorphenyl)-3-phenylthio-2,5-pyrrolidin-dion und 97 Teile Ton werden gründlich pulverisiert und vermischt. Man erhält ein Stäubemittel mit 3 % Wirkstoff.

Beispiel 63

4 Teile 1-(3',5'-Dichlorphenyl)-3-äthylthio-2,5-pyrrolidin-dion und 96 Teile Talcum werden gründlich pulverisiert und gemischt. Man erhält ein Stäubemittel mit 4 % Wirkstoff.

Beispiel 64

50 Teile 1-(3',5'-Dichlorphenyl)-3-(p-chlorphenylthio)-2,5pyrrolidindion, 5 Teile eines Netzmittel vom Alkylbenzolsulfonattyp und 45 Teile Diatomeenerde werden gründlich pulverisiert
und vermischt. Man erhält ein benetzbares Pulver mit 50 % Wirkstoff.

Beispiel 65

10 Teile 1-(3',5'-Dichlorphenyl)-3-diäthylamino-2,5-pyrrolidindion, 80 Teile Dimethylsulfoxid und 10 Teile eines Emulgators
vom Polyoxyäthylenphenylphenoläthertyp werden miteinander zu
einem emulgierbaren Konzentrat mit 10 % Wirkstoff vermischt. Zur
Anwendung wird das Konzentrat mit Wasser verdünnt und verspritzt.

Beispiel 66

5 Teile 1-(3',5'-Dichlorphenyl)-3-n-butylthio-2,5-pyrrolidindion, 93,5 Teile Ton und 1,5 Teile eines Bindemittels vom Polyvinylal-109840/1796

koholtyp werden gründlich pulverisiert und vermischt. Nach dem Verkneten mit Wasser wird das Gemisch granuliert und getrocknet. Man erhält ein Granulat mit 5 % Wirkstoff.

Beispiel 67

2 Teile 1-(3',5'-Dichlorphenyl)-3-pyrrolidin-2,5-pyrrolidindion, 1,5 Teile 0-n-Butyl-S-äthyl-S-benzyldithiophosphat, 0,1 Teile Kasugamycin und 96,4 Teile Ton werden gründlich pulverisiert und vermischt. Man erhält ein Stäubemittel mit 3,6 % Wirkstoff.

Beispiel 68

2 Teile 1-(3',5'-Dichlorphenyl)-3-p-tolylthio-2,5-pyrrolidin-dion, 1,5 Teile 0-n-Butyl-S-äthyl-S-benzyldithiophosphate, 2 Teile 0,0-Dimethyl-0-(3-methyl-4-nitrophenyl)-thionophosphat,
1,5 Teile 3,4-Dimethylphenyl-N-methylcarbamat und 93 Teile Ton werden gründlich pulverisiert und vermischt. Man erhält ein Stäubemittel mit 7 % Wirkstoff.

Beispiel 69

3 Teile N-(3',5'-Dichlorphenyl)-cyclopropandicarboximid und 97 Teile Ton werden gründlich pulverisiert und vermischt. Man erhält ein Stäubemittel mit 3 % Wirkstoff.

Beispiel 70

4 Teile N-(3',5'-Dibromphenyl)-cyclopropandicarboximid und 96 Teile Talcum werden gründlich pulverisiert und vermischt. Man erhält ein Stäubemittel mit 4 % Wirkstoff.

Beispiel 71

50 Teile 1,2-Dimethyl-N-(3',5'-dichlorphenyl)-cyclopropandicarboximid, 5 Teile eines Netzmittels von Alkylbenzolsulfonattyp 109840/1796

一人 大人人名英格特

und 45 Teile Diatomeenerde werden gründlich pulverisiert und vermischt. Man erhält ein benetzbares Pulver mit 50 % Wirkstoff. Zur Anwendung wird das benetzbare Pulver mit Wasser verdünnt und verspritzt.

Beispiel 72

10 Teile 1,3-Dimethyl-N-(3',5'-dichlorphenyl)-cyclopropandicarboximid, 80 Teile Dimethylsulfoxid und 10 Teile eines Emulgators
vom Polyoxyäthylenphenylphenoläthertyp werden miteinander zu
einem emulgierbaren Konzentrat mit 10 % Wirkstoff vermischt. Zur
Anwendung wird das Konzentrat mit Wasser verdünnt und verspritzt.

