Лабораторная работа №3

Задание 1

Предъявите доверительный интервал уровня $1-\alpha$ для указанного параметра при данных предположениях (с математическими обоснованиями). Сгенерируйте 2 выборки объёма объёма 25 и посчитайте доверительный интервал. Повторить 1000 раз. Посчитайте, сколько раз 95-процентный доверительный интервал покрывает реальное значение параметра. То же самое сделайте для объема выборки 10000. Как изменился результат? Как объяснить?

Задача представлена в 4 вариантах. Везде даны две независимые выборки X, Y из нормальных распределений $\mathcal{N}(\mu_1, \sigma_1^2), \mathcal{N}(\mu_2, \sigma_2^2)$ объема n, m соответственно. Сначала указывается оцениваемая функция, потом данные об остальных параметрах, затем параметры эксперимента и подсказки.

1. $\tau=\mu_1-\mu_2;\,\sigma_1^2,\,\sigma_2^2$ известны; $\mu_1=2,\,\mu_2=1,\,\sigma_1^2=1,\,\sigma_2^2=0.5;$ воспользуйтесь функцией

$$\frac{\overline{X} - \overline{Y} - \tau}{\sigma}, \quad \sigma^2 = \frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}.$$

2. $\tau=\mu_1-\mu_2;\,\sigma_1^2=\sigma_2^2$ неизвестна; $\mu_1=2,\,\mu_2=1,\,\sigma_1^2=\sigma_2^2=1;$ воспользуйтесь функцией

$$\sqrt{\frac{mn(m+n-2)}{m+n}} \frac{\overline{X} - \overline{Y} - \tau}{\sqrt{n\text{Var}(X) + m\text{Var}(Y)}},$$

где Var(.) – выборочная смещенная дисперсия. Смотрите в сторону распределения Стьюдента.

3. $\tau=\sigma_1^2/\sigma_2^2;~\mu_1,~\mu_2$ неизвестны; $\mu_1=0,~\mu_2=0,~\sigma_1^2=2,~\sigma_2^2=1;$ воспользуйтесь функцией $\frac{n(m-1)\mathrm{Var}(X)}{m(n-1)\mathrm{Var}(Y)},$

где Var(.) – выборочная смещенная дисперсия. Смотрите в сторону распределения Фишера.

4. $\tau=\sigma_1^2/\sigma_2^2$; μ_1 , μ_2 известны; $\mu_1=0$, $\mu_2=0$, $\sigma_1^2=2$, $\sigma_2^2=1$; воспользуйтесь функцией $\frac{m\sum_{i=1}^n(X_i-\mu_1)^2}{n\sum_{i=1}^m(Y_i-\mu_2)^2},$

Смотрите в сторону распределения Фишера.

Задание 2

Постройте асимптотический доверительный интервал уровня $1-\alpha$ для указанного параметра. Проведите эксперимент по схеме, аналогичной первой задаче.

Задача представлена в 5 вариантах. Сначала указывается класс распределений (однопараметрический) и оцениваемый параметр, затем параметры эксперимента и подсказки.

- 1. $\text{Exp}(\lambda)$; медиана; $\lambda = 1$; воспользуйтесь предельной теоремой об асимптотическом поведении среднего члена вариационного ряда.
- 2. Распределение Лапласса с неизвестным параметром сдвига μ и единичным масштабирующим параметром; μ ; $\mu=2$; можно воспользоваться подсказкой для предыдущего варианта, хотя другие способы решения приветствуются.
- 3. $U[-\theta,\theta];\ \theta;\ \theta=5;$ воспользуйтесь предельной теоремой об асимптотическом поведении крайних членов вариационного ряда.
- 4. Geom(p); p; p = 0.7; тут рецепт стандартный).
- 5. $\operatorname{Pois}(\lambda)$; второй момент; $\lambda=1$; воспользоваться асимптотической нормальностью второго момента.