Chapter 4: Data Mining Process

Lecturer: Dr. Nguyen Thi Ngoc Anh Email: ngocanhnt@ude.edu.vn

1

How to Choose a Data Mining System?

- Commercial data mining systems have little in common
 - Different data mining functionality or methodology
 - May even work with completely different kinds of data sets
- Need multiple dimensional view in selection
- Data types: relational, transactional, text, time sequence, spatial?
- System issues
 - running on only one or on several operating systems?
 - a client/server architecture?
 - Provide Web-based interfaces and allow XML data as input and/or output?

How to Choose a Data Mining System? (2)

- Data sources
 - ASCII text files, multiple relational data sources
 - support ODBC connections (OLE DB, JDBC)?
- Data mining functions and methodologies
 - One vs. multiple data mining functions
 - One vs. variety of methods per function
 - More data mining functions and methods per function provide the user with greater flexibility and analysis power
- Coupling with DB and/or data warehouse systems
 - Four forms of coupling: no coupling, loose coupling, semitight coupling, and tight coupling
 - Ideally, a data mining system should be tightly coupled with a database system

3

How to Choose a Data Mining System? (3)

- Scalability
 - Row (or database size) scalability
 - Column (or dimension) scalability
 - Curse of dimensionality: it is much more challenging to make a system column scalable that row scalable
- Visualization tools
 - "A picture is worth a thousand words"
 - Visualization categories: data visualization, mining result visualization, mining process visualization, and visual data mining
- Data mining query language and graphical user interface
 - · Easy-to-use and high-quality graphical user interface
 - · Essential for user-guided, highly interactive data mining

Examples of Data Mining Systems (1)

- IBM Intelligent Miner
 - A wide range of data mining algorithms
 - Scalable mining algorithms
 - Toolkits: neural network algorithms, statistical methods, data preparation, and data visualization tools
 - Tight integration with IBM's DB2 relational database system
- SAS Enterprise Miner
 - A variety of statistical analysis tools
 - Data warehouse tools and multiple data mining algorithms
- Mirosoft SQLServer 2000
 - Integrate DB and OLAP with mining
 - Support OLEDB for DM standard

5

Examples of Data Mining Systems (2)

- SGI MineSet.
 - Multiple data mining algorithms and advanced statistics
 - Advanced visualization tools
- Clementine (SPSS)
 - An integrated data mining development environment for endusers and developers
 - Multiple data mining algorithms and visualization tools
- DBMiner (DBMiner Technology Inc.)
 - Multiple data mining modules: discovery-driven OLAP analysis, association, classification, and clustering
 - Efficient, association and sequential-pattern mining functions, and visual classification tool
 - Mining both relational databases and data warehouses

Data Mining Process

- Cross-Industry Standard Process for Data Mining (CRISP-DM)
- European Community funded effort to develop framework for data mining tasks
- Goals:
 - Encourage interoperable tools across entire data mining process
 - Take the mystery/high-priced expertise out of simple data mining tasks

Why Should There be a Standard **Process?**

The data mining process must be reliable and repeatable by people with little data mining • Aid to project planning and background.

- Framework for recording experience
 - Allows projects to be replicated
 - management
- "Comfort factor" for new adopters
 - Demonstrates maturity of Data Mining
 - Reduces dependency on "stars"

Process Standardization

- CRoss Industry Standard Process for Data Mining
- Initiative launched Sept. 1996
- SPSS/ISL, NCR, Daimler-Benz, OHRA
- Funding from European commission
- Over 200 members of the CRISP-DM SIG worldwide
 - DM Vendors SPSS, NCR, IBM, SAS, SGI, Data Distilleries, Syllogic, Magnify, ...
 - System Suppliers / consultants Cap Gemini, ICL Retail, Deloitte & Touche, ...
 - End Users BT, ABB, Lloyds Bank, AirTouch, Experian, ...

