STRUCTURAL CALCULATIONS

For

640 West Main Street Lake Geneva, Wisconsin

by

KURT D.
FREY
E-24431
MADISON
WI
SSIGNAL
FREY
AND THE PROPERTY OF THE PROPERTY

Date: May 2, 2017

Index

DESIGN DATA	DD
ROOF FRAMING	RF
FLOOR FRAMING	FF
WOOD COLUMNS	WC
LATERAL DESIGN	LD

Address City, State Phone

JOB TITLE Lake Geneva - Vaction Renta PD - 1

JOB NO.	SHEET NO.
CALCULATED BY	DATE
CHECKED BY	DATE

www.struware.com

Code Search

Code:

International Building Code 2009

Occupancy:

Occupancy Group =

R Residential

Occupancy Category & Importance Factors:

Occupancy Category =

Ħ

Wind factor =

1.00

Snow factor =

1.00

Seismic factor =

1.00

Type of Construction:

Fire Rating:

0.0 hr 0.0 hr

Roof = Floor =

Building Geometry:

Roof angle (θ)

6.00 / 12 26.6 deg

Building length (L)

50.0 ft

Least width (B) 40.0 ft

Mean Roof Ht (h)

28.0 ft

Parapet ht above grd

0.0 ft

Minimum parapet ht

0.0 ft

Live Loads:

Roof

0 to 200 sf: 18 psf

200 to 600 sf: 21.6 - 0.018Area, but not less than 12 psf

over 600 sf: 12 psf

Floor:

Typical Floor

40 psf

Partitions

Public rooms & corridors serving the

15 psf

Corridors above first floor

100 psf

Balconies (exterior) - same as occup

80 psf

40 psf

Storage warehouses: Light

125 psf

Address City, State Phone JOB TITLE Lake Geneva - Vaction Rental D - 2

JOB NO.	SHEET NO.
CALCULATED BY	DATE
CHECKED BY	DATE

Wind Loads: ASCE 7 - 05

Basic Wind Speed	90 mph			
Importance Factor	1.00			
Occupancy Category	ii ii			
Exposure Category	С			
Enclosure Classif.	Enclosed Building			
Internal pressure	+/-0.18			
Directionality (Kd)	0.85			
Kh case 1	0.968			
Kh case 2	0.968			
Type of roof	Gable			

Topographic	Factor ((Kzt)

Topography		Flat
Hill Height (F	H)	80.0 ft
Half Hill Length (Lh)	100.0 ft
Actual H/Lh	=	0.80
Use H/Lh	=	0.50
Modified Lh	=	160.0 ft
From top of crest: >	50.0 ft	
Bldg up/down wind?		downwind

H/Lh= 0.50	$K_1 = 0.000$
x/Lh = 0.31	$K_2 = 0.792$
z/Lh = 0.18	$K_3 = 1.000$

At Mean Roof Ht:

 $Kzt = (1+K_1K_2K_3)^2 = 1.00$

Gust EffectFactorh =28.0 ftB =40.0 ft/z (0.6h) =16.8 ft

Flexible structure if natural frequency < 1 Hz (T > 1 second). However, if building h/B < 4 then probably rigid structure (rule of thumb).

h/B = 0.70 Rigid structure

G = 0.85 Using rigid structure default

G =

0.000

Rigi	d Structure	<u>Flexible or Dyn</u>	amically Sei	nsitive St	ructure		
ē =	0.20	Natural Frequency (η ₁) =	0.0 Hz				
ℓ =	500 ft	Damping ratio (β) =	0				
$z_{min} =$	15 ft	/b =	0.65				
c =	0.20	/α =	0.15				
$g_Q, g_v =$	3.4	Vz =	77.3				
L _z =	436.8 ft	$N_1 =$	0.00				
Q =	0.91	$R_n =$	0.000				
I _z =	0.22	$R_h =$	28.282	η =	0.000	h =	28.0 ft
G =	0.88 use G = 0.85	$R_B =$	28.282	η =	0.000		
		R _L =	28.282	η = ·	0.000		
		g _R =	0.000				
		R =	0.000				

Address City, State Phone

JOB TITLE Lake Geneva - Vaction Rental	D - 3	
JOB TITLE Lake Geneva - Vaction Rental		

JOB NO	SHEET NO.
CALCULATED BY	DATE
CHECKED BY	DATE

Enclosure Classification

<u>Test for Enclosed Building:</u> A building that does not qualify as open or partially enclosed.

Test for Open Building:

All walls are at least 80% open.

Ao ≥ 0.8Ag

Test for Partially Enclosed Building:

	Input			Test	
ΑoΓ	100000.0	sf	Ao ≥ 1.1Aoi	YES	
Ag	0.0	sf	Ao > 4' or 0.01Ag	YES	İ
Aoi	0.0	sf	Aoi / Agi ≤ 0.20	NO	Building is NOT
Agi	0.0	sf			Partially Enclosed

ERROR: Ag must be greater than Ao

Conditions to qualify as Partially Enclosed Building. Must satisfy all of the following:

Ao ≥ 1.1Aoi

Ao > smaller of 4' or 0.01 Ag

Aoi / Agi≤ 0.20

Where:

Ao = the total area of openings in a wall that receives positive external pressure.

Ag = the gross area of that wall in which Ao is identified.

Aoi = the sum of the areas of openings in the building envelope (walls and roof) not including Ao.

Agi = the sum of the gross surface areas of the building envelope (walls and roof) not including Ag.

Reduction Factor for large volume partially enclosed buildings (Ri):

If the partially enclosed building contains a single room that is unpartitioned, the internal pressure coefficient may be multiplied by the reduction factor Ri.

Total area of all wall & roof openings (Aog):

0 sf

Unpartitioned internal volume (Vi):

0 cf

Ri =

1.00

Altitude adjustment to constant 0.00256 (caution - see code) :

Altitude =

0 feet

Average Air Density =

0.0765 lbm/ft³

Constant = 0.

0.00256

Address City, State Phone

JOB NO.	SHEET NO.
CALCULATED BY	DATE
CHECKED BY	DATE

Wind Loads - MWFRS h≤60' (Low-rise Buildings) Enclosed/partially enclosed only

Kz = Kh (case 1) =

0.97

Base pressure (qh) =

17.1 psf

GCpi =

+/-0.18

Edge Strip (a) =

4.0 ft

End Zone (2a) = Zone 2 length =

8.0 ft 20.0 ft

Wind Pressure Coefficients

	Transv	erse Direc	tion	Long	itudinal l	Direction	
ĺ	Perper	ndicular θ = 26	.6 deg	Par	allel θ = (0.0	
Surface	GCpf	w/-GCpi	w/+GCpi	GCpf	w/-Gcpi	w/+GCpi	
1	0.55	0.73	0.37	0.40	0.58	0.22	
2	-0.10	0.08	-0.28	-0.69	-0.51	-0.87	
3	-0.45	-0.27	-0.63	-0.37	-0.19	-0.55	
4	-0.39	-0.21	-0.57	-0.29	-0.11	-0.47	
5	-0.45	-0.27	-0.63	- 0.45	-0.27	-0.63	
6	-0.45	-0.27	-0.63	-0.45	-0.27	-0.63	
1E	0.73	0.91	0.55	0.61	0.79	0.43	
2E	-0.19	-0.01	-0.37	-1.07	-0.89	-1.25	
3E	-0.58	-0.40	-0.76	-0.53	-0.35	-0.71	
4E	-0.53	-0.35	-0.71	-0.43	-0.25	-0.61	
l i							

Nominal Wind Surface Pressures (psf)

1	12.5	6.3	9.9	3.8	
2	1.4	-4.8	-8.7	-14.8	
3	-4.6	-10.7	-3.2	-9.4	
4	-3.6	-9.7	-1.9	-8.0	
5	-4.6	-10.7	-4.6	-10.7	
6	-4.6	-10.7	-4.6	-10.7	
1E	15.5	9.3	13.5	7.3	
2E	-0.2	-6.3	-15.2	-21.3	
2E 3E 4E	-6.9	-13.1	-6.0	-12.1	
4E	-6.1	-12.2	-4.3	-10.4	
I					

Parapet

Windward parapet =

0.0 psf (GCpn = +1.5)

Leeward parapet =

0.0 psf (GCpn = -1.0)

Horizontal MWFRS Simple Diaphragm Pressures (psf)

Transverse direction (normal to L)

Interior Zone: Wall

16.0 psf

Roof

5.9 psf

End Zone: Wall

21.5 psf

Roof

6.7 psf

Longitudinal direction (parallel to L)

Interior Zone: Wall

11.8 psf

End Zone: Wall

17.7 psf

11.6 psf (upward) add to

windward roof pressure

Windward roof

overhangs =

Address City, State Phone

JOB TITLE Lake Gene	va - Vaction Rental DD - 5
JOB NO.	SHEET NO.
CALCULATED BY	DATE
CHECKED BY	DATE

Location of MWFRS Wind Pressure Zones

NOTE: Torsional loads are 25% of zones 1 - 6. See code for loading diagram.

ASCE 7-99 and ASCE 7-10 (& later)

NOTE: Torsional loads are 25% of zones 1 - 4. See code for loading diagram.

ASCE 7 -02 and ASCE 7-05

Address City, State Phone

JOB NO.	SHEET NO.	
CALCULATED BY	DATE	
CHECKED BY	DATE	

Nominal Wind Pressures

Wind Loads - Components & Cladding : h <= 60'

Roof Angle (θ) = 26.6 deg Type of roof = Gable

<u>Roof</u>	(GCp +/- GCp	oi	Surfac	ce Pressure	(psf)	User	input
Area	10 sf	50 sf	100 sf	10 sf	50 sf	100 sf	75 sf	500 sf
Negative Zone 1	-1.08	-1.01	-0.98	-18.4	-17.2	-16.7	-16.9	-16.7
Negative Zone 2	-1.88	-1.53	-1.38	-32.1	-26.1	-23.5	-24.6	-23.5
Negative Zone 3	-2.78	-2.36	-2.18	-47.4	-40.3	-37.2	-38.5	-37.2
Positive Ali Zones	0.68	0.54	0.48	11.6	10.0	10.0	10.0	10.0
					Ì	i		
Overhang Zone 2	-2.20	-2.20	-2.20	-37.5	-37.5	- 37.5	-37.5	-37.5
Overhang Zone 3	-3.70	-2.86	-2.50	-63.1	-48.8	-42.7	-45.2	-42.7

Overhang pressures in the table above assume an internal pressure coefficient (Gcpi) of 0.0

Parapet

qp = 0.0 psf

CASE A = pressure towards building (pos)
CASE B = pressure away from bldg (neg)

