

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE ENGENHARIA QUÍMICA

1) Três carros, interconectados por molas, estão sujeitos às cargas P_1 , P_2 e P_3 , como mostrado na figura a seguir. Os deslocamentos dos carrinhos (x_i , i=1, 2, 3) podem ser encontrados minimizando a potencial energia do sistema (f), dada por:

$$f(\mathbf{X}) = \frac{1}{2}\mathbf{X}^{\mathrm{T}}[K]\mathbf{X} - \mathbf{X}^{\mathrm{T}}\mathbf{P}$$

$$[K] = \begin{bmatrix} k_1 + k_4 + k_5 & -k_4 & -k_5 \\ -k_4 & k_2 + k_4 + k_6 & -k_6 \\ -k_5 & -k_6 & k_3 + k_5 + k_6 + k_7 + k_8 \end{bmatrix}$$

$$\mathbf{P} = \begin{cases} P_1 \\ P_2 \\ P_3 \end{cases} \quad \mathbf{X} = \begin{cases} x_1 \\ x_2 \\ x_3 \end{cases}$$

Figura: Dispositivos conectados por molas.

Sabendo que $k_1 = 5000$ N/m, $k_2 = 1500$ N/m, $k_3 = 2000$ N/m, $k_4 = 1000$ N/m, $k_5 = 2500$ N/m, $k_6 = 500$ N/m, $k_7 = 3000$ N/m, $k_8 = 3500$ N/m, $k_1 = 1000$ N, $k_2 = 2000$ N e $k_3 = 3000$ N, implemente o **Método da Variável Métrica** (BFGS ou DPF) para minimizar $k_1 = 1000$ N, or one of the point of th

OBS: Use o Método da Seção Áurea ou o Método da Aproximação Polinomial para resolver o problema unidimensional.

- 2) Resolva os seguintes problemas de programação linear considerando o **Método Gráfico**:
 - a) Min $f(x)=2x_1$ sujeito à: $-x_1+2x_2 \le 0$; $2x_1-3x_2 \le 3$; $x_1+3x_2 \le 6$; $x_1 \ge 0$; $x_2 \ge 0$
 - b) Max $f(x)=-4x_2$ sujeito à: $-x_1+2x_2 \le 0$; $2x_1-3x_2 \le 3$; $x_1+3x_2 \le 6$; $x_1 \ge 0$; $x_2 \ge 0$
 - c) Max $f(x)=3x_1+3x_2$ sujeito à: $-x_1+2x_2 \le 0$; $2x_1-3x_2 \le 3$; $x_1+3x_2 \le 6$; $x_1 \ge 0$; $x_2 \ge 0$
- 3) Encontre no *software* Matlab[®] a função que resolve um problema de **programação linear** para o estudo de caso descrito em Carpio, R. C; Silva, R. J.; Jorge, A. B. "Otimização da Mistura de Combustíveis Secundários Alternativos Visando Atender as Restrições Operacionais e Ambientais em Fornos de Cimenteiras", Pesquisa Operacional e os Recursos Renováveis, PP. 1939-1947, 2003.

OBS: As restrições do problema em questão são todas lineares. Já a função objetivo tem duas contribuições, a saber, uma linear e uma não-linear. Neste caso, você deve **negligenciar** a contribuição não-linear para resolver o problema considerando um método de programação linear (rotina já implementada no Matlab[®]). Compare os resultados obtidos com os reportados no artigo.