1 Úvod

Definice 1.1 (Metrika, metrický prostor)

M množina, $d: M \times M \to [0, \infty)$ je metrika, pokud $\forall x, y, z \in M$ platí:

$$d(x,y) = 0 \Leftrightarrow x = y,$$
$$d(y,x) = d(x,y),$$

 $d(x,y) \le d(x,z) + d(z,y).$

Dvojice (M,d) se pak nazývá metrický prostor.

Definice 1.2 (Norma a normovaný lineární prostor (NLP))

Ať V je vektorový prostor nad $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$, pak $||\cdot|| : V \to [0, \infty)$ je norma, pokud $\forall x, y \in V$

$$||\mathbf{x}|| = 0 \Leftrightarrow \mathbf{x} = \mathbf{o},$$

$$\forall \lambda \in \mathbb{F} : ||\lambda \mathbf{x}|| = |\lambda| \cdot ||\mathbf{x}||,$$
$$||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||.$$

Dvojice $(\mathbf{V}, ||\cdot||)$ se pak nazývá normovaný lineární prostor.

Definice 1.3 (Otevřená a uzavřená koule)

At (\mathbb{M},d) je MP, $x \in \mathbb{M}, r > 0$. Pak otevřená koule o středu x a poloměru r je množina $B(x,r) := \{y \in \mathbb{M}; d(x,y) < r\}$. Uzavřená koule o středu x a poloměru r je množina $\overline{B}(x,r) := \{y \in \mathbb{M}; d(x,y) \leq r\}$.

Věta 1.1

 $(\mathbb{R}^d, ||\cdot||_p)$ je NLP pro $d \in \mathbb{N}, p \in [1, \infty]$.

Důkaz

1. krok: $B=\left\{x\in\mathbb{R}^d;||x||_p\leq 1\right\}$ je konvexní množina (tj. $\forall\lambda\in(0,1)\ \forall x,y\in B:\lambda x+(1-\lambda)y\in B$). Pro $p=\infty$:

$$\forall i \in [d] : |\lambda x_i + (1 - \lambda)y_i| \le \lambda |x_i| + (1 - \lambda)|y_i| \le \lambda \cdot 1 + (1 - \lambda) \cdot 1 = 1$$

Pro $p < \infty$:

$$\forall i \in [d] : |\lambda x_i + (1 - \lambda)y_i|^p \le \lambda |x_i|^p + (1 - \lambda)|y_i|^p,$$

protože $t\mapsto t^p$ je konvexní funkce. Dopočítáním obou nerovností získáme, že je to opravdu konvexní množina.

2. krok: Pokud $||\cdot||$ splňuje (i)+(ii) a B je konvexní, pak $||\cdot||$ je norma. Zvolme $\mathbf{x},\mathbf{y}\in\mathbf{V},$ BÚNO $\mathbf{x},\mathbf{y}\neq\mathbf{o},$ položme $\tilde{\mathbf{x}}:=\frac{\mathbf{x}}{||\mathbf{x}||},$ $\tilde{\mathbf{y}}:=\frac{\mathbf{y}}{||\mathbf{y}||},$ tedy:

$$\frac{\mathbf{x} + \mathbf{y}}{||\mathbf{x}|| + ||\mathbf{y}||} = \frac{||\mathbf{x}||}{||\mathbf{x}|| + ||\mathbf{y}||} \tilde{\mathbf{x}} + \frac{||\mathbf{y}||}{||\mathbf{x}|| + ||\mathbf{y}||} \tilde{\mathbf{y}} \in B \text{ (zlomky jsou } \lambda, 1 - \lambda).$$

$$||\frac{\mathbf{x} + \mathbf{y}}{||\mathbf{x}|| + ||\mathbf{y}||}|| \le 1 \implies \frac{||\mathbf{x} + \mathbf{y}||}{||\mathbf{x}|| + ||\mathbf{y}||} \le 1.$$

3. $||\cdot||_p$ zřejmě splní (i)+(ii) a B je konvexní podle 1. kroku. Tedy $||\cdot||_p$ je norma. \qed

Poznámka (Značení)

$$l_p^d := (\mathbb{R}^d, ||\cdot||_p)$$
.

