1 The case $x^4+y^4=z^4$ and Sophie Germain's Theorem

Satz 1 (1.Satz von Sophie Germain). Ist p Prim und $a \in \mathbb{N}$ teilerfremd zu p, so gilt:

$$a^{p-1} \equiv 1 \pmod{p}$$

Definition 2. Eine Primzahl p heisst <u>Sophie-Germain-Primzahl</u> (SGP), wenn sie ungerade ist und auch q = 2p + 1 eine Primzahl ist.

Beispiel 3. p=3 und $q=7 \rightarrow 3 \in SGP$ p=7 und q=15, $q \notin Prim \rightarrow 7 \notin SGP$

Theorem 4. Sei p eine SGP. Dann gibt es keine Lösung der Gleichung

$$x^p + y^p + z^p = 0$$

für $x, y, z \in \mathbb{Z}$ mit $p \nmid xyz$ und x, y, z paarweise teilerfremd.

Beweis. Sei q = 2p + 1, (x, y, z) eine nichttriviale Lösung.

Aus
$$x^p + y^p + z^p = 0 \Rightarrow x^p + y^p = -z^p = xy^{p-1} - x^2y^{p-2} + \dots - x^{p-1}y + x^p + y^p - xy^{p-1} + x^2y^{p-2} + \dots + x^{p-1}y = x(y^{p-1} - xy^{p-2} + \dots + x^{p-1}) + y(y^{p-1} - xy^{p-2} + \dots + x^{p-1}) = (x+y)\underbrace{(y^{p-1} - xy^{p-2} + \dots + x^{p-1})}_{\text{wegen } p \nmid z \text{ gilt } p \nmid (x+y).$$

Sei r eine Primzahl des ggT von (x+y) und α . Dann gilt $r \neq p$ und $x \equiv -y \pmod{r}$, weil $p \nmid (x+y)$ und $r \mid (x+y)$.

Daher gilt:
$$0 \equiv y^{p-1} - xy^{p-2} + \dots + x^{p-1} \pmod{r}$$
$$\equiv y^{p-1} - (-y)y^{p-2} + \dots + (-y)^{p-1}$$
$$\equiv y^{p-1} + y^{p-1} + \dots + y^{p-1} \pmod{1}$$
$$0 \equiv py^{p-1} \pmod{r} \Leftrightarrow r|py^{p-1} \pmod{r} \nmid p$$
$$\Rightarrow r|y \pmod{r} \pmod{r|y \text{ folgt } r|x}$$
$$\Rightarrow r|z \text{ WIDERSPRUCH!!!!}$$

 $(-y)^p = x^p + y^p \text{ und } (-x)^p = y^p + z^p \text{ analog.}^1$

$$q = 2p + 1 \Rightarrow q - 1 = 2p \text{ so } a^{q-1} = \begin{cases} 1 \pmod{q}, & q \nmid a, \\ 0 \pmod{q}, & q \nmid a, q \mid a. \end{cases} \dots$$

Für q > 3 gilt: $x^p + y^p + z^p = 0 \equiv 0 \pmod{q}$

- $q|2x = x + y + x + z y z = a^p + b^p c^p \equiv \pmod{q}$
- $q|x|a^p = x + y$ wenn $q|a^p \Rightarrow q|y$ WIDERSPRUCH! $\Rightarrow q|c^p$

Lösung: Primfaktorzerlegung

¹Frage: Warum $x + y = a^p$ für ein $a, t \in \mathbb{Z}$?

1 THE CASE $X^4 + Y^4 = Z^4$ AND SOPHIE GERMAIN'S THEOREM

$$\bullet \ q | (a^p + b^p) = (x + y + x + z) = (2x + y + z) \Rightarrow y + z \equiv 0 \pmod{q}$$

$$s^p = z^{p-1} - yz^{p-2} + \dots + y^{p-1} | y \equiv -z \pmod{q} = py^{p-1} \pmod{q}$$

$$s^p \equiv \pm 1 \pmod{q}, q \nmid y.$$

$$py^{p-1} \equiv \pm 1 \pmod{q}$$

$$(-z)^p = (x + y)t^p \text{ und } \pm 1 \equiv y^p \equiv yt^p \pmod{q} \text{ mit } q \nmid y$$

$$q = 2p + 1 \Rightarrow p \not\equiv \pm 1 \pmod{q}$$

By Kevin Ondo at 11. November 2011