MATLAB commands in Numeric Python

Copyright © 2005 Vidar Bronken Gundersen

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License.

The idea of this document (and the corresponding XML instance) is to provide a quick reference for switching from MATLAB to an open-source environment, such as Python, Scilab, Octave and Gnuplot, or R for numeric processing and data visualisation.

Where Octave and Scilab commands are omitted, expect Matlab compatibility, and similarly where non given use the generic command.

Time-stamp: 2005-09-22 20:43:39 vidar

1 Help

Desc. MATLAB/Octave Python IPython \mathbf{R} Browse help interactively help.start() Octave: help -i % browse with Info Help on using help help help or doc doc help() Help for a function help plot help(plot) or ?plot help(plot) or ?plot Help for a toolbox/library package help splines or doc splines help(pylab) help(package='splines') Demonstration examples demo() Example using a function example(plot)

1.1 Searching available documentation

Desc. MATLAB/Octave Python R Search help files lookfor plot help.search('plot') Find objects by partial name apropos('plot') List available packages help help(); modules [Numeric] library() Locate functions which plot find(plot) List available methods for a function methods(plot)

1.2 Using interactively

Python IPython Desc. MATLAB/Octave R Start session Octave: octave -q ipython -pylab Rgui Auto completion Octave: TAB or M-? TAB Run code from file foo(.m) execfile('foo.py') or run foo.py source('foo.R') Command history Octave: history history() hist -n Save command history diary on [..] diary off savehistory(file=".Rhistory") End session exit or quit CTRL-D q(save='no') CTRL-Z # windows sys.exit()

¹References: Hankin, Robin. R for Octave users (2001), available from http://cran.r-project.org/doc/contrib/R-and-octave-2.txt (accessed 2005.07.24); Martelli, Alex. Python in a Nutshell (O'Reilly, 2003); Langtangen, Hans Petter. Python Scripting for Computational Science (Springer, 2004); Ascher et al.: Numeric Python manual (2001), available from http://numeric.scipy.org/numpy.pdf (accessed 2005.06.25); Hunter, John. The Matplotlib User's Guide (2005), available from http://matplotlib.sf.net/ (accessed 2005.07.31); Moler, Cleve. Numerical Computing with MATLAB (MathWorks, 2004), available from http://www.mathworks.com/moler/ (accessed 2005.03.10); Eaton, John W. Octave Quick Reference (1996); Merrit, Ethan. Demo scripts for gnuplot version 4.0 (2004), available from http://gnuplot.sourceforge.net/demo/ (accessed 2005.07.24); Woo, Alex. Gnuplot Quick Reference (2004), available from http://www.gnuplot.info/docs/gpcard.pdf (accessed 2005.07.14); Venables & Smith: An Introduction to R (2005), available from http://cran.r-project.org/doc/manuals/R-intro.pdf (accessed 2005.07.25); Short, Tom. R reference card (2005), available from http://www.rpad.org/Rpad/R-refcard.pdf (accessed 2005.07.24).

Operators

 Help on operator syntax help help(Syntax)

2.1 Arithmetic operators

Desc.	MATLAB/Octave	Python	R
Defining a number	a=1; b=2;	a=1; b=1	a<-1; b<-2
Addition	a + b	a + b or add(a,b)	a + b
Subtraction	a - b	a - b or subtract(a,b)	a - b
Multiplication	a * b	a * b or multiply(a,b)	a * b
Division	a / b	a / b or divide(a,b)	a / b
Power, a^b	a ^ b	a ** b pow(a,b) power(a,b)	a ^ b
Remainder	rem(a,b)	a % b fmod(a,b) remainder(a,b)	a %% b
Integer division			a %/% b
In place operation to save array creation overhead	Octave: a+=1	a+=b or add(a,b,a)	
Factorial, $n!$	factorial(a)		factorial(a)

2.2 Relational operators

Desc.	MATLAB/Octave	Python	\mathbf{R}
Equal	a == b	a == b or equal(a,b)	a == b
Less than	a < b	a < b or less(a,b)	a < b
Greater than	a > b	a > b or greater(a,b)	a > b
Less than or equal	a <= b	a <= b or less_equal(a,b)	a <= b
Greater than or equal	a >= b	a >= b or greater_equal(a,b)	a >= b
Not Equal	a ~= b	a != b or not_equal(a,b)	a != b

