Operations Research

07. Duality

Lagrangian

• standard form problem (not necessarily convex)

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leqslant 0, \quad i=1,2,\,\dots,\,m \\ & h_i(x)=0, \quad i=1,2,\,\dots,\,p \end{array}$$

variable $x \in \mathbb{R}^n$, domain \mathcal{D} , optimal value p^*

• Lagrangian $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$, with dom $f = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p$

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

- weighted sum of objective and constraints
- $-\lambda_i$ is Lagrange multiplier associated with $f_i(x) \leq 0$
- ν_i is Lagrange multiplier associated with $h_i(x) = 0$

Lagrange Dual Function

• Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$,

$$g(\lambda,\nu) = \inf_{x \in \mathcal{D}} L(x,\lambda,\nu) = \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

- g is concave, can be $-\infty$ for some λ , ν
- lower bound property: $g(\lambda, \nu) \leqslant p^*$ if $\lambda \succcurlyeq 0$
- proof: if \tilde{x} is feasible and $\lambda \geq 0$, then

$$f_0(\tilde{x})\geqslant L(\tilde{x},\lambda,\nu)\geqslant \inf_{x\in\mathcal{D}}L(x,\lambda,\nu)=g(\lambda,\nu)$$

- minimizing over all feasible \tilde{x} gives $p^{\star}\geqslant g(\lambda,\nu)$

Least-Norm Solution of Linear Equations

minimize
$$x^{\top}x$$

subject to $Ax = b$

- Lagrangian is $L(x, \nu) = x^{\mathsf{T}} x + \nu^{\mathsf{T}} (Ax b)$
- to minimize L over x, set gradient equal to zero:

$$\nabla_x L(x,\,\nu) = 2x + A^\top \nu = 0 \implies x = -\frac{1}{2}A^\top \nu$$

• plug x into L to obtain

$$g(\nu) = L\Big(-\frac{1}{2}A^{\intercal}\nu,\,\nu\Big) = -\frac{1}{4}\nu^{\intercal}AA^{\intercal}\nu - b^{\intercal}\nu$$

• lower bound property: $p^* \geqslant -\frac{1}{4}\nu^\top A A^\top \nu - b^\top \nu, \ \forall \ \nu$

Least-Norm Solution of Linear Equations

minimize
$$x^{\top}x$$

subject to $Ax = b$

- Lagrangian is $L(x, \nu) = x^{\mathsf{T}} x + \nu^{\mathsf{T}} (Ax b)$
- to minimize L over x, set gradient equal to zero:

$$\nabla_x L(x,\,\nu) = 2x + A^\top \nu = 0 \implies x = -\frac{1}{2}A^\top \nu$$

• plug x into L to obtain

$$g(\nu) = L\Big(-\frac{1}{2}A^{\intercal}\nu,\,\nu\Big) = -\frac{1}{4}\nu^{\intercal}AA^{\intercal}\nu - b^{\intercal}\nu$$

• lower bound property: $p^* \geqslant -\frac{1}{4}\nu^\top A A^\top \nu - b^\top \nu, \ \forall \ \nu$

Standard Form LP

minimize
$$c^{\top}x$$

subject to $Ax = b$, $x \geq 0$

• Lagrangian is

$$L(x,\lambda,\nu) = c^\top x - \lambda^\top x + \nu^\top (A\,x - b) = -b^\top \nu + (c + A^\top \nu - \lambda)^\top x$$

• L is affine in x, so

$$g(\lambda,\nu) = \inf_x \, L(x,\lambda,\nu) = \begin{cases} -b^\top \nu & A^\top \nu - \lambda + c = 0 \\ -\infty & \text{otherwise} \end{cases}$$

- g is linear on affine domain $\{(\lambda, \nu) \mid A^{\top}\nu \lambda + c = 0\}$, hence concave
- lower bound property: $p^* \geqslant -b^\top \nu$ if $A^\top \nu + c \succcurlyeq 0$

Lagrange Dual and Conjugate Function

minimize
$$f_0(x)$$

subject to $Ax \leq b$, $Cx = d$

dual function

$$\begin{split} g(\lambda,\nu) &= \inf_{x \in \text{dom}\, f_0} \left(f_0(x) + (A^\top \lambda + C^\top \nu)^\top x - b^\top \lambda - d^\top \nu \right) \\ &= -f_0^\star (-A^\top \lambda - C^\top \nu) - b^\top \lambda - d^\top \nu \end{split}$$
 where $f_0^\star(y) \equiv \sup_{x \in \text{dom}\, f_0} y^\top x - f_0(x)$ is **conjugate** of f_0

