Math CS 122b HW8 Part 1

Zih-Yu Hsieh

May 24, 2025

1 (need slight modification)

Question 1 Stein and Shakarchi Pg. 201-202 Exercise 8:

The function ζ has infinitely many zeros in the critical strip. This can be seen as follows.

- (a) Let $F(s) = \xi(1/2 + s)$, where $\xi(s) = \pi^{-s/2}\Gamma(s/2)\zeta(s)$. Show that F(s) is an even function of s, and as a result, there exists G so that $G(s^2) = F(s)$.
- (b) Show that the function $(s-1)\zeta(s)$ is an entire function of growth order 1, that is

$$|(s-1)\zeta(s)| \le A_{\epsilon}e^{a_{\epsilon}|s|^{1+\epsilon}}$$

As a consequence G(s) is of growth order 1/2.

(c) Deduce from the above that ζ has infinitely many zeros in the critical strip.

[Hint: To prove (a) and (b) use the functional equation for $\zeta(s)$. For (c), use a result of Hadamard, which states that an entire function with fractional order has infinitely many zeros (Exercise 14 in Chapter 5)].

Pf:

(a) Recall that in **HW 7 Question 1** (Freitag Chap. VII.5 Problem 5), to deduce the functional equation of ζ , we've proven the functional equation $\xi(s') = \xi(1 - s')$. As a result, for any $s \in \mathbb{C}$, if treating F as a meromorphic function, we get:

$$F(s) = \xi\left(\frac{1}{2} + s\right) = \xi\left(1 - \left(\frac{1}{2} + s\right)\right) = \xi\left(\frac{1}{2} - s\right) = F(-s)$$

Hence, this proves that F(s) is an even function.

- (b) Recall that $\zeta(s)$ is analytic on $\mathbb{C} \setminus \{1\}$, with a simple pole at s = 1 with residue 1, then $(s 1)\zeta(s)$ is in fact having a removable singularity at s = 1, hence can be extended to an entire function.
 - 1. $(s-1)\zeta(s)$ Has growth order 1 for $Re(s) \geq \frac{1}{2}$:

In Freitag Lemma VII.5.2, the following functions are well defined:

$$\forall t \in \mathbb{R}, \quad \beta(t) = t - [t] - \frac{1}{2}, \quad [t] := \max n \in \mathbb{Z}, \ n \le t$$

$$\forall s \in \mathbb{C}, \ \operatorname{Re}(s) > 0, \quad F(s) := \int_{1}^{\infty} t^{-s-1} \beta(t) dt$$

Then as a result, the following equation is true for Re(s) > 1, hence defines an analytic continuation for $\zeta(s)$ on Re(s) > 0:

$$\forall s \in \mathbb{C}, \ \text{Re}(s) > 1, \quad \zeta(s) = \frac{1}{2} + \frac{1}{s-1} - sF(s)$$

So, if multiply with (s-1), for $\text{Re}(s) \ge \frac{1}{2}$, $(s-1)\zeta(s)$ is well-defined, and can be given as the following formula:

$$(s-1)\zeta(s) = \frac{(s-1)}{2} + 1 - (s-1)sF(s)$$

Which, let s=x+iy for $x,y\in\mathbb{R}$, on $\mathrm{Re}(s)=x\geq\frac{1}{2}$ (which $\frac{1}{x}\leq 2$), F(s) can be bounded as follow:

$$|F(s)| = \left| \int_{1}^{\infty} t^{-s-1} \beta(t) dt \right| \le \int_{1}^{\infty} |t^{-(x+iy)-1} \beta(t)| dt \le \int_{1}^{\infty} |t^{-x-1} \cdot t^{iy}| dt = \int_{1}^{\infty} t^{-x-1} dt$$

$$= \frac{-1}{x} t^{-x} \Big|_{1}^{\infty} = \frac{1}{x} \le 2$$

(Note: for any $t \in \mathbb{R}$, $|\beta(t)| \leq \frac{1}{2} < 1$, and since $x \geq \frac{1}{2}$, then the integral of t^{-x-1} has power < -1, which is absolutely convergent).

