Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Spring 2018

Instructor: Dr. Sateesh Mane

© Sateesh R. Mane 2018

due Monday, Feb 12, 2018, 11.59 pm

This will not be used in Midterm 1, but will be used in later exams.

2 Homework: Bond class, fair value, duration & yield

Let us write a "bond class" to perform various calculations relevant for bonds. A real bond class has a lot of data and class methods. We shall write a simplified bond class to calculate the fair value, Macaulay duration and modified duration, given an input yield. We shall also calculate the yield, given an input target price for the bond. Although it is a simple model, our bond class will have some of the core features of a real bond class in a financial software library.

2.1 Class signature

- Our class has the following data members: (i) double Face, (ii) double T_maturity, (iii) int cpn_freq, (iv) int num_coupons, (v) std::vector<double> coupons.
- We want our Bond class to have methods to perform the following functions:
 - 1. Set the coupons (for variable rate coupons).
 - 2. Calculate the fair value, given an input yield.
 - 3. Calculate the Macaulay duration and modified duration, given an input yield.
 - 4. Calculate the yield, given an input target price for the bond.
- The fair value, duration and yield calculations are all "const" methods. Explain why.
- Write a Bond class with the following signature.

```
class Bond
public:
  Bond(double T, double F, double c=0, int freq=2);
  "Bond();
  // public methods
  int set_coupons(std::vector<double> & c);
  int FV_duration(double t0, double y,
                  double &B,
                  double &Macaulay_duration,
                  double &modified_duration) const;
  int yield(double B_target, double tol, int max_iter, double t0,
            double & y, int & num_iter) const;
  double FairValue(double t0, double y) const;
  double maturity() const { return T_maturity; }
private:
  // data
  double Face;
  double T_maturity;
  int cpn_freq;
  int num_coupons;
  std::vector<double> coupons;
};
```

2.2 Constructor & destructor

- Set Face = F. Impose the condition Face >= 0 in the constructor.
- Set the coupon frequency cpn_freq = freq.

 This is an optional parameter with a default value of 2 (semiannual coupons).

 Impose the condition cpn_freq >= 1 (at least one per year) in the constructor.
- Now things get a bit tricky. The naïve thing to do is to set T_maturity = T.
 - 1. However we want the number of coupons to be an integer, and the maturity must match.
 - 2. To avoid roundoff error, define "const double tol = 1.0e-6;" and compute
 num_coupons = int(cpn_freq*T + tol);
 - 3. Impose the condition num_coupons >= 0 in the constructor.
 - 4. Make sure you understand the above lines of code for the value of num_coupons.
 - 5. Then set T_maturity = num_coupons / cpn_freq.
 - 6. This guarantees T_maturity, num_coupons and cpn_freq have compatible values.
 - 7. It also means the value of T-maturity may not be exactly equal to T.
- Do you understand the reason for "double maturity()" method in the class?
- We also allow an optional parameter c (default = 0) to set all the coupons to equal values.
 - 1. Do this:

```
if (num_coupons > 0) {
  coupons.resize(num_coupons, c);
}
```

2. Alternatively if you are not so familiar with C++ you can do this:

```
if (num_coupons > 0) {
  for (int i = 0; i < num_coupons; ++i) {
    coupons.push_back( c );
  }
}</pre>
```

- 3. Do you understand why we need a data member num_coupons in the class?
- 4. We compute the value of num_coupons first and allocate the coupon array later.
- The destructor is easy. Just clear the coupons array and set num_coupons = 0.

```
Bond::~Bond()
{
   coupons.clear();
   num_coupons = 0;
}
```

• If you think about it, we do not need to do the above. An empty destructor also works.

2.3 set_coupons()

- The constructor provides an easy way to set the coupons when they are all equal, in particular if they are all zero.
- However, for a variable-rate coupon bond, we need to set the coupon values individually.
- The function signature is

```
int Bond::set_coupons(std::vector<double> & c)
```

• The return type is int because we test for bad input and return 1 (fail) for bad input.

• Validation check:

- 1. If c.size() < num_coupons then "return 1" (fail) and exit.
- 2. We want to learn finance, not waste time on tiresome programming details.
- 3. We do not want to deal with useless complications if the input array is too short.