Beispiel 73

5 Teile 1,3-Dimethyl-N-(3',5'-dibromphenyl)-cyclopropandicarbox-imid, 93,5 Teile Ton und 1,5 Teile eines Bindemittels vcm Poly-vinylalkoholtyp werden gründlich pulverisiert und vermischt. Das Gemisch wird mit Wasser verknetet, anschliessend granuliert und getrocknet. Man erhält ein Granulat mit 5 % Wirkstoff.

Beispiel 74

3,6 Teile 1,3-Dimethyl-N-(3',5'-dijodphenyl)-cyclopropandicarbox-imid, 1,5 Teile O-n-Butyl-S-äthyl-S-benzyldithiophosphat, 0,1 Teile Kasugamycin und 96,4 Teile Ton werden gründlich pulverisiert und vermischt. Man erhält ein Stäubemittel mit 3,6 % Wirkstoff.

Beispiel 75

7 Teile N-(3',5'-Dichlorphenyl)-cyclopropandicarboximid, 1,5
Teile O-n-Butyl-S-äthyl-S-benzyldithiophosphat, 2 Teile O,O-Dimethyl-O-(3-methyl-4-nitrophenyl)-thionophosphat, 1,5-Teile

3,4-Dimethylphenyl-N-methylcarbamat und 93 Teile Ton werden gründlich pulverisiert und vermischt. Man erhält ein Stäubemittel mit 7 % Wirkstoffgehalt.

Beispiel 76

3 Teile N-(3,5-Dichlorphenyl)-glutarimid und 97 Teile Ton werden gründlich pulverisiert und vermischt. Man erhält ein Stäubemittel mit 3 % Wirkstoff.

Beispiel 77

4 Teile N-(3,5-Dibromphenyl)-glutarimid und 96 Teile Talcum werden gründlich pulverisiert und vermischt. Man erhält ein Stäubemittel mit 4 % Wirkstoff.

Beispiel 78

50 Teile N-(3,5-Dijodphenyl)-glutarimid, 5 Teile eines Netzmittels vom Alkylbenzolsulfonattyp und 45 Teile Diatomeenerde werden gründlich pulverisiert und vermischt. Man erhält ein benetzbares Pulver mit 50 % Wirkstoff. Zur Anwendung wird das benetzbare Pulver mit Wasser verdünnt und verspritzt.

Beispiel 79

10 Teile N-(3,5-Dichlorphenyl)-glutarimid, 80 Teile Dimethyl-sulfoxid und 10 Teile eines Emulgators vom Polyoxyäthylenphenyl-phenoläthertyp werden zu einem emulgierbaren Konzentrat mit 10 % Wirkstoffgehalt vermischt. Zur Anwendung wird das Konzentrat mit Wasser verdünnt und verspritzt.

Beispiel 80

5 Teile N-(3,5-Dibromphenyl)-glutarimid, 93,5 Teile Ton und 1,5 Teile eines Bindemittels vom Polyvinylalkoholtyp werden 109840/1796 gründlich pulverisiert und vermischt. Das Gemisch wird mit Wasser verknetet, anschliessend granuliert und getrocknet. Man erhält ein Granulat mit 5 % Wirkstoffgehalt.

Beispiel 81

2 Teile N-(3,5-Dichlorphenyl)-glutarimid, 1,5 Teile O-n-Butyl-S-äthyl-S-benzyldithiophosphat, 0,1 Teil Kasugamycin und 96,4 Teile Ton werden gründlich pulverisiert und vermischt. Man erhält ein Stäubemittel mit 3,6 % Wirkstoff.

Beispiel &

2 Teile N-(3,5-Dichlorphenyl)-glutarimid, 1,5 Teile O-n-Butyl-S-äthyl-S-benzyldithiophosphat, 2 Teile 0,0-Dimethyl-O-(3-methyl-4-nitrophenyl)-thionophosphat und 1,5 Teile 3,4-Dimethylphenyl-N-methylcarbamat werden gründlich pulverisiert und vermischt.

Man erhält ein Stäubemittel mit 7 % Wirkstoff.

