ST227 Table

Denys Melnyk

2024-02-22

Symbol	Name	Description
\overline{S}	State Space	Possible values taken by the Markov chain
P	Transition matrix	A matrix containing the probabilities of going between state spaces, rows being "old" and columns being "new" spaces, all 1-step
P_{ij}	Transition probability	A probability of Markov Chain going from state i to state j in 1-step
P_{ij}^n	Transition probability	A probability of Markov Chain going from state i to state j in n-steps
λ	Initial distribution	A vector containing distribution of the first state of the chain
λ_i	Initial probability of state i	A probability of state i being the first state of the Markov's chain
d_i	State Period	Greatest Common divisor of all loops leading from state i to i
H_j	First hitting time	Number of steps until state j is hit
H_A	First hitting time	Number of steps until set A is hit
h_{ij}	Hitting probability	Probability of reaching state j from state i .
h_{iA}	Hitting probability	Probability of entering a set A from state i .
η_{ij}	Expected hitting time	Expected number of steps until state j is reached from state i
η_{iA}	Expected hitting time	Expected number of steps until set A is reached from state i
T_i	First Return time	Number of steps until state i loops on itself
f_i	Return probability	probability of chain returning back to state i from i , basically h_{ii}
m_i	Expected return time	Expected number of steps until state i loops on itself, basically η_{ii}
V_j	Number of visits	Number of visits to state j
V_A	Number of visits	Number of visits to set of states A
\mathcal{T}	Set of Transient States	Subset of S , containing all transient states
μ	Invariant Measure	???
π	Invariant Distribution	A distribution describing long term(limit) behaviour of the chain, has a property of $\pi = \pi P^n$. Not every chain has π
γ_i^k	Expected number of visits	Expected number of visits to state i before chain returns to state k
П	Long Term Transition Matrix	$\Pi = \lim_{n \to \infty} P^n$, with all rows equal to π . Describes the behaviour of the chain after arbitrarily many steps. Not applicable to every Markov Chain