

MVO-32 - Lista de Exercícios 3

Antônio Bernardo antonio@ita.br

27 de outubro de 2020

Instruções

LEIA COM ATENÇÃO:

- enviar a solução até as 23:59 de **13 de novembro de 2020**; o desconto por atraso (de 0,05 por hora) começa a contar a partir das 00:00. A solução consiste de:
 - documento com respostas, gráficos e análises em formato .pdf
 - todos os códigos utilizados em cada item, numa única pasta compactada em formato .zip, com subpastas para cada item (ex.: 1A, 1B, 2A etc.)
 - observação: o tamanho total dos anexos não deve exceder 5 MB
- é permitido resolver em duplas; um único trio é também permitido
- é permitido discutir resultados com outros colegas/outras duplas
- porém, **não é permitido** ler a solução de outros colegas/outras duplas, seja da turma atual, seja de turmas passadas
- esta lista responde por 1/3 da nota do 2° bimestre

Dados

Nesta lista, você irá programar o modelo para a dinâmica completa do GNBA (*Generic Narrow-Body Airliner*, ou avião genérico de fuselagem estreita). A aeronave foi desenvolvida na seguinte tese de doutorado, com a finalidade de estudar a dinâmica do voo de aeronaves flexíveis:

GUIMARÃES NETO, Antônio Bernardo. Flight dynamics of flexible aircraft using general body axes: a theoretical and computational study. Instituto Tecnológico de Aeronáutica. São José dos Campos: ITA, 2014. 450 p. (DCTA/ITA/TD-032/2014). Disponível em: http://www.bdita.bibl.ita.br/tesesdigitais/lista_resumo.php?num_tese=67648. Acesso em: 29 set. 2020.

Figura 1: GNBA: Generic Narrow-Body Airliner.

Dados gerais

Descrição	Símbolo	Valor	Unidade
Área da asa	S	116	m^2
Corda média aerodinâmica	$ar{c}$	3,862	\mathbf{m}
Envergadura	b	32,757	\mathbf{m}
Massa	m	55788	kg
Momento de inércia em x	I_{xx}	$8,215 \times 10^5$	${ m kg.m^2}$
Momento de inércia em y	I_{yy}	$3,344 \times 10^{6}$	${ m kg.m^2}$
Momento de inércia em z	I_{zz}	$4,057 \times 10^{6}$	${ m kg.m^2}$
Produto de inércia xz	I_{xz}	$1,789 \times 10^{5}$	${ m kg.m^2}$
Máximo empuxo ao nível do mar por motor	$T_{\rm max}$	100000	N

Condição de operação

Condição	V [m/s]	Mach	h [m]	γ [deg]
Cruzeiro	230,15	0,78	11582,4	0,0

Dados do modelo propulsivo

Adote o seguinte modelo para o empuxo de cada motor, T_l (motor esquerdo) ou T_r (motor direito), em função do controle propulsivo, $throttle_l$ (motor esquerdo) ou $throttle_r$ (motor direito):

$$\begin{split} T_l &= throttle_l \ T_{\max} \left(\frac{\rho}{\rho_0}\right)^{n_\rho}, \\ T_r &= throttle_r \ T_{\max} \left(\frac{\rho}{\rho_0}\right)^{n_\rho}, \end{split}$$

sendo $T_{\rm max}$ o máximo empuxo ao nível do mar, ρ a densidade atmosférica na altitude atual, $\rho_0=1,225~{\rm kg/m^3}$ a densidade ao nível do mar, e $n_\rho=0,8$.

Tabela 1: Parâmetros propulsivos do GNBA

Descrição	Símbolo	Valor	Unidade
Incidência do motor esquerdo	ι_l	2,0	deg
Ângulo de "toe-in" do motor esquerdo	$ au_l$	1,5	\deg
Matriz de transformação do sistema do corpo para o do motor esquerdo	$\mathbf{C}_{l/b}$	$\mathbf{C}_{\iota_l}\mathbf{C}_{\tau_l}$	
Ponto de aplicação da força de empuxo do motor esquerdo	$\mathbf{r}_{l,b}$	$\begin{bmatrix} 4,899 \\ -5,064 \\ 1,435 \end{bmatrix}$	m
Incidência do motor direito	ι_r	2,0	\deg
Ângulo de "toe-in" do motor direito	$ au_r$	-1,5	\deg
Matriz de transformação do sistema do corpo para o do motor direito	$\mathbf{C}_{r/b}$	$\mathbf{C}_{\iota_r}\mathbf{C}_{\tau_r}$	
Ponto de aplicação da força de empuxo do motor direito	$\mathbf{r}_{r,b}$	$ \begin{bmatrix} 4,899 \\ 5,064 \\ 1,435 \end{bmatrix} $	m

