A Star Approach

Walter Perez Urcia

Universidade de São Paulo Instituto de Matemática e Estadística Departamento de Ciências da Computação

Novembro 2015

A Star Approach

Outline

Bayesian Networks

- Bayesian Networks
- 2 Learning Bayesian networks from data
- A Star Approach
- Experiments

Bayesian Networks

A Bayesian Network consists of

- A DAG G over a set of variables X_1, \ldots, X_n
- Markov Property: Given its parents, every variable is conditionally independent from its non-descendant non-parents
- Probability constraints: $\mathbb{P}(X_i = k \mid Pa(X_i) = j) = \theta_{iik}$

Joint Probability Distribution

There is a unique probability function consistent with a BN:

$$\mathbb{P}(X_1,\ldots,X_n)=\prod_{i=1}^n\mathbb{P}(X_i\mid Pa(X_i))=\prod_{i=1}^n\theta_{ijk}$$

A Star Approach

Bayesian Networks

Car Evaluation Dataset

- Buying price (B): v-high, high, med, low
- Maintain cost (M): v-high, high, med, low
- Doors (D): two, three, four, more
- Persons (P): two, four, more
- Luggage boot (L): small, medium, big
- Safety (S): low, medium, high

We can construct manually

A Star Approach

$$\mathbb{P}(B, M, D, P, L, S) = \mathbb{P}(B)\mathbb{P}(D \mid B)\mathbb{P}(P \mid B)\mathbb{P}(M \mid D)\mathbb{P}(S \mid D, P)\mathbb{P}(L \mid P)$$

A Star Approach

Learning Bayesian networks from data

Learning BN from data

Given a data set infers a Bayesian network structure

Age	Gender	City Size	Education	Occupation	Transport
adult	F	big	high	employee	car
adult	M	small	uni	employee	car
adult	F	big	uni	employee	train
young	M	big	high	self-emp	car
adult	M	big	high	employee	car
:	:	:	:	:	:

A Star Approach

Constraint-based approaches

Perform multiple conditional independence hypothesis testing in order to build a DAG

A Star Approach

Score-based approaches

Associate every DAG with a polynomial-time computable score value and search for structure with high score values

Learning as optimization

Given dataset D, select G that maximizes decomposable score function:

$$sc(G, D) = LL(D \mid G) + \psi(N) \times |G|$$

 $sc(G) = \sum_{i} sc(X_{i}, Pa(X_{i}))$

Most common scores are:

• BIC: $\psi(N) = \log(N)/2$

• AIC: $\psi(N) = 1$

A Star Approach

$$sc(G) = -9508.34$$

$$sc(G) = -6917.23$$

$$sc(G) = -8891.52$$

Score-based structure learning is an NP-Hard problem

Score-based structure learning is an NP-Hard problem

Suppose we have a dataset with n attributes

- Number of scores: $n2^{n-1}$
 - e.g. For n = 20, there are 10 million of scores

Score-based structure learning is an NP-Hard problem

A Star Approach

Suppose we have a dataset with *n* attributes

- Number of scores: $n2^{n-1}$
 - e.g. For n = 20, there are 10 million of scores
- Number of possible DAGs: $O(n2^{n(n-1)})$
 - e.g. For n = 5, there are 5 million DAGs

• Limit the maximum number of parents for each variable

Theorem 1

In an optimal Bayesian network based on the BIC scoring function, each variable has at most $d = \lfloor log(\frac{2N}{logN}) \rfloor$ parents, where N is the number of instances.

• Limit the maximum number of parents for each variable

Theorem 1

In an optimal Bayesian network based on the BIC scoring function, each variable has at most $d = \lfloor log(\frac{2N}{logN}) \rfloor$ parents, where N is the number of instances.

Prune non-optimal candidate parent sets

Theorem 2

Let U and S be two candidate parent sets for X such that $U \subset S$, and sc(X, U) is better than sc(X, S). Then S is not the optimal parent set of X for any candidate set.

