Podstawy robotyki

Praca domowa nr 1

Maciej Dominiak

TEMAT: Zadanie kinematyki prostej i odwrotnej

1. Zadanie kinematyki prostej

Aby rozwiązać zadanie kinematyki prostej należy obliczyć macierz transformacji układu bazowego w układ nadgarstka. Na samym początku zadania, stosując formalizm Denavita-Hartenberga, uzupełniamy poniższą tabele.

Para	Δ	d	a	C C
kinematyczna	θ_n	a_n	a_n	α_n
1	$ heta_1$	350	16	90°
2	$ heta_2$	0	220	0°
3	$ heta_3$	0	220	0°
4	$ heta_4$	0	0	90°
5	$\theta_5 + 90^{\circ}$	150	0	0°

Tak przygotowana tabela pozwala nam określić jednorodne macierze transformacji pomiędzy kolejnymi układami współrzędnych.

$$H_0^1 = \begin{bmatrix} \cos\theta_1 & 0 & \sin\theta_1 & 16\cos\theta_1 \\ \sin\theta_1 & 0 & -\cos\theta_1 & 16\sin\theta_1 \\ 0 & 1 & 0 & 350 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$H_1^2 = \begin{bmatrix} \cos\theta_2 & -\sin\theta_2 & 0 & 220\cos\theta_2 \\ \sin\theta_2 & \cos\theta_2 & 0 & 220\sin\theta_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$H_2^3 = \begin{bmatrix} \cos\theta_3 & -\sin\theta_3 & 0 & 220\cos\theta_3 \\ \sin\theta_3 & \cos\theta_3 & 0 & 220\sin\theta_3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$H_3^4 = \begin{bmatrix} \cos\theta_4 & 0 & \sin\theta_4 & 0 \\ \sin\theta_4 & 0 & -\cos\theta_4 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$H_4^5 = \begin{bmatrix} -\sin\theta_5 & -\cos\theta_5 & 0 & 0 \\ \cos\theta_5 & -\sin\theta_5 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Chcąc uzyskać macierz transformacji układu bazowego w układ narzędzia, mnożymy przez siebie kolejne macierze jednorodne. Dla zmniejszenia rozmiarów macierzy przyjmiemy następujące skróty: $\text{C1=}\cos\theta_1$, $\text{C2=}\cos\theta_2$, itd. $\text{S1=}\sin\theta_1$, $\text{S2=}\sin\theta_2$, itd.

$$H_0^2 = H_0^1 * H_1^2 = \begin{bmatrix} C1C2 & -C1S2 & S1 & 16C1 + 220C1C2 \\ S1C2 & -S1S2 & -C1 & 16S1 + 220S1C2 \\ S2 & C2 & 0 & 220S2 + 350 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$H_0^3 = H_0^2 * H_2^3 \\ = \begin{bmatrix} C1C2C3 - C1S2S3 & -C1C3S2 - C1C2S3 & S1 & 16C1 + 220C1C2 + 220C1C2C3 - 220C1S2S3 \\ C2C3S1 - S1S2S3 & -C3S1S2 - C2S1S3 & -C1 & 220C2S1 + 220C2C3S1 + 16S1 - 220S1S2S3 \\ C3S2 + C2S3 & C2C3 - S2S3 & 0 & 220C3S2 + 220S2 + 220C2S3 + 350 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$H_0^4 = H_0^3 * H_3^4 =$$

C1C2C3C4-C1C4S2S3-	C1	C1C3C4S2+C1C2C4S3+	16C1+220C1C2+
C1C3S2S4-C1C2S3S4	S1	C1C2C3S4-C1S2S3S4	220C1C2C3-220C1S2S3
C2C3C4S1-C4S1S2S3-	-C1	C3C4S1S2+C2C4S1S3+	220C2S1+220C2C3S1+
C3S1S2S4-C2S1S3S4	-C1	C2C3S1S4-S1S2S3S4	16S1-220S1S2S3
C3C4S2+C2C4S3+	0	-C2C3C4+C4S2S3+	220C3S2+220S2+
C2C3S4-S2S3S4	0	C3S2S4+C2S3S4	220C2S3+350
0	0	0	1

