PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

Facultad de Matemática

Cálculo con Curvas Paramétricas

Dr. Claudio Rivera

Resumen: En este documento encontrará ejercicios de longitud de arco. Estos ejercicios fueron tomados en su mayoría del libro guía del curso MAT1620.

Copyright © 2015 Actualizado el: 24 de Junio de 2015

PENDIENTE

Sean x = x(t) e y = y(t) ecuaciones paramétricas que determinan una curva. Entonces

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

cada vez que $\frac{dx}{dt} \neq 0$.

RECTA TANGENTE

La ecuación de la **recta tangente** a la curva en $t=t_0$ es

$$y - y(t_0) = \frac{y'(t_0)}{x'(t_0)}(x - x(t_0))$$

Nota

En relación a la definición anterior:

- Si $y'(t_0) = 0$, entonces la recta es paralela al eje X.
- Si $x'(t_0) = 0$, entonces la recta es paralela al eje Y.

ÁREA BAJO LA CURVA

El **área** bajo la curva es

$$A = \int_{a}^{b} y(t)x'(t) dt$$

siempre que $y(t) \ge 0$ y $x'(t) \ge 0$.

Longitud de Arco

La longitud de arco es

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

ÁREA DE SUPERFICIE

Si la curva dada por las ecuaciones paramétricas x=x(t) e $y=y(t), a \le t \le b$, se hace girar en torno al eje X, el **área de la superficie** resultante está dada por

$$S = \int_{a}^{b} 2\pi y \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

Calcule $\frac{dy}{dx}$ para la ecuación paramétrica $x=t\sin(t),\,y=t^2+t.$

Determine la ecuación de la recta tangente a la curva de ecuación paramétrica $x=t^4+1,\,y=t^3+t,$ para t=-1.

Determine la ecuación de la recta tangente a la curva de ecuación paramétrica $x = e^{\sqrt{t}}$, $y = t - \ln(t^2)$, para t = 1.

Calcule dy/dx y d^2y/dx^2 , para la curva de ecuación paramétrica $x=4+t^2$, $y=t^2+t^3$. Además, determine los valores de t para los cuales la curva es cóncava hacia arriba.

$$\bullet$$
 $\frac{dy}{dx} =$

$$\bullet \ \frac{d^2y}{dx^2} =$$

$$\bullet$$
 $t \in$

Determine los puntos sobre la curva de ecuaciones paramétricas $x = 2\cos(t)$, $y = \sin(2t)$, donde la recta tangente es **horizontal**.

- *A* =
- *B* =

- C =
- D =

Determine los puntos sobre la curva de ecuaciones paramétricas $x = 2t^3 + 3t^2 - 12t$, $y = 2t^3 + 3t^2 + 1$, donde la recta tangente es **horizontal** y donde la recta tangente es **vertical**.

Determine los puntos donde la curva de ecuación paramétrica $x = \cos(t) + 2\cos(2t)$, $y = \sin(t) + 2\sin(2t)$ se curzan. Además, determine las ecuaciones de las rectas tangentes en dicho punto.

Respuesta.

 \bullet L_1 :

 \bullet L_2 :

Dada la curva de ecuaciones paramétricas $x=t^2-2t,\,y=\sqrt{t},$ determine el área de la región sobreada.

Determine el área de la región encerrada por la **astroide** $x = a\cos^3(t), y = a\sin^3(t).$

Determine el área bajo un arco de la **trocoide** de ecuación paramétrica $x = at - b\sin(t)$, $y = a - b\cos(t)$, con a > b.

Sea \mathcal{R} la región encerrada por el ciclo de la curva de ecuación paramétrica $x=t^2,$ $y=t^3-3t.$

- 1. Determine el área de \mathcal{R} .
- 2. Si \mathcal{R} se hace girar en torno al eje X, determine el volumen del sólido resultante.
- 3. Determine el centroide de \mathcal{R} .

Respuesta.

1.

2.

3.

Determine la longitud de la curva de ecuaciones paramétricas $x=3\cos(t)-\cos(3t)$, $y=3\sin(t)-\sin(3t)$, $0\leq t\leq\pi$.

Determine la longitud de la curva de ecuaciones paramétricas $x = \cos(t) + \ln\left(\tan\left(\frac{1}{2}t\right)\right)$, $y = \sin(t)$, $\pi/4 \le t \le 3\pi/4$.

Determine la longitud de la astroide $x = a\cos^3(t), y = a\sin^3(t)$, donde a > 0.

Determine el área de la superficie obtenida al girar la **astroide** de ecuación paramétrica $x = a \cos^3(t), y = a \sin^3(t)$ en torno al eje X.

Determine el área de la superficie obtenida al girar curva de ecuación paramétrica $x = 2\cos(t) - \cos(2t), y = 2\sin(t) - \sin(2t)$ en torno al eje X.

Determine el área de la superficie obtenida al girar curva de ecuación paramétrica $x=3t^2, \ y=3t-t^3, \ 0\leq t\leq 1$ en torno al eje Y.