离散数学

- 一、命题逻辑
- 二、谓词逻辑
- 三、集合与关系
- 四、函数与无限集合
- 五、图论

一、命题逻辑

1、命题与联结词

命题

一个具有真和假但不能两者都是的断言成为命题,命题逻辑主要研究前提和结论之间的逻辑关系(数理逻辑中一般以大写字母或者带上标、下表的大写字母表示)

• **真值**: (T、1) 一个命题所表达的判断为真 ->**真命题**

• **假值**: (**F**、**0***) 一个命题所表达的判断为假 ->**假命题**

命题满足条件:

- 1. 命题是表达判断的陈述句, 疑问句、祈使句、感叹句都不是命题
- 2. 命题有确定的真假值,它的真值或者为真、或者为假,两者必居其一命题类型:

• 简单命题: 不包含其他更简单命题的命题

• 复合命题: 由简单命题、联结词组合构成的复杂命题

联结词

存在于数理逻辑中的运算符,称为逻辑联结词

• 否定联结词一:"非"运算,一元运算符

Р	¬Р
0	1
1	0

• 合取联结词 < : "P并且Q", 二元运算符

Р	Q	$P \wedge Q$
0	0	0
0	1	0
1	0	0
1	1	1

• 析取联结词 V: "P或者Q", 二元运算符

Р	Q	$P \lor Q$
0	0	0
0	1	0
1	0	1
1	1	1

• **条件联结词(蕴含联结词)**→: 二元运算符

"如果P,那么Q"、"P是Q的充分条件"、"Q是P的必要条件"、

"若P,则Q"、"P仅当Q"、"Q每当P"、"只要P,就Q"、

"只有Q, 才P"、"除非Q, 才P"、"除非Q, 否则非P"

。 P: 假设、前件

。 Q: 结论、后件

P	Q	P→Q
0	0	1
0	1	1
1	0	0
1	1	1

• 双条件联结词(双条件命题) ↔: 二元运算符 "P当且仅当Q"、"P和Q互为充要条件"

Р	Q	P⇔Q
0	0	1
0	1	0

1	0	1
1	1	1

2、命题公式

命题常元:表示一个确定命题(其真值不是T就是F)的符号

命题变元:表示一个不确定的或可泛指任意命题的符号

表达式: 由命题常元、命题变元、联结词以及括弧组成的式子, 只有按照特定组合规则所形成

的表达式才有意义

命题合式公式(命题公式)

1. (基础)单个命题常元或命题变元是命题合式公式

2. (归纳)如果A和B是命题公式,则 $\neg A$ 、 $A \land B$ 、 $A \lor B$ 、 $A \to B$ 、 $A \leftrightarrow B$ 是命题合式公式

3. (极小性) 只有有限次地应用条款(1)和(2)生成的表达式才是命题合式公式

子公式:若B是命题公式A的一个连续段且B也是命题公式,则称B是A的一个子公式 **命题的符号化**:把一个用自然语言叙述的命题写成与之内涵相同的命题公式的形式 括号省去的约定:

- 联结词运算的优先顺序:¬的运算优先级最高,∧、∨的运算优先级次之,→、↔的运算优先级最低,不改变运算先后次序的括号
- 相同的联结词、按从左至右顺序计算时、以及最外层的括号

设 p_1, p_2, \ldots, p_n 是命题公式A中出现的所有命题变元,如果给 p_1, p_2, \ldots, p_n 指定一组真值,则称为对命题公式A**赋值**(指派或解释),共有 2^n 个不同的赋值

重言式(永真式): 给定一个命题公式在任何赋值下它的真值都为**T 矛盾式(永假式)**: 给定一个命题公式在任何赋值下它的真值都为**F**

偶然式: 给定一个命题公式, 既不是永真式, 也不是永假式

可满足式:对于某一个命题公式A,至少存在一种赋值,使得它的真值为**T**,重言式、偶然式都是可满足式

3.1逻辑等价

给定两个命题公式A和B,设 $p_1,\ p_2,\ \ldots,\ p_n$ 为所有出现在A和B中的逻辑变元,但 $p_i(i=1,2,\ldots,n)$ 不一定在A和B中同时出现,若对于 $p_1,\ p_2,\ \ldots,\ p_n$ 的任意赋值,A和B的 真值都相同,则称A和B**逻辑等价**,记作 $A\Leftrightarrow B$,读作"A等价于B"