- simplifies derivation of dual if conjugate of f_0 is known
- example: entropy maxmization

$$f_0(x) = \sum_{i=1}^n x_i \log x_i, \qquad f_0^{\star}(y) = \sum_{i=1}^n e^{y_i - 1}$$

The Lagrange Dual Problem

maximize
$$g(\lambda, \nu)$$

subject to $\lambda \geq 0$

- find best lower bound on p^* , obtained from Lagrange dual function
- a convex optimization problem, even if original primal problem is not
- dual optimal value denoted by d^*
- λ , ν are dual feasible if $\lambda \geq 0$, $(\lambda, \nu) \in \text{dom } g$
- often simplified by making implicit constraint $(\lambda, \nu) \in \text{dom } g$ explicit

Example: Standard Form LP

• primal standard form LP

minimize
$$c^{\top}x$$

subject to $Ax = b$, $x \ge 0$

maximize $g(\lambda, \nu)$

• dual problem

$$\text{subject to} \quad \lambda \succcurlyeq 0$$
 with $g(\lambda,\, \nu) = \begin{cases} -b^\top \nu & \text{if } A^\top \nu - \lambda + c = 0 \\ -\infty & \text{otherwise} \end{cases}$

• make implicit constraint explicit: eliminate λ to obtain transformed dual problem

maximize
$$-b^{\top}\nu$$

subject to $A^{\top}\nu + c \geq 0$

Equality Constrained Norm Minimization

minimize
$$||x||$$

subject to $Ax = b$

• dual function is

$$g(\nu) = \inf_{x} \left(\|x\| - \nu^{\top} A \, x + b^{\top} \nu \right) = \begin{cases} b^{\top} \nu & \|A^{\top} \nu\|_{\star} \leqslant 1 \\ -\infty & \text{otherwise} \end{cases}$$

where
$$\|\nu\|_{\star} = \sup_{\|u\| \le 1} u^{\top} \nu$$
 is dual norm of $\|\cdot\|$

• lower bound property: $p^* \geqslant b^\top \nu$ if $||A^\top \nu||_* \leqslant 1$

Two-Way Partitioning

minimize
$$x^{\top}Wx$$

subject to $x_i^2 = 1, \quad i = 1, 2, ..., n$

- a nonconvex problem; feasible set contains 2^n discrete points
- interpretation: partition $\{1,2,\dots,n\}$ into two sets encoded as $x_i=1$ and $x_i=-1$
- W_{ij} : cost of assigning i, j to the same set $-W_{ij}$: cost of assigning i, j to different sets
- dual function is

$$\begin{split} g(\nu) &= \inf_x \left(x^\top W x + \sum_i \nu_i (x_i^2 - 1) \right) = \inf_x \left(x^\top (W + \operatorname{diag} \nu) x - \mathbf{1}^\top \nu \right) \\ &= \begin{cases} -\mathbf{1}^\top \nu & \text{if } W + \operatorname{diag} \nu \succcurlyeq 0 \\ -\infty & \text{otherwise} \end{cases} \end{split}$$

• lower bound property: $p^* \geqslant -\mathbf{1}^\top \nu$ if $W + \operatorname{diag} \nu \geqslant 0$

Weak and Strong Duality

- weak duality: $d^* \leq p^*$
 - always holds for convex and nonconvex problems
 - can be used to find nontrivial lower bounds for hard problems, e.g. solving the SDP

maximize
$$-\mathbf{1}^{\top} \nu$$

subject to $W + \operatorname{diag}(\nu) \geq 0$

gives a lower bound for two-way partitioning problem

- strong duality: $d^* = p^*$
 - does not hold in general
 - (usually) holds for convex problems
 - conditions that guarantee strong duality in convex problems are called **constraint qualifications**

Slater's Constraint Qualification

strong duality holds for a convex problem

maximize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i=1,2,\ldots,m$
 $Ax=b$

if it is **strictly feasible**, i.e. $\exists x \in \text{int } \mathcal{D} \text{ with } f_i(x) < 0, i = 1, 2, \dots, m, Ax = b$

