

W'21 CS 584/684 Algorithm Design & Analysis

Fang Song

Lecture 13

- Amortized analysis
- Network flow

Recap: flow network

- Abstraction for material flowing through the edges.
 - G = (V, E) directed graph, no parallel edges.
 - Two distinguished nodes: s = source, t = sink.
 - c(e): capacity of edge e, $\forall e \in E$.

Flows

- Definition. An s-t flow is a function $f:E\to\mathbb{R}^+$ satisfying
 - [Capacity] $\forall e \in E : 0 \le f(e) \le c(e)$.
 - [Conservation] $\forall v \in V \{s, t\}$: $\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$
- Definition. The value of a flow f is $v(f) := \sum_{e} f(e)$

Cuts

- Recall. A cut is a subset of vertices.
- ullet Def. s-t cut: (A,B=V-A) partition of V with $s\in A$ and $t\in B$.

• Def. Capacity of cut (A, B): $cap(A, B) = \sum_{a=1}^{\infty} c(e)$

How do they relate?

Max flow Min cut

- Find s t flow of maximum value. Find s t cut of minimum capacity.

Useful observations

• Flow-value lemma. Let f be any flow, and let (A, B) be any s - t cut. Then the net flow across the cut is equal to the amount leaving s (i.e., value of flow).

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e) = v(f)$$

- Weak duality. Let f be any flow, and let (A, B) be any s t cut. Then the value of the flow is at most the capacity of the cut. $v(f) \le cap(A, B)$
- © Corollary of weak duality. Let f be any flow, and let (A, B) be any s t cut. If v(f) = cap(A, B), then f is a max flow, and (A, B) a min cut.

Max-flow Min-cut theorem

Theorem. Value of max flow = capacity of min cut.

[Strong duality]

A constructive proof: augmenting path

Residual graph

- ullet Original edge: $e = (u, v) \in E$
 - Capacity c(e), low f(e).

Residual edge: "undo" flow

- $e = (u, v) \text{ and } e^R = (v, u)$
- Residual capacity with flow *f*:

$$C_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E\\ f(v,u) & \text{if } (v,u) \in E \end{cases}$$

• Residual graph $G_f = (V, E_f)$

- · Residual edges with positive residual capacity.
- $E_f = \{e : f(e) < c(e)\} \cup \{e^R : f(e) > 0\}.$

Augmenting path

- ullet Definition. An augmenting path is a simple $s \leadsto t$ path in residual graph G_f .
- $^{\odot}$ Definition. The bottleneck capacity of an augmenting path P is the minimum residual capacity of any edge in P.

Which augmenting path has the highest bottleneck capacity?

Augmenting path theorem

- ullet Theorem. f is a max flow iff. NO augmenting paths $s \leadsto t$ in G_f . A.k.a. Algorithmic max-flow min-cut theorem.
- ullet Proof. We show the following equivalence ($a \Rightarrow b \Rightarrow c \Rightarrow a$)
 - a. f is a max flow.
 - b. There is no augmenting path (with respect to f).
 - b. There is no augmenting path (with respect to f).

 c. There exists a cut (A, B) such that cap(A, B) = v(f).

 duality. Also implies (A, B) a min-cut.

Corollary of weak

 \bullet N.B. $a \Leftrightarrow c$ is Max-flow min-cut Theorem: value of max flow = capacity of min cut.

Augmenting path theorem: proof

- a. f is a max flow.
- b. There is no augmenting path (with respect to *f*).
- c. There exists a cut (A, B) such that cap(A, B) = v(f).
- $a \Rightarrow b$. We show contrapositive $\neg b \Rightarrow \neg a$.
 - If \exists augmenting path, we can find a new flow f' with larger flow value below.
 - $\delta \leftarrow$ bottleneck capacity of augmenting path P.

For each
$$e \in P, f'(e) := \begin{cases} f(e) + \delta & \text{if } e \in E \\ f(e) - \delta & \text{if } e^R \in E \end{cases}$$

- Exercise. Verify f' is a feasible flow (capacity and conservation hold).
- $v(f') = v(f) + \delta > v(f)$ because only first edge in *P* leaves *s*.

Augmenting path theorem: proof cont'd

- a. f is a max flow.
- b. There is no augmenting path (with respect to *f*).
- c. There exists a cut (A, B) such that cap(A, B) = v(f).
- \bullet $b \Rightarrow c$. Assuming G_f has no augmenting path.
 - Let A be the set of nodes reachable from s in G_f .
 - Clearly $s \in A$, $t \notin A$. (A, B = S A) is an s t cut.
 - Obs. On edges of G go from A to B.

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} c(e) - 0 = cap(A, B)$$

$$= \sum_{e \text{ out of } A} c(e) - 0 = cap(A, B)$$

Edge (v, w) with $v \in B$, $w \in A$

must have f(e) = 0

Edge (v, w) with $v \in A, w \in B$ must have f(e) = c(e)

Ford-Fulkerson algorithm

Ford-Fulkerson augmenting path algorithm

```
 \frac{\text{Augment}(f,c,P)}{\delta \leftarrow \text{bottleneck}} \text{ capacity of augmenting path } P. 
 \text{For each } e \in P 
 \text{If } e \in E, f'(e) = f(e) + \delta 
 \text{Else } f'(e) = f(e) - \delta 
 \text{Return } f'
```

```
\begin{aligned} & \textbf{Ford-Fulkerson}(G, s, t, c) \\ & \textbf{For each } e \in E \\ & f(e) \leftarrow 0, G_f \leftarrow \text{residual graph} \\ & \textbf{While there is an augmenting path } P \text{ in } G_f \\ & f \leftarrow \text{Augment}(f, c, P) \\ & \text{Update } G_f \\ & \text{Return } f' \end{aligned}
```


2

4

S

3

5

t

$$v(f) = 19$$

$$10/10 2/0 8/7 6/6$$

$$10/9 \rightarrow 3 9/9 \rightarrow 5 -10/10 \rightarrow t$$

Cut
$$(A = \{s,3\}, B = S - A), cap(A, B) = 19$$

Fork-Fulkerson algorithm: summary so far

Ford-Fulkerson
While you can
Greedily push flow
Update residual graph

- © Correctness. Augment path theorem.
- Running time. Does it terminate at all?

Fork-Fulkerson algorithm: analysis

- ullet Assumption. All capacities are integers between 1 and C.
- Invariant. Every flow value f(e) and every residual capacity $c_f(e)$ remains an integer throughout the algorithm.
- ullet Theorem. Ford-Fulkerson terminates in at most nC iterations.
- Proof.
 - Each augmentation increases flow value by at least 1.
 - There are at most *nC* units of capacity leaving source *s*.

Running time: O(mnc). Space O(m+n).

Find an augmenting path in O(m) time (by BFS/DFS)

More to come on further concerns/improvements ...

• Integrality theorem. All If all capacities are integres, then there is a max flow f where every flow value f(e) is an integer.

Scratch