

Got Health? Machine Learning

BRFSS survey

- ASC file contains 441,456 records and 330 columns
- each record contains an individual's BRFSS survey responses
- each column contains a specific feature derived from the survey question

Heart Disease Health Indicators Dataset (Kaggle)

- subset of features from the *BRFSS survey 2015*
- selection based on important risk factors for heart disease and other chronic illnesses like diabetes
- Dataset has been largely modified and cleaned making it suitable for ML

Dependent Variable

 Heart disease: Respondents that have ever reported having coronary heart disease or myocardial infarction - binary

Independent Variables

- Ordinal (label encoding): age, BMI, general health, mental health, physical health, Household Income
- Binary (one hot coding): blood pressure, smoking, cholesterol (high), cholesterol check, Sex, physical activity, fruits, vegetables, alcohol consumption, health care, stroke, health costs, walk difficulty binary

253,680 survey responses from cleaned BRFSS 2015

253,680 Rows 21 Features

HighBP	HighChol	CholCheck	ВМІ	Smoker	Stroke	Diabetes	PhysActivity	Fruits	Veggies	 AnyHealthcare	NoDocbcCost	GenHlth	MentHIth	PhysHlth
0	0	1	21	0	0	0	0	1	1	 1	0	3	3	7
1	1	1	28	0	0	0	1	1	1	 1	0	3	0	0
0	0	1	24	0	0	0	1	1	1	 1	0	1	0	0
0	0	1	27	1	0	0	1	0	1	 1	0	2	3	0
0	1	1	31	1	0	0	0	1	1	 1	1	4	27	27
1	0	1	29	1	0	2	1	1	1	 1	0	3	0	10
0	0	1	25	0	0	0	1	1	1	 1	0	2	1	10
0	1	1	28	0	0	0	1	1	1	 1	0	3	3	0
0	0	1	24	1	0	0	0	0	1	 1	1	4	0	0
0	0	1	23	0	0	0	1	1	1	 1	0	2	0	0

Model

```
# 'HeartDiseaseorAttack' as target variable (y)
features = data.drop('HeartDiseaseorAttack', axis=1)
target = data['HeartDiseaseorAttack']
# Split
X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.2, random_state=42)
# Normalize non-binary
columns_to_normalize = X_train.columns[X_train.nunique() > 2]
normalizer = MinMaxScaler()
X train norm = X train.copy() # Make a copy to preserve original DataFrame
X_train_norm[columns_to_normalize] = normalizer.fit_transform(X_train[columns_to_normalize])
X test norm = X test.copy()
X test norm[columns to normalize] = normalizer.transform(X test[columns to normalize])
# Undersampling
undersampler = RandomUnderSampler(random_state=42)
X train resampled, y train resampled = undersampler.fit resample(X train norm, y train)
```

Model

specifies the minimum number of samples required to split an internal node in the decision trees helps control the growth of the tree by setting a minimum number of samples that each leaf node must have Number of features considered at each split

number of different combinations of hyperparameters 5-fold cross-validation (5 subsets)

 $controls \, the \, number \, of \, CPU \, cores \, used \, for \, the \, computation$

```
# Initialize Random Forest model
base rf = RandomForestClassifier(random state=42)
# Define hyperparameter search space
param distributions = {
    'n_estimators': [100, 200, 300],
    'max_depth': [5, 10, 15, None],
    'min samples split': [2, 5, 10],
    'min samples leaf': [1, 2, 4],
    'max_features': ['sqrt', 'log2']
# Perform randomized search for hyperparameter tuning
random_search = RandomizedSearchCV(
    base rf,
    param distributions=param distributions,
    n iter=20,
    cv=5.
    random_state=42,
    n jobs=-1,
    scoring='recall' # Using recall as the evaluation metric
# Fit model on resampled data
random search.fit(X train resampled, y train resampled)
# Get the best model
final_model = random_search.best_estimator_
```

Performance Metrics

Dependent Variable (253,680)

• Heart disease True = 23,893 (high imbalance)

Without sampling

Classification	on Report:			
	precision	recall	f1-score	support
0	0.91	0.98	0.95	45968
1	0.39	0.10	0.16	4768
accuracy			0.90	50736
macro avg	0.65	0.54	0.55	50736
weighted avg	0.86	0.90	0.87	50736

SMOTE

Classification	n Report:			
	precision	recall	f1-score	support
0	0.92	0.96	0.94	45968
1	0.39	0.23	0.29	4768
accuracy			0.89	50736
macro avg	0.66	0.60	0.62	50736
weighted avg	0.87	0.89	0.88	50736

Oversampling

			D	61161
support	f1-score	recall	precision	Classification
45968	0.94	0.96	0.92	0
4768	0.27	0.22	0.36	1
50736	0.89			accuracy
50736	0.61	0.59	0.64	macro avg
50736	0.88	0.89	0.87	weighted avg

Undersampling

Classification	Report:	recall	f1-score	support		
,						
0	0.97	0.72	0.83	45968		
1	0.23	0.82	0.36	4768		
accuracy			0.73	50736		
macro avg	0.60	0.77	0.60	50736		
weighted avg	0.91	0.73	0.79	50736		

Performance Metrics

Undersampling

Oversampling

[[44081	on Matri: 1887] 1059]]															
	perparam imators'		n_samples_s	plit': 2,	'min_sa	mples_le	af': 1,	max_features	': 'log	2', 'max	deg	oth': None}				
X_train	_resampl	ed												⊕ ↑	↓ ± 5	₽
	HighBP	HighChol	CholCheck	ВМІ	Smoker	Stroke	Diabetes	PhysActivity	Fruits	Veggies		AnyHealthcare	NoDocbcCost	GenHlth	MentHith	PI
0	0	- 1	1	0.093023	1	0	0.0	- 1	1	1		1	0	0.25	0.0	0.
1	0	0	1	0.255814	0	0	0.0	1	0	1		1	0	0.50	0.0	0.
2	1	1	1	0.139535	0	0	1.0	1	1	1		1	0	0.25	0.0	0.
3	0	1	1	0.174419	0	0	0.0	1	1	1	in	1	0	0.00	0.0	0.
4	0	1	1	0.139535	0	0	0.0	1	1	1	1614	1	0	0.50	0.0	0.
	-	-	_			_				-			-		-	
367633	1	1	1	0.220930	0	0	0.0	1	1	1		1	0	0.75	0.0	0.
367634	0	0	1	0.162791	0	0	0.0	1	1	1		1	0	0.25	0.0	0.0
367635	1	1	1	0.255814	1	1	1.0	1	0	1	164	1	0	0.75	0.0	0.4
367636	0	1	1	0.220930	1	0	0.0	0	0	0		1	0	1.00	1.0	1.0
367637	1	1	1	0.313953	1	0	1.0	1	0	1	-	1	0	0.75	0.0	1.

Confusion Matrix

Dependent Variable

Heart disease

Risk Indicator Application

Input Health Variables

