Improper Integrals

Sriram Vadlamani

February 3, 2020

Contents

1	Definition	3
2	Convergence and Divergence	3
	2.1 Proposition 1	3
	2.2 Riemann Functions	3
	2.3 Positive funtions improper integrals	4
3	Cheat sheet	4
	3.1 Different Integration methods	4
	3.2 Integration by parts	4
	3.3 Integration by substitution	4
4	Abel's Theorem	4
5	Some important integrals	5
6	Last Remarks	5

1 Definition

When a function is not defind for either or both of the bounds in an integral, it is known as an improper integral.

$$\int_{a}^{b} f(t)dt$$

$$f: [a, b[\to R]$$

$$f \text{ continuous on } [a, b[$$

$$\int_{1}^{+\infty} e^{-t} dt$$

2 Convergence and Divergence

let $f:[a,b[\to R \text{ and } f \text{ be continous on } [a,b[.$ we say that the integral is convergent if

$$\lim_{x \to b} \int_{a}^{x} f(t)dt$$

is a finite value. else, it is divergent.

2.1 Proposition 1

let f and g be two functions on [a,b[such that, both integrals $\int_a^b f(t)dt$ and $\int_a^b g(t)dt$ converge.

Then $\forall \alpha \in R$, $\int_a^b (\alpha f(t) + g(t))$ converges and linearity can be used to split the two integrals.

2.2 Riemann Functions

Theorem:

- $\int_0^1 dt/t^{\alpha}$ converges $\Leftrightarrow \alpha < 1$
- $\int_1^{+\infty} dt/t^{\alpha}$ converges $\Leftrightarrow \alpha > 1$
- $\int_0^{+\infty} dt/t^{\alpha}$ is always divergent.

Positive funtions improper integrals

let $f: [a, b] \to \mathbb{R}_+$ and $g: [a, b] \to \mathbb{R}_+$, continous on [a, b]. if f(t) < g(t), then

- if $\int_a^b g(t)dt$ is conv $\Rightarrow \int_a^b f(t)dt$ is conv.
- if $\int_a^b f(t)dt$ is divergent $\Rightarrow \int_a^b g(t)dt$ is divergent.
- if f(t) = o(g(t)) then if $\int_a^b g(t)dt$ is conv. $\Rightarrow \int_a^b f(t)dt$ is conv.
- if $f(t) \sim g(t)$ then $\int_a^b f(t)dt$ and $\int_a^b g(t)dt$ have the same nature

3 Cheat sheet

3.1 Different Integration methods

3.2 Integration by parts

When the integral is in the form of $f(t) \cdot g(t)$ we can do the integration by splitting them into the following:

$$\int_a^b u \cdot v' = u \cdot v + \int_a^b v \cdot u'$$

Integration by substitution

When we have an integral $\int_a^b f(x)dx$ then we try to find a suitable u where: u=f(x) and replace the integral as follows: $\int_{f(a)}^{f(b)} udu$

Abel's Theorem 4

let f and g be two continous functions over [a, b] such that:

- 1) f is decreasing and $\lim_{t\to+\infty} f(t) = 0$
- 2) $\exists k \in R, \forall x \in [a, b[, \int_a^x \mid g(t) \mid dt \leq k$ then the integral $\int_a^x f(t) \cdot g(t) dt$ is convergent.

5 Some important integrals

- LEJEUNE-DIRICHLET's integral represented as $\int_0^{+\infty} \frac{\sin(x)}{x} dx$
- LAPLACE GAUSS's integral represented as $\int_0^{+\infty} e^{-t^2} dt$ which is equal to $\frac{\sqrt{\pi}}{2}$

6 Last Remarks

General redefinition of a function:

 $\forall f: t \to f(t) \text{ defined on } [a,b]$ if $\lim_{x \to a} f(x) = k \ \forall k \in R \text{ then:}$ f(x) is continous on [a,b]