Tópicos de Matemática

Lic. Ciências da Computação 2019/2020

6. Cardinalidade de conjuntos

O "tamanho" de um conjunto finito pode ser facilmente "medido". Intuitivamente, dizemos que o "tamanho" do conjunto $A = \{1, 2, 3, \dots, 50\}$ é 50, uma vez que A tem 50 elementos, e que os conjuntos $B = \{a, b, c, d\}$ e $C = \{3, 6, 9, 12\}$ têm "tamanho" 4. Comparamos estes conjuntos, dizendo que os conjuntos B e C têm o mesmo "tamanho" e que o conjunto A é "maior" do que os conjuntos B e C. Mas o que dizer a respeito de conjuntos infinitos? Será que faz sentido falar no "tamanho" de conjuntos infinitos? Se sim, será que os conjuntos infinitos têm todos o mesmo "tamanho"? Georg Cantor foi o primeiro matemático a desenvolver um estudo mais aprofundado sobre esta questão e estabeleceu uma forma de "medir" os conjuntos, começando por observar que dois conjuntos têm o mesmo "tamanho" caso exista uma bijeção entre os mesmos. Depois de encontrar um processo para determinar se dois conjuntos infinitos têm o mesmo "tamanho", Georg Cantor mostrou que o conjunto $\mathbb Q$ dos números racionais tem o mesmo "tamanho" que o conjunto $\mathbb N$ dos números naturais. Na sequência desta descoberta, Georg Cantor conjeturou que o conjunto ℝ dos números reais também teria o mesmo "tamanho" que o conjunto dos números naturais. Porém, esta conjetura não se confirmou, tendo Georg Cantor provado que o conjunto dos números reais é "maior" que o conjunto dos números naturais.

Neste capítulo apresentam-se alguns dos conceitos e dos resultados estabelecidos por Georg Cantor e que permitem comparar o "tamanho" dos conjuntos.

6.1 Conjuntos equipotentes

Definição 6.1. Sejam A e B conjuntos. Diz-se que A é equipotente a B, e escreve-se $A \backsim B$, se existe uma aplicação bijetiva $f: A \rightarrow B$. Caso A não seja equiptotente a B, escreve-se $A \backsim B$.

Exemplo 6.1.

- (1) Os conjuntos $A = \{1, 2, ..., n\}$ e $B = \{a_1, a_2, ..., a_n\}$, com $a_i \neq a_j$ se $i \neq j$, são equipotentes, uma vez que a aplicação $f: A \to B$ tal que $f(i) = a_i$, para todo $i \in \{1, 2, ..., n\}$, é uma bijeção.
- (2) Seja $2\mathbb{N}$ o conjunto dos números naturais pares. A aplicação $h: \mathbb{N} \to 2\mathbb{N}$ tal que h(n) = 2n, para todo $n \in \mathbb{N}$, é uma bijeção. Logo $\mathbb{N} \backsim 2\mathbb{N}$.

cardinalidade de conjuntos

(3) Os conjuntos \mathbb{N} e \mathbb{Z} são equipotentes, pois a aplicação $f: \mathbb{N} \to \mathbb{Z}$ definida por

$$f(n) = \left\{ egin{array}{ll} rac{n}{2}, & ext{se } n ext{ \'e par} \ rac{-n+1}{2}, & ext{se } n ext{ \'e impar} \end{array}
ight.,$$

é uma bijeção.

(4) As funções $f:[0,1] \to]0,1[$, $g:[0,1[\to]0,1[$ e $h:]0,1] \to]0,1[$ definidas por

$$f(x) = \begin{cases} \frac{1}{2}, & \text{se } x = 0\\ \frac{1}{n+2}, & \text{se } x = \frac{1}{n}, \text{ para algum } n \in \mathbb{N}\\ x & \text{se } x \neq 0 \text{ e } x \neq \frac{1}{n}, \text{ para todo } n \in \mathbb{N} \end{cases}$$

$$g(x) = \begin{cases} \frac{1}{2}, & \text{se } x = 0\\ \frac{1}{n+1}, & \text{se } x = \frac{1}{n}, \text{ para algum } n \in \mathbb{N}\\ x, & \text{se } x \neq 0 \text{ e } x \neq \frac{1}{n}, \text{ para todo } n \in \mathbb{N} \end{cases}$$

$$h(x) = \begin{cases} \frac{1}{n+1}, & \text{se } x = \frac{1}{n}, \text{ para algum } n \in \mathbb{N} \\ x, & \text{se } x \neq \frac{1}{n}, \text{ para todo } n \in \mathbb{N} \end{cases}$$

são bijetivas, pelo que $[0,1] \sim [0,1[$, $[0,1[\sim]0,1[$ e $]0,1] \sim [0,1[$.

