103355

NEW YORK UNIVERSITY

College of Engineering
RESEARCH DIVISION
University Heights, New York 53, N. Y.

DEVELOPMENT OF IMPROVED TITANIUM ORGANIC COMPOUNDS FOR USE AS HYDRAULIC FLUIDS

March 15, 1963

Prepared under Navy, Bureau. of Naval Weapons Contract NOw 62-0647-d

> TECHNICAL REPORT. NO. 4 Covering the period

November 16,1962-February 28,1963

DEVELOPMENT OF IMPROVED TITANIUM ORGANIC COMPOUNDS FOR USE AS HYDRAULIC FLUIDS

March 15, 1963

Prepared under Navy, Bureau of Naval Weapons
Contract No. NOw 62-0647-d

TECHNICAL REPORT, NO. 4

COVERING THE PERIOD NOVEMBER 16,1962-FEBRUARY 28,1963

NEW YORK UNIVERSITY
COLLEGE OF ENGINEERING
RESEARCH DIVISION
UNIVERSITY HEIGHTS
MEM YORK 53, NEW YORK

ABSTRACT

This Report No. 4 covers the fourth period of the project, but the duration of the project has been extended to June 30,1963 by letter of 24 January 1963(Ref:NPR-33-AWK/33). In this period two special modifications of the fluid tetraisopropyltitanate/basic zincoctoate reaction product have been developed with the aim to produce increased stability under the test requirements for a hydraulic fluid while maintaining the fire safety conditions, which are outlined in the preceding report. These products are modifications of the product with tetra butyl tin and a modification of the product with tri-isopropyl borate. Special attention has been given to the relationship between the diluted mixtures of these products, using inhibited silicone fluid 510 as diluent, and four-ball wear-test scar marks, and also to viscosity changes at low temperatures. The work is continuing.

TABLE OF CONTENTS

ABSTRACT	- Section 1	-	-			<u>r</u>	i
SUMMARY (TABLES 153-	-155) (F1GURE	S 1 AND 2)		-	-	1
PART I.		ATION OF THE FLUI ND BASIC ZINC OCT		ODUCT BETWE	EEN TETRAIS	OPROPYL-	
	INTRODUCTIO		-	_		_	11
		A:USING TITANIUM	TETRA CHLORII		IST - LE 156-157)	11-	
	SECTION I-	B:USING ALUMINUM	CHLORIDE AS C	CATALYST -		- 11&14-	-22
	SECTION I-	C:USING BUTYLENE. D:ADDITIONAL STUD	IES ON THESE	CATALYST (TA PREPARATION	ABLE 167)	23-	-24
	1.	STUDY OF THE LOW					
		ISOPROPYL TITANA					
		OXIDATION TESTS					
		RUBBER SWELLING					
	4.	EMISSION SPECTRO	analysis of 1				-30
					TABLES 171	-172)	
PART II.		ONS OF THE PRODUC	TS OF PART I	WITH VARIOU	IS METAL		
	ORGANIC FL						
	INTRODUCTIO			— -		OTI AND	31
	SECTION A.	REACTING THE PRO	DUCTS OF PARI	L T MIIH W J	E 103/		
	1.	USING TRI n DECY. USING DIPHENYL D	T COURANT STI	TIME (TADIT	AE 172)	31- 318	
	Z.	REACTING THE PRO	T TORECTE STI	MARE (IADMI P T UTTU TT	L APCANTOR		ככי
		USING DIBUTYL TI					_27
		USING TETRA BUTY				31&34 , 38-	
	SECTION C.	REACTING THE PRO	DUCT OF PART	I WITH ORGA	MIC)10/4, 70 -	- 47
	1.	USING TRI n BUTY	L BORATE (TA	ABLE 186) -		346	146
	2.	USING TRI ISOPRO	PYL BORATE (TABLES 187-	-190)	34847-	-51
		INTRODUCING OTHE					
	1.	USING A TRI ETHY	L HEXYL TRI→	GELITATE (:	rable 191)(T	OTM) 348	£52
	2.	TRANSESTERIFYING					
		BENZYL ALCOHOL.				- 344	
	3.	INTRODUCING A 2	CHLOROETHANOI	L.(.TABLE 1	93)		
	4.	INTRODUCING A PE	NTA BROMOPHE	NOL (TABLE	194)	- 544	2 56
PART III.		ORK ON THE INTROL	UCTION OF PH	OSPHORUS GR	OUPS INTO T	HE	
		PART I.					57
	INTRODUCTION	INTRODUCING ALIP	HATTO OPGANO	DUNGDUATES	THTO THE A	T.KVT.	21
	SECTION A.	TITANATES (TABL			THIO IND A	-57-	-65
	SECTION B.	USING AN ALIPHAT	TC AND AM ARK	MATIC ORGA	NO PHOSPHAT		
	DECITOR D.	IN THESE REACTIO	MS. (TABLES	202-203) -	_	- 57866-	-61
	SECTION C.	ATTEMPTS. WITH OT				2.22	. •
		USING TRIS B CHI			LE 204) -	- 68-	-69
	2.	USING TRI BUTOXY	ETHYL PHOSPH	ATE (TABLE	3 205-206)	688/70-	
		CONTINUED. WORK	N THE REACTION	ON BETWEEN	ritanates a	ND	
PART IV.	MORE WORK	ON THE INHIBITION					-73
					209)		-75
WORK SCHE	DULED FOR TH	E NEXT REPORT PER	TOD	***	•	-	76

SUMMARY

This fourth report period of Contract NOw 62-0647-d is not a final report period, since the work on the contract has been extended to June 30, 1963.

During this period the work has continued the improvement of the fire safety of the product, as outlined in the Summary of Report No. 3. Also, special effort has been made to explore two new groups of complex fluids which appear to be especially promising for the aims of the project.

It has been pointed out throughout these reports that tetra alkyl titanates, such as the commercial tetra isopropyl titanate, inter-react with another group of metal organic products, such as basic zinc octoate or zinc 2-ethyl hexanoate (22% Zn), and that hereby fluid products are being formed of very desirable properties. It has also been pointed out, however, that in oxidation tests and in hydrolytic stability tests this complex fluid requires an additional stabilization by a further removal of any retained still-reactive group. The stabilization has been carried out by a redistillation with such organic fluids as benzyl alcohol. In SECTION II-D-3 of the present report some exploratory tests were made of a distillation of the initial product with alcohols containing a halogen group, such as chloroethanol. In the preceding project (Contract NOw 61-0434-d), the best results were obtained by reacting the initial product with a tetra alkyl silane, especially di-n-dodecyl di-n-octyl silane (Olin Mathieson), and the resulting modified complex had highly desirable properties, as reviewed in the Summary to Report No. 2 of the present project.

The difficulty here was in the fact that this di-di type silane is not commercially available, and its laboratory preparation is quite difficult. In SECTION II-Ad the present report some experiments were made using a tri-one type silane, such as tri-n-decyl-octadecyl silane (Dow Corning). The results were interesting, however this silane is available only in very limited quantities commercially.

It was desirable, therefore, to find other metal organic modifying agents which are commercially available. In as much as the tetra alkyl titenates and the zinc octoate are commercially available, a commercially available modifying agent would contribute to make the products of this development accessable for further large-scale preparations. An interesting phenomenon of the modification made in the preceding project with tetra alkyl silenes, was that there was a silicone-carbon bond available, instead of the titanium-oxygen-carbon figuration of the tetra alkyltitanates. In reviewing other possible modifying agents containing metal-carbon bonds, it was observed that most of such metal-carbon bond fluids are readily combustible; the results with a modification using a tetra butyl tin, however, were satisfactory.

Another modification contained boron, but here the carbon radicals were bound to the boron by an OR-group. The material which was used here as modifying agent was tri isopropyl borate.

The preparation of these modifications are tabulated in SECTION II-B and SECTION II-C in PART II of this report.

It has been pointed out earlier that all these compounds have high flame points and have good stability in the various test groups; but that their viscosity is higher than desirable for their use at low temperatures and that they therefore require a viscosity reducing additive. As such a material cerium-octoate stabilized form of silicone fluid 510 (Dow Corning) had been developed.

It is a highly interesting fact that this silicone fluid is a very poor lubrican and that the four-ball wear-test at 60°C. with 20 kilogram load and at 30 minutes test length produces scars of 1 to 2 mm. length.

The product of of this project alone produces under the same conditions scar lengths of 0.3 and 0.35 mm.

In mixtures of these products with the stabilized silicone fluid as viscosity

hefore the lubrication effect of the new product is being decreased to any practical extent. Tables 153 and 154 show these results on the tetra butyl tin modified tetra isopropyl titenate/ zinc octoate reaction product and on the tri isopropyl borate modified material. Here a one-to-one mixture between such product with a stabilized silane showed nearly the same scar marks as the not diluted straight new product alone.

If the amount of diluent has been increased further; that means, if for instance 40 parts of one of the new products was viscosity reduced by mixing it with 60 parts stabilized silicone fluid, the scar lengths were increased, but still they were much smaller than the scars obtained from the silicone fluid itself. This indicates special lubricating properties of the new developments which are interesting enough to be studied further on.

These combinations of the new titanate derived complex fluids with inhibited silicone fluid as diluent are very interesting in respect to their viscosity/temperature relationship. TABLE 154 and FIGURE 1 show that a mixture of 40 parts of the tri isopropyl borate modified product with 60 parts inhibited silicone fluid, have a pour point of minus 85°F.; and at minus 45°F. and even below that the fluid mixture shows viscosities which appear to be well within the limits of pumpability.

It is interesting to note that the viscosity data of the same mixture produce a straight line relationship, when plotted on semi-logarithmic paper as viscosity versus the reciprocal absolute temperature in Fahrenheit.

In TABLE 155 and in FIGURE 2 the tin modified and the boron modified product are compared in 50:50 mixtures, 45/55 mixture and in 40/60 mixtures with the inhibited silicone fluid; and again the viscosity data are plotted on semi-logarithmic paper versus the reciprocals of the absolute temperature in Fahrenheit. Here the differences in viscosity at zero and at minus 45°F. connect, with the three mixtures of each of the two materials, in parallel straight lines, in spite of the fact that the change in viscosity and in pour point does not vary to the same extent upon increasing the ratio of dilution from 50:50 to 45:55 and to 40:60.

TABLE 153.

STUDIES ON THE TETRA BUTYL TIN MODIFICATION OF THE TETRA ISOPROPYL TITANATE / ZINC OCTOATE REACTION PRODUCT DILUTED

WITH SILICONE FLUID 510 (AFTER INHIBITION WITH CERIUM OCTOATE)

MIXTURE OF 40 PARTS OF THIS PRODUCT WITH

60 PARTS OF INHIBITED SILICON FLUID 510

THE TIN MODIFICATION UNDILUTED

I. FOUR-BALL WEAR-TESTS MADE AT THE ESSO RESEARCH (EMJAY) LABORATORIES IN LINDEN, NEW JERSEY WITH A PRECISION SCIENTIFIC FOUR BALL WEAR TESTER (WITH FRIENDLY COOPERATION OF Mr. M.R. ROUX) 60°C./30 min/20 kg/600 RPM

AVERAGE ... 0.31 mm.

0.30

AVERAGE ABOUT 0.3 mm

MIXTURE 40 PRODUCT: 60 (510) ... BALLS ... 0:43 mm. 0:40 mm.

0442 mm. AVERAGE ... 0.42 mm.

II. FOUR_BALL WEAR-TEST WITH TWICE THE LOAD, THAT IS 40 kg. (ON OUR INSTRU-

SCAR MEASURED UNITS .. 4.1

4.4

AVERAGE 4.1x FACTOR 0.145 or 0.594 mm .

III. VISCOSITY / TEMPERATURE COMPARE WITH BORATE MODIFICATION CENTIPOISES TEMPERATURE F READING FACTOR CENTIPOISES 8.6 520 20 172 cps. 11.5 500 20 230 cps. 300 cps. 25.0 450 cps. 20 500 cps. 480 25 28.0 700 cps. 740 cps.

TABLE 154.

TEST DATA ON THE TRI ISOPROPYL BORATE MODIFICATION OF THE TETRA ISOPROPYL TITANATE / ZINC OCTOATE REACTION PRODUCT T 40 - 131

I. POUR POINTS OF THE MATERIAL AFTER REDUCING THE VISCOSITY WITH

CERIUM OCTOATE INHIBITED DOW SILICONE FLUID 510:

RATIO: 1: 1 (510) MINUS 6 1° F.

44.4: 55.5% (510) MINUS 6 5° F.

40: 60 (510) MINUS 85 F.

II. FOUR BALL WEAR TESTS MADE ON THE PRECISION SCIENTIFIC -

SHELL FOUR-BALL, WEAR-TESTER IN THE SUMMIT LABORATORY OF THE CELANESE CORP.

(WITH FRIENDLY COOPERATION OF Mr. JOHN KOCH AND PAUL SCHUMACHER)

TESTED AT 60°C 30 min ---- 20 kg. - 600 RPM.

THE PRODUCT T 40-131 UNDILUTED: BALL 0.32 mm.

0.30 mm.

0.31 mm.

AVERAGE 0.31 mm.

THE DILUTED PRODUCT 1:1 (510) BALL 0.37 mm.

THE DILUTED PRODUCT 1:1 (510) BALL 0.37 mm. 0.38 mm. 0.38 mm.

AVERAGE 0.37 mm.
THE DILUTED PRODUCT 40:60(510) BALL 0.42 mm.

0.47 ma. 0.49 ma.

AVERAGE 0.46 mm.

III. V I S C O S I T Y OF THE MIXTURE OF 40 parts PRODUCTS AND 60 parts SILICOME 510

TEMPERATURE	READING	FACTOR	CENTIPOISES	TO R	1/ T ^O R x 100	
777	7.5	20	150	537	0.1865	
65	8.3	20	166	525	0.1905	
50 °	10.5	20	210	510	0.1960	
40° 20°	15.0	20	300	500	0.2000	
20	22.5	20	450	480	0.208	
0° ٍ	37.0	20	740	460	0.217	
- 20°	64.0	20	1280	440	0.227	
- 45°	23. Q	100	2300	415	0.241	
- 65 ₀	42.0	100	4200	395	0.253	
- 75	65.0	100	6500	385	0.260	
POU	R POINT		0.		-	

(Plotted in FIGURE 1.)

R IS FAHRENHEIT ABSOLUTE OF RANKING OR IS OF PLUS 459.58

FIGURE 1.

THE TRIISOPROPYL BORATE MODIFICATION OF THE TETRAISOPROPYL TITANATE/ZIMC OCTOATE REACTION PRODUCT (T 40-131).

VISCOSITY REDUCED WITH CERIUM OCTOATE STABILIZED SILICONE FLUID 510. (40 PRODUCT T 40-131 60 STABILIZED SILICONE FLUID 510.)

(PLOTTED ON SEMI-LOGARITHMIC PAPER - 3 CYCLES x 10 to the inch.)

TABLE 155.

DATA OF THE TETRA BUTYL TIN MODIFICATION

AND THE TRI ISOPROPYL BORATE MODIFICATION

OF THE REACTION PRODUCT BETWEEN TETRA ISOPROPYL TITANATE AND ZINCOCTOATE

DILUTED WITH CERIUM OCTOATE INHIBITED SILICONE FLUID 510

THE TETRA BUTYL T I N MODIFICATION

MIXTURE : SILICONE FLUID	50	55	60
MODIFIED PRODUCT :	50	45	40
FOUR BALL WEAR TEST SCAR :	0.30		0.42 mm.
THE PRODUCT WITHOUT FLUI 0.31 mm. SILICONE FLUID ALONE: 1.75 mm. POUR POINT	- 6 0°F.	- 65°F.	- 86°r.
VISCOSITY IN CENTIPOISES			
AT ZERO F.	1 9 00	1150	780
at minus 4 5 %.	5 3 5 0	3650	2 4 5 0

THE TRI ISOPROPYL BORATE MODIFICATION

FOUR BALL WEAR TEST SCAR	0.37 mm.	(0.46 🚃 .
THE PRODUCT WITHOUT FLUID: 0.31 mm	·		
POUR POINT	- 6 1°F.	- 67°F.	- 88°F.
VISCOSITY IN CENTIPOISES			
AT ZERO F.	1700 cps.	1050 cps.	750 cps.
AT MINUS 45°F.	5000 cps.	3 4 5 0 cps.	2 3 0 0 cps.

FIGURE 2.

THE VISCOSITY OF THE MIXTURES OF THE TETRA BUTYL TIN MODIFICATION OR OF THE TRI ISOPROPYL BORATE MODIFICATION OF THE REACTION PRODUCT BETWEEN TETRA ISOPROPYL TITANATE AND ZINC OCTOATE (22% 2m) WITH GERIUM OCTOATE-STABILIZED SILICOME FLUID 510.

TEST DATA TAKEN AT ZERO F AND AT MINUS 45 F AND PLOTTED ON SEMI-LOGARITHMIC PAPER (3 GEGLES x 10 TO THE INCH)

In further summarizing this report, the following aspects are listed:

PART I studies various applications of catalytic additives to the inter-reaction between tetra alkyl titanates and basic zinc octoate. Herein:

SECTION I-A uses titanium tetra chloride as catalyst in TABLES 156 and 157.

SECTION I-B uses aluminum trichloride as catalyst and this is at this time the preferred preparation method. These preparations are shown in TABLES 158-166.

SECTION I-C uses an organic catalyst, the butylene oxide 12, as shown in TABLE 167.

SECTION I-D further discusses the various preparations with respect to their properties. (TABLES 168-172). These are discussed further in the introduction to Section I.

PART II studies the various forms of modification of the products of PART I with other metal organics.

SECTION II-A uses a tri n decyl octadecyl silane (TABLE 173-174).

SECTION II-B: studies the modification with dibutyl tin dichloride and with tetra butyl tin uses the product of SECTION I-A and I-B (TABLES 175-185).

SECTION II-C uses as modifying agent tri-n-butyl borate, using it with the product of SECTION I-A and SECTION I-B (TABLES 186-190).

SECTION II-D uses a number of organic modifying agents, including one containing chlorine and one containing bromine (TABLES 191-194).

PART III resumes the work of SECTION E of Report No. 3, on the introduction of phosphorus groups into titanate compounds. In this respect, tests with 2-ethyl hexyl phosphate (tri octyl phosphate) are continued in SECTION III-A (.TABLES 195-201). Also are shown combinations of the aliphatic tri octyl phosphate with the aromatic tri cresyl phosphate (SECTION III-B) (TABLES 202-203).

In SECTION.III-C. (.TABLES. 204-206) two other organo phosphates are being studied, the tris-B-chlorethyl phosphate and the tri butoxyethyl phosphate.

In SECTION III-D (TABLES 207-208) additional studies are made with di 2 ethyl hexyl phosphoric acid, continuing Section E-3 of Report No. 3.

(

PART IV (TABLE 209) gives new studies on the inhibiting of the silicone fluid 510 and the weight losses which occur hereby.

The work scheduled for the new report period is listed on the last page of the report.

