Нечеткая регрессия в оценке показателей трансмиссионного механизма кредитной системы

Е. С. Волкова¹, В. Б. Гисин²

Финансовый университет при Правительстве Российской Федерации ¹evolkova@fa.ru, ²vgisin@fa.ru

Аннотация. С помощью нечеткой линейной регрессии найдена зависимость валового внутреннего продукта России от показателей трансмиссионного механизма кредитной системы. Разработан и применен метод выявления нечеткой мультиколлинеарности.

Ключевые слова: нечеткая линейная регрессия; мультиколлинеарность; кредитная система; валовой внутренний продукт

I. Введение

К числу наиболее общих моделей, описывающих связь денежно-кредитной политики и процесса воспроизводства, относятся правила Тейлора и Мак-Каллума. В более современных работах в уравнения классических моделей вводится дополнительное слагаемое, характеризующее меру финансовой стабильности. В [5] имеется обзор работ, в которых в качестве меры финансовой стабильности использовались различные индикаторы кредитнобанковской сферы, такие как цены на недвижимость, объем выданных кредитов, кредитный спрэд и т.п. Использование показателей, связанных с кредитом, особенно актуально, если объем кредитования становится одним из таргетируемых показателей [2].

II. ПОКАЗАТЕЛИ И ФАКТОРЫ ИНВЕСТИЦИОННОГО ПОТЕНЦИАЛА

В работах М.А. Абрамовой [1] выделены элементы инвестиционного потенциала, их показатели и макроэкономические факторы, влияющие на инвестиционный потенциал. Приведем перечень показателей инвестиционного потенциала (в скобках указаны их сокращенные обозначения, используемые в модели):

- общая сумма банковских депозитов (вкладов) и другие привлеченные средства юридических и физических лиц в рублях (DRUR);
- общая сумма банковских депозитов (вкладов) и другие привлеченные средства юридических и физических лиц в иностранной валюте (DUSD);
- депозиты юридических лиц в рублях (DLERUR);

- депозиты юридических лиц в иностранной валюте (DLEUSD);
- вклады (депозиты) физических лиц в рублях (DIRUR);
- вклады (депозиты) физических лиц в иностранной валюте (DIUSD);
- объем выпущенных долговых ценных бумаг в рублях (DSRUR);
- объем выпущенных долговых ценных бумаг в иностранной валюте (DSUSD);
- депозиты кредитных организаций в Банке России (DCI);
- объем кредитов, предоставленных юридическим лицам резидентам и индивидуальным предпринимателям (GL).

Построение байесовской модели векторной авторегрессии (BVAR), классических моделей линейной регрессии и необходимых тестов позволяют выделить показатели инвестиционного потенциала, оказывающие наиболее существенное влияние на ВВП России (GDP): DSRUR, DLERUR, DCI, GL. В построенных моделях использовались данные за период с первого квартала 2010 г. по второй квартал 2017 г. Использовались данные из следующих источников: данные Федеральной службы государственной статистики РФ [12, 13], данные ЦБ РФ [14].

Уравнение регрессии валового внутреннего продукта на показатели инвестиционного потенциала имеет следующий вид:

GDP =
$$a_0 + a_1$$
*DSRUR + a_2 *DLERUR + a_3 *DCI + a_4 *GL. (1)

Оценка коэффициентов дала следующие результаты:

$$a_0 = -1343$$
; $a_1 = 1,005$; $a_2 = 1,797$; $a_3 = -4,741$; $a_4 = 0.0907$.

Показатели инвестиционного потенциала оказывают на валовой внутренний продукт опосредованное влияние и естественно предположить, что коэффициенты в уравнении (1) определены нечетко. С учетом этого представляется интересным оценить зависимость типа (1), не опираясь на предположения вероятностного характера, лежащие в основе классических регрессионных моделей.

Статья подготовлена по результатам исследований, выполненных за счет бюджетных средств по государственному заданию 2017 года Финансовым университетом при Правительстве Российской Федерации

III. НЕЧЕТКАЯ ЛИНЕЙНАЯ ЗАВИСИМОСТЬ ВАЛОВОГО ВНУТРЕННЕГО ПРОДУКТА ОТ ПОКАЗАТЕЛЕЙ ИНВЕСТИЦИОННОГО ПОТЕНЦИАЛА

Для оценки зависимости валового внутреннего продукта от показателей инвестиционного потенциала была использована модель нечеткой линейной регрессии, предложенная в работе [9]. Напомним, что в этой модели коэффициенты нечеткой линейной регрессии определяются как симметричные треугольные нечеткие числа. Симметричное треугольное нечеткое число A с модальным значением a и интервалом толерантности $d \ge 0$ имеет функцию принадлежности

$$\mu_A(x) = 1 - |x - a|/d,$$
если $x \in [a - d; a + d],$
 $\mu_A(x) = 0$ в противном случае.