(5) Sejam $a,b,c,d \in \mathbb{R}$ tais que a < b e c < d. A aplicação $g:[a,b] \to [c,d]$ definida, para todo $x \in [a,b]$, por

$$g(x) = \frac{d-c}{b-a}(x-a) + c,$$

é uma bijeção. Assim, $[a,b] \backsim [c,d]$. De forma similar prova-se que $]a,b[\backsim]c,d[$, $[a,b]\backsim]c,d]$ e $[a,b[\backsim]c,d[$.

(6) Dados $a,b \in \mathbb{R}$ tais que a < b, tem-se $\mathbb{R} \backsim]a,b[$. De facto, da alínea (5) sabe-se que $]a,b[\backsim]-1,1[$ e, além disso, $\mathbb{R} \backsim]-1,1[$, pois a aplicação $f:\mathbb{R} \rightarrow]-1,1[$ definida por

$$f(x) = \begin{cases} \frac{x^2}{1+x^2}, & \text{se } x \ge 0\\ \frac{-x^2}{1+x^2}, & \text{se } x < 0 \end{cases},$$

é bijetiva.

- (7) O único conjunto equipotente ao conjunto vazio é o conjunto vazio.
- (8) Para cada conjunto A, o conjunto $\mathcal{P}(A)$ das partes de A é equipotente ao conjunto $\{0,1\}^A$ das aplicações de A em $\{0,1\}$. De facto, a aplicação $\chi:\mathcal{P}(A)\to\{0,1\}^A$ definida por $\chi(B)=\chi_B$, onde $\chi_B:A\to\{0,1\}$ é a aplicação definida por

$$\chi_B(x) = \begin{cases} 1 & \text{se } x \in B \\ 0 & \text{se } x \in A \setminus B \end{cases}$$

é bijetiva.

Nos resultados seguintes estabelecem-se algumas propriedades básicas a respeito da equipotência de conjuntos.

Lema 6.2. Sejam A, B, C conjuntos. Então

- (1) $A \backsim A$.
- (2) Se $A \backsim B$, então $B \backsim A$.
- (3) Se $A \backsim B$ e $B \backsim C$, então $A \backsim C$.

Demonstração. Exercício.

Observe-se que, para quaisquer conjuntos A e B, se $A \backsim B$, também se tem $B \backsim A$, pelo que se pode dizer apenas que os conjuntos A e B são equipotentes.

No resultado anterior podemos também observar que são estabelecidas para a equipotência propriedades análogas às de uma relação de equivalência. Porém, não podemos afirmar que \sim é uma relação de equivalência, pois uma relação de equivalência está definida num conjunto e a coleção de todos os conjuntos não é um conjunto.

Lema 6.3. Sejam A, B, C, D conjuntos tais que $A \backsim B$ e $C \backsim D$. Então

- (1) $A \times C \backsim B \times D$.
- (2) Se A e C são disjuntos e B e D são disjuntos, então $A \cup C \backsim B \cup D$.

Demonstração. Uma vez que $A \backsim B$ e $C \backsim D$ podemos escolher funções bijetivas $f: A \to B$ e $g: C \to D$.

(1) No sentido de provar que $A \times C \backsim B \times D$, consideremos a função

$$\begin{array}{ccc} h: A \times C & \to & B \times D \\ (a,c) & \mapsto & (f(a),g(c)) \end{array}.$$

Facilmente se verifica que h é bijetiva. De facto, para quaisquer $(a_1,c_1),(a_2,c_2)\in A\times C$, se $h(a_1,c_1)=h(a_2,c_2)$, tem-se $(f(a_1),g(c_1))=(f(a_2),g(c_2))$, donde $f(a_1)=f(a_2)$ e $g(c_1)=g(c_2)$. Então, uma vez que f e g são injetivas, segue que $a_1=a_2$ e $c_1=c_2$ e, portanto, $(a_1,c_1)=(a_2,c_2)$. Logo h é injetiva. No sentido de provar que h é sobrejetiva, consideremos $(b,d)\in B\times D$. Então, uma vez que f e g são sobrejetivas, existem $a\in A$ e $c\in C$ tais que f(a)=b e g(c)=d. Por conseguinte, existe $(a,c)\in A\times C$ tal que h(a,c)=(f(a),g(c))=(b,d). Logo h é sobrejetiva.

(2) Fica ao cuidado do leitor a verificação de que a aplicação $h:A\cup C\to B\cup D$, definida por

$$h(x) = \begin{cases} f(x) & \text{se } x \in A \\ g(x) & \text{se } x \in C \end{cases},$$

é bijetiva. □

Teorema 6.4. (Cantor) Para qualquer conjunto A, $A \nsim \mathcal{P}(A)$.

