Introduction to Formal Frameworks for P-Systems

Theory Days – Day 2

2020 June 24

Ren Tristan A. de la Cruz

Membrane Computing & P Systems

Membrane Computing – Field of Theoretical CS (Natural Computing)

Membrane computing studies different **models of computation** known as **P Systems**

P Systems:

- distributed parallel computing devices
- biologically-inspired
- use the idea of membranes (and cells) to compartmentalize space
- related to multiset rewriting systems

P Systems – Membrane Structure

Balanced Brackets Representation

P Systems – Multisets of Objects

Alphabet / Set of Objects
$$O = \{a,b,c\}$$

Sample Multisets over **0**

aaaabbcc =
$$\{a,a,a,a,b,b,c,c\}$$
 = $a^4b^2c^2$

$$abbccc = \{a,b,b,c,c,c\} = a^1b^2c^3$$

$$ac = \{a,c\} = a^1c^1 = a^1b^0c^1$$

P Systems – Multisets in Membranes

P Systems – Multiset Rewriting

Alphabet / Set of Objects
$$O = \{a,b,c\}$$

aaaabbcc $bc \rightarrow aaa a^7bc$

acc $ac \rightarrow bb$ bbc

aabbbccc ab → aab aaabbbccc

P Systems – Multiset Rewriting

Alphabet / Set of Objects
$$O = \{a,b,c\}$$

P Systems and Formal Frameworks (FFs)

- [1] Păun, G.. <u>1998</u>. Computing with Membranes. In Technical Report. Turku Centre for Computer Science.
- [2] Păun, G.. 1999. P Systems with Active Membranes: Attacking NP-Complete Problems. In Centre for Discrete Mathematics and Theoretical Computer Science (CDMTCS-102) Research Report Series
- [3] Păun, G.. 2001. P Systems with Active Membranes: Attacking NP-Complete Problems. In Journal of Automata, Languags, and Combinatorics. vol.6, issue 1 (January 2001), 75-90.
- [4] Martín-Videa, C., Păun, G., Pazos, J., Rodríguez-Patón, A.. 2003. Tissue P Systems. In Theoretical Computer Science. Elsevier.
- [5] Ionescu, M., Păun, G., Yokomori, T.. 2006. Spiking Neural P Systems. In Fundamenta Informaticae. vol 71, issue 2,3 (February 2006), 279-308.
- [6] Freund R., Verlan S. 2007. A Formal Framework for Static (Tissue) P Systems. In: Eleftherakis G., Kefalas P., Păun G., Rozenberg G., Salomaa A. (eds) Membrane Computing. WMC 2007. Lecture Notes in Computer Science, vol 4860. Springer, Berlin, Heidelberg
- [7] Freund, R., Pérez-Hurtado, I., Riscos-Núñez, A., Verlan, S.. 2013. A Formalization of Membrane Systems with Dynamically Evolving Structures. In International Journal of Computer Mathematics, 90:4, 801-815
- [8] Verlan, S., Freund, R., Alhazov, A., Pan, L.. 2008. A Formal Framework for Spiking Neural P Systems. In Proceedings of 20th Conference on Membrane Computing (CMC20)

$$O = \{a,b,c,d\}$$

Rule in Membrane 1: $abcc \rightarrow (a, out)(d, in_3)$

$$[abcc]_1 \rightarrow [a]_0 [d]_3$$

$$O = \{a,b,c,d\}$$

Rule in Membrane 1:
$$abc \rightarrow (a, out)(d, in_3)$$
 $\times 2$

$$[abc]_1 \rightarrow [a]_0 [d]_3$$
 χ_2

$$O = \{a,b,c,d\}$$

Rule in Membrane 1: $aaabcc \rightarrow (cc, out)(d, here)$

$$[aabcc]_1 \rightarrow [cc]_0 [d]_1$$

$$O = \{a,b,c,d\}$$

Rule in Membrane 1: $aabbcc \rightarrow (d,in_2)(d,in_3)\delta$

$$[\mathbf{aabbcc}]_1 \rightarrow [\mathbf{d}]_2 [\mathbf{d}]_3 [\mathbf{\delta}]_1$$

