

lycee.hachette-education.com/pc/tle

L'acide citrique AH₃(aq) réagit avec les ions hydroxyde HO⁻(aq) selon la réaction d'équation :

$$AH_3(aq) + 3HO^-(aq)$$

 $\to A^{3-}(aq) + 3H_2O(\ell)$

À l'équivalence :
$$\frac{n_0(AH_3)}{1} = \frac{n_E(HO^-)}{3}$$
.

INFO

La masse volumique de l'eau est égale à $\rho_{eau} = 1,00 \times 10^3 \text{ g} \cdot \text{L}^{-1}$.

ATTENTION!

Il ne faut pas confondre le **titre** massique en pourcent $P_m(E)$ sans unité et la concentration en masse, notée t(E) (appelée aussi parfois *titre* en masse):

$$t_{\rm E} = \frac{m({\rm E})}{V_{\rm solution}}$$

1 L'analyse par une méthode chimique

a. Principe d'un titrage (rappel de 1re)

- Lors d'un titrage, le **réactif titré** A, dont on cherche à **déterminer** la quantité de matière n_A , la masse m_A ou la concentration C_A réagit avec le **réactif titrant** B de concentration C_B connue (doc. \triangle).
- La réaction support du **titrage** doit être **totale** et **rapide** et son équation s'écrit : $aA + bB \rightarrow cC + dD$

L'équivalence d'un titrage est atteinte lorsqu'on a réalisé un **mélange** stœchiométrique des réactifs titré et titrant. La relation à l'équivalence permet de déterminer la quantité du réactif titré :

Quantité de matière initiale de réactif titré A dans le bécher (mol)

$$\frac{n_0(A)}{a} = \frac{n_E(B)}{b}$$
Quantité de matière de réactif titrant B versé à l'équivalence (mol)

• Pour obtenir la masse m_A ou la concentration C_A de l'espèce titrée, il faut utiliser les expressions $n_A = C_A \times V_A$ ou $n_A = \frac{m_A}{M_A}$.

La relation s'écrit :
$$\frac{m_A}{M_A \times a} = \frac{C_B \times V_E}{b}$$
 ou $\frac{C_A \times V_A}{a} = \frac{C_B \times V_E}{b}$.

b. Préparation de la solution titrante

- La solution titrante, de concentration connue C_B en réactif **titrant**, peut être préparée par dilution d'une solution commerciale dont la densité d et le titre massique en pourcent P_m en réactif titrant sont connus.
- ullet La **densité** d d'un liquide, à une température donnée, est le rapport de la masse volumique du liquide ho sur la masse volumique $ho_{\rm eau}$ de l'eau :

Densité
$$d$$
 sans unité $d = \frac{p}{p_{eau}}$ Masses volumiques exprimées dans la même unité

• Le titre massique en pourcent (ou pourcentage massique), noté $P_{\rm m}(E)$ d'une espèce E dans un liquide est le quotient de la masse m(E) de cette espèce par la masse totale $m_{\rm tot}$ du liquide :

Titre massique
$$P_m(E) = \frac{m(E)}{m_{tot}}$$
 Masses exprimées dans la même unité

• La densité et le titre massique en pourcent permettent de déterminer la concentration en réactif titrant d'une solution commerciale.

Titrage suivi par colorimétrie

Avant l'équivalence

À l'équivalence et après

Lors d'un titrage suivi par colorimétrie, l'équivalence est repérée par un changement de couleur.

Méthode des tangentes

- 1 Tracer deux tangentes à la courbe pH = $f(V_{titrant})$ parallèles avant et après le saut de pH.
- 2 Tracer une troisième parallèle équidistante des deux autres.
- O L'intersection de la parallèle équidistante et de la courbe détermine le point équivalent E.

Le volume V_E versé à l'équivalence correspond à l'abscisse de l'extremum de la courbe dérivée dpH

 $dV_{titrant}$

Les méthodes de suivi d'un titrage

Un titrage peut être suivi par colorimétrie (photographies 13), par pH-métrie ou par conductimétrie.

Suivi par pH-métrie	Suivi par conductimétrie
Con	dition
La réaction support du titrage est une réaction acide-base.	La réaction support du titrage fait intervenir des ions.
Мо	ntage
Appare il de mesure	Burette graduée Solution titrante Solution titrée
Un pH-mètre associé à une sonde de pH affiche le pH.	Un conductimètre associé à une cellule de conductimétrie affiche la conductivité σ.

Courbe de titrage

La courbe $pH = f(V_{titrant})$ doit présenter un saut de pH.

- Une rupture de pente doit être
- La courbe est constituée de deux segments de droite.

Détermination de V_E

Les coordonnées (V_E; pH_E) du point équivalent E sont déterminées par :

- la méthode des tangentes (doc.
 ;
- la méthode de la courbe dérivée.

Le point d'intersection des segments permet de repérer l'équivalence du titrage.

