# Reguläre Sprachen und Endliche Automaten

Programmieren und Software-Engineering Homomorphismen, Formale Sprachen und Syntax-Analyse

22. Februar 2023

#### Einleitung

- Worte regulärer Sprachen können durch Endliche Automaten auf syntaktische Korrektheit überprüft werden.
- Ein Endliche Automat ist ein abstraktes Konzept, bestehend aus:
  - Zuständen (dargestellt durch Knoten):
    - Ein Startknoten



- Allgemeine Knoten
- $\mathcal{C}_{B}$
- Ein oder mehrere Endknoten
- Zustandsübergängen:
  - dargestellt durch Kanten mit Beschriftung (Aktion der Zustandsänderung, z.B. eingelesenes Zeichen)



• Ein endlicher Automat ist also ein gerichteter Graph

#### Echtwelt-Beispiel: Endlicher Automat

- Automaten beschreiben also reguläre Sprachen...
- ... jedoch auch Anwendungen/Maschinen ("Automaten") der "echten Welt"
- Beispiel eines Endlichen Automaten der eine Türe beschreibt:



- Zustände: Türe offen oder geschlossen
- "schließen" und "öffnen" sind Zustandsübergänge

#### Echtwelt-Beispiel: Getränke-Automat

#### Beispiel: Getränkeautomat:



- Startzustand S (in dieser Abbildung durch einen Pfeil gekennzeichnet)
- Getränkeausgabe erst von Zustand M aus möglich
- Mit Münze gelangt man von S zu M
- Von M (also nach eingeworfener Münze) kann man entweder Abbrechen, oder ein Getränk wird ausgegeben.
- Nach ausgegebenem Getränk (Zustand G) ist die Entnahme möglich. Erst nach der Entnahme akzeptiert der Automat in S wieder weitere Münzen.

POS (Theorie) Reguläre Sprachen 4/19

## Syntaxanalyse in Compilern

- Viele Elemente von Programmiersprachen werden durch reguläre Sprachen beschrieben.
- Erster Schritt der Compilierung ist die Syntaxanalyse.
- Die erste Phase dabei ist die lexikalische Analyse ("Scanner", "Lexer")
- In der lexikalischen Analyse wird der Quelltext in zusammengehörige Einheiten "Tokens" zerteilt.
- Die Tokens werden dann *Schlüsselworten* (Keywords) oder *Bezeichnern* (Identifiers) zugeordnet.
- Bezeichner können anhand endlicher Automaten auf Korrektheit geprüft werden.
- Die Phasen eines Compilers sind auf der nächsten Folie dargestellt.

#### Phasen eines Compilers



## Automaten als Akzeptoren

- Ein endlicher Automat überprüft Worte regulärer Sprachen auf Korrektheit, d.h. er akzeptiert syntaktisch korrekte Worte (syntaktisch falsche Worte werden nicht akzeptiert).
- Dabei liest der Automat Zeichen für Zeichen des Wortes, und führt entsprechende Zustandsübergänge durch.
- Ein Wort ist gültig, wenn sich der Automat nach dem letzten gelesenen Zeichen in einem Endzustand befindet.
- Ein Wort ist ungültig, wenn es zu einem gelesenen Zeichen keinen entsprechenden Zustandsübergang gibt, oder wenn nach dem letzten gelesenen Zeichen kein Endzustand erreicht wurde.

# Sprache der ganzen Zahlen (mit führenden 0en, oder $\pm 0$ )

Konvention: wenn Startsymbol nicht explizit angegeben, dann "S".



# Sprache der ganzen Zahlen (mit führenden 0en, oder $\pm 0$ )

Konvention: wenn Startsymbol nicht explizit angegeben, dann "S".



#### Beispiel:

Ableitung von -144

$$\langle \mathsf{S} \rangle \Rightarrow - \langle \mathsf{Z} \rangle$$

$$\langle \mathsf{Z} \rangle \Rightarrow 1 \langle \mathsf{Z} \rangle$$

$$\langle \mathsf{Z} \rangle \Rightarrow \mathsf{4} \langle \mathsf{Z} \rangle$$

$$\langle \mathsf{Z} \rangle \Rightarrow \mathsf{Z}$$

# Sprache der ganzen Zahlen (mit führenden 0en, oder $\pm 0$ )

Konvention: wenn Startsymbol nicht explizit angegeben, dann "S".



#### Beispiel:

Ableitung von -144

$$\langle \mathsf{S} \rangle \Rightarrow - \langle \mathsf{Z} \rangle$$

$$\langle Z \rangle \Rightarrow 1 \; \langle Z \rangle$$

$$\langle Z \rangle \Rightarrow 4 \langle Z \rangle$$

$$\langle Z \rangle \Rightarrow 4$$

$$\begin{split} T &= \{+,-,0,1,2,3,4,5,6,7,8,9\} \\ N &= \{S,Z\} \\ P &= \{S \to +Z | -Z | 0Z | 1Z | 2Z | 3Z | 4Z | 5Z | 6Z | 7Z | 8Z | 9Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9, \\ Z &\to 0Z | 1Z | 2Z | 3Z | 4Z | 5Z | 6Z | 7Z | 8Z | 9Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 \} \end{split}$$

Sprache der ganzen Zahlen (ohne führende 0en, ohne  $\pm$  0)

#### Aufgabe 3.10

Adaptieren Sie die Grammatik der Sprache der ganzen Zahlen mit führenden 0en, sodaß diese nicht mehr möglich sind, und ebenso  $\pm 0...$  ausgeschlossen wird.

