

.			
Student	Number	• • • • • • • • • • • • • • • • • • • •	
Caaciic	T GITTOGT	• • • • • • • • • • • • • • • • • • • •	

Year 12

Extension 1 mathematics-Trial HSC examination 3 August 2011

Time allowed: 2 hours

Reading time: 5 minutes

Course weighting: 40%

General Instructions

- Attempt ALL questions
- Write your Student NUMBER on every booklet used.
- Write using blue or black pen
- Board approved calculators and stencils can be used
- A table of standard integrals is provided
- Show necessary working
- Organise Q 1 to 4 in one bundle and Q 4 to 7 in another

Attempt Questions 1 to 7-All questions are of equal value

Total marks /84

Question 1

Use the result
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$
 to find the value of
$$\lim_{x \to 0} \frac{1 - \cos 2x}{x^2}$$

- (i) Show that the curves $y = \log_e x$ and xy = e meet at the point (e,1). 1m
 - (ii) If α is the acute angle between the tangents at the point $of\ intersection\ show\ that$ $tan\alpha=\frac{2e}{e^2-1}$
- c) Eight people are seated around a table.

Extension 1 mathematics trials 2011

- (i) How many arrangements are possible if there are no restrictions? 1m
- (ii) Laura, Sally and Lauren want to sit together. How many arrangements are possible?
- Integrate using the substitution u = 1 x $\int \frac{x}{\sqrt{1 x}} dx$ 3n

Question 2

Start a new page

a) Evaluate and leave in exact form. $\int_{-\frac{\pi}{2}}^{\frac{3}{2}} \frac{dx}{dx}$

3m

- b) P(x) is an even polynomial of degree 4 .i.e. P(-x) = P(x). Two of its zeros are at x = 1 and x = 2
 - (i) Find the other two roots.

2m

(ii) If P(0)=8, Write P(x) in factored form.

2m

c) (i) Show that $\sqrt{3}\cos x - \sin x = 2\cos(x + \frac{\pi}{6})$

1m

(ii) Sketch the function $y = \sqrt{3}\cos x - \sin x$ in the domain $0 \le x \le 2\pi$ clearly labelling the end points and the turning points.

2m

2m

(iii) Find the general solution to the equation $\sqrt{3}\cos x - \sin x = 1$

Question 3

Start a new page

a) (i) Write the expansion of $(5+2x)^{15}$ in ascending powers of x and show that

$$\frac{coefficent\ oft_{r+1}}{coefficient\ of\ t_r} = \frac{32 - 2r}{5r}$$

3m

where t_r is the rth term in the above expansion.

(ii) Hence find the greatest coefficient

2m

(You may leave the answer in terms of the binomial coefficient.)

b) Find the constant term in the expansion of

3m

$$\left(x-\frac{1}{2x^3}\right)^2$$

You may leave the answer in terms of the binomial coefficient.

c) A machine is known to produce items of which 3% are too short, 7% are too long and 90% are satisfactory. A random sample of twelve items is taken from the sample.

Find the probability (correct to two decimal places) that

(i) At most one of these items is too long

2m

(ii) At least ten of these items are satisfactory.

2m

Question 4

Start a new page

a) Consider the function

$$f(x) = \frac{e^x}{x - 1}$$

- (i) Show that (2, e²) is a minimum turning point.
- (ii) Determine all the vertical and horizontal asymptotes of the curve y=f(x) and sketch the graph y=f(x) including any intercepts with the coordinate axes.
- b) Let $f(x) = 4x x^2$ for $x \ge 2$.
 - (i) Sketch the function y = f(x) and $y = f^{-1}(x)$ on the same set of axes.
- 2m

3m

- (ii) Find an expression for $y = f^{-1}(x)$
 - expression for $y = f^{-1}(x)$ 2m
- (iii) Find the point of intersection of y = f(x) and $y = f^{-1}(x)$