Для обозначения такого числа будем использовать запись A = (a; d).

Пусть n — число объясняющих переменных, а p — число наблюдений. Обозначим через $y = (y_j), j = 1, ..., p$, вектор значений объясняемой переменной, а через

$$X = (x_{ij}), i = 0, 1, ..., n, j = 1, ..., p, --$$

матрицу значений объясняющих переменных ($x_{ij} = 1$ при i = 0).

Заменяя в (1) четкие коэффициенты нечеткими, мы приходим к задаче построения нечеткой линейной регрессии вида

$$Y = A_0 + A_1 x_1 + \ldots + A_n x_n.$$
 (2)

Эта задача формулируется как задача линейного программирования:

найти $\min d^{T}|X|$ при выполнении условий

$$-(1-h) d^{T}|X| \le y - a^{T}X \le (1-h) d^{T}|X|, d \ge 0,$$
 (3)

где $|X| = (|x_{ij}|)$, $a = (a_i)$ и $d = (d_i)$ — соответственно векторы модальных значений и интервалов толерантности симметричных треугольных нечетких чисел $A_i = (a_i; d_i)$, $h \in [0;1]$ — заданное пороговое значение. Неравенства (3) означают, что $\mu_Y(y) \ge h$.

Для регрессии валового внутреннего продукта на показатели инвестиционного спроса модель вида (2) получается при $n=4,\ p=30.$ Строки $\mathbf{x}_{i^*}=(x_{ip}),\ i=0,\ 1,\ 2,\ 3,\ 4,$ матрицы X, составлены из значений показателей DSRUR, DLERUR, DCI, GL соответственно. В качестве порогового значения выбрано, как это часто делается в приложениях, значение h=0 (это означает, что вектор \mathbf{y} принадлежит замыканию носителя нечеткого множества $Y=A^{\mathrm{T}}X$ в пространстве \mathbf{R}^p , где A — вектор нечетких коэффициентов).

Таким образом, значение валового внутреннего продукта аппроксимируется нечеткой величиной *Y* вида

$$Y = A_0 + A_1 *DSRUR + A_2 *DLERUR + A_3 *DCI +$$

 $+ A_4 *GL,$ (4)

где $A_i = (a_i; d_i), i = 0, 1, 2, 3, 4,$ — симметричные треугольные нечеткие числа.

Получены следующие значения нечетких коэффициентов:

$$A_0 = (8618,59; 95,75); A_1 = (0,83; 0); A_2 = (0,012; 0);$$

 $A_3 = (-3,78; 1,79); A_4 = (0,166; 0,0005).$

Для оценки качества модели использовался введенный в [11] индекс доверия IC. Полученное значение IC = 0,7120 выглядит вполне удовлетворительно.

IV. НЕЧЕТКАЯ МУЛЬТИКОЛЛИНЕАРНОСТЬ

В работе [8] солержится критический анализ молелей нечеткой линейной регрессии. в частности модели Танака (в упомянутой работе эта модель фигурирует под номером 2). Как показано в [4], описанная модель нечувствительна к изменению масштаба (в отличие от первоначально введенной Танака моделью, в которой минимизируется сумма значений толерантности нечетких коэффициентов). В качестве главных недостатков рассматриваемой модели указана высокая зависимость от экстремальных значений и множественность решений. Что касается зависимости от экстремальных значений, этот недостаток отражает существо нечеткой линейной регрессии, которая строится без предположений о вероятностном характере поведения показателей. Множественность решений типична в общем для задач линейного программирования И не является специфической чертой, характерной для моделей нечеткой линейной регрессии. Проверка на отсутствие множественности решений может быть проверена стандартными методами.

Представляется, что более существенной является проблема «нечеткой» мультиколлинеарности. В четком смысле векторы x_{i^*} , i =1, 2, 3, 4, и вектор x_{0^*} = (1, ..., 1) линейно независимы. Однако наличие «нечеткой» линейной зависимости может оказать влияние на устойчивость коэффициентов A_i .

Пусть $Z = \textbf{B}^T X$ — нечеткое, множество, где B — вектор нечетких коэффициентов $B_i = (b_i; e_i)$. Мы рассматриваем Z как нечеткую аппроксимацию нуля. Если 0 входит в нечеткое множество Z на уровне h, и вектор y входит на уровне h в нечеткое множество $Y = \textbf{A}^T X$, то вектор y входит на уровне h в нечеткое множество $(\textbf{A}^T + \textbf{B}^T)X$. Тогда нечеткий вектор A' = A + B удовлетворяет условиям (3), и при небольших значениях e_i значение целевой функции $(\textbf{d} + \textbf{e})^T |X|$ может незначительно (в пределах допустимой точности) отличаться от значения $\textbf{d}^T |X|$. Нечеткий коэффициент A_i можно считать достаточно надежным, если число $|b_i| + e_i$ достаточно мало по сравнению с $|a_i|$. В случае, когда это условие выполняется для всех коэффициентов линейной регрессии (2), можно говорить об отсутствии мультиколлинеарности.

