

Dynamic Graph Visualization

- Evolution of relationships between entities.
- A temporal graph is used to store events between entities.
 - Entities are encoded as node in a static graph
 - Events between entities are encoded as undirected edges
- An offline dynamic graph has complete knowledge of all event details in advance.
- Modeling the distance between entities.

Dynamic Graph Visualization Demo

Rugby teams' competition network

Dynamic Graph Approaches

- Time-sliced Graph
 - Static graph in every snapshot
 - Advantage in structured data--- Vandebunt
 - Loss of information about potential events
 - Difficult to determine slicing creiteria

Dynamic Graph Approaches

- Integrated Diagram
 - Convert time into distance in 3D space
 - Preserve all details of temporal network
 - Visualization in Time-Space cube node -> trajectory edge -> connection surface

Dynamic Graph Computation

- Force-directed algorithm
 - Node Repulsion

force repels trajectories from each other

$$F_u^r(u, v, d) = \left(\frac{d}{||p_u - p_v||}\right)^2 (p_u - p_v)$$

Edge Attraction

force attracts the node of edge toward each other, decreasing the length of the edge

$$F_u^c(e,d) = \left(\frac{||p_u - p_v||}{d}\right)(p_v - p_u)$$

Dynamic Graph Computation

- Time Straightening force smooths node trajectories, reducing node movements over time
- Straightning: smooth line segment globally

$$f = \sum_{j>i} (v_{2D}(\frac{\frac{\pi}{2} - \theta}{\theta}))$$

Smoothing: smooth line segment locally
 Pull the node closer to the centroid of adjacent nodes

Model Framework --- Data Structure

- Computation units for nodes and connections in Time-Space Cube.
 - Allowing potential improvement in parallel force computation.

- Iteratively computes the forces until convergence
 - Adds or removes bends in the node trajectory during each cycle
 - Imposes constraints on maximum movement and acceleration
 - Corrects the time coordinate with real dataset

Model Framework --- Visualization

- WebGL
 - high-performance rendering 3D graphics on GPU
 - Advantages on animation of graph evolution
 - Renders surfaces using triangle strips
 Serializes the node coordinates into the vertex shader

Server-Client environment accelerating the computation speed

Challenges

- High Computation Complexity of Node Repulsion
 - $O(b^2)$ for b bents
- Hyperparameter Tuning
 - Time-Space conversion factor au
 - Desired Distance between nodes δ
- Initial Replacement
 - Preventing large movement at the begin and end time

Improvement

- Exploiting WebGL Parallel Computation on Node Repulsion
 - Splits force calculations among nodes and computes them in parallel
- Hyperparameter Tuning
 - AutoTau
- Initial Replacement
 - Pre-computes the average node connections to initialize clusters.

Measurement Metrics

- Crowding
 - The number of times nodes pass close to each other in animation.
- Movement
 - The average 2D movements of nodes.
- Stress
 - Measures how well the Euclidean distances in the graph layout preserve the shortest path distances in the original graph.

Dataset

- Vandubent: Student relationship across seven different timeframes.
 - Time-sliced
 - 32 nodes and 49 connections
- Rugby: Competition news of rugby teams on Twitter (X) over a year.
 - Continous
 - 12 nodes and 888 connections(merged repeated news)
- Dialog: Dialog from all chapters of book "Pride and Prejudice"
 - Continous
 - 118 nodes and 3481 connections

Demo

Q&A

