Estimation of electron-to-photon fakes in SM $tq\gamma$ analysis

Johannes Erdmann¹, Peter Onyisi², <u>Harish Potti</u>², Björn Wendland¹

¹TU Dortmund University

²The University of Texas at Austin

Isolation & Fake Forum April 27, 2020

OUTLINE

- ► In this talk, I will present
 - Brief introduction about $tq\gamma$ analysis
 - ► Data and MC samples
 - ► Object level selections
 - Pre-selection region composition
 - $e \rightarrow \gamma$ fake estimation method
- ▶ Björn Wendland will present $j \rightarrow \gamma$ fake estimation method in the next talk

Glance Entry:

https://glance.cern.ch/atlas/analysis/analyses/details.php?id=1765

Internal Note (partially complete):

https://cds.cern.ch/record/2712922

Motivation for $tq\gamma$ analysis

- $pp \rightarrow tq\gamma$ is one of the rare processes predicted by the SM
- $\sigma(tq\gamma)$ is sensitive to
 - ► top quark's interaction with photon and *W*[±] bosons
 - electric and magnetic dipole moments of the top quark

- ► This process not been observed yet
- ► CMS published evidence for this process with partial Run-2 data https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.221802
- ► Final state contains: exactly 1ℓ , 1γ , 1 forward jet, 1 b-jet and MET> 30 GeV
- ▶ Note: This analysis is different from FCNC $tq\gamma$ analysis which probes $t \rightarrow q\gamma$ interaction

DATA & MC SAMPLES

► This analysis uses full Run-2 data (139 fb⁻¹) collected by the ATLAS experiment in 2015-18

Process	Generator	DSID	
$tq\gamma$	aMcAtNlo+Pythia8	412147	
$t \bar t \gamma$	MadGraph5+Pythia8	410389	
$W\gamma$ + jets	Sherpa 2.2.2	3645[21-35]	
$Z\gamma$ + jets	Sherpa 2.2.4	3661[40-54]	
$t\bar{t}$	Powheg+Pythia8	410470	
single top	Powheg+Pythia8	41065[8-9], 41064[4-7]	
W + jets	Sherpa 2.2.1	3641[56-97]	
Z + jets	Sherpa 2.2.1	3641[00-41]	
Diboson	Sherpa 2.2.2	3633[55-60], 363489, 36425[0, 3-5]	

Overlap removal in V+jets and V γ +jets samples

There are few overlaps between V+jets and V γ +jets samples (V = $t\bar{t}$, W, Z). (Mainly due to QED final state radiation by the parton shower modelling)

A reconstructed photon is classified as:

- $e \rightarrow \gamma$ fake
 - if the truth particle matching to it is an electron
 - if the truth particle matching to it is a photon and there is a truth electron within a distance of $\Delta R < 0.05$
- ▶ $j \rightarrow \gamma$ **fake** if the parent of the truth particle corresponding to it is a hadron
- ▶ **Prompt photon** if it is not matching above definitions

Sample	Keep	Remove	
V+jets	Events with fake photons	Events with prompt photons	
$V\gamma$ +jets Events with prompt photons		Events with fake photons	

OBJECT DEFINITIONS

Object	ID	Isolation	$\min p_T$	$\max \eta $
Electron	TightLH	FCTight	27 GeV	2.47
Muon	Medium	FCTight	27 GeV	2.5
Photon	Tight	FixedCutTight	15 GeV	2.37
Jets	EMTopoJets		25 GeV	4.5
B-tagging	MV2c10 - 70% WP		25 GeV	2.5

► We are currently updating our analysis with new ntuples which have PFlowJets & DL1r b-tagging algorithm.

COMPOSITION OF PRE-SELECTION REGION

Selection:

- ► Exactly 1 lepton
- ► At lease 1-photon
- ► Exactly 1-bjet passing 70% WP
- ► Missing $p_T > 30 \text{ GeV}$
- ► $M(e\gamma) \notin (70, 110) \text{ GeV}$

Major backgrounds:

- ► Prompt photon backgrounds: $tt\gamma$, $W\gamma$, $Z\gamma$
- ► Events with fake photons $(t\bar{t}, Z+jets etc.)$

7/26

What are $e \rightarrow \gamma$ fakes?

