1 Lezione del 29-04-25

Riprendiamo il discorso del DMA nella prospettiva di un esempio concreto.

1.1 Hard disk e DMA

Fra i dispositivi visti finora solo l'hard disk è quello capace di fare DMA nel kernel. Dentro la macchina virtuale QEMU è disponibile un'emulazione dell'hard disk del PC AT (l'HD ATA visto in 4.1). Questo non era capace di fare DMA in autonomia, ma era bensì collegato ad un controllore DMA.

Fra i comandi disponibili per comunicare con l'hard disk ci sono quindi comandi dedicati a letture e scritture in DMA. Quando tali comandi vengono inviati all'hard disk, questo si occupa di coinvolgere il controllore DMA.

Questa non è più la situazione odierna: l'hard disk ATA con cui comunica la macchina emulata è situato sul bus ATA, che si collega al bus PCI con un ponte PCI-ATA. E' quindi il ponte a comportarsi come il controllore DMA, lato bus ATA.

Considerazioni storiche a parte, vediamo la struttura del controllore DMA dell'hard disk ATA, come descritto nella specifica reperibile a https://calcolatori.iet.unipi.it/deep/idems100.pdf. Abbiamo che questo può gestire due dischi separati, denominati primario e secondario, con relativi registri:

	Primario
0x?? + 0	BMCMD , Bus Master Command
0x?? + 1	Specifico al dispositivo
0x?? + 2	BMSTR , Bus Master Status Register
0x?? + 3	Specifico al dispositivo
0x?? + 4-7	BMDTPR , Bus Master Descriptor Table Pointer
	Secondario
0x?? + 8	BMCMD , Bus Master Command
0x?? + 9	Specifico al dispositivo
0x?? + a	BMSTR , Bus Master Status Register
0x?? + b	Specifico al dispositivo
0x?? + c-f	BMDTPR , Bus Master Descriptor Table Pointer

Riguardo a ogni registro avremo:

- **BMCMD**, *Bus Master Command*: questo specifica il tipo di operazione che vogliamo eseguire (lettura o scrittura), e ne specifica l'inizio. Per lanciare un'operazione, infatti, il software dovrà impostare il bit di *Read or Write Control* (bit 3), e successivamente alzare il bit *Start/Stop Bus Master* (bit 0);
- BMSTR, Bus Master Status Register: indica lo stato corrente del dispositivo a cui corrisponde. In particolare ci sono di interesse i primi 3 bit meno significativi (gli altri danno principalmente informazioni rispetto alle funzioni supportate dai dispositivi). Questi saranno:
 - Bit 2: rappresenta l'interruzione, viene alzato quando la trasmissione di dati in DMA è stata completata;
 - Bit 1: rappresenta uno stato di errore;
 - Bit 0: indica se il bus mastering è attivo o meno, cioè viene alzato quando il software scrive 1 sul bit start/stop bus master del BMCMD.

Abbiamo poi che i bit 1 e 2 possono essere resettati scrivendovi 1 (ed è questo passo che termina l'handshake col controllore DMA).

• **BMDTPR**, *Bus Master Descriptor Table Pointer*: questo punta alla prima entrata della cosiddetta tabella **PRD**, *Physical Region Descriptor Table*. Questa è una tabella di entrate da 8 byte, allineate ai 4 byte, che indicano l'indirizzo base della regione da trasferire, il numero di byte da trasferire e se l'entrata corrente è l'ultima della tabella (il controllore DMA continua a scorrere le entrate finchè non raggiunge l'ultima). La struttura delle entrate PRD è la seguente:

Notiamo che le regioni indicate dall'indirizzo base dell'entrata PRD può essere al massimo di 64 KiB. Per questo lato hardware si può usare un sommatore a sole 16 cifre. In ogni caso, questo non sarà un problema in quanto vorremo trasferire buffer in memoria virtuale una pagina (4 KiB) alla volta.

A questo punto basterà definire i passaggi di un operazione di trasferimento:

- 1. Si prepara una tabella PRD in memoria;
- 2. Si carica l'indirizzo base della tabella PRD nel registro BMDTPR, quindi si ripuliscono i bit di interruzione ed errore del registro di stato BMSTR;
- 3. Si fornisce il comando appropiato sul registro BMCMD;
- 4. Si attiva il bit 0 del registro BMCMD per attivare il bus mastering;
- 5. Il controllore DMA trasferisce i dati secondo quanto disposto finora;
- 6. Alla fine della trasmissione il controllore segnala la fine dell'operazione su una linea di interruzinoe;
- 7. In risposta all'interruzione, si resetta il bit 0 del registro BMCMD, e si legge lo stato dal controllore e dal disco per capire se l'operazione è andata a buon fine.

