

GEOMETRÍA Capítulo 18

PIRÁMIDE Y CONO

Las pirámides de Egipto son, de todos los vestigios legados por Egipto de la antigüedad, los más portentosos y emblemáticos monumentos de esta civilización y en particular, las tres grandes pirámides conocidas como las tumbas de los faraones, Keops, Kefrén y Micerino, todas de base cuadrada y cuya construcción se basó en el número áureo, también en este capítulo estudiaremos las formas geométricas de dichas pirámides, calcularemos su área y su volumen como se muestra en la figura.

PIRÁMIDE Y CONO

PIRÁMIDE REGULAR

Es una pirámide que tiene por base, una región poligonal regular y el pie de su altura es el centro de la base.

Área de la superficie lateral (ASL) p(base).Ap p(base):

semiperímetro

Área de la superficie total

(AST)

$$AST = ASL + A(base)$$

A(base): área de la base

Volumen (V)

$$V = 1.A(base)(h)$$

CONO CIRCULAR RECTO O CONO DE REVOLUCIÓN

Es el cono cuya base es un círculo y Es un sector circular cuyo radio el pie de la altura es el centro de dicha base.

$$V = \frac{\pi r^2 h}{3}$$

DESARROLLO DE LA SUPERFICIE LATERAL

es la generatriz y el centro es el vértice del cope

$$\Phi = 360^{\circ} \left(\frac{r}{g}\right)$$

1. Calcule el volumen de una pirámide triangular regular, si su altura mide 2√3 u y el circunradio de su base mide √6 u.
Piden: V

$$V = \frac{1}{3}.A_{(base)}.h$$
 (h = $2\sqrt{3}$)

· Como la base es una región triangular regular, entonces O es el circuncentro

$$AO = OC = OD =$$

•
$$\triangle$$
 AOD AD = $\sqrt{6}$. $\sqrt{3}$

$$AD = \sqrt{18}$$

Reemplazando en el teorema.

$$V = \frac{1}{3} \left(\frac{\sqrt{18}^2 \cdot \sqrt{3}}{4} \right) \cdot 2\sqrt{3}$$

$$V = 9 u^3$$

2. Calcule el volumen de una pirámide cuadrangular regular si su arista lateral mide 4 u y forma con la base un ángulo que mide 30°.

- Piden: V $V = \frac{1}{3} \cdot A_{(base)}.h$
- Se traza la altura \overline{EO}
- EOC: Notable de 30° y
- Reemplazando en el teorema.

$$V = \frac{1}{3} \cdot \frac{\left(4\sqrt{3}\right)^2}{2^2} \cdot (2^2)$$

$$V = 16 u^3$$

3. Calcule el área de la superficie lateral de una pirámide cuadrangular regular cuya altura mide 12 u y arista básica mide 10 u.

- Piden: A_{SL} $A_{SL=P_{(base)}}.Ap$
- Trazamos $\overline{OM} \perp \overline{CD}$.
- Se traza VM.
- Por teorema de las 3 perpendiculare MAN Cemano
- VOM :T. de Pitágoras $(VM)^2 = 12^2 + 5^2 \rightarrow VM = 13$
- Reemplazando en el teorema.

ASL =
$$(10 + 10 + 10 + 10).13$$

ASL = $(20).13$

 $ASL = 260 u^2$

4. En la figura se muestra una pirámide regular, de modo que O es 🔯 centro de la base y el área de la superficie lateral es igual a 5/3 del área de la base. Calcule el valor de x.

• Piden: x

Por dato:

ASL =
$$\frac{5}{3}$$
 A(base)
(8b).Ap = $\frac{5}{3}$ (2b)²
(4b).Ap = $\frac{5}{3}$.4b²
Ap = $\frac{5}{3}$ k

VOM Notable de 37° y 53°

$$x = 53^{\circ}$$

5. Calcule el área de la superficie lateral del cono circular

Por teorema de las proyeççioges. $(g-2)^2-2^2$

$$g^{2} - 64 = g^{2} - 4g + 4 - 4$$

 $4g = 64$
 $g = 16$

Reemplazando en el teorema.

$$A_{SL} = \pi(4)(16)$$

$$A_{SL} = 64\pi u^2$$

6. Calcule el volumen del cono circular recto mostrado si O es centro.

• Piden: V

$$V = \frac{1}{3}\pi r^2 h$$

• Por teorema de las antiparalelas.

$$r^2 = 12$$

Reemplazando en el teorema.

$$V = \frac{1}{3}\pi.12.6$$

$$V = 24\pi u^2$$

7. Calcule el área de la superficie lateral del cono circular recto

Piden: A_{SL}

$$ASL = p.r.g$$

Por teorema de la bisect.
 interior 2

interior
$$\frac{2r}{6} = \frac{2}{4}$$

 $r = 3/2$

• Reemplazando en el teorema. $\pi(3/2)(6)$

$$A_{SL} = 9\pi u^2$$

8. En la lámpara mostrada, calcule el área de la superficie curva si tiene forma de superficie lateral de un tronco de cono circular recto. Además, los diámetros de las circunferencias miden 12 cm y 28 cm.

Piden: Ası.

$$ASL = \pi(r + R)g$$

$$ASL = \pi(6 + 14).24$$

$$ASL = \pi(20).24$$

$$A_{SL} = 480\pi u^2$$