IN THE CLAIMS

Please amend the claims as follows:

- 1. (original) An electronic circuit comprising an amplifier stage (AMPST) having an input (IP) for receiving an input signal (I_i) and an output (OP) for supplying an output signal (I_o), wherein, during operation, the strength of the output signal (I_o) increases in response to an increasing strength of the input signal (I_i) as long as the strength of the input signal (I_i) has not exceeded an input reference level (I_A), characterized in that the strength of the output signal (I_o) is kept approximately constant when the strength of the input signal (I_i) has exceeded the input reference level (I_A) but has not exceeded a further input reference level (I_B), and that the strength of the output signal (I_o) decreases in response to an increasing strength of the input signal (I_i) when the strength of the input signal (I_i) has exceeded the further input reference level (I_B).
- 2. (original) An electronic circuit according to claim 1, characterized in that the strength of the output signal (I_o) cannot become lower than an output reference level (Io_{mn}) when the strength of the input signal (I_i) has exceeded the further input reference level (I_B).

- 3. (currently amended) An electronic circuit according to claim 1 $\frac{\text{or }2}{\text{or }2}$, characterized in that the further input reference level (I_B) is approximately equal to the input reference level (I_A).
- 4. (currently amended) An electronic circuit according to claim 1, 2, or 3, characterized in that the input signal (I_i) is an input current (I_i), and the output signal (I_o) is an output current (I_o).
- 5. (original) An electronic circuit according to claim 4, characterized in that the amplifier stage (AMPST) comprises a first current path (CP₁) coupled between the input (IP) and a common node (cn); a second current path (CP₂) coupled between the output (OP) and the common node (cn); first control means (FCM) coupled between the input (IP) and the common node (cn) for controlling a voltage (V_{cn}) at the common node (cn) and for supplying a current (I_2) to the common node (cn), the first control means (FCM) comprising limiting means (LMT) for limiting the current (I_2) to the common node (cn) when the strength of the input signal (I_i) has exceeded the input reference level (I_A); and second control means (SCM) for supplying a compensation current (I_{cmp}) to the input (IP) when the strength of the input signal (I_i) has exceeded the input reference level (I_A).

- 6. (original) An electronic circuit according to claim 5, characterized in that the amplifier stage (AMPST) further comprises a third current path (CP3) having a first side coupled to the input (IP) and a second side coupled to the second current path (CP2) for taking away current from the second current path (CP2), such that the strength of the output current (I_0) decreases in response to an increasing strength of the input signal (I_1) when the strength of the input signal (I_2) has exceeded the further input reference level (I_2).
- 7. (original) An electronic circuit according to claim 6, characterized in that the amplifier stage (AMPST) further comprises a fourth current path (CP₄) coupled to the second current path (CP₂) for supplying current to the second current path (CP₂) in order to avoid that the output current (I_0) can be lower than the output reference level (I_{0mn}) when the strength of the input signal (I_1) has exceeded the further input reference level (I_B).
- 8. (currently amended) An optical/magneto-optical disk recording apparatus comprising a light source (LS) for storing data on a disk (DSK), and light-receiving means (PHDS) for the detection of data from the disk (DSK), characterized in that the apparatus comprises

an electronic circuit as defined in any of the preceding $\begin{array}{c} \text{elaimsclaim 1}, \text{ wherein the input signal (I_i) of the amplifier stage} \\ \text{(AMPST) is responsive to a signal (A; B; C; D) delivered by the } \\ \text{light-receiving means (PHDS)}. \end{array}$

- 9. (original) A method whereby an input signal (I_i) is converted into an output signal (I_o), and whereby the strength of the output signal (I_o) increases in response to an increasing strength of the input signal (I_i) as long as the strength of the input signal (I_i) does not exceed an input reference level (I_A), and whereby the strength of the output signal (I_o) is kept approximately constant when the strength of the input signal (I_i) exceeds the input reference level (I_A) but does not exceed a further input reference level (I_B), and whereby the strength of the output signal (I_o) decreases in response to an increasing strength of the input signal (I_i) when the strength of the input signal (I_i) exceeds the further input reference level (I_B).
- 10. (original) A method according to claim 9, characterized in that the strength of the output signal (I_o) does not become lower than an output reference level (I_{omn}) when the strength of the input signal (I_i) exceeds the further input reference level (I_B).