ASIST 2018/2019

30 de Novembro 2018, Grupo X41.

Norberto Sousa, 1120608 Marco Carneiro, 1160777 Hugo Fernandes, 1161155 Hugo Carvalho, 1161569

ÍNDICE

Introdução	2
Empresa	3
Apresentação da empresa	
Estrutura de negócio	
O programa da empresa	4
Infraestrutura física da empresa	5
Infraestrutura informática da empresa	6
Soluções	9
Solução Para a Estrutura Informática da Empresa	9
Solução Com Orçamento	
Solução Sem Orçamento	15
Business Continuity Plan	18
Threat and Risk Analysis	18
Business Impact Analysis	19
Disaster Recovery Plan	20
Prevenção de Falhas	21
Recovery Point Objective	22
Recovery Time Objective	22
Recovery Time Objective de Contigência	
Conclusão	
Bibliografia	24

INTRODUÇÃO

INTRODUÇÃO

Este relatório tem como objetivo dar a conhecer o *Business Continuity Plan* (**BCP**) desenhado para responder às necessidades da empresa, que para todos os efeitos, permanecerá anônima neste relatório.

Numa primeira parte é dado a conhecer o ramo industrial onde esta entidade opera, bem como a sua infraestrutura atual.

Posteriormente é apresentado duas possíveis soluções para responder às necessidades da empresa ao nível de infraestrutura informática em que uma delas representa a solução ideal e a outra tem os custos que a empresa poderia suportar em conta. Neste momento também é apresentado o investimento que seria necessário para concretizar estas duas infraestruturas e por que razão se escolheu determinados equipamentos e porque se desenvolveu a infraestrutura dessa maneira.

Por fim e com base na nova infraestrutura, que tem em conta os custos da empresa, é apresentado o novo Plano de Continuidade de Negócio que visa oficializar diversas normas, estratégias e planos de ação que a empresa deve seguir para preservar o seu bom funcionamento e evitar possíveis prejuízos face a situações adversas.

APRESENTAÇÃO DA EMPRESA

A empresa opera na área da *corseterie*, focando-se na confeção e comercialização de *lingerie*, pijamas e roupa interior feminina e masculina. Na fase de prosperidade da empresa, esta contava com 400 funcionários e colaboradores. Com a chegada da crise financeira a Portugal, foi necessário um corte nas despesas, causando a redução do pessoal de 400 para 100. Atualmente a empresa recuperou da crise e exporta produtos para lojas locais, grandes superfícies como o *El Corte Inglés* e para o estrangeiro como Inglaterra e Estados Unidos da América.

ESTRUTURA DE NEGÓCIO

A estrutura de negócio da companhia está dividida pelos seguintes setores de operação:

- *Design*, onde acontece todo o processo criativo para a elaboração das coleções a serem comercializadas pela empresa.
- Corte, onde é efetuado o corte automatizado do tecido, usando como molde os modelos das peças a confecionar.
- Armazém de Matérias Primas, onde se armazena e contabiliza todos os recursos ao dispor da empresa para confecionar produtos.
- Confeção, em que se faz a ligação dos diferentes componentes produzidos pelo corte para criar as peças, ou seja, o produto final.
- Armazém de Produto Acabado, onde se armazenam todos os produtos com recurso a um software, para que mais tarde este seja transferido ou para a loja da fábrica ou para os seus diversos clientes
- Comercial, em que se decide como divulgar a marca e estabelece a ponte entre a empresa e os atuais ou potenciais clientes.
- Contabilidade, onde é feita todo o controlo financeiro da empresa seja de lucros de vendas a gastos com materiais, salários e equipamentos.
- Loja, onde é feita a venda das peças produzidas pela empresa.

O PROGRAMA DA EMPRESA

Para o bom funcionamento da empresa esta depende de um programa escrito em **Clipper** que é um compilador de 16 bits da linguagem **xBase** inicialmente desenvolvido para o ambiente **DOS** e que, de forma rápida, foi abandonado devido ao crescente uso de redes computacionais e aparecimento de discos partilhados com recurso a **SGBD** (Sistema de Gerenciamento de Banco de Dados), uma vez que o **Clipper** foi desenhado para uma época em que cada sistema era isolado do outro e em que as bases de dados eram conjuntos de arquivos em disco acessíveis por apenas um utilizador.

