Machine Learning for Graphs and Sequential Data

Graphs - Classification (Semi-Supervised Learning)

Lecturer: Prof. Dr. Stephan Günnemann

cs.cit.tum.de/daml

Summer Term 23

Roadmap

Chapter: Graphs

- 1. Graphs & Networks
- 2. Generative Models
- 3. Ranking
- 4. Clustering
- 5. Classification (Semi-Supervised Learning)
- 6. Node/Graph Embeddings
- 7. Graph Neural Networks (GNNs)

Types of Machine Learning Problems on Graphs

- So far we have discussed unsupervised learning problems on graphs

 - clustering / community detection ranking
- What about supervised learning tasks, such as
 - classifying role of a protein in a PPI network
 - detecting fraudsters in an e-commerce system
 - predicting user's preferences in a social network

assuming that some training data is given

More generally, how do we label/categorize/classify instances in a graph?

Collective Classification

don't need features
only need structure/edges
relationship

- Consider the following problem
 - Graph represents a social network, nodes = users, edges = friendship
 - Labels are known for some labeled nodes
 - Goal is to classify the unlabeled nodes

- Standard assumption: Homophily (a.k.a. assortativity)
 - "birds of a feather flock together"
 - a.k.a. smoothness assumptions
 - that is, if nodes are connected by an edge, they are likely to have same labels

Label Propagation

optimization problem

- Consider the binary case (two classes)
- Formal definition of the problem
 - Nodes $V = S \cup U$
 - Labeled instances S (seeds) and unlabeled instances U
 - Symmetric weighted adjacency matrix $\mathbf{W} \in \mathbb{R}^{|V| \times |V|}$
 - $w_{ij} \ge 0$ denotes similarity of nodes i and j
 - $-|\hat{y}_i| \in \{0,1\}$ for $i \in S$ // given class labels for the nodes in S
 - $-|y_i| \in \{0,1\}$ for $i \in V$ // class labels we want to **predict** for each node

smoothness: adjacent nodes should have same class label

Label Propagation

■ Two aspects: Smoothness + Matching the seed labels

$$\min_{\mathbf{y} \in \{0,1\}^{|V|}} \frac{1}{2} \sum_{ij} w_{ij} (y_i - y_j)^2 \text{ subject to } y_i = \hat{y}_i \text{ for all } i \in S$$

- Constrained integer optimization problem
- We know how to rewrite the above problem!

• L = D - W is the graph Laplacian

• Drop the integer constraint: y_i ($i \in U$) can be any real value

Label Propagation: Solution

- Task: $\min_{\mathbf{y} \in \mathbb{R}^{|\mathbf{y}|}} \mathbf{y}^T \mathbf{L} \mathbf{y}$ subject to $y_i = \hat{y}_i$ for all $i \in S$
- Solution:
 - w.l.o.g. assume the Laplacian matrix is partitioned into blocks for labeled and unlabeled nodes

and unlabeled nodes
$$L = \begin{bmatrix} L_{SS} & L_{SU} \\ L_{US} & L_{UU} \end{bmatrix} \quad \text{how} \quad \text{label and unlabel connect}$$

- Accordingly let $y = \begin{bmatrix} \hat{y}_S \\ \hat{y}_U \end{bmatrix} = \begin{bmatrix} \hat{y}_S \\ \hat{y}_U \end{bmatrix}$ the vector of labels to be learned Then: $y_U = -\boldsymbol{L}_{UU}^{-1} \cdot \boldsymbol{L}_{US} \cdot \hat{y}_S$

Zhu, X., & Ghahramani, Z. (2002). Learning from labeled and unlabeled data with label propagation. Center for Automated Learning and Discovery, CMU: Carnegie Mellon University, USA.

Label Propagation: Generalization

- What if we have K labels?
 - Use one-hot notation $y_{ik} = \begin{cases} 1 & \text{if node } i \text{ is of class } k \\ 0 & \text{else} \end{cases}$
 - Energy function $E(\mathbf{Y}) = \sum_{i,j} w_{ij} (\mathbf{y}_i \mathbf{y}_j)^T (\mathbf{y}_i \mathbf{y}_j)$
- Other types of network effects encode with a compatibility matrix H

• Energy function $E(Y) = \sum_{i,j} w_{ij} (y_i - y_j)^T H(y_i - y_j)$

Label Propagation vs. SBM

- At first glance both models seem very similar
 - labels \mathbf{y}_i look a lot like community affiliations \mathbf{z}_i
 - compatibility matrix H from LP looks like η from SBM
- Is LP equivalent to inference in SBM with some z_i s observed?
 - Label propagation is a discriminative model that only models the conditional distribution of labels given the similarity graph p(Y|W)
 - on the other hand, SBM is a generative model that models Pr(A|Z) and Pr(Z)
 - we can use SBM to generate new graphs not the case for LP!

 for SBM we get the posterior $\Pr(\mathbf{Z}|\mathbf{A}) = \frac{\Pr(\mathbf{A}|\mathbf{Z})\Pr(\mathbf{Z})}{\Pr(\mathbf{A})}$ using Bayes' formula
- SBM and LP solve different problems
 - SBM: estimate what parameters generated a given graph A (unsupervised)
 - LP: predict labels of the nodes in U given observed labels and W (supervised)

