Negative Niche Construction Favors the

Evolution of Cooperation

3

10

Brian D. Connelly¹, Katherine J. Dickinson¹, Sarah P. Hammarlund^{1,2}, and
Benjamin Kerr^{1,3}

¹Department of Biology and BEACON Center for the Study of Evolution in
Action, University of Washington, Seattle, Washington, 98195, USA

²Current Address: Department of Zoology, University of Oxford, Oxford OX1

3PS, United Kingdom

³E-mail: kerrb@uw.edu

11 Abstract

By benefitting others at a cost to themselves, cooperators face an ever present threat from defectors—individuals that avail themselves of the cooperative benefit without contributing. A longstanding challenge to evolutionary biology is to understand the mechanisms that support the many instances of cooperation that nevertheless exist. Hammarlund et al. recently demonstrated that cooperation can persist by hitchhiking along with beneficial non-social adapta-17 tions. Importantly, cooperators play an active role in this process. In spatiallystructured environments, clustered cooperator populations reach greater densities, which creates more mutational opportunities to gain beneficial non-social adaptations. Cooperation rises in abundance by association with these adaptations. However, once adaptive opportunities have been exhausted, the ride abruptly ends as cooperators are displaced by adapted defectors. Using an agent-based model, we demonstrate that the selective feedback that is created as populations construct their local niches can maintain cooperation indefinitely. Further, we show that cooperator success depends specifically on nega-26 tive niche construction. Here, negative niche construction acts as a perpetual 27 source of adaptive opportunities. As populations adapt, they alter their environment in ways that reveal additional opportunities for adaptation. Despite being independent of niche construction in our model, cooperation feeds this cycle. We show that by reaching larger densities, populations of cooperators are better able to adapt to changes in their constructed niche and successfully respond to the constant threat posed by defectors. We relate these findings to

- $_{34}$ previous studies from the niche construction literature and discuss how this
- $_{35}$ model could be extended to provide a greater understanding of how coopera-
- $_{\rm 36}$ $\,$ tion evolves in the complex environments in which it is found.

37 Introduction

Cooperative behaviors are common across all branches of the tree of life. Insects divide labor within their colonies, plants and soil bacteria exchange essential nutrients, birds care for others' young, and the trillions of cells in the human body coordinate to provide vital functions. Each instance of cooperation presents an evolutionary challenge: How can individuals that sacrifice their own well-being to help others avoid subversion by those that do not? Over time, we would expect these defectors to rise in abundance at the expense of others, eventually driving cooperators—and perhaps the entire population—to extinction. Several factors can prevent this tragedy of the commons (Hamilton, 1964; Nowak, 2006; West et al., 2007b). One such factor involves non-random social interaction, in which cooperators benefit more from the cooperative act than defectors. This can occur when cooperators are clustered together in spatially-structured populations (Fletcher and Doebeli, 2009; Nadell et al., 2010; Kuzdzal-Fick et al., 2011) or when cooperators use communication (Brown and Johnstone, 2001; Darch et al., 2012) or other cues (Sinervo et al., 2006; Gardner and West, 2010; Veelders et al., 2010) to cooperate conditionally with kin. Cooperation can also be bolstered by pleiotropic connections to personal benefits (Foster et al., 2004; Dandekar et al., 2012) or through association with alleles encoding self-benefitting traits (Asfahl et al., 2015). In the latter case, the associated alleles may provide private benefits that are completely independent from the public benefits of cooperation. In asexual

populations of cooperators and defectors, this sets the stage for an "adaptive race" in which both types vie for the first highly beneficial adaptation (Waite and Shou, 2012; Morgan *et al.*, 2012). The tragedy of the commons can be deferred if a cooperator, by chance, wins the adaptive race.

Hammarlund et al. (2015) recently showed that in spatially-structured populations, the "Hankshaw effect" can give cooperators a substantial leg up on defectors in an adaptive race. This advantage is reminiscent of Sissy Hankshaw, a fictional character in Tom Robbins' Even Cowgirls Get the Blues, whose oversized thumbs—which were otherwise an impairment—made her a prolific hitchhiker. Similarly, cooperation is costly, but it increases local population density. As a result, cooperators are more likely to acquire beneficial mutations. By hitchhiking along with these adaptations, cooperation can rise in abundance. Nevertheless, this advantage is fleeting. As soon as the 72 opportunities for adaptation are exhausted, cooperators are once again at a 73 selective disadvantage against adapted defectors that arise via mutation. However, Hammarlund et al. (2015) also demonstrated that cooperation can be maintained when frequent environmental changes produce a steady stream of new adaptive opportunities. Although organisms typically find themselves in dynamic environments, the nature and frequency of these changes might not ensure long-term cooperator survival.

 $_{80}$ $\,$ However, organisms do more than passively experience changing environments.

Through their activities, their interactions with others, and even their deaths,

organisms constantly modify their environment. This niche construction pro-

cess can produce evolutionary feedback loops in which environmental modifi-

cation alters selection, which, in turn, alters the distribution of types and their corresponding influence on the environment (Odling-Smee et al., 2003). The nature of this feedback can have dramatic evolutionary consequences. One critical distinction is whether the constructing type is favored in the environment that it constructs. Under positive niche construction, selection favors the constructor, and evolution stagnates as this type fixes. Whereas under negative niche construction, selection favors a type other than the constructor, which creates an opportunity for novel adaptation. If the resulting adapted type also engages in negative niche construction, cycles of construction and adaptation can ensue, such that populations find themselves continually chasing beneficial mutations as their adaptive landscape perpetually shifts.

