Лабораторная работа 3.4.5

Сидорчук Максим, Б01-304

19 октября 2024 г.

Цель работы: изучение петель гистерезиса ферромагнитных материалов с помощью осциллографа.

Оборудование: автотрансформатор, понижающий трансформатор, амперметр и вольтметр (мультиметры), резистор, делитель напряжения, интегрирующая цепочка, электронный осциллогра, тороидальные образцы с двумя обмотками..

1. Теоретическое введение

Рис. 1: Петля гистерезиса ферромагнетика

Магнитная индукция \vec{B} и напряженность магнитного поля \vec{H} в ферромагнитном материале неоднозначно связаны между собой: индукция зависит не только от напряженности, но и от предыстории образца. Связь между индукцией и напряженностью поля типичного ферромагнетика иллюстрирует рис. 1. Если к размагниченному образцу начинают прикладывать магнитное поле, то его намагничивание следует кривой OACD, выходящей из начала координат. Эту кривую называют основной кривой намагничивания.

Индукция \vec{B} в образце состоит из

индукции, связанной с намагничивающим полем \vec{B} , и индукции, создаваемой самим намагниченным образцом. В системе СИ эта связь имеет вид

$$\vec{B} = \mu_0(\vec{H} + \vec{M}),$$

где \vec{M} - намагниченность - магнитный момент единичного объема образца, а μ_0 - магнитная постоянная.

Намагнитим образец до насыщения - до точки D. Соответствующее значение индукции B_s называют индукцией насыщения. При уменьшении поля H до нуля зависимость B(H) имеет вид кривой DCE, и при нулевом поле индукция имеет конечное ненулевое значение. Это остаточная индукция B_r . Чтобы размагнитить образец, то есть перевести его в состояние F, необходимо приложить "обратное" магнитное поле H_c , которое называют коэрцитивной силой.

Замкнутая кривая *DEFDIEIFIDI*, возникающая при циклическом перемагничивании образца, намагниченного до насыщения, называется *предельной петлей гистерезиса*.

1.1 Измерение магнитной индукции в образцах.

Магнитную индукцию удобно определять с помощью ЭДС, возникающей при изменении магнитного потока Ф в катушке, намотанной на образец:

$$\mathcal{E} = -\frac{d\Phi}{dt}.$$

Тогда отсюда и из формулы $\Phi = BSN_{\rm M}$ получаем:

$$|B| = \frac{1}{SN_{\rm M}} \int \mathcal{E}dt.$$

Для интегрирования сигнала применяют интегрирующие схемы (рис. 2).

Рис. 2: Интегрирующая RC-цепь

Если выходной сигнал намного меньше входного ($U_{\rm out} \ll U_{\rm in}$,) ток в цепи пропорционален входному напряжению: $I \simeq \frac{U_{\rm in}}{R}$, а напряжение на емкости С

$$U_{\rm out} \simeq \frac{1}{RC} \int U_{\rm in} dt.$$

Этот вывод тем ближе к истине, чем больше постоянная $\tau = RC$ пре-

восходит характерное время процесса (например, его период). Для синусоидальных напряжений

$$U_{\text{out}} = \frac{U_{\text{in}}}{RC\Omega},$$

где Ω - частота сигнала.

В итоге, обозначив параметры интегрирующей цепи через $R_{\mathtt{u}}$ и $C_{\mathtt{u}}$, получаем

$$|B| = \frac{1}{SN_{\text{\tiny H}}} \int U_{\text{in}} dt = \frac{R_{\text{\tiny H}} C_{\text{\tiny H}}}{SN_{\text{\tiny H}}} U_{\text{out}}.$$

2. Экспериментальная установка.

Схема экспериментальной установки показана на рис. 3.

Действующее значение переменного тока в обмотке N0 измеряется амперметром A (мультиметром GDM). Последовательно с амперметром включено сопротивление R_0 , напряжение с которого подается на вход X электронного осциллографа (ЭО). Это напряжение пропорционально току в обмотке N_0 , а следовательно и напряженности H магнитного поля в образце.

Для измерения магнитной индукции В с измерительной обмотки $N_{\rm U}$ на вход интегрирующей RC -цепочки подается напряжение $U_{\rm U}$ (UBX), пропорциональное производной \dot{B} , а с выхода снимается напряжение $U_{\rm C}(U_{\rm out})$, пропорциональное величине В , и подается на вход Y осциллограа. Замкнутая кривая, возникающая на экране, воспроизводит в некотором масштабе (различном для осей X и Y) петлю гистерезиса. Чтобы придать этой кривой количественный смысл, необходимо установить масштабы изображения, т.е. провести калибровку каналов X и Y ЭО. Для этого, во-первых, надо узнать, каким напряжениям (или токам) соответствуют амплитуды сигналов, видимых на экране, и во-вторых, каким значениям В и H соответствуют эти напряжения (или токи).

