CSPC54 - Intro to AI-ML

Date 16/11/21

Name - Rajneesh Pandey ROII NO. - 106119100.

Question (B)

(a) P(A,B,B), P(x,y,z)3 x/A, y/B, z/B3. as, progressive unification, EX/AS P(A, B, B), P(x, y, z):
P(A, B, B), P(A, y, z) : 92/A, y/B3 : {.x/A, y/B, Z/B} P(A,B,B), P(A,B,2)So, [?x/A, Y/B, 2/B](d) progreess unification Knows (Father (y), (y)), knows $(x, x): \int x/father (y)$ knows (father (y), y)), knows (father (y), father (y)) z/Fatherly) 3.

cannot unify,
variable of with father (y), which
realiable of ring to vourable of
is a team refloring.

Question 3

(a) (smoke Aheat) \Rightarrow fire) \Leftrightarrow (smoke \Rightarrow fire)

(b) fire.

Heat \Rightarrow fire)

so, Let vouiable names as,

8 be smoke, f be Are, H be Heat.

Now

Truth table,

8	F	H	SAH	(SNH) ⇒ F	S⇒F	H=>F	(S⇒F) H⇒F	A⇔B
Т	7	7	T	Т	T	T	T	т
T	T	F	F	T	T	T	T	T
T	t	T	T	F	F	F	F	T
7	6	F	F	T	F	T	T	7
t	T	T	F	T	T	Т	T	T
t	T	E	F	T	T	T	7	T
F	F	T	r	T	T	F	T	T
F	F	16	F	T	T	T	TI	T
			Jana) CACON				

There fore, thes. is valid because its True for all the cases mailel.

let the vauiables four.
Bleg as B
Dumb as D.

B	D	BVD	$B \Rightarrow D$	8vDv (B⇒D)
T	T F T	T T	T F	T T
£	F	r	T	T

This is also valid because its trace for all the models cases.

Question (4)

Let, $\exists 1$: there exists exactly one.

- (a) $\exists x : Powen+(Joan, x) ^ Female(x)$
- (b) $\exists 1x: (Panent(Joan,x) \land Panent(keuin,x))$ > Female (X)
- (e) =1x: Pouent(Joan,x).

Question (1) 8 F

Data set howe 3 + ve sample and 7 - neg sample $2ntropy(S) = \frac{-3}{10} \log_2 \frac{3}{10} - \frac{7}{10} \log_7 \frac{7}{10}$ = 0.8813

Attributes aue Home owner (HO) Manifal status (MS) Job expr (JE)

Ho Yes
$$(1^{\frac{1}{4}} 3^{-})$$

En $(HO_{Yes}) = \frac{-1}{4} \frac{\log_{1}}{4} - \frac{3\log_{1}}{4}$

En $(HO_{No}) = -0.8113$

En $(HO_{No}) = 0.8113$

En $(HO_{No}) = 0.9183$

M.S Mawred $1^{\frac{1}{4}} 4^{-}$ En $(single) = -\frac{1}{3} \frac{\log_{13} - \frac{2}{3} \log_{23} -$

Divorced
$$\frac{1}{2} = \frac{1}{3} + \frac{1}{5} = \frac{1}{3} + \frac{1}{3} = \frac{1}{3} = \frac{1}{3} + \frac{1}{$$

$$E(JE_2) = -\frac{2}{3} \log(\frac{2}{3}) - \frac{1}{3} \log^{1}(\frac{3}{3} = 0.9183)$$

$$E(JE_3) = -\frac{1}{3} \log(\frac{1}{3}) - \frac{1}{3} \log(\frac{2}{3}) = 0.9183$$

$$E(JE_4) = 0$$

$$E(JE_5) = 0$$

$$E(JE_6) = 0$$

$$E(JE_7) = 0.8813 - \frac{1}{10} \times 0.8113 - \frac{6}{10} \times 0.9183$$

$$= 0.0058$$

$$Coun(S, Harts) = 0.8813 - \frac{1}{10} \times 0.9183 - \frac{5}{10} \times 0.725$$

$$-\frac{1}{10} \times 1$$

$$= 0.0449$$

$$Coun(S, Job exp) = 0.8813 - \frac{1}{10} \times 0.9183$$

$$-\frac{3}{10} \times 0.918$$

$$-\frac{3}{10} \times 0.9183$$

$$-\frac{3}{10} \times 0.9183$$

$$-\frac{3}{10} \times 0.9183$$

2 Job Exp 3 V No No No Di Dy D8

Given Job Exp: 3 1 home owner = 14 - 0+, - 8 = 0 Manifels haby - Single - ot 1 - E = 0 Manifels haby - Single - ot 1 - E = 0 Manifel - 1 - E = 1. Grain (Joh Home owner) = 0-9183 - = x1 Gan (30h Exp=3, Man had status) = 0.25/6 = 0-9193- =×1 The Decision Tree 15 Johens Johens Mo Married May Divorted Mes Colons Johnson Married Mes Colons Married Mes Colons Married Mes Colons Married Mes Colons 110 [No] @ [10]No.] he is defaulted probability = 1/

