Lecture 4

Question

- You catch a fish. Tell which one is it?
- Assumption: You cannot see the fish.

Decide only brosed on Poior:
$$B(w_1)$$
 or $B(w_2)$

$$D(\chi_1, M, \sigma_1) = \frac{1}{\sqrt{2\pi\sigma^2}} \left(\frac{1}{\sqrt{2\pi\sigma^2}} \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right) \frac{1}{\sqrt{2\pi\sigma^2}} \right) \left(\frac{1}{\sqrt{2\pi\sigma^2}} \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right) \frac{1}{\sqrt{2\pi\sigma^2}} \right) \left(\frac{1}{\sqrt{2\sigma^2}} \right) \left(\frac{1}{\sqrt{2\sigma^2}} \right) \left($$

$$(ov. modin \times , (ov(x) - 1 \times u)(x-u)^T$$

$$N = 1 \times u \times u$$

$$V = 1 \times u \times u$$

$$V = 1 \times u \times u$$

Question

• You catch a fish. You can see it, may be eat too. Tell which one is it?

$$M.V.6 \rightarrow \frac{1}{2} | V = \begin{cases} -\frac{1}{2} (X-M)^T \sum_{i=1}^{-1} (X-M)^2 \\ X \rightarrow Weight of the fish. \end{cases}$$
 $B.D.T.$
 $P(X|W_2) \sim N(M_2, \sigma_2^2)$
 $P(X|W_2) \rightarrow Class conditional$
 $X \in \mathbb{R}$

$$\beta(\omega_1/\chi)$$
, $\beta(\omega_2/\chi)$

by Given: $\mathcal{B}(\omega_i)$, $\mathcal{B}(\chi|\omega_i)$, $\mathcal{B}(\omega_i|\chi) = ?$ B(wa), B(X/W2).

P(W2/x)= ?.

P(W, 1X) -> Postesion Brobability

P(W2)X)= P(X/W2)P(W2)

Check.

Decide - Wi elde - wz

- Decision rule with only the prior information
 - Decide ω_1 if $P(\omega_1) > P(\omega_2)$ otherwise decide ω_2
- Use of the class —conditional information
- $P(x \mid \omega_1)$ and $P(x \mid \omega_2)$ describe the difference in lightness between populations of sea and salmon

FIGURE 2.1. Hypothetical class-conditional probability density functions show the probability density of measuring a particular feature value x given the pattern is in category ω_i . If x represents the lightness of a fish, the two curves might describe the difference in lightness of populations of two types of fish. Density functions are normalized, and thus the area under each curve is 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

• Posterior, likelihood, evidence

•
$$P(\omega_j \mid x) = P(x \mid \omega_j) \cdot P(\omega_j) / P(x)$$

Where in case of two categories

$$P(x) = \sum_{j=1}^{j=2} P(x | \omega_j) P(\omega_j)$$

• Posterior = (Likelihood. Prior) / Evidence

FIGURE 2.2. Posterior probabilities for the particular priors $P(\omega_1) = 2/3$ and $P(\omega_2) = 1/3$ for the class-conditional probability densities shown in Fig. 2.1. Thus in this case, given that a pattern is measured to have feature value x = 14, the probability it is in category ω_2 is roughly 0.08, and that it is in ω_1 is 0.92. At every x, the posteriors sum to 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.

G.7. 3 Salmon

Decision given the posterior probabilities

X is an observation for which:

if
$$P(\omega_1 \mid x) > P(\omega_2 \mid x)$$
 True state of nature = ω_1
if $P(\omega_1 \mid x) < P(\omega_2 \mid x)$ True state of nature = ω_2

Therefore:

whenever we observe a particular x, the

$$P(error \mid x) = P(\omega_1 \mid x)$$
 if we decide ω_2

$$P(error \mid x) = P(\omega_2 \mid x)$$
 if we decide ω_1

probability of error is:

Minimizing the probability of error

• Decide ω_1 if $P(\omega_1 \mid x) > P(\omega_2 \mid x)$; otherwise decide ω_2

Therefore:

$$P(error \mid x) = min [P(\omega_1 \mid x), P(\omega_2 \mid x)]$$
 (Bayes decision)

