V47

Temperaturabhängigkeit der Molwärme von Festkörpern

Schokoladenporsche

Durchführung: 02.12.2019

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Motivation	3		
2	Theoretische Grundlagen 2.1 Klassische Betrachtung	4		
3	Aufbau	6		
4 Durchführung				
5	Auswertung5.1 Temperaturverlauf5.2 Wärmekapazitäten5.3 Debye-Temperatur5.4 Betrachtung der Theorie	8 11		
6	Diskussion	12		
Lit	eratur	12		
7	Tabellen	13		

1 Motivation

Das Ziel dieses Versuches ist die Bestimmung der Debye-Temperatur θ_D in Kupfer, dem verwendeten Material. Dafür wird in der Theorie erstmal das klassische Modell zur Temperaturabhängigkeit der Wärmekapazität C(T) diskutiert und dann auf das Debye-Modell eingegangen.

2 Theoretische Grundlagen

Die Theorie folgt der Beschreibung in [4]. Grundlegend ist die Wärmekapazität C definiert als

$$C = \frac{\Delta Q}{\Delta T}.$$
 (1)

Damit nun unterschiedliche Materialien und Proben verglichen werden können, gibt es die molare Wärmekapazität

$$c^m \equiv \frac{\Delta Q}{\Delta T \cdot \text{mol}} \,. \tag{2}$$

Eine weitere Art ist die spezifische Wärmekapazität

$$c^{\text{mass}} \equiv \frac{C}{m} \tag{3}$$

$$c^{\text{vol}} \equiv \frac{C}{V}.$$
 (4)

Die Debye-Näherung wird interessant für C_V und C_p . Diese folgen aus dem ersten Hauptsatz der Thermodynamik

$$dQ = dU - dW = dU + p dV.$$
 (5)

Die Indizes V und p geben an, welche Größe konstant ist

$$C_V \equiv \left. \frac{\partial Q}{\partial T} \right|_V = \left. \frac{\partial U}{\partial T} \right|_V \tag{6}$$

$$C_p \equiv \left. \frac{\partial Q}{\partial T} \right|_p \,. \tag{7}$$

Ebenfalls aus der Thermodynamik folgt der Zusammenhang

$$C_p - C_V = 9\alpha^2 \kappa V_0 T. \tag{8}$$

Es treten auf die Temperatur T, das Volumen V_0 , der Volumenausdehnungskoeffizient α_V^2 und die Kompressibilität κ .

2.1 Klassische Betrachtung

Wir wollen ein System aus N-Atomen betrachten, daraus folgen 3N Schwingungsmoden. Durch den Gleichverteilungssatz wird der mittleren kinetischen und potentiellen Energie jedes Atoms $^{1}/2k_{B}T$ zugeordnet. Die innere Energie ist somit

$$U = U_{\text{Gleichgewicht}} + 3Nk_BT. \tag{9}$$

Damit ergibt sich

$$C_V = 3Nk_B = 3r'N'k_B \tag{10}$$

mit den neuen Konstanten der Anzahl an Einheitszellen N' und r' der Anzahl an Atomen in einer Einheitszelle. Dieses ist das DULONG-PETIT-Gesetz.

2.2 Einbeziehung der Quantenmechanik

Werden die Schwingungen mit quantenmechanischen harmonischen Oszillatoren beschrieben, folgt die Wärmekapazität

$$C_V = \left. \frac{\partial \langle U \rangle}{\partial T} \right|_V = \sum_{q,r} \frac{\partial}{\partial T} \frac{\hbar \omega_{qr}}{\exp\left(\frac{\hbar \omega_{qr}}{k_b T}\right) - 1} \,. \tag{11}$$

Damit ergibt sich für hohe Temperaturen $k_B T \gg \hbar \omega_{qr}$

$$C_V = 3r'Nk_B \tag{12}$$

und für tiefe Temperaturen $k_BT \ll \hbar \omega_{qr}$

$$C_V = V \frac{2\pi^2}{5} k_B \left(\frac{k_B T}{\hbar v_s}\right)^3 \,. \tag{13}$$

2.3 Debye-Näherung

Zum Start der Debye-Näherung werden folgende Annahmen getroffen:

- 1. einatomige Basis: r' = 1
- 2. Betrachtung der drei akustischen Phononenzweige mit Dispersion $\omega_i = v_i q$
- 3. Die Summation über q wird zur Integration über die erste Brillouin-Zone. Dies kann in der Form einer Kugel mit Radius q_D geschehen.

