Departamento de Matemática	Universidade do Minho	
Tópicos de Matemática	1º teste − 12 out 2023 duração: 1h45m	
Lic. em Ciências de Computação - 1º ano		
Nome	lúmero	
Grupo 1. [10 valores] Em cada uma das questões seguintes, diga se é verdadeira (V) ou falsa (Fa opção conveniente:	-) a proposição, assinalando	
1.1. $453 \times 43x = 197951 \vee 2 + 3 = 5$ é uma proposição.	V□ F⊠	
1.1. $453 \times 437 = 197961 \vee 2 + x = 6$ é uma proposição.	V□ F⊠	
$1.1.\ 453\times437=197951\vee2+3=6$ é uma proposição.	V⊠ F□	
1.2. Se hoje é dia 11 de outubro, amanhã é dia 13 de outubro.	V⊠F□	
1.2. Amanhã é dia 13 de outubro, se hoje é dia 11 de outubro.	V⊠ F□	
1.2. Se hoje é dia 11 de outubro, ontem foi dia 9 de outubro.	V⊠ F□	
Observação: O teste foi no dia 12 e, por isso, a proposição "hoje é dia 11 de outubro" é fals	sa.	
1.3. Há proposições p e q para as quais $(p \lor \sim p) \Rightarrow (q \land \sim q)$ é verdadeira.	V□ F⊠	
1.3. Há proposições p e q para as quais $(p \wedge \sim p) \Rightarrow (q \vee \sim q)$ é falsa.	V□F⊠	
1.3. Há proposições p e q para as quais $(p \wedge \sim p) \Rightarrow (q \vee \sim q)$ é verdadeira.	V⊠F□	
1.4. Para quaisquer proposições p e q , se $p \Rightarrow q$ é uma tautologia, o seu contrarrecíproco é uma contradição.	V□ F⊠	
1.4. Para quaisquer proposições p e q , se $p \wedge q$ é uma contradição então $p \Leftrightarrow \sim q$ é uma tautologia.	V□ F⊠	
1.4. Para quaisquer proposições p e q , se $p\Rightarrow q$ é uma tautologia, o seu recíproco é uma contradição.	V□ F⊠	
1.5. Dada a condição $p(x,y)$, com o conjunto D como domínio de variação de x e y , negar que " $\forall x \in D, \exists y \in D: p(x,y)$ " é o mesmo que afirmar que " $\exists x \in D: \forall y \in D, \sim p(x,y)$ ")". V⊠ F□	
1.5. Dada a condição $p(x,y)$, com o conjunto D como domínio de variação de x e y , negar que " $\exists x \in D: \forall y \in D, p(x,y)$ " é o mesmo que afirmar que " $\exists y \in D: \forall x \in D, \sim p(x,y)$ ")". V□ F⊠	
1.5. Dada a condição $p(x,y)$, com o conjunto D como domínio de variação de x e y , negar que " $\exists x \in D: \forall y \in D, p(x,y)$ " é o mesmo que afirmar que " $\exists y \in D: \forall x \in D, p(y,x)$ "	. V□ F⊠	
1.6. Se $t(x)$ é uma condição universal e $i(x)$ é uma condição impossível no domínio de variação de x , então, $(p(x) \wedge t(x)) \Rightarrow i(x)$ é uma condição universal no mesmo domínio.	V□ F⊠	
1.6. Se $t(x)$ é uma condição universal e $i(x)$ é uma condição impossível no domínio de variação de x , então, $(p(x) \wedge i(x)) \Rightarrow t(x)$ é uma condição universal no mesmo domínio.	V⊠F□	
1.6. Se $t(x)$ é uma condição universal e $i(x)$ é uma condição impossível no domínio de		

variação de x, então, $(p(x) \lor i(x)) \Rightarrow t(x)$ é uma condição universal no mesmo domínio.

1.7. O argumento "Alguns alunos aprovaram à unidade curricular. Todos os alunos estudaram. Logo, todos os alunos que aprovaram à unidade curricular estudaram." é válido.

1.7. O argumento "Alguns alunos estudaram. Alguns alunos aprovaram à unidade curricular. Logo, alguns alunos que estudaram aprovaram à unidade curricular." é válido.

1.7. O argumento "Alguns alunos estudaram. Alguns alunos passaram à unidade curricular. Logo, todos os alunos que estudaram passaram à unidade curricular." é válido.

