

# SCHOOL OF COMPUTING

Faculty of Engineering

# UNIVERSITI TEKNOLOGI MALAYSIA FINAL EXAMINATION SEMESTER I, 2018/2019

SUBJECT CODE

**SCSR 1213** 

**SUBJECT NAME** 

**NETWORK COMMUNICATIONS** 

**SECTION** 

ALL

TIME

2.30 PM - 5.30 PM

DATE/DAY

01/01/2019 (TUESDAY)

**VENUES** 

**DEWAN SULTAN ISKANDAR** 

#### **INSTRUCTIONS:**

ANSWER ALL QUESTION IN THE ANSWER BOOKLET PROVIDED.

#### (Please Write Your Lecturer Name And Section In Your Answer Booklet)

| Name          |  |                                           |              |
|---------------|--|-------------------------------------------|--------------|
| I/C No.       |  | ·····                                     | <del> </del> |
| Year / Course |  | <br>· · · · · · · · · · · · · · · · · · · |              |
| Section       |  |                                           |              |
| Lecturer Name |  |                                           | <del></del>  |

This question paper consists of TEN (10) printed pages excluding this page.

# Part A [20 Marks]

| 1. | Which of the following is FALSE about th                                            | e data-plane?                                |      |
|----|-------------------------------------------------------------------------------------|----------------------------------------------|------|
|    | A. Queuing may occur at input buffer inside switching fabric.                       | if datagrams arrive faster than forwarding   | rate |
|    | B. Queuing delay and datagrams loss inside switching fabric.                        | may occur due to output port buffer overf    | low  |
|    | C. Implement the distance vector algori                                             | thm inside switching fabric.                 |      |
|    | D. Move the datagrams using local forv                                              | varding table inside a router.               |      |
| 2. | The following are used in switching fa processing in the router EXCEPT.             | bric technique for the input and output p    | ort  |
|    | A. Memory                                                                           | C. Crossbar                                  |      |
|    | B. Processor                                                                        | D. Bus                                       |      |
| 3. | All the following statements are TRUE about EXCEPT:                                 | out Internet Control Message Protocol (ICM   | P),  |
|    | A. ICMP is used by ping for echo reque                                              | st/reply.                                    |      |
|    | B. ICMP is used for error reporting.                                                |                                              |      |
|    | C. ICMP uses UDP at transport layer.                                                |                                              |      |
|    | D. ICMP is used for error correction.                                               |                                              |      |
| 4. | Because of DHCP's ability to automate the                                           | e network-related aspects of connecting a ho | ost  |
|    | into a network, it is often referred to as a                                        | protocol.                                    |      |
|    | A. static                                                                           | C. automated                                 | ÷    |
|    | B. pre-configured                                                                   | D. plug-and-play                             |      |
| 5. | To transmit a big audio file to a set of 10 type of transmission would be best fit? | different hosts in a network of 55 hosts, wh | ıat  |

A. Broadcast

C. Unicast

B. Multicast

D. Anycast

6. Which of the following routing protocol can be used to determine optimal paths for source-destination pairs that are located at the distant Autonomous System (AS)?

A. RIP

C. BGP

B. OSPF

D. EIGRP

- 7. What does a router use to fill its forwarding table to send packets to its destination?
  - A. Routing algorithm
  - B. Maximum Segment Size
  - C. Pipeline algorithm
  - D. Network Address Translation
- 8. Referring to the topology in Figure 1, how many subnets are there?



