- 3. Fall2007. Let T be a linear transformation on a complex vector space V, not necessarily finite dimensional. Let $\lambda_1, \ldots, \lambda_s$ be distinct eigenvalues of T.
 - (a) Suppose that for each $j(1 \le j \le s)$, v_j s an eigenvector of T with eigenvalue λ_j . Prove that $\{v_1, \ldots, v_s\}$ is linearly independent.
 - (b) Now suppose that for each j, v_j is a generalized eigenvector of T with eigenvalue j; that is, there is some integer $m_j \geq 1$ such that

$$(T - \lambda_j)^{m_j} v_j = 0.$$

Again conclude that $\{v_1, \ldots, v_s\}$ g is linearly independent. (As a matter of notational convenience, assume each mj is chosen to be minimal; $(T - \lambda_j)^{m_j - 1} v_j \neq 0$.)

a) Assume $\{V_1, ..., V_5\}$ is not LI. Let K < 5 be the largest integer such that $\{V_1, ..., V_K\}$ is LI. Then $V_{K+1} = \sum_{i=1}^{K} c_i V_i$,

where at least one $c_i \neq 0$. Because all v_i are eigenvectors, we have

$$Tv_{k+1} = T \sum_{i=1}^{k} c_i v_i = \sum_{i=1}^{k} c_i Tv_i$$

$$= \sum_{i=1}^{K} c_i \lambda_i v_i$$

and OTOH,

$$= \sum_{i=1}^{k} c_i \lambda_{k+i} V_i$$

So
$$T_{V_{K+1}} - T_{V_{K+1}} = \sum_{i=1}^{K} c_i \lambda_{K+1} V_i - \sum_{i=1}^{K} c_i \lambda_i V_i$$

= $\sum_{i=1}^{K} (\lambda_{K+1} - \lambda_i) c_i V_i = 0$

As all λ_i are distinct, $(\lambda_{k+1} - \lambda_i) \neq 0$. Thus as the V_i 's are LT (not all the V_i 's, just these ones), we must have that $C_i \equiv 0$ $\not\subset$

b) Assume not, i.e., $\sum_{i=1}^{3} C_{i} V_{i} = D$ with at least one nonzero C_{i} .

We will show whose that $c_{i}=0$, and thus that all $c_{i}=0$, which is a contradiction.

Let $v = (T - \lambda_i I)^{M_i - 1} v_i$. Then $(T - \lambda_i I) w = 0 \Rightarrow Tv = \lambda_i w$.

Let n= max {m.}. Then we can knock out all but one of the general eigenvectors by applying a bunch of appropriate transformations:

$$O = \sum_{i=1}^{s} C_{i}V_{i}$$
order doesn't matter
$$O = \left(\left(T - \lambda_{i}T\right)^{m_{i-1}} \prod_{i=2}^{s} \left(T - \lambda_{i}I\right)^{n}\right) \sum_{i=1}^{s} C_{i}V_{i}$$

$$= C_{i}\left(\left(T - \lambda_{i}I\right)^{m_{i-1}} \prod_{i=2}^{s} \left(T - \lambda_{i}I\right)^{n}\right) V_{i}$$

$$= C_{i}\left(\prod_{i=2}^{s} \left(T - \lambda_{i}I\right)^{n}\right) V_{i}$$

$$= C_{i}\left(\prod_{i=2}^{s} \left(\lambda_{i} - \lambda_{i}\right)\right) V_{i}$$

But each $(\lambda_1 - \lambda_1) \neq 0$, so $c_1 = 0$. The result follows as this works for every c_1 .