# LV Datengestützte Analysemethoden

#### 2. WAS SIND DATEN?

Sommersemester 2018
FH Joanneum Graz
Studiengang Journalismus und Public Relations

Lehrender: Stefan Kasberger



### **DATEN**

"Daten sind ein Satz an Werten von qualitativen oder quantitativen Variablen."

"Daten sind ein Satz an Werten von qualitativen oder quantitativen Variablen."

Satz an Werten: ein Set an Objekten, an denen man interessiert ist.

"Daten sind ein Satz an Werten von qualitativen oder quantitativen Variablen."

Variablen: Ein Maß oder eine Charakteristik eines Wertes.

"Daten sind ein Satz an Werten von qualitativen oder quantitativen Variablen."

Qualitativ: Land, Geschlecht, Farbe

"Daten sind ein Satz an Werten von qualitativen oder quantitativen Variablen."

Quantitativ: Größe, Gewicht, Blutdruck

"Unter Daten versteht man im Allgemeinen Angaben, (Zahlen-)Werte oder formulierbare Befunde, die durch Messung, Beobachtung u. a. gewonnen wurden."

### Differenzierung

**Information**: zusammengetragene Daten, mit Kontext.

**Wissen**: zusammengetragene Information, beeinflusst Denken und Handeln.

# DATEN & WAHRHEIT WIRKLICHKEIT & DATEN

### Diskussion

- 1)Laptop zu und Tisch aufräumen
- 2)Gruppen (4-5 Studierende) finden. Melden und Tisch suchen
- 3)ModeratorIn und PräsentatorIn fixieren
- 4) "Sind naturwissenschaftliche Daten objektiv" diskutieren (3min)
- 5),,Sind sozialwissenschaftliche Daten objektiv" diskutieren (3min)
- 6) Präsentieren der Ergebnisse (je ~30s)

### Zu beachten

Daten sind nicht die Wirklichkeit, sondern nur ein kleiner Ausschnitt daraus mit gewissen Verzerrungen dabei.

### Zu beachten

- Kontext bei Erhebung
- Entscheidungen Forschungsdesign
- Messmethode und Messinstrumente
- Daten die neuen Götter!?
- Messmethode erblickt nur einen Mini-

Teil des Universums

### Beispiel: Text-Analyse @ **Twitter**





Nearly 3x edits of last year! 3618 edits in 18 languages by 646 contributors to 2276 articles! Shoutout to @slqld w. >800 #1lib1ref edits

RETWEETS 13

LIKES 14















3:31 PM - 1 Feb 2017

**★** 1 **★** 13

### Beispiel: Wahlumfrage



### Beispiel: IQ-Test



### Beispiel: Fehler & Betrug



### Bias

Kognitive Verzerrung (englisch cognitive bias oder cognitive illusions) ist ein kognitionspsychologischer Sammelbegriff für systematische fehlerhafte Neigungen beim Wahrnehmen, Erinnern, Denken und **Urteilen**. Sie bleiben meist unbewusst und basieren auf kognitiven Heuristiken.

- Wikipedia

### Bias: Heuristik

Heuristik bezeichnet die Kunst, mit begrenztem Wissen (unvollständigen Informationen) und wenig Zeit dennoch zu wahrscheinlichen Aussagen oder praktikablen Lösungen zu kommen.

- Wikipedia

### Bias

- Selection Bias: Trump & Twitter
- Observer Bias: Suggestion & Methoden
- Funding Bias
- Confirmation Bias
- Recall Bias: Urlaubs-Erinnerungen
- Racial Bias: Gorilla
- Gender Bias: Air Condition

https://de.wikipedia.org/wiki/Liste\_von\_kognitiven\_Verzerrungen

## WAS IST EINE DATENANALYSE?

"Eine Datenanalyse ist ein **Prozess**, welcher Daten inspiziert, bereinigt, transformiert, und modelliert, mit dem Ziel nützliche Informationen zu entdecken, Zusammenhänge zu finden, und bei Entscheidungen zu helfen."

- Wikipedia

Die Datenanalyse hat verschiedene Facetten und Zugänge, umfasst diverse Techniken unter unterschiedlichen Namen, in verschiedenen Wirtschaftssektoren und Wissenschaften.

