ИУ5-25M Андреев A.B.

Вариант 1

Рубежный контроль №1

```
In [27]:
```

```
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import RobustScaler
from sklearn.preprocessing import MaxAbsScaler
```

Загрузка и предобработка данных

```
In [2]:
```

```
# Будем использовать только обучающую выборку
data_loaded = pd.read_csv('world-happiness-report-2021.csv', sep=",")
# размер набора данных
data_loaded.shape

Out[2]:
```

(149, 20)

In [3]:

data_loaded.head()

Out[3]:

	Country name	Regional indicator	Ladder score	Standard error of ladder score	upperwhisker	lowerwhisker	Logged GDP per capita	Social support	He ex
0	Finland	Western Europe	7.842	0.032	7.904	7.780	10.775	0.954	
1	Denmark	Western Europe	7.620	0.035	7.687	7.552	10.933	0.954	
2	Switzerland	Western Europe	7.571	0.036	7.643	7.500	11.117	0.942	
3	Iceland	Western Europe	7.554	0.059	7.670	7.438	10.878	0.983	
4	Netherlands	Western Europe	7.464	0.027	7.518	7.410	10.932	0.942	
4 •									•

In [4]:

Out[4]:

```
[('Country name', ('object', 0)),
 ('Regional indicator', ('object', 0)),
 ('Ladder score', ('float64', 0)),
 ('Standard error of ladder score', ('float64', 0)),
 ('upperwhisker', ('float64', 0)),
 ('lowerwhisker', ('float64', 0)),
 ('Logged GDP per capita', ('float64', 0)),
 ('Social support', ('float64', 0)),
 ('Healthy life expectancy', ('float64', 0)),
 ('Freedom to make life choices', ('float64', 0)),
 ('Generosity', ('float64', 0)),
 ('Perceptions of corruption', ('float64', 0)),
('Ladder score in Dystopia', ('float64', 0)),
 ('Explained by: Log GDP per capita', ('float64', 0)),
 ('Explained by: Social support', ('float64', 0)),
 ('Explained by: Healthy life expectancy', ('float64', 0)),
 ('Explained by: Freedom to make life choices', ('float64', 0)),
 ('Explained by: Generosity', ('float64', 0)),
 ('Explained by: Perceptions of corruption', ('float64', 0)),
 ('Dystopia + residual', ('float64', 0))]
```

In [5]:

Out[5]:

	Country name	Regional indicator	Ladder score	upperwhisker	lowerwhisker	Explained by: Social support	Explained by: Freedom to make life choices
0	Finland	Western Europe	7.842	7.904	7.780	1.106	0.691
1	Denmark	Western Europe	7.620	7.687	7.552	1.108	0.686
2	Switzerland	Western Europe	7.571	7.643	7.500	1.079	0.653
3	Iceland	Western Europe	7.554	7.670	7.438	1.172	0.698
4	Netherlands	Western Europe	7.464	7.518	7.410	1.079	0.647

Задача №1

Для набора данных проведите кодирование одного (произвольного) категориального признака с использованием метода "count (frequency) encoding".

In [6]:

```
!pip install category_encoders
```

```
Defaulting to user installation because normal site-packages is not writea
Requirement already satisfied: category_encoders in c:\users\user\appdata
\roaming\python\python38\site-packages (2.6.0)
Requirement already satisfied: pandas>=1.0.5 in d:\program files\anaconda3
\lib\site-packages (from category_encoders) (1.1.3)
Requirement already satisfied: statsmodels>=0.9.0 in d:\program files\anac
onda3\lib\site-packages (from category_encoders) (0.12.0)
Requirement already satisfied: scikit-learn>=0.20.0 in d:\program files\an
aconda3\lib\site-packages (from category_encoders) (0.23.2)
Requirement already satisfied: numpy>=1.14.0 in d:\program files\anaconda3
\lib\site-packages (from category_encoders) (1.19.2)
Requirement already satisfied: scipy>=1.0.0 in d:\program files\anaconda3
\lib\site-packages (from category_encoders) (1.5.2)
Requirement already satisfied: patsy>=0.5.1 in d:\program files\anaconda3
\lib\site-packages (from category_encoders) (0.5.1)
Requirement already satisfied: pytz>=2017.2 in d:\program files\anaconda3
\lib\site-packages (from pandas>=1.0.5->category_encoders) (2020.1)
Requirement already satisfied: python-dateutil>=2.7.3 in d:\program files
\anaconda3\lib\site-packages (from pandas>=1.0.5->category_encoders) (2.8.
1)
Requirement already satisfied: threadpoolctl>=2.0.0 in d:\program files\an
aconda3\lib\site-packages (from scikit-learn>=0.20.0->category_encoders)
(2.1.0)
Requirement already satisfied: joblib>=0.11 in d:\program files\anaconda3
\lib\site-packages (from scikit-learn>=0.20.0->category_encoders) (0.17.0)
Requirement already satisfied: six in d:\program files\anaconda3\lib\site-
packages (from patsy>=0.5.1->category_encoders) (1.15.0)
```

