Nome e Cognome Data:

Verifica di Tecnica digitale

1. Realizza un programma (e lo struttogramma) in grado di gestire un LED (collegato a PB.1) in base al livello di acqua presente in una vasca. Se il livello dell'acqua è maggiore uguale all'80% il LED deve essere acceso, se è minore uguale al 10% deve lampeggiare (1s on 1s off), altrimenti deve essere spento.

Vasca	L2 (PB.4)	L1 (PB.3)	L0 (PB.2)
10	0	0	0
20	0	0	1
40	0	1	0
50	0	1	1
60	1	0	0
70	1	0	1
80	1	1	0
100	1	1	1

Il livello va letto da PB.2, PB.3 e PB.4

1

- **2.** Un circuito di controllo per un ciclo di lavaggio ha i seguenti segnali di ingresso:
 - Start (PB.0): Il cui valore a '1' segnala l'inizio del lavaggio;
 - Fill (PB.1 e PB.2): I cui valori indicano il valore dell'acqua nella vasca di lavaggio: "00" = Vasca Vuota "11" = Vasca Piena;
 - **Temp** (PB.3) : Il cui valore '1' indica il raggiungimento della temperatura di lavaggio;
 - Done (PB.4): Il cui valore '1'indica la condizione di fine lavaggio;

e i seguenti segnali di uscita

- water (PD.0): Il cui valore '1' indica l'apertura di una valvola per l'immissione o l'emissione dell'acqua;
- w_dir (PD.1): Il cui valore segnala la direzione imposta dalla pompa per il passaggio dell'acqua dalla valvola, 1 inserisce acqua, 0 toglie acqua;
- heat (PD.2): Il cui valore '1' provoca l'accensione di una valvola di riscaldamento;
- powder (PD.3): Il cui valore '1' provoca il rilascio del detersivo nella vasca.

Il funzionamento è il seguente: la macchina rimane in uno stato di attesa fino al segnale **start**. Ciò dà inizio all'introduzione di acqua nella vasca tramite i segnali **water** e **w_dir** fino al raggiungimento del livello di vasca piena.

Quando la vasca è piena il flusso d'acqua viene interrotto e comincia la fase di riscaldamento comandata da **heat**. Tale fase continua sino a che non si rileva una temperatura sufficientemente elevata; quando ciò accade il dispositivo di riscaldamento viene spento e si introduce il detersivo mantenendo uno per almeno un secondo il segnale **powder**. Si attende, infine, che i sensori chimici rilevino le condizioni di fine lavaggio prima di procedere allo svuotamento della vasca, ancora con **water** e **w_dir**.

Realizzare struttogramma e programma.

3. Fai il programma (e il diagramma di flusso) per risolvere il problema sottostante:

Un rullo trasportatore trasporta delle scatole di tre altezze. Devi realizzare un circuito che sia in grado di riconoscerle e quindi accendere il rispettivo LED fino al passaggio della nuova scatola. Inoltre il sistema dovrà contare il numero di scatole: piccole, media e alte.

Nota: se la fotocellula detetta una scatola, il suo valore d'uscita sarà 0, in caso contrario, sarà 1.

Il circuito possiede le seguenti entrate e uscite:

- S1: fotocellula 1 (PB.0)
- S2: fotocellula 2 (PB.1)
- S3: fotocellula 3 (PB.2)
- LED_GRANDE: led che indica il passaggio di una scatola grande (PB.3). Deve stare acceso fino all'arrivo della prossima scatola.
- LED_MEDIA: led che indica il passaggio di una scatola media (PB.4). Deve stare acceso fino all'arrivo della prossima scatola.
- LED_PICCOLA: led che indica il passaggio di una scatola piccola (PB.5). Deve stare acceso fino all'arrivo della prossima scatola.

4. Data una porta elettronica (garage):

Entrate

- PB.0: Fine corsa superiore (indica quando la porta è aperta)
- PB.1: Fine corsa inferiore (indica quando la porta è chiusa)
- PB.2: Pulsante (se premuto va a zero) che apre o chiude la porta

Uscite

- PD.0: Comando motore (1) per fare salire la porta
- PD.1: Comando motore (1) per fare scendere la porta

Funzionamento

Inizialmente la porta deve chiudersi, quindi si tratta di azionare il motore di discesa fintanto che il fine corsa indica che la porta è chiusa. Attraverso la pressione del pulsante la porta si deve aprire se è chiusa, mentre chiudersi se è aperta.

5. Quale/quali delle seguenti istruzioni ti permette di mettere a 1 il bit 3 e 4?

```
a) PB = PB & 0x18;
b) PB = PB | (0x10 | 0x80);
c) PB = PB & (0x10 | 0x80);
d) PB = PB | 0x18;
```

6. Scrivi un pezzo di codice che mi permette di attendere che PB.0 = 1, quindi mette a 0 PB.1.

7. Scrivi cosa fanno le istruzioni sottostanti:

```
if((PINB & 0x40) == 0) {
   PORTB = PORTB | 0x40;
}else{
   PORTB = PORTB & ~0x40;
}
```