Figure 1

A. 4

C. 8

B. 9

D. 10

9. Virtual Local Area Networks (VLANs) provide a solution for the following problems EXCEPT.

| Α       | Lack of traffic isolation                                                                        | C.     | Managing users                   |
|---------|--------------------------------------------------------------------------------------------------|--------|----------------------------------|
| В       | . Inefficient use of switches                                                                    | D.     | Error recovery                   |
| 10. Tru | nk port will carry datagram from                                                                 |        |                                  |
| Ą       | multiple VLANs from single physical switch                                                       |        |                                  |
| В       | . multiple VLANs from multiple physical swit                                                     | ches   |                                  |
| C       | . multiple VLANs from selected port number                                                       |        |                                  |
| D       | . single VLAN from single physical switch                                                        |        |                                  |
| 11. Whi | ich is broadcast MAC address                                                                     |        |                                  |
| A       | . 255.255.255                                                                                    | C.     | FF-FF-FF-FF-FF                   |
| В       | . 62-FE-F7-11-89-A3                                                                              | D.     | FF-FF-FF-00-00-00                |
|         | ARP table also contains avalue, which indeted from the table.                                    | licate | es when each mapping will be     |
| A       | A. time-to-live                                                                                  | C.     | time-to-lost                     |
| B       | 3. time-to-remove                                                                                | D.     | time-to-delete                   |
| 13. Whi | ich address is used in frame headers in Link Lay                                                 | er to  | identify source and destination? |
| A       | A. Routing address                                                                               | C.     | MAC address                      |
| В       | 3. IP address                                                                                    | D.     | Port address                     |
|         | nnel Partitioning Protocols in multiple access lindcast channel among nodes. Which of the follow |        | <b>.</b>                         |
| A       | A. TDM shares the broadcast channel in time                                                      |        |                                  |
| В       | B. FDM divides channel into different frequencies                                                | es     |                                  |
| C       | TDM assigns the same time slot for the difference.                                               | ent n  | odes                             |
| D       | D. FDM using the different frequency for node A                                                  | A and  | l node B.                        |

|                     | gorithm used by CSMA/CD to reso collision happens?                          | lve the issue of which node w | ill transmit |
|---------------------|-----------------------------------------------------------------------------|-------------------------------|--------------|
| A. Collisio         | on detection algorithm                                                      |                               |              |
| B. Binary           | exponential backoff algorithm                                               |                               |              |
| C. Multipl          | le access collision algorithm                                               |                               |              |
| D. Frame            | transmission turn algorithm                                                 |                               |              |
| 16. How polling p   | protocol in taking-turn protocol work                                       | s?                            |              |
| A. One no robin fa  | de be the master node to poll each of ashion                                | of the node to transmit frame | in a round-  |
| B. One sp order.    | ecial frame is exchanged among the                                          | e nodes to transmit frame in  | some fixed   |
| C. Every r          | node will take turn to transmit frame                                       | without the control of master | node.        |
| D. Polling will hap | each of the node to transmit frame                                          | e in a random order so that n | o collision  |
|                     | ile host moves beyond the range of ill change its point of attachment       |                               | •            |
| A. handof           | f                                                                           | C. fading                     |              |
| B. multipa          | ath propagation                                                             | D. passive scanning           |              |
|                     | on will often be responsible for co<br>s with which it is associated. Which | -                             | -            |
| A. Wireles          | ss host                                                                     | C. Access points              |              |
| B. Ad hoc           | network                                                                     | D. Server                     |              |

| 19. Some mix rates in the wheress            | network can increase or decrease depending on following | 15 |
|----------------------------------------------|---------------------------------------------------------|----|
| factor EXCEPT                                |                                                         |    |
| A. distance                                  | C. number of users                                      |    |
| B. channel conditions                        | D. memory                                               |    |
| 20. The 802.11b: 2.4GHz-2.485Gl frequencies. | Iz spectrum is divided into channels at differen        | at |
| A. 9                                         | C. 11                                                   |    |
| D 10                                         | D 8                                                     |    |

#### PART B [80 Marks]

#### Question 1 [3 Marks]

Supposed the link capacity for a router is 25 Mbps and RTT for a packet is 250 msec. If the TCP flow of packets is 9, calculate the buffering needed for the router.

#### **Question 2 [4 Marks]**

Buffering happens at input ports of a router. Describe how a Head-Of-the-Line blocking (HOL blocking) may occur inside an input-queued switching fabric.

#### Question 3 [5 Marks]

A 1600-byte datagram is sent into a link that has a Maximum Transmission Unit of 500 bytes. Suppose the original datagram is stamped with the identification number of 283. Using the header given in Figure 2 below, complete the table in your answer booklet with the correct values.

| Fragment Bytes ID C | Offset | Flag |
|---------------------|--------|------|
|---------------------|--------|------|

Figure 2

#### Question 4 [13 Marks]

Ali, who works with the internet company *Tree-Co* uses a computer which has the IP address of 192.164.55.110/27.