O programa contempla as seguintes funcionalidades:

- Criação da ficha técnica de uma peça, contemplando informações como o material usado, o tamanho da peça, custo e tempo necessário para confecionar a mesma.
- Criação de ordens de produção que especificam o que deve ser confecionado pelos operários do setor do corte e confeção da empresa.
- Registo de produto no stock, onde se dá por terminada a ordem de produção e regista-se os produtos no inventário do armazém de produto acabado como pertencentes a uma encomenda.
- Etiquetagem dos produtos e verificação de encomendas em que após etiquetar um produto este é atribuído a uma divisória numerada de uma estante, como por exemplo a estante B gaveta 38, e é feita uma verificação do conteúdo da encomenda estar de acordo com os produtos registados nessa gaveta.
- Criação de rotinas de contabilidade para serem analisadas e posteriormente registadas no software SAGE.
- Registo de marcação de ponto para depois determinar eventuais faltas dos funcionários.

INFRAESTRUTURA FÍSICA DA EMPRESA

A empresa está dividida em dois pisos como representam as seguintes plantas, que também ilustram onde se situam cada um dos setores chave da empresa:

Figura 1 - Planta 1º Piso

Figura 2 - Planta 2º Piso

INFRAESTRUTURA INFORMÁTICA DA EMPRESA

A empresa atualmente encontra-se com um sistema muito desatualizado e heterogéneo comtemplando o seguinte inventário:

- 14 computadores com sistema operativo Windows 98 para permitir o uso do programa da empresa
- 9 computadores com o sistema operativo Windows XP para uso de software não compatível com o Windows 98 como o **Lectra**, programa de modelagem usado pelo setor do design e corte.
- 2 computadores com o sistema operativo Windows 7, em que um é o computador responsável pelo uso do software **SAGE** e o outro é o computador pessoal do diretor geral da empresa
- 2 computadores com o sistema operativo Windows 10, em que é o computador pessoal da responsável pela contabilidade e o outro o computador pessoal do chefe da empresa
- 5 switches
- 2 routers em que um deles é o do ISP (Internet Service Provider)
- 1 firewall destinada á proteção do tráfego telefónico da empresa
- 1 sistema de segurança instalado e mantido por terceiros.
- 2 **APs** (Access Points)
- 1 dispositivo de redireccionamento de chamadas telefónicas instalado e mantido por terceiros.
- 3 computadores com que funcionam como servidores da empresa. Um servidor que delega pedidos ao modulo de produção e de contabilidade (designados respetivamente servidores F e
 G). Estes servidores para além de conterem toda a informação gerada pelo programa da empresa também é onde se situa o servidor de emails da empresa.
- 1 dispositivo que funciona como **NAS**, permitindo á empresa cópias diárias do sistema de ficheiros para serem guardados como *backups*.
- 12 telefones espalhados por toda a fábrica.
- 1 impressora

As figuras seguintes apresentam a disposição destes equipamentos na empresa de uma perspetiva física e lógica.

Figura 3 - Vista Lógica da Rede

Figura 4 - Distribuição Física 1º Piso

Figura 5 - Distribuição Física 2º Piso

SOLUÇÃO PARA A INFRAESTRUTURA INFORMÁTICA DA EMPRESA

Após discussão com a empresa, decidiu-se apresentar duas alternativas para resolver o problema proposto. Uma destas soluções tem em conta a capacidade da empresa em investir numa solução, em que esta não pode superar os 5000 euros, e a outra representa a solução ideal para garantir a continuidade de negócio. Ambas as soluções apresentam o esquema lógico da nova infraestrutura e o orçamento necessário para essa alternativa.

É de salientar que neste momento está a ser desenvolvida uma aplicação web que visa substituir o atual programa da empresa, não sendo necessário a preocupação com a compatibilidade do **Clipper**.