Definice 1.4 (Konvergence)

At (\mathbb{M}, d) je MP, $\{x_n\}_{n=1}^{\infty}$ posloupnost v $\mathbb{M}, x \in \mathbb{M}$. Pak (x_n) konverguje k x pokud $d(x_m, x)$ konverguje k x0. Píšeme $x_n \to x$ nebo také $\lim_{n \to \infty} x_n = x$.

2 Otevřené a uzavřené množiny

Definice 2.1 (Vnitřek, vnějšek, hranice)

At (M, d) je MP. $A \subseteq M$. Pak $x_0 \in M$ je vnitřní bod $A \equiv \exists r > 0 : B(x_0, r) \subseteq A$. Dále vnitřek (interior) množiny A je množina

$$\operatorname{int}(a) = \{x_0 \in \mathbb{M} | x_0 \text{ je vnitřní bod } A\}.$$

Dále $x_0 \in \mathbb{M}$ je vnější bod $A \equiv \exists r > 0 : \mathrm{B}(x_0, r) \subseteq \mathbb{M} \setminus A$. Vnějšek (exterior) množiny A je množina

$$\operatorname{ext}(a) = \{x_0 \in \mathbb{M} | x_0 \text{ je vnější bod } A\}.$$

Nakonec $x_0 \in \mathbb{M}$ je hraniční bod $A \equiv x \in \mathbb{M} \setminus (\operatorname{int}(A) \cup \operatorname{ext}(A))$. Hranice množiny A je množina

$$\partial A = \{x_0 \in \mathbb{M} | x_0 \text{ je hraniční bod } A\}.$$

Pozorování

Zřejmě $int(A) \subseteq A$.

Zřejmě $\operatorname{ext}(A) = \operatorname{int}(\mathbb{M} \setminus A) \subseteq \mathbb{M} \setminus A$.

Definice 2.2 (Otevřená a uzavřená množina)

Buď (M, d) MP a $A \subseteq M$. Pak A je otevřená $\equiv A \cap \partial A = \emptyset$.

Dále uzávěr množiny A je množina $\overline{A} = A \cup \partial A$. Množina A je poté uzavřená $\equiv \partial A \subseteq A$.

Pozorování

Zřejmě A je otevřená $\Leftrightarrow A = \operatorname{int}(A)$.

Otevřená koule je otevřená množina.

Lemma 2.1

At (M, d) je MP, $A \subseteq M$. $Pak x \in \overline{A} \Leftrightarrow \exists (x_n) \subseteq N \times A : x_n \to x$. Zároveň následující podmínky jsou ekvivalentní:

$$a)A \ je \ uzav \check{r}en\acute{a}, \qquad b)A = \overline{A}, \qquad \forall (x_n \in A) : x_n \to x \in \mathbb{M} \implies x \in A.$$

 $D\mathring{u}kaz$

 \Longrightarrow : At $x \in \overline{A}$. Pokud $x \in A$, polož $x_n = x$. Pokud $x \notin A$, pak $x \in \partial A$, tedy $\forall n \exists x_n \in B(x, \frac{1}{n}) \cap A$. Pak $x_n \to x \ (0 \le d(x_n, x) < \frac{1}{n} \to 0)$.

 \Leftarrow At (x_n) je posloupnost v A, $x_n \to x$. Pokud $x \in A$, jsme hotovi. Pokud $x \notin A$, pak $\forall \varepsilon > 0 \ \exists r_0 \forall n \geq n_0 : x_n \in B(x, \varepsilon) \cap A$. Tedy $x \in \overline{A}$.

 $(a) \Leftrightarrow b$) (A) je uzavřená $\overset{\text{def}}{\Leftrightarrow} \partial A \subseteq A \Leftrightarrow A = A \cup \partial A = \overline{A}$.

$$b) \implies c) \implies a) \ A = \overline{A} \implies \forall (x_n) : x_n \to x \implies x \in A \ \overline{\text{První část}} \Longrightarrow \partial A \subseteq A.$$

Věta 2.2 (Základní vlastnosti otevřených množin)

At(M,d) je MP. Pak

- (i) M a Ø jsou otevřené.
- (ii) Sjednocení libovolně mnoha otevřených je otevřený.

