5GNN: Extrapolating 5G Measurements through GNNs

https://github.com/StrongWeiUMN/5GNN

Wei Ye, Xinyue Hu, Tian Liu, Ruoyu Sun, Yanhua Li, **Zhi-Li Zhang**

5G Band Is Diverse

5G mmWave Enhance the Human Experience

With theoretical throughput up to 20 Gbps!

Key to support apps requiring ultra-high bandwidth

Source: Intel True View

Volumetric Content Delivery

December 09, 2022

Also Brings New Challenges

Multi-path signals due to reflection and blockage

Wild and frequent **fluctuations** in throughput

Gaps among digital world, local testbed, and commercial deployment

• We need more real-world data to support the model learning for prediction!

Measurements are Key to Reveal Commercial 5G

• The detailed "in-the-field" measurements are the key to understand the commercial 5G network performance.

Measurement of Commercial 5G is Low-efficient

However,

- (1) Measurement process is **laborious** and **costly**.
- (2) Data can only be collected in **limited areas** of (potentially large) space.
- (3) The limited coverage data will **introduce biases** to the model.

5G Measurement Extrapolation Problem

5G Measurement Extrapolation Problem

Given a collection of 5G "signal" measurements collected in the **limited number of locations** in a target 5G coverage area:

Can we infer or extrapolate

5G "signals" at other
locations within the area
that we do not have samples?

GNN is good at capturing spatial correlations!

SOTA GNNs Don't Utilize RF Physical Characteristics

But, the state-of-art GNNs cannot take fully advantage of **physical characteristics** of 5G radio frequencies:

Global Properties:

Radio signal propagation, attenuation, fading, and path losses

Local Properties:

signal waveform variations, noise, and interference

Our Solution → *5GNN*

5GNN is a tower information-free, physical-inspired, and graph-based learning approach.

We aim to learn a local ("smooth") embedding of data points lying within a local neighborhood.

Radio signal's local characteristics:

Local signal waveform variations, noise, and interference

We aim to approximate the (global) 5G signal manifold by patching together the local charts in an appropriate manner.

Radio signal's global characteristics:

Radio signal propagation, attenuation, fading, and path losses.

Stage 2: Global embedding

$$\hat{Z} = GNN^g(A^g, Z)$$

GNN^g is applied on the global graph and can be any off-theshelf baseline GNN model. We build a global kNN graph A^g over all the local charts.

 $Z = [z_0, z_1, ..., z_N]^T$ is the feature matrix

Stage 3: Joint Training

$$\underset{\theta}{\operatorname{arg \, min}} \ Loss(\boldsymbol{y}_{pred}, \boldsymbol{y}_{true})$$
$$\boldsymbol{y}_{pred} = MLP([\hat{Z}||Z])$$

Stage 2: Global embedding

Try to approximate the (global) 5G signal manifold.

$$\hat{Z} = GNN^{l}(A^{g}, Z)$$

$$Z^{g} = kNN(\{p \text{ in } Batch\}) \quad Z = [z_{0}, z_{1}, ..., z_{N}]^{T}$$

Stage 1: Local embedding

Try to learn a local ("smooth") embedding.

$$Z_{i} = F(GNN^{l}(A^{l_{i}}, H^{l_{i}}))$$

$$A_{jk}^{l_{i}} = \exp(-\frac{d(c_{j}, c_{k})}{2\sigma^{2}}) \qquad H^{l_{i}} = \begin{bmatrix} c_{i} & 0 & 0 \\ c_{j} & X_{j} & y_{j} \\ \dots & \dots & \dots \end{bmatrix}$$

Measurement Campaigns

We conducted the **comprehensive measurement campaigns** with the professional tools at the public park covered by diverse 4G/5G bands.

December 09, 2022

Datasets

Summary of Collected Dataset

Total area covered	$8000 \ m^2$
Technologies	4G-lowBand/midBand; 5G-mmWave
Data samples	Total 200k+ with 100ms sampling rate

Data Fields of Signal Imputation Task

c	Longitude; Latitude Angle: the orientation angle of UE
y	BRSRP: filtered beam reference signal received power [dBm]

Data Fields of Channel Quality Regression Task

c	Longitude; Latitude
	Angle: the orientation angle of UE
	ss-RSRP: synchronize signal reference signal received power [dBm]
	ss-RSRQ: synchronize signal reference signal received quality [dB]
	csi-RSRP [SSBRI]: CSI reference signal received power [dBm]
X	csi-RSRP [CRI]: CSI reference signal received power [dBm]
	SINR: signal to interference & noise ratio [dB]
	Pathloss: reduction in power density as signal propagates [dB]
	BLER: block error rate [%]
y	CQI: channel quality indicator

We use the **collected commercial 5G data** and **DeepMIMO simulated data** for evaluation.