# Sprache der ganzen Zahlen (ohne führende 0en, ohne $\pm~0)$

#### Aufgabe 3.10

Adaptieren Sie die Grammatik der Sprache der ganzen Zahlen mit führenden 0en, sodaß diese nicht mehr möglich sind, und ebenso  $\pm 0...$  ausgeschlossen wird.

$$\begin{split} P &= \{S \rightarrow + \text{A}|\text{-A}|\text{1B}|\text{2B}|\text{3B}|\text{4B}|\text{5B}|\text{6B}|\text{7B}|\text{8B}|\text{9B}|\text{0}|\text{1}|\text{2}|\text{3}|\text{4}|\text{5}|\text{6}|\text{7}|\text{8}|\text{9},\\ \text{A} \rightarrow \text{1B}|\text{2B}|\text{3B}|\text{4B}|\text{5B}|\text{6B}|\text{7B}|\text{8B}|\text{9B}|\text{1}|\text{2}|\text{3}|\text{4}|\text{5}|\text{6}|\text{7}|\text{8}|\text{9},\\ \text{B} \rightarrow \text{0B}|\text{1B}|\text{2B}|\text{3B}|\text{4B}|\text{5B}|\text{6B}|\text{7B}|\text{8B}|\text{9B}|\text{0}|\text{1}|\text{2}|\text{3}|\text{4}|\text{5}|\text{6}|\text{7}|\text{8}|\text{9}\} \end{split}$$

#### Deterministischer Endlicher Automat

- Bei einem deterministischen endlichen Automaten sind die Zustandsübergänge eindeutig!
- Bei den Kantenbeschriftungen der von einem Knoten auslaufenden Kanten kommt eine Beschriftung also nur ein mal vor.

Beispiel: Deterministischer endlicher Automat (DEA) für die Sprache der Ganzen Zahlen ohne führende 0en und ohne  $\pm$  0:



#### Deterministischer Endlicher Automat

- Bei einem deterministischen endlichen Automaten sind die Zustandsübergänge eindeutig!
- Bei den Kantenbeschriftungen der von einem Knoten auslaufenden Kanten kommt eine Beschriftung also nur ein mal vor.

Beispiel: Deterministischer endlicher Automat (DEA) für die Sprache der Ganzen Zahlen ohne führende 0en und ohne  $\pm$  0:



$$\begin{split} T &= \{+,-,0,1,2,3,4,5,6,7,8,9\} \\ N &= \{S,A,B\} \\ P &= \{S \rightarrow +A | -A | 1B | 2B | ... | 9B | 0 | 1 | ... | 9, \\ A \rightarrow 1B | 2B | ... | 9B | 1 | ... | 9, \\ B \rightarrow 0B | 1B | 2B | ... | 9B | 0 | 1 | ... | 9 \ \end{split}$$

#### Sprache der reellen Zahlen

```
\begin{split} P &= \{S \to +\text{A}|-\text{A}|1\text{B}|2\text{B}|3\text{B}|4\text{B}|5\text{B}|6\text{B}|7\text{B}|8\text{B}|9\text{B}|0\text{C}|0|1|...|9};\\ \text{A} &\to 1\text{B}|2\text{B}|3\text{B}|4\text{B}|5\text{B}|6\text{B}|7\text{B}|8\text{B}|9\text{B}|0\text{D}|1|...|9};\\ \text{B} &\to 0\text{B}|1\text{B}|2\text{B}|3\text{B}|4\text{B}|5\text{B}|6\text{B}|7\text{B}|8\text{B}|9\text{B}|,E};\\ \text{C} &\to ,\text{E};\\ \text{D} &\to ,\text{E};\\ \text{E} &\to 0\text{E}|1\text{F}|2\text{F}|3\text{F}|4\text{F}|5\text{F}|6\text{F}|7\text{F}|8\text{F}|9\text{F}|1|...|9};\\ \text{F} &\to 0\text{E}|1\text{F}|2\text{F}|3\text{F}|4\text{F}|5\text{F}|6\text{F}|7\text{F}|8\text{F}|9\text{F}|1|...|9}\\ \end{pmatrix} \end{split}
```

**Anmerkung:** Hier wird der Strichpunkt als Trennzeichen für die einzelnen Produktionsregeln verwendet.

# **Endlicher Automat (Finite State Machine)**

Erkennung einer rationalen Zahl (z.B. -0,425) durch einen endlichen Automaten. Nicht gültig wären ("00,4" oder "-,3" oder "3,000" oder "01,")



Beispiele

13 / 19

# Beispiel: reguläre Sprache

Gesucht ist eine Sprache mit Worten  $W \in \{a, b, c, d\}^+$  in der jedoch die Teilworte "dda" und "bdcb" *nicht* vorkommen dürfen.

```
T = \{a, b, c, d\}
N = \{S, T, A, B, C, D, E\}
P = \{S \to aT \mid bA \mid cT \mid dB \mid a \mid b \mid c \mid d,
T \to aT \mid bA \mid cT \mid dB \mid a \mid b \mid c \mid d,
A \to aT \mid
B \to // G1W1
C \to D \to E \to \}
```

# Beispiel: reguläre Sprache

Gesucht ist eine Sprache mit Worten  $W \in \{a, b, c, d\}^+$  in der jedoch die Teilworte "dda" und "bdcb" *nicht* vorkommen dürfen.

```
T = \{a, b, c, d\}
N = \{S, T, A, B, C, D, E\}
P = \{S \to aT \mid bA \mid cT \mid dB \mid a \mid b \mid c \mid d,
T \to aT \mid bA \mid cT \mid dB \mid a \mid b \mid c \mid d,
A \to aT \mid bA
B \to // G1W1
C \to D \to E \to \}
```

## Beispiel: reguläre Sprache

Gesucht ist eine Sprache mit Worten  $W \in \{a, b, c, d\}^+$  in der jedoch die Teilworte "dda" und "bdcb" *nicht* vorkommen dürfen.

```
T = \{a, b, c, d\}
N = \{S, T, A, B, C, D, E\}
P = \{S \to aT \mid bA \mid cT \mid dB \mid a \mid b \mid c \mid d,
T \to aT \mid bA \mid cT \mid dB \mid a \mid b \mid c \mid d,
A \to aT \mid bA \mid cT
B \to // G1W1
C \to D \to E \to \}
```

# Beispiel: reguläre Sprache

Gesucht ist eine Sprache mit Worten  $W \in \{a, b, c, d\}^+$  in der jedoch die Teilworte "dda" und "bdcb" *nicht* vorkommen dürfen.

## Beispiel: reguläre Sprache

Gesucht ist eine Sprache mit Worten  $W \in \{a, b, c, d\}^+$  in der jedoch die Teilworte "dda" und "bdcb" *nicht* vorkommen dürfen.

