Linear equations 1

Linear algebra basics

Dr.ir. Ivo Roghair, Prof.dr.ir. Martin van Sint Annaland

Chemical Process Intensification group Eindhoven University of Technology

Numerical Methods (6E5X0), 2020-2021

Today's outline

Introduction •00

- Introduction
- Matrix inversion
- Solving a linear system
- Towards larger systems
- Summary

Overview

000

Goals

- Different ways of looking at a system of linear equations
- Determination of the inverse, determinant and the rank of a matrix
- The existence of a solution to a set of linear equations

000

Different views of linear systems

Separate equations:

$$x + y + z = 4$$
$$2x + y + 3z = 7$$
$$3x + y + 6z = 5$$

• Matrix mapping Mx = b:

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \\ 5 \end{bmatrix}$$

Linear combination:

$$x \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + y \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + z \begin{bmatrix} 1 \\ 3 \\ 6 \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \\ 5 \end{bmatrix}$$

Today's outline

- Introduction
- Matrix inversion
- Solving a linear system
- Towards larger systems
- Summary

Inverse of a matrix

• The inverse M^{-1} is defined such that:

$$MM^{-1} = I$$
 and $M^{-1}M = I$

• Use the inverse to solve a set of linear equations:

$$M\mathbf{x} = \mathbf{b}$$
 $M^{-1}M\mathbf{x} = M^{-1}\mathbf{b}$
 $I\mathbf{x} = M^{-1}\mathbf{b}$
 $\mathbf{x} = M^{-1}\mathbf{b}$

How to calculate the inverse?

 The inverse of an N × N matrix can be calculated using the co-factors of each element of the matrix:

$$M^{-1} = \frac{1}{\det |M|} \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}^T$$

- $\det |M|$ is the *determinant* of matrix M.
- C_{ij} is the *co-factor* of the ij^{th} element in M.

Computing the co-factors

Consider the following example matrix:
$$M = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix}$$

A co-factor (e.g. C_{11}) is the determinant of the elements left over when you cover up the row and column of the element in question, multiplied by ±1, depending on the position.

$$\begin{bmatrix} \mathbf{1} & \times & \times \\ \times & 1 & 3 \\ \times & 1 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & \times & \times \\ \times & 1 & 3 \\ \times & 1 & 6 \end{bmatrix} \qquad \begin{bmatrix} + & - & + \\ - & + & - \\ + & - & + \end{bmatrix}$$

$$C_{11} = \begin{array}{|c|c|c|} \hline +1 & \det & 1 & 3 \\ \hline 1 & 6 & 1 \\ \hline = 6 \times 1 - 3 \times 1 = 3 \\ \hline \end{array}$$

Computing the co-factors

Back to our example:

$$M^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix}^{-1} = \frac{1}{\det |M|} \begin{bmatrix} 3 & -3 & -1 \\ -5 & 3 & 2 \\ 2 & -1 & -1 \end{bmatrix}^{T}$$

- The determinant is very important
- If det |M| = 0, the inverse does not exist (singular matrix)

Calculating the determinant

Compute the determinant by multiplication of each element on a row (or column) by its cofactor and adding the results:

$$\det \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix} = +\det \begin{bmatrix} 1 & 3 \\ 1 & 6 \end{bmatrix} - \det \begin{bmatrix} 2 & 3 \\ 3 & 6 \end{bmatrix} + \det \begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix} = -1$$

$$\det \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix} = +\det \begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix} - 3\det \begin{bmatrix} 1 & 1 \\ 3 & 1 \end{bmatrix} + 6\det \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} = -1$$

Today's outline

- Introduction
- Matrix inversion
- Solving a linear system
- Towards larger systems
- Summary

Solving a linear system

Our example:

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \\ 5 \end{bmatrix}$$

• The solution is:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = M^{-1}b = \frac{1}{-1} \begin{bmatrix} 3 & -5 & 2 \\ -3 & 3 & -1 \\ -1 & 2 & -1 \end{bmatrix} \begin{bmatrix} 4 \\ 7 \\ 5 \end{bmatrix} = \frac{1}{-1} \begin{bmatrix} -13 \\ 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 13 \\ -4 \\ -5 \end{bmatrix}$$

• The inverse exists, because $\det |M| = -1$.

Solving a linear system in Matlab using the inverse

• Create the matrix:

Create solution vector:

$$>> b = [4; 7; 5];$$

Get the matrix inverse:

• Compute the solution:

$$>> x = Ainv * b$$

Matlab's internal direct solver:

These are black boxes! We are going over some methods later!

Exercise: performance of inverse computation

Create a script that generates matrices with random elements of various sizes $N \times N$. Compute the inverse of each matrix, and use tic and too to see the computing time for each inversion. Plot the time as a function of the matrix size N.

Hints:

- Create an array that contains the sizes of the systems n
- Loop over the array elements to:
 - Create a random matrix of size $n \times n$
 - Perform the matrix inversion
 - Record the time required
- Plot the time required for inversion vs size of the system on a double-log scale

Exercise: sample results

Each computer produces slightly different results because of background tasks, different matrices, etc. This is especially noticable for small systems.

The time increases by 3 orders of magnitude, for every magnitude in N. The *computational complexity* of matrix inversion scales with $\mathcal{O}(N^3)$!

