Maths

Schobert Néo

15 novembre 2021

Table des matières

1	Cor	overgenc	e simple /	conv	erge	nce	u	nifo	rm	\mathbf{e}											2
	1.1	8 Novem	$_{ m abre}$																		2
	1.2	Questio	ns																		2
		1.2.1	Remarques .																		2
	1.3	Session	exercice 8:.																		2
		1.3.1	Exercice 21 (1	KDR)	١																2
		1.3.2	Exercice 13 .																		3
		1.3.3	Exercice 7																		3
		1.3.4	Exercice 16 .																		3
	1.4	12 Nove	$mbre \dots$																		3
		1.4.1	Questions																		3
		1.4.2	Remarque																		4
2	Integrale généralisée													4							
	2.1	15 Nove	$mbre \dots$																		4
		2.1.1	Questions																		4
		2.1.2	Remarque																		Ę

1 Convergence simple / convergence uniforme

1.1 8 Novembre

1.2 Questions

- Qu'est-ce que la convergence simple?
- Que dire de $g, h : A \subset D \to \mathbb{K}$ quand (f_n) converge simplement (CVS) vers g et h.
- Qu'est-ce que la limite simple (parler d'unicité)
- Propriétés qui se transmettent par convergence simple (2 trucs)
- Citer 2 propriétés qui ne se transmettent pas (citer 2 exemples)
- Quelle variable arrive en premier? x ou n?
- Parler de convergence simple / uniforme sur un ensemble
- Différence entre CVS et CVU.
- Quelle variable arrive en premier? x ou n?
- Propositions liées à la CVU. (restriction / CVU \Rightarrow CVS / $||||_{+\infty}$ / unicité)
- Qu'est-ce que la limite uniforme.
- Transfert de la continuité en CVU. (re-démontrer)
- Notation $\delta_n(x)$ et comment l'utiliser?
- Méthode pour montrer une non CVU.
- Rappeler notion de convergence uniforme / simple sur série d'application.
- Convergence simple de $\sum f_n$ sur A (A définir)
- Grossière divergence en convergence de série d'application. (redémontrer)
- Caractérisation de la convergence uniforme de $\sum f_n$ sur A.
- Transfert de la continuité en CVU de séries d'applications.
- Quand dispose-t-on de (R_n) et S?
- Définir convergence absolue et convergence normale d'une série d'application.
- Lien entre les 4 convergences.

1.2.1 Remarques

— Définir racine n-ième de $x \in \mathbb{R}$

1.3 Session exercice 8:

1.3.1 Exercice 21 (KDR)

Pour
$$x \in \mathbb{R}_+^*$$
, on pose $S(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{x+n}$

1. Mq S est définie et continue sur \mathbb{R}_{+}^{*} .

Pour la définition, montrer que S(x) existe.

Penser au CSSA $((\frac{1}{x+n})$ est décroissante et tend vers 0)

Ensuite, passer par la convergence uniforme puis par le théorème de transfert de continuité.

2. Soit $(x, y) \in \mathbb{R}_+^* | x < y$.

Etudier S(y) - S(x), puis repenser au CSSA et au fait que la somme est du signe de son premier

terme dans le CSSA.
$$(T(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{1}{x(n+1)}$$
 est du signe de son premier terme.)

3. Le but ici est de vérifier une équation fonctionnelle pour S(x).

On calcul alors S(x+1), que l'on exprime en fonction de S(x). Par changement de variable, on obtient :

$$\forall x \in \mathbb{R}_+^*, S(x+1) = \frac{1}{x} - S(x)$$

S est C^0 en 1. On étudie alors les limites : $S(x) = \frac{1}{x} - S(x+1) = \frac{1}{x} + o(\frac{1}{x}) \sim \frac{1}{x}$.

Donc $S(x) \sim_{0^+} \frac{1}{x}$

Pour l'équivalent en $+\infty$, il faut avoir l'idée **d'encadrer** S(x). Pour cela, utiliser la relation fonctionnelle et la monotonie de S en x et en x-1.

2

1.3.2 Exercice 13

Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$, on pose : $f_n(x) = \frac{\sin(nx)}{n!}$

Montrer que la série de fonctions $\sum f_n$ converge uniformément sur \mathbb{R} puis expliciter sa somme.

