AXI Central DMA v2.0

IP User Guide (Beta Release)

November 29, 2023

Contents

IP Summary	2
Overview	3
AXI Central DMA	3
Licensing	4
IP Specification	5
Overview	5
IP Support Details	6
Port List	7
Port List	7
Parameters	ć
Registers Address Space	ć
CSRs Description	10
AXICDMA Example Design	13
Design Flow	14
IP Customization and Generation	14
Release	16
Revision History	16

IP Summary

Introduction

The AXI Central Direct Memory Access (AXI CDMA) is a highly flexible and scalable soft IP core that is designed to provide a direct memory access (DMA) capability to System-on-Chip (SoC) designs. The AXI CDMA is optimized for memory-mapped source and destination addresses, enabling direct communication between different memory regions without the need for involvement from the processor.

Built on the widely adopted Advanced extensible Interface (AXI) bus protocol, the AXI CDMA offers a standardized interconnect architecture for on-chip and off-chip communication. By enabling fast and efficient data transfers between memory regions, the AXI CDMA reduces the load on the processor and improves the overall performance and efficiency of the system, especially for data-intensive applications. With its ease of integration, reliability, and high-performance capabilities, the AXI CDMA is an essential component of modern SoC designs and plays a critical role in enabling efficient communication between different components of the system.

Features

- Data Transfer via AXI4 Interface
- Register Access via AXI4-Lite Slave Interface
- Configurable address widths and data widths
- Register Direct Mode
- Optional realignment FIFO for unaligned transfers
- Interrupts for CDMA completion and errors

Overview

AXI Central DMA

The AXI CDMA is designed to be part of the custom embedded setup via the AXI4 Interconnect, providing convenient access to the system processor via the AXI4-Lite interface. To perform simple CDMA operations, the core can be controlled through the register interface. The core is responsible for transferring data between the designated source and destination addresses. Upon completion, the interrupt output from the AXI CDMA will trigger an interrupt in the system Interrupt Controller, freeing up the processor for other tasks shown figure 1. The CDMA is optimized for efficient data transfer between memory locations in the custom embedded setup.

Figure 1. AXICDMA Typical configuration

Licensing

Copyright (c) 2022 RapidSilicon

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

IP Specification

Overview

The figure 2 shows the detailed internal block diagram of the AXICDMA (AXI Central DMA). The AXI CDMA is a component designed to provide high-speed data transfer capabilities in an embedded processing system utilizing the AXI4 system interfaces. The core consists of multiple functional blocks, including an AXI4 Master interface for memory-mapped to memory-mapped (MM2M) transfer operations, an AXI4-Lite Slave interface for register access, and an AXI DataMover helper core for high-throughput data transfer.

The skid buffer is a component of the AXI CDMA IP core works by temporarily storing data, allowing for more time to process and transfer the information. The primary purpose of the skid buffer is to provide pipeline support, ensuring efficient and effective data transfer. The Register Module houses the control register for the AXI CDMA, which are accessible via the AXI4-Lite Slave interface. These registers provide control and monitoring for all CDMA operations and transfer requests. The AXI DataMover is responsible for the primary data transport function and offers various features, such as address boundary protection, automatic burst partitioning, and byte-level data realignment. This allows the AXI CDMA to read and write data from/to any byte offset combination, ensuring efficient and effective data transfer.

Figure 2. Top Module

The store and forward block with data FIFO is a component of the AXI CDMA IP core. It is connected with the AXI DataMover and its purpose is to temporarily store and buffer incoming data, allowing it to be processed in an efficient manner. The data FIFO serves as a buffer for the transfer of data between the DataMover and the store and forward mechanism helps to ensure a smooth and error-free flow of data within the system.

IP Support Details

The table 1 presents the specifics of IP support for the AXICDMA IP Core, including pertinent information such as synthesis, simulation and source details.

Comp	pliance			IP R	Tool Flow					
Device	Inter- face	Source Files	Con- straint File	traint Test-		Software Driver	Analyze and Elaboration	Simula- tion	Synthe- sis	
GEM- INI	AXI4- lite	verilog	SDC	C++	-	-	Raptor	Verilator	Raptor	

Table 1. IP Information

Ports

Table 3 lists the top Slave interface ports of AXICDMA.