(iii) Průnik konečně mnoha otevřených je otevřený.

 $D\mathring{u}kaz$

(i) Triviální. (ii) $x \in \bigcup_i M_i$, pak $\exists j : x \in M_j$. Potom M_j je otevřená, tedy existuje r > 0: $B(x,r) \subseteq M_j \subseteq \bigcup_i M_i$. Tedy $\bigcup_i M_i$ je otevřená. (iii) $x \in \bigcap_i M_i$, pak $\forall i \; \exists r_i : B(x,r_i) \subseteq M_i$. Polož $r = \min_i r_i > 0$ (protože i je z konečné množiny, tedy existuje minimum a to je jistě jeden z těch poloměrů, tedy > 0), pak $B(x,r) \subseteq \bigcap_i M_i$. Tedy $\bigcap_i M_i$ je otevřená. \square

Věta 2.3 (Vztah otevřená a uzavřené množiny)

At(M,d) je MP, $A \subseteq M$. Pak A je otevřená $\Leftrightarrow M \setminus A$ je uzavřená.

 $D\mathring{u}kaz$

 \Longrightarrow : Zvol (x_n) posloupnost v $\mathbb{M} \setminus A$, $x_n \to x$. Sporem. Necht $x \in A$. Potom $\exists \varepsilon > 0$: $B(x,\varepsilon) \subseteq A$, ale pak $\exists n : x_n \in A$. \not .

 \Rightarrow : Zvol $x \in A$. Protože $\mathbb{M} \setminus A$ je uzavřená, tedy $\partial(\mathbb{M} \setminus A) \subseteq \mathbb{M} \setminus A$), $x \notin \partial(\mathbb{M} \setminus A)$, tedy $\exists \varepsilon > 0 : B(x, \varepsilon) \cap A = \emptyset$ (to nelze) nebo $B(x, \varepsilon) \cap (\mathbb{M} \setminus A) = \emptyset$. Tedy $\exists \varepsilon > 0 : B(x, \varepsilon) \cap (\mathbb{M} \setminus A) = \emptyset$, tj. $B(x, \varepsilon) \subseteq A$, tedy A je otevřená.

Věta 2.4 (Základní vlastnosti uzavřených množin)

At(M,d) je MP, $A \subseteq M$. Pak

- (i) M a Ø jsou uzavřené.
- (ii) Průnik libovolně mnoha uzavřených množin je uzavřený.
- (iii) Sjednocení konečně mnoha uzavřených množin je uzavřené.

 $D\mathring{u}kaz$

Plyne z věty výše a de-Morganových pravidel.

Věta 2.5

 $At(\mathbb{M},d) \ je \ MP, \ A \subseteq \mathbb{M}. \ Pak \ \mathrm{int}(A) = \bigcup \{G \subseteq A | G \ otev\check{r}en\acute{e}\}. \ \overline{A} = \bigcap \{F \supseteq A | F \ uzav\check{r}en\acute{e}\}.$

Důkaz

 \subseteq : $x \in \text{int}(A) \implies \exists \varepsilon > 0 : B(x, \varepsilon) \subseteq A$, stačí položit $G = B(x, \varepsilon)$.

 \supseteq : At $G \subseteq A$ otevřená, pak $G = \text{int}(G) \subseteq \text{int}(A)$.

 $\subseteq: x \in \overline{A}$, pak $\exists (x_n)$ v $A: x_n \to x$. Zvol $F \supseteq A$ uzavřená, pak $x_n \to x \in F$ (z uzavřené se nedá vykonvergovat).

 \supseteq : Položme $F = \overline{A} \supseteq A$.

