# Frequent Pattern Mining - Association Rules

author: IE 2064 Data Science date: April 2016

- packages used
- arules
- arulesViz
- pmml

#### Introduction

type: section

# Why use Frequent Pattern Mining?

- One common purpose of data mining is to discover novel patterns in the data.
- How can we determine if elements in the data are related?
- Association Rules are one example of an Unsupervised learning method.
- You have not provided the procedure with examples of what *correct* answers look like, so the method needs to search for candidate correct answers.

### **Association Rules**

type: section

#### Association Rules Illustrated

left: 40% - Grocery customers and shopping baskets. - What items are commonly bought together? - If you were told an answer, what would you want to know about it?



# Affinity analysis

- Consider many possible propositions of combinations (rules).
- Evaluate the database of transactions to evaluate a list of rules for *support*.
- $\bullet \;\; support$  portion of cases that particular pair appears.
- confidence of the cases where one member appears, the portion of the time where the second member of a pair appears.

# Groceries example

Let's look at some data.

```
library(arules)
data(Groceries)
```

## Grocery summary

```
summary(Groceries)
```

transactions as itemMatrix in sparse format with 9835 rows (elements/itemsets/transactions) and 169 columns (items) and a density of 0.02609146

#### most frequent items:

| whole milk | other vegetables | rolls/buns | soda |
|------------|------------------|------------|------|
| 2513       | 1903             | 1809       | 1715 |
| yogurt     | (Other)          |            |      |
| 1372       | 34055            |            |      |

element (itemset/transaction) length distribution:
sizes

| 1    | 2    | 3    | 4    | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13 | 14 | 15 |
|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|
| 2159 | 1643 | 1299 | 1005 | 855 | 645 | 545 | 438 | 350 | 246 | 182 | 117 | 78 | 77 | 55 |
| 16   | 17   | 18   | 19   | 20  | 21  | 22  | 23  | 24  | 26  | 27  | 28  | 29 | 32 |    |
| 46   | 29   | 14   | 14   | 9   | 11  | 4   | 6   | 1   | 1   | 1   | 1   | 3  | 1  |    |

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 1.000 2.000 3.000 4.409 6.000 32.000
```

includes extended item information - examples:

labels level2 level1

- 1 frankfurter sausage meat and sausage
- 2 sausage sausage meat and sausage
- 3 liver loaf sausage meat and sausage

#### Data structure

- Sparse matrix
- Which items are most frequent?
- How many items in a cart?

# Itemset matrix example

|          |       | items |                        |        |                    |  |  |
|----------|-------|-------|------------------------|--------|--------------------|--|--|
|          |       | $i_1$ | $i_2$                  | $i_3$  | $i_4$              |  |  |
|          |       | milk  | $\operatorname{bread}$ | butter | $_{\mathrm{beer}}$ |  |  |
| S        | $X_1$ | 1     | 1                      | 0      | 0                  |  |  |
| itemsets | $X_2$ | 0     | 1                      | 0      | 1                  |  |  |
| ten      | $X_3$ | 1     | 1                      | 1      | 0                  |  |  |
| .п       | $X_4$ | 0     | 0                      | 1      | 0                  |  |  |

# Some common items

itemFrequencyPlot(Groceries,support=0.1,cex.names=0.5)



# Association rules algorithms

- apriori()
- eclat()
- Parameter sets
- parameter changes the characteristics of the ruleset (e.g. support, confidence, maxlen)
- control influences the performance (e.g. sorting)
- appearance Any restrictions
- Changing parameter values changes the results (size of subsets, number of rules generated tai)

#### apriori

```
ruleset1 <-apriori(Groceries,parameter=list(support=0.005, confidence=0.5))</pre>
Apriori
Parameter specification:
 confidence minval smax arem aval original Support support minlen maxlen
                                                     0.005
               0.1
                     1 none FALSE
                                              TRUE
target
 rules FALSE
Algorithmic control:
filter tree heap memopt load sort verbose
   0.1 TRUE TRUE FALSE TRUE
                                      TRUE
Absolute minimum support count: 49
set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
sorting and recoding items ... [120 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 3 4 done [0.00s].
writing ... [120 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].
```

#### Reduce the number of rules

