Vector Space Model- IR Project

Vishal Nigam
University of Trieste
SM3800014

Motivation & Objective

Why IR matters: Search engines, recommendation systems, academic search.

My goal: Build a functional IR system using VSM from scratch.

Techniques tested: Multiple retrieval strategies including feedback mechanisms.

Pipeline Overview

Load Raw Artifacts

Indexing

Query + Pre-processing

Retrieval

Feedback

Evaluation

Load Raw Artifacts

STEP 3: RELEVANCE JUDGMENTS

Indexing

- Document Pre-processing: Tokenize & clean 400
 Cranfield docs
- **TF–IDF Computation**: TF, DF, IDF, and TF-IDF vectors
- **Inverted Index**: Term → [doc, weight] mappings
- **Champion Lists**: Top-5 docs per term by TF-IDF score
- **Cluster Pruning**: VN leaders + follower assignment (cosine similarity)
- Static Quality Scores: Higher score for lower doc numbers
- Impact-Ordered Index: Posting lists sorted by term weight
- Index Files Saved: All JSON files stored in /index folder

Query + Pre-Processing

1. User Query:

Input query read from .txt file (e.g., query1.txt)

2. Pre-processing Pipeline:

- Lowercasing (to normalize casing)
- Tokenization (extract alphabetic tokens)
- Stop-word Removal (remove common filler words)
- **Stemming** (reduce words to their base/root form)

3. Query Vector Construction:

- After pre-processing, each token is mapped to its
 TF-IDF weight using the idf.json index
- Final **query vector** is formed as a sparse weighted vector aligned with document vector space
- Used for cosine similarity in retrieval

4. Final Output:

- Cleaned, weighted query vector
- Ensures alignment with document vectors for effective matching

Retrieval

Workflow

1.Choose Retrieval Strategy (via method argument)

2.Ranking

- •Documents are scored and ranked based on cosine similarity or combined scores
- Top-k results returned

3.Output:

- List of top-k documents with scores
- Supports modular evaluation and performance comparison

Streamlit App

Manual Relevance Feedback using Rocchio Algorithm

Feedback

Pseudo-Relevance Feedback (Blind Rocchio)

Feedback @Rocchio Algorithm

Objective:

Improve retrieval by modifying the query using user-labled relevant and non-relevant documents.

How It Works:

- 1.Original Query Vector
- 2.User selects:
 - 1. Relevant docs
 - 2. (Optional) Non-relevant docs
- 3. Rocchio Formula: with parameters
- • α =1.0 (original query weight)
- •β=0.75 (relevant doc boost)
- •γ=0.25 (non-relevant doc penalty)

Used In:

- •search_with_feedback() in search.py
- Uses rocchio_feedback() from relevance_feedback.py

Key Advantage:

•Interactive and user-controlled improvement of query focus

Pseudo Feedback

Objective:

• Enhance query automatically by **assuming** topranked documents are relevant.

Procedure:

- 1. Run initial search using basic cosine similarity.
- 2. Select top k results as **pseudo-relevant**.
- 3. Apply Rocchio update with:
 - 1. Only relevant component (no user input)
 - 2. Same formula as manual feedback, but:

Used In:

- •search_with_pseudo_feedback() in search.py
- Internally calls rocchio_feedback() with non_relevant_docs=None

Key Benefit:

•No human input required, **fully automatic** refinement.

PR curve Analysis & Evaluation

Precision-Recall Curve (Query1) with 11-Point Interpolation

Query Execution Time Bar Chart

Conclusion

Question Time

Thank you