Solving a linear system in Excel using the inverse

$$Ax = b \qquad \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \\ 5 \end{bmatrix}$$

- Create matrix A in 3 × 3 cells
- Create right hand side vector b in 3 vertical cells
- Compute the inverse / :
 - Select an empty area of 3 × 3 cells
 - Type =MINVERSE(B2:D4) (In Dutch Excel: INVERSEMAT)
 - Close with Ctrl+Shift+Enter
- Solution:
 - Select 3 vertical cells
 - Type =MMULT(H2:J4; B6:B8) (In Dutch Excel: PRODUCTMAT. The semicolon may be a comma.)
 - Close with Ctrl+Shift+Enter

Today's outline

- Introduction
- Matrix inversion
- Solving a linear system
- Towards larger systems
- Summary

Computation of determinants and inverses of large matrices in this way is too difficult (slow), so we need other methods to solve large linear systems!

Towards larger systems

Determinant of upper triangular matrix:

$$\det \left| M_{\mathsf{tri}} \right| = \prod_{i=1}^{n} a_{ii} \qquad M = \begin{bmatrix} 5 & 3 & 2 \\ 0 & 9 & 1 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow \det \left| M \right| = 5 \times 9 \times 1 = 45$$

Matrix multiplication:

$$\det \left| AM \right| = \det \left| A \right| \times \det \left| M \right|$$

• When A is an identity matrix ($\det |A| = 1$):

$$\det |AM| = \det |A| \times \det |M| = 1 \times \det |M|$$

With rules like this, we can use row-operations so that we can compute the determinant more cheaply.

Solutions of linear systems

Rank of a matrix: the number of linearly independent columns (columns that can not be expressed as a linear combination of the other columns) of a matrix.

$$M = \begin{bmatrix} 5 & 3 & 2 \\ 0 & 9 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

- 3 independent columns
- In Matlab:

$$M = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- $\operatorname{col} 2 = 2 \times \operatorname{col} 1$
- col 4 = col 3 col 1
- 2 independent columns: rank = 2

Solutions of linear systems

The solution of a system of linear equations may or may not exist, and it may or may not be unique. Existence of solutions can be determined by comparing the rank of the Matrix M with the rank of the augmented matrix M_a :

```
>> rank(A)
>> rank([A b])
```

Our system: Mx = b

$$M = \begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{bmatrix}, b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \Rightarrow M_a = \begin{bmatrix} M_{11} & M_{12} & M_{13} & b_1 \\ M_{21} & M_{22} & M_{23} & b_2 \\ M_{31} & M_{32} & M_{33} & b_3 \end{bmatrix}$$

Existence of solutions for linear systems

For a matrix M of size $n \times n$, and augmented matrix M_a :

Rank(M) = n:
 Unique solution

Rank(M) = Rank(M_a) < n:
 Infinite number of solutions

Rank(M) < n, Rank(M) < Rank(M_a):
 No solutions

Two examples

$$M = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & 2 \end{bmatrix} \quad b = \begin{bmatrix} 17 \\ 11 \\ 4 \end{bmatrix} \Rightarrow M_a = \begin{bmatrix} 1 & 1 & 2 & 17 \\ 0 & 3 & 1 & 11 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

 $rank(M) = 3 = n \Rightarrow Unique solution$

$$M = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad b = \begin{bmatrix} 17 \\ 11 \\ 0 \end{bmatrix} \Rightarrow M_a = \begin{bmatrix} 1 & 1 & 2 & 17 \\ 0 & 3 & 1 & 11 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 $rank(M) = rank(M_2) = 2 < n \Rightarrow$ Infinite number of solutions

Today's outline

- Introduction
- Matrix inversion
- Solving a linear system
- Towards larger systems
- Summary

Summary

- Linear equations can be written as matrices
- Using the inverse, the solution can be determined
 - Inverse via cofactors
 - Inverse and solution in Matlab
 - Inverse and solution in Excel
- Introduced the concept of computational complexity: matrix inversion scales with N^3
- A solution depends on the rank of a matrix

Summary

Linear equations 2

Direct methods

Dr.ir. Ivo Roghair, Prof.dr.ir. Martin van Sint Annaland

Chemical Process Intensification group Eindhoven University of Technology

Numerical Methods (6E5X0), 2020-2021

Today's outline

Introduction •O

- Introduction
- Gauss elimination
- Partial Pivoting
- LU decomposition
- Summary

Introduction O •

Goals

Today we are going to write a program, which can solve a set of linear equations

- The first method is called Gaussian elimination
- We will encounter some problems with Gaussian elimination
- Then LU decomposition will be introduced

Today's outline

- Introduction
- Gauss elimination
- Partial Pivoting
- LU decomposition
- Summary

Define the linear system

Consider the system:

$$Ax = b$$

In general:

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Desired solution:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1' \\ b_2' \\ b_3' \end{bmatrix}$$

- Use row operations to simplify the system. Eliminate element A_{21} by subtracting $A_{21}/A_{11} = d_{21}$ times row 1 from row 2.
- In this case, Row 1 is the pivot row, and A_{11} is the pivot element.

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} & b_1 \\ A_{21} & A_{22} & A_{23} & b_2 \\ A_{31} & A_{32} & A_{33} & b_3 \end{bmatrix} \longrightarrow \begin{bmatrix} A_{11} & A_{12} & A_{13} & b_1 \\ 0 & A'_{22} & A'_{23} & b'_2 \\ A_{31} & A_{32} & A_{33} & b_3 \end{bmatrix}$$

Eliminate element A_{21} using $d_{21} = A_{21}/A_{11}$.

