In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

In [2]:

data = pd.read_csv('marketing_data.csv')

In [3]:

data.head()

Out[3]:

	ID	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Customer
0	1826	1970	Graduation	Divorced	\$84,835.00	0	0	6/16/14
1	1	1961	Graduation	Single	\$57,091.00	0	0	6/15/14
2	10476	1958	Graduation	Married	\$67,267.00	0	1	5/13/14
3	1386	1967	Graduation	Together	\$32,474.00	1	1	05-11-2014
4	5371	1989	Graduation	Single	\$21,474.00	1	0	04-08-2014

5 rows × 28 columns

→

In [4]:

data.tail()

Out[4]:

	ID	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Custor
2235	10142	1976	PhD	Divorced	\$66,476.00	0	1	03-07-20
2236	5263	1977	2n Cycle	Married	\$31,056.00	1	0	1/22
2237	22	1976	Graduation	Divorced	\$46,310.00	1	0	12-03-20
2238	528	1978	Graduation	Married	\$65,819.00	0	0	11/29
2239	4070	1969	PhD	Married	\$94,871.00	0	2	09-01-20

5 rows × 28 columns

→

```
In [5]:
data.shape
Out[5]:
(2240, 28)
In [6]:
data.columns
Out[6]:
Index(['ID', 'Year_Birth', 'Education', 'Marital_Status', ' Income ',
       'Kidhome', 'Teenhome', 'Dt_Customer', 'Recency', 'MntWines',
       'MntFruits', 'MntMeatProducts', 'MntFishProducts', 'MntSweetProduct
s',
       'MntGoldProds', 'NumDealsPurchases', 'NumWebPurchases',
       'NumCatalogPurchases', 'NumStorePurchases', 'NumWebVisitsMonth',
       'AcceptedCmp3', 'AcceptedCmp4', 'AcceptedCmp5', 'AcceptedCmp1',
       'AcceptedCmp2', 'Response', 'Complain', 'Country'],
      dtype='object')
In [7]:
data.duplicated().sum()
Out[7]:
```

0

In [8]:

data.isnull().sum()

Out[8]:

ID	0
Year_Birth	0
Education	0
Marital_Status	0
Income	24
Kidhome	0
Teenhome	0
Dt_Customer	0
Recency	0
MntWines	0
MntFruits	0
MntMeatProducts	0
MntFishProducts	0
MntSweetProducts	0
MntGoldProds	0
NumDealsPurchases	0
NumWebPurchases	0
NumCatalogPurchases	0
NumStorePurchases	0
NumWebVisitsMonth	0
AcceptedCmp3	0
AcceptedCmp4	0
AcceptedCmp5	0
AcceptedCmp1	0
AcceptedCmp2	0
Response	0
Complain	0
Country	0
dtype: int64	