So, if considering the modulus of $(s-1)\zeta(s)$ on $\text{Re}(s) \geq \frac{1}{2}$, we get the following:

$$|(s-1)\zeta(s)| = \left| \frac{(s-1)}{2} + 1 - (s-1)sF(s) \right| \le \frac{|s-1|}{2} + 1 + |(s-1)s| \cdot |F(s)| \le \frac{|s|+1}{2} + 1 + 2(|s|^2 + |s|)$$

$$\le 2|s|^2 + \frac{3}{2}|s| + \frac{3}{2}$$

Which, take $4e^{|s|} = 4 + 4|s| + 2|s|^2 + \sum_{n=3}^{\infty} \frac{4}{n!}|s|^n$, since for any $s \in \mathbb{C}$ each term is nonnegative, then we can deduce:

$$|(s-1)\zeta(s)| \le 2|s|^2 + \frac{3}{2}|s| + \frac{3}{2} \le 4 + 4|s| + 2|s|^2 \le 4 + 4|s| + 2|s|^2 + \sum_{n=3}^{\infty} \frac{4}{n!}|s|^n = 4e^{|s|}$$

This shows that $(s-1)\zeta(s)$ has growth order 1 on the half plane $\text{Re}(s) \geq \frac{1}{2}$.

2. $(s-1)\zeta(s)$ Has growth order 1 for the whole plane:

In the previous part the growth order is verified for $\text{Re}(s) \geq \frac{1}{2}$. so the rest suffices to show it for the half plane $\text{Re}(s') < \frac{1}{2}$. (And, we'll utilize the fact that for all $s \in \mathbb{C}$, $|e^s| \leq e^{|s|}$, which can be seen using Taylor Series).

Recall that in **HW** 7, we've proven the following functional equation of ζ :

$$\zeta(1-s) = 2(2\pi)^{-s}\Gamma(s)\cos\left(\frac{\pi s}{2}\right)\zeta(s)$$

Hence, for any s' with $\text{Re}(s') < \frac{1}{2}$, let s' = 1 - s for some $s \in \mathbb{C}$, then s = 1 - s', so $\text{Re}(s) = \text{Re}(1 - s') > \frac{1}{2}$. Then, the equation $(s' - 1)\zeta(s')$ becomes:

$$(s'-1)\zeta(s') = ((1-s)-1)\zeta(1-s) = -s \cdot 2(2\pi)^{-s}\Gamma(s)\cos\left(\frac{\pi s}{2}\right)\zeta(s)$$

And, since $\cos(\frac{\pi}{2}) = 0$, $\cos(\frac{\pi s}{2})$ has a zero at s = 1, then $\cos(\frac{\pi s}{2}) = (s - 1)h(s)$ for some analytic function h. So, the above formula can be further written as:

$$((1-s)-1)\zeta(1-s) = -s \cdot 2(2\pi)^{-s}\Gamma(s)h(s) \cdot (s-1)\zeta(s)$$

Which, $|s| = |1 - s'| \le |s'| + 1$, so the growth order in terms of |s| can be replaced using |s'| instead. From the above equality, we do need to talk about the growth order of different components:

- For $(2\pi)^{-s} = e^{-\log(2\pi)s} = e^{-\log(2\pi)(x+iy)} = e^{-\log(2\pi)x} \cdot e^{-\log(2\pi)iy}$, it satisfies the following:

$$|(2\pi)^{-s}| = |e^{-\log(2\pi)s}| \le e^{\log(2\pi)|s}$$

This proves that $(2\pi)^{-s}$ has growth order 1.

- For $\Gamma(s)$, since we're working with the half plane $\text{Re}(s) > \frac{1}{2}$, then it's valid to apply **Stirling's** Formula (given in Freitag Proposition IV.1.14):

Let $H(s) = \sum_{n=0}^{\infty} \left(\left(s + n + \frac{1}{2} \right) \log \left(1 + \frac{1}{s+n} \right) - 1 \right)$, then $\Gamma(s)$ can be expressed as:

$$\Gamma(s) = \sqrt{2\pi} s^{s-\frac{1}{2}} e^{-s} e^{H(z)} = \sqrt{2\pi} e^{(s-1/2)\log(s) - s + H(s)}$$

and $s \to \infty$ implies $H(s) \to 0$ (within the given half plane $\text{Re}(s) > \frac{1}{2}$).

