Segundo parcial de Matemática Discreta II 3 de julio de 2007

Número de Parcial	Cédula	Nombre y Apellido

Ejercicio 1. (15 puntos)

En \mathbb{R}^2 se considera la siguiente operación: (x,y).(x',y')=(xx',xy'+x'y).

- (a) Probar que la operación es asociativa, conmutativa y posee neutro.
- (b) Hallar los elementos invertibles. Es (\mathbb{R}^2 ,) un grupo?
- (c) Si se restringe la operación a $\mathbb{R}^* \times \{0\}$; ¿se puede afirmar que ($\mathbb{R}^* \times \{0\}$,.) es un grupo?

Ejercicio 2. (15 puntos)

Sea $S = \{ \sigma \in S_7 / \sigma(4) = 4, \sigma(3) = 3 \}.$

- (a) Probar que S es un subgrupo de S_7 .
- (b) (i) Hallar una permutación $\sigma \in \mathcal{S}_7$ par tal que $\sigma(123)(147)\sigma^{-1} \in S$.
 - (ii) ¿Existe $\sigma \in S$ que verifique: $\sigma(123)(147)\sigma^{-1} \in S$?
- (c) ¿Es S subgrupo normal de S_7 ?

Ejercicio 3. (30 puntos)

- (a) Sea G grupo, $N \triangleleft G$ y H < G. Probar que:
 - (i) HN < G;
 - (ii) $N \triangleleft HN \vee H \cap N \triangleleft H$.
- (b) Enunciar y probar el "Segundo teorema de isomorfismos de grupos".
- (c) Deducir que si $N \triangleleft G$ y H < G, entonces $|HN| = \frac{|H||N|}{|H \cap N|}$.
- (d) Demostrar que si $|G| = p^2$ con p primo, entonces G es abeliano.
- (e) Demostrar que si $N \triangleleft G$ y $H \triangleleft G$, con N y H abelianos, $N \cap H = \{e\}$, entonces HN es abeliano.
- (f) Probar que todo grupo con 13225 elementos es abeliano.