Enzyme kinetic parameters prediction

Interns: Bowei, Pin-Chi

Mentor: Cheng Wang

July 29, 2025

Outline

- Background & Aims
- Methods
- Results
- Future Work
- Reflection

Background & Aims

Background

- Why It Matters
 - Lab tests are slow and costly, hard to measure
 - Prediction can guide wet-lab work

CatPred: a comprehensive framework for deep learning in vitro enzyme kinetic parameters

Background

- Predict enzyme reactivity and product
- It can help us to understand the reaction without experiment

Parameter	Unit	Meaning	Biological Interpretation
kcat	S ⁻¹	Turnover number: number of substrate molecules converted per second per enzyme active site	Enzyme speed
Km	M, mM, μM	Michaelis constant: substrate concentration at half-maximal velocity (Vmax/2)	Substrate affinity
Ki	M, µM	Inhibition constant: binding affinity between enzyme and inhibitor	Inhibitor strength

Aims

- 1. Which regression models is the best for enzyme reactivity prediction?
- 2. What if test set has new proteins/molecules? (cold-protein/cold-molecule)
- 3. Can we predict kinetic parameters of mutant enzyme?
 - What's new
 - new splitting methods
 - mutant enzyme
 - embedding method

Methods

Methods: Overview

Methods: Data

Methods: Data

Methods: embedding

- 3 splitting methods
- 10 models
- 7+1 metrics

3 splitting methods

- random
- cold protein: to ensure validation and test protein are unseen in training
- cold molecule: to ensure validation and test molecule are unseen in training

purpose: to evaluate model generalizability under different biological scenarios

10 models

3 splitting methods: random, cold protein, cold molecule

10 models

Metric	Formula	Meaning			
MAE	$\frac{1}{n}\sum_{i=1}^{n} y_i-\hat{y}_i $	reflects prediction accuracy; lower is better			
MSE	$rac{1}{n}\sum_{i=1}^n (y_i-\hat{y}_i)^2$	reflects prediction accuracy; lower is better			
RMSE	$\sqrt{rac{1}{n}\sum_{i=1}^n(y_i-\hat{y}_i)^2}$	reflects prediction accuracy; lower is better			
Median Absolute Error	median $(y_1 - \hat{y}_1 ,, y_n - \hat{y}_n)$	reflects prediction accuracy; lower is better			
Pearson	$rac{\sum (y_i - ar{y})(\hat{y}_i - ar{\hat{y}})}{\sqrt{\sum (y_i - ar{y})^2 \sum (\hat{y}_i - ar{\hat{y}})^2}}$	reflects prediction trend; closer to ±1 is better			
R²	$1-rac{\sum (y_i-\hat{y}_i)^2}{\sum (y_i-ar{y})^2}$	reflects explanatory power; higher is better			
Explained Variance	$1 - rac{\mathrm{Var}(y - \hat{y})}{\mathrm{Var}(y)}$	reflects explanatory power; higher is better			

Metric	Formula	Meaning			
MAE	$\frac{1}{n}\sum_{i=1}^{n} y_i-\hat{y}_i $	reflects prediction accuracy; lower is better			
MSE	$rac{1}{n}\sum_{i=1}^n (y_i-\hat{y}_i)^2$	reflects prediction accuracy; lower is better			
RMSE	$\sqrt{rac{1}{n}\sum_{i=1}^n(y_i-\hat{y}_i)^2}$	reflects prediction accuracy; lower is better			
Median Absolute Error	median $(y_1 - \hat{y}_1 ,, y_n - \hat{y}_n)$	reflects prediction accuracy; lower is better			
Pearson	$rac{\sum (y_i - ar{y})(\hat{y}_i - ar{\hat{y}})}{\sqrt{\sum (y_i - ar{y})^2 \sum (\hat{y}_i - ar{\hat{y}})^2}}$	reflects prediction trend; closer to ±1 is better			
R²	$1-rac{\sum (y_i-\hat{y}_i)^2}{\sum (y_i-ar{y})^2}$	reflects explanatory power; higher is better			
Explained Variance	$1 - rac{\mathrm{Var}(y - \hat{y})}{\mathrm{Var}(y)}$	reflects explanatory power; higher is better			

Metric	Formula	Meaning			
MAE	$\frac{1}{n}\sum_{i=1}^{n} y_i-\hat{y}_i $	reflects prediction accuracy; lower is better			
MSE	$rac{1}{n}\sum_{i=1}^n (y_i-\hat{y}_i)^2$	reflects prediction accuracy; lower is better			
RMSE	$\sqrt{rac{1}{n}\sum_{i=1}^n(y_i-\hat{y}_i)^2}$	reflects prediction accuracy; lower is better			
Median Absolute Error	median $(y_1 - \hat{y}_1 ,, y_n - \hat{y}_n)$	reflects prediction accuracy; lower is better			
Pearson	$rac{\sum (y_i - ar{y})(\hat{y}_i - ar{\hat{y}})}{\sqrt{\sum (y_i - ar{y})^2 \sum (\hat{y}_i - ar{\hat{y}})^2}}$	reflects prediction trend; closer to ±1 is better			
R²	$1-rac{\sum (y_i-\hat{y}_i)^2}{\sum (y_i-ar{y})^2}$	reflects explanatory power; higher is better			
Explained Variance	$1 - rac{\mathrm{Var}(y - \hat{y})}{\mathrm{Var}(y)}$	reflects explanatory power; higher is better			

