Методы оптимизации Лекция 7: Введение в методы оптимизации. Градиентный спуск

Александр Катруца

Физтех-школа прикладной математики и информатики Московский физико-технический институт

31 октября 2022 г.

На прошлой лекции

- ▶ Коническая двойственность
- ▶ Двойственность для линейного программирования
- Примеры

Постановка задачи

$$\begin{aligned} \min_{\mathbf{x} \in S} f(\mathbf{x}) \\ \text{s.t. } f_j(\mathbf{x}) &= 0, \ j = 1, \dots, m \\ g_k(\mathbf{x}) &\leq 0, \ k = 1, \dots, p \end{aligned}$$

где
$$S\subseteq\mathbb{R}^n$$
, $f_j:S\to\mathbb{R},\;j=0,\ldots,m$, $g_k:S\to\mathbb{R},\;k=1,\ldots,p$

- ▶ Все функции как минимум непрерывны
- Задачи нелинейной оптимизации в общем случае являются численно неразрешимыми!

Необходимое условие первого порядка

Если \mathbf{x}^* точка локального минимума дифференцируемой функции $f(\mathbf{x})$, тогда

$$f'(\mathbf{x}^*) = 0$$

Необходимое условие первого порядка

Если \mathbf{x}^* точка локального минимума дифференцируемой функции $f(\mathbf{x})$, тогда

$$f'(\mathbf{x}^*) = 0$$

Необходимое условие второго порядка

Если \mathbf{x}^* точка локального минимума дважды дифференцируемой функции $f(\mathbf{x})$, тогда

$$f'(\mathbf{x}^*) = 0 \quad \mathbf{u} \quad f''(\mathbf{x}^*) \succeq 0$$

Необходимое условие первого порядка

Если \mathbf{x}^* точка локального минимума дифференцируемой функции $f(\mathbf{x})$, тогда

$$f'(\mathbf{x}^*) = 0$$

Необходимое условие второго порядка

Если \mathbf{x}^* точка локального минимума дважды дифференцируемой функции $f(\mathbf{x})$, тогда

$$f'(\mathbf{x}^*) = 0$$
 и $f''(\mathbf{x}^*) \succeq 0$

Достаточное условие

Пусть $f(\mathbf{x})$ дважды дифференцируемая функция, и пусть точка \mathbf{x}^* удовлетворяет условиям

$$f'(\mathbf{x}^*) = 0 \quad f''(\mathbf{x}^*) \succ 0,$$

тогда \mathbf{x}^* является точкой строгого локального минимума функции $f(\mathbf{x})$

Особенности численного решения

▶ Точно решить задачу принципиально невозможно из-за погрешности машинной арифметики

Особенности численного решения

- ▶ Точно решить задачу принципиально невозможно из-за погрешности машинной арифметики
- ▶ Необходимо задать критерий обнаружения решения

Особенности численного решения

- ▶ Точно решить задачу принципиально невозможно из-за погрешности машинной арифметики
- Необходимо задать критерий обнаружения решения
- Необходимо определить, какую информацию о задаче использовать

Общая схема

- ightharpoonup Начальная точка \mathbf{x}_0
- ightharpoonup Желаемая точность arepsilon

```
def GeneralScheme(x, epsilon):
    while StopCriterion(x) > epsilon:
        OracleResponse = RequestOracle(x)
        UpdateInformation(I, x, OracleResponse)
        x = NextPoint(I, x)
    return x
```

1. Какие критерии остановки могут быть?

- 1. Какие критерии остановки могут быть?
- 2. Что такое оракул и зачем он нужен?

- 1. Какие критерии остановки могут быть?
- 2. Что такое оракул и зачем он нужен?
- 3. Что такое информационная модель?

- 1. Какие критерии остановки могут быть?
- 2. Что такое оракул и зачем он нужен?
- 3. Что такое информационная модель?
- 4. Как вычисляется новая точка?

1. Сходимость по аргументу:

$$\|\mathbf{x}_k - \mathbf{x}^*\|_2 < \varepsilon$$

1. Сходимость по аргументу:

$$\|\mathbf{x}_k - \mathbf{x}^*\|_2 < \varepsilon$$

2. Сходимость по функции:

$$|f_k - f^*| < \varepsilon$$

1. Сходимость по аргументу:

$$\|\mathbf{x}_k - \mathbf{x}^*\|_2 < \varepsilon$$

2. Сходимость по функции:

$$|f_k - f^*| < \varepsilon$$

3. Выполнение необходимого условия

$$||f'(\mathbf{x}_k)||_2 < \varepsilon$$

1. Сходимость по аргументу:

$$\|\mathbf{x}_k - \mathbf{x}^*\|_2 < \varepsilon$$

2. Сходимость по функции:

$$|f_k - f^*| < \varepsilon$$

3. Выполнение необходимого условия

$$||f'(\mathbf{x}_k)||_2 < \varepsilon$$

4. Зазор двойственности

$$f_k - g(\lambda_k, \mu_k) \le \varepsilon$$

Что такое оракул?

Почти определение

Оракулом называют некоторое абстрактное устройство, которое отвечает на последовательные вопросы метода

Что такое оракул?

Почти определение

Оракулом называют некоторое абстрактное устройство, которое отвечает на последовательные вопросы метода

Аналогия из ООП

- оракул это виртуальный метод базового класса
- каждая задача производный класс
- оракул определяется для каждой задачи отдельно согласно общему определению в базовом классе

Что такое оракул?

Почти определение

Оракулом называют некоторое абстрактное устройство, которое отвечает на последовательные вопросы метода

Аналогия из ООП

- оракул это виртуальный метод базового класса
- каждая задача производный класс
- оракул определяется для каждой задачи отдельно согласно общему определению в базовом классе

Концепция чёрного ящика

- 1. Единственной информацией, получаемой в ходе работы итерационного метода, являются ответы оракула
- 2. Ответы оракула являются локальными

Информация о задаче

- 1. Каждый ответ оракула даёт **локальную** информацию о поведении функции в точке
- 2. Агрегируя все полученные ответы оракула, обновляем информацию о глобальном виде целевой функции:
 - кривизна
 - направление убывания
 - etc

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{h}_k$$

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{h}_k$$

Линейный поиск

- 1. Сначала выбирается направление \mathbf{h}_k
- 2. Далее определяется «оптимальное» значение $lpha_k$

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{h}_k$$

Линейный поиск

- ${f 1}.$ Сначала выбирается направление ${f h}_k$
- 2. Далее определяется «оптимальное» значение $lpha_k$

Метод доверительных областей

- 1. Выбирается α -окрестность \mathbf{x}_k
- 2. В этой окрестности строится упрощённая **модель** целевой функции
- 3. Далее определяется направления \mathbf{h}_k , минимизирующее модель целевой функции и не выводящее точку $\mathbf{x}_k + \mathbf{h}_k$ за пределы области

Как сравнивать методы оптимизации?

