Лекция А8 Нормальная форма Хомского

> Вадим Пузаренко

Лекция A8 Нормальная форма Хомского

Вадим Пузаренко

23 октября 2023 г.

Основные понятия

Лекция А8 Нормальная форма Хомского

> Вадим Тузаренко

Определение А8.1.

Говорят, что КС-грамматика $\mathfrak{G} = (V, \Sigma, P, S)$ находится в **нормальной форме Хомского (НФХ)**, если её продукции имеют вид $A \longrightarrow BC$, $A \longrightarrow a$, где $A, B, C \in V$, $a \in \Sigma$.

Основные понятия

Лекция А8 Нормальная форма Хомского

Вадим Пузаренко

Определение А8.1.

Говорят, что КС-грамматика $\mathfrak{G} = (V, \Sigma, P, S)$ находится в **нормальной форме Хомского (НФХ)**, если её продукции имеют вид $A \longrightarrow BC$, $A \longrightarrow a$, где $A, B, C \in V$, $a \in \Sigma$.

Основная цель.

Для любого непустого КС-языка, не содержащего ε , построить грамматику, находящуюся в НФХ.

Основные понятия

Лекция А8 Нормальная форма Хомского

Вадим Пузаренко

Определение А8.1.

Говорят, что КС-грамматика $\mathfrak{G} = (V, \Sigma, P, S)$ находится в **нормальной форме Хомского (НФХ)**, если её продукции имеют вид $A \longrightarrow BC$, $A \longrightarrow a$, где $A, B, C \in V$, $a \in \Sigma$.

Основная цель.

Для любого непустого КС-языка, не содержащего ε , построить грамматику, находящуюся в НФХ.

Алгоритмы.

- Удалить бесполезные символы.
- ② Удалить ε -продукции ($A \longrightarrow \varepsilon$).
- **3** Удалить цепные продукции $(A \longrightarrow B)$.

Бесполезные символы

Лекция А8 Нормальная форма Хомского

Вадим Пузаренко

Определение А8.2.

Символ $X\in V\cup \Sigma$ называется полезным в грамматике $\mathfrak{G}=(V,\Sigma,P,S)$, если существует некоторое порождение $S\Rightarrow^*\alpha^{\lambda}X^{\beta}\Rightarrow^*\gamma$, где $\alpha,\beta,\gamma\in\Sigma^*$. Символ X называется бесполезным, если он не является полезным.

Бесполезные символы

Лекция А8 Нормальная форма Хомского

Вадим Пузаренко

Определение А8.2.

Символ $X \in V \cup \Sigma$ называется **полезным** в грамматике $\mathfrak{G} = (V, \Sigma, P, S)$, если существует некоторое порождение $S \Rightarrow^* \alpha^* X^* \beta \Rightarrow^* \gamma$, где $\alpha, \beta, \gamma \in \Sigma^*$. Символ X называется **бесполезным**, если он не является полезным.

Свойства полезных символов.

- **О** Символ X называется **порождающим**, если $X \Rightarrow^* \alpha$ для некоторого $\alpha \in \Sigma^*$. Заметим, что $X \in \Sigma \cup \{\varepsilon\}$ порождающий символ.
- f C Символ X называется **достижимым**, если $S \Rightarrow^* \alpha \hat{\ } X \hat{\ } \beta$ для некоторых $\alpha, \beta \in \Sigma^*.$

Любой полезный символ является одновременно и порождающим, и достижимым.

Лекция А8 Нормальная форма Хомского

Вадим Пузаренко

Теорема А8.1.

Пусть $\mathfrak{G}=(V,\Sigma,P,S)$ такова, что $L(\mathfrak{G})\neq\varnothing$, и пусть $\mathfrak{G}_1=(V_1,\Sigma_1,P_1,S)$ — грамматика, полученная с помощью следующих двух шагов:

- вначале удаляются все непорождающие символы и продукции, их содержащие (в результате получим грамматику $\mathfrak{G}_2 = (V_2, \Sigma_2, P_2, S)$);
- $oldsymbol{0}$ затем удаляются все символы, не достижимые в \mathfrak{G}_2 .

Tогда \mathfrak{G}_1 не имеет бесполезных символов и $L(\mathfrak{G}) = L(\mathfrak{G}_1)$.

Лекция А8 Нормальная форма Хомского

Вадим Пузаренко

Теорема А8.1.

Пусть $\mathfrak{G}=(V,\Sigma,P,S)$ такова, что $L(\mathfrak{G})\neq\varnothing$, и пусть $\mathfrak{G}_1=(V_1,\Sigma_1,P_1,S)$ — грамматика, полученная с помощью следующих двух шагов:

- вначале удаляются все непорождающие символы и продукции, их содержащие (в результате получим грамматику $\mathfrak{G}_2 = (V_2, \Sigma_2, P_2, S)$);
- $oldsymbol{arphi}$ затем удаляются все символы, не достижимые в \mathfrak{G}_2 .

Tогда \mathfrak{G}_1 не имеет бесполезных символов и $L(\mathfrak{G}) = L(\mathfrak{G}_1)$.

Доказательство.

Пусть $X \in V_1 \cup \Sigma_1$; тогда $X \Rightarrow_{\mathfrak{G}}^* \alpha$ для некоторого $\alpha \in \Sigma^*$. Кроме того, каждый символ, использованный в порождении α из X, также является порождающим. Таким образом, $X \Rightarrow_{\mathfrak{G}_2}^* \alpha$.

Лекция А8 Нормальная форма Хомского

Вадим Пузаренко

Доказательство (продолжение).

Так как X не был удален после второго шага, найдутся $\beta \in \Sigma^*$ и $\gamma \in \Sigma^*$, для которых $S \Rightarrow_{\mathfrak{G}_2}^* \beta^* X^* \gamma$. Кроме того, каждый символ, использованный в этом порождении, достижим, поэтому $S \Rightarrow_{\mathfrak{G}_1}^* \beta^* X^* \gamma$.

Известно, что каждый символ в цепочке $\beta^* X^* \gamma$ достижим, и что все эти символы принадлежат $V_2 \cup \Sigma_2$, поэтому каждый из них является порождающим в \mathfrak{G}_2 . Порождение терминальной цепочки $\beta^* X^* \gamma \Rightarrow_{\mathfrak{G}_2}^* \beta^* \alpha^* \gamma$ содержит только символы, достижимые из S, поскольку они достижимы из символов цепочки $\beta^* X^* \gamma$. Таким образом, это порождение есть также порождение в \mathfrak{G}_1 , т.е. $S \Rightarrow_{\mathfrak{G}_1}^* \beta^* X^* \gamma \Rightarrow_{\mathfrak{G}_1}^* \beta^* \alpha^* \gamma$. Итак, X полезен в \mathfrak{G}_1 . Ввиду произвольности X в \mathfrak{G}_1 , заключаем, что \mathfrak{G}_1 не содержит бесполезных символов.

Лекция А8 Нормальная форма Хомского

Вадим Пузаренко

Доказательство (окончание).

Докажем теперь, что $L(\mathfrak{G}_1) = L(\mathfrak{G})$.

 (\subseteq) Очевидно, поскольку все символы и продукции \mathfrak{G}_1 входят и в \mathfrak{G} .

 (\supseteq) Пусть $\alpha \in L(\mathfrak{G})$; тогда $S \Rightarrow_{\mathfrak{G}}^* \alpha$. Следовательно, каждый символ в этом порождении является порождающим, поэтому $S \Rightarrow_{\mathfrak{G}_2}^* \alpha$. Кроме того, все символы данного порождения являются достижимыми в \mathfrak{G}_2 и, следовательно, $S \Rightarrow_{\mathfrak{G}_1}^* \alpha$; таким образом, $\alpha \in L(\mathfrak{G}_1)$.

Алгоритм нахождения порождающих

Лекция А8 Нормальная форма Хомского

> Вадим Пузаренко

Пусть $\mathfrak{G} = (V, \Sigma, P, S)$ — грамматика.

Базис. Если $a \in \Sigma$, то a — порождающий.

Индукция. Если $A \longrightarrow \alpha$ и цепочка α состоит только из порождающих (возможно, $\alpha = \varepsilon$), то A — порождающий.

Алгоритм нахождения порождающих

Лекция А8 Нормальная форма Хомского

> Вадим Пузаренко

Пусть $\mathfrak{G} = (V, \Sigma, P, S)$ — грамматика.

Базис. Если $a \in \Sigma$, то a — порождающий.

Индукция. Если $A \longrightarrow \alpha$ и цепочка α состоит только из порождающих (возможно, $\alpha = \varepsilon$), то A — порождающий.

Теорема А8.2.

Данный алгоритм находит в точности все порождающие грамматики \mathfrak{G} .

Алгоритм нахождения порождающих

Лекция А8 Нормальная форма Хомского

Вадим Пузаренко Пусть $\mathfrak{G} = (V, \Sigma, P, S)$ — грамматика.

Базис. Если $a \in \Sigma$, то a — порождающий.

Индукция. Если $A \longrightarrow \alpha$ и цепочка α состоит только из порождающих (возможно, $\alpha = \varepsilon$), то A — порождающий.

Теорема А8.2.

Данный алгоритм находит в точности все порождающие грамматики \mathfrak{G} .

Упражнение А8.1.

Докажите теорему А8.2.

Алгоритм нахождения достижимых символов

Лекция А8 Нормальная форма Хомского

> Вадим Пузаренко

Пусть $\mathfrak{G} = (V, \Sigma, P, S)$ — грамматика.

Базис. S — достижимый символ.

Индукция. Если $A \longrightarrow \alpha$ и A — достижимый символ, то все символы цепочки α также достижимы.

Алгоритм нахождения достижимых символов

Лекция А8 Нормальная форма Хомского

Вадим Пузаренко Пусть $\mathfrak{G} = (V, \Sigma, P, S)$ — грамматика.

Базис. S — достижимый символ.

Индукция. Если $A \longrightarrow \alpha$ и A — достижимый символ, то все символы цепочки α также достижимы.

Теорема А8.3.

Данный алгоритм находит в точности все достижимые символы грамматики \mathfrak{G} .

Алгоритм нахождения достижимых символов

Лекция А8 Нормальная форма Хомского

Вадим Пузаренко Пусть $\mathfrak{G} = (V, \Sigma, P, S)$ — грамматика.

Базис. S — достижимый символ.

Индукция. Если $A \longrightarrow \alpha$ и A — достижимый символ, то все символы цепочки α также достижимы.

Теорема А8.3.

Данный алгоритм находит в точности все достижимые символы грамматики \mathfrak{G} .

Упражнение А8.2.

Докажите теорему А8.3.

Лекция А8 Нормальная форма Хомского

> Вадим Пузаренко

Определение А8.3.

Переменная A называется ε -порождающей в \mathfrak{G} , если $A\Rightarrow_{\mathfrak{G}}^* \varepsilon$.

Лекция А8 Нормальная форма Хомского

Вадим Пузаренко

Определение А8.3.

Переменная A называется ε -порождающей в \mathfrak{G} , если $A\Rightarrow_{\mathfrak{G}}^* \varepsilon$.

Алгоритм.

Базис. Если $A \longrightarrow \varepsilon$ — продукция в \mathfrak{G} , то $A - \varepsilon$ -порождающий. **Индукция.** Если в \mathfrak{G} есть продукция $B \longrightarrow C_1 C_2 \dots C_k$, в которой C_i , $i=1,\dots,k-\varepsilon$ -порождающие, то и B также ε -порождающий.

Лекция А8 Нормальная форма Хомского

Вадим Пузаренко

Определение А8.3.

Переменная A называется ε -порождающей в \mathfrak{G} , если $A\Rightarrow_{\mathfrak{G}}^* \varepsilon$.

Алгоритм.

Базис. Если $A \longrightarrow \varepsilon$ — продукция в \mathfrak{G} , то $A - \varepsilon$ -порождающий. **Индукция.** Если в \mathfrak{G} есть продукция $B \longrightarrow C_1 C_2 \dots C_k$, в которой C_i , $i=1,\dots,k-\varepsilon$ -порождающие, то и B также ε -порождающий.

Теорема А8.4.

В грамматике $\mathfrak G$ являются в точности ε -порождающими переменные, найденные вышеприведённым алгоритмом.

Лекция А8 Нормальная форма Хомского

Вадим Пузаренко

Определение А8.3.

Переменная A называется ε -порождающей в \mathfrak{G} , если $A\Rightarrow_{\mathfrak{G}}^* \varepsilon$.

Алгоритм.

Базис. Если $A \longrightarrow \varepsilon$ — продукция в \mathfrak{G} , то $A - \varepsilon$ -порождающий. **Индукция.** Если в \mathfrak{G} есть продукция $B \longrightarrow C_1 C_2 \dots C_k$, в которой C_i , $i=1,\dots,k-\varepsilon$ -порождающие, то и B также ε -порождающий.

Теорема А8.4.

В грамматике $\mathfrak G$ являются в точности ε -порождающими переменные, найденные вышеприведённым алгоритмом.

Упражнение А8.3.

Докажите теорему А8.4.

Лекция А8 Нормальная форма Хомского

> Вадим Тузаренко

Конструкция.

- $oldsymbol{0}$ Удаляем все продукции вида $A\longrightarrow arepsilon$.
- ② Если $A \longrightarrow \alpha \hat{\ } B \hat{\ } \gamma$ продукция, в которой B ε -порождающий, а $\mathrm{lh}(\alpha \hat{\ } \gamma) > 0$, то добавляем продукцию $A \longrightarrow \alpha \hat{\ } \gamma$. Повторяем данный пункт, пока это возможно.

Лекция А8 Нормальная форма Хомского

Вадим Пузаренко

Конструкция.

- lacktriangle Удаляем все продукции вида $A\longrightarrow arepsilon$.
- ② Если $A \longrightarrow \alpha \hat{\ } B^{\gamma} -$ продукция, в которой B ε -порождающий, а $\mathrm{lh}(\alpha \hat{\ }\gamma) > 0$, то добавляем продукцию $A \longrightarrow \alpha \hat{\ }\gamma$. Повторяем данный пункт, пока это возможно.

Теорема А8.5.

Если грамматика \mathfrak{G}_1 построена по грамматике \mathfrak{G} с помощью описанной выше конструкции удаления ε -продукций, то $L(\mathfrak{G}_1) = L(\mathfrak{G}) \setminus \{\varepsilon\}$.

Лекция А8 Нормальная форма Хомского

Вадим Пузаренко

Конструкция.

- lacktriangle Удаляем все продукции вида $A\longrightarrow arepsilon$.
- ② Если $A \longrightarrow \alpha \hat{\ } B^{\gamma} -$ продукция, в которой B ε -порождающий, а $\mathrm{lh}(\alpha \hat{\ }\gamma) > 0$, то добавляем продукцию $A \longrightarrow \alpha \hat{\ }\gamma$. Повторяем данный пункт, пока это возможно.

Теорема А8.5.

Если грамматика \mathfrak{G}_1 построена по грамматике \mathfrak{G} с помощью описанной выше конструкции удаления ε -продукций, то $L(\mathfrak{G}_1) = L(\mathfrak{G}) \setminus \{\varepsilon\}.$

Доказательство.

Необходимо доказать, что $\alpha \in L(\mathfrak{G}_1)$, если и только если $\alpha \in L(\mathfrak{G})$, для любого $\alpha \in \Sigma^* \setminus \{\varepsilon\}$. Докажем более общее утверждение $(\alpha \in (V \cup \Sigma)^*)$: $A \Rightarrow_{\mathfrak{G}}^*, \alpha \iff [A \Rightarrow_{\mathfrak{G}}^*, \alpha \& (\alpha \neq \varepsilon)]$.

Лекция А8 Нормальная форма Хомского

Вадим Пузаренко

Доказательство (продолжение).

 (\Rightarrow) Пусть $A\Rightarrow_{\mathfrak{G}_1}^*\alpha$; тогда $\alpha\neq \varepsilon$, поскольку \mathfrak{G}_1 не имеет ε -продукций. Покажем индукцией по длине порождения, что $A\Rightarrow_{\mathfrak{G}}^*\alpha$.

Базис. В \mathfrak{G}_1 имеется продукция $A \longrightarrow \alpha$; согласно конструкции, $A \longrightarrow \alpha'$ — продукция в \mathfrak{G} , где α получается из α' удалением ε -порождающих переменных. Следовательно, $A \Rightarrow_{\mathfrak{G}} \alpha' \Rightarrow_{\mathfrak{G}}^* \alpha$. **Индукция.** Пусть в порождении $A \Rightarrow_{\mathfrak{G}_1}^* \alpha$ имеется n > 1 шагов. Тогда оно имеет вид $A \Rightarrow_{\mathfrak{G}_1} X_1 X_2 \dots X_k \Rightarrow_{\mathfrak{G}_1}^* \alpha$. Цепочку α можно представить в виде $\alpha_1 \hat{\ } \alpha_2 \hat{\ } \dots \hat{\ } \alpha_k$, где $X_i \Rightarrow_{\mathfrak{G}_1}^* \alpha_i$. По предположению индукции, $X_i \Rightarrow_{\mathfrak{G}}^* \alpha_i$. Согласно конструкции, в \mathfrak{G} имеется продукция $A \longrightarrow Y_1 Y_2 \dots Y_m$, где $X_1 X_2 \dots X_k$ получена из $Y_1 Y_2 \dots Y_m$ удалением ε -порождающих символов. Таким образом,

 $A \Rightarrow_{\mathfrak{G}} Y_1 Y_2 \dots Y_m \Rightarrow_{\mathfrak{G}}^* X_1 X_2 \dots X_k \Rightarrow_{\mathfrak{G}}^* \alpha_1 \alpha_2 \dots \alpha_k = \alpha.$

Лекция А8 Нормальная форма Хомского

Вадим Пузаренко

Доказательство (окончание).

(\Leftarrow) Пусть $A\Rightarrow_{\mathfrak{G}}^*\alpha$ и $\alpha\neq \varepsilon$; как и прежде, будем доказывать индукцией по длине порождения.

Базис. $A \longrightarrow \alpha$ — продукция в \mathfrak{G} ; так как $\alpha \neq \varepsilon$, $A \longrightarrow \alpha$ будет продукцией и в \mathfrak{G}_1 . В частности, $A \Rightarrow_{\mathfrak{G}_1}^* \alpha$.

Индукция. Пусть в порождении $A\Rightarrow_{\mathfrak{G}}^*\alpha$ имеется n>1 шагов. Тогда оно имеет вид $A\Rightarrow_{\mathfrak{G}}Y_1Y_2\dots Y_m\Rightarrow_{\mathfrak{G}}^*\alpha$. Цепочку α можно представить в виде $\alpha_1\hat{\ }\alpha_2\hat{\ }\dots\hat{\ }\alpha_m$, где $Y_i\Rightarrow_{\mathfrak{G}}^*\alpha_i$. Пусть цепочка $X_1X_2\dots X_k$ получена из $Y_1Y_2\dots Y_m$ удалением Y_j таких, что $\alpha_j=\varepsilon$. По предположению индукции, $Y_i\Rightarrow_{\mathfrak{G}_1}^*\alpha_i$. Согласно конструкции, $A\longrightarrow X_1X_2\dots X_k$ — продукция в \mathfrak{G}_1 . Таким образом, $A\Rightarrow_{\mathfrak{G}_1}X_1X_2\dots X_k\Rightarrow_{\mathfrak{G}_1}^*\alpha_1\hat{\ }\alpha_2\hat{\ }\dots\hat{\ }\alpha_m=\alpha$. Для завершения доказательства осталось положить A=S.

Лекция А8 Нормальная форма Хомского

> Вадим Пузаренко

Определение А8.4.

Пара нетерминалов (A,B) назовём **цепной**, если $A\Rightarrow^* B$, причём в порождении используются только цепные продукции.

Лекция А8 Нормальная форма Хомского

> Вадим Пузаренко

Определение А8.4.

Пара нетерминалов (A,B) назовём **цепной**, если $A\Rightarrow^* B$, причём в порождении используются только цепные продукции.

Алгоритм.

- (A, A) цепная пара.
- ullet Если (A,B) цепная пара и $B\longrightarrow C$ цепная продукция, то (A,C) цепная пара.

Лекция А8 Нормальная форма Хомского

Вадим Пузаренко

Определение А8.4.

Пара нетерминалов (A,B) назовём **цепной**, если $A\Rightarrow^* B$, причём в порождении используются только цепные продукции.

Алгоритм.

- (A, A) цепная пара.
- ullet Если (A,B) цепная пара и $B\longrightarrow C$ цепная продукция, то (A,C) цепная пара.

Теорема А8.6.

Вышеприведённый алгоритм находит в точности все цепные пары грамматики \mathfrak{G} .

Лекция А8 Нормальная форма Хомского

Вадим Пузаренко

Определение А8.4.

Пара нетерминалов (A, B) назовём **цепной**, если $A \Rightarrow^* B$, причём в порождении используются только цепные продукции.

Алгоритм.

- (A, A) цепная пара.
- f 2 Если (A,B) цепная пара и $B\longrightarrow C$ цепная продукция, то (A,C) цепная пара.

Теорема А8.6.

Вышеприведённый алгоритм находит в точности все цепные пары грамматики \mathfrak{G} .

Упражнение А8.4.

Докажите теорему А8.6.

Лекция А8 Нормальная форма Хомского

> Вадим Пузаренко

Конструкция.

- Найдём все цепные пары грамматики .
- $m{Q}$ Для каждой цепной пары (A,B) добавляем продукцию $A\longrightarrow lpha$ в P_1 , если $B\longrightarrow lpha$ нецепная продукция в P.

Лекция А8 Нормальная форма Хомского

Вадим Пузаренко

Конструкция.

- Найдём все цепные пары грамматики .
- ② Для каждой цепной пары (A,B) добавляем продукцию $A \longrightarrow \alpha$ в P_1 , если $B \longrightarrow \alpha$ нецепная продукция в P.

Замечание А8.1.

Заметим, что в случае, когда A=B, в P_1 помещаются все нецепные продукции из P.

Лекция А8 Нормальная форма Хомского

Вадим Пузаренко

Конструкция.

- Найдём все цепные пары грамматики .
- $m{Q}$ Для каждой цепной пары (A,B) добавляем продукцию $A\longrightarrow lpha$ в P_1 , если $B\longrightarrow lpha$ нецепная продукция в P.

Замечание А8.1.

Заметим, что в случае, когда A=B, в P_1 помещаются все нецепные продукции из P.

Теорема А8.7.

Если \mathfrak{G}_1 построена по \mathfrak{G} согласно конструкции, описанной выше, то $L(\mathfrak{G}_1)=L(\mathfrak{G})$.

Лекция А8 Нормальная форма Хомского

> Вадим Пузаренко

Доказательство.

Докажем, что $\alpha \in \mathit{L}(\mathfrak{G}) \Leftrightarrow \alpha \in \mathit{L}(\mathfrak{G}_1)$.

Лекция А8 Нормальная форма Хомского

> Вадим Тузаренко

Доказательство.

Докажем, что $\alpha \in L(\mathfrak{G}) \Leftrightarrow \alpha \in L(\mathfrak{G}_1)$. (\Leftarrow) Пусть $S \Rightarrow_{\mathfrak{G}_1}^* \alpha$. Так как каждая продукция в \mathfrak{G}_1 эквивалентна последовательности из нескольких цепных продукций, за которыми следует одна нецепная продукция из \mathfrak{G} , имеем $S \Rightarrow_{\mathfrak{G}}^* \alpha$.

Лекция А8 Нормальная форма Хомского

Вадим Пузаренко

Доказательство.

Докажем, что $\alpha \in L(\mathfrak{G}) \Leftrightarrow \alpha \in L(\mathfrak{G}_1)$.

 (\Leftarrow) Пусть $S \Rightarrow_{\mathfrak{G}_1}^* \alpha$. Так как каждая продукция в \mathfrak{G}_1 эквивалентна последовательности из нескольких цепных продукций, за которыми следует одна нецепная продукция из \mathfrak{G} , имеем $S \Rightarrow_{\mathfrak{G}}^* \alpha$.

(\Rightarrow) Пусть $\alpha \in L(\mathfrak{G})$; по теореме A5.1, $S \underset{,}{\Rightarrow}^* \alpha$. Где бы в левом порождении ни использовалась цепная продукция, переменная её тела остаётся крайней слева. Тем самым, левое порождение в \mathfrak{G} можно разбить на последовательность "шагов", в которых несколько цепных продукций сопровождаются нецепной. Заметим, что любая нецепная продукция, перед которой нет цепных, сама по себе образует такой "шаг". Но по построению грамматики \mathfrak{G}_1 , каждый из этих шагов может быть выполнен одной её продукцией. Таким образом, $S \Rightarrow_{\mathfrak{G}_1}^* \alpha$.

Вспомогательные конструкции

Лекция А8 Нормальная форма Хомского

Вадим Пузаренко

Теорема А8.8.

Пусть \mathfrak{G} — KC-грамматика, у которой $L(\mathfrak{G})\setminus\{\varepsilon\}\neq\varnothing$. Тогда можно построить KC-грамматику \mathfrak{G}_1 , в которой отсутствуют бесполезные символы, ε -продукции и цепные продукции, такую что $L(\mathfrak{G}_1)=L(\mathfrak{G})\setminus\{\varepsilon\}$.

Вспомогательные конструкции

Лекция А8 Нормальная форма Хомского

> Вадим Пузаренко

Теорема А8.8.

Пусть \mathfrak{G} — KC-грамматика, у которой $L(\mathfrak{G})\setminus\{\varepsilon\}\neq\varnothing$. Тогда можно построить KC-грамматику \mathfrak{G}_1 , в которой отсутствуют бесполезные символы, ε -продукции и цепные продукции, такую что $L(\mathfrak{G}_1)=L(\mathfrak{G})\setminus\{\varepsilon\}$.

Доказательство.

Сначала, по теореме A8.5, удалим ε -продукции; затем удалим цепные продукции, по теореме A8.7 (заметим, что в этом случае будут отсутствовать также и ε -продукции); в конечном итоге, применим конструкцию теоремы A8.1 (поскольку все продукции полученной грамматики содержатся во множестве продукций, полученной на предыдущем шаге, грамматика также не будет содержать ε - и цепных продукций).

Лекция А8 Нормальная форма Хомского

Вадим Пузаренко

Конструкция.

Опишем один шаг конструкции, в котором в грамматике происходят изменения только с одной продукцией. Пусть $A \longrightarrow X_1 X_2 \dots X_k$, где либо k>2, либо k=2, но X_1 и X_2 не являются одновременно переменными. Для каждого слова X_1 и $X_2 \dots X_k$ вводим новую переменную Y_1 и Y_2 , если оно не является нетерминалом. Возможны следующие случаи:

- $lack X_1$ является нетерминалом; тогда рассматриваемую продукцию заменяем на следующий список: $A \longrightarrow X_1 Y_2$, $Y_2 \longrightarrow X_2 \dots X_k$;
- ② $X_2 \dots X_k = X_2$ является нетерминалом; тогда $A \longrightarrow Y_1 X_2$, $Y_1 \longrightarrow X_1$;
- ullet X_1 является терминалом и k>2; тогда $A\longrightarrow Y_1Y_2$, $Y_1\longrightarrow X_1,\; Y_2\longrightarrow X_2\ldots X_k$.

Конструкция завершится на конечном шаге (почему?)

Лекция А8 Нормальная форма Хомского

> Вадим Тузаренко

Теорема А8.9.

Если \mathfrak{G} — KC-грамматика, порождающая хотя бы одну непустую цепочку, то существует НФХ \mathfrak{G}_1 такая, что $L(\mathfrak{G}_1) = L(\mathfrak{G}) \setminus \{\varepsilon\}$.

Лекция А8 Нормальная форма Хомского

Вадим Пузаренко

Теорема А8.9.

Если \mathfrak{G} — КС-грамматика, порождающая хотя бы одну непустую цепочку, то существует НФХ \mathfrak{G}_1 такая, что $L(\mathfrak{G}_1) = L(\mathfrak{G}) \setminus \{\varepsilon\}$.

Доказательство.

По теореме A8.8, можно построить КС-грамматику $\mathfrak{G}_2 = (V_2, \Sigma, P_2, S)$, свободную от бесполезных символов, ε -продукций и цепных продукций, для которой $L(\mathfrak{G}_2) = L(\mathfrak{G}_3) \setminus \{\varepsilon\}$

 $L(\mathfrak{G}_2) = L(\mathfrak{G}) \setminus \{\varepsilon\}$

Докажем, что $\alpha \in L(\mathfrak{G}_2) \Leftrightarrow \alpha \in L(\mathfrak{G}_1)$, где $\mathfrak{G}_1 = (V_1, \Sigma, P_1, S)$ строится по грамматике \mathfrak{G}_2 согласно конструкции.

 (\Rightarrow) Непосредственно вытекает из того, что $P_2(A,X_1X_2\dots X_k)$ влечёт $A\Rightarrow_{\mathfrak{G}_1}^*X_1X_2\dots X_k$.

(\Leftarrow) Доказывать будем по длине вывода следующую импликацию: $A\Rightarrow_{l,\mathfrak{G}_1}^*\alpha\Longrightarrow A\Rightarrow_{l,\mathfrak{G}_2}^*\alpha$, для всех $A\in V_2$ и $\alpha\in\Sigma^*$.

Лекция А8 Нормальная форма Хомского

Вадим Пузаренко

Доказательство (продолжение).

Базис. Если $P_1(A,\alpha)$ и $A\in V_2$, то $\alpha\in\Sigma$ и $P_2(A,\alpha)$, поскольку \mathfrak{G}_2 не имеет цепных правил и ε -продукций.

Индукция. Пусть $A \Rightarrow_{l,\mathfrak{G}_1}^* \alpha$, и данное порождение имеет длину n>1. Тогда $A \longrightarrow BC \Rightarrow_{l,\mathfrak{G}_1}^* \alpha$ и, следовательно, $B \Rightarrow_{l,\mathfrak{G}_1}^* \beta$, $C \Rightarrow_{l,\mathfrak{G}_1}^* \gamma$, причём $\alpha = \beta \hat{\ } \gamma$. Разберём несколько случаев.

- $B \not\in V_2$; согласно конструкции, $P_1(B,\beta)$, $\beta \in \Sigma$ и $P_2(A,\beta X_2 \dots X_k)$, причём эта продукция задаётся единственным образом. В частности, $A \Rightarrow_{l,\mathfrak{G}_2}^* \beta X_2 \dots X_k$.
- $B \in V_2$; согласно конструкции, $P_2(A, BX_2 ... X_k)$, причём эта продукция задаётся единственным образом; по предположению индукции, $B \Rightarrow_{I,\mathfrak{G}_2}^* \beta$. В частности, $A \Rightarrow_{I,\mathfrak{G}_2}^* \beta X_2 ... X_k$.

Докажем теперь индукцией по k, что существует последовательность цепочек γ_2,\ldots,γ_k такая, что $\gamma=\gamma_2\hat{\ }\ldots\hat{\ }\gamma_k$ и $X_i\Rightarrow_{l,\mathfrak{G}_2}^*\gamma_i,\,2\leqslant i\leqslant k$.

Лекция А8 Нормальная форма Хомского

Вадим Пузаренко

Доказательство (окончание).

Базис. Возможны несколько случаев.

- $C \in V_2$; по индукционному предположению, $C = X_2 \Rightarrow_{I,\mathfrak{G}_2}^* \gamma$.
- $P_1(C,\gamma)$; тогда $\gamma\in\Sigma$ и, согласно конструкции, $P_2(A,B\gamma)$; в частности, $X_2=\gamma\Rightarrow_{l,\mathfrak{G}_2}^*\gamma$.

Индукция. Пусть $P_1(C, C_1C_2)$. Разберём снова несколько случаев.

- $C_1 \in V_2$; тогда $X_2 = C_1 \Rightarrow_{l,\mathfrak{G}_2}^* \gamma_2$, а по предположению индукции, найдутся цепочки $\gamma_3, \ldots, \gamma_k$, удовлетворяющие условию.
- $C_1 \notin V_2$; тогда $P_2(C_1, \gamma_2), \ \gamma_2 \in \Sigma$ и $X_2 = \gamma_2 \Rightarrow_{1, \mathfrak{G}_2}^* \gamma_2$; по предположению индукции, найдутся цепочки $\gamma_3, \ldots, \gamma_k$, удовлетворяющие условию.

Для завершения доказательства заметим, что $S \in V_2$ и, по доказанному, $\alpha \in L(\mathfrak{G}_2) \Leftrightarrow S \Rightarrow_{l,\mathfrak{G}_1}^* \alpha \Leftrightarrow S \Rightarrow_{l,\mathfrak{G}_1}^* \alpha \Leftrightarrow \alpha \in L(\mathfrak{G}_1)$.

Лекция А8 Нормальная форма Хомского

> Вадим Пузаренко

Спасибо за внимание.