Homework 1

Kevin Yang

September 13, 2021

Exercise 1

Let
$$X = (x_1, x_2, ..., x_n)$$

 $x_i \sim Pois(\lambda)$ $\lambda \sim \Gamma(\alpha, \beta)$

We have that:

$$P(\lambda \mid X) = \frac{P(X \mid \lambda)P(\lambda)}{P(X)}$$

$$\propto P(X \mid \lambda)P(\lambda)$$

$$\propto \lambda^{n\bar{x}}e^{-n\lambda}\lambda^{\alpha-1}e^{-\beta\lambda}$$

$$= \lambda^{n\bar{x}+\alpha-1}e^{-(n+\beta)\lambda}$$

Therefore, $P(\lambda \mid X) \sim \Gamma(n\bar{x} + \alpha, \beta + n)$ and the Gamma distribution is conjugate to the Poisson distribution.

Exercise 2

Let $s = (s_1, s_2, ..., s_n)$, $s' = (s'_1, s'_2, ..., s'_n)$ and $s_{-i} = (s_1, ..., s_{i-1}, s_{i+1}, ..., s_n)$ Detailed balance equation: $\pi(s)P(s, s') = \pi(s')P(s', s)$

w.l.g consider an update for s_1

Case 1: $s_{-1} \neq s'_{-1}$

$$\pi(s)P(s, s') = \pi(s')P(s', s) = 0$$

Case 2: $s_{-1} = s'_{-1}$

$$\pi(s)P(s, s') = \pi(s)P(s'_{1} \mid s'_{-1})$$

$$= \pi(s)\frac{\pi(s')}{\sum_{z} \pi(z, s'_{-1})}$$

$$= \pi(s')\frac{\pi(s)}{\sum_{z} \pi(z, s_{-1})}$$

$$= \pi(s')P(s_{1} \mid s_{-1})$$

$$= \pi(s')P(s', s)$$

Consider the move from s to s'. The acceptance probability for MH will be

$$\frac{\pi(s')P(s',s)}{\pi(s)P(s,s')}$$

We have that

$$\frac{P(s', s)}{P(s, s')} = \frac{\frac{\pi(s)}{\sum_{z} \pi(z, s_{-1})}}{\frac{\pi(s')}{\sum_{z} \pi(z, s'_{-1})}}$$
$$= \frac{\pi(s)}{\pi(s')}$$

So

$$\frac{\pi(s')P(s',s)}{\pi(s)P(s,s')} = \frac{\pi(s')\pi(s)}{\pi(s)\pi(s')} = 1$$