3 Spojitost v metrických prostorech

Definice 3.1 (Spojitost v bodě, spojitost, k-Lipschitzovskost, Lipschitzov-

At $(\mathbb{M},d),(\mathbb{N},e)$ jsou MP, $f:\mathbb{M}\to\mathbb{N},\ a\in\mathbb{M}.$ Potom f je spojitá v $a\equiv\forall\varepsilon>0\ \exists\delta>0\ \forall x\in\mathbb{M}:d(x,a)<\delta\implies e(f(x),f(a)<\varepsilon).$

f je spojitá na $\mathbb{M} \equiv \forall a \in \mathbb{M} : f$ je spojitá v a.

f je k-Lipschitzovská $(k > 0) \equiv \forall x, y \in \mathbb{M} : e(f(x), f(y)) \leq k \cdot d(x, y)$.

fje Lipschitzovská $\equiv \exists k>0: f$ je k-Lipschitzovská.

Pozorování

f je k-Lipschitzovská $\implies f$ je spojitá.

Definice 3.2 (Značení)

At (M, d) je MP, $A \subseteq M$, $x \in M$. Pak $dist(x, A) := \inf_{a \in A} d(x, a)$.

Lemma 3.1

 $At'(\mathbb{M},d)$ je MP, $A \subseteq \mathbb{M}$. Pak

$$(i)\forall x \in \mathbb{M} : d(x, A) = d(x, \overline{A}),$$

$$(ii) \forall x \in \mathbb{M} : d(x, A) = 0 \Leftrightarrow x \in \overline{A},$$

(iii) dist $(\cdot, A) : \mathbb{M} \to \mathbb{R}$ je 1-Lipschitzovská.

Důkaz

 $(i) \geq$: Jasné (infimum přes menší množinu). \leq : Pro $n \in \mathbb{N}$ zvolme $y_n \in \overline{A}$: $d(x,y_n) < \operatorname{dist}(x,\overline{A}) + \frac{1}{n}$. Zvolme dále $x_n \in \mathbb{B}\left(y_n,\frac{1}{n}\right) \cap A$, pak $\operatorname{dist}(x,A) \leq d(x,x_n) \leq d(x,y_n) + d(y_n,x_n) < \operatorname{dist}(x,\overline{A}) + \frac{1}{n}$, celkem $\forall n \in \mathbb{N} : \operatorname{dist}(x,A) < \operatorname{dist}(x,\overline{A}) + \frac{2}{n} \Longrightarrow \operatorname{dist}(x,A) \leq \operatorname{dist}(x,\overline{A})$.

(ii): BÚNO A je uzavřená (jinak podle (i)). \Rightarrow : Jasné (do inf dosadíme x). $\Rightarrow \forall n \ \exists x_n \in B(x, \frac{1}{n}) \cap A$ protože d(x, A) = 0. Pak ale $x_n \to x$, tedy $x \in A$ z uzavřenosti.

(iii): Zvolme $x, y \in \mathbb{M}$. BÚNO $d(x, A) \ge d(y, A)$. Fixujeme $n \in \mathbb{N}$. Zvolme $y_n \in A$: $d(y, y_n) < \operatorname{dist}(y, A) + \frac{1}{n}$. Pak

$$|d(x,A) - d(y,A)| = d(x,A) - d(y,A) < d(x,y_n) - \left(d(y,y_n) - \frac{1}{n}\right) \le \frac{1}{n} + d(x,y).$$

 \implies (n bylo libovolné, přejdeme k limitě) $|d(x,A)-d(y,A)| \le 1 \cdot d(x,y)$.

Lemma 3.2

At(M,d) je MP. Pak

 $(i) \forall x \neq y \in \mathbb{M} \ \exists f : \mathbb{M} \to \mathbb{R} \ 1\text{-}Lipschitzovsk\'a, \ \check{z}e \ f(x) \neq f(y),$

(ii) Projekce $\pi_i: (\mathbb{R}^d, ||\cdot||_p) \to \mathbb{R}, (x_1, \dots, x_d) \mapsto x_i \text{ jsou Lipschitzovsk\'e}, d \in \mathbb{N}, p \in [1, \infty].$

 \Box $D\mathring{u}kaz$

(i) Zvol $f := d(\cdot, \{x\})$.