The work reported herein has been performed in Research Building No. 3 of the Research Division, College of Engineering, New York University, under the direction of Dr. Max Kronstein. The following members of the research staff have participated in the work:

Edward I. Stiefel Research Aide

Robert A. Sierra Research Aide

Jeannette Grace Musco, B.S. Research Aide

Michael R. Carroad, B.Ch.E. Research Aide

William Kapfer, Ph.D. Chemical Engineer

Marion W. Kronstein, A.B. Assist. Research Scientist.

PART I. THE PREPARATION OF THE FLUID REACTION PRODUCT BETWEEN TETRA ISOPROPYL TITANATE AND BASIC ZINC OCTOATE.

INTRODUCTION

The inter-reaction between tetra alkyl titanates and basic zinc octoate has been discussed in preceding reports. The reaction is being studied further here as a step in the development of new complexes which are being obtained by further modifying this reaction product. Hereby, a number of different catalysts are being used, and the observation is made that different catalysts result in different properties of the reaction products.

SECTION I- A.USING TITANIUM TETRA CHLORIDE AS. CATALYST. (TABLES 156-157)

The use of titanium tetra chloride as catalyst has been described in earlier reports (Report No. 3, Sect. B). It is described again in TABLES 156-157: once in the production of the initial reaction product, and once in a bensyl alcohol modification of these products. TABLE 157-III here shows a greater amount of decomposition product in a 72 hour oxidation test (200°C. (392°F.) with 5 liter air per hr.) than the product produced with aluminum chloride as catalyst.

SECTION I- B. USING ALUMINUM CHLORIDE AS CATALYST. (TABLES 158-166)

A considerable number of preparations have been made of the reaction product with aluminum chloride as catalyst. Special attention has been paid here to the observation that in the vacuum distillation there exists a very small cut of an organo distillate between the main low cut and the actual reaction product. When the few cc. of this yellow material is not separated, it causes a discoloration of the reaction product and a lowering of the flash point of the product.

Observations on the various preparations are given in the Tablea. At the bottom of TABLE 159 is shown another study of the limited flammability of these products, which under proper preparation contain hardly any low cut, before reaching the flame point of the material itself, which is around and above 300°C. (572°F.).

(Continued on page 23.)

PREPARATION OF THE TPT/ZINCOCTOATE PRODUCT WITH T 1 Cl₄ AS CATALYST

I. T 43 - 30

USED 600 g. ZINC OCTOATE

200 g.TETRA ISOPROPYL TITANATE

3 - 4 drops Ti Cl4

TIME min .	C. F. TAP			HEAT DEVELOPED PRESSURE	ON MIXING VOLUME REMARKS
_	40 (104°F) 1	.5 40	45	5	-
20	46 1	.5 45	45	5	_
55	75 (167°F) 1	.5 45	45	5	CLEAR COLORLESS
70	100	.5 45	45	5	CUT COMING
90	125 (257 ⁰ F) 2	20 45	50	5	•
110	140 (284°F) 2	20 45	50	5	150 ml.
125		20 45	50	5	210 ml. CUT I
150	145 (293°F) 2	5 60	65	8	- Funes
175	250 (482 ⁰ F) 2	5 60	65	7	
195	3 1 5 (599°) 3	60	70	7	ABOUT 250 ml. PRODUCT

II. T 43 -31

USED 570 g. ZINC OCTOATS

190 g TETRA ISOPROPYL TITAMATE

3-4 drops Ti Cl₄

HEAT DEVELOPED OR MIXING

TIME min.	C. F.	VARIAC	PRESSURE	VOLUME REMARKS
_	30 (86°F)	40	5	-
15	60 (140°F)	40	5	10 ml. CUT I CLEAR COLORLESS
30	45	45	5	•
60	45	45	5	.a.
100	50	45	5	_
110	35	45	Ś	
130	105(221°F)	55	ś	25 ml. CLEAR COLORLESS
145	115(239°F)	55	Ś	75 ml.
155	130(266°F)	55	5	120 ml.
185	110 (230°F)	55	á	200 ml .
				CUT II 212 g
250	3 2 0 (608°F)		2	
280	320	65	2	PRODUCT OBTAINED 4 6 2 g.

TABLE 157.

THE BENZYLALCOHOL MODIFICATION OF THE TETRAISOPROPYL TITAMATE-

ZINC OCTOATE REACTION PRODUCT WITH THE CL CATALYST

I. REDISTILLATION OF THE REACTION PRODUCT (T 40 - 108)

~ (

TIME min .	TEMPERATURE C.	VARIAC	PRESSURE	AOLUME	REMARKS
	27 (80°F)	70	0.5	_	
100	260 (500°F)	70	0.5	-	VAPOURS APPEAR
120	295 (563°F)	70	0.5	10	CLEAR ORANGE MATERIAL
					DISTILLS
140	295	70	0.5	40	
180	295	70	0.5	100	
220	3 1 0(590°)	70	0.5	200	al Mo More fluid left. In 🕟 🖟
					FLASK; VERY SLIGHT AMOUNT
					OF DECOMPOSITION.

II. BENZYLALCOHOL MODIFICATION OF THE PRODUCT I.

USED	185 PRODUCT OF	1 (T 40-108)	T 40-109
	55 g.BENZYLALCON	OL	
-	28 (82°F) 7 80 (176°F) 7	0 2.3	-
30	80 (176°F) 7	0 2.3	CLEAR.COLORLESS, THEN LIGHT INLOW FLUID DISTILLS
70	80- 95 7	0 2.3	_70. <u>=</u> 1.
150	260 (500°F) 7 3 1 0 (590°F) 7	0 2.3	65 g. LOW CUT PRODUCT APPEARS
170			60 ml. GOLDEN YELLOW PRODUCT DISTILLS AT CONSTANT TEMPERATURE
200	312(593°F) 7	0 2.3	170 ml.

III. OXIDATION TEST OF THE PRODUCT OF II.

USED 1 part OF PRODUCT II WITH

1 part INHIBITED DOW FLUID 510

FIRST WASHED WITH BENZENE AND ACETONS, HEATED TO ABOUT 200 C. WHERE OFF HE OXIDATION TEST AT 200 C. WITH 5 LITER / HOUR AIR PASSING
USED 50 g.. THIS PRODUCT MADE WITH TI CL₄ SHOWED AGAIN SOME DECOMPOSITION
THE PRODUCT MADE WITH AI Cl₃ PASSES THIS TEST MUCH RASIER.

TABLE 158.

REACTING TETRA ISOPROPYL TITANATE AND ZINC OCTOATE

WITH A 1 Cl3 AS CATALYST

I. T 43 - 46

USED 450 g.ZINC OCTOATE

150 g.TETRA ISOPROPYL TITANATE

SMALL AMOUNT OF AL CL3

	TIME min.	TEMPERATURE C.	VARIAC	PRESSURE	VOLUME ml.	REMARKS
	_	30 (86°F)	40	2-6	-	
	15	52	45	2-6	10	LIGHT YELLOW
	40	57 (135°F)	45	2-6	10	
	60	100	45	2-6	35	
	85	160 (320°F)	45	2-6	95	
	105	175 (347°F)	45	2-6	145	
	-					CUT I
	140	170 (338 ⁰ F)	45	2-6	_5_	ORANGE FLUID CUT II
	180	3 2 0 - 3 3 ((608°F 626°F		2-6	225 g.I	-
II. T	43 -47	REPEAT TEST W	ITH THE	SAME QUANT	ities	
	_	30 (86°F)	40	2-6	-	
	3 0	70	40	2-6	_	
	35	110 (230°F)	40	2-6	L	GHT YELLOW CLEAR CUT COMES
	70	160 (320°F)	40	2-6	55	
	75	160	40	2-6	70	SLIGHT FUMES
	85	160	40	2-6	95	
	120	140 (284°F)	40	2-6	175	•
	140	130 (266°F)	40	2-6	185	
	·	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , , , , , , , , , , , , , , ,			IT I
	165	140	60	2-6	5 ct	DARK GRANGE IT II
	190	3 2 7 - 3 3 3 (620°F)-(631°F)	60	2-6		ml. PRODUCT
		(020 4)-(021)	. -			

TABLE 159

NEW PREPARATIONS OF THE REACTION PRODUCT BETWEEN

TETRA ISOPROPYL TITANATE AND BASIC ZINC OCTOATE (ZINC -2 ETHYL/-HEXANOATE) 22% Zn)

WITH A 1 C 1, AS CATALYST (T 39 - 33)

USED.... 570 g. ZINC OCTOATE

190 g .TETRA ISOPROPYL TITANATE

0. 10 g Al Cl3

HEAT EVOLVED ON MIXING

TIME min.	TEMPERATURE C .	VARIAC	PRESSURE	VOLUME ml.	REMARKS
15	58 (136	^o F) 50	2-4	10	CLEAR LIQUID C U T I
30	40	50	2-4	-	
45	62	50	2-4	-	
60	95 (203	^O F) 50	2-4	30	SLIGHTLY PALE LIQUID
65	102 (215	°F)50 - 55		50	PALE LIQUID
75	105	55	2-4	80	PALE YELLOW LIQUID
90	125 (257	O _{F) 55}	2-4	145	PALE YELLOW LIQUID
105	125	55	2-4	195	
130	85	55	2-4	210	
155	110 (230	OF) 55	2-4	210	
180	98	60	2-4		al. LIGHT BROWN CUTII
210	200 (392	^о т) 60	2-4	-	
230	230 (446	Or) 65	2-4	_	
255	295 (563	Or) 65	2-4	_	
315	320 (608	OF \ 70	2-4	1	PRODUCT IS COMING OVER
375	3 2 2 (61		2-4		DISTILLATION OF THE VISCOU VELLOW REACTION PRODUCT CO PLETED.

YIELD 4 5 0 g.

STUDY OF THIS REACTION YIELD ON INFLAMMABILITY (T 39 - 34)

WHEN FIRST HEATED IN OPEN DISH TO 2 O 0 $^{\circ}$ C. AND NOT BURSEN BURNER FLAME WAS (392°F)

HELD AGAINST THE SURFACE, IT TOOK 6 O SECONDS UNTIL A FLAME OCCURRED

WHEN FIRST HEATED IN OPEN DISH TO 2 2 5°C. THE HOT FLAME PRODUCED A FLAME AFTER (437°F.)

2 6 SECONDS AND THE TEMPERATURE OF THE FLUID REACHED HEREBY 254 C. (482°F) 489°F)

WHEN FIRST HEATED IN OPEN DISH TO 2 5 O'C JHE FLAME OCCURRED UNDER THE SAME TEST
CONDITION AFTER 15 SECOND AND THE TEMPERATURE BOSE TO 260 G(500°F)
WHEN FIRST HEATED TO 275 C. THE FLAME OCCURRED AFTER 3 SECONDS.END TEMP.: 275C.
WHEN FIRST HEATED TO 300°C. THE FLAME OCCURRED QUICKLY. END TEMPERATURE: 300°C.

(527°F) (572°F)

15.

TABLE 160.

"NEW PREPARATIONS OF THE REACTION PRODUCT BETWEEN

TETRA ISOPROPYL TITANATE AND BASIC ZINC OCTOATE WITH AL CL3 CATALYST (II.)

T 39 - 35

USED: 450 g.ZINC OCTOATE 22% Zn

150 g. TETRA ISOPROPYL TITANATE

0.10 g.Al Cl₃

HEAT EVOLVED ON MIXING

TIME min .	TEMPERATURE C. F	VARIAC	PRESSURE	VOLUME	REMARKS
	60 (140	05/10	2-4		
15	60 (14)		2-4 2-4	10	AT PAR I TOUTH
		40		11	CLEAR LIQUID
<i>3</i> 0 60	40	45 50	2-4 2-4	12	BEGINS TO SHOW PALE YELLOW
80	3 0	50	2-4	_12	CU!
00	115(239 ⁰	m) 50	0 /	~-	CUTI
90	115(239	F) 50	2-4	75	
105	105(221°	F) 50	2-4	90	MINE VELLAN LIANTS
125	126(258°	F) 55	2-4	100	PURE YELLOW LIQUID
150	112(233°		2-4	110	H H H
180	90	60	2-4	118	11 # 11
195	115	60	2-4	120	91 11
210	170 (338		2-4	122	n n
225	230(446°		2-4	127	# # #
240	280(536°		2-4	131	
250	290(554°	F) 70	2-4	<u> 136</u>	
					C U T II
300	3 3 0 (6	26970	2-4	150	R. CLEAR VISCOUS REACTION PRODUCT
EPEAT TE	ST T 39 - 39				C U T III
USIN	G SAME AMOUNTS	OF MIXTUE	RE		0 0 0 000
-	¹⁸ (64		2	_	
15	19	45	2	2 C	LEAR LIQUID
45	30	6ó		2	CUT I NOT SEPARATED
55	98(208		2 2 2 2		ALE YELLOW LOW VISCOUS
60	98	55	2	77	H H H H
65	99	55	2	87	n n n
135	44	60	2		CLEAR YELLOW LOW VISCOUS
150	110/220	OE/60	2 2		IGHT BROWN MORE VISCOUS
165	110(230 1 30 (266	OF) 60	2	173	M M M H H
180	170(200	0 1 1 0 0 0 1 1 4 4	2	175	W N N N
	245(473		2		
195	315	o_\ ⁷⁰	2		AND OF LOW CUT, PRODUCT COMING
	(599	F)	•	220	CUT I/II
210	315	70	2		UCT COMING
225	315	70	2		AR YELLOW VISCOUS PRODUCT
240	312	70	2		L COMING OVER
255	315	70	2 2 2		L COMING OVER
270	316	70	2		L COMING OVER
300	316	70	2	STIL	L COMING OVER
315	3 2 0(6	08 ⁰)70	2		L COMING OVER
330	-		_		ELD 300 g.
				(OBTA	INED IN NARROW DISTILLATION
					R IN SLOW DISTILLATION)

TABLE 161.

NEW PREPARATIONS OF THE TETRALSOPROPYL TITANATE/ZINC OSTOATE PRODUCT (III)

A. T 39- 36 : USED 450 g.ZINCOCTOATE 22% Zn

150 g. TETRA ISOPROPYL TITANATE

0.	.10	.	A1	Cla
•				~~ 4

HEAT EVOLVED ON MIXING

TIME	TEMPERATURE VAI			
<u>nin.</u> _	C . F.	40 2-4		CLEAR FLUID NOT VISCOUS CUT I
15	40 (104°F) 128 (262°F)	40 2-1		PALE YELLOW NOT VISCOUS
45	128 (202 F)	45 2-1		PURE YELLOW
60	130	45 2-4		
85	120	50 2-		
105	138 (280°F)	55 2-		BROWN LIQUID NOT VISCOUS
120	285 (545°F) 3 1 8 (604°F)	55 2-	4 171	BROWN LIQUID
135	3 1 8(604°F)	60 2-	4 174	END OF CUT II, PRODUCT COMING C U T II
155	315 (599 ⁰ F)	53 2-	4 PRO	ODUCT COMING OVER
245	325 (617°F)	60 2-	•	YIELD: CLOUDY, WILL BE REDISTIL
				-LED
B. T 39- 37	SAME AMOUNTS US			
10	3 6	25 2-		
20	33	40 2-	4	CLEAR FLUID CUT I
35	45	45 2-	4 -	
50	112	35 2-		PALE ALMOST CLEAR LIQUID
70	115	35 2-	4 109	e
90	98	35 2-		BROWN YELLOW LIQUID
155	65	40 2-	/ 199	N N N
180	130	50 2-	4 201	n n n
205	285 (545°F)	55 2-	4 201	END OF LOW CUT, PRODUCT COMING
205			· <u></u>	CUTII
210	3 1 0 (590°F)	55 2-	4 P	RODUCT COMING OVER
240	240 (464°F)	53 2-	4	SOME VIGOROUS BUMPING
255	3 1 0 (590°F) 240 (464°F) 306 (582°F)	53 2-	4 P	RODUCT COMING OVER
270		50 2-	4 P	RODUCT COMING OVER
285	305 (581°F)	53 2-	Ž P	RODUCT COMING OVER
300	200	53 2-		RODUCT COMING OVER
315	255 (491°F)	55 2-		SOME BUMPING
		_	YIELD	
345	- PTACE DE	SIDUE CREAMI		. 170 8.
4\n = n T 4	TILLATION	OF ALELD A	MACH A AND	FROM B T 39 - 38
•	75 (167°F)	60 2	2	YELLOW LIQUID
30			15	H H
40	98	60 2	26	
60	123	65 2		
70	190 (374°F) 300 (572°F)	65 2	29	LIGHT BROWN LIQUID
85	300 (572°F)	65 2	44	DARK BROWN AND VISCOUS
<u>95</u>	200	55 2	<u>50</u>	END OF REMOVED CUT
150	3 0 5 (581°F)	55 2		CLEAR YELLOW PRODUCT
210	201	KK 2	5	
330	3 2 0 (608°F)	60 2	<i>p</i> -	PURE CLEAR YELLOW PRODUCT
360	32∩	60 2		PURE CLEAR YELLOW PRODUCT
375	321 (610°F)	60 2	250 ml	PURE CLEAR YELLOW PRODUCT
390	322 (611 F)	60 2		PURE CLEAR YELLOW PRODUCT
420	320 (608°F)	60 2		

TOTAL IIELD 4 8 0 g. PRODUCT

TABLE 162.

MORE PREPARATIONS OF THE TETRA ISOPROPYL TITANATE -ZINC OCTOATE REACTION PRODUCT WITH Al Cl₃ AS CATALYST

I. T 38- 107

USED... 300 & TETRA ISOPROPYL TITANATE 900 @ BASIC ZINC OCTOATE 0.5 g al Cl₃

TIME min	TEMPERATURE C . F. I	VARIAC II	PRESSURE.	VOLUME ml .	REMARKS
_	30 (86F)50	30	2-4	_	
130	140 (294) 50			25	
160	145 50			125	
180	150 (302)60			200	
200	160 (320)70			290	
220	170 (338) 75			340	
230	220 (428) 80			<u> 360</u>	LOW CUT
240	270 (518)80		2-4	5	
260	280 (536)80			10	
275	3 4 0 (644)80	35	2-4	20	
280	340 80			20	
320	345 60			240	
330	335 (635)80			340	
340	320 (608) 80			400	
360				550 al	, PRODUCT

II. T 40 - 99

USED 266 g. TETRA ISOPROPYL TITANATE 800 g.BASIC ZINC OCTOATE 0.3 g. Al Cl₃

_	25 (77 ^Q) :60	60	2.5	-
35	105 60	60	2.5	LOW CUT APPEARS AS CLEAR COLORLESS
60	112 60	60	2.5	100 MATERIAL WHICH DARKERS FIRST TO
110	125 60	60	2.5	200 YELLOW, THEN TO ORANGE AS DISTILLA-
120	160 (320°)60	60	2.5	250 TION PROGRESSES
160	185 60	60	2.5	275
180	150 60	60	2.5	<u>278</u>
	•		-	CUTI
200	195 (383°)60 209 (408°)60	60	2.5	- CUT APPRARS
220	209 (408) 60	60	2.5	5 RED LIQUID
				CUTII
240	285 (545°) 70	70	2.5	- PRODUCT APPRARS
260	298 (568°) 65	65	2.5	30
270	3 1 2 65	65	2.5	100 COMING AT CONSTANT TEMPERATURE
300	. 312 (593°) 65	65	2.5	300
320	312 0,65	65	2.5	500
340	315 (599) 65	65	2.5	650 ml. IIMLD 640 g.
-3 13	2-2 .2.2		LITTL	

18.

