Spring 2022 Data 100/200 Midterm 1 Reference Sheet

Pandas

Suppose df is a DataFrame; s is a Series. pd is the Pandas package.

Function	Description		
df[col]	Returns the column labeled col from df as a Series.		
df[[col1, col2]]	Returns a DataFrame containing the columns labeled col1 and col2.		
<pre>s.loc[rows] / df.loc[rows, cols]</pre>	Returns a Series/DataFrame with rows (and columns) selected by their index values.		
<pre>s.iloc[rows] / df.iloc[rows, cols]</pre>	Returns a Series/DataFrame with rows (and columns) selected by their positions.		
s.isnull() / df.isnull()	Returns boolean Series/DataFrame identifying missing values		
<pre>s.fillna(value) / df.fillna(value)</pre>	Returns a Series/DataFrame where missing values are replaced by value		
df.drop(labels, axis)	Returns a DataFrame without the rows or columns named labels along axis (either 0 or 1)		
df.rename(index=None, columns=None)	Returns a DataFrame with renamed columns from a dictionary index and/or columns		
df.sort_values(by, ascending=True)	Returns a DataFrame where rows are sorted by the values in columns by		
s.sort_values(ascending=True)	Returns a sorted Series.		
s.unique()	Returns a NumPy array of the unique values		
s.value_counts()	Returns the number of times each unique value appears in a Series		
<pre>pd.merge(left, right, how='inner', on='a')</pre>	Returns a DataFrame joining DataFrames left and right on the column labeled a; the join is of type inner		
<pre>left.merge(right, left_on=col1, right_on=col2)</pre>	Returns a DataFrame joining DataFrames left and right on columns labeled col1 and col2.		
<pre>pd.pivot_table(df, index, columns, values=None, aggfunc='mean')</pre>	Returns a DataFrame pivot table where columns are unique values from columns (column name or list), and rows are unique values from index (column name or list); cells are collected values using aggfunc. If values is not provided, cells are collected for each remaining column with multi-level column indexing.		
df.set_index(col)	Returns a DataFrame that uses the values in the column labeled col as the row index.		
df.reset_index()	Returns a DataFrame that has row index 0, 1, etc., and adds the current index as a column.		

Let grouped = df.groupby(by) where by can be a column label or a list of labels.

Function	Description		
<pre>grouped.count()</pre>	Return a Series containing the size of each group, excluding missing values		
<pre>grouped.size()</pre>	Return a Series containing size of each group, including missing values		
<pre>grouped.mean()/grouped.min()/grou</pre>	.max() Return a Series/DataFrame containing mean/min/max of each group for each column, excluding missing values		
<pre>grouped.filter(f) grouped.agg(f)</pre>	Filters or aggregates using the given function f		
Function	Description		
s.str.len()	Returns a Series containing length of each string		
<pre>s.str.lower()/s.str.upper()</pre>	Returns a Series containing lowercase/uppercase version of each string		
<pre>s.str.replace(pat, repl)</pre>	Returns a Series after replacing occurences of substrings matching regular expression pat with string repl		

	in each string
s.str.extract(pat)	Returns a Series of the first subsequence of each string that matches the regular expression pat. If pat
	contains one group, then only the substring matching the group is extracted

Returns a boolean Series indicating whether a substring matching the regular expression pat is contained

Visualization

s.str.contains(pat)

Matplotlib: \boldsymbol{x} and \boldsymbol{y} are sequences of values.

Function	Description
plt.plot(x, y)	Creates a line plot of x against y
<pre>plt.scatter(x, y)</pre>	Creates a scatter plot of x against y
<pre>plt.hist(x, bins=None)</pre>	Creates a histogram of x; bins can be an integer or a sequence
<pre>plt.bar(x, height)</pre>	Creates a bar plot of categories x and corresponding heights height

Seaborn: x and y are column names in a DataFrame data.

Function	Description
<pre>sns.countplot(data, x)</pre>	Create a barplot of value counts of variable x from data
<pre>sns.histplot(data, x, kde=False) sns.displot(x, data, rug = True, kde = True)</pre>	Creates a histogram of x from data; optionally overlay a kernel density estimator. displot is similar but can optionally overlay a rug plot.
<pre>sns.boxplot(data, x=None, y) sns.violinplot(data, x=None, y)</pre>	Create a boxplot of y, optionally factoring by categorical x, from data. violinplot is similar but also draws a kernel density estimator of y.
<pre>sns.scatterplot(data, x, y)</pre>	Create a scatterplot of x versus y from data
<pre>sns.lmplot(x, y, data, fit_reg=True)</pre>	Create a scatterplot of $\mathbf x$ versus $\mathbf y$ from $\mathbf data$, and $\mathbf b\mathbf y$ default overlay a least-squares regression line
<pre>sns.jointplot(x, y, data, kind)</pre>	Combine a bivariate scatterplot of x versus y from data, with univariate density plots of each variable overlaid on the axes; kind determines the visualization type for the distribution plot, can be scatter, kde or hist

Regular Expressions

List of all metacharacters: . $^$ \$ * + ?] [\ | () { }

Operator	Description		Operator	Description
	Matches any charact	er except \n	*	Matches preceding character/group zero or more times
\\	Escapes metacharac	ters	?	Matches preceding character/group zero or one times
I	Matches expression expression; has lowe	on either side of st priority of any operator	+	Matches preceding character/group one or more times
\d, \w, \s		r group of digits (0-9), A-Z, 0-9, and underscore), ectively	^, \$	Matches the beginning and end of the line, respectively
\D, \W, \S	Inverse sets of \d, \w	ı, \s, respectively	()	Capturing group used to create a sub-expression
{m}	Matches preceding o	character/group exactly m	[]	Character class used to match any of the specified characters or range (e.g. [abcde] is equivalent to [a-e])
{m, n}	times and at most n	character/group at least m times if either m or n are oper bounds to 0 and ∞,	[^]	Invert character class; e.g. [^a-c] matches all characters except a, b, c
Function		Description		
re.match(pattern, string)	Returns a match if zero or	more characte	ers at beginning of string matches pattern, else None
re.search	(pattern, string)	Returns a match if zero or	more characte	ers anywhere in string matches pattern, else None
re.findal	l(pattern, string)	Returns a list of all non-ov	erlapping mate	ches of pattern in string (if none, returns empty list)
re.sub(pat	ttern, repl, string)	Returns string after repla	cing all occurr	ences of pattern with repl

Modified lecture example for a single capturing group:

```
lines = '169.237.46.168 - - [26/Jan/2014:10:47:58 -0800] "GET ... HTTP/1.1"' re.findall(r'\[\d+\/(\w+)\/\d+:\d+:\d+ .+\]', line) # returns ['Jan']
```

Modeling

Concept	Formula	Concept	Formula
$L_1 \mathrm{loss}$	$L_1(y,\hat{y}) = \mid y - \hat{y} \mid$	Correlation r $r=$	$=\sum_{i=1}^nrac{x_i-ar{x}}{\sigma_x}rac{y_i-ar{y}}{\sigma_y}$
$L_2 \mathrm{loss}$	$L_2(y,\hat{y}) = (y-\hat{y})^2$	Linear regression estimate of y	$\hat{y} = \hat{a} + \hat{b}x$
Empirical risk with loss L	$R(heta) = rac{1}{n} \sum_{i=1}^n L(y_i, \hat{y_i})$	Slope \hat{b} of regression line	$\hat{b} = r \frac{\sigma_y}{\sigma_x}$