Vediamo quindi un semplice programma, che reinterpreta effettivamente quanto fatto in 4.1, usando il controllore DMA anzichè il controllo programma per effettuare gli accessi al disco rigido. Altre modifiche sono state fatte rispetto all'esempio in 4.1 per usare il più possibile le utilità fornite da libce.

```
1 #include <libce.h>
2 #include "video.h"
3
4 // definiti in buffer.s
5 extern natl prd[]; // la tabella PRD
6 extern natb buffer[]; // il buffer dati
```

```
7 #define BUF_SIZE 512
9 /*
10 * Interrupt
11 */
12 // codice interruzione hard disk
13 #define HD_VECT 0x60
15 // handler
16 extern "C" void a_int();
17 extern "C" void c_int() {
// fai l'acknowledge (passo 7)
bm::ack(); // ack bus mastering
20 hd::ack(); // ack disco
apic::send_EOI();
22 }
23
24 void init_int() {
// imposta l'IREQ 14 al codice HD_VECT
   apic::set_VECT(14, HD_VECT);
   // carica l'handler
27
   gate_init(HD_VECT, a_int);
   // smaschera l'IREQ 14
   apic::set_MIRQ(14, false);
31 }
33 /*
34 * Disco rigido
35 */
37 // registri disco
38 const ioaddr disk_buffer = 0x01F0;
39 const ioaddr disk_status = 0x01F7;
40 const ioaddr disk_sectors = 0x01F2;
const ioaddr disk_command = 0x01F7;
43 // registri indirizzo LBA (sarebbero SNR CNL CNH HND)
const ioaddr disk_lba0 = 0x01F3;
45 const ioaddr disk_lba1 = 0x01F4;
46 const ioaddr disk_lba2 = 0x01F5;
const ioaddr disk_lba3 = 0x01F6;
49 // indirizzo lba disco
50 natl lba = 1;
52 // dai indirizzo LBA al controllore disco
53 void give_lba(natl lba) {
   // dividi in 4 byte
54
   natb lba0 = lba;
   natb lba1 = lba << 8;
   natb lba2 = lba << 16;
57
   natb 1ba3 = 1ba << 24;
   // il byte piu' significativo deve attivare l'LBA,
60
   // lba stava comunque su 28 bit
61
   1ba3 = (1ba3 \& 0x0F) | 0xE0; // 1110-LBA-
   outputb(lba0, disk_lba0);
   outputb(lba1, disk_lba1);
outputb(lba2, disk_lba2);
```

```
outputb(lba3, disk_lba3);
70 // dai comando al controllore disco
71 void give_command(natl lba, natb sectors, natb cmd) {
   give_lba(lba);
    outputb(sectors, disk_sectors);
    outputb(cmd, disk_command);
74
75 }
76
77 /*
78 * Controller DMA
79 */
81 // indirizzo dispositivo bus mastering
82 natb bus = 0, dev = 0, fun = 0;
84 // inizializza dispositivo bus masetering
85 void init_bm() {
bm::find(bus, dev, fun);
   bm::init(bus, dev, fun);
87
88 }
90 // prepara tabella PRD
91 void prepare_prd() {
   prd[0] = reinterpret_cast < natq > (buffer);
              // byte EOT | dim. buffer
    prd[1] = 0x80000000 | (512UL & 0xFFFF);
94
95 }
97 // effettua un operazione disco in bus mastering
98 void bm_op(bool write) {
    // il PRD e' gia pronto (passo 1)
100
    // carica il PRD (passo 2)
    bm::prepare(reinterpret_cast < paddr > (prd), write);
103
104
    // dai il comando (passo 3)
105
    give_command(lba, 1, write ? hd::WRITE_DMA : hd::READ_DMA);
106
    // inizia il bus mastering (passo 4)
107
    bm::start();
108
109
    // adesso il controllore DMA effettuera' i passi 5 e 6
110
111 }
112
113 /*
* Console (video/tastiera)
115 */
116
117 // svuota il buffer
118 void init_buffer() {
for(int i = 0; i < BUF_SIZE; i++) {</pre>
      buffer[i] = 0x00;
120
    }
121
122 }
124 // make code salva (1) e carica (2)
const natb save_code = 0x02; // sarebbe 1
const natb load_code = 0x03; // sarebbe 2
```

```
128 // make code esc
129 natb esc_code = 0x01;
131 // make code backspace
132 natb back_code = 0x0E;
134 // cursore buffer testo
135 natl cursor = 0:
137 // sposta il cursore senza uscire dal buffer
inline void mov_cursor(int d) {
   if(cursor == 0 && d < 0) return;</pre>
    cursor += d;
   if(cursor >= BUF_SIZE) cursor = BUF_SIZE - 1;
143 }
144
145 void main() {
    // inizializza il gestore di interrupt
146
    init_int();
147
148
     // attiva gli interrupt disco
    hd::enable_intr();
     // inizializza il controllore in bus mastering
152
    init_bm();
153
154
     // prepara il prd
155
     prepare_prd();
156
157
     // svuota il buffer
158
    init_buffer();
159
160
     // vai in un ciclo di lettura
161
     while(true) {
162
      // aggiorna schermo
163
       prt_screen(buffer, BUF_SIZE);
164
165
       set_cursor(cursor);
166
       // ottieni stato tastiera
167
       natb make_code = kbd::get_code();
168
169
       if(make_code == esc_code) break;
170
       if(make_code == back_code) {
171
         mov_cursor(-1);
         buffer[cursor] = 0x00;
173
174
         continue;
175
176
       if(make_code == save_code) {
177
         bm_op(true); // scrivi
178
         continue;
179
180
       if(make_code == load_code) {
181
         bm_op(false); // leggi
183
         continue;
       }
184
     char c = kbd::conv(make_code);
```

```
187     if(c != '\0') {
188         buffer[cursor] = c;
189         mov_cursor(1);
190     }
191     }
192 }
```