Использование библиотеки <u>Category Encoders (https://contrib.scikitlearn.org/category_encoders/index.html)</u>

In [7]:

from category_encoders.count import CountEncoder as ce_CountEncoder

In [8]:

```
ce_CountEncoder1 = ce_CountEncoder()
data_COUNT_ENC = ce_CountEncoder1.fit_transform(data[data.columns.difference(['Country na
```

In [9]:

data_COUNT_ENC

Out[9]:

	Explained by: Freedom to make life choices	Explained by: Social support	Ladder score	Regional indicator	lowerwhisker	upperwhisker
0	0.691	1.106	7.842	21	7.780	7.904
1	0.686	1.108	7.620	21	7.552	7.687
2	0.653	1.079	7.571	21	7.500	7.643
3	0.698	1.172	7.554	21	7.438	7.670
4	0.647	1.079	7.464	21	7.410	7.518
144	0.405	0.731	3.512	36	3.276	3.748
145	0.539	0.724	3.467	36	3.322	3.611
146	0.627	0.202	3.415	36	3.282	3.548
147	0.359	0.649	3.145	36	3.030	3.259
148	0.000	0.000	2.523	7	2.449	2.596

149 rows × 6 columns

In [10]:

```
data['Ladder score'].unique()
```

Out[10]:

```
array([7.842, 7.62, 7.571, 7.554, 7.464, 7.392, 7.363, 7.324, 7.277,
       7.268, 7.183, 7.157, 7.155, 7.103, 7.085, 7.069, 7.064, 6.965,
      6.951, 6.834, 6.69, 6.647, 6.602, 6.584, 6.561, 6.494, 6.491,
      6.483, 6.461, 6.435, 6.431, 6.377, 6.372, 6.331, 6.33, 6.317,
      6.309, 6.255, 6.223, 6.189, 6.18, 6.179, 6.172, 6.166, 6.152,
      6.14, 6.106, 6.078, 6.061, 6.049, 6.032, 6.012, 5.992, 5.985,
      5.972, 5.94, 5.929, 5.919, 5.882, 5.88, 5.845, 5.84, 5.813,
      5.766, 5.764, 5.744, 5.723, 5.716, 5.677, 5.653, 5.581, 5.545,
      5.536, 5.534, 5.477, 5.466, 5.411, 5.41 , 5.384, 5.345, 5.342,
      5.339, 5.306, 5.283, 5.269, 5.266, 5.198, 5.171, 5.142, 5.132,
      5.117, 5.101, 5.088, 5.074, 5.066, 5.051, 5.045, 5.03, 5.025,
      4.984, 4.956, 4.948, 4.934, 4.918, 4.892, 4.891, 4.887, 4.875,
      4.854, 4.852, 4.834, 4.83, 4.794, 4.759, 4.723, 4.721, 4.636,
      4.625, 4.607, 4.596, 4.584, 4.574, 4.517, 4.426, 4.395, 4.355,
      4.325, 4.308, 4.289, 4.283, 4.275, 4.227, 4.208, 4.107, 4.073,
      3.849, 3.819, 3.775, 3.658, 3.623, 3.615, 3.6 , 3.512, 3.467,
      3.415, 3.145, 2.523])
```