- Wikipedia

### Workflow

- Fragestellung und Anforderungen definieren
- 2) Daten sammeln
- 3)Daten bereinigen
- 4) Daten prozessieren
- 5) Daten analysieren
- 6)Ergebnisse interpretieren und dokumentieren

### Data Pipeline

#### Data Processing Pipeline

School of Data Skill Set



### Data Pipeline: Rohdaten

- Orginalquelle der Daten
- oft schwierig zum Verwenden für die Analyse
- Rohdaten müssen zumeist 1-n Mal prozessiert werden für Analyse

# Data Pipeline: prozessierte Daten

- Bereinigen von Fehlern
- Prozesse: Filtern, Gruppieren, Transformieren, Aggregieren, math. Operationen,
- Daten sind danach bereit für die Analyse

### DATENQUELLEN

### Datenquellen

1: nach bestehendem Datenset suchen

2: Selber sammeln

### Orte für Fremd-Daten

- Internet: Websites, Repositories, API's
- Datenbanken
- Datenhändler (kaufen)
- Organisationen: Unternehmen, Universitäten, etc.

### Eigene Daten

### Formen der Datenerhebung:

- Umfragen
- Interviews
- Beobachtung
- Recherche
- Messungen: Sensoren

### **DATENTYPEN**

### Skalierung

| Skalenniveau    | Operationen        | Eigenschaften                                  | Beispiele                                        |
|-----------------|--------------------|------------------------------------------------|--------------------------------------------------|
| Nominalskala    | =, ≠               | Häufigkeit                                     | Farbe, Adresse, Beruf,<br>Blutgruppe, Name,      |
| Ordinalskala    | =, ≠               | Häufigkeit, Reihenfolge                        | Noten,Hotelklassen,<br>Kleidung, Beaufortskala   |
| Intervallskala  | =, ≠, <, >, -      | Häufigkeit, Reihenfolge,<br>Abstand            | Datum, Temperatur °C, IQ-Skala, Längengrad       |
| Verhältnisskala | =, ≠,<, >, +, -, ÷ | Häufigkeit, Reihenfolge,<br>Abstand, Nullpunkt | Alter, Gewicht, Länge,<br>Preis, Pprozent, Masse |

### Hilfe



### Skalierung



#### Intervall oder Verhältnis



### Intervall VS Verhältnis

Null Grad Celsius bedeutet nicht die Abwesenheit von Energie (kein echter Nullpunkt), und 80 Grad Celsius ist nicht zweimal so heiß wie 40 Grad Celsius (Intervall).

## Intervall VS Ordinal

Rennen: Die Differenz zwischen erstem und zweiten Platz ist nicht notwendigerweise die selbe, wie zwischen zweitem und dritten Platz.

# Skalierung

| Skalenniveau    | Operationen        | Eigenschaften                                  | Beispiele                                        |
|-----------------|--------------------|------------------------------------------------|--------------------------------------------------|
| Nominalskala    | =, ≠               | Häufigkeit                                     | Farbe, Adresse, Beruf,<br>Blutgruppe, Name,      |
| Ordinalskala    | =, ≠               | Häufigkeit, Reihenfolge                        | Noten,Hotelklassen,<br>Kleidung, Beaufortskala   |
| Intervallskala  | =, ≠, <, >, -      | Häufigkeit, Reihenfolge,<br>Abstand            | Datum, Temperatur °C, IQ-Skala, Längengrad       |
| Verhältnisskala | =, ≠,<, >, +, -, ÷ | Häufigkeit, Reihenfolge,<br>Abstand, Nullpunkt | Alter, Gewicht, Länge,<br>Preis, Pprozent, Masse |

| Datum         | Skalenniveau |
|---------------|--------------|
| "08/05/2018"  |              |
| 173           |              |
| "32° 5′ 0″ N" |              |
| True          |              |
| "Large"       |              |

# Skalierung

| Skalenniveau    | Operationen        | Eigenschaften                                  | Beispiele                                        |
|-----------------|--------------------|------------------------------------------------|--------------------------------------------------|
| Nominalskala    | =, ≠               | Häufigkeit                                     | Farbe, Adresse, Beruf,<br>Blutgruppe, Name,      |
| Ordinalskala    | =, ≠               | Häufigkeit, Reihenfolge                        | Noten,Hotelklassen,<br>Kleidung, Beaufortskala   |
| Intervallskala  | =, ≠, <, >, -      | Häufigkeit, Reihenfolge,<br>Abstand            | Datum, Temperatur °C, IQ-Skala, Längengrad       |
| Verhältnisskala | =, ≠,<, >, +, -, ÷ | Häufigkeit, Reihenfolge,<br>Abstand, Nullpunkt | Alter, Gewicht, Länge,<br>Preis, Pprozent, Masse |

| Datum         | Skalenniveau    |
|---------------|-----------------|
| "08/05/2018"  | Intervallskala  |
| 173           | Verhältnisskala |
| "32° 5′ 0″ N" | Intervallskala  |
| True          | Nominalskala    |
| "Large"       | Ordinalskala    |