La tabella PRD e il buffer hanno dei prerequisiti particolari sui confini che possono attraversare:

- Le entrate PRD devono essere di 8 byte allineate ai 4 byte;
- Il buffer deve essere allineato ai 2 byte, e non attraversare confini allineati ai 64 KiB.

Per questo motivo li definiamo in un file a parte, in assembler, buffer.s:

```
1 .data
2
3 // prd
4 .balign 4
5 .global prd
6 prd:
7 .fill 16384, 4
8
9 // buffer
10 .balign 65536
11 .global buffer
12 buffer:
13 .fill 512, 1
```

Infine, definiamo a parte anche la parte assembler del gestore d'interuzione a_int:

```
#include libce.h>

cextern c_int
global a_int
a_int:
salva_registri
call c_int
carica_registri
iretq
```

1.1.1 Controller IDE su bus PCI

Per l'inserzione di un controllore di questo tipo in un bus PCI dobbiamo renderci conto di alcuni dettagli: Nei registri dello spazio di configurazione del dispositivo si devono attivare dei flag particolari per segnalare la possibilità che questo lavori in bus mastering.

1.1.2 Controller IDE nel kernel

Vediamo infine come il controllore DMA dell'hard disk ATA viene gestito nel kernel. La libreria libre definisce i registri del controllore:

```
1 namespace bm {
2   extern ioaddr iBMCMD; // Bus Master Command
3   extern ioaddr iBMSTR; // Bus Master Status Register
4   extern ioaddr iBMDTPR; // Bus Master Descriptor Table Pointer
5 }
```

e le relative funzioni per l'inizializzazione, l'acknowledge, ecc...

L'unica interfaccia ATA montata nel sistema è quindi descritta dal descrittore:

```
// descrittore di interfaccia ATA
struct des_ata {
    // Ultimo comando inviato all'interfaccia
    natb comando;
    // Indice di un semaforo di mutua esclusione
    natl mutex;
    // Indice di un semaforo di sincronizzazione
    natl sincr;
    // Quanti settori resta da leggere o scrivere
    natb cont;
    // Da dove leggere/dove scrivere il prossimo settore
    natb* punt;
    // Array dei descrittori per il Bus Mastering
    natl* prd;
};
```

che tiene conto dell'operazione corrente.