Mode opératoire

- Pour déterminer précisément l'équivalence, il convient de resserrer les mesures à l'approche de l'équivalence.
- Le suivi peut se faire en versant la solution titrante mL par mL.
- Un grand volume d'eau est versé initialement pour négliger les effets de la dilution.

lycee.hachette-education.com/pc/tle

Conductivités molaires ioniques λ de quelques ions à 25 °C :

lon	λ (en mS·m²·mol-1)	
Na ⁺	5,0	
HO-	19,9	
H ₃ O ⁺	35,0	
Cℓ-	7,6	

Un titrage suivi par conductimétrie $V_E V_{titrant} (mL)$ Point équivalent E $V_E V_{titrant} (mL)$ Na+(aq) HO-(aq) L'équation support du titrage est: H₃O+(aq) + HO-(aq) \rightarrow 2 H₂O(ℓ)

3 La composition d'un système

a. Composition d'un système lors d'un titrage

Établir la composition du système, au cours du titrage, consiste à déterminer les quantités de matière des différentes espèces.

Exemple: Composition du système dans le bécher Quantités versées : $n(Na^{+}) = 1,50 \text{ mmol}$ $n(HO^{-}) = 1,50 \text{ mmol}$ $n(Na^{+}) = 1,50 \, \text{mmol}$ $n(AH_3) = 0.10 \text{ mmol}$ $n(AH_3) = 0.60 \text{ mmol}$ $n(HO^-) = 0 \text{ mmol}$ $n(A^{3-}) = 0.50 \text{ mmol}$ 0 . $AH_3(aq) + 3HO^-(aq) \rightarrow A^{3-}(aq) + 3H_2O(\ell)$ Équation de la réaction Quantités de matière (mmol) État du Avancement système (mmol) $n(A^{3-})$ n(AH₃) n(HO-) n(H2O) État initial 0,60 1,5 x = 0excès État 0.60 - x $0 < x < x_{\rm f}$ 1,5 - 3x0+xexcès intermédiaire

b. Courbe d'un titrage suivi par conductimétrie

0,10

• Lors d'un suivi par conductimétrie, l'ajout d'un grand volume d'eau permet de négliger la dilution qui a lieu au cours du dosage.

0,50

excès

- Au cours d'un titrage, si la quantité de matière d'une espèce ionique :
- diminue, la contribution de l'espèce à la conductivité diminue ;
- augmente, la contribution de l'espèce à la conductivité augmente ;
- reste constante ou nulle, l'espèce n'intervient pas dans l'évolution de la conductivité.

Exemple: On verse une solution d'hydroxyde de sodium dans une solution d'acide chlorhydrique (doc. D).

	Évolution des quantités de matière					
lons	V _{versé} < V _E		$V_{\text{vers}\acute{e}} > V_{\text{E}}$			
Na ⁺	lon spectacteur versé : n(Na ⁺) ≠ quand V _{versé} ≠	1	Ion spectacteur versé : n(Na⁺) ∮quand V _{versé} ∮	1		
HO-	Espèce réagissante versée : limitante $n(HO^-) = 0$	0	Espèce en excès : $n(HO^-)$ \nearrow quand $V_{\text{versé}}$ \nearrow	1		
H₃O ⁺	Espèce réagissante contenue dans le bécher : n(H ₃ O*) 🔌 quand V _{versé} 🚿	×	Espèce entièrement consommée : $n(H_3O^+) = 0$	0		
Cℓ-	Ion spectacteur contenu dans le bécher : $n(C\ell^{-})$ constante.	=	Ion spectacteur contenu dans le bécher : $n(C\ell^-)$ constante.	=		

- Avant l'équivalence, la courbe est une droite de pente négative car tout se passe comme si, dans le bécher, un ion H_3O^+ est remplacé par un ion Na^+ moins conducteur, la pente est proportionnelle à $+\lambda(Na^+)-\lambda(H_3O^+)$ (doc. Det INFO).
- Après l'équivalence, la courbe est une droite de pente positive car les ions Na^+ et HO^- s'accumulent dans le bécher, la pente est proportionnelle à :+ $\lambda(Na^+)$ + $\lambda(HO^-)$ (doc. D).

État final

 $x = x_f = 0.50$

- VIDÉOS DE COURS
 - Titrage
 Titrage
 conductimétrique
 - Version interactive

1 L'analyse par une méthode chimique

Solution titrante préparée par dilution d'une solution commerciale :

de densité d connue :

Sans
$$d = \frac{\rho}{\rho_{\text{earl}}}$$
 Même unité

• de titre massique en pourcent en B $P_m(B)$ connu :

$$P_{\rm m}(B) = \frac{m(B)}{m_{\rm tot}}$$
 Même unité

2 Les méthodes de suivi d'un titrage

Suivi par conductimétrie

Si variation de quantités d'espèces ioniques

- conductimètre
- cellule de conductimétrie

3 La composition d'un système

	Évolution d	des quantités	
lons	V < V _E	V > V _E	
Na ⁺	1	1	
HO-	0	1	
H ₃ O ⁺	1	0	
Cℓ-	=	=	

