Aufgabe 2.

• Assoziativität:

$$(x_{1}, x_{2}) \oplus ((y_{1}, y_{2}) \oplus (z_{1}, z_{2})) = ((x_{1}, x_{2}) \oplus (y_{1}, y_{2})) \oplus (z_{1}, z_{2})$$

$$(x_{1}, x_{2}) \oplus (y_{1} + z_{1}, y_{2} + z_{2}) = (x_{1} + y_{1}, x_{2} + y_{2}) \oplus (z_{1}, z_{2})$$

$$(x_{1} + y_{1} + z_{1}, x_{2} + y_{2} + z_{2}) = (x_{1} + y_{1} + z_{1}, x_{2} + y_{2} + z_{2})$$

$$(x_{1}, x_{2}) * ((y_{1}, y_{2}) * (z_{1}, z_{2})) = ((x_{1}, x_{2}) * (y_{1}, y_{2})) * (z_{1}, z_{2})$$

$$(x_{1}, x_{2}) * (y_{1}z_{1}, y_{1}z_{2} + y_{2}z_{1}) = (x_{1}y_{1}, x_{1}y_{2} + x_{2}y_{1}) * (z_{1}, z_{2})$$

$$(x_{1}y_{1}z_{1}, x_{1}(y_{1}z_{2} + y_{2}z_{1}) + x_{2}y_{1}z_{1}) = (x_{1}y_{1}z_{1}, x_{1}y_{2}z_{2} + (x_{1}y_{2} + x_{2}y_{1})z_{1})$$

$$(x_{1}y_{1}z_{1}, x_{1}y_{1}z_{2} + x_{1}y_{2}z_{1} + x_{2}y_{1}z_{1}) \neq (x_{1}y_{1}z_{1}, x_{1}y_{2}z_{2} + x_{1}y_{2}z_{1} + x_{2}y_{1}z_{1})$$

Operation * ist nicht assoziativ.

• Kommutativität:

$$(x_1, x_2) \oplus (y_1, y_2) = (y_1, y_2) \oplus (x_1, x_2)$$
$$(x_1 + y_1, x_2 + y_2) = (x_1 + y_1, x_2 + y_2)$$
$$(x_1, x_2) * (y_1, y_2) = (y_1, y_2) * (x_1, x_2)$$
$$(x_1y_1, x_1y_2 + x_2y_1) = (y_1x_1, y_1x_2 + y_2x_1)$$

• Neutrale Elemente:

$$(x_1, x_2) \oplus (0, 0) = (x_1 + 0, x_2 + 0) = (x_1, x_2)$$

 $(x_1, x_2) * (1, 0) = (x_1 \cdot 1, x_1 \cdot 0 + x_2 \cdot 1) = (x_1, x_2)$

• Invertierbarkeit:

$$(x_1, x_2) \oplus (-x_1, -x_2) = (x_1 - x_1, x_2 - x_2) = (0, 0)$$

$$(x_1, x_2) * (x'_1, x'_2) = (x_1 x'_1, x_1 x'_2 + x_2 x'_1) = (1, 0)$$

$$\Rightarrow x_1 x'_1 = 1 \Rightarrow x'_1 = x_1^{-1}$$

$$\Rightarrow x_1 x'_2 + x_2 x'_1 = 0 \Rightarrow x'_2 = 0 \text{ aber } x_2 x'_1 \text{ nur dann null wenn } x_2 = x_2$$

Operation * hat nicht für alle Elemente ein Inverses.

• Distributivität

$$(x_1, x_2) * ((y_1, y_2) \oplus (z_1, z_2)) = ((x_1, x_2) * (y_1, y_2)) \oplus ((x_1, x_2) * (z_1, z_2))$$

$$(x_1, x_2) * (y_1 + z_1, y_2 + z_2) = (x_1y_1, x_1y_2 + x_2y_1) \oplus (x_1z_1, x_1z_2 + x_2z_1)$$

$$(x_1(y_1 + z_1), x_1(y_2 + z_2) + x_2(y_1 + z_1)) = (x_1y_1 + x_1z_1, x_1y_2 + x_2y_1 + x_1z_2 + x_2z_1)$$

$$(x_1y_1 + x_1z_1), x_1y_2 + x_1z_2 + x_2y_1 + x_2z_1) = (x_1y_1 + x_1z_1, x_1y_2 + x_2y_1 + x_1z_2 + x_2z_1)$$

Aufgabe 3. Sei $x = \frac{k}{n} \in \mathbb{Q}$, also $k, n \in \mathbb{Z}$. Wir berechnen nun die Dezimaldarstellung von x und verwenden dafür "Division mit Rest": Es gibt für alle $p, q \in \mathbb{Z}$ eindeutige $a, b \in \mathbb{Z}$ mit

$$p = aq + b \quad \text{mit } 0 \le b < |q|$$

Wir nennen von nun an a den Quotient und b den Rest von $\frac{p}{a}$.

