

Chapitre 5 – Produit de convolution et de corrélation discret

- 1. Définition du produit de convolution
- 2. Application à des signaux à support fini
- 3. Cas des signaux périodiques
- 4. Aspect spectral
- 5. Définition du produit de corrélation
- 6. Application à des signaux à support fini
- 7. Conclusion

Traitement du signal – MA361 Grenoble INP ESISAL

V. Corrélation, convolution

Convolution

Support fini

Sig. périodiques

Aspect spectral

Corrélation

Support fini

Conclusion

Définition du produit de convolution

Soient $\{x(n)\}$, T_e $et\{y(n)\}$, T_e

$$\{z(n)\}, T_e/ z(n) = x(n) * y(n) = \sum_{k \in \mathbb{Z}} x(k) \cdot y(n-k)$$

$$y(n) * x(n) = \sum_{k \in \mathbb{Z}} y(k) \cdot x(n-k)$$

Le calcul exige donc :

- Un retournement $y(k) \rightarrow y(-k)$
- Une translation $y(-k) \rightarrow y(n-k)$
- Les produits $x(k) \cdot y(n-k), \forall k$
- Une sommation

dimension temporelle y(n-k), $\forall \ k$

Attention, l'indice k à une

Convolution

Support fini

Sig. périodiques

Aspect spectral

Corrélation

Support fini

Conclusion

Application à des signaux à support fini

Détermination du support du produit de convolution

Soient $\{x(n)\}\$, T_e de support $[0; N_X - 1]$ contenant N_X échantillons $\{y(n)\}\$, T_e de support $[0; N_Y - 1]$ contenant N_Y échantillons

$$z(n) = y(n) * x(n) = \sum_{k \in \mathbb{Z}} x(k)y(n-k)$$

Application à des signaux à support fini

Détermination du support du produit de convolution

$$n = Nx + Ny - 2$$

$$support \{x(k)\}$$

$$support \{y(k)\}$$

$$support \{y(n - k)\}$$

$$z(n) = x(n) * y(n) = \sum_{k=0}^{N-1} x(k) \cdot y(n-k), \forall n \in [0; N_x + N_y - 2]$$
= 0 ailleurs

V. Corrélation, convolution

Convolution

Support fini

Sig. périodiques

Aspect spectral

Corrélation

Support fini

Application à des signaux à support fini

Temps de calcul et ordre des signaux

Réduction du temps de calcul en choisissant comme « premier signal » celui dont le support est le plus petit

$$z(n) = x(n) * y(n) = \sum_{k=0}^{N_x - 1} x(k) \cdot y(n - k), \forall n \in [0; N_x + N_y - 2]$$

$$z(n) = y(n) * x(n) = \sum_{k=0}^{N_y - 1} x(k) \cdot y(n - k), \forall n \in [0; N_x + N_y - 2]$$

V. Corrélation, convolution

Convolution

Support fini

Sig. périodiques

Aspect spectral

Corrélation

Support fini

Conclusion

5

Convolution

Support fini

Sig. périodiques

Aspect spectral

Corrélation

Support fini

Conclusion

Application à des signaux à support fini

Principe de calcul

Traitement du signal – MA361 Grenoble INP ESISAR

V. Corrélation, convolution

Convolution

Support fini

Sig.

périodiques Aspect

spectral

Corrélation

Support fini

Conclusion

Cas des signaux périodiques

Propriétés

Soient $\{x(n)\}$, T_e et $\{y(n)\}$, T_e périodiques et de même période $T\gg T_e$, $T=N\cdot T_e$ $(N_x=N_v=N)$

$$z(n) = x(n) * y(n) = \sum_{k=0}^{N-1} x(k) \cdot y(n-k), \forall n \in [0; N-1]$$

$$z(n) = z(n + \alpha \cdot N)$$
, avec $\alpha \in \mathbb{Z}$

7

septembre 16

Grenoble INP

Traitement du

Aspect spectral

V. Corrélation, convolution

Convolution

Support fini

Sig. périodiques

Aspect spectral

Corrélation

Support fini

Conclusion

Principe

$$z(n) = x(n) * y(n) \xrightarrow{TFD} Z(k) = X(k) \cdot Y(k)$$

A condition de prendre un certain nombre de précautions concernant les indices

Cas général:

8

septembre 16

Traitement du signal – MA361 Grenoble INP ESISAL

V. Corrélation, convolution

Convolution

Support fini

Sig. périodiques

Aspect spectral

Corrélation

Support fini

Conclusion

Aspect spectral

Prolongement par des zéros (« zero padding »)

Incrément fréquentiel modifié

$$X(k) = \sum_{n=0}^{N_{x}-1} x(n) \cdot W_{N}^{-nk}, k \in [0, N-1]$$

$$Y(k) = \sum_{n=0}^{N_{y}-1} x(n) \cdot W_{N}^{-nk}, k \in [0, N-1]$$

$$Z(k) = X(k) \cdot Y(k), k \in [0, N-1]$$

Traitement du signal – MA361 Grenoble INP ESISAR

V. Corrélation, convolution

Convolution

Support fini

Sig. périodiques

Aspect spectral

Corrélation

Support fini

Conclusion

Aspect spectral

Prolongement par des zéros (« zero padding »)

Convolution

Support fini

Sig.

nériodiques

Aspect spectral

Corrélation

Support fini

Conclusion

Aspect spectral

Application au filtrage numérique

Le filtrage d'un signal x(n) par un filtre de fonction de transfert H(n) revient à faire le produit de convolution entre x et H.

