- (1) Let E be a nonempty, closed, and bounded subset of \mathbb{R} . Prove that $\sup E$ and $\inf E$ both belong to E.
- · sup E, inf E exists and are real numbers stree E is bounded.

Claim: Z:= sup E & E. (the proof for inf E is similar).

Pf: . Assume that 2 & E.

- · 42>0, 3 xeE sit. 2-2<x≤ Z. (HW1#4), and since xeE, z&E, we have X + z. => Z-E<x<z. >> X E B2(2)\{2}.
- · Hence, & is a limit point of E.
- ZEE= E since E is closed. Contradiction. []
- (2) Consider the following two functions on \mathbb{R} :

$$f(x) = \begin{cases} x \sin(\frac{1}{x}) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \text{ and } g(x) = \begin{cases} \sin(\frac{1}{x}) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

For each of the functions, prove or disprove that it is continuous at the point x = 0.

Claim: 7 is continuous at X=0.

pf: 4270, take 8= 2. then

$$|f(x)-f(0)|=|x,sin(x)|\leq |x|<\varepsilon$$
 $\forall 0<|x|<\delta=\varepsilon$.

Claim: q is not continuous at x=0.

Pf: Consider $x_n = \frac{1}{2n\pi + \frac{\pi}{2}}$, $g(x_n) = 1$

$$\lim_{n \to \infty} \chi_n = 0$$
, but $\lim_{n \to \infty} g(\chi_n) = 1 + 0 = g(0)$.

(3) Let $\epsilon>0$ be a positive number. In each case, find a $\delta>0$ (which should depend on ϵ) such that

$$|x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon \text{ holds.}$$

(a)
$$f(x) = \frac{1}{x}$$
; $x_0 = 1$.

(b)
$$f(x) = \sqrt{|x|}$$
; $x_0 = 0$.

(c)
$$f(x) = \sqrt{x}$$
; $x_0 = 1$.

Then Y [x-x0]=[x-1] < 8; we have:

•
$$|f(x) - f(x_0)| = |\frac{1}{x} - 1| = \frac{|x - 1|}{|x|} < \frac{\delta}{1/2} < \epsilon$$

Then $\forall |x-x_0|=|x|<\delta$, we have:

Then Y |x-x0|= |x-1| 25, we have:

•
$$|x-1|<\delta \leq \frac{1}{2} \implies |x|>\frac{1}{2}$$
.

•
$$|f(x)-f(1)|=|J(x-1)|=\frac{|x-1|}{|x+1|} \leq \frac{8}{|x+1|} < \epsilon.$$

(4) Suppose f, g are real-valued continuous functions on the closed interval [a, b], and f(a) < g(a) and f(b) > g(b). Prove that f(c) = g(c) for some $c \in (a, b)$.

• By #5,
$$h(x) := f(x) - g(x)$$
 is continuous on [a,b].

· hia) <0, hib) >0., By Intermediate value thin, Ice(a,b)

Sit.
$$h(c)=0$$
. $\Longrightarrow f(a)=g(c)$. \square

(5) Prove the following generalization of Ross, Theorem 17.4: Let (X, d) be any metr
space, and let $f,g:X\to\mathbb{R}$ be two real-valued functions that are continuous a
$x_0 \in X$. Prove that the functions $f+g$ and fg are both continuous at x_0
Moreover, if $g(x_0) \neq 0$, then f/g is also continuous at x_0 . (The proofs are ver
similar, so you can pick one of $f + q$, fq , f/q and prove it.)

Let's prove ftg is continuous at xo:

Y (xn) in X converging to xo,

· stree f is continuat xo, we have:

līm glxn)= glxo).

Vim f(xn)= f(xo).

• sine q ------

· By Irmit thm.

$$\lim_{x \to \infty} (f(x_n) + g(x_n)) = f(x_0) + g(x_0).$$

(6) Prove the following generalization of Ross, Theorem 17.5: Let $(X, d_X), (Y, d_Y), (Z, d_Z)$ be three metric spaces and let $f: X \to Y$ and $g: Y \to Z$ be two maps among them. Define the composite function $g \circ f: X \to Z$ via $(g \circ f)(x) := g(f(x))$. Prove that if f is continuous at $x_0 \in X$ and g is continuous at $f(x_0) \in Y$, then the composition $g \circ f$ is continuous at x_0 .

Y (Yn) seq. in X converging to Xo.

- · stree f is conti. at xo, we have: lim f(xn)= f(xo).
- · strue g is conti. at xo, we have: Irm g(f(xn))=g(f(xo)).