MLADS 학기 4주차

ML/DS 지식 따라가기

K-MEANS, EM, DBSCAN, Transformer, BERT

비지도학습이란

정답 라벨이 없는 데이터를 비슷한 특징끼리 모아서 새로운 데이터에 대한 결과를 예측하는 방법

군집 분석이란?

각 데이터의 유사성을 측점하여 다수의 군집으로 나누고 군집 간의 상이성을 확인하는 분석

차원 축소란?

매우 많은 피처로 구성된 다차원 데이터 세트의 차원을 축소해 새로운 차원의 데이터 세트를 생성함

PCA

데이터의 변수들을 새로운 축으로 변환하여 데이터의 차원을 줄이는 방법

K-MEANS란?

군집의 평균(중심점)을 구하고, 중심점이 가장 가까운 군집에 포함시킴

K-MEANS VS. K-NN

K-NN

지도학습 (Supervised Learning)

K-Means

비지도학습 (Unsupervised Learning)

EM 이란?

latent 변수를 도입하여 최대 무도 추정량을 구하는 방법

a Maximum likelihood

Coin A	Coin B
	5 H, 5 T
9 H, 1 T	
8 H, 2 T	
	4 H, 6 T
7 H, 3 T	
24 H, 6 T	9 H, 11 T

$$\hat{\theta}_A = \frac{24}{24+6} = 0.80$$

$$\hat{\theta}_{B} = \frac{9}{9 + 11} = 0.45$$

MLE

어떤 확률변수에서 표집한 값들을 토대로 그 확률변수의 모수를 구하는 방법

GMM

가무시안 분포를 선형결합하여 만들어진 분포

DBSCAN

노이즈가 있는 대규모의 데이터에 적용할 수 있는 밀도 기반의 군집화 알고리즘

ML 파트

seq2seq

seq2seq 모델이란

인코더

디코더

NEKA

seq2seq

seq2seq 모델의 한계

1. 하나의 고정된 크기의 벡터에 모든 정보를 압축하려고 하면서 정보 손실이 발생함

2. Vanishing Gradient가 존재함

Attention Mechanism 이란

"디코더에서 매 시점마다 인코더에서의 전체 문장을 참고한다!"

"똑같이 참고하는 것이 아니라 연관성이 더 높은 곳에 집중한다!"

두가지 아이디어를 기반으로 만들어진 기법

Attention Network

Query

= Q

= t 시점에서 디코더 셀의 은닉 상태

Keys

= K

= 모든 시점에서의 인코더 셀의 은닉 상태

Values

= V

= 모든 시점에서의 인코더 셀의 은닉 상태

Attention Mechanism의 과정

- (1) Attention Score 구하기
- (2) Attention Distribution 구하기
- (3) Attention Value 구하기
- (4) Attention Value와 hidden state 연결하기
- (5) 출력층의 입력이 될 S_t 계산하기
- (6) Prediction Vector 구하기

Attention Mechanism의 과정 (Attention Score)

Attention Score: 디코더의 현재 시점 t에서 단어를 예측하기 위해 인코더의 각 은닉 상태가 디코더의 현재 시점의 은닉 상태인 S_t와 얼마나 유사한지를 판단하는 값

종류

- 1. Dot-Product Attention
- 2. Scaled Dot-Product Attention
- 3. Bahdanau Attention
- 4. Multiplicative Attention
- 5. 기타 등등

Attention Mechanism의 과정 (Attention Score)

(1) Dot-Product Attention

transpose한 S_t와 인코더의 은닉 상태 h_i에 대해 내적을 수행함 => 결과값은 스칼라 값

Attention Mechanism의 과정 (Attention Score)

(2) Scaled Dot-Product Attention

transpose한 S_t와 인코더의 은닉 상태 h_i에 대해 내적을 수행한 후 차원 개수로 나눔 => 결과값은 스칼라 값

Attention Mechanism의 과정 (Attention Score)