Transductive Learning

- Label Propagation is a special case of so-called transductive learning.
 - Given
 - (i) a set of labeled training instances $T = \{(x_i, y_i)_{i=1...N}\} \subset \mathcal{X} \times \mathcal{Y}$
 - (ii) a set of unlabeled test instances $U = \{(x_i)_{i=1...M}\} \subset \mathcal{X}$
 - [+ potentially some other knowledge (graph structure W, affinity matrix H)]

- predict labels **only** for the unlabeled instances U (i.e. learn $f\colon U\to \mathcal{Y}$) No New dota
- "When trying to solve some problem, one should not solve a more difficult problem as an intermediate step" – Vapnik's principle
- "Traditional" supervised learning (e.g. NN, SVM) is inductive learning:
 - Given
 - (i) a set of labeled training instances $T = \{(x_i, y_i)_{i=1...N}\} \subset \mathcal{X} \times \mathcal{Y}$
 - [+ potentially some other knowledge]
 - Goal
 - learn a prediction function (mapping) $f: \mathcal{X} \to \mathcal{Y}$ (that can be applied to any $x_{new} \in \mathcal{X}$)

tor how data

Transduction vs. Semi-Supervised Learning

- LP in graphs is often referred to as "graph-based semi-supervised learning"
 - not a complete misnomer, but a more specific term would be: graph-based transductive learning
- Semi-supervised learning (SSL) is a more generic principle.
- Standard definition:
 - Given: labeled data $T = \{(x_i, y_i)_{i=1...N}\}$ and unlabeled data $U = \{(x_i)_{i=1...M}\}$.
 - Main idea: Use **both** T **and** U to learn a mapping f. This can be either inductive $(f: \mathcal{X} \to \mathcal{Y})$ or transductive $(f: U \to \mathcal{Y})$.
- Transductive learning is almost always semi-supervised:
 - We are given T and U. The goal is to predict labels only for U.
 - Of course we will use U to do this! ⇒ Semi-supervised learning

Why Does Semi-Supervised Learning Work?

- How can unlabeled data be helpful?
 - Unlabeled data helps us to better model the data distribution

Caveat:

Example from [Belkin et al., JMLR 2006]

- We need to make assumptions about the data/label distribution
 (e.g. manifold / smoothness / cluster / low-density separation assumptions)
- If the assumptions are wrong, SSL may perform even worse than simple SL!

Semi-supervised Learning: Motivation

- Why semi-supervised learning?
- Large amounts of unlabeled data, small amounts of labeled data
- Labeling/annotating data is expensive

Attributed Graphs

How to handle attributed graphs?

observable: feetures verfors

- $-\hspace{0.1cm}$ e.g. each node is additionally annotated with a feature vector in \mathbb{R}^d
- Traditional approach: Markov random fields
 - Similar to Hidden Markov Models (HMMs)
 - Latent variables are not sequential but graph-structured
 - Semi-supervised: Parts of the latent variables are observed
 - More details: Sen et al., 2008
 Collective classification in network data.
 AI magazine, 29(3), 93-93.
- Nowadays: Graph Neural Networks (Chapter 7)

Graph Construction

How to handle vector data (when no graph-structure is available)?

- Simply construct a graph connecting similar data points
 - see section on spectral clustering (e.g. k-NN graph)
- Then apply label propagation just like before

Node Classification vs. Graph Classification

- So far we had a single graph G = (V, E) and we learned targets for the nodes
 - For example predict classes for all nodes (red, green or blue) in a single large graph

- What if we have multiple graphs as input and the target is for the graph?
 - Given:
 - A set of training graphs $\{G_i = (V_i, E_i)\}_{i=1..N}$
 - along with labels y_i denoting the graph level target of graph G_i
 - Goal: Learn a function $f: \mathcal{G} \to Y$ which maps (new) graphs to labels
 - *G* is the set of all graphs of interest
 - Y is the set of class labels

E.g. each input is a molecule (a graph of atoms) and the graph level target is whether it is an effective drug against some disease

Graph Classification

How to handle graph classification?

- This is a standard i.i.d. learning set-up (just the input-data is more complex)
- Graph kernels
 - Machine learning: Kernels are symmetric, positive (semi-)definite functions that measure similarity between instances via inner product

$$k(G_1, G_2) \coloneqq \phi(G_1)^T \phi(G_2)$$

- Use graphs as the input to the kernel function
 - \rightarrow Graph kernel function $k: \mathcal{G} \times \mathcal{G} \rightarrow \mathbb{R}$
 - E.g. Random walk kernel, Shortest-path kernel, ...
- Then use, e.g., Support Vector Machines (SVMs) for graph classification
- Or use Graph Neural Networks (Chapter 7)

Borgwardt, K., Ghisu, E., Llinares-López, F., O'Bray, L., & Rieck, B. (2020). Graph kernels: State-of-the-art and future challenges. *Foundations and Trends in Machine Learning*, *13*(5-6), 531-712.

Kriege, N. M., Johansson, F. D., & Morris, C. (2020). A survey on graph kernels. Applied Network Science, 5(1), 1-42.

Summary

- Semi-supervised learning / graph-based transductive learning
 - Leverage unlabeled data to improve performance of supervised learning
 - Helps if assumptions about the data distribution are correct, e.g. homophily
- Label Propagation spreads labels along the edges of a graph by minimizing the difference between neighbors
 - Usually assumes smoothness but other kinds of network effects can be modeled as well
- Attributed graphs can be handled with Markov Random Fields
- Graph classification can be handled with Graph Kernels

Questions

Consider the graph below. What is the influence of the green node on the unlabeled nodes in Label Propagation? Why?

Does semi-supervised learning exist outside of learning on graphs?