香港考試局 HONG KONG EXAMINATIONS AUTHORITY

一九九五年香港中學會考 HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1995

附加數學 試卷一 ADDITIONAL MATHEMATICS PAPER I

本評卷參考乃考試局專爲今年本科考試而編寫,供閱卷員參考之用。閱卷員在完成閱卷工作後,若將本評卷參考提供其任教會考班的本科同事參閱,本局不表反對,但須切記,在任何情況下均不得容許本評卷參考落入學生手中。學生若索閱或求取此等文件,閱卷員/教師應嚴詞拒絕,因學生極可能將評卷參考視爲標準答案,以致但知硬背死記,活剝生吞。這種落伍的學習態度,既不符現代教育原則,亦有違考試着重理解能力與運用技巧之旨。因此,本局籲請各閱卷員/教師通力合作,堅守上述原則。

This marking scheme has been prepared by the Hong Kong Examinations Authority for markers' reference. The Examinations Authority has no objection to markers sharing it, after the completion of marking, with colleagues who are teaching the subject. However, under no circumstances should it be given to students because they are likely to regard it as a set of model answers. Markers/teachers should therefore firmly resist students' requests for access to this document. Our examinations emphasise the testing of understanding, the practical application of knowledge and the use of processing skills. Hence the use of model answers, or anything else which encourages rote memorisation, should be considered outmoded and pedagogically unsound. The Examinations Authority is counting on the co-operation of markers/teachers in this regard.

在今年考試結束後,各科評卷參考將存放於北角教師中心,供教師參閱。 Each year after the examinations, marking schemes will be available for reference at the North Point Teachers' Centre.

© 香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 1995

95-CE-A MATHS I-1

GENERAL INSTRUCTIONS TO MARKERS

- 1. It is very important that all markers should adhere as closely as possible too the marking scheme. In many cases, however, candidates will have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct alternative solution merits all the marks allocated to that part, unless a particular method is specified in the question.
- In the marking scheme, marks are classified as follows:
 - 'M' marks awarded for knowing a correct method of solution and attempting to apply it;
 - 'A' marks awarded for the accuracy of the answer;

Marks without 'M' or 'A' - awarded for correctly completing a proof or arriving at an answer given in the question.

In a question consisting of several parts each depending on the previous parts, 'M' marks should be awarded to steps or methods correctly deduced from previous erroneous answers. However, 'A' marks for the corresponding answer should NOT be awarded. Unless otherwise specified, no marks in the marking scheme are subdivisible.

- 3. The symbol pp-1 should be used to denote marks deducted for poor presentation (p.p.). Marks entered in the Page Total Box should be the net total score on that page. Note the following points:
 - (a) At most deduct 1 mark for p.p. in each question, up to a maximum of 3 marks for the whole paper.
 - (b) For similar p.p., deduct only 1 mark for the first time that it occurs, i.e. do not penalise candidates twice in the whole paper for the same p.p.
 - (c) In any case, do not deduct any marks for p.p. in those parts where candidates could not score any marks.
- Unless otherwise specified in the question, numerical answers not given in exact values would not be accepted.

Solution		Marks	Remarks
$x^2 + (1 - m) x + 2m -$	5 = 0		
Discriminant = (1 - a	$m)^2 - 4(2m - 5)$	1M	
$= m^2 -$	10 m + 21	1A	
Discriminant < 0			
$m^2 - 10m + 21 < 0$		1M	no mark for ≤ 0
(m-3)(m-7)<0		1A	
3 < m < 7		1A	
		_5	
$z = -1 + \sqrt{3}i$			
$= 2(\cos\frac{2\pi}{3} + i\sin\frac{\pi}{3})$	$\frac{2\pi}{3}$)	1A+1A	1A for modulus 1A for argument (Accept degrees) (Accept other equivalent values for argument)
$z^5 + \overline{z}^5 = 2^5 (\cos \frac{10\pi}{3} +$	$i\sin\frac{10\pi}{3}$) + 2 ⁵ ($\cos\frac{-10\pi}{3}$ + $i\sin\frac{-10\pi}{3}$)	1M+1M	1M for De moivre's Theore
	or $2^{5}(\cos\frac{10\pi}{3} - i\sin\frac{10\pi}{3})$		1M for $\overline{z} = \operatorname{cis}(-\theta)$
$(=64\cos\frac{10\pi}{3}$) (or = $(-16 - \sqrt{3}i) + (-16 + \sqrt{3}i)$)		$(\text{or } \overline{z}^5 = \overline{z}^5)$
= -32		1A	·
0	(1/2) $(2/1)$ $(2/1)$ $(2/1)$	1A 1A 1A 2A	For the max. pt. (1, 2) For the min. pt. (0, 1) For the min. pt. (2, 1) Shape Axes not labelled (pp-1)
		_5	
95–CE–A MATHS I–3			

