Linear Regression Homework 5

Name: Eric Yuan

UNI: qy2205

1. Covariance matrix of Y = AX

Since A is a constant $k \times n$ matrix. So we have E[AX] = AE[X]

$$Var[AX] = E[(AX - E(AX))(AX - E[AX])^{T}]$$

$$= E[(AX - E(AX))(AX - E[AX])^{T}]$$

$$= E[(A(X - E(X))(X - E[X])^{T}A^{T}]$$

$$= AE[(X - E(X))(X - E[X])^{T}]A^{T}$$

$$= AVar[X]A^T$$

$$= A\Sigma A^{T}$$

2. Show that t-test and F-test are equivalent in the sense that the $T^2=F$ where T is the t-statistic and F is the F-statistic

Full model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + \varepsilon$$

Where:

$$\varepsilon \sim N(0, \sigma)$$

$$t = \frac{\widehat{\beta_1}}{\sqrt{(X^T X)^T \widehat{\sigma}^2}} \sim t_{n-p-1}$$

$$z = \frac{\widehat{\beta_1}}{\sqrt{(X^T X)^T \sigma^2}} \sim N(0, 1)$$

$$\frac{\widehat{\beta_1}^2}{(X^T X)^T \sigma^2} \sim \chi_{(1)}^2$$

Restricted model:

$$\begin{split} F_{H_0} &= \frac{\left(SS_{Reg}^F - SS_{Reg}^R\right) (DOF_{Reg}^F - DOF_{Reg}^R)}{SS_{Res}^F - DOF_{Res}^F} \sim F(m, n - p - 1) \\ &= \frac{\left(SS_{Reg}^F - SS_{Reg}^R\right) / 1}{SS_{Res}^F / (n - p - 1)} \sim F(1, n - p - 1) \end{split}$$

Since
$$SSE = \hat{\sigma}^2$$

$$\frac{\hat{\sigma}^2}{\sigma^2} \sim \chi^2_{(n-p-1)}$$

$$t^{2} = \frac{\chi_{(1)}^{2}/1}{\chi_{(n-p-1)}^{2}/(n-p-1)} \sim F(1, n-p-1)$$

Thus $t^2 = F$

3. Chapter 6 Problem a, b, c

(a) Basic data cleaning with Python

```
import pandas as pd
import numpy as np
import seaborn as sns
sns.set(style="ticks", color_codes=True)

with open('CHOGPRO5.txt') as f:
    data = f.readlines()
df = pd.DataFrame(list(map(lambda x: x.split(), data)))
df.columns = ['brand_like_degree', 'moisture_content', 'sweetness']
df = df.astype(float)
df.head()
```

	brand_like_degree	moisture_content	sweetness
0	64.0	4.0	2.0
1	73.0	4.0	4.0
2	61.0	4.0	2.0
3	76.0	4.0	4.0
4	72.0	6.0	2.0

Scatter plot matrix

Correlation Matrix

brand_like_degree	moisture_content	sweetness
-------------------	------------------	-----------

brand_like_degree	1.000000	0.892393	0.394581
moisture_content	0.892393	1.000000	0.000000
sweetness	0.394581	0.000000	1.000000

Based on the results, we could see that the correlation between moisture content and degree of brand liking is very high. There is no correlation between moisture content and sweetness.

(b) Based on 6.1

$$Y = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i$$

```
from statsmodels.formula.api import ols
model = ols('brand_like_degree~moisture_content + sweetness', df).fit()
print(model.summary())
print(model._results.params)
                 OLS Regression Results
_____
Dep. Variable: brand_like_degree R-squared:

Model: OLS Adj. R-squared:

Method: Least Squares F-statistic:

Date: Mon, 29 Oct 2018 Prob (F-statistic):

Time: 21:54:25 Log-Likelihood:
                                                              0.952
                                                            0.2
129.1
                                                             0.945
                                                          2.66e-09
                                                            -36.894
Time:
No. Observations:
                             16 AIC:
                                                              79.79
Df Residuals:
                             13 BIC:
                                                              82.11
Df Model:
Covariance Type: nonrobust
_____
                  coef std err
                                     t P>|t| [0.025
                                                                 0.9751
Intercept 37.6500 2.996 12.566 0.000 31.177 44.123 moisture_content 4.4250 0.301 14.695 0.000 3.774 5.076 sweetness 4.3750 0.673 6.498 0.000 2.920 5.830
______
Omnibus: 0.766 Durbin-Watson:
Prob(Omnibus): 0.682 Jarque-Bera (JB):
Skew: 0.049 Prob(JB):
                                                             2.313
Prob(Omnibus):
Skew:
Kurtosis:
                                                              0.647
                                                              0.724
Kurtosis:
                         2.020 Cond. No.
                                                              35.9
_____
```

