Exercise Sheet 12 (theory part)

Exercise 1: Activation Maximization (10 + 10 + 10 P)

Consider the linear model $f: \mathbb{R}^d \to \mathbb{R}$ with $f(x) = w^\top x + b$. We would like to interpret the function f by building a prototype x^* in the input domain which produces a large value of f. Activation maximization produces such prototype by computing

$$\boldsymbol{x}^{\star} = \arg\max_{\boldsymbol{x}} \left[f(\boldsymbol{x}) - \Omega(\boldsymbol{x}) \right].$$

where Ω is a regularization function.

(a) Find the prototype x^* obtained by activation maximization subject to the penalty $\Omega(x) = \lambda ||x||^2$ where λ is a hyperparameter.

$$\frac{\partial}{\partial \boldsymbol{x}} (\boldsymbol{w}^{\top} \boldsymbol{x} + \boldsymbol{b} - \lambda \|\boldsymbol{x}\|^{2}) = \boldsymbol{w} - 2\lambda \boldsymbol{x} = 0 \quad \Rightarrow \quad \boldsymbol{x}^{\star} = \frac{1}{2\lambda} \boldsymbol{w}$$

(b) Find the prototype x^* obtained by activation maximization subject to the penalty $\Omega(x) = -\log p(x)$ with $x \sim \mathcal{N}(\mu, \Sigma)$ where μ and Σ are the mean and covariance.

$$\frac{\partial}{\partial \boldsymbol{x}} (\boldsymbol{w}^{\top} \boldsymbol{x} + \boldsymbol{b} - \frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) + \text{const.})$$
$$= \boldsymbol{w} - \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) = 0 \quad \Rightarrow \quad \boldsymbol{x}^{\star} = \boldsymbol{\Sigma} \boldsymbol{w} + \boldsymbol{\mu}$$

(c) Find the prototype x^* obtained when the data is generated as (i) $z \sim \mathcal{N}(0, I)$ and (ii) x = Az + c, with A and c the parameters of the generator. Here, we optimize f w.r.t. the code z subject to the penalty $\Omega(z) = \lambda ||z||^2$.

$$\frac{\partial}{\partial z} (\boldsymbol{w}^{\top} (A\boldsymbol{z} + \boldsymbol{c}) + b - \lambda \|\boldsymbol{z}\|^{2}) = A^{\top} \boldsymbol{w} - 2\lambda \boldsymbol{z} = 0 \quad \Rightarrow \quad \boldsymbol{z}^{\star} = \frac{A^{\top}}{2\lambda} \boldsymbol{w}$$
$$\Rightarrow \quad \boldsymbol{x}^{\star} = \frac{AA^{\top}}{2\lambda} \boldsymbol{w} + \boldsymbol{c}$$

Exercise 2: Attribution (10 + 10 P)

Consider the function $f: \mathbb{R}^3_+ \to \mathbb{R}_+$ with

$$f(\boldsymbol{x}) = \min(x_1, \max(x_2, x_3))$$

implementing some min-max pooling between three input features. For the data point $\mathbf{x} = (3, 2, 1)$ and its prediction $f(\mathbf{x}) = 2$, we would like to perform an attribution of the prediction to the input features. We investigate the Shapley value and Gradient × Input methods for attribution.

(a) Recall that the Shapley value method identifies the contributions R_1, \ldots, R_d of features x_1, \ldots, x_d as:

$$R_{i} = \sum_{S: i \notin S} \frac{|\mathcal{S}|!(d-|\mathcal{S}|-1)!}{d!} \left[f(\boldsymbol{x}_{\mathcal{S} \cup \{i\}}) - f(\boldsymbol{x}_{\mathcal{S}}) \right]$$

where $(x_{\mathcal{S}})_{\mathcal{S}}$ are all possible subsets of features contained in the input x. Compute the Shapley values associated to the prediction above. (We assume a reference point $\tilde{x} = 0$, i.e. we set features to zero when removing them).

We first evaluate the function, and we get f(3, 2, 1) = 2.

Consider R_1 , and analyze all coalitions that don't contain that feature:

\mathcal{S}	$\alpha_{\mathcal{S}}$	$f(\boldsymbol{x}_{\mathcal{S}\cup\{1\}}) - f(\boldsymbol{x}_{\mathcal{S}})$
Ø	1/3	0
{2}	1/6	2
{3}	1/6	1
$\{2,3\}$	1/3	2

Therefore $R_1 = 1/3 \cdot 0 + 1/6 \cdot 2 + 1/6 \cdot 1 + 1/3 \cdot 2 = 7/6$.

Consider now R_2 , and analyze all coalitions that don't contain that feature:

\mathcal{S}	$\alpha_{\mathcal{S}}$	$f(\boldsymbol{x}_{\mathcal{S}\cup\{2\}}) - f(\boldsymbol{x}_{\mathcal{S}})$
Ø	1/3	0
{1}	1/6	2
{3}	1/6	0
{1,3}	1/3	1

Therefore $R_2 = 1/3 \cdot 0 + 1/6 \cdot 2 + 1/6 \cdot 1 + 1/3 \cdot 1 = 2/3$.

Consider now R_3 , and analyze all coalitions that don't contain that feature:

\mathcal{S}	$\alpha_{\mathcal{S}}$	$f(\boldsymbol{x}_{\mathcal{S}\cup\{2\}}) - f(\boldsymbol{x}_{\mathcal{S}})$
Ø	1/3	0
{1}	1/6	1
{2}	1/6	0
$\boxed{\{1,2\}}$	1/3	0

Therefore $R_3 = 1/3 \cdot 0 + 1/6 \cdot 1 + 1/6 \cdot 1 + 1/3 \cdot 0 = 1/6$.

We can test our result by verifying the conservation property:

$$R_1 + R_2 + R_3 = 7/6 + 2/3 + 1/6 = 12/6 = f(\mathbf{x})$$

(b) The Gradient × Input method attributes to the input features according to the formula:

$$R_i = x_i \cdot [\nabla f(\boldsymbol{x})]_i$$

Compute the Gradient × Input attribution associated to the prediction above.

$$R_1 = 3 \cdot 0 = 0$$
$$R_2 = 2 \cdot 1 = 2$$

$$R_3 = 1 \cdot 0 = 0$$