Graph Neural Networks: Perspective

Jiaxuan You
Assistant Professor at UIUC CDS

CS598: Deep Learning with Graphs, 2024 Fall

https://ulab-uiuc.github.io/CS598/

Recap: "Shallow" Encoding

Simplest encoding approach: encoder is just an embedding-lookup

Recap: "Shallow" Encoding

- Limitations of shallow embedding methods:
 - O(|V|d) parameters are needed:
 - No sharing of parameters between nodes
 - Every node has its own unique embedding
 - Inherently "transductive":
 - Cannot generate embeddings for nodes that are not seen during training
 - Do not incorporate node features:
 - Nodes in many graphs have features that we can and should leverage

Recap: Similarity Based Objective Function

Requires an edge-level prediction head

Today: Deep Graph Encoders

 Today: We will now discuss deep learning methods based on graph neural networks (GNNs):

$$ENC(v) =$$

multiple layers of non-linear transformations based on graph structure

 Note: All these deep graph encoders still output node embeddings, and can be combined with different node/edge/graph prediction heads

Deep Graph Encoders

Graph Neural Networks: Perspective Deep Learning for Graphs

Content

- Local network neighborhoods:
 - Describe aggregation strategies
 - Define computation graphs
- Stacking multiple layers:
 - Describe the model, parameters, training
 - How to fit the model?
 - Simple example for unsupervised and supervised training

Setup

Assume we have a graph G:

- V is the vertex set
- A is the adjacency matrix (assume binary)
- $X \in \mathbb{R}^{|V| \times d}$ is a matrix of node features
- v: a node in V; N(v): the set of neighbors of v.

Node features:

- Social networks: User profile, User image
- Biological networks: Gene expression profiles, gene functional information
- When there is no node feature in the graph dataset:
 - Indicator vectors (one-hot encoding of a node)
 - Vector of constant 1: [1, 1, ..., 1]

A Naïve Approach

- Join adjacency matrix and features
- Feed them into a deep neural net:

- Issues with this idea:
 - O(|V|) parameters
 - Not applicable to graphs of different sizes
 - Sensitive to node ordering

Idea: Convolutional Networks

Goal is to generalize convolutions beyond simple lattices Leverage node features/attributes (e.g., text, images)

Real-World Graphs

But our graphs look like this:

- There is no fixed notion of locality or sliding window on the graph
- Graph is permutation invariant

- Graph does not have a canonical order of the nodes!
- We can have many different order plans.

Graph does not have a canonical order of the nodes!

Graph does not have a canonical order of the nodes!

Graph does not have a canonical order of the nodes!

What does it mean by "graph representation is same for two order plans"?

• Consider we learn a function f that maps a graph G = (A, X) to a vector \mathbb{R}^d then A is the adjacency matrix X is the node feature matrix

$$f(\boldsymbol{A}_1, \boldsymbol{X}_1) = f(\boldsymbol{A}_2, \boldsymbol{X}_2)$$

Order plan 1: A_1, X_1

Order plan 2: A_2, X_2

What does it mean by "graph representation is same for two order plans"?

- Consider we learn a function f that maps a graph G = (A, X) to a vector \mathbb{R}^d .
- A is the adjacency matrixX is the node feature matrix
- Then, if $f(A_i, X_i) = f(A_j, X_j)$ for any order plan i and j, we formally say f is a **permutation invariant** function.
- For a graph with |V| nodes, there are |V|! different order plans.

■ **Definition:** For any graph function $f: \mathbb{R}^{|V| \times m} \times \mathbb{R}^{|V| \times |V|} \to \mathbb{R}^d$, f is **permutation-invariant** if $f(A, X) = f(PAP^T, PX)$ for any permutation P.

Permutation *P*: a shuffle of the node order Example: (A,B,C)->(B,C,A)

• For node representation: We learn a function f that maps nodes of G

• For node representation: We learn a function f that maps nodes of G

• For node representation: We learn a function f that maps nodes of G

For node representation

- Consider we learn a function f that maps a graph G=(A,X) to a matrix $\mathbb{R}^{m\times d}$
- If the output vector of a node at the same position in the graph remains unchanged for any order plan, we say f is **permutation equivariant**.
- **Definition:** For any node function $f: \mathbb{R}^{|V| \times m} \times \mathbb{R}^{|V| \times |V|} \to \mathbb{R}^{|V| \times m}$, f is **permutation-equivariant** if $Pf(A,X) = f(PAP^T,PX)$ for any permutation P.

