Workspace 'Workspace' in 'lec8'

Page 1 (row 1, column 1)

Module 4: Classification

Lecture 8 Jan 27th, 2023

- Qualitative Predictors (One-hot encoding)
- Interactions (Hierarchy Principle)
- Beyond linearity

Yuying Xie

Classification Problems

Here the response variable Y is qualitative.

Classification Problems

Here the response variable Y is qualitative — e.g. email is one of $\mathcal{C} = (\underline{\mathtt{spam}}, \underline{\mathtt{ham}})$ ham=good email), digit class is one of $\mathcal{C} = \{0, 1, \dots, 9\}$. Our goals are to:

- Build a classifier C(X) that assigns a class label to a feature unlabeled observation X.
- Assess the uncertainty in each classification.

Understand the roles of the different predictors among

$$X = (X_1, X_2, \dots, X_p).$$

How to measure the performance of a classifier in a training dataset Tr?

Training data:

$$\{(x_1,y_1),\cdots,(x_n,y_n)\}$$
 with y_i qualitative

$$y_{nir} = \frac{1}{2} \left(y_{i} - \hat{y}_{i} \right)^{2} = \frac{1}{2} \left(y_{i} - \hat{y}_{i} - \hat{y}_{i} \right)^{2}$$

$$(y_{i} - sex_{i})^{2}$$

Classification: some details

How to measure the performance of a classifier in a training dataset Tr?

Training data:

$$\{(x_1, y_1), \cdots, (x_n, y_n)\}$$
 with y_i qualitative

Can we define it as
$$MSE_{Tr} = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{C}(x_i))^2$$
?

Classification: some details

How to measure the performance of a classifier in a training dataset Tr? We use the misclassification error rate:

$$\operatorname{Error}_{\operatorname{Tr}} = \frac{1}{N} \sum_{i \in \operatorname{Tr}} I[\underline{y_i \neq \hat{C}(x_i)}]$$

 $I[y_i \neq \hat{C}(x_i)]$ is an indicator variable that equals 1 if $y_i \neq \hat{C}(x_i)$ where and 0 otherwise

$$\frac{I(y_i = \hat{c}(x_i)) = 0}{I(y_i \neq \hat{c}(x_i))} = 1$$
Error_{Te}
$$\frac{1}{M} \sum_{i \in \text{Te}} I[y_i \neq \hat{c}(x_i)]$$

As in the regression s associated

$$\mathsf{Te} = \{x_i, y_i\}_1^M$$

with a testing set

Ideal Classifier

- Is there an ideal C(X)?
- Suppose the K elements in \mathcal{C} are numbered 1, 2, ..., K. Let

$$p_k(x) = \Pr(Y = k | X = x), \ k = 1, 2, \dots, K.$$

These are the conditional class probabilities at *x*;

Then the Bayes classifier at
$$x$$
 is $C(x) = j$ if $p_j(x) = \max\{p_1(x), p_2(x), \dots, p_K(x)\}$

Bayes decision Boundary

- Example where we simulated the data, so we know the probability of each
- The purple line is where we switch our predictor, called the Bayes decision boundary

$$Y=D. or I$$

$$C(\underline{\chi}_0)=0$$

$$P(\underline{Y}=1 \mid X=\chi_0) = 0$$

$$C(\underline{\chi}_0)=1$$

$$P(\underline{Y}=0 \mid X=\chi_0) = 0$$

- Example where we simulated the data, so we know the probability of each
- The purple line is where we switch our predictor, called the Bayes decision boundary

Error at
$$X = x_0$$

$$1 - \max_{i} \Pr(Y = j \mid X = x_0)$$

K-nearest neighbors Classifier

Idea: Use similar training points when making predictions

Estimate conditional proability

$$\Pr(Y = j \mid X = x_0) = \frac{1}{K} \sum_{i \in N(x_0)} I(y_i = j)$$

Pick j with highest value

What is/are the parameters? Is it parametric or non-parametric?

Example

Here label is shown by O vs X. What are the knn predictions for points A, B and C for k = 1 or k = 3?

Example

Here label is shown by O vs X. What are the knn predictions for points A, B and C for k = 1 or k = 3?

KNN: K=1

KNN: K=100

KNN: Training and Test Errors

Logistic Regression

 $default \approx f(income, balance)$

Can we use regression?

Regression: $f: X \mapsto \mathbb{R}$

Classification: $C: X \mapsto \{1, 2, 3\}$

But
$$\{1,2,3\} \subseteq \mathbb{R}$$

Do we even need classification?

Yes!

Regression: Values that are close are similar

Classification: Distance of classes is meaningless

Linear Regression for 2-class

Logistic Function

MICHIGAN STATE

Yuying Xie

$$\mathbb{P}[\mathsf{default} = \mathsf{yes} \mid \mathsf{balance}] = \frac{e^{\beta_0 + \beta_1 \mathsf{balance}}}{1 + e^{\beta_0 + \beta_1 \mathsf{balance}}}$$

	Coefficient	Std. error	z-statistic	<i>p</i> -value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

What is the estimated probability of default for someone with a balance of \$1,000?

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 1000}}{1 + e^{-10.6513 + 0.0055 \times 1000}} = 0.006$$

What is the estimated probability of default for someone with a balance of \$2,000:

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 2000}}{1 + e^{-10.6513 + 0.0055 \times 2000}} = 0.586$$