SRN										
-----	--	--	--	--	--	--	--	--	--	--

PES UNIVERSITY, BENGALURU (Established under Karnataka Act 16 of 2013)

UE15CY 101

END SEMESTER ASSESMENT (ESA) B. Tech. DECEMBER 2019 **UE15CY 101 – ENGINEERING CHEMISTRY**

Maximum Marks: 100 ANSWER ALL QUESTIONS Duration: 3 HOURS						
1				_		
1.	a			6		
		(i) Derive the expression for moment of Inertia.				
		(ii) Draw the energy level diagram for a rigid rotor diatomic molecule upto J=4.				
		(iii) Calculate the energy required (in cm ⁻¹) for the molecule to move from J=2 to J=3 level if B=10.89 cm ⁻¹ .				
_	b		_			
	10	For a CO molecule which behaves like a harmonic oscillator, the vibrational spectral line is observed at 2140 cm ⁻¹ .		6		
		(i) What is the applicable selection rule?				
		(ii) Calculate reduced mass and force constant.				
		(iii) Calculate the energy of level with v=3 in cm ⁻¹ .				
		(Given: C= $3x10^{10}$ cm/sec, π =3.14, h= $6.625x10^{-34}$ Js, N= $6.02x10^{23}$, 1 amu = $1.66x10^{-27}$ kg, molar				
		mass of C=12g, O=16g).				
	c	State Franck-Condon principle.		2		
	d	Draw a neat labeled phase diagram of water system, clearly indicate the triple point and critical		6		
		point. Calculate the degree of freedom at the triple point.				
_						
2	a	State Gibb's phase rule. Explain the term phase and component with an example.		5		
	b	Derive Nernst equation for single electrode potential.		5		
	C	A lead electrode containing 0.18M lead sulphate and copper electrode containing 0.32M copper		5		
		sulphate were coupled using salt bridge. Write the half cell reactions, overall cell reaction,				
	1	calculate E_{Cell}^0 and E_{Cell} at 25° C.				
	d	(Given: $E_{pb}^{0}^{2+}/_{Pb} = -0.13V$; $E_{cu}^{0}^{2+}/_{Cu} = 0.34V$) Derive an expression for electrode potential of glass electrode.	\square	-		
-	u	Derive all expression for electrode potential of glass electrode.	Н	5		
3	a	Describe the construction and working of Zinc-air battery. Why Zinc-air battery has high energy		5		
		density?				
	b	Discuss the following battery characteristics. (i) Capacity (ii) Cycle life		4		
	C	Define fuel cell. Give the construction & working of H ₂ -O ₂ solid-oxide fuel cell. Calculate the		7		
		potential of the cell if its efficiency is 81.25%.				
		(Given the enthalpy of formation of water is -285.83 kj/mole).				
	d	Mark the regions in which the following energy storage devices appear in the Ragone plot.		4		
_	-	(i)Fuel cell (ii)Li-ion battery (iii)Supercapacitor	\dashv			
4	a	Define corrosion. Explain the electrochemical theory of corrosion taking iron as an example.	-	6		
•	b	Discuss how the following factors affect corrosion:	\dashv			
		(i) Nature of the corrosion product (ii) Temperature		4		
-	С	Write a note on pitting corrosion.	+	4		
	d	Explain the process of Galvanization, mention one advantage and disadvantage of galvanization.	+	6		
	-	England the process of current and the developed and disactantage of garvanization.	+	0		
5	a	Distinguish between thermoplastic and thermosetting plastics.	7	6		
	b	Give the synthesis and application of Plexiglass.	7	5		
	С	Calculate the number average, weight average and viscosity average of a polymer having 10	7	6		
		molecules of molecular weight is 2000, 15 molecules of molecular weight is 2500 and 25		(00)		
_		molecules of molecular weight is 3000. (Given a=0.67)				
	d	Write any three principles of green chemistry.	7	3		