EVALUATION OF NHTSA MODIFIED VOLKSWAGEN RABBITS

MDB-TO-CAR SIDE IMPACT TEST OF

A 26° CRABBED MOVING DEFORMABLE BARRIER

TO A 1982 VOLKSWAGEN RABBIT

AT 39.1 MPH

PREPARED BY:

VEHICLE RESEARCH AND TEST CENTER

ST. RT. 33 LOGAN COUNTY

EAST LIBERTY, OHIO 43319

FINAL REPORT OCTOBER 1983

PREPARED FOR:

U.S. DEPARTMENT OF TRANSPORTATION

NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION

400 SEVENTH STREET, S.W.

WASHINGTON, D.C. 20590

1. Respired Soft Soft 2. Genomeral Accession No. 1. Meropied's Catalog No. 1. Tris and Soft Soft 1. Tris and Soft Soft Soft Soft Soft 1. Tris and Soft Soft Soft Soft Soft Soft Soft Soft	77				Technical Report Documentation Pag
18. Abstract 19. Abstract 10. Abstract 10	1.	Report No.	2. Government Acces	ision No.	3. Recipient's Cotolog No.
EVALUATION OF NHTSA MEDIFIED VOLKSWACEN RABBITS MDB-ID-CAR SIDE IMPACT IEST OF A 26° CRABBED HOVING DEFORMABLE BARRIER TO A 1982 VOLKSWACEN RABBIT AI 39.1 MPH 7. Authors: 3. Stultz, Project Engineer, IRCO 8. Performing Organization Name and Address Vehicle Research and lest Center St. Rt. 33, Logan County East Liberty, Whio 45519 12. Project Engineer of Ternsportation National Highway Iraffic Safety Administration 4tt Seventh Street, S.W. Washington, OC 26594 15. Supplementry Note: 16. Abstract 17. Page of Report of County	Ž.	DOT HS 806 507			
MDB-TO-CAR SIDE IMPACT TEST OF A 26° CRABBED MOUNC DEFORMABLE BARRIER TO A 1982 VULKSWACEN RABBIT AT 39.1 MPH 7. Author's J. Stultz, Project Engineer, IRCO 9. Performing Organization Name and Address Vehicle Research and Test Center St. Rt. 33, Logan County East Liberty, Ohio 43319 10. Work Unit No. (IRAIS) III. Contact a Cloud No. DINH22-62-A-(E4(1) 11. Type of Report and Paried Covered FINAL REPORT September 1983 14. Spensoring Agency Mode Attorial Highway Iraffic Safety Administration Att Seventh Street, 5. W. Washington, DC 2L591 15. Supplamentary Notes This test report documents one of a Beries of two layers onducted on a baseline 1992 Volkswagen Rabbit 2-door hatchback at the TMCD Crash lest facility, East Liberty, Ohio. The test vehicle was impacted on the left side by a moving deformable berrier, crabbed to 26°, at 39.1 mph. Uccupant responses of two slide impact dummies were measured. One dummy was located in the driver's designated seating position and one was located in the left rear seating position. The test date was September 3L, 1963 and the ambient temperature was 67°F. 18. Distribution Statement Available from: Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22151	4.		150 101101 105	U DADDITO	
DEFORMABLE BARRIER TO A 1962 VOLKSWACEN RABBIT AT 39.1 MPH 7. Author: 3. Stultz, Project Engineer, IRCO 8. St. 93. 9. Performing Organization Name and Address Vehicle Research and lest Center St. Rt. 33, Logan County East Liberty, Unio 43319 11. Converse Great Na. DINH22-b2-A-(54(1) 13. Type of Repert and Period Covered Final REPORT Supplementary Normal Highway Traffic Safety Administration Autional Reports Actional Technical Information Service, Autional Traffic Safety Administration Autio		MORTO-CAR SIDE IMPACT TO	FIED VULKSWAUE	N RABBITS RARGED MOVING	
7. Authorit 3. Stultz, Project Engineer, IRCO 88193L 893L 9. Performing Organization Name and Address Vehicle Research and Test Center St. Rt. 33, Logan County East Liberty, Dhio 43319 12. Sequering Agency Name and Address U.S. Department of Transportation National Highway Traffic Safety Administration 4Ut Seventh Street, S.W. Washington, DC 2U59U 15. Supplementary Notes 16. Abance This test report documents one of a Becies of the Live Crash tests to evaluate the NHTSA's Modified Volkswagen Rabbits. Testing was conducted on a baseline 1982 Volkswagen Rabbit 2-door hatchback at the THCU Crash Test Facility, East Liberty, Ohio. The test vehicle was impacted on the left side by a moving deformable barrier, crabbed to 26', at 39.1 mph. Occupant responses of two side impact dummies were measured. One dummy was located in the driver's designated seating position and one was located in the left rear seating position. The test date was September 3L, 1983 and the ambient temperature was 67°F. 17. Ker words Occupant Response Moving Barrier Crash Testing 18. Distribution Stetement Available from: Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22151					6. Performing Organization Code
J. Stultz, Project Engineer, IRCO 9. Priormag Organization Name and Address Vehicle Research and lest Center St. Rt. 33, Logan County East Liberty, Unio 43319 12. Sequence Agency Name and Address U.S. Uspartment of Transportation National Highway Traffic Safety Administration Att Geventh Street, S.W. Washington, DC 2059t 13. Supplementary Notes 14. Separament Notes 15. Supplementary Notes 16. Abstract 17. Type of Report and Paried Covered FINAL REPORT September 1983 14. Spansoing Agency Code 15. Supplementary Notes 16. Abstract 17. Key Words 18. Supplementary Notes 18. Supplementary Notes 1982 Volkswagen Rabbit 2-door hatchback at the TNCU Crash lest Facility, East Liberty, Ohio. The test vehicle was impacted on the left side by a moving deformable barrier, crabbed to 26°, at 39.1 mph. Occupant responses of two side impact dummies were measured. Une dummy was located in the driver's designated seating position and one was located in the left rear seating position. The test date was September 31, 1983 and the ambient temperature was 67°F. 18. Oistrabuluon Statement Available from: Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22151					8. Performing Organization Report No.
Performing Organization Name and Address Vehicle Research and Test Center St. Rt. 33, Logan County East Liberty, Jibin 43319 12. Separang Asers, Name and Address U.S. Department of Transportation National Highway Iraffic Safety Administration 4Ut Seventh Street, S.W. Washington, DC 20591 15. Supplementary Notes This test report documents one of a Beries of twelve crash tests to evaluate the NHISA's Modified Volkswagen Rabbits. Vesting way conducted on a baseline 1982 Volkswagen Rabbit 2-door hatchback at the THCQ Crash Test Facility, East Liberty, Ohio. The test vehicle was impacted on the left side by a moving deformable barrier, crabbed to 26, at 39.1 mph. Decupant responses of two side impact dummies were measured. One dummy was located in the arriver's designated seating position and one was located in the left rear seating position. The test date was September 3L, 1963 and the ambient temperature was 67°F. 18. Distribution Stevensor: Available from: Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22151	7.		ar IRCO		07,07,
Vehicle Research and Test Center St. Rt. 33, Logan County East Liberty, Jhio 43319 12. Separates of Transportation National Highway Ireffice Safety Administration 4U. Seventh Street, S.W. Washington, DC 2U59U 15. Supplementary Motes This test report documents one of a series of twelve crash tests to evaluate the NHISA's Modified Volkswagen Rabbits. Testing was conducted on a baseline 1982 Volkswagen Rabbit 2-door hatchback at the TRCU Crash Test Facility, East Liberty, Ohio. The test vehicle was impacted on the left side by a moving deformable barrier, crabbed to 26°, at 39.1 mph. Occupant responses of two side impact dummies were measured. One dummy was located in the fiver's designated seating position and one was located in the left rear seating position. The test date was September 3C, 1983 and the ambient temperature was 67° F. 18. Distribution Stetement Available from: Docupant Response Moving Barrier Crash Testing 18. Distribution Stetement Available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22151	0				
St. Rt. 33, Logan County East Liberty, Uhio 43319 12. Separama Agracy Nome and Address U.S. Department of Transportation National Highway Ireffic Safety Administration 401 Seventh Street, 5.W. Washington, DC 20590 15. Supplementary Notes 16. Abstruct 17. Note of Report and Period Covered FINAL REPORT Separama Agracy Code 18. Abstruct 18. Abstruct 18. Abstruct 18. Obstribution Stretment 1983 1982 Volkswagen Rabbit 2-door hatchback at the THCL Crash Test Facility, East Liberty, Ohio. The test vehicle was impacted on the left side by a moving deformable barrier, crabbed to 26, at 39.1 mph. Occupant responses of two side impact dummies were measured. One dummy was located in the driver's designated seating position and one was located in the left rear seating position. The test date was September 30, 1983 and the ambient temperature was 67°F. 18. Distribution Stretment 1983 Available from: Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22151	/ /				TO. WORK UNIT NO. (TRAIS)
12. Sponsoring Agency Nome and Address U.S. Department of Transportation National Highway Traffic Safety Administration Att Geventh Street, 5.W. Washington, DC 2U59t 15. Supplementary Notes 16. Abstract 17. Note of Report and Period Covered FINAL REPURI Sentember 1983 14. Sponsoring Agency Code 15. Supplementary Notes 16. Abstract 17. Note of Report and Period Covered FINAL REPURI Sentember 1983 14. Sponsoring Agency Code 15. Supplementary Notes 16. Abstract 17. Note of Report and Period Covered FINAL REPURI Sentember 1983 14. Sponsoring Agency Code 16. Abstract 16. Abstract 17. Note of Report and Period Covered FINAL REPURI Sentember 1983 14. Sponsoring Agency Code 15. Supplementary Notes 16. Abstract 17. Note of Report and Period Covered FINAL REPURI Sentember 1983 14. Sponsoring Agency Code 16. Abstract 16. Abstract 17. Note of Report and Period Covered FINAL REPURI Sentember 1983 14. Sponsoring Agency Code 14. Sponsoring Agency Code 16. Abstract 16. Abstract 17. Note of Report and Period Covered FINAL REPURI Sentember 1983 14. Sponsoring Agency Code 16. Abstract 16. Abstract 17. Note of Report and Period Covered FINAL REPURI Sentember 1983 14. Sponsoring Agency Code 16. Abstract 16. Abstract 16. Abstract 17. Note of Report and Period Covered FINAL REPURI Sentember 1983 14. Sponsoring Agency Code 16. Abstract 16. Abstract 16. Abstract 16. Abstract 17. Note of Report and Period Covered FINAL REPURI Sentember 1983 14. Sponsoring Agency Code 16. Abstract 16. Abstract 16. Abstract 16. Abstract 17. Note of Report and Period Covered 18. Department of Period Covered 18. Distract 18. Distract 19. Distract 19. Distract 19. Distract 19. Distract 10. Distract 10. Distract 11. Abstract 12. Sponsoring Agency Code 14. Distract 15. Abstract 16. Abstract 16. Abstract 16. Abstract 16. Abstract 17. Abstract 18. Distract 18. Distract 19. Distract 19. Distract 19. Distract 19. Distract 10. Distract 10. Distract 10. Distract 10. Distract 10.			Center		
