

PERFORMANSE RAČUNARSKIH SISTEMA

Zadatak 2 – Pas i poštar

Kratak opis modela

Simulacija prikazuje interakciju između psa i poštara u dvodimenzionalnom prostoru. Poštar pokušava pobjeći, dok pas pokušava da ga sustigne i "ugrize". Postoje dvije vrste poštar (*A i B*) i dvije vrste pasa (*A i B*), koji se razlikuju po početnim uslovima i pravilima kretanja.

Kratak opis algoritma koji se koristi za izvođenje simulacije

Simulacija se zasniva na višenitnom algoritmu u kojem se kretanje poštara i psa izvršava paraleleno, koristeći Java *Thread* klasu. Svaki učesnik (poštar i pas) se nalazi u svojoj niti i ažurira svoju poziciju svake sekunde.

Kretanje poštara se zasniva na tome da se vrši pomjeranje njegove x – koordinate udesno konstantnom brzinom (5 m/s za A, i 2.5 m/s za B). y – koordinata mu ostaje uvijek nula jer se kreće pravolinijski.

Kretanje psa je složenije, jer se mora simulirati "praćenje" poštara. Da bi pas znao u kojem pravcu treba da ide, koristi se sljedeći algoritam:

1. Računanje razlike između pozicije poštara i psa (vektor razlike):

$$\Delta x = x_{poštar} - x_{pas}$$
, $\Delta y = y_{poštar} - y_{pas}$

2. Vrši se izraćunavanje udaljenosti između psa i poštara pomoću Pitagorine teoreme

$$d = \sqrt{(\Delta x)^2 + (\Delta y)^2}$$

3. Normalizacija vektora razlike kako bi se dobio jedinični vektor pravca kretanja

$$u_x = \frac{\Delta x}{d}, u_y = \frac{\Delta y}{d}$$

4. Ažuriranje pozicije psa koristeći njegovu trenutnu brzinu s.

$$x_{pas} = x_{pas} + u_x \cdot s$$

$$y_{pas} = y_{pas} + u_v \cdot s$$

Na ovaj način pas se kreće u pravcu poštara, a brzina zavisi od vremena i tipa psa.

• Pas A: brzina se postepeno povećava (s(t) = 2t za t < 5, nakon toga konstantna 10)

PERFORMANSE RAČUNARSKIH SISTEMA

• Pas B: Na sličan način kao pas A, ali postoji šansa da se pas oklizne. Vjerovatnoća da se pas oklizne zavisi od t_{run} (broja sekundi od prethodnog pada).

Simulacija se prekida kada se pas dovoljno približi poštaru, odnosno kada je razlika u pozicijama manja od 1 po obe ose.

Definisanje početnih uslova

- Poštar kreće sa nasumične pozicije po x osi, y = 0.
 - o Poštar A veže pertle 3 sekunde, zatim trči brzinom od 5 m/s.
 - o Poštar B odmah trči, ali brzinom od 2.5 m/s.
- Pas kreće sa pozicije (0,20)
 - o Pas A ima promjenljivu brzinu zavisno od vremena
 - Pas B ima slično ponašanje kao pas A, ali se može okliznuti i pasti.

Pravilnost kojom se ažurira simulacija

Svaka nit koristi *Thread. sleep*(1000) kako bi se simuliralo kretanje poštara i psa svake sekunde. Poštar i pas svake sekunde mijenjaju svoje kooridinate, pri čemu pas mijenja koordinate u odnosu na poštara.

Zaključak

Izvršio sam pet mjerenja vremena za svaki od sljedećih slučajeva, tj. koliko je psu potrebno da uhvati poštara u različitim kombinacijama:

$Pas_A - Poštar_A$	$Pas_A - Poštar_B$	$Pas_B - Poštar_A$	$Pas_B - Poštar_B$
7s	7s	34s	6s
6s	7s	6s	10s
8s	7s	24s	6s
8s	6s	5s	12s
7s	8s	21s	5s

Zatim sam upotrijebio poređenje putem kontrasta oko kojeg se formira interval povjerenja za svaki od ovih parova, kao u prethodnoj vježbi, kako bi analizirao razlike između ovih kombinacija. Na osnovu rezultata poređenja, došao sam do sljedećih zaključaka:

- Između (*Pas_A*, *Poštar_A*) i (*Pas_A*, *Poštar_B*) nema značajne razlike, interval obuhvata nulu.
- Između (Pas_A , $Poštar_A$) i (Pas_B , $Poštar_A$) imamo razliku, interval ne obuhvata nulu, i (Pas_A , $Poštar_A$) je bolji.
- Između (Pas_A , $Poštar_A$) i (Pas_B , $Poštar_B$) nema značajne razlike.
- Između (Pas_A , $Poštar_B$) i (Pas_B , $Poštar_A$) imamo razliku i bolji je (Pas_A , $Poštar_B$).
- Između $(Pas_A, Poštar_B)$ i $(Pas_B, Poštar_B)$ nemamo značajne razlike.
- Između (Pas_B , $Poštar_A$) i (Pas_B , $Poštar_B$) imamo razliku i bolji je (Pas_B , $Poštar_B$).

Na osnovu ovoga zaključujemo sljedeće tvrdnje:

- Pas_A brže hvata $Poštar_A$, nego Pas_B . (Pas_A je efikasniji pas)
- $Poštar_B$ je lakša meta za Pas_B . (Pas_B brže hvata $Poštar_B$, nego $Poštar_A$) ($Poštar_A$ je teže uhvatiti).
- Pas_A brže hvata $Poštar_B$, nego što Pas_B hvata $Poštar_A$. Kombinacija "jak pas + lakša meta" > "slab pas + teža meta"

Iz ovoga imamo da je Pas_A efikasniji pas, dok je $Poštar_B$ lakše uhvatiti nego $Poštar_A$.