樣本平均數與樣本標準差 X-S 管制圖

 $\overline{X}-S$ 管制圖和 $\overline{X}-R$ 管制圖在使用的目的皆在監控製程的平均數及變異,唯一的差別在於使用不同的估計方法來估計母體標準差 σ 。一般而言,在實務上,由於計算的方便,我們較常使用 $\overline{X}-R$ 管制圖。但若是每組樣本的樣本數較大的時候,用全距 R 來估計母體標準差 σ 的準確性與統計效率會下降,此時我們便需使用樣本標準差S 來估計母體標準差 σ 會較準確,但計算較費時。一般而言,當樣本數小時,若 $\pi<10$ 時可使用 $\overline{X}-R$ 管制圖;若樣本數 π 較大,若

假如母體變異數 σ^2 未知,樣本變異數 $S^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n-1}$ 是母體變異數 σ^2 的不偏估計量,但注意,樣本標準差 S 並不是母體標準差 σ 的不偏估計量。在常態分配假設下,S 的平均數為 $\mu_S = E(S) = c_4 \sigma$,S 的標準差 $\sigma_S = \sqrt{V(S)} = \sigma \sqrt{1-c_4^2}$,其中 c_4 為隨著 n 而變的值,所以 S 管制圖的中心線為 $c_4 \sigma$,而其三倍標準差管制界限則為:

$$UCL_{S} = \mu_{S} + 3\sigma_{S} = c_{4}\sigma + 3\sigma\sqrt{1 - c_{4}^{2}} = (c_{4} + 3\sqrt{1 - c_{4}^{2}})\sigma$$
 $CL_{S} = \mu_{S} = c_{4}\sigma$

$$LCL_{S} = \mu_{S} - 3\sigma_{S} = c_{4}\sigma - 3\sigma\sqrt{1 - c_{4}^{2}} = (c_{4} - 3\sqrt{1 - c_{4}^{2}})\sigma$$
通常,我們定義下列兩個常數:

$$B_5 = c_4 - 3\sqrt{1 - c_4^2}$$

$$B_6 = c_4 + 3\sqrt{1 - c_4^2}$$

$$\overrightarrow{E}_0 \rightleftharpoons$$

$$c_4 = \left(\frac{2}{n-1}\right)^{\frac{1}{2}} \times \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)}$$
(3.17)

因此當 σ 已知時,我們可得到建構S管制圖的三倍標準差管制界限公式如下:

若 σ 為已知時,S管制圖的三倍標準差管制界限可改寫成:

$$UCL_{S} = B_{6}\sigma$$

$$CL_{S} = c_{4}\sigma$$

$$LCL_{S} = B_{5}\sigma$$
(3.18)

上述所列之常數 B_6, c_4, B_5 皆為隨樣本數 n 變動的值,皆可由附表 8 中查得。

當製程平均數 μ 與製程標準差 σ 已知時,我們可得到建構 \overline{X} 管制圖的三倍標準差管制界限公式如下:

 $\Xi \mu$ 與 σ 已知時, \overline{X} 管制圖的三倍標準差管制界限可改寫成:

$$UCL_{\overline{X}} = \mu_{\overline{X}} + 3\sigma_{\overline{X}} = \mu + 3\frac{\sigma}{\sqrt{n}} = \mu + A\sigma$$

$$CL_{\overline{X}} = \mu_{\overline{X}} = \mu$$
(3.19)

$$LCL_{\overline{X}} = \mu_{\overline{X}} - 3\sigma_{\overline{X}} = \mu - 3\frac{\sigma}{\sqrt{n}} = \mu - A\sigma$$

上述所列之常數 $A = \frac{3}{\sqrt{n}}$ 為隨樣本數 n 變動的值,可由附表 8 中查得。

假設母體標準差 σ 未知,則我們可以分析過去的資料來估計母體標準差 σ ,亦即從母體中抽取樣本來估計母體標準差 σ 。若有m組樣本,每一組有n個衡量品質特性的觀察值,假設第i組樣本的樣本資料為 $X_{i1}, X_{i2}, ..., X_{in}$, $1 \le i \le m$,第i組樣本的樣本標準差為:

$$S_{i} = \sqrt{\frac{\sum_{j=1}^{n} (X_{ij} - \overline{X_{i}})^{2}}{n-1}}$$
(3.20)