- also guarantees that the dual optimum is attained (if $p^{\star} > -\infty$)
- can be sharpened, e.g.
 - can replace int \mathcal{D} with relint \mathcal{D} (interior relative to affine hull)
 - linear inequalities do not need to hold with strict inequality
- there are many other types of constraint qualifications

Inequality Form LP

• primal problem

minimize
$$c^{\top}x$$

subject to $Ax \leq b$

dual function

$$g(\lambda,\,\nu) = \inf_x \left((c + A^\top \lambda)^\top x - b^\top \lambda \right) = \begin{cases} -b^\top \lambda & \text{if } A^\top \lambda + c = 0 \\ -\infty & \text{otherwise} \end{cases}$$

dual problem

maximize
$$-b^{\top}\lambda$$

subject to $A^{\top}\lambda + c = 0$, $\lambda \geq 0$

- from the sharpened Slater's condition: $p^* = d^*$ if the primal problem is feasible
- in fact $p^{\star}=d^{\star}$ except when primal and dual are both infeasible

Quadratic Program

• **primal problem** (assume $P \in S_{++}^n$)

minimize
$$x^{\top} P x$$

subject to $A x \leq b$

dual function

$$g(\lambda) = \inf_x \left(x^\top P \, x + \lambda^\top (A \, x - b) \right) = -\frac{1}{4} \lambda^\top A P^{-1} A^\top \lambda - b^\top \lambda$$

dual problem

maximize
$$-\frac{1}{4}\lambda^{\top}AP^{-1}A^{\top}\lambda - b^{\top}\lambda$$

subject to $\lambda \geq 0$

- from the sharpened Slater's condition: $p^* = d^*$ if the primal problem is feasible
- in fact $p^* = d^*$ always

Geometric Interpretation

- for simplicity, consider problem with one constraint $f_1(x)\leqslant 0$
- $\mathcal{G}=\{(f_1(x),\,f_0(x))\mid x\in\mathcal{D}\}$ is set of achievable (constraint, objective) values
- interpretation of dual function: $g(\lambda) = \inf_{(u,t) \in \mathcal{G}} (\lambda u + t)$

- $\lambda u + t = g(\lambda)$ is (non-vertical) supporting hyperplane to \mathcal{G}
- hyperplane intersects t-axis at $t = g(\lambda)$

Epigraph Variation

• same with \mathcal{G} replaced with

$$\mathcal{A} = \{(u, t) \mid f_1(x) \leqslant u, f_0(x) \leqslant t \text{ for some } x \in \mathcal{D}\}$$

- strong duality holds if there is a non-vertical supporting hyperplane to $\mathcal A$ at $(0,p^\star)$
- for convex problem, \mathcal{A} is convex, hence has supporting hyperplane at $(0, p^*)$
- Slater's condition: if there exist $(\tilde{u}, \tilde{t}) \in \mathcal{A}$ with $\tilde{u} < 0$, then supporting hyperplane at $(0, p^*)$ must be non-vertical

Complementary Slackness

• assume strong duality holds, x^* is primal optimal, (λ^*, ν^*) is dual optimal

$$\begin{split} f_0(x^\star) &= g(\lambda^\star, \nu^\star) = \inf_x \left(f_0(x) + \sum_{i=1}^m \lambda_i^\star f_i(x) + \sum_{i=1}^p \nu_i^\star h_i(x) \right) \\ &\leqslant f_0(x^\star) + \sum_{i=1}^m \lambda_i^\star f_i(x^\star) + \sum_{i=1}^p \nu_i^\star h_i(x^\star) \\ &\leqslant f_0(x^\star) \end{split}$$

- hence the two inequalities hold with equality
- x^* minimizes $L(x, \lambda^*, \nu^*)$
- $\lambda_i^{\star} f_i(x^{\star}) = 0, i = 1, 2, ..., m$: (known as **complementary** slackness)

$$\lambda_i^\star > 0 \implies f_i(x^\star) = 0, \qquad f_i(x^\star) < 0 \implies \lambda_i^\star = 0$$

