AΘHNA 25, 6, 2021

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ "Συστήματα Μικροϋπολογιστών"

(ΘΕΜΑ 2° – ΣΥΝΟΛΟ 4.5 Μονάδες)

Έναρξη 12:30 - ΔΙΑΡΚΕΙΑ 60' + 10' Παράδοση: 13:40'

ΟΝΟΜΑΤΕΠΩΝΥΜΟ	: .																							
---------------	-----	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

ΘΕΜΑ 20: (4.5 ΜΟΝΑΔΕΣ): Σε ένα μικροελεγκτή AVR Mega16 που αξιοποιεί μία θύρα εισόδου και μία εξόδου, όπως φαίνεται στο διπλανό σχήμα, να υλοποιηθεί ένα σύστημα οδήγησης ενός ανελκυστήρα δυο θέσεων (ισογείου και 1° ορόφου). Η κίνηση προς το ισόγειο ή τον 1° όροφο ελέγχεται από τους εξωτερικούς διακόπτες (Push-Buttons) ΚΟ και Κ1 αντίστοιχα καθώς και από έναν εσωτερικό διακόπτη (Push-Button) Μ. Για να δοθεί εντολή από τους διακόπτες αυτούς, προϋπόθεση είναι το βαγόνι να είναι σταματημένο στο ισόγειο ή στον 1° όροφο. Όταν κινείται πρέπει να σταματάει από το πρόγραμμα με βάση τους αισθητήρες ΑΟ και Α1 που είναι τερματικοί διακόπτες και οι οποίοι δίνουν λογικό 1 αυτόματα όταν ο θάλαμος φτάνει στο ισόγειο ή στον 1° όροφο αντίστοιχα. Υποθέτουμε ότι κατά την εκκίνηση του συστήματος, ο θάλαμος πρέπει να βρίσκεται στο

ισόγειο, αλλιώς πριν δεχτεί οποιαδήποτε εντολή να μεταφέρεται σε αυτή τη θέση αυτόματα.

Αναλυτικά, αν ο θάλαμος φτάσει στο ισόγειο, τότε πρέπει να σταματάει η κίνησή του και να ελέγχονται οι διακόπτες K1 και M. Αν ένας από αυτούς είναι ενεργοποιημένος (=1) τότε έχουμε κίνηση προς τα πάνω. Αντίστοιχα αν ο θάλαμος φτάσει στον $1^{\rm o}$ όροφο, τότε πρέπει να σταματάει η κίνησή του και να ελέγχονται οι διακόπτες K0 και M. Αν ένας από αυτούς είναι ενεργοποιημένος (=1) τότε έχουμε κίνηση προς τα κάτω. Δώστε το αντίστοιχο πρόγραμμα σε assembly και σε C.

(Assembly: 2.5 MONADED kai C: 2 MONADED)