class 9: Halloween Mini-project

Bryn Baxter (PID:A69038039)

Table of contents

Background	1
Import the data	1
What is your favorite candy type	2
5 Exploring the correlation structure	8
6 Principal Component Analysis	O

Background

Today we are delving into an analysis of Halloween candy data using ggplot, dplyr, basic stats, correlational analysis, and our old friend PCA.

Import the data

```
candy <- read.csv("candy-data.txt", row.names=1)
head(candy)</pre>
```

	choc	olate	fruity	caramel	peanut	yalmondy	nougat	crispedricewaf	er
100 Grand		1	0	1		0	0		1
3 Musketeers		1	0	0		0	1		0
One dime		0	0	0		0	0		0
One quarter		0	0	0		0	0		0
Air Heads		0	1	0		0	0		0
Almond Joy		1	0	0		1	0		0
	hard	bar j	pluribus	sugarpe	ercent	priceper	cent wi	npercent	
100 Grand	0	1	()	0.732	0	.860	66.97173	
3 Musketeers	0	1	()	0.604	0	.511	67.60294	

One dime	0	0	0	0.011	0.116	32.26109
One quarter	0	0	0	0.011	0.511	46.11650
Air Heads	0	0	0	0.906	0.511	52.34146
Almond Joy	0	1	0	0.465	0.767	50.34755

Q1. How many candies are in this data set?

```
nrow(candy)
```

[1] 85

Q2. How many fruity candy types are in the dataset?

```
sum(candy$fruity)
```

[1] 38

Q3. How many chocolate candies are there?

```
sum(candy$chocolate)
```

[1] 37

What is your favorite candy type

```
candy["Junior Mints","winpercent"]
```

[1] 57.21925

```
candy["Junior Mints",]$winpercent
```

[1] 57.21925

```
#|message: false
library(dplyr)
```

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

We can also use the filter() and select() functions from dplyr.

```
candy |>
filter(rownames(candy)=="Junior Mints")|>
select(winpercent, sugarpercent)
```

winpercent sugarpercent Junior Mints 57.21925 0.197

A useful function for a quick look at a new dataset is found in the **skimr** package:

library(skimr)
skim(candy)

Table 1: Data summary

Name	candy
Number of rows	85
Number of columns	12
Column type frequency:	
numeric	12
~	
Group variables	None

Variable type: numeric

skim_variable	n_missingcomp	olete_ra	ntmean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	

skim_variable n_	_missingcom	plete_ra	tmean	sd	p0	p25	p50	p75	p100	hist
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Q4. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

The winpercent column is on a different "scale" or range than all the others.

N.B We will need to scale the data before analysis like PCA for example to avoid this one variable dominating our analysis.

Q5. What do you think a zero and one represent for the candy\$\text{chocolate column}?

That the candy had no chocolate if 0 and the candy is chocolate if 1. >Q8. Plot a histogram of winpercent values. Using base R and ggplot.

hist(candy\$winpercent)

Histogram of candy\$winpercent


```
library(ggplot2)
ggplot(candy)+
        aes(x=winpercent)+
        geom_histogram(bins=10, fill="lightblue")
```


Q9. Is the distribution of winpercent values symmetrical?

No. >Q10. Is the center of the distribution above or below 50%? From the histogram it looks to be below 50%.

summary(candy\$winpercent)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 22.45 39.14 47.83 50.32 59.86 84.18
```

Q11. On average is chocolate candy higher or lower ranked than fruit candy?

Step 1. Extract/find chocolate candy rows in the data set

```
choc.inds <- (candy$chocolate==1)
choc.candy <- candy[choc.inds, ]</pre>
```

Step 2. Get their winpercent values.

```
choc.win <- choc.candy$winpercent</pre>
```

Step3. Get their mean winpercent

```
mean(
choc.win
)

[1] 60.92153

Step4. Find/extract fruity candy.
```

```
fruit.inds <- (candy$fruity==1)
fruit.candy <- candy[fruit.inds, ]</pre>
```

Step 5. Get their winpercent values.