In [9]:

```
data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2240 entries, 0 to 2239
Data columns (total 28 columns):

Jaca	COTUMNIS (COCAT 20 CO.	Tulli 13) •	
#	Column	Non-Null Count	Dtype
0	ID	2240 non-null	int64
1	Year_Birth	2240 non-null	int64
2	Education	2240 non-null	object
3	Marital_Status	2240 non-null	object
4	Income	2216 non-null	object
5	Kidhome	2240 non-null	int64
6	Teenhome	2240 non-null	int64
7	Dt_Customer	2240 non-null	object
8	Recency	2240 non-null	int64
9	MntWines	2240 non-null	int64
10	MntFruits	2240 non-null	int64
11	MntMeatProducts	2240 non-null	int64
12	MntFishProducts	2240 non-null	int64
13	MntSweetProducts	2240 non-null	int64
14	MntGoldProds	2240 non-null	int64
15	NumDealsPurchases	2240 non-null	int64
16	NumWebPurchases	2240 non-null	int64
17	NumCatalogPurchases	2240 non-null	int64
18	NumStorePurchases	2240 non-null	int64
19	NumWebVisitsMonth	2240 non-null	int64
20	AcceptedCmp3	2240 non-null	int64
21	AcceptedCmp4	2240 non-null	int64
22	AcceptedCmp5	2240 non-null	int64
23	AcceptedCmp1	2240 non-null	int64
24	AcceptedCmp2	2240 non-null	int64
25	Response	2240 non-null	int64
26	Complain	2240 non-null	int64
27	Country	2240 non-null	object

dtypes: int64(23), object(5)

memory usage: 490.1+ KB

In [10]:

data.describe()

Out[10]:

	ID	Year_Birth	Kidhome	Teenhome	Recency	MntWines	N		
count	2240.000000	2240.000000	2240.000000	2240.000000	2240.000000	2240.000000	2240		
mean	5592.159821	1968.805804	0.444196	0.506250	49.109375	303.935714	26		
std	3246.662198	11.984069	0.538398	0.544538	28.962453	336.597393	39		
min	0.000000	1893.000000	0.000000	0.000000	0.000000	0.000000	(
25%	2828.250000	1959.000000	0.000000	0.000000	24.000000	23.750000			
50%	5458.500000	1970.000000	0.000000	0.000000	49.000000	173.500000	8		
75%	8427.750000	1977.000000	1.000000	1.000000	74.000000	504.250000	33		
max	11191.000000	1996.000000	2.000000	2.000000	99.000000	1493.000000	199		
8 rows × 23 columns									
4							•		

In [11]:

data.nunique()

Out[11]:

ID	2240
Year_Birth	59
Education	5
Marital_Status	8
Income	1974
Kidhome	3
Teenhome	3
Dt_Customer	663
Recency	100
MntWines	776
MntFruits	158
MntMeatProducts	558
MntFishProducts	182
MntSweetProducts	177
MntGoldProds	213
NumDealsPurchases	15
NumWebPurchases	15
NumCatalogPurchases	14
NumStorePurchases	14
NumWebVisitsMonth	16
AcceptedCmp3	2
AcceptedCmp4	2
AcceptedCmp5	2
AcceptedCmp1	2
AcceptedCmp2	2
Response	2
Complain	2
Country	8
dtype: int64	

In [12]:

In [13]:

```
for i in data_cat.columns:
    plt.figure(figsize=(15,6))
    sns.countplot(data_cat[i], data = data_cat, palette = 'hls')
    plt.xticks(rotation = 90)
    plt.show()
```


In [14]:

```
for i in data_cat.columns:
    plt.figure(figsize=(15,6))
    data_cat[i].value_counts().plot(kind = 'pie', autopct = '%1.1f%%')
    plt.xticks(rotation = 90)
    plt.show()
```


In [15]:

In [16]:

```
for i in data_num.columns:
   plt.figure(figsize=(15,6))
   sns.boxplot(data_num[i])
   plt.xticks(rotation = 90)
   plt.show()
```


In [21]:

```
for i in data_num.columns:
   plt.figure(figsize=(15,6))
   sns.violinplot(data_num[i])
   plt.xticks(rotation = 90)
   plt.show()
```



```
In [17]:
data.rename(columns={' Income ' : 'Income'}, inplace=True)
data['Income']=data["Income"].str.replace("$","")
data['Income']=data["Income"].str.replace(",","")
data['Income']=data["Income"].astype(float)
In [18]:
data['Income'].head()
Out[18]:
     84835.0
0
1
     57091.0
2
     67267.0
3
     32474.0
4
     21474.0
Name: Income, dtype: float64
In [19]:
data['Income'].tail()
Out[19]:
2235
        66476.0
2236
        31056.0
2237
        46310.0
2238
        65819.0
2239
        94871.0
Name: Income, dtype: float64
In [24]:
data['Income'].isnull().sum()/len(data)*100
Out[24]:
1.0714285714285714
In [25]:
data['Income']
Out[25]:
        84835.0
0
        57091.0
1
2
        67267.0
3
        32474.0
        21474.0
         . . .
2235
        66476.0
2236
        31056.0
2237
        46310.0
2238
        65819.0
2239
        94871.0
Name: Income, Length: 2240, dtype: float64
```

In [26]:

```
plt.figure(figsize=(15,6))
sns.distplot(data['Income'])
plt.xticks(rotation = 90)
plt.show()
```


In [27]:

```
data['Income']= data['Income'].fillna(data['Income'].median())
data['Income'].isna().sum()
```

Out[27]:

0

In [28]:

```
data['Dt_Customer'] = pd.to_datetime(data['Dt_Customer'])
```

In [29]:

```
data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2240 entries, 0 to 2239
Data columns (total 28 columns):

#	Column (Cotal 28 Co.	Non-Null Count	Dtype				
π 		Non Naii Counc					
0	ID	2240 non-null	int64				
1	Year_Birth	2240 non-null	int64				
2	Education	2240 non-null	object				
3	Marital_Status	2240 non-null	object				
4	Income	2240 non-null	float64				
5	Kidhome	2240 non-null	int64				
6	Teenhome	2240 non-null	int64				
7	Dt_Customer	2240 non-null	datetime64[ns]				
8	Recency	2240 non-null	int64				
9	MntWines	2240 non-null	int64				
10	MntFruits	2240 non-null	int64				
11	MntMeatProducts	2240 non-null	int64				
12	MntFishProducts	2240 non-null	int64				
13	MntSweetProducts	2240 non-null	int64				
14	MntGoldProds	2240 non-null	int64				
15	NumDealsPurchases	2240 non-null	int64				
16	NumWebPurchases	2240 non-null	int64				
17	NumCatalogPurchases						
18	NumStorePurchases	2240 non-null					
19	NumWebVisitsMonth	2240 non-null	int64				
20	AcceptedCmp3	2240 non-null					
21	AcceptedCmp4	2240 non-null					
22	AcceptedCmp5	2240 non-null	int64				
23	AcceptedCmp1	2240 non-null					
24	AcceptedCmp2	2240 non-null					
25	Response	2240 non-null					
26	Complain	2240 non-null					
27	Country	2240 non-null	object				
	<pre>dtypes: datetime64[ns](1), float64(1), int64(23), object(3)</pre>						
memo	memory usage: 490.1+ KB						

In [30]:

```
from datetime import date
data['Age'] = date.today().year - data['Year_Birth']
```

In [31]:

```
plt.figure(figsize=(15,6))
sns.histplot(x=data['Age'])
plt.xticks(rotation = 90)
plt.show()
```


In [32]:

```
data2 = data[data['Age']>100]
```

In [33]:

data2

Out[33]:

	ID	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Customer
513	11004	1893	2n Cycle	Single	60182.0	0	1	2014-05-17
827	1150	1899	PhD	Together	83532.0	0	0	2013-09-26
2233	7829	1900	2n Cycle	Divorced	36640.0	1	0	2013-09-26

3 rows × 29 columns

→

In [34]:

```
data = data[data['Age']<100]
data = data[data['Income']<600000]</pre>
```

In [35]:

```
plt.figure(figsize=(15,6))
sns.histplot(x=data['Age'])
plt.xticks(rotation = 90)
plt.show()
```


In [37]:

```
plt.figure(figsize=(15, 6))
plt.title('Age Of Customers')
ax = sns.countplot(x=data['Age']);
for p in ax.patches:
    ax.annotate('{:}'.format(p.get_height()), (p.get_x()+0.25, p.get_height()+0.01))
plt.xticks(rotation = 90)
plt.show()
```


In [38]:

In [39]:

```
data['Total Amount']
```

Out[39]:

0	1190	
1	577	
2	251	
3	11	
4	91	
2235	689	
2236	55	
2237	309	
2238	1383	
2239	1078	

Name: Total Amount, Length: 2236, dtype: int64

In [40]:

```
plt.figure(figsize=(15,6))
sns.scatterplot(x=data['Age'],y=data['Total Amount'])
plt.xticks(rotation = 90)
plt.show()
```


In [41]:

```
data.filter(regex='Mnt',axis=1)
```

Out[41]:

	MntWines	MntFruits	MntMeatProducts	MntFishProducts	MntSweetProducts	MntGoldProc
0	189	104	379	111	189	2′
1	464	5	64	7	0	3
2	134	11	59	15	2	:
3	10	0	1	0	0	
4	6	16	24	11	0	:
2235	372	18	126	47	48	7
2236	5	10	13	3	8	1
2237	185	2	88	15	5	1
2238	267	38	701	149	165	•
2239	169	24	553	188	0	14

2236 rows × 6 columns

```
→
```

In [42]:

```
data['PercentWine'] = (data['MntWines']/data['Total Amount'])*100
```

In [43]:

```
data['PercentOthers'] = ((data['MntFruits']+data['MntMeatProducts']+data['MntFishProducts']
```

In [44]:

```
data.filter(regex='Percent|Total|MntWines',axis=1)
```

Out[44]:

	MntWines	Total Amount	PercentWine	PercentOthers
0	189	1190	15.882353	84.117647
1	464	577	80.415945	19.584055
2	134	251	53.386454	46.613546
3	10	11	90.909091	9.090909
4	6	91	6.593407	93.406593
			•••	
2235	372	689	53.991292	46.008708
2236	5	55	9.090909	90.909091
2237	185	309	59.870550	40.129450
2238	267	1383	19.305857	80.694143
2239	169	1078	15.677180	84.322820

2236 rows × 4 columns

In [45]:

data['Total_Purchase']= data['NumWebPurchases']+data['NumCatalogPurchases']+data['NumStoreP

In [46]:

```
data['Total_Purchase']
```

Out[46]:

Name: Total_Purchase, Length: 2236, dtype: int64

In [47]:

data.filter(regex='WebP|Catalog|Store|Total_Purchase',axis=1)

Out[47]:

	NumWebPurchases	NumCatalogPurchases	NumStorePurchases	Total_Purchase
0	4	4	6	14
1	7	3	7	17
2	3	2	5	10
3	1	0	2	3
4	3	1	2	6
2235	5	2	11	18
2236	1	0	3	4
2237	6	1	5	12
2238	5	4	10	19
2239	8	5	4	17

2236 rows × 4 columns

In [48]:

```
data['PergStore'] = (data['NumStorePurchases']/data['Total_Purchase'])*100

data['PergOthers'] = ((data['NumCatalogPurchases']+data['NumWebPurchases'])/data['Total_Purdata.filter(regex='Store|Total_P|Perg',axis=1)
```

Out[48]:

	NumStorePurchases	Total_Purchase	PergStore	PergOthers
0	6	14	42.857143	57.142857
1	7	17	41.176471	58.823529
2	5	10	50.000000	50.000000
3	2	3	66.666667	33.333333
4	2	6	33.333333	66.666667
2235	11	18	61.111111	38.888889
2236	3	4	75.000000	25.000000
2237	5	12	41.666667	58.333333
2238	10	19	52.631579	47.368421
2239	4	17	23.529412	76.470588

2236 rows × 4 columns

In [49]:

```
campaigns = pd.DataFrame(data.iloc[:,20:25].sum(), columns=['amount']).reset_index()
```

In [50]:

campaigns

Out[50]:

	index	amount
0	AcceptedCmp3	163
1	AcceptedCmp4	167
2	AcceptedCmp5	162
3	AcceptedCmp1	144
4	AcceptedCmp2	30

In [52]:

```
plt.figure(figsize=(15,6))
plt.title('Success of Each Campaigns')
yx = sns.barplot(x='index',y='amount',data=campaigns);
plt.xlabel('Campaigns')
plt.ylabel('Count')
for p in yx.patches:
    yx.annotate('{:}'.format(p.get_height()), (p.get_x()+0.25, p.get_height()+0.01))
plt.xticks(rotation = 90)
plt.show()
```


In [53]:

```
revenue = pd.DataFrame(data.iloc[:,9:15].sum(),columns=['rev_generated']).reset_index()
```