SOLUÇÃO COM ORÇAMENTO

Figura 6 - Vista Lógica Solução Com Orçamento

Figura 7 - Vista Física da Rede º1 Piso 1

Figura 8 - Vista Física da Rede º1 Piso 2

Figura 9 - Armário de Dispositivos do 1º Piso

Figura 10 - Vista Física da Rede º2 Piso 1

Figura 11 - Vista Física da Rede º2 Piso 2

Figura 12 - Armário de Dispositivos 2º Piso

Nesta solução definiu-se como prioridade a atualização dos computadores da empresa de todos os equipamentos com sistema operativo Windows 98 para Windows XP já que este permite o uso da nova aplicação.

Uma vez que o Windows XP permite a utilização da mesma licença em múltiplos dispositivos e a empresa já possui uma licença, não existe a necessidade de comprar novas licenças.

A infraestrutura terá apenas um servidor no qual estarão todos os serviços da empresa, sejam estes o servidor de base de dados da aplicação, a própria aplicação e o servidor de *email*. Este servidor terá 4 entradas para colocar os respetivos disco rígidos, de modo a poder operar em *raid* 1 (duplicação total do disco para outro idêntico de maneira a que se um falhar o outro pode manter a funcionalidade do sistema). Este servidor terá uma **UPS** (*Uninterrupted Power Supply*) ligada que terá como principal objetivo permitir uma janela de aproximadamente 30 minutos para encerrar o dispositivo de forma correta em caso de falta de energia.

Quanto á estrutura de rede foi decidido adquirir equipamentos **Cisco** *refurbished* (equipamentos usados por outras empresas que foram descartados e delegados a terceiros para reparação e venda dos mesmos), uma vez que têm o preço mais em conta e não existe a necessidade de adquirir as licenças para os mesmos externamente. Para além dos *switchs* e do *router*, é necessária uma **Cisco ASA** (*Adaptative Security Appliance*) com **FirePower** (sistema **Cisco** capaz de filtrar, monitorizar, e prevenir ataques informáticos de forma muito mais complexa).

A razão por se escolher equipamentos **Cisco** é devido á fácil configuração, segurança e administração do equipamento, com características como uma **CLI** (*command-line interface*) capaz de auto completar os comandos e apresentar ajuda e descrição de cada comando possível. Ao nível da separação lógica dos diferentes departamentos foi efetuada a divisão da rede com recurso a **vlans**, usando os 3560 para *intervlan routing* com o protocolo **HSRP**. Para garantir a segurança dos dispositivos de rede, o servidor terá também um sistema **AAA** com recurso ao protocolo **RADIUS** que usa protocolo **UDP** para comunicação e é pouco exigente em termos de recursos face a outras alternativas.

O inventário e orçamento proposto é o seguinte:

- 3 switchs **Cisco** catalyst 2960 de 24 portas (3 * 150,65€)
- 3 multilayer switchs Cisco catalyst 3560 de 24 portas (3 * 198,37€)
- 1 router **Cisco** catalyst 2911 (1 * 417,89€)
- 1 firewall Cisco ASA 5506-X (1 * 409,99€)
- 1 servidor HP ProLiant DL360 (2 * 189,97€)
- 4 disco rígidos Dell 1 terabyte (4 * 270,00€)
- 1 UPS APC Smart-UPS (1 * 368,53€)
- 2 Access Points Ubiquiti UAP-AC-LR (2 * 82,85€)
- 2 cabos RJ45 de 305m (2 * 158,52€)
- 1 chave Windows server 2016 (1 * 710,99€)

Como maior parte do processamento da rede vai ocorrer nos 3560 e 2960, optou-se por comprar um equipamento extra de cada para uma eventual avaria de um dos equipamentos ativos. Como o servidor é o dispositivo mais critico para o bom funcionamento da empresa, efetuou-se a compra de um segundo servidor para caso o outro tenha uma avaria.

Com este inventário, o total a pagar pela empresa seria 4 897,14€.

