CAR PRICE PREDICTION

Here I required to model the price of cars with the available independent variables. It will be used to understand how exactly the prices vary with the independent variables. They can accordingly manipulate the design of the cars, the business strategy etc. to meet certain price levels. Further, the model will be a good way for management to understand the pricing dynamics of a new market.

Here I used 'Car Data' which I got from kaggle.

The independent and dependent variables found in the dataset I used to create this model are displayed in the table below.

	DATA DICTONARY							
1	Car_ID	Unique id of each observation (Interger)						
2	Symboling	Its assigned insurance risk rating, A value of +3 indicates that the auto is risky, -3 that it is probably pretty safe.(Categorical)						
3	carCompany	Name of car company (Categorical)						
4	fueltype	Car fuel type i.e gas or diesel (Categorical)						
5	aspiration	Aspiration used in a car (Categorical)						
6	doornumber	Number of doors in a car (Categorical)						
7	carbody	body of car (Categorical)						
8	drivewheel	type of drive wheel (Categorical)						
9	enginelocation	Location of car engine (Categorical)						
10	wheelbase	Weelbase of car (Numeric)						
11	carlength	Length of car (Numeric)						
12	carwidth	Width of car (Numeric)						
13	carheight	height of car (Numeric)						
14	curbweight	The weight of a car without occupants or baggage. (Numeric)						
15	enginetype	Type of engine. (Categorical)						
16	cylindernumber	cylinder placed in the car (Categorical)						
17	enginesize	Size of car (Numeric)						
18	fuelsystem	Fuel system of car (Categorical)						
19	boreratio	Boreratio of car (Numeric)						
20	stroke	Stroke or volume inside the engine (Numeric)						
21	compressionratio	compression ratio of car (Numeric)						
22	horsepower	Horsepower (Numeric)						
23	peakrpm	car peak rpm (Numeric)						
24	citympg	Mileage in city (Numeric)						
25	highwaympg	Mileage on highway (Numeric)						
26	rice(Dependent variable	Price of car (Numeric)						

Data cleaning and preprocessing

Import Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Read datast

df = p	od.read_cs	v("/content/0	CarPrice_Assignment.cs	sv")	
aspira		mboling	CarName	fueltype	
0	1	3	alfa-romero giulia	gas	std
1	2	3	alfa-romero stelvio	gas	std
2	3	1 alfa	a-romero Quadrifoglio	gas	std
3	4	2	audi 100 ls	gas	std
4	5	2	audi 100ls	gas	std
200	201	-1	volvo 145e (sw)	gas	std
201	202	-1	volvo 144ea	gas	turbo
202	203	-1	volvo 244dl	gas	std
203	204	-1	volvo 246	diesel	turbo
204	205	-1	volvo 264gl	gas	turbo
de	ornumber	carbody	drivewheel engineloca	otion whoo	lhaco
\		_	-		
Θ	two	convertible	rwd 1	front	88.6
1	two	convertible	rwd 1	front	88.6
2	two	hatchback	rwd 1	front	94.5
3	four	sedan	fwd 1	front	99.8
4	four	sedan	4wd 1	front	99.4

200	four	sedan		rwd		front	109.1	
201	four	sedan		rwd		front	109.1	
202	four	sedan		rwd		front	109.1	
203	four	sedan		rwd		front	109.1	
204	four	sedan		rwd		front	109.1	
	enginesize	fuelsystem	hore	ratio	stroke	compressio	nratio	
hors	epower \	ruetsystem	DOTE	Iatio	Stioke	Combiessio	macio	
0 111	130	mpfi		3.47	2.68		9.0	
1	130	mpfi		3.47	2.68		9.0	
111 2	152	mpfi		2.68	3.47		9.0	
154		ШРТТ		2.00	3.47			
3 102	109	mpfi		3.19	3.40		10.0	
4	136	mpfi		3.19	3.40		8.0	
115								
200	141	mpfi		3.78	3.15		9.5	
114		·						
201 160	141	mpfi		3.78	3.15		8.7	
202	173	mpfi		3.58	2.87		8.8	
134 203	145	idi		3.01	3.40		23.0	
106								
204 114	141	mpfi		3.78	3.15		9.5	
	peakrpm city	/mpg highwa	vmna	prio	~e			
0	5000	21	27	13495	. 0			
1	5000 5000	21 19	27 26	16500 . 16500 .				
0 1 2 3 4	5500	24	30	13950	. 0			
	5500	18	22	17450				
200	5400	23	28	16845				
201 202	5300 5500	19 18	25 23	19045 . 21485 .				
203	4800	26	27	22470				

204	5400	19	25	22625.0
`(ows x 26	columns]		

