

Figure 6.7 The VTC of a two-input NAND is data-dependent. NMOS devices are $0.5 \mu m/0.25 \mu m$ while the PMOS devices are sized at $0.75 \mu m/0.25 \mu m$.

NMs are Lynamic

Input Data Pattern	Delay (psec)
<i>A</i> = <i>B</i> = 0→1	69
A = 1, B= 0→1	62
$A = 0 \rightarrow 1, B = 1$	50
<i>A=B</i> =1→0	35
<i>A</i> =1, <i>B</i> = 1→0	76
<i>A</i> = 1→0, <i>B</i> = 1	57

Figure 6.9 Example showing the delay dependence on input patterns.

A particular technology has the following parameters: $V_{th,n} = 0.2 V$ and $|V_{th,p}| = 0.3 V$, $R_n = 2 k\Omega * \mu m$, $R_p = 3 k\Omega * \mu m$ at $V_{DD} = 1 V$. Draw the VTC of the gate below with $W_p = W_n = 1 \mu m$.