Na Tabela 1, as matrizes de transformação \mathbf{C}_{ι_l} e \mathbf{C}_{ι_r} são para rotações pela regra da mão direita em torno dos eixos y dos sistemas de coordenadas resultantes das rotações pelos ângulos τ_l e τ_r , respectivamente. As matrizes de transformação \mathbf{C}_{τ_l} e \mathbf{C}_{τ_r} , por sua vez, são para rotações pela regra da mão direita em torno do eixo z_b :

$$\mathbf{C}_{\tau_l} = \begin{bmatrix} \cos \tau_l & \sin \tau_l & 0 \\ -\sin \tau_l & \cos \tau_l & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{C}_{\tau_r} = \begin{bmatrix} \cos \tau_r & \sin \tau_r & 0 \\ -\sin \tau_r & \cos \tau_r & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{C}_{\iota_l} = \begin{bmatrix} \cos \iota_l & 0 & -\sin \iota_l \\ 0 & 1 & 0 \\ \sin \iota_l & 0 & \cos \iota_l \end{bmatrix}$$

$$\mathbf{C}_{\iota_r} = \begin{bmatrix} \cos \iota_r & 0 & -\sin \iota_r \\ 0 & 1 & 0 \\ \sin \iota_r & 0 & \cos \iota_r \end{bmatrix}$$

Dados do modelo aerodinâmico

Derivadas de estabilidade e controle longitudinais:

Tabela 2: Coeficiente de sustentação

C_{L_0}	$C_{L_{\alpha}}$ [1/deg]	C_{L_q} [1/rad]	$C_{L_{i_t}}$ [1/deg]	$C_{L_{\delta_e}}$ [1/deg]
0,308	0,133	16,7	0,0194	0,00895

$$C_L = C_{L_0} + C_{L_\alpha}\alpha + C_{L_q}\frac{q\bar{c}}{2V} + C_{L_{i_t}}i_t + C_{L_{\delta_e}}\delta_e$$

Tabela 3: Coeficiente de momento de arfagem

C_{m_0}	$C_{m_{\alpha}}$ [1/deg]	C_{m_q} [1/rad]	$C_{m_{i_t}}$ [1/deg]	$C_{m_{\delta_e}}$ [1/deg]
0,0170	-0,0402	-57,0	-0,0935	-0,0448

$$C_m = C_{m_0} + C_{m_\alpha} \alpha + C_{m_q} \frac{q\bar{c}}{2V} + C_{m_{i_t}} i_t + C_{m_{\delta_e}} \delta_e$$

Tabela 4: Coeficiente de arrasto

	$C_{D_{\alpha}}$	$C_{D_{\alpha 2}}$	$C_{D_{q2}}$	$C_{D_{i_t}}$	$C_{D_{i_t2}}$	$C_{D_{\delta_e 2}}$
C_{D_0}	$[1/\deg]$	$[1/\mathrm{deg^2}]$	$[1/\mathrm{rad}^2]$	$[1/\deg]$	$[1/\deg^2]$	$[1/\mathrm{deg^2}]$
0,02207	0,00271	$6,03 \times 10^{-4}$	35,904	$-4,20 \times 10^{-4}$	$1,34 \times 10^{-4}$	$4,61 \times 10^{-5}$

$C_{D_{eta 2}}$	$C_{D_{p2}}$	$C_{D_{r2}}$	$C_{D_{\delta_a 2}}$	$C_{D_{\delta_r 2}}$	
$[1/\mathrm{deg^2}]$	$[1/\mathrm{rad}^2]$	$[1/\mathrm{rad}^2]$	$[1/\mathrm{deg^2}]$	$[1/\mathrm{deg^2}]$	
$1,60 \times 10^{-4}$	0,5167	0,5738	$3,00 \times 10^{-5}$	1.81×10^{-5}	

$$C_D = C_{D_0} + C_{D_\alpha}\alpha + C_{D_{\alpha 2}}\alpha^2 + C_{D_{q_2}} \left(\frac{q\bar{c}}{2V}\right)^2 + C_{D_{i_t}}i_t + C_{D_{i_t 2}}i_t^2 + C_{D_{\delta_{e_2}}}\delta_e^2 + C_{D_{\beta_{e_2}}}\beta^2 + C_{D_{p_2}} \left(\frac{pb}{2V}\right)^2 + C_{D_{r_2}} \left(\frac{rb}{2V}\right)^2 + C_{D_{\delta_{a_2}}}\delta_a^2 + C_{D_{\delta_{r_2}}}\delta_r^2$$

