# § 16. Волновая оптика

Значение показателя преломления n для некоторых веществ можно найти в таблице 18 приложения. В задачах 16.66, 16.67 дан авторский вариант решения.

16.1. При фотографировании спектра Солнца было найдено, что желтая спектральная линия ( $\lambda = 589$  нм) в спектрах, полученных от левого и правого краев Солнца, была смещена на  $\Delta \lambda = 0,008$  нм. Найти скорость  $\nu$  вращения солнечного диска.

#### Решение:

Согласно принципу Доплера при фотографировании левого края Солнца, т. е. когда источник света движется к

нам,  $v' = \frac{vc}{c-v}$  — (1); при фотографировании правого края

диска, когда источник света движется от нас,  $v'' = \frac{vc}{c+v}$  —

- (2). Частота излучения  $v = \frac{c}{\lambda}$  (3). Подставляя (3) в (1) и
- (2), получим  $\Delta \lambda = \frac{2v\lambda}{c}$ , отсюда  $v = \frac{c\Delta\lambda}{2\lambda} = 2 \cdot 10^3$  м/с.

**16.2.** Какая разность потенциалов U была приложена между электродами гелиевой разрядной трубки, если при наблюдении вдоль пучка  $\alpha$ -частиц максимальное доплеровское смещение линии гелия ( $\lambda = 492,2$  нм) получилось равным  $\Delta \lambda = 0,8$  нм?

# Решение:

За счет работы сил электрического поля lpha -частицы при-

обрели кинстическую энсргию, т. е.  $qU = \frac{mv^2}{2}$ , где

скорость частиц  $v = \frac{c\Delta\lambda}{\lambda}$ , т. е.  $qU = \frac{mc^2(\Delta\lambda)^2}{2\lambda^2}$ , откуда

$$U=rac{mc^2(\Delta\lambda)^2}{2\lambda^2q}$$
 . Подставляя числовые данные, получим  $U=2500\,\mathrm{B}$ .

16.3. При фотографировании спектра звезды Андромеды было найдено, что линия титана ( $\lambda = 495.4$  нм) смещена к фиолетовому концу спектра на  $\Delta\lambda = 0.17$  нм. Как движется звезда относительно Земли?

#### Решение:

Смещение спектральных линий в еторону коротких волн означает, что звезда приближается к нам. Радиальная скорость ее движения (т. е. скорость вдоль линии, соединяющей звезду и Землю) находится из соотношения  $v = \frac{c\Delta\lambda}{\lambda} = 103 \cdot 10^3 \, \mathrm{m/c}$ .

**16.4.** Во сколько раз увеличится расстояние между сосединми интерференционными полосами на экране в опыте Юнга. ссли зеленый светофильтр ( $\lambda_1 = 500 \text{ нм}$ ) заменить красным ( $\lambda_2 = 650 \text{ нм}$ )?

### Решение:

Условие интерференционного максимума:  $y_{max} = k \frac{L}{d} \lambda$  — (1), где k=0, 1, 2, 3... Условис интерференционного минимума:  $y_{min} = \left(k + \frac{1}{2}\right) \frac{L}{d} \lambda$  — (2), где k=0, 1, 2, 3...

Расстояние между двумя соеедними максимумами интенсивности называется расстоянием между интерференционными полосами, а расстояние между соседнями минимумами интенсивности — шириной интерферензами

ционной полосы. Из (1) и (2) следует, что расстояние между полосами и ширина полосы имеют одинаковое значение, равное  $\Delta y = \frac{L}{d}\lambda$ . Тогда расстояние между интерференционными полосами при зеленом светофильтре равно  $\Delta y_1 = \frac{L}{d}\lambda_1$ , при красном  $\Delta y_2 = \frac{L}{d}\lambda_2$ , где L — расстояние от экрана до источников света. Поскольку величины L и d не меняются, то  $\frac{\Delta y_2}{\Delta y_1} = \frac{\lambda_2}{\lambda_1} = 1,3$ .

**16.5.** В опыте Юнга отверстня освещались монохроматическим светом ( $\lambda = 600$  нм). Расстояние между отверстиями d=1мм, расстояние от отверстий до экрана L=3 м. Найти положение трех первых светлых полос.

#### Решение:

**Первая** светлая полоса находится на расстоянии  $y_1 = \frac{L}{d} \lambda = 1.8 \cdot 10^{-3} \text{ м.}$  Вторая — на расстоянии  $y_2 = 2y_1 =$  = 3.6 · 10<sup>-3</sup> м. Третья — на расстоянии  $y_3 = 3y_1 = 5.4 \cdot 10^{-3} \text{ м.}$ 

**16.6.** В опыте с зеркалами Френеля расстояние между мнимыми изображениями источника света d=0.5 мм, расстояние до экрана L=5 м. В зеленом свете получились интерференционные полосы, расположенные на расстоянии l=5 мм друг от друга. Найти длину волны  $\lambda$  зеленого света.

# Решение:

Имеем 
$$l = \frac{L}{d} \lambda$$
, откуда  $\lambda = \frac{ld}{L} = 0.5 \cdot 10^{-6}$  м.

16.7. В опыте Юнга на пути одного из интерферирующих лучей помещалась тонкая стеклянная пластинка, вследствие чего

центральная светлая полоса смещалась в положение, первоначально занятое пятой светлой полосой (не считая центральной). Луч падает перпендикулярно к поверхности пластинки. Показатель преломления пластинки n=1,5. Длина волны  $\lambda=600$  нм. Какова толицина h пластинки?

#### Решение:

Изменение разности хода лучей в результате внессния пластинки равно  $\Delta = nh - h = h(n-1)$ . Кроме того, произошло смещение на k=5 полос, т. е. разность хода  $\Delta = k\lambda$ .

Отсюда 
$$h(n-1) = k\lambda$$
;  $h = \frac{k\lambda}{n-1} = 6 \cdot 10^{-6} \text{ м.}$ 

16.8. В опыте Юнга стеклянная пластинка тольнной  $h=12\,\mathrm{cm}$  помещается на пути одного из интерферирующих лучей перпендикулярно к лучу. На сколько могут отличаться друг от друга показатели преломления в различных местах пластинки, чтобы изменение разности хода от этой неоднородности не превышало  $\Delta=1\,\mathrm{mkm}$ ?