Question 5

START A NEW BOOKLET

- a) Consider the parabola $x^2=4ay$. Let S (0,a) be the focus. The tangents at points P: $(2ap,ap^2)$ and Q: $(2aq,aq^2)$ meet at the point T.
 - (i) Show that the coordinates of T is (a(p+q), apq)You may assume that the equation of the tangent at any point 2mP: $(2ap,ap^2)$ is $y=px-ap^2$
 - (ii) Show that $SP = a(p^2 + 1)$ (Draw a figure)
 - (iii) P and Q move on the parabola so that SP + SQ = 4a Find the locus of T.
- b) A particle is moving in a straight line in Simple Harmonic Motion according to the equation

$$\frac{d^2y}{dx^2} = -x$$

Initially the particle is at x=1 and has a velocity of 1cm /sec. Show that $x=\sqrt{2}\cos(t^{\frac{\pi}{4}})$

- Suppose that the cubic function $f(x) = x^3 + ax^2 + bx + c$ has a relative maximum at $x = \alpha$ and a relative minimum at $x = \beta$.
 - (i) Prove that $\alpha + \beta = \frac{-2a}{3}$

2m

3m

(ii) Deduce that the point of inflexion occurs at $\alpha + \beta$

Question 6

Start a new page

a) Let
$$f(x) = \frac{1}{2}\cos^{-1}(1 - 3x)$$

(i) Find the domain and the range

b) Integrate using the substitution
$$x=3sin\theta$$

$$\int_0^3 \frac{x^2 dx}{\sqrt{9 - x^2}}$$

- c) If $f(x) = cos^{-1}(sinx)$
 - (i) Show that $f'(x)=\pm 1$. (note that $\sqrt{x^2}=|x|$) State the values of x for which it is 1 or -1 in the domain $-\pi \le x \le \pi$
 - (ii) Hence sketch the function $f(x) = cos^{-1}(sinx)$ in the domain $-\pi \le x \le \pi$

Question 7

Start a new page

a) Fig

A vertical building stands with its base O on the horizontal ground. A and B are two points on the building vertically above each other such that A is 4h metres above O and B is h metres above O.

A particle is projected horizontally from A with a speed of U m/sec and 10 seconds later a second particle is projected horizontally from B with a velocity of 2U m/sec. The two particles collide t seconds after the first particle is projected.

The coordinate axes are placed at O and the value of g is taken as 10 m/sec²

(i) Show that the expressions for the horizontal and vertical displacements of each particle, t seconds after the first particle is projected are given by

$$x_A = Ut \ and \ y_A = 4h - 5t^2$$
 for the particle A and

$$x_B = 2U(t-10)$$
 and $y_B = h - 5(t-10)^2$ for the particle B.

ii) Find the time taken for the particles to collide

iii) Find the value of h.

2m

4m

1m

Please turn over for 7(b)

2m

1m

4m

3m

b) (i) Show that

$$(1-x)^n(1+\frac{1}{x})^n = \frac{(1-x^2)^n}{x^n}$$

1m

(ii) Show that

$$\frac{(1-x^2)^n}{x^n} = \sum_{0}^{n} (-1)^r \binom{n}{r} x^{2r-n}$$

1m

$$(note:\binom{n}{r} = {}^{n}C_{r})$$

3m

(iii) By considering the coefficient of x^2 on both sides of the given identity in part (i) and using part (ii), show that

$$\binom{n}{2}\binom{n}{0} - \binom{n}{3}\binom{n}{1} + \dots + (-1)^n \binom{n}{n}\binom{n}{n-2}$$

$$= \left\{ \begin{array}{l} 0, \mbox{if n is odd} \\ (-1)^{\frac{n+2}{2}} \binom{n}{n+2} \mbox{if n is even} \end{array} \right.$$

