

期末综合

基于中国移动梧桐大数据平台 行业应用实训实验

实验三 (三选一)

大数据交互式 OLAP 多维分析数据方案 -客户标签画像分析

实验三: 大数据交互式 OLAP 多维分析数据方案-客户标签画像 分析

一、 实验描述:

针对个体客户,结合历史数据对客户进行消费习惯、行为偏好、兴趣偏好等维度的分析,形成多维客户画像,帮助企业更清楚地了解客户,结合客户特征开展个性化的产品营销及客户关怀,提高客户满意度和忠诚度。

客户画像是企业在大数据背景下洞察客户的重要手段。客户画像即结合客户多维历史数据对客户设置标签,标签包括个人基础信息、消费行为、兴趣偏好等,如客户年龄、近3个月的月均消费、5G网络感知质差、是否爱好体育等。

二、 实验目的:

以客户服务中的"网络质量感知质差画像"为例进行说明。通过客户 5G 上网话单中的页面访问时长、页面下载速度等,以及 5G 语音话单中的接通次数、掉话次数等指标,进行客户 5G 网络质量感知质差分析,形成客户 5G 网络质量感知质差画像。通过该画像,运营商可以找出 5G 网络质量感知质差客户,通过针对这些客户开展个性化关怀活动,提升客户满意度。通过本次实验达到下面两个目的:

1、 根据客户上网数据和语音通话数据开展 5G 网络质量分析, 确定客户 5G 网络网络感知质差画像。案例共需要使用两个原始数据模型表: 用户语音通话质量表和用户上网质量表, 如下:

用户语音通话质量表:

一川/ 阳日四阳灰里花·	
字段属性	字段名称
START_DATE	时间
SUBS_ID	用户编码
NET_TYPE	网络类型
MO_REQUEST_TIMES	始呼请求次数
MO_UNCONNECTED_TIMES	始呼未接通次数
MO_CONNECTED_RATE	始呼接通率
CONNECTED_TIMES	接通次数
DROPCALL_TIMES	掉话次数
DROPCALL_RATE	掉话率

用户上网质量表:

字段属性	字段名称
START_DATE	时间
SUBS_ID	手机号
NET_TYPE	网络类型
APP_TYPE	业务类型
PAGE_REQ_TIMES	页面访问次数
PAGE_BROWSING_DELAY	页面显示时长

PAGE_DOWNLOAD_THROUGHPUT

页面下载速率

经过大量数据分析, 确定 5G 网络环境下各字段质差阈值。为方便说明, 假设该案例 5G 网络的感知质差包括上网感知质差和语音通话感知质差, 如下表所示。

质差类型	口径说明
 始呼质差	始呼请求次数大于20、始呼未接通次数大于1且始呼接通率小
如叮灰左 	于 99%
掉话质差	掉话次数大于 1 且掉话率大于 1%
5G 语音通话	网络类型为 5G,存在始呼质差或者掉话质差
质差口径	网络矢室刀 30,仔任如时灰左曳有择的灰左
页面加载质	万面显示时长大于或等于 5000ms 或页面下载速率小于 50kB/s
差	英国亚尔斯长八丁英寻丁 5000ms 英英国上载逐率/11 50kb/s
5G 上网质差	网络类型为 5G、上网类型为 HTTP、页面访问次数大于 500 且
口径	存在页面加载质差
5G 网络感知	 存在 5G 语音通话感知质差或 5G 上网感知质差
质差口径	付任 30 市自通和窓州灰左线 30 工門窓州灰左

2、 输出 5G 网络感知质差客户画像和 5G 网络感知质差用户分布。如下表所示: 5G 网络感知质差客户画像:

序号	用户标识	是否为 5G 网络感知质差用户
1	311****5044	不是
2	311****5037	是

5G 网络感知质差用户分布:

序号	是否为 5G 网络感知质差用户	用户数量
1	不是	4586475
2	是	1022

三、 实验环境:

梧桐·鸿鹄大数据实训平台

四、 实验步骤:

附: 截图要求: 能看到右上角用户信息, 右下角若有时间需要将时间也截进来。

场景二的实践案例详细编排流程如下图所示。

说明:本案例输入数据的 HDFS 路径为/user/popularization/data/,路径下的 td_ns_cs_call_d.txt 表示用户语音通话质量表、td_ns_ps_http_d.txt 表示用户上网质量表。

数据处理后将用户 5G 网络感知画像和用户 5G 网络感知汇总结果加载为 CSV 文件, 分别命名为 user_5G_zicha_d.csv 和 user_5G_zicha_group_d.csv, 最后将其存储到 HDFS 中, 存储路径为/user/wutong/example data/。

以"用户语音通话质量表"和"用户上网质量表"为数据源,分别分析出语音通话质差用户画像和上网质差用户画像,最后组合成用户 5G 网络感知画像以及用户 5G 网络感知汇总结果,整体流程如上图所示。

4.1 数据处理

步骤一:

用户 5G 语音通话质量画像计算流程为对用户语音通话质量数据源进行加工, 获取用户语音质量的数据集合, 如下图所示。

首先使用 HDFS 抽取算子将数据源中的数据抽取到数据流中,如下图所示,编辑 HDFS 算子:

数据源名称	DATACUBE	HADOOP_DS_	1		~
	若没有所属集群,请点击这里创建				
E模型	请输入或选择	平物理模型			~
	若没有所屬物理模型(表名),请点击这里创建				
领域	语编入				
#路径	/user/popularization/data/				
2	td_ns_cs_call_d.txt				
69 69	UTF-8	ASCII	ISO-8859-1	GB18030	GBK
	列分隔符	'名称-值'对	定长字符串	定长字节	
	选择列分隔符、	定长字符串和	定长字节文件时	抽取的字段按	照输出列顺
①	1				
五缩类型	未压缩	.gz	snappy		

结果如下图所示。

[给出 HDFS 编辑截图以及结果截图,要求能看到用户个人信息以及时间信息] 然后使用转换算子,分别计算用户"始呼质差标志"和"掉话质差"标志,如下图所示。 编辑转换算子 (1):

编辑转换算子 (2):

"始呼质差标志"计算公式下图所示。

"掉话质差标志"计算公式如下图所示。

[给出计算用户"始呼质差标志"和"掉话质差"标志算子以及公式截图,要求能看到用户信息以及时间信息]

接下来,再次使用转换算子,将两种质差标志用户组合,不论哪一种质差情况,都应该属于语音通话质差用户,设置为"语音通话质差标志",如下图所示。

最后,再次使用转换算子,判断网络类型,计算用户的"5G语音通话质差标志",如下

图所示。

"5G语音通话质差标志"计算公式如下图所示。

[给出计算用户的"5G 语音通话质差标志"转换算子以及公式截图,要求能看到用户信息以及时间信息]

步骤二:

用户上网质量画像计算流程为对用户上网质量数据源进行加工, 获取用户 5G 上网质量的数据集合, 如下图所示。

首先使用 HDFS 抽取算子将数据源中的数据抽取到数据流中,如下图所示,

结果如下图所示。

[给出 HDFS 算子截图以及输出列截图,要求能够看到用户的信息以及时间信息] 然后使用转换算子,计算用户"页面加载质差标志",如下图所示。

[要求给出算子及公式截图,要求能看到用户信息以及时间信息]

再次使用转换算子, 判断网络类型, 计算用户的"5G上网质差标志", 如下图所示。

[要求给出算子及公式截图, 要求能看到用户信息以及时间信息]

4.2 数据输出:

5G 网络感知画像计算数据流,如下图所示,将计算出的"5G 语音通话质差标志"和"5G 上网质差标志"合并,得到客户5G 网络感知画像,并统计5G 网络感知用户分布情况。

首先使用合并算子将计算出的"5G 语音通话质差标志"和"5G 上网质差标志"合并,如下图所示。

然后使用剔重算子,如下图所示,判断用户是否出现质差标志,只要有一个用户出现质差标志,就被标记为5G网络感知质差用户,同一个用户只标记一次。

[给出剔重算子以及合并后的算子截图,要求能够看到个人信息以及时间信息]

接下来, 使用 HDFS 加载算子将 5G 网络感知用户画像加载到 HDFS 中, 如下图所示,

为了得到 5G 网络质差用户和非 5G 网络质差用户的数量,使用分组算子将 5G 网络感知用户画像按照是否质差用户进行分组计算,如下图所示。

[给出 HDFS 加载算子编辑以及输出截图和分组算子截图,要求能够看到个人信息以及时间信息]

分组用户数量表达式: Count(subs_id)。

最后,使用 HDFS 加载算子将用户 5G 网络感知统计结果加载到 HDFS 上的指定文件中,如下图所示,

[给出加载算子以及结果截图,要求能够看到个人信息以及时间信息]

数据编排完成后,进入在线调测,分别查看 HDFS 加载算子的调测结果。 5G 网络感知用户画像如下图所示。

5G 网络感知用户分布如下图所示。

[给出结果截图, 要求能够看到个人信息以及时间信息]

五、 实验结果:

- 1、 提供上述截图,包括:(每个截图 1分)
 - (1) 抽取算子将数据源中的数据抽取到数据流中时 HDFS 编辑截图以及结果截图
 - (2) 计算用户"始呼质差标志"和"掉话质差"算子以及公式截图
 - (3) 计算用户的"5G语音通话质差标志"算子以及公式截图
 - (4) 对用户上网质量数据源进行加工时的 HDFS 算子及输出列截图
 - (5) 计算用户"页面加载质差标志"算子及公式截图
 - (6) 计算用户的"5G上网质差标志"算子及公式截图
 - (7) 剔重算子以及合并后的算子截图
 - (8) HDFS 加载算子编辑以及输出截图和分组算子截图
- (9) 将用户 5G 网络感知统计结果加载到 HDFS 上的指定文件中的加载算子以及结果 截图
 - (10) 5G 网络感知用户画像以及 5G 网络感知用户分布截图
 - 2、 截图以及代码的相关语言描述 (5分)
 - 3、 实验总结以及自己的思考 (5分)