	Solution	Marks	Remarks
4.	$x-\frac{5}{x}>4$		
	Case 1 : x > 0		
	$x^2 - 5 - 4x > 0$	1A	or $x^2 - 5 > 4x$
	(x - 5)(x + 1) > 0		
	x > 5 or $x < -1$		
	Since $x > 0$, $\therefore x > 5$	1A	
	Case 2 : x < 0		
	$x^2 - 5 - 4x < 0$	1A	or $x^2 - 5 < 4x$
	(x - 5)(x + 1) < 0		
	-1 < x < 5		_
	Since $x < 0$, $\therefore -1 < x < 0$	1A	·
	Combining the 2 cases, $x > 5$ or $-1 < x < 0$	2 <u>A</u>	No mark for using 'and' or ','.
	Alternative solution (1)		
	$x-\frac{5}{x}>4$		
	$x^3 - 5x - 4x^2 > 0$ (: $x^2 > 0$)	2A	or $x^3 - 5x > 4x^2$
	x(x-5)(x+1)>0	1A	
•	x > 5 or $-1 < x < 0$	3A	Withhold 2 marks for using 'and' or ','
	Alternative solution (2)		1
	$x-\frac{5}{x}>4$		_
	$\frac{x^2-5-4x}{x}>0$	2A	
	$\frac{(x-5)(x+1)}{x}>0$	1A	or $x(x-5)(x+1) > 0$
	x > 5 or $-1 < x < 0$	ЗА	Withhold 2 marks for using 'and' or ','
	Almaginary 171 17 2:1		
5.	17 Z = Z - 8i 17 - (3+i) = 3	1A 1A 1A	For a circle For centred at (3 + i) For radius = 3
	$ \begin{array}{c c} & \times \\ & & \\ \hline & & \\ & &$	1A 1A	For a straight line For the correct line
			Axes not labelled (pp-1) Two diagrams (pp-1)
	The point of intersection represents the complex number $3 + 4i$.	1A 6	-
			•

	Solu	tion	Marks	Remarks	
,	/ m \	$y^2 + y\sqrt{x} = 3$			
•	(a)	$2y\frac{dy}{dx} + \sqrt{x}\frac{dy}{dx} + \frac{y}{2\sqrt{x}} = 0$	1A+1A	1A for $\frac{d}{dx}(y\sqrt{x})$	
		At P(4, 1),	1	1A for the other 2 terms	
		2 (1) $\frac{dy}{dx} + \sqrt{4} \frac{dy}{dx} + \frac{1}{2\sqrt{4}} = 0$	1M	For substitution	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{16}$	1A		
		Alternative solution			
		$y^2 + y\sqrt{x} = 3$,	
		$y^{2} + y\sqrt{x} = 3$ $x = \frac{(3 - y^{2})^{2}}{y^{2}}$	1A		
		$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{y^2 2(3-y^2) (-2y) - (3-y^2)^2 2y}{y^4}$	1A		
		[or = 2 $(\frac{3-y^2}{y})$ $\frac{y(-2y) - (3-y^2)}{y^2}$]			
		At $P(4, 1)$ $\frac{dx}{dy} = \frac{1^2(2)(3-1^2)(-2)-(3-1^2)^2(2)}{1^4}$	1м		
		= -16			
		$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{16}$	1A		
_	(b)	Slope of normal = $-1/-\frac{1}{16}$	1м	·	
		= 16			
		The equation of the normal is $\frac{y-1}{x-4} = 16$	1A		
		y = 16x - 63	1 <u>A</u> 7	16x - y - 63 = 0	
•					

S	olution	Marks	Remarks	
(a)	$) \qquad \overrightarrow{OR} = \frac{\overrightarrow{OP} + k\overrightarrow{OQ}}{k+1}$	1M	Omit vector sign (pp-1)	
	$=\frac{(2\vec{1}+3\vec{j})+k(-6\vec{i}+4\vec{j})}{k+1}$			
	$= \frac{2-6k}{k+1}\vec{1} + \frac{3+4k}{k+1}\vec{j}$	1A		
(þ	$\vec{OP} \cdot \vec{OR} = \frac{2(2-6k)}{k+1} + 3(\frac{3+4k}{k+1})$	1M	Omit dot sign (pp-1)	
	$=\frac{13}{k+1}$	1A	·	
	$\vec{OQ} \cdot \vec{OR} = -6 \frac{(2-6k)}{k+1} + 4 \left(\frac{3+4k}{k+1} \right)$			
(c	$= \frac{52 k}{k+1}$ $\cos \angle POR = \cos \angle QOR$	1A	·	
	$\frac{\vec{OP} \cdot \vec{OR}}{ \vec{OP} \vec{OR} } = \frac{\vec{OQ} \cdot \vec{OR}}{ \vec{OQ} \vec{OR} }$	1M		
	$ \vec{OQ} \frac{13}{k+1} = \vec{OP} \frac{52k}{k+1}$			
	$13\sqrt{52} = 52k\sqrt{13}$	1A	For $ \overrightarrow{OQ} = \sqrt{52}$ and $ \overrightarrow{OP} = \sqrt{3}$	
	$k = \frac{1}{2}$	1A		
	Alternative solution			
	$k = \frac{ \vec{OP} }{ \vec{OO} }$	1M ·		
	$=\frac{\sqrt{13}}{\sqrt{52}}$	1A	For $ \overrightarrow{OP} = \sqrt{13}$ and $ \overrightarrow{OQ} = \sqrt{13}$	
	$= \frac{1}{2}$	1A		
		8		

