[What is machine learning? AI neets data/stats learn, train data Expert Knowledge sophisticated reasoning Simpler models and search ML combines these

II We're going to focus on one particular area (take 181 for breadth): generative models of the world

O disease generales symptoms (but then we inter diseases from Symptoms)

2) this picture is a "graphical model" shows generative dependencies

(e.g. What the diseases are) unsupervised unsupervised

6 Write Bayes rule: p(disease | data) x p(fever | disease) p(cough | disease).... p(disease) & TT p(symptom | disease) p(disease)

lifelihood P (duta | model)

"prob of deta"

- in some ways like rule-based systems, need models
- note Bayes rule can be used with some symtoms missing (missing data). By modeling everything we can answer any question (dravbacks & benefits) "reasoning under uncertainty

(H) (S)

Lecture

Models: Simple discrete models, Gaussian models,
Markov random fields, GLM, Factor analysis,
HMMs, Latent Dirichlet Allocation, Deep models

Inference & Learning: Belief Propagation,
Junction Tree, Variational, MCMC, LP Relaxations
We'll alternate between models and methods.

☐ Format of class / course

- · Class: first 10 min. reading check: be on time, have a web-enabled device

 Lecture + turn to neighbor
- * Course: 5 psets, first today! midterm

 Math & code reviews -> section: starchef training
- * Final Project! (UAI/ICML/KDD) Turn to your partner and talk about research/why you're in this class
- · Piazza! sign-up,

I Remind Class

- HVI release today
- HUO due friday
- try out quiz
- Help with piazza

Obscrete Models:

Take on countable values &0,13, &cold, flu, asthma3
Today: some of the simplest discrete models,
how to manipulate, "tactics" Murphy 3.3

Rumning Example: p(heads) = 0

□ Prior #1: Three manufacturing processes: 0=.4,.5,.6

-> Expent knowledge told us this fact. U.P. .1.8.1

Mixture models coming later. (empirical dist.)

for now: p(0) = .18(0=.4) + .88(0=.5) + .18(0=.6)

Likelihood: Bin (N, IN, O) = (N,) ON, (1-0) N-N,

of ways $O^{\times}(1-0)^{\times}$ per to get N, heads coin in N; constant W.rt. O

Suppose uc observe No, N, ... how do we perform inference? => p(01x)

(No=fails)

Several Options:

1 Maximum Likelihood [MLE]

in fact we can ignore, pretend one sequence of heads

$$= \log \left(\frac{N_1 + N_0}{N}\right) + N_1 \log \theta + N_0 \log (1-\theta)$$

take derivatives wrt 0 $\frac{d(1)}{d\theta} = \frac{N_1}{8} + \frac{N_0}{1-8}(-1) = 0$ $O = \frac{N_1}{N_2 + N_2}$

N. Surprises!

- (?) What if you needed to predict whether a coin was going to be heads? would you guess up 0? (No partial credit) No!
 - · Proportion right if you always guess Hill O " quess u.p. 0: 0+(1-0)=>

If we play-in .6: .6 vs. ,52

=> Predicting = Decisions &

[MAP/full posterior [discrete_coins.m] P(OIx) xp(x10) p(0)

D(0=.45 INo,N) = 0 [Bigeffect]

P(0=.51) P(0:.61(1)) -> Sanc as above normalize after

?) when will Map = MLE

O Prior #2

Beta distribution:

only part with O. need to integrate to 1.
- oh but it has form of beta, so:

= \frac{\(\big(N_1 + N_0 + \alpha_0 + \alpha_0 \big)}{\(\big(N_1 + \alpha_1 \big) \big(N_0 + \alpha_0 \big)} \(\Omega_{1} + \alpha_{1} - 1 \left(1 - \Omega \big)^{N_0 + \alpha_0 - 1} \)

" ON, ta. - 1 (1-0) No + x. - 1

(?) A Condition corresponds to a "spanse" prior that things are either 0 or 1. How does this change if we had:

-> 10 counts to place

No more sparsity once we have evidence ->

no "noise" model

Predictive Distribution

$$p(x|N_0,N_1) = \int p(x|N_0,N_1) p(0|N_0,N_1) d\theta$$

$$= \int p(x|0) p(0|N_0,N_1) d\theta = \int 0 p(0|N_0,N_1) d\theta$$

$$= \left[\underbrace{F_{0 \sim p(0|N_0,N_1)}}_{x_0 + \alpha_1 + N_0 + N_1} \right] \underset{\text{mean of peta dist.}}{\text{mean of peta dist.}}$$

Note: doesn't care about V or $e^{-\alpha_1}$

Marginal Likelihood

$$p(\text{data } | \alpha) = \text{prob of model}$$

$$p(\text{No,N_1}) = \int p(x, ..., x_N | 0) p(0) d\theta \Rightarrow \int \frac{\Gamma(\alpha_1 + N_1) \Gamma(\alpha_0 + N_0)}{\Gamma(\alpha_1 + N_0) \Gamma(\alpha_0 + N_0)} d\theta = \frac{\Gamma(\alpha_1 + N_1) \Gamma(\alpha_0 + N_0)}{\Gamma(\alpha_1 + N_1 + \alpha_0 + N_0)}$$

$$\square \text{ Extensions: What can we do with coins?}$$

$$\rightarrow \text{many coins, correlated } \theta$$
? a model of binary data

-> many-sided coins? a model of categorical data

1) Think of a language with distribution over words

Change the model:

$$P(x|x) = \int Mult(x|0) p(0|x) d0$$

$$P(0|x,x) = \frac{1}{2} TT O_{k}^{x_{k} + \alpha_{k} - 1}$$

$$\frac{(\sum x_{k} + \alpha_{k})!}{TT (x_{k} + \alpha_{k})}$$

$$\frac{TT (x_{k} + \alpha_{k})}{TT (x_{k} + \alpha_{k})}$$

? How to "train"? (inference over parameters)
Coming weeks

So we get

$$P(y) = (2\pi)^{\frac{D}{2}} |A|^{\frac{1}{2}} \exp \{-\frac{1}{2}x^{\frac{1}{2}}x^{\frac{1}{2}}\}$$