Für den Debye-Wellenvektor q_{D} gilt

$$q_D = \sqrt[3]{6\pi^2 \frac{N}{V}}.\tag{14}$$

Die Debye-Temperatur θ_D wird als

$$\theta_D \equiv \frac{\hbar \omega_D}{k_B} = \frac{\hbar v_s}{k_B} \sqrt[3]{6\pi^2 \frac{N}{V}} \tag{15}$$

formuliert. In den Hoch- und Tieftemperaturgrenzfällen gilt

$$C_V^D = \begin{cases} \frac{12\pi^4}{5} N k_B \left(\frac{T}{\theta_D}\right)^3 & \text{für } T \ll \theta_D \\ 3N k_B & \text{für } T \gg \theta_D \end{cases}$$
 (16)

2.4 Wärmetransport

Der Wärmetransport kann auf drei Arten erfolgen:

- Strahlung
- Konvektion
- Wärmeleitfähigkeit

Die Wärmeleitfähigkeit würde über die Probenhalterung erfolgen, dies kann minimiert werden, indem Materialien verwendet die schlecht leiten. Durch ein Vakuum wird der Wärmeverlust durch Konvektion minimiert. Die Strahlungsverluste werden dadurch kompensiert, dass das Gehäuse indem die Probe ist, auf der gleichen Temperatur gehalten wird.

3 Aufbau

Eine Skizze des Aufbaus ist in Abbildung 1 zu sehen. Die Probe befindet sich im Inneren des Rezipienten. Sie ist mit einer Heizspirale umwickelt, als Energiezulieferer. Der Rezipient kann mit der Vakuumpumpe geleert und mit Helium gefüllt werden. Das Helium hat den Vorteil gegenüber Luft, dass es bei der Siedetemperatur von Stickstoff [77 K] gasförmig bleibt und nicht wie Luft kondensiert. Dies ist wichtig, da der Rezipient während der Messung in einem Dewargefäß, welches mit eben flüssigem Stickstoff gefüllt ist, ist.

Die Messung der Temperatur erfolgt mit zwei "Pt-100-Messwiderständen", eines für die Probe, eins für das Gehäuse, abgelesen werden sie an zwei Ohmmetern.

Die Heizspule wird mit eineem Konstantstromgerät versorgt, zusätzlich gibt es eine Gehäuseheizung.

Abbildung 1: Skizze der Versuchsapperatur, [3].

4 Durchführung

Zu Beginn der Messung wird der Rezipient evakuiert und anschließend mit Helium gefüllt. Dann wird das Dewargefäß mit flüssigem Stickstoff gefüllt und gewartet bis Gehäuseund Probentemperatur bei ungefähr 80 K sind. Während des Einkühlvorgangs muss eventuell stickstoff nachgefüllt werden, zudem ist zu bemerken, dass die Probe langsamer kühler wird als das Gehäuse. Ist die Zieltemperatur erreicht, wird mit der Vakuumpumpe der Druck minimiert (bei uns hat die Druckmessung nicht funktioniert, sodass mit Erfahrungswerten der Laufzeiten gearbeitet wurde). In der eigentlichen Messung wird die Probe mit einem Strom von circa 165 mA bei einer Spannung von 17,64 V geheizt. Die Werte für das Gehäuse sind $I_{\rm G}=4\,{\rm A}$ und $U_{\rm G}=5\,{\rm V}$. Es muss darauf geachtet werden, dass der Temperaturunterschied nicht zu groß ist, $\Delta R \leq 1\,\Omega$. Bis zu einem gemessenen Widerstand von 56 Ω werden alle 150 s die Widerstände, Ströme und Spannungen notiert, danach alle 300 s. Die Ströme werden während der Messung verändert, wenn die Differenz der Temperaturen zu groß wird.