END OF Paper

1

Caluttona	Moules	Commonto Cultural
Solutions	Marks	Comments: Criteria
$\frac{1-\cos 2x}{x^{2}}$ $=\frac{1-(1-2\sin^{2}x)}{x^{2}}$	(1m)	
$\frac{1}{2} \frac{\lim_{x \to \infty} 2 \frac{\sin x}{x}}{\lim_{x \to \infty} \frac{\sin x}{x}}$ $\frac{1}{2} \frac{\lim_{x \to \infty} \frac{\sin x}{x}}{\lim_{x \to \infty} \frac{\sin x}{x}}$ $\frac{1}{2} \frac{\lim_{x \to \infty} \frac{\sin x}{x}}{\lim_{x \to \infty} \frac{\sin x}{x}}$	(1m)	
(e,1) lies on y=loger for 1=loger also " = xy = e for exis	e. .e	<u>΄</u> ω
$y = \log_e x$ $y' = \frac{1}{x}$ $f_{ar}(e,i) = \frac{1}{e}$	12	
$y = \frac{e}{x}$ $y = -\frac{e}{x^2}$ $y = -\frac{e}{x^2$	à rong	2 au 5
if his we assure any. $ \frac{2/e}{1-\frac{1}{e^2}} = \frac{2/e}{e^{1-\frac{1}{e^2}}} $	$=\frac{2e}{e^{2}}$	for correct substitution.
(D) 7! (J) 5! × 3! (J) (J)	. (1)	
4	$\int a_1 d = \left \frac{e}{1 - \frac{1}{e^2}} \right $	$\int a d = \left \frac{e}{1 - \frac{1}{e^2}} \right = \frac{2e}{e^2 - 1}$

Qn	Solutions	Marks	Comments: Criteria
d)	U= 1-x	·	Section 1
	$du = -dx$ $\int \frac{x}{\sqrt{1-x}} dx = \int \frac{(1-u^{2})(-du)}{\sqrt{u}}$ $= \int (\sqrt{u} - u^{-1/2}) dy$ $= \int \frac{3}{3}(1-x)^{3/2} - 2u + C$ $= \frac{2}{3}(1-x)^{3/2} - 2\sqrt{1-x} + C.$	(m) (1m)	
2	$\int_{0}^{\frac{3}{2}} \frac{dx}{\sqrt{9-2x^2}} = \int_{0}^{\frac{3}{2}} \frac{dx}{\sqrt{2(\frac{9}{2}-x^2)}}$		
	$= \frac{1}{\sqrt{2}} \cdot \frac{Sin^{7} \left(\frac{72x}{3}\right)_{D}}{\sqrt{2}}$ $= \frac{1}{\sqrt{2}} \cdot \left(\frac{Sin^{7} \cdot \sqrt{2}}{3} \cdot \frac{3}{2} - \frac{Sin^{7}D}{\sqrt{2}}\right)$ $= \frac{1}{\sqrt{2}} \cdot \left(\frac{\pi}{4}\right) = \frac{\pi}{4\sqrt{2}} \cdot \frac{\sqrt{2}\pi}{\sqrt{2}}$	(1m)	
P)	P(-x) = P(x) $P(-1) = P(1) = 0$ $P(-2) = P(2) = 0$ $P(-2) = P(2) = 0$ $P(x) = A(x-1)(x+1)(x-2)$ $P(x) = B$ $P(x) = B$ $P(x) = B$	tew-	

· ·	Marks Comments; Criteria
	Solutions Warks Comment
Qn (*)	$P(x) = 2(x-1)(x+1)(x-2)(x+2)$ $P(x) = 2(x-1)(x+1)(x-2)(x+2)$ $= R \cos(x+4)$ $= R(\cos x \cos x - \sin x \sin x)$ $= R(\cos x \cos x - \sin x \sin x)$ $= R(\cos x \cos x - \sin x \sin x)$ $= R(\cos x \cos x - \sin x \sin x)$ $= R(\cos x \cos x - \sin x \sin x)$ $= R(\cos x \cos x - \sin x \sin x)$ $= R(\cos x \cos x - \sin x \sin x)$ $= R(\cos x \cos x - \sin x \sin x)$ $= R(\cos x \cos x - \sin x \sin x)$ $= R(\cos x \cos x - \sin x \sin x)$ $= R(\cos x \cos x - \sin x \sin x)$ $= R(\cos x \cos x - \sin x \sin x)$ $= R(\cos x \cos x - \sin x \sin x)$ $= R(\cos x \cos x - \sin x \sin x)$ $= R(\cos x \cos x - \sin x \sin x)$ $= R(\cos x \cos x - \sin x \cos x)$ $= R(\cos x \cos x \cos x)$ $= R(\cos x)$ $= R$
	(1) (1) (2) (2) (2) (3) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
	$2 \cos (x + \overline{t}) = 1$ $2 \cos (x + \overline{t}) = 2$ $2 \tan t = \frac{1}{3}$ $2 \tan t = \frac{1}{3}$ $2 \tan t = \frac{1}{3}$ $3 = 2 \sin t = \frac{1}{3}$ $3 = 2 \sin t = \frac{1}{3}$ $3 = 2 \sin t = \frac{1}{3}$ $4 = 2 \sin t = \frac{1}{3}$ $3 = 2 \sin t = \frac{1}{3}$ $4 = 2 \sin t = \frac{1}{3}$ $5 = 2 \sin t = \frac{1}{3}$ $6 = 2 \sin t = \frac{1}{3}$ $7 = 2 \sin t = \frac{1}{3}$ $8 = 2 \sin t = $