	Surfa	User input		
Solid Parapet Pressure	10 sf	100 sf	500 sf	40 sf
CASE A : Interior zone:	0.0	0.0	0.0	0.0
Corner zone:	0.0	0.0	0.0	0.0
CASE B : Interior zone:	0.0	0.0	0.0	0.0
Corner zone:	0.0	0.0	0.0	0.0

<u>Walls</u>	(3Cp +/- GCp	oi	Surfac	e Pressure	(psf)	User	input
Area	10 sf	100 sf	500 sf	10 sf	100 sf	500 sf	25 sf	200 sf
Negative Zone 4	-1.28	-1.10	-0.98	-21.8	-18.8	-16.7	-20.6	-17.9
Negative Zone 5	-1.58	-1.23	-0.98	-27.0	-20.9	-16.7	-24.6	-19.1
Positive Zone 4 & 5	1.18	1.00	0.88	20.1	17.1	15.0	18.9	16.2

Address City, State Phone

JOB NO.	SHEET NO.
CALCULATED BY	DATE
CHECKED BY	DATE

Nominal Wind Pressures

h ≤ 60' & alt design h<90'

Location of C&C Wind Pressure Zones

Stepped roofs θ≤3° h≤60' & alt design h<90'

Address City, State Phone

				- 1
JOB TITLE	Lake Geneva	 Vaction 	Rental	ᆫ

JOB NO. SHEET NO. CALCULATED BY DATE CHECKED BY DATE

Snow Loads: **ASCE 7-05**

Roof slope 26.6 deg Horiz. eave to ridge dist (W) = 20.0 ft

Roof length parallel to ridge (L) = 50.0 ft Hip and gable w/ trussed systems Type of Roof Ground Snow Load 30.0 psf Occupancy Category Ш Importance Factor 1.0 = Thermal Factor Ct = 1.10 Exposure Factor Ce = 1.0

Pf = 0.7*Ce*Ct*l*Pg 23.1 psf Unobstructed Slippery Surface no

Sloped-roof Factor Cs = 1.00 Balanced Snow Load Ps = 23.1 psf

Rain on Snow Surcharge Angle 0.40 dea Code Maximum Rain Surcharge 5.0 psf Rain on Snow Surcharge = 0.0 psf Ps plus rain surcharge 23.1 psf Minimum Snow Load Pfmin = 0.0 psf

Uniform Roof Design Snow Load = 23.1 psf NOTE: Alternate spans of continuous beams and other areas shall be loaded with half the design roof snow load so as to produce the

greatest possible effect - see code.

Unbalanced Snow Loads - for Hip & Gable roofs only

70.00 deg Required if slope is between

and larger of 2.38 degrees or 70/W + 0.5 = 4.00 deg Unbalanced snow loads must be applied

Windward snow load = 6.9 psf = 0.3 PsLeeward snow load from ridge to 6.27' = $44.1 \text{ psf} = \text{hdy} / \sqrt{\text{S} + \text{Ps}}$

Leeward snow load from 6.27' to the eave = 23.1 psf. = Ps.

Windward Snow Drifts 1 - Against walls, parapets, etc more than 15' long

Upwind fetch |u| =10.0 ft Projection height h = 12.0 ft Snow density g = 17.9 pcf Balanced snow height hb == 1.29 ft hd = 1.25 ft hc = 10.71 ft

hc/hb > 0.2 = 8.3Therefore, design for drift Drift height (hd) 1.25 ft w = Drift width 4.99 ft Surcharge load: pd = y*hd =22.3 psf Balanced Snow load: 23.1 psf 45.4 psf

Windward Snow Drifts 2 - Against walls, parapets, etc > 15'

Upwind fetch 0.0 ft lu = Projection height h = 0.0 ft Snow density g = 17.9 pcf Balanced snow height hb = 1.29 ft hd = 1.25 ft

hc = -1.29 ft hc/hb < 0.2 = -1.0Therefore, no drift Drift height (hc) 0.00 ft Drift width w = -10.32 ft pd = y*hd =Surcharge load: 0.0 psf Balanced Snow load: 23.1 psf 23.1 psf

Nominal Snow Forces

United Building Solutions	

Α	Wall-tech	Company

PROJECT LAK GENEVA -VAC	DD-9 ATION RENTAL
DESCR	PROJ. NO
CALCULATED BY	DATE
CHECKED BY	DATE
CONE	SHEET NO

DESIGN DATA SUMMARY	FLOOP
GRAVITY LOADS	LIVE LOAD = 40psf DEAD LOAD = 18psf
ROOF SNOW = 30PSF	PARTITION = 15psF
LNEALANCE LOAD	PATIO /DEUCS
DEAO = Zupsf	LIVE LOAD = 75PSF DEAD LOAD = 15PSF
LIMBALANCE SNOW	
44.100	anw
7psf 23.1psf	MWFRS = 17.2 psf
6/21/	CAC = 22psf (ZONE4)
	= 27 psf (ZUNES)
A 28 ^{F5}	FOUNDATION DESIGN EARTH PRESSURES
	ACTIVE = 35psf/F
NOTE'. UNIFORM	ATREST = 55ps =/ AT
SNOW OF BUPSE GOVERNS OVER HUBALANCE	ASSUMED ALLOWARLE SOIL BRESZOOPSF
SNOW DRIFT & FLAT AREA	SERVICEABILITY
temperature (1997) - In the control of the control	DEFLECTION LIMITS
SNOW DEZ, FT = 2305 F	5000 A 6 4360
	and we have beginned as the control of the control
5 65	TOTAL AL 4/240
8F)	FLOOR
1 1,57	FLOUR
	FLOOP LIVE LOAD = 1 4 L/480

/ Uni	ted
Bui	lding
Sol	utions

PROJECT LAKE GENEVA -		RENTAL
DESCR.	PROJ. NO	
CALCULATED BY K-3 P	DATE	
CHECKED BY	DATE	
SCALE	SHEET NO.	

A Wall-tech Company	
NEW ROOF JOISTS	EXISTING ROOF RAFTERS (SPAC, NIG = 16" O.C.
CRITICAL SPAN = 10'.6"	WS4=30(16/12)=40 16/5- WOL=20(16/12)=27 16/65
SPACING - 247" 0, C- 6'-0'	
4'-6" -23(241,2) -46	
WSN= 30psf(24/12) =60.4/6, WoL= 20psf(24/12)=40b/6-	NF5
10'.6'	RALL= 280 16/4, - RADL= 1894/65
RASN = 397 RBSN = 477	
PAOL = 226 PBOL = 227	EXST C. ROOK JOIST NEW CANTILEVER COND.
USE 2410'S AZY"	Pu=28016 Po=18916 WSN = 4016/45 WDL = 2714/65
	1255
	RAL = 187 Rev = 65316
	RAOL= 112716 RBOL= 44/16

A Wall-tech Company

PROJECT LAKE GENEVA -V	ACATION RENTAL
DESCR	PROJ. NO
CALCULATED BY	DATE
CHECKED BY	DATE
SCALE	SHEET NO.

NEW 2106E BEAM (GRIDLINEB) WON = 653(12/16) = 440 WOL = 441 (12/16) = 331 PRASM = 4533 PADL = 3662	NEW RIM BEAM - LINE E.Z. WSN=30(S)=150'6/F; WSN=20(S)=100 18:0" RASN=1388 RADL: 925
USE S'L+15' GLULAM DOUB FIR 24F. 1.8E BALANCED NEW BEAM EENSTING WALL CINEC	NEW CANTILEVER ROOF BEATUR POLISZE(2) = 1850 2) V
Wol: 227/2, + 127 (12/16) = 379 Wol: 227/2, + 127 (12/16) = 209 18'. 6'1	WEN: 60 WIL: 20 WOL: 40 WIL: 20 WOL: 40 15 PASN = 5927 RESN = -2051 PAOL: 4092 REDL: 95
PADL = 193! USE 5/2+13/2 GULAM DOUG FOR 244.1.BE BALANCED	

PROJECT

May 1, 2017 03:26

New Roof Joists over Deck Area

Design Check Calculation Sheet

WoodWorks Sizer 10.4

Loads:

Load	Type	Distribution	Pat-	Location [ft]	Magnitude	Unit
			tern	Start End	Start End	
Load1	Snow	Full UDL			69.0	plf
Load2	Dead	Full UDL			40.0	plf
Load3	Snow	Triangular		4.53 10.53	0.0 46.0	plf
Self-weight	Dead	Full UDL			2.8	plf

Load magnitude does not include Normal Importance factor from Table 4.2.3.2, which is applied during analysis.

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in):

Unfactored:	226		007
Dead	226	· ·	227
Snow	392		477
Factored:			
Total	618		703
Bearing:			
Capacity			
Joist	618		703
Support	1136		1293
Anal/Des			[
Joist	1.00		1.00
Support	0.54		0.54
Load comb	#2		#2
Length	0,97		1.10
Min req'd	0.97		1.10
Cb	1.00		1.00
Cb min	1.00		1.00
Cb support	1.25		1,25
Fcp sup	625		625

Lake Geneva - Vacation Rental - New Roof Joists Lumber-soft, S-P-F, No.1/No.2, 2x10 (1-1/2"x9-1/4")

Supports: All - Timber-soft Beam, D.Fir-L No.2

Roof joist spaced at 16.0" c/c; Total length: 10'-7.0"; volume = 1.0 cu.ft.;

Lateral support: top= full, bottom= at supports; Repetitive factor: applied where permitted (refer to online help);

Analysis vs. Allowable Stress and Deflection using NDS 2012:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 62	Fv' = 155	psi	fv/Fv' = 0.40
Bending(+)	fb = 943	Fb' = 1273	psi	fb/Fb' = 0.74
Live Defl'n	0.16 = L/802	0.53 = L/240	in	0.30
Total Defl'n	0.28 = L/443	0.70 = L/180	in	0.41

SOFTWARE FOR WOOD DESIGN

New Roof Joists over Deck Area

WoodWorks® Sizer 10.4

Page 2

```
Additional Data:
          F/E(psi)CD
FACTORS:
                         CM
                               Ct
                                     CL
                                            CF
                                                  Cfu
                                                         Cr
                                                              Cfrt
                                                                     Ci
                                                                                LC#
 Fv '
           135
                  1.15 1.00 1.00
                                                                    1.00
                                                              1.00
                                                                          1.00
                                                                                 2
 Fb'+
           875
                                    1.000
                  1.15 1.00 1.00
                                           1.100
                                                  1.00
                                                        1.15
                                                              1.00 1.00
                                                                                 2
 Fap'
           425
                        1.00 1.00
                                    _
                                             _
                                                              1.00 1.00
 Ε'
           1.4 million
                       1.00
                             1.00
                                                              1.00 1.00
                                                                                 2
                       1.00
 Emin'
          0.51 million
                             1.00
                                                              1.00
                                                                   1.00
                                                                                 2
CRITICAL LOAD COMBINATIONS:
          : LC \#2 = D+S, V =
 Shear
                                 698, V design =
 Bending(+): LC \#2 = D+S, M =
                                 1682 lbs-ft
 Deflection: LC #2
                   = D+S  (live)
             LC #2 = D+S (total)
 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake
All LC's are listed in the Analysis output
Load combinations: ASCE 7-10 / IBC 2012
CALCULATIONS:
Deflection: EI =
                      139e06 lb-in2
"Live" deflection = Deflection from all non-dead loads (live, wind, snow...)
Total Deflection = 1.50 (Dead Load Deflection) + Live Load Deflection.
```

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1.
- 4. FIRE RATING: Joists, wall studs, and multi-ply members are not rated for fire endurance.

