

Department of Physics

Indian Institute of Technology Kharagpur-721302, West Bengal, India

Subject No. PH39209 (Computational Physics Lab)

- §1. Consider two linear equations, ax + by = c and px + qy = r. Write a simple code to calculate x and y by considering the other quantities as inputs.
- §2. Consider the Taylor expansion for $\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$.

Compute $\sin(x)$ considering x as a variable in the range $[0, \pi]$ for n = 10. Take the step size $h = \pi/20$ and $h = \pi/3$, and plot $\sin(x)$ vs. x for both the values of h in the same graph.

§3. Arrange the following number both in the ascending and descending order.

124, 45, 89, 67, 30, 200, 145, 765, 18, 0, 11

- $\S4$. Find the value of N!, where N is a arbitrary real number.
- §5. Write a code to solve the first order differential equation,

$$\frac{dx}{dt} = 10$$

with the initial condition x(t=0)=2. Plot the graph.

§6. Write a code to solve the first order differential equation,

$$\frac{dx}{dt} = 2x + 10$$

with the initial condition x(t=0)=0. Plot the graph.

§7. Write a code to solve the first order differential equation,

$$\frac{df(x)}{dx} = x$$

where $f(x) = \alpha + x^2/2$. Take the initial condition $f(x = 0) = \alpha$. Plot the graph.

Department of Physics

Indian Institute of Technology Kharagpur-721302, West Bengal, India

§8. A particle is obeying the force balance equation

$$m \ddot{x} = -k x$$
.

Write a code to solve the above equation using the initial conditions, x(t=0)=1 and $\dot{x}=0$. (Take k=2)

§9. A particle is obeying the force balance equation

$$m\ddot{x} = -kx - \gamma\dot{x}.$$

Write a code to solve the above equation using the initial conditions, x(t=0)=0 and $\dot{x}=1$. (Take k=2 and $\gamma=1$)

§10. Generate 100 random numbers between [0,100] and plot their distribution.