Using stepreg

Walter K. Kremers, Mayo Clinic, Rochester MN

1 March 2024

The Package

The stepreg() and cv.stepreg() funcitons in the *glmnetr* package were written for convenience and stability as opposed to speed or broad applicability. When fitting lasso models we wanted to compare these to standard stepwise regression models. Keeping a more modern approach we tune by either number of terms included in the model (James, Witten, Hastie and Tibshirani, An Introduction to Statistical Learning with applications in R, 2nd ed., Springer, New York, 2021) or by the p critical value for model inclusion, as this too is a common tuning parameter when fitting stepwise models.

When fitting lasso models we often use one-hot coding for predictor factors when setting up the design matrix. This allows lasso to identify and add to the model a term for any one group that might be particularly different from the others. By the penalty lasso stabilizes the model coefficients and keeps them from going to infinity, while ridge will generally uniquely identify coefficients despite any strict collinearities.

Before writing this program we tried different available packages to fit stepwise models for the Cox repression framework but all we tried had difficulties with numerical stability for the large and wide clinical datasets we were working with, and which involved one-hot coding. There may well be a package that would be stable for the data we were analyzing but we decided to write this small function to be able to tune for stability.

This program is slow but our goal was not for routine usage but to use the stepwise procedure on occasion as a reference for the lasso models. For many clinical datasets the lasso clearly outperformed the stepwise procedure, and ran much faster. For many simulated data sets with simplified covariance structures, i.e. independence of the underlying predictors, the lasso did not appear to do much better than the stepwise procedure tuned by number of model terms or p.

Data requirements

The data requirements for stepreg() and cv.stepreg() are similar to those of cv.glmnetr() and we refer to the *Using glmnetr* vignette for a description.

An example dataset

To demonstrate usage of cv.stepreg we first generate a data set for analysis, run an analysis and evaluate. Following the $Using\ glmnetr$ vignette, the code

```
# Simulate data for use in an example survival model fit
# first, optionally, assign a seed for random number generation to get applicable results
set.seed(116291950)
simdata=glmnetr.simdata(nrows=1000, ncols=100, beta=NULL)
```

generates simulated data for analysis. We extract data in the format required for input to the cv.stepreg (and glmnetr) programs.

matrix of predictors

Extract simulated survival data

xs = simdata\$xs

[10,] -1.47355053

```
# vector of survival times
y_ = simdata yt
event = simdata$event
                        # indicator of event vs. censoring
Inspecting the predictor matrix we see
# Check the sample size and number of predictors
print(dim(xs))
## [1] 1000 100
# Check the rank of the design matrix, i.e. the degrees of freedom in the predictors
rankMatrix(xs)[[1]]
## [1] 94
# Inspect the first few rows and some select columns
print(xs[1:10,c(1:12,18:20)])
##
         X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12
                                                            X18
                                                                         X19
##
    [1,]
                    0
                       1
                           0
                                                  0 -1.20889802
                                                                  0.05697053
    [2,]
##
                 0
                    0
                       0
                           0
                              0
                                 0
                                             0
                                                     0.39535407
                                                                  0.42731333
          1
              1
                                    1
##
    [3,]
          1
              0
                 0
                    1
                       0
                           1
                              0
                                 0
                                    0
                                         0
                                             0
                                                     1.04460756 -0.74696019
##
    [4,]
          1
              1
                 0
                    0
                       0
                           0
                              0
                                 1
                                    0
                                         0
                                             0
                                                     0.02885863 -1.27765142
                    1
                       0
##
    [5,]
          1
              0
                 0
                           1
                              0
                                 0
                                    0
                                         0
                                             0
                                                  0 -1.20517197 -1.28745400
                                                 0 -1.15820960 -0.06884111
    [6,]
                 0
                    0
                       1
                           0
                                 0
                                    0
                                             0
##
          1
              0
                              1
                                         0
##
    [7,]
          1
              0
                 0
                    0
                       1
                           0
                              0
                                 0
                                    1
                                         0
                                             0
                                                     0.15171338
                                                                 1.09539635
                           0
##
    [8,]
          1
              0
                 0
                    1
                       0
                              1
                                 0
                                    0
                                         0
                                             0
                                                 0 -0.13924591 -0.42455023
    [9,]
          1
              1
                    0
                       0
                           0
                                                  0 -0.06932632
                                                                  0.17279181
                       0
                           0
                                 0
                                                    0.67742010
##
   [10,]
              0
                 0
                    1
                              1
                                    0
                                             0
                                                                  1.18594584
          1
##
                  X20
##
    [1,] -0.56563100
    [2,] 0.18523531
##
    [3,]
          0.96427444
##
    [4,]
         0.20324327
##
    [5,] -1.69822884
    [6,]
          1.45879996
##
    [7,]
          1.47683112
##
    [8,]
          0.07333966
   [9,]
          1.03965647
```

