Intro to Networking

Offensive Network Security Florida State University Spring 2014

Outline

- A look into the layers of computer network communication
- Understand
 - Switched Ethernet
 - Internet Protocol
 - Transmission Control Protocol
 - User Datagram Protocol
- Get to know these protocols so we know how to manipulate/exploit for our needs

Network Terms (General)

- Host (end-node): the sending or receiving end
- Frame: data transmission which utilizes synchronization
- Packet: a unit of data sent through a network
- Port: an abstract end-point used to specify where an application is listening, sending, or receiving
- Protocol: a set of rules that governs how communication will occur
- Topology: the structure of a network
- Local Area Network (LAN): a small interconnected network which commonly uses Switched Ethernet topology
- Wide Area Network (WAN): a large geographical network which utilize routers for communication

OSI and TCP/IP Model

Application	Layer 7
Presentation	Layer 6
Session	Layer 5
Transport	Layer 4
Network	Layer 3
Data Link	Layer 2
Physical	Layer 1

Application Layer 4
Transport Layer 3
Internet Layer 2
Link Layer 1

TCP/IP Model

OSI Model

Switched Ethernet

- Most common LAN technology
- Considered Layer-1 and Layer-2 technology
- IEEE 802.3 (standardized)
- Utilizes 48-bit MAC addresses to "uniquely" identify each physical socket on a Network Interface Controller (NIC)
- Uses frames to send and receive data
- No loops in topology / Spanning Tree Protocol
- Ethernet types
 - Address Resolution Protocol (ARP) (0x0806)
 - Internet Protocol (IP) (0x0800)
 - o GOOSE (IEC 61850)
 - o SV (IEC 61850)

Ethernet Frame

Ethernet Switch

- Layer-2 Device
- Uses store-and-forward
 - Buffer each frame
 - Save sending MAC & port
- Broadcast frame if no match in table

MAC/Port Table

1 2 3 4	/	Port	MAC
Ethernet Switch	Ethernet Switch	1	AA:AA:AA:DD:EE:FF
Linemet Switch		3	BB:BB:BB:DD:FF:FF
		2	CC:CC:CC:BB:CC:DD

Switched Ethernet Topology

Internet Protocol v4

- Most popular protocol to route internet traffic
- Stateless and connectionless protocol
- Uses 32-bit (4-bytes) addresses
 - Addresses fully exhausted
 - Uses to NAT to combat IP exhaustion
- Private IP ranges
 - 0 10.0.0.0/8
 - 0 172.16.0.0/12
 - 0 192.168.0.0/16
- Reserved
 - 0 127.0.0.0/8
 - 0 224.0.0.0/4

IP Packet

Version	IHL	Type of Service	Total Length	
	Identi	fication	Flags	Fragment Offset
Time to	Live	Protocol	Header Checksum	
		Source IP	' Address	
		Destination	IP Address	
IP Options		Padding		

TCP

- RFCs: 675, 793, 1122, 2581
- Transport layer (layer-4)
- Provides
 - Reliable connection
 - Ordered delivery
 - Error check
- Exchanges data packets (header + body)
- Flags
 - URG -- urgent
 - ACK -- acknowledgement
 - o PSH -- push data
 - RST -- reset connection
 - SYN -- synchronize protocol (sequence numbers)
 - FIN -- sender is finished sending data

TCP cont...

Protocol States

- listen -- waiting for connection
- syn-sent -- first handshake packet sent / waiting SYN-ACK
- syn-received -- first handshake packet received / waiting for ACK
- established -- open connection between sender / receiver
- fin-wait-1 -- closing, waiting for remote termination ACK
- fin-wait-2 -- waiting for remote termination request
- close-wait -- local user termination requested
- closing -- waiting for termination request ACK
- last-ack -- waiting for connection termination ACK
- time-wait -- waiting specified time after connection close
- closed -- connection gone

TCP Header

TCP Three-way Handshake

TCP Termination

UDP

- RFC 768
- Transport layer (layer-4)
- Connectionless
- Sends messages known as datagrams
- No handshakes
- No guarantee of delivery
- Stateless, possible duplicates

UDP Header

Reading Resources

- Tanenbaum, Andrew. "Computer Networks". 5th ed., 2010.
 - Excellent introduction to computer networking
 - Covers all layers (Physical to Application)
 - Covers major protocols (i.e. HTTP, SMTP, etc.)
- Calvert, Kenneth L and Donahoo, Michael J. "TCP/IP Sockets in C,
 Second Edition: Practical Guide for Programmers". 2nd ed., March 2009
- Neither books are required reading for this course but would be great additions to the library if interested in having reading references