



# **IBIS/HSPICE Model Quality Report**

Design ID: V00H

**Description: 4Gb 1.35V DDR3L SDRAM** 

Marketing device name(s): MT41K1G4DA, MT41K512M8DA, MT41K256M16TW, MT41K1G4V00H,

MT41K512M8V00H, MT41K256M16V00H

Valid speed grades: DDR3L-1066, DDR3L-1333, DDR3L-1600, DDR3L-1866, DDR3L-2133<sup>1</sup>

Zip filename: v00h\_1p35\_ibis.zip

IBIS filename: v00h\_1p35\_v5p0.ibs, v00h\_1p35\_it\_v5p0.ibs File rev: 2.0

HSpice filename: v00h\_1p35\_hspice.zip File rev: 2.0

EBD filename (if applicable): File rev:

Die rev: P

**Date: August 25, 2015** 

**Datasheet Link (from micron.com):** 

E-mail <u>modelsupport@micron.com</u> for questions regarding Quality Report.

# **Device Parameters**

VDDQ – Slow: 1.283V Typical: 1.35V Fast: 1.425V VDD – Slow: 1.283V Typical: 1.35V Fast: 1.425V

Junction Temperature (Commercial) - Slow: 110C Typical: 50C Fast: 0C Junction Temperature (Industrial) - Slow: 110C Typical: 50C Fast: -40C

VDDQ/VSSQ Decoupling Capacitance: 6.6nF

Included in HSPICE DQ/DQS models? Yes Amount per DQ/DQS model: 300pF/600pF Included in IBIS DQ/DQS/DM models? No, must be included with separate Spice subcircuit.

VDDQ/VSSQ Decoupling Capacitance Series Resistance: 0.010hms

# **IBIS Quality Summary**

1. Include the IBIS Quality Specification 2.0 Overall IBIS Quality level. For details on IBIS Quality, reference the quality specification and quality checklist on IBIS quality webpage <a href="http://www.eda.org/pub/ibis/quality\_wip/">http://www.eda.org/pub/ibis/quality\_wip/</a>.

**Overall IBIS Quality Level: IQ3MS** 

**Exceptions: NA** 

2. Include the filename of the IBIS Quality Checklist that accompanies this report.

Filename for Version 4.2 file: v00h\_1p35\_ibis\_quality\_checklist.xls Filename for Version 5.0 file: v00h\_1p35\_v5p0\_ibis\_quality\_checklist.xls

Rev 2.1, 4/9/2013

© 2013 Micron Technology, Inc. All Rights Reserved





# **IBIS MODEL Correlation**

#### **Datasheet Correlation**

- 1. For Output or I/O model compare datasheet IOH/IOL data with IBIS pullup/pulldown data.
  - a. Model name: DQ\_34\_\*<sup>2</sup>
    - i. Pulldown I-V versus **JEDEC** specification



ii. Pullup I-V versus **JEDEC** specification







b. Model name: DQ\_40\_\*2

i. Pulldown I-V versus **JEDEC** specification



ii. Pullup I-V versus **JEDEC** specification







2. Compare C\_comp with datasheet Input C. Provide C\_comp comparison table for all models and for all package combinations (i.e. x4, x8 and x16).

Component name: MT41K1G4DA, MT41K512M8DA (78b x4, x8)

|        |           | IBIS | (pF) | Datash | eet (pF) |
|--------|-----------|------|------|--------|----------|
|        |           | min  | max  | min    | max      |
|        | C_comp    | 1.03 | 1.18 | NA     | NA       |
| DQ     | C package | 0.40 | 0.57 | NA     | NA       |
|        | C_total   | 1.42 | 1.75 | 1.40   | 2.10     |
|        | C_comp    | 0.38 | 0.53 | NA     | NA       |
| INPUT1 | C package | 0.35 | 0.52 | NA     | NA       |
|        | C_total   | 0.73 | 1.04 | 0.75   | 1.20     |
|        | C_comp    | 0.45 | 0.60 | NA     | NA       |
| INPUT2 | C package | 0.33 | 0.41 | NA     | NA       |
|        | C_total   | 0.78 | 1.01 | 0.75   | 1.20     |
|        | C_comp    | 0.43 | 0.58 | NA     | NA       |
| CLK    | C package | 0.37 | 0.40 | NA     | NA       |
|        | C_total   | 0.80 | 0.98 | 0.80   | 1.30     |
|        | C_comp    | 0.58 | 0.73 | NA     | NA       |
| RST    | C package | 0.49 | 0.49 | NA     | NA       |
|        | C_total   | 1.07 | 1.22 | NA     | 3.00     |

