ME 55600:I0200

Homework #9: Turbulent Boundary Layer/Immersed Bodies

- 1. A wind turbine is located $1000 \, m$ from the seashore and exposed to winds at $30 \, km/hr$. The blades of the turbine are $20 \, m$ in length. In order to avoid lower wind velocity near the ground, the turbine tower is placed high enough so that the blades are at least 3 m above the boundary layer. What should be the height of the axis of the turbine? Use air properties at $10^{o} \, C$, and assume the boundary layer is turbulent from the leading edge.
- 2. A flat-bottomed barge is 25 m long and 10 m wide. It is submerged to a depth of 1.5 m and moves at a speed of 8 km/hr. Determine the power required to move the barge if the water temperature is $15^{\circ}C$. Assume the surface of the barge is smooth, and the entire boundary layer is turbulent.
- 3. A torpedo is 4 m long and has a diameter of 0.5 m. It moves at a speed of 40 knots in seawater at 10^{o} C. What power is needed to overcome the skin-friction drag is transition to turbulence occurs at $Re_{cr} = 10^{6}$? For seawater use $v = 1.361x10^{-6}$ m^{2}/s , and $\rho = 1025$ kg/m^{3} .
- **4.** A ship has a length of 250 m and is moving at a speed of 30 knots 30. The wetted area is 14,000 m^2 .
 - (a) Determine the minimum admissible roughness and the corresponding minimum possible skin drag. What is the power needed to overcome the minimum skin drag?
 - (b) Determine the skin drag and power needed to overcome it if the surface roughness is 0.1875 mm.
 - (c) What is the percent increase in power needed due to surface roughness?

Use
$$v = 10^{-6} m^2/s$$
, and $\rho = 1010 \ kg/m^3$. $Re_{cr} = 500,000$