MATH-331 Introduction to Real Ana	lysis
Homework 02	

Pierre-Olivier Parisé Fall 2021

Due date: 20-09-2021 1:20pm Total: $\frac{1}{10}$ /70.

Exercise	1	2	3	4	5	6	7	8	9	10
	(10)	(5)	(5)	(5)	(5)	(10)	(5)	(10)	(5)	(10)
Score	0	3	5	0	2	10	4	4	3	9

Table 1: Scores for each exercises

Instructions: You must answer all the questions below and send your solution by email (to parisepo@hawaii.edu). If you decide to not use LaTeX to hand out your solutions, please be sure that after you scan your copy, it is clear and readable. Make sure that you attached a copy of the homework assignment to your homework. No late homework will be accepted. No format other than PDF will be accepted. Name your file as indicated in the syllabus.

WRITING PROBLEMS

For each of the following problems, you will be asked to write a clear and detailed proof. You will have the chance to rewrite your solution in your semester project after receiving feedback from me.

Exercise 1. (10 pts)

- a) Let $\{[a_n, b_n] : n \ge 1\}$ be a family of closed intervals such that $[a_1, b_1] \supset [a_2, b_2] \supset [a_3, b_3] \supset \cdots$. Show that there is a $c \in \mathbb{R}$ such that $c \in [a_n, b_n]$ for all $n \ge \mathbb{N}$. Follow the following steps to prove it:
 - (i) Prove that for any $n, m \ge 1$, $a_n \le b_m$. [hint: put $M := \max\{n, m\}$.]
 - (ii) Show that $\sup\{a_n : n \ge 1\}$ exists.
 - (iii) Show that $c = \sup\{a_n : n \ge 1\}$ satisfies the requirement.
- **b)** Use this last result to prove that the set \mathbb{R} is uncountable. [Hint: Show that any function $f: \mathbb{N} \to \mathbb{R}$ can't be surjective. To do so, construct a sequence of closed intervals such that $f(n) \notin [a_n, b_n]$ with $a_n < b_n$.]

Exercise 2. (5 pts) Prove that if $a_n \to A$, then $|a_n| \to |A|$.

Exercise 3. (5 pts) Let (a_n) , (b_n) , and (c_n) be sequences of real numbers. Prove that if $a_n \to L$, $b_n \to L$, and $a_n \le c_n \le b_n$, then $c_n \to L$.

Exercise 4. (5 pts) Prove that if $a_n \to A$ and $a_n \ge 0$ for all $n \ge 1$, then $\sqrt{a_n} \to \sqrt{A}$. Follow the following steps to prove it:

- 1. Consider the case A = 0.
- 2. Suppose that $A \neq 0$. Show that there is a $N_1 \in \mathbb{N}$ such that if $n \geq N_1$, then $\sqrt{a_n} \geq \sqrt{|A|/2}$. [Hint: use the definition of convergence of $(a_n)_{n\geq 0}$ with a clever choice of ε and use the properties of the absolute value.]
- 3. Use the convergence of (a_n) again to find a N_2 such that $|a_n A| < \frac{3}{4} \frac{\varepsilon}{\sqrt{|A|}}$.
- 4. Express $\sqrt{a_n} A$ as $\frac{a_n A}{\sqrt{a_n} + \sqrt{A}}$ and put $N = \max\{N_1, N_2\}$. Conclude.

Exercise 5. (5 pts) For each sequence $(a_n)_{n=1}^{\infty}$, define the sequence $(\sigma_n)_{n=1}^{\infty}$ by

$$\sigma_n := \frac{a_1 + a_2 + \dots + a_n}{n} \quad (n \ge 1).$$

Prove that if $a_n \to A$, then $\sigma_n \to A$. Find an example of a divergent sequence (a_n) such that $(\sigma_n)_{n=1}^{\infty}$ converges.

Homework problems

Exercise 6. (10 pts) Use the definition of convergence to prove that each of the following sequences converges.