12. Sponsering Agency Nome and Address U.S. Department of Transportation National Highway Traffic Safety Administration 400 Seventh Street, S.W. Washington, DC 20590 15. Supplementary Notes This test report documents one of a Series of twelve crash tests to evaluate the NHISA's Modified Volkswagen Rabbits. Testing was conducted on a baseline 1982 Volkswagen Rabbit 2-door hatchback at the THCU Crash Test Facility, East Liberty, Ohio. The test vehicle was impacted on the left side by a moving deformable barrier, crabbed to 26°, at 39.1 mph. Occupant responses of two side impact dummies were measured. One dummy was located in the driver's designated seating position and one was located in the left rear seating position. The test date was September 30, 1983 and the ambient temperature was 67°F. 18. Distribution Statement Available from: Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22151			9		
National Highway Traffic Safety Administration 400 Seventh Street, S.W. Washington, DC 20590 15. Supplementary Notes This test report documents one of a series of twelve crash tests to evaluate the NHTSA's Modified Volkswagen Rabbits. Testing was conducted on a baseline 1982 Volkswagen Rabbit 2-door hatchback at the THCU Crash Test Facility, East Liberty, Dhio. The test vehicle was impacted on the left side by a moving deformable berrier, crabbed to 26°, at 39.1 mph. Occupant responses of two side impact dummies were measured. One dummy was located in the driver's designated seating position and one was located in the left rear seating position. The test date was September 3L, 1983 and the ambient temperature was 67°F. 17. Key Words Occupant Response Moving Barrier Crash Testing 18. Distribution Statement Available from: Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22151	12.				13. Type of Report and Period Covered
40t Seventh Street, S.W. Washington, DC 20590 15. Supplementary Notes This test report documents one of a series of twelve crash tests to evaluate the NHTSA's Modified Volkswagen Rabbits. Testing was conducted on a baseline 1982 Volkswagen Rabbit 2-door hatchback at the THCU Crash Test Facility, East Liberty, Uhio. The test vehicle was impacted on the left side by a moving deformable barrier, crabed to 26°, at 39.1 mph. Occupant responses of two side impact dummies were measured. One dummy was located in the driver's designated seating position and one was located in the left rear seating position. The test date was September 30, 1983 and the ambient temperature was 67°F. 18. Distribution Statement Available from: Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22151	'				
Washington, DC 2L59L 15. Supplementory Notes This test report documents one of a series of twelve crash tests to evaluate the NHTSA's Modified Volkswagen Rabbits. Testing was conducted on a baseline 192 Volkswagen Rabbit 2-door hatchback at the THCU Crash Test Facility, East Liberty, Ohio. The test vehicle was impacted on the left side by a moving deformable barrier, crabbed to 26°, at 39.1 mph. Occupant responses of two side impact dummies were measured. One dummy was located in the driver's designated seating position and one was located in the left rear seating position. The test date was September 3L, 1983 and the ambient temperature was 67°F. 18. Distribution Stotement Available from: Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22151			Safety Adminis	stration	
16. Abstract This test report documents one of a series of twelve crash tests to evaluate the NHISA's Modified Volkswagen Rabbits. Testing was conducted on a baseline 1982 Volkswagen Rabbit 2-door hatchback at the THCU Crash Test Facility, East Liberty, Ohio. The test vehicle was impacted on the left side by a moving deformable barrier, crabbed to 26, at 39.1 mph. Uccupant responses of two side impact dummies were measured. One dummy was located in the driver's designated seating position and one was located in the left rear seating position. The test date was September 3L, 1983 and the ambient temperature was 67°F. 18. Distribution Stotement Available from: Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22151		· · · · · · · · · · · · · · · · · · ·			14. Sponsoring Agency Code
This test report documents one of a series of twelve crash tests to evaluate the NHTSA's Modified Volkswagen Rabbits. Testing was conducted on a baseline 1982 Volkswagen Rabbit 2-door hatchback at the THCU Crash Test Facility, East Liberty, Ohio. The test vehicle was impacted on the left side by a moving deformable barrier, crabbed to 26°, at 39.1 mph. Occupant responses of two side impact dummies were measured. One dummy was located in the driver's designated seating position and one was located in the left rear seating position. The test date was September 3L, 1983 and the ambient temperature was 67°F. 12. Key Words Occupant Response Moving Barrier Crash Testing 18. Distribution Statement Available from: Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22151	1.5			The same of the sa	
This test report documents one of a series of twelve crash tests to evaluate the NHTSA's Modified Volkswagen Rabbits. Testing was conducted on a baseline 1982 Volkswagen Rabbit 2-door hatchback at the THCU Crash Test Facility, East Liberty, Ohio. The test vehicle was impacted on the left side by a moving deformable barrier, crabbed to 26°, at 39.1 mph. Uccupant responses of two side impact dummies were measured. One dummy was located in the driver's designated seating position and one was located in the left rear seating position. The test date was September 31, 1983 and the ambient temperature was 67°F. 18. Distribution Stotement Available from: Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22151				TRANSPORTER C	06 /
This test report documents one of a series of twelve crash tests to evaluate the NHTSA's Modified Volkswagen Rabbits. Testing was conducted on a baseline 1982 Volkswagen Rabbit 2-door hatchback at the THCU Crash Test Facility, East Liberty, Ohio. The test vehicle was impacted on the left side by a moving deformable barrier, crabbed to 26°, at 39.1 mph. Uccupant responses of two side impact dummies were measured. One dummy was located in the driver's designated seating position and one was located in the left rear seating position. The test date was September 31, 1983 and the ambient temperature was 67°F. 18. Distribution Stotement Available from: Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22151				APD	1. 1
This test report documents one of a series of twelve crash tests to evaluate the NHTSA's Modified Volkswagen Rabbits. Testing was conducted on a baseline 1982 Volkswagen Rabbit 2-door hatchback at the THCU Crash Test Facility, East Liberty, Ohio. The test vehicle was impacted on the left side by a moving deformable barrier, crabbed to 26°, at 39.1 mph. Uccupant responses of two side impact dummies were measured. One dummy was located in the driver's designated seating position and one was located in the left rear seating position. The test date was September 31, 1983 and the ambient temperature was 67°F. 18. Distribution Stotement Available from: Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22151	10.	Abstruct		1985	
the NHISA's Modified Volkswagen Rabbits. Testing was conducted on a baseline 1982 Volkswagen Rabbit 2-door hatchback at the THCU Crash Test Facility, East Liberty, Ohio. The test vehicle was impacted on the left side by a moving deformable barrier, crabbed to 26°, at 39.1 mph. Uccupant responses of two side impact dummies were measured. One dummy was located in the driver's designated seating position and one was located in the left rear seating position. The test date was September 31, 1983 and the ambient temperature was 67°F. 18. Distribution Statement Available from: Occupant Response Moving Barrier Crash Testing 18. Distribution Statement Available from: Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22151		This back are all the		. ,	
Occupant Response Moving Barrier Crash Testing Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22151		1982 Volkswagen Rabbit 2- Liberty, Ohio. The test deformable barrier, crabb side impact dummies were designated seating positi position. The test date	door hatchback vehicle was in ped to 26°, at measured. One on and one was	k at the TRCU Compacted on the 39.1 mph. Uccording was localed in the	rash Test Facility, East left side by a moving supant responses of two sated in the driver's e left rear seating
Occupant Response Moving Barrier Crash Testing Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22151					
Occupant Response Moving Barrier Crash Testing Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22151					
Occupant Response Moving Barrier Crash Testing Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22151					
Occupant Response Moving Barrier Crash Testing Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22151					
Occupant Response Moving Barrier Crash Testing Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22151					•
Occupant Response Moving Barrier Crash Testing Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22151					
Occupant Response Moving Barrier Crash Testing Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22151					·
Occupant Response Moving Barrier Crash Testing Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22151					
Occupant Response Moving Barrier Crash Testing Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22151					
Occupant Response Moving Barrier Crash Testing Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22151					
Occupant Response Moving Barrier Crash Testing Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22151	17	V au Maril		10 Dinas busine Care	
Moving Barrier Crash Testing U.S. public through the National Technical Information Service, Springfield, Virginia 22151	17.			id. Distribution States	Available from:
Technical Information Service, Springfield, Virginia 22151		•	,		
		moving Barrier Crash Test	ing	Technical	Information Service,
	10	Security Classif, (of this report)	130 5 61		21. Na. of Pages 22. Price