PROJECT

May 1, 2017 03:26 New Ridge Beam - Grid Line B

Design Check Calculation Sheet

WoodWorks Sizer 10.4

Loads:

Load	Type	Distribution	Pat-	Location [ft] Magnitude		Unit		
			tern	Start	End	Start	End	
Load1	Snow	Full UDL				490.0		plf
Load2	Dead	Full UDL			i	331.0		plf
Self-weight	Dead	Full UDL				13.3		plf

Load magnitude does not include Normal Importance factor from Table 4.2.3.2, which is applied during analysis.

----- 18'**-**9,4" —

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in):

Lake Geneva - Vacation Rental - New Roof Joists Glulam-Bal., West Species, 24F-1.8E WS, 3-1/2"x16-1/2"

11 laminations, 3-1/2" maximum width. Supports: All - Timber-soft Beam, D.Fir-L No.2 Total length: 18'-9.4"; volume = 7.5 cu.ft.; Lateral support: top= full, bottom= at supports;

SOFTWARE FOR WOOD DESIGN

New Ridge Beam - Grid Line B

WoodWorks® Sizer 10.4

Page 2

Analysis vs. Allowable Stress and Deflection using NDS 2012:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 168	Fv' = 305	psi	fv/Fv' = 0.55
Bending(+)	fb = 2697	Fb' = 2760	psi	fb/Fb' = 0.98
Live Defl'n	0.55 = L/405	0.62 = L/360	in	0.89
Total Defl'n	1.12 = L/197	1.23 = L/180	in	0.91

Additional Data:

FACTORS:	F/E(ps	si)CD	CM	Ct	\mathtt{CL}	CV	Cfu	Cr	Cfrt	Notes	Cn*Cvr	LC#
Fv'	265	1.15	1.00	1.00	_	_	-	-	1.00	1.00	1.00	2
Fb'+	2400	1.15	1.00	1.00	1.000	1.000	1.00	1.00	1.00	1.00	-	2
Fcp'	650	-	1.00	1.00	_	_	-	_	1.00	-	_	_
E'	1.8 mi	illion	1.00	1.00			-	-	1.00	_	_	2
Eminy'	0.85 mi	illion	1.00	1.00	-	-	-		1.00	-	-	2

CRITICAL LOAD COMBINATIONS:

Shear : LC #2 = D+S, V = 7717, V design = 6450 lbs

Bending(+): LC #2 = D+S, M = 35692 lbs-ft

Deflection: LC #2 = D+S (live) LC #2 = D+S (total)

D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake

All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2012

CALCULATIONS:

Deflection: EI = 2358e06 lb-in2

"Live" deflection = Deflection from all non-dead loads (live, wind, snow...)

Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection.

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007
- 4. GLULAM: bxd = actual breadth x actual depth.
- 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.
- 6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

PROJECT

May 1, 2017 03:25

New Beam @ Existing Wall - Grid Line C2

Design Check Calculation Sheet

WoodWorks Sizer 10.4

Loads:

Load	Type	Distribution	Pat-	Location	[ft]	Magnitud	е	Unit
			tern	Start	End	Start	End	
Load1	Snow	Full UDL				379.0		plf
Load2	Dead	Full UDL				209.0		plf
Self-weight	Dead	Full UDL				17.1		plf

Load magnitude does not include Normal Importance factor from Table 4.2.3.2, which is applied during analysis.

— 18'-7.6" -

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in):

Lake Geneva - Vacation Rental - New Beam @ Existing Wall (Line C2) Glulam-Bal., West Species, 24F-1.8E WS, 5-1/2"x13-1/2"

9 Iaminations, 5-1/2" maximum width, Supports: All - Timber-soft Beam, D.Fir-L No.2 Total length: 18'-7.6"; volume = 9.6 cu.ft.; Lateral support: top= at supports, bottom= at supports;

SOFTWARE FOR WOOD DESIGN

New Beam @ Existing Wall - Grid Line C2 WoodWorks® Sizer 10.4

Page 2

Analysis vs. Allowable Stress and Deflection using NDS 2012:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 99	Fv' = 305	psi	fv/Fv' = 0.32
Bending(+)	fb = 1859	Fb' = 2642	psi	fb/Fb' = 0.70
Live Defl'n	0.49 = L/451	0.62 = L/360	in	0.80
Total Defl'n	0.93 = L/238	1.23 = L/180	in	0.76

Additional Data:

FACTORS:	F/E(psi)(D CM	Ct	\mathtt{CL}	CV	Cfu	Cr	Cfrt	Notes	Cn*Cvr	LC#
Fv '	265 1.	15 1.00	1.00	-	_	_	_	1.00	1.00	1.00	2
Fb'+	2400 1.	15 1.00	1.00	0.957	0.994	1.00	1.00	1.00	1.00	-	2
Fcp'	650 -	1.00	1.00	_	_		→	1.00	-	-	_
Ε¹	1.8 milli	on 1.00	1.00	_		-	_	1.00	-	-	2
Eminy'	0.85 milli	on 1.00	1.00	_	-	_	_	1.00	-	-	2

Only the lesser of CL and CV is applied, as per NDS 5.3.6

CRITICAL LOAD COMBINATIONS:

```
Shear : LC \#2 = D+S, V = 5597, V design = 4877 lbs
```

Bending(+): LC #2 = D+S, M = 25887 lbs-ft

Deflection: LC #2 = D+S (live) LC #2 = D+S (total)

D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake

All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2012

CALCULATIONS:

Deflection: EI = 2030e06 lb-in2

"Live" deflection = Deflection from all non-dead loads (live, wind, snow...)

Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection.

Lateral stability (+): Lu = 18'-6.00" Le = 34'-0.50" RB = 13.50

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007
- 4. GLULAM: bxd = actual breadth x actual depth.
- 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.
- 6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

PROJECT

May 1, 2017 03:25

New Cantilever Roof Beam

Design Check Calculation Sheet

WoodWorks Sizer 10.4

Loads:

Load	Туре	Distribution	Pat-	Location [ft]	Magnitude	Unit
			tern	Start End	Start End	
Load1	Snow	Point	Yes	0.00	2776	lbs
Load2	Dead	Point	No	0.00	1850	lbs
Load3	Dead	Partial UDL	No	0.00 10.00	40.0 40.0	plf
Load4	Snow	Partial UDL	Yes	0.00 10.00	60.0 60.0	plf
Self-weight	Dead	Full UDL	No		22.8	plf

Load magnitude does not include Normal Importance factor from Table 4.2.3.2, which is applied during analysis.

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in):

Unfactored: Dead Snow Factored:	4092 5427	95 -2051
Uplift Total Bearing:	9518	3322 95
Capacity		j
Beam Support Anal/Des	10608	1787 1836
Beam	0.90	0.05
Support	1.00	0.05
Load comb	#2	#1
Length	2.59	0.50*
Min req'd	2.59**	0.50*
Cb	1.14	1.00
Cb min	1.14	1.00
Cb support	1.07	1.07
Fcp sup	625	625

^{*}Minimum bearing length setting used: 1/2" for end supports

Maximum reaction on at least one support is from a different load combination than the critical one for bearing design, shown here, due to Kd factor. See Analysis results for reaction from critical load combination.

Lake Geneva - Vacation Rental - New Cantilever Roof Beam Glulam-Bal., West Species, 24F-1.8E WS, 5-1/2"x18"

12 laminations, 5-1/2" maximum width, Supports: All - Timber-soft Beam, D.Fir-L No.2 Total length: 25'-0.3"; volume = 17.2 cu.ft.; Lateral support: top= at supports, bottom= at supports;

^{**}Minimum bearing length governed by the required width of the supporting member.

SOFTWARE FOR WOOD DESIGN

New Cantilever Roof Beam

WoodWorks® Sizer 10.4

Page 2

This section FAILS the design check

WARNING: This section violates the following design criteria: Deflection

Analysis vs. Allowable Stress and Deflection using NDS 2012:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 86	Fv' = 305	psi	fv/Fv' = 0.28
Bending(-)	fb = 2117	Fb' = 2586	psi	fb/Fb' = 0.82
Deflection:				
Interior Live	-0.16 = < L/999	0.50 = L/360	in	0.32
Total	-0.32 = L/562	1.00 = L/180	in	0.32
Cantil. Live	0.91 = L/131	0.67 = L/180	in	1.37
Total	1.85 = L/64	1.33 = L/90	in	1.39

Additional Data:

FACTORS:	F/E(psi)CD	CM	Ct	\mathtt{CL}	CV	Cfu	\mathtt{Cr}	Cfrt	Notes	Cn*Cvr	LC#
Fv '	265 1.15	1.00	1.00	_	_	_	_	1.00	1.00	1.00	2
Fb'-	2400 1.15	1.00	1.00	0.974	0.937	1.00	1.00	1.00	1.00		2
Fcp'	650 -	1.00	1.00	_	_	_	_	1.00	_	_	_
E 1	1.8 millior	1.00	1.00	-	_	-		1.00			2
Eminy'	0.85 millior	1.00	1.00	-	-	-	-	1.00	-	-	2

Only the lesser of CL and CV is applied, as per NDS 5.3.6

CRITICAL LOAD COMBINATIONS:

```
Shear : LC \#2 = D+S, V = 5854, V design = 5669 lbs
```

Bending(-): LC #2 = D+S, M = 52400 lbs-ft

Deflection: LC #2 = D+S (live) LC #2 = D+S (total)

D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake

All LC's are listed in the Analysis output

Load Patterns: s=S/2, X=L+S or L+Lr, _=no pattern load in this span

Load combinations: ASCE 7-10 / IBC 2012

CALCULATIONS:

Deflection: EI = 4811e06 lb-in2

"Live" deflection = Deflection from all non-dead loads (live, wind, snow...)

Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection.

