Bilkent University, EEE 102 Final Exam, Part I, Fall 2020 [75 minutes]

All of your work/derivation must be shown on the paper to get credit.

Question 1 [25 pts] Design 4-to-1 multiplexer by using **one** 2-to-4 decoder, and **minimum number** of 2-input AND and 2-input OR gates (if necessary). For this question, complements of the variables are **NOT** available.

Question 2 [25 pts] Design synchronous counter that counts through the sequence

$$1 \rightarrow 3 \rightarrow 5 \rightarrow 7 \rightarrow 1 \rightarrow ...$$

using minimum number of T flip flops and minimum number of AND and OR gates (if necessary).

Question 3 [15 pts] Consider the following state diagram where x is the input, y is the output. Identify equivalent states and draw the minimal state diagram.

Bilkent University, EEE 102 Final Exam, Part II, Fall 2020

All of your work/derivation must be shown on the paper to get credit.

Question 4 [15 pts] Design a 3-bit shift register that shifts to left at each positive edge of the clock using J-K flip flops and minimum number of other gates (if needed), i.e.,

$$Q_2(t+1)Q_1(t+1)Q_0(t+1) = Q_1(t)Q_0(t)S_{in}$$

where Q_i(t) represents the state of flip flip i and S_{in} represents 1-bit shift input.

Question 5 [20 pts] Design 8 Byte RAM by combining 4 nibble RAMs.

State In	at	
000000000000000000000000000000000000000	724,40 001 (1) 01 (3) 10 (5)	$Y_2 = Q_1$ output logic $Y_1 = Q_0$ $Y_0 = 1$

	N.S.		at			
Q3) P.5	x= 0	x=1	x=0	x=1	_	
AA	B	C	0	1		
ß	C	B	1	0		
	0	A	1	0		
A D	B	C	0	A VIENE		

States A and D are equivalent, reduced state table;

	ALC		out,		
P. S.	x=0	1.5. x=1	X=0	x=1	_
A	Q	C	0	t	,
B	C	B	1	0	
Č	A	A	1	0	

