

Course Methods Year 12 test three 2022

Student name:	Teacher name:		
Task type:	Response		
Time allowed for this tasl	k:40 mins		
Number of questions:	6		
Materials required:	Upto 3 calculators/classpads allowed		
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters		
Special items:	Drawing instruments, templates, one page of A4 notes doublesided		
Marks available:	43 marks		
Task weighting:	_10%		
Formula sheet provided:	Yes		
Note: All part questions	worth more than 2 marks require working to obtain full marks.		

Q1 (3, 3 & 2 = 8 marks)

Consider the discrete random variable X and the table of probabilities below.

X	0	1	2	3	4
P(X = X)	0.2	а	0.3	b	0.25

a) Given that the expected value of X is 2.15, determine the values of $a \otimes b$.

b) Determine the standard deviation of X to 3 dp, showing all reasoning.

c) Determine the E(3X + 4) and Variance(3X + 4).

Solution	
E(3X + 4) = 10.45	
Variance($9X + 4 = 18.2975$).	

	Specific behaviours
✓ determines new mean	
✓ determines new Variance	

Q2 (3, 2, 1 & 3 = 9 marks)

The number of X minutes late a train arrives at a particular station is a uniform probability distribution from 5 mins to 25 mins.

a) Sketch the probability density function for X showing all relevant features and labels.

Q2 continued

b) Determine the probability that the train will be less than 12 mins late given that it is at least 7 mins late.

S	olution

c) Determine the mean number of minutes late.

Solution				
Mean = 15 mins				
Specific behaviours				
✓ states midpoint				

d) Determine the standard deviation of X showing all reasoning.

Solution				

Q3 (3, 3 & 2 = 8 marks)

Consider a game where two ordinary dice are thrown into the air and then land and the sum of the two top numbers is added. If the sum is a prime number (2,3,5,7...) etc then this is considered a win.

a) Determine the probability of a win. Show reasoning.

Solution						
	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Prime numbers 2,3,5,7,11

Pr(prime)=15/36

Specific behaviours

- ✓ shows sample space
- ✓ number of favourable outcomes shown
- ✓ states probability
- b) If this game was played 10 times, determine the probability that a win occurs at least 7 times. Show all reasoning.

a) Let $X = \sup$ of the top numbers of both dice. Determine the mean and standard deviation for X .

Q4) (5 marks)

Consider $f(x) = r \log_5 (x + p) + q$ where r, p & q are constants.

Using the graph above and given that the following points

(22,16)&(2,9) lie on the curve
$$y = f(x)$$
, determine the values of $r, p \& q$.

Solution $f(x) = r \log_5 (x+p) + q$ Asymptote x=-3, p=3(2,9) $9 = r \log_5 (5) + q = r + q$ (22,16) $16 = r \log_5(25) + q = 2r + q$ 16 - 9 = rr = 716 = 14 + qq = 2**Specific behaviours** ✓ identifies asymptote at x=-3

✓ determines p

- ✓ sets up one equation with two unknowns
- ✓ sets up two equations with two unknowns
- ✓ states r & q

Q5 (2, 2 & 2 = 6 marks)

Consider the probability density function $f(x) = ax^3(x-5)$, $1 \le x \le 5$ and zero for all other values of X.

- 5 a) Show that

Solution

- ✓ sets up integral for total area =1
- ✓ shows equation to solve for a
- b) Determine the probability $\Pr(X \le 3 \mid 2 \le X \le 4)$ for the above function.

Solution
$$\Pr(X \le 3 \mid 2 \le X \le 4) = \frac{\Pr(2 \le X \le 3)}{\Pr(2 \le X \le 4)}$$

c) Determine the median.

a) Show without the use of a classpad how to $\frac{d}{dx} [5x \ln (3x+1)]$

$$\frac{d}{dx} \left[5x \ln (3x+1) \right] = 5x \frac{3}{3x+1} + 5\ln(3x+1)$$

Specific behaviours

- ✓ uses product rule
- ✓ obtains correct expression

b) Using (a) above and without the use of a classpad, show how to evaluate $\int_{0}^{1} 3 \ln (3x+1) dx$

Hint-use
$$\frac{3x}{3x+1} = 1 - \frac{1}{3x+1}$$

Solution

$$\frac{d}{dx} \left[5x \ln (3x+1) \right] = 5x \frac{3}{3x+1} + 5 \ln(3x+1)$$

$$\int \frac{d}{dx} \left[5x \ln (3x+1) \right] = 5 \int \frac{3x}{3x+1} dx + 5 \int \ln(3x+1) dx$$

$$\left[5x \ln (3x+1) \right]_{0}^{1} = 5 \int \left(1 - \frac{1}{3x+1} \right) dx + 5 \int \ln(3x+1) dx$$

$$5 \ln 4 = 5 \left[x - \frac{1}{3} \ln(3x+1) \right]_{0}^{1} + 5 \int \ln(3x+1) dx$$

$$5 \ln 4 = 5 \left(1 - \frac{1}{3} \ln 4 \right) + 5 \int \ln(3x+1) dx$$

$$3 \ln 4 = 3 \left(1 - \frac{1}{3} \ln 4 \right) + 3 \int \ln(3x+1) dx$$

Note- zero marks if answer given without any working!

Specific behaviours

 \checkmark integrates expression from part a

 $3 \int_{0}^{1} \ln(3x+1) dx = 3\ln 4 - 3 + \ln 4 = 4\ln 4 - 3$

✓ uses FTC

✓ changes
$$\frac{3x}{3x+1} = 1 - \frac{1}{3x+1}$$
 and shows integration of these two terms (or uses u=3x+1)du

✓ evaluates x=0 and x=1 showing both values for two terms after integration ✓ changes factor to give required definite integral(no need to simplify)

Mathematics Department

Perth Modern