Spectral Lagrangian methods (in particular for SW)

L. Micalizzi^{1,2}, S. Tokareva², M. Ricchiuto³, R. Abgrall¹

¹Institut für Mathematik, Universität Zürich

²Theoretical Division, Los Alamos National Laboratory

> ³Team CARDAMOM, Inria Bordeaux sud-ouest

Outline

- Governing equations
- Scheme and motivation
- Numerics
 - Sod
 - Smooth periodic
- Continuous FEM
- Well-balancing
 - Spatial part
 - Stabilization, continuous interior penalty
- Numerical results

Section 1

Governing equations

Shallow water equations, Eulerian

$$\frac{\partial}{\partial t} \boldsymbol{u} + div_{\boldsymbol{x}} \boldsymbol{F}(\boldsymbol{u}) = \boldsymbol{S}(\boldsymbol{x}, \boldsymbol{u}), \quad (\boldsymbol{x}, t) \in \Omega \times [0, T]$$

$$egin{aligned} oldsymbol{u} &:= egin{pmatrix} H oldsymbol{v} \ H oldsymbol{v} &:= egin{pmatrix} H oldsymbol{v} \ H oldsymbol{v} \otimes oldsymbol{v} + g rac{H^2}{2} \mathbb{I} \end{pmatrix} \ oldsymbol{S}(oldsymbol{x}, oldsymbol{u}) &:= -egin{pmatrix} 0 \ g H
abla_{oldsymbol{x}} oldsymbol{B}(x) \end{pmatrix} \end{aligned}$$

$$\eta := H + B$$

4 / 51

Shallow water equations, simplification of Euler (with gravity)

Neglecting the energy equation

5 / 51

Section 2

Scheme and motivation

Shallow water equations, Lagrangian

$$\Omega_0 \ni \mathbf{X} \longrightarrow \mathbf{x} = \widetilde{\mathbf{x}}(\mathbf{X}, t) \in \Omega_t$$

$$\widehat{\Omega} \ni \mathbf{\xi} \longrightarrow \mathbf{x} = \mathbf{x}(\mathbf{\xi}, t) \in \Omega_t$$

$$\mathbf{X} = \mathbf{x}(\mathbf{\xi}, 0)$$

Shallow water equations, Lagrangian

Motion

$$\frac{d}{dt}\boldsymbol{x}(\boldsymbol{\xi},t) = \boldsymbol{v}(\boldsymbol{x}(\boldsymbol{\xi},t),t)$$

Water height/density (SMC)

$$H(\boldsymbol{x}(\boldsymbol{\xi},t),t) = \frac{\widehat{H}(\boldsymbol{\xi})}{det \boldsymbol{J}(\boldsymbol{\xi},t)}, \quad \boldsymbol{J}(\boldsymbol{\xi},t) = \frac{\partial \boldsymbol{x}}{\partial \boldsymbol{\xi}}(\boldsymbol{\xi},t)$$

Velocity

$$\begin{split} H(\boldsymbol{x},t)\frac{d}{dt}\boldsymbol{v}(\boldsymbol{x},t) &= -\nabla_{\boldsymbol{x}}p - gH\nabla_{\boldsymbol{x}}B \\ &= -\nabla_{\boldsymbol{x}}\left(\frac{gH^2}{2}\right) - gH\nabla_{\boldsymbol{x}}B \end{split}$$

$$\frac{d}{dt}\mathbf{v}(\mathbf{x},t) = -g\nabla_{\mathbf{x}}(H+B)$$

Shallow water equations, FEM discretization

$$\begin{split} \widehat{\varphi}_i \in \mathbb{P}_{M+1} \text{ continuous} \\ \widehat{\psi}_i \in \mathbb{P}_{M} \quad \text{discontinuous} \end{split}$$

$$\varphi_i(\mathbf{x}(\boldsymbol{\xi},t),t) = \widehat{\varphi}_i(\boldsymbol{\xi})$$
$$\psi_i(\mathbf{x}(\boldsymbol{\xi},t),t) = \widehat{\psi}_i(\boldsymbol{\xi})$$

$$\boldsymbol{x}_h(\boldsymbol{\xi},t) = \sum_i \boldsymbol{x}_i(t)\widehat{\varphi}_i(\boldsymbol{\xi})$$

$$oldsymbol{v}_h(oldsymbol{\xi},t) = \sum_i oldsymbol{v}_i(t) \widehat{arphi}_i(oldsymbol{\xi})$$

$$H_h(\boldsymbol{\xi},t) = \sum_i H_i(t) \widehat{\psi}_i(\boldsymbol{\xi})$$

$$\boldsymbol{v}_h(\boldsymbol{x},t) = \sum_i \boldsymbol{v}_i(t) \widehat{\varphi}_i(\boldsymbol{\xi}(\boldsymbol{x},t))$$

$$H_h(\boldsymbol{x},t) = \sum_i H_i(t) \widehat{\psi}_i(\boldsymbol{\xi}(\boldsymbol{x},t))$$

