No active tr.

Sélécticit

RESEARCH

-INSIDE DELPHION

DELPHION

My Account

Search: Quick/Number Boolean Advanced Derwei

The Delphion Integrated View

Buy Now: PDF | More choices...

Tools: Add to Work File: Create new Work

View: INPADOC | Jump to: Top

Go to: Derwent

🖾 Emai

JP05082631A2: VACUUM CHUCK FOR SEMICONDUCTOR WAFER

PDerwent Title:

Vacuum chuck for wafer take-up - adjusts dust adherence prevention groove inside pressure to that required via bottom vent hole to reduce take-up area, and minimises deformation NoAbstract [Derwent Record]

♥Country:

JP Japan

Α

§ Inventor:

TAKEMURA FUMIHIRO;

PAssignee:

TOSHIBA CERAMICS CO LTD

News, Profiles, Stocks and More about this company

Published / Filed:

1993-04-02 / 1991-09-20

PApplication

JP1991000268856 Number:

FIPC Code:

H01L 21/68; B25B 11/00; H01L 21/304;

Priority Number:

1991-09-20 JP1991000268856

PAbstract:

PURPOSE: To chuck a semiconductor wafer with high accuracy by eliminating the influence by dust and by preventing the

deformation of the semiconductor wafer.

CONSTITUTION: The plurality of suction grooves 4, each having a suction hole 6 on its bottom, are formed concentrically on a suction face 2 and dust adhesion preventing grooves 5 having a width larger than that of the suction groove 4 are concentrically formed on the suction face 2 which are located between the adjacent suction grooves 4 and a vacuum pump 9 is installed for setting the pressure in the suction grooves 4 at a required vacuum pressure through each suction hole 6. By installing a pressure adjustor 12 which adjusts the pressure of the inside of each dust adhesion preventing groove 5 to the required pressure through an air hole made on the bottom of each groove 5, the pressure of the inside of the dust adhesion preventing grooves is made to have such a value that it may not have any influence by suction from the suction grooves or by the width of the dust adhesion preventing

COPYRIGHT: (C)1993,JPO&Japio

None

₽ Forward References:

Go to Result Set: Forward references (3)

Bu PD	Patent	Pub.Date	Inventor	Assignee	Title
			Miyamoto;	Hitachi,	Methods of processing semicor

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-82631

(43)公開日 平成5年(1993)4月2日

(51) Int.Cl.⁵

識別配号 庁内整理番号

E T

技術表示箇所

H01L 21/68

P 8418-4M

B 2 5 B 11/00

A 7234-3C

H01L 21/304

3 2 1 H 8831-4M

審査請求 未請求 請求項の数1(全 5 頁)

(21)出願番号

特願平3-268856

(22)出顧日

平成3年(1991)9月20日

(71)出願人 000221122

東芝セラミツクス株式会社

東京都新宿区西新宿1丁目26番2号

(72)発明者 竹村 文宏

神奈川県秦野市曽屋30番地 東芝セラミツ

クス株式会社中央研究所内

(74)代理人 弁理士 高 雄次郎

(54) 【発明の名称】 半導体ウエーハ用真空チヤツク

(57)【要約】

【目的】 ダストの影響を排除しつつ、半導体ウェーハ の変形を防止し、もって半導体ウェーハを高精度でチャ ッキングする。

【構成】 底部に吸引孔6を開設した複数の吸着溝4を吸着面2に同心状に設けると共に、隣り合う吸着溝4間の吸着面2に吸着溝4より広幅のダスト付着防止溝5を同心状に設け、かつ上記吸着溝4内をそれぞれの吸引孔6を介して所要の真空圧力とする真空ポンプ9を設けてなるものにおいて、各ダスト付着防止溝5内をそれぞれの底部に開設した通気孔10を介して所要圧力に関節する圧力調節器12を設けることにより、ダスト付着防止溝内の圧力を吸着溝からの吸引やダスト付着防止溝幅等の影響を排除し得る値とする。

