

GSM850_CHCH251 Left Cheek

Date: 11/8/2017

Electronics: DAE4 Sn1331 Medium: Head 835 MHz

Medium parameters used: f = 848.8 MHz; $\sigma = 0.918 \text{ mho/m}$; $\epsilon r = 42.24$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: GSM850 848.8 MHz Duty Cycle: 1: 8.3

Probe: EX3DV4 – SN3846 ConvF(9.33,9.33,9.33)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.159 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.182 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.189 W/kg

SAR(1 g) = 0.139 W/kg; SAR(10 g) = 0.103 W/kg

Maximum value of SAR (measured) = 0.155 W/kg

Fig I.1

GSM850_CHCH251 Rear

Date: 11/8/2017

Electronics: DAE4 Sn1331 Medium: Head 835 MHz

Medium parameters used: f = 848.8 MHz; $\sigma = 0.98 \text{ mho/m}$; $\epsilon r = 54.33$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: GSM850 848.8 MHz Duty Cycle: 1: 4

Probe: EX3DV4 – SN3846 ConvF(9.52,9.52,9.52)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.444 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.09 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.603 W/kg

SAR(1 g) = 0.329 W/kg; SAR(10 g) = 0.18 W/kg

Maximum value of SAR (measured) = 0.397 W/kg

Fig I.2

PCS1900_CHCH512 Right Cheek

Date: 11/10/2017

Electronics: DAE4 Sn1331 Medium: Head 1900 MHz

Medium parameters used: f = 1850.2 MHz; $\sigma = 1.338 \text{ mho/m}$; $\epsilon r = 39.84$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: PCS1900 1850.2 MHz Duty Cycle: 1: 8.3

Probe: EX3DV4 – SN3846 ConvF(7.89,7.89,7.89)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.0995 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.506 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.128 W/kg

SAR(1 g) = 0.081 W/kg; SAR(10 g) = 0.049 W/kg

Maximum value of SAR (measured) = 0.0972 W/kg

Fig I.3

PCS1900_CHCH512 Bottom edge

Date: 11/10/2017

Electronics: DAE4 Sn1331 Medium: Head 1900 MHz

Medium parameters used: f = 1850.2 MHz; $\sigma = 1.477 \text{ mho/m}$; $\epsilon r = 54.16$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: PCS1900 1850.2 MHz Duty Cycle: 1: 4

Probe: EX3DV4 – SN3846 ConvF(7.57,7.57,7.57)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.01 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.38 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 1.45 W/kg

SAR(1 g) = 0.847 W/kg; SAR(10 g) = 0.443 W/kg

Maximum value of SAR (measured) = 1.04 W/kg

Fig I.4

WCDMA1900-BII_CHCH9262 Right Cheek

Date: 11/10/2017

Electronics: DAE4 Sn1331 Medium: Head 1900 MHz

Medium parameters used: f = 1852.4 MHz; $\sigma = 1.339 \text{ mho/m}$; $\epsilon r = 39.84$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA1900-BII 1852.4 MHz Duty Cycle: 1: 1

Probe: EX3DV4 – SN3846 ConvF(7.89,7.89,7.89)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.193 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.068 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.25 W/kg

SAR(1 g) = 0.159 W/kg; SAR(10 g) = 0.096 W/kg

Maximum value of SAR (measured) = 0.188 W/kg

Fig I.5

WCDMA1900-BII_CHCH9262 Bottom edge

Date: 11/10/2017

Electronics: DAE4 Sn1331 Medium: Head 1900 MHz

Medium parameters used: f = 1852.4 MHz; $\sigma = 1.479$ mho/m; $\epsilon r = 54.16$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA1900-BII 1852.4 MHz Duty Cycle: 1: 1

Probe: EX3DV4 – SN3846 ConvF(7.57,7.57,7.57)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.07 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.73 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.5 W/kg

SAR(1 g) = 0.897 W/kg; SAR(10 g) = 0.481 W/kg

Maximum value of SAR (measured) = 1.11 W/kg

Fig I.6

WCDMA850-BV_CHCH4182 Left Cheek

Date: 11/8/2017

Electronics: DAE4 Sn1331 Medium: Head 835 MHz

Medium parameters used: f = 835.4 MHz; $\sigma = 0.905 \text{ mho/m}$; $\epsilon r = 42.26$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA850-BV 835.4 MHz Duty Cycle: 1: 1

Probe: EX3DV4 – SN3846 ConvF(9.33,9.33,9.33)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.187 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.354 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.222 W/kg

SAR(1 g) = 0.164 W/kg; SAR(10 g) = 0.121 W/kg

Maximum value of SAR (measured) = 0.183 W/kg

Fig I.7

WCDMA850-BV_CHCH4233 Rear

Date: 11/8/2017

Electronics: DAE4 Sn1331 Medium: Head 835 MHz

Medium parameters used: f = 846.6 MHz; $\sigma = 0.978 \text{ mho/m}$; $\epsilon r = 54.34$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA850-BV 846.6 MHz Duty Cycle: 1: 1

Probe: EX3DV4 – SN3846 ConvF(9.52,9.52,9.52)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.364 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.82 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.501 W/kg

SAR(1 g) = 0.273 W/kg; SAR(10 g) = 0.15 W/kg

Maximum value of SAR (measured) = 0.335 W/kg

Fig I.8

WLAN2450_CHCH1 Left Cheek

Date: 11/11/2017

Electronics: DAE4 Sn1331 Medium: Head 2450 MHz

Medium parameters used: f = 2412 MHz; $\sigma = 1.731 \text{ mho/m}$; $\epsilon r = 39.3$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WLAN2450 2412 MHz Duty Cycle: 1: 1

Probe: EX3DV4 – SN3846 ConvF(7.22,7.22,7.22)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mmMaximum value of SAR (interpolated) = 1.39 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.64 V/m; Power Drift = 0.1 dB

Peak SAR (extrapolated) = 2.12 W/kg

SAR(1 g) = 0.93 W/kg; SAR(10 g) = 0.414 W/kg

Maximum value of SAR (measured) = 1.23 W/kg

Fig I.9

WLAN2450_CHCH6 Front

Date: 11/11/2017

Electronics: DAE4 Sn1331 Medium: Head 2450 MHz

Medium parameters used: f = 2437 MHz; $\sigma = 1.955$ mho/m; $\epsilon r = 52.85$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WLAN2450 2437 MHz Duty Cycle: 1: 1

Probe: EX3DV4 – SN3846 ConvF(7.31,7.31,7.31)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.137 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.013 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.195 W/kg

SAR(1 g) = 0.104 W/kg; SAR(10 g) = 0.054 W/kg

Maximum value of SAR (measured) = 0.129 W/kg

Fig I.10

ANNEX J Accreditation Certificate

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP LAB CODE: 600118-0

Telecommunication Technology Labs, CAICT

Beijing China

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

Electromagnetic Compatibility & Telecommunications

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).

2016-09-29 through 2017-09-30

Effective Dates

For the National Voluntary Laboratory Accreditation Program