石家庄铁道大学 2019 年春季学期

2017 级本科班期末考试试卷(A)

课程名称: 概率论与数理统计 A (闭卷) 任课教师: _____考试时间: 120分钟

考试性质(学生填写):正常考试()缓考()补考()重修()提前修读()

题 号			三	总分
满分	30	40	30	100
得分				
阅卷人				

附表 1: 标准正态分布函数表

_	_									
z –	0	1	2	3	4	5	6	7	8	9
1.0-	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.9_	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9762	0.9767
2.0~	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817

题______**得分**_____

一、 选择题和填空题(每小题 3 分,共 30 分)

(将正确答案填在下面的表格里面,填写在其他处无效)

1	2	3	4	5	6	7	8	9	10

班级:

老场:

一效 — — — — — — — —

- 1. 设随机变量 X, Y 独立同服从参数为 0.5 的指数分布,则 $Z = \min\{X, Y\}$ 服从参数为【】的指数分布.
- 2. 设事件 A, B 独立, $P(A) = 0.5, P(A \cup B) = 0.75, 则 P(B) = 【】.$
- 3. 设 X_1, X_2, \dots, X_n 是取自总体 $X \sim N(0,1)$ 的样本,则 $\rho_{X,X_n} = \mathbb{I}$.
- 4. 设 $X \sim B(100, 0.04)$,则由中心极限定理得 $P\{4 \le X \le 100\} \approx$ 【】.
- **A**. 1

C. 0

B. 0.5

- D. 0.25
- 5. 设 X_1, X_2, \cdots, X_n 是 取 自 总 体 $X \sim N(\mu, \sigma^2)$ 的 样 本 , 己 知

$$C\sum_{i=1}^{n-1} (X_{i+1} - X_i)^2$$
为 σ^2 的无偏估计,则 $C = \{ \} \}$.

A. $\frac{1}{n}$

C. $\frac{1}{n-1}$

B. $\frac{1}{2n-2}$

- D. $\frac{1}{2n}$
- 6. 设 X_1, X_2, \dots, X_n 是取自总体 $X \sim P(1)$ 的样本,则样本方差的期望为【】.
- 7. 设 $P\{X = k\} = 0.25, k = 1, 2, 3, 4$,则 $P\{2 \le X < 4\} =$ 【】.
- 8. 设随机变量 X 的密度函数为 $f(x) = ae^{-|x|}$,则 $a = \mathbb{I}$.
- 9. 设X,Y相互独立,且 $X \sim B(4,0.1), Y \sim B(6,0.1)$,则 $X+Y \sim []$.
- A. B(4, 0.2)

C. B(6, 0.2)

B. *B*(10, 0.1)

- D. B(10, 0.2)
- 10.设X服从参数为0.5的两点分布,则 $E(X^2-X+1)=$ 【】.

