

5. EQUIVALÊNCIA LÓGICA e IMPLICAÇÃO LÓGICA

5.1. EQUIVALÊNCIA LÓGICA

5.1.1. Definição

Diz-se uma proposição P(p,q,r,...) é logicamente equivalente ou apenas equivalente a uma proposição Q(p,q,r,...), se as tabelas-verdade destas duas proposições são **idênticas**.

Notação: $P(p,q,r,...) \Leftrightarrow Q(p,q,r,...)$

Portanto, se as proposições P(p,q,r,...) e Q(p,q,r,...) forem ambas tautológicas ou ambas contradições, então são **equivalentes** (⇔).

OBS: O Símbolo "↔" é de operação e o símbolo "⇔" é de relação.

5.1.2. Propriedades

É imediato que a relação de equivalência lógica entre proposições goza das propriedades reflexiva (R), simétrica (S) e transitiva (T), isto é, simbolicamente:

- (i) (R) $P(p,q,r,...) \Leftrightarrow Q(p,q,r,...)$
- (ii) (S) Se $P(p,q,r,...) \Leftrightarrow Q(p,q,r,...)$, então $Q(p,q,r,...) \Leftrightarrow P(p,q,r,...)$
- (iii) (T) Se $P(p,q,r,...) \Leftrightarrow Q(p,q,r,...)$ e $Q(p,q,r,...) \Leftrightarrow R(p,q,r,...), \text{ então}$ $P(p,q,r,...) \Leftrightarrow R(p,q,r,...)$

5.1.3. Exemplos

(1) \neg (p \land \neg p) \Leftrightarrow p \lor \neg p, se e somente se, é tautológica:

р	¬р	(p ∧ ¬p)	¬(p ∧ ¬p)	\Leftrightarrow	¬р	p ∨ ¬ p
V	F	F	V	V	F	V
F	V	F	V	V	V	V

Disciplina INTRODUÇÃO À LÓGICA

É tautologia, logo são equivalentes. O mesmo acontece com a contradição.

(2) As condicionais " $p \rightarrow p \land q$ " e " $p \rightarrow q$ " têm tabelas-verdade idênticas:

р	q	p∧q	$p \rightarrow p \wedge p$	$p \rightarrow q$
V	٧	V	V	V
V	F	F	F	F
F	V	F	V	V
F	F	F	V	٧

Por consequência, estas condicionais são equivalentes, isto é, subsiste a equivalência lógica:

$$p \rightarrow p \land p \Leftrightarrow p \rightarrow q$$

5.2. IMPLICAÇÃO LÓGICA

5.2.1. Definição

Diz-se que uma proposição P(p,q,r,...) implica logicamente ou apenas implica uma proposição Q(p,q,r,...), se Q(p,q,r,...) é verdadeira (V) todas as vezes que P(p,q,r,...) é **verdadeira** (V).

Notação: $P(p,q,r,...) \Rightarrow Q(p,q,r,...)$

OBS: O Símbolo "→" é de operação e o símbolo "⇒" é de relação.

5.2.2. Propriedades

É imediato que a relação de implicação lógica entre proposições goza das propriedades reflexiva(R) e transitiva(T), isto é, simbolicamente:

- (i) (R) $P(p,q,r,...) \Rightarrow Q(p,q,r,...)$
- (ii) (T) Se $P(p,q,r,...) \Rightarrow Q(p,q,r,...)$ e $Q(p,q,r,...) \Rightarrow R(p,q,r,...)$, então $P(p,q,r,...) \Rightarrow R(p,q,r,...)$

Disciplina INTRODUÇÃO À LÓGICA

5.2.3. Exemplos

(1) As tabelas-verdade das proposições: $p \land q$, $p \lor q$, $p \leftrightarrow q$, são:

р	q	p ∧ q	p v q	$p \leftrightarrow q$
V	٧	V	V	V
٧	F	F	V	F
F	V	F	V	F
F	F	F	F	V

A proposição "p \land q" é verdadeira (V) somente na linha 1 e, nesta linha, as proposições "p \lor q" e "p \leftrightarrow q" também são verdadeiras(V). Logo, a primeira proposição implica cada uma das outras duas proposições, isto é:

$$p \land q \Rightarrow p \lor q$$
 e $p \land q \Rightarrow p \leftrightarrow q$

(2) "(p \leftrightarrow q) \wedge p" implica a proposição "q", pois, a condicional "(p \leftrightarrow q) \wedge p \rightarrow q" é tautológica conforme se vê pela sua tabela-verdade:

р	q	p ↔	- q (p	→ q) ∧ p	$(p \leftrightarrow q) \land p \to q$
٧	٧	V		V	V
V	F	F		F	V
F	V	F		F	V
F	F	V		F	V

Portanto, simbolicamente: $(p \leftrightarrow q) \land p \Rightarrow q$.

EXERCÍCIOS (valendo pontos para a avaliação/prova)

1) Demonstrar por tabelas-verdade as seguintes equivalências:

a)
$$(p \rightarrow q) \land (p \rightarrow r) \Leftrightarrow p \rightarrow q \land r$$

b)
$$(p \rightarrow q) \lor (p \rightarrow r) \iff p \rightarrow q \lor r$$

c)
$$(p \rightarrow q) \rightarrow r \Leftrightarrow p \land \neg r \rightarrow \neg q$$

3) Provar as implicações:

a)
$$(\neg p \land q) \Rightarrow \neg p$$

b)
$$(p \land q \rightarrow r) \implies (p \rightarrow (q \rightarrow r))$$

c)
$$(p \rightarrow q) \implies ((q \rightarrow r) \rightarrow (p \rightarrow r))$$

Disciplina INTRODUÇÃO À LÓGICA

4) Testes

Х	x > 2	x < 8	x > 2 \land x < 8	x > 2 \lor x < 8
7				
3,14				
2				
-1				
8,57				