

CS 329P: Practical Machine Learning (2021 Fall)

11. Transfer Learning

Qingqing Huang, Mu Li, Alex Smola

https://c.d2l.ai/stanford-cs329p

Transfer learning

- Motivation
- Exploit a model trained on one task for a related task
- Popular in deep learning as DNNs are data hungry and training cost is high
- Approaches

- Feature extraction (e.g. Word2Vec, ResNet-50 feature, I3D feature)
- Train a model on a related task and reuse it

- Fine-tuning from a pertained model (focus of this lecture)
- Related to
 - Semi-supervised learning

- In the extreme, zero-shot / few-shot learning
- Multi-task learning, where some labeled data is available for each task

CS 329P: Practical Machine Learning (2021 Fall)

11.1 Fine-tuning in CV

Qingqing Huang, Mu Li, Alex Smola

https://c.d2l.ai/stanford-cs329p

Transferring Knowledge

- There exists large-scale labeled CV datasets
 - Especially for image classification, the cheapest one to label
- Transfer knowledge from models trained on these datasets to your CV applications (with 10-100X smaller data)

Your dataset

2	1	2	2	2.	2	2	2	2	2	Z	2
3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	U	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5
Q	6	6	6	6	6	6	6	6	6	6	6
	-	0.000	_	14.				_			

# examples	1.2 M	50K	60 K
# classes	1,000	100	10

Pre-trained Models

Partition a neural network into:

- A feature extractor (encoder) maps raw pixels into linearly separable features
- A linear classifier (decode) makes decisions
- Pre-trained model

- a neural network trained on a large-scale and general enough dataset
- The feature extractor may generalize well to
 - other datasets (e.g. medical/satellite images)
 - other tasks (e.g. object detection, segmentation)

Fine-Tuning techniques

Initialize the new model:

- Initialize the feature extractor with the feature extractor parameters of a pre-trained model
- Randomly initialize the output layer

Start the parameter optimization near a local minimal

Train with a small learning rate with just a few epochs

Regularize the search space

Pre-train

Source

Target

Freeze Bottom Layers

- Neural networks learn hierarchical features
 - Low-level features are universal, generalize well, e.g. curves /edges / blobs
 - High-level features are more task and dataset specific,
 e.g. classification labels
- Freeze bottom layers during fine tuning
 Train the top layers from scratch
 - Keep low-level universal features intact
 - Focus on learning task specific features
 - A strong regularizer

Where to Find Pre-trained Models

- Tensorflow Hub: https://tfhub.dev/
 - Tensorflow models submitted by users
- TIMM: https://github.com/rwightman/pytorch-image-models
 - PyTorch models collected by Ross Wightman

```
import timm
from torch import nn

model = timm.create_model('resnet18', pretrained=True)
model.fc = nn.Linear(model.fc.in_features, n_classes)
# Train model as a normal training job
```

Applications

- Fine-tuning pre-trained models (on ImageNet) is widely used in various CV applications:
 - Detection/segmentation (similar images but different targets)
 - Medical/satellite images (same task but very different images)
- Fine-tuning accelerates convergence

- Though not always improve accuracy
 - Training from scratch could get a similar accuracy, especially when the target dataset is also large

Summary

- Pre-train models on large-scale datasets (often image classification)
- Initialize weights with pre-trained models for down-stream tasks
- Fine-tuning accelerates converges and (sometimes) improves accuracy