CURS 7

Circuite in curent alternativ

Forma complexă a legii lui Ohm (teorema lui Joubert)

$$u(t) = \sqrt{2}U\sin(\omega t + \gamma) \rightarrow \underline{U} = e^{j\gamma} \cdot U$$

$$i(t) = ?$$

Orice generator de tensiune sinusoidală funcționează pe baza legii inducției electromagnetice și transformă energia mecanică necesară deplasătii (rotirii) circuitului în energie electromagnetică, ca urmare a faptului că fluxul magnetic prin circuit va fi variabil ca urmare a deplasării acestuia. Sursa conține o bobină sau un magnet permanent și o spiră care se rotește:

$$R_k$$
 V_{ext}
 C_k
 C_k
 $C_{g,k}$
 C_k
 $C_$

$$u(t) = \sqrt{2}U\sin(\omega t + \gamma) \rightarrow \underline{U} = e^{j\gamma} \cdot U$$
$$i(t) = ?$$

$$i(t) = ?$$

Curentul se obține din legea inducției eletromagnetice aplicate pe conturul circuitului:

$$\int_{\Gamma_k} \overline{E} d\overline{l} = -\frac{d\Psi_{S_{\Gamma k}}}{dt}$$

$$\Psi_{S_{\Gamma k}} = \underbrace{\Psi_k}_{L_k i_k} + \underbrace{\Psi_{ext}}_{\sum_{s} L_s i_s} + \Psi_g \qquad \begin{cases} \Psi_k & \text{este fluxul magnetic propriu bobinei laturii} \\ \Psi_{ext} & \text{este fluxul magnetic produs de cuplajele magnetice cu} \\ \Psi_{ext} & \text{este fluxul magnetic al generatorului} \end{cases}$$

$$-\frac{d\Psi_{S_{\Gamma k}}}{dt} = -L_k \frac{di_k}{dt} - \sum_{s} L_{k,s} \frac{di_s}{dt} - \underbrace{\frac{d\Psi_{g,k}}{dt}}_{e_{g,k}}$$

$$\oint_{\Gamma_k} \overline{E} d\overline{l} = \int_A^B \overline{E} d\overline{l} + \int_B^A \overline{E} d\overline{l} = R_k i_k + \frac{1}{C_k} \int_A i_k dt - u_k$$

$$R_k \cdot i_k + \frac{1}{C_k} \int i_k \cdot dt - u_k = -L_k \frac{di_k}{dt} - \sum_s L_{k,s} \frac{di_s}{dt} + e_{g,k}$$

$$u_k + e_{g,k} = R_k \cdot i_k + L_k \frac{di_k}{dt} + \frac{1}{C_k} \int i_k \cdot dt + \sum_s L_{k,s} \frac{di_s}{dt}$$

$$\underline{U}_k + \underline{E}_{g,k} = R_k \cdot \underline{I}_k + j\omega L_k \underline{I}_k + \frac{1}{j\omega C_k} \underline{I}_k + \sum_s j\omega L_{k,s} \cdot \underline{I}_s$$

$$\underline{\underline{U}}_{k} + \underline{\underline{E}}_{g,k} = \left[R_{k} + j \left(\omega L_{k} - \frac{1}{\omega C_{k}} \right) \right] \underline{\underline{I}}_{k} + \sum_{s} j \omega L_{k,s} \underline{\underline{I}}_{s}$$

$$\underline{\underline{Z}}_{k} = R_{k} + j \left(\omega L_{k} - \frac{1}{\omega C_{k}} \right)$$

$$\underline{U}_k + \underline{E}_{g,k} = \underline{Z}_k \cdot \underline{I}_k + \sum_s j\omega L_{k,s} \underline{I}_s$$

Impedanța laturii

$$\underline{Z}_k = R_k + j \left(\omega L_k - \frac{1}{\omega C_k} \right)$$

Teorema lui Joubert

Dacă latura nu conține sursă și nici cuplaje magnetice rezultă:

$$\underline{U}_k = \underline{Z}_k \cdot \underline{I}_K$$

TEOREMELE LUI KIRCHHOFF IN COMPLEX

Teorema I

$$i_k = \sqrt{2}I_k \sin(\omega t + \psi_k)$$

Curentul total dintr-o suprafață Σ ce înconjoară nodul trebuie să fie 0:

$$\sum_{k \in (N)} i_k = 0$$

În complex:

$$\sum_{k \in (N)} \underline{I}_k = 0$$

Valorile indicate de ampermetre reprezintă valorile eficace ale curenților. Suma valorilor eficace poate $fi \neq 0$.

