

问题 A. 制造一台计算机

你想制造一台计算机来实现特定的功能:给定一个整数 x,判断 x 是否位于区间 [L, R] 内。为了实现这个目标,你设计了一个边权重为 0 和 1 的有向无环图 (DAG),该图包含一个内程为 0 的起点节点和一个外程为 0 的终点节点。从起点节点开始,沿着一条路径到达终点节点,遍历的边权重序列就构成了范围 [L, R] 内一个整数的二进制表示,不含前导零。范围 [L, R] 内的每一个整数必须正好对应于该图中的一条唯一路径。这样,只要检查遍历该 DAG 是否能构造出整数的二进制表示,就能确定该整数是否位于 [L, R] 范围内。

显然,您可以将每个整数的对应路径分成单独的链。但是,您意识到,对于一个大范围,这样的 DAG 需要太多节点,而您的计算机只有 256 MiB 内存,无法存储。因此,你需要压缩这个 DAG,允许不同的路径共享节点,以减少节点和边的数量。从形式上看,您需要构建一个节点数不超过 100 个的 DAG,其中每个节点的缺度不超过 200。该 DAG 的边权重必须为 0 和 1,其中一个起点节点的内度为 0,一个终点节点的外度为 0。在 [L,R] 范围内的每个整数都必须与该 DAG 中从起点到终点的一条唯一路径相对应,并且任何路径都不能代表 [L,R] 范围之外的任何整数。请注意,图中任何路径形成的二进制序列都不能有前导零。两个节点之间可能有两条权重不同的边。

输入

包含两个正整数 L、R 的单线($1 \le L \le R \le 10^6$)。

输出

第一行应输出节点数 n (1 $\leq n \leq 100$)。

在接下来的 n 行中, \hat{g} i 行以整数 k 开头($0 \le k \le 200$),表示从节点 i 输出的边的数量。 然后输出 2 - k 个整数 $a_{i,k}$, $v_{i,k}$ ($1 \le a_{i,k} \le n$, $a_{i,k} \ne i$, $v_{i,k} \in \{0,1\}$),这表示节点 i 有一条权重为 $v_{i,k}$ 的有向边通向节点 $a_{i,k}$ 。您必须确保输出表示的有向无环图满足要求。

标准输入	标准输出
5 7	8
	3 2 1 3 1 4 1
	1 5 0
	1 6 1
	1 7 1
	1 8 1
	1 8 0
	1 8 1

2024 年中国大学生程序设计竞赛,哈尔滨现场	
东北林业大学,20240年 10 月 20 日	

问题 B.凹形船体

简单多边形是欧几里得平面上的一条封闭曲线,由两端相交的直线段组成。两条线段在每个端点相交,线段之间没有其他交点。

简单多边形可分为两类: 凸多边形和凹多边形。凸多边形的定义是: 对于多边形内部的任意两点,这两点之间线段上的所有点也位于多边形内部,或者位于多边形的边界上。不凸的简单多边形称为凹多边形。如下图所示,左边的是凸多边形,右边的是凹多边形。

现在,给定 *n* 个点,所有点都是不同的,且没有三个点是相邻的,你的任务就是从这 *n* 个点中选择一些(也许是全部),并以任意顺序将它们连接起来,以形成一个面积严格为正的**凹多边形**。你需要确定所能形成的凹多边形的最大面积。

输入

第一行包含一个整数 $T(1 \le T \le 10^4)$,表示测试用例的数量。

对于每个测试用例,第一行包含一个正整数 n(3 $\leq n \leq 10^5$),表示点的数量。

接下来的 n 行分别包含两个整数 x_i , y_i ($-10^9 \le x_i$, $y_i \le 10^9$),代表每个点的坐标。保证所有点都是不同的,没有三个点是相邻的。

所有测试案例的 n 之和不超过 2-10。 5

输出

对于每个测试案例,如果不可能形成一个面积严格为正的凹多边形,则输出-1;否则,输出一个正整数,代表所能形成的凹多边形最大面积的两倍。可以证明答案总是正整数。

东北林业大学,2024年10月20日

标准输入	标准输出
2	40
6	-1
-2 0	
1 -2	
5 2	
0 4	
12	
3 1	
4	
0 0	
10	
0 1	
1 1	

问题 C. 在哈尔滨指明方向

在一些地区,人们更习惯于用基本方向来指路,例如:向南走到第二个路口,然后向东走到第一个路口。但是,由于哈尔滨的路网规划比较复杂,很多街道并不完全符合基本方向。因此,如果您向在哈尔滨生活了很长时间的人提供绝对路径指示,他们可能很难理解您打算走的路线。

