AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims

- 1. 11. (Canceled).
- 12. (Currently Amended) A molding comprising a composite layered sheet or composite layered film and a backing layer made from plastic injection-molded, foamed, or cast onto the back of the material, where the composite layered sheet or composite layered film comprises
- a substrate layer comprising, based on the total of the amounts of components A and B, and, optionally, C and/or D, which give 100% by weight in total,
 - a from 1 to 99% by weight of an elastomeric graft copolymer as component A,
 - b from 1 to 99% by weight of one or more hard copolymers containing units which derive from vinylaromatic monomers, as component B,
 - c from 0 to 80% by weight of polycarbonates, as component C, and
 - d from 0 to 50% by weight of fibrous or particulate fillers, or a mixture of these, as component D,

wherein component B contains, based on the total weight of units deriving from vinylaromatic monomers, from 40 to 100% by weight of units deriving from α -methylstyrene and from 0 to 60% by weight of units deriving from styrene,

- (2) optionally, an intermediate layer, and
- (3) an outer layer comprising one or more hard copolymers, obtainable via polymerization of vinylaromatic monomers and acrylonitrile, where the vinylaromatic monomers used comprise from 80 to 100% by weight of α -methylstyrene and from 0 to 20% by weight of styrene,

and wherein component A comprises

- a1' from 10 to 90% by weight of at least one elastomeric graft base with a glass transition temperature below 0°C, as component A1', obtainable by polymerizing, based on A1',
- a11' from 60 to 100% by weight of at least one conjugated diene, as component A11',
- a12' from 0 to 30% by weight of at least one monoethylenically unsaturated monomer, as component A12', and
- a13' from 0 to 10% by weight of at least one crosslinking monomer having unconjugated double bonds, as component A13',
- a2' from 10 to 60% by weight of a graft, as component A2', made from, based on A2',
- a21' from 50 to 100% by weight of at least one vinylaromatic monomer, as component A21'
- <u>a22'</u> from 5 to 35% by weight of acrylonitrile and/or methacrylonitrile, as component A22'
- a23' from 0 to 50% by weight of at least one other monoethylenically unsaturated monomer, as component A23',

and component B comprises copolymers of

- b1' from 50 to 100% by weight of vinylaromatic monomers, as component B1',
- <u>b2'</u> from 0 to 50% by weight of acrylonitrile or methacrylonitrile or a mixture of these, as component B2',
- <u>b3'</u> from 0 to 50% by weight of at least one other monoethylenically unsaturated monomer, as component B3'.
- 13. (Canceled).
- 14. (Canceled).

- 15. (Previously Presented) The molding as claimed in claim 12, wherein the composite layered sheet or composite layered film comprises
- (1) a substrate layer,
- (3) an outer layer, and
- (2) an intermediate layer located between substrate layer and outer layer and differing from these, comprising impact-modified polymethyl methacrylate, polycarbonate, or styrene (co)polymers.
- 16. (Previously Presented) The molding as claimed in claim 12, wherein the composite layered sheet or composite layered film has a thickness of from 100 μm to 10 mm.
- 17. (Previously Presented) The molding as claimed in claim 12, wherein the material forming the substrate layer (1) of the composite layered sheet or of the composite layered film has a Vicat softening point (Vicat B measured to DIN 53 460 with a temperature rise of 50° K/h) of at least 105°C, and

the composite layered sheet or composite layered film has

- a modulus of elasticity E_t (measured to ISO 527-2/1B at 5 mm/min and 90°C) of at least 1300 MPa,
- a modulus of elasticity E_t (measured to ISO 527-2/1B at 5 mm/min and 100° C) of at least 900 MPa,
- a Shore C hardness (measured to DIN 53505 at 90°C) of at least 70, and
- a Shore C hardness (measured to DIN 53505 at 100°C) of at least 60.
- 18. (Canceled).
- 19. (Withdrawn) The use of moldings as claimed in claim 12 as bodywork components for motor vehicles.
- 20. (Withdrawn) A roof, a door, an engine cover, a trunk lid, a spoiler, a wind deflector, a lateral airfoil, or a bumper for motor vehicles, comprising a molding as claimed in claim 12.

the material forming the substrate layer (1) of the composite layered sheet or of the composite layered film has a Vicat softening point (Vicat B measured to DIN 53 460 with a temperature rise of 50° K/h) of at least 105°C, and

the composite layered sheet or composite layered film has

a modulus of elasticity E_t (measured to ISO 527-2/1B at 5 mm/min and 90°C) of at least 1300 MPa,

a modulus of elasticity E_t (measured to ISO 527-2/1B at 5 mm/min and 100° C) of at least 900 MPa,

- a Shore C hardness (measured to DIN 53505 at 90°C) of at least 70, and
- a Shore C hardness (measured to DIN 53505 at 100°C) of at least 60.

30. (Withdrawn) The molding as claimed in claim 17, wherein

the material forming the substrate layer (1) of the composite layered sheet or of the composite layered film has a Vicat softening point (Vicat B measured to DIN 53 460 with a temperature rise of 50° K/h) of at least 105°C, and

the composite layered sheet or composite layered film has

a modulus of elasticity E_t (measured to ISO 527-2/1B at 5 mm/min and 90°C) of at least 1300 MPa,

a modulus of elasticity E_t (measured to ISO 527-2/1B at 5 mm/min and 100°C) of at least 900 MPa,

- a Shore C hardness (measured to DIN 53505 at 90°C) of at least 70, and
- a Shore C hardness (measured to DIN 53505 at 100°C) of at least 60.

31. (Canceled).