设A、B是命题公式,则A和B逻辑等价,当且仅当 $A \leftrightarrow B$ 是一个重言式

逻辑等价公式表

等价变换:

1. 代入规则:

设A、B是命题公式,其中A是重言式,P是A中的命题变元,如果将A中每一处出现的P均用B代入,所得命题公式A',则所得命题公式A'任然是一个重言式

推论:设A、B、C是命运公式,且 $A \Leftrightarrow B$,P为出现在A和B中的命题变元,将A和B中每一处出现的P用命题公式C代入而分别得到A'和B',则有 $A' \Leftrightarrow B'$

2. 替换规则:

设A、X、Y是命题公式,X是A的子公式,且有 $X \Leftrightarrow Y$,如果将A中的X用Y来替换(不必每一处都替换),则得到的公式B与A等价,即 $B \Leftrightarrow A$

1. 传递规则:

设A、B、C是命题公式,若 $A \Leftrightarrow B \perp B \Leftrightarrow C$,则有 $A \Leftrightarrow B$

3.2 永真蕴含

- 设A、B是命题公式,如果A o B是一个重言式,则称A蕴含B,记作 $A \Rightarrow B$
- 设A和B是任意两个命题公式, $A \Leftrightarrow B$ 当且仅当 $A \Rightarrow B$ 且 $B \Rightarrow A$

永真蕴含公式表

证明 $A \Rightarrow B$ 方法:

- **肯定前件法**: 假设A为T, 如果能推出B为T, 则 $A \Rightarrow B$
- **否定后件法**: 假设B为F,如果能推出A为F,则 $A \Rightarrow B$

蕴含关系的性质:

- 设A、B是命题公式,如果 $A \Rightarrow B$ 并且A是重言式,则B也是重言式
- 如果 $A \Rightarrow B$ 并且 $B \Rightarrow C$,则 $A \Rightarrow C$,即蕴含关系是传递的
- 如果 $A\Rightarrow B$ 并且 $A\Rightarrow C$,则 $A\Rightarrow B\lor C$ 、 $A\Rightarrow B\land C$
- 如果 $A \Rightarrow C$ 并且 $B \Rightarrow C$,则 $A \lor B \Rightarrow C$ 、 $A \land B \Rightarrow C$

4、对偶式

设有命题公式A,其中仅含有联结词 \neg 、 \lor 、 \land ,如果将A中的 \lor 换成 \land , \land 换成 \lor ,常元F和T也互相替换,所得公式记作 A^* ,则称 A^* 为A的**对偶公式**

- 1. 对偶是相互的,A也是 A^* 的对偶公式,即 $(A^*)^* = A$
- 2. 设A和 A^* 是对偶公式,其中仅含有联结词 \neg 、 \lor 、 \land , P_1 、 P_2 、 \ldots 、 P_n 是出现在A和 A^* 中的所有命题变元,则有:

$$\circ \neg A(P_1, P_2, \dots, P_n) \Leftrightarrow A^*(\neg P_1, \neg P_2, \dots, \neg P_n)$$

- $\circ \ A(\neg P_1, \neg P_2, \dots, \neg P_n) \Leftrightarrow \neg A^*(P_1, P_2, \dots, P_n)$
- 3. (**对偶定理**)设A和B是命题公式, P_1 、 P_2 、 \dots 、 P_n 是出现在A和B中的命题变元,则有:
 - \circ 如果 $A \Leftrightarrow B$,则 $A^* \Leftrightarrow B^*$
 - 。 如果 $A\Rightarrow B$,则 $B^*\Rightarrow A^*$

5、范式

析取式:仅由若干命题变元和若干命题变元之否定通过联结词∨构成的命题公式 **合取式**:仅由若干命题变元和若干命题变元之否定通过联结词△构成的命题公式

析取范式: 合取式的析取

 $A_1 \vee A_2 \vee \ldots \vee A_n$ $(n \geqslant 1)$, 其中 A_1, A_2, \ldots, A_n 是合取式

