Problem Set 7

Zong-Hong, Cheng

October, 2021

Answer 1.

 \mathbf{a}

"The size of support" does not satisfy I. Let $Z=\{z_1,z_2,z_3\}$. We have $\frac{1}{2}[z_1]\oplus \frac{1}{2}[z_2]\succ [z_3]$. However,

$$\frac{1}{2} \left[\frac{1}{2} [z_1] \oplus \frac{1}{2} [z_2] \right] \oplus \frac{1}{2} \left[\frac{1}{2} [z_1] \oplus \frac{1}{2} [z_2] \right] = \frac{1}{2} [z_1] \oplus \frac{1}{2} [z_2] \\ \prec \frac{1}{4} [z_1] \oplus \frac{1}{4} [z_2] \oplus \frac{1}{2} [z_3] = \frac{1}{2} \left[\frac{1}{2} [z_1] \oplus \frac{1}{2} [z_2] \right] \oplus \frac{1}{2} [z_3] = \frac{1}{2} \left[\frac{1}{2} [z_1] \oplus \frac{1}{2} [z_2] \right] \oplus \frac{1}{2} [z_2]$$

It does not satisfy C, either. Consider $\frac{1}{2}[z_1] \oplus \frac{1}{2}[z_2] \succ [z_3]$. Given any neighborhood of $[z_3]$, there is a lottery with support 3, which is more preferred than $\frac{1}{2}[z_1] \oplus \frac{1}{2}[z_2]$.

"Comparing the most likely prize" also does not satisfy \tilde{C} and I.

Let $Z = \{z_1, z_2, z_3\}$ with $z_1 \succ z_2 \succ z_3$. Suppose one let $[z_1] \sim \frac{1}{2}[z_1] \oplus \frac{1}{2}[z_2] \succ [z_2]$. However we cannot find any open ball centered in $\frac{1}{2}[z_1] \oplus \frac{1}{2}[z_2]$ which has all its element $\succ [z_2]$. For I, observe that $\frac{2}{3}[z_1] \oplus \frac{1}{3}[z_3] \succ [z_2]$. However,

$$\frac{1}{2}[\frac{2}{3}[z_1] \oplus \frac{1}{3}[z_3]] \oplus \frac{1}{2}[\frac{1}{2}[z_2] \oplus \frac{1}{2}[z_3] \prec \frac{1}{2}[z_2] \oplus \frac{1}{2}[\frac{1}{2}[z_2] \oplus \frac{1}{2}[z_3]$$

b. Thinking about picking a ball in a bag, and different color of ball may represent same prize.

"The size of support": One would prefer a bag with three different colors more than the one with only one color. However, we can let all those color represent exactly the same prize.

"Comparing the most likely prize": Let blue and red represent the prize [10] and black represent [20]. One would prefer the bag with 4 black balls ,3 blue balls and 3 red balls than the bag with 4 black balls and 6 blue balls.

Answer 2.

a. $u([1]) = 1, u(0.5[0] \oplus 0.5[4]) = 2 - \frac{1}{4} \times 4 = 1, u(0.5[0] \oplus 0.5[2]) = \frac{3}{4}$. We have $[1] \sim 0.5[0] \oplus 0.5[4] \succ 0.5[0] \oplus 0.5[2]$. However, $u(\frac{1}{2}[1] \oplus \frac{1}{2}[0.5[0] \oplus 0.5[4]]) = \frac{-3}{4} \Rightarrow \frac{1}{2}[1] \oplus \frac{1}{2}[0.5[0] \oplus 0.5[4]] \prec 0.5[0] \oplus 0.5[2]$, which contradicts to vNM assumption.

b. It clearly satisfies C. For I, we calculate that $u(L) = Ex(L) - (Ex(L^2))$. Hence $u(\alpha L_1 \oplus (1 - \alpha)L_2) = \alpha u(L_1) + (1 - \alpha)u(L_2)$. It tells us that u is not only satisfies vNM assumption but also induced by a vNM utility representation.

Answer 3.

a. Let he choose L_1 between L_1 and L_2 and L_3 between L_3 and L_4 , then the one is taking the lottery $\alpha L_1 \oplus (1-\alpha)L_3$. Similar when he or she choose another lottery. Therefore, we can formulate it as one is choosing from 4 lotteries, $\alpha L_1 \oplus (1-\alpha)L_3, \alpha L_1 \oplus (1-\alpha)L_4, \alpha L_2 \oplus (1-\alpha)L_3, \alpha L_2 \oplus (1-\alpha)L_4$. b. Let $L_1 \succeq L_2$ and $L_3 \succeq L_4$ without loss of generality. Then $\alpha L_1 \oplus (1-\alpha)L_3 \succeq \alpha L_1 \oplus (1-\alpha)L_4$ and $\alpha L_1 \oplus (1-\alpha)L_3 \succeq \alpha L_2 \oplus (1-\alpha)L_3$ by independence. Moreover, by transitivity and $\alpha L_1 \oplus (1-\alpha)L_4 \succeq \alpha L_2 \oplus (1-\alpha)L_4$, we then have

$$\alpha L_1 \oplus (1-\alpha)L_3 \succsim \alpha L_2 \oplus (1-\alpha)L_4$$

done!