P Systems with Active Membranes

$$O = \{a,b,c,d\}$$
 $P = \{+,-,0\}$

$$[\mathbf{a}]_{\mathsf{h}}^{\mathsf{+}} \to [\mathbf{c}]_{\mathsf{h}}^{\mathsf{+}} [\mathbf{d}]_{\mathsf{h}}^{\mathsf{-}}$$

[2] Păun, G.. <u>1999</u>. P Systems with Active Membranes: Attacking NP-Complete Problems. In Centre for Discrete Mathematics and Theoretical Computer Science (CDMTCS-102) – Research Report Series

[3] Păun, G.. 2001. P Systems with Active Membranes: Attacking NP-Complete Problems. In Journal of Automata, Languags, and Combinatorics. vol.6, issue 1 (January 2001), 75-90.

P Systems with Active Membranes

$$0 = \{a,b,c\} \qquad [a]_h^0 \rightarrow [b]_h^0 \quad [c]_h^0$$

$$P = \{+,-,0\}$$

$$aab \quad bbc \quad$$

Rule in Cell 1: $aa \rightarrow (bb, here)(ac, go)$

Rule in Cell 1: $aa \rightarrow (bb, here)(ac, go)$

Rule in Cell 1: $aa \rightarrow (bb, here)(ac, go)$

P Systems and Formal Frameworks (FFs)

- [1] Păun, G.. <u>1998</u>. Computing with Membranes. In Technical Report. Turku Centre for Computer Science.
- [2] Păun, G.. 1999. P Systems with Active Membranes: Attacking NP-Complete Problems. In Centre for Discrete Mathematics and Theoretical Computer Science (CDMTCS-102) Research Report Series
- [3] Păun, G.. 2001. P Systems with Active Membranes: Attacking NP-Complete Problems. In Journal of Automata, Languags, and Combinatorics. vol.6, issue 1 (January 2001), 75-90.
- [4] Martín-Videa, C., Păun, G., Pazos, J., Rodríguez-Patón, A.. 2003. Tissue P Systems. In Theoretical Computer Science. Elsevier.
- [5] Ionescu, M., Păun, G., Yokomori, T.. 2006. Spiking Neural P Systems. In Fundamenta Informaticae. vol 71, issue 2,3 (February 2006), 279-308.
- [6] Freund R., Verlan S. 2007. A Formal Framework for Static (Tissue) P Systems. In: Eleftherakis G., Kefalas P., Păun G., Rozenberg G., Salomaa A. (eds) Membrane Computing. WMC 2007. Lecture Notes in Computer Science, vol 4860. Springer, Berlin, Heidelberg
- [7] Freund, R., Pérez-Hurtado, I., Riscos-Núñez, A., Verlan, S.. 2013. A Formalization of Membrane Systems with Dynamically Evolving Structures. In International Journal of Computer Mathematics, 90:4, 801-815
- [8] Verlan, S., Freund, R., Alhazov, A., Pan, L.. 2008. A Formal Framework for Spiking Neural P Systems. In Proceedings of 20th Conference on Membrane Computing (CMC20)

Formal Framework 1 - Network of Cells

Network of Cells: $\Pi = (n, V, w, Inf, R)$

```
n - Number of Cells
```

V - Alphabet of Objects

$$\mathbf{w} = (\mathbf{w}_1, ..., \mathbf{w}_n) - \underline{\text{Vector of Multisets}}$$

w_i - <u>Multiset in Cell i</u>

$$Inf = (Inf_1,...,Inf_n) - Vector of Sets$$

Inf. - Set of objects ocurring infinitely often in Cell i

R - Set of Rules

Formal Framework 1 - Network of Cells

$$\begin{bmatrix} \mathbf{w}_1, \mathbf{lnf}_1 \\ \mathbf{1} \end{bmatrix} \dots \begin{bmatrix} \mathbf{w}_i, \mathbf{lnf}_i \\ \mathbf{i} \end{bmatrix} \dots \begin{bmatrix} \mathbf{w}_n, \mathbf{lnf}_n \\ \mathbf{n} \end{bmatrix} \mathbf{m}$$

