Vorkurs Mathematik für Informatiker

Mittwoch, 28. Oktober 2020

Wintersemester 2020/21

Dirk Hachenberger, Tobias Mömke, Kathrin Gimmi

Übungsblatt 7

Aufgabe 1 Seien M und N zwei Mengen und $f:M\to N$ eine Abbildung von M nach N. Welche der folgenden Aussagen treffen zu?

- a) Zu jedem $y \in Bild(f) \subseteq N$ gibt es mindestens ein $x \in M$ mit y = f(x).
- b) Die Abbildung f ist genau dann injektiv, wenn für jedes $y \in \text{Bild}(f)$ die Menge $f^{-1}(\{y\})$ genau ein Element enthält.
- c) Die Abbildung f ist genau dann bijektiv, wenn es eine Abbildung $g:N\to M$ mit $g\circ f=\mathrm{id}_M$ gibt.
- d) Ist f injektiv, so gibt es ein $g: N \to M$ mit $g \circ f = \mathrm{id}_M$.

Aufgabe 2 Seinen A und B Mengen, f eine Abbildung von A nach $B, M \subseteq A$ und $N \subseteq B$. Wir definieren nun

$$f(M) := \operatorname{Bild}(f|_M)$$
 und $f^{-1}(N) := \bigcup_{y \in N} f^{-1}(y)$.

Beweisen Sie:

- a) $M \subseteq f^{-1}(f(M))$
- b) $N \supseteq f(f^{-1}(N))$.

Geben Sie zwei Beispiele an, bei denen jeweils echte Teilmengen auftreten.

Aufgabe 3 Es sei f eine Abbildung der Menge A in die Menge B und $M, N \subseteq A$. Beweisen Sie:

- a) $f(M \cup N) = f(M) \cup f(N)$,
- b) $f(M \cap N) \subseteq f(M) \cap f(N)$.

Geben Sie ein Beispiel an, dass in b) nicht notwendig Gleichheit gilt.

Aufgabe 4 Gegeben seien die Abbildungen $f: \mathbb{R} \to \mathbb{R}, x \mapsto x-3$ und $g: \mathbb{R} \to \mathbb{R}, x \mapsto x^2-1$. Bestimmen Sie $f \circ g$ und $g \circ f$.

Aufgabe 5 Zeigen oder widerlegen Sie:

- (a) Ist $f \circ g$ injektiv, so ist f injektiv.
- (b) Ist $f \circ g$ injektiv, so ist g injektiv.
- (c) Ist $f \circ g$ surjektiv, so ist f surjektiv.
- (d) Ist $f \circ g$ surjektiv, so ist g surjektiv.

Aufgabe 6 Sei $n \in \mathbb{N}^*$. Zeigen Sie jeweils, dass die beiden Mengen gleichmächtig sind:

a)
$$T_n := \{ (a, b, c) : a, b, c \in \mathbb{N}, 1 \le a < b < c \le n \} \text{ und } U_n := \{ U \in \mathcal{P}([n]) : |U| = 3 \}.$$

b)
$$\widetilde{T}_n := \{ (a, b, c) : a, b, c \in \mathbb{N}, 1 \le a \le b \le c \le n \}$$
 und U_{n+2} .

Aufgabe 7 Betrachten Sie die Mengen $A = \{a, b, c, d\}$ und $B = \{1, 2, 3\}$.

- a) Wie viele surjektive Abbildungen $f:A\to B$ gibt es?
- b) Wie viele injektive Abbildungen $f:A\to B$ gibt es?