

THE SOCIALIST
REPUBLIC OF ROMANIA

[coat of arms]
ROMANIA

NATIONAL COUNCIL
FOR
SCIENCE AND TECHNOLOGY

STATE PATENT AND
TRADEMARK OFFICE

PATENT (19) RO (11) 92436
(12) DESCRIPTION OF THE
INVENTION

(21) Application No. 118,467	(51) Int. Cl. ⁴ : A 61 K 9/20
(22) Filing date: April 19, 1985	
(61) Continuation patent application to patent no.:	
(45) Publication date: September 30, 1987	
(86) International application (PCT) No.: Date: (87) International publication: No.: Date: (89)	(30) Priority (32) Date: (33) Country: (31) Certificate no.:

(71) Applicant: (72) Inventors: Ioan Pușcaș, M.D., Șimleul Silvaniei, district Maramureș; Carmen Pușcaș, M.D., Șimleul Silvaniei, district Maramureș; Gheorghe Buzaș, M.D., Cluj-Napoca; Lucian Sturzu, engineer, Șimleul Silvaniei, district Maramureș.

(73) Assignee: Întreprinderea de Medicamente, București

Synergistic pharmaceutical composition for the treatment of gastritis, gastroduodenitis and gastric and duodenal ulcers

(57) Abstract

Synergistic pharmaceutical composition for the treatment of gastritis, gastroduodenitis, and gastric and duodenal ulcers according to the invention comprising in addition to a carbonic anhydrase inhibitor, a *beta*-adrenergic blocker selected from among propranolol, atenolol, pindolol, timolol, oxprenolol, acebutolol or metoprolol having a weight ratio of carbonic anhydrase inhibitor to *beta*-blocker of 1.37 to 231.

Group: 4

Price: 55.48 Lei

(19) RO (11)

RECEIVED
NOV 21 2003
TECHNICAL LIBRARY
1600/2900

The present invention relates to a synergistic pharmaceutical composition for the treatment of gastritis, gastroduodenitis, and gastric and duodenal ulcers used to reduce gastric acid secretion.

Pharmaceutical compositions used for the treatment of gastric and duodenal ulcers comprising a mixture of acetazolamide and sodium or potassium citrate, sodium and/or potassium bicarbonate, magnesium oxide, aluminum hydroxide, or a mixture of ethoxzolamide and magnesium salts of amino acids selected from among magnesium aspartate, glycinate or glutamate, sodium citrate and potassium bicarbonate, or a mixture of ethoxzolamide and potassium bicarbonate, sodium citrate, magnesium oxide and aluminum hydroxide, are known.

The disadvantage of these compositions is that the therapeutic effect is seen only after a 3-5 days latent period, and that side effects such as somnolence, fatigue or paresthesia of the extremities may appear.

The object of the present invention is to obtain a synergistic pharmaceutical composition for the treatment of gastritis, gastroduodenitis, and gastric and duodenal ulcers, through vasomotor impulse regulation of gastric secretions.

The means for attaining the object of the invention consists in the selection of ingredients and the mixture ratio thereof.

Pharmaceutical composition according to the invention comprising a carbonic anhydrase inhibitor and a *beta*-adrenergic blocker selected from among propranolol, atenolol, pindolol, timolol, oxprenolol, acebutolol or metoprolol having a weight ratio of carbonic anhydrase inhibitor to *beta*-blocker of 1.37 to 231.

The following are 28 examples of embodiments of the invention.

Example 1

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.9 acetazolamide, 0.3 sodium bicarbonate, 0.7 potassium bicarbonate, 2.25 magnesium oxide, 0.5 aluminum hydroxide, 0.3 sodium citrate, 0.15 propranolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 6.

Example 2

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 1.62 acetazolamide, 0.54 sodium bicarbonate, 1.26 potassium bicarbonate, 4.05 magnesium oxide, 0.9 aluminum hydroxide, 0.54 sodium citrate, 0.02 propranolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 81.

Example 3

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.37 ethoxzolamide, 1.15 potassium bicarbonate, 2.5 magnesium oxide, 0.625 aluminum hydroxide, 0.5 sodium citrate, 0.17 propranolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 2.18.

Example 4

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.666 ethoxzolamide, 2.07 potassium bicarbonate, 4.5 magnesium oxide, 1.125 aluminum hydroxide, 0.9 sodium citrate, 0.023 propranolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 29.

Example 5

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.9 acetazolamide, 0.3 sodium bicarbonate, 0.7 potassium bicarbonate, 2.25 magnesium oxide, 0.5 aluminum hydroxide, 0.3 sodium citrate, 0.11 atenolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 8.2.

Example 6

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 1.62 acetazolamide, 0.54 sodium bicarbonate, 1.26 potassium bicarbonate, 4.05 magnesium oxide, 0.9 aluminum hydroxide, 0.54 sodium citrate, 0.023 atenolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 70.4.

Example 7

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.37 ethoxzolamide, 1.15 potassium bicarbonate, 2.5 magnesium oxide, 0.625 aluminum hydroxide, 0.5 sodium citrate, 0.125 atenolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 2.9.

Example 9 [sic] [8]

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.666 ethoxzolamide, 2.07 potassium bicarbonate, 4.5 magnesium oxide, 1.125 aluminum hydroxide, 0.9 sodium citrate, 0.017 atenolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 39.2.

Example 9

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.9 acetazolamide, 0.3 sodium bicarbonate, 0.7 potassium bicarbonate, 2.25 magnesium oxide, 0.5 aluminum hydroxide, 0.3 sodium citrate, 0.03 pindolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 30.

Example 10

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 1.26 acetazolamide, 0.54 sodium bicarbonate, 1.26 potassium bicarbonate, 4.05 magnesium oxide, 0.9 aluminum hydroxide, 0.54 sodium citrate, 0.01 pindolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 162.

Example 11

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.37 ethoxzolamide, 1.15 potassium bicarbonate, 2.5 magnesium oxide, 0.625 aluminum hydroxide, 0.5 sodium citrate, 0.028 pindolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 13.2.

Example 12

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.666 ethoxzolamide, 2.07 potassium bicarbonate, 4.5 magnesium oxide, 1.125 aluminum hydroxide, 0.9 sodium citrate, 0.007 pindolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 95.1.

Example 13

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.9 acetazolamide, 0.3 sodium bicarbonate, 0.7 potassium bicarbonate, 2.25 magnesium oxide, 0.5 aluminum hydroxide, 0.3 sodium citrate, 0.023 timolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 39.1.

Example 14

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 1.62 acetazolamide, 0.54 sodium bicarbonate, 1.26 potassium bicarbonate, 4.05 magnesium oxide, 0.9 aluminum hydroxide, 0.54 sodium citrate, 0.007 timolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 231.

Example 15

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.37 ethoxzolamide, 1.15 potassium bicarbonate, 2.5 magnesium oxide, 0.625 aluminum hydroxide, 0.5 sodium citrate, 0.017 timolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 21.8.

Example 16

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.666 ethoxzolamide, 2.07 potassium bicarbonate, 4.5 magnesium oxide, 1.125 aluminum hydroxide, 0.9 sodium citrate, 0.003 timolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 222.

Example 17

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.9 acetazolamide, 0.3 sodium bicarbonate, 0.7 potassium bicarbonate, 2.25 magnesium oxide, 0.5 aluminum hydroxide, 0.3 sodium citrate, 0.057 oxprenolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 15.8.

Example 18

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 1.26 acetazolamide, 0.54 sodium bicarbonate, 1.26 potassium bicarbonate, 4.01 magnesium oxide, 0.9 aluminum hydroxide, 0.54 sodium citrate, 0.015 oxprenolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 108.