Demonstração. Pretendemos mostrar que qualquer que seja a função $f:A\to \mathcal{P}(A)$, f não é uma bijeção. Nesse sentido, vamos mostrar que, para qualquer função $f:A\to \mathcal{P}(A)$, f não é sobrejetiva, isto é, mostramos que, para toda a função $f:A\to \mathcal{P}(A)$, existe um conjunto $D\in \mathcal{P}(A)$ tal que $D\not\in \mathrm{Im} f$. Com efeito, dada uma função $f:A\to \mathcal{P}(A)$, podemos considerar o conjunto

$$D = \{ x \in A \mid x \not\in f(x) \}.$$

É óbvio que $D \in \mathcal{P}(A)$ e que, por definição de D,

$$\forall x \in A, (x \in D \leftrightarrow x \notin f(x)),$$

donde

$$\forall x \in A, \ D \neq f(x),$$

o que mostra que $D \not\in \operatorname{Im} f$.

6.2 Conjuntos finitos e infinitos

Definição 6.5. Um conjunto A diz-se **infinito** se é equipotente a uma sua parte própria, i.e., se existe $A' \subsetneq A$ tal que $A \backsim A'$. Um conjunto A diz-se **finito** se A não é infinito.

Exemplo 6.2.

- (1) O conjunto \mathbb{N} é infinito, pois é equipotente à sua parte própria $2\mathbb{N}$.
- (2) O conjunto \mathbb{R} é infinito, pois é equipotente ao intervalo $]-1,1[e]-1,1[\subsetneq \mathbb{R}.$
- (3) O conjunto $\{a,b\}$, com $a \neq b$, é finito, pois os seus subconjuntos próprios são \emptyset , $\{a\}$ e $\{b\}$ e nenhum deles é equipotente a $\{a,b\}$.
- (4) ∅ é finito, pois ∅ não tem subconjuntos próprios.

Teorema 6.6. Sejam $A \in B$ conjuntos.

- (1) Se A é infinito e $B \backsim A$, então B é infinito.
- (2) Se A é finito e $B \backsim A$, então B é finito.

Demonstração. (1) Uma vez que A é infinito, existe um subconjunto próprio A' de A tal que $A \backsim A'$. Sejam $f: A \to A'$ e $g: B \to A$ bijeções. Seja $B' = g^{-1}(A')$. Como $g^{-1}: A \to B$ é uma bijeção, então B' é um subconjunto próprio de B. Além disso, a aplicação $h: B \to B'$, definida por $h(b) = g^{-1}(f(g(b)))$, para todo $b \in B$, é uma bijeção. Logo B é infinito.

Teorema 6.7. Sejam $A \in B$ conjuntos.

- (1) Se A é infinito e $A \subseteq B$, então B é infinito.
- (2) Se B é finito e $A \subseteq B$, então A é finito.

Demonstração. (1) Admitamos que A é infinito. Então existe $A' \subsetneq A$ tal que $A' \backsim A$. Seja $f: A \to A'$ uma bijeção. Assim, a aplicação $g: B \to A' \cup (B \setminus A)$, definida por

$$g(x) = \left\{ egin{array}{ll} f(x), & \mbox{se } x \in A \ x, & \mbox{se } x \in (B \setminus A) \end{array}
ight. ,$$

é bijetiva. Então, como $A' \cup (B \setminus A)$ é uma parte própria de B, B é infinito.

(2) Imediato a partir de (1).

Um conjunto é finito se não é equipotente a nenhuma das suas partes próprias. Vejamos, agora, uma descrição efetiva dos conjuntos finitos.

Dado $n \in \mathbb{N}$, representamos por I_n o conjunto $\{1, 2, \dots, n\}$.

Lema 6.8. Sejam A um conjunto e $n \in \mathbb{N}$.

Se A é equipotente a I_{n+1} , então, para qualquer $x \in X$, $A \setminus \{x\}$ é equipotente a I_n .

Demonstração. Admitamos que $A \backsim I_{n+1}$ e seja $f: A \to I_{n+1}$ uma bijeção. Sejam $x \in A$ e $A' = A \setminus \{x\}$. Relativamente ao elemento x temos dois casos a considerar:

(i)
$$f(x) = n + 1$$
, (ii) $f(x) \in I_n$.

- (i) Se f(x) = n + 1, a correspondência g de A' em I_n , definida por g(a) = f(a), para todo $a \in A'$, é uma aplicação e é bijetiva.
- (ii) Se $f(x) \in I_n$, existe um elemento $y \in A'$ tal que f(y) = n + 1. Por conseguinte, a correspondência de A' em I_n , definida por h(y) = f(x) e h(a) = f(a) se $a \neq y$, é uma aplicação; esta aplicação é uma bijeção.

Em ambos os casos tem-se $A' \backsim I_n$.

Teorema 6.9. (1) Para cada $n \in \mathbb{N}$, o conjunto I_n é finito.

(2) Um conjunto A é finito se e só se A é vazio ou, para algum $n \in \mathbb{N}$, A é equipotente a I_n .

Demonstração. (1) A prova é feita por indução sobre n.