2.3 Logical operators

Desc.	MATLAB/Octave	Python	R
Short-circuit logical AND Short-circuit logical OR Element-wise logical AND Element-wise logical OR Logical NOT	a && b a b a & b or and(a,b) a b or or(a,b) ~a or not(a)	<pre>logical_and(a,b) or a and b logical_or(a,b) or a or b logical_not(a) or not a</pre>	a && b a b a & b a b !a
Logical EXCLUSIVE OR True if any element is nonzero True if all elements are nonzero	Octave: "a or !a xor(a, b) any(a) all(a)	logical_xor(a,b)	xor(a, b)

2.4 root and logarithm

Desc.	MATLAB/Octave	Python math	R	
Square root	sqrt(a)	math.sqrt(a)	sqrt(a)	\sqrt{a}
Logarithm, base e (natural)	log(a)	math.log(a)	log(a)	$\ln a = \log_e a$
Logarithm, base 10	log10(a)	math.log10(a)	log10(a)	$\log_{10} a$

Logarithm, base 2 (binary)	log2(a)	math.log(a, 2)	log2(a)	$\log_2 a$
Exponential function	exp(a)	math.exp(a)	exp(a)	e^a

2.5 Round off

Desc.	MATLAB/Octave	Python math	R
Round	round(a)	math.round(a)	round(a)
Round up	ceil(a)	math.ceil(a)	ceil(a)
Round down	floor(a)	math.floor(a)	floor(a)
Round towards zero	fix(a)		

2.6 Mathematical constants

Desc.	MATLAB/Octave	Python math	R
$\pi = 3.141592$	pi (4)	math.pi	pi (4)
e = 2.718281 Missing numbers (Not-a-Number)	exp(1) NaN	math.e or math.exp(1)	exp(1)
Infinity, $+\infty$	Inf		

2.7 Complex numbers

Desc.	MATLAB/Octave	Python cmath	R	
Imaginary unit	i	z = 1j	1i	$i = \sqrt{-1}$
A complex number, $3 + 4i$	z = 3+4i	z = 3+4j or $z = complex(3,4)$	z <- 3+4i	
Absolute value (modulus)	abs(z)	abs(3+4j)	abs(3+4i) or Mod(3+4i)	
Real part	real(z)	z.real	Re(3+4i)	
Imaginary part	imag(z)	z.imag	Im(3+4i)	
Argument	arg(z)		Arg(3+4i)	
Complex conjugate	conj(z)	z.conjugate()	Conj(3+4i)	

2.8 Trigonometry

Desc.	MATLAB/Octave	Python	K	
Arctangent, $arctan(b/a)$	atan(a,b)	atan2(b,a)	atan2(b,a)	
Hypotenus; euclidean distance		hypot(x,y)		$\sqrt{x^2 + y^2}$

2.9 Generate random numbers

Desc.	MATLAB/Octave	Python Numeric.RandomArray	R
Uniform distribution	rand(1,10)	random((10,)) uniform(0,1,(10,))	runif(10)
Uniform: Numbers between 2 and 7 Uniform: 6,6 array	2+5*rand(1,10) rand(6)	uniform(2,7,(10,)) uniform(0,1,(6,6))	<pre>runif(10, min=2, max=7) matrix(runif(36),6)</pre>
Normal distribution	randn(1,10)	standard_normal((10,))	rnorm(10)

Vectors

Desc. MATLAB/Octave Python Numeric, numerray \mathbf{R} Row vector, $1 \times n$ -matrix $a=[2 \ 3 \ 4 \ 5]$; a=array([2,3,4,5]) $a \leftarrow c(2,3,4,5)$ Column vector, $m \times 1$ -matrix $adsh=[2 \ 3 \ 4 \ 5]$; transpose(array([2,3,4,5])) $adsh \leftarrow t(c(2,3,4,5))$