Example 19

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.37 ethoxzolamide, 1.15 potassium bicarbonate, 2.5 magnesium oxide, 0.625 aluminum hydroxide, 0.5 sodium citrate, 0.063 oxprenolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 5.8.

Example 20

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.666 ethoxzolamide, 2.07 potassium bicarbonate, 4.5 magnesium oxide, 1.125 aluminum hydroxide, 0.9 sodium citrate, 0.017 oxprenolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 39.2.

Example 21

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.9 acetazolamide, 0.3 sodium bicarbonate, 0.7 potassium bicarbonate, 2.25 magnesium oxide, 0.5 aluminum hydroxide, 0.3 sodium citrate, 0.32 acebutolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 2.8.

Example 22

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 1.62 acetazolamide, 0.54 sodium bicarbonate, 1.26 potassium bicarbonate, 4.05 magnesium oxide, 0.9 aluminum hydroxide, 0.54 sodium citrate, 0.18 acebutolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 9.

Example 23

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.37 ethoxzolamide, 1.15 potassium bicarbonate, 2.5 magnesium oxide, 0.625 aluminum hydroxide, 0.5 sodium citrate, 0.27 acebutolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 1.37.

Example 24

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.666 ethoxzolamide, 2.07 potassium bicarbonate, 4.5 magnesium oxide, 1.125 aluminum hydroxide, 0.9 sodium citrate, 0.18 acebutolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 3.7.

Example 25

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.9 acetazolamide, 0.3 sodium bicarbonate, 0.7 potassium bicarbonate, 2.25 magnesium oxide, 0.5 aluminum hydroxide, 0.3 sodium citrate, 0.12 metoprolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 7.5.

Example 26

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 1.62 acetazolamide, 0.54 sodium bicarbonate, 1.26 potassium bicarbonate, 4.05 magnesium oxide, 0.9 aluminum hydroxide, 0.54 sodium citrate, 0.34 metoprolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 47.6

Example 27

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.37 ethoxzolamide, 1.15 potassium bicarbonate, 2.5 magnesium oxide, 0.625 aluminum hydroxide, 0.5 sodium citrate, 0.13 metoprolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 2.8.

Example 28

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.666 ethoxzolamide, 2.07 potassium bicarbonate, 4.5 magnesium oxide, 1.125 aluminum hydroxide, 0.9 sodium citrate, 0.03 metoprolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 22.2.

Carbonic anhydrase represents an essential phase in determining the rate of the gastric acid secretion process. Inhibiting gastric secretion through various inhibitors leads to reduced hydrochloric acid production, thus creating the necessary conditions for the healing of the gastroduodenal mucosa damaged by hydrochloric acid and peptin.

The gastric acid secretion process occurs in the gastric glands in the fundic area of the gastric mucosa and is controlled by a combination of neural, hormonal and food stimuli.

Hydrochloric acid is produced in the parietal cells the main stimuli being gastrin, acetylcholine and histamine. For these secretagogues, specific receptors at the level of parietal cells have been posited and identified.

It is assumed that adrenergic stimulation (adrenaline, noreadrenaline, isoprenaline, etc.) occurs at the level of specific receptors grafted on parietal cells, however, the existence and identification of such receptors has not been experimentally demonstrated.

Currently, anatomically and pharmacologically defined adrenergic receptors are divided into *alfa* and *beta*-receptors; when the response to a series of agonists consists of the succession adrenaline – noreadrenaline – isoproterenol (isoprenaline) – *alfa* receptors, and (isoproterenol) – noreadrenaline – adrenaline – *beta*-receptors, respectively.

In vitro studies of the effect of adrenergic agonists on the activity of purified, human red blood cell and gastric mucosa carbonic anhydrase have shown, first, a strong activating effect of isoprenaline on enzyme activity, and second, a *beta*-adrenergic receptor behavior (table 1).

The effect of adrenergic agonists on the activity of purified, red blood cell [RBC], and human gastric mucosa (GM) carbonic anhydrase [CA]

Concentration (M)	Isoprenaline			Orciprenaline	Adrenaline	Noradrenaline
	Pure CA	RBC	MG	Pure CA	Pure CA	Pure CA
0	2040	2572	1.96	2088	2060	2094
10^{-8}	2040	2680	1.96	2047	2040	2136
10^{-7}	2125	2662	1.95	2033	2081	2122
10^{-6}	2168	2736	1.96	2047	2109	2122
10^{-5}	2416	2699	1.96	2518	2225	2122
10^{-4}	3076	3051	2.46	3295	2181	2136
$2 \cdot 10^{-4}$			2.81		2255	
$2 \cdot 10^{-4}$					2428	
$4 \cdot 10^{-4}$					2562	
$5 \cdot 10^{-4}$			3.33		2528	
$1 \cdot 10^{-3}$	4083	4558	4.12			2164
$2 \cdot 10^{-3}$	5425	7358	5.73			

The study of the effect of some *beta*-adrenergic blockers such as propranolol, timolol, oxprenolol, pindolol, atenolol, metoprolol or practolol indicated a strong inhibiting action on the activity of purified, human red blood cell and gastric mucosa carbonic anhydrase (table 2).

Table 2
The effect of some beta-adrenergic blockers on the activity of pure [sic], red blood cell [RBC], and human gastric mucosa (GM) carbonic anhydrase (CA)

In vivo administration of some beta-adrenergic blockers to patients with gastroduodenal disorders leads to slightly decreased gastric acid secretion parameters and carbonic anhydrase activity (table 3).

Table 3
The effect of some beta-adrenergic blockers on the production of hydrochloric acid and on the activity of [human] gastric mucosa (GM) and red blood cell [RBC] carbonic anhydrase (CA) in patients with duodenal ulcers after three days of treatment

<i>Beta-blocker</i>	Nos. of cases	Dose mg/day	H ⁺ Flow mEq/h	CA	
				GM	RBC
Control group	29	-	9.87 ± 2.71	1.87 ± 0.13	2876 ± 139
Propranolol	20	3 × 20	7.27 ± 1.82	1.62 ± 0.35	2514 ± 275
Pindolol	20	3 × 10	7.98 ± 1.17	1.70 ± 0.31	2590 ± 113
Practolol	20	3 × 200	6.89 ± 1.65	1.58 ± 0.39	2476 ± 326
Oxprenolol	20	3 × 20	7.14 ± 0.98	1.67 ± 0.19	2623 ± 170
Metoprolol	20	3 × 10	6.97 ± 1.82	1.76 ± 0.27	2768 ± 123
Atenolol	20	3 × 10	7.45 ± 1.63	1.79 ± 0.33	2796 ± 273
Timolol	20	3 × 20	7.16 ± 2.08	1.71 ± 0.29	2783 ± 315

In vitro study of the interaction between adrenergic agonists and acetazolamide, a carbonic anhydrase specific inhibitor, which operates at the active-site level through zinc ion chelation, proves the existence of a noncompetitive antagonism and indicates the fact that adrenergic agonists do not operate at the level of the zinc atom.

Table 4
The interaction between adrenergic agonists and acetazolamide on the activity of purified carbonic anhydrase

Concentration (M)	Acetazolamide	Isoprenaline	Isoprenaline + Acetazolamide 10^{-8} M	Isoprenaline + Acetazolamide 10^{-7} M	Isoprenaline + Acetazolamide 10^{-4} M
0	2061	2047	2020	2000	2040
10^{-9}	2047	2131	1754	631	536
10^{-8}	1742	2189	1851	660	552
10^{-7}	608	2189	1851	666	552
10^{-6}	563	2264	1839	702	602
10^{-5}	557	2372	1876	804	643
10^{-4}	514	2814	2047	893	696
10^{-3}	493	3940	2776	1656	994

In vitro study of the interaction between adrenergic agonists and histamine, a strong carbonic anhydrase activator, indicates the existence of a noncompetitive synergism (table 5).

