Homework 5 of Introduction to Analysis (I), Honor Class

AM15 黃琦翔 111652028

October 13, 2023

1.

- 2. Let U be any non-empty open set $\in \mathbb{R}$. Since U is open, U contains rational numbers. Then, for every U, we call it U_x , for a $x \in \mathbb{Q} \cap U$. Thus, we can number the open sets by \mathbb{Q} which is countable.
- 3. For $x \in A$, since $\bigcap_{n=1}^{\infty} A_n = \emptyset$, $A = \bigcap_{n=1}^{\infty} \bar{A}_n = (\bigcap_{n=1}^{\infty} A_n) \cup (\bigcap_{n=1}^{\infty} A'_n) = \bigcap_{n=1}^{\infty} A'_n$. Thus, $x \in A'_1$.
- 4. First, we want to proof $\overline{M-A} \supseteq (\overline{A}-A)$.

Since
$$\overline{M-A} = (M-A)' \cup (M-A)$$
 and $\overline{A} \subseteq M \implies (\overline{A}-A) \subseteq (M-A) \subseteq \overline{M-A}$.

$$(A \cap \overline{M-A}) \cup (\overline{A}-A) = (A \cup (\overline{A}-A)) \cap (\overline{M-A} \cup (\overline{A}-A)) = \overline{A} \cap (\overline{M-A}) = \partial A$$