## Research Cycle 08: General Linear Model

Dale J. Barr

University of Glasgow

## What is the "General Linear Model" (GLM)?

### Definition (General Linear Model or GLM)

A general mathematical framework for expressing relationships among variables

- Differs from the "cookbook" approach to statistics
  - ▶ t-test, ANOVA, ANCOVA,  $\chi^2$  test, regression, correlation, etc.
- Can express/test linear relationships between a numerical dependent variable and any combination of independent variables (categorical or continuous)
- Can even be generalized to categorial dependent variables (through "Generalized Linear Models"; NB: advanced)

## ANOVA, Regression, ANCOVA







Fig 1a. Cholesterol levels by ethnic group and gender (male=sqr, female=tri).

Fig 1a. Cholesterol levels by age.

Fig 1a. Cholesterol levels by age and gender.

### How the GLM represents relationships

| Component of GLM | Notation                 |
|------------------|--------------------------|
| DV               | Y                        |
| Grand Average    | $\mu$ "mu"               |
| Main Effects     | $A, B, C, \dots$         |
| Interactions     | $AB, AC, BC, ABC, \dots$ |
| Random Error     | S(Group)                 |
|                  |                          |

Score = Grand Avg. + Main Effects + Interactions + Error 
$$Y = \mu + A + B + C + \dots + AB + AC + BC + ABC + \dots + S(Group)$$

- Components of the model are estimated from the observed data
- Tests are performed ( F ) to see whether its variability is too large to be introduced by chance

### An example: Simple Linear Regression



$$Y_i = \mu + b \times X_i + e_i$$
  
Score<sub>i</sub> = Baseline + Slope×Hours<sub>i</sub> + Error<sub>i</sub>  
 $Y_i = 50 + 3 \times X_i + e_i$   
 $e_i \sim N(\mu = 0, \sigma^2 = 10)$ 

# Making comparisons across groups

### Example (Spelling)

You wish to compare the benefits of three different spelling programs. Do these programs yield differences in spelling performance?

$$H_0: \mu_1 = \mu_2 = \mu_3$$

#### **Factors and Levels**

Factor: a categorical variable that is used to divide subjects into groups, usually to draw some comparison. Factors are composed of different *levels*. Do not confuse factors with levels!

## Means, Variability, and Deviation Scores



## Means, Variability, and Deviation Scores



$$Y_{\cdot \cdot} = \frac{\sum_{ij} Y_{ij}}{N}$$

## Means, Variability, and Deviation Scores



grand mean 
$$Y_{..} = \frac{\sum_{ij} Y_{ij}}{N}$$

$$SD_{Y} = \sqrt{\frac{\sum_{ij} (Y_{ij} - Y_{..})^{2}}{N}}$$

deviation score:  $Y_{ij} - Y_{...}$ 



$$Y_{ij} = \mu$$



$$\mathbf{Y}_{ij} = \mu + \mathbf{A}_i$$



$$Y_{ij} = \mu + A_i + S(A)_{ij}$$



$$Y_{ij} = \mu + A_i + S(A)_{ij}$$

### **Estimation Equations**

$$\hat{\mu} = Y_{..}$$

$$\hat{A}_{i} = Y_{i.} - \hat{\mu}$$

$$\widehat{S(A)}_{ij} = Y_{ij} - \hat{\mu} - \hat{A}_{i}$$

Note that  $\sum_{i} \hat{A}_{i} = 0$  and  $\sum_{ij} \widehat{S(A)}_{ij} = 0$ 

### Sources of Variance



$$Y_{ij} = \mu + A_i + S(A)_{ij}$$
 
$$Y_{ij} - \mu = A_i + S(A)_{ij}$$
 
$$individual = group + random$$

### Sum of Squares (SS)

A measure of variability consisting of the sum of squared *deviation* scores, where a deviation score is a score minus a mean.

