CS60010: Deep Learning

Sudeshna Sarkar

Spring 2018

24 Jan 2019

Part 2

REGULARIZATION

Parameter Sharing

- Parameter sharing forces sets of parameters to be equal
- Only a subset of parameters (the unique set) need to be stored in memory (memory efficient than parameter tying, especially in CNN)
- Example case : parameter sharing in a convolution layer of CNN

Example of CNN filters

96 filters from AlexNet

BAGGING AND OTHER ENSEMBLE METHODS

The Concept of Bagging

Bagging

Boostrap aggregation: Reduce generalization error by combining models Procedure

- Split the input data to K clusters with N' examples
- Train a classifier with a random sampled cluster
- For testing, take each examples of test data to all classifier
- Each classifier votes on the output, take majority

Why does Bagging work?

- Consider K regression models (with minimize MSE).
- Suppose that each model make an error ϵ_i
- Errors drawn from a zero-mean multivariate normal dist. Variance $v = E[\epsilon_i^2]$ Covariance $c = E[\epsilon_i \epsilon_i]$
- Error made by the average prediction of models is: $\frac{1}{k}\sum_{i} \epsilon_{i}$
- The expected squared error of the ensemble predictor is

$$\mathbb{E}\left[\left(\frac{1}{k}\sum_{i}\epsilon_{i}\right)^{2}\right] = \frac{1}{k^{2}}\mathbb{E}\left[\sum_{i}\left(\epsilon_{i}^{2} + \sum_{i\neq j}\epsilon_{i}\epsilon_{j}\right)\right]$$
$$= \frac{1}{k^{2}}\left\{k\mathbb{E}\left[\epsilon_{i}^{2}\right] + k(k-1)\mathbb{E}\left[\epsilon_{i}\epsilon_{j}\right]\right\}$$
$$= \frac{1}{k}v + \frac{k-1}{k}c$$

If the errors are perfectly correlates, *c*=v, it will not work at all.

If the errors are perfectly uncorrelated, c=0, error will be only $\frac{1}{\nu}v$

Bagging

Bagging in Neural Networks

- Random initialization
- Random selection of minibatches
- Differences in hyperparameter
- ...

Usually discouraged when benchmarking algorithms for scientific papers, because of its power and reliability

- It's the benefit from the price of increased computations and memory

Dropout

References:

- 1. [1] Nitish Srivastava et al., "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", Journal of Machine Learning Research 15 (2014), 1929-1958
- 2. [2] Hinton, Geoffrey E., et al., "Improving neural networks by preventing co-adaptation of feature detectors." arXiv preprint arXiv:1207.0580 (2012).
- 3. [3] Krizhevsky, Alex et al., "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems. 2012.
- 4. [4] Wan, Li, et al. "Regularization of neural networks using dropconnect." Proceedings of the 30th international conference on machine learning (ICML-13). 2013. [5] Baldi, Pierre, and Peter Sadowski. "The dropout learning algorithm." Artificial intelligence 210 (2014): 78-122.

Overfitting

Excessive focus on train data, resulting in worse results on actual test data

Solutions for Overfitting

Regularization

- L1-norm penalty
- L2-norm penalty

Data augmentation

Dropout (2012)

- A method of bagging applied to neural networks
- An inexpensive but powerful method of regularizing a broad family of models

Batch Normalization (2015)

Research in Dropout

First proposed by G.E. Hinton (2012) Became popular by *AlexNet* (2012)

- Winner in ILSVRC-2012 (ImageNet challenge)
- AlexNet outperforms the other models at most 2x
- CNN model with ReLU, Dropout, Data augmentation, GPU
- Applied the dropout at Full-Connected layer

Reinforced by S. Nitish (2014)

Strengthen the theoretical background, extend to convolutional layer

Dropout

A technique that omits a portion of the network

- We can surly improve the performance by model combination like as Bagging concept
- However, if neural network is too deep to build the multiple models, it might be costly and inefficient
- Also, it takes long time to inference the input with multiple models

Dropout addressed the two problems

- Omit the neurons, to mimic the voting in ensemble technique, instead of building the multiple models

 Product the probability that a neurons will survive to weight, at inference level

Always

present

(b) At test time

Dropout

(a) Standard Neural Net

(b) After applying dropout.