- (i) Base de indução (n=1): Para n=1, temos $I_1=\{1\}$. O único subconjunto próprio de I_1 é o conjunto vazio e $I_1 \nsim \emptyset$. Logo, para n=1, I_n é finito.
- (ii) Passo de indução: Seja $k \in \mathbb{N}$. Admitamos que $I_k = \{0,1,2,\ldots,k\}$ é finito. Pretendemos mostrar que $I_{k+1} = \{0,1,2,\ldots,k,k+1\}$ é finito. No sentido de fazer a prova por redução ao absurdo, admitamos que I_{k+1} é infinito. Então existe $X \subsetneq I_{k+1}$ tal que $I_{k+1} \sim X$. Relativamente ao conjunto X temos dois casos a considerar:
 - α) $k+1 \in X$;
 - β) $k+1 \notin X$.

cardinalidade de conjuntos

Caso α): Se $k+1 \in X$, então $X \setminus \{k+1\} \subsetneq I_k$. Mas, uma vez que $X \sim I_{k+1}$, pelo lema anterior tem-se $X \setminus \{k+1\} \sim I_k$, o que contradiz a hipótese de que I_k é finito.

Caso β): Se $k+1 \notin X$, então $X \subseteq I_k$. Logo, para todo $x \in X$, $X \setminus \{x\} \subsetneq I_k$. Uma vez que $X \sim I_{k+1}$, pelo lema anterior segue que $X \setminus \{x\} \sim I_k$, contradizendo a hipótese de que I_k é finito.

Logo, para todo $k \in \mathbb{N}$, se I_k é finito, I_{k+1} também é finito.

Por (i), (ii) e pelo Princípio de Indução para \mathbb{N} , concluímos que, para todo $n \in \mathbb{N}$, I_n é finito.

- (2) \Rightarrow) No sentido de fazer a prova por redução ao absurdo, admitamos que A é finito, $A \neq \emptyset$ e que, para todo $n \in \mathbb{N}$, $A \nsim I_n$. Uma vez que $A \neq \emptyset$, existe a_1 tal que $a_1 \in A$. Então $\{a_1\} \subseteq A$, mas $\{a_1\} \neq A$, pois $A \nsim I_1$. Seja $a_2 \in A \setminus \{a_1\}$. Então $\{a_1, a_2\} \subseteq A$, mas $\{a_1, a_2\} \neq A$, pois $A \nsim I_2$. De um modo geral, sejam a_1, a_2, \ldots, a_k elementos distintos de A. Então $\{a_1, a_2, \ldots a_k\} \subsetneq A$, pois $A \nsim I_k$. Assim, $A' = \{a_i \mid i \in \mathbb{N}\} \subseteq A$. Então, como $A' \sim \mathbb{N}$ e \mathbb{N} é infinito, o conjunto A' é infinito e, consequentemente, A também é infinito.
- \Leftarrow) Admitamos que $A=\emptyset$ ou $A\sim I_n$, para algum $n\in\mathbb{N}$. Se $A=\emptyset$, A é finito. Se $A\sim I_n$, para algum $n\in\mathbb{N}$, então da alínea anterior segue que A é finito.

6.3 Conjuntos contáveis

Definição 6.10. Um conjunto A diz-se **numerável** se A é equipotente a \mathbb{N} . Um conjunto A diz-se **contável** se é finito ou numerável.

Exemplo 6.3.

- (1) Os conjuntos \mathbb{N} , $2\mathbb{N}$, \mathbb{N}_0 , \mathbb{Z} são numeráveis.
- (2) O conjunto $\mathbb{N} \times \mathbb{N}$ também é numerável. Dispondo os elementos de $\mathbb{N} \times \mathbb{N}$ conforme sugerido no quadro seguinte

as setas indicadas sugerem uma maneira de estabelecer uma bijeção entre $\mathbb{N} \times \mathbb{N}$ e \mathbb{N} ;

$$f(1,1) = 1, f(1,2) = 2, f(2,1) = 3, \dots$$

A aplicação $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, definida por

$$f(m,n) = \frac{1}{2}(m+n-2)(m+n-1) + m,$$

é bijetiva. Logo $\mathbb{N} \times \mathbb{N} \hookrightarrow \mathbb{N}$.

- (3) Os conjuntos $\mathbb{N}_0 \times \mathbb{N}_0$, $\mathbb{Z} \times \mathbb{N}$, $\mathbb{Z} \times \mathbb{Z}$ são numeráveis.
- (4) O conjunto Q é numerável. De facto,

$$\mathbb{Q} = \left\{rac{p}{q} \mid p \in \mathbb{Z}, q \in \mathbb{N}, extit{m.d.c.}(p,q) = 1
ight\}$$

e é simples verificar que a função $f: \mathbb{Z} \times \mathbb{N} \to \mathbb{Q}$, definida por

$$f(p,q)=rac{p}{q},\,\,$$
 para todo $(p,q)\in\mathbb{Z} imes\mathbb{N},$

é bijetiva. Logo, como $\mathbb{Q} \sim \mathbb{Z} \times \mathbb{N}$ e $\mathbb{Z} \times \mathbb{N}$ é numerável, segue que \mathbb{Q} é numerável.