Table 5

The interaction between adrenergic agonists and histamine on the activity of pure [sic] carbonic anhydrase

Concentration (M)	Histamine	Isoprenaline	Histamine + Isoprenaline 10^{-6} M	Histamine + Isoprenaline 10^{-5} M	Histamine + Isoprenaline 10^{-4} M
10^{-8}	1993	1993	2020	2006	2020
10^{-7}	2191	--	2104	2361	3237
10^{-6}					
10^{-5}	2377	2147	2377	2361	3372
10^{-4}	2510	2377	2546	2528	3575
10^{-3}	2690	2904	2785	2617	3655
10^{-2}	2824	--	2925	3184	3794
	3910	--	3822	4156	4494

In vitro study of the activity of carbonic anhydrase indicates that *beta*-adrenergic blockers interacting with acetazolamide promote noncompetitive synergism (table 6), with histamine noncompetitive antagonism (table 7), and with isoprenaline competitive antagonism (Table 8).

Table 6

The interaction between beta-adrenergic blockers and acetazolamide on the activity of purified carbonic anhydrase

Concentration (M)	Propranolol	Acetazolamide	Propranolol + Acetazolamide 10^{-8} M	Propranolol + Acetazolamide 10^{-7} M	Propranolol + Acetazolamide 10^{-6} M
0	2068	2081			
10^{-8} M		1833			
10^{-7} M		875			
10^{-6} M		445			
10^{-5} M	1657		1517	755	214
$2 \cdot 10^{-5}$ M	1417		1164	425	0
$3 \cdot 10^{-5}$ M	1139		938	300	0
$3 \cdot 38 \cdot 10^{-5}$ M	953		807	243	0

Table 7

The interaction between beta-adrenergic blockers and histamine on the activity of purified carbonic anhydrase

Concentration (M)	Atenolol	Propranolol	Histamine	Histamine + Propranolol $2 \cdot 10^{-4}$	Histamine	Histamine + Propranolol 10^{-3}
0	2074	1967	1980	1993	2102	2074
10^{-8}	2173		2288	1759	2246	1710
10^{-7}	2088		2303	1724	2417	1906
10^{-6}	2102	2511	2511	1747	2656	2022
10^{-5}	2088		2720	2033	2843	2140
10^{-4}	1954		2872	2101	2962	2104
$2 \cdot 10^{-4}$		1440				
10^{-3}	1733		3010	2334	3110	2246
10^{-2}			3972	3389	4153	3557

Table 8

The interaction between beta-adrenergic blockers and isoprenaline on the activity of pure [sic] carbonic anhydrase

Concentration (M)	Atenolol	Isoprenaline	Orciprenaline	Atenolol + Isoprenaline	Atenolol + Orciprenaline
0	2000	2040	2054	2040	2040
10^{-8}	2139	2125	2068	2153	2168
10^{-7}	2082	2110	2197	2197	2139
10^{-6}	1946	2227	2242	2082	2168
10^{-5}	1920	2400	2351	2082	2242
10^{-4}	1882	2846	2809	2432	2569
$1.6 \cdot 10^{-4}$			2929		2096
10^{-3}	1633	4000		3076	
$4 \cdot 10^{-3}$	669				

Table 8 (continuation)

Concentration (M)	Atenolol	Isoprenaline	Isoprenaline + + Atenolol $5 \cdot 10^{-4}$ M	Isoprenaline + + Atenolol $8 \cdot 10^{-4}$ M
0	3492	3416	3469	3492
10^{-8}	3378	3708	2716	2475
10^{-7}	3492	3733	2826	2593
10^{-6}	3539	3683	2845	2593
10^{-5}	3635	3912	2921	2864
10^{-4}	3635	4073	3446	3039
$5 \cdot 10^{-4}$	2735	-	-	-
$8 \cdot 10^{-4}$	2426	-	-	-
10^{-3}	2064	5868	4938	4575
$2.36 \cdot 10^{-3}$	-	6619	6044	5911

These results indicate the fact that carbonic anhydrase acts as an adrenergic *beta*-receptor and could be the binding site of adrenergic agonists based on their secretory effect on gastric acid secretion.

In vivo combined administration of carbonic anhydrase inhibitors and *beta*-adrenergic blockers to patients with gastroduodenal disorders has therapeutic effects (reduced secretion parameters) and leads to healing using reduced inhibitor doses (table 9).

Table 9

The effect of beta-adrenergic blockers combined with acetazolamide or ethoxzolamide on acid gastric secretion parameters in patients with duodenal ulcers after three days of treatment

Name	Nos. of cases	Dose mg/day	Flow mEq/h	CA	
				Concentration mEq/l	Volume ml/h
Control group	20	-	9.87 ± 2.71	76 ± 22	129 ± 27
Acetazolamide	20	3 × 600	4.39 ± 1.12	45 ± 12	97 ± 37
Ethoxzolamide	20	3 × 100	3.87 ± 0.98	37 ± 17	105 ± 28
Propranolol	20	3 × 200	7.27 ± 1.82	61 ± 21	119 ± 31
Practolol	20	3 × 200	6.89 ± 2.65	57 ± 28	120 ± 22
Pindolol	20	3 × 10	7.98 ± 2.17	69 ± 22	115 ± 17
Acetazolamide	20	3 × 600	1.89 ± 0.4	27 ± 5	70 ± 13
Propranolol	-	3 × 20			
Acetazolamide+ + Practolol	20	3 × 600	0.87 ± 0.12	19 ± 4	46 ± 15
Acetazolamide	20	3 × 600	0.62 ± 0.31	21 ± 5	29 ± 17
Pindolol	-	3 × 10			
Ethoxzolamide + Propranolol	20	3 × 100 3 × 20	1.12 ± 0.27	26 ± 7	43 ± 11
Ethoxzolamide+ + Practolol	20	3 × 100 3 × 200	0.47 ± 0.09	17 ± 6	27 ± 14
Ethoxzolamide + Pindolol	20	3 × 100 3 × 10	0.71 ± 0.17	24 ± 3	29 ± 7

The composition according to the invention has the following advantages:

- it allows a 10 to 50% reduction of the effective sulfonamide inhibitor dose;
- it is well tolerated by the body and it causes no side effects.

