1 Комплексні числа

Для зручності для читача ми викладемо тут основні визначення і факти, що стосуються до поняття комплексного числа, дій з ними, та їх геометричної ілюстрації.

1.1 Комплексні числа

Комплексним числом називається вираз вигляду x+iy, де x і y — дійсні числа, а i — символ, який називається уявною одиницею. Числа x і y називаються ∂i йсною і yявною частинами комплексного числа x+iy і позначаються символами

$$x = \operatorname{Re}(x + iy), \quad y = \operatorname{Im}(x + iy). \tag{1.1.1}$$

Якщо, зокрема, y=0, то x+i0 ототоженюеться з дійсним числом x. Якщо ж x=0, то 0+iy позначається просто iy і називається uucmoysehum.

Будемо казати, що комплексні числа $x_1 + iy_1$ і $x_2 + iy_2$ рівні,

$$x_1 + iy_1 = x_2 + iy_2, (1.1.2)$$

тоді і тільки тоді, коли $x_1 = x_2$, $y_1 = y_2$.

Відзначимо також, що якщо $x_2=x_1$, а $y_2=-y_1$, то комплексне число x_2+iy_2 називається спряженим до x_1+iy_1 і позначається символом x_1+iy_1 . Таким чином,

$$\overline{x+iy} = x - iy. \tag{1.1.3}$$

Перейдемо до операцій над комплексними числами.

1.1.1 Операції над комплексними числами

Cyмою z_1+z_2 комплексних чисел $z_1=x_1+iy_1$ і $z_2=x_2+iy_2$ називається комплексне число

$$z = z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2).$$
 (1.1.4)

Додавання комутативне:

$$z_1 + z_2 = z_2 + z_1, (1.1.5)$$

та асоціативне:

$$z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3.$$
 (1.1.6)

Додавання має *обернену* операцію: для довільних двох комплексних чисел $z_1=x_1+iy_1$ і $z_2=x_2+iy_2$ існує таке z, що $z_2+z=z_1$. z називається p ізницею чисел z_1 і z_2 і позначається z_1-z_2 . Очевидно,

$$z = z_1 - z_2 = (x_1 - x_2) + i(y_1 - y_2). (1.1.7)$$

Добутком $z_1 \cdot z_2$ комплексних чисел $z_1 = x_1 + iy_1$ і $z_2 = x_2 + iy_2$ називається комплексне число

$$z = z_1 \cdot z_2 = (x_1 \cdot x_2 - y_1 \cdot y_2) + i(x_1 \cdot y_2 + y_1 \cdot x_2). \tag{1.1.8}$$

Множення комутативне:

$$z_1 \cdot z_2 = z_2 \cdot z_1, \tag{1.1.9}$$

асоціативне:

$$z_1 \cdot (z_2 \cdot z_3) = (z_1 \cdot z_2) \cdot z_3, \tag{1.1.10}$$

і дистрибутивне відносно додавання:

$$(z_1 + z_2) \cdot z_3 = z_1 \cdot z_3 + z_2 \cdot z_3. \tag{1.1.11}$$

При $z_1 = z_2 = i$ з визначення множення випливає, що

$$i \cdot i = -1. \tag{1.1.12}$$

Якщо z_1 і z_2 – дійсні числа, то визначення (1.1.8) збігається зі звичайним.

Легко помітити, що формула (1.1.8) отримується при множенні $x_1 + iy_1$ та $x_2 + iy_2$ за звичайними правилами алгебрі та заміною добутку $i \cdot i$ на -1.

Відзначимо також, що добуток комплексного числа z = x + iy на спряжене завжди невід'ємний. Справді, з рівності (1.1.8) маємо:

$$z \cdot \overline{z} = x^2 + y^2 \ge 0. \tag{1.1.13}$$

Множення має *обернену* операцію якщо тільки заданий множник не дорівнює нулю. Нехай $z_2 \neq 0$, то можна знайти таке число z, що $z_2 \cdot z = z_1$. Для цього, згідно до (1.1.8), потрібно розв'язати систему

$$\begin{cases} x_2 \cdot x - y_2 \cdot y = x_1, \\ y_2 \cdot x + x_2 \cdot y = y_1, \end{cases}$$
 (1.1.14)