• We do not allow negative coupons.

- 1. However, we do not call this a failure.
- 2. Write a loop so that if $c[i] \le 0.0$ then coupons[i] = 0.0.
- 3. Else coupons[i] = c[i].
- After the loop, return 0 (success) and exit.

2.4 FairValue()

- Notice there is a function called "FairValue()" with return type double.
- It is a wrapper. Many times we want only the fair value and not the duration.
- Do this:

```
double Bond::FairValue(double t0, double y) const
{
   double B = 0;
   double Macaulay_duration = 0;
   double modified_duration = 0;
   FV_duration(t0, y, B, Macaulay_duration, modified_duration);
   return B;
}
```

• We shall write the FV_duration() function next.

2.5 Fair value & duration: FV_duration()

- The inputs are (i) t_0 , (ii) y (both double). The outputs are (iii) double &B, (iv) double &Macaulay_duration, (v) double &modified_duration.
- Initialize B = 0, Macaulay_duration = 0 and modified_duration = 0.
- Validation tests:
 - 1. If num_coupons ≤ 0 or $t_0 \geq T_{\text{maturity}}$, then return 1 (fail) and exit.
 - 2. This is why the function return type is "int" not void.
- The mathematical formula for the bond fair value B was given in the lectures.
 - 1. Note that in the mathematical formula, the indexing runs from i=1 through n.
 - 2. The coupons are indexed as c_1, \ldots, c_n and the yield y is a decimal number.
 - 3. We only include terms in the sum where $t_i t_0 > 0$.

$$B = \left[\frac{c_1/f}{(1+y/f)^{f(t_1-t_0)}} + \frac{c_2/f}{(1+y/f)^{f(t_2-t_0)}} + \dots + \frac{c_{n-1}/f}{(1+y/f)^{f(t_{n-1}-t_0)}} + \frac{F + (c_n/f)}{(1+y/f)^{f(t_n-t_0)}} \right]_{t_i > t_0}$$

$$= \sum_{i=1}^{n} \left[\frac{(\text{numerator})_i}{(1+y/f)^{f(t_i-t_0)}} \right]_{t_i > t_0}.$$

$$(2.5.1)$$

- 4. The definition of "numerator_i" in eq. (2.5.1) is obvious.
- 5. The formula for the Macaulay duration is

$$D_{\text{Macaulay}} = \frac{1}{B} \sum_{i=1}^{n} \left[(t_i - t_0) \frac{(\text{numerator})_i}{(1 + y/f)^{f(t_i - t_0)}} \right]_{t_i > t_0}.$$
 (2.5.2)

6. The formula for the modified duration is

$$D_{\text{mod}} = \frac{D_{\text{Macaulay}}}{1 + y/f}.$$
 (2.5.3)

- The input value of the yield y is a percentage, so if the yield is 5% then y = 5.
 - 1. Hence employ an internal variable $y_{\text{decimal}} = 0.01 * y$, to avoid "factor of 100" errors in your code.
- The coupon dates are $t_i = double(i)/double(cpn_freq)$, for i = 1, ..., n.
 - 1. However, we have to guard against floating-point roundoff error.
 - 2. Define a tolerance parameter "const double tol = 1.0e-6" in your function.
 - 3. Only include terms in the sum such that $t_i \geq t_0 + \text{tol.}$
- Write a loop(s) to compute the sums in eqs. (2.5.1) and (2.5.2).
- The modified duration is easy to obtain from the Macaulay duration (see eq. (2.5.3)).
- Return 0 (success) and exit.

2.6 Tests

- Here are some tests to help you to check that your code is working correctly.
- To keep things simple, use F = 100 in all your tests. There is no point in being too clever.
- Put $t_0 = 0$ and use a constant coupon c. Then if the yield equals the coupon y = c, you should obtain FV = 100.
- Put $t_0 = 0$ and y = 0. Then the fair value is a straight sum of the values of the cashflows. Your program should obtain the result

$$B = F + \sum_{i=1}^{n} \frac{c_i}{f} \,. \tag{2.6.1}$$

• Put c = 0. This is known as a **zero coupon bond** and they do exist. A zero coupon bond pays only one cashflow, which is to pay the face value at maturity. The formula is

$$B_{\text{zero coupon}} = \frac{F}{(1 + y/f)^{f(T_{\text{maturity}} - t_0)}}.$$
 (2.6.2)

• The Macaulay duration of a zero coupon bond equals the time to maturity:

$$D_{\text{Macaulav}} = T_{\text{maturity}} - t_0. \tag{2.6.3}$$

This is an important fact.

