Lecture 13

Continuous Random Variables

Text: Chapter 4

STAT 8010 Statistical Methods I September 18, 2019

> Whitney Huang Clemson University

Notes

Agenda

- From Discrete to Continuous Random Variables
- Cumulative Distribution Functions
- **3** Expected Value and Variance
- Mormal Distributions

Notes				

Probability Mass Functions vs. Probability Density Functions

Remarks:

- pmf assigns probabilities to each possible values of a discrete distribution
- pdf describes the relative likelihood for this random variable to take on a given interval

Continuous Random Variables
CLEMS N
From Discrete to Continuous Random Variables

Notes			

Probability Mass Functions v.s. Probability Density Functions cont'd

Recall the properties of discrete probability mass functions (Pmfs):

- $0 \le p_X(x) \le 1$ for all possible values of x
- $P(a \le X \le b) = \sum_{x=a}^{x=b} p_X(x)$

For continuous distributions, the properties for probability density functions (Pdfs) are similar:

- $f_X(x) \ge 0$ for all possible values of x
- $\mathbb{P}(a \le X \le b) = \int_a^b f_X(x) dx$

Cumulative Distribution Functions (cdfs) for Continuous Distribution

- The cdf $F_X(x)$ is defined as $F_X(x) = \mathbb{P}(X \leq x) = \int_{-\infty}^x f_X(x) dx$
- we use cdf to calculate probabilities of a continuous

we use dot be detailed probabilities of a continuous random variable within an interval, i.e.
$$\mathbb{P}(a \le X \le b) = \int_a^b f_X(x) \, dx = \int_{-\infty}^b f_X(x) \, dx - \int_{-\infty}^a f_X(x) \, dx = \boxed{F_X(b) - F_X(a)}$$

Remark: $\mathbb{P}(X = x) = \int_{x}^{x} f_{X}(x) dx = 0$ for all possible values of x

Notes

Notes

_			
_			

Expected Value and Variance

Recall the expected value formula for the discrete random variable: $\mathbb{E}[X] = \sum_{x} x p_{X}(x)$

For continuous random variables, we have similar formulas:

Let a, b, and c are constant real numbers

- $\bullet \ \mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) \, dx$
- $\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$
- $\bullet \ \mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$
- $\mathbb{E}[cX] = c\mathbb{E}[X]$
- $\bullet \ \mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$
- $\operatorname{Var}(X) = \mathbb{E}[X^2] (\mathbb{E}[X])^2 =$ $\int_{-\infty}^{\infty} x^2 f_X(x) \, dx - \left(\int_{-\infty}^{\infty} x f_X(x) \, dx \right)^2$
- $Var(cX) = c^2 Var(X)$

Continuous Random Variables
CLEMS N
Expected Value and Variance

Notes				

Example

Let X represent the diameter in inches of a circular disk cut by a machine. Let $f_X(x)=c(4x-x^2)$ for $1\leq x\leq 4$ and be 0 otherwise. Answer the following questions:

- Find the value of c that makes this a valid pdf
- Find the expected value and variance of X
- What is the probability that X is within .5 inches of the expected diameter?
- \bigcirc Find $F_X(x)$

Notes		

Normal Distribution

Characteristics of the Normal random variable: Let *X* be a Normal r.v.

- The support for X: $(-\infty, \infty)$
- Its parameter(s) and definition(s): μ : mean and σ^2 : variance
- The probability density function (pdf): $\frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$ for $-\infty < x < \infty$
- The cumulative distribution function (cdf): No explicit form, look at the value $\Phi(\frac{x-\mu}{\sigma})$ for $-\infty < x < \infty$ from standard normal table
- The expected value: $\mathbb{E}[X] = \mu$
- The variance: $Var(X) = \sigma^2$

Notes

Normal Density Curves

- \bullet The parameter μ determines the center of the distribution
- \bullet The parameter σ^2 determines the spread of the distribution
- Also called bell-shaped distribution

Continuous Random Variables CLEMS
Normal Distributions

Notes				

Standard Normal $Z \sim N(\mu = 0, \sigma^2 = 1)$

• Normal random variable X with mean μ and standard deviation σ can convert to standard normal Z by the following :

$$Z = \frac{X - \mu}{\sigma}$$

- The cdf of the standard normal, denoted by $\Phi(z)$, can be found from the standard normal table
- The probability $\mathbb{P}(a \le X \le b)$ where $X \sim N(\mu, \sigma^2)$ can be compute

$$\mathbb{P}(a \le X \le b) = \mathbb{P}(\frac{a - \mu}{\sigma} \le Z \le \frac{b - \mu}{\sigma})$$
$$= \Phi(\frac{b - \mu}{\sigma}) - \Phi(\frac{a - \mu}{\sigma})$$

Continuous
Random
Variables
CLEMS
From Discrete to
Continuous
Random Variables
Cumulative
Distribution
Functions
Expected Value

13 10

Properties of Φ

- $\Phi(0) = .50 \Rightarrow$ Mean and Median (50_{th} percentile) for standard normal are both 0
- $\Phi(-z) = 1 \Phi(z)$
- $P(Z > z) = 1 \Phi(z) = \Phi(-z)$

Continuous Random Variables CLEMS

From Discrete to Continuous Random Variables Cumulative Distribution Functions

Expected value and Variance Normal

10.11

Notes

Notes

Example

Let us examine ${\cal Z}.$ Find the following probabilities with respect to ${\cal Z}:$

- Z is at most −1.75 □
- ② Z is between −2 and 2 inclusive □
- Z is less than .5

From Discrete to Continuous Random Variables Cumulative Distribution Functions

Expected Value and Variance

Normal Distributions

Example Cont'd

Solution.

3
$$\mathbb{P}(-2 \le Z \le 2) = \Phi(2) - \Phi(-2) = .9772 - .0228 = .9544 3$$

9
$$\mathbb{P}(Z < .5) = \Phi(.5) = .6915$$

Continuous Random Variables CIEMS From Discrete to Continuous Random Variables Cumulative Distribution Frunctions Expected Value and Variance Normal Distributions

Sums of Normal Random Variables

If X_i $1 \le i \le n$ are independent normal random variables with mean μ_i are variance σ_i^2 , respectively.

- Let $S_n = \sum_{i=1}^n X_i$ then $S_n \sim N(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$
- This can be applied for any integer n

Notes

Notes

Example

Let X_1 , X_2 , and X_3 be mutually independent, Normal random variables. Let their means and standard deviations be 3k and k for k=1,2, and 3 respectively. Find the following distributions:

(2) $X_1 + 2X_2 - 3X_3$

 $X_1 + 5X_3$

Continuous Random Variables Cumulative Distribution Functions Expected Value

Distributions

Example Cont'd

Solution.

- ② $X_1 + 2X_2 3X_3 \sim N(\mu = 3 + 12 27 = -12, \sigma^2 = 1^2 + 4 \times 2^2 + 9 \times 3^2 = 98)$ ①
- **3** $X_1 + 5X_3 \sim N(\mu = 3 + 45 = 48, \sigma^2 = 1^2 + 25 \times 3^2 = 226)$

Continuous Random Variables
CLEMS * T
Normal Distributions

Notes			
Notes			
Notes			
-			
Notes			