Math 415 - Lecture 27

An application of QR-decomposition, Change of basis

Friday October 30th 2015

Textbook reading: Chapter 3.4, Chapter 2.6

Suggested practice exercises: Chapter 2.6: Exercises 36, 37, 38,39, 40,43

Khan Academy video: Change of basis

Strang lecture: Change of basis; image compression

1 Review

Theorem 1 (QR decomposition). Let A be a $m \times n$ matrix of rank n with linear independent columns. There is an orthogonal matrix $m \times n$ -matrix Q and an upper triangular $n \times n$ invertible matrix R such that

$$A = QR$$
.

Theorem 2. Let A be a matrix with linear independent columns. Suppose $A\mathbf{x} = \mathbf{b}$ has no solution. Then the solution of $R\mathbf{x} = Q^T\mathbf{b}$ is the least square solution of $A\mathbf{x} = \mathbf{b}$.

1.1 An application in wireless communication

In multiple-input and multiple-output (short: MIMO) systems, a transmitter sends multiple streams by multiple transmit antennas. Let us suppose there are n transmitters and m receiver. This can modelled using Linear algebra:

$$\begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} h_{1,1} & \dots & h_{1,n} \\ \vdots & \ddots & \vdots \\ h_{m,1} & \dots & h_{m,n} \end{bmatrix} \quad \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} .$$
received vector \mathbf{y} channel matrix H transmitted vector \mathbf{x}

Suppose that the channel matrix H is known both to person A who sending information and to person B who is receiving the information.

When B receives the signal, she wants to reconstruct the vector \mathbf{x} . Optimally, she would just solve the linear system

$$H\mathbf{x} = \mathbf{y}$$
.

Unfortunately, almost always B received $\mathbf{y} + \epsilon$ instead of \mathbf{y} , where $\epsilon \in \mathbb{R}^m$ is noise. So B would try to solve

$$H\mathbf{x} = \mathbf{y} + \epsilon.$$

instead. However, that system might not have a solution. So B has to find the least square solution! Because B receives many messages from A, she will have to find the least square solution many times. Luckily, H does not change. So B determines the QR-decomposition of H

$$H = QR$$

once, and then just solves

$$R\mathbf{x} = Q^T(\mathbf{y} + \epsilon)$$

each time she receives a new message. This is easy to do, since R is upper triangular.

2 Linear transformation revisited

Remember Theorem 1 of Lecture 17? Here it is again.

Theorem 3. Let \mathcal{B} be a basis of \mathbb{R}^m and \mathcal{C} be a basis of \mathbb{R}^n and let $T: \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation. Then there is a $n \times m$ matrix $T_{\mathcal{C},\mathcal{B}}$ such that for every $\mathbf{v} \in \mathbb{R}^m$

$$T(\mathbf{v})_{\mathcal{C}} = T_{\mathcal{C},\mathcal{B}}\mathbf{v}_{\mathcal{B}}.$$

and

$$T_{\mathcal{C},\mathcal{B}} = \begin{bmatrix} T(\mathbf{v_1})_{\mathcal{C}} & T(\mathbf{v_2})_{\mathcal{C}} & \dots & T(\mathbf{v_m})_{\mathcal{C}} \end{bmatrix}$$

where $\mathcal{B} = (\mathbf{v_1}; \dots; \mathbf{v_m})$.

Example 4. Consider $\mathcal{E} := \{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \}$ and $\mathcal{B} := \{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \}$. Let $I : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation

$$I(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} x \\ y \end{bmatrix}.$$

Find the matrix $I_{\mathcal{E},\mathcal{B}}$ that represents I with respect to the basis \mathcal{B} and \mathcal{E} .

Solution.				
Given $\mathbf{v} \in \mathbb{R}^2$ w	hat is $I_{\mathcal{E},\mathcal{B}}\mathbf{v}_{\mathcal{B}}$?			
Solution.				

Theorem 5. Let \mathcal{B} be a basis of \mathbb{R}^n and \mathcal{C} be a basis of \mathbb{R}^n and let $I: \mathbb{R}^m \to \mathbb{R}^n$ be the linear transformation such that $I(\mathbf{v}) = \mathbf{v}$ for every $\mathbf{v} \in \mathbb{R}^n$. Then				
$\mathbf{v}_{\mathcal{C}} = I_{\mathcal{C},\mathcal{B}}\mathbf{v}_{\mathcal{B}}.$				
We call a matrix of the $I_{\mathcal{C},\mathcal{B}}$ has a change of base matrix .				
<i>Example</i> 6. Let \mathcal{E} be the standard basis of \mathbb{R}^n and \mathcal{B} be a basis of \mathbb{R}^n . What is $I_{\mathcal{E},\mathcal{B}}$?				
Solution.				
Example 7. Let \mathcal{B} be a basis of \mathbb{R}^n and \mathcal{C} be a basis of \mathbb{R}^n . What is $I_{\mathcal{C},\mathcal{B}}^{-1}$?				
Solution.				

	s. As before, let $\mathcal{E} := \{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \}$ and $\mathcal{B} := \{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \}$. What is $I_{\mathcal{B}, \mathcal{E}}$?
Solution.	
). Let \mathcal{E} be the standard basis of \mathbb{R}^n and \mathcal{C} be a orthonormal basis of \mathbb{R}^n = $I_{\mathcal{E},\mathcal{B}}^T$. Why?
Solution.	

 $v_{\mathcal{B}} = U^T v.$

3 Change of basis

Theorem 10. Let $T: \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation and \mathcal{A} and \mathcal{B} be two bases of \mathbb{R}^m and \mathcal{C}, \mathcal{D} be two bases of \mathbb{R}^n . Then

$$T_{\mathcal{C},\mathcal{A}} = I_{\mathcal{C},\mathcal{D}} T_{\mathcal{D},\mathcal{B}} I_{\mathcal{B},\mathcal{A}}.$$

Example 11. Consider $\mathcal{B} := \mathcal{D} := \{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \}$ and $\mathcal{A} := \mathcal{C} := \{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \}$ as before. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be again the linear transformation that

$$\begin{bmatrix} x \\ y \end{bmatrix} \mapsto A \begin{bmatrix} x \\ y \end{bmatrix}, \text{ where } A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}.$$

Determine $T_{\mathcal{C},\mathcal{A}}$.

Solution.

Example 12. Let \mathcal{E} be the standard basis of \mathbb{R}^n , let $\mathcal{B} := (\mathbf{u_1}, \dots, \mathbf{u_n})$ be an orthonormal basis of \mathbb{R}^n and $U = \begin{bmatrix} \mathbf{u_1} & \dots & \mathbf{u_n} \end{bmatrix}$ Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. Then
$T_{\mathcal{B},\mathcal{B}} = U^T T_{\mathcal{E},\mathcal{E}} U.$
Why?
Solution.
i de la companya de