Lateral stability (-): Lu = 10' Le = 18'-8.38" RB = 11.56

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007
- 4. Grades with equal bending capacity in the top and bottom edges of the beam cross-section are recommended for continuous beams.
- 5. GLULAM: bxd = actual breadth x actual depth.
- 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.
- 7. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

1.00

1.11

625

COMPANY

PROJECT

May 1, 2017 03:26

New Rim Beam - Line E.2

Design Check Calculation Sheet

WoodWorks Sizer 10.4

Loads:

Cb min

Fcp sup

Cb support

1.11

625

Load	Туре	Distribution	Pat-	Location	[ft]	Magnitud	е	Unit
			tern	Start	End	Start	End	1
Load1	Snow	Full UDL				150.0		plf
Load2	Dead	Full UDL	i			100.0		plf
Self-weight	Dead	Full UDL				10.9		plf

Load magnitude does not include Normal Importance factor from Table 4.2.3.2, which is applied during analysis.

—— 18'-7.1" —

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in):

Lake Geneva - Vacation Rental - New Beam @ Existing Wall (Line C2) Glulam-Bal., West Species, 24F-1.8E WS, 3-1/2"x13-1/2"

9 laminations, 3-1/2" maximum width, Supports: All - Timber-soft Beam, D.Fir-L No.2 Total length: 18'-7.1"; volume = 6.1 cu.ft.; Lateral support: top= at supports, bottom= at supports;

Analysis vs. Allowable Stress and Deflection using NDS 2012:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 67	Fv' = 305	psi	fv/Fv' = 0.22
Bending(+)	fb = 1260	Fb' = 2002	psi	fb/Fb' = 0.63
Live Defl'n	0.31 = L/725	0.62 = L/360	in	0.50
Total Defl'n	0.65 = L/343	1.23 = L/180	in	0.52

SOFTWARE FOR WOOD DESIGN

New Rim Beam - Line E.2

WoodWorks® Sizer 10.4

Page 2

```
Additional Data:
FACTORS:
          F/E(psi)CD
                        CM
                              Ct
                                     CL
                                            CV
                                                  Cfu
                                                         Cr
                                                              Cfrt Notes Cn*Cvr LC#
 Fv ,
           265
                 1.15 1.00 1.00
                                                              1.00 1.00 1.00
                                                                                 2
Fb'+
          2400
                  1.15 1.00 1.00
                                    0.725
                                          1.000
                                                  1.00
                                                        1.00
                                                             1.00 1.00
                                                                                 2
                       1.00 1.00
                                                              1.00
Fcp'
          1.8 million 1.00 1.00
                                                              1.00
                                                                                 2
Eminy'
         0.85 million
                       1,00
                             1.00
                                                              1.00
CRITICAL LOAD COMBINATIONS:
        : LC \#2 = D+S, V =
Shear
                               2413, V design =
                                                    2108 lbs
Bending(+): LC \#2 = D+S, M = 11161 lbs-ft
Deflection: LC #2
                   = D+S
                          (live)
            LC #2 = D+S
                           (total)
D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake
All LC's are listed in the Analysis output
Load combinations: ASCE 7-10 / IBC 2012
CALCULATIONS:
Deflection: EI =
                    1292e06 lb-in2
"Live" deflection = Deflection from all non-dead loads (live, wind, snow ...)
Total Deflection = 1.50 (Dead Load Deflection) + Live Load Deflection.
Lateral stability (+): Lu = 18'-6.00" Le = 34'-0.50" RB =
```

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007
- 4. GLULAM: bxd = actual breadth x actual depth.
- 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.
- 6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

PROJECT	
DESCR	PROJ. NO
CALCULATED BY	DATE
CHECKED BY	DATE
SCALE	SHEET NO

A Wall-tech Company	SCALE	SHEET NO
2"D \$ 1 57 FLOOR JOIST REACTIONS SPAN = 141.0" 141.0	NEW FLOOR 50, (SPACING =, W) WOL = (407, 5) 14 WOL = 15(16/12 15:0" RALL = 555 RADL = 150 USE WILL = 55psf (7.5+ WOL = 15psf (7.5+ 10:4" NEW GLULAM - LIN WILL = 55(7.5+6.5) WOL = 15 (7.5+6.5) WOL = 15 (7.5+6.5) WOL = 15 (7.5+6.5) NEW GLULAM - LIN WILL = 55(7.5+6.5) WOL = 15 (7.5+6.5) 1855	2 +12/5 M. G. 2 +12/5 M. G. 2 +12/5 M. G. 2 +12/5 M. G. 2 100 M. G. 3 5 5 = 005 3 5 5 = 16

A Wall-tech Company

PROJECT	
DESCR	PROJ. NO
CALCULATED BY	DATE
CHECKED BY	DATE
SCALE	SHEET NO

SECOND FLOOR FRAMING	NEIN DECK STAIR STRINGER
NEW DECIC JOISTS	
(SPACING=16"0.C)	WILL 70(2) = 150 WILL 70(2) (40
WLL: 75(10/12) = 10015/45	A
WOL 15 (16/12) - 2012/65	
1065	
12 ALL = 50014	
RADI - 10015 TREATED 24,0'S	15 F T
Q161	1
	3/8×12'6644m
NEW BECKEIN BEAN	CANTILEVERED BM-LINEZ
	hu=1350+2500
WUC: 75 (5): 375 16/65 WOU 15 (5): 75 16/65	PLE 1350 - 1
A	Pols 270's
14'.6"	3'.6" \$ 5.6"
FADZ = 544 12 3/2+13/2 GWWM	War = 40 (10/1,2) War = 15 (10/1,2)
	4
BEAM ALONG STAIR	Just GET
	83/47 191/2
FBL = 920'5	0,147,111/2
151 3:01 319	
WLL -75+2.51 188 WLL=75(2,5+1,1)5	LINE3 8314+ 16/2
1564	[1 0], +191,
18'-6'	LINE 1 03/4+191/2 LINE 5 3014 5/2+16/2
3/2+15" SLULAM	Mark Cont

1.25

625

1.25

625

Cb support

Fcp sup

COMPANY

PROJECT

May 1, 2017 03:28

New Deck Joists

Design Check Calculation Sheet

WoodWorks Sizer 10.4

Loads:

Load	Туре	Distribution	Pat-	Location [ft] Magnit		Magnitud	e.	Unit
			tern	Start	End	Start	End	İ
Load3	Dead	Full UDL				20.0		plf
Load4	Snow	Full UDL				100.0		plf
Self-weight	Dead	Full UDL				2.8		plf

Load magnitude does not include Normal Importance factor from Table 4.2.3.2, which is applied during analysis.

—— 10'-1.5" —

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in):

Lake Geneva - Vacation Rental - New Deck Joists Lumber-soft, S-P-F, No.1/No.2, 2x10 (1-1/2"x9-1/4")

Supports: All - Timber-soft Beam, D.Fir-L No.2

Floor joist spaced at 16.0" c/c; Total length: 10'-1.5"; volume = 1.0 cu.ft.;

Service: wet; Lateral support: top= full, bottom= at supports; Repetitive factor: applied where permitted (refer to online help);

SOFTWARE FOR WOOD DESIGN

New Deck Joists

WoodWorks® Sizer 10.4

Page 2

Analysis vs. Allowable Stress and Deflection using NDS 2012:

Criterion	Criterion Analysis Value		Unit	Analysis/Design
Shear	fv = 55	Fv' = 151	psi	fv/Fv' = 0.37
Bending(+)	fb = 861	Fb' = 1273	psi	fb/Fb' = 0.68
Live Defl'n	0.18 = L/664	0.33 = L/360	in	0.54
Total Defl'n	0.26 = L/456	0.50 = L/240	in	0.53

Additional Data:

FACTORS:	F/E(psi)C	D CM	Ct	CL	CF	Cfu	Cr	Cfrt	Ci	Cn	LC#
Fv'	135 1.	15 0.97	1.00	_	_	_		1.00	1.00	1.00	2
Fb'+	875 1.	15 1.00	1.00	1.000	1.100	1.00	1.15	1.00	1.00	_	2
Fcp'	425 -	0.67	1.00	_	_	_	••••	1.00	1.00		_
E 1	1.4 milli	on 0.90	1.00	_		-	_	1.00	1.00	_	2
Emin'	0.51 milli	on 0.90	1.00	_	_	-	***	1.00	1.00	-	2

CRITICAL LOAD COMBINATIONS:

Shear : LC #2 = D+S, V = 614, V design = 512 lbs

Bending(+): LC #2 = D+S, M = 1535 lbs-ft

Deflection: LC #2 = D+S (live) LC #2 = D+S (total)

D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake

All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2012

CALCULATIONS:

Deflection: EI = 139e06 lb-in2

"Live" deflection = Deflection from all non-dead loads (live, wind, snow...)

Total Deflection = 2.00(Dead Load Deflection) + Live Load Deflection.

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1.
- 4. FIRE RATING: Joists, wall studs, and multi-ply members are not rated for fire endurance.

PROJECT

ZNO FLOOR

May 1, 2017 03:29

New Deck Rim Beam

Design Check Calculation Sheet

WoodWorks Sizer 10.4

Loads:

Load	Type	Distribution	Pat-	Location	[ft]	Magnitude		Unit
			tern	Start	End	Start	End	
Load3	Dead	Full UDL				75.0		plf
Load4	Live	Full UDL				375.0		plf
Self-weight	Dead	Full UDL				10.9		plf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in):

Unfactored: Dead	631		631
Live	2763		2763
Factored:			
Total	3394		3394
Bearing:		THE PERSON OF THE SECTION OF THE PERSON OF T	
Capacity			
Beam	3394		3394
Support	4568		4568
Anal/Des			
Beam	1.00		1.00
Support	0.74		0.74
Load comb	#2		#2
Length	2.82		2.82
Min req'd	2,82		2.82
Cb	1.00		1.00
Cb min	1.00		1.00
Cb support	1.11		1.11
Fcp sup	625		625

Lake Geneva - Vacation Rental - New Deck Rim Beam Glulam-Bal., West Species, 24F-1.8E WS, 3-1/2"x13-1/2"

9 laminations, 3-1/2" maximum width, Supports: All - Timber-soft Beam, D.Fir-L. No.2

Total length: 14'-8.8"; volume = 4.8 cu.ft.;

Service: wet; Lateral support: top= at supports, bottom= at supports;

Analysis vs. Allowable Stress and Deflection using NDS 2012:

Shear $fv = 88$ $Fv' = 232$ psi $fv/Fv' = 232$	0.38
Bending(+) fb = 1367 Fb' = 1705 psi fb/Fb' =	0.80
Live Defl'n 0.35 = L/501 0.48 = L/360 in	0.72
Total Defl'n 0.51 = L/344 0.72 = L/240 in	0.70

