Paradigmas de Solução de Problemas

Divisão e Conquista - Transformada Rápida de Fourier

Prof. Edson Alves - UnB/FGA 2020

Sumário

- 1. Transformada de Fourier
- 2. Transformada Rápida de Fourier
- 3. Referências

Transformada de Fourier

Série de Fourier

- ullet Uma série de Fourier consiste na expansão de uma função períodica f(x) em termos de senos e cosenos
- Isto possível porque as funções $\sin(mx)$ e $\sin(ny)$ são ortogonais para $m \neq n$ no intervalo $[-\pi,\pi]$:

$$\int_{-\pi}^{\pi} \sin(mx)\sin(nx)dx = \int_{-\pi}^{\pi} \sin(mx)\cos(nx)dx$$
$$= \int_{-\pi}^{\pi} \cos(mx)\cos(nx)dx = 0$$

• Para m=n, segue que

$$\int_{-\pi}^{\pi} \sin^2(mx) dx = \int_{-\pi}^{\pi} \cos^2(mx) dx = \pi$$

Série de Fourier

• Deste modo,

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx),$$

onde

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$

Exemplo: Onda Quadrada

Considere a onda quadrada abaixo:

Exemplo: Onda Quadrada

• O coeficiente a_0 é dado por

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t)dt = \frac{1}{\pi} \int_{0}^{\pi} a \, dt = a$$

• Os coeficientes a_n , para $n \ge 1$, são todos iguais a zero, pois

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(nt) dt = \frac{a}{\pi} \left[\frac{\sin(nt)}{n} \Big|_{0}^{\pi} \right] = 0$$

ullet Os coeficientes b_n são iguais a zero, para n par, e

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(nt) dt = -\frac{a}{\pi} \left[\left. \frac{\cos(nt)}{n} \right|_{0}^{\pi} \right] = \frac{2a}{m\pi},$$

se n é ímpar

Série de Fourier com coeficientes complexos

 A série de Fourier pode ser estendida para coeficientes complexos a partir da observação que

$$e^{bi} = \cos b + i\sin b$$

ullet Seja f(x) uma função nos reais. Faça

$$f(x) = \sum_{-\infty}^{\infty} A_n e^{inx}$$

Assim, vale que

$$\int_{-\pi}^{\pi} f(x)e^{-imx}dx = 2\pi A_m,$$

de modo que

$$A_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx$$

Exemplo: Onda Triangular

Considere a onda triangular abaixo:

Exemplo: Onda Triangular

• No intervalo $[-\pi,\pi]$ temos que

$$f(x) = \begin{cases} -x, & \text{se } x \le 0, \\ x, & \text{caso contrário} \end{cases}$$

Daí

$$A_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{\pi}{2}$$

• Para n > 1 ímpar vale que

$$A_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{inx} dx = -\frac{4}{n^2}$$

• $A_n = 0$, se n é par

Transformada de Fourier

- A transformada de Fourier é uma generalização das séries de Fourier com coeficientes complexos quando o período tende ao infinito
- ullet Seja f(x) uma função com um número finito de descontinuidades e tal existe a integral

$$\int_{-\infty}^{\infty} |f(x)| dx$$

• A Transformada de Fourier $\mathcal F$ de f(x) é dada por

$$\mathcal{F}[f(x)] = F(k) = \int_{-\infty}^{\infty} f(x)e^{-2\pi ikx}dx$$

ullet A Transformada Inversa \mathcal{F}^{-1} é dada por

$$\mathcal{F}^{-1}[F(k)] = f(x) = \int_{-\infty}^{\infty} F(k)e^{2\pi ikx}dk$$

Propriedades

• A Transformada de Fourier é linear:

$$\mathcal{F}[af(x) + bg(x)] = a\mathcal{F}[f(x)] + b\mathcal{F}[g(x)],$$

onde a e b são constantes

 A transformada da derivada da função está diretamente relacionada com a transformada da função

$$\mathcal{F}[f^{(n)}(x)](k) = (2\pi i k)^n \mathcal{F}[f(x)](k)$$

Teorema da Convolução:

$$\mathcal{F}[f*g] = \mathcal{F}[f]\mathcal{F}[g]$$

Exemplo: Exponencial Descrescente

Seja

$$f(x) = \begin{cases} e^{-x}, & \text{se } x \ge 0, \\ 0, & \text{caso contrário} \end{cases}$$

