Course Reminders

<u>Due Dates</u>:

- Nothing due this week
- A4 due *next* Sunday (5/26)

Notes:

- Inference Case Study in Section this week
 - Intentionally unguided use notes from glass to guide thought
 - Less-structured than assignments
- Guest Lecture Reminders:
 - Friday 5/24 (Dr. Gina Merchant)
 - Friday 5/31 (Dr. Brad Voytek)

Machine Learning: Basics

Shannon E. Ellis, Ph.D UC San Diego

Department of Cognitive Science <u>sellis@ucsd.edu</u>

- **Problem:** Detecting whether credit card charges are fraudulent.
- Data science question: Can we use the time of the charge, the location of the charge, and the price of the charge to predict whether that charge is fraudulent or not?
- **Type of analysis:** Predictive analysis

What is machine learning?

"Machine learning is the science of getting computers to act without being explicitly programmed"

- Andrew Ng, Stanford, ex-Google, chief scientist at Baidu, Coursera founder, Stanford Adjunct Faculty

Prediction Questions

Which of these questions is most appropriate for machine learning?

A How common is watching Sesame Street in the US?

B What is the effect of watching Sesame Street on children's brains?

C What is the relationship between early childhood educational programming and success in elementary school?

D Can we use information about one's early childhood to predict their success in elementary school?

E How does Sesame Street cause an increase in educational attainment?

Machine Learning Generalizations

Basic Steps to Prediction

model selection

data partitioning

Data Partitioning

What portion of the data are typically used for generating the model?

feature selection

feature selection determines which variables are most predictive and includes them in the model

To modes of machine learning

Supervised Learning

You tell the computer how to classify the observations

Unsupervised Learning

The computer determines how to classify based on properties within the data

Approaches to machine learning

Supervised Learning

Prediction accuracy dependent on training data

Unsupervised Learning

Clustering (categorical)
& dimensionality reduction (continuous)

can automatically identify structure in data

model selection

simple models

Supervised Learning

predicting <u>continuous</u> variables (i.e. Age)

continuous variable prediction

Classification:

variables
(i.e. education level)

categorical variable prediction

predicting <u>continuous</u> variables (i.e. Age)

continuous variable prediction

Classification:

variables
(i.e. education level)

categorical variable prediction

continuous variable prediction

Supervised Learning

regression 🚊

continuous variable prediction

continuous variable prediction

We'll use the linear relationship between variables to generate a predictive model

Independent Variable

Supervised Learning

regression

continuous variable prediction

predicting <u>continuous</u> variables (i.e. Age)

Classification:

variables
(i.e. education level)

categorical variable prediction

Continue adding *branches* to the **decision tree** where the variables and information in the training data decide which observations goes down which branch

At the end of the tree, labels will be applied to each *leaf* of the tree

Unsupervised Learning

To modes of machine learning

Supervised Learning

Features are given as inputs

model identifies patterns in the input data

No labels are provided during modeling PCA, k-means clustering, t-SNE, neural nets, self-organizing maps, (i.e. facial recognition, image processing, EDA)

predictions are output

model identifies patterns in the input data

Is it cake?

WHAT IS A NEURON?

- Receives signal on synapse
- When trigger sends signal on axon

MATHEMATICAL NEURON

- Mathematical abstraction, inspired by biological neuron
- Either on or off based on sum of input

This will likely not be the last time you see this (mostly unhelpful) neural net image

Supervised Learning

height continuous

Unsupervised Learning

dimensionality reduction & clustering

You want to predict someone's emotion based on an image.

How would you approach this with machine learning?

A B C D
Supervised, Supervised, Unsupervised, Unsupervised, Classification dimensionality clustering reduction

model assessment

Root Mean Squared Error (RMSE)

continuous variable prediction

$$Accuracy = \frac{\text{# of samples predicted correctly}}{\text{# of samples predicted}} * 100$$

		Actual	
		Positive	Negative
Predicted	Positive	True Positive (TP)	False Positive (FP)
	Negative	False Negative (FN)	True Negative (TN)

A 2x2 table is a type of confusion matrix

<u>categorical</u> variable prediction

Accuracy	What % were predicted correctly?
Sensitivity	Of those that <i>were</i> positives, what % were predicted to be positive?
Specificity	Of those that were <i>negatives</i> , what % were predicted to be negative?

You've been given a dataset with a number of features and have been asked to predict each individual's age.

What prediction approach would you use?

After predicting each person's age, how would you assess your model?

Which would be the error value you'd want from your model?

A	В	С	D	E
0.2	1.3	2.5	10.0	20.0

When models are trained on historical data, predictions will perpetuate historical biases

Predictive Analysis Ethics

Dare Obasanjo

@Carnage4Life

Product leader at Microsoft. My team is responsible for advertiser experience for Bing Ads; mobile apps, web UX, desktop apps & SDKs.

Dare Obasanjo @Carnage4Life

Machine learning algorithms are driven more by the training data than math. Give an algorithm biased data then results will be biased. E.g.

- Amazon's resumé referral algo which auto rejected women
- Search ads algo which showed background check ads for "black sounding names"

Ryan Saavedra @RealSaavedra
Socialist Rep. Alexandria Ocasio-Cortez (D-NY) claims
that algorithms, which are driven by math, are racist

8:59 PM - 22 Jan 2019

Amazon scraps secret AI recruiting tool that showed bias against women

Jeffrey Dastin

8 MIN READ

SAN FRANCISCO (Reuters) - Amazon.com Inc's (AMZN.O) machine-learning specialists uncovered a big problem: their new recruiting engine did not like women.

If you have ever had a problem grasping the importance of diversity in tech and its impact on society, watch this video

5:48 AM - 16 Aug 2017

155,234 Retweets 215,762 Likes

https://twitter.com/nke_ise/status/897756900753891328

What to do about bias...

- 1. Anticipate and plan for potential biases before model generation. Check for bias after.
- 2. Have diverse teams.
- 3. Use machine learning to improve lives rather than for punitive purposes.
- 4. Revisit your models. Update your algorithms.
- 5. You are responsible for the models you put out into the world, unintended consequences and all.

Discussed so far...

- data partitioning
- feature selection
- supervised & unsupervised machine learning
 - Continuous variables: regression (supervised) and dimensionality reduction (unsuperfied)
 - Categorical variables: classification (supervised; decision trees) or clustering (unsupervised)
- model assessment
 - Continuous: RMSE (& Accuracy)
 - Categorical: Accuracy, Sensitivity, Specificity, AUC
- biased data can & will lead to biased predictions

Data Science Question

Based on data I have about you all, can I predict who in this course will be successful?

Which would be the most predictive of your future success?

	Accuracy	Sensitivity	Specificity
training set	71.2%	76%	67%
test set	49.1%	40%	60%

Assess Prediction Model

	Accuracy	Sensitivity	Specificity
training set	100%	100%	100%
test set	100%	100%	100%

What if I were using these data to determine who I should write recommendation letters for?

Or to determine which students I focus my attention on?

Or whose projects I read?

Or who I allow to come to office hours?

Or who UCSD allows to be data science majors?