Fundamental Abstract Algebra 基礎抽象代數

許胖

2015年1月15日

目錄

第一章	代數	結構	2
	第一節	簡介	2
	第二節	二元運算的性質	3
		一、基本性質	3
		二、單位元素	5
		三、反元素	6
		四、零元素與零因子	7
		五、符號簡化	10
		六、其他性質	11
	第三節	同態與同構	12
		第一部分 群論	
第二章	群		14
	第一節	定義與性質	14
	第二節	子群	16

第一章

代數結構

第一節 簡介

定義 1.1 (二元運算). 一個函數 $\mathcal{R}: A \times B \to C$,對於所有 $a \in A \setminus b \in B$,存在唯一的 $c \in C$,使得 $\mathcal{R}(a,b) = c$,我們稱 \mathcal{R} 是一個從 $A \times B$ 到 C 的二元運算 (Binary Operation),此時記爲 $a\mathcal{R}b = c$ 。

註. 若 A = B = C = S, 我們稱 R 是定義在 S 上的二元運算。

範例 1.2. 下列爲二元運算:

- 1. 整數加法 $+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$
- 2. 實數乘法 $\cdot: \mathbb{R}^2 \to \mathbb{R}$
- 3. 實係數矩陣乘法 $\cdot: \mathbb{M}_{m \times n}(\mathbb{R}) \times \mathbb{M}_{n \times p}(\mathbb{R}) \to \mathbb{M}_{m \times p}(\mathbb{R})$
- 4. 充要條件 \Leftrightarrow : $\mathcal{L} \times \mathcal{L} \to \{\top, \bot\}$
- 5. $\mathcal{O}(n^2)$ 的 LCS 演算法 $LCS: \{0,1\}^m \times \{0,1\}^n \to \{0,1\}^k$

定義 1.3 (n元運算). 一個函數 $\mathcal{R}: A_1 \times A_2 \times \ldots \times A_n \to B$,對於所有 $(a_1, a_2, \ldots, a_n) \in A_1 \times A_2 \times \ldots \times A_n$,存在唯一的 $b \in B$,使得 $\mathcal{R}(a_1, a_2, \ldots, a_n) = b$,我們稱 \mathcal{R} 是一個 從 $A_1 \times A_2 \times \ldots \times A_n$ 到 B 的 n 元運算 $(n\text{-}ary\ Operation)$ 。

定義 1.4 (代數結構與代數系統). 一代數結構 (Algebraic Structure) $(S, \mathcal{R}_1, \dots, \mathcal{R}_n)$ 满足以下條件

- 1. 有一非空集合 S
- $2. \mathcal{R}_1, \ldots, \mathcal{R}_n$ 爲定義在 S 上的二元運算
- 3. 一系列的公理 A

若 $\mathcal{R}_1,\ldots,\mathcal{R}_n$ 爲定義在 S 上的 n 元運算,則稱 $(S,\mathcal{R}_1,\ldots,\mathcal{R}_n)$ 爲代數系統 (Algebraic System)。

範例 1.5. 下列爲代數結構:

- 1. 有理數與加法、乘法 (ℚ,+,·)
- 2. 複係數矩陣乘法 $(M_{n\times n}(\mathbb{C}),\cdot)$
- 3. 正整數與最大公因數 (\mathbb{Z}^+ , gcd), 其中最大公因數爲二元運算 gcd: $\mathbb{Z}^+ \times \mathbb{Z}^+ \to \mathbb{Z}^+$
- 4. 函數合成 $(\mathbb{F}(\mathbb{R},\mathbb{R}),\circ)$

第二節 二元運算的性質

一、 基本性質

定義 1.6 (封閉律). 一個代數結構 (S, \mathcal{R}) 中,若對於所有 $a, b \in S$,使得 $a\mathcal{R}b \in S$,則稱二元運算 \mathcal{R} 對 S 滿足封閉律 (Closure)。

