Extended Formulations

Definition 1 (extension). Let $P = \{x \mid Ax \leq b\} \subseteq \mathbb{R}^n$ be a polyhedron. A polyhedron $Q \subseteq \mathbb{R}^d$ is said to be an extension for P if $\operatorname{proj}_x(Q) = P$, where $\operatorname{proj}_x(Q) := \{x \mid \exists y : (x,y) \in Q\}$.

The *size* of an extension is the number of its facets.

Figure 1: Extended formulations can be smaller.

Definition 2 (Extended formulation). A particular representation of an extension by linear inequalities is called an extended formulation, and its size is the number of inequalities.

Disclaimer: Some people use "extended formulation" to refer to any MIP formulation that uses additional variables. This should be clear from the context.

If a research paper has polyhedral results, they are probably referring to Definition 2. If it gives MIP formulations but no polyhedral analysis, they are probably referring to the latter meaning.

Example: Uncapacitated Lot Sizing

The problem is to decide on a production plan for an n-period horizon for a single product. The basic model can be viewed as having data:

- f_t is the fixed cost of producing in period t.
- p_t is the unit production cost in period t.
- h_t is the unit storage cost in period t.
- d_t is the demand in period t.

We use the natural (or obvious) variables:

- x_t is the amount produced in period t.
- s_t is the stock at the end of period t.
- $y_t = 1$ if production occurs in period t, and $y_t = 0$ if otherwise.

An MIP formulation in these natural variables is as follows.

$$\min \sum_{t=1}^{n} p_{t}x_{t} + \sum_{t=1}^{n} h_{t}s_{t} + \sum_{t=1}^{n} f_{t}y_{t}$$

$$s_{t-1} + x_{t} = d_{t} + s_{t} \qquad t = 1, \dots, n$$

$$x_{t} \leq My_{t} \qquad t = 1, \dots, n$$

$$s_{0} = 0$$

$$s_{t} \geq 0 \qquad t = 1, \dots, n$$

$$x_{t} \geq 0 \qquad t = 1, \dots, n$$

$$y_{t} \in \{0, 1\} \qquad t = 1, \dots, n$$

An extended formulation uses <u>additional variables</u> of the form w_{it} representing the amount produced on day i to fulfill demand for day t. (Only define these variables for $i \le t$.)

$$\sum_{i=1}^{t} w_{it} = d_t$$

$$t = 1, \dots, n$$

$$w_{it} \le d_t y_i$$

$$1 \le i \le t \le n$$

$$x_i = \sum_{t=i}^{n} w_{it}$$

$$i = 1, \dots, n$$

$$s_{t-1} + x_t = d_t + s_t$$

$$t = 1, \dots, n$$

$$s_0 = 0$$

$$w_{it} \ge 0$$

$$0 \le y_t \le 1$$

$$1 \le i \le t \le n$$

$$t = 1, \dots, n$$

Exercise. Let P_1 be the set of all (x, y, s) satisfying the first formulation. Further let Q_2 be the set of all (x, y, s, w) satisfying the extended formulation. Show that Q_2 is a stronger formulation than P_1 . These polyhedra are in different variable spaces so you should actually compare the projection of Q_2 into the space of x, y, s variables, i.e., $P_2 := \operatorname{proj}_{x,y,s}(Q_2)$.

Remark 1. Q_2 is a perfect (extended) formulation, i.e., any basic feasible solution has y integer.

Example: Spanning Tree Polytope

Let G = (V, E) be a graph. Its spanning tree polytope is:

$$P_{ST}(G) := \text{conv} \{ x^F \in \{0, 1\}^m \mid (V, F) \text{ is a tree} \}.$$

By Edmonds (1971), an (exponentially-sized) perfect formulation for $P_{ST}(G)$ is as follows.

$$\sum_{e \in E(S)} x_e = n - 1$$

$$\sum_{e \in E(S)} x_e \le |S| - 1$$

$$S \subseteq V, \ 2 \le |S| \le n - 1$$

$$x \ge 0.$$

There exist extended formulations for $P_{ST}(G)$ of size O(nm). To do this, first bidirect the edges of G to get D = (V, A) and arbitrarily pick a source node $s \in V$. Create the following variables:

- for each $a \in A$, the binary variable $y_a = 1$ iff arc a is chosen;
- for each arc $a \in A$ and each $t \in V \setminus \{s\}$, create a variable z_a^t that denotes the amount of flow sent across arc a to reach demand node t (sent from source node s).