TABLE 163.

MORE PREPARATIONS OF THE REACTION PRODUCT OF TETRA ISOPROPYL TITANATE AND ZINC OCTOATE WITH A 1 C 13 AS CATALYST

I. T 42 - 129

1

USED 900 g.ZINC OCTOATE 22%

300 g .TETRA ISOPROPYL TITANATE

	0.3	E. Al Cl3		HEAT O	M MIXING
TIME	TEMPERATURE C.	VARIAC	PRESSURE	VOLUME ml.	REMARKS
-	25	40	10	-	
60	110	65	7	25	CLEAR, SLIGHTLY YELLOW
80	125	65	7	90	•
100	135	65	10	160	
110	145	65	10	240	
120	130	65	10	320	
					CUTI
180	70	70	10	5 -	DARKER YELLOW
210	125	70	10	15	
270	220 (428 ₀ F)		10	25	
300	280 (536°F)	75	10	-	END OF CUT II

PRODUCT CAME OVER BETWEEN 3 0 0 AND 3 1 5 $^{\circ}$ C ABOUT 400 ml .

II. T 42- 132

USED 450 g. ZINC OCTOATE 22 \$

150 g TETRA ISOPROPYL TITAMATE

		0.3 g .A 1 C-13		HEAT EVOL	VED ON MIXING
_	25	45	2	_	
60	95	50	2	10	LIGHT CLEAR YELLOW
70	100	50	2	50	
110	110	50	2	100	
140	120	50	2	150	
	130	50	2	165	CUT I
180 240	95	60	2	5	DARKER YELLOW
260	130	70	2	10	
30 0	240	75	2	15	CUT II
<u>300</u> 320	305/31 (581°F./599	,5 75 F)	2	ABOUT	300 ml.PRODUCT

USED 150 g BENZYLALCOHOL TO 300 g. PRODUCT (WITH AL Cl3)

	-	25	45	2-10	-	
	30	95	45	2-10	10	CLEAR DISTILLATE
	110	95	55 . "	2-10	-130	CUT I
	170	170	60	2-10	30	YELLOW BUT CLEAR CUT II
	190	250	60	2-10	10	DANKER MORE VISCOUS. YELLOW
1	30 110 170 190 240	(58197 357097)	60	2-10	27	5 g. PRODUCT

p. 19.

TABLE 164.

MORE PREPARATIONS OF THE REACTION PRODUCT BETWEEN TETRA ISOPROPYL

TITANATE AND ZINC OCTOATE 22% Zn WITH Al Cl3 CATALYST

I. T 42- 134 USED ... 570 g.ZINC OCTOATE
190 g.TETRA ISOPROPYL TITANATE
0.5 g.Al Cl₃

TIME	TEMPERATURE C.	VARIAC	Pressure	VOLUME ml.	REMARKS
-	25	40	2	_	
30	40	45	2	15	CLEAR COLORLESS CUT I
60	60	50	2	-	
70	90	50	2	25	SLIGHTLY YELLOW
100	110	50	2	75	
130	115	50	2	150	
150	115	55	2	200	
200	150	70	2	220	DARKER YELLOW
260	280	70	1	225	
300	3 1 0 (590°	F) 70	1		

PRODUCT CAME OVER AT 3 1 0 C ... ABOUT 600 ml

TT	中 / つ	136	HEFT	RAME	AMOUNTS
	1 /. / .	- 1 1	useu		

-	25	40	2	_		
60	45	55	2 .	_25_	CLEAR AND COLORLESS	CUT I
90	90	55	2	25	SLIGHTLY YELLOW	
140	115	65	2	125	•	
240	265	70	2	<u>220</u>		
310	31_0	PRODUCT CA	ME OVER AT	310°	ABOUT 600 ml.	

310 310 PRODUCT CAME OVER AT 310 C.... ABOUT 600 ml. (590°F)

III T 42- 140 USED 450 g.ZIHC OCTOATE WITH 150 g.TPT AND 0.5 g.Al Cl₃

					•	
_	25	50	2	_		
30	40	50	2	25	CLEAR COLORLESS C U T I	
90	110	50	2	65	SLIGHTLY YELLOW	
120	1.30	55	2	135		
180	170	65	2	145	DARKER YELLOW	
220	110	. 70	2	150		

280/350 AT 320/330 PRODUCT CAME OVER ABOUT 300 ml

USED 525 g ZINC OCTOATE WITH 175 g.TETRAISOPROPYL TITANATE (0.5 g Al Cl₃)

					(/ 6)/
3 0	27	55	3	<u>10</u>	CLEAR COLORLESS CUT I
60	95	60	2	45	SLIGHTLY YELLOW CLEAR
100	120	60	2	115	
140	120	60	2	195	
200	145	70	2	210	CUT II
220	160	70	2	10	DARKER YELLOW MATERIAL
280	270	70	2		CYT III
300	305	PRODUCT C	AME OVER	AT 310 / 3	20°C 500 ml.
-				1 KONOT/6	

20. (590°F/608°)

TABLE 165.

MORE PREPARATIONS OF THE TETRAISOPROPYL TITANATE/ ZINCOCTOATE PRODUCT

I. T 40- 126

USED 1000 g . ZINC OCTOATE

333 g.TETRA ISOPROPIL TITANATE

0.4 g. Al Cl3

	TIME	VARIAC	;	PRESSURE	TEMPERATURE	VOLUME	REMARKS
	min.	I	II	<u> 140 .</u>	<u> </u>	ml.	
	-	60	60	1	30	-	
	30	60	60	ī	60		VAPOURS APPEAR
	50 50	60	60	ī	95		CLEAR COLORLESS FLUID APPEA
	80	60	60	i	100	30	ODBAR CODORDBOO PDCID ATTER
				i		300	FLUID IS NOW YELLOW
	120	60	60		115		LEGIT TO NOW INTERM
	135	60	60	1	125	350	
				_			END OF CUT I
	150	60	60	1	70	-	TEMPERATURE RISE BEGINS
	180	60	60	1	200		A REDDISH ORANGE FLUID APPE
				•	ABOU	T 10 ml.	CUTII
	220	60	60	1	295		PRODUCT APPEARS AND DISTIL
	280	60	60	1	295	400	AT CONSTANT TEMPERATURE
	330	60	60	1	295 295 (563 ⁰)	9800	•
							END OF DISTILLATOR
11.	T 40	- 125		USED	1200 g.ZIEC	CTOATE	
				COM	400 g .TETRA	TONDENDAL	TTTA MATE
							ILIANALE
		40	40	•	0.5 g. Al	աց	
	-	60	60	ļ	60	-	WARRING ARREAD
	60	60	60	1	90		VAPOURS APPEAR
	70	60	60	1	98		CLEAR COLORLESS FLUID APPEA
	90	60	60	1	120	100	
	110	60	60	1	140	200	FLUID NOW SLIGHTLY YELLOW
	200	70	70	1	115	<u>450</u>	END OF CUT I WAS ORANGE
	220	70	70	1	200	10	RED FLUID CUT II
	250	70	70	1	290		PRODUCT APPEARS
	270	70	70		330	100	
	330	70	70	2	330	300	CLEAR YELLOW PRODUCT
	380	70	70	2	330 (626 ⁰)	F) 800	
	<i>,</i>	, -	, •	~	TOTAL YIELI		
II	I. T 4	0 -129		USED 100	O g.ZIMC OCTO	TE ·	
			1.5	. 33	3 g. TETRA ISOF	ROPIL TIT	AMATE AND 0.4 g Al Cl3
	-	60	60	1	60	•	
	40	60	60	1	90		VAPOURS APPEAR
	60	60	60	ţ	98	20	CLEAR COLORLESS FLUID
	110	60	60	1	140	250	NOW YELLOWISH
	130	60	60	1.5	150	350	END OF CUT I
	220	60	60	1.5	200		PLETS OF REDDISH FLUID
	300	60	60	1.5	310	150	CLEAR YELLOW FLUID PRODUCT
	350	60	60	1.5	310	450	
	3-21						

TABLE 166.

MORE PREPARATIONS OF THE TETRAISOPROPYL TITANATE/ZINCOCTOATE PRODUCT

I. T 40 -115

USED 1027 g.ZINCOCTOATE

342 g .TETRA ISOPROPYL TITANATE

0.3 g Al Cl3

TIME min	VARIAC I	VARIAC II	PRESSURE	TEMPERATURE C	VOLUME WEIGHT REMARKS
_	70	70	1	3 0	-
10	70	70	ī	60	-
20	70	70	ī	90	- CLEAR YELLOW FLUID APPEARS
30	70	70	1	95	50
50	70	70	ī	98	400
,,,	, •			,,	CUTI
70	70	70	1	50	-
80	70	70	1	170	VAPOURS APPEAR
90	70	70	1	206	
110	70	70	1	290	- PRODUCT COMING
130	70	70	ī	310	50 CLEAR GOLDEN'YEL-
				(590°F)	LOW DISTILLATE AT CONSTANT TEMPERAT.
210	70	70	1	310	800 ml. YIELD 875 g .

USED FOR TETRA BUTYL TIN MODIFICATION

IN T 40-120

II. T 40 - 125

USED 900 g.ZINC OCTOATE

300 g. TETRA ISOPROPYL TITAMATE

0.3 g. Al Cl3

				•			
-	50	50	1.5	30	_		
20	50	50	1.5	90		LOW CUT APPEARS	
60	50	50	1.5	120	320		
	,	•				END OF LOW CUT	
80	70	70	1.5	180	_	VAPOURS APPRAR	
100	70	70	1.5	206 / 21.2		A SMALL CUT	
				(402°F/413°	F)		
130	70	70	1.5	280	- •	PRODUCT APPEARS	
200	70	70	1.5	312 /320	THE !	PRODUCT HAS COME OV	ER
	, -		(593 ⁰	1/6061/11ETD		785 g.	
			1000	-,			

(Continued from page 11.)

SECTION I - C. USING BUTYLENE OXIDE 12 AS CATALYST. (TABLE 167)

Butylene Oxide 12 has been used, in a new approach, instead of the metal chloride catalyst. The reaction product seemed first to retain a small amount of low cut material; but after its removal the flame point was at 320°C. (608°F.).

The material will be studied further.

SECTION I - D. STUDIES ON THE PREPARATIONS OF THIS SECTION I. (TABLES 168-172)

Different studies have been made in connection with the materials of this Section.

- The low cut matter of the distillation between tetra isopropyl titanate and basic zinc octoate has been studied, reviewing especially whether or not this low cut might consist of unreacted tetra alkyl titanate. The method of study is described in TABLE 168. The result clearly indicates that this low cut does not consist of unreacted titanate.
- 2. TABLE 169 shows, in the upper part, an oxidation test of the reaction product between the alkyl titanate and the zinc octoate which had been prepared in the presence of water, as outlined in the preceding report (SECTION D). In the lower part of this table is given a comparative table of refractive indices for the various preparations of the reaction product. The products made with different catalysts differ at least in the last two numbers of the index.
- 3. TABLE 170 gives rubber swelling tests for the product made with AlCl₃ as catalyst, and for the 1:1 mixture of this product with non inhibited and with inhibited silicone fluid. The mixture with the inhibited fluid shows the least degree of rubber swelling (0.74%).
- TABLES 171 and 172 tabulate the ratio between the density of the titanium and zinc bands in emission spectra of the product in various forms of preparation and of modification. Here the specimen made with Al Cl₃ as catalyst shows the strongest titanium line as compared to zinc. These differences in the intensity of the spectra

(Continued on page 28 .)

TABLE 167.

USING BUTYLENE OXIDE 12 AS CATALYST

WITH TETRA ISOPROPYL TITANATE AND ZINC OCTOATE

I . T 42- 135

USING 125 g. TETRA ISOPROPYL TITANATE

375 g. ZINC OCTOATE

2 g. BUTYLENE OXIDE 12 HEAT DEVELOPED ON MIXING

TIME	TEMPERATURE	PRESSURE	VARIAC	VOLUME	REMARKS
min.	C	mm .		<u> </u>	•
-	25	2	50	-	
60	40	2	50	10	CLEAR COLORLESS C U T I
90	100	2'	55	10	SLIGHTLY YELLOW CLEAR
120	125	2	55	50	
140	135	2	55	90	
160	100	2	55	120	
200	120	2	60	125	CUTII
220	200	2	70	15	DARKER AND MORE VISCOUS
260	265	2	70		C U T III
300	310	2	70 AGAIN	75	FIRST YIELD AT 310°C. (590°F) ml.SECOND YIELD AT 310°C.

THE TWO PARTS DIFFER IN COLOR AND MISCOSITY.

FLASH POINT BEGAN AT 115 C ... BUT o
FINAL FLAME POINT WAS NOT BEFORE 270 C . (518°F)

II. T 42- 138 REPEAT TEST USING 175 g.TETRA ISOPROPYL TITANATE 525 g.ZINC OCTOATE

2 g.BUTYLENE OXIDE 12 HEAT ON MIXING

_	25	2	45	-
40	40	2	50	10 CLEAR AND COLORLESS
60	40	2	50	25 CUTI
95	95	2	50	25 LIGHT YELLOW
110	105	2	50	100
	105	4	55	1 60
	115	4	55	200 CUTII
	3 0 5	3	65	DARK AND VISCOUS MATERIAL CUMING OVER
	(590°F./ 608°F)	3	70	3 O O ml.PRODUCT

THIS PRODUCT SHOWS SOME FLASHING AT 130/ 135 C, BUT AFTER A RETAINED

LOW CUT HAS BEEN DRIVEN OFF BY HEATING TO 330°C, (626°F)

THE FLAME POINT IS AT 280°C. (536°F) AND
THE FLAME POINT ...AT 320°C. (608°F.)

REFRACTIVE INDEX OF PRODUCT (TEST I) (25.5°C)..1.4549

TABLE 168.

STUDY OF THE LOW CUT OF THE TPT/ZINCOCTOATE DISTILLATION

T38 - 108/109

WHEN TO 44.7 g.TETRA ISOPROPYL TITAMATE WATER IS ADDED CAUTIOUSLY BY BURETTE WHILE SHAKING AND ALLOWING THE HYDROUS TIO, TO SETTLE, THE ENDPOINT OF THE TITRATION IS ADJUSTED TO OCCUR WHEN THE DROP OF WATER NO LONGER FORMS ANY WHITE PRECIPITATION WITH THE CLEAR SUPERMATANT LIQUID.

THIS OCCURS WITH 10.7 g. WATER .

WHEN THE LOW CUT OF THE TPT/ZINCOCTOATE DISTILLATION IS COLLECTED BETWEEN 110 °C. AND 134°C. AT 2 mm. PRESSURE, IT IS A YELLOWISH FLUID WHICH SMOKES (HYDROLYZES) SLIGHTLY WHEN EXPOSED TO THE AIR.

WEEN, TO 29.60 g.OF THIS FRACTION, WATER IS ADDED GRADUALLY UNTIL NO MORE WHITE PRECIPITATE APPEARS UNDER THE PROCEDURE DESCRIBED ABOVE, 4.50 ml. WATER ARE ADDED BEFORE THIS POINT IS REACHED.

ASSUMING THAT FOUR MOLS OF WATER ARE MECESSARY TO HYDROLYZE A Ti(OR), THE EQUIVALENTS OF TITANATE CAN BE SEEN TO ETHE EQUIVALENT OF WATER (APPROX. WITH THE DENSITY 1) .

TITAMATE USED ... 29.60 g . IF THIS FRACTION WOULD BE A TI(OR) IT WOULD MEAN THAT THESE 29.60 4.50 H20 (4.50 ml.WATER COMPLETES THE HYDROLYSIS)

APPARENT MW. OF Ti $(OR)_4 = \frac{(29.60)(18)(4)}{(4.5)}$ (This is qualitative rather than quantitative)

THE RESULTING M.W. WOULD HERE THEREFORE BE 474 AND THIS IS CLEAL! NO TETRA ISOPROPYL TITANATE. IT THEREFORE MUST BE A REACTION PRODUCT ALREADY.

AFTER THE TITRATION WAS COMPLETED THE SUPERMATARY LIQUID WAS DECARTED (AFTER CENTRIFUGING) AND WASHED WITH WATER IN A SEPARATORY FUNNEL TO REMOVE ISOPROPYL-ALCOHOL WHICH MIGHT BE PRESENT) REPRACTIVE INDEX 26°C IS THEM 1.40945

25.

TABLE 169.

OXIDATION TESTS

I. T 38 - 84

MIXTURE OF 30gINHIBITED DOW FLUID 510

30 g .TPT/ZINCOCTOATE PRODUCT MADE IN PRESENCE OF WATER AND MODIFIED WITH BENZYLALCOHOL

INITIAL WEIGHT 243.5 g.

FINAL WEIGHT 226.5 g.

THE THREE METAL STRIPS :

ALUMINUM INITIAL WEIGHT ... 0.4552 g. AFTERWARDS 0.4554 g. PLUS 0.0002g COPPER " " ... 0.4603 g. " 0.4602 g. - 0.0001g STEEL " " ... 1.2320 g. " 1.2324 g. PLUS 0.0004g

T 42- 137

REFRACTIVE INDEX TESTS AT 25.5°C

THE VARIOUS PREPARATIONS OF THE REACTION PRODUCT BETWEEN TETRA ISOPROPYL

TITANATE AND ZINC OCTOATE

PRODUCT MADE WITH TALCAL CATALYST 1.4570

PRODUCT MADE WITH Ticl_ CATALYST, 1.4570

PRODUCT MADE WITH Al Cl3 CATALYST 1.4542

PRODUCT MADE IN PRESENCE OF WATER 1.4555

TETRA BUTYL TIN MODIFICATION OF PRODUCT MADE WITH Al Cl3 CATALYST 1.4576

PRODUCT MADE WITH BUTYLENE OXIDE 12

CUT I 1.4549

TABLE 170.

RUBBER SWELLING TESTS

I. T 43 - 38 TEST ON THE TETRA ISOPROPYL TITANATE / ZINC OCTOATE

REACTION PRODUCT WITH AL Cl3 AS CATALYST

SIZE OF RUBBER 2 1/2 " x 1 "

WEIGHT OF RUBBER 3.9822 g.

TYPE OF RUBBER MAY! SAMPLE # 1313 STD L 10/60 - 20/310

APPARENT WEIGHT UNDER WATER 0.6026 g.

AFTER TEST 0.6281 g. (AFTER 7 7 HRS AT 112°C. 233°F.)

PRODUCT USED 80 g.

RUBBER SWELLING $\% \Delta V \dots 0.6281 - 0.6026 \times 100 \dots 4.23 \%$

II. T 43 - 38 TEST ON A 1:1 MIXTURE OF THE SAME PRODUCT AND MOT INHIBITED

(ORIGINAL) SILICONE FLUID DOW 510

SIZE OF RUBBER 2 1/2 " x 1 "

WEIGHT OF RUBBER 4.0303 g.

APPARENT WEIGHT UNDER WATER 0.6141 g.