範例 1.7. 説明下列代數結構是否滿足封閉律。

- 1. $(\mathbb{R},+)$
- $2. (\mathbb{N}, /)$
- 3. $(\mathbb{Z}[\sqrt{2}], \cdot)$
- 4. $(\mathbb{M}_{n\times n}(\mathbb{C}),\cdot)$
- 5. $(\mathbb{Q}_c,+)$
- 6. $(\mathbb{R}^2, \spadesuit)$,定義 $\spadesuit: \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$,規則爲:對所有 $a \in \mathbb{R} \setminus (x,y) \in \mathbb{R}^2$,使得 $a \spadesuit (x,y) = (x+a,y-a)$

證明

3. 我們取任意 $a_1, a_2, b_1, b_2 \in \mathbb{Z}$, 計算

$$(a_1 + a_2\sqrt{2}) \cdot (b_1 + b_2\sqrt{2})$$

= $(a_1b_1 + 2a_2b_2) + (a_1b_2 + a_2b_1)\sqrt{2}$

發現 $a_1b_1 + 2a_2b_2 \in \mathbb{Z}$ 且 $a_1b_2 + a_2b_1 \in \mathbb{Z}$,因此 $(a_1b_1 + 2a_2b_2) + (a_1b_2 + a_2b_1)\sqrt{2} \in \mathbb{Z}[\sqrt{2}]$,因此.在 $\mathbb{Z}[\sqrt{2}]$ 中滿足封閉律。

5. 令 $1+\sqrt{2},1-\sqrt{2}\in\mathbb{Q}_c$,我們發現 $(1+\sqrt{2})+(1-\sqrt{2})=2\notin\mathbb{Q}_c$,因此 $(\mathbb{Q}_c,+)$ 不具封閉律。

定義 1.8 (結合律). 一個封閉的代數結構 (S,\mathcal{R}) 中,若對於所有 $a,b,c \in S$,使得 $(a\mathcal{R}b)\mathcal{R}c = a\mathcal{R}(b\mathcal{R}c)$,則稱二元運算 \mathcal{R} 對 S 具有結合律 (Associativity, Associative property)。

定義 1.9 (交換律). 一個封閉的代數結構 (S,\mathcal{R}) 中,若對於所有 $a,b \in S$,使得 $a\mathcal{R}b = b\mathcal{R}a$,則稱二元運算 \mathcal{R} 對 S 具有交換律 (Commutativity, Commutative property)。

範例 1.10. 説明下列代數結構是否有交換律。

1.
$$(\mathbb{N}, \mathcal{R})$$
, $\forall a, b \in \mathbb{N}$, $a\mathcal{R}b = a^b$

證明

1. 計算 $3\mathcal{R}2 = 3^2 = 9 \times 2\mathcal{R}3 = 2^3 = 8$,因爲 $9 \neq 8$,因此 $3\mathcal{R}2 \neq 2\mathcal{R}3$, \mathcal{R} 不具交換律。

定義 1.11 (吸收律). 一個封閉的代數結構 $(S, \mathcal{R}_1, \mathcal{R}_2)$ 中,若對於所有 $a, b \in S$,使得

$$a\mathcal{R}_1(a\mathcal{R}_2b) = a$$

 $a\mathcal{R}_2(a\mathcal{R}_1b) = a$

,則稱二元運算 $\mathcal{R}_1,\mathcal{R}_2$ 在 S 上滿足吸收律 $(Absorption\ law)$ 。

註. 吸收律是定義在一對二元運算上,因此不能單獨定義一個運算子具有吸收律。

定義 1.12 (分配律). 一個封閉的代數結構 $(S, \mathcal{R}_1, \mathcal{R}_2)$ 中,若對於所有 $a, b, c \in S$,使

$$a\mathcal{R}_1(b\mathcal{R}_2c) = (a\mathcal{R}_1b)\mathcal{R}_2(a\mathcal{R}_1c)$$
$$(b\mathcal{R}_2c)\mathcal{R}_1a = (b\mathcal{R}_1a)\mathcal{R}_2(c\mathcal{R}_1a)$$

,則稱二元運算 \mathcal{R}_1 在 S 上對 \mathcal{R}_2 具有**分配律** (Distributivity, Distributive property)。