Here, we show that the selective feedbacks that result from niche construction

Here, we show that the selective feedbacks that result from niche construction can maintain cooperation indefinitely. We find that it is specifically negative niche construction that is responsible for this result due to the endless opportunities for adaptation that it produces. These results suggest that cooperators can ensure their survival by playing an active role in their own evolution.

Methods

Building upon Hammarlund et al. (2015), we describe an individual-based model in which cooperators and defectors evolve and compete in a population of subpopulations (i.e., a metapopulation). Through mutations, individuals gain adaptations to their environment, which increase reproductive fitness and allow those lineages to rise in abundance. More successful lineages spread to neighboring subpopulations by migration.

In the expanded model here, subpopulations additionally modify their local environment. As this process occurs, environmental changes feed back to affect selection. We explore how niche construction affects the evolution of cooperation; specifically, how cooperative behavior can hitchhike along with adaptations to modified environments.

12 Model Description

113 Individual Genotypes and Adaptation

parameters and their values). Different alleles at each locus are represented by 115 different integers. An allele at the cooperation locus (locus zero) determines 116 whether that individual is a cooperator (allele 1), which carries fitness cost 117 c, or a defector (allele 0). The remaining L loci are adaptive loci, and are 118 each occupied by 0 or a value from the set $\{1, 2, \ldots, A\}$. Allele 0 represents 119 a lack of adaptation, while a non-zero allele represents one of the A possible adaptations at that locus. 121 These non-zero alleles signify two types of adaptations, both of which increase fitness. First, adaptations to the external environment confer a fitness benefit δ . 123 This selective value is the same regardless of which non-zero allele is present 124 and is not affected by other individuals. We assume $\delta > c$, which allows a 125 minimally adapted cooperator to recoup the cost of cooperation and gain a fitness advantage.

Each individual has a haploid genome with L+1 loci (see Table 1 for model

28 Niche Construction and Selective Feedbacks

Individual fitness is also affected by aspects of the local environment that are 129 modified by organisms. This constructed "niche" depends on the specific allelic states present in the subpopulation. As allelic states change, the subpopulation 131 alters its environment, creating a unique niche. As described below, the specific 132 alleles that are present at each locus become important. 133 In our model, the feedback that results from niche construction takes the form 134 of density dependent selection, and individuals evolve to better match their 135 constructed niche. We do not represent this niche explicitly, but rather allow 136 the allelic composition of the subpopulation to feed back to affect selection. 137 Specifically, the selective value of non-zero allele a at adaptive locus l—and 138 consequently the fitness of an individual carrying that allele—increases with 139 the number of individuals in the subpopulation that have allele a-1 at locus 140 l-1. For example, if L=5 and A=6, and allele 4 has fixed at locus 2, then 141 a genotype with allele 5 at locus 3 is favored. And as allele 5 fixes at locus 142 3, the niche that this population constructs will favor allele 6 at locus 4 (see 143 Box 1). As a consequence, genotypes with sequentially increasing allelic states 144 will tend to evolve. We treat both adaptive loci and their non-zero allelic states as "circular": the selective value of an allele at locus 1 is affected by the allelic composition of the subpopulation at locus L. Similarly, the selective 147 value of allele 1 at any locus increases with the number of individuals carrying 148 allele A at the previous locus. This circularity is represented by the function $\beta(x,X)$, which gives the integer that is below an arbitrary value x in the set

151 $\{1, 2, \dots, X\}$:

$$\beta(x,X) = \operatorname{mod}_X(x-2+X) + 1 \tag{1}$$

Here, $\operatorname{mod}_X(x)$ is the integer remainder when dividing x by X. Using this function, the selective value of allele a at adaptive locus l is increased by ϵ for each individual in the subpopulation that has allele $\beta(a,A)$ at locus $\beta(l,L)$. Thus, ϵ specifies the intensity of selection due to niche construction.

156 Individual Fitness

Consider a genotype g with allelic state $a_{g,l}$ at locus l; the fitness of an individual with this genotype is defined as:

$$W_{g} = z - \underbrace{ca_{g,0}}_{\text{cost of cooperation}} + \underbrace{\delta \sum_{l=1}^{L} I(a_{g,l})}_{\text{adaptation to external environment}} + \underbrace{\epsilon \sum_{l=1}^{L} n(\beta(a_{g,l}, A), \beta(l, L))}_{\text{adaptation to constructed environment}}$$
(2)

where z is a baseline fitness, n(a,l) is the number of individuals in the subpopulation with allele a at locus l, and I(a) indicates whether a given allele is non-zero:

$$I(a) = \begin{cases} 1 & \text{if } a \in \{1, 2, \dots, A\} \\ 0 & \text{otherwise} \end{cases}$$
 (3)

Thus, an individual's fitness is determined both by adaptations to the exter-

nal environment and by adaptations to its constructed environment. Box 1 illustrates the process of adaptation to the constructed environment. While cooperation is costly, we assume its effects are independent of the external and constructed components of the environment.

Subpopulation Growth and the Benefit of Cooperation

Cooperation enables a subpopulation to reach a greater density. This benefit affects all individuals equally and accumulates linearly with the proportion of cooperators in the subpopulation. If p is the proportion of cooperators present at the beginning of a growth cycle, then that subpopulation reaches the following size:

$$S(p) = S_{min} + p(S_{max} - S_{min}) \tag{4}$$

During subpopulation growth, individuals compete through differential reproduction. Each individual's probability of success is determined by its fitness. The composition of a subpopulation with size P and cooperator proportion pafter growth is multinomial with parameters S(p) and $\{\pi_1, \pi_2, \dots, \pi_P\}$, where π_i represents the reproductive fitness of individual i relative to others in the subpopulation (using Equation 2).

