Sequence to Sequence, no delay

Sequence to Sequence, no delay

Explore use-cases:
POS, Punctuation,
Formatting, ...

Sequence to Sequence, partial delay

Sequence to Sequence, partial delay

Explore use-cases:
POS, G2P, Named
Entity Extraction, ...

Sequence to Sequence, full delay

Sequence to Sequence, full delay

Recurrent Neuronal Network Encoder

Recurrent Neuronal Network Encoder

Recurrent Neuronal Network Encoder

Recurrent Neuronal Network Encoder

Recurrent Neuronal Network Encoder

Seq2seq is a family of machine learning approaches used for language processing. Applications include language translation, image captioning, conversational models and text summarization.

ho H H H H H H Please Play some music now

Encoder-Decoder with Recurrent Neuronal Networks

Encoder-Decoder with Recurrent Neuronal Networks

Encoder-Decoder with Recurrent Neuronal Networks

Encoder-Decoder with Recurrent Neuronal Networks

Encoder-Decoder with Recurrent Neuronal Networks

Encoder-Decoder with Recurrent Neuronal Networks

Encoder-Decoder with Recurrent Neuronal Networks

Seq2seq is a family of machine learning approaches used for language processing. Applications include language translation, image captioning, conversational models and text summarization.

$$\hat{s}_t = \underset{s \in \text{Tags}}{\operatorname{argmax}} P(s|\text{words})$$

Bitte Musik jetzt abspielen

Encoder-Decoder with Recurrent Neuronal Networks

Encoder-Decoder with Recurrent Neuronal Networks and Autoregression

Encoder-Decoder with Recurrent Neuronal Networks and Autoregression

Encoder-Decoder with Recurrent Neuronal Networks and Autoregression

Seq2seq is a family of machine learning approaches used for language processing. Applications include language translation, image captioning, conversational models and text summarization.

Input is previous prediction.

Encoder-Decoder with Recurrent Neuronal Networks and Autoregression

Seq2seq is a family of machine learning approaches used for language processing. Applications include language translation, image captioning, conversational models and text summarization.

This is called "autoregression"

Encoder-Decoder with Recurrent Neuronal Networks and Autoregression

Encoder-Decoder with Recurrent Neuronal Networks and Autoregression

Encoder-Decoder with Recurrent Neuronal Networks and Autoregression

Encoder-Decoder with Recurrent Neuronal Networks and Autoregression

Sequence To Sequence

Sequence To Sequence

Sequence To Sequence

Sequence To Sequence

Fixation und Sakkaden Lecture

Typisches Blickbewegungsmuster eines Schülers der vierten Klasse beim Lesen einer relativ schwierigen Textseite.

Das Laub om Herbst Gällt auch an vällig windstillen Merbsttagen von den Bäumen. Warum ist das soa Zwischen Zweig und Blattstiel bildet sich schon im Sommer ein Korkwebe. Am Ende des Sommers zerfällt das Blattgrün. Dadurch verfärbt sich das Jaul. wind nicht mehr mit Nährstoffen versorgt? da sich die Zellen des Korkgewebes auflösen **Fixation**

Kommentierte Übersichtsarbeit: Blickbewegungen beim Lesen, Leseentwicklung und Legasthenie Ralph Radach, Thomas Günther und Lynn Huestegge

Current Solution:

Current Solution:

Recurrent Neural Network with Attention Layer

Recurrent Neural Network with Attention Layer

Recurrent Neural Network with Attention Layer

Sequence to Sequence, full delay

Prof. Dr. Georges

- Network need to remember a lot of information
- Long backward path => vanishing/exploding gradients

loss Technische Hochschule Ingolstadt

Backward path

Recap vanishing & exploding gradients problem

Sequence to Sequence, full delay with Attention

Backward path

- Number of minimal and maximal derivatives
- Compare with residual connections?

Compute next decoder step

(1) Compatibility Function

Attention Layer

(1) Compatibility Function	$\mathbf{E} = f(\mathbf{K}, \mathbf{Q})$
(2) Distribution Function	$\mathbf{A} = \mathbf{g}(\mathbf{E})$
(3) Weighed Sum	C = AV

$$C = g(f(K,Q))V$$

Dot-Product Attention

(1) Compatibility Function	E =	= f(K,Q)	$:= \mathbf{Q}\mathbf{K}^{T}$
----------------------------	-----	----------	-------------------------------

(2) Distribution Function $\mathbf{A} = g(\mathbf{E}) := softmax(\mathbf{E})$

(3) Weighed Sum C = AV

 $C = softmax(QK^T)V$

Note: There are no weights to train!