In [11]:

```
data_COUNT_ENC['Ladder score'].unique()
```

Out[11]:

```
array([7.842, 7.62, 7.571, 7.554, 7.464, 7.392, 7.363, 7.324, 7.277,
       7.268, 7.183, 7.157, 7.155, 7.103, 7.085, 7.069, 7.064, 6.965,
       6.951, 6.834, 6.69, 6.647, 6.602, 6.584, 6.561, 6.494, 6.491,
       6.483, 6.461, 6.435, 6.431, 6.377, 6.372, 6.331, 6.33, 6.317,
       6.309, 6.255, 6.223, 6.189, 6.18, 6.179, 6.172, 6.166, 6.152,
       6.14 , 6.106, 6.078, 6.061, 6.049, 6.032, 6.012, 5.992, 5.985,
       5.972, 5.94, 5.929, 5.919, 5.882, 5.88, 5.845, 5.84, 5.813,
       5.766, 5.764, 5.744, 5.723, 5.716, 5.677, 5.653, 5.581, 5.545,
       5.536, 5.534, 5.477, 5.466, 5.411, 5.41, 5.384, 5.345, 5.342,
       5.339, 5.306, 5.283, 5.269, 5.266, 5.198, 5.171, 5.142, 5.132,
       5.117, 5.101, 5.088, 5.074, 5.066, 5.051, 5.045, 5.03, 5.025,
       4.984, 4.956, 4.948, 4.934, 4.918, 4.892, 4.891, 4.887, 4.875,
       4.854, 4.852, 4.834, 4.83, 4.794, 4.759, 4.723, 4.721, 4.636,
       4.625, 4.607, 4.596, 4.584, 4.574, 4.517, 4.426, 4.395, 4.355,
       4.325, 4.308, 4.289, 4.283, 4.275, 4.227, 4.208, 4.107, 4.073,
       3.849, 3.819, 3.775, 3.658, 3.623, 3.615, 3.6 , 3.512, 3.467,
       3.415, 3.145, 2.523])
```

In [12]:

```
ce_CountEncoder2 = ce_CountEncoder(normalize=True)
data_FREQ_ENC = ce_CountEncoder2.fit_transform(data[data.columns.difference(['Country name)])
```

In [13]:

data_FREQ_ENC

Out[13]:

	Explained by: Freedom to make life choices	Explained by: Social support	Ladder score	Regional indicator	lowerwhisker	upperwhisker
0	0.691	1.106	7.842	0.140940	7.780	7.904
1	0.686	1.108	7.620	0.140940	7.552	7.687
2	0.653	1.079	7.571	0.140940	7.500	7.643
3	0.698	1.172	7.554	0.140940	7.438	7.670
4	0.647	1.079	7.464	0.140940	7.410	7.518
	•••					
144	0.405	0.731	3.512	0.241611	3.276	3.748
145	0.539	0.724	3.467	0.241611	3.322	3.611
146	0.627	0.202	3.415	0.241611	3.282	3.548
147	0.359	0.649	3.145	0.241611	3.030	3.259
148	0.000	0.000	2.523	0.046980	2.449	2.596

149 rows × 6 columns

```
In [14]:
```

```
data FREQ ENC['Ladder score'].unique()
Out[14]:
array([7.842, 7.62, 7.571, 7.554, 7.464, 7.392, 7.363, 7.324, 7.277,
       7.268, 7.183, 7.157, 7.155, 7.103, 7.085, 7.069, 7.064, 6.965,
       6.951, 6.834, 6.69, 6.647, 6.602, 6.584, 6.561, 6.494, 6.491,
       6.483, 6.461, 6.435, 6.431, 6.377, 6.372, 6.331, 6.33, 6.317,
       6.309, 6.255, 6.223, 6.189, 6.18, 6.179, 6.172, 6.166, 6.152,
       6.14 , 6.106, 6.078, 6.061, 6.049, 6.032, 6.012, 5.992, 5.985,
       5.972, 5.94, 5.929, 5.919, 5.882, 5.88, 5.845, 5.84, 5.813,
       5.766, 5.764, 5.744, 5.723, 5.716, 5.677, 5.653, 5.581, 5.545,
       5.536, 5.534, 5.477, 5.466, 5.411, 5.41, 5.384, 5.345, 5.342,
       5.339, 5.306, 5.283, 5.269, 5.266, 5.198, 5.171, 5.142, 5.132,
       5.117, 5.101, 5.088, 5.074, 5.066, 5.051, 5.045, 5.03, 5.025,
       4.984, 4.956, 4.948, 4.934, 4.918, 4.892, 4.891, 4.887, 4.875,
       4.854, 4.852, 4.834, 4.83, 4.794, 4.759, 4.723, 4.721, 4.636,
       4.625, 4.607, 4.596, 4.584, 4.574, 4.517, 4.426, 4.395, 4.355,
       4.325, 4.308, 4.289, 4.283, 4.275, 4.227, 4.208, 4.107, 4.073,
       3.849, 3.819, 3.775, 3.658, 3.623, 3.615, 3.6 , 3.512, 3.467,
       3.415, 3.145, 2.523])
```

Задача №21

Для набора данных проведите масштабирование данных для одного (произвольного) числового признака с использованием масштабирования по медиане.

