Reduktion und Oxidation

Reduktion heisst jeder Vorgang, bei dem ein Teilchen (Atom, Ion, Molekül) Elektronen aufnimmt. Hierbei wird die Oxidationszahl des reduzierten Teilchens kleiner.

Oxidation heisst jeder Vorgang, bei dem ein Teilchen (Atom, Ion, Molekül) Elektronen abgibt. Hierbei wird die Oxidationszahl des reduzierten Teilchens grösser.

Ein Teilchen kann nur Elektronen aufnehmen (abgeben), wenn diese von anderen Teilchen abgegeben (aufgenommen) werden. Reduktion und Oxidation sind also stets miteinander gekoppelt.

$$Ox_1 + ne^- \longrightarrow Red_1$$
 konjugiertes Redoxpaar Ox_1/Red_1
 $Red_2 \longrightarrow Ox_2 + ne^-$ konjugiertes Redoxpaar Ox_2/Red_2
 $Ox_1 + Red_2 \longrightarrow Red_1 + Ox_2$ Redoxsystem

Redoxvorgang = Elektronenverschiebung

Oxidationsmittel: Substanzen, die Elektronen aufnehmen und dabei andere Substanzen oxidieren. Sie werden selber reduziert. Bsp.: O₂, O₃, Cl₂, KMnO₄
Reduktionsmittel: Substanzen, die Elektronen abgeben und dabei andere Substanzen reduzieren. Sie werden selber oxidiert. Bsp.: Na, K, C, H₂, CO, FeCl₂

Oxidationszahlen (OZ)

Hauptregeln:

- Die Summe der OZ aller Elemente einer Spezies ist gleich der Absolutladung der Spezies.
- In jeder Bindung zweier Atome werden die bindenden Elektronen formal dem Element mit der höheren EN zugeschlagen.
- Haben zwei Atome dieselbe EN, werden die zwei Elektronen jeder Bindung formal auf beide Atome aufgeteilt.

Hilfsregeln

In elementaren Substanzen haben alle Atome die OZ = 0.

Die OZ von Atomionen ist gleich ihrer absoluten Ladung.

Fluor hat in Verbindungen immer die OZ -I.

Metalle haben in Verbindungen in der Regel positive OZ.

Wasserstoff hat die OZ +I. (Ausnahme: gegenüber Metallen -I)

Sauerstoff hat in der Regel die OZ -II.

Aufstellen von Redoxgleichungen

$$MnO_4^- + Fe^{2+} \longrightarrow Mn^{2+} + Fe^{3+}$$
 (in saurer Lösung)
$$^{+ VII} MnO_4^- + 5e^- \longrightarrow Mn^{2+} + ...$$

$$^{+ II} \longrightarrow ^{+ II} \longrightarrow ^{+ III} \longrightarrow ^{+ III} \longrightarrow ^{- 3+} \longrightarrow ^$$

$$5 \text{ Fe}^{2+} \longrightarrow 5 \text{ Fe}^{3+} + 5 \text{ e}^{-}$$

$$MnO_4^- + 5 Fe^{2+} \longrightarrow Mn^{2+} + 5 Fe^{3+} + ...$$

Elektronenausgleich

Gesamtladung links: +9

rechts: +17

$$MnO_4^- + 5 Fe^{2+}$$

$$\longrightarrow$$
 Mn²⁺ + 5 Fe³⁺ + ...

$$8 H^{+} + MnO_{4}^{-} + 5 Fe^{2+} \longrightarrow Mn^{2+} + 5 Fe^{3+} + \dots$$

$$Mn^{2+} + 5 Fe^{3+} + ...$$

Ladungsausgleich

$$8 H^{+} + MnO_{4}^{-} + 5 Fe^{2+} \longrightarrow Mn^{2+} + 5 Fe^{3+} + 4 H_{2}O$$

$$Mn^{2+} + 5 Fe^{3+} + 4 H_2O$$

"Silberbaum"

$$2 \text{ Ag}^+ + \text{Cu} \longrightarrow 2 \text{ Ag} + \text{Cu}^{2+} \qquad \text{Pb}^{2+} + \text{Zn} \longrightarrow \text{Pb} + \text{Zn}^{2+}$$