$$\Pi = (n=3, v=\{a,b,c,d\}, w=\{ab,bc,cc\}, Inf=(\{d\},\{\},\{a,b\}), R)$$

R

ab, d∞

bc

cc,a∞b∞

3

Formal Framework 1 - Network of Cells

$$\Pi = (n=3, v=\{a,b,c,d\}, w=\{ab,bc,cc\}, Inf=(\{d\},\{\},\{a,b\}), R)$$

R

abd∞

bc

a[∞] b[∞]c²

3

$$R = \{r\}$$

$$r = X \rightarrow Y; P, Q;$$

 $X=(x_1,...,x_n)$ - vector of multisets to be <u>consumed</u>

 $Y=(y_1,...,y_n)$ - vector of multisets to be <u>produced</u>.

 $P = (p_1,...,p_n)$ - vector of <u>required</u> multisets.

 $Q = (q_1,...,q_n)$ - vector of <u>forbidden</u> multisets.

$$x_1, y_1, p_1, q_1$$
 x_i, y_i, p_i, q_i x_n, y_n, p_n, q_n

$$[x_1]_1...[x_n]_n \rightarrow [y_1]_1...[y_n]_n; [p_1]_1...[p_n]_n, [q_1]_1...[q_n]_n;$$

The rule is NOT <u>eligible</u> since multiset **bbd** is required to be in cell 2.

The rule is NOT <u>eligible</u> since multiset d is forbidden in cell 3.

Formal Framework 1 - Rule Eligibility

$$r = X \rightarrow Y$$
; P, Q;
 $X=(x_1,...,x_n)$ - vector of multisets to be consumed
 $Y=(y_1,...,y_n)$ - vector of multisets to be produced.
 $P=(p_1,...,p_n)$ - vector of required multisets.

$$\mathbf{Q} = (\mathbf{q}_1, ..., \mathbf{q}_n)$$
 - vector of forbidden multisets.

$$C^{f} = \begin{bmatrix} w_{1} \\ 1 \end{bmatrix} \dots \begin{bmatrix} w_{i} \\ 1 \end{bmatrix} \dots \begin{bmatrix} w_{n} \\ 1 \end{bmatrix} \dots \begin{bmatrix} x_{i}, y_{i}, p_{i}, q_{i} \\ 1 \end{bmatrix} \dots \begin{bmatrix} x_{n}, y_{n}, p_{n}, q_{n} \\ 1 \end{bmatrix} n$$

Conditions for **Rule Eligibility:**

$$X_i \subseteq W_i$$
 $p_i \subseteq W_i$
 $q_i \not\subset W_i$

Formal Framework 1 - Applicable Multiset of Rules

aaaaa

bbbbb

CCCCC

3

Eligible Rules:

$$r_1$$
: $[aa]_1 \rightarrow [dd]_2$;
 r_2 : $[b]_2 \rightarrow [d]_1 [d]_3$;
 r_3 : $[aaa]_1 [cccc]_3 \rightarrow [bb]_2$;

Applicable Multiset of Rules:

$$R_{1}' = \{ \mathbf{r}_{1}, \mathbf{r}_{1} \} \qquad R_{5}' = \{ \mathbf{r}_{3} \}$$

$$R_{2}' = \{ \mathbf{r}_{1}, \mathbf{r}_{2} \} \qquad R_{6}' = \{ \mathbf{r}_{1} \}$$

$$R_{3}' = \{ \mathbf{r}_{2}, \mathbf{r}_{2}, \mathbf{r}_{2}, \mathbf{r}_{2}, \mathbf{r}_{2} \}$$

$$R_{4}' = \{ \mathbf{r}_{1}, \mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{2}, \mathbf{r}_{2}, \mathbf{r}_{2}, \mathbf{r}_{2} \}$$

$$R_{7}' = \{ \mathbf{r}_{2} \}$$

Non-applicable Multiset of Rules:

$$R_{8}' = \{r_{3}, r_{3}\}$$
 $R_{9}' = \{r_{1}, r_{1}, r_{3}\}$ $R_{10}' = \{r_{2}, r_{2}, r_{2}, r_{2}, r_{2}, r_{2}\}$