9

CRISP-DM

- Non-proprietary
- Application/Industry neutral
- Tool neutral
- Focus on business issues
 - · As well as technical analysis
- Framework for guidance
- Experience base
 - Templates for Analysis

CRISP-DM: Phases

Business Understanding

- Understanding project objectives and requirements
- Data mining problem definition

Data Understanding

- Initial data collection and familiarization
- · Identify data quality issues
- Initial, obvious results

• Data Preparation

- Record and attribute selection
- Data cleansing

Modeling

Run the data mining tools

Evaluation

- Determine if results meet business objectives
- oldentify business issues that should have been addressed earlier

Deployment

- Put the resulting models into practice
- Set up for repeated/continuous mining of the data

Phases in the DM Process (3)

Data preparation:

- Takes usually over 90% of the time
 - Collection
 - Assessment
 - Consolidation and Cleaning
 - table links, aggregation level, missing values, etc
 - Data selection
 - active role in ignoring noncontributory data?
 - outliers?
 - · Use of samples
 - · visualization tools
 - Transformations create new variables

15

Phases in the DM Process (4)

- Model building
 - Selection of the modeling techniques is based upon the data mining objective
 - Modeling is an iterative process - different for supervised and unsupervised learning
 - May model for either description or prediction

Phases in the DM Process (5)

- Model Evaluation
 - Evaluation of model: how well it performed on test data
 - Methods and criteria depend on model type:
 - e.g., coincidence matrix with classification models, mean error rate with regression models
 - Interpretation of model: important or not, easy or hard depends on algorithm

18

Phases in the DM Process (6)

- Deployment
 - Determine how the results need to be utilized
 - Who needs to use them?
 - How often do they need to be used
- Deploy Data Mining results by:
 - Scoring a database
 - Utilizing results as business rules
 - interactive scoring on-line

Why CRISP-DM?

- The data mining process must be reliable and repeatable by people with little data mining skills
- CRISP-DM provides a uniform framework for
 - guidelines
 - experience documentation
- CRISP-DM is flexible to account for differences
 - Different business/agency problems
 - Different data

20

Attribute-Oriented Induction

Attribute-Oriented Induction

- Proposed in 1989 (KDD '89 workshop)
- Not confined to categorical data nor particular measures.
- How it is done?
 - Collect the task-relevant data (initial relation) using a relational database query
 - Perform generalization by <u>attribute removal</u> or <u>attribute</u> generalization.
 - Apply aggregation by merging identical, generalized tuples and accumulating their respective counts
 - Interactive presentation with users

29

Basic Principles of Attribute-Oriented Induction

- <u>Data focusing</u>: task-relevant data, including dimensions, and the result is the *initial relation*.
- Attribute-removal: remove attribute A if there is a large set of distinct values for A but (I) there is no generalization operator on A, or (2) A's higher level concepts are expressed in terms of other attributes.
- Attribute-generalization: If there is a large set of distinct values for A, and there exists a set of generalization operators on A, then select an operator and generalize A.
- Attribute-threshold control: typical 2-8, specified/default.
- Generalized relation threshold control: control the final relation/rule size.

Attribute-Oriented Induction: Basic Algorithm

- <u>InitialRel</u>: Query processing of task-relevant data, deriving the *initial* relation.
- <u>PreGen</u>: Based on the analysis of the number of distinct values in each attribute, determine generalization plan for each attribute: removal? or how high to generalize?
- <u>PrimeGen</u>: Based on the PreGen plan, perform generalization to the right level to derive a "prime generalized relation", accumulating the counts.
- <u>Presentation</u>: User interaction: (1) adjust levels by drilling, (2) pivoting, (3) mapping into rules, cross tabs, visualization presentations.

31

Example

• DMQL: Describe general characteristics of graduate students in the Big-University database

```
use Big_University_DB
mine characteristics as "Science_Students"
in relevance to name, gender, major, birth_place, birth_date,
  residence, phone#, gpa
from student
```

• Corresponding SQL statement:

where status in "graduate"

Select name, gender, major, birth_place, birth_date, residence,
 phone#, gpa
from student
where status in {"Msc", "MBA", "PhD" }

		Cla	เรร	C	Cha	ıra	acte	riz	ati	ion	:A	n Ex	amp	le
		Name		ende			Birth-Pla			th_date		idence	Phone #	GPA
Initial Relatio	Relation S	Woodman		Voodman cott M		CS CS		Vancouv Canada Montrea Canada	- , -,	Richmon		1st Ave.,	687-4598 253-9106	3.67 3.70
		Laura Lo	ee 1	F •	Phy	sics	Seattle, W	A, USA	25-8	3-70	125 A Buri	Austin Ave., laby	420-5232 	3.83
	Removed			Retained		Eng,	Country		Age range		City		Removed	Excl, VG,
			Gend	ler N	Iajor Birt		th_region	Age_i	range	Resid	ence	GPA	Count	
Prim	•••		M	-	cience	-	anada	20-		Richn		Very-good	16	
Gene Rela		lized	F	S	cience	F	oreign	25-	30	Burna	ıby	Excellent	22	
Keia	tio	п												
				G	Birtl ender	⊩Reg	gion Cana	ıda	Forei	ign	Tota	l		
					ı	М	16	i		4	30			
					I	7	10	1	2	2	32			
					То	tal	26		3	6	62			
				_										33

