Отчет о выполненой лабораторной работе 1.4.5

Антон Хмельницкий, Б01-306

October 23, 2023

Изучение колебаний струны

1 Аннотация

<u>Цель работы</u>: Изучить поперечные стоячие волн на тонкой натянутой струне; измерить собственные частоты колебаний струны и проверить условие образования стоячих волн; измерить скорость распространения поперечных волн на струне и исследовать её зависимость от натяжения струны.

Оборудование: В работе используются: закрепленная на станине стальная струна, набор грузов, электромагнитные датчики, звуковой генератор, двухканальный осциллограф, частотомер.

2 Теоретические сведения

Струной в акустике называют однородную тонкую гибкую упругую нить. Примерами могут служить сильно натянутый шнур или трос, струны гитары, скрипки и других музыкальных инструментов. В данной работе изучаются поперечные колебания стальной гитарной струны, натянутой горизонтально и закрепленной между двумя неподвижными зажимами. Основное свойство струны — гибкость — обусловлено тем, что её поперечные размеры малы по сравнению с длиной. Это означает, что напряжение в струне может быть направлено только вдоль неё, и позволяет не учитывать изгибные напряжения, которые могли бы возникать при поперечных деформациях (то есть при изгибе струны). В натянутой струне возникает поперечная упругость, т.е. способность сопротивляться всякому изменению формы, происходящему без изменения объема. При вертикальном смещении произвольного элемента струны, возникают силы, действующие на соседние элементы, и в результате вся струна приходит в движение в вертикальной плоскости, т.е. возбуждение «бежит» по струне. Передача возбуждения представляет собой поперечные бегущие волны, распространяющиеся с некоторой скоростью в обе стороны от места возбуждения. В ненатянутом состоянии струна не обладает свойством поперечной упругости, и поперечные волны на ней невозможны.

Уравнение волны на струне:

Рассмотрим гибкую однородную струну, в которой создано натяжение T, и получим дифференциальное уравнение, описывающее её малые поперечные свободные колебания. Отметим, что, если струна расположена горизонтально в поле тяжести, величина T должна быть достаточна для того, чтобы в состоянии равновесия струна не провисала, т.е. сила натяжения должна существенно превышать вес струны.

Волновое уравнение:

$$\frac{d^2y}{dt^2} = u^2 \frac{d^2y}{dx^2}$$
$$u = \sqrt{\frac{T}{\rho_l}}$$

Бегущие волны:

Волновое уравнение представимо в виде суммы двух бегущих волн:

$$y(x,t) = y_1(x - ut) + y_2(x + ut)$$

Для гармонических волн будет:

$$y(x,t) = acos(\omega t - kx) + bcos(\omega t + kx), u = \frac{\omega}{k} = \nu \lambda$$

Здесь длина волны $\lambda = \frac{2\pi}{k}$, частота $\nu = \frac{\omega}{2\pi}$. Величина $k = \frac{2\pi}{\lambda}$ называется волновым числом или пространственной частотой волны.

Собственные колебания струны. Стоячие волны:

Рис. 3. Экспериментальная установка

Рисунок 1: Экспериментальная установка

Свободные колебания струны с закрепленными концами

$$y(x,t) = 2asin(kx) \cdot sin(\omega t)$$

Стоячие волны на струне с закреплёнными концами образуются, только если на длине струны укладывается целое число полуволн:

$$\lambda_n = \frac{2L}{n}, L$$
 — длина закрепления

Частота колебания струны будет:

$$u_n = \frac{u}{\lambda_n} = \frac{n}{2L} \sqrt{\frac{T}{\rho_l}}$$
, где ρ_l - погонная плотность, T - сила натяжения, L - длина струны, n - номер гармоники.

Экспериментальная установка

Стальная гитарная струна 1 закрепляется в горизонтальном положении между двумя стойками с зажимами 2 и 3, расположенными на массивной станине 4. Один конец струны закреплен в зажиме 2 неподвижно. К противоположному концу струны, перекинутому через блок, прикреплена платформа с грузами 5, создающими натяжение струны. Зажим 3 можно передвигать по станине, устанавливая требуемую длину струны. Возбуждение и регистрация колебаний струны осуществляются с помощью электромагнитных датчиков (вибраторов), расположенных на станине под струной. Электромагнитный датчик 6 подключен к звуковому генератору 7 и служит для возбуждения колебаний струны, частота которых измеряется с помощью частотомера 10 (в некоторых установках частотомер встроен в генератор). Колебания струны регистрируются с помощью электромагнитного датчика 8, сигнал с которого передается на вход осциллографа 9. Разъёмы, через которые датчики с помощью кабелей соединяются с генератором и осциллографом, расположены на корпусе станины.

Для регистрации колебаний струны в работе используется электронный осциллограф, соединённый с электромагнитным датчиком 8. Он позволяет регистрировать колебания в случаях, когда это невозможно сделать визуально. Также с помощью осциллографа можно измерять амплитуду возбуждения и форму сигнала, что даёт возможность установить, является ли режим возбуждения стоячих волн линейным, иными словами, имеет ли место прямая пропорциональность между силой возбуждения и амплитудой колебаний струны.