Which, notice that for s in the half plane, since $s \to \infty$ implies $H(s) \to 0$, then there exists M > 0, such that |s| > M implies |H(s)| < 1. And, since for all $\epsilon > 0$ (specifically, can limit to $\epsilon < 1$), there exists M' > 0, such that $|\log(s)| \le |s|^{\epsilon}$, then for all s in the half plant satisfies |s| > M, M', we get:

$$\left| \left(s - \frac{1}{2} \right) \log(s) - s + H(s) \right| \le \left(|s| + \frac{1}{2} \right) |\log(s)| + |s| + |H(s)| \le \left(|s| + \frac{1}{2} \right) |s|^{\epsilon} + |s| + 1$$

$$\le |s|^{1+\epsilon} + \frac{1}{2} |s|^{\epsilon} + |s|^{1+\epsilon} + 1 \le \frac{5}{2} |s|^{1+\epsilon} + 1$$

Hence, $\Gamma(s)$ satisfies:

$$|\Gamma(s)| = \left| \sqrt{2\pi} e^{(s-1/2)\log(s) - s + H(s)} \right| \le \sqrt{2\pi} \exp\left(\left| \left(s - \frac{1}{2} \right) \log(s) - s + H(s) \right| \right)$$

$$\le \sqrt{2\pi} \exp\left(\frac{5}{2} |s|^{1+\epsilon} + 1 \right) = e\sqrt{2\pi} e^{\frac{5}{2}|s|^{1+\epsilon}}$$

Hence, for any $\epsilon > 0$, with suitable constant $A_{\epsilon}, a_{\epsilon} > 0$, on the half plane $\text{Re}(s) > \frac{1}{2}$, $|\Gamma(s)| \leq A_{\epsilon} e^{a_{\epsilon}|s|^{1+\epsilon}}$, showing that $\Gamma(s)$ has growth order 1.

– For h(s) mentioned above, since $(s-1)h(s) = \cos\left(\frac{\pi s}{2}\right)$, and $\cos\left(\frac{\pi s}{2}\right)$ can be written as:

$$\cos\left(\frac{\pi s}{2}\right) = \frac{e^{i\frac{\pi s}{2}} + e^{-i\frac{\pi s}{2}}}{2}$$

Hence, the following inequality is true:

$$\left|\cos\left(\frac{\pi s}{2}\right)\right| \leq \frac{1}{2} \left(|e^{i\frac{\pi s}{2}}| + |e^{-i\frac{\pi s}{2}}|\right) \leq \frac{1}{2} \left(e^{\frac{\pi}{2}|s|} + e^{\frac{\pi}{2}|s|}\right) = e^{\frac{\pi}{2}|s|}$$

Hence, $\cos\left(\frac{\pi s}{2}\right)$ is with growth order 1, which also implies that h(s) is with growth order 1.

Finally, back to the original equation, since for any s' with $Re(s') < \frac{1}{2}$, writing s' = 1 - s for $Re(s) > \frac{1}{2}$ yields the following expresion:

$$(s'-1)\zeta(s') = ((1-s)-1)\zeta(1-s) = -s \cdot 2(2\pi)^{-s}\Gamma(s)h(s) \cdot (s-1)\zeta(s)$$

Then, since s, $(2\pi)^{-s}$, $\Gamma(s)$, h(s) are all with growth order 1, and $(s-1)\zeta(s)$ has been proven to have growth order 1 also in the previous part, then the whole product $(s'-1)\zeta(s')$ is with growth order 1

(with input s). However, since $|s| = |1 - s'| \le |s'| + 1$ as mentioned before, then it is also with growth order 1 with respect to s'.

Regardless of the choise of s (either $\text{Re}(s) \geq \frac{1}{2}$ or $\text{Re}(s) < \frac{1}{2}$), we eventually get that $(s-1)\zeta(s)$ is with growth order 1.