Der Teil links vom Dezimalpunkt ist der Quotient von k und n, mit Rest r_0 . Die folgenden Ziffern (rechts vom Dezimalpunkt) berechnen sich durch

 $\begin{array}{ll} i \\ 1 & \text{Quotient von } 10r_0 \text{ und } n \\ 2 & \text{Quotient von } 10r_1 \text{ und } n \\ \vdots & \vdots \end{array}$

wobei r_i der Rest der Division im Schritt i ist. Der Rest ist immer zwischen 0 und |q|-1, also muss sich nach mindestens |q| Schritten eine Ziffer wiederholen, bzw. ein Muster bilden.

Aufgabe 4. Gegeben sei eine periodische Zahl $x=a.b\bar{c}$ wobei a,b und c eine Folge von Ziffern sind und c periodisch ist. Sei $n=\lceil \log_{10}(b) \rceil$ die Anzahl der Ziffern in b dann kann der periodische Teil durch $10^n x=ab.\bar{c}$ isoliert werden. Ein nicht periodischer Teil ist also kein Problem.

Sei $x = a.\bar{c}$ und m die Anzahl der Ziffern in c. Dann kann \bar{c} als geometrische Reihe geschrieben werden.

$$x = a + c + 10^{-m}c + 10^{-2m}c + \cdots$$

Multiplikation mit 10^m-1 führt nun zu

$$(10^{m} - 1)x = (10^{m} - 1)a + 10^{m}(c + 10^{-m}c + 10^{-2m}c + \cdots) - (c + 10^{-m} + 10^{-2m}c + \cdots)$$
$$= (10^{m} - 1)a + (10^{m}c + c + 10^{-m}c + \cdots) - (c + 10^{-m} + 10^{-2m}c + \cdots)$$
$$= (10^{m} - 1)a + 10^{m}c$$

Nachdem c aus m Ziffern besteht ist $10^m c$ eine ganze Zahl. Demzufolge

$$x = \frac{(10^m - 1)a + 10^m c}{(10^m - 1)}$$

wobei $(10^m - 1)a \in \mathbb{Z}$ und $(10^m - 1) \in \mathbb{N}$, wie gefordert.

Aufgabe 5.

- a) $74.73\overline{64}$
- b) 28.840

c)

$$x = 123.421\overline{124}$$

$$1000x = 123421.\overline{124}$$

$$1000000x = 123421124.\overline{124}$$

$$1000000x - 1000x = 123421124.\overline{124}$$

$$999000x = 123297703$$

$$x = \frac{123297703}{999000}$$

d) Ja. $3 \cdot 0.\overline{3} = 0.\overline{9}$ und $3 \cdot \frac{1}{3} = 1$ also $0.\overline{9} = 1$.

Aufgabe 6.

- a) Injektiv, zwei Studenten werden nie die selbe Matrikelnummer haben. Nicht surjektiv, es gibt nur endlich viele Studenten (aber unendlich Elemente in \mathbb{N}).
- b) Undefiniert für $f_2(0)$ weil $0 \notin \mathbb{N}$. Ansonsten surjektiv (alle \mathbb{N} werden getroffen) aber nicht injektiv (jedes $n \in \mathbb{N}$ wird zwei mal getroffen).
- c) Bijektiv, $z \ge 0$ werden auf gerade Zahlen in N abgebildet, z < 0 auf ungerade.
- d) Surjektiv (stetig mit Minimum -1 und Maximum 1, trifft also alle [-1,1] mindestend einmal) aber nicht injektiv $(\cos(x) = \cos(x + 2\pi))$.
- e) Bijektiv. Siehe obiges Argument aber diesmal entspricht die Definitionsmenge einer halben Periode, ergo nichts doppelt.

Aufgabe 7. Es seien $f: A \to B$, $h_1, h_2: X \to A$ und $g_1, g_2: B \to Y$ beliebige Funktionen.

a) Wir wollen zeigen, dass

$$\forall x, y \in A : x \neq y \Rightarrow f(x) \neq f(y) \iff \forall h_1, h_2 : f \circ h_1 = f \circ h_2 \Rightarrow h_1 = h_2.$$

Angenommen die linke Seite gilt, es gibt also keine ungleichen x, y derart, dass f(x) = f(y). Seien h_1, h_2 nun Abbildungen von einer beliebigen Menge X auf A. Wenn für alle $x \in X$ gilt, dass $f(h_1(x)) = f(h_2(x))$ dann muss gemäß unserer Annahme auch $h_1(x) = h_2(x)$ gelten.

