1 Derivada de Schwarz

Definição 1.1. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função de classe C^{∞} . A derivada de Schwarz de f é a função S_f definida por

$$S_f(x) = \frac{f'''(x)}{f'(x)} - \frac{3}{2} \left(\frac{f''(x)}{f'(x)}\right)^2$$

para todo x tal que $f'(x) \neq 0$.

Exemplo 1.2. 1. Se $f(x) = F_{\mu}(x)$, então $S_f(x) = \frac{-6}{(1-2x)^2} < 0$ para todo $x \neq \frac{1}{2}$.

- 2. Se $f(x) = e^x$, então $S_f(x) = -\frac{1}{2} < 0$ para todo x.
- 3. Se $f(x) = \operatorname{sen} x$, então $S_f(x) = -1 \frac{3}{2}(\tan^2 x) < 0$ para todo x.

Lema 1.3. Se $S_f < 0$, então $S_{f^n} < 0$ para todo $n \ge 1$.

Demonstração. Se $S_f < 0$ e $S_g < 0$, vamos provar que $S_{f \circ g} < 0$. Pela Regra da Cadeia,

$$(f \circ g)'(x) = f'(g(x))g'(x)$$

$$(f \circ g)''(x) = f''(g(x))(g'(x))^2 + f'(g(x))g''(x)$$

$$(f \circ g)'''(x) = f'''(g(x))(g'(x))^3 + 3f''(g(x))g''(x)g'(x) + f'(g(x))g'''(x)$$

Desse modo,

$$S_{f \circ g}(x) = \frac{(f \circ g)'''(x)}{(f \circ g)'(x)} - \frac{3}{2} \left(\frac{(f \circ g)''(x)}{(f \circ g)'(x)} \right)^{2}$$

$$= \frac{f'''(g(x))(g'(x))^{2}}{f'(g(x))} + 3\frac{f''(g(x))g''(x)}{f'(g(x))} + \frac{g'''(x)}{g'(x)} - \frac{3}{2} \left(\frac{f''(g(x))g'(x)}{f'(g(x))} + \frac{g''(x)}{g'(x)} \right)^{2}$$

$$= S_{f}(g(x))(g'(x))^{2} + S_{g}(x) < 0$$

para todo x tal que $(f \circ g)'(x) \neq 0$. Por indução, $S_{f^n} < 0$ para todo $n \geq 1$.

Lema 1.4. Se $S_f < 0$ e x_0 é ponto de mínimo local de f', então $f'(x_0) \le 0$.

Demonstração. Se $f'(x_0) \neq 0$, então $S_f(x_0) = \frac{f'''(x_0)}{f'(x_0)} - \frac{3}{2} \frac{f''(x_0)}{f'(x_0)} < 0$. Sendo x_0 ponto de mínimo local de f', temos que $f''(x_0) = 0$ e $f'''(x_0) \geq 0$. Portanto, $f'(x_0) < 0$.

Lema 1.5. Se $S_f < 0$ e a < b < c são pontos fixos de f, com $f'(b) \le 1$, então f possui ponto crítico em (a, c).

Demonstração. Pelo Teorema do Valor Médio, existem $r \in (a,b)$ e $s \in (b,c)$ tais que f'(r) = f'(s) = 1. Sendo f' contínua, f' restrita ao intervalo [r,s] possui mínimo global. Como $b \in (r,s)$ e $f'(b) \leq 1$, temos que f' possui mínimo local em (r,s). Utilizando Lema anterior e o Teorema do Valor Intermediário, a demonstração está concluída.

Lema 1.6. Se $S_f < 0$ e a < b < c < d são pontos fixos de f, então f possui ponto crítico em (a, d).

Demonstração. Se $f'(b) \leq 1$ ou $f'(c) \leq 1$, o resultado é verdadeiro pelo Lema anterior. Se f'(b) > 1 e f'(c) > 1, existem $r, t \in (b, c)$ tais que r < t, f(r) > r e f(t) < t. Pelo Teorema do Valor Médio, existe $s \in (r, t)$ tal que f'(s) < 1. Portanto, f' possui mínimo local em (b, c). Utilizando Lema 1.4 e o Teorema do Valor Intermediário, a demonstração está concluída.

