Modeling Difficulty to Understand Deep Learning Performance

John Lalor (1), Hao Wu (2), Hong Yu (1)

(1) University of Massachusetts, (2) Boston College

10 January, 2018

Motivation

- What do we know about how Deep Neural Networks (DNNs) learn?
- One way is by looking at specific outputs for which we have detailed information
 - E.g. probing networks with methods from cognitive psychology¹

¹Ritter et al. Cognitive psychology for deep neural networks: A shape bias case study. *ICML* 2017.

Motivation

Motivation

- In this work we look at difficulty to determine if it has an effect on learning
 - Item Response Theory from Psychometrics²
- Do DNNs learn easy examples differently than harder examples?

²Baker and Kim. *Item Response Theory: Parameter Estimation Techniques,* 2nd Ed. CRC Press. 2014

IRT Introduction

- Psychometric methodology for scale construction and evaluation
- Jointly model individual ability and item characteristics
- Widely used in educational testing: construction, evaluation, and scoring of standardized tests (e.g. TOEFL, GRE)

IRT Terminology

- "item": single test question
- "evaluation scale": set of items to measure some ability
- "response pattern": an individual's graded (0/1) answers to an evaluation scale
- "ability score" (θ): Score assigned to an individual based on her response pattern on the evaluation scale

IRT Assumptions

- Individuals differ from each other on an unobserved latent trait dimension ("ability")
- The probability of correctly answering an item is a function of the person's ability.
- Responses to different items are independent of each other for a given ability level of the person ("local independence assumption")
- Responses from different individuals are independent of each other

3 Parameter Logistic Model (3PL)

$$p_{ij}(\theta_j) = c_i + \frac{1 - c_i}{1 + e^{-a_i(\theta_j - b_i)}}$$

- p_{ij} : Probability of individual j answering item i correctly
- θ_i : Ability estimate for individual j
- a_i : Discrimination parameter for item i
- b_i : Difficulty parameter for item i
- c_i : Guessing parameter for item i

Item Characteristic Curve (ICC)

ICC: Varying Parameters

FIGURE 1-2. Three item characteristic curves with the same discrimination but different levels of difficulty

FIGURE 1-3. Three item characteristic curves with the same difficulty but with different levels of discrimination

$$p_{ij}(\theta_j) = c_i + \frac{1 - c_i}{1 + e^{-a_i(\theta_j - b_i)}}$$

$$p_{ij}(\theta_j) = c_i + \frac{1 - c_i}{1 + e^{-a_i(\theta_j - b_i)}}$$

$$q_{ij}(\theta_j) = 1 - p_{ij}(\theta_j)$$

$$egin{array}{lll} p_{ij}(heta_j) &=& c_i + rac{1-c_i}{1+e^{-a_i(heta_j-b_i)}} \ q_{ij}(heta_j) &=& 1-p_{ij}(heta_j) \ L &=& \prod_{i=1}^J \prod_{j=1}^I p_{ij}(heta_j)^{y_{ij}} q_{ij}(heta_j)^{1-y_{ij}} \end{array}$$

$$egin{array}{lcl}
ho_{ij}(heta_{j}) &=& c_{i} + rac{1-c_{i}}{1+e^{-a_{i}(heta_{j}-b_{i})}} \ q_{ij}(heta_{j}) &=& 1-p_{ij}(heta_{j}) \ L &=& \prod_{j=1}^{J} \prod_{i=1}^{I} p_{ij}(heta_{j})^{y_{ij}} q_{ij}(heta_{j})^{1-y_{ij}} \ \log L &=& \sum_{i=1}^{J} \sum_{i=1}^{I} [y_{ij}p_{ij}(heta_{j}) + (1-y_{ij})q_{ij}(heta_{j})] \end{array}$$

Solve with Expectation-Maximization³

³Bock and Aitkin. Marginal Maximum Likelihood Estimation of Item Parameters: Application of an EM Algorithm. Psychometrica 1981.

Using Difficulty as a Predictor

- Can we use what we know about certain examples (via IRT) to understand performance?
- Train models with different training set sizes to see how performance changes with regards to training size and item difficulty

)ata

- Stanford SNLI Corpus⁴
 - 550K English premise-hypothesis sentence pairs
 - All human generated
 - IRT Data: 180 randomly sampled sentence pairs from quality-control data⁵
 - originally annotated by 5 Amazon Mechanical Turk workers (Turkers)
 - We obtained an additional 1000 labels per sentence pair

⁴Bowman et al. A large annotated corpus for learning natural language inference. EMNLP, 2015.

⁵Lalor et al. Building an evaluation scale using item response theory. *EMNLP* 2016.

DNN Models

- Long-Short Term Memory (LSTM) Network ⁶
- Convolutional Neural Network ⁷
- Memory augmented LSTM: Neural Semantic Encoder⁸

⁶Hochreiter and Schmidhuber. Long short-term memory. *Neural computation*, 1997.

⁷Kim. Convolutional neural networks for sentence classification. arXiv:1408.5882, 2014.

⁸Munkhdalai and Yu. Neural semantic encoders. EACL, 2017

Neural Semantic Encoder

Parameter Estimation

- Collect AMT data
- Fit item parameters
 - mirt R package⁹
- Use IRT Data as test set for pre-trained DNN models
 - Models trained on random sample of SNLI training data
- Predict likelihood of model answering correctly with difficulty and training set size as dependent variables

⁹Chalmers. mirt: A multidimensional item response theory package for the R environment. *Journal of Statistical Software*, 2012.

Examples

Premise	Hypothesis	Label	Difficulty
People were watching the tournament in the sta-	The people are sitting outside on the grass	Contradiction	0.51
dium			
Two girls on a bridge dancing with the city sky-	The girls are sisters.	Neutral	-1.92
line in the background			
A little girl eating a sucker	A child eating candy	Entailment	-2.74
Nine men wearing tuxedos sing	Nine women wearing dresses sing	Contradiction	0.08

Overview

- Goal was to determine whether difficulty has an impact on performance
- Logistic regression with training size and difficulty as predictors
- Plot log-odds of answering a question correctly

Contour Plots

LSTM

CNN

NSE

LSTM

CNN

NSE

Conclusion

- New use case for IRT in DNNs
 - Difficulty as measured by human responses impacts performance
- Models distinguish between difficulty levels as training size increases
- As they learn more, the get better at easier questions faster
 - This is similar to expected performance of humans

Thank you!

email: lalor@cs.umass.edu

