

The Time Value of Money

Emily Riederer Instructor

Intuition

An Example

Suppose that:

- You owe me \$100
- I can invest any cash I have with a 10% annual growth rate

Then I am ambivalent between getting paid certain values at certain points in time:

Time (Years)	Computation	Value (\$)
0		100
1	100 × (1 + 0.1)	110
2	$110 \times (1 + 0.1) = 100 \times (1 + 0.1)^2$	121

Definitions

Present value (PV): The value of a cashflow as if I were receiving it today

Future value (FV): The stated value of a cashflow at the point I'm given it

Time periods (n): The amount of time in the future that I receive the future value

Discount rate (r): The interest rate at which I can invest cash that I have

Time	Computation	Value
0		100
1	100 × (1 + 0.1)	110
2	$110 \times (1 + 0.1) = 100 \times (1 + 0.1)^2$	121

Time Value of Money Equation

Present value (PV): The value of a cashflow as if I were receiving it today

Future value (FV): The stated value of a cashflow at the point I'm given it

Time periods (n): The amount of time in the future that I receive the future value

Discount rate (r): The interest rate at which I can invest cash that I have

Time	Computation	Value
0		100
1	100 × (1 + 0.1)	110
2	$110 \times (1 + 0.1) = 100 \times (1 + 0.1)^2$	121
	•••	
n	PV × (1 + r)^n	FV

Time Value of Money Equation

Future Value: $FV = PV * (1 + r)^n$

Present Value: $PV = FV/(1+r)^n$

In R

```
fv <- pv * (1 + r)^n
pv <- fv / (1 + r)^n
# alternative: pv <- fv * (1 + r) ^ (-1 * n)
```

In tidyverse

```
library(dplyr)
mutate(data, pv = fv / (1 + r)^n)
```


Let's practice!

Using Different Discount Rates

Emily Riederer Instructor

A rate conversion example

Start Date: January 1

Initial investment: \$100

Monthly Rate of Return: 1.00%

Date	t	Calculation Future Value	
February 1	1	100*(1+0.01)	101
March 1	2	$101*(1+0.01)=100*(1+0.01)^2$	102.1
April 1	3	$102.1*(1+0.01) = 100*(1+0.01)^3$	103.03
•••	•••	•••	
January 1	12	$100*(1+0.01)^{12}$	112.68

A rate conversion example (cont.)

Date	t	Calculation	Future Value
February 1	1	100*(1+0.01)	101
March 1	2	$101*(1+0.01)=100*(1+0.01)^2$	102.1
April 1	3	$102.1*(1+0.01) = 100*(1+0.01)^3$	103.03
		•••	
January 1	12	$100*(1+0.01)^{12}$	112.68

By extrapolation: $100 * (1 + Monthly Rate)^{12} = 100 * (1 + Annual Rate)$

Conversion Formula: Annual Rate = $[(1 + Monthly Rate)^{12}] - 1$

The rate conversion formula

- r1: Discount rate (growth rate) measured per some unit of time
- r2: Discount rate (growth rate) measured per some other unit of time

```
r2 = [(1 + r1)^{(\# r1 units / 1 r2 unit)}] - 1
```

```
r_quart <- (1 + r_mth)^3 - 1
r_quart <- (1 + r_ann)^(1/4) - 1
```

Real versus Nominal Measures

Cost/Purchasing Power Today: \$50

Cost Tomorrow: \$70

--> inflation; less purchasing power

Cost Tomorrow: \$30

--> deflation; more purchasing power

Real versus Nominal Formulas

r_real: Discount rate as measured in real dollarsr_nominal: Discount rate as measured in inflation-adjusted dollars

inflation_rate: Inflation rate

```
r\_real = (1 + r\_nominal) / (1 + inflation\_rate) - 1 r\_nominal = (1 + r\_real) * (1 + inflation\_rate) - 1
```


Let's practice!

Discounting Multiple Cashflows

Emily Riederer Instructor

Streams of Cashflows (1)

Streams of Cashflows (2)

Month	1	2	3	4	5	6
Cash Received	100.00	200.00	300.00	400.00	500.00	500.00
Cash Spent	150.00	175.00	200.00	225.00	250.00	250.00
Net Cash	(50.00)	25.00	100.00	175.00	250.00	250.00

> [1] 713.6108

Stream of Cashflows (3)

Month	1	2	3	4	5	6
Cash Received	100.00	200.00	300.00	400.00	500.00	500.00
Cash Spent	150.00	175.00	200.00	225.00	250.00	250.00
Net Cash	(50.00)	25.00	100.00	175.00	250.00	250.00

```
pv <- calc_pv(fv = 100, r = 0.01, n = 3)
pv
> [1] 97.05901

cashflows <- c(0, -50, 25, 100, 175, 250, 250)
discounted_cashflows <- calc_pv(cashflows, r = 0.01, n = 0:6)
discounted_cashflows
> [1] 0.00000 -49.50495 24.50740 97.05901 168.17156 237.86642 235.51131

sum(discounted_cashflows)
```


Summarizing Multiple Cashflow Streams

option	time	cashflow
А	1	350
А	2	350
А	3	350
В	1	500
В	2	500

```
many_cashflows %>%
  group_by(option) %>%
  summarize( PV = sum(calc_pv(cashflow, 0.08, n = time))
```

option	PV	
А	901.9839	
В	891.6324	

Let's practice!