Este zero numai dacă toți curenții sunt în fază.

$$\sum_{k \in (N)} I_k \neq 0$$

Teorema II

Teorema se obține din legea inducției eletromagnetice aplicată pe conturul ochiului. Conturul Γ leagă toate nodurile ce aparțin ochiului dar nu intersectează nici o bobină ce aparține ochiului respectiv: $\Psi_{S_{\Gamma}} \cong 0$

$$\oint_{\Gamma} \overline{E} d\overline{l} = -\frac{d\Psi_{S_{\Gamma}}}{dt} = 0 \qquad \Rightarrow \oint_{\Gamma} \overline{E} d\overline{l} = 0 \Rightarrow \sum_{k \in (p)} u_k = 0 \qquad \text{Rezultă:} \qquad \sum_{k \in (p)} \underline{U}_k = 0$$

Pentru fiecare latură este valabilă teorena lui Joubert:

$$\underline{U}_{k} + \underline{E}_{g,k} = \underline{Z}_{k}\underline{I}_{k} + \sum_{s} j\omega L_{k,s}\underline{I}_{s}$$

$$\sum_{\substack{k \in (p) \\ = 0}} U_{k} + \sum_{k \in (p)} E_{g,k} = \sum_{k \in (p)} \underline{Z}_{k}\underline{I}_{k} + \sum_{k \in (p)} \sum_{s} j\omega L_{k,s}\underline{I}_{s}$$

$$\sum_{\substack{k \in (p) \\ = 0}} E_{g,k} = \sum_{k \in (p)} \underline{Z}_{k}\underline{I}_{k} + \sum_{k \in (p)} \sum_{s} j\omega L_{k,s}\underline{I}_{s}$$

Convenția bornei polarizate permite să nu se specifice sensul de înfășurare a bobinei.

Se alege un sens de parcurgere al bobinei. Se aplică regula burghiului drept și se deduce orientarea normalei pozitive la aria unei spire. **Borna polarizată** este borna prin care iese normala pozitivă la suprafața spirei.

Dacă se scrie teorema a-II-a pentru ochiul din care face parte bobina L_k se consideră sensul de parcurgere al ochiului din care face parte L_k iar referitor la bobina L_s se consideră sensul curentul I_s . Dacă **ambele sensuri** <u>intră sau ies simultan</u> din bornele polarizate inductanța L_{ks} se ia cu semnul **plus**. În caz contrar L_{ks} se ia cu **minus**. Analog pentru L_{sk}

Teorema a-I-a lui Kirchhoff n-1Teorema a-II-a lui Kirchhoff o=l-n+1

Verificarea corectitudinii calculelor de rezolvare a unei rețele se face prin ecuația de bilanț a puterilor într-o rețea în regim permanent sinusoidal.

Teorema de conservare a energiei în rețelele de curent alternativ

Se consideră o rețea cu *l* laturi. Se presupune că rețeaua este izolată adică nu se efectuează schimb de energie cu exteriorul. Rezultă că energia produsă de laturile generatoare este consumată în totalitate de laturile recepționate:

$$\sum_{k=1}^{l} \underline{S}_k = 0 \qquad \qquad \sum_{k=1}^{\ell} \underline{U}_k \underline{I}_k^* = 0$$

$$\underline{U}_k + \underline{E}_{g,k} = \underline{Z}_k \underline{I}_k + \sum_s j\omega L_{k,s} \underline{I}_s \qquad \underline{I}_k^*$$

$$\underbrace{\sum_{k=1}^{\ell} \underline{U}_{k} \underline{I}_{k}^{*}}_{l} + \sum_{k=1}^{\ell} \underline{E}_{g,k} \underline{I}_{k}^{*} = \sum_{k=1}^{\ell} \left[R_{k} + j \left(\omega L_{k} - \frac{1}{\omega C_{k}} \right) \right] \underline{I}_{k} \underline{I}_{k}^{*} + \sum_{k=1}^{\ell} \sum_{s} j \omega L_{k,s} \underline{I}_{s} \underline{I}_{k}^{*}$$

$$\sum_{k=1}^{\ell} \underline{E}_{g,k} \underline{I}_{k}^{*} = \sum_{k=1}^{\ell} \left[R_{k} + j \left(\omega L_{k} - \frac{1}{\omega C_{k}} \right) \right] \underline{I}_{k} \underline{I}_{k}^{*} + \sum_{k=1}^{\ell} \sum_{s} j \omega L_{k,s} \underline{I}_{s} \underline{I}_{k}^{*}$$

