San Francisco Restaurant Inspections

Description

NOTE: This is taken from a project that I completed for a Data Science course (DS100) at University of California, Berkeley. This is an addendum that I added because I wished to learned more about different ways of visualizing data for analysis.

In this project, I investigated restaurant food safety scores for restaurants in San Francisco. The scores and violation information have been <u>made available by the San Francisco Department of Public Health</u> (https://data.sfgov.org/Health-and-Social-Services/Restaurant-Scores-LIVES-Standard/pyih-ga8i).

In cleaning and exploring the data, I gained practice with:

- Pandas
- Data cleaning: identifying type of data collected, missing values, anomalies, etc.
- Data Analysis
- · Exploring different ways of visualizing data: distributions, mapping

Process and Reflection

I focused a lot of the time on the project learning about new ways to visualize data. In the process, I also learned about different ways of cleaning data in order to get the correct format or remove missing data.

Some new tools that I discovered include:

- DATA CLEANING
 - geopy + geocoders: An issue that I noticed while cleaning points to graph was that a lot of businesses were missing longitude, latitutde.
 - I wanted to looked at ways to use the address in order to find longitude and latitude points, which led me to finding geopy and its Nominatim library.
 - ISSUES: I didn't end up using this idea because of the following reasons:
 - A problem I ran into here was how inefficient it was in terms of finding all the geocode from the address. Given how much data was missing, it would have taken at least half an hour to process.
 - In addition, I found that if the addresses were not exact, whether due to commas or different
 ways of writing numbers (i.e. leading with 0 for single digit numbers), the library would not
 work. This was an issue because this was the case for many addresses.
 - SOLUTION: Instead, I found that zipcodes were much more readily available for each address. Thus, I decided that mapping scores based on zipcode was a better idea.

VISUALIZATIONS

- shapefile + geopandas: My goal was to visualize the location of the inspections and the scores to get a look at the possibility of any patterns related to location and inspection scores.
 - Thus, I discovered the use of shapefiles and geopandas that enable mappings of data points using longitude and latitude.
 - Another thing I learned is that after using geopandas to import and graph the shapefiles, you can
 use any other plotting libraries such as seaborn to plot points (as long as you have longitude,
 latitude points.
- **geojson and bokeh:** I wanted to visualize the median scores within each zipcode.
 - I found geojson to get the polygon shapes for each zipcode and overlay it onto a map.
 - I also found other libraries from bokeh to help create a color map using the our data points.
 - I hope to use boken more in the future. I think it has a lot of cool features that are great for data visualization.

```
In [1]: %%capture install
! pip install shapely
! pip install geopandas
! pip install descartes
! pip install geopy
! pip install bokeh
In [ ]:
```

Libraries

```
import numpy as np
In [2]:
        import pandas as pd
        import matplotlib
        import matplotlib.pyplot as plt
        import seaborn as sns
        import geopandas as gpd
        import descartes
        from shapely.geometry import Point, Polygon
        from geopy.geocoders import Nominatim
        import json
        from bokeh.io import output notebook, show, output file
        from bokeh.plotting import figure
        from bokeh.models import GeoJSONDataSource, LinearColorMapper, ColorBar
        from bokeh.palettes import brewer
        sns.set()
        plt.style.use('fivethirtyeight')
        %matplotlib inline
        import zipfile
        import os # Used to interact with the file system
        from pathlib import Path
```

Obtaining the Data

```
In [3]: dsDir = Path('data')

bus = pd.read_csv(dsDir/'bus.csv', encoding = 'ISO-8859-1')
   ins2vio = pd.read_csv(dsDir/'ins2vio.csv')
   ins = pd.read_csv(dsDir/'ins.csv')
   vio = pd.read_csv(dsDir/'vio.csv')
```

```
In [4]: display(bus.head())
    display(ins.head())
    display(vio.head())
```