Beispiel 83

3 Teile N-(3,5-Dichlorphenyl)-imid von \triangle^1 -Cyclohexendicarbon-säure und 97 Teile Ton werden gründlich pulverisiert und vermischt. Man erhält ein Stäubemittel mit 3 % Wirkstoffgehalt.

Beispiel 84

4 Teile N-(3,5-Dichlorphenyl)-imid von \triangle ¹-Cyclohexendicarbon-säure und 96 Teile Talcum werden gründlich pulverisiert und vermischt. Man erhält ein Stäubemittel mit 4 % Wirkstoff.

Beispiel 85

50 Teile N-(3,5-Dichlorphenyl)-imid von $\triangle^{1,4}$ -Cyclohexadiendi-carbonsäure, 5 Teile eines Netzmittels vom Alkylbenzolsulfonattyp und 45 Teile Diatomeenerde werden gründlich pulverisiert und 109840/1796

vermischt. Man erhält ein benetzbares Pulver mit 50 % Wirkstoff. Zur Anwendung wird das benetzbare Pulver mit Wasser verdünnt und verspritzt.

Beispiel 86

10 Teile N-(3,5-Dichlorphenyl)-phthalimid, 80 Teile Dimethylsulfoxid und 10 Teile eines Emulgators vom Polyoxyäthylenphenylphenoläthertyp werden miteinander zu einem emulgierbaren Konzentrat
mit 10 % Wirkstoff verdünnt. Zur Anwendung wird das emulgierbare
Konzentrat mit Wasser verdünnt und verspritzt.

Beispiel 87

5 Teile N-(3,5-Dichlorphenyl)-imid von Cyclohexan-1,2-dicarbon-säure, 93,5 Teile Ton und 1,5 Teile eines Bindemittels vom Poly-vinylalkoholtyp werden gründlich pulverisiert und vermischt.

Das Gemisch wird mit Wasser verknetet, dann granuliert und getrocknet. Man erhält ein Granulat mit 5 % Wirkstoff.

Beispiel 88

2 Teile N-(3,5-Dichlorphenyl)-imid von △¹-Cyclohexendicarbon-säure, 1,5 Teile O-n-Butyl-S-äthyl-S-benzyldithiophosphat, 0,1 Teile Kasugamycin und 96,4 Teile Ton werden gründlich pulverisiert und vermischt. Man erhält ein Stäubemittel mit 3,6 % Wirkstoff.

Beispiel 89

2 Teile N-(3,5-Dibromphenyl)-imid von △¹-Cyclohexendicarbon-säure, 1,5 Teile O-n-Butyl-S-äthyl-S-benzyldithiophosphat,
2 Teile O,O-Dimethyl-O-(3-methyl-4-nitrophenyl)-thionophosphat,
1,5 Teile 3,4-Dimethylphenyl-N-methylcarbamat und 93 Teile Ton
werden gründlich pulverisiert und vermischt. Man erhält ein Stäu-

bemittel mit 7 % Wirkstoff.

Beispiel 90

3 Teile N-(3,5-Dichlorphenyl)- &, B-dimethylsuccinimid und 97 Teile Ton werden gründlich pulverisiert und vermischt. Man erhält ein Stäubemittel mit 3 % Wirkstoff.

Beispiel 91

4 Teile N-(3,5-Dibromphenyl)-4,8-dimethylsuccinimid und 96 Teile Talcum werden gründlich pulverisiert und vermischt. Man erhält ein Stäubemittel mit 4 % Wirkstoff.

Beispiel 92

50 Teile N-(3,5-Dijodphenyl)- α,β-dimethylsuccinimid, 5 Teile eines Netzmittels vom Alkylbenzolsulfonattyp und 45 Teile Diatomeenerde werden gründlich pulverisiert und vermischt. Man erhält ein benetzbares Pulver mit 50 % Wirkstoff. Zur Anwendung wird das benetzbare Pulver mit Wasser verdünnt und verspritzt.

Beispiel 93

10 Teile N-(3,5-Dichlorphenyl)- v, ß-dimethylsuccinimid, 80 Teile Dimethylsulfoxid und 10 Teile eines Emulgators vom Polyoxy- äthylenphenylphenoläthertyp werden miteinander zu einem emulgierbaren Konzentrat mit 10 % Wirkstoff vermischt. Zur Anwendung wird das Konzentrat mit Wasser verdünnt und verspritzt.