- ► In the ATLAS experiment, electrons and photons are reconstructed using very similar algorithms ⇒ electrons may sometimes mis-reconstructed as photons
- ► Happens mainly due to tracking inefficiency or failure to find a match between the Inner Detector track and the electromagnetic cluster
- ► Simulation does not model these fakes well.
- Scale factors are derived from data, in bins of η_{γ} and photon conversion type, to correct the simulation for this mis-modelling.
- ► Rate of an electron faking as photon is \sim 9% (from data)

Estimation of $e \rightarrow \gamma$ fake rate

- $e \to \gamma$ fake rate $(F_{e \to \gamma})$: Ratio of probability that an electron is mis-reconstructed as an photon to the probability that an electron is correctly reconstructed.
- ► $F_{e \to \gamma}$ can be estimated from Z+jets events that are reconstructed as e^+e^- and $e\gamma$ pairs,

$$F_{e \to \gamma} = \frac{N(Z \to e\gamma)}{2 \times N(Z \to e^+e^-)} \tag{1}$$

(A factor of 2 is included in the denominator as either of the two electrons can be mis-reconstructed as photon.)

$(e ightarrow \gamma$ fake rate) scale factor

Scale factor to be applied to MC is given by

Scale factor (SF) =
$$\frac{F_{e \to \gamma}^{\text{Data}}}{F_{e \to \gamma}^{\text{MC}}}$$
 (2)

Simplifying,

$$SF = \frac{N^{\text{Data}}(Z \to e\gamma) / N^{\text{MC}}(Z \to e\gamma)}{N^{\text{Data}}(Z \to e^+e^-) / N^{\text{MC}}(Z \to e^+e^-)} = \begin{bmatrix} \mu_{Ze\gamma} \\ \mu_{Zee} \end{bmatrix}$$
(3)

Where,
$$\mu_{Ze\gamma} = \frac{N^{\mathrm{Data}}(Z \to e\gamma)}{N^{\mathrm{MC}}(Z \to e\gamma)}$$
 and $\mu_{Zee} = \frac{N^{\mathrm{Data}}(Z \to e^+e^-)}{N^{\mathrm{MC}}(Z \to e^+e^-)}$

CONTROL AND VALIDATION REGIONS

Two control regions and one validation region enriched with Z+jets events are used for estimating $e \rightarrow \gamma$ scale factors

Object	$Z \rightarrow e^+e^-$ CR	$Z \rightarrow e \gamma CR$	$Z \rightarrow e \gamma VR$
Photons	$=0 \text{ w}/p_T > 15 \text{ GeV}$	$=1 \text{ w}/p_T > 15 \text{ GeV}$	$=1 \text{ w} / p_T > 15 \text{ GeV}$
Electrons	=2 (OS) w/ $p_T > 27$ GeV	$=1 \text{ w}/p_T > 27 \text{ GeV}$	$=1 \text{ w}/p_T > 27 \text{ GeV}$
<i>b</i> -jets	<u>-</u>	$=0 \text{ w}/p_T > 25 \text{ GeV}$	$\geq 1 \text{ w} / p_T > 25 \text{ GeV}$
Missing p_T	< 30 GeV	< 30 GeV	< 30 GeV
$M(e^+e^-)$	[70, 110] GeV	-	-
$M(e\gamma)$	-	[70, 110] GeV	[70, 110] GeV
Purpose	Measure μ_{Zee}	Measure $\mu_{Ze\gamma}$	Validate SFs

All regions are orthogonal to SR (inverted MET cut) and to each other

μ_{Zee} CALCULATION

- ▶ μ_{Zee} is measured by fitting MC templates of $M(e^+e^-)$ distribution, to data in $Z \rightarrow e^+e^-$ CR
- ▶ Normalization for the template of $Z \rightarrow e^+e^-$ process is determined from the fit
- Normalization for all other backgrounds are fixed to their MC expectations

Observed value of $\mu_{Zee} = 1.03 \pm 0.00026$

CALCULATION OF $\mu_{Ze\gamma}$

 $\mu_{Ze\gamma}$ is measured by fitting templates of $M(e\gamma)$ distribution to data in the $Z \to e\gamma$ CR.