3.1 Sequences

Desc. MATLAB/Octave Python Numeric \mathbf{R} 1:10 range(1,11) seq(10) or 1:10 1,2,3, ... ,10 arange(1,11, typecode=Float) 0.0,1.0,2.0, ... ,9.0 0:9 arange(10.) seq(0,length=10) 1:3:10 arange(1,11,3) seq(1,10,by=3)1,4,7,10 10,9,8, ... ,1 10:-1:1 arange(10,0,-1)seq(10,1) or 10:1 10,7,4,1 10:-3:1 arange(10,0,-3) seq(from=10, to=1, by=-3)Linearly spaced vector of n=7 points linspace(1,10,7) linspace(1,10,7)seq(1,10,length=7) Reverse reverse(a) a[::-1] or a.reverse() rev(a)

3.2 Concatenation

Desc. MATLAB/Octave Python Numeric \mathbf{R} Concatenate two vectors [a a] concatenate((a,a), axis=1) c(a,a) Concatenate two vectors [a a*3] concatenate((a,a*3), axis=1) c(a,a*3) concatenate((range(1,5),a), axis=1) [1:4 a] c(1:4,a) a^3 a.^3 a**3 a^3

3.3 Repeating

3.4 Miss those elements out

MATLAB/Octave R Desc. Python miss the first element a(2:end) a[1:] a[-1] miss the tenth element a([1:9]) a[-10] a[-seq(1,50,3)]miss 1,4,7, ... last element a(end) a[-1]

3.5 Max and min

Desc. MATLAB/Octave Python R

pairwise max (by rows) max(a,b) pmax(a,b) cbind(max(a),max(b)) max([a b]) max([a b]) max(a,b) max(a,b) max(a,b) max(a); i <- which.max(a)

3.6 Vector multiplication

Desc. MATLAB/Octave Python Numeric R

Multiply two vectors	a.*a	a*a	a*a
Vector dot product, $u \cdot v$	dot(u,v)	dot(u,v)	

Matrices

Define a matrix $a = [2 \ 3; 4 \ 5]$ $a = array([[2,3],[4,5]])$ $rbind(c(2,3),c(4,5))$	a = array([[2,3],[4,5]]) $rbind(c(2,3),c(4,5))$	$\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$	
--	---	--	--

4.1 Concatenation; rbind and cbind

Desc.	MATLAB/Octave	Python	R
Horizontal concatenation	[1:4 , 1:4]		
Vertical concatenation (bind rows)	[1:4 ; 1:4]		rbind(1:4,1:4)
bind columns	[1:4 ; 1:4]'		cbind(1:4,1:4)
			t(rbind(1:4,1:4))

4.2 Array creation

Desc.	MATLAB/Octave	Python Numeric	R	
o filled array	zeros(3,5)	zeros((3,5),Float)	matrix(0,3,5) or array(0,c(3,5))	$\left[\begin{array}{ccccc} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$
o filled array of integers		zeros((3,5))		
1 filled array	ones(3,5)	ones((3,5),Float)	matrix(1,3,5) or array(1,c(3,5))	$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
Any number filed array	ones(3,5)*9	ones((3,5))*9	matrix(9,3,5) or array(9,c(3,5))	$ \begin{bmatrix} 9 & 9 & 9 & 9 & 9 \\ 9 & 9 & 9 & 9 & 9 \\ 9 & 9 & 9 & 9 & 9 \end{bmatrix} $
Identity matrix	eye(3)	identity(3)	diag(1,3)	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Diagonal	diag([4 5 6])	diag((4,5,6))	diag(c(4,5,6))	$\begin{bmatrix} 4 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 6 \end{bmatrix}$
Magic squares; Lo Shu	magic(3)			$\begin{bmatrix} 8 & 1 & 6 \\ 3 & 5 & 7 \\ 4 & 9 & 2 \end{bmatrix}$