```
fruit.win <- fruit.candy$winpercent</pre>
```

Step 6. calculate their meanwinpercent

```
mean(fruit.win)
```

[1] 44.11974

Step7. compare their winpercent mean values and see which is higher.

Fruit candy mean win percent is less than chocolate winpercent.

Q12. Is this difference statistically significant?

Lets use a t. test

```
t.test(choc.win, fruit.win)
```

```
Welch Two Sample t-test

data: choc.win and fruit.win

t = 6.2582, df = 68.882, p-value = 2.871e-08

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

11.44563 22.15795

sample estimates:

mean of x mean of y

60.92153 44.11974
```

##Overall candy rankings >Q13. What are the five least liked candy types in this set?

```
#sort(candy$winpercent)

x=c(10,1,100)
sort(x)
```

[1] 1 10 100

```
order(x)
```

[1] 2 1 3

So i can use the output of $\mbox{order(winpercent)}$ to re-arrange (or order) my whole dataset by $\mbox{winpercent}$

```
ord.inds <- order(candy$winpercent)
head(candy[ord.inds, ], 5)</pre>
```

	chocolate	fruity	carar	nel j	peanutyaln	nondy	nougat	
Nik L Nip	0	1		0		0	0	
Boston Baked Beans	0	0		0		1	0	
Chiclets	0	1		0		0	0	
Super Bubble	0	1		0		0	0	
Jawbusters	0	1		0		0	0	
	crispedrio	cewafer	${\tt hard}$	bar	pluribus	sugar	percent	pricepercent
Nik L Nip		0	0	0	1		0.197	0.976
Boston Baked Beans	}	0	0	0	1		0.313	0.511
Chiclets		0	0	0	1		0.046	0.325
Super Bubble		0	0	0	0		0.162	0.116
Jawbusters		0	1	0	1		0.093	0.511
	winpercent	;						
Nik L Nip	22.44534	l						
Boston Baked Beans	23.41782	2						
Chiclets	24.52499	9						
Super Bubble	27.30386	3						
Jawbusters	28.12744	l						

```
arrange(winpercent)|>
  head()
                    chocolate fruity caramel peanutyalmondy nougat
Nik L Nip
                                    1
Boston Baked Beans
                                   0
                            0
                                            0
                                                            1
                                                                   0
Chiclets
                            0
                                   1
                                            0
                                                            0
                                                                   0
Super Bubble
                            0
                                   1
                                            0
                                                            0
                                                                   0
                            0
                                    1
                                            0
                                                            0
                                                                   0
Jawbusters
Root Beer Barrels
                            0
                                   0
                                            0
                                                            0
                                                                   0
                    crispedricewafer hard bar pluribus sugarpercent pricepercent
Nik L Nip
                                   0
                                         0
                                             0
                                                                0.197
                                                                              0.976
                                                       1
Boston Baked Beans
                                   0
                                         0
                                             0
                                                       1
                                                                0.313
                                                                              0.511
                                             0
Chiclets
                                   0
                                         0
                                                      1
                                                                0.046
                                                                              0.325
Super Bubble
                                   0
                                         0
                                             0
                                                      0
                                                                0.162
                                                                              0.116
Jawbusters
                                   0
                                         1
                                             0
                                                      1
                                                                0.093
                                                                              0.511
```

0.732

0.069

winpercent

 Nik L Nip
 22.44534

 Boston Baked Beans
 23.41782

 Chiclets
 24.52499

 Super Bubble
 27.30386

 Jawbusters
 28.12744

 Root Beer Barrels
 29.70369

Root Beer Barrels

candy | >

Q14. What are the top 5 all time favorite candy types out of this set?