179 Mutation

For simplicity, we apply mutations after subpopulation growth. Mutations occur independently at each locus and cause an allelic state change. At the binary cooperation locus, mutations occur at rate μ_c . These mutations flip the allelic state, causing cooperators to become defectors and vice versa. Mutations occur at rate μ_a at each adaptive locus. These mutations replace the existing allele with a value randomly sampled from the set $\{0\} \cup \{1, 2, ..., A\}$.

86 Migration

Populations are composed of N^2 patches arranged as an $N \times N$ lattice, where each patch can support a subpopulation. After mutation, individuals emigrate to an adjacent patch with probability m. During each migration event, a single destination patch is randomly chosen from each source patch's Moore neighborhood, which is composed of the nearest 8 patches on the lattice. Because the population lattice has boundaries, patches located on the periphery have smaller neighborhoods.

194 Population Initialization and Simulation

Following Hammarlund et al. (2015), we begin simulations with sparse populations. Subpopulations are first seeded at all patches with size $S(p_0)$ and cooperator proportion p_0 . The population is then thinned. Each individual survives this bottleneck with probability σ . Starting from this initial state, simulations then proceed for T cycles, where each discrete cycle consists of subpopulation growth, mutation, migration, and dilution. Dilution reduces each subpopulation to support growth in the next cycle. Each individual remains with probability d, regardless of its genotype.

203 Simulation Source Code and Software Dependencies

The simulation software and configurations for the experiments reported are available online. Simulations used Python 3.4, NumPy 1.9.1, Pandas 0.15.2 (McKinney, 2010), and NetworkX 1.9.1 (Hagberg *et al.*, 2008). Data analyses were performed with R 3.1.3 (R Core Team, 2015). Reported confidence intervals were estimated by bootstrapping with 1000 resamples.

209 Results

Using the model described in the previous section, we perform simulations that
follow the evolution of cooperation in a population of subpopulations that are
connected by spatially-limited migration. Individuals increase their competitiveness by gaining adaptations. While cooperation does not directly affect
the fitness benefits that these adaptations confer, cooperation has indirect
effects on the adaptive process. Specifically, cooperation increases subpopulation density. As a result, larger subpopulations of cooperators experience more
mutational opportunities. Cooperation can rise in abundance by hitchhiking
along with beneficial mutations, which compensate for the cost of cooperation.

¹These materials are temporarily available at https://github.com/briandconnelly/nicheconstruct/ and will be moved to a long-term repository shortly

Importantly, subpopulations alter their local environments, which feeds back to influence selection. Here, we explore how such niche construction affects the evolution of cooperation.

222 Cooperation Persists with Niche Construction

Without any opportunity for adaptation (L=0), cooperators are swiftly elim-223 inated from populations (Figure 1A). Despite an initial lift in cooperator abun-224 dance due to increased productivity, the cost of cooperation becomes disad-225 vantageous as migration mixes the initially isolated subpopulations. When 226 populations can adapt to the external environment $(L > 0 \text{ and } \delta > 0)$, but niche construction is absent ($\epsilon = 0$), cooperators are maintained only tran-228 siently (Figure 1B). Here, larger cooperator subpopulations can more quickly 229 adapt to their external environment. However, as previously described by 230 Hammarlund et al. (2015), cooperation is subsequently lost once populations 231 become fully adapted. This occurs when isogenic defectors (i.e., defectors with 232 identical adaptive loci) arise via mutation and displace cooperators due to their 233 selective advantage. However, when niche construction feeds back to influence 234 selection ($\epsilon > 0$), cooperation persists in the majority of the replicate popula-235 tions (Figure 1C). We see in Figure 2A that despite oscillations, cooperation 236 is maintained at high levels in most of these populations. 237

Fitness Increases Alone do not Support Persisting Cooperation

Adaptations to both the external environment and the constructed environment contribute to an individual's fitness in this model. Here, we determine 241 whether cooperation is maintained solely due to the larger selective values that 242 result from the contributions of niche construction. We performed simulations 243 in which these contributions were transferred to supplement the benefits con-244 ferred by adaptation to the external, non-constructed environment (replacing 245 $\epsilon = 0.3, \, \delta = 0.3 \text{ with } \epsilon = 0, \, \delta = 0.6$). In doing so, we conservatively estimate 246 the selective effects of niche construction. Nevertheless, we find that simply 247 increasing selective values does not enable cooperators to persist (Figure 2B). 248 Niche construction, therefore, plays a decisive role here. 249

Negative Niche Construction is Critical to Cooperator Persistence

In our model, an adaptation to the constructed environment initiates a new instance of niche construction, leading to sequentially increasing allelic states across the adaptive loci. Under certain conditions, this construction always makes the constructor sub-optimal for the niche it creates (see Box 1). This negative niche construction occurs when the number of adaptive alleles (A) does not divide evenly into the number of adaptive loci (L). In such a case, any sequence of integers on the circular genome will always contain a break

in the sequence; that is, one locus will have an allele that is not one less than
the allele at the next locus. Given this unavoidable mismatch, any type that
has fixed will always construct a niche that favors selection for a new type.
When negative niche construction is removed (by setting L=5, A=5), cooperators are again driven extinct after an initial lift in abundance (Figure 2C).
These results indicate that the type of niche construction matters. Specifically,
negative niche construction is crucial for maintaining cooperation.