SOFTWARE FOR WOOD DESIGN

New Deck Rim Beam

WoodWorks® Sizer 10.4

Page 2

```
Additional Data:
FACTORS:
         F/E(psi)CD
                        CM
                              Ct
                                   CL
                                           CV
                                                 Cfu
                                                       Cr
                                                            Cfrt Notes Cn*Cvr LC#
Fv 1
          265 1.00 0.88 1.00
                                                            1.00 1.00 1.00
                                                                               2
                                                1.00
         2400
 Fb'+
                 1.00 0.80 1.00 0.888 1.000
                                                     1.00 1.00 1.00
                                                                               2
Fcp'
          650
                       0.53 1.00
                                   -
                                           --
                                                            1.00
                                                 _
                                                       ---
          1.8 million 0.83 1.00
                                                                               2
                                                            1.00
         0.85 million 0.83
Eminy'
                            1.00
                                                            1.00
                                                                               2
CRITICAL LOAD COMBINATIONS:
          : LC \#2 = D+L, V =
                                3341, V design =
Bending(+): LC \#2 = D+L, M = 12112 lbs-ft
Deflection: LC \#2 = D+L (live)
            LC #2 = D+L (total)
D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake
All LC's are listed in the Analysis output
Load combinations: ASCE 7-10 / IBC 2012
CALCULATIONS:
Deflection: EI =
                    1292e06 lb-in2
"Live" deflection = Deflection from all non-dead loads (live, wind, snow...)
Total Deflection = 2.00(Dead Load Deflection) + Live Load Deflection.
Lateral stability (+): Lu = 14'-6.00" Le = 27'-0.13" RB =
```

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007
- 4. GLULAM: bxd = actual breadth x actual depth.
- 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.
- 6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

PROJECT

2ND FLOOR

May 1, 2017 03:28 New Beam Along Stair

Design Check Calculation Sheet

WoodWorks Sizer 10.4

Loads:

Load	Туре	Distribution	Pat-	Location [ft]	Magnitude	Unit
			tern	Start End	Start End	
Load3	Live	Partial UDL		0.00 15.00	188.0 188.0	plf
Load4	Dead	Partial UDL		0.00 15.00	50.0 50.0	plf
Load5	Live	Partial UDL		15.00 18.50	319.0 319.0	plf
Load6	Dead	Partial UDL		15.00 18.50	64.0 64.0	plf
Load7	Dead	Point		15.00	245	lbs
Load8	Live	Point		15.00	920	lbs
Self-weight	Dead	Full UDL			12.1	plf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in):

_____ 18'-8.6" _____ 18'-6"

Unfactored: Dead Live	631 1980	811 2876
Factored: Total	2612	3687
Bearing: Capacity		
Beam	2612	3687
Support	3515	4962
Anal/Des	ı İ	
Beam	1.00	1.00
Support	0.74	0.74
Load comb	#2	#2
Length	2.17	3.06
Min req'd	2.17	3.06
Cb	1.00	1.00
Cb min	1.00	1.00
Cb support	1.11	1.11
Fcp sup	625	625

Lake Geneva - Vacation Rental - New Deck Rim Beam Glulam-Bal., West Species, 24F-1.8E WS, 3-1/2"x15"

10 laminations, 3-1/2" maximum width, Supports: All - Timber-soft Beam, D.Fir-L No.2 Total length: 18'-8.6"; volume = 6.8 cu.ft.;

Service: wet; Lateral support: top= at supports, bottom= at supports;

SOFTWARE FOR WOOD DESIGN

New Beam Along Stair

WoodWorks® Sizer 10.4

Page 2

Analysis vs. Allowable Stress and Deflection using NDS 2012:

Į	Criterion	Analysis Value	Design Value	Unit	Analysis/Design
	Shear	fv = 91	Fv' = 232	psi	fv/Fv' = 0.39
	Bending(+)	fb = 1226	Fb' = 1464	psi	fb/Fb' = 0.84
1	Live Defl'n	0.43 = L/510	0.62 = L/360	in	0.71
L	Total Defl'n	0.70 = L/315	0.93 = L/240	in	0.76

Additional Data:

FACTORS:	F/E(psi)CD	CM	Ct	CL	CV	Cfu	Cr	Cfrt	Notes	Cn*Cvr	LC#
Fv'	265 1.00	0.88	1.00	-	_	-	_	1.00	1.00	1.00	2
Fb'+	2400 1.00	0.80	1.00	0.762	1.000	1.00	1.00	1.00	1.00	_	2
Fcp'	650 -	0.53	1.00	-		-	-	1.00	_		_
E'	1.8 million	0.83	1.00		-	-		1.00	_	_	2
Eminy'	0.85 million	0.83	1.00	-	_	_	_	1.00	_	***	2

CRITICAL LOAD COMBINATIONS:

```
Shear : LC \#2 = D+L, V = 3687, V design = 3186 lbs
```

Bending(+): LC #2 = D+L, M = 13410 lbs-ft

Deflection: LC #2 = D+L (live) LC #2 = D+L (total)

D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake

All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2012

CALCULATIONS:

Deflection: EI = 1772e06 lb-in2

"Live" deflection = Deflection from all non-dead loads (live, wind, snow...)

Total Deflection = 2.00 (Dead Load Deflection) + Live Load Deflection. Lateral stability (+): Lu = 18'-6.00" Le = 34'-0.50" RB = 22.36

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007
- 4. GLULAM: bxd = actual breadth x actual depth.
- 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.
- 6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

PROJECT

May 1, 2017 03:28

New Beam Along Stair-1st Floor

Design Check Calculation Sheet

WoodWorks Sizer 10.4

Loads:

Load	Type	Distribution	Pat-	Locatio	on [ft]	Magni	tude	Unit
			tern	Start	End	Start	End	
Load3	Live	Partial UDL		0.00	15.00	188.0	188.0	plf
Load4	Dead	Partial UDL		0.00	15.00	50.0	50.0	plf
Load5	Live	Partial UDL		15.00	18.50	319.0	319.0	plf
Load6	Dead	Partial UDL		15.00	18.50	64.0	64.0	plf
Load7	Dead	Point]	15.00		245		lbs
Load8	Live	Point	İ	15.00		920		lbs
Self-weight	Dead	Full UDL				15.2		plf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in):

Unfactored: Dead Live Factored:	658 1972	842 2885
Total	2630	3727
Bearing:		
Capacity		
Beam	2630	3727
Support	3415	4839
Anal/Des		ĺ
Beam	1.00	1.00
Support	0.77	0.77
Load comb	#2	#2
Length	1.39	1.97
Min req'd	1.39	1.97
Cb	1.00	1.00
Cb min	1.00	1.00
Cb support	1.07	1.07
Fcp sup	625	625

Lake Geneva - Vacation Rental - New Deck Rim Beam-1st Floor Glulam-Bal., West Species, 24F-1.8E WS, 5-1/2"x12"

8 laminations, 5-1/2" maximum width, Supports: All - Timber-soft Beam, D.Fir-L No.2

Total length: 18'-7.7"; volume = 8.5 cu.ft.;

Service: wet; Lateral support: top= at supports, bottom= at supports;

SOFTWARE FOR WOOD DESIGN

New Beam Along Stair-1st Floor

WoodWorks® Sizer 10.4

Page 2

Analysis vs. Allowable Stress and Deflection using NDS 2012:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 76	Fv' = 232	psi	fv/Fv' = 0.33
Bending(+)	fb = 1228	Fb' = 1868	psi	fb/Fb' = 0.66
Live Defl'n	0.54 = L/411	0.62 = L/360	in	0.87
Total Defl'n	0.89 = L/250	0.93 = L/240	in	0.96

Additional Data:

FACTORS:	F/E(ps.	i)CD	CM	Ct	$_{ m CL}$	CV	Cfu	Cr	Cfrt	Notes	Cn*Cvr	LC#
Fv '	265	1.00	0.88	1.00	_	_	-	-	1.00	1.00	1.00	2
Fb'+	2400	1.00	0.80	1.00	0.973	1.000	1.00	1.00	1.00	1.00	-	2
Fcp'	650	_	0.53	1.00	_	· –	-	-	1.00	-	-	
Ε'	1.8 mi	llion	0.83	1.00	_	-	-	-	1.00	_		2
Eminy	0.85 mi	llion	0.83	1.00	-	-		-	1.00	_	_	2

CRITICAL LOAD COMBINATIONS:

Shear : LC #2 = D+L, V = 3727, V design = 3323 lbs

Bending(+): LC #2 = D+L, M = 13510 lbs-ft

Deflection: LC #2 = D+L (live) LC #2 = D+L (total)

D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake

All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2012

CALCULATIONS:

Deflection: EI = 1426e06 lb-in2

"Live" deflection = Deflection from all non-dead loads (live, wind, snow...)

Total Deflection = 2.00(Dead Load Deflection) + Live Load Deflection.

Lateral stability (+): Lu = 18'-6.00" Le = 34'-0.50" RB = 12.73

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007
- 4. GLULAM: bxd = actual breadth x actual depth.
- 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3,3,3.
- 6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

PROJECT

May 1, 2017 03:29

New Deck Rim Beam-1st Floor

Design Check Calculation Sheet

WoodWorks Sizer 10.4

Loads:

Load	Type	Distribution	Pat-	Location	[ft]	Magnitud	е	Unit
			tern	Start	End	Start	End	
Load3	Dead	Full UDL				75.0		plf
Load4	Live	Full UDL				375.0		plf
Self-weight	Dead	Full UDL				15.2		plf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in):

Unfactored: Dead Live	660 2747	660 2747
Factored: Total	3406	3406
Bearing:	3400	3406
Capacity		
Beam	3406	3406
Support	4423	4423
Anal/Des		
Beam	1.00	1.00
Support	0.77	0.77
Load comb	#2	#2
Length	1.80	1.80
Min req'd	1.80	1.80
Cb	1.00	1.00
Cb min	1.00	1.00
Cb support	1.07	1.07
Fcp sup	625	625

Lake Geneva - Vacation Rental - New Deck Rim Beam-1st Floor Glulam-Bal., West Species, 24F-1.8E WS, 5-1/2"x12"

8 laminations, 5-1/2" maximum width, Supports: All - Timber-soft Beam, D.Fir-L No.2 Total length: 14'-7.8"; volume = 6.7 cu.ft.;

Service: wet; Lateral support: top= at supports, bottom= at supports;

Analysis vs. Allowable Stress and Deflection using NDS 2012:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 65	Fv' = 232	psi	fv/Fv' = 0.28
Bending(+)	fb = 1111	Fb' = 1883	psi	fb/Fb' = 0.59
Live Defl'n	0.31 = L/553	0.48 = L/360	in	0.65
Total Defl'n	0.47 = L/374	0.72 = L/240	in	0.64