3 Данные

На экспериментальной установке в зависимости от суммарной массы было сделано 50 измерений частоты от номера гармоники - при 5 разных натяжениях - 10 замеров. Используемые зависимости:

$$u = \sqrt{\frac{T}{\rho_l}}$$

$$\nu_n = u \cdot \frac{n}{2L} = \frac{n}{2L} \sqrt{\frac{T}{\rho_l}}$$

- Длина струны постоянна и равна $L=50~{\rm cm}=0,5~{\rm m}$
- Измеряемый диапазон $n \in [1, 10]$
- Погонная плотность $\rho_l = 568, 4 \text{ мг/м} = 568, 4 \cdot 10^{-6} \text{ кг/м}$

	1	2	3	4	5
Массы грузов, г	487,4	494,6	495	419,5	491,9

Опыт	№ 1			№2		№3		№ 4			№5				
Сила натяжения	10,8 H		15,64 H		20,5 H		24,6 H			29,42 H					
	n	ν_0 ,	ν_{real} ,	n	ν_0 ,	ν_{real} ,	n	ν_0 ,	ν_{real} ,	n	ν_0 ,	ν_{real} ,	n	ν_0 ,	ν_{real} ,
	1	137,8	136	1	165,9	163,7	1	189,9	187	1	208,1	209	1	227,5	228,6
	3	413,4	410	3	497,7	493	3	569,7	563	3	624,3	630	3	682,5	687
	5	689	685	5	829,5	824	5	949,5	940	5	1040,5	1051	5	1137,5	1146
	7	964,6	965	7	1161,3	1157	7	1329,3	1319	7	1456,7	1474	7	1592,5	1607
	9	1240,2	1247	9	1493,1	1493	9	1709,1	1702	9	1872,9	1899	9	2047,5	2069
	2	275,6	272	2	331,8	328	2	379,8	375	2	416,2	419	2	455	457
	4	551,2	546	4	663,6	659	4	759,6	752	4	832,4	839	4	910	916
	6	826,8	828	6	995,4	992	6	1139,4	1130	6	1248,6	1260	6	1365	1376
	8	1102,4	1105	8	1327,2	1324	8	1519,2	1509	8	1664,8	1685	8	1820	1837
	10	1378	1387	10	1659	1662	10	1899	1893	10	2081	2110	10	2275	2301

4 Обработка данных

На основе данных эксперимента были построены графики $\nu_{real}(n), \nu_0(n)$, реальной частоты от n. Для графика Получаем что при увеличении натяжения T увеличивается и u и при этом растет разница между рассчитываемыми и реальными значениями u.

Погрешность образуется из случайной и систематической: погрешность при измерении длины $\sigma_L=0,0005,$ пренебрежем погрешностями генератора частот и осцилографа

Среднее значение:
$$\overline{u} = \frac{1}{10} \sum_{i=1}^{10} u_i \approx 137, 4$$

Среднеквадратическое отклонение:
$$\sigma_u = \sqrt{\frac{1}{10} \sum_{i=1}^{10} (u_i - \overline{u})^2} \approx 0,97$$

Погрешность среднего значения (случайная): $\sigma_u^{\text{случ}} = \frac{\sigma_u}{\sqrt{10}} \approx 0,3$

Систематическая погрешность:
$$\sigma_u^{\text{сист}} = u \sqrt{\left(\frac{du}{dT}\right)^2 \sigma_T^2} = u \cdot \sigma_L \approx 0,069$$

Полная погрешность:
$$\sigma_u^{\text{полн}} = \sqrt{\sigma_{\text{сист}}^2 + \sigma_{\text{случ}}^2} \approx 0,3$$

Получаем $u=137, 4\pm 0, 3(\varepsilon_u=0,2\%)$ для натяжения $T=10.8~\mathrm{H}$

Аналогично для погонной плотности ρ_l получаем:

Среднее значение:
$$\bar{\rho} = \frac{1}{10} \sum_{i=1}^{10} \rho_i \approx 567, 9$$

Среднеквадратическое отклонение:
$$\sigma_\rho = \sqrt{\frac{1}{10}\sum_{i=1}^{10}(\rho_i-\overline{\rho})^2}\approx 0,64$$

Погрешность среднего значения(случайная):
$$\sigma_{\rho}^{\text{случ}} = \frac{\sigma_{\rho}}{\sqrt{5}} \approx 0,36$$

Систематическая погрешность:
$$\sigma_{\rho}^{\text{сист}}=\rho\sqrt{\left(\frac{d\rho}{du}\right)^2\sigma_u^2}=\rho\cdot2\sigma_u\approx2,3$$

Полная погрешность:
$$\sigma_{\rho}^{\text{полн}} = \sqrt{\sigma_{\text{сист}}^2 + \sigma_{\text{случ}}^2} \approx 2,33$$

Получаем $\rho_l = 567, 9 \pm 2, 33 (\varepsilon_{\rho} = 0, 4\%)$

5 Выводы

В данной работе были исследованы колебания волн на примере струны.

Были построенны графики зависимостей $\nu(n)$ и $u^2(T)$, благодаря которыми были экспериментально доказаны формулы зависимости частоты от номера гармоники. Также была измерена экспериментально погонная плотность с высокой точностью, что показывает точность установки и корректнось эксперимента.

Рисунок 2: Зависимость $\nu_{real}(n)$ реальной частоты от номера n гармоники с аппроксимирующими прямыми для 5 разных натяжений

Рисунок 3: Зависимость $u^2(T)$ и расчет погонной плотности ρ_l