Zadanie 1.

Napisz program sortujący prymitywną metodą tabicę złożoną z 1000 wylosowanych liczb.

Zadanie 2.

Wykonaj to samo zadanie za pomocą napisanego przez Ciebie algorytmu quicksort. Porównaj czas wykonania obu algorytmów.

Zadanie 3.

Wyliczanka Józefa Flawiusza - odmiana

W kręgu stoi k osób. Ustalamy n będący odliczaną liczbą. Zaczynając od pierwszej osoby, odliczamy n kolejnych osób (w ustalonym kierunku, np. zgodnie z ruchem wskazówek zegara) i usuwamy następną z kręgu. Następnie powtarzamy proces zaczynając odliczanie od następnej osoby, aż zostanie tylko jedna.

Przykład: k=6, n=3

Adam Barbara Cezary Dariusz Ewelina Franciszka

Adam Barbara Cezary Ewelina Franciszka

Adam Cezary Ewelina Franciszka

Cezary Ewelina Franciszka

Ewelina Franciszka

Ewelina

Zrealizuj powyższe zadanie używając tablicy jako struktury danych

Zadanie 4.

Optymalne rozwiązanie powyższego problemu jest następujące: ustawiamy osoby w kolejce. "Odliczenie" osoby polega na wyciągnięciu osoby z początku kolejki i ustawienie jej na końcu. Po odliczeniu n osób, usuwamy pierwszą osobę z kolejki.

Zadanie 5 - Myjnia samochodowa

Rozważmy myjnię samochodową. Do myjni przyjeżdzają brudne samochody, wymagające mycia przez pewną ilość minut. Gdy samochód przyjeżdza, a myjnia jest wolna, samochód zajmie ją na stosowną ilość minut. W przeciwnym wypadku stanie w kolejce. Gdy myjnia zwalnia się, zajmuje je pierwszy samochód w kolejce.

Celem zadania jest zasymulowanie takiego procesu i zbadanie, ile wynosi średni czas oczekiwania samochodu na wolne stanowisko.

Napisz program symulacyjny który:

- 1. Pozwoli ustalić liczbę stanowisk myjących oraz częstotliwość przyjazdu kolejnych pojazdów.
- 2. W pierwszym przypadku założy, że czas mycia pojazdu jest stały i wynosi t minut. Należy sprawdzić jaki będzie cas oczekiwania przy samochodach pojawiających się co 1 minutę.
- 3. Załóż teraz, że czas mycia samochodu jest dla każdego pojazdu losowany i zawiera się pomiędzy 2 a 5 minut. Wykonaj symulacje dla 2 godzin pracy i 2 stanowisk myjni dla okresu 4 godzin sprawdzając średnie czasy oczekiwania dla prawdopodobieństw pojawienia się pojazdu w danej minucie równych odpowiednio: 0,1, 0,25, 0,5, 0,75.
- 4. Dokonaj próby optymalizacji pracy myjni zakładając, że czas mycia pojazdu nie powinien być krótszy niż 2 minuty. Optymalizacja powinna zakładać, że jeśli czas oczekiwania pojazdu jest zbyt długi kolejka jest za długa, to myjnia powinna skrócić czas mycia o pewną liczbę minut.