Show that for arbitrary densities, we can replace Eq. 7 by $P(error|x) = 2P(\omega_1|x)P(\omega_2|x)$ in the integral and get an upper bound on the full error.

$$P(2880|x) \rightarrow \text{max value of this is bounded}$$

$$0 = 2 P(w,1x) P(w_2|x)$$

$$P(w,1x) = 0$$

Bayesian Decision Theory — Continuous Features

Generalization of the preceding ideas

- Use of more than one feature \rightarrow $\chi \in \mathbb{R}$
- Use more than two states of nature $\rightarrow \omega_1, \omega_2, \omega_3, \dots \omega_c$
- Allowing actions and not only decide on the state of nature
- Introduce a loss of function which is more general than the probability of error

- Allowing actions other than classification primarily allows the possibility of rejection
- Refusing to make a decision in close or bad cases!

The loss function states how costly each action taken is

Let $\{\omega_1, \omega_2, ..., \omega_c\}$ be the set of c states of nature (or "categories")

Let $\{\alpha_1, \alpha_2, ..., \alpha_a\}$ be the set of possible actions

Let $\lambda(\alpha_i \mid \omega_i)$ be the loss incurred for taking

action α_i when the state of nature is ω_i

Overall risk

$$R = Sum \ of \ all \ R(\alpha_i \mid x) \ for \ i = 1,...,a$$

Conditional risk

Minimizing R \longrightarrow Minimizing $R(\alpha_i \mid x)$ for i = 1,..., a

$$R(\alpha_{i} | x) = \sum_{j=1}^{j=c} \lambda(\alpha_{i} | \omega_{j}) P(\omega_{j} | x)$$

$$R(\alpha_{i} | x) = \sum_{j=1}^{j=c} \lambda(\alpha_{i} | \omega_{j}) P(\omega_{j} | x)$$

$$R(\alpha_{i} | x) = \sum_{j=1}^{j=c} \lambda(\alpha_{i} | \omega_{j}) P(\omega_{j} | x)$$

$$R(\alpha_{i} | x) = \sum_{j=1}^{j=c} \lambda(\alpha_{i} | \omega_{j}) P(\omega_{j} | x)$$

$$R(\alpha_{i} | x) = \sum_{j=1}^{j=c} \lambda(\alpha_{i} | \omega_{j}) P(\omega_{j} | x)$$

for i = 1,...,a

Select the action α_i for which $R(\alpha_i \mid x)$ is minimum

R is minimum and R in this case is called the Bayes risk = best performance that can be achieved!

Two-category classification

 α_1 : deciding ω_1

 α_2 : deciding ω_2

 $\lambda_{ii} = \lambda(\alpha_i \mid \omega_i)$

loss incurred for deciding ω_i when the true state of nature is ω_i

Conditional risk:

$$R(\alpha_{1} \mid x) = \lambda_{11}P(\omega_{1} \mid x) + \lambda_{12}P(\omega_{2} \mid x)$$

$$R(\alpha_{2} \mid x) = \lambda_{21}P(\omega_{1} \mid x) + \lambda_{22}P(\omega_{2} \mid x)$$

$$R(\alpha_{1} \mid x) = \lambda_{21}P(\omega_{1} \mid x) + \lambda_{22}P(\omega_{2} \mid x)$$

$$R(\alpha_{2} \mid x) = \lambda_{21}P(\omega_{1} \mid x) + \lambda_{22}P(\omega_{2} \mid x)$$

$$R(\alpha_{1} \mid x) = \lambda_{11}P(\omega_{1} \mid x) + \lambda_{12}P(\omega_{2} \mid x)$$

$$R(\alpha_{1} \mid x) = \lambda_{11}P(\omega_{1} \mid x) + \lambda_{12}P(\omega_{2} \mid x)$$

$$R(\alpha_{1} \mid x) = \lambda_{11}P(\omega_{1} \mid x) + \lambda_{12}P(\omega_{2} \mid x)$$

$$R(\alpha_{1} \mid x) = \lambda_{11}P(\omega_{1} \mid x) + \lambda_{12}P(\omega_{2} \mid x)$$