AFTER TEST 0.6433 g. AFTER 7 7 HRS AT 112 $^{\circ}$ C . 223 F RUBBER SWELLING % \triangle V ... 0.0292 x 100 4.75 %

III.T T 43 - 40 TEST ON 1:1 MIXTURE OF THE SAME PRODUCT AND INHIBITED SILICONE FLUID DOW 510

SIZE OF RUBBER 2 1/2"x 1 "

WEIGHT OF RUBBER 3.9917 g.

APPARENT WEIGHT IN WATER 0.6341 g

AFTER TEST 0.6388 g. 4FTER 70 1/2 HRS. AT 115 C . 239° F .

RUBBER SWELLING \$ \$\langle V \cdots \frac{0.0047}{0.6341} \times 100 \cdots \frac{0.74}{5}

(Continued from Page 23.)

go parallel to the fact that the atomic weight of titanium is 47.9 as compared with the atomic weight of zinc which is 65.38. The difference is even greater in the atomic weights of boron, as introduced in the modification (10.82), and tin introduced in a modification (118.7). The band intensity, however, is not necessarily controlled by the atomic weight. This has to be studied further.

TABLE 171.

STUDIES USING THE EMISSION SPECTRO AMALYSIS ON THE REACTION PRODUCTS.

I.INFLUENCE OF THE CATALYST ON THE REACTION BETWEEN TETRA ISOPROPYL TITANATE

AND BASIC ZINC OCTOATE:

IN TWO TEST SPECIMENSOF THE REACTION PRODUCTS OBTAINED AROUND 300 C IN THE (572°F)
VACUUM DISTILLATION.

ONCE ALUMINUM CHLORIDE WAS USED AS THE CATALYST
IN THE SECOND CASE AN ORGANIC CATALYST WAS USED, THE

1.2. BUTYLENE OXIDE

29.

 $CH_3 - CH_2 - C - H - CH_2 = 0$ (T 42- 135)

THE REPORT OF THE SPECTRO CHEM LABORATORY IN FRANKLIN LAKES, M.J.

STATES THAT THE SAMPLE PREPARED WITH ALUMINUM CHLORIDE HAS

A HIGHER BATIO OF TITANIUM. TO ZINC THAN THE MATERIAL

PREPARED WITH THE ORGANIC CATALIST.

IN BOTH CASES THE ZINC LINES ARE CONSIDERABLY STRONGER THAN THE TITAMIUM LINES. (IT IS TO BE CONSIDERED THAT TITAMIUM HAS AN ATOMIC WEIGHT OF 47.9 AND ZINC OF 65.38).

BESIDES THE PRODUCT MADE WITH ALUMINUM CHLORIDE HAS A VERY FAINT ALUMINUM LINE.

BASIC ZINC OCTOATE (WITH ALUMINUM CHLORIDE CATALYST) WITH THE FINAL PRODUCT,
THAT MEANS THE CUT BETWEEN 110 AND 134 C. (273°F) WITH THE DISTILLATE CUT ABOVE (230°F) HIGH CUT HAS A MUCH STRONGER ZINC LINE THAN TITANIUM LINE. (572°F)

THE LOW CUT HAS A NUMBER OF STRONG TITARIUM LINES , INDICATING A HIGH TITARIUM CONCENTRATION, AND HAS A LOW CONCENTRATION IN ZINC .

(IT SHOULD NOW BE STUDIED IF THIS ZINC IS PRESENT IN FORM OF A REACTION PRODUCT WITH THE TITAMATE, OR IS IT DERIVED FROM A LOW CUT MATERIAL IN THE ZINC OCTOATS. THIS WILL BE PURSUED IN THE NEXT PERIOD).

TABLE 172

MORE EMISSION SPECTRAL ANALYSIS STUDIES REFERRING TO THE NEW MODIFICATIONS OF THE TPT/ZINCOCTOATE REACTION PRODUCT

- III. IN TEST T 42-130 THE TETRA ISOPROPYL TITANATE/ ZINCOCTOATE REACTION

 PRODUCT HAD BEEN FURTHER REACTED WITH TETRA BUTYL TIN ,A Sn R₄ MATERIAL.

 IN TEST T 40 -124 THE TETRA ISOPROPYL TITANATE /ZINC OCTOATE REACTION

 PRODUCT HAD BEEN FURTHER REACTED WITH TRI-n- BUTYL BORATE, A B (OR)₃

 MATERIAL.
 - THE TIM ORGANIC MODIFICATION SHOWS IN THE TRUSSION SPECTRUM A NUMBER OF STRONG TIM LINES
 - THE BORON (O R) 3 MODIFICATION SHEWS ONLY WRAK BORON LINES.

TO EXPLAIN THIS IT MIGHT BE CONSIDERED THAT THE

ATOMIC WEIGHT OF TIM IS 1 1 8 .7 AND THE ATOMIC WEIGHT OF BORON IS 1 0 .8 2 .

THIS MIGHT INFLUENCE THE ACTUAL DIFFERENCE IN THE AMOUNT OF TIN OR BORON WHICH ENTERS THE COMPOUND. BUT THE ATOMIC WEIGHT ITSELF DOES NOT CONTROL THE DIFFERENCE IN THE DENSITY OF THE LINES BETWEEN TWO DIFFERENT ELEMENTS. THIS IS FURTHER TO BE STUDIED.

PART II. MODIFICATIONS OF THE PRODUCTS OF PART I WITH VARIOUS METAL ORGANIC FLUIDS. INTRODUCTION

In earlier reports it has been pointed out that the reaction product of PART I still has at least one reactive position and that it is desirable for the requirements of the various tests, which are provided in the specifications for hydraulic fluids for airplanes to substitute these still-reactive groups with stable groups. The modification of the product of PART I with benzyl alcohol was given as part of the tables in PART I. Here other modifications, or other introductions of new groups, are being discussed.

SECTION A. REACTING THE PRODUCTS OF PART I WITH A TETRA ALKYL SILANE. (TABLES 173-174)

At the end of the preceding project and in the first and second reports of the present project modifications with a certain tetra alkyl silane have been discussed. This can be classified as a Di-Di-type alkyl silane, as far as it contains two n dodecyl and two n octyl groups. This modification had been successful, but its production was difficult because it is difficult to introduce by Grignard reactions these two-times-two groups into the silanes. It would be easier to produce silanes which contain three groups of one kind and one of another kind. One of this type modification with a tri n decyl - octadecyl silane was carried out as shown in TABLE 173. Also, a modification with a diphenyl di dodecyl silane was carried out in TABLE 174.

The reactions were successful, but further studies indicated that these silanes also are only available to a very limited extent and that evidently their formulation would not be easy either.

SECTION B. REACTING THE PRODUCT OF PART I WITH TIN ORGANICS. TABLES 175-185).

It was therefore more desirable to use as modification agents metal organics which would be commercially available. In reviewing the metal organics which exist with metal carbon bonds and which at the same time are stable to a desirable degree, the tin organics have been selected for further studies as modifying agents for the product of PART I. First attempts were made to utilize the tin organics with tin-carbon bonds which would also contain one or two more easily replaceable halogen groups. That is

(Continued on page 34.)

TABLE 173.

REACTING THE TPT/ ZINC OCTOATE DISTILLATION PRODUCT WITH TRI n DECYL-0 CTADECYL SILANE (DOW)

T 40 -89

I. USING 50 g. TPT/ZINCOCTOATE PRODUCT T 40-84

AND 50 g. TRI m DECYL OCTADECYL SILANE

TIME min	VARIAC	TEMPERATURE C .	PRESSURE	AOTOME	REMARKS
-	70	28	2.5	_	
70	70	195	2.5	-	VAPOURS APPEAR
80	70	210	2.5	5_	ORANGE LIQUID
110	70	290	2.5	-	CLEAR LIGHT-ORANGE LIQUID APPEARS
120	70	3 0 5 (58)	L ^O F) 2.5	5	CLEAR ORANGE FLUID DISTILLS AT
					CONSTANT TEMPERATURE
160	70	305	2.5	85	
165	70	309 (588°)	F) 2.5	88 🛋	L. CUT ENDS SOLID IN FLASK

II. O X I D A T I O N TEST OF I.

T 40 -91

TEST AT 200 °C. WITH 5 LITER AIR PER HOUR (392°F.)

AFTER THREE x 24 HOURS NO VISUAL SEDIMENT.

TRACE OF MICROSCOPIC SEDIMENT

VISCOSITY VERY GOOD. VERY LITTLE EFFECT ON METALS (COPPER AND

STEEL REMAINED FAIRLY BRIGHT)

WEIGHT LOSS OF FLUID BEFORE TEST 50 g.

AFTER TEST 45.5 LOSS 4.5 g.... 9 \$

III. REPEAT PREPARATION TO I. USING 75 g. PRODUCT MADE WITH AL Cl3

T 40 -92			AND 7	5 g . C ₁₈	$(c_{10})_3$
-	70	28	2.5	_	
40	70	180	2.5	-	VAPOURS APPEAR
70	70	215	2.5	10	CLEAR ORANGE LIQUID
80	70	230	2.5	-	
90	70	280	2.5	-	
110	70	308	2.5	5	CLEAR LIGHT YELLOW LIQUID APPEARS
130	70	310	2.5	30	
150	70	310	2.5	80	
170	70	310	2.5	95	
180	70	315 (599°)	F) 2.5		CUT ENDS

TABLE 174.

MORE STUDIES ON REACTION PRODUCT BETWEEN THE TPT/ZINCQATOATE PRODUCT AND SILANES

I. MORE ON THE PRODUCT MADE WITH TRIADECYL OCTADECYL SILAME POUR POINT DATA:

THE PRODUCT T 40- 92 (TABLE 173) ALONE POUR_POINT OF

3 PARTS OF THIS PRODUCT WITH 1 PART INHIBITED

DOW FLUID 510 POUR POINT - 10 F.

1 PART OF THE PRODUCT WITH 1 PART INHIBITED

DOW FLUID 510 POUR POINT - 40 F

1 PART OF THE PRODUCT WITH 2 PARTS INHIBITED

DOW FLUID 510 POUR POINT - 70°F

II REACTING THE TPT/ZINC OCTOATE PRODUCT WITH

DIPHENIL DI DODECIL SILANE (DOW)

USED 70 g .PRODUCT WITH AL CL3 CATALYST

70 g.DIFHENYL S'DI' DODECYL SILAME

TIME	TEMPERATURE C.	Pressure	VARIAC	VOLUME	REMARKS
-	27	2.5	75	-	
50	150	2.5	75	- S O	ME LOW CUT APPEARS
80	310	2.5	75	4	END OF CUT I
100	3 1 2	2.5	75	-	DISTILLATION PRODUCT APPEARS
160	312(593°F	r) 2.5	75	110	DROPWISE DISTILLATION OF A
					CLEAR ORANGE MATERIAL AT
					CONSTANT TEMPERATURE

III. O X I D A T I O N TEST OF THE PRODUCT OF II.

MATERIAL USED 30 g TEST AT 200 G WITH 5 LITER AIR PER HOUR MATERIAL AFTER TEST 29.6 g LOSS 0.4 g. or 1 . 1 % N 0 SEDIMENTATION LITTLE VISCOSITY CHANGE LITTLE EFFECT ON METALS .

33.

(Continued from page 31.)

why in TABLE 175 dibutyl tin dichloride is reacted with the product of PART I. In TABLE 176 the same material is used with a tetra alkyl titanate, and it was expected to further complex this reaction product with zinc octoate but the results were not satisfactory. Therefore new studies were made, starting with TABLE 177, in modifying the product of PART I with tetra butyl tin which is commercially available from the Anderson Chemical Division of Stauffer Chemical Company, in Weston, Michigan.

As the work on this modification continued, as shown in subsequent tables, a material was obtained which was uniform in its characteristics, and it passed the various tests successfully. Mixtures with inhibited silicone fluid 510 (Dow Corning) showed also good viscosity and good four-ball wear-test regults and a good pour point. This work is tabulated in TABLES 178-185.

SECTION C. REACTING THE PRODUCT OF PART I WITH ORGANIC TRI BORATES. (TABLES 186-190).

The product of PART I was similarly reacted with tri-n-butyl borate and with tri isopropyl borate. The latter one was then pursued further, because the resulting modifications of the product of PART I had higher flash and flame points than with tri n butyl borate.

TABLES 187-190 give the various preparations and studies on the tri isopropyl modifications of the product of PART I. This material appears promising also and is under further evaluation.

SECTION D. INTRODUCING OTHER GROUPS IN THE COMPLEX MATTER OF PART I. (TABLES 191-194).

TABLE 191 shows a reaction of tri ethyl hexyl-tri melitate with tetra isopropyl titanate. This melitate is a commercially available material which is supposed to have good heat resistance and good stability under the required conditions of this development, but no desirable product has been obtained here.

TABLE 192 shows a replacement of the isopropyl groups of a tetra isopropyl titanate by benzyl groups followed by a complexing of the resulting tetra benzyl titanate with zinc octoate. A reaction product was obtained at a constant distillation range of 290°C (554°F) at 2-4 mm. pressure; but the yield was not high enough to warrant a greater (Continued on page 54.)

SECTION II-B.

TABLE 175. PRODUCT MODIFICATION WITH DIBUTYL TIN DICHLORIDE

I. PREPARATION OF THE PRODUCT: T 40-84

USED 300 g.ZINCOCTOATE AND 100 g.TETRA ISOPROPYL TITANATE WITH 0.2 g. Al Cl3

TIME	PRESSURE	VARIAC	TEMPERATURE	VOLUME	REMARKS
min ,		. •	C .	ml.	
	3.5	50	27	_	
40	3.5	50	92	-	CLEAR YELLOW FLUID APPEARS
50	3.5	50	95	20	
70	3.5	50	110	90	
80	3.5	50	140	110	NO MORE FLUID APPEARS CUT I
90	3.5	60	85		
110	3.5	70	180		ORANGE LIQUID APPEARS
130	3.5	70	206	15	ORANGE LIQUID STOPS COMING
					CUT II
150	3.5	70	280	-	PRODUCT APPEARS
180	3.5	70	310	70	
220	3.5	70	320	180	
240	3.5	70	325 (617°F)	210	NO MORE PRODUCT COMES OVER
					WHITE MATTER IN FLASK.

II. REACTING THE PRODUCT OF I WITH DIBUTYL TIN DICHLORIDE : T AO-85

USED: 150 g. PRODUCT OF I

. 50 g. DIBUTYL TIN DICHLORIDE
THE MATERIALS WERE MIXED AND HEATED TOGETHER UNTIL THE DIBUTYL TIN DICHLORIDE

HAD MELTED. THEN THE DISTILLATION WAS SET UP .

-	2.8	60	38	-
30	2.8	60	170	- CLEAR YELLOW FLUID APPEARS
40	2.8	60	170	20 NO MORE FLUID APPEARS CUT I
60	2.8	60	180	-
80	2.8	60	250	_
120	2.8	60	300	- THERE SEEMS TO BE AN EXTENSIVE
150	2.8	60	330	5 DECOMPOSITION IN FLASK
170	2.8	60	3 5 0 (662°F)	-
			,	INSPITE OF THIS SMALL AMOUNT
				OF PRODUCT HAVING STARTED TO

COME OVER, THE FLASK CONTENT

DECOMPOSED.

THE FLUID CUT I SOLIDIFIED ON STANDING OVER NIGHT.

TABLE 176.

ATTEMPTS TO REACT DIBUTYL TIN DICHLORIDE WITH TETRA ISOPROPYL TITANATE

I. T 40-86 USING 142.5 g TETRA ISOPROPYL TITANATE (1/2 mole)

150 g DIBUTYL TIN DICHLORIDE

IN 50 g · ISOPROPANOL

1

NO HEAT EVOLVED ON MIXING

TIME	VARIAC	PRESSURE	TEMPERATURE	VOLUME	REMARKS
min.			C	ml.	
_	40	2.5	35		ISOPROPANOL APPEARS
20	40	2.5	48	75 ml	. CUT I
40	60	2.5	9 5	- CL	EAR COLORLESS FLUID APPEARS
60	60	2.5	110	5 0	
80	60	2.5	115	100	FLUID TURNS YELLOW
110	60	2.5	120	150	NO MORE FLUID COMING CUT II
145	60	2.5	170		A CLEAR ORANGE FLUID APPEARS
170	60	2.5	175	60	
210	60	2.5	185	120	
230	60	2.5	180 (356°F)	140	FLASK CONTAINS ONLY 10 -20 ml.
		-		CUT II	I:DECOMPOSITION MATERIAL

IT APPEARS AS IF CUT II IS MOSTLY TETRA ISOPROPYL TITANATE AND

CUT III DIBUTYL TIN DICHLORIDE, WHICH TURNS SOLID

ON STANDING.

II. T 40-88 USING ANTHYDROLYSIS OF THE CHLORIDE:

USING 71.2 g.TETRA ISOPROPYL TITANATE (1/4 mole) 75 g. HYDROLYZED DIBUTYL TIM DICHLORIDE

THIS WAS PREPARED AS FOLLOWS: FIRST IT WAS DETERMINED THAT THE DIBUTYLTIN DICHLORIDE IN WATER MAKESTHE WATER ACIDIC (TESTED WITH $_{\rm PH}$ PAPER). 75 g. DICHLORIDE WAS INTRODUCED INTO BOILING WATER AND BOILED FOR SEVERAL MINUTES. IT WAS THEN SEPARATED AND DRIED IN A DESICCATOR OVER $_{\rm P2O_5}$ OVERNIGHT. AFTERWARDS IT WAS MIXED AS INDICATED ABOVE. NO ALCOHOL WAS ADDED.

_	40	3.4	28	_	
50	40	2.8	98	- 0	LEAR COLORLESS FLUID APPEARS
80	40	2.8	112	60 m l.	LIQUID TURNED DARKER YELLOW
100	40	2.8	80	70 ml.	TEMPERATURE REACHED 120 C, DROPPED
			CUI	ľI	AGAIN AS DISTILLATION CEASED.
120	50	2.8	90	-	
140	50	2.8	168	-	YAPOURS APPEAR
143	50	2.8	174	-	CLEAR ORANGE LIQUID APPEARS
160	50	2.8	175	20	
180	50	2.8	180	50	
185	50	2.8	182 (359°F)	55	NO MORE FLUID COMING OVER CUT II

THE TWO CUTS APPEAR TO BE AGAIN THE TWO USED COMPONENTS.

TABLE 177.

MORE STUDIES BETWEEN TETRA ISOPROPYL TITANATE AND BUTYL TIN MATERIALS:

I. T 40-87

REACTING 71.2 g. TETRA ISOPROPYL TITANATE (1/4 moles)

WITH 86.6 g TETRA BUTYL TIN (1/4 mole)

NO HEAT EVOLVED ON MIXING

TIME min.	TEMPERATURE C.	VARIAC	PRESSURE	VOLUME	REMARKS
	27	40	2.7	-	
50	100	40	2.9	_	CLEAR COLORLESS MATERIAL APPEARS
70	105	50	2.7	40	
80	115	50	2.7	_75_	CUT I ENDING
<u>80</u> 90	80	50	2.5	-	
100	60	50	2.5	-	
110	150	50	2.5	_	
120	173	50	2.5	-	CLEAR COLORLESS FLUID APPEARS
140	175	50	2.5	30	
180	188 (370°I	r) 50	2.5	80	CUT II ENDING

APPEARS AS IF THE TWO CUTS CORRESPOND WITH THE TWO INITIAL COMPONENTS.

