离散数学 Problem Set 11

201830099 周义植

Wednesday $14^{\rm th}$ December, 2022

Problem 1

a

b

1) 平均: 2.56 方差: 1.7264 2) 平均: 2.56 方差: 0.4464

第二种方法。

Prolem 2

a

8

b

21

 \mathbf{c}

32

 \mathbf{d}

32

 \mathbf{e}

2048

27

Problem 3

Prim(从点 A 开始)

定义: 状态中的 tree,unseen,fringe 分别表示该点已被加入 T、还未发现以及加入备选方案。加入点 A:

	A	В	C	D	E	F	G	Н	I
fringewgt	0	5		2					
parent	-1	A		A					
status	tree	fringe	unseen	fringe	unseen	unseen	unseen	unseen	unseen

选择 AD:

	A	B	C	D	E	F	G	H	I
${\rm fringewgt}$	0	3		2	7		6		
parent	-1	D		A	D		D		
status	tree	fringe	unseen	tree	fringe	unseen	fringe	unseen	unseen

以此类推,选择 DB,BC,CF,FE,EH,HI,HG.

Kruskal

加边: EF 并查集: (EF) 加边: AD 并查集: (EF) (AD) 加边: HI 并查集: (EF) (AD) (HI) 加边: BD 并查集: (EF) (ABD) (HI) 加边: CF 并查集: (CEF) (ABD) (HI) 加边: HE 并查集: (CEFHI) (ABD) 加边: BC 并查集: (ABDCEFHI) 加边: GH 并查集: (ABDCEFHIG)

Problem 4

3 次。

第一次, 1, 2, 3 与 4, 5, 6。有两种可能的结果:

- 1) 一样重。则伪币在7,8,将1与7称重,如不平则7为伪币,反之为8;
- 2) 不一样重。由对称性,不妨 1, 2, 3 轻。将 1, 7 与 4, 5 称重,如不平衡,只能是 1, 7 轻。此时有 3 种可能: 1 轻或 4/5 重。则再将 4, 5 称重,如不平衡则重的为伪币,如平衡则 1 为伪币。如 1,

7 与 4, 5 等重,则可能性为 2/3 轻或 6 重,则将 2,3 称重,轻的为伪币,等重则 6 为伪币。

Problem 5

BFS

Problem 6

证明:

对于该边较晚发现的点 A 来说,若要该边不是背边,则需要另一个点 B 在此时已完全结束(否则 A 一定是 B 的后代)。而在遍历 B 的整个过程中,A 都没有开始遍历,那么一定会遍历这条边,矛盾;因此该边一定是背边。

Problem 7

证明:

假设该图存在两个不同的最小生成树 T_1, T_2 , 其边按权值的升序排列分别为 $e_1, e_2, \cdots e_k$ 与 $e'_1, e'_2, \cdots e'_k$ 。由于边的权重互不相同,每个权值唯一地代表一条边。设 i 是最小的使 $e_i \neq e'_i$ 的下标,不失一般性令 $e_i < e'_i$,则对 $T_2 + \{e_i\}$ 必定存在圈,且其中存在不在 T_1 中的边 ab,则 $W(ab) \geq W(e'_i) > W(e_i)$,因此 用 e_i 代替 ab 可得到权值更小的生成树,与假设的 MST 矛盾。因此边权值互不相同的图 MST 唯一。