$$R(\alpha_{1} \mid x) = \lambda_{11}P(\omega_{1} \mid x) + \lambda_{12}P(\omega_{2} \mid x)$$

$$R(\alpha_{1} \mid x) = \lambda_{11}P(\omega_{1} \mid x) + \lambda_{12}P(\omega_{2} \mid x)$$

$$R(\alpha_{1} \mid x) = \lambda_{11}P(\omega_{1} \mid x) + \lambda_{12}P(\omega_{2} \mid x)$$

$$R(\alpha_{1} \mid x) = \lambda_{11}P(\omega_{1} \mid x) + \lambda_{12}P(\omega_{2} \mid x)$$

$$R(\alpha_{2} \mid x) = \lambda_{21}P(\omega_{1} \mid x) + \lambda_{22}P(\omega_{2} \mid x)$$

$$R(\alpha_{1} \mid x) = \lambda_{11}P(\omega_{1} \mid x) + \lambda_{12}P(\omega_{2} \mid x)$$

$$R(\alpha_{2} \mid x) = \lambda_{21}P(\omega_{1} \mid x) + \lambda_{22}P(\omega_{2} \mid x)$$

$$R(\alpha_{1} \mid x) = \lambda_{11}P(\omega_{1} \mid x) + \lambda_{22}P(\omega_{2} \mid x)$$

$$R(\alpha_{1} \mid x) = \lambda_{11}P(\omega_{1} \mid x) + \lambda_{12}P(\omega_{2} \mid x)$$

$$R(\alpha_{1} \mid x) = \lambda_{11}P(\omega_{1} \mid x) + \lambda_{12}P(\omega_{2} \mid x)$$

$$R(\alpha_{1} \mid x) = \lambda_{11}P(\omega_{1} \mid x) + \lambda_{12}P(\omega_{2} \mid x)$$

$$R(\alpha_{1} \mid x) = \lambda_{11}P(\omega_{1} \mid x) + \lambda_{12}P(\omega_{2} \mid x)$$

$$R(\alpha_{1} \mid x) = \lambda_{11}P(\omega_{1} \mid x) + \lambda_{12}P(\omega_{2} \mid x)$$

$$R(\alpha_{1} \mid x) = \lambda_{11}P(\omega_{1} \mid x) + \lambda_{12}P(\omega_{2} \mid x)$$

$$R(\alpha_{1} \mid x) = \lambda_{11}P(\omega_{1} \mid x) + \lambda_{12}P(\omega_{2} \mid x)$$

$$R(\alpha_{1} \mid x) = \lambda_{11}P(\omega_{1} \mid x) + \lambda_{12}P(\omega_{2} \mid x)$$

$$R(\alpha_{1} \mid x) = \lambda_{11}P(\omega_{1} \mid x) + \lambda_{12}P(\omega_{2} \mid x)$$

$$R(\alpha_{1} \mid x) = \lambda_{11}P(\omega_{1} \mid x) + \lambda_{12}P(\omega_{2} \mid x)$$

$$R(\alpha_{1} \mid x) = \lambda_{11}P(\omega_{1} \mid x) + \lambda_{12}P(\omega_{2} \mid x)$$

$$R(\alpha_{1} \mid x) = \lambda_{11}P(\omega_{1} \mid x) + \lambda_{12}P(\omega_{2} \mid x)$$

$$R(\alpha_{1} \mid x) = \lambda_{11}P(\omega_{1} \mid x) + \lambda_{12}P(\omega_{2} \mid x)$$

$$R(\alpha_{1} \mid x) = \lambda_{11}P(\omega_{1} \mid x) + \lambda_{12}P(\omega_{2} \mid x)$$

$$R(\alpha_{1} \mid x) = \lambda_{11}P(\omega_{1} \mid x) + \lambda_{12}P(\omega_{2} \mid x)$$

$$R(\alpha_{1} \mid x) = \lambda_{11}P(\omega_{1} \mid x) + \lambda_{12}P(\omega_{2} \mid x)$$

$$R(\alpha_{1} \mid x) = \lambda_{11}P(\omega_{1} \mid x) + \lambda_{12}P(\omega_{2} \mid x)$$

$$R(\alpha_{1} \mid x) = \lambda_{11}P(\omega_{1} \mid x) + \lambda_{12}P(\omega_{2} \mid x)$$

$$R(\alpha_{1} \mid x) = \lambda_{11}P(\omega_{1} \mid x) + \lambda_{12}P(\omega_{2} \mid x)$$

$$R(\alpha_{1} \mid x) = \lambda_{11}P(\omega_{1} \mid x) + \lambda_{12}P(\omega_{2}$$

