import pandas as pd
import numpy as np

from sklearn.datasets import load_iris
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import GridSearchCV

iris = load_iris()

df_iris = pd.DataFrame(data= np.c_[iris['data'], iris['target']], columns= iris['feature_name

df_iris.describe()

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	Spec
count	150.000000	150.000000	150.000000	150.000000	150.000
mean	5.843333	3.057333	3.758000	1.199333	1.000
std	0.828066	0.435866	1.765298	0.762238	0.819
min	4.300000	2.000000	1.000000	0.100000	0.000
25%	5.100000	2.800000	1.600000	0.300000	0.000
50%	5.800000	3.000000	4.350000	1.300000	1.000
75%	6.400000	3.300000	5.100000	1.800000	2.000
max	7.900000	4.400000	6.900000	2.500000	2.000

df_iris.head()

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	Species
0	5.1	3.5	1.4	0.2	0.0
1	4.9	3.0	1.4	0.2	0.0
2	4.7	3.2	1.3	0.2	0.0
3	4.6	3.1	1.5	0.2	0.0
4	5.0	3.6	1.4	0.2	0.0

X = df_iris.iloc[:, 0:4]
print(X)

```
sepal length (cm)
                              sepal width (cm) petal length (cm) petal width (cm)
     0
                         5.1
                                            3.5
                                                                 1.4
                                                                                    0.2
     1
                         4.9
                                            3.0
                                                                 1.4
                                                                                    0.2
     2
                         4.7
                                                                                    0.2
                                            3.2
                                                                 1.3
     3
                         4.6
                                            3.1
                                                                 1.5
                                                                                    0.2
     4
                         5.0
                                            3.6
                                                                 1.4
                                                                                    0.2
                         . . .
                                                                 . . .
                                                                                    . . .
                                            . . .
     . .
                                                                 5.2
                                                                                    2.3
     145
                         6.7
                                            3.0
     146
                         6.3
                                            2.5
                                                                 5.0
                                                                                    1.9
     147
                                            3.0
                                                                                    2.0
                         6.5
                                                                 5.2
     148
                         6.2
                                            3.4
                                                                 5.4
                                                                                    2.3
     149
                         5.9
                                            3.0
                                                                 5.1
                                                                                    1.8
     [150 rows x 4 columns]
y = df_iris.iloc[:, 4]
print(y)
     0
            0.0
     1
            0.0
     2
            0.0
     3
            0.0
            0.0
            . . .
     145
            2.0
     146
            2.0
     147
            2.0
     148
            2.0
     149
            2.0
     Name: Species, Length: 150, dtype: float64
k = 1
k range = 31
avg score = pd.Series([])
for k in range(1, k_range):
  knn = KNeighborsClassifier(n neighbors=k)
  scores = cross_val_score(knn, X, y, cv=10)
  avg_score[k] = scores.mean()
     /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:3: DeprecationWarning: The
       This is separate from the ipykernel package so we can avoid doing imports until
line = avg_score.plot.line()
line.set(xlabel="x label", ylabel="y label")
```


line = avg_score.plot.line()
line.set(xlabel="x label", ylabel="y label")
line.set xlim([11, 15])

{'n_neighbors': 13}

Colab paid products - Cancel contracts here

✓ 0s completed at 3:46 PM

×