O coeficiente de momento de arfagem tem como ponto de referência o CG da aeronave na condição nominal de cruzeiro. Além disso, as velocidades angulares de rolamento, de arfagem e de guinada também são aquelas em torno do CG nominal.

Observe que as derivadas aerodinâmicas com respeito a $\frac{pb}{2V}$, a $\frac{q\bar{c}}{2V}$ e a $\frac{rb}{2V}$ consideram essas adimensionalizações em radianos, não em graus.

Atenção: veja que existe contribuição de variáveis de estado e de controle láterodirecionais para o coeficiente de arrasto do GNBA (essa contribuição naturalmente não havia sido incluída na Lista 2). Derivadas de estabilidade e controle látero-direcionais:

Tabela 5: Coeficiente de força lateral

$\overline{C_{Y_{\beta}}}$	C_{Y_p}	C_{Y_r}	$C_{Y_{\delta_a}}$	$C_{Y_{\delta_r}}$
$[1/\deg]$	[1/rad]	[1/rad]	$[1/\deg]$	$[1/\deg]$
0,0228	0,0840	-1,21	$2,36 \times 10^{-4}$	$-5,75 \times 10^{-3}$

$$C_Y = C_{Y_\beta}\beta + C_{Y_p}\frac{p\,b}{2V} + C_{Y_r}\frac{r\,b}{2V} + C_{Y_{\delta_a}}\delta_a + C_{Y_{\delta_r}}\delta_r$$

Tabela 6: Coeficiente de momento de rolamento

$\overline{C_{l_{eta}}}$	C_{l_p}	C_{l_r}	$C_{l_{\delta_a}}$	$C_{l_{\delta_r}}$
$[1/\deg]$	[1/rad]	[1/rad]	$[1/\deg]$	$[1/\deg]$
$-3,66 \times 10^{-3}$	-0,661	0,254	$-2,87 \times 10^{-3}$	$6,76 \times 10^{-4}$

$$C_l = C_{l_\beta}\beta + C_{l_p}\frac{p\,b}{2V} + C_{l_r}\frac{r\,b}{2V} + C_{l_{\delta_a}}\delta_a + C_{l_{\delta_r}}\delta_r$$

Tabela 7: Coeficiente de momento de guinada

$\overline{C_{n_{\beta}}}$	C_{n_p}	C_{n_r}	$C_{n_{\delta_a}}$	$C_{n_{\delta_r}}$
$[1/\deg]$	[1/rad]	[1/rad]	$[1/\deg]$	$[1/\deg]$
$5,06 \times 10^{-3}$	-0,219	-0,634	$1,50 \times 10^{-4}$	$-3,26 \times 10^{-3}$

$$C_n = C_{n_\beta}\beta + C_{n_p}\frac{p\,b}{2V} + C_{n_r}\frac{r\,b}{2V} + C_{n_{\delta_a}}\delta_a + C_{n_{\delta_r}}\delta_r$$

Os coeficientes de momento de rolamento e de guinada têm como ponto de referência o CG da aeronave na condição nominal de cruzeiro. Esses momentos aerodinâmicos já são válidos para as direções x_b e z_b do sistema do corpo.

Observe que as derivadas aerodinâmicas com respeito a $\frac{pb}{2V}$, a $\frac{q\bar{c}}{2V}$ e a $\frac{rb}{2V}$ consideram essas adimensionalizações em radianos, não em graus.