```
ruleset2 <- apriori(Groceries,parameter=list(support=0.01, confidence=0.5))
Apriori
Parameter specification:
 confidence minval smax arem aval original Support support minlen maxlen
                                                      0.01
       0.5
              0.1 1 none FALSE
                                              TRUE
target ext
 rules FALSE
Algorithmic control:
 filter tree heap memopt load sort verbose
   0.1 TRUE TRUE FALSE TRUE
                                      TRUE
Absolute minimum support count: 98
set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
sorting and recoding items ... [88 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 3 4 done [0.00s].
```

```
writing ... [15 rule(s)] done [0.00s]. creating S4 object ... done [0.00s].
```

#### Look at the result

```
summary(ruleset2)
set of 15 rules
rule length distribution (lhs + rhs):sizes
3
15
  Min. 1st Qu. Median
                           Mean 3rd Qu.
                                           Max.
             3
summary of quality measures:
    support
                     confidence
                                         lift
Min.
      :0.01007
                   Min.
                          :0.5000
                                           :1.984
                                    Min.
1st Qu.:0.01174
                  1st Qu.:0.5151
                                    1st Qu.:2.036
Median :0.01230
                  Median :0.5245
                                    Median :2.203
Mean
      :0.01316
                   Mean
                          :0.5411
                                    Mean
                                          :2.299
3rd Qu.:0.01403
                   3rd Qu.:0.5718
                                    3rd Qu.:2.432
{\tt Max.}
      :0.02227
                   Max. :0.5862
                                    Max.
                                          :3.030
mining info:
      data ntransactions support confidence
Groceries
                   9835
                            0.01
```

#### lift

- How do you determine how interesting a rule is?
- A measure of *support* for a rule.
- Gives increased weight where the Left Hand Side or Right Hand Side occur rarely, but when they do occur, occur together.
- ullet Larger lift is more interesting

inspect(ruleset2)

#### Take a closer look at the results

#### 

```
3 {other vegetables,
                      => {whole milk}
                                           0.01230300 0.5525114 2.162336
   domestic eggs}
4 {yogurt,
   whipped/sour cream} => {whole milk}
                                           0.01087951 0.5245098 2.052747
5 {other vegetables,
   whipped/sour cream} => {whole milk}
                                           0.01464159 0.5070423 1.984385
6 {pip fruit,
                      => {whole milk}
                                           other vegetables}
7 {citrus fruit,
   root vegetables}
                      => {other vegetables} 0.01037112 0.5862069 3.029608
8 {tropical fruit,
   root vegetables}
                      => {other vegetables} 0.01230300 0.5845411 3.020999
9 {tropical fruit,
                      => {whole milk}
                                           0.01199797 0.5700483 2.230969
   root vegetables}
10 {tropical fruit,
                      => {whole milk}
   yogurt}
                                           11 {root vegetables,
                      => {other vegetables} 0.01291307  0.5000000  2.584078
   yogurt}
12 {root vegetables,
                      => {whole milk}
                                           0.01453991 0.5629921 2.203354
   yogurt}
13 {root vegetables,
   rolls/buns}
                      => {other vegetables} 0.01220132 0.5020921 2.594890
14 {root vegetables,
   rolls/buns}
                      => {whole milk}
                                           0.01270971 0.5230126 2.046888
15 {other vegetables,
   yogurt}
                      => {whole milk}
                                           0.02226741 0.5128806 2.007235
```

# Now for a visual inspection of results

library(arulesViz)
plot(ruleset1)

# Scatter plot for 120 rules



# See if there are any good rules from the larger set

```
whipped/sour cream} => {other vegetables} 0.005592272 0.6043956 3.123610
4 {citrus fruit,
                       => {other vegetables} 0.010371124  0.5862069  3.029608
  root vegetables}
5 {tropical fruit,
   root vegetables}
                       => {other vegetables} 0.012302999
                                                          0.5845411 3.020999
6 {pip fruit,
  root vegetables,
                       => {other vegetables} 0.005490595 0.6136364 3.171368
   whole milk}
7 {citrus fruit,
  root vegetables,
  whole milk}
                      => {other vegetables} 0.005795628
                                                          0.6333333 3.273165
8 {tropical fruit,
  root vegetables,
                       => {other vegetables} 0.007015760 0.5847458 3.022057
  whole milk}
```

## Data preparation example

type:section

# Epub downloads

Electronic book downloads from Vienna University of Economics

