CS314 Fall 2013

Assignment 2 Due Tuesday, February 11, **before** class

1 Problem — Context-Free Languages

Are the following languages context-free or not? If yes, specify a context-free grammar in BNF notation that generates the language. If not, give an informal argument.

- 1. $\{a^n b^m c^o \mid m > n \ge 0, o > 0\}$, with alphabet $\Sigma = \{a, b, c\}$
- 2. $\{a^nb^{2n} \mid n \geq 0\}$, with alphabet $\Sigma = \{a, b\}$
- 3. $\{ ww^R \mid w \in \Sigma^* \text{ and } w^R \text{ is w in reverse } \}$, with alphabet $\Sigma = \{a, b\}$
- 4. { $a^nb^mc^md^n \mid n \geq 0, m \geq 0$ }, with alphabet $\Sigma = \{a, b, c, d\}$
- 5. { w | w has no more than 5 symbols}, with alphabet $\Sigma = \{a, b\}$

2 Problem — Derivation, Parse Tree, Ambiguity, Precedence & Associativity

A language that is a subset of the language of propositional logic may be defined as follows:

$$<$$
start $>$::= $<$ expr $>$ $<$ expr $>$:: = $<$ expr $>$ \lor $<$ expr $>$ | $<$ expr $>$ \land $<$ expr $>$ | $<$ expr $>$ \rightarrow $<$ expr $>$ | $<$ const $>$ | $<$ var $>$ $<$ const $>$:: = true | false $<$ var $>$:: = a | b | c | ... | z

1. Give a leftmost and a rightmost derivation for the sentence

a
$$\lor$$
 true \land b \rightarrow false .

- 2. Give the corresponding parse trees for the derivations.
- 3. Give the corresponding abstract syntax tree (AST).
- 4. Show that the above grammar is ambiguous.
- 5. Give an unambiguous grammar for the same language that enforces the following precedence and associativity:

- ullet has highest precedence (binds strongest), followed by \vee , and then \rightarrow
- \bullet $\,\wedge$ and $\,\vee$ are left associative, and \rightarrow is right associative
- 6. Give the parse tree and AST for your new, unambiguous grammar for the sentence $a \ \lor \ true \ \land \ b \ \to \ false \ \lor \ true \ .$