Correction

Réponse 1. Soit $f: \mathcal{D}_f \to \mathbb{R}$ une fonction, telle que son domaine de définition \mathcal{D}_f vérifie que si $x \in \mathcal{D}_f$ alors $-x \in \mathcal{D}_f$.

1. Une fonction f est dite **paire** si, pour tout $x \in \mathcal{D}_f$, on a:

$$f(-x) = f(x).$$

2. Une fonction f est dite **impaire** si, pour tout $x \in \mathcal{D}_f$, on a:

$$f(-x) = -f(x).$$

Réponse 2. 1. Si $a, b \in \mathbb{R}_+^*$, $\ln(ab) = \ln(a) + \ln(b)$.

- 2. Si $a, b \in \mathbb{R}_+^*$, $\ln\left(\frac{a}{b}\right) = \ln(a) \ln(b)$.
- 3. Si $a \in \mathbb{R}_+^*$ et $n \in \mathbb{Z}$, $\ln(a^n) = n \ln(a)$.

Réponse 3. L'ensemble des éléments de Q tels qu'ils s'écrivent comme le produit de deux nombres impairs est

$$\{q \in \mathbb{Q} \mid \exists k, l \in \mathbb{Z}, \ q = (2k+1)(2l+1)\}.$$

Réponse 4. Soit Γ une fonction définie comme

$$\Gamma: \mathscr{D}_{\Gamma} \longrightarrow \mathbb{R}, \quad x \longmapsto \frac{\tan(x)}{x}.$$

1. La fonction Γ est définie lorsque $x \neq 0$ (car x est au dénominateur) et lorsque $\tan(x) := \frac{\sin(x)}{\cos(x)}$ est définie, c'est-à-dire lorsque $x \neq \frac{k\pi}{2}$ avec $k \in \mathbb{Z}^*$. On remarque d'ailleurs que si k = 0, alors $\frac{k\pi}{2} = 0$. Ainsi, le domaine de définition est simplement

$$\mathcal{D}_{\Gamma} = (\mathbb{R} \setminus \{0\}) \setminus \mathcal{D}_{\tan} = \mathbb{R} \setminus \left\{ \frac{k\pi}{2}, \ k \in \mathbb{Z} \right\}.$$

2. En simplifiant l'expression $x\cos(x)\Gamma(x)$, on a :

$$x\cos(x) \cdot \frac{\tan(x)}{x} = \cos(x) \cdot \tan(x) = \sin(x),$$

l'équation devient donc :

$$\sin(x) = \frac{1}{2}.$$

Les solutions sur $[0, \pi]$ sont donc

$$x = \frac{\pi}{6} \quad \text{ou} \quad x = \frac{5\pi}{6},$$

tandis que les solutions sur \mathbb{R} sont données par :

$$x = \frac{\pi}{6} + 2k\pi$$
 ou $x = \frac{5\pi}{6} + 2k\pi$, $k \in \mathbb{Z}$.

Réponse 5. Posons $u = e^x$. L'équation devient alors

$$u^2 - u - 6 = 0.$$

Résolvons cette équation du second degré :

$$u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{1 \pm \sqrt{1 + 24}}{2} = \frac{1 \pm 5}{2}$$

$$u_1 = 3$$
 ou $u_2 = -2$ (solution impossible car $u = e^x > 0$)

Donc $e^x = 3$, ce qui donne l'unique solution $x = \ln(3)$.