Introdução à Computação

Prof.ª Ma. Jessica Oliveira

Aula 07 - 26/09/2024

Revisão para AV1

História e Evolução dos Computadores

Pascalina e Máquina de Leibniz

Sobre a Pascalina:

- Criada por Blaise Pascal em 1642, foi uma das primeiras calculadoras mecânicas.
- Ela **realizava apenas soma e subtração**, o que limita a sua definição como uma calculadora completa.

Máquina de Leibniz:

- Criada em 1673 foi uma evolução, permitindo também multiplicação e divisão.
- Leibniz utilizou cilindros dentados para realizar essas operações, tornando a máquina mais versátil.

Tear de Jacquard e Máquina Analítica

Tear de Jacquard:

- Joseph-Marie Jacquard desenvolveu o Tear de Jacquard em 1804, que usava cartões perfurados para controlar padrões de tecelagem.
- Esse método é considerado o precursor da programação mecânica.

Máquina Analítica de Charles Babbage:

- Desenvolvida no início do século XIX por Charles Babbage, é considerada o **primeiro conceito de um computador programável**.
- Incluía componentes fundamentais para computadores modernos, como unidade de entrada, saída, controle e memória.

ENIAC e Zuse Z3

• ENIAC:

- Desenvolvido durante a Segunda Guerra Mundial por John Mauchly e J. Presper Eckert.
- Embora o ENIAC fosse **um dos primeiros computadores eletrônicos**, ele **não era programável** no sentido moderno.
- Peso e tamanho: 30 toneladas, usava cerca de 18.000 válvulas.

• Zuse Z3:

- Criado por Konrad Zuse em 1941, o Zuse Z3 é considerado o primeiro computador programável.
- Foi pioneiro no uso de código binário para programação.

Arquitetura de Von Neumann

Definição

- Proposta por John Von Neumann em 1945, a arquitetura propunha o armazenamento de dados e instruções na mesma memória.
- Isso diferencia os computadores anteriores, onde dados e instruções eram processados separadamente.
- Conceitos principais:
 - Memória compartilhada entre dados e instruções.
 - Processamento sequencial: execução de uma instrução por vez.

A máquina de Von Neumann

Barramento único e o Gargalo de Von Neumann

Barramento único:

- Todos os dados e instruções trafegam pelo mesmo barramento, o que pode causar congestionamento e lentidão.
- Este é o problema conhecido como gargalo de Von Neumann.

Gargalo de Von Neumann:

- O problema surge quando o barramento único não consegue atender a alta demanda de leitura e escrita de dados.
- Solução parcial: uso de memória cache, que armazena temporariamente os dados mais frequentemente acessados, melhorando a performance.

Comparação com a Arquitetura Harvard

- Difere da de Von Neumann ao separar fisicamente as memórias para dados e instruções.
- Isso permite ao processador o acesso simultâneo a ambas as memórias, melhorando sua performance.
- A Arquitetura Harvard é usada em sistemas embarcados e processadores mais especializados, mas a Arquitetura de Von Neumann continua sendo a base da maioria dos computadores modernos.

Característica	Arquitetura Harvard	Arquitetura Von Neumann
Separação de Memória	Instruções e dados em memórias separadas.	Instruções e dados compartilham a mesma memória.
Acesso Simultâneo	Instruções e dados podem ser acessados ao mesmo tempo.	Instruções e dados precisam esperar sua vez.
Barramentos	Barramentos separados para dados e instruções.	Um único barramento compartilhado.
Exemplo de Aplicação	Microcontroladores e DSPs.	Computadores gerais.

Componentes de um Computador

Unidade Central de Processamento (CPU)

Função: é o "cérebro" do computador, processando e executando todas as instruções.

Componentes principais:

- Unidade Lógica e Aritmética (ULA): responsável por todas as operações matemáticas e lógicas.
- Unidade de Controle: coordena a execução das instruções, enviando sinais de controle.
- Registradores: pequenas memórias internas à CPU usadas para armazenar dados temporariamente.

Dispositivos de Entrada e Saída

Dispositivos de Entrada:

- Responsáveis por capturar dados do mundo exterior e enviá-los para o computador.
- Exemplos: teclado, mouse, scanner.

Dispositivos de Saída:

- Exibem ou processam os dados gerados pelo computador.
- Exemplos: monitor, impressora, alto-falantes.