But vait, easier for Gaussians.

$$E[Y] = E(Ax+b) = AE(x)+b = b$$

$$Cov[Y] = E(x+b) = ATA (exercise)$$

$$fine in general.$$

$$define gaussians$$

$$(first 2 moments)$$

D Now write
$$\Sigma = U^T \Lambda U$$
 and $M = b$
 $y = U \Lambda^{\frac{1}{2}} \times + b$

rotate Scale Shift

Detour: High-din Gaussians x~ N(0, 51)

? What is expected length
$$11\times11^2$$
?

$$E[1\times11^2] = E[\{x^2\} = 0 \text{ or } = 0 \text{ or } = 1$$

- (?) What is the variance? E[x4]=364 var [11x112] => E[x4] - E[x2]2 = 364-64:264=02.20
- (?) inplications?

1 Key Formulas for MVN

$$\mathcal{M} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \mathcal{\Sigma} = \begin{bmatrix} \mathcal{E}_{11} & \mathcal{E}_{12} \\ \mathcal{E}_{21} & \mathcal{E}_{22} \end{bmatrix}$$

$$P(x_1) = \int_{X_2}^{1} \frac{1}{Z} e^{x} p^{x}(x_1 - u_1)^{x} \xi_{1}^{x}(x_1 - u_2) + 2(x_1 - u_1)^{x} \xi_{12}^{x}(x_2 - u_2) + (x_2 - u_2)^{x} \xi_{22}^{x}(x_2 - u_2)^{x} \xi_{22}^{x}$$

Conditionals: p(x, 1x2)

Information Form

Instead of Z and M, use E' and E'M
This format makes conditioning trival (Eii)
but marginals more complicated.

MIE

du: \(\sum_{n=1}^{N} (x_n - u) = 0 = \) \(u = \frac{N}{2} \times_n / N \) (sample mean)

 $\frac{d}{d\xi}$ [Leave as exencise] $\frac{\partial}{\partial A}$ (n|A|= $\frac{1}{A}$]

 $\frac{\partial}{\partial A}$ tr EBA3 = B^T

tr(ABC)=tr(CAB)=tr(BCA)

 $\Sigma = \frac{1}{N} \xi_{N} \chi_{N}^{T}$ (sample covariance)

Il Conjugate Priors [just mean]

D Predictive

Linear Regression 4-1

1 Regression

for nov R in R

D Gaussian Noise Model

P(y1x,0) = N(y1w1x,02)

Write down likelihood:

$$\mathcal{L}(0) = \{og \ p(D|0)\}$$

$$= \{ log \ p(Yn|Xn,0)\}$$

$$= \{ log \ \left(\frac{1}{2\pi6^2}\right)^{\frac{1}{2}} exp \left(\frac{1}{26^2}\right)^{\frac{1}{2}} exp \left(\frac{1}{26^2$$

Note how gaussian () Squared loss

MLE:

$$\frac{(y - X \omega)^{T}(y - X \omega)}{\frac{\partial}{\partial \omega}} = \sqrt{X^{T}} X \omega - 2 \omega^{T} X^{T} y$$

$$\frac{\partial}{\partial \omega} = 2 x^{T} X \omega - 2 x^{T} y = 0$$

$$\omega = (x^{T} X)^{-1} x^{T} y$$

Geometry of MLE $Y = \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} \quad X = \begin{bmatrix} \dot{x} - \dot{x} \\ \dot{x} \end{bmatrix}$

Linear Regression 4-2
(ulo, c2)
assume known
ξ (υ-ωο) Vo'(υ-ωο) }
(Vo Wo + XT Y)
rnation

D Being Bayesian $Y = W^TX + E_R$ The random fixed random observed random p(u)? -> in HUI, consider N P(y IX, W, M, 62) = N(y IM+XU, 62I x exp E- ==== 11 y-Xw1123. (!) Why can we ignore Z? Lo only care about w. Put a prior: p(w/wo, Vo) x/exp {-} p(w/x,y,u,62) = N = N(W)UN, VN) After algebra: $W_N = V_N V_0 U_0 + \frac{1}{62} V_N X_y^T = V_N ($ $V_N = \left(V_0 + \frac{x^T x}{\sigma^2}\right)^{71}$ original info Note that Vo 200 becones MLE (XTX) XTY I Posterior Predictive SN(ylxTu,62) N(Ulun, Vn)dw=N(UNx, 62+xTVnx)

Variance depends on x! Y=xTv+6 sum of gaussians nun run fixed var fixed variance Versus p (y/x, wnap, 62)

Linear Classification
5-1

Before: Regression X-> y R Nov Y & E0, 13 (Later multicluss)

1 Naive Bayes

$$y \sim cat(\pi) \times_{j} \sim L_{j}(y)$$
 Generative model of x,y
 $P(x|y=c,0) = \prod_{j=1}^{m} P(x_{j}|y=c,0;c)$

naive conditional independence assumption

1) Multivariale Bernoulli Naive Bayes

X; ~ Ber (u;e) if y= C

Features are binary-variables

3) Gaussian NB X ~ N(M, Zaing) if y=c

MLE
$$P(x_i, y_i | \theta) = P(y_i | \pi) \prod_{j \in P(x_i, y_j | \theta_j)} p(x_i, y_j | \theta_j)$$

$$= \prod_{i \in P(x_i, y_i | \theta_j)} \prod_{j \in P(x_i, y_j | \theta_j)} p(x_i, y_j | \theta_j)$$

argmex
$$log p(x_i,y_i|0) = \underset{c=1}{\overset{c}{\sum}} N_c log T_c + \underset{i:y_i=c}{\overset{c}{\sum}} \underset{i:y_i=c}{\overset{c}{\sum}} log p(x_i,y_i|0)_c$$

