Beautiful fences

1 second, 256 MB

There are N houses on a straight line. House i, for $1 \le i \le N$, can be viewed as a line segment starting from point S_i to $T_i(S_i \le T_i)$. Houses are ordered by their positions are are not overlapped, i.e., $S_i \le T_i \le S_{i+1} \le T_{i+1}$, for $1 \le i \le N$.

A new governor is planning to construct fences for every house. The ready-made fence has a fixed length of \mathbf{L} . When placing a fence at position \mathbf{X} , it cover the straight line from position \mathbf{X} to $\mathbf{X}+\mathbf{L}$. We say that a fence placed at position \mathbf{X} covers house \mathbf{i} completely if $\mathbf{X} <= \mathbf{S_i} < \mathbf{T_i} <= \mathbf{X}+\mathbf{L}$. To ensure nice road-side view, every house should be covered completely by a **single** fence. (A house can be covered partially by more than one fence but at least one of them should cover the house completely.)

Consider the following example where N = 3 with houses shown as rectangles below. The positions S_i and T_i of houses are also shown.

If the fence length L is 10, you can cover these 3 houses with 2 fences as follows, and this is the minimum number of fences that you need.

If the fence length **L** is 15, to cover these 3 houses you again need at least 2 fences.

Note that the first fence (shown in red) partially cover house 3, but at least one fence **must** cover the house entirely; therefore, the second fence must at position less than or equal to 15.

Consider another example where N = 4 shown below.

If L = 10, you need at least 3 fences. One possible positions for fences are shown below. Note that if you do not need to cover house 3 completely, you can use only 2 fences. But if you have to cover all houses completely, you really need 3 fences.

Input

First line of the input contains two integer **N** and **L** ($2 \le N \le 100,000$; $1 \le L \le 10,000$).

The next **N** lines describe house positions. More specifically, for $1 \le i \le N$, line 1+i contains two integer S_i and T_i ($S_i \le T_i$ and $T_i \le S_i+1$; $T_i \le 1,000,000,000$). It is guaranteed that it is possible to cover all houses completely, i.e., $T_i - S_i \le L$, for all **i**.

Output

The output contains a single line with an integer, the minimum number of fences needed to completely cover all houses.

(Examples are in the next page.)

Example 1

Input	Output
3 10 3 6 8 10 15 19	2

Example 2

Input	Output
3 15	2
3 6	
8 10	
15 19	

Example 3

Output	
3	