註. 儘管 尺1 對 尺2 有分配律,但 尺2 未必對 尺1 有分配律。

二、 單位元素

定義 1.13 (單位元素). 一個封閉的代數結構 (S, \mathcal{R}) 中,若

- 存在 $e_l \in S$, 對所有 $a \in S$, $e_l \mathcal{R} a = a$, 則 e_l 爲左單位元素 (Left identity)
- 存在 $e_r \in S$, 對所有 $a \in S$, $a \mathcal{R} e_r = a$, 則 e_r 爲右單位元素 (Right identity)
- 存在 $e \in S$, 對所有 $a \in S$, eRa = aRe = a, 則 e 爲單位元素 (Identity)

定理 1.14 (單位元素存在性). 一個封閉的代數結構 (S,\mathcal{R}) 中,若存在左單位元素 e_l 、右單位元素 e_r ,則 $e_l=e_r$,即單位元素存在。

證明 根據定義 1.13,我們知道對於所有元素 $a \in S$, $e_l Ra = a$ 且 $aRe_r = a$,我們嘗試去計算 $e_l Re_r$,因爲 e_l 是左單位元素,因此

$$e_l \mathcal{R} e_r = e_r$$

又因爲 e_r 是右單位元素,因此

$$e_l \mathcal{R} e_r = e_l$$

我們得到

$$e_l = e_l \mathcal{R} e_r = e_r$$

根據定義 1.13,我們知道有一個單位元素即是 $e=e_l=e_r$ (因爲左單位元素和右單位元素是同一個)。

定理 1.15 (單位元素唯一性). 一個封閉的代數結構 (S, \mathcal{R}) 中,若存在單位元素,則單位元素唯一。

證明 不失一般性假設有兩個單位元素 e_1 和 e_2 ,我們同樣下去計算 $e_1\mathcal{R}e_2$,因爲 e_1 是單位元素,所以

$$e_1 \mathcal{R} e_2 = e_2$$

同時, e_2 也是單位元素,因此

$$e_1 \mathcal{R} e_2 = e_1$$

我們得到

$$e_1 = e_1 \mathcal{R} e_2 = e_2$$

三、 反元素

定義 1.16 (反元素). 一個封閉的代數結構 (S, \mathcal{R}) 存在單位元素 $e \in S$,若對 $a \in S$,

- 存在 $b_l \in S$, $b_l \mathcal{R} a = e$, 則 b_l 稱爲 a 的左反元素 (Left inverse)
- 存在 $b_r \in S$, $aRb_r = e$, 則 b_r 稱爲 a 的右反元素 (Right inverse)
- 存在 $b \in S$, bRa = aRb = e, 則 b 稱爲 a 的反元素 (Inverse), a 又稱可逆元素 (Invertible element)

若對所有 $a \in S$ 都有反元素,則稱 R 在 S 上有反元素 (Inverse property)。

性質 1.17. 一個封閉的代數結構 (S,\mathcal{R}) 存在單位元素 e ,則 e 的反元素爲 e 。

證明 根據定義 1.13,我們知道 eRe = e,同時也符合反元素的定義。

定理 1.18 (反元素存在性). 一個封閉的代數結構 (S, \mathcal{R}) 存在單位元素 e,且 \mathcal{R} 具有結合律,若 $a \in S$ 存在左反元素 b_l ,右反元素 b_r ,則 $b_l = b_r$,即反元素存在。

證明 做爲習題。 □

定理 1.19 (反元素唯一性). 一個封閉的代數結構 (S, \mathcal{R}) 存在單位元素 e,且 \mathcal{R} 具有結合律,若 $a \in S$ 存在反元素,則反元素唯一。

定理 1.20. 一個封閉的代數結構 (S, \mathcal{R}) 若滿足結合律,則以下兩個敘述是等價的:

- 1. (a) 有左單位元素 e_l
 - (b) 對所有 $a \in S$, 存在左反元素
- 2. (a) e₁ 是單位元素
 - (b) 對所有 $a \in S$, 存在反元素