Пусть q — показатель возможного отклонения целевой функции от найденного оптимального значения $d^{\mathrm{T}}|X|$. Тогда максимально возможное значение величины $|b_i| + e_i$

получается в результате решения следующей задачи линейного программирования:

найти max $b_i + e_i$ при выполнении условий

$$\boldsymbol{b}^{\mathrm{T}}X - (1 - h) \, \boldsymbol{e}^{\mathrm{T}}|X| \le 0 \le \boldsymbol{b}^{\mathrm{T}}X + (1 - h) \, \boldsymbol{e}^{\mathrm{T}}|X| ,$$
$$\boldsymbol{e}^{\mathrm{T}}X \le a\boldsymbol{d}^{\mathrm{T}}X . \qquad \boldsymbol{e} \ge 0.$$

Проверка модели (4) на нечеткую мультиколлинеарность при значениях q от 1% до 10% показала, что коэффициенты A_0 , A_1 , A_3 , A_4 определены достаточно надежно, а для коэффициента A_2 — нет. Это указывает на наличие нечеткой мультиколлинеарности в наборе показателей. Так как модальное значение коэффициента A_2 мало, связанная с ним неопределенность может быть поглощена неопределенностью свободного члена. С учетом этого модель (4) была преобразована к виду

$$Y = A_0 + A_1 *DSRUR + A_3 *DCI + A_4 *GL.$$
 (5)

Решение оптимизационной задачи дало следующие значения нечетких коэффициентов:

$$A_0 = (8616,74; 103,47); A_1 = (0,84; 0);$$

 $A_3 = (-3,78; 1,80); A_4 = (0,166; 0,00008).$

Дальнейшая проверка показывает отсутствие мультиколлинеарности в модели (5).

V. ЗАКЛЮЧЕНИЕ

В работе введено понятие нечеткой мультиколлинеарности. Нечеткая мультиколлинеарность может быть выявлена путем решения задач линейного программирования. Полученные результаты применены для исследования зависимости валового внутреннего продукта от показателей инвестиционного потенциала.

Список литературы

- [1] Денежно-кредитные факторы экономического роста: особенности России / Абрамова М.А. // Глобальная экономика в XXI веке: диалектика конфронтации и солидарности. Сборник научных трудов по итогам IV-й Международной научной конференции. / Научно-исследовательский институт экономики Южного федерального округа, Краснодар, 2017. С. 130-133.
- [2] Biggs M., Mayer T. Bring credit back into the monetary policy framework / Political Economy of Financial Markets Policy Brief, University of Oxford, August 2013, 16 c. http://www.sant.ox.ac.uk/sites/default/files/pefmcreditpolicybrief.pdf
- [3] Esanov A., Merkl C., de Souza L. V. Monetary policy rules for Russia // Journal of Comparative Economics. 2005. T. 33, №. 3. C. 484-499.
- [4] József S. On the effect of linear data transformations in possibilistic fuzzy linear regression // Fuzzy sets and systems. 1992. T. 45, № 2. C. 185-188.
- [5] Käfer B. The Taylor Rule and Financial Stability–A Literature Review with Application for the Eurozone // Review of Economics. 2014. T. 65, № 2. C. 159-192.
- [6] Korhonen I., Nuutilainen R. A monetary policy rule for Russia, or is it rules? / Bank of Finland, BOFIT. Discussion paper. №2. 2016. Helsinki 10.2.2016. 26 c.
- [7] Mumtaz H., Solovyeva A., Vasilieva E. Asset prices, credit and the Russian economy / Centre for Central Banking Studies, Bank of England, 2012. Joint Research Paper № 1. 23 c.
- [8] Redden D. T., Woodall W. H. Properties of certain fuzzy linear regression methods // Fuzzy Sets and Systems. 1994. T. 64, № 3. C. 361-375.
- [9] Tanaka H. Fuzzy data analysis by possibilistic linear models // Fuzzy sets and systems. 1987. T. 24, № 3. C. 363-375.
- [10] Vdovichenko A. G., Voronina V. G. Monetary policy rules and their application in Russia // Research in International Business and Finance. 2006. T. 20, № 2. C. 145-162.
- [11] Wang H. F., Tsaur R. C. Insight of a fuzzy regression model //Fuzzy sets and systems. 2000. T. 112, № 3. C. 355-369.
- [12] http://www.gks.ru/wps/wcm/connect/rosstat_main/rosstat/ru/statistics/po pulation/level (дата обращения 15.01.2018)
- [13] http://www.gks.ru/free_doc/new_site/vvp/kv/tab5.htm (дата обращения 15.01.2018)
- [14] http://www.cbr.ru (дата обращения 15.01.2018)