MAT243 - Álgebra 3

Lucio Cornejo

2022-04-08

Table of contents

1	Permutaciones	3
2	Grupo alternante A_n	5
3	Conjugación	6
4	Teoría de Galois básica	7
5	Extensiones algebraicas o trascendentales	9
6	Espacios vectoriales	10
7	Aplicación	11
M	artes 22 Resolviendo ecuaciones de grado 2, 3 y 4	12
M	artes 22 Resolviendo ecuaciones de grado 2, 3 y 4	13 13
M	artes 22 Resolviendo ecuaciones de grado 2, 3 y 4	14
Al	pout	
Ap	ountes del curso Álgebra 3 , dictado en la <i>Pontificia Universidad Católica del Perú</i> .	
Cl	ases	
Se	mana	

1 Permutaciones

Prop:

S n no es abeliano, para todo n >= 3.

Def:

```
Ciclo de orden r: (i_1 i_2 ... i_r) con r elementos distintos.
```

Prop:

Todo ciclo de orden r
 tiene orden r
 como elemento de S_n .

Def:

Full cycle en S_n es un ciclo de orden n.

Def:

Transposición es un ciclo de orden 2.

Hay n * (n-1) * 0.5 transposiciones en S_n .

Prop:

```
Para i_1, ... i_r distintos, se cumple (i_1 i_2 ... i_r) = (i_1 i_r)(i_1 i_{r-1})...(i_1 i_3)(i_1 i_2)
```

Prop:

Toda permutación puede escribirse como un producto de transposiciones.

Def:

```
Sea v una permutación de S_n .  fix(v) = \{i: \ v(i) = i\} \ (fixed \ set \ of \ v) \\ supp(v) = \{i: \ v(i) \ != i\} \ (support \ of \ v)
```

Prop:

i en supp(v) implica i != v(i) en supp(v).

Def:

Permutaciones se dicen disjuntas si sus supports son disjuntos.

Prop:

Todo par de permutaciones disjuntas conmutan.

Prop:

Toda permutación es producto de ciclos disjuntos.

2 Grupo alternante A_n

Def:

Permutación se dice par si puede escribirse como producto de una cantidad **par** de transposiciones.

Def:

```
\begin{split} & \operatorname{sgn:} \ S\_n \to \{\text{-}1, \, 1\} \\ & \operatorname{sgn}(v) = 1; \, \operatorname{si} \, v \, \operatorname{es} \, \operatorname{par.} \\ & \operatorname{sgn}(v) = \text{-}1; \, \operatorname{si} \, v \, \operatorname{es} \, \operatorname{impar.} \\ & A\_n \, \operatorname{es} \, \operatorname{el} \, \operatorname{kernel} \, \operatorname{de} \, \operatorname{sgn.} \end{split}
```

Semana

3 Conjugación

Prop:

Sea phi en S_n, se cumple ($phi(i_1) phi(i_2) ... phi(i_n) = phi (i_1 i_2 ... i_n) phi^(-1)$

Prop:

Dos permutaciones son conjugadas si y solo si poseen la misma estructura.

Def:

Sea phi en S_n, N_r(phi) se define como el numero de r-cycles presentes en la descomposición de phi como producto de ciclos disjuntos.

Prop:

sum_{i=1}^{n}(i * N_i(r)) = n, para todo r en S_n .

Prop:

El orden de una permutación coincide con el mínimo común múltiple de los $\{k \ en \ [1, \ ..., \ n] : N_k != 0\}$.

Prop:

Elementos en A_n pueden ser conjugados en S_n, sin ser conjugados en A_n .

Prop

A_n es simple, para $n \ge 5$.

4 Teoría de Galois básica

Prop:

Todo morfismo de anillos entre cuerpos, o es nulo, o es invectivo.

Def:

Fields **incompatibles** se dice a aquellos que no admiten ring homomorphism no trivial entre ellos.

Def:

Torre de extensiones: Q R C

Prop:

Sea F un subcuerpo de K, con alpha en K.

 $F[alpha] := \{p(alpha) : p \text{ en } F[x]\}$ es el menor subanillo de K que contiene a F y a alpha. $F(alpha) := \{p(alpha)/q(alpha) : p,q \text{ en } F[x] \text{ y } q(alpha) != 0\}$ es el menor subcuerpo de K que contiene a F y a alpha.

Prop:

Para F cuerpo, el anillo F[x] es un dominio euclidiano, con la norma siendo el grado del polinomio.

Prop:

La derivación no siempre reduce en 1 al grado de un polinomio; podría reducirse en más.

Prop

Las únicas unidades en F[x] son las unidades del cuerpo F.

Semana

Prop:

Sea p en F[x], polinomio de grado n, con F un cuerpo. Entonces, en el anillo cociente F[x] / (p) = $\{a_0 + a_1[x] + ... a_\{n-1\}[x]^n(n-1): a_i \text{ en } F\}$ todas esas clases son **no** equivalentes.

Teorema de Kronecker

Dado un polinomio no nulo p en F[x]. Existe una extensión de cuerpo K donde se anule p para algún elemento alpha de K.

Asimismo, no existe subcuerpo propio de F[x]/(p) que contenga solución de p(x) = 0.

Def:

La mínima extensión donde un polinomio se descompone en factores lineales se denomina su splitting field.

Prop:

Sea p irreducible en F[x]. Sea alpha una solución de p(x) = 0 en alguna extensión K de F. Entonces, se cumple

 $F[x] \ / \ (p) \sim F(alpha) = F[alpha],$ donde ~ representa isomorfismo.

Prop:

Sea p irreducible en F[x], con una raíz alpha en algún cuerpo de extensión de F. Entonces, p(x)=0 no puede resolverse en ningún cuerpo intermediario entre (exclusivo) F y F(alpha).

Def:

El **minimal polynomial** de alpha en el cuerpo F es el único polinomio mónico de menor grado y con coeficientes en F, tal que alpha es ráiz del polinomio.

5 Extensiones algebraicas o trascendentales

Def:

Sean F K cuerpos. Un elemento alpha en K se denomina **algebraico sobre F** si existe p en F[x] con p(alpha) = 0.

Elementos no algebraicos se denominan trascendentales.

Prop:

Todo elemento del cuerpo finito F_{p^n} es algebraico sobre el cuerpo F_p .

Def:

Una extensión F K se denomina **extensión algebraica** si cada elemento de K es algebraico sobre F.

Prop:

La extensión algebraica de una extensión algebraica, es una extensión algebraica.

Def:

Una extensión F K se denomina **simple** si existe alpha en K con K = F(alpha).

Semana

6 Espacios vectoriales

Prop:

Todo espacio vectorial admite una base.

7 Aplicación

Prop:

Toda extensión finita de cuerpos es también una extensión algebraica.

Def:

Sea F K una extensión, escribiremos [K : F] para representar dim_{F} K .

Prop:

Sea F K L una extensión (arbitraria) de cuerpos, entonces se cumple $[L:F]=[L:K]\ [K:F]$.

Semana

Semana 03/21

Martes 22

Resolviendo ecuaciones de grado 2, 3 y 4

lorem ipsum

Semana 03/21

Martes 22

Resolviendo ecuaciones de grado 2, 3 y 4

lorem ipsum

Semana 03/21

Martes 22

Resolviendo ecuaciones de grado 2, 3 y 4

lorem ipsum

Tareas

References