WSI 21Z

Wojciech Gierulski

Ćw. 1

Zaimplementować metodę gradientu prostego dla funkcji jednej zmiennej. Zbadać działanie metody w zależności od parametrów wejściowych: - punkt startowy - współczynnika uczenia Eksperymenty przeprowadzić dla funkcji z jednym minimum oraz dla funkcji z minimum lokalnym.

Założenia wstępne

Metoda gradientu prostego służy do iteracyjnego odnajdywania minimum lokalnego zadanej funkcji. Przed użyciem tej metody należy zdefiniować parametry takie jak:

 α – współczynnik uczenia,

 ε – zadana precyzja, przyjęto $\varepsilon=0.01$,

 x_0 – punkt startowy.

W celu określenia, czy punkt wygenerowany w danej iteracji dostatecznie dobrze przybliża minimum funkcji użyto następującego kryterium stopu (test stacjonarności): $|\nabla f(x_i)| \le \varepsilon$ oraz ustawiono limit iteracji na 50.

Działanie algorytmu w zależności od współczynnika uczenia i punktu startowego

Rys 1 – Kolejne iteracje algorytmu przedstawione graficznie dla różnych $\, \alpha \,$

Rys 2 – Kolejne iteracje algorytmu przedstawione graficznie dla różnych $\, \alpha \, \mathrm{i} \, x_0 \,$

Wykonano eksperymenty dla różnych wartości współczynika uczenia, punktu początkowego i różnych funkcji. Wyniki przedstawiono na rysunkach 1 i 2. Trasę algorytmu i punkty wyznaczane w kolejnych iteracjach zaznaczono kolorem niebieskim. Kolorem czerwonym zaznaczono znalezione minimum funkcji.

Komentarze i wnioski

Na rysunku 1 optymalną wartością parametru α jest 0,2. Minimum funkcji zostało znalezione poprawnie. Z eksperymentów wynika, że zbyt mała wartość współczynnika uczenia skutkuje tym, że kroki algorytmu są małe, a w związku z tym algorytm będzie działał dłużej. Dla α =0,01 znalezione minimum nie jest poprawne ponieważ algorytm napotkał limit iteracji i zakończył działanie przed znalezieniem minimum. Zwiększanie wartości α może zmniejszyć ilość iteracji algorytmu, ale zbyt duża wartość powoduje, że algorytm zaczyna generować zbyt duże kroki i zachowuje się niestabilnie (tak jak na rysunku 1 dla α =0,92), chociaż znalezione minimum jest poprawne. Dalsze zwiększanie α spowoduje, że algorytm nie zadziała poprawnie, ponieważ nie będzie miał szans trafić w minimum z tak dużym krokiem.

Metoda gradientu prostego służy do odnajdywania minimum lokalnego, a nie globalnego, więc przy rozsądnym doborze współczynnika uczenia znalezione minimum będzie zależało od punktu początkowego i będzie tym najbliższym punktu początkowego. Na rysunku 2 pokazano, że rzeczywiście tak jest. Minimum jest inne dla $x_0=-2,5$ i $x_0=3$. Przy zbyt dużym współczynniku uczenia istnieje ryzyko przeskoczenia najbliższego minimum i znalezieniu innego (tak jak na rysunku 2 dla $\alpha=0,05$ i $\alpha=0,07$).