EXERCICE I

On considère l'équation différentielle (E): $x^2y'' + (x^2 - x)y' + 2y = 0$.

I.1. Existe-t-il des solutions non nulles de l'équation (E) développables en série entière sur un intervalle $]-r,r[\ (r>0)\ de\ \mathbb{R}\,?$

EXERCICE II

- **II.1.** Démontrer que la famille $\left(\frac{i+j}{2^{i+j}}\right)_{(i,j)\in\mathbb{N}^2}$ est sommable et calculer sa somme.
- **II.2.** Soit X et Y deux variables aléatoires sur un même espace probabilisé à valeurs dans \mathbb{N} . On suppose que la loi conjointe du couple (X,Y) vérifie :

pour tout
$$(i,j) \in \mathbb{N}^2$$
, $P(X = i, Y = j) = P[(X = i) \cap (Y = j)] = \frac{i+j}{2^{i+j+3}}$.

- II.2.a. Vérifier que la relation ci-dessus définit bien une loi conjointe.
- II.2.b. Démontrer que les variables aléatoires X et Y suivent une même loi.
- **II.2.c.** Les variables aléatoires X et Y sont-elles indépendantes?

PROBLÈME: Fonction Digamma

Partie préliminaire

III.1.

III.1.a. Soit $x \in]0, +\infty[$, démontrer que la fonction $t \mapsto e^{-t}t^{x-1}$ est intégrable sur $]0, +\infty[$.

III.1.b. On note, pour tout $x \in]0, +\infty[$, $\Gamma(x) = \int_0^{+\infty} e^{-t} t^{x-1} dt$ (fonction Gamma d'Euler).

Démontrer que pour tout $x \in \]0, +\infty[$, $\Gamma(x) > 0$.

- **III.1.c.** Démontrer que la fonction Γ est dérivable sur $]0, +\infty[$ puis exprimer $\Gamma'(x)$ sous forme d'intégrale.
 - **III.2.** Pour tout entier $n \ge 2$, on pose $u_n = \int_{n-1}^n \frac{1}{t} dt \frac{1}{n}$.
 - III.2.a. Utiliser un théorème du cours pour justifier simplement que la série $\sum_{n\geq 2} u_n$ converge.
 - **III.2.b.** Pour tout entier $n \ge 1$, on pose $H_n = \sum_{k=1}^n \frac{1}{k} \ln(n)$.

Démontrer que la suite $(H_n)_{n\geq 1}$ converge.

La limite de la suite $(H_n)_{n\geq 1}$ sera notée γ dans tout le sujet (γ est appelée la constante d'Euler). Dans la suite de ce problème, on définit pour tout $x\in]0,+\infty[$, $\psi(x)=\frac{\Gamma'(x)}{\Gamma(x)}$ appelée fonction Digamma.

Expression de la fonction Digamma à l'aide d'une série

III.3. Pour $x \in]0, +\infty[$ et pour tout entier $n \ge 1$, on définit la fonction f_n sur $]0, +\infty[$ telle que : pour tout $t \in]0,n]$, $f_n(t) = \left(1 - \frac{t}{n}\right)^n t^{x-1}$ et pour tout $t \in]n, +\infty[$, $f_n(t) = 0$.

III.3.a. Démontrer que pour tout x < 1, $\ln(1-x) \le -x$.

En déduire que pour tout entier $n \geq 1$, pour tout $x \in]0, +\infty[$ et tout $t \in]0, +\infty[$, $0 \leq f_n(t) \leq e^{-t}t^{x-1}$.

III.3.b. En utilisant le théorème de convergence dominée, démontrer que pour tout $x \in]0, +\infty[$, $\Gamma(x) = \lim_{n \to +\infty} \int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt.$

III.4. On pose, pour n entier naturel et pour $x \in]0, +\infty[$, $I_n(x) = \int_0^1 (1-u)^n u^{x-1} du$.

III.4.a. Après avoir justifié l'existence de l'intégrale $I_n(x)$, déterminer, pour x > 0 et pour $n \ge 1$, une relation entre $I_n(x)$ et $I_{n-1}(x+1)$.

III.4.b. En déduire, pour n entier naturel et pour $x \in]0, +\infty[$ une expression de $I_n(x)$.