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} & b_1 \\ A_{21} & A_{22} & A_{23} & b_2 \\ A_{31} & A_{32} & A_{33} & b_3 \end{bmatrix} \longrightarrow \begin{bmatrix} A_{11} & A_{12} & A_{13} & b_1 \\ 0 & A'_{22} & A'_{23} & b'_2 \\ A_{31} & A_{32} & A_{33} & b_3 \end{bmatrix}$$

- $d_{21} \rightarrow A_{21}/A_{11}$
- $A_{21} \rightarrow A_{21} A_{11}d_{21}$
- $A_{22} \rightarrow A_{22} A_{12}d_{21}$
- $A_{23} \rightarrow A_{23} A_{13}d_{21}$
- $b_2 \rightarrow b_2 b_1 d_{21}$

Eliminate element A_{31} using $d_{31} = A_{31}/A_{11}$.

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} & b_1 \\ 0 & A'_{22} & A'_{23} & b'_{2} \\ A_{31} & A_{32} & A_{33} & b_{3} \end{bmatrix} \longrightarrow \begin{bmatrix} A_{11} & A_{12} & A_{13} & b_1 \\ 0 & A'_{22} & A'_{23} & b'_{2} \\ 0 & A'_{32} & A'_{33} & b'_{3} \end{bmatrix}$$

- $d_{31} \to A_{31}/A_{11}$
- $A_{31} \rightarrow A_{31} A_{11} d_{31}$
- $A_{32} \rightarrow A_{32} A_{12}d_{31}$
- $A_{33} \rightarrow A_{33} A_{13}d_{31}$
- $b_3 \rightarrow b_3 b_1 d_{31}$

Eliminate element A_{32} using $d_{32} = A_{32}/A'_{22}$. Note that now the second row has become the pivot row.

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} & b_1 \\ 0 & A'_{22} & A'_{23} & b'_{2} \\ 0 & A_{32} & A_{33} & b_{3} \end{bmatrix} \longrightarrow \begin{bmatrix} A_{11} & A_{12} & A_{13} & b_1 \\ 0 & A'_{22} & A'_{23} & b'_{2} \\ 0 & 0 & A''_{33} & b''_{3} \end{bmatrix}$$

- $d_{32} \rightarrow A_{32}/A'_{22}$
- $A_{32} \rightarrow A_{32} A'_{22}d_{32}$
- $A_{33} \rightarrow A_{33} A'_{23}d_{32}$
- $b_3 \rightarrow b_3 b_2' d_{32}$

The matrix is now a triangular matrix — the solution can be obtained by back-substitution.

Backsubstitution

The system now reads:

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ 0 & A'_{22} & A'_{23} \\ 0 & 0 & A''_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b'_2 \\ b''_3 \end{bmatrix}$$

Start at the last row N, and work upward until row 1.

$$x_3 = b_3''/A_{33}''$$

$$x_2 = (b_2' - A_{23}'x_3)/A_{22}'$$

$$x_1 = (b_1 - A_{12}x_2 - A_{13}x_3)/A_{11}$$

$$x(3) = b(3) / A(3,3)$$

 $x(2) = (b(2) - A(2,3)*x(3)) / A(2,2)$
 $x(1) = (b(1) - A(1,2)*x(2) - A(1,3)*x(3)) / A(1,1)$

In general:

$$x_{N} = \frac{b_{N}}{A_{NN}} \qquad x_{i} = \frac{b_{i} - \sum_{j=i+1}^{N} A_{ij} x_{j}}{A_{ii}}$$

Writing the program

• Create a function that provides the framework: take matrix A and vector b as an input, and return the solution x as output:

```
function [x,A,b] = GaussianEliminate(A,b)
```

- We will use for-loops instead of typing out each command line.
- Useful Matlab shortcuts:

 - $A(1,2:end) = [A_{12}, A_{13}]$
- A row operation could look like:
 - A(i,:) = A(i,:) d*A(1,:)

The program: elimination

```
function [x,A,b] = GaussianEliminate(A,b)

% Perform elimination to obtain an upper triangular matrix
N = length(b);
for column=1:(N-1) % Select pivot
    for row=(column+1):N % Loop over subsequent rows (below pivot)
        d=A(row,column)/A(column,column);
        A(row,:)=A(row,:)-d*A(column,:);
        b(row)= b(row)-d*b(column);
end
end
```


The program: Backsubstitution

```
% Assign b to x
x = b:
% Perform backsubstitution
for row=N:-1:1
    x(row) = b(row);
    for i = (row + 1) : N
        x(row)=x(row)-A(row,i)*x(i);
    end
    x(row)=x(row)/A(row,row);
end
```

$$x_N = \frac{b_N}{A_{NN}} \qquad x_i = \frac{b_i - \sum_{j=i+1}^N A_{ij} x_j}{A_{ii}}$$

Exercise: Gaussian Elimination

- The function we just made can be found on Canvas
- Use help Gaussian Eliminate to find out how it works
- Solve the following system of equations:

$$\begin{bmatrix} 9 & 9 & 5 & 2 \\ 6 & 7 & 1 & 3 \\ 6 & 4 & 3 & 5 \\ 2 & 6 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \\ 10 \\ 1 \end{bmatrix}$$

Compare your solution with A\b

Partial Pivoting •0000

Today's outline

- Introduction
- Gauss elimination
- Partial Pivoting
- LU decomposition
- Summary

Partial pivoting

• Now try to run the algorithm with the following system:

$$\begin{bmatrix} 0 & 2 & 1 \\ 3 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \\ 10 \end{bmatrix}$$

- It does not work! Division by zero, due to $A_{11} = 0$.
- Solution: Swap rows to move largest element to the diagonal.