合取范式: 析取式的合取

 $A_1 \wedge A_2 \wedge \ldots \wedge A_n$ $(n \geqslant 1)$,其中 A_1, A_2, \ldots, A_n 是析取式

求取范式

- 1. 将公式中的联结词都规约成 ¬、 ∨ 、 ∧
- 2. 利用德·摩根定律将否定联结词直接转移到各命题变元之前
- 3. 利用分配率、结合率将公式规约成合取范式或析取范式

主析取范式

极小项:一个含n个命题变元的**合取式**,其中每个变元与其否定不同时存在,但两者之一必须出现且仅出现一次

- n个命题变元 P_1 、 P_2 、...、 P_n 可构成 2^n 个不同的极小项: $\tilde{P_1} \wedge \tilde{P_2} \wedge \ldots \wedge \tilde{P_n}$,其中 $\tilde{P_i}$ 或者是 P_i ,第i位取**1**、或者是 $\neg P_i$,第i位取**0**
- 性质:
 - 1. 每一个极小项当其赋值与编码相同时,其真值为T,在其余 2^n-1 种赋值下其真值为F
 - 2. 任意两个不同极小项当合取式永假,即 $m_i \wedge m_j \Leftrightarrow F(i \neq j)$
 - 3. 所有极小项当析取式永真,记为 $\sum_{i=0}^{2^n-1}m_i\Leftrightarrow m_0\vee m_1\vee\ldots\vee m_{2^n-1}\Leftrightarrow T$

主析取范式:设 P_1 、 P_2 、...、 P_n 是命题公式A中包含的所有命题变元,由 P_1 、 P_2 、...、 P_n 的若干极小项**析取**所构成的析取范式与A**等价**

在一个命题公式A的真值表中,使A的**真值为T**的所有赋值所对应的**极小项**构成的析取范式即为A的主析取范式

步骤:

- 1. 将原命题公式转化为析取范式
- 2. 将每个合取式等价变换为若干极小项的析取,对每个合取式填补没有出现的变元, 合取 $\neg P \lor P$,再应用分配率展开
- 3. 重复的极小项只保留一个

主合取范式

极大项:一个含n个命题变元的**析取式**,其中每个变元与其否定不同时存在,但两者之一必须出现且仅出现一次

- n个命题变元 P_1 、 P_2 、...、 P_n 可构成 2^n 个不同的极大项: $\tilde{P_1} \vee \tilde{P_2} \vee \ldots \vee \tilde{P_n}$,其中 $\tilde{P_i}$ 或者是 P_i ,第i位取 $\mathbf{0}$ 、或者是 $\neg P_i$,第i位取 $\mathbf{1}$
- 性质:
 - 1. 每一个极大项当其赋值与编码相同时,其真值为F,在其余 2^n-1 种赋值下其真值均为T
 - 2. 任意两个不同极大项当析取式永真,即 $M_i \lor M_j \Leftrightarrow T(i \neq j)$
 - 3. 所有极大项当合取式永假,记为 $\prod_{i=0}^{2^n-1}M_i \Leftrightarrow M_0 \wedge M_1 \wedge \ldots \wedge M_{2^n-1} \Leftrightarrow F$

主合取范式: 设 P_1 、 P_2 、...、 P_n 是命题公式A中包含的所有命题变元,由 P_1 、 P_2 、...、 P_n 的若干极大项**合取**所构成的合取范式与A**等价**

在一个命题公式A的真值表中,使A的**真值为F**的所有赋值所对应的**极大项**构成的合取范式即为A的主合取范式

步骤:

- 1. 将原命题公式转化为合取范式
- 2. 将每个析取式等价变换为若干极大项的合取,对每个合取式填补没有出现的变元, 合取 $\neg P \land P$,再应用分配率展开
- 3. 重复的极大项只保留一个