"Bleibaum"

$$Pb^{2+} + Zn \longrightarrow Pb + Zn^{2-}$$

Silberbaum

 $\underline{https://www.cci.ethz.ch/mainpic.html?picnum=-1\&control=0\&language=0\&ismovie=1\&expnum=116}$

Daniell-Element

Redoxpaar 1 (Halbelement 1) Redoxpaar 2 (Halbelement 2)
$$Zn \to Zn^{2^+} + 2e^- \qquad \qquad Cu^{2^+} + 2e^- \to Cu$$
 Gesamtreaktion
$$Zn + Cu^{2^+} \to Zn^{2^+} + Cu$$

Standardwasserstoffelektrode

Standard-Wasserstoffelektrode

https://www.cci.ethz.ch/mainpic.html?picnum=-1&control=0&language=0&ismovie=1&expnum=123

Daniell-Element

https://www.cci.ethz.ch/mainpic.html?picnum=-1&control=0&language=0&ismovie=1&expnum=124

Nernstsche Gleichung

$$\Delta_{\mathbf{r}}G^{\circ} = -z \cdot F \cdot E^{\circ}$$

$$\Delta_{\mathbf{r}}G^{\circ} = -R \cdot T \cdot \ln K$$

$$z \cdot F \cdot E^{\circ} = R \cdot T \cdot \ln K$$

$$E^{\circ} = \frac{R \cdot T}{z \cdot F} \ln K$$

mit T = 298 K gilt:

$$E^{\circ} = \frac{0.059}{z} \log K \qquad \log K = \frac{z \cdot E^{\circ}}{0.059}$$

Saure Lösung (pH 0):

$$^{+7}_{\text{CIO}_4^-} \ \frac{+\ 1.19}{\text{CIO}_3^-} \ \frac{+\ 1.21}{\text{HCIO}_2} \ \frac{+\ 3}{\text{HCIO}_2} \ \frac{+\ 1.65}{\text{HCIO}} \ \frac{+\ 1.63}{\text{HCIO}} \ \frac{0}{\text{CI}_2} \ \frac{+\ 1.36}{\text{CI}_2} \ \frac{-1}{\text{CI}_2}$$

Basische Lösung (pH 14):

$$^{+7}_{\text{CIO}_4^-} \xrightarrow{+0.36} ^{+5}_{\text{CIO}_3^-} \xrightarrow{+0.33} ^{+3}_{\text{CIO}_2^-} \xrightarrow{+0.66} ^{+1}_{\text{CIO}^-} \xrightarrow{+0.32} ^{0}_{\text{CIO}^-} \xrightarrow{+1.36} ^{-1}_{\text{CI}^-}$$

$$Cl_2 + H_2O$$
 — HOCI + HCI
 $E^{\circ} = +1.36 \text{ V} + (-1.63 \text{ V}) = -0.27 \text{ V}$ $\log K = -4.6$

$$Cl_2 + 2 \text{ NaOH} \longrightarrow 2 \text{ Na}^+ + \text{OCl}^- + \text{Cl}^- + \text{H}_2\text{O}$$

$$E^\circ = +1.36 \text{ V} + (-0.32 \text{ V}) = +1.04 \text{ V} \qquad \text{log K} = +17.7$$

$$E^{\circ}(2) \qquad E^{\circ}(3) \qquad E^{\circ}(4)$$
+7
$$CIO_{4}^{-} \qquad +1.19 \qquad CIO_{3}^{-} \qquad +1.21 \qquad +3 \qquad +1.65 \qquad +1.63 \qquad CI_{2} \qquad +1.63 \qquad CI_{2} \qquad +1.36 \qquad CI_{3} \qquad +1.36 \qquad CI_{4} \qquad +1.65 \qquad +1.$$

Die Reaktionspotenziale verhalten sich im Gegensatz zu den ΔG-Werten nicht additiv.

$$\Delta G^{\circ}(ClO_3^{-}/Cl_2) = \Delta G^{\circ}(ClO_3^{-}/HClO_2) + \Delta G^{\circ}(HClO_2/HClO_3) + \Delta G^{\circ}(HClO/Cl_2)$$