SOLUÇÃO SEM ORÇAMENTO

Figura 13 - Vista Lógica da Solução Sem Orçamento

Figura 14 - Armário de Dispositivos do 1º Piso

Figura 15 - Armário de Dispositivos do 2º Piso

Uma vez que a solução anterior apresentava uma estrutura operacional adequada às necessidades da empresa, as únicas alterações necessárias seriam a passagem de todos os computadores não para o Windows XP, mas para o Windows 7, a compra de equipamentos ainda não usados, a separação de serviços oferecidos pelo servidor em outros servidores distintos de maneira a reduzir o risco de falha e melhoramentos de segurança

O inventário e orçamento proposto é o seguinte:

- 3 switchs Cisco catalyst 2960 de 24 portas (3 * 673,51€)
- 3 multilayer switchs **Cisco** catalyst 3560 de 24 portas (3 * 1359,30€)
- 1 router **Cisco** catalyst 2911 (1 * 1687,67€)
- 1 firewall **Cisco** ASA 5506-X (1 * 420,72€)
- 5 servidores HP ProLiant DL360 (5 * 2856,06€)
- 16 disco rígidos Dell 1 terabyte (16 * 270,00€)
- 4 UPS APC Smart-UPS (4 * 368,53€)
- 2 Access Points Ubiquiti UAP-AC-LR (2 * 82,85€)
- 2 cabos RJ45 de 305m (2 * 158,52€)
- 4 chaves Windows server 2016 (4 * 710,99€)
- 22 chaves Windows 7 (preços variáveis, mas indo pela média de 22 * 58,00€)

Nesta proposta o custo é muito mais elevado, sendo este 32883,94€. É adquirido um *switch* 2960 e 3560 extra por uma questão de prevenção no caso de uma possível avaria. Pelo mesmo motivo, também é adquirido um servidor extra. A proposta não contempla o custo da nova ligação 4G para providenciar redundância á que já existe, que é uma ligação de fibra ótica, usando a nova ligação para emergências. Para o servidor AAA, em vez do protocolo RADIUS, optou-se pelo protocolo TACACS+ da Cisco, que apesar de ser mais exigente ao nível de recursos, providência certas melhorias em comparação com o RADIUS como a encriptação de toda a informação partilhada entre o servidor AAA e o dispositivo, a separação dos processos AAA e o uso de TCP como protocolo de comunicação.

Business Continuity Plan (BCP)

De maneira a assegurar o bom funcionamento da empresa, é necessário estabelecer o **BCP** da mesma, que é constituído por múltiplos elementos que permitem apurar o que realmente é necessário ter em conta para que este plano seja viável. Deve-se salientar que este plano se aplica á situação da empresa com a nova infraestrutura, sendo necessária revisões deste documento com regularidade, propondo-se aqui uma avaliação anual deste plano ou sempre que for feita uma alteração drástica á infraestrutura da empresa, como a criação de um novo setor.

Threat and Risk Analysis (TRA)

Na análise de ameaças e riscos (TRA) foi apurado os seguintes incidentes capazes de causar transtornos ao bom funcionamento da empresa:

- Ataque cibernético Uma vez que a infraestrutura informática não é um sistema isolado do mundo exterior, é necessário assegurar a confidencialidade, a integridade e autorização de acesso aos dados da empresa.
- Inundação A infraestrutura física da empresa é suscetível a infiltrações quando o nível de precipitação é muito elevado, o que pode dar origem a diversos problemas como curto circuitos e possivelmente, avaria de equipamentos devido a humidade.
- Ameaça interna Uma vez que a empresa passou por um grande processo de restruturação devido á crise que se instalou em Portugal, não se pode descartar qualquer intenção maliciosa por parte dos funcionários da empresa. O impacto deste incidente é baixo.
- Incêndio A empresa opera com muitas máquinas, sendo previsível ter em conta este incidente. O impacto deste incidente é alto.
- Falha de energia O sistema energético da empresa é fundamental para o seu bom funcionamento, uma vez que todos os equipamentos não conseguem operar sem energia.
- Falha do sistema Qualquer falha de equipamentos, sejam eles informáticos ou de costura, são críticas e devem ser resolvidas o quanto antes.
- Invasão de propriedade Apenas pessoal autorizado deve aceder aos ativos da empresa e qualquer outro individuo deve ser considerado como um intruso. Este incidente parte do princípio de que o invasor não é um funcionário da empresa.