#### 0000000000

## Beispiel: reguläre Sprache

Gesucht ist eine Sprache mit Worten  $W \in \{a, b, c, d\}^+$  in der jedoch die Teilworte "dda" und "bdcb" *nicht* vorkommen dürfen.

```
 T = \{a, b, c, d\} 
 N = \{S, T, A, B, C, D, E\} 
 P = \{S \to aT \mid bA \mid cT \mid dB \mid a \mid b \mid c \mid d, 
 T \to aT \mid bA \mid cT \mid dC \mid a \mid b \mid c \mid d, 
 A \to aT \mid bA \mid cT \mid dC \mid a \mid b \mid c \mid d, 
 B \to aT \mid bA 
 C \to 
 D \to 
 E \to 
 \}
```

# Beispiel: reguläre Sprache

Gesucht ist eine Sprache mit Worten  $W \in \{a, b, c, d\}^+$  in der jedoch die Teilworte "dda" und "bdcb" *nicht* vorkommen dürfen.

```
 T = \{a, b, c, d\} 
 N = \{S, T, A, B, C, D, E\} 
 P = \{S \to aT \mid bA \mid cT \mid dB \mid a \mid b \mid c \mid d, 
 T \to aT \mid bA \mid cT \mid dB \mid a \mid b \mid c \mid d, 
 A \to aT \mid bA \mid cT \mid dC \mid a \mid b \mid c \mid d, 
 B \to aT \mid bA \mid cT 
 C \to 
 D \to 
 E \to 
 \}
```

# Beispiel: reguläre Sprache

Gesucht ist eine Sprache mit Worten  $W \in \{a, b, c, d\}^+$  in der jedoch die Teilworte "dda" und "bdcb" *nicht* vorkommen dürfen.

```
\begin{split} T &= \{a,b,c,d\} \\ N &= \{S,T,A,B,C,D,E\} \\ P &= \{S \to a\mathsf{T} \mid b\mathsf{A} \mid c\mathsf{T} \mid d\mathsf{B} \mid a \mid b \mid c \mid d, \\ T \to a\mathsf{T} \mid b\mathsf{A} \mid c\mathsf{T} \mid d\mathsf{B} \mid a \mid b \mid c \mid d, \\ A \to a\mathsf{T} \mid b\mathsf{A} \mid c\mathsf{T} \mid d\mathsf{C} \mid a \mid b \mid c \mid d, \\ B \to a\mathsf{T} \mid b\mathsf{A} \mid c\mathsf{T} \mid d\mathsf{D} & // \mathsf{G} \mathsf{1} \mathsf{W} \mathsf{1} \\ C \to & // \mathsf{G} \mathsf{2} \mathsf{W} \mathsf{2} \wedge \mathsf{G} \mathsf{1} \mathsf{W} \mathsf{1} \\ E \to \\ \} \end{split}
```

## Beispiel: reguläre Sprache

Gesucht ist eine Sprache mit Worten  $W \in \{a, b, c, d\}^+$  in der jedoch die Teilworte "dda" und "bdcb" *nicht* vorkommen dürfen.

Beispiele

13 / 19

# Beispiel: reguläre Sprache

Gesucht ist eine Sprache mit Worten  $W \in \{a, b, c, d\}^+$  in der jedoch die Teilworte "dda" und "bdcb" *nicht* vorkommen dürfen.

```
\begin{split} T &= \{a,b,c,d\} \\ N &= \{S,T,A,B,C,D,E\} \\ P &= \{S \to aT \mid bA \mid cT \mid dB \mid a \mid b \mid c \mid d, \\ T \to aT \mid bA \mid cT \mid dB \mid a \mid b \mid c \mid d, \\ A \to aT \mid bA \mid cT \mid dC \mid a \mid b \mid c \mid d, \\ B \to aT \mid bA \mid cT \mid dD \mid a \mid b \mid c \mid d, \\ C \to aT \mid & // G2W2 \land G1W1 \\ D \to & // G2W1 \\ E \to & \} \end{split}
```

# Beispiel: reguläre Sprache

Gesucht ist eine Sprache mit Worten  $W \in \{a, b, c, d\}^+$  in der jedoch die Teilworte "dda" und "bdcb" *nicht* vorkommen dürfen.

```
\begin{split} T &= \{a,b,c,d\} \\ N &= \{S,T,A,B,C,D,E\} \\ P &= \{S \to aT \mid bA \mid cT \mid dB \mid a \mid b \mid c \mid d, \\ T \to aT \mid bA \mid cT \mid dB \mid a \mid b \mid c \mid d, \\ A \to aT \mid bA \mid cT \mid dC \mid a \mid b \mid c \mid d, \\ B \to aT \mid bA \mid cT \mid dD \mid a \mid b \mid c \mid d, \\ C \to aT \mid bA \mid \\ D \to \\ E \to \\ \} \end{split}
```

Beispiele

13 / 19

# Beispiel: reguläre Sprache

Gesucht ist eine Sprache mit Worten  $W \in \{a, b, c, d\}^+$  in der jedoch die Teilworte "dda" und "bdcb" *nicht* vorkommen dürfen.

# Beispiel: reguläre Sprache

Gesucht ist eine Sprache mit Worten  $W \in \{a, b, c, d\}^+$  in der jedoch die Teilworte "dda" und "bdcb" *nicht* vorkommen dürfen.

```
\begin{split} T &= \{a,b,c,d\} \\ N &= \{S,T,A,B,C,D,E\} \\ P &= \{S \to aT \mid bA \mid cT \mid dB \mid a \mid b \mid c \mid d, \\ T \to aT \mid bA \mid cT \mid dB \mid a \mid b \mid c \mid d, \\ A \to aT \mid bA \mid cT \mid dC \mid a \mid b \mid c \mid d, \\ B \to aT \mid bA \mid cT \mid dD \mid a \mid b \mid c \mid d, \\ C \to aT \mid bA \mid cE \mid dD \mid & // G2W2 \land G1W1 \\ D \to & // G3W2 \\ \} \end{split}
```