V⊠ F□

V⊠ F□

V□ F⊠

V□ F⊠

1.8.	$\mbox{O argumento} \begin{array}{c} p \vee q \\ q \Rightarrow r \\ \hline r \\ \hline \end{array}$	é válido.				V□ F⊠
1.8.	O argumento $ \frac{ \begin{array}{c} p \lor q \\ q \Rightarrow \sim r \\ \hline r \\ \hline \end{array} }{p}$	é válido. –				V⊠F□
1.8.	$ \text{O argumento} \begin{array}{c} p \lor \sim q \\ q \Rightarrow r \\ \hline r \\ \hline p \end{array} $	é válido. –				V□ F⊠
1.9.	Afirmar que $3+5^2\neq 0$ é uma proposição verda		provar que " $\exists x \in \mathbb{R}$	$\mathbb{R}, 3 + x^2 \neq 0$ "		V⊠ F□
1.9.	Afirmar que $3+5^2\neq 0$ é uma proposição falsa		provar que " $\forall x \in \mathbb{R}$	$\mathbb{R}, 3 + x^2 = 0$		V⊠F□
1.9.	Afirmar que $3 + 5^2 \neq 0$ é uma proposição verda	•	provar que " $\forall x \in \mathbb{R}$	$\mathbb{R}, 3 + x^2 \neq 0$ "		V□ F⊠
1.10.	Para qualquer condição	o $p(n)$, em \mathbb{N} , se j	p(n) é hereditária, e	então, $p(n)$ é universal.		V□ F⊠
1.10.	Para qualquer condição	$p(n)$, em \mathbb{N} , se n	p(n) é universal, en	tão, $p(n)$ é hereditária.		V⊠ F□
1.10.	Para qualquer condição	$p(n)$, em \mathbb{N} , se	p(n) não é hereditá	ria, então, $p(n)$ não é ${\mathfrak l}$	iniversal.	V⊠F□
Grup	Grupo 2. [5 valores] Em cada uma das questões seguintes, assinale a(s) opção(ões) correta(s):					
2.1.	Suponha que o Joaquin proposições são verdad Se gosta de gin, o Jo O Joaquim só gosta O Joaquim gosta de O Joaquim gosta de	eiras? oaquim gosta de de vinho se gosta cerveja e de gin	sangria e de gin. a de cerveja. ou o Joaquim gosta		gosta de gin. Quais d	as seguintes
2.1.	 Suponha que o Joaquim gosta de cerveja, não gosta de vinho, gosta de sangria e não gosta de gin. Quais das seguintes proposições são verdadeiras? □ O Joaquim gosta de cerveja e de gin ou o Joaquim gosta de vinho e de sangria. ⋈ O Joaquim só gosta de gin se gosta de cerveja. ⋈ O Joaquim gosta de cerveja se e só se gosta de sangria. ⋈ Se gosta de vinho, o Joaquim gosta de sangria e de vinho. 					
2.1.	 Suponha que o Joaquim gosta de cerveja, não gosta de vinho, gosta de sangria e não gosta de gin. Quais das seguintes proposições são verdadeiras? □ O Joaquim gosta de cerveja e de gin ou o Joaquim gosta de vinho e de sangria. ☒ O Joaquim gosta de vinho se e só se gosta de gin. ☒ Se gosta de gin, o Joaquim gosta de sangria e de gin. ☒ O Joaquim só gosta de vinho se gosta de cerveja. 					
2.2.		aiasa falaa amtsa	são verdadeiras as	proposições:		
	Se $a \Rightarrow b$ é uma propos	sição faisa, eficao				
			$leepsilon a \lor \sim b$	$\square \sim b \wedge \sim a$	$\boxtimes b \Rightarrow a$	
2.2.		$\boxtimes a \land \sim b$			$\boxtimes b \Rightarrow a$	
2.2.	Se $a \Leftrightarrow b$ é uma propos	$oxed{\boxtimes} a \wedge \sim b$ sição verdadeira,	então são verdadeir		$\boxtimes b \Rightarrow a$ $\boxtimes b \Rightarrow a$	
	Se $a \Leftrightarrow b$ é uma propos	$igtimes a \wedge \sim b$ sição verdadeira, $igtharpoonup a \wedge \sim b$	então são verdadeir $oxtimes aee \sim b$	as as proposições: $\square \ \sim b \wedge \sim a$		