Current dataset consist of 205 rows and 26 columns

df	.head()								
al a	car_ID		ooling		Ca	rName f	ueltype	aspir	ation
0	ornumber 1	. /	3	alfa.	-romero g	iulia	gas		std
two	2		3	alfa-ı	romero st	elvio	gas		std
two	3		1 alf	a-romero	Quadrif	oglio	gas		std
two 3 fou	4		2		audi 1	00 ls	gas		std
4 for	5		2		audi	100ls	gas		std
	car		drivewheel	engine	location	wheelb	ase		
eng 0	ginesize convert	-	rwo		front	8	8.6		130
1	convert	ible	rwo		front	8	8.6		130
2	hatch	back	rwo		front	9.	4.5	•	152
3	S	edan	fwo		front	9	9.8		109
4	S	edan	4wc		front	9	9.4	•	136
	fuelsys	tem	boreratio	stroke	compress	ionrati	o horsep	oower	peakrpm
0	tympg \ m	pfi	3.47	2.68		9.	0	111	5000
21	m	pfi	3.47	2.68		9.	0	111	5000
21	m	pfi	2.68	3.47		9.	0	154	5000
19 3 24	m	pfi	3.19	3.40		10.	0	102	5500
4	m	pfi	3.19	3.40		8.	0	115	5500
0	highway	mpg 27 27	price 13495.0 16500.0						

```
2
           26
                16500.0
3
                13950.0
           30
4
           22
               17450.0
[5 rows x 26 columns]
df.tail()
     car ID symboling
                             CarName fueltype aspiration doornumber
200
                         volvo 145e (sw)
        201
                     - 1
                                                            std
                                                                       four
                                                gas
201
        202
                              volvo 144ea
                                                                       four
                     - 1
                                                gas
                                                          turbo
202
        203
                              volvo 244dl
                                                                       four
                     - 1
                                                            std
                                                gas
203
        204
                     - 1
                                volvo 246
                                             diesel
                                                          turbo
                                                                       four
204
        205
                     - 1
                              volvo 264gl
                                                          turbo
                                                                       four
                                                gas
    carbody drivewheel enginelocation wheelbase ... enginesize
fuelsystem \
200
      sedan
                    rwd
                                  front
                                              109.1
                                                                  141
mpfi
201
      sedan
                    rwd
                                  front
                                              109.1
                                                                  141
mpfi
202
      sedan
                                  front
                                              109.1
                                                                  173
                    rwd
mpfi
203
                                  front
                                                                  145
      sedan
                    rwd
                                              109.1
idi
204
      sedan
                    rwd
                                  front
                                              109.1
                                                                  141
mpfi
     boreratio
                 stroke compressionratio horsepower
                                                        peakrpm citympg \
200
          3.78
                   3.15
                                      9.5
                                                           5400
                                                  114
                                                                      23
201
          3.78
                   3.15
                                      8.7
                                                  160
                                                           5300
                                                                      19
          3.58
                   2.87
                                      8.8
                                                  134
                                                                      18
202
                                                           5500
203
          3.01
                   3.40
                                     23.0
                                                  106
                                                           4800
                                                                      26
          3.78
                                                                      19
204
                   3.15
                                      9.5
                                                  114
                                                           5400
     highwaympg
                    price
200
              28
                  16845.0
201
              25
                  19045.0
202
              23
                  21485.0
              27
203
                  22470.0
204
              25
                  22625.0
[5 rows x 26 columns]
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 26 columns):
     Column
                        Non-Null Count
                                         Dtype
 0
     car ID
                        205 non-null
                                         int64
 1
     symboling
                        205 non-null
                                         int64
 2
     CarName
                        205 non-null
                                         object
 3
     fueltype
                        205 non-null
                                         object
 4
     aspiration
                        205 non-null
                                         object
 5
     doornumber
                        205 non-null
                                         object
 6
     carbody
                        205 non-null
                                         object
 7
                        205 non-null
     drivewheel
                                         object
 8
     enginelocation
                        205 non-null
                                         object
 9
     wheelbase
                        205 non-null
                                         float64
 10
                        205 non-null
                                         float64
    carlength
 11
     carwidth
                        205 non-null
                                         float64
                        205 non-null
 12
     carheight
                                         float64
 13
    curbweight
                        205 non-null
                                         int64
 14
     enginetype
                        205 non-null
                                         obiect
 15
    cylindernumber
                        205 non-null
                                         object
 16
     enginesize
                        205 non-null
                                         int64
 17
                        205 non-null
                                         object
     fuelsystem
 18
    boreratio
                        205 non-null
                                         float64
                                         float64
 19
     stroke
                        205 non-null
 20
    compressionratio 205 non-null
                                         float64
 21
     horsepower
                        205 non-null
                                         int64
 22
                        205 non-null
                                         int64
     peakrpm
 23
     citympg
                        205 non-null
                                         int64
 24
     highwaympg
                        205 non-null
                                         int64
 25
     price
                        205 non-null
                                         float64
dtypes: float64(8), int64(8), object(10)
memory usage: 41.8+ KB
df.describe()
           car_ID
                     symboling
                                 wheelbase
                                              carlength
                                                           carwidth
carheight
count 205.000000
                    205.000000
                                205.000000
                                             205.000000
                                                         205.000000
205,000000
       103.000000
                      0.834146
                                 98.756585
                                             174.049268
                                                          65.907805
mean
53.724878
        59.322565
                      1.245307
                                  6.021776
                                              12.337289
                                                           2.145204
std
2.443522
         1.000000
                     -2.000000
                                 86,600000
                                             141.100000
                                                          60.300000
min
47.800000
25%
        52.000000
                      0.000000
                                 94.500000
                                             166.300000
                                                          64.100000
52.000000
       103.000000
                      1.000000
                                 97.000000
                                             173.200000
                                                          65.500000
50%
54.100000
```

