Category Theory

Haskell and Cryptocurrencies

Dr. Andres Löh, Well-Typed LLP Dr. Lars Brünjes, IOHK 2018-02-09

Goals

- Categories
- Functors
- · Initial- & Final Objects
- · Sums & Products
- · Natural Transformations

Motivation

Sets

- Let S, T and U be sets, and let $f: S \to T$ and $g: T \to U$ be functions. Then there is a composition function $gf = g \circ f: S \to U$.
- Function composition is associative: If $h: U \to V$ is a third function, then h(gf) = (hg)f.
- For each set S, we have the identity function $id_S = 1_S : S \rightarrow S$.
- If $f: S \to T$ is a function, then $f1_S = f$.
- If $g: R \to S$ is a function, then $1_S g = g$.
- · So identity functions are neutral with respect to composition.
- Two sets X and Y are isomorphic if there are functions f: X → Y and g: Y → X with fg = 1_X and gf = 1_Y. Functions f and g are called isomorphisms (or bijections). For all intents and purposes, isomorphic sets are "equal".

Vector spaces

- Let k be a field, let S, T and U be k-vector spaces, and let f: S → T and g: T → U be k-linear maps. Then the composition gf = g ∘ f: S → U is also a k-linear map.
- Composition of k-linear maps is associative: If $h: U \to V$ is a third k-linear map, then h(gf) = (hg)f.
- For each k-vector space S, the identity function $id_S = 1_S : S \rightarrow S$ is k-linear.
- If $f: S \to T$ is a k-linear, then $f_{1S} = f$.
- If $g: R \to S$ is a k-linear, then $1_S g = g$.
- So the identity k-linear maps are neutral with respect to composition of k-linear maps.
- Two k-vector spaces X and Y are isomorphic if there are k-linear maps $f: X \to Y$ and $g: Y \to X$ with $fg = 1_X$ and $gf = 1_Y$. The maps f and g are called isomorphisms. For all intents and purposes, isomorphic k-vector spaces are "equal".

Groups

- Let S, T and U be groups, and let $f: S \to T$ and $g: T \to U$ be group homomorphisms. Then the composition $gf = g \circ f: S \to U$ is also a group homomorphism.
- Composition of group homomorphisms is associative: If $h: U \to V$ is a third group homomorphism, then h(gf) = (hg)f.
- For each group S, the identity function $id_S = 1_S : S \to S$ is a group homomorphism.
- If $f: S \to T$ is a group homomorphism, then $f1_S = f$.
- If $g: R \to S$ is a group homomorphism, then $1_S g = g$.
- So the identity group homomorphisms are neutral with respect to composition of group homomorphisms.
- Two groups X and Y are isomorphic if there are group homomorphisms $f: X \to Y$ and $g: Y \to X$ with $fg = 1_X$ and $gf = 1_Y$. The homomorphisms f and g are called (group) isomorphisms. For all intents and purposes, isomorphic groups are "equal".

Topological spaces

- Let S, T and U be topological spaces, and let $f: S \to T$ and $g: T \to U$ be continuous. Then the composition $gf = g \circ f: S \to U$ is also continuous.
- Composition of continuous maps is associative: If $h: U \to V$ is a third continuous map, then h(gf) = (hg)f.
- For each topological space S, the identity function $id_S = 1_S : S \to S$ is continuous.
- If $f: S \to T$ is a continuous, then $f1_S = f$.
- If $g: R \to S$ is a continuous, then $1_S g = g$.
- So the identity continuous maps are neutral with respect to composition of continuous maps.
- Two topological spaces X and Y are isomorphic if there are continuous maps $f: X \to Y$ and $g: Y \to X$ with $fg = 1_X$ and $gf = 1_Y$. The maps f and g are called isomorphisms (or homeomorphisms). For all intents and purposes, isomorphic topological spaces are "equal".

Homotopy

- Let X be a topological space, let s, t, $u \in X$ be points, let $f : s \rightsquigarrow t$ and $g : t \rightsquigarrow u$ be paths, and let [f] and [g] be their homotopy classes. Then the composition $[g][f] = [gf] : s \rightsquigarrow u$ is also a (class of a) path.
- Composition is associative: If $h: u \rightsquigarrow v$ is a third path, then $h(gf) \cong (hg)f$.
- For each point $s \in X$, we have the constant path $id_s = 1_s : s \rightsquigarrow s$.
- If $f : s \rightarrow t$ is a path, then $f1_S \cong f$.
- If $g: r \to s$ is a path, then $1_s g \cong g$.
- So the constant paths are neutral with respect to composition of (classes of) paths.
- If f: s → t is a path, then there is a path f⁻¹: t → s, such that ff⁻¹ ≅ f⁻¹f ≅ 1_s. For all intent and pupose, two points connected by a path are indistinguishable from the point of view of homotopy theory.

