Credit Card Fraud Detection - Logistic Regression

Importing Libraries

```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

# loading the dataset to a Pandas DataFrame
credit_card_data = pd.read_csv('creditcard.csv')

# first 5 rows of the dataset
```

first 5 rows of the dataset
credit_card_data.head()

}		Time	V1	V2	V3	V4	V5	V6	V7	V8
	0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698
	1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102
	2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676
	3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436
	4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533
5 rows × 31 columns										
	4									•

credit_card_data.tail()

_									
₹		Time	V1	V2	V3	V4	V5	V6	V7
	284802	172786.0	-11.881118	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4.918215
	284803	172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.024330
	284804	172788.0	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.296827
	284805	172788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.686180
	284806	172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.577006

5 rows × 31 columns

dataset informations credit_card_data.info()

<<class 'pandas.core.frame.DataFrame'> RangeIndex: 284807 entries, 0 to 284806

Data #	columns Column	•	31 columns ll Count	s): Dtype
0	Time	284807	non-null	float64
1	V1	284807	non-null	float64
2	V2	284807	non-null	float64
3	V3	284807	non-null	float64
4	V4	284807	non-null	float64
5	V5	284807	non-null	float64
6	V6	284807	non-null	float64
7	V7	284807	non-null	float64
8	V8	284807	non-null	float64
9	V9	284807	non-null	float64
10	V10	284807	non-null	float64
11	V11	284807	non-null	float64
12	V12	284807	non-null	float64
13	V13	284807	non-null	float64
14	V14	284807	non-null	float64
15	V15	284807	non-null	float64
16	V16	284807	non-null	float64
17	V17	284807	non-null	float64
18	V18	284807	non-null	float64
19	V19	284807	non-null	float64
20	V20	284807	non-null	float64
21	V21	284807	non-null	float64
22	V22	284807	non-null	float64
23	V23	284807	non-null	float64
24	V24	284807	non-null	float64
25	V25	284807	non-null	float64
26	V26	284807	non-null	float64
27	V27	284807	non-null	float64
28	V28	284807	non-null	float64
29	Amount	284807	non-null	float64
30	Class	284807	non-null	int64
dtype	es: float	64(30),	int64(1)	

memory usage: 67.4 MB

checking the number of missing values in each column credit_card_data.isnull().sum()

Time	0
V1	0
V2	0
V3	0
V4	0
V 5	0
V6	0
V7	0
V8	0
V9	0
V10	0
V11	0
V12	0
V13	0
V14	0
V15	0
V16	0
V17	0
V18	0
V19	0
V20	0
V21	0
V22	0
V23	0
V24	0
V25	0
V26	0
V27	0
V28	0

Amount 0

Class 0

dtype: int64

distribution of legit transactions & fraudulent transactions
credit_card_data['Class'].value_counts()

```
count
Class
0 284315
1 492
```

dtype: int64

statistical measures of the data
legit.Amount.describe()

→		Amount
	count	284315.000000
	mean	88.291022
	std	250.105092
	min	0.000000
	25%	5.650000
	50%	22.000000
	75%	77.050000
	max	25691.160000

dtype: float64

fraud.Amount.describe()

→		Amount
	count	492.000000
	mean	122.211321
	std	256.683288
	min	0.000000
	25%	1.000000
	50%	9.250000
	75%	105.890000
	max	2125.870000

dtype: float64

compare the values for both transactions
credit_card_data.groupby('Class').mean()

→		Time	V1	V2	V3	V4	V5	V6		
	Class									
	0	94838.202258	0.008258	-0.006271	0.012171	-0.007860	0.005453	0.002419	0.0096	
	1	80746.806911	-4.771948	3.623778	-7.033281	4.542029	-3.151225	-1.397737	-5.5687	
	2 rows × 30 columns									
	4								>	