5 Auswertung

5.1 Temperaturverlauf

In Abbildung 2 ist der Temperaturverlauf während der Messung zu sehen, die Werte von Probe und Gehäuse liegen nahe zusammen, wie oben gefordert.

Abbildung 2: Temperaturverlauf der von Gehäuse und Probe während der Messung.

5.2 Wärmekapazitäten

Die Wärmekapazität C_P wird mit Gleichung (2) bestimmt. Abgebildet sind die Werte in Abbildung 3, die Werte stehen in Tabelle 2. Die Einzelwerte sind

$$M = 63,546 \frac{g}{\text{mol}}$$
 [5]

$$m = 342 \,\mathrm{g}$$
 [3]

$$U_P = 17,64 \,\mathrm{V}$$
 (19)

Für die Berechung von C_V nach Gleichung (8) werden die Werte

$$\kappa = 140 \,\text{GPa} \tag{20}$$

$$V_0 = \frac{\text{molare Masse}}{\text{Dichte}} = \frac{63.546 \cdot N_A}{8,92 \,\text{g/cm}^3}$$
 (21)

Abbildung 3: Abhängigkeit der ${\cal C}_{P}$ Werte von der Temperatur.

verwendet. Für α werden die Werte aus der Anleitung [3] an

$$\alpha(T) = a \cdot T^3 + b \cdot T^2 + c \cdot T + d \tag{22}$$

gefittet, es ergeben sich mit scipy

$$a = (1,35 \pm 0,12) \cdot 10^{-6} \tag{23}$$

$$b = (-0.95 \pm 0.06) \cdot 10^{-3} \tag{24}$$

$$c = 0.24 \pm 0.01 \tag{25}$$

$$d = -5.1 \pm 0.6. \tag{26}$$

Das Ergebnis ist in Abbildung 4 zu sehen.

Es folgen die C_V Werte in Abbildung 5 und Tabelle 3.

 $\bf Abbildung~4:~$ Fit an die gegebenen Werte des linearen Ausdehnungskoeffizientens für Kupfer.

Abbildung 5: Abhängigkeit der C_V Werte von der Temperatur.

5.3 Debye-Temperatur

In Tabelle 1 stehen die C_V mit den, nach der in der Anleitung gegeben Tabelle, entsprechenden θ_D/T , sowie das Produkt dieser mit der jeweiligen Temperatur. Es ergibt sich eine mittlere Debye-Temperatur von

$$\theta_D = (280 \pm 10) \,\mathrm{K} \,.$$
 (27)

5.4 Betrachtung der Theorie

Es soll

$$\int_{0}^{\omega_{D}} Z(\omega) \, d\omega \tag{28}$$

berechnet werden, um ω_D und θ_D zu bestimmen. Gegeben sind die Schallgeschwindigkeiten

$$v_{\rm long} = 4.7 \, \frac{\rm km}{\rm s} \tag{29}$$

$$v_{\rm trans} = 2.26 \, \frac{\rm km}{\rm s} \,. \tag{30}$$

Im Debye-Modell wird die spektrale Zustandsdichte $Z(\omega)$ genähert, mit der Forderung

• Phasengeschwindigkeit nicht abhängig von Frequenz und Ausbreitungsrichtung.

So müssen nur die Eigenfrequenzen abgezählt werden und es folgt

$$Z(\omega) d\omega = \frac{3L^2}{2\pi^2 v^3} \omega^2 d\omega$$
 (31)

allerdings haben longitudinale und Transversale Wellen nicht unbedingt die gleiche Geschwindigkeit, sodass das Modell verbessert werden kann, zu

$$Z(\omega) d\omega = \frac{L^2}{2\pi^2} \omega^2 \left(\frac{1}{v_l^3} + \frac{1}{v_{tr}^3} \right) d\omega .$$
 (32)

Mit der Forderung (28) folgt

$$\omega_D^3 = \frac{18\pi^2 N_L}{L^3} \frac{1}{\frac{1}{v_l^3} + \frac{2}{v_{tr}^3}} = 8.21 \cdot 10^{40} \frac{1}{s^3}$$
 (33)

$$\omega_D = 43.5 \cdot 10^{12} \, \frac{1}{\text{s}} \tag{34}$$

$$Z(\omega) \, d\omega = \frac{9N_L}{\omega_D^3} \omega^2 \, d\omega \,. \tag{35}$$

