Aufgabe 1 (12 Punkte)

Kreuzen Sie für die folgenden Aussagen an, ob sie wahr oder falsch sind.

Hinweis: Für jede richtige Antwort gibt es einen Punkt, für jede falsche Antwort wird ein Punkt abgezogen. Wenn Sie kein Kreuz setzen, bekommen Sie weder Plus- noch Minuspunkt, für das Ankreuzen beider Möglichkeiten wird ein Punkt abgezogen. Die gesamte Aufgabe wird mit mindestens 0 Punkten bewertet.

a)	Eine Menge M ist unendlich, wenn es eine injektive eine echte Teilmenge von M gibt.	Abbildung v	von M in
		wahr: \square	falsch: \square
b)	Wenn eine Relation nicht symmetrisch ist, ist sie anti-	symmetrisch	•
		wahr: \square	falsch: \square
c)	Sei R eine beliebige Relation auf einer nicht-leeren Me R ist transitiv $\Rightarrow R \circ R \subseteq R$.	enge M .	
		wahr: \square	falsch: \square
d)	Sei R eine beliebige Relation auf einer nicht-leeren Me $R \circ R \subseteq R \Rightarrow R$ ist transitiv.	enge M .	
		wahr: \square	falsch: \Box
e)	Das leere Wort ϵ ist eine surjektive Abbildung: {} \rightarrow	{}.	
		wahr: \square	falsch: \square
f)	Seien L_1 und L_2 formale Sprachen. $L_1^* = L_2^* \Rightarrow L_1 =$	L_2 .	
		wahr: \square	falsch: \square
g)	$\sqrt{n} \in O(2^{\sqrt{\log_2(n)}})$		
		wahr: \square	falsch: \square
h)	$\sqrt{n} \in \Theta(2^{\sqrt{\log_2(n)}})$		
		wahr: \square	falsch: \square
i)	$\sqrt{n} \in \Omega(2^{\sqrt{\log_2(n)}})$		
		wahr: \square	falsch: \square
j)	Gegeben seien zwei reguläre Ausdrücke $R_1 = \emptyset * \mid 0 \mid 0 \mid$ und $R_2 = ((0*1)*01*)*$ Es gilt: $\langle R_1 \rangle = \langle R_2 \rangle$.	1)* (0 1)	*00(0 1)*

wahr: \square

falsch: \square

Name:

Matr.-Nr.:

k) Die Funktion $f: \mathbb{N}_+ \to \mathbb{N}_+$ gibt als Funktionswert die größte Primzahl p zurück, für die gilt: $\exists k \in \mathbb{N}_+ : n = k \cdot p$ Es gilt $f(n) \in O(\sqrt{n})$.

wahr: \square falsch: \square

l) Die aussagenlogische Formel $(A \Rightarrow \neg B) \vee ((B \wedge \neg C) \wedge (C \vee D)) \vee A$ ist äquivalent zu $A \vee \neg A$

wahr: \square falsch: \square

Aufgabe 3 (9 Punkte)

Gegeben sei folgende Funktion $f: \mathbb{N}_0 \times \mathbb{N}_0 \to \mathbb{N}_0$:

$$f(0,0) = 0$$

$$f(x, y) = \min\{z, z \in \mathbb{N}_0 \mid \forall x' < x : z \neq f(x', y) \text{ und } \forall y' < y : z \neq f(x, y')\}$$

Hinweis: Dabei ist mit $\min\{M\}$ das kleinste Element der Menge M gemeint.

a) Berechnen Sie $\forall x, y \in \mathbb{G}_5 : f(x, y)$. Verwenden Sie dazu folgende Tabelle: [3 Punkte]

f(x,y)	y=0	y=1	y=2	y=3	y=4
x=0					
x=1					
x=2					
x=3					
x=4					

b) Zeigen Sie per Induktion über n = x + y: $\forall x, y \in \mathbb{N}_0$:

[6 Punkte]

- Für $x \neq y$ ist $f(x, y) \neq 0$ und
- für x = y ist f(x, y) = 0.

Hinweis: Sie können annehmen, dass $\forall x,y \in \mathbb{N}_0: f(x,y) = f(y,x)$

Aufgabe 4 (9 Punkte)

1. Geben Sie zu folgenden regulären Ausdrücken R_i , $i \in \{1, 2\}$ jeweils einen endlichen Akzeptor A_i (wie in der Vorlesung definiert) an, so dass $L(A_i) = \langle R_i \rangle$.

a)
$$R_1 = (aa)*b(aaa)*$$
 [2 Punkte]

b)
$$R_2 = (a|ba)*(b|ab)+$$
 [4 Punkte]

Hinweis: Für einen beliebigen regulären Ausdruck R ist R+ die Abkürzung von RR*.