• Temos que

$$\mathcal{F}[f(x)] = F(k) = \int_{-\infty}^{\infty} f(x)e^{-2\pi ikx} dx$$

$$= \int_{0}^{\infty} e^{-x}e^{-2\pi ikx} dx = \int_{0}^{\infty} e^{-(1+2\pi ik)x} dx$$

$$= -\frac{e^{-(1+2\pi ik)x}}{1+2\pi ik} \Big|_{0}^{\infty}$$

$$= \frac{1}{1+2\pi ik}$$

Visualização da função f(x)

Visualização da parte real (azul) e imaginária (vermelha) da função ${\cal F}(k)$

Transformada Discreta de Fourier

- Uma série $x_i=\{x_0,x_1,\dots,x_{N-1}\ \text{de }N\ \text{amostras}$ de um sinal, igualmente espaçadas ao longo do tempo, pode ser interpretada como uma função y_i períodica de período N
- Para isso, defina $y(j) = x_i$, onde j é um inteiro tal que j = N * q + i, e y(t) = 0, se t não é inteiro
- Contudo, ao invés de fazer esta adaptação e utilizar a transformada de Fourier, é melhor utilizar a Transformada Discreta de Fourier (DFT):

$$X_k = \sum_{n=0}^{N-1} x_n e^{-2\pi i k n/N}$$

A Transformada Discreta Inversa de Fourier (IDFT) é dada por:

$$x_n = \frac{1}{N} \sum_{k=0}^{N-1} F_k e^{2\pi i k n/N}$$

Implementação da DFT e da IDFT em C++ em $O(N^2)$

```
1 #include <bits/stdc++ h>
2 #include <complex>
4 using namespace std;
6 const double PI { acos(-1.0) };
8 template<typename T>
9 vector<complex<T>> dft(const vector<T>& xs)
10 {
      int N = (int) xs.size();
     vector<complex<T>> F(N, 0);
     for (int k = 0; k < N; ++k)
14
          for (int i = 0: i < N: ++i)
              F[k] += xs[i]*exp(complex<T>(0, -2*PI*i*k/N));
16
      return F:
1.8
19 }
20
```

Implementação da DFT e da IDFT em C++ em $O(N^2)$

```
21 template<typename T>
22 vector<T> idft(const vector<complex<T>>& Fs)
23 {
     int N = (int) Fs.size();
24
     vector<T> f(N, 0);
25
26
     for (int x = 0; x < N; ++x)
          for (int k = 0; k < N; ++k)
28
              f[x] += (1.0/N)*(Fs[k]*exp(complex<T>(0, 2*PI*x*k/N))).real();
30
      return f;
31
32 }
```

Aplicação da DFT: Multiplicação de Polinômios

- A convolução entre duas funções f(x) e g(x) é uma função h(x)=f(x)*g(x) que representa como a forma de uma função é modificada pela outra
- Ela é a integral do produto de ambas funções, sendo que uma delas é invertida e deslocada:

$$h(x) = f(x) * g(x) = \int_{-\infty}^{\infty} f(\tau)(t - \tau) d\tau$$

ullet A convolução discreta de f e g é dada por

$$(f * g)[n] = \sum_{m = -\infty}^{\infty} f[m]g[n - m]$$

ullet Se f(x) e g(x) são sequências de coeficientes de dois polinômios, a convolução de ambas será igual ao produto destes polinômios