Summary: Invariance and Equivariance

Permutation-invariant

$$f(A,X) = f(PAP^T, PX)$$

Permutation-equivariant

$$Pf(A,X) = f(PAP^T, PX)$$

Examples:

- $f(A, X) = \mathbf{1}^T X$: Permutation-invariant
 - Reason: $f(PAP^T, PX) = 1^T PX = 1^T X = f(A, X)$
- f(A, X) = X: Permutation-equivariant
 - Reason: $f(PAP^T, PX) = PX = Pf(A, X)$
- f(A, X) = AX: Permutation-equivariant
 - Reason: $f(PAP^T, PX) = PAP^TPX = PAX = Pf(A, X)$

Permute the input, the output stays the same. (map a graph to a vector)

Permute the input, output also permutes accordingly. (map a graph to a matrix)

 Graph neural networks consist of multiple permutation equivariant / invariant functions.

Are other neural network architectures, e.g., MLPs, permutation invariant / equivariant?

No.

Switching the order of the input leads to different outputs!

Are other neural network architectures, e.g., MLPs, permutation invariant / equivariant?

No.

hidden layer 1 hidden layer 2 hidden layer 3

This explains why the naïve MLP approach fails for graphs!

Are othe invariant

No.

A C Next: Design graph neural networks that are permutation invariant / equivariant by passing and aggregating information from neighbors!

Talls for graphs

n

7

Graph Neural Networks: Perspective Graph Convolutional Networks

Graph Convolutional Networks

Idea: Node's neighborhood defines a computation graph

Learn how to propagate information across the graph to compute node features

Idea: Aggregate Neighbors

 Key idea: Generate node embeddings based on local network neighborhoods

Idea: Aggregate Neighbors

 Intuition: Nodes aggregate information from their neighbors using neural networks

Idea: Aggregate Neighbors

Intuition: Network neighborhood defines a computation graph

Deep Model: Many Layers

- Model can be of arbitrary depth:
 - Nodes have embeddings at each layer
 - Layer-0 embedding of node v is its input feature, x_v
 - Layer-k embedding gets information from nodes that are k hops away

Neighborhood Aggregation

 Neighborhood aggregation: Key distinctions are in how different approaches aggregate information across the layers

Neighborhood Aggregation

 Basic approach: Average information from neighbors and apply a neural network

The Math: Deep Encoder

Basic approach: Average neighbor messages and apply a neural

GCN: Invariance and Equivariance

What are the invariance and equivariance properties for a GCN?

Given a node, the GCN that computes its embedding is permutation invariant

Average of neighbor's previous layer embeddings - **Permutation invariant**

GCN: Invariance and Equivariance

Considering all nodes in a graph, GCN computation is permutation

GCN: Invariance and Equivariance

Considering all nodes in a graph, GCN computation is permutation

equivariant

Detailed reasoning:

- 1. The rows of **input node features** and **output embeddings** are **aligned**
- 2. We know computing the embedding of a given node with GCN is invariant.
- 3. So, after permutation, the location of a given node in the input node feature matrix is changed, and the the output embedding of a given node stays the same (the colors of node feature and embedding are matched)

This is permutation equivariant

Permute the input, the output also permutes accordingly - permutation equivariant

Training the Model

Need to define a loss function on the embeddings.

Model Parameters

Trainable weight matrices $\mathbf{h}_{v}^{(0)} = \mathbf{x}_{v}$ (i.e., what we learn) $\mathbf{h}_{v}^{(k+1)} = \sigma(\mathbf{W}_{k}) \sum_{u \in \mathbf{N}(v)} \frac{\mathbf{h}_{u}^{(k)}}{|\mathbf{N}(v)|} + \mathbf{B}_{k} \mathbf{h}_{v}^{(k)}), \forall k \in \{0..K-1\}$ $\mathbf{z}_{v} = \mathbf{h}_{v}^{(K)}$ Final node embedding