### Решение:

398

Для двух различных значений  $n_1$  и  $n_2$  показателя преломления стеклянной пластинки изменение разности хода лучей соответственно равно  $\Delta_1 = h(n_1-1)$  и  $\Delta_2 = h(n_2-1)$ . По условию  $\Delta_1 - \Delta_2 = 10^{-6}$  м, т. е.  $h(n_1-1) - h(n_2-1) = 10^{-6}$ , откуда  $h\Delta n = 10^{-6}$  м;  $\Delta n = \frac{10^{-6}}{h} = 5 \cdot 10^{-5}$ .

16.9. На мыльную пленку падает белый свет под углом  $i=45^\circ$  к поверхности пленки. При какой наименьшей толынне пленки отраженные лучи будут окрашены в желтый цвет (  $\lambda=600$  нм)? Показатель преломления мыльной воды n=1,33.

# Решенне:

По условию отраженные лучи окрашены в желтый цвет. Это означает, что максимум отражения наблюдается в желтой части спектра. Максимум отражения наблюдается, когда световые волны, отраженные от обеих поверхностей пластинки (см. рисунок), усиливают друг друга. Для этого



оптическая разность хода  $\Delta d$  пучков 1 и 2 должна быть равна целому числу k длин волн:  $\Delta d = \frac{\lambda}{2} + n(AC + BC) -$ 

 $-AD = k\lambda$ . Слагаемое  $\frac{\lambda}{2}$  учитывает, что при отражении **пучка** 1 от оптически более плотной среды фаза колебаний **электром**агнитного поля изменяется на противоположную, **т**. е. возникает такое же изменение фазы, как при **прохож**дении пути  $\frac{\lambda}{2}$ . Множитель n учитывает умень-

**шение ск**орости света в среде — на пути s в среде возникает такое же изменение фазы  $\Delta \varphi$ , как на пути

**ns** в вакууме:  $\Delta \varphi = \frac{\omega s}{v} = \frac{n \, \omega s}{c}$ . Используя соотношения

 $AC = BC = \frac{h}{\cos r}$ ,  $AD = 2h \sin i \cdot t gr$ , а также применяя закон

преломления, получаем  $\left(k-\frac{1}{2}\right)\lambda=2h\sqrt{n^2-\sin^2i}$ , откуда

 $h = \frac{(k-1/2)\lambda}{2\sqrt{n^2 - \sin^2 i}}$ . При k = 1 минимальная толщина пленки

 $h = 0.13 \cdot 10^{-6} \,\mathrm{M}$ 

16.10. Мыльная пленка, расположенная вертикально, образует клин вследствие стекания жидкости. При паблюдении ин-

терференционных полос в отраженном свете ртутной дуги ( $\lambda=546,1$  нм) оказалось, что расстояние между пятью полосами I=2 см. Найти угол  $\gamma$  клина. Свет падает перпендикулярно к поверхности пленки. Показатель преломления мыльной воды n=1.33.

#### Решение:



При попадании на любую прозрачную пленку свет частично проходит, частично отражается как от нижней, так и от верхней поверхностей. При этом световые пучки приобрстают разность хода, зависящую от толщины пленки, ее показателя преломления и угла падения света. По условию

свет падает перпендикулярно к поверхности пленки, толщина пленки всюду мала. Это позволяет считать, что интерференционная картина при рассмотрении ее в отраженном свете (сверху) локализована на верхней поверхности клина. Пусть  $h_1$  и  $h_2$  — толщины пленки, соответствующие разным полосам. Тогда  $\Delta h = h_2 - h_1 = \frac{\lambda}{2n}$ . Поскольку угол  $\gamma$  клина мал, то можно принять  $\Delta h = lig\gamma$ .

Отсюда  $tg\gamma = \frac{k\lambda}{2nl} = 5.13 \cdot 10^{-5}$ ;  $\gamma = 11''$ .

16.11. Мыльная пленка, расположенная вертикально, образует клин вследствие стекания жидкости. Интерференция наблюдается в отраженном свете через красное стекло ( $\lambda_1 = 631\,\mathrm{HM}$ ). Расстояние между соседними красными полосами при этом  $l_1 = 3\,\mathrm{Mm}$ . Затем эта же пленка наблюдается через синее слекло ( $\lambda_2 = 400\,\mathrm{Hm}$ ). Найти расстояние  $l_2$  между соседними саними полосами. Считать, что за время измерений форма пленки не изменится и свет падает перпендикулярно к поверхности пленки.

Пусть угол клина равен  $\gamma$ , тогда  $lg\gamma=\frac{k\lambda_1}{2nl_1}=\frac{k\lambda_2}{2nl_2}$  (см.

задачу 16.10). Отсюда  $l_2 = \frac{l_1 \lambda_2}{\lambda_1} = 1.9 \cdot 10^{-3} \,\mathrm{M}.$ 

**16.12.** Пучок света ( $\lambda = 582$  нм) падает перпендикулярно к поверхности стеклянного клина. Угол клина  $\gamma = 20''$ . Какое число  $k_0$  темных интерференционных полос приходится на единину длины клина? Показатель преломления стекла n=1,5.

### Решение:

Для малых углов AB = BC == h (puc.1) и  $tg\gamma = \gamma$ . Раз-

ность хода 
$$\Delta = 2hn + \frac{\lambda}{2}$$
. Вы-

разим h через длину участка поверхности клина  $h = x \cdot tg\gamma$ ;

 $h = \gamma x$ . Тогда разность хода



будет равна  $\Delta = 2\gamma x n + \frac{\lambda}{2}$  — (1). Если интенсивность

интерферирующих волн одинакова, то результирующая интенсивность в точках, для которых разность фаз равна  $\delta$  , определяется выражением  $I = 2I_0 \left(1 + \cos \delta\right)$  — (2), где

$$\delta = \frac{2\pi}{\lambda} \Delta$$
 — (3). Подставляя (1) в (3), получим

$$\delta = \frac{2\pi}{\lambda} \left( 2\mu x + \frac{\lambda}{2} \right)$$
. Тогда уравнение (2) примет вид

$$I(x) = 2I_0 \left( 1 + \cos \left( \frac{2\pi}{\lambda} \left( 2 \gamma_{1} x + \frac{\lambda}{2} \right) \right) \right);$$

$$I(x) = 2I_0 \left( 1 + \cos \left( \frac{4\pi}{\lambda} mx + \pi \right) \right) - (4).$$



Найдем период колебаний (рис. 2). Из (4) имеем 
$$\omega = \frac{4\pi m}{\lambda}$$
;  $T = \frac{2\pi}{\omega}$ ;  $T = \frac{\lambda}{2m}$ . Число темных полос, приходящихся на единицу клина, есть величина обратная периоду  $k_0 = \frac{2m}{\lambda}$ . Подставляя числовые данные, получим  $k_0 = 5 \text{ cm}^{-1}$ .

