SiWaSim

Generated by Doxygen 1.9.3

1 Class Index	1
1.1 Class List	. 1
2 File Index	3
2.1 File List	. 3
3 Class Documentation	5
3.1 Configuration Class Reference	. 5
3.1.1 Constructor & Destructor Documentation	. 6
3.1.1.1 Configuration()	. 6
3.1.1.2 ~Configuration()	. 6
3.1.2 Member Function Documentation	. 6
3.1.2.1 loadConfiguration()	. 6
3.1.3 Member Data Documentation	. 6
3.1.3.1 addvol_ratio	. 6
3.1.3.2 cellCharecteristic	. 7
3.1.3.3 cellMode	. 7
3.1.3.4 exc_voltage	. 7
3.1.3.5 freqAt100	. 7
3.1.3.6 initial_weight	. 7
3.1.3.7 load_weight	. 7
3.1.3.8 max_diff_voltage	. 8
3.1.3.9 speedAt100	. 8
3.1.3.10 systemType	. 8
3.2 GPIO Class Reference	. 8
3.2.1 Constructor & Destructor Documentation	. 8
3.2.1.1 GPIO()	. 9
3.2.1.2 ∼GPIO()	. 9
3.2.2 Member Function Documentation	. 9
3.2.2.1 readPin()	. 9
3.2.2.2 setPinMode()	
3.2.2.3 setPWM()	. 9
3.2.2.4 writePin()	
3.3 I2C Class Reference	. 10
3.3.1 Constructor & Destructor Documentation	. 10
3.3.1.1 I2C()	. 10
3.3.1.2 ~I2C()	
3.3.2 Member Function Documentation	
3.3.2.1 begin()	. 10
3.3.2.2 readData() [1/2]	
3.3.2.3 readData() [2/2]	
3.3.2.4 writeData() [1/2]	
3.3.2.5 writeData() [2/2]	

3.4 IABoard Class Reference	11
3.4.1 Constructor & Destructor Documentation	12
3.4.1.1 IABoard()	12
3.4.1.2 ∼IABoard()	12
3.4.2 Member Function Documentation	12
3.4.2.1 detectBoard()	12
3.4.2.2 digitalRead() [1/2]	12
3.4.2.3 digitalRead() [2/2]	12
3.4.2.4 getAnalogCurOut()	12
3.4.2.5 getAnalogVolOut()	12
3.4.2.6 getLED()	12
3.4.2.7 getOpenDrainDOUT() [1/2]	13
3.4.2.8 getOpenDrainDOUT() [2/2]	13
3.4.2.9 getOpenDrainPWM()	13
3.4.2.10 getTransistionType()	13
3.4.2.11 readAnalogCurln()	13
3.4.2.12 readAnalogVolIn()	14
3.4.2.13 readAnalogVolInPM()	14
3.4.2.14 readTransistions()	14
3.4.2.15 resetTransitions()	15
3.4.2.16 setAllLED()	15
3.4.2.17 setAllOFF()	15
3.4.2.18 setAnalogCurOut()	15
3.4.2.19 setAnalogVolOut()	15
3.4.2.20 setLED()	15
3.4.2.21 setOpenDrainDOUT()	16
3.4.2.22 setOpenDrainPWM()	16
3.4.2.23 setTransistionType()	16
3.5 PCB Class Reference	16
3.5.1 Constructor & Destructor Documentation	17
3.5.1.1 PCB()	17
3.5.1.2 ~PCB()	17
3.5.2 Member Function Documentation	17
3.5.2.1 getEXCVoltage()	17
3.5.2.2 getSENVoltage()	18
3.5.2.3 ledBusy()	18
3.5.2.4 ledFault()	18
3.5.2.5 ledReady()	18
3.5.2.6 reloadConfig()	18
3.5.2.7 setEXTRASW1()	18
3.5.2.8 setEXTRASW2()	18
3.5.2.9 setImpedance()	19

3.5.2.10 setLoadcellDCVoltage()	19
3.5.2.11 setLoadcellVoltage()	19
3.5.2.12 setPOWERSW1()	19
3.5.2.13 setPOWERSW2()	19
3.5.2.14 setPWM()	19
3.5.2.15 setSENVoltage()	20
3.6 Simulator Class Reference	20
3.6.1 Constructor & Destructor Documentation	20
3.6.1.1 Simulator()	20
3.6.1.2 ~Simulator()	20
3.6.2 Member Function Documentation	20
3.6.2.1 bootupAnimation()	21
3.6.2.2 loadConfig()	21
3.6.2.3 setVelocity()	21
3.6.2.4 setVelocityFRQ()	21
3.6.2.5 setVelocityPER()	21
3.6.2.6 setWeightKG()	22
3.6.2.7 setWeightPER()	22
3.7 UART Class Reference	22
3.7.1 Constructor & Destructor Documentation	23
3.7.1.1 UART()	23
3.7.1.2 ~UART()	23
3.7.2 Member Function Documentation	23
3.7.2.1 begin()	23
3.7.2.2 receiveMSG()	23
3.7.2.3 transmitMSG()	23
File Documentation	25
4.1 F:/GITHUB/SiWaSIM-PiSoftware/src/Configuration.cpp File Reference	25
4.2 F:/GITHUB/SiWaSIM-PiSoftware/src/Configuration.hpp File Reference	25
4.2.1 Typedef Documentation	25
4.2.1.1 json	26
4.2.2 Enumeration Type Documentation	26
4.2.2.1 IMPEDANCE	26
4.2.2.2 LoadCellMode	26
4.2.2.3 SYSTEM_TYPE	26
4.3 Configuration.hpp	27
4.4 F:/GITHUB/SiWaSIM-PiSoftware/src/GPIO.cpp File Reference	27
4.5 F:/GITHUB/SiWaSIM-PiSoftware/src/GPIO.hpp File Reference	27
4.6 GPIO.hpp	28
4.7 F:/GITHUB/SiWaSIM-PiSoftware/src/I2C.cpp File Reference	28
4.8 F:/GITHUB/SiWaSIM-PiSoftware/src/I2C.hpp File Reference	28