Karush-Kuhn-Tucker (KKT) Conditions

KKT conditions (for a problem with differentiable f_i , h_i) are

1. primal constraints:

$$f_i(x) \leqslant 0, \quad i = 1, 2, \dots, m$$

 $h_i(x) = 0, \quad i = 1, 2, \dots, p$

- 2. dual constraints: $\lambda \geq 0$
- 3. complementary slackness:

$$\lambda_i f_i(x) = 0, \quad i = 1, 2, \dots, m$$

4. gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

if strong duality holds and $x,\ \lambda,\ \nu$ are optimal, they satisfy KKT conditions

KKT Conditions for Convex Problems

- if \tilde{x} , $\tilde{\lambda}$, $\tilde{\nu}$ satisfy KKT conditions for a convex problem, then they are optimal:
 - from complementary slackness: $f_0(\tilde{x}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$
 - from 4th condition (and convexity): $g(\tilde{\lambda},\tilde{\nu})=L(\tilde{x},\tilde{\lambda},\tilde{\nu})$

hence
$$f_0(\tilde{x}) = g(\tilde{\lambda}, \tilde{\nu})$$

- if Slater's condition is satisfied, then x is optimal $\iff \exists \lambda, \nu$ that satisfy KKT conditions
 - recall that Slater implies strong duality, and dual optimum is attained
 - generalizes optimality condition $\nabla f_0(x) = 0$ for unconstrained problem

Perturbation and Sensitivity Analysis

unperturbed optimization and its dual

$$\begin{array}{lll} \text{minimize} & f_0(x) & \text{maximize} & g(\lambda,\nu) \\ \text{subject to} & f_i(x) \leqslant 0, & i=1,2,\ldots,m \\ & h_i(x)=0, & i=1,2,\ldots,p \end{array}$$

perturbed optimization and its dual

$$\begin{array}{lll} \text{minimize} & f_0(x) & \text{maximize} & g(\lambda,\nu) - u^\top \lambda - v^\top \nu \\ \text{subject to} & f_i(x) \leqslant u_i, & i = 1,2,\ldots,m & \text{subject to} & \lambda \succcurlyeq 0 \\ & h_i(x) = v_i, & i = 1,2,\ldots,p \end{array}$$

- x is primal variable; u, v are parameters
- $p^*(u,v)$ is optimal value as a function of u,v
- $p^*(0,0)$ is optimal value of unperturbed problem

Global Sensitivity via Duality

assume strong duality holds for unperturbed problem, with $\lambda^\star,~\nu^\star$ dual optimal

apply weak duality to perturbed problem:

$$p^{\star}(u,v) \geqslant g(\lambda^{\star},\nu^{\star}) - u^{\top}\lambda^{\star} - v^{\top}\nu^{\star} = p^{\star}(0,0) - u^{\top}\lambda^{\star} - v^{\top}\nu^{\star}$$

implications

- if λ_i^{\star} large, p^{\star} increases greatly if $u_i < 0$
- if λ_i^{\star} small, p^{\star} does not decrease much if $u_i > 0$
- if ν_i^{\star} large and positive, p^{\star} increases greatly if $v_i < 0$
- if ν_i^{\star} large and negative, p^{\star} increases greatly if $v_i > 0$
- if ν_i^{\star} small and positive, p^{\star} does not decrease much if $v_i > 0$
- if ν_i^{\star} small and negative, p^{\star} does not decrease much if $v_i < 0$

Local Sensitivity via Duality

if (in addition) $p^*(u, v)$ is differentiable at (0, 0), then

$$\lambda_i = -\frac{\partial p^\star(0,0)}{\partial u_i}, \quad \nu_i = -\frac{\partial p^\star(0,0)}{\partial v_i}$$

proof (for λ_i^{\star}): from global sensitivity result,

$$\begin{split} \frac{\partial p^{\star}(0,0)}{\partial u_i} &= \lim_{t \to 0+} \frac{p^{\star}(te_i,0) - p^{\star}(0,0)}{t} \geqslant -\lambda_i^{\star}, \\ \frac{\partial p^{\star}(0,0)}{\partial u_i} &= \lim_{t \to 0-} \frac{p^{\star}(te_i,0) - p^{\star}(0,0)}{t} \leqslant -\lambda_i^{\star} \end{split}$$

 $p^{\star}(u)$ for a problem with one (inequality) constraint:

Duality and Problem Reformulations

- equivalent formulations of a problem can lead to very different duals
- reformulating primal problem can be useful when dual is difficult to derive, or uninteresting

common reformulations

- introduce new variables and equality constraints
- make explicit constraints implicit or vice-versa
- transform objective or constraint functions, e.g. replace $f_0(x)$ by $\varphi(f_0(x))$ with φ convex, increasing

