P vs NP

...or why I hate Sudoku

k-SAT

$$E = (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_1 \vee x_2 \vee x_4)$$

Sudoku

8								
		3	6					
	7			9		2		
	5				7			
				4	5	7		
	- 8		1			1	3	
		1					3 6	8
		8	5				1	
	9					4		

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

ſ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
	[CHOTCHKIES RESTAURANT]						
	~ APPETIZERS~						
1/	MIXED FRUIT	2.15					
	FRENCH FRIES	2.75					
١	SIDE SALAD	3.35					
	HOT WINGS	3.55					
	MOZZARELLA STICKS	4.20					
	SAMPLER PLATE	5.80					
	→ SANDWICHES →						
	RARRECUE	6 55					

- Combinatorial solution space
 - (exponential in size)

- Combinatorial solution space
 - (exponential in size)
- "Right" choice determined later in graph

- Combinatorial solution space
 - (exponential in size)
- "Right" choice determined later in graph
- Polynomial number of valid states

- Combinatorial solution space
 - (exponential in size)
- "Right" choice determined later in graph
- Polynomial number of valid states
- Polynomial-time verification

"N"? "P"??

NP = Nondeterministically Polynomial

"N"? "P"??

NP = Nondeterministically Polynomial

Count state transitions of your TM exec

- Count state transitions of your TM exec
- Worst case as a function of input tape

- Count state transitions of your TM exec
- Worst case as a function of input tape
- Undecidable problems are $O(\infty)$

O(rly?)

- Count state transitions of your TM exec
- Worst case as a function of input tape
- Undecidable problems are $O(\infty)$
- We can group problems by complexity

Polynomial time for DTM

- Polynomial time for DTM
- Polynomial time for NDTM

- Polynomial time for DTM
- Polynomial time for NDTM
- Non-deterministic automata

- Polynomial time for DTM
- Polynomial time for NDTM
- Non-deterministic automata
 - $f: (S \times \Sigma) \to (S \times (\Sigma + Unit) \times \{R, L\})$

- Polynomial time for DTM
- Polynomial time for NDTM
- Non-deterministic automata
 - $f: (S \times \Sigma) \to (S \times (\Sigma + Unit) \times \{R, L\})$
 - $f: (S \times \Sigma) \to \mathcal{P}(S \times (\Sigma + Unit) \times \{R, L\})$

Oracles

- At every ambiguity, we must "guess"
- A true NDTM never guesses wrong!
- Can we encode this deterministically?
 - (hint: yes)
- How expensive is this?

The Question

Does there exist a polynomial time reduction from the class NP-TIME to the class P-TIME?

The Question

Can we guess accurately and efficiently?

• Assume P = NP and derive a contradiction

- Assume P = NP and derive a contradiction
- Prune the search space in P-TIME

- Assume P = NP and derive a contradiction
- Prune the search space in P-TIME
 - Is it possible? Is it not?

- Assume P = NP and derive a contradiction
- Prune the search space in P-TIME
 - Is it possible? Is it not?
 - Is there another way?

- Assume P = NP and derive a contradiction
- Prune the search space in P-TIME
 - Is it possible? Is it not?
 - Is there another way?
- Nothing about it seems definitively wrong

• Traveling salesmen everywhere rejoice

- Traveling salesmen everywhere rejoice
- Mathematical research becomes trivial

- Traveling salesmen everywhere rejoice
- Mathematical research becomes trivial
- RSA does not collapse
 - Factorization is not NP-complete

- Traveling salesmen everywhere rejoice
- Mathematical research becomes trivial
- RSA does not collapse
 - Factorization is not NP-complete
- Industrial applications...

Usefulness

$$O(k^n) \approx O(n^{42,000,000})$$

Questions?