Claims

1. Synergistic pharmaceutical composition for the treatment of gastritis, gastroduodenitis, and gastric and duodenal ulcers comprising a carbonic anhydrase inhibitor selected from among sodium acetazolamide, potassium bicarbonate, [TN: word appears to be missing] oxide, or ethoxzolamide combined with sodium bicarbonate, potassium bicarbonate, magnesium oxide, aluminum hydroxide and sodium citrate, characterized in that in order to obtain superior therapeutic effects and reduce the anhydrase inhibitor dose said composition comprises in addition to the carbonic anhydrase inhibitor also a *beta*-adrenergic blocker selected from among propranolol, atenolol, pindolol, timolol, oxprenolol,

- acebutolol or metoprolol having a weight ratio of carbonic anhydrase inhibitor to *beta*-blocker of 1.37 : 231.
- 2. Synergistic pharmaceutical composition according to claim, 1 characterized in that if the carbonic anhydrase inhibitor used is acetazolamide and the *beta*-adrenergic blocker used is propranolol, the weight ratio thereof is 6 to 81.
 - 3. Synergistic pharmaceutical composition according to claim, 1 characterized in that if the carbonic anhydrase inhibitor used is ethoxzolamide and the *beta*-adrenergic blocker used is propranolol, the weight ratio thereof is 2.10 to 29.
 - 4. Synergistic pharmaceutical composition according to claim, 1 characterized in that if the carbonic anhydrase inhibitor used is acetazolamide and the *beta*-adrenergic blocker used is atenolol [sic], the weight ratio thereof is 8.2 to 70.4.
 - 5. Synergistic pharmaceutical composition according to claim, 1 characterized in that if the carbonic anhydrase inhibitor used is ethoxzolamide and the *beta*-adrenergic blocker used is atenolol, the weight ratio thereof is 2.9 to 39.2.
 - 6. Synergistic pharmaceutical composition according to claim, 1 characterized in that if the carbonic anhydrase inhibitor used is acetazolamide and the *beta*-adrenergic blocker used is pindolol, the weight ratio thereof is 30 to 126.
 - 7. Synergistic pharmaceutical composition according to claim, 1 characterized in that if the carbonic anhydrase inhibitor used is ethoxzolamide and the *beta*-adrenergic blocker used is pindolol, the weight ratio thereof is 13.2 to 95.1.
 - 8. Synergistic pharmaceutical composition according to claim, 1 characterized in that if the carbonic anhydrase inhibitor used is acetazolamide and the *beta*-adrenergic blocker used is timolol, the weight ratio thereof is 39.1 to 231.
 - 9. Synergistic pharmaceutical composition according to claim, 1 characterized in that if the carbonic anhydrase inhibitor used is ethoxzolamide and the *beta*-adrenergic blocker used is timolol, the weight ratio thereof is 21.8 to 222.
 - 10. Synergistic pharmaceutical composition according to claim, 1 characterized in that if the carbonic anhydrase inhibitor used is acetazolamide and the *beta*-adrenergic blocker used is oxprenolol, the weight ratio thereof is 15.8 to 108.
 - 11. Synergistic pharmaceutical composition according to claim, 1 characterized in that if the carbonic anhydrase inhibitor used is ethoxzolamide and the *beta*-adrenergic blocker used is oxprenolol, the weight ratio thereof is 5.8 to 39.2.
 - 12. Synergistic pharmaceutical composition according to claim, 1 characterized in that if the carbonic anhydrase inhibitor used is acetazolamide and the *beta*-adrenergic blocker used is acebutolol, the weight ratio thereof is 2.8 to 9.
 - 13. Synergistic pharmaceutical composition according to claim, 1 characterized in that if the carbonic anhydrase inhibitor used is acetazolamide and the *beta*-adrenergic blocker used is acebutolol, the weight ratio thereof is 1.37 to .7.
 - 14. Synergistic pharmaceutical composition according to claim, 1 characterized in that if the carbonic anhydrase inhibitor used is acetazolamide and the *beta*-adrenergic blocker used is metoprolol, the weight ratio thereof is 7.5 to 47.6.
 - 15. Synergistic pharmaceutical composition according to claim, 1 characterized in that if the carbonic anhydrase inhibitor used is acetazolamide and the *beta*-adrenergic blocker used is metoprolol, the weight ratio thereof is 2.8 to 22.2.

(56) Bibliography

R.S.R. patents nos. 65972; 82715; 65969

President of the inventions commission: **Alexandra Voicu, engineer**
Examiner: **Elena Pentelescu, pharmacist**

State Patent and Trademark Office, Bucharest, Printed on September 30, 1987.
First edition, I. P. Galați cd. 48107

REPUBLICA
SOCIALISTA
ROMANIA

CONSILIUL NAȚIONAL
PENTRU
ȘI TEHNOLOGIE

OPICIUL DE STAT
PENTRU
INVENTII ȘI MĂRCI

BREVET DE INVENTIE ⁽¹⁹⁾ RO ⁽¹⁹⁾ 92436

(12) DESCRIEREA INVENTIEI

(21) Cerere de brevet nr.: 118467	(51) Int. Cl. ⁽⁴⁾ : A 61 K 9/20
(22) Data înregistrării: 19.04.85	
(61) Complementară la inventia brevet nr.:	
(45) Data publicării: 30.09.87	
(86) Cerere internațională (PCT): nr.: data:	
(87) Publicarea cererii internaționale: nr.: data:	
(39)	
(30) Prioritate	
(32) Data:	
(33) Țara:	
(31) Certificat nr.:	

(71) Solicitant; (72) Inventator: medic Pușcaș Ioan, medic Pușcaș Carmen, Șimleul Silvaniei, județul Maramureș, medic Buzaș Gheorghe, Cluj-Napoca, ing. Sturzu Lucian, Șimleul Silvaniei, județul Maramureș

(73) Titular: Intreprinderea de Medicamente, București

Compoziție medicamentoasă sinergică pentru tratamentul gastritelor, gastroduodenitelor și ulcerelor gastroduodenale

(57) Rezumat

Compoziția medicamentoasă sinergetică pentru tratamentul gastritelor, gastroduodenitelor și ulcerelor gastroduodenale conform inventiei, conține pe lîngă un inhibitor de anhidraza carbonică și un β -blocaț adrenergic ales dintre

5

propranolol, atenolol, pindolol, timolol, oxaprotilol, acebutolol sau metoprolol într-un raport în greutate între inhibitorul de anhidraza carbonică și β -blocaț de 1,37...231.

Prezenta invenție se referă la o compoziție medicamentoasă sinergică pentru tratamentul gastritelor, gastroduodenitelor și ulcerelor gastroduodenale, utilizată în scopul reducerii secreției gastrice acide.

Sunt cunoscute compoziții medicamentoase utilizate în tratamentul ulcerelor gastroduodenale constituite din asocierea acetazolaminei cu citrat de sodiu sau potasiu, bicarbonat de sodiu și/sau potasiu, oxid de magneziu, hidroxid de aluminiu sau asocierea etoxzolamidei cu săruri de magneziu ale aminoacizilor alese dintre aspartat, glicinat sau glutamat de magneziu, citrat de sodiu și bicarbonat de potasiu sau asocierea etoxzolamidei cu bicarbonat de potasiu, citrat de sodium, oxid de magneziu și hidroxid de aluminiu.

Dezavantajul acestor compoziții constă în aceea că instalarea efectului terapeutic se face după o perioadă de latență de 3...5 zile, cît și faptul că pot apărea și fenomene secundare cum ar fi: somnolență, oboseală sau parestezii ale extremităților.

Scopul prezentei invenții este de a obține o compoziție medicamentoasă sinergică pentru tratamentul gastritelor, gastroduodenitelor și ulcerelor gastroduodenale, prin reglarea motorie a secreției gastrice.

Problema pe care o rezolvă invenția este alegerea ingredientelor și a raportului lor de asociere.

Compoziția medicamentoasă, conform invenției constă din aceea că este constituită dintr-un inhibitor de anhidrază carbonică și un β -blocant adrenergic alese dintre propranolol, atenolol, pindolol, timolol, oxprenolol, acebutolol sau metoprolol într-un raport în greutate între inhibitorul de anhidrază carbonică și β -blocant de 1,37...231.

Se dă în continuare 28 exemple de realizare a invenției.

Exemplul 1. Pentru obținerea produsului medicamentos se asociază următoarele ingrediente (cantitățile sunt exprimate în mmoli): 0,9 acetazolamidă, 0,3 bicarbonat de sodiu, 0,7 bicarbonat de potasiu, 2,25 oxid de magneziu, 0,5 hidroxid de aluminiu, 0,3 citrat de sodiu, 0,15 propranolol.