<u> </u>	spidy (vi	io.neau())						
	business id column	name	address	city	state	postal_code	latitude	longitude
0	1000	HEUNG YUEN RESTAURANT	3279 22nd St	San Francisco	CA	94110	37.755282	-122.420493
1	100010	ILLY CAFFE SF_PIER 39	PIER 39 K-106-B	San Francisco	CA	94133	-9999.000000	-9999.000000
2	100017	AMICI'S EAST COAST PIZZERIA	475 06th St	San Francisco	CA	94103	-9999.000000	-9999.000000
3	100026	LOCAL CATERING	1566 CARROLL AVE	San Francisco	CA	94124	-9999.000000	-9999.000000
4	100030	OUI OUI! MACARON	2200 JERROLD AVE STE C	San Francisco	CA	94124	-9999.000000	-9999.000000
		iid		date sco	ore		type	
0	100010_20	0190329 03/29/	2019 12:00:0	00 AM	-1	New Constru	ction	
1	100010_20	0190403 04/03/	2019 12:00:0	00 AM 1	00 Roi	utine - Unsched	duled	
2	100017_20	0190417 04/17/	2019 12:00:0	00 AM	-1	New Owne	rship	
3	100017_20	0190816 08/16/	2019 12:00:0	00 AM	91 Ro	utine - Unsched	duled	
4	100017_20	0190826 08/26/	2019 12:00:0	00 AM	-1 Rei	inspection/Follo	owup	
			d	escription	risk_c	ategory	vid	
0	Consumer	advisory not pro	vided for raw	or unde	Moder	ate Risk 1031	28	
1		Contamina	ted or adulte	erated food	Н	igh Risk 1031	08	
2	Discl	narge from emplo	yee nose mo	outh or eye	Moder	ate Risk 1031	17	

Employee eating or smoking Moderate Risk 103118

Food in poor condition Moderate Risk 103123

3

4

In [5]: display(ins2vio.head())

	iid	vid
0	97975_20190725	103124
1	85986_20161011	103114
2	95754_20190327	103124
3	77005_20170429	103120
4	4794_20181030	103138

I. Data Cleaning: bus and ins

bus: Renaming Business ID

The bus dataframe contains a column called business id column which probably corresponds to a unique business id. We renamed the column to bid to assist with readibility.

```
In [6]: bus = bus.rename(columns={'business id column': 'bid'})
```

bus: Postal Code

Here we examine the number of restaurants per zipcode.

postal_code	
94103	562
94110	555
94102	456
94107	408
94133	398
94109	382
94111	259
94122	255
94105	249
94118 94115	231 230
94115	229
94108	218
94124	200
-9999	194
94112	192
94117	189
94123	177
94121	157
94104	142
94132	132
94116	97
94158	90
94134	82
94127	67
94131	49
94130	8
94143	5
94013	2
94188	2
CA	2
94301	2
94101	2
95122	1
941033148	1
95133	1
95132	1
94102-5917	1
94014	1
941	1
94080	1
94105-2907	1
92672 64110	1 1
00000	1
94105-1420	1
941102019	1
95117	1
95112	1
95109	1
95105	1
94901	1
94621	1
94602	1
94544	1
94518	1

```
94117-3504 1
94120 1
94122-1909 1
94123-3106 1
94124-1917 1
94129 1
Ca 1
```

I noticed that there were a lot of missing, invalid and differently formatted zip codes.

So next I want to get a new column that gets the first 5 numbers of zip codes and have None for those with invalid or missing zipcodes.

```
In [8]: #list of valid zipcodes in sf
        valid zips = pd.read_json('data/sf_zipcodes.json',dtype= str)['zip_code
        valid_zips.head(5)
Out[8]: 0
             94102
        1
             94103
        2
             94104
        3
             94105
        4
             94107
        Name: zip_codes, dtype: object
In [9]: bus['postal5'] = bus['postal_code'].str[:5]
        invalid postal5 = bus[~bus['postal5'].isin(valid_zips)]['postal5'].uniqu
        e()
        bus['postal5'].replace(invalid_postal5, [None] * len(invalid_postal5), i
        nplace = True)
        bus.head()
```

