Databases, DBMS and SQL

IICT Lecture 04

Role of Data in Computer

Data

A collection of facts (numbers, words, measurements, observations, etc) that has been translated into a form that computers can process

Types

slide is 100% editable. Adapt it to your needs and capture your audience's attention

Structured data

- Information stored in DB
- Strict format

Semi-structured data

- Data may have certain structure but not all information collected has identical structure
- Some attributes may exist in some of the entities of a particular type but not in others

Unstructured data

- Very limited indication of data type
 - E.g., a simple text document

Why Study Databases?

- Databases are useful
 - Many computing applications deal with large amounts of information
 - Database systems give a set of tools for storing, searching and managing this information

Databases in CS

- Databases are a 'core topic' in computer science
- Basic concepts and skills
 with database systems are
 part of the skill set you will
 be assumed to have as a CS
 graduate

What is a Database?

- An organized collection of Data
- A comprehensive collection of related data organized for convenient access, generally in a computer

What is a Database?

"A set of information held in a computer"

Oxford English Dictionary

• "One or more large structured sets of persistent data, usually associated with software to update and query the data"

Free On-Line Dictionary of Computing

• "A collection of data arranged for ease and speed of search and retrieval"

Dictionary.com

Databases

- Library catalogues
- Medical records
- Bank accounts
- Stock control
- Product catalogues
- Telephone directories

- Train timetables
- Airline bookings
- Credit card details
- Student records
- Customer histories and so on...

Database Systems

- A database system consists of
 - Data (the database)
 - Software
 - Hardware
 - Users
- We focus mainly on the software

- Database systems allow users to
 - Store
 - Update
 - Retrieve
 - Organise
 - Protect

their data.

Database Management Systems

- A database is a collection of information
- A database management system (DBMS) is the software than controls that information

- Examples:
 - Oracle
 - DB2 (IBM)
 - MS SQL Server
 - MS Access
 - Ingres
 - PostgreSQL
 - MySQL

What the DBMS does

- Provides users with
 - Data definition language (DDL)
 - Data manipulation language (DML)
 - Data control language (DCL)
- Often these are all the same language

- DBMS provides
 - Persistence
 - Concurrency
 - Integrity
 - Security
 - Data independence
- Data Dictionary
 - Describes the database itself

Types of SQL Statements

DDL stands for Data
Definition Languages
(DDL). The SQL
statements that are used to
define the database
structure. Any CREATE,
DROP and ALTER
commands are examples
of DDL SQL.

DML stands for Data
Manipulation Language. The
SQL statements that are in the
DML class are INSERT,
UPDATE and DELETE.

DCL stands for Data Control
Language, it includes
commands such as GRANT
and REVOKE which mainly
deals with the rights,
permissions and other controls
of the database system.

Data Dictionary - Metadata

- The dictionary or catalog stores information about the database itself
- This is data about data or 'metadata'
- Almost every aspect of the DBMS uses the dictionary

- The dictionary holds
 - Descriptions of database objects (tables, users, rules, views, indexes,...)
 - Information about who is using which data (locks)

File Based Systems

- File based systems
 - Data is stored in files.
 - Each file has a specific format
 - Programs that use these files depend on knowledge about that format

Problems:

- No standards
- Data duplication
- Data dependence
- No provision for security, recovery.

Relational Systems

- Information is stored as tuples or records in relations or tables
- There is a sound mathematical theory of relations
- Most modern DBMS are based on the relational model

Dolotional Creatome

Relational Model: Definition and Properties

In original definition of Relational Model:

Tables are called **relations**;

Rows – tuples;

Column-names – attributes;

Data-type – domain.

