BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE – PILANI, HYDERABAD CAMPUS AGSRD, FIRST SEMESTER 2021-2022 (COURSE HANDOUT: PART-II)

Date: 20/08/2021

In addition to Part-I (a general handout for all courses appended to the time-table), this handout provides the specific details of this course.

Course No. : ME G516

Course Title : ENERGY SYSTEMS ENGINEERING

Instructor-in-charge : SANDIP DESHMUKH

Lab. Instructors : Sama Sanghamitra, Sandip Deshmukh

1. Course Description

Basic concepts of energy conversion, generation of electrical and thermal energy, transmission and distribution of electrical energy, load management, detailed analysis of utilization of thermal energy in: boilers, furnaces, compressors, heat transfer equipments, and HVAC systems, energy audit, waste heat recovery systems, cogeneration, demand side management, and management and organization of energy saving projects.

2. Scope and Objective

The purpose of this course is to provide introductory knowledge and a state-of-the-art learning of thermal and electrical energy systems including their design aspects pertaining to the real-world applications. Besides the theoretical knowledge, interactive approach to analyze the aspects of a variety of thermal energy and heat recovery systems will be emphasized. The course will certainly interest students aiming to build-up professional and research career in the field of energy systems engineering.

3. Text Books:

T1. Amlan Chakrabarti, Energy Engineering and Management, Prentice Hall India Learning Private Limited, (2011).

Reference Books:

- R1. Giovanni Petrecca, "Energy Conversion and Management: Principles and Applications", Springer, International Publishing Switzerland, 2014.
- R2. Clive Beggs, Energy: Management, Supply and Conservation, Butterworth-Heinemann, 2009.
- R3. Francis M. Vanek, Louis D. Albright, Energy Systems Engineering: Evaluation and Implementation, The McGraw-Hill Companies, Inc, 2008.
- R4. WR Murphy & G McKay, "Energy Management", Butterworth Heinemann, 2011.

4. Course Plan

Lecture No.	Learning objectives	Topics to be covered	Chapter
1-3	Energy scenario, conversion and management	Energy resources, energy sources, global energy scenario, general principles of energy conversion and management, energy transformations in factories and buildings.	T1: 1, R4: 2
4-6	Energy demand and consumption	Energy end users, energy consumption and environmental issues.	T1: 1, R1: 3, R2: 1
7-9	Energy supply and utility plants	Electricity supply: Evolution, generation, transmission, distribution, electrical substations, transformer selection, efficiency and losses, motive power and power factor improvement.	T1: 2, R1: 5, 7, R2: 2
10-12	Energy and fuels	Energy prices, important fuels, fuel production and processing, stoichiometry, choice of fuels, essentials of combustion systems.	T1: 2, R4: 2, R1: 6
13-14		Research Seminar -1	

15-17	Energy analysis of industrial systems					
18-20	Energy analysis of transportation systems	Energy conservation in transportation, new technologies, progress in clean technologies for transportation.	T1: 6, R2: 4, R3: 13			
21-23	Energy analysis of buildings	Energy in buildings, building construction, HVAC systems, lighting systems, waste heat recovery	T1: 7, R4: 9, R1: 16, R2: 13			
24-25	Research Seminar - 2					
26-28	Energy management aspects	Energy management approach, energy planning, energy staffing, feasibility studies and financing, evaluation of alternative energy sources.	T1: 8, R1: 17			
29-31	Energy management programmes design	Principles, energy management cycle, role of energy manager, energy conservation schemes, supply side and demand side management, control and planning.	T1: 9, R4: 1, R1: 17, R2: 3			
32-34	Energy auditing	Energy, categories and types of energy audit, audit procedures.	T1: 10, R4: 1			
35-37	Energy economics	Costing techniques, financial appraisal and profitability, life cycle cost, energy pricing and cost optimization.	T1: 11, R4: 3			
38-41	Energy savings potential opportunities	Energy savings obtential Boilers, compressors, heat exchangers, HVAC systems, lighting systems, motors and transformers				

5. Evaluation Scheme

Evaluation Component	Duration (minute)	Weightage (%)	Date & Time	Nature of Component
Mid Term Test	90	25		Open Book
Literature Survey Seminars (2 Nos)	-	10		
Lab Report	-	10	To be announced in the class	Open Book
Lab Viva	-	10		
Lab Quiz	-	5		
Comprehensive Exam	120	40	27/12 FN	Open Book

- **6. Chamber Consultancy Hour:** To be announced in the class room.
- **7. Notices:** All notices concerning this course shall be displayed on the CMS (the Institute's web based course management system). Besides this, students are advised to visit regularly CMS for latest updates.
- **8. Make-up Policy:** Make-up shall be given only to the genuine cases with prior confirmation. Request for the make-up tests, duly signed by the students, should reach the under signed well before the scheduled test.
- **9. Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-Charge ME G516