- a) $(a_n)_{n=1}^{\infty}$ given by $a_n = 5 + 1/n$ for $n \ge 1$.
- **b)** $(a_n)_{n=1}^{\infty}$ given by $a_n = \frac{3n}{2n+1}$ for $n \ge 1$.

Exercise 7. (5 pts) Prove that the sequence $(a_n)_{n=1}^{\infty} = \left(\frac{2n+1}{n}\right)_{n=1}^{\infty}$ is a Cauchy sequence.

Exercise 8. (10 pts) Prove that each of the following sequence diverges.

- a) $(a_n)_{n=1}^{\infty} = ((-1)^n)_{n=1}^{\infty}$.
- **b)** $(a_n)_{n=1}^{\infty} = (\sin(\frac{4n+1}{2}\pi))_{n=1}^{\infty}.$

Exercise 9. (5 pts) Give an examples of two sequences (a_n) and (b_n) such that (a_n) and (b_n) don't converge, but $(a_n + b_n)$ converge.

Exercise 10. (10 pts) With the limit operations and the writing problems, find the limit of the following sequence with general term

- a) $\frac{n^2+4n}{n^2-5}$.
- b) $\frac{n}{n^2-3}$.
- c) $\frac{\cos n}{n}$. [You can use what you know on the cosine function.]
- d) $(\sqrt{4-\frac{1}{n}}-2)n$.

Math 331: Homework 2 306.

2 It is given that an > A, so for every \$ >0, there exists \$ >0, such that lan-Alle, for all neM. To prove the sequence | and converges to | Al.

That means Man1-1A1148 for all nem 11 an - 1AIL = an - A < & for all nein to A. Hence, the sequence an converges Lowhat is the N that converges. 3. We say that sequence an>L as n>∞ if given any \$>0, there exists a positive integer m such that lan-L/c & V n 2 m.

Given three sequences an, bn, Cn of reals,

an>L, bn>L as n>0 and an cn bn Vn.

Since an>L and bn>L as n>0, let &>0 be given, then by above definition 3 positive integers m., m2 such that 1an-2/28 4n≥m, 3(1) 16n-L/LE 4 n=m2+2) Let m=max & m., m23. Now QO holds for nzm Thus lan-LILE V n > m > 3) 1 bn-11 2 € V n 2 m > 4) From 3 and 4) we have L-E < Qn < L+E Y n > m · (5) L-E < bn < L + E Y n > m · (6) Now given that ancench yna) So for all n > m, using 5,6 and 7
L-&can & Cn & bn & L+& Yn > m L-E-Cn L+E + n>m => Cn -> L as n -> 00 1

TREE Math 331: Homework 2 0 4. An > A and an ≥ O for all n=1,
then van > VA. 10 -((0

Math 331: Homework 2 5 $\sigma_n := \alpha_1 + \alpha_2 + \dots + \alpha_n \quad (n \ge 1)$ $\sigma_n : \alpha_n$ Prove that if an A, then on A Def: A is the limit of Earl if the following condition is satisfied for every gosinve number &, there exists natural number N, such that a natural number IV, IF hz N, thun I an 12/2 Let "> an > A exists Giren on = a, +az+, , +an => non = a, +az+...tan (3) Replace n → (n-1) we set (n-1) 6n-1 = a1+a2+...+an-1+an $(3) - (1) = > n \cdot (n-1) \cdot (n-1) \cdot (n-1) = 0 \cdot (n-1) \cdot (n-1)$ => 100 NGn - NGn-1 + 6n-1 = 100 Qn= A When N=00 On-1 = On => 1500 Non - Non + 6n = A Because both the him On = A and 1:300 an = A then both an = A and on -> A This is not the right orgument. Check out the solution for the full correction. -1

Math 331: Homework 2

6. a)
$$0n = 5 + \frac{1}{10}$$

Claim: $a_1 \Rightarrow 5$
 $1a_1 - A = |5 + \frac{1}{10} - 5| = \frac{1}{10}$

Expression of the property:

 $a_1 \Rightarrow a_2 \Rightarrow a_3 \Rightarrow a_4 \Rightarrow a_5$

b) $a_1 = \frac{3n}{2n+1}$

Claim $a_1 \Rightarrow a_2 \Rightarrow a_3 \Rightarrow a_4 \Rightarrow a_5$
 $a_1 \Rightarrow a_2 \Rightarrow a_4 \Rightarrow a_5$
 $a_2 \Rightarrow a_3 \Rightarrow a_4 \Rightarrow a_5$
 $a_1 \Rightarrow a_2 \Rightarrow a_4 \Rightarrow a_5$
 $a_2 \Rightarrow a_3 \Rightarrow a_4 \Rightarrow a_5$
 $a_1 \Rightarrow a_2 \Rightarrow a_4 \Rightarrow a_5$
 $a_2 \Rightarrow a_3 \Rightarrow a_4 \Rightarrow a_5$
 $a_1 \Rightarrow a_2 \Rightarrow a_4 \Rightarrow a_5$
 $a_2 \Rightarrow a_3 \Rightarrow a_4 \Rightarrow a_5$
 $a_3 \Rightarrow a_4 \Rightarrow a_5$
 $a_4 \Rightarrow a_5 \Rightarrow a_4 \Rightarrow a_5$
 $a_1 \Rightarrow a_2 \Rightarrow a_4 \Rightarrow a_5$
 $a_2 \Rightarrow a_4 \Rightarrow a_5$
 $a_3 \Rightarrow a_4 \Rightarrow a_5$
 $a_4 \Rightarrow a_5 \Rightarrow$

Math 331: Homework 2 7. $(Q_n)_{n=1}^{\infty} = \left(\frac{2n+1}{N}\right)_{n=1}^{\infty}$ Let 2 >0 be given and if n>m; Consider $|a_n - a_m| = |2n+1 - 2m+1$ $\frac{m(2n+1) - n(2m+1)}{nm}$ 2mn+m-2mn-n -> lan-am/2-1 LE; provided m>-1 Let m be a positive integer greater from $-1/\varepsilon$. Then $1an-am1/2\varepsilon$ $\forall n \ge m$. Hence $(an)^{n-1}=(2n+1)^{\infty}$ Let In=1 a cauchy sequence 9

Math 331: Homework 2 8_0 a) $(a_n)_{n=1}^{\infty} = ((-1)^n)_{n=1}^{\infty}$ Therefore There fore, (an) is a divergent sequence. b) (an) = = (Sin (4n+1) lim an= lim sin (4n+17) Now the limit depends on an n value so the limit does not exist and the sequence diverges

Math 331: Homework 2

9. take (an) = n
And (bn) = -n
both of these diverge

(ant bn) =
$$(n-n) = (0)$$
 is convergent

(ant bn) = $(n-n) = (0)$ is convergent

10. a) $n^2 + 4n = \lim_{n^2 - 5} \frac{n^2}{n^2 - 5}$ $n^{20} = \lim_{n^2 - 5} \frac{n^2}{n^2 - 5}$

10. = $\lim_{n^2 - 5} \frac{n^2}{n^2 - 5}$ $n^{20} = \lim_{n^2 - 5} \frac{n^2}{n^2 - 5}$

So $\lim_{n \to \infty} = \lim_{n \to \infty} \frac{n^2}{n^2 - 5}$ $\lim_{n \to \infty} \frac{n^2}{n^2 - 5}$

So $\lim_{n \to \infty} = \lim_{n \to \infty} \frac{n^2}{n^2 - 5}$ $\lim_{n \to \infty} \frac{n^2}{n^2 - 5}$

So $\lim_{n \to \infty} = \lim_{n \to \infty} \frac{n^2}{n^2 - 5}$ $\lim_{n \to \infty} \frac{n^2}{n^2 - 5}$

C) $\lim_{n \to \infty} = \lim_{n \to \infty} \frac{n^2}{n^2 - 5}$ $\lim_{n \to \infty} \frac{n^2}{n^2 - 5}$ $\lim_{n \to \infty} \frac{n^2}{n^2 - 5}$

c) $\lim_{n \to \infty} \frac{n^2}{n^2 - 5}$ \lim_{n