## Beispiel: reguläre Sprache

Gesucht ist eine Sprache mit Worten  $W \in \{a, b, c, d\}^+$  in der jedoch die Teilworte "dda" und "bdcb" *nicht* vorkommen dürfen.

```
\begin{split} T &= \{a,b,c,d\} \\ N &= \{S,T,A,B,C,D,E\} \\ P &= \{S \to aT \mid bA \mid cT \mid dB \mid a \mid b \mid c \mid d, \\ T \to aT \mid bA \mid cT \mid dB \mid a \mid b \mid c \mid d, \\ A \to aT \mid bA \mid cT \mid dC \mid a \mid b \mid c \mid d, \\ B \to aT \mid bA \mid cT \mid dD \mid a \mid b \mid c \mid d, \\ C \to aT \mid bA \mid cE \mid dD \mid a \mid b \mid c \mid d, \\ D \to \\ E \to \\ \} \end{split}
```

# Beispiel: reguläre Sprache

Gesucht ist eine Sprache mit Worten  $W \in \{a, b, c, d\}^+$  in der jedoch die Teilworte "dda" und "bdcb" *nicht* vorkommen dürfen.

```
\begin{split} T &= \{a,b,c,d\} \\ N &= \{S,T,A,B,C,D,E\} \\ P &= \{S \to aT \mid bA \mid cT \mid dB \mid a \mid b \mid c \mid d, \\ T \to aT \mid bA \mid cT \mid dB \mid a \mid b \mid c \mid d, \\ A \to aT \mid bA \mid cT \mid dC \mid a \mid b \mid c \mid d, \\ B \to aT \mid bA \mid cT \mid dD \mid a \mid b \mid c \mid d, \\ C \to aT \mid bA \mid cE \mid dD \mid a \mid b \mid c \mid d, \\ D \to bA \mid \\ E \to \\ \} \end{split}
```

Beispiele

13 / 19

# Beispiel: reguläre Sprache

Gesucht ist eine Sprache mit Worten  $W \in \{a, b, c, d\}^+$  in der jedoch die Teilworte "dda" und "bdcb" *nicht* vorkommen dürfen.

```
\begin{split} T &= \{a,b,c,d\} \\ N &= \{S,T,A,B,C,D,E\} \\ P &= \{S \to aT \mid bA \mid cT \mid dB \mid a \mid b \mid c \mid d, \\ T \to aT \mid bA \mid cT \mid dB \mid a \mid b \mid c \mid d, \\ A \to aT \mid bA \mid cT \mid dC \mid a \mid b \mid c \mid d, \\ B \to aT \mid bA \mid cT \mid dD \mid a \mid b \mid c \mid d, \\ C \to aT \mid bA \mid cE \mid dD \mid a \mid b \mid c \mid d, \\ D \to bA \mid cT \mid \\ E \to \\ \} \end{split}
```

Beispiele

13 / 19

# Beispiel: reguläre Sprache

Gesucht ist eine Sprache mit Worten  $W \in \{a, b, c, d\}^+$  in der jedoch die Teilworte "dda" und "bdcb" *nicht* vorkommen dürfen.

```
\begin{split} T &= \{a,b,c,d\} \\ N &= \{S,T,A,B,C,D,E\} \\ P &= \{S \to aT \mid bA \mid cT \mid dB \mid a \mid b \mid c \mid d, \\ T \to aT \mid bA \mid cT \mid dB \mid a \mid b \mid c \mid d, \\ A \to aT \mid bA \mid cT \mid dC \mid a \mid b \mid c \mid d, \\ B \to aT \mid bA \mid cT \mid dD \mid a \mid b \mid c \mid d, \\ C \to aT \mid bA \mid cE \mid dD \mid a \mid b \mid c \mid d, \\ D \to bA \mid cT \mid dD \mid \\ E \to \\ \} \end{split}
```

# Beispiel: reguläre Sprache

Gesucht ist eine Sprache mit Worten  $W \in \{a, b, c, d\}^+$  in der jedoch die Teilworte "dda" und "bdcb" *nicht* vorkommen dürfen.

```
\begin{split} T &= \{a,b,c,d\} \\ N &= \{S,T,A,B,C,D,E\} \\ P &= \{S \to aT \mid bA \mid cT \mid dB \mid a \mid b \mid c \mid d, \\ T \to aT \mid bA \mid cT \mid dB \mid a \mid b \mid c \mid d, \\ A \to aT \mid bA \mid cT \mid dC \mid a \mid b \mid c \mid d, \\ B \to aT \mid bA \mid cT \mid dD \mid a \mid b \mid c \mid d, \\ C \to aT \mid bA \mid cE \mid dD \mid a \mid b \mid c \mid d, \\ D \to bA \mid cT \mid dD \mid b \mid c \mid d, \\ E \to & // G3W2 \\ \} \end{split}
```

Beispiele

13 / 19

# Beispiel: reguläre Sprache

Gesucht ist eine Sprache mit Worten  $W \in \{a, b, c, d\}^+$  in der jedoch die Teilworte "dda" und "bdcb" *nicht* vorkommen dürfen.

```
\begin{split} T &= \{a,b,c,d\} \\ N &= \{S,T,A,B,C,D,E\} \\ P &= \{S \to aT \mid bA \mid cT \mid dB \mid a \mid b \mid c \mid d, \\ T \to aT \mid bA \mid cT \mid dB \mid a \mid b \mid c \mid d, \\ A \to aT \mid bA \mid cT \mid dC \mid a \mid b \mid c \mid d, \\ B \to aT \mid bA \mid cT \mid dD \mid a \mid b \mid c \mid d, \\ C \to aT \mid bA \mid cE \mid dD \mid a \mid b \mid c \mid d, \\ D \to bA \mid cT \mid dD \mid b \mid c \mid d, \\ E \to aT \mid \\ \} \end{split}
```

Beispiele

# Beispiel: reguläre Sprache

Gesucht ist eine Sprache mit Worten  $W \in \{a, b, c, d\}^+$  in der jedoch die Teilworte "dda" und "bdcb" *nicht* vorkommen dürfen.

```
\begin{split} T &= \{a,b,c,d\} \\ N &= \{S,T,A,B,C,D,E\} \\ P &= \{S \to aT \mid bA \mid cT \mid dB \mid a \mid b \mid c \mid d, \\ T \to aT \mid bA \mid cT \mid dB \mid a \mid b \mid c \mid d, \\ A \to aT \mid bA \mid cT \mid dC \mid a \mid b \mid c \mid d, \\ B \to aT \mid bA \mid cT \mid dD \mid a \mid b \mid c \mid d, \\ C \to aT \mid bA \mid cE \mid dD \mid a \mid b \mid c \mid d, \\ D \to bA \mid cT \mid dD \mid b \mid c \mid d, \\ E \to aT \mid cT \mid \\ \} \end{split}
```