- (a) Calculate the network address and the broadcast address of the subnet that Ali's PC resides in. Show your workings clearly. [3 marks]
- (b) List four (4) other addresses that can be used by Ali in this subnet? [2 marks]
- (c) Ahmad, *Tree-Co's* IT Manager, has been asked to redesign the subnet for the company's network. The company is planning to use private address of the network 10.10.10.0/24. He is requested to divide this network address into 4 equal sized subnet. Please show your subnet calculation to achieve this, clearly highlighting the new subnetwork addresses. [ 4 marks]

- (d) Ali then moved to a different company. He is now the Manager of a small start-up company called *HopScotch*. His office computer uses the IP address 10.0.0.1/24. Ali knows this is a private address, but he still can connect to the Internet. Ali is confused.
  - i. Explain clearly how Ali can connect to the Internet using a private IP address.[3 marks]
  - ii. Give 1 reason why HopScotch is using this method of addressing? [1 mark]

#### **Question 5[13 Marks]**

Consider the following network topology. Answer the following questions.



Figure 3

(a) Using the indicated link costs in Figure 3, use Dijkstra's shortest-path algorithm to compute the shortest path from u to all network nodes. Complete Table 1 with the correct values. [6 marks]

Table 1

| Step N' $D(x)$ , $p(x)$ $D(t)$ , $p(t)$ $D(v)$ , $p(v)$ $D(w)$ , $p(w)$ $D(y)$ , $p(y)$ $D(z)$ , | p(z) |
|--------------------------------------------------------------------------------------------------|------|
|--------------------------------------------------------------------------------------------------|------|

(b) Produce a forwarding table for u by completing Table 2. [3 marks]

Table 2

| Destination | Link | Least Cost |
|-------------|------|------------|
|             |      |            |

(c) Calculate the cost from u to z by using the Bellman-Ford algorithm. [4 marks]

#### **Question 6 [10 Marks]**

(a) Two dimensional parity scheme uses EVEN parity. For the following received data, identify the error bit. [2 marks]

#### Received data:

- (b) Sender is sending the following data 100100. Using CRC technique with r = 3 and G = 1101, what is the value for R and data sent. [4 marks]
- (c) Receiver received the following data 100000001. Using CRC technique with G = 1101, what is the value for CRC and will there be error detected at receiver? [4 marks]

### Question 7 [12 Marks]

Describe the operation of CSMA/CD in random access protocol for broadcast channel and how the collision issue is handled.

# **Question 8 [10 Marks]**

Please refer to Figure 4 and Table 3 to answer the following questions.



Figure 4

Table 3

| Host Name        | IP Address        | MAC Address       |
|------------------|-------------------|-------------------|
| PCA              | 192.168.1.111/24  | 01-12-23-34-45-56 |
| РСВ              | 192.168.1.115/24  | 31-13-33-33-45-56 |
| PCC              | 192.169.55.222/24 | 62-FE-F7-11-89-A3 |
| PCD              | 192.169.55.223/24 | 7C-BA-B2-B4-91-10 |
| Router 1 (int 1) | 192.168.1.1/24    | 6A-12-55-34-55-55 |
| Router 1 (int 2) | 192.168.55.1/24   | 9A-12-66-34-75-58 |

- a. Describe the ARP process used by PCA when it needs to transmit a datagram to PCB.\*Note: Do not need to explain routing process. [4 Marks]
- b. Describe the ARP process used by PCA when it needs to transmit a datagram to PCC.\*Note: Do not need to explain routing process. [4 Marks]

c. PCC needs to send datagrams to PCB and PCD. Complete the ARP table for PCC in Table 4. [2 Marks]

Table 4

| MAC Address | IP Address |
|-------------|------------|
|             |            |

# Question 9 [10 Marks]

- (a) List four (4) steps on how host associate with an Access Point until the host get an IP address. [4 Marks]
- (b) The problem of triangle routing exists for indirect routing of mobile user moves between networks. Explain the solution for this problem. [6 Marks]