Example: Microsatellite data set

MIGRATION RATE AND POPULATION SIZE ESTIMATION using the coalescent and maximum likelihood or Bayesian inference Migrate-n version 3.2 [1717]

Compiled for a SYMMETRIC MULTIPROCESSORS

Program started at Thu Oct 7 15:26:34 2010 Program finished at Thu Oct 7 15:29:32 2010

Options

Datatype: Missing data: Random number seed: Start parameters:	Microsatellite data [Brownian motion] not included (from parmfile) 310705631
Theta values were generated	RANDOM start value from U(min,msx)
M values were generated	from the FST-calculation
Connection type matrix: where m = average (average over a group of Thetas or M, s = symmetric M, S = symmetric 4Nm, 0 = zero, and not estimate * = free to vary, Thetas are on diagonal	ed,
Population 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Order of parameters: $ 1 \qquad \qquad \Theta_1 \qquad \qquad < \text{displayed} >$	
Mutation rate among loci:	Mutation rate is constant for all loc
Analysis strategy:	Bayesian inference
Proposal distributions for parameter	

Parameter			Proposal			
Theta			Slice sampling			
М			Slice sampling			
Prior distribu	ution for para	ameter				
Parameter	Prior	Minimum	Mean*	Maximum	Delta	Bins
Theta	Uniform	0.000000	10.000000	20.000000	2.000000	500
М	Uniform	0.000000	10.000000	20.000000	2.000000	500
Markov chai	n settings:					Long chain
Number of c	•					Long chain
Recorded						500
	t (record eve	rv x step [b]				200
	•	chains (replica	ates) [c]			2
		ameter values	,			200000
,	. , .	es per chain (b	-			10000
Multiple Mar	kov chains:					
1	iting scheme	;			4 chains	with temperatures
				1000000.00	3.00	1.50 1.00
					Swa	apping interval is 1
Print options	S:					
Data file:						infile.msat
Output file			•••			outfile-bayes
		aw histogram f	ile:			bayesfile
Print data						No
Print gene	ealogies [only	y some for som	ie data typej:			None

Data summary

Datatype: Microsatellite data
Number of loci: 10

Population	Locus	Gene copies	
		data	(missing)
1 populationnumber0	1	50	(0)
	2	50	(0)
	3	50	(0)
	4	50	(0)
	5	50	(0)
	6	50	(0)
	7	50	(0)
	8	50	(0)
	9	50	(0)
	10	50	(0)
1 populationnumber1	1	42	(0)
	2	42	(0)
	3	42	(0)
	4	42	(0)
	5	42	(0)
	6	42	(0)
	7	42	(0)
	8	42	(0)
	9	42	(0)
	10	42	(0)
Total of all populations	1	92	(0)
	2	92	(0)
	3	92	(0)
	4	92	(0)
	5	92	(0)
	6	92	(0)
	7	92	(0)
	8	92	(0)
	9	92	(0)
	10	92	(0)
			` '

				Allele frequency spectra
Locus	1			
Allele		Pop2	All	
16	0.196	0.000	0.098	
19	0.054	0.000	0.037	
18	0.087	0.000	0.043	
15	0.130	0.000	0.045	
21	0.130	0.000	0.043	
23	0.067	0.000	0.043	
23 17	0.003		0.033	
22	0.196	0.000	0.098	
25 25	0.067	0.000	0.043	
24	0.043	0.000	0.022	
	0.011		0.005	
26 27	0.011	0.000		
27 29	0.022	0.000	0.011 0.005	
29	0.011	0.000	0.003	
Locus	2			
Allele	Pop1	Pop2	All	
16	0.543	0.000	0.272	
19	0.022	0.000	0.011	
18	0.174	0.000	0.087	
17	0.163	0.000	0.082	
15	0.011	0.000	0.005	
21	0.043	0.000	0.022	
20	0.022	0.000	0.011	
22	0.022	0.000	0.011	
	0			
Locus Allele		Pop2	All	
19	0.250	0.000	0.125	
20	0.370	0.000	0.185	
18	0.087	0.000	0.043	
21	0.207	0.000	0.103	
22	0.087	0.000	0.043	
Locus	4			