II.T 40- 90

75 g.DIBUTYL TIN DICHLORIDE WERE DISSOLVED IN BOILING WATER AND K O H WAS ADDED UNTIL INDICATOR PAPER TURNS BASIC IN COLOR. THE RESULTING SOLIDS WERE WASHED WITH WATER UNTIL NEUTRAL IN EFFECT ON PH PAPER.

75 g.OF THIS SOLID WERE MIXED WITH

⁷⁵ g. TETRA ISOPROPYL TITANATE (SLIGHT HEAT ON MIXING EVOLVED)

	28	40 '	2.9	_	
30	90	40	2.7	_	VAPOURS APPEAR
40	99	50	2.6	3	CLEAR COLORLESS LIQUID
70	104	50	2.5	35	
80	110	50	2.5	45	
90	110	60	2,5	60	
100	115	60	2.5	62	END OF CUT I
120	80	60	2.5		•
140	190	60	2.5	_	VAPOURS APPEAR
160	193	60	2.5	30	CLEAR ORANGE LIQUID
180	195 (383°F)	60	2.5	60	END OF CUT II

THE TEMPERATURE OF THIS HIGH CUT II IS HIGHER THAN THE TEMPERATURE WHEN THE DIBUTYL TIM DICHLORIDE DISTILLS. IT IS POSSIBLE THAT THE DIBUTYL TIM DICHLORIDE TURNED WITH KOH AT LEAST PARTIALLY INTO DIBUTYL TIM $-(OH)_2$ AND THAT THIS REACTS WITH T1 $(OR)_{\angle}$. More Studies are required.

TABLE 178.

REACTING THE TPT/ZINGOCTOATE REACTION PRODUCT (MADE WITH

Al Cl₃ CATALYST) WITH TETRA BUTYL TIN (C4 H9)4 Sn

USED 180 g.TPT/ZINCOCTOATE REACTION PRODUCT (A1 C1₃ CATALYST) AND

60 g.TETRA BUTYL TIN T-38- 103

FULLY SOLUBLE IN EACH OTHER FORMING A CLEAR GOLDEN COLORED SOLUTION.

TIME min	TEMPERATURE C.	PRESSURE	VARIAC	VOLUME ml	REMARKS
_	28	2 1	40	-	
30	30	1	40	-	
60	35	1	50	-	
90	95	2	50	10	
95	95	1	55	25	COLORLESS DISTILLATE, SOME-
<u>97</u>	96	-1	55	<u>30</u>	WHAT SIMILAR ODOR AS PRODUCT
					CUTI
109	130	1.5	60	10	
115	131	2 2	60	15	COLORLESS DROPWISE DISTILLA-
120	129	. 2	60	25	TION
<u>130</u>	128 (262°F	7) 2	60	30	
					C U T II
160	80	1	70	_	
180	50	1	70	_	material in flask getting.
240	70	. 1	80	-	DARKER
280	120 (248°I	?) 1	80	-	
<u> 290</u>	230	1	80		
300	285	1	80	5	
310	290	1	80	10	
330	290	1	80	3 0	
340	290	1	80	40	PRODUCT CLEAR YELLOW, SEEMS TO
350	288	1	80	55.	BE SOMEWHAT LESS VISCOUS
360	270	1	80	55	
370	285	1	80	60	
375	26 0	1	80	90	
<i>3</i> 95	290	. 1	80	120	
406	290 (554°I	F) 1	80	130	ml.

MIXTURE OF ONE PART OF THIS LAST CUT WITH

ONE PART INHIBITED DOW FLUID 510

HAS A POUR POINT OF MINUS 8 2°F .

TABLE 179.

MORE REACTIONS WITH TETRA BUTYL T I N

I. T 40 - 102 USED ... 200 g .TPT/ZIMCOCTOATE PRODUCT WITH AL Cl3 CATALYST(T40-99)

60 g . TETRA BUTYL TIN

NO HEAT EVOLVED ON MIXING

TIME min .	VARIAC	PRESSURE	TEMPERATURE C.	VOLUME ml.	REMARKS
-	60	2.9	25	-	
20	60	2.5	130		A CLEAR YELLOW FLUID DISTILLS
30	60	2.5	140	10	FLUID IS NOW COLORLESS
50	60	2.5	155	50	
70	60	2.5	170	80	
90	70	2.5	170 (338	F)_90_	_
				- 	CUT I
115	80	2.5	320	_	PRODUCT APPEARS
140	80	2.5	320 (608	F) 60	
·			when here some redistilled at	PRODUC	C. (593°F)

II. T 42- 130 USED 180 g. PRODUCT (WITH AL Cl3 CATALYST)

60 g TETRA n BUTYL TIN

MIXED WELL AND LEFT OVERNIGHT BEFORE DISTILLING

-	40	2	27	-	
30	40	2	30	_	
60	40	2	30	-	
70	50	2	95	5	CLEAR AND COLORLESS
75	50	2	100	10	CUTI
80	50	l	130 (266°F)	3	CLEAR AND COLORLESS
90	50	1	129	25	
110	50	1	131	40	
135	50	1	137	55	
160	60	1	150 (302°F)	<u>60</u>	CUTII
190	75	1	220	-3	DARKER YELLOW
195	75	1	250(482°F)	5	
205	75	1	310(590°F)		_CUT III

PRODUCT CAME OVER AT 3 1.0 °C 135 ml . IN FLASK ONLY A FILM LEFT

III. T	42-131	REPEAT TEST	WITH THE SAME	e quantities
-	40	2	24	
60	45	2	30	- 3
70	50	2	95	3 GLEAR AND COLORLESS
90	55	2	110	10 CUTI
95	55	2	1 3 0	5 CLEAR AND COLORLESS
120	55	2	150	50
145	60	2	140	60 CUTII
160	70	2	100	3 DARKER YELLOW
190	75	2	230	5
210	75	2	310 _o	CUTIII
	PRODUC	T CAME OVER		135 ml.
			(590°F.)	,

p. 39.

TABLE 180.

MODIFYING THE TPT/ZINC OCTOATE PRODUCT (WITH AL CL3 CATALYST)

WITH TETRA BUTYL T I N

T-40- 77

MATERIAL USED: 200 g.DISTILLATION PRODUCT FROM TETRA ISOPROPYL TITANATE 1/2 mole

BASIC ZINCOCTOATE 1

1/3 mole

WITH 0.5 g.Al Cl3 CATALYST

60 g. TETRA BUTYL TIN IN

T -40-77

60 g. BENZENE

TIME	VARIAC	PRESSURE	TEMPERATURE	VOLUME	REMARKS
min.		131 ,	С.	ml.	
_	40	3.5	27	-	
10	70	3.5	37		CLEAR COLORLESS FLUID DISTILLS
<u>40</u> 70	70	3.5	39 (102°F) <u>50 </u>	1. CUTI
70	70	3.5	170		
90	70	3.5	170		CLEAR COLORLESS DISTILLATE
120	90	3.5	170(338 ⁰ F)		TEMPERATURE BEGINS TO DROP
140	90	3.5	45	1001	al. CUT II
					(HERE SOME YELLOW COLORAPPEAR:
160	90	3.5	3 1 0 (590	^O F)	RAPID TEMPERATURE RISE
180	90	3.5	330	30	
230	90	3.5	3 4 0 (6440)	F) 120	MOST OF THE PRODUCT CAME OVER
					AT 340°C (644°F)
			TOTAL YIELD	14	<u>8 g</u> .

OXIDATION TEST OF THIS MATERIAL

SET UP AT 200°C. WITH 5 LITER AIR PER HOUR (392°F)

T 40-82

AFTER 24 hrs TURNED WHITISH , BUT CLEAR

AFTER 48 hrs . NO CHANGE

AFTER 72 hrs. NO CHANGE: WHITE, FAIRLY CLEAR NO VISIBLESEDIMENT

NO SEDIMENT UNDER MICROSCOPE VISCOSITY FAIR METALS AFFECTED

TO BE REPEATED

TABLE 181.

MORE MODIFICATIONS OF THE TPT/ZINCOCTOATE PRODUCT (WITH A1 C13 CATALYST)

WITH TETRA n BUTYL TIN

I. T 42-133

USED 180 g. PRODUCT WITH

TIME min.	TEMPERATURE C.	VARIAC	PRESSURE	VOLUME ml.	REMARKS
_	25	40	2	_	
60	95	45	2	5	CLEAR AND COLORLESS
70	115 (239°F)	45	2	10	CUT I
80	1 75	50	2	20	CLEAR AND COLORLESS
110	140 (284°F)	50	1	35	
145	90	50	1	55	
180	160 (320°F)	65	1	60	CUT II
200	230 (446°F)	70	1	5	DARKER YELLOW CUT III
220	3 1 0 (590°F	·)			

60 g . TETRA n BUTYL TIN MIXED WELL

PRODUCT CAME OVER AT 3 1 0°C 135 ml. (590°F)

II. T 42- 139

USED 450 g. PRODUCT WITH

150 g . TETRA n BUTYL TIN

_	25	50	2	-	
30	28	55	2	-	
65	98	55	2	5	CLEAR AND COLORLESS
75	120 (248°F)	55	2	<u>10</u>	CUT I
80	130	55	2	15	CLEAR AND COLORLESS
120	135	55	2	85	
145	160 (320°F)	60	2	125	CUT II
150	220	60	2	10	DARKER YELLOW
225	30 5 (581 ⁰ F)	70	1	_75	DARK VISCOUS MATERIAL
,					CUT III
305	3 2 0 (608°F)	70	1	PRODUCT	ABOUT 250 ml.

FLASH POINT 275°C . (525°E)

and the state of the second of

III. T 42- 141 USED 180 g. PRODUCT WITH

		60 g .TE	TRA n BUTYL T	TIN MIXED WELL
_	25	45	2	_
30	30	50	2	-
<i>3</i> 0 60	95 (203°F)	50	2	10 CLEAR AND COLORLESS CUT I
90	125	55	2	40 CLEAR AND COLORLESS
120	130 (266°F)	55	2	50 CUT II
160	90 0	65	2	10 DARKER YELLOW
200	200 (392 F)	70	2	15_ CUT III
220	3 0 5 (581°F)	70	2	
		PRODUCT	CAME OVER AT	T 305°C ABOUT 135 ml.

41. (581°F)

TABLE 182.

NEW PREPARATION OF THE MODIFICATION OF THE TPT/ZINCOCTOATE

PRODUCT (T 40 -115) HAVING AL C13 CATALYST WITH TETRA BUTYL TIN

T 40 - 120/121

USED 180 g.PRODUCT T 40-115 AND

ľ

60 g. TETRA BUTYL TIN

TIME	TEMPERATURE	PRESSURE	VARIAC	VOLUME WEIGHT REMARKS
min .	C 28 (82°F	mm.	- 	ml.g.
-	28 (82°F		40	
10	30	1	40	Flask Shaken Vigorously Flask content clear
25	30	2	40	-
60	30	1	50	•
80	30	1	5 0	-
90	3 0	1	5 0	-
120	3 0	1	to 55	-
130	30	. 1	to 60	- BUBBLING IN FLASK
135	65 (149° 140 (284°	(F) 1	60	- REFLUXING
138	140 (284	F) 1	60	30 CLEAR COLORLESS FLUID
140	145 (293°	'F) 1	60	40
145	137 (278°	F) 1	60	50
148	130 (266°	'F) 1	65	50
152	120	1	65	52 STILL CLEAR AND COLORLESS
156	108	1	to 70	52 ONLY DROPS COMING
160	102 (215°	F) 1	70	52 FLASK FLUID QUITE CLEAR, LIGH
	202 ()	-, -	,•	47 g. GUTI YELLO
165	90 _	1	70	- 4 , 8 , 0 o o o o o o o o o o o o o o o o o o
170	145 (293°	F) 1	70	drops
176	152	-, <u>-</u>	70	10 CLEAR, MEARLY COLORLESS
180	150	ī	72	12 BLIGHTLY YELLOW
185	140	ī	72	12 VERY SLIGHTLE VELLOW FLUID
195	128	ī	72	15 and a few drops
210	95	î	72	14 g . CUTII
218	105	i	72	
225	90	ī	72	- POT GETTING DARKER
227	85	î	72	- I'UI GBIIING PANGAR
230	105	1	72	A FEW DROPS
235	85	1	72	A FEW DROPS
238	75	i	72	A FEW DOOLD
240		i	80	-
	65 57			•
258	57 75	1	80	•
265	75	1	80	•
278	103	1	80	
285	130	1	82	A PEW DROPS AGAIN
290	150	1	80	A PEW DROPS
320	135	1	85	SOME SMALL GUT
340	240	1	85	
345	280	1	85	SOME PRODUCT, BUT DISCARDED
350	290	1	85	15 25
355	290	1	85	25
360	290	1	85	50
370	300	, 1	85	
405	290 (554	F) 1	85	135 ml.

TABLE 183.

MORE MODIFICATIONS OF THE TETRA ISOPROPYL TITANATE / ZINCOCTOATE (AL Cl3)

REACTION PRODUCT WITH TETRA n BUTYL TIN

(

I. T 42- 142 USED 210 g. PRODUCT WITH 70 g. TETRA n BUTYL TIN WELL MIXED

TIME	TEMPERATURE	VARIAC	PRESSURE	volume	REMARKS
min .	С.		THE .	ml,	
	25	40	2	-	
60	90	50	2	-	
70	95	50	2	<u> 15</u>	CLEAR AND COLORLESS CUT I
90	120	50	2	10	CLEAR AND COLORLESS
130	135	50	2	45	
140	130	50	2	55	
190	120 (248 ⁰ I	F) 50	2	70	_ CUT II
220	240 (464°I	F) 65	2	5	YELLOW MATERIAL
280	305	70		•	
		NO 48	48 AUTOD AM	2 2 20 4	7 / 6 7

PRODUCT CAME OVER AT 3 0 5°C..... 145 ml.

II. T 42- 144	REPEAT REACTION	WITH SAME	AMOUNTS	
-	25	50	2	_
60	95	50	2	5 CLEAR AND COLORLESS
65	100	50	2	10 CUT I
70	120	50	2	20 CLEAR AND COLORLESS
85	125	55	2	55 CUT II
135	150	55	2	15 CLEAR, SLIGHTLY YELLOW ORANGE
220	220	65	2	18
280	300	65	2	CUT III
300	305			0 (2000)

PRODUCT CAME OVER BETWEEN 3 0 5 AND 3 1 5 C. (599°F)
(581°F) ABOUT 150 ml.

III.T 42- 146 REPEAT PREPARATION WITH 180 g. PRODUCT AND

60 g TETRA n BUTYL TIN MIXED WELL

-	25	45	2	-	
60	30	50	2	-	
70	95	50	2	5 CLEAR AND COLORLESS CU	JT I
80	120	50	2	10 CLEAR AND COLORLESS	
120	135	50	2	40	
150	140	55	2	55 CUT II	
160	90	55	2	10 SLIGHTLY ORANGE	
230	240	70	2	15	
300	305	70	2	CUT III	

PRODUCT CAME OVER AT 3 0 5 C ABOUT 135 ml . (581°F.)

TABLE 184.

MORE STUDIES ON THE BUTYL TIN MODIFICATION

I. T 43 - 43

USED 450 g. PRODUCT MADE WITH A1 Cl₃
150 g. TETRA BUTYL TIN

TIME min.	TEMPERATURE C.	VARIAC	PRESSURE	VOLUME ml.	REMARKS
	25	, ,	2.4		
-	27	45	2-6	-	
15	27	45	2-6	_	
35	27	45	2-6	_	
60	145	60	2-6	125	LIGHT YELLOW
75	155	60	2-6	155	
					UT I
150	230	60	2-6	15	DARK ORANGE CUT II
170	100	60	2-6	_	
190	3 2 2	70	2-6	400	ml . LIGHT YELLOW PRODUCT

FLASH POINT 275°C 526°F.

II. T 43 - 48

MIXED 40 g .OF THE TIN MODIFICATION WITH

40 g «CERIUM OCTOATE INHIBITED SILICONE FLUID 510

ADDED SOLVENTS TO REMOVE RETAINED LOW CUT MATERIAL

40 g. BENZENE AND

40 g . ACETONE

REMOVED ALL SOLVENTS AND LOW CUTS UNDER VACUUM

III. CHARATERISTICS OF THIS MATERIAL AFTER TREATMENT II*

POUR POINT MINUS 6 5 F.

FLASH POINT ... 2 7 0°C.(518°F)

FLAME POINT 2 9 5 C 4 563 P)

TABLE 185.

STUDIES ON THE TPT/ZINCOCTOATE PRODUCT REACTED WITH TETRABUTYL TIM(T40-120)

I. FOUR-BALL WEAR-TEST T 40-122

MIXTURE OF 1 part T 40-120 and

1 part INHIBITED DOW FLUID 510

RUN AT 60 C . 20 kg LOAD 30 MINUTES

SCAR ... 2.50 2.20 2.72 7.72

AVERAGE ... 2.47 x CALIBRATION FACTOR 0.145 0.394 mm ·

II. THE PRODUCT T 40- 120

FLASH POINT 278 C ... 537 F.

FLAME POINT 310 °C ... 590 °F .

III. POUR POINT TESTS

MIXTURE OF 50 parts T 40 -20 AND

50 parts INHIBITED DOW 510

POUR POINT MINUS 6 0 F.

MIXTURE OF 40 parts T 40-120 AND

60 parts INHIBITED DOW 510

POUR POINT MINUS 8 7 F .

IV. INFLAMMIBILITY TEST T 40- 123

A STANDARD TRIANGLE WAS WIDENED AND A CRUCIBLE WAS SET SOLIDLY INTO THIS TRIANGLE. A CRUCIBLE COVER WAS SET WITH THE FLAT SIDE TO THE TOP OVER THIS CRUCIBLE. THE TEST FLUID WAS FILLED INTO THE FLAT COVER AND HEATED TO 200°C. THEM A HOT BUNSEN BURNER WAS LOWERED AT AN ANGLE OF 60° TO THE (392°F) SURFACE OF THE FLUID. IT TOOK MORE THAN ONE MINUTE UNTIL ANY FLAME APPEARED.

TABLE 186.

REACTING THE TPT/ZINCOCTOATE PRODUCT (WITH Ti Cl, CATALYST)

WITH TRI- n B U T Y L B O R A T E

T 38 - 97

USED.... 180 g. PRODUCT WITH

90 g.TRI n BUTYL BORATE B (0 C₃ H₉)₃

UPON MIXING NO HEAT IS EVOLVED BUT THE MIXTURE TURNS VERY

VISCOUS AND SOME PARTS OF A WHITE PRECIPITATE ARE VISIBLE .

TIME min.	TEMPERATURE C.	VACUUM	VARIAC I	VARIAC II	VOLUM ml	
		-				
_	28	4	3 0	10	-	
57	110	4	40	10	10	
65	100	5	40	10	25	SLIGHTLY INLLOW
75	100	5	40	10	35	LOW CUT
80	98	5	40	10	45	
85	97	5	40	10	55	
105	110	4	40	10	65	
125	115	4	45	12	80	
130	116	À	45	12	90	FLASK CONTENT DARKENS
150	115	4	45	12	100	AS DISTILLATION PRO-
170	115	5	45	20	110	GRESSES
190	115	6	50	20	120	
240	110	5	65	20	130	
260	75	5	65	20	132	ml
200	7)	,	o,	20		135e.CUTI
300	80	5	70	20	-	

HERE THE FLASK CONTENT WAS STUDIED.