	Relation na	ame		Attri		<u>*</u>		
	STUDENT	Name	SSN	HomePhone	Address	OfficePhone	Age	GPA
	7	Benjamin Bayer	305-61-2435	373-1616	2918 Bluebonnet Lane	null	19	3.21
	/_	Katherine Ashly	381-62-1245	375-4409	125 Kirby Road	null	18	2.89
		Dick Davidson	422-11-2320	null	3452 Elgin Road	749-1253	25	3.53
Tuples		Charles Cooper	489-22-1100	376-9821	265 Lark Lane	749-6492	28	3.93
	-	Barbara Benson	533-69-1238	839-8461	7384 Fontana Lane	null	19	3.25

Database Model

- Database model defines the logical design of data.
- Database model describes the relation between different parts of data.
- There are three database models:
 - 1. Hierarchical Model
 - 2. Network Model
 - 3. Relational Model

Hierarchical model

- Data are organized in an upside down tree
- Each entity has one parent and many children
- Old and not used now

Network model

- Entities are organized in a graph
- Entities can be accessed through several paths
- Old and not used

Relational model

- Data are organized in two dimensional tables (relations)
- Tables re related to each other
- Relational Database Management System (RDBMS) are more common model used today

Relation (Name, Attributes, Tuples)

 Attributes are the column heading

Relation appears in 2 dimensional table

COURSES

• That doesn't mean data stored as table; the physical storage of data is independent of the logical organization of data

OPERATIONS ON RELATIONS

Insert operation

- Unary operation
- Insert Operation: Inserts new tuple into the relation

Delete operation

No	Course-Name	Unit						
			<u> </u>			No	Course-Name	Unit
CISTS	Intro to C	5			•	07045	T	_
CIS17	Intro to Java	5		Doloto		CIS15	Intro to C	5
CIS19	UNIX	4		Delete	\rightarrow	CIS17	Intro to Java	5
CIS51	Networking	5	l			CIS51	Networking	5
	TCP/IP Protocols	6				CIS52	TCP/IP Protocols	6

- Unary operation
- Delete Operation: Deletes tuple from the relation

Update operation

No	Course-Name	Unit			No	Course-Name	Unit
CIS15	Intro to C	5	[CIS15	Intro to C	5
CIS17	Intro to Java	5	_	Update	CIS17	Intro to Java	5
CIS19	UNIX	4		1	CIS19	UNIX	4
CIS51	Networking	5			CIS51	Networking	6
CIS52	TCP/IP Protocols	6			CIS52	TCP/IP Protocols	6

- Unary operation
- Update Operation: Changes the values of some attributes of a tuple

Select operation

No	Course-Name	Unit						
CIS15	Intro to C	5			•	No	Course-Name	Unit
CIS17	Intro to Java	5	_	Select		CIS15	Intro to C	5
CIS19	UNIX	4				CIS17	Intro to Java	5
CIS51	Networking	5			•	CIS51	Networking	5
CIS52	TCP/IP Protocols	6						

- Unary operation
- Select Operation: Uses some criteria to select some tuples from the original relation

Join operation

- Binary operation
- Join Operation: Takes two relation and combine them based on common attribute

Union operation

- Binary operation
- Union Operation: Creates new relation in which each tuple is either in the first relation, the second relation or in both

Intersection operation

CIS15-Roster

- Binary operation
- Intersection Operation: Creates new relation in which each tuple is in both relations.

Difference operation

CIS15-Roster

- Binary Operation
- Difference Operation: Creates new relation where the new tuples are in the first relation but not in the second.

Database Management System

- A database management system (DBMS) is system software for creating and managing Database.
- The DBMS provides users and programmers with a systematic way to create, retrieve, update and manage data.
- DBMS allow all the operations on database discussed in previous slides
 - Insert, Delete, retrieve, Union, Join etc...