Partial pivoting: implementing row swaps

- Find maximum element row below pivot in current column
- Store current row
- Swap pivot row and desired row in A
- Do the same for b: store and swap

```
[dummy,index] = max(abs(A(column:end,column)));
Index = index+column-1;
```

```
temp = A(column,:);

A(column,:) = A(index,:);
A(index,:) = temp;
```

```
temp = b(column);
b(column) = b(index);
b(index) = temp;
```


Improve the program by using re-usable functions

```
function [x] = GaussianEliminate(A,b)
% GaussianEliminate(A.b): solves x in Ax=b
N = length(b);
for c=1:(N-1)
    [dummy,index]=max(abs(A(c:end,c)));
    index = index + c - 1:
    A = SWAP(A,c,index); % Created swap function
   b = SWAP(b.c.index):
   for row=(column+1):N
        d=A(row.column)/A(column.column):
        A(row.:) = A(row.:) - d*A(column.:):
        b(row) = b(row) - d*b(column):
    end
end
   backwardSub(A.b): % Created BS function
return
```

This function is also provided (named GaussianEliminate_v2 and GaussianEliminate_v3 on Canvas).

Alternatives to this program

- MATLAB can compute the solution to Ax=b with its own solvers (more efficient) A\b
- Too many loops. Loops make MATLAB slow.
- There are fundamental problems with Gaussian elimination
 - You can add a counter to the algorithm to see how many subtraction and multiplication operations it performs for a given size of matrix A.
 - The number of operations to perform Gaussian elimination is $\mathcal{O}(2N^3)$ (where N is the number of equations)
 - Exercise: verify this for our script
 - LU decomposition takes $\mathcal{O}(2N^3/3)$ flops, 3 times less!
 - Forward and backward substitution each take $\mathcal{O}(N^2)$ flops (both cases)

Today's outline

- Introduction
- Gauss elimination
- Partial Pivoting
- LU decomposition
- Summary

LU Decomposition

Suppose we want to solve the previous set of equations, but with several right hand sides:

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} \begin{bmatrix} \vdots & \vdots & \vdots \\ x_1 & x_2 & x_3 \\ \vdots & \vdots & \vdots \end{bmatrix} = \begin{bmatrix} \vdots & \vdots & \vdots \\ b_1 & b_2 & b_3 \\ \vdots & \vdots & \vdots \end{bmatrix}$$

Factor the matrix A into two matrices. L and U, such that A = LU:

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \times & 1 & 0 \\ \times & \times & 1 \end{bmatrix} \begin{bmatrix} \times & \times & \times \\ 0 & \times & \times \\ 0 & 0 & \times \end{bmatrix}$$

Now we can solve for each right hand side, using only a forward followed by a backward substitution!

Substitutions

- Define a lower and upper matrix L and U so that A = LU
- Therefore IUx = b
- Define a new vector y = Ux so that Ly = b
- Solve for v. use L and forward substitution
- Then we have y, solve for x, use Ux = y
- Solve for x, use U and backward substitution
- But how to get L and U?

Decomposing the matrix (1)

When we eliminate the element A_{21} we can keep multiplying by a matrix that undoes this row operations, so that the product remains equal to A.

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ d_{21} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ 0 & A_{22} - d_{21}A_{12} & A_{23} - d_{21}A_{13} \\ A_{31} & A_{32} & A_{33} \end{bmatrix}$$

Decomposing the matrix (2)

When we eliminate the element A_{31} we can keep multiplying by a matrix that undoes this row operations, so that the product remains equal to A.

$$A = \begin{bmatrix} 1 & 0 & 0 \\ d_{21} & 1 & 0 \\ d_{31} & 0 & 1 \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ 0 & A'_{22} = A_{22} - d_{21}A_{12} & A'_{23} = A_{23} - d_{21}A_{13} \\ 0 & A'_{32} = A_{32} - d_{31}A_{12} & A'_{33} = A_{33} - d_{31}A_{21} \end{bmatrix}$$

Decomposing the matrix (3)

When we eliminate the element A_{32} we can keep multiplying by a matrix that undoes this row operations, so that the product remains equal to A.

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ d_{21} & 1 & 0 \\ d_{31} & d_{32} & 1 \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ 0 & A'_{22} & A'_{23} \\ 0 & A'_{32} & A''_{33} = A'_{33} - d_{32}A'_{23} \end{bmatrix}$$

This finishes the LU decomposition!

Pivoting during decomposition

Suppose we have arrived at the situation below, where $A'_{32} > A'_{22}$:

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ d_{21} & 1 & 0 \\ d_{31} & 0 & 1 \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ 0 & A'_{22} & A'_{23} \\ 0 & A'_{32} & A'_{33} \end{bmatrix}$$

Exchange rows 2 and 3 to get the largest value on the main diagonal. Use a permutation matrix to store the swapped rows:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ d_{31} & 0 & 1 \\ d_{21} & 1 & 0 \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ 0 & A'_{32} & A'_{33} \\ 0 & A'_{22} & A'_{23} \end{bmatrix}$$

Multiplying with a permutation matrix will swap the rows of a matrix. The permutation matrix is justically instruction matrix, whose rows have been interchanged.