Cross validation (CV) informed stepwise model fit

To fit stepwise regression models where the number of model terms are informed by cross validation to select df, the number of model terms, and p, the entry threshold, we can use the function cv.stepreg() function.

```
# Fit a relaxed lasso model informed by cross validation
cv.stepwise.fit = cv.stepreg(xs,NULL,y_,event,family="cox",folds_n=5,steps_n=30,track=0)
```

Note, in the derivation of the stepwise regression models, individual coefficients may be unstable even when the model may be stable which elicits warning messages. Thus we "wrapped" the call to cv.stepreg() within the suppressWarnings() function to suppress excessive warning messages in this vignette. The first term in the call to cv.stepreg(), xs, is the design matrix for predictors. The second input term, here NULL, is for the start time in case (start, stop) time data setup is used in a Cox survival model. The third term is the outcome variable for the linear regression or logistic regression model and the time of event or censoring in case of the Cox model, and finally the forth term is the event indicator variable for the Cox model taking the value 1 in case of an event or 0 in case of censoring at time y_. The forth term would be NULL for either linear or logistic regression. Currently the options for family are "guassian" for linear regression, "binomial" for logistic regression (both using the stats glm() function) and "cox" for the Cox proportional hazards regression model using the coxph() function of the R survival package. If one sets track=1 the program will update progress in the R console. For track=0 it will not. To summarize the model fit and inspect the coefficient estimates we use the summary() function.

```
# summarize model fit ...
summary(cv.stepwise.fit)
```

```
##
##
   CV best df = 16, CV best p enter = 0.01 for 16 predictors
##
        in the full data model, from 100 candidate predictors
##
##
     df loglik.null
                                                                           X2
                       loglik
                                    pvalue concordance
                                                                std
          -3709.825 -3705.723 0.004178366
## 1 16
                                             0.8796415 0.005219351 -2.544254
          -3709.825 -3705.723 0.004178366
## 2 16
                                             0.8796415 0.005219351 -2.544254
             ХЗ
                        X7
                                 X10
                                             X11
                                                       X12
                                                                 X14
## 1 -0.4123862 -0.5812514 0.6538633 -0.4939628 0.4246715 -1.387424 -1.647604
##
  2 -0.4123862 -0.5812514 0.6538633 -0.4939628 0.4246715 -1.387424 -1.647604
           X18
                     X19
                                 X20
                                            X21
                                                     X23
                                                                X24
## 1 0.7966722 -1.150425 -0.4928893 -0.1818494 1.075441 0.7174526 -0.4877742
## 2 0.7966722 -1.150425 -0.4928893 -0.1818494 1.075441 0.7174526 -0.4877742
##
            X62
## 1 -0.1259569
## 2 -0.1259569
```