In [54]:

revenue

Out[54]:

	index	rev_generated
0	MntWines	680029
1	MntFruits	58753
2	MntMeatProducts	373375
3	MntFishProducts	83931
4	MntSweetProducts	60552
5	MntGoldProds	98346

In [55]:

```
plt.figure(figsize=(15,6))
plt.title("Revenue Generated By Products")
yyx= sns.barplot(x='index',y='rev_generated',data=revenue);
plt.xlabel('Products')
plt.ylabel('Revenue Generated')
for p in yyx.patches:
    yyx.annotate('{:}'.format(p.get_height()), (p.get_x()+0.25, p.get_height()+0.01))
plt.xticks(rotation = 90)
plt.show()
```


In [56]:

```
plt.figure(figsize=(15,6))
sns.relplot(x='Age',y='Income',hue='Response',data=data);
plt.title('Age v/s Income');
plt.xticks(rotation = 90)
plt.show()
```

<Figure size 1080x432 with 0 Axes>

In [58]:

```
plt.figure(figsize=(15,6))
sns.pairplot(vars=['Age','Income'],hue='Response',data=data);
plt.xticks(rotation = 90)
plt.show()
```

<Figure size 1080x432 with 0 Axes>

In [59]:

```
plt.figure(figsize=(15,6))
cs = sns.countplot(x='Country',hue='Response',data=data)
plt.title('Customers Acceptance of last campaign response based on country');
for p in cs.patches:
    cs.annotate('{:}'.format(p.get_height()), (p.get_x()+0.25, p.get_height()+0.01))
plt.xticks(rotation = 90)
plt.show()
```


In [60]:

```
data['Dependents']=data['Kidhome']+data['Teenhome']
```

In [61]:

```
data['Dependents']
Out[61]:
0
        0
1
        0
2
        1
3
        2
        1
2235
        1
2236
        1
2237
        1
2238
        0
2239
        2
Name: Dependents, Length: 2236, dtype: int64
```

In [63]:

```
plt.figure(figsize=(15,6))
sns.swarmplot(x='Dependents',y='Total Amount',data=data);
plt.title("TOTAL AMOUNT SPENT V/S DEPENDENTS");
plt.xticks(rotation = 90)
plt.show()
```


In [64]:

```
plt.figure(figsize=(15, 6))
sns.swarmplot(x='Dependents',y='Total_Purchase',data=data);
plt.title('TOTAL NUMBER OF PURCHASES V/S DEPENDENTS');
plt.xticks(rotation = 90)
plt.show()
```


In [65]:

```
corrmat = data.corr()
corrmat
```

Out[65]:

	ID	Year_Birth	Income	Kidhome	Teenhome	Recency	MntW i
ID	1.000000	0.002659	0.000869	0.001656	-0.003052	-0.046300	-0.020
Year_Birth	0.002659	1.000000	-0.198835	0.233894	-0.363172	-0.019396	-0.162
Income	0.000869	-0.198835	1.000000	-0.510441	0.034315	0.007829	0.686
Kidhome	0.001656	0.233894	-0.510441	1.000000	-0.035339	0.007964	-0.496
Teenhome	-0.003052	-0.363172	0.034315	-0.035339	1.000000	0.016746	0.005
Recency	-0.046300	-0.019396	0.007829	0.007964	0.016746	1.000000	0.016
MntWines	-0.020726	-0.162809	0.686080	-0.496166	0.005047	0.016321	1.000
MntFruits	0.007247	-0.013657	0.504911	-0.372442	-0.176117	-0.003717	0.388
MntMeatProducts	-0.002274	-0.030729	0.684176	-0.436901	-0.261171	0.023446	0.561
MntFishProducts	-0.022903	-0.042359	0.518462	-0.387404	-0.204177	0.001314	0.398
MntSweetProducts	-0.006112	-0.019379	0.518126	-0.370486	-0.162527	0.022796	0.385
MntGoldProds	-0.010339	-0.057419	0.383548	-0.349462	-0.020447	0.017168	0.386
NumDealsPurchases	-0.037393	-0.068286	-0.107169	0.221489	0.388293	-0.000638	0.011
NumWebPurchases	-0.017712	-0.153873	0.450584	-0.361982	0.155649	-0.010776	0.542
NumCatalogPurchases	-0.001592	-0.125285	0.693781	-0.502331	-0.110551	0.025226	0.634
NumStorePurchases	-0.013613	-0.139237	0.628075	-0.500192	0.050177	0.000771	0.642
NumWebVisitsMonth	-0.008256	0.117498	-0.646382	0.447626	0.134636	-0.021850	-0.320
AcceptedCmp3	-0.035823	0.061107	-0.015064	0.014739	-0.042949	-0.033095	0.062
AcceptedCmp4	-0.025150	-0.064261	0.217659	-0.161686	0.038680	0.018779	0.373
AcceptedCmp5	-0.004916	0.015411	0.394308	-0.204918	-0.190383	0.000844	0.471
AcceptedCmp1	-0.021392	-0.008146	0.325254	-0.172435	-0.140426	-0.019367	0.354
AcceptedCmp2	-0.014970	-0.007621	0.104062	-0.081760	-0.015715	-0.001811	0.206
Response	-0.021596	0.018557	0.161121	-0.080005	-0.154941	-0.198781	0.247
Complain	0.031580	-0.004450	-0.027871	0.036336	0.007553	0.005361	-0.035
Age	-0.002659	-1.000000	0.198835	-0.233894	0.363172	0.019396	0.162
Total Amount	-0.015359	-0.113618	0.789375	-0.556719	-0.138197	0.020842	0.891
PercentWine	-0.010179	-0.294814	0.301223	-0.160375	0.452937	-0.017238	0.463
PercentOthers	0.010179	0.294814	-0.301223	0.160375	-0.452937	0.017238	-0.463
Total_Purchase	-0.013620	-0.173004	0.738647	-0.569099	0.037826	0.006426	0.75€
PergStore	0.012832	0.104793	-0.376092	0.270237	0.009040	-0.022960	-0.392
PergOthers	-0.012832	-0.104793	0.376092	-0.270237	-0.009040	0.022960	0.392
Dependents	-0.001024	-0.095512	-0.340550	0.690256	0.698721	0.017826	-0.351

→

In [73]:

```
cmap = sns.diverging_palette(260, -10, s = 50, l = 75, n = 6, as_cmap = True)
plt.figure(figsize=(30, 30))
sns.heatmap(corrmat, cmap = cmap, annot = True, square = True)
plt.show()
```


In [74]:

Out[74]:

	Age	Education	Marital_Status	Dependents	Income	Total Amount	Total_Purchase	PercentW
0	52	Graduation	Divorced	0	84835.0	1190	14	15.882
1	61	Graduation	Single	0	57091.0	577	17	80.415
2	64	Graduation	Married	1	67267.0	251	10	53.3864
3	55	Graduation	Together	2	32474.0	11	3	90.9090
4	33	Graduation	Single	1	21474.0	91	6	6.5934
2235	46	PhD	Divorced	1	66476.0	689	18	53.991;
2236	45	2n Cycle	Married	1	31056.0	55	4	9.0909
2237	46	Graduation	Divorced	1	46310.0	309	12	59.870
2238	44	Graduation	Married	0	65819.0	1383	19	19.305
2239	53	PhD	Married	2	94871.0	1078	17	15.677

2236 rows × 12 columns

In [75]:

sns.pairplot(datacor);
plt.show()

In [76]:

```
plt.figure(figsize=(10,5))
ec = sns.countplot(x='Education',hue='Complain',data=data)
for p in ec.patches:
    ec.annotate('{:}'.format(p.get_height()), (p.get_x()+0.25, p.get_height()+0.01))
plt.xticks(rotation = 90)
plt.show()
```


In [77]:

sns.pairplot(vars=['Total Amount','MntFruits','MntMeatProducts','MntGoldProds'], hue='Respo
plt.show()