在哈尔滨,人们更习惯于用相对方向来指引方向。对于同一个地点,哈尔滨人可能会先指示你朝南走,然后说:沿路直走到第二个十字路口,然后左转,再直走到第一个十字路口。

为了解决这种差异,你决定编写一个程序,将使用红心方位的指路方式转换成哈尔滨居民喜欢的方式。当然,使用真实的哈尔滨地图会太复杂,所以在这个问题中,你可以假设地图是一个无限大的网格。

输入

第一行包含一个整数 T (1 \leq T \leq 10⁴),表示测试用例的数量。

对于每个测试用例,第一行包含一个整数 n(1 $\leq n \leq 10$),表示方向指令的数量。

接下来的 n 行分别描述一条绝对位置指令,由一个字符 d (dE{N, S, W, E})和一个整数 x ($1 \le x$ ≤ 10)组成,表示 "沿 d 方向前往第 x f交叉点"。这里,N 代表北,S 代表南,W 代表西,E 代表东。

保证两个连续的指令不会有相同或相反的方向(南北方向相反,东西方向也相反)。

输出

对于每个测试用例,第一行输出一个整数 m(1 $\leq m \leq 20$)和一个字符 f ($f \in \{N, S, W, E\}$),代表哈尔滨式指令的数量和初始朝向,方向的含义与输入相同。

接下来,输出 m 行。每行以一个字符 $g \in \{Z, L, R\}$ 开始,其中 Z 表示直行,L 表示左转,R 表示右转。如果字符为 Z,该行还必须包含一个整数 y ($1 \le y \le 100$),表示直行到 \hat{g} y 个交叉点。第一条输出指令必须以 Z 开头。连续指令不能有 相同的字符 g , L 和 R 指令不能相邻。

在这个问题中,你不需要最小化 m。如果有多种方法到达同一个目的地,那么任何有效的解法都是可以接受的。

标准输入	标准输出
1	3 S
2	Z 2
S 2	L

问题 D. 一个简单的字符串问题

给您一个 2 行 *n* 列的字符网格,每个单元格包含一个小写字母。您可以从网格中的任意位置开始移动几步,每一步都可以向右或向下移动,并在任意单元格处停止。将依次访问的单元格中的字符连接起来,就形成了一个字符串。

当且仅当存在一个非空字符串 T,使得 S = TT 时,字符串 S 称为双字符串。例如,aa 和 xyzxyz 是双字符串,而 a 和 xyzyz 不是。

给定字符网格,求最长双字符串的长度。

输入

第一行包含一个整数 n (1 $\leq n \leq 2 \times 10^5$),表示字符网格的列数。

接下来的两行包含两个长度为n的字符串,仅由小写英文字母组成,代表字符网格。

输出

输出一个整数,表示所能获得的最长双字符串的长度。

实例

标准输入	标准输出
5	6
abcab	
acabc	
6	6
babbaa	
babaaa	
2	0
凫	

备注

在第一个例子中,最长的双字符串可以按如下方式得到(不唯一):

abcab acabc

大理石比赛

弹珠比赛是一种有趣的弹珠玩法,今天你想试试吗?

在 x **轴**的负半轴上有 n 个起点, **第** i **7**起点位于 x_i 。共有 m **7**弹珠,其中 m 为奇数, **第** i 个 弹珠的速度为 v_i 。在比赛中,每个弹珠以相等的概率随机选择一个起点,不同的弹珠可以选择相同的起点。然后,所有弹珠同时开始向 x **轴**的正方向移动。设 c_i 为 **第** i **7**弹珠选择的起点。在 t 时刻, **第** i **7**弹珠的坐标为 $x_{c_i} + v_i - t_o$

你是一名独特的弹珠比赛爱好者,并不关心哪颗弹珠最快。相反,你想知道所有 m \uparrow 弹珠坐标的**中位数**到达原点(即 x=0)的确切时间。长度为 m(其中 m 为奇数)的序列的中位数定义为按升序排序(索引从 1 开始)时位于m+1 位置的元素。由于比赛尚未开始,起点也未确定,因此您感兴趣的是这一时间的预期值。为避免浮点错误,您只需输出结果 modulo 10^9+7 (详见输出格式)。