Puterea complexă <u>produsă</u> de surse: $\sum_{g,k}^{\ell} \underline{\underline{F}}_{g,k} \underline{\underline{I}}_{k}^{*}$

$$\sum_{k=1}^{\ell} \underline{E}_{gk} \underline{I}_k^* = P_g + jQ_g$$

Partea reală este egală cu puterea activă produsă de surse; Partea imaginară este egală cu puterea reactivă produsă de surse;

Puterea complexă consumată în rețea:

$$\sum_{k=1}^{\ell} \left[R_k + j \left(\omega L_k - \frac{1}{\omega C_k} \right) \right] \underline{I}_k \underline{I}_k^* + \sum_{k=1}^{\ell} \sum_s j \omega L_{k,s} \underline{I}_s \underline{I}_k^* = P_c + j Q_c$$

Partea reală este egală cu puterea activă consumată; Partea imaginară este egală cu puterea reactivă consumată;

Rețeaua este rezolvată corect dacă:

$$P_g = P_c$$
 ; $Q_g = Q_c$

$$\left\{ \sum_{k=1}^{\ell} \left[R_k + j \left(\omega L_k - \frac{1}{\omega C_k} \right) \right] \underline{I}_k \underline{I}_k^* + \sum_{k=1}^{\ell} \sum_s j \omega L_{k,s} \underline{I}_s \underline{I}_k^* = P_c + j Q_c \right. \right.$$

$$\left[\underline{I}_k \underline{I}_k^* = I_k^2 \right]$$

$$P_c = \sum_{k=1}^{e} R_k I_k^2$$

$$Q_c = \sum_{k=1}^{\ell} \omega L_k I_k^2 - \sum_{k=1}^{\ell} \frac{1}{\omega C_k} I_k^2 + \sum_{k=1}^{\ell} \sum_{s=k+1}^{\ell} 2\omega L_{k,s} I_k I_s \cos(\varphi_k - \varphi_s)$$

$$j \omega L_{k,s} \underline{I}_s \underline{I}_k^* = j \omega L_{k,s} I_s I_k \left[\cos(\varphi_s - \varphi_k) + j \sin(\varphi_s - \varphi_k) \right]$$

$$\underline{j \omega L_{s,k} \underline{I}_k \underline{I}_s^*} = j \omega L_{k,s} I_s I_k \left[\cos(\varphi_s - \varphi_k) - j \sin(\varphi_s - \varphi_k) \right]$$

$$\underline{2j \omega L_{k,s} I_s I_k \cos(\varphi_s - \varphi_k)}$$

$$Q_{c} = \sum_{k=1}^{\ell} \omega L_{k} I_{k}^{2} - \sum_{k=1}^{\ell} \frac{1}{\omega C_{k}} I_{k}^{2} + \sum_{k=1}^{\ell} \sum_{s=k+1}^{\ell} 2\omega L_{k,s} I_{k} I_{s} \cos(\varphi_{k} - \varphi_{s})$$

 $L_{k,s}$ se ia cu semnul **plus** dacă curenții prin cele două bobine **intră (sau ies) simultan** din bobinele polarizate, în caz contrar se ia cu semn negativ.

Exemplu

Să se determine curenții din rețeaua:

$$R_1 = R_2 = 20 \left[\Omega \right]$$

$$R_1 = R_2 = 20 \left[\Omega\right]$$
 $\omega L_1 = \omega L_{12} = 10 \left[\Omega\right]$ $\omega L_2 = \omega L_3 = 20 \Omega$

$$\omega L_2 = \omega L_3 = 20 \,\Omega$$

$$\frac{1}{\omega C_3} = 20 \left[\Omega \right]$$

$$u_{e1} = \sqrt{2} \cdot 10 \cdot \sin \omega t \quad [V] \implies \underline{U}_{e1} = 10 \cdot e^{j0} = 10$$

$$u_{e2} = \sqrt{2} \cdot 50 \cdot \cos(\omega t - \pi) \left[V \right] \implies \underline{U}_{e2} = 50 \cdot e^{-j\frac{\pi}{2}} = -50j$$

Soluție

Parametri topologici: Numărul de noduri: n = 2; numărul de laturi: $\ell = 3$; numărul de ochiuri independente: $\ell - n + 1 = 2$.