4.3 Reshape and flatten matrices

Desc.	MATLAB/Octave	Python Numeric, numerray	R	
Reshaping	reshape(1:6,2,3);		matrix(1:6,nrow=2) array(1:6,c(2,3))	$\left[\begin{array}{ccc}1&3&5\\2&4&6\end{array}\right]$
Reshaping (by cols)	reshape(1:6,3,2);	reshape(arrayrange(1,7),(2,-1)) a.shape = (2,3) a.setshape(2,3)	matrix(1:6,nrow=3,byrow=T)	$\left[\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array}\right]$
Flatten to vector Flatten to vector (by rows)	a(:) a'(:)	ravel(transpose(a)) ravel(a) or a.shape = (size(a).)	as.vector(a) a[row(a) <= col(a)]	

4.4 Shared data (slicing)

Copy of a b = ab = a.copy() b = a

4.5 Indexing and accessing elements (Python: slicing)

Desc.	MATLAB/Octave	Python	R	
Input is a 3,4 array	a = [11 12 13 14 21 22 23 24 31 32 33 34]	a = array([[11, 12, 13, 14],	a <- rbind(c(11, 12, 13, 14), c(21, 22, 23, 24), c(31, 32, 33, 34))	$\left[\begin{array}{ccccc} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{array}\right]$
Element 2,3 (row,col)	a(2,3)	a[1,2]	a[2,3]	a_{23}
First row	a(1,:)	a[0,]	a[1,]	$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \end{bmatrix}$
First column	a(:,1)	a[:,0]	a[,1]	$\left[\begin{array}{c} a_{11} \\ a_{21} \\ a_{31} \end{array}\right]$
All, except first row	a(2:end,:)	a[1:,]	a[-1,]	$\left[\begin{array}{cccc} a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{array}\right]$
All, except row, column (2,3)	a([1 3],[1 2 4]);	take(take(a,[0,2]),[0,1,3],axis=1)	a[-2,-3]	$\left[\begin{array}{ccc} a_{11} & a_{13} & a_{14} \\ a_{31} & a_{33} & a_{34} \end{array}\right]$
Remove one column	a(:,[1 3 4])	take(a,[0,2,3],axis=1)	a[,-2]	$\begin{bmatrix} a_{11} & a_{13} & a_{14} \\ a_{21} & a_{23} & a_{24} \\ a_{31} & a_{33} & a_{34} \end{bmatrix}$
Strides: Every second row		a[::2,1::2]		$\left[\begin{array}{cc}a_{12}&a_{14}\\a_{32}&a_{34}\end{array}\right]$

4.6 Assignment

Desc.	MATLAB/Octave	Python	R
	a(:,1) = 99	a[:,0] = 99	a[,1] <- 99
	a(:,1) = [99 98 97]'		a[,1] <- c(99,98,97)
Clipping: Replace all elements over 90	a(a>90) = 90;	choose(a>90, (a,90))	a[a>90] <- 90

4.7 Transpose and inverse

Desc.	MATLAB/Octave	Python Numeric	R
Transpose	a'	transpose(a)	t(a)
Non-conjugate transpose	<pre>a.' or transpose(a)</pre>		
Determinant	det(a)	<pre>determinant(a)</pre>	det(a)
Inverse	inv(a)	inverse(a)	solve(a)
Norms	norm(a)	norm(a)	
Eigenvalues	eig(a)	eigenvalues(a)	eigen(a)\$values
Singular values	svd(a)	singular_value_decomposition(a)	svd(a)\$d
Eigenvectors	[v,1] = eig(a)	eigenvectors(a)	eigen(a)\$vectors
Rank	rank(a)	rank(a)	

4.8 Sum

Desc.	MATLAB/Octave	Python	R
Sum of each column	sum(a)	add.reduce(a [,axis=0])	apply(a,2,sum)
Sum of each row	sum(a')	add.reduce(a, axis=1)	apply(a,1,sum)

Sum of all elements sum(sum(a)) sum(a.flat) sum(a) Cumulative sum (columns) cumsum(a) add.accumulate(a, axis=0) apply(a,2,cumsum)

Sorting

Desc. MATLAB/Octave Python Numeric R Flat and sorted sort(a(:)) sort(a.flat) sort(a) Sort columns sort(a) argsort(a) or msort(a) apply(a,2,sort) Sort rows sort(a') argsort(a, axis=0) apply(a,1,sort) rank(a) Sort, return indices order(a)