Shallow water equations, discretized equations

Motion

$$\frac{d}{dt}\boldsymbol{x}_i(t) = \boldsymbol{v}_i(t)$$

Water height/density (SMC) ⇒ PP

$$H_i(t) = \frac{\widehat{H}_i}{det \mathbf{J}(\boldsymbol{\xi}_i, t)}, \quad \mathbf{J}(\boldsymbol{\xi}, t) = \frac{\partial \boldsymbol{x}}{\partial \boldsymbol{\xi}}(\boldsymbol{\xi}, t)$$

Velocity

$$\begin{split} \sum_{K \in K_i} \sum_{\boldsymbol{x}_j \in K} \left(\int_K \varphi_i \varphi_j d\boldsymbol{x} \right) \frac{d}{dt} \boldsymbol{v}_j(t) \\ &= -g \sum_{K \in K_i} \left[\int_K \varphi_i \nabla_{\boldsymbol{x}} (H_h + B_h) d\boldsymbol{x} \right] - \sum_{K \in K_i} \boldsymbol{C} \boldsymbol{T}_i^K - \boldsymbol{S} \boldsymbol{T}_i^K - \boldsymbol{T}_i$$

Shallow water equations, discretized equations

$$\begin{split} \sum_{K \in K_i} \sum_{\boldsymbol{x}_j \in K} \left(\int_K \varphi_i \varphi_j d\boldsymbol{x} \right) \frac{d}{dt} \boldsymbol{v}_j(t) \\ &= -g \sum_{K \in K_i} \left[\int_K \varphi_i \nabla_{\boldsymbol{x}} (H_h + B_h) d\boldsymbol{x} \right] - \sum_{K \in K_i} \boldsymbol{C} \boldsymbol{T}_i^K - \boldsymbol{S} \boldsymbol{T}_i \end{split}$$

$$CT_i^K = g \int_{\partial K} \varphi_i(\eta^* - \eta|_K) \boldsymbol{\nu} d\boldsymbol{\sigma}$$

$$\boldsymbol{ST}_{i}^{CIP} := \sum_{f} \alpha_{f} \left[\left[\frac{\partial}{\partial x} \varphi_{i} \right] \right] \left[\left[\frac{\partial}{\partial x} v \right] \right], \quad \boldsymbol{ST}_{i}^{LxF} := \sum_{K \in K_{i}} \alpha_{K} (\boldsymbol{v}_{i} - \overline{\boldsymbol{v}}_{K})$$

Last but not least an ODE integrator

Problem: mass matrix

$$\begin{split} \sum_{K \in K_{i} \boldsymbol{x}_{j} \in K} \left(\int_{K} \varphi_{i} \varphi_{j} d\boldsymbol{x} \right) \frac{d}{dt} \boldsymbol{v}_{j}(t) \\ &= -g \sum_{K \in K_{i}} \left[\int_{K} \varphi_{i} \nabla_{\boldsymbol{x}} (H_{h} + B_{h}) d\boldsymbol{x} \right] - \sum_{K \in K_{i}} \boldsymbol{C} \boldsymbol{T}_{i}^{K} - \boldsymbol{S} \boldsymbol{T}_{i} \end{split}$$

$$\mathcal{M}\frac{d}{dt}\boldsymbol{v}=\boldsymbol{r}$$

Solutions

- LO mass lumping
- DeC Remi¹ (problems for order 4 on)
- ullet Spectral methods $arphi_i \sim oldsymbol{x}_i$ (1D GLB, 2D tensor product or Cubature)

Lorenzo Micalizzi (UZH) 13/51 Los Alamos 13/51

¹Abgrall, High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices, 2017

Price to pay: time-dependent mass matrix

$$\int_{K(t)} \varphi_i(\boldsymbol{x}, t) \varphi_j(\boldsymbol{x}, t) d\boldsymbol{x} = \int_{\widehat{K}} \widehat{\varphi}_i(\boldsymbol{\xi}) \widehat{\varphi}_j(\boldsymbol{\xi}) det \boldsymbol{J}(\boldsymbol{\xi}, t) d\boldsymbol{\xi}$$
$$\approx \delta_{i,j} \widehat{\omega}_i det \boldsymbol{J}(\boldsymbol{\xi}_i, t)$$

$$\int_{K(t)} H_h(\boldsymbol{x}, t) \varphi_i(\boldsymbol{x}, t) \varphi_j(\boldsymbol{x}, t) d\boldsymbol{x} = \int_{\widehat{K}} H_h(\boldsymbol{\xi}, t) \widehat{\varphi}_i(\boldsymbol{\xi}) \widehat{\varphi}_j(\boldsymbol{\xi}) det \boldsymbol{J}(\boldsymbol{\xi}, t) d\boldsymbol{\xi}$$

$$\approx \delta_{i,j} \widehat{\omega}_i H_h(\boldsymbol{\xi}_i, t) det \boldsymbol{J}(\boldsymbol{\xi}_i, t)$$

However, only a point evaluation

Advantages

$$\frac{d}{dt}x = v$$
, $\frac{d}{dt}v = r$, SMC

- ullet Truly arbitrary high order (no problems as for Bernstein and eta-limiting)
- Extendible to Euler
- Extendible to multi-D (quads, PGL, tensor products, Cubature)
- Whatever time integration method.