T I (nod A)
$$\underline{I}_3 = \underline{I}_1 + \underline{I}_2$$

T II (ochi I)
$$(R_1 + j\omega L_1) \cdot \underline{I}_1 + j\omega L_{12} \cdot \underline{I}_2 + \frac{1}{j\omega C_3} \cdot \underline{I}_3 = \underline{U}_{e1}$$

T II (ochi I)
$$(R_1 + j\omega L_1) \cdot \underline{I}_1 + j\omega L_{12} \cdot \underline{I}_2 + \frac{1}{j\omega C_3} \cdot \underline{I}_3 = \underline{U}_{e1}$$
T II (ochi II)
$$(R_2 + j\omega L_2 + j\omega L_3) \cdot \underline{I}_2 + j\omega L_{12} \cdot \underline{I}_1 + \frac{1}{j\omega C_3} \cdot \underline{I}_3 = \underline{U}_{e2}$$

Valori numerice:

$$I_3 = I_1 + I_2$$

$$(20+10j)\cdot\underline{I}_1+10j\cdot\underline{I}_2-20j\cdot\underline{I}_3=10$$

$$(20+40j)\cdot\underline{I}_2+10j\cdot\underline{I}_1-20j\cdot\underline{I}_3=-50j$$

Soluţii:

$$\underline{I}_{1} = 1 = e^{j0} \qquad \Rightarrow i_{1} = \sqrt{2} \cdot 1 \cdot \sin \omega t \quad [A]$$

$$\underline{I}_{2} = -1 - j = \sqrt{2}e^{j\frac{5\pi}{4}} \qquad \Rightarrow i_{2} = \sqrt{2} \cdot \sqrt{2} \cdot \sin \left(\omega t + \frac{5\pi}{4}\right) \quad [A]$$

$$\underline{I}_{3} = -j = e^{-j\frac{\pi}{2}} \qquad \Rightarrow i_{3} = \sqrt{2} \cdot 1 \cdot \sin \left(\omega t - \frac{\pi}{2}\right) \quad [A]$$

Verificare:

$$P_{generata} = \text{Re} \left\{ \sum_{k=1}^{\ell} \underline{U}_{ek} \cdot \underline{I}_{k}^{*} \right\} \qquad Q_{generata} = \text{Im} \left\{ \sum_{k=1}^{\ell} \underline{U}_{ek} \cdot \underline{I}_{k}^{*} \right\}$$

$$\sum_{k=1}^{\ell} \underline{U}_{ek} \cdot \underline{I}_{k}^{*} = \underline{U}_{e1} \cdot \underline{I}_{1}^{*} + \underline{U}_{e2} \cdot \underline{I}_{2}^{*} = 10 \cdot e^{j0} \cdot 1 \cdot e^{-j0} + 50 \cdot e^{-j\frac{\pi}{2}} \cdot \sqrt{2} \cdot e^{-j\frac{5\pi}{4}}$$

$$P_{generata} = 60 \, [\text{W}]$$

$$\sum_{k=1}^{\ell} \underline{U}_{ek} \cdot \underline{I}_{k}^{*} = 10 + 50 \cdot \sqrt{2} \cdot e^{-j\frac{7\pi}{4}} = 10 + 50\sqrt{2} \cdot \left(\frac{\sqrt{2}}{2} + j\frac{\sqrt{2}}{2}\right) = 60 + 50j$$

$$Q_{generata} = 50 \, [\text{var}]$$

$$P_{consumata} = \sum_{k=1}^{\ell} R_k \cdot I_k^2 = R_1 \cdot I_1^2 + R_2 \cdot I_2^2 = 20 \cdot 1^2 + 20 \cdot \left(\sqrt{2}\right)^2 = 20 + 40 = 60 \, [W]$$

$$P_{consumata} = 60 \, [W]$$

$$Q_{consumata} = \sum_{k=1}^{\ell} \left(\omega \cdot L_k - \frac{1}{\omega \cdot C_k} \right) \cdot I_k^2 + \sum_{k=1}^{\ell} \sum_{s=k+1}^{\ell} 2 \cdot \omega \cdot L_{k,s} \cdot I_s \cdot I_k \cdot \cos(\varphi_s - \varphi_k)$$