Formal Framework 1 - Derivation Modes

aaaaa

bbbbb

CCCCC

3

Eligible Rules:

$$r_1$$
: $[aa]_1 \rightarrow [dd]_2$;

$$r_2: [b]_2 \to [d]_1 [d]_3;$$

$$r_3$$
: [aaa]₁[cccc]₃ \rightarrow [bb]₂;

Applicable Multisets of Rules:

$$R_{1}' = \{ \mathbf{r}_{1}, \mathbf{r}_{1} \} \qquad R_{5}' = \{ \mathbf{r}_{3} \}$$

$$R_{2}' = \{ \mathbf{r}_{1}, \mathbf{r}_{2} \} \qquad R_{6}' = \{ \mathbf{r}_{1} \}$$

$$R_{3}' = \{ \mathbf{r}_{2}, \mathbf{r}_{2}, \mathbf{r}_{2}, \mathbf{r}_{2}, \mathbf{r}_{2} \}$$

$$R_{4}' = \{ \mathbf{r}_{1}, \mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{2}, \mathbf{r}_{2}, \mathbf{r}_{2}, \mathbf{r}_{2} \}$$

$$R_{7}' = \{ \mathbf{r}_{2} \}$$

Which of the applicable multisets or rules should be used?

Formal Framework 1 - Derivation Mode - Sequential

aaaaa

bbbbb

CCCCC

3

Eligible Rules:

$$r_1$$
: $[aa]_1 \rightarrow [dd]_2$;
 r_2 : $[b]_2 \rightarrow [d]_1 [d]_3$;
 r_3 : $[aaa]_1 [cccc]_3 \rightarrow [bb]_2$;

Applicable Multisets of Rules:

$$R_{1}' = \{ \mathbf{r}_{1}, \mathbf{r}_{1} \} \qquad R_{5}' = \{ \mathbf{r}_{3} \}$$

$$R_{2}' = \{ \mathbf{r}_{1}, \mathbf{r}_{2} \} \qquad R_{6}' = \{ \mathbf{r}_{1} \}$$

$$R_{3}' = \{ \mathbf{r}_{2}, \mathbf{r}_{2}, \mathbf{r}_{2}, \mathbf{r}_{2}, \mathbf{r}_{2} \}$$

$$R_{4}' = \{ \mathbf{r}_{1}, \mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{2}, \mathbf{r}_{2}, \mathbf{r}_{2}, \mathbf{r}_{2} \}$$

$$R_{7}' = \{ \mathbf{r}_{2} \}$$

Usable Multisets in <u>Sequential Mode</u>:

$$R_6' = \{ r_1 \}$$
 $R_7' = \{ r_2 \}$ $R_5' = \{ r_3 \}$

Formal Framework 1 - Derivation Mode - Asynchronous

aaaaa

bbbbb

CCCCC

3

Eligible Rules:

$$r_{1}$$
: $[aa]_{1} \rightarrow [dd]_{2}$;
 r_{2} : $[b]_{2} \rightarrow [d]_{1}[d]_{3}$;
 r_{3} : $[aaa]_{1}[cccc]_{3} \rightarrow [bb]_{2}$;

Applicable Multisets of Rules:

$$R_{1}' = \{ r_{1}, r_{1} \} \qquad R_{5}' = \{ r_{3} \}$$

$$R_{2}' = \{ r_{1}, r_{2} \} \qquad R_{6}' = \{ r_{1} \}$$

$$R_{3}' = \{ r_{2}, r_{2}, r_{2}, r_{2}, r_{2} \}$$

$$R_{4}' = \{ r_{1}, r_{1}, r_{2}, r_{2}, r_{2}, r_{2}, r_{2} \}$$

$$R_{7}' = \{ r_{2} \}$$

Usable Multisets in <u>Asynchronous Mode</u>:

Any applicable multiset R'

Formal Framework 1 - Derivation Mode - Maximally Parallel

aaaaa

bbbbb

CCCCC

3

Eligible Rules:

$$r_{1}$$
: $[aa]_{1} \rightarrow [dd]_{2}$;
 r_{2} : $[b]_{2} \rightarrow [d]_{1}[d]_{3}$;
 r_{3} : $[aaa]_{1}[cccc]_{3} \rightarrow [bb]_{2}$;