The = No (class counts) MLE for distribution

Use a factored Prior, assume parameter independence. $p(\theta) = p(\pi) \prod p(\theta_{i})$

? Which priors should us use here? To parameters for Cat - Dirichlet

O parameters for class-conditional, so - Beta or Dirichlet or MUN

Multivariate Bernoulli case

assume 1 pseudo-count)

to features and class

Recall that nupdates have a simple form $P(\pi \mid D) = Dir(N_1 + \alpha_1, ..., N_c + \alpha_c)$ $P(O_{ic} \mid D) = Beta((N_c - N_{ic}) + B_0, N_{ic} + B_1)$

Exercise: Compute Naive Bayes for gaussian with prior.

Posterior Predictive

By earlier class we know this gives the mean of the posterior $\overline{T_c} = \frac{N_c + \alpha_c}{N + \xi_{c}\alpha_c}$ $\overline{O_{jc}} = \frac{N_{jc} + \beta_{jc}}{N_c + \beta_{jc} + \beta_{o}}$

p(y=c1x,0) & To TT (0; (x;=110) (1.0) (1.0)

Exponential Form

P(y=c|x,D) & TIC TT Oic Ouc (x)=0)

Take exp of log

This Shows that NB is a transformation of linear functions of x. The formulation is known as the <u>log-olds</u> of the data.

Conversely if we have ω we can recover O $O = \text{Sign}(\omega) = 6(\omega) = \frac{1}{1+e^{-\omega}} \quad (\text{exercise})$ This is the Rest signoid function

Finally to normalize the probability distribution

$$P(y=c|x,0) = \frac{\exp(\upsilon_c^T x + b_c)}{\underbrace{\xi \exp(\upsilon_c^T x + b_c)}} = \operatorname{Softmax}(\left[\upsilon_c^T x + b_c\right])_c$$

Where Softmax (Z) = exp(Zc)

Last two classes linear regression and classification 6-1 Both linear at heart, but different outputs.

Today Exponential Families as a unifying concept.

- · Central concept behind many core distributions: normal, bernoulli, categorical, gamma, et.
- · Provides basis for conjugacy in Bayesian reasoning
- · Central tool for graphical models and variational inf.
- · We will use to derive logistic regression etc.
- Worning: notation changes here a bit. Be careful U.r.t provious Sections.

Exponential Funity
$$p(x|0) = \frac{1}{Z(0)}h(x) \exp \{40\}\phi(x)\}$$

$$= h(x) \exp \{40\}\phi(x) - h(0)\}$$

- 19. the matural parameters (function of "parameters")
- Z,A the (log) partition function
- O(x) the sufficient statistics (informally features)
- L(x) Scaling (not really important)

A representation is overcomplete if there is

Ber
$$(x|M) = (M)^{x} (1-M)^{x} = \exp x \log M + (1-x) \log (1-M)$$

$$= \exp \{x \log \frac{M}{1-M} + \log (1-M)\}$$

$$A = \log(1-M) = \log(1-6(0)) = 0 + \log(1+e^{-0}) = \frac{\exp(x)}{e^{x}}$$

$$B = \log \frac{M}{1-M} \qquad M = \frac{1}{1+e^{-0}} \qquad \text{When further and inverse}$$

$$h = 1$$

. Alternatively, over complete representation:

Univariate Ganssion

$$N(x|x_{1}6^{2}) = \frac{1}{\sqrt{2\pi}6^{2}} \exp\left[-\frac{1}{26^{2}}x^{2}(x-m)^{2}\right]$$

$$= \exp\left[-\frac{1}{26^{2}}x^{2} + \frac{xm}{6^{2}} - \frac{1}{26^{2}}m^{2}\right]$$

$$= \exp\left[-\frac{1}{26^{2}}x^{2} + \frac{xm}{6^{2}} - \frac{1}{26^{2}}m^{2}\right]$$

$$= \left[-\frac{1}{26^{2}}\frac{m}{6^{2}}\right]$$

$$= \frac{9.6^{2}}{20^{2}}$$

$$= \frac{9.6^{2}}{20^{2}}$$

$$= \frac{1}{20^{2}}$$

$$=$$

Key properties

· Derivatives of the Log-partition function A are the cumulents of the distribution, e.g. ElexD, varlexD, etc.

$$\frac{dA}{dn} = \frac{d}{dn} (\log \int \exp(n^{T} \phi) h(x) dx)$$

$$= \frac{\int \phi \exp(\eta^T \phi) h(x) dx}{\exp(A(\theta))} = \int \phi(x) p(x) dx = \mathbb{E} \left[\phi(x) \right]$$

Exercise: Show proof for variance and multivariate case

Bernoulli A = 0 + log (1+e-0)
$$\frac{dA}{d\theta} = 1 - \frac{e^{-\theta}}{1+e^{-\theta}} = \frac{1}{1+e^{-\theta}} = \sigma(\theta) = M$$

Gaussian

$$A = -\frac{1}{2} \log 2\pi - \frac{1}{2} \log (-2\theta_2) - \frac{\Theta_1^2}{4\theta_2}$$

$$\frac{dA}{d\Theta_1} = \frac{\Theta_1}{2\theta_2} = \frac{M/6^2}{1/6^2} = M$$

Fun

MLE By

$$\frac{d \ell(0)}{d o} = \phi(D) - N \frac{d}{d o} A(0) = \phi(D) - N \mathbb{E}[\phi(0)]$$

Can show concave, so sufficient that $\frac{\phi(D)}{N} = \mathbb{E}[\phi(D)]$

Moment matching.

