```
TriangulateMonotonePolygon(MP)
Input: an x-montone polygon MP
Output: a triangulation of MP
 Fuse the vertices of the superior and inferior chain into a common structure. The vertices are classified in a
lexicographic order, t_0 is the first (leftmost) and, t_{n-1} the last one.
 Initialize an empty stack S, and push t<sub>0</sub> and t<sub>1</sub>
 For j from 2 to n-2
  If t<sub>i</sub> and the 1<sup>st</sup> vertex on the stack are on different chains
   Pop all the vertices from the stack, create a diagonal between those and the current vertex t<sub>i</sub>,
     except the last on the stack.
   Push t_{i-1} and t_i on the stack
  Else
    Pop one vertex from the stack S;
    Pop the other vertices one by one as far as one can make a diagonal (not crossings)
    Push back the last pop-ed vertex, and t<sub>i</sub>
 Create diagonals between t_{n-1} and all the remaining vertices in the stack, except the first and last.
```

Cheking if a diagoanal is inside a polygon, first three points: two cases:

Upper

Lower

Cheking if a diagoanal is inside a polygon, n points:

Angle α should always increase (in absolute value)

Cheking if a diagoanal is inside a polygon, n points:

Angle α should always increase (in absolute value)

Cheking if a diagoanal is inside a polygon, n points:

OK

Angle α should always increase (in absolute value)

Cheking if a diagoanal is inside a polygon, n points:

Start stack: $P = \{v_1, v_0\}$

 $j=2: v_2$, same chain as $v_1: diag v_2-v_0; P=\{v_2,v_0\}$

$$P = \{v_1, v_0\}$$

j=3: v_{10} , chain different from v_2 : diag v_{10} - v_2 ; $P=\{v_{10},v_2\}$

$$P = \{v_{10}, v_2\}$$

 $j=4: v_9$, same chain as $v_{10}:$ no diag; $P=\{v_9,v_{10},v_2\}$

$$P = \{v_9, v_{10}, v_2\}$$

j=5: v_3 , chain different from v_9 : diag v_3-v_9 and diag v_3-v_{10} ; $P=\{v_3,v_9\}$

$$P = \{v_3, v_9\}$$

j=6: v_8 , chain different from v_3 : diag v_8-v_3 ; $P=\{v_8,v_3\}$

$$P = \{v_8, v_3\}$$

j=7: v_4 , chain different from v_8 : diag v_4-v_8 ; $P=\{v_4,v_8\}$

$$P = \{v_4, v_8\}$$

j=8: v_7 , chain different from v_4 : diag v_7-v_4 ; $P=\{v_7,v_4\}$ And so on...