To extract beta's or calculate predicteds we use the predict() function.

```
# get betas ...
betas = predict(cv.stepwise.fit)
t( betas[1:20,] )
```

```
##
                Х2
                           X3 X4 X5 X6
                                               X7 X8 X9
                                                               X10
      0 -2.544254 -0.4123862 0 0
                                     0 -0.5812514
                                                      0 0.6538633 -0.4939628
                                                   0
       0 -2.544254 -0.4123862 0
                                  0
                                     0 -0.5812514
                                                      0 0.6538633 -0.4939628
##
                          X14 X15
                                        X16 X17
                                                      X18
                                                                 X19
            X12 X13
                                                                            X20
## df 0.4246715
                  0 -1.387424
                                0 -1.647604
                                              0 0.7966722 -1.150425 -0.4928893
## p 0.4246715
                  0 -1.387424
                                0 -1.647604
                                              0 0.7966722 -1.150425 -0.4928893
```

```
# predicteds ...
preds = predict(cv.stepwise.fit, xs)
t( preds[1:14,] )
                                [,3]
##
           [,1]
                      [,2]
                                          [,4]
                                                     [,5]
                                                               [,6]
                                                                          [,7]
## df -4.652185 -2.777916 -1.515435 -0.979273 0.3337369 -5.318352 -1.121909
## p -4.652185 -2.777916 -1.515435 -0.979273 0.3337369 -5.318352 -1.121909
                      [,9]
##
           [8,]
                               [,10]
                                          [,11]
                                                     [,12]
                                                             [,13]
## df -2.543347 -2.617922 -4.385983 -0.4020953 -4.200559 5.43046 -3.462096
## p -2.543347 -2.617922 -4.385983 -0.4020953 -4.200559 5.43046 -3.462096
```

Nested cross validation

Because the values for lambda and gamma informed by CV are specifically chosen to give a best fit, model fit statistics for the CV derived model will be biased. To address this one can perform a CV on the CV derived estimates, that is a nested cross validation as argued for in SRDM (Simon R, Radmacher MD, Dobbin K, McShane LM. Pitfalls in the Use of DNA Microarray Data for Diagnostic and Prognostic Classification. J Natl Cancer Inst (2003) 95 (1): 14-18. https://academic.oup.com/jnci/article/95/1/14/2520188). This is done here by the nested.glmnetr() function.

```
#names(nested.gau.fit)
summary(nested.gau.fit)
```

```
##
##
    Sample information including number of records, number of columns in
    design (predictor, X) matrix, and df (rank) of design matrix:
##
##
            family
                                          xs.columns
                                                                            null.dev/n
                                                                xs.df
          gaussian
##
                               1000
                                                 100
                                                                   94
                                                                                  7.96
  null.m2LogLik/n
##
                     sat.m2LogLik/n
##
              7.96
##
##
    Tuning parameters for models :
##
      folds_n stratified
                               limit
                                            fine
                                                        ties
                                                                 method
                                                                            steps_n
##
            3
                        1
                                   1
                                               0
                                                                                 30
                                                       efron
                                                                 loglik
##
     LASSO: Ave is for (nested) CV model performance summary, else naive summary for
##
##
             fit on all data
                  Ave DevRat Ave Int Ave Slope Ave R-square Ave Non Zero
##
## LASSO min
                      0.8705 -0.0407
                                                      0.8715
                                                                   53.0000
                                         1.0317
                      0.8687 -0.0107
## LASSO minR
                                                                   29.3333
                                         1.0157
                                                      0.8696
## LASSO minR.GO
                      0.8704 0.0051
                                         0.9989
                                                      0.8707
                                                                   14.0000
## Ridge
                      0.8539 -0.1241
                                         1.0979
                                                      0.8608
                                                                   99.0000
##
                 Naive Devian Naive R-square Non Zero
                                        0.9420
## LASSO min
                        0.9053
                                                      54
```

```
## LASSO minR
                        0.9801
                                        0.9364
                                                     15
## LASSO minR.GO
                        0.8646
                                        0.9441
                                                     15
                        0.8611
## Ridge
                                        0.9448
                                                     99
##
##
     Stepwise tuned and AIC: Ave is for (nested) CV model performance summary, else
##
          naive summary for fit on all data
##
                          Ave DevRat Ave Int Ave Slope Ave R-square Ave Non Zero
## Stepwise df tuned
                              0.8671
                                      0.0052
                                                 0.9940
                                                               0.8674
                                                                            16.6667
## Stepwise p tuned
                              0.8627
                                      0.0282
                                                 0.9839
                                                               0.8631
                                                                            24.0000
                                                 0.9803
                                                                            30.0000
## Stepwise AIC selected
                              0.8629
                                      0.0293
                                                               0.8632
##
                          Naive Devian Naive R-square Non Zero
                                0.9340
                                                0.9395
## Stepwise df tuned
                                                              19
## Stepwise p tuned
                                0.9290
                                                0.9399
                                                              20
                                0.8937
                                                0.9422
## Stepwise AIC selected
                                                              30
```

For this example we use only 3 folds, instead of 5 or 10 like we would do in practice, to get reasonable run times as this is just for the purpose of demonstration.

