Verification of the battery block with electric bus connectors

TABLE OF CONTENTS

1	D	ata used for verifcation1	
2	D	escription of the model2)
	2.1	Block)
	2.2	Model File2	,
		esults	
_		iterature4	

Author

Manuel Koch, Institute Energy in Building, University of Applied Sciences and Arts Northwestern Switzerland (FHNW) in Muttenz

Version of Model, Carnot, Matlab and Operation system

Battery_EB (Version 1.0), Carnot 7.0, Matlab R2018b, Windows 10

Complete path of the block in the Carnot Library

\branches\carnot_7_00_01\public\library_simulink\Storage\Electric\Battery_EB

1 Data used for verification

The verification does not use real data. A power input is defined and the outputs are compared to calculated expected values.

Document	Project	Revision 1.0	Name
Battery_EB Verification	-	Date: 12/09/19	Page 1 / 4

2 Description of the model

2.1 Block

The model represents a simple battery, based on one integrator. Inputs and outputs are in the "Electric bus (power only)" format. It takes capacity, power limits, conversion efficiencies and stand-by power into account.

2.2 Model File

ModelVerification.slx: The model file containing all the input data.

MasterVerification.m: The master file running the model and plotting the results.

3 Results

The following parameters are used:

Parameters				
Capacity in kWh	5e6/3.6e6 = 1.388			
Charging efficiency	0.9			
Discharging efficiency	0.9			
Initial charge condition (01)	1			
Maximal SOC [-]	1			
Minimal SOC [-]	0			
Maximal input power	1000			
Maximal output power	1000			
Standby power consumption [W]	10			

The following zero-order hold power inputs are fed to the battery model:

Time [s]	0	5e5	6e5	7e5	8e5	9e5
Power [W]	0	100	-100	10000	-10000	10000

Document	Project	Revision 1.0	Name
Battery_EB Verification	-	Date: 12/09/19	Page 2 / 4

From these values and the battery parameters, the following charging and discharging durations are calculated:

$$\frac{5000000 \ [\emph{f}]}{\frac{10 \ [\emph{W}]}{0.9}} = 450000 \ [\emph{s}]$$
 Stand-by discharge:

Charge with 100 W:
$$\frac{5000000 \ [\emph{J}]}{(100 \ [\emph{W}] - 10 \ [\emph{W}]) * 0.9} = 61728.4 \ [\emph{s}]$$

$$\frac{5000000 \, [J]}{(100 \, [W] + 10 \, [W])} = 40909.1 \, [s]$$

$$\frac{5000000 \, [J]}{1000 \, [W]} = 5000 \, [s]$$

Charge and discharge with 10000 W

(over the power limit):

This results in the following energy levels should be reached at the specified times:

Time [s]	Energy [J]
0.0	5'000'000
450'000.0	0
500'000.0	0
561'728.4	5'000'000
600'000.0	5'000'000
640'909.1	0
700'000.0	0
705'000.0	5'000'000
800'000.0	5'000'000
805'000.0	0
900'000.0	0

Document	Project	Revision 1.0	Name
Battery_EB Verification	-	Date: 12/09/19	Page 3 / 4

As the plot generated by the MasterVerification.m file shows, calculated and simulated values match:

4 Literature

Document	Project	Revision 1.0	Name
Battery_EB Verification	-	Date: 12/09/19	Page 4 / 4