## Diskussion

- 1. Laptop zu und Tisch aufräumen
- 2. Gruppen (4-6 P) finden. Melden und Tisch suchen
- 3. Moderatorin und Präsentatorin fixieren
- 4. Frage 1 und 2 (je 3min) diskutieren
- 5. Frage Meta diskutieren (4min)
- 6. Präsentieren der Ergebnisse (1min)

## Diskussion

| Skalenniveau    | Operationen        | Eigenschaften                                  | Beispiele                                        |
|-----------------|--------------------|------------------------------------------------|--------------------------------------------------|
| Nominalskala    | =, ≠               | Häufigkeit                                     | Farbe, Adresse, Beruf,<br>Blutgruppe, Name,      |
| Ordinalskala    | =, ≠               | Häufigkeit, Reihenfolge                        | Noten,Hotelklassen,<br>Kleidung, Beaufortskala   |
| Intervallskala  | =, ≠, <, >, -      | Häufigkeit, Reihenfolge,<br>Abstand            | Datum, Temperatur °C, IQ-Skala, Längengrad       |
| Verhältnisskala | =, ≠,<, >, +, -, ÷ | Häufigkeit, Reihenfolge,<br>Abstand, Nullpunkt | Alter, Gewicht, Länge,<br>Preis, Pprozent, Masse |

A (je 3min): Beispiele für...

Frage 1: Nominalskalierte Daten

Frage 2: Verhältnisskalierte Daten

B (je 3min): Beispiele für...

Frage 1: Ordinalskalierte Daten Frage 2: Intervallskalierte Daten

#### Sum Up (3min):

Frage 3: Wie ist es gelaufen und welche Probleme gab es?

## Computer

- Boolsch (boolean): true/false
- Numerisch (numeric): float, integer,
- Zeichenketten (string)
- zusammengesetzte Strukturen: Listen (Arrays), Dictionaries

| Datum         | Skalenniveau    | Computer |
|---------------|-----------------|----------|
| "08/05/2018"  | Intervallskala  |          |
| 173           | Verhältnisskala |          |
| "32° 5′ 0″ N" | Intervallskala  |          |
| True          | Nominalskala    |          |
| "Large"       | Ordinalskala    |          |

## Computer

- Boolsch (boolean): true/false
- Numerisch (numeric): float, integer,
- Zeichenketten (string)
- zusammengesetzte Strukturen: Listen (Arrays), Dictionaries

| Datum         | Skalenniveau    | Computer |
|---------------|-----------------|----------|
| "08/05/2018"  | Intervallskala  | String   |
| 173           | Verhältnisskala | Integer  |
| "32° 5′ 0″ N" | Intervallskala  | String   |
| True          | Nominalskala    | Boolean  |
| "Large"       | Ordinalskala    | String   |

## Dimension

- räumlich (spatial)
- zeitlich (temporal)
- thematisch (domain)

| Datum         | Skalenniveau    | Computer | Dimension |
|---------------|-----------------|----------|-----------|
| "08/05/2018"  | Intervallskala  | String   |           |
| 173           | Verhältnisskala | Integer  |           |
| "32° 5′ 0″ N" | Intervallskala  | String   |           |
| True          | Nominalskala    | Boolean  |           |
| "Large"       | Ordinalskala    | String   |           |

## Dimension

- räumlich (spatial)
- zeitlich (temporal)
- thematisch (domain)

| Datum         | Skalenniveau    | Computer | Dimension |
|---------------|-----------------|----------|-----------|
| "08/05/2018"  | Intervallskala  | String   | temporal  |
| 173           | Verhältnisskala | Integer  | domain    |
| "32° 5′ 0″ N" | Intervallskala  | String   | spatial   |
| True          | Nominalskala    | Boolean  | domain    |
| "Large"       | Ordinalskala    | String   | domain    |

