Computer Programming with MATLAB

Lesson 2: Matrices and Operators

by

Akos Ledeczi and Mike Fitzpatrick

Introduction to Arrays and Matrices

Array

Any set of numbers arranged in a rectangular

pattern.

Example—

A page with six rows of four numbers each is a two-dimensional array

10	14	48	25
24	34	17	35
22	33	29	44
32	8	11	48
35	6	37	27
37	25	13	7

Introduction to Arrays and Matrices

Array

Any set of numbers arranged in a rectangular

pattern.

Three-dimensional Example—

A stack of such pages

Introduction to Arrays and Matrices

- Higher dimensions are uncommon
- The most common have special names:
 - 2D array = "matrix" (plural is "matrices")
 - 1D array = "vector"
- Most ingenious part of Cleve Moler's invention of MATLAB was the way he set it up to deal with matrices.
- MATLAB stands for "Matrix Laboratory"!

Arrays and Matrices

Rows and Columns

rows

$$>> X = [1:4; 5:8; 9:12];$$

1:	1	2	3	4
2:	5	6	7	8
3:	9	10	11	12

Rows and Columns

$$>> X = [1:4; 5:8; 9:12];$$

columns

Indexing

3:

7

Array Addition

- Z = X + Y means
 - Z(m,n) = X(m,n) + Y(m,n) for all valid m and n

```
Z(1,1) = X(1,1) + Y(1,1)
Z(1,2) = X(1,2) + Y(1,2)
Z(1,end) = X(1,end) + Y(1,end)
Z(2,1) = X(2,1) + Y(2,1)
Z(2,2) = X(2,2) + Y(2,2)
Z(2,2) = X(2,2) + Y(2,2)
Z(2,end) = X(2,end) + Y(2,end)
Z(end,1) = X(end,1) + Y(end,1)
Z(end,2) = X(end,2) + Y(end,2)
Z(end,end) = X(end,end) + Y(end,end)
```

Matrix Multiplication

- Different from Array Multiplication!
- $\mathbf{z} = \mathbf{x} * \mathbf{y}$ means that for all valid m and n

$$Z(m,n) = \sum_{k} X(m,k) Y(k,n)$$

- Not always legal:
 - Inner dimensions of X and Y must be the same

Array Division

- Z = X./Y
 - means that for each m and n, Z(m,n) = X(m,n)/Y(m,n)
- Z = X.Y
 - means that for each m and n, Z(m,n) = Y(m,n)/X(m,n)
- Try these out in MATLAB on your own!
- Matrix division is a complicated concept in linear algebra, so we are not covering it here
 - But you can check out the advanced concepts of the textbook for detailed explanation

Precedence

- $\mathbf{x} = \mathbf{a} + \mathbf{b} + \mathbf{c}$
 - order does not matter with addition
- y = c + a * b is not the same as
- y = (c + a) * b
- Multiplication has priority over addition
 - In programming, this is called *precedence*

PRECEDENCE	OPERATOR
0	Parentheses: ()
1	Exponentiation ^ and Transpose '
2	Unary +, Unary -, and logical negation: ~
3	Multiplication and Division (array and matrix)
4	Addition and Subtraction
5	Colon operator:

Precedence Table

Associativity

$$x = a + b + c$$

- x = a * b * c
 - order does not matter with addition or multiplication
- y = a (b c) is not the same as
- $y = (a ^b)^c$
- In programming, the order in which operators of the same precedence are executed is called associativity
- In MATLAB, it is left to right
- $y = a ^b ^c is the same as$
- $y = (a \wedge b) \wedge c$