 $(ii) \ \forall \vec{x}, \vec{y} \in \mathbb{R}^d : |\pi_i(x_1, \dots, x_d) - \pi_i(y_1, \dots, y_d)| = |x_i - y_i|$

$$\leq \begin{cases} p = \infty : & ||\vec{x} - \vec{y}||_{\infty} \\ p \neq \infty : & \sqrt[p]{\sum_{j=1}^{d} |x_j - y_j|^p} \end{cases}.$$

Tvrzení 3.3

 $At(\mathbb{M},d), (\mathbb{N},e)$ jsou MP, $f:\mathbb{M}\to\mathbb{N}.$ Pak následující tvrzení jsou ekvivalentní:

- (i) f je spojitá,
- (ii) $f^{-1}(U)$ je otevřená, kdykoliv $U \subseteq \mathbb{N}$ je otevřená,
- (iii) $f^{-1}(F)$ je uzavřená, kdykoliv $F \subseteq \mathbb{N}$ je uzavřená.

 $D\mathring{u}kaz$

- (ii) \Leftrightarrow (iii): Z věty o doplňcích a toho, že $f^{-1}(\mathbb{N} \setminus U) = \mathbb{M} \setminus f^{-1}(U)$.
- (i) \Longrightarrow (ii): Nechť $U\subseteq\mathbb{N}$ otevřená, $x\in f^{-1}(U)$. Pak $f(x)\in U\Longrightarrow\exists \varepsilon>0$: $\mathrm{B}(f(x),\varepsilon)\subseteq U.\Longrightarrow (f\mathrm{spojit\acute{a}})\;\exists \delta>0: y\in\mathrm{B}(x,\delta)\Longrightarrow f(y)\in\mathrm{B}(f(x),\varepsilon)\subseteq U,\;\mathrm{pak}\;\mathrm{B}(x,\delta)\subseteq f^{-1}(U).$
- (ii) \Longrightarrow (i): Nechť $x \in \mathbb{M}, \varepsilon > 0$. Pak $f^{-1}(B(f(x), \varepsilon))$ je otevřená dle (ii). $\Longrightarrow \exists \delta > 0$: $B(x, \delta) \subseteq f^{-1}(B(f(x), \varepsilon))$. Tedy $d(x, y) < \delta \Longrightarrow f(y) \in B(f(x), \varepsilon)$.

Definice 3.3 (Stejnoměrná spojitost)

Ať (\mathbb{M}, d) a (\mathbb{N}, e) jsou MP, $f : \mathbb{M} \to \mathbb{N}$. Pak f je stejnoměrně spojitá, pokud

$$\forall \varepsilon > 0 \exists \delta > 0 \ \forall x, y \in \mathbb{M} : d(x, y) < \delta \implies e(f(x), f(y)) < \varepsilon.$$

Důsledek

f je stejnoměrně spojitá $\implies f$ je spojitá. (Ale naopak to neplatí.)

f je Lipschitzovská $\implies f$ je stejnoměrně spojitá. (Stejně tak tohle naopak neplatí.)

Definice 3.4 (Izometrie)

At (\mathbb{M}, d) a (\mathbb{N}, e) jsou MP, $f : \mathbb{M} \to \mathbb{N}$. Pak f je izometrie, pokud $\forall x, y \in \mathbb{M} : d(x, y) = e(f(x), f(y))$.

Důsledek

Izometrie je 1-Lipschitzovská. (Ale ne naopak.)

Definice 3.5 (Homeomorfismus)

Ať (\mathbb{M},d) a (\mathbb{N},e) jsou MP, $f:\mathbb{M}\to\mathbb{N}$. Pak f je homeomorfismus, pokud f je spojitá bijekce a f^{-1} je spojitá.

Důsledek

Izometrie na je homeomorfismus. (Ale opačně to neplatí.)

Lemma 3.4

 $I \text{ interval, } f: I \to \mathbb{R}, \text{ } \check{z}e \mid f'(x) \mid \leq C, \forall x \in \operatorname{int}(I) \implies f \text{ } je \text{ } C\text{-}Lipschitzovsk\'a.$

Důkaz

At $a < b \in I \implies (\text{Lagrange}) \ \exists \zeta \in (a,b) : |\frac{f(b)-f(a)}{b-a}| = |f'(\zeta)| \le C$, tj. $|f(b)-f(a)| \le C|b-a|$.