$$SS_A = \sum (Y_{i.} - \mu)^2$$

### **Decomposition Matrix**



$$\hat{\mu} = 100$$

$$\hat{A}_1 = 120 - 100 = 20$$

$$\hat{A}_2 = 97 - 100 = -3$$

$$\hat{A}_3 = 83 - 100 = -17$$

|      | $Y_{ij}$ | = | $\hat{\mu}$ | + | $\hat{\mathcal{A}}_i$ | + | $\widehat{\mathcal{S}(A)}_{ij}$ |
|------|----------|---|-------------|---|-----------------------|---|---------------------------------|
|      | 124      | = | 100         | + | 20                    | + | 4                               |
|      | 129      | = | 100         | + | 20                    | + | 9                               |
|      | 115      | = | 100         | + | 20                    | + | -5                              |
|      | 112      | = | 100         | + | 20                    | + | -8                              |
|      | 101      | = | 100         | + | -3                    | + | 4                               |
|      | 88       | = | 100         | + | -3                    | + | -9                              |
|      | 107      | = | 100         | + | -3                    | + | 10                              |
|      | 92       | = | 100         | + | -3                    | + | -5                              |
|      | 76       | = | 100         | + | -17                   | + | -7                              |
|      | 91       | = | 100         | + | -17                   | + | 8                               |
|      | 84       | = | 100         | + | -17                   | + | 1                               |
|      | 81       | = | 100         | + | -17                   | + | -2                              |
| SS = | 123318   | = | 120000      | + | 2792                  | + | 526                             |

## Logic of ANOVA



- Compare two estimates of the variability, the between-group estimate (SS\_{between}) and the within-group estimate (SS\_{within})
- If  $H_0: \mu_1 = \mu_2 = \mu_3$  is true, then these two measures estimate the same quantity.
- The extent to which the between-group variability exceeds the within-group variability gives evidence against  $H_0: \mu_1 = \mu_2 = \mu_3$ .

# Calculating SS\_{between} and SS\_{within}



|      |          |   |             |   |             |   | _           |
|------|----------|---|-------------|---|-------------|---|-------------|
|      | $Y_{ij}$ | = | $\hat{\mu}$ | + | $\hat{A}_i$ | + | $S(A)_{ij}$ |
|      | 124      | = | 100         | + | 20          | + | 4           |
|      | 129      | = | 100         | + | 20          | + | 9           |
|      | 115      | = | 100         | + | 20          | + | -5          |
|      | 112      | = | 100         | + | 20          | + | -8          |
|      | 101      | = | 100         | + | -3          | + | 4           |
|      | 88       | = | 100         | + | -3          | + | -9          |
|      | 107      | = | 100         | + | -3          | + | 10          |
|      | 92       | = | 100         | + | -3          | + | -5          |
|      | 76       | = | 100         | + | -17         | + | -7          |
|      | 91       | = | 100         | + | -17         | + | 8           |
|      | 84       | = | 100         | + | -17         | + | 1           |
|      | 81       | = | 100         | + | -17         | + | -2          |
| SS = | 123318   | = | 120000      | + | 2792        | + | 526         |

#### check your math

$$SS_Y = SS_\mu + SS_A + SS_{S(A)}$$



# H<sub>0</sub> and Sums of Squares



$$Y_{ij} - \mu = A_i + S(A)_{ij}$$

#### Scenario A

$$SS_A = 2792$$
  
 $SS_{S(A)} = 526$   
 $SS_A + SS_{S(A)} = 3318$ 

#### Scenario B

$$SS_A = 266$$
  
 $SS_{S(A)} = 3052$   
 $SS_A + SS_{S(A)} = 3318$ 



# Mean Square and Degrees of Freedom



### Degrees of Freedom (df)

The number of observations that are "free to vary".

$$df_A = K - 1$$

$$df_{S(A)} = N - K$$

where N is the number of subjects and K is the number of groups.

#### Mean Square (MS)

A sum of squares divided by its degrees of freedom.

$$MS_A = \frac{SS_A}{df_A} = \frac{2792}{2} = 1396$$

$$MS_A = \frac{SS_A}{df_A} = \frac{2792}{2} = 1396$$
  
 $MS_{S(A)} = \frac{SS_{S(A)}}{df_{S(A)}} = \frac{526}{9} = 58.4$ 

#### The *F*-ratio

### F density function



If  $F_{obs} > F_{crit}$ , then reject  $H_0$ 

#### F ratio

A ratio of mean squares, with df\_{numerator} and df\_{denominator} degrees of freedom.