BCP

Business Impact Analysis (BIA)

Com base na análise de ameaças e riscos feita anteriormente é possível apurar efetuar a *Business Impact Analysis* (**BIA**) e para cada risco referido anteriormente foi definido o seguinte:

- Ataque cibernético O impacto deste incidente é alto, uma vez que o autor do ataque pode adulterar a informação da empresa que no melhor dos cenários apenas causa perda de tempo, mas no pior pode comprometer toda a estrutura de informação, dados de encomendas e valores de vendas. O atacante também pode usar a informação roubada para fornecer dados á concorrência da empresa ou até chantagear funcionários da mesma através das informações recolhidas.
- Inundação A avaria dos equipamentos por humidade força na maioria dos casos á substituição completa do equipamento, o que constitui um prejuízo muito elevado. O tempo que se demoraria a restaurar os sistemas na totalidade também seria outra consequência gravosa deste incidente. Como tal, o impacto deste incidente é alto.
- Ameaça interna –O impacto deste incidente é baixo. Os funcionários da empresa poderão por motivos diversos tentar sabotar os equipamentos da empresa ou até arranjar informação com que possam chantagear outros funcionários da empresa.
- Incêndio Um dos incidentes mais prejudiciais para a empresa, uma vez que pode custar toda a infraestrutura da empresa e vidas. O impacto deste incidente é alto.
- Falha de energia A falha de energia pode causar a paragem completa da empresa uma vez que esta está completamente pendente do funcionamento da rede informática, dos equipamentos de corte e das máquinas de costura. O impacto deste incidente varia consoante o tempo, mas se o tempo for superior a 24 horas, o seu impacto é alto.
- Falha do sistema Qualquer falha de equipamentos, sejam eles informáticos ou de costura, são críticas e devem ser resolvidas o quanto antes pois podem representar perdas significativas de vendas e produção para a empresa, como por exemplo a varia das máquinas de corte ou falha do servidor de base de dados. O impacto deste incidente é alto.
- Invasão de propriedade Qualquer acesso de pessoal não autorizado á infraestrutura física da empresa constitui um risco, pois o invasor pode roubar, adulterar informação ou danificar os ativos da empresa. O impacto deste incidente é médio.

Disaster Recovery Plan (DRP)

Para cada incidente foram determinadas possíveis ações para minimizar o impacto:

- Ataque cibernético Tentar perceber se a informação foi adulterada ou apenas copiada. No
 caso de a primeira tentar perceber, com recurso a backups da base de dados, em que momento
 a informação foi adulterada e repor os dados originais e na segunda situação, perceber que
 dados foram copiados e que impacto poderá ter essa cópia. Também será necessário saber
 como é que o atacante entrou no sistema e resolver o quanto antes essa vulnerabilidade. Por
 último, recorrer às autoridades e tentar perceber quem foi o responsável pelo ataque, para
 tentar prevenir futuros ataques por parte dessa entidade.
- Inundação No caso de uma inundação, imediatamente desligar todos os equipamentos para evitar curto circuitos, e proteger quaisquer dados que sejam crucias e que possam ser afetados pela água, sejam documentos impressos, ou os disco rígidos do servidor. Deve-se também contactar imediatamente os bombeiros.
- Ameaça interna Imediatamente identificar os responsáveis e ativar todos os mecanismos
 jurídicos necessários. Questionar o responsável sobre a forma como executou o seu plano e
 perceber se a pessoa tinha autorização para usar os meios que utilizou e no caso negativo,
 verificar como proteger esses meios para prevenir futuros incidentes.
- Incêndio Imediatamente alertar os bombeiros. Evacuar o pessoal do edifício pelas devidas saídas para esta situação e se possível remover e evacuar os discos rígidos do servidor para evitar a perda dos dados críticos da empresa.
- Falha de energia Após a falha, o técnico informático da empresa tem aproximadamente 20 minutos para desligar o servidor de forma segura, de maneira a evitar perda ou corrupção de dados. Acionar todos os mecanismos necessários para restaurar a energia o mais depressa possível e delegar tarefas em que não seja necessária energia a todos os funcionários de maneira a tentar mitigar os custos da perda de tempo dos funcionários.
- Falha do sistema Imediatamente contactar o técnico informático ou mecânico para resolver o problema o quanto antes.
- Invasão de propriedade Solicitar á companhia de segurança os dados necessários para tentar identificar a altura da invasão e o responsável para que se possa alertar as autoridades.