- ▶ Template shape of $M(e\gamma)$ distribution for $Z \to e\gamma$ process is obtained from MC. Normalization is determined from the fit.
- ► For major bkgs, $W\gamma$ and $Z\gamma$, both normalization and shape are obtained from MC.
- ▶ Third order Bernstein polynomials are used as $M(e\gamma)$ templates for missing rare backgrounds like VV, W+jets and γ +jets, etc.

$\mu_{Ze\gamma}$ RESULTS

- ► M($e\gamma$) distribution for $Z \rightarrow e\gamma$ region is shown here before (left) and after(right) fitting to data
- ▶ Bin: Unconverted Photon and $\eta_{\gamma} \in (0.3, 0.6)$

SFS IN BINS OF PHOTON η AND CT

• Scale factor has been calculated in bins of η_{γ} and photon conversion type

Closure test in $Z \rightarrow e \gamma$ CR

- ► SFs have been tested for closure in $Z \rightarrow e\gamma$ CR, the same region from which they are derived.
- Comparison of Data/MC plots without (left) and with (right) scale factors is presented here.
- ► SF corrections to MC, clearly, improves the agreement with data.

CLOSURE TEST - 2

Validation of SFs in $Z \rightarrow e \gamma VR$

- ▶ SF corrections to MC have been tested in $Z \rightarrow e\gamma$ VR.
- Comparison of data and MC plots before (left) and after (right) applying SFs indicates that SFs improve the agreement between data and MC.

SF VALIDATION PLOTS - 2

ADDITIONAL PARAMETERISATION IN PHOTON p_T

- ► Checked if additional parameterisation in $p_{T,\gamma}$ is needed after applying SF corrections to MC in bins of η_{γ} and conversion type.
- ► As shown below, SFs do not depend on the transverse momentum of photon.

UNCERTAINTIES ON THE SF MEASUREMENT

- Only MC statistical uncertainties have been considered
- ► As $\delta \sigma_{Z+jets}$ affects both μ_{Zee} and $\mu_{Ze\gamma}$, it's contribution to SF measurement uncertainty is zero
- We do not expect any significant contributions from any other theoretical & experimental uncertainties

SUMMARY

- ► Events with $e \rightarrow \gamma$ fakes constitute a major background in the $tq\gamma$ signal region
- Scale factors have been derived, in bins of η_{γ} and conversion type, from data to correct the Simulation for the mis-modelling of these fakes
- Closure test and validation region plots indicate that applying SF corrections to MC improves the agreement with data
- MC statistical uncertainties have been considered in the SF calculations. No other major source of uncertainties is expected

QUESTION: STRANGE EXCESS IN SIGNAL REGION

We see excess in SR for high values of $\Delta \eta(\gamma, x)$, where, $x = \ell, b, W, j, t$. Did any body see this type of excess?

QUESTION: STRANGE EXCESS IN SIGNAL REGION - 2

BACKUP

PHOTON CONVERSION TYPE

Photon is reconstructed as converted photon if there are 1 or 2 tracks matched to the cluster else as unconverted photon.

Photon conversion type:

- ► unconverted = 0 : unconverted photon
- ► singleSi = 1 : one track only, with Si hits
- ► singleTRT = 2 : one track only, no Si hits (TRT only)
- ► doubleSi = 3 : two tracks, both with Si hits
- ► doubleTRT = 4 : two tracks, none with Si hits (TRT only)
- ▶ doubleSiTRT = 5 : two tracks, only one with Si hits