	Solu	tion		Marks	Remarks
3.	(a)	(i)	$\overrightarrow{AE} = \overrightarrow{hAC}$ $= h(\overrightarrow{p} + \overrightarrow{q})$ $\overrightarrow{AE} = \frac{\overrightarrow{\lambda AF} + \overrightarrow{AD}}{1 + \lambda}$	1A	Omit vector sign (pp-1)
		(ii)	$=\frac{\lambda kp + q}{1 + \lambda}$	1A	
			$h(\vec{p} + \vec{q}) = \frac{\lambda kp + q}{1 + \lambda}$	1M	(can be omitted)
			$\therefore \begin{cases} h = \frac{\lambda k}{1 + \lambda} \\ h = \frac{1}{1 + \lambda} \end{cases}$	1M	
				1_5	
	(p)	(i)	$\vec{p} \cdot \vec{q} = \vec{p} \vec{q} \cos \frac{\pi}{3}$	1M	Omit dot sign (pp-1)
			$= 3(2)\cos\frac{\pi}{3}$ $= 3$	1A	
		(ii)	$(1) \qquad \overrightarrow{DF} = \overrightarrow{kp} - \overrightarrow{q}$	1A	
			$\overrightarrow{DF} \cdot \overrightarrow{AC} = 0$	1M	or $\overrightarrow{DF} \cdot \overrightarrow{AE} = 0$
- .			$(k\overrightarrow{p} - \overrightarrow{q}) \cdot (\overrightarrow{p} + \overrightarrow{q}) = 0$ $k\overrightarrow{p} \cdot \overrightarrow{p} + (k - 1) \overrightarrow{p} \cdot \overrightarrow{q} - \overrightarrow{q} \cdot \overrightarrow{q} = 0$	0 1M	For distribution
			9k + 3(k - 1) - 4 = 0	1A	For $\overrightarrow{p} \cdot \overrightarrow{p} = 9$ and $\overrightarrow{q} \cdot \overrightarrow{q} = 4$ only
			$k = \frac{7}{12}$	1A	
			Figure 1		

Solution		Marks	Remarks
	(2) For $k = \frac{7}{12}$, $\lambda = \frac{12}{7}$, $h = \frac{7}{19}$		
	$\overrightarrow{AE} = \frac{7}{19} (\overrightarrow{p} + \overrightarrow{q})$	1M+1A	
	$ \overrightarrow{AE} ^2 = \overrightarrow{AE} \cdot \overrightarrow{AE}$	1M	
	$= (\frac{7}{19})^2 (\overrightarrow{p} \cdot \overrightarrow{p} + 2\overrightarrow{p} \cdot \overrightarrow{q} + 2\overrightarrow{p})^2$	(q, q)	
	$= \left(\frac{7}{19}\right)^2 \left(9 + 6 + 4\right)$		
	$=\frac{49}{19}$		
	$\therefore \left \overrightarrow{AE} \right = \frac{7\sqrt{19}}{19} \text{ (or } \frac{7}{\sqrt{19}})$	1A	
	Alternative solution (1) By Cosine Law,		
	$AC^2 = AB^2 + BC^2 - 2(AB)(BC)\cos\frac{2\pi}{3}$	1M	
	$= 3^2 + 2^2 - 2(3)(2)\cos\frac{2\pi}{3}$		
	$= 19$ $AC = \sqrt{19}$		
	For $k = \frac{7}{12}$, $\lambda = \frac{12}{7}$, $h = \frac{7}{19}$		
	$A\vec{E} = \frac{7}{19}A\vec{C}$	1M+1A	
	$\therefore \overrightarrow{AE} = \frac{7}{19} \overrightarrow{AC} $		
	$= \frac{7}{\sqrt{19}}$		
	√19 Alternative solution (2)	1A	
	$\overrightarrow{DF} = \frac{7}{12} \overrightarrow{p} - \overrightarrow{q}$		
	$\begin{vmatrix} \overrightarrow{DF} \end{vmatrix}^2 = \overrightarrow{DF} \cdot \overrightarrow{DF}$		
	$= \frac{49}{144} \overrightarrow{p} \cdot \overrightarrow{p} - \frac{7}{6} \overrightarrow{p} \cdot \overrightarrow{q} + \overrightarrow{q} \cdot \overrightarrow{q}$ 57	1M	
	$=\frac{57}{16}$ $1 \rightarrow \sqrt{57}$		
	$\begin{vmatrix} \overrightarrow{EF} \end{vmatrix} = \frac{7\sqrt{57}}{76}$ $\begin{vmatrix} \overrightarrow{AF} \end{vmatrix} = \frac{7}{6}$	1A	
	$ AF = \frac{1}{6}$		
	$\begin{vmatrix} \overrightarrow{AE} \end{vmatrix} = \sqrt{ AF ^2 - EF ^2}$ $= \frac{7\sqrt{19}}{ AE ^2}$	1M	
	19	1A	
CE-A MATHS I-8		11	

