Theorem (3.2.23b). Let f be the function defined by $f(x) = x^2 + 1000$. f(x) is $\Theta(x^2)$.

Proof. Obviously $f(x) = x^2 + 1000 \ge x^2$, for all $x \in \mathbb{R}$. So f(x) is $\Omega(x^2)$ with constant witnesses C = 1 and any $k \in \mathbb{R}$. Now, $x^2 + x^2$ cannot exceed $x^2 + 1000$ unless $x \ge \lceil \sqrt{1000} \rceil = 32$. Thus, $|f(x)| \le 2|x^2|$ for all x > 32. So f(x) is $\mathcal{O}(x^2)$ with constant witnesses C = 2 and k = 32. Finally, we have $|x^2| \le |f(x)| \le 2|x^2|$, for all x > 32. Therefore, f(x) is $\Theta(x^2)$ with constant witnesses $C_1 = 1$, $C_2 = 2$, and k = 32.