Selective Feedbacks Limit Defector Invasion

The adaptation resulting from selective feedbacks can limit invasion by defec-267 tors, which arise either through migration from neighboring patches or through 268 mutation at the cooperation locus. The latter challenge is particularly threat-269 ening, as these isogenic defectors are equally adapted, yet do not incur the 270 cost of cooperation. As demonstrated in Figure 3A, isogenic defectors rapidly 271 spread when introduced at a single patch in the center of a population of 272 cooperators if mutations do not occur. However, when cooperators can gain 273 adaptations via mutation, cooperators resist defector invasion in over half of 274 the replicate populations (Figure 3B). Figure 4 depicts one such instance. In 275 that population, isogenic defectors are seeded at a single patch in an otherwise 276 all-cooperator population. These defectors quickly begin to spread. However, 277 a neighboring cooperator population gains an adaptation, which increases its 278 fitness above that of the defector. This type spreads more quickly, stopping 279 the spread of defectors and eventually driving them to extinction. Because 280

this adaption occurs in a cooperator population, cooperation is able to hitchhike to safety. Importantly, this new cooperator is favored because of the 282 niche that its ancestral type—and therefore the defector—constructed. Here, 283 cooperators can find safety in numbers—because their larger subpopulations 284 have more mutational opportunities, they are more likely to gain adaptations 285 that rescue them from invasion. Further, these larger cooperator subpopulations exert greater influence on their niches, which increases selection for an 287 adapted type. This allows that type to appear and to spread more quickly in the population. Figure 3C shows how quickly an adapted cooperator type can invade a population of defectors. Importantly, this cooperator type is adapted 290 to the niche constructed by the defector. 291

Discussion

Despite their negative effects, deleterious traits can rise in abundance due to genetic linkage with other traits that are strongly favored by selection (May-294 nard Smith and Haigh, 1974). In a process termed the "Hankshaw effect", Hammarlund et al. (2015) recently demonstrated that cooperation can actively prolong its existence by increasing its likelihood of hitchhiking with a 297 beneficial trait. In that work and here, subpopulations of cooperators grow to a 298 higher density than those of defectors. These larger cooperator subpopulations 299 therefore experience more mutations and are consequently more likely to gain 300 adaptations. While this process does favor cooperation in the short term, it 301 eventually reaches a dead end: When the opportunities for adaptation are ex-

hausted, and cooperators can no longer hitchhike, they face extinction. Here, we have investigated whether niche construction might serve to perpetually 304 generate new adaptive opportunities and thus favor cooperation indefinitely. 305 When niche construction occurs, cooperation can indeed persist (Figures 1C) and 2A). In our model, niche construction introduces additional selective ef-307 fects that influence the evolutionary process, leading to a more pronounced 308 Hankshaw effect. However, these fitness benefits alone do not maintain co-309 operation (Figure 2B). Niche construction and the selective feedbacks that it 310 produces play a crucial role. 311 We find that it is specifically *negative* niche construction that maintains coop-312 eration (Figure 2C). As cooperator and defector types gain adaptations, they 313 alter their environment in ways that favor other types. Thus, negative niche 314 construction serves as a perpetual source of adaptation. Here we observe an-315 other facet of the Hankshaw effect: Because subpopulations of cooperators are larger, they are better able to respond to the adaptive opportunities that are 317 created by negative niche construction. By gaining adaptations more quickly, cooperators resist invasion by defectors (Figure 3B). Even in the presence of 319 an isogenic defector type, cooperator subpopulations are more likely to pro-320 duce the mutant most adapted to the current niche, which can then displace 321 the slower-adapting defectors. These recurring cycles of defector invasion and 322 cooperator adaptation underlie the oscillations in cooperator proportion seen 323 in Figure 2A. When mutations do not confer these adaptations, cooperators 324 lose the adaptive race and are driven to extinction by the defector. This is 325 something that we see occur stochastically in Figures 2A and 3B.

Cooperation as Niche Construction

In our model, niche construction and adaptation are independent of cooperation, which allows us to focus on hitchhiking. However, cooperative behaviors often alter the environment, which can be seen as niche construction. For example, bacteria produce a host of extracellular products that scavenge soluble 331 iron (Griffin et al., 2004), digest large proteins (Diggle et al., 2007; Darch et 332 al., 2012), and reduce the risk of predation (Cosson et al., 2002), among many 333 others (West et al., 2007a). As in our model, these forms of cooperation are 334 likely to increase local subpopulation density. While many studies have fo-335 cused on how the environment affects the evolution of these cooperative traits, 336 relatively few have addressed how the environmental changes created by these 337 products feed back to influence evolution. 338 Perhaps most similar to this study, Van Dyken and Wade (2012) demon-339 strated that when two negative niche constructing, cooperative behaviors coevolve, selection can increasingly favor these traits, which are disfavored when alone. In that model, "reciprocal niche construction" occurred when the negative feedback resulting from one strategy positively influenced selection for the other, creating a perpetual cycle that maintained both forms of cooperation. Arguably, this can be seen as an instance of hitchhiking: the currentlymaladaptive form of cooperation is maintained by association with the adaptive form. When dispersal is limited, competition among kin can undermine cooperation.

To separate kin competition from kin selection, Lehmann (2007) developed

a model in which a cooperative, niche-constructing behavior only benefitted future generations. Kin competition was thereby reduced, and cooperation instead benefitted descendants. This work highlights an important aspect of niche construction: Often, the rate of selective feedback from niche construction is different from the rate at which populations grow.