4.9 I2C.hpp	29
4.10 F:/GITHUB/SiWaSIM-PiSoftware/src/IABoard.cpp File Reference	29
4.11 F:/GITHUB/SiWaSIM-PiSoftware/src/IABoard.hpp File Reference	29
4.11.1 Macro Definition Documentation	30
4.11.1.1 I2C_ADDRESS	30
4.11.2 Enumeration Type Documentation	30
4.11.2.1 TRANSITION	30
4.12 IABoard.hpp	30
4.13 F:/GITHUB/SiWaSIM-PiSoftware/src/main.cpp File Reference	31
4.13.1 Function Documentation	32
4.13.1.1 main()	32
4.14 F:/GITHUB/SiWaSIM-PiSoftware/src/PCB.cpp File Reference	32
4.15 F:/GITHUB/SiWaSIM-PiSoftware/src/PCB.hpp File Reference	32
4.15.1 Macro Definition Documentation	33
4.15.1.1 ADDVOL_CHANNEL	33
4.15.1.2 CELL_DC	33
4.15.1.3 EXC_IN	33
4.15.1.4 PIN_EXTRASW1	33
4.15.1.5 PIN_EXTRASW2	33
4.15.1.6 PIN_IMPEDANCE1	33
4.15.1.7 PIN_IMPEDANCE2	33
4.15.1.8 PIN_LED_BUSY	34
4.15.1.9 PIN_LED_FAULT	34
4.15.1.10 PIN_LED_READY	34
4.15.1.11 PIN_POWERSW1	34
4.15.1.12 PIN_POWERSW2	34
4.15.1.13 PWM_PIN	34
4.15.1.14 SEN_IN	34
4.15.1.15 SEN_OUT	34
4.15.1.16 SUBVOL_CHANNEL	35
4.16 PCB.hpp	35
4.17 F:/GITHUB/SiWaSIM-PiSoftware/src/Simulator.cpp File Reference	36
4.18 F:/GITHUB/SiWaSIM-PiSoftware/src/Simulator.hpp File Reference	36
4.18.1 Macro Definition Documentation	36
4.18.1.1 CONFIG_PATH	36
4.19 Simulator.hpp	36
4.20 F:/GITHUB/SiWaSIM-PiSoftware/src/UART.cpp File Reference	37
4.21 F:/GITHUB/SiWaSIM-PiSoftware/src/UART.hpp File Reference	37
4.22 UART.hpp	37
4.23 F:/GITHUB/SiWaSIM-PiSoftware/src/utility.cpp File Reference	38
4.23.1 Function Documentation	38
4.23.1.1 constrainMax()	38

4.23.1.2 constrainMin()	38
4.23.1.3 constrainMinMax()	39
4.24 F:/GITHUB/SiWaSIM-PiSoftware/src/utility.hpp File Reference	39
4.24.1 Function Documentation	39
4.24.1.1 constrainMax()	39
4.24.1.2 constrainMin()	40
4.24.1.3 constrainMinMax()	40
4.25 utility.hpp	40
Index	41

Chapter 1

Class Index

1.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Configuration		 																			
GPIO		 																			
I2C		 																			
IABoard		 																			
PCB		 																			
Simulator		 																			2
ΠΔRT																					

2 Class Index

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

F:/GITHUB/SiWaSIM-PiSoftware/src/Configuration.cpp	25
F:/GITHUB/SiWaSIM-PiSoftware/src/Configuration.hpp	25
F:/GITHUB/SiWaSIM-PiSoftware/src/GPIO.cpp	27
F:/GITHUB/SiWaSIM-PiSoftware/src/GPIO.hpp	27
F:/GITHUB/SiWaSIM-PiSoftware/src/I2C.cpp	28
F:/GITHUB/SiWaSIM-PiSoftware/src/I2C.hpp	28
F:/GITHUB/SiWaSIM-PiSoftware/src/IABoard.cpp	29
F:/GITHUB/SiWaSIM-PiSoftware/src/IABoard.hpp	29
F:/GITHUB/SiWaSIM-PiSoftware/src/main.cpp	31
F:/GITHUB/SiWaSIM-PiSoftware/src/PCB.cpp	32
F:/GITHUB/SiWaSIM-PiSoftware/src/PCB.hpp	32
F:/GITHUB/SiWaSIM-PiSoftware/src/Simulator.cpp	36
F:/GITHUB/SiWaSIM-PiSoftware/src/Simulator.hpp	36
F:/GITHUB/SiWaSIM-PiSoftware/src/UART.cpp	37
F:/GITHUB/SiWaSIM-PiSoftware/src/UART.hpp	37
F:/GITHUB/SiWaSIM-PiSoftware/src/utility.cpp	38
F:/GITHUB/SiWaSIM-PiSoftware/src/utility.hpp	39

File Index

Chapter 3

Class Documentation

3.1 Configuration Class Reference

```
#include <Configuration.hpp>
```

Public Member Functions

- Configuration (std::string path)
- ∼Configuration ()
- void loadConfiguration ()

Public Attributes

LoadCellMode cellMode = LoadCellMode::NORMAL

Loadcell mode to be simulated.

• SYSTEM_TYPE systemType = SYSTEM_TYPE::NORMAL

System type to be simulated.

• float exc_voltage = 10.f

Nominal EXC voltage ouputted by the SIWAREX module.

float load_weight = 20.f

Nominal Load Weight of the cell in kg.

• float initial_weight = 10.f

Initial weight (for manual / non-auto mode)

float addvol_ratio = 500

Inverted OpAmp gain (e.g.: At 10V Aout the added / subtracted voltage is 20mV --> ratio = 10V / 20mV = 500)

• float max_diff_voltage = 40

Maximum Differential Voltage of SIG+-.

• float cellCharecteristic = 4

Characteristic in mV/V.

• float speedAt100 = 5

Belt velocity in m/s at 100% speed.

• float freqAt100 = 10000

Belt encoder frequency at 100% speed.

3.1.1 Constructor & Destructor Documentation

3.1.1.1 Configuration()

Creates a new configuration that stores all configuration settings needed for the Simulator. IMPORTANT: Should only be created once, since there is only one valid configuration for the simulator!

Parameters

path The path to the configuration file on the filesystem

3.1.1.2 ∼Configuration()

Configuration::~Configuration ()

3.1.2 Member Function Documentation

3.1.2.1 loadConfiguration()

```
void Configuration::loadConfiguration ( )
```

Loads a configuration file from the file system (specified by path in Configuration(std::string path)) and parses all settings to their respective variables

3.1.3 Member Data Documentation

3.1.3.1 addvol_ratio

```
float Configuration::addvol_ratio = 500
```

Inverted OpAmp gain (e.g.: At 10V Aout the added / subtracted voltage is 20mV --> ratio = 10V / 20mV = 500)

3.1.3.2 cellCharecteristic

float Configuration::cellCharecteristic = 4

Characteristic in mV/V.

3.1.3.3 cellMode

LoadCellMode Configuration::cellMode = LoadCellMode::NORMAL

Loadcell mode to be simulated.

3.1.3.4 exc_voltage

```
float Configuration::exc_voltage = 10.f
```

Nominal EXC voltage ouputted by the SIWAREX module.

3.1.3.5 freqAt100

float Configuration::freqAt100 = 10000

Belt encoder frequency at 100% speed.

3.1.3.6 initial weight

float Configuration::initial_weight = 10.f

Initial weight (for manual / non-auto mode)

3.1.3.7 load_weight

float Configuration::load_weight = 20.f

Nominal Load Weight of the cell in kg.

