Approximate Inference in Bayes Nets

- Often the Bayes net is not solvable by Variable Elimination: under any ordering of the variables we end up with a factor that is too large to compute (or store).
- Since we are trying to compute a probability (which only predicts the likelihood of an event occurring) it is natural to consider approximating answer.

- Direct Sampling from the prior distribution.
- Every Bayes net specifies the probability of every atomic event:
 - ▶ Each atomic event is a particular assignment of values to all of the variables in the Bayes nets.
 - Let $V_1, ..., V_n$ be the variables in the Bayes net.
 - Let $d_1, ..., d_n$ be values for these variables (d_i is the value variable V_i takes).
 - The Bayes net specifies that

$$\Pr(V_1 = d_1, V_2 = d_2, \dots, V_n = d_n) = \prod_{i=1}^n \Pr(V_i = d_i \mid ParVals(V_i))$$

where ParVals(V_i) is the set of assignments $V_k = d_k$ for each $V_k \in Par(V_i)$

- So we want to sample atomic events in such a way that the probability we select event **e** is equal to Pr(**e**)
- 1. Select an unselected variable V_i such that all parents of V_i in the Bayes Net have already been selected.
- 2. Let $[P_1, P_2, ..., P_k]$ be the parents of V_i in the Bayes net. Let $[b_1, ..., b_k]$ be the values that have already been selected for these parents $(P_i=b_i)$.
- 3. Set V_i to the value $d \in Dom[V_i]$ with probability

$$Pr(V_i = d \mid P_1 = b_1, P_2 = b_2, ..., P_k = b_k)$$

- Note that the probabilities Pr(V_i = d | P₁=b₁, P₂=b₂, ..., P_k=b_k) are specified in V_i's CPT in the Bayes net.
- Each variable is given a value by a separate random selection so the probability one obtains a particular atomic event (a setting of all of the variables) via this algorithm is as specified by the Bayes Net.

$$\Pr(e = [V_1 = d_1, V_2 = d_2, \dots, V_n = d_n]) = \prod_{i=1}^n \Pr(V_i = d_i \mid ParVals(V_i))$$

- Say we want to evaluate $Pr(V_1 = d_3)$
- We select N random samples of atomic events via this method
- Then we compute the proportion of these N events in which $V_1 = d_3$
- This proportion (Number of Events where $V_1 = d_3$)/**N** is an estimate of $Pr(V_1 = d_3)$.
- The estimate gets better as **N** gets larger, and by the law of large numbers as **N** approaches infinity the estimate converges (becomes closer and closer) to the exact $Pr(V_1 = d_3)$

- If we want to compute a conditional probability like $Pr(V_1 = d_3 | V_4 = d_1)$, then we can
 - ▶ Discard all atomic events in which $V_4 \neq d_1$
 - This gives a new smaller set of N' sampled atomic events.
 - From those N' we compute the proportion in which $V_1 = d_3$
 - This proportion (Number of Events where $V_1 = d_3$ from the remaining samples)/N' is an estimate of $Pr(V_1 = d_3 \mid V_4 = d_1)$
 - This is called Rejection Sampling

- **Problem**, almost all samples might be rejected if $V_4 = d_1$ has very low probability.
- The accuracy of the estimate depends on the size of N' (the samples that remain after rejection).
- So if very few are left our estimate is not good.
- ▶ E.g., if $Pr(V_4 = d_1) = 0.0000001$, then if we generate 1/0.0000001 = 10,000,000 samples we expect to reject 9,999,999 of them. In that case our estimate of $Pr(V_1 = d_3 | V_4 = d_1)$ will be 1 or 0! (Either our sole remaining sample has $V_1 = d_3$ or it doesn't).
- In most cases we want to compute **posterior** probabilities, i.e., probabilities conditioned on the **evidence**. So this is a major problem.

- Likelihood Weighting tries to address this issue.
- Force all samples to be compatible with the conditioning event.
- Don't select a value for a variable whose value is specified in the evidence that we are conditioning on.
- Weigh each sample by its probability—some samples count more than others in computing the estimate.

- 1. Set w = 1, let the evidence be a set of variables whose values are already given.
- 2. While there are unselected variables
 - 1. Select an unselected variable V_i such that all parents of V_i in the Bayes Net have already been selected.
 - 2. Let $[P_1, P_2, ..., P_k]$ be the parents of V_i in the Bayes net. Let $[b_1, ..., b_k]$ be the values that have already been selected for these parents $(P_i=b_i)$.
 - 3. If V_i 's value is specified in the evidence and d is the value specified then

$$W = W * Pr(V_i = d | P_1 = b_1, P_2 = b_2, ..., P_k = b_k)$$

4. Else set V_i to the value $d \in Dom[V_i]$ with probability $Pr(V_i = d \mid P_1 = b_1, P_2 = b_2, ..., P_k = b_k)$

- If we want to compute a conditional probability like $Pr(V_1 = d_3 | V_4 = d_1)$, then we can
 - Generate a collection **N** of likelihood weighted samples using the evidence $V_4 = d_1$
 - ▶ Each sample (atomic event) e has a weight w.
 - We compute the sum of the weights of the samples in \mathbf{N} in $V_1 = d_3$ and divide this by the sum of the weights of all samples in \mathbf{N} .
 - This number
- (Sum of weights of samples in **N** where $V_1 = d_3$)/(sum of weights of samples in **N**)

is an estimate of $Pr(V_1 = d_3 | V_4 = d_1)$

- Problem, many samples might have very low weight.
 Some might even have zero weight.
 - > Zero weight occurs when we have selected the parents of an evidence variable in such a way that $Pr(V_i = d \mid P_1 = b_1, P_2 = b_2, ..., P_k = b_k)$ is zero (this is multiplied into the sample weight).
- The accuracy of the estimate increases as the total weight of the samples increases, so if each sample has very low weight, we may need a very large number of samples.