

🧲 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE190502301V01

FCC REPORT (BLE)

Applicant: APRIX LATINOAMERICA S.A.

Address of Applicant: ADVANCED 099 BLDG SUITE 4 C CALLE BEATRIZ M DE

CABAL PANAMA

Equipment Under Test (EUT)

Product Name: Tablet PC

Model No.: Aprix Tab8ii

Trade mark: APRIX/KONNEN

FCC ID: 2AHJQ-APT8IIA

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 09 May, 2019

Date of Test: 09 May, to 30 May, 2019

Date of report issued: 10 Jun., 2019

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	31 May, 2019	Original
01	10 Jun., 2019	Update page 14

Tested by: Mike OU Date: 10 Jun., 2019

Test Engineer

Reviewed by: Date: 10 Jun., 2019

Project Engineer

3 Contents

			Page
1	COVI	ER PAGE	1
2	VERS	SION	2
3	CON.	TENTS	3
4	TES1	SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	-	GENERAL DESCRIPTION OF E.U.T.	_
	_	TEST ENVIRONMENT AND TEST MODE	
		DESCRIPTION OF SUPPORT UNITS	
		MEASUREMENT UNCERTAINTY	
		LABORATORY FACILITY	
	5.7	LABORATORY LOCATION	6
	5.8	TEST INSTRUMENTS LIST	7
6	TEST	RESULTS AND MEASUREMENT DATA	8
	6.1	Antenna requirement:	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	12
		OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	16
	6.6	BAND EDGE	
	6.6.1	Conducted Emission Method	
	6.6.2		
		Spurious Emission	
	6.7.1		
	6.7.2	Radiated Emission Method	27
7	TEST	SETUP PHOTO	32
0	EUT	CONSTRUCTIONAL DETAILS	24

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	APRIX LATINOAMERICA S.A.
Address:	ADVANCED 099 BLDG SUITE 4 C CALLE BEATRIZ M DE CABAL PANAMA
Manufacturer:	Todos industrial limited
Address:	Room 308, Building #5, Cofoc (Fuan) Robotics Industrial Park, No.90, Dayang Road, Fuyong Street, Shenzhen City, P.R. China

5.2 General Description of E.U.T.

•	
Product Name:	Tablet PC
Model No.:	Aprix Tab8ii
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.31 dBi
Power supply:	Rechargeable Li-ion polymer Battery DC3.8V/4500mAh
AC adapter:	Model: BY120502000 Input: AC100-240V, 50/60Hz, 0.3A Output: DC 5.0V, 2A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

Report No: CCISE190502301V01

5.3 Test environment and test mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.54 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.84 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Test Instruments list

Radiated Emission:	Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019	
EMI Test Software	AUDIX	E3	Version: 6.110919b		b	
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020	
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020	
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020	
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A	
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0			

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019
Cable	HP	10503A	N/A	03-18-2019	03-17-2020
EMI Test Software	AUDIX	E3	\	Version: 6.110919	b

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 1.31 dBi.