3.1.3.8 max_diff_voltage

```
float Configuration::max_diff_voltage = 40
```

Maximum Differential Voltage of SIG+-.

3.1.3.9 speedAt100

```
float Configuration::speedAt100 = 5
```

Belt velocity in m/s at 100% speed.

3.1.3.10 systemType

```
SYSTEM_TYPE Configuration::systemType = SYSTEM_TYPE::NORMAL
```

System type to be simulated.

The documentation for this class was generated from the following files:

- F:/GITHUB/SiWaSIM-PiSoftware/src/Configuration.hpp
- F:/GITHUB/SiWaSIM-PiSoftware/src/Configuration.cpp

3.2 GPIO Class Reference

```
#include <GPIO.hpp>
```

Public Member Functions

- GPIO ()
- ∼GPIO ()
- void setPWM (int pin, float dutyCycle, float frequency)
- void setPinMode (uint8_t pin, uint8_t mode)
- void writePin (uint8_t pin, bool state)
- bool readPin (uint8_t pin)

3.2.1 Constructor & Destructor Documentation

3.2 GPIO Class Reference 9

3.2.1.1 GPIO()

```
GPIO::GPIO ()
```

3.2.1.2 ∼GPIO()

```
GPIO::\sim GPIO ( )
```

3.2.2 Member Function Documentation

3.2.2.1 readPin()

3.2.2.2 setPinMode()

3.2.2.3 setPWM()

3.2.2.4 writePin()

The documentation for this class was generated from the following files:

- F:/GITHUB/SiWaSIM-PiSoftware/src/GPIO.hpp
- F:/GITHUB/SiWaSIM-PiSoftware/src/GPIO.cpp

3.3 I2C Class Reference

```
#include <I2C.hpp>
```

Public Member Functions

```
• I2C (std::string dev, uint16_t address)
```

- ∼I2C ()
- bool begin ()
- bool writeData (uint8_t data)
- bool writeData (uint8_t *data, uint8_t length)
- bool readData (uint8_t *data, uint8_t length)
- uint8_t readData ()

3.3.1 Constructor & Destructor Documentation

3.3.1.1 I2C()

3.3.1.2 ∼I2C()

```
I2C::∼I2C ( )
```

3.3.2 Member Function Documentation

3.3.2.1 begin()

```
bool I2C::begin ( )
```

3.3.2.2 readData() [1/2]

```
uint8_t I2C::readData ( )
```

3.3.2.3 readData() [2/2]

3.3.2.4 writeData() [1/2]

3.3.2.5 writeData() [2/2]

The documentation for this class was generated from the following files:

- F:/GITHUB/SiWaSIM-PiSoftware/src/l2C.hpp
- F:/GITHUB/SiWaSIM-PiSoftware/src/I2C.cpp

3.4 IABoard Class Reference

```
#include <IABoard.hpp>
```

Public Member Functions

- IABoard ()
- ∼IABoard ()
- · bool detectBoard ()
- uint8_t digitalRead ()
- bool digitalRead (uint8_t channel)
- uint16_t readTransistions (uint8_t channel)
- TRANSITION getTransistionType (uint8_t channel)
- void setTransistionType (uint8_t channel, TRANSITION tran)
- void resetTransitions (uint8_t channel)
- float getAnalogVolOut (uint8 t channel)
- void setAnalogVolOut (uint8_t channel, float voltage)
- float getAnalogCurOut (uint8_t channel)
- void setAnalogCurOut (uint8_t channel, float current)
- float getOpenDrainPWM (uint8_t channel)
- void setOpenDrainPWM (uint8_t channel, float dutyCycle)
- uint8_t getOpenDrainDOUT ()
- bool getOpenDrainDOUT (uint8_t channel)
- void setOpenDrainDOUT (uint8_t channel, bool value)
- bool getLED (uint8 t channel)
- void setLED (uint8 t channel, bool value)
- void setAllLED (bool value)
- float readAnalogVolIn (uint8_t channel)
- float readAnalogVoIInPM (uint8_t channel)
- float readAnalogCurIn (uint8_t channel)
- void setAllOFF ()

3.4.1 Constructor & Destructor Documentation

3.4.1.1 IABoard()

```
IABoard::IABoard ( )
```

3.4.1.2 ∼IABoard()

```
IABoard::∼IABoard ( )
```

3.4.2 Member Function Documentation

3.4.2.1 detectBoard()

```
bool IABoard::detectBoard ( )
```

3.4.2.2 digitalRead() [1/2]

```
uint8_t IABoard::digitalRead ( )
```

3.4.2.3 digitalRead() [2/2]

3.4.2.4 getAnalogCurOut()

3.4.2.5 getAnalogVolOut()

3.4.2.6 getLED()

Gets the current state of one of the on board LEDs

Parameters

channel	The LED to be read (1 - 4)
---------	----------------------------

Returns

Returns the state of the LED (0 = OFF, 1 = ON)

3.4.2.7 getOpenDrainDOUT() [1/2]

```
uint8_t IABoard::getOpenDrainDOUT ( )
```

3.4.2.8 getOpenDrainDOUT() [2/2]

3.4.2.9 getOpenDrainPWM()

3.4.2.10 getTransistionType()

3.4.2.11 readAnalogCurln()

Reads the Analog Input Current of a channel

Parameters

channel	The channel as marked on the IABoard-PCB (1 - 4)
---------	--

Returns

Returns the measured current in mA

3.4.2.12 readAnalogVolln()

Reads the Analog Input Voltage of a channel if the jumper is not set

Parameters

channel The channel as marked on the IABoard-PCB (1 - 4)
--	--------

Returns

Returns the measured voltage in Volts from 0V to 10V

3.4.2.13 readAnalogVolInPM()

Reads the Analog Input Voltage of a channel if the jumper is set to measure negative voltages

Parameters

channel	The channel as marked on the IABoard-PCB (1 - 4)
---------	--

Returns

Returns the measured voltage in Volts from -10V to 10V

3.4.2.14 readTransistions()

3.4.2.15 resetTransitions()

3.4.2.16 setAIILED()

Sets all IABoard-LEDs to the same state

Parameters

```
value The wanted state of all the LEDs (0 = OFF, 1 = ON)
```

3.4.2.17 setAlIOFF()

```
void IABoard::setAllOFF ( )
```

Sets all digital and analog outputs to OFF / 0V

3.4.2.18 setAnalogCurOut()

3.4.2.19 setAnalogVolOut()

3.4.2.20 setLED()

Sets on of the four on board LEDs to a certain state

Parameters

channel	The LED to be toggled (1 - 4)
value	The wanted state of the LED (0 = OFF, 1 = ON)

3.4.2.21 setOpenDrainDOUT()

Sets on of the four digital outputs

Parameters

channel	The Open Drain Pin to be toggled (1 - 4)
value	The wanted state of the channel

3.4.2.22 setOpenDrainPWM()

