Análise Matemática I 1° Exame - 23 de Janeiro de 2004 LEAN, LEC e LET

Duração: 3 horas Apresente os cálculos

1. Calcule, caso existam:

(2)

$$\lim_{n\to\infty} \left[\frac{3n+4}{n+2} + e^{-n} + \frac{\cos n}{n} \right],$$

$$\lim_{n\to\infty} \left\lceil \tfrac{e^n}{\pi^n} + \sqrt[n]{\pi} + \tfrac{\pi^n}{n!} + \left(1 - \tfrac{\sqrt{\pi}}{n^2}\right)^{n^2} \right\rceil.$$

2. Analise a convergência das séries

(2.5)

(2.5)

(2)

- a) $\sum_{n=1}^{\infty} 1$, b) $\sum_{n=1}^{\infty} \arctan n$, c) $\sum_{n=1}^{\infty} \frac{n}{n^3+3}$, d) $\sum_{n=1}^{\infty} \sin \frac{1}{n}$,

calcule

e) $\sum_{n=1}^{\infty} \frac{1}{\pi^n},$

f) analise a convergência da série de potências
$$\sum_{n=1}^{\infty} \frac{(x+2)^n}{n2^n}.$$
 (2)

3. Calcule, caso exista:

- a) $\frac{d}{dx}(x^3e^x)$, b) $\lim_{x\to 1} \frac{x^2-1}{x+2}$, c) $\lim_{x\to 0} \frac{\sin x-x}{x^3}$, d) $\frac{d}{dx}\sqrt{\ln x}$, e) $\frac{d}{dx}e^{x\arctan x}$.

4. Considere a função $f: \mathbb{R} \to \mathbb{R}$, contínua, definida por

 $f(x) = \begin{cases} |x| & \text{se } x \le e, \\ k + \ln x & \text{se } x > e. \end{cases}$

- a) Determine $k \in \mathbb{R}$. Esboce o gráfico de f.
- b) Estude f do ponto de vista da diferenciabilidade. Esboce o gráfico de f'.

2

(2)

5. Considere as funções $f, g: \mathbb{R} \to \mathbb{R}$, definidas por

$$f(x) = \sin[\sin(\sin x)], \qquad g(x) = x^2 - 1.$$

- a) Prove que f tem máximo e mínimo. Note: Não precisa determinar os pontos onde ocorrem.
- b) Prove que f = g em pelo menos dois pontos.
- **6.** Suponha que $f: \mathbb{R} \to \mathbb{R}$ é diferenciável e que o seu gráfico intersecta a recta y = x em todos os pontos da forma (n, n), com $n \in \mathbb{N}$.
 - a) O que pode afirmar acerca do comportamento de f(x) quando $x \to +\infty$? Justifique.
 - **b)** Prove que existe $x_n \to +\infty$ tal que $f'(x_n) = 1$.
- 7. Prove por definição que $\frac{d}{dx}x=1$ e por indução que $\frac{d}{dx}x^n=nx^{n-1}$, para $n\in\mathbb{N}_1.$
- 8. Considere a sucessão (x_n) obtida por truncatura da dízima que representa π com n casas decimais. Considere também a sucessão (y_n) , em que y_n se obtém de x_n por uma troca da ordem dos seus dígitos:

$$x_1 = 3.1$$
 $y_1 = 1.3$
 $x_2 = 3.14$ $y_2 = 4.13$
 $x_3 = 3.141$ $y_3 = 1.413$
 $x_4 = 3.1415$ $y_4 = 5.1413$
 $x_5 = 3.14159$ $y_5 = 9.51413$

- a) Diga se o conjunto $\{x_n : n \in \mathbb{N}_1\}$ tem ínfimo, supremo, mínimo e máximo.
- b) A sucessão (x_n) converge? Qual o seu limite? Justifique.
- c) Determine $\liminf x_n \in \limsup x_n$.
- d) Prove que (y_n) tem pelo menos dois sublimites.