2. Geben Sie zu folgendem Mealy-Automaten $M = (Z_m, A, \{a, b\}, f_m, \{x, y\}, g_m)$ einen Moore-Automaten $N = (Z_n, A, \{a, b\}, f_n, \{x, y\}, g_n)$ an, so dass für alle $w \in \{a, b\}^+$ gilt: $g_m^{**}(A, w) = g_n^{**}(A, w)$. [3 Punkte]

Aufgabe 5 (5 Punkte)

Gegeben sei folgende formale Sprache $L = \{(\mathtt{ab})^k \mathtt{c}^m \mathtt{d}^l \mid k, m, l > 0 \text{ und } (k = m \text{ oder } k = l)\}$

- a) Geben Sie eine kontextfreie Grammatik G=(N,T,S,P) an, für die gilt: $L(G)=L \eqno(3\ Punkte)$
- b) Geben Sie alle Wörter der Länge 7 an, die in L liegen. [2 Punkte]

Aufgabe 2 (5 Punkte)

In dieser Aufgabe geht es um ungerichtete Graphen ohne Schlingen.

- 1. Zeichnen Sie alle paarweise nichtisomorphen ungerichteten schlingenfreien Graphen mit genau 5 Knoten und genau 5 Kanten, die einen Weg besitzen, in dem alle Knoten vorkommen.
 - Suchen Sie sich einen Ihrer Graphen aus und geben Sie für ihn die Wegematrix an.
- 2. Zeichnen Sie alle paarweise nichtisomorphen ungerichteten schlingenfreien Graphen mit genau 6 Knoten, die alle Grad 1 haben.
- 3. Wieviele ungerichtete schlingenfreie Graphen mit Knotenmenge $V = \{0, 1, 2, 3, 4, 5\}$ gibt es, bei denen alle Knoten Grad 1 haben?

Achtung: Bei den ersten beiden Teilaufgaben gibt es bei Angabe mehrerer isomorpher Graphen Punktabzug. (Aber man kann auf keine Teilaufgabe weniger als 0 Punkte bekommen.)

Aufgabe 4 (7 Punkte)

In dieser Aufgabe geht es um Huffman-Codierungen.

1. Gegeben sei das Alphabet $A = \{a, b, c, d, e, f, g\}$ und ein Wort $w \in A^*$ in dem die Symbole mit folgenden Häufigkeiten vorkommen:

a	b	С	d	е	f	g
11	3	11	24	8	7	36

- (a) Zeichnen Sie den Huffman-Baum.
- (b) Geben Sie die Huffman-Codierung des Wortes bad an.
- 2. Für $k \ge 1$ sei ein Alphabet $A = \{a_0, a_1, \ldots, a_k\}$ mit k+1 Symbolen gegeben und ein Text, in dem jedes Symbol a_i mit Häufigkeit 2^i vorkommt für $0 \le i \le k$.

Geben Sie die Huffman-Codierungen aller Symbole a_i an.

Aufgabe 7 (2,5+2,5+1+2=8 Punkte)

Gegeben sei die folgende Turingmaschine T:

- Zustandsmenge ist $Z = \{z_0, z_1, z_2, z_3, z_4\}.$
- Anfangszustand ist z_0 .
- Bandalphabet ist $X = \{\Box, a, b\}$.
- Die Arbeitsweise ist wie folgt festgelegt:

Die Turingmaschine wird im folgenden benutzt für Bandbeschriftungen, bei denen anfangs auf dem Band (von Blanksymbolen umgeben) ein Wort $w \in \{a,b\}^+$ steht.

Der Kopf der Turingmaschine stehe auf dem ersten Symbol von $w \in \{a, b\}^+$.

- a) Geben Sie für die Eingaben aab, aba, baa jeweils die Anfangskonfiguration, die Endkonfiguration und jede weitere Konfiguration an, die sich während der Berechnung nach einer Änderung der Bandbeschriftung ergibt.
- b) Die Eingabe enthalte n mal das Zeichen a und m mal das Zeichen b. Wie viele a und wie viele b stehen auf dem Band, wenn sich die Turingmaschine im Zustand z_0, z_1, z_2, z_3, z_4 befindet?
- c) Geben Sie eine geschlossene Formel für das Wort w' an, das am Ende der Berechnung der Turingmaschine bei Eingabe von w auf dem Band steht.
- d) Geben Sie eine (möglichst einfache) Funktion $f: \mathbb{N}_0 \to \mathbb{N}_0$ an, so dass die Anzahl der Schritte, die die Turingmaschine bei Eingabe des Wortes $\mathbf{a}^n \mathbf{b}^n$ macht, in $\Theta(f(n))$ liegt.