Raportul molar dintre inhibitorul sulfonamidic și β -blocantul adrenergic este 6.

Exemplul 2. Pentru obținerea produsului medicamentos se asociază următoarele ingrediente (cantitățile sunt exprimate în mmoli): 1,62 acetazolamidă, 0,54 bicarbonat de sodiu, 1,26 bicarbonat de potasiu, 4,05 oxid de magneziu, 0,9 hidroxid de aluminiu, 0,54 citrat de sodiu,

0,02 propranolol. Raportul molar dintre inhibitorul sulfonamidic și β -blocantul adrenergic este 81.

Exemplul 3. Pentru obținerea produsului medicamentos se asociază următoarele ingrediente (cantitățile sunt exprimate în mmoli): 0,37 etoxzolamidă, 1,15 bicarbonat de potasiu, 2,5 oxid de magneziu, 0,625 hidroxid de aluminiu, 0,5 citrat de sodiu, 0,17 propranolol. Raportul molar dintre inhibitorul sulfonamidic și β -blocantul adrenergic este 2,18.

Exemplul 4. Pentru obținerea produsului medicamentos se asociază următoarele ingrediente (cantitățile sunt exprimate în mmoli): 0,666 etoxzolamidă, 2,07 bicarbonat de potasiu, 4,5 oxid de magneziu, 1,125 hidroxid de aluminiu, 0,9 citrat de sodiu, 0,023 propranolol. Raportul molar dintre inhibitorul sulfonamidic și β -blocantul adrenergic este de 29.

Exemplul 5. Pentru obținerea produsului medicamentos se asociază următoarele ingrediente (cantitățile sunt exprimate în mmoli): 0,9 acetazolamidă, 0,3 bicarbonat de sodiu, 0,7 bicarbonat de potasiu, 2,25 oxid de magneziu, 0,5 hidroxid de aluminiu, 0,3 citrat de sodiu, 0,11 atenolol. Raportul molar dintre inhibitorul sulfonamidic și β -blocantul adrenergic este de 8,2.

Exemplul 6. Pentru obținerea produsului medicamentos se asociază următoarele ingrediente (cantitățile sunt exprimate în mmoli): 1,62 acetazolamidă, 0,54 bicarbonat de sodiu, 1,26 bicarbonat de potasiu, 4,05 oxid de magneziu, 0,9 hidroxid de aluminiu, 0,54 citrat de sodiu, 0,023 atenolol. Raportul molar dintre inhibitorul sulfonamidic și β -blocantul adrenergic este de 70,4.

Exemplul 7. Pentru obținerea produsului medicamentos se asociază următoarele ingrediente (cantitățile sunt exprimate în mmoli): 0,37 etoxzolamidă, 1,15 bicarbonat de potasiu, 2,5 oxid de magneziu, 0,625 hidroxid de aluminiu, 0,5 citrat de sodiu, 0,125 atenolol. Raportul molar dintre inhibitorul sulfonamidic și β -blocantul adrenergic este de 2,9.

Exemplul 9. Pentru obținerea produsului medicamentos se asociază următoarele ingrediente (cantitățile sunt exprimate în mmoli): 0,666 etoxzolamidă, 2,07 bicarbonat de potasiu, 4,5 oxid de magneziu, 1,125 hidroxid de aluminiu, 0,9 citrat de sodiu, 0,017 atenolol. Raportul molar dintre inhibitorul sulfonamidic și β -blocantul adrenergic este de 39,2.

Exemplul 9. Pentru obținerea produsului medicamentos se asociază următoarele ingrediente (cantitățile sunt exprimate în mmoli): 0,9 acetazolamidă, 0,3 bicarbonat de sodiu, 0,7 bicarbonat de po-

tasiu, 2,25 oxid de magneziu, 0,5 hidroxid de aluminiu, 0,3 citrat de sodiu, 0,03 pindolol. Raportul molar dintre inhibitorul sulfonamidic și β -blocantul adrenergic este de 30.

Exemplul 10. Pentru obținerea produșului medicamentos se asociază următoarele ingrediente (cantitățile sunt exprimate în mmoli): 1,26 acetazolamidă, 0,54 bicarbonat de sodiu, 1,26 bicarbonat de potasiu, 4,05 oxid de magneziu, 0,9 hidroxid de aluminiu, 0,54 citrat de sodiu, 0,01 pindolol. Raportul molar dintre inhibitorul sulfonamidic și β -blocantul adrenergic este de 162.

Exemplul 11. Pentru obținerea produșului medicamentos se asociază următoarele ingrediente (cantitățile sunt exprimate în mmoli): 0,37 etoxzolamidă, 1,15 bicarbonat de potasiu, 2,5 oxid de magneziu, 0,625 hidroxid de aluminiu, 0,5 citrat de sodiu, 0,028 pindolol. Raportul molar dintre inhibitorul sulfonamidic și β -blocantul adrenergic este de 13,2.

Exemplul 12. Pentru obținerea produșului medicamentos se asociază următoarele ingrediente (cantitățile sunt exprimate în mmoli): 0,666 etoxzolamidă, 2,07 bicarbonat de potasiu, 4,5 oxid de magneziu, 1,125 hidroxid de aluminiu, 0,9 citrat de sodiu, 0,007 pindolol. Raportul molar dintre inhibitorul sulfonamidic și β -blocantul adrenergic este de 95,1.

Exemplul 13. Pentru obținerea produșului medicamentos se asociază următoarele ingrediente (cantitățile sunt exprimate în mmoli): 0,9 acetazolamidă, 0,3 bicarbonat de sodiu, 0,7 bicarbonat de potasiu, 2,25 oxid de magneziu, 0,5 hidroxid de aluminiu, 0,3 citrat de sodiu, 0,023 timolul. Raportul molar dintre inhibitorul sulfonamidic și β -blocantul adrenergic este de 39,1.

Exemplul 14. Pentru obținerea produșului medicamentos se asociază următoarele ingrediente (cantitățile sunt exprimate în mmoli): 1,62 acetazolamidă, 0,54 bicarbonat de sodiu, 1,26 bicarbonat de potasiu, 4,05 oxid de magneziu, 0,9 hidroxid de aluminiu, 0,54 citrat de sodiu, 0,007 timolul. Raportul molar dintre inhibitorul sulfonamidic și β -blocantul adrenergic este de 231.

Exemplul 15. Pentru obținerea produșului medicamentos se asociază următoarele ingrediente (cantitățile sunt exprimate în mmoli): 0,37 etoxzolamidă, 1,15 bicarbonat de potasiu, 2,5 oxid de magneziu, 0,625 hidroxid de aluminiu, 0,5 citrat de sodiu, 0,017 timolul. Rapor-

tul molar dintre inhibitorul sulfonamidic și β -blocantul adrenergic este de 21,8.

Exemplul 16. Pentru obținerea produșului medicamentos se asociază următoarele ingrediente (cantitățile sunt exprimate în mmoli): 0,666 etoxzolamidă, 2,07 bicarbonat de potasiu, 4,5 oxid de magneziu, 1,125 hidroxid de aluminiu, 0,9 citrat de sodiu, 0,003 timolul. Raportul molar dintre inhibitorul sulfonamidic și β -blocantul adrenergic este de 222.

Exemplul 17. Pentru obținerea produșului medicamentos se asociază următoarele ingrediente (cantitățile sunt exprimate în mmoli): 0,9 acetazolamidă, 0,3 bicarbonat de sodiu, 0,7 bicarbonat de potasiu, 2,25 oxid de magneziu, 0,5 hidroxid de aluminiu, 0,3 citrat de sodiu, 0,057 oxprenolul. Raportul molar dintre inhibitorul sulfonamidic și β -blocantul adrenergic este de 15,8.