BCP

Prevenção de falhas

Para prevenir falhas humanas deve-se realizar um estudo sobre quais são as responsabilidades que cada funcionário deve ter para que se possa dar formação de maneira a mitigar futuros erros e aplicar o princípio de responsabilidade mínima, ou seja, cada funcionário apenas tem acesso ao que

necessita para executar as suas funções dentro da empresa, retirando o acesso a qualquer outro sistema que não seja necessário.

Para prevenir falhas de *hardware* e *software*, fora os equipamentos extra que deveriam de ser obtidos para garantir rápida recuperação do sistema em caso de avaria de equipamentos, deve-se efetuar duplicação total dos discos do servidor com recurso ao mecanismo raid 1, fazer *backups* das configurações dos equipamentos de rede e analise semanal do estado de cada dispositivo para se apurar eventuais quebras de performance e *malwares* no sistema. Esta análise deve ser efetuada depois das 18:00 que é quando a empresa regista menor uso dos serviços.

Para alem da analise semanal, deve-se instalar um sistema de monitorização que permita não só a captura de erros em toda infraestrutura informática, mas também analise de tráfego de rede para se poder verificar se a *firewall* está a usar politicas adequadas para impedir a circulação de trafego malicioso dentro da empresa e se os registos de acesso aos equipamentos apresentam irregularidades com recurso aos registos **AAA**. Para monitorização de tráfego e alertas da *firewall*, o uso de uma máquina com o sistema operativo **Linux Security Onion** e software capaz de interpretar alertas gerados pelo **syslog** e pelos protocolos **SNMPv3** e **netflow** seria o mais indicado. O **netflow** foi inicialmente introduzido pela **Cisco** e permite monitorizar tráfego IP á saída e entrada de uma interface e o **syslog** permite a captura de todas as mensagens geradas pelo equipamento. O *Simple Network Management Protocol* (**SNMP**) é um protocolo standard da internet e permite capturar e organizar informação dos dispositivos IP, bem como manipular certas variáveis do sistema do mesmo como a velocidade da ventoinha. É proposto o uso de **SNMPv3** uma vez que este suporta a autenticação e encriptação dos dados fornecidos quer pelo dispositivo, quer pela entidade de gestão.

Uma vez que a empresa necessita dos dados durante um período médio de 5 anos antes de os poder descartar, o ideal é investir em discos de maior capacidade para evitar a perda de performance do servidor.

BCP

Quanto a eventuais catástrofes como incêndios, deve ser elaborado um plano de desastres, de maneira a salvaguardar toda a informação critica da empresa para um sistema remoto. Uma *cloud* poderia ser a solução mais indicada.

Recovery Point Objective (RPO)

O **RPO** permite definir durante quanto tempo é tolerável a perda de informação sem que esta tenha um impacto negativo na continuidade do negócio da empresa. Para os elementos da empresa foi definido:

- Servidor de email 2 horas.
- Servidor de base de dados 1 hora.
- Aplicação da empresa 1 hora.
- Firewall 2 horas.
- Serviço de marcação de faltas dos funcionários 12 horas.
- Software Lectra 4 horas.
- *Software* **SAGE** 1 hora.
- Equipamentos de rede com exceção da firewall 4 horas.
- Gravações do sistema de segurança 6 horas.

