# Lycée Ahmed NourEddine Sousse Devoir De Synthèse n°2 Algorithmique & Programmation

# Exercice $n^{\bullet}1$ : (3.75 points):

Soient les algorithmes suivants correspondants aux fonctions F1, F2, F3 et F4:

```
Fonction F1 (N, B: entier): chaine
                                                                            Fonction F2 (N, B: Entier): Chaine
Début
   CH ← ""
                                                                                 CH1 ← "0123456789ABCDEF"
                                                                                 CH ← ""
    Répéter
           k ← N MOD B + 48 + N MOD B DIV 10 * 7
                                                                                 Répéter
                                                                                         K \leftarrow N \mod B
           CH \leftarrow CHR(k) + CH
                                                                                         CH \leftarrow CH1[K] + CH
           N ← N DIV B
                                                                                         N ← N div B
    Jusqu'à N = 0
                                                                                  Jusqu'à N = 0
   Retourner CH
                                                                                  Retourner CH
Fin
Fonction F3 (CH: Chaine, B: entier): entier
                                                                            Fonction F4 (CH: Chaine, B: entier): entier
Début
                                                                            Début
 S \leftarrow 0
                                                                                S \leftarrow 0
 Pour i de 0 à long (CH) - 1 faire
                                                                                Pour i de 0 à long (CH) - 1 faire
    K \leftarrow \operatorname{ord}(\operatorname{ch}[i]) - 48 - \operatorname{abs}(\operatorname{ord}(\operatorname{ch}[i]) - 55) \text{ DIV } 10 * 7
                                                                                          S \leftarrow S * B + ord (CH [i]) - 48
    S \leftarrow S * B + k
                                                                                 Fin pour
 Fin pour
                                                                                 Retourner S
  Retourner S
                                                                            Fin
```

### Question: Mettre V si la proposition est correcte et F sinon

 $N^{\bullet}$  question:

| 1. La valeur retournée par la fonction $F2$ pour $N = 45$ et $B = 12$ sera égale à :                         |
|--------------------------------------------------------------------------------------------------------------|
| "93" "2D"                                                                                                    |
| 2. Quelles sont les fonctions qui retournent le même résultat avec les mêmes paramètres :                    |
| F1 et F2 F3 et F4 F1 et F4                                                                                   |
| 3. Pour convertir un entier de la base 10 vers une autre base, on peut faire appel à la fonction :           |
| F1 F2 F3 F4                                                                                                  |
| 4. Pour convertir un nombre d'une base, B inférieure à 10, à la base 10, on peut faire appel à la fonction : |
| F1 F2 F3 F4                                                                                                  |
| 5. Pour convertir un nombre d'une base quelconque à la base 10, on peut faire appel à la fonction :          |
| F1 F2 F3 F4                                                                                                  |
| NB : recopier sur votre copie le tableau suivant et y écrire les réponses convenables :                      |

Réponse

# Exercice $n^{\bullet}2:(2.5 points)$

Pour vérifier si un nombre N est divisible par 19 ou non, on applique la démarche suivante :

- > Supprimer de N son chiffre des unités
- Additionner le double du chiffre des unités à la nouvelle valeur de N
- Recommencer les deux actions précédentes jusqu'à avoir un nombre inférieur à 38.
  - ⇒ Si le dernier nombre obtenu est divisible par 19 alors N l'est aussi.

Exemple: pour N = 6859

$$685 + 2*9 = 703 \rightarrow 70 + 2*3 = 76 \rightarrow 7 + 2*6 = 19 \le 38 \text{ arrêt}$$
.

Puisque 19 divisible par 19 alors **6859 est divisible par 19**.

Ecrire un algorithme d'un module permettant de vérifier la divisibilité d'un nombre N par 19.

# Exercice $n^{\bullet}3$ : (2.5 points)

Soit la formule suivante :

$$e = 1 + \frac{1}{1} + \frac{1}{1x^2} + \frac{1}{1x^2x^3} + \frac{1}{1x^2x^3x^4} + \frac{1}{1x^2x^3x^4x^5} + \dots = \sum_{n=1}^{n} \frac{1}{n!}$$

Ecrire un algorithme d'un module permettant de calculer une valeur approchée de e à 10<sup>-5</sup> près.

