Part IB — Quantum Mechanics

Based on lectures by J.M.Evans (j.m.evans@damtp.cam.ac.uk) Notes taken by Christopher Turnbull

Michaelmas 2017

0 Introduction

0.1Discrete and Continuous Spectra

In statement measurement axioms we assumed spectrum of Q discrete. For a particle in 1d, spectra of \hat{p} and H may be continuous, but can be made discrete as in section 5.1: impose periodic boundary conditions ($\psi(x) = \psi(x+l)$) and confine to box $-l/2 \le x \le 1/2$)

Example. $Q = \hat{p} = -i\hbar \frac{\mathrm{d}}{\mathrm{d}x}$ (particle in 1d) eigenstates $\chi_n(x) = \frac{1}{\sqrt{l}}e^{ik_nx}$ with $k_n = \frac{2\pi n}{l}$, $n \in \mathbb{Z}$, and eigenvalues $\lambda_n = \hbar k_n$. These states are indeed orthonormal.

$$(\chi_m, \chi_n) = \int_{-l/2}^{l/2} \chi_m(x)^* \chi_n(x) dx = \delta_{mn}$$

Expansion of a general state in terms of eigenstates:

$$\psi(x) = \sum_{n} \alpha_n \chi_n(x) \text{ with } \alpha_n(\chi_n, \psi) = \int_{-l/2}^{l/2} \frac{1}{\sqrt{l}} e^{-ik_n x} \psi(x) dx$$

ie a complex Fourier series with Fourier coefficients.

Alternative Approach (Non Examiniable)

Extend from discrete to continuous spectra by replacing discrete label n with continuous label ξ and $\sum_n \to \int d\xi$, $\delta_{mn} \to \delta(\xi - \nu)$. Then orthonormal eigenstates of Q satisfy

$$Q\chi_{\xi} = \lambda_{\xi}\chi_{\xi}$$
 with $(\chi_{\xi}, \chi_{\iota}) = \delta(\xi - \eta)$

Expansion in terms of eigenstates becomes

$$\psi = \int \alpha_{\xi} \chi_{\xi} \, d\xi \quad \text{with} \quad \alpha_{\xi} = (\chi_{\xi}, \psi)$$

 $P_{\xi} = |\alpha_{\xi}|^2$ is now probability density with

$$\int_a^b P_\xi \, \mathrm{d}\xi \text{ probability that result corresponds } a \le \xi \le b$$

(i) $Q = \hat{p}$, have $\xi_p(x) = \frac{1}{\sqrt{2\pi\hbar}} e^{ipx/\hbar}$, $-\infty . (<math>\lambda_p = p$). Example. Note

$$(\chi_p, \chi_q) = \frac{1}{2\pi\hbar} \int e^{i(p-q)x/\hbar} dx = \delta(p-q)$$

Now

$$\psi(x) = \int_{-\infty}^{\infty} \alpha_p \frac{1}{\sqrt{2\pi\hbar}} e^{ipx/\hbar} \, \mathrm{d}p$$

with

$$\alpha_p = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\hbar}} e^{-ipx/\hbar} \psi(x) \, \mathrm{d}x$$

Fourier representation transform

(ii) $Q=\hat{x}$ have eigenstates $\chi_{\xi}(x)=\delta(x-\xi)$ with eigenvalue $\lambda_{\xi}=\xi$ since $\hat{x}X_{\xi}(x)=x\delta(x-\xi)=\xi\delta(x-\xi)=\xi\chi_{\xi}(x)$ Then

$$\psi(x) = \int_{-\infty}^{\infty} \alpha_{\xi} \chi_{\xi}(x) d\xi$$
$$= \int_{-\infty}^{\infty} \alpha_{\xi} \delta(x - \xi) d\xi$$
$$= \alpha_{x}$$

So $\int_a^b P_\xi \, \mathrm{d}\xi = \int_a^b |\alpha_\xi|^2 \, \mathrm{d}\xi = \int_a^b |\psi(\xi)|^2 \, \mathrm{d}\xi$ probability of measuring position to be in range $a \le x \le b$ Hence we recover (P1)

0.2 Evolution in Time

0.2.1 Stationary States

Consider energy eigenstates ψ_n with

$$H\psi_n = E_n\psi_n$$
 and $(\psi_m, \psi_n) = \delta_{mn}$

Then $\psi_n e^{iE_n t/\hbar}$ is a solution of t-dep SE for any n. This, or ψ_n , called a stationary state. Given any initial state (not necc stationary) we can expand

$$\Psi(0) = \sum_{n} \alpha_n \psi_n$$
 with $\alpha_n = (\psi_n, \Psi(0))$

By linearity, the solution of the SE is

$$\Psi(t) = \sum_{n} \alpha_n \psi_n e^{-iE_n t/\hbar}$$

0.2.2 General Form of Ehrenfest's Theorem

If Q is any observable (with no explicit time dependence) for a quantum system with state $\Psi(t)$, then

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle Q \rangle_{\Psi(t)} = \langle \frac{1}{i\hbar} [Q, H] \rangle_{\Psi(t)}$$

where [Q, H] = QH - HQ, the commutator.

Proof. Use SE and follow the same steps as for particle in 1d.

This closely resembles equation of motion in Hamiltonian formalism

0.3 Degeneracy and Simultaneous Measurements

0.3.1 Degeneracy

For an observable Q, the number of linearly independent states with eigenvalue λ is called the *degeneracy* of λ ; this is the dimension of the *eigenspace* $V_{\lambda} = \{\psi : Q\psi = \lambda\psi\}$. Also say eigenvalue λ is non-degenerate iff the degeneracy = 1. The eigenvalues are degenerate iff the degeneracy > 1.

Also say states are degenerate if they have the same eigenvalue.

Physically - cannot distinguish degenerate states by measuring Q alone. We are free to chose any orthonormal basis of states for each V_{λ} .

Consider discussion leading to (M1), (M2), (M3) and use same notation. If there is degeneracy then:

(M2)' Probability of measuring λ is $\sum_{n:\lambda_n=\lambda} P_n = \sum_{n:\lambda_n=\lambda} |\alpha_n|^2$.

(M3)' State after such a measurement is

(const)
$$\sum_{n:\lambda_n=\lambda} \alpha_n \chi_n$$

Measurement projects onto the eigenspace V_{λ}