Final Review

Monday, June 06, 2016 4:22 PN

Fran Before:

Text Proprocessing

Statistical Properties and Evalvation

Boolean Retrieval

vector space Male

Relevance Feedback

Statistical Larguage Modeling

Document Prior

Page Rank

 $N e_{W}$:

Page Rank

Recommendation Systems

Text Clasification

Text Clust ering

Page Rank

Recommendation Systems

Algorithms

- Collaborative Filtering
- Content-Box
- Hybrid

A Collaborative Filtering

- Like users rate similarly - K-nearest

La choose the K most similar

& Evalually Predictions: RMSE

TISE (Pai - rail)?
-no underlover

Prutly Predicted r true railing lusi) & lat missing radings

Roting Prediction

Pearson Correlation

 $W_{A,u} = \sum_{i=1}^{\frac{1}{2}} \frac{(r_{A,i} - \overline{r_{A}})(r_{A,i} - \overline{r_{u}})}{\sqrt{\sum_{i=1}^{k} (r_{A,i} - \overline{r_{A}})^{2}}}$ $P_{A,i} = \sum_{i=1}^{k} \frac{w_{A,u}(r_{u,i} - \overline{r_{u}})}{\sqrt{\sum_{i=1}^{k} (r_{A,i} - \overline{r_{u}})^{2}}}$

Sub France. 1 - perfectly correlated D-not

Average

-1 - inverse

Optimizations Improving Pradictions

- Penulize universally likely movies

IUF(j) = log m - total A users - multiply original ratings by Iur

to users ratalionis during weight call

- Case Amplification - 10mpper causes War = War | War | for , f= 7.5, 21 - favors high neights, punishes low weights

Euclideur dit:

JACCARD SIM

Vsar Basel - Sunnary

- 1) find (c rearest
- 2) use radings from k-nearest to predict for the active user

Item-Based Collaboration Filterly

- Similar Items raded cimilarly - reverse Users & Items in Arevious

Cos slm Permin: { (Rui- Ri)(Ruij- Rj)

Cold- Stort Problem · Now item of users have no historical ratings

User us Item

Conton - Dased content compare to user profile IR applies - treat user as a query, item as ducument

A K-No. a rost - Probability improvements - center your data -more points less noisy, order of magnitude for ratings - Smoothing!

> Linear- ru= d. rn+(1-d): g = global mean ru is rn average resolus To facility of sex ratifies to make of sex of the sex of sex of sex of the se - get a shrunkan mean

Text Classification

- · Assign Categories to text decuments

 Vector Space word = component

Like millockhio $\leq V(d)$ De sot of all dements in class (, V(d) Vet., 140 of d

* K-nearest

- · Keep all training ducs
- · K does that are matshallow to the nar doc
- · assign category that is most common among st neighborducs

similarly functions - evellden, KL divergence, Dot Andret, cosine Similarios y(x)= 1 { (in (x,x,1) { 1 i + 3 (x) x),5 0 otherwise

Naive Bayes Text Classification
- query likelihood, der prior

C- 10c of all does in

d-query likelihou1

$$\begin{array}{cccc}
\mathcal{L} = \underset{\text{are jmax}}{\operatorname{are jmax}} & \mathcal{P}(C_{j}) & \underset{\text{1}}{\overset{\text{N}}{\text{1}}} & \mathcal{P}(t_{i})(j) & \underset{\text{N}}{\text{2}} & \underset{\text{N}}{\text{2}} & \underset{\text{2}}{\text{2}} & \underset{\text{2}}{\text{2}$$

	in the class	not in the class
predicted to be in the class	true positives (TP)	false positives (FP)
predicted to not be in the class	false negatives (FN)	true negatives (TN)

Precision = TP / (TP + FP)Recall = TP / (TP + FN)F = 2* Precision * Recall/(Precision + Recall) Accuracy = (TP + TN)/(TP+FP+FN+TN)

lext Clustering

· unsupervised learning | VS dossification

· inferred from data | supervised user defined

\$ K-mans \$ 10 = 1 & \$

· iterative - based on centrals

- reassymment based an distance to current clust centrals - not optimal - need good Seeds

- Recompute centralis bused in new membership

- guarunteel do convinc - only on linear dada

Kar VN/2, n It data polytis

Final Sample

- 1) Summarize algorithms
 - a) User-Laset. Like users rate similarly
 - b) Item-based. Similar items are rated similarly
- 2) Major disadvantage to RMSF?

| Subjective Metric FRMST= -doesn't correlate w/ user-satisfaction

Can't differentiate between about & below ground truth - no under/over

3) K-mans doesn't work where? Non-garssian data - ex: concentric cides. The Centralds are the same, but the algorithm wan't for that () C=Ancila, = = everything else. 5 training, I test : 6 total dossAld-one smoothing PLAIL) PLUX P(NIL) PLL) ped) P(Americo) = 5/12 (11 told words+1 = 5/12 Pl Calit) = 1/17 P(1)=(5/13)3-(1/13).(1/13)-3/4 P (Wash) = 1/12 PLOregon) = 1/12 P(Tokyo) - 2/17 PLJapan) = 1/17 P(C) = 3/4 (doc privr - 3/4 doc; li) = +5(t; li) +1
P(C) = 1/1, < 1 doc not in () [li] = +5(t; li) +1 P(d/L)= TT P(+1(), ted [P(U)] = PlAmerica IC)3 · PCTokgolc) · PCJapan (C) $P(d|C) = \begin{bmatrix} \frac{3}{13} \\ \frac{3}{7} \end{bmatrix} \begin{bmatrix} \frac{1}{13} \end{bmatrix} \begin{bmatrix} \frac{1}{13}$ (5 =4 W = 3 $P(A|\overline{C}) > P(A|C) => in \overline{C}$