Signal name	I/O	Description						
AXI4-Lite Slave Interface Sign	nals							
AXI4-Lite Clock and Reset								
S_AXI_ACLK	I	AXI4-Lite Clock						
S_AXI_ARESETN	I AXI4-Lite RESET							
AXI4-Lite WRITE ADDRESS	CHANN							
s_axil_awvalid	I	AXI4-Lite Write address valid						
s_axil_awready	О	AXI4-Lite Write address ready						
s_axil_awaddr	I	AXI4-Lite Write address						
s_axil_awprot	I	AXI4-Lite Protection type						
AXI4-Lite WRITE DATA CH	ANNEL							
s_axil_wvalid	I	AXI4-Lite Write valid						
s_axil_wready	O	AXI4-Lite Write ready.						
s_axil_wdata	I	AXI4-Lite Write data						
s_axil_wstrb	I	AXI4-Lite Write strobes						
AXI4-Lite WRITE RESPONS	SE CHAN	NEL						
s_axil_bvalid	O	AXI4-Lite~ Write response valid						
s_axil_bready	I	AXI4-Lite Response ready						
s_axil_bresp	O	AXI4-Lite Write response						
AXI4-Lite READ ADDRESS	CHANNE							
s_axil_arvalid	I	AXI4-Lite Read address valid						
s_axil_arready	O	AXI4-Lite Read address ready						
s_axil_araddr	I	AXI4-Lite Read address						
s_axil_arprot	I	AXI4-Lite Protection type						
AXI4-Lite READ DATA CHANNEL								
s_axil_rvalid	I	AXI4-Lite Read valid						
s_axil_rready	O	AXI4-Lite Read ready						
s_axil_rresp	I	AXI4-Lite Read data						
s_axil_rdata	О	AXI4-Lite Read response						

 Table 3. AXICDMA Slave Interface

Table 5 lists the top Master interface ports of AXICDMA.

Signal name	I/O	Description							
AXI4 Master WRITE	AXI4 Master WRITE ADDRESS CHANNEL								
m_axi_awid	О	AXI4 Master Write ID							
m_axi_awaddr	O	AXI4 Master Write address							
m_axi_awlen	О	AXI4 Master Write busrt length							
m_axi_awsize	О	AXI4 Master Write busrt size							
m_axi_awbusrt	О	AXI4 Master Write busrt type							
m_axi_awlock	О	AXI4 Master Write locking							
m_axi_awcache	O	AXI4 Master Write cache handling							
m_axi_awprot	О	AXI4 Master Write protection level							
m_axi_awqos	О	AXI4 Master Write QoS setting							
m_axi_awvalid	О	AXI4 Master Write address valid							

m_axi_awready	I	AXI4 Master Write addresready					
AXI4 Master WF	RITE DATA	CHANNEL					
m_axi_wdata	О	AXI4 Master Write data					
m_axi_wstrb	О	AXI4 Master Write data strobe					
m_axi_wlast	О	AXI4 Master Write data last transfer in busrt					
m_axi_wvalid	О	AXI4 Master Write data valid					
m_axi_wready	I	AXI4 Master Write data ready					
AXI4 Master WF	RITE RESP	ONSE CHANNEL					
m_axi_bid	I	AXI4 Master Write response ID					
m_axi_bresp	I	AXI4 Master Write response					
m_axi_bvalid	I	AXI4 Master Write response valid					
m_axi_bready	О	AXI4 Master Write response ready					
AXI4 Master RE	AD ADDRE	ESS CHANNEL					
m_axi_arid	О	AXI4 Master read ID					
m_axi_araddr	О	AXI4 Master read address					
m_axi_arlen	О	AXI4 Master read busrt length					
m_axi_arsize	О	AXI4 Master read busrt size					
m_axi_arbusrt	O	AXI4 Master read busrt type					
m_axi_arlock	O	AXI4 Master read locking					
m_axi_arcache	О	AXI4 Master read cache handling					
m_axi_arprot	О	AXI4 Master read protection level					
m_axi_arqos	O	AXI4 Master read QoS setting					
m_axi_arvalid	О	AXI4 Master read address valid					
m_axi_arready	I	AXI4 Master read addresready					
AXI4 Master WF	RITE DATA						
m_axi_rid	I	AXI4 Master Read DATA ID					
m_axi_rdata	I	AXI4 Master read data					
m_axi_rresp	I	AXI4 Master read response					
m_axi_rlast	I	AXI4 Master read data last transfer in busrt					
m_axi_rvalid	I	AXI4 Master read data valid					
m_axi_rready	О	AXI4 Master read data ready					

 Table 5. AXICDMA Master Interface

Parameters

Table 5 lists the parameters of the AXICDMA.