Out[9]:

	bid	name	address	city	state	postal_code	latitude	longitude	р
0	1000	HEUNG YUEN RESTAURANT	3279 22nd St	San Francisco	CA	94110	37.755282	-122.420493	
1	100010	ILLY CAFFE SF_PIER 39	PIER 39 K-106-B	San Francisco	CA	94133	-9999.000000	-9999.000000	
2	100017	AMICI'S EAST COAST PIZZERIA	475 06th St	San Francisco	CA	94103	-9999.000000	-9999.000000	
3	100026	LOCAL CATERING	1566 CARROLL AVE	San Francisco	CA	94124	-9999.000000	-9999.000000	
4	100030	OUI OUI! MACARON	2200 JERROLD AVE STE C	San Francisco	CA	94124	-9999.000000	-9999.000000	

```
In [10]: ins.head(5)
```

Out[10]:

type	score	date	iid	
New Construction	-1	03/29/2019 12:00:00 AM	100010_20190329	0
Routine - Unscheduled	100	04/03/2019 12:00:00 AM	100010_20190403	1
New Ownership	-1	04/17/2019 12:00:00 AM	100017_20190417	2
Routine - Unscheduled	91	08/16/2019 12:00:00 AM	100017_20190816	3
Reinspection/Followup	-1	08/26/2019 12:00:00 AM	100017_20190826	4

We notice that the column iid probably corresponds to an inspection id and has two numbers. The first number likely is the bid for the inspection. Next we are creating a new bid column in the ins data frame.

Out[11]:

	iid	date	score	type	bid
0	100010_20190329	03/29/2019 12:00:00 AM	-1	New Construction	100010
1	100010_20190403	04/03/2019 12:00:00 AM	100	Routine - Unscheduled	100010
2	100017_20190417	04/17/2019 12:00:00 AM	-1	New Ownership	100017
3	100017_20190816	08/16/2019 12:00:00 AM	91	Routine - Unscheduled	100017
4	100017_20190826	08/26/2019 12:00:00 AM	-1	Reinspection/Followup	100017
26658	999_20180924	09/24/2018 12:00:00 AM	-1	Routine - Scheduled	999
26659	999_20181102	11/02/2018 12:00:00 AM	-1	Reinspection/Followup	999
26660	999_20190909	09/09/2019 12:00:00 AM	80	Routine - Unscheduled	999
26661	99_20171207	12/07/2017 12:00:00 AM	82	Routine - Unscheduled	99
26662	99_20180808	08/08/2018 12:00:00 AM	84	Routine - Unscheduled	99

26663 rows × 5 columns

ins: Year Column

We want to get the year for each inspection for data analysis.

```
In [12]: ins_date_type = type(ins['date'][0])
   ins['timestamp'] = pd.to_datetime(ins['date'])
   ins['year'] = ins['timestamp'].dt.year
   ins.head()
```

Out[12]:

	iid	date	score	type	bid	timestamp	year
0	100010_20190329	03/29/2019 12:00:00 AM	-1	New Construction	100010	2019-03- 29	2019
1	100010_20190403	04/03/2019 12:00:00 AM	100	Routine - Unscheduled	100010	2019-04- 03	2019
2	100017_20190417	04/17/2019 12:00:00 AM	-1	New Ownership	100017	2019-04- 17	2019
3	100017_20190816	08/16/2019 12:00:00 AM	91	Routine - Unscheduled	100017	2019-08- 16	2019
4	100017_20190826	08/26/2019 12:00:00 AM	-1	Reinspection/Followup	100017	2019-08- 26	2019

Types of Inspections per Year 2016-19

```
In [13]: ins_pivot = ins.pivot_table(index = 'type', columns = 'year', values =
    'iid', aggfunc = 'count', fill_value = 0)
    ins_pivot['Total'] = ins_pivot.sum(numeric_only=True, axis = 1)
    ins_pivot_sorted = ins_pivot.sort_values('Total', ascending = False)
    ins_pivot_sorted
Out[13]:
```

year	2016	2017	2018	2019	Total
type					
Routine - Unscheduled	966	4057	4373	4681	14077
Reinspection/Followup	445	1767	1935	2292	6439
New Ownership	99	506	528	459	1592
Complaint	91	418	512	437	1458
New Construction	102	485	218	189	994
Non-inspection site visit	51	276	253	231	811
New Ownership - Followup	0	45	219	235	499
Structural Inspection	1	153	50	190	394
Complaint Reinspection/Followup	19	68	70	70	227
Foodborne Illness Investigation	1	29	50	35	115
Routine - Scheduled	0	9	8	29	46
Administrative or Document Review	2	1	1	0	4
Multi-agency Investigation	0	0	1	2	3
Special Event	0	3	0	0	3
Community Health Assessment	1	0	0	0	1

ins: Missing Scores

Something that I noticed was that there are a large number of inspections with the 'score' of -1. This is probably a placeholder for missing scores.