Recovery Time Objective (RTO)

O **RTO** permite definir qual o tempo máximo para o qual se pode restaurar um serviço sem que este prejudique em demasia a continuidade de negócio da empresa.

Para a maioria dos serviços informáticos, com exceção do serviço de marcação de faltas e sistema de segurança, foi estabelecido com a empresa que qualquer tempo de recuperação superior ao tempo de um turno de um funcionário na empresa é inaceitável para a continuidade do negócio. Os turnos têm duração de 4 horas.

O tempo que se definiu para o restauro do servidor e serviços associados (aplicação da empresa, *emails* e base de dados) é de 4 horas. Também se definiu para a internet, **Lectra** e **SAGE** este tempo de recuperação.

Para o sistema de segurança definiu-se um tempo de recuperação de 5 horas, que é o equivalente a metade do tempo em que a fábrica fica fechada sem qualquer funcionário por dia.

BCP CONCLUSÃO

Para a *firewall* e qualquer outro equipamento de rede definiu-se um tempo de recuperação equivalente a 4 horas.

Para o serviço de marcação de faltas foi definido um tempo de recuperação de 1 dia.

Recovery Time Objective (RTO) de Contigência

Uma vez que existem discrepâncias entre **RTO** e **RPO** para determinados ativos da empresa, como por exemplo a aplicação da empresa é necessário criar meios alternativos para executar as tarefas enquanto os serviços estão em baixo.

Na eventualidade do servidor que contem os serviços de base de dados, a aplicação da empresa e o servidor de *email*, deve-se recorrer a registos físicos previamente criados com o inventário do armazém de matérias primas, tamanhos e cores das peças para criar as ordens de produção e posteriormente as encomendas. Uma vez restaurado o sistema deve-se transpor os dados criados para o programa de maneira a manter a coerência dos dados. Este procedimento também se aplica para o *software* **SAGE**.

No caso do *software* **Lectra** deve-se efetuar a produção de todas as peças cujos moldes já estejam desenvolvidos de maneira a recuperar parte do tempo perdido.

Para terminar, no caso de não funcionamento das máquinas de costura ou corte, deve-se efetuar a confeção de todas as peças possíveis através de costura tradicional, ou seja, agulha e linha.

Conclusão

Com base na infraestrutura existente, foi possível traçar um esboço inicial que depois levou às duas possíveis soluções que aqui apresentamos. Uma delas tem em conta a capacidade de investimento da empresa e foi nessa que se baseou o **BCP** apresentado. O **BCP** apresentado está suficiente para manter a continuidade de negócio, mas pode e deve ser melhorado com o passar do tempo de aplicação deste documento na empresa para que fosse possível verificar a sua funcionalidade. Se fosse possível um investimento futuro poderia ser ponderado uma solução virtualizada de toda a infraestrutura da empresa em *cloud* de maneria a mitigar os riscos físicos que se poderiam suceder na infraestrutura informática da empresa e uma duplicação de toda a infraestrutura física dos equipamentos de corte e costura para uma outra fábrica.

BIBLIOGRAFIA

Bibliografia:

- 1. https://tinyurl.com/y9flmq8m Custos de dispositivos refurbished, UPS's.
- **2.** https://tinyurl.com/y8coefxz Custos de dispositivos refurbished, HP ProLiant Servers.
- 3. https://tinyurl.com/y7yt53sz Custos de dispositivos refurbished, ASA.
- **4.** https://tinyurl.com/ybvpj3jf Custos de dispositivos refurbished, **Cisco** 2911 router.
- **5.** https://tinyurl.com/ybvhkgm6 Custos de dispositivos refurbished, **DELL** 1TB SAS 6G.
- 6. https://www.ubnt.com/unifi/unifi-ap-ac-lr/ Access Points Ubiquiti.
- 7. https://www.senetic.pt/ Catálogo de produtos factory new.
- 8. https://www.lectra.com/pt-br/sobre-lectra Informação sobre o programa Lectra.
- 9. https://tinyurl.com/y7jq6zd2 Informação sobre a linguagem Clipper.