PRUŽNOSŤ A PEVNOSŤ

- je to mechanika poddajných telies
- budeme zisťovať druh a veľkosť deformácií telies, voliť vhodný materiál a navrhovať rozmery súčiastok

Teleso môže byť zaťažené:

- vonkajšími silami tiaž telesa, užitočné zaťaženie (zaťažením sa každá súčiastka hoci len nebadateľne deformuje)
- vnútornými silami pôsobia medzi molekulami

Vplyvom vnútorných síl má teleso schopnosť do určitej miery
odporovať vplyvom vonkajších síl – <mark>pevnosť materiálu.</mark>
Pri zaťažení sa teleso deformuje tak dlho, kým nie sú vnútorné sily
v rovnováhe s vonkajšími.
Keď po odľahčení teleso nadobudne pôvodný tvar hovoríme o
doplň 1 (prvý polrok!)
Po prekročení medze pružnosti nastávajú
polrok!)

Keď vonkajšie sily premôžu vnútorné sily, poruší sa celistvosť – súčiastka sa poškodí.

Na obrázku je vidieť, ako zdvíhacie zariadenie unesie bezproblémovo náklad s hmotnosťou, ktorá neprekračuje jeho maximálnu nosnosť. V prípade zvýšenia hmotnosti nákladu vzniknú v konštrukcii veľké vnútorné sily, ktoré sú príčinou napätia. Každý konštrukčný materiál má určenú tabuľkovú hodnotu maximálneho napätia, po prekročení ktorého dochádza k narušeniu konštrukcie. Túto hodnotu nazývame medzou pevnosti.

DRUHY NAMÁHANIA

Prepisat',

prekreslit' a

vediet'!!!

Súčiastka pred zatažením	Súčiastka po zatažení	Poloha sily (momentu) vzhľadom na prierez	Zafaženie	Napātie	Prierez (modul)
s	F	ŤAH sila pôsobí v osi, kolmo na prierez, smerom von z prierezu	F	σ _t	S
S	F F	sila pôsobí v osi, kolmo na prierez, smerom do prierezu	F	σ_{d}	S
S	F	STRIH sila pôsobí kolmo na os a leží v priereze	F	τ	S
	SF	OHYB moment (F . r) pôsob kolmo na prierez	М _о	σο	Wo
S	F	MRÚTENIE moment (F . r) pôsob v priereze	M _k	Τ _k	Wx

DRUHY DEFORMÁCIÍ

Pôsobením vonkajších síl sa telesá vždy deformujú – pri ťahu naťahujú, pri tlaku stláčajú, pri ohybe ohýbajú atď.

Každá deformácia pozostáva z :

1. z dĺžkovej zmeny

2. zo skosenia – zmeny pravouhlosti

Obr. 3.4

teleso

skosenie

Aby sme zjednotili a upresnili dĺžkovú deformáciu, vylúčime vplyv pôvodnej dĺžky telesa zavedením pojmu pomerné predĺženie ε (epsilon).

$$\varepsilon = \frac{\Delta l}{l_0}$$

 Δ - delta $\Delta l = l - l_0$ - absolútne predĺženie l_0 - pôvodná dĺžka l - dĺžka po zaťažení

pomerné posunutie (skos) - (epsilon).

$$\mathbf{\gamma} = \frac{\Delta l}{l_0}$$

PRÍKLAD:

Tiahlo malo pôvodnú dĺžku 2m. Vplyvom zaťaženia sa predĺžilo na dĺžku 2,0015m. Aké je pomerné predĺženie? Aké je skutočné (absolútne) predĺženie?