

FOOD DESERT AND HEALTH

Introduction to Programming for Public Policy: Final Project 12/4/2017 Adriana Artola and Shinya Takatani

QUESTION

- Does the access to healthy food in supermarkets improve health outcomes?
- Otherwise, do food deserts cause increased lifestyle diseases such as diabetes, obesity or hypertension?

DATASETS

Access to Food

- Grocery location and size
- Fast food restaurants location

Other Explanation Variables

- Black/Hispanic rate
- Income
- Education attainment
- Poverty rate

Healthcare Outcome

Diabetes hospitalization

Geometry

Zip codes boundaries

FOOD DESERTS IN CHICAGO

"Food desert" definition: an area with a poverty rate of at least 20 percent and where at least a third of the population lives more than a mile from a supermarket or large grocery store

GROCERY DENSITY AND DIABETES HOSPITALIZATION RATES IN ZIP-CODE AREAS

0.06 - 0.08

0.08 - 0.12

0.12 - 0.14

0.14 - 0.17

0.17 - 0.22

0.22 - 0.27

0.27 - 0.32

0.32 - 0.39

0.39 - 0.47 0.47 - 0.57

Grocery Store Square Feet per Square Mile

PLOTTING

OLS REGRESSION

Model:

H(hospitalization rate) =

α(intercept)

- $+\beta I*G(grocery density)$
- +β2*F(fast food restaurant density)
- $+\beta3*Income(mean income)$
- +β4*Black(black rate)
- +β5*Hispanic(hispanic rate)

Dep. Variable:	Н	R-squared:	0.845
Model:	OLS	Adj. R-squared:	0.827
Method:	Least Squares	F-statistic:	45.91
Date:	Fri, 01 Dec 2017	Prob (F-statistic):	5.90e-16
Time:	21:32:03	Log-Likelihood:	69.171
No. Observations:	48	AIC:	-126.3
Df Residuals:	42	BIC:	-115.1
Df Model:	5		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.1250	0.069	1.799	0.079	-0.015	0.265
G	0.1440	0.139	1.033	0.307	-0.137	0.425
F	0.0015	0.003	0.453	0.653	-0.005	0.008
Income	-6.832e-07	6.73e-07	-1.014	0.316	-2.04e-06	6.76e-07
Black	0.0039	0.001	7.665	0.000	0.003	0.005
Hispanic	0.0016	0.001	2.472	0.018	0.000	0.003

CONCLUSION AND LIMITATIONS

- We found weak but certain correlation between the grocery density and the diabetes hospitalization rate.
- Health outcomes seem to be associated with minority population rather than food accessibility and income level.
- Possible further research: tract level, other diseases (e.g. life expectancy or obesity), other cities (more samples)