	00000	2.000000	102.400000	183.100000	66.900000
55.500000 max 205.6 59.800000	00000	3.000000	120.900000	208.100000	72.300000
curb compressionr	weight atio \	enginesize	boreratio	stroke	
	000000	205.000000	205.000000	205.000000	
	565854	126.907317	3.329756	3.255415	
	680204	41.642693	0.270844	0.313597	
	000000	61.000000	2.540000	2.070000	
	000000	97.000000	3.150000	3.110000	
	000000	120.000000	3.310000	3.290000	
	000000	141.000000	3.580000	3.410000	
	000000	326.000000	3.940000	4.170000	
count 205.0 mean 104.1 std 39.5 min 48.0 25% 70.0 50% 95.0 75% 116.0	epower 000000 17073 644167 000000 000000 000000	peakrpm 205.000000 5125.121951 476.985643 4150.000000 4800.000000 5200.000000 5500.000000 6600.000000	citympg 205.000000 25.219512 6.542142 13.000000 19.000000 24.000000 30.000000 49.000000	highwaympg 205.000000 30.751220 6.886443 16.000000 25.000000 30.000000 34.000000 54.000000	price 205.000000 13276.710571 7988.852332 5118.000000 7788.000000 10295.000000 16503.000000 45400.000000
df.dtypes					
car_ID symboling CarName fueltype aspiration doornumber carbody drivewheel enginelocati wheelbase carlength carwidth carheight curbweight	.on	int64 int64 object object object object object object float64 float64 float64 int64			

```
object
enginetype
cylindernumber
                     object
enginesize
                      int64
fuelsystem
                     object
boreratio
                    float64
stroke
                    float64
                    float64
compressionratio
horsepower
                      int64
peakrpm
                      int64
citympg
                      int64
highwaympg
                      int64
price
                    float64
dtype: object
```

8 columns are float datatype, 8 columns are integer datatype and 10 columns are object datatype.

Dropping duplicate rows

df.d	rop_duplica	tes()			
aspi	car_ID sy ration \	mboling	CarName	fueltype	
0	1	3	alfa-romero giulia	gas	std
1	2	3	alfa-romero stelvio	gas	std
2	3	1	alfa-romero Quadrifoglio	gas	std
3	4	2	audi 100 ls	gas	std
4	5	2	audi 100ls	gas	std
200	201	-1	volvo 145e (sw)	gas	std

201	202	-1	VC	lvo 144ea	gas	turbo
202	203	-1	VC	lvo 244dl	gas	std
203	204	-1		volvo 246	diesel	turbo
204	205	-1	VC	olvo 264gl	gas	turbo
	doornumber	carbody	drivewheel	enginelocat	tion whe	elbase
0	two	convertible	rwd	f	ront	88.6
1	two	convertible	rwd	fı	ront	88.6
2	two	hatchback	rwd	fı	ront	94.5
3	four	sedan	fwd	fı	ront	99.8
4	four	sedan	4wd	fı	ront	99.4
200	four	sedan	rwd	fı	ront	109.1
201	four	sedan	rwd	fı	ront	109.1
202	four	sedan	rwd	fı	ront	109.1
203	four	sedan	rwd	fı	ront	109.1
204	four	sedan	rwd	fı	ront	109.1
hors	enginesize sepower \	fuelsystem	boreratio	stroke cor	npression	ratio
0 111	130	mpfi	3.47	2.68		9.0
1 111	130	mpfi	3.47	2.68		9.0
2	152	mpfi	2.68	3.47		9.0
154 3	109	mpfi	3.19	3.40		10.0
102 4	136	mpfi	3.19	3.40		8.0
115						
200	141	mpfi	3.78	3.15		9.5
114	212		31.70	2 : 13		5.5