$$F_A = \frac{MS_A}{MS_{S(A)}} = \frac{1396}{58.4} = 23.886$$

| 16.1        |        |                 |        | 10.1   |        |        |        |        |  |  |  |
|-------------|--------|-----------------|--------|--------|--------|--------|--------|--------|--|--|--|
| df in       |        | df in numerator |        |        |        |        |        |        |  |  |  |
| denominator | 1      | 2               | 3      | 4      | 5      | 6      | 7      | 8      |  |  |  |
| 1           | 161.40 | 199.50          | 215.70 | 224.60 | 230.20 | 234.00 | 236.80 | 238.90 |  |  |  |
| 2           | 18.51  | 19.00           | 19.16  | 19.25  | 19.30  | 19.33  | 19.35  | 19.37  |  |  |  |
| 3           | 10.13  | 9.55            | 9.28   | 9.12   | 9.01   | 8.94   | 8.89   | 8.85   |  |  |  |
| 4           | 7.71   | 6.94            | 6.59   | 6.39   | 6.26   | 6.16   | 6.09   | 6.04   |  |  |  |
| 5           | 6.61   | 5.79            | 5.41   | 5.19   | 5.05   | 4.95   | 4.88   | 4.82   |  |  |  |
| 6           | 5.99   | 5.14            | 4.76   | 4.53   | 4.39   | 4.28   | 4.21   | 4.15   |  |  |  |
| 7           | 5.59   | 4.74            | 4.35   | 4.12   | 3.97   | 3.87   | 3.79   | 3.73   |  |  |  |
| 8           | 5.32   | 4.46            | 4.07   | 3.84   | 3.69   | 3.58   | 3.50   | 3.44   |  |  |  |
| 9           | 5.12   | 4.26            | 3.86   | 3.63   | 3.48   | 3.37   | 3.29   | 3.23   |  |  |  |

## Density/Quantile functions for *F*-distribution

| name                                | function                             |
|-------------------------------------|--------------------------------------|
| pf(x, df1, df2, lower.tail = FALSE) | density (get $p$ given $F_{obs}$ )   |
| qf(p, df1, df2, lower.tail = FALSE) | quantile (get $F_{crit}$ given $p$ ) |

# Summary Table



#### Scenario A

| Source | df | SS     | MS       | F        | р     | Error |
|--------|----|--------|----------|----------|-------|-------|
| $\mu$  | 1  | 120000 | 120000.0 | 2053.232 | <.001 | S(A)  |
| Α      | 2  | 2792   | 1396.0   | 23.886   | <.001 | S(A)  |
| S(A)   | 9  | 526    | 58.4     |          |       | ` ´   |
| Total  | 12 | 123318 |          |          |       |       |

#### Scenario B

| Source           | df | SS     | MS       | F       | р     | Error |
|------------------|----|--------|----------|---------|-------|-------|
| $\overline{\mu}$ | 1  | 120000 | 120000.0 | 353.878 | <.001 | S(A)  |
| Α                | 2  | 266    | 133.0    | .392    | .687  | S(A)  |
| S(A)             | 9  | 3052   | 339.1    |         |       | . ,   |
| Total            | 12 | 123318 |          |         |       |       |

## Overview of One-Way ANOVA

- Write the GLM:  $Y_{ij} = \mu + A_i + S(A)_{ij}$
- Write down the estimating equations:
  - $\hat{\mu} = Y_{..}$
  - $\hat{A}_i = \hat{Y}_i \hat{\mu}$
  - $\widehat{S(A)_{ii}} = Y_{ii} \hat{\mu} \hat{A}_i$
- Compute estimates for all terms in model.
- Create decomposition matrix.
- Compute SS, MS, df.
  - $df_{\mu} = 1$
  - $df_A = K 1$
  - $\rightarrow df_{S(A)} = N K$
  - MS = SS/df
- Construct a summary ANOVA table.
- Compare F\_{obs} with F\_{crit}.

#### R

use the aov() function, e.g.:

```
spelling$A <- factor(spelling$A)
mod <- aov(Y ~ A, data = spelling)
summary(mod)</pre>
```

http://talklab.psy.gla.ac.uk/stats/ onefactoranova.html#sec-3-2

#### Other GLMs

- one-sample *t*-test  $Y_i c = \beta_0 + e_i$
- two-sample *t*-test Y<sub>i</sub> = β<sub>0</sub> + β<sub>1</sub>X<sub>i</sub> + e<sub>i</sub>
   where X<sub>i</sub> ∈ (0, 1)
- paired-samples t-test  $Y_{1i} Y_{2i} = \mu + e_i$
- simple linear regression  $Y_i = \beta_0 + \beta_1 X_i + e_i$
- multiple regression  $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + e_i$
- ANCOVA  $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{1i} X_{2i} + e_i$ 
  - where  $X_{1i} \in (0,1)$  and  $X_{2i} \in \mathbb{R}$