Categories

Category

A category $\mathcal C$ is given by the following data:

- A class/set Ob(C) of objects.
- For each pair $X, Y \in \mathrm{Ob}(\mathcal{C})$ of objects, a set $\mathrm{Mor}_{\mathcal{C}}(X, Y)$ of morphisms. A morphism $f \in \mathrm{Mor}_{\mathcal{C}}(X, Y)$ is often written as $f: X \to Y$.
- For each triple X, Y, Z of objects a map

$$\circ: \mathrm{Mor}_{\mathcal{C}}(Y,Z) \times \mathrm{Mor}_{\mathcal{C}}(X,Y) \to \mathrm{Mor}_{\mathcal{C}}(X,Z),$$

called composition, which must be associative (i.e. f(gh) = (fg)h for composable morphisms).

• For each object $X \in \mathrm{Ob}(\mathcal{C})$, a morphism $\mathrm{id}_X = 1_X : X \to X$ in $\mathrm{Mor}_{\mathcal{C}}(X,X)$, the identity (morphism) of X, such that the identity morphisms are neutral with respect to composition of morphisms (i.e. $f1_X = f$ and $1_X g = g$ for all suitable f and g).

Isomorphism

- Let $\mathcal C$ be a category, let $X, Y \in \mathrm{Ob}(\mathcal C)$ be objects, and let $f: X \to Y$ be a morphism.
- f is called an isomorphism if there is a morphism $g: Y \to X$ with $fg = 1_Y$ and $gf = 1_X$.
- X and Y are called isomorphic $(X \cong Y)$ if there exists an isomorphism $f: X \to Y$.
- An isomorphism $f: X \to Y$ is often denoted by $f: X \xrightarrow{\sim} Y$.
- If $f: X \xrightarrow{\sim} Y$ is an isomorphism, then there is exactly one $g: Y \to X$ with $fg = 1_Y$ and $gf = 1_X$:

$$g' = g'1_Y = g'(fg) = (g'f)g = 1_X g = g.$$

This unique g is called the inverse of f and denoted by f^{-1} .

Isomorphic versus equal

- If two objects *X* and *Y* of a category are isomorphic, then all *categorical properties* (i.e. properties formulated in the language of category theory) that hold for *X* also hold for *Y* and vice versa.
- Therefore isomorphic objects are "as good as equal" undistinguishable from a categorical point of view.
- Often objects are only known "up to isomorphism", and that is good enough. Equality does not really make sense in a categorical setting.

Example: Set

- The "mother of all categories" is <u>Set</u>, the <u>category of sets</u>.
- Objects in <u>Set</u> are sets. (Note that the there is no "set of all sets", hence in general, the objects of a category don't form a set.)
- Morphisms $Mor_{Set}(X, Y)$ are (total) functions from X to Y.
- · Composition is usual function composition.
- Identities are usual identity functions.

 Many concepts and properties that – at first glance – seem to be intimately tied to set-theory (mentioning *elements* and so on) have an alternative categorical formulation.

- Many concepts and properties that at first glance seem to be intimately tied to set-theory (mentioning *elements* and so on) have an alternative categorical formulation.
- Take the usual definition for injectivity as an example: A function f: S → T is injective iff

$$\forall s, s' \in S : f(s) = f(s') \Rightarrow s = s'.$$

- Many concepts and properties that at first glance seem to be intimately tied to set-theory (mentioning *elements* and so on) have an alternative categorical formulation.
- Take the usual definition for injectivity as an example: A function f: S → T is injective iff

$$\forall s, s' \in S : f(s) = f(s') \Rightarrow s = s'.$$

 However, this is equivalent to the following property, which is formulated purely in terms of categorical notions:

$$\forall U: \mathrm{Ob}(\underline{\mathrm{Set}}): \ \forall i,j: \mathrm{Mor}_{\underline{\mathrm{Set}}}(U,S): \ fi=fj \Rightarrow i=j.$$

- Many concepts and properties that at first glance seem to be intimately tied to set-theory (mentioning *elements* and so on) have an alternative categorical formulation.
- Take the usual definition for injectivity as an example: A function f: S → T is injective iff

$$\forall s, s' \in S : f(s) = f(s') \Rightarrow s = s'.$$

 However, this is equivalent to the following property, which is formulated purely in terms of categorical notions:

$$\forall U: \mathrm{Ob}(\underline{\mathrm{Set}}): \ \forall i,j: \mathrm{Mor}_{\underline{\mathrm{Set}}}(U,S): \ fi=fj \Rightarrow i=j.$$

- This latter definition makes sense in *any* category. A morphism *f* with this property is called a monomorphism.
- Dually (revert all arrows!), surjective maps can be defined in categorical terms and are called epimorphisms then.