Ici, plutôt que de montrer la convergence uniforme en utilisant la convergence simple puis le reste R_n (qui doit tendre vers 0), on préfère utiliser la convergence normale.

$$\forall x \in \mathbb{R}, |f_n(x)| \leq \frac{1}{n!}.$$

Donc comme la borne supérieur et le plus petit des majorants, $||f_n||_{\infty} \leq \frac{1}{n!}$

Par comparaison de SATP, $\sum ||f_n||_{\infty}$ converge.

Donc on a convergence normale donc uniforme.

Elle converge donc simplement. On dispose alors de la somme S(x).

On y étudie la limite sachant que la fonction Im est \mathbb{R} linéaire et $dim_{\mathbb{R}}(\mathbb{C}) = 2 < +\infty$ donc Imest C^0 sur \mathbb{C} .

1.3.3 Exercice 7

Soit (f_n) une suite de fonctions polynômes qui converge uniformément sur \mathbb{R} vers f.

Montrer que f est une fonction polynôme.

Celui-ci est pas évident.

Il faut en fait repartir des définitions.

 f_n est une fonction polynôme donc $\exists P_n \in \mathbb{R}[X] | \forall t \in \mathbb{R}, f_n(t) = P_n(t)$.

On a alors
$$||f_n - f||_{\infty} \xrightarrow[n \to +\infty]{} 0$$

On remarque alors que toute fonction polynôme bornée sur \mathbb{R} est constante.

On s'intéresse alors aux "tranches de Cauchy".

C'est à dire, à $||f_{n+p} - f_n||_{\infty}$.

On montre que cette expression est bornée.

On a alors
$$\exists c_{n,p} \in \mathbb{R} | \forall t \in \mathbb{R}, \ f_{n+p}(t) - f_n(t) = c_{n,p}$$

$$c_{n,p} = f_{n,p}(12) - f_n(12) \xrightarrow[p \to +\infty]{} f(12) - f_n(12)$$

On a alors avec c_n la limite quand $p \to +\infty$ de $c_{n,p}$,

$$f(t) - f_n(t) = c_n$$

Donc $f(t) = f_N(t) + c_n f_N$ est une fonction pôlynomiale donc f est une fonction polynômiale.

1.3.4 Exercice 16

On pose
$$S(x) = \sum_{n=1}^{+\infty} \underbrace{n^x e^{-nx}}_{f_n(x)}$$
. Montrer que S est continue sur $]0, +\infty[$

Soit
$$x \in \mathbb{R}_{+}^{*}$$
,
 $f_n(x) = e^{-(n-\ln(x))x} = o(\frac{1}{n^2})$.

Donc $\sum f_n(x)$ converge car 2 > 1

Donc S(x) existe. Donc S est définie sur \mathbb{R}_{+}^{*} .

On ne peut pas utiliser la convergence normale ici car on s'aperçoit en faisant le tableau de signe, que $||f_n||_{\infty}=1$

On se place alors sur un segment où ca marche et ok par convergence normale...

12 Novembre 1.4

1.4.1 Questions

- Définir le rayon de convergence.
- Lien r / borne.
- Rayon de convergence de la suite nulle.
- Rayon de convergence d'une suite constante non nulle.
- Si la suite (a_n) est bornée, alors R_a ...
- Si la suite est convergente de limite non nulle alors R_a ...
- Si la suite tend vers zéro, alors R_a ...
- Si $|a_n| \leq |b_n|$, alors $R_a...R_b$.
- Si $a_n = \mathcal{O}(b_n)$ alors $R_a...R_b$.

