ENGG1300 - Formula Booklet

DC Circuits

Ohms Law

Conductance, G,

$$G = \frac{1}{R}$$

Parallel and Series circuits

Series circuits

• Adding resistors in Series:

$$R_{eq} = R1 + R2 + ... + R_N$$

• Similarly, the equivalent conductance of resistors in series is given by the following:

$$\frac{1}{G_{eq}} = \frac{1}{G1} + \frac{1}{G2} + \dots + \frac{1}{G_N}$$

• The voltage division principle for two resistors in series i.e.

is given by the following formulas:

$$V1 = \frac{R1}{R1 + R2} \times V_S$$
$$V2 = \frac{R2}{R1 + R2} \times V_S$$

Parallel circuits

• Adding resistors in Parallel:

$$\frac{1}{R_{eq}} = \frac{1}{R1} + \frac{1}{R2} + \dots + \frac{1}{R_N}$$

• Adding **two** resistors in parallel:

$$R_{eq} = \frac{R1 \times R2}{R1 + R2}$$

• Similarly, the equivalent conductance of resistors in parallel is given by the following:

$$G_{eq} = G1 + G2 + \dots + G_N$$

• The current division principle for two resistors in parallel i.e.

is given by the following formulas:

$$i_1 = \frac{R2}{R1 + R2} \times i_s$$
$$i_2 = \frac{R1}{R1 + R2} \times i_s$$

Thevenin & Norton Equivalent Cir- Complex Numbers cuits

Definition: Any one port network consisting only of sources and resistors can be replaced by a thevenin or norton equivalent circuit.

$$V_{oc} = V_{TH} \& I_N = -I_{SC} \& R_N = R_{TH}$$

Sinusoidal waveforms

Consider the following time varying signal, this can either be a voltage or a current.

$$v(t) = V_m \cos(\omega t \pm \theta)$$

where:

- V_m is the the amplitude of the time varying signal.
- \bullet ω is the angular frequency in radians/s, given by $\omega = 2\pi f$.
- θ is the angle of lead or lag in radians [rad].

A time varying voltage of form:

$$v(t) = V_m \cos(\omega t + \theta)$$

Can be replaced by a phasor:

 $V = V_m \angle \theta$ (Polar Form)

 $V = V_m e^{j\theta}$ (Exponential Form)

 $\underline{V} = V_m \cos(\theta) + jV_m \sin(\theta)$ (Rectangular Form)

Complex Arithmetic

While it is more convenient to perform addition and subtraction of complex numbers in rectangular form, division and multiplication are best done in polar or exponential form.

Multiplication

$$(r_1 \angle \theta_1)(r_2 \angle \theta_2) = r_1 r_2 \angle (\theta_1 + \theta_2)$$
$$(r_1 e^{j\theta_1})(r_2 e^{j\theta_2}) = r_1 r_2 e^{j(\theta_1 + \theta_2)}$$

Division

$$\frac{(r_1 \angle \theta_1)}{(r_2 \angle \theta_2)} = \frac{r_1}{r_2} \angle (\theta_1 - \theta_2)$$
$$\frac{(r_1 e^{j\theta_1})}{(r_2 e^{j\theta_2})} = \frac{r_1}{r_2} e^{j(\theta_1 - \theta_2)}$$

Capacitors & Inductors

Capacitors & Capacitance

• Capacitance, where units are [Farads] is given by:

$$C = \frac{Q}{V}$$

• Charge in a capacitor, where units are [coulombs] is given by:

$$Q = CV$$

 Capacitors connected in series, the total capacitance is given by:

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \ldots + \frac{1}{C_N}$$

• Similarly, for capacitors connected in parallel, the total capacitance is given by:

$$C_{eq} = C_1 + C_2 + \dots + C_N$$

• The energy, E, stored by a capacitor is given by:

$$E = \frac{1}{2}CV^2$$

where units are in [Joules].

