Quaderno delle regole - Matematica

Tommaso Bocchietti

6 aprile 2023

Indice

1	Goniometria	1
	1.1 Funzioni goniometriche	

Goniometria 1

Un angolo può essere misurato in gradi o radianti, infatti si ha $\alpha^{\circ} = \alpha [rad] \frac{180^{\circ}}{\pi}$. Considerando una circonferenza goniometrica (raggio r=1), un angolo orientato α , dal prolungamento del lato dell'angolo α , otteniamo l'intersezione B, dove:

 $y_B=\sin(\alpha)$ $x_B=\cos(\alpha)$ $\frac{y_B}{x_B}=\tan(\alpha)$ Al variare dell'angolo α , le funzioni vengono così rappresentate:

Tutte queste funzioni sono periodiche, per cui f(x) = f(x+T), dove T è il periodo della funzione.

Angoli noti:

Angolo °	$\sin(\alpha)$	$\cos(\alpha)$	$\tan(\alpha)$
0	0	1	0
30	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90	1	0	∞

Esistono poi le funzioni inverse, che permettono di trovare l'angolo α a

partire da un dato valore della funzione (es. $\sin(30^\circ) = \frac{1}{2} \to 30^\circ = \arcsin(\frac{1}{2})$). Il periodo T di una funzione si ricava come: $f(x) = \sin(\omega x) \to T = \frac{2\pi}{\omega}$ Relazioni fondamentali della goniometria: $\sin(\alpha)^2 + \cos(\alpha)^2 = 0$ e $\frac{\sin(\alpha)}{\cos(\alpha)} = \frac{1}{2} \to 30^\circ$ tan(alpha)

1.1 Funzioni goniometriche

Addizione

- $\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$
- $\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) \sin(\alpha)\sin(\beta)$
- $\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 \tan(\alpha)\tan(\beta)}$

Sottrazione

•
$$\sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta)$$

•
$$\cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$$

•
$$\tan(\alpha - \beta) = \frac{\tan(\alpha) - \tan(\beta)}{1 + \tan(\alpha)\tan(\beta)}$$

Duplicazione

•
$$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$$

•
$$\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha)$$

•
$$\tan(2\alpha) = 2\tan(\alpha)\frac{1-\tan^2(\alpha)}{1+\tan^2(\alpha)}$$

Bisezione

•
$$\sin(\frac{\alpha}{2}) = \sqrt{\frac{1-\cos(\alpha)}{2}}$$

•
$$\cos(\frac{\alpha}{2}) = \sqrt{\frac{1+\cos(\alpha)}{2}}$$

•
$$\tan(\frac{\alpha}{2}) = \frac{\sqrt{1-\cos(\alpha)}}{\sqrt{1+\cos(\alpha)}} = \frac{\sin(\alpha)}{1+\cos(\alpha)} = \frac{1-\cos(\alpha)}{1+\cos(\alpha)}$$

Parametriche

•
$$\sin(\alpha) = \frac{2\tan(\frac{\alpha}{2})}{1+\tan^2(\frac{\alpha}{2})}$$

•
$$\cos(\alpha) = \frac{1-\tan^2(\frac{\alpha}{2})}{1+\tan^2(\frac{\alpha}{2})}$$

Esistono anche

- $\sin^2(\alpha) = \frac{1-\cos(2\alpha)}{2}$
- $\cos^2(\alpha) = \frac{1 + \cos(2\alpha)}{2}$

Ogni formula contenente la tangente ha le sue condizioni di esistenza. In generale essendo $\tan(\alpha)=\frac{\sin(\alpha)}{\cos(\alpha)}$ si ha che $\tan(\alpha)$ esiste se $\cos(\alpha)\neq 0$, ovvero se $\alpha\neq K\pi$ con $K\in Z$.