3.4.2.23 setTransistionType()

The documentation for this class was generated from the following files:

- F:/GITHUB/SiWaSIM-PiSoftware/src/IABoard.hpp
- F:/GITHUB/SiWaSIM-PiSoftware/src/IABoard.cpp

3.5 PCB Class Reference

```
#include <PCB.hpp>
```

3.5 PCB Class Reference 17

Public Member Functions

- PCB (Configuration *config)
- ∼PCB ()
- void ledFault (bool state)
- void ledBusy (bool state)
- void ledReady (bool state)
- void setImpedance (IMPEDANCE impedance)
- void setEXTRASW1 (bool state)
- void setEXTRASW2 (bool state)
- void setPOWERSW1 (bool state)
- void setPOWERSW2 (bool state)
- void setLoadcellVoltage (float voltage)
- void setLoadcellDCVoltage (float voltage)
- void setSENVoltage (float voltage)
- float getEXCVoltage ()
- float getSENVoltage ()
- void setPWM (float frequency, float dutyCycle)
- void reloadConfig ()

3.5.1 Constructor & Destructor Documentation

3.5.1.1 PCB()

3.5.1.2 ∼PCB()

```
PCB::\sim PCB ( )
```

3.5.2 Member Function Documentation

3.5.2.1 getEXCVoltage()

```
float PCB::getEXCVoltage ( )
```

3.5.2.2 getSENVoltage()

```
float PCB::getSENVoltage ( )
```

3.5.2.3 ledBusy()

```
void PCB::ledBusy (
                bool state )
```

3.5.2.4 ledFault()

3.5.2.5 ledReady()

3.5.2.6 reloadConfig()

```
void PCB::reloadConfig ( )
```

3.5.2.7 setEXTRASW1()

3.5.2.8 setEXTRASW2()

```
void PCB::setEXTRASW2 (
          bool state )
```

3.5 PCB Class Reference

3.5.2.9 setImpedance()

3.5.2.10 setLoadcelIDCVoltage()

3.5.2.11 setLoadcellVoltage()

3.5.2.12 setPOWERSW1()

3.5.2.13 setPOWERSW2()

3.5.2.14 setPWM()

3.5.2.15 setSENVoltage()

The documentation for this class was generated from the following files:

- F:/GITHUB/SiWaSIM-PiSoftware/src/PCB.hpp
- F:/GITHUB/SiWaSIM-PiSoftware/src/PCB.cpp

3.6 Simulator Class Reference

```
#include <Simulator.hpp>
```

Public Member Functions

- Simulator ()
- ∼Simulator ()
- void setWeightPER (float percentage)
- void setWeightKG (float kg)
- void setVelocity (float meterspersecond)
- void setVelocityPER (float percentage)
- void setVelocityFRQ (float frequency)
- void bootupAnimation ()
- void loadConfig ()

3.6.1 Constructor & Destructor Documentation

3.6.1.1 Simulator()

```
Simulator::Simulator ( )
```

3.6.1.2 \sim Simulator()

```
Simulator::~Simulator ( )
```

3.6.2 Member Function Documentation

3.6.2.1 bootupAnimation()

```
void Simulator::bootupAnimation ( )
```

Starts an animation with the on board LEDs

3.6.2.2 loadConfig()

```
void Simulator::loadConfig ( )
```

3.6.2.3 setVelocity()

Sets the simulated belt velocity in meters per second

Parameters

meterspersecond	Velocity in meters / second
-----------------	-----------------------------

3.6.2.4 setVelocityFRQ()

Sets the PWM output to a certain frequency to represent belt movement

Parameters

```
frequency The frequency of the PWM signal
```

3.6.2.5 setVelocityPER()

Sets the simulated belt velocity from 0 - 100% of the maximal speed

Parameters

percentage Percentage of the maximal speed from 0 to	percentage	Percentage of the maximal speed from 0 to 1
--	------------	---

3.6.2.6 setWeightKG()

Set the output weight of the simulated load cell in kg

Parameters

kg Output weight in kilograms

3.6.2.7 setWeightPER()

Set the output weight as a percentage of the nominal load

Parameters

percentage Percentage from 0 - 1 where 1 represents the nominal load as specified

The documentation for this class was generated from the following files:

- F:/GITHUB/SiWaSIM-PiSoftware/src/Simulator.hpp
- F:/GITHUB/SiWaSIM-PiSoftware/src/Simulator.cpp

3.7 UART Class Reference

```
#include <UART.hpp>
```

Public Member Functions

- UART ()
- ~UART ()
- bool begin ()
- bool transmitMSG (uint8_t *msg, uint16_t length)
- std::vector< uint8_t > receiveMSG ()

3.7 UART Class Reference 23

3.7.1 Constructor & Destructor Documentation

3.7.1.1 UART()

```
UART::UART ( )
```

3.7.1.2 ∼UART()

```
{\tt UART::}{\sim}{\tt UART} ( )
```

3.7.2 Member Function Documentation

3.7.2.1 begin()

```
bool UART::begin ( )
```

3.7.2.2 receiveMSG()

```
std::vector < uint8_t > UART::receiveMSG ( )
```

3.7.2.3 transmitMSG()

The documentation for this class was generated from the following files:

- F:/GITHUB/SiWaSIM-PiSoftware/src/UART.hpp
- F:/GITHUB/SiWaSIM-PiSoftware/src/UART.cpp

Chapter 4

File Documentation

4.1 F:/GITHUB/SiWaSIM-PiSoftware/src/Configuration.cpp File Reference

```
#include "Configuration.hpp"
```

4.2 F:/GITHUB/SiWaSIM-PiSoftware/src/Configuration.hpp File Reference

```
#include <string>
#include <iostream>
#include <fstream>
#include "nlohmann/json.hpp"
```

Classes

· class Configuration

Typedefs

• using json = nlohmann::json

Enumerations

```
    enum LoadCellMode { NORMAL = 0x00 , OVERLOAD = 0x01 , INVERTED = 0x02 }
    enum IMPEDANCE { OPEN = 0x00 , NOMINAL = 0x01 , SHORT = 0x02 }
```

• enum SYSTEM_TYPE { DOSING_SCALE = 0x01 , BELT_SCALE = 0x02 }

4.2.1 Typedef Documentation

26 File Documentation

4.2.1.1 json

using json = nlohmann::json

4.2.2 Enumeration Type Documentation

4.2.2.1 IMPEDANCE

enum IMPEDANCE

Types of impedances of the load cell that can be simulated. Is equivilant with the impedance between EXC+ and EXC-

Enumerator

OPEN	Open circuit, high impedance.
NOMINAL	Nominal impedance of approx. 350 ohms.
SHORT	Short circuit, approx. zero impedance.