输入

第一行包含两个正整数 n 和 m ($1 \le n$, $m \le 500$, 且 m 为奇数),分别代表起点数和弹珠数。

第二行包含 n 个整数 x_1 , x_2 , , x_n ($-10^9 \le x_i < 0$),代表每个起点的坐标。保证所有 x_i 都是不同的。

第三行包含 m 个整数 $v_1, v_2, ..., v_m$ (1 $\leq v_i \leq 10^9$),表示每个弹珠的速度。

输出

输出一个整数,代表预期时间 modulo 109 + 7。

形式上,设 $M = 10^9 + 7$ 。可以证明答案可以用不可约分数 p 表示,其中 p 和 q 是整数, $q / \equiv 0 \pmod{q}$ M)。输出等于 $p - q^{-1} \pmod{M}$ 的整数,其中 q^{-1} 表示 q modulo M 的模乘逆。换句话说,输出这样一个整数 x: $0 \le x < M \, \square x - q \equiv p \pmod{M}$ 。可以证明正好有一个 x 满足这个条件。

实例

标准输入	标准输出
2 3	250000004
-4 -5	
1 2 3	
3 3	50000006
-4 -5 -6	
1 2 3	

5 5	东北林业大学,2024 4 第986 <i>时2</i> 0日	
-4 -5 -6 -10 -2		
12324		
1232.		

备注

在第一个例子中,三个弹珠的速度分别为 1、2、3。考虑三个弹珠的初始位置:

• -4, -4, -4: 在 *t* = 2 时,三个弹珠的坐标分别为-2, 0, 2, 中位数位于

2024年中国大学生程序设计竞赛,哈尔滨现场 东北林业大学,2024年10月20日

出身

- -4、-4、-5: 在 *t* = 2 时,坐标为-2、0、1,中值位于原点。
- -4, -5, -4: 在 *t* = 2.5 时,坐标为-1.5, 0, 3.5, 中位数位于原点。
- 对于 (-4, -5, -5)、(-5, -4, -4)、(-5, -4, -5)、(-5, -5, -4)、(-5, -5, -5) ,中位数分别在 t = 2.5、t = 2、t = 2.5、t = 2.5 时位于原点。

总之,预期时间为 $\frac{2+2+2.5+2.5+2.5+2.5+2.5}{2}$ =9,8因此需要输出 9 - 4⁻¹ mod $(10^9+7)=250000004$ 。

问题 F. 1D 银河系

在一个神奇的一维空间中,有 n 颗行星,编号从 1 到 n。初始时(t=0),编号为 i 的行星位 于位置 x_i ,权重为 w_i (可以为负)。在现实世界中,行星是在万有引力的作用下运动的,同 样,在这个一维星系中,行星也是在吸引力的作用下运动的。不过,这个星系中的运动并不遵循传 统的物理定律。具体来说,对于这个一维星系中的任何行星来说,如果它左边行星的总重量大于 它右边行星的总重量,那么它在下一个时间步就会向左移动一个单位。反之,如果右边行星的 总重量大于左边行星的总重量,它就会向右移动一个单位。如果两边的重量相等,它就会保持 原来的位置。可以假设行星不会发生物理碰撞,也就是说它们可以互相穿过。

形式上 $_{\mathbf{W}}$ 让编号为 i 的行星在时间 t (t=0, 1, 2,) 的位置为 $x \circ i,t$ $w^l = \sum_{i,t}^{\mathbf{v}} \mathbf{v}_{i,t} < \mathbf{x}_{i,t}^{j}$,其右侧行星的总重量为

是 $\frac{r}{i,t} = \frac{1}{1} : x_i, t > x_i, t$ 。 行星在下一个时间步的位置 $x_{i,t+1}$ 由以下公式得出:

$$xi_{,t+1} = \begin{bmatrix} x_{i,t} & -1, & w^{l} > w^{r} \\ x_{i,t} & -1, & w^{l} > w^{r} \\ x_{i,t} & +1, & i,t & i,t \\ & w^{l},t < w^{l},t \end{bmatrix}$$

$$xi_{,t+1} = \begin{bmatrix} x_{i,t} & x_{i,t} & x_{i,t} \\ x_{i,t} & x_{i,t} & x_{i,t} \end{bmatrix} = w_{r}$$