A questo punto il processo esterno dedicato all'hard disk dovrà limitarsi ad inviare i comandi corretti seguendo la scaletta appena riportata. Unica parte di interesse è quella della preparazione della tabella PRD, per cui bisogna tenere conto che il controllore DMA necessita di indirizzi fisici, e che legge sequenzialmente a partire da tali indirizzi fisici (perciò non si possono superare i 4 KiB della dimensione di pagina). Per fare questo, e tenere conto di buffer in memoria che iniziano potenzialmente a metà pagina, si sfrutta la funzione prepare_prd():

```
bool prepare_prd(des_ata *d, natb* vett, natb quanti)
2 {
    // ottieni il numero di byte da trasferire
3
    natq n = quanti * DIM_BLOCK;
4
    int i = 0;
    // scorri
    while (n && i < MAX_PRD) {</pre>
9
     // ottieni l'indirizzo fisico dell'indirizzo corrente
10
      paddr p = trasforma(vett);
11
12
     // otteni il numero di byte nella pagina corrente
13
     // sarebbe dimensione_pagina - scarto
14
     natq r = DIM_PAGINA - (p % DIM_PAGINA);
15
16
      // se eccede il numero di byte, taglia
     if (r > n)
      r = n;
19
20
      // imposta l'entrata PRD
21
      d->prd[i] = p;
22
      d->prd[i + 1] = r;
23
24
      // rimuovi da n il numero di byte presi
25
26
        -= r;
      // avanza il vettore del numero di byte presi
      vett += r;
      // passa alla prossima entrata PRD
      i += 2;
31
32 }
```

```
// se non hai coperto tutti i byte e' errore
if (n)
return false;

// imposta il bit end of table
d->prd[i - 1] |= 0x80000000;
return true;
}
```

Un dettaglio interessante è che si usa la trasforma() per ogni entrata PRD che si va a generare, in quanto chiaramente ognuna di queste avrà bisogno di un nuovo indirizzo fisico. Per questo motivo si mantiene oltre al numero di byte mancanti anche l'indirizzo corrente all'interno del vettore (in vett).

A questo punto si possono fornire all'utente primitive per l'accesso all'hard disk sia a controllo interruzione (come avevamo già visto, implementato in libce) sia in DMA. Queste saranno:

• Controllo interruzione: vediamo ad esempio l'operazione di ingresso.

```
1 // fondamentalmente un wrapper per hd::start_cmd di libce, che
     aggiorna il descrittore
2 void starthd_in(des_ata* d, natb vetti[], natl primo, natb quanti)
3 {
   d->cont = quanti;
4
5
   d->punt = vetti;
6 d->comando = hd::READ_SECT;
7 hd::start_cmd(primo, quanti, hd::READ_SECT);
8 }
10 // la primitiva vera e propria
11 extern "C" void c_readhd_n(natb vetti[], natl primo, natb quanti)
12 {
    des_ata* d = &hard_disk;
13
14
    // controlli (c_access)
15
16
    sem_wait(d->mutex);
17
   starthd_in(d, vetti, primo, quanti);
18
   sem_wait(d->sincr);
19
   sem_signal(d->mutex);
20
```

• DMA: vediamo sempre l'operazione di ingresso:

```
void dmastarthd_in(des_ata* d, natb vetti[], natl primo, natb quanti)
2 {
    // passo 1 della scaletta
3
    if (!prepare_prd(d, vetti, quanti)) {
     flog(LOG_ERR, "dmastarthd_in: numero di PRD insufficiente");
     sem_signal(d->sincr);
      return;
7
   }
8
9
   d->comando = hd::READ_DMA;
10
   d \rightarrow cont = 1;
11
12
   // passo 2
13
14
    paddr prd = trasforma(d->prd);
bm::prepare(prd, false);
```

```
// passo 3
hd::start_cmd(primo, quanti, hd::READ_DMA);
bm::start();
}
```

A operazioni terminate, il processo esterno dovrà chiaramente interpretare correttamente le interruzoni che riceve in base al tipo di comando dato:

```
void estern_hd(natq)
2 {
    des_ata* d = &hard_disk;
3
    for(;;) {
4
      d->cont--;
5
     hd::ack();
6
     switch (d->comando) {
7
    // questi sono 1 cast 6
case hd::READ_SECT:
hd::input_sect(d->punt);
d->punt += DIM_BLOCK;
break;
      // questi sono i casi gia visti
8
9
11
12
    case hd::WRITE_SECT:
13
     if (d->cont != 0) {
14
         hd::output_sect(d->punt);
15
      }
           d->punt += DIM_BLOCK;
16
17
       break;
18
    case hd::READ_DMA:
case hd::WRITE_DMA:
19
       // qui si fa l'acknowledge, passo 7 della scaletta
       bm::ack();
23
        break;
     }
24
     if (d->cont == 0)
25
       sem_signal(d->sincr);
26
27
      wfi();
   }
28
29 }
```