Science of Living System

BS20001

Arindam Mondal

School of Bioscience

Email: arindam.mondal@iitkgp.ac.in

Tel: 03222-260518

Overview of Transcription and Translation

Flow of Genetic Information: The Central Dogma of Molecular Biology

Polymer of nucleotides

Polymer of nucleotides

Polymer of amino acids

Correlations Between DNA Content and Its Downstream Product

"Human Genome Project" dramatically enhanced our understanding of Gene Expression

~21,000 human genes (appeared to be significantly fewer than previous estimates)

Genome Size, Gene Number, and Complexity of an Organism

	Organism	Genome size (bp)	Protein coding genes	
OCO CONTRACTOR	E. coli	4,600,000	4,250	
	S. cerevisiae	12,160,000	5,616	
	C. elegans	100,000,000	19,735	
AUGZICHER PERCHER	Human	3,200,000,000	21,000	
	Marbled lungfish	139,000,000,000	NA	

Transcription

Genome size (bp)

Total DNA content vs transcribable content

4,600,000

► Protein coding sequences is ~1.5% of total DNA content (human)

3,200,000,000

Messenger RNA (mRNA)

► Besides protein coding region, DNA can be transcribed into:

Ribosomal RNA (rRNA)
Transfer RNA (tRNA)

► Most of the DNA sequences are not transcribed

What is a machine?

A piece of <u>equipment</u> with several <u>moving parts</u> that uses <u>power</u> to do a particular type of <u>work</u>.

- Cambridge dictionary

Biological machines:

- DNA polymerase
- RNA polymerase
- Ribosome

Transcription: Involved Machineries and Processes

RNA Polymerase

Initiation Elongation Termination

Key points to be discussed

- 1. Promoter
- 2. RNA Polymerase
- 3. RNA synthesis
- 4. Termination

Promoter for Transcription

Promoter is just like a "pointer" that points to the location of the information (gene) to be copied into mRNA

RNA Polymerase

Subunits of RNA Polymerase: α , α , β , β and σ

Holo-enzyme: α , α , β , β and σ

Core-enzyme: α , α , β and β '

Roger Kornberg Nobel Prize in 2006

- ►RNA polymerase is completely **Processive**: A transcript is synthesized from start to end by a single RNA polymerase molecule.
- ► RNA polymerase can initiate the synthesis of RNA *de-novo* (No primer required)

RNA Molecules in *E. coli*

mRNA 5% tRNA 15% rRNA 80%

Who transcribes this huge pool of rRNA and tRNA?

In bacteria same RNA polymerase transcribe all these three types of RNA

In eukaryotes different RNA polymerases are involved in transcription of mRNA, rRNA and tRNA

RNA Synthesis

Growing RNA chain

Ribonucleotide

INITIATION

Polymerase binds to promoter sequence in duplex DNA. "Closed complex"

Polymerase melts duplex DNA near transcription start site, forming a transcription bubble. "Open complex"

Polymerase catalyzes phosphodiester linkage of two initial rNTPs.

ELONGATION

Polymerase advances 3'→5' down template strand, melting duplex DNA and adding rNTPs to growing RNA.

TERMINATION

At transcription stop site, polymerase releases completed RNA and dissociates from DNA.

Termination of Transcription in Prokaryotes

An RNA hairpin followed by several uracil residues terminates transcription

Hairpin
(Stem-loop structure)

-U-A-A-U-C-C-C-A-C-A-C-A-U-U-U-U-OH
5'

Rho binds the nascent RNA chain and pulls it away from RNA polymerase and the DNA template.

Termination of Transcription in Prokaryotes

Factor independent

An RNA hairpin followed by several uracil residues terminates transcription

Termination of Transcription in Prokaryotes

Factor dependent

Rho binds the nascent RNA chain and pulls it away from RNA polymerase and the DNA template.

Eukaryotic Transcripts Need to be Processed

► Ends of a nascent mRNA acquire a 5' cap and a 3' poly A tail

- Increase stability of mRNA
- More effective template for translation

Eukaryotic Transcripts Need to be Processed

► Splicing (mediated by specialized enzymatic machineries consisting of snRNAs and proteins) removes introns from nascent mRNA

Thomas Cech
Nobel prize in 1989

Transcription: At a Glance

Bacteria

Eukaryote

Regulation of Gene Expression (Biological circuits)

DNA: Contains the Instruction for Life

Regulation of Gene Expression

Each cell contains all the genetic material for growth and development

Some of these genes are expressed all the time

Other genes are not expressed all the time. They are switched on an off at need

Lac Operon: A Classic Example of Bacterial Gene Expression Control

Operon: Cluster of genes, related by function, regulated by a single promoter and transcribed into one mRNA (polycistronic).

lacZ	β-galactosidase	Breaks lactose into galactose and glucose.
lacY	lactose permease	Imports lactose into the bacterial cell.
lacA	thiogalactoside transacetylase	Cell detoxification.

