ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 11 gennaio 2018

Esercizio A

 Q_1 è un transistore MOS a canale n resistivo, con la corrente di drain in saturazione data da $I_{DS}=k(V_{GS}-V_T)^2$ con k=0.5 mA/V 2 e $V_T=1$ V. Q_2 è un transistore BJT BC179A resistivo con $h_{re}=h_{oe}=0$; per gli altri parametri forniti dal costruttore si utilizzino i valori tipici o, in loro assenza, i valori massimi; Con riferimento all'amplificatore in figura:

- 1) Calcolare il valore della resistenza R_3 in modo che, in condizioni di riposo, la tensione sull'emettitore di Q_2 sia 12 V; si ipotizzi di trascurare la corrente di base di Q_2 rispetto alla corrente che scorre nella resistenza R_8 . Determinare, inoltre, il punto di riposo dei transistori e verificare la saturazione di Q_1 . (R: $R_3 = 80 \text{ k}\Omega$)
- 2) Determinare l'espressione e il valore di V_U/V_i alle frequenze per le quali C_1 , C_2 , e C_3 possono essere considerati dei corto circuiti. (R: $V_U/V_i = -2.55$)
- 3) (<u>Solo per 12 CFU</u>) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: f_{Z1} =0 Hz, f_{p1} =7.6 Hz, f_{Z2} =2009.53 Hz, f_{p2} =10047.66 Hz, f_{Z3} =0 Hz, f_{p3} =114.067 Hz)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \overline{AC} \left(\overline{B} + D \overline{E} \right) + \overline{E} \left(AD + BC \right)$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori. (R: N = 20)

Esercizio C

$R_1 = 300 \Omega$	$R_5 = 3 \text{ k}\Omega$
$R_2 = 200 \ \Omega$	$R_6 = 700 \Omega$
$R_3 = 6 \text{ k}\Omega$	C = 680 nF
$R_4=2\;k\Omega$	$\mathbf{V}_{\mathrm{CC}} = 6 \ \mathbf{V}$

Il circuito IC_1 è un NE555 alimentato a $V_{CC} = 6V$; Q_1 ha una $R_{on} = 0$ e $V_T = -1$ V; l'inverter è ideale. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 2967.17 Hz)