Equivalence classes

- Given an equivalence relation $R \subseteq A \times A$, we group all equivalent objects in the same equivalence class:
 - For every $a \in A$, $[a]_R = \{b \in A \mid (a,b) \in R\}$
 - $A/R = \{ [a]_R \mid b \in A \}$ is called the quotient set of A by R.
- For example,
 - BankNote/_{same_value} has four elements corresponding to five_pounds, ten_pounds, twenty_pounds, fifty_pounds
 - What is A/_{id}?

Theorem I

- Given an equivalence relation $R \subseteq A \times A$, the following statements are equivalent for all a and b of A:
 - (a,b)∈R
 - [a] = [b]
 - $[a] \cap [b] \neq \emptyset$

Theorem 2

- Given an equivalence relation $R \subseteq A \times A$, its equivalence classes form a partition of A:
 - $\bigcup_{a \in A} [a]_R = A$
 - $[a] \cap [b] = \emptyset$ if $[a] \neq [b]$

Exercise

• Given a partition $A_1, ..., A_n$ of a set A,

 $R = \{ (a,b) \mid a \in A_i \text{ and } b \in A_i \text{ for some } i=1,...n \}$

is an equivalence relation on A.