Unclassified

158

Unclassified

METRIC CONVERSION FACTORS

mm millimeters 0.04 inches cm centimeters 0.04 inches cm centimeters 0.04 inches meters 1.1 yards m kilouneters 0.16 miles cm kilouneters 0.16 square inches m square centimeters 0.16 square inches m square centimeters 0.16 square inches m square meters 1.2 square yards km square meters 1.2 square parts km square meters 1.2 square miles ha quare kilometers 0.4 square miles ha hertares 2.5 scres (10000 n.³) MASS (weight) MASS (weight) m kilograms 2.2 pounds t metric ton 1.1 short tons t liners 0.035 quarts t liners 0.05 quarts t liners 1.06 quarts t liners 1.3 cubic jards TEMPERATURE (exact) c degrees 9/5 (then degrees celsius add 32) Fahrenheit	inches 2.5 centimeters cm certifications cm certific			11.ENC.1.11				Symbol	Trom Meline Measures When You know Multiply by To	fric Mea	sures To Find	Symphol
All EA Continueters	The continue contin	=	inches	2.5	centimeters	c.u.i	ST 		1	NCTI		
100 100	yards 0.9 meters 0.4	7	feet	30	centimeters	CIII	1111	1000	millimeters	0.04	inches	.5
Second Color 1.6 Kilometers 1.6 Kilometers 1.1 Sards	1	yd	yards	6.0	meters	=	111	5	centimeters	0.4	inches	.5
Square inches Scale Square centimeters Color Square inches Square inches Square inches Square inches Square inches Square inches Square meters Square	Square inches O.50 Square centimeters C.5 Square centimeters C.5 Square meters C.5 Square me	mi	miles	1.6	kilometers	kııı		E	melers	3.3	lcet	=
Supare fact 0.09 Supare centimeters 0.0 Supare centimeters 0.09 Supare meters 0.04 Supare meters 0.05 Supare meters	Supare cinches 6.5 Supare centimeters cm cm Supare centimeters cm Supare centime			A RE.A				E	metera	1.1	yards	λ
Stipuare feet	square feet 0.09 square meters m² m² cm² square centimeters 0.16 square miches square miles 0.8 square kilometers 1.2 square miches 1.2 square miches square miles 0.4 hertares 0.5 square kilometers 0.1 square miles ounces 2.8 grains k k square kilometers 0.4 square miles ounces 2.8 grains k k square kilometers 0.5 square miles ounces 2.8 grains k k kilograms k k kilograms 2.5 scree ounces 0.9 metric ton 1.1 short tons 1.1 short tons 1.1 short tons cubic inches 1.6 milliliters ml. ml. <t< td=""><td><u>"</u>"</td><td>square inches</td><td>6.5</td><td>wjuare centimeters</td><td></td><td> </td><td>ka</td><td>kilometers</td><td>9.0</td><td>miles</td><td>Ë</td></t<>	<u>"</u> "	square inches	6.5	wjuare centimeters		 	ka	kilometers	9.0	miles	Ë
Square miles 0.8 Square meters Mark Square meters Mark Square miles 1.2	square miles 0.08 square melers m² square centimeters 0.16 square melers acres 0.4 hectares ha square melers 1.2 square melers acres 0.04 hectares 1.2 square kilometers 0.4 square miles ounces 2.8 grains g grains g seres ounces 2.8 grains g grains g seres ounces 0.45 kilograms kg kilograms 2.2 seres (2000 lb) 0.9 metric ton 1.1 short tons 1.1 short tons teaspoons 5 milliliters ml.	ſſ,	square feet	0.09	wjuare meters		21 1			REA		
Sequence	Sequence	yd*	square yards	0.8	wjuare meters	# E	.l.	cm	square centimeters	0.16	square inches	.u
A	Secretaria Increases Inc	E I	square miles	2.6	square kilometers	km ²	tt	e E	square meters	1.2	square yards	yd
NASS (weight) Nass Nation Nass Nation Nass Nation Nass Nation Na	MASS (weight) Weight) Would be weight Weight)			0.4	hertares	La	1111	km,	square kilometers	0.4	square miles	E
Comparison	1000 m/s 28 grains kg 1000 m/s 1		4	1ASS (weigh	ht)		01 	he	hectares	2.5	acres	
pounds 0.45 kilograms kg	2000 lb 0.95 kilograms kg c c c c c c c c c	20	ounces	28	grains	er.	1111		(10 000 nr.)	- 1		
Sources	short tons (2000 lb) VOLUME (2000 lb) VOLUME teaspoons 5 milliliters nul. teaspoons 15 milliliters nul. fluid ounces 30 fluid ounces nul. fluid ounces 30 milliliters nul. fluid ounces 30 milliliters nul. fluid ounces 30 milliliters nul. fluid ounces 30 fluid ounces nul. flui	2	spunod		kilograms	1 2	6		MASS	- 1	ıt)	
1000 (b) 11 12 13 14 15 15 15 15 15 15 15	1000 10 11 12 10 11 12 10 12 10 13 14 15 10 10		short tons		metric ton	-	1111	10	grams	0.035	onu:cs	TO.
1000kg 100kg 1000kg 10	teaspoons 5 milliliters nul. (1000 kg) 1000 kg		(2000 lb)				*	74 36	kilograms	2.2	pounds	=
teaspoons 5 milliliters nil.	p tablespoons 15 milliliters 16 milliliters 17 mL 1000 kg) 18 milliliters 19 mL 19 milliliters 10 mL 10 ml 10 mulliliters 10 mL 10 ml 10 mulliliters 10 mL 10 m			VOLUME				-	metric ton	1.	short tons	
p tablespoons 15 milliliters ml. ml. ml. ml. ml. ml. milliliters ml.	p tablespoons 15 milliliters ml. ml. milliliters 0.03 fluid ounces 30 milliliters ml. ml. milliliters 0.04 fluid ounces 30 milliliters ml. ml. milliliters 0.05 cubic inches pints 0.47 liters 0.47 liters L. liters 0.05 fluid meters 1.06 quarts 0.05 liters L. liters 0.05 cubic meters L. liters 0.05 quarts 0.05 cubic meters m³ cubic me	tsp	teaspoons	5	milliliters	nil.						
cubic inches 16 milliliters ml. ml. milliliters 0.03 fluid ounces 30 unilliliters ml. hiers 0.24 liters 0.24 liters 0.47 liters 0.47 liters 0.95 liters 0.95 liters 0.95 liters 0.95 liters 0.05 liter	cubic inches 16 milliliters ml. ml. milliliters 0.03 fluid ounces 30 milliliters ml. ml. milliliters 0.06 cubic inches cups 0.24 liters 0.24 liters 0.47 liters 0.47 liters 0.95 liters 0.95 liters 0.95 liters 0.03 cubic meters m³ cubic feet 0.03 cubic meters m³ cubic feet 0.03 cubic meters m³ cubic feet 0.04 liters 0.76 cubic meters m³ cubic feet 0.05 cubic meters m³ cubic m²	Thsp	tablespoons	15	millilitera	m	11111 111) CIME		
fluid ounces 30 milliliters miltiniters 0.00 cubic inches cups 0.24 liters L L liters 1.06 quarts 0.47 liters L L liters 1.06 quarts 0.47 liters L L liters 0.05 kallons aduarts 0.95 liters L L liters 0.05 kallons cubic feet 0.03 cubic meters m³ cubic meters la cubic meters m³ cubic meters m³ cubic meters la cubic met	fluid ounces 30 milliliters mt. milliliters 0.20 cubic inches cups 0.24 liters 0.24 liters 0.47 liters 0.47 liters 0.95 liters	Eui	cubic inches	16	milliliters	E .	9 	m.	milliliters	0.03	fluid ounces	€.
cups 0.24 liters L L liters 1.06 quarts pints 0.47 liters 0.95 liters L L liters 0.95 liters 0.95 liters L L liters 0.96 gallons allons cubic feet 0.03 cubic meters m³ cubic yards 0.76 cubic neters m³ cubic yards cubic yards 0.76 cubic neters 0.76 cubic n	cups Cups O.24 liters D.47 liters O.95 liters Cubic feet O.03 cubic meters Cubic yards Cubic yards O.76 cubic neters TEMPERATURE (exact) degrees S 9 (after degrees Fahrenheit subtracting Celsius 120 120 120 120 120 120 120 12	A oz	fluid ounces	30	milliliters	in F	1111	٦.	milliliers	00.00	cubic inches	Ē