Generalized Linear Models

Exponential families make it easy to generalize linear regression and classification.

$$P(y|x,u) = h(y) \exp(\varphi(y) O(x,u) - A(0))$$

Lo break from marphy

univariate

f - response function

Linear regression

Select exponential family as gaussian

Set Y and 9 to identity

Estimate w (closed form)

New: Logistic Regression

Select exp. family as Bernoulli

set 4 to theatity and fi(v*x) = signoid(w*x)

logit

u = 6(v*x)

0 = log m

Basic idea

g' to match range, then use I to map to natural parameters.

Fitting Models

Graphical Models

- · Core tool for rest of semester
- · Separate out

· Will provide kex "modularity" for doing inference

[High-Level: When does a joint distribution simplify?

- Always use chain-rule p(A,B,C)=p(A|B,C)p(B|C)p(C)

But does if factor more? e.g., p(A|B)p(B|C)p(C)

Formally, directed GM or Bayes net.

- pa(x) parents

- Graph G= (V, E) with (s, t) E stt
- Each node corresponds to a random variable.
- Each edge " to a conditioning decision
- Graph is topologically ordered because of chain rule
- Nodes that are sheded indicate observed RUs.

Discrete BGMs

- Each node associated with a sample space set
- Local conditional probabilities defined by a CPT
- CPT size of P(x; 1x, ... x; -,) = D(TT 1)

(!) Write out DGM for naive bayes

LR

nilden

S CPTs

a much worse. Simplicity inparameterization

HMM

Auto regressive/Murkovchain

Factorial HMM

D Gaussian Directed Models

Special Case: much easier

P(x; | pa(x; 1) = N(x; | M; + W; (Pa(x; 1), 6; 2)

Omean is linear in parent variables

 $X_i = M_i + \sum_{j=1}^{k} W_{ij} (x_{ij} - M_j) + \sigma_i z_i$ $\forall i, z_i \sim N(0,1)$

Can derive global mean M as (M, 1..., Wa)

Let S = diag(6) local successfundard dev.

(x-m)=W(x-m)+SZ [matrix-vector form]

 $S_z = (I-W)(x-M)$ $x-m = (I-W)^T S_z$

Z = cov[x-M] = cov[USz] = UScov[z]SuT = US2UT

! Why is (I-V) invertible?

GGM = N(u, US2UT)
invent

I invent weights
Sis local variances

D Properties of Boxes Nets: Plates

D-separation and conditional independence

ALCIBV

$$A \rightarrow B \rightarrow C$$

 $A \perp C \times$

ALCIBV

ALCV

ALCIBX "Explaining

Undirected Graphical Models 8-1

Last class: Directed graphical models. At

- · Attempt to describe the conditioning relationships
- · can directly use to find local conditional

Today: Undirected Graphical models (Markov Random Fields)

- · Simpler conditional independence rules
- · Describer a different class of distributions
 - · (personal bias) Often more useful

High-Level: Independence properties

ALD IS if any no path between A and D that does not cross throws 5

Fundamental property: A is conditionally independent from rest of graph conditioned on its markor blanket (neighbors in G)

Conversion from directed

(1) (3) (4) (5) (5)

"marry parents"

(8)

MRF Parameterization

exp { On ("A","B) + OADC ("A,"D,"C) -A(O)}

- · Note: unlike DGn there are no local probabilities
- · OAD (XA, XO) is a local energy, but is unnormalized. Compare to CPT
- · To compute p(x, ... xn) need log partition function
- · Par In general computing A is NP-complete sum of integral over all structures

Canonical fxample

exp
$$\{SO_{ij}^{\uparrow}(x_{ij}x_{i-1,j}) + O_{ij}^{\uparrow}(x_{ij}x_{ij+1}) \dots \}$$

- E^{\uparrow}

partition $\log \sum_{x} E(x)$: Super-intractable!

What next?

p(x,... xn) - likelihood of data

P(xi) - marginals

argmax p(x,...xN) - arg max/MAP

Gaussian

Given "information" form & con read MRF off of E; ±0 inplies x: edge

E = US2UT

1 Caussian

$$X_{+} = X_{+-1} + \epsilon \qquad \epsilon \sim N(O_{3} G_{+}^{2})$$
 $Z_{+} = X_{+} + \epsilon' \qquad \epsilon \sim N(O_{3} G_{+}^{2})$

Joint: $TT p(X_{+} | X_{+-1}) p(Z_{+} | X_{+})$

Time series 6M 82-2

變)

· (i)

. |)

This Class:

Exact marginal inference in undirected discrete GME.

 $P(x_1) P(x_2|x_1) P(x_3|x_1) P(x_4|x_2,x_3) P(x_5|x_3) =$ $exp \{ \theta_{123}(x_1,x_2,x_3) + \theta_{234}(x_6,x_3,x_4) + \theta_{35} - A(0) \}$ where $\theta_{123} = \log P(x_1) + \log P(x_2|x_1) + \log P(x_3|x_1)$ $\theta_{234} = \log P(x_4|x_2,x_3)$ $\theta_{35} = \log P(x_5|x_3)$ (may lose some CI Information)

Where C is the set of cliques in the graph. Marphy

Therfore for simplicity we will consider UGN to start with.

Ex! Conditional random field.

A CRF is a conditional ESG UGN

P(y, .. y, 1x) = exp { \$ 0 (Yc;x) - A(0)}

They are heavily used for labeling style problems,

$$(V_1)$$
 (V_2) (V_3) (V_3)

Linear Chain CRF

P(y, ... yw 1x) = exp { = 0; i+, (Yi,i+, ix) -A(0)}

use 4 instead

A(0) = log & & Dii+ (Yill) = log & exp { 0,2(Y,2) 3 } exp { 023(Y23).