$$H_0^5 = H_0^4 * H_4^5 =$$

C5S1-C1C2C3C4S5+ C1C4S2S3S5+ C1C3S2S4S5+ C1C2S3S4S5	-C1C2C3C4C5+ C1C4C5S2S3+ C1C3C5S2S4+ C1C2C5S3S4-S1S5	C1C3C4S2+C1C2C4S3+ C1C2C3S4-C1S2S3S4	16C1+220C1C2+ 220C1C2C3+ 150C1C3C4S2+ 150C1C2C4S3- 220C1S2S3+ 150C1C2C3S4- 150C1S2S3S4
-C1C5-C2C3C4S1S5+ C4S1S2S3S5+ C3S1S2S4S5+ C2S1S3S4S5	-C2C3C4C5S1+ C4C5S1S2S3+ C3C5S1S2S4+ C2C5S1S3S4+C1S5	C3C4S1S2+C2C4S1S3+ C2C3S1S4-S1S2S3S4	220C2S1+220C2C3S1+ 16S1+150C3C4S1S2+ 150C2C4S1S3- 220S1S2S3+ 150C2C3S1S4- 150S1S2S3S4
-C3C4S2S5-C2C4S3S5- C2C3S4S5+S2S3S4S5	-C3C4C5S2-C2C4C5S3- C2C3C5S4+C5S2S3S4	-C2C3C4+C4S2S3+ C3S2S4+C2S3S4	-150C2C3C4+220C3S2+ 220S2+220C2S3+ 150C4S2S3+150C3S2S4+ 150C2S3S4+350

0	0	0	1

Tak wyliczoną macierz H_0^5 możemy wykorzystać do obliczenia położenia i orientacji narzędzia, dla podanych w tabeli kątów.

	$ heta_1$	$ heta_2$	θ_3	$ heta_4$	$ heta_5$
Α	0°	0°	0°	90°	90°
В	0°	90°	0°	90°	90°
С	-90°	90°	-90°	180°	0°
D	0°	120°	-90°	0°	0°

Rozmieszczenie układów współrzędnych oraz pozycja początkowa ramienia:

Pozycja ramienia dla konfiguracji D	Kąty konfiguracji D oraz macierz H_0^5 dla tych kątów
	$\begin{bmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \\ \theta_5 \end{bmatrix} = \begin{bmatrix} 0^{\circ} \\ 120^{\circ} \\ -90^{\circ} \\ 0^{\circ} \end{bmatrix}$ $H_0^5 = \begin{bmatrix} 0 & -0.87 & 0.5 & 171.53 \\ -1 & 0 & 0 & 0 \\ 0 & -0.5 & -0.87 & 520.62 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

2. Uproszczone zadanie kinematyki prostej

Korzystając z wcześniej obliczonej macierzy H_0^3 wyliczamy kolejne położenia środka nadgarstka.

$$\begin{split} H_0^3 &= \\ &= \begin{bmatrix} C1C2C3 - C1S2S3 & -C1C3S2 - C1C2S3 & S1 & 16C1 + 220C1C2 + 220C1C2C3 - 220C1S2S3 \\ C2C3S1 - S1S2S3 & -C3S1S2 - C2S1S3 & -C1 & 220C2S1 + 220C2C3S1 + 16S1 - 220S1S2S3 \\ C3S2 + C2S3 & C2C3 - S2S3 & 0 & 220C3S2 + 220S2 + 220C2S3 + 350 \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{split}$$

Konfiguracja kątów	Macierz H_0^3	Położenie
$A = \begin{bmatrix} 0^{\circ} \\ 0^{\circ} \\ 0^{\circ} \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 & 456 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 350 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	[456] 0 [350]
$B = \begin{bmatrix} 0^{\circ} \\ 90^{\circ} \\ 0^{\circ} \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 0 & 16 \\ 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 790 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 16 \\ 0 \\ 790 \end{bmatrix}$

$C = \begin{bmatrix} -90^{\circ} \\ 90^{\circ} \\ -90^{\circ} \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & -1 & 0 \\ -1 & 0 & 0 & -236 \\ 0 & 1 & 0 & 570 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 \\ -236 \\ 570 \end{bmatrix}$
$D = \begin{bmatrix} 0^{\circ} \\ 120^{\circ} \\ -90^{\circ} \end{bmatrix}$	$\begin{bmatrix} 0.87 & -0.5 & 0 & 96.53 \\ 0 & 0 & -1 & 0 \\ 0.5 & 0.87 & 0 & 650.53 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	[96.53] 0 [650.53]

3. Uproszczone zadanie kinematyki odwrotnej

By rozwiązać zadanie kinematyki odwrotnej musimy na podstawie macierzy transformacji określić jakie kąty mają być zastosowane na konkretnych przegubach, by środek nadgarstka ramienia znalazł się w punkcie określonym przez użytkownika. Na samym początku, tworzymy równanie, mamy trzy przeguby więc pomijamy orientację i obliczamy tylko położenie.

$$\begin{bmatrix} * & * & * & * & p_x \\ * & * & * & p_y \\ * & * & * & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} * & * & * & 16C1 + 220C1C2 + 220C1C2C3 - 220C1S2S3 \\ * & * & * & 220C2S1 + 220C2C3S1 + 16S1 - 220S1S2S3 \\ * & * & * & 220C3S2 + 220S2 + 220C2S3 + 350 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rozpisujemy to na układ równań:

$$\begin{cases} p_x = 16C1 + 220C1C2 + 220C1C2C3 - 220C1S2S3 \\ p_y = 220C2S1 + 220C2C3S1 + 16S1 - 220S1S2S3 \\ p_z = 220C3S2 + 220S2 + 220C2S3 + 350 \end{cases}$$