pints 0.47 liters L L iners 0.26 gallons quarts 0.95 liters L L me cubic meters 35 cubic feet gallons 3.8 liters L me cubic meters 35 cubic feet cubic feet 0.03 cubic meters m³ = me cubic meters 1.3 cubic yards cubic feet 0.03 cubic meters m³ = me cubic meters 1.3 cubic yards cubic yards 0.76 cubic neters m³ = me cubic meters 1.3 cubic yards cubic yards 0.76 cubic neters m³ = me cubic yards cubic yards Celsius m² = me cubic meters 1.3 cubic yards cubic yards cubic neters m³ = me cubic yards cubic yards cubic feet me cubic yards cubic yards cubic yards cubic feet me cubic yards cubic yards cubic yards cubic feet me cubic yards cubic yards cubic feet me cubic yards cubic yards cubic feet me cubic yards cubic yards cubic feet me cubic yards cubic feet me cubic yards cubic yards cubic feet me cubic yards cubic feet me cubic yards cubic feet me cubic yards cubic yards cubic feet me cubic yards cubic yards cubic yards cubic yards cubic yards cubic feet me cubic yards cubic yards cubic feet me cubic yards cubic feet me cubic yards cubic yard	pints 0.47 liters L L L L L L L L L L L L L L L L L L L	C	cups	0.24	liters	_1	S 1 2		liers	1.7	pints	d. 8
quarts 0.95 liters L = m cubic meters 35 cubic feet gallons 3.8 liters L = m cubic meters 35 cubic feet cubic feet 0.03 cubic meters m³ = m Cubic meters 1.3 cubic yards cubic yards 0.76 cubic neters m³ = m TEMPERATURE (exact) degrees 5 9 (after degrees °C = m Celsius add 32) Fahrenheit subtracting Celsius	quarts Quarts Quarts Quarts Quarts Gallons 3.8 liters Cubic feet Cubic yards Cubic yards O.76 cubic meters TEMPERATURE (exact) degrees 5 9 (after degrees Fahrenheit subtracting Celsius 32) Temperature Temperature Temperature Celsius Temperature Temperature Celsius Temperature Te	pt	pints	0.47	liters	_1	111	2 <u>_</u>	1:10:11	96.0		5- 6
cubic feet 0.03 cubic meters m³ = m° cubic meters 1.3 cubic yards cubic yards 0.76 cubic meters m³ = m° cubic meters 1.3 cubic yards 0.76 cubic meters m³ = m° cubic meters 9/5 (then degrees TEMPERATURE (exact) characters 5.9 (after degrees 5.9 (after degrees Celsius Celsius 32.)	cubic feet 0.03 cubic meters m³ = m cubic meters 1.3 cubic yards cubic feet 0.03 cubic meters m³ = m cubic meters 1.3 cubic yards cubic jards 0.76 cubic meters m³ = m cubic meters 1.3 cubic yards cubic jards 0.76 cubic meters m³ = m cubic meters 1.3 cubic yards Cubic jards 0.76 cubic meters m³ = m cubic meters 1.3 cubic yards Celsius m³ = m cubic meters 9/5 (then degrees 1.3 cubic yards) Agences 5 9 (after degrees °C = m chic meters 1.3 cubic yards Agences 5 9 (after degrees °C = m chic meters 1.3 cubic yards Add 32) Fahrenheit subtracting Celsius 1.20 160 200	ō.	quarts	0.95	liters	_		ນີ້ 8	meters	35	cultic feet	33
cubic feet 0.03 cubic meters m³ =	cubic feet 0.03 cubic meters m³ = " " TEMPERATURE (exact) cubic yards 0.76 cubic neters m³ = " " C degrees 9/5 (then degrees TEMPERATURE (exact) degrees 5 9 (after degrees " C = " " Celsius add 32) Fahrenheit degrees 5 9 (after degrees " C = " " " " " Celsius add 32) Fahrenheit 32) **Fahrenheit subtracting Celsius **Fahrenheit **Fahrenheit	Kal	Kallons	3.8	liters	ب		Ē		-	cubic vards	7
Cubic yards 0.76 cubic nieters m² == °C degrees 9/5 (then degrees degrees 5 9 (after degrees °C == °C degrees add 32) Fahrenheit degrees 5 9 (after degrees °C == °C degrees 32) Fahrenheit subtracting Celsius = °C degrees add 32) Fahrenheit subtracting Celsius = °C degrees of celsius add 32) Fahrenheit subtracting Celsius = °C degrees of celsius add 32) Fahrenheit subtracting Celsius = °C degrees of celsius add 32) Fahrenheit subtracting Celsius = °C degrees of celsius add 32) Fahrenheit subtracting Celsius = °C degrees of celsius add 32) Fahrenheit subtracting Celsius = °C degrees of celsius add 32) Fahrenheit subtracting Celsius = °C degrees of celsius add 32) Fahrenheit subtracting Celsius = °C degrees of celsius add 32) Fahrenheit subtracting Celsius = °C degrees of celsius add 32) Fahrenheit subtracting Celsius = °C degrees of celsius add 32) Fahrenheit subtracting Celsius = °C degrees of celsius add 32) Fahrenheit subtracting Celsius = °C degrees of celsius add 32) Fahrenheit subtracting = °C degrees of celsius add 32) Fahrenheit subtracting = °C degrees of celsius add 32) Fahrenheit subtracting = °C degrees of celsius add 32) Fahrenheit subtracting = °C degrees of celsius add 32) Fahrenheit subtracting = °C degrees of celsius add 32) Fahrenheit subtracting = °C degrees of celsius add 32) Fahrenheit subtracting = °C degrees of celsius add 32) Fahrenheit subtracting = °C degrees of celsius add 32) Fahrenheit subtracting = °C degrees of celsius add 32) Fahrenheit subtracting = °C degrees of celsius add 32) Fahrenheit subtracting = °C degrees of celsius add 32) Fahrenheit subtracting = °C degrees of celsius add 32) Fahrenheit subtracting = °C degrees of celsius add 32) Fahrenheit subtracting = °C degrees of celsius add 32) Fahrenheit subtracting = °C degrees of celsius add 32) Fahrenheit subtracting = °C degrees of celsius add 32) Fahrenheit subtracting = °C degrees of celsius add 32) Fahren	Cubic yards 0.76 cubic nieters m² == °C degrees 9/5 (then degrees degrees 5 9 (after degrees °C == °C degrees add 32) Fahrenheit degrees 5 9 (after degrees °C == °C degrees 32) Fahrenheit subtracting Celsius	5	cubic feet	0.03	cubic meters	Ē	E		TEMPERA	THRE	(exact)	-
TEMPERATURE (exact) degrees 5 9 (after degrees °C = 120 160 200 120 160 200	degrees 5 9 (after degrees °C = 6 fabrenheit subtracting Celsius Celsius 32) **Fabrenheit subtracting Celsius	yd3	cubic yards	0.76	cubic nieters	"E		٠		1/5 (the	n derrees	15.
degrees 5.9 (after degrees °C = Fahrenheit subtracting Celsius = 1 1 1 1 1 1 1 1 1	degrees 5.9 (after degrees °C = Fahrenheit subtracting Celsius		TEMI	P.R.ATURE	(rxart)		Z	,		add 32)	Fahrenheit	•
32) Celsius 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1	32) ************************************	٠.	degrees	5 9 (after		2	iliii 1 ' J					
20 · 32 · 60 · 120 · 160	120 150 160 150 160 150 160 150 160 150 160 150 160 150 160 150 160 150 160 150 160 150 160 150 160 150 160 160 160 160 160 160 160 160 160 16		Fahrenheit	subtracting)						
. 32 96.6	. 32			32)								
0 40 80 120 160	0 40 80 120 160											
					•	9	i-					