ALIZER ERRECTION YELL Dynamic Programming.

122-13+ (Y+) = 20+1-2+ (N+++) + bet 1-1 (Y+-1)

27 (VIII) = E CO MATERIAL (X+) = E explorition maker (X+)

be((yt) = 4 Zt mint (yt)

m=1,+ (y+)= E y=(y+-1, y+) be(=1 (y+-1)] forward

bel, (yt) & b, (yt) mt (yt) mt (yt)

m +1,+ (Y1) = > 4+ (Y+ x) Y+0 m +12->++ (Y++1)] backward

· multiple nodes below

Algorithm

BP implementation

9-3.5 Inference

(Compute beliefs)

We assumed bottom-up and top down.
However can implement in parallel.
Assume bels(xs) = unif.

stepl: bels (xs) ox TT m+ >s (xs)

Step2: Ms > + (x+) = \(\subseteq (\pi_s, x_t) \) \(\manyinalize \) \(\manyinalize \) \(\manyinalize \) \(\manyinalize \)

理()

tile)

Consider non-trees

p(0)= $\sum_{ADC} p(A,B,C,D) = \sum_{ADCB} p(D(A)) p(C(A)) p(B)$

= Z y (D, A, B) y (A, C) y (A) y (B)

= E y(D,A,B) y(B) E y(A,C) y(A)

AB

(1) P(A)

 $\xi \psi(A) \xi \psi(A,A,B) \psi(B)$

y (A) p (A) p, (A)

Computational complexity, exponential in largest factor

Parallel version of algorithm

Sofar all methods have been exact.

However this is only for a special case of models.

Most models of interest will be approximations, the focus of 2nd part of class.

-> Before we do that, we need some more fundamentals

Veirdly, these will come from information theory.

Whole textbooks written on this connection (Cover and Thomas 2006

Mackay 2003)

Information Theory

Entropy
$$H(p) = H(X)^{\frac{2}{n}} - \sum_{k=1}^{n} p(X=k) \log_2 p(x=k) = \mathbb{E}(\log_2 p(x=k))$$

- measure of the uncertainty of the distribution
- unit of measure is "bits" (or note if In)
- Auguster of fits required to encode the distribution

exp (H(X)) = perplexity effective suncertainty of distribution

Shannon Gome: example guess next word

For binary casc

Information Theory
9½-2

Cross Entropy

P - true distribution

9 - our distribution

- number of aug. bits required when true distisp, but we use g.

Example: language model

-Use & to estimate next word, but true distisp.

- in fact MLE of categorical classifier

In deep learning, the most common loss is "Cross-entropy" loss,

KL divergence relative entropy

Information Theory
92-3

-The most common way to compare distances.

KL(plig) = E Piclog PK = [[log PK] = -H(p)+H(p,g)

- extra number of bits needed nith to encode bits to encode prith

argmin KLCP118) = HCP,8) => MLE estimate of a with obsp argmin KLCp118) = -HCP) + HCP,8) => max entropy p that

Theoren: KLCp11g) = 0 minus (full support)

- (cl(p119) = [p (log 8 k) \ 2 log [p [8 k) = log 8 k (x)] = log 8 k (x)

Jensen's Inequality: $f(E[x]) \leq E(f(x))$ if f is convex we will use for log Equality when p=g.

[Untile now: Supervised models

input: x eRd, output yeR, E0, 13, GLM

I Now unsupervised setting: Latent variables z that are unseen.

Zn controls which Øk generates the datal

Specific instantiations:

1) \$\phi\$ are means of gaussians (GMM)

2) \$ are seperate multinomials (mixtures of multinomials)

[] Why is this challenging? Graphical models are highly connected.

$$\{x_n\}$$
, $\{z_n\}$, $\{\emptyset_k\}$
 $P(\{x_n\},\{z_n\}) = \prod \prod (\prod_{i \in P} (x_n | \emptyset_{ik}))^{Z_{nk}}$ Complete Data
 $P(\{x_n\}) = \{\prod \prod \{z_n\}\}$

But p(Ex,3, Ez,3) looks okay ...

D Let's write with logs.

Mixture Models

log p(xn,ZnlTT, p)= Z & ZnklnTk + Znklnp(*xnlØk)

- ☐ Expectation Maximization → local coordinate ascent

 Goal: Maximize expected complete log-likelihood
 - 1) Suppose we have distribution over ZM.

 Conk = Pr(Zn=K)

Eg[In p(xn,zn lπ, φ)] = ξξ gnic Inπic + qnic In (xn løκ)

- 3) M-step: improve EB3,TT assuming GAK is data.

 TIK & En GAK (categorical)

() Ø'S are model specific,

1 Justification of EM

$$P(\{x,n\}) = \prod_{z_n} \{p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n = k | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n = k | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n = k | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n, z_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k} \{p(z_n = k)\} p(x_n | \pi, p_k)\}$$

$$= \{\{o_g \}_{k}$$

Now put entropy buck

Can show

Mixture Models

[] EM solves the problem by splitting into two parts

-> local variables Zn -> Global variables Øre TT

Common Strategy

Last week: Exact inference rarely possible

Today: Beginning of unit on approximate inference

1 Variational Inference: idea

if finding p(z,010) is too hard find g(z,0) that is close: g* = argnin d(g,p) BEEOSY

- if g* is easy, can compute marginals on g*
- p can be any distribution.