IT WAS DARK BROWN IN COLOR AND SLIGHTLY

MORE VISCOUS THAN THE INITIAL " PRODUCT".

ITS FLASH POINT WAS ... 270°C .(518°F)

ITS FLAME POINT WAS ... 275°C.(527°F)

TABLE 187.

REACTING THE TETRA ISOPROPYL TITANATE/ZINC OCTOATE REACTION PRODUCT WITH TRI ISOPROPYL BORATE T 43 - 26

I. USED 10 parts ... 163 g PRODUCT MADE WITH Ti Cl4 CATALYST

3 parts ... 49 g. TRI ISOPROPYL BORATE

NO HEAT ON MIXING

TIME min.	TEMPERATURE C.	VARIAC	PRESSURE	VOLUME ml.	TREMARKS
15	55 (131	0±//0	17	<u>ar</u> ,	
				25	AT DAD STORTLY AND
45	65	40	17	25	CLEAR DISTILLATE
60	60	, 40	17	35	
75	73 (163	F)40	3	50	
90	45	40	4	55	CUT I 47 g.
<u>90</u> 140	45	50	22	-	-
150	40	50	4	-	
180	35	60	4	_	POT CONTENT STILL LIQUID, DARK
240	40	60	4	_	BROWN
HEA	TING TAPE APP	LIED			
260	155 (311 ⁰	F) 65	4		
300	175 (347 ⁹	F) 80	4 3 3 3		FUMES. POT STILL GOOD
305	3 1 5 (599) ^o F)90	3	C	LEAR, LIGHT YELLOW FLUID COMING
310	315 - 317		3	I	IGHT YELLOW, VERY VISCOUS FLUID
		, -	-		I.PART OF PRODUCT TAKEN 114 g.
345	323 - 327	95	3	C	LEAR SLIGHTLY YELLOW FLUID
	(614°F) (62		-		II. PART OF PRODUCT TAKEN : 54 g.
					TOTAL PRODUCT 168 g.

II. COMPARING THE REFRACTIVE INDICES AT N

TRI ISOPROPYL BORATE 1.3738
LOW CUT OF I. 1.3750
HIGH CUT OF I. 1.4562

PRODUCT MADE WITH Ti Cl4.. 1.4562
WITH Al Cl3 .. 1.4562
BENZYLALCOHOL MODIFICA-

TION OF PRODUCT WITH TiCl4: 1.4566

III. QUALITATIVE TEST OF THE HIGH CUT (PRODUCT) FOR BORON ACCORDING TO LANGE HANDBOOL p.958

TEST SOLUTION ... CH3OH AND H2SO4 5:1

TEST SOLUTION ADDED TO PRODUCT AND IGNITED THE VAPOURS. THE GREEN

FLAME INDICATED THE PRESENCE OF BORON

TESTS ON THIS PRODUCT CONTINUED

TABLE 187 (CONTINUED)

MORE TESTS ON THE TRI ISOPROPYL BORATE MODIFICATION OF THE TPT/ ZINC OCTOATE PRODUCT MADE WITH Ti Cl, IN TEST T 43-26

IV. EXPOSURE TESTS TO AN OPEN FLAME:

CENTIGRADE

TEMPERATURE OF FLUID REACHED BEFORE FLAME ADDED: 175 215 260 275 300° (347°F) (419°F) (500F)(527)(572F)

SECONDS OF CONTACT WITH BUNSENBURNER FLAME AT

60 DEGREE ANGLE BEFORE BURNING : 15 13 9 5 0

SECONDS

V. OXIDATION REDUCTION TEST

MIXTURE OF 50 g. PRODUCT T 43-26

50 g. CERIUM OCTOATE INHIBITED SILICONE FLUID 510

TEMPERATURE OF TEST 200 C . WITH AIR STREAM

TEST DURATION THREE DAYS

WEIGHT OF SET UP BEFORE TEST 209 g .

AFTER TEST 169.8 g.

WEIGHTLOSS 29.2 g . or 29 ≸

TABLE 188.

AL CL3 CATALYST) WITH TRI ISOPROPIL TITAMATE/ZINCOCTOATE REACTION PRODUCT (WITH

I. 7 40-110

USING 150 g.PRODUCT WITH

50 g .TRI ISOPROPYL BORATE.

THE MATERIALS WERE MIXED AND HEATED AND REFLUXED UNDER REDUCED PRESSURE.

THEN THE PUMP WAS ALLOWED TO EVACUATE THE SYSTEM FOR THE DISTILLATION

TIME	PRESSURE	TEMPERATU C · V		C M.	WEIGHT	RMARS
-	. 0.1	75	50	-		
20	0.1	75	50	45		CLEAR COLORLESS FLUID
30	0.1	63	50	60		THE FLASK SOLUTION IS ALSO STILL CLEAR
40	0.1	. 30	70	65.	166 -	
70	0.1	100	6 0		48.6 g.	CUTI
		100	70	_		
80	0.1	180	70	5		
90	0.1	200	70	_5		C U T II
110	0.1	275	70			CLRAR VERT VISCOUS GOLDEN LIQUID APPRARS
130	0.1	275 - 2	80			DISTILLS AT CONSTANT TIMP.
			70	150. ml	•	

II. PLASH POINT OF THIS PRODUCT 290 C. 554 F.

FLAME POINT OF THIS PRODUCT 325°C.... 617 F.

III. QUALITATIVE TEST FOR BORON ON THE PRODUCT OF I. (HANDBOOK CHEM.& PHIS. p.958)

REAGENT SOLUTION: 5:1 VOLUME SOLUTION OF METHANOL AND H2801

MIXED EQUAL AMOUNTS OF SAMPLE AND OF REAGENT.

VAPORIZED SOLUTION BY HEATING AND IGNITED THE VAPOURS

TRI ISOPROPYL BORATE BURNS WITH GREEN FLAME

PRODUCT OF TPT/ZIECOCTOATE

(WITH AL CL3 CATALIST) BURNS WITH BLUE FLAME WITHOUT ANY TRACE OF

THE PRODUCT T 40 -110 (I Above)

BURNS WITH BLUE FLAME WITH GREEN HALO AND

CHANGES TO GREEN FLAME. IT THEREFORE CONTAINS.

TABLE 189. MORE PREPARATIONS OF THE TRI ISOPROPYL BORATE MODIFICATION

I. T 40-124

ĺ

USED 150 g. PRODUCT TPT/ZINCOCTOATE WITH AL Cl3 CATALYST

50 g TRI ISOPROPYL BORATE

TIME	VARIAC	TEMPERATURE	VOLUME	PRESSURE	REMARKS
min.		C	<u></u>		
	50	30	_	0.3	
20	50	48	60	0.3	CLEAR COLORLESS FLUID
30	50	30	65	0.3	
					END OF CUT I
60	70	90	_	0.3	
140	70	280	-	0.3	PRODUCT APPEARS
150/180	70	290	150	0.3	PRODUCT DISTILLS CLEAR AND
					LIGHT YELLOW AT CONSTANT
					TEMPERATURE OF 290°C.
			0	0	(55 ^C F)

FLASH POINT 295 C 563 F.

FLAME POINT 320 - 325°C 608°/617°F.

II. T 40 -131

USED 600 g PRODUCT TPT/ZINCOCTOATE WITH AL Cl $_3$ CATALYST 200 g . TRI ISOPROPYL BORATE

	TIME min		VARIAC II	TEMPERATURE C •	Volume =1.	PRESSURE	REMARKS
	_	-	-	30	_	0.5	
	20	40	40	44		0.5	
	40	40	40	48	70	1	CLEAR COLORLESS
	60	40	40	55	150	3	MATERIAL
	80	40	40	62	200	5	
	90	50	50	70	220	0.5	
	120	50	50	40	230 m		
					•	CŪ	T I 206 g.
	150	70	70	310	-	0.5	
	170	70	70	315	200	0.5	
	190	70	70	310	450 g	. 0.5	
III	T 40 -	-133				-	
		USED		g.PRODUCT	PYL BORA	TE	
	-	_	•	40	: _	1	
	5	40		48		ī	CLEAR COLORLESS FLUID
	30	40		60	80	ī	APPEARS
	50	40		49	120	ī	CUTI
	70	60		90		į į	
	100	60		310		ī	PRODUCT APPRARS
	160	60		310(590 ⁰ 1	r) 300	ī	REACTION PRODUCT

TABLE 190.

MORE STUDIES ON THE PRODUCT MODIFICATION WITH

TRI ISOPROPIL BORATE (T 40 - 110)

I. MIXTURE OF ONE PART (31 g) T-40 -110 WITH

T 40 - 113

33 g. INHIBITED DOW FLUID 510

WAS FURTHER MIXED WITH ACETONE AND BENZEME AND WAS HEATED UP TO 190 C.
(374 F)

WEIGHT LOSS (LOW CUT) DETERMINED : NEW WEIGHT 56 g.

OLD WEIGHT 64 g.

LOW CUT REMOVED 8 g.

LEFT STANDING OVER NIGHT. NO PHASE SEPARATION, BUT A SLIGHT CLOUDINESS APPEARED.

II. OXIDATION TEST :

T 40 - 114

40 g. of the material prepared in I (T 40- 113) were subjected to oxidation test with metals at 200 c. with 5 liter air/hour.

\$\frac{4392^{\text{O}}F}{25}\$ or 25 \$\frac{1}{25}\$

COLOR ONLY SLIGHTLY DARKER

VISCOSITY EXCELLENT

METALS UNCHANGED, ONLY COPPER SLIGHTLY DISCOLORED.

TABLE 191.

REACTING TETRA ISOPROPYL TITANATE WITH TRI ETHYL HEXYL -

TRI- MELITATE (TOTM) A DERIVATIVE OF THE MELISSIC ACID

(C30 H_{k1} COOM) (Duflex-TOTM, Rosett Ch.Inc., Newark)

USED: 150 g. TETRA ISOPROPYL TITAMATE
150 g. TRI 2 ETHYL HEXYL TRI MELITATE
0.1 g.Al Cl3 I. T 40- 99

TIME	VARIAC	PRESSURE	TEMPERATURE C .	VOLUME .	WEIGHT	REMARKS
-	50	2.5	30	-	BUT	R OF ISOPROPYLALCOHOL EVIDENTLY THE VAPOURS S INTO THE TRAP
30	50	2.5	84			OURS APPEAR
38	50 50	2.5	94			AR COLORLESS MATERIAL
,,,	,,	20)	/4		APPI	EARS AND DISTILLS AS PERATURE RISES TO 110C
80	50	2.5.	110	140.=1	٠	
				16		SK CONTENT DID NOT N YELLOW JT I
100	70	2.5	140	-		MORE LOW CUT
130	70	2.5	240		MA? STI	VISCOUS RED ORANGE FERIAL APPEARS AND DE- ILLS AT CONSTANT TEM- RATURE OF 250 C.
140	70	2.5	250	30	FL	ASK CONTENT RED
150	70	2.5	250	_70		
					CU?	r II
152	70	2.5	250	-		
155	70	2.5	250	_		
170	70	2.5	250 (482°I		ASK RESII	DUE BROWN VERY VISCOUS
II. T 40- 10	0 11587	75 - MEMBA	TCARDADVI MIN			
11. 1 40- 10]	150 g. TRI 2 0.1 g. Al	ISOPROPYL TIT PETHYL HEXYL Cl ₂	TRI MELI	TATE	
	(THIS	MEANS : US	ING ONLY 1/2	AMOUNT O	F TITANAT	re)
-	50	2.8	30	_		•
40	50	2.8	95	C	LEAR COLO	DRLESS FLUID APPEARS
60	50	2.8	110	50		
70	50	2.8	115	80		
85	50	2.8	117	85ml.		ISH TINT
90	65	2.8	114 _	<u>- 80</u> i	END OF	CUTI
115	65	2.8	80	- 1	BROWN FLI	JID IN FLASK
140	65	2.8	180		YELLOW FI	LUID DISTLLS AT CON-
160	65	2.8 01	180 (356° I ILY DECOMPOSIT	·.) 70 👊	. CUT II	

TABLE 192.

REACTING BASIC ZINC OCTOATE WITH TETRA BENZYL TITANATE

I. PREPARING A TRANSESTERIFICATION PRODUCT BETWEEN TETRA ISOPROPYL TITANATE

AND BENZYLALCOHOL T 38-71

USING 432 g BENZYLALCOHOL AND 285 g.TETRA ISOPROPYL TITANATE

HEAT DEVELOPED UPON MIXING

TIME	TEMPERATURE	VARIAC	VACUUM	VOLUME	WEIGHT	REMARKS	
min .	C.		. .	ml.			
	26	40	ATM	_			
45	86	45		20			
50	88	50		40			
60	89	55		70			
90	88	55		170			
140	89	55		280			
150	94	55		290			
160	105	55		295			
165	115(239°F)	55		300 mJ	L.		

2 1 6 g. ISOPROPYL ALCOHOL TAKEN OFF

II. REACTING 130 g. REACTION PRODUCT OF I. (TETRA BENZYL TITANATE) WITH 190 g. ZINC OCTOATE IN PRESENCE OF T 38-83

18 g. WATER

SINCE THE REACTION PRODUCT OF I IS AT R.T. SOLID IT HAS BEEN MOLTEN ON A HOT PLATE (AT LOW HEAT POSITION) BEFORE REACTING IT WITH ZINC OCTOATE.

TIME min.	TEMPERATURE C .	VARIAC	PRESSURE	VOLUME	Weight	REMARKS
	27	40	2-4	_		
90	105	40		10		
110	112	50		25		colorless liquid
135	115	55		70		odor of Benzylalcohol
160	115	60		105 ml	103 g .	CUTI
170	165	70		10		clear colorless
180	170	70		20		
<u> 190</u>	145	70			20 € .	_ CUT II
220	230	75		5		yellow liquid CUT III
230	268	75		10		yellow liquid
243	280	75		15		yellow liquid CUE IV
250	290	75		5		
257	29 0	75		10		
265	290	75		15		
280	290 (554 ⁰ 1	F) 75		25		THE REACTION PRODUCT

Continued from page 34.)

interest in this material at this time.

In TABLE 193 the isopropyl groups in the tetra isopropyl titanate were replaced by reacting the titanate with 2 chloroethanol, and the resulting material was then complexed with zinc octoate in the presence of water. The results were not satisfactory but it is planned to repeat this preparation without the addition of water.

In TABLE 194 the reaction product of PART I was modified with a solution of penta bromophenol in benzyl alcohol. A brown reaction product was obtained, distilling between 200°C. 392°F.) and 312°C. (593°F) at 2-4 mm. pressure. This reaction product has not yet been studied with regards to its properties.

TABLE 193.

INTRODUCING A CHLOROETHANOL INTO THE TITANATE SYSTEM

T-38 -85

I. TRANSESTERIFICATION OF TETRA ISOPROPYL TITANATE WITH 2 CHLOROETHANOL

USED: 160 g . 2-CHLOROETHANOL (2 moles)

142 g TETRA ISOPROPYL TITANATE (1/2 mole)

ATMOSPHERIC DISTILLATION :

140 ml.OF ISOPROPANOL WAS TAKEN OFF IN THE COURSE OF 2 HOURS 30 MINUTES COMING OVER BETWEEN 80°AND 90 $^{\circ}$.

THE DISTILLATION WAS STOPPED AS SOON AS A FAINT BUT DISTINGUISHABLE ODOR OF 2 CHLOROETHANOL WAS APPARENT.

THE COLOR OF 2 CHLORO ETHYL TITANATE IS DARK BROWN. ITS FORMULA MIGHT

BE SEEN AS

II. REACTING THIS PRODUCT OF I. WITH ZINCOCTOATE IN PRESENCE OF WATER T 38 - 86

USED 92 g.PRODUCT I 190 g.BASIC ZINCOCTOATE

13.5 g. WATER (3/4 mole)

ON ADDITION OF WATER A WHITE PRECIPITATE IS FORMED IN THE BROWN SOLUTION

TIME	TEMPERATURE	VARIAC	PRESSURE	VOLUME	WEIGHT	REMARKS
min.	С.		m .	ml.	. .	
5	38	30	2-4	5		
60	42	40		25		
<u>120</u>	46	50		50		CUT I
120 152	85	60		20		
160	90	60		30		
190	180	65		70		
210 260	120	70		85		CUT II
260	190	70		10		
300	190 (37 (TO BE R	74F) 75 EPEATED V	IITHOUT WAT	30 ml. ER)	THE TEM	PERATURE DROPPED AND ONTENT SOLIDIFIED.

TABLE 194.

INTRODUCING BROMINE INTO THE TPT/ZINCOCTOATE REACTION PRODUCT: FIRST INTRODUCING POWDERY P E N T A B R O M O P H E N O L INTO BENZYLALCOHOL

USING 20 & PENTA BROMO PHENOL AND

100 g .BENZYLALCOHOL.

THE BROMOPHENOL DISSOLVES PARTIALLY IN THE BENZYLALCOHOL AND GIVES A BROWN SOLUTION. AFTER HEATING THE MIXTURE ON A HOTPLATE, IT WAS FILTERED THROUGH GLASSWOOL.

AFTERWARDS THIS " MODIFIER" WAS MIXED WITH THE PRODUCT WHICH WAS TO BE MODIFIED:

USING 190 g."PRODUCT" MADE WITH AL CL3 CATALYST

95 g." MODIFIER" PREPARED ABOVE.

THE PRODUCT DISSOLVES EASILY IN THE DARK BROWN "MODIFIER" AND THE RESULTING MIXTURE IS LESS. VISCOUS THAN THE INITIAL PRODUCT.

Time	TEMPERATURE	VARIAC I	VARIAC II	PRESSURE	volume weight remarks
min.	C .				nl. g.
	26	35	10	2-4	-
41	75	35	10		5 CLEAR DISTILLATE COMES
63	75	35	10		25 DROP RY DROP
82	79	38	10		29 CUTI
89	104	45	12	•	
99	104	45	14		20 CLEAR, ODOR OF BEMZYL-
111	104	45	15		30. ALCOHOL
150	104	55	15		40
175	120	60	16		45
180	160	65	16		- CUT II
190	150	65	16		15 YELLOW LIQUID
240	120	65	20		•
270	210	75	25		3 DARK ORANGE
330	285	75	30		5 ORANGE
<u>350</u>	295	75	30	_	13 DARK BROWN
345	298	75	30		5
370	300	75	30		20
380	3 1 0 (590°)	F) 75	30		40 BROWN PRODUCT
390	312	75	30		60
400	310	75	30		85
420	305 (581°F)) 75	30		105
4~~)U) ()UI I	, ,, !	56.		FLASK RESIDUE SOLIDIFIE

PART III. RESUMING WORK ON THE INTRODUCTION OF PHOSPHOR GROUPS INTO THE PRODUCT OF PART I.

INTRODUCTION

In the preceding report of this project, work was reported on the introduction of phosphorus groups into these products. This work has been continued.

