

Norwegian University of Science and Technology

Customer segmentation with clustering

- Aduragbemi Samuel Adetunji
- Azimil Gani Alam
- Muhammad Tsaqif Wismadi
- Preston William Buscay
- Giacomo Melloni
- Chinmay Anirudha Patwardhan
- Johan Nicolas Suarez Lojan

Content

- Purpose
- Method
- Example
- Dataset
- Step-by-step
- Results

Purpose

- Key technique in <u>business</u> and <u>marketing</u> analysis.
- Perform a cluster analysis to divide your consumers into groups and customize your marketing strategy for each group.
- You wouldn't want your company targeting vegan meal plans to barbecue enthusiasts or promoting hiking gear to people living in urban areas with no access to nature.

Method

Understand the Business Problem

• How to segment the customers

Apply a clustering algorithm

Interpret the Cluster Result

Method

Segmentation models

• Geographic Segmentation : Country, state, city, town

• **Psychographic Segmentation**: Personality, attitude, values, and interest

• Technographic Segmentation: Mobile use, desktop use, apps, and software

• Behavioral Segmentation : Tendencies and frequent actions, feature or product use, habits

Needs-Based Segmentation : Product or service must-haves and needs of specific customer groups

Values-Based Segmentation : Economic value of specific customer groups on the business

Example

 A <u>convenience store have a</u> <u>comprehensive data</u> of their customer.

They have a total of :2,240 data points : 29 features.

• **Objective**: Group customers into 4 classes of similar traits for a more effective advertisement campaign.

Dataset: Demographic

Feature	Description			
ID	A unique identifier for each customer.			
Year_Birth	Customer's birth year (used to calculate age).			
Education	Customer's education level (e.g., graduation, PhD, etc.).			
Marital_Status	Customer's marital status (e.g., single, married, etc.).			
Income	Customer's yearly household income.			
Kidhome	Number of children living in the customer's household.			
Teenhome	Number of teenagers living in the customer's household.			
Dt_Customer	The date when the customer enrolled with the company.			
Recency	Number of days since the customer's last purchase.			
Complain	Indicator if the customer has complained in the last two years $(1 = Yes, 0 = No)$.			

Dataset: Products

Feature	Description
MntWines	Amount spent on wine in the last 2 years.
MntFruits	Amount spent on fruits in the last 2 years.
MntMeatProducts	Amount spent on meat products in the last 2 years.
MntFishProducts	Amount spent on fish products in the last 2 years.
MntSweetProducts	Amount spent on sweet products in the last 2 years.
MntGoldProds	Amount spent on gold products in the last 2 years.

Dataset: Promotion

Feature	Description				
NumDealsPurchases	Number of purchases made with a discount.				
Accented Cmp1 F	Indicator if the customer accepted offers from campaigns 1 through 5				
AcceptedCmp1-5	(1 = Yes, 0 = No).				
Pagnanga	Whether the customer accepted the offer in the last campaign				
Response	(1 = Yes, 0 = No).				

Dataset: Place

Feature	Description
NumWebPurchases	Number of purchases made through the company's website.
NumCatalogPurchases	Number of purchases made using the catalog.
NumStorePurchases	Number of purchases made directly in stores.
NumWebVisitsMonth	Number of visits to the company's website in the last month.

- Load the dataset
- 2) Handle missing values
- 3) Encode categorical variables
- 4) Standardize the data
- 5) Apply K-Means
- 6) Visualise clusters
- 7) Display cluster traits

0. Import libraries

```
[1] # Importing necessary libraries
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.cluster import KMeans
```

1. Load dataset

```
[2] # Load the dataset

df = pd.read_csv('marketing_campaign.csv', delimiter='\t')
```

2. Handle missing values

```
(3) # Handle missing values
    df.fillna(df.median(numeric_only=True), inplace=True)
```

3. Encode categorical variables

```
[4] label cols = ['Education', 'Marital Status']
     label encoders = {col: LabelEncoder() for col in label cols}
     for col in label cols:
         df[col] = label encoders[col].fit transform(df[col])
[5] # Convert 'Dt_Customer' column to datetime format and extract year
     df['Dt Customer'] = pd.to datetime(df['Dt Customer'], format='%d-%m-%Y')
     df['Customer Year'] = df['Dt Customer'].dt.year
[6] # Drop 'Dt Customer' and 'ID' columns as they are not needed for clustering
     df.drop(columns=['Dt Customer', 'ID'], inplace=True)
```