So	lution	Marks	Remarks
(a)	Let r m be the radius of the shadow		
	$\frac{2}{r} = \frac{h-1}{h}$.1м	For considering similar Δs
	$r = \frac{2h}{h-1}$	1A	
	$S = \pi r^2 = \frac{4\pi h^2}{(h-1)^2}$	1	
	Alternative solution		Π
	Area of Table = $\pi(2)^2$		
	$\frac{\text{Area of Table}}{S} = \left(\frac{h-1}{h}\right)^2$	1M+1A	
	$\therefore S = \frac{4\pi h^2}{(h-1)^2}$	1	
		3	
(p)	$\frac{dS}{dh} = \frac{(h-1)^2 8\pi h - 4\pi h^2 \cdot 2(h-1)}{(h-1)^4}$	1M+1A	1M For quotient rule
	$=\frac{-8\pi h}{(h-1)^3}$		
	$\frac{dS}{dt} = \frac{dS}{dh} \frac{dh}{dt}$	1м	For chain rule
	$= \frac{-8\pi h}{(h-1)^3} \left(-\frac{1}{8}\right) = \frac{\pi h}{(h-1)^3}$	1A	For $\frac{\mathrm{d}h}{\mathrm{d}t} = -\frac{1}{8}$
	At $h = 2$, $\frac{dS}{dt} = \frac{\pi(2)}{(2-1)^3} = 2\pi(s^{-1})$	1A 	-
(c)	$(i) V = \frac{1}{3}\pi r^2 h$		
	$= \frac{1}{3}\pi \left(\frac{2h}{h-1}\right)^{2}h$	1	
	$=\frac{4\pi h^3}{3(h-1)^2}$		
	(ii) $\frac{dV}{dh} = \frac{4\pi}{3} \frac{(h-1)^2 3h^2 - h^3 \cdot 2(h-1)}{(h-1)^4}$	1A	
	$= \frac{4\pi}{3} \frac{h^3 - 3h^2}{(h-1)^3}$		
	$\frac{\mathrm{d}V}{\mathrm{d}h}=0$	1M	
	$\frac{4\pi}{3} \frac{h^3 - 3h^2}{(h-1)^3} = 0$		
	$h^2 (h - 3) = 0$		
	$h = 3 (\because h > 1)$	1A	
•	When $h > 3$, $\frac{dv}{dh} > 0$		

	When $(1 <) h < 3$, $\frac{dV}{dh} < 0$ \therefore V is minimum at $h = 3$. Alternative Solution for checking $\frac{d^2V}{dh^2} = \frac{4\pi}{3} \frac{(h-1)^3(3h^2-6h)-(h^3-3h^2)3(h-1)^2}{(h-1)^6}$	1M	For checking
	\therefore V is minimum at $h = 3$. Alternative Solution for checking	1M	For checking
	Alternative Solution for checking		
	$\frac{d^2V}{dh^2} = \frac{4\pi}{3} \frac{(h-1)^3 (3h^2-6h)-(h^3-3h^2) 3(h-1)^2}{(h-1)^6}$	1	I I
	$=\frac{8\pi h}{(h-1)^4}$	1м	For checking
	At $h = 3$, $\frac{d^2V}{dh^2} (= \frac{3\pi}{2}) > 0$		
	$\therefore V$ is minimum at $h = 3$		
	∴ Minimum value of V		
	$=\frac{4\pi(3^3)}{3(3-1)^2}$		
	= 9π	1A	Awarded even if checking is omitted.
	At $h = 3$, $\frac{dS}{dh} = \frac{-8\pi(3)}{(3-1)^3} (=-3\pi) \neq 0$		
	Since $\frac{dS}{dh} \neq 0$ at $h = 3$, S does not attain	1M+1A	
	a minimum when V attains its minimum.		
	Alternative solution		
	From (b), $\frac{dS}{dh} = \frac{-8\pi h}{(h-1)^3} < 0$		
1	$\therefore S$ is a (strictly) decreasing function	. }1M+1A	
	$\therefore S$ does not attain a minimum at $h = 3$]	11
	As the lamp is lowered, S (strictly) increasesS does not attain a minimum at h = 3.]]]]]]]]	
		8	T-
			i