201 160	141		mpfi	3.78	3.15	8.7
202 134	173		mpfi	3.58	2.87	8.8
203 106	145		idi	3.01	3.40	23.0
204 114	141		mpfi	3.78	3.15	9.5
0 1 2 3 4 200 201 202 203 204	peakrpm cit 5000 5000 5000 5500 5400 5300 5500 4800 5400	21 21 19 24 18 23 19 18 26 19	highwaympg 27 26 30 22 28 25 23 27 25	price 13495.0 16500.0 16500.0 13950.0 17450.0 16845.0 19045.0 21485.0 22470.0 22625.0		
[205	rows x 26 c	columns]			

Check missing values

```
df.isna().sum()
car_ID
                    0
symboling
                     0
CarName
                     0
fueltype
                     0
aspiration
                     0
                     0
doornumber
                     0
carbody
drivewheel
                     0
enginelocation
                     0
wheelbase
                     0
carlength
                     0
carwidth
                     0
                     0
carheight
                     0
curbweight
enginetype
                     0
cylindernumber
                     0
enginesize
                     0
                     0
fuelsystem
boreratio
                     0
                     0
stroke
compressionratio
```

```
horsepower 0
peakrpm 0
citympg 0
highwaympg 0
price 0
dtype: int64
```

There are no missing values in the dataset.

Check the 'CarName' feature

```
df['CarName'].unique()
array(['alfa-romero giulia', 'alfa-romero stelvio',
         'alfa-romero Quadrifoglio', 'audi 100 ls', 'audi 100ls',
         'audi fox', 'audi 5000', 'audi 4000', 'audi 5000s (diesel)', 'bmw 320i', 'bmw x1', 'bmw x3', 'bmw z4', 'bmw x5',
         'chevrolet impala', 'chevrolet monte carlo', 'chevrolet vega
2300',
         'dodge rampage', 'dodge challenger se', 'dodge d200',
         'dodge monaco (sw)', 'dodge colt hardtop', 'dodge colt (sw)',
         'dodge coronet custom', 'dodge dart custom',
'dodge coronet custom (sw)', 'honda civic', 'honda civic cvcc',
         'honda accord cvcc', 'honda accord lx', 'honda civic 1500 gl',
         'honda accord', 'honda civic 1300', 'honda prelude', 'honda civic (auto)', 'isuzu MU-X', 'isuzu D-Max ', 'isuzu D-Max V-Cross', 'jaguar xj', 'jaguar xf', 'jaguar xk',
         'maxda rx3', 'maxda glc deluxe', 'mazda rx2 coupe', 'mazda rx-
4',
         'mazda glc deluxe', 'mazda 626', 'mazda glc', 'mazda rx-7 gs',
         'mazda glc 4', 'mazda glc custom l', 'mazda glc custom',
         'buick electra 225 custom', 'buick century luxus (sw)',
         'buick century', 'buick skyhawk', 'buick opel isuzu deluxe', 'buick skylark', 'buick century special',
         'buick regal sport coupe (turbo)', 'mercury cougar',
         'mitsubishi mirage', 'mitsubishi lancer', 'mitsubishi
outlander',
         'mitsubishi g4', 'mitsubishi mirage g4', 'mitsubishi montero',
         'mitsubishi pajero', 'Nissan versa', 'nissan gt-r', 'nissan
rogue',
         'nissan latio', 'nissan titan', 'nissan leaf', 'nissan juke',
         'nissan note', 'nissan clipper', 'nissan nv200', 'nissan dayz', 'nissan fuga', 'nissan otti', 'nissan teana', 'nissan kicks', 'peugeot 504', 'peugeot 304', 'peugeot 504 (sw)', 'peugeot
604sl',
         'peugeot 505s turbo diesel', 'plymouth fury iii',
         'plymouth cricket', 'plymouth satellite custom (sw)',
         'plymouth fury gran sedan', 'plymouth valiant', 'plymouth
duster',
```

```
'porsche macan', 'porcshce panamera', 'porsche cayenne',
'porsche boxter', 'renault 12tl', 'renault 5 gtl', 'saab 99e',
'saab 99le', 'saab 99gle', 'subaru', 'subaru dl', 'subaru brz',
'subaru baja', 'subaru r1', 'subaru r2', 'subaru trezia',
'subaru tribeca', 'toyota corona mark ii', 'toyota corona',
'toyota corolla 1200', 'toyota corona hardtop',
'toyota corolla 1600 (sw)', 'toyota carina', 'toyota mark ii',
'toyota corolla', 'toyota corolla liftback',
'toyota celica gt liftback', 'toyota corolla tercel',
'toyota corona liftback', 'toyota starlet', 'toyota tercel',
'toyota cressida', 'toyota celica gt', 'toyouta tercel',
'vokswagen rabbit', 'volkswagen 1131 deluxe sedan',
'volkswagen model 111', 'volkswagen type 3', 'volkswagen 411

(sw)',

'volkswagen super beetle', 'volkswagen dasher', 'vw dasher',
'vw rabbit', 'volkswagen rabbit', 'volkswagen rabbit custom',
'volvo 145e (sw)', 'volvo 144ea', 'volvo 244dl', 'volvo 245',
'volvo 264gl', 'volvo diesel', 'volvo 246'], dtype=object)
```