Teorema 6.11. (Cantor) O conjunto $\mathcal{P}(\mathbb{N})$ não é contável.

Demonstração. Imediato, atendendo ao Teorema 6.4 e tendo em conta que $\mathcal{P}(\mathbb{N})$ é infinito. \square

Teorema 6.12. Seja A um conjunto contável. Se $A' \subseteq A$, então A' é um conjunto contável.

Demonstração. Seja $A'\subseteq A$. Se A' é finito, então A' é contável. Consideremos, agora, o caso em que A' é infinito. Uma vez que $A'\subseteq A$, o conjunto A também é infinito, pelo que $A\backsim \mathbb{N}$. Pondo $A=\{a_i\,|\,i\in\mathbb{N}\}$, seja k_1 o menor dos naturais k tais que $a_k\in A'$ (note-se que tal natural existe pelo Princípio da Boa Ordenação em \mathbb{N}). Assim, $\{a_{k_1}\}\subseteq A'$, mas $A'\neq\{a_{k_1}\}$, pois A' é infinito. Seja k_2 o menor dos naturais $k>k_1$ tais que $a_k\in A'$. Tem-se $\{a_{k_1},a_{k_2}\}\subseteq A'$, mas $A'\neq\{a_{k_1},a_{k_2}\}$. De modo geral, seja k_{r+1} o menor dos naturais $k>k_r$ tais que $a_k\in A'$.

Seja $A''=\{a_{k_r}\,|\,r\in\mathbb{N}\}$. Então A'' é numerável e $A''\subseteq A'$. Seja $a\in A'$. Então $a\in A$ e, portanto, $a=a_s$, para algum $s\in\mathbb{N}$. Se $k_r\le s$, para todo $r\in\mathbb{N}$, ter-se-ia, $A''\subseteq\{a_1,\ldots,a_s\}$ e A'' seria finito, absurdo. Portanto $\{k_r\,|\,k_r>s\}\neq\emptyset$. Seja k_m o elemento mínimo deste conjunto. Tem-se $k_{m-1}\le s< k_m$. Se fosse $k_{m-1}< s$, obtinha-se uma contradição com o facto de k_m ser o menor dos naturais $k>k_{m-1}$ tais que $a_k\in A'$, pois $s< k_{m-1}$ e $a_s=a\in A'$. Logo $k_{m-1}=s$ e, portanto, $a=a_{k_{m-1}}\in A''$. Assim, $A'\subseteq A''$, e, por conseguinte, A'=A'' é numerável.

Teorema 6.13. Para qualquer conjunto A, as afirmações seguintes são equivalentes:

- (1) A é contável.
- (2) $A = \emptyset$ ou existe uma função sobrejetiva $f : \mathbb{N} \to A$.
- (3) Existe uma função injetiva $f: A \to \mathbb{N}$.

Demonstração. (1) \Rightarrow (2) Suponhamos que A é contável. Caso $A = \emptyset$, não há nada a provar. Se $A \neq \emptyset$, temos dois casos a considerar: A é finito ou A é infinito. Se A é infinito, então $A \backsim \mathbb{N}$ e, portanto, existe uma função sobrejetiva $f: \mathbb{N} \to A$. Se A é finito, então existe uma função bijetiva f de $\{1,2,\ldots,n\}$ em A, para algum $n \in \mathbb{N}$, e, por conseguinte, existe

uma função sobrejetiva de $\mathbb N$ em A, uma vez que $\{1,2,\ldots,n\}\subseteq\mathbb N$; de facto, fixando $a\in A$, podemos considerar a função $h:\mathbb N\to A$ definida por

$$h(i) = \left\{ egin{array}{ll} f(i) & ext{se } i \leq n \\ a & ext{se } i > n \end{array}
ight. .$$

É simples verificar que h é sobrejetiva.

(2) \Rightarrow (3) Se $A=\emptyset$, a função $\emptyset:\emptyset\to\mathbb{N}$ é injetiva. Consideremos, agora, o caso em que existe uma função sobrejetiva $g:\mathbb{N}\to A$. Então, para cada $a\in A$, o conjunto $g^{\leftarrow}(\{a\})=\{n\in\mathbb{N}\,|\,g(n)=a\}$ é não vazio. Logo, pelo Princípio da Boa Ordenação em \mathbb{N} , o conjunto $g^{\leftarrow}(\{a\})$ tem um elemento mínimo. Assim, podemos definir a função $f:A\to\mathbb{N}$ por

$$f(a) = \min(g^{\leftarrow}(\{a\}))$$
, para cada $a \in A$.

Para cada $a \in A$, g(f(a)) = a, pelo que $g \circ f = id_A$. Logo, pela Proposição 4.12., f é injetiva.

