Leilões - Teoria

Aula 10 Leilões

Claudio R. Lucinda

FEA/USP

Leilões - Teoria

1 Leilões – Teoria

- 1 Leilões Teoria
- 2 Comportamento nos Leilões

- 1 Leilões Teoria
- 2 Comportamento nos Leilões
- 3 Teorema de Equivalência de Receita

- 1 Leilões Teoria
- 2 Comportamento nos Leilões
- 3 Teorema de Equivalência de Receita
- 4 Mapeando a Teoria aos Observáveis

Leilões – Teoria

- Vou começar esta seção do curso revisitando um pouco de teoria de leilões, para posteriormente passarmos à parte empírica.
- Talvez em outros cursos aqui vocês tenham isso em mais detalhes, porém eu não sei se vocês estão de fato matriculados nestes cursos ao mesmo tempo que esse.

Leilões – Conceitos Básicos

- Vamos aqui falar de leilões em que os compradores dão lances para comprar um bem.
- Leilões de venda são quase a mesma coisa, só tem que ajustar os detalhes adequadamente.
- Existem quatro tipos básicos de leilão (Inglês, Holandês, Primeiro Preço e Segundo Preço).
- Existem três tipos de estruturas de informação (IPV, CV e AV).

Formatos de Leilão

- Leilão Inglês Lances crescentes, o preço vai subindo (seja por um leiloeiro ou por submissão eletrônica de propostas) até que apenas um comprador fica no mercado e ele leva o bem a este preço.
- Leilão Holandês O preço começa alto e vai descendo até o momento em que um comprador aceita adquirir o produto a este preço.
- Leilão de Envelope Fechado de Primeiro Preço Cada um dos compradores submete um lance, sem ver o dos outros, e aquele que oferecer o preço maior leva o bem, pagando o preço que anunciou.
- Leilão de Envelope Fechado de Segundo Preço Cada um dos compradores submete um lance, sem ver o dos outros, e aquele que oferecer o preço maior leva o bem, pagando o segundo preço maior.

Estruturas de Informação

- Evidentemente, só tem graça estudar leilões se assumirmos Informação Assimétrica.
- Existem três formas de se modelar este tipo de Informação Assimétrica:
 - Valores Privados Independentes: Cada um dos compradores tem um valor para o bem v_i, mas este valor é conhecimento específico dele. O seu valor não traz nenhuma informação sobre os valores dos outros. (Leilão de Figurinhas)
 - Valores Comuns (caso extremo): O valor do bem para todos os compradores é v̄, mas cada comprador tem acesso a um v_i = v̄ + ε_i. Neste caso, o v_j daria informação sobre o quanto o bem vale, porque dá uma ideia sobre o v̄.
 - Afiliação: Cada comprador recebe um sinal privado ε_i , mas a avaliação v_i depende de TODOS os sinais privados.

Comportamento nos Leilões

- Começando com o leilão descendente e IPV:
 - Apesar deste ser um jogo dinâmico de informação incompleta, a estratégia e decisão são essencialmente estáticas:
 - O comprador vai escolher o preço em que ele decide comprar, condicional a nenhum outro já ter aceito.
 - Isso implica que o comprador com maior v_i vai levar o bem e vai pagar a sua avaliação.
- Neste caso (e em um monte de outros), o resultado é equivalente ao do leilão de envelope fechado de primeiro preço

Comportamento nos Leilões- II

- Leilão crescente (Inglês) e IPV:
 - É uma estratégia dominante ficar no leilão até o lance mais alto ser igual à sua valuation
 - Ou seja, o cara com o maior v_i vai ganhar o bem, pagando a segunda maior avaliação.
- Neste caso (e em um monte de outros), o resultado é equivalente ao do leilão de envelope fechado de segundo preço.

Comportamento nos Leilões- III

- Com CV, a questão é a chamada "Maldição do Vencedor" (Winners' Curse):
- Cada comprador precisa reconhecer que ele só vai vencer se ele tiver o maior sinal.
- Se não levar em conta o fato que o seu sinal é maior do que o dos outros quando você vence pode levar você a pagar mais, em média, do que o produto vale.
- Intuitivamente, suponha que os compradores sejam inocentes e ofereçam lances iguais aos seus v_i , e os ε tenham média zero.
- Lucro ex post neste caso:

$$\Pi = \bar{v} - E(v_i | \varepsilon_i > \varepsilon_j \forall j \neq i) < 0$$

Comportamento nos Leilões

- O comportamento ótimo do agente com IPV também muda a depender do tipo do leilão:
 - Leilão de Segundo Preço: Cada jogador faz um lance igual sua avaliação
 - Leilão de Primeiro Preço: Cada jogador faz um lance abaixo da sua avaliação:
 - Trade-off: quanto mais perto da sua avaliação o comprador faz o lance aumenta a chance de você ganhar o bem, mas reduz o ganho condicional a ter ganho.
 - Por isso no leilão de segundo preço você não tem incentivo para fazer lance menor que a sua avaliação.

