GNN

GCN

G	\boldsymbol{C}	Ν	
u	◡	ı١	

手写数字识别 spetial GCN结果优于spectral GCN 但是,后续一阶spectral GCN比较多

Spectral Networks and Deep Locally ConnectedNetworks on Graphs.pdf

0

spetial

spectral

GCN kipf

GCN最著名 边的权重,固定不可变 节点分类任务 简化了原始的谱卷积,简化为1阶

SEMI-SUPERVISEDCLASSIFICATION WITHGRAPHCONVOLUTIONALNETWORKS.pdf

0)

GCN co-training random walk

- 证明GCN过平滑的原理
- 与random walk协同训练减缓过平滑,治标不治本
- 公式计算迭代止整图传播均匀,不依赖验证集

Deeper Insights Into Graph Convolutional Networks for Semi-Supervised Learning.pdf

Predict then Propagate: Graph Neural Networks meet Personalized PageRank

0

GCN与pagerank结合 随机游走的距离过长,其因起点导致的差异会越来越小。同时GCN oversmooth pagerank 算法进行全局更新

text

Text GCN

- 文本分类(word node + doc node)
- 依靠词互信息构建word node的邻接矩阵
- tf-idf作为 doc node与word node之间边的权重

.

- problem
- 丢失词的位置信息
- 对于情感分类不适用
- 并不能对句子进行深层表征
- 比较适合乱序给词就可拆除意思的文本

Graph Convolutional Networks for Text Classification.pdf

HR-DGCNN

子主题 1

每一个document 构建一张图

每个docment取前n个节点用于document与document之间对齐根据词共现矩阵提取子图,也就是重要节点,BFS生成全部的子图(填充子图大小到指定大小)

图对齐之后使用多层CNN进行卷积 对比多层CNN方法存在提升

子领域

dialogue

DialogueGCN

- 多尺度CNN捕捉utterance特征
- 依照对话顺序,将所有话语GRU捕捉顺序
- GCN以utterance作为node,speaker的说话者与接听者作为边的类型,并且包含双向,(邻接矩阵是否包含并不知道)
- 结合顺序Bi-GRU与speaker level的GCN综合对话语进行分类。
- problem:
- 缺少speaker自己的特质,并且在初始时对于speaker与 speaker之间的关系不同
- 边的类型:
- speaker relation
- 时序 temporal
- 使用多模态数据集,只使用文本处理

DialogueGCN A Graph Convolutional Neural Network forEmotion Recognition in Conversation.pdf

○ ConGCN *⊙*

MELD 老友记的多方对话数据集语料库构建一整张对话图图中包含speaker utterance 节点同一utterance 节点相连utterance 与speaker 节点相连第一个使用图模型做对话情感识别

GAT

仅依靠两个节点信息

graph attention network

GRAPHATTENTIONNETWORK.pdf @

- Graph Star Net
 - inductive framework
 - 建立Star node 捕获全局
 - 可以处理 node、edge、graph 3种分类任务
 - 在情感识别任务中,提出了topic-sentiment (对IMDB种,每一个主题的 影评作为doc node ,并与每一个topic节点相连)
 - node 分类:不能优于transductive实验,但是优于inductive实验。
 - aggregate:类似GAT
 - 文本分类任务:
 - node为词,
 - 词node之间的边依赖是否出现在同一窗口中,即使词相同但位置不同也被视为不同的词。
 - 基于此法,不使用动态图,不利于语义图的刻画
 - problem
 - 1任务1模型,
 - transductive实验: node分类结果没有GAT GCN好。
 - •一些实验需要的是局部信息,不是全局信息。

Graph Star Net for Generalized Multi-Task Learning.pdf @

dual graph convolution network @

加强了边的表示,并且可以将边分类问题转为节点分类问题 nlp

knowledge graph

RDGCN

对于两个异构的知识图谱进行对齐 已有部分对齐实体 loss计算依靠此部分对齐实体

子领域

HetGNN @

异构图

任务: 链接预测、推荐

问题: 图表示,考虑不同类型的节点

模型结构:

random walk节点采样

- 1、融合节点内不同类型属性 bilstm
- 2、抽取邻接点 bilstm
- 3、融合不同类型的节点 attention

结果: 优于baseline

KDD

文本生成

Text Generation from Knowledge Graphs with Graph Transformers

0

任务:摘要生成在生成过程融入了知识

transformer结构,在attention步骤使用知识 AGENDA数据集创建,摘要,与知识图谱

Graphsage ©

问题:传统GCN等方法属于转导,不能泛化到未知节点,以及其他图

方法:训练聚合函数,训练每次输入只输入节点、邻接点以及不相关的节点计算loss

结果: 优于GCN

问题:测试集中的结构,不能用于改进训练集要求:必须保持节点类型对齐,以及边的类型对齐

全连接图

Graph Transformer

- ICLR被拒
- 全连接图
- attention确认节点之间的边
- 可以自动构建图
- 长距离依赖
- 任务:
- few-shot
- 医学影像
- problem:
- 与attenton相似
- 对比的模型都很弱
- 只是单纯构建全连接图的意义不大,必须在不同图之间建立信息链,利用全局信息
- 全连接图的噪音过大,构建一张准确的图很难。