By pokazać, że niewiadomymi są kąty, a nie wartości C1, C2, itd. powrócę do zapisu z funkcjami trygonometrycznymi, oraz uproszczę układ równań.

$$\begin{cases} p_x = 16cos(\theta_1) + 220cos(\theta_1)cos(\theta_2) + 220cos(\theta_1)cos(\theta_2)cos(\theta_3) - 220cos(\theta_1)sin(\theta_2)sin(\theta_3) \\ p_y = 16sin(\theta_1) + 220cos(\theta_2)sin(\theta_1) + 220cos(\theta_2)cos(\theta_3)sin(\theta_1) - 220sin(\theta_1)sin(\theta_2)sin(\theta_3) \\ p_z = 220cos(\theta_3)sin(\theta_2) + 220sin(\theta_2) + 220cos(\theta_2)sin(\theta_3) + 350 \end{cases}$$

$$\begin{cases} p_x = 16cos(\theta_1) + 220cos(\theta_1)(cos(\theta_2) + cos(\theta_2 + \theta_3)) \\ p_y = 16sin(\theta_1) + 220sin(\theta_1)(cos(\theta_2) + cos(\theta_2 + \theta_3)) \\ p_z = 220(sin(\theta_2) + sin(\theta_2 + \theta_3)) + 350 \end{cases}$$

$$\begin{cases} p_x = 4cos(\theta_1)(4 + 55cos(\theta_2) + 55cos(\theta_2 + \theta_3)) \\ p_y = 4sin(\theta_1)(4 + 55cos(\theta_2) + 55cos(\theta_2 + \theta_3)) \\ p_z = 220(sin(\theta_2) + sin(\theta_2 + \theta_3)) + 350 \end{cases}$$

Wyliczając θ_1 , mnożymy p_x przez $\sin(\theta_1)$, a p_y przez $\cos(\theta_1)$, p_z na razie zostawiamy.

$$\begin{cases} \sin(\theta_1) p_x = 4\sin(\theta_1)\cos(\theta_1)(4 + 55\cos(\theta_2) + 55\cos(\theta_2 + \theta_3)) \\ \cos(\theta_1) p_y = 4\sin(\theta_1)\cos(\theta_1)(4 + 55\cos(\theta_2) + 55\cos(\theta_2 + \theta_3)) \end{cases}$$

Odejmujemy od siebie oba równania.

$$\sin(\theta_1)p_{x} - \cos(\theta_1)p_{y} = 0$$

Wiemy że jeżeli równanie ma postać a $*\cos(\theta) - b *\sin(\theta) = 0$, to $\theta^{(1)} = Atan2(a,b)$ oraz $\theta^{(2)} = Atan2(-a,-b) = \theta^1 + \pi$. Więc dla naszych obliczeń:

$$\theta_1^{(1)} = Atan2(p_y, p_x)$$

$$\theta_1^{(2)} = Atan2(-p_y, -p_x)$$

Atan2 jest nieokreślony dla wartości zerowych (0,0), więc gdy $p_x=p_y=0$ to mamy nieskończenie wiele rozwiązań

Obliczając θ_3 , wracamy do równań z sprzed mnożenia i tym razem p_x mnożymy przez $\cos(\theta_1)$, a p_y przez $\sin(\theta_1)$.

$$\begin{cases} \cos(\theta_1) p_x = 4\cos^2(\theta_1)(4 + 55\cos(\theta_2) + 55\cos(\theta_2 + \theta_3)) \\ \sin(\theta_1) p_y = 4\sin^2(\theta_1)(4 + 55\cos(\theta_2) + 55\cos(\theta_2 + \theta_3)) \end{cases}$$

Dodajemy równania, przemnażamy przez 4 i przenosimy 16 na drugą stronę.

$$\cos(\theta_1)p_x + \sin(\theta_1)p_y = 4(4 + 55\cos(\theta_2) + 55\cos(\theta_2 + \theta_3))$$
$$\cos(\theta_1)p_x + \sin(\theta_1)p_y - 16 = 220\cos(\theta_2) + 220\cos(\theta_2 + \theta_3))$$

Dalej skorzystamy z następujących równań:

$$\begin{cases} \sin(\theta_1)p_x - \cos(\theta_1)p_y = 0\\ \cos(\theta_1)p_x + \sin(\theta_1)p_y - 16 = 220\cos(\theta_2) + 220\cos(\theta_2 + \theta_3))\\ p_z - 350 = 220\sin(\theta_2) + 220\sin(\theta_2 + \theta_3) \end{cases}$$

Podnosimy wszystkie równania do kwadratu.

$$\begin{cases} (\sin(\theta_1)p_x - \cos(\theta_1)p_y)^2 = 0\\ (\cos(\theta_1)p_x + \sin(\theta_1)p_y - 16)^2 = (220\cos(\theta_2) + 220\cos(\theta_2 + \theta_3))^2\\ (p_z - 350)^2 = (220\sin(\theta_2) + 220\sin(\theta_2 + \theta_3))^2 \end{cases}$$

