机器学习第六次作业报告

软73 沈冠霖 2017013569

1.基本情况

1.1 运行环境

- windows 10
- python 3.7.1
- gym 0.17.3
- matplotlib 3.3.0
- numpy 1.19.1

1.2 运行方法

我的代码运行在src文件夹下,先在src文件夹下输入如下指令安装依赖

```
pip install -r requirements.txt
```

我实现了主函数,运行在调试好的参数下,进行训练和测试。还实现了grid search代码,能够比较不同超参数下的运行结果,并且找到最优超参数组合。

运行三个算法的主函数:

```
python main.py --algorithm=QLearning
python main.py --algorithm=Sarsa
python main.py --algorithm=Sarsa_lambda
```

运行三个算法的grid search代码:

```
python grid_search.py --algorithm=QLearning
python grid_search.py --algorithm=Sarsa
python grid_search.py --algorithm=Sarsa_lambda
```

2.实验结果和分析

以下结果和分析都是在grid search的最优参数下测试得到

2.1 训练结果

QLearning:

Sarsa:

Sarsa_lambda:

2.2 测试结果

	QLearning	Sarsa	Sarsa_lambda
Average Reward	7.873	7.395	7.222
Reward Variance	7.077	136.149	94.191
Average Steps	13.127	13.542	13.736

2.3 分析

首先分析训练情况:收敛性Sarsa>QLearning>Sarsa_lambda, Sarsa在1200个episode就基本收敛,而其他两个算法得到2000个episode才能收敛。同时,Sarsa的训练曲线在收敛后非常平稳,而QLearning就差一些,而Sarsa_lambda则不够平稳。

其次分析测试情况:三者的平均准确率和平均步长相差不多,可以认为效果近似。但是稳定性三者有着较为明显的差异:QLearning稳定性最好,Sarsa_lambda次之,Sarsa稳定性最差。

最后分析训练时间:QLearning和Sarsa的训练时间都很短,几秒就能训练5000个episode,而Sarsa_lambda需要每次都更新整个Q和E矩阵,速度很慢,训练5000个episode需要接近一小时。

综合分析三个算法,因为QLearning稳定性最高,而且训练较快,收敛性也不是很差,因此选用QLearning最佳。