Presentation of Generalized Results

- Generalized relation:
 - Relations where some or all attributes are generalized, with counts or other aggregation values accumulated.
- Cross tabulation:
 - Mapping results into cross tabulation form (similar to contingency tables).
 - Visualization techniques:
 - Pie charts, bar charts, curves, cubes, and other visual forms.
- Quantitative characteristic rules:
 - Mapping generalized result into characteristic rules with quantitative information associated with it, e.g.,

 $grad(x) \land male(x) \Rightarrow$ $birth_region(x) = "Canada"[t:53\%] \lor birth_region(x) = "foreign"[t:47\%].$

Presentation—Generalized Relation

location	item	sales (in million dollars)	count (in thousands)
Asia	TV	15	300
Europe	TV	12	250
North_America	TV	28	450
Asia	computer	120	1000
Europe	computer	150	1200
North_America	computer	200	1800

Table 5.3: A generalized relation for the sales in 1997.

35

Presentation—Crosstab

location \ item	TV		com	puter	both_items	
83	sales	count	sales	count	sales	count
Asia	15	300	120	1000	135	1300
Europe	12	250	150	1200	162	1450
North_America	28	450	200	1800	228	2250
all_regions	45	1000	470	4000	525	5000

Table 5.4: A crosstab for the sales in 1997.

Concept Description: Characterization and Comparison

- What is concept description?
- Data generalization and summarization-based characterization
- Analytical characterization: Analysis of attribute relevance
- Mining class comparisons: Discriminating between different classes
- Mining descriptive statistical measures in large databases
- Discussion
- Summary

38

Characterization vs. OLAP

- Similarity:
 - Presentation of data summarization at multiple levels of abstraction.
 - Interactive drilling, pivoting, slicing and dicing.
- Differences:
 - Automated desired level allocation.
 - Dimension relevance analysis and ranking when there are many relevant dimensions.
 - Sophisticated typing on dimensions and measures.
 - Analytical characterization: data dispersion analysis.

Attribute Relevance Analysis

- Why?
 - Which dimensions should be included?
 - How high level of generalization?
 - Automatic VS. Interactive
 - Reduce # attributes; Easy to understand patterns
- What?
 - statistical method for preprocessing data
 - filter out irrelevant or weakly relevant attributes
 - retain or rank the relevant attributes
 - relevance related to dimensions and levels
 - o analytical characterization, analytical comparison

40

Attribute relevance analysis (cont'd)

- How?
 - Data Collection
 - Analytical Generalization
 - Use information gain analysis (e.g., entropy or other measures) to identify highly relevant dimensions and levels.
 - Relevance Analysis
 - Sort and select the most relevant dimensions and levels.
 - Attribute-oriented Induction for class description
 - · On selected dimension/level
 - OLAP operations (e.g. drilling, slicing) on relevance rules

Relevance Measures

- Quantitative relevance measure determines the classifying power of an attribute within a set of data.
- Methods
 - information gain (ID3)
 - gain ratio (C4.5)
 - gini index
 - $\circ \chi^2$ contingency table statistics
 - uncertainty coefficient

42

Information-Theoretic Approach

- Decision tree
 - each internal node tests an attribute
 - · each branch corresponds to attribute value
 - · each leaf node assigns a classification
- ID3 algorithm
 - build decision tree based on training objects with known class labels to classify testing objects
 - rank attributes with information gain measure
 - · minimal height
 - the least number of tests to classify an object

Example: Analytical Characterization

- Task
 - Mine general characteristics describing graduate students using analytical characterization
- Given
 - attributes name, gender, major, birth_place, birth_date, phone#, and gpa
 - $Gen(a_i) = concept hierarchies on a_i$
 - U_i = attribute analytical thresholds for a_i
 - T_i = attribute generalization thresholds for a_i
 - R = attribute relevance threshold

46

Example: Analytical Characterization (cont'd)

