Отчет о выполнении лабораторной работы 1.4.5 Изучение колебаний струны

Шубин Владислав, Байбулатов Амир 6 декабря 2023 г.

1 Аннотация

В работе изучаются поперечные колебания стальной гитарной струны, натянутой горизонтально и закрепленной между двумя неподвижными зажимами; измеряются собственные частоты колебаний струны и проверяется условие образования стоячих волн; измеряется скорость распространения поперечных волн на струне и исследуется её зависимость от натяжения струны.

Так как поперечные размеры струны малы по сравнению с длиной, то напряжение в струне может быть направлено только вдоль неё. В натянутой струне возникает поперечная упругость, то есть способность сопротивляться всякому изменению формы, происходящему без изменения объёма. При вертикальном смещении произвольного элемента струны, возникают силы, действующие на соседние элементы, и в результате вся струна приходит в движение в вертикальной плоскости, т.е. возбуждение «бежит» по струне. Передача возбуждения представляет собой поперечные бегущие волны, распространяющиеся с некоторой скоростью в обе стороны от места возбуждения. В ненатянутом состоянии струна не обладает свойством поперечной упругости, и поперечные волны на ней невозможны.

2 Теоретические сведения

2.1 Уравнение волны на струне

Рассмотрим гибкую однородную струну, в которой создано натяжение T, и получим дифференциальное уравнение, описывающее её малые поперечные свободные колебания. Отметим, что, если струна расположена горизонтально в поле тяжести, величина T должна быть достаточна для того, чтобы в состоянии равновесия струна *не провисала*, т.е. сила натяжения должна существенно превышать вес струны.

Направим ось x вдоль струны в положении равновесия. Форму струны будем описывать функцией y(x,t), определяющей её вертикальное смещение струны в точке x в момент времени t (см. рис. 1).

Рис. 1: К выводу уравнения колебаний струны

Рассмотрим элементарный участок струны, находящийся в точке x, имеющий длину δx и массу

$$\delta m = \rho_l \delta x$$
, где $\rho_l \left[\text{кг/м} \right]$ - погонная плотность струны (1)

При отклонении от равновесия на выделенный элемент действуют силы натяжения T_1 и T_2 , направленные по касательной к струне.

Тогда по II закону Ньютона в проекциях на ось y для элемента получим:

$$\delta m \frac{\partial^2 y}{\partial t^2} = -T_1 \sin \alpha_1 + T_2 \sin \alpha_2 \tag{2}$$

Так как амплитуда колебаний невелика, то можно пренебречь добавочным напряжением, возникающим из-за удлинения элементов струны и считать силу T натяжения нити постоянной по модулю. Также можно считать углы отклонения α струны от оси x малыми, поэтому $\log \alpha \approx \sin \alpha \approx \alpha \approx \frac{\partial y}{\partial x}$.

Устремим δx к нулю и найдем окончательно уравнение свободных малых поперечных колебаний струны:

$$\rho_{l} \frac{\partial^{2} y}{\partial t^{2}} = \frac{T_{1} \sin \alpha_{1} - T_{2} \sin \alpha_{2}}{\delta x x} \approx T \frac{\partial \alpha}{\partial x} = u^{2} \frac{\partial^{2} y}{\partial x^{2}}, \quad \left(u = \sqrt{\frac{T}{\rho}} \right)$$
 (3)

$$\frac{\partial^2 y}{\partial t^2} = u^2 \frac{\partial^2 y}{\partial x^2}$$
 — волновое уравнение. (4)

2.2 Бегущие волны

Рассмотрим *произвольную* функцию вида y = f(x-ut). Подставляя её в уравнение (4), убеждаемся, что она является решением при любом f:

$$\frac{\partial^2 f}{\partial t^2} = (-u)^2 f'' = u^2 \frac{\partial^2 f}{\partial x^2},$$
 где штрих обозначает производную по аргументу $\xi = x - ut$. (5)

Считая аргумент функции f постоянным x-ut=const и дифференцируя по времени получим: dx=udt=0, откуда $\frac{dx}{dt}=u$.