證明 我們要證明第 1 項和第 2 項等價,因此我們有兩部分要證明:第一、證明第 1 項可以推到第 2 項;第二、證明第 2 項可以推到第 1 項。

- 1. 我們先證第 2 項推到第 1 項 (⇐):
 - (a) 根據定義 1.13,我們有單位元素 e_l ,換句話說 e_l 也是左單位元素。
 - (b) 同樣地,根據定義 1.16,我們馬上就可以得到對於所有 $a \in S$,存在左反元素。
- 2. 再證第 1 項可以推到第 2 項 (⇒):

(a) 根據定義 1.13 ,我們證明 e_l 是單位元素,只要證明對所有 $a \in S$,都符合 $a\mathcal{R}e_l = a$ 即可。根據定義 1.16 ,假設 b_l 是 a 的左反元素,我們有

$$b_l \mathcal{R} a = e_l$$

假設 d_l 是 b_l 的左反元素,我們也可得到:

$$d_l \mathcal{R} b_l = e_l$$

接著我們計算 aRe_l :

$$a\mathcal{R}e_l = e_l\mathcal{R}(a\mathcal{R}e_l)$$
 e_l 是 $(a\mathcal{R}e_l)$ 的左單位元素 $= (d_l\mathcal{R}b_l)\mathcal{R}(a\mathcal{R}e_l)$ 因為 $d_l\mathcal{R}b_l = e_l$ 因為 $d_l\mathcal{R}b_l = e_l$ 结合律 $= d_l\mathcal{R}((b_l\mathcal{R}a)\mathcal{R}e_l)$ 据合律 $= d_l\mathcal{R}(e_l\mathcal{R}e_l)$ 因為 $b_l\mathcal{R}a = e_l$ 因為 $b_l\mathcal{R}a = e_l$ 自 是 e_l 的左單位元素 因為 $b_l\mathcal{R}a = e_l$ 自 是 $e_l\mathcal{R}a$ 因為 $d_l\mathcal{R}b_l = e_l$ 因為 $d_l\mathcal{R}b_l = e_l$ 自 是 $e_l\mathcal{R}a$ 因為 $d_l\mathcal{R}b_l = e_l$ 因為 $d_l\mathcal{R}b_l = e_l$ 因 是 $e_l\mathcal{R}a$ 是

得出對所有 $a \in S$, 使得 $e_l \mathcal{R} a = a \mathcal{R} e_l = e_l$, 因此 e_l 是單位元素。

(b) 做爲習題。

註. 若是只有右單位元素 e_r ,以及對所有 $a \in S$ 有右反元素 b_r 的時候,也會有類似的性質。

四、 零元素與零因子

定義 1.21 (零元素). 一個封閉的代數結構 (S,\mathcal{R}) 中,若

- 存在 $z_l \in S$, 對所有 $a \in S$, $z_l \mathcal{R} a = z_l$, 則 z_l 爲左零元素 (Left zero element)
- 存在 $z_r \in S$, 對所有 $a \in S$, $aRz_r = z_r$, 則 z_r 爲右零元素 (Right zero element)

• 存在 $z \in S$,對所有 $a \in S$,zRa = aRz = z,則 z 爲零元素 (Zero element) 註. 零元素又稱吸收元素 (Absorbing element)。

定理 1.22 (零元素存在性). 一個封閉的代數結構 (S, \mathcal{R}) 具有結合律,若存在左零元素 z_1 ,右零元素 z_r ,則 $z_1=z_r$,即零元素存在。

證明 做爲習題。

定理 1.23 (零元素唯一性). 一個封閉的代數結構 (S, \mathcal{R}) 具有結合律,若存在零元素,則零元素唯一。

證明 做爲習題。 □

定理 1.24. 一個封閉的代數結構 (S, \mathcal{R}) 有單位元素 e、零元素 z,若 $|S| \geq 2$,則 $e \neq z$ 。

證明 我們用反證法證明,假設 e=z,則對於所有 $a \in S$,我們發現

$$a = aRe$$
 e 是單位元素 $e = z$ $e = z$ $e = z$ $e = z$ $e = z$

我們求出所有的 a=e=z 都是相同的元素,因此 |S|=1,與 $|S|\geq 2$ 矛盾。

性質 1.25. 一個封閉的代數結構 (S, \mathcal{R}) 存在單位元素 e,若 \mathcal{R} 在 S 上有零元素 z 且 $z \neq e$,則 z 沒有反元素。

