Основы машинного обучения

Лекция 6

Линейная регрессия и градиентный спуск

Евгений Соколов

esokolov@hse.ru

НИУ ВШЭ, 2023

Интерпретация линейных моделей

```
a(x) = 100.000 * (площадь)
+ 500.000 * (число магазинов рядом)
+ 100 * (средний доход жильцов дома)
```

```
a(x) = 100.000 * (площадь)
+ 500.000 * (число магазинов рядом)
+ 100 * (средний доход жильцов дома)
```

```
a(x) = 100.000 * (площадь в кв. м.) + 500.000 * (число магазинов рядом) + 100 * (средний доход жильцов дома)
```

```
a(x) = 10 * (площадь в кв. см.) + 500.000 * (число магазинов рядом) + 100 * (средний доход жильцов дома)
```

```
a(x) = 100.000 * (площадь в кв. м.)
+ 500.000 * (число магазинов рядом)
+ 100 * (средний доход жильцов дома)
```

```
a(x) = 100.000 * (площадь в кв. м.)
+ 500.000 * (число магазинов рядом)
+ 100 * (средний доход жильцов дома)
```

- Чем больше вес, тем важнее признак?
- Только если признаки масштабированы!

Масштабирование признаков

- Отмасштабируем *j*-й признак
- Вычисляем среднее и стандартное отклонение признака на обучающей выборке:

$$\mu_j = \frac{1}{\ell} \sum_{i=1}^{\ell} x_i^j$$

$$\sigma_j = \sqrt{\frac{1}{\ell} \sum_{i=1}^{\ell} (x_i^j - \mu_j)^2}$$

Масштабирование признаков

 Вычтем из каждого значения признака среднее и поделим на стандартное отклонение:

$$x_i^j \coloneqq \frac{x_i^J - \mu_j}{\sigma_j}$$

Регуляризация

- Если модель переобучается, то веса используются для запоминания обучающей выборки
- Правильнее масштабировать признаки и регуляризовать модель перед изучением весов

Градиент и его свойства

Среднеквадратичная ошибка

• MSE для линейной регрессии:

$$Q(w_1, ..., w_d) = \sum_{i=1}^{\ell} (w_1 x_1 + \dots + w_d x_d - y_i)^2$$

Градиент

• Градиент — вектор частных производных

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_d}\right)$$

• У градиента есть важное свойство!

Важное свойство

- Зафиксируем точку x_0
- В какую сторону функция быстрее всего растёт?

Важное свойство

- Зафиксируем точку x_0
- В какую сторону функция быстрее всего растёт?
- В направлении градиента!
- А быстрее всего убывает в сторону антиградиента

Как это пригодится?

Как это пригодится?

Градиентный спуск

Градиентный спуск

- Стартуем из случайной точки
- Сдвигаемся по антиградиенту
- Повторяем, пока не окажемся в точке минимума

- Простейший случай: один признак
- Модель: $a(x) = w_1 x + w_0$
- Два параметра: w_1 и w_0
- Функционал:

$$Q(w_0, w_1) = \frac{1}{\ell} \sum_{i=1}^{\ell} (w_1 x_i + w_0 - y_i)^2$$

$$Q(w_0, w_1) = \frac{1}{\ell} \sum_{i=1}^{\ell} (w_1 x_i + w_0 - y_i)^2$$

•
$$\frac{\partial Q}{\partial w_1} = \frac{2}{\ell} \sum_{i=1}^{\ell} x_i (w_1 x_i + w_0 - y_i)$$

$$\bullet \quad \frac{\partial Q}{\partial w_0} = \frac{2}{\ell} \sum_{i=1}^{\ell} (w_1 x_i + w_0 - y_i)$$

•
$$\nabla Q(w) = \left(\frac{2}{\ell} \sum_{i=1}^{\ell} x_i (w_1 x_i + w_0 - y_i), \frac{2}{\ell} \sum_{i=1}^{\ell} (w_1 x_i + w_0 - y_i)\right)$$

Начальное приближение

• w^0 — инициализация весов

• Например, из стандартного нормального распределения

Градиентный спуск

• Повторять до сходимости:

Сходимость

• Останавливаем процесс, если

$$||w^t - w^{t-1}|| < \varepsilon$$

• Другой вариант:

$$\|\nabla Q(w^t)\| < \varepsilon$$

• Или пока ошибка на отложенной выборке уменьшается

Функционал ошибки

Линейная регрессия

$$Q(w) = \frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x \rangle - y_i)^2$$

•
$$\frac{\partial Q}{\partial w_1} = \frac{2}{\ell} \sum_{i=1}^{\ell} x_{i1} (\langle w, x \rangle - y_i)$$

• ..