4.10 Max and min

Desc. MATLAB/Octave Python R max in each column max(a) argmax(a [,axis=0]) apply(a,2,max) amax(a [,axis=0]) return indices, i [v i] = max(a)i <- apply(a,1,which.max) max in each row max(a') argmax(a, axis=1) apply(a,1,max) amax(a, axis=1) max(max(a)) max(a.flat) max in array max(a) max(b,c) pmax(b,c) cummax(a) apply(a,2,cummax)

Matrix manipulation 4.11

 $Python\ MLab, matplotlib.pylab$ Desc. MATLAB/Octave R Flip left-right fliplr(a) fliplr(a) a[,4:1] Flip up-down flipud(a) a[::-1] or flipud(a) a[3:1,] Rotate 90 degrees rot90(a) rot90(a) Repeat matrix: [aaa;aaa] repmat(a,2,3)kronecker(matrix(1,2,3),a) Octave: kron(ones(2,3),a) Triangular, lower tril(a) tril(a) a[lower.tri(a)] <- 0 Triangular, upper triu(a) triu(a) a[upper.tri(a)] <- 0

Equivalents to "size" 4.12

Desc. MATLAB/Octave Python R Matrix dimensions size(a) a.shape() or a.getshape() dim(a) Number of columns size(a,2) or length(a) size(a, axis=1) or a.shape[1] ncol(a) Number of elements length(a(:)) size(a) prod(dim(a))

Matrix- and elementwise- multiplication 4.13

Desc. MATLAB/Octave Python Numeric R 5 Elementwise operations a .* b multiply(a,b) a * b 9 16 7 10 Matrix product a * b matrixmultiply(a,b) a %*% b 15 22

Inner matrix vector multiplication $a \cdot b'$		innerproduct(a,b)		5 11 11 25
Outer product		outerproduct(a,b)	outer(a,b) or a %o% b	$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 9 & 12 \\ 4 & 8 & 12 & 16 \end{bmatrix}$
Cross product			crossprod(a,b) or t(a) %*% b	$\begin{bmatrix} 10 & 14 \\ 14 & 20 \end{bmatrix}$
Kronecker product	kron(a,b)		kronecker(a,b)	$\begin{bmatrix} 1 & 2 & 2 & 4 \\ 3 & 4 & 6 & 8 \\ 3 & 6 & 4 & 8 \\ 9 & 12 & 12 & 16 \end{bmatrix}$
Matrix division, $b \cdot a^{-1}$	a / b			

solve_linear_equations(a,b)

solve(a,b)

4.14 Find

Left matrix division, $b^{-1} \cdot a$

(solve linear equations)

Desc.	MATLAB/Octave	Python Numeric, numerray	R
Non-zero elements, indices	find(a)	nonzero(a.flat)	which(a != 0)
Non-zero elements, array indices	[i j] = find(a)	(i,j)=nonzero(a)	<pre>which(a != 0, arr.ind=T)</pre>
Vector of non-zero values	[i j v] = find(a)	<pre>v = compress(a.flat!=0, a.flat)</pre>	ij <- which(a != 0, arr.ind=T); v <- a[ij]
Find, indices	find(a>5.5)	nonzero(a.flat>5.5)	which(a>5.5)
Return values		<pre>compress(a.flat>5.5, a.flat)</pre>	ij <- which(a>5.5, arr.ind=T); v <- a[ij]

File input and output

a \ b

Desc.	MATLAB/Octave	Python matplotlib.pylab	R
Reading from a file	<pre>f = load('data.txt')</pre>	f = load("data.txt")	f <- read.table("data.txt")
Reading a CSV file	<pre>x = dlmread('data.csv', ';')</pre>	<pre>f = load('data.csv', delimiter=';')</pre>	f <- read.table(file="data.csv", sep=";")
Writing to a file	save -ascii bar.txt f	<pre>save("bar.csv", f, fmt='%.6f')</pre>	write(f,file="bar.txt")

Plotting

6.1 Basic x-y plots

Desc. MATLAB/Oc	tave Python matplotlik	p.pylab R
1d line plot plot(a)	plot(a)	<pre>plot(a, type="1")</pre>

