BRSM Results Analysis

George Paul

2024-02-19

```
rm(list = setdiff(ls(), lsf.str()))
# install.packages('readxl')
library(readxl)
excel_path <- 'D:\\FILES\\BRSM_Results Visualization.xlsx'</pre>
data <- read_excel(excel_path)</pre>
data
## # A tibble: 43 x 2
                  Group 'No. of Mosquitoes'
##
                  <chr>
        1 Beer
                                                                                        27
## 2 Beer
                                                                                        19
## 3 Beer
                                                                                        20
## 4 Beer
                                                                                        20
## 5 Beer
                                                                                        23
## 6 Beer
                                                                                        17
## 7 Beer
                                                                                        21
## 8 Beer
                                                                                        24
## 9 Beer
                                                                                        31
## 10 Beer
                                                                                        26
## # i 33 more rows
nums <- data[["No. of Mosquitoes"]]</pre>
## [1] 27 19 20 20 23 17 21 24 31 26 28 20 27 19 25 31 24 28 24 29 21 21 18 27 20
## [26] 21 19 13 22 15 22 15 22 20 12 24 24 21 19 18 16 23 20
grps <- data[["Group"]]</pre>
grps
## [1] "Beer" "Beer"
                                                                        "Beer"
                                                                                                 "Beer" "Beer"
                                                                                                                                                   "Beer"
                                                                                                                                                                           "Beer"
                                                                                                                                                                                                    "Beer"
## [10] "Beer" "Beer"
                                                                       "Beer" "Beer" "Beer"
                                                                                                                                                  "Beer" "Beer"
                                                                                                                                                                                                   "Beer" "Beer"
## [19] "Beer" "Beer" "Beer" "Beer" "Beer" "Beer"
                                                                                                                                                                                                   "Water" "Water"
## [28] "Water" "Water
## [37] "Water" "Water" "Water" "Water" "Water" "Water"
```

```
count_b <- sum(grps == "Beer")</pre>
count_b
## [1] 25
count_w <- sum(grps == "Water")</pre>
count_w
## [1] 18
beer_list <- subset(data, Group == "Beer")</pre>
beer_list
## # A tibble: 25 x 2
      Group 'No. of Mosquitoes'
##
      <chr>
                           <dbl>
## 1 Beer
                              27
## 2 Beer
                              19
## 3 Beer
                               20
## 4 Beer
                              20
## 5 Beer
                              23
## 6 Beer
                              17
## 7 Beer
                              21
## 8 Beer
                              24
## 9 Beer
                              31
## 10 Beer
                               26
## # i 15 more rows
watr_list <- subset(data, Group == "Water")</pre>
obs_stat_med <- median(beer_list$`No. of Mosquitoes`) - median(watr_list$`No. of Mosquitoes`)
obs_stat_med
## [1] 4
obs_stat_t <- t.test(watr_list$`No. of Mosquitoes`, beer_list$`No. of Mosquitoes`)</pre>
as.double(obs_stat_t$statistic)
## [1] -3.658245
Question 2.a
get_group_median_diff <- function() {</pre>
  beer_sample <- sample(nums, count_b, replace = TRUE)</pre>
  watr_sample <- sample(nums, count_w, replace =TRUE)</pre>
  median(beer_sample) - median(watr_sample)
}
get_group_median_diff()
```

[1] -1

```
counter <- 0
iter_count <-10000

medians <- c()

repeat {
  medians <- c(medians, get_group_median_diff())

  counter <- counter + 1
  if (counter >= iter_count) {
    break
  }
}

plot(hist(medians, main = "Median of Beer sample - Median of Water sample"))+
abline(v = obs_stat_med, col = "red", lty = 2)
```

Median of Beer sample - Median of Water sample

Histogram of medians

integer(0)

```
p_val_qa <- sum(medians >= obs_stat_med) / length(medians)
p_val_qa
```

[1] 0.0114

The calculated p-value is: $\frac{\text{Number of values where val} \geq \text{Observed Statistic}}{\text{Total Number of values}}$

This was calculated to be p-value $\approx 0.01 < \alpha$. Hence we can conclude that it is statistically significant.

```
p_val_qa_nondir <- (sum(medians >= obs_stat_med) + sum(medians <= -obs_stat_med)) / length(medians)
p_val_qa_nondir</pre>
```

2.c for (a) step statistic

[1] 0.0278

The calculated p-value for non-directional hypothesis is: $\frac{\text{Number of values where val} \geq \text{Observed Statistic+Number of values where val} \leq (-\frac{1}{2})$

This was calculated to be p-value $\approx 0.02 < \alpha$. Hence we can conclude that it is statistically significant.