We can feed these embeddings into any loss function and run SGD to train the weight parameters

 h_{v}^{k} : the hidden representation of node v at layer k

- W_k : weight matrix for neighborhood aggregation
- B_k : weight matrix for transforming hidden vector of self

Matrix Formulation (1)

- Many aggregations can be performed efficiently by (sparse) matrix operations
- Let $H^{(k)} = [h_1^{(k)} \dots h_{|V|}^{(k)}]^T$
- Then: $\sum_{u \in N_n} h_u^{(k)} = A_{v,:} H^{(k)}$
- Let D be diagonal matrix where $D_{v,v} = \text{Deg}(v) = |N(v)|$
 - The inverse of D: D^{-1} is also diagonal: $D_{v,v}^{-1} = 1/|N(v)|$

Matrix of hidden embeddings $H^{(k-1)}$

Therefore,

$$\sum_{u \in N(v)} \frac{h_u^{(k-1)}}{|N(v)|} \longrightarrow H^{(k+1)} = D^{-1}AH^{(k)}$$

Matrix Formulation (2)

Re-writing update function in matrix form:

$$H^{(k+1)} = \sigma(\tilde{A}H^{(k)}W_k^{\mathrm{T}} + H^{(k)}B_k^{\mathrm{T}})$$
where $\tilde{A} = D^{-1}A$

$$H^{(k)} = [h_1^{(k)} \dots h_{|V|}^{(k)}]^T$$

- Red: neighborhood aggregation
- Blue: self transformation
- In practice, this implies that efficient sparse matrix multiplication can be used (\tilde{A} is sparse)
- Note: not all GNNs can be expressed in matrix form, when aggregation function is complex

How to Train A GNN

- Node embedding z_v is a function of input graph
- Supervised setting: we want to minimize the loss £ (see also Slide 15):

$$\min_{\mathbf{Q}} \mathcal{L}(\mathbf{y}, f(\mathbf{z}_v))$$

- y: node label
- \mathcal{L} could be L2 if y is real number, or cross entropy if y is categorical
- Unsupervised setting:
 - No node label available
 - Use the graph structure as the supervision!

Unsupervised Training

"Similar" nodes have similar embeddings

$$\mathcal{L} = \sum_{z_u, z_v} CE(y_{u,v}, DEC(z_u, z_v))$$

- Where $y_{u,v} = 1$ when node u and v are similar
- CE is the cross entropy (Slide 16)
- DEC is the decoder such as inner product (Lecture 4)
- Node similarity can be anything from Lecture 3, e.g., a loss based on:
 - Random walks (node2vec, DeepWalk, struc2vec)
 - Matrix factorization
 - Node proximity in the graph

Supervised Training

Directly train the model for a supervised task (e.g., node classification)

Supervised Training

Directly train the model for a supervised task (e.g., node classification)

Use cross entropy loss (Slide 16)

Model Design: Overview

(1) Define a neighborhood aggregation function \mathbf{Z}_A (2) Define a loss function on the embeddings

Model Design: Overview

(3) Train on a set of nodes, i.e., a batch of compute graphs

Model Design: Overview

Inductive Capability

- The same aggregation parameters are shared for all nodes:
 - The number of model parameters is sublinear in |V| and we can generalize to unseen nodes!

Inductive Capability: New Graphs

Inductive node embedding

Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate embeddings on newly collected data about organism B

Inductive Capability: New Nodes

- Many application settings constantly encounter previously unseen nodes:
 - E.g., Reddit, YouTube, Google Scholar
- Need to generate new embeddings "on the fly"

Summary

- In this lecture, we introduced
 - Basics of neural networks
 - Loss, Optimization, Gradient, SGD, non-linearity, MLP
 - Idea for Deep Learning for Graphs
 - Multiple layers of embedding transformation
 - At every layer, use the embedding at previous layer as the input
 - Aggregation of neighbors and self-embeddings
 - Graph Convolutional Network
 - Mean aggregation; can be expressed in matrix form
 - GNN is a general architecture
 - CNN can be viewed as a special GNN

Graph Neural Networks: Perspective Basics of deep learning

Machine Learning as Optimization

- Supervised learning: we are given input x, and the goal is to predict label y.
- Input x can be:
 - Vectors of real numbers
 - Sequences (natural language)
 - Matrices (images)
 - Graphs (potentially with node and edge features)
- We formulate the task as an optimization problem.