```
data(Epub)
Epub
```

transactions in sparse format with 15729 transactions (rows) and 936 items (columns)

#### Get more information

summary(Epub)

```
transactions as itemMatrix in sparse format with 15729 rows (elements/itemsets/transactions) and
```

most frequent items: doc\_11d doc\_813 doc\_4c6 doc\_955 doc\_698 (Other) 356 329 288 282 245 24393

936 columns (items) and a density of 0.001758755

element (itemset/transaction) length distribution:
sizes

3 4 5 6 7 9 10 12 1 2 11 26 409 198 121 93 50 12 11615 2189 854 42 34 13 14 15 16 17 18 19 20 21 22 23 24

```
10
       10 6 8 6
                           5 8 2 2 3 2
                                                         3
  25
       26
                 28
                                          41
                                                    52
                                                          58
            27
                      30
                           34
                                36
                                     38
                                               43
                           2
   4
       5 1
                                1 2
                                                  1
                                                        1
                      1
  Min. 1st Qu. Median
                    Mean 3rd Qu.
 1.000 1.000 1.000 1.646
                            2.000 58.000
includes extended item information - examples:
  labels
1 doc_11d
2 doc_13d
3 doc_14c
includes extended transaction information - examples:
     {\tt transactionID}
                         TimeStamp
10792 session_4795 2003-01-01 20:59:00
10793 session_4797 2003-01-02 07:46:01
10794 session_479a 2003-01-02 10:50:38
```

## See how it changes over time

```
year <- strftime(as.POSIXlt(transactionInfo(Epub)[["TimeStamp"]]), "%Y")
table(year)

year
2003 2004 2005 2006 2007 2008
987 1375 1611 3015 4050 4691</pre>
```

# Look at one years worth of downloads

```
epub2003 <- Epub[year=="2003"]
length(epub2003)

[1] 987
image(epub2003)</pre>
```



# Let's look at only long transactions

```
transactionInfo(epub2003[size(epub2003) > 20])
```

```
transactionID TimeStamp
11092 session_56e2 2003-04-29 13:30:38
11371 session_6308 2003-08-17 18:16:12
```

#### Let's take a closer look

```
inspect(epub2003[1:5])
```

```
items transactionID TimeStamp

10792 {doc_154} session_4795 2003-01-01 20:59:00

10793 {doc_3d6} session_4797 2003-01-02 07:46:01

10794 {doc_16f} session_479a 2003-01-02 10:50:38

10795 {doc_11d,doc_1a7,doc_f4} session_47b7 2003-01-02 18:55:50

10796 {doc_83} session_47bb 2003-01-02 21:27:44
```

## What if I want transactions per document

Coerce into a vertical layout with transaction ID list for each document.

```
epubTidLists <- as(Epub, "tidLists")
as(epubTidLists[5], 'list')</pre>
```

```
$\doc_150

[1] "session_56e2" "session_575d" "session_7090" "session_80ef"

[5] "session_9b5a" "session_bf41" "session_112a9" "session_11e26"

[9] "session_123bc" "session_12938" "session_12a5e" "session_14ae7"

[13] "session_15e17" "session_161ca" "session_177cf" "session_18649"

[17] "session_18a83" "session_190bf" "session_19152" "session_19c27"

[21] "session_1a264" "session_1c2e6" "session_1e935" "session_20955"

[25] "session_23fe8"
```

# Questionnaire data example

- Source: 1994 U.S. Census
- 48842 records
- Filtered so that AAGE>16 and AGI>100
- Adults with non-zero income
- Can we determine if