Allele	Pop1	Pop2	All
16	0.076	0.000	0.038
24	0.109	0.000	0.054
15	0.033	0.000	0.016
25	0.163	0.000	0.082
14	0.033	0.000	0.016
19	0.120	0.000	0.060
12	0.033	0.000	0.016
20	0.130	0.000	0.065
23	0.087	0.000	0.043
28	0.011	0.000	0.005
22	0.043	0.000	0.022
21	0.141	0.000	0.071
13	0.011	0.000	0.005
26	0.011	0.000	0.005
Locus	5		
Allele	Pop1	Pop2	All
20	0.457	0.000	0.228
21	0.391	0.000	0.196
19	0.152	0.000	0.076
Locus	6		
Allele		Pop2	All
- Incic	ТОРТ	1 002	All
19	0.033	0.000	0.016
	0.065	0.000	0.033
18	0.261	0.000	0.130
22	0.163	0.000	0.082
21	0.283	0.000	0.141
16	0.033	0.000	0.016
24	0.109	0.000	0.054
17	0.054	0.000	0.027
Locus	7		
Allele	Pop1	Pop2	All
23	0.130	0.000	0.065
20	0.424	0.000	0.212
22	0.185	0.000	0.092
21	0.207	0.000	0.103
19	0.054	0.000	0.027

Locus	8		
Allele	Pop1	Pop2	All
19	0.522	0.000	0.261
17	0.043	0.000	0.022
18	0.087	0.000	0.043
20	0.163	0.000	0.082
16	0.043	0.000	0.022
22	0.076	0.000	0.038
15	0.033	0.000	0.016
23	0.033	0.000	0.016
Locus			•
Allele	Pop1	Pop2	All
	0.05:	0.005	0.05=
24	0.054	0.000	0.027
19	0.359	0.000	0.179
20	0.239	0.000	0.120
23	0.163	0.000	0.082
22	0.054	0.000	0.027
18	0.043	0.000	0.022
21	0.065	0.000	0.033
25	0.022	0.000	0.011
Locus			
Allele	Pop1	Pop2	All
22	0.152	0.000	0.076
20			
	0.337	0.000	0.168
23 24	0.120 0.011	0.000	0.060
24 19	0.011	0.000	0.005 0.082
21	0.163	0.000	0.062
18		0.000	
15	0.043	0.000	0.022
	0.043		0.022
17 25	0.043 0.033	0.000	0.022 0.016
25	0.033	0.000	0.010