Let's see which types of inspections had missing scores.

```
In [15]: ins_tf = ins
    ins_tf['Missing Score'] = ins_tf['score'] == -1
    ins_missing_score_pivot = ins_tf.pivot_table(index = 'type', columns =
    'Missing Score', aggfunc = 'count', values = 'iid', fill_value = 0)
    ins_missing_score_pivot['Total'] = ins_missing_score_pivot.sum(numeric_o
    nly=True, axis = 1)
    ins_missing_score_pivot = ins_missing_score_pivot.sort_values('Total', a
    scending = False)
    ins_missing_score_pivot
```

Out[15]:

Missing Score	False	True	Total
type			
Routine - Unscheduled	14031	46	14077
Reinspection/Followup	0	6439	6439
New Ownership	0	1592	1592
Complaint	0	1458	1458
New Construction	0	994	994
Non-inspection site visit	0	811	811
New Ownership - Followup	0	499	499
Structural Inspection	0	394	394
Complaint Reinspection/Followup	0	227	227
Foodborne Illness Investigation	0	115	115
Routine - Scheduled	0	46	46
Administrative or Document Review	0	4	4
Multi-agency Investigation	0	3	3
Special Event	0	3	3
Community Health Assessment	0	1	1

I noticed that inspection scores appear only to be assigned to Routine - Unscheduled inspections. It is reasonable that for inspection types such as New Ownership and Complaint to have no associated inspection scores, but we might be curious why there are no inspection scores for the Reinspection/Followup inspection type.

II. Data Analysis: Inspections

Here, I want to analyze the distribution of inspection scores.

```
In [16]: filtered_ins = ins[ins['Missing Score'] == False]
    plt.bar(filtered_ins['score'].value_counts().keys(), filtered_ins['score'].value_counts())
    plt.xlabel("Score")
    plt.ylabel("Count")
    plt.title("Distribution of Inspection Scores")
```

Out[16]: Text(0.5, 1.0, 'Distribution of Inspection Scores')

OBSERVATION: The distribution of scores is skewed to the right of the graph, with almost all scores being greater than 60. This will be useful when we are visualizing 'high' and 'low' scores relative to each other. The scores that have the highest count are ones in the range of 90-100, which is good because we want scores for restaurants to be higher. We also see that there are also gaps within scores on the top. This can largely be dued to the point deductions from violations being even numbers.

II. Visualizations

In [17]: bus.head()

Out[17]:

	bid	name	address	city	state	postal_code	latitude	longitude	р
0	1000	HEUNG YUEN RESTAURANT	3279 22nd St	San Francisco	CA	94110	37.755282	-122.420493	_
1	100010	ILLY CAFFE SF_PIER 39	PIER 39 K-106-B	San Francisco	CA	94133	-9999.000000	-9999.000000	
2	100017	AMICI'S EAST COAST PIZZERIA	475 06th St	San Francisco	CA	94103	-9999.000000	-9999.000000	
3	100026	LOCAL CATERING	1566 CARROLL AVE	San Francisco	CA	94124	-9999.000000	-9999.000000	
4	100030	OUI OUI! MACARON	2200 JERROLD AVE STE C	San Francisco	CA	94124	-9999.000000	-9999.000000	

Getting relevant columns from business dataframe

We want:

- bid
- name
- longitude
- latitude
- postal5

```
In [18]: bus_clean = bus[["bid","name", "latitude","longitude", "postal5"]]
bus_clean
```

