CS 471/571(Fall 2023): Introduction to Artificial Intelligence

Lecture 3: Informed Search

Thanh H. Nguyen

Most slides are by Pieter Abbeel, Dan Klein, Luke Zettlemoyer, John DeNero, Stuart Russell, Andrew Moore, or Daniel Lowd Source: http://ai.berkeley.edu/home.html

Reminder

- Homework 1: Search
 - Deadline: Oct 11th, 2023

- Project 1: Search
 - Deadline: Oct 16th, 2023

Thanh H. Nguyen 10/4/23

Today

- Informed Search
 - Heuristics
 - Greedy Search
 - •A* Search

Recap: Search

- Search problem:
 - States (configurations of the world)
 - Actions and costs
 - Successor function (world dynamics)
 - Start state and goal test
- Search tree:
 - Nodes: represent plans for reaching states
 - Plans have costs (sum of action costs)

- Search algorithm:
 - Systematically builds a search tree
 - Chooses an ordering of the fringe (unexplored nodes)
 - Optimal: finds least-cost plans

Informed Search

Search Heuristics

A heuristic is:

- A function that *estimates* how close a state is to a goal
- Designed for a particular search problem
- Examples: Manhattan distance, Euclidean distance for pathing

Example: Heuristic Function

Straight-line distance			
to Bucharest			
Arad	366		
Bucharest	0		
Craiova	160		
Dobreta	242		
Eforie	161		
Fagaras	178		
Giurgiu	77		
Hirsova	151		
Iasi	226		
Lugoj	244		
Mehadia	241		
Neamt	234		
Oradea	380		
Pitesti	98		
Rimnicu Vilcea	193		
Sibiu	253		
Timisoara	329		
Urziceni	80		
Vaslui	199		
Zerind	374		

• Expand the node that seems closest...

Straight-line distan to Bucharest	ce
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Expand the node that seems closest...

• What can go wrong?

- •A common case:
 - Best-first takes you straight to the (wrong) goal

Worst-case: like a badly-guided DFS

A* Search

Combining UCS and Greedy

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or *forward cost* h(n)

• A* Search orders by the sum: f(n) = g(n) + h(n)

When should A* terminate?

•Should we stop when we enqueue a goal?

No: only stop when we dequeue a goal

Is A* Optimal?

- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!

Admissible Heuristics

Idea: Admissibility

Inadmissible (pessimistic) heuristics break optimality by trapping good plans on the fringe

Admissible (optimistic) heuristics never outweigh true costs

Admissible Heuristics

•A heuristic *h* is *admissible* (optimistic) if:

$$0 \le h(n) \le h^*(n)$$

where $h^*(n)$ is the true cost to a nearest goal

• Examples:

•Coming up with admissible heuristics is most of what's involved in using A* in practice.

Properties of A*

Uniform-Cost

UCS vs A* Contours

 Uniform-cost expands equally in all "directions"

•A* expands mainly toward the goal, but does hedge its bets to ensure optimality

A* Applications

- Video games
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition

Example: 8 Puzzle

Start State

Goal State

- What are the states?
- How many states?
- What are the actions?

- How many successors from the start state?
- What should the costs be?

8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- $\bullet h(start) = 8$
- This is a *relaxed-problem* heuristic

Start State

Goal State

	Average nodes expanded when the optimal path has				
	4 steps	8 steps	12 steps		
UCS	112	6,300	3.6×10^6		
TILES	13	39	227		

8 Puzzle II

• What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?

Start State

Goal State

T T 71	•	• ,	7	•	• 1	າ ເ
Why	1S	1t	ad	lmis	S1D	le':

• h(start) =

$$3 + 1 + 2 + \dots = 18$$

	Average nodes expanded when the optimal path has				
	4 steps	8 steps	12 steps		
YILES	13	39	227		
IANHATTAN	12	25	73		

8 Puzzle III

- How about using the *actual cost* as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What's wrong with it?