Section 3

Numerics

Figure: Reference

17 / 51

Numerics, Convergence

$$\begin{cases} H = 2 + \cos(2\pi x) \\ v = 1 \end{cases}$$

0.8

Smooth_periodic

Numerics, Convergence (2p)

```
ORDER 2 P1P2
     error x Order x Error v
                                Order v
50
      2.850e-04
                   0.000
                            1.305e-02
                                         0.000
100
       7.166e-05
                    1.992
                             3.021e-03
                                          2.111
       1.798e-05
                   1.995
                             7.579e-04
                                          1.995
       4.504e-06
                   1.997
                            1.901e-04
                                         1.996
400
       1.127e-06
                   1.998
                                         1.999
800
                             4.756e-05
ORDER 3 P2P3
     error x Order x Error v
                                Order v
     1.197e-06
                            9.768e-04
                                         0.000
50
                   0.000
```

1.497e-07 2.999 4.086e-05 100 4.579 9.487e-09 3.131 200 3.980 4.666e-06 6.040e-10 3.973 3.973e-07 3.554 400 800 3.811e-11 3.986 2.878e-08 3.787

ORDER 4 P3P4 (final plateau probably due to the fact that H hit machine precision)

N	error x	Orde	r x	Erro	V	Order v		
50	2.696e-	07	0.00	0	8.12	21e-05	0.00	00
100	7.205e	-09	5.2	26	4.9	95e-06	4.0	023
200	7.689e	-11	6.5	50	6.9	90e-08	6.1	L59
400	1.060e	-12	6.1	81	1.0	87e-09	6.0	007
800	1.739e	-14	5.9	30	1.6	06e-10	2.	758

ORDER 5 P4P5

N	error x	Order x	Erro	v	Order v	
50	2.973e-0	0.0	000	3.64	2e-05	0.000
100	2.038e-	10 7	.188	2.6	41e-07	7.108
200	9.721e-	13 7	.712	1.1	96e-09	7.786

²Mantri, Oeffner, Ricchiuto, Fully well balanced entropy controlled DGSEM, 2022 on a

In particular (in Eulerian) $\frac{\partial}{\partial t} \boldsymbol{u} \equiv 0 \iff \frac{\partial}{\partial x} \boldsymbol{F}(\boldsymbol{u}) = \boldsymbol{S}(x, \boldsymbol{u})$

- ullet Refine a lot the mesh \Rightarrow Longer computational time
- Well-balancing

$$u_{eq} := \begin{pmatrix} \eta - B \\ 0 \end{pmatrix}$$

 $\eta = H + B \equiv const$

Figure: Lake of Zürich at rest

Lake at rest is exactly preserved

$$\frac{d}{dt}x = v$$
, $\frac{d}{dt}v = r$, SMC

$$H(\boldsymbol{x}(\boldsymbol{\xi},t),t) = \frac{\widehat{H}(\boldsymbol{\xi})}{det \boldsymbol{J}(\boldsymbol{\xi},t)}, \quad \boldsymbol{J}(\boldsymbol{\xi},t) = \frac{\partial \boldsymbol{x}}{\partial \boldsymbol{\xi}}(\boldsymbol{\xi},t)$$

$$\sum_{K \in K_i} \sum_{\boldsymbol{x}_j \in K} \left(\int_K \varphi_i \varphi_j d\boldsymbol{x} \right) \frac{d}{dt} \boldsymbol{v}_j(t)$$

$$\begin{split} \sum_{K \in K_i} \sum_{\boldsymbol{x}_j \in K} \left(\int_K \varphi_i \varphi_j d\boldsymbol{x} \right) \frac{d}{dt} \boldsymbol{v}_j(t) \\ &= -g \sum_{K \in K_i} \left[\int_K \varphi_i \nabla_{\boldsymbol{x}} (H_h + B_h) d\boldsymbol{x} \right] - \sum_{K \in K_i} \boldsymbol{C} \boldsymbol{T}_i^K - \boldsymbol{S} \boldsymbol{T}_i \end{split}$$

$$CT_i^K = g \int_{\partial K} \varphi_i(\eta^* - \eta|_K) \nu d\sigma$$

$$\boldsymbol{ST}_{i}^{CIP} := \sum_{f} \alpha_{f} \left[\left[\frac{\partial}{\partial x} \varphi_{i} \right] \right] \left[\left[\frac{\partial}{\partial x} \boldsymbol{v} \right] \right], \quad \boldsymbol{ST}_{i}^{LxF} := \sum_{K \in K_{i}} \alpha_{K} (\boldsymbol{v}_{i} - \overline{\boldsymbol{v}}_{K}) \right]$$