Example: sets with structure

- A huge class of examples for categories is of the form "set plus extra structure".
- · Objects are sets with some extra structure.
- Morphisms are maps that "respect" the structure.

Example: sets with structure

- A huge class of examples for categories is of the form "set plus extra structure".
- · Objects are sets with some extra structure.
- · Morphisms are maps that "respect" the structure.
- The categories of (Abelian) groups with group homomorphisms (Ab and Grp).
- For a field k, the category of k-vector spaces and k-linear maps.
- The category of (commutative) rings with ring homomorphisms Ring.
- \cdot The catgeory of topological spaces with continuous maps $\underline{\mathrm{Top}}.$
- The category of (real/complex) manifolds with differentiable maps.

٠ ..

Example: simplex category

- We define the simplex category Δ as follows:
- Objects are non-empty, finite sets $[n] := \{0, 1, ..., n\}$ for $n \in \mathbb{N}$.
- Morphisms $[m] \rightarrow [n]$ are monotonically increasing maps.
- Composition is usual function composition.
- The identity $1_{[n]}$ is the usual identity function $[n] \rightarrow [n]$.

Example: one group

- Let G be a group. We can regard G as a category G as follows:
- There is exactly one object, let's call it *.
- Morphisms $* \rightarrow *$ are elements of G.
- · Composition is given by the group operation.
- The (only) identity 1* is the neutral element.

Example: partially ordered set

- Let (S, ≤) be a partially ordered set. We can turn S into a category S as follows:
- · Objects are the elements of S.
- For $x, y \in S$, we define

$$\operatorname{Mor}(x, y) := \begin{cases} \{*\} & \text{if } x \leq y \\ \emptyset & \text{otherwise} \end{cases}$$

- · Composition is given by transitivity.
- · Identities are given by reflexivity.
- Note that $x, y \in S$ are isomorphic if $x \le y \land y \le x$, i.e. iff x = y (by antisymmetry).

Example: opposite category

- Let $\mathcal C$ be a category, We define the opposite category $\mathcal C^{\mathrm{op}}$ as follows:
- Objects of $\mathcal{C}^{\mathrm{op}}$ are just the objects of \mathcal{C} .
- For objects $X, Y \in \mathrm{Ob}(\mathcal{C}^{\mathrm{op}}) = \mathrm{Ob}(\mathcal{C})$, we define $\mathrm{Mor}_{\mathcal{C}^{\mathrm{op}}}(X, Y) := \mathrm{Mor}_{\mathcal{C}}(Y, X)$.
- Composition and identities are given by composition and identities in $\mathcal{C}.$

Example: product

- Let $\mathcal C$ and $\mathcal D$ be categories. We define the product category $\mathcal C \times \mathcal D$ as follows:
- Objects of $\mathcal{C} \times \mathcal{D}$ are pairs (X, Y) with $X \in \mathrm{Ob}(\mathcal{C})$ and $Y \in \mathrm{Ob}(\mathcal{D})$.
- For objects (X, Y), $(X', Y') \in \mathrm{Ob}(\mathcal{C} \times \mathcal{D})$, morphisms $(X, Y) \to (X', Y')$ are pairs of morphisms (f, f') with $f: X \to X'$ and $g: Y \to Y'$.
- For an object $(X, Y) \in \mathrm{Ob}(\mathcal{C} \times \mathcal{D})$, $1_{(X,Y)} = (1_X, 1_Y)$, and composition is given componentwise.

Example: slice category

- Let \mathcal{C} be a category, and let $X \in \mathrm{Ob}(\mathcal{C})$ be an object. We define the slice category \mathcal{C}/X as follows:
- Objects are morphisms $Y \to X$ in C.
- A morphism from $f: Y \to X$ to $g: Z \to X$ is a morphism $\alpha: Y \to Z$ in $\mathcal C$ such that $g\alpha = f$.

• Composition and identity are given by composition and identity in $\mathcal{C}.$

Example: Hask

- We define the category <u>Hask</u> of <u>Haskell</u> types and functions as follows:
- · Objects are Haskell types (of kind *).
- A morphism $f \in \operatorname{Mor}_{\operatorname{Hask}}(a, b)$ is a (total) Haskell function $f :: a \to b$. We identify two such functions f and g if they "behave" the same, i.e. produce the same output for all inputs: f x = g x for all x.
- Composition is given by Haskell composition of functions
 , and identities are given by Haskell's polymorphic identity function id, restricted to the type in question.

