The China Syndrome

local labor market effects of import competition in the United States

Author: David H. Autor; David Dorn; Gordon H. Hanson

Reported by:MENG Ke

China Institute for WTO Studies, UIBE

September 13, 2022

The China Syndrome

Author: David H. Autor; David Dorn; Gordon H. Hanson

Reported by:MENG Ke

Content

troduction onclusion

A Shift-Share Meth

measurement

Strategy

Result

Beyond manufacturing population effect employmet effect

Public transfer paym Household income

_ . . .

Content

Introduction

Conclusion Background A Shift-Share Method

Data Sources & measurement

Empirical approach IV Strategy Result

Beyond manufacturing

population effect employmet effect Wage effect Public transfer payment Household income Robustness check

Conclusion

The China Syndrome

Author: David H. Autor; David Dorn; Gordon H. Hanson

Reported by:MENG Ke

Content

Introduction

Background A Shift-Share Met

ata Sources

impirical approach

Result

anufacturing copulation effect employmet effect Vage effect

Public transfer payme Household income Robustness check

Content

Introduction

Conclusion
Background
A Shift-Share Method

Data Sources & measurement

Empirical approach IV Strategy Result

Beyond manufacturing
population effect
employmet effect
Wage effect
Public transfer payment
Household income
Robustness check

Conclusion

The China Syndrome

Author: David H. Autor; David Dorn; Gordon H. Hanson

Reported by:MENG Ke

Content

Introduction

Background A Shift-Share Metho

ata Sources

kmeasurement

Empirical approach

IV Strategy

IV Strateg Result

> eyond nanufacturing population effect employmet effect

wage епест Public transfer pay Household incom

Conclusion

Introduction

Conclusion

Background
A Shift-Share Metho

ata Sources measurement

Empirical approach

Result

Beyond manufacturing population effect

employmet effect Nage effect Public transfer pa

Public transfer pa Household incon

Canalusian

Main conclusions of this paper:

conclusion

- ► The EXPOSURE to Chinese import competition affects US local labor markets
- The rising EXPOSURE increase unemployment, lowers labor force participation and reduces wages in local labor market.
- This effect explains 1/4 of the contemporaneous aggregate decline in U.S. manufacturing employment.

Background

- ► After China's accession to the WTO, its economic growth has been impressive, China's exports to the world increase at a skyrocked way.
- Unequal wages in the U.S. labor market, rising unemployment in manufacturing.
- ► The share of total U.S. spending on Chinese goods rose from 0.6% in 1991 to 4.6% in 2007.

The China Syndrome

Author: David H. Autor; David Dorn; Gordon H. Hanson

Reported by:MENG Ke

Content

ntroduction

Background

Data Sources

kmeasurement

IV Strategy

Beyond manufacturing population effect employmet effect

lage effect ublic transfer payme lousehold income

KODUSTIESS CHE

Background

Figure 1.

Import Penetration Ratio for U.S. Imports from China (left scale), and Share of U.S. Working-Age Population Employed in Manufacturing (right scale).

The China Syndrome

Author: David H. Autor; David Dorn; Gordon H. Hanson

Reported by:MENG Ke

Conte

Introduction

Background

A Shift-Share Method

Data Sources &measurement

mpirical approach V Strategy Result

Beyond manufacturing

population effect employmet effect Wage effect Public transfer paymer Household income

Table 1. Value of Trade with China for the U.S. and Other Selected High-Income Countries and Value of Imports from all other Source Countries, 1991/1992-2007.

	I. Trade with China	(in BN 2007 US\$)	II. Imports fron	Other Countries (i	n BN 2007 US\$)
	Imports from China (1)	Exports to China (2)	Imports from Other Low-Inc. (3)	Imports from Mexico/Cafta (4)	Imports from Rest of World (5)
			A. United States		
1991/92	26.3	10.3	7.7	38.5	905.8
2000	121.6	23.0	22.8	151.6	1865.5
2007	330.0	57.4	45.4	183.0	2365.9
Growth 1991-07	1156%	456%	491%	375%	161%
		B. 8 O	ther Developed Count	ries	
1991/92	28.2	26.6	9.2	2.8	1708.8
2000	94.3	68.2	13.7	5.3	1979.8
2007	262.8	196.9	31.0	11.6	3339.3
Growth 1991-07	832%	639%	236%	316%	95%

The China Syndrome

Author: David H. Autor; David Dorn; Gordon H. Hanson

Reported by:MENG Ke

Lontent

Conclusion

Background
A Shift-Share Method

ata Sources

npirical approac Strategy esult

Beyond
manufacturing
population effect

nploymet effect age effect blic transfer payme ousehold income

a maluada m

Shift-Share

OUESTION: What is EXPOSURE?