(3) \Rightarrow (1) Suponha-se que existe uma função injetiva $f:A\to\mathbb{N}$. Então $A\backsim f(A)$. Como $f(A)\subseteq\mathbb{N}$ e \mathbb{N} é contável, pelo teorema anterior segue que f(A) é contável. Consequentemente, A também é contável.

Teorema 6.14. Sejam A e B conjuntos tais que B é contável. Se existe uma função injetiva de A em B, então A é contável.

Demonstração. Sejam B um conjunto contável e $f:A\to B$ uma função injetiva. Uma vez que B é contável, existe uma função injetiva $g:B\to\mathbb{N}$. Atendendo a que f e g são funções injetivas, a função $g\circ f:A\to\mathbb{N}$ também é injetiva e, pelo teorema anterior, A é contável. \square

Teorema 6.15. Sejam $A \in B$ conjuntos.

- (1) Se A ou B são contáveis, então $A \cap B$ é contável.
- (2) Se A e B são contáveis, então $A \cup B$ é contável.
- (3) Se A e B são contáveis, então $A \times B$ é contável.

Demonstração. (1) Admitamos que A é um conjunto contável ou que B é um conjunto contável. Caso A seja contável, então, pelo Teorema 6.12, $A \cap B$ é contável, pois $A \cap B \subseteq A$. Se B é contável conclui-se de forma análoga que $A \cap B$ contável.

(2) Admitamos que A e B são conjuntos contáveis.

Se $A=\emptyset$, tem-se $A\cup B=B$ e, portanto $A\cup B$ é contável. Se $B=\emptyset$, tem-se $A\cup B=A$, pelo que $A\cup B$ é contável.

Consideremos, agora, que $A \neq \emptyset$ e $B \neq \emptyset$ e definam-se os conjuntos $C_1 = \{1\} \times A$ e $C_2 = \{2\} \times B$. Atendendo a que A e B são conjuntos contáveis, existem funções injetivas $f_1: A \to \mathbb{N}$ e $f_2: B \to \mathbb{N}$. Assim, pode-se definir a função $h: C_1 \cup C_2 \to \mathbb{N} \times \mathbb{N}$ dada por

$$h(i, x) = (i, f_i(x)).$$

A função h está bem definida e é simples verificar que esta função é injetiva.

A função $k: A \cup B \rightarrow C_1 \cup C_2$ definida por

$$k(x) = \begin{cases} (1, x) & \text{se} \quad x \in A \\ (2, x) & \text{se} \quad x \in B \setminus A \end{cases}$$

também é injetiva.

Uma vez que h e k são funções injetivas, a função $h \circ k : A \cup B \to \mathbb{N} \times \mathbb{N}$ também é injetiva. Então, atendendo a que $\mathbb{N} \times \mathbb{N}$ é contável e considerando o Teorema 6.14, $A \cup B$ é contável.

(3) Admitamos que A e B são conjuntos contáveis. Então existem funções injetivas $f:A\to\mathbb{N}$ e $g:B\to\mathbb{N}$. A partir destas funções define-se a função $h:A\times B\to\mathbb{N}\times\mathbb{N}$ por

$$h(x,y) = (f(x), g(y)).$$

É um exercício simples verificar que a função h é injetiva.

Atendendo a que $\mathbb{N} \times \mathbb{N}$ é numerável, pelo teorema anterior conclui-se que $A \times B$ é contável. \square

O resultado anterior pode ser generalizado a famílias de conjuntos com mais de dois conjuntos.

Teorema 6.16. Seja I um conjunto contável e $\{A_i\}_{i\in I}$ uma família de conjuntos contáveis.

- (1) Se $I \neq \emptyset$, então $\bigcap_{i \in I} A_i$ é contável.
- (2) O conjunto $\bigcup_{i \in I} A_i$ é contável.

Demonstração. Sejam I um conjunto contável e $\{A_i\}_{i\in I}$ uma família de conjuntos contáveis.

- (1) Admitamos que $I \neq \emptyset$ e seja $A_k \in \{A_i\}_{i \in I}$. Como $\bigcap_{i \in I} A_i \subseteq A_k$ e A_k é contável, então, pelo Teorema 6.12, $\bigcap_{i \in I} A_i$ é contável.
- (2) Seja $A = \bigcup_{i \in I} A_i$. Pretende-se mostrar que A é contável.

Se $I=\emptyset$, tem-se $A=\emptyset$ e \emptyset é contável.