Non-smooth bathymetry, only C^0

$$\eta(x) = \begin{cases} \eta_{eq} + A \exp\left(1 - \frac{1}{1 - \left(\frac{x - 6}{0.5}\right)^2}\right) & 5.5 < x < 6.5\\ \eta_{eq} & otherwise \end{cases}$$

with $A = 5 \cdot 10^{-5}$.

Figure: Perturbation amplified by 1000

Order 5, 30 elements

Los Alamos

P1P2 -> order 2										
N	L^1(v) O	rder v	L^1(H) Or	der H	L^1(q)	Order q	v _2	Order v	H _2 Order	Н
25	4.281e-02	0.000	1.837e-02	0.000	1.875e-	0.000	3.024	e-03 0.00	00 1.113e-03	0.000
50	1.021e-02	2.068	5.229e-03	1.813	4.787e-	02 1.970	8.202	e-04 1.88	3.348e-04	1.733
100	2.431e-03	2.070	9.872e-04	2.405	1.045e	-02 2.196	1.884	e-04 2.1	22 6.528e-05	2.359
200	4.775e-04	2.348	1.446e-04	2.771	1.928e	-03 2.438	3.731	e-05 2.3	36 1.091e-05	2.581
400	1.125e-04	2.086	2.981e-05	2.278	4.510e	-04 2.096	8.973	e-06 2.0	56 2.450e-06	2.155
800	2.793e-05	2.010	7.313e-06	2.027	1.126e	-04 2.002	2.243	e-06 2.0	00 6.048e-07	2.018
P2P3 -	P2P3 -> order 3 (instead I get 2)									
N	L^1(v) O	rder v	L^1(H) Or	der H	L^1(q)	Order q	v _2	Order v	H _2 Order	Н
25	9.342e-03	0.000	3.326e-03	0.000	3.702e-	0.000	9.183	e-04 0.00	00 3.003e-04	0.000
50	1.945e-03	2.264	7.998e-04	2.056	1.033e-	02 1.841	1.574	e-04 2.54	7.969e-05	1.914
100	4.239e-04	2.198	1.947e-04	2.038	2.180e	-03 2.244	3.369	e-05 2.2	24 1.590e-05	2.325
200	8.308e-05	2.351	3.091e-05	2.655	3.042e	-04 2.841	6.592	e-06 2.3	54 2.444e-06	2.702
400	1.833e-05	2.180	5.953e-06	2.376	4.774e	-05 2.672	1.523	e-06 2.1	14 4.756e-07	2.361
800	4.502e-06	2.026	1.455e-06	2.033	1.120e	-05 2.092	3.758	e-07 2.0	19 1.150e-07	2.048
P3P4 -	P3P4 -> order 4									
N	L^1(v) O	rder v	L^1(H) Or	der H	L^1(q)	Order q	v _2	Order v	H _2 Order	Н
25	3.877e-03	0.000	1.475e-03	0.000	1.573e-	0.000	5.056	e-04 0.00	00 2.086e-04	0.000
50	7.459e-04	2.378	3.024e-04	2.286	3.726e-	03 2.078	6.793	e-05 2.89	6 3.157e-05	2.724
100	9.525e-05	2.969	5.184e-05	2.544	6.887e	-04 2.436	7.144	e-06 3.2	49 4.526e-06	2.802
200	9.417e-06	3.338	4.700e-06	3.463	6.982e	-05 3.302	6.768	e-07 3.4	00 3.857e-07	3.553
400	3.955e-07	4.574	1.974e-07	4.573	2.982e	-06 4.549	2.757	e-08 4.6	18 1.556e-08	4.632
P4P5 -> order 5										
N	L^1(v) O	rder v	L^1(H) Or	der H	L^1(q)	Order q	v _2	Order v	H _2 Order	Н
25	2.130e-03	0.000	8.068e-04	0.000	7.579e-	0.000	2.959	e-04 0.00	00 1.281e-04	0.000
50	3.021e-04	2.818	1.253e-04	2.687	1.390e-	03 2.447	2.776	e-05 3.41	.4 2.241e-05	2.515
100	2.822e-05	3.420	1.237e-05	3.340	1.310e	-04 3.407	2.418	e-06 3.5	21 2.042e-06	3.456
200	1.202e-06	4.553	5.293e-07	4.547	6.777e	-06 4.273	9.730	e-08 4.6	35 7.038e-08	4.859

