Probeklausur zu Programmieren 1 im Wintersemester 2011/12

	GCS	chr:	iebe	en a	m.	•	_•	-			
Vorname											
Nachname											
Matrikelnum	mer										
Geburtsdatur											
Studiengang	11										
buddengang											
Klausur für 9	Cre	editj	poii	nts	wer	rten	? []			
Vom Prüfer auszufüllen	:										
Aufgabe	1	2	3	4	5	6	7	8	9	10	Σ
Aufgabe Punkte	1 10	10	3	10	5	6	7	8	9	10	Σ 100
Punkte							10	10	10	10	
Punkte						10	10 Kla	10 Lusu	10	10 nkte	100
Punkte						10	10 Kla	10 Lusu	10	10 nkte	100

Generelle Klausurhinweise:

- 1. Geben Sie auf jedem Blatt (oben rechts) ihre Matrikelnummer an. Blätter ohne Matrikelnummer können nicht gewertet werden.
- 2. Schreiben Sie bitte leserlich!
- 3. Kontrollieren Sie ihre Klausur auf Vollständigkeit. Die Seitenzahlen befinden sich unten rechts.
- 4. Verwenden Sie die Rückseiten der Klausur ausschließlich für eigene Notizen diese werden **nicht** gewertet. Die letzte Seiten der Klausur ist als "Schmierpapier" vorgesehen, falls der Platz zum Beantworten einer Frage nicht ausreicht (Verweis bei der Aufgabenstellung und deutliche Kennzeichnung auf dem Schmierblatt). Benötigen Sie weiteres Papier, melden Sie sich bei der Aufsicht. Selbst mit gebrachtes Papier wird als Täuschungsversuch gewertet!
- 5. Außer einem dokumentenechten Stift kein Bleistift (**nicht** Rot) sind keine weiteren Hilfsmittel zugelassen, wie Handy, Taschenrechner, Laptop etc. (ein betriebsbereites Handy wird als Täuschungsversuch gewertet).
- 6. Die Prüflinge können während der Klausur einzeln die Toilette besuchen. Vor Verlassen des Klausurraumes haben diese bei der Aufsicht ihren Namen anzugeben.
- 7. Für die Bearbeitung der Klausur stehen 120 Minuten zur Verfügung. Eine halbe Stunde (30 Minuten) vor Abgabe ist es den Prüflingen untersagt den Raum zu verlassen, um unnötige Unruhe zu vermeiden.

	Matrikelnummer
gabe 1: Multiple Choice	Punkte: / 10
(a) (2 Punkte) Pythonanalyse Was berechnet folgende Funktion?	
<pre>def unknown(a): for i in range(2, int(a**0.5) + if a % i == 0: return i return None</pre>	1):
Die Wurzel von a für eine Zah Das Quadrat von a für eine po Einen ganzzahligen Teiler von Den größten ganzzahligen Teil	ositiven Zahlen a
(b) (2 Punkte) Python Ausdrücke Welche der folgenden Ausdrücke werden gewertet? 5//2 * 2 == 5.0 not 4%2 == 1 bool(4<<1>>3) keine der obigen	von Python (Version 3.x) zu True aus-
(c) (2 Punkte) Funktionen & Prozedure Funktionen unterscheiden sich von Proz ihre Signatur. das vorhanden sein eines Rück formale Parameter.	eduren durch

(d) (2 Punkte) Abstrakte Datentypen

reale Parameter.

Welche Aussagen treffen auf Abstrakte Datentypen zu?

Stellen Schnittstellen bereit

Sind mit Datenstrukturen gleichzusetzen

Besitzen einen abgedeckten Wertebereich

Reduzieren ggf. die Mächtigkeit einer Datenstruktur

(e)	(2 Punkte)	Sync	hronisa	tionsmec.	hanismen
-----	------------	------	---------	-----------	----------

Mit Semaphoren kann

Aufgabe 1: Multiple Choice

ein wechselseitiger Ausschluss erzielt werden.
eine atomare Aktion sichergestellt werden.
eine Aktion abgebrochen werden.

ein Betriebsmittel geschützt werden.

Matrikelnummer	•
Matrikelnummer	

Aufgabe 2: Zahlendarstellung

Punkte: __ / 10

(a) (2 Punkte) Geben Sie das Bitmuster und den Rechenweg der Zahl z=-21,5 gemäß <code>IEEE-754</code> mit einfacher Genauigkeit an.