有 q 个问题,每个问题都询问编号为 i 的行星在特定时间 t 的位置。

输入

第一行包含两个整数 n 和 q (1 $\leq n$, $q \leq 10^5$),分别代表行星数和查询次数。

接下来 n 行中的 \hat{g} i 行包含两个整数 x_i , w_i (-10° $\leq x_i$, $w_i \leq 10$ °),代表编号为 i 的行星的 初始位置和重量。

下面的 q 行分别包含两个整数 t 和 i $(0 \le t \le 10^9, 1 \le i \le n)$,代表一个查询。

输出

输出 a 行,每行代表相应查询的答案。

东北林业大学,2024年10月20日

标准输入	标准输出
4 12	0
0 1	1
1 2	-1
-1 3	2
22	1
0 1	0
0 2	0
0 3	1
0 4	0
11	1
1 2	1
1 3	0
1 4	
2 1	
22	
23	
2 4	

问题 G.欢迎参加在线会议--"我很荣幸"。

您想在 MeLink 上组织一次在线会议,与会者人数为 n,从 1 到 n。

会议的组织流程如下:首先,一个人创建会议并加入。然后,已经加入会议的成员可以邀请一些尚未加入会议的熟人,直到 n 人全部到齐。但是,有 k 个参与者目前正忙于调试代码;这些人可以被邀请参加会议,但不能创建会议或邀请其他人。

您要确定是否有可能让所有 n 名与会者参加会议。如果可能,则确定邀请计划。

输入

第一行包含三个整数 n, m, k (2 $\leq n \leq 2 \times 10^5$, 1 $\leq m \leq min\{5 \times 10$, $\frac{5n(n-1)}{2}$, 0 $\leq k \leq n$) ,分别代表参与者人数、熟人关系人数和当前忙碌的参与者人数。

接下来的 m 行分别包含两个整数 p_i 和 q_i ($1 \le p_i$, $q_i \le n$, p_i /= q_i),表示 p_i 和 q_i 彼此认识。熟人关系是相互的。保证同一熟人关系不会出现多次,而且每个参与者至少认识一个其他人。

输出

如果不可能组织 n 人参加的会议,则在第一行输出 "否"。

如果可以,则在第一行输出 "是"。然后,在第二行输出整数 t($1 \le t \le n$),表示组织会议所需的步骤数。

在下面的 t 行中,每行描述组织会议的一个步骤。在 \hat{x}_j 行,首先输出一个整数 x_j ($1 \le x_j \le n$)。如果 j=1, x_j 代表创建会议的与会者;否则, x_j 必须是已经加入会议的与会者。所有 x_j 必须是不同的。接着,输出一个整数 y_j ($1 \le y_j \le n$),表示 x_j 在这一步中邀请的与会者人数。最后,输出 y_j 整数 z_l ($1 \le z_l \le n$),代表被 x_j 邀请的参与者。所有 z_l 必须是不同的,在整个过程中,任何参与者都不能被邀请超过一次。

您不需要尽量减少 t, 任何有效的计划都可以接受。

东北林业大学,2024年10月20日

实例

标准输入	标准输出
4 5 2	是
3 4	2
1 2	1 2 2 3
1 3	2 1 4
2 3	
3 4	
2 4	
4.5.2	л ∠
4 5 3	没有
2 4 3	
1 2	
1 3	
2 3	
3 4	
2 4	

问题 H. 后续计算

给定长度为 m 的序列 $\{t\}$ 和长度为 L 的序列 $\{s\}$,其中 $\{s\}$ 由从左到右连续的 n 个片段组成。 \hat{g} i 段包含 l_i 个相同元素,每个元素的值为 v o i

序列 {s'} 是根据一定规则对序列 {s} 进行洗牌而形成的。具体来说

序列 $\{s'\}$ 满足 s' i- $k \mod = s_i$ (索引从 0 开始)。这里,k 是给定的正整数常数、并保证 $\gcd(k,L)=1$ 。

