11/23/23, 10:09 PM Lab 4 Report

Bharat Kathi ECE 154A 11/22/23

Lab 4 Report

Number of hours spent on lab

I spent about 16 hours on this lab.

Table 1

Cycle	reset	PC	Instr	SrcA	SrcB	ALUResult	Zero	PCSrc	WriteData	MemWrite	Read Data	RegWrite	ImmSrc	ImmExt	PCTarget
1	1	00	addi x2, x0, 5	0	5	5	0	0	х	0	x	1	000	5	х
2	0	04	addi x3, x0, 12	0	С	c	0	0	х	0	х	1	000	С	x
3	0	08	addi x7, x3, -9	С	-9	3	0	0	х	0	х	1	000	-9	х
4	0	0C	or x4, x7, x2	3	5	7	0	0	х	0	х	1	х	x	х
5	0	10	and x5, x3, x4	С	7	4	0	0	х	0	х	1	Х	x	х
6	0	14	add x5, x5, x4	4	7	ь	0	0	x	0	x	1	x	x	x
7	0	18	beq x5, x7, end	b	3	8	0	0	х	0	x	0	010	0x30	0x48
8	0	1C	slt x4, x3, x4	С	7	0	1	0	х	0	х	1	х	x	x
9	0	20	beq x4, x0, around	0	0	0	1	1	х	0	х	0	010	8	0x28
10	0	28	slt x4, x7, x2	3	5	1	0	0	х	0	х	1	х	x	x
11	0	2C	add x7, x4, x5	1	ь	C	0	0	х	0	x	1	x	x	x
12	0	30	sub x7, x7, x2	С	5	7	0	0	x	0	х	1	x	x	x
13	0	34	sw x7, 84(x3)	С	0x54	0x60	0	0	7	1	х	0	001	0x54	х
14	0	38	lw x2, 96(x0)	0	0x60	0x60	0	0	x	0	7	1	000	0x60	x
15	0	3C	add x9, x2, x5	7	b	0x12	0	0	x	0	x	1	x	x	x
16	0	40	jal x3, end	x	x	x	x	1	x	0	x	1	011	8	0x48
17	0	48	add x2, x2, x9	7	0x12	0x19	0	0	х	0	х	1	x	x	x
18	0	4C	sw x2, 0x20(x3)	0x44	0x20	0x64	0	0	0x19	1	x	0	001	0x20	х
19	0	50	lui x2, 0x0BEEF	х	х	x	x	0	х	0	x	1	100	0x0beef000	х
20	0	54	sw x2, 0x24(x3)	0x44	0x24	0x68	0	0	0x0beef000	1	х	0	001	0x24	х
21	0	58	beq x2, x2, done	0x0be ef000	0x0be ef000	0	1	0	х	0	х	0	010	0	0x58

Simulation Waveforms

https://md2pdf.netlify.app 1/5

Table 2

ucsbece154a_controller.v

```
// ucsbece154a_controller.v
// All Rights Reserved
// Copyright (c) 2023 UCSB ECE
// Distribution Prohibited

module ucsbece154a_controller (
   input [6:0] op_i,
   input [2:0] funct3_i,
```

```
funct7b5_i,
    input
    input
                    zero_i,
                         RegWrite_o,
    output wire
                         ALUSrc_o,
    output wire
                         MemWrite_o,
    output wire
    output wire
                   [1:0] ResultSrc_o,
    output reg
                   [2:0] ALUControl_o,
    output wire
                         PCSrc_o,
    output wire
                   [2:0] ImmSrc_o
);
 `include "ucsbece154a_defines.vh"
// TO DO: Generate properly PCSrc by replacing all `z` values with the correct values
wire branch, jump;
assign PCSrc_o = (zero_i & branch) | jump;
// TO DO: Implement main decoder
// • Replace all `z` values with the correct values
// • Extend the code to implement jal and lui
reg [11:0] controls;
wire [1:0] ALUOp;
assign {RegWrite_o,
    ImmSrc_o,
        ALUSrc_o,
        MemWrite_o,
        ResultSrc_o,
    branch,
    ALUOp,
    jump} = controls;
always @ * begin
   case (op_i)
    instr_lw_op:
                        controls = 12'b100010010000;
                        controls = 12'b000111000000;
    instr_sw_op:
    instr_Rtype_op:
                        controls = 12'b100000000100;
    instr_beq_op:
                        controls = 12'b001000001010;
    instr_ItypeALU_op:
                        controls = 12'b100010000100;
    instr_jal_op:
                        controls = 12'b101100100001;
    instr_lui_op:
                        controls = 12'b110000110000;
    default: begin
                            controls = 12'b000000000000;
            `ifdef SIM
                $warning("Unsupported op given: %h", op_i);
            `else
             `endif
        end
   endcase
end
// TO DO: Implement ALU decoder by replacing all `z` values with the correct values
wire RtypeSub;
assign RtypeSub = funct7b5_i & op_i[5];
always @ * begin
case(ALUOp)
                              ALUControl_o = 3'b000;
  ALUop_mem:
  ALUop_beq:
                              ALUControl_o = 3'b001;
  ALUop other:
       case(funct3_i)
           instr_addsub_funct3:
                 if(RtypeSub) ALUControl_o = 3'b001;
                              ALUControl_o = 3'b000;
                 else
           instr_slt_funct3: ALUControl_o = 3'b101;
           instr_or_funct3:
                              ALUControl_o = 3'b011;
```