16.13. Установка для получения колец Ньютона освещается монохроматическим светом, падающим по нормали к поверхности пластинки. Наблюдение ведется в отраженном свете. Радиусы двух соседних темных колец равны  $r_k = 4.0 \, \mathrm{mm}$  и  $r_{k+1} = 4.38 \, \mathrm{mm}$ . Радиус кривизны линзы  $R = 6.4 \, \mathrm{m}$ . Найти порядковые номера колец и длину волны  $\lambda$  падающего света.

## Решение:



Появление колец Ньютона обусловлено интерференцией световых пучков, отраженных от двух поверхностей тонкой воздушной прослойки между линзой и пластинкой. Оптическая разность хода лучей  $\Delta d = 2h + \frac{\lambda}{2}$ — (1) (см. задачу 16.9).

Из прямоугольного треугольника 
$$ABO$$
 получим  $R - h = \sqrt{R^2 - r^2}$  . Посколь-

ку r << R, то имеет место равенство:  $\sqrt{R^2-r^2}=R-\frac{r^2}{2R}$ 

Тогда 
$$R - h = R - \frac{r^2}{2R}$$
, откуда  $h = \frac{r^2}{2R}$  — (2). Запишем усло-

вие интерференционного минимума 
$$\Delta d = (2k+1)\frac{\lambda}{2}$$
 — (3). Приравнивая правые части (1) и (3), получим  $2h = k\lambda$  или  $h = \frac{k\lambda}{2}$ . Тогда из (2) найдем  $r_k = \sqrt{2Rh} = \sqrt{k\lambda R}$  — (4). Найдем порядковый номер  $k$  кольца. Имеем  $\frac{r_{k+1}^2}{r_k^2} = \frac{k+1}{k} = 1 + \frac{1}{k}$ , откуда  $k = \frac{r_k^2}{r_{k+1}^2 - r_k^2} = 5$ ;  $k+1=6$ . Тогда из (4) найдем  $\lambda = \frac{r_k^2}{kR} = 0.5 \cdot 10^{-6}$  м.

**16.14.** Установка для получения колец Ньютона освещается монохроматическим светом, падающим по нормали к поверхности пластинки. Раднус кривизны линзы R=8,6. Наблюдение ведется в отраженном свете. Измерениями установлено, что радиус четвертого темного кольца (считая центральное темное пятно за нулевое)  $r_4=4,5$  мм. Найти длину волны  $\lambda$  падающего света.

## Решенне:

Имеем  $\lambda = \frac{r_k^2}{kR}$  (см. задачу 16.13). Подставляя числовые данные, получим  $\lambda = 589 \cdot 10^{-9}$  м.

**16.15.** Установка для получения колец Ньютона освещается белым светом, падающим по нормали к поверхности пластинки. Радиус кривизны линзы  $R=5\,\mathrm{m}$ . Наблюдение ведется в проходящем свете. Найти радиусы  $r_{\rm c}$  и  $r_{\rm kp}$  четвертого синего кольца ( $\lambda_{\rm c}=400\,\mathrm{hm}$ ) и третьего красного кольца ( $\lambda_{\rm kp}=630\,\mathrm{hm}$ ).

Радиус светлого кольца в проходящем свете определяется формулой  $r_k = \sqrt{k\lambda R}$ . Отсюда  $r_{\rm c} = \sqrt{4\lambda_{\rm c}R} = 2.8~{\rm MM};$   $r_{\rm kp} = \sqrt{3\lambda_{\rm kp}R} = 3.1~{\rm Mm}.$ 

16.16. Установка для получения колец Ньютона освещается монохроматическим светом, падающим по нормали к поверхности пластинки. Радиус кривизны линзы  $R=15\,\mathrm{m}$ . Наблюдение ведется в отраженном свете. Расстояние между пятым и двадцать пятым светлыми кольцами Ньютона  $l=9\,\mathrm{mm}$ . Найти длину волны  $\lambda$  монохроматического света.

#### Решение:

Радиус k -го светлого кольца в отраженном свете определяется соотношением  $r_k = \sqrt{(2k-1)R\frac{\lambda}{2}}$ . Тогда  $l = r_{25} - r_5 = \sqrt{49R\frac{\lambda}{2}} - \sqrt{9R\frac{\lambda}{2}}$ ;  $l = 4\sqrt{R\frac{\lambda}{2}}$ . Отсюда  $\lambda = \frac{l^2}{8R} = 675 \cdot 10^{-9}$  м.

**16.17.** Установка для получения колец Ньютона освещается монохроматическим светом, падающим по нормали к поверхности пластинки. Наблюдение идет в отраженном свете. Расстояние между вторым и двадцатым темными кольцами  $l_1 = 4.8$  мм. Найти расстояние  $l_2$  между третьим и шестнадцатым темными кольцами Ньютона.

## Решение:

Радиус темного кольца в отраженном свете определяется формулой  $r_k = \sqrt{k\lambda R}$ . Отсюда  $l_1 = r_{20} - r_2$  или  $l_1 = \sqrt{20\lambda R} - \sqrt{2\lambda R} = \sqrt{\lambda R} \left(\sqrt{20} - \sqrt{2}\right)$  — (1);  $l_2 = \sqrt{16\lambda R} - \sqrt{3\lambda R} = \sqrt{\lambda R} \left(4 - \sqrt{3}\right)$  — (2). Из (1) найдем  $\sqrt{\lambda R} = \frac{l_1}{\sqrt{20} - \sqrt{2}}$ 

(3). Подставляя (3) в (2), получим 
$$l_2 = l_1 \frac{4 - \sqrt{3}}{\sqrt{20} - \sqrt{2}} = 3.6 \cdot 10^{-3}$$
 м.