Для заданного класса задач сравнивают следующие величины:

- 1. Сложность
 - аналитическая: число обращений к оракулу для решения задачи с точностью ε
 - ightharpoonup арифметическая: общее число всех вычислений, необходимых для решения задачи с точностью arepsilon
- 2. Скорость сходимости
- 3. Эксперименты

1. Сублинейная

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\|_2 \le Ck^{\alpha},$$

где
$$\alpha < 0$$
 и $0 < C < \infty$

1. Сублинейная

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\|_2 \le Ck^{\alpha}$$
,

где
$$\alpha < 0$$
 и $0 < C < \infty$

2. Линейная (геометрическая прогрессия)

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\|_2 \le Cq^k,$$

где
$$q \in (0,1)$$
 и $0 < C < \infty$

1. Сублинейная

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\|_2 \le Ck^{\alpha},$$

где $\alpha < 0$ и $0 < C < \infty$

2. Линейная (геометрическая прогрессия)

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\|_2 \le Cq^k,$$

где
$$q \in (0,1)$$
 и $0 < C < \infty$

3. Сверхлинейная

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\|_2 \le Cq^{k^p},$$

где
$$q \in (0,1)$$
, $0 < C < \infty$ и $p > 1$

1. Сублинейная

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\|_2 \le Ck^{\alpha},$$

где $\alpha < 0$ и $0 < C < \infty$

2. Линейная (геометрическая прогрессия)

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\|_2 \le Cq^k,$$

где $q \in (0,1)$ и $0 < C < \infty$

3. Сверхлинейная

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\|_2 \le Cq^{k^p},$$

где $q \in (0,1)$, $0 < C < \infty$ и p > 1

4. Квадратичная

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\|_2 \le C \|\mathbf{x}_k - \mathbf{x}^*\|_2^2$$
, или $\|\mathbf{x}_{k+1} - \mathbf{x}^*\|_2 \le Cq^{2^k}$

где
$$q \in (0,1)$$
 и $0 < C < \infty$

Сравнение скоростей сходимости

Значение теорем сходимости

Значение теорем сходимости

(Б.Т. Поляк Введение в оптимизацию, гл. 1, § 6)

Что дают теоремы сходимости

класс задач, для которых применим метод

Значение теорем сходимости

(Б.Т. Поляк Введение в оптимизацию, гл. 1, § 6)

Что дают теоремы сходимости

- класс задач, для которых применим метод
 - выпуклость

(Б.Т. Поляк Введение в оптимизацию, гл. 1, § 6)

- класс задач, для которых применим метод
 - выпуклость
 - гладкость

(Б.Т. Поляк Введение в оптимизацию, гл. 1, § 6)

- класс задач, для которых применим метод
 - выпуклость
 - гладкость
- качественное поведение метода

(Б.Т. Поляк Введение в оптимизацию, гл. 1, § 6)

- класс задач, для которых применим метод
 - выпуклость
 - гладкость
- качественное поведение метода
 - существенно ли начальное приближение

(Б.Т. Поляк Введение в оптимизацию, гл. 1, § 6)

- класс задач, для которых применим метод
 - выпуклость
 - гладкость
- качественное поведение метода
 - существенно ли начальное приближение
 - по какому функционалу есть сходимость

(Б.Т. Поляк Введение в оптимизацию, гл. 1, § 6)

- класс задач, для которых применим метод
 - выпуклость
 - гладкость
- качественное поведение метода
 - существенно ли начальное приближение
 - по какому функционалу есть сходимость
- оценку скорости сходимости

(Б.Т. Поляк Введение в оптимизацию, гл. 1, § 6)

- класс задач, для которых применим метод
 - выпуклость
 - гладкость
- качественное поведение метода
 - существенно ли начальное приближение
 - по какому функционалу есть сходимость
- оценку скорости сходимости
 - теоретическая оценка без проведения экспериментов

(Б.Т. Поляк Введение в оптимизацию, гл. 1, § 6)

- класс задач, для которых применим метод
 - выпуклость
 - гладкость
- качественное поведение метода
 - существенно ли начальное приближение
 - по какому функционалу есть сходимость
- оценку скорости сходимости
 - теоретическая оценка без проведения экспериментов
 - определение факторов, которые влияют на сходимость

(Б.Т. Поляк Введение в оптимизацию, гл. 1, § 6)

- класс задач, для которых применим метод
 - выпуклость
 - гладкость
- качественное поведение метода
 - существенно ли начальное приближение
 - по какому функционалу есть сходимость
- оценку скорости сходимости
 - теоретическая оценка без проведения экспериментов
 - определение факторов, которые влияют на сходимость
 - иногда заранее можно выбрать число итераций для достижения заданной точности

(Б.Т. Поляк Введение в оптимизацию, гл. 1, § 6)

Что НЕ дают теоремы сходимости

 сходимость метода ничего не говорит о целесообразности его применения

(Б.Т. Поляк Введение в оптимизацию, гл. 1, § 6)

- сходимость метода ничего не говорит о целесообразности его применения
- оценки сходимости зависят от неизвестных констант

(Б.Т. Поляк Введение в оптимизацию, гл. 1, § 6)

- сходимость метода ничего не говорит о целесообразности его применения
- оценки сходимости зависят от неизвестных констант
- учёт ошибок округления и точности решения вспомогательных задач

Порядок метода

lacktriangle Методы нулевого порядка: оракул возвращает только значение функции $f(\mathbf{x})$

Порядок метода

- lacktriangle Методы нулевого порядка: оракул возвращает только значение функции $f(\mathbf{x})$
- Методы первого порядка: оракул возвращает значение функции $f(\mathbf{x})$ и её градиент $f'(\mathbf{x})$

Порядок метода

- lacktriangle Методы нулевого порядка: оракул возвращает только значение функции $f(\mathbf{x})$
- Методы первого порядка: оракул возвращает значение функции $f(\mathbf{x})$ и её градиент $f'(\mathbf{x})$
- Методы второго порядка: оракул возвращает значение функции $f(\mathbf{x})$, её градиент $f'(\mathbf{x})$ и гессиан $f''(\mathbf{x})$.

Порядок метода

- lacktriangle Методы нулевого порядка: оракул возвращает только значение функции $f(\mathbf{x})$
- Методы первого порядка: оракул возвращает значение функции $f(\mathbf{x})$ и её градиент $f'(\mathbf{x})$
- Методы второго порядка: оракул возвращает значение функции $f(\mathbf{x})$, её градиент $f'(\mathbf{x})$ и гессиан $f''(\mathbf{x})$.

Q: существуют ли методы более высокого порядка?

Порядок метода

- Методы нулевого порядка: оракул возвращает только значение функции $f(\mathbf{x})$
- Методы первого порядка: оракул возвращает значение функции $f(\mathbf{x})$ и её градиент $f'(\mathbf{x})$
- Методы второго порядка: оракул возвращает значение функции $f(\mathbf{x})$, её градиент $f'(\mathbf{x})$ и гессиан $f''(\mathbf{x})$.