定理:已知由n个不同命题变元构成的命题公式A的**主析取范式**为 $\sum (i_1,i_2,\ldots,i_k)$,**主合取范式**为 $\prod (j_1,j_2,\ldots,j_t)$,则有

$$\{i_1,i_2,\ldots,i_k\} \cup \{j_1,j_2,\ldots,j_t\} = \{0,1,2,\ldots,2^n-1\} \ \{i_1,i_2,\ldots,i_k\} \cap \{j_1,j_2,\ldots,j_t\} = arnothing$$

6、联结词的完备集

- 条件否定: \rightarrow $p \rightarrow Q \Leftrightarrow \neg (P \rightarrow Q)$
- 异或 (不可兼或) : \oplus $P \oplus Q \Leftrightarrow \neg(P \leftrightarrow Q) \Leftrightarrow (P \land \neg Q) \lor (\neg P \land Q)$

• 或非: \downarrow $P \downarrow Q \Leftrightarrow \neg (P \lor Q)$

与非: ↑
P↑Q ⇔¬(P∧Q)

全功能联结词集合:给定一个联结词集合,如果所有的命题公式都能用其中的联结词等价表示 出来,则称该联结词集合是功能完备的

极小全功能联结词集合:一个联结词集合是全功能的,并且去掉其中任意一个联结词后均不是 全功能的

命题逻辑的推理理论

设 H_1 、 H_2 、...、 H_n 、C是命题公式,若 $H_1 \wedge H_2 \wedge ... \wedge H_n \Rightarrow C$,则称C是一组**前**提 H_1 、 H_2 、...、 H_n 的**有效结论**,或者称C可由前提 H_1 、 H_2 、...、 H_n 逻辑推出,称为**推理、论证、证明**

推理规则:

- **P规则**:在推导过程中,前提可以在任何步骤引入
- **T规则**:在推导过程中,如果由已经推出的一个或多个公式蕴含S,则公式S可以引入到推导过程中 证明方法:
- 1. 无义证明法:如果能够证明**P恒为假,则有P o Q恒为真**,即 $P\Rightarrow Q$
- 2. 平凡证明法:如果能够证明**Q恒为真,则有P o Q恒为真**,即 $P\Rightarrow Q$
- 3. 直接证明法: 从一组前提出发, 利用公认的推理规则逻辑演绎得到有效结论
- 4. 归谬法:

设 P_1 、 P_2 、 \dots 、 P_n 是命题公式 H_1 、 H_2 、 \dots 、 H_m 中的所有命题变元,如果存在 P_1 、 P_2 、 \dots 、 P_n 的一种赋值,使得 $H_1 \wedge H_2 \wedge \dots \wedge H_m$ 的真值为T,则称命题公式集 合 $\{H_1, H_2, \dots, H_m\}$ 是一致的、相容的,否则称为不一致的、不相容的

$$H_1$$
、 H_2 、...、 H_n 、 C 是命题公式,如果存在公式R,使得 H_1 、 H_2 、...、 H_n 、 $\neg C \Rightarrow R \land \neg R \Leftrightarrow F$,则有 H_1 、 H_2 、...、 $H_n \Rightarrow C$

5. **CP规则法(附加证明法)**:

设 H_1 、 H_2 、 \dots 、 H_n 、R、C是命题公式,根据输出律可知, $(H_1 \wedge H_2 \wedge \dots \wedge H_n) \to (R \to C) \Leftrightarrow (H_1 \wedge H_2 \wedge \dots \wedge H_n \wedge R) \to C$,将结论的前件R作为附加前提