Recipe for LU decomposition

When decomposing matrix A into A = LU, it may be beneficial to swap rows to get the largest values on the diagonal of U (pivoting). A permutation matrix P is used to store row swapping such that:

$$PA = LU$$

- Write down a permutation matrix and the linear system
- Promote the largest value in the column diagonal
- Eliminate all elements below diagonal
- Move on to the next column and move largest elements to diagonal
- Eliminate elements below diagonal
- Repeat 5 and 6
- Write down L,U and P

LU decomposition example (1)

Write down a permutation matrix, which starts as the identity matrix, and the linear system:

$$PA = LU$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 2 & 1 & 1 \\ 1 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 2 & 1 & 1 \\ 1 & 2 & 0 \end{bmatrix}$$

Promote the largest value into the diagonal of column 1 — swap row 1 and 2:

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 2 & 1 & 1 \\ 1 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & 0 \end{bmatrix}$$

LU decomposition example (2)

Eliminate all elements below the diagonal — row 2 already contains a zero in column 1, row 3 = row 3 - 0.5 row 1. Record the multiplier 0.5 in L:

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 2 & 1 & 1 \\ 1 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0.5 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1.5 & -0.5 \end{bmatrix}$$

Elimination of column 1 is done. Step to the next column, and move the largest value below/on the diagonal to the diagonal (swap rows 2 and 3). Adjust P and lower triangle of L accordingly:

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 2 & 1 & 0 \\ 1 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0.5 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1.5 & -0.5 \\ 0 & 1 & 1 \end{bmatrix}$$

LU decomposition example (3)

Eliminate all elements below the diagonal row 3 = row 3 - $\frac{2}{3}$ row 2. Record the multiplier $\frac{2}{3}$ in L:

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 2 & 1 & 0 \\ 1 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0.5 & 1 & 0 \\ 0 & \frac{2}{3} & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1.5 & -0.5 \\ 0 & 0 & \frac{4}{3} \end{bmatrix}$$

We have obtained the matrices from PA = LU:

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \quad L = \begin{bmatrix} 1 & 0 & 0 \\ 0.5 & 1 & 0 \\ 0 & \frac{2}{3} & 1 \end{bmatrix} \quad U = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1.5 & -0.5 \\ 0 & 0 & \frac{4}{3} \end{bmatrix}$$

Proceed with solving for x.

$$Ax = b \Rightarrow PAx = Pb \equiv d$$

 $PA = LU \Rightarrow LUx = d$

- Define a new vector y = Ux
 - $Ly = b \Rightarrow Ly = d$
 - Solve for y, forward substitution:

$$y_1 = \frac{d_1}{L_{11}}$$

$$y_i = \frac{d_i - \sum_{j=1}^{i-1} L_{ij} y_j}{L_{ii}}$$

- Then solve Ux = y:
 - Solve for x. backward substitution:

$$x_{N} = \frac{y_{N}}{U_{NN}}$$

$$x_{i} = \frac{y_{i} - \sum_{j=i+1}^{N-1} U_{ij} x_{j}}{U_{ij}}$$

How to use the solver in Matlah

```
A = rand(5,5);
                   % Get random matrix
[L, U, P] = lu(A); % Get L, U and P
b = rand(5,1);
            % Random b vector
x = backwardSub(U,v); % Can also do x=U\setminus v
rnorm = norm(A*x - b): % Residual
% Compare results to internal Matlab solver
x = A \setminus b
```

- Use this as a basis to create a function that takes A and b, and returns x.
- Use the function to check the performance for various matrix sizes and inspect the performance.

Today's outline

- Introduction
- Gauss elimination
- Partial Pivoting
- LU decomposition
- Summary

Summary

- This lecture covered direct methods using elimination techniques.
- Gaussian elimination can be slow $(\mathcal{O}(N^3))$
- Back substitution is often faster $(\mathcal{O}(N^2))$
- LU decomposition means that we don't have to do Gaussian elimination every time (saves time and effort), but the matrix has to stay the same.
- Matlab has build in routines for solving linear equations (backslash operator \) and LU decomposition (1u).
- Advanced techniques such as (preconditioned) conjugate gradient or biconjugate gradient solvers are also available.
- Next part covers iterative approaches

Linear equations 3

Iterative methods

Dr.ir. Ivo Roghair, Prof.dr.ir. Martin van Sint Annaland

Chemical Process Intensification group Eindhoven University of Technology

Numerical Methods (6E5X0), 2020-2021

Today's outline

Introduction

- Introduction
- Sparse matrices
- Laplace's equation
- Creating a sparse system
- Iterative methods
- Summary

Sparse matrices

- In many engineering cases, we deal with sparse matrices (as opposed to dense matrices)
- A matrix is sparse when it mostly consists of zeros
- Linear systems where equations depend on a limited number of variables (e.g. spatial discretization)
- Storing zeros is not very efficient:

```
>> A = eve(10000):
>> whos A
>> S = sparse(A):
>> whos S
```

- Can you think of a way to achieve this?
- Sparse matrix formats: Yale, CRS, CCS

Sparse matrix storage format

• Example: Yale storage format, storing 3 vectors:

- A = [5 8 3 6]
- \bullet IA = [0 1 2 3 4]
- JA = [0 1 2 1]
- A stores the non-zero values
- TA stores the index in A of the first non-zero in row i
- A stores the column index
- Note: zero-based indices are used here!

$$A = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 8 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 6 & 0 & 0 \end{bmatrix}$$

Sparse matrix layout examples

Today's outline

- Introduction
- Sparse matrices
- Laplace's equation
- Creating a sparse system
- Iterative methods
- Summary

Laplace's equation

$$\begin{aligned} \frac{\partial T}{\partial t} &= \alpha \nabla^2 T \\ T &= \text{Temperature} \\ \alpha &= \text{Thermal diffusivity} \end{aligned}$$

In steady state:

$$\nabla^2 T = 0$$

Discretization of Laplace's equation (I)

- Define a grid of points in x and v
- Index of the grid points using 2D coordinates i and i
- Set up the equations using a 1D index system:

$$T_{i,j} = T_{i+N_x(j-1)}$$

Discretization of Laplace's equation (II)

Estimate the second-order differentials: assume a piece-wise linear profile in the temperature:

$$\frac{\partial^2 T}{\partial x^2} \approx \frac{\frac{\partial T}{\partial x}\Big|_{i+\frac{1}{2}} - \frac{\partial T}{\partial x}\Big|_{i-\frac{1}{2}}}{\Delta x}$$

$$\approx \frac{\left(T_{i+1,j} - T_{i,j}\right)}{\frac{\Delta x}{\Delta x}} - \frac{\left(T_{i,j} - T_{i-1,j}\right)}{\frac{\Delta x}{\Delta x}}$$

$$=\frac{T_{i+1,j}-2T_{i,j}+T_{i-1,j}}{(\Delta x)^2}$$

Discretization of Laplace's equation (III)

The y-direction is derived analogously, so that the 2D Laplace's equation is discretized as:

$$\frac{T_{i+1,j} - 2T_{i,j} + T_{i-1,j}}{(\Delta x)^2} + \frac{T_{i,j+1} - 2T_{i,j} + T_{i,j-1}}{(\Delta y)^2} = 0$$

Use a single index counter $k = i + N_x(j-1)$, so that the equation becomes:

$$\frac{T_{k+1} - 2T_k + T_{k-1}}{(\Delta x)^2} + \frac{T_{k+N_x} - 2T_k + T_{k-N_x}}{(\Delta y)^2} = 0$$

For an equal spaced grid $\Delta x = \Delta y = 1$:

$$T_{k-N_x} + T_{k-1} - 4T_k + T_{k+1} + T_{k+N_x} = 0$$

$$\Rightarrow AT = b$$

Today's outline

- Introduction
- Sparse matrices
- Laplace's equation
- Creating a sparse system
- Iterative methods
- Summary

Creating the linear system

$$T_{k-N_x} + T_{k-1} - 4T_k + T_{k+1} + T_{k+N_x} = 0$$

Create a banded matrix A: the main diagonal k contains -4, whereas the bands at k-1, k+1, $k-N_x$ and $k+N_x$ contain a 1. Boundary cells just contain a 1 on the main diagonal so that the temperature is equal to T_b (e.g. $T_1=1T_b$).

Creating the linear system

$$T_{k-N_x} + T_{k-1} - 4T_k + T_{k+1} + T_{k+N_x} = 0$$

Create a banded matrix A in Matlab, by setting the coefficients for the internal cells:

```
Nx = 5:
      %number of points along x direction
Nv=5: %number of points in the v direction
Nc=Nx*Nv: % Total number of points
e = ones(Nc.1):
A = spdiags([e,e,-4*e,e,e],[-Nx,-1,0,1,Nx],Nc,Nc);
b = zeros(Nc.1):
```

The function spdiags uses the following arguments:

- The coefficients that have to be put on the diagonals arranged as columns in a matrix
- The position of the bands with respect to the main diagonal
- Size of the resulting matrix (in our case square $N_x N_y \times N_x N_y$)

Matrix sparsity

• Let's check the matrix layout:

>> spy(A)

- This command shows the non-zero values of a matrix
- Apart from the main diagonal, there are offset bands!

About boundary conditions

• For the nodes on the boundary, we have a simple equation:

$$T_{k,\text{boundary}} = \text{Some fixed value}$$

- However, we have set all nodes to be a function of their neighbors...
- Find the boundary node indices using k = i + Nx(j-1)
 - i = 1, j = 1:Ny
 - i = Nx, j = 1:Ny
 - j = 1, i = 1:Nx
 - j = Ny, i = 1:Nx
- Reset the row in A to zeros, set $A_{kk} = 1$
- Set value in rhs: $b_k = T_{k,\text{boundary}}$
- Boundary conditions are often more elaborate to implement! See setBoundaryConditions.m.