Lema 1.7. Se f possui finitos pontos críticos, então f^n possui finitos pontos críticos para todo $n \ge 1$.

Demonstração. Pelo Teorema do Valor Médio, f possui ponto crítico entre dois elementos de $f^{-1}(c)$. Como f possui finitos pontos críticos, $f^{-1}(c)$ é finito. Além disso, se $f^{-k}(c)$ é finito, então $f^{-(k+1)}(c) = \{x \in \mathbb{R} : f(f^k(x)) = c\}$ é finito pois $f^{-1}(c)$ é finito e, por hipótese de indução, $f^{-k}(c_i)$ é finito para cada $c_i \in f^{-1}(c)$. Portanto, $f^{-n}(c)$ é finito para todo $n \geq 1$.

Temos que $(f^n)'(x) = \prod_{k=0}^{n-1} f'(f^k(x)) = 0$ se e somente se $f^k(x)$ é ponto crítico de f para algum $k = 1, \ldots, n-1$. Assim, o conjunto de pontos críticos de f^n é finito pois é dado pela união dos conjuntos $\bigcup_{k=0}^{n-1} f^{-k}(c_i)$, onde c_i é ponto crítico de f.

Observe que o Lema anterior, ao contrário dos outros, não exige que $S_f < 0$.

Lema 1.8. Se $S_f < 0$ e f possui finitos pontos críticos, então f^n possui finitos pontos fixos para todo $n \ge 1$.

Demonstração. Se f^n possui infinitos pontos fixos para algum n > 1, então f^n possui infinitos pontos críticos de acordo com o Lema 1.6. Essa implicação contradiz o Lema anterior.

Para demonstrar os próximos resultados, seja p um ponto fixo não repulsor de g, ou seja, $|g'(p)| \leq 1$. Defina K_p o intervalo maximal que contém p e que está contido em $B(p) = \{x \in \mathbb{R} : \lim_{k \to \infty} g^k(x) = p\}.$

Lema 1.9. Seja p um ponto fixo de g tal que |g'(p)| < 1. Se K_p é limitado, então K_p é aberto, $g(K_p) \subset K_p$.

Demonstração. Como g' é contínua, existe $\varepsilon > 0$ tal que |g'(x)| < 1 para todo $x \in V = (p - \varepsilon, p + \varepsilon)$. Pelo Teorema do Valor Médio, $V \subset B(p)$. Observe também que para todo $x \in K_p$, existe $n \ge 1$ tal que $g^n(x) \in V$.

Sendo p um ponto fixo, considere $g^{-n}(V)^*$ a componente conexa de $g^{-n}(V)$ que contém p. Observe que $g^{-n}(V)^*$ é aberto, pois $g^{-n}(V)$ é aberto e componente conexa de aberto é aberto. Vamos provar que $K_p = \bigcup_{n=0}^{\infty} g^{-n}(V)^*$.

Desse modo, K_p é aberto pois é união de abertos, e $g(K_p) \subset K_p$ por construção. \square

Teorema 1.10 (Singer). Se $S_f < 0$ e f possui n pontos críticos, então f possui no máximo n + 2 órbitas periódicas não repulsoras.

Demonstração. Sejam p um ponto periódico não repulsor de f de período m e $g = f^m$. Desse modo, p é um ponto fixo não repulsor de g, ou seja, g(p) = p e $|g'(p)| \le 1$. Seja K o maior intervalo que contém p e que está contido em $B(p) = \{x \in \mathbb{R} : \lim_{k \to \infty} g^k(x) = p\}$.

Suponha que K é limitado e |g'(p)| < 1. Vamos mostrar que K é aberto, $g(K) \subset K$ e g preserva os pontos extremos de K.

Como |g'(p)| < 1, p é um ponto atrator. Desse modo, existe uma vizinhança V de p contida em B(p). Se $x \in K$, existe n tal que $g^n(x) \in V$. Sendo g^n contínua, $(g^n)^{-1}(V)$ é um aberto em K que contém x. Portanto, K é aberto.

