Листок 3

Задача 1: Пусть $(a_1,b_1)\supset (a_2,b_2)\supset \dots$ - последовательност вложеных интервалов, покажите что пересечение $\bigcap_{n\in\mathbb{N}}(a_n,b_n)$ может: быть пустым, состоять из 1 точки, быть интервалом

Решение:

1) $\bigcap_{n\in\mathbb{N}}(a_n,b_n)$ - интервал, ну тут достаточно понятно: $\bigcap_{n\in\mathbb{N}}(-n,n)=(-1,1)$ - вот и интервал

 (a_n,b_n) - точка, тоже очев : $\bigcap_{n\in\mathbb{N}}\left(-\frac{1}{n},\frac{1}{n}\right)\to (0)$ 3) $\bigcap_{n\in\mathbb{N}}(a_n,b_n)=\emptyset$ тут уже посложнее, идея в том что бы получить конструкцию в которой $a_n=b_n$ в контексте задачи такое получить можно только если одна из границ равна константе, а другая стремится к ней, например:

$$\bigcap_{n\in\mathbb{N}}(n,+\infty)=(+\infty,+\infty)=\emptyset$$
(1)

т.к. на натуральных числах $n \longrightarrow +\infty$

$$\bigcap_{n\in\mathbb{N}} \left(0, \frac{1}{n}\right) = (0, 0) = \emptyset$$

$$1 \tag{2}$$

т.к. на натуральных числах $\frac{1}{n} \longrightarrow 0$

Задача 2: Найдите пересечение: $\bigcap_{n\in\mathbb{N}}(n,+\infty)$

Решение: Смотрите (2)

Задача 3: Докажите, что последовательность $x_n = \ln n$ не является последовательностью Коши, хотя выполняется $|x_{n+1} - x_n| \longrightarrow 0$

Решение: Вспомним определение последовательности Коши:

$$\forall \varepsilon > 0: \exists N \in \mathbb{N} \text{ такое, что } |x_n - x_m| < \varepsilon \ \forall n,m \geq N \tag{3}$$

Возьмем $x_{99} = \ln(99) \approx 4.595...$ и $x_{100} = \ln(100) \approx 4.605...$ и $\varepsilon = 0.00001 > 0$ По этому примеру очевидно почему не хватает смотреть только на соседей!