In the formulation we should send one unit of flow from s to t. Moreover, the flow that we are sending to t should be of "commodity" t. This is thus a "multicommodity flow" formulation.

Proposition 1. The above is an extended formulation for the spanning tree polytope, i.e., $x \in P_{ST}(G)$ if and only if there exist y and z such that (x, y, z) satisfies the above formulation.

Remark 2. The formulation in the y variable space is for directed spanning trees rooted at s.

Example: Subtour Elimination Polytope for TSP

Recall our cut-based LP relaxation for asymmetric (i.e., directed) TSP over G = (V, A).

$$\min \sum_{a \in A} c_a x_a \tag{1}$$

$$\sum_{a \in \delta^+(v)} x_a = 1 \qquad v \in V \tag{2}$$

$$\sum_{a \in \delta^{-}(v)} x_a = 1 \qquad v \in V \tag{3}$$

$$\sum_{a \in \delta^{+}(S)} x_a \ge 1 \qquad \qquad S \subseteq V, \ 2 \le |S| \le n - 2 \tag{4}$$

$$x \ge 0. (5)$$

Just like in the spanning tree formulation, we can use multicommodity flows to replace the exponentially many cut constraints (4) with a polynomial number of flow variables/constraints:

Proposition 2. The multicommodity flow extended formulation for ATSP and the cut-based formulation for ATSP are equally strong.

Remark 3. In practice, the cut-based formulation (implemented via branch-and-cut) is computationally superior to the extended formulation.

We have given a polysize extended formulation for the (directed) *subtour elimination* polytope, which is the LP relaxation for the cut-based ATSP formulation. Do there exist small extended formulations for its integer hull (the ATSP polytope)?

Theorem 1 (Fiorini et al., 2012). TSP polytopes have extension complexity $2^{\Omega(\sqrt{n})}$.

Is it true that "easy" problems admit small extended formulations and "hard" problems do not?

Theorem 2 (Rothvoß, 2014). Matching polytopes have extension complexity $2^{\Omega(n)}$.

Theorem 3 (Rothvoß, 2014). TSP polytopes have extension complexity $2^{\Omega(n)}$.

Extended Formulation for the Union of Polyhedra

A notable "meta" extended formulation is for the union of polyhedra.

Theorem 4 (Balas). If P_1, P_2, \ldots, P_q are polytopes defined by s_1, s_2, \ldots, s_q inequalities, respectively, then $P := \operatorname{conv}(P_1 \cup P_2 \cup \cdots \cup P_q)$ admits an extended formulation of size $q + s_1 + s_2 + \cdots + s_q$.

Example. Consider the following "even" set:

$$S_n := \left\{ x \in \{0,1\}^n \, \middle| \, \sum_{i=1}^n x_i \text{ is even} \right\}$$

For any $S \subseteq [n]$ with |S| odd we can write the valid inequality:

$$\sum_{i \in S} (1 - x_i) + \sum_{i \in [n] \setminus S} x_i \ge 1.$$
 (6)

Theorem 5 (Jeroslow, 1975). The inequalities (6) induce facets of $conv(S_n)$. Moreover, they and the bounds $0 \le x_i \le 1$ provide a perfect formulation for $conv(S_n)$.

Thus, this "even" set has exponential size inequality description in the original variables. To get a small extended formulation, we can take the union of the sets S_n^k where $0 \le k \le n$ and k even.

$$S_n^k := \left\{ x \in \{0,1\}^n \mid \sum_{i=1}^n x_i = k \right\}$$

Lemma 1. If k is an integer, then $conv(S_n^k) = \{x \in [0,1]^n \mid \sum_{i=1}^n x_i = k\}.$

Proposition 3. The polytope $conv(S_n)$ admits an extended formulation of size $O(n^2)$.