Matrikelnummer

- (b) (2 Punkte) Welche Dezimalzahlz wird mit folgenden Bitmuster gemäß $\it IEEE-754$ Codiert? Geben Sie den Rechenweg an.

(c) (2 Punkte) Vervollständigen Sie die nachstehende Tabelle gemäß der in der Tabelle gegebenen Zahlenbasen.

Binär	Hexadezimal
0101 1011 1010 0110	
	79E

(d) (2 Punkte) Vervollständigen Sie die nachstehende Tabelle gemäß des Zweierkomplementes für eine Wortlänge von 8 Bit.

2er-Komplement	Dezimal
0111 1110	
	-99

(e)	(2 Punkte)	Worin besteht der	Unterschied	des Zweierkomple	ements im	Vergleich
	zum Einerk	omplement?				

٦.	latrikelnummer	
Iν	ratrikemummer	

Aufgabe 3: Python-Datentypen

Punkte: __ / 10

(a) (2 Punkte) Rekonstruieren Sie den Graphen G anhand der Adjazenzliste ${\tt A}$.

Matrikelnummer	
----------------	--

,	(1,)	١ ،	(1 D	Camahan	a . :	J:.	folgondon	Derthon	Codonailan
((D)) ((4 Funkte)	Gegeben	seien	шe	rorgenden	rython	Codezeilen:

Geben Sie die Auswertungsreihenfolge der Operatoren von links (zuerst) nach rechts (zuletzt) an.

Priorität

1 2 3

Auswertungsreihenfolge der Operatoren aus Zeile $1\,$

Auswertungsreihenfolge der Operatoren aus Zeile $2\,$

(c)	(2 Punkte)	Von welchem	type sind die	e Variablen a	a und b?	

- (d) (2 Punkte) Vervollständigen Sie die folgenden Aussagen:
 - 1. Wie viele Zustände lassen sich mit n-Bit kodieren?
- 1
- 2. Wie werden veränderliche Datentypen in Python genannt?
 - 2. _____

Matrikelnummer	

Aufgabe 4: Kontrollstrukturen

Punkte: __ / 10

(a) (4 Punkte) Überführen Sie den mathematischen Ausdruck $x = \sum_{k=1}^{n} (2k-1)$ in eine äquivalente Python Funktion sum_even(n) die das Ergebnis x zurück gibt.

```
1 >>>
2 . . . .
3 . . . .
4 . . . .
5 . . . .
6 . . . .
7 . . . .
```

(b) (4 Punkte) Welche Ausgabe erzeugt folgendes Programm?

```
1 a = 2
2 def foo(bar=4):
3    return bar ** 2

4
5 def bar(b):
6    global a
7    if a<b:
8         a -= 1
9         return foo(b)
10    else:
11         b = b + 1
12         return a + b
13
14 for i in range(5):
15    print(bar(i))</pre>
```


- (c) (2 Punkte) Beantworten Sie die folgenden Fragen.
 - 1. Mit welchem Schlüsselwort kann die Ausführung einer Schleife in Python übersprungen werden?

continue 1.

 $2.\ \ Wie \ lautet \ das \ Schlüsselwort \ das \ zum \ Verlassen \ eines \ Schleifenrumpfes \ führt?$

2. ____

Aufgabe 5: OOP & OOAD

Punkte: __ / 10

(a) (6 Punkte) Erstellen Sie aus dem gegebenen Python-Code das zugehörige UML-Klassendiagramm.

```
class Compress(object):
      def __init__(self): self.__compression = 0.0
      def encode(self, string=''): return ''
def decode(self, string=''): return ''
      def verbose(self): return ''
7 class Huffman(Compress):
    def __init__(self):
         Compress.__init__(self)
9
         self.frequency = {}
10
         self.character_count = 0
11
def H(self, char=''): return 0.0
      def I(self, char=''): return 0.0
13
      def encode_text(self, text=''): return ''
      def compute_entropy(self, length=0): return 0.0
      def count_frequency(self, char=''): return 0
17
18 class RunLengthEncoding(Compress):
      def write_file(self, path=''): return None
```


(b)	(2 Punkte)	Erläutern Sie den	Begriff Introspektion	i.	
(c)	(2 Punkte) tierung.	Erläutern Sie den	Begriff des Ableiten	im Kontext des	Objektorien-

Matrikelnummer _____

Punkte: __ / 10

Aufgabe 6: Datenstrukturen

Gegeben sei die folgende Adjazenzmatrix \mathcal{A} des Baumes \mathcal{B} .