Qn	Solutions	Marks	Comments: Criteria
3	(5+2x) = 15 5 + 15 - 5 4 (2)	1) + -	· · ·
	15-r (2x)	(1m)	
	15-(4-1)		
	$t_r = \frac{15}{c_{r-1}} \cdot \frac{5}{c_{r-1}}$	r	
	Coeff of tr+1 = 15cr 5 16-1 2	-, ((^)
	$= \frac{15!}{7!(15-1)!} \frac{(r-1)!(15-(r-1))!}{15!} \cdot \frac{2}{5}$		
	$= \frac{16-r}{r} \cdot \frac{2}{5-r} = \frac{32-2r}{5-r}$	()"	\rightarrow
(D west of time z loest of tr		
	When 32-24 257 (\$4)	(m)	
	Coeff of trot 2 Coeff of to		
	for r: s, b. ligher coff	/	
	Coeff of ts = 15 51.2.	(m)	

.3.

Qn	Solutions	Marks	Comments: Criteria
<i>b</i>)	$(x - \frac{1}{2x^3})^{12} = 12 \times \frac{1^2}{2} = 12 \times \frac{1^2}{2x^3}$	+ ~ ,	
	$t_{r+1} = \frac{12}{G} \times \frac{12-r}{\left(-\frac{1}{2}\right)^r} \times \frac{-3r}{x}$	-	
-	$= \left(-\frac{1}{2}\right)^{r} \cdot \frac{12}{c_{r}} \cdot \frac{12-4r}{2}$	(1)	:
	for Const. Term; $\frac{12-4r=b}{r=3}$	(1)	
	Consi. Perm is (-1)3.12.	(1)	
()	p(+00 /0mg) = 0.07 = p(say) p(nor toolog - 0.93 = q(say) q=1-p.	124	
	Consider (p+9)"= 12cop12+12qp"8	4	
	plat most one too log) = P(kone too log) + P(one too	()り)	I€.
	= 12 g 12 + 12, 19 g 11.		
	$= (0.93)^{12} + 12(0.07)(0.93)^{11}$	(FV)	
	= 0.80. $P(satis) = 0.9 = p(say)$ $P(noishi) = 0.1 = 9(say)$	9 =)-	1.21-

Qn Solutions	Marks	Comments: Criteria
$(p+q)^{12} = 12c_0 p^{12} + 12c_1 p^{11}q^{12} + $)) '
$f(x) = \frac{e^{x}}{x-1}$ $f'(x) = \frac{(x-1)e^{x} - e^{x}(-1)}{(x-1)^{2}}$ $= \frac{e^{x}(x-2)}{(x-1)^{2}}$	(12	,
Stal. Kb; $f'(x) = 0$ $e^{x}(x-2) = 0$ $\vdots x = 2$ $y = \frac{e^{2}}{2\pi}$ $\vdots (2,e^{2})$ $f'(1,q) < 0$ $\vdots f'(2,1) > 0$ $\vdots (2,e^{2})$ $\vdots (2,e^{2})$ $\vdots (2,e^{2})$	0	(Im)

.

1

Qn	Solutions	Marks	Comments: Criteria
(b)	$y = 4x - x^{2}$ $x = 4y - y^{2}$ (inv. fr)		
	$y^{2} - 4y + x = 6$ $y = \frac{4 \pm \sqrt{16 - 4x}}{2}$	er 11-	1-1/11
	$= \frac{4 \pm 2 \sqrt{4 - x}}{2} Range$ $= 2 + \sqrt{4 - x}$ $= 2 + \sqrt{4 - x}$	rain	of y=f/n)
(12)	y = f(x) and y = f(x) meet on y = n i. Their pr. of interpertion is		
	91 for 69 $4 for -12 = 12$ $3 for -12 = 12$		
	200 5 not in the domain. (3,3) 5 live pr. of when redin		-

Q.