$$Q_{consumata} = \omega \cdot L_1 \cdot I_1^2 + \omega \cdot L_2 \cdot I_2^2 + \omega \cdot L_3 \cdot I_2^2 - \frac{1}{\omega \cdot C_3} \cdot I_3^2 + 2 \cdot \omega \cdot L_{12} \cdot I_1 \cdot I_2 \cdot \cos(\varphi_1 - \varphi_2)$$

$$Q_{consumata} = 10 \cdot 1^{2} + 20 \cdot \left(\sqrt{2}\right)^{2} + 20 \cdot \left(\sqrt{2}\right)^{2} - 20 \cdot 1^{2} + 2 \cdot 10 \cdot 1 \cdot \sqrt{2} \cdot \cos\left(0 - \frac{5\pi}{4}\right)$$

$$Q_{consumata} = 10 + 40 + 40 - 20 - 2 \cdot 10 \cdot 1 \cdot \sqrt{2} \cdot \frac{\sqrt{2}}{2} = 50 \text{ [var]}$$

$$Q_{consumata} = 50 \text{ [var]}$$

Metoda curenților de ochi (ciclici)

Pentru reducerea numărului de ecuații necesare pentru rezolvarea unei rețele, se utilizează o schimbare de variabilă în sistemul obținut prin teoremele lui Kirchhoff. În locul curenților reali din laturi se introduc niște necunoscute fictive numite <u>curenți ciclici</u> (de ochi) asociate fiecărui ochi independent al rețelei.

Sensurile curenților ciclici se aleg în mod arbitrar. Folosind aceste necunoscute, numărul de ecuații independente se reduce de la l la o.

Se rezolvă următorul sistem de ecuații:

$$\sum_{j=1}^{o} \underline{Z}_{ij} \cdot \underline{I'}_{j} = \underline{U'}_{ei} \qquad i = 1, \dots, o$$

Metoda curenților de ochi (ciclici)

— impedanta complexa proprie a ochiului *i*, egala ca <u>suma</u> a impedantelor proprii ale laturii ochiului *i*. La aceasta suma se mai adauga si impedanta mutuala dintre bobinele laturilor ochiului *i*.

$$\underline{Z}_{ii} = +\sum_{k \in Oi} (R_k + j\omega L_k + \frac{1}{j\omega C_k}) \pm 2\sum_{k \in Oi} j\omega L_{ks}$$

- L_{ks} poate fi pozitiv sau negativ. Se ia cu semnul (+) daca curentul ciclic prin cele 2 bobine k si s este orientat la fel fata de bornele polarizate ale bobinelor k si s, iar cu semnul (-) in caz contrar.
- Z_{ij} impedanta complexa proprie a laturilor comune ochiului i si ochiului j. Se ia cu semnul (+) daca curentii ciclici trec in celasi sens prin latura comuna si cu semnul (-) in cand sunt sensuri contrare.

$$\underline{Z}_{ij} = \pm \sum_{k \in Oi} (R_k + j\omega L_k + \frac{1}{j\omega C_k}) \pm \sum_{\substack{k \in Oi\\s \in Os}} j\omega L_{ks}$$

 L_{ks} – suma impedantelor mutuale intre bobinele dintre ochiul i si ochiul j. Sensul depinde de sensul curentului ciclic fata de bornele polarizate ale bobinelor cuplate magnetic.

 U'_{ei} — tensiunea electromotoare proprie ochiului i, se calculează prin suma algebrica a tensiunilor electromotoare ce aparțin ochiului i. Se ia cu (+) daca curentul ciclic are acelasi sens cu t.e.m si cu (-) in caz contrar.

Dupa rezolvarea sistemului → curentii ciclici. Curentii reali din laturi se determina facand suma algebrica a curentilor ciclici ce trec prin latura respectiva. Curentii ciclici se iau cu (+) daca au acelasi sens cu curentul real prin latura si cu (-) in caz contrar.

