Math 444 - Homework 9

Name:

1. Let $\gamma(t)=2e^{2it}-e^{it}$, $0 \le t \le 2\pi$. This path loops around the origin twice as shown below. Calculate $\int_{\gamma} \frac{dz}{z}$ for this path. Hint: You can make it easier if you break the path into two simple closed curves, an inner one and an outer one, then apply the Cauchy Integral Formula.

2. Let γ be the ellipse |z-1|+|z-2|=3. Use a partial fraction decomposition (i.e., find the constants A and B below) to calculate

$$\oint_{\gamma} \frac{z}{(z-1)(z-2)} dz = \oint_{\gamma} \frac{A}{z-1} + \frac{B}{z-2} dz.$$

3. What if you calculate the integral in problem 2 by splitting the elliptical path into a sum of two separate integrals along positively oriented paths γ_1 and γ_2 as shown in the figure below? Find the values of $\oint_{\gamma_1} \frac{z}{(z-1)(z-2)} dz$ and $\oint_{\gamma_2} \frac{z}{(z-1)(z-2)} dz$. Check to see if the sum of these two integrals is the same as the integral in problem 2.

4. What is the power series for $f(z) = \frac{z}{z^2 - 2i}$ centered at w = 0? What is the radius of convergence for that power series?

Use Cauchy's integral formulas (including for derivatives) to evaluate the following.

5.
$$\oint_{|z-3|=2} \frac{e^z}{z(z-3)} dz$$
 6. $\oint_{|z|=4} \frac{e^z}{z(z-3)} dz$ 7. $\oint_{|z|=4} \frac{\exp(3z)}{(z-\pi i)^2} dz$

6.
$$\oint_{|z|=4} \frac{e^z}{z(z-3)} \, dz$$

7.
$$\oint_{|z|=4} \frac{\exp(3z)}{(z-\pi i)^2} dz$$

8.
$$\oint_{|z|=3} \text{Log}(z-4i) dz$$
 9. $\oint_{|z|=1} \frac{\cos(2z)}{z^3} dz$

$$9. \oint_{|z|=1} \frac{\cos(2z)}{z^3} \, dz$$

10.
$$\oint_{|z|=3} \frac{\exp(2z)}{(z-1)^2(z-2)} \, dz$$

11. Let $p(z)=(z-\frac{1}{2})(z-2)(z-\frac{i}{2})$. What is the winding number of the path $\gamma_1(t)=p(e^{it}), 0 \le t \le 2\pi$ around the origin? What about the path $\gamma_2(t)=p(3e^{it}), 0 \le t \le 2\pi$?

12. What is the winding number of the path $\gamma(t) = 2e^{3it} + 5e^{2it} - 3e^{it}$, $0 \le t \le 2\pi$ around the origin? Hint: $\gamma(t)$ is a polynomial function of e^{it} . What are the roots of that polynomial?