 ${f Q}$: существуют ли методы более высокого порядка? ${f A}$: да, но их использование пока не столь широко распространено. Основная работа 1

¹Nesterov Y. Implementable tensor methods in unconstrained convex optimization //Mathematical Programming. – 2019. – C. 1-27.

Использование истории

1. Одношаговые методы

$$\mathbf{x}_{k+1} = \Phi(\mathbf{x}_k)$$

Использование истории

1. Одношаговые методы

$$\mathbf{x}_{k+1} = \Phi(\mathbf{x}_k)$$

2. Многошаговые методы

$$\mathbf{x}_{k+1} = \Phi(\mathbf{x}_k, \mathbf{x}_{k-1}, \dots)$$

Главное

- Введение в численные методы оптимизации
- ▶ Общая схема работы метода
- ▶ Способы сравнения методов оптимизации
- Зоопарк задач и методов

Методы спуска

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{h}_k$$

так что

$$f(\mathbf{x}_{k+1}) < f(\mathbf{x}_k)$$

Методы спуска

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{h}_k$$

так что

$$f(\mathbf{x}_{k+1}) < f(\mathbf{x}_k)$$

Определение

Направление \mathbf{h}_k называется направлением убывания

Методы спуска

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{h}_k$$

так что

$$f(\mathbf{x}_{k+1}) < f(\mathbf{x}_k)$$

Определение

Направление \mathbf{h}_k называется направлением убывания

Замечание

Существуют методы, которые не требуют монотонного убывания функции от итерации к итерации

L-гладкая функция

Определение

Пусть L>0. Функция f называется L-гладкой, если она дифференцируема и выполнено следующее неравенство

$$||f'(\mathbf{x}) - f'(\mathbf{y})||_* \le L||\mathbf{x} - \mathbf{y}||,$$

для любых \mathbf{x}, \mathbf{y} . Норма $\|\cdot\|_*$ является сопряжённой нормой для $\|\cdot\|$

L-гладкая функция

Определение

Пусть L>0. Функция f называется L-гладкой, если она дифференцируема и выполнено следующее неравенство

$$||f'(\mathbf{x}) - f'(\mathbf{y})||_* \le L||\mathbf{x} - \mathbf{y}||,$$

для любых \mathbf{x}, \mathbf{y} . Норма $\|\cdot\|_*$ является сопряжённой нормой для $\|\cdot\|$

lacktriangle L является константой Липшица для градиента

L-гладкая функция

Определение

Пусть L>0. Функция f называется L-гладкой, если она дифференцируема и выполнено следующее неравенство

$$||f'(\mathbf{x}) - f'(\mathbf{y})||_* \le L||\mathbf{x} - \mathbf{y}||,$$

для любых \mathbf{x}, \mathbf{y} . Норма $\|\cdot\|_*$ является сопряжённой нормой для $\|\cdot\|$

- ightharpoonup L является константой Липшица для градиента
- lacktriangle Интерес представляет минимально возможное L, при котором выполняется неравенство в определении

Descent lemma

Пусть f L-гладкая функция. Тогда для любых пар \mathbf{x}, \mathbf{y}

$$f(\mathbf{y}) \le f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{L}{2} ||\mathbf{y} - \mathbf{x}||_2^2$$

Доказательство

Descent lemma

Пусть f L-гладкая функция. Тогда для любых пар \mathbf{x}, \mathbf{y}

$$f(\mathbf{y}) \le f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{L}{2} ||\mathbf{y} - \mathbf{x}||_2^2$$

Доказательство

▶ По формуле Ньютона-Лейбница

$$f(\mathbf{y}) - f(\mathbf{x}) = \int_0^1 \langle f'(\mathbf{x} + t(\mathbf{y} - \mathbf{x})), \mathbf{y} - \mathbf{x} \rangle dt$$

Descent lemma

Пусть f L-гладкая функция. Тогда для любых пар \mathbf{x}, \mathbf{y}

$$f(\mathbf{y}) \le f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{L}{2} ||\mathbf{y} - \mathbf{x}||_2^2$$

Доказательство

▶ По формуле Ньютона-Лейбница

$$f(\mathbf{y}) - f(\mathbf{x}) = \int_0^1 \langle f'(\mathbf{x} + t(\mathbf{y} - \mathbf{x})), \mathbf{y} - \mathbf{x} \rangle dt$$

$$f(\mathbf{y}) - f(\mathbf{x}) = \langle f'(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \int_0^1 \langle f'(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) - f'(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle dt$$

Descent lemma

Пусть f L-гладкая функция. Тогда для любых пар \mathbf{x}, \mathbf{y}

$$f(\mathbf{y}) \le f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{L}{2} ||\mathbf{y} - \mathbf{x}||_2^2$$

Доказательство

По формуле Ньютона-Лейбница

$$f(\mathbf{y}) - f(\mathbf{x}) = \int_0^1 \langle f'(\mathbf{x} + t(\mathbf{y} - \mathbf{x})), \mathbf{y} - \mathbf{x} \rangle dt$$

- $f(\mathbf{y}) f(\mathbf{x}) = \langle f'(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle + \int_0^1 \langle f'(\mathbf{x} + t(\mathbf{y} \mathbf{x})) f'(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle dt$
- $|f(\mathbf{y}) f(\mathbf{x}) \langle f'(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle| \le \int_0^1 |\langle f'(\mathbf{x} + t(\mathbf{y} \mathbf{x})) f'(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle| dt \le \int_0^1 ||f'(\mathbf{x} + t(\mathbf{y} \mathbf{x})) f'(\mathbf{x})|| ||\mathbf{y} \mathbf{x}|| dt$

Descent lemma

Пусть f L-гладкая функция. Тогда для любых пар \mathbf{x}, \mathbf{y}

$$f(\mathbf{y}) \le f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{L}{2} ||\mathbf{y} - \mathbf{x}||_2^2$$

Доказательство

▶ По формуле Ньютона-Лейбница

$$f(\mathbf{y}) - f(\mathbf{x}) = \int_0^1 \langle f'(\mathbf{x} + t(\mathbf{y} - \mathbf{x})), \mathbf{y} - \mathbf{x} \rangle dt$$

- $f(\mathbf{y}) f(\mathbf{x}) = \langle f'(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle + \int_0^1 \langle f'(\mathbf{x} + t(\mathbf{y} \mathbf{x})) f'(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle dt$
- $|f(\mathbf{y}) f(\mathbf{x}) \langle f'(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle| \le \int_0^1 |\langle f'(\mathbf{x} + t(\mathbf{y} \mathbf{x})) f'(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle| dt \le \int_0^1 ||f'(\mathbf{x} + t(\mathbf{y} \mathbf{x})) f'(\mathbf{x})|| ||\mathbf{y} \mathbf{x}|| dt$
- $\int_0^1 \|f'(\mathbf{x} + t(\mathbf{y} \mathbf{x})) f'(\mathbf{x})\| \|\mathbf{y} \mathbf{x}\| dt \le \int_0^1 tL \|\mathbf{y} \mathbf{x}\|_2^2 dt = \frac{L}{2} \|\mathbf{y} \mathbf{x}\|_2^2$