Seja a um ponto extremo de K e suponha que $g(a) \in K$. Desse modo, existe uma vizinhança V de g(a) contida em K. Sendo g contínua, $g^{-1}(V)$ é uma vizinhança de a contida B(p), o que contraria o fato de K ser maximal. Como $g(K) \subset K$ e g é contínua, concluímos que g preserva os pontos extremos de K.

Desse modo, escrevendo K=(a,b) ocorre um dos três casos abaixo. Vamos mostrar que em cada caso, g possui ponto crítico em K. Observe que $S_q < 0$.

- a) Se g(a) = a e g(b) = b, g possui ponto crítico em K pelo Lema 1.5.
- b) Se g(a) = b e g(b) = a, considerando $h = g^2$ e utilizando novamente o Lema 1.5, h possui ponto crítico em K. Como $g(K) \subset K$, g possui ponto crítico em K.
- c) Se g(a) = g(b), g possui ponto crítico em K pelo Teorema do Valor Médio.

Suponha que K é limitado e |g'(p)| = 1. Pelo Lema anterior, g possui finitos pontos fixos e, portanto, são isolados.

Se g'(p) = 1 e, para x numa vizinhança de p, g(x) > x quando x > p e g(x) < x quando x < p, então g'(p) = 1 é mínimo local de g' maior que zero, o que contradiz o Lema 1.4. Se g'(p) = -1, basta considerar $h = g^2$ e obter o mesmo resultado. Portanto, p é atrator em pelo menos um dos lados. Desse modo, K é um intervalo não trivial, $g(K) \subset K$ e g preserva os pontos extremos de K. Assim, é possível concluir de maneira análoga que g possui ponto crítico em K.

Portanto, se K é limitado e $|g'(p)| \leq 1$, então g possui ponto crítico $x_0 \in K$. Pela Regra da Cadeia, $f^i(x_0)$ é ponto crítico de f para algum $i = 0, \ldots, m-1$. Não é possível obter a mesma conclusão se K não é limitado, mas observando que existem no máximo dois intervalos desse tipo, a demonstração está concluída.

Corolário 1.11. $F_{\mu}(x) = \mu x(1-x), \ \mu > 0, \ possui no máximo 1 órbita periódica não repulsora.$

Demonstração. Observe que F_{μ} possui um único ponto crítico em $\frac{1}{2}$. Pelo Teorema de Singer, F_{μ} possui no máximo 3 órbitas periódicas não repulsoras. Se p é ponto fixo de F_{μ} e observando que $\lim_{n\to\infty} |F_{\mu}^n(x)| = \infty$ quando |x| é suficientemente grande, concluímos que B(p) é limitado. Portanto, F_{μ} possui no máximo 1 órbita periódica não repulsora. \square

Considere a função $F_4(x) = 4x(1-x)$, $x \in [0,1]$. O ponto crítico de F_4 é eventualmente fixo em 0, que por sua vez é um ponto repulsor. Pelo Corolário acima, todas as órbitas periódicas de F_4 são repulsoras. Utilizando o fato que $S_{F_4} < 0$ é possível mostrar ainda que F_4 é caótica.

Se $q = \frac{1}{4}$ e $p = \frac{3}{4}$, então F(q) = p e F(p) = p. Defina J = [q, p) e $J' = \left(q, \frac{1}{2}\right) \cup \left(\frac{1}{2}, p\right)$. Observe que $F_4(J') = (p, 1)$, ou seja, $F_4(x) \notin J$ quando $x \in J'$.

Afirmação. Se $x \in J'$, existe $n \ge 2$ tal que $F_4^n(x) \in J$.

Demonstração. Como $F_4^2(J')=(0,p)$, basta mostrar que se $x\in(0,q)$, então $F_4^n(x)\in J$ para algum $n\geq 1$.

Seja $x \in (0,q)$ e suponha que $F_4^n(x) < q$ para todo $n \ge 1$. Observando que F_4 é estritamente crescente em (0,q], a sequência $(F_4^n(x))_n$ é monótona limitada e, portanto, possui um limite $L \le q$. Sendo F_4 contínua,

$$L = \lim_{n \to \infty} F_4^n(x) = \lim_{n \to \infty} F_4^{n+1}(x) = \lim_{n \to \infty} F_4(F_4^n(x)) = F_4(L)$$

o que é um absurdo. Portanto, a demonstração está concluída.

