课程基本信息								
课例编号	017	学科	物理	年级	高二	学期	上学期	
课题	电源和电流(第二课时)							
教科书	书名: 物理必修第三册							
	出版社: 人民教育出版社 出版日期: 年 月						月	
教学人员								
	姓名	单位						
授课教师	许耀平	北京师范大学第二附属中学						
指导教师	黎红	西城区教研中心						
教学目标								

教学目标: 1、推导电流的微观表达式

2、计算电子定向移动的平均速率

3、锂电池简介

教学重点: 1、推导电流的微观表达式

2、计算电子定向移动的平均速率

教学难点: 1、推导电流的微观表达式

2、计算电子定向移动的平均速率

教学过程							
时间	教学环节	主要师生活动					
		回顾上节课所学内容,第一个是电流的形成。第二个是					
课堂引入	电流的定义 $I = \frac{q}{t}$ 。						
	提出问题:那么从微观的角度来讲,电流的强弱到底与						
		哪些因素有关呢?					
		教师提问:猜测电流与哪些因素有关系?					
推导电流的 微观表达形 式		同学回答: 电子的电荷量, 自由电子定向移动的平均速					
	推导电流的	率,导体内单位体积的自由电子数,导体的横截面积和导体					
	*** * - * * - * *	的长度					
		教师: 分析这些猜测					
		教师:建立圆柱体导体模型,重点强调只有这一段长为					

		vt 的导体内的电子 t 时间内才能通过横截面 S。				
		推导电流的微观表达形式 I=neSv。				
		对电流的微观表达形式 I=neSv 做解释,并提出思考问题				
		表达式中没有圆柱形导体长度1这个物理量,作为课后思考。				
		教师:提出问题:导体中电子定向移动的平均速率的数				
	估算电子定向移动的平均速率	量级有多大呢?并请同学猜测。				
		借助已知条件估算导体中电子定向移动的平均速率,得				
		 到电子定向移动的平均速率为 7.5×10 ⁻⁵ m/s,				
		教师:提出问题,电子定向移动通过一条 1m 长的导线需				
		要多长时间? 电子定向移动通过一条 1m 长的导线需要 3 个				
		 多小时,这与我们日常生活中的经验严重不符,这个原因是				
		什么呢?				
		我们区分以下几个速率:				
		电子定向移动的平均速率: 10 ⁻⁴ m/s				
		导体中建立电场的速率:光速				
		 电子做无规则热运动的平均速率: 10⁵m/s				
		锂离子电池的结构				
	锂离子电池的充放电原理					
	锂电池简介	锂离子电池的容量和电压				
		纯电动汽车的发展将极大缓解燃油汽车带来的污染问				
		题,有助于改善城市的空气质量。				
	 练习	教师:课堂练习题目				