2:吸着両 4:吸着機 5:ダスト付着防止機 8:吸引孔 9:真空ポンプ 10:通気孔 12:圧力調節器

1

【特許請求の範囲】

【請求項1】 底部に吸引孔を開設した複数の吸着滯を 吸着面に同心状に設けると共に、隣り合う吸着滯間の吸 着面に吸着滯より広幅のダスト付着防止滯を同心状に設 け、かつ上記各吸着滯内をそれぞれの吸引孔を介して所 要の真空圧力とする真空ポンプを設けてなる半導体ウェ 一八用真空チャックにおいて、前記各ダスト付着防止滯 内をそれぞれの底部に開設した通気孔を介して所要圧力 に関節する圧力関節手段を設けたことを特徴とする半導 体ウェーハ用真空チャック。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、シリコンウェーハ等の 半導体ウェーハをその平坦度測定、ラッピング又は研削 加工等のために真空吸着する半導体ウェーハ用真空チャックに関する。

[0002]

【従来の技術】従来、この種の半導体ウェーハ用真空チャックは、被吸着物である半導体ウェーハと吸着面との間にダストが介在することによる密着不良を防止するため、例えば図4に示すように、底部に吸引孔21を開設した複数の吸着溝22を、チャック本体23の吸着面24に同心状に設けると共に、隣り合う吸着溝22間の吸着面24に吸着溝22より広幅のダスト付着防止溝25を同心状に設け、かつ上記各吸着溝22内をそれぞれの吸引孔21を介して所要の真空圧力とする真空ポンプ(図示せず)を設けて構成したり(実開昭60-192445号公報参照)、あるいは図5に示すように、上記構成のものにおいて、ダスト付着防止溝25の底部に大気と連通するリーク孔26を設けて構成したりしている30(実開昭62-23447号公報参照)。

[0003]

【発明が解決しようとする課題】しかしながら、上記従 来の半導体ウェーハ用真空チャックにおいては、ダスト 付着防止溝25を設けることにより、半導体ウェーハW と接触する吸着面積が低減され、かつダスト付着防止溝 25内にダストが捕捉されるので、ダストによる影響は 排除し得るものの、図4に示すものの場合は、半導体ウ エーハWの被吸着面の凹凸あるいは粗さにより、ダスト 付着防止溝25内も吸着溝22を介して真空吸引される ため、同図に示すように、半導体ウェーハWがダスト付 着防止溝25内に突出するように湾曲して変形する問題 があり、又、図5に示すものの場合は、ダスト付着防止 溝25内がリーク孔26を介して大気と連通して吸着溝 22内よりはかるに大きな圧力となるため、同図に示す ように、半導体ウェーハWのダスト付着防止溝25と対 応する部分が外方へ突出するように湾曲して変形する間 題がある。そこで、本発明は、ダストの影響を排除しつ つ、半導体ウェーハの変形を防止し、半導体ウェーハを

ックの提供を目的とする。

[0004]

【課題を解決するための手段】前記課題を解決するため、本発明の半導体ウェーハ用真空チャックは、底部に吸引孔を開設した複数の吸着溝を吸着面に同心状に設けると共に、隣り合う吸着溝間の吸着面に吸着溝より広幅のダスト付着防止溝を同心状に設け、かつ上記各吸着溝内をそれぞれの吸引孔を介して所要の真空圧力とする真空ポンプを設けてなる半導体ウェーハ用真空チャックにおいて、前記各ダスト付着防止溝内をそれぞれの底部に開設した通気孔を介して所要圧力に調節する圧力調節手段を設けたものである。

2

[0005]

【作用】上記手段においては、半導体ウェーハと接触する吸着面積が小さくなると共に、ダスト付着防止溝内の 圧力が吸着溝からの吸引やダスト付着防止溝幅等の影響 を排除し得る値に保たれる。

[0006]

【実施例】以下、本発明の実施例を図面を参照して説明 する。図1、図2は本発明の一実施例の半導体ウェーハ 用真空チャックの平面図、要部の断面図である。

【0007】図中1は金属、セラミックス又はガラス等 からなる円板状のチャック本体で、その吸着面2には、 中心部の吸着孔3を中心として4条の吸着溝4が同心状 に設けられていると共に、吸着孔3の外周及び隣り合う 吸着溝4間の吸着面2には、吸着溝4より広幅のダスト 付着防止溝5が同心状に設けられている。各吸着溝4の 底部には、吸引孔6がチャック本体1の半径に沿って開 設されており、これらの吸引孔6及び中心部の吸着孔3 は、チャック本体1に穿設した連通孔?によって連通さ れている。連通孔7は、チャック本体1の外周面に開口 され、かつ圧力調節器8を介在して各吸着溝4内を所要 の真空圧力とする真空ポンプ9と接続されている。-方、各ダスト付着防止溝5の底部には、通気孔10が前 記吸引孔6列と約90°の角度をなしてチャック本体1 の半径に沿って開設されており、これらの通気孔10 は、チャック本体1に穿設した連通孔11によって連通 されている。連通孔11はチャック本体1の外周面に開 口され、かつ各ダスト付着防止溝5内を吸着溝4からの 吸引やダスト付着防止溝5の幅の影響を排除できる所要 圧力とすべく大気を供給する圧力調節手段としての圧力 調節器12と接続されている。

