Chapter 5

Logistic Regression Classification Error Metrics

Logistic Regression

Introduction to Logistic Regression

$$y_{\beta}(x) = \beta_0 + \beta_1 x + \varepsilon$$

$$y_{\beta}(x) = \beta_0 + \beta_1 x + \varepsilon$$

Number of Positive Nodes

If model result > 0.5: predict lost
If model result < 0.5: predict survived

Number of Positive Nodes

If model result > 0.5: predict lost
If model result < 0.5: predict survived

What is this Function?

The Decision Boundary

$$y_{\beta}(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x + \varepsilon)}}$$

Logistic Regression

$$y_{\beta}(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x + \varepsilon)}}$$

The Decision Boundary

$$y_{\beta}(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x + \varepsilon)}}$$

$$P(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x + \varepsilon)}}$$

$$P(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x + \varepsilon)}}$$

$$P(x) = \frac{e^{(\beta_0 + \beta_1 x)}}{1 + e^{(\beta_0 + \beta_1 x)}}$$

$$P(x) = \frac{e^{(\beta_0 + \beta_1 x)}}{1 + e^{(\beta_0 + \beta_1 x)}}$$

$$P(x) = \frac{e^{(\beta_0 + \beta_1 x)}}{1 + e^{(\beta_0 + \beta_1 x)}}$$

$$\frac{P(x)}{1 - P(x)} = e^{(\beta_0 + \beta_1 x)}$$

$$P(x) = \frac{e^{(\beta_0 + \beta_1 x)}}{1 + e^{(\beta_0 + \beta_1 x)}}$$

$$\frac{\text{Log}}{\text{Odds}} \quad log \left| \frac{P(x)}{1 - P(x)} \right| = \beta_0 + \beta_1 x$$

$$P(x) = \frac{e^{(\beta_0 + \beta_1 x)}}{1 + e^{(\beta_0 + \beta_1 x)}}$$

$$\frac{\text{Log}}{\text{Odds}} \quad log \left[\frac{P(x)}{1 - P(x)} \right] = \left[\beta_0 + \beta_1 x \right]$$

One feature (nodes)
Two labels (survived, lost)

Two features (nodes, age) Two labels (survived, lost) 60 40 Age 20 0 10 20 Number of Malignant Nodes

Multiclass Classification with Logistic Regression Two features (nodes, age)

Three labels (survived, complications,

lost)

Number of Malignant Nodes

One vs All: Survived vs All

One vs All: Complications vs All

One vs All: Loss vs All

Multiclass Decision Boundary

Assign most probable class to each region

Import the class containing the classification method

from sklearn.linear_model import LogisticRegression

Import the class containing the classification method

from sklearn.linear_model import LogisticRegression

Create an instance of the class

LR = LogisticRegression(penalty='l2', c=10.0)

Import the class containing the classification method

from sklearn.linear_model import LogisticRegression

Create an instance of the class

LR = LogisticRegression(penalty='l2', c=10.0)

Import the class containing the classification method

from sklearn.linear_model import LogisticRegression

Create an instance of the class

```
LR = LogisticRegression(penalty='l2', c=10.0)
```

Fit the instance on the data and then predict the expected value

```
LR = LR.fit(X_train, y_train)
y_predict = LR.predict(X_test)
```


Import the class containing the classification method

from sklearn.linear_model import LogisticRegression

Create an instance of the class

```
LR = LogisticRegression(penalty='I2', c=10.0)
```

Fit the instance on the data and then predict the expected value

```
LR = LR.fit(X_train, y_train)
y_predict = LR.predict(X_test)
```

Tune regularization parameters with cross-validation: LogisticRegressionCV.

Classification Error Metrics

Choosing the Right Error Measurement

- You are asked to build a classifier for leukemia
- Training data: 1% patients with leukemia, 99% healthy
- Measure accuracy: total % of predictions that are correct

Choosing the Right Error Measurement

- You are asked to build a classifier for leukemia
- Training data: 1% patients with leukemia, 99% healthy
- Measure accuracy: total % of predictions that are correct
- Build a simple model that always predicts "healthy"
- Accuracy will be 99%...

