NEURAL NÉTWORKS & BÁCK PROPAGATION EXPLAINED

 Early developments of neural networks was inspired by biological neural systems

■ Modeled in engineering terms

- \square Inputs: x_1, x_2, x_3
- \square Bias: W_0
- \square Activation function: $f(\cdot)$
- □ Output: $y = f(\sum_{i=1}^{3} x_i w_i + w_0)$
- One simple activation function: hard limit

$$y = \begin{cases} 1, & \text{if } \left(\sum_{i=1}^{3} x_i w_i + w_0\right) > 0\\ 0 & \text{(or } -1), \text{ otherwise} \end{cases}$$

Matrix representation

- Ignore the activation function at this moment
- Consider the multiplication-add part

$$\sum_{i=1}^{3} x_i w_i + w_0$$

It can be expressed in matrix multiplication

$$\begin{bmatrix} 1 & x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ w_3 \end{bmatrix}$$

What if we have multiple outputs

$$\Box \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} w_1 & w_2 \\ w_3 & w_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \text{ (ignore bias)}$$

Multiple linear layers

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} w_5 & w_6 \\ w_7 & w_8 \end{bmatrix} \begin{bmatrix} w_1 & w_2 \\ w_3 & w_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} & & \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

No reason to use multiple layers

Perceptron

- □ Define hard-limit function $U(x) = \begin{cases} 1, & x > 0 \\ -1, & x \le 0 \end{cases}$
- A perceptron is a two-layer network with hard-limit activation function
 - Conventionally input is one layer (though doing nothing)

Perceptron

□ Notation: $z = \sum_{i=1}^{3} x_i w_i + w_0$, y = U(z)

Perceptron vs linear classifier

- Recall the so-called linear classifier
- Classifier is represented as

$$f(x) = w^{\mathrm{T}}x + b$$
 (b is a scalar)

- $x \in C_+$ if f(x) > 0, otherwise $x \in C_-$
- □ Class assignment can be expressed as Class = U(f(x))
- Therefore, we know perceptron is exactly a linear classifier

Training perceptron

- We can use gradient descent to train perceptron (thus linear classifier)
- Let the loss function be

$$J(\mathbf{w}) = |z_k d_k| - z_k d_k$$

where k is the index of training sample (up to n), z_k is summing output (given previously), and d_k is the class of desired output

Training perceptron

- \square Observe this term: $|z_k d_k| z_k d_k$
 - lacktriangle If z and d have the same sign, this term is zero
 - If z and d have different sign, this term > 0 (misclassification)
- lacktriangle We want to minimize classification error, so we need to minimize $J(oldsymbol{w})$ with respect to $oldsymbol{w}$ for all k
 - Taking gradient over W
 - Math to be discussed later, skip this part (homework problem)

Training perceptron

Eventually, we have the following adaption algorithm

- We can initially assign all weights to one
- lacksquare When k increases from 1 to n, we are done with one epoch
- We can continue the training for 2nd epoch, 3rd epoch, etc.

XOR problem

- At first, researchers were excited to have perceptron learning algorithm
- Minksy and Papert (1969) show that perceptron cannot solve XOR problem (mentioned before)

x1	x2	у
-1	-1	-1
1	-1	1
-1	1	1
1	1	-1

XOR problem

- A huge strike
- Neural networks not received attention for many years
- Until some researchers proposed multilayer networks
- Remember, it is useless if we have multilayers but no nonlinear activation functions in between

Multilayer neural networks

 The neural network shown has three layers: input, hidden, and output (three layers)

Multilayer neural networks

How to read the figure (ignore bias for simplicity)

$$z_1 = \sum_{i=5}^6 h_i w_i, y_1 = f(z_1)$$

 We want to show that a simple two-layer perceptron can solve XOR problem

Solving XOR problem

Solving XOR problem

What we have is the following table

x1	x2	q1	q2	h1	h2	Z	z+b	У
-1	-1	0	0	-1	-1	-2	-1	-1
-1	1	-2	2	-1	1	0	1	1
1	-1	2	-2	1	-1	0	1	1
1	1	0	0	-1	-1	-2	-1	-1

Solving XOR problem

- We may think that the second (hidden) layer performs a kind of feature engineering
 - To make a tough problem easy to solve with a linear classifier
- It is proved that three-layer network with nonlinear activation functions is a universal approximator (Universal approximation theorem, idea from Kolmogorov's Theorem)
- All wee need is a good training algorithm

Training neural networks

- Want to train neural networks
 - □ Training means to find a set of "good" weights
 - But, how to define "good"
 - Use objective (cost) function
- Training neural networks is converted to an optimization problem
 - Cannot hope to solve the problem analytically
 - Use gradient descent (or its variations) instead