4.2.2.2 LoadCellMode

enum LoadCellMode

Enumerator

NORMAL	Positive differential voltage from 0 - 100% nominal load.
OVERLOAD	Positive differential voltage from 0 - 120% nominal load.
INVERTED	Negative differential voltage from 0 - 100% nominal load.

4.2.2.3 SYSTEM_TYPE

enum SYSTEM_TYPE

Type of the system represented by the simulator

Enumerator

DOSING_SCALE	Dosing Scale.
BELT SCALE	Belt Scale.

4.3 Configuration.hpp 27

4.3 Configuration.hpp

Go to the documentation of this file.

```
#pragma once
2 #include <string>
3 #include <iostream>
4 #include <fstream>
5 #include "nlohmann/json.hpp"
7 using json = nlohmann::json;
9 enum LoadCellMode
10 {
       NORMAL = 0x00,
      OVERLOAD = 0 \times 01,
INVERTED = 0 \times 02,
14
16
17
18 } typedef LoadCellMode;
24 enum IMPEDANCE
25 {
27
      OPEN = 0x00,
29
      NOMINAL = 0x01,
      SHORT = 0 \times 02,
31
32
33 } typedef IMPEDANCE;
34
38 enum SYSTEM_TYPE
39 {
       DOSING_SCALE = 0 \times 01,
41
43
       BELT\_SCALE = 0x02,
44 } typedef SYSTEM_TYPE;
46 class Configuration
47 {
48 public:
      Configuration(std::string path);
49
       ~Configuration();
51
      void loadConfiguration();
53
      // SETTING VARIABLES
54
       LoadCellMode cellMode = LoadCellMode::NORMAL;
56
      SYSTEM_TYPE systemType = SYSTEM_TYPE::NORMAL;
58
      float exc_voltage = 10.f;
float load_weight = 20.f;
62
     float initial_weight = 10.f;
float addvol_ratio = 500;
float max_diff_voltage = 40;
64
66
68
      float cellCharecteristic = 4;
      float speedAt100 = 5;
      float freqAt100 = 10000;
7.5
76 private:
      void parseJSON();
std::string _path;
77
78
```

4.4 F:/GITHUB/SiWaSIM-PiSoftware/src/GPIO.cpp File Reference

```
#include "GPIO.hpp"
```

4.5 F:/GITHUB/SiWaSIM-PiSoftware/src/GPIO.hpp File Reference

```
#include <signal.h>
#include <pigpio.h>
#include <stdint.h>
#include <cstdio>
```

28 File Documentation

Classes

• class GPIO

4.6 GPIO.hpp

Go to the documentation of this file.

```
1 #pragma once
2 #include <signal.h>
3 #include <pigpio.h>
4 #include <stdint.h>
5 #include <cstdio>
7 class GPIO
9 public:
10
     GPIO();
11
       ~GPIO();
      void setPWM(int pin, float dutyCycle, float frequency);
12
13
     void setPinMode(uint8_t pin, uint8_t mode);
     void writePin(uint8_t pin, bool state);
bool readPin(uint8_t pin);
17
18
19 private:
20 };
```

4.7 F:/GITHUB/SiWaSIM-PiSoftware/src/I2C.cpp File Reference

```
#include "I2C.hpp"
```

4.8 F:/GITHUB/SiWaSIM-PiSoftware/src/I2C.hpp File Reference

```
#include <stdio.h>
#include <unistd.h>
#include <string>
#include <stdint.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include #include
```

Classes

• class I2C

4.9 I2C.hpp 29

4.9 I2C.hpp

Go to the documentation of this file.

```
1 #pragma once
2 #include <stdio.h>
3 #include <unistd.h>
4 #include <string>
5 #include <stdint.h>
6 #include <sys/stat.h>
7 #include <fcntl.h>
8 #include <sys/ioctl.h>
9 #include <linux/i2c.h>
10 #include <linux/i2c-dev.h>
11
12 class I2C
14 public:
15
      I2C(std::string dev, uint16_t address);
16
      ~I2C();
      bool begin();
18 bool writeData(uint8_t data);
      bool writeData(uint8_t *data, uint8_t length);
20 bool readData(uint8_t *data, uint8_t length);
21
     uint8_t readData();
2.2
23 private:
24
      std::string _dev;
     uint16_t _address;
int i2c0 = -1;
27 };
```

4.10 F:/GITHUB/SiWaSIM-PiSoftware/src/IABoard.cpp File Reference

```
#include "IABoard.hpp"
```

4.11 F:/GITHUB/SiWaSIM-PiSoftware/src/IABoard.hpp File Reference

```
#include "I2C.hpp"
#include "utility.hpp"
#include <chrono>
#include <thread>
#include <iostream>
```

Classes

· class IABoard

Macros

#define I2C_ADDRESS 0x50

Enumerations

```
    enum TRANSITION {
        DISABLE = 0x00 , RISING = 0x01 , FALLING = 0x02 , BOTH = 0x03 ,
        UNDEFINED = 0x04 }
```