	Α	В	С	D	Е	F	G	Н	I	J
Α	0	1	1	0	0	0	0	0	0	0
В	1	0	0	1	1	0	0	0	0	0
С	1	0	0	0	0	1	0	0	0	0
D	0	1	0	0	0	0	1	1	0	0
E	0	1	0	0	0	0	0	0	0	0
F	0	0	1	0	0	0	0	0	1	1
G	0	0	0	1	0	0	0	0	0	0
Н	0	0	0	1	0	0	0	0	0	0
I	0	0	0	0	0	1	0	0	0	0
J	0	0	0	0	0	1	0	0	0	0

(a) (4 Punkte) Zeichnen Sie den durch \mathcal{A} beschriebenen Baum \mathcal{B} mit A als Wurzel. Verwenden Sie den **linken** Pfad für Knoten die nur einen Nachfahren besitzen.

(b) (6 Punkte) Traversieren Sie den Baum und nennen Sie die Reihenfolge, in der die Knoten betrachtet werden für:

Preorder:			
Inorder:			
Postorder:			

Matrikelnummer	
----------------	--

Punkte: __ / 10

Aufgabe 7: Daten – Information – Wissen

Gegeben sei die folgende Nachricht:

TRUG TIM EINE SO ALTE HOSE GERN?

Gehen Sie im Folgenden davon aus, dass alle Zeichen des zugrundeliegenden Alphabets in der Nachricht vorkommen und das die Nachricht repräsentativ für die Auftrittswahrscheinlichkeit eines jeden Zeichens ist.

(a) (4 Punkte) Wie definierte Shannon die erwartetet Information ($Entropie\ H$) einer Nachrichtenquelle (Informationsquelle) X über einem Zeichenvorrat Ω ?

(b) (4 Punkte) Wie groß ist der Informationsgehalt I für die Zeichen $\mathtt A$ und $\mathtt I$? Geben Sie auch den Rechenweg an.

(c) (2 Punkte) Mit was kann die Entropie eines Zeichens einer Informationsquelle gleichgesetzt werden?

Matrikelnummer	
Manikemumiei	

Aufgabe 8: Debuggen

Punkte: __ / 10

(a) (6 Punkte) Finden Sie in folgendem Code alle Fehler.

Fehler in Zeile 1:			
Fehler in Zeile 2:			
Fehler in Zeile 3:			
Fehler in Zeile 4:			
Fehler in Zeile 5:			
Fehler in Zeile 6:			
Fehler in Zeile 7:			

Matrikelnummer	

(b) (4 Punkte) Gegeben Sei die folgende Python-Funktion

```
1 def f(x, y, z): # S
2     r = None
3     if y > z: # B1
4         r = y # A1
5         if 5 < z: # B2
6         r = x # A2
7     if x <= y: # B3
8         r = y # A3
9     return r # E</pre>
```

und die Testmenge \mathcal{T} , bei der jeder Testfall die Form (x,y,z) besitzt:

$$\mathcal{T} := \{(6,5,5), (0,1,1), (6,6,5), (8,7,6)\}$$

Erweitern Sie die gegebene Testmenge $\mathcal T$ um nötige Testfälle, so dass eine $minimale$ $Testmenge$ zur Ablaufpfadüberdeckung entsteht.

Aufgabe 9: Prozesse & Synchronisation

Punkte: /	[/] 10
-----------	-----------------

(a) (2 Punkte) Erklären Sie in eigenen Worten was der "wechselseitiger Ausschluss" in der Informatik bewirkt?

(b) (8 Punkte) Benennen Sie die gekennzeichneten Elemente (i-viii) der Zeichnung?

i	
ii	
iii	
iv	
v	
vi	
vii	

e 10: Algorithmenentwurf (10 Punkte) Erläutern Sie die systematische Vorgehensweise von Divide and Conquer-, Greedy- und Backtracking-Algorithmen und gehen Sie auf deren Vorund Nachteil ein:
Divide and Conquer
Greedy
Backtracking

Matrikelnummer _____