Functors

Functor

- Let $\mathcal C$ and $\mathcal D$ be categories. Then a Functor $F:\mathcal C\to\mathcal D$ is given by the following data:
- For each object $X \in Ob(\mathcal{C})$ an object $FX \in Ob(\mathcal{D})$.
- For each morphism $f: X \to Y$ in C, a morphism $Ff: FX \to FY$ in D, so that the following conditions hold:
- For each $X \in \mathrm{Ob}(\mathcal{C})$, we have $F1_X = 1_{FX}$, i.e. identities are mapped to identities.
- For objects X, Y, $Z \in \mathcal{C}$ and morphisms $f: X \to Y$ and $g: Y \to Z$, we have $F(gf) = Fg \circ Ff$ as morphisms in \mathcal{D} , i.e. the functor "respects compositions".

Functor (contd.)

Example: identity functor

- Let $\mathcal C$ be a category. Then the identity functor $1_{\mathcal C}:\mathcal C\to\mathcal C$ is defined as follows:
- For each object $X \in \mathrm{Ob}(\mathcal{C})$, we have $1_{\mathcal{C}}X = X$.
- For each morphism $f: X \to Y$, we have $1_{\mathcal{C}}f = f$.
- The functor laws are obviously satisfied!

Example: composition of functors

- Let \mathcal{C} , \mathcal{D} and \mathcal{E} be categories, and let $F:\mathcal{C}\to\mathcal{D}$ and $G:\mathcal{D}\to\mathcal{E}$ be functors. Then we define the composition $GF:\mathcal{C}\to\mathcal{E}$ as follows:
- For each object $X \in \mathrm{Ob}(\mathcal{C})$, we have (GF)X = G(FX).
- For each morphism $f: X \to Y$, we have (GF)f = G(Ff).
- The functor laws for *GF* follow trivially from the functor laws for *F* and *G*.

Example: composition of functors

- Let \mathcal{C} , \mathcal{D} and \mathcal{E} be categories, and let $F:\mathcal{C}\to\mathcal{D}$ and $G:\mathcal{D}\to\mathcal{E}$ be functors. Then we define the composition $GF:\mathcal{C}\to\mathcal{E}$ as follows:
- For each object $X \in \mathrm{Ob}(\mathcal{C})$, we have (GF)X = G(FX).
- For each morphism $f: X \to Y$, we have (GF)f = G(Ff).
- The functor laws for *GF* follow trivially from the functor laws for *F* and *G*.
- We get yet another example for categories, the category of categories <u>Cat</u>: Objects are categories, and morphisms are functors!

Example: "Hom"-functors

- Let \mathcal{C} be a category, and let $X \in \mathrm{Ob}(\mathcal{C})$ be an object. Then we have a functor $\mathrm{Mor}_{\mathcal{C}}(X,\cdot):\mathcal{C} \to \underline{\mathrm{Set}}$ defined as follows:
- An object $Y \in \mathrm{Ob}(C)$ is sent to the set $\mathrm{Mor}_{\mathcal{C}}(X, Y)$.
- A morphism $f: Y \to Z$ is sent to the function $\operatorname{Mor}_{\mathcal{C}}(X, Y) \to \operatorname{Mor}_{\mathcal{C}}(X, Z)$ given by composition with $f: g \mapsto fg$.
- Such functors are called "Hom-functors", because homomorphism is often used as a synonym for "morphism", especially in "algebraic" categories.

Example: forgetful functors

- Let $\mathcal C$ be a category of "sets with extra structure", for example the category Grp of groups.
- Then we have the so-called forgetful functor Grp → Set
 which sends a group to its "underlying" set ("forgetting"
 the group structure) and a group homomorphism to itself,
 considered as a simple map between sets.
- The functor laws hold trivially.

Example: discrete topology

- According to the previous slide, we have a forgetful functor $\mathrm{Top} \to \underline{\mathrm{Set}}.$
- We also have a functor in the opposite direction
 Set → Top:
- This functor sends a set S to S equipped with the discrete topology (i.e. every subset is open) and a map S → T to itself (which is continuous due to our choice of topology).