- Si $a_n \sim b_n$ alors $R_a...R_b$.
- Lien entre R_{a+b} et R_a et R_b .
- Lien entre $R_{\alpha a}$ et R_a .
- Suite D(a) et I(a). (suite dérivée et primitive)
- Lien suite série pour R_a .
- Règle d'Alembert.
- Rayon de convergence de la suite géométrique (a^n)
- Pour montrer $R_a \leq R_b$,
 - On prend $r \in [0, R_a[$ puis on montrer que la suite $(b_n r^n)$ est bornée.
- -- $\forall h \in \mathbb{R}_+^*, \forall p \in \mathbb{N}, (r+h)^{p+1} \le (p+1)r^ph$
- Cas de la fraction rationnelle **non nulle**.
- Cas du produit de convolution.
- Qu'est-ce qu'une série entière de la variable complexe.
- Rayon de convergence d'une série entière.
- Définition ensemble de convergence de $\sum a_n z^n$, disque ouvert de $\sum a_n z^n$ et cercle d'incertitude de $\sum a_n z^n$.
- Définition somme de la série entière.
- Que peut-on dire du disque fermé D_r . Et que ne peut-on pas dire sur le disque ouvert de convergence D_a vis-à-vis de la convergence uniforme.
- Série entière produit des séries entières $\sum a_n z^n$ et $\sum b_n z^n$. $z \in \mathbb{C}, \in \mathbb{N}^*$, Rayon de convergence des séries $\sum_{n=0}^{+\infty} z^n, \sum_{n=p}^{+\infty} n(n-1)...(n-(p-1))z^{n-p}, \sum_{n=0}^{+\infty} \binom{p}{n+p}z^n$
 - et somme de ces séries. Moyen mnémotechnique pour le 2. (dérivation)
- cas des fonctions trigonométriques / exponentielles et trigonométriques hyperboliques.
- Définition du cos d'un complexe... Revoir l'histoire de la définition des fonctions cos et sin.
- Tout pareil pour les séries entières de la variable réelle.
- Dernier théorème.

1.4.2 Remarque

$\mathbf{2}$ Integrale généralisée

15 Novembre 2.1

2.1.1Questions

- Notion d'intégrale généralisée
- Dans le cas d'une fonction positive, son intégrale est croissante. Sa convergence équivaut alors à sa majoration. (comme les SATPs)
- Parties réelles et imaginaires stables par intégration.
- Croissance de l'intégrale
- Faire bien attention aux convergences
- Que ne faut-il pas écrire quand l'intégrale de f+g converge et l'intégrale de f et l'intégrale de q divergent.
- Définir le reste de l'intégrale et les conditions de dérivabilité.
- Définir intégrale généralisée de f sur [a, b]
- Dans le cas d'une fonction positive, son intégrale est croissante. Sa convergence équivaut alors à sa majoration. (comme les SATPs) (cas [a, b])
- Une application continue par morceaux sur un **segment** est bornée.
- Condition pour avoir l'intégrale de f convergente sur [a, b] quand f est continue par morceaux.
- Valeur de arctanh en fonction de ln
- Quand on fait les calculs, on utilise la notation $F(x) = \int_{-x}^{x} f(x) dx$
- Tout pareil sur [a, b]
- Notion d'intégrale généralisée sur a, b
- Généralement, on prolonge par continuité la fonction.
 - Exemple: g(t) = ln(t)ln(1-t).

g est continue sur]0,1[. On pose g(0)=g(1)=0. On a alors g est continue sur [0,1] $g(t)\sim_{0^+}-tln(t)\ g(t)\sim_{1^-}(t-1)ln(1-t)$ Alors $\int_0^1 g$ converge.

- Dans le changement de variable MPSI, on pose $t = \varphi(u)$. Il faut alors seulement $\varphi \in \mathscr{C}^1$
- Dans le nouveau changement de variable, cas des intégrales impropres, il faut $\varphi:]a, b[\to]\alpha, \beta[$ une bijection strictement monotone de classe \mathscr{C}^1 de $]\alpha, \beta[$ sur]a, b[.

On a alors si f est continue sur $]a,b[,\int_a^b f$ et $\int_\alpha^\beta (f\circ\varphi)\varphi'$ sont de même nature.

Dans le cas où ça converge, $\int_a^b f(x)dx = \int_\alpha^\beta f(\varphi(t))|\varphi'(t)|dt$

- Dans l'intégration par partie MPSI, on doit avoir la fonction qu'on primitive qui est \mathscr{C}^0 et la fonction qu'on dérive qui est \mathscr{C}^1 .
- Dans le nouveau théorème d'intégration par partie, cas des intégrales impropres, il faut en plus que, pour $\int_a^b u'v$, uv admette une limite en a et en b
- Définition d'une intégrale absolument convergente. D'une intégrale semi-convergente.
- Comparaison de deux fonctions continues par morceaux $0 \le \varphi \le \psi$ La convergence de l'intégrale de φ se déduit alors de celle de ψ . La divergence de l'intégrale de ψ se déduit alors de celle de φ .
- Conditions pour appliquer l'inégalité triangulaire à l'intégrale.

2.1.2 Remarque