We will use d(8,p) = KL(811p) = \$ 8(2,0) (09 8(2,0))

Rel to EM Recall with EM:

$$\log p(x) = \log \int p(x,\theta) d\theta = \log \int g(\theta) \frac{p(x,\theta)}{g(\theta)} d\theta = \log \frac{p(x,\theta)}{g(\theta)}$$

$$\geq \mathbb{E}_{\theta \sim y} \log \frac{p(x,\theta)}{g(\theta)} \qquad \text{[Jensen's inequality]}$$

Now consider gap in likelihood

$$\log p(x) - \mathbb{E}_{g} \log \frac{p(x,0)}{g(0)} - \frac{g(0)}{g(0)} = \frac{g(0)}{g(0)} = \log \left(\frac{p(x,0)}{g(0)} \right) = \log \left(\frac{g(0)}{g(0)} \right) = \log \left(\frac{g(0)}{g(0)} \right)$$

Directly minimizing ICL is equivalent to minimizing lower board coordinate ascent versus opt.

M Solving

- This is an optimization problem any method is okay
- Today Mean-field
- 1) Sclect g(z)= TGi(zi), utilize to approximate p(z)
- 2) Recall goal is to maximize lower-bound KL(Osp), we do this by fitting each bi individually.

gi(zi) ← argmin KL(q11p)

Ejti Clog p(z)]
Call this log p(zi)

= argnin KL (gillp)

gi ep; Gilzi) « exp { [[log p (z)]}

KL(plly) version EP does som thing

Bayes GMM

I sing model $p(x) \propto \exp \left\{ \Theta_{v}^{T} \times + x^{T} \Theta_{e} \times 3 \right\} \quad \mathcal{M}_{i} = \mathbb{E}[x_{i}] = p(x_{i}=1)| + p(x_{i}=\Omega)(\Omega)$ $p(x) \propto \exp \left\{ \Theta_{v}^{T} \times + x^{T} \Theta_{e} \times 3 \right\} \quad \mathcal{M}_{i} = \mathbb{E}[x_{i}] = p(x_{i}=1)| + p(x_{i}=\Omega)(\Omega)$ $p(x) \propto \exp \left\{ \Theta_{v}^{T} \times + x^{T} \Theta_{e} \times 3 \right\} \quad \mathcal{M}_{i} = \mathbb{E}[x_{i}] = p(x_{i}=1)| + p(x_{i}=\Omega)(\Omega)$ $p(x) \propto \exp \left\{ \Theta_{v}^{T} \times + x^{T} \Theta_{e} \times 3 \right\} \quad \mathcal{M}_{i} = \mathbb{E}[x_{i}] = p(x_{i}=1)| + p(x_{i}=\Omega)(\Omega)$ $p(x) \propto \exp \left\{ \Theta_{v}^{T} \times + x^{T} \Theta_{e} \times 3 \right\} \quad \mathcal{M}_{i} = \mathbb{E}[x_{i}] = p(x_{i}=1)| + p(x_{i}=\Omega)(\Omega)$ $p(x) \propto \exp \left\{ \Theta_{v}^{T} \times + x^{T} \Theta_{e} \times 3 \right\} \quad \mathcal{M}_{i} = \mathbb{E}[x_{i}] = p(x_{i}=1)| + p(x_{i}=\Omega)(\Omega)$ $p(x) \propto \exp \left\{ \Theta_{v}^{T} \times + x^{T} \Theta_{e} \times 3 \right\} \quad \mathcal{M}_{i} = \mathbb{E}[x_{i}] = p(x_{i}=1)| + p(x_{i}=\Omega)(\Omega)$ $p(x) \propto \exp \left\{ \Theta_{v}^{T} \times + x^{T} \Theta_{e} \times 3 \right\} \quad \mathcal{M}_{i} = \mathbb{E}[x_{i}] = p(x_{i}=1)| + p(x_{i}=\Omega)(\Omega)$ $p(x) \propto \exp \left\{ \Theta_{v}^{T} \times + x^{T} \Theta_{e} \times 3 \right\} \quad \mathcal{M}_{i} = \mathbb{E}[x_{i}] = p(x_{i}=1)| + p(x_{i}=\Omega)(\Omega)$ $p(x) \propto \exp \left\{ \Theta_{v}^{T} \times + x^{T} \Theta_{e} \times 3 \right\} \quad \mathcal{M}_{i} = \mathbb{E}[x_{i}] = p(x_{i}=1)| + p(x_{i}=\Omega)(\Omega)$ $p(x) \propto \exp \left\{ \Theta_{v}^{T} \times + x^{T} \Theta_{e} \times 3 \right\} \quad \mathcal{M}_{i} = \mathbb{E}[x_{i}] = p(x_{i}=1)| + p(x_{i}=\Omega)(\Omega)$ $p(x) \propto \exp \left\{ \Theta_{v}^{T} \times + x^{T} \Theta_{e} \times 3 \right\} \quad \mathcal{M}_{i} = \mathbb{E}[x_{i}] = p(x_{i}=1)| + p(x_{i}=\Omega)(\Omega)$ $p(x) \propto \exp \left\{ \Theta_{v}^{T} \times + x^{T} \Theta_{e} \times 3 \right\} \quad \mathcal{M}_{i} = \mathbb{E}[x_{i}] = p(x_{i}=1)| + p(x_{i}=\Omega)(\Omega)$ $p(x) \sim \exp \left\{ \Theta_{v}^{T} \times + x^{T} \Theta_{e} \times 3 \right\} \quad \mathcal{M}_{i} = \mathbb{E}[x_{i}] = p(x_{i}=1)| + p(x_{i}=\Omega)(\Omega)$ $p(x) \sim \exp \left\{ \Theta_{v}^{T} \times + x^{T} \Theta_{e} \times 3 \right\} \quad \mathcal{M}_{i} = \mathbb{E}[x_{i}] = p(x_{i}=1)| + p(x_{i}=\Omega)(\Omega)$ $p(x) \sim \exp \left\{ \Theta_{v}^{T} \times + x^{T} \Theta_{e} \times 3 \right\} \quad \mathcal{M}_{i} = \mathbb{E}[x_{i}] = p(x_{i}=1)| + p(x_{i}=\Omega)(\Omega)$ $p(x) \sim \exp \left\{ \Theta_{v}^{T} \times + x^{T} \Theta_{e} \times 3 \right\} \quad \mathcal{M}_{i} = \mathbb{E}[x_{i}] = \mathbb{E}[x_{i}] \quad \mathcal{M}_{i} = \mathbb{$

.4

.

