Topic 8

Using pretrained models + classification continued

Proper Rayers

Prot no of Rayers

require grad - True

require grad - Falor

Assign out 3 will be like the Cast part of Retain-Models
Note Book. Lead Pretained model

I have brought up pretrained models before

- But haven't really explained what they are
- Any ideas?
- Can you name any pre-trained models? Ones we have covered in class?

We have already seen pre-trained models

- Word2Vec- word2vec-google-news-300, word2vec-ruscorpora-300
- GloVe- glove-wiki-gigaword-50, glove-wiki-gigaword-100
- SpaCy- en_core_web_sm (ner, parser, tagger, etc.)
- NLTK- PerceptronTagger, PunktSentenceTokenizer, etc.

What if we want a Chatbot that handles customer complaints

 Isn't it easier to start with something that sounds close to human to start off?

Using models that already exist

Most will use these in an applied setting

Adding our own training data to the model

- What the data looks like will vary
- Depends on what the model accepts

Word2Vec Representation

Tack on a binary classifier

Why use pretrained models?

- The model creator(s) have already put in the effort to design a benchmark model for you!
- Instead of building a model from scratch to solve a similar NLP problem, we can use that pretrained model on our own NLP dataset
- A bit of fine-tuning will be required but it saves us a ton of time and computational resources
- Lack of data

Techniques using pre-trained models

- Fine-tuning: Update the parameters of a model (or part of it)
- Transfer learning: Using previously trained (model) and (optional) adding some new trainable layers. Also possible to fine-tune on your own dataset.

Preparing Text Data for Neural Networks

- Tokenization and conversion to word index vectors
- Pad text sequences so that all vectors are the same length
- Map every word to an embedding vector
- Use the output above as input to the neural network

What does it mean to freeze layers?

 Disabling gradient computation and <u>backpropagation</u> for the weights of these layers

- Within each layer, there are parameters (or weights), which can be obtained using .param() on any children (i.e. layer)
- All models have a function that returns it's layers
- Every parameter has an attribute called **requires_grad** which is by default True \rightarrow this means that the weight can be updated

Fraze cuts thing but last longer

Quadrant 1

Large dataset, but <u>different</u> from the pre-trained model's dataset

Quadrant 2

Large dataset and similar to the pre-trained model's dataset

> Dataset Similarity

Quadrant 3

Small dataset and different from the pre-trained model's dataset

Quadrant 4

Train the entire model

Quadrant 2

Large dataset and similar to the pre-trained model's dataset

> Dataset Similarity

Quadrant 3

Small dataset and different from the pre-trained model's dataset

Quadrant 4

Quadrant 1

Large dataset, but <u>different</u> from the pre-trained model's dataset Train some layers and project leave others frozen

Dataset Similarity

Quadrant 3

Small dataset and different from the pre-trained model's dataset

Quadrant 4

Quadrant 1

Large dataset, but <u>different</u> from the pre-trained model's dataset

Quadrant 2

Large dataset and similar to the pre-trained model's dataset

> Dataset Similarity

Train some layers and leave others frozen

Quadrant 4

Quadrant 1

Large dataset, but <u>different</u> from the pre-trained model's dataset

Quadrant 2

Large dataset and similar to the pre-trained model's dataset

> Dataset Similarity

Quadrant 3

Small dataset and different from the pre-trained model's dataset

Freeze the base

Pytorch Code Examples

Freeze all the layers:

```
for param in model.parameters():
param.requires_grad = False
```

Freeze all but the last layer:

```
for param in model.parameters():
    param.requires_grad = False
model.fc.requires grad = True
```

Which layers should we re-train?

- Depends on the domain
- Start by re-training the last layers
 - Work backwards if performance is not satisfactory

Top 10
Pre-Trained NLP
Language Models for
Al Application Building

Figure 1: Exponential growth of number of parameters in DL models

Some Feasible Options

- DistilBert by Hugging Face
- ALBERT by Google
- ELMo by AllenNLP
- Flair by Zalando Research
- RoBERTa-tiny by Hugging Face
- These models can handle NLP tasks such as sentiment analysis, named entity recognition, and text classification. They can also be fine-tuned on smaller datasets.

Planning to use pre-trained models?

- Find out about your models early if you want to use something pretrained:
 - Can you load the model into your environment?
 - How many layers does it have? What are their names?
 - What should the input look like to use this model? Can you get your data in the right format?
 - Can you freeze all but the last layer and train on a small dataset?

Next time

• More on classification with deep learning and pre-trained models