

Characterizing music for pain relief: a computational approach using music features and deep audio embeddings

Jelle J.F. Kouters^{1, 2*}, Emy S. van der Valk Bouman, MD¹, Antonia S. Becker, MD¹, Gerard J.P. van Westen, PhD², Markus Klimek, MD, PhD³

¹Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands; ²Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; ³Department of Anesthesiology, Erasmus Medical Center, Rotterdam, The Netherlands.

*Presenting and corresponding author (j.j.f.kouters@umail.leidenuniv.nl)

BACKGROUND AND AIM

- Music shows promise as an adjunctive treatment for acute and chronic pain, reducing the need for pharmacological analgesics and their associated side effects [1].
- While self-selected and favourite music enhances music-induced analgesia [2], the specific characteristics of music used for pain relief remain poorly understood.
- Aim: identify and analyze the characteristics of music for pain relief, selected by participants in two clinical studies, with "everyday music" (Dutch Top 40) using Spotify Audio Features, deep audio embeddings [3], and genre analysis.

MATERIALS AND METHODS **Everyday Music Dataset (EMD)** Pain Music Dataset (PMD) Music from 1980 – 2023. 164 playlists / participants. ~9.000 tracks. • ~1.900 tracks. TOP 40 **Feature extraction** Interpretable music features, such as danceability, energy, and valence, were extracted from the Spotify **Features** API using the Python package Spotipy. **Audio feature vectors** openI3 audio 0.6 0.3 0.1 . 0.8 0.5 0.3 . 0.4 0.2 0.9 ... Genre analysis PMD and EMD Feature quality assessment in genre comparison ∰ Chosic clustering

Figure 1. Comparison of Spotify Audio Features distributions between PMD and EMD. All audio features exhibit significant differences as determined by the Mann-Whitney U and the Kolmogorov-Smirnov test.

Figure 2. Genre analysis reveals overlap in the number of tracks per genre between EMD and PMD.

• The genre diversity score (entropy) for PMD is **3.06**, compared to **2.38** for EMD, indicating greater genre diversity in PMD.

Figure 3. Deep audio embeddings clearly capture and represent genre-specific characteristics.

Pairwise k-means clustering (Everyday Music Dataset)			
Feature set	mean Silhouette score	mean Adjusted Rand Index	mean Normalized Mutual Information
Spotify Audio Features	0.4270	0.0243	0.0309
openI3 audio embeddings	<mark>0.4848</mark>	<mark>0.1050</mark>	0.0967

CONCLUSION AND RELEVANCE FOR PATIENT CARE

- Our analysis revealed that music chosen by individuals against pain significantly diverges from the mainstream music typically played on the radio (EMD).
- This variation underscores the need to account for these differences when implementing music in clinical settings.
- Given the discontinuation of Spotify Audio Features through the Spotify API, this project emphasizes the potential of deep audio embeddings as a viable and effective approach for music characterization and future research into personalized music.

REFERENCES

- 1. Hole J, Hirsch M, Ball E, Meads C. Music as an aid for postoperative recovery in adults: a systematic review and metaanalysis. The Lancet 2015;386(10004):1659-1671.
- 2. Basinski K, Zdun-Ryzewska A, Greenberg DM, Majkowicz M. Preferred musical attribute dimensions underlie individual differences in music-induced analgesia. Sci Rep 2021;11(1):8622.
- 3. Cramer AL, Wu H, Salamon J, Bello JP. Look, Listen, and Learn More: Design Choices for Deep Audio Embeddings. ICASSP 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2019;3852-3856.