Dataset	n (#attributes)	N (#instances)	
Census	15	30168	
Voting	17	232	
Letter	17	20000	
Hepatitis	17	80	
Image	20	2310	
Heart	23	80	
Mushroom	23	8124	
Parkinsons	23	195	
Autos	25	159	
Flag	28	194	

Table 1: Data sets characteristics

Dataset	d	Total Scores	Limited Scores	Pruned Scores
Census	8	245K	45K (18.33%)	3.5K (1.44%)
Voting	4	1.1M	31K (2.78%)	939 (0.08%)
Letter	8	1.1M	218K (19.64%)	115K (10.38%)
Hepatitis	3	1.1M	9.5K (0.85%)	174 (0.02%)
Image	6	10M	542K (5.18%)	6.2K (0.06%)
Heart	3	96M	35K (0.04%)	327 (0.00034%)
Mushroom	7	96M	3.9M (4.07%)	13K (0.014%)
Parkinsons	4	96M	168K (0.17%)	2.4K (0.003%)
Autos	4	419M	265K (0.06%)	3K (0.0007%)
Flag	4	3.7B	491K (0.01%)	776 (0.00002%)

A Star Approach

Table 2: Number of scores

A Star Approach

Main idea of algorithm

Evaluate nodes with function f and expand to the one with lowest f value.

A Star Approach •000000000

$$f(U) = g(U) + h(U)$$

States: sets of variables

Initial state: Ø

• Final state: $\{X_1, X_2, \dots, X_n\}$

• $g(U \cup \{X\}) = sc(U) + BestScore(X, U)$

$$BestScore(X, U) = \min_{P \subset U} sc(X, P)$$

Algorithm 1: A* Search Algorithm

```
Input: Sparse parent graphs containing BestScore(X, U)
   Output: an optimal Bayesian network G

    start ← ∅

   sc(start) \leftarrow 0
   push(pqueue, start, h(start))
   while not_empty(pqueue) do
         U \leftarrow pop(pqueue)
 5
        if U is goal then
 6
 7
              return network(U)
        end
 8
        for each X \in V \setminus U do
 g
              g \leftarrow sc(U) + BestScore(X, U)
10
              if pqueue not contains U \cup \{X\} or g < sc(U \cup \{X\}) then
11
                   sc(U \cup \{X\}) = g
12
                   if pqueue contains U \cup \{X\} then
13
                        update(pqueue, U \cup \{X\}, g + h(U \cup \{X\}))
14
15
                   else
                        push(pqueue, U \cup \{X\}, g + h(U \cup \{X\}))
16
17
                   end
18
              end
        end
19
20
   end
```


Figure 1: Order graph for four variables

What about the heuristics?

Figure 1: Order graph for four variables

Figure 1: Order graph for four variables

What about the heuristics?

We will discuss only three heuristics:

- Simple heuristic
- Dynamic K-Cycle
- Static K-Cycle

Simple heuristic

Bayesian Networks

Simple heuristic

$$h_{simple}(U) = \sum_{X \in V \setminus U} BestScore(X, V \setminus \{X\})$$

Simple heuristic

$$h_{simple}(U) = \sum_{X \in V \setminus U} BestScore(X, V \setminus \{X\})$$

For example for *start* node:

Cycle between X_1 and X_2

A Star Approach 0000000000

- Delete arc $X_1 \rightarrow X_2$, $BestScore(X_2, \{X_3, X_4\})$
- Delete arc $X_2 \rightarrow X_1$, $BestScore(X_1, \{X_3, X_4\})$

Cycle between X_1 and X_2

- Delete arc $X_1 \rightarrow X_2$, $BestScore(X_2, \{X_3, X_4\})$
- Delete arc $X_2 \rightarrow X_1$, $BestScore(X_1, \{X_3, X_4\})$

What about cycle between X_1 , X_2 and X_4 ?

Cycle between X_1 and X_2

- Delete arc $X_1 \to X_2$, $BestScore(X_2, \{X_3, X_4\})$
- Delete arc $X_2 \rightarrow X_1$. $BestScore(X_1, \{X_3, X_4\})$

What about cycle between X_1 , X_2 and X_4 ?

 h_{simple} is a special case with K=1

Main idea

Compute the costs for all groups of variables with size up to K and store them in a single pattern database

Bayesian Networks Dynamic K-Cycle

Theorem 3

The cost of the pattern U, c(U), is equal to the shortest distance from $V \setminus U$ to the goal node in the order graph.