Setzt man dieses in die Integraldarstellung

$$C_V = \frac{\mathrm{d}}{\mathrm{d}T} \int_0^{\omega_D} Z(\omega) \frac{\hbar \omega}{\exp\left(\frac{\hbar \omega}{k_B T}\right) - 1}$$
 (36)

ein, folgt mit den Abkürzungen

$$x := \frac{\hbar\omega}{k_B T} \tag{37}$$

$$\frac{\theta_D}{T} := \frac{\hbar \omega_D}{k_B T} \tag{38}$$

$$C_{V,\text{Debye}} = 9R \left(\frac{\theta_D}{T}\right)^3 \int_0^{\frac{\theta_D}{T}} \frac{x^4 e^x}{(e^x - 1)^2} \,.$$
 (39)

Aus der Integrationsgrenze können wir

$$\theta_D = \frac{\hbar \omega_D}{k_B} = 331,96 \,\mathrm{K} \tag{40}$$

bestimmen.

6 Diskussion

Während der Messung lagen die Temperaturen von Gehäuse und Probe in dem vorgegebenen Differenzbereich, wie in Abbildung 2 gut zu sehen ist. Außerdem wurde im vorgegebenen Rahmen geheizt.

Die Auffälligkeiten der Wärmekapazitäten C_P und C_V passen mit dem Verlauf der Temperaturkurve zusammen, so mussten teilweise, wie in den Messwerten zu sehen ist, die Ströme angepasst werden, was in der Temperaturkurve zu sehen ist und dann auch in den Plots von C_P 3 und C_V 5.

Bei der Bestimmung der Debye-Temperatur Θ_D ist der Fehler dadurch gegeben, dass die bestimmten C_V Werte teilweise zwischen den Einträgen in der gegebenen Tabelle liegen und hier die Übertragung Ungenauigkeiten reinbringt.

Die Debye-Temperatur liegt nach [2] im Bereich 310-347 K. Das experimentelle Ergebnis liegt darunter, was an der Tabelle liegen kann, das berechnete in dem Intervall.

Literatur

[1] <u>Das Periodensystem online</u>. 12. Dez. 2019. URL: http://www.periodensystem-online.de/index.php?show=list&id=modify&prop=Kompressionsmodul&sel=oz&el=68.

- [2] <u>Debye-Temperature</u>. 13. Dez. 2019. URL: http://www.knowledgedoor.com/2/elements_handbook/debye_temperature.html.
- [3] TU Dortmund. <u>Versuchsanleitung V47</u>. 2019. URL: https://moodle.tu-dortmund.de/.
- [4] Rudolf Gross und Achim Marx. <u>Festkörperphysik</u>. 3. Aufl. De Gruyter Berlin Boston, 2018.
- [5] Standarsd Atomic Weights. 12. Dez. 2019. URL: https://www.ciaaw.org/atomic-weights.htm.

7 Tabellen

Tabelle 1: Werte für θ_D/T nach Tabelle in [3].

T_P / K	$C_V/\operatorname{J/(Kmol)}$	$\frac{\theta_D}{T}$	θ_D/K
86	$19,\!44736$	2,3	197,8
90	$14,\!37868$	3,5	315,0
95	$12,\!87239$	3,9	370,5
101	16,93511	2,9	292,9
106	$17,\!34215$	2,8	296,8
110	$17,\!32470$	2,8	308,0
115	$17,\!29604$	2,8	322,0
119	$17,\!81683$	2,7	321,3
124	18,79625	2,5	310,0
128	18,77887	2,5	320,0
133	$21{,}10765$	$1,\!85$	246,1
136	$20,\!52411$	2,0	272,0
140	$20,\!50041$	2,0	280,0
144	$20,\!46401$	2,0	288,0
148	$20,\!42762$	2,0	296,0
152	$23{,}17057$	1,2	182,4
155	$21,\!57636$	1,75	271,2
159	$23{,}10199$	1,25	198,8
162	$21,\!35028$	1,8	291,6
166	$22,\!84413$	$1,\!35$	224,1
173	21,96854	1,6	276,8

Tabelle 2: Werte für die Berechnung von C_P .

