Семинар 9

Общая информация:

- Напомню, комплексные числа $\mathbb{C} = \{a+bi \mid a,b \in \mathbb{R}\}$ можно отождествить с \mathbb{R}^2 посредством $x+yi \mapsto \left(\begin{smallmatrix} x \\ y \end{smallmatrix} \right)$.
- При таком отождествлении операция умножения на a+bi совпадает с операцией умножения на матрицу $\binom{a-b}{b-a}$, то есть коммутативна следующая диаграмма

$$\mathbb{C} \xrightarrow{(a+bi)} \mathbb{C} \quad \text{где} \quad x+yi \longmapsto (a+bi)(x+yi) \\
\parallel \begin{pmatrix} a-b \\ b-a \end{pmatrix} \parallel \qquad \qquad \downarrow \\
\mathbb{R}^2 \xrightarrow{\begin{pmatrix} a-b \\ b-a \end{pmatrix}} \mathbb{R}^2 \qquad \qquad \begin{pmatrix} x \\ y \end{pmatrix} \longmapsto \begin{pmatrix} a-b \\ b-a \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Таким образом, комплексные числа $\mathbb C$ можно отождествить с матрицами вида $\{\binom{a-b}{b-a}\in \mathrm{M}_2(\mathbb R)\}.$

- При отождествлении \mathbb{C} с подмножеством матриц $M_2(\mathbb{R})$ как выше, мы можем отождествить матрицы $M_n(\mathbb{C})$ с подмножеством матриц $M_{2n}(\mathbb{R})$, заменяя каждое комплексное число на матрицу размера 2.
- **Кватернионы**. По аналогии с комплексными числами $\mathbb C$ можно построить еще один объект $\mathbb H$ кватернионы следующим образом. Определим $\mathbb H = \{a+bi+cj+dk \mid a,b,c,d\in\mathbb R\}$, где i,j,k буквы (про них надо думать, как про мнимую единицу в $\mathbb C$, это какие-то новые числа, которые непонятно как устроены, но мы скажем как их складывать и умножать).
- Складываются такие товарищи покомпонентно, т.е.

$$(a+bi+cj+dk) + (a'+b'i+c'j+d'k) = (a+a') + (b+b')i + (c+c')j + (d+d')k.$$

- Умножение должно быть дистрибутивно (то есть скобки раскрывать можно как обычно). Потому достаточно определить как перемножаются буквы i, j, k между собой. Они подчинены следующим правилам: $i^2 = j^2 = k^2 = -1, k = ij, ij = -ji, ik = -ki, jk = -kj.$
- Заметим, что в отличие от умножения комплексных чисел, умножение кватернионов не коммутативно!
- Для элемента $h \in \mathbb{H}$ определим сопряженный элемент $\bar{h} \in \mathbb{H}$ следующим образом. Пусть h = a + bi + cj + dk, тогда $\bar{h} = a bi cj dk$.

Задачи:

- 1. Задачник. §20, задача 20.4 (а, д).
- 2. Задачник. §20, задача 20.8 (а,б).
- 3. Задачник. §20, задача 20.10.
- 4. Задачник. §20, задача 20.11 (д).
- 5. Задачник. §21, задача 21.1 (х, ц).
- 6. Задачник. §21, задача 21.11 (a, б).
- 7. Вычислить для любого $n \in \mathbb{Z}$

(a)
$$\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}^n$$

(b) $\begin{pmatrix} 1 + \cos \phi & -\sin \phi \\ \sin \phi & 1 + \cos \phi \end{pmatrix}^n$

 $^{^{1}}$ Очевидно, что это избыточный набор, но я выписал все необходимые для использования свойства.

8. Пусть $z_k \in \mathbb{C}$ – комплексные числа, где $1 \leqslant k \leqslant 4$ такие, что $z_k = a_k + b_k i$. И пусть $Z_k = \begin{pmatrix} a_k & -b_k \\ b_k & a_k \end{pmatrix} \in \mathrm{M}_2(\mathbb{R})$ – соответствующая матрица размера 2. Пусть

$$A = \begin{pmatrix} Z_1 & Z_2 \\ Z_3 & Z_4 \end{pmatrix} \in \mathcal{M}_4(\mathbb{R})$$

Найти $\det A$.

- 9. Пусть \mathbb{H} кватернионы. 2 Показать:
 - (a) Для любого $h \in \mathbb{H}$, верно $h\bar{h} \in \mathbb{R}$.
 - (b) Если $h \in \mathbb{H}$ и $h \neq 0$, то h обратим.

 $^{^{2}}$ Суть этого упражнения показать, что кватернионы обладают всеми аксиомами поля кроме коммутативности умножения. Такой объект называется «Тело».