Under-Sampling Build a sample dataset containing similar distribution of normal transactions and Fraudulent Transactions Number of Fraudulent Transactions --> 492

```
legit_sample = legit.sample(n=492)
```

Concatenating two DataFrames

```
new_dataset = pd.concat([legit_sample, fraud], axis=0)
new_dataset.head()
```


	Time	V1	V2	V3	V4	V5	V6	V7
222644	143064.0	-0.204156	0.789728	0.676419	-0.702966	0.646070	-1.062063	1.261606
170948	120421.0	-0.907712	-0.236815	0.907539	-2.955275	-0.168306	1.180725	-0.707736
22404	32227.0	-1.113087	1.379736	1.213365	1.055965	0.181941	0.334371	0.534518
20513	31093.0	-1.192693	0.567001	1.018639	-2.027937	0.195278	-0.084362	0.468799
63843	50889.0	-0.653976	1.318063	1.506234	0.211357	0.025224	-0.798924	0.946490
5 rows × 31 columns								

new_dataset.tail()

	Time	V1	V2	V3	V4	V5	V6	V7	
279863	169142.0	-1.927883	1.125653	-4.518331	1.749293	-1.566487	-2.010494	-0.882850	
280143	169347.0	1.378559	1.289381	-5.004247	1.411850	0.442581	-1.326536	-1.413170	
280149	169351.0	-0.676143	1.126366	-2.213700	0.468308	-1.120541	-0.003346	-2.234739	
281144	169966.0	-3.113832	0.585864	-5.399730	1.817092	-0.840618	-2.943548	-2.208002	
281674	170348.0	1.991976	0.158476	-2.583441	0.408670	1.151147	-0.096695	0.223050	-
5 rows × 31 columns									

new_dataset['Class'].value_counts()

count

CIASS	
0	492
1	492

dtype: int64

new_dataset.groupby('Class').mean()

Time V1 V2 V3 V4 V5 V6

Class

0 93213.233740 0.129194 -0.141559 0.093879 0.010826 -0.007418 -0.054803 -0.07346

1 80746.806911 -4.771948 3.623778 -7.033281 4.542029 -3.151225 -1.397737 -5.56873

2 rows × 30 columns

→

Splitting the data into Features & Targets

```
X = new_dataset.drop(columns='Class', axis=1)
```

Y = new_dataset['Class']