只限教師參閱

FOR TEACHERS' USE ONLY

$f\left(-\frac{1}{2}\right) = 0$	Remarks
$\alpha = -\frac{1}{2} (\because p \neq q)$ $f(\alpha) = 0$ $f(-\frac{1}{2}) = 0$ $12(-\frac{1}{2})^2 + 2p(-\frac{1}{2}) - q = 0$ $3 - p - q = 0$ $p + q = 3$ $(b) (i) \alpha \beta = -\frac{q}{12}$ $\therefore \alpha = -\frac{1}{2} \therefore \beta = \frac{q}{6} = \frac{3-p}{6}$ $\frac{Alternative \ solution}{1}$ $(1) \alpha + \beta = -\frac{2p}{12}$ $\qquad \beta = \frac{1}{2} - \frac{p}{6}$ $(2) f(x) = 12x^2 + 2px + p - 3 = 0$ $\qquad (2x + 1) (6x + p - 3) = 0$ $1M$	
$f(\alpha) = 0$ $f(-\frac{1}{2}) = 0$ $12(-\frac{1}{2})^2 + 2p(-\frac{1}{2}) - q = 0$ $3 - p - q = 0$ $p + q = 3$ $(b) (i) \alpha\beta = -\frac{q}{12}$ $\therefore \alpha = -\frac{1}{2} \therefore \beta = \frac{q}{6} = \frac{3-p}{6}$ $1A$ $\frac{Alternative solution}{(1) \alpha + \beta = -\frac{2p}{12}}$ $\beta = \frac{1}{2} - \frac{p}{6}$ $(2) f(x) = 12x^2 + 2px + p - 3 = 0$ $(2x + 1) (6x + p - 3) = 0$ $1M$ For any solution in the proof of	
$12(-\frac{1}{2})^{2} + 2p(-\frac{1}{2}) - q = 0$ $3 - p - q = 0$ $p + q = 3$ $(b) (i) \alpha \beta = -\frac{q}{12}$ $\therefore \alpha = -\frac{1}{2} \therefore \beta = \frac{q}{6} = \frac{3-p}{6}$ $1A$ Alternative solution $(1) \alpha + \beta = -\frac{2p}{12}$ $\qquad -\frac{1}{2} + \beta = -\frac{2p}{12}$ $\qquad \beta = \frac{1}{2} - \frac{p}{6}$ $(2) f(x) = 12x^{2} + 2px + p - 3 = 0$ $\qquad (2x + 1) (6x + p - 3) = 0$ $1M$ For all M For all M For all M For all M IM IM IM IM IM IM IM IM IM	$(\alpha) = 0$, $f(\alpha) + g(\alpha) = 0$ etc.
$p + q = 3$ $\frac{1}{3}$ (b) (i) $\alpha \beta = -\frac{q}{12}$ $\therefore \alpha = -\frac{1}{2} \therefore \beta = \frac{q}{6} = \frac{3-p}{6}$ $\frac{\text{Alternative solution}}{(1) \alpha + \beta = -\frac{2p}{12}}$ $\beta = \frac{1}{2} - \frac{p}{6}$ 1A $(2) f(x) = 12x^2 + 2px + p - 3 = 0$ $(2x + 1) (6x + p - 3) = 0$ 1M	substituting $\alpha = -$
(b) (i) $\alpha \beta = -\frac{q}{12}$ $\therefore \alpha = -\frac{1}{2} \therefore \beta = \frac{q}{6} = \frac{3-p}{6}$ 1A Alternative solution (1) $\alpha + \beta = -\frac{2p}{12}$ $-\frac{1}{2} + \beta = -\frac{2p}{12}$ $\beta = \frac{1}{2} - \frac{p}{6}$ 1A (2) $f(x) = 12x^2 + 2px + p - 3 = 0$ $(2x + 1) (6x + p - 3) = 0$ 1M	
(1) $\alpha + \beta = -\frac{2p}{12}$ $-\frac{1}{2} + \beta = -\frac{2p}{12}$ $\beta = \frac{1}{2} - \frac{p}{6}$ (2) $f(x) = 12x^2 + 2px + p - 3 = 0$ (2x + 1)(6x + p - 3) = 0 1M	
$\beta = \frac{1}{2} - \frac{p}{6}$ (2) $f(x) = 12x^2 + 2px + p - 3 = 0$ $(2x + 1) (6x + p - 3) = 0$ 1M	
(2x+1)(6x+p-3)=0 1M	
$\therefore \beta = \frac{1}{2} - \frac{p}{6}$	
	•

Solution		Marks	Remarks
(ii)	$\alpha \gamma = -\frac{p}{12}$	1M	
	$\forall \alpha = -\frac{1}{2} \land \ \gamma = \frac{p}{6}$	1A	
	Alternative solution		
•	$(1) \alpha + \gamma = -\frac{2q}{12}$	1M	
	$-\frac{1}{2} + \gamma = -\frac{2q}{12}$		
	$\gamma = \frac{1}{2} - \frac{q}{6}$		
	= <u>p</u>	1A	
	(2) $g(x) = 12x^2 + 2qx + q - 3 = 0$		
	(2x+1)(6x+q-3)=0	1M	·
	$x = -\frac{1}{2}, \frac{3-q}{6}$		
	$\therefore \gamma = \frac{3-q}{6} = \frac{p}{6}$	1A	
		4	
(c) (i)	$ \beta^3 + \gamma^3 < \frac{7}{24}$		
	$\left \left(\frac{1}{2} - \frac{p}{6} \right)^3 + \left(\frac{p}{6} \right)^3 \right < \frac{7}{24}$	1м _	For substitution $ (3-p)^3+p^3 <63$
	$\left \frac{1}{8} - \frac{p}{8} + \frac{p^2}{24} - \frac{p^3}{216} + \frac{p^3}{216}\right < \frac{7}{24}$	1A	For substitution $ (3-p)^3+p^3 < 63 $ $ 27-27p+9p^2-p^3+p^3 < $
	$\left \frac{D^2}{24} - \frac{D}{8} + \frac{1}{8}\right < \frac{7}{24}$	1A	9p² - 27p + 27 < 63
	$ p^2 - 3p + 3 < 7$	1	
	$p^2 - 3p + 3 < 7$ and $p^2 - 3p + 3 > -7$	1M	For handling absolute values
	$p^2 - 3p - 4 < 0$ $p^2 - 3p + 10 > 0$		
	$(p+1)(p-4) < 0$ $(p-\frac{3}{2})^2 + \frac{31}{4} > 0$		
	$-1 All real numbers$	1A+1A	
	∴ -1 < <i>p</i> < 4	1A	
OR	$p^2 - 3p + 3 = (p - \frac{3}{2})^2 + \frac{3}{4} > 0$	1A	
	$ p^2 - 3p + 3 = p^2 - 3p + 3$	1M	
	$p^2 - 3p + 3 < 7$		
	(p+1)(p-4)<0	1A	
	-1	1A	