$$f(x) = x^2 - 5x + 6$$

$$g(x) = x^3 - 2x^2 + 3x - 1$$

6	-5	1	
-1	3	-2	1

$$f(x) = x^{2} - 5x + 6$$

$$g(x) = x^{3} - 2x^{2} + 3x - 1$$

$$h(x) = -6$$

			6	-5	1
1	-2	3	-1	·	

$$f(x) = x^{2} - 5x + 6$$

$$g(x) = x^{3} - 2x^{2} + 3x - 1$$

$$h(x) = 23x - 6$$

		6	-5	1
1	-2	3	-1	

$$f(x) = x^2 - 5x + 6$$

$$g(x) = x^3 - 2x^2 + 3x - 1$$

$$h(x) = -28x^2 + 23x - 6$$

	6	-5	1
1	-2	3	-1

$$f(x) = x^{2} - 5x + 6$$

$$g(x) = x^{3} - 2x^{2} + 3x - 1$$

$$h(x) = \mathbf{19}x^{3} - 28x^{2} + 23x - 6$$

6	-5	1	
1	-2	3	-1

$$f(x) = x^{2} - 5x + 6$$

$$g(x) = x^{3} - 2x^{2} + 3x - 1$$

$$h(x) = -7x^{4} + 19x^{3} - 28x^{2} + 23x - 6$$

6	-5	1		
	1	-2	3	-1

$$f(x) = x^2 - 5x + 6$$

$$g(x) = x^3 - 2x^2 + 3x - 1$$

$$h(x) = x^5 - 7x^4 + 19x^3 - 28x^2 + 23x - 6$$

6	-5	1			
		1	-2	3	-1

Aplicação da DFT: Multiplicação de Polinômios

- Considere as transformadas F(k) e G(k) dos polinômios f(x) e g(x)
- $\bullet\,$ Pelo Teorema da Convolução, a transformada do produto será H(k)=F(k)G(k), onde a multiplicação, neste caso, é termo a termo
- No domínio do tempo, onde estão os polinômios, a multiplicação polinomial é convolução, com complexidade $O(N^2)$, onde N é o maior dentre os graus
- \bullet No domínio das frequências, onde estão as transformadas, a convolução se torna uma multiplicação termo a termo, com complexidade O(N)
- Assim, é possível realizar a multiplicação de polinômios indiretamente, computando as transformadas F(k) e G(k), fazendo a multiplicação termo a termo, e computando a inversa de H(k)

Visualização da multiplicação indireta de polinômios

Implementação da multiplicação indireta de polinômios

```
34 vector<double>
35 operator*(const vector<double>& fx, const vector<double>& gx)
36 {
      auto n = fx.size() - 1, m = gx.size() - 1;
      vector\langle double \rangle xs(n + m + 1), ys(n + m + 1);
38
39
      copy(fx.begin(), fx.end(), xs.begin());
40
      copy(gx.begin(), gx.end(), ys.begin());
41
42
      auto Fk = dft(xs). Gk = dft(vs). Hk(Fk):
43
44
      for (size_t i = 0; i < Hk.size(); ++i)</pre>
45
          Hk[i] *= Gk[i];
46
47
      return idft(Hk);
48
49 }
```

Transformada Rápida de Fourier

DFT em $O(N \log N)$

- A divisão e conquista pode ser aplicada no cálculo da DFT para reduzir sua complexidade assintótica
- Na etapa de divisão o sinal é dividido em duas partes de tamanhos aproximadamente iguais
- A conquista acontece quando o sinal tem uma única amostra: neste caso a transformada discreta coincide com a própria amostra
- A fusão permite o cálculo da DFT do sinal a partir das DFTs das duas partes
- ullet Se a fusão for feita em O(N), a recorrência se torna

$$f(N) = 2f(N/2) + (N)$$

- O Teorema Mestre nos diz que a complexidade da transformada passa a ser $O(N\log N)$
- Esta versão da DFT é denominada *Fast Fourier Transform* (FFT)

Decomposição do sinal FFT

- Considere o sinal $(a_k) = a_0, a_1, \dots, a_{N-1}$
- Assuma, sem perda de generalidade, que ${\cal N}=2^t$, para algum t natural
- \bullet Se N não for uma potência de dois, basta adicionar um número suficiente de amostras $a_i=0$ ao sinal até que N se torne uma potência de dois
- A etapa de divisão, também denominada decomposição do sinal, o sinal é separado em duas partes de tamanho N/2: as amostras cujos índices são pares (e_k) e as amostras cujos índices são ímpares (o_k)
- Assim,

$$(e_k) = a_0, a_2, a_4, \dots, a_{N-2}$$

е

$$(o_k) = a_1, a_3, a_5, \dots, a_{N-1}$$

Visualização da decomposição do sinal

Decomposição × ordenação

- Gerando a decomposição por meio da alocação de novos dois subvetores com as cópias dos elementos de índices pares e ímpares permite uma implementação top-down da FFT
- Para uma implementação bottom-up, é preciso entender o padrão subjacente que surge desta decomposição
- \bullet De fato, os elementos que ocupam as folhas nas árvores de decomposição tem índices que correspondem à ordenação dos números $\{0,1,2,\ldots,N-1\}$ usando como critério a inversão de sua representação binária
- \bullet Assim, por meio de um comparador customizado o este ordenação pode ser feita com complexidade $O(N\log N)$, o que não modifica a complexidade da FFT como um todo

Visualização da ordenação por padrão binário invertido

Índice	Padrão invertido	Padrão original
0	000	000
4	001	100
2	010	010
6	011	110
1	001	100
5	101	101
3	110	011
7	111	111

Implementação da ordenação por padrão binário

```
1 #include <bits/stdc++.h>
3 using namespace std;
5 int reversed(int x, int bits)
6 {
     int res = 0;
7
8
     for (int i = 0; i < bits; ++i)</pre>
9
10
         res <<= 1;
          res |= (x \& 1);
12
          x >>= 1;
13
14
15
      return res;
16
17 }
18
```

