重庆交通大学 实验报告

 班
 级:
 计科专业 14级 1班

 学
 号:
 631406010109

 姓
 名:
 郭 文 浩

 实验项目名称:
 CPT 实验

 实验项目性质:
 设计性(验证性)

 实验所属课程:
 计算机网络

 实验室(中心):
 软件实验室

 指导教师:
 王 勇

实验完成时间: __2016_年_12_月_23_日

教师评阅: □实验目的明确;	□操作步骤正确; [□设计文稿(表格、程序、	数据库、网页)符合要求;
□保存路径正确;	□实验结果符合要求	□实验分析总结全面;	□实验报告规范;
		签名:	年 月 日
实验成绩:			

一、实验目的

- 1. 熟悉 Cisco Packet Tracer 的使用。
- 2. 能够利用 Cisco Packet Tracer 来搭建各种运行环境,模拟各种实验情况, 熟悉网络通信情况。
 - 3. 完成 Cisco Packet Tracer 模拟实验,并完成报告。

二、实验主要内容及原理

1. 直接连接两台 PC

进行两台 PC 的基本网络配置,然后直接连接构成一个网络。注意:直接连接需使用交叉线。相互 ping 通即可。

2. 用交换机连接 PC 构建 LAN

进行各PC的基本网络配置,要求相互能ping通。

3. 生成树协议 (Spanning Tree Protocol)

构建拓扑,我们可以看到交换机之间有回路,也即会造成广播帧循环即广播风暴,严重影响网络性能。交换机将通过生成树协议(STP)对多余的线路进行自动阻塞(Blocking),以形成一棵以Switch4为根的唯一路径树即生成树!

4. 路由器配置初步

在不同子网间通信需通过路由器。路由器的每个接口下都至少是一个子网,构建拓扑,并进行相应的网络规划。

5. 静态路由

静态路由是非自适应性路由计算协议,是由管理人员手动配置的,不能够根据网络 拓扑的变化而改变。 因此,静态路由非常简单,适用于非常简单的网络。

6. 动态路由 RIP

动态路由协议采用自适应路由算法,能够根据网络拓扑的变化而重新计算机最佳路由。由于路由的复杂性,路由算法也是分层次的,通常把路由协议(算法)划分为自

治系统(AS)内的(IGP, Interior Gateway Protocol)与自治系统之间(EGP, External Gateway Protocol)的路由协议。

RIP 的全称是 Routing Information Protocol,是距离矢量路由的代表,目前虽然淘汰,但可作为我们学习的对象。

7. 动态路由 OSPF

OSPF (Open Shortest Path First 开放式最短路径优先)是一个内部网关协议 (Interior Gateway Protocol, 简称 IGP), 用于在单一自治系统 (autonomous system, AS) 内决策路由。 OSPF 协议比较复杂 (version 2 RFC 2328 标准文档长达 224 页),可以划分区域是 OSPF 能多适应大型复杂网络的一个特性, 我们只借助完成单个 area 的简单配置,另外 OSPF 还支持变长子网掩码 VLSM。

8. PAT(基于端口的 NAT)

网络地址转换(NAT, Network Address Translation)被广泛应用于各种类型 Internet 接入方式和备种类型的网络中。 原因很简单,NAT 不仅完美地解决了 1P 地址不足的问题,而且还能够有效地避免来自网络外部的攻击,隐藏并保护网络内部的计算机。 NAT 的实现方式有三种,即静态转换 Static Nat、动态转换 Dynamic Nat 和 端口多路复用 OverLoad。

9. 交换机 VLAN 与 VTP

在实际应用中(如我校的网络),你可看到路由器只用于网络边界,而内部大量使用交换机连接。前面我们分析过,交换机连接的是一个子网! 显然,在这样一个大型的子网中广播风暴将不可抑制,同时我们已经知道学校有 N 多个子网,这些交换机连接的绝不是一个子网! 我们实际上使用了支持 VLAN 和 VTP 技术的交换机! 而前述的交换机只是普通的 2 层交换机。

10. DHCP、DNS 及 Web 服务器简单配置

动态主机配置 DHCP、域名解析 DNS 以及 Web 服务在日常应用中作用巨大,我们构建拓扑练习。

11. WLAN 初步

构建 WLAN, 在有线或无线连接的 PC 上以 Web 方式配置。

三、实验过程简述

此次试验分 4 次上机完成,主要是在机房的电脑和自己的笔记本上用 Cisco Packet Tracer 模拟网络,熟悉各个设备,各个协议,实验记录在下面的实验结果及分析中,试验产生的记录文件在压缩包【3.Cisco Packet Tracer 实验_实验记录.rar】中。

四、实验结果及分析

直接连接两台 PC,

配置 ip 202. 202. 243. 11 和 202. 202. 243. 12

用 202. 202. 243. 11ping202. 202. 243. 12,每 ping 一次,绿灯会响应一次

用交换机连接 PC 构建 LAN

这些 PC 处于同一个子网吗?不在同一个子网能否通信?