16.18. Установка для получения колец Ньютона освещается светом от ртутной дуги, падающим по нормали к поверхности пластинки. Наблюдение ведется в проходящем свете. Какое по порядку светлое кольцо, соответствующее лиции  $\lambda_1 = 579,1$  нм, совпадает со следующим светлым кольцом, соответствующим линии  $\lambda_2 = 577$  нм?

#### Решение:

Радиус k -го светлого кольца, соответствующего линии  $\lambda_1$ , в проходящем свете определяется соотношением  $r_k = \sqrt{k\lambda_1 R}$ . Радиус следующего светлого кольца, соответствующего линии  $\lambda_2$ , равен  $\lambda_{(k+1)} = \sqrt{(k+1)\lambda_2 R}$ . По условию  $r_k = r_{k+1}$ , т. е.  $\sqrt{k\lambda_1 R} = \sqrt{(k+1)\lambda_2 R}$ , откуда  $k = \frac{\lambda_2}{\lambda_1 + \lambda_2} = 275$ .

**16.19.** Установка для получения колец Ньютона освещается светом с длиной волны  $\lambda = 589$  нм, падающим по нормали к поверхности пластинки. Раднус кривизны линзы R = 10 м. Пространство между линзой и стеклянной пластинкой заполнено жидкостью. Найти показатель преломления жидкости, если радиус третьего светлого кольца в проходящем свете  $r_3 = 3,65$  мм.

## Решение:

Результат интерференции зависит от оптической разности хода, которая в случае пормального падения лучей имеет вид  $\Delta = 2hn$ . Наблюдение ведстся в проходящем свете. Установка наиболее прозрачна для света с заданной длиной волны, если разность хода кратна четному числу

полуволн:  $\Delta = 2k\frac{\lambda}{2}$ , т. е. условие максимума для наблю-

дения в проходящем свете выражается соотношением  $2hn=k\lambda$  — (1). Радиус k -го светлого кольца  $r_k=\sqrt{2hR}$ , откуда  $h=\frac{r_k^2}{2R}$  — (2). Подставляя (2) в (1), получим  $\frac{nr_k^2}{R}=k\lambda$ , откуда  $n=\frac{k\lambda R}{r_k^2}=1.33$ .

16.20. Установка для получения колец Ньютона освещается монохроматическим светом с длиной волны  $\lambda = 600$  нм, падающим по нормали к поверхности пластинки. Найти толщину h воздушного слоя между линзой и стеклянной пластинкой в том месте, где наблюдается четвертое темное кольцо в отраженном свете.

#### Решенис:

Условие минимума в отраженном свете:  $2hn = k\lambda$ . Но условию k = 4, n = 1, тогда  $2h = 4\lambda$ , откуда  $h = 2\lambda = 1.2 \cdot 10^{-6}$  м.

16.21. Установка для получения колец Ньютона освещается монохроматическим светом с длиной волны  $\lambda = 500$  нм. падающим по нормали к поверхности пластинки. Пространство между линзой и стеклянной пластинкой заполнено водой. Найти толщину h слоя воды между линзой и пластинкой в том месте, где наблюдается третье светлое кольцо в отражениюм свете.

## Решение:

Условие максимума в отраженном свете  $2hn = (2k-1)\frac{\lambda}{2}$ .

По условню 
$$k=3$$
,  $n=1.33$ , тогда  $2hn=\frac{7\lambda}{2}$ , откуда  $h=\frac{7\lambda}{4n}=658\cdot 10^{-9}\,\mathrm{M}.$ 

16.22. Установка для получения колец Ньютона осветлется монохроматическим светом, падающим по нормали к поверх 406

ности пластинки. После того как пространство между линзой и стеклянной пластинкой заполнили жидкостью, радиусы темных колец в отраженном свете уменьшились в 1,25 раза. Найти показатель преломления жидкости.

## Решение:

Пусть  $n_1$  — показатель преломления воздуха,  $n_2$  — показатель преломления жидкости. Тогда  $n_1 = \frac{k\lambda R}{\left(1,25r_k\right)^2}$ ;

$$n_2 = \frac{k\lambda R}{r_k^2}$$
 (см. задачу 16.19). Найдем отношение  $\frac{n_2}{n_1} = 1.25^2$ , отсюда  $n_2 = 1.56$ .

**16.23.** В опыте с интерферометром Майкельсона для смещения интерференционной картины на k = 500 полос потребовалось переместить зеркало на расстояние L = 0,161 мм. Найти длину волны  $\lambda$  падающего света.

#### Решение:

**Перемещен**ие зеркала на расстояние  $\frac{\lambda}{2}$  соответствует из-

**менению ра**зности хода на  $\lambda$ , т. е. смещению интерференционной картины на одну полосу. Таким образом,

$$L = \frac{k\lambda}{2}$$
, откуда  $\lambda = \frac{2L}{k} = 644 \cdot 10^{-9} \,\mathrm{M}.$ 

**16.24.** Для измерения показателя преломления аммиака в одно из плечей интерферометра Майкельсона поместили откачанную трубку длиной  $l=14\,\mathrm{cm}$ . Концы трубки закрыли плоскопараллельными стеклами. При заполнении трубки аммиаком интерференционная картина для длины волны  $\lambda=590\,\mathrm{hm}$  сместилась на  $k=180\,\mathrm{полоc}$ . Найти показатель преломления n аммиака.

# Решение:

**Луч дважды** проходит через трубку с аммиаком, при этом разность хода лучей, проходящих в аммиаке и в вакууме,

равна 
$$2(l \cdot n - l) = 2l(n - 1) = k\lambda$$
. Отсюда  $n - 1 = \frac{k\lambda}{2l}$ ;  $n = \frac{k\lambda}{2l} + l = 100038$ 

16.25. На пути одного из лучей интерферометра Жамена (см. рисунок) поместили откачанную трубку длиной  $l=10\,\mathrm{cm}$ . При заполнении трубки хлором интерференционная картина для длины волны  $\lambda=590\,\mathrm{km}$  сместилась на k=131 полосу. Найти показатель преломления n хлора.