Aplicatie

$$R = \omega L = \frac{1}{\omega C} = 1 \ \Omega; u_{c1} = u_{c2} = 2 \sin \left(\omega t + \frac{\pi}{4}\right) [V]; u_{c3} = 2 \sin \left(\omega t - \frac{\pi}{4}\right) [V].$$

$$\begin{cases} (1+j) \cdot \underline{I}_{1} - j \cdot \underline{I}_{2} = 0; \\ -j \cdot \underline{I}_{1} + 0 \cdot \underline{I}_{2} = 2j. \end{cases}$$

$$\underline{I}_{1} = \frac{2j}{-j} = -2; \qquad \underline{I}_{2} = \frac{(1+j)(-2)}{j} = -2+2j;$$

$$\begin{cases} \underline{Z}_{11} \cdot \underline{I}_1 + \underline{Z}_{12} \cdot \underline{I}_2 = \underline{U}_{e1}; \\ \underline{Z}_{21} \cdot \underline{I}_1 + \underline{Z}_{22} \cdot \underline{I}_2 = \underline{U}_{e2}. \end{cases}$$

Impedanțele complexe vor fi:

$$\underline{Z}_{11} = R + j\omega L = 1 + j;$$

$$\underline{U}'_{e1} = \underline{U}_{e1} - \underline{U}_{e2} = 0;$$

$$\underline{Z}_{12} = \underline{Z}_{21} = -j\omega L = -j;$$

$$\underline{U}'_{e2} = \underline{U}_{e2} - \underline{U}_{e3} = 2j.$$

$$\underline{Z}_{22} = j\omega L + \frac{1}{j\omega C} = 0.$$

Curenții complecși din laturi vor fi:

$$\underline{I}_1 = \underline{I}_1 = -2;$$
 $\underline{I}_2 = \underline{I}_2 - \underline{I}_1 = 2j;$ $\underline{I}_3 = \underline{I}_2 = -2 + 2j.$

Rezonanța în circuite de curent alternativ

O rețea este în rezonanță dacă u și i sunt în fază:

$$\left\{ \begin{array}{ll} \underline{U} = Ue^{j\gamma} & \underline{Z} = \frac{\underline{U}}{\underline{I}} = \frac{U}{I} \in \Re \\ \underline{I} = Ie^{j\gamma} & \underline{Y} = \frac{\underline{I}}{\underline{U}} = \frac{I}{U} \in \Re \end{array} \right\} \quad \text{Impedanţa/admitanţa reţelei va fi un număr real.}$$

Condiția ca o rețea să fie în rezonanță poate fi : $\operatorname{Im}\{Z\} = 0$ sau $\operatorname{Im}\{\underline{Y}\} = 0$

$$\operatorname{Im}\{\underline{Z}\} = 0$$

sau
$$\operatorname{Im}\{\underline{Y}\}=$$

În funcție de modul în care sunt legate elementele reactive (bobină și condensator) există două cazuri distincte de rezonanță:

Rezonanța în serie

$$\underline{\underline{U}}$$
 $\underline{\underline{U}}$
 $\underline{\underline{U}}$
 $\underline{\underline{U}}$
 $\underline{\underline{U}}$
 $\underline{\underline{U}}$
 $\underline{\underline{U}}$
 $\underline{\underline{U}}$

$$\underline{Z}_R = R$$

$$\underline{Z}_L = j\omega L$$

$$\underline{Z}_{L} = j\omega L \qquad \underline{Z} = R + j\left(\omega L - \frac{1}{\omega C}\right)$$

$$\underline{Z}_C = \frac{1}{j\omega C} = -\frac{j}{\omega C}$$

$$I_m\{\underline{Z}\} = 0 \implies \omega L = \frac{1}{\omega C}$$

$$\omega^2 LC = 1$$

$$\omega^2 LC = 1$$

Condiția de rezonanță ce poate fi realizată prin modificarea orcăruia dintre cele trei elemente. De regulă **pulsația** este cea utilizată pentru a obține rezonanță:

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

Ecuația de tensiuni a laturii:

$$\underline{U} = \underline{U}_R + \underline{U}_L + \underline{U}_C$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$\underline{U} = R\underline{I} + \underbrace{j}_{e^{j\frac{\pi}{2}}} \omega L\underline{I} + \frac{1}{\underbrace{j}_{\omega} C} \underline{I}$$

$$\underline{e^{-j\frac{\pi}{2}}}$$

$$\underline{Z} = R + j \underbrace{\left(\omega L - \frac{1}{\omega C}\right)}_{f(\omega)}$$

