Homework 5

- **1.1** Show that $C span(C) = V \times S$ but that C is not always a basis for $V \times S$.
- 1. We have coordinates of the vectors as $V = (v_1, v_2), S = (s_1, s_2)$. We can write bases as $b_v = \{b_{v1}, b_{v2}\}, b_s = \{b_{s1}, b_{s2}\}$ respectively.
- 2. We have coordinates of the vector space $V \times S = \{v_1 + v_2, s_1 + s_2\}$. Now we have the set $C = \{b_v, b_s\}$ and C-span(C) will have the dinstinct combinations which are both linearly dependent and independent. If we consider a set where $b_{v1} = -b_{s1}$ and $b_{v2} = -b_{s2}$, then such combination would make the vector space $V \times S = 0$. As we can have linearly dependent combinations, C-Span(C) cannot be basis for vector space $V \times S$ always.
- **1.2** Prove that $B_{v\times s}=\{(b_v,0),(0,b_s)\mid b_v\in B_v \text{ and } b_s\in B_s\}$ is a basis for $V\times S$. What is the dimension of $V \times S$.
 - 1. A set, b, is the basis of a vector space, V, if b spans V and is linearly independent.
 - **2.** If $B_{v\times s}$ is the basis of $V\times S$ then,

$$V \times S = \sum \lambda_v (b_v + 0), \sum \lambda_s (0 + b_s)$$

$$V \times S = \sum \lambda_v b_v, \sum \lambda_s b_s$$

$$V \times S = \sum \lambda_v b_v, \sum \lambda_s b_s$$

$$V \times S = \sum_{v} \lambda_v b_v, \sum_{v} \lambda_s b_s$$

 $V \times S = \sum_{v} \lambda_v b_v, \sum_{v} \lambda_s b_s$

$$V \times S = \sum \lambda_v b_v, \sum \lambda_s b_s$$

$$V \times S = (v, s) = C - span(B_{v \times s})$$

3. A set of vectors are linearly independent if they are not dependent, that is, one of them cannot be derived by addition or scalar multiplication of others.

$$\sum \lambda_v(b_v + 0) = \sum \lambda_s(0 + b_s)$$
 only if $\lambda_v = \lambda_s = 0$

This states that $B_{v \times s}$ is linearly independent.

4. From above points, we can say $B_{v\times s}$ is the basis for the vector space $V\times S$. Size of the basis is equal to the dimension of the vector space.

$$dim(V \times S) = 2$$

- **1.3** Find the matrix representation for $(R \times T)_{B_A \to B_{v \times s}}$
 - **1.** We have a linear mapping $R: A \to V$ where matrix R transform the ordered base $B_A \to B_V$ $\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} a_1 + 2a_2 \\ 3a_1 + 4a_2 \\ 5a_1 + 6a_2 \end{bmatrix}$

$$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} a_1 + 2a_2 \\ 3a_1 + 4a_2 \\ 5a_1 + 6a_2 \end{bmatrix}$$

2. We have a linear mapping $T: A \to S$ where matrix R transform the ordered base $B_A \to B_S$ $\begin{bmatrix} s_1 \\ s_2 \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ 3 & -2 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} -a_1 + 2a_2 \\ 3a_1 - 2a_2 \end{bmatrix}$

1

$$\begin{bmatrix} s_1 \\ s_2 \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ 3 & -2 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} -a_1 + 2a_2 \\ 3a_1 - 2a_2 \end{bmatrix}$$

3. We have a linear mapping $R \times T : A \to (V \times S)$ where matrix $(R \times T)$ transform the ordered base $B_A \to B_{V \times S}$

 $B_{V \times S}$ is the lexicographic order of B_V and $B_S = \{v_1, v_2, v_3, s_1, s_2\}$

$$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ s_1 \\ s_2 \end{bmatrix} = \begin{bmatrix} a_1 + 2a_2 \\ 3a_1 + 4a_2 \\ 5a_1 + 6a_2 \\ -a_1 + 2a_2 \\ 3a_1 - 2a_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \\ -1 & 2 \\ 3 & -2 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

4. From above point we can derive the matrix
$$(R \times T)_{B_A \to B_{V \times S}} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \\ -1 & 2 \\ 3 & -2 \end{bmatrix}$$