SOFTWARE FOR WOOD DESIGN

New Deck Rim Beam-1st Floor

WoodWorks® Sizer 10.4

Page 2

```
Additional Data:
FACTORS: F/E(psi)CD
                        CM
                              Ct
                                    CL
                                           CV
                                                 Cfu
                                                        Cr
                                                             Cfrt Notes Cn*Cvr LC#
           265
                 1.00 0.88 1.00
Fv '
                                                             1.00 1.00 1.00
Fb'+
                                   0.981
                                          1.000
          2400
                 1.00 0.80 1.00
                                                 1.00
                                                       1.00
                                                            1.00 1.00
                                                                                2
          650
Fap'
                       0.53 1.00
                                                             1,00
           1.8 million 0.83 1.00
                                                             1.00
                                                                                2
Eminy'
         0.85 million
                       0.83 1.00
                                                             1.00
CRITICAL LOAD COMBINATIONS:
          : LC \#2 = D+L, V =
                               3373, V design =
                                                   2873 lbs
Bending(+): LC \#2 = D+L, M = 12226 lbs-ft
Deflection: LC \#2 = D+L (live)
            LC #2 = D+L (total)
D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake
All LC's are listed in the Analysis output
Load combinations: ASCE 7-10 / IBC 2012
CALCULATIONS:
Deflection: EI =
                    1426e06 lb-in2
"Live" deflection = Deflection from all non-dead loads (live, wind, snow...)
Total Deflection = 2.00(Dead Load Deflection) + Live Load Deflection.
Lateral stability (+): Lu = 14'-6.00" Le = 26'-8.19" RB =
```

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007
- 4. GLULAM: bxd = actual breadth x actual depth.
- 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.
- 6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

PROJECT

May 1, 2017 03:29

New Deck Stair Stringer Beam

Design Check Calculation Sheet

WoodWorks Sizer 10.4

Loads:

Load	Type	Distribution	Pat-	Location	[ft]	Magnitud	е	Unit
			tern	Start	End	Start	End	
Load1	Live	Full UDL				150.0		plf
Load2	Dead	Full UDL				40.0		plf
Self-weight	Dead	Full UDL				8.6		plf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in):

Unfactored:		
Dead	367	367
Live	1134	1134
Factored:		
Total	1501	1501
Bearing:		
Capacity		}
Beam	1501	1501
Support	2043	2043
Anal/Des		
Beam	1.00	1.00
Support	0.73	0.73
Load comb	#2	#2
Length	1.39	1.39
Min req'd	1.39	1.39
Cb	1.00	1.00
Cb min	1.00	1.00
Cb support	1.12	1.12
Fcp sup	625	625

Lake Geneva - Vacation Rental - New Deck Stair Stringer Glulam-Bal., West Species, 24F-1.8E WS, 3-1/8"x12"

8 laminations, 3-1/8" maximum width, Supports: All - Timber-soft Beam, D.Fir-L No.2 Total length: 15'-1.4"; volume = 3.9 cu.ft.;

Service: wet; Lateral support: top= at supports, bottom= at supports;

Analysis vs. Allowable Stress and Deflection using NDS 2012:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 51	Fv' = 232	psi	fv/Fv' = 0.22
Bending(+)	fb = 894	Fb' = 1630	psi	fb/Fb' = 0.55
Live Defl'n	0.25 = L/710	0.50 = L/360	in	0.51
Total Defl'n	0.42 = L/431	0.75 = L/240	in	0.56

SOFTWARE FOR WOOD DESIGN

New Deck Stair Stringer Beam

WoodWorks® Sizer 10.4

Page 2

```
Additional Data:
FACTORS:
          F/E(psi)CD
                        CM
                              Ct
                                    CL
                                           CV
                                                 Cfu
                                                        Cr
                                                             Cfrt Notes Cn*Cvr LC#
 Fv'
           265
                 1.00 0.88 1.00
                                                             1.00 1.00 1.00
                                                                                2
                                                 1.00
 Fb'+
          2400
                 1.00 0.80 1.00
                                   0.849
                                          1.000
                                                       1.00
                                                             1.00 1.00
                                                                                2
 Fcp'
                        0.53 1.00
                                                             1.00
           1.8 million 0.83 1.00
                                                                                2
                                                             1.00
 Eminy'
         0.85 million 0.83 1.00
                                                             1.00
                                                                                2
CRITICAL LOAD COMBINATIONS:
          : LC \#2 = D+L, V =
 Shear
                                1490, V = 1280 lbs
                                5587 lbs-ft
Bending(+): LC \#2 = D+L, M =
Deflection: LC #2
                   = D+L  (live)
            LC #2 = D+L
                           (total)
D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake
All LC's are listed in the Analysis output
Load combinations: ASCE 7-10 / IBC 2012
CALCULATIONS:
Deflection: EI =
                     810e06 lb-in2
"Live" deflection = Deflection from all non-dead loads (live, wind, snow...)
Total Deflection = 2.00(Dead Load Deflection) + Live Load Deflection.
Lateral stability (+): Lu = 15' Le = 27'-7.19" RB =
```

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007
- 4. GLULAM: bxd = actual breadth x actual depth.
- 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.
- 6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

PROJECT

May 1, 2017 03:30

New Floor Beam Line B

Design Check Calculation Sheet

WoodWorks Sizer 10.4

Loads:

Load	Type	Distribution	Pat-	Location	[ft]	Magnitud	le	Unit
			tern	Start	End	Start	End	
Load1	Live	Full UDL				770.0	•	plf
Load2	Dead	Full UDL				210.0		plf
Self-weight	Dead	Full UDL				20.9		plf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in):

Unfactored: Dead Live Factored:	2100 7012		2100 7012
Total	9112		9112
Bearing:	1	**************************************	
Capacity	,		
Beam	9112		9112
Support	9359		9359
Anal/Des			
Beam	1.00		1.00
Support	0.97		0.97
Load comb	#2		#2
Length	2.55		2.55
Min req'd	2.55		2.55
Cb	1.00		1.00
Cb min	1.00		1.00
Cb support	1.07		1.07
Fcp sup	625		625

Lake Geneva - Vacation Rental - New Beam Line B Glulam-Bal., West Species, 24F-1.8E WS, 5-1/2"x16-1/2"

11 laminations, 5-1/2" maximum width, Supports: All - Timber-soft Beam, D.Fir-L No.2 Total length: 18'-2.5"; volume = 11.5 cu.ft.; Lateral support: top= at supports, bottom= at supports;

Analysis vs. Allowable Stress and Deflection using NDS 2012:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 124	Fv' = 265	psi	fv/Fv' = 0.47
Bending(+)	fb = 1949	Fb' = 2289	psi	fb/Fb' = 0.85
Live Defl'n	0.49 = L/440	0.60 = L/360	in	0.82
Total Defl'n	0.71 = L/303	0.90 = L/240	in	0.79

SOFTWARE FOR WOOD DESIGN

New Floor Beam Line B

WoodWorks® Sizer 10.4

Page 2

```
Additional Data:
FACTORS:
          F/E(psi)CD
                        CM
                              Сt
                                    CL
                                            CV
                                                  Cfu
                                                        Cr
                                                              Cfrt Notes Cn*Cvr LC#
Fv '
           265
                 1.00 1.00 1.00
                                                              1.00
                                                                   1.00 1.00
Fb'+
          2400
                 1.00 1.00 1.00
                                    0.954
                                           0.977
                                                  1.00
                                                       1.00
                                                             1.00 1.00
                                                                                 2
Fcp'
           650
                       1.00 1.00
                                                              1.00
           1.8 million 1.00 1.00
                                                                                 2
                                                              1.00
         0.85 million 1.00
                             1.00
                                                              1.00
Only the lesser of CL and CV is applied, as per NDS 5.3.6
CRITICAL LOAD COMBINATIONS:
          : LC #2 = D+L, V =
                                9008, V design =
                                                   7526 lbs
Bending(+): LC \#2 = D+L, M = 40536 lbs-ft
Deflection: LC #2
                   = D+L
                          (live)
            LC #2 = D+L
                           (total)
D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake
All LC's are listed in the Analysis output
Load combinations: ASCE 7-10 / IBC 2012
CALCULATIONS:
Deflection: EI =
                    3706e06 lb-in2
"Live" deflection = Deflection from all non-dead loads (live, wind, snow...)
Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection.
Lateral stability (+): Lu = 18' Le = 33'-5.56" RB =
```

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007
- 4. GLULAM: bxd = actual breadth x actual depth.
- 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.
- 6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

PROJECT

May 1, 2017 03:30 | New Floor Beam - Line C.2

Design Check Calculation Sheet

WoodWorks Sizer 10.4

Loads:

Load	Type	Distribution	Pat-	Location	[ft]	Magnitude	è	Unit
			tern	Start	End	Start	End	
Load1	Live	Full UDL				385.0		plf
Load2	Dead	Full UDL				70.0		plf
Self-weight	Dead	Full UDL				17.1		plf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in):

Unfactored: Dead Live Factored:	809 3581	809 3581
Total	4390	4390
Bearing: Capacity		
Beam	4390	4390
Support	4509	4509
Anal/Des		
Beam	1.00	1.00
Support	0.97	0.97
Load comb	#2	#2
Length	1.23	1.23
Min req'd	1.23	1.23
Cb	1.00	1.00
Cb min	1.00	1.00
Cb support	1.07	1.07
Fcp sup	625	625

Lake Geneva - Vacation Rental - New Floor Beam - Line C.2 Glulam-Bal., West Species, 24F-1.8E WS, 5-1/2"x13-1/2"

9 laminations, 5-1/2" maximum width, Supports: All - Timber-soft Beam, D.Fir-L No.2 Total length: 18'-7.2"; volume = 9.6 cu.ft.; Lateral support: top= full, bottom= at supports;

Analysis vs. Allowable Stress and Deflection using NDS 2012:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 77	Fv' = 265	psi	fv/Fv' = 0.29
Bending(+)	fb = 1451	Fb' = 2385	psi	fb/Fb' = 0.61
Live Defl'n	0.50 = L/444	0.62 = L/360	in	0.81
Total Defl'n	0.67 = L/331	0.93 = L/240	in	0.72

SOFTWARE FOR WOOD DESIGN

New Floor Beam - Line C.2

WoodWorks® Sizer 10.4

Page 2

```
Additional Data:
FACTORS:
          F/E(psi)CD
                       CM
                             Ct
                                    CL
                                           CV
                                                 Cfu
                                                       Cr
                                                            Cfrt Notes Cn*Cvr LC#
                1.00 1.00 1.00
 Fν'
          265
                                                            1.00 1.00 1.00
                                                                               2
Fb'+
                                   1.000
                                          0.994
          2400
                 1.00 1.00 1.00
                                                 1.00
                                                       1.00 1.00 1.00
                                                                               2
Fcp'
          650
                       1.00 1.00
                                                            1.00
                                                             1.00
                                                                               2
E.
          1.8 million 1.00 1.00
Eminy'
        0.85 million 1.00 1.00
                                                             1.00
CRITICAL LOAD COMBINATIONS:
          : LC \#2 = D+L, V =
                              4367, V design = 3812 lbs
 Shear
Bending(+): LC \#2 = D+L, M = 20197 lbs-ft
Deflection: LC #2
                   = D+L  (live)
            LC #2 = D+L
                          (total)
D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake
All LC's are listed in the Analysis output
Load combinations: ASCE 7-10 / IBC 2012
CALCULATIONS:
Deflection: EI =
                    2030e06 lb-in2
"Live" deflection = Deflection from all non-dead loads (live, wind, snow ...)
Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection.
```

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007
- 4. GLULAM: bxd = actual breadth x actual depth.
- 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.
- 6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

PROJECT

May 1, 2017 03:30

New Floor Joists Screen Patio (12 inches o.c.)