Loopy belief propagation

1)
$$M_{S\to t}(x_t) = \sum_{x,s} (\psi_{St}(x_{SJ}x_t) \prod_{u \in nbr(S)} m_{u\to S}(x_S)) = \sum_{exp} \{Q_{et}(x_{SJ}x_t)\}$$

2) $bc(s(x_S) \propto \prod_{t \in nbr(s)} m_{t\to S}(x_S))$

mean field

then
$$q_s(x_s) \propto \frac{1}{1+s} \left[\sum_{j \in nbr(s)} \frac{1}{x_k} \frac{1}{x_s} \frac{1}{x_s}$$

Adv. Variational

.

Max product BP

Linear programming relaxation

1 How to approx a distribution?

Monte Canlo

- exact: good

- variational: fuzzy "marginals"

- Monte Carlo: lots of samples, "Hard assignments"

I Stort at the beginning. Drawing samples.

Assume we have x runif co,1)

If we know cdff(e):p(y \ E) then f'(x) = c is a sample

Only really works with univariate, need CDF

1) Gaussian Samples (Box mueller trick)

-Assume can evaluate p(x) but not sample (no partition)

Algorithm: $x_n \sim g(x)$ $u \sim u(0,1)$

if a < \frac{p(x_n)}{m_q(x_n)}

Where Ma(xx)>qp(x) Vx (2) or Ma(xx)>p(x) M=MZ

D Proof:
$$p(x < x_0 | x \text{ accepted}) = \frac{p(x < x_0, x \text{ accepted})}{p(x \text{ accepted})}$$

construct

 $(x_0) = \sum_{x = 0}^{\infty} \sum_$

□ Examples

1) Bayes: let g(0) be prior p(0) to get samples
from posterior p(01x)

$$\widetilde{p}(O|X) = p(D|O)p(O)$$

$$g(O) = p(O)$$

$$= \sum_{m \in O} p(O) = p(D|O) \cup posterior$$

$$M = p(D|O) = MLE$$

$$= \sum_{m \in O} p(O) = p(O|O) \cup posterior$$

Retain on high-likelihood. Prior controls sampling.

(3) Why is this okay? MLE ensures
$$\frac{p(0)}{n_0(0)} \le 1$$

2) Gaussians:

$$p(x) = \mathcal{N}(0, 6^{2}_{p}I)$$

$$p(x) = \mathcal{N}(0, 6^{2}_{q}I)$$

$$q(x) = \mathcal{N}(0, 6^{2}_{q}I)$$

heights
$$\frac{\left(\frac{1}{12\pi}\right)^{0}\left(\frac{1}{6p}\right)^{0}}{\left(\frac{1}{6p}\right)^{0}} = \frac{\left(\frac{6q}{6p}\right)^{0}}{\left(\frac{6q}{6p}\right)^{0}} = M$$

1) Importance Sampling

- In practice, we are usually sampling to compute expectations $[F_p[f(x)] = \int p(x)f(x)dx$

- If we have access to f, it wastes time when p(x) Tf(x)

Example:

Recall variational approach.

Here we introduce a into expectation

$$\int g(x) \frac{p(x)}{g(x)} f(x) dx = \left[\left[\left[f(x) \frac{p(x)}{g(x)} \right] \approx \frac{1}{N} \sum_{x = g} f(x) \frac{p(x)}{g(x)} \right]$$

$$\sum_{x = g} \int g(x) dx = \left[\left[\left[f(x) \frac{p(x)}{g(x)} \right] \approx \frac{1}{N} \sum_{x = g} f(x) \frac{p(x)}{g(x)} \right]$$

$$\sum_{x = g} \int g(x) dx = \left[\left[\left[f(x) \frac{p(x)}{g(x)} \right] \approx \frac{1}{N} \sum_{x = g} f(x) \frac{p(x)}{g(x)} \right]$$

We can show optimal of = If(x)| p(x)

SIF(x')| p(x')dx

Not sure if we need this ...

What about high-dimensional x , ... XN
(Next Class)

Monte Carlo 15-4

Particle Filtering Last class: Importance Sampling St(x)p(x)dx utilize function q(x) to draw somples and then reweight. Today: X, ... , Xo many variables compute sequentially First note: p(x)= Sf(x)p(x) dx when f(x)=8x,(x) GOD USC Return to time series models Assume we have seen V. ... yt, want to estimate p(z... z. 1 v. ... yt) by sampling p(z,,,z+1y,,,y2) = \(p(z,,,z+1y,,,y+) \delta_z(Z) = \(\sum_{\sym_{\sym_{\sym_{\sum_{\sum_{\sum_{\sum_{\sum_{\sym_{\sym_{\sym_{\sym_{\sym_{\sum_{\sym_{\sum_{\sym_{\sum_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\s\n_{\sym_{\sum_{\sym_{\sym_{\sum_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sy\ Again need a proposal g(Z::+1 y::+) as before $\widetilde{W}_{t}^{s} = \frac{P(z_{1:t}|y_{1:t})}{g(z_{1:t}|y_{1:t})}$ Now let's exploit the conditional independence structure ac b(x+12+) b(2+12+1) b(21:+1/2+1)