Beispiel 94

5 Teile N-(3,5-Dichlorphenyl)- 0,8-dimethylsuccinimid, 93,5 Teile Ton und 1,5 Teile eines Bindemittels vom Polyvinylalkoholtyp werden gründlich pulverisiert und vermischt. Das Gemisch wird mit Wasser verknetet, dann granuliert und getrocknet. Man erhält ein

Granulat mit 5 % Wirkstoff.

Beispiel 95

2 Teile N-(3,5-Dichlorphenyl)- \(\alpha\), \(\beta\)-dimethylsuccinimid, 1,5 Teile \(0-n\)-Butyl-S-\(\alpha\) thyl-S-\(\beta\)-benzyldithiophosphat, 0,1 Teile Kasugamycin und 96,4 Teile Ton werden gr\(\alpha\) dich pulverisiert und ver\(\alpha\) ischt. Man erh\(\alpha\) tein St\(\alpha\) wirkstoff.

Beispiel 96

2 Teile N-(3,5-Dibromphenyl)- α, β-dimethylsuccinimid, 1,5 Teile 0-n-Butyl-S-äthyl-S-benzyldithiophosphat, 2 Teile 0,0-Dimethyl-0-(3-methyl-4-nitrophenyl)-thionophosphat, 1,5 Teile 3,4-Dimethylphenyl-N-methylcarbamat und 93 Teile Ton werden gründlich pulverisiert und vermischt. Man erhält ein Stäubemittel mit 7 % Wirkstoff.

Beispiel 97

3 Teile N-(3,5-Dichlorphenyl)-chlorsuccinimid und 97 Teile Ton werden gründlich pulverisiert und vermischt. Man erhält ein Stäubemittel mit 3 % Wirkstoff.

Beispiel 98

4 Teile N-(3,5-Dibromphenyl)-bromsuccinimid und 96 Teile Talcum werden gründlich pulverisiert und vermischt. Man erhält ein Stäubemittel mit 4 % Wirkstoff.

Beispiel 99

50 Teile N-(3,5-Dichlorphenyl)- 0, B-dichlorsuccinimid, 5 Teile eines Netzmittels vom Alkylbenzolsulfonattyp und 45 Teile Diatomeenerde werden gründlich pulverisiert und vermischt. Man erhält ein benetzbares Pulver mit 50 % Wirkstoff. Zur Anwendung 109840/1796

wird das Pulver mit Wasser verdünnt und verspritzt.

Beispiel 100.

1

10 Teile N-(3,5-Dibromphenyl)-chlorsuccinimid, 80 Teile Dimethyl-sulfoxid und 10 Teile eines Emulgators vom Polyoxyäthylphenyl-phenoläthertyp werden miteinander zu einem emulgierbaren Konzentrat mit 10 % Wirkstoff vermischt. Zur Anwendung wird das Konzentrat mit Wasser verdünnt und verspritzt.

Beispiel 101

5 Teile N-(3,5-Dichlorphenyl)- α,β-dibromsuccinimid, 93,5 Teile Ton und 1,5 Teile eines Bindemittels vom Polyvinylalkoholtyp werden gründlich pulverisiert und vermischt. Das Gemisch wird mit Wasser verknetet, dann granuliert und getrocknet. Man erhält ein Granulat mit 5 % Wirkstoff.

Beispiel 102

2 Teile N-(3,5-Dichlorphenyl)-chlorsuccinimid, 1,5 Teile O-n-Butyl-S-äthyl-S-benzyldithiophosphat, 0,1 Teile Kasugamycin und 96,4 Teile Ton werden gründlich pulverisiert und vermischt. Man erhält ein Stäubemittel mit 3,6 % Wirkstoff.

Beispiel 103

2 Teile N-(3,5-Dichlorphenyl)- Q,8-dichlorsuccinimid, 1,5 Teile O-n-Butyl-S-äthyl-S-benzyldithiophosphat, 2 Teile O,0-Dimethyl-O-(3-methyl-4-nitrophenyl)-thionophosphat, 1,5 Teile 3,4-Dimethylphenyl-N-methylcarbamat und 93 Teile Ton werden gründlich pulverisiert und vermischt. Man erhält ein Stäubemittel mit 7 % Wirkstoff.