Partial implementation of the boundary conditions

See setBoundaryConditions.m.

```
function [A,b] = setBoundaryConditions(A,b,Tb,Nx,Ny)
% Set boundary conditions over x-direction
for i=1:Nx
    i = 1:
    ind = i + Nx * (j-1);
    A(ind.:) = 0; % Reset matrix for boundary cells
    A(ind,ind) = 1; % Add a 1 on the diagonal
   b(ind) = Tb(1):
   j = Ny;
    ind = i + Nx * (j-1);
    A(ind,:) = 0; % Reset matrix for boundary cells
    A(ind,ind) = 1; % Add a 1 on the diagonal
    b(ind) = Tb(2):
end
%% Repeat for v-direction
```


How applying boundary conditions affects the linear system

```
function [A,b] = setBoundaryConditions(A,b,Tb,Nx,Ny)
```

- Make sure that matrix A and right hand side vector b are in your workspace, as well as Nx and N v
- Create a vector that holds the temperature at each boundary:

```
>> T = [10 20 30 40]:
```

• Call the function, store A and b in new variables:

```
>> [A2,b2] = setBoundaryConditions(A,b,T,Nx,Ny);
```

• Check the new structure of the matrix and the right hand side:

```
>> subplot(1,2,1); spy(A2);
>> subplot(1,2,2); spy(b2);
```


A full program, including solver

The program and auxiliary functions are on Canvas (solveLaplaceEq.m)

```
function [x,v,T,A] = solveLaplaceEq(Nx,Ny)
% Solves the steady-state Laplace equation
Tb = [10 20 30 40]; % Fixed boundary temperatures
% Fill sparse matrix with [1 1 -4 1 1]
e = ones(Nx*Ny,1);
A = spdiags([e.e.-4*e.e.e], [-Nx.-1.0.1.Nx], Nx*Nv, Nx*Nv);
b = zeros(Nx*Ny,1);
[A,b] = setBoundaryConditions(A,b,Tb,Nx,Ny);
T = A \setminus b: % Solve matrix
Tc = reshape(T,[Nx,Ny]); % Reshape x-vec to mat Nx,Ny
[xc vc] = meshgrid(1:Nx.1:Nv): % Get position arrays
surf(xc,yc,Tc); % Surface plot
```


Sample results

Solved for a 20×20 system with $T_b = [10 \ 20 \ 30 \ 40]$.

Exercise: Verify the numerical solution using Fourier-series

A Fourier-series expansion for the steady-state heat conduction in a flat plate is given for a domain: $x, y \in [0, 1]$, with fixed-temperature boundaries $T|_{y=0} = T|_{y=1} = T|_{y=0} = 0$ and $T|_{\nu=1}=1$:

$$T = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin(m\pi x) \sinh(m\pi y)}{m \sinh(m\pi)} \quad \text{with} \quad m = 2n - 1$$

Compute and plot the exact temperature profile in the 2D plate, and compare it with the numerical solution:

Hints:

- Use meshgrid to create a mesh in x and y
- Compute the temperature using the Fourier series, use vectorised computations over x and y so that only 1 loop (over n) is required.
- Solve the numerics for the same problem (note the boundary conditions)
- Compare the numerical and exact solutions (e.g. a plot).

LU decomposition of a sparse matrix

- With LU decomposition we produce matrices that are less sparse than the original matrix.
- Sparse storage often required, and also numerical techniques that fully utilizes this!

```
>> [L,U,P] = lu(A)
>> subplot(1,2,1)
>> spy(L)
>> subplot(1,2,2)
>> spy(U)
```


- LU decomposition and Gaussian elimination on a matrix like A requires more memory (with 3D problems, the offset in the diagonal would even be bigger!)
- In general extra memory allocation will not be a problem for MATLAB
- MATLAB is clever, in that sense that it attempts to reorder equations, to move elements closer to the diagonal)

Alternatives for elimination methods

- Use iterative methods when systems are large and sparse.
- Often such systems are encountered when we want to solve PDE's of higher dimensions

Today's outline

- Introduction
- Sparse matrices
- Laplace's equation
- Creating a sparse system
- Iterative methods
- Summary

Examples of iterative methods

- Jacobi method
- Gauss-Seidel method
- Succesive over relaxation
- bicg Bi-conjugate gradient method
- pcg preconditioned conjugate gradient method
- gmres generalized minimum residuals method
- bicgstab Bi-conjugate gradient method

The Jacobi method

• In our example we derived the following equation:

$$T_{k-N_{\star}} + T_{k-1} - 4T_k + T_{k+1} + T_{k+N_{\star}} = 0$$

Rearranging gives:

$$T_{k} = \frac{T_{k-N_{x}} + T_{k-1} + T_{k+1} + T_{k+N_{x}}}{4}$$

- In the Jacobi scheme the iteration proceeds as follows:
 - ① Start with an initial guess for the values of T at each node
 - Compute updated values and store a new vector:

$$T_k^{\text{new}} = \frac{T_{k-N_x}^{\text{old}} + T_{k-1}^{\text{old}} + T_{k+1}^{\text{old}} + T_{k+N_x}^{\text{old}}}{4}$$

- O this for all nodes
- 4 Repeat the procedure until converged

Jacobi method for Laplace's equation

See laplace_jacobi.m (from Canvas)

```
% Grid size
nx = 40; ny = 40;
% The temperature field + boundaries at old and new times
T = zeros(nx,nv):
T(1,:) = 40; % Left
T(nx,:) = 60; \% Right
T(:,1) = 20: \% Bottom
T(:,ny) = 30; \% Top
Tnew = T:
% For plotting
[x \ v] = meshgrid(1:nx, 1:nv);
for iter = 1:1000
  for i = 2:nx-1
    for i = 2:nv-1
      Tnew(i,j) = (T(i-1,j)+T(i+1,j)+T(i,j-1)+T(i,j+1))/4.0;
    end
  end
  surf(x,y,Tnew);
  title(['Iteration: 'num2str(iter)]):
  drawnow
  T = Tnew; % Update T
end
```


About the straightforward implementation

- The method as implemented works fine for a simple Laplace equation
- For generic systems of linear equations, the implementation cannot be used.