2.3.	Negar que "todos os animais não falam" é o mesmo que afirmar que:				
	 □ Todos os animais falam. □ Existe pelo menos um animal que não fala. □ Existem pelo menos dois animais que falam. 				
2.3.	Negar que "todos os animais falam" é o mesmo que afirmar que:				
	 □ Existem pelo menos dois animais que não falam. □ Existe pelo menos um animal que fala. □ Todos os animais não falam. 				
2.3.	Negar que "todos os animais não falam" é o mesmo que afirmar que:				
	☑ Há animais que falam.☐ Existem pelo menos dois animais que falam.☐ Todos os animais falam.☐ Existe pelo menos um animal que não fala.				
2.4.	Considere as condições $p(x)$: " x tem cor verde" e $q(x)$: " x está maduro", onde o conjunto de variação de x é o conjunto dos frutos. A proposição "Uma condição necessária para o fruto estar maduro é não ter cor verde" pode ser traduzida por:				
	$\square \ p(x) \Leftrightarrow \sim q(x). \qquad \qquad \square \ p(x) \Rightarrow q(x). \qquad \qquad \square \ \sim q(x) \Rightarrow p(x). \qquad \qquad \boxtimes \ p(x) \Rightarrow \sim q(x).$				
2.4.	Considere as condições $p(x)$: " x tem cor verde" e $q(x)$: " x está maduro", onde o conjunto de variação de x é o conjunto dos frutos. A proposição "Uma condição necessária para o fruto não estar maduro é ter cor verde" pode ser traduzida por:				
	$\square \ p(x) \Rightarrow q(x). \qquad \qquad \boxtimes \ \sim q(x) \Rightarrow p(x). \qquad \qquad \square \ p(x) \Leftrightarrow \sim q(x). \qquad \qquad \square \ p(x) \Rightarrow \sim q(x).$				
2.4.	Considere as condições $p(x)$: " x tem cor verde" e $q(x)$: " x está maduro", onde o conjunto de variação de x é o conjunto dos frutos. A proposição "Uma condição suficiente para o fruto não estar maduro é ter cor verde" pode ser traduzida por:				
	$\square \ p(x) \Rightarrow q(x). \qquad \qquad \square \ p(x) \Rightarrow \sim q(x). \qquad \qquad \square \ p(x) \Leftrightarrow \sim q(x). \qquad \qquad \square \ \sim q(x) \Rightarrow p(x).$				
2.5.	Sobre uma condição heriditária $p(n)$, em $\mathbb N$, sabe-se que $p(6)$ é uma proposição falsa. Pode-se afirmar que:				
	$\boxtimes p(5)$ é uma proposição falsa. $\square p(5)$ pode ser uma proposição verdadeira. $\square p(7)$ é uma proposição falsa. $\boxtimes p(k)$ é uma proposição falsa, para todo $k \in \{1,2,3,4,5\}$.				
2.5.	Sobre uma condição heriditária $p(n)$, em $\mathbb N$, sabe-se que $p(8)$ é uma proposição falsa. Pode-se afirmar que:				
Grup	o 3. [5 valores] Responda a cada uma das questões, de forma detalhada e justificada.				
3.1.	Sejam $p,\ q$ e r proposições. Prove, por redução ao absurdo, que				
	$[(p \lor q) \land (p \implies r) \land (q \implies r)] \implies r$				
	é uma tautologia.				
	Para provarmos por redução ao absurdo que a implicação é verdadeira para todos os valores de verdade de $p,\ q$ e r , começamos por supor que a implicação é falsa para algum desses valores, ou seja, começamos por supor que temos				
	$[(p \lor q) \land (p \implies r) \land (q \implies r)] \land \sim r.$				
	Mas, $[(p \vee q) \wedge (p \implies r) \wedge (q \implies r)] \wedge \sim r$				
	é logicamente equivalente a				

 $(p \vee q) \wedge (\sim p \vee r) \wedge (\sim q \vee r) \wedge \sim r,$

que é logicamente equivalente a

$$(p \lor q) \land [(\sim p \land \sim q) \lor r] \land \sim r,$$

que é logicamente equivalente a

$$(p \lor q) \land [(\sim p \land \sim q \land \sim r) \lor (r \land \sim r)],$$

que é logicamente equivalente a

$$(p \lor q) \land \sim (p \lor q) \land \sim r,$$

que é uma contradição (absurdo). A contradição resulta de supormos que a implicação dada é falsa para alguns valores de verdade de p, q e r, pelo que podemos concluir que a implicação dada é verdadeira para todos os valores de verdade de p, q e r, ou seja, é uma tautologia.

3.1. Sejam p, q e r proposições. Prove, por redução ao absurdo, que

$$[p \implies (q \implies r)] \implies [(p \implies q) \implies (p \implies r)]$$

é uma tautologia.