Section 4

Continuous FEM

Los Alamos

• A tessellation $\mathcal{T}_h = \{K\}$ of Ω ;

- A tessellation $\mathcal{T}_h = \{K\}$ of Ω ;
- ullet The space V_h of continuous piecewise polynomial functions;

- A tessellation $\mathcal{T}_h = \{K\}$ of Ω ;
- ullet The space V_h of continuous piecewise polynomial functions;
- a basis $\{\varphi_i\}_{i=1,\dots,I}$ of V_h (Bn, Pn, PGLn);

- A tessellation $\mathcal{T}_h = \{K\}$ of Ω ;
- The space V_h of continuous piecewise polynomial functions;
- a basis $\{\varphi_i\}_{i=1,...,I}$ of V_h (Bn, Pn, PGLn);
- ullet We look for $oldsymbol{u}_h(x,t) := \sum_{j=1}^I oldsymbol{c}_j(t) arphi_j(x)$ s.t.

$$\int_{\Omega} \left(\frac{\partial}{\partial t} \boldsymbol{u}_h + \left[\frac{\partial}{\partial x} \boldsymbol{F}(\boldsymbol{u}_h) - \boldsymbol{S}(x, \boldsymbol{u}_h) \right]_h \right) \varphi_i(x) + \mathbf{ST}_i(\boldsymbol{u}_h) = \mathbf{0} \quad \forall i$$

- A tessellation $\mathcal{T}_h = \{K\}$ of Ω ;
- The space V_h of continuous piecewise polynomial functions;
- a basis $\{\varphi_i\}_{i=1,...,I}$ of V_h (Bn, Pn, PGLn);
- ullet We look for $oldsymbol{u}_h(x,t) := \sum_{j=1}^I oldsymbol{c}_j(t) arphi_j(x)$ s.t.

$$\int_{\Omega} \left(\frac{\partial}{\partial t} \boldsymbol{u}_h + \left[\frac{\partial}{\partial x} \boldsymbol{F}(\boldsymbol{u}_h) - \boldsymbol{S}(\boldsymbol{x}, \boldsymbol{u}_h) \right]_h \right) \varphi_i(\boldsymbol{x}) + \mathbf{ST}_i(\boldsymbol{u}_h) = \mathbf{0} \quad \forall i$$

$$\downarrow \downarrow$$

$$\mathcal{M} \frac{d}{dt} \boldsymbol{c}(t) = \boldsymbol{H}(\boldsymbol{c}(t))$$

- A tessellation $\mathcal{T}_h = \{K\}$ of Ω ;
- The space V_h of continuous piecewise polynomial functions;
- a basis $\{\varphi_i\}_{i=1,\dots,I}$ of V_h (Bn, Pn, PGLn);
- We look for $u_h(x,t) := \sum_{i=1}^{I} c_i(t) \varphi_i(x)$ s.t.

$$\int_{\Omega} \left(\frac{\partial}{\partial t} \boldsymbol{u}_h + \left[\frac{\partial}{\partial x} \boldsymbol{F}(\boldsymbol{u}_h) - \boldsymbol{S}(x, \boldsymbol{u}_h) \right]_h \right) \varphi_i(x) + \mathbf{ST}_i(\boldsymbol{u}_h) = \mathbf{0} \quad \forall i$$

$$\downarrow \downarrow$$

$$\mathcal{M} \frac{d}{dt} \boldsymbol{c}(t) = \boldsymbol{H}(\boldsymbol{c}(t))$$

$$u_{eq} := \begin{pmatrix} \eta - B \\ 0 \end{pmatrix}, \quad \eta = H + B \equiv const$$

Section 5

Well-balancing

Subsection 1

Spatial part

Spatial part

$$\begin{bmatrix} \frac{\partial}{\partial x} \mathbf{F}(\mathbf{u}_h) - \mathbf{S}(x, \mathbf{u}_h) \end{bmatrix}_h = \frac{\partial}{\partial x} \mathbf{F}_h(x) - \mathbf{S}_h(x)$$
$$\mathbf{F}_h(x) = \sum_j \mathbf{F}_j \varphi_j(x), \quad \mathbf{S}_h(x) = \sum_j \mathbf{S}_j \varphi_j(x)$$

Spatial part

$$\begin{bmatrix} \frac{\partial}{\partial x} \boldsymbol{F}(\boldsymbol{u}_h) - \boldsymbol{S}(x, \boldsymbol{u}_h) \end{bmatrix}_h = \frac{\partial}{\partial x} \boldsymbol{F}_h(x) - S_h(x) \neq 0 \text{ for lake at rest}$$
$$\boldsymbol{F}_h(x) = \sum_j \boldsymbol{F}_j \varphi_j(x), \quad S_h(x) = \sum_j \boldsymbol{S}_j \varphi_j(x)$$

