

Single Shot Detectors, Faster R-CNN

Table of Contents

- Approaches
 - One-Stage methods
 - Two-Stage methods
- Post-Processing and Evaluation
- Outlook: anchor free methods

Object Detction: Task

- Find bounding boxes, which encompass objects within an image
- Dataset defines the kind/type of object and the corresponding box

Main approaches in object detection

- One-Stage methods
 - Single Shot Multibox Detector (SSD)
 - You Only Look Once (YOLO)
 - CenterNet
- Two-Stage methods
 - R-CNN
 - Fast R-CNN
 - Faster R-CNN

One-Stage Methods

Single Shot Detector, YOLO

One-Stage Methods

- Classification and localization in one step
- Singe Shot methods are generally very fast
- But they suffer from worse accuracy
- Examples
 - SSD: Single Shot MultiBox-Detektor
 - YOLO: You Only Look Once

Object detection: task

How can a network predict both the class as well as a bounding box?

- Class: Softmax
- Bounding Box? Defined by 4 values (coordinates/height/width)

Example: Only one object

Reference BB

- Strictly defined
- e.g. always in the center, $h_{reference} = w_{reference}$

Class

0

Ground Truth

Dog?

Cat?

Hamster?

Mouse?

 Δx

 Δy

W

h

100%

0

0

-0.2

-0.05

0.3

0.2

$$w = \log_2 \frac{w_{target}}{w_{reference}},$$

$$w = \log_2 \frac{w_{target}}{w_{reference}}, \qquad h = \log_2 \frac{h_{target}}{h_{reference}}$$

G	Ground Truth				
	0				
	100%				
	0				
	0				
	-0.2				
	-0.05				
	0.3				

0.2

20%	
20%	
80%	
0%	
0.2	
-0.04	
0.6	
-0.2	

Prediction

L_{conf} (the usual Cross-Entropy):

- Confidence c (Output of a Softmax)
- Correct label p

$$L_{conf} = -\sum_{n}^{N} \log c_n^{p}$$

Ground Truth *c*

0
100%
0
0
-0.2
-0.05
0.3
0.2

Prediction p

20%
20%
80%
0%
0.2
-0.04
0.6
-0.2

Gro	ound Truth $ar{g}$	in F	Prediction $ec{l}_n$
	0		20%
	100%		20%
	0		80%
	0		0%
	-0.2		0.2
	-0.05		-0.04
	0.3		0.6
	0.2		-0.2

Multi Object Detection

Design a NN that can find

- several objects
- of varying shapes
- with multiple classes
- in arbitrary/varying scales
- (optimally in real time)

Multi Object Detection (SSD)

Problems

Several objects

- Of varying shapes
- Many classes
- In arbitrary/varying scales
- Real time (60 FPS)

Possible Solutions

- Instead of one prediction, i.e. one bounding box per pixel, new class "Background"
- e.g. 4 or more reference bounding boxes instead of only one
- Each box (similar to segmentation of n+1 classes), use a pretrained network
- Output for "every pooling layer"
- GPU, network of Conv/Pooling layers

• Define d "possible" default bounding boxes of different shapes:

• Parameters: d^{cx} , d^{cy} , d^w , d^h (Center pixel, size in pixels)

Some image

Parameters

$$d^{cx} = 13$$
$$d^{cy} = 3$$
$$d^{w} = 5$$
$$d^{h} = 3$$

Some image

Parameters

- $d^{cx} = 13$
- $d^{cy} = 3$
- $| \cdot | d^w = 5 |$
- $d^h = 3$

Parameters (relative)

- $\hat{g}^{cx} = \frac{12.5-13}{5}$
- $\hat{g}^{cy} = \frac{2.3-3}{3}$
- $\hat{g}^w = \log \frac{3.3}{5}$
- $\bullet \ \hat{g}^h = \log \frac{3.2}{3}$

Some image

Count as correct, when IoU (Intersection over union) of Ground Truth and Prediction > 0.5

$$IoU = \frac{A \cap B}{A \cup B}$$

Summary so far:

- For every pixel d "default bounding boxes" with 4 parameters each
- For every bounding box n+1 classes (background class for "no object present")
- Ground truth and prediction in relative coordinates (4 parameters) corresponding to the d default boxes

SSD: Dimensions

SSD: Dimensions

Output layer (for one scale) has:

$$h \cdot w \cdot (d \cdot 4) + h \cdot w \cdot d \cdot (n+1)$$

= $h \times w \times d \times (4+n+1)$

entries.

