

Data Understanding

Variable	Description
click:	0/1 for non-click/click
hour: format is YYMMDDHH, so 14091123 means 23:00 on Sept. 11, 2014 UTC.	
C1	anonymized categorical variable
banner_pos	position of the ad/banner on the page
site_id	unique id of the site on which the ad is shown
site_domain	unique domain of the site on which the ad is shown
site_category	category of the site on which the ad is shown
app_id	app id of the site on which the ad is shown
app_domain	app category of the site on which the ad is shown
app_category	category id of the site on which the ad is shown
device_id	device id on which the add was shown
device_ip	ip address of the device on which the ad was shown
device_model	model type of the device on which the ad was shown
device_type	the device type on which the ad was shown
device_conn_type	the connection type of the device on which the ad was shown
C14 - C21	anonymized categorical variable

Data Display

click	C1	ba nn er_ pos	sit e_i d	sit e_ do ma in	sit e_ cat ego ry	ap p_i d	ap P_ do ma in	ap P_ cat ego ry	de vic e_i d	de vic e_i P	de vic e_ mo del	de vic e_t yp e	de vic e_ con n_t yp e	C1 4	C1 5	C1 6	C1 7	C1 8	C1 9	C2 0	C2 1	mo nth	dayof week	da y	hou r	У
0	Fal se	100 5	1	856 e6d 3f	58a 89a 43	f02 877 2b	eca d23 86	780 1e8 d9	07d 7df 22	a99 f21 4a	962 c83 33	be6 db1 d7	1	0	226 83	320	50	252 8	0	39	10 00 75	221	10	1	28	1 4
1	Tru e	100 5	1	e15 1e2 45	7e0 916 13	f02 877 2b	eca d23 86	780 1e8 d9	07d 7df 22	a99 f21 4a	5b1 f94 b9	1b1 3b0 20	1	0	170 37	320	50	193 4	2	39	-1	16	10	2	22	1 9
2	Fal se	100 5	0	e3c 09f 3a	d26 2cf 1e	289 05e bd	eca d23 86	780 1e8 d9	07d 7df 22	a99 f21 4a	a9a 84f 4c	9a4 5a8 e8	1	0	221 55	320	50	255 2	3	167	10 02 02	23	10	3	23	1 8
3	Fal se	100	0	0da 944 52	248 e43 9f	50e 219 e0	eca d23 86	780 1e8 d9	07d 7df 22	0fa 578 fd	88c 62d ad	ea6 abc 60	0	0	215 91	320	50	247 8	3	167	10 00 74	23	10	2	22	1 9
4	Tru e	100 5	0	1fb e01 fe	f38 457 67	289 05e bd	eca d23 86	780 1e8 d9	07d 7df 22	a99 f21 4a	1e5 e0d 0e	36d 749 e5	1	0	157 08	320	50	172 2	0	35	-1	79	10	1	21	8

High level inference of Dataset

- ► The data has total 99,999 rows and 27 columns
- ► The dataframe doesn't have null or missing values
- ▶ The data has total 18 numerical and 9 categorical columns
 - Numerical columns =['click', 'C1', 'banner_pos', 'device_type',
 'device_conn_type', 'C14', 'C15', 'C16', 'C17', 'C18', 'C19', 'C20',
 'C21', 'month', 'dayofweek', 'day', 'hour', 'y']
- ▶ The target variable is highly imbalanced as it has 83% of 0's and 17% of 1's

Target encoder for categorical features

C1	ban ner _po s	site _id	site _do mai n	site _cat ego ry	app _id	app _do mai n	app _cat ego ry	devi ce_i d	devi ce_i p	devi ce_ mod el	devi ce_ typ e	devi ce_ con n_t ype	C14	C15	C16	C17	C18	C19	C21	day ofw eek	day	hou r
0	100 5	1	0.03	0.03	0.18	0.20	0.19	0.20	0.17	0.15	0.19	1	0	226 83	320	50	252 8	0	39	221	1	28
1	100 5	1	0.30	0.26	0.18	0.20	0.19	0.20	0.17	0.19	0.28	1	0	170 37	320	50	193 4	2	39	16	2	22
2	100 5	0	0.05	0.03	0.21	0.20	0.19	0.20	0.17	0.15	0.10	1	0	221 55	320	50	255 2	3	167	23	3	23
3	100 2	0	0.14	0.14	0.13	0.20	0.19	0.20	0.15	0.15	0.19	0	0	215 91	320	50	247 8	3	167	23	2	22
4	100 5	0	0.20	0.20	0.21	0.20	0.19	0.20	0.17	0.28	0.22	1	0	157 08	320	50	172 2	0	35	79	1	21