- I. Data collection
 - target class: graduate student
 - o contrasting class: undergraduate student
- 2.Analytical generalization using U_i
 - · attribute removal
 - · remove name and phone#
 - attribute generalization
 - generalize major, birth_place, birth_date and gpa
 - · accumulate counts
 - candidate relation: gender, major, birth_country, age_range and gpa

Example: Analytical characterization (2)

gender	major	birth_country	age_range	gpa	count
M	Science	Canada	20-25	Very_good	16
F	Science	Foreign	25-30	Excellent	22
M	Engineering	Foreign	25-30	Excellent	18
F	Science	Foreign	25-30	Excellent	25
M	Science	Canada	20-25	Excellent	21
F	Engineering	Canada	20-25	Excellent	18

Candidate relation for Target class: Graduate students (∑=120)

gender	major	birth_country	age_range	gpa	count
M	Science	Foreign	<20	Very_good	18
F	Business	Canada	<20	Fair	20
M	Business	Canada	<20	Fair	22
F	Science	Canada	20-25	Fair	24
M	Engineering	Foreign	20-25	Very_good	22
F	Engineering	Canada	<20	Excellent	24

Candidate relation for Contrasting class: Undergraduate students (Σ =130)

48

Example: Analytical characterization (3)

- 3. Relevance analysis
 - Calculate expected info required to classify an arbitrary tuple

$$I(s_1, s_2) = I(120,130) = -\frac{120}{250}log_2\frac{120}{250} - \frac{130}{250}log_2\frac{130}{250} = 0.9988$$

· Calculate entropy of each attribute: e.g. major

For major="Science":
$$s_{11}$$
=84 s_{21} =42 s_{21} =42 s_{22} =46 s_{22} =46 s_{22} =46 s_{22} =46 s_{23} =42 s_{23}

Example: Analytical Characterization (4)

 Calculate expected info required to classify a given sample if S is partitioned according to the attribute

$$E(major) = \frac{126}{250}I(s_{11}, s_{21}) + \frac{82}{250}I(s_{12}, s_{22}) + \frac{42}{250}I(s_{13}, s_{23}) = 0.7873$$

• Calculate information gain for each attribute

 $Gain(major) = I(s_1, s_2) - E(major) = 0.2115$

Information gain for all attributes

 $\begin{array}{ll} Gain(gender) & = 0.0003 \\ Gain(birth_country) & = 0.0407 \\ Gain(major) & = 0.2115 \\ Gain(gpa) & = 0.4490 \\ Gain(age_range) & = 0.5971 \end{array}$

50

Example: Analytical characterization (5)

- 4. Initial working relation (W₀) derivation
 - R = 0.1
 - remove irrelevant/weakly relevant attributes from candidate relation => drop gender, birth_country
 - · remove contrasting class candidate relation

major	age_range	gpa	count
Science	20-25	Very_good	16
Science	25-30	Excellent	47
Science	20-25	Excellent	21
Engineering	20-25	Excellent	18
Engineering	25-30	Excellent	18

Initial target class working relation \mathbf{W}_0 : Graduate students

5. Perform attribute-oriented induction on W₀ using T_i

Concept Description: Characterization and Comparison

- · What is concept description?
- Data generalization and summarization-based characterization
- Analytical characterization: Analysis of attribute relevance
- Mining class comparisons: Discriminating between different classes
- Mining descriptive statistical measures in large databases
- Discussion
- Summary

52

Mining Class Comparisons

- Comparison: Comparing two or more classes
- Method:
 - Partition the set of relevant data into the target class and the contrasting class(es)
 - Generalize both classes to the same high level concepts
 - Compare tuples with the same high level descriptions
 - Present for every tuple its description and two measures
 - · support distribution within single class
 - · comparison distribution between classes
 - Highlight the tuples with strong discriminant features
- Relevance Analysis:
 - Find attributes (features) which best distinguish different classes

Example: Analytical comparison

- Task
 - · Compare graduate and undergraduate students using discriminant rule.
 - DMQL query

use Big_University_DB
mine comparison as "grad_vs_undergrad_students"
in relevance to name, gender, major, birth_place, birth_date, residence, phone#, gpa
for "graduate_students"
where status in graduate"
versus "undergraduate_students"
where status in "undergraduate"
analyze count%
from student

54

Example: Analytical comparison (2)