TABLE OF CONTENTS

	Page
1.0 PURPOSE AND INTRODUCTION	1-1
2.0 ŒNERAL TEST AND VEHICLE PARAMETER DATA	2-1
3.0 DATA REQUIRED BY R&D	3-1
APPENDIX A PHOTOGRAPHS	A-1
APPENDIX B DATA PLOT PRESENTATION	8-1
LIST OF PHOTOGRAPHS	
Figure	Page
A-1. PRE-TEST OVERALL - VIEW 1	A-2
A-2. PRE-TEST OVERALL - VIEW 2	A-2
A-3. PRE-TEST OVERALL - VIEW 3	A-3
A-4. PRE-TEST OVERALL - VIEW 4	A-3
A-5. PRE-TEST CLOSEUP - VIEW 1	A-4
A-6. PRE-TEST CLOSEUP - VIEW 2	A-4
A-7. PRE-TEST CLOSEUP - VIEW 3	A-5
A-8. PRE-TEST DRIVER DUMMY - VIEW 1	A-5
A-9. PRE-TEST DRIVER DUMMY - VIEW 2	A-6
A-10. PRE-TEST PASSENGER DUMMY - VIEW 1	A-6
A-11. PRE-TEST PASSENGER DUMMY - VIEW 2	A-7
A-12. PRE-TEST DRIVER'S PADDING - VIEW 1	A-7
A-13. PRE-TEST DRIVER'S PADDING - VIEW 2	A-8
A-14. CRASH EVENT PHOTOGRAPH	A-8
A-15. POST-TEST OVERALL - VIEW 1	A-9
A-16. POST-TEST OVERALL - VIEW 2	A-9
A-17. POST-TEST OVERALL - VIEW 3	A-10
A-18. POST-TEST OVERALL - VIEW 4	A-10
A-19. POST-TEST CLOSEUP - VIEW 1	A-11
A-20. POST-TEST DRIVER DUMMY - VIEW 1	A-11
A-21. POST-TEST DRIVER DUMMY - VIEW 2	A-12
A-22. POST-TEST PASSENGER DUMMY - VIEW 1	A-12
A-23. POST-TEST PASSENGER DUMMY - VIEW 2	A-13
A-24. POST-TEST PASSENGER DUMMY - VIEW 3	A-13
A-25. POST-TEST PASSENCER DUMMY - VIEW 4	A-14

A-14

A-26. POST-TEST VEHICLE DAMAGE - VIEW 1

LIST OF PHOTOGRAPHS CONT'D

Figure		Page
A-27.	PRE-TEST MDB FACE - VIEW 1	A-15
A-28.	PRE-TEST MDB FACE - VIEW 2	A-15
A-29.	POST-TEST MDB FACE - VIEW 1	A-16
A-30.	POST-TEST MOB FACE - VIEW 2	A-16

SECTION 1.0 PURPOSE AND INTRODUCTION

PURPOSE

The main purpose of this test was to evaluate the NHTSA fleet of modified Volkswagen Rabbits with and without padding. The vehicle was tested using conditions not currently contained in a Federal Motor Vehicle Safety Standard.

INTRODUCTION

A stationary 1982 Volkswagen Rabbit 2-door hatchback was impacted on the left side by a Moving Deformable Barrier (MDB) on September 30, 1983. The test was to simulate an intersection collision with the striking vehicle traveling at 35 mph and the struck vehicle traveling at 17.5 mph. The orientation angle of the striking vehicle was 90° counterclockwise with respect to the longitudinal axis of the struck vehicle. The leading edge of contact was to be 37 inches forward of the vehicle center of gravity which is defined by accident investigation to be the midpoint of the wheelbase.

To simulate this collision, the MDB was to be towed into the stationary Volkswagen Rabbit at 39.1 mph with the MDB's wheels crabbed clockwise to 26°. The actual test speed was 39.1 mph and the actual leading edge was 36 inches forward of the midpoint of the Volkswagen Rabbit's wheelbase.

The vehicle was a baseline model with no structural modification. The driver door and left rear occupant wall contained three inches of padding.

Section 2 contains General Test and Vehicle Parameter Data. Section 3 contains data required by R & D. Appendix A contains pre-test and post-test vehicle and dummy photographs. Appendix B contains Data Plots.

SECTION 2.U GENERAL TEST AND VEHICLE PARAMETER DATA

The following data sheets and photographs describe the General Test and Vehicle Parameter Data.

TEST VEHICLE INFORMATION

VEHICLE MANUFACTURER: Volkswagen of America

MAKE/MODEL: Volkswagen Rabbit VIN: 1VWBBC178CV110877

BODY STYLE: 2-Door Hatchback MODEL YEAR: 1982

NHTSA NO.: R & D COLOR: Burgundy

ENGINE DATA: TYPE: Transverse CYLINDERS: 4 DISPLACEMENT 105 CID

TRANSMISSION DATA: 4 Speed Manual

DATE VEHICLE RECEIVED: 9/9/83 ODOMETER READING: 14762

DEALER'S NAME AND ADDRESS: NA

ACCESSURIES:

POWER STEERING No AUTOMATIC TRANSMISSION No AUTOMATIC SPEED CONTROL
TILTING STEERING WHEEL Yes No POWER BRAKES No No POWER SEATS No TELESCOPING STEERING WHEEL POWER WINDOWS TINTED GLASS Yes AIR CONDITIONING Yes RADIO Yes ANTI-SKID BRAKE No CLOCK Yes REAR WINDOW DEFROSTER Yes

OTHER

REMARKS:

- 1. IS THE VEHICLE STOCK THROUGHOUT? Yes
- 2. DOES VEHICLE SHOW EVIDENCE OF PRIOR ACCIDENT HISTORY? No
- 3. DOES VEHICLE SHOW ANY SIGNIFICANT CORROSION? No
- 4. CONDITION OF THE FRONT/REAR BUMPER AND FRAME: Good

DATA FROM CERTIFICATION LABEL ON LEFT DOUR FACE OR "B" POST:

VEHICLE MANUFACTURED BY: Volkswagen of America

DATE OF MANUFACTURE: 7/82

GVWR: 2822 LBS.,

CAWR: FRONT 1609 LBS., REAR 1278 LBS.

VEHICLE TIRE DATA

RECOMMENDED COLD TIRE PRESSURE: FRONT 27 psi; REAR 27 psi

TIRES ON VEHICLE (MF OR. & LINE, SIZE): Michelin 155/R80/13

BIAS PLY, BELTED, OR RADIAL: Radial

PLY RATING: 3

IS SPARE TIRE "SPACE SAVER"? No

IS SPARE TIRE STANDARD EQUIPMENT? Yes

WEIGHT OF TEST VEHICLE AS RECEIVED FROM DEALER (WITH MAXIMUM FLUIDS):

RIGHT FRONT 640 LBS. RIGHT REAR 330 LBS.

LEFT FRONT 670 LBS. LEFT REAR 340 LBS.

TOTAL FRONT WEIGHT 1310 LBS. (66.2 % OF TOTAL VEHICLE WEIGHT)

TOTAL REAR WEIGHT 670 LBS. (33.8 % OF TOTAL VEHICLE WEIGHT)

TOTAL DELIVERED WEIGHT 1980 LBS.

VEHICLE ATTITUDE (ALL DIMENSIONS IN INCHES):

DELIVERED ATTITUDE: RF 25 1/2 ;LF 25 3/8 ;RR 25 5/16 ;LR 25 1/8

PRE-TEST ATTITUDE: RF 24 3/4 ;LF 24 3/4 ;RR 22 11/16 ;LR 22 11/16

POST-TEST ATTITUDE: RF 23 1/4 ;LF 23 9/16 ;RR 23 5/16 ;LR 22 7/8

WEIGHT OF TEST VEHICLE WITH REQUIRED DUMMIES AND 157 LBS. CARGO:

RIGHT FRONT 685 LBS. RIGHT REAR 560 LBS.

LEFT FRONT 685 LBS. LEFT REAR 555 LBS.

TOTAL FRONT WEIGHT 1370 LBS. (55.1 % OF TOTAL VEHICLE WEIGHT)

TOTAL REAR WEIGHT 1115 LBS. (44.9 % OF TOTAL VEHICLE WEIGHT)

TOTAL TEST WEIGHT 2485 LBS.

WEIGHT OF BALLAST SECURED IN VEHICLE TRUNK AREA: 0 LBS.

