Supervised learning - regression

JENS BAETENS

Lineaire regression

- Voorspel het resultaat in de output kolom op basis van de inputs (hier de feature kolom)
- Output wordt ook vaak target genoemd
- Trainingsset = 100 training examples
- Output is een (continue) variabele

lineaire ragramie = rechte telemon

Wat is het beste model?

Los bereken

Enkelvoudige lineaire regressie

rimut/feature
Zoek verband feature en output

Enkelvoudige lineaire regressie

De trendlijn = Het verband tussen twee waarden

dit is in let wet
= vector
$$f_{\mathbf{w}}(x) = w_0 + w_1 x = \text{target}$$

Regressie zoekt de optimale waarden voor wo en w

Deze waarden worden **gewichten** genoemd (**weights**) of de te trainen **parameters** worden **gewichten** genoemd (**weights**) of de te trainen - Gecombineerd voorgesteld als vector $\mathbf{w} = [\mathbf{w}_0, \mathbf{w}_1]$

Het zoeken van het trendlijn / model / hypothese = training / learning

https://youtu.be/fNk_zzaMoSs

Wat is het beste model?

 $f(x) = w_0 + w_0 \times \frac{1}{2}$ $= \begin{bmatrix} x_0 + x_1 \end{bmatrix} \cdot \begin{bmatrix} w_0 \end{bmatrix} = 7$ $= \begin{bmatrix} x_0 + x_1 \end{bmatrix} \cdot \begin{bmatrix} w_0 \end{bmatrix} = 200?$ $= \begin{bmatrix} x_0 + x_1 \end{bmatrix} \cdot \begin{bmatrix} w_0 \end{bmatrix} = 200?$

Wat is het beste model?

Beste model wordt gekozen door minimalisatie van een kostenfunctie.

Bvb: Least Mean Squares (LMS) voor N examples met

input x^i en targets y^i

rgets
$$y^{i}$$

$$L(\mathbf{w}) = \frac{1}{2N} \sum_{i=1}^{N} (f_{\mathbf{w}}(x^{i}) - y^{i})^{2}$$
mean

N=aartal

\[
 \(\left[i \right] = \)

for sch from ento N

cent += x[i]

Least Mean squares

Appleide vande leot-

Smittee 20-15-10-5 % 5 10 15 20 Reature Logelt van Roe de gewichten moden veranderen

Gradient descent

lobaal minimum globaal minimum

Gradient Descent – Lokaal Minimum?

LMS-functie is convex

- Hierdoor altijd global minimum

Bij neurale netwerken kan het wel

Gemiddelde kwadratische fout

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i| \quad |-5| = 5$$

 $MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$

$$R^2 = \frac{\sum_{i=1}^{N} (i)}{\sum_{i=1}^{N} (i)}$$

Gradient
Descent –
Learning rate

Bepaalt hoe snel je het optimum benaderd.

"De grootte van de stappen"

Trainen van het model

Voor der tednick banket

Zelf implementeren of gebruik maken van bestaande frameworks (sklearn)

Construct model => Fit model => Make predictions

lyperparamaters

huma we kioren gan bejolen

Ly op nællere dæla Glødleere Roe goed let werkt

gewiltenparameres niet te biera

Meerdere features

In de praktijk zijn er normaal meer features beschikbaar.

- Meervoudige of multiple regression

Bovenstaande formules aan te passen met meer gewichten.

Hoeveel extra gewichten per feature nodig?

Meerdere features – aanpassingen?

1 feature not 2 genillo -> MIT features met? garafia

• $f_{w}(x) = w_0 + w_1 x =$ target

$$\mathbf{w} = [\mathbf{w}_0, \mathbf{w}_1]$$

$$\mathbf{w} = [\mathbf{w}_0, \mathbf{w}_1]$$

$$\mathbf{w} = [\mathbf{w}_0, \mathbf{w}_1]$$

$$L(\mathbf{w}) = \frac{1}{2N} \sum_{i=1}^{N} (f_{\mathbf{w}}(x^{i}) - y^{i})^{2}$$

1 - - - X1 X1 X2 X3 --- X1 X17

Hoe ziet dit er wiskundig uit?

Feature engineering - Normalisation Herschaal elke kolom (behalve target) zodat grootleorde Oreng - Gemiddelde gelijk aan 0 - Standaardafwijking is 1 - Stolis hinde normalisate scaler = StandardScaler().fit(X_train) X train = scaler.transform(X train) X_test = scaler.transform(X_test) Andere vormen: - Delen door het maximum - lig beeld verwerling - Schalen naar het interval 0-1 Belangrigh omdat er geworkt wordt met alstanden om errors te berdsenen

Feature engineering – Higher order

Feature engineering – extra features

Bedenken van nieuwe features —

- Oppervlakte op basis van breedte en lengte ×>
- Uit start en eindpunt de afstand halen
- Snelheid bereken op basis van afgelegde afstand en duur van de rit
- Dag van de week of welke maand het is uit de datum halen.

- ...

Niet eeft shad vaan-> automatiseren

Underfitting

Model is te eenvoudig om de data correct te modelleren

Ly train
test

groot

Overfitting Grodel to complex Los traingingidata 55 vantruiten aan let loven 50 problemen ryn voor

Overfitting - regularisatie

Extra term in de kostenfunctie voor het gebruik van features te penaliseren

$$L(\mathbf{w}) = \frac{1}{2N} \sum_{i=1}^{N} (f_{\mathbf{w}}(x^{i}) - y^{i})^{2} + \lambda R(\mathbf{w})$$
Leady large tipe of regularisation is

De parameter λ is de mate waarin er regularisatie is

- 0 -> geen regularisatie
- ∞-> alle gewichten zijn nul

Overfitting - L2norm - Ridge by lineary regre

Regularisatieterm = $\sum_{i=1}^{N} w_i^2$

Merk op dat de som begint vanaf 1

De bias wordt niet in rekening gebracht 100 mg loo 100 om dere mee in rebening to

Ly voak det niet boen sonafk van de features

Overfitting – L1norm – Lasso

Regularisatieterm = $\sum_{i=1}^{N} w_i$ was well as w_i and w_i was well as w_i was well as w_i and w_i and w_i was well as w_i and w_i and w_i was well as w_i and w_i was well as w_i and w_i are w_i and w_i and w_i and w_i are w_i and w_i are w_i and w_i are w_i and w_i and w_i are w_i and w_i and w_i are w_i

feature

Lexicon

- Supervised
- Unsupervised
- Reinforcement Learning
- Regression
- Overfitting
- Underfitting
- Learning Rate
- Loss Function

- Feature Engineering
- Normalisation
- Regularisation
- Trainen van een model

0. Connection slide

Go to www.wooclap.com and use the code DGMOAR

Welke technieken kan je gebruiken om overfitting tegen te gaan?

Opdracht

- Github classroom: https://classroom.github.com/a/qESKmk8z
- Een aantal groepen reeds aangemaakt voor een aantal verschillende ML-technieken
 - Logistic Regression, SVM, Naïve Bayes, Knearest Neighbour, Decision Trees, Random Forests
 - In groepjes van max 5
- Bereid een presentatie voor waarin je de techniek uitlegt
 - Hoe werkt de techniek?
 - Welke waarden kan je kiezen?
 - Wanneer kan het (niet) gebruikt worden?
 - Voor- en nadelen van deze techniek?
- Maak ook de oefening in de notebook met de aan je groep toegekende techniek
- Volgende les krijg je tijd om hieraan te werken en vragen te stellen