Component name: MT41K256M16TW (96b x16)

|        |           | IBIS (pF) |      | Datash | eet (pF) |
|--------|-----------|-----------|------|--------|----------|
|        |           | min       | max  | min    | max      |
|        | C_comp    | 1.03      | 1.18 | NA     | NA       |
| DQ     | C package | 0.38      | 0.61 | NA     | NA       |
|        | C_total   | 1.40      | 1.79 | 1.40   | 2.10     |
|        | C_comp    | 0.38      | 0.53 | NA     | NA       |
| INPUT1 | C package | 0.45      | 0.58 | NA     | NA       |
|        | C_total   | 0.82      | 1.10 | 0.75   | 1.20     |
|        | C_comp    | 0.45      | 0.60 | NA     | NA       |
| INPUT2 | C package | 0.38      | 0.47 | NA     | NA       |
|        | C_total   | 0.83      | 1.07 | 0.75   | 1.20     |
|        | C_comp    | 0.43      | 0.58 | NA     | NA       |
| CLK    | C package | 0.38      | 0.43 | NA     | NA       |
|        | C_total   | 0.81      | 1.02 | 0.80   | 1.30     |
|        | C_comp    | 0.58      | 0.73 | NA     | NA       |
| RST    | C package | 0.57      | 0.57 | NA     | NA       |
|        | C_total   | 1.14      | 1.29 | NA     | 3.00     |





3. 🖂 If slew rate specifications (rise/fall slew) are available from the datasheet, complete Spice simulations to generate slew rate data and provide a comparison table.

|            |                     |      | IBIS |      | Datas | sheet |
|------------|---------------------|------|------|------|-------|-------|
| Model      | Slew Rate<br>(V/ns) | min  | typ  | max  | min   | max   |
| DQ 34 1600 | Rising              | 3.11 | 4.22 | 6.08 | 2.50  | 6.00  |
| DQ_34_1000 | Falling             | 3.17 | 4.89 | 7.03 | 2.50  | 6.00  |
| DO 40 1600 | Rising              | 2.67 | 3.67 | 5.33 | 2.50  | 6.00  |
| DQ_40_1600 | Falling             | 2.50 | 4.05 | 6.08 | 2.50  | 6.00  |
| DQ 34_1866 | Rising              | 3.01 | 4.06 | 5.86 | 2.50  | 6.00  |
| DQ_34_1000 | Falling             | 2.94 | 4.75 | 6.96 | 2.50  | 6.00  |
| DQ_40_1866 | Rising              | 2.47 | 3.60 | 5.20 | 2.50  | 6.00  |
| DQ_40_1000 | Falling             | 2.38 | 4.06 | 6.05 | 2.50  | 6.00  |
| DQ_34_2133 | Rising              | 3.43 | 4.26 | 6.01 | 2.50  | 6.00  |
| DQ_34_2133 | Falling             | 3.71 | 4.92 | 7.22 | 2.50  | 6.00  |
| DQ 40 2133 | Rising              | 2.69 | 3.74 | 5.30 | 2.50  | 6.00  |
| DQ_40_2133 | Falling             | 3.12 | 4.19 | 6.18 | 2.50  | 6.00  |

4.  $\square$  Compare ODT data with datasheet.