- For fixed values of t_0 and y, the fair value increases if the coupons increase.
- If the coupons are positive, the value of the Macaulay duration is less than $T_{\text{maturity}} t_0$. If you multiply all the coupons by a factor of 2 (or any number > 1), the value of the Macaulay duration will decrease.
- For a given face and coupons, etc., the fair value of a bond decreases as the yield y increases. (This is in fact a general theorem. It was proved in the 1930s, I think.)

2.7 Yield from bond price: yield()

- We employ the bisection algorithm.
- The fundamental idea is simple and was explained in the lecture. It goes as follows:
 - 1. Given a target value, we wish to find the yield y such that $B(y) = B_{\text{target}}$.
 - 2. We know from eq. (2.5.1) that B(y) is a continuous function of y.
 - 3. We also know that B(y) decreases as the value of y increases.
 - 4. Hence we find a low yield y_{low} such that $B(y_{\text{low}}) > B_{\text{target}}$ and a high yield y_{high} such that $B(y_{\text{high}}) < B_{\text{target}}$.
 - 5. Then the solution for y lies somewhere between y_{low} and y_{high} .
 - 6. It is possible by luck that either y_{low} and y_{high} is the solution we seek.
 - 7. If so we exit the algorithm immediately.
 - 8. Else we iterate as follows.
 - 9. We use the midpoint $y_{\text{mid}} = (y_{\text{low}} + y_{\text{high}})/2$ and calculate $B(y_{\text{mid}})$.
 - 10. If $|B(y_{\text{mid}}) B_{\text{target}}|$ is less than a prespecified tolerance, we exit the calculation and say that y_{mid} is the solution.
 - 11. Else we perform comparison tests (to be described below) and update either $y_{\text{low}} := y_{\text{mid}}$ or $y_{\text{high}} := y_{\text{mid}}$.
 - 12. We repeat the iteration using the updated values of y_{low} and y_{high} .
 - 13. Hence the interval $|y_{\text{high}} y_{\text{low}}|$ is cut by a factor of two at each iteration step.
 - 14. If $|y_{\text{high}} y_{\text{low}}|$ is less than a prespecified tolerance, we exit the calculation and say that y_{mid} is the solution.

- The inputs are (i) double B_target, (ii) double tol, (iii) int max_iter, (iv) double to.
- The outputs are:
 - (v) double & y (the yield, if the calculation converges, else 0),
 - (vi) int & num_iter (the number of iterations, if the calculation converges).
- The function return type is "int" not "void" because we shall perform validation tests. We return 1 (failure) or 0 (success).
- Obviously B_target is the target bond price and tol is a tolerance parameter for the iteration calculation. The parameter max_iter is to stop the calculation after a finite number of iterations to avoid an infinite loop. The output parameter num_iter tells us how many iterations were performed, if the calculation converges.
- Initialize y = 0 and num_iter = 0.
- First validation test:

If $B_{\text{target}} \leq 0.0$ or num_coupons <= 0 or $t_0 \geq T_{\text{maturity}}$, then return 1 (fail) and exit.

