

Python影像處理:可見光訊號解碼

Recall

Practice8-2我們如何將數字轉換輸出?

Ex. 111→0110 1111 我們存入bits string 但是方向剛好相反 1111 0110

之後1111 轉換RLL(0,2) →01111

0110轉換RLL(0,2) →10110

存成bitsRLL→0111110110

灌入Header 10101000

輸出→101010000111110110

00011011111000010101 由右往左看

Header:10101000

第一個訊息:01111→查表轉換→1111→倒過來→1111→15

第二個訊息:10110→查表轉換→0110→倒過來→0110→6

得到訊息 6*16+15=111

RLL(0,2)

原始位元組	編碼後位元組	原始位元組	編碼後位元組
0000	11001	1000	11010
0001	11011	1001	01001
0010	10010	1010	01010
0011	10011	1011	01011
0100	11101	1100	11110
0101	10101	1101	01101
0110	10110	1110	01110
0111	10111	1111	01111

轉成灰階影像

```
from PIL import Image
    import numpy as np
    import cv2
    import scipy.misc
    import csv
     from numpy import savetxt
 8
     with Image.open('111.jpg') as img:
         img = np.array(img)
10
         picture = img[:,:,0]
11
```


計算條紋寬度

可參考 practice6-2_finding_width.py

```
pixel=1
13
     maxi=0
14
15
16
     #finding how many pixels in each line
17
     test=5
    while test<50:
         one = np.ones((test,10),np.float32)
19
         minusone=one*-1
20
         lap=np.vstack((one,minusone))/test/10
21
         lap2=np.vstack((lap,lap))/2
22
         lap3=np.vstack((lap,lap2))/2
23
         result = cv2.filter2D(picture,-1,lap3)
24
25
         maxx=np.max(result)
         if maxx>maxi:
26 ▼
27
             pixel=test
             maxi=maxx
28
29
         test=test+1
30
     print ('Pixel width is:',pixel)
31
```


取畫面中最亮的線解讀訊號

```
35
     #Finding the bightest line to decode
     bright=0
36
     total=0
37
     keep=0
38
39 ▼ for i in range(0,3264,1):
         for j in range(0,2448):
40
41
             total+=picture[j,i]
42 ▼
         if(total>keep):
             bright=i
43
44
             keep=total
45
         total=0
     print ('The brightes row is',bright)
46
```


直方圖等化

49 pic = cv2.equalizeHist(picture)

判斷亮度決定0or1

```
51
     #Decode 0 or 1
     a=""
52
53 ▼ for i in range(0,2448,pixel):
          if pic[i,bright]<150:</pre>
54
              a + = str(0)
55
          else :
56
              a + = str(1)
57
     print ('Decode number:',a)
58
```


尋找header並解碼

```
#Decode header and find the answer
     k=0
    j=0
    tenth=0
    oneth=0
    ans=0
66 ▼ RLL = {
        '11001': 0, '11010': 1, '11101': 2, '11110': 3,
        '10010' : 4, '01010' : 5, '10110' : 6, '01110' : 7,
         '11011': 8, '01001': 9, '10101': 10, '01101':11,
         '10011' : 12, '01011' : 13, '10111' : 14, '01111' : 15
     };

    while k>=0:

         k=a.find('10101000',j)
         if k==-1:
            break;
         if k+18>len(a):
             break;
         try:
             ans=RLL[a[k+8:k+13]]+16*RLL[a[k+13:k+18]]
80
             print (ans)
         except:
             print ('RLL error')
         j=k+1
```