

CS 856: Programmable Networks

Mina Tahmasbi Arashloo Winter 2023

Small and simple

Tens of nodes

Networks today (2020s)

Large and complex

Thousands, even millions of nodes

Small and simple

Networks today (2020s)

Large and complex

- Small and simple
- A scientific experiment

Networks today (2020s)

Large and complex

- Small and simple
- A scientific experiment

Networks today (2020s)

- Large and complex
- Critical infrastructure/ Public utility

- Small and simple
- A scientific experiment
- Few simple requirements

Get data from A to B (preferably without loss \bigcirc)

Networks today (2020s)

- Large and complex
- Critical infrastructure/ Public utility

- Small and simple
- A scientific experiment
- Few simple requirements

Get data from A to B (preferably without loss \bigcirc)

Networks today (2020s)

- Large and complex
- Critical infrastructure/ Public utility
- Many complex requirements

- Get data from A to B
- Ensure isolation
- Maintain quality of service
- High throughput
- Low latency
- Low jitter
- ..

How does this affect network design, operation, and management?

Separate *what* you want the network to do from *how* it is implemented

→ Abstraction

Don't implement in manually :

→ Automation

Configure a pre-defined set of distributed protocols (e.g., OSPF, BGP, etc.) to pick your degree forwarding paths.

- Write a program that decides the forwarding paths.
- Have a runtime configure the underlying protocols or directly communicate forwarding rules to network devices.

- Write a program that decides the forwarding paths.
- Have a runtime configure the underlying protocols or directly communicate forwarding rules to network devices.

- Write a program that decides the forwarding paths.
- Have a runtime configure the underlying protocols or directly communicate forwarding rules to network devices.

- Write a program that decides the forwarding paths.
- Have a runtime configure the underlying protocols or directly communicate forwarding rules to network devices.

- Write a program that specifies how packets are parsed and processed.
- Have a compiler implement it across user-space, the Kernel, and hardware accelerators.

- Write a program that specifies how packets are parsed and processed.
- Have a compiler translate that into instructions for switch hardware.

- Write a program that decides the forwarding paths.
- Have a runtime configure the underlying protocols or directly communicate forwarding rules to network devices.

- Write a <u>program</u> that specifies how packets are parsed and processed.
- Have a compiler implement it across user-space, the Kernel, and hardware accelerators.

- Write a <u>program</u> that specifies how packets are parsed and processed.
- Have a compiler translate that into instructions for switch hardware.

- Write a <u>program</u> that decides the forwarding paths.
- Have a runtime configure the underlying protocols or directly communicate forwarding rules to network devices.

Treat the network as a big, distributed, and specialized computer

- Write a **program** that specifies how packets are parsed and processed.
- Have a compiler implement it across user-space, the Kernel, and hardware accelerators.

- Write a <u>program</u> that specifies how packets are parsed and processed.
- Have a compiler translate that into instructions for switch hardware.

- Write a <u>program</u> that decides the forwarding paths.
- Have a runtime configure the underlying protocols or directly communicate forwarding rules to network devices.

Programmable Networks

 Write a <u>program</u> that specifies how packets are parsed and processed.

 Have a compiler implement it across user-space, the Kernel, and hardware accelerators.

- Write a <u>program</u> that specifies how packets are parsed and processed.
- Have a compiler translate that into instructions for switch hardware.

When we can "program" the network...

We can

- Analyze high-level programs to verify network functionality
- Program network devices to
 - measure fine-grained statistics about traffic
 - add a variety of signals about congestion to packets for end-to-end congestion control algorithms
 - implement sophisticated and customized packet scheduling algorithms to provide quality of service (QoS) guarantees
 - accelerate distributed applications (!)
 - O ...
- ...

This Course

(Programming) abstraction and automation applied to different components in networks

what it has enabled

what is left to do

Logistics

- Class is Tuesdays and Thursdays, 1:00pm to 2:20pm.
- Thursdays: lecture followed by discussion
 - Lay of the land for that topic
 - Context about the papers we want to read
- Tuesdays: Paper discussion
- Some classes may be online. The class is in-person by default, unless you receive a calendar invite at least 48 hours in advance with zoom information.

Logistics - Continued

- Instructor is me! Email me for any questions and to request office hours
 - prefix the email with [CS856] for a timely reply
- We will use Slack for announcements and other discussions

Course Components

- Reviews (25%)
- Paper Presentation (15%)
- Assignments (10%)
- Project (50%)

Reviews

- Two papers each week
- Due on <u>Mondays at 5pm EST.</u>
- Will be visible (anonymously) afterwards, so make sure to check them before class on Tuesday.
- Review grading
 - Complete (2 points): adheres to the reviewing guidelines (next slide), clearly demonstrates that the reviewer has read and thought about the paper.
 - Partially Complete (1 point): Misses some but not all the reviewing guidelines, demonstrates that the reviewer has some understanding of the paper.
 - Incomplete (0 points)

Reviewing Guidelines

Each review should be ~500 words and contain the following sections, following the typical format of reviews in networking and systems conferences:

- A concise summary of the paper (1 paragraph)
- A list of the paper's main strengths (at least 2 bullet points)
- A list of opportunities for improvement (at least 2 bullet points)
- Critical analysis and comments (justifying the strengths and improvement opportunities listed in the previous sections)

Reviewing Platform: HotCRP

Waterloo CS 856 Winter 2023

Reviewing Platform: HotCRP

- When ready, submit review
- Every Monday at 5pm, the review form is deactivated and you can see all the other reviews submitted for the paper.

Paper Presentation

- Each Paper discussion starts by a 10-minute presentation:
 - Describe the context and motivation behind the paper
 - The main problem the paper is trying to solve
 - The main design choices and/or techniques used in the solution
 - A summary of evaluation results
 - 4-5 discussion questions
- Each student is expected to do 1-2 presentations
- Feel free to send me a draft a few days before for feedback

Assignments

- Two programming assignments, each 5% of the final grade
 - Assignment 1: implement a simple network functionality using P4
 - Assignment 2: analyze the correctness of a simple network functionality using existing analysis tools
- The assignments are quite light
- The main purpose is for you to just install and use the tools

Project

- Individually or in groups of two
- Original research projects related to programmable networks
- One-Page Proposal (Jan 31)
 - problem statement, context and motivation, and a high-level overview of related work
- Two-Page Progress Report (March 2)
- Presentation (Last week of classes)
- Final Project Report (April 10)
 - 6-page conference-style paper
 - problem statement and motivation, design, evaluation, related work, and future research directions

Final Remarks

- Seminar courses are only as good as the discussions we have.
- Be active, ask questions, and voice your opinion.
- There are no bad ideas, and I mean it
- If you have a hard time speaking up, let me know and I'll make sure to provide space for you to voice your opinion.
- Be mindful of others in discussions.