(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005年6月9日(09.06.2005)

PCT

(10) 国際公開番号 WO 2005/052152 A1

C12N 15/09, 1/15, 1/19, 1/21, 5/10, (51) 国際特許分類7: 9/02, C12P 17/08, C07K 14/00, C07D 407/16

(21) 国際出願番号:

PCT/JP2004/017906

(22) 国際出願日:

2004年11月25日(25.11.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願 2003-396828

2003年11月27日(27.11.2003)

- (71) 出願人 (米国を除く全ての指定国について): メルシャ ン株式会社 (MERCIAN CORPORATION) [JP/JP]; 〒 1048305 東京都中央区京橋一丁目 5 番 8 号 Tokyo (JP). エーザイ株式会社 (EISAI CO., LTD.).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 町田 和弘

中島 崇 (NAKASHIMA, (MACHIDA, Kazuhiro). Takashi). 有徳 保秀 (ARITOKU, Yasuhide). 土田 外 志夫 (TSUCHIDA, Toshio).

- (74) 代理人: 古谷 聪, 外(FURUYA, Satoshi et al.); 〒 1030007 東京都中央区日本橋浜町2-17-8 浜 町花長ビル6階 Tokyo (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が 可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護が可 能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD,

/続葉有/

- (54) Title: DNA PARTICIPATING IN HYDROXYLATION OF MACROLIDE COMPOUND
- (54) 発明の名称: マクロライド系化合物の水酸化に関与するDNA

H₃C OH CH₃
H₃C encoded by the above DNA; a plasmid carrying the DNA; a transformant transformed by the plasmid; and a method of producing a 16-hydroxylated macrolide compound with the use of the transformant.

SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), $\exists - \Box$ ッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

— 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(57) 要約: 本発明は、マクロライド系化合物11107Bの水酸化に関与するDNAおよびマクロライド系化合物11107Dの新規な生産方法を提供する。詳しくは、本発明は、式(I)で示されるマクロライド系化合物11107Bの、式(II)で示される16位水酸化マクロライド系化合物11107Dへの生物学的変換に関与するDNAであって、16位水酸化酵素活性を有するタンパク質またはフェレドキシンをコードするDNA、その単離方法、そのDNAによりコードされるタンパク質、そのDNAを担持するプラスミド、そのプラスミドで形質転換した形質転換体およびその形質転換体を用いた16位水酸化マクロライド系化合物の生産方法に関する。