

Teoría de Algoritmos I

Primer Cuatrimestre 2017 Trabajo Práctico 3

Integrante	Padrón	Correo electrónico
Rodrigo De Rosa	97799	rodrigoderosa@outlook.com
Marcos Schapira	_	schapiramarcos@gmail.com
Facundo Guerrero	97981	facundoiguerrero@gmail.com

${\rm \acute{I}ndice}$

1.	Programación Dinámica	1
	1.1. Algoritmo	
	1.1.1. Funcionamiento	1
	1.1.2. Ecuación de recurrencia	1
2.	Algoritmos Randomizados	2
	2.1. Algoritmo	2
	2.1.1. Funcionamiento	2
	2.1.2. Categoría de randomización	2
3.	Algoritmos Aproximados	3
	3.1. Algoritmo	3
	3.1.1. Funcionamiento	3
4.	Ejecución de programas	_

1. Programación Dinámica

En esta sección se analiza una solución al problema de la predcción de acciones a través de la programación dinámica.

1.1. Algoritmo

El algoritmo utilizado para resolver el problema planteado fue

1.1.1. Funcionamiento

Este algoritmo funciona de la siguiente forma:

- Determina un día de compra, un día de venta, un día de compra auxiliar, una ganancia máxima y una ganancia temporal.
- Itera sobre todos los días (valores diferentes de acciones) verificando si en el día actual es más o menos favorable comprar acciones que en el día en el que se pretendía hacerlo hasta el momento, determinando el día de compra auxiliar.
- A partir del día que determinó, calcula la ganancia temporal como la que se obtendría si las acciones fueran vendidas el día actual y verifica si es mayor a la ganancia máxima hasta el momento.
- En tal caso, determina el día de venta como el actual, el día de compra como el que previamente era el día de compra auxiliar y la ganancia máxima como la que era la ganancia temporal.
- Al finalizar la iteración, queda determinado el día de compra más conveniente, el día de venta más conveniente y la ganancia máxima obtenible.

1.1.2. Ecuación de recurrencia

Para la ecuación de recurrencia se plantea lo siguiente:

- Se tiene una variable Ci = Dìa en el que se compran las acciones hasta el paso i, con i = 1, ..., n.
- Ademas, se tiene otra variable Vk = Dìa en el que se venden las acciones hasta el paso k, con k = i, ..., n.
- Observar que k esta relacionada con i, ya que el dia de venta debe ser mayor o igual al dia de compra. En el caso de ser igual, la ganancia seria 0.
- Se puede obtener la Ganancia Temporal del paso i,k, como GT i,k = Vk Ci.
- Entonces, la Ganancia Màxima es la maxima GT i,k obtenida al final del algoritmo.
- Se puede definir la ganancia maxima para el paso i,k como: GM i,k = $\begin{cases} Vk Ci & \text{si } GTi, k > GMi, k \\ GTi, k 1 & \text{si } GTi, k <= GMi, k \end{cases}$

2. Algoritmos Randomizados

En esta sección se analiza una solución al problema de hallar el corte global mínimo en un grafo no dirigido a través de un algoritmo randomizado.

2.1. Algoritmo

Para resolver este problema se utilizó el algoritmo de Karger descripto en la bibliografía proporcionada por la cátedra.

2.1.1. Funcionamiento

Sea el grafo G = (E, V), el procedimiento del algoritmo es el siguiente:

- Mientras |V| > 2:
 - Se elige $e(u, v) \in E$ aleatoriamente.
 - Se crea un $w \in V$, el cual reemplaza tanto a u como a v en todas las aristas en las que se encuentran. Es decir, w puede tener más de una arista que vaya a un mismo vértice $q \in V$.
 - Se elimina e(u, v) de E.
 - Si existe alguna $e(v,v) \in E$ (arista de un vértice consigo mismo), se elimina.
- Se devuelven las aristas que unen a esos dos vértices como el corte mínimo.

2.1.2. Categoría de randomización

Es un algoritmo *Monte-Carlo* porque para algún orden de selección aleatoria de aristas, el corte obtenido *no* es el mínimo. Es decir, es rápido siempre pero no siempre da resultados correctos.

La probabilidad de que este algoritmo devuelva un corte que sea mínimo es $p \geqslant \binom{n}{2}^{-1}$ con n = |V|. Un dato adicional es que si el algoritmo se corre $T = \binom{n}{2} \ln n$ veces, la probabilidad de no encontrar un corte mínimo es $[1-p]^T \leqslant \frac{1}{n}$ en un tiempo $O(Tm) = O(n^2 m \log n)$ con m = |E|.

3. Algoritmos Aproximados

En esta sección se analiza una solución al problema de la suma de subconjuntos a través de un algoritmo aproximado.

3.1. Algoritmo

Para resolver este problema se utilizó la estrategia polinómica descripta en la bibliografía proporcionada por la cátedra.

3.1.1. Funcionamiento

Este algoritmo

4. Ejecución de programas

Para correr cada algoritmo, se debe ejecutar el archivo principal de cada uno. Esto se hace de la siguiente forma:

En la carpeta Programación Dinámica abrir la consola y ejecutar python main.py En la carpeta Algoritmos Randomizados abrir la consola y ejecutra python main.py En la carpeta Algoritmos Aproximados abrir la consola y ejecutra python main.py