第十三章 特殊图

计算机科学与技术系 洪源

- 二部图 (二分图,偶图),完全二部图
 - 。第373页定义13.4、13.5
 - 二部图也常表示成 <X, Y, E>
 - 根据定义,X(Y)中的顶点均不相邻
- 二部图的判定
 - ◎ 第 374 页定理 13.6

- 无向树(树),森林,平凡树,树叶,分枝点
 - 第 381 页定义 13.11 (注意其中 *空树* 的概念)
 - 。在对树的讨论中,若非特别说明,"回路"均指基本回路
- 无向树的性质
 - 。第 381 页定理 13.14
 - (4)和(5)的第一个逗号后面的"但"之后插入"任意"
 - 。 非平凡树中至少有两片树叶

- 生成树,树枝,弦,余树
 - 第 383 页定义 13.12
 - 生成树的边称为树枝,其他边称为弦
 - 。 弦的导出子图称为生成树的余树
 - 例:

- 无向图的连通性与生成树共存定理
 - 。 无向图 G 是连通图当且仅当 G 有生成树
 - □ 证明
- 基本回路(基本圈),基本回路系统,圈秩
 - 设 G 是 (n, m) 图
 - T 是 G 的一颗生成树
 - 。 e_{k1}, e_{k2}, ..., e_{k(m-n+1)}是T的弦
 - \circ C_r (r=k1,k2,...,k(m-n+1)) 为 T 加 e_{kr} 后产生的 G 中由弦 e_{kr} 和树枝构成的回路
 - 则称 C_r是 e_{kr}对应的 G 的基本回路
 - 称 {C_r | r= k1, k2, ..., k(m-n+1)} 是 G 对应 T 的基本回路系统
 - \circ 称 m-n+1 是 G 的圈秩,记做 ξ (G) ,给定的图的圈秩是确定的

- 定理
 - 。 设 T 是图 G 的一颗生成树 , e 为 T 的树枝
 - 。 则 G 中唯一存在只含 e 一个树枝的割集 , 称为 e 所对应的割集
 - 。 不同的树枝对应的割集不相同
- 基本割集,基本割集系统,割集秩
 - 设 T 是 n 阶连通图 G 的一棵生成树
 - 。 e₁, e₂, ..., e_{n-1} 为 T 的树枝
 - 。 S_i 是树枝 e_i 所对应的一个割集 (i = 1, 2, ..., n-1)
 - 。 称 Si 是树枝 ei 所对应的一个基本割集
 - 。 {S₁, S₂, ..., S_{n-1}} 是 G 对应 T 的一个基本割集系统
 - ∘ n-1 为 G 的割集秩 , 记做 η(G)

- 最小生成树
 - 。第 385 页定义 13.13
- 避圈法 (Kruskal 算法)
 - 。第 385 页算法 13.1

- 有向树,根树(外向树),树根,树叶,内点,分支点,(顶点的)层数(通路长度),树高
 - 。第 387 页定义 13.14 、 13.15 ,第 390 页定义 13.20
 - 内向树*
- 祖先,后代(后裔),父亲,儿子,兄弟
 - 第 388 页定义 13.16
- 根树的任意结点及其后代的导出子图仍为根树,称为原根树的根子树

根树

- 有序树
 - 。 第 388 页定义 13.17
- m 叉树,完全 m 叉树,正则 m 叉树
 - 。第 388 页定义 13.19
- 完全2叉有序树(简称2叉树)
 - 左子树,右子树
- 2 叉树的权,最优2叉树(Huffman Tree)
 - 第 392 页定义 13.21

根树

- 构造最优 2 叉树—— Huffman 算法
 - ○算法
 - 输入: t (t≥1) 个权值 w₁, w₂, ..., w_t
 - 输出:二叉树 T
 - 步骤:
 - (1)创建 t 个顶点, 分别赋予输入的 t 个权值
 - (2) 若入度为0的顶点少于2个,则结束,输出以0入度顶点为根的二叉树T
 - (3)插入1个顶点和2条有向边,2条有向边均以新插入的顶点为始点,分别以2个权值最小的入度为0的顶点为终点
 - (4)将与新插入顶点相邻的2个顶点的权值之和作为权值赋予新插入的顶点
 - (5)转(2)
 - 上述算法构造的 Huffman 树的权值等于内点权值之和

根树

- 遍历(周游,行遍)完全2叉有序树
 - 。遍历(周游,行遍):对一棵树的每一个顶点都访 问一次且仅访问一次
 - 。三种遍历完全2叉有序树的方式
 - ◎ 第 392 页算法 13.4 13.6
- 完全 2 叉有序树与二元运算的算术表达式
 - 前缀表达式(波兰式)
 - 中缀表达式
 - 后缀表达式(逆波兰式)