Dodajemy do siebie dwa pierwsze równania.

$$p_x^2 + p_y^2 + 16^2 - 32(\cos(\theta_1)p_x + \sin(\theta_1)p_y) = (220\cos(\theta_2) + 220\cos(\theta_2 + \theta_3))^2$$

Sumujemy to z równaniem trzecim.

$$p_x^2 + p_y^2 + 16^2 - 32(\cos(\theta_1)p_x + \sin(\theta_1)p_y) + (p_z - 350)^2$$

= 220² + 220² + 2 * 220² (\cos(\theta_2)\cos(\theta_2) \cos(\theta_2 + \theta_3) + \sin(\theta_2)\sin(\theta_2 + \theta_3))

Zauważamy, że:

$$(\cos(\theta_2)\cos(\theta_2+\theta_3)+\sin(\theta_2)\sin(\theta_2+\theta_3))=\cos(\theta_2+\theta_3-\theta_2)=\cos(\theta_3)$$
 Wiec dalej:

$$p_{x}^{2} + p_{y}^{2} + 16^{2} - 32(\cos(\theta_{1})p_{x} + \sin(\theta_{1})p_{y}) + (p_{z} - 350)^{2} = 220^{2} + 220^{2} + 2 \times 220^{2}\cos(\theta_{3})$$

$$2 \times 220^{2}\cos(\theta_{3}) = p_{x}^{2} + p_{y}^{2} + 16^{2} - 32(\cos(\theta_{1})p_{x} + \sin(\theta_{1})p_{y}) + (p_{z} - 350)^{2} - 2 \times 220^{2}$$

$$\cos(\theta_{3}) = \frac{p_{x}^{2} + p_{y}^{2} + 16^{2} - 32(\cos(\theta_{1})p_{x} + \sin(\theta_{1})p_{y}) + (p_{z} - 350)^{2} - 2 \times 220^{2}}{2 \times 220^{2}}$$

$$CCC = \frac{p_{x}^{2} + p_{y}^{2} + 16^{2} - 32(\cos(\theta_{1})p_{x} + \sin(\theta_{1})p_{y}) + (p_{z} - 350)^{2} - 2 \times 220^{2}}{2 \times 220^{2}}$$

Stąd już mamy następujące rozwiązania:

$$\theta_3^{(1)} = Atan2(\sqrt{1 - CCC^2}, CCC)$$

$$\theta_3^{(2)} = Atan2(-\sqrt{1 - CCC^2}, CCC)$$

Widzimy, że jeśli CCC większe od 1 to brak rozwiązań. Wynika to z ograniczonego zasięgu ramienia.

Obliczając θ_2 wykorzystamy następujące wzory:

$$\begin{cases} \cos(\theta_1)p_x + \sin(\theta_1)p_y = 16 + 220\cos(\theta_2) + 220\cos(\theta_2 + \theta_3)) \\ p_z = 220\sin(\theta_2) + 220\sin(\theta_2 + \theta_3) + 350 \end{cases} \\ \begin{cases} \cos(\theta_1)p_x + \sin(\theta_1)p_y - 220\cos(\theta_2) - 16 = 220\cos(\theta_2 + \theta_3)) \\ p_z - 220\sin(\theta_2) - 350 = 220\sin(\theta_2 + \theta_3) \end{cases} \\ \begin{cases} \cos(\theta_1)p_x + \sin(\theta_1)p_y - 220\cos(\theta_2) - 16 = 220(\cos(\theta_2)\cos(\theta_3) - \sin(\theta_2)\sin(\theta_3)) \\ p_z - 220\sin(\theta_2) - 350 = 220(\sin(\theta_2)\cos(\theta_3) + \cos(\theta_2)\sin(\theta_3)) \end{cases} \\ \begin{cases} \cos(\theta_1)p_x + \sin(\theta_1)p_y - 220\cos(\theta_2) - 16 = 220(\cos(\theta_2)\cos(\theta_3) - \sin(\theta_2)\sin(\theta_3)) \\ p_z - 220\sin(\theta_2) - 350 = 220(\sin(\theta_2)\cos(\theta_3) + \cos(\theta_2)\sin(\theta_3)) \end{cases} \\ \begin{cases} \cos(\theta_1)p_x + \sin(\theta_1)p_y - 220\cos(\theta_2) - 16 = 220\cos(\theta_2)\cos(\theta_3) + \cos(\theta_2)\sin(\theta_3) \\ p_z - 220\sin(\theta_2) - 350 = 220(\sin(\theta_2)\cos(\theta_3) + \cos(\theta_2)\sin(\theta_3)) \end{cases} \\ \begin{cases} \cos(\theta_1)p_x + \sin(\theta_1)p_y - 220\cos(\theta_2) - 16 = 220\cos(\theta_2)\cos(\theta_3) - 220\sin(\theta_2)\sin(\theta_3) \\ p_z - 220\sin(\theta_2) - 350 = 220\sin(\theta_2)\cos(\theta_3) + 220\cos(\theta_2)\sin(\theta_3) \end{cases} \\ \begin{cases} \cos(\theta_2)(220\cos(\theta_3) + 220) - 220\sin(\theta_3)\sin(\theta_2) = \cos(\theta_1)p_x + \sin(\theta_1)p_y - 16 \\ \sin(\theta_2)(220\cos(\theta_3) + 220) + 220\sin(\theta_3)\cos(\theta_2) = p_z - 350 \end{cases}$$

