

Block Diagram

Buck Converter

Design choices:

- Fixed 12V to 3.3V, simpler feedback loop
- Efficient voltage conversion (73% according to data sheet)
- Capacitor and inductor values chosen based off of calculated current draw
- Added unpolarized capacitor for additional decoupling

Buck Converter (cont.)

SYSTEM PARAMETERS (Note 5) Test Circuit Figure 1

V _{OUT}	Output Voltage	$4.75V \le V_{IN} \le 40V, \ 0.2A \le I_{LOAD} \le 3A$	3.3		V
				3.168/ 3.135	V(min)
				3.432/ 3.465	V(max)
η	Efficiency	V _{IN} = 12V, I _{LOAD} = 3A	73		%

Table 15: Current Consumption Depending on RF Modes

Work mode	Desc	cription	Average (mA)	Peak (mA)		
		802.11b, 20 MHz, 1 Mbps, @19.5 dBm	239	379		
	TV	802.11g, 20 MHz, 54 Mbps, @15 dBm	190	276		
Active (DE working)	TX	802.11n, 20 MHz, MCS7, @13 dBm	183	258		
Active (RF working)		802.11n, 40 MHz, MCS7, @13 dBm	165	211		
	RX	802.11b/g/n, 20 MHz	112	112		
	KA	802.11n, 40 MHz	118	118		

Buck Converter (cont.)

Absolute Max Current Draw Calculations:

$$379mA + 3(\frac{62.5mW}{3.3V}) + 3(\frac{75mW}{3.3V}) + 3(\frac{75mW}{3.3V}) = 572.18mA \approx 600mA$$

Capacitor values are safest for voltage and current ratings (also from datasheet)

FIGURE 4. LM2596-3.3

ABSOLUTE MAXIMUM RATINGS at T_A=25°C

Parameter	Symbol	Value	Unit
Power Dissipation	P _D	62.5	mW

ESP32-WROOM-32UE Microcontroller

Design Choices:

- Decouplers to smooth input voltage
- Simple pull up resistor for EN pin
- UART port without USB-to-UART to keep simple
- JTAG for debugging hardware
- All capacitor and resistor values are chosen because they meet minimum requirements, reduce high and low frequency noise, while providing leeway for voltage spikes

LEDs

Design Choices:

- Used the Kingbright WP7113
 series LEDs (3 green, 3 yellow, 3 red)
- Low power usage (193.18 mW)
- Powered by the 3V3 buck converter, not the microcontroller
- Use NMOS MOSFET for current switch (quicker and more efficient than BJT)
- Resistance values are calculated based on LED data sheets

LEDs (cont.)

$$R_{green} = rac{3.3\,{
m V} - 2.2\,{
m V}}{0.020\,{
m A}} = 55\,\Omega$$

$$R_{yellow} = rac{3.3\,{
m V} - 2.0\,{
m V}}{0.020\,{
m A}} = 65\,\Omega$$

$$R_{red} = rac{3.3\,\mathrm{V} - 1.85\,\mathrm{V}}{0.020\,\mathrm{A}} = 72.5\,\Omega$$

Forward Voltage I _F = 20mA	V _F ^[2]	Super Bright Green		2.2	2.5	V
Forward Voltage I _F = 20mA	V _F ^[2]	Super Bright Yellow		2	2.5	V
Forward Voltage I _F = 20mA	V _F [2]	Super Bright Red	1	1.85	2.5	٧

Pseudocode for ESP32-WROOM-32UE

```
// Constants
NUM LEDS = 9
LED PINS = [pin1, pin2, ..., pin9] // GPIO pins connected to NMOS gates
RPM THRESHOLDS = [1000, 2000, ..., 9000] // Example thresholds for each LED
// Setup
for i in 0..NUM LEDS-1:
   configurePinAsOutput(LED PINS[i])
   setPinLow(LED PINS[i]) // all LEDs off at start
// Main loop
while true:
   // Turn on LEDs based on rpm thresholds
   for i in 0..NUM LEDS-1:
      if rpm >= RPM THRESHOLDS[i]:
          setPinHigh(LED PINS[i]) // LED ON
      else:
          setPinLow(LED PINS[i]) // LED OFF
   delay(small interval) // e.g., 10-50 ms to limit CPU usage
```