•
$$\frac{\partial Q}{\partial w_d} = \frac{2}{\ell} \sum_{i=1}^{\ell} x_{id} (\langle w, x \rangle - y_i)$$

•
$$\nabla Q(w) = \frac{2}{\ell} X^T (Xw - y)$$

Градиентный спуск

1. Начальное приближение: w^0

2. Повторять:

$$w^t = w^{t-1} - \eta \, \nabla Q(w^{t-1})$$

3. Останавливаемся, если

$$||w^t - w^{t-1}|| < \varepsilon$$

• Градиентный спуск находит только локальные минимумы

- Градиентный спуск находит локальный минимум
- Мультистарт запуск градиентного спуска из разных начальных точек
- Может улучшить результат

$$w^t = w^{t-1} - \eta \, \nabla Q(w^{t-1})$$

• Позволяет контролировать скорость обучения

Градиент на первом шаге:

[26.52, 564.80, 682.90, 5097.71, 12110.87]

Градиент на первом шаге:

[26.52, 564.80, 682.90, 5097.71, 12110.87]

$$w^t = w^{t-1} - \eta \nabla Q(w^{t-1})$$

• Позволяет контролировать скорость обучения

• Если сделать длину шага недостаточно маленькой, градиентный спуск может разойтись

• Длина шага — параметр, который нужно подбирать

Переменная длина шага

$$w^t = w^{t-1} - \frac{\eta_t}{\eta_t} \nabla Q(w^{t-1})$$

• Длину шага можно менять в зависимости от шага

• Например: $\eta_t = \frac{1}{t}$

• Ещё вариант: $\eta_t = \lambda \left(\frac{s}{s+t}\right)^p$

 Вычтем из каждого значения признака среднее и поделим на стандартное отклонение:

$$x_i^j \coloneqq \frac{x_i^J - \mu_j}{\sigma_j}$$

Градиентный спуск

1. Начальное приближение: w^0

2. Повторять:

$$w^t = w^{t-1} - \eta \, \nabla Q(w^{t-1})$$

3. Останавливаемся, если

$$||w^t - w^{t-1}|| < \varepsilon$$

Линейная регрессия

$$Q(w) = \frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x \rangle - y_i)^2$$

•
$$\frac{\partial Q}{\partial w_1} = \frac{2}{\ell} \sum_{i=1}^{\ell} x_{i1} (\langle w, x \rangle - y_i)$$

• ..

•
$$\frac{\partial Q}{\partial w_d} = \frac{2}{\ell} \sum_{i=1}^{\ell} x_{id} (\langle w, x \rangle - y_i)$$

•
$$\nabla Q(w) = \frac{2}{\ell} X^T (Xw - y)$$

Сложности градиентного спуска

- Для вычисления градиента, как правило, надо просуммировать что-то по всем объектам
- И это для одного маленького шага!

Оценка градиента

$$Q(w) = \frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a(x_i))$$

• Градиент:

$$\nabla Q(w) = \frac{1}{\ell} \sum_{i=1}^{\ell} \nabla L(y_i, a(x_i))$$

• Может, оценить градиент одним слагаемым?

$$\nabla Q(w) \approx \nabla L(y_i, a(x_i))$$

- 1. Начальное приближение: w^0
- 2. Повторять, каждый раз выбирая случайный объект i_t :

$$w^{t} = w^{t-1} - \eta \nabla L \left(y_{i_t}, a(x_{i_t}) \right)$$

3. Останавливаемся, если

$$||w^t - w^{t-1}|| < \varepsilon$$

Градиентный спуск

- 1. Начальное приближение: w^0
- 2. Повторять, каждый раз выбирая случайный объект i_t :

$$w^{t} = w^{t-1} - \frac{\eta_{t}}{\eta_{t}} \nabla L \left(y_{i_{t}}, a(x_{i_{t}}) \right)$$

3. Останавливаемся, если

$$||w^t - w^{t-1}|| < \varepsilon$$

$$\eta_t = \frac{0.1}{t^{0.3}}$$

Mini-batch

- 1. Начальное приближение: w^0
- 2. Повторять, каждый раз выбирая m случайных объектов i_1, \dots, i_m :

$$w^{t} = w^{t-1} - \eta_{t} \frac{1}{m} \sum_{j=1}^{m} \nabla L \left(y_{i_{j}}, a \left(x_{i_{j}} \right) \right)$$

3. Останавливаемся, если

$$||w^t - w^{t-1}|| < \varepsilon$$