## **DATASET**

### **Datasets**

"Ein Datensatz ist eine Gruppe von inhaltlich zusammenhängenden (zu einem Objekt gehörenden) Datenfeldern."

|   | Α        | В        | С      | D                                      | E           | F      | G      | H       |
|---|----------|----------|--------|----------------------------------------|-------------|--------|--------|---------|
| 1 | wkurz    | sprengel | ptname | ptlang                                 | listenplatz | gesamt | unguel | gueltig |
| 2 | GRGRAZ03 | 101      | ÖVP    | Österreichische Volkspartei            | 1           | 277    | 1      | 276     |
| 3 | GRGRAZ03 | 101      | SPÖ    | Sozialdemokratische Partei Österreichs | 2           | 277    | 1      | 276     |
| 4 | GRGRAZ03 | 101      | FPÖ    | Freiheitliche Partei Österreichs       | 3           | 277    | 1      | 276     |
| 5 | GRGRAZ03 | 101      | GRÜNE  | Die Grünen - Die Grüne Alternative     | 4           | 277    | 1      | 276     |
| 6 | GRGRAZ03 | 101      | KPÖ    | Kommunistische Partei Österreichs      | 5           | 277    | 1      | 276     |
| 7 | GRGRAZ03 | 101      | GVP    | Grazer Verkehrspartei                  | 6           | 277    | 1      | 276     |
| 8 | GRGRAZ03 | 101      | RWA    | Reif für die Wirtschaft und Arbeit     | 7           | 277    | 1      | 276     |
| 9 | GRGRAZ03 | 101      | LIF    | Liberales Forum                        | 8           | 277    | 1      | 276     |

## **Datasets: Struktur**

- a) strukturierte Daten
- b) semi-strukturierte Daten
- c) unstrukturierte Daten

## **Datasets: Struktur**

### Topologische Struktur:

- Tabellen: Datenbank, CSV
- Texte
- Netzwerke / Graphen
  - Bäume
- Hierarchische Daten

## **DATEIFORMATE**

## Definition

Ein Dateiformat ist ein Standard, in welchem Informationen zum Speichern auf einem Computer encodiert werden. Es regelt wie die Zeichenketten (Bytes) aneinandergereiht werden und so die Information in sich tragen.

# Proprietär VS Open

Die Dateiformate können entweder frei, also von allen einlesbar (z. B. XML, JSON), oder proprietär und somit nur mit der passenden Software nutzbar sein (z. B. PDF).

# Proprietär VS Open

Ein offenes Format ist eine publizierte Spezifikation zum Speichern digitaler Daten, welche ohne rechtliche oder technische Einschränkungen genutzt werden kann.

## Warum offen?

- Interoperabilität: einfaches
- Austauschen
- für Mensch und Maschine verständlich
- offener Standard auf dem aufbauend allen es möglich ist Anwendungen dafür zu entwickeln
- Vendor Lock-In nicht möglich.

# Wichtig für uns

- CSV
- Markdown
- JSON
- HTML/XML

 $\rightarrow$  alle offen

# Übung

- 1. Sucht euch 5 verschiedene Dateitypen auf eurem Computer oder aus dem Inet.
- 2. Checkt in einem Editor, ob:
  - a) offen oder proprietär, und
  - b)welche Struktur die Daten haben.

Zeit: 5min

## Metadaten

## Definition

Metadaten oder Metainformationen sind strukturierte Daten, die Informationen über Merkmale anderer Daten enthalten.

– Wikipedia

→ Werk in digitaler Form = Daten

## Warum?

Metadaten sollen Informationen zu Daten geben um jene für Maschinen wie auch Menschen einfacher verständlich und nutzbar zu machen.

#### Konkrete Anwendungs-Gründe:

- einfachere Auffindbarkeit der Werke/Daten im Web
- einfachere Weiterverwendbarkeit
- Automatisierung durch Computer
- Aufbereitungen durch IT-Systeme (Metadaten-Kataloge, Suchmaschinen, etc.)



#### Sich Frage stellen:

Was braucht eine andere Person um die Daten verstehen zu können?

