

人工智能系统 System for Al

深度学习中的分布式训练——算法

Distributed training algorithms

课程概要

分布式计算简介

深度学习并行训练简介

分布式训练算法分类

深度学习并行训练实例

分布式计算

从串行计算到并行计算

单处理器串行执行

Figure: https://computing.llnl.gov/tutorials/parallel_comp/

从串行计算到并行计算

问题规模(数据量+计算量) 逐渐增大,单一设备处理速 度无法满足

深度学习的计算复杂度

深度学习训练的趋势

更优的模型 -> 更大的计算复杂度

深度学习训练巨大的训练耗时

e.g. 语言模型 BERT(Large) 用 V100 GPU训练需时 >1个月

Top-5 accuracy vs. computational complexity (single forward pass)

Benchmark Analysis of Representative Deep Neural Network Architectures https://arxiv.org/pdf/1810.00736.pdf

从串行计算到并行计算

多处理器并行执行

Figure: https://computing.llnl.gov/tutorials/parallel_comp/

分布式深度学习的意义

深度学习训练耗时:

训练数据规模 × 单步计算量 / 计算速率

模型相关,相对固定

可变因素

分布式算法与系统

分布式算法

本章内容

"Distributed algorithms are algorithms designed to run on multiple processors, without tight centralized control." -- (MIT 6.852J/18.437J)

分布式系统

下章内容

"A distributed system is a collection of independent computers that appears to its users as a single coherent system." -- "Distributed Systems: Principles and Paradigms"

从串行训练 到并行训练

回顾: 深度学习串行训练

TensorFlow

```
x = tf.placeholder(tf.float32)
W = tf.Variable(tf.float32)
b = tf.Variable(tf.float32)

m = W * x
s = m + b
y = tf.reduce_sum(s)

grad_W, grad_b = tf.gradients(y, [W, b])

update = optimizer.apply_gradients({[W, grad_W], [b, grad_b]})
```

Data-Flow Graph (DFG)

回顾: 深度学习训练可并行潜力

并行化的基本方案

算子内并行

算子并行:并行单个张量计算子内的计算(GPU多处理单元并行)

算子间并行

数据并行: 多个样本并行执行

模型并行: 多个算子并行执行

组合并行: 多种并行方案组合叠加

运算子内并行

- > 利用线性计算和卷积等操作内部的并行性
- > 多个并行维度
 - · Batch, 空间维度, 时间维度, ...
- ➤ 利用SIMD架构等多执行单元,同时运算

并行化的基本方案

算子内并行

算子并行:并行单个张量计算子内的计算(GPU多处理单元并行)

算子间并行

数据并行: 多个样本并行执行

模型并行: 多个算子并行执行

组合并行: 多种并行方案组合叠加

并行化方案——数据并行

步骤

- 不同设备上执行相 同计算图
- 跨设备聚合梯度
- 利用聚合后梯度更新模型

并行化方案——模型并行

步骤

- 计算图划分至不同 设备上执行
- 跨设备传递激活
- 设备分别利用梯度 更新模型的本地部 分

数据/模型并行对比

	非并行	数据并行	模型并行
样本数据量	1	1/N	1
传输数据量	0	模型大小	激活大小
存储占用	1	N	1
负载平衡度	-	强	弱
并行限制	-	单步样本量	算子数量

设备数量: N

深度学习的分布式 训练算法分类

并行化算法通信类别

同步并行

采用具有同步障的通信协调并行

异步并行

采用不含同步障的通信协调并行

半同步并行

采用具有限定的宽松同步障的通信协调并行

同步算法

Joseph E. Gonzalez AI-Systems Distributed Training

异步算法

Joseph E. Gonzalez AI-Systems Distributed Training

异步算法

半同步算法

e.g., Stale Synchronous Parallel (SSP)

SSP: Bounded Staleness and Clocks

并行化算法通信类别

同步并行

采用具有同步障的通信协调并行 收敛性AAA

异步并行

采用不含同步障的通信协调并行 收敛性A

半同步并行

采用具有限定的宽松同步障的通信协调并行 收敛性AA

深度学习并行训练 实例

Downpour SGD

GPipe

通过对minibatch进行拆分,减少设备空闲(Bubble),从而更好地利用多设备进行流水化并行

GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism

PipeDream

采用非同步机制,在Gpipe基础上进一步减少设备空闲

本章小节

分布式是解决大计算量深度学习训练的有效方法

分布式深度学习算法按照并行维度可分为: 运算子/数据/模型/混合并行

分布式深度学习算法按照通讯协调方式包括: 同步并行/异步并行/半同步并行

阅读列表

- Scaling Distributed Machine Learning with the Parameter Server (OSDI'14)
 - · Paper describing the parameter server system
- ➤ <u>PipeDream: Generalized Pipeline Parallelism for DNN Training</u> (sosp'19)
 - · Latest paper exploring pipeline parallel training
- Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD (SysML'19)
 - · Dynamic averaging approach to distributed training

参考文献