Assignment -2

Data Visualization and Preprocessing

Assignment Date	19 September 2022
Student Name	Kavya.P.B
Student Roll Number	211419104134
Maximum Marks	2 Marks

Question-1:

Download the dataset:

Question-2:

Load the dataset.

Solution:

import pandas as pd
df=pd.read_csv('/content/Churn_Modelling.csv')

[1]:	import pandas as pd														
[3]:	<pre>df=pd.read_csv('/content/Churn_Modelling.csv')</pre>														
[4]:	df														
t[4]:	Rov	Number	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	(
	2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57	
	3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	(
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	

9	9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1	0	96270.64	(
9	9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	1	101699.77	(
9	9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	1	42085.58	
g	9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	0	92888.52	
	9999	10000	15628319	Walker	792	France	Female	28	1	130142.79	1	1	0	38190.78	(

Question-3:

Perform Below Visualizations.

1)Univariate Analysis

Solution:

```
import matplotlib.pyplot as plt
import numpy as np

df_ex_0=df.loc[df['Exited']==0]

df_ex_1=df.loc[df['Exited']==1]

plt.plot(df_ex_0['Balance'],np.zeros_like(df_ex_0['Balance']),color='green')
plt.xlabel('Balance')
plt.show()
```


2)Bi - Variate Analysis

Solution:

import seaborn as sns
sns.FacetGrid(df,hue='Exited',size=5).map(plt.scatter,'CreditScore','Balance').add_legend()

1) Multivariate Analysis

Solution:

sns.pairplot(df,hue='Exited',height=5)

Question-4:

Perform descriptive statistics on the dataset.

Solution:

df.describe(include='all')

Descriptive Statistics

Question-5:

Handle the Missing values.

Solution:

df.isnull().sum()

Question-6:

Find the outliers and replace the outliers

Solution:

import seaborn as sns sns.boxplot(df['Balance'])

Question-7:

Check for Categorical columns and perform encoding.

Solution:

from sklearn.preprocessing **import** LabelEncoder **from** collections **import** Counter **as** count

le=LabelEncoder()
df['Geography']=le.fit_transform(df['Geography'])
df['Gender']=le.fit_transform(df['Gender'])
df['Surname']=le.fit_transform(df['Surname'])

Question-8:

Split the data into dependent and independent variables.

Solution:

x=df.iloc[:,0:13] y=df['Exited']

```
Dependent and Independent variables

In [20]: x=df.iloc[:,0:13]

In [21]: y=df['Exited']
```

Question-9:

Scale the independent variables

Solution:

from sklearn.preprocessing import StandardScaler sc=StandardScaler() sc_xtrain=sc.fit_transform(xtrain) sc_xtest=sc.transform(xtest)

Question-10:

Testing and training data

Solution:

from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.3,random_state=10)