Angenommen die linke Seite gilt nicht, es gibt also ungleiche x, y mit f(x) = f(y). Dann gilt auch die rechte Seite nicht, denn dann gibt es h_1, h_2 mit $f(h_1(x)) = f(h_2(x))$ aber $h_1(x) \neq h_2(x)$. Man wähle etwa f(x) = 0, $h_1(x) = 1$ und $h_2(x) = 2$. Dann gilt $f(h_1(x)) = f(h_2(x))$ aber $h_1 \neq h_2$.

b) Wir wollen zeigen, dass

$$\forall y \in B : \exists x \in A : f(x) = y \iff \forall g_1, g_2 : g_1 \circ f = g_2 \circ f \Rightarrow g_1 = g_2.$$

Angenommen es gibt für alle $b \in B$ ein $a \in A$ mit f(a) = b. Weiters sei angenommen, dass $g_1(f(a)) = g_2(f(a))$ für alle $a \in A$. Nachdem klarerweise f(a) = f(a) und f alle Elemente von B erreicht gilt deshalb auch $g_1 = g_2$.

Angenommen es gibt ein $b \in B$ für das es kein $a \in A$ mit f(a) = b gibt. Das ist etwa für f(x) = 0 der Fall. Man wähle weiters $g_1(x) = x$ und $g_2(x) = 2x$. Dann gilt zwar $g_1(f(0)) = g_2(f(0))$ aber nicht $g_1 = g_2$.

Aufgabe 8.

• Reflexivität:

$$(x_1, x_2) \leq_1 (x_1, x_2)$$
$$(x_1 < x_1) \lor (x_1 = x_1 \land x_2 \leq x_2)$$
$$\bot \lor (\top \land \top)$$
$$\top$$

• Antisymmetrie:

$$(x_1, x_2) \le_1 (y_1, y_2) \land (y_1, y_2) \le_1 (x_1, x_2) \Rightarrow (x_1, x_2) = (y_1, y_2)$$
$$((x_1 < y_1) \lor (x_1 = y_1 \land x_2 \le y_2)) \land ((y_1 < x_1) \lor (y_1 = x_1 \land y_2 \le x_2)) \Rightarrow (x_1, x_2) = (y_1, y_2)$$

Sei $x_1 < y_1$, dann gilt der linke Teil, nicht aber der Rechte wegen $y_1 \not< x_1$ und $y_1 \neq x_1$. Es muss also $x_1 \geq y_1$. Dann gilt der linke Teil nur wenn $x_1 = y_1$ und zusätzlich $x_2 \leq y_2$. Dann gilt der rechte Teil nur wenn auch $y_2 \leq x_2$. Somit muss also $(x_1, x_2) = (y_1, y_2)$.

• Transitivität:

$$(x_1, x_2) \leq_1 (y_1, y_2) \land (y_1, y_2) \leq_1 (z_1, z_2) \Rightarrow (x_1, x_2) \leq_1 (z_1, z_2)$$

$$((x_1 < y_1) \lor (x_1 = y_1 \land x_2 \leq y_2)) \land ((y_1 < z_1) \lor (y_1 = z_1 \land y_2 \leq z_2))$$

$$\Rightarrow ((x_1 < z_1) \lor (x_1 = z_1 \land x_2 \leq z_2))$$

Seien (x_1, x_2) , (y_1, y_2) und (z_1, z_2) derart, dass die linke Seite der Implikation gilt.

Dann haben wir also entweder $x_1 < y_1$ und $y_1 < z_1$ woraus sofort $x_1 < z_1$ folgt. Oder $x_1 = y_1 = z_1$ und $x_2 \le y_2 \le z_2$ woraus sofort $x_1 = z_1$ und $x_2 \le z_2$ folgt.

• Totalität:

$$(x_1, x_2) \le_1 (y_1, y_2) \lor (y_1, y_2) \le_1 (x_1, x_2)$$
$$((x_1 < y_1) \lor (x_1 = y_1 \land x_2 \le y_2)) \lor ((y_1 < x_1) \lor (y_1 = x_1 \land y_2 \le x_2))$$

Klarerweise gilt entweder $x_1 < y_1$, $x_1 > y_1$ oder $x_1 = y_1$ in den ersten beiden Fällen gilt die Aussage trivialerweise. Wenn $x_1 = y_1$ muss zusätzlich gelten, dass $x_2 \le y_2$ oder $y_2 \le x_2$. Nachdem \le auf \mathbb{R} eine Totalordnung ist trifft das zu.