Bayesian Analysis: Posterior distribution table

Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
Θ_1	10.32000	17.48000	19.70000	20.00000	20.00000	17.02000	15.36814
Θ_1	3.28000	5.60000	7.74000	8.68000	13.76000	7.90000	4.12819
Θ_1	1.04000	2.80000	3.30000	6.92000	13.60000	6.86000	2.52720
Θ_1	11.60000	16.48000	17.86000	19.84000	20.00000	16.70000	3.82499
Θ_1	0.48000	1.16000	1.66000	3.52000	7.08000	3.14000	0.69851
Θ_1	6.36000	7.68000	9.30000	11.76000	17.64000	11.30000	1.94208
Θ_1	3.36000	5.52000	8.98000	9.48000	15.00000	8.66000	1.28975
Θ_1	5.20000	9.28000	11.50000	12.00000	16.04000	11.18000	1.42814
Θ_1	0.00000	0.00000	0.34000	0.88000	1.12000	10.78000	1.10267
Θ_1	5.04000	11.68000	12.58000	13.20000	20.00000	12.58000	1.18480
Θ_1	5.92000	8.00000	8.74000	9.32000	11.52000	8.78000	8.95383
	Θ_{1}	$\begin{array}{c c} \Theta_1 & 10.32000 \\ \Theta_1 & 3.28000 \\ \Theta_1 & 1.04000 \\ \Theta_1 & 11.60000 \\ \Theta_1 & 0.48000 \\ \Theta_1 & 6.36000 \\ \Theta_1 & 3.36000 \\ \Theta_1 & 5.20000 \\ \Theta_1 & 0.00000 \\ \Theta_1 & 5.04000 \\ \end{array}$	Θ_1 10.32000 17.48000 Θ_1 3.28000 5.60000 Θ_1 1.04000 2.80000 Θ_1 11.60000 16.48000 Θ_1 0.48000 1.16000 Θ_1 6.36000 7.68000 Θ_1 3.36000 5.52000 Θ_1 5.20000 9.28000 Θ_1 0.00000 0.00000 Θ_1 5.04000 11.68000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Θ_1 10.32000 17.48000 19.70000 20.00000 Θ_1 3.28000 5.60000 7.74000 8.68000 Θ_1 1.04000 2.80000 3.30000 6.92000 Θ_1 11.60000 16.48000 17.86000 19.84000 Θ_1 0.48000 1.16000 1.66000 3.52000 Θ_1 6.36000 7.68000 9.30000 11.76000 Θ_1 3.36000 5.52000 8.98000 9.48000 Θ_1 5.20000 9.28000 11.50000 12.00000 Θ_1 0.00000 0.00000 0.34000 0.88000 Θ_1 5.04000 11.68000 12.58000 13.20000	Θ_1 10.32000 17.48000 19.70000 20.00000 20.00000 Θ_1 3.28000 5.60000 7.74000 8.68000 13.76000 Θ_1 1.04000 2.80000 3.30000 6.92000 13.60000 Θ_1 11.60000 16.48000 17.86000 19.84000 20.00000 Θ_1 0.48000 1.16000 1.66000 3.52000 7.08000 Θ_1 6.36000 7.68000 9.30000 11.76000 17.64000 Θ_1 3.36000 5.52000 8.98000 9.48000 15.00000 Θ_1 5.20000 9.28000 11.50000 12.00000 16.04000 Θ_1 0.00000 0.00000 0.34000 0.88000 1.12000 Θ_1 5.04000 11.68000 12.58000 13.20000 20.00000	Θ_1 10.32000 17.48000 19.70000 20.00000 20.00000 17.02000 Θ_1 3.28000 5.60000 7.74000 8.68000 13.76000 7.90000 Θ_1 1.04000 2.80000 3.30000 6.92000 13.60000 6.86000 Θ_1 11.60000 16.48000 17.86000 19.84000 20.00000 16.70000 Θ_1 0.48000 1.16000 1.66000 3.52000 7.08000 3.14000 Θ_1 6.36000 7.68000 9.30000 11.76000 17.64000 11.30000 Θ_1 3.36000 5.52000 8.98000 9.48000 15.00000 8.66000 Θ_1 5.20000 9.28000 11.50000 12.00000 16.04000 11.18000 Θ_1 0.00000 0.00000 0.34000 0.88000 1.12000 10.78000 Θ_1 5.04000 11.68000 12.58000 13.20000 20.00000 12.58000

Bayesian Analysis: Posterior distribution over all loci

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations: BF = Exp[In(Prob(D | thisModel) - In(Prob(D | otherModel)) or as LBF = 2(In(Prob(D | thisModel) - In(Prob(D | otherModel))) shows the support for thisModel]

Locus	Raw thermodynamic score(1a)	Bezier approximation score(1b)	Harmonic mean(2)
1	-12503.86	-2113.38	-98.71
2	-3214.65	-597.31	-74.13
3	-1926.20	-396.44	-75.39
4	-14475.54	-2430.71	-100.09
5	-993.07	-227.27	-51.39
6	-6200.99	-1085.77	-79.46
7	-2009.53	-409.50	-74.54
8	-4420.56	-799.52	-81.94
9	-5402.78	-960.60	-144.71
10	-5572.08	-997.49	-86.19
All	-56804.08	-10102.80	-951.36

(1a, 1b and 2) is an approximation to the marginal likelihood, make sure the program run long enough!
(1a, 1b) and (2) should give a similar result, (2) is considered more crude than (1), but (1) needs heating with several well-spaced chains,
(1b) is using a Bezier-curve to get better approximations for runs with low number

of heated chains

[Scaling factor = -84.805487

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio	
Θ_1 Genealogies	1102449/1102449 286316/1001381	1.00000 0.28592	

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
$\Theta_1 \\ \text{Ln[Prob(D G)]}$	0.92524 0.95722	773.10 411.37

Warnings
You should most likely rerun your analysis after improving run parameters.
Param 1 (Locus 1): Upper prior boundary seems too low! Param 1 (Locus 4): Upper prior boundary seems too low!