#### Решение:



В отличие от интерферометра Майкельсона в данном случае луч проходит через трубку с хлором только один раз. Поэтому разность хода лучей, проходящих в хлоре и в вакууме, равна  $nl-l=l(n-1)=k\lambda$ . Отсюда

$$n = \frac{k\lambda}{l} + 1 = 1,000773.$$

**16.26.** Пучок белого света падает по нормали к поверхности стеклянной пластинки толщиной d=0.4 мкм. Показатель преломления стекла n=1.5. Какие длины волн  $\lambda$ , лежащие в пределах видимого спектра (от 400 до 700 нм), усиливаются в отраженном светс?

### Решение:

Условие максимума в отраженном свете  $2dn = (2k+1)\frac{\lambda}{2}$ .

Отсюда  $\lambda = \frac{4dn}{2k+1}$ . При k=1 получаем  $\lambda = 800$  нм, данная волна не лежит в пределах видимого спектра. При k=2

получим  $\lambda = 480$  нм, что удовлетворяет условию. При k=3 получим  $\lambda = 343$  нм, эта длина волны также не лежит в пределах видимого спектра. Таким образом, искомая длина волны  $\lambda = 480$  нм.

**16.27.** На поверхность стеклянного объектива ( $n_1 = 1,5$ ) нанесена тонкая пленка, показатель преломления которой  $n_2 = 1,2$  («просветляющая» пленка). При какой наименьшей толщине d этой пленки произойдет максимальное ослабление отраженного света в средней части видимого спектра?

## Решение:

Из световой волны, падающей на пленку, выделим узкий пучок SA. В точках A и B падающий пучок частично отражается и частично преломляется. Отраженные пучки света  $AS_1$  и  $BCS_2$  падают на собирающую линзу, пересекаются в ее фокусе и интерферируют между собой.



Стеклянная пластинка  $n_1 > n_2$ 

воздуха  $(n_1 = 1)$  меньше Т. к. показатель преломления показателя преломления вещества пленки, который, в свою очередь, меньше показателя преломления стекла, то в обоих случаях отражение происходит от среды оптически более плотной, чем та среда, в которой идет падающая волна. Поэтому фаза колебания пучка света  $AS_1$  при **отражении в т**очке A изменяется на  $\pi$  рад и точно так же на  $\pi$  рад изменяется фаза колебаний пучка света  $BCS_2$ при отражении в точке В. Следовательно, результат интерференции этих пучков света при пересечении в фокусе линзы будет такой же, как если бы никакого изменения фазы колебаний ни у того ни у другого пучка не было. Условие максимального ослабления света при интерференции в тонких пленках состоит в том, что оптическая разность хода  $\Delta$  интерферирующих волн должна быть равна нечетному числу полуволн:

 $\Delta = (2k+1)\left(\frac{\lambda}{2}\right)$ . Как видно из рисунка, оптическая раз-

ность хода  $\Delta = l_2 n_2 - l_1 n = \left( |AB| + |BC| \right) n_2 - |AD| n$ . Следовательно, условие минимума интенсивности света примет вид  $\left( |AB| + |BC| \right) n_2 - |AD| n = (2k+1) \left( \frac{\lambda}{2} \right)$ . Если угол падения  $\alpha$  будет уменьшаться, стремясь к нулю, то  $AD \to 0$  и  $|AB| + |BC| \to 2d$ , где d— толщина пленки. В пределе при  $\alpha = 0$  будем иметь  $\Delta = 2dn_2 = (2k+1) \left( \frac{\lambda}{2} \right)$ , откуда искомая толщина пленки  $d = \frac{(2k+1)\lambda}{4n}$ . Минимальное значение d соответствует значению k = 0. Подставляя числовые дзиные, получим  $d = 115 \cdot 10^{-9}$  м.

16.28. Свет от монохроматического источника ( $\lambda = 600 \, \text{нм}$ ) падает нормально на диафрагму с диаметром отверстия  $d = 6 \, \text{мм}$ . За диафрагмой на расстоянии  $l = 3 \, \text{м}$  от нее находится экран. Какое число k зон Френеля укладывается в отверстие диафрагмы? Каким будет центр дифракционной картины на экране: темным или светлым?

### Решение:

Пусть в отверстии диафрагмы укладывается k зон Френеля, тогда радиус k-й зоны равен радиусу диафрагмы  $r_k = \frac{d}{2} = \sqrt{bk\lambda}$ . Отсюда  $k = \frac{d^2}{4b\lambda} = 5$ . Поскольку число открытых зон нечетно, то центр дифракционной картинки будет светлым.

**16.29.** Найти радиусы  $r_k$  первых пяти зон Френеля, если расстояние от источника света до волновой поверхности  $a=1\,\mathrm{M}$ , расстояние от волновой поверхности до точки наблюдения  $b=1\,\mathrm{M}$ . Длина волны света  $\lambda=500\,\mathrm{mm}$ .

Радиус внешней границы k -й зоны Френеля для сферической волны  $r_k = \sqrt{\frac{ab}{a+b} m \lambda}$ . Подставляя числовые данные, получим  $r_1 = 0.5$  мм,  $r_2 = 0.71$  мм,  $r_3 = 0.86$  мм,  $r_4 = 1.0$  мм,  $r_5 = 1.12$  мм.

**16.30.** Найти радпусы  $r_k$  первых пяти зон Френеля для плоской волны, если расстояние от волновой поверхности до точки наблюдения b = 1 м. Длина волны света  $\lambda = 500$  нм.

### Решение:

В случае плоской волны радиус k -й зоны Френеля определяется по формуле  $r_k = \sqrt{bk\lambda}$ . Подставляя числовые данные, получим  $r_1 = 0.71\,\mathrm{mm}$ ;  $r_2 = 1\,\mathrm{mm}$ ;  $r_3 = 1.22\,\mathrm{mm}$ ;  $r_4 = 1.41\,\mathrm{mm}$ ;  $r_5 = 1.58\,\mathrm{mm}$ .

**16.31.** Дифракционная картина наблюдается на расстоянии l от точечного источника монохроматического света ( $\lambda=600$  нм). На расстоянии a=0.5l от источника помещена круглая непрозрачная преграда диаметром D=1 см. Найти расстояние l, если преграда закрывает только центральную зону Френеля.