6.2 Conducted Emission

Test Requirement: FCC Part 15 C Section 15.207 Test Method: ANSI (63.10: 2013 Test Frequency Range: 150 kHz to 30 MHz Class / Severity: Class B Receiver setup: RBW=9kHz, VBW=30kHz Limit: Frequency range (MHz) Limit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56° 56 to 46° 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface calse must be changed according to ANSI C63.4: 2014 on conducted measurement. Test setup: Reference Plane Reference Plane Reference Plane LISN						
Test Frequency Range: Class / Severity: Class B Receiver setup: RBW=9kHz, VBW=30kHz Limit: Frequency range (MHz) Ouasi-peak O.15-0.5 Oubsi-peak O.5-5 Oubsi-peak Oubsi-peak Average O.15-0.5 Oubsi-peak Oubsi-peak Oubsi-peak Oubsi-peak Average O.15-0.5 Oubsi-peak Oubsi-peak Oubsi-peak Average O.15-0.5 Oubsi-peak Oubsi-peak Oubsi-peak Average Oubsi-peak Oubsi-peak Oubsi-peak Average Oubsi-peak Oubsi-peak Oubsi-peak Average Oubsi-peak Oubsi-peak Average Oubsi-peak Oubs	Test Requirement:	FCC Part 15 C Section 15	FCC Part 15 C Section 15.207			
Class / Severity: Class B Receiver setup: RBW=9kHz, VBW=30kHz Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 55° 56 to 46° 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. Test setup: Reference Plane LISN ### Faulty ### Filter AC power ### AC	Test Method:	ANSI C63.10: 2013	ANSI C63.10: 2013			
Receiver setup: RBW=9kHz, VBW=30kHz	Test Frequency Range:	150 kHz to 30 MHz				
Limit: Frequency range (MHz)	Class / Severity:	Class B				
Test setup: Prequency range (MH2) Quasi-peak Average	Receiver setup:	RBW=9kHz, VBW=30kHz				
Test setup: Prequency fange (win2) Quasi-peak Average	Limit:		Limit ((dBuV)		
Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference, in order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. Test setup: Reference Plane LISN		Frequency range (MHZ)	Quasi-peak	Average		
Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. Test setup: Reference Plane LISN Reference Plane LISN LISN Line Impedence Stabilization Network Test Instruments: Refer to section 5.8 for details Test mode: Refer to section 5.3 for details						
* Decreases with the logarithm of the frequency. Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. Test setup: Reference Plane Reference Plane E.U.T EMI Receiver						
1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. Test setup: Reference Plane Reference Plane Regulipment LISN AUX EQUIPMENT LISN Receiver Test table/linsulation plane Remark E.U.T. Equipment Under Test LISN Line impedence Stabilization Network Test lable height-0 8m Refer to section 5.8 for details Refer to section 5.3 for details				50		
line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. Test setup: Reference Plane Reference Plane Refull ISN AUX Equipment Under Test LISN Line impedence Stabilization Network Test table height-0 8m Test Instruments: Refer to section 5.8 for details Refer to section 5.3 for details						
LISN 40cm 80cm Filter AC power Equipment E.U.T Remark EUT Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m Test Instruments: Refer to section 5.8 for details Test mode: Refer to section 5.3 for details		 line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted 				
Test Instruments: Refer to section 5.3 for details Refer to section 5.3 for details	Test setup:	Reference Plane				
Test mode: Refer to section 5.3 for details		AUX Equipment Test table/Insulation pla Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilizatio	J.T Filter EMI Receiver	— AC power		
	Test Instruments:	Refer to section 5.8 for de	tails			
Test results: Passed	Test mode:	Refer to section 5.3 for details				
		Doggod				

Measurement Data:

Product name:	Tablet PC	Product model:	APRIX TAB8II
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Level	Factor	Loss	Level	Limit	Limit	Remark
	MHz	dBu∜	₫B	dB	dBu₹	dBu∜	<u>d</u> B	
1	0.154	50.47	-0.45	10.78	60.80	65.78	-4.98	QP
2	0.154	37.82	-0.45	10.78	48.15	55.78	-7.63	Average
3	0.166	34.51	-0.44	10.77	44.84	55.16	-10.32	Average
4	0.169	45.44	-0.43	10.77	55.78	65.03	-9.25	QP
1 2 3 4 5 6 7 8 9	0.182	39.78	-0.42	10.77	50.13	64.42	-14.29	QP
6	0.226	26.12	-0.40	10.75	36.47	52.61	-16.14	Average
7	0.417	33.47	-0.37	10.73	43.83	57.51	-13.68	QP
8	0.417	23.02	-0.37	10.73	33.38	47.51	-14.13	Average
9	0.712	42.01	-0.38	10.78	52.41	56.00	-3.59	QP
10	0.712	29.31	-0.38	10.78	39.71	46.00	-6.29	Average
11	0.731	32.14	-0.38	10.78	42.54	46.00	-3.46	Average
12	0.759	42.46	-0.38	10.80	52.88	56.00	-3.12	QP

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	Tablet PC	Product model:	APRIX TAB8II
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

