CS170– Spring 2022— Homework 6

CurMack

August 13, 2022

Chain Matrix Multiplication

Multiplying an $m \times n$ matrix by an $n \times p$ matrix takes mnp multiplications. How do we determine the optimal order, if we want to compute $A_1 \times A_2 \times \cdots \times A_n$, where the A_i 's are matrices with dimensions $m_0 \times m_1, m_1 \times m_2, \ldots, m_{n-1} \times m_n$, respectively?

Function: For $1 \le i \le j \le n$, define:

 $C(i,j) = \text{minimum cost of multiplying } A_i \times A_{i+1} \times \cdots \times A_j$

Base Case: when i = j, C(i, i) = 0

Recurrence:

$$C(i,j) = \min_{i \leq k < j} \{C(i,k) + C(k+1,j) + m_{i-1} \cdot m_k \cdot m_j\}$$

Main Idea:

Runtime: $\mathcal{O}(n^3)$

2 Egg Drop Revisited

(a)

$$M(d,k) = M(d-1,k-1) + M(d-1,k) + 1$$

The highest floor we can drop the first egg from is M(d-1,k-1)+1, if the egg breaks, we can still solve the problem with the remaining d-1 drops and k-1 eggs. If the egg doesn't break, now we have d-1 drops and k eggs, we can at most solve M(d-1,k) floors. So the the maximum number of floors for which we can always find l in at most d drops using k eggs is M(d-1,k-1)+M(d-1,k)+1.

(b) For base cases, we take M(0,k)=0 for any k and M(d,0)=0 for any d. Starting with d=1, we compute M(d,x) for all $1 \le x \le k$, and do so again for increasing values of d, up until we compute M(d,x) for all $1 \le x \le k$. We return M(d,k).

Runtime: $\mathcal{O}(dk)$ (we compute dk subproblems, each of which takes $\mathcal{O}(1)$ time)

- (c) Similarly, Starting with d=1, we compute M(d,x) for all, $1 \le x \le k$, and do so again for increasing values of d, up until we firstly compute $M(d,k) \ge n$, then we return the value d as f(n,k).
- (d) Notices that d will always be at most n, since each floor will have at most 1 drop for the optimal solution. Since the original runtime is $\mathcal{O}(dk)$ and $d \leq n$:

 Runtime: $\mathcal{O}(nk)$
- (e) we only need to store M(d-1,x) and M(d,x) for all x, i.e. we only ever need to store $\mathcal{O}(k)$ values. In particular, after computing M(d,x) for all x, we can delete our stored values of M(d-1,x).

3 Knightmare

(a) Use M-bit string to represent a valid configuration of knights on a single row, there are 2^M representations. We will solve the $N \times M$ chessboard from the subproblem of size $N-1 \times M$, since the nth row configuration depends on the n-1th row and n-2th row.

Function:

K(n, u, v) = the number of ways in an n-row board, u be the specific configuration of the nth row, v be the specific configuration of the (n-1)th row.

(b) Base Case: For all configurations u and v (no matter valid or not):

$$K(2, u, v) = \begin{cases} 1 & \text{if valid} \\ 0 & \text{otherwise} \end{cases}$$

Recurrence:

$$K(n, v, w) = \sum_{\text{all valid } u, v, w} K(n - 1, u, v)$$

return $\sum_{\text{all valid } u,v} K(n,u,v)$

- (c) **Correctness**: for base case, we will brute force n = 2 rows, which s correct. If we have valid configuration K(n-1, u, v), then for the *n*th row, we check last 3 rows u, v, w to see if they are valid and add all configuration to the n^{th} row solution to solve K(n, v, w), which is correct.
- (d) **Runtime**: $\mathcal{O}(2^{3M} \cdot N \cdot M)$, we have $\mathcal{O}(N)$ rows, $\mathcal{O}(2^{3M})$ subproblems, each has $\mathcal{O}(M)$ to check. **Space**: $\mathcal{O}(N \cdot 2^{2M})$, we have $\mathcal{O}(N)$ rows $\cdot \mathcal{O}(2^{2M})$ subproblems per row. We only need to store the last two row, so the space we need is: $\mathcal{O}(2^{2M})$.

4 Balloon Popping Problem

(a) Like matrix chain multiplication:

Function:

 $C(i,j) = \text{maximum amount of noise produced by popping balloons } i, i+1, \dots, j$

- (b) **Base Case**: $s_0 = 1$ and $s_{n+1} = 1$, assuming the input is from 1 to n. For i = 1 to n, $C(i, i) = s_{i-1} \times s_i \times s_{i+1}$ If i > j, C(i, j) = 0.
- (c) Recurrence:

$$C(i,j) = \max_{i \le k \le j} \{C(i,k) + C(k+1,j) + s_{i-1} \cdot s_k \cdot s_{j+1}\}$$

k is the last balloon to pop in subset $i, i + 1, \ldots, j$.

Finally return C(1, n).

Runtime: $\mathcal{O}(n^3)$

5 Paper Cutting

(a) Function:

 $B(i_1, j_1, i_2, j_2)$ = the minimum number of cuts needed to separate the matrix $A[i_1 \dots i_2, j_1 \dots j_2]$

(b) **Recurrence**:

$$B(i_1, j_1, i_2, j_2) = \min \begin{cases} 0 & \text{if all entries in} A[i_1 \dots i_2, j_1 \dots j_2] \text{ are equal} \\ 1 + B(i_1, j_1, i_1 + k, j_2) + B(i_1 + k + 1, j_1, i_2, j_2) & \text{for any } k \in \{1, \dots, i_2 - i_1\} \\ 1 + B(i_1, j_1, i_2, j_1 + k) + B(i_1, j_1 + k + 1, i_2, j_2) & \text{for any } k \in \{1, \dots, j_2 - j_1\} \end{cases}$$

Base Case: set all single-square pieces to be 0.

(c) Runtime: $\mathcal{O}((m+n)m^2n^2)$

We have $\mathcal{O}(m^2n^2)$ total subproblems. For each subproblem, we examine up to m possible choices for horizontal splits, and n possible choices for vertical splits, which takes $\mathcal{O}(n+m)$ time. We can precompute the purities of every single possible subrectangle and store it in a table. So to solve our recurrence relation, if we can determine purity/impurity in $\mathcal{O}(1)$ time, then we can reach an overall time of $\mathcal{O}((m+n)m^2n^2)$.