### Решение:

**Ра**диус центральной (первой) зоны Френеля  $r_{\rm i} = \sqrt{\frac{ab}{a+b}\lambda}$ .

Кроме того,  $r_1=\frac{d}{2}$ . По условию a+b=l; a=b=0.5l, тогда  $r_1=\frac{d}{2}=0.5\sqrt{l\lambda}$ . Отсюда  $l=\frac{d^2}{2}=167$  м.

**16.32.** Дифракционная картина наблюдается на расстоянии  $l=4\,\mathrm{M}$  от точечного источника монохроматического света ( $\lambda=500\,\mathrm{Hm}$ ). Посередине между экраном и источником света помещена диафрагма с круглым отверстнем. При каком радиусе

R отверстия центр дифракционных колец, наблюдаемых на экране, будет наиболее темным?

#### Решение:

Радиус отверстия соответствует радиусу k -й зоны  $\Phi_{\mathrm{pe}}$ неля при условии, что отверстие пропускает k зон. T. е.

$$R=r_k=\sqrt{rac{ab}{a+b}\,m\lambda}$$
 . Наименьшая освещенность центра  $\kappa_0$ 

лец соответствует двум зонам ( k=2 ). Подставляя числовые данные, получим  $R=10^{-3}\,\mathrm{M}.$ 

16.33. На диафрагму с диаметром отверстия D=1.96 мм падает нормально параллельный пучок монохроматического света ( $\lambda=600$  нм). При каком наибольшем расстоянии l между диафрагмой и экраном в центре дифракционной картины еще будет наблюдаться темное пятно?

#### Решение:

Расстояние, при котором будет видно темное пятно, определяется числом зон Френеля, укладывающихся в отверстии. Если число зон четное, то в центре дифракционной картинки будет темное пятно. Число зон Френеля, помещающихся в отверстии, убывает по мере удаления экрана от отверстия. Наименьшее четное число зон равно двум. Следовательно, максимальное расстояние, при котором еще будет наблюдаться темное пятно в центре экрана. определяется условием, согласно которому в отверстии должны поместиться две зоны Френеля. Радиус диафрагмы должен

равняться радиусу второй зоны, т. е.  $\frac{d}{2} = r_2 = \sqrt{2l\lambda}$  . Отсю-

да 
$$I = \frac{d^2}{8\lambda} = 0.8 \,\mathrm{M}.$$

**16.34.** На щель шириной a=2 мкм падает нормально пераллельный пучок монохроматического света ( $\lambda=589\,\mathrm{km}$ ). Под какими углами  $\varphi$  будут наблюдаться дифракционные минимумы света?

В соответствии с принципом Гюйгенса щель можно рассматривать как цепочку N источников света  $S_1$ ,  $S_2$  ...  $S_N$ , расстояние между которыми  $\Delta x \to 0$ , при этом  $N\Delta x = a$  (рис. 1). Колебания, создаваемые источниками в точках их расположения, можно предста-



вить в виде:  $E_i = E_0 \cos \omega t$ . В точке наблюдения P, расположенной под углом  $\alpha$  к нормали  $\vec{n}$ , эти источники создадут колебания, которые можно представить в виде:

$$E_1' = E_0 \cos\left(\omega t - \frac{2\pi}{\lambda} n r_1\right); \qquad E_2' = E_0 \cos\left(\omega t - \frac{2\pi}{\lambda} n r_2\right) \qquad ..$$

$$E_N' = E_0 \cos\left(\omega t - \frac{2\pi}{\lambda} n r_N\right)$$
 — (1). Из (1) следует, что раз-

**нос**ть фаз соседних колебаний равна 
$$\delta = -\frac{2\pi}{\lambda} n(r_2 - r_1) =$$

$$= -\left(\frac{2\pi}{\lambda}\Delta x \sin\alpha\right)$$
— (2). Построим векторную диаграмму

для точки наблюде-

ния P (рис. 2). Т. к. длины векторов  $\vec{E}_1$ ,  $\vec{E}_2$  ...  $\vec{E}_N$  и углы между ними равны, то цепочка векторов является частью правильного много-угольника, вокруг которого можно описать окружность радиусом R. Резуль-



тирующий вектор  $\vec{E}$  является хордой этой окружности, а центральный угол, соответствующий этой хорде, равен  $N\delta$ . Проведем перпендикуляры из точки B к сторонам AC и OF. Из прямоугольных треугольников ABH и DBF, учитывая, что  $\left| \vec{E}_i \right| = E_0$ , найдем  $\frac{E_0}{2} = R \sin \frac{\delta}{2}$ .  $\frac{E}{2} = R \sin \frac{N\delta}{2}$ , откуда  $E = E_0 \frac{\sin(N\delta/2)}{\sin(\delta/2)}$ . Тогда интенсивность в точке наблюдения Р равна  $I = I_1 \frac{\sin^2(N\delta/2)}{\sin^2(\delta/2)}$  — (3), где  $I_1$  — интенсивность, обусловленная отдельным источником света. При малых  $\delta$  имеет место равенство  $sin\frac{N\delta}{2} \approx \frac{N\delta}{2}$  и  $sin\frac{\delta}{2} \approx \frac{\delta}{2}$ . Тогда из выражения (3) следует, что интенсивность падающего света  $I_0 = I_{15}N^2$  — (4). Подставляя (2) в (3), получим  $I = I_1 \frac{\sin^2(2\pi N\Delta x/(2\lambda)\sin\alpha)}{\sin^2(2\pi\Delta x/(2\lambda)\sin\alpha)}$ . Отсюда с учетом того, что  $\Delta x \to 0$  и  $N\Delta x = a$ , получим  $I = I_1 N^2 \frac{\sin^2(\pi a / \lambda \sin \alpha)}{N^2(\pi \Delta x / \lambda \sin \alpha)^2}$ , или, с учетом (4),  $I = I_0 \frac{\sin^2(\pi a / \pi a \sin \alpha)}{(\pi a / \lambda \sin \alpha)^2}$ . Минимумы

интенсивности будут наблюдаться при  $\frac{\pi a}{\lambda} \sin \alpha = k\pi$ , где

 $k=1,\,2,\,3...$  Таким образом, при дифракции света на одной щели (в случае нормального падения лучей) условие минимумов интенсивности имеет вид  $a\sin\varphi=k\lambda$ . Отсюда

$$\sin \varphi = \frac{k\lambda}{a}$$
. При  $k=1$  имеем  $\sin \varphi_1 = \frac{\lambda}{a} = 0.295$ ;  $\varphi \approx 17^\circ$ .

