18/06/13
Atiyah-Singer Index Theorem Seminar.
Spin groups I (Aaron Jenyes).
Spin groups (din 3): Motivation, Construction, and blue's an issue with representations
issue with representations
In QM, every system is represented by a complex complete inner product space, i.e.,
complete inner product space, i.e., physical system > Hilbert space of
More physical/mathematical analogies (or correspondences):
Logical props. < > closed subspaces doont system of H
"maximal" propositions (eg. atonic props) 1 dim subspace "pure state" 4 H; el = 51- PH.
Jake the projectivisation HTT>PH, and define
P;(PH)2->[0,1] by P(Tx,Ty)= Kx,5)12.

Proof: G connected, so all elt can be written $e^t = (e^{\frac{1}{2}t})^2$, t Goy. $\rho(e^t) = \rho(e^{\frac{1}{2}t})^2$, and the square of a unitary or antiunitary map is always unitary. Ref = "Juynman & Wiegerinch, "Central Extensions in Physics"

Bargmann, "Note on Wigner's Theorem" < roden prof of
Wigner's the. Observation 200 Let x ∈ H. For any g, h ∈ G, by difinition, $gh \cdot \pi x = g \cdot (h \cdot \pi x)$. To put it anotherway: gh.h.g.Tx = TTx J.e. gh.h-',g-'= idpy1. So: $p(gh)q(hi)p(gi)x \in U(C)x$ for all $x \in JI$. This says that every et of H is an eigenvector of p(gh)p(hi'p(gi'). So all of H is a single eigenspace of p(gh)p(hi')p(gi'). Proof: Say TiH->H has two distinct eigendus, Tx=ax & Ty=By.
Then T(x+y)=ax+By=a(x+y)+(B-a)y.

_	Projective reps:
	Let V be a complex vector space, $\rho: G \rightarrow Aut(V)$ a projective representation.
	Com we get an honest G-rep out of this? YES!
	Define a "twisted multiplication" on $G \times U(\mathbb{C})$:
	$(g, \propto (h, \beta) := (gh, \frac{\alpha\beta}{\Phi(g,h)})$
	Aside: Call & the "phase Function" of p.
	Call this Gp. Then
	$ \begin{array}{c} $
	is an actual representation of G.
	Now we have an exact sequence
	$1 \longrightarrow U(C) \longrightarrow G_{\rho} \longrightarrow G \longrightarrow 1$
	$\propto \longmapsto (1, \propto)$
	$(gx) \mapsto g$
	~

Projective representations (past-break):
Detupi · V a complex vector space
• p: G → Aut(V) a projective representation
Setup: • V a complex vector space • $p: G \longrightarrow Aut(V)$ a projective representation • $\phi(g,h) \cdot 1_v = \rho(gh) \rho(h') \rho(g')$ the phase function
By associativity of p,
A(1) \A(a \a \) - A(a \) \A(\) 1)
$\Phi(gh,k)\phi(g,h) = \phi(g,hk)\phi(h,k).$
This means $\phi: G^2 \longrightarrow \mathbb{C}^X$ is a 2-cocycle.
onis means pros 10 15 a 2 cocycle.
Group cohomology: look it up. Short version is
G-rodule
Ch(G,A) = G-mod maps Gh->A,
coboundary map 2:Ch > Ch-1
$H^{k}(G,A) = \frac{\log^{k}}{\log^{k}}$
Fact: Projective reps of G are classified up to equivalence by class in H2(G, U(C)) of ϕ .
equivalence by dass in H'(G, 'U(C))' of φ.
Example of projective representation:
1 · C · 1 · 1 · 1 · 1 · 1
Let G be a connected Lie group, and let

G= [cont. paths 7: [0,1] -> G 7(0)=1G3/htpy

the universal cover of G. Define a nuttiplication in G by $(\gamma \cdot \gamma)(t) = \gamma(t) \gamma(t).$ With this structure, G has the structure of a group (w.r.t. standard smooth structure from G) G= G is a group homomorphism, and we have that G is a Lie group. Now, consider a representation of G, p:G→Aut(V). For geG, define p(9) by picking a lift and applying 5. Extra condition: require that $\pi(9) = 1_c \Rightarrow p(9) \in U(\mathbb{C}) \cdot 1_v$. Observe $\rho(gh)\rho(h)\rho(g^{-1})$ is $\tilde{\rho}$ if some lift of 1_G , so ρ is a projective representation. Theorem (see "Central exts in physics"):

If G is semisimple, every projective rep of G arises in this way!

Example: Time-direction preserving, parity-preserving component of Lorentz group (i.e. 50+(1,3)) is semisimple, and its universal cover is 5L2(C).

(Example (special orthogonal):
	SO(R) = pt has universal cover $SO(R) = pt$.
	SO(R2) has universal cover IR.
	Def: Spin(V) is the universal cover of SO(V), for dim V > 3.
	So: So(R3) has universal cover Spin(R3). Yay 100 Right?
	Remark: Not all groups in physics are semisimple, for example, R*XR translations in position & momentum is simply connected but not semisimple — our theorem will fail, and we actually have to consider a central extension called the Heisenberg group.
	actually have to consider a central extension called the Heisenberg group.
	Let's get a concrete presentation of Spin(V).
	Soo you so

	Spin Groups:
	Let V be a real inner product space of dimension 33,
	Every veV is a unit in Cl(V), because the inner product is
	Every $v \in V$ is a unit in $Cl(V)$, because the inner product is positive definite $(v^2 = - v ^2 \cdot 1)$.
,	$Dof^{-}: Pin(V)$ is the subgroup of $U(V)^{\times}$ generated by norm-1 vectors in V .
	Claim: Spin(V) is the intersection of Pin(V) with the even subalgebra of C1(V).
	Subalgebra of CIIV)
	<u>Proof:</u>
	$0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow Spin(V) \longrightarrow SO(V) \longrightarrow 0$ $+1 \longmapsto \pm 1$ exact.
	$\pm 1 \longrightarrow \pm 1$ exact.
	$\vee \longmapsto (\neg c \mapsto \neg x \lor \neg 1)$
	al 1 /
	Homotopy long exact sequence:
	(1) (1) (1) (2)
	Honotopy long exact sequence: T1(7/27)→T, Spin(V)→T, SO(V) 127
	$T_{\bullet}(\mathbb{Z}/2\mathbb{Z}) \rightarrow T_{\bullet}Spin(V) \rightarrow T_{\bullet}SO(V)$ $= 712.7 \qquad 1 \text{ b/c connected (oxten)}$ So $T_{\bullet}(Spin(V))=1$. Done.
	"6(#/2#) / 110 Opin(V) / 11500(V)
	1 b/c connected (Oxtra
	Com (Coio(V)) 1 (D)
	$120 \cdot 11 \cdot 1 \times 010 \cdot 10 \cdot 11 = 1 \cdot 1 \cdot 10 \cdot 10 \cdot 10 \cdot $