яка при $z_2 \neq 0$ завжди має єдиний розв'язок, адже її визначник $x_2^2 + y_2^2 > 0$. Це число z називається часткою двох чисел z_1 і z_2 і позначається символом z_1/z_2 . Розв'язуючи систему (1.1.14), отримуємо

$$z = \frac{z_1}{z_2} = \frac{x_1 \cdot x_2 + y_1 \cdot y_2}{x_1^2 + y_2^2} + i \cdot \frac{y_1 \cdot x_2 - x_1 \cdot y_2}{x_2^2 + y_2^2}.$$
 (1.1.15)

$$z^n = \underbrace{z \cdot \dots \cdot z}_{n \text{ pasis}}.\tag{1.1.16}$$

Обернена операція — знаходження кореня — визначається наступним чином: число w називається коренем n-го степеня з z, якщо $w^n = z$ (позначається $\sqrt[n]{z}$, причому для n = 2 пишуть просто \sqrt{z}).

Нижче ми побачимо, що для довільного $z \neq 0$ корінь $\sqrt[n]{z}$ має n pізних значень.

Рівність (1.1.12) ми можемо тепер записати у вигляді $i^2=-1$, і для уявної одиниці i маємо

$$i = \sqrt{-1} \tag{1.1.17}$$

(тут $\sqrt{-1}$ позначає одне з двох його можливих значень).

1.2 Геометрична ілюстрація

Розглянемо площину декартових координат xOy і домовимося зображати комплексне число z = x + iy точкою з координатами (x, y).

При цьому дійсні числа будуть зображені точками осі x (яку будемо називати $diйсною\ eicco$), а чисто уявні числа — точками осі y (яку будемо називати $yявною\ eicco$).

Зокрема, зображенням числа i слугуватиме точка (0,1) уявної вісі.

Легко бачити, що існує і *обернена* відповідність: кожній точці площини xOy з координатами (x,y) відповідатиме цілком конкретне комплексне число x+iy.

Це дозволяє нам надалі не розрізняти поняття комплексного числа та точки площини і використовувати обороти "точка 1+i", "трикутник

 $z_1 z_2 z_3$ " та подібні.

Далі, кожній точці (x, y) відповідає цілком конкретний вектор — радіусвектор цієї точки, а кожному радіусвектору, що лежить у площині — цілком конкретна точка — його кінець:

З цього малюнку зрозумілий геометричний зміст додавання і віднімання комплексних чисел.

Надалі наряду з представленням комплексних чисел у декартових координатах, корисно буде мати їх представлення у nonsphux координатах. Для цього, як зазвичай, суміщаємо полярну вісь з додатною піввіссю x, а полюс – з початком координат.

Тоді, якщо позначити через r полярний padiyc, а через φ – полярний κym точки z, то будемо мати

$$z = x + iy = r(\cos\varphi + i\sin\varphi). \tag{1.2.1}$$

Полярний радіус r називається modynem комплексного числа z і позначається символом |z|, кут φ – його apsymenmom і позначається символом ${\rm Arg}\ z.$

Модуль комплексного числа визначається однозначно:

$$|z| = \sqrt{x^2 + y^2} \ge 0, (1.2.2)$$

а його аргумент визначається з точністю до $2k\pi$:

$$\varphi = \operatorname{Arg} z = \begin{cases} \arctan\left(\frac{y}{x}\right) + 2k\pi, & \text{(I та IV квадранти),} \\ \arctan\left(\frac{y}{x}\right) + (2k+1)\pi, & \text{(II і III квадранти),} \end{cases}$$
 (1.2.3)

де arctan позначає головне значення Arctan, тобто таке, що належить $\left(-\frac{\pi}{2},\frac{\pi}{2}\right],\ k$ — довільне ціле число.

Надалі, наряду з $\operatorname{Arg} z$ ми будемо використовувати символ $\operatorname{arg} z$ який буде позначати $\operatorname{od} \operatorname{he}$ зі значень $\operatorname{Arg} z$, здебільшого головне.