Inductors & Inductance

• For inductors connected in series, i.e.

$$L_{Total} = L_1 + L_2 + \dots + L_N$$

• For inductors connected in parallel, i.e.

$$\frac{1}{L_{Total}} = \frac{1}{L_1} + \frac{1}{L_2} + \dots + \frac{1}{L_N}$$

• The energy stored, E, in the magnetic field of an inductor is given by:

$$E = \frac{1}{2}LI^2$$

Instantaneous power

 Instantaneous power absorbed by an element is the product of the elements terminal voltage and the current through the element.

$$p(t) = i(t) \times v(t)$$

Average Power

• Average or real power P (in Watts) is the average of instantaneous power p(t):

$$P = \frac{1}{T} \int_0^T p(t)dt$$

RMS voltage and Current

These ratios always apply to sinusoidal voltages and currents.

$$V_{rms} = \frac{V_{peak}}{\sqrt{2}}$$

$$I_{rms} = \frac{I_{peak}}{\sqrt{2}}$$

Solving AC circuits

Impedance and Admittance

• The impedances and admittances of passive elements are shown in the table below:

Element	Impedance, $Z[\Omega]$	Admittance,
		$Y = \frac{1}{Z} [S]$
Resistor	Z = R	$Y = \frac{1}{R}$
Inductor	$Z = j\omega L$	$Y = \frac{1}{j\omega L}$
Capacitor	$Z = \frac{1}{j\omega C}$	$Y = j\omega C$
	$Z = -j\frac{1}{\omega C}$	

• Equivalent circuits at dc and high frequencies of an inductor and capacitor are shown in the table below.

Element	d.c	a.c.
Inductor	acts as a	acts as an
	short circuit	open circuit
Capacitor	acts as an	acts as
	open circuit	a short circuit

Impedance Combinations

Similar to d.c. circuits, we can use the voltage and current division principles in a.c.

Voltage division relationship - a.c.

$$\underline{V1} = \frac{Z1}{Z1 + Z2} \times V_S$$

$$\underline{V2} = \frac{Z2}{Z1 + Z2} \times V_S$$

Current division relationship - a.c.

$$\underline{I_1} = \frac{Z2}{Z1 + Z2} \times \underline{I_S}$$

$$\underline{I_2} = \frac{Z1}{Z1 + Z2} \times \underline{I_S}$$

Frequency Response

Decibels

 Given a ratio of powers, e.g. radio power received by a mobile phone divided by power transmitted by the cell tower, then the Gain in decibels can be expressed as:

$$GAIN(dB) = 10 \log(P_2/P_1)$$

• For a ratio of voltages, the Gain in decibels can be expressed as:

$$GAIN(dB) = 20 \log(V_2/V_1)$$

Power Systems

 Instantaneous power absorbed by an element is the product of the elements terminal voltage and the current through the element.

$$p(t) = i(t) \times v(t)$$

 Inductors and capacitors absorb no average power, while the average power absorbed by a resistor is:

$$P_{ave} = \frac{1}{2} I_{\rm m}^2 R$$

$$P_{ave} = I_{\rm rms}^2 R$$

where the term $I_{\rm m}$ is the amplitude of the time-varying waveform and $I_{\rm rms}$ is the root-mean-square of the time-varying waveform.

• The power factor is the cosine of the phase difference between voltage and current:

$$pf = \cos(\theta_v - \theta_i)$$

• Transformer ratios:

$$\frac{N_P}{N_S} = \frac{V_P}{V_S} = \frac{I_S}{I_P}$$

 Resistivity (calculating resistance of power in transmission lines)

$$R = \frac{\rho L}{\Lambda}$$

where, L is the length, A is the area and ρ is the resistivity of the material.

Op-Amps

• Assumptions for an ideal op-amp.

$$V^+ = V^- \text{ and } i^+ = i^- = 0$$

• Unity Gain Voltage Follower - Such a circuit has a very high input impedance and is useful as an intermediate-stage (or buffer) amplifier to isolate one circuit from another.

• Non-Inverting Amplifier - this is an op-amp circuit designed to provide a positive voltage gain.

$$Gain = 1 + \frac{R_F}{R_1}$$

• **Inverting Amplifier** - this reverses the polarity of the input signal.

$$Gain = -\frac{R_F}{R_1}$$

• The Summing Amplifier - this is an op amp circuit that combines several inputs and produces an output that is the weighted sum of the inputs. NB. minus sign on equation.

$$V_{out} = -\left(\frac{R_F}{R_1}V_1 + \frac{R_F}{R_2}V_2 + \frac{R_F}{R_3}V_3\right)$$

Active Filters

Active low pass filter schematic and transfer function:

$$G(\omega) = -\frac{Z_{RF}}{Z_{R1} + Z_{R1} Z_{RF} j\omega C}$$

• Active high pass filter schematic and transfer function:

$$G(\omega) = -\frac{Z_{RF}}{Z_{R1} + \frac{Z_{R1}Z_{RF}}{j\omega L}}$$