Korzystamy z następującego wzoru:

$$\begin{cases} a * \cos(\theta) - b * \sin(\theta) = c \\ a * \sin(\theta) + b * \cos(\theta) = d \end{cases}$$

$$\theta = Atan2(ad - bc, ac + bd)$$

Otrzymujemy rozwiązanie:

$$\theta_2 = Atan2((220\cos(\theta_3) + 220)(p_z - 350) - (220\sin(\theta_3))(\cos(\theta_1)p_x + \sin(\theta_1)p_y - 16), (220\cos(\theta_3) + 220)(\cos(\theta_1)p_x + \sin(\theta_1)p_y - 16) + (220\sin(\theta_3))(p_z - 350))$$

Podsumowując obliczenia, jest jedno rozwiązanie osobliwe, gdy $p_x=p_y=0$, wtedy Atan2 jest nieokreślony i mamy nieskończenie wiele rozwiązań. Podstawa ramienia może obracać się dookoła własnej osi, a końcówka ramienia wciąż będzie w żądanym punkcie.

Mamy również kilka rozwiązań wielokrotnych. θ_1 oraz θ_3 mają po dwa rozwiązania, co daje nam w sumie cztery zestawy rozwiązań. Zobrazuje je dla danych wejściowych wynoszących: $p_x=360,\;p_y=0,\;p_z=400$

Widzimy że konfiguracja kątów $\left(\theta_1^{(2)},\theta_3^{(2)}\right)$ jest fizycznie niemożliwa do osiągnięcia, ponieważ przegub drugi obracając się, przechodzi przez podstawę ramienia. Idąc dalej, dla niektórych pozycji, szczególnie dla tych leżących niżej górnej krawędzi kolumny podstawy, konfiguracja kątów $\left(\theta_1^{(2)},\theta_3^{(1)}\right)$ mogłaby uszkodzić konstrukcję robota.

Na koniec sprawdzamy czy uzyskane rozwiązania dają poprawne wyniki.

Konfiguracja kątów	Położenie z H_0^3	$\left[\left(heta_1^{(1)}, heta_2, heta_3^{(1)} ight)$	$\left[\left(heta_1^{(1)}, heta_2, heta_3^{(2)} ight)$	$\left[\left(heta_1^{(2)}, heta_2, heta_3^{(1)} ight)$	$\left(\theta_1^{(2)}, \theta_2, \theta_3^{(2)}\right)$
$A = \begin{bmatrix} 0^{\circ} \\ 0^{\circ} \\ 0^{\circ} \end{bmatrix}$	[456] 0 350]	$\begin{bmatrix} 0^{\circ} \\ 0^{\circ} \\ 0^{\circ} \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	Brak rozwiązania	Brak rozwiązania
$B = \begin{bmatrix} 0^{\circ} \\ 90^{\circ} \\ 0^{\circ} \end{bmatrix}$	[16] 0 [790]	$\begin{bmatrix} 0^{\circ} \\ 90^{\circ} \\ 0^{\circ} \end{bmatrix}$	$\begin{bmatrix} 0^{\circ} \\ 90^{\circ} \\ 0^{\circ} \end{bmatrix}$	Brak rozwiązania	Brak rozwiązania
$C = \begin{bmatrix} -90^{\circ} \\ 90^{\circ} \\ -90^{\circ} \end{bmatrix}$	$\begin{bmatrix} 0 \\ -236 \\ 570 \end{bmatrix}$	$\begin{bmatrix} -90^{\circ} \\ 0^{\circ} \\ 90^{\circ} \end{bmatrix}$	\[\begin{align*} -90\cdot \\ 90\cdot \\ -90\cdot \end{align*} \]	90° 98.37° 81.02°	$\begin{bmatrix} 90^{\circ} \\ 179.39^{\circ} \\ -81.02^{\circ} \end{bmatrix}$
$D = \begin{bmatrix} 0^{\circ} \\ 120^{\circ} \\ -90^{\circ} \end{bmatrix}$	96.53 0 650.53	$\begin{bmatrix} 0^{\circ} \\ 30^{\circ} \\ 90^{\circ} \end{bmatrix}$	$\begin{bmatrix} 0^{\circ} \\ 120^{\circ} \\ -90^{\circ} \end{bmatrix}$	[180°] 67.36°] 86.34°]	$\begin{bmatrix} 180^{\circ} \\ 153.70^{\circ} \\ -86.34^{\circ} \end{bmatrix}$

W tabeli możemy odnaleźć znane nam z poprzednich zadań konfiguracje.