Example: polynomial ring

- According to the previous slide, we have a forgetful functor $Ring \rightarrow \underline{Set}$.
- We also have a functor in the opposite direction
 <u>Set</u> → Ring:
- This functor sends a set S to the polynomial ring $\mathbb{Z}[S]$ and a map $f:S\to T$ to the ring homomorphism $\mathbb{Z}[S]\to \mathbb{Z}[T]$ given by

$$\left(\ldots + ns_1s_2\ldots s_k + \ldots\right)$$

$$\mapsto \left(\ldots + nf(s_1)f(s_2)\ldots f(s_k) + \ldots\right)$$

Example: connected components

- Apart from the forgetful functor, we can define a more interesting functor $\pi_0 : \text{Top} \to \underline{\text{Set}}$ as follows:
- Send a topological space to the set of its connected components $\pi_0(X)$.
- Due to the fact that a continuous map $f: X \to Y$ maps connected subsets to connected subsets, we get an induced map $\pi_0: \pi_0(X) \to \pi_0(Y)$.

Example: group homomorphism

- Let $\varphi: G \to H$ be a group homomorphism, and let \underline{G} and \underline{H} be the categories associated to G and H.
- Then φ induces a functor $\underline{\varphi}:\underline{G}\to\underline{H}$ by sending * to * and a morphism g (which is just an element of G!) to $\varphi(g)$.
- The functor laws follow immediately from the properties of a group homomorphism.

Example: monotonic maps

- Let $f:(S, \leq) \to (T, \leq)$ be a monotonic (i.e. order preserving) map between partially ordered sets.
- Then f induces a functor between the associated categories $\underline{f}: \underline{S} \to \underline{T}$ by sending objects $s \in S$ to $f(s) \in T$.
- Seeing as morphism sets in these categories have at most one element, we have no choice for morphisms.
- The fact that f is monotonic implies that we get a well-defined functor in this way.

Example: Haskell functors

- Let f:: * -> * be a Haskell functor that obeys the Haskell functor laws.
- Then f defines a functor (in the categorical sense)
 f: Hask → Hask by sending a type a to f a and a
 Haskell function g:: a -> b to fmap g:: f a -> f b.
- The Haskell functor laws imply the categorical functor laws!

Functors respect isomorphisms

Lemma

Let \mathcal{C} and \mathcal{D} be categories, let $F: \mathcal{C} \to \mathcal{D}$ be a functor, and let $f: X \xrightarrow{\sim} Y$ be an isomorphism in \mathcal{C} . Then $Ff: FX \to FY$ is an isomorphism in \mathcal{D} .

Proof.

We claim that $F(f^{-1})$ is an/the inverse of Ff:

$$Ff \circ F(f^{-1}) = F(ff^{-1}) = F1_Y = 1_{FY}$$

and

$$Ff^{-1} \circ Ff = F(f^{-1}f) = F1_X = 1_{FX}.$$

Functors respect isomorphisms

Lemma

Let \mathcal{C} and \mathcal{D} be categories, let $F: \mathcal{C} \to \mathcal{D}$ be a functor, and let $f: X \xrightarrow{\sim} Y$ be an isomorphism in \mathcal{C} . Then $Ff: FX \to FY$ is an isomorphism in \mathcal{D} .

Corollary

Let \mathcal{C} and \mathcal{D} be categories, let $F: \mathcal{C} \to \mathcal{D}$ be a functor, and let X and Y be isomorphic objects of \mathcal{C} . Then FX and FY are isomorphic in \mathcal{D} .

Importance of functors

- We have seen examples of functors between categories of quite different branches of mathematics.
- So once we have a functor, we can often transfer problems from one area of mathematics to another.

Example

Are the topological spaces \mathbb{R} and $\mathbb{R} \setminus \{0\}$ homeomorphic? No, because $\pi_0(\mathbb{R}) = \{*\}$, but $\pi_0(\mathbb{R} \setminus \{0\}) = \{-, +\}$. By the previous corollary, the two spaces cannot be isomorphic, because the two sets clearly are not. We have reduced a difficult topological problem to simple counting of elements!

Importance of functors

- We have seen examples of functors between categories of quite different branches of mathematics.
- So once we have a functor, we can often transfer problems from one area of mathematics to another.

Outlook

This example is only a first glimpse at the power of functors. Using functors to translate geometric problems into algebraic ones has revolutionized 20th century mathematics – with concepts like (co-)homology and (higher) homotopy groups.

Contravariant functors

- Let $\mathcal C$ and $\mathcal D$ be categories.
- A contravariant functor $\mathcal{C} \to \mathcal{D}$ is a functor $\mathcal{C} \to \mathcal{D}^{op}$.
- In concrete terms, that means that a contravariant functor F sends objects $X \in \mathrm{Ob}(\mathcal{C})$ to objects $FX \in \mathrm{Ob}(\mathcal{D})$ and morphisms $f: X \to Y$ to morphisms $Ff: FY \to FX$ in \mathcal{D} .
- In case of possible confusion, "normal" functors are also called covariant functors.

