

Práctica 1

1er cuatrimestre 2022

Algoritmos y Estructuras de Datos 1

Integrante	LU	Correo electrónico
Yago Pajariño	546/21	ypajarino@dc.uba.ar

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Intendente Güiraldes 2610 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina

Ciudad Universitaria - (Pabellón I/Planta Baja)

$$\label{eq:fax: problem} \begin{split} & \text{Tel/Fax: (++54 +11) 4576-3300} \\ & \text{http://www.exactas.uba.ar} \end{split}$$

$\acute{\mathbf{I}}\mathbf{ndice}$

3.	Prá	ctica 1	2
	3.1.	Ejercicio 1	2
	3.2.	Ejercicio 2	2
	3.3.	Ejercicio 3	3
	3.4.	Ejercicio 4	3
	3.5.	Eiercicio 5	3

3. Práctica 1

3.1. Ejercicio 1

Me piden determinar si dados p y q variables preposicionales, las expresiones son formulas bien formadas. ★ Rdo.: una formula está bien formada si cumple:

- True y False son fórmulas
- Cualquier variable proposicional es una fórmula
- Si A es una fórmula, ¬A es una fórmula
- Si A₁, A₂,..., A_n son fórmulas, (A₁ ∧ A₂ ∧ ··· ∧ A_n) es una fórmula
- Si A₁, A₂,..., A_n son fórmulas, (A₁ ∨ A₂ ∨ ··· ∨ A_n) es una fórmula
- 6. Si A y B son fórmulas, $(A \rightarrow B)$ es una fórmula
- 7. Si A y B son fórmulas, $(A \leftrightarrow B)$ es una fórmula

3.1.A. Pregunta A

- 1. $(p\neg q)$ no es una fórmula bien formada.
- 2. $p \lor q \land True$ no es una fórmula bien formada pues da lugar a ambigüedad por la falta de paréntesis.
- 3. $p \lor q \land True$ no es una fórmula bien formada pues da lugar a ambigüedad por la falta de paréntesis.
- 4. $\neg(p)$ no es una fórmula bien formada pues el paréntesis es redundante.
- 5. $(p \lor \neg q \land q)$ no es una fórmula bien formada ya que la falta de paréntesis da lugar a ambigüedad.
- 6. $(True \lor True \lor True)$ es una formula bien formada.
- 7. $(\neg p)$ no es una formula bien formada ya que no hacen falta los paréntesis.
- 8. $(p \vee False)$ es una formula bien formada.
- 9. (p = q) es una formula bien formada.

3.2. Ejercicio 2

- 1. Bien definida
- 2. Bien definida
- 3. Mal definida. El conector lógico \vee solo acepta variables del tipo Bool pero x e y son $\mathbb Z$
- 4. Bien definida
- 5. Mal definida. (z=0) y (z=1) no tipa correctamente dado que z es de tipo Bool.
- 6. Mal definida. No tipa correctamente dado que (y < 0) es de tipo Bool y la suma solo acepta números.

3.3. Ejercicio 3

Primero se evalúa $\alpha = (3 + 7 = \pi - 8)$ que al ser una igualdad devuelve un valor del tipo Bool. Luego $\alpha \in \{True, False\}$ y la fórmula resulta $\alpha \wedge True$ que está bien formada.

3.4. Ejercicio 4

Se que a = True, b = True, c = True, x = False, y = False

- 1. True
- 2. True
- 3. False
- 4. True
- 5. True
- 6. True
- 7. False

3.5. Ejercicio 5

★ Rdo.: Ua fórmula es **tautología** si siempre toma el valor True, es **contradicción** si siempre toma el valor False, es **contingencia** si no es ni tautología ni contradicción.

3.5.A. Inciso A

$$\begin{array}{c|c} p & (p \lor \neg p) \\ V & V \\ V & V \\ F & V \\ \end{array}$$

Es una tautología

3.5.B. Inciso B

$$\begin{array}{c|c} p & (p \land \neg p) \\ V & F \\ V & F \\ F & F \\ \end{array}$$

Es una contradicción

3.5.C. Inciso C

Es una contradicción