```
candy|>
arrange(-winpercent)|>
head()
```

	${\tt chocolate}$	fruity	caram	nel	peanutyalm	nondy	nougat
Reese's Peanut Butter cup	1	0		0		1	0
Reese's Miniatures	1	0		0		1	0
Twix	1	0		1		0	0
Kit Kat	1	0		0		0	0
Snickers	1	0		1		1	1
Reese's pieces	1	0		0		1	0
	crispedrio	cewafer	hard	bar	pluribus	sugai	percent
Reese's Peanut Butter cup		0	0	0	0		0.720

Reese's Miniatures		0	0	0	0	0.034
Twix		1	0	1	0	0.546
Kit Kat		1	0	1	0	0.313
Snickers		0	0	1	0	0.546
Reese's pieces		0	0	0	1	0.406
price	epercent	winpe	rcent			
Reese's Peanut Butter cup	0.651	84.	18029			
Reese's Miniatures	0.279	81.	86626			
Twix	0.906	81.	64291			
Kit Kat	0.511	76.	76860			
Snickers	0.651	76.	67378			
Reese's pieces	0.651	73.	43499			

Q15. Make a first barplot of candy ranking based on winpercent values.

```
ggplot(candy)+
  aes(x=winpercent, y=rownames(candy))+
  geom_col()
```


We can make this plot better by rearranging (using reorder()) the y axis by winpercent so the top candy is at the top and the lowest is at the bottom.

```
p.1 <- ggplot(candy)+
   aes(x=winpercent, y=reorder(rownames(candy), winpercent), fill=chocolate)+
   geom_col()+
ylab("")+
   xlab("Winning Percent")
p.1</pre>
```


ggsave("my_plot.png", height=12, width=5)

>Q. Color your bars by "chocolate"

0.75

0.50

0.25

0.00

I want to color chocolate and fruity candy a specified color. To do this we need to define our own custom color vector that has the exact color mapping we want.

```
mycols <- rep("black", nrow(candy))
mycols[candy$chocolate==1] <- "chocolate"
mycols[candy$bar==1] <- "brown"
mycols[candy$fruity==1] <- "pink"
mycols</pre>
```

```
[1] "brown"
                  "brown"
                              "black"
                                           "black"
                                                        "pink"
                                                                    "brown"
 [7] "brown"
                  "black"
                              "black"
                                           "pink"
                                                        "brown"
                                                                    "pink"
[13] "pink"
                  "pink"
                              "pink"
                                           "pink"
                                                        "pink"
                                                                    "pink"
[19] "pink"
                                           "pink"
                                                        "chocolate"
                                                                    "brown"
                  "black"
                              "pink"
[25] "brown"
                  "brown"
                              "pink"
                                           "chocolate" "brown"
                                                                    "pink"
                  "pink"
[31] "pink"
                              "chocolate" "chocolate" "pink"
                                                                    "chocolate"
[37] "brown"
                  "brown"
                              "brown"
                                           "brown"
                                                        "brown"
                                                                    "pink"
                              "pink"
                                           "pink"
[43] "brown"
                  "brown"
                                                        "brown"
                                                                    "chocolate"
[49] "black"
                  "pink"
                              "pink"
                                           "chocolate" "chocolate" "chocolate"
                                                        "pink"
[55] "chocolate" "pink"
                              "chocolate" "black"
                                                                    "chocolate"
[61] "pink"
                  "pink"
                              "chocolate" "pink"
                                                        "brown"
                                                                    "brown"
                                                        "black"
[67] "pink"
                  "pink"
                              "pink"
                                           "pink"
                                                                    "black"
[73] "pink"
                  "pink"
                              "pink"
                                           "chocolate" "chocolate" "brown"
[79] "pink"
                  "brown"
                              "pink"
                                           "pink"
                                                        "pink"
                                                                    "black"
[85] "chocolate"
```

```
ggplot(candy)+
  aes(x=winpercent, y=reorder(rownames(candy), winpercent))+
  geom_col(fill=mycols)+
  ylab("") +
  xlab("Winning Percent")
```


ggsave("my_color_plot.png", height=12, width=6)

##Taking a look at pricepercent

Plot of winpercent vs pricepercent