Example: contravariant "Hom"-functors

- Let \mathcal{C} be a category, and let $X \in \mathrm{Ob}(\mathcal{C})$ be an object. Then we have a contravariant functor $\mathrm{Mor}_{\mathcal{C}}(\cdot,X):\mathcal{C} \to \underline{\mathrm{Set}}$ defined as follows:
- An object $Y \in \mathrm{Ob}(C)$ is sent to the set $\mathrm{Mor}_{\mathcal{C}}(Y, X)$.
- A morphism $f: Y \to Z$ is sent to the function $\operatorname{Mor}_{\mathcal{C}}(Z,X) \to \operatorname{Mor}_{\mathcal{C}}(Y,X)$ given by composition with $f: g \mapsto gf$.

Example: contravariant "Hom"-functors

- Let \mathcal{C} be a category, and let $X \in \mathrm{Ob}(\mathcal{C})$ be an object. Then we have a contravariant functor $\mathrm{Mor}_{\mathcal{C}}(\cdot,X):\mathcal{C} \to \underline{\mathrm{Set}}$ defined as follows:
- An object $Y \in \mathrm{Ob}(C)$ is sent to the set $\mathrm{Mor}_{\mathcal{C}}(Y,X)$.
- A morphism $f: Y \to Z$ is sent to the function $\operatorname{Mor}_{\mathcal{C}}(Z,X) \to \operatorname{Mor}_{\mathcal{C}}(Y,X)$ given by composition with $f: g \mapsto gf$.
- A special hopefully familiar case is given by dual vector spaces: If k is a field, then we have a contravariant functor * from k-vector spaces to k-vector spaces, which sends a k-vector space V to its dual V* := Hom_k(V, k) and a k-linear map φ: V → W to the dual map φ*: W* → V*.

Initial- & Final Objects

Initial Object

- Let C be a category. An object I in C is called initial object
 if it has the following universal property: For all objects X
 in C, there is exactly one morphism i_X: I → X.
- If such an initial object exists, it is *unique up to* isomorphism: Let I' be another initial object. Then

$$i'_{l} i_{l'}, 1_{l} : l \rightarrow l \stackrel{\text{initial}}{\Longrightarrow} i'_{l} i_{l'} = 1_{l},$$

and similarly $i_{l'}$ $i'_{l} = 1_{l'}$, so $i_{l'} : l \stackrel{\sim}{\to} l'$.

Initial Object

- Let C be a category. An object I in C is called initial object
 if it has the following universal property: For all objects X
 in C, there is exactly one morphism i_X: I → X.
- If such an initial object exists, it is *unique up to* isomorphism: Let I' be another initial object. Then

$$i'_{l} i_{l'}, 1_{l} : I \rightarrow I \stackrel{\text{l initial}}{\Longrightarrow} i'_{l} i_{l'} = 1_{l'},$$

and similarly $i_{l'} i'_{l} = 1_{l'}$, so $i_{l'} : I \stackrel{\sim}{\rightarrow} I'$.

Universal Property

Many objects in category theory are defined via a "universal property" like this. If such an object exists, it is always unique up to (unique) isomorphism.

Final Object

- Let \mathcal{C} be a category. An object T in \mathcal{C} is called final object or terminal object if it is an initial object in \mathcal{C}^{op} .
- Explicitly, T is a final object if is has the universal property that for all objects X in C, there is exactly one morphism t_X : X → T.
- If such a final object exists, it is unique up to isomorphism.

 \cdot The category $\underline{\operatorname{Set}}$ has both an initial and a final object.

- \cdot The category $\underline{\operatorname{Set}}$ has both an initial and a final object.
- The initial object is the *empty set* \varnothing .

- The category <u>Set</u> has both an initial and a final object.
- The initial object is the *empty set* \varnothing .
- The final object is the *singleton* set {*}.

- The category <u>Set</u> has both an initial and a final object.
- The initial object is the empty set Ø.
- The final object is the singleton set $\{*\}$.

Note

Note that while there is only one empty set, there are indeed infinitely many "different" singletons – but they are all isomorphic, and we don't distinguish between them.

- The category <u>Set</u> has both an initial and a final object.
- The initial object is the empty set Ø.
- The final object is the singleton set {*}.

Note

Note that while there is only one empty set, there are indeed infinitely many "different" singletons – but they are all isomorphic, and we don't distinguish between them.

Note

Also note that \emptyset is *not* isomorphic to $\{*\}$.

 $\boldsymbol{\cdot}$ The category Grp has both an initial and a final object.

- · The category Grp has both an initial and a final object.
- The initial object is the *one-element group* {1}.