Ax = b

2d scatter plot	plot(x(:,1),x(:,2),'o')	plot(x[:,0],x[:,1],'o')	plot(x[,1],x[,2])
Two graphs in one plot	plot(x1,y1, x2,y2)	plot(x1,y1,'bo', x2,y2,'go')	
Overplotting: Add new plots to current	plot(x1,y1)	plot(x1,y1,'o')	plot(x1,y1)
	hold on	plot(x2,y2,'o')	<pre>matplot(x2,y2,add=T)</pre>
subplots	<pre>plot(x2,y2) subplot(211)</pre>	<pre>show() # as normal subplot(211)</pre>	
Plotting symbols and color	plot(x,y,'ro-')	plot(x,y,'ro-')	plot(x,y,type="b",col="red")
3.0	1	1	1 737.31
6.1.1 Axes and titles			

Desc.	MATLAB/Octave	Python matplotlib.pylab	R
Turn on grid lines	grid on	grid()	grid()
1:1 aspect ratio	<pre>axis equal Octave: axis('equal') replot</pre>	figure(figsize=(6,6))	plot(c(1:10,10:1), asp=1)
Set axes manually	axis([0 10 0 5])	axis([0, 10, 0, 5])	plot(x,y, xlim=c(0,10), ylim=c(0,5))
Axis labels and titles	title('title') xlabel('x-axis') ylabel('y-axis')		<pre>plot(1:10, main="title", xlab="x-axis", ylab="y-axis")</pre>
Insert text		text(2,25,'hello')	

6.1.2 Log plots

Desc.	MATLAB/Octave	Python matplotlib.pylab	R
logarithmic y-axis	semilogy(a)	semilogy(a)	<pre>plot(x,y, log="y")</pre>
logarithmic x-axis	semilogx(a)	semilogx(a)	<pre>plot(x,y, log="x")</pre>
logarithmic x and y axes	loglog(a)	loglog(a)	plot(x,y, log="xy")

6.1.3 Filled plots and bar plots

Desc.	MATLAB/Octave	Python matplotlib.pylab	R

Filled plot fill(t,s,'b', t,c,'g') fill(t,s,'b', t,c,'g', alpha=0.2) plot(t,s, type="n", xlab="", ylab="") Octave: % fill has a bug? polygon(t,s, col="lightblue") polygon(t,c, col="lightgreen") 5 6 7 8 9 71 033 00113345567889 Stem-and-Leaf plot stem(x[,3])0133566677788

6.1.4 Functions

R Desc. MATLAB/Octave Python f <- function(x) $\sin(x/3)$ - $\cos(x/5)$ $f(x) = \sin(\frac{x}{3}) - \cos(\frac{x}{5})$ Defining functions f = inline('sin(x/3) - cos(x/5)')Plot a function for given range ezplot(f,[0,40]) x = arrayrange(0,40,.5)plot(f, xlim=c(0,40), type='p') fplot('sin(x/3) - cos(x/5)', [0,40]) $y = \sin(x/3) - \cos(x/5)$ Octave: % no ezplot plot(x,y, 'o')

Polar plots 6.2

R Desc. MATLAB/Octave Python $\rho(\theta) = \sin(2\theta)$ theta = 0:.001:2*pi; theta = arange(0,2*pi,0.001)

r = sin(2*theta)

polar(theta, rho) polar(theta, rho)

r = sin(2*theta);

10

32674

Histogram plots

MATLAB/Octave Python R Desc. hist(rnorm(1000))

hist(randn(1000,1)) hist(randn(1000,1), -4:4) hist(rnorm(1000), breaks= -4:4)

hist(rnorm(1000), breaks=c(seq(-5,0,0.25), seq(0.5,5,0.5)), freq=F) plot(sort(a)) plot(apply(a,1,sort),type="l")

6.4 3d data

6.4.1 Contour and image plots

Desc. MATLAB/Octave Python matplotlib.pylab \mathbf{R}

Contour plot contour(z) levels, colls = contour(Z, V, contour(z) origin='lower', extent=(-3,3,-3,3))