Shift-share: Consider regional economic changes as a dynamic process

$$\Delta \text{IPW}_{uit} = \sum_{j} rac{L_{ijt}}{L_{it}} rac{\Delta M_{ucjt}}{L_{uit}}$$

$$\Delta \mathsf{IPW}_{\mathsf{oit}} = \sum_{\mathsf{j}} rac{\mathsf{L}_{\mathsf{ijt-1}}}{\mathsf{L}_{\mathsf{it-1}}} rac{\Delta \mathsf{M}_{\mathsf{ocjt}}}{\mathsf{L}_{\mathsf{uit-1}}}$$

i:region i:industry t:time M:import from China L:employment

The China Syndrome

Author: David H. Autor: David Dorn: Gordon H. Hanson

Reported by:MENG

A Shift-Share Method

Content

Introduction
Conclusion
Background
A Shift-Share Method

Data Sources & measurement

Empirical approach
IV Strategy
Result

Beyond manufacturing
population effect
employmet effect
Wage effect
Public transfer payment
Household income
Robustness check

Conclusion

The China Syndrome

Author: David H. Autor; David Dorn; Gordon H. Hanson

Reported by:MENG Ke

content

Introduction

Conclusion

Background

A Shift-Share Metho

Data Sources &measurement

Empirical approach
IV Strategy

Result

opulation effect mploymet effect /age effect ublic transfer paym

Robustness ch

- Export:from UN comtrade (HS6 digit)
- ► Employment: Employment data for 397 manufacturing industries comes from County **Business Patterns data**
- ► US regional(i): Commuting Zones (CZs)

The China Syndrome

Author: David H. Autor; David Dorn; Gordon H. Hanson

Reported by:MENG

Data Sources &measurement

Table 1. Value of Trade with China for the U.S. and Other Selected High-Income Countries and Value of Imports from all other Source Countries, 1991/1992-2007.

	I. Trade with China	(in BN 2007 US\$)	II. Imports fron	n Other Countries (i	n BN 2007 US\$)
	Imports from China (1)	Exports to China (2)	Imports from Other Low-Inc. (3)	Imports from Mexico/Cafta (4)	Imports from Rest of World (5)
			A. United States		
1991/92	26.3	10.3	7.7	38.5	905.8
2000	121.6	23.0	22.8	151.6	1865.5
2007	330.0	57.4	45.4	183.0	2365.9
Growth 1991-07	1156%	456%	491%	375%	161%
		B. 8 O	ther Developed Count	ries	
1991/92	28.2	26.6	9.2	2.8	1708.8
2000	94.3	68.2	13.7	5.3	1979.8
2007	262.8	196.9	31.0	11.6	3339.3
Growth 1991-07	832%	639%	236%	316%	95%

The China Syndrome

Author: David H. Autor; David Dorn; Gordon H. Hanson

Reported by:MENG Ke

Content

مرم تغمر بالم مسغ

Conclusion

A Shift-Share Metho

Data Sources &measurement

Empirical approach
IV Strategy
Result

eyond

population effect employmet effect Wage effect Public transfer payment Household income

- Export:from UN comtrade (HS6 digit)
- ► Employment: Employment data for 397 manufacturing industries comes from County **Business Patterns data**
- ► US regional(i): Commuting Zones (CZs)

The China Syndrome

Author: David H. Autor; David Dorn; Gordon H. Hanson

Reported by:MENG

Data Sources &measurement

X:exposure

Appendix Table 1. Descriptive Statistics for Growth of Imports Exposure per Worker across C'Zones

I. 1990-20	000	II. 2000-2007								
A. Percentiles										
90th percentile	2.05	90th percentile	4.30							
75th percentile	1.32	75th percentile	3.11							
50th percentile	0.89	50th percentile	2.11							
25th percentile	0.62	25th percentile	1.60							
10th percentile	0.38	10th percentile	1.03							

The China Syndrome

Author: David H. Autor; David Dorn; Gordon H. Hanson

Reported by:MENG Ke

Content

Introduction

Conclusion

васкдгоипа A Shift-Share Meth

Data Sources &measurement

&measurement

IV Strateg

eyond

opulation effect nploymet effect age effect iblic transfer paymei

obustness che

X:exposure

ink,	B. Largest and Sn	nallest Value	es among the 40 Largest C'Zo	ones	-8	Author: David Autor; David Gordon H. Ha
1	San Jose, CA	3.15	San Jose, CA	7.32		Reported by:
2	Providence, RI	2.59	Providence, RI	4.99		Ke Ke
3	Buffalo, NY	2.24	Los Angeles, CA	3.59		
4	Boston, MA	1.55	San Diego, CA	3.08		
5	Portland, OR	1.53	Portland, OR	2.96		
6	San Diego, CA	1.52	Pittsburgh, PA	2.95		Background
7	Newark, NJ	1.32	Chicago, IL	2.93		A Shift-Share Me
8	Los Angeles, CA	1.28	Milwaukee, WI	2.93		Data Sources &measuremen
9	Bridgeport, CT	1.27	Boston, MA	2.79		
10	Denver, CO	1.23	Dallas, TX	2.77		IV Strategy Result
20	Forth Worth, TX	0.83	Columbus, OH	1.90		
21	Phoenix, AZ	0.83	Phoenix, AZ	1.90		manufacturing population effect
31	Atlanta, GA	0.61	Fresno, CA	1.56		employmet effec Wage effect
32	Pittsburgh, PA	0.56	St. Louis, MO	1.53		Public transfer pa
33	Sacramento, CA	0.53	Tampa, FL	1.49		Robustness chec
34	Kansas City, MO	0.51	Atlanta, GA	1.31		
35	West Palm Beach, FL	0.48	Baltimore, MD	1.25		
36	Fresno, CA	0.47	West Palm Beach, FL	1.22		
37	Orlando, FL	0.46	Kansas City, MO	1.13		
38	Houston, TX	0.45	Washington, DC	0.86		
39	Washington, DC	0.21	New Orleans, LA	0.70		
40	New Orleans, LA	0.19	Orlando, FL	0.59	90	

The China Syndrome

Y:dependent variable

Appendix Table 2. Means and Standard Deviations of Commuting Zone Variables.

