UEC 1.0 – Technical Deep Dive

Ultra Ethernet Consortium

Technical Deep Dive – UEC 1.0

J Metz, Ph.D

Chair / Ultra Ethernet

Outline

1 Who is UEC, and Why?

2 The UEC Philosophy/Solution

3 The UEC Theory of Operation

4 Summary

Who is UEC? And Why?

- Full Standards Development Organization
- (One of the?) Fastest growing projects in Linux Foundation
- 130+ Companies
- 1500+ individual active contributor volunteers
- 8 Workgroups
 - Physical
 - Link Layer
 - Transport
 - Software
 - Storage
 - Management
 - Compliance & Test
 - Performance & Debug

UEC - Standing on the Shoulders of Giants

- Backwards-compatible
 - Uses libfabric as its north-bound API
 - Designed to integrate into existing frameworks where libfabric is commonly utilized
- Key driving force is in the Ultra Ethernet Transport (UET)
- Software API
- Libfabrics 2.0 with extensions
- New Transport Layer
- Multi-pathing Packet spraying
- Ordered (ROD) and un-ordered (RUD)
- Lossy (no PFC) or Lossless
- Congestion Control: Enhanced Tx and new Rx
- Trimming
- In Network Collective

- Network Layer
 - IP v4/v6
 - ECN
- Data Link Layer
 - Negotiation LLDP
 - Link Level Retry LLR
 - Header Efficiency Improvements
- Physical Layer
 - •IEEE Compliant 100G Signaling
- Al and HPC Profiles

2025

More System View and Nomenclature

More important concepts

- > SES exchanges messages
- PDS exchanges packets over Packet Delivery Contexts (PDCs)
- > PDCs are ephemeral connections and have multiple reliability modes
 - > ROD, RUD, RUDI, UUD
- CMS allows packets spraying across the fabric
- > The fabric can be lossless or best-effort
- Link and PHY reliability features aim to eliminate retransmissions

Transport

- > Transport Overview
 - Semantics Sublayer (SES)
 - Packet Delivery Sublayer (PDS)
 - Congestion Management Sublayer (CMS)
 - > Transport Security Sublayer (TSS)
 - Includes the core sub-layered architecture and protocol specifications while providing implementation flexibility
 - Tightly coupled with software

Ultra **Ethernet**

Ultra<u><u>Ethernet</u></u>

Software

- > SW Overview
 - Introduces SW components and interfaces
 - Provides pointers to UE
 OpenSource reference
 software
- Libfabric Mapping
 - Defines the mapping and requirements of libfabric v2.0
 APIs on a UET provider
 - Describes the intricacies of libfabric binding to UET addressing schemes and packet delivery modes

Link Layer

- Link Layer Retry (LLR)
 - Defines a sublayer and preamble for standard Ethernet interfaces that provides lossless operation at the link level by supporting retransmission of lost frames.
 - Works with existing PFC and new CBFC flow-control mechanisms.
- Link Negotiations
 - Defines a negotiation protocol and YANG management objects on top of LLDP for UE link level features.
- Credit-based Flow Control (CBFC)
 - Specifies an alternative to PFC (but can co-exist)
 - Allows up to 32 virtual channels for individual lossless operation.

Physical Layer

- Specifies UE 100G per lane signaling
- > Specifies FEC statistics for prediction of UE link quality
- Specifies UE changes to the PHY layer to support LLR and CBFC

Modern Transport and RDMA Services for Al and HPC

Requirement	UEC Transport	Legacy RDMA	UEC Advantage
Multi-Pathing	Packet spraying	Flow-level multi-pathing	Higher network utilization
Flexible Ordering	Out-of-order packet delivery with in-order message delivery	N/A	Matches application requirements, lower tail latency
Al and HPC Congestion Control	Workload-optimized, configuration free, lower latency, programmable	DCQCN: configuration required, brittle, signaling requires additional round trip	Incast reduction, faster response, future-proofing
In Network Collective	Built-In	NONE	Faster Collective operation, lower latency
Simplified RDMA	Streamlined API, native workload interaction, minimal endpoint state	Based on IBTA Verbs	App-level performance, lower cost implementation
Security	Scalable, 1st class citizen	Not addressed, external to spec	High scale, modern security
Large Scale with Stability and Reliability	Targeting 1M endpoints	Typically, a few thousand simultaneous end points	Current and future-proof scale

Call to Action

- Where to download the specification:
 - https://www.ultraethernet.org
- How to join UltraEthernet:
 - https://www.ultraethernet.org/membership

Open Discussion