Beispiele

## Beispiel: reguläre Sprache

Gesucht ist eine Sprache mit Worten  $W \in \{a, b, c, d\}^+$  in der jedoch die Teilworte "dda" und "bdcb" *nicht* vorkommen dürfen.

```
\begin{split} T &= \{a,b,c,d\} \\ N &= \{S,T,A,B,C,D,E\} \\ P &= \{S \to aT \mid bA \mid cT \mid dB \mid a \mid b \mid c \mid d, \\ T \to aT \mid bA \mid cT \mid dB \mid a \mid b \mid c \mid d, \\ A \to aT \mid bA \mid cT \mid dC \mid a \mid b \mid c \mid d, \\ B \to aT \mid bA \mid cT \mid dD \mid a \mid b \mid c \mid d, \\ C \to aT \mid bA \mid cE \mid dD \mid a \mid b \mid c \mid d, \\ D \to bA \mid cT \mid dD \mid b \mid c \mid d, \\ E \to aT \mid cT \mid dB \mid \\ \} \end{split}
```

GxWy ... "Gefahrenstufe x, Wort y"

Beispiele

## Beispiel: reguläre Sprache

Gesucht ist eine Sprache mit Worten  $W \in \{a, b, c, d\}^+$  in der jedoch die Teilworte "dda" und "bdcb" *nicht* vorkommen dürfen.

```
\begin{split} T &= \{a,b,c,d\} \\ N &= \{S,T,A,B,C,D,E\} \\ P &= \{S \to aT \mid bA \mid cT \mid dB \mid a \mid b \mid c \mid d, \\ T \to aT \mid bA \mid cT \mid dB \mid a \mid b \mid c \mid d, \\ A \to aT \mid bA \mid cT \mid dC \mid a \mid b \mid c \mid d, \\ B \to aT \mid bA \mid cT \mid dD \mid a \mid b \mid c \mid d, \\ C \to aT \mid bA \mid cE \mid dD \mid a \mid b \mid c \mid d, \\ D \to bA \mid cT \mid dD \mid b \mid c \mid d, \\ E \to aT \mid cT \mid dB \mid a \mid c \mid d \\ \} \end{split}
```

GxWy ... "Gefahrenstufe x, Wort y"

Gesucht ist die reguläre Grammatik der Sprache

$$L = \{a^i b^j c^k \mid i \equiv 1(4), j \equiv 0(3), k \equiv 2(3)\}^*$$

 $i \equiv 1(4)$ , bzw.  $i \equiv 1 \mod 4$  bedeutet, dass die Zahl i bei der ganzzahligen Division durch 4 den Rest 1 ergeben muss, also der Restklasse 1 angehört.

Beispiel: im obigen Beispiel kann i folgende Werte annehmen:  $1, 5, 9, 13, \ldots$ 

*Beispiel:* Die Worte der Sprache in aufsteigender Reihenfolge bezüglich ihrer Länge:

Gesucht ist die reguläre Grammatik der Sprache

$$L = \{a^i b^j c^k \mid i \equiv 1(4), j \equiv 0(3), k \equiv 2(3)\}^*$$

 $i \equiv 1(4)$ , bzw.  $i \equiv 1 \mod 4$  bedeutet, dass die Zahl i bei der ganzzahligen Division durch 4 den Rest 1 ergeben muss, also der Restklasse 1 angehört.

*Beispiel:* im obigen Beispiel kann i folgende Werte annehmen:  $1, 5, 9, 13, \ldots$ 

Beispiel: Die Worte der Sprache in aufsteigender Reihenfolge bezüglich ihrer Länge:  $\varepsilon$ ,

Gesucht ist die reguläre Grammatik der Sprache

$$L = \{a^i b^j c^k \mid i \equiv 1(4), j \equiv 0(3), k \equiv 2(3)\}^*$$

 $i \equiv 1(4)$ , bzw.  $i \equiv 1 \mod 4$  bedeutet, dass die Zahl i bei der ganzzahligen Division durch 4 den Rest 1 ergeben muss, also der Restklasse 1 angehört.

*Beispiel:* im obigen Beispiel kann i folgende Werte annehmen:  $1, 5, 9, 13, \ldots$ 

*Beispiel:* Die Worte der Sprache in aufsteigender Reihenfolge bezüglich ihrer Länge:  $\varepsilon$ , acc,

Gesucht ist die reguläre Grammatik der Sprache

$$L = \{a^i b^j c^k \mid i \equiv 1(4), j \equiv 0(3), k \equiv 2(3)\}^*$$

 $i \equiv 1(4)$ , bzw.  $i \equiv 1 \mod 4$  bedeutet, dass die Zahl i bei der ganzzahligen Division durch 4 den Rest 1 ergeben muss, also der Restklasse 1 angehört.

*Beispiel:* im obigen Beispiel kann i folgende Werte annehmen:  $1, 5, 9, 13, \ldots$ 

*Beispiel:* Die Worte der Sprache in aufsteigender Reihenfolge bezüglich ihrer Länge:  $\varepsilon$ , acc, accccc,

Gesucht ist die reguläre Grammatik der Sprache

$$L = \{a^i b^j c^k \mid i \equiv 1(4), j \equiv 0(3), k \equiv 2(3)\}^*$$

 $i \equiv 1(4)$ , bzw.  $i \equiv 1 \mod 4$  bedeutet, dass die Zahl i bei der ganzzahligen Division durch 4 den Rest 1 ergeben muss, also der Restklasse 1 angehört.

*Beispiel:* im obigen Beispiel kann i folgende Werte annehmen:  $1, 5, 9, 13, \ldots$ 

*Beispiel:* Die Worte der Sprache in aufsteigender Reihenfolge bezüglich ihrer Länge:  $\varepsilon$ , acc, accccc, abbbcc,

Gesucht ist die reguläre Grammatik der Sprache

$$L = \{a^i b^j c^k \mid i \equiv 1(4), j \equiv 0(3), k \equiv 2(3)\}^*$$

 $i \equiv 1(4)$ , bzw.  $i \equiv 1 \mod 4$  bedeutet, dass die Zahl i bei der ganzzahligen Division durch 4 den Rest 1 ergeben muss, also der Restklasse 1 angehört.

