#### Week 4 - Deep NN

笔记本: DL 1 - NN and DL

**创建时间**: 2021/1/8 13:03 **更新时间**: 2021/1/8 14:50

### Intuition

Why deep representations?



**X** 

#### Circuit theory and deep learning

Informally: There are functions you can compute with a "small" L-layer deep neural network that shallower networks require exponentially more hidden units to compute.



Circuit theory

## **Building blocks**

Forward and backward functions



#### Forward and backward functions



## notation







(b get broadcasted)

forward



#### Forward propagation for layer l



⊕ Ø ® © Andrew Ng

#### Backward propagation for layer l



## hyperpara, more in C2

## What are hyperparameters?

Parameters:  $W^{[1]}$  ,  $b^{[1]}$  ,  $W^{[2]}$  ,  $b^{[2]}$  ,  $W^{[3]}$  ,  $b^{[3]}$  ...



Applied deep learning is a very empirical process





## Deep Neural Networks

# What does this have to do with the brain?

#### Forward and backward propagation

$$Z^{[1]} = W^{[1]}X + b^{[1]}$$

$$A^{[1]} = g^{[1]}(Z^{[1]})$$

$$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$$

$$A^{[2]} = g^{[2]}(Z^{[2]})$$

$$\vdots$$

$$A^{[L]} = g^{[L]}(Z^{[L]}) = \hat{Y}$$

"Tti like the brown."



$$\begin{split} dZ^{[L]} &= A^{[L]} - Y \\ dW^{[L]} &= \frac{1}{m} dZ^{[L]} A^{[L]^T} \\ db^{[L]} &= \frac{1}{m} np. \operatorname{sum}(dZ^{[L]}, axis = 1, keepdims = True) \\ dZ^{[L-1]} &= dW^{[L]^T} dZ^{[L]} g'^{[L]} (Z^{[L-1]}) \\ &\vdots \\ dZ^{[1]} &= dW^{[L]^T} dZ^{[2]} g'^{[1]} (Z^{[1]}) \\ dW^{[1]} &= \frac{1}{m} dZ^{[1]} A^{[1]^T} \\ db^{[1]} &= \frac{1}{m} np. \operatorname{sum}(dZ^{[1]}, axis = 1, keepdims = True) \end{split}$$



Andrew Ng

actually what a single neuron does is still a mystery, NN is more like learning very flexible functions, very complex functions to learn X to Y mappings