Compatibility Function in Attention

Name	Equation	Reference
similarity	f(q, K) = sim(q, K)	Graves et al., 2014
multiplicative or dot	$f(\boldsymbol{q},\boldsymbol{K}) = \boldsymbol{q}^\intercal \boldsymbol{K}$	Luong et al., 2015
scaled multiplicative	$f(oldsymbol{q},oldsymbol{K})=rac{oldsymbol{q}^\intercaloldsymbol{K}}{\sqrt{d_k}}$	Vaswani et al., 2017
general or bilinear	$f(\boldsymbol{q},\boldsymbol{K}) = \boldsymbol{q}^{\intercal}\boldsymbol{W}\boldsymbol{K}$	Luong et al., 2015
biased general	$f(\boldsymbol{q},\boldsymbol{K}) = \boldsymbol{K}^\intercal(\boldsymbol{W}\boldsymbol{q} + \boldsymbol{b})$	Sordoni et al., 2016
activated general	$f(\boldsymbol{q}, \boldsymbol{K}) = act(\boldsymbol{q}^{\intercal} \boldsymbol{W} \boldsymbol{K} + \boldsymbol{b})$	Ma et al., 2017
concat	$f(\boldsymbol{q}, \boldsymbol{K}) = \boldsymbol{w_{imp}}^{\intercal} act \big(\boldsymbol{W}[\boldsymbol{K}; \boldsymbol{q}] + \boldsymbol{b} \big)$	Luong et al., 2015
additive	$f(\boldsymbol{q}, \boldsymbol{K}) = \boldsymbol{w_{imp}}^{\intercal} act(\boldsymbol{W_1} \boldsymbol{K} + \boldsymbol{W_2} \boldsymbol{q} + \boldsymbol{b})$	Bahdanau et al., 2015
deep	$f(q, K) = w_{imp}^{T} E^{(L-1)} + b^{L}$ $E^{(l)} = act(W_{l}E^{(l-1)} + b^{l})$ $E^{(1)} = act(W_{1}K + W_{0}q + b^{1})$	Pavlopoulos et al., 2017
location-based	$f(\boldsymbol{q}, \boldsymbol{K}) = f(\boldsymbol{q})$	Luong et al., 2015

Dot-Product Attention

Dot-Product Attention: Are there issues?

Intent Classification: P(<intent> | <word sequence>)

```
WIE WIRD MORGEN DAS WETTER IN MÜNCHEN ? => WEATHERFORECAST
WIE WIRD MORGEN DAS WETTER IN MÜNCHEN ? => LOCATION
WIE WIRD MORGEN DAS WETTER IN MÜNCHEN ? => DATE
WIE WIRD MORGEN DAS WETTER IN MÜNCHEN ? => QUESTION
WIE WIRD MORGEN DAS WETTER IN MÜNCHEN ? => NOISE
```


Dot-Product Attention: Are there issues?

This is just 1 scalar for each value-vector in the input sequence!

The context vector can only focus on one aspect of the input sequence, but language is not unique!

Intent Classification: P(<intent> | <word sequence>)

WIE WIRD MORGEN DAS WETTER IN MÜNCHEN? => WEATHERFORECAST

WIE WIRD MORGEN DAS WETTER IN MÜNCHEN? => LOCATION

WIE WIRD MORGEN DAS WETTER IN MÜNCHEN ? => DATE

WIE WIRD MORGEN DAS WETTER IN MÜNCHEN ? => QUESTION

WIE WIRD MORGEN DAS WETTER IN MÜNCHEN ? => NOISE

Dot-Product Attention: Are there issues?

Multi-Head Dot-Product Attention

Let the model decided to attend on various aspects!

Multi-Head Dot-Product Attention

Let the model decided to attend on various aspects!

Multi-Head Self (Dot-Product) Attention

Transformer (simplified)

Transformer (simplified)

Technische Hochschule Ingolstadt | Prof. Dr. Georges

Output

Probabilities

Softmax

https://glassboxmedicine.com/2019/08/15/the-transformer-attention-is-all-you-need/

Output

Output

Probabilities

Output

Examples

Question Classification

"weather" := Will it rain tomorrow?

"location" := Where is Munich?

Sentimental Analysis

Objectivity vs. Subjectivity

"A TDNN is a feed forward neuronal network." vs.

"I believe in neuronal networks."

Positive- vs. Negative-Polarity

"This was a great talk. I love NLP." vs.

"Text processing is not my favorite topic."

Newsgroup Classification

"NLP" := Information Retrieval is about ...

"car" := The gear of a car

Pre-training of Deep Bidirectional Transformers for Language Understanding

BERT := Bidirectional Encoder Representations from Transformers

Take-away: Attention mechanism in RNNs

1. Unrolling of RNNs

Matrix, Vector Notation of Neuronal Networks and graphical representation

2. Sequence to Sequence with RNNs and use-cases:

No-, Partial, Full-Delay. Part-Of-Speech Tagging, Grapheme to Phoneme Conversion, Machine Translation, Intent Extraction, ...

- 3. Attention: Focus on Relevant Section in the Encoder-Sequence given current output
- 4. Dot-Product Attention and the generalization:

Important key-words: "Key", "Value" and "Query", "Energy-", "Attention-" and "Context-vector", "Compatibility-" and "Distribution-function", "Self-" and "Multi-head attention"

5. https://arxiv.org/pdf/1706.03762.pdf