Exponentendarst.

Giga: 10^9 , **M**ega: 10^6 , Kilo (**k**): 10^3 , Dezi (**d**): 10^{-1} , Zenti (**c**): 10^{-2} , Milli (**m**): 10^{-3} , Mikro (μ), Nano (**n**): 10^{-9}

Einheiten

Kraft $[F] = \frac{kg \cdot m}{s^2} = N$ Ladung [Q] = As = C elektr. Feld $\begin{aligned} [E] &= \frac{V}{C} = \frac{V}{m} \text{ Spannung } [U] = \frac{J}{C} = V(olt) \text{ Lorentzkraft } [B] = \\ &\frac{N}{Am} = T(esla) \text{ Kondensator-Kapazität } [C] = \frac{C}{V} = F(arad) \\ &\text{Strom } [I] = \frac{C}{s} = A(mpere) \text{ Widerstand } [R] = \frac{V}{A} = \Omega(Ohm) \end{aligned}$ spezifischer Widerst. $[
ho] = \frac{\Omega m^2}{m} = \Omega m$ Arbeit Stromg [P] = $\frac{J}{\circ} = VA = W(att)$

Konstanten

Elementariadung $e_0 = 1,602 \cdot 10^{-19} C$ (Elektron $-1e_0$, Proton $1e_0$) Dielektrizitätskonst. d. Vakuums $\epsilon_0 = 8,854 \cdot 10^{-12} \frac{C^2}{N_{max}^2}$ $\mu_0 = 4\pi \cdot 10^{-7} \frac{Vs}{Am}$

Formeln

Coulumb-Gesetz 2 Ladungen $F=\frac{1}{4\pi\epsilon_0}\cdot\frac{Q_1Q_2}{r^2}$ Elektr. Feld $E=\frac{F}{q}$ Coulumb elektr. Felder $E=\frac{1}{4\pi\epsilon_0}\cdot\frac{Q}{r^2}$ Arbeit im Feld $W_{12}=qU_{12}$ Feld Plattenkondensator $U_{12}=Es$ Potential(differenz) $U_{12}=\phi(r_1)-\phi(r_2)$ Potential Punktladung $\phi(r)=0$ $\frac{Q}{4\pi\epsilon_0 r}$ Kondensator-Kapazität $C=\frac{Q}{U}$ Plattenkond.-Kapazität $C=\frac{\epsilon_0 A}{d}$

Strom $I=\frac{\Delta Q}{\Delta t}$ Ohm-Gesetz U=RI Widerstand drahtförmiger Leiter $R=\rho\frac{L}{A}$ " temperaturabhäng. $R(\theta)=R_0(1+\alpha_0(\theta-\theta_0))$ Leistung elektr. Strom $P=\frac{W}{t}=UI$

Kotenregel Summe der Ströme im Knotenpunkt ist Null: $0 = I_1 + I_2 + ...$ **Maschenregel** Bei Umlauf um eine Masche: Summe d. Spannungen Null: $0 = U_1 + U_2 + ...$ **parallele Widerstände** $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + ...$ **Widerstände in Reihe** $R = R_1 + R_2 + ...$

Spannungsteiler $U_A=U\frac{R_2}{R_1+R_2}$ Magnetfeld v. langem Leiter $B=\frac{\mu_0I}{2\pi r}$ Coulumb f. Magnetismus (parallele Ströme) $F=rac{\mu_0LI^2}{2\pi r}$ Magnetfeld v. langer Spule $B = \mu_0 \frac{nI}{L}$

1 Lösungsansätze

Plattenkondensator-Kapazität: 2 gleiche Kondensatoren = 1 Kond. doppelter Fläche Netzwerk von Widerständen: 1. Identifikation von Teilschaltungen als Reihen-/Parallelschaltung. 2. Ersetzen d. Teilschaltungen durch Ersatzwiderstand