Numerical variable inference

- Observations from numerical feature
- Y and Click looks like same columns, after co-relation we can drop on of them.
- month column has only 1 data entry, no exrtra information is added, can be dropped
- banner pos, device conn, C20, C15, C16 looks like data is cenetered around certain values.
- Observations from Pearson correlation co-efficient
- month has got no significance, better to drop it
- y and click are same drop click column
- C14 and C17 are highly co-related, later will remove one of them after the base model.
- device type with C1 are highly co-related, later will remove one of them after the base model.
- Removing C20 anomalised column, since it have got nearly 47% of values with -1. As a categorical variable it's not expected to have values as -1.

Feature Engineering - Inference

- P values and VIF looks good, will find the best threshold for classification
- Decision tree with right features seems data is overfitting. having the correct hyper parameter tuning help in interpretation and bit of over fitting of the model.

▶ VIF top10

Features

const

site id

app_id

C21

C16

C18

site_domain

app_category app_domain

site_category

VIF

175.79

9.06

8.97

2.50

2.34

2.33

1.92

1.76

1.73

1.61

Sampling target feature

VIF after removing hour,day

Features	VIF
const	180.97
site_id	9.06
site_domain	8.97
app_id	2.51
app_domain	2.34
app_category	2.34
site_category	1.92
C21	1.76
C16	1.73
C18	1.61

VIF after removing dow, device_ip, C15

Features	VIF
const	68.67
site_id	9.05
site_domain	8.88
app_id	2.41
app_category	2.32
app_domain	2.31
site_category	1.91
C21	1.74
C16	1.73
C18	1.61

Threshold prob for Accuracy, Recall and Precision

Decision Tree & Random Forest - feature importance

features	importance
device_ip	0.85
hour	0.03
device_model	0.03
device_id	0.02
dayofweek	0.01
C17	0.01
site_domain	0.01
day	0.01
site_id	0.01
C19	0.00

features	importance
device_ip	0.71
device_id	0.07
device_model	0.05
hour	0.03
site_id	0.03
site_domain	0.03
app_id	0.02
day	0.01
dayofweek	0.01
C17	0.01

Model building - Evaluation results

Model	Accuracy_t rain	recall_trai n	precision_t rain	Accuracy_t est	recall_test	precision_t est	CrossVal_M ean	CrossVal1	CrossVal2	CrossVal3	CrossVal4	CrossVal5
Dummy classifier	0.83	NaN	0.00	0.83	NaN	0.00	0.83	0.83	0.83	0.83	0.83	0.83
logistic regres - imbalance predict	0.95	0.89	0.82	0.95	0.89	0.82	0.95	0.95	0.95	0.95	0.95	0.95
logistic regres - balance predict	0.93	0.94	0.93	0.93	0.94	0.93	0.93	0.93	0.94	0.93	0.93	0.94
decision tree basic - imbalance predict	0.95	0.84	0.86	0.95	0.84	0.86	0.95	0.95	0.95	0.95	0.95	0.95
decision tree basic - balance predict	0.98	0.96	1.00	0.98	0.96	1.00	0.97	0.97	0.98	0.97	0.97	0.97
Random forest basic - imbalance predict	0.96	0.92	0.83	0.96	0.92	0.83	0.96	0.96	0.96	0.96	0.96	0.96
Random forest basic - balance predict	0.98	0.96	1.00	0.98	0.96	1.00	0.97	0.97	0.98	0.97	0.97	0.97
logistic reg with feature engine	0.73	0.73	0.75	0.73	0.73	0.75	0.73	0.73	0.73	0.73	0.73	0.73
Decision tree with feature engine	0.95	0.93	0.97	0.95	0.93	0.97	0.95	0.94	0.95	0.95	0.95	0.95
Random Forest with feature engine	0.98	0.96	0.99	0.98	0.96	0.99	0.97	0.97	0.97	0.97	0.97	0.97

Model building - Evaluation results

If we must select one model, Random forest classifier with feature engineering looks promising and best. although after the feature engineering the training and test results looks same as before feature engineering, but model is very robust with new features and rightly fitted for both training and test dataset. Decision tree and logistic regression classifier seems to have next best model to choose as the accuracy, precision, and recall is good, overall random forest classifier seems doing better with all aspects

Thank You!