Com base na afirmação anterior, podemos definir

$$\phi(x) = \min\{n \ge 2 : F_4^n(x) \in J\}$$

para todo $x \in J'$, ou seja, $\phi(x)$ é a menor iterada de F_4 em x que retorna para J. Assim, é possível construir a função R, denominada a função de primeiro retorno de F_4 em J. Precisamente, $R: J' \to J$ é dada por

$$R(x) = F_4^{\phi(x)}(x)$$

Também podemos definir os intervalos

$$I_n^- = \left\{ x \in \left(q, \frac{1}{2} \right) : \phi(x) = n \right\}$$
$$I_n^+ = \left\{ x \in \left(\frac{1}{2}, p \right) : \phi(x) = n \right\}$$

para todo $n \geq 2$. Esses intervalos possuem propriedades que estão retratadas na Afirmação abaixo.

Afirmação. Para todo $n \geq 2$,

i.
$$I_n^- \notin da \ forma \ (l_n, r_n], \ (F_4^n)'(I_n^-) < 0, \ F_4^n(l_n) = p, \ F_4^n(r_n) = q \ e \ r_n = l_{n+1}.$$

ii.
$$I_n^+ \notin da \text{ forma } [l_n, r_n), (F_4^n)'(I_n^+) > 0, F_4^n(l_n) = q, F_4^n(r_n) = p \text{ } e \text{ } l_n = r_{n+1}.$$

Demonstração. Considere a função T, o Tent Map. Temos que T e F_4 são conjugados topologicamente por $\tau(x) = \sin^2\left(\frac{\pi}{2}x\right)$, ou seja, $\tau \circ T = F_4 \circ \tau$ em [0,1]. Desse modo, bastar demonstrar um resultado análogo para T. Vamos provar a afirmação ii. A prova da afirmação i é análoga.

Temos que $T\left(\frac{1}{3}\right)=\frac{2}{3}$ e $T\left(\frac{2}{3}\right)=\frac{2}{3}$. Portanto, definimos $J=\left[\frac{1}{3},\frac{2}{3}\right)$ como sendo o intervalo análogo para T. Além disso, é fácil ver por indução que $T^n:\left[\frac{1}{2},\frac{1}{2}+\frac{1}{2^n}\right]\to[0,1]$ é uma função linear estritamente crescente para todo $n\geq 2$.

Observe que $T^n\left(\frac{1}{2} + \frac{1}{2^{n+1}}\right) = \frac{1}{2}$. Desse modo, existem $l_n \in \left(\frac{1}{2}, \frac{1}{2} + \frac{1}{2^{n+1}}\right)$ e $r_n \in \left(\frac{1}{2} + \frac{1}{2^{n+1}}, \frac{1}{2} + \frac{1}{2^n}\right)$ tais que $T^n(l_n) = \frac{1}{3}$ e $T^n(r_n) = \frac{2}{3}$. Definindo $I_n^+ = [l_n, r_n)$, temos que $T^n(x) \in J$ se o somente se $x \in I_n^+$.

Fazendo a mesma construção para T^{n+1} , encontramos $r_{n+1} \in (\frac{1}{2}, \frac{1}{2} + \frac{1}{2^{n+1}})$ tal que $T^{n+1}(r_{n+1}) = \frac{2}{3}$. Como $l_n \in (\frac{1}{2}, \frac{1}{2} + \frac{1}{2^{n+1}})$ e $T^{n+1}(l_n) = T(\frac{1}{3}) = \frac{2}{3} = T^{n+1}(r_{n+1})$, concluímos que $l_n = r_{n+1}$.

Afirmação. Se $S_f < 0$ e f' não se anula no intervalo limitado I, então o mínimo de f' em I ocorre em algum ponto extremo de I.

