

WHAT IS CLAIMED IS:

1 1. A method to bind nucleic acids to magnetizable cellulose comprising:

2 a) combining magnetizable cellulose with a solution containing nucleic

3 acids, thereby producing a combination, and

4 b) adjusting the salt and polyalkylene glycol concentrations of the

5 combination to concentrations suitable for binding the nucleic acids to the magnetizable

6 cellulose, whereby all or a portion of the nucleic acids in the solution binds to the

7 magnetizable cellulose.

1 2. The method of claim 1, wherein the nucleic acids are DNA and the

2 polyalkylene glycol is polyethylene glycol.

1 3. The method of claim 2, wherein the polyethylene glycol has a

2 molecular weight of 8000, and wherein the salt is sodium chloride.

1 4. The method of claim 3, wherein the concentration of polyethylene

2 glycol is adjusted to about 10% and wherein the concentration of sodium chloride is adjusted

3 to between 0.25 M and 5.0 M.

1 5. The method of claim 1, wherein the nucleic acids are RNA and the

2 polyalkylene glycol is polyethylene glycol.

1 6. The method of claim 1, wherein the magnetizable cellulose is in the

2 form of particles and optionally contains up to 90% by weight magnetic iron oxide.

1 7. A method of separating nucleic acids from non-nucleic acid materials

2 in a nucleic acid solution, comprising:

3 a) combining magnetizable cellulose with a solution containing nucleic

4 acids and non-nucleic acid materials to produce a first combination;

5 b) adjusting the salt and polyethylene glycol concentrations of the first

6 combination to concentrations suitable for binding nucleic acids in the solution to the

7 magnetizable cellulose, producing a second combination comprising magnetizable cellulose-

8 bound nucleic acids;

9 c) separating the magnetizable cellulose-bound nucleic acids from the

10 second combination;

- 11 d) contacting the magnetizable cellulose-bound nucleic acids separated in
12 c) with an elution buffer to release the bound nucleic acids from the magnetizable cellulose
13 and into the elution buffer; and
14 e) separating the magnetizable cellulose from the elution buffer to
15 provide nucleic acids that are substantially free of the non-nucleic acid materials.

1 8. The method of claim 7, wherein the separation of the magnetizable
2 cellulose particles in step c) and e) is carried out magnetically.

1 9. The method of claim 8, wherein the nucleic acids bound to
2 magnetizable cellulose particles are DNA and are washed with a wash buffer, wherein the
3 wash buffer removes impurities bound to the magnetizable cellulose particles while leaving
4 the DNA bound to the magnetizable cellulose particles.

1 10. The method of claim 9, wherein the DNA bound to the magnetizable
2 cellulose particles is eluted with an elution buffer that releases the DNA bound to the
3 magnetizable particles.

1 11. The method of claim 10, wherein the DNA released by the elution
2 buffer is isolated.

1 12. The method of claim 7, wherein the polyethylene glycol has a
2 molecular weight of 8000, and wherein the salt is sodium chloride.

1 13. The method of claim 12, wherein the concentration of polyethylene
2 glycol is about 10%, and concentration of sodium chloride is between 0.25 M to 5.0 M.

1 14. The method of claim 7, wherein the nucleic acids and non-nucleic acid
2 materials are obtained from a cell lysate.

1 15. The method of claim 14, wherein the lysate is prepared from cells of
2 human, animal, plant, viral or bacterial origin.

1 16. A kit for isolation and purification of nucleic acids, comprising
2 magnetizable cellulose and reagents at suitable concentrations for isolating nucleic acids from
3 various sources.

1 **17.** A method to bind nucleic acids to magnetizable cellulose derivatives,
2 comprising:
3 a) combining magnetizable cellulose derivatives with a solution
4 containing nucleic acids, thereby producing a combination, and
5 b) adjusting the salt and polyalkylene glycol concentrations of the
6 combination to concentrations suitable for binding the nucleic acids to the magnetizable
7 cellulose derivatives, whereby all or a portion of the nucleic acids in the solution bind to the
8 magnetizable cellulose derivatives.

1 **18.** The method of claim 17, wherein the cellulose derivatives are selected
2 from the group consisting of cellulose-CM, cellulose-DEAE and combinations thereof.

1 **19.** The method of claim 17, wherein the nucleic acids are DNA and the
2 polyakylene glycol is polyethylene glycol.

1 **20.** The method of claim 17, wherein the nucleic acids are RNA and the
2 polyakylene glycol is polyethylene glycol.

1 **21.** The method of claim 19, wherein the polyethylene glycol has an
2 average molecular weight of about 8000, and wherein the salt is sodium chloride.

1 **22.** The method of claim 21, wherein the concentration of the polyethylene
2 glycol is adjusted to about 10% and wherein the concentration of sodium chloride is adjusted
3 to between 0.25 M and 5.0 M.

1 **23.** The method of claim 17, wherein the magnetizable cellulose
2 derivatives are in the form of particles and optionally comprise magnetic iron oxide in an
3 amount of up to 90% by weight.

1 **24.** A method of separating nucleic acids from non-nucleic acid materials,
2 comprising:
3 a) combining magnetizable cellulose derivatives with a solution
4 containing nucleic acids and non-nucleic acid materials to provide a first combination;
5 b) adjusting the salt and polyethylene glycol concentrations of the first
6 combination to concentrations suitable for binding nucleic acids to the magnetizable cellulose

7 derivatives, producing a second combination comprising magnetizable cellulose derivative-
8 bound nucleic acids;

9 c) separating the magnetizable cellulose derivative-bound nucleic acids
10 from the second combination;

11 d) contacting the magnetizable cellulose derivative-bound nucleic acids
12 separated in c) with an elution buffer to release the bound nucleic acids from the
13 magnetizable cellulose derivatives and into the elution buffer; and

14 e) separating the magnetizable cellulose derivatives from the elution
15 buffer to provide nucleic acids that are substantially free of the non-nucleic acid materials.

1 **25.** The method of claim **24**, wherein the separation of the magnetizable
2 cellulose derivatives in step c)and e) is carried out magnetically.

1 **26.** The method of claim **24**, wherein the nucleic acids bound to
2 magnetizable cellulose derivatives are washed with a wash buffer, wherein the wash buffer
3 removes impurities bound to the magnetizable cellulose derivatives while leaving the nucleic
4 acids bound to the magnetizable cellulose derivatives.

1 **27.** The method of claim **26**, wherein the nucleic acids bound to the
2 magnetizable cellulose derivatives are DNA and are eluted with an elution buffer, wherein
3 the elution buffer releases the DNA bound to the magnetizable cellulose derivatives.

1 **28.** The method of claim **27**, wherein the DNA released by the elution
2 buffer is isolated.

1 **29.** The method of claim **24**, wherein the polyethylene glycol has an
2 average molecular weight of about 8000, and wherein the salt is sodium chloride.

1 **30.** The method of claim **29**, wherein the concentration of polyethylene
2 glycol is about 10%, and the salt concentration is between 0.25 M to 5.0 M.

1 **31.** The method of claim **24**, wherein the nucleic acids and non-nucleic
2 acid materials are obtained from a cell lysate.

1 **32.** The method of claim **31**, wherein the lysate is prepared from cells of
2 human, animal, plant, viral or bacterial origin.

1 33. A kit for isolation and purification of nucleic acids, comprising
2 magnetizable cellulose derivatives and reagents at suitable concentrations for isolating
3 nucleic acids from various sources.