Evaluation Setup

- We compare 5GNN with other **Two** state-of-the-art learning **Paradigms** (*PE-GNN* [*NeurIPS-ws'22*] and *Kriging-GNN* [*AAAI'20*]) for "geography inference" problems.
- We consider **Three** representative **baseline GNNs** (*GCN* [*ICLR'17*], *GraphSAGE* [*NeurIPS'17*], and *GIN* [*ICLR'19*]) to combine with above learning paradigms.
- We also consider **one** widely-used classical statistics-based method (Universal Kriging).

Error rate of 5GNN vs. state-of-art learning paradigms

Results of Signal Imputation Task

Note: P1 denotes PE-GNN paradigm; P2 is Kriging-GNN paradigm.

D	3.6.4.	DIZ	GCN				
Datasets	Metrics	RK	P1	P2	5GNN		
DeepMIMO_Mid	RMSE	0.0465	0.0584	0.0451	0.0440		
DeeplymylO_lyma	MAE	0.0342	0.0444	0.0334	0.0320		
DoomMIMO High	RMSE	0.0767	0.0722	0.0720	0.0701		
DeepMIMO_High	MAE	0.0584	0.0552	0.0550	0.0535		
AC Signal Law	RMSE	0.1840	0.1216	0.1129	0.1076		
4G_Signal_Low	MAE	0.1430	0.0955	0.0864	0.0784		
AC Cignal Mid	RMSE	0.0899	0.0943	0.0849	0.0806		
4G_Signal_Mid	MAE	0.0684	0.0740	0.0662	0.0616		
FC Cimpal High	RMSE	0.1588	0.1598	0.1453	0.1366		
5G_Signal_High	MAE	0.1201	0.1297	0.1156	0.1015		

- 5GNN is consistently superior other graph-based learning Paradigms.
- It reduces errors up to 12.8% on the imputation task.

Results of Signal Imputation Task

Note: P1 denotes PE-GNN paradigm; P2 is Kriging-GNN paradigm.

	<u> </u>				·		
Detecto	Metrics	RK	GCN				
Datasets	Metrics	KK	P1	P2	5GNN		
DeepMIMO Mid	RMSE	0.0465	0.0584	0.0451	0.0440		
DeepwiiwiO_wiid	MAE	0.0342	0.0444	0.0334	0.0320		
DeepMIMO High	RMSE	0.0767	0.0722	0.0720	0.0701		
DeeplyllylO_ffigh	MAE	0.0584	0.0552	0.0550	0.0535		
AC Signal Law	RMSE	0.1840	0.1216	0.1129	0.1076		
4G_Signal_Low	MAE	0.1430	0.0955	0.0864	0.0784		
AC Signal Mid	RMSE	0.0899	0.0943	0.0849	0.0806		
4G_Signal_Mid	MAE	0.0684	0.0740	0.0662	0.0616		
5C Signal High	RMSE	0.1588	0.1598	0.1453	0.1366		
5G_Signal_High	MAE	0.1201	0.1297	0.1156	0.1015		

• 5GNN also outperforms the Kriging methods and reduces up to 25.3% error rates on the 5G high band.

Results of Channel Quality Regression Task

Note: P1 denotes PE-GNN paradigm; P2 is Kriging-GNN paradigm.

Datasets	Metrics	RK	GCN				
Datasets	Metrics	KK	P1	P2	5GNN		
4G_CQI_Low	RMSE	0.1840	0.1859	0.1710	0.1611		
	MAE	0.1430	0.1518	0.1365	0.1259		
4G CQI Mid	RMSE	0.1435	0.1387	0.1328	0.1328		
4G_CQI_MIG	MAE	0.1092	0.1113	0.1053	0.1017		
5G_CQI_High	RMSE	0.1926	0.1818	0.1724	0.1643		
	MAE	0.1516	0.1523	0.1417	0.1287		

- 5GNN reduces errors up to 9.2% on the regression task.
- 5GNN can efficiently capture signals' local and global spatial correlations.

