Due: 26 September 2013

Recall the list induction principle to prove a property for finite lists of type a.

$$\begin{aligned} &[P([]) \land \\ & \forall x :: a. \, \forall xs :: [a]. \, P(xs) \Rightarrow P(x : xs) \\ & \Rightarrow \forall ys :: [a]. P(ys) \end{aligned}$$

Thus, for a property P of lists, to show that $\forall ys :: [a]$. P(ys) it is enough to show two things:

i.)
$$P([])$$

ii.) $\forall x :: a. \forall xs :: [a]. P(xs) \Rightarrow P(x : xs)$

Here are some definitions (note that \perp means loop forever).

$$head(x:xs) = x$$

 $head[] = \bot$
 $last[x] = x$
 $last(x:xs) = last xs$
 $last[] = \bot$
 $reverse[] = []$
 $reverse(x:xs) = (reverse xs) + +[x]$
 $map f[] = []$
 $map f (x:xs) = (f x) : map f xs$
 $(f \cdot g) x = f(g x)$

Two useful lemmas for problem 3 and 4 are as follows:

Lemma 1.
$$\forall ys, xs :: [a]. \ xs \neq [] \Rightarrow last(ys + +xs) = last \ xs$$

Lemma 2. $\forall ys, xs :: [a]. \ xs \neq [] \Rightarrow head(xs + +ys) = head \ xs$

One proof technique you also might need for 3 or 4 is case analysis. For any list xs :: [a] you can say xs = [] or xs = y : ys for some arbitrary y : a and ys :: [a]. This can be captured in a lemma as follws:

Lemma 3.
$$\forall xs :: [a]. \ xs = [] \lor \exists y :: a, ys :: [a]. \ xs = (y : ys)$$

Prove the following by finite list induction ¹.

- 1.) $\forall xs :: [a]. \ map(\langle x \to x) \ xs = xs$
- 2.) $\forall xs :: [a]. \ map(f.g) \ xs = ((map \ f). (map \ g)) \ xs$
- 3.) $\forall xs :: [a].\ head\ (reverse\ xs) = last\ xs$
- 4.) $\forall xs :: [a]. \ last (reverse \ xs) = head \ xs$

¹For problem 2 you can assume $g:: a \to b$ and $f:: b \to c$.