

Exercise 4D

Question 18: Produce CD to cut AB at E.



Now, in  $\triangle$ BDE, we have, Exterior  $\angle$ CDB =  $\angle$ CEB +  $\angle$ DBE  $\Rightarrow$   $x^{\circ}$  =  $\angle$ CEB +  $45^{\circ}$  .....(i) In  $\triangle$ AEC, we have, Exterior  $\angle$ CEB =  $\angle$ CAB +  $\angle$ ACE =  $55^{\circ}$  +  $30^{\circ}$  =  $85^{\circ}$ Putting  $\angle$ CEB =  $85^{\circ}$  in (i), we get,  $x^{\circ}$  =  $85^{\circ}$  +  $45^{\circ}$  =  $130^{\circ}$  $\therefore$  x =  $130^{\circ}$ 

## Question 19:

The angle  $\angle$ BAC is divided by AD in the ratio 1:3. Let ∠BAD and ∠DAC be y and 3y, respectively. As BAE is a straight line,  $\angle$ BAC +  $\angle$ CAE = 180 $^{\circ}$ [linear pair]  $\Rightarrow \angle BAD + \angle DAC + \angle CAE = 180^{\circ}$  $\Rightarrow$  y + 3y + 108° = 180°  $\Rightarrow$  4y = 180° - 108° = 72°  $\Rightarrow$  y =72/4 = 18° Now, in  $\triangle$ ABC,  $\angle ABC + \angle BCA + \angle BAC = 180^{\circ}$  $y + x + 4y = 180^{\circ}$ [Since,  $\angle$ ABC =  $\angle$ BAD (given AD = DB) and  $\angle$ BAC = y + 3y = 4y]  $\Rightarrow$  5y + x = 180  $\Rightarrow$  5 × 18 + x = 180  $\Rightarrow$  90 + x = 180 x = 180 - 90 = 90

\*\*\*\*\*\* END \*\*\*\*\*\*