Exercícios

Escreva uma função em MATLAB que represente a dinâmica do movimento completo da aeronave, no formato exigido para poder ser integrada no tempo pela função ode4xy:

Variáveis de estado:

$$\mathbf{X} = \begin{bmatrix} V & \alpha & q & \theta & h & x & \beta & \phi & p & r & \psi & y \end{bmatrix}^T$$

Variáveis de controle:

$$\mathbf{U} = \begin{bmatrix} throttle_l & throttle_r & i_t & \delta_e & \delta_a & \delta_r \end{bmatrix}^T$$

Variáveis de saída:

$$\mathbf{Y} = \begin{bmatrix} \gamma & T_l & T_r & \text{Mach} & C_D & C_L & C_m & C_Y & C_l & C_n \end{bmatrix}^T$$

Exercício 1

(1,0 ponto) Calcule o equilíbrio do avião no voo reto nivelado $(\dot{\psi}_{eq} = 0, \gamma_{eq} = 0)$ em cruzeiro. Apresente os resultados obtidos para as variáveis de estado, de controle e de saída. Então, determine os autovalores da dinâmica linearizada e identifique a que modo natural cada autovalor real ou cada par complexo conjugado de autovalores corresponde, explicando o método usado para a identificação.

Exercício 2

(1,0 ponto) Apresente os resultados de uma simulação da resposta do GNBA a uma entrada do tipo doublet de empuxo diferencial nos motores, começando em t=1 s com um pulso de $\Delta throttle_r=+0,1$ com $\Delta throttle_l=-0,1$, com duração de 2,5 segundos, seguido de um pulso oposto, de $\Delta throttle_r=-0,1$ com $\Delta throttle_l=+0,1$, também com duração de 2,5 segundos. Analise o comportamento do avião para os primeiros 30 segundos.

Exercício 3

Considere neste exercício um modelo simplificado para a dinâmica de rolamento da aeronave. Se ela tivesse apenas o grau de liberdade de rolamento, na ausência de derrapagem e sem comando de leme, seria válido escrever que:

$$I_{xx}\dot{p} = \mathcal{L} = \frac{1}{2}\rho V^2 SbC_l = \frac{1}{2}\rho V^2 Sb\left(C_{l_p}\frac{pb}{2V} + C_{l_{\delta_a}}\delta_a\right)$$

Além disso, assumindo $\theta = 0$, teríamos:

$$\dot{\phi} = p$$

Considerando o exposto, resolva os itens a seguir:

- a) (1,0 ponto) Compare a constante de tempo τ_R do modo de rolamento puro prevista por esse sistema de um grau de liberdade com aquela obtida do autovalor correspondente no **Exercício 1**. Por que há diferença entre essas constantes? Dica: considere o autovetor do modo na dinâmica linearizada completa.
- b) (1,0 ponto) Calcule analiticamente as respostas p(t) e $\phi(t)$ do sistema de um grau de liberdade a uma entrada degrau de amplitude qualquer $\bar{\delta}_a$ no aileron, partindo da condição de equilíbrio ($p = 0, \phi = 0, \delta_a = 0$). Calcule analiticamente qual a taxa de rolamento p_{ss} no regime estacionário.
- c) (1,0 ponto) Imponha uma entrada degrau no aileron, iniciando em t=0 s, com amplitude de 5 graus, à dinâmica não linear completa $\dot{\mathbf{X}} = \mathbf{f}(\mathbf{X}, \mathbf{U})$ e à dinâmica linearizada completa $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$, na condição de cruzeiro, simulando por 20 segundos. Apresente os gráficos para as variações de todas as variáveis de estado látero-direcionais na simulação com a dinâmica completa não linear e linearizada. Nos gráficos de Δp e de $\Delta \phi$, inclua também os resultados do sistema de um grau de liberdade calculados a partir das equações deduzidas no item (b). Analise fisicamente as diferenças observadas.
- d) (Bônus de 1,0 ponto) Caso você escreva a equação diferencial deste exercício em termos de ϕ (gerando uma equação diferencial de segunda ordem), ou considere simultaneamente as equações diferenciais de primeira ordem de p e de ϕ , você observará que a equação característica apresenta uma raiz (autovalor) na origem ($\lambda=0$). A que pode ser associado esse autovalor? Ele tem algum autovalor correlato na dinâmica completa?

Exercício 4

Na Lista 2, verificamos que a aproximação de período curto, considerando apenas $\Delta \alpha$ e Δq como graus de liberdade, resultava em um modelo de dois graus de liberdade com uma representação muito boa da dinâmica desse modo.

Consideremos, agora, a tentativa de aplicar uma analogia ao modo $Dutch\ roll$, considerando apenas os graus de liberdade $\Delta\beta$ e Δr . Considere a condição de equilíbrio do **Exercício 1**.

