Численные методы решения систем дифференциальных уравнений

Задачи, в которых необходимо решить систему из нескольких дифференциальных уравнений с несколькими искомыми функциями, очень распространены в предметной области химической технологии.

Будем рассматривать системы, в которых число неизвестных функций совпадает с числом уравнений, разрешенных относительно производных.

К примеру, система из двух уравнений с двумя неизвестными функциями y и z от одного и того же аргумента x имеет вид:

$$\begin{cases} y' = f_1(x, y, z) \\ z' = f_2(x, y, z) \end{cases}$$

$$\tag{1}$$

при этом штрих означает производную по x.

Численные методы решения систем дифференциальных уравнений

Общий вид системы из n уравнений с n неизвестными функциями x_1, x_2, \ldots, x_n от переменной t имеет вид:

$$\begin{cases} \frac{dx_1}{dt} = f_1(t, x_1, x_2, \dots, x_n) \\ \frac{dx_2}{dt} = f_2(t, x_1, x_2, \dots, x_n) \\ \dots \\ \frac{dx_n}{dt} = f_n(t, x_1, x_2, \dots, x_n) \end{cases}$$
(2)

Ранее мы рассмотрели численные методы решения обыкновенных дифференциальных уравнений вида y'=f(x,y) (методы Эйлера и Рунге-Кутты). Данные методы применяются и в случае решения систем обыкновенных дифференциальных уравнений.

Пусть дана следующая система обыкновенных дифференциальных уравнений:

$$\begin{cases} \frac{dy_1}{dx} = f_1(x, y_1, y_2) \\ \frac{dy_2}{dx} = f_2(x, y_1, y_2) \end{cases}$$
 (3)

с начальными условиями:

$$y_1|_{x=x_0} = y_{01}$$

 $y_2|_{x=x_0} = y_{02}$ (4)

При использовании метода Эйлера, расчетные формулы примут следующий вид:

$$\begin{cases} y_{(i),1} = y_{i-1,1} + h \cdot f_1 \left(x_{i-1}, y_{(i-1),1}, y_{(i-1),2} \right) \\ y_{(i),2} = y_{i-1,2} + h \cdot f_2 \left(x_{i-1}, y_{(i-1),1}, y_{(i-1),2} \right) \\ x_i = x_{i-1} + h \end{cases}$$
(5)

где h – шаг интегрирования; $f_1\left(x_i,y_{i,1},y_{i,2}\right)$ и $f_2\left(x_i,y_{i,1},y_{i,2}\right)$ – правые части дифференциальных уравнений.

Пусть требуется решить систему дифференциальных уравнений первого порядка:

$$\begin{cases} \frac{dy_1}{dx} = y_2\\ \frac{dy_2}{dx} = e^{-x \cdot y_1} \end{cases}$$

методом Эйлера на отрезке [0,1] с шагом h=0.1.

Начальные условия: $x_0 = 0$; $y_1(0) = 0$; $y_2(0) = 0$.

Воспользуемся формулой (5) и запишем выражения для $y_{i,1}$ и $y_{i,2}$:

$$\begin{cases} y_{i,1} = y_{(i-1),1} + 0.1 \cdot y_{(i-1),2} \\ y_{i,2} = y_{(i-1),2} + 0.1 \cdot e^{-x_{i-1} \cdot y_{(i-1),1}} \\ x_i = x_{i-1} + h \end{cases}$$

Пример 1

Результаты вычислений сведем в таблице.