Check 'fueltype' feature

```
df['fueltype'].unique()
array(['gas', 'diesel'], dtype=object)
```

Check 'aspiration' feature

```
df['aspiration'].unique()
array(['std', 'turbo'], dtype=object)
```

Check 'doornumber' feature

```
df['doornumber'].unique()
array(['two', 'four'], dtype=object)
```

Check 'carbody' feature

Check 'drivewheel' feature

```
df['drivewheel'].unique()
array(['rwd', 'fwd', '4wd'], dtype=object)
```

Check 'enginelocation' feature

```
df['enginelocation'].unique()
array(['front', 'rear'], dtype=object)
```

Check 'enginetype' feature

```
df['enginetype'].unique()
array(['dohc', 'ohcv', 'ohc', 'l', 'rotor', 'ohcf', 'dohcv'],
dtype=object)
```

Check 'cylindernumber' feature

Check 'fuelsystem' feature

Data visualizations

Check the distribution of car price

```
plt.figure(figsize=(16, 10))
sns.histplot(data=df, x='price', kde=True)
<Axes: xlabel='price', ylabel='Count'>
```



```
df['price'].describe()
           205.000000
count
         13276.710571
mean
std
          7988.852332
min
          5118.000000
          7788.000000
25%
         10295.000000
50%
75%
         16503.000000
         45400.000000
max
Name: price, dtype: float64
```

The plot seemed to be right-skewed, meaning that the most prices in the dataset are low(Below 15,000).

There is a significant difference between the mean and the median of the price distribution.

Minimum price is \$5118

Maximum price is \$5400

Data correlation using Heatmap

Multivariate analysis

```
plt.figure(figsize=(12,8))
sns.heatmap(df.corr(),annot=True,cmap='coolwarm')
plt.title('Heatmap of the dataset')

<ipython-input-154-5daefb561f69>:2: FutureWarning: The default value
of numeric_only in DataFrame.corr is deprecated. In a future version,
it will default to False. Select only valid columns or specify the
value of numeric_only to silence this warning.
    sns.heatmap(df.corr(),annot=True,cmap='coolwarm')
Text(0.5, 1.0, 'Heatmap of the dataset')
```


Highly correlated variables to price are - carwidth, curbweght, enginesize and horsepower.

Visualising Categorical Data¶

- CompanyName
- fueltype
- enginetype
- carbody
- doornumber

- enginelocation
- fuelsystem
- cylindernumber
- aspiration
- drivewheel

Visualising categorical data

```
plt.figure(figsize=(30,30))
plt.subplot(6,2,1)
sns.countplot(x='CarName',data=df)
plt.title('Count of CarName')
plt.subplot(6,2,2)
sns.countplot(x='symboling',data=df)
plt.title('Count of symboling')
plt.subplot(6,2,3)
sns.countplot(x='fueltype',data=df)
plt.title('Count of fueltype')
plt.subplot(6,2,4)
sns.countplot(x='enginetype',data=df)
plt.title('Count of enginetype')
plt.subplot(6,2,5)
sns.countplot(x='carbody',data=df)
plt.title('Count ofcarbody')
plt.subplot(6,2,6)
sns.countplot(x='doornumber',data=df)
plt.title('Count of doornumber')
plt.subplot(6,2,7)
sns.countplot(x='enginelocation',data=df)
plt.title('Count of enginelocation')
plt.subplot(6,2,8)
sns.countplot(x='fuelsystem',data=df)
plt.title('Count of fuelsystem')
plt.subplot(6,2,9)
sns.countplot(x='cylindernumber',data=df)
plt.title('Count of cylindernumber')
plt.subplot(6,2,10)
sns.countplot(x='aspiration',data=df)
plt.title('Count of aspiration')
```

```
plt.subplot(6,2,11)
sns.countplot(x='drivewheel',data=df)
plt.title('Count of drivewheel')

Text(0.5, 1.0, 'Count of drivewheel')
```


Number of gas fueled cars are more than diesel.

sedan is the top car type prefered.

It seems that the symboling with 0 and 1 values have high number of rows (i.e. They are most sold.)

ohc Engine type seems to be most favored type.

We can see most of the cars use gas as fuel.

FWD is the most favored, and the second place is RWD followed by 4WD.

Most of the cars' engine location are front.

Most of the cars are four-cylinder.

MPFI is the favored type of fuel system.