Общее же решение волнового уравнения представимо в виде суперпозиции двух волн произвольной формы, бегущих вдоль оси x со скоростями $\pm u$:

$$y(x,t) = y_1(x-ut) + y_2(x+ut), \quad u$$
 – скорость волны, y_1 и y_2 - произвольные функции (6)

Вид y_1 и y_2 в конкретной задаче определяется из начальных и граничных условий.

В данной работе будут изучаться гармонические волны:

$$y(x,t) = a\cos\left[k(x-ut)\right] + b\cos\left[k(x+ut)\right] = a\cos\left(\omega t - kx\right) + b\cos\left(\omega t + kx\right) \tag{7}$$

Здесь ω - циклическая частота колебаний, а $k=\frac{\omega}{u}=\frac{2\pi}{\lambda}$ - пространственная частота волны. (λ - длина волны).

2.3 Собственные колебания струны. Стоячие волны

Найдем вид свободных колебаний струны с *закрепленными концами*. Пусть струна закреплена в точках x = 0 и x = L. Тогда из условия y(0, t) = 0 ($\forall t$), и уравнения 7 получим:

$$a\cos(\omega t) + b\cos(\omega t) = 0 \Rightarrow a = -b \tag{8}$$

Тогда:

$$y(x,t) = a(\cos(\omega t - kx) - \cos(\omega t + kx)) = 2a\sin kx \cdot \sin \omega t \tag{9}$$

Видно, что данная волна получается в результате суперпозиции двух гармонических бегущих навстречу друг другу волн с равными амплитудами. Такая волна называется *стоячей*. Вся струна колеблется с циклической частотой ω . При этом амплитуда колебаний распределена по струне по закону: $y_m(x)=2a\sin kx$. В точках, где $\sin kx=1$, амплитуда колебаний максимальна (*пучности волны*). Точки, у которых $\sin kx=0$ не колеблются вовсе (*узлы волны*). Точки струны между двумя соседними узлами всегда колеблются в одной фазе, то есть в любой момент времени их скорости сонаправлены.

Используем второе граничное условие y(L,t)=0 ($\forall t$) (точки крепления струны должны быть узлами стоячей волны):

$$\sin kL = 0 \Rightarrow kL = n\frac{\pi}{2}, \quad n \in \mathbb{N}$$
 (10)

Тогда:

$$\lambda_n = \frac{2L}{n}, \quad n \in \mathbb{N} \tag{11}$$

Как видно, параметр n определяет число полуволн (то есть пучностей), которые умещаются на струне. Так как длина волны однозначно связана с её частотой, то струна может колебаться только с определёнными частотами:

Рис. 2: Стоячие волны (собственные моды колебаний струны) для n = 1, 2, 3

Спектр собственных частот v_n колебаний струны зависит только от её натяжения, линейной плотности и длины и, в случае малых гармонических колебаний, не зависит от модуля Юнга материала струны.

2.4 Возбуждение колебаний струны. Резонанс

При колебаниях реальной струны всегда имеет место потеря энергии. Поддержание незатухающих колебаний в струне может осуществляться точечным источником, в качестве которого в данной работе используется электромагнитный вибратор. Для эффективной раскачки колебаний используется явление резонанса - необходимо, чтобы вынуждающая частота ν вибратора совпала с одной из собственных частот ν_n струны. Тогда в любой момент времени потери энергии будут компенсироваться поступающей от воздбудителя колебаний энергией, процесс становится стационарным и можно наблюдать стоячие волны.

Также стоит отметить, что в идеальном случае поток энергии вдоль стоячей волны отсутствует (в каждом участке между узлами кинетическая энергия переходит в потенциальную и наоборот). Однако, энергия от вибратора должна каким-то образом доходить до удалённых от него частей струны, поэтому в реальности помимо стоячей волны, есть ещё и малая бегущая компонента, которая и переносит энергию источника. Если потери энергии за период малы по сравнению с запасом колебательной энергии в струне, то искажение стоячих волн бегущей волной не существенно — наложение бегущей волны малой амплитуды на стоячую визуально приводит к незначительному «размытию» узлов (амплитуда колебаний в узлах совпадает с амплитудой бегущей компоненты волны).