Exemplul 18. Pentru obținerea produșului medicamentos se asociază următoarele ingrediente (cantitățile sunt exprimate în mmoli): 1,26 acetazolamidă, 0,54 bicarbonat de sodiu, 1,26 bicarbonat de potasiu, 4,01 oxid de magneziu, 0,9 hidroxid de aluminiu, 0,54 citrat de sodiu, 0,015 oxprenolol. Raportul molar dintre inhibitorul sulfonamidic și β -blocantul adrenergic este de 108.

Exemplul 19. Pentru obținerea produșului medicamentos se asociază următoarele ingrediente (cantitățile sunt exprimate în mmoli): 0,37 etoxzolamidă, 1,15 bicarbonat de potasiu, 2,5 oxid de magneziu, 0,625 hidroxid de aluminiu, 0,5 citrat de sodiu, 0,063 oxprenolol. Raportul molar dintre inhibitorul sulfonamidic și β -blocantul adrenergic este de 5,8.

Exemplul 20. Pentru obținerea produșului medicamentos se asociază următoarele ingrediente (cantitățile sunt exprimate în mmoli): 0,666 etoxzolamidă, 2,07 bicarbonat de potasiu, 4,5 oxid de magneziu, 1,125 hidroxid de aluminiu, 0,9 citrat de sodiu, 0,017 oxprenolol. Raportul molar dintre inhibitorul sulfonamidic și β -blocantul adrenergic este de 39,2.

Exemplul 21. Pentru obținerea produșului medicamentos se asociază următoarele ingrediente (cantitățile sunt exprimate în mmoli): 0,9 acetazolamidă, 0,3 bicarbonat de sodiu, 0,7 bicarbonat de potasiu, 2,25 oxid de magneziu, 0,5 hidroxid de aluminiu, 0,3 citrat de sodiu, 0,32 acebutolol. Raportul molar dintre inhibitorul sulfonamidic și β -blocantul adrenergic este de 2,8.

Exemplul 22. Pentru obținerea producătorului medicamentos se asociază următoarele ingrediente (cantitățile sunt exprimate în mmoli): 1,62 acetazolamidă, 0,54 bicarbonat de sodiu, 1,26 bicarbonat de potasium, 4,05 oxid de magneziu, 0,9 hidroxid de aluminiu, 0,54 citrat de sodiu, 0,18 acebutolol. Raportul molar dintre inhibitorul sulfonamidic și β -blocantul adrenergic este 9.

Exemplul 23. Pentru obținerea producătorului medicamentos se asociază următoarele ingrediente (cantitățile sunt exprimate în mmoli): 0,37 etoxzolamidă, 1,15 bicarbonat de potasiu, 2,5 oxid de magneziu, 0,625 hidroxid de aluminiu, 0,5 citrat de sodiu, 0,27 acebutolol. Raportul molar dintre inhibitorul sulfonamidic și β -blocantul adrenergic este 1,37.

Exemplul 24. Pentru obținerea producătorului medicamentos se asociază următoarele ingrediente (cantitățile sunt exprimate în mmoli): 0,666 etoxzolamidă, 2,07 bicarbonat de potasiu, 4,5 oxid de magneziu, 1,125 hidroxid de aluminiu, 0,9 citrat de sodiu, 0,18 acebutolol. Raportul molar dintre inhibitorul sulfonamidic și β -blocantul adrenergic este 3,7.

Exemplul 25. Pentru obținerea producătorului medicamentos se asociază următoarele ingrediente (cantitățile sunt exprimate în mmoli): 0,9 acetazolamidă, 0,3 bicarbonat de sodiu, 0,7 bicarbonat de potasiu, 2,25 oxid de magneziu, 0,5 hidroxid de aluminiu, 0,3 citrat de sodiu, 0,12 metoprolol. Raportul molar dintre inhibitorul sulfonamidic și β -blocantul adrenergic este 7,5.

Exemplul 26. Pentru obținerea producătorului medicamentos se asociază următoarele ingrediente (cantitățile sunt exprimate în mmoli): 1,62 acetazolamidă, 0,34 bicarbonat de sodiu, 1,26 bicarbonat de potasiu, 4,05 oxid de magneziu, 0,9 hidroxid de aluminiu, 0,54 citrat de sodiu, 0,034 metoprolol. Raportul molar dintre inhibitorul sulfonamidic și β -blocantul adrenergic este 47,6.

Exemplul 27. Pentru obținerea producătorului medicamentos se asociază următoarele ingrediente (cantitățile sunt exprimate în mmoli): 0,17 etoxzolamidă, 1,15 bicarbonat de potasiu, 2,5 oxid de magneziu, 0,625 hidroxid de aluminiu, 0,5 citrat de sodiu, 0,13 metoprolol. Raportul molar dintre inhibitorul sulfona-

midic și β -blocantul adrenergic este de 2,8.

Exemplul 28. Pentru obținerea producătorului medicamentos se asociază următoarele ingrediente (cantitățile sunt exprimate în mmoli): 0,666 etoxzolamidă, 2,07 bicarbonat de potasiu, 4,5 oxid de magneziu, 1,125 hidroxid de aluminiu, 0,9 citrat de sodiu, 0,03 metoprolol. Raportul molar dintre inhibitorul sulfonamidic și β -blocantul adrenergic este 22,2.

Anhidraza carbonică reprezintă o etapă esențială determinantă de viteză în procesul secreției gastrice acide. Inhiția ei cu diversi inhibitori conduce la scăderea producției de acid clorhidric, creând astfel condițiile necesare regenerării mucoasei gastroduodenale afectată de agresiunea clorhidropeptică.

Procesul de secreție gastrică acidă care se desfășoară la nivelul glandelor gastrice din zona fundică a mucoasei gastrice realizează sub controlul unui complex de factori neurohormonali și alimentari. Producerea acidului clorhidric se desfășoară la nivelul celulelor parietale, factorii de stimulare principali fiind reprezentanți de gastrină, acetilcolină și histamina. Pentru acești secretagogi s-au postulat și identificat receptori specifici la nivelul celulei parietale.

Stimularea adrenergică (adrenalină, noradrenalină, isoprenalină etc.) a fost postulată a se desfășura la nivelul unor receptori specifici, găsiți pe celula parietală, dar existența și identificarea unor asemenea receptori nu a fost demonstrată experimental.

În prezent receptoarele adrenergice, definiți anatomic și farmacologic, se împart în receptoare *alfa* și *beta* după cum răspunsul față de o serie de agonistă prezintă succesiunea adrenalină — noradrenalină — isoproterenol (isoprenalină) — receptoare *alfa* — respectiv (isoproterenol) — noradrenalină — adrenalină — receptoare *beta*.

Studiile *in vitro*, legate de influența agonistilor adrenergici asupra activității anhidrazei carbonice purificate din hematii și din mucoasa gastrică umană, au evidențiat în primul rînd o puternică acțiune activatoare a isoprenalinei asupra activității enzimei, iar în al doilea rînd, un comportament de receptor *beta*-adrenergic (tabelul 1).