Functional Outcome of Lac Operon

Lac repressor is a negative regulator of the Lac operon

RNA Polymerase

lacZ	β-galactosidase	Breaks lactose into galactose and glucose.
lacY	lactose permease	Imports lactose into the bacterial cell.
lacA	thiogalactoside transacetylase	Cell detoxification.

Lactose (Allolactose) Can Displace Lac Repressor From the Operator Site

RNA Polymerase

Lac repressor

Allolactose

(Inducer)

Lac operator

Lac operator

Four Possible Situations

Glucose	Lactose	Lac repressor bound	Lac operon	
+	-	YES	OFF (0)	
+	+	YES	OFF (0)	
-	+	NO	ON (1)	
-	-	YES	OFF (0)	

Translation

How Amino Acids are Linked Together

Genetic code

Genetic code is the relation between the sequence of bases in DNA (or its RNA transcripts) and the sequence of amino acids in proteins

A codon is a set of 3 nucleotides that specifies a particular amino acid

Why three nucleotides?

64 Codons present. Three of them (UAA, UAG, UGA) can't code any amino acids, called STOP codons

AUG serves as the "initiator" or "start codon, which starts the synthesis of a protein

We have 61 codons that code for amino acids, and we have 20 amino acids. So, more than one codon may specify one particular amino acid

Khorana, Nirenberg, Holley Nobel Prize in 1968

Genetic code

Second Letter

		U	С	A	G	
1st letter	ט	UUU Phe UUC UUA Leu UUG	UCU UCC Ser UCA UCG	UAU Tyr UAC Stop UAG Stop	UGU Cys UGC UGA Stop UGG Trp	U C A G
	U	CUU Leu CUA CUG	CCU Pro CCA CCG	CAU His CAC GIN CAG	CGU CGC Arg CGA CGG	U C A G
	A	AUU IIe AUA Met	ACU Thr ACA ACG	AAU Asn AAC AAA Lys AAG	AGU Ser AGC AGA Arg AGG	U letter C A G
	G	GUU Val GUA GUG	GCU GCC Ala GCA GCG	GAU Asp GAC GAA GIU GAG	GGU GGC GGA GGG	U C A G

Translation

Venki Ramakrishnan, Thomas A. Steitz & Ada Yonath,

Nobel Prize 2009

Template for protein synthesis

5' ______ 3' mRNA

5'UAAGGAGAAUCGUCAUGAAGAGGCCC......UAAUUA 3'

(RBS)

Start codon

Stop codon

Met-Lys-Arg-Pro.....

Polypeptide

Nascent polypeptide

5'U AAUCGUCAUGAAGAGGCCC.....UAAUUA 3'

► In Eukaryotes, 5' 7mG cap is recognized by ribosome

Transfer RNA: the adapter molecule

3D structure

2D structure

How Correct Amino Acids are Selected During Protein Synthesis

Peptidyl transferase reaction

Translation: Involved Machineries and Processes

tRNA

What Happens Inside the Ribosome? Chemical and Physical Consideration of Protein Synthesis

Which Came First? Nucleic acids or Proteins

► RNA has enzymatic activity

Transcription & Translation is coupled for prokaryotes

Time, Space and Correlation between Transcription and Translation

Overview of Transcription and Translation

Translation Machineries: Attractive Targets For Therapeutics

Tetracycline

Binds to the 30S ribosome, and blocks binding of aminoacyl-tRNA to the A-site

Chloramphenicol

Blocks the peptidyl transferase reaction on 50S ribosomes

Streptomycin

Binds to the 30S ribosome, prevents the transition from initiation to chain-elongation

Erythromycin

Binds to the 50S ribosome, and blocks the translocation

Different genetic events: At a Glance

Suggested Textbook...

Stryer...

Baltimore, Lodish..

Extra Resources

Further Reading...

James Darnell

Videos... mRNA synthesis (Transcription)

http://highered.mheducation.com/sites/007 2507470/student_view0/chapter3/animatio n__mrna_synthesis__transcription__quiz _2_.html

Protein synthesis (Translation)

https://www.youtube.com/watch?v=lkq9AcBcohA

Overview

https://www.youtube.com/watch?v=gG7uCskUOrA