Для достижения максимальной раскачки колебаний, необходимо располагать возбуждающий контакт вблизи узловый точки (но не строго в ней). Действительно, предположим, что вибратор способен раскачать соответствующий элемент струны до амплитуды A. Если x_0 - расстояние от него до пучности, то из формулы (9):

$$A = 2a\sin kx_0 \Rightarrow a = \frac{A}{2\sin kx_0}$$

Отсюда видно, что расстояние x_0 следует устремлять к нулю.

Наконец отметим, что в ходе работы необходимо добиться того, чтобы колебания были *пинейно поляризованы*, то есть чтобы струна колебалась в одной плоскости. Также необходимо обеспечить малость амплитуды колебаний - в противном случае волновое уравнение (4) будет неприменимо.

3 Оборудование и инструментальные погрешности

Оборудование: звуковой генератор, двухканальный осциллограф, частотомер, набор грузов, станина, с закрепленной на ней струной.

- Точность измерения массы грузов ± 0 , 1 г.
- Точность измерения с помощью линейки ±0, 1 см.
- Точность измерения частот ±0, 1 Гц.

4 Результаты измерений и обработка данных

4.1 Описание экспериментальной установки

Схема установки приведена на 3. Стальная гитарная струна 1 закрепляется в горизонтальном положении между двумя стойками с зажимами 2 и 3, расположенными на массивной станине 4. Один конец струны закреплен в зажиме 2 неподвижно. К противоположному концу струны, перекинутому через блок, прикреплена платформа с грузами 5, создающими натяжение струны. Зажим 3 можно передвигать по станине, устанавливая требуемую длину струны. Возбуждение и регистрация колебаний струны осуществляются с помощью электромагнитных датчиков (вибраторов), расположенных на станине под струной. Электромагнитный датчик 6 подключен к звуковому генератору 7 и служит для возбуждения колебаний 10 струны, частота которых измеряется с помощью частотомера 10 (в некоторых установках частотомер встроен в генератор). Колебания струны регистрируются с помощью электромагнитного датчика 8, сигнал с которого передается на вход осциллографа 9. Разъёмы, через которые датчики с помощью кабелей соединяются с генератором и осциллографом, расположены на корпусе станины.

Рис. 3: Экспериментальная установка

4.2 Характеристики системы:

$$L = 0.5 \pm 0,001 \text{ m},$$

 $\rho = 568, 4 * 10^{-6} \text{ r/m}$

4.3 Предварительные расчеты:

$$u=\sqrt{rac{T}{
ho}}pprox 120$$
 м/с $u_1pprox 120$ Гц

4.4 Наблюдения:

n	1	2	3	
ν_n ,	128	261	391	

Таблица 1: Результаты определения частот 3-х гармоник по частотометру

4.5 Измерения:

	n	1	2	3
ĺ	M_n , г	835.4	1322.8	1820.0

Таблица 2: Массы нагрузки

N изм.	1	2	3	4	5	6
ν, Гц	130.0	259.0	388.0	519.0	650.0	780.0

Таблица 3: Результаты измерений частот 6-ти гармоник для M_1

N изм.	1	2	3	4	5	6
ν, Гц	159.0	319.0	478.0	638.0	799.0	960.0

Таблица 4: Результаты измерений частот 6-ти гармоник для M_2

N изм.	1	2	3	4	5	6
ν, Гц	185.0	371.0	556.0	742.0	928.0	1116.0

Таблица 5: Результаты измерений частот 6-ти гармоник для M_3

Построим графики зависимостей $v_n(n)$ для каждого из трёх опытов и аппроксимируем их линейной функцией по МНК. Результаты - на 4.