Introducing New Variables and Equality Constraints

- unconstrained problem: minimize $f_0(Ax+b)$
- dual function is a constant: $g = \inf_{x} L(x) = \inf_{x} f_0(Ax + b) = p^*$
- we have strong duality, but dual is quite useless
- introduce new variable y and equality constraints y = Ax + b

$$\label{eq:f0} \begin{array}{ll} \mbox{minimize} & f_0(y) \\ \mbox{subject to} & A\,x + b - y = 0 \end{array}$$

• dual of reformulated problem is

minimize
$$b^{\top} \nu - f_0^{\star}(\nu)$$

subject to $A^{\top} \nu = 0$

• a nontrivial, useful dual (providing the conjugate f_0^{\star} is easy to express)

Example: Norm Approximation

- minimize ||Ax b||
- introduce new variable y and equality constraints y = Ax b

$$\label{eq:minimize} \begin{array}{ll} \mbox{minimize} & \|y\| \\ \mbox{subject to} & A\,x - b - y = 0 \end{array}$$

• recall conjugate of general norm:

$$||z||^* \equiv \begin{cases} 0 & ||z||_* \leqslant 1\\ \infty & \text{otherwise} \end{cases}$$

• dual of reformulated norm approximation problem is

minimize
$$b^{\top}\nu$$

subject to $A^{\top}\nu = 0$, $\|v\|_{\star} \leqslant 1$

Theorems of Alternatives

- consider two systems of inequality and equality constraints
- called \mathbf{weak} alternatives if no more than one system is feasible
- called **strong alternatives** if exactly one of them is feasible
- examples: for any $a \in \mathbb{R}$ with variable $x \in \mathbb{R}$,
 - -x > a and $x \le a 1$ are weak alternatives
 - -x > a and $x \le a$ are strong alternatives
- a **theorem of alternatives** states that two inequality systems are (weak or strong) alternatives
- can be considered the extension of duality to feasibility problems

Feasibility Problems

• consider a system of (not necessarily convex) inequalities and equalities

$$\begin{split} f_i(x) \leqslant 0, \quad i = 1, 2, \ldots, \, m \\ h_i(x) = 0, \quad i = 1, 2, \ldots, \, p \end{split} \label{eq:final_point}$$

• express as feasibility problem

$$\begin{array}{ll} \text{minimize} & 0 \\ \text{subject to} & f_i(x) \leqslant 0, \quad i=1,2,\,\dots,\,m \\ & h_i(x)=0, \quad i=1,2,\,\dots,\,p \end{array}$$

• if system is feasible, $p^* = 0$; if not, $p^* = \infty$

Duality for Feasibility Problems

dual function of feasibility problem is

$$g(\lambda, \nu) = \inf_{x} \left(\sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x) \right)$$

- for $\lambda \geq 0$ we have $g(\lambda, \nu) \leq p^*$
- it follows that feasibility of the inequality system

$$\lambda \geq 0, \quad g(\lambda, \nu) > 0$$

implies the original system is infeasible

- so this is a weak alternative to original system
- it is strong if f_i convex, h_i affine, and a constraint qualification holds
- g is positive homogeneous so we can write alternative system as

$$\lambda \geq 0, \quad g(\lambda, \nu) \geqslant 1$$

Example: Nonnegative Solution of Linear Equations

• consider system

$$Ax = b, \quad x \geq 0$$

• dual function is

$$g(\lambda, \nu) = \begin{cases} -\nu^{\top} b & \text{if } A^{\top} \nu = \lambda \\ -\infty & \text{otherwise} \end{cases}$$

• can express strong alternative of $Ax = b, x \geq 0$ as

$$A^\top \nu \succcurlyeq 0, \quad \nu^\top b \leqslant -1$$

(we can replace $\nu^{\top}b \leqslant -1$ with $\nu^{\top}b = -1$)

Farkas Lemma

• Farkas lemma:

$$Ax \leq 0, \quad c^{\top}x < 0$$

and

$$A^{\top} y + c = 0, \quad y \succcurlyeq 0$$

are strong alternatives

• proof: use (strong) duality for (feasible) LP

minimize
$$c^{\top}x$$

subject to $Ax \leq 0$