Effect of Dropout

Avoid the co-adaptation

- Co-adaptation: the trend that some neurons tend to represent similar features
- Capture the clear features by avoiding co-adaptation

Effect of Dropout

Effects on image classification models for MNIST

(a) Without dropout

(b) Dropout with p = 0.5.

Dropout Modeling

(a) Standard network

$$z_i^{(l+1)} = \mathbf{w}_i^{(l+1)} \mathbf{y}^l + b_i^{(l+1)},$$

 $y_i^{(l+1)} = f(z_i^{(l+1)}),$

(b) Dropout network

$$r_j^{(l)} \sim \operatorname{Bernoulli}(p),$$
 $\widetilde{\mathbf{y}}^{(l)} = \mathbf{r}^{(l)} * \mathbf{y}^{(l)},$
 $z_i^{(l+1)} = \mathbf{w}_i^{(l+1)} \widetilde{\mathbf{y}}^l + b_i^{(l+1)},$
 $y_i^{(l+1)} = f(z_i^{(l+1)}).$

Dropout Modeling

Ensemble of Sub-Networks

Dropout Performance

MNIST: a standard toy data set of handwritten digits

Dropout Performance

MNIST results

Method	Unit Type	Architecture	Error %
Standard Neural Net (Simard et al., 2003)	Logistic	2 layers, 800 units	1.60
SVM Gaussian kernel	NA	NA	1.40
Dropout NN	Logistic	3 layers, 1024 units	1.35
Dropout NN	ReLU	3 layers, 1024 units	1.25
Dropout $NN + max$ -norm constraint	ReLU	3 layers, 1024 units	1.06
Dropout $NN + max$ -norm constraint	ReLU	3 layers, 2048 units	1.04
Dropout $NN + max$ -norm constraint	ReLU	2 layers, 4096 units	1.01
Dropout $NN + max$ -norm constraint	ReLU	2 layers, 8192 units	0.95
Dropout NN + max-norm constraint (Goodfellow et al., 2013)	Maxout	2 layers, (5×240) units	0.94

Dropout Performance

MNIST results

With fixed dropout rate, for different architectures

Dropout another effect: Sparsity

Can capture salient features

- Makes neurons more sparse
- Prevent co-adaptation

Mean Activation | Activation |

(b) Dropout with p = 0.5.

Hyper parameter p: the Dropout rate

- (a) fixed number of neurons, variable p
- (b) Relatively constant test error on 0.4~0.8 usually use p=0.5
- (c) fixed value of p
 - Lower test error on low p -- > increase number of neurons for low p

Figure 9: Effect of changing dropout rates on MNIST.

Effect of data set size on Dropout

Dropout is more powerful for larger dataset

DropConnect

A generalization of Dropout

- Dropout omit the all connections which related to the unit
- DropConnect only omit the connections and leave the unit alive

Original

Dropout

DropConnect

DropConnect Modeling

Notation

- h_i(I) is output value of a neuron
- w_{ij} is weight of connections j to i
- I_i is input of a neuron
- The standard neural networks

DropConnect neural networks

$$h_i(I) = \sum_{j=1}^n w_{ij} I_j$$

$$h_i(I) = \sum_{j=1}^n w_{ij} r_j I_j$$

$$h_t(I) = \sum_{j=1}^n r_{ij} w_{ij} I_j$$

DropConnect Performance

neuron	model	error(%)	voting
		5 network	error(%)
relu	No-Drop	1.62 ± 0.037	1.40
	Dropout	1.28 ± 0.040	1.20
	DropConnect	1.20 ± 0.034	1.12
sigmoid	No-Drop	1.78 ± 0.037	1.74
	Dropout	1.38 ± 0.039	1.36
	DropConnect	1.55 ± 0.046	1.48
tanh	No-Drop	1.65 ± 0.026	1.49
	Dropout	1.58 ± 0.053	1.55
	DropConnect	1.36 ± 0.054	1.35

Adversarial Training

References:

[1] Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." arXiv preprint arXiv:1412.6572 (2014). [2] Szegedy, Christian, et al. "Intriguing properties of neural networks." arXiv preprint arXiv:1312.6199 (2013).

Adversarial Examples

Definition

- Applying an imperceptible non-random perturbation to a test image, it is possible to arbitrarily change the network's prediction [2]

Examples

- With the same predict model,

Y = "panda"

With 0.577 confidence

Y = "gibbon"

With 0.993 confidence

Adversarial Examples

Definition

- Applying an imperceptible non-random perturbation to a test image, it is possible to arbitrarily change the network's prediction [2]

Examples

- With the same predict model,

 \times 0.07

=

Y = "panda"

With 0.577 confidence

Y = "gibbon"

With 0.993 confidence

Adversarial Examples

Correctly predicted sample

Adversarial examples

Adversarial Training

Formal description[2]

Minimize
$$\|\eta\|_2$$
 subject to $f(x + \eta) = l$ noise: η

$$x + \eta \in [0,1]^m$$

$$f(x) \neq l$$

More general description for neural network training[1]

Training as a regularization term

$$\tilde{J}(\theta, x, y) = \alpha J(\theta, x, y) + (1 - \alpha)J(\theta, x + \eta)$$

where, $\eta = \epsilon \operatorname{sign}(\nabla_x J(\theta, x, y))$

CS60010: Deep Learning

Sudeshna Sarkar

Spring 2019

OPTIMIZATION 30 Jan 2019

Stochastic Gradient Descent

Algorithm 2 Stochastic Gradient Descent at Iteration k

Require: Learning rate ϵ_k

Require: Initial Parameter θ

- 1. while stopping criteria not met do
- 2. Sample example $(x^{(i)}, y^{(i)})$ from training set
- 3. Compute gradient estimate:
- 4. $\widehat{g} \leftarrow + \nabla_{\theta} L(f(\mathbf{x}^{(i)}; \theta), \mathbf{y}^{(i)})$
- 5. Apply Update: $\theta \leftarrow \theta \epsilon \hat{g}$
- 6. end while

 ϵ_k is learning rate at step k

Sufficient convergence:

$$\sum_{k=1}^{\infty} \epsilon_k = \infty$$
 and $\sum_{k=1}^{\infty} \epsilon_k^2 < \infty$

In practice the learning rate is decayed linearly till iteration τ

$$\epsilon_k = (1 - \alpha)\epsilon_0 + \alpha \epsilon_\tau \text{ where } \alpha = \frac{k}{\tau}$$

Activation / Gradient distributions per layer

- An incorrect initialization can slow down or even completely stall the learning process
- Plot activation/gradient histograms for all layers of the network.

Gradients

Natural gradient: Rather than treating a change in every parameter equally, we need to scale each parameter's change according to how much it affects our network's entire output distribution.

Gradient Magnitudes:

Gradients too big → divergence
Gradients too small → slow convergence

Gradient Magnitudes:

Gradients too big → divergence
Gradients too small → slow convergence

Divergence is much worse!

Gradient Magnitudes

What's the simplest way to ensure gradients stay bounded?

Gradient clipping

Simply limit the magnitude of each gradient:

$$\overline{g}_i = \min(g_{\max}, \max(-g_{\max}, g_i))$$

so $|\bar{g}_i| \leq g_{\max}$. Then use a decreasing learning rate to converge to an optimum.