答案是处在同一个资源子网。能

测试如 PC1 的 IP 为 192. 168. 1. 1/24, 而 PC2 的 IP 为 192. 168. 2. 1/24 能否通信?

答案是不能, PC1 的网络号为 192. 168. 1. 0, PC2 的网络号为 192. 168. 2. 0, 处于不同的网络。

测试如 PC1 的 IP 为 192. 168. 1. 1/16, 而 PC2 的 IP 为 192. 168. 2. 1/24 能否通信?

答案还是不能 PC1 的网络号为 192. 168. 0. 0,PC2 的网络号为 192. 168. 2. 0,仍然处于不同的网络。只有当网络号相同时才可以通信。尝试着把 PC2 的 IP 改为 192. 168. 2. 1/16,测试可以通信了。

你设置网关了吗? 为什么?

设置了网关,但是网关根本 ping 不通,很奇怪,这个问题先保留。

自动学习生成交换机端口地址列表

网络刚搭建好时(还未分配 ip),两个 Switch 产生的 mac 表

用 PCOping 其他机器,本来打算 ping 的,但是当我刚分配好 ip,mac 表中自动就添加了这些 mac 地址,可能是每上线一台机器时,就自动告诉其他机器了,Switch 自动学习。两个 Switch 产生的 mac 表

生成树协议(Spanning Tree Protocol)

实验截图就不附了,在构建时的确会发现有回路时,那些会产生回路的端口被自动屏蔽了,我如果将与它冲突的对应的绿灯端口的那条线叉掉,那刚刚被屏蔽的那个端口不久就会变成绿灯。

2016-12-16 15:20:42 今天好累哦 就只做了一点点

2016-12-23 10:45:36 配置交大路由器的局域网口

配置交大路由器的广域网口

配置重大路由器的局域网口配置重大路由器的广域网口

	FastEthernet0/0	
端口状态	☑ 启用	
一 带宽	☑ 自动	
O 10 Mbps	100 Mbps	
双工模式	☑ 自动	
◎ 全双工	○ 半双工	
MAC地址	00D0.5863.C701	
IP地址	192.168.3.1	
子网掩码	255.255.255.0	
Tx Ring Limit	10	
	Serial0/0 ———————————————————————————————————	
端口状态 ——————————— 时钟速率	□ 启用	
	● 全双工	
IP地址	192.168.2.2	
子网掩码	255.255.255.0	
Tx Ring Limit	10	

4 台 pc 配置

互相 ping 同一子网可以 ping 通,不同子网 ping 不同

交通大学路由器静态路由配置

重庆大学路由器静态路由配置

配置好经静态路由后,可以 ping 通其他网络的了

用 PC0 给 PC2 发送一个消息,成功

配置交通大学动态路由 RIP

配置重庆大学动态路由 RIP

配置交通大学动态路由 OSPF

配置重庆大学动态路由 OSPF

PAT(基于端口的 NAT)

这个内容有问题啊,为什么我修改不了路由器的出口 ip,即使是我已经释放了路由表,可是还是无法修改 IP

Bad mask /24 for address 202.202.240.0

已解决。

原因,搞混了网络号,误把 202. 202. 240. 0 这个大网络号分配出去了,这个图中共有 3 个子网,不能这么分。配置重大部分的网络号为 202. 202. 243. 0/24,并加到路由表中。

配置交大路由器的 NAT

网络环境配置好后,就可以穿过子网进行通信了。

交换机 VLAN 与 VTP

配置 VLAN 10

```
Switch>en
Switch#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)#vlan 10
Switch(config-vlan)#name computer
Switch(config-vlan)#exit
Switch(config-if)# t vlan 10
Switch(config-if)#
%LINK-5-CHANGED: Interface Vlanl0, changed state to up

Switch(config-if)#ip add 192.168.0.1 255.255.255.0
Switch(config-if)#exit
Switch(config-if)#exit
```

配置 VLAN 20

```
Switch(config) #vlan 20
Switch(config-vlan) #name communication
Switch(config-vlan) #exit
Switch(config) #int vlan 20
Switch(config-if) #
%LINK-5-CHANGED: Interface Vlan20, changed state to up
Switch(config-if) #ip add 192.168.1.1 255.255.255.0
Switch(config-if) #exit
```

配置 VLAN 30

```
Switch(config) #vlan 30
Switch(config-vlan) #
*LINK-5-CHANGED: Interface Vlan30, changed state to up
Switch(config-vlan) #name electronic
Switch(config-vlan) #exit
Switch(config) #int vlan 30
Switch(config-if) #ip address 192.168.2.1 255.255.255.0
Switch(config-if) #exit
```

配置 VLAN 结果

服务器

配置 DNS

配置服务器 DHCP

PCO 自动获取的 ip, 这里还是有些问题的,不过最起码可以自动获取了

在浏览器上配置,之前修改了密码 123

各机器的 ip,均为自动获取的

附1: 我的机房

附 2: my github: https://github.com/GuoWenhao1996

