Mathematics for Robotics ROB-GY 6103 Homework 1 Answers

September 18, 2023

Shantanu Ghodgaonkar

Univ ID: N11344563 Net ID: sng8399 Ph.No.: +1 (929) 922-0614

Question: 1. (a) Negate $(P \wedge Q)$

Answer: We must find the negation of the given expression $(P \wedge Q)$

According to De Morgan's Laws, $\sim (P \wedge Q) = \sim P \vee \sim Q$

P	Q	$P \wedge Q$	$\sim (P \wedge Q)$	$\sim P$	$\sim Q$	$\sim P \vee \sim Q$
F	F	F	T	Τ	Т	T
F	$\mid T \mid$	F	T	${ m T}$	F	T
T	F	F	T	\mathbf{F}	Т	${ m T}$
T	$\mid T \mid$	Т	F	F	F	F

Question: 1. (b) Negate $(P \lor Q)$

Answer: We must find the negation of the given expression $(P \vee Q)$

According to De Morgan's Laws, $\sim (P \vee Q) = \sim P \wedge \sim Q$

ſ	Р	Q	$P \lor Q$	$\sim (P \wedge Q)$	$\sim P$	$\sim Q$	$\sim P \lor \sim Q$
ĺ	F	F	F	T	Т	Т	Τ
	\mathbf{F}	Т	Τ	\mathbf{F}	Τ	F	\mathbf{F}
	Τ	F	Τ	\mathbf{F}	F	${ m T}$	\mathbf{F}
	Τ	Т	Τ	\mathbf{F}	F	\mathbf{F}	\mathbf{F}

Question: 2. (a) Negate P: "For every integer n, 2n + 1 is odd."

Answer: $\sim P$: "For some integer n, 2n + 1 is not odd"

Question: 2. (b) Negate P: "For some integer n, 2n + 1 is prime."

Answer: $\sim P$: "For every integer n, 2n + 1 is not prime"

Question: 2. (c) Let A be an $n \times n$ real matrix and $\lambda \in \mathbb{R}$. $P: \exists v \in \mathbb{R}^n, v \neq 0$, such that $Av = \lambda v$."

Answer: $\sim P$: " $\forall v \in \mathbb{R}^n, v \neq 0$, such that $Av \neq \lambda v$ "

Question: 2. (d) Let $f: \mathbb{R} \to \mathbb{R}$ be a function. $P: \forall \eta > 0, \exists \delta > 0 \text{ such that } |x| \leq \delta \Rightarrow |f(x)| \leq \eta |x|$

Answer: $\sim P$: " $\exists \eta > 0, \forall \delta > 0 \text{ such that } |x| \leq \delta \Rightarrow |f(x)| > \eta |x|$ "

Question: 3. Prove that $\sqrt{7}$ is irrational.

Assume that "Let m be an integer. If 7 divides m^2 , then 7 also divides m" is true

Answer: We will prove this by contradiction. Suppose that $\sqrt{7}$ is a rational number.

Then there exist two integer p and q without common factors such that,

$$\sqrt{7} = \frac{p}{q} \tag{1}$$

Squaring both sides,

$$7 = \frac{p^2}{g^2} \tag{2}$$

Rearranging $Eq^n(2)$,

$$7q^2 = p^2 \tag{3}$$

 $Eq^{n}(3) \Rightarrow p^{2}$ is a multiple of $7 \Rightarrow 7$ is a factor of p (Using given assumption) \rightarrow (3.1)

Consider, $\exists r \in \mathbb{Q} \mid p = 7r \leftarrow \text{substitute in } Eq^n(3)$

$$7q^2 = 49r^2 \tag{4}$$

$$q^2 = 7r^2 \tag{5}$$

 $Eq^{n}(5) \Rightarrow q^{2}$ is a multiple of $7 \Rightarrow 7$ is a factor of q (Using given assumption) \rightarrow (5.1)

From statements (3.1) & (5.1) we can deduce that p and q do have the common factor of 7, which goes against the definition of rational numbers.

 \therefore by Contradiction, $\sqrt{7}$ is irrational. **QED**.

Question: 4. Let A be a square matrix. Prove: if det(A) = 0, then A is not invertible.

Answer: We shall prove this by contradiction.

Consider a square matrix A such that det(A) = 0 and assume that A is invertible.

 \Rightarrow there exists a matrix, A', such that,

$$A \times A' = I \tag{1}$$

Now, take the determinant of both sides,

$$det(A \times A') = det(I) \tag{2}$$

It is given that det(AB) = det(A)det(B); Applying this relation, we get,

$$det(A) \times det(A') = det(I) \tag{3}$$

We know that, det(I) = 1 and it is given that det(A) = 0

$$0 \times det(A') = 1 \tag{4}$$

$$\Rightarrow 0 = 1 \tag{5}$$

 $Eq^n(5)$ states an impossibilty \Rightarrow our initial assumption that A is invertible was wrong. \therefore a materix A having det(A) = 0 is Non-Invertible. **QED**

Question: 5. Prove that, for all integers,

$$n \ge 1, \sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$$

Answer: We shall prove the given statement using standard induction.