Tabelul 1

Efectul agonistilor adrenergici asupra activitatii anhidrazei carbonice purificate, din hematii si din mucoasa gastrica umana (MG)

Concentratia (M)	Isoprenalina			Orcipre- nalină	Adrena- lină	Noradre- nalină
	AC pură Hematii MG			AC pură	AC pură	AC pură
0	2040	2572	1,96	2088	2060	2094
10^{-8}	2040	2680	1,96	2047	2040	2136
10^{-7}	2125	2662	1,95	2033	2081	2122
10^{-6}	2168	2736	1,96	2047	2109	2122
10^{-5}	2416	2699	1,96	2518	2225	2122
10^{-4}	3076	3051	2,46	3295	2181	2136
$2 \cdot 10^{-4}$			2,81		2255	
$2 \cdot 10^{-4}$					2428	
$4 \cdot 10^{-4}$					2562	
$5 \cdot 10^{-4}$			3,33		2528	
$1 \cdot 10^{-3}$	4083	4558	4,12			2164
$2 \cdot 10^{-3}$	5425	7358	5,73			

Studiul influenței unor beta-blocanți adrenergici ca : propranolol, timolol, oxiprenolol, pindolol, atenolol, metaprolol sau practolol, au evidențiat o puternică

acțiune inhibitoare asupra activității anhidrazei carbonice purificate din hematii sau din mucoasa gastrica umană (tabelul 2).

92436

Tabelul 2

Efectul unor beta-blocați adrenergici asupra activității anhidrazelor carbonice pure (AC) din hemati și din mucoasa gastrică umană (MG)

In vivo, administrarea unor beta-blocanți adrenergici la pacienți cu afecții gastrouodenale realizează reduceri

modeste atât ale parametrilor secreției gastrice acide, cât și ale activității anhidrazei carbonice (tabelul 3).

Tabelul 3

Înfluența unor beta-blocanți adrenergici asupra producerii acidului clorhidric și activității anhidrazei carbonice (AC) din mucoasa gastrică (MG) și hematii (H) la pacienți cu ulcere duodenale, după 3 zile de administrare

Beta-blocant	Nr. cazuri	Doza mg/zi	Debit H ⁺ mEq/h	AC	
				MG	Hematii
Lot martor	29	—	9,87±2,71	1,87±0,13	2876±139
Propranolol	20	3×20	7,27±1,02	1,62±0,35	2514±275
Pindolol	20	3×10	7,98±1,17	1,70±0,31	2590±113
Practolol	20	3×200	6,89±1,65	1,58±0,39	2476±326
Oxrenolol	20	3×20	7,14±0,98	1,67±0,19	2623±170
Metoprolol	20	3×10	6,97±1,82	1,76±0,27	2768±123
Atenolol	20	3×10	7,45±1,63	1,79±0,33	2796±273
Timolol	20	3×20	7,16±2,08	1,71±0,29	2783±315

Studiul *in vitro* al interacțiunii agonistilor adrenergici și acetazolamidă, inhibitor specific al anhidrazei carbonice actionând la nivelul situsului activ prin chelatarea ionului de zinc, demonstrează

existența unui antagonism necompetitiv, evidențiind astfel faptul că agonistii adrenergici nu acționează la nivelul atomului de zinc.

Tabelul 4

Interacțiunea agonistilor adrenergici cu acetazolamida asupra activității anhidrazei carbonice purificate

Concentrația (M)	Acetazolamida	Izoprena-lina	Izoprenalina + Acetazolamida 10 ⁻⁹ M	Izoprenalina + Acetazolamida 10 ⁻⁷ M	Izoprenalina + Acetazolamida 10 ⁻⁵ M
0	2061	2947	2020	2000	2040
10 ⁻⁹	2047	2131	1754	631	536
10 ⁻⁸	1742	2189	1851	660	552
10 ⁻⁷	608	2189	1851	666	552
10 ⁻⁶	563	2264	1839	702	602
10 ⁻⁵	557	2372	1876	804	643
10 ⁻⁴	514	2814	2047	893	696
10 ⁻³	493	3940	2776	1656	994

Studiul *in vitro* al interacțiunii agonistilor adrenergici cu histamina, un activator puternic al anhidrazei carbonice,

evidențiază existența unui sinergism necompetitiv (tabelul 5).

Tabelul 5
Interacțiunea agoniștilor adrenergici cu histamina asupra activității anhidrazei carbonice pure

Concentrația (M)	Histamină	Izoprenalina	Hist. + Izop. 10 ⁻⁶ M	Hist. + Izop. 10 ⁻⁵ M	Hist. + Izop. 10 ⁻⁴ M
10 ⁻⁶	1993	1993	2020	2006	2020
10 ⁻⁵	2191	—	2104	2361	3237
10 ⁻⁷	—	—	—	—	—
10 ⁻⁶	2377	2147	2377	2361	3372
10 ⁻⁵	2510	2377	2546	2528	3575
10 ⁻⁴	2690	2904	2785	2617	3655
10 ⁻³	2824	—	2925	3184	3794
10 ⁻²	3910	—	3822	4156	4494

Studiul *in vitro* al interacțiunii beta-blocanților adrenergici asupra activității anhidrazei carbonice evidențiază existența unui sinergism necompetitiv cu a-

cetazolamida (tabelul 6), a unui antagonism necompetitiv cu histamina (tabelul 7) și a unui antagonism competitiv cu isoprenalina (tabelul 8).

Tabelul 6
Interacțiunea unor beta-blocanți adrenergici cu acetazolamida asupra activității anhidrazei carbonice purificate

Concentrația (M)	Propranolol	Acetazolamidă	Propran. + Acetazol. 10 ⁻⁶ M	Propran. + Acetazol. 10 ⁻⁷ M	Propran. + Acetazol. 10 ⁻⁸ M
0	2068	2081	—	—	—
10 ⁻⁶ M	—	1833	—	—	—
10 ⁻⁷ M	—	875	—	—	—
10 ⁻⁸ M	—	445	—	—	—
10 ⁻⁶ M	1657	—	1517	755	214
2·10 ⁻⁶ M	1417	—	1164	425	0
3·10 ⁻⁶ M	1139	—	938	300	0
3·30·10 ⁻⁶ M	953	—	807	243	0

Tabelul 7
Interacțiunea unor beta-blocanți adrenergici cu histamina asupra activității anhidrazei carbonice purificate

Concen- trația (M)	Atenolol	Propa- nolol	Histami- nă	Hist. + Propan. 2·10 ⁻⁶	Hist.	Hist. + Aten. 10 ⁻³
0	2074	1967	1980	1993	2102	2074
10 ⁻⁶	2173	—	2288	1759	2246	1710
10 ⁻⁷	2088	—	2303	1724	2417	1906
10 ⁻⁸	2102	2511	2511	1747	2656	2022
10 ⁻⁵	2088	—	2720	2033	2843	2140
10 ⁻⁴	1954	—	2972	2101	2962	2104
2·10 ⁻⁶	—	1440	—	—	—	—
10 ⁻³	1733	—	3010	2334	3110	2246
10 ⁻²	—	—	3972	3389	4153	3557

Tabelul 8

Interacțiunea unor beta-blocați adrenergici cu isoprenalină asupra activității anhidrazei carbonice pure

Concentrație (M)	Atenolol	Izoprenalină	Orciprenalină	Atenolol + Izoprenalină	Atenolol + Orciprenalină
0	2000	2040	2054	2040	2040
10^{-6}	2139	2125	2068	2153	2168
10^{-7}	2082	2110	2197	2197	2139
10^{-8}	1946	2227	2242	2092	2168
10^{-9}	1920	2400	2351	2082	2242
10^{-10}	1882	2048	2809	2432	2569
$1,6 \cdot 10^{-11}$			2929		2996
10^{-11}	1633	4000		3076	
$4 \cdot 10^{-12}$	669				

Tabelul 8 (continuare)

Concentrație (M)	Atenolol	Izoprenalină	Izoprenalină + Atenolol $5 \cdot 10^{-4}$ M	Izoprenalină + Atenolol $8 \cdot 10^{-4}$ M
0	3492	3416	3469	3492
10^{-6}	3378	3708	2716	2475
10^{-7}	3492	3733	2826	2593
10^{-8}	3539	3680	2845	2593
10^{-9}	3635	3912	2921	2864
10^{-10}	3635	4073	3446	3039
$5 \cdot 10^{-11}$	2735	—	—	—
$8 \cdot 10^{-11}$	2426	—	—	—
10^{-11}	2064	5868	4938	4575
$2,36 \cdot 10^{-12}$	—	6619	6044	5911

Acste rezultate evidențiază faptul că anhidraza carbonică prezintă comportament de receptor *beta* - adrenergic și ar putea reprezenta sediul de legare a agonistilor adrenergici pentru efectele lor de secretagogi ai secreției gastrice acide.

