Processamento Paralelo e Distribuído

Marcelo Trindade Rebonatto

Algoritmos paralelos & Redes de Interconexão

Processamento Paralelo e Distribuído - Prof.: Marcelo Trinda Rebonatto

Roteiro

- Modelos de algoritmos paralelos
- Redes de Interconexão
 - → Critérios para avaliação
 - → Redes Estáticas
 - → Redes Dinâmicas

Processamento Paralelo e Distribuído - Prof.: Marcelo Triñdale Rebonatto

Conceitos

- Algoritmo paralelo: também deve buscar a solução de um problema
- Princípio: dividir o problema em partes menores
- - ➡ Sincronização

Processamento Paralelo e Distribuído - Prof.: Marcelo Triñdade Rebonatto

goritmos Faralelos

Modelos de algoritmos paralelos

- Classificação quanto a forma dos algoritmos
- 5 principais modelos
 - → Divisão e conquista
 - **⇒** Pipeline
 - → Mestre/Escravo
 - → *Pool* de trabalho
 - **→** Fases paralelas

Processamento Paralelo e Distribuído - Prof.: Marcelo Trindade Rebonatto

4/50

oritmos Paralel

Divisão e Conquista

- Semelhante a um sistema seqüencial
- Princípio
 - → Atribuir pequenas tarefas a processos filhos
 - → Filhos processam em paralelo e retornam os resultados aos pais
 - ► Pais aguardam resultados e os sumarizam
 - → Divisão ocorrendo de forma recursiva

Processamento Paralelo e Distribuído - Prof.: Marcelo Tritadade Rebonatto

5/50

Divisão e Conquista Vantagem Simples de implementar Desvantagem Balanceamento de carga Processamento Paralelo e Distribuído - Prof.: Marcelo Trifidade Rebonatto 6/50

Processamento Paralelo e Distribuído - Prof.: Marcelo Triñláste Rebonatto 7/50

Mestre/Escravo Divisão de funções Controle de escalonamento: mestre Processamento efetivo: escravos Princípio Mestre envia a escravo uma tarefa Escravo a executa e devolve os resultados ao mestre Enquanto ainda houver tarfeas, mestre as envia aos escravos Processamento Paralelo e Distribuído - Prof.: Marcelo Triadase Rebonano 8/50

Mestre/Escravo

ritmos Paralelos

- Vantagens
 - → Simples de implementar: controle centralizado
 - → Melhor balanceamento de carga que divisão e conquista
- Desvantagem
 - → Mestre pode se tornar gargalo: comunicação

Processamento Paralelo e Distribuído - Prof.: Marcelo Trikul48 e Rebonatto

10/50

tmos Paralelos

Pool de Trabalho

- Conjunto de tarefas (pool) inicial
- Estrutura de dados global
- Número determinado (fixo) de processos
- Princípio
 - ➡ Processos buscam "pedaços" das tarefas ☆Execução em paralelo
 - ☆Espalhamento do processamento
 - → Término: esvaziamento do *pool*

Processamento Paralelo e Distribuído - Prof.: Marcelo Trivid#de Rebonatto

11/50

Processo Processo

4	
4	

Algoritmos Paralelos

Pool de Trabalho

- Vantagem
 - → Fácil balanceamento de carga
 - Não há divisão de funções (uso de mesmo código)
- Desvantagem
 - → Acesso simultâneo ao *pool* (acesso a dados compartilhados)
 - → Comunicação entre os múltiplos processos

Processamento Paralelo e Distribuído - Prof.: Marcelo Trindade Rebonatto

13/50

ritmos Paralelo

Fases paralelas

- Aplicação dividida em etapas
 - → Execução no tempo
 - **→** Simulações
- Etapas divididas em fases:
 - → Fase paralela (computação)
 - → Fase de sincronização (comunicação)

Processamento Paralelo e Distribuído - Prof.: $Marcelo\ Trivida Rebonatto$ 14/

Fases paralelas

- Execução livre de tarefas na fase paralela
 - → Avanço não homogêneo entre as fases
 - ➡ Geralmente livres de comunicação
- Fase de sincronização
 - ➡ Barreiras de sincronização ou
 - → Comunicações bloqueantes
 - → Trocas de informações

Processamento Paralelo e Distribuído - Prof.: Marcelo Trividade Rebonatto

15/50

Fases paralelas

mos Paralelo

Vantagens

- → Implementação síncrona
- → Comunicações isoladas
- Desvantagens
 - → Ociosidade: balanceamento de carga
 - → Congestionamento nas comunicações: rede de interconexão

