Time left 1:18:44

Question 1

Not yet answered

Marked out of 11.00

```
Fill in the underlined blank lines in the following code.
public static int roundedLog(int n) {
   // Pre-Condition: n is a positive integer.
   // Post-Condition: returns |\log n| , i.e., logarithm of input n base 2 rounded down.
   int r = 0;
   while ( n > 1 ) {
        // Loop Invariant: _____ // fill in this line
                       ______// fill in loop body
    return r;
 \bigcirc a. // Loop Invariant: the return value stated in the post-condition equals the current value of r + |\log n| // fill
        in this line
        n /=2; r++; // fill in loop body
 \bigcirc b. // Loop Invariant: r will eventually become \lfloor \log n \rfloor // fill in this line
        n /=2; r++; // fill in loop body
 \bigcirc c. // Loop Invariant: the loop repeatedly increments r and halves n // fill in this line
        n /=2; r++; // fill in loop body
 \bigcirc d. // Loop Invariant: the purpose of the loop is to compute |\log n| // fill in this line
        r = (int) (Math.log10(n) / Math.log10(2)); // fill in loop body
 O e. More than one of the other choices are correct.
```

• f. None of the other choices are correct.

Question 2 Not yet	What is type erasure in Java generics?
answered Marked out of 8.00	a. The process of adding generic type information during compilation
	\bigcirc b. The process of removing all generic type information during compilation
	○ c. The process of enforcing generic type information at runtime
	\bigcirc d. The process of dynamically updating generic type information during program execution
Question 3 Not yet answered Marked out of 10.00	The solution to the recurrence relation $T(n)=T(n-2)+n/2$ is $T(n)=\Theta$ (?).
	\bigcirc a. n
	\bigcirc b. $n\log n$
	O c. None of the other choices.
	\bigcirc d. $\log n$
	\bigcirc e. n^2
Question 4 Not yet answered Marked out of 11.00	We are given an array $A[0n-1]$ of n numbers where the first $\log n$ numbers appear in arbitrary order but the remaining $n-\log n$ numbers appear in increasing order. We are also given a search key k and want to find out whether number k appears in array A . The most efficient algorithm to do the search will take Θ (?) time in the worst case.
	\bigcirc a. n
	\bigcirc b. $\log \log n$
	○ c. None of the other choices.

 \bigcirc d. $\log n$

 \bigcirc e. $\log^2 n$

```
Question 5
```

Not yet answered

Marked out of 10.00

O c. 3, 10, 11, 7, 9, 5.

O d. 1, 10, 12, 8, 9, 5.

O f. 10, 3, 12, 7, 9, 5.

O e. More than one of the other choices are correct.

```
/**
                 * Pre-Cond: Input is an integer array A.
                 * Post-Cond: Elements of A are rearranged into two groups.
                            Non-negative elements form the first group; negative elements the second group.
                            The relative order of elements within each group remains undisturbed.
                 * Example: [-4, 6, 2, 8, -9, -7, 0, -5, 3] becomes [6, 2, 8, 0, 3, -4, -9, -7, -5].
                 */
                 public static void splitBySign(Integer[] A) {
                     // TODO: place a correct subset of the numbered lines below in correct order
            here.
              1. int r = A.length -1;
              2. r = A.length -1;
              3. int r = 0;
              4. r = 0;
              5. A[r--] = S.pop();
              6. A[r++] = S.pop();
              7. if (A[i] >= 0) A[r++] = A[i]; else S.push(A[i]);
              8. if (A[i] < 0) A[r--] = A[i]; else S.push(A[i]);
              9. while (!S.empty())
             10. Stack<Integer> S = new Stack<>();
             11. for (int i = 0; i < A.length; i++)
             12. for (int i = A.length -1; i >= 0; i--)
○ a. None of the other choices are correct.
O b. 3, 10, 11, 7, 2, 9, 5.
```

Question **6**

Not yet answered

Marked out of 8.00

If
$$T_1(n)=O(f(n))$$
 and $T_2(n)=O(f(n))$, then $T_1(n)=O(T_2(n))$.

- a. False
- O b. True

Question 7

Not yet answered

Marked out of 11.00

The worst-case running time of the algorithm below is $T(n) = \Theta$ (_____?____).

```
public static double foo( double x , int n) { 
 if ( x < 10 || n < 5 ) return 2*x*(n+5) ; 
 double e = 0; 
 for ( int i = 0; i < n; i++ ) e += 5*(i+7)*(i+n); 
 return foo(x+4 , n/2) + foo(x+7 , n/2) + 5*(e+3)*(n+7) ; 
}
```

- \bigcirc a. n
- \bigcirc b. n^2
- \bigcirc c. $n^2 \log n$
- O d. This method may not terminate.
- \bigcirc e. $n \log n$
- \bigcirc f. 2^n

Question 8

Not yet answered

Marked out of 11.00

What is the asymptotic running time of the method below as a function of n?

- \bigcirc a. $\Theta(n^2 \log n)$
- O b. None of the other choices.
- \bigcirc c. $\Theta(n^2)$
- \bigcirc d. $O(n \log n)$
- \bigcirc e. $O(n \log^2 n)$
- \bigcirc f. $\Omega(n^4 \log n)$

Question 9

Not yet answered

Marked out of 10.00

Order the following three functions of n in increasing order of growth rate:

$$F(n) = rac{3n^2 \log^5 n + 4n^3}{7 \log^2 n + 2 \sqrt{6n \log^2 n}} \ , \hspace{0.5cm} G(n) = rac{5n \log^{100} n + 7n^3 \sqrt{n} \log n}{n^{1.7} + n^2 \log n} \ , \hspace{0.5cm} H(n) = rac{5n^4 + n \log n}{n + 5 \sqrt{n} \log n}.$$

- \bigcirc a. $F(n) \ll G(n) \ll H(n)$
- \bigcirc b. $H(n) \ll G(n) \ll F(n)$
- \bigcirc c. $G(n) \ll F(n) \ll H(n)$
- O d. None of the other choices.
- \bigcirc e. $G(n) \ll H(n) \ll F(n)$
- \bigcirc f. $H(n) \ll F(n) \ll G(n)$

Question 10

Not yet answered

Marked out of 10.00

Consider the following:

fully parenthesized infix expression
 un-parenthesized postfix expression
 un-parenthesized postfix expression
 un-parenthesized prefix expression

The question is which of them are equivalent, i.e., represent exactly the same expression.

- O a. No two of them are equivalent.
- O b. Only 1, 3 are equivalent.
- O c. Only 1, 4 are equivalent.
- Od. Only 1, 3, 4 are equivalent.
- O e. Only 1, 2, 4 are equivalent.
- Of. 1 is equivalent to 3, and 2 is equivalent to 4.

Previous activity

Sample Midterm Tests & Solutions

Jump to...

Next activity

Practice Quiz for Final Exam