Backpropagation from Wiki

- Backpropagation (Backprop, BP) is a widely used algorithm in training feedforward neural networks for supervised learning
- BP computes the gradient in weight space of a feedforward neural network, with respect to a loss function
- BP is often used loosely to refer to the entire learning algorithm, including how the gradient is used, such as by stochastic gradient descent

Motivation for simplification

- The general form of back propagation is difficult to understand because of the notation
- We need to consider the following indices: Layer index, input index, output index, weights index, and iteration (time) index
- $\hfill\Box$ Therefore, a notation like $w_{i,j}^L(k+1)$ might be used in the literature
- To avoid unnecessary confusion, we intend to make the notation simple and easy to follow

- $\Box z = x_1 \cdot w_1 + x_2 \cdot w_2 + x_3 \cdot w_3 + w_0$
- y = f(z), f(z) is called as activation function

Sigmoid function

- For multilayer networks, we want to introduce nonlinear activation function
 - Linear activation function does not work (why? Think of matrix addition and multiplication in linear algebra)
- Another widely used activation function is sigmoid

$$y = \frac{1}{1 + \exp(-z)}$$

□ Background of sigmoid function, cf. section 6.6 of https://www.cs.jhu.edu/~jason/papers/jurafsky+martin.bookdraft07.ch6.pdf

Sigmoid function

- Many variants (but equivalent)
- □ Domain $(-\infty, \infty)$, range (0,1)
- Sigmoid (logistic function) has its root in statistics (cf. https://en.wikipedia.org/wiki/Logistic_function)

Sigmoid Function

 $lue{}$ When replacing z with matrix multiplication, we have

$$f(\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x})}$$

- □ If we want, we can also add "bias" to equation, i.e., we use $(\mathbf{w}^T \mathbf{x} + w_0)$ in place of $\mathbf{w}^T \mathbf{x}$
- Exercise: Write down w and x for the network in the previous example

Forward computation

□ The following is a simple example (s: sigmoid fn)

$$\Box z_1 = x_1 w_1 + x_2 w_2$$

$$\square y_1 = \frac{1}{1 + \exp(-z_1)}$$

Forward computation

Simplify the drawings

We use mean-square error as the cost (loss)
 function for stochastic gradient descent

$$\square \ \varepsilon = \varepsilon_1 + \varepsilon_2 = \frac{1}{2}((y_1 - d_1)^2 + (y_2 - d_2)^2)$$

- □ d_i is the desired output for node i (constant, derivative = 0)
- We add $\frac{1}{2}$ to remove the constant in derivatives
- oxdot Exercise: Find arepsilon for batch gradient descent

- □ Do gradient search to find min ε $\mathbf{w}(k+1) \leftarrow \mathbf{w}(k) - \eta \nabla \varepsilon(\mathbf{w}(k))$
- lacktriangle Note that $m{\varepsilon}$ is a function of iteration index k in gradient descent algorithm (k dropped later)
- $\hfill\Box$ In addition, z_1 , z_2 , x_1 , and x_2 are also functions of k
- \square To simplify the notation, we drop the variable k in the expression, such as y_1 actually means $y_1(k)$

- $lue{}$ To simplify the discussion, consider only updating w_1
- □ Therefore, $w_1(k+1) \leftarrow w_1(k) \eta \frac{\partial}{\partial w_1} \varepsilon$
- \square We know $\frac{\partial}{\partial w_1} \varepsilon = \frac{\partial}{\partial w_1} \varepsilon_1$ because ε_2 is not related to w_1

Recall that we have

$$\varepsilon_1 = \frac{1}{2} (y_1 - d_1)^2$$

where d_1 is constant (desired output)

$$y_1 = \frac{1}{1 + \exp(-z_1)}$$
$$z_1 = x_1 w_1 + x_2 w_2$$

 \square By using chain rule, we have $\frac{\partial \varepsilon_1}{\partial w_1} = \frac{\partial \varepsilon_1}{\partial y_1} \frac{\partial y_1}{\partial z_1} \frac{\partial z_1}{\partial w_1}$ where

$$\frac{\partial \varepsilon_1}{\partial y_1} = (y_1 - d_1)$$

$$\frac{\partial y_1}{\partial z_1} = y_1(1 - y_1) \text{ (exercise!)}$$

$$\frac{\partial z_1}{\partial w_1} = x_1$$

□ Finally, we obtain

$$\frac{\partial \varepsilon_1}{\partial w_1} = (y_1 - d_1)y_1(1 - y_1)x_1$$

- □ Therefore, $w_1(k+1) \leftarrow w_1(k) \eta(y_1 d_1)y_1(1 y_1)x_1$
- $\ \square$ Remember, we need to evaluate $y_1(k)$ & $x_1(k)$ every iteration to update $w_1(k+1)$
- We can derived the update rule for other weights by the same method