4. Pełne zadanie kinematyki odwrotnej

Na początku szukamy ograniczeń na możliwe konfiguracje narzędzia. Można od razu zauważyć, patrząc z góry na ramię, że nadgarstek nie może odchylać się na prawo i lewo. W takim wypadku, wiemy że dwa konkretne wektory muszą być równoległe. Sprawdźmy to.

Ogólny warunek wygląda tak:

$$H_{base}^{tool} = \begin{bmatrix} n_x & s_x & a_x & p_x \\ n_y & s_y & a_y & p_y \\ n_z & s_z & a_z & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 $[a_x \quad a_y] \mid\mid [p_x \quad p_y]$
$$a_x p_y - a_y p_x = 0$$

Uprośćmy macierz H_0^5 i sprawdźmy równoległość tych wektorów.

$$H_0^5 =$$

$\cos(\theta_5)\sin(\theta_1) \\ -\sin(\theta_5)\cos(\theta_1)\cos(\theta_4) \\ +\theta_2+\theta_3)$	$-\cos(\theta_1)\cos(\theta_5)\cos(\theta_4) + \theta_2 + \theta_3) - \sin(\theta_1)\sin(\theta_5)$	$\cos(\theta_1)\sin(\theta_4 + \theta_3 \\ + \theta_2)$	$2\cos(\theta_{1})(8 + 75\sin(\theta_{4} + \theta_{2} + \theta_{3}) + 110(\cos(\theta_{2}) + \cos(\theta_{2} + \theta_{3}))$
$-\cos(\theta_1)\cos(\theta_5)$ $-\sin(\theta_5)\sin(\theta_1)\cos(\theta_4)$ $+\theta_2+\theta_3)$	$-\sin(\theta_1)\cos(\theta_5)\cos(\theta_4) + \theta_2 + \theta_3) + \cos(\theta_1)\sin(\theta_5)$	$\sin(\theta_1)\sin(\theta_4 + \theta_3 + \theta_2)$	$2\sin(\theta_{1})(8 + 75\sin(\theta_{4} + \theta_{2} + \theta_{3}) + 110(\cos(\theta_{2}) + \cos(\theta_{2} + \theta_{3}))$
$-\sin(\theta_5)\sin(\theta_4 + \theta_3 + \theta_2)$	$-\cos(\theta_5)\sin(\theta_4 + \theta_3 + \theta_2)$	$-\cos(\theta_3 + \theta_4)\cos(\theta_2) + \sin(\theta_3 + \theta_4)\sin(\theta_2)$	10(35 - 15 cos($\theta_4 + \theta_2 + \theta_3$) + 22(sin(θ_2) + sin($\theta_3 + \theta_2$)))
0	0	0	1

$$\begin{aligned} \cos(\theta_{1})\sin(\theta_{4}+\theta_{3}+\theta_{2})*2\sin(\theta_{1})(8+75\sin(\theta_{4}+\theta_{2}+\theta_{3}) \\ &+110(\cos(\theta_{2})+\cos(\theta_{2}+\theta_{3})) \\ &=\sin(\theta_{1})\sin(\theta_{4}+\theta_{3}+\theta_{2})*2\cos(\theta_{1})(8+75\sin(\theta_{4}+\theta_{2}+\theta_{3}) \\ &+110(\cos(\theta_{2})+\cos(\theta_{2}+\theta_{3})) \\ \sin(2\theta_{1})\sin(\theta_{4}+\theta_{3}+\theta_{2})(8 \\ &+110(\cos(\theta_{3}+\theta_{2})+\cos(\theta_{2})+75\sin(\theta_{4}+\theta_{3}+\theta_{2}))) \\ &=\sin(2\theta_{1})\sin(\theta_{4}+\theta_{3}+\theta_{2})(8 \\ &+110(\cos(\theta_{3}+\theta_{2})+\cos(\theta_{2})+75\sin(\theta_{4}+\theta_{3}+\theta_{2}))) \end{aligned}$$

Uzyskaliśmy dowód, że orientacja, w rzucie z góry, narzędzia i całego ramienia będzie taka sama.

Zauważamy że nasz nadgarstek jest nadgarstkiem kulistym, co w naszym przypadku oznacza, że dwie ostatnie osie obrotu przecinają się w jednym punkcie. To spostrzeżenie pozwala nam obliczyć kąty przegubów ramienia w prostszy sposób.

Określmy na początku jakie dane wprowadza użytkownik. Jest to położenie końcówki nadgarstka, podane w postaci punktu o współrzędnych x, y, z, oraz orientacja nadgarstka. Jak już zdążyliśmy udowodnić narzędzie nie porusza się prawo/lewo, ale może się obracać wokół własnej osi(roll) oraz może podnosić się i opadać(pitch). By uprościć wprowadzanie danych przygotowałem rysunki pomagające zorientować się jak należy podać dane.

