Statistical Inference (statinference-011) Course Project Part 1

Esmit Pérez February 16, 2015

Part 1

Overview

This is the report for the project for the statistical inference class. In it, I will use simulation to explore inference and do some simple inferential data analysis. The project consists of two parts:

- 1. A simulation exercise.
- 2. Basic inferential data analysis.

The format and formulas here included are based off the outline of the project.

Simulations

The exponential distribution can be simulated in R with rexp(n, lambda) where lambda is the rate parameter. The mean of exponential distribution is 1/lambda and the standard deviation is also 1/lambda. Set lambda = 0.2 for all of the simulations. You will investigate the distribution of averages of 40 exponentials. Note that you will need to do a thousand simulations.

```
# load libraries, setup variables
library(ggplot2)
lambda <- 0.2
mu <- 1/lambda
stdDev <- 1/lambda
numExponentials <- 40
numSimulations <- 1:1000

# we're dealing with random data, so always set seed to make it reproducible.
set.seed(909)

# obtains the mean of running rexp with 40 exponentials and given lambda
cfunc <- function(v) {mean(rexp(numExponentials, lambda))}

# for each entry in array of size 1000, run the function
mns = NULL
for (i in 1 : 1000) mns = c(mns, mean(cfunc()))
dat <- data.frame(x = mns)</pre>
```

Sample Mean versus Theoretical Mean

Theoretical mean is 1/lambda:

mu

[1] 5

The sample mean is:

mean(dat\$x)

[1] 4.960913

Sample Variance versus Theoretical Variance

Theoretical variance is $\mu/\sqrt(n)$:

mu/sqrt(numExponentials)

[1] 0.7905694

The sample variance S is:

var(dat\$x)

[1] 0.619083

Distribution

The following graph shows how the mean values of 1000 simulations approximate the normal distribution (curve in red). For complete code and output see appendix, fig 1.1

Appendix

Part 1 - Supporting figures.

Figure 1.1