- Let us keep things simple and use $y_{\text{low}} = 0.0$ and $y_{\text{high}} = 100.0$. (A more sophisticated algorithm would do a better job.)
- Set $y_{\text{low}} = 0.0$.
 - 1. Calculate the corresponding bond price B_y_low = FairValue(t0, y_low).
 - 2. This is the reason to have the function FairValue().
 - 3. We do not need the duration in this calculation.
- Also calculate diff_B_y_low = B_y_low B_target for use below.
- Validation test:
 - 1. If fabs(diff_B_y_low) <= tol, then we are done.
 - 2. The output is already within the tolerance.
 - 3. Set $y = y_{low}$ and "return 0" (success) and exit.
- Next set $y_{\text{high}} = 100.0$. Calculate the bond price B_y_high = FairValue(t0, y_high).
- Also calculate diff_B_y_high = B_y_high B_target for use below.
- Validation test:
 - 1. If fabs(diff_B_y_high) <= tol, then we are done.
 - 2. The output is already within the tolerance.
 - 3. Set $y = y_{\text{high}}$ and "return 0" (success) and exit.
- Perform the above calculations and validation tests sequentially: if the calculation converges already for $y = y_{\text{low}}$, there is no need to waste time doing calculations with y_{high} .

• Second validation test:

- 1. We must verify that $B(y_{low})$ and $B(y_{high})$ are on opposite sides of the B_{target} .
- 2. This will be the case if diff_B_y_low and diff_B_y_high have opposite signs.
- 3. Test if diff_B_y_low * diff_B_y_high > 0.
- 4. If yes, then the values of $B(y_{low})$ and $B(y_{high})$ do not bracket B_{target} and we have failed.
- 5. Set y = 0 and "return 1" (fail) and exit.
- If we have made it this far, then we know that we have bracketed the answer, and the true yield y lies between y_{low} and y_{high} .
- Hence we now begin the main bisection iteration loop.

```
for (num_iter = 1; num_iter < max_iter; ++num_iter)</pre>
```

- In the loop, set $y = (y_{\text{low}} + y_{\text{high}})/2.0$ and calculate B = FairValue(t0, y).
- Also calculate diff_B = B B_target for use below.
- If fabs(diff_B) <= tol, then we are done.
 - 1. We have found a "good enough" value for the yield y.
 - 2. Hence "return 0" (success) and exit.
- Check if B and $B(y_{low})$ are on the same side of B_{target} .
 - 1. Test if diff_B * diff_B_y_low > 0.0.
 - 2. If yes, then update $y_{low} = y$.
- Else obviously B and $B(y_{\text{high}})$ are on the same side of B_{target} , so update $y_{\text{high}} = y$.
- Don't be in a rush to iterate!
 - 1. If $|y_{\text{high}} y_{\text{low}}| \leq \text{tol}$, then this is good enough.
 - 2. The algorithm has converged.
 - 3. Hence "return 0" (success) and exit.
- If we have come this far, continue with the iteration loop.
- If we exit the iteration loop after max_iter steps and the calculation still has not converged, then set y = 0 and "return 1" (fail).
 - 1. This can happen if the tolerance tol is too small or the value of max_iter is too small.
 - 2. Reasonable values to use are tol = 1.0e-4 and max_iter = 100.
- We have reached the end of the function. By now either we have a "good enough" answer (return value = 0 = success) or not (return value = 1 = fail).

2.8 Tests

- Here are some tests to help you to check that your code is working correctly.
- Remember to use F = 100 in all your tests. There is no point in being too clever.
- Set $t_0 = 0$ (newly issued bond). Use a constant coupon c (set it using the constructor).
 - 1. Try an input $B_{\text{target}} = 100$. If your function works correctly, it should output y = c (up to the tolerance), for any value of c and any value of freq and any value of T (provided freq * T >= 1. Remember that if F = 100 and y = c (the yield equals the coupon) for a newly issued bond, then B = 100. The converse also holds true.
 - 2. If $B_{\text{target}} < 100$ then your output should be y > c.
 - 3. If $B_{\text{target}} > 100$ then your output should be y < c.
- Use any value of freq and any value of T, provided freq * T >= 1. Use any value $t_0 \ge 0$ and $t_0 < T$. Use a constant coupon c or input a vector of coupons using set_coupons.
 - 1. Choose some value fir the yield, say y_1 , and calculate the fair value, say B_1 .
 - 2. Set a target $B_{\text{target}} = B_1 + 1$.
 - 3. Calculate the yield, say the output is y_2 .
 - 4. Calculate the fair value using y_2 , say the answer is B_2 .
 - 5. If you have done your work correctly, you should obtain $B_2 B_1 \simeq 1$ (up to tolerance).