- Given
 - attributes name, gender, major, birth_place, birth_date, residence, phone# and gpa
 - $Gen(a_i)$ = concept hierarchies on attributes a_i
 - U_i = attribute analytical thresholds for attributes a_i
 - T_i = attribute generalization thresholds for attributes a_i
 - R = attribute relevance threshold

Example: Analytical comparison (3)

- I. Data collection
 - target and contrasting classes
- 2. Attribute relevance analysis
 - remove attributes name, gender, major, phone#
- 3. Synchronous generalization
 - controlled by user-specified dimension thresholds
 - prime target and contrasting class(es) relations/cuboids

56

Example: Analytical comparison (4)

Birth_country	Age_range	Gpa	Count%
Canada	20-25	Good	5.53%
Canada	25-30	Good	2.32%
Canada	Over_30	Very_good	5.86%
	•••	•••	•••
Other	Over_30	Excellent	4.68%

Prime generalized relation for the target class: Graduate students

Birth_country	Age_range	Gpa	Count%
Canada	15-20	Fair	5.53%
Canada	15-20	Good	4.53%
	•••		
Canada	25-30	Good	5.02%
	•••	•••	•••
Other	Over_30	Excellent	0.68%

Prime generalized relation for the contrasting class: Undergraduate students

Example: Analytical comparison (5)

- 4. Drill down, roll up and other OLAP operations on target and contrasting classes to adjust levels of abstractions of resulting description
- 5. Presentation
 - as generalized relations, crosstabs, bar charts, pie charts, or rules
 - contrasting measures to reflect comparison between target and contrasting classes
 - e.g. count%

58

Quantitative Discriminant Rules

- Cj = target class
- q_a = a generalized tuple covers some tuples of class
 - but can also cover some tuples of contrasting class
- d-weight
 - range: $[\mathbf{0}_{\mathcal{A}} \mathbf{L}]_{weight} = \frac{count(q_a \in C_j)}{\sum_{i=1}^{m} count(q_a \in C_i)}$
- quantitative discriminant rule form

 $\forall X$, $target_class(X) \Leftarrow condition(X) [d:d_weight]$

Example: Quantitative Discriminant Rule

Status	Birth_country	Age_range	Gpa	Count
Graduate	Canada	25-30	Good	90
Undergraduate	Canada	25-30	Good	120

Count distribution between graduate and undergraduate students for a generalized tuple

Quantitative discriminant rule

$$\forall X$$
, $graduate_student(X) \Leftarrow$
 $birth_country(X) = "Canada" \land age_range(X) = "25 - 30" \land gpa(X) = "good" [d:30%]$

 \circ where 90/(90+120) = 30%

60

Class Description

Quantitative characteristic rule

 $\forall X$, target $class(X) \Rightarrow condition(X)$ [t:t weight]

- necessary
- Quantitative discriminant rule

 $\forall X$, target $class(X) \Leftarrow condition(X)$ [d:d weight]

- sufficient
- Quantitative description rule

 $\forall \textit{X, target_class(X)} \Leftrightarrow \\ \textit{condition}_1(\textit{X})[\texttt{t}: \texttt{w}_1, \texttt{d}: \texttt{w}'_1] \lor ... \lor \textit{condition}_n(\textit{X})[\texttt{t}: \texttt{w}_n, \texttt{d}: \texttt{w}'_n] \\ \circ \text{ necessary and sufficient}$

Example: Quantitative Description Rule

Location/item		TV			Computer			Both_items	
	Count	t-wt	d-wt	Count	t-wt	d-wt	Count	t-wt	d-wt
Europe	80	25%	40%	240	75%	30%	320	100%	32%
N_Am	120	17.65%	60%	560	82.35%	70%	680	100%	68%
Both_ regions	200	20%	100%	800	80%	100%	1000	100%	100%

Crosstab showing associated t-weight, d-weight values and total number (in thousands) of TVs and computers sold at AllElectronics in 1998

Quantitative description rule for target class Europe

 $\forall \textit{X}, \textit{Europe}(\textit{X}) \Leftrightarrow \\ (\textit{item}(\textit{X}) = "TV")[\texttt{t}: 25\%, \texttt{d}: 40\%] \lor (\textit{item}(\textit{X}) = "computer")[\texttt{t}: 75\%, \texttt{d}: 30\%]$

62

Concept Description: Characterization and Comparison

- What is concept description?
- Data generalization and summarization-based characterization
- Analytical characterization: Analysis of attribute relevance
- Mining class comparisons: Discriminating between different classes
- Mining descriptive statistical measures in large databases
- Discussion
- Summary

