Diskrete Mathematik

Patrick Bucher & Lukas Arnold

18. Mai 2017

Inhaltsverzeichnis				4.11 W'keitsverteilung einer Zufallsvariablen .	
_		de Como	_	4.12 Erwartungswert einer Zufallsvariable	
1		dations	1	4.13 Varianz einer Zufallsvariable	
		Operationen	1	4.14 Standardabweichung einer Zufallsvariable	
		Prioritäten der Operationen	1		
		Fautologie & Kontraktion	1		
		Logische Äquivalenzgesetze	1		
		Äquivalenzgesetze	2	1 Foundations	
	1.6	Quantifikatoren	2	1 Foundations	
		Negation von Quantifikatoren	2		
		Beweise	2	1.1 Operationen	
2	Basic	Structures	2	Na	
	2.1 N	Mengen	2	Negation ¬p Verneinung	
		Spezielle Menegen	2	Konkunktion $p \wedge q$ Und-Verknüpfung	
		Mengenoperationen	2	Disjunktion $p \lor q$ Oder-Verknüpfung	
		Rechenregeln für Mengen	2	EXOR $p \oplus q$ Exklusiv-Oder	
		Definition von Fuktionen	2	Implikation $p \rightarrow q$ falls p dann q	
		Arten von Funktionen	2	Bikonditional $p \leftrightarrow q$ p genau dann wenn q	
		Zusammengesetzte Funktion	2		
		Umkehrfunktion	2		
			2		
		Folgen	2	1.2 Prioritäten der Operationen	
		Reihen			
	2.11 3	Summenformeln	3	$\neg \land \lor \oplus \rightarrow \leftrightarrow$	
3	Funda	amentals	3	1 2 3 4 5 6	
	3.1 V	Wachstum von Funktionen	3		
	3.2 H	Exponentialfunktionen	3		
		Logarithmusfunktionen	3		
		Komplexität von Algorithmen	3	1.3 Tautologie & Kontraktion	
		Zahlen und Division	3	1.5 Taatologic & Romandion	
		Primzahl	3		
		Mersenne Primes	3	Tautologie $p \lor \neg p$ immer wahre Aussage	
		Primzahlsatz	3	Kontraktion $p \land \neg q$ immer falsche Aussage	
		ggT und kgV	3		
		Kongruenz	3		
4	Diskr	ete Wahrscheinlichkeitsrechnung	3	1.4 Logische Äquivalenzgesetze	
•		Wahrscheindlichkeit nach Laplace	3	- 	
		Komplement der Wahrscheindlichkeit	3	Identität $p \wedge \mathbf{T} \equiv p$ $p \vee \mathbf{F} \equiv p$	
		Additionsregel	3	1 1 1	
		Bedingte Wahrscheinlichkeit	3	Dominanz $p \lor \mathbf{T} \equiv \mathbf{T}$ $p \land \mathbf{F} \equiv \mathbf{F}$	
		ē		Negation $p \lor \neg p \equiv \mathbf{T} p \land \neg p \equiv \mathbf{F}$	
		Unabhängige Ereignisse	3	Assoziativ 1 $(p \lor q) \lor r \equiv p \lor (q \lor r)$	
		Satz der totalen Wahrscheindlichkeit	3	Assoziativ 2 $(p \land q) \land r \equiv p \land (q \land r)$	
		Satz von Bayes	3	Distributiv 1 $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	
		Binomialverteilung	3	Distributiv 2 $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	
		Hypergeometrische Verteilung	3	De Morgan's 1 $\neg (p \land q) \equiv \neg p \lor \neg q$	
	4.10 I	Poissonverteilung	4	De Morgan's 2 $\neg (p \lor q) \equiv \neg p \land \neg q$	

1.5 Äquivalenzgesetze

$$p \rightarrow q \equiv \neg p \lor q$$

$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

$$p \lor q \equiv \neg p \rightarrow q$$

$$p \land q \equiv \neg (p \rightarrow \neg q)$$

$$\neg (p \rightarrow q) \equiv p \land \neg q$$

$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

$$p \rightarrow (q \land r) \equiv (p \rightarrow q) \land (p \rightarrow r)$$

$$(p \lor q) \rightarrow r \equiv (p \rightarrow r) \land (q \rightarrow r)$$

$$p \rightarrow (q \lor r) \equiv (p \rightarrow q) \lor (p \rightarrow r)$$

$$(p \lor q) \rightarrow r \equiv (p \rightarrow q) \lor (p \rightarrow r)$$

$$(p \land q) \rightarrow r \equiv (p \rightarrow r) \lor (q \rightarrow r)$$

$$p \oplus q \equiv (p \lor q) \land (\neg p \lor \neg q)$$

$$\neg (p \oplus q) \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \oplus q) \equiv p \leftrightarrow q$$