		I. Levels		II. 10-Year E	quivalent Chg
	1990/1991 (1)	2000	2007	1990-2000 (4)	2000-2007
(Imports from China to US)/(Workers	0.29	1.32	3.58	1.14	n/a
in 1990) (in kUS\$)	(0.32)	(1.18)	(2.84)	(0.99)	
(Imports from China to US)/(Workers	0.25	1.08	2.92	n/a	2.63
in 2000) (in kUS\$)	(0.27)	(0.90)	(2.13)		(2.01)
Percentage of working age pop	12.69	10.51	8.51	-2.07	-2.73
employed in manufacturing	(4.80)	(4.45)	(3.60)	(1.63)	(1.80)
Percentage of working age pop	57.75	59.16	61.87	1.29	3.70
employed in non-manufacturing	(5.91)	(5.24)	(4.95)	(2.38)	(2.71)
Percentage of working age pop	4.80	4.28	4.87	-0.51	0.85 (1.39)
unemployed	(0.99)	(0.93)	(0.90)	(0.73)	
Percentage of working age pop not in	24.76	26.05	24.75	1.29	-1.82
the labor force	(4.34)	(4.39)	(3.70)	(2.56)	(2.57)
Percentage of working age pop	1.86	2.75	3.57	0.91	1.23
receiving disability benefits	(0.63)	(1.04)	(1.41)	(6.38)	(0.71)
Average log weekly wage,	655	666	671	11.4	7.8
manufacturing sector (in log pts)	(17)	(17)	(19)	(6.4)	(7.7)
Average log weekly wage, non-	637	650	653	12.5	3.5 (4.3)
manufacturing sectors (in log pts)	(16)	(15)	(16)	(4.1)	

The China Syndrome

Author: David H. Autor; David Dorn; Gordon H. Hanson

Reported by:MENG Ke

Content

Conclusion Background

Data Sources &measurement

mpirical approach
IV Strategy
Result

nanufacturing
population effect
employmet effect
Wage effect
Public transfer paymen

`analua'an

Y:dependent variable

Appendix Table 2. Means and Standard Deviations of Commuting Zone Variables.

		I. Levels		II. 10-Year E	quivalent Chg
-	1990/1991 (1)	2000	2007	1990-2000 (4)	2000-2007
Average individual transfers per capita	3338	4297	5544	(334.0)	1844.0
(in US\$)	(692)	(908)	(1091)		(437.6)
Average retirement benefits per capita	1121	1262	1398	150.5	206.2
(in US\$)	(284)	(310)	(338)	(79.3)	(120.4)
Average disability benefits per capita (in US\$)	136	213	300	78.2	128.3
	(46)	(77)	(112)	(39.8)	(61.5)
Average medical benefits per capita (in US\$)	1115	1789	2564	698.3	1142.8
	(371)	(552)	(679)	(231.9)	(288.5)
Average federal income assistance per capita (in US\$)	298	270	303	-24.8	52.2
	(136)	(134)	(129)	(43.6)	(46.0)
Average unemployment benefits per	106	86	108	-19.1	34.1
capita (in US\$)	(52)	(43)	(55)	(29.4)	(41.0)
Average TAA benefits per capita (in US\$)	0.6 (0.6)	1.1 (1.0)	2.2 (2.7)	0.5 (0.9)	1.6 (3.3)
Avg household income per working age adult (in US\$)	32122	38126	37909	5964	-367
	(6544)	(7743)	(7501)	(2358)	(2646)
Avg household wage and salary income	23496	27655	28872	4152	1703
per w. age adult (in US\$)	(4700)	(5449)	(6304)	(1569)	(2623)

The China Syndrome

Author: David H. Autor; David Dorn; Gordon H. Hanson

Reported by:MENG Ke

Content Introduction

> Background A Shift-Share Method

Data Sources &measurement

V Strategy Lesult

lanufacturing
lopulation effect
lopuloymet effect
Vage effect
lublic transfer payment
Household income

Content

Introduction
Conclusion
Background
A Shift-Share Method

Data Sources & measurement

Empirical approach IV Strategy Result

Beyond manufacturing
population effect
employmet effect
Wage effect
Public transfer payment
Household income
Robustness check

Conclusion

The China Syndrome

Author: David H. Autor; David Dorn; Gordon H. Hanson

Reported by:MENG Ke

Content

Introduction

Conclusion Background

Data Sources

omeasurement.