SSD: Architecture

SSD: Architecture

$h \times w$	38 × 38	19 × 19	10 × 10	5 × 5	3 × 3	1 × 1	
d	4	6	6	6	4	4	
Total per C.	5776	2166	600	150	36	4	8.732

SSD: Matching strategy

- Main question: When does a bounding box count as a positive match and when as a negative one?
- SSD easy approach in two steps
 - 1. First match every GT box to the prediction boxes (called default boxes in the paper)
 - → Box with maximum overlap is positive match (one default box per GT box)
 - 2. Then match each remaining prediction box to the ground truth → every overlap > 0.5 counts as a positive match

SSD: Loss function

$$L = \frac{1}{N} \left(L_{conf} + \alpha L_{loc} \right)$$

Match of *j*th GT box with *i*th default box (0 or 1)

$$L_{conf}(x,c) = -\sum_{i \in Pos} x_{ij}^{p} \log c_{i}^{p} - \sum_{i \in Neg} \log c_{i}^{BG}$$

All currently positive matches (regardless if label is correct or not):
Learn classes

All currently negative matches: learn background

SSD: Loss function

$$L = \frac{1}{N} \left(L_{conf} + \alpha L_{loc} \right)$$

 $L_{loc}(x, \hat{l}, g) = -\sum_{i \in Pos} x_{ij}^p \operatorname{smooth}_{\ell_1} [\hat{l}_i - \hat{g}_{ji}]$

All currently positive matches: learn offset

Prediciton Ground Truth

Relative position/size of jth bounding box at position i

$$\begin{pmatrix} \Delta l_{ij}^{cx} \\ \Delta l_{ij}^{cy} \\ \Delta l_{ij}^{w} \\ \Delta l_{ij}^{h} \end{pmatrix} \quad \hat{g}_{ji} = \begin{pmatrix} \Delta g_{ij}^{cx} \\ \Delta g_{ij}^{cy} \\ \Delta g_{ij}^{w} \\ \Delta g_{ij}^{h} \end{pmatrix} = \begin{pmatrix} \frac{d_i^w}{g_j^{cy} - d_i^{cy}} \\ \frac{g_j^{cy} - d_i^{cy}}{d_i^h} \\ \log \frac{g_j^w}{d_i^w} \\ \log \frac{g_j^h}{d_i^h} \end{pmatrix}$$

Hypothetical input

Match with very large objects

No Match with very large objects

 4×4 Feature Map

 16×16 Feature Map

Default box position corresponds to pixel position (center) in the CNN feature maps

$$(\frac{i+0.5}{|f_k|}, \frac{j+0.5}{|f_k|})$$
, where $|f_k|$ is the size of the k th FM

- Choose m feature maps from the entire CNN and define scaling factor s_k (corresponds to the default box size):
 - last FM scaling factor (size) of $s_{max} = 0.9$
 - First FM factor of $s_{min} = 0.2$
 - Linear interpolation in between

Choose the aspect ratios

$$a_r \in \left\{ \frac{1}{3}, \frac{1}{2}, \frac{1}{1}, \frac{2}{1}, \frac{3}{1} \right\}$$

- Determine height and width:
 - $h = s_k/\sqrt{a_r}$
 - $w = s_k \sqrt{a_r}$
- Additional 6th BB with $a_r=1$ and $s'_k=\sqrt{s_ks_{k+1}}$ (middle between the different scalings)
- With 4 BBs 1:3 and 3:1 are omitted

Default Box Scaling

Default BB positions in different feature maps

Application SSD: Traffic

Two-Stage Detectors

Faster R-CNN

Two-Stage Methods

- Generate region proposals (instead of sliding window)
- Classify every proposed region
- Two step methods are more accurate
- But require more computation power, so inference time is longer
- Examples
 - R-CNN
 - Fast R-CNN
 - Faster R-CNN

"Historic" Development

- 1. Girshick et al., 2014: R-CNN
 - (slow) network, classifying region proposals
- 2. Girshick, 2015: Fast R-CNN
 - Faster network by improving the classification process
- 3. Ren et al., 2016: Faster R-CNN
 - Even faster by integrating region proposals into the architecture

R-CNN [Girshick et al. (2014)]

3 Modules:

- 1. Extracting proposals via selective search [Uijlings et al.(2013)].
- 2. CNN for feature extraction
- 3. Classification using a Support Vector Machine (SVM)

R-CNN: Regions with CNN features

R-CNN [Girshick et al. (2014)]

- Bbox module adjusts BB coordinates
- Selective Search extracts around 2000 proposals
- →2000 CNN computations
- → Around 50 seconds per image
- → Selective Search does not learn

Fast R-CNN [Girshick (2015)]

- Innovation: Rol (Region of Interest) pooling layer
 - Input: CNN Feature Maps + Rol coordinates as matrix
 - Output: vector of fixed length
- Fully Connected Layer used for both classification and regression (localization)

Rol Pooling: Principle

- Example:
 - An 8x8 Feature Map
 - A Rol of size 5x7, Position (0,0)
- Reduced to strictly defined dimensions (here 2x2)
- Then further processing using FC layers

Fast R-CNN [Girshick (2015)]

- Significant acceleration of training and inference (+ better performance)
- But: Selective Search is still a bottleneck
 - No training parameters
 - Too many proposals

	Fast R-CNN			R-CNN		
	S	M	\mathbf{L}	S	\mathbf{M}	L
train time (h)	1.2	2.0	9.5	22	28	84
train speedup	18.3×	$14.0 \times$	$8.8 \times$	1×	$1\times$	$1\times$
test rate (s/im)	0.10	0.15	0.32	9.8	12.1	47.0
⊳ with SVD	0.06	0.08	0.22	-	-	-
test speedup	98×	$80 \times$	146×	1×	$1 \times$	$1 \times$
⊳ with SVD	169×	$150 \times$	$213 \times$	-	-	-
VOC07 mAP	57.1	59.2	66.9	58.5	60.2	66.0
⊳ with SVD	56.5	58.7	66.6	-	-	-