Demonstração. Como $S_f = S_{-f}$, podemos considerar f'(I) > 0 sem perda de generalidade. Se f' possui um ponto de mínimo x_0 no interior de I, então $f'(x_0) \leq 0$ de acordo com o Lema 1.4, o que é um absurdo.

Afirmação. |R'(x)| > 1 para todo $x \in J'$.

Demonstração. Sejam $I_n^+ = [l_n, r_n)$ e $W_n = (\frac{1}{2}, l_n)$, $n \ge 2$. De acordo com a Afirmação anterior, para mostrar que $(F_4^n)'(I_n^+) > 1$ é suficiente mostrar que $(F_4^n)'(l_n) > 1$ e $(F_4^n)'(r_n) > 1$.

Observe que $F_4^n(I_n^+) = J$ e $F_4^n(W_n) \supset (0,q)$ para todo $n \geq 2$. Como os tamanhos de I_n^+ e W_n são menores que $\frac{1}{4}$, o Teorema do Valor Médio afirma que existem $x_k' \in W_k$ e $x_k \in (l_n, r_n)$ tais que $(F_4^n)'(x_k') > 1$ e $(F_4^n)'(x_k) > 1$. Como $l_n \in (x_k', x_k)$ e $(F_4^n)'$ não pode assumir mínimo local positivo em (x_k', x_k) , temos que $(F_4^n)'(l_n) > 1$.

Por outro lado, $(F_4^n)'(r_n) = F_4'(F_4^{n-1}(r_n))(F_4^{n-1})'(r_n) = F_4'(q)(F_4^{n-1})'(l_{n-1}) > 1$, pois ambos os termos são maiores que 1.

A demostração de que $(F_4^n)'(I_n^-) < -1$ é feita de maneira análoga. Desse modo, |R'(x)| > 1 para todo $x \in J'$.

Afirmação. Se U é um intervalo em [0,1], então existe $n \ge 1$ tal que $F_4^n(U) \supset [0,1]$.

Demonstração. Seja U um intervalo aberto em [0,1]. Como $|F'_4(x)| > 1$ para todo $x \notin J$, existe $U_0 \subset U$ e $n \ge 1$ tal que $V = F_4^n(U_0) \subset J$. Como |R'(x)| > 1 para todo $x \in J'$, existe $V_0 \subset V$ e $m \ge 1$ tal que $R^m(V_0)$ contém algum ponto de descontinuidade de R. Portanto, existe $k \ge 1$ tal que $p \in F_4^k(V_0)$. Por fim, como é possível estender qualquer vizinhança de p por iteração de F_4 até cobrir [0,1], existe $l \ge 1$ tal que $F_4^{k+l}(V_0) \supset [0,1]$.

Afirmação. F_4 é caótica.

Demonstração. Seja U, V um intervalos abertos em [0, 1]. Pela Afirmação anterior, existe $n \ge 1$ tal que $F_4^n(U) \supset [0, 1]$.

O conjunto conjunto de pontos periódicos de F_4 é denso em [0,1]. De fato, $F_4^n(U) \supset U$ e, portanto, existe $x \in U$ tal que $F_4^n(x) = x$.

 F_4 é transitiva topologicamente. De fato, $F_4^n(U)\supset V$ e, portanto, existe $x\in U$ tal que $F_4^n(x)\in V$.

 F_4 depende sensivelmente das condições iniciais. De fato, $F_4^n(U)\supset [0,1]$ e, portanto, existem $x,y\in U$ tais que $|F_4^n(x)-F_4^n(y)|=|1-0|\geq 1$.

2 Bifurcação

Teorema 2.1 (Função Implícita). Seja $F: \mathbb{R}^2 \to \mathbb{R}$ uma função de classe C^{∞} . Suponha que

i.
$$F(x_0, y_0) = c$$

ii.
$$\partial_y F(x_0, y_0) \neq 0$$

Então existem uma vizinhança I de x_0 e uma função $f: I \to \mathbb{R}$ de classe \mathcal{C}^{∞} tais que

