Группы

Множество G, на котором определена операция $\circ: G \times G \to G$ называется *группой*, если выполнены следующие три условия:

- ассоциативность: $a \circ (b \circ c) = (a \circ b) \circ c$ для любых $a, b, c \in G$;
- существует $e \in G$ такой, что $e \circ a = a \circ e = a$ для всех $a \in G$;
- для любого $a \in G$ существует $a^{-1} \in G$ такой, что $a^{-1} \circ a = a \circ a^{-1} = e$. Элемент e называется neйmpanenum, а $a^{-1} - oб$ pammmmma.

 Γ руппа G называется абелевой (коммутативной), если ещё и

• для любых $a, b \in G$ верно равенство $a \circ b = b \circ a$.

Вообще говоря, группа обобщает понятие "множество G, наделённое бинарной операцией \circ такой, что для любых $a,b\in G$ уравнения $a\circ x=b$ и $x\circ a=b$ всегда имели ровно по одному решению каждое". В абелевой группе решения этих двух уравнений совпадают.

- 1. Для следующих пар, состоящих из множества и операции, определите, какие из них являются группами, а какие нет: $(\mathbb{N}, +), (\mathbb{Z}, +), (\mathbb{Z}, \cdot), (\mathbb{Q}, +), (\mathbb{Q}, \cdot), (\mathbb{Q} \setminus \{0\}, \cdot), (\mathbb{Z}_n, +), (\mathbb{Z}_n \setminus \{0\}, \cdot).$
- 2. Докажите, что множество всех непостоянных линейных функций с операцией "взятие композиции" является неабелевой группой.
- 3. Обозначим через S_3 множество всех симметрий и поворотов, переводящих правильный треугольник в себя. Составьте таблицу умножения в S_3 и проверьте, что эта группа неабелева.
- 4. Докажите, что в группе нейтральный элемент единственен.
- 5. Докажите, что в группе обратный элемент определён однозначно.

Кольца

Для абелевых групп операцию \circ обозначают зна́ком +, единичный элемент e – через 0, а обратный a^{-1} – через -a. Множество R, на котором определены две бинарные операции: "+" и " \cdot " называется кольцом, если (R,+) – абелева группа, а операция " \cdot " ассоциативна и выполнена

• дистрибутивность: $(a+b) \cdot c = a \cdot c + b \cdot c$ и $a \cdot (b+c) = a \cdot b + a \cdot c$ для любых $a,b,c \in R$.

Кольцо называется коммутативна. Если в кольце для операции " \cdot " есть нейтральный элемент, его принято обозначать через 1 и говорят, что данное кольцо c е ∂ инице \check{u} .

- 6. Для следующих троек, состоящих из множества и двух операций операции, определите, какие из них являются кольцами, а какие нет: $(\mathbb{Z}, +, \cdot), (\mathbb{Z}_n, +, \cdot), (\mathbb{Z}[x], +, \cdot).$
- 7. Пусть M произвольное множество, а V множество всех его подмножеств. Докажите, что (V, \triangle, \cap) кольцо.
- 8. Докажите, что в кольце $x \cdot 0 = 0 \cdot x = 0$ и $x \cdot (-1) = (-1) \cdot x = -x$.

Обобщаем понятие простых чисел

Элемент $a \neq 0$ кольца R называется делителем нуля, если существует $b \neq 0$ такой, что ab = 0. Коммутативное кольцо с единицей и без делителей нуля называется целостным.

Ненулевой элемент ε целостного кольца R называется $e\partial u u u e u$, если $\varepsilon^{-1} \in R$. Элементы $a,b \in R$ называются ассоциированными, если $a=\varepsilon b$ для некоторой единицы ε . Ненулевой элемент называется nepasложимым, если каждый его делитель либо ассоциирован с ним, либо является единицей. Наконец, ненулевой и неединичный элемент $a \in R$ называется *простым*, если из $a \mid bc$, $b, c \in R$, следует, что $a \mid b$ или $a \mid c$.

9. Что собой представляют единичные, неразложимые и простые элементы кольца ($\mathbb{Z}[x], +, \cdot$)?

Факториальные кольца

Кольцо R называется $e \kappa n u do \epsilon u m$, если на нём определена евклидова норма – функция $d \colon R \setminus \{0\} \to \mathbb{N}_0$ такая, что для любых $a, b \neq 0$ возможно деление с остатком: есть равенство a = bq + r, где d(r) < d(b) или r = 0.

Целостное кольцо называется факториальным, если в нём верна основная теорема арифметики: каждый необратимый ненулевой элемент представляется в виде произведения неприводимых элементов однозначно с точностью до порядка следования множителей и единиц.

При доказательстве основной теоремы арифметики в $\mathbb Z$ используется только существование евклидовой нормы $|\cdot|$ в \mathbb{Z} (алгоритмом Евклида), аналогичные доказательства подходят для любого евклидового кольца. В частности, факториальны $\mathbb{Q}[x]$ и $\mathbb{R}[x]$.

Нефакториальные кольца

Рассмотрим множество $\mathbb{Z}[i\sqrt{3}] = \{a + b\sqrt{-3} : a, b \in \mathbb{Z}\}$. Сложение и вычитание определим как $(a+b\sqrt{-3})\pm(c+d\sqrt{-3})=(a\pm c)+(b\pm d)\sqrt{-3}$, а умножение – $(a+b\sqrt{-3})\cdot(c+d\sqrt{-3})=(ac-3bd)+(ad+bc)\sqrt{-3}.$ 10. Найдите все обратимые в $\mathbb{Z}[i\sqrt{3}]$ элементы.

- 11. Являются ли приводимыми числа $\mathbf{3} = 3 + 0 \cdot \sqrt{-3}$ и $\mathbf{2} = 2 + 0 \cdot \sqrt{-3}$?
- 12. Верно ли, что любое число из $\mathbb{Z}[i\sqrt{3}]$ можно представить в виде произведения степеней различных неприводимых чисел?
- 13. Можно ли утверждать, что это разложение всегда единственно?
- 14. Наибольшим общим делителем двух чисел это такой их общий делитель, который делится на любой другой их общий делитель. Можно ли утверждать, что для любых двух чисел из $\mathbb{Z}[i\sqrt{3}]$ определён НОД?
- 15. Верно ли, что: 1) каждое простое число является неразложимым; 2) каждое неразложимое число является простым.