Visualising numerical variable

```
symboling
wheelbase
carlength
carwidth
carheight
curbweight
enginesize
boreratio
stroke
compressionratio
horsepower
peakrpm
citympg
highwaympg
```

```
x=['symboling','wheelbase','carlength','carwidth','carheight','curbwei
ght','enginesize','boreratio','stroke','compressionratio','horsepower'
,'peakrpm','citympg','highwaympg']
for variable in x:
    plt.scatter(df[variable], df['price'])
    plt.xlabel(variable)
    plt.ylabel('Price')
    plt.title(f'Scatter Plot of {variable} vs Price')
    plt.show()
```


stroke

carwidth, carlength and curbweight seems to have a poitive correlation with price.

carheight doesn't show any significant trend with price.

enginesize, boreratio, horsepower, wheelbase - seem to have a significant positive correlation with price.

citympg, highwaympg - seem to have a significant negative correlation with price.

Dropping unwanted column

<pre>df.drop(['car_ID'],axis=1,inplace=True) df</pre>								
symbo	ling	CarName	fueltype	aspiration				
doornumber	\							
0	3	alfa-romero giulia	gas	std				
two								
1	3	alfa-romero stelvio	gas	std				
two								
2	1	alfa-romero Quadrifoglio	gas	std				
two								
3	2	audi 100 ls	gas	std				
four								

4	2		audi	100ls		gas	std	
four 								
	1		lvo 1456	. (()		~~~	o + d	
200 four	-1	٧٥١	LVO 1456	e (SW)		gas	std	
201	-1		volvo	144ea		gas	turbo	
four 202	-1		volvo	244dl		gas	std	
four	1		,, <u>,,,,</u> 1,	246	ماناه		+	
203 four	-1		۷٥٢١	o 246	ale	esel	turbo	
204	-1		volvo	264gl		gas	turbo	
four								
,	carbody	drivewheel	enginel	locatio	n wh	neelbase	carlength	
0	convertible	rwd		fron [.]	t	88.6	168.8	
1	convertible	rwd		fron [.]	t	88.6	168.8	
2	hatchback	rwd		fron [.]	t	94.5	171.2	
3	sedan	fwd		fron		99.8	176.6	
3	Seuan	i wu		11011	L	99.0	170.0	• • •
4	sedan	4wd		fron	t	99.4	176.6	
200	sedan	rwd		fron ⁻	t	109.1	188.8	
201	sedan	rwd		fron ⁻	t	109.1	188.8	
202	sedan	rwd		fron ⁻	t	109.1	188.8	
203	sedan	rwd		fron ⁻	t	109.1	188.8	
204	sedan	rwd		fron ⁻	t	109.1	188.8	
horse	enginesize epower \	fuelsystem	borera	atio st	roke	compress	ionratio	
0	130	mpfi	3	3.47	2.68		9.0	
111 1	130	mpfi	3	3.47	2.68		9.0	
111 2	152	mpfi		2.68	3.47		9.0	
154		•	2					
3 102	109	mpfi	3	3.19	3.40		10.0	
102								

4 115		136	mpfi	3.19	3.40	8.0
200 114		141	mpfi	3.78	3.15	9.5
201 160		141	mpfi	3.78	3.15	8.7
202		173	mpfi	3.58	2.87	8.8
134 203 106		145	idi	3.01	3.40	23.0
204 114		141	mpfi	3.78	3.15	9.5
0 1 2 3 4 200 201 202 203 204	peakrpm 5000 5000 5000 5500 5400 5300 5500 4800 5400	citympg 21 21 19 24 18 23 19 18 26	highwaympg 27 27 26 30 22 28 25 23 27 25	pric 13495. 16500. 16500. 13950. 17450. 16845. 19045. 21485. 22470. 22625.	0 0 0 0 0 0 0 0	
[205	rows x	25 column	s]			

Encoding using LabelEncoder

```
from sklearn.preprocessing import LabelEncoder
encoder=LabelEncoder()
df['CarName']=encoder.fit_transform(df['CarName'])
df['fueltype']=encoder.fit transform(df['fueltype'])
df['aspiration']=encoder.fit transform(df['aspiration'])
df['doornumber']=encoder.fit_transform(df['doornumber'])
df['carbody']=encoder.fit transform(df['carbody'])
df['drivewheel']=encoder.fit transform(df['drivewheel'])
df['enginelocation']=encoder.fit transform(df['enginelocation'])
df['enginetype']=encoder.fit transform(df['enginetype'])
df['cylindernumber']=encoder.fit transform(df['cylindernumber'])
df['fuelsystem']=encoder.fit transform(df['fuelsystem'])
df.dtypes
symboling
                      int64
CarName
                      int64
fueltype
                      int64
```