1.
$$f(x_0) = y_0$$

2.
$$F(x, f(x)) = c \text{ para todo } x \in I$$

3.
$$f'(x) = -\frac{\partial_x F(x)}{\partial_x F(x)}$$
 para todo $x \in I$

Teorema 2.2. Seja f_{λ} uma família parametrizada de funções. Suponha que $f_{\lambda_0}(x_0) = x_0$ e $f'_{\lambda_0}(x_0) \neq 1$. Então existem vizinhanças I e J de λ_0 e x_0 , respectivamente, e uma função $p: I \to J$ de classe C^{∞} tal que $p(\lambda_0) = x_0$ e $f_{\lambda}(p(\lambda)) = p(\lambda)$ para todo $\lambda \in I$. Além disso, f_{λ} não possui outros pontos fixos em J.

Demonstração. Seja $G(x,\lambda) = f_{\lambda}(x) - x$. Temos que $G(x_0,\lambda_0) = 0$ e $\partial_x G(x_0,\lambda_0) = f'_{\lambda_0}(x_0) - 1 \neq 0$. Utilizando o Teorema da Função Implícita, existem vizinhanças I e J de λ_0 e x_0 , respectivamente, e uma função $p:I\to J$ de classe \mathcal{C}^{∞} tal que $p(\lambda_0)=x_0$ e $G(p(\lambda),\lambda)=f_{\lambda}(p(\lambda))-p(\lambda)=0$ para todo $\lambda\in I$. Além disso, para $\lambda\in I$ está associado um único $x\in J$ e, portanto, $x\in J$ e $G(x,\lambda)=0$ se e somente se $x=p(\lambda)$.

De acordo com o Teorema anterior, se x_0 é um ponto fixo não hiperbólico de f_{λ_0} , então f_{λ} possui um único ponto fixo próximo de x_0 para cada λ numa vizinhança de λ_0 .

Com a notação do Teorema anterior, considere a função $g_{\lambda}(x) = f_{\lambda}(x + p(\lambda)) - p(\lambda)$. Observe que $g_{\lambda}(0) = f(p(\lambda)) - p(\lambda) = 0$ para todo $\lambda \in I$, ou seja, 0 é ponto fixo de g_{λ} para todo $\lambda \in I$. Se $h_{\lambda}(x) = x - p(\lambda)$, então $g_{\lambda} \circ h_{\lambda}(x) = f_{\lambda}(x) - p(\lambda) = h_{\lambda} \circ f_{\lambda}(x)$, ou seja, f_{λ} e g_{λ} são topologicamente conjugadas.

Teorema 2.3. Suponha que

1.
$$f_{\lambda_0}(0) = 0$$

2.
$$f'_{\lambda_0}(0) = 1$$

3.
$$f_{\lambda_0}''(0) \neq 0$$

4.
$$\partial_{\lambda} f_{\lambda}|_{\lambda=\lambda_0}(0) \neq 0$$

Então existe uma vizinhança I de 0 e uma função $p: I \to \mathbb{R}$ de classe C^{∞} tal que $p(0) = \lambda_0$ e $f_{p(x)}(x) = x$. Além disso, $p'(0) = \lambda_0$ e $p''(0) \neq 0$.

Demonstração. Considere a função $G(x,\lambda)=f_{\lambda}(x)-x$. Observe que x é um ponto fixo de f_{λ} se $G(x,\lambda)=0$.

Temos que $G(0, \lambda_0) = 0$ e

$$\frac{\partial G}{\partial \lambda}(0, \lambda_0) = \frac{\partial f_{\lambda}}{\partial \lambda}(0)|_{\lambda = \lambda_0} \neq 0$$

Pelo Teorema da Função Implícita, existe uma vizinhança I de 0 e uma função $p:I\to\mathbb{R}$ tal que $p(0)=\lambda_0,\,G(x,p(x))=0$ para todo $x\in I$ e

$$p'(x) = -\frac{\frac{\partial G}{\partial x}(x, p(x))}{\frac{\partial G}{\partial \lambda}(x, p(x))}$$

e, portanto,

$$p'(0) = -\frac{f'_{\lambda_0}(0) - 1}{\frac{\partial f_{\lambda}}{\partial \lambda}(0)|_{\lambda = \lambda_0}} = 0$$