Processamento Paralelo e Distribuído - Prof.: Marcelo Triñdade Rebonatto 1

Redes de Interconexão

Interconexão

- Forma de ligação entre:
 - **→** Processadores
 - **→** Memória
- Multiprocessadores
 - → Amenizar conflitos de acesso
- Multicomputadores
 - → Eficiência na troca de informações

Processamento Paralelo e Distribuído - Prof.: Marcelo Trividade Rebonatto

Critérios de Avaliação Utilizados • Escalabilidade Desempenho • Confiabilidade & Conectividade • Funcionalidade • Grau do nó • Diâmetro Processamento Paralelo e Distribuído - Prof.: Marcelo Tribulade Rebonatto Critérios de Avaliação Escalabilidade Adaptação as necessidades • Interligar componentes adicionais → Aumento de desempenho → Mantendo características originais • Capacidade de crescimento incremental Processamento Paralelo e Distribuído - Prof.: Marcelo Tradalele Rebonatto

Critérios de Avaliação

Desempenho

- Capacidade e velocidade
- Influências
 - → Desempenho físico das ligações
 - → Distâncias a serem percorridas
 - → Grau de paralelismo na transferência

Processamento Paralelo e Distribuído - Prof.: Marcelo Traidalle Rebonatto

21/50

es de Interconexão

Critérios de Avaliação

Desempenho

- Indicadores
 - **→** Latência
 - ☆Tempo consumido por uma unidade ser transferida
 - **→** Vazão
 - ☆Quantas unidades de dados são transferidas numa unidade de tempo
- Tipos das ligações
 - → Unidirecionais (half-duplex)
 - **→** Bidirecionais (*full-duplex*)

Processamento Paralelo e Distribuído - Prof.: Marcelo Trandade Rebonatto

22/50

le Interconexão

Critérios de Avaliação

Custo

- Valor pecuniário (\$)
- Cresce proporcionalmente
 - Número de ligações
 - **►** Capacidade de transferência

Processamento Paralelo e Distribuído - Prof.: $Marcelo\ Tr 2014 486e\ Rebonatto$

23/50

es de Interconexão

Critérios de Avaliação Confiabilidade

- ► Existência de caminhos alternativos redundantes
- → Tolerância da rede em caso de falhas

Conectividade

- Múltiplos caminhos entre dois processadores
- → Medida: arc connectivity
 - Número mínimo de links removidos
 - ☆Divide a rede em duas disconectadas

Processamento Paralelo e Distribuído - Prof.: Marcelo Tribalda Rebonatto

24/50

de Interconexao

Critérios de Avaliação

Funcionalidade

- Além da transferência de dados
- Outros serviços
 - → Armazenamento de dados temporários (buffer)
 - → Garantia de ordenação dos dados transmitidos
 - → Roteamento automático em *hardware*

Processamento Paralelo e Distribuído - Prof.: Marcelo Trandade Rebonatto

25/50

Critérios de Avaliação Grau do nó Número de ligações Constante Variável Processamento Paralelo e Distribuído - Prof.: Marcelo Tradistic Rebonatio 26/50

Critérios de Avaliação Diâmetro Maior distância entre dois componentes Distância Menor caminho em número de links Processamento Paralelo e Distribuído - Prof.: Marcelo Tràmade Rebonatto 27/50

Redes Estáticas - Conceitos Ligações fixas entre componentes Processadores Ligações físicas ponto-a-ponto Utilizadas em multicomputadores Comunicação através de trocas de mensagens Topologia de ligação: características das redes Processamento Paralelo e Distribuído - Prof.: Marcelo Translatale Rebonatto 28/50

Estrela ■ Existência de um processador central ■ Processador: link direto com central ■ Comunicação: obrigatoriamente pelo central ■ Central: gargalo ■ Algoritmos: ☆ Mestre/escravo Processamento Paralelo e Distribuído - Prof.: Marcelo Trândalle Rebonatto 31/50

Malhas > 2d • Aplicações que modelam aspectos físicos do mundo tridimensional • Previsão do tempo • Simulação de partículas • Aerodinâmica • Processamento Paralelo e Distribuído - Prof.: Marcelo Tràndade Rebonatto 37/50

Redes Dinâmicas - Conceitos Não existe topologia fixa que defina padrões de comunicação A rede se adapta dinamicamente para permitir transferência de dados Bloqueante: definição Uma conexão entre 2 recursos impede outra conexão entre quaisquer outros pontos Processamento Paralelo e Distribuído - Prof.: Marcelo Trádade Rebonato 42/50

Crossbar switch • Maior custo que barramento • Custo cresce de forma quadrática • Número moderado de processadores • Conexões entre quaisquer componentes (não conectados) • Não bloqueante • Boa escalabilidade • Acréscimo de componentes aos pares Processamento Paralelo e Distribuído - Prof.: Marcelo Tratalada Rebonatto 45/50