- Step $\underline{0}$: For $n \in \mathbb{Q} | n \ge 1$, $P(n) = \sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$
- Step 1: For the base case, n = 1,

$$P(1) = \sum_{k=1}^{1} \frac{1}{k(k+1)} = \frac{1}{1+1}$$
$$\frac{1}{1(1+1)} = \frac{1}{2}$$
$$\therefore \frac{1}{2} = \frac{1}{2}$$

• Step 2: Now, we must show that the induction hypothesis is true. Using the fact that for $1 \ge j \ge k$, show that P(k+1) is true. So for, n=k+1

$$\Rightarrow P(k+1) = \sum_{k=1}^{k+1} \frac{1}{k(k+1)} = \frac{k+1}{(k+1)+1}$$

$$= \sum_{k=1}^{k} \frac{1}{k(k+1)} + \frac{1}{(k+1)((k+1)+1)} = \frac{k+1}{(k+1)+1}$$

$$= \frac{k}{k+1} + \frac{1}{(k+1)((k+1)+1)} = \frac{k+1}{(k+1)+1}$$

$$= \frac{k}{k+1} + \frac{1}{(k+1)(k+2)} = \frac{k+1}{k+2}$$

Finding the LCM of the LHS,

$$=\frac{k(k+2)+1}{(k+1)(k+2)}=\frac{k+1}{k+2}$$

Cancelling out (k+2) on the denominator for both sides,

$$= \frac{k(k+2)+1}{(k+1)} = k+1$$

Mulitplying the numerator on both sides by (k+1),

$$= k(k+2) + 1 = (k+1)(k+1)$$
$$= k^2 + 2k + 1 = (k+1)^2$$

Rewriting LHS,

$$=(k+1)^2=(k+1)^2$$

Dividing both sides by (k+1),

$$= k + 1 = k + 1$$

$$\therefore LHS = RHS$$

Hence, P(k+1) is true. Because we have shown that P(1) is true and for all $n \ge 1, P(n) \Rightarrow P(n+1)$, by the Principle of Induction, we conclude that,

$$\forall n \in \mathbb{Q} | n \ge 1 , \ P(n) = \sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$$

QED.

Question: 6. (a) Prove that, for all integers, $n \ge 12$, there exist non-negative integers k_1 and k_2 such that $n = k_1 4 + k_2 5$. Is the same statement true for $n \ge 8$?

Answer: We shall prove the given statement using strong induction.

- Step 0 : For $n \ge 12$, $P(n) : \exists k_1, k_2 \in \mathbb{Q} \text{ and } k_1, k_2 \ge 0 \mid n = k_1 4 + k_2 5$
- Step 1: For the base case, n = 12,

$$P(12): 12 = k_14 + k_25$$

Substituting $k_1 = 3$ and $k_2 = 0$,

$$P(12): 12 = 3 \cdot 4 + 0 \cdot 5$$

$$P(12): 12 = 12$$

• Step 2: Now, we must show that the induction hypothesis is true. Using the fact that for $12 \ge j \ge k$, show that P(k+1) is true.

So for,
$$n = k + 1$$

$$\Rightarrow k+1 \ge 12$$

$$k \ge 13$$

Condsider the base case here, n = 13

$$P(13): 13 = k_1 4 + k_2 5$$

Substituting $k_1 = 2$ and $k_2 = 1$,

$$P(13): 13 = 2 \cdot 4 + 1 \cdot 5$$

$$P(13):13=13$$

 \therefore We can see that this satisfies the original statement and has already been proven by the induction hypothesis. **QED**.

• Is it true for $n \geq 8$?

Consider the case n = 11,

$$\Rightarrow P(11): 11 = k_14 + k_25$$

Upon observing the above equation, we can deduce that there is no possible combination of non-negative integers k_1, k_2 that can satisfy the relation.

 \therefore the given equation is false for $n \geq 8$. **QED**.

Question: 6. (b) Prove that, for all <u>even</u> integers, $n \ge 6$, there exist non-negative integers k_1 and k_2 such that $n = k_1 3 + k_2 5$.

Answer: We shall prove the given statement using strong induction.

- Step 0: For $n \ge 6 | n = 2x$ where $x \in \mathbb{N}$, $P(n) : \exists k_1, k_2 \in \mathbb{Q}$ and $k_1, k_2 \ge 0 | n = k_1 3 + k_2 5$
- Step 1 : For the base case, n = 6,

$$P(6): 6 = k_1 3 + k_2 5$$

Substituting $k_1 = 2$ and $k_2 = 0$,

$$P(6): 6 = 2 \cdot 3 + 0 \cdot 5$$

$$P(6): 6 = 6$$

• Step 2: Now, we must show that the induction hypothesis is true. Using the fact that for $6 \ge j \ge k$, show that P(k+1) is true. So for, n = k+1

$$\Rightarrow k+1 \ge 6$$

$$k \ge 7$$

Condsider the base case here, n = 8 (as 7 is an odd number)

$$P(8): 8 = k_1 3 + k_2 5$$

Substituting $k_1 = 1$ and $k_2 = 1$,

$$P(8): 8 = 1 \cdot 3 + 1 \cdot 5$$

$$P(8): 8 = 8$$

 \therefore We can see that this satisfies the original statement and has already been proven by the induction hypothesis. **QED**.