STRUCTURED QUERY LANGUAGE

SQL

- SQL is the standard language used for relational databases.
- It is declarative language where users declare what they want without having to write a step by step procedure.
- It was first implemented by Oracle Corporation

1. Insert

• SQL Insert Operation format

```
insert into RELATION-NAME values (..., ..., ...)
```

Insert (Example)

insert into COURSESvalues ("CIS52", "TCP/IP Protocols", 6)

2. Delete

• SQL Delete Operation format

delete from RELATION-NAME **where** criteria

Delete (Example)

COURSES

Delete from COURSES where No = "CIS19"

3. Update

SQL Update Operation format

```
update RELATION-NAME
set attribute1 = value1 attribute 2 = value2 ...
where criteria
```

Update (Example)

COURSES

No	Course-Name	Unit				No	Course-Name	Unit
CIS15	Intro to C	5			•	CIS15	Intro to C	5
CIS17	Intro to Java	5		Update		CIS17	Intro to Java	5
CIS19	UNIX	4		1		CIS19	UNIX	4
CIS51	Networking	5	7			CIS51	Networking	6
CIS52	TCP/IP Protocols	6				CIS52	TCP/IP Protocols	6

update COURSES

set unit = 6

where No = "CIS51"

4. Select

SQL Select Operation format

Select (Example)

COURSES

No	Course-Name	Unit						
CIS15	Intro to C	5			•	No	Course-Name	Unit
CIS17	Intro to Java	5		Select		CIS15	Intro to C	5
CIS19	UNIX	4		20222		CIS17	Intro to Java	5
CIS51	Networking	5	'			CIS51	Networking	5
CIS52	TCP/IP Protocols	6						

select *
from COURSES
where Unit = 5

5. Project

SQL Project Operation format

select attribute-list

from RELATION-NAME

Project (Example)

COURSES

No	Course-Name	Unit				No	Unit
CIS15	Intro to C	5			•	CIS15	5
CIS17	Intro to Java	5		Project		CIS17	5
CIS19	UNIX	4		Troject		CIS19	4
CIS51	Networking	5	'			CIS51	5
CIS52	TCP/IP Protocols	6				CIS52	6

select No, Unitfrom COURSES

6. Join

SQL Join Operation format

select attribute-list

from RELATION NO1, RELATION NO2

where criteria

Join (Example)

COURSES

select No, Course-Name, Unit, Professor

from COURSES, TAUGHT-BY

where COURSES.No = TAUGHT-BY.No;

7. Union

SQL Union Operation format

```
select *
from RELATION NO1
union
select *
from RELATION NO2
```

Union (Example)

CIS15-Roster

select *

from CIS15-Roster

union

select *

from CIS52-Roster;

8. Intersection

SQL Intersection Operation format

```
select *
from RELATION NO1
intersection
select *
from RELATION NO2
```

Intersection (Example)

CIS15-Roster

select *

from CIS15-Roster

intersection

select *

from CIS52-Roster;

9. Difference

SQL Difference Operation format

```
select
from RELATION NO1
minus
select *
from RELATION NO2
```

Intersection (Example)

CIS15-Roster

select *

from CIS15-Roster

minus

select *

from CIS52-Roster;

OTHER DATABASE MODELS

The levels of Data

Database	One or more tables
Table (relation)	A collection of Records
Record	A group of related fields
Field	One or more character
Character	At least 8 bits
Bit	0 or 1

5 characteristics of Good Database

Data Integrity	Ensuring data is valid
Data Independence	Data is separated from software
Avoiding data Redundancy	Repetition of input data is avoided
Data Security	Data is not accessible to unauthorized users
Data Maintenance	Set procedures for adding ,deleting records for the purpose of optimization

How To Write And Run SQL Query

- Open your database and click the CREATE tab.
 - This will display the ribbon across the top of the window.
- Click Query Design in the Queries section.
 - The Show Table dialog box appears.
- Select the POWER table. Click the Add button and then click the Close button to close the dialog box.

How To Write And Run SQL Query

- Click the Home tab and then the View icon in the left corner of the Ribbon.
 - A menu drops down, displaying the different views available to you in query mode. One of those views is SQL
 View.
- Click SQL View to display the SQL View Object tab.

How To Write And Run SQL Query

- Fill in an asterisk (*) in the blank area in the first line and add a WHERE clause after the FROM line.
 - If you had already entered some data into the POWER table, you could make a retrieval with something like:
 - SELECT * FROM POWER WHERE LastName = 'Marx';
- Enter a name and then click OK.
 - Your statement is saved and can be executed as a query later.