Calcul Intégral IV

MINES ParisTech

22 septembre 2021 (#c1a798e)

Question 1 (réponses multiples) Soit $X = \mathbb{R}^3$ et $\mathcal{A} = \mathcal{P}(X)$, l'ensemble des parties de X . On définit pour tout $X \in \mathcal{A}$ la grandeur $\mu(A)$ comme le diamètre de A :
$\mu(A) := \operatorname{diam}(A) := \sup \left\{ \ x - y\ \mid (x, y) \in A \times A \right\} \in [0, +\infty].$
Est-ce que μ est une mesure sur (X, \mathcal{A}) ?
\Box A : non, car A n'est pas une tribu, \Box B : non, car μ n'est pas nulle en 0, \Box C : non, car μ n'est pas σ -additive, \Box D : oui.
Question 2 (réponses multiples) Si μ et ν sont des mesures sur le même espace mesurable $(X, \mathcal{A}), \alpha \geq 0$ et $f: [0, +\infty] \to [0, +\infty]$ est continue, alors
\Box A : $\mu + \nu$ est une mesure, \Box B : $\alpha\mu$ est une mesure, \Box C : $f \circ \mu$ est une mesure.
Question 3 Soit c la mesure de comptage sur \mathbb{R} (muni de la tribu $\mathcal{P}(\mathbb{R})$). Deux fonctions $f: \mathbb{R} \to \mathbb{R}$ et $g: \mathbb{R} \to \mathbb{R}$ sont égales c -presque partout si et seulement si :
\square A : f et g sont identiques, \square B : f et g diffèrent au plus en un nombre fini de points, \square C : la longueur de $\{x \in \mathbb{R} \mid f(x) \neq g(x)\}$ est nulle,

Question 5 Si \mathcal{A} est une tribu de \mathbb{R} et la fonction $h: \mathbb{R} \to [-\infty, +\infty]$ est continue, alors h est \mathcal{A} -mesurable

 $\hfill\Box$ D : f et g sont en fait égales c-presque partout sans condition.

Question 4 La fonction caractéristique de $\mathbb{Q} \subset \mathbb{R}$ est une fonction étagée

 \square A : oui, \square B : non, pas nécessairement.

 \Box C : ça dépend (question ambigüe).

 \square A : oui, \square B : non.

Question 6 (réponse multiple) (positive) mesurable :	L'intégrale d'une fonction $f: X \to [0, +\infty]$
\square A : est toujours définie,	
\square B : est toujours positive,	
\square C : ne peut être infinie que s	si f prend des valeurs infinies,
\square D : est infinie dès que f pres	nd des valeurs infinies.