# Exercice $n^{\bullet}4$ : (3.75 points)

On se propose de calculer le PGCD (*Plus Grand Commun Diviseur*) de N entier positifs de deux chiffres. Pour ce faire :

- Remplir aléatoirement, la 1ère ligne d'une matrice carrée M par N entiers de deux chiffres
- Remplir les cases des (N-1) autres lignes de façon que la valeur d'une case M[i,j] est égale au PGCD des contenus de M[i-1,j] et M[i-1,j+1]
- La case M[N-1,0] contiendra le PGCD des N entiers.

**Exemple:** pour n = 4



Ecrire un algorithme d'un module permettant de calculer et afficher le PGCD de N entier positifs.

# Exercice $n^{\bullet}5$ : (7.5 points)

Une **calculatrice**, ou **calculette**, est une machine conçue pour simplifier, et fiabiliser, des opérations de <u>calculs</u>. Dans les années <u>1970</u>, elles se miniaturisent pour devenir portables grâce à l'<u>affichage à **sept segments**</u>
Les afficheurs 7 segments sont un <u>type d'afficheur</u> très présent sur les <u>calculatrices</u> et les <u>montres</u> à affichage numérique : les chiffres s'écrivent en allumant ou en éteignant des segments. Quand les 7 segments sont allumés, on obtient le chiffre **8**.

Un segment allumé est représenté par le caractère 1 Un segment éteint est représenté par le caractère 0

## Voici quelques exemples représentés avec l'affichage à 7 segments :



- Pour que la calculatrice affiche la valeur 7 il faut que les segments **a,b,c** doivent être allumer et les segments **d,e,f,g** éteints (1110000).
- Pour que la calculatrice affiche la valeur 3 il faut que les segments **a,b,c,d,g** doivent être allumer et les segments **e, f** éteint.( 1111001)

Etant donnée un tableau **T** de dix codes binaires représentant chacun un chiffre selon l'état des segments allumé ou éteint en commencent par le segment **a** puis **b** ... jusqu'à **g (ordre alphabétique)** :

| 1111110 | 0110000 | 1101101 | 1111001 | 0110011 | 1011011 | 1011111 | 1110000 | 1111111 | 1110111 |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 0       | 1       | 2       | 3       | 4       | 5       | 6       | 7       | 8       | 9       |

En Utilisant le tableau T, on se propose compléter le remplissage d'une matrice **M** en calculant les opérations d'additions des codes mémorisés dans les deux premières colonnes de **M**.

- La matrice **M** est formée de 3 colonnes dont la première colonne contient l'opérande **A**, la deuxième colonne contient l'opérande **B** et la troisième colonne contiendra le résultat à calculer de l'opération (**A+B**).
- chaque ligne de **M** contient une seule opération.
- chaque **chiffre** est une chaîne de **7** caractères (codes binaires du tableau T).

### **Exemple:**

Pour M de 3 lignes et 3 colonnes, si le contenu de la matrice M avant calcul des opérations d'additions est :

| A              | В              | A+B |
|----------------|----------------|-----|
| 1101101        | 01100111110000 |     |
| 1111001        | 1011111        |     |
| 11111111111110 | 11100000110000 |     |

Après le calcul des opérations d'addition (A+B) et le codage la matrice contient :

| Α              | В              | A+B                   |
|----------------|----------------|-----------------------|
| 1101101        | 01100111110000 | 01100111110111        |
| 1111001        | 1011111        | 1110111               |
| 11111111111110 | 11100000110000 | 011000010110110110000 |

En effet : 
$$1101101 + 0110011 1110000 = 01100111110111$$
  $\Rightarrow 2 + 47 = 49$ 



**NB** : l'élève n'est pas appelé à remplir le tableau T et on suppose que les deux colonnes de la matrice sont remplies d'avance.

### Travail demandé:

- 1) Ecrire l'algorithme du programme principal permettant de saisir la saisir le nombre de lignes et de compléter la troisième colonne de la matrice M, enfin l'afficher.
- 2) Ecrire les algorithmes des modules envisagés.