

INSTITUTO FEDERAL DE CIÊNCIA E TECNOLOGIA DO MARANHÃO DEE – DEPARTAMENTO DE ELETROELETRÔNICA

INVERSORES DE TENSÃO

APRESENTAÇÃO

Esta atividade de laboratório tem por objetivo exercitar o conteúdo estudado em sala de aula, especificamente sobre o estudo de conversores **cc-ca** no que se diz respeito aos inversores de tensão meia ponte e ponte completa. Contudo, objetiva-se:

- Aplicar os princípios da modulação PWM senoidal;
- Entender os princípios básicos de conversores cc-ca;
- Realizar medições no circuito simulado;

INVERSOR DE TENSÃO MEIA PONTE

A fonte é para **20V** (médios). A carga possui uma resistência de **270** Ω . O filtro é formado pela indutância de **5mH** e pela capacitância de **680\muF**. Note que a frequência de comutação é de **1KHz**.

Figura 1 - Circuito da modulação PWM convencional

Figura 2 - Circuito simulado

Anote os valores obtidos na tabela abaixo.

PARÂMETRO	EXPLICAÇÃO	VALOR CALCULADO	VALOR SIMULADO
Vo_{pk}	Tensão de pico na carga		
Vo _{rms}	Tensão eficaz na carga		
Vo _{med}	Tensão média na carga		
Io _{pk}	Corrente de pico na carga		
Io _{rms}	Corrente eficaz na carga		
Io _{med}	Corrente media na carga		
Po	Potencia na saída		

Equações do circuito:
$$Io_{pk} = \frac{Vo_{pk}}{R_o} \qquad Io_{rms} = \frac{Vo_{rms}}{\sqrt{2}}$$

$$Vo = Vab_{med} = (V \ 1 + V \ 2) \cdot D - V \ 2$$

$$Vo = \frac{Vo_{pk}}{R} \qquad Po = Io \quad ... Vo$$

Verificação:

Simule o circuito mostrado na figura 3 e faça a medição da amplitude (valor de pico e eficaz) e a frequência da tensão de saída.

- a) O circuito operou corretamente, ou seja, conforme o esperado?
- b) Quais foram as dificuldades encontradas nesta aula de laboratório?

INVERSOR DE TENSÃO PONTE COMPLETA

A fonte é para **20V** (médios). A carga possui uma resistência de **270** Ω . O filtro é formado pela indutância de **5mH** e pela capacitância de **680\muF**. Note que a frequência de comutação é de **1KHz**.

Figura 3 – Circuito da modulação PWM senoidal para dois níveis

Figura 4 - Circuito simulado

Anote os valores obtidos na tabela abaixo.

PARÂMETRO	EXPLICAÇÃO	VALOR CALCULADO	VALOR SIMULADO
Vo_{pk}	Tensão de pico na carga		
$ m Vo_{rms}$	Tensão eficaz na carga		
Vo _{med}	Tensão média na carga		
Io _{pk}	Corrente de pico na carga		
Io _{rms}	Corrente eficaz na carga		
Io _{med}	Corrente media na carga		
Po	Potencia na saída		

Equações do circuito:
$$Io_{pk} = \frac{Vo_{pk}}{R_o} \qquad Io_{rms} = \frac{Vo_{rms}}{\sqrt{2}}$$

$$Vo = Vab_{med} = Vi \cdot D \qquad Vo_{rms} = \frac{Vo_{pk}}{\sqrt{2}}$$

Verificação:

Simule o circuito mostrado na figura 3 e faça a medição da amplitude (valor de pico e eficaz) e a frequência da tensão de saída.

- a) O circuito operou corretamente, ou seja, conforme o esperado?
- b) Quais foram as dificuldades encontradas nesta aula de laboratório?