При k=2 имеем  $sin \varphi_2 = 0.589$ ;  $\varphi \approx 36^\circ$ . При k=3 имеем

 $sin \, \varphi_2 = 0.884 \, ; \quad \varphi \approx 62^\circ \, .$  Очевидно, что при k=4 мы получим  $sin \, \varphi > 1$ , что не имеет смысла.

16.35. На шель шириной a=20 мкм падает нормально параллельный пучок монохроматического света ( $\lambda=500$  нм). Найти ширину A изображения щели на экране, удаленном от шели на расстояние l=1 м. Шириной изображения считать расстояние между первыми дифракционными минимумами, расположенными по обе стороны от главного максимума освещенности.

### Решение:

Из рисунка видно, что  $\frac{A}{2} = ltg\varphi$ . Поскольку угол  $\varphi$  мал, то можно принять  $tg\varphi = sin\varphi$ . Тогда  $A = 2l\sin\varphi$  — (1). Условие максимумов интенсивности света  $a\sin\varphi = k\lambda$ , откуда при k=1  $sin\varphi = \frac{\lambda}{2}$  — (2). Подставляя (2)



в (1), получим 
$$A = \frac{2l\lambda}{a} = 0.05$$
 м.

16.36. На шель шириной  $a=6\lambda$  падает нормально параллельный пучок монохроматического света с длиной волны  $\lambda$ . Под каким углом  $\varphi$  будет наблюдаться третий дифракционный минимум света?

## Решение:

Имеем  $a\sin\varphi=k\lambda$ . По условию  $a=6\lambda$ , k=3. Отсюда  $6\lambda\sin\varphi=3\lambda$ ;  $\sin\varphi=0.5$ ;  $\varphi=30^\circ$ .

**16.37.** На дифракционную решетку падает нормально пучок света. Для того чтобы увидеть красную линию ( $\lambda = 700$  нм) в

спектре этого порядка, зрительную трубку пришлось установи под углом  $\varphi=30^\circ$  к оси коллиматора. Найти постоянную дифракционной решетки. Какое число штрихов  $N_0$  нанесено единицу длины этой решетки?

### Решение:

Согласно формуле дифракционной решетки  $d\sin\varphi=k\lambda$  (1). По условию k=2, тогда из (1) найдо  $d=\frac{2\lambda}{\sin\varphi}=2.8\cdot 10^{-6}\,\mathrm{m}$ . Чиело штрихов  $N_0$ , приходящих на единицу длины решетки, связано с периодом решет d соотношением  $N_0=\frac{1}{d}$ , откуда  $N_0=357\cdot 10^{-3}\,\mathrm{m}$ .

**16.38.** Какое число штрихов  $N_0$  на единицу длины име дифракционная решетка, если зеленая линия ртути (  $\lambda = 546.1$  и в спектре первого порядка наблюдается под углом  $\varphi = 19^\circ 8'$ ?

#### Решение:

Поскольку число штрихов  $N_0$ , приходящихся на единии длины решетки, связано с периодом решетки d соотношнием  $N_0=\frac{1}{d}$ , то  $\frac{\sin\phi}{N_0}=k\lambda$ , откуда  $N_0=\frac{\sin\phi}{k\lambda}=600$  мм  $\frac{1}{d}$ 

Согласно формуле дифракционной решетки  $d \sin \varphi = k$ 

**16.39.** На дифракционную решетку нормально падае: 0.54 света. Натриевая линия ( $\lambda_1 = 589$  нм) дает в спектре перионорядка угол дифракции  $\varphi_1 = 17^{\circ}8'$ . Некоторая линия дает спектре второго порядка дифракции  $\varphi_2 = 24^{\circ}12'$ . Найти дай волны  $\lambda_2$  этой линии и число штрихов  $\Lambda_0'$  на единицу  $\lambda_1^{\circ}$  решетки.

По формуле дифракционной решетки для натриевой линии имеем  $d\sin\varphi_1=\lambda_1$  — (1), для неизвестной линии  $d\sin\varphi_2=2\lambda_2$  — (2). Разделив (1) на (2), получим  $\frac{\sin\varphi_1}{\sin\varphi_2}=\frac{\lambda_1}{2\lambda_2}$ , откуда  $\lambda_2=\frac{\lambda_1\sin\varphi_2}{2\sin\varphi_2}$ . Подставляя числовые

данные, получим  $\lambda_2=\frac{589\cdot 10^{-9}\cdot 0.41}{2\cdot 0.295}=409\cdot 10^{-9}\,\mathrm{M}.$  Число штрихов  $N_0$ , приходящихся на единицу длины решетки, связано с периодом решетки d соотношением  $N_0=\frac{1}{d}$ . Из

(1) найдем 
$$d = \frac{\lambda_1}{\sin \varphi_1}$$
 , тогда  $N_0 = \frac{\sin \varphi_1}{\lambda_1} = 500 \text{ мм}^{-1}$ .

**16.40.** На дифракционную решетку нормально падает пучок света от разрядной трубки. Какова должна быть постоянная d дифракционной решетки, чтобы в направлении  $\phi = 41^\circ$  совпадали максимумы линий  $\lambda_1 = 656.3$  им и  $\lambda_2 = 410.2$  им?

### Решение:

Имеем  $\sin \varphi = \frac{k_1 \lambda_1}{d} = \frac{k_2 \lambda_2}{d}$ , спедовательно,  $k_1 \lambda_1 = k_2 \lambda_2$ . От-

сюда  $\frac{k_2}{k_1} = \frac{\lambda_1}{\lambda_2} = 1.6$  — (1). Поскельку числа  $k_1$  и  $k_2$  долж-

ны быть целыми, то из условия (1) найдем  $k_1 = 5$  и  $k_2 = 8$  .

Тогда 
$$d = \frac{k_i \lambda_i}{\sin \varphi} = 5 \cdot 10^{-6} \text{ м.}$$

**16.41.** На дифракционную решетку нормально падает пучок света. При повороте трубы гончометра на угол  $\varphi$  в поле зрения видна линия  $\lambda_1 = 440$  нм в спектре третьего порядка. Будут ли видны под этим же углом  $\varphi$  другие спектральные линии, соот-

ветствующие длінам воли в пределах видимого спектра (от 460 до 700нм)?