證明 做爲習題。

定義 1.26 (零因子). 一個封閉的代數結構 (S, \mathcal{R}) 中存在零元素 z,若 $a,b \in S$ 且 $a,b \neq z$,使得 $a\mathcal{R}b = z$,則 a,b 稱爲零因子 (Zero divisor)。

定理 1.27 (零因子性質). 一個封閉的代數結構 (S, \mathcal{R}) 满足以下條件:

- 有結合律
- 存在單位元素 e
- 存在零元素 z

若 a,b ∈ S 是零因子,則 a,b 沒有反元素。

證明 因爲 a,b 是零因子,所以 $a\mathcal{R}b=z$ 且 $a,b\neq z$ 。先假設 a 有反元素 $c\in S$,也就是 $a\mathcal{R}c=c\mathcal{R}a=e$,我們知道

$$z = cRz$$
 z 是零元素,因此 $cRz = z$ $= cR(aRb)$ $aRb = z$ $= (cRa)Rb$ 结合律 $= eRb$ c 是 a 的反元素,因此 $cRa = e$ $= b$ e 是單位元素

我們求出 z = b,與原來的前提 $(a, b \neq z)$ 矛盾。同理, b 也沒有反元素。

定義 1.28 (消去律). 一個封閉的代數結構 (S, \mathcal{R}) 中,對所有 $a, b, c \in S$,若

- aRb = aRc 可得到 b = c, 則 R 在 S 上有左消去律 (Left cancellation law)。
- bRa = cRa 可得到 b = c, 則 R 在 S 上有右消去律 (Right cancellation law)。
- R 满足左消去律和右消去律,則 R 在 S 上有消去律 (Cancellation law)。

定理 1.29 (消去律性質). 一個封閉的代數結構 (S, \mathcal{R}) 满足以下條件:

- 有結合律
- 有單位元素 e
- 對所有 $a \in S$ 都有反元素

則 况 在 S 上有消去律。

證明 根據定義 1.28, 我們要驗證 R 有左消去律和右消去律。

左消去律 對於所有 $a,b,c \in S$, 驗證 aRb = aRc 是否能推導出 b = c。假設 a 有反元素 $d \in S$,使得 dRa = aRd = e, 則

$$a\mathcal{R}b = a\mathcal{R}c \Rightarrow d\mathcal{R}(a\mathcal{R}b) = d\mathcal{R}(a\mathcal{R}c)$$
 等式兩邊同時與 d 做運算
$$\Rightarrow (d\mathcal{R}a)\mathcal{R}b = (d\mathcal{R}a)\mathcal{R}c$$
 結合律
$$\Rightarrow e\mathcal{R}b = e\mathcal{R}c$$
 d 是 a 的反元素
$$\Rightarrow b = c$$
 e 是單位元素

右消去律 做爲習題。

定理 1.30. 一個封閉的代數結構 (S, \mathcal{R}) 若滿足結合律,則以下兩個敘述是等價的:

- 1. (a) e 是單位元素
 - (b) 對所有 $a \in S$, 存在反元素
- 2. 對於任意 $a,b \in S$, x,y 是未知數, 方程式 aRx = b 和 yRa = b 存在唯一解。

證明

- $1. (\Rightarrow)$ 方向: 已知有單位元素 e 和反元素,我們要證存在性和唯一性。
 - (a) 先證存在性,我們只要找出一組解酒可以證明存在性。假設 $c \in S$ 是 a 的 反元素,我們可以找出當 x = cRb 時,

(b) 再證唯一性,假設x有兩個解d和d,亦即 $a\mathcal{R}d = b = a\mathcal{R}d$,則

$$d = eRd$$
 e 是單位元素
 $= (cRa)Rd$ $cRa = e$
 $= cR(aRd)$ 结合律
 $= cR(aRd')$ $aRd = b = aRd'$
 $= (cRa)Rd'$ 结合律
 $= eRd'$ $cRa = e$
 $= d'$ e 是單位元素

