Proyecto de Análisis de Datos

UCI Poker Hand — EDA y Modelado

Autores: Carlos Solares

Fecha: 30/09/2025

Objetivos

- Analizar el dataset Poker Hand de UCI.
- Realizar **EDA** para entender variables y clases.
- Construir nuevas características que expliquen la etiqueta (mano de póker).
- Entrenar y comparar dos modelos: Regresión Logística y Random Forest.
- Evaluar con métricas adecuadas (Accuracy y Macro-F1) por el fuerte desbalance.

Definiciones y variables del dataset

• R1..R5: Rangos de las 5 cartas en la mano

$$\circ$$
 Valores 1–13 \to A=1, J=11, Q=12, K=13

- S1...S5: Suits de las 5 cartas
 - Valores 1–4 (cada número representa un suit distinto)

Definiciones y variables del dataset

- Etiqueta (Clase 0–9): tipo de mano de póker
 - 0 = Nada en especial
 - \circ 1 = One Pair
 - \circ 2 = Two Pairs
 - 3 = Three of a Kind
 - \circ 4 = Straight
 - \circ 5 = Flush
 - 6 = Full House
 - 7 = Four of a Kind
 - 8 = Straight Flush
 - 9 = Royal Flush (Straight Flush al As)

Definiciones y variables del dataset

- Flush = todas las cartas del mismo suit
- **Straight** = cartas consecutivas en rango
- Macro-F1 = métrica que promedia el F1-score por clase, útil en datasets desbalanceados
- Holdout 20% = Separamos un 20% de los datos para prueba final, no usados en el entrenamiento ni en cross-validation.
 - Sirve para evaluar la generalización real del modelo.
 - o Las matrices de confusión están basadas en este conjunto.

Flujo del script (poker_analysis.py)

- 1. Carga de datos (train + test de UCI).
- 2. EDA: distribución de etiquetas y variables originales (R1..R5, S1..S5).
- 3. Ingeniería de características: flush, straight, pares, trío, póker, etc.

4. Modelos:

- Regresión Logística (multiclase, balanced).
- Random Forest (balanced_subsample).

5. **Evaluación**:

- Stratified K-Fold, Accuracy y Macro-F1.
- Holdout 20% para matrices de confusión.
- 6. Artefactos en outputs/: figuras, reportes y CSVs.

Distribución de etiquetas (y)

Histogramas de rangos (R1..R2)

Histogramas de rangos (R3..R4)

Histograma de rangos (R5)

Lectura: Distribuciones ~uniformes por carta → no hay sesgo de valor.

Histogramas de Suits (S1..S2)

Histogramas de Suits (S3..S4)

Histograma de Suit (S5)

Lectura:

- Distribuciones prácticamente uniformes.
- No hay sesgo hacia un Suit particular.
- La dificultad del modelo proviene del **desbalance de clases**, no de las variables de entrada.

Ingeniería de características (resumen)

Se diseñaron features para capturar patrones de póker:

- is_flush (5 cartas mismo Suit), is_straight (rango consecutivo).
- Multiplicidades de rango: num_pairs , has_three , has_four , max_count_rank .
- Cardinality: unique_ranks , unique_suits .
- Estadísticos de ranks: rank_sum , rank_mean , rank_std , top1_rank..top3_rank .
- **Gaps** entre cartas: rank_gap12..rank_gap45.

Objetivo: acercar las variables a la semántica real de la etiqueta.

Resultados de Cross-Validation

Modelo	Accuracy (media ± std)	F1-macro (media ± std)
Logistic Regression	0.9988 ± 0.0003	0.92 ± 0.06
Random Forest	0.9999 ± 0.0000	0.96 ± 0.06

Lectura:

- Ambos modelos alcanzan **accuracy casi perfecta** → dominan la clase mayoritaria.
- Macro-F1 diferencia mejor:
 - LogReg ~0.92, peor en clases raras.
 - Random Forest ~0.96, mejor desempeño en minoritarias.
- Persisten problemas en manos raras por su escasez.

Matriz de confusión — Logistic Regression (holdout 20%)

Matriz de confusión — Random Forest (holdout 20%)

Explicación de la gráfica de Importancia de características (RF)

- El Random Forest calcula qué variables son más útiles para separar las clases.
- En el **Top-20** aparecen principalmente las **features derivadas** que diseñamos:
 - unique_ranks → cuántos rangos distintos hay en la mano (clave para detectar pares, tríos o full house).
 - num_pairs , has_three , has_four → permiten identificar jugadas concretas.
 - max_count_rank → frecuencia máxima de un rango (útil para diferenciar par, trío o póker).
- También aparecen métricas globales como rank_sum o rank_std , que ayudan a detectar secuencias (straights).

Conclusión:

Las variables ingeniadas a partir del dominio del póker resultan más importantes que los valores crudos de cartas (R1..R5, S1..S5).

Importancia de características — Random Forest (Top-20)

Lectura:

- unique_ranks , num_pairs , max_count_rank , has_three son claves.
- Refleja que las features de dominio capturan bien los patrones de póker.

Hallazgos y Recomendaciones

- RF mejora frente a LogReg, pero aún falla en clases ultra raras.
- Recomendaciones:
 - Técnicas de re-muestreo o ajuste de pesos por clase.
 - Probar Gradient Boosting / XGBoost.
 - Features específicas para *full house* y *straight-flush*.

Aplicación práctica:

Un modelo así podría clasificar manos comunes de póker, pero aún no es confiable para detectar jugadas raras en contextos reales.

Apéndice

- cv_results.csv , cv_summary.csv → métricas de CV.
- classification_report_*.txt → precision/recall/F1 por clase en holdout.
- dataset_with_features.csv → datos originales + derivadas.

Pipeline resumido:

Carga → EDA → Features → Modelos → Validación → Resultados

¡Gracias!