Spatial part

$$\begin{bmatrix} \frac{\partial}{\partial x} \boldsymbol{F}(\boldsymbol{u}_h) - \boldsymbol{S}(x, \boldsymbol{u}_h) \end{bmatrix}_h = \frac{\partial}{\partial x} \boldsymbol{F}_h(x) - \boldsymbol{S}_h(x) \neq 0 \text{ for lake at rest}$$
$$\boldsymbol{F}_h(x) = \sum_j \boldsymbol{F}_j \varphi_j(x), \quad \boldsymbol{S}_h(x) = \sum_j \boldsymbol{S}_j \varphi_j(x)$$

Special WB discretization³

$$\left[\frac{\partial}{\partial x} \mathbf{F}(\mathbf{u}_h) - \mathbf{S}(x, \mathbf{u}_h)\right]_h = \left[\frac{\partial}{\partial x} \begin{pmatrix} Hv \\ Hv^2 + g\frac{H^2}{2} \end{pmatrix} + \begin{pmatrix} 0 \\ gH\frac{\partial}{\partial x}B \end{pmatrix}\right]_h \\
= \frac{\partial}{\partial x} \left[\begin{pmatrix} Hv \\ Hv^2 \end{pmatrix}\right]_h + \begin{pmatrix} 0 \\ gH_h\frac{\partial}{\partial x}\begin{pmatrix} H_h + B_h \end{pmatrix}\right)_{\mathbb{A}}$$

Lorenzo Micalizzi (UZH) 29 / 51 Los Alamos

29 / 51

³Ricchiuto and Bollermann. Stabilized residual distribution for shallow water simulations. 2009

Spatial part

$$\begin{bmatrix} \frac{\partial}{\partial x} \boldsymbol{F}(\boldsymbol{u}_h) - \boldsymbol{S}(x, \boldsymbol{u}_h) \end{bmatrix}_h = \frac{\partial}{\partial x} \boldsymbol{F}_h(x) - \boldsymbol{S}_h(x) \neq 0 \text{ for lake at rest}$$

$$\boldsymbol{F}_h(x) = \sum_j \boldsymbol{F}_j \varphi_j(x), \quad \boldsymbol{S}_h(x) = \sum_j \boldsymbol{S}_j \varphi_j(x)$$

Special WB discretization³

$$\begin{bmatrix} \frac{\partial}{\partial x} \mathbf{F}(\mathbf{u}_h) - \mathbf{S}(x, \mathbf{u}_h) \end{bmatrix}_h = \begin{bmatrix} \frac{\partial}{\partial x} \begin{pmatrix} Hv \\ Hv^2 + g\frac{H^2}{2} \end{pmatrix} + \begin{pmatrix} 0 \\ gH\frac{\partial}{\partial x}B \end{pmatrix} \end{bmatrix}_h$$

$$= \frac{\partial}{\partial x} \begin{bmatrix} \begin{pmatrix} Hv \\ Hv^2 \end{pmatrix} \end{bmatrix}_h + \begin{pmatrix} 0 \\ gH_h\frac{\partial}{\partial x} \begin{pmatrix} H_h + B_h \end{pmatrix} \end{pmatrix} = \mathbf{0}$$

29 / 51 Los Alamos 29 / 51

³Ricchiuto and Bollermann. Stabilized residual distribution for shallow water simulations. 2009

Subsection 2

Stabilization, continuous interior penalty

Stabilization part

$$\int_{\Omega} \varphi_i(x) \frac{\partial}{\partial t} \boldsymbol{u}_h d\boldsymbol{x} + \int_{\Omega} \varphi_i(x) \left[\frac{\partial}{\partial x} \boldsymbol{F}(\boldsymbol{u}_h) - \boldsymbol{S}(x, \boldsymbol{u}_h) \right]_h + \mathbf{ST}_i(\boldsymbol{u}_h) = \mathbf{0} \quad \forall i$$

Stabilization part

$$\int_{\Omega} \varphi_i(x) \frac{\partial}{\partial t} \boldsymbol{u}_h d\boldsymbol{x} + \int_{\Omega} \varphi_i(x) \left[\frac{\partial}{\partial x} \boldsymbol{F}(\boldsymbol{u}_h) - \boldsymbol{S}(x, \boldsymbol{u}_h) \right]_h + \mathbf{ST}_i(\boldsymbol{u}_h) = \mathbf{0} \quad \forall i$$

CIP⁴ stabilization terms (jump c)

$$\begin{split} \mathbf{ST}_i(\boldsymbol{u}_h) := & \sum_f \alpha_f \int_f [\![\nabla_{\boldsymbol{x}} \varphi_i]\!] [\![\nabla_{\boldsymbol{x}} \boldsymbol{u}_h]\!] d\sigma \\ = & \sum_f \alpha_f [\![\frac{\partial}{\partial x} \varphi_i]\!] [\![\frac{\partial}{\partial x} \boldsymbol{u}_h]\!] \end{split}$$