- With A*: a trade-off between quality of estimate and work per node
 - As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself

Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to *relaxed problems*, where new actions are available

Inadmissible heuristics are often useful too (why?)

Trivial Heuristics, Dominance

• Dominance: $h_a \ge h_c$ if

$$\forall n: h_a(n) \geq h_c(n)$$

- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible

$$h(n) = max(h_a(n), h_b(n))$$

- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic

Tree Search: Extra Work!

• Failure to detect repeated states can cause exponentially more work. Why?

Graph Search

In BFS, for example, we shouldn't bother expanding some nodes (which, and why?)

Graph Search

Very simple fix: never expand a state type twice

```
function GRAPH-SEARCH (problem, fringe) returns a solution, or failure
closed \leftarrow an empty set
fringe \leftarrow Insert(Make-Node(Initial-State[problem]), fringe)
loop do
    if fringe is empty then return failure
    node \leftarrow Remove-Front(fringe)
    if Goal-Test(problem, State[node]) then return node
     if STATE[node] is not in closed then
         add STATE[node] to closed
         fringe \leftarrow InsertAll(Expand(node, problem), fringe)
end
```

- Can this wreck completeness? Why or why not?
- How about optimality? Why or why not?

A* Graph Search Gone Wrong

State space graph

A h=1h=23 В \mathbf{G}

Search tree

Consistency of Heuristics

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost \leq actual cost to goal $h(A) \leq actual \ cost \ from \ A \ to \ G$
 - Consistency: heuristic "arc" cost \leq actual cost for each arc $h(A) h(C) \leq cost(A \text{ to } C)$
- Consequences of consistency:
 - The f value along a path never decreases

$$h(A) \le cost(A \text{ to } C) + h(C)$$

$$f(A) = g(A) + h(A) \le g(A) + cost(A \text{ to } C) + h(C) \le f(C)$$

• A* graph search is optimal

- Heuristic function h is consistent
- •Claim: A* graph search is optimal

Optimality

- Tree search:
 - A* is optimal if heuristic is admissible
 - UCS is a special case (h = 0)
- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)
- Consistency implies admissibility
- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems

A*: Summary

A*: Summary

- •A* uses both backward costs and (estimates of) forward costs
- •A* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems

Optimality of A* Tree Search

Optimality of A* Tree Search

- Heuristic function h is admissible
- •Claim: A* tree search is optimal

Optimality of A* Tree Search

Assume:

- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

Claim:

• A will exit the fringe before B

Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor *n* of A is on the fringe, too (maybe A!)
- Claim: *n* will be expanded before B
 - 1. f(n) is less or equal to f(A)

$$f(n) = g(n) + h(n)$$
$$f(n) \le g(A)$$
$$g(A) = f(A)$$

Definition of f-cost Admissibility of h h = 0 at a goal

Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor *n* of A is on the fringe, too (maybe A!)
- Claim: *n* will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)

B is suboptimal

$$h = 0$$
 at a goal

Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor *n* of A is on the fringe, too (maybe A!)
- Claim: *n* will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)
 - n expands before B
- All ancestors of A expand before B
- A expands before B
- A* search is optimal

$$f(n) \le f(A) < f(B)$$

- Heuristic function h is consistent
- •Claim: A* graph search is optimal

- Consider what A* does:
 - Expands nodes in increasing total f value (f-contours) Reminder: f(n) = g(n) + h(n) = cost to n + heuristic
 - Proof idea: the optimal goal(s) have the lowest f value, so it must get expanded first

There's a problem with this argument. What are we assuming is true?

Proof:

- New possible problem: some *n* on path to G* isn't in queue when we need it, because some worse *n*' for the same state dequeued and expanded first (disaster!)
- Take the highest such *n* in tree
- Let p be the ancestor of n that was on the queue when n was popped
- f(p) < f(n) because of consistency
- f(n) < f(n') because n' is suboptimal
- p would have been expanded before n'
- Contradiction!