- In supervised learning, the variable values $x_1 \& x_2$ in previous figure are from one training sample $x_{(q)}$
- Example: (update weights for every sample)
 - $lue{}$ Training samples $x_{(1)}, \ldots, x_{(n)}$
 - $lue{}$ (Optional) Shuffle $x_{(1)},\ldots,x_{(n)}$
 - $[x_1(1) \ x_2(1)]^T \leftarrow x_{(1)}$, Update weights, $x_1(k)$: first x value @ step k
 - ... Update weights
 - $[x_1(n) \ x_2(n)]^T \leftarrow x_{(n)}$. Update weights
 - $[x_1(n+1) \ x_2(n+1)]^T \leftarrow x_{(1)}$, Update weights
 - ...
- One training epoch is updating weights after using all training samples

Questions

- If we update weights for every training sample, what kind of gradient descent is it?
 - Batch
 - Mini batch
 - Stochastic
 - Vanilla

Logistic regression

- In our previous example, we use the sigmoid activation function and mse as loss function
- If instead we use the following loss function, we have the logistic regression (loss function is from Bernooulli trial)

$$J(\mathbf{w}) = -\log_2\left(\prod_{k=1}^n y_k^{d_k} (1 - y_k)^{(1 - d_k)}\right)$$

 \blacksquare Recall $0 < y_k < 1$, so we have to use $d_k \in \{0,1\}$

Logistic regression

□ If consider only one sample, we have

$$J = -\{d \log_2 y + (1 - d) \log_2 (1 - y)\}$$

- This loss function is also known as cross entropy (to be mentioned later)
- Summary: Logistic regression
 - A two-layer classifier
 - Activation function: sigmoid
 - Loss function: cross entropy

■ We now extend the concept to multi-layer networks

What we have now are

$$q_{1} = x_{1}w_{1} + x_{2}w_{2}$$

$$h_{1} = \frac{1}{1 + \exp(-q_{1})}$$

$$z_{1} = h_{1}w_{5} + h_{2}w_{6}$$

$$y_{1} = \frac{1}{1 + \exp(-z_{1})}$$

$$\varepsilon_{1} = \frac{1}{2}(y_{1} - d_{1})^{2}$$

□ From the single-layer results, we know

$$w_5(k+1) \leftarrow w_5(k) - \eta \frac{\partial \varepsilon}{\partial w_5}$$

where
$$\frac{\partial \varepsilon}{\partial w_5} = \frac{\partial \varepsilon_1}{\partial w_5} = \frac{\partial \varepsilon_1}{\partial y_1} \frac{\partial y_1}{\partial z_1} \frac{\partial z_1}{\partial w_5}$$

= $(y_1 - d_1)y_1(1 - y_1)h_1$

 Other weights in the second layer can be obtained by using the same approach

- How about weights in the first (hidden) layer
- □ Use w_1 as an example: $\frac{\partial \varepsilon}{\partial w_1} = \frac{\partial \varepsilon_1}{\partial w_1} + \frac{\partial \varepsilon_2}{\partial w_1}$
- We know (again by chain rule)

$$\frac{\partial \varepsilon_1}{\partial w_1} = \frac{\partial \varepsilon_1}{\partial y_1} \frac{\partial y_1}{\partial z_1} \frac{\partial z_1}{\partial h_1} \frac{\partial h_1}{\partial q_1} \frac{\partial q_1}{\partial w_1}$$

and

$$\frac{\partial \varepsilon_2}{\partial w_1} = \frac{\partial \varepsilon_2}{\partial y_2} \frac{\partial y_2}{\partial z_2} \frac{\partial z_2}{\partial h_1} \frac{\partial h_1}{\partial q_1} \frac{\partial q_1}{\partial w_1}$$

- Note that we can reuse partial results in weights updating in back propagation
- Observe the following equations

$$\frac{\partial \varepsilon_{1}}{\partial w_{5}} = \frac{\partial \varepsilon_{1}}{\partial y_{1}} \frac{\partial y_{1}}{\partial z_{1}} \frac{\partial z_{1}}{\partial w_{5}}$$

$$\frac{\partial \varepsilon_{1}}{\partial w_{1}} = \frac{\partial \varepsilon_{1}}{\partial y_{1}} \frac{\partial y_{1}}{\partial z_{1}} \frac{\partial z_{1}}{\partial h_{1}} \frac{\partial h_{1}}{\partial q_{1}} \frac{\partial q_{1}}{\partial w_{1}}$$

- With the understanding of our example, you should be able to appreciate the "full" comprehensive BP equations given in the literature
- Notice that with more and more layers, the delta weight contains more and more terms, and thus, gets smaller and smaller
- That is one problem when training deep neural networks (i.e., networks with many layers)

Automatic differentiation

- What if we want to write a "universal" program (like TensorFlow) to deal with all types of loss function
- One possible solution is automatic differentiation by dividing derivatives into many steps
- For further info, refer to: Automatic differentiation in machine learning: a survey (https://arxiv.org/abs/1502.05767)