Reg. No.	
----------	--

B.Tech. DEGREE EXAMINATION, NOVEMBER 2023

Sixth and Seventh Semester

18ECE225T - INFORMATION THEORY AND CODING

(For the candidates admitted from the academic year 2020-2021 to 2021-2022)

	ATA:
1.4	ULC.

- (i) Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.

(11)	гаг	t - B & Part - C should be answered	ı in ans	swer booklet.					
Tin	ne: 3	hours				M	Iax. I	Marl	ks: 1	.00
			$PART - A (20 \times 1)$	= 20]	Marks)		Marks	BL	СО	РО
			Answer ALL (Questi	ons			nati (
	1.		se Code is a				1	1	1	2
			Fixed Length Code		Variable Length Code					
		(C)	Binary Code	(D)	ASCII Code					
	2.	The	number of characters that can be	e repre	esented in ASCII – 8 are		1	1	1	2
			128	(B)						
		(C)	32	(D)	64					
		•							-14	
	3.		number of instruction in a co	mpute	er with K binary digits for o	each	1	1	1	2
			uction is		1.0V		,			
		(A)	2 ^K	(B)	10 ^K					
		(C)	2^{K+1}	(D)	2 ^{K-1}					
	4	In C	yclic redundancy checking, the	divico	r is the CRC		1	1	1	2
			Of same size as		One bit more than		-		-	_
		` '	One bit less than	` , /						
		(C)	One of less than	(D)	Two bit less than					
	5.	The	type of encoding where no cl	haract	er code is the prefix of ano	ther	1	1	2	2
			acter code is termed as							
		(A)	Optimal Encoding	(B)	Prefix Encoding					
		(C)	Frequency Encoding		Tree Encoding					
							* "			
	6.		efficiency of Huffman code is li				1	1	2	2
		1 1	Average length of the code	(B)	Maximum length of the code	e				
		(C)	Average Entropy	(D)	Entropy and maximum leng	th				
	7	Ineta	intaneous code is also called as				1	1	2	2
			Gamma Code	(B)	Comma Code		- -			-
		(C)		` ′	Beta Code					
		(0)	Tipila Code	(D)	Deta Code					
	8.	The	average block length in Huffma	n codi	ng is		1	1	2	2
			Zero		Always Unity					
		(C)	Maximum	(D)	Minimum			,		

9.	The	most common Hamming Codes a			1	2	3	2
	(A)	Q \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Hamming (8,4) Code				
	(C)	Hamming (6,3) Code	(D)	Hamming (5,7) Code				
10.		reduces the data rate thro	ough	the channel	1	1	3	2
-	(A)		_	Even Parity				
	(C)	Odd Parity	` '	Message Bit				
	` '	•						
11.	The	Hamming distance between 100 a	and 0	001 is	1 .	2	3	2
	(A)	0	(B)	1				
	(C)	2	(D)	3				
12	The	divisor in avalia anda is called as			1	1	3	2
12.		divisor in cyclic code is called as Degree		Generator				
	(A) (C)	Redundancy	(D)					
	(C)	Reduildancy	(D)	Checksum				
13.	In Tı	rellis diagram, the number of nod	les	at successive branching	1	1	4	2
	(A)			Doubles				
	(C)	Triples	(D)	Decreased		•		
	` '			•				_
14.	In m	aximum likelihood detector, the		-	1	1	4	2
	(A)	Maximum		Minimum				
	(C)	Zero	(D)	Unity				
1.5	In X	itarki'a algorithm, the galacted no	atha a	are regarded as	1	1	4	2
13.		iterbi's algorithm, the selected pa Survivors		Defenders				
	(A) (C)	Destroyers	• •	Carriers				
	(C)	Destroyers	(D)	Carriers				
16	In V	ITERBI'S algorithm, the metric	adop	ted for decision making is	. 1	14	2	
10.		Hamming Distance		Galois Field				
				Parity – Check				
			` ′					
17.	The	Entropy $H(x/y)$ is called is			1	1	5	2
		Equivocation	(B)	- -				
	(C)	Mutual Information	(D)	Conditional Probability				
1.0	T£ 41.	and is made an amountainity about the	. 0.0	ocean information carried is	1	1	5	2
18.		ere is more uncertainity about the Moderate		Unity				
	` /	Less	, ,	More				
	(C)	Less	(D)	WIOTE				
19.	The	expected information contained	in a n	nessage is called as	1	1	5	2
		Entropy		Efficiency				
	` /	Coded Signal	(D)	Information				
	, ,	en e	. ` ′					
20.	Whe	en x and y are statistically indepe			1	- 1	5	2
	(A)		(B)					
	(C)	LN2	(D)	Infinity				

$PART - B (5 \times 4 = 20 Marks)$ CO PO Answer ANY FIVE Ouestions 2 21. Determine the multiplication table for octal numbers 22. Verify the code 00, 01, 10, 110 and 111 are instantaneous and draw the decoding free. 2 2 3 23. For a systematic linear block codes, three parity check bits are given by C₄ $= d_1 + d_3$, $C_5 = d_2 + d_3$ and $C_6 = d_1 + d_2 + d_3$. Construct a generation matrix and parity check matrix. 24. Differentiate between code free and trellis diagram 25. Prove that H(x,y) = H(y/x) + H(x)26. Determine the entropy of the source which produces symbols x_1 , x_2 , x_3 and x_4 with probability of 0.5, 0.25, 0.125 and 0.125 respectively. 2 27. Explain the effect of noise in Huffman Coding Probabilities. $PART - C (5 \times 12 = 60 Marks)$ Marks BLco PO Answer ALL Questions 28. a. Write a short note on CRC method. A bit stream 10011101 is transmitted 12 2 using standard CRC method. The generator polynomial is x^3+1 . What is the actual bit string transmitted suppose that third bit from left is inverted receiver detect this error? (OR) 12 b. What are odd and even parity? Discuss single parity check and two dimension parity check. 3 2 12 29. a. Obtain the ternary Huffman code for the word 'COMMITTEE'. Also find the average code word length. (OR) 2 b. Explain uniquely decodable code and instantaneous code with an example 30. a. The generator matrix for a (7,4) linear block code is given below. $G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$

Find all the code vectors of the code.

(OR)

b. Design an syndrome calculator for (7,4) cyclic Hamming code generated by the polynomial $G(p) = P^3 + P + 1$. Calculate the syndrome for received word Y = (1001101).

3

3

31. a. Describe the essential features of a sequential decoding in brief.

(OR)

- b. A rate 1/3 convolution encoder has generating vectors $g_1 = (1 \ 0 \ 1)$, $g_2 = (1,1,0)$ and $g_3 = (1 \ 1 \ 1)$.
 - i. Sketch the encoder configuration
 - ii. Draw the code tree, state diagram and trellis diagram.
- 32. a. Construct a Shannon Fano Code for a source which emits symbols S_1 , S_2 , S_3 , S_4 and S_5 with probabilities 0.4, 0.2, 0.15, 0.15 and 0.1 respectively. Also calculate the efficiency of the code.

(OR)

b. Define: Channel Capacity. Show that for a Gaussian Channel with $\frac{\eta}{2}$ has power spectral density and S as the signal power, the channel capacity is $1.44 \left(\frac{S}{\eta}\right)$.

* * * * *

12

5 2