Administrarea asociată *in vivo* de inhibitori ai anhidrazei carbonice și *beta*-blocați adrenergici, la pacienți cu afecțiuni gastroduodenale, conduce la obținerea unor efecte terapeutice (reducerea parametrilor secretori) și la vindecarea cu doze reduse de inhibitori (tabelul 9).

Tabelul 9

Efectul asocierii beta-blocanți adrenergici cu acetazolamidă sau etoxzolamidă asupra parametrilor secreției gastrice acide la pacienții cu ulcere duodenale după 3 zile de tratament

Denumirea	Nr. cazuri	Doză, mg/zi	Debit, mEq/h	Concentrație, mEq/l	Volum, ml/h
Lot maritor	20	—	9,07±2,71	76±22	129±27
Acetazolamidă	20	3×600	4,39±1,12	45±12	97±37
Etoxzolamidă	20	3×100	3,87±0,93	37±17	105±26
Propranolol	20	3×200	7,27±1,82	61±21	119±31
Practolol	20	3×200	6,09±2,65	57±28	120±22
Pindolol	20	3×10	7,93±2,17	69±22	115±17
Acetazolamidă	20	3×600	1,29±0,4	27±5	70±13
Proprenolol	—	3×20			
Acetazolamidă+ -Practolol	20	3×600	0,87±0,12	19±4	46±15
Acetazolamidă	20	3×600	0,62±0,31	21±5	29±17
Pindolol	—	3×10			
Etoxzolamidă+ -Propranolol	20	3×100 3×20	1,12±0,27	26±7	43±11
Etoxzolamidă+ -Practolol	20	3×100 3×200	0,47±0,09	17±6	27±14
Etoxzolamidă+ -Pindolol	20	3×100 3×10	0,71±0,17	24±3	29±7

Compoziția, conform invenției, prezintă următoarele avantaje :

— conduce la reducerea dozei eficiente de inhibitor sulfonamidic cu 10 și 50% ;

— este bine suportată de organism și nu dă efecte secundare.

Revendicări

1. Compoziție medicamentoasă sinergică pentru tratamentul gastritelor, gastroduodenitelor și ulcerelor gastroduodenale conținând un inhibitor de anhidrază carbonică ales dintre acetazolamidă de sodiu, bicarbonat de potasiu, oxid de sau etoxzolamidă asociat cu bicarbonat de sodiu, bicarbonat de potasiu, oxid de magneziu, hidroxid de aluminiu și citrat de sodiu, caracterizată prin aceea că, în vederea obținerii unor efecte terapeutice, superioare și a reducerii dozei de inhibitor de anhidrază conține pe lingă inhibitorul de anhidrază carbonică și un β-blocant adrenergic ales dintre propranolol, atenolol, pindolol, timolol, oxprenolol, acebutolol sau metoprolol într-un raport în greutate, între

inhibitorul de anhidrază carbonică și β -blocant, de 1,37...231.

2. Compoziție medicamentoasă, conform revendicării 1, caracterizată prin aceea că în cazul utilizării ca inhibitor de anhidrază carbonică a acetazolamidei și ca β -blocant adrenergic a propranoloului, raportul în greutate între acestea este 6...81.

3. Compoziție medicamentoasă conform revendicării 1, caracterizată prin aceea că în cazul utilizării ca inhibitor de anhidrază carbonică a etoxzolamidei și ca β-blocant adrenergic a propranoloului, raportul în greutate între acestea este 2,10...29.

4. Compoziție medicamentoasă, conform revendicării 1, caracterizată prin aceea că în cazul utilizării, ca inhibitor de anhidrază carbonică a acetazolamidei și ca β-blocant al etanolului, raportul în greutate între acestea este 8,2...70,4.

5. Compoziție medicamentoasă, conform revendicării 1, caracterizată prin aceea că, în cazul utilizării ca inhibitor de anhidrază carbonică a etoxzolamidei și ca β -blocant a atenolului, raportul în greutate între acestea este 2,9...39,2.

6. Compoziție medicamentoasă, conform revendicării 1, caracterizată prin aceea că, în cazul utilizării ca inhibitor de anhidrază carbonică a etoxzolamidei și ca β -blocant a pindolului, raportul în greutate între acestea este 30...126.

7. Compoziție medicamentoasă, conform revendicării 1, caracterizată prin aceea că, în cazul utilizării ca inhibitor de anhidrază carbonică a etoxzolamidei și ca β -blocant a pindolului, raportul în greutate între acestea este 13,2...95,1.

8. Compoziție medicamentoasă, conform revendicării 1, caracterizată prin aceea că, în cazul utilizării ca inhibitor de anhidrază carbonică a acetazolamidei și ca β -blocant a timolului, raportul în greutate între acestea este 39,1...231.

9. Compoziție medicamentoasă, conform revendicării 1, caracterizată prin aceea că, în cazul utilizării ca inhibitor de anhidrază carbonică a etoxzolamidei și ca β -blocant a timolului, raportul în greutate între acestea este 21,8...222.

10. Compoziție medicamentoasă, conform revendicării 1, caracterizată prin aceea că, în cazul utilizării ca inhibitor de anhidrază carbonică a acetazolamidei și ca β -blocant a oxprenolului, raportul în greutate între acestea este 15,8...108.

11. Compoziție medicamentoasă, conform revendicării 1, caracterizată prin aceea că, în cazul utilizării ca inhibitor

de anhidrază carbonică a etoxzolamidei și ca β -blocant a oxprenolului, raportul în greutate între acestea este 5,8...39,2

5 12. Compoziție medicamentoasă, conform revendicării 1, caracterizată prin aceea că, în cazul utilizării ca inhibitor de anhidrază carbonică a acetazolamidei și ca β -blocant a acebutolului, raportul în greutate între acestea este 2,8...9,0.

10 13. Compoziție medicamentoasă, conform revendicării 1, caracterizată prin aceea că, în cazul utilizării ca inhibitor de anhidrază carbonică a etoxzolamidei și ca β -blocant a acebutolului, raportul în greutate între acestea este 1,37...3,7.

15 14. Compoziție medicamentoasă, conform revendicării 1, caracterizată prin aceea că, în cazul utilizării ca inhibitor de anhidrază carbonică a acetazolamidei și ca β -blocant a metoprololului, raportul în greutate între acestea este 7,5...47,6.

20 15. Compoziție medicamentoasă, conform revendicării 1, caracterizată prin aceea că, în cazul utilizării ca inhibitor de anhidrază carbonică a etoxzolamidei și ca β -blocant a metoprololului, raportul în greutate între acestea este 2,8...22,2.

25

(56) Referințe bibliografice

Brevete, R.S.R., nr. 65972 ; 82715 ; 65969

Președintele comisiei de invenții : ing. Voicu Alexandra

Examinator : farm. Pentelescu Elena