Applicable Multisets of Rules:

$$R_{1}' = \{ r_{1}, r_{1} \} \qquad R_{5}' = \{ r_{3} \}$$

$$R_{2}' = \{ r_{1}, r_{2} \} \qquad R_{6}' = \{ r_{1} \}$$

$$R_{3}' = \{ r_{2}, r_{2}, r_{2}, r_{2}, r_{2} \}$$

$$R_{4}' = \{ r_{1}, r_{1}, r_{2}, r_{2}, r_{2}, r_{2}, r_{2} \}$$

$$R_{7}' = \{ r_{2} \}$$

Usable Multisets in <u>Maximally Parallel Mode</u>:

$$R_4' = \{ r_1, r_2, r_2, r_2, r_2, r_2, r_2 \}$$
 $R_8' = \{ r_1, r_3, r_2, r_2, r_2, r_2, r_2 \}$

Formal Framework 2 - Derivation Mode

2.6 Derivation Modes

- 1. $Appl(\Pi, C, \delta) \subseteq Appl(\Pi, C)$ Set of applicable multisets of rules in δ -mode.
- 2. $Appl(\Pi, C, asyn) = Appl(\Pi, C) Asynchronous Mode (\delta = asyn).$
- 3. $Appl(\Pi, C, sequ) = \{R' \in Appl(\Pi, C) \mid |R'| = 1\}$ Sequential Mode $(\delta = sequ)$ One rule per step.
- 4. $Appl(\Pi, C, max) = \{R' \in Appl(\Pi, C) \mid /\exists R'' \in Appl(\Pi, C), R'i \not\subseteq R''\}$ Maximally Parallel Mode $(\delta = max)$ Adding any rule to a maximally parallel R' will result in an inapplicable multiset of rules.
- 5. $Appl(\Pi, C, min) = \{R' \in Appl(\Pi, C) \mid \not\exists R'' \in Appl(\Pi, C), R' \subseteq R'', \exists j, (R'' R') \cap R_j \neq \emptyset, R' \cap R_j = \emptyset\}$ - $Minimally \ Parallel \ Mode \ (\delta = min)$ - There is no partition $R = R_1 \cup R_2 \cup \cdots \cup R_h$. Rule set R is be partitioned. $R' \subseteq R''$. R'' 'extends' R'.
- 6. $\delta \in \{asyn, sequ, max, min\}$ Basic derivation modes
- 7. $Appl(\Pi, C, max_{rule}\delta) = \{R' \in Appl(\Pi, C, \delta) \mid \not\exists R'' \in Appl(\Pi, C, \delta) \mid R'' \mid > |R'| \}$ - $Maximum \ Rules \ \delta$ -Mode.
- 8. $Appl(\Pi, C, max_{set}\delta) = \{R' \in Appl(\Pi, C, \delta) \mid \not\exists R'' \in Appl(\Pi, C, \delta) \mid |R''| | > ||R'|| \}$ - $Maximum\ Sets\ (Partitions)\ \delta$ -Mode.
- 9. $Appl(\Pi, C, all_{set}\delta) = \{R' \in Appl(\Pi, C, \delta) \mid \forall j, 1 \leq j \leq h, (R_j \cap \bigcup_{X \in Appl(\Pi, C)} X \neq \emptyset) \rightarrow (R_j \cap R' \neq \emptyset)\}$ All Set δ -Mode.

Formal Framework 2 - Transition & Halting Conditions

2.7 Transition

- 1. $[C \Rightarrow_{(\Pi,\Delta)} C'] \Leftrightarrow [[\exists R' \in Appl(\Pi,C,\Delta)][C' = Apply(\Pi,C,R')]]$ Transition in Δ -mode.
- 2. $[C \Rightarrow_{(\Pi,\Delta)}^* C']$ Transitive closure and reflexive nature of the transition relation $\Rightarrow_{(\Pi,\Delta)}$
- 3. $[accessible(C,\Pi,\Delta)] \Leftrightarrow [C_0 \Rightarrow_{(\Pi,\Delta)} C]$ Accessibility of configuration C in Δ -mode.
- 4. $Acc(\Pi, \Delta) = \{C \mid accessible(C, \Pi, \Delta)\}$ Set of all accessible configurations in Δ -mode derivation.
- 5. $[Deterministic(\Pi, \Delta)] \Leftrightarrow [\forall C \in Acc(\Pi, \Delta)][Appl(\Pi, C, \Delta)| \leq 1]$ Determinism of system Π under Δ -mode derivation.