La rezonanță circuitul are caracter rezistiv:

$$\underline{Z} = R + j \underbrace{\left(\omega L - \frac{1}{\omega C}\right)}_{f(\omega)} \qquad \text{La rezonanță} \qquad \underline{Z}|_{\omega_0} = R \quad \text{minim.}$$

Curentul prin circuit va fi limitat doar de rezistența laturii:

$$U = ZI$$

$$I \Big|_{\omega_0} = \frac{U}{Z} \Big|_{\omega_0} = \frac{U}{R} \quad \text{maxim}$$

$$I = \frac{U}{Z}$$

 $\omega = 0$ reprezintă cazul în care latura funcționează în curent continuu deci I = 0 deoarece latura este întreruptă de condensator. Impedanțele celor două elemente reactive depind de ω . Dacă $\omega \to \infty$, $I \to 0$ deorece latura este întreruptă de bobină.

Tensiunile pe bobină și pe condensator sunt în antifază.

La rezonanță ele devin egale și sunt limitate de ωL respectiv $1/\omega C$, tensiunile de pe bobină și condensator pot depăși valoarea tensiunii la borne. Ca urmare, acest tip de rezonanță se numește rezonanța tensiunilor.

Factorul de calitate al circuitului:

$$Q = \frac{U_L}{U}\bigg|_{\omega_0} = \frac{\omega LI}{RI} = \frac{1}{\sqrt{LC}} \frac{L}{R} = \frac{1}{R} \sqrt{\frac{L}{C}}$$

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

Q scade cu cât **R** crește

În valori relative:

$$\omega_r = \frac{\omega}{\omega_0} \qquad I_r = \frac{I_{(\omega)}}{I_{(\omega_0)}}$$

$$I_r = \frac{1}{\sqrt{1 + Q^2 \left(\omega_r - \frac{1}{\omega_r}\right)^2}}$$

Rezonanța paralel

$$\operatorname{Im}\{Y\} = 0$$

$$\underline{Y} = \underline{Y}_{R+L} + \underline{Y}_C$$

$$\underline{Z} = \frac{1}{\underline{Y}}$$
 $\underline{U} = \underline{Z} \cdot \underline{I}$

$$\underline{Z}_{e \ serie} = \sum \underline{Z}_{k}$$

$$\frac{1}{\underline{Y}_{e \ serie}} = \sum \frac{1}{\underline{Y}_{k}}$$

$$\underline{Z}_{e \text{ serie}} = \sum \underline{Z}_{k} \qquad \qquad \underline{\frac{1}{\underline{Y}_{e \text{ serie}}}} = \sum \underline{\frac{1}{\underline{Y}_{k}}}$$

$$\underline{\frac{1}{\underline{Z}_{e \text{ paralel}}}} = \sum \underline{\frac{1}{Z}_{k}} \qquad \qquad \underline{Y}_{e \text{ paralel}} = \sum \underline{Y}_{k}$$

$$\underline{Y}_{e \; paralel} = \sum \underline{Y}_{k}$$

$$\underline{Y} = \frac{1}{R + j\omega L} + j\omega C = \frac{1 - \omega^2 LC + j\omega RC}{R + j\omega L} \cong \frac{\omega^2 RLC - j\omega L(1 - \omega^2 LC)}{\omega^2 L^2}$$

S-a efectuat următoarea aproximare:

Deoarece $R << \omega L$, se negljează R de la numitor și se amplifică fracția cu -j ωL

$$\operatorname{Im}{Y} = 0 \implies 1 - \omega^2 LC = 0 \implies \omega^2 LC = 1$$

$$\Rightarrow \omega^2 LC = 1$$

Rezultat aproximativ

La rezonanță curenții prin bobină si condensator pot fi mult mai mari decât curentul absorbit, din acest motiv acest tip de rezonanță se numește **rezonanța curenților**.

$$Y|_{\omega_0} = \frac{RC}{L} \quad \text{minim}$$

$$I = Y \cdot U$$

La rezonanță curentul absorbit este minim

Factorul de calitate

$$Q = \frac{I_C}{I} \bigg|_{\omega_0} = R\sqrt{\frac{C}{L}}$$

ELECTRO SECURITATE

Efectele fiziologice ale curentului electric:

1. Arsuri severe.

Ţesuturile vii se comportă ca o rezistenţă electrică. Ca urmare, apare efectul termic care determină arderea ţesuturilor

2. Contractarea involuntară a muschilor

Curentul electric se suprapune peste semnalele electrice (foarte slabe) care comandă contractarea muschilor.