ODT calculated using the formula RTT=( $V_{IH(ac)}$  -  $V_{IL(ac)}$ )/|( $I(V_{IH(ac)})$  -  $I(V_{IL(ac)})$ |

| ODT20                             | TYP       | MIN       | MAX       |
|-----------------------------------|-----------|-----------|-----------|
| Vil (V)                           | 0.5       | 0.4665    | 0.5375    |
| Vih (V)                           | 0.85      | 0.8165    | 0.8875    |
| Ivil (A)                          | -6.83E-03 | -6.18E-03 | -8.46E-03 |
| Ivih (A)                          | 7.31E-03  | 6.23E-03  | 8.32E-03  |
|                                   | TYP       | MAX       | MIN       |
| Rtt (Model)                       | 24.75     | 28.20     | 20.86     |
| Rtt (datasheet-in units of ZQ/12) | 1.0       | 1.6       | 0.9       |
| Rtt (datasheet)                   | 20        | 32        | 18        |





| ODT30                             | TYP       | MIN       | MAX       |
|-----------------------------------|-----------|-----------|-----------|
| Vil (V)                           | 0.5       | 0.4665    | 0.5375    |
| Vih (V)                           | 0.85      | 0.8165    | 0.8875    |
| Ivil (A)                          | -4.55E-03 | -4.11E-03 | -5.63E-03 |
| Ivih (A)                          | 4.88E-03  | 4.16E-03  | 5.56E-03  |
|                                   | TYP       | MAX       | MIN       |
| Rtt (Model)                       | 37.12     | 42.30     | 31.28     |
| Rtt (datasheet-in units of ZQ/12) | 1.0       | 1.6       | 0.9       |
| Rtt (datasheet)                   | 30        | 48        | 27        |

| ODT40                             | TYP       | MIN       | MAX       |
|-----------------------------------|-----------|-----------|-----------|
| Vil (V)                           | 0.5       | 0.4665    | 0.5375    |
| Vih (V)                           | 0.85      | 0.8165    | 0.8875    |
| Ivil (A)                          | -3.42E-03 | -3.09E-03 | -4.23E-03 |
| Ivih (A)                          | 3.65E-03  | 3.12E-03  | 4.16E-03  |
|                                   | TYP       | MAX       | MIN       |
| Rtt (Model)                       | 49.51     | 56.40     | 41.72     |
| Rtt (datasheet-in units of ZQ/12) | 1.0       | 1.6       | 0.9       |
| Rtt (datasheet)                   | 40        | 64        | 36        |

| ODT60                             | TYP       | MIN       | MAX       |
|-----------------------------------|-----------|-----------|-----------|
| Vil (V)                           | 0.5       | 0.4665    | 0.5375    |
| Vih (V)                           | 0.85      | 0.8165    | 0.8875    |
| Ivil (A)                          | -2.29E-03 | -2.07E-03 | -2.83E-03 |
| Ivih (A)                          | 2.43E-03  | 2.07E-03  | 2.76E-03  |
|                                   | TYP       | MAX       | MIN       |
| Rtt (Model)                       | 74.27     | 84.59     | 62.59     |
| Rtt (datasheet-in units of ZQ/12) | 1.0       | 1.6       | 0.9       |
| Rtt (datasheet)                   | 60        | 96        | 54        |

| ODT120                            | TYP       | MIN       | MAX       |
|-----------------------------------|-----------|-----------|-----------|
| Vil (V)                           | 0.5       | 0.4665    | 0.5375    |
| Vih (V)                           | 0.85      | 0.8165    | 0.8875    |
| Ivil (A)                          | -1.13E-03 | -1.02E-03 | -1.40E-03 |
| Ivih (A)                          | 1.23E-03  | 1.04E-03  | 1.40E-03  |
|                                   | TYP       | MAX       | MIN       |
| Rtt (Model)                       | 148.48    | 169.21    | 125.10    |
| Rtt (datasheet-in units of ZQ/12) | 1.0       | 1.6       | 0.9       |
| Rtt (datasheet)                   | 120       | 192       | 108       |





\_\_\_\_\_

## **Measurement Correlation**

- 1. For Output or I/O models compare measured IOH/IOL data with IBIS pullup/pulldown data. If the measurement conditions are different than the IBIS conditions, run Spice simulations using the same measurement conditions such as VCC, temperature, and process. Include measurement conditions in the image labels.
  - a. Model name: **DO 34 1066** 
    - i. Pulldown I-V versus Measurement









b. Model name: **DQ\_40\_1066** 













2. Compare C\_comp with measured C\_comp. Provide C\_comp comparison table for all models and for all package combinations (i.e x4, x8 and x16).