Evolution at Multiple Timescales

In our work, the niche is modeled implicitly by the composition of the subpopulation. Any changes in the subpopulation, therefore, produce immediate 357 effects on the constructed environment and the resulting selective feedbacks. However, timescales in our model could be de-coupled in two ways. First, co-359 operators modify their niche by enabling their subpopulation to reach larger 360 density (Equation 4). These increased subpopulation sizes play a critical role 361 by effectively increasing the rate of evolution in these subpopulations. Because 362 of the importance of this process, it would be very informative to explore how 363 sensitive our results are to the rate at which cooperators increase subpopulation 364 sizes and the rate at which this benefit decays in the absence of cooperators. 365 Similarly, our results could be substantially affected by alterations in the rate 366 at which the constructed environment changes in response to changes in the 367 subpopulation. 368 Other studies, while not focused on cooperation, have similarly shown that the

timescales at which niche construction feedbacks occur can strongly influence

evolutionary outcomes (Laland et al., 1996, 1999). This perspective is likely to

be crucial for understanding the evolution of cooperative behaviors like the production of public goods. In these instances, environmental changes are likely 373 to occur on different timescales than growth, which can have profound effects. 374 For example, a multitude of factors, including protein durability (Brown and 375 Taddei, 2007; Kümmerli and Brown, 2010), diffusion (Allison, 2005; Driscoll 376 and Pepper, 2010), and resource availability (Zhang and Rainey, 2013; Ghoul et al., 2014) influence both the rate and the degree to which public goods alter 378 the environment. While Lehmann (2007) showed that cooperation was favored when selective feedbacks act over longer timescales, niche construction may in fact hinder cooperation when selection is more quickly altered. For example, 381 when public goods accumulate in the environment, cooperators must decrease 382 production to remain competitive (Kümmerli and Brown, 2010; Dumas and 383 Kümmerli, 2012). This favors cooperation that occurs facultatively, perhaps 384 by sensing the abiotic (Bernier et al., 2011; Koestler and Waters, 2014) or 385 biotic environment (Brown and Johnstone, 2001; Darch et al., 2012). In order 386 to study how regulatory traits such as these evolve, we could instead represent 387 the niche explicitly, allowing it to have its own dynamics.

Cooperation and Niche Construction in Host-Symbiont Co-Evolution

In many biological systems, the environments modified by organisms are other organisms. In these instances, the "niche" becomes a biological entity with its own evolutionary process. A logical extension to our model, would be to treat

the environment as an organism. Such a model could be used to explore the
evolution of cooperation in host-symbiont systems, where cooperation among
symbionts affects host fitness. As the host population changes, either in response to symbiont cooperation or other factors, so too does selection on their
symbiont populations. In our model, each patch could become hosts with their
own genotypes, and death and reproduction at the host level could be defined
in ways that are sensitive to both host and symbiont genotypes. Here, evolutionary outcomes depend greatly on the degree of shared interest between the
host and symbiont.

Of particular importance are cases where the interests of host and symbiont 403 are in conflict. By selecting for new, more resistant host genotypes or by pro-404 voking a specific immune response, pathogens can be seen as potent negative 405 niche constructors. The results that we have presented here suggest that such 406 negative niche construction can favor cooperative behavior among these sym-407 biont pathogens. This may be especially relevant when infection is mediated 408 by cooperative behaviors. For example, the cooperative production of viru-409 lence factors by P. aeruginosa facilitates infection in hosts with cystic fibrosis 410 (Harrison, 2007). Models such as what we have described may permit explo-411 ration into how cooperation and niche construction intersect here and in other 412 medically-relevant instances. 413

More generally, it was recently argued that incorporating the effects of niche construction is critical for improving our understanding of viral evolution (Hamblin *et al.*, 2014) and evolution in co-infecting parasites (Hafer and Milinski, 2015). Incorporating host dynamics, co-evolution, and the feedbacks that

they produce is likely to be equally important for gaining a greater understanding of how cooperative behaviors evolve in these host-symbiont settings.

420 Acknowledgments

We are grateful to Peter Conlin, Sylvie Estrela, Carrie Glenney, Martha Kornelius, and Luis Zaman for helpful comments on the manuscript, and to 422 Anuraag Pakanati for assistance with simulations. BK thanks Kevin Laland, 423 Marc Feldman, John Odling-Smee, Lucy Odling-Smee, and Doug Irwin for 424 the invitation to participate in the Frontiers in Niche Construction meeting 425 at SFI. This material is based upon research supported by the National Sci-426 ence Foundation under Grant DBI-1309318 (Postdoctoral Research Fellowship 427 in Biology to BDC), Cooperative Agreement DBI-0939454 (BEACON STC), 428 and Grant DEB0952825 (CAREER Award to BK). Computational resources 429 were provided by an award from Google (to BDC and BK).

