Relations d'équivalence

1. Définitions

a) Relations binaires : soit E un ensemble.

Une relation binaire $\mathcal R$ sur E est la donnée d'une application sur E^2 à valeurs booléennes.

Autrement dit, si x et y sont éléments de E, $x\mathcal{R}y$ peut être vrai ou faux.

Par exemple, les relations =, \iff , \leq , \subset , // sont des relations binaires. Sur quels ensembles?

b) Relations d'équivalence : soit \mathcal{R} une relation binaire sur E.

 \mathcal{R} est appelée **relation d'équivalence** lorsqu'elle vérifie les trois propriétés suivantes :

- (i) \mathcal{R} est **réflexive** : $\forall x \in E, \ x\mathcal{R}x$
- (ii) \mathcal{R} est **transitive**: $\forall (x, y, z) \in E^3$, $(x\mathcal{R}y \text{ et } y\mathcal{R}z) \Longrightarrow (x\mathcal{R}z)$
- (iii) \mathcal{R} est symétrique : $\forall (x,y) \in E^2, \ x\mathcal{R}y \Longrightarrow y\mathcal{R}x$

Exemples de base : =, \iff , $// \sim$ sont des relations d'équivalence.

Exemple 2: si $p \in \mathbb{N}^*$, la relation de congruence modulo $p : a \equiv b \ [p] \iff \exists k \in \mathbb{Z} \ / \ a = b + kp$ est une relation d'équivalence sur \mathbb{N} .

2. Classes d'équivalence

soit \mathcal{R} une relation d'équivalence sur E, et $x \in E$.

a) <u>Définition</u>: on appelle classe d'équivalence de x pour \mathcal{R} l'ensemble des éléments de E en relation avec x:

$$cl(x) = \{ y \in E / x \mathcal{R} y \}$$

On note aussi \bar{x} ou \dot{x} pour la classe d'équivalence de x

Remarque:
$$x \in cl(x)$$
, donc $cl(x) \neq \emptyset$

Exemple : pour la relation de congruence modulo 2, calculer $\mathrm{cl}\left(0\right),\ \mathrm{cl}\left(1\right),\ \mathrm{cl}\left(13\right)$ Même question avec la congruence modulo 3

b) Propriété : les classes d'équivalences forment une partition de E, c'est-à-dire

(i)
$$\forall (x, y) \in E^2$$
, $\operatorname{cl}(x) = \operatorname{cl}(y)$ ou $\operatorname{cl}(x) \cap \operatorname{cl}(y) = \emptyset$

(ii)
$$E = \bigcup_{x \in E} \operatorname{cl}(x)$$

Exemple : les vecteurs. Soit E l'ensemble des couples de points du plan ("bipoints" du plan). On définit dans E la relation (A,B) équipollent à $(C,D) \iff ABDC$ est un parallèlogramme. La relation d'équipollence est une relation d'équivalence, et les classes d'équivalence sont les **vecteurs** du plan.

- c) Systèmes complets de représentants : soit Σ une partie de E vérifiant :
 - (i) Les classes d'équivalence des éléments de Σ sont deux à deux disjointes

(ii)
$$E = \bigcup_{x \in \Sigma} \operatorname{cl}(x)$$

On dit que Σ est un système complet de représentants des classes d'équivalence.

Exemple: si $p \in \mathbb{N}^*$, $\Sigma = \{0, 1, \dots, p-1\}$ forme un système complet de représentants des classes d'équivalence pour la relation de congruence modulo p.

1

3. Exercices:

Exercice 1: soient E et F deux ensembles et u une application de E dans F.

Montrer que la relation $\mathcal R$ définie sur E par :

$$\forall (x, y) \in E^2, \ x \mathcal{R} y \Leftrightarrow u(x) = u(y)$$

est une relation d'équivalence et que pour tout x de E, on a $\operatorname{cl}(x) = u^{-1}\left(\{u(x)\}\right)$

Exercice 2 : soit $\mathcal U$ une partition de l'ensemble E. Montrer que la relation $\mathcal R$ définie par :

$$\forall (x,y) \in E^2, \ x\mathcal{R}y \Leftrightarrow (\exists A \in \mathcal{U} \ / \ x \in A \text{ et } y \in A)$$

est une relation d'équivalence dont les classes sont les éléments de \mathcal{U} .

Exercice 3: sur \mathbb{R} , la relation \mathcal{R} définie par :

$$x\mathcal{R}y \Leftrightarrow x^3 - y^3 = 3(x - y)$$

est-elle une relation d'équivalence ? Si oui, déterminer le nombre d'éléments de la classe de x.