Component name: MT41K1G4DA, MT41K512M8DA (78b x4, x8)

|        |           |      | IBIS (pF) |      | M    | easured (p | F)   |
|--------|-----------|------|-----------|------|------|------------|------|
|        |           | min  | typ       | max  | min  | typ        | max  |
|        | C_comp    | 1.03 | 1.10      | 1.18 | NA   | NA         | NA   |
| DQ     | C package | 0.40 | 0.47      | 0.57 | NA   | NA         | NA   |
|        | C_total   | 1.42 | 1.57      | 1.75 | 1.45 | 1.57       | 1.75 |
|        | C_comp    | 0.38 | 0.45      | 0.53 | NA   | NA         | NA   |
| INPUT1 | C package | 0.35 | 0.43      | 0.52 | NA   | NA         | NA   |
|        | C_total   | 0.73 | 0.88      | 1.04 | 0.73 | 0.86       | 1.02 |
|        | C_comp    | 0.45 | 0.53      | 0.60 | NA   | NA         | NA   |
| INPUT2 | C package | 0.33 | 0.37      | 0.41 | NA   | NA         | NA   |
|        | C_total   | 0.78 | 0.89      | 1.01 | 0.75 | 0.86       | 0.99 |
|        | C_comp    | 0.43 | 0.51      | 0.58 | NA   | NA         | NA   |
| CLK    | C package | 0.37 | 0.38      | 0.40 | NA   | NA         | NA   |
|        | C_total   | 0.80 | 0.89      | 0.98 | 0.87 | 0.90       | 0.94 |
|        | C_comp    | 0.58 | 0.65      | 0.73 | NA   | NA         | NA   |
| RST    | C package | 0.49 | 0.49      | 0.49 | NA   | NA         | NA   |
|        | C_total   | 1.07 | 1.14      | 1.22 | 1.06 | 1.10       | 1.15 |

Component name: MT41K256M16TW (96b x16)

|        |           | IBIS (pF) |             |      | Measured (pF) |      |      |  |
|--------|-----------|-----------|-------------|------|---------------|------|------|--|
|        |           | min       | min typ max |      | min           | typ  | max  |  |
|        | C_comp    | 1.03      | 1.10        | 1.18 | NA            | NA   | NA   |  |
| DQ     | C package | 0.38      | 0.46        | 0.61 | NA            | NA   | NA   |  |
|        | C_total   | 1.40      | 1.56        | 1.79 | 1.46          | 1.57 | 1.75 |  |
|        | C_comp    | 0.38      | 0.45        | 0.53 | NA            | NA   | NA   |  |
| INPUT1 | C package | 0.45      | 0.51        | 0.58 | NA            | NA   | NA   |  |
|        | C_total   | 0.82      | 0.96        | 1.10 | 0.91          | 1.01 | 1.11 |  |
|        | C_comp    | 0.45      | 0.53        | 0.60 | NA            | NA   | NA   |  |
| INPUT2 | C package | 0.38      | 0.43        | 0.47 | NA            | NA   | NA   |  |
|        | C_total   | 0.83      | 0.95        | 1.07 | 0.89          | 0.96 | 1.04 |  |
|        | C_comp    | 0.43      | 0.51        | 0.58 | NA            | NA   | NA   |  |
| CLK    | C package | 0.38      | 0.41        | 0.43 | NA            | NA   | NA   |  |
|        | C_total   | 0.81      | 0.91        | 1.02 | 0.91          | 0.94 | 1.00 |  |
|        | C_comp    | 0.58      | 0.65        | 0.73 | NA            | NA   | NA   |  |
| RST    | C package | 0.57      | 0.57        | 0.57 | NA            | NA   | NA   |  |
|        | C_total   | 1.14      | 1.22        | 1.29 | 1.23          | 1.24 | 1.24 |  |



simulations: **HSPICE 2012.06** 

loads when applicable.