Une méthode d'implémentation est de passer dans le domaine fréquentiel :

$$\{x(n)\}\$$
 TFD $\{X(k)\}\$ $\{X(k)\}\$ $\{X(k)\}\$ $\{X(k)\}\$ $\{X(k)\}\$ $\{X(n)\}\$ $\{X(n)\}\$

La méthode est économique en temps de calcul dés que le nombre d'échantillons à traiter devient supérieur à 64

Produit de corrélation

V. Corrélation, convolution

Convolution

Support fini

Sig. périodiques

Aspect spectral

Corrélation

Support fini

Conclusion

Définition

Soient $\{x(n)\}$, T_e $et\{y(n)\}$, T_e

$$C_{XY}(n) = \sum_{k \in \mathbb{Z}} x(k) \cdot y^*(k-n) = x(n) \cdot y^*(-n)$$

Attention à l'ordre des signaux ! $C_{XY}(n) = C_{YX}^*(-n)$

Produit de corrélation

V. Corrélation, convolution

Convolution

Support fini

Sig. périodiques

Aspect spectral

Corrélation

Support fini

Conclusion

Définition

Soient $\{x(n)\}$, T_e $et\{y(n)\}$, T_e

$$C_{XY}(n) = \sum_{k \in \mathbb{Z}} x(k) \cdot y^*(k-n) = x(n) \cdot y^*(-n)$$

Attention à l'ordre des signaux ! $C_{XY}(n) = C_{YX}^*(-n)$

Convolution

Support fini

Sig.

périodiques Aspect

spectral

Corrélation

Support fini

Conclusion

Produit de corrélation : cas des signaux à support fini

Détermination du support du produit de corrélation

Soient $\{x(n)\}$, T_e de support $[0; N_X - 1]$ contenant N_X échantillons $\{y(n)\}$, T_e de support $[0; N_Y - 1]$ contenant N_Y échantillons

$$C_{XY}(n) = \sum_{k=0}^{N_{\chi}-1} x(k) \cdot y^*(k-n)$$
, $\forall n \in [-(N_Y - 1); (N_{\chi} - 1)]$

V.

Produit de corrélation : cas des signaux à support fini

Principe du calcul

Corrélation, convolution Convolution Support fini Sig. périodiques Aspect spectral Corrélation

Support fini

\mathbf{c}_{xy}	x(0)	x(1)	x(2)		x(N _x - 1)
y*(0)	x(0).y*(0)	x(1).y*(0)			x(N _x - 1).y(0)
y*(1)		x(1).y*(1)				C _{XY} (N _X - 1)
y*(2)	x(0).y*(2)	x(1).y*(2)	• • • •	•••		
		***************************************	*********************	The same of the sa		
			***************************************	***************************************		
y*(N _Y - 1)	x(0).y <u>*(</u> N _Y	₋₁)		***************************************		C _{XY} (0)
	-	C _{XY} (- (N _Y - 1))		Cx	_{(Y} (- 1)

Produit de corrélation : cas des signaux périodiques

Principe et propriété

Lorsque les deux signaux x(n) et y(n) ont même période N, la corrélation est calculée sur une période :

$$C_{XY}(n) = \sum_{k=0}^{N-1} x(k) \cdot y^*(k-n)$$

Le produit de corrélation est alors également périodique de période N

V. Corrélation, convolution

Convolution

Support fini

Sig. périodiques

Aspect spectral

Corrélation

Support fini

Produit de corrélation : aspect spectral

Principe et propriété

Comme pour la convolution, il est possible de passer dans le domaine fréquentiel pour effectuer le calcul de la corrélation :

$$TFD\{C_{XY}(n)\} = TFD\{x(n) * y^*(-n)\} = X(k) \cdot Y^*(k) = S_{XY}(k)$$

Attention à prolonger les domaines par des zéros comme pour la convolution

V. Corrélation, convolution

Convolution

Support fini

Sig. périodiques

Aspect spectral

Corrélation

Support fini

Traitement du signal – MA361 Grenoble INP ESISAL

Produit de corrélation : aspect spectral

Calcul d'une intercorrélation

Méthode économique en temps de calcul lorsque le nombre d'échantillons à traiter devient supérieur à 64

V. Corrélation, convolution

Convolution

Support fini

Sig. périodiques

Aspect spectral

Corrélation

Support fini