Критерий второго порядка

Пусть $f:\mathbb{R}^n \to \mathbb{R}$ дважды непрерывно дифференцируема, тогда для заданного L>0 следующие условия эквивалентны

- ightharpoonup f является L-гладкой
- ▶ $||f''(\mathbf{x})||_2 \le L$ для любого \mathbf{x}

Критерий второго порядка

Пусть $f:\mathbb{R}^n \to \mathbb{R}$ дважды непрерывно дифференцируема, тогда для заданного L>0 следующие условия эквивалентны

- ightharpoonup f является L-гладкой
- ▶ $||f''(\mathbf{x})||_2 \le L$ для любого \mathbf{x}

Доказательство

Критерий второго порядка

Пусть $f:\mathbb{R}^n \to \mathbb{R}$ дважды непрерывно дифференцируема, тогда для заданного L>0 следующие условия эквивалентны

- ightharpoonup f является L-гладкой
- ▶ $||f''(\mathbf{x})||_2 \le L$ для любого \mathbf{x}

Доказательство

1. Пусть f L-гладкая

Критерий второго порядка

Пусть $f:\mathbb{R}^n \to \mathbb{R}$ дважды непрерывно дифференцируема, тогда для заданного L>0 следующие условия эквивалентны

- ightharpoonup f является L-гладкой
- ▶ $||f''(\mathbf{x})||_2 \le L$ для любого \mathbf{x}

Доказательство

- 1. Пусть f L-гладкая
 - ightharpoonup Для любого направления ${f d}$ и lpha>0: $\|f'({f x}+lpha{f d})-f'({f x})\|_2\leq lpha L\|{f d}\|_2$

Критерий второго порядка

Пусть $f:\mathbb{R}^n \to \mathbb{R}$ дважды непрерывно дифференцируема, тогда для заданного L>0 следующие условия эквивалентны

- ightharpoonup f является L-гладкой
- ▶ $||f''(\mathbf{x})||_2 \le L$ для любого \mathbf{x}

- 1. Пусть f L-гладкая
 - ightharpoonup Для любого направления \mathbf{d} и $\alpha > 0$: $\|f'(\mathbf{x} + \alpha \mathbf{d}) f'(\mathbf{x})\|_2 \le \alpha L \|\mathbf{d}\|_2$

Критерий второго порядка

Пусть $f:\mathbb{R}^n \to \mathbb{R}$ дважды непрерывно дифференцируема, тогда для заданного L>0 следующие условия эквивалентны

- ightharpoonup f является L-гладкой
- ▶ $||f''(\mathbf{x})||_2 \le L$ для любого \mathbf{x}

- 1. Пусть f L-гладкая
 - ightharpoonup Для любого направления ${f d}$ и lpha>0: $\|f'({f x}+lpha{f d})-f'({f x})\|_2 \leq lpha L\|{f d}\|_2$

 - lacktriangle Так как это выполнено для любого ${f d}$, то $\|f''({f x})\|_2 \leq L$

Критерий второго порядка

Пусть $f:\mathbb{R}^n \to \mathbb{R}$ дважды непрерывно дифференцируема, тогда для заданного L>0 следующие условия эквивалентны

- ightharpoonup f является L-гладкой
- ▶ $||f''(\mathbf{x})||_2 \le L$ для любого \mathbf{x}

- 1. Пусть f L-гладкая
 - ▶ Для любого направления \mathbf{d} и $\alpha > 0$: $\|f'(\mathbf{x} + \alpha \mathbf{d}) f'(\mathbf{x})\|_2 \le \alpha L \|\mathbf{d}\|_2$

 - **>** Так как это выполнено для любого **d**, то $\|f''(\mathbf{x})\|_2 \leq L$
- 2. Пусть $||f''(\mathbf{x})||_2 \le L$ для любого \mathbf{x}

Критерий второго порядка

Пусть $f:\mathbb{R}^n \to \mathbb{R}$ дважды непрерывно дифференцируема, тогда для заданного L>0 следующие условия эквивалентны

- ightharpoonup f является L-гладкой
- ▶ $||f''(\mathbf{x})||_2 \le L$ для любого \mathbf{x}

- 1. Пусть f L-гладкая
 - ightharpoonup Для любого направления ${f d}$ и lpha>0: $\|f'({f x}+lpha{f d})-f'({f x})\|_2\leq lpha L\|{f d}\|_2$
 - $\lim_{\alpha \to +0} \frac{\|f'(\mathbf{x} + \alpha \mathbf{d}) f'(\mathbf{x})\|_2}{\alpha} = \|f''(\mathbf{x})\mathbf{d}\|_2 \le L\|\mathbf{d}\|_2$
 - **>** Так как это выполнено для любого **d**, то $\|f''(\mathbf{x})\|_2 \leq L$
- 2. Пусть $||f''(\mathbf{x})||_2 \le L$ для любого \mathbf{x}
 - lacktriangle По формуле Ньютона-Лейбница $f'(\mathbf{y})-f'(\mathbf{x})=\int_0^1 f''(\mathbf{x}+t(\mathbf{y}-\mathbf{x}))(\mathbf{y}-\mathbf{x})dt$

Критерий второго порядка

Пусть $f:\mathbb{R}^n \to \mathbb{R}$ дважды непрерывно дифференцируема, тогда для заданного L>0 следующие условия эквивалентны

- ightharpoonup f является L-гладкой
- ▶ $||f''(\mathbf{x})||_2 \le L$ для любого \mathbf{x}

- 1. Пусть f L-гладкая
 - ▶ Для любого направления ${\bf d}$ и $\alpha>0$:

$$||f'(\mathbf{x} + \alpha \mathbf{d}) - f'(\mathbf{x})||_2 \le \alpha L ||\mathbf{d}||_2$$

- lacktriangle Так как это выполнено для любого ${f d}$, то $\|f''({f x})\|_2 \leq L$
- 2. Пусть $||f''(\mathbf{x})||_2 \le L$ для любого \mathbf{x}
 - ▶ По формуле Ньютона-Лейбница $f'(\mathbf{y}) f'(\mathbf{x}) = \int_0^1 f''(\mathbf{x} + t(\mathbf{y} \mathbf{x}))(\mathbf{y} \mathbf{x})dt$
 - $||f'(\mathbf{y}) f'(\mathbf{x})||_2 \le \left(\int_0^1 ||f''(\mathbf{x} + t(\mathbf{y} \mathbf{x}))||_2 dt \right) ||\mathbf{y} \mathbf{x}||_2 \le L||\mathbf{y} \mathbf{x}||_2$

Градиентный спуск

Глобальная оценка сверху на функцию f в точке \mathbf{x}_k :

$$f(\mathbf{y}) \le f(\mathbf{x}_k) + \langle f'(\mathbf{x}_k), \mathbf{y} - \mathbf{x}_k \rangle + \frac{L}{2} ||\mathbf{y} - \mathbf{x}_k||_2^2 \equiv g(\mathbf{y}),$$

где $\lambda_{\max}(f''(\mathbf{x})) \leq L$ для всех допустимых \mathbf{x} .

