

N-channel 300 V, 53 A, 0.037 Ω typ., MDmesh $^{\text{TM}}$ M5 Power MOSFET in a D 2 PAK package

TAB L

D²PAk

Features

Order code	V _{DS}	R _{DS(on)} max.	I _D
STB45N30M5	300 V	0.040 Ω	53 A

- Extremely low R_{DS(on)}
- Low gate charge and input capacitance
- · Excellent switching performance
- 100% avalanche tested

Applications

Switching applications

Description

This device is an N-channel Power MOSFET based on the MDmesh™ M5 innovative vertical process technology combined with the well-known PowerMESH™ horizontal layout. The resulting product offers extremely low on-resistance, making it particularly suitable for applications requiring high power and superior efficiency.

Product status link
STB45N30M5
Product summary

Product summary				
Order code	STB45N30M5			
Marking	45N30M5			
Package	D ² PAK			
Packing	Tape and reel			

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	±25	V
I_	Drain current (continuous) at T _{case} = 25 °C	53	_
I _D	Drain current (continuous) at T _{case} = 100 °C	34	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	212	Α
P _{TOT}	Total dissipation at T _{case} = 25 °C	250	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	15	V/ns
T _{stg}	Storage temperature range	55 to 150	°C
Tj	Operating junction temperature range	-55 to 150	C

^{1.} Pulse width is limited by safe operating area.

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	0.5	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	30	C/VV

^{1.} When mounted on an 1-inch² FR-4, 2 Oz copper board.

Table 3. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive $ (\text{pulse width limited by T}_j \text{ max}) $	16	А
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	550	mJ

DS12585 - Rev 1 page 2/15

^{2.} $I_{SD} \le 53$ A, $di/dt \le 400$ A/ μ s, V_{DS} peak $< V_{(BR)DSS}, V_{DD} = 240$ V

2 Electrical characteristics

 T_C = 25 °C unless otherwise specified

Table 4. On-/off-states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	300			V
		V _{GS} = 0 V, V _{DS} = 300 V			1	μA
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 300 \text{ V},$ $T_C = 125 ^{\circ}C^{(1)}$			100	μA
I _{GSS}	Gate body leakage current	V _{DS} = 0 V, V _{GS} = ±25 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 26.5 A		0.037	0.040	Ω

^{1.} Defined by design, not subject to production test.

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	4240	-	pF
C _{oss}	Output capacitance	$V_{DS} = 100 \text{ V, f} = 1 \text{ MHz, V}_{GS} = 0 \text{ V}$	-	205	-	pF
C _{rss}	Reverse transfer capacitance		-	9.5	-	pF
C _{o(tr)} ⁽¹⁾	Time-related equivalent capacitance	V _{DS} = 0 to 240 V, V _{GS} = 0 V	-	373	-	pF
C _{o(er)} ⁽²⁾	Energy-related equivalent capacitance	VDS - 0 to 240 V, VGS - 0 V	-	202	-	pF
R _G	Gate input resistance	f = 1 MHz, I _D = 0 A	-	1.4	-	Ω
Qg	Total gate charge	V _{DD} = 240 V, I _D = 24 A,	-	95	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 0 to 10 V	-	23	-	nC
Q _{gd}	Gate-drain charge	(see Figure 15. Test circuit for gate charge behavior)	-	37	-	nC

^{1.} $C_{o(tr)}$ is a constant capacitance value that gives the same charging time as Coss while V_{DS} is rising from 0 to 80% V_{DSS} .

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(v)}	Voltage delay time	V _{DD} = 240 V, I _D = 32 A,	-	66	-	ns
t _{r(v)}	Voltage rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$	-	15	-	ns
t _{f(i)}	Current fall time	(see Figure 16. Test circuit for inductive load switching and diode	-	24	-	ns
t _{c(off)}	Crossing time	recovery times and Figure 19. Switching time waveform)	-	22.5	-	ns

DS12585 - Rev 1 page 3/15

^{2.} $C_{o(er)}$ is a constant capacitance value that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .

Table 7. Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		53	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		212	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 53 A, V _{GS} = 0 V	-		1.5	V
t _{rr}	Reverse recovery time	$I_{SD} = 48 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s,}$	-	223		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V	-	2.5		μC
I _{RRM}	Reverse recovery current	(see Figure 16. Test circuit for inductive load switching and diode recovery times)	-	23		Α
t _{rr}	Reverse recovery time	$I_{SD} = 48 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s,}$	-	280		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V, T _j = 150 °C	-	3.9		μC
I _{RRM}	Reverse recovery current	(see Figure 16. Test circuit for inductive load switching and diode recovery times)	-	28		Α

^{1.} Pulse width limited by safe operating area

DS12585 - Rev 1 page 4/15

^{2.} Pulsed: pulse duration = 300 μs, duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 3. Output characteristics AM18134v1 ID(A) Vgs=10V 140 120 100 80 7V 60 40 20 6V 10 5 15 20 VDS(V)

DS12585 - Rev 1 page 5/15

Figure 7. Capacitance variations

C
(pF)
10000
100
100
Coss
100
100
VDS(V)

Eoss (µJ) 10 8 AM18139v1 A

Figure 9. Normalized gate threshold voltage vs temperature <u>A</u>M07101v1 VGS(th) 1.10 $ID = 250 \mu A$ 1.00 0.90 0.80 0.70 -25 0 25 50 75 100 TJ(°C)

DS12585 - Rev 1 page 6/15

DS12585 - Rev 1 page 7/15

3 Test circuits

Figure 14. Test circuit for resistive load switching times

Figure 15. Test circuit for gate charge behavior

Figure 16. Test circuit for inductive load switching and diode recovery times

Figure 17. Unclamped inductive load test circuit

Figure 18. Unclamped inductive waveform

Figure 19. Switching time waveform

DS12585 - Rev 1 page 8/15

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

4.1 D²PAK (TO-263) type A2 package information

Figure 20. D²PAK (TO-263) type A2 package outline

0079457_A2_24

DS12585 - Rev 1 page 9/15

Table 8. D²PAK (TO-263) type A2 package mechanical data

Dim	mm					
Dim.	Min.	Тур.	Max.			
А	4.40		4.60			
A1	0.03		0.23			
b	0.70		0.93			
b2	1.14		1.70			
С	0.45		0.60			
c2	1.23		1.36			
D	8.95		9.35			
D1	7.50	7.75	8.00			
D2	1.10	1.30	1.50			
Е	10.00		10.40			
E1	8.70	8.90	9.10			
E2	7.30	7.50	7.70			
е		2.54				
e1	4.88		5.28			
Н	15.00		15.85			
J1	2.49		2.69			
L	2.29		2.79			
L1	1.27		1.40			
L2	1.30		1.75			
R		0.40				
V2	0°		8°			

Figure 21. D²PAK (TO-263) recommended footprint (dimensions are in mm)

DS12585 - Rev 1 page 10/15

4.2 D²PAK packing information

Figure 22. D²PAK tape outline

AM08852v1

DS12585 - Rev 1 page 11/15

Figure 23. D²PAK reel outline

AM06038v1

Table 9. D²PAK tape and reel mechanical data

Таре		Reel			
Dim.	n	nm	Dim.	mr	n
Dilli.	Min.	Max.	Dilli.	Min.	Max.
A0	10.5	10.7	А		330
В0	15.7	15.9	В	1.5	
D	1.5	1.6	С	12.8	13.2
D1	1.59	1.61	D	20.2	
E	1.65	1.85	G	24.4	26.4
F	11.4	11.6	N	100	
K0	4.8	5.0	Т		30.4
P0	3.9	4.1			
P1	11.9	12.1	Base q	uantity	1000
P2	1.9	2.1	Bulk quantity		1000
R	50				
Т	0.25	0.35			
W	23.7	24.3			

DS12585 - Rev 1 page 12/15

Revision history

Table 10. Document revision history

Date	Version	Changes
16-May-2018	1	Initial release

DS12585 - Rev 1 page 13/15

Contents

1	Elec	trical ratings	2		
2		Electrical characteristics			
	2.1	Electrical characteristics (curves)	5		
3	Test	est circuits			
4	Pacl	Package information			
	4.1	D²PAK (TO-263) type A2 package information	9		
	4.2	D²PAK packing information	10		
Rev	evision history				

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics - All rights reserved

DS12585 - Rev 1 page 15/15