Solution		Marks	Remarks
		·	
	Alternative solution		
	From (b), $\beta + \gamma = \frac{1}{2}$		
	$\left \beta^3 + \gamma^3\right < \frac{7}{24}$		
•	$ (\beta + \gamma)(\beta^2 - \beta\gamma + \gamma^2) < \frac{7}{24}$	1A	eg.
	$\left \frac{1}{2}\left[\left(\frac{1}{2}\right)^2 - 3\left(\frac{1}{2} - \frac{p}{6}\right)\frac{p}{6}\right]\right < \frac{7}{24}$	1M	For substitution
	$\left \frac{1}{8} - \frac{p}{8} + \frac{p^2}{24}\right < \frac{7}{24}$	1A	
	$ p^2 - 3p + 3 < 7$		
	$p^2 - 3p + 3 < 7$ and $p^2 - 3p + 3 > -$		For handling absolute val
	$p^2 - 3p - 4 < 0$ $p^2 - 3p + 10 >$	0	·
	$(p+1)(p-4) < 0$ $(p-\frac{3}{2})^2 + \frac{3}{4}$	1 > 0	
	-1 < p < 4 All real numb		
	∴ -1 < p < 4	1A	
(ii)	From (i), -1 < p < 4		
	Combining with $p > q$, $p + q = 3$ and	p, q	
	are integers,		
	p=2, q=1	1A	Withhold 1 mark for givi
	or $p = 3, q = 0$	1 <u>A</u> 9	/

	Solu	tion		Marks	Remarks
•	(a)		$x + 1 = 0$ $\frac{1 \pm \sqrt{-3}}{2}$	1A	
		= - α =	$\frac{1}{2} \pm \frac{\sqrt{3}}{2} i$ $\frac{1}{2} + \frac{\sqrt{3}}{2} i = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$	1A	} (pp-1) for degrees
	(b)		$\frac{1}{2} - \frac{\sqrt{3}}{2}i = \cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)$ $\left \frac{z_2}{z_1}\right = \frac{ z_2 }{ z_1 }$ $= 1$	1A 3	
			$arg(\frac{z_2}{z_1}) = arg z_2 - arg z_1 (or = \angle POQ)$	1M	(can be omitted)
			$=\frac{\pi}{3}$	1A	Accept degrees
			Alternative solution Let $z_1 = r(\cos\theta + i\sin\theta)$ (where $r > 0$, 0 < $z_2 = r[\cos(\theta + \frac{\pi}{3}) + i\sin(\theta + \frac{\pi}{3})]$	$\theta < \frac{\pi}{2}$)	
,			$\frac{z_2}{z_1} = \cos\frac{\pi}{3} + i\sin\frac{\pi}{3}$ $\therefore \left \frac{z_2}{z_1}\right = 1$	1M 1A	
			$\arg\left(\frac{z_2}{z_1}\right) = \frac{\pi}{3}$	1A	
			$\therefore \frac{z_2}{z_1} = \alpha \left(\text{or} = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right)$ $\therefore \frac{z_2}{z_1} \text{ is a root of } (*)$	}1	
		(ii)	As $\frac{Z_2}{Z_1}$ satisfies(*),	1M	For substitution
			$\left(\frac{Z_2}{Z_1}\right)^2 - \frac{Z_2}{Z_1} + 1 = 0$ $Z_2^2 - Z_1 Z_2 + Z_1^2 = 0$	IM	ror substitution
			$z_1^2 + z_2^2 = z_1 z_2$	1	