1.6 Quantifikatoren

For All \forall für alle \mathbf{x} aus \mathbf{P} wahr Exists \exists für mindestens ein \mathbf{x} aus \mathbf{P} wahr

Not Exists $\neg \exists$ für alle x aus P falsch

Not For All $\neg \forall$ für mindestens ein x aus P falsch

1.7 Negation von Quantifikatoren

$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

1.8 Beweise

direkter Beweis $p \rightarrow q$ indirekter Beweis $\neg q \rightarrow \neg p$ Widerspruch $\neg p \rightarrow q$ $Vorgehen\ Widerspruch$ $(\neg p \rightarrow \mathbf{f}) \Rightarrow (p \rightarrow \mathbf{w})$

2 Basic Structures

2.1 Mengen

$$\begin{split} \mathbb{N} &= \{1,2,\dots\} \\ \mathbb{N}_0 &= \{0,1,2,\dots\} \\ \mathbb{Z} &= \{\dots,-1,0,1,2,\dots\} \\ \mathbb{Z}^+ &= \{1,2,\dots\} \\ \mathbb{Q} &= \{p/q|p \in Z \land q \in N\} \\ \mathbb{R} \text{: die Menge der reellen Zahlen} \\ \mathbb{C} \text{: die Menge der komplexen Zahlen} \end{split}$$

2.2 Spezielle Menegen

Teilmenge: $A \subset B \equiv \forall x (x \in A \to x \in B)$ Leere Menge: $\emptyset \subset A \text{ gilt für jede Menge } A$ Kardinalität: |S| has chraibt Anzahl Elmanata A

Kardinalität: |S| beschreibt Anzahl Elmenete von A Potenzmenge: $P(S) = 2^S = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$ Kreuzprodukt: $A \times B = \{(a, b) | a \in A \land b \in B\}$

2.3 Mengenoperationen

 $\begin{array}{ll} \text{Komplement:} & A^c = \overline{A} = \{m \in M : m \notin A\} \\ \text{Durchschnitt:} & A \cap B = \{m \in M | m \in A \wedge m \in B\} \\ \text{Vereinigung:} & A \cup B = \{m \in M | m \in A \vee m \in B\} \\ \text{Differenz:} & B - A = \{m \in M | m \in B \wedge m \notin A\} \\ \end{array}$

2.4 Rechenregeln für Mengen

Kommutativgesetz $A \cup B = B \cup A$ $A \cap B = B \cap A$ Kommutativgesetz Assoziativgesetz $A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$ Assoziativgesetz $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ Distributivgesetz $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ Distributivgesetz De Morgan's Gesetz $\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$ De Morgan's Gesetz

2.5 Definition von Fuktionen

$$f: X \to Y \quad x \mapsto f(x) \quad f: x \mapsto f(x)$$

$$f(x) := \left\{ \begin{array}{cc} 5 & \text{für } x < 0 \\ x^2 + 5 & \text{für } x \in [0, 2] \\ 0.5x + 8 & \text{für } x > 2 \end{array} \right\}$$

2.6 Arten von Funktionen

injektiv auf jedes Element in Y zeigt höchstens ein Pfeil surjektiv auf jedes Element in Y zeigt mindestens ein Pfeil bijektiv auf jedes Element in Y zeigt genau ein Pfeil

2.7 Zusammengesetzte Funktion

$$g: X \to U \qquad x \mapsto g(x)$$

$$f: U \to Y \qquad u \mapsto g(u)$$

$$F = f \circ g: X \to Y \qquad x \mapsto f(g(x))$$

2.8 Umkehrfunktion

$$y = f(x)$$
 $x = f^{-1}(y)$
 $(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x$
 $(f^{-1} \circ f)(y) = f^{-1}(f(y)) = y$

2.9 Folgen

harmonisch $a_k = 1/k$ geometrisch $a_k = a_0 * q^k$ arithmetisch $a_k = a_0 + (k * d)$

2.10 Reihen

harmonisch $\sum_{k=1}^{n} 1/k$ geometrisch $a_0 * \sum_{k=0}^{n-1} q^k = a_0 \frac{q^n - 1}{q - 1}$ arithmetisch $\sum_{k=0}^{n-1} (a_0 + kd) = n \frac{a_0 + a_{n-1}}{2}$

2.11 Summenformeln

$\sum_{k=1}^{n} k$	$\frac{n*(n+1)}{2}$
$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$
$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$
$\sum_{k=1}^{n} k^{3} \\ \sum_{k=0}^{n} x^{k}, x < 1$	$\frac{1}{1-x}$
$\sum_{k=1}^{n} kx^{k-1}, x < 1$	$\frac{1}{(1-x)^2}$

3 Fundamentals

3.1 Wachstum von Funktionen

TODO

3.2 Exponentialfunktionen

$$a^{r} * a^{s} = a^{r+s}$$

 $\frac{a^{r}}{a^{s}} = a^{r-s}$
 $(a^{r})^{s} = (a^{s})^{r} = a^{r*s}$

3.3 Logarithmusfunktionen

$$log_a(u * v) = log_a(u) + log_a(v)$$

$$log_a(\frac{u}{v}) = log_a(u) - log_a(v)$$

$$log_a(u^v) = v * log_a(u)$$

3.4 Komplexität von Algorithmen

konstant	O(1)
logarithmisch	O(logn)
linear	O(n)
n log n	O(n * log n)
polynomial	$O(n^b)$
exponentiell	$O(b^n), b > 1$
faktorielle	O(n!)