TEST FLUID DATA

TEST FLUID TYPE: RED STUDDARD SOLVENT #2; SPEC. GRAVITY: 0.764 KINEMATIC VISCOSITY: 0.99 CENTISTOKES "USEABLE" CAPACITY*: NA GALLONS TEST VOLUME: 3.0 CALLONS FUEL SYSTEM CAPACITY (DATA FROM OWNERS MANUAL): 15.0 CALLONS DETAILS OF FUEL SYSTEM: DNA ELECTRIC FUEL PUMP: Yes FUEL INJECTION: Yes DOES ELECTRIC FUEL PUMP OPERATE WITH IGNITION SWITCH "ON" AND THE ENGINE NOT OPERATINC? No DATA FROM "RECOMMENDED TIRE PRESSURE" LABEL ON DOOR, POST, GLOVEBOX, ETC. VEHICLE LOAD (UP TO CAPACITY): FRONT 27 psi; REAR 27 psi LOAD RANGE X B, C, RECOMMENDED TIRE SIZE: 155 R80 13 VEHICLE CAPACITY: TYPES OF SEATS: Front - Bucket Rear - Bench NUMBER OF OCCUPANTS (DESIGNATED SEATING CAPACITY): 2 FRONT 2 REAR CAR CO LOAD 135 LBS. 4 TOTAL TOTAL 735 LBS.

*WITH ENTIRE FUEL SYSTEM FILLED WITH FUEL TANK THROUGH CARBURETOR BOWL.

TEST CONDITIONS

TEST NUMBER: 830930

DATE OF TEST: September 30, 1983

TIME OF TEST: 10:25

WIND VELUCITY: C-2 mph 2880 NW

HUMIDITY: NA

AMBIENT TEMPERATURE AT 1MPACT AREA: 67° F

TEMPERATURE IN OCCUPANT COMPARTMENT: 72° F

SUBJECT VEHICLE DATA

VEHICLE TEST WEIGHT (LBS.)	ACTUAL 2485	INTENDED 2463
MDB TEST WEIGHT (LBS.)	2990	3000
MDB VELOCITY (MPH)*	39.1	39.1
IMPACT POINT (INCHES)**	36.	37

DUMMIES

	DRIVER	MIDDLE PASSENGER	RT. FRONT PASSENGER	LEFT REAR PASSENGER	RT. REAR PASSENCER
TYPE: SERIAL NO.: INSTRUMENTATION:	SID C6			SID UC2	
HEAD ACCEL:: CHEST ACCEL:: FEMUR L.C.'S: OTHER:	Yes Yes (Upp No Pelvis/R	er/Lower) ibs		Yes Yes (Upper/L No Pelvis/Ribs	ower)

RESTRAINT SYSTEM: Both dummies were unrestrained

^{*} As measured over final one foot of travel.

^{**} As measured forward of the midpoint of the Volkswagen's wheelbase.

GENERAL TEST AND VEHICLE PARAMETER DATA

VISIBLE DUMMY CONTACT POINTS: DRIVER # PASSENGER # Side header padding & window Side window and sill Head Chest Padding Padding Abdomen Padding Padding Left Knee Padding Left quarter panel Right Knee Left knee Left knee DOOR OPENING: LEFT RIGHT Tools required Easy Front DNA DNA Rear SEAT MOVEMENT: SEAT BACK FAILURE SEAT SHIFT Left Front shifted 3" Front Rear No No GLAZING DAMAGE: Left edge of windshield cracked, both driver's side window and left rear passenger window shattered OTHER NOTABLE IMPACT EFFECTS:

Approximately 8 inches of sill torn loose at

front seat area, A-pillar split from sill.

IMPACT VELOCITY MEASUREMENT SYSTEM

The final vane is located two inches before impact.

The vanes have one foot spacing.

VEHICLE TEST WEIGHT CALCULATION

Test Weight = Unloaded Delivered Weight +

Number of Dummies X 174 lbs. +

Cargo Weight

= 1980 + 2 X 174 + 135 lbs.

= 2463 lbs.

To achieve test weight, the exhaust system and starter motor were removed and 3 gallons of Stoddard Solvent was added in the fuel tank. The weight of the test vehicle was measured by placing each wheel on a Loadmeter Corporation Hiway Loadometer.

TEST ANOMALIES

- 1) Cable separation occurred in data channel TO1XG1 (Driver Upper Spine Acceleration X Axis) at approximately 320 msec. Because the separation occurred late in the crash, the test results are uneffected by it.
- 2) Cable separation occurred in data channel LFDYG2 {Left Front Door (Position 8) Acceleration Y Axis} within the first 10 msec. No peak values or Delta Velocities are reported.

SECTION 3.0 DATA REQUIRED BY R&D

The following pages are included in this section:

- 1. Dummy temperature control and positioning data
- 2. Dummy kinematic summary
- 3. Vehicle crush data
- 4. Dummy and vehicle accelerometer location and data summary
- 5. High speed camera information
- 6. Transducer information

DUMMY TEMPERATURE CONTROL AND POSITIONING

The vehicle was kept inside the temperature controlled crash test building until approximately 2 hours prior to the test. Temperature inside the vehicle and ambient temperature at the crash area were recorded. Dummy temperature while outside the crash test building was maintained portably until approximately 1 minute prior to the test.

The following table summarizes the steps taken to position the instrumented, calibrated dummies in the test vehicle.

DUMMY PLACEMENT AND POSITIONING

SIDE IMPACT		DELL DISCOMISED DEL
DUMMY*	DRIVER DSP	REAR PASSENGER DSP
HEAD	Surface of transverse instrument mounting platform is as horizontal as possible without inducing torso movement & midsagittal plane falls in longitudinal plane.	Surface of transverse instrument mounting platform is as horizontal as possible without inducing torso movement & midsagittal plane falls in longitudinal plane.
UPPER TORSO	Placed against seat back. Midsagittal plane is vertical and centered on bucket seat.	Placed against seat back. Midsagittal plane is vertical and contained in the same longitudinal plane as the driver's midsagittal plane.
LOWER TORSO	vertical and centered on bucket seat.	Midsagittal plane is vertical and contained in the same longitudinal plane as the driver's midsagittal plane.
UPPER LEGS (thighs or	Placed against seat cushion. Planes defined	Placed against seat cushion. Planes defined by femur and
femurs)	by femur and tibia centerlines are as close as possible to vertical.	tibia centerlines are as close as possible to vertical.
KNEES	Knees set 14.5" apart between pivot bolt head outer surfaces. Outer surface of right knee pivot bolt is 8.6" from midsagittal plane of dummy. Outer surface of left knee pivot bolt is 5.9" from midsagittal plane of dummy.	Located so that planes defined by femur and tibia centerlines are as close as possible to vertical.
LOWER LEGS	Plane defined by femur and tibia centerlines are as close as possible to vertical longitudinal plane.	Plane defined by femur and tibia centerlines are as close as possible to vertical longitudinal plane.
RIGHT FOOT	Placed on undepressed accelerator pedal rearmost point of heel on floorplan in plane of pedal.	Centerline falls in vertical longitudinal plane. Placed on floor as far forward as possible without front seat interference.
LEFT FOOT	Placed on toeboard rearmost point of heel on floorpan as close as possible to intersection of toeboard and floorpan. Centerline falls in vertical longitudinal plane.	Centerline falls in vertical longitudinal plane. Placed on floor as far forward as possible without front seat interference.

*NOTE: THE SIDE IMPACT DUMMY DOES NOT INCLUDE ARMS.

DUMMY IN-VEHICLE POSITION RECORDING SHEET

VEHICLE NHTSA NO. R&D MFR./MAKE/MODEL: Volkswagen Rabbit

FRONT SEAT TYPE: BENCH

X BUCKET
SPLIT BENCH

BUCKET SEAT BACK TYPE: FIXED
X ADJUSTABLE

POSITIONING DATE: 9/30/83

AMBIENT TEMP.: 69° F. TIME: 5:30

MFR./MAKE/MODEL: Volkswagen Rabbit

ADJUSTER TYPE: X MANUAL
POWER

1. J. Kokoruda

2. M. Garrison

3. D. LeVally

- *All driver dummy dimensions referenced to top of striker bolt and all angles referenced to vertical.
- **All passenger dummy dimensions referenced to front seat back latch bolt with front seat in mid-position and all angles referenced to vertical.
- ***Door glass height is equal on the right and left side of vehicle at dummy nose level.

	06	002
	DRIVER	PASSENGER
HR	5 7/8	4 11/16
HS	7 5/8	7 7/8
AD	0	1/2
HD	2 3/8	1 3/4

NOTE: ALL MEASUREMENTS IN INCHES

	06	U02 ·
	DRIVER	PASSENGER
нн	12 1/4	DNA
НИ	19 1/2	DNA
нѕ	DNA	24
CD	20 1/8	17 13/16
CS	. 11 3/8	DNA
KDL	3 5/8	4 1/4
KDR	3 13/16	4 1/4

NOTE: ALL MEASUREMENTS IN INCHES

DUAMY KINEMATIC SUMMARY

DRIVER

During impact, the dummy's torso contacted the padded driver's door and the head passed through the already shattered driver's window and then struck the window sill. The dummy rebounded across the front seats. It's buttocks struck and passed through the front passenger's window sill and it's head and back struck the roof. The dummy came to rest sitting on the front passenger's window sill with it's head wedged between the front bucket seat's head restraints.

PASSENGER

During impact, the dummy's torso contacted the nadded left rear occupant side wall and the head contacted the side window and side header padding. The dummy remained upright throughout the entire crash event with it's feet trapped in the left rear passenger foot well.