- **2.1** Let $T:A\to B$ is a linear transformation between vector spaces with ordered bases $B_A=\{|1\rangle,|2\rangle,|3\rangle\}$ and $B_B=\{|1\rangle,|2\rangle\}$
- 1. Let $i \in B_B$ and $j \in B_A$, then a matrix representation of T is obtained by applying T to every vector in the basis of A and expressing the result as a linear combination of basis vectors of B.

$$T(|j\rangle) = \sum_{j=1}^{2} a_{ij}|i\rangle$$

2. Using above notation, we can write the vectors of A in terms of B as below

$$T(|1\rangle) = 9|1\rangle - 4|2\rangle$$

$$T(|2\rangle) = 6|1\rangle - 8|2\rangle$$

$$T(|3\rangle) = -3|1\rangle + 8|2\rangle$$

3. From the below summation a_{ij} are entries of $m \times n$ matrix of of our linear transformation function A.

The equation
$$T = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} |i\rangle\langle j|$$
 where $m = 3, n = 2$

4. We write the equations in point 2 as per the summation in point 3, we get below

$$= (9|1\rangle - 4|2\rangle)\langle 1| + (6|1\rangle - 8|2\rangle)\langle 2| + (-3|1\rangle + 8|2\rangle)\langle 3|$$

$$=9|1\rangle\langle 1|-4|2\rangle\langle 1|+6|1\rangle\langle 2|-8|2\rangle\langle 2|-3|1\rangle\langle 3|+8|2\rangle\langle 3|$$

5. If we gather the a_{ij} from above equation in the order of $\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)\}$, we get our matrix which is equal to the given one.

2

$$\begin{bmatrix} 9 & 6 & -3 \\ -4 & -8 & 8 \end{bmatrix}$$

2.2 From the equation in point 2.1.3, we can verify that the matrix is the product of T by $|v_j|$ is equal to $T(v_j)$. This is because of the property that matrix multiplication is associative.

$$(|j\rangle\langle i|)|v_k\rangle = \langle i|v_k|j\rangle$$

2.3 By definition of a linear transformation, which was used in 2.1.3, a function $R: A \to B$ which can be represented as a matrix R of the below form is a linear transformation.

$$R = \sum_{i \in B_B}^{m} \sum_{j \in B_A}^{n} b_{ij} |i\rangle\langle j| \text{ where } m = dim(A), \ n = dim(B)$$

- **3.1** $B_{v\otimes s} = \{b_v \otimes b_s\} \mid b_v \in B_v \text{ and } b_s \in B_S$
 - 1. Let v_i be i^{th} vector in the basis b_v and similarly s_j be a j^{th} vector in the basis b_s .
 - **2.** Using Kronecker product, we can write different linear combinations of $b_v \otimes b_s$ as below

$$\begin{bmatrix} a_1 v_1 [\sum b_1 s_j] \\ a_2 v_2 [\sum b_2 s_j] \\ \dots \\ a_i v_i [\sum b_j s_j] \end{bmatrix}$$

- **3.** Above matrix can be represented as below summation and spans the Vector space $V \otimes S$ $\sum_{i=1}^{m} \sum_{j=1}^{n} a_i b_j v_i s_j$ where $m = \dim(V)$ and $n = \dim(S)$
- **4.** Basis b_v and b_s are orthonormal basis and can be treated as linearly independent. As $B_V \otimes B_S$ spans $V \otimes S$ and linearly independent, we can consider that as its basis. Dimension of $V \otimes S = dim(B_V) \times dim(B_S)$

3

- **3.2** $R \otimes T = (R)_{B_V \to B_A} \otimes (T)_{B_S \to B_B}$
 - **1.** We have $(R)_{B_V \to B_A} = \begin{bmatrix} -1 & 2 & -1 \\ 3 & -2 & -1 \end{bmatrix}$ and $(T)_{B_S \to B_B} = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix}$
 - 2. Using Kronecker's product, we get below matrix form

$$\begin{bmatrix} -1 \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} & 2 \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} & -1 \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} \\ 3 \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} & -2 \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} & -1 \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -1 & -4 & 2 & 2 & -1 \\ -1 & 2 & 2 & -4 & -1 & 2 \\ -6 & 3 & 4 & -2 & 2 & -1 \\ 3 & -6 & -2 & 4 & -1 & 2 \end{bmatrix}$$