MIPI I3C TECHNOLOGY AN INTRODUCTION TO MIPI I3C

MICHAEL JOEHREN
SYSTEM ARCHITECT

AMF-DES-T2686 | JUNE 2017

SECURE CONNECTIONS FOR A SMARTER WORLD

AGENDA

- 1. Introduction
- 2. Basic MIPI I3CSM signaling and protocol
- 3. Bus signals and address arbitration
- 4. High Data Rate (HDR) modes
- 5. Error detection and recovery
- 6. Device Identifier Provisional-ID
- 7. Common Command Codes (CCC)
- 8. NXP's free MIPI I3CSM slave RTL
- 9. Summary
- 10. Public information

MIPI I3C = Next generation from I^2C

MIPI I3C no logo yet

- MIPI I3C is a follow on to I²C
 - Has major improvements in use and power and performance
 - Optional alternative to SPI for mid-speed (equivalent to 30 Mbps)

Background

- NXP (Philips legacy) is I²C leader and spec owner
- I2C is used predominantly as control and communication interface with a focus in sensors (>90% according to 2013 MIPI Alliance survey)
- MIPI Alliance Sensor Interface Workgroup initiated an upgrade of requirements in 2013

Rationale for upgrade

- In-band interrupt to reduce # of GPIO wires on SoC, as # of sensors increase on the mobile devices
- I²C speed has become limiting, as amount of data increases on the bus
- Upgrade Constraints
 - Maintain backward compatibility, to enable a smooth transition from I2C to MIPI I3C and focus on simple implementation (recall I2C wide adoption is due to its seeming simplicity)

MIPI I3C Spec Contributors

- Primary Spec authoring: NXP (Paul Kimelman), Qualcomm, Intel, other contributors: Invensense, TI, STM, Synopsys, Cadence, Mentor, Sony, Knowles, Lattice

Sensor Interface Block Diagram

- In addition to higher data rate of the main interface,
 side-band channels such as dedicated interrupts, enable, and sleep signals might be needed
- Increased number of GPIOs is adding system cost in the form of added SoC package pins and PCB layer count

Sensor Interface Block Diagram for MIPI I3C vs. I2C & SPI

From MIPI I3C White paper: http://resources.mipi.org/MIPI I3C-sensor-whitepaper-from-mipi-alliance

MIPI I3C versus I²C at-a-glance

	I ² C	MIPI I3C		
Clock Speed & Data Rate	Fast mode: 400kb/s Fast Mode+: 1Mb/s High speed: 3.4Mb/s Actual Data: computed 8/9 th – 1 byte	SDR: up to 12.5Mbps raw rate (Actual Data Rate: 8/9 th – per 1 byte) HDR-DDR: Actual Data Rate 20Mbps – 1 word HDR-TSP: Actual Data Rate to ~30Mbps – 1 word		
# wires	2 – multi-drop (OpenDrain IF) SCL: clock – from Master(s), Slaves stretch SDA: data – bidirectional (OpenDrain)	2 – multi-drop (SCL is push-pull, SDA OpenDrain and push-pull) SCL = clock (except for HDR-TSP) - from current Master only SDA = data – bidirectional (OpenDrain and push-pull)		
Power	High due to open-drain SCL , SDA	Lower due to SCL being push-pull only and SDA working in push-pull most of the time		
Slave Read termination	Master has to end Read (so has to know length in advance)	Slave ends Read, but Master may terminate early		
In-Band Interrupts	None – use a separate wire/pin per slave	Integrated, prioritized, and may include a byte (or more) of context		
Hot-Plug	None. Proprietary systems only	Built-in. Same mechanism a in-band-interrupt		

