Quantile functions

6 marks

Quantile functions. Suppose a continuous random variate X has a strictly increasing cumulative distribution function $F_X(x)$, a continuous density $f_X(x)$, and a quantile function $Q_X(p)$.

a. (2 marks) Suppose $U \sim U(0,1)$. Define a random variate $Y = Q_X(U)$. Prove that $Pr(Y \leq a) = F_X(a)$ for any value of a, and hence that Y has the same distribution as does X.

$$\begin{split} Pr(Y \leq a) &= Pr(Q_x(U) \leq a) \\ &= Pr(F_X^{-1}(U) \leq a) \text{ as quantile is the inverse of cdf} \\ &= Pr(F_X(F^{-1}(U)) \leq F_X(a)) \\ &= Pr(U \leq F_X(a)) \\ &= F_X(a) \text{ as } U \sim U(0,1) \end{split}$$

Therefore, $Pr(Y \le a) = F_X(a)$ as required.

b. (4 marks) Let Y = aX + b for some constants a > 0 and b. Prove that the quantile function $Q_Y(p)$ for Y is related to that of X as

$$Q_Y(p) = aQ_X(p) + b.$$

Since $Pr(Y \leq Q_Y(p)) = p$ by definition of quantile function and $Pr(X \leq Q_X(p)) = p$ by definition of quantile function

So,
$$Pr(Y \le Q_Y(p)) = Pr(X \le Q_X(p))$$

= $Pr(aX + b \le aQ_X(p) + b)$
= $Pr(Y \le aQ_X(p) + b)$ as $Y = aX + b$

To make $Pr(Y \leq Q_Y(p)) = Pr(Y \leq aQ_X(p) + b)$, we must have $Q_Y(p) = aQ_X(p) + b$

Therefore, $Q_Y(p) = aQ_X(p) + b$ as required