Beispiel 104

3 Teile N-(3,5-Dichlorphenyl)-äthylsulfinylsuccinimid und 97 Teile Ton werden gründlich pulverisiert und vermischt. Man erhält ein Stäubemittel mit 3 % Wirkstoff.

Beispiel 105

4 Teile N-(3,5-Dichlorphenyl)-n-octylsulfinylsuccinimid und 96 Teile Talcum werden gründlich pulverisiert und vermischt. Man erhält ein Stäubemittel mit 4,% Wirkstoff.

Beispiel 106

50 Teile N-(3,5-Dichlorphenyl)-benzylsulfinylsuccinimid, 5 Teile eines Netzmittels vom Alkylbenzolsulfonattyp und 45 Teile Diatomeenerde werden gründlich pulverisiert und vermischt. Man erhält ein benetzbares Pulver mit 50 % Wirkstoff. Zur Anwendung wird das benetzbare Pulver mit Wasser verdünnt und verspritzt.

Beispiel 107

10 Teile N-(3,5-Dichlorphenyl)-n-octylsulfinylsuccinimid, 80 Teile Dimethylsulfoxid und 10 Teile eines Emulgators vom Polyoxyäthylenphenylphenoläthertyp werden miteinander zu einem emulgierbaren Konzentrat mit 10 % Wirkstoff vermischt. Zur Anwendung
wird das Konzentrat mit Wasser verdünnt und verspritzt.

Beispiel 108

5 Teile N-(3,5-Dichlorphenyl)-n-octylsulfinylsuccinimid, 93,5
Teile Ton und 1,5 Teile eines Bindemittels vom Polyvinylalkoholtyp werden gründlich pulverisiert und vermischt. Das Gemisch
wird mit Wasser verknetet, dann granuliert und getrocknet. Man
erhält ein Granulat mit 5 % Wirkstoff.

Beispiel 109

2 Teile N-(3,5-Dichlorphenyl)-benzylsulfinylsuccinimid, 1,5 Teile O-n-Butyl-S-äthyl-S-benzyldithiophosphat, 0,1 Teile Kasugamy-cin und 96,4 Teile Ton werden gründlich pulverisiert und vermischt. Man erhält ein Stäubemittel mit 3,6 % Wirkstoff.

Beispiel 110

2 Teile N-(3,5-Dichlorphenyl)-äthylsulfinylsuccinimid, 1,5 Teile O-n-Butyl-S-äthyl-S-benzyldithiophosphat, 2 Teile O,O-Dimethyl-O-(3-methyl-4-nitrophenyl)-thionophosphat, 1,5 Teile 3,4-Dimethylphenyl-N-methylcarbamat und 93 Teile Ton werden gründlich pulverisiert und vermischt. Man erhält ein Stäubemittel mit 7 % Wirkstoff.

Patentansprüche

N-(3,5-Dihalogenphenyl)-imide der allgemeinen Formel I,

in der X und X' Halogenatome bedeuten und A eine substituierte Äthylengruppe der allgemeinen Formel

ist, in der R₁ einen Alkylrest mit 1 bis 4 C-Atomen, ein Halogenatom, einen Alkylthiorest mit 1 bis 10 C-Atomen, einen niederen Alkenylthio- oder Acylthiorest, einen Aralkylthio-, Phenylthio-, halogenierten Phenylthio-, methylierten Phenylthio- oder nitrierten Phenylthiorest, einen Dialkylaminorest mit 1 bis 6 C-Atomen in den Alkylresten, den Rest eines cyclischen sekundären Amins mit 4 oder 5 C-Atomen, die Morpholinogruppe, einen Alkylsulfinylrest mit 1 bis 10 C-Atomen oder einen Aralkylsulfinylrest und R₂ ein Wasserstoff- oder Halogenatom oder einen Alkylrest mit 1 bis 4 C-Atomen bedeutet, mit der Massgabe, dass R₁ ein Alkylrest ist, falls R₂ ein Alkylrest ist, R₁ ein Halogenatom ist, falls R₂ ein Halogenatom ist und R₁ ein anderer der genannten Reste als ein Alkylrest ist, falls R₂ ein Wasserstoffatom ist, oder A eine Cyclopropylengruppe der allgemeinen Formel