Qn Solutions	Marks	Comments: Criteria
Solutions 5. $X^2 = 4ay$. Equi of the fat of $P: (2ap, ap)$ $Y = px - ap^2$ $Y = qx - aq^2$ $y = qx - aq^2$ $px - ap^2 = qx - aq^2$ $px - ap^2 = qx - aq^2$ $px - ap^2 = a(p^2 - q^2)$ $x = a(p^2 - q^2)$ $x = a(p^2 - q^2)$ $x = a(p^2 - q^2)$	•	Comments: Criteria
$2l = a(p+q) (1)$ $3l = a(p+q) (1)$ $-apq (2pp,apq)$ $= ap^2+q$ $= a(p^2+q)$ $= a(p^2+q)$ $= a(p^2+q)$	6~	
$5p + 5q = 4q$ $a(p^{2}+1) + a(q^{2}+1) = 4a$ $a(p^{2}+1) + a(q^{2}+1) = 4a$ $a(p^{2}+1) + a(q^{2}+1) = 4a$ $b^{2}+q^{2}=2$ $y = apq \text{ and } p^{2}+q^{2}=2$ $(p+q)^{2} = p^{2}+q^{2}+2pq$ $(x)^{2} = a+2apq \text{ is to}$. (1	

Qn	Solutions	Marks	Comments: Criteria
b)	der a = 0 cos(nt+c-).	·	
	$\frac{n=1}{a(t=0)} = a \cos \theta - C$)	
	x = -ansin (t+c)		
	h=1 t=0 : 1 = _ ashe _ @		
	C = -174 $C = -174$		
	: x = \(\sigma \) \(\tag{\tau} \)		
9			
	$f'(a) = 0$; $f'(\beta) = 0$ $\therefore a \Rightarrow a \Rightarrow b \Rightarrow b \Rightarrow b$		
	$f'(x) = .3x^2 + 20x + 6 = 0$		·
	$d+\beta^2 - \frac{2-\alpha}{3}$	(214	
	f''(x) = 6x + 2a $f''(x) = 6x + 2a$ $f''(x) = 6x + 2a = 0$ $f''(x) = 0$ $f''(x)$		
	$\frac{1}{2} (x) = 0$ $= -\frac{1}{2} + \frac{1}{2}$ $= \frac{1}{2} + \frac{1}{2}$	(1778)	

Marks Comments: Criteria	٦.
On Solutions]
$\frac{d+\beta}{2} = \frac{between}{a+\beta} = 0; f'(\beta) > 0$ $f''(a+\beta) = 0; f''(\beta) > 0$ $f''(a+\beta) = 0; f''(\beta) > 0$ $\therefore 2i = \frac{a+\beta}{2} = 0; f''(\beta) > 0$ $\therefore 2i = \frac{a+\beta}{2} = 0; f''(\beta) > 0$	
$\int_{-1}^{1} \left(x \right) = \frac{1}{2} \cos^{2} \left(1 - 3x \right)$ $\int_{-1}^{1} \left(x \right) = \frac{1}{2} \cos^{2} \left(1 - 3x \right)$ $-1 \le 1 - 3x \le 1$ $-2 \le -3x \le 0$	# 15m
Range: when $x = 0$; $(10) = \frac{1}{2} \cos^{-1}$	
$\frac{f(\sqrt{3})}{\sqrt{3}} = \frac{1}{2}(bs^{-1}(1+2))$ when $x = \frac{2}{3}$, $y = \frac{1}{2}$.	
7. 275 n	
	14