Machine Learning as Optimization

Formulate the task as an optimization problem:

$$\min_{\Theta} \mathcal{L}(\mathbf{y}, f(\mathbf{x}))$$

Objective function

- \bullet : a set of **parameters** we optimize
 - Could contain one or more scalars, vectors, matrices ...
 - E.g. $\Theta = \{Z\}$ in the shallow encoder (the embedding lookup)
- \mathcal{L} : loss function. Example: L2 loss

$$\mathcal{L}(\mathbf{y}, f(\mathbf{x})) = \|\mathbf{y} - f(\mathbf{x})\|_2$$

- Other common loss functions:
 - L1 loss, huber loss, max margin (hinge loss), cross entropy ...
 - See https://pytorch.org/docs/stable/nn.html#loss-functions

Machine Learning as Optimization

- How to optimize the objective function?
- Gradient vector: Direction and rate of fastest increase

$$\nabla_{\mathbf{\Theta}} \mathcal{L} = \left(\frac{\partial \mathcal{L}}{\partial \Theta_{1}}, \frac{\partial \mathcal{L}}{\partial \Theta_{2}}, \dots\right)$$

 \bullet Θ_1 , Θ_2 ...: components of Θ

Partial derivative

- Recall directional derivative of a multi-variable function (e.g. ∠) along a given vector represents the instantaneous rate of change of the function along the vector.
- Gradient is the directional derivative in the direction of largest increase.

Gradient Descent

• Iterative algorithm: repeatedly update weights in the (opposite) direction of gradients until convergence $\Theta \leftarrow \Theta - \eta \nabla_{\Theta} \mathcal{L}$

- Training: Optimize ⊕ iteratively
 - Iteration: 1 step of gradient descent
- Learning rate (LR) η :
 - Hyperparameter that controls the size of gradient step
 - Can vary over the course of training (LR scheduling)
- Ideal termination condition: gradient = 0
 - In practice, we stop training if it no longer improves performance on validation set (part of dataset we hold out from training).

Stochastic Gradient Descent (SGD)

- Problem with gradient descent:
 - Exact gradient requires computing $\nabla_{\Theta} \mathcal{L}(y, f(x))$, where x is the **entire** dataset!
 - This means summing gradient contributions over all the points in the dataset
 - Modern datasets often contain billions of data points
 - Extremely expensive for every gradient descent step
- Solution: Stochastic gradient descent (SGD)
 - At every step, pick a different minibatch ${\cal B}$ containing a subset of the dataset, use it as input ${\it x}$

Minibatch SGD

Concepts:

- Batch size: the number of data points in a minibatch
 - E.g. number of nodes for node classification task
- Iteration: 1 step of SGD on a minibatch
- Epoch: one full pass over the dataset (# iterations is equal to ratio of dataset size and batch size)
- SGD is unbiased estimator of full gradient:
 - But there is no guarantee on the rate of convergence
 - In practice often requires tuning of learning rate
- Common optimizer that improves over SGD:
 - Adam, Adagrad, Adadelta, RMSprop ...

Neural Network Function

- Objective: $\min_{\Omega} \mathcal{L}(y, f(x))$
- In deep learning, function f can be very complex
- **Example:**
 - To start simple, consider linear function

$$f(x) = W \cdot x$$
, $\Theta = \{W\}$

Then, if
$$f$$
 returns a scalar, then W is a learnable **vector**
$$\nabla_W f = (\frac{\partial f}{\partial w_1}, \frac{\partial f}{\partial w_2}, \frac{\partial f}{\partial w_3} \dots)$$

But, if f returns a vector, then W is the weight matrix

$$\nabla_{W} f = \begin{bmatrix} \frac{\partial f_1}{\partial w_{11}} & \frac{\partial f_2}{\partial w_{12}} \\ \frac{\partial f_1}{\partial w_{21}} & \frac{\partial f_2}{\partial w_{22}} \end{bmatrix}$$

Jacobian

matrix of f

Intuition: Back Propagation

- Goal: $\min_{\Theta} \mathcal{L}(y, f(x))$
 - To minimize \mathcal{L} , we need to evaluate the gradient: $\nabla_W \mathcal{L} = \left(\frac{\partial f}{\partial w_1}, \frac{\partial f}{\partial w_2}, \frac{\partial f}{\partial w_3}, \dots\right)$

which means we need to derive derivative of \mathcal{L} .