Memória RAM e ROM

Memória RAM (Random Access Memory):

- Memória **volátil**, usada para armazenar dados temporariamente enquanto o computador está ligado.
- Quando o computador é desligado, todos os dados armazenados na RAM são perdidos.

Memória ROM (Read-Only Memory):

• Memória **não volátil**, usada para armazenar dados permanentemente, como o firmware do sistema.

Pipeline e Conflitos em Processadores

Funcionamento do Pipeline

• A técnica do *pipeline* divide o processamento em diferentes estágios, como busca, decodificação e execução, permitindo a execução simultânea de várias instruções.

Execução das tarefas **sem** o uso do *pipeline*.

Execução das tarefas **com** o uso do *pipeline*.

Conflitos no Pipeline

Conflitos Estruturais:

• Ocorrem quando mais de uma instrução tenta usar o **mesmo recurso** ao mesmo tempo, como a **memória** ou o **barramento**.

Conflitos de Dados:

 Quando uma instrução depende do resultado de outra que ainda não foi concluída.

Conflitos de Controle:

- Acontecem quando o fluxo de instruções é alterado devido a saltos condicionais.
- **Solução:** O uso de *branch prediction* (previsão de saltos) para minimizar esses conflitos.

Memória e Hierarquia

Tipos de Memória

- Hierarquia:
 - Do mais rápido ao mais lento: registradores (dentro da CPU), cache, memória principal (RAM), memória secundária (HD ou SSD).
- Características:
 - **Velocidade:** registradores são os mais rápidos, enquanto o armazenamento secundário é o mais lento.
 - Capacidade: registradores têm a menor capacidade, enquanto discos rígidos oferecem maior capacidade.

Memória Virtual

- Uma técnica que usa o disco rígido como uma extensão da memória RAM.
- Permite que programas maiores sejam executados, mesmo quando a RAM é limitada.

Sistemas Distribuídos de Informação

Conceito de Sistemas Distribuídos

- Em sistemas distribuídos, os componentes estão em máquinas diferentes, mas funcionam como um único sistema.
- Exemplos: Computação em nuvem, redes de servidores.

Vantagens e Desvantagens

Vantagens:

- Escalabilidade: adição de novos nós melhora a capacidade e performance do sistema.
- Distribuição de carga: o processamento é distribuído entre várias máquinas.

Desvantagens:

- Problemas de comunicação: redes lentas ou falhas de comunicação podem impactar a eficiência.
- Consistência de dados: manter a consistência entre nós pode ser desafiador.

Consenso Distribuído

- Se refere à capacidade de um conjunto de nós (máquinas ou computadores) em uma rede distribuída chegarem a um acordo sobre o estado atual de dados, mesmo na presença de falhas ou inconsistências.
- Cada nó pode processar informações e tomar decisões independentemente, mas para **garantir a consistência dos dados**, todos os nós precisam concordar sobre o estado final dos dados, especialmente quando há mudanças (como atualizações ou operações de escrita).
- Exemplo prático: em um sistema bancário distribuído, todos os servidores devem concordar sobre o saldo correto de uma conta após várias transações em diferentes locais.

ATENÇÃO!

Orientações para o dia da prova.

CELULARES DESLIGADOS! Nada de uso de fones de ouvido!

Posicionamento em sala:

- Os discentes deverão permanecer fora da sala até a autorização de entrada;
- Ao ser autorizada, será procedida a assinatura na ATA e reconhecimento do número sequencial do discente, um por vez;
- Assinada a ATA e ciente do seu número, entre na sala, encontre sua cadeira (olhe para o quadro!) e inicie sua prova;
- Ao término, deixe a prova e os cartões de resposta na sua cadeira e está liberado.
- Ida ao banheiro: **sem celular e ordenado**, um discente por vez, não precisa pedir.

- Silêncio em sala! Foco na SUA prova!
- Tanto a prova quanto os cartões respostas ficam em sala. Tudo será entregue na aula posterior.
- **Tempo de prova:** 2h20min, iniciando às 19h30min e finalizando às 21h50min. **NÃO SE ATRASE.**
- Tempo mínimo de permanência em sala: 30 minutos.

Dúvidas?

jessica.oliveira@fbr.edu.br