2n	3 Solutions	Marks	Comments: Criteria
	$\int_{0}^{3} \frac{\text{Solutions}}{\sqrt{9-x^{2}}}$		
b	J 19-x2		
	der 2 = 3 Sin 12	•	
	der 2 = 3 cas & du		
	der 2 = 3 cos a du		
	$\lambda = 0 ; Q = 0$ $\lambda = 3 ; Q = \frac{11}{2}$		
	120,		
	3 ; 0 = 177,		
	$\int_{-\infty}^{3} \frac{x^2 dx}{\sqrt{9-x^2}}$		
	, (A)2		
	1 1 17-1		
	$\frac{11}{2} \frac{9 \text{ Gir}^2 4.3 \cos 2}{\sqrt{9-9 \sin^2 2}} d\theta$	(Im)	
	27		
	19-951n-12		
	D 17).	(Em)	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		*
	2 9 SIL 0		
	· _ ·	(1m)	
		4	
	- 9 ((1-00520)		
		1000	
	70 7/2	(/ ~ ''	
	a / D - Sin 200)		
	$=\frac{9}{2}\left(2-\frac{8\ln 20}{2}\right)$	1/2	
	l ·	1	
	= 9 II = 9 II/4		
	- 1. 2		
			٠.
	·		
	·		

Qn	Solutions	Marks	Comments: Criteria
c)	f(1) = Cost (Sihx)		,
	f//n) = -1 .losx		
	- Cosx	(12 m	, <i>y</i>
) C254)		
	= -1 when Cos x = 1 when Cos x	< 0	£m)
	f(n)=1; when - 1 = x < 1/2 f(n)=1; when - 1 = x < 1/2	_	7, m
	fl(n)=1 Wha IT EN ETT OF	<i>−</i>)T <	x e - 17. ∫
	f链)=「jf(0)=72;f(72)=4		
	f(-11) = 172 ; f(11) - 172		
	mu		
	-17 -72 TI		,
			- 11 os. - 21 os. - 21 os.
	-		
	·		
-			1

On	Solutions	Marke	Commenter Cultoute
Qn	Solutions	Marks	Comments: Criteria
	y = -10 $xi = 00061$ $y = -10t + C$ $xi = 0$ $xi = 00061$ $y = -10t + C$ $x = 0$	\{t= \{y:	44
	B - $\dot{x} = 0$ $\dot{x} = const$ $\dot{t} = 10$; $\dot{y} = -10t$ $\dot{t} = 10$; $\dot{y} = 10t$ $\dot{t} = 10$; $\dot{y} = 10t$ $\dot{x} = 24t$ $\dot{x} = 24t$ $\dot{x} = 24t$ $\dot{x} = 10$; $\dot{y} = -10t$ $\dot{x} = -10$; $\dot{x} = -10$; $$	100 t+ 500 t+ 500 t+ 7-100	t+4-500 t+100)

hi.

Qn	Solutions	Marks	Comments: Criteria
	where to ey collide		
	xA = xB; Ul- = 24t-204		1
	, E = 20 s = 20		
	$y_n = y_B$; $4n - 5t^2 = n - 5(t - 10)^2$, ·
	$3h = 5(t^2 - (t-10))$		
	t = 20		
	3h = 1500 h = 500 m.		
	$(1-x)^{n}\left(1+\frac{1}{n}\right)^{n}$		
	$= ((-x)^n (\underline{x+1})^n$		
	$= \underbrace{(1-x^2)^n}_{x,y}$		
. ($\frac{1}{(1-x^2)^n} = \frac{1}{x^n} \left(\frac{n}{c_0} - \frac{n}{c_1} x^2 + \frac{n}{c_2} x^2 \right)$	١)
	λ		
	•		
	Z (-1) Z, x		

	· ·		
Qn	Solutions	Marks	Comments: Criteria
	Coeff- of or		
ء · ح د د	n -15 n 2r-n is when		
	$2r-n=0$ or when $y=\frac{n+2}{2}$		
	Coeff is $(-1)^{\frac{n+2}{2}}$ is $(-1)^{\frac{n+2}{2}}$ in $(-1)^{$		
	This is Zero when nis whole	n ymil	<i>'</i>
	Co.	ĭ '	1
,	$\frac{1}{10000000000000000000000000000000000$	is er	
	(n-nax+22x2)(co+2, 1/2	+2,	. <u>/</u> x +)
	(nz no) - (nz nz) + (nz nz) + (1	1
	Hence to result.	į	

ڌ