Our rule is the following:

if
$$R(\alpha_1 \mid x) < R(\alpha_2 \mid x)$$

action α_1 : "decide ω_1 " is taken

This results in the equivalent rule:

decide ω_1 if:

equivalent rule:
$$A_{11} \mathcal{P}(\omega_{1}|x) + A_{1} \mathcal{P}(\omega_{1}|x) + A_{2} \mathcal{P}(\omega_{2}|x)$$

$$A_{21} \mathcal{P}(\omega_{1}|x) + A_{2} \mathcal{P}(\omega_{2}|x)$$

$$(\lambda_{21}^{-} \lambda_{11}^{-}) P(x \mid \omega_{1}) P(\omega_{1}) >$$

 $(\lambda_{12}^{-} \lambda_{22}^{-}) P(x \mid \omega_{2}^{-}) P(\omega_{2}^{-})$

and decide ω_2 otherwise

Likelihood ratio:

The preceding rule is equivalent to the following rule:

$$if \left| \frac{P(x \mid \omega_1)}{P(x \mid \omega_2)} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \cdot \frac{P(\omega_2)}{P(\omega_1)} \right| = \frac{1}{2}$$
This of likelihood.

Then take action α_1 (decide ω_1)
Otherwise take action α_2 (decide ω_2)

Optimal decision property

"If the likelihood ratio exceeds a threshold value independent of the input pattern x, we can take optimal actions"

Exercise

P(XIWI) = [(X-9)]
P(XIWQ) = \[\sqrt{2\tau.1/2} = \[\frac{1}{2\tau.1/2} = \]

Select the optimal decision where:

$$\mathbb{P} = \{\omega_1, \omega_2\}$$

$$P(x \mid \omega_1)$$

$$P(x \mid \omega_2)$$

N(2, 0.5) (Normal distribution)

$$P(\omega_1) = 2/3$$

$$P(\omega_2) = 1/3$$

$$\lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

•

B(m/A) (Klgw) q D.B. N= Nº B (62202) = 5. - 10 p(weln) p(x) dx - 20 + [p $S(w,1x) = \frac{1}{\sqrt{2000}} = \frac{1}{2} (x-1)^{2} = \frac{1}{2} (x-2)^{2} = \frac{1}{2} (x-2)^{2}$ Deazierp angaz. B(62000/4)= win [b(m'i)) Q(Wala)]

Chapter 2 (Part 2): Bayesian Decision Theory (Sections 2.3-2.5)

Minimum-Error-Rate Classification

Classifiers, Discriminant Functions and Decision Surfaces

The Normal Density

Minimum-Error-Rate Classification

P(ω)

Actions are decisions on classes

If action α_i is taken and the true state of nature is ω_j then:

the decision is correct if i=j and in error if $i\neq j$

 Seek a decision rule that minimizes the probability of error which is the error rate

Introduction of the zero-one loss function:

$$\lambda(\alpha_i, \omega_j) = \begin{cases} 0 & i = j \\ 1 & i \neq j \end{cases}$$

$$\lambda(\alpha_i, \omega_j) = \begin{cases} 0 & i = j \\ 1 & i \neq j \end{cases}$$
Therefore the conditional risk is:

Therefore, the conditional risk is:

"The risk corresponding to this loss function is the average probability error"

$$P(X=X_{\delta}|W_{i}) \qquad X_{i}=\{1,2,3,4\}$$
es maximize $P(\omega_{i} \mid x)$
$$P(X=\psi)$$

• Minimize the risk requires maximize $P(\omega_i \mid x)$ (since $R(\alpha_i \mid x) = 1 - P(\omega_i \mid x)$)

*X:={2.5,16,18}

- For Minimum error rate
 - Decide ω_i if $P(\omega_i \mid x) > P(\omega_j \mid x) \ \forall j \neq i$