GRAPHTRANSFORM.pdf @

factor graph

factor graph network

被拒,不知道去哪

捕捉高阶依赖

• factor node 可连接多个node

双向传播:

- factor->node
- node->factor

对于最大后验概率计算,已知正确的势能函数(factor 计算函数)效果很好。 不过dataset3的结果不如LP relaxation 是因为dataset3不确定性太大,而 factor graph network并不适应

Point Cloud则不行

Factor+Graph+Neural+Network.pdf @

factor attention graph

- attention对任意数量的数据没有要求
- graph:node*5(图像、标题、历史问题、历史答案、问题、答案)
- 通过attention实现factor的表现形式。主要self-attention factor 以及 节点之间交互的attention

Factor Graph Attention.pdf @

expressGNN

- knowledge graph 进行补全,发现未知的知识
- factor node表示关系类型
- 实体使用node表示

• GNN不知道哪种,未开源

•

Can Graph Neural Networks Help Logic Reasoning.pdf @

子领域

可视化问答

知识图谱

Estimating Node Importance in Knowledge Graphs Using Graph Neural Networks

@

知识谱上节点重要性估计 考虑了以下5点信息: Neighborhood Awareness Making Use of Predicates. Centrality Awareness

Utilizing Input Importance Scores.

Flexible Adaptation

GNN的架构 结果高于GAT但是应该不是SOTA

latent variable

此系列方法多有点辅助任务的感觉,很像预训练转为有监督的过程。或者认为取出了中间变量

Scalable Temporal Latent Space Inference for Link Prediction in Dynamic Social Networks

问题:获取动态的graph embedding来进行link pprediction

任务: 社交网络链路预测 (认为节点的变化应该很稳定, 不会突然发生剧烈变

化) 方法: 改讲BCGD

只依靠前一时刻获取下一时刻的表示,并且使用时间正则loss避免前后时间相差过大。在进行更新时只使用邻接点进行更新,避免cost较大(没看懂???)结果:看着可以

VAF

Neural Relational Inference for Interacting Systems @

任务:在不给定图结构的情况下,预测图的结构,以及节点下一时刻的状态。粒子仿真系统 (输入:不同时刻节点的状态)

方法:借鉴VAE思想,利用z来表示节点之间固有的图结构,应该指的一种客观规律,不随时间变化而改变。根据z以及各时刻节点的表示,动态生成边的表示,再生成下一时刻节点的表示。

0

实验结果:

效果不错,与Istm做对比,也许是第一个在这个方向上做的

想法: 可以用做对话生成, 使用无监督的方法构建图

Dynamic Graph Representation Learning via Self-Attention Networks

问题: 学习dynamic graph的 node representation 来预测边。以往都是基于 Markov只考虑前一时刻的状态,本文self-attention自由结合之前时刻,任意 选取。

方法:使用structure self-attention来捕捉某一个时刻的图结构。使用temporal self-attention来捕获当前时刻之前所有时刻的同一个节点的变化

数据集: 社交网络, 以及yelp 和ML影评

结果: 动态网络没有静态的表现好 启发: 将图结构用于之前的时刻

domain

nlp

dialogue

CV

multi-model

dialogue

可视化问答

multitask

数据集

node classification

Cora

Citeseer

PubMed 医学

graph classification

Enzymes

D&D

```
Proteins
        Mutag
    text classification
        20ng
        R8
        R52
        Obsumed
        MR 影评,情感
Graph Embedding
    Large-Scale Hierarchical Text Classification with Recursively
                                                         0
    Regularized Deep Graph-CNN
random walk
    GraphRNA @
        • 节点带有attributes
        • 在节点与属性构成的二分图
        • 使用random walk 在二分图上下部分进行游走表示, node-attribute-
         node-attribute node走的是节点的邻接点
        • walk结果输入GRU+pooling得到图节点表示
        • 问题:attribute如此融合有点粗暴,因为attribute 与 node表示可能不在
         一个空间
GNN分类
    task
        classification
             node classification
                 basic node
                 最基础的分类,例如nlp的词节点
                 cluster
                 以一个节点表示一群节点(community)
                     factor graph???
```

hypergraph???

```
edge classification
        graph classification
    emebdding
        node
        edge
structure
    大小
        大图: 1
            多为transductive learning
        小图:多
    同异构
        异构heterogeneous graph
            问题
                图与图中参数无法迁移
            解决方法
                所有图拼接在一起,转为1张图
        同构isomorphic graph
    depth???
    dual
    两张图,以另一张图的顶点为边
        子主题 1
algorithm
    aggregate
        Locality
            GCN
        global
            Pagerank
```

```
Sequentiality
```

depth

是否是动态

子主题 1

dynamic

类型

transductive

inductive

图的结构不变(可以少边,不可以多边)如果边的权重为0,则默认无边。

Learning by Abstraction: The Neural State Machine ${\mathscr O}$

针对可视化问答 提出了构建语义概率图, 将图像与文本均转为图中的语义概念 使用顺序推理 算法无创新 优点: 强调构建世界模型