Рис. 3: Схема установки для исследования намагничивания образцов

3. Ход работы

1. Запишем данные установки:

 $R_0 = 1$ Ом $R_{\rm m} = 20$ кОм $C_{\rm m} = 20$ мк Φ

Параметры тороидальных образцов:

- **Кремниевое железо** Fe-Si: $N_0=75$ витков; $N_{\tt w}=400$ витков; $S=2.85{\rm cm}^2$; $2\pi R=11{\rm cm}$.
- Пермаллой Fe-Ni: $N_0=40$ витков; $N_{\tt m}=200$ витков; $S=4.5{\rm cm}^2;\, 2\pi R=14.1{\rm cm}.$
- Феррит: $N_0 = 85$ витков; $N_{\text{и}} = 300$ витков; $S = 3.0 \text{см}^2$; $2\pi R = 24 \text{см}$.
- 2. Соберем схему (рис. 3) и настроим оборудование.
- 3. Для каждого образца сфотографируем предельную петлю. Запишем значения коэффициентов усиления K_x и K_y , ток $I_{\ni \Phi}$. Измерим двойные амплитуды для коэрцитивной силы 2x(c) и индукции насыщения 2y(s). Результаты таковы:
 - Кремниевое железо:

$$K_x=200\frac{{
m MB}}{{
m дел}},\,K_y=100\frac{{
m MB}}{{
m дел}},\,I_{
m эф}=1.03{
m A}.$$
 При этом $2x=10.0$ дел, $2y=6.3$ дел.

Рис. 4: Петля гистерезиса для кремниевого железа

• Пермаллой:

$$K_x=100 \frac{{
m MB}}{{
m дел}},~K_y=100 \frac{{
m MB}}{{
m дел}},~I_{
m эф}=218{
m MA}.~$$
При этом $2x=7.6$ дел, $2y=4.0$ дел.

Рис. 5: Петля гистерезиса для пермаллоя

• Феррит:

$$K_x = 500 \frac{\text{мB}}{\text{дел}}, K_y = 50 \frac{\text{мB}}{\text{дел}}, I_{\text{эф}} = 92.6 \text{мA}.$$
 При этом $2x = 7.4 \text{дел}, 2y = 4.0 \text{дел}.$

Рис. 6: Петля гистерезиса для феррита

4. Снимем для каждого образца начальную кривую намагничивания (табл. 1-3), плавно уменьшая ток до нуля и отмечая вершины частных петель. По этим данным построим эти кривые (рис. 4-6).

Таблица 1: Начальная кривая намагничивания кремнистого железа

													0.2	
y	3	2.9	2.8	2.7	2.6	2.5	2.4	2	1.6	1.4	1.2	0.8	0.2	0

Рис. 7: Начальная кривая намагничивания кремнистого железа - график

Таблица 2: Начальная кривая намагничивания пермаллоя

									1.4		
y	2	1.9	1.8	1.4	1.2	1	0.8	0.6	0.4	0.2	0

Рис. 8: Начальная кривая намагничивания пермаллоя - график

Таблица 3: Начальная кривая намагничивания феррита

	3.6	1		l			l	l	l	
y	4	3.8	3.6	3.3	3	2.8	2	1.6	0.8	0.4

Рис. 9: Начальная кривая намагничивания феррита - график

5. Восстановим предельные петли для образцов. Рассчитаем цену деления ЭО для петли для оси X (в $\frac{A}{M}$) по формуле

$$H = \frac{IN_0}{2\pi R},$$

где $I = \frac{K_x}{R_0}$, и в Теслах на деление для оси Y по формуле

$$B = \frac{R_{\text{\tiny M}} C_{\text{\tiny M}} U_{\text{out}}}{S N_{\text{\tiny M}}}$$

где $U_{\text{out}} = K_y$.

• Кремниевое железо:

$$H = 1.17 \frac{A}{M \cdot \text{дел}}. \ B = 0.35 \frac{T}{\text{дел}}.$$

• Пермаллой:

$$H = 0.03 \frac{A}{M \cdot \text{дел}}. \ B = 0.44 \frac{T}{\text{дел}}.$$

• Феррит:

$$H = 1.77 \frac{A}{M \cdot \text{лел}}$$
. $B = 0.22 \frac{T}{\text{лел}}$.

6. Соединим вход ячейки с обмоткой «6.3 В» трансформатора.

Определим входное напряжение на RC-цепочке: $U_{\rm in} = 2y \cdot K_y = 2 \cdot 8.0 = 16.0$ В.

Не меняя тока, переключим Y-вход ЭО к выходу ячейки и аналогичным образом определим $U_{\rm out}=0.02*6.3=0.13$ В.

Определим $\tau = RC$ по формуле

$$\tau = \frac{U_{\rm in}}{\omega U_{\rm out}} = 0.404 {\rm Om} \cdot \Phi$$

Найдем tau_{th} - теоретическое значение постоянной времени из параметров RC - цепочки указанных на установке:

$$\tau_{th} = R \cdot C = 0.400 \text{Om} \cdot \Phi$$

Полученные значения достаточно близки чтобы считать их примерно равными (разница в 1%)

- 7. Рассчитаем коэрцитивную силу H_c и индукцию насыщения B_s для каждого образца.
 - Кремниевое железо:

$$H_c = 0.94 \pm 0.07 \frac{A}{M}$$
 $B_s = 0.84 \pm 0.07 \text{ Th}$

• Пермаллой:

$$H_c = 0.63 \pm 0.07 \frac{\text{A}}{\text{M}}$$
 $B_s = 1.69 \pm 0.07 \text{ Тл}$

• $\overline{\Phi}$ еррит:

$$H_c = 0.71 \pm 0.07 \frac{A}{M}$$
 $B_s = 0.44 \pm 0.07 \text{ Tm}$

- 8. Из графиков (4-6) оценим максимальные и минимальные значения дифференциальной магнитной проницаемости.
 - Кремнистое железо:

$$\mu_{min} \simeq 397.11, \ \mu_{max} \simeq 7148.01$$

• Пермаллой:

$$\mu_{min} \simeq 3389.41, \ \mu_{max} \simeq 20336.46$$

• Феррит:

$$\mu_{min} \simeq 332.87, \, \mu_{max} \simeq 1997.24$$