(c) In **Part** (b), it was proven that F has growth order 1, while G (after being modified into an entire function) has growth order 1/2. So based on Hadamard's result, it has infinitely many zeros, which also implies that $F(s) = G(s^2)$ has infinitely many zeros. However, since F(s) is given as:

$$F(s) = \xi(1/2 + s) = \pi^{-(1/2 + s)/2} \Gamma\left(\frac{(1/2 + s)}{2}\right) \zeta\left(\frac{1}{2} + s\right)$$

Which, because F(s) is even, it is enough to consider the half plane $\operatorname{Re}(s) \geq 0$: Because π^z , $\Gamma(z)$ are both nonzero functions, then these zeros of F must be contributed by $\zeta(1/2+s)$; On the other hand, it is well-known that $\zeta(z)$ has no zeros for $\operatorname{Re}(z) \geq 1$, hence for $\operatorname{Re}(1/2+s) \geq 1$, or $\operatorname{Re}(s) \geq \frac{1}{2}$, since $\zeta(1/2+s)$ has no zeros, then F(s) has no zeros. Hence, the zeros of F(s) (on the half plane $\operatorname{Re}(s) \geq 0$) must appear in the range $0 \leq \operatorname{Re}(s) < \frac{1}{2}$, which eventually implies that there are infinitely many s in this strip (which satisfies $\frac{1}{2} \leq \operatorname{Re}(1/2+s) < 1$, with (1/2+s) being in the critical strip) satisfying $\zeta(1/2+s) = 0$.

So, we can conclude that $\zeta(s)$ has infinitely many zeros in the critical strip.

Question 2 Stein and Shakarchi Pg. 202-203 Exercise 10:

In the theory of primes, a better approximation fo $\pi(x)$ (instead of $x/\log(x)$) turns out to be Li(x) defined by

$$Li(x) = \int_{2}^{x} \frac{dt}{\log(t)}$$

(a) Prove that

$$Li(x) = \frac{x}{\log(x)} + O\left(\frac{x}{(\log(x))^2}\right) \quad as \ x \to \infty$$

and that as a consequence

$$\pi(x) \sim Li(x)$$
 as $x \to \infty$

(b) Refine the previous analysis by showing that for every integer N > 0 one has the following asymptotic expansion

$$Li(x) = \frac{x}{\log(x)} + \frac{x}{(\log(x))^2} + 2\frac{x}{(\log(x))^3} + \dots + (N-1)! \frac{x}{(\log(x))^N} + O\left(\frac{x}{(\log(x))^{N+1}}\right)$$
as $x \to \infty$.

Pf:

(a) First, using integration by parts, for all $x \ge 4$ (where $x \ge \sqrt{x} \ge 2$), Li(x) can be expressed as follow:

$$\operatorname{Li}(x) = \int_{2}^{x} \frac{dt}{\log(t)} = \frac{t}{\log(t)} \Big|_{2}^{x} - \int_{2}^{x} t \cdot \frac{d}{dt} \left(\frac{1}{\log(t)}\right) dt$$
$$= \frac{x}{\log(x)} - \frac{2}{\log(2)} - \int_{2}^{x} t \cdot \frac{-1}{(\log(t))^{2}} \cdot \frac{1}{t} dt$$
$$= \frac{x}{\log(x)} - \frac{2}{\log(2)} + \int_{2}^{x} \frac{1}{(\log(t))^{2}} dt$$

Which, for the last integral expression, it can be reformulate as follow:

$$\int_{2}^{x} \frac{dt}{(\log(t))^{2}} = \int_{2}^{\sqrt{x}} \frac{dt}{(\log(t))^{2}} + \int_{\sqrt{x}}^{x} \frac{dt}{(\log(t))^{2}}$$