Градиентный спуск

Глобальная оценка сверху на функцию f в точке \mathbf{x}_k :

$$f(\mathbf{y}) \le f(\mathbf{x}_k) + \langle f'(\mathbf{x}_k), \mathbf{y} - \mathbf{x}_k \rangle + \frac{L}{2} ||\mathbf{y} - \mathbf{x}_k||_2^2 \equiv g(\mathbf{y}),$$

где $\lambda_{\max}(f''(\mathbf{x})) \leq L$ для всех допустимых \mathbf{x} .

Справа – квадратичная форма, точка минимума которой имеет аналитическое выражение:

$$g'(\mathbf{y}^*) = 0$$

$$f'(\mathbf{x}_k) + L(\mathbf{y}^* - \mathbf{x}_k) = 0$$

$$\mathbf{y}^* = \mathbf{x}_k - \frac{1}{L}f'(\mathbf{x}_k) \equiv \mathbf{x}_{k+1}$$

Этот способ позволяет оценить значение шага как $\frac{1}{L}.$

Выбор шага

- ▶ Постоянный $\alpha_k \equiv \mathrm{const} < \frac{2}{L}$
- ▶ Убывающая последовательность, такая что $\sum\limits_{k=1}^{\infty}\alpha_k=\infty$, например $\frac{1}{k},\frac{1}{\sqrt{k}}$, etc
- Адаптивный поиск: правила Армихо, Вольфа, Гольдштейна и другие
- lacktriangle Наискорейший спуск: поиск лучшего $lpha_k$

Важно

Лучший размер шага даёт не столь существенное теоретическое ускорение сходимости

$$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) + \langle f'(\mathbf{x}_k), \mathbf{x}_{k+1} - \mathbf{x}_k \rangle + \frac{L}{2} \|\mathbf{x}_{k+1} - \mathbf{x}_k\|_2^2 =$$

$$f(\mathbf{x}_k) - \alpha_k \|f'(\mathbf{x}_k)\|_2^2 + \frac{L\alpha_k^2}{2} \|f'(\mathbf{x}_k)\|_2^2 =$$

$$f(\mathbf{x}_k) - \left(\alpha_k - \frac{L\alpha_k^2}{2}\right) \|f'(\mathbf{x}_k)\|_2^2$$

$$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) + \langle f'(\mathbf{x}_k), \mathbf{x}_{k+1} - \mathbf{x}_k \rangle + \frac{L}{2} \|\mathbf{x}_{k+1} - \mathbf{x}_k\|_2^2 =$$

$$f(\mathbf{x}_k) - \alpha_k \|f'(\mathbf{x}_k)\|_2^2 + \frac{L\alpha_k^2}{2} \|f'(\mathbf{x}_k)\|_2^2 =$$

$$f(\mathbf{x}_k) - \left(\alpha_k - \frac{L\alpha_k^2}{2}\right) \|f'(\mathbf{x}_k)\|_2^2$$

▶ Условие убывания: $\alpha_k - \frac{L\alpha_k^2}{2} > 0 \Rightarrow \alpha_k < \frac{2}{L}$

$$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) + \langle f'(\mathbf{x}_k), \mathbf{x}_{k+1} - \mathbf{x}_k \rangle + \frac{L}{2} \|\mathbf{x}_{k+1} - \mathbf{x}_k\|_2^2 =$$

$$f(\mathbf{x}_k) - \alpha_k \|f'(\mathbf{x}_k)\|_2^2 + \frac{L\alpha_k^2}{2} \|f'(\mathbf{x}_k)\|_2^2 =$$

$$f(\mathbf{x}_k) - \left(\alpha_k - \frac{L\alpha_k^2}{2}\right) \|f'(\mathbf{x}_k)\|_2^2$$

- lacktriangle Условие убывания: $lpha_k rac{Llpha_k^2}{2} > 0 \Rightarrow lpha_k < rac{2}{L}$

$$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) + \langle f'(\mathbf{x}_k), \mathbf{x}_{k+1} - \mathbf{x}_k \rangle + \frac{L}{2} \|\mathbf{x}_{k+1} - \mathbf{x}_k\|_2^2 =$$

$$f(\mathbf{x}_k) - \alpha_k \|f'(\mathbf{x}_k)\|_2^2 + \frac{L\alpha_k^2}{2} \|f'(\mathbf{x}_k)\|_2^2 =$$

$$f(\mathbf{x}_k) - \left(\alpha_k - \frac{L\alpha_k^2}{2}\right) \|f'(\mathbf{x}_k)\|_2^2$$

- lacktriangle Условие убывания: $lpha_k rac{Llpha_k^2}{2} > 0 \Rightarrow lpha_k < rac{2}{L}$
- $f(\mathbf{x}_k) f(\mathbf{x}_{k+1}) \ge \frac{1}{2L} ||f'(\mathbf{x}_k)||_2^2$

$$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) + \langle f'(\mathbf{x}_k), \mathbf{x}_{k+1} - \mathbf{x}_k \rangle + \frac{L}{2} \|\mathbf{x}_{k+1} - \mathbf{x}_k\|_2^2 =$$

$$f(\mathbf{x}_k) - \alpha_k \|f'(\mathbf{x}_k)\|_2^2 + \frac{L\alpha_k^2}{2} \|f'(\mathbf{x}_k)\|_2^2 =$$

$$f(\mathbf{x}_k) - \left(\alpha_k - \frac{L\alpha_k^2}{2}\right) \|f'(\mathbf{x}_k)\|_2^2$$

- lacktriangle Условие убывания: $lpha_k rac{Llpha_k^2}{2} > 0 \Rightarrow lpha_k < rac{2}{L}$
- $f(\mathbf{x}_k) f(\mathbf{x}_{k+1}) \ge \frac{1}{2L} ||f'(\mathbf{x}_k)||_2^2$

$$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) + \langle f'(\mathbf{x}_k), \mathbf{x}_{k+1} - \mathbf{x}_k \rangle + \frac{L}{2} \|\mathbf{x}_{k+1} - \mathbf{x}_k\|_2^2 =$$

$$f(\mathbf{x}_k) - \alpha_k \|f'(\mathbf{x}_k)\|_2^2 + \frac{L\alpha_k^2}{2} \|f'(\mathbf{x}_k)\|_2^2 =$$

$$f(\mathbf{x}_k) - \left(\alpha_k - \frac{L\alpha_k^2}{2}\right) \|f'(\mathbf{x}_k)\|_2^2$$