Para provarmos por redução ao absurdo que a implicação é verdadeira para todos os valores de verdade de p, q e r, começamos por supor que a implicação é falsa para algum desses valores, ou seja, começamos por supor que temos

$$[p \implies (q \implies r)] \land \sim [(p \implies q) \implies (p \implies r)].$$

Mas,

$$[p \implies (q \implies r)] \land \sim [(p \implies q) \implies (p \implies r)]$$

é logicamente equivalente a

$$[p \implies (q \implies r)] \land [(p \implies q) \land \sim (p \implies r)],$$

que é logicamente equivalente a

$$[\sim p \lor (\sim q \lor r)] \land [(\sim p \lor q) \land (p \land \sim r)].$$

que é logicamente equivalente a

$$(\sim p \lor \sim q \lor r) \land [(\sim p \land p \land \sim r) \lor (q \land p \land \sim r)],$$

que é logicamente equivalente a

$$(\sim p \lor \sim q \lor r) \land (q \land p \land \sim r),$$

que é logicamente equivalente a

$$(\sim p \lor \sim q \lor r) \land \sim (\sim q \lor \sim p \lor r),$$

que é uma contradição (absurdo). A contradição resulta de supormos que a implicação dada é falsa para alguns valores de verdade de p, q e r, pelo que podemos concluir que a implicação dada é verdadeira para todos os valores de verdade de p, q e r, ou seja, é uma tautologia.

3.2. Usando indução matemática, prove que, para todo $n \in \mathbb{N}$, $\sum_{k=0}^{n} (2 \cdot 3^k) = 3^{n+1} - 1$.

Começamos por verificar o caso base: para n=1 temos que

$$\sum_{k=0}^{1} (2 \cdot 3^{k}) = (2 \times 3^{0}) + (2 \times 3^{1}) = 2 + 6 = 8 = 3^{2} - 1$$

Podemos, por isso, concluir que a igualdade é verdadeira para n=1.

De seguida, supondo que $n \in \mathbb{N}$ é tal que $\sum_{k=0}^n (2 \cdot 3^k) = 3^{n+1} - 1$, queremos provar que $\sum_{k=0}^{n+1} (2 \cdot 3^k) = 3^{n+2} - 1$.

De facto, temos

$$\sum_{k=0}^{n+1} (2 \cdot 3^k) = \sum_{k=0}^{n} (2 \cdot 3^k) + 2 \times 3^{n+1}$$
$$= 3^{n+1} - 1 + 2 \times 3^{n+1}$$
$$= 3 \times 3^{n+1} - 1$$
$$= 3^{n+2} - 1$$

Aplicando o princípio de indução matemática, concluímos que $\sum_{k=0}^n (2\cdot 3^k) = 3^{n+1} - 1$, para todo $n\in\mathbb{N}$.

3.2. Usando indução matemática, prove que, para todo $n \in \mathbb{N}$, $\sum_{k=1}^{n} (k \cdot k!) = (n+1)! - 1$.

Começamos por verificar o caso base: para n=1 temos que

$$\sum_{k=1}^{1} (k \cdot k!) = 1 \times 1! = 1 = 2! - 1$$

Podemos, por isso, concluir que a igualdade é verdadeira para n=1.

De seguida, supondo que $n \in \mathbb{N}$ é tal que $\sum_{k=1}^{n} (k \cdot k!) = (n+1)! - 1$, queremos provar que $\sum_{k=1}^{n+1} (k \cdot k!) = (n+2)! - 1$.

De facto, temos

$$\sum_{k=1}^{n} (k \cdot k!) = \sum_{k=1}^{n} (k \cdot k!) + (n+1)(n+1)!$$
$$= (n+1)! - 1 + (n+1)(n+1)!$$
$$= (1+n+1)(n+1)! - 1$$
$$= (n+2)! - 1$$

Aplicando o princípio de indução matemática, concluímos que $\sum_{k=1}^n (k \cdot k!) = (n+1)! - 1$, para todo $n \in \mathbb{N}$.

3.2. Usando indução matemática, prove que, para todo o natural $n \ge 2$, $\sum_{k=1}^{n} (2k-3) = n(n-2)$.

Começamos por verificar o caso base: para $n=2\ {\rm temos}\ {\rm que}$

$$\sum_{k=1}^{2} (2k-3) = (2 \times 1 - 3) + (2 \times 2 - 3) = -1 + 1 = 0 = 2(2-2)$$

Podemos, por isso, concluir que a igualdade é verdadeira para n=2.

De seguida, supondo que $n \in \mathbb{N}$ é tal que $n \ge 2$ e $\sum_{k=1}^{n} (2k-3) = n(n-2)$, queremos provar que $\sum_{k=1}^{n+1} (2k-3) = (n+1)(n-1)$.

De facto, temos

$$\sum_{k=1}^{n+1} (2k-3) = \sum_{k=1}^{n} (2k-3) + (2(n+1)-3)$$
$$= n(n-2) + (2n-1)$$
$$= 3 \times n^2 - 1$$
$$= (n+1)(n-1)$$

Aplicando o princípio de indução matemática, concluímos que $\sum_{k=1}^{n}(2k-3)=n(n-2)$, para todo o natural $n\geq 2$.