$$cost(U) = shortest_distance(V \setminus U)$$

The algorithm is as follows:

- Perform a breadth-first search in the last K layers of order graph
 - In each node S, update shortest_distance(S)
 - Calculate diff(S), the difference between the cost and h_{simple}
 - Prune S if does not improve related to h_{simple}
 - Set pattern $cost(V \setminus S) = shortest_distance(S)$
- Sort patterns based on diff(S) in descending order

The algorithm is as follows:

- Perform a breadth-first search in the last K layers of order graph
 - In each node S, update shortest_distance(S)
 - Calculate diff(S), the difference between the cost and h_{simple}
 - Prune S if does not improve related to h_{simple}
 - Set pattern $cost(V \setminus S) = shortest_distance(S)$
- Sort patterns based on diff(S) in descending order

How do I calculate the heuristic $h_{dynamic}$?

A Star Approach 000000000

Algorithm 2: $h_{dynamic}(U)$

```
1 h \leftarrow 0
  R \leftarrow U
   for each S \in PD do
          if S \subset R then
                 R \leftarrow R \setminus Sh \leftarrow h + PD(S)
5
6
           end
7
   end
   return h
```

Algorithm 3: $h_{dynamic}(U)$

```
1 \quad h \leftarrow 0
   R \leftarrow U
   for each S \in PD do
           if S \subset R then
                  R \leftarrow R \setminus Sh \leftarrow h + PD(S)
5
7
           end
   end
   return h
```

Compute $h_{dynamic}$ is more expensive than h_{simple}

Static K-Cycle

Bayesian Networks

Main idea

To partition the variables into several static exclusive groups V_i , and create a separate pattern database PDi for each group

Main idea

To partition the variables into several static exclusive groups V_i , and create a separate pattern database PDi for each group

Algorithm 5: $h_{static}(U)$

- $1 \quad h \leftarrow 0$
- for each $V_i \in V$ do
- $h \leftarrow h + PD^i(U \cap V_i)$
- end
- return h

Experiments

Configuration

Configuration

For each dataset and heuristic:

- Use BIC score
- Time limit: 2,5 hours
- For $h_{dynamic}$ considers K = 2, 3, 4
- For h_{static} considers two and three groups

Dataset	n (#attributes)	N (#instances)	
Census	15	30168	
Voting	17	232	
Letter	17	20000	
Hepatitis	17	80	
Image	20	2310	
Heart	23	80	
Mushroom	23	8124	
Parkinsons	23	195	
Autos	25	159	
Flag	28	194	

Table 3: Data sets characteristics

What happened with approximation methods?

Order-based Greedy Search

- Random approach
- DFS-based approach
- FAS-based approach

Experiments

Dataset	Static D2	Static D3	Random	DFS-based	FAS-based
Census	5.873282	3.008102	18.516816823	10.804413507	2.80409026
Voting	13.692846	10.288065	0.263474565	0.276129374	0.096767351
Letter	103.601706	36.600822	72.033615582	79.929216127	80.7415335826
Hepatitis	30.095161	147.230065	0.146427219	0.143075645	0.077747351
Image	435.832472	648.232549	2.771176306	2.88687619	2.44088269
Mushroom	102.140279	255.284945	9.673048986	9.652037496	0.635835907
Parkinsons	3484.049183	553.567477	0.776882477	0.651769457	0.583941459
Autos	406.32017	2487.784721	1.173008457	1.266957928	1.182414249
Flag	1363.055556	TLE	0.686072783	0.608696292	0.493342731

Table 4: Comparison of times (seconds) with approximation methods

- Static K-Cycle heuristic reduces the total time to find the optimal Bayesian network compared to other heuristics
- Some approximation methods find Bayesian networks with an optimal score on considerable less time in most cases for the datasets

Conclusions

Bibliography

• Learning Optimal Bayesian Networks: A Shortest Path Perspective. Changhe Yuan and Brandon Malone

• Initialization Heuristics for Greedy Bayesian Network Structure Learning. Walter Perez and Denis D. Mauá

Thanks!

Learning Bayesian Networks: Shortest Path Perspective

A Star Approach

Walter Perez Urcia

Universidade de São Paulo Instituto de Matemática e Estadística Departamento de Ciências da Computação

Novembro 2015