Advanced Balanced Search Tree

Segment Tree
Discretization

邓俊辉

deng@tsinghua.edu.cn

Elementary Interval

*Let I := { $[x_i : x_i'] \mid i = 1, 2, ..., n }$ be n intervals on the x-axis Sort all the endpoints into { $p_1, ..., p_m$ }, $m \le 2n$

❖ m + 1 elementary intervals are hence defined:

$$(\infty, p_1], (p_1, p_2], (p_2, p_3], \ldots, (p_{m-1}, p_m], (p_m, +\infty)$$

Discretization

Within each EI, all stabbing queries share a same output

store the corresponding output with each EI, then ...

Data Structures & Algorithms, Tsinghua University

Sorted Vector

the output can then be returned directly

 \therefore Once a query position is determined, //by an $\mathcal{O}(\log n)$ time binary search

//O(r)

Worst Case **\Leftrightarrow** Every interval spans $\Omega(n)$ EI's and a total space of $\Omega(n^2)$ is required Data Structures & Algorithms, Tsinghua University