Since $\log(t)$ is a strictly increasing function on $(1, \infty)$ and is strictly positive, then $\frac{1}{(\log(t))^2}$ is a strictly decreasing function on this interval instead. Hence, for all $t \in [2, \sqrt{x}]$, $\frac{1}{(\log(t))^2} \le \frac{1}{(\log(2))^2}$, while any $t \in [\sqrt{x}, x]$ satisfies $\frac{1}{(\log(t))^2} \le \frac{1}{(\log(\sqrt{x}))^2} = \frac{4}{(\log(x))^2}$. Hence, the above expression satisfies:

$$\int_{2}^{x} \frac{dt}{(\log(t))^{2}} = \int_{2}^{\sqrt{x}} \frac{dt}{(\log(t))^{2}} + \int_{\sqrt{x}}^{x} \frac{dt}{(\log(t))^{2}} \le \int_{2}^{\sqrt{x}} \frac{dt}{(\log(2))^{2}} + \int_{\sqrt{x}}^{x} \frac{4dt}{(\log(x))^{2}}$$
$$= \frac{\sqrt{x} - 2}{(\log(2))^{2}} + \frac{4(x - \sqrt{x})}{(\log(x))^{2}} \le \frac{4x}{(\log(x))^{2}} + \frac{\sqrt{x}}{(\log(2))^{2}}$$

Which, if evaluate the following limit, we get:

$$\lim_{x\to\infty}\frac{\sqrt{x}}{x/(\log(x))^2}=\lim_{x\to\infty}\frac{(\log(x))^2}{\sqrt{x}}=\lim_{x\to\infty}\frac{2\log(x)/x}{1/(2\sqrt{x})}=\lim_{x\to\infty}\frac{4\log(x)}{\sqrt{x}}$$

$$= \lim_{x \to \infty} \frac{4/x}{1/(2\sqrt{x})} = \lim_{x \to \infty} \frac{8}{\sqrt{x}} = 0$$

Hence, for some $x_1 > 4$ and $A_1 > 0$, we have $x > x_1$ implies $\sqrt{x} \le A_1 \frac{x}{(\log(x))^2}$. So, the integral follows the inequality below for $x > x_0$:

$$\int_{2}^{x} \frac{dt}{(\log(t))^{2}} \le \frac{\sqrt{x}}{(\log(2))^{2}} + \frac{4x}{(\log(x))^{2}} \le \frac{1}{(\log(2))^{2}} \cdot \frac{A_{1}x}{(\log(x))^{2}} + \frac{4x}{(\log(x))^{2}}$$
$$\le \left(\frac{A_{1}}{(\log(2))^{2}} + 4\right) \frac{x}{(\log(x))^{2}}$$

So, this shows that $\int_2^x \frac{dt}{(\log(t))^2} = O\left(\frac{x}{(\log(x))^2}\right)$. Hence:

$$\mathrm{Li}(x) = \frac{x}{\log(x)} - \frac{2}{\log(2)} + \int_2^x \frac{dt}{(\log(t))^2} \le \frac{x}{\log(x)} + \int_2^x \frac{dt}{(\log(t))^2} = \frac{x}{\log(x)} + O\left(\frac{x}{(\log(x))^2}\right)$$

This shows that $\operatorname{Li}(x) = \frac{x}{\log(x)} + O\left(\frac{x}{(\log(x))^2}\right)$.

(b) First, we'll consider the following formula about the integral of $\frac{1}{(\log(t))^n}$ using integration by parts:

$$\forall n \in \mathbb{N}, \quad \int_{2}^{x} \frac{dt}{(\log(t))^{n}} = \frac{t}{(\log(t))^{n}} \bigg|_{2}^{x} - \int_{2}^{x} t \cdot \frac{d}{dt} \left(\frac{1}{(\log(t))^{n}} \right) dt$$

$$= \frac{x}{(\log(x))^{n}} - \frac{2}{(\log(2))^{n}} - \int_{2}^{x} t \cdot \frac{-n}{(\log(t))^{n+1}} \cdot \frac{1}{t} dt = \frac{x}{(\log(x))^{n}} - \frac{2}{(\log(2))^{n}} + n \int_{2}^{x} \frac{dt}{(\log(t))^{n+1}}$$

