Injektive, surjektive und bijektive Abbildungen (Forts.)

Satz

Es sei $f: M \rightarrow N$ Abbildung.

- ► Äquivalent sind:
 - ► f injektiv.
 - ▶ Jede Faser von f besitzt höchstens ein Element.
- ► Äquivalent sind:
 - ► f surjektiv.
 - ▶ Jede Faser von *f* besitzt mindestens ein Element.
- ► Äquivalent:
 - ► f bijektiv.
 - ▶ Jede Faser von *f* besitzt genau ein Element.

Einschränkung von Abbildungen

Es sei $f: M \to N$ eine Abbildung.

Definition

Ist $M' \subseteq M$, dann heißt

$$f|_{M'}:M'\to N,\quad x\mapsto f(x)$$

die Einschränkung von f auf M'.

Bemerkung

Es existiert $M' \subseteq M$ so, dass $f|_{M'}$ injektiv ist.

Beispiel

Sei $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$.

- ▶ $f|_{\mathbb{R}_{>0}}$ injektiv.
- ▶ $f|_{\mathbb{R}_{<0}}$ injektiv.

Einschränkung von Abbildungen (Forts.)

Definition

M Menge, $N \subseteq M$

Inklusion von N in M:

$$\iota = \iota^{\mathsf{N}} := (\mathrm{id}_{\mathsf{M}})|_{\mathsf{N}} \colon \mathsf{N} \to \mathsf{M}$$

Beispiel

$$\iota\colon \{2,5,7\} \to \{2,3,5,7,11\},\, 2 \mapsto \text{ , } 5 \mapsto \text{ , } 7 \mapsto$$

Komposition von Abbildungen

Definition

 $f: M \rightarrow N$, $g: N \rightarrow L$ Abbildungen

Komposition von f und g:

$$g \circ f : M \to L, x \mapsto g(f(x))$$

Beispiel

$$f: \mathbb{N} \to \mathbb{Z}, x \mapsto x+1$$
 $g: \mathbb{Z} \to \mathbb{Q}, y \mapsto 2y^2$
 $g \circ f: \to , x \mapsto 2(x+1)^2$

Komposition von Abbildungen (Forts.)

Bemerkungen

▶ $f: M \rightarrow N$, $g: N \rightarrow L$, $h: L \rightarrow K$ Abbildungen

$$h\circ (g\circ f)=(h\circ g)\circ f$$

▶ $f: M \to N$ Abbildung

$$f \circ \mathrm{id}_M = f = \mathrm{id}_N \circ f$$

Umkehrabbildungen

Definition

Es seien $f: M \to N$ und $g: N \to M$ Abbildungen.

► g ist *linksseitige Umkehrabbildung von f*, falls gilt:

$$g \circ f = \mathrm{id}_M$$
.

▶ g ist rechtsseitige Umkehrabbildung von f, falls gilt:

$$f \circ g = \mathrm{id}_N$$
.

ightharpoonup g ist *Umkehrabbildung von f*, falls gilt:

$$g \circ f = \mathrm{id}_M$$
 und $f \circ g = \mathrm{id}_N$.

In diesem Fall sagt man auch: g ist zu f invers.

Beispiele

$$\mathbb{Q}_{>0} := \{ x \in \mathbb{Q} \mid x > 0 \}, \ \mathbb{Q}_{<0} := \{ x \in \mathbb{Q} \mid x < 0 \}$$

$$f: \mathbb{Q}_{>0} \to \mathbb{Q}_{<0}, x \mapsto -2x$$
$$g: \mathbb{Q}_{<0} \to \mathbb{Q}_{>0}, y \mapsto -\frac{1}{2}y$$

g ist invers zu f

$$h: \mathbb{Q}_{>0} \to \mathbb{Q}_{<0}, x \mapsto -x, k: \mathbb{Q}_{<0} \to \mathbb{Q}_{>0}, y \mapsto -y$$

$$ightharpoonup I: \mathbb{Q} \to \mathbb{Q}, x \mapsto -x$$

I ist zu sich selbst invers

Bemerkung

Es sei $f: M \rightarrow N$ eine Abbildung.

- ▶ f besitzt linksseitige Umkehrabbildung $\Leftrightarrow f$ ist injektiv.
- ▶ f besitzt rechtsseitige Umkehrabbildung $\Leftrightarrow f$ ist surjektiv.
- ▶ f besitzt Umkehrabbildung $\Leftrightarrow f$ ist bijektiv.