#### metadata.json

- JSON Datei mit Key-Value Paaren. JSON ist strukturiert und maschinenlesbar (aber auch für Menschen lesbar)
- eindeutige und selbsterklärende Attributnamen wählen
- Keys: zusammen und klein geschrieben, Underscore als Trennzeichen, Englisch

## **Enthaltene Informationen**

- zum Werk selber
- zur Erhebungs-Methode (z. B. Daten)
- zur Veröffentlichung des Werkes (z. B. Verlag, Ausstellung, etc.)
- zu den Metadaten selber
- zum Projekt (wenn Werkserstellung teil eines größeren Projektes)
- zur Institutionellen Einbettung (wenn Werk durch eine öffentliche oder private Organisation erstellt bzw. in Auftrag gegeben)
- zur Kontakt-Aufnahme

# Typische Metadaten I

#### Werk (Datenset)

- Titel & Beschreibung
- Erstellungs-Datum
- Veröffentlichungs-Datum
- UrheberInnen (AutorInnen)
- Geographische Abdeckung
- Zeitliche Ausdehnung
- Lizenz (Text und URI)
- Encoding
- Datei-Typ
- Identifier
- URI
- Version
- Sprache
- Schlagwörter

#### **Erhebung**

- Erhebungs-Methode mit Infos (z. B. Anzahl Befragungen)
- Erhebungs-Datum und -Ort
- Messmittel (Typ, Sensor, Genauigkeit, etc.)
- Aktualisierungs-Intervall (stündlich, täglich, jährlich,...)
- Erhebende Person und/oder Institution mit Kontakt

# Typische Metadaten II

#### Metadaten

- Version
- Encoding
- Metadaten Standard
- Datei-Typ
- Sprache

#### Projekt

- Projektname
- Projekt-Beschreibung
- Projektleitende Person und/oder Institution
- FördergeberIn
- Kontakt (Email, Adresse, Website)

#### Veröffentlichung

- Veröffentlichende Stelle mit Kontakt (Verlag, Ministerium, Universität, etc.)
- Ort und Datum der Veröffentlichung/Ausstellung (Museum, Verlag, Geokoordinaten, etc.)

# Häufige Anwendungen

- Textsorten: Bücher, Zeitungen, Poster
- Dateien (digitales Werk)
  - Daten: Spreadsheet, Geodaten, HTML,
  - Fotos → EXIF
  - Datenbanken & API's
  - Audio: Musik, Interview, Podcast
  - Video
- Kunst-Werke: Bilder, Installation,

# Beispiel Buch

- Titel
- Kurz-Beschreibung
- AutorInnen
- Verlag
- Auflage
- Sprache
- Lizenz
- Seitenzahl
- Veröffentlichungs-Datum
- Erstellungs-Datum
- ISBN Nummer
- Größe und Gewicht

## **RECHTLICHES**

## Datenschutz

- neue EU DSGVO ab 25. Mai
- Zweckmäßige Verwendung
- Personenbezogene Daten aufpassen (Name, IP, Email,...).

→ TODO: mit Rechtsabteilung sprechen

## UrheberInnenrecht

- Regelt die Verwertungs- und Werknutzungsrechte
- Wird meist über Lizenzierungen des Werkes abgewickelt (Du darfst das Foto im Format Din A2 drucken und verkaufen, dafür zahlst du pro Stück 12.50€).
- Rechte können auch direkt geklärt werden.
- → TODO: mit Rechtsabteilung sprechen

## UrheberInnenrecht

#### 1. Fremde Daten nutzen:

- schauen ob UrheberInnenrechts-Lizenz eine Nutzung erlaubt:
- nein: nicht verwenden bzw. wegen Nutzung direkt anfragen.
- ja (= offene Lizenz): Verwendung mit erfüllen der Lizenz-Bedingungen (z. B. Werks-InhaberIn nennen).

## UrheberInnenrecht

### 2. Eigene Daten erstellen:

- ihr seid UrheberIn: alle Rechte bei euch
- mit Rechtsabteilung sprechen
- Lizenz wählen
- eventuell Zustimmung einholen
- Lizenzieren

#### Kontakt

www.offenewahlen.at @stefankasberger stefan.kasberger@okfn.at www.ofkn.at

#### **UrheberInnenrecht:**

Dieses Werk ist, sofern nicht explizit anders angegeben, lizenziert unter einer Creative Commons Namensnennung-Weitergabe unter gleichen Bedingungen 4.0 International Lizenz. Urheber: Stefan Kasberger (2018).

#### Markenrecht:

Alle in dieser Präsentation genannten Marken und Produktnamen sind eingetragene Marken-/Warenzeichen der jeweiligen Hersteller beziehungsweise Unternehmen.