Marking Scheme			
Solution		Marks	Remarks
•	Alternative solution (1)		
	$z_2 = \alpha z_1$		
	L.H.S. = $z_1^2 + z_2^2$	1	
	$= z_1^2 + \alpha^2 z_1^2$	1M	For substitution
	$= (1 + \alpha^2) z_1^2$		
	$= \alpha z_1^2 \qquad (\because \alpha^2 - \alpha + 1 = 0)$		
	$= z_1 z_2 \qquad (\because z_2 = \alpha z_1)$	1	
	= R.H.S.		
	Alternative solutin (2)		
_	$Z_1^2 + Z_2^2 = Z_1 Z_2$		
	$\frac{z_1}{z_2} + \frac{z_2}{z_1} = 1$		
	$\frac{z_2}{z_1} + \frac{z_1}{z_2} = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} + \left[\cos \left(-\frac{\pi}{3}\right) + i \sin \left(-\frac{\pi}{3}\right)\right]$	1M	$\alpha R = \alpha + \overline{\alpha}$
	$=2\cos\frac{\pi}{3}$		
	= 1		
	$\therefore z_1^2 + z_2^2 = z_1 z_2$	1	
	Alternative solution (3)		
	Let $z_1 = r(\cos\theta + i\sin\theta)$ (where $r > 0$, $0 < \theta$	$\left(\frac{\pi}{2}\right)$	
	$z_2 = r[\cos(\theta + \frac{\pi}{3}) + i\sin(\theta + \frac{\pi}{3})]$		
	L.H.S. = $z_1^2 + z_2^2$		
	= $r^2(\cos 2\theta + i\sin 2\theta) + r^2[\cos(2\theta + \frac{2\pi}{3}) + i\sin(2\theta + \frac{2\pi}{3})]$	1M	For substitution
	$= r^{2} \left[2\cos\left(2\theta + \frac{\pi}{3}\right) \cos\frac{\pi}{3} + i2\sin\left(2\theta + \frac{\pi}{3}\right) \cot^{2}\theta \right]$	$\left(\frac{\pi}{3}\right)$	
	$= r^{2} \left[\cos \left(2\theta + \frac{\pi}{3} \right) + i \sin \left(2\theta + \frac{\pi}{3} \right) \right]$		
	$= r(\cos\theta + i\sin\theta) r(\cos(\theta + \frac{\pi}{3}) + i\sin(\theta + \frac{\pi}{3}))$	$\frac{\pi}{3}$)]	
	$= z_1 z_2 = R.H.S.$	1	
			T .
		ı	

Solution		Marks	Remarks
(iii) (1)	$(z_1 + z_2)^2 = z_1^2 + z_2^2 + 2z_1z_2$	1A	
	$(z_1 + z_2)^2 = 3z_1z_2$		
	$ z_1 + z_2 ^2 = 3 z_1 z_2 $	1A	
	$= 3 z_1 ^2 (: z_1 = z_2)$	1A	
	= 12		
	$\therefore z_1 + z_2 = 2\sqrt{3}$	1A	
	Alternative solution (1)		
	$ z_2 = z_1 = 2$	1A	(can be omitted)
	$ z_1 + z_2 $ is the diagonal of the parallelogram <i>OPRQ</i> .	1M	(can be omitted)
	$ z_1 + z_2 = 2 z_1 \cos\frac{\pi}{6}$	1A	Imaginary
	= 2√ 3	1A	R Q (7.+2
	or $ z_1 + z_2 ^2 = z_1 ^2 + z_2 ^2 - 2 z_1 z_2 \cos x$	2 t 1A	P Rea
	$= 2^2 + 2^2 - 2(2)(2)\cos\frac{2\pi}{3} = 12$	2	Nea Rea
	$\therefore z_1 + z_2 = 2\sqrt{3}$	1A	

Solution		and the second s	Marks	Remarks
				-
		Alternative solution (2)		
		$\frac{z_2}{z_1} = \alpha = \frac{1}{2} + \frac{\sqrt{3}}{2}i$		
		$ z_1 + z_2 = (1 + \alpha)z_1 $	1A	
		$= (\frac{3}{2} + \frac{\sqrt{3}}{2} i) z_1 $	1A	
		$= \frac{3}{2} + \frac{\sqrt{3}}{2} i z_1 $	1M	
		= 2√ 3	1A	
	(2)	$z_1^2 + z_2^2 = z_1 z_2$		
		$ z_1^2 + z_2^2 = z_1 z_2 $	1A	
		= Z ₁ ²	1A	
		$\therefore z_1^2 + z_2^2 = 4$	1A .	Imaginary
	1	native solution (1)		I maginary $T(z_1^2+z_2^2)$
	(2)	Suppose $z_1 = 2(\cos\theta + i\sin\theta)$		(2(+22)
		$z_2 = 2\left[\cos\left(\theta + \frac{\pi}{3}\right) + i\sin\left(\theta\right)\right]$	$\frac{\pi}{3}$)]	Sc
		then $z_1^2 = 4(\cos 2\theta + i \sin 2\theta)$	1A	217/3
		$z_2^2 = 4 \left[\cos(2\theta + \frac{2\pi}{3}) + i\sin(2\theta + \frac{2\pi}{3})\right]$	1)	$ \longrightarrow k$
		Let points s , T denote the complex numbers z_1^2 and $z_1^2 + z_2^2$ respectively.		
		ΔOST is equilateral.	1M	
		$\therefore z_1^2 + z_2^2 = z_1^2 $		
		- 4	1A	
		rnative solution (2)		
	$ z_1^2 $	$+ z_2^2 = (1 + \alpha^2) z_1^2 $	1A	
		$= (1 + \frac{-2 + 2\sqrt{3}i}{4})z_1^2 $		
		$= (\frac{1}{2} + \frac{\sqrt{3}}{2}i) z_1^2 $	1A	
		$= \frac{1}{2} + \frac{\sqrt{3}}{2}i z_1 ^2$		
		= 4	1A	
	1		13	

