

Máquina de Turing Universal Teoria da Computação

Professor: Rennan Dantas

Universidade Federal do Ceará Campus de Crateús

04 de maio de 2023

⁰Slides baseados no livro LEWIS, Harry R.; PAPADIMITRIOU, Christos H. Elements of the Theory of Computation. ACM SIGACT News, v. 29, n. 3, p. 62-78, 1998.

Introdução

- Devemos mostrar que existe uma certa máquina de Turing "genérica" que pode ser programada da mesma forma que um computador de propósito geral
- O "programa" que faz essa máquina genérica se comportar como uma máquina específica M terá a descrição de M
- Pensaremos no formalismo das máquinas de Turing como uma linguagem de programação na qual podemos escrever programas
- Um programa escrito em uma linguagem poder interpretar qualquer programa escrito na mesma linguagem n\u00e3o \u00e9 uma ideia nova - bootstrapping

Introdução

- Devemos apresentar uma maneira geral para especificar máquinas de Turing de forma que suas descrições possam ser usadas por outras máquinas de Turing
- Definir linguagem onde todas as strings são representação de alguma máquina de Turing
- Primeiro problema quanto a isso: independente do tamanho do alfabeto, existirão máquinas de Turing que possuem mais estados e mais símbolos de fita
- Devemos codificar os estados e símbolos sobre um alfabeto fixo

Codificação de Máquina de Turing

- Adotaremos a seguinte convenção:
 - estados serão representados da forma $\{q\}\{0,1\}^*$
 - símbolos da fita serão representados da forma $\{a\}\{0,1\}^*$
- Seja $M = (K, \Sigma, \delta, s, H)$ uma máquina de Turing e sejam i e j os menores inteiros tais que $2^i \ge |K|$ e $2^j \ge |\Sigma| + 2$ (por conta de \leftarrow e \rightarrow)
- ullet Então cada estado em K será representado por q seguido por uma string binária de tamanho i
- ullet Da mesma forma, cada símbolo em Σ será representado pela letra a seguido por uma string de j bits

Codificação de Máquina de Turing

- Fixaremos as seguintes representações:
 - ∟como *a*0^{*j*}
 - \triangleright como $a0^{j-1}1$
 - \leftarrow como $a0^{j-2}10$
 - \bullet \rightarrow como $a0^{j-2}11$
- O primeiro estado sempre será representado como $q0^i$
- Uma máquina M é representada por "M"
- "M"consiste na tabela de transição δ

Codificação de Máquina de Turing

- Adotamos a convenção que as quádruplas (q, a, p, b) são listadas em ordem lexicográfica crescente começando em $\delta(s, \square)$
- O conjunto de estados de parada H serão determinados indiretamente (ausência)
- Se M decide a linguagem e então $H = \{y, n\}$, adotaremos a convenção que y é lexicograficamente menor que n
- Dessa forma, qualquer máquina de Turing pode ser representada
- Strings serão representadas pela justaposição da representação dos seus símbolos

Exemplo

Considere a máquina de Turing $M=(K,\Sigma,\delta,s,\{h\})$, onde $K=\{s,q,h\}$, $\Sigma=\{\sqcup,\rhd,a\}$ e δ é dado por essa tabela

state,	symbol	δ
s	a	(q,\sqcup)
s	\sqcup	(h,\sqcup)
s	\triangleright	(s, \rightarrow)
q	a	(s,a)
q	\sqcup	(s, \rightarrow)
q	D	(q, \rightarrow)

Figura: Fonte: LEWIS, Harry R.; PAPADIMITRIOU, Christos H. Elements of the Theory of Computation. ACM SIGACT News, v. 29, n. 3, p. 62-78, 1998.

Exemplo

Como existem três estados em K e três símbolos em Σ , temos que i=2 e j=3. Esses são os menores inteiros tais que $2^i \geq 3$ e $2^j \geq 3+2$. Os estados e símbolos são representados da seguinte forma:

state/symbol	representation
s	q00
q	q01
h	q11
\sqcup	a000
\triangleright	a001
←	a010
\rightarrow	a011
a	a100

Figura: Fonte: LEWIS, Harry R.; PAPADIMITRIOU, Christos H. Elements of the Theory of Computation. ACM SIGACT News, v. 29, n. 3, p. 62-78, 1998.

Exemplo

$$\triangleright aa_{\sqcup}a = a001a100a100a000a100$$

• A representação "M"da máquina de Turing M é a seguinte string:

"
$$M$$
" = $(q00, a100, q01, a000), (q00, a000, q11, a000), (q00, a001, q00, a011),$
 $(q01, a100, q00, a011), (q01, a000, q00, a011), (q01, a001, q01, a011)$

• Agora estamos prontos para discutir sobre a máquina de Turing Universal U que usa outras máquinas codificadas como programas para a sua operação

Máquina de Turing Universal

- Intuitivamente, *U* recebe dois argumentos:
 - a descrição "M"de uma máquina de Turing M
 - e a descrição "w"de uma entrada w

Queremos a seguinte propriedade para U: U para para a entrada "M" se e somente se M para para a entrada w

$$U("M""w") = "M(w)"$$

Funcionamento da Máquina de Turing Universal

- Fita 1: Conteúdo atual da fita de M
- Fita 2: Codificação "M""w"
- Fita 3: Estado atual de M

Próxima aula

O que vem por aí?

- O problema da parada
- Método da diagonalização
- Problemas sem solução com máquinas de Turing
- Linguagens recursivas e linguagens recursivamente enumeráveis e suas propriedades

Máquina de Turing Universal Teoria da Computação

Professor: Rennan Dantas

Universidade Federal do Ceará Campus de Crateús

04 de maio de 2023

⁰Slides baseados no livro LEWIS, Harry R.; PAPADIMITRIOU, Christos H. Elements of the Theory of Computation. ACM SIGACT News, v. 29, n. 3, p. 62-78, 1998.