- lacktriangle Условие убывания: $lpha_k rac{Llpha_k^2}{2} > 0 \Rightarrow lpha_k < rac{2}{L}$
- $f(\mathbf{x}_k) f(\mathbf{x}_{k+1}) \ge \frac{1}{2L} ||f'(\mathbf{x}_k)||_2^2$
- lacktriangleright f ограничена снизу, $\|f'(\mathbf{x}_k)\|_2 o 0, \ k o \infty$

Теорема

Пусть f выпуклая функция с Липшицевым градиентом и $lpha \leq \frac{1}{L}$, тогда градиентный спуск сходится как

$$f(\mathbf{x}_k) - f^* \le \frac{\|\mathbf{x}^* - \mathbf{x}_0\|_2^2}{2\alpha k} = \mathcal{O}(1/k)$$

Теорема

Пусть f выпуклая функция с Липшицевым градиентом и $lpha \leq \frac{1}{L}$, тогда градиентный спуск сходится как

$$f(\mathbf{x}_k) - f^* \le \frac{\|\mathbf{x}^* - \mathbf{x}_0\|_2^2}{2\alpha k} = \mathcal{O}(1/k)$$

Теорема

Пусть f выпуклая функция с Липшицевым градиентом и $lpha \leq \frac{1}{L}$, тогда градиентный спуск сходится как

$$f(\mathbf{x}_k) - f^* \le \frac{\|\mathbf{x}^* - \mathbf{x}_0\|_2^2}{2\alpha k} = \mathcal{O}(1/k)$$

Доказательство

▶ Вспомним, что $f(\mathbf{x}_{i+1}) \le f(\mathbf{x}_i) - \left(\alpha - \frac{L\alpha^2}{2}\right) \|f'(\mathbf{x}_i)\|_2^2$

Теорема

Пусть f выпуклая функция с Липшицевым градиентом и $lpha \leq \frac{1}{L}$, тогда градиентный спуск сходится как

$$f(\mathbf{x}_k) - f^* \le \frac{\|\mathbf{x}^* - \mathbf{x}_0\|_2^2}{2\alpha k} = \mathcal{O}(1/k)$$

- lacktriangle Вспомним, что $f(\mathbf{x}_{i+1}) \leq f(\mathbf{x}_i) \left(lpha rac{Llpha^2}{2}
 ight) \|f'(\mathbf{x}_i)\|_2^2$
- ▶ Оценим $-(1 \frac{L\alpha}{2}) = \frac{L\alpha}{2} 1 \le \frac{1}{2} 1 = -\frac{1}{2}$

Теорема

Пусть f выпуклая функция с Липшицевым градиентом и $lpha \leq \frac{1}{L}$, тогда градиентный спуск сходится как

$$f(\mathbf{x}_k) - f^* \le \frac{\|\mathbf{x}^* - \mathbf{x}_0\|_2^2}{2\alpha k} = \mathcal{O}(1/k)$$

- lacktriangle Вспомним, что $f(\mathbf{x}_{i+1}) \leq f(\mathbf{x}_i) \left(lpha rac{Llpha^2}{2}
 ight) \|f'(\mathbf{x}_i)\|_2^2$
- ▶ Оценим $-(1 \frac{L\alpha}{2}) = \frac{L\alpha}{2} 1 \le \frac{1}{2} 1 = -\frac{1}{2}$
- ▶ Подставим $f(\mathbf{x}_{i+1}) \le f(\mathbf{x}_i) \frac{\alpha}{2} \|f'(\mathbf{x}_i)\|_2^2$ (!)

Теорема

Пусть f выпуклая функция с Липшицевым градиентом и $lpha \leq \frac{1}{L}$, тогда градиентный спуск сходится как

$$f(\mathbf{x}_k) - f^* \le \frac{\|\mathbf{x}^* - \mathbf{x}_0\|_2^2}{2\alpha k} = \mathcal{O}(1/k)$$

- lacktriangle Вспомним, что $f(\mathbf{x}_{i+1}) \leq f(\mathbf{x}_i) \left(lpha rac{Llpha^2}{2}
 ight) \|f'(\mathbf{x}_i)\|_2^2$
- lackbox Оценим $-(1-rac{Llpha}{2})=rac{Llpha}{2}-1 \leq rac{1}{2}-1 = -rac{1}{2}$
- ▶ Подставим $f(\mathbf{x}_{i+1}) \le f(\mathbf{x}_i) \frac{\alpha}{2} \|f'(\mathbf{x}_i)\|_2^2$ (!)
- lacktriangle В силу выпуклости $f(\mathbf{x}^*) \geq f(\mathbf{x}_i) + \langle f'(\mathbf{x}_i), \mathbf{x}^* \mathbf{x}_i)
 angle$

Теорема

Пусть f выпуклая функция с Липшицевым градиентом и $lpha \leq \frac{1}{L}$, тогда градиентный спуск сходится как

$$f(\mathbf{x}_k) - f^* \le \frac{\|\mathbf{x}^* - \mathbf{x}_0\|_2^2}{2\alpha k} = \mathcal{O}(1/k)$$

- lacktriangle Вспомним, что $f(\mathbf{x}_{i+1}) \leq f(\mathbf{x}_i) \left(lpha rac{Llpha^2}{2}
 ight) \|f'(\mathbf{x}_i)\|_2^2$
- ▶ Оценим $-(1 \frac{L\alpha}{2}) = \frac{L\alpha}{2} 1 \le \frac{1}{2} 1 = -\frac{1}{2}$
- ▶ Подставим $f(\mathbf{x}_{i+1}) \le f(\mathbf{x}_i) \frac{\alpha}{2} \|f'(\mathbf{x}_i)\|_2^2$ (!)
- lacktriangle В силу выпуклости $f(\mathbf{x}^*) \geq f(\mathbf{x}_i) + \langle f'(\mathbf{x}_i), \mathbf{x}^* \mathbf{x}_i)
 angle$
- lacktriangle Или $f(\mathbf{x}_i) \leq f(\mathbf{x}^*) + \langle f'(\mathbf{x}_i), \mathbf{x}_i \mathbf{x}^*
 angle$

Теорема

Пусть f выпуклая функция с Липшицевым градиентом и $lpha \leq \frac{1}{L}$, тогда градиентный спуск сходится как

$$f(\mathbf{x}_k) - f^* \le \frac{\|\mathbf{x}^* - \mathbf{x}_0\|_2^2}{2\alpha k} = \mathcal{O}(1/k)$$

