Homework 5 of Introduction to Analysis(II)

AM15 黃琦翔 111652028

March 20, 2024

- 1. (a) If $x \in A$, d(x,A) = ||x x|| = 0 and d(x,B) = k > 0, $\phi(x) = \frac{0}{0+k} = 0$. If $x \in B$, d(x,A) = l > 0 and d(x,B) = 0, $\phi(x) = \frac{l}{l+0} = 1$. If $x \notin A \land x \notin B$, d(x,A) = l and d(x,B) = k, $\phi(x) = \frac{l}{l+k} < 1$ and is positive. Thus, $0 \le \phi(x) \le 1$ for all $x \in \mathbb{R}^n$.
 - (b) Let $\phi(x) = (b-a) \frac{d(x,A)}{d(x,A) + d(x,B)} + a$. From (a), we can get $\phi(x \in A) = (b-a) \cdot 0 + a = a$, $\phi(x \in B) = (b-a) \cdot 1 + a = b$, and $a \le phi(x) \le b$ for all $x \in A$.
- 2. We let $x_n = f^n(x)$, $y_n = f^n(y)$. Since $d(x_n, y_n) = d(f(x_{n-1}), f(y_{n-1})) \le a_1 d(x_{n_1}, y_{n-1})$ for all x, y and x_n, y_n in S. And a_n converges to 0, we can get an a < 1 s.t. $a_n \le a^n$. Thus, by Contraction Mapping Principle, since $\sup\{\frac{d(f(x), f(y))}{d(x, y)}\} \le a < 1$, f has unique fixed point.

3.