In [29]:

Out[29]:

(150, 5)

In [30]:

```
# Нужно ли масштабирование data.describe()
```

Out[30]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	Υ
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333	1.000000
std	0.828066	0.435866	1.765298	0.762238	0.819232
min	4.300000	2.000000	1.000000	0.100000	0.000000
25%	5.100000	2.800000	1.600000	0.300000	0.000000
50%	5.800000	3.000000	4.350000	1.300000	1.000000
75%	6.400000	3.300000	5.100000	1.800000	2.000000
max	7.900000	4.400000	6.900000	2.500000	2.000000

In [31]:

```
# DataFrame не содержащий целевой признак
X_ALL = data.drop('Y', axis=1)
```

In [32]:

```
# Функция для восстановления датафрейма
# на основе масштабированных данных
def arr_to_df(arr_scaled):
    res = pd.DataFrame(arr_scaled, columns=X_ALL.columns)
    return res
```

In [33]:

Out[33]:

```
((120, 4), (30, 4))
```

In [34]:

```
# Функция для восстановления датафрейма
# на основе масштабированных данных

def arr_to_df(arr_scaled):
    res = pd.DataFrame(arr_scaled, columns=X_ALL.columns)
    return res
```

In [35]:

```
# Построение плотности распределения

def draw_kde(col_list, df1, df2, label1, label2):
    fig, (ax1, ax2) = plt.subplots(
        ncols=2, figsize=(12, 5))
    # первый график
    ax1.set_title(label1)
    sns.kdeplot(data=df1[col_list], ax=ax1)
    # второй график
    ax2.set_title(label2)
    sns.kdeplot(data=df2[col_list], ax=ax2)
    plt.show()
```

In [36]:

```
class MeanNormalisation:

def fit(self, param_df):
    self.means = X_train.mean(axis=0)
    maxs = X_train.max(axis=0)
    mins = X_train.min(axis=0)
    self.ranges = maxs - mins

def transform(self, param_df):
    param_df_scaled = (param_df - self.means) / self.ranges
    return param_df_scaled

def fit_transform(self, param_df):
    self.fit(param_df)
    return self.transform(param_df)
```

In [39]:

```
cs22 = MeanNormalisation()
cs22.fit(X_train)
data_cs22_scaled_train = cs22.transform(X_train)
data_cs22_scaled_test = cs22.transform(X_test)
```

In [40]:

```
cs41 = RobustScaler()
data_cs41_scaled_temp = cs41.fit_transform(X_ALL)
# φορμαργέμε DataFrame μα οςμοθέ μαςςμβά
data_cs41_scaled = arr_to_df(data_cs41_scaled_temp)
data_cs41_scaled.describe()
```

Out[40]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
count	150.000000	150.000000	1.500000e+02	150.000000
mean	0.033333	0.114667	-1.691429e-01	-0.067111
std	0.636974	0.871733	5.043709e-01	0.508158
min	-1.153846	-2.000000	-9.571429e-01	-0.800000
25%	-0.538462	-0.400000	-7.857143e-01	-0.666667
50%	0.000000	0.000000	1.266348e-16	0.000000
75%	0.461538	0.600000	2.142857e-01	0.333333
max	1.615385	2.800000	7.285714e-01	0.800000

In [41]:

```
cs42 = RobustScaler()
cs42.fit(X_train)
data_cs42_scaled_train_temp = cs42.transform(X_train)
data_cs42_scaled_test_temp = cs42.transform(X_test)
# формируем DataFrame на основе массива
data_cs42_scaled_train = arr_to_df(data_cs42_scaled_train_temp)
data_cs42_scaled_test = arr_to_df(data_cs42_scaled_test_temp)
```

In [43]:

In [45]:

Доп задание

Для произвольной колонки данных построить парные диаграммы (pairplot).

In [47]:

In [49]:

```
data_tmp = pd.DataFrame(data['sepal length (cm)'])
sns.pairplot(data_tmp, size=5)
```

D:\Program Files\Anaconda3\lib\site-packages\seaborn\axisgrid.py:1912: Use rWarning: The `size` parameter has been renamed to `height`; please update your code.

warnings.warn(msg, UserWarning)

Out[49]:

<seaborn.axisgrid.PairGrid at 0x1d09c0686d0>