- lacktriangle Вспомним, что $f(\mathbf{x}_{i+1}) \leq f(\mathbf{x}_i) \left(lpha rac{Llpha^2}{2}
 ight) \|f'(\mathbf{x}_i)\|_2^2$
- lackbox Оценим $-(1-rac{Llpha}{2})=rac{Llpha}{2}-1 \leq rac{1}{2}-1 = -rac{1}{2}$
- ▶ Подставим $f(\mathbf{x}_{i+1}) \le f(\mathbf{x}_i) \frac{\alpha}{2} \|f'(\mathbf{x}_i)\|_2^2$ (!)
- lacktriangle В силу выпуклости $f(\mathbf{x}^*) \geq f(\mathbf{x}_i) + \langle f'(\mathbf{x}_i), \mathbf{x}^* \mathbf{x}_i)
 angle$
- lacktriangle Или $f(\mathbf{x}_i) \leq f(\mathbf{x}^*) + \langle f'(\mathbf{x}_i), \mathbf{x}_i \mathbf{x}^*
 angle$
- $lack egin{aligned} lack egin{aligned} lack la$

Преобразуем:

$$f(\mathbf{x}_{i+1}) - f(\mathbf{x}^*) \leq \frac{1}{2\alpha} \left(2\alpha \langle f'(\mathbf{x}_i), \mathbf{x}_i - \mathbf{x}^* \rangle - \alpha^2 \| f'(\mathbf{x}_i) \|_2^2 \right) =$$

$$\frac{1}{2\alpha} \left(2\alpha \langle f'(\mathbf{x}_i), \mathbf{x}_i - \mathbf{x}^* \rangle - \alpha^2 \| f'(\mathbf{x}_i) \|_2^2 +$$

$$\|\mathbf{x}_i - \mathbf{x}^* \|_2^2 - \|\mathbf{x}_i - \mathbf{x}^* \|_2^2 \right) =$$

$$\frac{1}{2\alpha} \left(\|\mathbf{x}_i - \mathbf{x}^* \|_2^2 - \|\mathbf{x}_i - \alpha f'(\mathbf{x}_i) - \mathbf{x}^* \|_2^2 \right) =$$

$$\frac{1}{2\alpha} \left(\|\mathbf{x}_i - \mathbf{x}^* \|_2^2 - \|\mathbf{x}_{i+1} - \mathbf{x}^* \|_2^2 \right)$$

Преобразуем:

$$f(\mathbf{x}_{i+1}) - f(\mathbf{x}^*) \leq \frac{1}{2\alpha} \left(2\alpha \langle f'(\mathbf{x}_i), \mathbf{x}_i - \mathbf{x}^* \rangle - \alpha^2 \| f'(\mathbf{x}_i) \|_2^2 \right) =$$

$$\frac{1}{2\alpha} \left(2\alpha \langle f'(\mathbf{x}_i), \mathbf{x}_i - \mathbf{x}^* \rangle - \alpha^2 \| f'(\mathbf{x}_i) \|_2^2 +$$

$$\|\mathbf{x}_i - \mathbf{x}^* \|_2^2 - \|\mathbf{x}_i - \mathbf{x}^* \|_2^2 \right) =$$

$$\frac{1}{2\alpha} \left(\|\mathbf{x}_i - \mathbf{x}^* \|_2^2 - \|\mathbf{x}_i - \alpha f'(\mathbf{x}_i) - \mathbf{x}^* \|_2^2 \right) =$$

$$\frac{1}{2\alpha} \left(\|\mathbf{x}_i - \mathbf{x}^* \|_2^2 - \|\mathbf{x}_{i+1} - \mathbf{x}^* \|_2^2 \right)$$

Просуммируем

$$\sum_{i=0}^{k-1} (f(\mathbf{x}_{i+1}) - f(\mathbf{x}^*)) \le \sum_{i=0}^{k-1} \frac{1}{2\alpha} (\|\mathbf{x}_i - \mathbf{x}^*\|_2^2 - \|\mathbf{x}_{i+1} - \mathbf{x}^*\|_2^2)$$
$$= \frac{1}{2\alpha} (\|\mathbf{x}_0 - \mathbf{x}^*\|_2^2 - \|\mathbf{x}_k - \mathbf{x}^*\|_2^2) \le \frac{1}{2\alpha} \|\mathbf{x}_0 - \mathbf{x}^*\|_2^2$$

В силу убывания функции с каждой итерацией

$$f(\mathbf{x}_k) - f(\mathbf{x}^*) \le \frac{1}{k} \sum_{i=0}^{k-1} (f(\mathbf{x}_k) - f(\mathbf{x}^*)) \le \frac{1}{k} \sum_{i=0}^{k-1} (f(\mathbf{x}_{i+1}) - f(\mathbf{x}^*))$$

В силу убывания функции с каждой итерацией

$$f(\mathbf{x}_k) - f(\mathbf{x}^*) \le \frac{1}{k} \sum_{i=0}^{k-1} (f(\mathbf{x}_k) - f(\mathbf{x}^*)) \le \frac{1}{k} \sum_{i=0}^{k-1} (f(\mathbf{x}_{i+1}) - f(\mathbf{x}^*))$$

Тогда

$$f(\mathbf{x}_k) - f(\mathbf{x}^*) \le \frac{\|\mathbf{x}_0 - \mathbf{x}^*\|_2^2}{2\alpha k}$$

В силу убывания функции с каждой итерацией

$$f(\mathbf{x}_k) - f(\mathbf{x}^*) \le \frac{1}{k} \sum_{i=0}^{k-1} (f(\mathbf{x}_k) - f(\mathbf{x}^*)) \le \frac{1}{k} \sum_{i=0}^{k-1} (f(\mathbf{x}_{i+1}) - f(\mathbf{x}^*))$$

Тогда

$$f(\mathbf{x}_k) - f(\mathbf{x}^*) \le \frac{\|\mathbf{x}_0 - \mathbf{x}^*\|_2^2}{2\alpha k}$$

Результат

Для L-гладких дифференцируемых выпуклых функций градиентный спуск сходится сублинейно, а именно как O(1/k).

▶ Следствие сильной выпуклости

$$f(\mathbf{z}) \ge f(\mathbf{x}_k) + \langle f'(\mathbf{x}_k), \mathbf{z} - \mathbf{x}_k \rangle + \frac{\mu}{2} \|\mathbf{z} - \mathbf{x}_k\|_2^2$$

Следствие сильной выпуклости

$$f(\mathbf{z}) \ge f(\mathbf{x}_k) + \langle f'(\mathbf{x}_k), \mathbf{z} - \mathbf{x}_k \rangle + \frac{\mu}{2} \|\mathbf{z} - \mathbf{x}_k\|_2^2$$

Минимизируя обе части по z

$$f(\mathbf{x}^*) \ge f(\mathbf{x}_k) - \frac{1}{2\mu} \|f'(\mathbf{x}_k)\|_2^2, \quad \|f'(\mathbf{x}_k)\|_2^2 \ge 2\mu (f(\mathbf{x}_k) - f^*)$$

Следствие сильной выпуклости

$$f(\mathbf{z}) \ge f(\mathbf{x}_k) + \langle f'(\mathbf{x}_k), \mathbf{z} - \mathbf{x}_k \rangle + \frac{\mu}{2} \|\mathbf{z} - \mathbf{x}_k\|_2^2$$