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		A. (7. / 7.7.	G / T //TT 1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I_P/mA	$\Delta T / K$	$C_P / J/(K \operatorname{mol})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,0	$2,\!59473$	0,00000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	159,4	$4,\!01642$	$19,\!51199$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	160,1	$5,\!44630$	$14,\!45245$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	150,2	$5,\!69821$	$12,\!95935$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	156,7	$4,\!52203$	$17,\!03676$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	160,9	$4,\!53171$	$17,\!45605$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	161,2	$4,\!54138$	$17,\!45134$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	161,4	$4,\!55106$	$17,\!43585$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	166,7	$4,\!56073$	17,97020
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	167,0	$4,\!32962$	18,96351
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	167,3	$4,\!33830$	$18,\!95955$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	167,4	$3,\!86356$	$21,\!30198$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	163,2	$3,\!87042$	20,73071
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	163,4	$3,\!87728$	$20{,}71938$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	163,5	$3,\!88414$	$20,\!69544$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$163,\!6$	$3,\!89100$	$20,\!67159$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	162,5	$3,\!41025$	$23,\!42710$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$162,\!6$	$3,\!65967$	$21,\!84390$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	162,7	$3,\!42114$	$23,\!38133$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$161,\!6$	$3,\!67133$	$21,\!64062$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	161,7	$6,\!86928$	$23{,}14624$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	161,8	$7{,}13677$	$22,\!29251$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	161,8	$6,\!66484$	$23,\!87102$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	161,9	6,93232	$22,\!96415$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	162,0	6,70463	$23{,}75865$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	6,97359	$22,\!84234$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	162,0	6,99460	22,77372
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	163,8	$7,\!26656$	$22,\!16496$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	163,9	7,03737	22,90078
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	167,7	$7,\!08015$	$23,\!29017$
167,8 5,861 14 28,150 87 167,8 6,386 89 25,833 59 168,0 6,403 64 25,796 73 168,0 6,677 55 24,738 55 168,0 6,695 67 24,671 61 168,0 6,455 23 25,590 56 168,2 6,990 46 23,659 33	167,9	,	26,04296
167,8 6,386 89 25,833 59 168,0 6,403 64 25,796 73 168,0 6,677 55 24,738 55 168,0 6,695 67 24,671 61 168,0 6,455 23 25,590 56 168,2 6,990 46 23,659 33	$167,\!8$	$5,\!84696$	$28,\!21912$
168,0 6,403 64 25,796 73 168,0 6,677 55 24,738 55 168,0 6,695 67 24,671 61 168,0 6,455 23 25,590 56 168,2 6,990 46 23,659 33	$167,\!8$	$5,\!86114$,
168,0 6,677 55 24,738 55 168,0 6,695 67 24,671 61 168,0 6,455 23 25,590 56 168,2 6,990 46 23,659 33	$167,\!8$,	,
168,0 6,695 67 24,671 61 168,0 6,455 23 25,590 56 168,2 6,990 46 23,659 33	168,0		25,79673
168,0 6,455 23 25,590 56 168,2 6,990 46 23,659 33	168,0	$6,\!67755$,
$168,2 \qquad 6,99046 \qquad 23,65933$,	,	,
, , , , , , , , , , , , , , , , , , , ,	168,0	$6,\!45523$	$25,\!59056$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	,	*
	168,1	6,75002	24,487 52

 Tabelle 3: Werte für die Berechnung von C_V .