求 $\{t\}$ 作为子序列出现在 $\{s'\}$ 中的次数。形式上,如果有一个严格递增的索引序列 $0 \le i_1 < i_2 < \cdots < i_m < L$,使得对于每个 $j = 1, 2, \ldots, m, t_j = s'$,则 $\{t\}$ 被视为这些索引处 $\{s'\}$ 的子序列。您需要确定有多少个不同的索引组满足这一条件。由于答案可能很大,请输出结果,模数为998244353。

输入

第一行包含四个整数 n、m、k、L (1 $\leq n \leq 2 \times 10^3$, 1 $\leq m \leq 10$, 1 $\leq k < L \leq 10^9$, gcd (k, L) = 1)。

第二行包含代表序列 $\{t\}$ 的 m 个整数($1 \le t_i \le 10^3$)。 接下来的 n 行描述序列 $\{s\}$,每行包含两个整数 l_i , v_i ($1 \le l_i \le 10^9$, $1 \le v_i \le 10^3$)。 可以保证 $u_i = 1$ $u_i = L$ 。

输出

输出一个整数,代表取模为998244353的结果。

实例

标准输入	标准输出
4 2 17 27	76
3 1	
10 3	
61	
10 3	
11	
5 3 1789 15150	390415327
555 718 726	
72 555	
1029 718	
5807 726	
1002 718	
7240 555	

问题 I. 一个全新的几何问题

i=1 ⁱ ⋅

您想获得一个边长总和为S、超体积为M的超立方体。为此,您可以对当前超立方体执行降维和扩维操作。

- 减少尺寸: 删除一个维度。
- 维度扩展:添加一个新维度,其边长为任意正整数。

这两种操作都非常耗时,所以你想确定获得边长总和为S、超体积为M的超立方体所需的最少操作次数。

输入

第一行包含三个整数 n、S、M($1 \le n \le 10^5$, $1 \le S$, $M \le 10^{10}$)。 第二行包含 n 个整数,代表超立方体 $_i$ 的初始边长($1 \le a_i \le 10^{10}$)。

输出

输出一个整数,代表所需的最小运算次数。如果不可能获得满足条件的超立方体,则输出-1。

实例

标准输入	标准输出
256	2
12	
3 6 5	3
123	
2 114514 735134400	20
114 514	
2 4 7	-1
1 3	

备注

对于第一个样本,一种可能的方法是:首先删除边长为1的维度,然后添加边长为3的维度。

Porblem J. 新能源汽车

一辆新能源汽车装有 n 个电池,其中 \hat{g} i 个电池的容量为 a_i 单位。每个单位的电量可以让车辆行驶整 1 公里。车辆只能前进,不能倒退。每行驶 1 公里,您可以选择使用哪块电池。

最初,所有电池都充满电。在行驶过程中,车辆将经过 m 个充电站。 第j 个充电站位于距离起点 x_j 公里处,只能为第 t_j -个电池充电。每个充电站提供的电量不受限制。

你们的任务是确定新能源汽车的最大行驶距离。

输入

第一行包含一个整数 T($1 \le T \le 10^4$),表示测试用例的数量。

对于每个测试案例,第一行包含两个整数 n、m($1 \le n$, $m \le 10^5$),分别代表电池数量和充电站数量。

第二行包含 n 个整数 a_1, a_2, \dots, a_n ($1 \le a_i \le 10^9$),表示每块电池的容量。

接下来的 m 行分别包含两个整数 x_j , t_j ($1 \le x_j \le 10^9$, $1 \le t_j \le n$),表示每个充电站的位置及其可充电的电池。

对于每个测试用例,保证 $1 \le x_1 < x_2 < ... < x_m \le 10^9$ 。所有测试用例的 n 或 m 之和均不超过 2 - 10。 5

输出

对于每个测试用例,单行输出一个整数,代表车辆可行驶的最大距离。

标准输入	标准输出
2	12
3 1	9
3 3 3	
8 1	
2 2	
5 2	
1 2	
2 1	

问题 K. 农场管理

你放弃了编程,来到三江平原开始务农。在田间劳作的日子里,你每天都有固定的作息时间,现在每天工作的时间**正好是** m γ 单位。现在是收获季节,你需要收获和加工 n 种农作物。对于 \hat{g} i 种农作物,加工 1 个单位时间的利润为 w_i 。为了使你的日常工作不那么单调,对于每种 \hat{g} i 种农作物,每天加工的时间可以在 $[l_i, r_i]$ 之间(含整数)。