があり、又、図5に示すものの場合は、ダスト付着防止 溝25内がリーク孔26を介して大気と連通して吸着滯 22内よりはかるに大きな圧力となるため、同図に示す ように、半導体ウェーハWのダスト付着防止滯25と対 応する部分が外方へ突出するように湾曲して変形する問 題がある。そこで、本発明は、ダストの影響を排除しつ つ、半導体ウェーハの変形を防止し、半導体ウェーハを 高精度でチャッキングし得る半導体ウェーハ用真空チャック においては、半導体ウェーハWと接触する吸着面積が小さくなり、か つダストがダスト付着防止滯5に捕捉されるので、ダス トの介在による半導体ウェーハWの変形等の悪影響を排 除できると共に、半導体ウェーハWの被吸着面の凹凸あ るいは粗さにより、吸着滯22内の真空吸引に伴って低 下するダスト付着防止滯5内の圧力が、圧力調整器12 3

によって所要圧力に調節されるので、半導体ウェーハW のダスト付着防止溝 5 と対応する部分の変形を低減でき、ひいては半導体ウェーハを高精度でチャッキングすることができる。

【0009】ここで、吸着溝の幅を0.5mm、吸着溝間の間隔を10mm、ダスト付着防止溝の幅を8mmとした真空チャックを用いて厚さ0.6mmのシリコンウェーハを吸着溝内圧力-500mmHgでチャッキングする場合、ダスト付着防止溝内がシリコンウェーハ裏面の粗さや凹凸によるリークによって-100mmHgと 10なると、シリコンウェーハ表面が最大0. 2μ m変形すると算出されるが、ダスト付着防止溝内の圧力を圧力調節器によって0mmHg、-1mmHg及00.0001 μ mと算出される。

【0010】したがって、ダスト付着防止溝内圧力を一1mmHgとすることによって、シリコンウェーハのダスト付着防止溝と対応する部分の変形量を吸着溝と対応20する部分の変形量以下とし得ることがわかる。なお、上述した実施例においては、吸着面2の中央部に吸着孔3を設ける場合について説明したが、これに限らず、一番内側の吸着溝4の直径を小さくし、その内側にダスト付着防止溝5だけを設けるようにしてもよい。

[0011]

【発明の効果】以上説明したように本発明の半導体ウェ 一ハ用真空チャックによれば、半導体ウェーハと接触す る吸着面積が小さくなり、かつダストがダスト付着防止 溝に捕捉されるので、ダストの介在による半導体ウェー ハの変形等の悪影響を排除できると共に、ダスト付着防 止溝内の圧力が吸着溝からの吸引やダスト付着防止溝幅 等の影響を排除し得る所要圧力となるので、従来に比し て半導体ウェーハのダスト付着防止溝と対応する部分の 変形を低減することができ、ひいては半導体ウェーハを 高精度でチャッキングすることができる。

【図面の簡単な説明】

10 【図1】本発明の一実施例の半導体ウェーハ用真空チャックの平面図である。

【図2】本発明の一実施例の半導体ウェーハ用真空チャックの要部の断面図である。

【図3】本発明の一実施例の半導体ウェーハ用真空チャックによってチャッキングされた半導体ウェーハ表面の変形量の説明図である。

【図4】従来の半導体ウェーハ用真空チャックの要部の 断面図である。

【図5】従来の他の半導体ウェーハ用真空チャックの要 20 部の断面図である。

【符号の説明】

- 2 吸着面
- 4 吸着溝
- 5 ダスト付着防止溝
- 6 吸引孔
- 9 真空ポンプ
- 10 通気孔
- 12 圧力調整器

[図1]

2:吸着面 4:吸着機 5:ダスト付着防止機 6:吸引孔 9:真空ポンプ 10:通気孔 12:圧力調節器

【図2】

【図4】

【図5】

