Probability mass functions

EXPLORATORY DATA ANALYSIS IN PYTHON

Allen Downey
Professor, Olin College

GSS

- Annual sample of U.S. population.
- Asks about demographics, social and political beliefs.
- Widely used by policy makers and researchers.

Read the data

```
gss = pd.read_hdf('gss.hdf5', 'gss')
gss.head()
```

```
wtssall
                              educ
                                    realinc
                cohort
                        race
          age
year
      sex
1972
        1 26.0
                1946.0
                           1 18.0
                                    13537.0
                                             0.8893
1972
        2 38.0
               1934.0
                           1 12.0
                                    18951.0
                                            0.4446
        1 57.0
                           1 12.0
                                             1.3339
1972
                1915.0
                                    30458.0
1972
        2 61.0
               1911.0
                           1 14.0 37226.0
                                            0.8893
1972
        1 59.0
               1913.0
                           1 12.0
                                   30458.0
                                             0.8893
```

```
educ = gss['educ']
plt.hist(educ.dropna(), label='educ')
plt.show()
```


PMF

```
pmf_educ = Pmf(educ, normalize=False)
pmf_educ.head()
0.0
      566
1.0
      118
2.0
      292
3.0
      686
4.0 746
Name: educ, dtype: int64
```

PMF

pmf_educ[12]

47689

```
pmf_educ = Pmf(educ, normalize=True)
pmf_educ.head()
0.0
      0.003663
1.0
      0.000764
2.0
      0.001890
3.0
      0.004440
      0.004828
4.0
Name: educ, dtype: int64
pmf_educ[12]
0.30863869940587907
```



```
pmf_educ.bar(label='educ')
plt.xlabel('Years of education')
plt.ylabel('PMF')
plt.show()
```


Histogram vs. PMF

Let's make some PMFs!

EXPLORATORY DATA ANALYSIS IN PYTHON

Cumulative distribution functions

EXPLORATORY DATA ANALYSIS IN PYTHON

Allen Downey
Professor, Olin College

From PMF to CDF

If you draw a random element from a distribution:

- PMF (Probability Mass Function) is the probability that you get exactly x
- CDF (Cumulative Distribution Function) is the probability that you get a value <= x

for a given value of x.

Example

PMF of {1, 2, 2, 3, 5}

PMF(1) = 1/5

PMF(2) = 2/5

PMF(3) = 1/5

PMF(5) = 1/5

CDF is the cumulative sum of

the PMF.

$$CDF(1) = 1/5$$

$$CDF(2) = 3/5$$

$$CDF(3) = 4/5$$

$$CDF(5) = 1$$

```
cdf = Cdf(gss['age'])
cdf.plot()
plt.xlabel('Age')
plt.ylabel('CDF')
plt.show()
```


Evaluating the CDF

```
q = 51
p = cdf(q)
print(p)
```

0.66

Evaluating the inverse CDF

```
p = 0.25
q = cdf.inverse(p)
print(q)
```

30

```
p = 0.75
q = cdf.inverse(p)
print(q)
```

57

Let's practice!

EXPLORATORY DATA ANALYSIS IN PYTHON

Comparing distributions

EXPLORATORY DATA ANALYSIS IN PYTHON

Allen Downey
Professor, Olin College

Multiple PMFs

```
male = gss['sex'] == 1
age = gss['age']
male_age = age[male]
female_age = age[~male]
Pmf(male_age).plot(label='Male')
Pmf(female_age).plot(label='Female')
plt.xlabel('Age (years)')
plt.ylabel('Count')
plt.show()
```


Multiple CDFs

```
Cdf(male_age).plot(label='Male')
Cdf(female_age).plot(label='Female')

plt.xlabel('Age (years)')
plt.ylabel('Count')
plt.show()
```


Income distribution

```
income = gss['realinc']
pre95 = gss['year'] < 1995
Pmf(income[pre95]).plot(label='Before 1995')
Pmf(income[~pre95]).plot(label='After 1995')
plt.xlabel('Income (1986 USD)')
plt.ylabel('PMF')
plt.show()</pre>
```


Income CDFs

```
Cdf(income[pre95]).plot(label='Before 1995')
Cdf(income[~pre95]).plot(label='After 1995')
```


Let's practice!

EXPLORATORY DATA ANALYSIS IN PYTHON

Modeling distributions

EXPLORATORY DATA ANALYSIS IN PYTHON

Allen Downey
Professor, Olin College

The normal distribution

```
sample = np.random.normal(size=1000)
Cdf(sample).plot()
```


The normal CDF

```
from scipy.stats import norm
xs = np.linspace(-3, 3)
ys = norm(0, 1).cdf(xs)
plt.plot(xs, ys, color='gray')
Cdf(sample).plot()
```


The bell curve

```
xs = np.linspace(-3, 3)
ys = norm(0,1).pdf(xs)
plt.plot(xs, ys, color='gray')
```


KDE plot

```
import seaborn as sns
sns.kdeplot(sample)
```


KDE and **PDF**

```
xs = np.linspace(-3, 3)
ys = norm.pdf(xs)
plt.plot(xs, ys, color='gray')
sns.kdeplot(sample)
```


PMF, CDF, KDE

- Use CDFs for exploration.
- Use PMFs if there are a small number of unique values.
- Use KDE if there are a lot of values.

Let's practice!

EXPLORATORY DATA ANALYSIS IN PYTHON