**IBIS** 



| 3.   | ☐ If measured clamp current data is available, provide an IBIS versus measurement comparison for all models. Include measurement conditions in the image labels.                                                                                                                                                                             |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Not Available                                                                                                                                                                                                                                                                                                                                |
| 4.   | ☐ If slew rate data (rise/fall slew) is available from measurements, complete Spice simulations to generate slew rate data and provide a comparison table.                                                                                                                                                                                   |
|      | Not Available                                                                                                                                                                                                                                                                                                                                |
| vs S | pice Correlation                                                                                                                                                                                                                                                                                                                             |
| 1.   | <ul> <li>☑ For all Output or I/O models, run Spice transient simulations using encrypted netlists and the IBIS model (b-element).</li> <li>a. ☑ Use the setup and node naming conventions shown below for the IBIS and Spice files. Update the setup diagram if it is different. Indicate the version of Spice simulator used for</li> </ul> |

b. Run simulations for all corners cases and at fastest speed grades, testing ODT models as





i. DQ\_34\_1866 driving DQ\_34\_1866



#### DQ\_34\_1866 driving DQ\_34\_ODT20\_1866







iii. DQ\_34\_1866 driving DQ\_34\_ODT30\_1866



iv. DQ\_34\_1866 driving DQ\_34\_ODT40\_1866







v. DQ\_34\_1866 driving DQ\_34\_ODT60\_1866



#### vi. DQ\_34\_1866 driving DQ\_34\_ODT120\_1866







vii. DQ\_40\_1866 driving DQ\_40\_ODT60\_1866



viii. DQ\_34\_2133 driving DQ\_34\_2133







ix. DQ\_34\_2133 driving DQ\_34\_ODT20\_2133



x. DQ\_34\_2133 driving DQ\_34\_ODT30\_2133







xi. DQ\_34\_2133 driving DQ\_34\_ODT40\_2133



xii. DQ\_34\_2133 driving DQ\_34\_ODT60\_2133







xiii. DQ\_34\_2133 driving DQ\_34\_ODT120\_2133



xiv. DQ\_40\_2133 driving DQ\_40\_ODT60\_2133







- 2. For all Output or I/O IBIS Version 5.0 power-aware models, run Spice transient simulations using encrypted netlists and the IBIS model (b-element) with a non-ideal power supply connection.
  - a. Use the setup and node naming conventions shown in Setup B below for the IBIS and Spice files. Update the setup diagram if it is different. Indicate the version of Spice simulator used for simulations: **HSPICE 2015.06**
  - b. Run simulations for all corner cases and at fastest speed grades.





\_\_\_\_\_













## **Setup**

#### A:



#### B:



\* Package Model used for correlation lpkg PAD BALL 1.25e-9 R=0.25 lpkg\_vccq vccq\_die vccq\_ball 1.25e-9 R=0.25 lpkg\_vssq vssq\_die vssq\_ball 0.10e-9 R=0.05 k1 lpkg\_vccq lpkg\_vssq 0.20 k2 lpkg lpkg\_vccq 0.40 k3 lpkg lpkg\_vssq 0.20 cpkg\_vccq BALL vccq\_ball 0.20e-12 cpkg\_vssq BALL vssq\_ball 0.20e-12 cpkg\_vccq\_vssq vccq\_ball vssq\_ball 0.400e-12





## **Comments:**

- 1. IBIS model may not reflect speed grade availability.
- 2. IV correlation shown for DDR3-1866 and below only.
- 3. C\_comp is compared with the DDR3L-2133 specification only.
- 4. Slew rate is based on HSPICE simulation with a 250hm load to Vtt. This includes simple package parasitics.

## **Document Revision History**

#### Rev 1.0 - Date 10/23/2014

- a. IBIS revision (Version 4.2) 1.0
- b. IBIS revision (Version 5.0) 1.0
- c. HSpice revision 1.0

#### Rev 2.0 - Date 08/25/2015

- a. IBIS revision (Version 4.2) 2.0
- b. IBIS revision (Version 5.0) 2.0
- c. HSpice revision 2.0