A strongly polynomial algorithm for payoff games

Bruno Scherrer

March 25, 2022

Abstract

Let

$$T_{\vec{\mu},\vec{\nu}}v = T^n$$

Lemma 1. For any policy μ , for any x, there exists $0 \le i < i + c \le n$,

$$v_*(x) \leq \mathbb{1}_x \gamma^i P_{\mu_*^i, \vec{\nu}_1^i} (I - \gamma^c P_{\mu_*^c, \vec{\nu}_{i+1}^{i+c}})^{-1} (T^{n-i} 0 - T^{n-i-c} 0).$$

Proof. μ_* play against $\vec{\nu}$. Once a cycle is found, one loops.

Lemma 2. For any policy ν , for any x, there exists $0 \le i < i + c \le n$,

$$v_{\vec{\mu}_1^i(\vec{\mu}_{i+1}^{i+c})^{\infty},\nu^{\infty}}(x) \geq \mathbb{1}_x \gamma^i P(\vec{\mu}_1^i,\nu) (I - \gamma^c P_{\vec{\mu}_{i+1}^{i+c},\nu^c})^{-1} (T^{n-i}0 - T^{n-i-c}0).$$

Proof. $\vec{\mu}$ plays against ν . Once a cycle is found, one loops.

Algorithm: compute a policy that is better than $\vec{\mu}_1^i(\vec{\mu}_{i+1}^{i+c})^{\infty}$ for all i and c.