定律	定律描述	定律代号
对合律	$\neg\neg P \Leftrightarrow P$	E_1
等暴律	$P \wedge P \Leftrightarrow P$	E_2
等幂律	$P \vee P \Leftrightarrow P$	E_3
交换律	$P\wedgeQ \Leftrightarrow Q\wedgeP$	E_4
交换律	$P \vee Q \Leftrightarrow Q \vee P$	E_{5}
结合律	$P \wedge \big(Q \wedge R \big) \Leftrightarrow \big(P \wedge Q \big) \wedge R$	E_{6}
结合律	$P \vee (Q \vee R) \Leftrightarrow (P \vee Q) \vee R$	E_{7}
分配律	$P \wedge (Q \vee R) \Leftrightarrow (P \wedge Q) \vee (P \wedge R)$	E_8
分配律	$P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$	E_{9}
德摩根律	$\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$	E_{10}
德摩根律	$\neg(P \lor Q) \Leftrightarrow \neg P \land \neg Q$	E_{11}
吸收律	$P \wedge \big(P \vee Q \big) \Leftrightarrow P$	E_{12}
吸收律	$P \vee (P \wedge Q) \Leftrightarrow P$	E_{13}
蕴含律	$P \to Q \Leftrightarrow \neg P \vee Q$	E_{14}
双条件律	$P\leftrightarrow Q \Leftrightarrow (P\to Q) \wedge (Q \to P)$	E_{15}
零律	$P \wedge F \Leftrightarrow F$	E_{16}
零律	$P \vee T \Leftrightarrow T$	E ₁₇
同一律	$P \wedge T \Leftrightarrow P$	E_{18}
同一律	$P \vee F \Leftrightarrow P$	E_{19}
矛盾律	$P \wedge \neg P \Leftrightarrow F$	E_{20}
排中律	$P \vee \neg P \Leftrightarrow T$	E_{21}
輸出律	$(P \land Q) \to R \Leftrightarrow P \to (Q \to R)$	E_{22}
归谬律	$(P \to Q) \land (P \to \neg Q) \Leftrightarrow \neg P$	E_{23}
逆反律	$P \rightarrow Q \Leftrightarrow \neg Q \rightarrow \neg P$	E_{24}

定律	定律描述	定律代号
直推式	$P \Rightarrow P$	I_1
化简式	$P\wedge Q \Rightarrow P$	I_2
化简式	$P\wedge Q \Rightarrow Q$	I_3
附加式	$P \Rightarrow P \vee Q$	I_4
附加式	$\mathrm{Q}\Rightarrow\mathrm{P}\vee\mathrm{Q}$	I_5
变形附加式	$\neg P \Rightarrow P \rightarrow Q$	I_6
变形附加式	$Q\Rightarrow P o Q$	I_7
变形附加式	$\neg(\mathrm{P}\rightarrow\mathrm{Q})\Rightarrow\mathrm{P}$	I_8
变形附加式	$\neg(P o Q) \Rightarrow \neg Q$	I_9
假言推理	$P \wedge (P \to Q) \Rightarrow Q$	I_{10}
拒取式	$\neg Q \land (P \to Q) \Rightarrow \neg P$	I_{11}
析取三段论	$\neg P \land (P \lor Q) \Rightarrow Q$	I_{12}
前提三段论	$(P \to Q) \land (Q \to R) \Rightarrow P \to R$	I_{13}
构造性二难推理	$(P \vee Q) \wedge (P \to R) \wedge (Q \to S) \Rightarrow (R \vee S)$	I_{14}
破坏性二难推理	$\left(\neg R \vee \neg S\right) \wedge \left(P \to R\right) \wedge \left(Q \to S\right) \Rightarrow \left(\neg P \vee \neg Q\right)$	I_{15}
合取二难推理	$(P \wedge Q) \wedge (P \to R) \wedge (Q \to S) \Rightarrow R \wedge S$	I_{16}
逆条件附加	$(\mathrm{P} \rightarrow \mathrm{Q}) \Rightarrow (\mathrm{Q} \rightarrow \mathrm{R}) \rightarrow (\mathrm{P} \rightarrow \mathrm{R})$	I_{17}
条件归并	$(\mathrm{P} \to \mathrm{Q}) \wedge (\mathrm{R} \to \mathrm{S}) \Rightarrow (\mathrm{P} \wedge \mathrm{R}) \to (\mathrm{Q} \wedge \mathrm{S})$	I_{18}
双条件三段论	$(P \leftrightarrow Q) \wedge (Q \leftrightarrow R) \Rightarrow (P \leftrightarrow R)$	I_{19}
前后件附加	$\mathrm{P} \to \mathrm{Q} \Rightarrow (\mathrm{P} \vee \mathrm{R}) \to (\mathrm{Q} \vee \mathrm{R})$	I_{20}
前后件附加	$P \to Q \Rightarrow (P \land R) \to (Q \land R)$	I_{21}