2.8 Halting Conditions

- 1. $H(\Pi, \Delta) = \{C' \in Acc(\Pi, \Delta) \mid Appl(\Pi, C', \Delta) = \emptyset\}$
 - Set of total halting configurations.
 - Accessible configurations where there are not applicable multisets of rules.
- $2. \ A(\Pi, \Delta) = \{C' \in Acc(\Pi, \Delta) \mid Appl(\Pi, C', \Delta) \neq \emptyset, \forall R' \in Appl(\Pi, C', \Delta), Apply(\Pi, C', R') = C'\}$
 - Set of adult halting configurations.
 - Accessible configurations where for all applicable rule R' applying R' to configuration C' result to C'.
- 3. $h(\Pi, \Delta) = \{C' \in Acc(\Pi, \Delta) \mid \not\exists R' \in Appl(\Pi, C', \Delta), \forall i, 1 \le i \le h, R' \cap R_j \ne \emptyset\}$
 - Set of partial halting configurations.
 - Accessible configurations there are no multiset R' of applicable rules such that R' contains rules from all partions R_i .

Preview of Formal Framework 2

Preview: Formal Framework 2 - Configuration

$$C = (L, \rho) = (L = \{(id_1, l_1, w_1), ..., (id_j, l_j, w_j), ...(id_m, l_m, w_m)\}, \rho)$$

$$L = \left\{ egin{pmatrix} w_1 & \cdots & w_j & \cdots & w_m \\ id_1 & id_j & id_m \end{pmatrix}
ight\}$$

$$\rho\ni \bigcirc \longrightarrow \bigcirc$$

$$id_k \qquad id_{k'}$$

- $id_j \in \mathbb{N}$ id
- $w_j \in O^{\circ}$ multiset over O
- $l_j \in Lab$ label
- (id_j, l_j, w_j) labelled cell
- $L \in (\mathbb{N} \times Lab \times O^{\circ})^*$ list of labelled cells
- $\rho \subseteq \mathbb{N} \times \mathbb{N}$ relations between cells (ids)
- $C = (L, \rho)$ configuration
- $C_L = L$ and $C_\rho = \rho$.

1.2 Components of a Rule

- 0. $r = (Labels, \rho, Perm, For, Rewrite, Label-Rename, Delete, Delete-and-Move, Generate, Generate-and-Copy, Change-Relation)$
 - \bullet r is a rule.
- 1. $Labels(r) = (l_1, ..., l_j, ..., l_k) \in Lab^k$

$$L^{abel(r)} = \underbrace{ 1}_{l_1} \cdots \underbrace{ j}_{l_j} \cdots \underbrace{ k}_{l_k}$$

- 2. $\rho(r) \subseteq \mathbb{N}_k \times \mathbb{N}_k$
 - $\mathbb{N}_k = \{1, ..., j, ..., k\}$
- 3. $Perm(r) = \{P_1, ..., P_{j'}, ..., P_{\overline{p}}\} \subseteq \mathbb{C}_k$

$$Perm(r) = \left\{ \begin{array}{c} P_1 = \left\{ \underbrace{p_{(1,1)}} \cdots \underbrace{p_{(1,j)}} \cdots \underbrace{p_{(1,k)}} \right\} \right\}, \dots \\ P_{j'} = \left\{ \underbrace{p_{(j',1)}} \cdots \underbrace{p_{(j',j)}} \cdots \underbrace{p_{(j',k)}} \right\} \right\}, \dots \\ P_{\overline{p}} = \left\{ \underbrace{p_{(\overline{p},1)}} \cdots \underbrace{p_{(\overline{p},j)}} \cdots \underbrace{p_{(\overline{p},k)}} \right\} \right\}$$