- a) (1,0 ponto) Compare o par complexo conjugado associado ao modo $Dutch\ roll\ na$ dinâmica completa linearizada com o par complexo conjugado associado ao mesmo modo no modelo em que apenas perturbações $\Delta\beta$ e Δr são consideradas, ou seja, o modelo reduzido representado pela partição \mathbf{A} ([7 10], [7 10]) da matriz Jacobiana. O erro cometido é maior na frequência natural ou na razão de amortecimento?
- **b)** (1,5 ponto) Considere como "nominais" os valores das derivadas de estabilidade $C_{l_{\beta}}$, $C_{n_{\beta}}$, $C_{Y_{\beta}}$, $C_{l_{p}}$, $C_{n_{p}}$, $C_{Y_{p}}$, $C_{l_{r}}$, $C_{n_{r}}$ e $C_{Y_{r}}$ empregados até o momento. Obtenha, então, uma

tabela quantitativa para a frequência natural não amortecida e a razão de amortecimento do modo $Dutch\ roll$, para variação de -20%, para o valor nominal, e para variação de +20% de cada derivada anteriormente citada. Ao variar cada uma, faça as demais permanecerem nos valores nominais.

Faça um resumo qualitativo dos resultados encontrados, concluindo quais derivadas de estabilidade mais impactam a frequência natural não amortecida e a razão de amortecimento do modo *Dutch roll* nessa condição de voo e nessa aeronave.

Observação: A apresentação dos resultados na forma de tabela é uma sugestão. Não há problema se você preferir apresentar graficamente. Porém, tenha cuidado para que as informações plotadas sejam totalmente legíveis.

Exemplo de tabela:

Tabela 8: Variação quantitativa da frequência natural e do amortecimento do modo *Dutch* roll com a variação de cada derivada de estabilidade látero-direcional.

Domirro do	Frequên	cia natural	l (rad/s)	Razão	de amortec	imento
Derivada	-20%	Nominal	+20%	-20%	Nominal	+20%
$C_{l_{\beta}}$	$\omega_{n-20,1}$		$\omega_{n+20,1}$	$\zeta_{-20,1}$		$\zeta_{+20,1}$
$C_{n_{eta}}$	$\omega_{n-20,2}$		$\omega_{n+20,2}$	$\zeta_{-20,2}$		$\zeta_{+20,2}$
$C_{Y_{eta}}$	$\omega_{n-20,3}$		$\omega_{n+20,3}$	$\zeta_{-20,3}$		$\zeta_{+20,3}$
C_{l_p}	$\omega_{n-20,4}$		$\omega_{n+20,4}$	$\zeta_{-20,4}$		$\zeta_{+20,4}$
C_{n_p}	$\omega_{n-20,5}$	$\omega_{n_{nominal}}$	$\omega_{n+20,5}$	$\zeta_{-20,5}$	$\zeta_{nominal}$	$\zeta_{+20,5}$
C_{Y_p}	$\omega_{n-20,6}$		$\omega_{n+20,6}$	$\zeta_{-20,6}$		$\zeta_{+20,6}$
C_{l_r}	$\omega_{n-20,7}$		$\omega_{n+20,7}$	$\zeta_{-20,7}$		$\zeta_{+20,7}$
C_{n_r}	$\omega_{n-20,8}$		$\omega_{n+20,8}$	$\zeta_{-20,8}$		$\zeta_{+20,8}$
C_{Y_r}	$\omega_{n-20,9}$		$\omega_{n+20,9}$	$\zeta_{-20,9}$		$\zeta_{+20,9}$

c) (1,0 ponto) Com base nas tabelas levantadas no item (b), conclua por que a aproximação do item (a) funciona bem ou não para a frequência natural e bem ou não para a razão de amortecimento.

Exercício 5

(1,5 ponto) Considere uma falha do controle do motor direito, fazendo com que ele fique com o controle propulsivo travado em $throttle_r=0,15$. Calcule o equilíbrio do avião no voo em cruzeiro, reto e nivelado, nessa condição hipotética de falha. Apresente os resultados obtidos para as variáveis de estado, de controle e de saída. Compare-os com os resultados do **Exercício 1**. Explique por que é necessário defletir o leme e o aileron na condição de falha em questão e por que a incidência de empenagem horizontal é pouco afetada.