Definition

A **predicate** is a sentence that contains a finite number of variables and becomes a statement when specific values are substituted for the variables. The **domain** of a predicate variable is the set of all values that may be substituted in place of the variable.

Definition

If P(x) is a predicate and x has domain D, the **truth set** of P(x) is the set of all elements of D that make P(x) true when they are substituted for x. The truth set of P(x) is denoted

$$\{x \in D \mid P(x)\}.$$

Definition

Let Q(x) be a predicate and D the domain of x. A **universal statement** is a statement of the form " $\forall x \in D$, Q(x)." It is defined to be true if, and only if, Q(x) is true for every x in D. It is defined to be false if, and only if, Q(x) is false for at least one x in D. A value for x for which Q(x) is false is called a **counterexample** to the universal statement.

Definition

Let Q(x) be a predicate and D the domain of x. An **existential statement** is a statement of the form " $\exists x \in D$ such that Q(x)." It is defined to be true if, and only if, Q(x) is true for at least one x in D. It is false if, and only if, Q(x) is false for all x in D.

Notation

Let P(x) and Q(x) be predicates and suppose the common domain of x is D.

- The notation $P(x) \Rightarrow Q(x)$ means that every element in the truth set of P(x) is in the truth set of Q(x), or, equivalently, $\forall x, P(x) \rightarrow Q(x)$.
- The notation $P(x) \Leftrightarrow Q(x)$ means that P(x) and Q(x) have identical truth sets, or, equivalently, $\forall x, P(x) \leftrightarrow Q(x)$.

Theorem 3.2.1 Negation of a Universal Statement

The negation of a statement of the form

$$\forall x \text{ in } D, Q(x)$$

is logically equivalent to a statement of the form

$$\exists x \text{ in } D \text{ such that } \sim Q(x).$$

Symbolically,
$$\sim (\forall x \in D, Q(x)) \equiv \exists x \in D \text{ such that } \sim Q(x).$$

Thus

The negation of a universal statement ("all are") is logically equivalent to an existential statement ("some are not" or "there is at least one that is not").

Theorem 3.2.2 Negation of an Existential Statement

The negation of a statement of the form

$$\exists x \text{ in } D \text{ such that } Q(x)$$

is logically equivalent to a statement of the form

$$\forall x \text{ in } D, \sim Q(x).$$

Symbolically, $\sim (\exists x \in D \text{ such that } Q(x)) \equiv \forall x \in D, \sim Q(x).$

Thus

The negation of an existential statement ("some are") is logically equivalent to a universal statement ("none are" or "all are not").

Negation of a Universal Conditional Statement

$$\sim (\forall x, \text{ if } P(x) \text{ then } Q(x)) \equiv \exists x \text{ such that } P(x) \text{ and } \sim Q(x).$$

Definition

Consider a statement of the form: $\forall x \in D$, if P(x) then Q(x).

- 1. Its **contrapositive** is the statement: $\forall x \in D$, if $\sim Q(x)$ then $\sim P(x)$.
- 2. Its **converse** is the statement: $\forall x \in D$, if Q(x) then P(x).
- 3. Its **inverse** is the statement: $\forall x \in D$, if $\sim P(x)$ then $\sim Q(x)$.

Negations of Multiply-Quantified Statements

 $\sim (\forall x \text{ in } D, \exists y \text{ in } E \text{ such that } P(x, y)) \equiv \exists x \text{ in } D \text{ such that } \forall y \text{ in } E, \sim P(x, y).$

 $\sim (\exists x \text{ in } D \text{ such that } \forall y \text{ in } E, P(x, y)) \equiv \forall x \text{ in } D, \exists y \text{ in } E \text{ such that } \sim P(x, y).$