ECE 470: Introduction to Robotics Homework 5

Question 1.

Consider the single-link manipulator arm in Figure 1(a) as shown also in Figure 10.4 (Craig, Introduction to Robotics 3rd Ed.).

a) Given that the revolute joint moves the link over 2 cubic segments in **6s** from an initial angle $\theta_0 = 15 \deg$ to rest at a final position $\theta_f = 90 \deg$ through a via point $\theta_v = 30 \deg$ at $t_v = 3s$ with a velocity of $\dot{\theta}_v = 15 \deg/s$, obtain the 8 parameters of the 2-segment cubic polynomial. (10 Points)

Figure 1

- b) Imagine you decided to create a prismatic-revolute (PR) 2-dof robotic manipulator and mounted the single-link on a horizontally moving cart as shown in Figure 1(b),
 - I. Illustrate the configuration space of this PR manipulator with a sketch given that the joint limits are $x \subset [-d, d]$ and $\theta \subset [-\pi, \pi]$.

(2 Points)

- II. Describe a possible path in the configuration space if a vertical straight path is desired from point (0, -l) to (0, l) in the workspace (*Hint: circular motion projects to orthogonal axes as sinusoidal motion*) (3 Points)
- III. Assuming the motor at q_2 rotates at a constant speed of ω , suggest a trajectory for q_1 (2 Points)
- IV. Suggest a control scheme if the manipulator is tasked to performance ultrasound imaging over a region by sliding the probe along the x direction at a vertically downward controlled contact force with the surface. You may assume an additional joint q_3 to orientate the ultrasound transducer as shown.in Figure 2 (3 Points)

Figure 2

Question 2 (Optional Bonus Question)

Find the new equation of motion relating f and τ to \ddot{x} , \dot{x} , x, $\ddot{\theta}$, $\dot{\theta}$ and θ if the single-link manipulator is mounted on a horizontally moving cart as shown in Figure 1(b). (10 Points)