```
data("AdultUCI")
dim(AdultUCI)
```

[1] 48842 15

# Data summary

```
summary(AdultUCI)
```

```
workclass
                                            fnlwgt
     age
      :17.00
                               :33906
                                        Min. : 12285
Min.
               Private
               Self-emp-not-inc: 3862
1st Qu.:28.00
                                        1st Qu.: 117550
Median :37.00
               Local-gov
                                        Median : 178144
                              : 3136
Mean :38.64
               State-gov
                               : 1981
                                        Mean : 189664
                             : 1695
3rd Qu.:48.00
               Self-emp-inc
                                        3rd Qu.: 237642
Max.
     :90.00
               (Other)
                               : 1463
                                        Max.
                                              :1490400
                               : 2799
               NA's
       education
                    education-num
                                                  marital-status
           :15784
                    Min. : 1.00
                                                         : 6633
HS-grad
                                    Divorced
Some-college:10878
                    1st Qu.: 9.00
                                    Married-AF-spouse
                                                            37
Bachelors : 8025
                                                        :22379
                    Median :10.00
                                    Married-civ-spouse
           : 2657
                                    Married-spouse-absent: 628
Masters
                    Mean
                          :10.08
Assoc-voc : 2061
                    3rd Qu.:12.00
                                    Never-married
                                                        :16117
11th
           : 1812
                    Max.
                           :16.00
                                    Separated
                                                        : 1530
(Other)
           : 7625
                                    Widowed
                                                         : 1518
                               relationship
         occupation
                                                             race
Prof-specialty : 6172
                       Husband
                                     :19716
                                              Amer-Indian-Eskimo: 470
Craft-repair
             : 6112
                       Not-in-family :12583
                                              Asian-Pac-Islander: 1519
Exec-managerial: 6086
                       Other-relative: 1506
                                              Black
                                                               : 4685
Adm-clerical : 5611
                       Own-child
                                  : 7581
                                              Other
                                                                : 406
Sales
             : 5504
                       Unmarried
                                     : 5125
                                              White
                                                               :41762
(Other)
              :16548
                                     : 2331
                       Wife
NA's
              : 2809
               capital-gain
                               capital-loss
                                               hours-per-week
    sex
Female: 16192
              Min. :
                          0
                              Min. :
                                         0.0
                                               Min. : 1.00
Male :32650
              1st Qu.:
                          0
                              1st Qu.:
                                         0.0
                                               1st Qu.:40.00
              Median :
                              Median :
                                         0.0
                                               Median :40.00
                     : 1079
                                    : 87.5
              Mean
                              Mean
                                               Mean
                                                    :40.42
              3rd Qu.:
                              3rd Qu.:
                                               3rd Qu.:45.00
                          0
                                         0.0
              Max.
                     :99999
                              Max. :4356.0
                                               Max.
                                                     :99.00
     native-country
                       income
United-States:43832
                     small:24720
            : 951
Mexico
                     large: 7841
Philippines : 295
                     NA's :16281
Germany
            : 206
Puerto-Rico : 184
            : 2517
(Other)
NA's
            : 857
```

#### Take a closer look

#### AdultUCI[1:2,]

```
age workclass fnlwgt education education-num marital-status
1 39 State-gov 77516 Bachelors 13 Never-married
2 50 Self-emp-not-inc 83311 Bachelors 13 Married-civ-spouse occupation relationship race sex capital-gain capital-loss
1 Adm-clerical Not-in-family White Male 2174 0
2 Exec-managerial Husband White Male 0 0
```

```
hours-per-week native-country income
1 40 United-States small
2 13 United-States small
```

#### Clean data

Remove a weighting calculation and a duplicate education factor

```
AdultUCI[["fnlwgt"]] <- NULL
AdultUCI[["education-num"]] <- NULL
```

## Map some other values to categorical variables

# Convert to a binary incidence matrix through coercion to transactions

```
Adult <- as(AdultUCI, "transactions")
Adult

transactions in sparse format with
48842 transactions (rows) and
115 items (columns)
```

#### See what we have

```
workclass=Private
                                                 (Other)
                      33906
                                                  401333
element (itemset/transaction) length distribution:
sizes
   9
        10
              11
                    12
                          13
       971 2067 15623 30162
  19
  Min. 1st Qu. Median
                         Mean 3rd Qu.
                                          Max.
  9.00 12.00 13.00 12.53 13.00
                                         13.00
includes extended item information - examples:
          labels variables
                                levels
       age=Young
                                 Young
                       age
2 age=Middle-aged
                       age Middle-aged
      age=Senior
                       age
                                Senior
includes extended transaction information - examples:
 transactionID
             2
2
3
             3
```

# Now plot the Item Frequency Plot