We will now introduce the Jacobi method so it can be used for generic systems of linear equations.

The Jacobi method with matrices

We can split our (banded) matrix A into a diagonal matrix D and a remainder R:

$$A = D + F$$

Jacobi method: solving a system

• We can solve AT = b, now written generally as Ax = b, by:

$$Ax = b$$

$$(D+R)x = b$$

$$Dx = b - Rx$$

$$Dx^{\text{new}} = b - Rx^{\text{old}}$$

$$x^{\text{new}} = D^{-1}(b - Rx^{\text{old}})$$

• Using the n and n+1 notation for old and new time steps, we find in general:

$$x^{n+1} = D^{-1}(b - Rx^n)$$

$$x_i^{n+1} = \frac{1}{A_{ii}} \left(b_i - \sum_{j \neq i} A_{ij} x_j^n \right)$$

Diagram of the Jacobi method

The core of the solver

The full file is on Canvas, solveJacobi.m.

```
while ( xDiff > tol && it_jac < 1000 )</pre>
        x_old = x;
        for i=1:N
             s = 0:
             for j = 1:N
6
                 if (i ~= i)
                      s = s+A(i,j)*x_old(j);
                 end
9
             end
             x(i) = (b(i)-s)/A(i,i);
10
11
        end
12
        it_jac = it_jac+1;
13
         xDiff = norm((x-x_old)./x,2);
14
    end
15
    it_jac
```

Try to call it from the solveLaplaceEq.m file, instead of using \.

A few details on this algorithm

- The while loop holds two aspects
 - A convergence criterion $(norm((x-x_old)./x,2) > tol)$. Some considerations are:
 - L_1 -norm (sum)
 - L2-norm (Euclidian distance)
 - L_{∞} -norm (max)
 - Protection against infinite loops (no convergence)
- Reset the sum for each row, before summing for the new unknown node
- Start vector x is not shown in the example, but should be there!
- It can have huge impact on performance!
- The for-loops also have a large performance penalty!

The solver using array indices

Make a copy of the Jacobian solver, and replace the for-loop by a vector-operation:

```
% While not converged or max_it not reached
while ( xDiff > tol && it_jac < 1000 )
  x \text{ old} = x;
 for i=1:N
    % Sum off-diagonal*x_old
    offDiagonalIndex = [1:(i-1) (i+1):N];
    Aij_Xj = A(i,offDiagonalIndex)*x_old(offDiagonalIndex);
    % Compute new x value
    x(i) = (b(i)-Aij_Xj)/A(i,i);
  end
  it_jac = it_jac+1;
  xDiff = norm((x-x_old)./x.2):
end
```


Iterations 1, 2, 3 and 10

Gauss-Seidel method

The Gauss-Seidel method is quite similar to Jacobi method

- The only difference is that the new estimate x^{new} is returned to the solution x^{old} as soon as it is completed
- For following nodes, the updated solution is used immediately
- Our straightforward script (from the Jacobi method) is therefore changed easily:
 - Do not create a Tnew array (save memory!)
 - Do not store the solution in Tnew, but simply in T
 - Do not perform the update step T=Tnew
 - See laplace_gaussseidel.m for the algorithm.
- The straightforward script works well for the current Laplace equation, but we define the generic Gauss-Seidel algorithm on the following slides.

Gauss-Seidel method

- Define a lower and strictly upper triangular matrix, such that A = L + U
- Now we can solve AT=b by:

$$(L+U)T = b$$

 $LT = b - UT$
 $LT^{\text{new}} = b - UT^{\text{old}}$
 $T^{\text{new}} = L^{-1}(b - UT^{\text{old}})$

• Using the n and n+1 notation for old and new time steps, we find in for the general Gauss-Seidel method:

$$x^{n+1} = L^{-1} \left(b - U x^n \right)$$

$$x_i^{n+1} = rac{1}{A_{ii}} \left(b_i - \sum_{j < i} A_{ij} x_j^{n+1} - \sum_{j > i} A_{ij} x_j^n
ight)$$

Today's outline

- Introduction
- Sparse matrices
- Laplace's equation
- Creating a sparse system
- Iterative methods
- Summary

Summary

- Partial differential equations can be discretized into sparse systems of linear equations
- Sparse matrices can be stored in memory efficiently using specialised formats (e.g. compressed row storage)
- The Jacobi and Gauss-Seidel methods were introduced as iterative methods; other methods are based on the same principle (successive over-relaxation method, for example)
- Various implementation issues were discussed, e.g. vectorised computing, convergence tolerances

Direct methods vs. Iterative methods

- Iterative methods converge *gradually* to a solution while direct methods (possibly with partial pivoting) factorise a (set of) matrix(ces) which allow to compute the solution by *substitution*.
- Direct methods generally use more memory, since they need to store also the result matrices.
- A strictly (or irreducibly) diagonally dominant matrix is a prerequisite for convergence of the Jacobi and Gauss-Seidel method.
- For real-life situations; 1D problems are generally solved with direct methods (LU
 decomposition). If you have systems of more than 1 dimension, a direct method still can
 be used, if there are no memory issues, otherwise an iterative method would be more
 attractive.