Design Check Calculation Sheet

WoodWorks Sizer 10.4

Loads:

Load	Type	Distribution	Pat-	Location	[ft]	Magnitude	Unit
			tern	Start	End	Start En	d
Load1	Live	Full UDL				55.0	plf
Load2	Dead	Full UDL				15.0	plf
Self-weight	Dead	Full UDL				3.4	plf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in):

Unfactored: Dead Live Factored:	139 414	139 414
Total	553	553
Bearing: Capacity		
Joist	553	553
Support	1017	1017
Anal/Des		
Joist	1.00	1.00
Support	0.54	0.54
Load comb	#2	#2
Length	0.87	0.87
Min req'd	0.87	0.87
Clb	1.00	1.00
Cb min	1.00	1.00
Cb support	1.25	1.25
Fcp sup	625	625

Lake Geneva - Vacation Rental - New Floor Joists Screen Patio Lumber-soft, S-P-F, No.1/No.2, 2x12 (1-1/2"x11-1/4")

Supports: All - Timber-soft Beam, D.Fir-L No.2

Floor joist spaced at 12.0" c/c; Total length: 15'-0.9"; volume = 1.8 cu.ft.;

Lateral support: top= full, bottom= at supports; Repetitive factor: applied where permitted (refer to online help);

Analysis vs. Allowable Stress and Deflection using NDS 2012:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 43	Fv' = 135	psi	fv/Fv' = 0.32
Bending(+)	fb = 783	Fb' = 1006	psi	fb/Fb' = 0.78
Live Defl'n	0.25 = L/715	0.50 = L/360	in	0.50
Total Defl'n	0.38 = L/476	0.75 = L/240	in	0.50

SOFTWARE FOR WOOD DESIGN

New Floor Joists Screen Patio (12 inches o.c.) oodWorks® Sizer 10.4

Page 2

```
Additional Data:
FACTORS:
           F/E(psi)CD
                          CM
                                Ct
                                       CL
                                              CF
                                                    Cfu
                                                                 Cfrt
                                                                        Сi
                                                                                    LC#
                                                           Cr
                                                                              Cn
 Fv '
           135
                  1.00 1.00
                              1.00
                                                                 1.00
                                                                       1.00
                                                                                     2
                                                                              1.00
 Fb +
           875
                   1.00 1.00
                              1.00
                                     1.000
                                             1.000
                                                    1.00
                                                          1.15
                                                                1.00
                                                                       1.00
                                                                              __
                                                                                     2
 Fcp'
           425
                         1.00
                              1.00
                                              ---
                                                     _
                                                           ---
                                                                 1.00
                                                                       1.00
 \mathbb{E}^{|\mathbf{r}|}
           1.4 million 1.00
                              1.00
                                                                 1.00
                                                                       1.00
                                                                                     2
          0.51 million 1.00
 Emin'
                               1.00
                                                                                     2
                                                                 1.00
                                                                       1.00
CRITICAL LOAD COMBINATIONS:
           : LC \#2 = D+L, V =
                                  551, V design =
                                                       479 lbs
 Bending(+): LC #2
                    = D+L, M =
                                  2065 lbs-ft
 Deflection: LC #2
                    = D+L
                           (live)
             LC #2
                    = D+L
                            (total)
 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake
All LC's are listed in the Analysis output
Load combinations: ASCE 7-10 / IBC 2012
CALCULATIONS:
Deflection: EI =
                       249e06 lb-in2
 "Live" deflection = Deflection from all non-dead loads (live, wind, snow...)
Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection.
```

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1.
- 4. FIRE RATING: Joists, wall studs, and multi-ply members are not rated for fire endurance.

PROJECT

May 1, 2017 03:30

New Floor Beam Line C.2 @ Screen Patio

Design Check Calculation Sheet

WoodWorks Sizer 10.4

Loads:

Load	Туре	Distribution	Pat-	Location	[ft]	Magnitu	de	Unit
			tern	Start	End	Start	End	
Load1	Live	Full UDL				605.0		plf
Load2	Dead	Full UDL				165.0		plf
Self-wei	ght Dead	Full UDL				17.1		plf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in):

Unfactored:		
Dead	1515	1515
Live	5037	5037
Factored:		
Total	6552	6552
Bearing:		<u></u>
Capacity	ı]
Beam	6552	6552
Support	6730	6730
Anal/Des		
Beam	1.00	1.00
Support	0.97	0.97
Load comb	#2	#2
Length	1.83	1.83
Min req'd	1.83	1.83
Cb	1.00	1.00
Cb min	1.00	1.00
Cb support	1.07	1.07
Fcp sup	625	625

Lake Geneva - Vacation Rental - New Beam Line B Glulam-Bal., West Species, 24F-1.8E WS, 5-1/2"x13-1/2"

9 laminations, 5-1/2" maximum width, Supports: All - Timber-soft Beam, D.Fir-L No.2 Total length: 16'-7.8"; volume = 8.6 cu.ft.; Lateral support: top= at supports, bottom= at supports;

Analysis vs. Allowable Stress and Deflection using NDS 2012:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 112	Fv' = 265	psi	fv/Fv' = 0.42
Bending(+)	fb = 1924	Fb' = 2331	psi	fb/Fb' = 0.83
Live Defl'n	0.50 = L/398	0.55 = L/360	in	0.90
Total Defl'n	0.72 = L/274	0.82 = L/240	in	0.87

SOFTWARE FOR WOOD DESIGN

New Floor Beam Line C.2 @ Screen Patio WoodWorks® Sizer 10.4

Page 2

```
Additional Data:
FACTORS:
          F/E(psi)CD
                        CM
                               Ct
                                     CL
                                            CV
                                                  Cfu
                                                         Cr
                                                              Cfrt Notes Cn*Cvr LC#
 Fv'
           265
                 1.00 1.00 1.00
                                                              1.00 1.00 1.00
                                                                                 2
 Fb'+
                                    0.971
          2400
                  1.00 1.00 1.00
                                           1.000
                                                  1.00
                                                        1.00
                                                              1.00
                                                                    1.00
                                                                                 2
 Fcp'
          650
                        1.00 1.00
                                                              1.00
                                                   --
           1.8 million 1.00 1.00
                                                                                 2
                                                              1.00
Eminy'
         0.85 million 1.00 1.00
                                                              1.00
                                                                                 2
CRITICAL LOAD COMBINATIONS:
          : LC \#2 = D+L, V =
                               6494, V design =
                                                    5548 lbs
 Shear
 Bending(+): LC #2
                   = D+L, M = 26786 lbs-ft
 Deflection: LC #2
                   = D+L
                           (live)
             LC #2 = D+L
                           (total)
D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake
All LC's are listed in the Analysis output
Load combinations: ASCE 7-10 / IBC 2012
CALCULATIONS:
 Deflection: EI =
                    2030e06 lb-in2
"Live" deflection = Deflection from all non-dead loads (live, wind, snow...)
Total Deflection = 1.50 (Dead Load Deflection) + Live Load Deflection.
Lateral stability (+): Lu = 16'-6.00" Le = 30'-4.31" RB =
```

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007
- 4. GLULAM: bxd = actual breadth x actual depth.
- 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.
- 6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

PROJECT

May 1, 2017 03:27

Cantilever Beam - Line 1

Design Check Calculation Sheet

WoodWorks Sizer 10.4

Loads:

Load	Type	Distribution	Pat-	Location [ft]	Magnitude	Unit
			tern	Start End	Start End	
Load3	Dead	Partial UDL	No	16.00 23.00	10.0 10.0	plf
Load5	Live	Partial UDL	Yes	16.00 26.00	50.0 50.0	plf
Load7	Live	Point	No	26.00	2531	lbs
Load8	Dead	Point	No	26.00	506	lbs
Self-weight	Dead	Full UDL	No		39.3	plf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in):

Unfactored: Dead Live Factored:	192 -1734	1737 4765		
Uplift Total Bearing:	1873 192	6502	s.	
Capacity Beam Support	1507 1832	6502 6529		
Anal/Des Beam Support	0.13	1.00		
Load comb Length	#1 0.50*	#2 1.78		
Min req'd Cb Cb min	0.50* 1.00 1.00	1.78 1.21 1.21		
Cb support Fcp sup	1.00 625	1.00 625		

*Minimum bearing length setting used: 1/2" for end supports

Maximum reaction on at least one support is from a different load combination than the critical one for bearing design, shown here, due to Kd factor. See Analysis results for reaction from critical load combination.

Lake Geneva - Vacation Rental - Cantievered Beam Line 1 Glulam-Bal., West Species, 24F-1.8E WS, 8-3/4"x19-1/2"

13 laminations, 8-3/4" maximum width, Supports: All - Timber-soft Beam, D.Fir-L No.2

Total length: 26'-0.3"; volume = 30.8 cu.ft.;

Service: wet; Lateral support: top= at supports, bottom= at supports;

SOFTWARE FOR WOOD DESIGN

Cantilever Beam - Line 1

WoodWorks® Sizer 10.4

Page 2

Analysis vs. Allowable Stress and Deflection using NDS 2012:

	Criterion	Analysis Value	Design Value	Unit	Analysis/Design
ı	Shear	fv = 34	Fv' = 232	psi	fv/Fv' = 0.15
	Bending(-)	fb = 757	Fb' = 1697	psi	fb/Fb' = 0.45
1	Deflection:				
l	Interior Live	-0.10 = < L/999	0.53 = L/360	in	0.18
	Total	-0.13 = < L/999	0.80 = L/240	in	0.17
ĺ	Cantil. Live	0.51 = L/236	0.67 = L/180	in	0.76
	Total	0.74 = L/162	1.00 = L/120	in	0.74

Additional Data:

FACTORS:	F/E(p	si)CD	CM	Ct	CL	CV	Cfu	Cr	Cfrt	Notes	Cn*Cvr	LC#
Fv'	265	1.00	0.88	1.00	_	_	-	-	1.00	1.00	1.00	2
Fb ' -	2400	1.00	0.80	1.00	0.988	0.884	1.00	1.00	1.00	1.00	-	2
Fcp'	650	-	0.53	1.00	_	-	-	-	1.00	_	-	_
E'	1.8 m.	illion	0.83	1.00		_		-	1.00	_	_	2
Eminy'	0.85 m:	illion	0.83	1.00	_		_	-	1.00	-	-	2

Only the lesser of CL and CV is applied, as per NDS 5.3.6

CRITICAL LOAD COMBINATIONS:

Shear : LC #2 = D+L, V = 3999, V design = 3839 lbs

Bending(-): LC #2 = D+L, M = 34995 lbs-ft

Deflection: LC #2 = D+L (live) LC #2 = D+L (total)

D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake

All LC's are listed in the Analysis output

Load Patterns: s=S/2, X=L+S or L+Lr, _=no pattern load in this span

Load combinations: ASCE 7-10 / IBC 2012

CALCULATIONS:

Deflection: EI = 9732e06 lb-in2

"Live" deflection = Deflection from all non-dead loads (live, wind, snow...)