3.5 Zahlen und Division

$$\begin{aligned} &a|b \wedge a|c \rightarrow a|(b+c) \\ &a|b \rightarrow \forall c(a|bc) \\ &a|b \wedge b|c \rightarrow a|c \end{aligned}$$

3.6 Primzahl

$$\not\exists a(a|n(1 < a < n))$$

3.7 Mersenne Primes

$$M_n = 2^p - 1, p \in "Primzahlen"$$

3.8 Primzahlsatz

$$\pi(x) \approx \frac{x}{\ln(x)}$$

3.9 ggT und kgV

$$a = dq + r$$
, wobei $(0 \le r < d)$
 $q = a$ div d und $r = a \mod d$
 $ab = ggT(a, b) * kgV(a, b)$

3.10 Kongruenz

$$a \equiv b \mod m, m | (a - b)$$

4 Diskrete Wahrscheinlichkeitsrechnung

4.1 Wahrscheindlichkeit nach Laplace

$$p(A) = \frac{|A|}{|S|} = \frac{Anzahl\ guenstige}{Anzahl\ moegliche}$$

4.2 Komplement der Wahrscheindlichkeit

$$p(\overline{A}) = 1 - p(A)$$

4.3 Additionsregel

$$p(A_1 \cup A_2) = p(A_1) + p(A_2) - p(A_1 \cap A_2)$$

4.4 Bedingte Wahrscheinlichkeit

$$p(A|B) = \frac{p(A \cap B)}{p(B)}$$

4.5 Unabhängige Ereignisse

$$p(A|B) = \frac{p(A \cap B)}{p(B)} = \frac{p(A)p(B)}{p(B)} = p(A)$$

4.6 Satz der totalen Wahrscheindlichkeit

$$p(A) = \sum_{i=1}^{k} p(A \cap B_i) = \sum_{i=1}^{k} p(A|B_i) \cdot p(B_i)$$

$$p(A|C) = \frac{1}{p(C)} \sum_{i=1}^{k} p(A \cap (B_i \cap C))$$

$$p(A|C) = \sum_{i=1}^{k} p(A|B_i) \cdot p(B_i|C)$$

Spezialfall für 2 Mengen: $p(A) = p(A|B) \cdot p(B) + p(A|\overline{B}) \cdot p(\overline{B})$

4.7 Satz von Bayes

$$p(B_j|A) = \frac{P(A|B_j) \ p(B_j)}{p(A)} = \frac{p(A|B_j) \ p(B_j)}{\sum_{i=1}^k p(A|B_i) \cdot p(B_i)}$$

$$\begin{split} \textit{Spezialfall für 2 Mengen:} \\ p(B|A) &= \frac{P(A|B) \; p(B)}{p(A|B) \cdot p(B) + p(A|\neg B) \cdot p(\overline{B})} \end{split}$$

4.8 Binomialverteilung

$$B(k|n, p) = B_{n,p}(k) = C(k)p^{k}(1-p)^{n-k}$$

$$B(k|n, p) = {n \choose k}p^{k}(1-p)^{n-k}$$

Bedingung: $p = M/N \text{ und } n \le M/10 \le (N-M)/10$

4.9 Hypergeometrische Verteilung

$$p(k) = \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}}$$

4.10 Poissonverteilung

$$f(k) = \frac{u^k}{k!}e^{-u}$$

Bedingung:

$$u=np \ \mathrm{und} \ p <=0.1, n>=100$$

4.11 W'keitsverteilung einer Zufallsvariablen

$$\{(r, p(X=r)) | \forall r \in X(S)\}$$

4.12 Erwartungswert einer Zufallsvariable

$$E(C) = \sum_{s \in S} X(s) \cdot p(s) = \sum_{r \in X(S)} r \cdot p(X = r)$$

4.13 Varianz einer Zufallsvariable

$$\begin{array}{l} V(X) = \sum_{s \in S} (X(s) - E(X))^2 \cdot p(s) \\ V(X) = \sum_{r \in X(S)} (r - E(X))^2 \cdot p(X = r) \end{array}$$

4.14 Standardabweichung einer Zufallsvariable

$$o(X) = \sqrt{V(X)}$$