Which, using the same argument used in **part** (a) about $\frac{1}{(\log(t))^n}$ is a decreasing function for all $n \in \mathbb{N}$, for all $x \geq 4$ (where $x > \sqrt{x} \geq 2$), we get:

$$\int_{2}^{x} \frac{dt}{(\log(t))^{n+1}} = \int_{2}^{\sqrt{x}} \frac{dt}{(\log(t))^{n+1}} + \int_{\sqrt{x}}^{x} \frac{dt}{(\log(t))^{n+1}} \le \int_{2}^{\sqrt{x}} \frac{dt}{(\log(2))^{n+1}} + \int_{\sqrt{x}}^{x} \frac{dt}{(\log(\sqrt{x}))^{n+1}}$$

$$= \frac{(\sqrt{x} - 2)}{(\log(2))^{n+1}} + \frac{2^{n+1}(x - \sqrt{x})}{(\log(x))^{n+1}} \le \frac{2^{n+1}x}{(\log(x))^{n+1}} + \frac{\sqrt{x}}{(\log(2))^{n+1}}$$

Now, since the base case $\lim_{x\to\infty} \frac{\sqrt{x}}{x/(\log(x))^2} = 0$ is proven in **part** (a), using induction, we can get the following relationship:

$$\forall n \in \mathbb{N}, \quad \lim_{x \to \infty} \frac{\sqrt{x}}{x/(\log(x))^{n+1}} = \lim_{x \to \infty} \frac{(\log(x))^{n+1}}{\sqrt{x}} = \lim_{x \to \infty} \frac{(n+1)(\log(x))^n/x}{1/(2\sqrt{x})}$$
$$= \lim_{x \to \infty} 2(n+1) \frac{\sqrt{x}}{x/(\log(x))^n} = 0$$

Hence, there exists $x_n > 4$ and $A_n > 0$, such that $x > x_n$ implies $\sqrt{x} \le A_n \frac{x}{(\log(x))^{n+1}}$. Hence, we get:

$$\int_{2}^{x} \frac{dt}{(\log(t))^{n+1}} \le \frac{2^{n+1}x}{(\log(x))^{n+1}} + \frac{\sqrt{x}}{(\log(2))^{n+1}}$$

$$\le \frac{2^{n+1}x}{(\log(x))^{n+1}} + \frac{A_n}{(\log(2))^{n+1}} \frac{x}{(\log(x))^{n+1}} = \left(2^{n+1} + \frac{A_n}{(\log(2))^{n+1}}\right) \frac{x}{(\log(x))^{n+1}}$$

This shows that $\int_2^x \frac{dt}{(\log(t))^{n+1}} = O\left(\frac{x}{(\log(x))^{n+1}}\right)$.

Finally, using the case proven in **part** (a), we know $\text{Li}(x) = \frac{x}{\log(x)} - \frac{2}{\log(2)} + \int_2^x \frac{dt}{(\log(t))^2}$. Which utilizing the above equation, by induction, one can show that for any integer $n \geq 2$, the following formula holds:

$$\mathrm{Li}(x) = \sum_{k=1}^n (k-1)! \frac{x}{(\log(x))^k} - \sum_{k=1}^n (k-1)! \frac{2}{(\log(2))^k} + n! \int_2^x \frac{dt}{(\log(t))^{n+1}} \leq \sum_{k=1}^n (k-1)! \frac{x}{(\log(x))^k} + n! \int_2^x \frac{dt}{(\log(t))^{n+1}} \leq \sum_{k=1}^n (k-1)! \frac{x}{(\log(x))^k} + n! \int_2^x \frac{dt}{(\log(x))^{n+1}} \leq \sum_{k=1}^n (k-1)! \frac{x}{(\log(x))^k} + n! \int_2^x \frac{dt}{(\log(x))^k} + n!$$

Then, with the statement that $\int_2^x \frac{dt}{(\log(t))^{n+1}} = O\left(\frac{x}{(\log(x))^{n+1}}\right)$ deduced previously, for any $n \in \mathbb{N}$, we get the following:

$$\operatorname{Li}(x) = \sum_{k=1}^{n} (k-1)! \frac{x}{(\log(x))^k} + O\left(\frac{x}{(\log(x))^{n+1}}\right)$$
$$= \frac{x}{\log(x)} + \frac{x}{(\log(x))^2} + 2! \frac{x}{(\log(x))^3} + \dots + (n-1)! \frac{x}{(\log(x))^n} + O\left(\frac{x}{(\log(x))^{n+1}}\right)$$

