Solution

概率论,2018春季学期

姓名: 王天哲 学号: 516030910591 班级: F1603024

1. Problem

求证:

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} (\cos \theta)^n e^{-ji\theta} d\theta = \frac{1}{2^{n+1}} [1 + (-1)^{n+j}] \binom{n}{\frac{n+j}{2}}.$$

Solution.

这里给出一种组合证明方法:

我们考虑这样一个问题,一个人初始在原点各以 $\frac{1}{2}$ 的概率向前或者向后走一个单位,问走 n 步后在位置 j 的概率。

求证的等式可以认为是矩母函数的形式, $(cos\theta)^n = (\frac{1}{2}e^{i\theta} + \frac{1}{2}e^{-i\theta})^n$, 其中 $\frac{1}{2}e^{i\theta} + \frac{1}{2}e^{-i\theta}$ 为矩母函数。

我们容易知道 $\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ji\theta} d\theta = [j=0]$,记之为 (*).

那么通过(*)式可以将 LHS 中不为常数次数的项筛去。

从而新问题与这里给出的组合问题等价。

而对于这个组合问题的答案,显然在 n 步中有 $\frac{n+j}{2}$ 步是向前的, $\frac{n-j}{2}$ 步是向后的。当 n 和 j 不同奇偶的时候,答案为 0,利用乘以 $frac12(1+(-1)^{(n+j)})$ 的技巧即可将这种情况的答案置为 0。

此时方案数即为 RHS。

从而得证。