> clabel(colls, levels, inline=1, fmt='%1.1f', fontsize=10)

Filled contour plot contourf(z); colormap(gray) contourf(Z, V, cmap=cm.gray,

origin='lower', extent=(-3,3,-3,3)) filled.contour(x,y,z, nlevels=7, color=gray.colors)

Plot image data image(z) im = imshow(Z,image(z, col=gray.colors(256)) colormap(gray) interpolation='bilinear',

origin='lower', extent=(-3,3,-3,3))

Image with contours # imshow() and contour() as above

Direction field vectors quiver() quiver()

6.4.2 Perspective plots of surfaces over the x-y plane

Desc. MATLAB/Octave Python Gnuplot.py,DISLIN,pylab

> $f(x,y) = xe^{-x^2 - y^2}$ $f \leftarrow function(x,y) x*exp(-x^2-y^2)$ n=-2:.1:2; n=arrayrange(-2,2,.1) [x,y] = meshgrid(n,n);[x,y] = meshgrid(n,n) $n \leftarrow seq(-2,2, length=40)$ $z=x.*exp(-x.^2-y.^2);$ z = x*power(math.e,-x**2-y**2) $z \leftarrow outer(n,n,f)$

Mesh plot mesh(z) persp(x,y,z, theta=30, phi=30, expand=0.6, ticktype='detailed')

theta=30, phi=30, expand=0.6,

ticktype='detailed')

col='lightblue', shade=0.75, ltheta=120,

Surface plot surf(x,y,z) or surfl(x,y,z)

Octave: % no surfl()

6.4.3 Scatter (cloud) plots

3d scatter plot plot3(x,y,z,'k+') cloud(z~x*y)

persp(x,y,z,

Save plot to a graphics file

Desc. MATLAB/Octave Python matplotlib.pylab R PostScript plot(1:10) savefig('foo.eps') postscript(file="foo.eps") print -depsc2 foo.eps plot(1:10) dev.off() Octave:

gset output "foo.eps" gset terminal postscript eps

plot(1:10)

savefig('foo.pdf') pdf(file='foo.pdf') SVG (vector graphics for www) savefig('foo.svg') devSVG(file='foo.svg') PNG (raster graphics) print -dpng foo.png savefig('foo.png') png(filename = "Rplot%03d.png"

Data analysis

7.1 Set membership operators

Desc.	MATLAB/Octave	Python	R	
Create sets	a = [1 2 2 5 2]; b = [2 3 4];	a = set([1,2,2,5,2]) b = set([2,3,4])	a <- c(1,2,2,5,2) b <- c(2,3,4)	
Set unique	unique(a)	set(a)	unique(a)	$\left[\begin{array}{ccc} 1 & 2 & 5 \end{array}\right]$
Set union	union(a,b)	a.union(b)	union(a,b)	
Set intersection	intersect(a,b)	a.intersection(b)	<pre>intersect(a,b)</pre>	
Set difference	setdiff(a,b)	a.difference(b)	setdiff(a,b)	
Set exclusion	setxor(a,b)	a.symmetric_difference(b)	setdiff(union(a,b),intersect(a,b))	
True for set member	ismember(2.a)	2 in a or contains(a.2)	is.element(2.a) or 2 %in% a	

7.2 Statistics

Desc.	MATLAB/Octave	Python	R
Average	mean(a)	<pre>average(a [,axis=0]) mean(a [,axis=0])</pre>	apply(a,2,mean)
Median Standard deviation Variance Correlation coefficient Covariance	<pre>median(a) std(a) var(a) corr(x,y) cov(x,y)</pre>	<pre>median(a [,axis=0]) std(a [,axis=0]) var(a) corrcoef(x,y) cov(x,y)</pre>	<pre>apply(a,2,median) apply(a,2,sd) apply(a,2,var) cor(x,y) cov(x,y)</pre>

