Control unit design:

the states for the control unit:

SO: initial state

S1 : checks the LSB of the product at each iteration

S2: shifts the product one to the right

S3: adds to the 32 MSB of the product the multiplicand

S4 : checks the counter (if J == 1 then the counter has reached 32)

S5: the finial state(when j = 1)

5 states can be represented with 3 bits

I and j are my inputs and n2 n1 n0 are the states

Current state					Next state		
N2	N1	N0	1	J	N2`	N1`	N0`
0	0	0	Х	Х	0	0	1
0	0	1	0	Х	0	1	0
0	0	1	1	X	0	1	1
0	1	0	X	X	1	0	0
0	1	1	X	X	0	1	0
1	0	0	X	0	0	0	1
1	0	0	Χ	1	1	0	1
1	0	1	Х	Х	1	0	1

```
N2' = 010xx + 100x1 + 101xx
```

N1' = 001xx + 011xx = 0x1xx

N0' = 000xx + 0011x + 100xx + 101xx

S1 = 000xx

Enb0 = 100xx

Enb1 = 100xx + 000xx

Datapath design:

S1 is 1 at the initial state only so it can put the multiplier into the 32 LSB of the product

Here i (the LSB of the product) is the selector of the mux:

When I = 1 it adds the multiplicand with the 32 MSB of the product

When I = 0 it selects the 32 MSB of the product

The counter starts from 0 t0 32 and when it is 32 j becomes 1 and its clock is connected to enb0 when it becomes 1 at the 4^{th} state

<u>32bit full adder design</u>: designed one bit full adder then I used it to design 4 bit full adder then 16 bit then 32 bit full adder using two 16 bit full adder

Mult32 design:

Contains the datapath circuit and the control unit

The clear pin to reset everything

Test cases

919353 * 138812 = 127617228636

768 * 64 = 49152

1049344 * 1050688 =1102533148672