

Data Loading + Indexing

Atomization Pipeline

Counting Table h $__{\sf trace}__{\sf payload}$ __trace__payload __trace__payload 1 p_ref p ref 1 p_ref 1 follow_up 1 0 follow up follow up 3 1 1 op mastectomy $op_mastectomy$ 0 0 op mastectomy $op_lumpectomy$ 0 2 0 op lumpectomy op lumpectomy 3 1

Activity Table					
REF	а	j	i	q	q'
#1	tracepayload	1	1	NULL	#4
#2	tracepayload	2	1	NULL	#5
#3	tracepayload	3	1	NULL	#6
#4	p_ref	1	2	#1	#7
#5	p_ref	2	2	#2	NULL
#6	p_ref	2	2	#3	#8
#7	op_mastectomy	1	2	#4	#9
#8	op_lumpectomy	3	3	#6	#10
#9	follow_up	1	4	#7	NULL
#10	follow_up	3	4	#8	NULL

INDEXED TABLES

Attribute Ta	ble <p_id></p_id>	
а	٧	i
trace_payload	"001A"	#0
trace_payload	"002A"	#1
trace_payload	"003A"	#2
Attribute Tab	le <loc_po></loc_po>	
а	V	i

trace payload

_trace_payload

trace_payload

"LN"

"NE"

"YO"

#0

#1

	Attribute Table <biopsy></biopsy>		
	а	V	i
*	op_mastectomy	true	#7
	op_lumpectomy	true	#8

		Attribute Table	<ca_1< th=""><th>.5-3></th></ca_1<>	.5-3>
4		а	٧	i
4		p_ref	69	#4
		p_ref	20	#5
4		p_ref	61	#6
	€	op_mastectomy	69	#7
1	₹	op_lumpectomy	61	#8
11		follow_up	10	#9
		follow_up	55	#10
/:/	V			

INPUT MODEL

Declare Model (\mathcal{M})

Response(p_ref, CA_15 >= 23.5, follow_up, CA_15 < 23.5) where p_ref.CA_15 > follow_up.CA_15

Succession(p_ref, CA_15 >= 23.5, follow_up, CA_15 < 23.5) where p_ref.CA_15 > follow_up.CA_15

Choice(op_mastectomy, CA_15-3 >= 50 && biopsy = true, op_lumpectomy, CA_15-3 >= 50 && biopsy = true)

DECOMPOSED MODEL

	Atomized Model
Atom	Constituents
\mathcal{P}_1	$-\infty \le p_ref.CA_15 < 23.5$
\mathcal{P}_2	$23.5 \le p_ref.CA_15 \le +\infty$
\mathcal{P}_3	-∞ ≤ follow_up.CA_15 < 23.5
\mathcal{P}_4	$23.5 \le \text{follow} \text{_up.CA} \text{_} 15 \le +\infty$
\mathcal{P}_5	$-\infty \le \text{op}_{\text{mastectomy.CA}_{15}} < 50$, op_mastectomy.biopsy = false
\mathcal{P}_6	$-\infty \le \text{op_mastectomy.CA_15} < 50, \text{op_mastectomy.biopsy} = \text{true}$
\mathcal{P}_7	$50 \le \text{op_mastectomy.CA_}15 \le +\infty$, op_mastectomy.biopsy = false
P ₈	$50 \le \text{op_mastectomy.CA_}15 \le +\infty, \text{ op_mastectomy.biopsy} = \text{true}$
\mathcal{P}_9	$-\infty \le \text{op_lumpectomy.CA_15} < 50$, op_lumpectomy.biopsy = false
\mathcal{P}_{10}	$-\infty \le \text{op_lumpectomy.CA_15} < 50, \text{op_lumpectomy.biopsy} = \text{true}$
\mathcal{P}_{11}	$50 \le \text{op_lumpectomy.CA_}15 \le +\infty, \text{ op_lumpectomy.biopsy} = \text{false}$
\mathcal{P}_{12}	$50 \le \text{op_lumpectomy.CA_}15 \le +\infty, \text{op_lumpectomy.biopsy} = \text{true}$

LTLf Model (\mathcal{M})	
$\mathbf{G}((\neg \mathcal{P}_2) \lor (\mathcal{P}_2 \land \mathbf{F}(\mathcal{P}_4)))$ where p_ref.CA_15 > follow_up.CA_15	
$G((\neg \mathcal{P}_2) \lor (\mathcal{P}_2 \land F(\mathcal{P}_4))) \land ((\neg (\mathcal{P}_4) \cup \mathcal{P}_2) \lor Absence(\mathcal{P}_4))$ where p_ref.CA_15 > follow_up.CA_15	
$Exists(\mathcal{P}_8) \ \lor \ Exists(\mathcal{P}_{12})$	