Parameters	Values	Default Values	Description
AXI DATA WIDTH	8-256	32	Define size of data for AXI master data channel
AXI ADDR WIDTH	8-256	32	Define size of address for AXI Master address channel
AXIL DATA WIDTH	32	32	Define the size of data for AXILite data channel
AXIL ADDR WIDTH	1-32	32	Define size of address for AXILite address channel
ID WIDTH	1-64	5	Define the of value of AXI ID

Table 5. Parameters

Registers Address Space

Table 8 lists the configuration registers of the AXICDMA.

Name	Register ID	Bits	Type	Off sets	Default Value	Description
Control Register	CTRL ADDR	32	RW	0x00	0x00000000	Configures and controls the CDMA
Control Register	CIKL_ADDK	32	IXVV	0.000	0.00000000	transfer
Reserved	UNUSED ADDR	32		0x04	0x00000000	Not used by the CDMA controller,
Reserved	UNUSED_ADDK	32		0.7.0-1	0.00000000	can be ignored
Source Address	SRCLO ADDR	32	RW	0x08	0x00000000	Holds the low 32-bits of the 64-bit
Register LSB	SKCLO_ADDK	32	IXVV	0.000	0.00000000	source memory address
Source Address	SRCHI ADDR	32	RW	0x0C	0x00000000	Holds the high 32-bits of the 64-bit
Register MSB	SKCIII_ADDK	32	IXVV	UXUC	0.00000000	source memory address
Destination Address	DSTLO ADDR	32	RW	0X10	0x00000000	Holds the low 32-bits of the 64-bit
Register LSB	D31LO_ADDK	32	KVV	UAIU	0x00000000	destination memory address
Destination Address	DSTHI ADDR	32	RW	0X14	0x00000000	Holds the high 32-bits of the 64-bit
Register MSB	D311II_ADDK	32	IXVV	UX14	0.00000000	destination memory address
Byte to Transfer	LENLO ADDR	32	RW	0X18	0x00000000	Holds the low 32-bits of the total number
Register LSB	LENLO_ADDK	32	KVV	UAIO	0x00000000	of data words minus the successful writes
Byte to Transfer	LENHI ADDR	32	RW	0x1C	0x00000000	Holds the high 32-bits of the total number
Register MSSB	LEMII_ADDK	32	IXVV	UXIC	0.00000000	of data words minus the successful writes

Table 8. AXICDMA Registers Address Space

CSRs Description

AXICDMA Control Register (CTRL_ADDR)

This register is responsible for providing control of the AXI CDMA to software applications.

Bit	S	Description	Bit- field	Val- ues	Configuration
Res	served	RESERVED	[31:23]		Reserved
KEY	QoS	The QOS field is used to set the quality of service for the transfer, such as priority level, bandwidth, or latency.	[22:20]	0	set the AXI quality of service for the transfer
KET	PROT	The PROT field is used to set the level of protection for the transfer, such as read-only, read-write, or execute-only.	[19:16]	0	set the AXI level of protection for the transfer
Res	seved	RESERVED	[15:5]		Reserved
Err	or	Indicates whether the transfer ended with an error.	[4]	1	Error Interrupt enabled
Ab	o est	Indicates whether the transfer is	[2]	0	transfer is not being aborted
Au	ort	being aborted or has been aborted.	[3]	1	Abort a transfer that is currently in progress
.		Enables or disables interrupts for	[2]	0	Complete Interrupt disable
	errupt able	the CDMA core.	[2]	1	Complete Interrupt Enable
Into Cle	errupt ear	Clears any pending interrupts.	[1]	1	Clear the Interrupt
Sta	rt/Busy	When set to 1, initiates a transfer. When set to 0, stops the transfer.	[0]	0	CDMA DATA transferred
Sta	тивизу	when set to 0, stops the transfer.	[0]	1	CDMA DATA transferring

Control Register

[31:23]	[22:20]	[19:16]	[15:5]	4	3	2	1	0
Reserved	QoS	PROT	Reserved	Error	Abort	IRQ_EN	IRQ_CLR	Start/Busy

AXICDMA Source Address Register (SCRCLO_ADDR)

This register serves as the initial read address for data transfers performed by DMA operations.

