Report M1W4D2

L'esercizio di oggi verte sui meccanismi di pianificazione dell'utilizzo della CPU (o processore). In ottica di ottimizzazione della gestione dei processi, abbiamo visto come lo scheduler si sia evoluto nel tempo per passare da approccio mono-tasking ad approcci multi-tasking.

Traccia

Si considerino 4 processi, che chiameremo P1, P2, P3, P4, con i tempi di esecuzione e di attesa input/output dati in tabella. I processi arrivano alle CPU in ordine P1, P2, P3, P4.

Individuare il modo più efficace per la gestione e l'esecuzione dei processi, **tra i metodi visti nella lezione teorica**.

Abbozzare un diagramma che abbia sulle ascisse il tempo passato da un instante «0» e sulle ordinate il nome del Processo.

Processo	Tempo di esecuzione	Tempo di attesa	Tempo di esecuzione dopo attesa
P1	3 secondi	2 secondi	1 secondo
P2	2 secondi	1 secondo	-
Р3	1 secondi	-	-
P4	4 secondi	1 secondo	2 secondi

MONO-TASKING

MULTI-TASKING

TIME-SHARING

LEGENDA

CONCLUSIONE

Abbozzando il diagramma delle tre metodologie viste a lezione, il metodo Time-Sharing sembra essere quello ottimale in questo caso in quanto esegue tutti i processi nel minor tempo possibile.