- Overview of Back-propagation:
 - $\mathcal L$ is composed from some set of predefined building block functions $g(\cdot)$
 - For each such g we also have its derivative g'
 - Then we can automatically compute $\nabla_{\Theta} \mathcal{L}$ by evaluating appropriate funcs. g' on the minibatch \mathcal{B} .

Back-propagation

How about a more complex function:

$$f(x) = W_2(W_1x), \Theta = \{W_1, W_2\}$$

Recall chain rule:

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \frac{\mathrm{d}g}{\mathrm{d}h} \cdot \frac{\mathrm{d}h}{\mathrm{d}x} \text{ or } f'(x) = g'(h(x))h'(x)$$

• Example:
$$\nabla_{\mathbf{x}} f = \frac{\partial f}{\partial (W_1 \mathbf{x})} \cdot \frac{\partial (W_1 \mathbf{x})}{\partial \mathbf{x}}$$

Back-propagation: Use of **chain rule** to propagate gradients of intermediate steps, and finally obtain gradient of \mathcal{L} w.r.t. Θ .

In other words:

$$f(x) = W_2(W_1 x)$$

$$h(x) = W_1 x$$

$$g(z) = W_2 z$$

Back-propagation Example (1)

- **Example:** Simple 2-layer linear network
- $f(\mathbf{x}) = g(h(\mathbf{x})) = W_2(W_1\mathbf{x})$

•
$$\mathcal{L} = \sum_{(x,y)\in\mathcal{B}} \left| \left| \left(y, -f(x) \right) \right| \right|_2$$

- Intermediate representation of input x
- Here we use $h(x) = W_1 x$ to denote the hidden layer

$$f(x) = W_2 h(x)$$

Back-propagation Example (2)

Forward propagation:

Compute loss starting from input

Back-propagation to compute gradient of

$$\Theta = \{W_1, W_2\}$$

Start from loss, compute the gradient

$$\frac{\partial \mathcal{L}}{\partial W_2} = \frac{\partial \mathcal{L}}{\partial f} \cdot \frac{\partial f}{\partial W_2}, \qquad \frac{\partial \mathcal{L}}{\partial W_1} = \frac{\partial \mathcal{L}}{\partial f} \cdot \frac{\partial f}{\partial W_2} \cdot \frac{\partial W_2}{\partial W_1}$$
Compute backwards

Compute backwards

Remember: $f(\mathbf{x}) = W_2(W_1\mathbf{x})$ $h(x) = W_1 x$ $g(z) = W_2 z$

Compute backwards

Non-linearity

- Note that in $f(x) = W_2(W_1x)$, W_2W_1 is another matrix (vector, if we do binary classification)
 - Hence f(x) is still linear w.r.t. x no matter how many weight matrices we compose
- We introduce non-linearity:
 - Rectified linear unit (ReLU) $ReLU(x) = \max(x, 0)$

• Sigmoid
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Multi-layer Perceptron (MLP)

- Each layer of MLP combines linear transformation and non-linearity:
 - where W_l is weight matrix that transforms hidden representation at layer l to layer l+1
 - b^l is bias at layer l, and is added to the linear transformation of $x^{(l)}$
 - σ is non-linearity function (e.g., sigmoid)
- Suppose x is 2-dimensional, with entries x_1 and x_2

Summary

Objective function:

$$\min_{\Theta} \mathcal{L}(\boldsymbol{y}, f(\boldsymbol{x}))$$

- f can be a simple linear layer, an MLP, or other neural networks (e.g., a GNN later)
- Sample a minibatch of input x
- Forward propagation: Compute \mathcal{L} given x
- Back-propagation: Obtain gradient $\nabla_{\mathbf{w}} \mathcal{L}$ using a chain rule.
- Use stochastic gradient descent (SGD) to optimize for ⊕ over many iterations.