109840/1796

ist, in der R₃, R₄, R₅ und R₆, die gleich oder verschieden sind, Wasserstoffatome oder Alkylreste mit 1 bis 4 C-Atomen bedeuten, oder A eine Trimethylen-, Cyclohexylen-1,2-, Cyclohexenylen-1,2-, Cyclohexadienylen-1,2- oder o-Phenylengruppe bedeutet.

2. N-(3,5-Dihalogenphenyl)-imide der allgemeinen Formel

in der X und X' jeweils Halogenatome bedeuten, R₁ ein Alkylthiorest mit 1 bis 4 C-Atomen, ein Alkylsulfinylrest mit 1 bis 4 CAtomen, die Benzylthio- oder Benzylsulfinylgruppe, eine halogenierte Phenylthio-, Acetylthio- oder Allylthiogruppe ist und R₂
ein Wasserstoffatom bedeutet.

3. H-(3,5-Dihalogenphenyl)-imide der allgemeinen Formel

in der X und X' Halogenatome bedeuten, R₁ ein Alkylrest mit 1 oder 2 C-Atomen eder ein Chloratom und R₂ ein Wasserstoffatom oder ein Alkylrest mit 1 oder 2 C-Atomen ist.

109840/1786

4. N-(3,5-Dihalogenphenyl)-imide der allgemeinen Formel

in der X und X' Halogenatome bedeuten, R_1 ein Dialkylamino-rest mit 1 bis 6 C-Atomen in den Alkylresten ist und R_2 ein Wasserstoffatom bedeutet.

5. N-(3,5-Dihalogenphenyl)-imide der allgemeinen Formel

in der X und X' Halogenatome bedeuten, R_3 , R_4 und R_6 , die gleich oder verschieden sind, Wasserstoffatome oder Methylgruppen sind, und R_5 ein Wasserstoffatom bedeutet.

6. N-(3,5-Dihalogenphenyl)-imide der allgemeinen Formel

in der X und X' Halogenatome bedeuten.

7. N-(3,5-Dihalogenphenyl)-imide der allgemeinen Formel

in der X und X' Halogenatome bedeuten.

8. Verfahren zur Herstellung der Verbindungen nach Anspruch 1, da durch gekennzeichnet, dass man entweder ein Mono-N-(3 5-dihalogenphenyl)-amid einer Dicarbon-säure der allgemeinen Formel

in der X und X' die in Anspruch 1 angegebene Bedeutung haben und A' eine substituierte Äthylengruppe der allgemeinen Formel

in der R_1 ' einen Alkylrest mit 1 bis 4 C-Atomen, ein Halogenatom, einen Alkylthiorest mit 1 bis 10 C-Atomen, einen niederen Alkenylthio- oder Acylthiorest, einen Aralkylthio-, Phenylthio-, halogenierten Phenylthio-, methylierten Phenylthio- oder nitrierten Phenylthiorest, einen Dialkylaminorest mit 1 bis 6 C-Atomen in den Alkylresten, den Rest eines cyclischen sekundären Amins mit 4 oder 5 C-Atomen oder die Morpholinogruppe bedeutet und R_2 die in Anspruch 1 angegebene Bedeutung hat, mit der Massgabe, dass R_1 ' ein Alkylrest ist, falls R_2 ein Alkylrest ist, R_1 ' ein Halogenatom ist, falls R_2 ein Halogenatom ist, und R_1 ' ein anderer der genannten Reste als ein Alkylrest ist, falls