- · The category Grp has both an initial and a final object.
- The initial object is the one-element group {1}.
- The final object is also $\{1\}$.

- The category Grp has both an initial and a final object.
- The initial object is the one-element group {1}.
- The final object is also $\{1\}$.

Note

Note that in $\underline{\operatorname{Grp}}$, the initial object is isomorphic to the final object!

Example: final object in Δ

• The simplex-category Δ has a final object, but no initial object.

Example: final object in Δ

- The simplex-category Δ has a final object, but no initial object.
- The final object is [0].

Example: initial- & final object in a slice category

• Let \mathcal{C} be a category and $X \in \mathrm{Ob}(\mathcal{C})$ an object. The slice category \mathcal{C}/X has a final object, and if \mathcal{C} has an initial object, then so does \mathcal{C}/X .

Example: initial- & final object in a slice category

- Let \mathcal{C} be a category and $X \in \mathrm{Ob}(\mathcal{C})$ an object. The slice category \mathcal{C}/X has a final object, and if \mathcal{C} has an initial object, then so does \mathcal{C}/X .
- If I is the initial object of C, then $i_X : I \to X$ is the initial object of C/X.

Example: initial- & final object in a slice category

- Let \mathcal{C} be a category and $X \in \mathrm{Ob}(\mathcal{C})$ an object. The slice category \mathcal{C}/X has a final object, and if \mathcal{C} has an initial object, then so does \mathcal{C}/X .
- If I is the initial object of C, then $i_X : I \to X$ is the initial object of C/X.
- The final object of C/X is $1_X : X \to X$.

 \cdot The category $\underline{\operatorname{Hask}}$ has an initial and a final object.

Example: initial- & final object in Hask

- \cdot The category $\underline{\operatorname{Hask}}$ has an initial and a final object.
- The initial object is **Void** .

Example: initial- & final object in \underline{Hask}

- \cdot The category $\underline{\operatorname{Hask}}$ has an initial and a final object.
- The initial object is **Void**.
- The final object is ().

Sums & Products

Sum

• Let \mathcal{C} be a category, and let $X, Y \in \mathrm{Ob}(\mathcal{C})$ be objects. We say that X and Y have a sum (or coproduct) if there is an object X+Y and morphisms $i_X: X \to X+Y$ and $i_Y: Y \to X+Y$ with the following universal property: For all objects T and morphisms $f_X: X \to T$ and $f_Y: Y \to T$, there is exactly one morphism $f: X+Y \to T$ such that the following diagram commutes $(fi_X = f_X \land fi_Y = f_Y)$:

• If all pairs of objects in $\mathcal C$ have a sum, we say that $\mathcal C$ has (finite) sums.

Product

• Let \mathcal{C} be a category, and let $X, Y \in \mathrm{Ob}(\mathcal{C})$ be objects. We say that X and Y have a product if there is an object X * Y and morphisms $p_X : X * Y \to X$ and $p_Y : X * Y \to Y$ with the following universal property: For all objects T and morphisms $f_X : T \to X$ and $f_Y : T \to Y$, there is exactly one morphism $f : T \to X * Y$ such that the following diagram commutes $(p_X f = f_X \land p_Y f = f_Y)$:

• If all pairs of objects in $\mathcal C$ have a product, we say that $\mathcal C$ has (finite) products.

Example: sums and products in $\underline{\operatorname{Set}}$

 \cdot The category $\underline{\mathrm{Set}}$ has both sums and products.

Example: sums and products in $\underline{\operatorname{Set}}$

- The category Set has both sums and products.
- The sum of two sets S and T is the disjoint union S \odot T.

Example: sums and products in $\underline{\operatorname{Set}}$

- \cdot The category $\underline{\operatorname{Set}}$ has both sums and products.
- The sum of two sets S and T is the disjoint union S \odot T.
- The product of two sets S and T is the cartesian product $S \times T$.

Example: sums and products in $\underline{\operatorname{Set}}$

- · The category Set has both sums and products.
- The sum of two sets S and T is the disjoint union S \cup T.
- The product of two sets S and T is the cartesian product $S \times T$.

Note

Note that for most pairs of sets S and T, $S \cup T$ and $S \times T$ are *not* isomorphic.

Example: sums & products in $\underline{\mathrm{Ab}}$

• The category <u>Ab</u> of abelian groups has both sums and products.

Example: sums & products in $\underline{\mathrm{Ab}}$

- The category <u>Ab</u> of abelian groups has both sums and products.
- The sum of two groups A and B is the *direct sum* $A \oplus B$ (with injections $a \mapsto (a, 0)$ and $b \mapsto (0, b)$).