4.11.1 Macro Definition Documentation

4.11.1.1 I2C_ADDRESS

```
#define I2C_ADDRESS 0x50
```

4.11.2 Enumeration Type Documentation

4.11.2.1 TRANSITION

```
enum TRANSITION
```

Enumerator

DISABLE	
RISING	
FALLING	
BOTH	
UNDEFINED	

4.12 IABoard.hpp

```
1 #pragma once
2 #include "I2C.hpp"
3 #include "utility.hpp"
4 #include <chrono>
5 #include <thread>
6 #include <iostream>
7 using namespace std::chrono_literals;
9 #define I2C_ADDRESS 0x50
10
11 enum TRANSITION
12 {
       DISABLE = 0x00,
RISING = 0x01,
FALLING = 0x02,
13
14
15 FALLING - UNCL,

16 BOTH = 0x03,

17 UNDEFINED = 0x04

18 } typedef TRANSITION;
19
20 class IABoard
21 {
22 public:
     IABoard();
23
24
        ~IABoard();
25
       // Check if the board is responding
26
       bool detectBoard();
28
        // Read all digital inputs
29
      uint8_t digitalRead();
```

```
// Read digital input of certain channel 1 - 4
      bool digitalRead(uint8_t channel);
33
34
      // Reads the number of counted transitions (if enabled)
3.5
      uint16_t readTransistions(uint8_t channel);
      // Reads th ecurrently set transition type
TRANSITION getTransistionType(uint8_t channel);
36
      // Sets the type of transistions that should be counted
39
      void setTransistionType(uint8_t channel, TRANSITION tran);
40
      \ensuremath{//} Sets the transistion counter of a channel to 0
41
      void resetTransitions(uint8_t channel);
42
      // Get the currently set analog output voltage
43
      float getAnalogVolOut(uint8_t channel);
45
      // Set the analog output voltage from 0 - 10V, voltage in volts
      void setAnalogVolOut(uint8_t channel, float voltage);
46
47
      // Get the currently set analog output current
48
      float getAnalogCurOut(uint8_t channel);
49
      // Set the analog output current from 4 - 20mA, current in mA
      void setAnalogCurOut(uint8_t channel, float current);
52
5.3
      // Get the PWM Duty Cycle for the Open Drain Output (if not used as digital out)
      float getOpenDrainPWM(uint8_t channel);
// Set the PWM Duty Cycle (0 - 100%) for the Open Drain Output
void setOpenDrainPWM(uint8_t channel, float dutyCycle);
54
55
58
       // Read all digital open drain outputs
59
      uint8_t getOpenDrainDOUT();
      // Get the currently set open drain digital out value
bool getOpenDrainDOUT(uint8_t channel);
60
61
      // Set the digital open drain output
      void setOpenDrainDOUT(uint8_t channel, bool value);
64
6.5
      // Gets the state of a certain LED
      bool getLED(uint8_t channel);
66
      // Sets a certain LED Low or High
      void setLED(uint8_t channel, bool value);
      // Sets all LEDs ON or OFF
70
      void setAllLED(bool value);
71
72
      // Reads the analog input voltage of a certain channel (0-10V)
      float readAnalogVolIn(uint8_t channel);
// Reads the analog input voltage of a certain channel (-10-10V, Jumper set)
73
      float readAnalogVolInPM(uint8_t channel);
76
77
      // Reads the analog input current of a certain channel (4-20mA)
78
      float readAnalogCurIn(uint8_t channel);
79
      // Turn all digital and analog outputs off
80
      void setAllOFF();
81
83 private:
84
      I2C *_i2c;
85
      // Delay because the IA-Board can only handle commands every few {\tt ms}
86
      std::chrono::milliseconds _delayBetweenCommands = 9ms;
      std::chrono::time_point<std::chrono::system_clock, std::chrono::duration<double» _lastCommand;
90
      \ensuremath{//} Wait till the minimum time between commands has elapsed
91
      void waitForIA();
92 };
```

4.13 F:/GITHUB/SiWaSIM-PiSoftware/src/main.cpp File Reference

```
#include <iostream>
#include <string>
#include <stdio.h>
#include <stdlib.h>
#include <vector>
#include "I2C.hpp"
#include "UART.hpp"
#include "GPIO.hpp"
#include "IABoard.hpp"
#include "PCB.hpp"
#include "Simulator.hpp"
```

Functions

• int main ()

4.13.1 Function Documentation

4.13.1.1 main()

```
int main ( )
```

4.14 F:/GITHUB/SiWaSIM-PiSoftware/src/PCB.cpp File Reference

```
#include "PCB.hpp"
```

4.15 F:/GITHUB/SiWaSIM-PiSoftware/src/PCB.hpp File Reference

```
#include "utility.hpp"
#include "GPIO.hpp"
#include "IABoard.hpp"
#include "Configuration.hpp"
```

Classes

• class PCB

Macros

- #define PIN_LED_READY 23
- #define PIN_LED_BUSY 24
- #define PIN_LED_FAULT 25
- #define PWM_PIN 13
- #define PIN_POWERSW1 4
- #define PIN_POWERSW2 26
- #define PIN_IMPEDANCE1 5
- #define PIN_IMPEDANCE2 6
- #define PIN_EXTRASW1 27
- #define PIN_EXTRASW2 22
- #define ADDVOL_CHANNEL 2
- #define SUBVOL_CHANNEL 3
- #define CELL_DC 1
- #define SEN_OUT 4
- #define EXC_IN 1
- #define SEN_IN 2

4.15.1 Macro Definition Documentation

4.15.1.1 ADDVOL_CHANNEL

#define ADDVOL_CHANNEL 2

4.15.1.2 CELL_DC

#define CELL_DC 1

4.15.1.3 EXC_IN

#define EXC_IN 1

4.15.1.4 PIN_EXTRASW1

#define PIN_EXTRASW1 27

4.15.1.5 PIN_EXTRASW2

#define PIN_EXTRASW2 22

4.15.1.6 PIN_IMPEDANCE1

#define PIN_IMPEDANCE1 5

4.15.1.7 PIN_IMPEDANCE2

#define PIN_IMPEDANCE2 6

4.15.1.8 PIN_LED_BUSY

#define PIN_LED_BUSY 24

4.15.1.9 PIN_LED_FAULT

#define PIN_LED_FAULT 25

4.15.1.10 PIN_LED_READY

#define PIN_LED_READY 23

4.15.1.11 PIN_POWERSW1

#define PIN_POWERSW1 4

4.15.1.12 PIN_POWERSW2

#define PIN_POWERSW2 26

4.15.1.13 PWM_PIN

#define PWM_PIN 13

4.15.1.14 SEN_IN

#define SEN_IN 2

4.15.1.15 SEN_OUT

#define SEN_OUT 4

4.16 PCB.hpp 35

4.15.1.16 SUBVOL_CHANNEL

```
#define SUBVOL_CHANNEL 3
```

4.16 PCB.hpp

```
2 #include "utility.hpp"
3 #include "GPIO.hpp"
4 #include "IABoard.hpp"
5 #include "Configuration.hpp"
7 // LED Pins
8 #define PIN_LED_READY 23
9 #define PIN_LED_BUSY 24
10 #define PIN_LED_FAULT 25
11
12 // PWM Pin
13 #define PWM_PIN 13
15 // 24V Power Switch Pins
16 #define PIN_POWERSW1 4
17 #define PIN_POWERSW2 26
19 // Pins for Impedance switching
20 #define PIN_IMPEDANCE1
21 #define PIN_IMPEDANCE2 6
22
23 // Pins for extra switches (e.g. WebServer, WriteProtect)
24 #define PIN_EXTRASW1 27
25 #define PIN_EXTRASW2 22
26
27 // Analog Channels
28 #define ADDVOL_CHANNEL 2
29 #define SUBVOL_CHANNEL 3
30 #define CELL_DC 1
31 #define SEN_OUT 4
32 #define EXC_IN 1
33 #define SEN_IN 2
34
35 class PCB
36
37 public:
38
       PCB(Configuration *config);
39
       ~PCB();
40
      void ledFault(bool state);
41
      void ledBusy(bool state);
void ledReady(bool state);
42
45
       void setImpedance(IMPEDANCE impedance);
46
       void setEXTRASW1(bool state);
47
      void setEXTRASW2(bool state);
48
       void setPOWERSW1(bool state);
51
       void setPOWERSW2(bool state);
52
       void setLoadcellVoltage(float voltage);
53
       void setLoadcellDCVoltage(float voltage);
54
      void setSENVoltage(float voltage);
55
57
       float getEXCVoltage();
58
      float getSENVoltage();
59
      void setPWM(float frequency, float dutyCycle);
60
61
       void reloadConfig();
64 private:
65
      GPIO *_gpio;
       IABoard *_ia;
Configuration *_config;
66
```