SECTION A. INTRODUCING ALIPHATIC ORGANO PHOSPHATES INTO THE ALKYL TITANATES (TABLES 195-

The effort was made to introduce phosphate groups from tri octyl phosphate into the alkyl titanate or into the complex products of PART I. (TABLES 195-201). A reaction does take place, and products have been obtained which have interesting properties; but no definite reaction compound has been established for further evaluation. The phosphate was reacted with tetra isopropyl titanate and the resulting product further reacted with zinc octoate in the presence of aniline. Here a material was obtained (TABLE 198) which came over in distillation at 2-10 mm. Hg. pressure between 325°C. and 340°C. (617°F. and 644°F.), and which had a flame point of 326°C. (618°F.).
TABLE 199 gives also satisfactory results of an hydrolytic stability test of the new material.

In TABLE 200- III an attempt is shown to further introduce a chlorine into this material by further reacting it with 2 chloroethanol; but this did not result in an increase of the flame point.

SECTION B. USING AN ALIPHATIC AND AN AROMATIC ORGANO PHOSPHATE IN THESE REACTIONS. (TABLES 202-203)

Since an interreaction between tetra isopropyl titanate and tri cresyl phosphate results in solid materials, the attempt was made to use the aliphatic tri octyl phosphate and the aromatic tri cresyl phosphate together. The resulting product (TABLE 202) was then further complexed with zinc octoate. The resulting products (TABLES 202 and 203) were not desirable in that they did burn when exposed in an open flame. Further work will be undertaken on this.

(Continued on page 68)

1

TABLE 195.

ATTEMPTING TO INTRODUCE TRI OCTIL PHOSPHATE INTO TITANATE

T 38 - 90

USING: 120 g. TRI OCTYL PHOSPHATE (TOF)

60 g. TETRA ISOPROPYL TITANATE

2 drops Ti Cl4

TIME		VARIAC		VOLUME	WEIGHT	REMARKS
min.	<u>C.</u>	 	<u>""</u>	ml.	£	······································
_	26	40	4 mm .	_		
40	105	50		20		
48	104	50		30		YELLOW LIQUID WHICH
53	103	50		40		-
56	102	50		50		SMOKES ON EXPOSURE
70	95	60		55		
90	100	60		60		TO AIR :HYDROLYZES
110	106	65		70		
120	108(226	^o F) 65		75 ml.		READILY.
		-, -			61	CUT I
140	205(401	⁰ F) 65	4 🗪 .	2		
150	215	70	~ ·	10		VERY STEADY CONSTANT
170	215	70		15		· · · · · · · · · · · · · · · · · · ·
180	215	70		25		DISTILLATION OF CLEAR
187	215	70		40		
205	215	70		60		COLORLESS LIQUID .
210	215	70		70		FLASK MATERIAL TURNS GRA-
220	215	70		100		DUALLY DARK BROWN
228	215(419			120 ml		
	~= /(41)	4).0			102	E. CUT II

COMPARING THE REFRACTIVE INDEX OF TRI OCTYL PHOSPHATE (TOF)

WITH THE REFRACTIVE INDEX OF CUT II

TRI OCTYL PHOSPHATE R.I. 25°C..... 1.4405

CUT II R.I. 25°C..... 1.4406

TABLE 196.

REACTING TETRA OCTYL TITANATE WITH TRI OCTYL PHOSPHATE

I. T 43 - 15

USED 120 g. TRI OCTYL PHOSPHATE (TOF)

60 g. TETRA 2 ETHYL HEXYL TITANATE (TETRA OCTYL TITANATE)

3 - 4 DROPS OF Ti Cl

DISTILLED USING A CAPILLARY

TIME	TEMPERATURE	VARIAC	PRESSURE	VOLUME	REMARKS
min.	C		mm .	ml.	
15	32	40	10	_	
60	32	40	10	-	
65	87	50	12		CLEAR COLORLESS LIQUID
75	85	50	12	10	·
105	75	60	10	_20_	
135	160	60	12	_	
150	235 (455°F	60	12	5	CLEAR COLORLESS
CAPILL	ARY REMOVED				
180	190 (374°F	60	2	20	PRODUCT CLEAR, SLIGHTLY YELLOW
195	197	60	2	60	,
200	197	60	2	85	
210	203	60	2	110	
215	203 (397°)	60	2	120	PRODUCT A
240	230 - 240 (446°F-464°F	80	2	25	HIGH VISCOUS DARK YELLOW PRODUCT B

FLAMES AT 70°C . (158°F) PRODUCT В

II. T 43 - 17

USED

REACTING THE PRODUCT OF I WITH ZINC OCTOATE

58 g. PRODUCT A (T 43- 15) AND 58 g, ZINCOCTOATE (18%) N. O HEAT ON MIXING. USED A CAPILLARY 25 40 15 40 40 3 15 ml. CLEAR COLORLESS CUTI 45 60 40 3 10 ml. CLEAR COLORLESS LIQUID 65 125 40 25 80 135 50 100 50 3 105 C U T II 125 (257°F) 50 YELLOW DISTILLATE, FUMING 110 CUTIII

> NO DISTILLATE COMING OVER AND POT CONTENT SOLIDIFIED .

TABLE 197.

MORE STUDIES WITH TRI OCTYL PHOSPHATE

I. USED -80 g.TETRA ISOPROPIL TITAMATE

T 40 - 106

160 g. TRI OCTIL PHOSPHATE

0.2 g .Al Cl

TIMB	PRESSURE	VARIAC	TEMPERATURE C.	AOLUME	REMARKS	
_	2.8	60	27	-		
40	2.8	60	94	_	VAPOURS APPEAR	
60	2.8	60	%	_	CLEAR LIGHT YELLOW LIQUID COME	S
80	2.6	60	96	100	_	
•			-		CUT I	
100	1	60	185	-	CLEAR COLORLESS DISTILLATE COMES	3
150	ī	60	185 (365°F) 150	_	
,	_		• • •		CUT II FLASK ALMOST EMPTY	

II. USED 80 g .TETRA ISOPROPYL TITANATE

160 g TRI OCTYL PHOSPHATE

	0.5 g "	Al Cla			T 42- 116
TIME			PRESSURE	VOLUME	REMARKS
min .			mm .	ml.	
-	25	30	5	-	
45	35	40	8		
60	90 (194°F)	40	8	-	
70	120	40	8	10	CLEAR DISTILLATE
95	125	40	5	25	
105	125	40	5	30	
120	130	40	5	50	
130	130	40	5	70	
<u>150</u>	130	40	4	80	CUTI
170	205	50	2	<u>80</u> 2	-
190	210 (410°F)	50	2	25	CLEAR DISTILLATE
200	215	50	2	35	
210	215	55	2	50	
220	215	55	2	65	
240	215	55	2 2	80	
250	215	55	2	90	
260	215 (419°F)	55		100	
270	220	55	2	120	
28Q	220	55	2 2 2	130	
285	225 (437°F)	55	2	140	1. CUT II T 42 -116

THIS CUT WAS USED FOR FURTHER REACTION

WITH ZINC OCTOATE A N D ANILINE.

TABLE 198. ADDITIONAL STUDIES WITH TRI OCTYL PHOSPHATE

I.	T 42- 118	used	60 g. TETRA ISOPROPYL TITANATE
			180 g. TRI OCTYL PHOSPHATE

			WT OT3	U.J g.		
	REMARKS	VOLUME	Pressure	VARIAC	TEMPERATURE	TIME
	o	ml	mm .			min
		-	2-10	F) 35	25 (77	_
		_	2-10	40	25	25
	CLEAR COLORLESS	10	2-10	45	50	45
		25	2-10	45	120	70
		40	2-10	45	150	90
		55	2-10	45	150	100
		70	2-10	F) 45	150 (302	120
	_ CUTI	80	2-10	45	155	150
	CLEAR DISTILLATE	10	2-10	F) 45	200 (392	180
		35	2-10	45	205	200
		65	2-10	45	215	210
		100	2-10	F) 45	215 (419	220
		120	2-10	45	220	230
		135	2-10	45	220	240
18	1.CUTII T42-1		2-10	45	215	250

II.	T 42-11	7				
		REACTING	100 g .CUT	II OF T 42	-116	
				C OCTOATE A		
			50 g ANI			HEAT EVOLVED UPON MIXING
	-	25	35	2-10	-	
	60	55	55	2-10	-	
	70	100	60	2-10	(one drop
	90	110	55	2-10	10	CLEAR COLORLESS DISTILLATE
	100	115	55	2-10	20	
	110	115	55	2-10	45	
	120	120	55	2-10	65	
	125	125 (257	F) 55	2-10	85	
	135	135	o 55	2-10	105	CUTI
	145	145 (293	F) 55	2-10	25	CLEAR COLORLESS DISTILLATE
	150	145	55	2-10	35	•
	160	165 (329		2-10	50	
	170	215	o 55	2-10	70	•
	175	215 (419		2-10	80	
	185	230	60	2-10	120	
	187	233	60	2-10	145	
	190	200	60	2-10	180	
	195	180	60	2-10	220	_ CUTII
	220	185	75	2-10	5	"A DEEPER YELLOW DISTILLATE
	240	270 (518	F) 75	2-10	15	CUT III
	280	320 - 3	3 5 75	2-10	PRO	DUCT COMEND OVER
		(608°F-63	(50F)		RKER II	
					I LOWE	r in viscosity
		(TABL	E CON	TINUED) ;	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

61.

TABLE 198. (CONTINUED)

ADDITIONAL STUDIES WITH TRI OCTYL PHOSPHATE(CONTINUED)

III. T 42- 119

USING 100 g. CUT II OF T 42 -118 450 g. ZINC OCTOATE 18% 50 g.ANILINE

			HEAT (ON MIXING	
TIME	TEMPERATURE	VARIAC	Pressure	Volume	remarks
min .				<u> 11.</u>	
-	28	35	2-10	-	
70	45	50	2-10	-	
90	105	55	2-10	A	FEW DROPS
100	115	55	2-10	20	
110	118	55	2-10	25	
120	120	55	2-10	35	
130	120	55	2-10	55	
140	128	55	2-10	75	
150	130 (266°F)	55	2-10	190	
160	130	55	2-10	110	
170	145	55	2-10	120	
180	155 (311°F)	55	2-10	145	l. CUT I
190	200	55	2-10	10	
210	220	55	2-10	35	
220	225	6 0	2-10	55	
230	230 (446°F)	60	2-10	75	
240	230	60	2-10	160.	
260	185	60	2-10	145	
265	240 (464.°F) 65	2-10	180	
270	260	65	2-10	210	
280	275 (527°F)	65	2-10	220	CUT II
	PRODUCT	CAME OVER	BETWEEN	3 2.50	AND '340°C.
				$(617^{\circ}F)$	(644 ^o f)

IV. CHARACTERISTICS OF THE PRODUCT OF III

FLASH POINT 2 9 2°C . 557°F .

FLAME POINT 3 26° C ... 6 1 8° F.

OXIDATION TEST ... USING 22.4 g.PRODUCT T 42-119 WITH METALS (Cu Al STEEL)

AT 2 0 0 C . THREE DAYS ... DARK IN COLOR. ONLY SLIGHT

(392°F) SEDIMENT ON BOTTOM T 42- 121

V. BENZYLALCOHOL MODIFICATION OF T 42-119

MADE USING 100 g.T 42-119 WITH 90 g.BENZYLALCOHOL (T 42-120)

TAKING OFF 60 ml.LOW CUT AT 100 °C (2-10 mm PRESSURE) AND 20 ml.YELLOW CUT AT 130 °C .(2-10 mm PRESSURE)

VI. BENZYLALCOHOL MODIFICATION OF T -42- 117 USING 72 g.T -42-117 AND 25 g.BENZYLALCOHOL

TAKING OFF 30 ml LOW CUT AT 88°C AND TAKING THE DARK BROWN FLUID FROM THE FLASK: FLASH POINT: 270°C 518°F.
FLAME POINT: 305°C 580°F.

TABLE 199.

REACTING TETRA ISOPROPYL TITANATE WITH TRI OCTIL PHOSPHATE

IN PRESENCE OF A SMALL AMOUNT OF A1 Cl3

T 38 -102

USED: 60 g.TETRA ISOPROPYL TITANATE

180 g. TRI OCTYL PHOSPHATE

0.5 g. Al Cl3

TIME min .	TEMPERATURE C.	PRESSURE	VARIAC	VOLUME ml.	REMARKS
_	26	2-4	40	_	
35	30 o	~ ~	45	_	
50	95 (203 F))	45	10	
50 58 90	95		45	20	
90	95		50	30	CLEAR ALMOST COLORLESS LIQUID
105	100		50	40	·
120	95		50	60	
					CUT I
130	120(248°F)	2-4	50	5	
145	145(293°F)		60	<u>10</u>	
					CUT II
160	195(383 ⁰ F)	2-4	60	10	
170	198		60	20	CLEAR LIQUID
180	196		60	40	
192	195		60	60	
216	195		60	90	
223	196		60	100	

100 g. OF THIS MATERIAL WERE MIXED WITH

450 g.ZINC OCTOATE AND

50 K. ANILIN AND WERE DISTILLED IN VACUUM.

NEW PRODUCT OBTAINED AT 310°C .(T 42-123)

(590°F)
HYDROLYTIC STABILITY TEST OF THIS NEW PRODUCT T 42-123

T 38 - 100

USED 75 g. OF THE PRODUCT WITH 2 5 g. WATER AND

1.1308 g. COPPERSTRIP (SANDED AND WASHED WITH BENZENS AND ACETONE)

AFTER 72 HOUR TEST THE FLUID IS DARKER, BUT TWO PHASES CLEARLY

SEPARATE. THE COPPER STRIP APPEARS IN GOOD CONDITION. WEIGHT: 1.1303 g.

WEIGHTLOSS 0.0005 g.

63.

TABLE 200.

REACTING TOGETHER TETRA ISOPROPIL TITANATE, TRI OCTIL PHOSPHATE

ANILINE AND ZINC OCTOATE

I. T 42 - 124

(

50 g. TETRA ISOPROPYL TITANATE USED:

50 g. TRI OCTYL PHOSPHATE

50 g. ANILINE 450 g ZINC OCTOATE

	4,0	8 mino	OCIONIE		HEAT ON MIXING
TIME	TEMPERATURE	VARIAC	PRESSURE	VOLUME	E REMARKS
min .	. <u> </u>		RM,	ml.	
	25	45	2-10	-	
35	29	45	2-10	-	
90	45 (113	9) 45	2-10	20	CLEAR DISTILLATE
110	50	50	2-10	45	
120	50	50	2-10	75	
140	55	50	2-10	95	
155	55	50	2-10	125	
160	65	50	2-10	145	
	_	•		. 4	CUT I
180	140(284 ⁰	F) 50	2-10	15	YELLOW DISTILLATE
190		55	2-10	-35	
_,			4		CUT II
	3 1 5(599	^A F) 70	2-10	100	DARK YELLOW
	370-38	0 70	2-10	100	DARK ORANGE, VERY VISCOUS
	(698°F 716	OF)			•
12 -12	25 BENZYLAL	COROL MO	DIFICATION	OF T.	

USED 140 g.PRODUCT T 42- 124

160 & BENZYLALCOHOL

30 35 40 2-10 - 60 95 40 2-10 10 CLEAR COLONLESS 70 120 40 2-10 35	
60 95 40 2-10 10 CLEAR COLONLESS	
70 120 40 2_10 35	S
10 120 40 2-10))	
80 125 40 2-10 50	
110 120 45 2-10 70	
120 120 45 2-10 120	
140 130 45 2-10 <u>160</u>	
CUT I	
160 145 45 2-10 20 YELLOW MATERI	IAL
200 235 45 2-10 <u>20</u>	

PRODUCT CAME OVER BETWEEN 3 4 Q AND 3 5 0 °C. (644°F. AND 662°F.) III. T 42- 125 REACTING THE PRODUCT T 42- 124 WITH 2 CHLORO STHANOL USED 100 g. RACH

		COED TOO E ' I	MAUA				
	-	25	3 0	2-10	-		
	20	40	3 0	2-10	10	LIGHT	YELLOW GLEAR
	90	50	30	2-10	60		
	140	55	40	2-10	95	DARKER	TELLOW CLEAR
	220	205	55	2-10	110	CUT I	
. 64.	240	300-30	5 65	2-10	PRODUCT	AEST DY	RK IN COLOR

(572°F.-581°F) FLASH POINT: 260°C (500°F) FLAME POINT: 264°C (507

TABLE 201.

REACTING TRI OCTIL PHOSPHATE AND ANILINE WITH TETRA ISOPROPIL TITANATE AND ZINC OCTOATE IN A SINGLE REACTION.

T 42- 128

USED 9 0 g.TRI OCTYL PHOSPHATE

(

30 g.TETRA ISOPROPIL TITAMATE

60 g AMILINE AND

540 g ZINC OCTOATE 18 \$

TIME	TEMPERATURE C .	VARIAC	PRESSURE	VOLUME ml	REMARKS
-	25	45	2-10	-	
20	50	45	2-10	1	
20 30 45 90	70 (158 ⁰)	r) 45	2-10	26	CLEAR COLORLESS
45	75	45	2-10	86	
90	80	55	2-10	110	
110	104(219 ⁰ 1	5) 55	2-10	135	
130	150	55	2-10	175	SLIGHTLY YELLOW BUT CLEAR
150	160 (320°)	F) 60	2-10	200 ml	•
	•				CUTI
160	190(374°)	F) 60	2-10	35	YELLOW AND CLEAR
170	200 (392)	7) 60	2-10	55	
175	206	60	2-10	95	
240	240 o	60	2-10	155	much fumes
250	240(464)	F) 60	2-10	180	
					A TI M TT

PRODUCT CAME OVER BETWEEN 3 1 0 AND 3 1 2 C. (590°F.) (593°F)

YIELD 150 ml.

TABLE 202.

REACTING TETRA ISOPROPYL TITANATE WITH TRI OCTYLPHOSPHATE A N D

TRI CRESIL PHOSPHATE

I. T 42- 114 USING ... 180 g .TETRA ISOPROPYL TITANATE

180 g. TRI OCTYL PHOSPHATE

180 g TRI CRESYL PHOSPHATE NO HEAT ON MIXING

TIME	TEMPERATURE 1	VARIAC	PRESSURE	VOLUME	REMARKS
min .	C .		33 .	ml.	•
-	30	35	2-10	-	
60	80	45	2-10	-	
90	120	40	2-10	10	CLEAR YELLOW DISTILLATE
120	140	45	2-10	40	
160	140	45	2-10	80	N
220	140(284°F) 45	2-10	130	
240	160 (320°F) 45	2-10	170	DARKER MATERIAL COMING OVER, SEPARATED
260	150 (302°F		2-10	200	•
					USED FOR REACTION WITH
					ZINC OCTOATE

II. T 42- 115 USING 191 g. DISTILLATE I

	191	g . ZINCOCTOATI	E 18% HEAT AND COLOR CHANGE ON MI	XING
_	25	35 4	<u>-</u>	
30		45 4	10 CLEAR AND COLORLESS	
40		45 4	20	
80	80	45 4	30	
100	95 (203°F)	15 4	50	
110	95	15 <i>1</i> .	65	
120	110(230°F) A	15 4	90	
125	115 (239°F)	45 4	100	
130	120 (248°F)	45 4	110 CUTI	
7.40	0		AA 1100 / AT AT AT AT AT	
140	130 (266°F)	45 4	20 YELLOW DISTILLATE	
150	135 (275°F)	45 4	30	
160	145	45 4 45 4	55	
170	145 (293°F)	45 4	75	
200	150 (302°F)	45 4	100	
220	140	45 4	120	
240.	140 (284°F)	15 4	135	
260	135 (275°F)	45 4	145 CUTII	
280	150	55 4	10 DARK RED DISTILLATE	
300		55 4 50 4	20	
310		70 4	20 CUTII	
	305/3100		ADOUGH 150 /10% -1 DECOMING	
320	3 0 5 / 3 1 0° (581°F/590°F)	70 4	ABOUT 150 /175 ml.PRODUCT	

THIS PRODUCT IS LOWER IN VISCOSITY, BUT DARKER THAN REGULAR TPT/ZINCOCTOATE PRODUCT

TABLE 203.