3. Stop cardio respirator.

<u>Diafragma</u> (care controlează respiraţia) şi <u>inima</u> sunt tot muschi care sunt aduşi în stare de contracţie involuntară. La valori mici ale curentului inima poate fi adusă în stare de fibrilaţie.

Curentul continuu este mai periculos decât curentul alternativ.

În curent alternativ are loc anularea periodică a curentului. Ca urmare, între alternanțe, sunt scurte perioade de timp în care muşchii pot să se relaxeze.

TRASEUL CURENTULUI

Pentru închiderea curentului de şoc electric trebuie îndeplinite două condiții:

- Aplicarea unei tensiuni între două puncte ale organismului
- Existenţa unui traseu de închidere a curentului electric

Din motive de securitate reţelele electrice sunt "pământate", au un punct legat la pământ (punct de potenţial zero).

Circuit fără pământare

Circuit fără pământare. Punere la pământ accidentală.

Circuit fără pământare. Atingere simultană de către două persoane, cazul cel mai periculos.

Pământarea este <u>obligatorie</u> deoarece asigură ca cel puţin unul dintre conductoare să fie nepericulos.

Rezistența de contact

Au fost determinate experimental următoarele valori:

- Contact (mână/picior) prin izolaţie de cauciuc: 20 MΩ.
- Contact (picior) prin talpă de piele (uscată): $100 \text{ k}\Omega$ la $500 \text{ k}\Omega$
- Contact (picior) prin talpă de piele (umedă): 5 kΩ la 20 kΩ

Rezistenţa depinde şi de suprafată: Asfaltul este mai bun izolator decât pământul. Betonul are rezistenţa mai mică.

Tensiunea sau curentul ucide?

Curentul (transportul de sarcină electrică) determină toate efectele asupra ţesuturilor vii. Valoarea lui depinde însă de tensiune şi de rezistenţă:

EFECT		CC mA	60 Hz; CA mA	100 kHz; CA mA
Senzaţie foarte slabă	Bărbaţi	1,0	0,4	7
	Femei	0,6	0,3	5
Nivel de percepţie durere	Bărbaţi	5,2	1,1	12
	Femei	3,5	0,7	8
Durere (control asupra muschilor)	Bărbaţi	62	9	55
	Femei	41	6	37
Durere (contracţie involuntară a muşchilor)	Bărbaţi	76	16	75
	Femei	51	10,5	50
Durere severă, dificultate de respiraţie	Bărbaţi	90	23	94
	Femei	60	15	63
Posibilă fibrilaţie a inimii în 3 secunde	Bărbaţi	500	100	450
	Femei	500	100	450

$$U = R \cdot I \qquad R = \frac{U}{I} \qquad \frac{1[V]}{1[A]} = 1[\Omega]$$

	uscat	umed	
Conductor atins cu degetul	$0.4-1~\mathrm{M}\Omega$	4 – 15 kΩ	
Conductor ţinut cu mâna	15 – 50 kΩ	$3-5~\text{k}\Omega$	
Bară metal ţinută cu mâna	5 – 10 kΩ	$1-3~\text{k}\Omega$	
Ţeavă 1.5 ţoli ţinută cu o mână	1 – 3 kΩ	$0,5-1,5~\mathrm{k}\Omega$	
Ţeavă 1.5 ţoli ţinută cu două mâini	$0.5-1.5~\mathrm{k}\Omega$	0,25 - 0,75 kΩ	
Mână introdusă în lichid conductor		$0.2-0.5~\mathrm{k}\Omega$	
Picior introdus în lichid conductor		$0,1-0,3~\mathrm{k}\Omega$	

30 VOLŢI este considerată (în mod uzual) ca limită periculoasă.

Subjecte examen

- 1. Teorema lui Joubert enunt, formula, semnificaţie mărimi.
- 2. Teoremele lui Kirchhoff in complex enunt, formula, semnificaţie mărimi.
- 3. Teorema de conservare a energiei în reţelele de curent alternativ enunt, formula, semnificaţie mărimi.
- 4. Rezonanţa serie în circuite de curent alternativ
- 5. Rezonanţa paralel în circuite de curent alternativ
- 6. Efectele fiziologice ale curentului electric