- (c) 同理,也可證明 y 存在唯一解 bRc。
- 2. (⇐) 方向: 做爲習題。

五、 符號簡化

定義 1.31 (單位元素記號). 一個封閉的代數結構 (S, \mathcal{R}) 存在單位元素 e , 若

- \mathcal{R} 爲加法 $+_S$,則 e 爲加法單位元素 (Additive identity),此時 e 記爲 0_S 。
- ullet R 爲乘法 \cdot_S ,則 e 爲乘法單位元素 (Multiplicative identity),e 記爲 1_S 。
- 註. $1. +_S$ 不是真的代表實數或複數的加法運算,而是代表他在 S 上有類似我們常見的加法性質,因此用這個符號容易聯想; \cdot_S 亦然。
 - 2. 使用 () 和 1 做爲記號只是方便我們去聯想他的性質,事實上並不是實數的「()」和「1」,只是單純的符號。

定義 1.32 (反元素記號). 一個封閉的代數結構 (S, \mathcal{R}) 存在單位元素 e,且所有 $a \in S$ 均有反元素 $b \in S$,若

- R 爲加法 $+_S$,則 b 爲加法反元素 (Additive inverse),此時 b 記爲 -a。
- \mathcal{R} 爲乘法 \cdot_{S} ,則 b 爲乘法反元素 (Multiplicative inverse),此時 b 記爲 a^{-1} 。

註. 同樣地,-a 和 a^{-1} 只是單純的符號,不要和減法與倒數搞混。

定義 1.33 (連加記號). 若一個封閉的代數結構 $(S, +_S)$ 的二元運算爲加法 $+_S$,且滿足以下條件:

- 有單位元素 0g
- 對所有 $a \in S$ 有反元素 -a
- ,則定義連加記號 ka, $k ∈ \mathbb{Z}$:
 - 1. k = 0 時, $0a = 0_S$
 - 2. k > 0 **F**, $ka = a +_S (k-1)a$
 - 3. k < 0 時,

六、 其他性質

定義 1.34 (連乘). 在一個封閉的代數結構 (S,\mathcal{R}) 中,對所有 $a \in S$ 定義 a^k , $k \in \mathbb{Z}^+$:

- 1. 若 k=1,則 $a^k=a^1=a$
- 2. 若 k>1,則 $a^k=a\mathcal{R}a^{k-1}$

定義 1.35 (幂等元素與幂等律). 一個封閉的代數結構 (S, \mathcal{R}) 中,若有 $a \in S$,使得 $a\mathcal{R}a = a$,則 a 稱爲幂等元素 (Idempotent element)。若所有 $a \in S$ 都是幂等元素,則稱二元運算 \mathcal{R} 在 S 上滿足幂等律 (Idempotent)。

定義 1.36 (幂零律). 一個封閉的代數結構 (S, \mathcal{R}) 中,若對於所有 $a \in S$,使得 $a\mathcal{R}a = a$,則稱二元運算 \mathcal{R} 對 S 滿足幂等律 (Idempotent)。

第三節 同態與同構

習題

- 1. 定義一個在 \mathbb{Z} 上二元運算 \diamondsuit ,對所有 $x,y \in \mathbb{Z}$,使得 $x \diamondsuit y = 3x + y 4$ 。問 $((7 \diamondsuit 5) \diamondsuit 3) 7 \diamondsuit (5 \diamondsuit 3)$?
- 2. 證明定理 1.18。
- 3. 證明定理 1.19。
- 4. 證明定理 1.20 第 2b 項。
- 5. 證明定理 1.22。
- 6. 證明定理 1.23。
- 7. 證明性質 1.25。
- 8. 證明定理 1.29 右消去律部分。
- 9. 證明定理 1.30 (←) 部分。
- 10. 一封閉的代數結構 (S,\mathcal{R}) 有交換律,試證明:
 - (a) 若 \mathcal{R} 有左單位元素 e_l ,則單位元素存在
 - (b) 對所有 $a \in S$ 都有左反元素 b_1 ,則反元素存在
- 11. 一個封閉的代數結構 (S, \mathcal{R}) 满足以下條件:
 - 有結合律
 - 有左單位元素 e₁
 - 對所有 $a \in S$ 都有左反元素