Out[18]:

	bid	name	latitude	longitude	postal5
0	1000	HEUNG YUEN RESTAURANT	37.755282	-122.420493	94110
1	100010	ILLY CAFFE SF_PIER 39	-9999.000000	-9999.000000	94133
2	100017	AMICI'S EAST COAST PIZZERIA	-9999.000000	-9999.000000	94103
3	100026	LOCAL CATERING	-9999.000000	-9999.000000	94124
4	100030	OUI OUI! MACARON	-9999.000000	-9999.000000	94124
6248	99948	SUSIECAKES BAKERY	-9999.000000	-9999.000000	94118
6249	99988	HINODEYA SOMA	-9999.000000	-9999.000000	94107
6250	99991	TON TON	-9999.000000	-9999.000000	94102
6251	99992	URBAN EXPRESS KITCHENS LLC	-9999.000000	-9999.000000	94103
6252	99993	THE BRIXTON SOUTH	-9999.000000	-9999.000000	94102

6253 rows × 5 columns

Joining inspection with business information

Out[19]:

	iid	date	score	type	bid	timestamp	year	Mis: Sc
0	100010_20190329	03/29/2019 12:00:00 AM	-1	New Construction	100010	2019-03- 29	2019	
1	100010_20190403	04/03/2019 12:00:00 AM	100	Routine - Unscheduled	100010	2019-04- 03	2019	F
2	100017_20190417	04/17/2019 12:00:00 AM	-1	New Ownership	100017	2019-04- 17	2019	
3	100017_20190816	08/16/2019 12:00:00 AM	91	Routine - Unscheduled	100017	2019-08- 16	2019	F
4	100017_20190826	08/26/2019 12:00:00 AM	-1	Reinspection/Followup	100017	2019-08- 26	2019	
26658	999_20180924	09/24/2018 12:00:00 AM	-1	Routine - Scheduled	999	2018-09- 24	2018	
26659	999_20181102	11/02/2018 12:00:00 AM	-1	Reinspection/Followup	999	2018-11- 02	2018	
26660	999_20190909	09/09/2019 12:00:00 AM	80	Routine - Unscheduled	999	2019-09- 09	2019	F
26661	99_20171207	12/07/2017 12:00:00 AM	82	Routine - Unscheduled	99	2017-12- 07	2017	F
26662	99_20180808	08/08/2018 12:00:00 AM	84	Routine - Unscheduled	99	2018-08- 08	2018	F

26663 rows × 12 columns

Getting the shapefile

I found the shapefile from datasf.org (datasf.org)

```
In [20]: street_map = gpd.read_file('geo_export_b35327a2-c448-435e-b713-677e799d2
ba5.shp')
```

Visualizing Median Score of Routine - Unscheduled Inspections

Get the median score for each business

Out[21]:

	bid	longitude	latitude	median score
0	19	-122.421547	37.786848	95.0
1	24	-122.403135	37.792888	98.0
2	31	-122.419004	37.807155	95.0
3	45	-122.413641	37.747114	88.0
4	48	-122.465749	37.764013	90.5
5719	101853	-9999.000000	-9999.000000	100.0
5720	102067	-9999.000000	-9999.000000	100.0
5721	102257	-9999.000000	-9999.000000	94.0
5722	102336	-9999.000000	-9999.000000	82.0
5723	102398	-9999.000000	-9999.000000	90.0

5724 rows × 4 columns

GeoPandas

Here we are going to use GeoPandas to help with mapping points.

```
In [22]: geometry = [Point(xy) for xy in zip (ins_median["longitude"], ins_median
['latitude'])]
```

Out[23]:

	bid	longitude	latitude	median score	geometry
 0	19	-122.421547	37.786848	95.0	POINT (-122.42155 37.78685)
1	24	-122.403135	37.792888	98.0	POINT (-122.40314 37.79289)
2	31	-122.419004	37.807155	95.0	POINT (-122.41900 37.80716)
3	45	-122.413641	37.747114	88.0	POINT (-122.41364 37.74711)
4	48	-122.465749	37.764013	90.5	POINT (-122.46575 37.76401)