7+1 metrics

Rank Score: sort model performance for each metric to determine their rank, then sum the ranks across different splitting methods to calculate the rank score

Metric	Formula	Meaning
MAE	$\frac{1}{n}\sum_{i=1}^{n} y_i-\hat{y}_i $	reflects prediction accuracy; lower is better
MSE	$rac{1}{n}\sum_{i=1}^n (y_i-\hat{y}_i)^2$	reflects prediction accuracy; lower is better
RMSE	$\sqrt{rac{1}{n}\sum_{i=1}^n(y_i-\hat{y}_i)^2}$	reflects prediction accuracy; lower is better
Median Absolute Error	$median(y_1 - \hat{y}_1 ,, y_n - \hat{y}_n)$	reflects prediction accuracy; lower is better
Pearson	$rac{\sum (y_i - ar{y})(\hat{y}_i - ar{\hat{y}})}{\sqrt{\sum (y_i - ar{y})^2 \sum (\hat{y}_i - ar{\hat{y}})^2}}$	reflects prediction trend; closer to ±1 is better
R²	$1-rac{\sum (y_i-\hat{y}_i)^2}{\sum (y_i-ar{y})^2}$	reflects explanatory power; higher is better
Explained Variance	$1 - rac{\mathrm{Var}(y - \hat{y})}{\mathrm{Var}(y)}$	reflects explanatory power; higher is better

Results

Results

Result: Enzyme class distribution overview

- Enzyme Commission Number, or EC Number
- Each EC Number has four parts. (e.g., EC 1.1.1.1).

Results: Model performances

Rank score of ML and DL models

model	Catpred_kcat	Catpred_Km	Catpred_Ki	inhouse_Kd
MLP	45	45	50	66
Random Forest	57	77	79	29
CatBoost	69	75	102	91
Diffusion Model	93	108	57	117
Transformer	120	66	101	116
XGB	125	120	139	90
CNN	142	141	148	143
GBM	159	185	162	146
SVR	184	155	157	195
Linear Regression	201	209	210	204

model	DLKcat	ensemble	RF	CatBoost	MLP	XGB	Transfor mer	Diffusion Model	CNN	GBM	SVR	LR	Catpred
Rank Score	21	56	58	91	108	132	157	160	186	190	241	255	256

cold mols - RMSE Performance Comparison

DLKcat performed the best across different splitting methods in the in-house dataset

Catpred exhibited poor predictive performance on the in-house dataset

Results: Catpred dataset

model	Catpred	ensemble	MLP	RF	CatBoost	Transfor mer	Diffusion Model	XGB	CNN	GBM	SVR	LR	DLkcat
kcat	21	48	84	98	111	120	135	167	184	201	226	243	273
Km	28	45	84	119	117	66	150	162	183	227	197	251	-
Ki	21	56	84	121	102	141	95	181	190	204	199	252	-

Results: Catpred dataset (take kcat as an example)

Results: Catpred dataset (take kcat as an example)

Catpred performed the best across different splitting methods in resplit Catpred dataset

Results: Catpred dataset (take kcat as an example)

Catpred achieved better performance on the resplit dataset compared to the original study

- → cause: data leakage
- → solution: retrain Catpred model using in-house and resplit Catpred dataset

Boorla, V.S., Maranas, C.D. CatPred: a comprehensive framework for deep learning in vitro enzyme kinetic parameters. *Nat Commun* 16, 2072 (2025).

Results: Initial results show good prediction performance

- random split
- inhouse dataset
- 95%(5% outlier)
- model=RF

Bo-Wei

Results: Performance in isomerase need to be improved

0.131 =

 isomerase have most outlier

Results: t-SNE projection of enzyme features

inhouse dataset

What's new

- new splitting methods
- mutant enzyme
- embedding method

Future Work

Future Work

- to retrain SOTA models using wild-type enzyme datasets (in-house and resplit Catpred)
- to develop the model for kinetic parameters prediction of mutant enzyme
- to investigate various protein embedding techniques to enhance the differentiation between wild-type and mutant enzymes in the feature space

Datasets

Next steps and timelines

Task and goals	Dataset and Code	Timelines	Person	Meeting?
Train Catpred/DLcat models on in-house dataset, catpred dataset	in-house datasets; captured datasets;	By 08/30/2025	Pin-chi, Cheng	bi-weekly?
Train Catpred/DLcat models on mutant enzyme dataset (EITLEM, MPEK)	EITLEM datasets; MPEK datasets	By 09/15/2025	Pin-chi, Cheng	
Latent embedding comparison and visualization	Visualization of latent embeddings before (ESM2) and after training (model latent layer) for enzyme datasets	By 08/30/2025	Bo-wei	

Next steps and timelines

Task and goals	Dataset and Code	Timelines	Person	Meeting?
Descriptive Visualization, number of enzymes per class, tools ggplot, or python, high-quality figures	in-house datasets; captured datasets; EITLEM datasets; MPEK datasets	By 08/30/2025	Bo-wei, Cheng	bi-weekly?
error analysis				

Reflection

Reflection: Pin-Chi

- "I've had a lot of worries in my life, most of which never happened."
 - Mark Twain
- "You give a man a fish, he eats for a day; you teach him to fish, he eats forever."
- A lot of... THANKS!!!!!

Reflection: Bowei

- Learned effective data cleaning & prep
- Built a full ML pipeline end-to-end
- Thank Chen for patient guidance