5GNN is Compatible with Different GNNs

Signal Imputation Task

Datasets	Metrics	LIIZ		GCN		GraphSAGE			GIN		
		UK	P1	P2	5GNN	P1	P2	5GNN	P1	P2	5GNN
DeepMIMO Mid	RMSE	0.0465	0.0584	0.0451	0.0440	0.0559	0.0438	0.0437	0.0531	0.0458	0.0436
DeepiviiviO_iviiu	MAE	0.0342	0.0444	0.0334	0.0320	0.0423	0.0315	0.0315	0.0410	0.0344	0.0316
DeepMIMO_High	RMSE	0.0767	0.0722	0.0720	0.0701	0.0723	0.0696	0.0690	0.0722	0.0719	0.0703
DeepMiMO_riigii	MAE	0.0584	0.0552	0.0550	0.0535	0.0552	0.0524	0.0519	0.0555	0.0545	0.0537
AC Signal Law	RMSE	0.1250	0.1216	0.1129	0.1076	0.1039	0.1018	0.1020	0.1223	0.1130	0.1071
4G_Signal_Low	MAE	0.0915	0.0955	0.0864	0.0784	0.0771	0.0758	0.0745	0.0964	0.0874	0.0787
AC Signal Mid	RMSE	0.0899	0.0943	0.0849	0.0806	0.0887	0.0796	0.0795	0.0939	0.0851	0.0816
4G_Signal_Mid	MAE	0.0684	0.0740	0.0662	0.0616	0.0688	0.0603	0.0603	0.0735	0.0663	0.0622
5G_Signal_High	RMSE	0.1588	0.1598	0.1453	0.1366	0.1218	0.1194	0.1187	0.1574	0.1457	0.1361
	MAE	0.1201	0.1297	0.1156	0.1015	0.0889	0.0863	0.0855	0.1260	0.1157	0.1009

Channel Quality Regression

Datasata	Metrics	cs UK	GCN			GraphSAGE			GIN		
Datasets	Metrics		P1	P2	5GNN	P1	P2	5GNN	P1	P2	5GNN
4G_CQI_Low	RMSE	0.1840	0.1813	0.1710	0.1611	0.1754	0.1594	0.1605	0.1809	0.1712	0.1602
4G_CQI_Low	MAE	0.1430	0.1460	0.1365	0.1259	0.1416	0.1234	0.1252	0.1472	0.1370	0.1247
40, 001 M: 1	RMSE	0.1435	0.1336	0.1328	0.1328	0.1310	0.1278	0.1276	0.1345	0.1364	0.1329
4G_CQI_Mid	MAE	0.1092	0.1042	0.1053	0.1017	0.1029	0.0982	0.0972	0.1045	0.1076	0.1015
5C COL High	RMSE	0.1926	0.1730	0.1724	0.1643	0.1751	0.1645	0.1629	0.1748	0.1726	0.1638
5G_CQI_High	MAE	0.1516	0.1455	0.1417	0.1287	0.1469	0.1279	0.1279	0.1493	0.1422	0.1292

• 5GNN is consistently superior over different baseline GNNs.

Visualization of Radio Maps

5GNN can efficiently generate the radio map based on the few measured data points, thus assisting future measurements.

Ongoing and Future Works

Machine learning model generalization ability

Real-time environmental perception

Al-assisted measurement route recommendation

Summary

> Put forward the **5G measurement extrapolation problem**

- Demonstrate 5G measurement is low efficient.
- Argue for the need to account for local and global dependencies in extrapolation problem.

➤ Propose *5GNN*

- A tower information-free, physical-inspired, and graph-based learning paradigm.
- 5GNN reduces the error rates (up to) **12.8%** and **9.2%** on the signal imputation task and channel quality regression task.

> Conduct comprehensive Experiments

- Collect the commercial 5G network data.
- For dataset access, codes and more info, visit us @

https://github.com/StrongWeiUMN/5GNN

December 09, 2022

5GNN: Extrapolating 5G Measurements through GNNs

https://github.com/StrongWeiUMN/5GNN

Wei Ye, Xinyue Hu, Tian Liu, Ruoyu Sun, Yanhua Li, **Zhi-Li Zhang**