Bits	Description	Bitfield	Values	Configuration
	This register serves as the initial			
SCRCLO_ADDR	read address for data transfers	[31:0]	0	User Specifier source Address
	performed by CDMA operations.			

Source Address Register

																		_													
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Source Address																													

AXICDMA MSB 32bits Source Address Register (SCRCHI_ADDR)

This register serves as the MSB 32bits of read address for data transfers performed by DMA operations.

Bits	Description	Bitfield	Values	Configuration			
	This register serves as the MSB						
SCRCHI ADDR	32bits of	[31:0]	0	User Specifier MSB 32bits source			
SCRCIII_ADDR	read address for data transfers		0	Address			
	performed by CDMA operations.						

MSB 32bits Source Address Register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															MSI	32bi	ts So	urce A	Addre	SS											

AXICDMA Destination Address Register (DSTLO_ADDR)

This register serves as the initial write address for data transfers performed by DMA operations.

Bits	Description	Bitfield	Values	Configuration
DSTLO_ADDR	This register serves as the initial write address for data transfers performed by CDMA operations.	[31:0]	0	User Specifier Destination Address

Destination Address Register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																inatio	n Ad	dress													

AXICDMA MSB 32bits Destination Address Register (DSTHI_ADDR)

This register serves as the MSB 32bits of write destination address for data transfers performed by DMA operations.

Bits	Description	Bitfield	Values	Configuration
DSTHI_ADDR	This register serves as the MSB 32bits of write destination address for data transfers performed by CDMA operations.	[31:0]	0	User Specifier MSB 32bits Destination Address

MSB 32bits Destination Address Register

																				\mathcal{C}											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															MSI	32bi	ts De	stinat	ion A	ddres	SS										

AXICDMA Bytes to Move Register (LENLO_ADDR)

This register serves the values of Bytes to Move for data transfers performed by CDMA operations.

Bits	Description	Bitfield	Values	Configuration
LENLO_ADDR	This register serves the values of Bytes to Move for data transfers performed by CDMA operations.	[31:0]	0	User Specifier No of Bytes to Transfer

Bytes to Move Register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															Byte	s to N	1ove														

AXICDMA MSB 32bits Bytes to Move Register (LENHI_ADDR)

This register serves the MSB 32bits values of Bytes to Move for data transfers performed by CDMA operations.

Bits	Description	Bitfield	Values	Configuration
LENHI_ADDR	This register serves MSB 32bits the values of Bytes to Move for data transfers performed by CDMA operations.	[31:0]	0	User Specifier No of MSB 32bits Bytes to Move

MSB 3	32bits	Bytes t	o Move	Register
-------	--------	---------	--------	----------

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															MSE	32bi		tes to	Move)											

AXICDMA Example Design

In this example design, a baremetal hex file is loaded into an AXI RAM, which is used as a substitute for a ROM. The VexRiscv CPU is capable of directly loading instructions onto its instruction bus without the need for an interconnect. The AXICDMA is connected as a peripheral to the CPU via an AXILite interconnect, which communicates with the CPU using an AXI2AXILite bridge. Additionally, the AXICDMA is connected to two different AXI BLOCK RAMs via an AXI interconnect. The AXICDMA is responsible for reading data from one AXI RAM and writing it to the other AXI RAM shown figure ??.

AXICDMA Example Design

Design Flow

IP Customization and Generation

CDMA IP core is a part of the Raptor Design Suite Software. A customized CDMA can be generated from the Raptor's IP configurator window.

Figure 4. IP list

Parameters Customization: From the IP configuration window, the parameters of the CDMA can be configured and CDMA features can be enabled for generating a customized CDMA IP core that suits the user application requirment.

Figure 5. IP Configuration

Test Bench

There is no test bench for this IP

Revision History

Date	Version	Revisions
November 29, 2023	2.0	AXICDMA User Guide Document