### Решение:

Имеем  $d\sin\varphi=3\lambda_1$ . откуда  $\sin\varphi=\frac{3\lambda_1}{d}$  — (1). Для спектральных линий  $\lambda_2$  имеем  $d\sin\varphi=k\lambda_2$  или, подставляя (1),  $3\lambda_1=k\lambda_2$ , откуда  $\lambda_2=\frac{3}{k}\lambda_1$ . При k=1 имеем  $\lambda_2=\frac{3}{k}\lambda_1$ . При k=1 имеем  $\lambda_2=3\lambda_1=1320$  им. эта длина волны не соответствует видимому спектру. При k=2 имеем  $\lambda_2=\frac{3}{2}\lambda_1=660$  нм. При k=3 получим  $\lambda_2=\lambda_1$ . Таким образом, искомая длина волны  $\lambda_2=660$  нм в спектре второго порядка.

**16.42.** На дифракционную решетку нормально падает пумок света от разрядной трубки, наполненной гелием. На какую линию  $\lambda_2$  в спектре третьего порядка накладывается красная линия гелия ( $\lambda_1 = 670$  нм) спектра второго порядка?

## Решение:

Имеем  $d \sin \varphi = 2\lambda_1$ ;  $d \sin \varphi = 3\lambda_2$ . Отсюда  $\lambda_2 = \frac{2}{3}\lambda_1 = 447$  нм — синяя линия спектра гелия.

16.43. На дифракционную решетку нормально падает пучок света от разрядной трубки, наполненной гелием. Спачала крительная труба устанавливается на фиолетовые лични ( $\lambda_{\phi}=389~\mathrm{HM}$ ) по обе стороны от центральной полосы в сисктре первого порядка. Отсчеты по лимбу вправо от нулевого дельная друба устанавливается на красные лишни по обе стороны от центральной полосы в спектре ней полосы в спектре первого порядка. Отсчеты по лимбу вираний полосы в спектре первого порядка. Отсчеты по лимбу вираний

во от нулевого деления дали  $\varphi_{\rm sp1}=23^{\circ}54'$  и  $\varphi_{\rm sp2}=40^{\circ}6'$  . Найти длину волны  $\lambda_{\rm sp}$  красной линии спектра гелия.

# Решенне:

Имеем 
$$d\sin\frac{\varphi_{\phi 2}-\varphi_{\phi 1}}{2}=\lambda_{\phi}$$
;  $d\sin\frac{\varphi_{\kappa p2}-\varphi_{\kappa p1}}{2}=\lambda_{\kappa p}$ . Отсюда 
$$\lambda_{\kappa p}=\frac{\lambda_{\phi}\sin(\varphi_{\kappa p2}/2-\varphi_{\kappa p1}/2)}{\varphi_{\phi 2}/2-\varphi_{\phi 1}/2}$$
. Подставляя числовые данные, получим  $\lambda_{\kappa p}=706\,\mathrm{HM}$ .

**16.44.** Найти наибольший порядок k спектра для желтой линии натрия ( $\lambda = 589$  нм), если постоянная дифракционной решетки d = 2 мкм.

### Решение:

Из формулы дифракционной решетки найдем  $k = \frac{d \sin \varphi}{\lambda}$ .

Поскольку 
$$\sin \varphi \le 1$$
, то  $k \le \frac{d}{\lambda} = 3.4$ , т. е.  $k_{max} = 3$ .

**16.45.** На дифракционную решетку нормально падает пучок монохроматического света. Максимум третьего порядка наблюдается под углом  $\varphi = 36^{\circ}48'$  к нормали. Найти постоянную d решетки, выраженную в длинах волн падающего света.

# Решение:

**П**о формуле дифракционной решетки  $d \sin \varphi = 3\lambda$ , откуда

$$\frac{d}{\lambda} = \frac{3}{\sin \varphi} = 5$$
,  $\tau$ . e.  $d = 5\lambda$ .

**16.46.** Какое число максимумов k (не считая центрального) дает дифракционная решетка предыдущей задачи?

При  $d=5\lambda$  имеем  $5\lambda\sin\varphi=k\lambda$ . Отсюда наибольшее число максимумов по одну сторону от центрального равно  $k_{max}=5$ . Тогда по обе стороны от центрального максимума  $k=2k_{max}=10$ .

16.47. Зрительная труба гоннометра с дифракционной решелькой поставлена под углом  $\varphi = 20^\circ$  к оси коллиматора. При этом в поле зрения трубы видна красная линия спектра те иля ( $\lambda_{\rm sp} = 668$  нм). Какова постоянная d дифракционной решелки, если под тем же углом видна и синяя линия ( $\lambda_{\rm c} = 447$  нм) более высокого порядка? Наибольший порядок спектра, который межно наблюдать при помощи решетки, k = 5. Свет падает на решетку нормально.

#### Решение:

Имеем  $d\sin\varphi=k_1\lambda_{\rm kp}$ ;  $d\sin\varphi=k_2\lambda_{\rm c}$ , откуда  $\frac{k_2}{k_1}=\frac{\lambda_{\rm kp}}{\lambda_{\rm c}}=1.5$ . Поскольку значения  $k_1$  и  $k_2$  должны быть целыми числами, то очевидно, что  $k_1=2$ ;  $k_2=3$ . Тогда  $d=\frac{k_1\lambda_{\rm p}}{\sqrt{n\,\phi}}=3.9\cdot10^{-6}\,{\rm M}_{\odot}$ 

**16.48.** Какова должна быть постоянная d дифракционной решетки, чтобы в первом порядке были разрешены линия спектра калня  $\lambda_1 = 404.4$  и  $\lambda_2 = 404.7$  нм? Ширина решетки a = 3 см.

## Решение:

420

Разрешающая способность дифракционной решетки определяется формулой  $\frac{\lambda_1}{\Delta \lambda} = kN$ . По условию k=1, тогда  $\frac{\lambda_1}{\lambda_2 - \lambda_1} = N = \frac{a}{d}$ , откуда  $d = \frac{a(\lambda_2 - \lambda_1)}{\lambda_1} = 22 \cdot 10^{-6} \, \mathrm{M}$ .