print(X)

```
\rightarrow
                                                                       V5
                 Time
                             ٧1
                                        V2
                                                  V3
                                                            V4
                                                                                 ۷6
    222644
             143064.0 -0.204156
                                 0.789728
                                            0.676419 -0.702966
                                                                 0.646070 -1.062063
    170948
            120421.0 -0.907712 -0.236815
                                            0.907539 -2.955275 -0.168306
                                                                           1.180725
    22404
              32227.0 -1.113087
                                 1.379736
                                            1.213365
                                                      1.055965
                                                                 0.181941
                                                                           0.334371
    20513
              31093.0 -1.192693
                                 0.567001
                                            1.018639 -2.027937
                                                                 0.195278 -0.084362
    63843
              50889.0 -0.653976
                                 1.318063
                                            1.506234
                                                      0.211357
                                                                 0.025224 -0.798924
    279863
             169142.0 -1.927883
                                 1.125653 -4.518331
                                                      1.749293 -1.566487 -2.010494
    280143
             169347.0 1.378559
                                 1.289381 -5.004247
                                                      1.411850 0.442581 -1.326536
    280149
             169351.0 -0.676143
                                 1.126366 -2.213700
                                                      0.468308 -1.120541 -0.003346
    281144
             169966.0 -3.113832
                                 0.585864 -5.399730
                                                      1.817092 -0.840618 -2.943548
                      1.991976
                                 0.158476 -2.583441
                                                      0.408670
    281674
             170348.0
                                                                 1.151147 -0.096695
                   V7
                             V8
                                        V9
                                                      V20
                                                                 V21
                                                                           V22
    222644
             1.261606 -0.382036
                                 0.066857
                                                 0.037529 -0.287439 -0.528936
                                                -0.516192 -0.014660
    170948 -0.707736
                       0.888734 -2.719511
                                                                      0.275362
    22404
             0.534518
                       0.244474 -0.078077
                                                 0.408270 -0.116449
                                                                      0.404205
    20513
             0.468799
                       0.076647
                                 1.302181
                                                -0.189550
                                                           0.118729
                                                                      0.648605
             0.946490 -0.347420 -0.803105
                                                 0.080555 -0.405211 -1.338554
    63843
    279863 -0.882850
                       0.697211 -2.064945
                                                 1.252967
                                                           0.778584 -0.319189
    280143 -1.413170
                       0.248525 -1.127396
                                                 0.226138
                                                           0.370612
                                                                      0.028234
    280149 -2.234739
                       1.210158 -0.652250
                                                 0.247968
                                                           0.751826
                                                                      0.834108
    281144 -2.208002
                       1.058733 -1.632333
                                                 0.306271
                                                           0.583276 -0.269209
    281674 0.223050 -0.068384
                                0.577829
                                            ... -0.017652 -0.164350 -0.295135
                            V24
                                       V25
                                                 V26
                                                           V27
                  V23
                                                                      V28
                                                                           Amount
    222644 -0.012390 -0.044981 -0.644623
                                            0.110487
                                                      0.182384
                                                                 0.013292
                                                                             6.79
    170948 -0.307543 -1.442482 0.431331
                                            0.066443 -0.043824 -0.049160
                                                                            10.00
           -0.164734
                      0.031346 -0.033780 -0.284219 0.208148 -0.206163
                                                                             9.00
    20513
           -0.206028 -0.266573
                                0.160577 -0.770116 -0.093414
                                                                             5.50
    63843
             0.025747
                      0.386570 -0.020912
                                            0.071301 -0.453309 -0.017510
                                                                            18.00
            0.639419 -0.294885
                                 0.537503
                                            0.788395
                                                                 0.147968
    279863
                                                      0.292680
                                                                           390.00
```

```
Credit card fraud detection_Logistic Regression.ipynb - Colab
                                                                             0.76
     280143 -0.145640 -0.081049 0.521875 0.739467 0.389152 0.186637
     280149 0.190944 0.032070 -0.739695 0.471111 0.385107 0.194361
                                                                            77.89
     281144 -0.456108 -0.183659 -0.328168 0.606116 0.884876 -0.253700 245.00
     281674 -0.072173 -0.450261 0.313267 -0.289617 0.002988 -0.015309
                                                                            42.53
     [984 rows x 30 columns]
print(Y)
→ 222644
               0
     170948
               0
     22404
               0
     20513
               0
     63843
               0
     279863
     280143
               1
```

Name: Class, Length: 984, dtype: int64

Split the data into Training data & Testing Data

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, stratify=Y, random_
print(X.shape, X_train.shape, X_test.shape)
(984, 30) (787, 30) (197, 30)
```

Model Training

280149

281144

281674

1

1

Logistic Regression

```
model = LogisticRegression()
# training the Logistic Regression Model with Training Data
model.fit(X_train, Y_train)
      ▼ LogisticRegression
     LogisticRegression()
```

Model Evaluation

Accuracy Score

```
# accuracy on training data
X_train_prediction = model.predict(X_train)
training_data_accuracy = accuracy_score(X_train_prediction, Y_train)

print('Accuracy on Training data : ', training_data_accuracy)

Accuracy on Training data : 0.9250317662007624

# accuracy on test data
X_test_prediction = model.predict(X_test)
test_data_accuracy = accuracy_score(X_test_prediction, Y_test)

print('Accuracy score on Test Data : ', test_data_accuracy)

Accuracy score on Test Data : 0.9187817258883249

Start coding or generate with AI.
```