4. Standardize the data

```
[7] # Standardizing the data
scaler = StandardScaler()
df_scaled = scaler.fit_transform(df)
```

5. Apply K-means clustering

```
[8] # Apply KMeans clustering to classify into 4 clusters
kmeans = KMeans(n_clusters=4, random_state=42)
df['Cluster'] = kmeans.fit_predict(df_scaled)
```

```
# Plotting Recency vs Total Spending on products
total_spending = df['MntWines'] + df['MntFruits'] + df['MntMeatProducts'] + df['MntFishProducts'] + df['MntFishProducts'] + df['MntSweetProducts'] + df['MntGoldProds']
plt.figure(figsize=(10, 6))
plt.scatter(df['Recency'], total_spending, c=df['Cluster'], cmap='viridis')
plt.title('Recency vs Total Spending')
plt.xlabel('Recency (Days since last purchase)')
plt.ylabel('Total Spending on Products')
plt.show()
```


Recency (Days since last purchase)

7. Display cluster traits

```
[12] # Step 7: Displaying key traits of each cluster
    cluster traits = df.groupby('Cluster').mean()
    print(cluster traits)
₹
              Year Birth Education Marital Status
                                                         Income
                                                                 Kidhome \
    Cluster
    0
             1962.891743
                          2.596330
                                         3.746789 43838.816514 0.653211
    1
             1965.003401
                          2.610544
                                         3.709184
                                                   59736.526361 0.188776
    2
             1968.765385 2.350000
                                         3.775000 78209.469231 0.040385
    3
             1978.141397 2.027257
                                         3.695060 29517.731687 0.863714
             Teenhome
                        Recency
                                   MntWines MntFruits MntMeatProducts ... \
    Cluster
                                                                       . . .
    0
             0.955963 50.253211
                                78.355963
                                             4.623853
                                                             28.185321 ...
    1
             0.903061 48.403061 506.901361 29.894558
                                                           158.442177 ...
    2
             0.105769 49.440385 617.201923 67.632692
                                                            480.342308 ...
    3
             0.045997 48.461670
                                32.553663 6.218058
                                                            26.686542 ...
             AcceptedCmp3 AcceptedCmp4 AcceptedCmp5 AcceptedCmp1 AcceptedCmp2 \
    Cluster
                 0.042202
                              0.025688
                                           0.000000
                                                         0.005505
                                                                      0.003670
    0
    1
                0.066327
                              0.137755
                                           0.015306
                                                         0.028912
                                                                      0.015306
    2
                0.086538
                              0.136538
                                                                      0.036538
                                           0.296154
                                                         0.236538
                0.095400
                              0.001704
                                           0.000000
                                                         0.001704
                                                                      0.000000
             Complain Z CostContact Z Revenue Response Customer Year
    Cluster
             0.009174
                                         11.0 0.047706
                                                           2013.231193
    0
                                3.0
                                3.0
    1
             0.010204
                                         11.0 0.117347
                                                           2012.818027
    2
             0.003846
                                3.0
                                         11.0 0.317308
                                                          2013.053846
             0.013629
                                3.0
                                         11.0 0.126065
                                                           2013.027257
    [4 rows x 28 columns]
```

Results: Clusters of customer based on their similiar traits

Cluster	Age	Income	Family	Product Purchases	Campaign Responses	Complaints
Cluster 0	1964 (Age around 59-60)	Moderate income, around \$57,066	0.25 children, 0.94 teenagers	Moderate spending on wine (\$451), lower spending on meat and other products	Low acceptance rates	Very few customers complained
Cluster 1	1968 (Age around 55-56)	Higher income, around \$73,871	Smaller household (0.05 children, 0.23 teenagers)	High spending on wine (\$488), higher spending on meat products (\$429)	Moderate acceptance rates	Similar to Cluster 0
Cluster 2	1972 (Age around 51-52)	Lower income, around \$34,826	More children (0.8) and fewer teenagers (0.43)	Very low spending on all products (wine spending is \$39)	Lowest acceptance rates across all clusters	Slightly higher complaints
Cluster 3	1969 (Age around 55)	Highest income, around \$81,747	Very few children or teenagers	Highest spending on wine (\$875), meat products (\$469), and overall product categories	Highest acceptance rates (94%)	Very low complaint rate

References

- A. Nair, "Customer segmentation with clustering," *Towards Data Science*, Nov. 8, 2021. [Online]. Available: https://towardsdatascience.com/customer-segmentation-with-clustering-933caa4c9ea3. [Accessed: Sep. 30, 2024].