則 R 在 S 上有左消去律。

第一部分群論

第二章

群

第一節 定義與性質

定義 2.1 (群). 一個代數結構 (G, \cdot_G) 被稱爲群 (Group),滿足以下條件:

- (G1) 有封閉律,對於所有 $a,b \in G$, $a \cdot_G b \in G$
- (G2) 有結合律,對於所有 $a,b,c \in G$, $(a \cdot_G b) \cdot_G c = a \cdot_G (b \cdot_G c)$
- (G3) 有單位元素 $e \in G$,使得所有 $a \in G$, $e \cdot_G a = a \cdot_G e = a$
- (G4) 對於每個元素 $a \in G$ 都有反元素 $b \in G$,使得 $a \cdot_G b = b \cdot_G a = e$

此時·G 稱爲群乘法。

性質 2.2 (群的性質). 若 (G, \cdot_G) 爲一個群,則有以下性質:

- 1. 單位元素唯一。
- 2. 對於所有 $a \in G$, 其反元素唯一。

證明

- 1. 根據定理 1.15 得證。
- 2. 根據定理 1.19 得證。

定義 2.3 (符號簡化). 若一個群 G 的二元運算爲群乘法 \cdot_G ,則我們可對符號簡化:

- 1. 對於所有 $a,b \in G$, $a \cdot_G b \Leftrightarrow ab$ 。
- 2. 對於所有 $a \in G$, 其反元素記爲 a^{-1} 。

CHAPTER 2. 群

3. 定義群連乘 a^k , $k \in \mathbb{Z}$:

(a)
$$k = 0$$
 時, $a^k = a^0 = e$

(b)
$$k > 0$$
 時, $a^k = a \cdot_C a^{k-1} = aa^{k-1}$

(c)
$$k < 0$$
 時, $a^k = a^{-1} \cdot_G a^{k+1} = a^{-1}a^{k+1}$

性質 2.4. 若 (G, \cdot_G) 爲一個群,對於所有 $a, b \in G$,則有以下性質:

1.
$$(a^{-1})^{-1} = a$$

2.
$$(ab)^{-1} = b^{-1}a^{-1}$$

註. $(a^{-1})^{-1}$ 應理解爲「 a^{-1} 的反元素」。

證明

1. 我們知道 a^{-1} 是 a 的反元素,且 $(a^{-1})^{-1}$ 也是 a^{-1} 的反元素,根據群的定義 (G4),我們知道

$$a^{-1}a = aa^{-1} = e$$

 $(a^{-1})^{-1}a^{-1} = a^{-1}(a^{-1})^{-1} = e$

因此

$$a = ea$$
 群的定義 (G3)
 $= ((a^{-1})^{-1}a^{-1})a$ $(a^{-1})^{-1}a^{-1} = e$
 $= (a^{-1})^{-1}(a^{-1}a)$ 群的定義 (G2)
 $= (a^{-1})^{-1}e$ $a^{-1}a = e$
 $= (a^{-1})^{-1}$ 群的定義 (G3)

2. 做爲習題。

性質 2.5 (群的消去律). 若 (G, \cdot_G) 爲一個群,則 G 滿足消去律。即對於所有 $a, b, c \in G$,若

1.
$$ab = ac$$
, 則 $b = c$

$$2. ba = ca$$
,則 $b = c$

證明 根據定理 1.29 得證。

定理 2.6. 若 (G, \cdot_G) 爲一個群,則對於任意 $a, b \in G$,x, y 是未知數,ax = b 和 ya = b 存在唯一解。

證明 由定理
$$1.30$$
 可知唯一解爲 $x = a^{-1}b$ 且 $y = ba^{-1}$ 。

CHAPTER 2. 群

第二節 子群