Example: sums & products in $\underline{\mathrm{Ab}}$

- The category <u>Ab</u> of abelian groups has both sums and products.
- The sum of two groups A and B is the direct sum $A \oplus B$ (with injections $a \mapsto (a, 0)$ and $b \mapsto (0, b)$).
- The product of two groups A and B is also $A \oplus B$ (with projections $(a, b) \mapsto a$ and $(a, b) \mapsto b$).

Example: sums & products for paritally ordered sets

• Let (S, \leq) be a partially ordered sets, and let $x, y \in S$.

Example: sums & products for paritally ordered sets

- Let (S, \leq) be a partially ordered sets, and let $x, y \in S$.
- The sum of x and y in \underline{S} if it exists is the least upper bound of x and y.

Example: sums & products for paritally ordered sets

- Let (S, \leq) be a partially ordered sets, and let $x, y \in S$.
- The sum of x and y in \underline{S} if it exists is the least upper bound of x and y.
- The product of x and y in \underline{S} if it exists is the *greatest* lower bound of x and y.

Example: sums & products in $\underline{\mathrm{Hask}}$

 \cdot The category $\underline{\operatorname{Hask}}$ has sums and products.

Example: sums & products in Hask

- \cdot The category $\underline{\mathrm{Hask}}$ has sums and products.
- The sum of types a and b is Either a b (with injections Left and Right).

Example: sums & products in Hask

- · The category Hask has sums and products.
- The sum of types a and b is Either a b (with injections Left and Right).
- The product of types a and b is (a, b) (with projections fst and snd).

Natural Transformations

Natural transformation

- Let $F, G: \mathcal{C} \to \mathcal{D}$ be functors. A natural transformation $\varphi: F \to G$ is given by the following data:
- For each object $X \in \mathrm{Ob}(\mathcal{C})$, a morphism $\varphi_X : FX \to GX$ in \mathcal{D} .
- For each morphism $f: X \to Y$ in C, the following diagram must commute (i.e. $\varphi_Y Ff = Gf \varphi_X$):

Example: Hom-functors

Let \mathcal{C} be a category, and let $g:U\to V$ be a morphism. Then g induces a natural transformation $f^*:\operatorname{Mor}_{\mathcal{C}}(V,\cdot)\to\operatorname{Mor}_{\mathcal{C}}(U,\cdot)$, given by composition with g:

$$\begin{array}{cccc} X & \operatorname{Mor}_{\mathcal{C}}(V,X) & \stackrel{f_{\chi}^{*}}{\longrightarrow} & \operatorname{Mor}_{\mathcal{C}}(U,X) \\ \downarrow^{\downarrow} & \operatorname{Mor}_{\mathcal{C}}(V,\cdot)f \downarrow & & \downarrow \operatorname{Mor}_{\mathcal{C}}(U,\cdot)f \\ Y & \operatorname{Mor}_{\mathcal{C}}(V,Y) & \stackrel{f_{\chi}^{*}}{\longrightarrow} & \operatorname{Mor}_{\mathcal{C}}(U,Y) \end{array}$$

Example: determinant

- Let n be a natural number. Sending a commutative ring R to the group $\mathrm{GL}_n(R)$ of invertible $n \times n$ -matrices defines a functor $\mathrm{GL}_n : \underline{\mathrm{Ring}} \to \underline{\mathrm{Grp}}$ (for a ring homomorphism $\alpha : R \to S$, we get an induced group homomorphism $\mathrm{GL}_n(\alpha) : \mathrm{GL}_n(R) \to \mathrm{GL}_n(S)$ by applying α to each matrix element).
- We get another functor $*: \underline{\operatorname{Ring}} \to \underline{\operatorname{Grp}}$ by sending a ring R to its *group of units* (i.e. invertible elements) R^* .
- Then the determinant det : $GL_n(R) \to R^*$ defines a natural transformation det : $GL_n \to *$:

Example: polymorphic Haskell functions

Let F and G be Haskell functors, and let $g:: Fa \rightarrow Ga$ be a polymorphic function. Then g defines a natural transformation $F \rightarrow G$ in <u>Hask</u> by type specialization. For example, consider F = Maybe, G = [] and

```
g :: Maybe a -> [a]
g Nothing = []
g (Just x) = [x]
```

```
GHCi> g $ fmap show $ Just True
["True"]
GHCi> fmap show $ g $ Just True
["True"]
```

Example: polymorphic Haskell functions

Let F and G be Haskell functors, and let $g:: Fa \rightarrow Ga$ be a polymorphic function. Then g defines a natural transformation $F \rightarrow G$ in <u>Hask</u> by type specialization.