Beispiel: im obigen Beispiel kann i folgende Werte annehmen:  $1, 5, 9, 13, \ldots$ 

*Beispiel:* Die Worte der Sprache in aufsteigender Reihenfolge bezüglich ihrer Länge:  $\varepsilon$ , acc, accccc, abbbcc, accacc,

Gesucht ist die reguläre Grammatik der Sprache

$$L = \{a^i b^j c^k \mid i \equiv 1(4), j \equiv 0(3), k \equiv 2(3)\}^*$$

 $i \equiv 1(4)$ , bzw.  $i \equiv 1 \mod 4$  bedeutet, dass die Zahl i bei der ganzzahligen Division durch 4 den Rest 1 ergeben muss, also der Restklasse 1 angehört.

Beispiel: im obigen Beispiel kann i folgende Werte annehmen:  $1, 5, 9, 13, \dots$ 

*Beispiel:* Die Worte der Sprache in aufsteigender Reihenfolge bezüglich ihrer Länge:  $\varepsilon$ , acc, accccc, abbbcc, accacc, aaaaacc,

Gesucht ist die reguläre Grammatik der Sprache

$$L = \{a^i b^j c^k \mid i \equiv 1(4), j \equiv 0(3), k \equiv 2(3)\}^*$$

 $i \equiv 1(4)$ , bzw.  $i \equiv 1 \mod 4$  bedeutet, dass die Zahl i bei der ganzzahligen Division durch 4 den Rest 1 ergeben muss, also der Restklasse 1 angehört.

Beispiel: im obigen Beispiel kann i folgende Werte annehmen:  $1, 5, 9, 13, \dots$ 

*Beispiel:* Die Worte der Sprache in aufsteigender Reihenfolge bezüglich ihrer Länge:  $\varepsilon$ , acc, accccc, abbbcc, accacc, aaaaacc, . . .



Gesucht ist die reguläre Grammatik der Sprache

$$L = \{a^i b^j c^k \mid i \equiv 1(4), j \equiv 0(3), k \equiv 2(3)\}^*$$



Gesucht ist die reguläre Grammatik der Sprache

$$L = \{a^i b^j c^k \mid i \equiv 1(4), j \equiv 0(3), k \equiv 2(3)\}^*$$

$$\begin{split} P = \left\{ \mathbf{S} \rightarrow \mathbf{aA} \mid \varepsilon, \\ \mathbf{A} \rightarrow \mathbf{aB} \mid \mathbf{bE} \mid \mathbf{cH}, \\ \mathbf{B} \rightarrow \mathbf{aC}, \\ \mathbf{C} \rightarrow \mathbf{aD}, \\ \mathbf{D} \rightarrow \mathbf{aA}, \\ \mathbf{E} \rightarrow \mathbf{bF}, \\ \mathbf{F} \rightarrow \mathbf{bG}, \\ \mathbf{G} \rightarrow \mathbf{bE} \mid \mathbf{cH}, \\ \mathbf{H} \rightarrow \mathbf{cJ} \mid \mathbf{c}, \\ \mathbf{J} \rightarrow \mathbf{aA} \mid \mathbf{cK}, \\ \mathbf{K} \rightarrow \mathbf{cH}, \\ \right\} \end{split}$$



 Wir betrachten nun schwierigeres Beispiel: Gesucht sei die reguläre Grammatik zur Sprache

$$L = \{w \in \{0,1\}^+ \mid w \text{ als Binärzahl aufgefasst ist durch 3 teilbar}\}.$$

 Wir betrachten nun schwierigeres Beispiel: Gesucht sei die reguläre Grammatik zur Sprache

$$L = \{w \in \{0,1\}^+ \mid w \text{ als Binärzahl aufgefasst ist durch 3 teilbar}\}.$$

• Problemanalyse: Wann ist eine Zahl durch 3 teilbar?

 Wir betrachten nun schwierigeres Beispiel: Gesucht sei die reguläre Grammatik zur Sprache

$$L = \{w \in \{0,1\}^+ \mid w \text{ als Binärzahl aufgefasst ist durch 3 teilbar}\}.$$

• Problemanalyse: Wann ist eine Zahl durch 3 teilbar?

 Wir betrachten nun schwierigeres Beispiel: Gesucht sei die reguläre Grammatik zur Sprache

$$L = \{w \in \{0,1\}^+ \mid w \text{ als Binärzahl aufgefasst ist durch 3 teilbar}\}.$$

- Problemanalyse: Wann ist eine Zahl durch 3 teilbar?
  - Genau dann, wenn Ziffernsumme durch 3 teilbar ist.

 Wir betrachten nun schwierigeres Beispiel: Gesucht sei die reguläre Grammatik zur Sprache

$$L = \{w \in \{0,1\}^+ \mid w \text{ als Binärzahl aufgefasst ist durch 3 teilbar}\}.$$

- Problemanalyse: Wann ist eine Zahl durch 3 teilbar?
  - Genau dann, wenn Ziffernsumme durch 3 teilbar ist.
  - Begründung, anhand des Beispiels 4761:

| Stelle durch 3 geteilt | Rest |
|------------------------|------|
| 1er                    | 1    |
| 10er                   | 6    |
| 100er                  | 7    |
| 1000er                 | 4    |

15 / 19

# Weiteres Beispiel regulärer Sprache (schwierig) (\*)

 Wir betrachten nun schwierigeres Beispiel: Gesucht sei die reguläre Grammatik zur Sprache

$$L = \{w \in \{0,1\}^+ \mid w \text{ als Binärzahl aufgefasst ist durch 3 teilbar}\}.$$

- Problemanalyse: Wann ist eine Zahl durch 3 teilbar?
  - Genau dann, wenn Ziffernsumme durch 3 teilbar ist.
  - Begründung, anhand des Beispiels 4761:

| Stelle durch 3 geteilt | Rest |
|------------------------|------|
| 1er                    | 1    |
| 10er                   | 6    |
| 100er                  | 7    |
| 1000er                 | 4    |

• Pro 10er, 100er, ... bleibt ein gewisser Rest. Ist die Summe dieser Reste durch 3 teilbar, dann auch die ursprüngliche Zahl!