109840/1796

 R_2 ein Wasserstoffatom ist, oder ${f A}^{f t}$ eine Cyclopropylengruppe der allgemeinen Formel

in der R₃, R₄, R₅ und R₆ die in Anspruch 1 angegebene Bedeutung haben, oder A' einè Trimethylen-, Cyclohexylen-1,2-, Cyclohexe-nylen-1,2-, Cyclohexadienylen-1,2- oder o-Phenylengruppe bedeutet, in Gegenwart oder Abwesenheit eines Dehydratisierungsmitauf 20 bis 250°C tels/erhitzt unter Bildung eines N-(3,5-Dihalogenphenyl)-imids der allgemeinen Formel Ia

in der X, X' und A' die vorstehende Bedeutung haben, oder (b) ein N-(3,5-Dihalogenphenyl)-maleinimid der allgemeinen Formel III.

in der X und X' die in Anspruch 1 angegebene Bedeutung haben, mit einer Verbindung der milgemeinen Formel IV

in der R1" einen Alkylthiorest mit 1 bis 10 C-Atomen, einen

Aralkylthio-, Phenylthio-, halogenierten Phenylthio-, methylierten Phenylthio- oder nitrierten Phenylthiorest, einen Dialkylaminorest mit 1 bis 6 C-Atomen in den Alkylresten, den Rest
eines cyclischen sekundären Amins mit 4 oder 5 C-Atomen, die
Morpholinogruppe oder ein Halogenatom bedeutet, kondensiert,
unter Bildung eines N-(3,5-Dihalogenphenyl)-succinimids der allgemeinen Formel Ib

in der X, X' und R₁" die vorstehende Bedeutung haben, oder (c) ein N-(3,5-Dihalogenphenyl)-maleinsäuremonoamid der allgemeinen Formel V

$$X \longrightarrow H \longrightarrow C-CH=CH-C-OH$$

$$(V)$$

in der X und X' die in Anspruch 1 angegebene Bedeutung haben, mit Phosphorpentachlorid oder Thionylchlorid unter Bildung eines N-(3,5-Dihalogenphenyl)-chlorsuccinimids der allgemeinen Formel 1c

cyclisiert, in der X und X' die vorstehende Bedeutung haben, oder

(d) ein N-(3,5-Dihalogenphenyl)-succinimid der allgemeinen Formel VI

in der X und X' die vorstehende Bedeutung haben und R₁"' ein Alkylrest mit 1 bis 10 C-Atomen, ein Alkenyl- oder Aralkylrest ist,
mit mindestens einer stöchiometrischen Menge eines Oxydationsmittels unter Bildung eines N-(3,5-Dihalogenphenyl)-succinimids
der allgemeinen Formel Id

oxydiert, in der X, X' und R₁" die vorstehende Bedeutung haben.

- 9. Verfahren nach Anspruch 8 (a), d a d u r c h g e k e n n-z e i c h n e t, dass man die Verbindung der allgemeinen Formel II auf Temperaturen von 20 bis 150°C in Gegenwart eines Dehydratisierungsmittels erhitzt.
- 10. Verfahren nach Anspruch 8 (a), dad urch ge-kennzeich net, dass man die Verbindung der allgemeinen Formel II auf Temperaturen von 150 bis 250°C in Abwesenheit eines Dehydratisierungsmittels erhitzt.

- ll. Verfahren nach Anspruch 8 (a) und 9, dadurch gekennzeich net, dass man als Dehydratisierungsmittel
 ein Säureanhydrid, Phosphorpentachlorid, Phosphoroxychlorid,
 Fhosphorpentoxid, Acetylchlorid oder Thionylchlorid verwendet.
- 12. Verfahren nach Anspruch 8 (b), d a d u r c h g e k e n n z e i c h n e t, dass man die Verbindung der allgemeinen Formel III mit einem Mercaptan oder einem Amin der allgemeinen Formel IV in Gegenwart einer katalytischen Menge einer Base zur Umsetzung bringt.
- 13. Verfahren nach Anspruch 8 (d), dadurch gekennzeichnet, dass man die Verbindung der allgemeinen Formel
 VI mit mindestens einer stöchiometrischen Menge Wasserstoffperoxid, Perameisensäure, Peressigsäure, Perbenzoesäure, Chromsäure oder einem Permanganat oxidiert.
- 14. Verfahren nach Anspruch 8, dadurch gekennen
 zeichnet, dass die Umsetzung/(a) bis (d) in Gegenwart
 eines Lösungsmittels durchgeführt werden.
- 15. Verwendung der Verbindungen nach Anspruch 1 als Microbicide.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.