Based on the result, the regression function is:

$$Y = 37.65 + 4.425$$
 Moisture content $+ 4.375$ Sweetness $+ \varepsilon$

 b_1 is the coefficients of regression model, which means when *Moisture content* improve 1, degree of brand liking improve 4.425, when sweetness improve 1, degree of brand liking improve 4.375.

(c) Residual

```
model.resid.plot(kind = 'box')
```

<matplotlib.axes._subplots.AxesSubplot at 0xc5601d0>

We could see the residual almost follow the normal distribution and also don't have large variance, which means the assumptions of model are correct.

4. Chapter 6 Problem 7

(1)

```
print('R square:', round(model.rsquared, 3))
R square: 0.952
```

R square is 0.952, which means the factor sweetness and moisture content have strong relationship with degree of brand liking.

(2)

```
SStotal = sum((df['brand_like_degree'] - df['brand_like_degree'].mean())**2)

SSreg = sum((model.fittedvalues - df['brand_like_degree'].mean())**2)

SSres = SStotal - SSreg

R2 = SSreg/SStotal

round(R2, 6)

0.952059
```

Based on the result, the multiple and single determination R² are the same.

5. Chapter 6 Problem 8

(a)

The confidence interval for $E(Y_h)$ is

$$\widehat{Y_h} \pm t \left(1 - \frac{a}{2}; n - 2\right) s\{\widehat{Y_h}\}$$

$$s^2\{\widehat{Y_h}\} = {X_h}'s^2\{b\}X_h$$

$$X_h = \begin{pmatrix} 1 \\ 5 \\ 4 \end{pmatrix}$$

$$b = \begin{pmatrix} 37.65 \\ 4.425 \\ 4.375 \end{pmatrix}$$

$$\widehat{Y_h} = {X_h}'b = 77.275$$

MSE = 7.2538 calculated with Python

$$s^{2}{b} = MSE(X'X)^{-1}$$

$$s^2\{\widehat{Y_h}\} = 1.269$$

```
from scipy.stats import t
MSE = SSres/(len(df)-3)
xh = np. array([1, 5, 4])
b = np. array([37.65, 4.425, 4.375])
yh = np. dot(xh. T, b)
t = t.ppf(0.995, len(df)-3)
X = df[['moisture_content', 'sweetness']].values
X = np. hstack([np. ones(len(df)).reshape(-1, 1), X])
ciup = yh + t*np. sqrt(MSE) *np. sqrt(np. dot(np. dot(np. sqrt(xh. T), np. linalg. inv(np. dot(X. T, X))), xh))
cilow = yh - t*np. sqrt(MSE) *np. sqrt(np. dot(np. dot(np. sqrt(xh. T), np. linalg. inv(np. dot(X. T, X))), xh))
round(cilow, 3), round(ciup, 3)
```

The confidence interval is:

[74.475, 80.075]

(b)

```
ciup = yh + t*np.sqrt(MSE)*np.sqrt(1 + np.dot(np.dot(np.sqrt(xh.T), np.linalg.inv(np.dot(X.T, X))), xh))
cilow = yh - t*np.sqrt(MSE)*np.sqrt(1 + np.dot(np.dot(np.sqrt(xh.T), np.linalg.inv(np.dot(X.T, X))), xh))
round(cilow, 3), round(ciup, 3)
(68.693, 85.857)
```

Confidence interval is [68.693, 85.857]

6. Chapter 6 Problem 25

Set $Y_i = Y_i - 4X_{i2}$, Use the model

$$Y_i' = \beta_0 + \beta_1 X_{i1} + \beta_3 X_{i3} + \varepsilon_i$$

to get the fitted line. Thus, we have $lm(Y - 4X_2 \sim X_1 + X_3)$