# 1. HBV

The HBV (Bergström, 1992) is a well known conceptual rainfall-runoff model. Based on its history e.g. (Das, Bárdossy, Zehe, and He, 2008; Götzinger and Bárdossy, 2007; Hundecha and Bárdossy, 2004) in this study area and simplicity, the authors have chosen to use a slightly modified version that conserves mass. To start with, it needs a precipitation, a temperature, and a potential evapotranspiration (PET) time series. It can be run in a spatially lumped or a distributed configuration. A schematic diagram and the equations of a lumped configuration are given here. In order to obtain sets of equally good model parameters, the Robust Paramter Estimation (ROPE) procedure Bárdossy and Singh (2008) was used.



 $\textbf{Figure 1.} \ \, \textbf{The HBV model}$ 

### Snow melt and accumulation

$$ME_i = max(0.0, (CM_{TE} + (CM_{PR} \cdot PR_i)) \cdot (TE_i - TT)) \tag{1}$$

$$SN_i = \begin{cases} SN_{i-1} + PR_i & \text{if } TE_i <= TT, \\ SN_{i-1} - ME_i & \text{else.} \end{cases}$$
 (2)

$$LP_i = \begin{cases} 0.0 & \text{if } TE_i <= TT, \\ PR_i + \min(SN_{i-1}, ME_i) & \text{else.} \end{cases}$$
 (3)

where the subscript i is the index of a given day,  $CM_{TE}$  is the snow melt due to increase in temperature in  $mm/{}^{\circ}C \cdot day$ ,  $PR_i$  is the precipitation in mm/day,  $CM_{PR}$  is the snow melt due to falling liquid precipitation in  $mm/{}^{\circ}C \cdot day \cdot mm$  of  $PR_i$ ,  $TE_i$  is the temperature in  ${}^{\circ}C$ , TT is the threshold temperature below which the precipitation falls as snow,  $ME_i$  is the possible snow melt in mm,  $SN_i$  is the total accumulated snow in mm,  $LP_i$  is the liquid precipitation in mm that might come from snow melt or precipitation or both.

# Evapotranspiration and soil moisture

$$AM_{i} = SM_{i-1} + (LP_{i} \cdot (1 - (SM_{i-1}/FC)^{\beta}))$$
(4)

$$ET_{i} = \begin{cases} min(AM_{i}, PE_{i}) & \text{if } SM_{i-1} > PWP, \\ min(AM_{i}, (SM_{i-1}/FC) \cdot PE_{i}) & \text{else.} \end{cases}$$
 (5)

$$SM_i = max(0.0, AM_i - ET_i) \tag{6}$$

where  $SM_i$  is the soil moisture in mm, FC is the field capacity in mm, PWP is the permanent wilting point in mm,  $\beta$  is a unitless constant related to the soil's ability to retain moisture,  $AM_i$  is the available soil moisture in mm,  $PE_i$  is the potential evapotranspiration in mm/day,  $ET_i$  is the actual evapotranspiration in mm/day.

### Upper reservoir runoff routing

$$RN_i = LP_i \cdot (SM_{i-1}/FC)^{\beta} \tag{7}$$

$$UR\_UO_i = max(0.0, (UR\_ST_{i-1} - UT) \cdot K_{uu})$$
(8)

$$UR\_LO_i = max(0.0, (UR\_ST_{i-1} - UR\_UO_i) \cdot K_{ul})$$
 (9)

$$UR\_LR_i = max(0.0, (UR\_ST_{i-1} - UR\_UO_i - UR\_LO_i) \cdot K_d)$$
 (10)

$$UR\_ST_i = max(0.0, (UR\_ST_{i-1} - UR\_UO_i - UR\_LO_i - UR\_LR_i + RN_i))$$
 (11)

where  $RN_i$  is the runoff in mm/day i.e. the amount of water that is not retained by the soil and is available for routing through the model's reservoirs,  $UR\_ST_i$  is the upper reservoir storage in mm, UT is the storage threshold in mm above which quick runoff from the upper outlet of the reservoir should take place.  $K_{uu}$  is the upper reservoir upper outlet's runoff coefficient in  $day^{-1}$ ,  $UR\_UO_i$  is the runoff in mm/day from the upper reservoir upper outlet,  $K_{ul}$  is the upper reservoir lower outlet's runoff coefficient

in  $day^{-1}$ ,  $K_d$  is the coefficient of runoff transfer from the upper to lower reservoirs in  $day^{-1}$ ,  $UR\_LO_i$  is the runoff from the upper reservoir's lower outlet in mm/day.

# Lower reservoir runoff routing

$$LR_{-}O_{i} = LR_{-}ST_{i-1} \cdot K_{ll} \tag{12}$$

$$LR\_ST_i = LR\_ST_{i-1} + UR\_LR_i - LR\_O_i$$

$$\tag{13}$$

where  $LR\_ST_i$  is the lower reservoir storage in mm,  $K_{ll}$  is the lower reservoir runoff coefficient in  $day^{-1}$ ,  $LR\_O_i$  is the runoff from the lower reservoir in mm/day.

# Simulated discharge

$$QS_i = (UR\_UO_i + UR\_LO_i + LR\_O_i) \cdot CC \tag{14}$$

where CC is a conversion constant that converts mm/day to  $m^3/sec$  in our case,  $QS_i$  is the simulated discharge in  $m^3/sec$ .

#### References

- A. Bárdossy and S. K. Singh. Robust estimation of hydrological model parameters. *Hydrology* and Earth System Sciences, 12(6):1273–1283, 2008.
- S. Bergström. *The HBV Model: Its Structure and Applications*. SMHI Reports Hydrology. SMHI, 1992. URL https://books.google.de/books?id=u7F7mwEACAAJ.
- T. Das, A. Bárdossy, E. Zehe, and Y. He. Comparison of conceptual model performance using different representations of spatial variability. *Journal of Hydrology*, 356:106–118, July 2008.
- J. Götzinger and A. Bárdossy. Comparison of four regionalisation methods for a distributed hydrological model. *Journal of Hydrology*, 333:374–384, February 2007.
- Y. Hundecha and A. Bárdossy. Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model. *Journal* of *Hydrology*, 292:281–295, June 2004.