Geocode Bounds for SF

Map of Median Inspection Scores in SF

Inspection Type Visualization and Analysis

Let's look at the different types of inspections.

```
In [27]:
         ins_types = pd.Series(ins_pivot.index)
         ins_types
Out[27]: 0
               Administrative or Document Review
         1
                      Community Health Assessment
         2
                                        Complaint
         3
                  Complaint Reinspection/Followup
         4
                  Foodborne Illness Investigation
         5
                       Multi-agency Investigation
         6
                                 New Construction
         7
                                    New Ownership
         8
                         New Ownership - Followup
         9
                        Non-inspection site visit
         10
                            Reinspection/Followup
                              Routine - Scheduled
         11
         12
                            Routine - Unscheduled
         13
                                    Special Event
         14
                            Structural Inspection
         Name: type, dtype: object
         clean_type = ins_named.loc[(ins_named['latitude'].between(sf_llat, sf_ul
In [28]:
         at))
                                & (ins_named['longitude'].between(sf_llon, sf_ulon
         )),
                                     ['bid', 'name', 'longitude', 'latitude', 'typ
         e','year',]]
         clean_type
```

Out[28]:

	bid	name	longitude	latitude	type	year
59	1000	HEUNG YUEN RESTAURANT	-122.420493	37.755282	Reinspection/Followup	2016
60	1000	HEUNG YUEN RESTAURANT	-122.420493	37.755282	Routine - Unscheduled	2017
61	1000	HEUNG YUEN RESTAURANT	-122.420493	37.755282	Reinspection/Followup	2017
62	1000	HEUNG YUEN RESTAURANT	-122.420493	37.755282	Routine - Unscheduled	2018
63	1000	HEUNG YUEN RESTAURANT	-122.420493	37.755282	Reinspection/Followup	2018
26658	999	SERRANO'S PIZZA II	-122.420534	37.756997	Routine - Scheduled	2018
26659	999	SERRANO'S PIZZA II	-122.420534	37.756997	Reinspection/Followup	2018
26660	999	SERRANO'S PIZZA II	-122.420534	37.756997	Routine - Unscheduled	2019
26661	99	J & M A-1 CAFE RESTAURANT LLC	-122.405967	37.794293	Routine - Unscheduled	2017
26662	99	J & M A-1 CAFE RESTAURANT LLC	-122.405967	37.794293	Routine - Unscheduled	2018

New Constructions Per Year

Let's look at the number of new construction inspections per year.

Out[29]:

	bid	name	longitude	latitude	year
0	100010	ILLY CAFFE SF_PIER 39	-9999.0	-9999.0	2019
25	100059	DUMPLING ALLEY	-9999.0	-9999.0	2019
26	100059	DUMPLING ALLEY	-9999.0	-9999.0	2019
27	100059	DUMPLING ALLEY	-9999.0	-9999.0	2019
39	100081	THE MATTERHORN RESTAURANT AND BAKERY	-9999.0	-9999.0	2019
26638	99948	SUSIECAKES BAKERY	-9999.0	-9999.0	2019
26639	99948	SUSIECAKES BAKERY	-9999.0	-9999.0	2019
26640	99948	SUSIECAKES BAKERY	-9999.0	-9999.0	2019
26649	99993	THE BRIXTON SOUTH	-9999.0	-9999.0	2019
26650	99993	THE BRIXTON SOUTH	-9999.0	-9999.0	2019

994 rows × 5 columns

Visual: New Constructions Locations by Year

I decided to use seaborn to plot points here to explore other ways to use the shapefile.

OBSERVATION: A lot of the inspections that were New Construction did not have longitude and latitude points. Thus, we are missing a lot of data on where a lot of New Construction are located.

Inspections types location (2018 and 2019)

```
In [31]: fig, axs = plt.subplots(figsize = (15,15))
         streets_fig = street_map.plot(ax = axs, alpha = 0.4, color = 'grey')
         newcon_fig = sns.scatterplot(ax = axs,
                                      data = clean_type[clean_type['year'] == 201
         8],
                                      x = 'longitude',
                                      y = 'latitude',
                                      hue = 'type',
                                       palette = 'deep',)
         plt.title("Inspections by Type (2018)")
         fig, axs = plt.subplots(figsize = (15,15))
         streets_fig = street_map.plot(ax = axs, alpha = 0.4, color = 'grey')
         newcon_fig = sns.scatterplot(ax = axs,
                                       data = clean_type[clean_type['year'] == 201
         9],
                                      x = 'longitude',
                                      y = 'latitude',
                                      hue = 'type',
                                      palette = 'deep',)
         plt.title("Inspections by Type (2019)")
```

