Tehtävä 1. Määritä kaikki funktiot $f: \mathbb{R} \to \mathbb{R}$, joille yhtälö

$$f(\lfloor x \rfloor y) = f(x) |f(y)|$$

pätee kaikilla $x, y \in \mathbb{R}$. (|z| tarkoittaa suurinta kokonaislukua, joka on $\leq z$.)

Tehtävä 2. Olkoon I kolmion ABC sisään piirretyn ympyrän keskipiste ja olkoon Γ ABC:n ympäri piirretty ympyrä. Suora AI leikkaa Γ :n myös pisteessä D. Olkoon E kaaren \widehat{BDC} piste ja F sivun BC piste siten, että

$$\angle BAF = \angle CAE < \frac{1}{2} \angle BAC.$$

Olkoon vielä G janan IF keskipiste. Todista, että suorat DG ja EI leikkaavat ympyrän Γ pisteessä.

Tehtävä 3. Olkoon $\mathbb N$ positiivisten kokonaislukujen joukko. Määritä kaikki funktiot $g \colon \mathbb N \to \mathbb N$, joille

$$(g(m)+n)(m+g(n))$$

on neliöluku kaikilla $m, n \in \mathbb{N}$.

Language: Finnish Työaika: 4 tuntia 30 minuuttia Jokaisen tehtävän maksimipistemäärä on 7. **Tehtävä 4.** Olkoon P kolmion ABC sisäosan piste. Suorat AP, BP ja CP leikkaavat kolmion ABC ympäri piirretyn ympyrän Γ myös pisteissä K, L ja M, tässä järjestyksessä. Pisteeseen C piirretty Γ :n tangentti leikkaa suoran AB pisteessä S. Oletetaan, että SC = SP. Todista, että MK = ML.

Tehtävä 5. Jokaisessa kuudesta rasiassa B_1 , B_2 , B_3 , B_4 , B_5 ja B_6 on aluksi yksi kolikko. Kahdentyyppiset siirrot ovat sallittuja:

- Siirto 1: Valitaan epätyhjä rasia B_j , $1 \le j \le 5$, poistetaan rasiasta B_j yksi kolikko ja lisätään kaksi kolikkoa rasiaan B_{j+1} .
- Siirto 2: Valitaan epätyhjä rasia B_k , $1 \le k \le 4$, poistetaan rasiasta B_k yksi kolikko ja vaihdetaan rasioiden B_{k+1} ja B_{k+2} (mahdollisesti tyhjät) sisällöt keskenään.

Selvitä, onko olemassa sellaista näiden siirtojen äärellistä jonoa, jotka johtaisivat tilanteeseen, jossa rasiat B_1 , B_2 , B_3 , B_4 ja B_5 ovat tyhjiä ja rasiassa B_6 on tasan $2010^{2010^{2010}}$ kolikkoa. ($a^{b^c}=a^{(b^c)}$.)

Tehtävä 6. Olkoon a_1, a_2, a_3, \ldots jono positiivisia reaalilukuja. Oletetaan, että on olemassa positiivinen kokonaisluku s, siten että

$$a_n = \max\{a_k + a_{n-k} \mid 1 \le k \le n - 1\}$$

kaikilla n>s. Todista, että on olemassa positiiviset kokonaisluvut ℓ ja $N,\ \ell\leq s$, siten että $a_n=a_\ell+a_{n-\ell}$ kaikilla $n\geq N$.