

Studio Comparativo di Approcci di Segmentazione dell'MRI Cerebrale per Applicazioni Neurologiche

Riccardo Raciti - A.A. 2023/2024

Relatore: Sebastiano Battiato Corelatore: Daniele Ravì

Tipologie di Risonanze Magnetiche

Tessuto	T1	T2	FLAIR
Fluido cerebrospinale	Scuro	Luminoso	Scuro
Sostanza bianca	Luminoso	Grigio scuro	Grigio scuro
Corteccia	Grigio	Grigio chiaro	Grigio chiaro

La PET coinvolge l'uso di radiotracers, molecole biologicamente attive marcate con isotopi radioattivi. Questi radiotracers emettono positroni, che a loro volta si scontrano con gli elettroni nel corpo producendo una coppia di fotoni gamma. Questi fotoni vengono rilevati da una serie di scanner esterni che convertono i dati raccolti in immagini tridimensionali che mostrano la distribuzione del radiotracer nel corpo.

O2Obiettivo Progetto

Comparazione tecniche di segmentazione del cervello

Modelli Confrontati

FAST^[1]

Modello riconosciuto dalla comunità scientifica.

SAM[2]

Modello di META per la segmentazione generica.

SynthSeg^[3]

Modello di segmentazione semantica.

UniverSeg^[4]

Modello utilizzabile senza fase di training.

^[2] Alexander Kirillov et al.; SAM: Segment Anything; 2023

^[3] Benjamin Billot et al.; SynthSeg: Segmentation of brain MRI scans of any contrast and resolution without retraining; 2023

^[4] Victor Ion Butoi et al.; UniverSeg: Universal Medical Image Segmentation; 2023

Risultati

FAST

Fast è stato eseguito con un parametro che indica il *numero di classi di tipo tessuto*, impostato a 5, per questo le 5 immagini prodotte in output.

SAM

SAM data un'immagine trova tutte le maschere in autonomia, le maschere sono rappresentate dalle **porzioni gialle** nell'immagine a sinistra.

A destra viene rappresentato un esempio di impilazione di tutte le maschere trovate per un un asse della risonanza magnetica.

SynthSeg

Ogni tonalità di grigio indica una mappa di segmentazione differente.

- Emisfero sinistro;
- Emisfero destro;
- Fluido cerebrospinale emisfero sinistro;
- Fluido cerebrospinale emisfero destro;
- ecc;

UniverSeg

- Universeg per il funzionamento necessità, nonostante l'assenza della fase di training, di un pool di immagini con le rispettive label.
- Dato questo pool, sul quale il modello farà inferenza, nella fase di evalutazione dovranno essere forniti l'immagine in esame, nella figura image, e la mappa da trovare, label.

Valutazioni

* • • •

Considerazioni Finali

Modello	Qualitativamente attendibile	
FAST	SI	
SAM	Parzialmente	
SynthSeg	SI	
UniverSeg	NO	

Modello	Tipo input	Deep learning
FAST	3D	NO
SAM	2D	SI
SynthSeg	3D	SI
UniverSeg	2D	SI

7

- L'obiettivo di questa tesi è stato quello di valutare l'efficacia di tecniche tradizionali di segmentazione e di approcci di deep learning sviluppati appositamente per la segmentazione delle strutture anatomiche nelle immagini MRI.
- Lo studio di queste tecniche è stato svolto al fine di trovare il miglior metodo per la segmentazione del cervello sia in termini di qualità dei dati ottenuti che in termini di efficienza computazionale.
- Questo studio è importante per poter studiare meglio gli effetti di malattie neurodegenerative, come la demenza senile o Alzheimer's, e anche l'efficienza delle cure.
- Le mappe di segmentazione possono essere impiegate per studi futuri nello studio delle atrofie cerebrali. Esse forniscono un aiuto significativo nello studio della progressione delle malattie neurodegenerative come quelle precedentemente elencate.

\$

Grazie per l'attenzione!