4.17 F:/GITHUB/SiWaSIM-PiSoftware/src/Simulator.cpp File Reference

```
#include "Simulator.hpp"
```

4.18 F:/GITHUB/SiWaSIM-PiSoftware/src/Simulator.hpp File Reference

```
#include "PCB.hpp"
#include "Configuration.hpp"
#include "IABoard.hpp"
#include <chrono>
#include <thread>
```

Classes

· class Simulator

Macros

• #define CONFIG_PATH "/home/siwasim/SiWaSIM-PiSoftware/Konfiguration/config.json"

4.18.1 Macro Definition Documentation

4.18.1.1 CONFIG PATH

```
#define CONFIG_PATH "/home/siwasim/SiWaSIM-PiSoftware/Konfiguration/config.json"
```

4.19 Simulator.hpp

```
1 #pragma once
2 #include "PCB.hpp"
3 #include "Configuration.hpp"
4 #include "IABoard.hpp"
5 #include <chrono>
6 #include <thread>
8 using namespace std::chrono_literals;
10 #define CONFIG_PATH "/home/siwasim/SiWaSIM-PiSoftware/Konfiguration/config.json"
12 class Simulator
13 {
14 public:
15
     Simulator();
16
      ~Simulator();
17
    void setWeightPER(float percentage); // Set the weight from 0 - 100% of nominal Load
     void setWeightKG(float kg);
                                               // Set the weight in kg
```

```
void setVelocity(float meterspersecond);
22
     void setVelocityPER(float percentage);
2.3
    void setVelocityFRQ(float frequency);
2.4
     void bootupAnimation();
    void loadConfig();
27
28 private:
   Configuration *_config;
29
30
    PCB *_pcb;
     IABoard *_ia;
31
```

4.20 F:/GITHUB/SiWaSIM-PiSoftware/src/UART.cpp File Reference

```
#include "UART.hpp"
```

4.21 F:/GITHUB/SiWaSIM-PiSoftware/src/UART.hpp File Reference

```
#include <stdint.h>
#include <fcntl.h>
#include <iostream>
#include <sstream>
#include <termios.h>
#include <unistd.h>
#include <vector>
```

Classes

• class UART

4.22 UART.hpp

```
1 #pragma once
2 #include <stdint.h>
3 #include <fcntl.h>
4 #include <iostream>
5 #include <sstream>
6 #include <termios.h>
7 #include <unistd.h>
8 #include <vector>
10 class UART
11 {
12 public:
13
   UART();
14
     ~UART();
15
     bool begin();
     bool transmitMSG(uint8_t *msg, uint16_t length);
16
     std::vector<uint8_t> receiveMSG();
18
19 private:
   int uart0 = -1;
// std::string _dev;
20
2.1
     // Number of bytes to wait for
23
```

4.23 F:/GITHUB/SiWaSIM-PiSoftware/src/utility.cpp File Reference

```
#include "utility.hpp"
```

Functions

- float constrainMinMax (float value, float min, float max)
- float constrainMin (float value, float min)
- float constrainMax (float value, float max)

4.23.1 Function Documentation

4.23.1.1 constrainMax()

```
float constrainMax ( \label{float value,} \mbox{float } \mbox{\it value,} \\ \mbox{float } \mbox{\it max} \mbox{\ )}
```

Constrain a value to an upper limit if the value is above that limit

Parameters

value	The value to be clipped
max	The upper limit

Returns

Returns the clipped / constrained value

4.23.1.2 constrainMin()

```
float constrainMin ( \label{float_value} \mbox{float } value, \\ \mbox{float } \min \mbox{ )}
```

Constrain a value to a lower limit if the value is below that limit

Parameters

value	The value to be clipped
min	The lower limit

Returns

Returns the clipped / constrained value

4.23.1.3 constrainMinMax()

```
float constrainMinMax (
            float value,
             float min,
             float max )
```

Constrain a value between an upper and a lower limit to clip the value

Parameters

value	The value to be clipped
min	The lower limit
max	The upper limit

Returns

Returns the clipped / constrained value

4.24 F:/GITHUB/SiWaSIM-PiSoftware/src/utility.hpp File Reference

Functions

- float constrainMinMax (float value, float min, float max)
- float constrainMin (float value, float min)
- float constrainMax (float value, float max)

4.24.1 Function Documentation

4.24.1.1 constrainMax()

```
float constrainMax (
            float value,
            float max )
```

Constrain a value to an upper limit if the value is above that limit

Parameters

value	The value to be clipped
max	The upper limit

Generated by Doxygen

Returns

Returns the clipped / constrained value

4.24.1.2 constrainMin()

```
float constrainMin ( \label{float value, float min} float \ \textit{min} \ )
```

Constrain a value to a lower limit if the value is below that limit

Parameters

value	The value to be clipped
min	The lower limit

Returns

Returns the clipped / constrained value

4.24.1.3 constrainMinMax()

Constrain a value between an upper and a lower limit to clip the value

Parameters

value	The value to be clipped
min	The lower limit
max	The upper limit

Returns

Returns the clipped / constrained value

4.25 utility.hpp

```
1 #pragma once
2
3 float constrainMinMax(float value, float min, float max);
4 float constrainMin(float value, float min);
5 float constrainMax(float value, float max);
```