Question 2.b

```
get_group_t <- function() {</pre>
  beer_sample <- sample(nums, count_b, replace = TRUE)</pre>
  watr_sample <- sample(nums, count_w, replace =TRUE)</pre>
  as.double(t.test(beer_sample, watr_sample)$statistic)
get_group_t()
## [1] -0.2575364
counter <- 0
iter_count <-10000</pre>
ts <- c()
repeat {
 ts <- c(ts, get_group_t())</pre>
  counter <- counter + 1</pre>
  if (counter >= iter_count) {
    break
}
plot(hist(ts, main = "T statistic"))
```

T statistic

Histogram of ts


```
\# abline(v = obs\_stat\_t, col = "red", lty = 2)
```

Question 3

```
excel_path <- 'D:\\FILES\\iqdata.xlsx'
data <- read_excel(excel_path)</pre>
```

```
## New names:
## * '' -> '...1'
## * 'GPA' -> 'GPA...2'
## * 'GPA' -> 'GPA...6'
## * '' -> '...7'
## * '' -> '...12'
## * '' -> '...13'
## * '' -> '...15'
## * '' -> '...16'
## * '' -> '...19'
## * '' -> '...20'
## * '' -> '...22'
## * '' -> '...23'
```

```
## # A tibble: 78 x 23
##
       ...1 GPA...2
                        IQ GENDER 'Placement \r\nTESTSCORE' GPA...6 ...7 ...8
##
      <dbl>
              <dbl> <dbl> <dbl>
                                                        <dbl>
                                                                 <dbl> <lgl> <lgl>
##
               7.94
                                 2
                                                                  7.94 NA
   1
          1
                       111
                                                           67
                                                                             NA
##
   2
          2
               8.29
                       107
                                 2
                                                           43
                                                                  8.29 NA
                                                                             NA
##
  3
          3
               4.64
                       100
                                2
                                                           52
                                                                  4.64 NA
                                                                             NΑ
                                 2
                                                                  7.47 NA
##
   4
          4
               7.47
                       107
                                                           66
                                                                             NA
## 5
          5
               8.88
                       114
                                1
                                                           58
                                                                 8.88 NA
                                                                             NA
##
  6
          6
               7.58
                       115
                                2
                                                           51
                                                                 7.58 NA
                                                                             NA
                                2
##
  7
          7
               7.65
                       111
                                                           71
                                                                 7.65 NA
                                                                             NA
##
   8
          8
               2.41
                       97
                                 2
                                                                  2.41 NA
                                                           51
                                                                             NA
## 9
                       100
          9
               6
                                1
                                                           49
                                                                  6
                                                                       NA
                                                                             NA
## 10
         10
               8.83
                       112
                                 2
                                                           51
                                                                  8.83 NA
                                                                             NA
## # i 68 more rows
## # i 15 more variables: Exerice_Times <dbl>, 'Exercise code' <dbl>,
       Anxiety <dbl>, ...12 <lgl>, ...13 <lgl>, 'anxiety scores' <chr>,
       ...15 <chr>, ...16 <lgl>, 't-Test: Paired Two Sample for Means' <chr>,
## #
       ...18 <chr>>, ...19 <chr>>, ...20 <lgl>,
## #
## #
       't-Test: Two-Sample Assuming Equal Variances' <chr>, ...22 <chr>,
       ...23 <chr>
## #
sco_list <- data$`Placement \r\nTESTSCORE`</pre>
iqs_list <- data$IQ</pre>
original_corr <- cor(sco_list, iqs_list)</pre>
original_corr
## [1] 0.4931479
counter <- 0
iter_count <-10000</pre>
corrs <- c()
repeat {
  shuff_sco_list <- sco_list[sample(length(sco_list))]</pre>
  shuff_iqs_list <- iqs_list[sample(length(iqs_list))]</pre>
  cor(shuff_sco_list, shuff_iqs_list)
  corrs <- c(corrs, cor(shuff_sco_list, shuff_iqs_list))</pre>
  counter <- counter + 1</pre>
```

plot(hist(corrs, main = "Correlation bootstrap distribution"))+

abline(v = original_corr, col = "red", lty = 2)

if (counter >= iter_count) {

break

} }

Correlation bootstrap distribution

Histogram of corrs

integer(0)

As it stands in the latest simulation, the originally calculated correlation is beyond the range of any of the randomly generated data. Hence the calculated p-value will be $\approx 0 \leq \alpha = 0.05$. We can conclude that the correlation that was found was statistically quite significant.