Chơi các trò chơi trên hệ máy Atari 2600 bằng mô hình Double Deep Q Learning

TRẦN MINH HIẾU (20170075)

TRƯƠNG QUANG KHÁNH (20170083)

TRƯƠNG NGỌC GIANG (20170067)

Reinforcement Learning

- o Một trong ba mô hình cơ bản của Machine Learning.
- oKhác biệt:
 - o Không cần dữ liệu gắn nhãn trước.
 - O Hướng tới xây dựng mô hình thông minh, có thể đưa ra quyết định.
 - o Tối ưu mục tiêu được đặt ra.

Mô hình Reinforcement Learning

Atari 2600

Q Learning

- $\circ Q(s, a)$: giá trị kì vọng của việc thực hiện hành động a tại trạng thái s.
 - \circ Nếu s kết thúc game \rightarrow giá trị cố định với mọi a (thường là tiêu cực).
 - o Nếu s chưa kết thúc game và biết trạng thái kế tiếp s':

$$Q(s,a) = E_{\forall s'possible\ from\ s}[r_a(s,s') + \gamma \max_{\forall a'} Q(s',a')]$$

- \circ γ: Future discount coefficient [0.9, 1].
 - $\circ \gamma = 1 \rightarrow Q(s, a) = \sum r_a(s, s') \forall (s, a, s') \text{ until end of game}$
 - $\circ \gamma < 1 \rightarrow$ Ít quan tâm tới các phần thưởng về sau hơn.
- Trên thực tế không bao giờ tìm được Q(s,a) chính xác, chỉ có thể tìm ước lượng $Q^*(s,a)$.
 - → Chúng ta có thể áp dụng Deep Learning vào đây!

Cách tìm $Q^*(s,a)$

Khi model làm tốt

Khi model làm dốt

Tối ưu hàm $Q^*(s,a)$ bằng chính nó

- 1. Lấy bộ ba kinh nghiệm (s, a, s').
- 2. Tính $Q^*(s', a') \forall a'$.
- 3. Tính $Q^*(s, a)$ dùng công thức ở slide trước.
- 4. Gradient Descent để tối ưu $Q^*(s, a)$ hiện tại.

Exploration vs Exploitation

- oExploration: Khám phá khả năng có thể của môi trường.
- oExploitation: Lợi dụng kiến thức đã biết để tối ưu mục tiêu.
- \circ Cài đặt: Hệ số ε xác suất hành động ngẫu nhiên/hành động dự đoán tốt nhất hiện tại.
 - o Giảm dần qua thời gian.

Experience Replay

- oChọn kinh nghiệm gì để luyện tập?
 - o Chọn tất cả?
 - o Dữ liệu gần nhau quá giống nhau → ít giá trị.
 - o Dữ liệu gần nhau chỉ gồm các hành động giống nhau → dữ liệu không cân bằng, kinh nghiệm mới ít được tiếp thu.
 - O Chọn ngẫu nhiên một số lượng nhỏ
 - Oữ liệu gần nhau ít khả năng chọn cùng nhau
 - o Số lượng nhỏ → Dữ liệu mới có thể gây ảnh hưởng.

Vấn đề overestimation

- OƯu tiên exploit các hành động giá trị cao.
 - → Xu hướng giá trị dự đoán bị đẩy cao lên.
- oGiả sử các hành động ban đầu đều có dự đoán bằng 0. Sau một lần cập nhật, một số lớn hơn 0, một số nhỏ hơn 0.
 - \rightarrow Ít có cơ hội sửa chữa các hành động sai.

Phân tách làm hai mô hình

- \circ Mô hình luyện tập $Q^*(s,a)$, mô hình dự đoán Q'(s,a).
- oKhởi tạo với trọng số bằng nhau.
- $\circ Q'(s,a)$ cập nhật lại bằng $Q^*(s,a)$ sau một khoảng thời gian.
- $Q^*(s,a) = E_{\forall s'possible\ from\ s}[r_a(s,s') + \gamma \max_{\forall a'} Q'(s',a')]$
- \rightarrow Có cơ hội để $Q^*(s,a)$ cập nhật lại, tránh overestimation.

Thuật toán

- 1. Khởi tạo bộ nhớ kinh nghiệm D với kích cỡ N. Khởi tạo mô hình luyện tập $Q^*(s,a)$ với trọng số ngẫu nhiên, và mô hình dự đoán Q'(s,a) với trọng số bằng $Q^*(s,a)$.
- 2. For episode = 1 to M do:
 - 1. Đưa môi trường về trạng thái khởi tạo.
 - 2. For t = 1 to T do:
 - 1. Với xác suất ε đưa ra hành động ngẫu nhiên a_t , ngược lại đưa ra hành động $a_t = argmax Q^*(s_t, a_t)$.
 - 2. Nhận lại phần thưởng $r_{a_t}(s_t, s_{t+1})$ và trạng thái mới s_{t+1} .
 - 3. Lưu kinh nghiệm $\varphi_t = (s_t, a_t, s_{t+1})$ vào bộ nhớ D.
 - 4. Lấy ngẫu nhiên tập hợp kinh nghiệm $\{\varphi_{i_1}, \varphi_{i_2}, ..., \varphi_{i_n}\}$ từ D.
 - 5. Thực hiện tối ưu $Q^*(s,a)$ tới các giá trị $y_i = E_{\forall s'possible\ from\ s} \left[r_a(s,s') + \gamma \max_{\forall a'} Q'(s',a') \right]$.
 - 6. If shouldUpdateTarget() then $Q'(s, a) = Q^*(s, a)$

Tiền xử lý dữ liệu

- OResize và cắt hình ảnh giao diện từ 210 × 160 xuống 84 × 84.
- oĐưa từ RGB về greyscale (ảnh đen trắng).
- oChập 4 khung hình liên tiếp vào làm một.

Tiền xử lý dữ liệu (tiếp)

- \circ Tất cả các giá trị $r_{a_t}(s_t, s_{t+1})$ được thay bằng $sign(r_{a_t}(s_t, s_{t+1}))$ có giá trị -1, 0 hoặc 1.
 - o Chỉ quan tâm tới hành động tốt hay xấu.
 - o Có lợi cho một số game như Breakout − các khối bị phá có giá trị khác nhau.
- Trạng thái kết thúc cho giá trị -1.
 - O Hướng tới tránh việc kết thúc game.

Mô hình Deep Learning của $Q^*(s,a)$

Biểu diễn kết quả

Q&A