Index

\sim Configuration	constrainMax
Configuration, 5	utility.cpp, 31
~GPIO	utility.hpp, 32
GPIO, 7	constrainMin
∼I2C	utility.cpp, 32
I2C, 9	utility.hpp, 32
\sim IABoard	constrainMinMax
IABoard, 10	utility.cpp, 32
∼PCB	utility.hpp, 33
PCB, 15	
\sim Simulator	detectBoard
Simulator, 17	IABoard, 11
\sim UART	digitalRead
UART, 18	IABoard, 11
	DISABLE
ADDVOL_CHANNEL	IABoard.hpp, 25
PCB.hpp, 28	
addvol_ratio	exc_voltage
Configuration, 6	Configuration, 6
begin	F:/GITHUB/SiWaSIM-PiSoftware/src/Configuration.cpp
I2C, 9	21
UART, 18	F:/GITHUB/SiWaSIM-PiSoftware/src/Configuration.hpp
ВОТН	21, 22
IABoard.hpp, 25	F:/GITHUB/SiWaSIM-PiSoftware/src/GPIO.cpp, 23
	F:/GITHUB/SiWaSIM-PiSoftware/src/GPIO.hpp, 23
cellCharecteristic	F:/GITHUB/SiWaSIM-PiSoftware/src/I2C.cpp, 23
Configuration, 6	F:/GITHUB/SiWaSIM-PiSoftware/src/I2C.hpp, 23, 24
cellMode	F:/GITHUB/SiWaSIM-PiSoftware/src/IABoard.cpp, 24
Configuration, 6	F:/GITHUB/SiWaSIM-PiSoftware/src/IABoard.hpp, 24
Configuration, 5	25
~Configuration, 5	F:/GITHUB/SiWaSIM-PiSoftware/src/main.cpp, 26
addvol_ratio, 6	F:/GITHUB/SiWaSIM-PiSoftware/src/PCB.cpp, 27
cellCharecteristic, 6	F:/GITHUB/SiWaSIM-PiSoftware/src/PCB.hpp, 27, 29
cellMode, 6	F:/GITHUB/SiWaSIM-PiSoftware/src/Simulator.cpp, 30
Configuration, 5	F:/GITHUB/SiWaSIM-PiSoftware/src/Simulator.hpp, 30
exc_voltage, 6	F:/GITHUB/SiWaSIM-PiSoftware/src/UART.cpp, 30
initial_weight, 6	F:/GITHUB/SiWaSIM-PiSoftware/src/UART.hpp, 31
load_weight, 6	F:/GITHUB/SiWaSIM-PiSoftware/src/utility.cpp, 31
— · ·	F:/GITHUB/SiWaSIM-PiSoftware/src/utility.hpp, 32, 33
loadConfiguration, 6	
max_diff_voltage, 7	FALLING
Configuration.hpp	IABoard.hpp, 25
IMPEDANCE, 21	getAnalogCurOut
INVERTED, 22	IABoard, 11
LoadCellMode, 22	
NOMINAL, 22	getAnalogVolOut
NORMAL, 22	IABoard, 11
OPEN, 22	getEXCVoltage
OVERLOAD, 22	PCB, 15
SHORT, 22	getLED

42 INDEX

IABoard, 11	INVERTED
getOpenDrainDOUT	Configuration.hpp, 22
IABoard, 11, 12	
getOpenDrainPWM	ledBusy
IABoard, 12	PCB, 15
getSENVoltage	ledFault
PCB, 15	PCB, 15
getTransistionType	ledReady
IABoard, 12	PCB, 15
GPIO, 7	load_weight
\sim GPIO, 7	Configuration, 6
GPIO, 7	LoadCellMode
readPin, 7	Configuration.hpp, 22
setPinMode, 8	loadConfiguration
setPWM, 8	Configuration, 6
writePin, 8	
	main
I2C, 8	main.cpp, 27
\sim I2C, 9	main.cpp
begin, 9	main, 27
I2C, 9	max_diff_voltage
readData, 9	Configuration, 7
writeData, 9	
I2C_ADDRESS	NOMINAL
IABoard.hpp, 25	Configuration.hpp, 22
IABoard, 10	NORMAL
\sim IABoard, 10	Configuration.hpp, 22
detectBoard, 11	
digitalRead, 11	OPEN
getAnalogCurOut, 11	Configuration.hpp, 22
getAnalogVolOut, 11	OVERLOAD
getLED, 11	Configuration.hpp, 22
getOpenDrainDOUT, 11, 12	
getOpenDrainPWM, 12	PCB, 14
getTransistionType, 12	~PCB, 15
IABoard, 10	getEXCVoltage, 15
readAnalogCurIn, 12	getSENVoltage, 15
readAnalogVolIn, 12	ledBusy, 15
readAnalogVoIInPM, 12	ledFault, 15
readTransistions, 12	ledReady, 15
resetTransitions, 13	PCB, 14
setAnalogCurOut, 13	setEXTRASW1, 15
setAnalogVolOut, 13	setEXTRASW2, 16
setLED, 13	setImpedance, 16
setOpenDrainDOUT, 13	setLoadcellDCVoltage, 16
setOpenDrainPWM, 13	setLoadcellVoltage, 16
setTransistionType, 14	setPOWERSW1, 16
IABoard.hpp	setPOWERSW2, 16
BOTH, 25	setSENVoltage, 16
DISABLE, 25	PCB.hpp
	ADDVOL_CHANNEL, 28
FALLING, 25	PIN_EXTRASW1, 28
I2C_ADDRESS, 25	PIN_EXTRASW2, 28
RISING, 25	PIN_IMPEDANCE1, 28
TRANSITION, 25	PIN_IMPEDANCE2, 28
UNDEFINED, 25	PIN_LED_BUSY, 28
IMPEDANCE	PIN_LED_FAULT, 28
Configuration.hpp, 21	PIN_LED_READY, 28
initial_weight	PIN_POWERSW1, 29
Configuration, 6	

INDEX 43

PIN POWERSW2, 29	IABoard, 13
SUBVOL CHANNEL, 29	setPinMode
PIN EXTRASW1	GPIO, 8
PCB.hpp, 28	setPOWERSW1
PIN EXTRASW2	PCB, 16
PCB.hpp, 28	setPOWERSW2
PIN IMPEDANCE1	PCB, 16
PCB.hpp, 28	setPWM
PIN IMPEDANCE2	GPIO, 8
PCB.hpp, 28	setSENVoltage
PIN LED BUSY	PCB, 16
PCB.hpp, 28	setTransistionType
PIN_LED_FAULT	IABoard, 14
PCB.hpp, 28	setWeightKG
PIN_LED_READY	Simulator, 17
PCB.hpp, 28	setWeightPER
PIN_POWERSW1	Simulator, 17
PCB.hpp, 29	SHORT
PIN_POWERSW2	Configuration.hpp, 22
PCB.hpp, 29	Simulator, 17
	\sim Simulator, 17
readAnalogCurIn	setWeightKG, 17
IABoard, 12	setWeightPER, 17
readAnalogVolIn	Simulator, 17
IABoard, 12	SUBVOL_CHANNEL
readAnalogVolInPM	PCB.hpp, 29
IABoard, 12	
readData	TRANSITION
I2C, 9	IABoard.hpp, 25
readPin	transmitMSG
GPIO, 7	UART, 19
readTransistions	LIADT 10
IABoard, 12	UART, 18
receiveMSG	∼UART, 18
UART, 18	begin, 18
resetTransitions	receiveMSG, 18
IABoard, 13	transmitMSG, 19 UART, 18
RISING	UNDEFINED
IABoard.hpp, 25	_
act Analog Cur Out	IABoard.hpp, 25
setAnalogCurOut IABoard, 13	utility.cpp constrainMax, 31
setAnalogVolOut	constrainMin, 32
IABoard, 13	constrainMinMax, 32
setEXTRASW1	utility.hpp
PCB, 15	constrainMax, 32
setEXTRASW2	constrainMin, 32
PCB, 16	constrainMinMax, 33
setImpedance	oonon amminiat, oo
PCB, 16	writeData
setLED	I2C, 9
IABoard, 13	writePin
setLoadcellDCVoltage	GPIO, 8
PCB, 16	
setLoadcellVoltage	
PCB, 16	
setOpenDrainDOUT	
IABoard, 13	
setOpenDrainPWM	
•	