Bemerkung

Es sei $f: M \to N$ eine Abbildung.

Ist f bijektiv, dann ist die Umkehrabbildung von f eindeutig bestimmt.

Schreibweise und Notation

Es sei $f: M \rightarrow N$ eine bijektive Abbildung.

- ▶ Die Umkehrabbildung von f wird mit f^{-1} bezeichnet.
- ► Es gilt also:

$$f^{-1}: N \to M \text{ und } f^{-1} \circ f = \mathrm{id}_M, \ f \circ f^{-1} = \mathrm{id}_N.$$

▶ f heißt auch *invertierbar* und f^{-1} die *Inverse* von f.

Bemerkung

Es seien $f: M \to N$ und $g: N \to L$ bijektive Abbildungen.

▶ $g \circ f$ bijektiv und es gilt:

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

- f^{-1} ist bijektiv und es gilt $(f^{-1})^{-1} = f$.
- ▶ id_M ist bijektiv und $id_M^{-1} = id_M$.

Abbildungen einer Menge in sich

Es sei M eine Menge, $f, g: M \to M$ Abbildungen. Dann sind $f \circ g$ und $g \circ f$ definiert.

Definition

Es sei $n \in \mathbb{N}$. Wir setzen:

$$f^n := \underbrace{f \circ \ldots \circ f}_{n\text{-mal}}, \quad f^0 := \mathrm{id}_M.$$

Falls f bijektiv ist, so definieren wir auch $f^{-n} := (f^{-1})^n$.

Bemerkung

- ▶ Es gilt $f^n(x) = f(f(\cdots f(x)))$ für alle $x \in M$.
- ▶ Ist *f* bijektiv, dann gelten die Potenzrechenregeln:

$$f^{a+b} = f^a \circ f^b$$
 und $f^{ab} = (f^a)^b$ für alle $a, b \in \mathbb{Z}$.

Die Mächtigkeit von Mengen

Definition

M und N heißen gleichmächtig, wenn eine bijektive Abbildung $M \to N$ existiert.

Beispiele

- $\blacktriangleright \ \{1,2,3\} \text{ ist gleichmächtig zu } \{4,5,6\}.$
- $ightharpoonup \mathbb{N}, \mathbb{Z}$ und \mathbb{Q} sind gleichmächtig.

Die Mächtigkeit von Mengen

Satz (Cantor)

Für jede Menge M sind M und Pot(M) nicht gleichmächtig.

Definition

M Menge

- ▶ M endlich: es ex. $n \in \mathbb{N}_0$ mit M gleichmächtig zu \underline{n}
- ► *M unendlich*: *M* nicht endlich
- ► *M* endlich *Abzählung* von *M*: Bijektion von <u>n</u> nach *M*

Beispiele

- ► {1, 3, 17}
- ▶ \mathbb{N} und $\{x \in \mathbb{N} \mid x \text{ gerade}\}$
- **▶** ∅
- ▶ $\{x \in \mathbb{R} \mid x^3 + 2x = 3x^2\}$

Definition

M endliche Menge, $n \in \mathbb{N}_0$ mit M gleichmächtig zu \underline{n}

Mächtigkeit von M:

$$|M| := n$$

Beispiele

- $|\{1,3,17\}| =$
- $ightharpoonup |\{1,1,1\}| =$
- ► |{{1}}}| =
- $ightharpoonup |\{1,\{1\}\}| =$

Bemerkung

Es seien M, N endliche Mengen und $f: M \rightarrow N$ eine Abbildung.

- $\blacktriangleright |f(M)| \leq |M|.$
- $\blacktriangleright |f(M)| \leq |N|.$

Es sei $f: M \rightarrow N$ eine Abbildung und M, N endlich.

Bemerkungen

- ▶ f injektiv $\Leftrightarrow |f(M)| = |M|$.
- ▶ f surjektiv $\Leftrightarrow |f(M)| = |N|$.
- ▶ Ist |M| = |N|, dann sind äquivalent:
 - ► f injektiv
 - ► *f* surjektiv
 - ► f bijektiv

Dedekind'sches Schubfachprinzip

Werden m Objekte auf n Schubfächer verteilt, und ist m > n, dann gibt es ein Schubfach, welches mindestens zwei Objekte enthält.

▶ Ist |M| > |N|, dann ist f nicht injektiv.