Além disso, utilizando a Regra da Cadeia,

$$p''(x) = -\frac{\frac{\partial^2 G}{\partial x^2}(x, p(x))\frac{\partial G}{\partial \lambda}(x, p(x)) - \frac{\partial G}{\partial x}(x, p(x))\frac{\partial^2 G}{\partial \lambda \partial x}(x, p(x))}{\left(\frac{\partial G}{\partial \lambda}(x, p(x))\right)^2}$$

e, portanto,

$$p''(0) = -\frac{\frac{\partial^2 G}{\partial x^2}(x, \lambda_0) \frac{\partial G}{\partial \lambda}(0, \lambda_0)}{\left(\frac{\partial G}{\partial \lambda}(0, \lambda_0)\right)^2} = -\frac{\frac{\partial^2 G}{\partial x^2}(x, \lambda_0)}{\frac{\partial f_{\lambda}}{\partial \lambda}(0)|_{\lambda = \lambda_0}} \neq 0$$

Teorema 2.4. Suponha que

1. $f_{\lambda_0}(0) = 0$ para todo λ numa vizinhança de λ_0

2.
$$f'_{\lambda_0}(0) = -1$$

3.
$$\partial_{\lambda}(f_{\lambda}^2)'|_{\lambda=\lambda_0}(0) \neq 0$$

Então existe uma vizinhança I de 0 e uma função $p: I \to \mathbb{R}$ de classe C^{∞} tal que $p(0) = \lambda_0, p'(0) = 0, f_{p(x)}(x) \neq x$ e $f_{p(x)}^2(x) = x$ para todo $x \in I$. Além disso, $p''(0) \neq 0$ se $S_{f_{\lambda_0}}(0) \neq 0$.

Demonstração. Seja $G(x,\lambda)=f_{\lambda}^2(x)-x$. Sendo $G(0,\lambda)=0$ para todo λ numa vizinhança de λ_0 , temos que

$$\frac{\partial G}{\partial \lambda}(0, \lambda_0) = 0$$

e, portanto, não podemos utilizar o Teorema da Função Implícita diretamente. Seja

$$H(x,\lambda) = \begin{cases} \frac{G(x,\lambda)}{x} & \text{se } x \neq 0\\ \frac{\partial G}{\partial x}(0,\lambda) & \text{se } x = 0 \end{cases}$$

Desse modo, H é de classe \mathcal{C}^{∞} e são válidas as igualdades

(I)
$$H(0,\lambda_0) = \frac{\partial G}{\partial x}(0,\lambda_0) = (f_{\lambda_0}^2)'(0) - 1 = f_{\lambda_0}'(f_{\lambda_0}0))f_{\lambda_0}'(0) - 1 = 0$$

(II)
$$\frac{\partial H}{\partial \lambda}(0, \lambda_0) = \frac{\partial}{\partial \lambda}((f_{\lambda}^2)'(0) - 1)|_{\lambda = \lambda_0} = \frac{\partial (f_{\lambda}^2)'(0)}{\partial \lambda}|_{\lambda = \lambda_0}$$

(III)
$$\frac{\partial H}{\partial x}(0,\lambda_0) = \lim_{x \to 0} \frac{H(x,\lambda_0) - H(0,\lambda_0)}{x} = \lim_{x \to 0} \frac{G(x,\lambda_0)}{x^2} = \frac{1}{2} \lim_{x \to 0} \frac{\frac{\partial G}{\partial x}(x,\lambda_0)}{x} = \frac{1}{2} \frac{\partial^2 G}{\partial x^2}(0,\lambda_0)$$

(IV)
$$\frac{\partial^2 H}{\partial x^2}(0,\lambda_0) = \frac{1}{3} \frac{\partial^3 G}{\partial x^3}(0,\lambda_0)$$

Pelas igualdades (I) e (II), e pelo Teorema da Função Implícita, existe uma vizinhança I de 0 e uma função $p: I \to \mathbb{R}$ de classe \mathcal{C}^{∞} tal que $p(0) = \lambda_0$ e H(x, p(x)) = 0 para todo $x \in I$. Em particular, se $x \neq 0$,

$$0 = \frac{G(x, p(x))}{x} = \frac{f_{p(x)}^{2}(x) - x}{x}$$

ou seja, $f_{p(x)}^2(x) = x$ para todo $x \in I$. Além disso, pelo Teorema 2.2, f_{λ} possui apenas 1 ponto fixo numa vizinhança de 0 e, portanto, podemos considerar que $f_{p(x)}(x) \neq x$ para todo $x \in I$, $x \neq 0$.