$_{\scriptscriptstyle{131}}$ Box 1: Description of niche construction in our

$_{ ext{\tiny 432}}$ \mathbf{model}

See Figure B1

- (A) Individuals. The genome of each individual consists of a single coop-434 eration locus and L adaptive loci (here, L=5). At the cooperation locus 435 (labeled θ), this individual has allele 1, making it a cooperator. The adaptive 436 loci (labeled 1-5) are arranged as a circular chromosome, where each locus has 437 an integer allele between 0 and A, inclusive. In the description that follows, 438 we focus exclusively on these adaptive loci. Genotypes are given by their al-439 lelic states starting with locus 1. For instance, the genotype shown here is 440 [2,0,5,2,1]. Because of their circular structure, allele 2 at the first locus follows 441 allele 1 at the fifth locus.
- (B) Niche Construction. Consider a subpopulation fixed for genotype 443 [1,2,0,0,0]. This subpopulation constructs environment $E_{[1,2,0,0,0]}$. Every non-444 zero allele influences selection at the next locus, favoring sequential allelic 445 states. In this constructed environment, allele 3 at locus 3 would be favored. 446 If genotype [1,2,3,0,0] arises via mutation, it is expected to fix. However, 447 genotype [1,2,3,0,0] affects the environment differently. As [1,2,3,0,0] rises in 448 abundance, the constructed environment changes to $E_{[1,2,3,0,0]}$, which favors 449 [1,2,3,4,0]. 450
- ⁴⁵¹ (C) Niche Construction and Adaptation. The evolutionary transition
 ⁴⁵² shown in Part B is indicated in the dashed box. Here, we depict entire sub-

populations fixed for a genotype using a single instance of that genotype. Simi-453 larly, an arrow represents niche construction and adaptation to the constructed 454 environment. We start with a case in which there are five alleles (A = 5). Sub-455 populations begin with the non-adapted genotype [0,0,0,0,0], shown on the far 456 left. A non-zero allele is introduced via mutation, which represents an adapta-457 tion to external aspects of the environment. Here, allele 1 arises and fixes at 458 locus 1. The remainder of this figure focuses on adaptation to the constructed 459 aspects of the environment. This genotype has a "mismatch" (shown by the 460 red sector), because $E_{[1,0,0,0,0]}$ favors [1,2,0,0,0]. Assuming allele 2 arises at the 461 second locus, it will be selected, creating a "match" at the first and second 462 loci (green sector). Now there is a mismatch between the second and third 463 loci in the resulting environment, which a new round of mutation and selection 464 corrects, and so on. The green sector grows as the red sector shifts clockwise. 465 When the population reaches [1,2,3,4,5], it constructs $E_{[1,2,3,4,5]}$. Here, since 466 allele 1 follows allele 5, there is no longer a mismatch, so no further adaptation 467 occurs. 468

469 (D) Negative Niche Construction. A different case emerges when the 470 number of alleles does not evenly divide into the number of loci. Here, we 471 change the number of alleles to six (A = 6). As shown on the far left, we 472 begin with a subpopulation fixed for genotype [1,2,3,4,5]. This genotype has a 473 mismatch, because the niche constructed by allele 5 favors allele 6 (not 1) at the 474 next locus (locus 1). A mutant with genotype [6,2,3,4,5] has a fitness advantage 475 and can fix in $E_{[1,2,3,4,5]}$. However, as this type constructs $E_{[6,2,3,4,5]}$, a new 476 mismatch appears. In this instance of negative niche construction, adapting

- $_{\rm 477}$ to correct one mismatch generates a new mismatch. This system can never
- $_{\rm 478}$ $\,$ escape its mismatches—the red sector just shifts clockwise around the genome
- 479 perpetually.

Figures 480

Figure 1: Adaptation and the Evolution of Cooperation. Curves show the average cooperator proportion among replicate populations for the duration of simulations, and shaded areas indicate 95% confidence intervals. (A) Without any opportunity to adapt (L=0), cooperation is quickly lost. (B) When adaptation can occur $(L=5, \delta=0.3)$, but niche construction does not affect selection $(\epsilon=0)$, cooperators rise in abundance by hitchhiking along with adaptions to the external environment. Nevertheless, this effect is transient, and cooperators eventually become extinct. (C) Niche construction $(\epsilon=0.00015)$ enables cooperation to be maintained indefinitely. In the majority of populations, cooperation remained the dominant strategy. The trajectories of individual populations are shown in Figure 2A. Parameter values not given here are listed in Table 1.

Figure 2: Niche Construction and the Evolution of Cooperation. The proportion of cooperators present in each replicate population is shown for the duration of simulations. (A) Despite some oscillations, cooperation dominates in 13 of 18 populations when niche construction affects selection. (B) When the selective effects of niche construction are transferred to supplement the benefits conferred by adaptation to the external, non-constructed environment, cooperators are driven to extinction by defectors (replacing $\epsilon = 0.3$, $\delta = 0.3$ with $\epsilon = 0$, $\delta = 0.6$). Note that cooperation was not present after initialization in one replicate population. (C) Cooperators are also driven to extinction without negative niche construction (A = 5).

Figure 3: Niche Construction and Invasion. Curves trace the proportion of cooperators present in each replicate population for the duration of simulations (T = 1000). In each simulation, a rare type was initiated at a single patch in the center of the population lattice ($N^2 = 121$). Unless otherwise noted, mutations are disabled in these ecological simulations to highlight the dynamics of invasion ($\mu_a = 0, \mu_c = 0$). (A) When cooperators and defectors are isogenic (i.e., both types have stress alleles [1,2,3,4,5]), rare defectors quickly invade and drive cooperators to extinction due to the cost of cooperation. Defectors were stochastically eliminated in 2 replicate populations. (B) However, negative niche construction creates adaptive opportunities that enable cooperators to resist invasion by isogenic defectors. When adaptive mutations occur ($\mu_a = 0.00005$), cooperation remained dominant in 91 of 160 populations. Results from simulations where mutations also occurred at the cooperation locus are shown in Figure S1. (C) In fact, a cooperator (stress alleles [6,2,3,4,5], see Box 1) that is adapted to the niche constructed by the defectors can swiftly displace defectors.