$\alpha / \operatorname{grd}^{-1}$	T/K	$C_V/\operatorname{J/(Kmol)}$		
8,87915	83,41111	-0,05901		
$9,\!15102$	86,005 84	19,447 36		
9,55586	90,02226	$14,\!37868$		
10,07465	$95,\!46856$	$12,\!87239$		
10,58153	$101,\!16677$	16,93511		
10,95864	$105,\!68881$	$17,\!34215$		
$11,\!31506$	$110,\!22052$	$17,\!32470$		
$11,\!65140$	114,76190	$17,\!29604$		
11,96829	$119,\!31296$	$17,\!81683$		
$12,\!26638$	$123,\!87369$	$18,\!79625$		
$12,\!53201$	$128,\!20331$	18,77887		
12,78191	$132,\!54161$	$21{,}10765$		
12,99128	$136,\!40517$	$20,\!52411$		
$13{,}18907$	$140,\!27559$	$20,\!50041$		
$13,\!37568$	$144,\!15287$	$20,\!46401$		
$13,\!55153$	$148,\!03701$	$20,\!42762$		
13,71704	151,92801	$23{,}17057$		
13,85370	$155,\!33827$	$21,\!57636$		
13,99201	158,99794	$23{,}10199$		
$14{,}11385$	$162,\!41908$	$21,\!35028$		
$14,\!23696$	166,09041	$22,\!84413$		
14,44741	172,95969	21,96854		
14,64099	180,09646	$23,\!52458$		
$14,\!80128$	186,76130	$22,\!59698$		
14,94965	193,69361	$23,\!37018$		
$15,\!07786$	$200,\!39825$	$22,\!43350$		
15,19791	$207,\!37184$	$22,\!34389$		
$15,\!30743$	$214,\!36644$	21,71421		
$15,\!41265$	221,63300	$22,\!42831$		
$15,\!50913$	$228,\!67037$	$22,\!03471$		
$15,\!60677$	$235,981\ 23$	22,77437		
15,70177	243,06138	$25,\!50519$		
15,78959	249,40070	$27,\!66114$		
15,874 75	255,247 66	27,573 63		
15,965 81	261,108 80	25,236 30		
16,073 43	267,495 69	25,176 56		
16,192 20	273,899 32	24,094 10		
16,329 92	280,576 87	24,000 18		
16,48465	287,272 53	24,890 02		
16,65186	293,72776	22,928 44		
$\frac{16,85547}{}$	$\frac{300,71822}{15}$	23,72083		

. 117	110/10 200	Kenie					02.12.19
VYT	Moluarme von	ings or		U= 3, 5	SV	U= 17,	64V
31	To A	1.107 (1- 00[07	Strom Gelia		Stron Pa	
Zeit			22,7		2	0	m
00:00	22,0	20.2	25,3240	4		15:	9 4
05: 00	24FO 25	33	232			100	7
)			
07:30	28.		28.8	5		150	2
10:00	30,		30,5	5		156	a
72:36	2333	2	33,0			167	7
16:00	34		3574	4		167	
77:30	36,		37,4	T		169 3	
20:00	38.0		9,0	4		167,0	
22:30	39, 9	41	0,6	4		767,	
25:00	47,7			4			
27:30	43,5	43,		4	>	167,4	
30:00	45,7	457		4		163,2	
32,30	46 7	46, 6		4		163, 4	
35:00	48,3	48,		4		163,6	
32:30	49,9	49,5		4	, , ,		17 101
40:00	575	370			45 V	1625	12,186
42:30	52,9	54,5		7		1626	
45:00	54,4	53.9		4	- 14	7627	
47:30	5578	55,5			- レ	767,6	12,096
50:00	57,3	569		4		767 7	
55:00	69.7	53, 9			7,3	1678	12,72
60:00	63,0	647			15	167,8	
65:00	65,7	65,7			8	161,9	
70:00	68,5	68, 6		4 6,	7	1620	
75:00	77,2	77,6		4		762,0	
80:00	74,0	746		4 60	5	762,0	
85:00	768	77,7		4		163,8	12,344
90:00	79.7	898		4 ZV		163, 9	7
95:00	945	83,8		4 74		162,5	12,65
160:00	85,6	86, 2		3,6		167,7	
105:00	88,2	87.7	3	,6		167.9	
110:00	90,7	89,4		8 6,56	/	167,8	
115:00	93,0	97,5	30	8		167,8	
120:00	95,3	94,1	4	7,7		767.8	
125:00	9718	97,7	4	7,5		768,0	
130:00	700, 3	100,7	4			1680	
135:00	1029	1049	4			768,0	
140,00	70915	105,6	4	70		168,0	
145:00	7080	107,9	4				
150:00	7707	110,5	4			1687	
155,00	713,3	773,0	4	オル	-	7682	
						2	
					0		
					1		
					/	, ,	
1							