#### Somit erhält man folgenden Automaten:



#### mit der Grammatik:

$$P = \{S \rightarrow 0N \mid 1E \mid 0, \\ N \rightarrow 0N \mid 1E \mid 0, \\ E \rightarrow 0Z \mid 1N \mid 1, \\ Z \rightarrow 0E \mid 1Z\}$$

- Nach Start mit  $0 \rightarrow 0$  Rest (N)
- Nach Start mit  $1 \rightarrow 1$  Rest (E)
- In Zustand N (Restklasse 0): bei folgendem 1er Wechsel in Zustand E (Restklasse 1).
- Generell gilt: das Anhängen einer Ziffer verdoppelt die Zahl (Basis 2). Somit verdoppelt sich auch der Rest.
- Ziffer 0 in E: Rest wird auf 2 verdoppelt: Übergang nach Zustand Z (Restklasse 2)
- Ziffer 1 in E: Rest wird zunächst auf 2 verdoppelt, und ergibt mit +1 wieder 0 (Übergang nach Zustand N).

17 / 19

• Gesucht sei die Grammatik zur regulären Sprache

$$L = \{ w \in \{ a, b, c \}^* \mid w \neq \alpha cba\beta \land w \neq \alpha bcbc\beta, \alpha, \beta \in T^* \}.$$

$$L = \{ w \in \{a, b, c\}^* \mid w \neq \alpha cba\beta \land w \neq \alpha bcbc\beta, \alpha, \beta \in T^* \}.$$

$$P = \{S \rightarrow aT \mid bB \mid cA \mid a \mid b \mid c \mid \varepsilon,$$

$$T \rightarrow$$

$$A \rightarrow$$

$$B \rightarrow$$

$$C \rightarrow$$

$$D \rightarrow$$

$$E \rightarrow$$

$$L = \{ w \in \{a, b, c\}^* \mid w \neq \alpha cba\beta \land w \neq \alpha bcbc\beta, \alpha, \beta \in T^* \}.$$

$$P = \{S \rightarrow aT \mid bB \mid cA \mid a \mid b \mid c \mid \varepsilon,$$

$$T \rightarrow aT \mid bB \mid cA \mid a \mid b \mid c,$$

$$A \rightarrow$$

$$B \rightarrow$$

$$C \rightarrow$$

$$D \rightarrow$$

$$E \rightarrow$$

$$L = \{ w \in \{a, b, c\}^* \mid w \neq \alpha cba\beta \land w \neq \alpha bcbc\beta, \alpha, \beta \in T^* \}.$$

$$P = \{S \rightarrow aT \mid bB \mid cA \mid a \mid b \mid c \mid \varepsilon,$$

$$T \rightarrow aT \mid bB \mid cA \mid a \mid b \mid c,$$

$$A \rightarrow aT \mid$$

$$B \rightarrow$$

$$C \rightarrow$$

$$D \rightarrow$$

$$E \rightarrow$$

$$L = \{ w \in \{a, b, c\}^* \mid w \neq \alpha cba\beta \land w \neq \alpha bcbc\beta, \alpha, \beta \in T^* \}.$$

$$P = \{S \rightarrow aT \mid bB \mid cA \mid a \mid b \mid c \mid \varepsilon,$$

$$T \rightarrow aT \mid bB \mid cA \mid a \mid b \mid c,$$

$$A \rightarrow aT \mid bC \mid //G1W1$$

$$B \rightarrow$$

$$C \rightarrow$$

$$D \rightarrow$$

$$E \rightarrow$$

$$L = \{ w \in \{ a, b, c \}^* \mid w \neq \alpha cba\beta \land w \neq \alpha bcbc\beta, \alpha, \beta \in T^* \}.$$

$$P = \{S \rightarrow aT \mid bB \mid cA \mid a \mid b \mid c \mid \varepsilon,$$

$$T \rightarrow aT \mid bB \mid cA \mid a \mid b \mid c,$$

$$A \rightarrow aT \mid bC \mid cA \mid a \mid b \mid c, \quad //G1W1$$

$$B \rightarrow //G1W2$$

$$C \rightarrow$$

$$D \rightarrow$$

$$E \rightarrow$$

$$L = \{ w \in \{ a, b, c \}^* \mid w \neq \alpha cba\beta \land w \neq \alpha bcbc\beta, \alpha, \beta \in T^* \}.$$

$$P = \{S \rightarrow aT \mid bB \mid cA \mid a \mid b \mid c \mid \varepsilon,$$

$$T \rightarrow aT \mid bB \mid cA \mid a \mid b \mid c,$$

$$A \rightarrow aT \mid bC \mid cA \mid a \mid b \mid c, \quad //G1W1$$

$$B \rightarrow aT \mid \quad //G1W2$$

$$C \rightarrow D \rightarrow E \rightarrow$$

$$L = \{ w \in \{a, b, c\}^* \mid w \neq \alpha cba\beta \land w \neq \alpha bcbc\beta, \alpha, \beta \in T^* \}.$$

$$P = \{S \rightarrow aT \mid bB \mid cA \mid a \mid b \mid c \mid \varepsilon,$$

$$T \rightarrow aT \mid bB \mid cA \mid a \mid b \mid c,$$

$$A \rightarrow aT \mid bC \mid cA \mid a \mid b \mid c, \quad //G1W1$$

$$B \rightarrow aT \mid bB \mid \quad //G1W2$$

$$C \rightarrow$$

$$D \rightarrow$$

$$E \rightarrow$$

$$L = \{ w \in \{a, b, c\}^* \mid w \neq \alpha cba\beta \land w \neq \alpha bcbc\beta, \alpha, \beta \in T^* \}.$$

$$P = \{S \rightarrow aT \mid bB \mid cA \mid a \mid b \mid c \mid \varepsilon,$$

$$T \rightarrow aT \mid bB \mid cA \mid a \mid b \mid c,$$

$$A \rightarrow aT \mid bC \mid cA \mid a \mid b \mid c, \quad //G1W1$$

$$B \rightarrow aT \mid bB \mid cD \mid a \mid b \mid c, \quad //G1W2$$

$$C \rightarrow$$

$$D \rightarrow$$

$$E \rightarrow$$

$$L = \{ w \in \{a, b, c\}^* \mid w \neq \alpha cba\beta \land w \neq \alpha bcbc\beta, \alpha, \beta \in T^* \}.$$