III.4.c. Démontrer que, pour tout $x \in]0, +\infty[$, $\Gamma(x) = \lim_{n \to +\infty} \frac{n! \ n^x}{\prod_{k \to 0} (x+k)}$ (formule de Gauss).

III.5. Pour tout entier $n \ge 1$, on note toujours $H_n = \sum_{k=1}^n \frac{1}{k} - \ln(n)$.

En remarquant que pour $n \ge 1$ et $x \in]0, +\infty[$, $\frac{1}{n^x} \prod_{k=1}^n \left(1 + \frac{x}{k}\right) = e^{xH_n} \prod_{k=1}^n \left[\left(1 + \frac{x}{k}\right)e^{\frac{-x}{k}}\right]$, démontrer que pour tout $x \in]0, +\infty[$, $\frac{1}{\Gamma(x)} = xe^{\gamma x} \lim_{n \to +\infty} \prod_{k=1}^n \left[\left(1 + \frac{x}{k}\right)e^{\frac{-x}{k}}\right]$ (formule de Weierstrass).

III.6.

III.6.a. En déduire que la série $\sum_{k\geq 1} \left[\ln \left(1 + \frac{x}{k} \right) - \frac{x}{k} \right]$ converge simplement sur $]0, +\infty[$.

III.6.b. On pose, pour tout $x \in]0, +\infty[$, $g(x) = \sum_{k=1}^{+\infty} \left[\ln \left(1 + \frac{x}{k} \right) - \frac{x}{k} \right]$. Démontrer que l'application g est de classe C^1 sur $]0, +\infty[$ et exprimer g'(x) comme somme d'une série de fonctions.

III.6.c. En déduire que, pour tout $x \in]0, +\infty[$, $\psi(x) = \frac{-1}{x} - \gamma + \sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+x}\right)$. On rappelle que pour tout $x \in]0, +\infty[$, $\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$.

III.7.b. Calculer, pour tout $x \in]0, +\infty[$, $\psi(x+1) - \psi(x)$ puis démontrer que, pour tout entier $n \geq 2$, $\psi(n) = -\gamma + \sum_{i=1}^{n-1} \frac{1}{k}$.

III.7.c. On pose, pour tout
$$(x,y) \in]0, +\infty[^2$$
 et k entier naturel, $j_k(y) = \frac{1}{k+y+1} - \frac{1}{k+y+x}$.

Démontrer que la série $\sum_{k>0} j_k$ converge uniformément sur $]0, +\infty[$.

En déduire
$$\lim_{n\to+\infty} (\psi(x+n) - \psi(1+n))$$
.

III.8. Déterminer l'ensemble des applications f définies sur $]0, +\infty[$ et à valeurs réelles vérifiant les trois conditions:

- $f(1) = -\gamma$,
- pour tout $x \in]0, +\infty[, f(x+1) = f(x) + \frac{1}{x},$
- pour tout $x \in]0, +\infty[$, $\lim_{n \to +\infty} (f(x+n) f(1+n)) = 0$.

Autour de la fonction Digamma

III.9. Une urne contient n boules numérotées de 1 à n.

On effectue un premier tirage d'un boule dans l'urne et on adopte le protocole suivant :

si on a tiré la boule numéro k, on la remet alors dans l'urne avec k nouvelles boules toutes numérotées k.

Par exemple, si on a tiré la boule numéro 3, on remet quatre boules de numéro 3 dans l'urne (la boule tirée plus 3 nouvelles boules numéro 3).

On effectue ensuite un deuxième tirage d'une boule.

On note X (respectivement Y) la variable aléatoire égale au numéro de la boule choisie au premier tirage (respectivement au deuxième tirage).

III.9.a. Déterminer la loi de la variable aléatoire X ainsi que son espérance E(X).

III.9.b. Déterminer la loi de la variable aléatoire Y et vérifier que pour tout entier naturel non nul k, $P(Y = k) = \frac{1}{n} \left(\psi(2n+1) - \psi(n+1) + \frac{k}{n+k} \right)$.

HI.9.c. Calculer l'espérance
$$E(Y)$$
. On pourra utiliser, sans démonstration, que
$$\sum_{k=1}^{n} \frac{k^2}{n(n+k)} = \frac{1-n}{2} + n\left(\psi(2n+1) - \psi(n+1)\right).$$

Fin de l'énoncé