door carb driv engi whee carl carw carh curb engi cyli engi fuel bore stro comp hors peak city high pric	ewheel nelocation lbase ength didth eight weight netype ndernumber nesize system ratio ke ressionratio epower rpm mpg waympg	int64 int64 int64 int64 int64 float64 float64 int64	4 4 4 4 4 4 4 4 4 4 4 4 4 4				
0 1 2 3 4 200 201 202 203 204	symboling 3 3 1 2 2 21 -1 -1 -1	CarName for 2 3 1 4 5 5 139 138 140 142 143		e aspirati 1 1 1 1 1 1 1 1 1	on doornum 0 0 0 0 0 1 0 1	1 1 0 0 0 0	carbody \ 0
\	drivewheel	engineloca	ation	wheelbase	carlength		enginesize
0	2		0	88.6	168.8		130
1	2		0	88.6	168.8		130
2	2		0	94.5	171.2		152
3	1		0	99.8	176.6		109
4	0		0	99.4	176.6		136

200		2		0	109.1	188.8		141
201		2		0	109.1	188.8		141
202		2		0	109.1	188.8		173
203		2		0	109.1	188.8		145
204		2		0	109.1	188.8		141
	£1							
peak	fuelsyst	em bore	ratio	stroke	compressi	onratio r	norsepower	
0		5	3.47	2.68		9.0	111	
5000 1		5	3.47	2.68		9.0	111	
5000								
2		5	2.68	3.47		9.0	154	
5000 3		5	3.19	3.40		10.0	102	
5500								
4 5500		5	3.19	3.40		8.0	115	
200		5	3.78	3.15		9.5	114	
5400			3170	3.13			11.	
201		5	3.78	3.15		8.7	160	
5300 202		5	3.58	2.87		8.8	134	
5500			3.30	2107		0.0	13.	
203		3	3.01	3.40		23.0	106	
4800 204		5	3.78	3.15		9.5	114	
5400		J	3170	3113		313		
3400	citympg	highway	mpg	price				
0	21		27 1	13495.0				
2	21 19			L6500.0 L6500.0				
0 1 2 3 4	24			13950.0				
4	18		22 1	17450.0				
200	23		28 1	 L6845.0				
201	19			19045.0				
202	18		23 2	21485.0				
203	26		27 2	22470.0				

Separate the data into input and output data

```
x=df.iloc[:,:-1].values
y=df.iloc[:,-1].values
У
             , 16500. , 16500. , 13950. , 17450.
array([13495.
                                                              , 15250.
                 , 18920. , 23875.
                                     , 17859.167, 16430.
                                                              , 16925.
       17710.
       20970.
                , 21105. , 24565. , 30760. , 41315.
                                                              , 36880.
        5151.
                   6295.
                               6575.
                                          5572.
                                                      6377.
                                                              , 7957.
        6229.
                                                              , 12964.
                   6692.
                               7609.
                                          8558.
                                                      8921.
                                                 , 7129.
        6479.
                   6855.
                               5399.
                                          6529.
                                                              , 7295.
                                                , 10295.
        7295.
                   7895.
                               9095.
                                          8845.
                                                              , 12945.
                                          8916.5 , 11048.
       10345.
                   6785.
                               8916.5
                                                              , 32250.
                , 36000.
       35550.
                               5195.
                                          6095. ,
                                                      6795.
                                                                 6695.
                 , 10945.
                                       , 13645. , 15645.
        7395.
                            , 11845.
                                                                 8845.
                                                 , 11245.
        8495.
                , 10595.
                          , 10245.
                                       , 10795.
                                                              , 18280.
                          , 28248.
                 , 25552.
                                       , 28176.
                                                 , 31600.
       18344.
                                                               , 34184.
                , 40960.
                            , 45400.
                                       , 16503.
       35056.
                                                      5389.
                                                              , 6189.
        6669.
                                                   , 12629.
                                                              , 14869.
                   7689.
                               9959.
                                          8499.
       14489.
                   6989.
                               8189.
                                                      9279.
                                                                 5499.
                                          9279.
                                                                 7799.
        7099.
                   6649.
                               6849.
                                          7349.
                                                      7299.
        7499.
                   7999.
                               8249.
                                          8949.
                                                      9549.
                                                              , 13499.
                 , 13499.
                            , 17199.
                                                   , 18399.
                                                              , 11900.
       14399.
                                       , 19699.
                            , 13860.
       13200.
                , 12440.
                                       , 15580.
                                                   , 16900.
                                                              , 16695.
                            , 17950.
                                       , 18150.
       17075.
                , 16630.
                                                      5572.
                                                               , 7957.
```

```
, 6692. , 7609. , 8921. , 12764.
6229.
                                                    , 22018.
                   , 37028.
32528.
         . 34028.
                              , 31400.5 ,
                                            9295.
                                                       9895.
                   , 15040.
11850.
         , 12170.
                              , 15510. , 18150.
                                                    , 18620.
5118.
           7053. ,
                      7603.
                              , 7126. ,
                                            7775.
                                                       9960.
9233.
         , 11259.
                      7463.
                              , 10198.
                                            8013.
                                                    , 11694.
5348.
           6338.
                      6488.
                                 6918.
                                            7898.
                                                       8778.
6938.
                      7898.
           7198.
                                 7788.
                                            7738.
                                                       8358.
9258.
           8058.
                   , 8238.
                                 9298.
                                         , 9538.
                                                       8449.
                              , 11549.
                                         , 17669.
                   , 11199.
9639.
           9989.
                                                       8948.
10698.
           9988.
                   , 10898.
                              , 11248. , 16558.
                                                    , 15998.
15690.
         , 15750.
                      7775.
                                 7975. ,
                                            7995.
                                                    , 8195.
8495.
                              , 11595.
           9495.
                      9995.
                                            9980.
                                                    , 13295.
         , 12290. , 12940.
                              , 13415. , 15985.
                                                    , 16515.
13845.
         , 18950. , 16845.
18420.
                              , 19045. , 21485.
                                                    , 22470.
22625.
        ])
```