Figure 4: Cooperator Adaptation Prevents Defector Invasion. Here we depict the distribution of dominant types among subpopulations over time for one representative simulation in which isogenic defectors arise. To highlight the effects of adaptation, mutations did not occur at the cooperation locus $(\mu_c = 0)$. At time t = 0 (upper left panel), a single isogenic defector subpopulation (red) is placed within an all-cooperator population (light blue). Because these defectors do not bear the costs of cooperation, they spread (t = 272). However, cooperators in one subpopulation gain an adaptation that gives them a fitness advantage over defectors (second panel, medium blue, lower left). At t=325, defectors continue to invade cooperator subpopulations. However, the adapted cooperator type spreads more quickly due to its fitness advantage, invading both defector subpopulations and ancestral cooperator subpopulations (t=390), until it eventually fixes in the population (t=500). At t=690, a new cooperator type emerges that is favored due to negative niche construction (dark blue). This new type spreads rapidly (t = 812) until reaching fixation (t = 900). At this point, it becomes susceptible to invasion by the next "adapted" cooperator type, and the cycle continues.

Box 1 Figures

Figure B1

Figure B1: Figure for Box 1

- Supplemental Figures
- Figure S1

Figure S1: **Defector Invasion with Mutations.** The proportion of cooperators present in each replicate population is shown for the duration of simulations (T = 1000). When mutations occur both at the adaptive loci and the cooperation locus ($\mu_a = \mu_c = 0.00005$), cooperation remains dominant in 58 of 160 replicate populations.

Tables

Table 1: Model parameters and their value

Parameter	Description	Base Value
\overline{L}	Number of adaptive loci	5
c	Fitness cost of cooperation	0.1
A	Number of alleles	6
δ	Fitness benefit, adaptation to external environment	0.3
ϵ	Fitness benefit, adaptation to constructed environment	0.00015
z	Baseline fitness	1
S_{min}	Minimum subpopulation size	800
S_{max}	Maximum subpopulation size	2000
μ_a	Mutation rate (adaptation)	10^{-5}
μ_c	Mutation rate (cooperation)	10^{-5}
N^2	Number of patches	625
m	Migration rate	0.05
p_0	Initial cooperator proportion	0.5
σ	Survival rate at population initialization	10^{-5}
T	Number of simulation cycles	3000
d	Subpopulation dilution factor	0.1

References

- Allison, S.D. 2005. Cheaters, diffusion and nutrients constrain decomposition
- by microbial enzymes in spatially structured environments. Ecology Letters,
- 493 8: 626–635.
- 494 Asfahl, K.L., Walsh, J., Gilbert, K. and Schuster, M. 2015. Non-social adap-
- tation defers a tragedy of the commons in Pseudomonas aeruginosa quorum
- sensing. The ISME Journal, doi: 10.1038/ismej.2014.259.
- Bernier, S.P., Ha, D.-G., Khan, W., Merritt, J.H.M. and O'Toole, G.A. 2011.
- 498 Modulation of Pseudomonas aeruginosa surface-associated group behaviors by
- individual amino acids through c-di-GMP signaling. Research in Microbiology,
- 500 **162**: 680–688.
- Brown, S.P. and Johnstone, R.A. 2001. Cooperation in the dark: Signalling
- and collective action in quorum-sensing bacteria. Proceedings of the Royal
- Society of London B: Biological Sciences, 268: 961–965.
- Brown, S.P. and Taddei, F. 2007. The durability of public goods changes the
- dynamics and nature of social dilemmas. *PLoS ONE*, **2**: e593.
- 506 Cosson, P., Zulianello, L., Join-Lambert, O., Faurisson, F., Gebbie, L. and
- Benghezal, M. et al. 2002. Pseudomonas aeruginosa virulence analyzed in a
- Dictyostelium discoideum host system. Journal of Bacteriology, 184: 3027-
- 509 3033.
- Dandekar, A.A., Chugani, S. and Greenberg, E.P. 2012. Bacterial quorum
- sensing and metabolic incentives to cooperate. Science, 338: 264–266.

- Darch, S.E., West, S.A., Winzer, K. and Diggle, S.P. 2012. Density-dependent
- 513 fitness benefits in quorum-sensing bacterial populations. Proceedings of the
- National Academy of Sciences, 109: 8259–8263.
- Diggle, S.P., Griffin, A.S., Campbell, G.S. and West, S.A. 2007. Cooperation
- and conflict in quorum-sensing bacterial populations. *Nature*, **450**: 411–414.
- Driscoll, W.W. and Pepper, J.W. 2010. Theory for the evolution of diffusible
- external goods. Evolution, 64: 2682–2687.
- 519 Dumas, Z. and Kümmerli, R. 2012. Cost of cooperation rules selection for
- 520 cheats in bacterial metapopulations. Journal of Evolutionary Biology, 25:
- 521 473-484.
- Fletcher, J.A. and Doebeli, M. 2009. A simple and general explanation for the
- evolution of altruism. Proceedings of the Royal Society B: Biological Sciences,
- 524 **276**: 13–19.
- Foster, K., Shaulsky, G., Strassmann, J., Queller, D. and Thompson, C. 2004.
- Pleiotropy as a mechanism to stabilize cooperation. *Nature*, **431**: 693–696.
- Gardner, A. and West, S.A. 2010. Greenbeards. Evolution, 64: 25–38.
- 528 Ghoul, M., West, S.A., Diggle, S.P. and Griffin, A.S. 2014. An experimental
- test of whether cheating is context dependent. Journal of Evolutionary Biology,
- **27**: 551–556.
- Griffin, A.S., West, S.A. and Buckling, A. 2004. Cooperation and competition
- in pathogenic bacteria. Nature, 430: 1024–1027.
- Hafer, N. and Milinski, M. 2015. When parasites disagree: Evidence for