$$P = \{S \rightarrow aT \mid bB \mid cA \mid a \mid b \mid c \mid \varepsilon,$$

$$T \rightarrow aT \mid bB \mid cA \mid a \mid b \mid c,$$

$$A \rightarrow aT \mid bC \mid cA \mid a \mid b \mid c, \quad //G1W1$$

$$B \rightarrow aT \mid bB \mid cD \mid a \mid b \mid c, \quad //G1W2$$

$$C \rightarrow bB \mid \qquad //G2W1 \land G1W2$$

$$D \rightarrow E \rightarrow$$

$$L = \{ w \in \{ a, b, c \}^* \mid w \neq \alpha cba\beta \land w \neq \alpha bcbc\beta, \alpha, \beta \in T^* \}.$$

$$P = \{S \rightarrow aT \mid bB \mid cA \mid a \mid b \mid c \mid \varepsilon,$$

$$T \rightarrow aT \mid bB \mid cA \mid a \mid b \mid c,$$

$$A \rightarrow aT \mid bC \mid cA \mid a \mid b \mid c, \quad //G1W1$$

$$B \rightarrow aT \mid bB \mid cD \mid a \mid b \mid c, \quad //G1W2$$

$$C \rightarrow bB \mid cD \mid b \mid c, \quad //G2W1 \land G1W2$$

$$D \rightarrow E \rightarrow$$

$$L = \{ w \in \{ a, b, c \}^* \mid w \neq \alpha cba\beta \land w \neq \alpha bcbc\beta, \alpha, \beta \in T^* \}.$$

$$P = \{S \rightarrow aT \mid bB \mid cA \mid a \mid b \mid c \mid \varepsilon,$$

$$T \rightarrow aT \mid bB \mid cA \mid a \mid b \mid c,$$

$$A \rightarrow aT \mid bC \mid cA \mid a \mid b \mid c, \quad //G1W1$$

$$B \rightarrow aT \mid bB \mid cD \mid a \mid b \mid c, \quad //G1W2$$

$$C \rightarrow bB \mid cD \mid b \mid c, \quad //G2W1 \land G1W2$$

$$D \rightarrow aT \mid \qquad //G1W1 \land G2W2$$

$$E \rightarrow$$

$$L = \{ w \in \{a, b, c\}^* \mid w \neq \alpha cba\beta \land w \neq \alpha bcbc\beta, \alpha, \beta \in T^* \}.$$

$$P = \{S \rightarrow aT \mid bB \mid cA \mid a \mid b \mid c \mid \varepsilon,$$

$$T \rightarrow aT \mid bB \mid cA \mid a \mid b \mid c,$$

$$A \rightarrow aT \mid bC \mid cA \mid a \mid b \mid c, \quad //G1W1$$

$$B \rightarrow aT \mid bB \mid cD \mid a \mid b \mid c, \quad //G1W2$$

$$C \rightarrow bB \mid cD \mid b \mid c, \quad //G2W1 \land G1W2$$

$$D \rightarrow aT \mid bE \mid \quad //G1W1 \land G2W2$$

$$E \rightarrow$$

$$L = \{ w \in \{a, b, c\}^* \mid w \neq \alpha cba\beta \land w \neq \alpha bcbc\beta, \alpha, \beta \in T^* \}.$$

$$P = \{S \rightarrow aT \mid bB \mid cA \mid a \mid b \mid c \mid \varepsilon, \\ T \rightarrow aT \mid bB \mid cA \mid a \mid b \mid c, \\ A \rightarrow aT \mid bC \mid cA \mid a \mid b \mid c, //G1W1 \\ B \rightarrow aT \mid bB \mid cD \mid a \mid b \mid c, //G1W2 \\ C \rightarrow bB \mid cD \mid b \mid c, //G2W1 \land G1W2 \\ D \rightarrow aT \mid bE \mid cA \mid a \mid b \mid c, //G1W1 \land G2W2 \\ E \rightarrow$$

$$L = \{ w \in \{ a, b, c \}^* \mid w \neq \alpha cba\beta \land w \neq \alpha bcbc\beta, \alpha, \beta \in T^* \}.$$

$$P = \{S \rightarrow aT \mid bB \mid cA \mid a \mid b \mid c \mid \varepsilon, \\ T \rightarrow aT \mid bB \mid cA \mid a \mid b \mid c, \\ A \rightarrow aT \mid bC \mid cA \mid a \mid b \mid c, //G1W1 \\ B \rightarrow aT \mid bB \mid cD \mid a \mid b \mid c, //G1W2 \\ C \rightarrow bB \mid cD \mid b \mid c, //G2W1 \land G1W2 \\ D \rightarrow aT \mid bE \mid cA \mid a \mid b \mid c, //G1W1 \land G2W2 \\ E \rightarrow bB \mid b \} //G2W1 \land G3W2$$

#### Aufgaben

#### Aufgabe 3.11

Gesucht ist eine Sprache mit Worten  $W \in \{a,b,c,d\}^+$  in der jedoch die Teilworte "dda" und "bdcb" *nicht* vorkommen dürfen. Geben Sie sowohl die reguläre Grammatik als auch den zugehörigen endlichen Automaten an.

#### Aufgabe 3.12

Gegeben sei die Sprache  $L=\{a^ib^jc^k\mid i\equiv 2(5), j\equiv 1(3), k\equiv 3(4)\}^*.$  Geben Sie die zugehörige reguläre Grammatik sowie den zugehörigen endlichen Automaten an.

#### Literaturübersicht I

- [1] Berger, Krieger, Mahr: "Grundlagen der elektronischen Datenverarbeitung", Skriptum
- [2] Dirk W. Hoffmann: "Theoretische Informatik", Hanser, 3. Auflage
- [3] Gernot Salzer: "Einführung in die Theorie der Informatik", Skriptum, TU Wien, 2001
- [4] Wikipedia (Englisch): https://en.wikipedia.org/
- [5] Wikipedia (Deutsch): https://de.wikipedia.org/