Empirical approach

IV Strate

eyond nanufacturing population effect employmet effect

Wage effect Public transfer pay Household income

Conclusion

instrumental variable strategy

$$\Delta \mathsf{IPW}_{\mathsf{uit}} = \sum_{\mathsf{j}} \frac{\mathsf{L}_{\mathsf{ijt}}}{\mathsf{L}_{\mathsf{ujt}}} \frac{\Delta \mathsf{M}_{\mathsf{ucjt}}}{\mathsf{L}_{\mathsf{it}}} \ (1)$$

$$\Delta \mathsf{IPW}_{\mathsf{oit}} = \sum_{\mathsf{j}} \frac{\mathsf{L}_{\mathsf{ijt}-1}}{\mathsf{L}_{\mathsf{ujt}-1}} \frac{\Delta \mathsf{M}_{\mathsf{ocjt}}}{\mathsf{L}_{\mathsf{it}-1}}$$
 (2)

- Endogeneity: U.S. imports from China in (1) may be correlated with industry labor demand shocks.
- employ an instrumental variables using the exogenous component of Chinese imports.
- using data on contemporaneous industry-level growth of Chinese exports to other high-income markets; Build exposure as shown in (2)

The China Syndrome

Author: David H. Autor; David Dorn; Gordon H. Hanson

Reported by:MENG Ke

Conter

troduction

Conclusion

Background

A Shift-Share Method

ata Sources !measurement

mpirical approach

IV Strategy

Result

Beyond manufacturing population effect employmet effect Wage effect

Public transfer payme Household income Robustness check

Conclusion

instrumental variable strategy

$$\Delta \mathsf{L}_{\mathsf{it}}^{\mathsf{m}} = \gamma_{\mathsf{t}} + \beta_{1} \Delta \mathsf{IPW}_{\mathsf{uit}} + \mathsf{X}_{\mathsf{it}} \dot{\beta}_{2} + \mathsf{e}_{\mathsf{ct}}$$

The China Syndrome

Author: David H. Autor; David Dorn; Gordon H. Hanson

Reported by:MENG Ke

Content

atroductic

Conclusion

Background

A Shift-Share Metho

ata Sources

nnirical annroach

IV Strategy

Result

Beyond manufactu

manufacturing population effect employmet effect Wage effect

Public transfer paymer Household income

Result

$$\Delta \mathsf{L}_{\mathsf{it}}^{\mathsf{m}} = \gamma_{\mathsf{t}} + \beta_{1} \Delta \mathsf{IPW}_{\mathsf{uit}} + \mathsf{X}_{\mathsf{it}} \dot{\beta}_{2} + \mathsf{e}_{\mathsf{ct}}$$

Table 2. Imports from China and Change of Manufacturing Employment in Commuting Zones, 1970-2007: 2SLS Estimates.

Dependent Variable: 10 x Annual Change in Manufacturing Emp/Working Age Pop (in %pts)

		1990-20	07			II. 1970-1990 (Pre-Exposure)					
	1990- 2000 (1)		2000- 2007 (2)		1990- 2007 (3)		1970- 1980 (4)		1980- 1990 (5)	1970- 1990 (6)	
(Δ Current Period Imports from China to US)/Worker	-0.89 (0.18)	**	-0.72 (0.06)	**	-0.75 (0.07)	**					
(∆ Future Period Imports from China to US)/Worker							0.43	**	-0.13 (0.13)	0.15	

Notes: N=722, except N=1444 in stacked first difference models of columns 3 and 6. The variable 'future period imports' is defined as the average of the growth of a CZ's import exposure during the periods 1990-2000 and 2000-2007. All regressions include a constant and the models in columns 3 and 6 include a time dummy. Robust standard errors in parentheses are clustered on state, Models are weighted by start of period commuting zone share of national population, ~ p ≤ 0.10, * p ≤ 0.05, ** p ≤ 0.01.

The China Syndrome

Author: David H. Autor: David Dorn: Gordon H. Hanson

Reported by:MENG

Result

Wage effect

2SLS Estimates.

Dependent Var: 10 x Annual Change in Manufacturing Emp/Working Age Pop (in %pts)

			I. 1	1990	-2007 St	acke	d First I	oiffe	rences			
	(1)		(2)		(3)		(4)		(5)		(6)	_
(Δ Imports from China to US)/Worker	-0.746 (0.068)		-0.610 (0.094)		-0.538 (0.091)		-0.508 (0.081)		-0.562 (0.096)		-0.596 (0.099)	•••
Percentage of employment in manufacturing,			-0.035 (0.022)		-0.052 (0.020)	**	-0.061 (0.017)	**	-0.056 (0.016)	**	-0.040 (0.013)	**
Percentage of college-educated population.							-0.008 (0.016)				0.013 (0.012)	
Percentage of foreign-born population. ₁							-0.007 (0.008)				0.030 (0.011)	••
Percentage of employment among women. ₁							-0.054 (0.025)	•			-0.006 (0.024)	
Percentage of employment in routine occupations. ₁									-0.230 (0.063)	**	-0.245 (0.064)	**
Average offshorability index of occupations.1									0.244 (0.252)		-0.059 (0.237)	
Census division dummies	No		No		Yes		Yes		Yes		Yes	
				Π.	2SLS Fir	rst S	tage Esti	mat	es			
(Δ Imports from China to OTH)/Worker	0.792 (0.079)	••	0.664 (0.086)	••	0.652 (0.090)	••	0.635 (0.090)	••	0.638 (0.087)	••	0.631 (0.087)	••
\mathbb{R}^2	0.54		0.57		0.58		0.58		0.58		0.58	