- parasite-induced sabotage of host manipulation. Evolution, **69**: 611–620.
- Hagberg, A.A., Schult, D.A. and Swart, P.J. 2008. Exploring network struc-
- ture, dynamics, and function using NetworkX. In: Proceedings of the 7th
- Python in Science Conference (SciPy2008), pp. 11–15.
- Hamblin, S.R., White, P.A. and Tanaka, M.M. 2014. Viral niche construction
- alters hosts and ecosystems at multiple scales. Trends in Ecology & Evolution,
- **29**: 594–599.
- Hamilton, W.D. 1964. The genetical evolution of social behaviour I & II.
- Journal of Theoretical Biology, 7: 1–52.
- Hammarlund, S.P., Connelly, B.D., Dickinson, K.J. and Kerr, B. 2015. The
- evolution of cooperation by the Hankshaw effect. bioRxiv, doi: 10.1101/016667.
- ⁵⁴⁵ Cold Spring Harbor Labs Journals.
- Harrison, F. 2007. Microbial ecology of the cystic fibrosis lung. *Microbiology*,
- **153**: 917–923.
- Koestler, B.J. and Waters, C.M. 2014. Bile acids and bicarbonate inversely
- regulate intracellular cyclic di-GMP in Vibrio cholerae. Infection and Immu-
- nity, **82**: 3002–3014.
- Kuzdzal-Fick, J.J., Fox, S.A., Strassmann, J.E. and Queller, D.C. 2011. High
- 552 relatedness is necessary and sufficient to maintain multicellularity in Dic-
- 553 tyostelium. *Science*, **334**: 1548–1551.
- Kümmerli, R. and Brown, S.P. 2010. Molecular and regulatory properties of
- a public good shape the evolution of cooperation. Proceedings of the National

- 556 Academy of Sciences, **107**: 18921–18926.
- Laland, K.N., Odling-Smee, F.J. and Feldman, M.W. 1999. Evolutionary con-
- sequences of niche construction and their implications for ecology. *Proceedings*
- of the National Academy of Sciences, **96**: 10242–10247.
- Laland, K.N., Odling-Smee, F.J. and Feldman, M.W. 1996. The evolutionary
- consequences of niche construction: A theoretical investigation using two-locus
- theory. Journal of Evolutionary Biology, 9: 293–316.
- Lehmann, L. 2007. The evolution of trans-generational altruism: Kin selection
- meets niche construction. Journal of Evolutionary Biology, 20: 181–189.
- Maynard Smith, J. and Haigh, J. 1974. The hitch-hiking effect of a favourable
- gene. Genetics Research, 23: 23–35.
- McKinney, W. 2010. Data structures for statistical computing in Python. In:
- 568 Proceedings of the 9th Python in Science Conference (S. van der Walt and J.
- ⁵⁶⁹ Millman, eds), pp. 51–56.
- Morgan, A.D., Quigley, B.J.Z., Brown, S.P. and Buckling, A. 2012. Selection
- on non-social traits limits the invasion of social cheats. Ecology Letters, 15:
- 572 841-846.
- Nadell, C.D., Foster, K.R. and Xavier, J.B. 2010. Emergence of spatial struc-
- ture in cell groups and the evolution of cooperation. PLoS Computational
- Biology, 6: e1000716.
- Nowak, M.A. 2006. Five rules for the evolution of cooperation. Science, 314:
- ₅₇₇ 1560–1563.

- Odling-Smee, F.J., Laland, K.N. and Feldman, M.W. 2003. Niche construc-
- 579 tion: The neglected process in evolution. Princeton University Press.
- R Core Team. 2015. R: A language and environment for statistical computing.
- Vienna, Austria: R Foundation for Statistical Computing.
- Sinervo, B., Chaine, A., Clobert, J., Calsbeek, R., Hazard, L. and Lancaster,
- Let al. 2006. Self-recognition, color signals, and cycles of greenbeard mutu-
- alism and altruism. Proceedings of the National Academy of Sciences, 103:
- 585 7372-7377.
- Van Dyken, J.D. and Wade, M.J. 2012. Origins of altruism diversity II: Run-
- ⁵⁸⁷ away coevolution of altruistic strategies via "reciprocal niche construction".
- 588 Evolution, **66**: 2498–2513.
- Veelders, M., Brückner, S., Ott, D., Unverzagt, C., Mösch, H.-U. and Essen,
- 590 L.-O. 2010. Structural basis of flocculin-mediated social behavior in yeast.
- Proceedings of the National Academy of Sciences, 107: 22511–22516.
- Waite, A.J. and Shou, W. 2012. Adaptation to a new environment allows coop-
- erators to purge cheaters stochastically. Proceedings of the National Academy
- of Sciences, **109**: 19079–19086.
- West, S.A., Diggle, S.P., Buckling, A., Gardner, A. and Griffin, A.S. 2007a.
- The social lives of microbes. Annual Review of Ecology, Evolution, and Sys-
- 597 tematics, **38**: 53–77.
- West, S.A., Griffin, A.S. and Gardner, A. 2007b. Evolutionary explanations
- for cooperation. Current Biology, 17: R661–R672.

- ⁶⁰⁰ Zhang, X.-X. and Rainey, P.B. 2013. Exploring the sociobiology of pyoverdin-
- producing Pseudomonas. Evolution, 67: 3161–3174.