Split the data into training and testing data

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,rando
m state=42)
```

Scaling using StandardScaler

```
from sklearn.preprocessing import StandardScaler
scaler=StandardScaler()
scaler.fit(x_train)
x_train=scaler.transform(x_train)
x_test=scaler.transform(x_test)
```

Model Creation

```
from sklearn.linear model import LinearRegression
model=LinearRegression()
model.fit(x train,y train)
y pred=model.predict(x test)
y pred
array([25263.71155727, 17510.60100873,
                                         9440.29961597, 13532.18496334,
       26109.69474918,
                        6312.04809043,
                                         7584.6572441 ,
                                                         5893.76273471,
        9242.62222642,
                        5821.86589929, 13857.61067278,
                                                         6162.24167276,
       16482.82264907, 10706.77526758, 40393.49162707, 6861.31339325,
        -151.21120815, 14789.44762836,
                                         9670.36006267, 10331.20595444,
       11095.07488034, 20819.20389829,
                                         8195.27918247,
                                                        3546.04281395,
        7755.9093543 , 23953.59319483 , 14433.67089985 , 15762.62290799 ,
                                                        7381.45646566,
        5067.19507839, 16242.84673396, 26307.25262831,
                                        8452.86521883, 26796.96656169,
        4235.16070955, 22127.7853912 ,
       10151.62813053,
                        9736.48156002,
                                         6845.13061313, 15091.05428725,
        7338.31882785, 13461.96663554, 18879.25403184,
                                                         4724.11656838,
        6735.85164657, 10078.5772291,
                                         8866.25914506,
                                                         6925.7671163 ,
                                        7106.81136173, 19425.30940642,
       18238.42401821, 15330.17170675,
                        9293.16030173, 4902.96088326, 14725.62603104,
        3305.86756574,
                        9710.88151382, 34700.30707048, 6428.57784804,
       14265.61948852,
        8599.07387595, 20697.64419021])
df1=pd.DataFrame({"Actual_value":y_test,"Predicted_value":y_pred,'Diff
erence':y test-y pred})
df1
    Actual value
                  Predicted value
                                    Difference
0
       30760.000
                     25263.711557
                                   5496.288443
1
       17859.167
                     17510.601009
                                    348.565991
2
                                    108.700384
        9549.000
                      9440.299616
3
       11850.000
                     13532.184963 -1682.184963
4
       28248.000
                     26109.694749 2138.305251
57
       11845.000
                      9710.881514
                                   2134.118486
58
                     34700.307070
       37028.000
                                   2327.692930
59
        5389.000
                      6428.577848 - 1039.577848
60
        9233.000
                      8599.073876
                                    633.926124
                     20697.644190 - 3498.644190
61
       17199.000
[62 rows x 3 columns]
```

Performance Evaluation

```
# 1. MAE
from sklearn.metrics import mean_absolute_error
print('MAE is ',mean_absolute_error(y_test,y_pred))
MAE is 2196.0531111239407
```

```
# 2. MAPE
from sklearn.metrics import mean absolute percentage error
print('MAE is ',mean absolute percentage error(y test,y pred))
MAE is 0.19661972274847273
# 3. MSE
from sklearn.metrics import mean squared error
print('MAE is ',mean_squared_error(y_test,y_pred))
MAE is 11091618.680797806
# 4. RMSE
from sklearn.metrics import mean squared error
mse=mean_squared_error(y_test,y_pred)
rmse=np.sqrt(mse)
rmse
3330.4081853126963
# 5. R2 score
from sklearn.metrics import r2 score
print(r2_score(y_test,y_pred))
0.8399116957802601
```