Machine Learning (60050): Assignment 1

K Rahul Dev - 15CS10021

Part d:

Experimenting with Cost Functions

- **Features**: Linear Combination
- Error Functions: Mean Square Error, Mean Absolute Error, Mean Cubic Error
- **Optimization Function**: Gradient Descent

Procedure:

- 1.Split the Dataset into Train Set and Test Set [80:20]
- 2. Theta Values (Learning Parameters) are initialized randomly.
- 3.Took Learning Rates ranging [0.01 to 0.1]
- 4.No of Iterations for MSE and ABE: 1000

No of Iterations for MCE: 51

Final Learned Values (Theta Values)

Learning Rate	Mean Square	Mean Absolute	Mean Cubic
	Error	Error	Error

0.01	[0.0340093	[0.01000411	[0.25125755
	0.26638283	0.26077354	0.26821708
	0.21639018	0.08343518	0.3127661
	0.41585223	0.41463306	0.417126
	-0.0698028]	0.14510433]	-0.05065341]
0.02	[0.16676974	[0.02125802	[0.17137366
	0.26834647	0.26804364	0.26782519
	0.27998415	0.2150559	0.27683779
	0.41725666	0.41722878	0.41682842
	-0.07294908]	-0.09047563]	-0.07274878]
0.03	[0 405 42000	[0 02017004	[0.12072266
0.03	[0.10542089	[0.02017994	[0.13072366
	0.26817594	0.26762953	0.26752568
	0.25345406	0.20471987	0.25818438
	0.41713969	0.41708361	0.41659562
	-0.0882429]	-0.07169998]	-0.08440223]
0.04	[0.07332207	[0.01924529	[0.10498467
	0.26803807	0.26721542	0.26727012
	0.23939433	0.1946576	0.24612318
	0.41704357	0.41693381	0.41639392
	-0.09508035]	-0.0535817]	-0.09231407]
0.05	[0.05657247	[0.01834072	[0.08631911
	0.26791727	0.26680478	0.26704093
	0.23187677	0.18487237	0.23720484
	0.4169583	0.41678517	0.41621106
	-0.09748641]	-0.03603714]	-0.09859407]
	•	•	

0.06	[0.04780959	[0.01750787	[0.07137282
	0.26780525	0.26638719	0.26682999
	0.2277616	0.17555231	0.22995052
	0.4168786	0.41663422	0.41604133
	-0.09759287]	-0.01905087]	-0.10413121]
0.07	[0.04316693	[0.01670278	[0.05839577
	0.2676977	0.26597192	0.26663301
	0.22539995	0.16660866	0.22358771
	0.41680169	0.41648211	0.41588171
	-0.09651921]	-0.0027023]	-0.10938957]
0.08	[0.04063162	[0.01565478	[0.04628987
	0.26759234	0.26555897	0.26644755
	0.22393348	0.1579933	0.21763171
	0.41672611	0.41634388	0.41573051
	-0.0948482]	0.01284687]	-0.1146687]
0.09	[0.03916515	[0.01493297	[0.0342036
	0.26748802	0.26514833	0.2662722
	0.22291935	0.14980093	0.2117074
	0.41665113	0.41618136	0.41558674
	-0.09288045]	0.02781561]	-0.12021501]
0.10	[0.03823661	[0.02773344	[0.02129311
	0.26738414	0.26474	0.26610617
	0.22213123	0.14669313	0.20544433
	0.41657636	0.41604197	0.41544988
	-0.09076961]	0.04483286]	-0.12629019]

Plot:

NOTE:

Blue Line: MSE

Orange Line: ABE

Green Line : MCE

From the above Graph we can infer that

- i) **MCE** converges for small # of Iterations,whereas **MSE** and **ABE** considerably larger # of iterations.
- ii) But in the case of **MCE**, the gradients are tremendously large, so if we have a model where it has larger (predicted value Label value), it usually overflows.
- iii) In the case of **ABE**,it doesn't show fall any dip or has doesn't strive minimize the error,it justs performs linearly,independent of the errors.
- iv) In the case of **MSE**,it gives considerable gradients and strives to minimize the **RMSE**,which is evident from the Graph

From the above observations,I conclude that I would prefer **Mean Square Error** for Training my data.

PS: Because of Random initialization, every execution of the trained model gives different Learned Values

The above graph is corresponding with the values submitted in part_d result file.