In [78]:

sns.pairplot(vars=['Total Amount','MntFruits','MntMeatProducts','MntGoldProds'], hue='Educa
plt.show()

In [79]:

sns.pairplot(vars=['Total Amount','MntFruits','MntMeatProducts','MntGoldProds'], hue='Marit
plt.show()


```
In [80]:
dates = []
for i in data["Dt_Customer"]:
    i = i.date()
    dates.append(i)
#Dates of the newest and oldest recorded customer
print("The newest customer's enrolment date in the records:",max(dates))
print("The oldest customer's enrolment date in the records:",min(dates))
The newest customer's enrolment date in the records: 2014-06-29
The oldest customer's enrolment date in the records: 2012-07-30
In [81]:
days = []
d1 = max(dates) #taking it to be the newest customer
for i in dates:
    delta = d1 - i
    days.append(delta)
data["Customer_For"] = days
data["Customer_For"] = pd.to_numeric(data["Customer_For"], errors="coerce")
In [84]:
print("Total categories in the feature Marital_Status:\n", data["Marital_Status"].value_cou
print("Total categories in the feature Education:\n", data["Education"].value_counts())
Total categories in the feature Marital_Status:
Married
             864
Together
            578
Single
            479
Divorced
            231
Widow
             77
Alone
              3
Y<sub>0</sub>L<sub>0</sub>
              2
Absurd
Name: Marital_Status, dtype: int64
Total categories in the feature Education:
Graduation
               1126
PhD
               485
               370
Master
2n Cycle
               201
                54
Basic
Name: Education, dtype: int64
In [85]:
data["Age"] = 2022-data["Year Birth"]
In [86]:
```

```
data["Spent"] = data["MntWines"]+ data["MntFruits"]+ data["MntMeatProducts"]+ data["MntFish
```

```
In [87]:
data["Children"]=data["Kidhome"]+data["Teenhome"]
In [88]:
data["Living_With"]=data["Marital_Status"].replace({"Married":"Partner", "Together":"Partne
In [89]:
data["Family Size"] = data["Living With"].replace({"Alone": 1, "Partner":2})+ data["Childre
In [90]:
data["Is Parent"] = np.where(data.Children> 0, 1, 0)
In [91]:
data["Education"]=data["Education"].replace({"Basic":"Undergraduate","2n Cycle":"Undergraduate")
In [92]:
data=data.rename(columns={"MntWines": "Wines", "MntFruits": "Fruits", "MntMeatProducts": "Meat"
In [94]:
to_drop = ["Marital_Status", "Dt_Customer", "Year_Birth", "ID"]
data = data.drop(to drop, axis=1)
In [99]:
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from yellowbrick.cluster import KElbowVisualizer
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt, numpy as np
from mpl_toolkits.mplot3d import Axes3D
from sklearn.cluster import AgglomerativeClustering
from matplotlib.colors import ListedColormap
from sklearn import metrics
import warnings
import sys
if not sys.warnoptions:
    warnings.simplefilter("ignore")
```

np.random.seed(42)

```
In [100]:
```

```
s = (data.dtypes == 'object')
object_cols = list(s[s].index)
print("Categorical variables in the dataset:", object_cols)
```

Categorical variables in the dataset: ['Education', 'Country', 'Living_With']

In [101]:

```
LE=LabelEncoder()
for i in object_cols:
    data[i]=data[[i]].apply(LE.fit_transform)
print("All features are now numerical")
```

All features are now numerical

In [102]:

```
ds = data.copy()
cols_del = ['AcceptedCmp3', 'AcceptedCmp4', 'AcceptedCmp5', 'AcceptedCmp1','AcceptedCmp2',
ds = ds.drop(cols_del, axis=1)
scaler = StandardScaler()
scaler.fit(ds)
scaled_ds = pd.DataFrame(scaler.transform(ds),columns= ds.columns )
print("All features are now scaled")
```

All features are now scaled

In [103]:

```
print("Dataframe to be used for further modelling:")
scaled_ds.head()
```

Dataframe to be used for further modelling:

Out[103]:

	Education	Income	Kidhome	Teenhome	Recency	Wines	Fruits	Meat	
0	-0.89438	1.536081	-0.824939	-0.930615	-1.696543	-0.342115	1.957039	0.939627	1.34
1	-0.89438	0.240037	-0.824939	-0.930615	-1.696543	0.475081	-0.535714	-0.456408	-0.55
2	-0.89438	0.715402	-0.824939	0.905974	-1.696543	-0.505555	-0.384638	-0.478567	-0.41
3	-0.89438	-0.909932	1.032627	0.905974	-1.696543	-0.874036	-0.661610	-0.735615	-0.68
4	-0.89438	-1.423790	1.032627	-0.930615	-1.696543	-0.885922	-0.258741	-0.633682	-0.48

5 rows × 31 columns

```
→
```

In [107]:

```
scaled_ds = scaled_ds.dropna()
```

In [108]:

```
pca = PCA(n_components=3)
pca.fit(scaled_ds)
PCA_ds = pd.DataFrame(pca.transform(scaled_ds), columns=(["col1","col2", "col3"]))
PCA_ds.describe().T
```

Out[108]:

_		count	mean	std	min	25%	50%	75%	max
	col1	2230.0	-1.911774e-17	3.281491	-6.086858	-2.899652	-0.704452	2.729460	8.454845
	col2	2230.0	-7.647097e-17	2.101889	-5.887682	-1.647021	-0.066964	1.552679	7.244360
	col3	2230.0	-8.284355e-17	1.473437	-4.887482	-0.998291	-0.019217	0.915885	7.716834

In [109]:

```
x =PCA_ds["col1"]
y =PCA_ds["col2"]
z =PCA_ds["col3"]
fig = plt.figure(figsize=(10,8))
ax = fig.add_subplot(111, projection="3d")
ax.scatter(x,y,z, c="maroon", marker="o")
ax.set_title("A 3D Projection Of Data In The Reduced Dimension")
plt.show()
```

A3D Projection Of Data In The Reduced Dimension

In [110]:

```
print('Elbow Method to determine the number of clusters to be formed:')
Elbow_M = KElbowVisualizer(KMeans(), k=10)
Elbow_M.fit(PCA_ds)
Elbow_M.show()
```

Elbow Method to determine the number of clusters to be formed:

Out[110]:

<AxesSubplot:title={'center':'Distortion Score Elbow for KMeans Clusterin
g'}, xlabel='k', ylabel='distortion score'>

In [112]:

```
AC = AgglomerativeClustering(n_clusters=5)
# fit model and predict clusters
yhat_AC = AC.fit_predict(PCA_ds)
PCA_ds["Clusters"] = yhat_AC
```

In [113]:

yhat_AC

Out[113]:

array([1, 1, 0, ..., 0, 1, 3], dtype=int64)

In [114]:

```
fig = plt.figure(figsize=(10,8))
ax = plt.subplot(111, projection='3d', label="bla")
ax.scatter(x, y, z, s=40, c=PCA_ds["Clusters"], marker='o', cmap = cmap )
ax.set_title("The Plot Of The Clusters")
plt.show()
```

The Plot Of The Clusters

In [116]:

```
pal = ["#682F2F","#B9C0C9", "#9F8A78","#F3AB60"]
pl = sns.countplot(x=PCA_ds["Clusters"], palette= pal)
pl.set_title("Distribution Of The Clusters")
plt.show()
```


In [117]:

```
pl = sns.scatterplot(data = data,x=data["Spent"], y=data["Income"],hue=PCA_ds["Clusters"],
pl.set_title("Cluster's Profile Based On Income And Spending")
plt.legend()
plt.show()
```


In [119]:

```
plt.figure()
pl=sns.swarmplot(x=PCA_ds["Clusters"], y=data["Spent"], color= "#CBEDDD", alpha=0.5 )
pl=sns.boxenplot(x=PCA_ds["Clusters"], y=data["Spent"], palette=pal)
plt.show()
```

