

Agenda

- I. Introduction & Background
- II. Data Pre-Processing
- III. Linear Models
- IV. Tree-Based Models
- V. Stacked Models
- VI. Conclusions & Next Steps

Background

- ☐ Housing sales in Ames, Iowa from 2006 to 2010
- 2,919 sales (1,460 in the training set)
- 80 features (23 nominal, 23 ordinal, 14 discrete, 20 continuous)
 - Size, quality, area, year, etc.
- Originally deployed by Dean De Cock in 2011 as an alternative to the Boston Housing Dataset (Harrison and Rubenfeld 1978)

Features & Some EDA

- □ Overall material and finish (OverallQual) and above ground square footage (GrLivArea) had the strongest linear relationships with the sale price
- We took a look at each feature with respect to the two above and brainstormed how we could feed them into a model

Pre-Processing: Exclusion and Imputation

- □ Some features appeared to be collinear with others or insignificant, so we decided to remove them from our data (eg. Utilities)
 - ☐ We ended up moving forward with 53 features

- Dealing with "NaN" values Fill with "None", 0, or the mode of the training set based on variable type
 - □ LotFrontage was filled with the neighborhood median of the training set

■ Two outliers in the training set (>4,000SF, <\$200k) were removed</p>

Pre-Processing: Handling Features of Different Types

- One-hot encoding
 - ☐ Negligible minority classes were dropped

Foundation_BrkTil	Foundation_CBlock	Foundation_PConc
0	0	1
0	1	0
0	0	1
1	0	0
0	0	1
0	0	0
0	0	1
0	1	0

- → Binary variables
 - eg. Number of fireplaces → Is there a fireplace?

Fireplaces	PavedDrive
0	1
1	1
1	1
1	1
1	1
0	1
1	1
1	1
1	1

Pre-Processing: Special Cases

- ☐ Transformations
 - eg. LotArea → log(LotArea)

- Grouping
 - eg. YearBuilt before 1950 → 1950

Simple Linear Regression

SalePrice = 7,165 + 115 * GrLivArea

- R2 (Training) = 0.54
- RMSLE (Training) = 0.273
- RMSLE (CV) = 0.273

Simple Linear Regression: Residuals

Simple Linear Regression: Variable Distributions

Simple Linear Regression: Box-Cox

Above Grade Sq. Ft. (Tranformed)

Transformed Model

- R2 (Training) = 0.54
- RMSLE (Training) = 0.269
- RMSLE (CV) = 0.270

Simple Linear Regression: Box-Cox

Multiple Linear Regression

Multiple Linear Regression

L2 Regularization

No Regularization

- R2 (Training) = 0.61
- RMSLE (Training) = 0.250
- RMSLE (CV) = 0.251

L1 Regularization (Lasso)

- R2 (Training) = 0.92
- RMSLE (Training) = 0.109
- RMSLE (CV) = 0.119

L2 Regularization (Ridge)

- R2 (Training) = 0.92
- RMSLE (Training) = 0.108
- RMSLE (CV) = 0.119

Combined (Elastic Net)

- R2 (Training) = 0.92
- RMSLE (Training) = 0.111
- RMSLE (CV) = 0.118

Multiple Linear Regression

Tree-Based Models

Important Hyperparameters

- N_estimators
- Max_features
- Max_depth
- Min_samples_split
- Min_samples_leaf

Decision Tree

R2 (Training) = 0.87

RMSLE (Training) = 0.141

RMSLE (CV) = 0.184

Random Forest

R2 (Training) = 0.85

RMSLE (Training) = 0.151

RMSLE (CV) = 0.165

Gradient Boosting

Gradient Boosting

Exploring Ensembling

- Intuition
 - Elastic Net (PL) 0.121
 - Tuned Gradient Boost (PL) 0.122
 - Tuned Random Forest (PL) 0.145
- Averaging
 - Equal weight to top 3 performers (PL) 0.123
 - Drop weakest link (PL) **0.118**

- Stacking
 - Elastic Net, Gradient Boost, Random Forest base learners
 - Linear regression meta-model (PL) 0.117
 - Elastic Net, Gradient Boost
 - Linear regression meta-model (PL) 0.117

Conclusions / Next Steps

- Importance of Feature Engineering
 - EDA → Feature Engineering
- Public vs. Private Leaderboard
- Future Work
 - Explore applicability and effectiveness of PCA and MCA
 - Ensembling
 - Stacking architecture (size of stack, strategic tuning parameters)
 - Different high-level learners