Before providing analysis results the output first reports sample size and since this is for a Cox regression, the number of events, followed by the number of predictors and the df (degrees of freedom) of the design matrix, as well as some information on "Tuning parameters" to compare the lasso model with stepwise procedures as described in JWHT (James, Witten, Hastie and Tibshirani, An Introduction to Statistical Learning with applications in R, Springer, New York, 2021). In general we have found in practice that the lasso performs better.

Next are the nested cross validation results. First are the per record (or per event in case of the Cox model) log-likelihoods which reflect the amount of information in each observation. Since we are not using large sample theory to base inferences we feel the per record are more intuitive, and they allow comparisons between datasets with unequal sample sizes. Next are the average number of model terms which reflect the complexity of the different models, even if in a naive sense, followed by the agreement statistics, concordance or r-square. These nested cross validated concordances should be essentially unbiased for the given design, unlike the naive concordances where the same data are used to derive the model and calculate the concordances (see SRDM).

In addition to evaluating the CV informed model fits using another layer of CV, the nested glmnetr() function does the CV fits based upon the whole data set. Here we see, not unexpectedly, that the concordances estimated from the nested CV are slightly smaller than the concordances naively calculated using the original dataset. Depending on the data the nested CV and naive agreement measures can be very similar or disparate.

Fit information for the CV fit can be gotten by extracting the object\$cv.stepreg.fit object and calling the summary() and predict() functions.

```
# Summary of a CV model fit from a nested CV output object summary(nested.gau.fit$cv.stepreg.fit)
```

```
##
    CV best df = 19, CV best p enter = 0.03 for 20 predictors
##
##
        in the full data model, from 100 candidate predictors
##
##
     df loglik.null
                                            rsquare rsquareadj
                                                                                 X2
                       loglik
                                   pvalue
##
  1 19
          -2456.327 -1384.781 0.01532871 0.8827085
                                                     0.8804345 0.7934083 -2.374707
##
  2 20
          -2456.327 -1382.101 0.02060680 0.8833355
                                                     0.8809522 0.7951200 -2.373546
##
                       Х4
                                  Х6
                                            X8
## 1 -0.2896507 0.3961826 0.5041838 0.2439999 0.7493202 0.4179345 -1.623983
## 2 -0.2901617 0.3946920 0.5111328 0.2397952 0.7451425 0.4111942 -1.624389
```

```
X17 X18
                       X19
                                X20
                                             X21
                                                     X23
## 1 1.747628 0.8906858 -1.102188 -0.5406626 -0.1252505 1.090738 0.6988531
## 2 1.746315 0.8919730 -1.105330 -0.5425721 -0.1270239 1.090795 0.6985010
          X25
                   X28
                            X43
                                        X62
## 1 -0.4341470 0.07509635 0.00000000 -0.08267686 -0.07654123
## 2 -0.4287512 0.07668351 0.07283277 -0.08163437 -0.07438254
# get betas ...
betas = predict(nested.gau.fit$cv.stepreg.fit)
t( betas[1:10,] )
##
          Int X1
                      X2
                                ХЗ
                                         X4 X5
                                                    X6 X7
                                                               X8 X9
## p 0.7951200 0 -2.373546 -0.2901617 0.3946920 0 0.5111328 0 0.2397952 0
# get predicteds ...
preds = predict(nested.gau.fit$cv.stepreg.fit,xs)
t( preds[1:8,] )
##
         [,1]
                   [,2]
                           [,3]
                                   [,4]
                                           [,5]
                                                   [,6]
                                                           [,7]
                                                                   [,8]
## df -2.063766 -0.2322597 1.603771 1.830213 3.245500 -2.49770 1.462672 0.7644801
## p -2.130016 -0.1919559 1.643084 1.777001 3.244594 -2.48281 1.389711 0.6710150
```