

Modelo de perceptrón multicapa para la predicción del rendimiento en el cultivo de mora

Mayo, 2018

MARIA CAMILA GÓMEZ.

ASISTENTE DE INVESTIGACIÓN m.c.gomez@cgiar.org

JUAN CAMILO RIVERA

ASISTENTE DE INVESTIGACIÓN j.c.rivera@cgiar.org

1969 -> 3500 M

2017-> 7500 M

#fact

570 MILLION FARMS

IN THE WORLD

72% ARE SMALLER THAN 1 HECTARE

Small-Scale Farmers
80% of the world's food

Colectando y diseminando datos a gran escala

¿Cómo lo hacemos?

Cómo se recolectan los datos de clima?

Red Colombiana de Ciudades Cómo Vamos www.ciudatos.com

WorldClim - Global Climate Data

Free climate data for ecological modeling and GIS

¿Cómo lo hacemos?

Cómo se recolectan los datos de suelo?

Cómo Iniciar la Caracterización Rápida de Suelos en su Finca

1. ¿Hay ríos o riachuelos muy cercanos al sitio de evaluación?

Sí No No sabe

2. Si usted hace un hueco profundo en cualquier época del año, ¿aflora agua?

Sí No No sabe

3. ¿Se encuentran pozos o aljibes cercanos al lote?

Sí No No sabe

Determinación de Horizontes, Color y Textura

¿Cómo lo hacemos?

El caso de Maiz en Córdoba - Productividad

Total amount of P

25 – 30 kg P /ha cantidad apropiada para maiz en Córdoba

¿Cómo lo hacemos?

Minería de datos

Métodos tradicionales

- Regresión lineal multiple (OLS)
- Análisis factoriales (PCA, MCA, CATPCA)
- Modelo lineal generalizado (GLM)
- Modelos mixtos

PCA2 PCA1

Métodos basados en aprendizaje automático

- Redes neuronales artificiales (supervisadas, no supervisadas)
- Random Forest
- Conditional Inference Forest
- Algoritmos genéticos

¿Cómo lo hacemos?

Aprendizaje supervisado – no paramétrico – Redes neuronales Artificiales

	V1	V2	V3	V4	V5		V60		L 2	L 3	L 4	L 5		Kg/lote
Obs 1	0.1	18	3	312	0.3		89	0	1	0	1	0		2.39
Obs 2	0.2	15	4	526	0.1		52	1	0	0	0	1		30.35
Obs 3	0.6	14	1	489	0.2		64	0	1	1	1	1		42.25
Obs 4	0.05	19	2	523	0.5	::	13	0 L .	0	0	0	1	:	52.50
Obs 5	0.4	13	3	214	0.6		57	1	1	1	1	1		
Obs 6	0.8	12	4	265	0.4		24	1	1	0	1	0		82.25
Obs 7	0.2	15	1	236	0.8	::	26	0	0	1	0	0	:	89.28
Obs 8	0.1	17	3	541	0.1		35	0	1	1	1	0		125.0
Obs9	0.6	16	2	845	0.3		51	0	0	1	1	0		142.8
Obs10	0.1	18	1	126	0.1		43	1	1	0	0	1		150.0
					:									
Obs3000	0.04	15	3	235	0.6		85	1	1	1	1	0		180

Inteligencia Artificial (A.I)

achine learning

Aprendizaje automático

Obs 1	Obs 2	Obs 3	Obs 4	Obs 5	9 sq0	Obs 7	Obs 8	0bs 9	Obs 10	:	Obs3000	V1	Pre	Predicho											
0.1	0.2	0.6	0.05	0.4	0.8	0.2	0.1	0.6	0.1		0.04	V2	s 1	s 2	s 3	s 4	s 5	9 S	s 7	s 8	6 S	10	:	Obs3000	
18	15	14	19	13	12	15	17	16	18		15	V3 V3	obs	obs	Obs	obs	Obs	obs	ops	olos	Obs	ops		Obs	
3	4	1	2	3	4	1	3	2	1		3	→	2.07	29.0	53.5	50.5		89.5	99.2	120	172	170	′	188	
312	526	489	523	214	265	236	541	845	126		235	→													
0.3	0.1	0.2	0.5	0.6	0.4	8.0	0.1	0.3	0.1		0.6						7	AF							
													Re	اد		_	₹;	5							
89	52	64	13	57	24	26	35	51	43		85	V60	Ke	<u> </u>											
													Obs 1	Obs 2	Obs 3	Obs 4	Obs 5	9 sq0	Obs 7	Obs 8	obs 9	Obs 10	:	Obs3000	
													<u> </u>	\Box		J)		٥	J		0		ğ	
													2.4	30.3	42.5	52.5		82.2	89.2	125	142	150	1	180	

Preceptrón Multicapa

Número de capas ocultas

Resultados

Usando solo los datos de validación

Predicciones

- 69 a 93 no buenas predicciones
- Altas rendimientos mejores predicciones

Variables más importantes

Sensitivity distribution of the model with respect to the inputs/predictors

- 1. Profundidad efectiva
- 2. Promedio de temperatura del primer mes antes de cosecha.
- El municipio de La unión. Vereda Chical alto
- 4. El municipio de La unión. Vereda Cusillo
- 5. Temperatura promedio en el mes de cosecha
- 6. Temperatura promedio en el segundo mes antes de la cosecha.

Aprendizaje no supervisado – no paramétrico – Redes neuronales Artificiales

Mapas de Kohonen

Calidad de vida en el mundo

- •Estadísticas del banco mundial sobre varios países
- •39 indicadores fueron tomados describiendo varios factores de calidad de vida tales como salud, nutrición, calidad de los servicios públicos, acceso a la educación etc.
- •Países que tenían indicadores similares se ubicaron cerca el uno del otro en el mapa.
- Realizado con datos faltantes

Mapa Kohonen

Rendimiento

Profundidad Efectiva

Temperatura antes del primer mes de cosecha

Winners of the Syngenta 2018 Crop Challenge in Analytics

Caso practico

Thank you!

WE'RE PROUD TO
HAVE CELEBRATED 50 YEARS
OF AGRICULTURAL RESEARCH
FOR DEVELOPMENT

International Center for Tropical Agriculture - CIAT

Headquarters and Regional Office for South America and the Caribbean

+57 2 445 0000 Km 17 Recta Cali-Palmira A.A. 6713, Cali, Colombia

☑ ciat@cgiar.org⊕ ciat.cgiar.org

