

1. Considere la siguiente superficie $S:\{(x,y,z)\in\mathbb{R}^3x^2+y^2=a^2,0\leq z\leq 2x-y+3\}.$

Si la superficie S posee una densidad dada por $\delta(x,y,z)=\frac{z(x+y)}{x^2+y^2}$, calcule la masa de la superficie y su momento de inercia respecto al eje Z.

- 2. Calcule el centro de inercia de la superficie $S:\{(x,y,z)\in\mathbb{R}^3/(x-2)^2+y^2=4,\ 0< z<9-(x^2+y^2)\}$, cuya densidad viene dada por $\delta(x,y,z)=\frac{1}{16}z(x-2)^2$.
- 3. Considere la región Ω dada por un cuadrado de lado 2 centrada en el origen. Calcule el flujo producido por el campo $F(x,y)=(x^2(y-1),(x-1)y^3)$ a través de Ω .
- 4. Calcule el flujo producido por el campo $u(x, y, z) = (-zx, -yz, z^2)$ a través de la semiesfera de radio 4 centrada en el (0,0,0).
- 5. Considere la región en el plano dada por $\Omega: \{(x,y) \in \mathbb{R}^2/(x^2+y^2)^2 = 8(x^2-y^2)\}$, y los camops vectoriales $f_1(x,y) = \left(\frac{y}{4(x+2)^2+y^2}, \frac{-(x+2)}{4(x+2)^2+y^2}\right)$ y $f_2(x,y) = \left(\frac{x-2}{(x-2)^2+9y^2}, \frac{9y}{(x-2)^2+9y^2}\right)$. Calcule el trabajo hecho por $f_1 + f_2$ sobre $\partial\Omega$, recorrido en sentido positivo.