Zacznijmy obliczenia od wyznaczenia położenia środka nadgarstka z wzoru podanego poniżej. (Wektor $\begin{bmatrix} a_x & a_y & a_z \end{bmatrix}^T$ obliczamy z danych podanych przez użytkownika.)

$$\begin{bmatrix} p_x^w \\ p_y^w \\ p_z^w \end{bmatrix} = \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix} - 150 * \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix}$$

Dalej obliczamy trzy pierwsze kąty przegubów ramienia z macierzy H_0^3 , konkretnie z jej części odpowiedzialnej za położenie.

$$\begin{bmatrix}
p_x^w \\
p_y^w \\
p_z^w
\end{bmatrix} =
\begin{bmatrix}
16C1 + 220C1C2 + 220C1C2C3 - 220C1S2S3 \\
220C2S1 + 220C2C3S1 + 16S1 - 220S1S2S3 \\
220C3S2 + 220S2 + 220C2S3 + 350
\end{bmatrix}$$

Tak samo jak w uproszczonym zadaniu kinematyki odwrotnej dostajemy następujący układ równań.

$$\begin{cases} p_x^w = 16C1 + 220C1C2 + 220C1C2C3 - 220C1S2S3 \\ p_y^w = 220C2S1 + 220C2C3S1 + 16S1 - 220S1S2S3 \\ p_z^w = 220C3S2 + 220S2 + 220C2S3 + 350 \end{cases}$$

Z poprzedniej części znamy już rozwiązanie tego układu, wystarczy zaktualizować oznaczenia.

$$\begin{aligned} \theta_{1}^{(1)} &= Atan2 \left(p_{y}^{w}, p_{x}^{w} \right) \\ \theta_{1}^{(2)} &= Atan2 (-p_{y}^{w}, -p_{x}^{w}) \\ \theta_{2} &= Atan2 ((220\cos(\theta_{3}) + 220)(p_{z}^{w} - 350) \\ &- (220\sin(\theta_{3})) \left(\cos(\theta_{1}) p_{x}^{w} + \sin(\theta_{1}) p_{y}^{w} - 16\right), (220\cos(\theta_{3}) \\ &+ 220) \left(\cos(\theta_{1}) p_{x}^{w} + \sin(\theta_{1}) p_{y}^{w} - 16\right) + (220\sin(\theta_{3}))(p_{z}^{w} - 350)) \\ \theta_{3}^{(1)} &= Atan2 \left(\sqrt{1 - CCC^{2}}, CCC \right) \\ \theta_{3}^{(2)} &= Atan2 \left(-\sqrt{1 - CCC^{2}}, CCC \right) \end{aligned}$$

Gdzie CCC wynosi:

$$CCC = \frac{(p_x^w)^2 + (p_y^w)^2 + 16^2 - 32(\cos(\theta_1)p_x^w + \sin(\theta_1)p_y^w) + (p_z^w - 350)^2 - 2 * 220^2}{2 * 220^2}$$

Gdy mamy już policzone kąty θ_1 , θ_2 i θ_3 , możemy wyliczyć kąt θ_4 używając macierzy H_0^5 .(Kąt θ_5 jest dany przez użytkownika i możemy go zastosować bezpośrednio na przegubie piątym)

$$\begin{cases} a_x = \cos(\theta_1)\sin(\theta_4 + \theta_3 + \theta_2) \\ a_y = \sin(\theta_1)\sin(\theta_4 + \theta_3 + \theta_2) \end{cases}$$

Mnożymy pierwsze równanie przez $\cos(\theta_1)$, a drugie przez $\sin(\theta_1)$, równanie dodajemy.

$$\begin{cases} \cos(\theta_1) \, a_x = \cos^2(\theta_1) \sin(\theta_4 + \theta_3 + \theta_2) \\ \sin(\theta_1) \, a_y = \sin^2(\theta_1) \sin(\theta_4 + \theta_3 + \theta_2) \end{cases}$$

$$\cos(\theta_1) \, a_x + \sin(\theta_1) \, a_y = \cos^2(\theta_1) \sin(\theta_4 + \theta_3 + \theta_2) + \sin^2(\theta_1) \sin(\theta_4 + \theta_3 + \theta_2)$$

$$\cos(\theta_1) \, a_x + \sin(\theta_1) \, a_y = \sin(\theta_4 + \theta_3 + \theta_2) (\cos^2(\theta_1) + \sin^2(\theta_1))$$

$$\sin(\theta_4 + \theta_3 + \theta_2) = \cos(\theta_1) \, a_x + \sin(\theta_1) \, a_y$$

$$\theta_4^{(1)} = Atan2 \left(\cos(\theta_1) \, a_x + \sin(\theta_1) \, a_y, \sqrt{1 - \left(\cos(\theta_1) \, a_x + \sin(\theta_1) \, a_y \right)^2} \right) - \theta_3 - \theta_2$$

$$\theta_4^{(2)} = Atan2 \left(\cos(\theta_1) \, a_x + \sin(\theta_1) \, a_y, -\sqrt{1 - \left(\cos(\theta_1) \, a_x + \sin(\theta_1) \, a_y \right)^2} \right) - \theta_3 - \theta_2$$

Otrzymaliśmy dwa rozwiązania, podczas obliczeń będziemy musieli wybrać właściwy kąt, ponieważ użytkownik jednoznacznie określił kąt nachylenia nadgarstka.