Рис. 4: Графики зависимостей $\nu_n(n)$ и их аппроксимация линейной функцией по МНК

Зная угловые коэффициенты k этих зависимостей, определим скорость распространения волн в струне в каждом случае, как:

$$u = 2kL$$

$$k = \frac{\langle n\nu \rangle - \langle n \rangle \langle \nu \rangle}{\langle n^2 \rangle - \langle n \rangle^2} \tag{13}$$

$$\sigma_k^{\text{случ}} = \frac{1}{\sqrt{N}} \sqrt{\frac{\langle v^2 \rangle - \langle v \rangle^2}{\langle n^2 \rangle - \langle n \rangle^2} - k^2}$$
 (14)

$$\sigma_k^{\text{CMCT}} = \sqrt{\varepsilon_v^2 + \varepsilon_l^2} \tag{15}$$

$$\sigma_k = \sqrt{\sigma_{\text{случ}}^2 + \sigma_{\text{сист}}^2} \tag{16}$$

Посчитаем погрешности, коэффиценты наклона и из них найдем и:

T, H	8.2	13.0	17.8	
и, м/с	130.1	160.1	186.1	
$\sigma_u^{\text{случ}}$, м/с	0.42	0.37	0.43	
$\sigma_u^{\text{сист}}$, м/с	2.1	2.1	1.9	
σ_u , M/C	2.2	2.1	1.9	

Таблица 6: Полученные скорости с погрешностями

Средняя относительная погрешность измерения скорости распространения колебаний $\varepsilon_u \approx 1,3\%$. Полученные значения скорости:

- T = 8, 2 H $u = 130, 1 \pm 2, 2 \frac{\text{M}}{\text{c}}$
- T = 13,0 H $u = 160, 1 \pm 2, 1 \frac{M}{C}$
- T = 17,8 H $u = 186, 1 \pm 1,9 \frac{\text{M}}{\text{C}}$

С помощью полученных данных построим график зависимости $u^2(T)$, для того, чтобы найти погонную плотность струны ρ_l .

Рис. 5: Зависимость u^2 от T

С помощью формулы скорости через натяжение и погонную плотность, можно понять, что коэффицент наклона k, для графика 5, будет равен: $k=\frac{1}{\rho_l}$.

График был построен по МНК, а значит k и его погрешность можно найти по формулам:

$$k = \frac{\langle Tu^2 \rangle - \langle T \rangle \langle u^2 \rangle}{\langle T^2 \rangle - \langle T \rangle^2} \approx 1811, 5\left(\frac{M}{K\Gamma}\right)$$
(17)

$$\sigma_k^{\text{случ}} = \frac{1}{\sqrt{N}} \sqrt{\frac{\langle u^4 \rangle - \langle u^2 \rangle^2}{\langle T^2 \rangle - \langle T \rangle^2} - k^2} \approx 17, 8 \left(\frac{M}{K\Gamma}\right)$$
(18)

$$\sigma_k^{\text{CMCT}} = \sqrt{\varepsilon_{u^2}^2 + \varepsilon_T^2} \approx 40, 2\left(\frac{M}{K\Gamma}\right)$$
(19)

$$\sigma_k = \sqrt{\sigma_{\text{случ}}^2 + \sigma_{\text{сист}}^2} \approx 44, 0 \left(\frac{\text{M}}{\text{K}\Gamma}\right)$$
 (20)

Таким образом $k=1811,5\pm44,0$ $\left(\frac{\rm M}{\rm Kr}\right)$. Тогда $\rho_l=552,0\pm13,5$ $\left(\frac{\rm M\Gamma}{\rm M}\right)$.

Полученное значение близко к истинному значению погонной плостности струны, которая равняется $\rho_l^{\text{ист}} = 568, 4 \left(\frac{\text{мг}}{\text{м}} \right)$.

5 Заключение

- 1. Во время выполнения работы было подтверждено несколько теоретических зависимостей между физическими величинами. С точностью $\varepsilon_{\nu_1}=0,015$ подтверждена формула для определения частот гармоники струны. С точностью $\varepsilon_u=0,013$ подтверждена формула для определения скорости распространения волны в твердом теле под действием внешней силы.
- 2. Полученные графики имеют вид, предсказанный теоретически.
- 3. Отличие значения линейной плотности струны от указанного на установке более чем на погрешность, может быть связано с неточностью определения собственных частот v_n изза возникновения нелинейных эффектов при резонансе, и, как следствие, неточностью в определении скорости распространения u волны в струне.