Implementação da ordenação por padrão binário

```
19 template<typename T> vector<T> sortByBits(const vector<T>& xs)
20 {
      int N = (int) xs.size(). bits = 1:
      while ((1 << bits) != N)
          ++bits;
24
      vector<int> is(N);
26
      iota(is.begin(), is.end(), 0);
28
      sort(is.begin(), is.end(), [&bits](int x, int y) {
          return reversed(x, bits) < reversed(y, bits);</pre>
30
      });
      vector<T> ans(N);
34
      for (int i = 0; i < N; ++i)
35
          ans[i] = xs[is[i]]:
36
      return ans;
38
39 }
```

Conquista

- A etapa de conquista acontece em sinais como uma única amostra
- ullet Aplicando o valor N=1 na transformada discreta obtêm-se

$$X_0 = \sum_{n=0}^{N-1} x_n e^{-2\pi i k n/N} = \sum_{n=0}^0 x_0 e^{-2\pi k n} = x_0$$

- Assim, a própria amostra corresponde à sua transformada
- ullet É preciso atentar, contudo, que embora numericamente iguais, X_0 reside no domínio das frequências, enquanto que x_0 está no domínio do tempo
- ullet Portanto esta etapa tem complexidade O(1)

Fusão (Síntese)

- A última etapa consiste em combinar as transformadas das duas partes (pares e ímpares) na transformada do sinal
- Lembrando que a Transformada de Fourier é Linear, a transformada de um sinal x_k pode ser computada como a soma de dois sinais distintos cuja soma resulte em x_k
- Considere os sinais e_k e o_k dados por

$$e_i = \left\{ \begin{array}{ll} x_i, & \text{se } i \ \text{\'e par} \\ 0, & \text{caso contr\'ario} \end{array} \right.$$

е

$$o_j = \begin{cases} x_j, & \text{se } j \text{ \'e impar} \\ 0, & \text{caso contr\'ario} \end{cases}$$

Fusão (Síntese)

- Deste modo, $x_k = e_k + o_k$
- As transformadas de e_k e o_k tem um comportamento peculiar
- A transformada de e_k duplica seus resultados
- ullet A transformada de o_k tem mesmo comportamento, porém com os valores multiplicados por uma componente sinusoidal
- Isto porque, em relação à x_k , o sinal o_k está deslocado no tempo em uma unidade
- Deslocar no tempo corresponde a convolução do sinal com uma função $\delta(t-a)$, onde a é o deslocamento
- A transformada da função $\delta(t-a)$ é uma exponencial complexa:

$$\mathcal{F}[\delta(t-a)] = \int_{-\infty}^{\infty} \delta(t-a)e^{-2\pi kit}dt = e^{-2\pi kai}$$

Visualização dos sinais no domínio do tempo

x_k	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
e_k	x_0	0	x_2	0	x_4	0	x_6	0
o_k	0	x_1	0	x_3	0	x_5	0	x_7

Visualização das transformadas no domínio das frequências

Padrão borboleta

- Como as transformadas das duas partes foram computadas sem o deslocamento, é preciso compensá-lo na composição da transformada do todo
- \bullet As componentes oriundas da parte par E_k são somadas sem alteração em cada componente da transformada X_k
- Já as componentes de O_k devem ser multiplicadas pela componente sinusoidal

$$S_k = e^{\frac{2\pi ki}{N}}$$

antes de serem somadas

- Esta multiplicação afeta o sinal do termo: a primeira metade terá sinal negativo, e a segunda metade sinal positivo
- Este ajuste é denominado padrão borboleta, por conta da visualização do diagrama gerado

Padrão borboleta para N=2

Referências

Referências

- 1. **CHEEVER**, Erick. The Fourier Series, acesso em 12/08/2020.
- 2. CP Algorithms. Fast Fourier Transform, acesso em 13/08/2020.
- SMITH, Steven W. The Scientist and Engineer's Guide to Digital Signal Processing, acesso em 17/08/2020.
- 4. Standford. Lecture 11 The Fourier Transform, acesso em 13/08/2020.
- 5. The Fourier Transform.com. The Dirac-Delta Function The Impulse, acesso em 18/08/2020.
- 6. Wikipédia. Discrete Fourier Transform, acesso em 13/08/2020.
- 7. Wolfram. Fourier Series, acesso em 12/08/2020.
- 8. Wolfram. Fourier Transform, acesso em 13/08/2020.