MIPI I3C versus I²C at-a-glance

	l ² C	MIPI I3C		
Error detection	No protocol inherent error detection	Master and slave side error detection features		
Time stamping	Has to be done by master once separate INT signal is triggered	Is an essential part of the MIPI I3C spec – no dedicated INT signal required.		
Built-in Commands	None. Proprietary messages only	Built-in for control, capabilities discovery, bus management, etc. Expandable: e.g. Time Control, IO Expander use		
Master / Slave	Master-Slave, Multi-master optional	Master-Slave; Master handoff (old Master->Slave)		
IO pads	I ² C special pads (e.g. 50ns spike filter)	Standard pads 4 mA drive, no spike filter		
Slave address	Static	Dynamically assigned during initialization. Slaves may have static address at start		
Clocking	Slaves normally use inbound clock	Slaves use inbound clock (allows slow/no internal clock)		
Complexity	Low for Slaves. Higher for masters, especially around multi-master	Slaves as small as 2 K gates Masters as small as 2.5 K gates State machine or processor implementations		

Advantages in energy and data rate

mJ per Mega-bit, VDD=3.3V

mJ per Mega-bit, VDD=1.8V

Assumptions: 1) All symbols in each mode have equal probability for use.

Energy consumption is the energy delivered by pull-up devices to the bus (which includes drivers and resistors).

MIPI I3C Devices Roles vs. Responsibilities

Responsibilities /	Commonto	Roles						
Features	Comments	Main Master	Secondary Master	SDR Only Main Master	SDR Only Secondary Master	Slave	SDR Only Slave	
Manages SDA Arbitration	For Address Arbitration, In-Band Interrupt, Hot-Join, Dynamic Address, as appropriate	Y	Y	Y	Y	N	N	
Dynamic Address Assignment	Master assigns Dynamic Address	Υ	N	Υ	N	N	N	
Hot-Join Dynamic Address Assignment	Master capable of assignment Dynamic Address after Hot-join	Υ	Optional	Υ	Optional	N	N	
Self Dynamic Address Assignment	Only Main Master can self-assign a Dynamic Address	Y	N	Υ	N	N	N	
Static I ² C Address ¹	_	N/A	Optional	N/A	Optional	Optional	Optional	
Memory for Slaves' Addresses and Characteristics	Retaining registers	Y	Υ	Υ	Υ	N	N	
HDR Slave capable	Supports being accessed in at least one HDR Mode	Υ	Υ	N	N	Υ	N	
HDR Master capable	Supports Mastering in at least one HDR Mode	Y	Υ	N	N	N/A	N/A	
HDR Exit Pattern Generation capable ²	Able to generate the HDR Exit Pattern on the Bus for error recovery	Y	Υ	Y	Y	N	N	
HDR Tolerant	Recognizes HDR Exit Pattern	Υ	Υ	Υ	Υ	Y	Υ	

¹⁾ A Static Address may be used to more quickly assign a Dynamic Address. See Section 5.1.4.

²⁾ All Slaves require an HDR Exit Pattern Detector, even Slaves that are not HDR capable

02.

Basic MIPI I3C signaling and protocol

So, what does an MIPI I3C message look like?

MIPI I3C SDR looks almost the same as I²C:

- E.g. Write data

	1 bit	8 bits	1 bit	8 bits	1 bit		1 bit
MIPI I3C	S or Sr	Addr+W	ACK/ NACK	1 Byte data	T bit = Parity	More data	Sr or P
I2C					ACK/ NACK		

- E.g. Read data (typical approach):

	1 bit	8 bits	1 bit	8 bits	1 bit	1 bit	8 bit	1 bit	8 bit	1 bit		1 bit
MIPI I3C	S or Sr	Addr+ W	ACK / NACK	1 Byte data	T bit = Parity	Sr	Addr + R	ACK / NACK	1 Byte from Slave	T bit = '1 then Z' to continue '0' Slave ends transmission	More data	Sr or P Master ends read
I2C					ACK/ NACK					ACK/ NACK Slave can't abort read		Master ends read

Open drain address transmission followed by push-pull data

- Example:
- Master starts communication and allows arbitration (open-drain mode)
- Data is transmitted in push-pull mode

03.

Bus signals and address arbitration

MIPI I3C Bus signal in SDR mode after dynamic address assignment

Start condition

Same as I²C

SCL high-period is <45 ns, well below 50 ns glitch filter required by I²C, Enabling up to ~4 MHz

After 'ACK' the master changes its SDA to push-pull mode and increases its clock to 12.5 MHz

Why is address arbitration important in MIPI I3C

Address arbitration is used for multiple function in the MIPI I3C specification:

- In-Band Interrupt
 - -slaves can trigger the master by pulling SDA low during a quiet period and the master will starting its SCL (start condition)
- Hot-Join
- Bus initialization if not all slave addresses are known

- System setup
 - -MIPI I3C only system
 - -2 slaves with In-Band Interrupt enabled
 - -BOTH slaves trigger an interrupt at the same time

A6	A5	A4	A 3	A2	A 1	A0
1	0	1	1	1	1	1

A6	A 5	A4	A 3	A2	A 1	A0
1	1	1	0	1	1	1

Example: Interrupt triggered by slave in a system with 2 IBI capable slaves

A0

- 1. Master is idle with SCL stopped and SDA being pulled high by resistor
- 2. BOTH Slaves trigger an interrupt by pulling SDA low
- 3. Master starts SCL, pulling it low
- 4. Slave releases SDA
- 5. SDA is pulled high by R_pu
- 6. SCL pulse to latch address bit A6

3,4,5,6

• Example: Interrupt triggered by slave in a system with 2 IBI capable slaves

A0

- Master is idle with SCL stopped and SDA being pulled high by resistor
- 2. BOTH Slaves trigger an interrupt by pulling SDA low
- 3. Master starts SCL, pulling it low
- 4. Slave releases SDA
- 5. SDA is pulled high by R_pu
- 6. SCL pulse to latch address bit A6
- 7. Slave 7'5F pulls A5 low. Latched with next SCL pulse slave 7'77 keeps listening
- 8. Slave 7'5F releases SDA so A4 is '1'
- 9. Slave 7'77 does NOT communicate since A5 deviates from it's address so it 'lost' the arbitration and abstains from communication until the Start condition

Example: Interrupt triggered by slave in a system with 2 IBI capable slaves

In-band interrupts

In-Band interrupt allows Slaves to notify the master

- Can be used as an equivalent function compared to a separate GPIO
 - additionally, the IBI data frame can also be <u>directly data bearing</u>
 - and an IBI is <u>prioritized</u>. The lowest dynamic address slave will gain highest priority during arbitration
- Interrupts can be started even when <u>Master is not active</u> on the bus
 - No free running clock required (lower power)
- Time-stamping option to allow resolution of time of initial event
 - 2 ways to do: both relate to when actual IBI gets through to Master

Open Drain		Hand Off	Push-Pull	Drive High or Low, and then High-Z	Optional (push-pull)	Push-Pull	
S	Slave_addr_as_IBI/R	Master_ACK	SCL High	Slave_byte ('mandatory byte')	Т	More bytes	Sr

Note: How to increase the speed of the arbitration process

When a master has determined the slave's dynamic address triggering the in-band interrupt, it can switch from open drain mode to push-pull mode for the next clock cycle as no other slave shall temper with SDA.

Therefore, dynamic addresses differentiated through their MSBs rather than their LSBs can be used.

A hot-join / hot-plug device will announce itself by issuing 7'b 0000_010.

04.

High Data Rate (HDR) modes

HDR modes for higher throughput

High data rate (HDR) modes are optionally available

- No faster clock, but more bits for same frequency
- Optional to support for Master and Slave
 - -Incapable slaves know how to ignore, so others may use safely
- May have an HDR-DDR format
 - -About 2x the data rate of SDR (so about 20 Mbps net using 12.5 MHz SCL)
 - -Also includes CRC
 - -Uses same SCL clocking, so small adder to Slave logic
- May use HDR-TSP (<u>Ternary Symbols</u>)
 - -Results in up to 3x the data rate (so about 30 Mbps at 12.5 MHz) by using symbols on SCL,SDA rather than separate clock and data

05.

Error detection and recovery

Error Detection and Recovery Methods

The MIPI I3C bus specification details error detection and recovery methods for an SDR slave, the SDR master and HDR mode(s).

The error detection and recovery methods specified are provided in order to avoid fatal conditions when errors occur.

A set of 6 mandated methods and 1 optional method are specified for MIPI I3C Slave Devices, and a separate set of required methods is specified for MIPI I3C Master Devices.

Side note:

Clock stretching by slaves is NOT permitted (→ SCL is driven via push-pull by the master)

Device error types

Slave side errors

Error Type	Description
S0	Broadcast Address/W (=7'h7E/W) or Dynamic Address/RW
S1	CCC Code
S2	Write Data
S3	Assigned Address during Dynamic Address Arbitration
S4	7'h7E/R after Sr during Dynamic Address Arbitration
S5	Transaction after detecting CCC
S6 (optional)	Monitoring Error

Master side errors

Error Type	Description
MO	Transaction after sending CCC
M1 (optional)	Monitoring Error
M2	No response to Broadcast Address (7'h7E)

06.

Device Identifier - Provisional-ID

Device Identifier - MIPI I3C slave addresses

Device Identifier

In order to support the Dynamic Address Assignment procedure, each MIPI I3C Device to be connected to an MIPI I3C Bus shall be uniquely identifiable in **one** of two ways, before starting the procedure.

- 1. The Device may have a <u>Static Address</u>, in which case the Master may use that Static Address For example, an Address similar to what I2C specifies
- 2. The Device shall **in all cases** have a <u>48-bit Provisional ID</u>.

 The Master shall rely on this 48-bit Provisional ID, unless the Device has a Static Address used by the master.

The 48-bit Provisional ID is composed of three parts:

Bits [47:33]	Bit [32]		Bits [31:00]			
		[31:16] 16 bits	[15:12] 4 bits	[11:0] 12 bit		
MIPI Manufacturer ID (Note: MSB is discarded)	Provisional ID Type Selector 1'b1: Random 1'b0: Fixed	Part ID: The meaning of this 16-bit field is left to the Device vendor to define	Instance ID: Value to identify the individual example: straps, fuses, non-volatile memory, or another appropriate method	This is left for definition with additional meaning. For example: deeper Device Characteristics, which could optionally include Device Characteristic Register values		
	If Bit [32] = 1'b1: Random Value: Bits [31:0]: 32-bit value randomly generated by the Device.					

07.

Common Command Codes (CCC)

Command space (CCC – Common Command Codes)

- Built-in Commands (>40) in separate "space" to avoid collision with normal Master → Slave messages
 - -Controls bus behavior, modes and states, low power state, enquiries, etc.
 - -Has additional room for new built-in commands to be used by other groups
 - -Some are required, some are optional
 - -Some may be direct communication with a single slave or are broadcasts to all slaves (same commands might be available in either category)

08.

NXP's free MIPI I3C slave RTL

NXP's free MIPI I3C slave

- NXP offers a free license for companies that are and are not members of MIPI: http://www.nxp.com/webapp/software-center/library.jsp#/home/query/MIPI%20MIPI
 13C%20Slave%20IP%20for%20MIPI/~filter~/popularity/0
 - Non-members must agree to a confidentiality clause from MIPI (a requirement of MIPI Alliance: http://mipi.org).
 This IP is provided with no warranty, as must be agreed to in the click-wrap license.

Full commercial license

Support and a full commercial license is available from Silvaco at http://www.silvaco.com/products/IP/MIPI I3C.html

Summary

- MIPI I3C simplifies system design to a true two-wire interface
- Backward compatible to existing I²C devices (Supports legacy I²C messaging)
- Very small RTL footprint requiring 2 pins only
- Lower power consumption than I²C
- Supports in-bound error checking and CRC
- Supports peer-to-peer slave communication
- Supports hot-plug capability
- Dynamic addressing while supporting Static Addressing for legacy I²C devices
- Supports I²C-like SDR messaging and optional HDR messaging (up to 30Mbps)
- Supports multi-master and multi-drop capabilities

Publicly available information:

- White paper: http://resources.mipi.org/MIPI I3C-sensor-whitepaper-from-mipi-alliance
- Press release: https://mipi.org/content/mipi-alliance-releases-MIPI I3C-sensor-interface-specification
- Commercially available IP (e.g.): http://www.silvaco.com/news/pressreleases/2016_12_01_01.html
- Free license MIPI I3C (incl. I2C) slave IP from NXP:
 <a href="https://www.nxp.com/webapp/Download?colCode=MIPI I3C-NXP-FREE-LICENSE-SLAVE&appType=license&location=null&fsrch=1&sr=1&pageNum=1&Parent_nodeld=&Parent_pageType=&Parent_nodeld=&Parent_pageType

or go to: www.nxp.com and search for 'mipi i3c slave verilog'

From MIPI I3C white paper 1/3

From MIPI I3C White paper: http://resources.mipi.org/MIPI I3C-sensor-whitepaper-from-mipi-alliance

From MIPI I3C white paper 2/3

Parameter	MIPI I3C	I ² C	SPI
Advantages	Only two signal lines	Only two signal lines	Full duplex communication
	• Legacy I ² C devices co-exist on the	Flexible data transmission rates	Push-pull drivers
	same bus (with some limitations)	• Each device on the bus is	Good signal integrity and high speed
	Flexible data transmission rates	independently addressable	below 20MHz (higher speed are challenging)
	Dynamic addressing and supports	Devices have a simple master/slave relationship.	 Higher throughput than I²C and SMBus
	static addressing for legacy I ² C devices	relationship	· ·
	 I²C-like data rate messaging (SDR) 	• Simple implementation	Not limited to 8-bit words
	 Optional high data rate messaging modes (HDR) 	 Widely adopted in sensor applications and beyond 	 Arbitrary choice of message size, content and purpose
	Multi-drop capability and dynamic	Supports multi-master and multidrop	Simple hardware interfacing
	addressing avoids collisions	capability features	 Lower power than I²C
	 Multi-master capability 		 No arbitration or associated failure
	 In-band Interrupt support 		modes
	Hot-join support		Slaves use the master's clock
	A clear master ownership and handover		 Slaves do not need a unique address
	mechanism is defined		Not limited by a standard to any
	 In-band integrated commands (CCC) Support 		maximum clock speed (can vary between SPI devices)

From MIPI I3C White paper: http://resources.mipi.org/MIPI I3C-sensor-whitepaper-from-mipi-alliance

From MIPI I3C white paper 3/3

Parameter	MIPI I3C	I ² C	SPI
Disadvantages	 Only 7-bits are available for device addressing Slower than SPI (i.e. 20Mbps) New standard, adoption needs to be proven Limited number of devices* on a bus to around a dozen devices 	 Only 7-bits (or 10-bits) are available for static device addressing Limited communication speed rates and many devices do not support the higher speeds Slaves can hang the bus; will require system restart Slower devices can delay the operation of faster speed devices Uses more power than SPI Limited number of devices on a bus to around a dozen devices No clear master ownership and handover mechanism Requires separate support signals for Interrupts 	 Need more pins than I²C/MIPI I3C Need dedicated pin per slave for slave select (SS) No in-band addressing No slave hardware flow control No hardware slave acknowledgment Supports only one master device No error-checking protocol is defined No formal standard, validating conformance is not possible SPI does not support hot swapping Requires separate support signals for interrupts

From MIPI I3C White paper: http://resources.mipi.org/MIPI I3C-sensor-whitepaper-from-mipi-alliance

^{*} This means physical devices. Total bus capacitance <= 50 pF.

SECURE CONNECTIONS FOR A SMARTER WORLD