$$For(r) = \left\{ \begin{array}{c} F_1 = \left\{ \underbrace{ \left(f_{(1,1)} \right) \cdots \left(f_{(1,j)} \right) \cdots \left(f_{(1,k)} \right) }_{j} \right\}, \dots \\ F_{j'} = \left\{ \underbrace{ \left(f_{(j',1)} \right) \cdots \left(f_{(j',j)} \right) \cdots \left(f_{(j',k)} \right) }_{k} \right\}, \dots \\ F_{\overline{f}} = \left\{ \underbrace{ \left(f_{(\overline{f},1)} \right) \cdots \left(f_{(\overline{f},j)} \right) \cdots \left(f_{(\overline{f},k)} \right) }_{j} \right\} \right\} \right\}$$

- $f_{(j',j)} \in O^{\circ}$
- 5. $Rewrite(r) = U \rightarrow V$
 - $U, V \in \mathbb{C}_k$
 - Rewrite(r) is a general rewriting rule, rewriting a finite basic configuration U to another finite basic configuration V.
- 6. Label-Rename $(r) = \{..., (i, l'), ...\} \in (\mathbb{N}_k \times Lab)^*$

7. $Delete(r) = \{..., j, ...\} \in \mathbb{N}_k^*$

- j id of cell to be deleted
- 8. Delete-Move $(r) \in (\mathbb{N}_k \times \mathbb{N}_k)^*$

- (j, j') pair of ids
- ullet j id of cell to be deleted
- j' id of cell to receive the multiset
- Delete-Move(r)- list of pairs of ids
- 9. $Generate(r) = \{..., (j', h, u), ...\} \in (\mathbb{N}' \times Lab \times O^{\circ})^*$

9. $Generate(r) = \{..., (j', h, u), ...\} \in (\mathbb{N}' \times Lab \times O^{\circ})^*$

- j' primed id new id
- \bullet h label
- \bullet u multiset
- $10. \ \ Generate-Copy(r) = \{..., (j', h, i, (u, v)), ...\} \in (\mathbb{N}' \times Lab \times \mathbb{N} \times (O^{\circ} \times O^{\circ}))^*$

Preview of Formal Framework 3

Preview: Formal Framework 3 – Network of Cells

Definition 2. A network of cells of degree $n \geq 1$ is a construct

$$\Pi = (n, V, w, c_{in}, c_{out}, Inf, R)$$

where

- 1. n is the number of cells;
- 2. V is a finite alphabet;
- 3. $w = (w_1, \ldots, w_n), w_i \in \langle V, \mathbb{N} \rangle$, for $1 \leq i \leq n$, is the finite multiset initially associated to cell i;
- 4. $c_{in} \subseteq \{1, \ldots, n\}$ is the set of input cells;
- 5. $c_{out} \subseteq \{1, \ldots, n\}$ is the set of output cells;
- 6. $Inf = (Inf_1, ..., Inf_n)$, $Inf_i \subseteq V$, for $1 \le i \le n$, is the set of symbols occurring infinitely often in cell i (in most of the cases, only one cell, called the environment, will contain symbols occurring with infinite multiplicity);

Preview: Formal Framework 3 – Interactive Rules

Definition 4. We say that an interaction rule $r = (X \to Y; E)$ is eligible for the configuration C with $C = (u_1, \ldots, u_n)$ if and only if for all $i, 1 \le i \le n$, we have

- $x_i \subseteq u_i$ (x_i is a submultiset of u_i) and
- $u_i \in L^{\circ}(E_i)$ (u_i belongs to the regular multiset language described by the expression E_i).

Formal Framework - Research Approaches

FF→**P:** Help answer open problems

P->FF: Improve the framework

Formal Framework - Research Ideas

- 1. Merge the dynamic formal framework with the SNP formal framework . (FF)
- 2. <u>Conjecture:</u> Many SNP system variants are 'equivalent'. Use formal framework to check if this is true. (**FF** \rightarrow **P**).
- **3.** Extentend the formal framework to handle self-modifying P systems. ($P \rightarrow FF$).
- **4.** Check if "all" P systems if they can be represented using formal framework. Extend the framework if needed. ($P \rightarrow FF$)
- 5. Reformulate rule representation as bottom-up instead of top down. (FF)