Como

$$\frac{\partial^2 G}{\partial x^2}(0,\lambda_0) = (f_{\lambda_0})''(x)|_{x=0}
= [f'_{\lambda_0}(f_{\lambda_0}(x))f'_{\lambda_0}(x)]'|_{x=0}
= [f''_{\lambda_0}(f_{\lambda_0}(x))(f'_{\lambda_0}(x))^2 + f'_{\lambda_0}(f_{\lambda_0}(x))f''_{\lambda_0}(x)]_{x=0}
= f''_{\lambda_0}(0) - f''_{\lambda_0}(0) = 0$$

temos que

$$p'(0) = -\frac{\frac{\partial H}{\partial x}(0, \lambda_0)}{\frac{\partial H}{\partial \lambda}(0, \lambda_0)} = -\frac{\frac{1}{2}\frac{\partial^2 G}{\partial x^2}(0, \lambda_0)}{\frac{\partial H}{\partial \lambda}(0, \lambda_0)} = 0$$

Por fim,

$$\frac{\partial^{3}G}{\partial x^{3}}(0,\lambda_{0}) = \frac{\partial}{\partial x} \left(\frac{\partial^{2}G}{\partial x^{2}}\right)(0,\lambda_{0})$$

$$= [f''_{\lambda_{0}}(f_{\lambda_{0}}(x))(f'_{\lambda_{0}}(x))^{2} + f'_{\lambda_{0}}(f_{\lambda_{0}}(x))f''_{\lambda_{0}}(x)]'_{x=0}$$

$$= [f'''_{\lambda_{0}}(f_{\lambda_{0}}(x))(f'_{\lambda_{0}}(x))^{3} + 2f''_{\lambda_{0}}(f_{\lambda_{0}}(x))f''_{\lambda_{0}}(x)f'_{\lambda_{0}}(x) + f''_{\lambda_{0}}(f_{\lambda_{0}}(x))f''_{\lambda_{0}}(x)$$

$$+ f'_{\lambda_{0}}(f_{\lambda_{0}}(x))f'''_{\lambda_{0}}(x)]_{x=0}$$

$$= f'''_{\lambda_{0}}(0)(f'_{\lambda_{0}}(0))^{3} + 2(f''_{\lambda_{0}}(0))^{2}f'_{\lambda_{0}}(0) + (f''_{\lambda_{0}}(0))^{2}f'_{\lambda_{0}}(0) + f'_{\lambda_{0}}(0)f'''_{\lambda_{0}}(0)$$

$$= -2f'''_{\lambda_{0}}(0) + 3(f''_{\lambda_{0}}(0))^{2}$$

$$= -2\frac{f'''_{\lambda_{0}}(0)}{f'_{\lambda_{0}}(0)} + 3\left(\frac{f''_{\lambda_{0}}(0)}{f'_{\lambda_{0}}(0)}\right)^{2} = -2S_{f_{\lambda_{0}}}(0)$$

e, portanto,

$$p''(0) = -\frac{\frac{\partial^2 H}{\partial x^2}(0, \lambda_0)\frac{\partial H}{\partial \lambda}(0, \lambda_0)}{\left(\frac{\partial H}{\partial \lambda}(0, \lambda_0)\right)^2} = -\frac{1}{3}\frac{\frac{\partial^3 G}{\partial x^3}(0, \lambda_0)}{\frac{\partial H}{\partial \lambda}(0, \lambda_0)} = \frac{2}{3}\frac{S_{f_{\lambda_0}}(0)}{\frac{\partial H}{\partial \lambda}(0, \lambda_0)} \neq 0$$

quando $S_{f_{\lambda_0}}(0) \neq 0$.