Midtern: Wed. Feb. 8th in class

Thm 17 (cont.) K/F finite \ K/F gen'd by finitely many algelfs. over F.

=): If [K:F]=n, choose some element a, EKIF.

Then $[k:F(a_i)] = \frac{[k:F]}{[F(a_i):F]} < [k:F]$. The result

follows by induction.

Cor 18: If a and B are alg. over F, then so are atp, d-B, dB, d/B (B70).

Pf: All of these elts. are in F(a, B), which is finite/ by Thm. 17, so by Cor. 13 they are alg.

Cor 19: If L/F is any field extin, the subfield of L of alg. elts. /F is a subfield.

Ex: (algebraic numbers) C/Q. Let \overline{Q} be the set of all $z \in C$ which are alg. /Q. Since x^n-2 is irred $\forall n$, $[\overline{Q}:Q] \ni n$, so $[\overline{Q}:Q] = \infty$.

§ 13.3: Straightedge & Compass Constructions

Game:

- 1) start w/ a line segment of length 1
- 2) use straightedge & compass to construct other lengths/angles
- 3) end up w/ desired figure

Comes down to constructing a particular length (ie number)

Three problems (Ancient Greeks)

- I) Doubling the cube: (onstruct a cube w/ volume twice the original cube (construct 3/2)
- II) Trisecting an angle: Given angle O, construct angle 9/3 (construct cos \fract given cos \theta)
- III) Squaring the circle: Construct a square w/ same area as unit circle (construct TT)

Def: A constructible number is a length which can be constructed via straightedge & compass. Let K be the Set of constructible numbers.

If a, b are constructible, can construct:

K is a field! Q = K

Thm (who?): Every elt. of k can be obtained from a sequence of the above constructions

Prop 23: If $a \in K$, then [F(a):F] is a power of 2. Pf: If $B \in K$, then $Q(B) \subseteq K$, so let

 $\mathbb{Q} \subseteq \mathbb{Q}(\beta_1) \subseteq \mathbb{Q}(\beta_1, \beta_2) \subseteq \cdots \subseteq \mathbb{Q}(\beta_1, \beta_n) \ni \lambda,$

where each B_i is constructed from elter of $Q(\beta_1,...,\beta_{i-1})$ using one of the above constructions. Then either $\beta_i \in \mathcal{Q}$ is: $[Q(\beta_1,...,\beta_i):Q(\beta_1,...,\beta_{i-1})]=1$ or $\beta \notin Q(\beta_1,...,\beta_{i-1})$, but $\beta^2 \in Q(\beta_1,...,\beta_{i-1})$ in which case $[Q(\beta_1,...,\beta_i):Q(\beta_1,...,\beta_{i-1})]=2$. By the Tower law, $[Q(\beta_1,...,\beta_n):Q]$, is a power of 2, and again by the Tower law, $[Q(\alpha_1,...,\beta_n):Q]$ divides $\alpha_1, \alpha_2, \alpha_3$ or $\alpha_1, \alpha_2, \alpha_3$ or $\alpha_3, \alpha_4, \alpha_5$ itself.

Thm 24: None of I, II, III is possible.

P(: I) 35 is degree 3.

III) IT is transcendendal i.e. $[Q(\pi):Q] = \infty$

II) Trisecting is possible for some angles, just not all angles

Let 0 = 60°, so cos 0 = \frac{1}{2} \in \mathbb{Q}.

Triple angle formula:

$$\cos \Theta = 4\cos^3 \Theta/_3 - 3\cos \Theta/_3$$

So cos 20° is a root of

So cos 20° is deg. 3 over Q → cos 20° & K.

Next time: splitting fields and algebraic closures