Admitamos, agora, que $I \neq \emptyset$. Uma vez que I é contável, existe uma função injetiva de I em \mathbb{N} ; seja $f:I \to \mathbb{N}$ uma dessas funções. Atendendo a que, para cada $i \in I$, o conjunto A_i é contável, também existe uma função injetiva $f_i:A_i \to \mathbb{N}$. Para cada $i \in I$, defina-se $B_i = \{i\} \times A_i$ e seja $B = \bigcup_{i \in I} B_i$. Se $i,j \in I$ e $i \neq j$, tem-se $B_i \cap B_j = \emptyset$. Logo, dado $b \in B$, existe um e um só $i \in I$ tal que $b \in B_i$, e tem-se b = (i,x), para alguns $i \in I$ e $x \in A_i$. Assim, pode-se definir a função $g:B \to \mathbb{N} \times \mathbb{N}$ por

$$g(i,x)=(f(i),f_i(x)),$$

a qual é injetiva.

Para cada $x \in A$, escolhamos $i \in I$ tal que $x \in A_i$ e considere-se a função $h : A \to B$ definida por h(x) = (i, x). A função h é, claramente, injetiva.

Uma vez que g e h são funções injetivas, a função $g \circ h : A \to \mathbb{N} \times \mathbb{N}$ também é injetiva. Assim, atendendo a que $\mathbb{N} \times \mathbb{N}$ é contável, o conjunto A também é contável.

Teorema 6.17. Sejam $n \in \mathbb{N}$ e C_1, \ldots, C_n conjuntos contáveis. Então $C_1 \times \ldots \times C_n$ é contável.

Demonstração. A prova pode ser feita por indução matemática.

Teorema 6.18. O intervalo real]0,1[não é contável.

Demonstração. No sentido de fazer a prova por redução ao absurdo, admitamos que]0,1[é contável. Então, existe uma função injetiva $g:]0,1[\to\mathbb{N}$. Além disso, é simples verificar que também existem funções injetivas de $\mathcal{P}(\mathbb{N})$ em]0,1[, como, por exemplo, a função $f:\mathcal{P}(\mathbb{N})\to]0,1[$ definida por

$$f(A) = 0.d_1d_2\ldots d_i\ldots$$

onde, para todo $n \in \mathbb{N}$,

$$d_n = \left\{ \begin{array}{ll} 3 & \text{se } n \in A \\ 7 & \text{se } n \notin A \end{array} \right.,$$

i.e., f(A) é um número real entre 0 e 1 dado pela sua representação decimal e tal que o seu n-ésimo digíto d_n é dado pela regra anterior. Para provar que f é injetiva, consideremos $A,B\in\mathcal{P}(\mathbb{N})$ tais que $A\neq B$. Então, existe algum $n\in\mathbb{N}$ tal que $n\in A$ e $n\not\in B$ ou $n\not\in A$ e $n\in B$. Consequentemente, f(A) e f(B) não são iguais, uma vez que a sua expansão decimal difere no n-ésimo dígito. Logo, f é injetiva.

Atendendo a que f e g são funções injetivas, a função $g \circ f : \mathcal{P}(\mathbb{N}) \to \mathbb{N}$ também é injetiva e, portanto, $\mathcal{P}(\mathbb{N})$ seria contável, o que contradiz o Teorema 6.11.

Teorema 6.19. O conjunto \mathbb{R} não é contável.

Demonstração. Consequência imediata dos teoremas 6.12 e 6.18.

6.4 Cardinal de um conjunto

Na primeira secção deste capítulo foi definido o formalismo que permite comparar o "tamanho" de dois conjuntos, pelo que já é possível definir o que se entende por conjuntos com o mesmo "tamanho".

Definição 6.20. Sejam A, B conjuntos. Se os conjuntos A e B são equipotentes diz-se que A e B têm o mesmo cardinal, e escreve-se #A = #B ou |A| = |B|.

Não definimos de forma precisa o cardinal de um conjunto. Convencionamos que o cardinal de um conjunto designa a propriedade que A tem em comum com todos os conjuntos equipotentes a A. O cardinal de um conjunto é, em geral, designado por uma letra grega: α , β , γ , ... Para indicar que α designa o cardinal de um conjunto A, escreve-se $\alpha = |A|$.

Como já observámos anteriormente, o único conjunto equipotente ao conjunto vazio é o conjunto vazio, e escreve-se $|\emptyset|=0$. No caso de um conjunto finito, identifica-se o cardinal de A com o número de elementos de A. No caso dos conjuntos $\mathbb N$ e $\mathbb R$, escreve-se $|\mathbb N|=\aleph_0$ (\aleph , "alef", é a primeira letra do alfabeto hebraico) e $|\mathbb R|=c$ (c designa a potência do contínuo).

Da alínea (3) do exemplo 6.1 e da alínea (4) do exemplo 6.3 é imediato o resultado seguinte.

Teorema 6.21. $|\mathbb{N}| = |\mathbb{Z}| e |\mathbb{N}| = |\mathbb{Q}|$.

Dado um conjunto A, representa-se por $2^{|A|}$ o cardinal do conjunto $\{0,1\}^A$ das aplicações de um conjunto A em $\{0,1\}$. Assim, pela alínea (8) do exemplo 6.1 tem-se

Teorema 6.22. Para qualquer conjunto A, $|\mathcal{P}(A)| = 2^{|A|}$.