The China Syndrome

Author: David H. Autor; David Dorn; Gordon H. Hanson

Reported by:MENG Ke

Conten

Introduc

Conclusion Background

ata Sources

npirical appro

Result

levend

opulation effect
inploymet effect
lage effect
ublic transfer paymer
ousehold income

Content

Introduction
Conclusion
Background
A Shift-Share Method

Data Sources & measurement

Empirical approach IV Strategy Result

Beyond manufacturing

population effect employmet effect Wage effect Public transfer payment Household income Robustness check

Conclusion

The China Syndrome

Author: David H. Autor; David Dorn; Gordon H. Hanson

Reported by:MENG Ke

Content

Introduction

Conclusion

Background

A Shift-Share M

Data Sources

ımeasurement

mpirical approach

IV Strategy

Result Bevond

manufacturing

mploymet effect

Public transfer pay Household incom

Robustness ch

population effect

Table 4. Imports from China and Change of Working Age Population in Commuting Zones, 1990-2007: 2SLS Estimates.

Depe	ndent Varial	bles:		SLS Estimates.	ges in Headco	unts (in log pts)		
		I. By	Education I	Level		II. By Age Group		
	All (1)		College (2)	Non-College (3)	Age 16-34 (4)	Age 35-49 (5)	Age 50-64 (6)	
			A. No C	ensus Division D	ummies or Ot	ther Controls		
(Δ Imports from China to US)/Worker	-1.031 (0.503)	٠	-0.360 (0.660)	-1.097 (0.488)	-1.299 (0.826)	-0.615 (0.572)	-1.127 (0.422)	••
\mathbb{R}^2	15		0.03	0.00	0.17	0.59	0.22	
			B. Co	ontrolling for Cen	sus Division I	<u>Dummies</u>		
(∆ Imports from China to US)/Worker	-0.355 (0.513)		0.147 (0.619)	-0.240 (0.519)	-0.408 (0.953)	-0.045 (0.474)	-0.549 (0.450)	
\mathbb{R}^2	0.36		0.29	0.45	0.42	0.68	0.46	
				C. Full	Controls			
(∆ Imports from China to US)/Worker	-0.050 (0.746)		-0.026 (0.685)	-0.047 (0.823)	-0.138 (1.190)	0.367 (0.560)	-0.138 (0.651)	
\mathbb{R}^2	0.42		0.35	0.52	0.44	0.75	0.60	

Notes: N=1444 (722 commuting zones x 2 time periods). All regression include a constant and a dummy for the 2000-2007 period. Models in Panel B and C also include Census Division dummies while Panel C adds the full vector of control variables from column 6 of Table 3. Robust standard errors in parentheses are clustered on state. Models are weighted by start of period commuting zone share of national population. $\sim p \le 0.05$, $**p \le 0.05$, $**p \le 0.01$.

The China Syndrome

Author: David H. Autor; David Dorn; Gordon H. Hanson

Reported by:MENG Ke

Content

Introduction

Conclusion Background

ata Sources

measurement

npirical approach ' Strategy esult

eyond

manufacturing population effect

npioymet errect lage effect ublic transfer paymer ousehold income

employmet effect

Table 5. Imports from China and Employment Status of Working Age Population within Commuting Zones, 1990-2007: 2SLS Estimates.

Dep Vars: 10-Year Equivalent Changes in Population Log Population Counts and Population Shares by Employment Status

	Mfg Emp		Non-Mfg Emp (2)		Unemp (3)		NILF (4)		SSDI Receipt (5)			
	A. 100 × Log Change in Population Counts											
(∆ Imports from China to US)/Worker	-4.231 (1.047)	**	-0.274 (0.651)		4.921 (1.128)	**	2.058 (1.080)	~	1.466 (0.557)	**		
			B. C	hange	in Popula	tion S	hares					
(Δ Imports from China to US)/Worker	-0.596 (0.099)	**	-0.178 (0.137)	All	0.221 (0.058)	evels	0.553 (0.150)	**	0.076 (0.028)	**		
				Co	llege Educa	tion						
(∆ Imports from China to US)/Worker	-0.592 (0.125)	**	0.168 (0.122)		0.119 (0.039)	**	0.304 (0.113)	**				
				No	College Edu	cation						
(∆ Imports from China to US)/Worker	-0.581 (0.095)	**	-0.531 (0.203)	**	(0.085)	**	0.831 (0.211)	**				

Notes: N=1444 (722 commuting zones x 2 time periods). All statistics are based on working age individuals (age 16 to 64). The effect of import exposure on the overall employment/population ratio can be computed as the sum of the coefficients for manufacturing and non-manufacturing employment; this effect is highly statistically significant ($p \le 0.01$) in the full sample and in all reported subsamples. All regressions include the full vector of control variables from column 6 of Table 3. Robust standard errors in parentheses are clustered on state. Models are weighted by start of period commuting zone share of national population. $\sim p \le 0.10$, $*p \le 0.05$, $*p \le 0.05$, $*p \le 0.05$.