則m組樣本標準差的平均值 \overline{S} 可寫成:

 $=\overline{S}(1-\frac{3}{c_4}\sqrt{1-c_4^2})$

$$\overline{S} = \frac{\sum_{i=1}^{m} S_i}{m} \tag{3.21}$$

因為 $E(S) = c_4 \sigma$,所以 $\frac{S}{c_4}$ 是母體標準差 σ 的不偏估計量,因此

我們以 $\hat{\sigma} = \frac{\overline{S}}{c_4}$ 來估計母體標準差 σ , $\hat{\sigma} = \frac{\overline{S}}{c_4}$ 是母體標準差 σ 的不偏估計量(Unbiased Estimator),所以S管制圖的三倍標準差管制界限為: $USL_S = \hat{\mu}_S + 3\hat{\sigma}_S$

$$= c_{4}\hat{\sigma} + 3\hat{\sigma}\sqrt{1 - c_{4}^{2}} = c_{4} \times \frac{\overline{S}}{c_{4}} + 3\frac{\overline{S}}{c_{4}}\sqrt{1 - c_{4}^{2}} = \overline{S} + 3\frac{\overline{S}}{c_{4}}\sqrt{1 - c_{4}^{2}}$$

$$= \overline{S}(1 + \frac{3}{c_{4}}\sqrt{1 - c_{4}^{2}})$$

$$CL_{S} = \hat{\mu}_{S} = c_{4}\hat{\sigma} = c_{4} \times \frac{\overline{S}}{c_{4}} = \overline{S}$$

$$LCL_{S} = \hat{\mu}_{S} - 3\hat{\sigma}_{S}$$

$$= c_{4}\hat{\sigma} - 3\hat{\sigma}\sqrt{1 - c_{4}^{2}} = c_{4} \times \frac{\overline{S}}{c_{4}} - 3\frac{\overline{S}}{c_{4}}\sqrt{1 - c_{4}^{2}} = \overline{S} - 3\frac{\overline{S}}{c_{4}}\sqrt{1 - c_{4}^{2}}$$

$$(3.22)$$

在此我們定義兩個常數:

$$B_4 = 1 + \frac{3}{c_4} \sqrt{1 - c_4^2}$$

$$B_3 = 1 - \frac{3}{c_4} \sqrt{1 - c_4^2}$$

因此當製程標準差 σ 未知時,我們可得到建構S管制圖的三倍 標準差管制界限公式如下:

$$UCL_{S} = B_{4}\overline{S}$$

$$CL_{S} = \overline{S}$$

$$LCL_{S} = B_{3}\overline{S}$$
(3.23)

$$LCL_S = B_3\overline{S}$$

上述所列常數 B_3 , B_4 皆為隨樣本數n變動的值,皆可由附表 8 中查

 \overline{X} 管制圖的三倍標準差管制界限為:

$$UCL_{\overline{X}} = \hat{\mu}_{\overline{X}} + 3\hat{\sigma}_{\overline{X}} = \hat{\mu} + 3\frac{\hat{\sigma}}{\sqrt{n}} = \overline{\overline{X}} + \frac{3}{\sqrt{n}} \frac{\overline{S}}{c_4} = \overline{\overline{X}} + \frac{3}{c_4 \sqrt{n}} \overline{S} = \overline{\overline{X}} + A_3 \overline{S}$$

$$CL_{\overline{X}} = \hat{\mu}_{\overline{X}} = \hat{\mu} = \overline{\overline{X}}$$