Lorenzo Micalizzi (UZH) 31/51 Los Alamos 31/51

⁴J. Douglas Jr and T. Dupont Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods. 1976

Stabilization part

$$\int_{\Omega} \varphi_i(x) \frac{\partial}{\partial t} \boldsymbol{u}_h d\boldsymbol{x} + \int_{\Omega} \varphi_i(x) \left[\frac{\partial}{\partial x} \boldsymbol{F}(\boldsymbol{u}_h) - \boldsymbol{S}(x, \boldsymbol{u}_h) \right]_h + \mathbf{ST}_i(\boldsymbol{u}_h) = \mathbf{0} \quad \forall i$$

CIP⁴ stabilization terms (jump c)

$$\begin{aligned} \mathbf{ST}_{i}(\boldsymbol{u}_{h}) &:= \sum_{f} \alpha_{f} \int_{f} \llbracket \nabla_{\boldsymbol{x}} \varphi_{i} \rrbracket \llbracket \nabla_{\boldsymbol{x}} \boldsymbol{u}_{h} \rrbracket d\sigma \\ &= \sum_{f} \alpha_{f} \llbracket \frac{\partial}{\partial x} \varphi_{i} \rrbracket \llbracket \frac{\partial}{\partial x} \boldsymbol{u}_{h} \rrbracket \\ &= \sum_{f} \alpha_{f} \llbracket \frac{\partial}{\partial x} \varphi_{i} \rrbracket \llbracket \frac{\partial}{\partial x} \begin{pmatrix} \boldsymbol{H}_{h} \\ (\boldsymbol{H}\boldsymbol{v})_{h} \end{pmatrix} \rrbracket \neq \mathbf{0} \end{aligned}$$

Lorenzo Micalizzi (UZH) 31/51 Los Alamos 31/51

⁴J. Douglas Jr and T. Dupont Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods. 1976

Stabilization part, novel well-balanced jumps

• jump t (total height)

$$\mathsf{ST}_i(\boldsymbol{u}_h) := \sum_f \alpha_f \left[\!\!\left[\frac{\partial}{\partial x} \varphi_i \right] \!\!\right] \left[\!\!\left[\frac{\partial}{\partial x} \left(\!\!\! \begin{array}{c} \eta \\ Hv \end{array} \!\!\right) \right] \!\!\right]$$

Stabilization part, novel well-balanced jumps

• jump t (total height)

$$\mathsf{ST}_i(\boldsymbol{u}_h) := \sum_f \alpha_f \left[\left[\frac{\partial}{\partial x} \varphi_i \right] \right] \left[\left[\frac{\partial}{\partial x} \left(\begin{matrix} \eta \\ Hv \end{matrix} \right) \right] \right]$$

• jump e (entropy variables)

$$\mathsf{ST}_i(\boldsymbol{u}_h) := \sum_f \alpha_f \left[\left[\frac{\partial}{\partial x} \varphi_i \right] \right] \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{w}} \left[\left[\frac{\partial}{\partial x} \boldsymbol{w} \right] \right], \quad \boldsymbol{w} := \begin{pmatrix} g\eta - \frac{v^2}{2} \\ v \end{pmatrix}$$

Los Alamos

Stabilization part, novel well-balanced jumps

• jump t (total height)

$$\mathsf{ST}_i(\boldsymbol{u}_h) := \sum_f \alpha_f \left[\left[\frac{\partial}{\partial x} \varphi_i \right] \right] \left[\left[\frac{\partial}{\partial x} \left(\begin{matrix} \eta \\ Hv \end{matrix} \right) \right] \right]$$

• jump e (entropy variables)

$$\mathsf{ST}_i(\boldsymbol{u}_h) := \sum_f \alpha_f \left[\left[\frac{\partial}{\partial x} \varphi_i \right] \right] \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{w}} \left[\left[\frac{\partial}{\partial x} \boldsymbol{w} \right] \right], \quad \boldsymbol{w} := \begin{pmatrix} g \eta - \frac{v^2}{2} \\ v \end{pmatrix}$$

• jump r (residual)

$$\mathsf{ST}_i(\boldsymbol{u}_h) := \sum_f \alpha_f \left[\left[\boldsymbol{J} \frac{\partial}{\partial x} \varphi_i \right] |\boldsymbol{J}|^{-1} \left[\left[\boldsymbol{J} \frac{\partial}{\partial x} \boldsymbol{u} - \boldsymbol{S} \right] \right], \quad \boldsymbol{J} := \frac{\partial \boldsymbol{F}}{\partial \boldsymbol{u}}$$