Mining Data Dispersion Characteristics

- Motivation
 - To better understand the data: central tendency, variation and spread
- Data dispersion characteristics
 - median, max, min, quantiles, outliers, variance, etc.
- Numerical dimensions correspond to sorted intervals
 - Data dispersion: analyzed with multiple granularities of precision
 - Boxplot or quantile analysis on sorted intervals
- Dispersion analysis on computed measures
 - Folding measures into numerical dimensions
 - Boxplot or quantile analysis on the transformed cube

73

Histogram Analysis

- Graph displays of basic statistical class descriptions
 - Frequency histograms
 - · A univariate graphical method
 - Consists of a set of rectangles that reflect the counts or frequencies of the classes present in the given data

Quantile Plot

- Displays all of the data (allowing the user to assess both the overall behavior and unusual occurrences)
- Plots quantile information
 - For a data x_i data sorted in increasing order, f_i indicates that approximately 100 f_i % of the data are below or equal to the value x_i

80

Quantile-Quantile (Q-Q) Plot

- Graphs the quantiles of one univariate distribution against the corresponding quantiles of another
- Allows the user to view whether there is a shift in going from one distribution to another

Scatter plot

- Provides a first look at bivariate data to see clusters of points, outliers, etc
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane

Loess Curve

- Adds a smooth curve to a scatter plot in order to provide better perception of the pattern of dependence
- Loess curve is fitted by setting two parameters: a smoothing parameter, and the degree of the polynomials that are fitted by the regression

Summary

- Concept description: characterization and discrimination
- OLAP-based vs. attribute-oriented induction
- Efficient implementation of AOI
- Analytical characterization and comparison
- Mining descriptive statistical measures in large databases
- Discussion
 - · Incremental and parallel mining of description
 - Descriptive mining of complex types of data

90

References

- Y. Cai, N. Cercone, and J. Han. Attribute-oriented induction in relational databases. In G. Piatetsky-Shapiro and W. J. Frawley, editors, Knowledge Discovery in Databases, pages 213-228. AAAI/MIT Press, 1991.
- S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology. ACM SIGMOD Record, 26:65-74, 1997
- C. Carter and H. Hamilton. Efficient attribute-oriented generalization for knowledge discovery from large databases. IEEE Trans. Knowledge and Data Engineering, 10:193-208, 1998.
- W. Cleveland. Visualizing Data. Hobart Press, Summit NJ, 1993.
- J. L. Devore. Probability and Statistics for Engineering and the Science, 4th ed. Duxbury Press, 1995.
- T. G. Dietterich and R. S. Michalski. A comparative review of selected methods for learning from examples. In Michalski et al., editor, Machine Learning: An Artificial Intelligence Approach, Vol. 1, pages 41-82. Morgan Kaufmann, 1983.
- J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh. Data cube: A relational aggregation operator generalizing group-by, cross-tab and sub-totals. Data Mining and Knowledge Discovery, 1:29-54, 1997.
- J. Han, Y. Cai, and N. Cercone. Data-driven discovery of quantitative rules in relational databases. IEEE Trans. Knowledge and Data Engineering, 5:29-40, 1993.

References (cont.)

- J. Han and Y. Fu. Exploration of the power of attribute-oriented induction in data mining. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, pages 399-421.AAAI/MIT Press, 1996.
- R.A. Johnson and D.A. Wichern. Applied Multivariate Statistical Analysis, 3rd ed. Prentice Hall, 1992.
- E. Knorr and R. Ng. Algorithms for mining distance-based outliers in large datasets. VLDB'98, New York, NY, Aug. 1998.
- H. Liu and H. Motoda. Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, 1998.
- R. S. Michalski. A theory and methodology of inductive learning. In Michalski et al., editor, Machine Learning: An Artificial Intelligence Approach, Vol. 1, Morgan Kaufmann, 1983.
- T. M. Mitchell. Version spaces: A candidate elimination approach to rule learning. IJCAl'97, Cambridge, MA.
- T. M. Mitchell. Generalization as search. Artificial Intelligence, 18:203-226, 1982.
- T. M. Mitchell. Machine Learning. McGraw Hill, 1997.
- J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.
- D. Subramanian and J. Feigenbaum. Factorization in experiment generation. AAAI'86, Philadelphia, PA, Aug. 1986.