7.3 Interpolation and regression

Desc.	MATLAB/Octave	Python matplotlib.pylab	R
Straight line fit	<pre>z = polyval(polyfit(x,y,1),x) plot(x,y,'o', x,z ,'-')</pre>	(a,b) = polyfit(x,y,1) plot(x,y,'o', x,a*x+b,'-')	<pre>z <- lm(y~x) plot(x,y) abline(z)</pre>
Linear least squares $y = ax + b$ Polynomial fit	a = x\y polvfit(x.v.3)	<pre>(a,b) = linear_least_squares(x,y)[0] polyfit(x,v,3)</pre>	solve(a,b)

7.4 Non-linear methods

7.4.1 Polynomials, root finding

Desc. MATLAB/Octave Python R

Find zeros of polynomial roots([1 -1 -1]) polyroot(c(1,-1,-1)) $x^2 - x - 1 = 0$ Find a zero near x = 1 f = inline('1/x - (x-1)')Solve symbolic equations $f(x) = \frac{1}{x} - (x - 1)$

polyval(array([1,2,1,2]),arange(1,11))

7.4.2 Differential equations

Desc. MATLAB/Octave Python scipy R

Difference function and approximate diff(a) diff(x,axis=0)

derivative

polyval([1 2 1 2],1:10)

Solve differential equations

Evaluate polynomial

7.5 Fourier analysis

Desc. MATLAB/Octave Python Numeric.FFT R
Fast fourier transform fft(a) fft(a) fft(a) fft(a)
Inverse fourier transform ifft(a) inverse_fft(a) fft(a, inverse=TRUE)

8 Symbolic algebra/Calculus

Desc. MATLAB/Octave Python R

9 Programming

Desc. MATLAB/Octave Python R
Script file extension .m .py .R
Comment symbol (rest of line) % # #
Octave: % or #

Import library functions % must be in MATLABPATH from pylab import * library(RSvgDevice)
Octave:% must be in LOADPATH

Eval string='a=234'; string="a=234" string <- "a <- 234" eval(string) eval(string) eval(parse(text=string))

9.1 Loops

Desc. MATLAB/Octave for-statement for i=1:5; disp(i); end for i in range(1,6): print(i) for(i in 1:5) print(i) Multiline for statements for i=1:5 for i in range(1,6): for(i in 1:5) { disp(i) print(i) print(i) disp(i*2) print(i*2) print(i*2) end

9.2 Conditionals

Desc. MATLAB/Octave Python R

if-statement if 1>0 a=100; end if 1>0: a=100 if (1>0) a <- 100

if-else-statement if 1>0 a=100; else a=0; end

Ternary operator (if?true:false) ifelse(a>0,a,0) a>0?a:0

9.3 Debugging

Desc. MATLAB/Octave Python R

Most recent evaluated expression ans .Last.value

List variables loaded into memory whos or who objects()
Clear variable x from memory clear x or clear [all] rm(x)

Print disp(a) print a print(a)

9.4 Working directory and OS

Desc. MATLAB/Octave Python os

List files in directory dir or ls os.listdir(".") list.files() or dir()
List script files in directory what grep.grep("*.py") list.files(pattern="\.r\$")

Displays the current working directory pwd os.getwd()
Change working directory cd foo os.chdir('foo') setwd('foo')

Invoke a System Command !notepad os.system('notepad')
Octave: system("notepad") os.popen('notepad')

system("notepad")

²This document is still draft quality. Most shown 2d plots are made using Matplotlib, and 3d plots using R and Gnuplot, provided as examples only.

³Version numbers and download URL for software used: Python 2.4.1, http://www.python.org/; Numeric 24.0b2, http://numeric.scipy.org/; Matplotlib o.83.2, http://matplotlib.sf.net/; IPython o.6.15, http://ipython.scipy.org/; R 2.1.1, http://www.r-project.org/; Octave 2.1.50, http://www.octave.org/; Scilab 3.1.1, http://www.scilab.org/; Gnuplot 4.0, http://www.gnuplot.info/.

⁴For referencing: Gundersen, Vidar Bronken. MATLAB commands in Numeric Python (Oslo/Norway, 2005), available from: http://www.37mm.no/matlab-python-xref.html

⁵Contributions are appreciated: The best way to do this is to edit the XML and send patches to vbg+mpy@37mm.no