Section 6

Numerical results

Well-balancing

Framework	${\cal L}^1$ error ${\cal H}$	L^1 error Hv
WB-HS jc	3.007E-004	5.963E-004
WB-HS jt	9.403E-013	4.418E-012
WB-HS je	9.396E-013	4.415E-012
WB-HS jr	9.409E-013	4.415E-012

Table: PGL4 with 100 elements at $T_f=10$

Same with $\mathsf{P} n$ and $\mathsf{B} n$

Small perturbation of lake at rest

Same domain, non-smooth bathymetry, only C^0

$$\eta(x) = \begin{cases} \eta_{eq} + A \exp\left(1 - \frac{1}{1 - \left(\frac{x - 6}{0.5}\right)^2}\right) & 5.5 < x < 6.5\\ \eta_{eq} & otherwise \end{cases}$$

with $A = 5 \cdot 10^{-5}$.

Figure: Perturbation amplified by 1000

Small perturbation of lake at rest

PGL4; coarse: 30 elements; refined: 128 elements

Question

What about the other steady states?

Convergence, PGL4

Continuous H, Dashed Hv

Networks

Neterieras

10-22

Small perturbation

Figure: Perturbation amplified by 1000

Supercritical

Los Alamos

Supercritical

Analogous results for...

• for other basis functions (Bn, Pn and PGLn)

Supercritical: "fair" comparison with 60, 40 and 30 elements

(Constant number of DoFs)

for other tests

with friction

$$S(x, \boldsymbol{u}) = -\begin{pmatrix} 0 \\ gH\frac{\partial}{\partial x}B \end{pmatrix} - g\frac{n^2|Hv|}{H^{\frac{7}{3}}}\begin{pmatrix} 0 \\ Hv \end{pmatrix}$$

Subcritical: perturbation amplified by 100

(Same for supercritical)

Global flux, $oldsymbol{G} = \overline{oldsymbol{F} - \int_{x_L}^{\overline{x}} oldsymbol{S}}$

Section 7

Conclusions

47 / 51

• WB space discretization (w.r.t. lake at rest)

- WB space discretization (w.r.t. lake at rest)
- Three new well-balanced CIP stabilizations
 - jt (total height)
 - je (entropy variables)
 - jr (residual)

- WB space discretization (w.r.t. lake at rest)
- Three new well-balanced CIP stabilizations
 - jt (total height)
 - je (entropy variables)
 - jr (residual)
- The numerical results confirm
 - Exact well-balancing for lake at rest
 - HO accuracy
 - Ability of jr to handle general steady states

Los Alamos

Thank you⁵

Novel well-balanced continuous interior penalty stabilizations; Micalizzi, Ricchiuto, Abgrall; 2023

49 / 51

⁵Looking for a postdoc position in the U.S.

Shallow water equations, Eulerian

$$\frac{\partial}{\partial t} \boldsymbol{u} + \frac{\partial}{\partial x} \boldsymbol{F}(\boldsymbol{u}) = \boldsymbol{S}(x, \boldsymbol{u}), \quad (x, t) \in \Omega \times [0, T], \ \Omega := (x_L, x_R)$$

$$\mathbf{u} := \begin{pmatrix} H \\ Hv \end{pmatrix}$$

$$\mathbf{F}(\mathbf{u}) := \begin{pmatrix} Hv \\ Hv^2 + g\frac{H^2}{2} \end{pmatrix}$$

$$\mathbf{S}(x, \mathbf{u}) := -\begin{pmatrix} 0 \\ gH\frac{\partial}{\partial x}\mathbf{B}(x) \end{pmatrix}$$

Lorenzo Micalizzi (UZH)

$$\eta := H + B$$

50 / 51

Los Alamos

50 / 51

Shallow water equations, simplification of Euler (with gravity)

$$\frac{\partial}{\partial t} \boldsymbol{u} + \frac{\partial}{\partial x} \boldsymbol{F}(\boldsymbol{u}) = \boldsymbol{S}(x, \boldsymbol{u}), \quad (x, t) \in \Omega \times [0, T], \ \Omega := (x_L, x_R)$$

$$\boldsymbol{u} := \begin{pmatrix} H \\ H v \end{pmatrix} \qquad \qquad H \sim \rho$$

$$\boldsymbol{F}(\boldsymbol{u}) := \begin{pmatrix} H v \\ H v^2 + g \frac{H^2}{2} \end{pmatrix} \qquad \qquad p \sim g \frac{H^2}{2}$$

$$\boldsymbol{S}(x, \boldsymbol{u}) := -\begin{pmatrix} 0 \\ gH \frac{\partial}{\partial x} \boldsymbol{B}(x) \end{pmatrix}$$
Neglection the energy equation

$$H \sim \rho$$

$$p \sim g \frac{H^2}{2}$$

$$B(x) \sim \phi(x)$$

Neglecting the energy equation