& (Z : + 1 Y : +) = 4 (Z + 1 Z + - 1 Y : + - 1) (Z | : + - 1 | Y | : + - 1)] no indep. needed $\tilde{W}_{+}^{s} = V_{t-1}^{s} \frac{P(Y_{t}|z_{t}^{s})P(z_{t}^{s}|z_{t-1}^{s})}{q_{t}(z_{t}^{s}|Z_{t-1}^{s})} V_{t-1}^{s} \frac{Q_{t}^{s}Q_{t}^{s}}{Q_{t}^{s}Q_{t}^{s}} \frac{P(Y_{t}|z_{t}^{s})P(z_{t}^{s}|z_{t-1}^{s})}{Q_{t}^{s}Q_{t}^{s}} V_{t}^{s} + V_{t}^{s}Q_{t}^{s}Q_{t}^{s}Q_{t}^{s}Q_{t}^{s}} V_{t}^{s} + V_{t}^{s}Q_{t$ 9 (2 1 2 5) Y 11+

being used.

D Algorithm

- Sample "particles" z n q (z 1 z 1 z 1 1 y +)
- weight particles as
$$\tilde{w}_{+}^{s} = \frac{\rho(y_{+}|z_{+}^{s})}{\beta(z_{+}|z_{+}^{s}|y_{+})}$$

- Normalize to compute "filter" p(Z+1Y1...Y+) = \(\hat{\omega}_+ \hat{\omega}_+

1) Issue: Sampling in a very high dimensional space Use appoximation of coverage of distribution. Seff = {(i.e how mach of the posterior samples are

two solutions

1) Resumple:

Each time step compute p(z+1y,...y+) If Seff & cutoff, then resumple from p(2+14,...,1/4) and start with w= 1 (uniform veighting)

 $g(z_{+}|z_{+-1}^{s},y_{+}) = p(z_{+}|z_{+-1}^{s})$ $q(z_{+}|z_{+-1}^{s},y_{+}) = p(z_{+}|z_{+-1}^{s})$ $q(z_{+}|z_{+-1}^{s},y_{+}) = p(z_{+}|z_{+-1}^{s},y_{+})$ $q(z_{+}|z_{+-1}^{s},y_{+}) = p(z_{+}|z_{+-1}^{s},y_{+})$ $q(z_{+}|z_{+-1}^{s},y_{+}) = p(z_{+}|z_{+-1}^{s},y_{+})$ $q(z_{+}|z_{+-1}^{s},y_{+}) = p(z_{+}|z_{+-1}^{s},y_{+})$ $q(z_{+}|z_{+-1}^{s},y_{+}) = p(z_{+}|z_{+-1}^{s},y_{+})$ most lost Application: Linear Gaussian Show updates for Particle Filtering
16-23

1 Monte Corlo Principle

 $Sf(x)p(x)dx \approx \frac{1}{N} \xi f(x_n) x_n p(x)$ unbiased, variance lN

How to get x, ~p(x)?

- exactly (invert , univariate)
- rejection (perfect samples)
- importance (factor in f(x)), sample from q,

Philosophial.

Sample hare. This sample is very good.
Why forget about it? No memory in rej./importan

D Markov Chain Monte-Carlo

Tradeoff- correlated samples, lose independence, but more exploration in high prob. regions.

Example: Gibbs Sampling

Idea: assureve have x,,..,xo, sample xa

P(xa/x, ... xa-1 xa+1, xo) \alpha exp(xao

Sample each variable inturn

Comparison to mean field.

- Similar update Process, fix markov blanket
- Mean field: Compute expected value, using expectations of acigabore
- Gibbs : compute hard assignment by sampling

Gibbs can often by easier to compate,

0->0->0-, .. -0

- · Transition distribution TCX'IX)
- · Finite example: Transition matrix R"

 Start with & To Initial dist.
 - Apply transition distribution t times $\Pi_{+} = T^{\dagger} \Pi_{D}$
 - fundamental theorem. Will converge

- equilibroum point IT is "Stationary" distribution
- By definition this is eigenvector with >= 1
- 2nd largest eigenvalue gives rate.

Rodominance of rank I matrix

- · Few more requirements of MCMC
 - be able to reach x from x' in sinite steps
 - aperiodic: Ix only acpessible at times
 - Envariance: generalize from matrix

$$TT(x') = \int T(x'|x) TT(x) dx$$

arestion: Can we pick T to make TI(x) = p(x)

Detailed Balance: Sufficient Condition

Suppose we don't know direction / reversible chain / orthogonal matrix

 $\pi(x) T(x'|x) = \pi(x')T(x|x')$

Ly implies that STI(x)T(x'/x)dx = TI(x')

D Properties: E[To E f(x)) = To E [f(xn)) = To E STT(x) f(x) dx = Elfel Sx~MEMC (at stationary Chain dist. asymptotically)

variance: var (& Ef(xn)) = 1/N2 var (Ef(xn))

= $\frac{1}{N^2}$ [$\frac{\mathcal{E}}{\mathcal{E}}$ var($f(x_n)$) + 2 $\frac{\mathcal{E}}{\mathcal{E}}$ cov($f(x_n)$, $f(x_n')$)]

good las expected

r N is highly correlated

(trade off, easy samples

versus hard uncorrelated)

D Metropolis - Hastings

- · Define random walk q(x'1x) 'proposal dist=
- · Reject if q(x'1x) takes us outside distribution

Proof: reverse

$$\rho(x) g(x'|x) \min(1, \frac{\rho(x')}{\rho(x)} g(x|x')) \\
= \frac{\rho(x)}{\rho(x)} g(x'|x) \min(\rho(x)g(x'|x), \rho(x')g(x|x'))$$
Cancels Symmetric.

Stationary if p(x)

Mixing Considerations

? Uhat if x > xnop w.p. 1 but xnap > unif? Show pictures