Question 3 Stein and Shakarchi Pg. 204 Problem 2:

One of the "explicit formulas" in the theory of primes is as follows: if ψ_1 is the integrated Tchebychev function considered in Section 2, then

$$\psi_1(x) = \frac{x^2}{2} - \sum_{\rho} \frac{x^{\rho+1}}{\rho(\rho+1)} - E(x)$$

where the sum is taken over all zeros ρ of the ζ -function in the critical strip. The error term is given by $E(x) = c_1 x + c_0 + \sum_{k=1}^{\infty} x^{1-2k}/(2k(2k-1))$, where $c_1 = \zeta'(0)/\zeta(0)$ and $c_0 = \zeta'(-1)/\zeta(-1)$. Note that $\sum_{\rho} 1/|\rho|^{1+\epsilon} < \infty$ for every $\epsilon > 0$, because $(1-s)\zeta(s)$ has order of growth 1. Also, obviously E(x) = O(x) as $x \to \infty$.

Pf:

First, recall that the following formula of $\psi_1(x)$ holds for any x > 1 and c > 1:

$$\psi_1(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{x^{s+1}}{s(s+1)} \left(-\frac{\zeta'(s)}{\zeta(s)} \right) ds$$

Which, to get a closed expression, we'll utilize Hadamard's product formula for ζ and Residue Theorem.

1. Product Formula for ζ and $-\frac{\zeta'}{\zeta}$:

Based on **Question 1 part (b)** in this assignment, we've proven that $(s-1)\zeta(s)$ is an entire function with growth order 1, and it is zero precisely at all the zeros of $\zeta(s)$ since at s=1, $\zeta(s)$ has residue 1. Which, $(s-1)\zeta(s)$ has zeros at -2k for $k \in \mathbb{N}$, and all zeros of ζ , denoted as ρ in the critical strip.

Then, based on **Hadamard's Factorization Theorem** (can be seen in **Stein and Shakarchi Chapter 5.5**), since $(s-1)\zeta(s)$ has growth order 1 with the zeros mentioned above (which the zeros are all nonzero), then there exists polynomial P(s) = cs + d with degree 1 (at most the growth order), such that the following holds:

$$(s-1)\zeta(s) = e^{cs+d} \left(\prod_{k=1}^{\infty} E_1\left(\frac{s}{2k}\right) \right) \left(\prod_{\rho} E_1\left(\frac{s}{\rho}\right) \right)$$

$$=e^{cs+d}\left(\prod_{k=1}^{\infty}\left(1-\frac{s}{2k}\right)e^{s/(2k)}\right)\left(\prod_{\rho}\left(1-\frac{s}{\rho}\right)e^{s/\rho}\right)$$

Where the second product contains all nontrivial zeros of ζ in the critical strip. Hence, the following is a formula for $\zeta(s)$ in terms of products of zeros and poles:

$$\zeta(s) = (s-1)^{-1}e^{cs+d} \left(\prod_{k=1}^{\infty} \left(1 - \frac{s}{2k} \right) e^{s/(2k)} \right) \left(\prod_{\rho} \left(1 - \frac{s}{\rho} \right) e^{s/\rho} \right)$$

Then, utilizing logarithmic derivative, we get the following:

$$\frac{\zeta'(s)}{\zeta(s)} = -\frac{1}{s-1} + c + \sum_{k=1}^{\infty} \left(\frac{1}{s-2k} + \frac{1}{2k} \right) + \sum_{\rho} \left(\frac{1}{s-\rho} + \frac{1}{\rho} \right)$$

And, this formula is normally convergent within any compact subset of the domain (not containing the zeros and the poles of ζ), so integration can be exchanged with summation.

4

Question 4 Stein and Shakarchi Pg. 204 Problem 3: Using the previous problem one can show that

$$\pi(x) - Li(x) = O(x^{\alpha + \epsilon})$$
 as $x \to \infty$

for every $\epsilon > 0$, where α is fixed and $1/2 \leq \alpha < 1$ if and only if $\zeta(s)$ has no zeros in the strip $\alpha < Re(s) < 1$. The case $\alpha = 1/2$ corresponds to the Riemann Hypothesis.

Pf: