	Math 108 a Ver, B TJ SIPIN	
1,)	If dim U = 4 and dim W = 4, then	
	We know	
1	dim (U+W) = dim U + dim W - dim (U)u	0)
and Sale	7 = 4 + 4 - dim(Unw)	
	1 = dim(U N W).	
	Since dim UNW = 1, then UNW \$ 203.	
2)	Suppose that m is a nonnegative integer	
	such that there exist distinct real	
	mumbers Xo, XI, 000, Xm such that	
	p(x;) ER for j=0,1,, m. we want	
	to prove that all the coefficients are real.	
	For sate of contradiction, assume all the	
	wefficients are not real, Then, since	
	Xo, X, Xm are distinct real numbers	
	we would get	
	p(x) = (a0+ b0i) + (a, +b, i) x + + (am +bmi) x m	
	for all X E xo, X,, Xm. and	
	where astboi, a, tb, i,, am + bmi E Co	7
	Clearly PCX) & IR, so we get a	
	for all $X \in XO, X,, Xm$ and where $a_0 + b_0 i$, $a_1 + b_1 i$,, $a_m + b_m i \in C_0$ Clearly $p(X) \notin IR$, so we get a contradiction. Thus, it must be that all the coefficients are real.	
	coefficients are real.	

3) =>: Suppose UUW IS a subspace of V. Let uev and wEW. Since UVW is a subspace, then It is closed under addition and there exists an additive inverse for any u, we UUW. Thus, we get Outw-weUUw as well as (2) u + w - u & v U w. This means that for (1) UEV or WEW, Similarly for @ WEU or WEW. Therefore ether U is a subspace of w or Wis a subspace of Us completing this side of the proof. E: Suppose and subspace V of VIIs contained in another subspace wof V. So we have UCW. It follows that UUW=W, which is a subspace of V. Similarly if W & U, then UUW= U, which is a subspace of V. In either case, we have proven that if a subspace of V is contained in another subspace of V, the union of the two subspaces are another subspace

2	A basis of a vector space is a 1131
	of linearly independent vectors that spans
	the vector space.
	Suppose we have la basis V, ,, vi of V.
	Thun, for any a,,, an ER,
	$a, V, + \dots + an Vn = 0,$
	where a, = = an = 0. Thus, we have proven
	linear independence
	Additionally, we can get any VEV as
	a linear combination of Vi,, Vn. So,
	V = a, v, + + anvn,
	proving that v , vn spans V.
5.	Define TESCFZ) by
	$T(\omega, z) = (-z, \omega)$
	T(w, 2) = 6-2, w) = 1(u, 2)
	-Z = 1 w = 2
	$-2=\lambda^2$
	$\sqrt{-1} = \sqrt{2}$
	$\lambda = i_{i} - i$
	When 1 = i, our eigenvectors are of the form
	(iz, z). When 1 = -i, our eigenvectors are of
	the form (-12, 2). It should be added
	that Z = 0 in order for it to be an eigenvector.

Co.	Suppose $T \in S(V)$ and lim range $T = K$. We want to prove that T has at most $k+1$ distinct eigenvalues.
	Since dim range T=ik, then T has at most K distinct nonzero eigenvalues Itowever, T can also have D as an eigenvalue, so T has at most k+ 1 distinct eigenvalues
7.	Suppose $T \in \mathcal{L}(V)$ is invertible. Then, is esther injective as surjective. Then, if there exists T'' such that $TT''=T$. Since $E(\lambda,T) = null(T-\lambda T) = T=\lambda T$, it follows that $T = T' =$

73	
4.1	Suppose that Vand Ware finite dimensional
	TEX(V, W) and there exists GEW'
	Suppose that Vand W are finite - Simens comme). TEX(V,W) and there exists QEW' such that null (T')= span (cp), We want to prove that range (T)= null (cp)
	that range (TI= null (co)
	Trial .
	0' (-10) (-11)
	Since (range T) = null (T') = span(q), then
	span (q) = 3 cp & W': cp (V) = 0 for all V Evanget3.
	50, span (q)=0=(range T)°. It follows
	not equal to 0, thus mill (cp) = range(T).
	no equal to o, thus mull cops = variage ().
-	