(3) Additive Attention = Bahdanau Attention

Q가 t 시점이 아니라 t-1 시점의 디코더 셀의 은닉 상태가 됨
s_(t-1)과 h_i를 각각 가중치에 곱하고, 둘을 더한 값에 tanh를 씌우고 가중치를 곱함

$$W_a^T \tanh(W_b s_{t-1} + W_c H)$$

Attention Mechanism의 과정 (Attention Score)

(4) Multiplicative Attention = General Attention

dot-product attention에 가중치 W를 붙인 형태

$$\mathbf{h}_i^T \mathbf{W}_a \mathbf{s}_j$$

Attention Mechanism의 과정 (Attention Score)

Attention 종류 별 사용 추세

Attention Mechanism의 과정 (Attention Distribution)

$$\alpha^t = softmax(e^t)$$

Attention Mechanism의 과정 (Attention Value)

$$a_t = \sum_{i=1}^N lpha_i^t h_i$$

이 때 attention value를 context vector라고 하기도 함

Attention Mechanism의 과정 (Concatenation)

Attention Mechanism의 과정 (tanh)

$$\tilde{s}_t = \tanh(\mathbf{W}_{\mathbf{c}}[a_t; s_t] + b_c)$$

Attention Mechanism의 과정 (Prediction Vector)

$$\hat{y}_t = \text{Softmax}\left(W_y \tilde{s}_t + b_y\right)$$

Transformer란

문장 속 단어와 같은 순차 데이터 내의 관계를 추적해 맥락과 의미를 학습하는 신경망

Transformer의 특별한 Attention: Self-Attention

Q, V, W : 입력 문장의 모든 단어 벡터들

하나의 입력 문장 내에서 특정 단어 간 유사도를 구함

Transformer의 구조

Transformer의 구조 (Encoder)

Transformer의 구조 (Encoder) - Positional Encoding

$$PE_{(pos, 2i)} = sin(pos/10000^{2i/d_{model}})$$

$$PE_{(pos, 2i+1)} = cos(pos/10000^{2i/d_{model}})$$

Transformer의 구조 (Encoder) - Multi-head Self-Attention

Transformer의 구조 (Encoder) - Add & Norm

Add: Residual Connection

$$H(x) = x + Multi - head Attention(x)$$

Norm: Layer Normalization

$$LN = LayerNorm(x + Sublayer(x))$$

$$\hat{x}_{i,k} = rac{x_{i,k} - \mu_i}{\sqrt{\sigma_i^2 + \epsilon}}$$

Transformer의 구조 (Encoder) - Position-wise FFNN

$$FFNN(x) = MAX(0, xW_1 + b_1)W_2 + b_2$$

Transformer

Transformer의 구조 (Decoder)

Transformer

Transformer의 구조 (Decoder) - Masked Multi-head Self-Attention

Transformer

Transformer의 구조 (Decoder) - Multi-head Attention

Pretrained Model

Semi-Supervised Sequence Learning, Google, 2015

Tokenizer

문장의 단어나 형태소 등을 기준으로 각각 토큰으로 만들어주는 것

BERT에서는 단어보다 더 작은 단위로 쪼개는 서브워드 토크나이저를 사용함

```
result = tokenizer.tokenize('Here is the sentence I want embeddings
for.')
print(result)
```

```
['here', 'is', 'the', 'sentence', 'i', 'want', 'em', '##bed', '##ding', '##s', 'for', '.']
```

BERT란

Bidrectional Encoder Representations from Transformers

2018년에 구글이 공개한 pre-trained model로, SOTA의 지위를 획득했었음

33억 단어에 대해서 4일간 학습시킨 언어 모델

BERT의 지식을 이용한 스팸 메일 분류기

NEKA

BERT

Contextual Embedding

문맥을 반영한 임베딩으로, self-attention을 통해 얻게 됨

Position Embedding

transformer의 Positional Encoding과는 다름. 단어 임베딩에 위치 정보를 추가해줌

Masked Language Model (MLM)

Next Sentence Prediction (NSP)

Segment Embedding

NEKA

BERT

Fine-tuning

다른 작업에 대해서 파라미터 재조정을 위한 추가 훈련 과정

K-MEANS, EM, DBSCAN, TRANSFORMER, BERT

Thank you