SANTA CLARA UNIVERSITY	ELEN 115 – Spring 2023	S. Krishnan
Homework #3 – Operational Amplifier circuits		

1.

The amplifier circuit below employs an ideal opamp

- (a) Derive the expressions for
 - (i) VOUT/VIN
 - (ii) the input resistance, R_{in} , seen by v_{IN}
- (b) Given that $R1 = 5K\Omega$ $R2 = 10K\Omega$ $R3 = 6K\Omega$ $R4 = 3K\Omega$ $R5 = 4K\Omega$ For input $v_{IN}(t) = 2sin2\pi t$, draw $v_{IN}(t)$ and the corresponding $v_{OUT}(t)$. Clearly indicate all values and label all axes and graphs

2. 2.72 (2.71 in 7th edition)

Elen 115 _____ Homework _____

- 3. The circuit in Figure 2 employs an ideal operational amplifier.
- (a) Find the input resistance, Rin
 - (i) at DC and (ii) at very high frequencies
- (b) Find the gain v_{OUT}/v_{IN}
 - (i) at DC and (ii) at very high frequencies
- (c) Considering that this circuit has a capacitor and therefore changes its behavior with frequency
 - (i) What is the equivalent resistance seen by the capacitor?
 - (ii) What is the frequency at which this circuit sees a change in gain?
- (d) Given that $R_1 = 1K\Omega$, $R_2 = 500\Omega$ and $C = 1\mu F$.

Also given the opamp has **saturation voltages** of \pm **5V** draw both the input voltage $v_{IN}(t)$ and the corresponding $v_{OUT}(t)$ for

- (i) $v_{IN}(t) = 2 + 5\sin 2\pi t$
- (ii) $v_{IN}(t) = 2 + 6\sin(2\pi 10^9)t$

Clearly indicate all values and label all axes of the plot.