Out[31]: Text(0.5, 1, 'Inspections by Type (2019)')

Inspections Locations per Year

I looked next at where inspections took place over the years. For each business, I chose to look at the their latest inspection.


```
In [ ]:
```

III. Visualization: Median Score per Zip Code (2019)

```
In [34]: valid_zips = pd.read_json('data/sf_zipcodes.json',dtype= str)['zip_code
s']
    valid_postal5 = bus[bus['postal5'].isin(valid_zips)]
    valid_postal5
```

Out[34]:

	bid	name	address	city	state	postal_code	latitude	longitu
0	1000	HEUNG YUEN RESTAURANT	3279 22nd St	San Francisco	CA	94110	37.755282	-122.4204
1	100010	ILLY CAFFE SF_PIER 39	PIER 39 K- 106-B	San Francisco	CA	94133	-9999.000000	-9999.0000
2	100017	AMICI'S EAST COAST PIZZERIA	475 06th St	San Francisco	CA	94103	-9999.000000	-9999.0000
3	100026	LOCAL CATERING	1566 CARROLL AVE	San Francisco	CA	94124	-9999.000000	-9999.0000
4	100030	OUI OUI! MACARON	2200 JERROLD AVE STE C	San Francisco	CA	94124	-9999.000000	-9999.0000
6248	99948	SUSIECAKES BAKERY	3509 CALIFORNIA ST	San Francisco	CA	94118	-9999.000000	-9999.0000
6249	99988	HINODEYA SOMA	303 02nd ST STE 102	San Francisco	CA	94107	-9999.000000	-9999.0000
6250	99991	TON TON	422 GEARY ST	San Francisco	CA	94102	-9999.000000	-9999.0000
6251	99992	URBAN EXPRESS KITCHENS LLC	475 06th ST	San Francisco	CA	94103	-9999.000000	-9999.0000
6252	99993	THE BRIXTON SOUTH	701 02nd St	San Francisco	CA	94102	-9999.000000	-9999.0000

6032 rows × 10 columns

```
In [35]: bus_clean_zip = bus[["bid", "postal5"]]
bus_clean_zip
```

Out[35]:

	bid	postal5
0	1000	94110
1	100010	94133
2	100017	94103
3	100026	94124
4	100030	94124
6248	99948	94118
6249	99988	94107
6250	99991	94102
6251	99992	94103
6252	99993	94102

6253 rows × 2 columns

Out[36]:

	postal5	median_score
0	94102	92.0
1	94103	91.0
2	94104	90.0
3	94105	90.0
4	94107	96.0

```
In [37]: data = 'SanFrancisco.Neighborhoods.json'
gdf = gpd.read_file(data)
gdf.head()
```

Out[37]:

In [38]:

```
In [39]: merge = gdf.merge(ins_zip_score, how='left', on='id')
    merged_json = json.loads(merge.to_json())
    json_data = json.dumps(merged_json)
```

```
In [40]: geosource = GeoJSONDataSource(geojson = json_data)
         #set the color palette
         palette = brewer['Blues'][9]
         palette = palette[::-1]
         color_mapper = LinearColorMapper(palette = palette, low = 88, high = 100
         , nan\_color = '#d9d9d9')
         color_bar = ColorBar(color_mapper=color_mapper, label_standoff=8,width =
         500, height = 20,
         border_line_color='black',location = (0,0), orientation = 'horizontal')
         #Set the size and title of the graph
         p = figure(title = 'Business Inspection Median Scores', plot_height = 70
         0 , plot_width = 700, toolbar_location = None,
                   tooltips=[
                   ("Name", "@neighborhood"),
                  ("Zip Code", "@id"),
                  ("Median Score", "@median_score")])
         #Makes it so there are no grid lines
         p.xgrid.grid_line_color = None
         p.ygrid.grid_line_color = None
         p.patches('xs','ys', source = geosource,fill color = {'field':'median sc
         ore', 'transform' : color_mapper},
                  line_color = 'black', line_width = 0.25, fill_alpha = 1)
         p.add_layout(color_bar, 'below')
         output_notebook()
         show(p)
```