```
ggplot(candy) +
  aes(x=winpercent,
    y=pricepercent, label=rownames(candy)) +
  geom_point(col=mycols) +
  geom_text(col=mycols) +
  theme_bw()
```


To avoid the common problem of label or text over plotting we can use the **ggrepel** package like so:

```
library(ggrepel)

ggplot(candy) +
  aes(x=winpercent,
     y=pricepercent, label=rownames(candy)) +
  geom_point(col=mycols) +
  geom_text_repel(col=mycols) +
  theme_bw()
```

Warning: ggrepel: 50 unlabeled data points (too many overlaps). Consider increasing max.overlaps

We can control the amount of labels visible by setting different max.overlaps values:

```
#Change pink to red for fruity candy
mycols[candy$fruity==1]<- "red"

ggplot(candy) +
  aes(x=winpercent,
      y=pricepercent, label=rownames(candy)) +
  geom_point(col=mycols) +
  geom_text_repel(col=mycols, size=3.3, max.overlaps=8) +
  theme_bw()</pre>
```

Warning: ggrepel: 52 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck?

Reese's peanutcup miniatures (chocolate candies give you more bang for your buck)

Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

Nik L Nip Ring pops Nestle Smarties Mr. Good Bars Hershey Milk chocolate

5 Exploring the correlation structure

The main function for correlation analysis in base R is called cor()

```
library(corrplot)
```

corrplot 0.95 loaded

```
cij <- cor(candy)
head(cij)</pre>
```

	chocolate	fruity	caramel	peanutyalmondy	nougat
chocolate	1.0000000	v		- 0	•
fruity	-0.7417211	1.0000000	-0.33548538	-0.39928014	-0.26936712
caramel	0.2498753	-0.3354854	1.00000000	0.05935614	0.32849280
peanutyalmondy	0.3778236	-0.3992801	0.05935614	1.00000000	0.21311310
nougat	0.2548918	-0.2693671	0.32849280	0.21311310	1.00000000
crispedricewafer	0.3412098	-0.2693671	0.21311310	-0.01764631	-0.08974359
	crispedrice	wafer	hard	bar pluribus	sugarpercent
chocolate	0.341	20978 -0.34	141769 0.59°	74211 -0.3396752	0.10416906
fruity	-0.269	36712 0.39	906775 -0.51	50656 0.2997252	-0.03439296
caramel	0.213	11310 -0.12	223551 0.333	39600 -0.2695850	0.22193335
peanutyalmondy	-0.017	64631 -0.20	055566 0.260	04196 -0.2061093	0.08788927
nougat	-0.089	74359 -0.13	386750 0.522	29764 -0.3103388	0.12308135
crispedricewafer	1.000	00000 -0.13	386750 0.423	37509 -0.2246934	0.06994969
	pricepercen	t winpercer	nt		
chocolate	0.504675	4 0.636516	67		
fruity	-0.430968	5 -0.380938	31		
caramel	0.254327	1 0.213416	53		
peanutyalmondy	0.309153	2 0.406192	22		
nougat	0.153196	4 0.199375	53		
crispedricewafer	0.328265	4 0.324679	97		

corrplot(cij)

6 Principal Component Analysis

We are going use our old friend prcomp() function. We are going to set scale=True.

```
pca <- prcomp(candy, scale=T)</pre>
```

Lets make our main results Figures. First our score plot.

```
ggplot(pca$x)+
aes(PC1, PC2, label=rownames(candy))+geom_point(col=mycols)+
geom_text_repel(col=mycols, max.overlaps = 8)
```

Warning: ggrepel: 57 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Lets look at how the original variables contribute to our new PC's -this is often called the variable "loadings"

```
ggplot(pca$rotation)+
  aes(PC1, reorder(rownames(pca$rotation), PC1))+
  geom_col()
```