Confusion Matrix

	Predicted Positive	Predicted Negative
Actual	True Positive	False Negative
Positive	(TP)	(FN)
Actual	False Positive	True Negative
Negative	(FP)	(TN)

Confusion Matrix

Accuracy: Predicting Correctly

	Predicted Positive	Predicted Negative
Actual	True Positive	False Negative
Positive	(TP)	(FN)
Actual	False Positive	True Negative
Negative	(FP)	(TN)

Accuracy =
$$\frac{TP + TN}{TP + FN + FP + TN}$$

Recall: Identifying All Positive Instances

Recall or
$$=$$
 $\frac{TP}{Sensitivity}$ $=$ $\frac{TP}{TP + FN}$

Precision: Identifying Only Positive Instances

Precision =
$$\frac{TP}{TP + FP}$$

Specificity: Avoiding False Alarms

Specificity =
$$\frac{TN}{FP + TN}$$

Error Measurements

	Predicted Positive	Predicted Negative	
Actual	True Positive	False Negative	
Positive	(TP)	(FN)	
Actual	False Positive	True Negative	
Negative	(FP)	(TN)	

Accuracy =
$$\frac{TP + TN}{TP + FN + FP + TN}$$
Precision =
$$\frac{TP}{TP + FP}$$

Error Measurements

	Predicted Positive	Predicted Negative	
Actual	True Positive	False Negative	
Positive	(TP)	(FN)	
Actual	False Positive	True Negative	
Negative	(FP)	(TN)	

Accuracy =
$$\frac{TP + TN}{TP + FN + FP + TN}$$
 Recall or Sensitivity = $\frac{TP}{TP + FN}$

Precision = $\frac{TP}{TP + FP}$ Specificity = $\frac{TN}{FP + TN}$

Error Measurements

	Predicted Positive	Predicted Negative	
Actual	True Positive	False Negative	
Positive	(TP)	(FN)	
Actual	False Positive	True Negative	
Negative	(FP)	(TN)	

Accuracy =
$$\frac{TP + TN}{TP + FN + FP + TN}$$
 Recall or $= \frac{TP}{Sensitivity}$ $= \frac{TP}{TP + FN}$ F1 = 2 $= \frac{Precision * Recall}{Precision + Recall}$ Precision = $= \frac{TP}{TP + FN}$ Specificity = $= \frac{TP}{TN}$ F1 = 2 $= \frac{Precision * Recall}{Precision + Recall}$

Receiver Operating Characteristic (ROC)

Evaluation of model at all possible thresholds

Area Under Curve (AUC)

Measures total area under ROC curve

Precision Recall Curve (PR Curve)

Measures trade-off between precision and recall

Multiple Class Error Metrics

	Predicted Class 1	Predicted Class 2	Predicted Class 3
Actual Class 1	TP1		
Actual Class 2		TP2	
Actual Class 3			TP3

Multiple Class Error Metrics

	Predicted Class 1	Predicted Class 2	Predicted Class 3
Actual Class 1	TP1		
Actual Class 2		TP2	
Actual Class 3			TP3

Accuracy =
$$\frac{TP1 + TP2 + TP3}{Total}$$

Multiple Class Error Metrics

	Predicted Class 1	Predicted Class 2	Predicted Class 3
Actual Class 1	TP1		
Actual Class 2		TP2	
Actual Class 3			TP3

Accuracy =
$$\frac{TP1 + TP2 + TP3}{Total}$$

Most multi-class error metrics are similar to binary versions— just expand elements as a sum

Classification Error Metrics: The Syntax

Import the desired error function

from sklearn.metrics import accuracy_score

Classification Error Metrics: The Syntax

Import the desired error function

from sklearn.metrics import accuracy_score

Calculate the error on the test and predicted data sets

accuracy_value = accuracy_score(y_test, y_pred)

Classification Error Metrics: The Syntax

Import the desired error function

from sklearn.metrics import accuracy_score

Calculate the error on the test and predicted data sets

```
accuracy_value = accuracy_score(y_test, y_pred)
```

Lots of other error metrics and diagnostic tools:

```
from sklearn.metrics import precision_score, recall_score,
f1_score, roc_auc_score,
confusion_matrix, roc_curve,
precision_recall_curve
```


Legal Notices and Disclaimers

This presentation is for informational purposes only. INTEL MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. Check with your system manufacturer or retailer or learn more at intel.com.

This sample source code is released under the <u>Intel Sample Source Code License Agreement</u>.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2017, Intel Corporation. All rights reserved.