Виконуються наступні нерівності:

$$|z_1 + z_2| \le |z_1| + |z_2|; \quad |z_1 - z_2| \ge ||z_1| - |z_2||.$$
 (1.2.4)

Причому рівність *досягається* лише коли $\operatorname{Arg} z_1 = \operatorname{Arg} z_2$, або одне з чисел нуль.

З визначення (1.1.8) попереднього пункту випливає, що при множенні комплексних чисел їх модулі *множсаться*, а їх аргументи *додаються*. Справді,

$$z_1 \cdot z_2 = r_1 \cdot r_2((\cos \varphi_1 \cdot \cos \varphi_2 - \sin \varphi_1 \cdot \sin \varphi_2) + i(\sin \varphi_1 \cdot \cos \varphi_2 + \sin \varphi_2 \cdot \cos \varphi_1)) =$$

$$= r_1 \cdot r_2(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2)). \quad (1.2.5)$$

Звідси випливає, що при множенні комплексного числа z_1 на z_2 вектор z_1 розтягується в $|z_2|$ разів і повертається (проти годинникової стрілки) на кут $\arg z_2$.

Зокрема, множення комплексного числа z на i зводиться до повороту (без розтягнення) вектору z на $npsmu\ddot{u}$ кут проти годинникової стрілки.

Для побудови добутку $z=z_1\cdot z_2$ достатньо на відрізку Oz_1 як на основі побудувати трикутник Oz_1z який nodifhuй трикутнику Oz_1z_2 .

Ділення комплексного числа z_1 на z_2 зводиться до множення z_1 на $1/z_2$, тому достатньо з'ясувати геометричний зміст операції w=1/z. Нехай спершу |z|<1:

Опустимо із точки z перпендикуляр на промінь Oz і через точку ζ перетину перпендикуляра із колом |z|=1 проведемо $\partial omuvny$ до цього кола.

Для точки ω перетину побудованої дотичної із променем Oz маємо

$$\operatorname{Arg}\omega = \operatorname{Arg}z,\tag{1.2.6}$$

а з подібності прямокутних трикутників $Oz\zeta$ і $O\zeta\omega$ маємо

$$|\omega|/|\zeta| = |\zeta|/|z|, \tag{1.2.7}$$

 $звідки |\omega| = 1/|z|$, адже $|\zeta| = 1$.

Таким чином, число ω є спряженим до числа 1/z, $\omega=1/\overline{z}$, і для отримання точки w=1/z достатньо побудувати точку, $\mathit{cumempuчhy}$ до точки

 ω відносно дійсної вісі.

Перехід від точки z до точки $\omega=1/\overline{z}$ називається *інверсією*, або *симетрією відносно* одиничного *кола* |z|=1.

Таким чином, операція w = 1/z геометрично зводиться до $\partial sox\ nocnidos uux\ cumempi \dot{u}$ – інверсії і симетрії відносно дійсної вісі.

Якщо ж |z|>1 то описані побудови варто проводити у зворотному порядку, а якщо |z|=1, то точка $\omega=1/\overline{z}$ збігається з точкою z і побудова w=1/z зводиться до симетрії відносно дійсної вісі.

Геометричний сенс піднесення до степеня зрозумілий з геометричного сенсу множення.

Для побудови коренів степеню n із z помітимо, що із визначення кореня і формули (1.2.5) для $w = \sqrt[n]{z}$ маємо

$$|w|^n = |z|, \quad n \arg w = \arg z,$$
 (1.2.8)

тому

$$|w| = \sqrt[n]{z}, \quad \arg w = \frac{\arg z}{n}. \tag{1.2.9}$$

Перше зі співвідношень (1.2.9) показує, що модулі всіх коренів рівні, а друге — що їх аргументи відрізняються на кратне $2\pi/n$, бо до значення агд z можна додавати кратне 2π .

Звідси випливає, що корінь степеню n із довільного комплексного числа $z \neq 0$ має n pізних значень, і що це значення розташовані у вершинах правильного n-кутника вписаного у коло $|w| = \sqrt[n]{|z|}$:

© М. А. Лаврентьев, Б. В. Шабат, 1972 Українською переклав Нікіта Скибицький, 2018