VEHICLE EXTERIOR PROFILES AND STATIC CRUSH ZERO DISTANCE AT PROJECTED IMPACT POINT*

LOCATION	HEIGHT (in)	9 (1	0	9	12	18	24	30	36	42	48	54	09	99	72	78
		PRE	PRE-TEST PROFILE	PROFIL		(DISTANCE	IN INCHES FROM REFERENCE	HES FR	OM REF	ERENCE	PLANE**)	(**				
Axle Height	1t 8.6	×	×	20.6	20.5	20.4	20.4	20.5	20.4	20.5	20.5	20.6	20.8	21.1	×	×
H-Point	16.4	×	×	18.1	18.1	18.1	18.1	18.0	18.0	18.0	18.1	18.3	18.3	18.3	×	×
Mid Door	23.9	16.5	18.0	17.9	17.8	17.8	17.7	17.7	17.7	17.8	17.8	17.8	17.9	17.9	18.1	16.6
Window Sill	.1 33.0	×	19.8	19.5	19.3	19.3	19.3	19,3	19.2	19,3	19,3	19.3	19.4	19.5	19.6	19.8
Window Top	51.5	×	×	×	×	×	28.0	26.8	26.5	26.4	26.4	26.4	26.6	26.8	27.1	28.1
		POG	POST-TEST PROFILE (DISTANCE	PROFI	LE (DI	STANCE	ZI	CHES FI	ROM RE	INCHES FROM REFERENCE PLANE**)	E PLAN	E**)				
Axle Height	lt 8.6	×	×	30.9	32.3	31.6	31.3	31.4	31.4	31.6	31.3	30.5	27.6	24.9	×	×
H-Point	16.4	×	×	32.5	34.9	35.5	35.4	35.4	35.3	35.1	35.1	35.1	33.2	30.9	×	×
Mid Door	23.9	24.6	26.5	30.1	32.1	32.2	32.4	32.6	32.8	32.8	32.9	34.1	32.9	31.8	28.3	23.4
Window Sill	.1 33.0	×	23.3	24.9	30.6	30.9	31.4	31.9	32.1	32.4	32.6	33.1	33.0	31.4	27.2	23.4
Window Top	51.5	×	×	×	×	×	31.0	29.8	29.2	29.1	28.9	28.9	28.6	28.5	28.6	29.2
						STATI	STATIC CRUSH	(NI) H								
Axle Height	1t 8.6	×	×	10.3	11.8	11.2	10.9	10.9	11.0	11.1	10.8	6.6	8.9	3.8	×	×
H-Point	16.4	×	×	14.4	16.8	17.4	17.3	17.4	17.3	17.1	17.0	16.8	14.9	12.6	×	×
Mid Door	23.9	8.1	8.5	12.2	14.3	14.4	14.7	14.9	15.1	15.0	15.1	16.3	15.0	13.9	10.2	8.9
Window Sill	.1 33.0	×	3.5	5.4	11.3	11.6	12.1	12.6	12.9	13.1	13,3	13.8	13.6	11.9	7.6	3.6

^{*} Projected impact point is 37 inches forward of driver's side wheelbase midpoint. Column readings are front to rear from left to right. ** Reference plane is parallel to and 48 inches from the vehicle longitudinal centerline.

1.5

2.0

2.5

2.5

2.7

2.7

3.0

3.0

 \times

×

×

×

×

51.5

Window Top

PROFILE LEVEL EQUALS AXLE HEIGHT IP EQUALS PROJECTED IMPACT POINT

VEHICLE EXTERIOR STATIC CRUSH PROFILE

PROFILE LEVEL EQUALS H-POINT HEIGHT IP EQUALS PROJECTED IMPACT POINT

VEHICLE EXTERIOR STATIC CRUSH PROFILE

PROFILE LEVEL EQUALS MID-DOOR HEIGHT IP EQUALS PROJECTED IMPACT POINT

VEHICLE EXTERIOR STATIC CRUSH PROFILE

PROFILE LEVEL EQUALS WINDOW SILL HEIGHT IP EQUALS PROJECTED IMPACT POINT

VEHICLE EXTERIOR STATIC CRUSH PROFILE

PROFILE LEVEL EQUALS WINDOW TOP HEIGHT IP EQUALS PROJECTED IMPACT POINT

SIDE IMPACT DUMMY DATA SUMMARY

		DRIVER				PASSENGE		
	PUSITI DIRECTI		NE CAT	IVE TION**		SITIVE RECTION*		CATIVE RECTION**
	DIRECTI	UIV	טואבנ	.11018^^	עו	TEC TON'	U1	KEUTIUN**
	MAX	TIME	MAX	TIME	XAM	TIME	MAX	TIME
	<u>(g)</u>	(msec)	<u>(g)</u>	(msec)	<u>(g)</u>	(MSEC)	<u>(g)</u>	(msec)
HEAD ACCELERATION								
LUNGITUDINAL				75.38	22.98	129.88		52.50
LATERAL VERTICAL	73.93	75.25	21.56	163.63	117.49	£8.38 ∋5.13	12.62	134.38 38.60
RESULTANT						120.79 à	48.38	76.00
HIC	944.33	from 35.	63 to 80	1.66				8 to 55.00
CHEST ACCELERATION								
UPPER SPINE								
LUNGITUDINAL					6.38			
LATERAL (P)*** LATERAL (R)***	114.32	33.13	63.10	52.50	56.59	41.25 41.25	6.05	
VERTICAL	17 16	5L.LL	13.56	52.50 68.75	12.50	25.63	14 50	138.13 56.25
VERTICAL RESULTANT (P) RESULTANT (R)	17.10	115.14			12.70	6L.12 à		70.27
RESULTANT (R)		116.85	à 33.13 γ	,		61.95 à		
DELTA V (MPH)**	**	35.2	à 48.75	(P)			128.13	(P)
		36.4	à 48.75	(R)		26.2 à	127.50	(R)
LOWER SPINE	42.00	10 17	74 01		10 16	40.50	70 00	70.00
LUNGITUDINAL LATERAL (P)	42.25	46.63 24.38			12.18 85.41		32.88	
LATERAL (K)	135 45	24.38		51 88	86.38	36.62	27.45	57.50 57.50
VERTICAL	27.40	31.62	7.76	68.75	19.52	36.88	5.32	97.5C
RESULTANI (P)		135.73	à 24.38	324,7		92.UU à	31.00	,,,,,
RESULTANT (R)		135.67	à 24.38			92.82 à		
DELTA V (MPH)		46.7	à 41.25	(P)			51.25	
LEGI HODES OIL		41.7	à 41.67	(8)		33.9 à	51.25	(R)
LEFT UPPER RIB LATERAL (P)	100 67	20 75	12 02	(5 (3	56.12	25.63	5.58	146.25
LATERAL (P)			14.36		57.80			82.50
DELTA V (MPH)	100.00			(P)	27.00		135.00	
0.22111 7 (11111)			à 58.75	* -			137.50	• •
LEFT LOWER RIB								
LATERAL (P)	110.04			56.87	68.51		14.19	56.87
LATERAL (R)	118.67	19.38	75.91		65.82	24.38	12.95	56.25
DELTA V (MPH)			à 54.38 à 54.38			30.9 à 29.7 à	53.75 53.75	
PELVIS ACCELERATIO	N	74.0	3 74.70	(11)		27.7 a	77.17	(11)
LONGITUDINAL	12.57		286.43	85.13°	9.03	94.25	75.18	27.13
LATERAL	191.61		36.61	41.75°	182.21	28.50	8.47	72.75
VERTICAL	36.55	26.88	114.57	74.38°	39.62	31.00	7.89	94.63
RESULTANT		232.64	85.38°			186.34 à	28.50	
DELTA V (MPH)		37.2	à 55.88°			30.9 à	57.13	•

SIDE IMPACT DUMMY DATA SUMMARY CONTD

		DRIVER DU	IMMY		ſ	PASSENGER	DUMMY	
	PUSIT DIREC		NE GATI DIRECT		POSITI DIRECT:		NE GATIV DIRECT:	
	MAX (in)	TIME (msec)	MAX (in)	TIME (msec)	MAX (in)	TIME (msec)	MAX (in)	TIME (msec)
RIB DEFLECTION +	0.04	210.00	1.80	50.88	6.04	6.50	1.56	54.38

* LONGITUDINAL: LATERAL: VERTICAL:

FORWARD RIGHTWARD UPWARD

**LONGITUDINAL: REARWARD LATERAL:

LEFTWARD VERTICAL: DOWNWARD

*** (P) = Primary Sensor, (R) = Redundant Sensor

**** For dummy channels, Delta V is the velocity change at the approximate time of separation from the contact area.

[†]Compression: Negative

Y See TEST ANOMALIES

OThe CTM has judged that intermittent rattling has occurred in these channels and, therefore, the peak values reported are questionable as are applicable resultants and Delta V's.