某一天,天气预报说明天会有一场大雨,你无法工作,所以你需要调整你的日程安排,在今天快速采集作物。具体来说,你最多可以选择一种农作物,并取消它的每日时间范围限制,允许处理这种农作物的时间是 [0, m] 范围内的任意整数。所有其他作物的时间范围保持不变。您也必须**精确地**工作 m γ 时间单位。

你要确定今天能赚取的最大利润。

输入

第一行包含两个整数 n 和 m ($1 \le n \le 10^5$, $1 \le m \le 10^{11}$),分别代表以时间为单位的作物种类数量和工作日长度。

接下来的 n 行分别包含三个整数 w_i 、 l_i 和 r_i ($1 \le w_i \le 10^6$, $1 \le l_i \le r_i \le 10^6$),表示作物的利润和时间限制。

保证
$$\mathbf{l}^{\sum_{n}}$$
 $\mathbf{l}^{\sum_{i=1}^{n}} \leq m \leq \mathbf{r}^{\sum_{i=1}^{n}} \mathbf{r}$ 。

输出

输出一个整数,代表你今天能赚取的最大利润。

标准输入	标准输出
5 17	109
2 3 4	
6 1 5	
8 2 4	
4 3 3	
7 5 5	

问题 L.树上的游戏

显然,树上任意两个节点之间都有一条唯一的简单路径。

小红和小兰在这棵树上玩游戏。在每次博弈中,双方都要从树上存在的所有 $\frac{n(n-1)}{n}$ 简单路径(不考虑方向)中**独立、均匀地**随机选择一条简单路径。注意,他们可能会选择相同的路径。让X表示两条所选路径共有的边的数量,博弈得分为 X 。²

你的任务是求出小红和小兰玩一次游戏时得分的期望值 $E(X^2)$,并输出结果,模数为 998244353(详见输出格式)。

输入

第一行包含一个正整数 T($1 \le T \le 10^4$),表示测试用例的数量。

对于每个测试用例,第一行包含一个正整数 n (2 $\leq n \leq 10^5$),表示树中的节点数。

接下来的 n-1 行分别包含两个正整数 u, v $(1 \le u, v \le n)$,表示节点 u 和 v 之间有一条边。

所有测试用例的 n 之和不超过 10 。 ⁶

输出

对于每个测试用例,输出一个整数,表示答案的模数为 998244353。

形式上,设 M = 998244353。可以证明答案可以用不可约分数 p 表示,其中 p 和 q 是整数, $q / \equiv 0$ $p \pmod M$)。输出等于 $p - q^{-1} \pmod M$)的整数,其中 q^{-1} 表示 $q \mod M$ 的模乘逆。换句话说,输出这样一个整数 $x \colon 0 \le x < M$ 且 $x - q \equiv p \pmod M$ 。可以证明正好有一个 x 满足这个条件。

示例

标准输入	标准输出
2	443664158
3	918384806
1 2	
2 3	
5	
1 2	
1 5	
3 2	
4 2	

备注

对于示例中的第一个测试用例,不取模的答案是迎。

东北林业大学,2024年10月20日

在这9个可能的案例中

- 在 2 种情况下,两条路径之间的公共边数为 0;
- 在6种情况下,两条路径之间的公共边数为1;
- 在 1 种情况下,两条路径之间的公共边数为 2。因此,答案

问题 M. 诡异的天花板

在学习上限函数时,一名学生写了以下伪代码:

```
1: 函数 F(a, b)
    i \leftarrow b
 2:
      while i \ge 2 do
 3:
         如果 a \mod i = 0,那么
            返回 ₫ i
         end if
 6:
      i \leftarrow i - 1
 7:
    结束 while
 8:
      返回
 9:
10: 结束函数
```

你知道这是不正确的,但你对函数f(a, b) 的特征很好奇的值。具体来说,你想计算 $^{\sum}n$

_{i=1} f(n, i)的值。

输入

第一行包含一个整数 T ($1 \le T \le 10^3$),表示测试用例的数量。对于每个测试用例,有一行包含一个整数 n ($1 \le n \le 10^9$)。

输出

对于每个测试用例,输出一行包含一个代表答案的整数。

标准输入	标准输出
3	21
5	10251
451	7075858
114514	