i	x_i	$y_{i,1} = y_{(i-1),1} + 0.1 \cdot y_{(i-1),2}$	$y_{i,2} = y_{(i-1),2} + 0.1 \cdot e^{-x_{i-1} \cdot y_{(i-1),1}}$
0	0.0	0.0000	0.0000
1	0.1	0.0000	0.1000
2	0.2	0.0100	0.2000
3	0.3	0.0300	0.2998
4	0.4	0.0600	0.3989
5	0.5	0.0999	0.4965
6	0.6	0.1495	0.5917
7	0.7	0.2087	0.6831
8	0.8	0.2770	0.7695
9	0.9	0.3539	0.8496
10	1.0	0.4389	0.9223

```
import numpy as np
2
   def eiler(func, x0, xf, y0, h):
4
       count = int((xf - x0) / h) + 1
5
       у = [у0[:]] # создание массива у с начальными условиями
       x = x0
       for i in range(1, count):
9
10
           right_parts = func(x, y[i-1])
           v.append([]) # добавление пустой строки
11
12
           for j in range(len(y0)):
13
               y[i].append(y[i-1][j] + h * right_parts[j])
14
15
           x += h
16
17
18
       return y
19
20
```

```
def equations(x, v): # Функция, содержащая правые части дифференциальных уравнений
       return [v[1], np.exp(-x * v[0])]
23
24
25
   if __name__ == '__main ':
       print(eiler(equations, 0, 1, [0, 0], 0.1))
26
27
   [[0, 0],
    [0.0, 0.1].
    [0.0100000000000000002, 0.2],
    [0.030000000000000006, 0.29980019986673334],
    [0.05998001998667334, 0.39890423774402173],
    [0.09987044376107551, 0.4965335889709902],
    [0.14952380265817453, 0.5916626935059732],
    [0.20869007200877185, 0.6830819284599525],
    [0.2769982648547671, 0.7694905222116074],
    [0.35394731707592786, 0.8496142128887387].
    [0.4389087383648017, 0.9223342965713657]]
```

Закон действующих масс

Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, возведенных в степени, равные их стехиометрическим коэффициентам.

Схема химической реакции:

Изменение концентрации каждого компонента во времени:

$$n_1A_1 + n_2A_2 + n_3A_3 \stackrel{k}{\longrightarrow} B$$

Скорость данной реакции:

$$r = k \cdot [A_1]^{n_1} \cdot [A_2]^{n_2} \cdot [A_3]^{n_3}$$

$$\begin{cases} \frac{\partial C_{A_1}}{\partial t} = -n_1 \cdot r \\ \frac{\partial C_{A_2}}{\partial t} = -n_2 \cdot r \\ \frac{\partial C_{A_3}}{\partial t} = -n_3 \cdot r \\ \frac{\partial C_B}{\partial t} = r \end{cases}$$

где k – константа скорости химической реакции; C_{A_1} , C_{A_2} , C_{A_3} , C_B – концентрации веществ (моль/л), участвующих в химической реакции, n_1 , n_2 , n_3 – стехиометрические коэффициенты в уравнении реакции.

Пример 2

Пусть дана схема химических реакций:

$$A \stackrel{k_1}{\underset{k_2}{\rightleftarrows}} B$$

Скорость прямой реакции: $r_1=k_1\cdot C_A$; скорость обратной реакции: $r_2=k_2\cdot C_B$. Константы скоростей реакций: $k_1=0.85$; $k_2=0.1$, C_A и C_B – концентрации компонентов A и B. Изменение концентрации реагирующих веществ во времени описывается следующей системой дифференциальных уравнений:

$$\begin{cases} \frac{\partial C_A}{\partial t} = -r_1 + r_2 \\ \frac{\partial C_B}{\partial t} = r_1 - r_2 \end{cases}$$

Необходимо определить изменение концентрации каждого компонента по времени методом Эйлера на отрезке [0,1] с шагом h=0.1. Начальные условия: $C_A(0)=1$ (моль/л); $C_B(0)=0$ (моль/л). Воспользуемся формулой (5) и запишем выражения для $C_{A,i}$ и $C_{B,i}$:

$$\begin{cases} C_{A,i} = C_{A,(i-1)} + 0.1 \cdot \left(-k_1 \cdot C_{A,(i-1)} + k_2 \cdot C_{B,(i-1)} \right) \\ C_{B,i} = C_{B,(i-1)} + 0.1 \cdot \left(k_1 \cdot C_{A,(i-1)} - k_2 \cdot C_{B,(i-1)} \right) \\ t_i = t_{i-1} + h \end{cases}$$