Teorema de Equivalência de Receita

- Um resultado que pode parecer surpreendente. Em IPV (e em CV, desde que os sinais sejam independentes), a receita de um leilão de primeiro preço e um leilão de segundo preço são, em média, iguais.
- Intuição: ainda que no leilão de segundo preço as pessoas falam suas avaliações, o vencedor paga menos que sua avaliação.
- No leilão de primeiro preço, as pessoas não falam sua avaliação, mas pagam o valor declarado.

Teorema de Equivalência de Receita – Definição Formal

Theorem

Suponham que cada um de um certo número de compradores neutros ao risco de um bem possui um sinal privadamente conhecido retirado de uma distribuição comum, estritamente crescente e sem pontos de massa. Então qualquer mecanismo em que (i) o objeto sempre vai pro comprador com o maior sinal e (ii) qualquer comprador com o menor sinal possível ganha zero de excedente, gera a mesma receita esperada (e implica em cada comprador fazendo o mesmo pagamento esperado como função do seu sinal).

Optimal Auctions

- A partir desse resultado, podemos pensar no conceito de "Optimal Auctions".
- Ou seja, o leilão que maximiza a receita esperada do vendedor.
- Referência clássica: Bulow e Roberts (1989) o leilão ótimo é igual ao problema de discriminação de preços de terceiro grau (receita marginal versus custo marginal).
- Vamos começar definindo o conceito de receita marginal neste caso.

Graficamente – Para um Comprador i

Figura

- A figura do slide anterior tem em um eixo o v, o preço, e no outro a probabilidade de se fazer uma venda.
- A probabilidade de se fazer uma venda é igual à probabilidade deste cara ter um valor pro bem maior do que a oferta que você fizer.
- Ou seja, é 1 F(v), em que F(v) é a cumulativa das valuations.
- A relação entre diferentes preços e a probabilidade de venda é a "Curva de Demanda".
- E para a curva de demanda, também existe uma curva de "Receita Marginal", que diz qual é o efeito sobre a probabilidade de venda de um aumento no preço.

Optimal Auctions

- Esta "receita marginal" tem a forma de $v \frac{1 F(v)}{f(v)}$.
- Para construir o leilão ótimo então, precisamos que:
 - Garantir que o bem vá para o comprador com maior disposição a pagar
 - Estabelecer um preço de reserva tal que esta "Receita Marginal" seja igual a zero:

$$r^* - \frac{1 - F(r^*)}{f(r^*)} = 0$$

Mapeando a Teoria aos Observáveis

- Usualmente o que a gente tem em termos de dados:
 - Os dados dos lances (ou algum subconjunto deles)
 - As características dos produtos vendidos
- A vantagem é que a teoria nos dá uma ligação bem forte entre os observáveis (os pontos acima) e os não observáveis (os sinais de cada comprador).
- Evidentemente, este mapeamento dos observáveis nos não observáveis depende dos formatos dos leilões
- Usualmente o objeto de interesse é a distribuição acumulada dos sinais, $F_v(v)$, e queremos identificar a relação entre entre a acumulada dos lances e a acumulada dos sinais a chamada Equilibrium Bid Function.

Leilão de Segundo Preço

- No caso de leilão de segundo preço, o mapeamento é trivial, uma vez que é uma estratégia dominante fazer o bid dos sinais.
- Ou seja, a a Equilibrium Bid Function é a função identidade.
- Nem sempre isso é verdade, evidentemente.

Leilão de Primeiro Preço

- Neste caso, a coisa é um pouco mais complicada.
- Podemos mostrar que, com IPV, podemos mostrar que a Equilibrium Bid Function obedece à seguinte relação:

$$\sigma'(v) = (v - \sigma(v)) \frac{f(v)}{F(v)}$$

• Essa relação vai ser aproveitada econometricamente.

Leilão Holandês

- No caso de um leilão holandês (descendente), apenas observamos o maior preço.
- Neste caso, precisamos caracterizar a Equilibrium Bid Function e a distribuição das estatísticas de ordem.
- Ou seja, a distribuição do máximo sinal.
- Nesse caso, o caminho não é trivial e envolve várias distribuições

Leilão Inglês

- No caso do leilão inglês, tem uma diferença a depender de se você consegue observar todos os lances ou só o lance vencedor.
- Se você observar todos os lances, a coisa facilita bastante. Os últimos lances dos que perderam devem ser iguais às respectivas avaliações (exceto a do vencedor). Aí para esses a Equilibrium Bid Function fica sendo igual à identidade.
- Caso você só tenha a do lance vencedor, é necessário caracterizar a pdf do lance vencedor, que é igual à pdf da segunda maior valuation.