11/23/23, 10:09 PM

ucsbece154a_datapath.v

endmodule

```
// ucsbece154a datapath.v
// All Rights Reserved
// Copyright (c) 2023 UCSB ECE
// Distribution Prohibited
module ucsbece154a_datapath (
    input
                        clk, reset,
    input
                        RegWrite_i,
                  [2:0] ImmSrc_i,
    input
    input
                        ALUSrc_i,
    input
                        PCSrc_i,
    input
                  [1:0] ResultSrc_i,
    input
                  [2:0] ALUControl_i,
                        zero_o,
    output
    output reg
                 [31:0] pc_o,
                 [31:0] instr_i,
    input
    output wire [31:0] aluresult_o, writedata_o,
    input
                 [31:0] readdata_i
);
`include "ucsbece154a_defines.vh"
/// Your code here
wire [31:0] PCNext, PCPlus4, PCTarget;
reg [31:0] ImmExt;
wire [31:0] SrcA, SrcB;
reg [31:0] Result;
wire dummy1;
wire dummy2;
assign PCNext = PCSrc_i ? PCTarget : PCPlus4;
assign SrcB = ALUSrc_i ? ImmExt : writedata_o;
always @ * begin
     case (ResultSrc_i)
        2'b00: Result = aluresult_o;
        2'b01: Result = readdata_i;2'b10: Result = PCPlus4;
        2'b11: Result = ImmExt;
        default: Result = 32'b0;
    endcase
end
always @ * begin
     case (ImmSrc_i)
        3'b000: ImmExt = {{20{instr_i[31]}}, instr_i[31:20]};
        3'b001: ImmExt = {{20{instr_i[31]}}, instr_i[31:25], instr_i[11:7]};
        3'b010: ImmExt = {{20{instr_i[31]}}, instr_i[7], instr_i[30:25], instr_i[11:8], 1'b0};
        3'b011: ImmExt = {{12{instr_i[31]}},instr_i[19:12],instr_i[20],instr_i[30:21],1'b0};
        3'b100: ImmExt = {instr_i[31:12],12'b0};
        default: ImmExt = 32'b0;
```

https://md2pdf.netlify.app 4/5

```
endcase
end
always @(posedge clk or posedge reset) begin
    if (reset) begin
        pc_o <= 32'b0;
    end
    else begin
         pc_o <= PCNext;</pre>
     end
end
assign PCPlus4 = pc_o + 32'b100;
assign PCTarget = pc_o + ImmExt;
ucsbece154a_alu ALU (
    .a_i(SrcA),
    .b_i(SrcB),
    .alucontrol_i(ALUControl_i),
    .result_o(aluresult_o),
    .zero_o(zero_o)
);
ucsbece154a_rf rf(
    .clk(clk),
    .a1_i(instr_i[19:15]),
    .a2_i(instr_i[24:20]),
    .a3_i(instr_i[11:7]),
    .rd1_o(SrcA),
    .rd2_o(writedata_o),
    .we3_i(RegWrite_i),
    .wd3_i(Result)
);
```

endmodule

https://md2pdf.netlify.app 5/5