	Solu	tion	Marks	Remarks
2.	(a)	ΔODG	1A	1 ^H
		$\angle HOF = \frac{\pi}{2} - 2\theta$		F
		Area of $\Delta OFH = \frac{1}{2} \ell (\ell \tan(\frac{\pi}{2} - 2\theta))$	1M	<u>₹</u> -2θ
		$=\frac{\ell^2}{2\tan 2\theta}$	1 3	
	(b)	(i) Area of $\triangle OCG = \frac{1}{2} \ell (\ell \tan \theta)$		
		$= \frac{\ell^2}{2} \tan \theta$	1A	
		$S = \frac{\ell^2}{2\tan 2\theta} + 2\left(\frac{\ell^2}{2}\tan\theta\right)$	1M	
		$= \frac{\ell^2}{2} \left(2 \tan \theta + \frac{\cos 2\theta}{\sin 2\theta} \right)$		_
		$=\frac{\ell^2}{2}\left(\frac{4\sin^2\theta+\cos 2\theta}{\sin 2\theta}\right)$		3
		$= \frac{\ell^2}{2} \frac{2(1-\cos 2\theta) + \cos 2\theta}{\sin 2\theta}$	1M	For expressing in terms of cos20 and sin20
		$=\frac{\ell^2}{2}\left(\frac{2-\cos 2\theta}{\sin 2\theta}\right)$	1	
		Alternative solution		
		Area of $\triangle OCG = \frac{\ell^2}{2} \tan \theta$	1A	
		$S = \frac{\ell^2}{2\tan 2\theta} + 2\left(\frac{\ell^2}{2}\tan\theta\right)$	1M	
		$= \frac{\ell^2}{2\tan 2\theta} + \ell^2 \left(\frac{1-\cos 2\theta}{\sin 2\theta}\right)$	1M	For expressing in terms of cos20 and sin20
		$=\frac{\ell^2}{2}\left(\frac{\cos 2\theta + 2(1-\cos 2\theta)}{\sin 2\theta}\right)$		_
		$=\frac{\ell^2}{2}\left(\frac{2-\cos 2\theta}{\sin 2\theta}\right)$	1	
		(ii) (1) $\frac{\mathrm{d}S}{\mathrm{d}\theta} = \frac{t^2}{2} \frac{\sin 2\theta (2\sin 2\theta) - (2-\cos 2\theta) (2\cos 2\theta)}{\sin^2 2\theta}$	1M+1A	For quotient rule
		$=\frac{\ell^2}{2} \frac{2\sin^2 2\theta - 4\cos 2\theta + 2\cos^2 2\theta}{\sin^2 2\theta}$		
		$= \ell^2 \left(\frac{1 - 2\cos 2\theta}{\sin^2 2\theta} \right)$		
		S is increasing when $\frac{dS}{d\theta} > 0$	Accep	tl ≥ 0
		$\ell^2 \left(\frac{1 - 2\cos 2\theta}{\sin^2 2\theta} \right) > 0$	1M	
		$1 - 2\cos 2\theta > 0$		

Solution		Marks	Remarks
	$\cos 2\theta < \frac{1}{2}$		
•	$2\theta > \frac{\pi}{3}$		
	•		_
	$(\frac{\pi}{4} >) \theta > \frac{\pi}{6}$	1A	OR $\theta \ge \frac{\pi}{6}$, (pp-1) for degrees
	(2) S is decreasing when $\frac{dS}{d\theta} < 0$	Accept	≤ 0
	$\cos 2\theta > \frac{1}{2}$		(can be omitted)
	$2\theta < \frac{\pi}{3}$)
_	$(\frac{\pi}{8}<)\theta<\frac{\pi}{6}$	1A	(pp-1) for degrees
	(Since $\frac{\mathrm{d}S}{\mathrm{d}\theta}$ changes from -ve to	+ve	
	at $\theta = \frac{\pi}{6}$,)		
	S is minimum at $\theta = \frac{\pi}{6}$	1M	
	$S_{\min} = \frac{\ell^2}{2} \left(\frac{2 - \cos \frac{\pi}{3}}{\sin \frac{\pi}{3}} \right)$		
	$= \frac{\sqrt{3} \ell^2}{2}$	1A 11	
(c) Maxim	num area = $\ell^2 - S_{\min}$	1M	
	$= \ell^2 - \frac{\sqrt{3} \ell^2}{2}$	1A	
	$= \ell^2 - \frac{\sqrt{3} \ell^2}{2}$ $= (1 - \frac{\sqrt{3}}{2}) \ell^2$	2	
		·	
		,	