Q1)1,2

Q1.	Choose the correct option for the following questions. All the questions are compulsory and carry equal marks		
1.	Object lifetimes generally correspond to one of three principal storage allocation mechanisms. Which of the following is not a principal storage allocation mechanism.		
Option A:	Static		
Option B:	Random Access		
Option C:	Stack		
Option D:	Неар		
2.	allocated memory objects reside in a fixed zone of memory		
Option A:	Statically		
Option B:	Dynamically		
Option C:	Freely		
Option D:	Completely		

Q1)3,4,5

3.	When object is strictly defined with its type and if it enforces strong typing at compile time then language is known as	
Option A:	Statically typed language	
Option B:	Dynamically typed language	
Option C:	Poorly typed language	
Option D:	Run time language	
To maintain the stack layout following steps are followed by the caller in some out which is the first step?		
Option A:	Computes the values of arguments and moves them into the stack or registers	
Option B:	Uses a special subroutine call instruction to jump to the subroutine, simultaneously passing the return address on the stack or in a register	
Option C:	Saves any caller-saved registers whose values will be needed after the call is served	
Option D:	Computes the static link and passes it as an extra, hidden argument	
5.	Higher-order functions and recursion are the basic ingredients of computational model.	
Option A:	stateless	
Option B:	stateful	
Option C:	in-state	
Option D:	out-state	

Q1)6,7,8

6.	Haskell prelude functions like map, foldl and foldr are examples of		
Option A:	Currying function		
Option B:	Higher order function		
Option C:	Anonymous function		
Option D:	polymorphism		
7.	Functional Programming finds its roots in		
Option A:	Turing Theory		
Option B:	Post Hypothesis		
Option C:	Lambda Calculus		
Option D:	Kleene Theory		
8.	In Prolog, backward chaining search strategy starts with		
Option A:	existing clauses		
Option B:	goal		
Option C:	first clauses		
Option D:	last clause		

Q1)9,10

9.	In Prolog premise is called asand consequent is called as		
Option A:	subgoal,goal		
Option B:	subgoal,tail		
Option C:	head,tail		
Option D:	tail,head		
10.	What will be the answer by the Prolog interpreter for the following query: $?-[[],p] = [X,Y Z].$		
Option A:	X = Z, Z = [], Y = p.		
Option B:	X = p, $Y = \lceil \rceil, Z = \lceil \rceil$		
Option C:	Error		
Option D:	$ \mathbf{X} = \mathbf{p}, \\ \mathbf{Y} = \mathbf{Z}, \mathbf{Z} = \underline{} $		

Q2,Q3

Q2.	Solve the following. (20 Marks)		
A	Solve any Two 5 marks each		
į.	Write following English statements in Prolog. Mention which are facts and rules. a. Ram writes a book. b. Sham reads a book if it is written by Ram. c. If someone reads any book then he is a scholar. d. If someone reads a book written by Ram he is a fan of Ram. e. Sham is a fan of ram.		
ii.	Differentiate early binding times and late binding times.		
111.	Describe the concept of gated expressions in Haskell with an example.		
В	Solve any One 10 marks each		
į.	What do you mean by type class ? Explain in detail.		
ii.	Explain unification in prolog with the help of an example. Describe the unification rules for prolog.		

Q3	Solve the following.	(20 Marks)		
A	Solve any Two	5 marks each		
į.	What is pattern matching in Haskell ? Explain with the example.			
ii.	What is a composite data type? Explain different composite data types.			
iii.	Name and explain use of any 5 list processing function in Haskell's prelude library			
В	B Solve any One 10 mar			
į.	Illustrate storage management mechanisms with the help of labeled diagrams.			
ii.				

Q4)

•	א	-	+	

Q4	Solve the following.	(20 Marks)	
Ā	Solve any Two	5 marks each	
į.	Explain the concept of Higher Order function in Functional programming with an example.		
ii.	Compare Imperative and Declarative paradigms with reference to, definition, purpose, complexity, flexibility, subcategory and applications.		
iii.	iii. Which are important factors to be considered, while making a choice of a programming language?		
В	Solve any One	10 marks each	
į.	Describe functional language features in detail. Which are often missing in imperative programming languages.		
ii.	Consider following knowledge base in prolog: smog(delhi). smog(simla). fog(delhi). polluted(X):- smog(X), fog(X). Explain how the following three queries are answered tell the output given by Prolog when you submit these a. polluted(X) b. polluted(simla)		