AMENDMENTS TO THE CLAIMS

Kindly amend the claims as follows:

(cancelled)

1 – 2.

3. (currently amended) A method for correlating behavior between two elements
of a system to determine the presence of mutual interaction between the elements, the
method comprising:
measuring the behavior of two elements of a system over time with respect to
mutual interaction, thereby producing two behavior functions;
expressing a plurality of constraints on a theoretical distance c between said
behavior functions; and
determining that said elements are behaving as mutually interacting elements
where there exists an actual distance c that satisfies said constraints, A method according to
elaim 1 wherein said expressing step comprises expressing each of said constraints using at
least two time-consecutive samples (a_n, a_{n+1}) of one of said functions and at least one
sample (b_n) of the other of said functions that is time-intermediate said time-consecutive
samples.
4. (original) A method according to claim 3 wherein said expressing step
comprises expressing each of said constraints as $(a_n - b_n) \le c \le (a_{n+1} - b_n)$.
5. (currently amended) A method for correlating behavior between two elements
of a system to determine the presence of mutual interaction between the elements, the
method comprising:
measuring the behavior of two elements of a system over time with respect to
mutual interaction, thereby producing two behavior functions;
expressing a plurality of constraints on a theoretical distance c between said
behavior functions; and

determining that said elements are behaving as mutually interacting elements where there exists an actual distance c that satisfies said constraints. A method according to elaim 1 wherein said expressing step comprises expressing each of said distances using at least two time-consecutive samples (a_n, a_{n+1}) of one of said functions and at least one sample (b_n) of the other of said functions that is taken at the same time as one of said time-consecutive samples.

6. (original) A method according to claim 5 wherein said expressing step comprises expressing each of said constraints as $(a_n - b_n) \le c \le (a_{n+1} - b_n)$.

7-8. (cancelled)

9. (currently amended) A method for correlating behavior between two elements of a system to determine the presence of mutual interaction between the elements, the method comprising:

measuring the behavior of two elements of a system over time with respect to mutual interaction, thereby producing two behavior functions;

expressing a plurality of constraints for a plurality of theoretical distances c_i between said behavior functions; and

determining that said elements are behaving as mutually interacting elements where there exists a plurality of actual distances c_i that satisfies said constraints, A method according to claim 7 wherein said expressing step comprises:

expressing each of said constraints using a plurality of samples a_n of one of said functions taken at times a^t_1 , a^t_2 ..., a^t_n , a first plurality of time-consecutive samples b_n and a second plurality of time-consecutive samples b'_n of the other of said functions taken at times b^t_1 , b^t_2 ..., b^t_n , wherein $a^t_1 \le b^t_1 \le a^t_2 \le b^t_2 \le ...$ $a^t_n \le b^t_n$; and

selecting each of said constraints from of a set of constraints defined by the pattern:

$$a_1 - b_1 \le c_1 \le a_2 - b_1$$

 $a_2 - b_2 \le c_2 \le \min(a_2 - b_1 + P(b_2 - b_1), a_3 - b_2)$

$$a_3 - b_3 \le c_3 \le min(a_2 - b_1 + P(b_3 - b_1), a_3 - b_2 + P(b_3 - b_2), a_4 - b_3).$$

10 - 11. (cancelled)

- 12. (currently amended) Apparatus for correlating behavior between two elements of a system to determine the presence of mutual interaction between the elements, the apparatus comprising:

 means for measuring the behavior of two elements of a system over time with respect to mutual interaction, thereby producing two behavior functions;

 means for expressing a plurality of constraints on a theoretical distance c between said behavior functions; and

 means for determining that said elements are behaving as mutually interacting elements where there exists an actual distance c that satisfies said constraints, Apparatus according to claim 10 wherein said expressing means comprises means for expressing each of said constraints using at least two time-consecutive samples (a_n, a_{n+1}) of one of said functions and at least one sample (b_n) of the other of said functions that is time-intermediate said time-consecutive samples.
- 13. (original) Apparatus according to claim 12 wherein said expressing means comprises means for expressing each of said constraints as $(a_n b_n) \le c \le (a_{n+1} b_n)$.
- 14. (currently amended) <u>Apparatus for correlating behavior between two elements</u> of a system to determine the presence of mutual interaction between the elements, the <u>apparatus comprising:</u>

means for measuring the behavior of two elements of a system over time with respect to mutual interaction, thereby producing two behavior functions;

means for expressing a plurality of constraints on a theoretical distance c between said behavior functions; and

means for determining that said elements are behaving as mutually interacting elements where there exists an actual distance c that satisfies said constraints, Apparatus

according to claim 10 wherein said expressing means comprises means for expressing each of said distances using at least two time-consecutive samples (a_n, a_{n+1}) of one of said functions and at least one sample (b_n) of the other of said functions that is taken at the same time as one of said time-consecutive samples.

15. (original) Apparatus according to claim 14 wherein said expressing means comprises means for expressing each of said constraints as $(a_n - b_n) \le c \le (a_{n+1} - b_n)$.

16-17. (cancelled)

18. (currently amended) <u>Apparatus for correlating behavior between two elements</u> of a system to determine the presence of mutual interaction between the elements, the <u>apparatus comprising:</u>

means for measuring the behavior of two elements of a system over time with respect to mutual interaction, thereby producing two behavior functions;

means for expressing a plurality of constraints for a plurality of theoretical distances ci between said behavior functions; and

means for determining that said elements are behaving as mutually interacting elements where there exists a plurality of actual distances c_i that satisfies said constraints. Apparatus according to elaim 16 wherein said expressing means comprises:

means for expressing each of said constraints using a plurality of samples a_n of one of said functions taken at times a^t_1 , a^t_2 ..., a^t_n , a first plurality of time-consecutive samples b_n and a second plurality of time-consecutive samples b^t_n of the other of said functions taken at times b^t_1 , b^t_2 ..., b^t_n , wherein $a^t_1 \le b^t_1 \le a^t_2 \le b^t_2 \le ...$ $a^t_n \le b^t_n$; and

means for selecting each of said constraints from of a set of constraints defined by the pattern:

$$a_1 - b_1 \le c_1 \le a_2 - b_1$$

 $a_2 - b_2 \le c_2 \le \min(a_2 - b_1 + P(b'_2 - b'_1), a_3 - b_2)$
 $a_3 - b_3 \le c_3 \le \min(a_2 - b_1 + P(b'_3 - b'_1), a_3 - b_2 + P(b'_3 - b'_2), a_4 - b_3).$