Answer 4.

a. $\alpha[z] \oplus (1-\alpha)L_1 \succ \alpha[z] \oplus (1-\alpha)L_2$ iff $L_1 \oplus L_2$ is known by vNM. By the Bayesian updating rule, we know that the probability distribution of $\alpha[z] \oplus (1-\alpha)L_i$ after removing [z] is L_i , done! b. Suppose one is using "the most likely prize" to compare two lotteries. Let $z_1 \succ z_2 \succ z_3 \succ z_4 \succ z_5$ in Z. One prefers $\frac{1}{3}[z_1] \oplus \frac{2}{9}[z_3] \oplus \frac{2}{9}[z_4] \oplus \frac{2}{9}[z_5]$ then $\frac{1}{3}[z_1] \oplus \frac{2}{3}[z_2]$. However, one also prefers $[z_2]$ to $\frac{1}{3}[z_3] \oplus \frac{1}{3}[z_4] \oplus \frac{1}{3}[z_5]$.

c. Suppose removing $[z_1]$ from $\frac{1}{2}[z_1] \oplus \frac{1}{3}[z_2] \frac{1}{6}[z_3]$ would become $\frac{1}{2}[z_2] \oplus \frac{1}{2}[z_3]$ and removing $[z_1]$ from $\frac{1}{2}[z_1] \oplus \frac{1}{4}[z_2] \frac{1}{4}[z_3]$ would become $\frac{2}{3}[z_2] \oplus \frac{1}{3}[z_3]$. Then we can easily find a violation.

Answer 5.

a. Suppose the higher the number is, the higher the income is.

Intuitively, we have $[2] \sim [1]$. However, $\frac{1}{2}[2] \oplus \frac{1}{2}[1] \prec [1]$ since we only care about egalitarianism. b. $[z] \succeq L$ for all lottery L and sim iff L is also degenerate.

Two examples: 1. by -var(L) 2. by minimum income-maximum income.

Answer 6.

a. Trivial.

b. Pick a quality q_0 . Notice that for t > 1, we have $\frac{1}{t}[(q,t)] \oplus (1-\frac{1}{t})[(q,0)]$ and similar trick can be done with t < 1 (interchange the role of (q,t) and (q,1)). We define $u(q_0,t)$ as $v(q_0)t$ and it is vNM representation for the lottery with quality restricted to q_0 . We claim that this utility can extend to any q.

By continuity, there exists δ_1, δ_2 such that $[(q_0, 1)] \succ \delta_1[(q, 1)] \oplus (1 - \delta_1)[(q, 0)] \sim [(q, \delta_1)]$ and

 $[(q,1)] \succ [(q_0,\delta_2)].$

Notice that $[(q_0, 1)] \sim \delta_1[(q_0, \frac{1}{\delta_1})] \oplus (1 - \delta_1)[q_0, 0] \sim \delta_1[(q_0, \frac{1}{\delta_1})] \oplus (1 - \delta_1)[q, 0] \Rightarrow [(q_0, \frac{1}{\delta_1})] \succ [q, 1] \succ [(q_0, \delta_2)]$. Hence, there exists $k \in (0, 1)$ such that $[(q, 1)] \sim k[(q_0, \frac{1}{\delta_1})] \oplus (1 - k)[(q_0, \delta_2)] \sim [(q_0, t_q)]$ for some $t_q > 0$. What remains to prove is $[(q, t)] \sim [(q_0, t_q t)]$. For t > 1, we have

$$\frac{1}{t}[(q,t)] \oplus (1-\frac{1}{t})[(q,0)] \sim [q,1] \sim [(q_0,t_qt)] \sim \frac{1}{t}[(q_0,t_qt)] \oplus (1-\frac{1}{t})[(q_0,0)] \sim \frac{1}{t}[(q_0,t_qt)] \oplus (1-\frac{1}{t})[(q,0)]$$

By I, $[(q,t)] \sim [(q_0,t_qt)]$. For t < 1, similar, just interchange the role of (q,t) and (q,1) in the last part.

Answer 8.

- a. A schedule is a lottery with prizes as activities.
- b. 1. The combination of activities is homogenous, that is, it does not affect the rule of aggregation.
- 2. The time point of activity is irrelevant to the preference.
- c. To sleep 20 minutes in every hour is not the same as to sleep 8 hours at night.