Homework 12 Solutions

1. (a) Show that NP is closed under union.

Answer:

Let L_1 and L_2 be languages in NP. Also, for i = 1, 2, let $V_i(x, c)$ be an algorithm that, for a string x and a possible certificate c, verifies whether c is actually a certificate for $x \in L_i$. Thus, $V_i(x, c) = 1$ if certificate c verifies $x \in L_i$, and $V_i(x, c) = 0$ otherwise. Since both L_1 and L_2 are both in NP, we know that $V_i(x, c)$ terminates in polynomial time $O(|x|^d)$ for some constant d.

To show that $L_3 = L_1 \cup L_2$ is also in NP, we will construct a polynomial-time verifier V_3 for L_3 . Since a certificate c for L_3 will have the property that either $V_1(x,c) = 1$ or $V_2(x,c) = 1$, we can easily construct a verifier $V_3(x,c) = V_1(x,c) \vee V_2(x,c)$. Clearly then $x \in L_3$ if and only if there is a certificate c such that $V_3(x,c) = 1$. Notice also that the new verifier V_3 will run in time $O(2(|x|^d))$, which is polynomial. Therefore, the union L_3 of two languages in NP is also in NP, so NP is closed under union.

(b) Show that NP is closed under concatenation.

Answer:

Now we will show that $L_4 = L_1 \circ L_2$ is in NP, where L_1 and L_2 are languages in NP with verifiers V_1 and V_2 as in the solution for the previous part. Again, our goal is to construct a polynomial-time verifier $V_4(x,c)$ for a string x and the possible certificate c. Suppose |x| = n. We can define $V_4(x,c) = 1$ if and only if c = k # y # z, where # is a new symbol, $k \in \{0, 1, ..., n\}$, and

$$V_1(x_1 \cdots x_k, y) = 1$$
 and $V_2(x_{k+1} \cdots x_n, z) = 1$.

Note that k specifies the position where the original string x should be split into two parts, and y and z are the certificates for the two parts. The verifier V_4 will run in time $O(|x|^d)$ since $|x_1 \cdots x_k| \leq |x|$ and $|x_{k+1} \cdots x_n| \leq |x|$. Also, $V_4(x, w) = 1$ if and only if $x \in L_4$. Thus, the language L_4 , the concatenation of two languages in NP, is also in NP.

2. Show that if P = NP, we can factor integers in polynomial time.

Answer: Define the language

 $LARGE\text{-}FACTOR = \{ \langle n, t \rangle \mid n \text{ and } t \text{ are positive integers, and } n$ has a factor f satisfying $t \leq f < n \}$.

We first show that $LARGE\text{-}FACTOR \in NP$. A non-deterministic TM M that decides LARGE-FACTOR simply guesses an integer f and verifies that (a) $t \leq f < n$ and (b) f divides n.

By invoking TM M with input $\langle n, 2 \rangle$, we check if n is composite or not. If n is composite, we use M to actually discover the prime factorization of n as follows:

Let us denote the largest factor of n that lies in the range (1, n) by f_{largest} . Then M accepts $\langle n, f \rangle$ for all $f \in [2, f_{\text{largest}}]$, and M rejects $\langle n, f \rangle$ for all $f \in [f_{\text{largest}} + 1, n]$. How do we discover f_{largest} ? If we iterate f from 1 through n, we would be doing an exponential amount of work in the size of the input (because we have O(n) iterations when the size of the input is only $O(\log n)$). A faster procedure is to use binary search to identify f_{largest} . This would involve at most $O(\log n)$ invocations of TM M.

Having discovered the largest factor of n, say f_{largest} , we compute $p = n/f_{\text{largest}}$, which happens to be the smallest prime factor of n. We now discover the largest factor of n/p, and so on (using the above procedure for discovering the largest factor).

Any number n can have at most $O(\log n)$ prime factors. As we showed earlier, each prime factor requires $O(\log n)$ invocations of TM M for its discovery. Thus, TM M is invoked $O(\log^2 n)$ times. Under the assumption that P = NP, the whole procedure is polynomial.