Минимизируя обе части по z

$$f(\mathbf{x}^*) \ge f(\mathbf{x}_k) - \frac{1}{2\mu} \|f'(\mathbf{x}_k)\|_2^2, \quad \|f'(\mathbf{x}_k)\|_2^2 \ge 2\mu (f(\mathbf{x}_k) - f^*)$$

lacktriangle Вспомним, что для $lpha_k\equiv rac{1}{L}$

$$f^* \le f(\mathbf{x}_{k+1}) \le f(\mathbf{x}_k) - \frac{1}{2L} \|f'(\mathbf{x}_k)\|_2^2$$

▶ Следствие сильной выпуклости

$$f(\mathbf{z}) \ge f(\mathbf{x}_k) + \langle f'(\mathbf{x}_k), \mathbf{z} - \mathbf{x}_k \rangle + \frac{\mu}{2} \|\mathbf{z} - \mathbf{x}_k\|_2^2$$

Минимизируя обе части по z

$$f(\mathbf{x}^*) \ge f(\mathbf{x}_k) - \frac{1}{2\mu} \|f'(\mathbf{x}_k)\|_2^2, \quad \|f'(\mathbf{x}_k)\|_2^2 \ge 2\mu (f(\mathbf{x}_k) - f^*)$$

lacktriangle Вспомним, что для $lpha_k\equiv rac{1}{L}$

$$f^* \le f(\mathbf{x}_{k+1}) \le f(\mathbf{x}_k) - \frac{1}{2L} \|f'(\mathbf{x}_k)\|_2^2$$

▶ И наконец получим линейную сходимость

$$f(\mathbf{x}_{k+1}) - f^* \le \left(1 - \frac{1}{\kappa}\right) \left(f(\mathbf{x}_k) - f^*\right)$$

Теорема для сильно выпуклой функции

Теорема

Пусть f с Липшицевым градиентом и μ сильно выпукла, $\alpha_k = \frac{2}{\mu + L}$, тогда градиентный спуск сходится как

$$f(\mathbf{x}_k) - f^* \le \frac{L}{2} \left(\frac{L - \mu}{L + \mu} \right)^{2k} \|\mathbf{x}_0 - \mathbf{x}^*\|_2^2$$

$$q^* = \frac{L - \mu}{L + \mu} = \frac{L/\mu - 1}{L/\mu + 1} = \frac{\kappa - 1}{\kappa + 1},$$

где κ - оценка числа обусловленности $f''(\mathbf{x})$. Q: что такое число обусловленности матрицы?

$$q^* = \frac{L - \mu}{L + \mu} = \frac{L/\mu - 1}{L/\mu + 1} = \frac{\kappa - 1}{\kappa + 1},$$

где κ - оценка числа обусловленности $f''(\mathbf{x})$.

Q: что такое число обусловленности матрицы?

▶ При $\kappa\gg 1$, $q^*\to 1\Rightarrow$ оооочень *медленная* сходимости. Например при $\kappa=100$: $q^*\approx 0.98$

$$q^* = \frac{L - \mu}{L + \mu} = \frac{L/\mu - 1}{L/\mu + 1} = \frac{\kappa - 1}{\kappa + 1},$$

где κ - оценка числа обусловленности $f''(\mathbf{x})$.

Q: что такое число обусловленности матрицы?

- ▶ При $\kappa\gg 1,\ q^*\to 1\Rightarrow$ оооочень *медленная* сходимости. Например при $\kappa=100$: $q^*\approx 0.98$
- ightharpoonup При $\kappa \simeq 1$, $q^* \to 0 \Rightarrow$ ускорение сходимости. Например при $\kappa = 4$: $q^* = 0.6$

$$q^* = \frac{L - \mu}{L + \mu} = \frac{L/\mu - 1}{L/\mu + 1} = \frac{\kappa - 1}{\kappa + 1},$$

где κ - оценка числа обусловленности $f''(\mathbf{x})$.

Q: что такое число обусловленности матрицы?

- ▶ При $\kappa \gg 1, \ q^* \to 1 \Rightarrow$ оооочень *медленная* сходимости. Например при $\kappa = 100: \ q^* \approx 0.98$
- ightharpoonup При $\kappa \simeq 1,\ q^* \to 0 \Rightarrow$ ускорение сходимости. Например при $\kappa = 4:\ q^* = 0.6$

Q: какая геометрия у этого требования?

Can we do better?

Что нам известно

- Для выпуклых функций с Липшицевым градиентом градиентный спуск сходится как $\mathcal{O}(1/k)$
- ightharpoons Для сильно выпуклых функций с Липшицевым градиентом градиентный спуск сходится с линейной скоростью $q=rac{\kappa-1}{\kappa+1}$

Q: есть ли методы, которые сходятся быстрее, и как это выяснить?

Для обоих классов функций существуют такие «плохие» функции, для которых выполнены следующие оценки **снизу**

Для обоих классов функций существуют такие «плохие» функции, для которых выполнены следующие оценки **снизу**

для выпуклых функций с Липшицевым градиентом

$$f(\mathbf{x}_{k+1}) - f^* \ge \frac{3L\|\mathbf{x}_0 - \mathbf{x}^*\|_2^2}{32(k+1)^2}$$

Для обоих классов функций существуют такие «плохие» функции, для которых выполнены следующие оценки **снизу**

для выпуклых функций с Липшицевым градиентом

$$f(\mathbf{x}_{k+1}) - f^* \ge \frac{3L\|\mathbf{x}_0 - \mathbf{x}^*\|_2^2}{32(k+1)^2}$$

для сильно выпуклых функций с Липшицевым градиентом

$$f(\mathbf{x}_{k+1}) - f^* \ge \frac{\mu}{2} \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^{2k} \|\mathbf{x}_0 - \mathbf{x}^*\|_2^2$$

Для обоих классов функций существуют такие «плохие» функции, для которых выполнены следующие оценки **снизу**

для выпуклых функций с Липшицевым градиентом

$$f(\mathbf{x}_{k+1}) - f^* \ge \frac{3L\|\mathbf{x}_0 - \mathbf{x}^*\|_2^2}{32(k+1)^2}$$

для сильно выпуклых функций с Липшицевым градиентом

$$f(\mathbf{x}_{k+1}) - f^* \ge \frac{\mu}{2} \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^{2k} \|\mathbf{x}_0 - \mathbf{x}^*\|_2^2$$

Эти оценки справедливы для таких методов, что

$$\mathbf{x}_{k+1} = \mathbf{x}_0 + \operatorname{span}(f'(\mathbf{x}_0), \dots, f'(\mathbf{x}_k))$$

Оптимальные методы

Про методы, которые в той или иной степени достигают нижних оценок, будет рассказано на следующей лекции:

- метод сопряжённых градиентов
- метод тяжёлого шарика
- градиентный метод Нестерова

Резюме

- ▶ Общая схема работы методов оптимизации
- ▶ Скорости сходимости
- Градиентный спуск
- ▶ Свойства и сходимость
- Нижние оценки