The China Syndrome

Author: David H. Autor; David Dorn; Gordon H. Hanson

Reported by:MENG

Content

troduction onclusion ackground

ta Sources

npirical approach

/ Strategy tesult

eyond lanufacturing lopulation effect

population effect employmet effect

Wage effect
Public transfer payment
Household income
Robustness check

Wage effect

Table 6. Imports from China and Wage Changes within Commuting Zones, 1990-2007; 2SLS Estimates.

Dep Var: 10-Year Equivalent Change in Avg Log Weekly Wage (in log pts)

	All Workers (1)		Males (2)		Females (3)					
	A. All Education Levels									
(Δ Imports from China to US)/Worker	-0.759 (0.253)	**	-0.892 (0.294)	**	-0.614 (0.237)	**				
\mathbb{R}^2	0.56		0.44		0.69					
		B.	College Edu	cation						
(Δ Imports from China to US)/Worker	-0.757 (0.308)	*	-0.991 (0.374)	**	-0.525 (0.279)	~				
\mathbb{R}^2	0.52		0.39		0.63					
		C. N	o College E	ducation	<u>1</u>					
(Δ Imports from China to US)/Worker	-0.814 (0.236)	**	-0.703 (0.250)	**	-1.116 (0.278)	**				
\mathbb{R}^2	0.52		0.45		0.59					

Notes: N=1444 (722 commuting zones x 2 time periods). All regressions include the full vector of control variables from column 6 of Table 3. Robust standard errors in parentheses are clustered on state. Models are weighted by start of period commuting zone share of national population. $\sim p \le 0.05$, ** $p \le 0.05$.

The China Syndrome

Author: David H. Autor; David Dorn; Gordon H. Hanson

Reported by:MENG Ke

Conten

ntroduction Conclusion Background

ata Sources measurement

npirical approach Strategy

Beyond manufacturi

population effect employmet effect Wage effect

Wage effect Public transfer

Household income Robustness check

Wage effect

Table 7. Comparing Employment and Wage Changes in Manufacturing and outside Manufacturing, 1990-2007:

2SLS Estimates.

Dep Vars: 10-Year Equiv. Changes in Log Workers (in Log Pts) and Avg Log Weekly Wages (in %)

	I. 1	Man	ufacturing	Sect	or		II	. No	n-Manufa	cturi	ng			
	All Workers (1)		College (2)			_	All Workers (4)	9	College (5)		Non- College (6)			
								e in Number of Workers						
(∆ Imports from China to US)/Worker	-4.231 (1.047)	**	-3.992 (1.181)	••	-4.493 (1.243)	**	-0.274 (0.651)		(0.590)		-1.037 (0.764)			
\mathbb{R}^2	0.31		0.30		0.34		0.35		0.29		0.53			
				В	. Change	in Ave	erage Log V	Vage						
(Δ Imports from China to US)/Worker	0.150 (0.482)		0.458 (0.340)		-0.101 (0.369)		-0.761 (0.260)	••	-0.743 (0.297)	٠	-0.822 (0.246)	••		
\mathbb{R}^2	0.22		0.21		0.33		0.60		0.54		0.51			

Notes: N=1444 (722 commuting zones x 2 time periods). All regressions include the full vector of control variables from column 6 of Table 3. Robust standard errors in parentheses are clustered on state. Models are weighted by start of period commuting zone share of national population. ~ p ≤ 0.01, *p ≤ 0.05, *p ≤ 0.01.

The China Syndrome

Author: David H. Autor; David Dorn; Gordon H. Hanson

Reported by:MENG

Content

ntroduction Conclusion

Background A Shift-Share Method

measurement

mpirical approach

Result

nanufacturing

Wage effect

Public transfer payment Household income Robustness check

Public transfer payment

Table 8. Imports from China and Change of Government Transfer Receipts in Commuting Zones, 1990-2007: 2SLS Estimates.

Dep Vars: 10-Year Equivalent Log and Dollar Change of Annual Transfer Receipts per Capita (in log pts and US\$)

	Total Individ Transfers (1)		TAA Benefits (2)		Unemp- loyment Benefits (3)		SSA Re- tirement Benefits (4)	7	SSA Disability Benefits (5)	9	Medical Benefits (6)	Federal Income Assist (7)		Other Income Assist (8)	Educ/ Training Assist (9)	
						Α.	Log Chan	ge o	Transfer	Rec	eipts per Ca	pita				
(∆ Imports from China to US)/Worker	1.01 (0.33)	**	14.41 (7.59)	~	3.46 (1.87)	~	0.72 (0.38)	~	1.96 (0.69)	**	0.54 (0.49)	3.04 (0.96)	**	1.08 (2.20)	2.78 (1.32)	*
\mathbb{R}^2	0.57		0.28		0.48		0.36		0.32		0.27	0.54		0.37	0.33	
					E	3. D	ollar Char	nge (of Transfe	r Re	ceipts per C	Capita				
(∆ Imports from China to US)/Worker	57.73 (18.41)	**	0.23 (0.17)		3.42 (2.26)		10.00 (5.45)	~	8.40 (2.21)	**	18.27 (11.84)	7.20 (2.35)	**	4.13 (4.44)	3.71 (1.44)	**
\mathbb{R}^2	0.75		0.28		0.41		0.47		0.63		0.66	0.53		0.30	0.37	