MHz dBuV dB dB	Level	Line	Limit	Remark
	dBu∀	dBu∇		
1 0.154 46.15 -0.68 10.78	56.25	65.78	-9.53	QP
1 0.154 46.15 -0.68 10.78 2 0.154 37.23 -0.68 10.78 3 0.162 44.47 -0.68 10.77	47.33	55.78	-8.45	Average
	54.56	65.34	-10.78	QP
4 0.162 35.96 -0.68 10.77 5 0.170 30.26 -0.68 10.77 6 0.194 23.03 -0.69 10.76 7 0.198 35.18 -0.69 10.76 8 0.426 28.03 -0.64 10.73 9 0.727 24.48 -0.64 10.78 10 0.735 35.17 -0.64 10.79	46.05	55.34	-9.29	Average
5 0.170 30.26 -0.68 10.77	40.35	54.94	-14.59	Average
6 0.194 23.03 -0.69 10.76	33.10	53.84	-20.74	Average
7 0.198 35.18 -0.69 10.76	45.25	63.71	-18.46	QP
8 0.426 28.03 -0.64 10.73	38.12	57.33	-19.21	QP
9 0.727 24.48 -0.64 10.78	34.62	46.00	-11.38	Average
10 0.735 35.17 -0.64 10.79	45.32	56.00	-10.68	QP
11 0.755 25.22 -0.64 10.79	35.37	46.00	-10.63	Average
12 0.783 36.30 -0.64 10.81	46.47	56.00	-9.53	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2013 and KDB 558074		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	4.97		
Middle	4.29	30.00	Pass
Highest	1.89		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2013 and KDB 558074		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.738		
Middle	0.726	>500	Pass
Highest	0.732		
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.086		
Middle	1.092	N/A	N/A
Highest	1.086		

Test plot as follows:

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2013 and KDB 558074		
Limit:	8 dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	3.19		
Middle	2.40	8.00	Pass
Highest	1.89		

Test plots as follow:

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013 and KDB 558074			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:				
	Spectrum Analyzer			
	E.U.T			
	Non-Conducted Table			
	Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Test plots as follow:

6.6.2 Radiated Emission Method

.6.2 Radiated Emission Method						
Test Requirement:	FCC Part 15 C	FCC Part 15 C Section 15.205 and 15.209				
Test Method:	ANSI C63.10:	ANSI C63.10: 2013 and KDB 558074				
Test Frequency Range:	2.3GHz to 2.5	2.3GHz to 2.5GHz				
Test Distance:	3m	3m				
Receiver setup:	Frequency	Detector	RBW 1MHz	VBW	Remark	
	Above 1GHz	bove 1GHz		3MHz	Peak Value	
Limit:	Frequer	RMS	1MHz .imit (dBuV/m @3	3MHz	Average Value Remark	
LIIIII.			54.00		Average Value	
	Above 10		74.00		Peak Value	
Test Procedure:	the groun to determ 2. The EUT antenna, tower. 3. The anter the groun Both horize make the 4. For each case and meters are to find the 5. The test-I Specified 6. If the emite the limits of the EU have 10 ce	 the ground at a 3 meter camber. The table was rotated 360 degree to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height anter tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degree to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 			nce-receiving le-height antenna reset to strength. enna are set to ed to its worst en 1 meter to 4 es to 360 degrees unction and 10 dB lower than d the peak values ions that did not using peak, quasi-	
Test setup:	AE TO	umtable) Grou Test Receive	3m and Reference Plane	Antenna Tower		
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section	Refer to section 5.3 for details				
Test results:	Passed					

Product Name:	Tablet PC	Product Model:	APRIX TAB8II
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor						Remark
	MHz	dBu∜	dB/m	₫B	₫₿	dBuV/m	dBuV/m	dB	
1 2	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Tablet PC	Product Model:	APRIX TAB8II
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor						
	MHz	dBu∜	dB/m	dB	₫B	dBuV/m	dBuV/m	dB	
1 2	2390.000 2390.000					51.93 40.03			

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Tablet PC	Product Model:	APRIX TAB8II		
Test By:	Mike	Test mode:	BLE Tx mode		
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

Freq		Antenna Factor						
MHz	dBu₹	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	dB	
		27.36 27.36						Peak Average

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Tablet PC	Product Model:	APRIX TAB8II		
Test By:	Mike	Test mode:	BLE Tx mode		
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB 558074 In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Limit:						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:

6.7.2 Radiated Emission Method

6.7.2 Radiated Emission Method								
Test Requirement:	FCC Part 15 C Section 15.205 and 15.209							
Test Method:	ANSI C63.10:20							
Test Frequency Range:	9kHz to 25GHz							
Test Distance:	3m							
Receiver setup:	Frequency	Detector		RBW	VB	SW .	Remark	
	30MHz-1GHz	Quasi-pea	ak	120KHz	3001		Quasi-peak Value	
	Above 1GHz	Peak		1MHz	3M		Peak Value	
Limite	Frequency	RMS ,	Lim	1MHz nit (dBuV/m @	3M	HZ	Average Value Remark	
Limit:	30MHz-88M		LIII	40.0	3111)	С	Quasi-peak Value	
	88MHz-216M			43.5			luasi-peak Value	
	216MHz-960N			46.0			luasi-peak Value	
	960MHz-1G	Hz		54.0		C	luasi-peak Value	
	Above 1GH	lz		54.0			Average Value	
			1 .	74.0	,		Peak Value	
Test Procedure:	1GHz)/1.5r The table we highest rad 2. The EUT antenna, we tower. 3. The antenre the ground Both horizon make the meters and to find the meters and the meters and to find the meters and	n(above 10 was rotated iation. was set 3 hich was mana height is to determental and was reasuremental and was reasuremental and was reasuremental and was received the rota to anaximum receiver system of the rotate of the would be a margin work was rotated to be a margin w	GHz d 36 me mour s va nine ent. emi ntent able read sten with of th en te rep ould	z) above the 20 degrees to 20 degree to	groun o deter from th op of a ne met um vali ions of to Pea old Mo ak mod be stop wise th d one b	d at a rmine he inter to fue of the a as arraceights degreed was ped arreeming y one	table 0.8m(below a 3 meter camber. the position of the efference-receiving ble-height antenna four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 les to 360 degrees elect Function and a 10 dB lower than and the peak values ssions that did not using peak, quasi-reported in a data	
Test setup:	Below 1GHz Antenna Tower Search Antenna RF Test Receiver Ground Plane Above 1GHz							

Measurement Data (worst case):

Below 1GHz:

Product Name:	Tablet PC	Product Model:	APRIX TAB8II		
Test By:	Mike	Test mode:	BLE Tx mode		
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

	Freq		Antenna Factor						
9	MHz	dBu∜	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	dB	
1	35. 251	45.02	11.24	1.07	29.95	27.38	40.00	-12.62	QP
1 2 3 4 5 6	51.662	41.45	11.94	1.27	29.81	24.85	40.00	-15.15	QP
3	114.917	40.22	11.26	2.11	29.42	24.17	43.50	-19.33	QP
4	133.619	43.59	9.91	2.33	29.31	26.52	43.50	-16.98	QP
5	186.441	41.19	10.18	2.77	28.93	25.21	43.50	-18.29	QP
6	210.786	39.23	11.08	2.86	28.76	24.41	43.50	-19.09	QP

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Tablet PC	Product Model:	APRIX TAB8II
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

		ReadAnt enna		Cable Preamp			Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	dB/m	₫B	dB	dBuV/m	dBuV/m	dB	
1	116.132	41.56	11.19	2.12	29.42	25.45	43.50	-18.05	QP
2	166.068	47.78	9.49	2.63	29.08	30.82	43.50	-12.68	QP
3	189.074	48.85	10.26	2.79	28.91	32.99	43.50	-10.51	QP
4	213.015	46.08	11.19	2.85	28.75	31.37	43.50	-12.13	QP
5	252.948	38.97	12.76	2.82	28.53	26.02	46.00	-19.98	QP
2 3 4 5 6	291.036	37.98	13.45	2.92				-20.12	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

Test channel: Lowest channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	47.38	30.85	6.80	41.81	43.22	74.00	-30.78	Vertical	
4804.00	46.57	30.85	6.80	41.81	42.41	74.00	-31.59	Horizontal	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	37.62	30.85	6.80	41.81	33.46	54.00	-20.54	Vertical	
4804.00	36.89	30.85	6.80	41.81	32.73	54.00	-21.27	Horizontal	
Test channel: Middle channel									
Detector: Peak Value									
Frequency (MHz)	Read Level	Antenna Factor	Cable Loss (dB)	Preamp Factor	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit	Polarization	

l'est channel: Middle channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4884.00	47.24	31.20	6.86	41.84	43.46	74.00	-30.54	Vertical		
4884.00	46.53	31.20	6.86	41.84	42.75	74.00	-31.25	Horizontal		
	Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4884.00	37.43	31.20	6.86	41.84	33.65	54.00	-20.35	Vertical		
4884.00	36.11	31.20	6.86	41.84	32.33	54.00	-21.67	Horizontal		

Test channel: Highest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4960.00	47.64	31.63	6.91	41.87	44.31	74.00	-29.69	Vertical		
4960.00	46.85	31.63	6.91	41.87	43.52	74.00	-30.48	Horizontal		
	Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4960.00	37.37	31.63	6.91	41.87	34.04	54.00	-19.96	Vertical		
4960.00	36.89	31.63	6.91	41.87	33.56	54.00	-20.44	Horizontal		

Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.