```
itemFrequencyPlot(Adult, support = 0.2, cex.names=0.8)
```



## Generate some rules

#### Apriori

```
Parameter specification: confidence minval smax arem aval original
Support support minlen maxlen 0.6 0.1 1 none FALSE TRUE 0.01 1 10
```

```
target ext
rules FALSE

Algorithmic control:
filter tree heap memopt load sort verbose
    0.1 TRUE TRUE FALSE TRUE 2 TRUE

Absolute minimum support count: 488

set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[115 item(s), 48842 transaction(s)] done [0.04s].
sorting and recoding items ... [67 item(s)] done [0.01s].
creating transaction tree ... done [0.04s].
checking subsets of size 1 2 3 4 5 6 7 8 9 10 done [1.20s].
writing ... [276443 rule(s)] done [0.04s].
creating S4 object ... done [0.22s].
```

#### Summarize the rules

```
summary(rules)
set of 276443 rules
rule length distribution (lhs + rhs):sizes
         2
                    4
                        5 6 7
   1
               3
                                            8
                                                       10
       432 4981 22127 52669 75104 67198 38094 13244 2588
  Min. 1st Qu. Median
                          Mean 3rd Qu.
                                         Max.
 1.000
       5.000
                6.000
                         6.289
                               7.000 10.000
summary of quality measures:
   support
                   confidence
                                       lift
Min.
      :0.01001
                  Min.
                         :0.6000
                                   Min. : 0.7171
1st Qu.:0.01253
                 1st Qu.:0.7691
                                   1st Qu.: 1.0100
Median :0.01701
                 Median :0.9051
                                   Median: 1.0554
Mean
       :0.02679
                  Mean
                         :0.8600
                                        : 1.3109
                                   Mean
                                   3rd Qu.: 1.2980
3rd Qu.:0.02741
                  3rd Qu.:0.9542
{\tt Max.}
       :0.95328
                  Max. :1.0000
                                   Max.
                                         :20.6826
mining info:
 data ntransactions support confidence
Adult
              48842
                       0.01
                                   0.6
```

# Break data into subset, and limit the number of rules

- Create rules for both 'income-small' and 'income-large'
- Limit the number of rules by specifying a minimum lift.

## Inspect the best rules

```
inspect(head(sort(rulesIncomeSmall, by = "confidence"),
             n = 3)
  lhs
                                                      support confidence
                                                                              lift
                                    rhs
1 {workclass=Private,
  marital-status=Never-married,
  relationship=0wn-child,
  sex=Male,
  hours-per-week=Part-time,
  native-country=United-States} => {income=small} 0.01074895 0.7104195 1.403653
2 {workclass=Private,
  marital-status=Never-married,
  relationship=0wn-child,
  sex=Male,
  hours-per-week=Part-time}
                                 => {income=small} 0.01144507  0.7102922 1.403402
3 {workclass=Private,
  marital-status=Never-married,
  relationship=Own-child,
   sex=Male,
   capital-gain=None,
   hours-per-week=Part-time,
   native-country=United-States} => {income=small} 0.01046231 0.7097222 1.402276
```

## Inspect when income large

```
inspect(head(sort(rulesIncomeLarge, by = "confidence"),
                                         rhs
                                                            support confidence
                                                                                   lift
1 {marital-status=Married-civ-spouse,
   capital-gain=High,
  native-country=United-States}
                                      => {income=large} 0.01562180  0.6849192  4.266398
2 {marital-status=Married-civ-spouse,
   capital-gain=High,
   capital-loss=none,
  native-country=United-States}
                                      => {income=large} 0.01562180  0.6849192  4.266398
3 {relationship=Husband,
  race=White,
   capital-gain=High,
                                      => {income=large} 0.01302158  0.6846071 4.264454
   native-country=United-States}
```

# Save the rules

Save these rules using PMML for use in other systems.

```
library(pmml)
write.PMML(rulesIncomeSmall, file = "incomerulessmall.xml")
```