Sprawdźmy uzyskane rozwiązania.

Konfiguracja kątów	Położenie z H_0^5 oraz orientacja	$\begin{bmatrix} \theta_1^{(1)} \\ \theta_2 \\ \theta_3^{(1)} \\ \theta_4 \\ \theta_5 \end{bmatrix}$	$\begin{bmatrix} \theta_1^{(1)} \\ \theta_2 \\ \theta_3^{(2)} \\ \theta_4 \\ \theta_5 \end{bmatrix}$	$\begin{bmatrix} \theta_1^{(2)} \\ \theta_2 \\ \theta_3^{(1)} \\ \theta_4 \\ \theta_5 \end{bmatrix}$	$\begin{bmatrix} \theta_1^{(2)} \\ \theta_2 \\ \theta_3^{(2)} \\ \theta_4 \\ \theta_5 \end{bmatrix}$
$A = \begin{bmatrix} 0^{\circ} \\ 0^{\circ} \\ 0^{\circ} \\ 90^{\circ} \\ 90^{\circ} \end{bmatrix}$	[606] 0 350] Pich: 90° Roll: 90°	$\begin{bmatrix} 0^{\circ} \\ 0^{\circ} \\ 0^{\circ} \\ 90^{\circ} \\ 90^{\circ} \end{bmatrix}$	$\begin{bmatrix} 0^{\circ} \\ 0^{\circ} \\ 0^{\circ} \\ 90^{\circ} \\ 90^{\circ} \end{bmatrix}$	Brak rozwiązania	Brak rozwiązania
$B = \begin{bmatrix} 0^{\circ} \\ 90^{\circ} \\ 0^{\circ} \\ 90^{\circ} \\ 90^{\circ} \end{bmatrix}$	[16] 0 [940] Pich: 180° Roll: 90°	$\begin{bmatrix} 0^{\circ} \\ 90^{\circ} \\ 0^{\circ} \\ 90^{\circ} \\ 90^{\circ} \end{bmatrix}$	$\begin{bmatrix} 0^{\circ} \\ 90^{\circ} \\ 0^{\circ} \\ 90^{\circ} \\ 90^{\circ} \end{bmatrix}$	Brak rozwiązania	Brak rozwiązania
$C = \begin{bmatrix} -90^{\circ} \\ 90^{\circ} \\ -90^{\circ} \\ 180^{\circ} \\ 0^{\circ} \end{bmatrix}$	$\begin{bmatrix} 0\\ -236\\ 720 \end{bmatrix}$ $Pich: 0^{\circ}$ $Roll: 0^{\circ}$	$\begin{bmatrix} -90^{\circ} \\ 0^{\circ} \\ 90^{\circ} \\ 90^{\circ} \\ 0^{\circ} \end{bmatrix}$	$ \begin{bmatrix} -90^{\circ} \\ 90^{\circ} \\ -90^{\circ} \\ 180^{\circ} \\ 0^{\circ} \end{bmatrix} $	$\begin{bmatrix} 90^{\circ} \\ 98.37^{\circ} \\ 81.02^{\circ} \\ 0.61^{\circ} \\ 0^{\circ} \end{bmatrix}$	$\begin{bmatrix} 90^{\circ} \\ 179.39^{\circ} \\ -81.02^{\circ} \\ 81.63^{\circ} \\ 0^{\circ} \end{bmatrix}$
$D = \begin{bmatrix} 0^{\circ} \\ 120^{\circ} \\ -90^{\circ} \\ 0^{\circ} \\ 0^{\circ} \end{bmatrix}$	[171.53] 0 520.62] Pich: 30° Roll: 0°	$\begin{bmatrix} 0^{\circ} \\ 30^{\circ} \\ 90^{\circ} \\ -90^{\circ} \\ 0^{\circ} \end{bmatrix}$	$\begin{bmatrix} 0^{\circ} \\ 120^{\circ} \\ -90^{\circ} \\ 0^{\circ} \end{bmatrix}$	$\begin{bmatrix} 180^{\circ} \\ 67.36^{\circ} \\ 86.34^{\circ} \\ -183.70^{\circ} \\ 0^{\circ} \end{bmatrix}$	$\begin{bmatrix} 180^{\circ} \\ 153.70^{\circ} \\ -86.34^{\circ} \\ -97.36^{\circ} \\ 0^{\circ} \end{bmatrix}$

Równania dają poprawne wyniki, więc obliczenia zostały przeprowadzone prawidłowo.