Intermediation and Competition in Search Markets: An Empirical Case Study

Author: Tobias Salz Presenter: Renjie Zhong Econ 220B Presentation

Motivation and Background

search friction: increase sellers' market power and allow them to raise prices

in a market (heterogeneous search friction), intermediary can improve consumer welfare by separation:

- exposure to a more efficient search technology: reducing expenses for buyers with high cost
- 2 search externality: consumer with low cost in the search markest

empirical case: NYC waste market

- the market supports a large number of suppliers in geographic area
- brokers procure contracts through a request for proposals, which is akin to a first-price auction

key identification difficulty: the equilibrium number of price inquiries & the search cost are unobserved

2

Theory and Identification

consumer j with search cost $\kappa_j \sim_{iid} \mathcal{H}(\cdot)$ (cont dist) and waste quantity q carter i with customer-specific service cost $c_{ij} \sim_{iid} \mathcal{G}(\cdot)$ (cont dist) broker $b \in \{1,...,B\}$ with frequency f_b , price $\mathsf{E}(p^B|b)$ and fees ϕ timing:

- **II** the customer privately draws search cost κ and carters draw service cost c.
- \square customers decide delegate search to a broker / search $m(\kappa) \in \{1,...,M\}$ carters
- carters submit price quotes in a first price auction / the search market nonsequentially

consumer's problem: indifference threshold
$$\bar{\kappa}$$
: $q\mathbb{E}\left[p^{B}\right]\phi=q\mathbb{E}\left[p^{1:m(\bar{\kappa})}\right]+m(\bar{\kappa})\bar{\kappa}$

$$\min_{m} q \mathbb{E}\left[p^{1:m}\right] + m\kappa = \min_{m \in \{1, \dots, M\}} \int_{0}^{ar{p}} mpq(1 - \mathcal{F}(p))^{m-1} f(p) dp + m\kappa$$

Lemma 1. Optimal Searching

There are marginal types $0 = \kappa_M \le \kappa_{M-1} < \dots < \kappa_2 < \kappa_1 < \bar{\kappa} \le \infty$ such that every type $\kappa \in [\kappa_{m-1}, \kappa_m]$ samples m firms, and every type larger than $\bar{\kappa}$ delegates search to an intermediary.

3

notation: $\widetilde{\mathcal{G}} = 1 - \mathcal{G}$, and search market size $w_m = \mathcal{H}(\kappa_m \mid \kappa < \overline{\kappa}) - \mathcal{H}(\kappa_{m-1} \mid \kappa < \overline{\kappa})$.

carters's problem:

- \blacksquare broker b first-price auction with N_b participants: $\max_p (p-c) \cdot \widetilde{\mathcal{G}}(\beta_b^{-1}(p))^{N_b-1} \Rightarrow \beta_b$
- nonsequential market \iff first-price procurement auction with ambiguous number of competitors $\max_p (p-c) \cdot \left[\sum_{m=1}^M w_m \cdot \widetilde{\mathcal{G}}(\beta_S^{-1}(p))^{m-1} \right] \Rightarrow \beta_S$

equilibrium: $\{\beta_b(\cdot), \beta_s(\cdot), w_m\}$ such that

bidding strategy \Rightarrow price distribution \Rightarrow optimality of search behavior \Rightarrow optimality of bidding strategy identification (Athey and Haile, 2002) = observation dist uniquely pins down the model and latent dist price dist in search market $\mathcal{F}^o(p) = \sum_m w_m \cdot \left(1 - \left[1 - \mathcal{G}(\beta_S^{-1}(p))\right]^m\right)$ is affected by a combination of search cost and service cost \Rightarrow nonidentification

+ As1 regularity (same $\mathcal G$ in both markets and Lip-cont virtual value)+ As2 existence and uniqueness of equil \Rightarrow search weights w_m and cutoff types κ_m are identified from winning bids p

4

restrict a more homogeneous set of contracts, no dynamic considerations, same industry (retail busi)

restrictions on the dist of unobservables: $\mathcal{G}(\cdot \mid x) = \mathcal{N}_{[0,\infty)}(m^c(x), \sigma^c)$ and $\mathcal{H}(\cdot) = \mathcal{N}_{[0,\infty)}(\mu^s, \sigma^s)$, where $m(x) = \mu^c + \sum_{k=1}^4 \gamma_k^{c,Boro} 1\{\text{Contract in borough } k\} + \gamma^q q + \gamma^r 1\{\text{Contract specifies recyclables}\}$

the linear relative attractiveness of brokers: $q\mathbb{E}\left[p^{B}\mid x\right]\Phi(x)-\psi q=q\mathbb{E}\left[p^{1:m(\bar{\kappa})}\mid x\right]+m(\bar{\kappa}(x))\bar{\kappa}(x)$

estimate $\theta = \{\mu^{s}, \mu^{c}, \sigma^{s}, \sigma^{c}, \gamma^{s, Boro}, \gamma^{r}, \gamma^{q}, \psi\}$ to min d(data moments, model-simulated moments)

discretize q and repeatedly solve the equil for each set of conditioning variables in different cells $A_{\rm x}$

 $g_{1:m}$ refers to the lowest-order statistic of carter costs out of m draws simulation procedure:

- search market: $\Upsilon_s(\theta, x) = \sum_{m=1}^M w_m(x) \cdot \int \beta_s(c \mid x) \cdot g_{1:m}(c \mid x; \theta) dc \approx K^{-1} \cdot \sum_{k=1}^K p_{s_k}(\theta, x)$ randomly draw from the multinomial dis with weights w_m and then a corresponding number of cost draws from $\mathcal{G}(\cdot \mid \theta)$, the lowest of which is mapped to a price via $\beta_s(\cdot \mid x; \mathbf{w})$
- ho broker: $\Upsilon_B(\theta, x) = \sum_b f_b \cdot \int \beta_b(c) \cdot g_{1:N_b}(c \mid x; \theta) dc \approx K^{-1} \cdot \sum_{k=1}^K p_{s_k}^b(\theta, x)$

 N_b cost draws and mapping the lowest cost draw to a price via $\beta_b(\cdot, N_b)$

construct moments:
$$m(\theta, x) = [m_{1,B}(\theta, x), m_{1,S}(\theta, x), m_{2,B}(\theta, x), m_{2,S}(\theta, x), m_f(\theta, x)]$$

$$m_f(\theta, x) = N_x^{-1} \sum_{i \in A_x} 1\{\text{brokered}\}_i - (1 - \mathcal{H}(\bar{\kappa}(x))) N_x$$

optimize the moment: $\hat{\theta}_{MSM} = \arg\min_{\theta} \mathbf{m}(\theta)' \cdot \Omega \cdot \mathbf{m}(\theta)$

weight: the inverse of the observed variance of each moment

Algorithm 1: Estimation of Model

Result: Estimate of θ

while $\mathbf{m}(\theta)' \cdot \hat{\Omega} \cdot \mathbf{m}(\theta) > \text{outer tolerance do}$

- 1. Initialize weight vector w_0 with 1/M in each entry;
- 2. **while** $d(w^{k}, w^{k-1}) = ||w^{k} w^{k-1}|| > \text{inner tolerance do}$
 - 2.1 Recompute the broker bidding functions $\beta_b^k(\cdot \mid \theta) \ \forall \ b$;
 - 2.2 Use w^k to recompute the bidding function $\beta_s^k(\cdot \mid w^k; \theta)$;
 - 2.3 Use $\beta_s^k(\cdot \mid w^k; \theta)$ to compute expected prices $\mathbb{E}[p^{1:m}]$ for each m;
 - 2.4 Recompute $\kappa_m = \mathbb{E}[p^{1:m}] \mathbb{E}[p^{1:m+1}] \ \forall m \in 1, \dots, M$ as well as $\bar{\kappa}$;
 - 2.5 Form new weights $w_m^{k+1} = \mathcal{H}(\kappa_m \mid \kappa < \bar{\kappa}) \mathcal{H}(\kappa_{m-1} \mid \kappa < \bar{\kappa}) \ \forall m;$

end

- 3. Use the equilibrium objects to simulate $\{p_s,...,p_s\}$ and $\{p_s^b,...,p_s^b\}$, compute the average and the standard deviation of simulated prices, compute fraction of brokered contracts $(1 \mathcal{H}(\bar{\kappa})) \cdot N$;
 - 4. Construct moments for the objective function.

end

- rule out the Diamond paradox (Diamond 1971)
- no tricky cases: the set of equilibria with a nondegenerate price distribution is not a singleton
- 3 no mulptile equil in practice, robustness

Results and Counterfactuals

TABLE 4 Model Parameter Estimates

Parameter	Estimate	SE	95% CI	
Supply:				
Carter cost (\$):				
Mean	9.969	.24	9.776 - 10.023	
SD	2.96	.157	2.81 - 3.105	
Cost efficiencies ($\times 1,000$):				
Ouantity	-2.456	1.709	-4.62 to $.259$	
Recyclables	152	7.048	-1.589 to 19.8	
Cost shifter:				
Bronx	235	.031	3 to214	
Brooklyn	002	.007	003 to .022	
Manhattan	32	.033	398 to276	
Demand:				
Search cost (\$):				
Mean	79.718	5.298	77.302-95.007	
SD	62.352	4.903	58.929-73.238	
Quantity broker shift	309	.015	333 to284	

Note.—The table shows the parameter estimates along with bootstrapped standard errors and 95% confidence intervals (CIs), based on 400 bootstrap iterations. The borough cost shifters are relative to Queens.

TABLE 7
COUNTERFACTUAL OVERVIEW

	Change in Buyer Expenses			Carter		Welfare (Total Cost)	
	Not Brokered	Brokered	All	Margin	Profits	Lower Bound	Upper Bound
Δ absolute (\$)	64.0	445.0	127.0	.046	-11.1	4.28	12.61
SE	(11.0)	(157.0)	(32.0)	(.0271)	(10.0)	(1.1)	(3.07)
95% CI	47.7 - 80.2	265.0-759.3	88.3-189.0	.002088	-28.7 to 1.4	3.28 - 6.78	9.63-18.77
Δ percent	2.52	11.7	4.6	1.95	-1.8	4.41	14.22
SE	(.57)	(1.96)	(1.19)	(1.14)	(1.53)	(1.2)	(4.03)
95% CI	1.84-3.52	8.9-15.42	3.17 - 6.95	.1 - 3.81	-4.53 to .25	3.35 - 7.19	10.58-22.77

NOTE.—The table shows expected search cost per inquiry, number of inquiries, and total expenses for search. Search cost changes are computed under the assumption that bro-kers' total variable profits are equal to their fixed cost, which provides a lower bound on the change. Bootstrapped standard errors (in parentheses) and confidence intervals (CIs) are based on 400 iterations.