VEHICLE ACCELEROMETER LOCATIONS AND DATA SUMMARY

					POSITIVE DIRECTION MAX TIME		NE GATIVE DIRECTION MAX TIME	
NU.	LOCATION	λ*	γ*	Z*	(g)	(msec)	(g)	(msec)
1	RIGHT SILL AT FRUNT SEAT	83.3	23.4	10.5				
	(LUNGITUDINAL)	ΔV		mph à 100.00 msec	87	63.88	8.18	20.13
	(LATERAL)			mph à 100.00 msec		34.50	2.66	151.63
	(VERTICAL)			•	د.45	64.25	14.67	33.13
	(RESULTANT)					24.76 à		
2	RIGHT SILL AT							
	REAR SEAT	61.3	23.6	9.(1				
	(LUNGITUDINAL)	Δγ	= -0.1	mph à 100.00 msec	4.81	64.CU	7.62	19.88
	(LATERAL)	ΔV	= 21.1	mph à 100.00 msec	24.68	35.25	3.03	152.13
	(VLRTICAL)				6.5₺	53.50	10.07	34.00
	(RESULTANT)					25.85 à	35.00	
3.	REAR DECK OVER							
*	AXLE	32.0	U.C	7.1				
,	(LONGITUDINAL)			mph à llG.UG msec		35.00	15.53	19.50
•	(LATERAL)	ΔV	= 25.8	mph à 100.00 msec		21.13	2.55	147.63
	(VERTICAL)				8.95	35.75	11.08	20.13
	(RESULTANT)					29.51 à	20.25	
4	LEFT SILL AT							
4	REAR SEAT	61.0	-23.6					
5	(LATERAL)	ΔV	= 18.6	mph à 39.25 msec	45.05	24.63	33.42	47.00
	LEFT SILL AT		07.7	36. 5				
a. 🗳	FRUNT SEAT	83.6		10.5	54.40	10.13	50.40	14.04
	(LATERAL) LEFT FRONT DOOR	Δγ	= 8.8	mph à 10.00 msec	54.40	10.13	58.49	16.00
6		06: 0	05 6	07.7				
	CENTERLINE	80.8	-25.4	23.3	124.12	11.68	94 (1)	22.25
7	(LATERAL) RIGHT REAR		= 17.5	mph à 15.13 msec	124.12	11.00	94.60	22.27
,	COMPARTMENT	71 (15 /	17 0				
	(LONGITUDINAL)	31.6	15.4	13.9	4.23	33.00	10.04	19.00
3	MIDREAR OF LEFT				7.27	77.00	10.04	17.00
C	FRONT DOOR	60.4	-25.0	23.8				
	(LATERAL)	00.4	-27.0	27.0		γ		γ
9	UPPER LEFT FRUNT							
1	DOOR CENTERLINE	81.8	-25.4	32.6				
ė.	(LATERAL)	ΔV =			231.31	17.13	161.61	24.63
10	MIDFRONT OF LEFT							
1	FRONT DOOR	98.9	-25.8	22.8				
	(LATERAL)			mph à 17.00 msec	136.48	7.25	64.97	23.63
11	UPPER REAR OF							
	LEFT FRONT DOOR	70.8	-25.5	32.6				
	(LATERAL)				116.24	19.25	129.92	24.00

^{*} Reference: X - Rear Bumper (+ Forward), Y - Vehicle Centerline (+ To Right), Z - Ground Level (+ Up)

All measurements of accelerometer locations in inches.

YSee TEST ANOMALIES

VEHICLE ACCELEROMETER LOCATIONS

MOVING BARRIER ACCELEROMETER LOCATIONS AND DATA SUMMARY

^{*} Reference: X - Rear Most Point of Frame (+ To Forward), Y - Barrier Centerline (+ To Right), Z - Ground Level (+ To Up)

All measurements of accelerometer locations in inches.

HIGH SPEED CAMERA INFORMATION

PURPOSE OF CAMERA DATA	Vehicle Dynamics	Close-up of Impact Point	Close-up of Impact Point	Driver Kinematics	Overall View	Overall View	Driver Kinematics - Front View	Driver Kinematics	Passenger Kinematics	
LENS (mm) SPEED (fps)	792,5	732.5	200	1002	845	810	812	800	800	
LENS (mm)	8	25	25	13	25	17	8	8	8	
TYPE	Photosonics 1B	Photosonics 1B	Stalex	Photosonics 1B	Hycam	Photosonics 1B	Photosonics 1B	Photosonics 1B	Photosonics 1B	
LOCATION	Overhead	Overhead	Onboard MDB	Onboard MDB	Ground Level - Right	Ground Level - Left	Onboard Vehicle	Onboard Vehicle	Onboard Vehicle	
CAMERA NO.	1	2	8	7	. 5	9	7	∞	6	

CAMERAS ARE NUMBERED ACCORDING TO SPLICING SEQUENCE OF FILM. (24 fps) REAL TIME MOVIE FILM COVERAGE OF PRE-CRASH, POST-CRASH AND CRASH EVENT SPLICED AT START AND END OF FILM. NOTE:

LOCATIONS OF OFFBOARD HIGH SPEED CAMERAS

Х	Y	Z
0	0	25'
0	0	25'
24'10"	58'8"	45"
-20'11"	-13'	45"
	0 0 24'10"	0 0 0 0 24'10" 58'8"

Origin of Coordinate System is Point of Impact

⁺X = Forward with Respect to Striking Vehicle's Velocity Vector

⁺Y = Rightward with Respect to Striking Vehicle's Velocity Vector

⁺Z = Upward with Respect to Striking Vehicle's Velocity Vector

NON-GOVERNMENT FURNISHED TRANSDUCER INFORMATION

DESIRED FULL SCALE (ENGR. UNITS)	50 G				
SENSITIVITY	.236 MV/G	.2385 MV/G	.2385 MV/G	.2385 MV/G	.221 MV/G
DATE OF LAST CALIBRATION	8/9/83	8/6/83	8/6/83	8/6/83	8/9/83
MFGR.	Bell Howell	Bell Howell	Bell Howell	Bell Howell	Bell Howell
SERIAL	18845	18858	18857	18240	19022
MODEL NUMBER	4-202-0001	4-202-0001	4-202-0001	4-202-0001	4-202-0001
TYPE OF TRANSDUCER	Accel	Accel	Accel	Accel	Accel
PARAMETER BEING MEASURED	BCGXG	BCGYG	BCGZG	BFCXG	BRCXG

All dummy and struck vehicle accelerometers were Government Furnished Equipment and were Endevco 2264 Accelerometers.

APPENDI: A

PHOTOGR \ PHS

Figure A-1. PRE-TEST OVERALL - VIEW 1

Figure A-2. PRE-TEST OVERALL - VIEW 2

Figure A-3. PRE-TEST OVERALL - VIEW 3

Figure A-4. PRE-TEST OVERALL - VIEW 4

Figure A-5. PRE-TEST CLOSEUP - VIEW 1

Figure A-6. PRE-TEST CLOSEUP - VIEW 2

Figure A-7. PRE-TEST CLOSEUP - VIEW 3

Figure A-8. PRE-TEST DRIVER DUMMY - VIEW 1

Figure A-9. PRE-TEST DRIVER DUMMY - VIEW 2

Figure A-10. PRE-TEST PASSENGER DUMMY - VIEW 1

Figure A-11. PRE-TEST PASSENGER DUMMY - VIEW 2

Figure A-12. PRE-TEST DRIVER'S PADDING - VIEW 1

Figure A-13. PRE-TEST DRIVER'S PADDING - VIEW 2

Figure A-14. CRASH EVENT PHOTOGRAPH

Figure A-15. POST-TEST OVERALL - VIEW 1

Figure A-16. POST-TEST OVERALL - VIEW 2

3 0

Figure A-17. POST-TEST OVERALL - VIEW 3

Figure A-18. POST-TEST OVERALL - VIEW 4

Figure A-19. POST-TEST CLOSEUP - VIEW 1

Figure A-20. POST-TEST DRIVER DUMMY - VIEW 1

Figure A-21. POST-TEST DRIVER DUMMY - VIEW 2

Figure A-22. POST-TEST PASSENGER DUMMY - VIEW 1

Figure A-25. POST-TEST PASSENGER DUMMY - VIEW 4

Figure A-26. POST-TEST VEHICLE DAMAGE - VIEW 1

Figure A-27. PRE-TEST MDB FACE - VIEW 1

Figure A-28. PRE-TEST MDB FACE - VIEW 2

Figure A-29. POST-TEST MDB FACE - VIEW 1

Figure A-30. POST-TEST MDB FACE - VIEW 2

APPENDIX B

DATA PLOT PRESENTATION

Data plots generated from the crash test data are presented on the following pages. All data are recorded on magnetic tape for inclusion in the NHTSA crash test data base system. All data were filtered according to SAE J211, except that dummy thorax data were filtered using the HSRI filter.

B - 31

TL 242 . S873

Stultz, J.
Evaluation o
Volkswagen

FORMERLY FORM DO

1

