Limiti

 $D\subset \mathbb{R},\; f:D o \mathbb{R},\; x_0\in \mathbb{R}$

Intorno

Definizione

L'intorno di x_0 di raggio r è l'intervallo $(x_0-r,x_0+r)=\{x\in\mathbb{R}:|x-x_0|< r\}$ $a\in R$ L'intorno di $+\infty$ è l'intervallo $(a,+\infty)=\{x\in\mathbb{R}:x>a\}$ L'intorno di $-\infty$ è l'intervallo $(-\infty,a)=\{x\in\mathbb{R}:x< a\}$

Punto di accumulazione

Definizione

 x_0 si dice punto di accumulazione per D se $(x_0-\delta,x_0+\delta)\cap D\setminus \{x_0\}
eq \emptyset \ \ \forall \delta>0$, equivalentemente $\forall \delta>0\ \exists x\in D: 0<|x-x_o|<\delta$

Limite finito in un punto

₽ Definizione

 x_o punto di accumulazione per D $l\in\mathbb{R}$ si dice limite di f per $x o x_0$ se $orall \epsilon>0$: $orall x\in(x_0-\delta,x_0+\delta)\cap D\setminus\{x_0\}\ |f(x)-l|<\epsilon$ e si indica con $\lim_{x o x_0}f(x)=l$

Funzione continua

Definizione

 $x_0 \in D$

Una funzione f è continua in x_0 se $\forall \epsilon>0$ $\exists \delta>0: \forall x\in (x_0-\delta,x_0+\delta)\cap D\setminus \{x_0\}\ |f(x)-f(x_0)|<\epsilon$ Ovvero f è continua in $x_0\iff \lim_{x\to x_0}f(x)=f(x_0)$

Limite destro e sinistro

Definizione

 x_0 punto di accumulazione per D

$$\lim_{x o x_0^+}f(x)=l\iff orall \epsilon>0\ \exists \delta>0: orall x\in (x_0,x_0+\delta)\cap D\ \ |f(x)-l|<\epsilon$$

$$\lim_{x o x_0^-}f(x)=l\iff orall \epsilon>0\ \exists \delta>0: orall x\in (x_0-\delta,x_0)\cap D\ \ |f(x)-l|<\epsilon$$

$$\exists \lim_{x o x_0} f(x) = l \in \mathbb{R} \iff \lim_{x o x_0^+} f(x) = \lim_{x o x_0^-} f(x) = l$$

Funzione continua da destra o da sinistra

Definizione

 $x_0 \in D$

Una funzione f è continua da destra in $x_0 \iff \lim_{x \to x_0^+} f(x) = f(x_0)$

Una funzione f è continua da sinistra in $x_0 \iff \lim_{x \to x_0^-} f(x) = f(x_0)$

Limite infinito in un punto

Definizione

 x_0 punto di accumulazione per D

$$\lim_{x o x_0}f(x)=+\infty\iff orall M>0\;\exists \delta>0: orall x\in (x_0-\delta,x_0+\delta)\setminus \{x_0\}\;\; f(x)>M$$

$$\lim_{x o x_0}f(x)=-\infty\iff orall M>0\;\exists \delta>0: orall x\in (x_0-\delta,x_0+\delta)\setminus \{x_0\}\;\;f(x)<-M$$

La retta $x = x_0$ è un'asintoto verticale per f

Limite all'infinito

Definizione

D illimitato superiormente ($\forall k > 0 \; \exists x \in D : x > k$)

$$\lim_{x o +\infty}f(x)=l\in \mathbb{R}\iff orall \epsilon>0\; \exists k>0: orall x\in (k,+\infty)\cap D\;\; |f(x)-l|<\epsilon$$

$$\lim_{x o +\infty} f(x) = +\infty \iff orall M > 0 \; \exists k > 0 : orall x \in (k, +\infty) \cap D \;\; f(x) > M$$

$$\lim_{x o +\infty} f(x) = -\infty \iff orall M > 0 \; \exists k > 0 : orall x \in (k,+\infty) \cap D \;\; f(x) < -M$$

D illimitato inferiormente (orall k>0 $\exists x\in D:x<-k$)

$$\lim_{x o -\infty} f(x) = l \in \mathbb{R} \iff orall \epsilon > 0 \; \exists k > 0 : orall x \in (-\infty,k) \cap D \; \; |f(x)-l| < \epsilon$$

$$\lim_{x o -\infty} f(x) = +\infty \iff orall M > 0 \; \exists k > 0 : orall x \in (-\infty,k) \cap D \;\; f(x) > M$$

$$\lim_{x o -\infty} f(x) = +\infty \iff orall M > 0 \; \exists k > 0 : orall x \in (-\infty,k) \cap D \;\; f(x) < -M$$

Cambio di variabili

Teorema

Se $\exists \lim_{x \to x_0} f(x) = y_0, \; g$ funzione definita in un intorno di y_0 tale che

- se $y_0 \in \mathbb{R}$, g è continua in y_0
- se $y_0=\pm\infty$, $\exists \lim_{y o y_0}g(y)$

allora

$$\lim_{x o x_0}g(f(x))=\lim_{y o y_0}g(y)$$

Continuità

Definizione

 $A \subset D$

f è continua in A se f è continua in $x_0 \ \ orall x_0 \in A$ In questo caso $f \in C^0(A)$

Discontinuità

Definizione

Un punto di discontinuità x_0 si dice

• Eliminabile se esiste finito

$$\lim_{x o x_0}f(x)
eq f(x_0)$$

• A salto se esistono finiti

$$\lim_{x o x_0^+}f(x)
eq\lim_{x o x_0^-}f(x)$$

• Essenziale negli altri casi

Limiti notevoli

Formule

$$\lim_{x o 0}rac{\sin(x)}{x}=1$$

$$\lim_{x\to 0}\frac{1-\cos(x)}{x^2}=\frac{1}{2}$$

$$\lim_{x o 0}rac{ an(x)}{x}=1$$

$$\lim_{x\to\pm\infty}\left(1+\frac{1}{x}\right)^x=e$$

$$\lim_{x\to 0}(1+x)^{1/x}=e$$

$$\lim_{x o 0}rac{\ln(1+x)}{x}=1$$

$$\lim_{x o 0}rac{e^x-1}{x}=1$$

$$\lim_{x o 0}rac{a^x-1}{x}=\ln(a)$$

$$\lim_{x\to 0}\frac{(1+x)^\alpha-1}{x}=\alpha$$