大似然估计量. 2. 设某节目播出时长服从 N(μ,4), 现随机 长为 30.4 分钟,问:能否认为 μ = 30.(显著 解:这是关于正态总体均值的双侧假设检验 下检验假设:	$1.$ 设 X_1, X_2, \dots, X_n 是取自总体 $X \sim P(\lambda)$ 的简大似然估计量. $1.$ 设某节目播出时长服从 $N(\mu, 4)$,现随机扩长为 30.4 分钟,问:能否认为 $\mu = 30.$ (显著解:这是关于正态总体均值的双侧假设检验下检验假设: $H_0:; H_1:$ 取检验统计量为: $U =;$ 拒绝由样本观测值算得 $u =,$ 故		`	解答题	, ,	AZ 10 /J ;	,共
大似然估计量. 2. 设某节目播出时长服从 N(μ,4), 现随机 长为 30.4 分钟,问:能否认为 μ = 30.(显著 解:这是关于正态总体均值的双侧假设检验 下检验假设:	大似然估计量. 2. 设某节目播出时长服从 $N(\mu,4)$,现随机割长为 30.4 分钟,问:能否认为 $\mu=30.$ (显著解:这是关于正态总体均值的双侧假设检验下检验假设: $H_0:$,, ,
 设某节目播出时长服从 N(μ,4), 现随机 长为 30.4 分钟, 问:能否认为 μ = 30.(显著 解:这是关于正态总体均值的双侧假设检验 下检验假设: 	$2.$ 设某节目播出时长服从 $N(\mu,4)$,现随机扩长为 30.4 分钟,问:能否认为 $\mu=30.$ (显著解:这是关于正态总体均值的双侧假设检验下检验假设: $H_0:$	$1.设 X_1, X$	$_2,\cdots, _2$	K_n 是取自	自总体》	$X \sim P(\lambda)$	的简
长为 30.4 分钟,问:能否认为 μ = 30.(显著解:这是关于正态总体均值的双侧假设检验 下检验假设:	长为 30.4 分钟,问:能否认为 $\mu = 30.$ (显著解:这是关于正态总体均值的双侧假设检验下检验假设: $H_0:; \ H_1:$ 取检验统计量为: $U =;$ 拒绝	大似然估	计量.				
长为 30.4 分钟,问:能否认为 μ = 30.(显著解:这是关于正态总体均值的双侧假设检验 下检验假设:	长为 30.4 分钟,问: 能否认为 $\mu = 30.$ (显著解: 这是关于正态总体均值的双侧假设检验下检验假设: $H_0:; \ H_1:$ 取检验统计量为: $U =;$ 拒绝						
长为 30.4 分钟,问:能否认为 μ = 30.(显著解:这是关于正态总体均值的双侧假设检验 下检验假设:	长为 30.4 分钟,问: 能否认为 $\mu = 30.$ (显著解: 这是关于正态总体均值的双侧假设检验下检验假设: $H_0:; \ H_1:$ 取检验统计量为: $U =;$ 拒绝						
长为 30.4 分钟,问:能否认为 μ = 30.(显著解:这是关于正态总体均值的双侧假设检验 下检验假设:	长为 30.4 分钟,问: 能否认为 $\mu = 30.$ (显著解: 这是关于正态总体均值的双侧假设检验下检验假设: $H_0:; \ H_1:$ 取检验统计量为: $U =;$ 拒绝						
长为 30.4 分钟,问:能否认为 μ = 30.(显著解:这是关于正态总体均值的双侧假设检验 下检验假设:	长为 30.4 分钟,问: 能否认为 $\mu = 30.$ (显著解: 这是关于正态总体均值的双侧假设检验下检验假设: $H_0:; \ H_1:$ 取检验统计量为: $U =;$ 拒绝						
长为 30.4 分钟,问:能否认为 μ = 30.(显著解:这是关于正态总体均值的双侧假设检验 下检验假设:	长为 30.4 分钟,问: 能否认为 $\mu = 30.$ (显著解: 这是关于正态总体均值的双侧假设检验下检验假设: $H_0:; \ H_1:$ 取检验统计量为: $U =;$ 拒绝						
长为 30.4 分钟,问:能否认为 μ = 30.(显著解:这是关于正态总体均值的双侧假设检验 下检验假设:	长为 30.4 分钟,问: 能否认为 $\mu = 30.$ (显著解: 这是关于正态总体均值的双侧假设检验下检验假设: $H_0:; \ H_1:$ 取检验统计量为: $U =;$ 拒绝						
长为 30.4 分钟,问:能否认为 μ = 30.(显著解:这是关于正态总体均值的双侧假设检验 下检验假设:	长为 30.4 分钟,问: 能否认为 $\mu = 30.$ (显著解: 这是关于正态总体均值的双侧假设检验下检验假设: $H_0:; \ H_1:$ 取检验统计量为: $U =;$ 拒绝						
下检验假设:	下检验假设: H_0 :	长为 30.4	分钟,	问: 能	否认为,	น=30.(รี	湿著
H_0 : ; H_1 : .	取检验统计量为: U =; 拒绝			态总体均	可值的双	! 侧假设检	金验∣
0		H_0 :_		; H	ı:	·	
取检验统计量为: $U =$; 拒绝	由样本观测值算得 $u =$,故 $$	取检验	验统计	量为: (<i>J</i> =	; 扌	巨绝:
由样本观测值算得 $u =$		由样	本观测	值算得ı	ı =	,故	

温 分

答题 (每小题 10 分, 共 40 分)

x取自总体 $X \sim P(\lambda)$ 的简单随机样本, 求参数 λ 的极

长服从 Ν(μ,4), 现随机抽取 9 期该节目, 测得平均时

能否认为 $\mu = 30$.(显著性水平 $\alpha = 0.05$)

体均值的双侧假设检验问题,在显著性水平 $\alpha = 0.05$

 H_1 :_____. n: *U* = _____; 拒绝域为: _____; 3. 已知 $A \times B \times C$ 代言的手游宣传视频被用户秒关的概率分别为 0.9, 0.3, 0.1. 设某款手游欲寻求上述三位代言, $A \times B \times C$ 代言的概率分别为 0.7, 0.2, 0.1.

求: (1)该款手游宣传视频被用户秒关的概率;

(2)已知该款手游宣传视频被用户秒关,那么其是 A 代言的概率.

4. WHC 及其父母名下共有 2 套房产,WHC 于 2019 年春患病众筹,设筹得款项 *X* ~ *N*(10,100)【单位:万元】. 若筹款少于 10 万元,WHC 需要出售 2 套房产才能支付手术及相关费用;若筹款数额介于 10~30 万元之间,仅需出售 1 套房产即可;若筹款数额超过 30 万元,则其不需要出售房产。求 WHC 手术后,本人及其父母名下的共有房产数量的分布律.

1. 设随机变量 (X,Y) 的联合密度函数为 $f(x,y) = \begin{cases} Ce^{-(3x+y)}, & x > 0, y > 0 \\ 0, & \text{其他} \end{cases}$

求(1)常数 C; (2) X与 Y的边缘密度函数; (3) X与 Y是否独立,为什么?

2. 设随机变量 X 服从 (0,1) 上的均匀分布,随机变量 Y 与 X 独立,且服从 参数为 1 的指数分布,求随机变量 Z = X + Y 的密度函数.

- 3. 设随机变量 X 的密度函数为 $f(x) = \begin{cases} kx^2, 0 < x < 2 \\ kx, 2 \le x \le 3 \\ 0, 其他 \end{cases}$ 求(1)常数 k; (2) X 的分布函数; (3) $P\{1 < X \le \frac{5}{2}\}$