 $\Delta G^{\circ}(ClO_3^{-}/Cl_2) = \Delta G^{\circ}(ClO_3^{-}/HClO_2) + \Delta G^{\circ}(HClO_2/HClO) + \Delta G^{\circ}(HClO/Cl_2)$

mit $\Delta G^{\circ} = -z \cdot F \cdot E^{\circ}$ folgt

$$-5 \cdot F \cdot E^{\circ} (1) = -2 \cdot F \cdot E^{\circ} (2) + (-2 \cdot F \cdot E^{\circ} (3)) + (-1 \cdot F \cdot E^{\circ} (4))$$

$$5 E^{\circ} (1) = 2 \cdot E^{\circ} (2) + 2 \cdot E^{\circ} (3) + E^{\circ} (4)$$

$$E^{\circ}(1) = [2 \cdot E^{\circ}(2) + 2 \cdot E^{\circ}(3) + E^{\circ}(4)] : 5$$

$$E^{\circ}$$
 (CIO₃-/CI₂) = [2 · 1.21V + 2 · 1.65V + 1.63V] : 5 = 1.47 V

$$\Delta_{\mathbf{r}}G = \Delta_{\mathbf{r}}G^{\circ} + R \cdot T \cdot \ln Q$$

$$-z \cdot F \cdot E = -z \cdot F \cdot E^{\circ} + R \cdot T \cdot \ln Q$$

$$E = E^{\circ} - \frac{R \cdot T}{z \cdot F} \cdot \ln Q$$

$$E = E^{\circ} - \frac{R \cdot T}{z \cdot F} \cdot \ln Q$$

$$E = E^{\circ} - \frac{0.059}{z} \log \frac{a_{\mathrm{C}} \cdot a_{\mathrm{D}}}{a_{\mathrm{A}} \cdot a_{\mathrm{B}}}$$

für die Reduktion $Ox + e^{-} \longrightarrow Red$ gilt:

$$E_{\text{red}} = E_{\text{red}}^{\circ} - \frac{0.059}{1} \log \frac{a_{\text{Red}}}{a_{\text{Ox}}}$$

$$E_{\rm red} \approx E^{\circ}_{red} - \frac{0.059}{1} \log \frac{c_{Red}^{\bullet}}{c_{Ox}^{\bullet}}$$

für
$$Me^+(aq) + e^- \longrightarrow Me(s)$$
 gilt

$$E_{\text{red}} = E_{\text{red}}^{\circ} - \frac{0.059}{1} \log \frac{1}{a_{\text{Me}^{+}}}$$

$$E_{\text{red}} \approx E_{\text{red}}^{\circ} - \frac{0.059}{1} \log \frac{1}{c_{\text{Me}^{+}}^{\bullet}}$$
 $E_{\text{red}} \approx E_{\text{red}}^{\circ} + \frac{0.059}{1} \log c_{\text{Me}^{+}}^{\bullet}$

für
$$2 \text{ H}^+(\text{aq}) + 2e^- \longrightarrow \text{H}_2(g)$$
 gilt

$$E = E^{\circ} + \frac{0.059}{2} \log \frac{a_{\text{H}^{+}}^{2}}{a_{\text{H}_{2}}}$$

$$E = 0 + \frac{0.059}{2} \log \frac{a_{\text{H}^+}^2}{p_{\text{H}_2}} \qquad E \approx \frac{0.059}{2} \log \frac{(c_{\text{H}^+}^{\bullet})^2}{p_{\text{H}_2}}$$