$$LCL_{\overline{X}} = \hat{\mu}_{\overline{X}} - 3\hat{\sigma}_{\overline{X}} = \hat{\mu} - 3\frac{\hat{\sigma}}{\sqrt{n}} = \overline{\overline{X}} - \frac{3}{\sqrt{n}} \frac{\overline{S}}{c_4} = \overline{\overline{X}} - \frac{3}{c_4 \sqrt{n}} \overline{S} = \overline{\overline{X}} - A_3 \overline{S}$$

$$\sharp + A_3 = \frac{3}{c_4 \sqrt{n}} \circ$$

因此當製程平均數 μ 與製程標準差 σ 未知時,我們可得到建構 \overline{X} 管制圖的三倍標準差管制界限公式如下:

$$UCL_{\overline{X}} = \overline{\overline{X}} + A_3 \overline{S}$$

$$CL_{\overline{X}} = \overline{\overline{X}}$$
(3.25)

$$LCL_{\overline{X}} = \overline{\overline{X}} - A_3 \overline{S}$$

上式中的 $A_3 = \frac{3}{c_4 \sqrt{n}}$ 為隨樣本數 n 而變動的值,可由附表 8 中查得。

【例題 3.2】

某工廠利用 \overline{X} – S 管制圖來監控所生產零件的外徑尺寸,今抽取了 20 組的樣本,每組的樣本數為n=15 個,經整理計算後的數據如表 3.2 所示,試建立 \overline{X} – S 管制圖。

表 3.2

樣本組	樣本平均數 \bar{X}_i	樣本標準差 S_i
1	23.4	6.4
2	26.2	5.5
3	27.2	4.5
4	22.3	7.2
5	23.6	3.5
6	25.7	4.6
7	24.3	7.2
8	26.6	4.5
9	28.1	6.8
10	24.6	3.8
11	23.3	5.7
12	25.8	8.4

13	22.9	7.9
14	26.5	6.2
15	24.6	4.9
16	22.8	5.8
17	26.7	3.4
18	25.4	4.8
19	25.8	3.7
20	26.5	2.6

【解】

1. 計算 \overline{X} 及 \overline{S}

$$\overline{\overline{X}} = \frac{\sum_{i=1}^{m} \overline{X_i}}{m} = \frac{23.4 + 26.2 + \dots + 26.5}{20} = 25.115$$

$$\overline{S} = \frac{\sum_{i=1}^{m} S_i}{m} = \frac{6.4 + 5.5 + \dots + 2.6}{20} = 5.37$$

2. 計算管制界限

$$n=15$$
,查附表 8 得 $A_3=0.789$, $B_4=1.572$, $B_3=0.428$ 。

X管制圖的三倍標準差管制界限為

$$UCL_{\overline{X}} = \overline{\overline{X}} + A_3 \overline{S} = 25.115 + 0.789 \times 5.37 = 29.35$$

$$CL_{\overline{X}} = \overline{\overline{X}} = 25.115$$

$$LCL_{\overline{X}} = \overline{\overline{X}} - A_3 \overline{S} = 25.115 - 0.789 \times 5.37 = 20.88$$

S管制圖的三倍標準差管制界限為

$$UCL_S = B_4 \overline{S} = 1.572 \times 5.37 = 8.442$$

$$CL_S = \overline{S} = 5.37$$

$$LCL_S = B_3 \overline{S} = 0.428 \times 5.37 = 2.298$$

3. 將樣本點及管制界限繪入管制圖中,如圖 3.3 所示,從圖中可看 出沒有樣本點落在管制界限外且樣本點的散佈是隨機的,故目 前的製程是在管制狀態。

圖 $3.3 \overline{X}$ 管制圖及 S 管制圖

母體標準差 σ 的估計:

因為 $\hat{\sigma} = \frac{\overline{S}}{c_4}$ 是母體標準差 σ 的不偏估計量,所以我們可以利用

 $\hat{\sigma} = \frac{\overline{S}}{c_4}$ 來估計母體標準差 σ ,查附表 8,可得n=15 時, $c_4=0.9823$,所以母體標準差 σ 的估計值為 $\hat{\sigma} = \frac{\overline{S}}{c_4} = \frac{5.37}{0.9823} = 5.467$