Faster R-CNN [Ren et al. (2015)]

- Extension: Region proposal network (RPN)
- Region proposals are generated from CNN-output
- 2. Object detection same as Fast R-CNN (Rol pooling)
- Uses the same CNN for both steps (weight sharing)

Region Proposal Network

- Define von k anchor boxes
 (analogous to default boxes in SSD)
 - Defined by scale and aspect ratio
 - By default: k = 9 Boxes
- Sliding window with fixed size $n \times n$
 - Mapping to lower-dimensional representation (with $n \times n$ convolution layer)
 - Then reg and cls with 1×1 convolution layers

Proposal matching strategy

Positive Label (Object present)

- Anchor with highest IoU to GT-Box
- Anker with Overlap > 0.6

$$IoU(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

Negative Label (no Object)

• IoU < 0.3 for all GT-Boxes

Neutral Label

- When no other criterium is met
- Does not go into loss

Loss-Function: RPN

Loss-Function: Fast R-CNN

Training: Options

- 1. Alternating Training (4-Step)
 - 1. RPN trained separately
 - 2. Fast R-CNN trained with proposals
 - RPN with Fast R-CNN initialized, only unique layers trained
 - 4. Same with Fast R-CNN \rightarrow Conv-Layers shared
- 2. Approximate Joint Training
 - Combine RPN and Fast R-CNN Loss without Backpropagation at Rol pooling
- 3. Non-approximate Joint Training
 - Full compination of RPN and Fast R-CNN Loss with "Rol warping" layer

After Training

Post-Processing and Evaluation

Recap: Dimensions

Output layer (for one scale) has

$$h \cdot w \cdot (d \cdot 4) + h \cdot w \cdot d \cdot (n+1)$$

= $h \times w \times d \times (4+n+1)$

entries.

Faster R-CNN with similar dimensions

Prediction

Huge number of bounding boxes, but which should we keep?

- Confidence-threshold of 0.5 (removes most boxes)
- Non-maximum suppression (NMS)

Non-Maximum Suppression

- 1. Find BB with highest confidence
- 2. Remove all BBs with overlap higher than a threshold (e.g. 45%)
- 3. Repeat step 1 until no BBs are removed anymore

Example

Domain specific filtering

- Integration of domain specific knowledge for general architectures
- e.g. remove boxes of cars in images inside buildings
- e.g. remove certain illnesses depending on the organ that is pictured

Evaluation: Mean Average Precision

- Standard metric from Pascal VOC and COCO
- Evaluates both classification and localization
- First compute precision and recall
 - Define a IoU threshold (e.g. 50%)
 - Determine all possible matches with this IoU
 - Define a confidence threshold (e.g. 50%)
 - Determine for every class above this threshold TP, FP, TN, FN
 - Compute Precision and Recall with these values
- → Confidence of multiple models can vary in accuracy

Evaluation: Mean Average Precision

- Variation of threshold values ("rank")
 - Change the threshold and compute Precision and Recall for every variation
 - Choose 11 equally distributed recall levels: [0, 0.1, 0.2, ..., 1] = Rank
 - Average Precision (AP) is defined as the mean of precision at this recall/rank r
 - Use the maximum possible precision at rank r
 - mAP as mean over all classes
- COCO adds variation of IoU
 - Multiple mAP values for IoUs of e.g. 25%, 50%, 75%

Example curve for AP computation

Trade-Off Real time detection

Example 1: Comparing different detectors and backbones

Huang et al. 2017: speed/accuracy trade-offs for modern

convolutional object detectors

Trade-Off Real time detection

Example 2

- YOLOv4:
 - Comparison of different architectures
 - Trade-Off between accuracy (AP) and speed (FPS)
 - Computed on Tesla V100
- For all algorithms higher FPS equals to lower AP

MS COCO Object Detection

YOLOv4: Optimal Speed and Accuracy

of Object Detection

Outlook: Anchor free Methods

CornerNet, CenterNet

CornerNet [Law and Deng (2019)]

- One-Stage Detector
- Object defined as a pair of "Keypoints" = corner pairs
- Trained to detect and assign corners
- New layer: Corner Pooling
- 42.2% mAP on COCO

Law and Deng et al. 2019: CornerNet: Detecting Objects as Paired Keypoints

CenterNet(s): Objects as Points

Predict center, regress object size (up to 45.1% mAP)

Zhou et al. 2019: Objects as Points

CornerNet extention to three points (47.0% mAP on COCO)

Duan et al. 2019: CenterNet: Keypoint Triplets for Object Detection

Outlook: Exercise and next lecture

- Exercise: SSD in detail
 - Inference with SSD
 - Change different parameters/structure of SSD
 - Application based questions
- Next lecture: Sequence2Sequence
 - Application of recurrent networks
 - Examples
 - CTC algorithm