Notes N=1444 (722 communing zones x 2 time periods), except N=1456 in column 2, panel A. Results for TAA henefits in column 2 are based on state-level data that is allocated to communing zones in proportion to unemployment benefits. Incemployment benefits is in column 3 include such benefits and federal unemployment for includia forlead employees, railroad employees, and veserans. Medical benefits in column 6 consist mainly of Medicare and Medicaid. Federal income assistance in column 7 comprises the SSI, AFD-C/TANE, and SNAP programs while other income assistance in column 8 consists mainly of general assistance. Education and training assistance in column 9 includes such benefits as interest parents on guaranteed student loans, Pell grans, and Job Gorpos henefits. The trainester exceptors displayed in column 2 to 9 account for 90% of total individual transfer receipts. All regressions include the full vector of control variables from column 6 of Table 3. Robust standard errors in parentheses are clustered on state. Models are weighted by start or foreired communing more ones have of national population. — p = 0.01, * = 5.00.5. * p = 5.00.1.

The China Syndrome

Author: David H. Autor; David Dorn; Gordon H. Hanson

Reported by:MENG Ke

Content

troduction

Conclusion Background

A Shift-Share Method

ieasurement

npirical approach

Strategy

eyond

manufacturing population effect employmet effect

Public transfer payment

Household income Robustness check

Household income

Table 9. Imports from China and Change in Household Income, 1990-2007: 2SLS Estimates.

Dependent Variable: 10-Year Equivalent Relative Growth and Absolute Dollar Change of Average and Median

Annual Household Income per Working-Age Adult (in %pots and USS)

	Average HH Income/Adult by Source								Median HH Inc./Ad.					
	Total (1)		Wage- Salary (2)		Business Invest (3)	SocSec +AFDC (4)		Total (5)		Wage- Salary (6)				
					A. Relative	Growth (%	opts)							
(Δ Imports from China to US)/Worker	-1.48 (0.36)	••	-2.14 (0.59)	••	-0.51 (0.74)	2.12 (0.58)		-1.73 (0.38)		-2.32 (0.51)	••			
\mathbb{R}^2	0.69		0.43		0.76	0.52		0.53		0.52				
					B. Dol	llar Change								
(Δ Imports from China to US)/Worker	-492.6 (160.4)	••	-549.3 (169.4)	**	40.1 (116.7)	17.3 (4.3)	••	-439.9 (112.7)	••	-476.5 (122.2)	••			
\mathbb{R}^2	0.63		0.40		0.72	0.51		0.49		0.48				

Notes: N=1444 (722 commuting zones x 2 time periods). Per capita household income is defined as the sum of individual incomes of all working age household members (age 16-64), divided by the number of household members of that age group. Total income comprises wage and salary income; self-employment, business and investment income; social security and welfare income; and income from other non-specified sources. Social security and welfare income in column 4 includes social security retirement, disability, and supplementary income, aid to families with dependent children (AFDC), and general assistance. All regressions include the full vector of control variables from column 6 of Table 3. Robust standard errors in parentheses are clustered on state. Models are weighted by start of period commuting zone share of national population. $\sim p \le 0.10$, * $p \le 0.05$, ** $p \le 0.01$.

The China Syndrome

Author: David H. Autor; David Dorn; Gordon H. Hanson

Reported by:MENG

Content

roduction

Lonciusion Background

Shift-Share Method

neasurement

npirical approach

IV Strategy Result

manufacturing
population effect
employmet effect

Wage effect Public transfer pay

Public transfer pays Household income

C - - - | - - - - - - - -

ata Sources measurement

Empirical approach

Result

manufacturing population effect employmet effect

> Vage effect ublic transfer pay

Household income

Robustness check

Conclusion

(1)modify the definition of exposure——China's growth not only displaces U.S. producers in the U.S. market but may also affect U.S. sales in the foreign markets that U.S. industries serve.

$$\sum_{j} \frac{E_{ijt}}{E_{ujt}} \frac{\Delta M_{ucjt} + \sum_{o \neq c} \frac{X_{oujt}}{X_{ojt} \Delta M_{ocjt}}}{E_{it}}$$

(2)Exposure to final Goods and Intermediate Inputs—using total China imports per worker less China imports of intermediate inputs per worker

$$\sum_{j} \frac{E_{ijt}}{E_{ujt}} \frac{\Delta M_{ucjt}}{E_{it}} - \sum_{j} \frac{E_{ijt}}{E_{ujt}} \frac{\Delta X_{cujt}}{E_{it}}$$

(4)An alternative to studying net import effects—use the gravity-based approach to measure the exposure

(5)Use the factor content of U.S. net imports from China to replace imports per worker

$$\sum_{j} \frac{E_{ijt}}{E_{ujt}} \frac{\tilde{E}_{uj0}}{V_{uj0}} \frac{\Delta M_{ucjt}}{E_{it}} - \sum_{j} \frac{E_{ijt}}{E_{ujt}} \frac{\tilde{E}_{uj0}}{V_{uj0}} \frac{\Delta X_{cujt}}{E_{it}}$$

The China Syndrome

Author: David H. Autor; David Dorn; Gordon H. Hanson

Reported by:MENG Ke

Conten

troduction

Background
A Shift-Share Met

ata Sources

Empirical approach
IV Strategy
Result

Beyond manufacturing population effect employmet effect

Vage effect Jublic transfer payme

Robustness check

C 1 :

Robustness check

Table 10. Adding Exposure to Indirect Import Competition or Exposure to Net Imports, 1990-2007: 2SLS and OLS Estimates.

Dependent Variables: 10-Year Equivalent Changes of Indicated Variables

	I. Emp	loym	ent/Pop	II. Lo	g Wages	1			ers, Wage Inc					
	Mfg (1)	Non-Mfg (2)		Mfg (3)			Log Transfers (5)	Avg Log HH Wage In (6)						
	1	A. Baseline Results: Gross Chinese Imports per Worker (2SLS)												
(∆ Imports from China to US)/Worker	-0.60 (0.10)	**	-0.18 (0.14)	0.15 (0.48)	-0.76 (0.26)	**	1.01 (0.33)	**	-2.14 (0.59)	ŵ				
	В. Г	ome	stic Plus Int	ernational l	Exposure to	Chi	nese Expo	orts	(2SLS)					
(∆ Domestic + Intn'l Exposure to Chinese Imports)/Worker	-0.42 (0.05)	**	-0.10 (0.10)	0.11 (0.33)	-0.47 (0.18)	**	0.87 (0.22)	**	-1.75 (0.43)	**				
		C. E	sposure to F	inal Goods	and Interm	edia	te Inputs	(2SL	<u>S)</u>					
(Δ Imports from China to US net of I'med Inputs)/Worker	-0.49 (0.12)	**	-0.01 (0.20)	0.71 (0.52)	-0.41 (0.37)		0.84 (0.36)	*	-1.47 (0.88)	*				
			D. Net C	hinese Imp	orts per Wo	rker	(2SLS)							
(Δ Net Imports of US from China)/Worker	-0.45 (0.10)	**	-0.09 (0.15)	0.45 (0.42)	-0.47 (0.27)	~	0.73 (0.35)	*	-1.64 (0.65)	*				
	E. Change in China-US Productivity Differential (OLS Gravity Residual)													
△ Comparative Advantage China (Gravity Residual)	-0.29 (0.04)	**	-0.03 (0.08)	0.04 (0.28)	-0.26 (0.15)	~	0.53 (0.14)	**	-0.93 (0.28)	**				
	1	F. Fac	tor Content	of Net Ch	inese Impor	ts pe	er Worker	(2S)	LS)					
(△ Factor Content of Net Imports from China)/Worker	-0.57 (0.10)	**	-0.12 (0.15)	(0.50)	-0.66 (0.26)	*	(0.36)	*	-1.90 (0.60)	**				

The China Syndrome

Author: David H. Autor; David Dorn; Gordon H. Hanson

Reported by:MENG Ke

Conten

ntroduc

Conclusion Background

ata Sources measurement

npirical approach

IV Strateg Result

manufacturing
population effect
employmet effect
Wage effect

ublic transfer payme lousehold income

Robustness check

Content

Introduction

Conclusion

A Shift-Share Method

Data Sources & measuremen

Empirical approach

IV Strategy Result

Beyond manufacturing

population effect employmet effect

Wage effect Public transfer payment

Household income

Robustness check

Conclusion

The China Syndrome

Author: David H. Autor; David Dorn; Gordon H. Hanson

Reported by:MENG Ke

Lontent

Introduction

Conclusion

A Shift-Share Method

ata Sources

Empirical approacl

IV Strategy

Beyond manufacturing

> mploymet effect Vage effect Jublic transfer pa

Public transfer pa Household incon

Conclusion

- The EXPOSURE to Chinese import competition affects US local labor markets
- ► The rising EXPOSURE increase unemployment, lowers labor force participation and reduces wages in local labor market
- This effect explains 1/4 of the contemporaneous aggregate decline in U.S. manufacturing employment.

Thank you

Thank you for listening!

The China Syndrome

Author: David H. Autor; David Dorn; Gordon H. Hanson

Reported by:MENG Ke

Conten

ntroductio

Conclusion Background

A Shift-Share Metho

Data Sources Emeasurement

Empirical approach

IV Strategy

Beyond manufacturing

employmet effect
Wage effect
Public transfer payme

Household income Robustness check

Questions?

The China Syndrome

Author: David H. Autor; David Dorn; Gordon H. Hanson

Reported by:MENG Ke