REACTING TETRALSOPROPYL TITANATE WITH ONE ALIPHATIC A N D

ONE AROMATIC ORGANOPHOSPHATE

T-38 - 89 AND 91

I. USED TRI OCTYL PHOSPHATE (TOF) 62 g. (1/6 mole)

TRI CRESYL PHOSPHATE (TCF) 61 g.

TETRA ISOPROPYL TITANATE (TPT)... 95 g.(1/3 mole)

TRACE OF AL Cl3

NO HEAT EVOLVED ON MIXING:

TIME min .	TEMPERATURE C.	VARIAC	PRESSURE	VOLUME nl	Weight	REMARKS
-	29	40	2-4	_		
40	35 (95°F)	40	·	-		MIXTURE TURNS TO DAR YELLOW, THEN GRADUALL TO RED.
65	115	45	4	20		
80	115 11 5 (239 ⁰ F)	45	4	35		
95	121	45	4	55		
120	120	45	4	75		YELLOW LIQUID
135	120 (248°F)	45	4	85		

CUT I

RED RESIDUE LEFT IN FLASK AS A SOLID.

THIS RESIDUE BURNS IN AN OPEN FLAME READILY.

II. REPEATING WITHOUT AL CL3 AND IN BENZENE SOLUTION T 38 - 93

USED.... TOF 93 g (TRI OCTYL PHOSPHATE)
TCF 93 g (TRI CRESYL PHOSPHATE)

TPT ... 142 g (TETRA ISOPROPYL TITANATE)
WITH BENZENE ... 5- g. AS SOLVENT

FIRST THE BENZENE DISTILLED OFF UNDER ATMOSPHERIC PRESSURE. VARIAC AT 50 TEMPERATURE ... 81 C. TIME ... 75 minutes

VACUUM	DISTILLATION			(177°F)	•
min .	C.	VARIAC		ml.	REMARKS
10	35	40	2-4	_10	REMAINING BENZEME TAKEN OFF
10 18	108 (226°	F) 40		5	
25	120	50		10	
40	129 (264°	F) 50		75	YELLOW LIQUID
70	1/0	5 0		100	
7 80	155 (311°	F) 50		130	
110	135			190 ml.	MATERIAL IN FLASK TURNS RED
	•		67.		GRADUALLY.ON COOLING SOLID BURNS BRIGHTLY IN OPEN FLAME

(Continued from page 57.)

SECTION C. ATTEMPTS WITH OTHER ORGANO PHOSPHATES. (TABLES 204-206).

- 1. The attempt was made to increase the non burning characteristics by introducing a chlorine group together with the phosphates, such as reacting tetra isopropyl titanate with a tris-B-chloroethyl phosphate; but the results were not satisfactory as yet.

 (TABLE 204).
- 2. In TABLE 205 a tri butoxy ethyl phosphate was used with tetra isopropyl titanate. No high cut material was obtained, but the flask content turned into a material which appeared to have some self-extinguishing properties. In a subsequent study in TABLE 206, the self-extinguishing properties were further traced to the flask content which had remained after two cuts of lower temperature distillates had been taken off. Still further studies will be required.

SECTION D. CONTINUED WORK ON REACTION BETWEEN TITANATES AND DI 2 ETHYL HEXYL PHOSPHORIC ACID. (TABLES 207-208).

In TABLE 207 the 2 ethyl hexyl phosphoric acid is reacted with tetra isopropyl titanate, and a very viscous material is formed. When this reaction product was further reacted with zinc octoate and aniline a high cut distillate was obtained which came over at 2-10 mm. hg. pressure at 310°C. - 330°C. (590°F. - 626°F.). The properties of the material are still under study.

1

TABLE 204.

ATTEMPTING TO INTRODUCE TRIS B- CHLORETHYL PHOSPHATE

T 38 - 88

I. USING 200 g. TRIS B-CHLOROETHYL PHOSPHATE ($Cl-Ch_2-Ch_2$ 0)3 PO

AND 100 g.TETRA ISOPROPYL TITANATE

WITH A TRACE OF AL CL3

TIME min .	TEMPERATURE C.	VARIAC	PRESSURE	VOLUME ml	Weight 6.	REMARKS
60	27 (80 ⁰)	F) 40	2-4			
60 %	27 (80 ⁰) 132 (269 ⁰	F) 40	•	5		
104	139	40		25		
107	143 (289 ⁰	F) 40		40		
116	140	40		65		
122	140	40		75		
125	142	40		80_		CLEAR MATERIAL
140	122 (251 [°]	°F) 40		20	75 g. Ct	JT I DARK BROWN

AT THIS POINT THE MATERIAL IN THE DISTILLATION FLASK TURNED BROWN,

BECAME VISCOUS AND SOLIDIFIED. THIS MATERIAL BURNS READILY IN AN OPEN FLAME.

II. T 38 - 92

135

REPETITION OF I , BUT USING P $_2$ O $_5$ AS CATALYST INSTEAD OF Al Cl $_3$ USED THE SAME QUANTITITES AS IN I

NO HEAT EVOLVED ON MIXING.

-	25	40	4.5	_	
10	25	40	2	-	
70	100 o	40	4	30	CLEAR LIQUID
90	110(230 F)	40	4	60	
100	112	50	4	80	CLEAR LIQUID
110	120(248°F)	50	4	85	
120	121	50	4	_90_	

THE MATERIAL IN THE DISTILLATION FLASK TURNS DARK BROWN AND MORE VISCOUS
140(284°F) 50 5 10 ml. YELLOW FLUID

THE FLASK CONTENT SOLIDIFIED.

TABLE 205.

REACTING TETRA ISOPROPYL TITANATE WITH

TRI BUTOXY ETHYL PHOSPHATE:

T 38 - 94

USING 142 g .TETRA ISOPROPYL TITANATE (1/2 mole) AND

135 g TRI BUTOXY ETHYL PHOSPHATE (1/2 mole)

N O HEAT EVOLVED ON MIXING

WITH TRACE OF AL Cl3

TIME min .	C	VARIAC	PRESSURE	VOLUME ml .	WEIGHT	REMARKS
	26	40	2-4	-		
60	40 (104°	F) 50		-	REACTIO	M MIXTURE TURNS DARKER GRADUALLY
133	80 (176 ⁰)	F) 40	2-4	15	CLEAR I	ISTILLATE , SLIGHTLY
150	85	۸0		75		SH"SMOKES" (HYDROLYZES)
170	92(197°F) 40		120		ACT WITH AIR
180	95	40			C U T	.
205	105	45	2-4	50		
235	110	45		75	CUT	II
250	130	45	2-4	5		
260	135	50		10		
270	140(284°F) 55		20		
295	140(284°F 130 (266°	F) 55		40 m l.	•	

THE MATERIAL IN THE FLASK IS SLIMY GRAY. WILL FURTHER BE STUDIED, BECAUSE IT APPEARS TO HAVE TO SOME DEGREE SELF EXTINGUISHING PROPERTIES.

TABLE 206.

REACTING TETRA ISOPROPYL TITANATE WITH TRI BUTOXY ETHYL PHOSPHATE

T 43 - 18

USED 107 g.TETRA ISOPROPYL TITANATE

102 g .TRI BUTOXY ETHYL PHOSPHATE

SMALL AMOUNT OF AL Cl3

NO HEAT ON MIXING

	TEMPER		VARIAC	PRESSURI		REMARKS
min.	<u> </u>			mm,	ml,	
-	25	(80°F)	40	5 5 4	-	
25	27	(80 1)	40	5	-	
40	100		40	4	10	CLEAR COLORLESS DISTILLATE, POT DARK ORANGE
60	100		40	4	60	
70	95	(203°F)	ΔO	À	<u>70</u>	
				~		CUTI
			THE CONDEN EANED AND T			D DISTURBED THE DISTILLATION.
120	133		50	4	10	CLEAR COLORLESS
125	147	(296 F)	50	4	15	
135	170	(338 ⁰ F)	50	4	25	
		POT 1	TEMPERATURE	WAS HE	25 RE 220 C .	SAMPLE OF POT MATERIAL TAKEN
RESUME	D TEST					CUTII
30		(302°F)	50	8	10	CLEAR COLORLESS
45	170	(338°F)	50	g	30	POT IS NOW DARK AND VISCOUS
~,	_,,	()),	,,,	•	,	CUT III
	REA	CTION S	TOPPED WHEN	POT MA	TERIAL BECA	ME VERY VISCOUS AND SOLIDIFIED
	ON	COOLING				

STUDIES ON THE CUTS:

- 1) THE SAMPLE TAKEN FROM POT AFTER CUT II HAD COME OVER: IT WAS WASHED WITH ACETONE AND BENZENE. THE SOLVENTS WERE BOILED OFF. THE REMAINING FLUID WAS EXPOSED TO AN OPEN FLAME. AFTER 3 SECONDS A LOW CUT FLASHED OFF WITH A LIGHT BLUE SMALL FLAME. AFTER 5 SECONDS THE FLUID DEVELOPED A FLAME AND TURNED SOLID. THE FLAME EXTINGUISHED ITSELF. THE SOLID WAS IN FURTHER TESTS SELF EXTINGUISHING.
- 2) THE POT MATERIAL AFTER CUT III SEEMED TO BE ABLE TO GEL UNDER FURTHER HEAT EXPOSURE.
- 3) CUT III ITSELF BURNED WHEN EXPOSED TO A FLAME (NOT SELF EXTINGUISHING)

(

TABLE 207

REACTING A DI-2 ETHYL HEXYL P H O S P H O R I C ACID

WITH TETRA ETHYL HEXYL TITANATE (TOT) WITH P205 AS CATALYST (T 43- 9)

I.USING 170 g. DI 2 ETHYL HEXYL PHOSPHORIC ACID

75 g . TETRA 2 ETHYL HEXYL TITANATE

0.2 g. P205

HEAT EVOLVED ON MIXING

TIME min.	TEMPERATURE C.	VARIAC	PRESSURE	VOLUME	REMARKS
_	40	40	2	_	
30	63	40	2	25 ml∘	CLEAR COLORLESS
50	60 (140°F) 40	2		CUTI
85	95	50	2	25 ml.	CLEAR COLORLESS
95	135 (275 F 175 (347°F) 50	2	35 ml	
110	175 (347°F) 60	2	70 ml.	SLIGHTLY YELLOW NOW FUMING

THE POT MATERIAL TURNED BLACK AND VERY VISCOUS AND SUDDENLY FLOWED OVER

INTO THE CONDENSER.

II. T 43-10 REPEAT TEST IN BENZENE SOLUTION

USING 150 g. DI 2 ETHYL HEXYL PHOSPHORIC ACID
50 g. TETRA 2 ETHYL HEXYL TITANATE TOT
50 g. BENZENE
0.2 g. P₂0₅ HEAT ON MIXING

	33	40	2	_		
	70	40	2	10	CLEAR COLORLES	3S
50	60	40	2	35		
80	95	50	2	60		
90	105 (221°F)	50	2	65		
	. (. (0 0)		_		CUTI	
110	165 (329°F)	55	2	75	Light Green	CLEAR

AGAIN A VISCOUS BLACK GEL MATERIAL DEVELOPED IN THE POT

III . T 43- 11 REPEAT TEST OF II WITH THE SAME AMOUNTS

~	<i>3</i> 5	50	ATM	_		
<i>3</i> 0	8 5	50	ATM	25	CLEAR COLORLESS (ASSUMED	TO BE
75	85	50	ATM	_50_	CUTI BENZENE)	
120	TO 180 (356°F)	50	ATM	50	CLEAR COLORLESS C U T II	
	THE POT MATER	IAL I	IS NOW MEDIUM	BROWN	WITH SOME SEDIMENTATION.	

ON HEATING IT WITH BENZYLALCOHOL, WHEREBY SOME OF THE ALCOHOL IS DRIVEN OFF,
THE PRODUCT WAS FURTHER DILUTED WITH ETHYL ETHER. WITH PETROLETHER NOW A MATEp.72. RIAL IS PRECIPITATED WHICH MIGHT BE A POLYMER, WHICH CAUSED THE GELATION IN II

TABLE 208.

MODIFICATION OF THE REACTION PRODUCT BETWEEN TETRA ISOPROPYL TITANATE AND DI 2 ETHYL HEXYL PHOSPHORIC ACID (T 42 -106), RESUMED

FROM TABLE 143 (page 60) OF THE THIRD REPORT

I. T 42- 122 REACTING 100 g. T 40 - 106 DISTILLATE WITH

50 g ANILINE AND

450 & ZINC OCTOATE 18%

			,	HEAT ON MIX	ING G	REEN IN COLOR
	TIME	TEMPERATURE	VARIAC		VOLUME	REMARKS
	min.	<u> </u>		<u> </u>	ml.	
	- 20	29 115 (239°I	40 (1)	8 8	10	AT THE INTOMITE AFTE
	30					CLEAR DISTILLATE
	45	118	50 50	2-10 2-10	25	
	60	125	50 50	2-10 2-10	45 70	
	90	1 30 1 30 (266 ⁰ I	50 E) 50	2-10	85	
	100 110	135 (200)	50	2-10	105	
	120		50	2-10 2-10	135	
	130			2-10	145	
	140	145 185 (365°)	F) 60	2-10	155	
	160	220	60	2-10	225	
•	180	230	60	2-10	240	
	200	2 30 (446°)	F) 60	2-10	290	
	210	232		2-10	320	
	240	190 (374°)	F) 60	2-10	325	
	260	250 (482°)		2-10	340	
		L)0 (40% .	.,			,
	300	310°-32 (590°F617	5 ° 60	2-10	ABOUT .	125 ml PRODUCT
		• • •	•		OTT N #0	
II.	T 42-12	3 REPEAT TE	ST WITH	THE SAME AM	UUMTS	
	_	29	45	2-10	_	
	30	95	45	2-10	10	
	45	115	45	2-10	45	
	50	90	40	2-10	75	
	75	130 (266°	F) 40	2-10	125	
	90	125	40	2-10	145	
	140	135	45	2-10	180	
	160	210	50	2-10	210	
	200	215 (419°	F) 50	2-10	310	
	210	95 195 (383)	55	2-10	335	
	220	195 (383)	F) 60	2-10	340	
	240	285 (545°	F) 70	2-10	343	
	300	310-3		2-10	ABOUT 1	25 ml PRODUCT
		(590°F。- 6	26 [°] F)			

PART IV. ADDITIONAL WORK ON THE INHIBITION OF SILICONE FLUID 510-50 cps. (DOW).(TABLE 209)

1

Throughout the preceding reports work has been reported on the increase of the heat resistance of silicone fluid 510-50 by reacting it with cerium 2-ethyl hexanoate in the presence of DI SALICYLAL PROPYLENE DIAMINE (Copper Inhibitor DSPD 50, DuPont). It is interesting that this silicone fluid is evidently not a uniform material, but consists of various components, some of which cause a gelation of the fluid when heated at 260°C.-300°C. (500°F-572°F.) under a stream of air passing the fluid.

It is a regularly observed phenomenon that the heating of the 510 fluid with the two listed additions in the inhibition treatment produces color changes and an increased heat resistance, but it is also accompanied with a considerable loss in weight.

Since the total weight of the added cerium octoate and of the copper inhibitor amounts only to about 1.7% of the used weight of silicone fluid, this weight loss is nearly fully a weight loss from the fluid itself.

TABLE 209.

THE INHIBITING OF THE DOW FLUID 510

I. NEW PREPARATION OF THE CERIUM 2 ETHIL HEXANOATE T 40 - 117

34.6 g. 2 ETHYL HEXANOIC ACID WAS DISSOLVED IN

WATER AND ETHANOL.

IT WAS NEUTRALIZED WITH NACH TO PHENOLPHTHALEIN EMDPOINT.

21.92 g CERIC AMMORIUM NITRATE WERE DISSOLVED IN ETHANOL.

THE SOLUTIONS WERE MIXED AND A YELLOW GREEN SOLID PRECIPITATED.

THE PRECIPITATION WAS COLLECTED BY FILTRATION AND WAS WASHED WITH

WATER AND ALGOHOL.

IT WAS DISSOLVED IN ETHYL ETHER AND FILTERED. THEN THE ETHER WAS AGAIN EVAPORATED.

II. PREPARATION OF THE INHIBITED FLUID 510

MATERIAL 1200 g .DOW FLUID 510

1

2.4 g .2 ETHYL HEXANOATE CERIUM SALT OF I

17.2 g. COPPER INHIBITOR DU PONT 65

SET UP AT 285° C WITH ABOUT 40 liters AIR / HOUR. RUN FOR 1 2 0 HOURS (545° F) UNTIL COLOR CHANGED FROM RED TO LIGHT BROWN. FILTERED THROUGH MOLECULAR SIEVE USING ACETONE AS DILUENT

ACETONE EVAPORATED

WEIGHT RECOVERY 900 g.

WEIGHT LOSS 2 5 \$

III. REPEAT TESTS T 43-34 T 43-36. CERIUM SALT 1.6 g. 1.6 g. COPPER INHIBITOR: 12.8 g. 12.8 g. 805.5 g. TEST DURATION 72 hrs .

TEMPERATURE .. 275 - 290 °C .

(527°F-554°F) FLUID 800 g. 112 hrs. 280°C. (536°F) PAPER CLEAR GOLDEN CLOUDY 20 \$ WEIGHT LOSS 235

WORK SCHEDULED FOR THE NEXT REPORT PERIOD.

The work in the next report period is scheduled to include the following aspects:

- 1. Preparation of a larger amount of the tetra butyl tin modification of the reaction product between tetra isopropyl titanate and basic zinc octoate.
- 2. Preparation of a larger amount of the corresponding modification with tri isopropyl borate.
- 3. Evaluation tests on both these materials.
- 4. Further study of the reactions between tetra alkyl titanates and tin organics, using, for instance, di-n-butyl tin dimethoxide, tri-n-butyl tin 2-ethyl-hexanoate, hexabutyl di tin, or similar compounds.
- 5. Continuation of the study of certain of the phosphate derivatives from Part III of this report.
- 6. Efforts to introduce molybdenum organic groups in these titanates.
- 7. Further studies on the relationship between high viscous fluids of good lubricity with low viscous diluents of poor lubricity in four-ball wear-tests at varying temperatures and weight loads.