Oxidation von Metallen mit Wasserstoffionen

						$\Delta_{R}G^{o}$ kJ/mol	K	E°(V)	E (pH7)
ΔG° kJ/mol	65.5	+	H ₂	Cu + 0	2 H ⁺ (aq) 0	-65.5	3 x 10 ¹¹	+0.34	+0.76
	Pb ²⁺ (aq)	+	H ₂	Pb +	2 H ⁺ (aq)	24.4	5 x 10 ⁻⁵	-0.13	+0.29
	Zn ²⁺ (aq)	+	H ₂	Zn + 0	2 H ⁺ (aq)	147.1	2 x 10 ⁻²⁶	-0.76	-0.34
	Mg ²⁺ (aq)	+	H ₂ ← 0	Mg +	2 H ⁺ (aq)	454.8	2 x 10 ⁻⁸⁰	-2.37	-1.95
	Ca ²⁺ (aq)	+	H ₂ ← 0	Ca +	2 H ⁺ (aq)	555.6	4 x 10 ⁻⁹⁸	-2.76	-2.34
	2 K ⁺ (aq)	+	H ₂ ←	2 K +	2 H ⁺ (aq)	566.4	6 x 10 ⁻¹⁰⁰	-2.92	-2.50

$$2 \text{ MnO}_{4}^{-} + 10 \text{ X}^{-} + 16 \text{ H}^{+} \longrightarrow 2 \text{ Mn}^{2+} + 5 \text{ X}_{2} + 8 \text{ H}_{2}\text{O}$$

$$2 \text{ MnO}_{4}^{-} + 10 \text{ e}^{-} + 16 \text{ H}^{+} \longrightarrow 2 \text{ Mn}^{2+} + 8 \text{ H}_{2}\text{O}$$

$$E^{\circ}_{\text{red}} = +1.51 \text{ V}$$

$$10 \text{ X}^{-} \longrightarrow 5 \text{ X}_{2} + 10 \text{ e}^{-} \qquad E^{\circ}_{\text{Ox}} = -1.36 \text{ V} \qquad (X = \text{CI})$$

$$E^{\circ}_{\text{Ox}} = -1.06 \text{ V} \qquad (X = \text{Br})$$

$$E^{\circ}_{\text{Ox}} = -0.54 \text{ V} \qquad (X = \text{I})$$

$$E^{\circ} = E^{\circ}_{red} + E^{\circ}_{Ox} = +0.15 \text{ V} \quad (X = CI)$$

= +0.45 V \quad (X = Br)
= +0.97 V \quad (X = I)

$$E = E^{\circ} - \frac{0.059}{10} \log \frac{a_{\text{Mn}^{2+}}^{2} \cdot a_{\text{X}_{2}}^{5} \cdot a_{\text{H}_{2}\text{O}}^{8}}{a_{\text{MnO}_{4}}^{2} \cdot a_{\text{X}^{-}}^{10} \cdot a_{\text{H}^{+}}^{16}}$$

Für X = Cl gilt:

$$E = 0.15V - \frac{0.059}{10} \log \frac{a_{\text{Mn}^{2+}}^2 \cdot a_{\text{Cl}_2}^5 \cdot 1}{a_{\text{MnO}_4}^2 \cdot a_{\text{Cl}^-}^{10} \cdot a_{\text{H}^+}^{16}}$$

Berechnung des Reaktionspotenzials bei verschiedenen pH-Werten. Annahme: Aktivitäten aller anderen Species gleich 1

$$E = 0.15V - \frac{0.059}{10} \log \frac{1^2 \cdot 1^5}{1^2 \cdot 1^{10} \cdot a_{H^+}^{16}}(V)$$

pH 0
$$a_{H+} = 1$$
 $E = E^{\circ} = +0.15V$

pH 3
$$a_{H+}=10^{-3}$$
 E = -0.13V

pH 7
$$a_{H+}=10^{-7}$$
 E = -0.51V

Analoge Berechnung für X = Br

$$X = Br$$
 $E^{\circ} = +0.45 \text{ V}$

pH 0
$$a_{H+}=1$$
 $E=E^{\circ}=+0.45V$
pH 3 $a_{H+}=10^{-3}$ $E=+0.17V$
pH 7 $a_{H+}=10^{-7}$ $E=-0.21V$

Analoge Berechnung für X = I

$$X = I$$
 $E^{\circ} = +0.97 \text{ V}$

pH 0
$$a_{H+}=1$$
 $E=E^{\circ}=+0.97V$
pH 3 $a_{H+}=10^{-3}$ $E=+0.69V$
pH 7 $a_{H+}=10^{-7}$ $E=+0.31V$

Praxistest:

Halogenide vorgelegt, Permanganat wird zugetropft. Die Verfärbung von violett nach hellbraun bestätigt den Ablauf der Reaktion.

https://www.cci.ethz.ch/mainpic.html?picnum=-1&control=0&language=0&ismovie=1&expnum=96

Thermit-Versuche

https://www.cci.ethz.ch/mainpic.html?picnum=-1&control=0&language=0&ismovie=1&expnum=28 https://www.cci.ethz.ch/mainpic.html?picnum=-1&control=0&language=0&ismovie=1&expnum=38

Experimente zur Korrosion

https://www.cci.ethz.ch/mainpic.html?picnum=-1&control=0&language=0&ismovie=1&expnum=138 https://www.cci.ethz.ch/mainpic.html?picnum=-1&control=0&language=0&ismovie=1&expnum=139

Technische Galvanische Zellen

Bleiakkumulator

Brennstoffzelle

Anode (-): $2 H_2 (g) + 4 OH^- \longrightarrow 4 H_2O + 4 e^-$

Kathode (+): $2 H_2O + 4 e^- + O_2 (g) \longrightarrow 4 OH^-$

 $2 H_2 (g) + O_2 (g) \longrightarrow 2 H_2O (I)$

Lithium-Ionen-Batterie

Anode (-): $\text{Li}_x C$ (s) $\longrightarrow x \text{Li}^+ + C$ (Graphit) $+ x e^- \qquad x < 0.16$

Kathode (+): $x e^{-} + Li_{1-x}CoO_2 + x Li^{+} \longrightarrow LiCoO_2$ (s)

Korrosion

Korrosionsschutz

Technische Elektrolysen

Schmelzfluss-Elektrolyse von Natriumchlorid

Chloralkalielektrolyse (Elektrolyse von wässriger NaCl-Lösung)

Kathode:
$$2 H_2O$$
 \longrightarrow $2 H^+ + 2 OH^ 2 H_2O$ \longrightarrow H_2
 $2 NaCl$ \longrightarrow $2 Na^+ + 2 Cl^-$

Anode: $2 Cl^ \longrightarrow$ $Cl_2 + 2 e^ 2 Na^+ + 2 OH^ \longrightarrow$ $2 NaOH$
 $2 H_2O + 2 NaCl$ \longrightarrow $H_2 + 2 NaOH + Cl_2$

Elektrolytische Kupfer- Raffination

```
Rohkupfer E°(Cu<sup>2+</sup>/Cu) = + 0.35V;

Verunreinigungen z.B. Zn (E°(Zn<sup>2+</sup>/Zn) = - 0.76V)

Au (E°(Au<sup>3+</sup>/Au) = + 1.49V)

Ag (E°(Ag<sup>+</sup>/Ag) = + 0.81V)
```

Anode: Cu
$$\longrightarrow$$
 Cu²⁺ + 2 e $^{-}$

Zn \longrightarrow Zn²⁺ + 2 e $^{-}$

Au \longrightarrow Au (Anodenschlamm)

Ag \longrightarrow Ag (Anodenschlamm)

Kathode: Cu²⁺ + 2 e $^{-}$ \longrightarrow Cu (Feinkupfer)

$$Cu / Zn / Au / Ag$$
 \longrightarrow $Cu + Au + Ag + $Zn^{2+} + 2e^{-}$$

Schmelzflusselektrolyse von Al₂O₃

Kathode:
$$2 \text{ Al}^{3+} + 6 \text{ e}^{-} \longrightarrow 2 \text{ Al}$$

Anode: $3 \text{ O}^{2-} \longrightarrow 1.5 \text{ O}_2 + 6 \text{ e}^{-}$

$$2 \text{ Al}^{3+} + 3 \text{ O}^{2-} \longrightarrow 2 \text{ Al} + 1.5 \text{ O}_2$$

$$1.5 \text{ O}_2 + 3 \text{ C} \longrightarrow 3 \text{ CO}$$

$$Al_2O_3 + 3 \text{ C} \longrightarrow 2 \text{ Al} + 3 \text{ CO} \qquad \Delta H = +1345 \text{ kJ/mol}$$