Seguidamente define-se o que se entende por um cardinal ser menor do que outro.

Definição 6.23. Sejam A e B conjuntos. Diz-se que o cardinal de A é menor ou igual do que o cardinal de B, e escreve-se $|A| \leq |B|$, se A é equipotente a um subconjunto de B. Se $|A| \leq |B|$ e $|A| \neq |B|$, escreve-se |A| < |B| e diz-se que cardinal de A é menor do que o cardinal de B.

A partir da definição anterior é simples a prova do resultado seguinte.

Teorema 6.24. Sejam A e B conjuntos. Então

- 1. $|A| \leq |A|$.
- 2. Se $|A| \le |B|$ e $|B| \le |C|$, então $|A| \le |C|$.

Demonstração. Exercício.

Teorema 6.25. (Teorema de Cantor) Para qualquer conjunto A, tem-se $|A| < |\mathcal{P}(A)|$.

Demonstração. Se $A=\emptyset$, tem-se |A|=0 e $|\mathcal{P}(A)|=1$. Se $A\neq\emptyset$, a aplicação

$$\begin{array}{ccc} A & \to & \mathcal{P}(A) \\ x & \mapsto & \{x\} \end{array}$$

é injetiva e, portanto, $|A| \leq |\mathcal{P}(A)$. Pelo Teorema 6.4 conclui-se, então, que $|A| < |\mathcal{P}(A)$. \square

Se A e B são conjuntos tais que $|A| \leq |B|$ e $|B| \leq |A|$, então A e B não têm que ser necessariamente iguais, mas será que têm de ter o mesmo cardinal? Georg Cantor começou por dar uma resposta menos geral a esta questão, mas trabalhos desenvolvidos posteriormente, de forma independente, por Ernst Schröder (1841-1902) e Felix Bernstein (1878-1956) permitiram dar uma resposta afirmativa a esta questão.

Teorema 6.26. (Teorema de Schröder-Bernstein) Sejam A e B conjuntos. Se $|A| \leq |B|$ e $|B| \leq |A|$, então |A| = |B|.

Com base neste resultado é possível estabelecer a igualdade entre o cardinal de $\mathcal{P}(\mathbb{N})$ e o cardinal de \mathbb{R} .

cardinalidade de conjuntos

Teorema 6.27. $|\mathcal{P}(\mathbb{N})| = |\mathbb{R}|$, i.e., $2^{\aleph_0} = c$.

Demonstração. Uma vez que $\mathbb{N}\sim\mathbb{Q}$, também se tem $\mathcal{P}(\mathbb{N})\sim\mathcal{P}(\mathbb{Q})$. A aplicação

$$f: \mathbb{R} \to \mathcal{P}(\mathbb{Q})$$

 $a \mapsto \{x \in \mathbb{Q} \mid x < a\}$

é injetiva. Logo $c=|\mathbb{R}|\leq |\mathcal{P}(\mathbb{Q})|=|\mathcal{P}(\mathbb{N})|=2^{\aleph_0}.$ A aplicação

$$g: \{0,1\}^{\mathbb{N}} \to [0,1]$$

 $h \mapsto 0.h(1)h(2)h(3)...$

também é injetiva. Logo $2^{\aleph_0}=|\mathcal{P}(\mathbb{N})|=|\{0,1\}^{\mathbb{N}}|\leq |[0,1]|=|\mathbb{R}|=c.$ Então, pelo Teorema de Schröder-Bernstein, $2^{\aleph_0}=|\mathcal{P}(\mathbb{N})|=|\mathbb{R}|=c.$

A respeito de cardinais, vale ainda o resultado seguinte

Teorema 6.28. Sejam A e B conjuntos. Tem-se um e um só dos casos seguintes: |A| < |B|, |A| = |B|, |B| < |A|.

É consequência do Teorema 6.12 que não existe qualquer conjunto infinito com cardinal inferior a \aleph_0 . A partir de resultados estabelecidos anteriormente também se prova a existência de cardinais superiores a \aleph_0 : de facto, $\mathbb{R} \nsim \mathbb{N}$ e, além disso, a função $f: \mathbb{N} \to \mathbb{R}$ definida por f(n)=n, para todo $n\in \mathbb{N}$, é injetiva, pelo que $\mathbb{N} \backsim f(\mathbb{N})\subseteq \mathbb{R}$; assim, $\aleph_0\neq c$ e $\aleph_0\leq c$ e, portanto, $\aleph_0< c$. A existência de cardinais superiores a c é consequência do Teorema 6.25. Quanto a cardinais entre \aleph_0 e c, Georg Cantor não conseguiu apresentar uma prova da existência ou da inexistência de tais cardinais, pelo que avançou com a hipótese conhecida por Hipótese do Contínuo.

Hipótese do Contínuo Não existe nenhum cardinal β tal que $\aleph_0 < \beta < c$.