Total Deflection = 2.00(Dead Load Deflection) + Live Load Deflection.

Lateral stability (-): Lu = 16' Le = 27'-11.00" RB = 9.24

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007
- 4. Grades with equal bending capacity in the top and bottom edges of the beam cross-section are recommended for continuous beams.
- 5. GLULAM: bxd = actual breadth x actual depth.
- 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.
- 7. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

PROJECT

May 1, 2017 03:27

Cantilever Beam - Line 2- with added column

Design Check Calculation Sheet

WoodWorks Sizer 10.4

Loads:

Load	Type	Distribution	Pat-	Location [ft]	Magnitude	Unit
			tern	Start End	Start End	
Load3	Dead	Partial UDL	No	16.02 25.02	20.0 20.0	plf
Load5	Live	Partial UDL	Yes	16.02 25.02	75.0 75.0	plf
Load4	Dead	Point	No	19.52	270	lbs
Load6	Live	Point	Yes	19.52	1350	lbs
Load7	Live	Point	No	25.02	3850	1bs
Load8	Dead	Point	No	25.02	770	lbs
Self-weight	Dead	Full UDL	No		23.3	plf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in):

*Minimum bearing length setting used: 1/2" for end supports and 1/2" for interior supports

Maximum reaction on at least one support is from a different load combination than the critical one for bearing design, shown here, due to Kd factor. See Analysis results for reaction from critical load combination.

Lake Geneva - Vacation Rental - Cantievered Beam Line 2 Glulam-Bal., West Species, 24F-1.8E WS, 6-3/4"x15"

10 laminations, 6-3/4" maximum width, Supports: All - Timber-soft Beam, D.Fir-L No.2

Total length: 25'-0.3"; volume = 17.6 cu.ft.;

Service: wet; Lateral support: top= at supports, bottom= at supports;

SOFTWARE FOR WOOD DESIGN

Cantilever Beam - Line 2- with added columnVoodWorks® Sizer 10.4

Page 2

Analysis	vs. Allowable	Stress	and	Deflection	using NDS	2012:
					_	

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 125	Fv' = 232	psi	fv/Fv' = 0.54
Bending(+)	fb = 92	Fb' = 1874	psi	fb/Fb' = 0.05
Bending(-)	fb = 1289	Fb' = 1910	psi	fb/Fb' = 0.67
Deflection:				
Interior Live	$-0.01 = \langle L/999$	0.12 = L/360	in	0.08
Total	-0.01 = < L/999	0.17 = L/240	in	0.08
Cantil. Live	0.22 = L/302	0.37 = L/180	in	0.59
Total	0.31 = L/210	0.55 = L/120	in	0.57

Additional Data:

```
FACTORS: F/E(psi)CD
                       CM
                             Ct
                                   ^{
m CL}
                                          CV
                                                       Cr
                                                            Cfrt Notes Cn*Cvr LC#
F'v '
          265
                1.00 0.88 1.00
                                                            1.00 1.00 1.00
                                                                              2
Fb'+
         2400
                 1.00 0.80 1.00 0.985
                                         0.976
                                                1,00
                                                      1.00
                                                            1.00 1.00
                                                                              2
Fb'-
         2400
                 1.00 0.80 1.00
                                  0.995
                                         1.000
                                                1.00
                                                      1.00
                                                            1.00
                                                                 1.00
                                                                              2
Fcp'
         650
                       0.53 1.00
                                                            1.00
E.
          1.8 million 0.83 1.00
                                                                              6
                                                            1.00
Eminy'
         0.85 million 0.83 1.00
                                                            1.00
```

Only the lesser of CL and CV is applied, as per NDS 5.3.6

CRITICAL LOAD COMBINATIONS:

```
Shear
        : LC \#2 = D+L, V =
                               8492, V design =
                                                  8414 lbs
```

Bending(+): LC #2 = D+L, M = 1940 lbs-ft

Bending(-): LC #2 = D+L, M = 27199 lbs-ft Deflection: LC #6 =

(live) LC #6 =(total)

D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake

All LC's are listed in the Analysis output

Load Patterns: s=S/2, X=L+S or L+Lr, =no pattern load in this span Load combinations: ASCE 7-10 / IBC 2012

CALCULATIONS:

Deflection: EI = 3417e06 lb-in2

"Live" deflection = Deflection from all non-dead loads (live, wind, snow ...)

Total Deflection = 2.00(Dead Load Deflection) + Live Load Deflection.

Lateral stability (+): Lu = 16' Le = 26'-9.50" RB = 10.29 Lateral stability (-): Lu = 5'-6.00" Le = 10'-3.44" RB =

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007
- 4. Grades with equal bending capacity in the top and bottom edges of the beam cross-section are recommended for continuous beams.
- 5. GLULAM: bxd = actual breadth x actual depth.
- 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.
- 7. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

PROJECT

May 1, 2017 03:27

Cantilever Beam - Line 3

Design Check Calculation Sheet

WoodWorks Sizer 10.4

Loads:

Load	Type	Distribution	Pat-	Location [ft]	Magnitude	Unit
			tern	Start End	Start End	
Load3	Dead	Partial UDL	ЙО	16.00 22.52	20.0 20.0	plf
Load5	Live	Partial UDL	Yes	16.00 22.52	75.0 75.0	plf
Load4	Dead	Point	No	19.50	270	lbs
Load6	Live	Point	Yes	19.50	1350	lbs
Load7	Live	Point	No	22.52	3263	lbs
Load8	Dead	Point	No	22.52	770	lbs
Self-weight	Dead	Full UDL	Ио		33.2	plf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in):

Unfactored: Dead Live Factored:	222 -1718	2094 6820	
Uplift Total Bearing:	1894 222	8914	
Capacity	4.505	2044	
Beam Support	1507 1832	8914 9462	
Anal/Des			
Beam	0.15 0.12	1.00	
Support Load comb	#1	#2	
Length	0.50*	2.58	
Min req'd	0.50*	2.58	
Cb	1.00	1.15	
Cb min	1.00	1.15	
Cb support	1.00	1.00	
Fcp sup	625	625	

^{*}Minimum bearing length setting used: 1/2" for end supports

Maximum reaction on at least one support is from a different load combination than the critical one for bearing design, shown here, due to Kd factor. See Analysis results for reaction from critical load combination.

Lake Geneva - Vacation Rental - Cantievered Beam Line 3 Glulam-Bal., West Species, 24F-1.8E WS, 8-3/4"x16-1/2"

11 laminations, 8-3/4" maximum width, Supports: All - Timber-soft Beam, D.Fir-L No.2

Total length: 22'-6.3"; volume = 22.6 cu.ft.;

Service: wet; Lateral support: top= at supports, bottom= at supports;

SOFTWARE FOR WOOD DESIGN

Cantilever Beam - Line 3

WoodWorks® Sizer 10.4

Page 2

This section FAILS the design check

WARNING: This section violates the following design criteria: Deflection

Analysis vs. Allowable Stress and Deflection using NDS 2012:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 66	Fv' = 232	psi	fv/Fv' = 0.28
Bending(-)	fb = 1044	Fb' = 1751	psi	fb/Fb' = 0.60
Deflection:				
Interior Live	$-0.16 = \langle L/999$	0.53 = L/360	in	0.30
Total	-0.22 = L/868	0.80 = L/240	in	0.28
Cantil. Live	0.46 = L/168	0.43 = L/180	in	1.07
Total	0.67 = L/116	0.65 = L/120	in	1.03

Additional Data:

FACTORS:	F/E(p	si)CD	CM	Ct	\mathtt{CL}	CV	Cfu	Cr	Cfrt	Notes	Cn*Cvr	LC#
Fv'	265	1.00	0.88	1.00			_	-	1.00	1.00	1.00	2
Fb'-	2400	1.00	0.80	1.00	0.991	0.912	1.00	1.00	1.00	1.00	_	2
Fcp'	650	_	0.53	1.00	_	_	-	-	1.00	-	-	_
Ε'	1.8 m	illion	0.83	1.00		-	-	-	1.00	-	-	2
Eminy'	0.85 m	illion	0.83	1.00	_	-	_	_	1.00	_	_	2
	_							_				

Only the lesser of CL and CV is applied, as per NDS 5.3.6

CRITICAL LOAD COMBINATIONS:

: LC #2 = D+L, V = 6487, V design = Shear 6312 lbs

Bending(-): LC #2 = D+L, M = 34553 lbs-ft

Deflection: LC #2 = D+L (live)

LC #2 = D+L (total)

D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake

All LC's are listed in the Analysis output

Load Patterns: s=S/2, X=L+S or L+Lr, _=no pattern load in this span

Load combinations: ASCE 7-10 / IBC 2012

CALCULATIONS:

Deflection: EI = 5896e06 lb-in2

"Live" deflection = Deflection from all non-dead loads (live, wind, snow...)

Total Deflection = 2.00(Dead Load Deflection) + Live Load Deflection.

Lateral stability (-): Lu = 16' Le = 27'-2.00" RB =

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190,1-2007
- 4. Grades with equal bending capacity in the top and bottom edges of the beam cross-section are recommended for continuous beams.
- 5. GLULAM: bxd = actual breadth x actual depth.
- 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.
- 7. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n),

PROJECT

May 1, 2017 03:28

Cantilever Beam - Line 5

Design Check Calculation Sheet

WoodWorks Sizer 10.4

Loads:

Load	Type	Distribution	Pat-	Location [ft] Magnitu	Magnitude	
]	i	tern	Start End	Start	End	
Load3	Dead	Partial UDL	No	16.00 21.00	10.0	10.0	plf
Load5	Live	Point	Yes	21.00	1913		lbs
Load4	Dead	Point	No	21.00	383		lbs
Load6	Live	Partial UDL	Yes	16.00 21.00	50.0	50.0	plf
Self-weight	Dead	Full UDL	No		20.9		plf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in):

	•		2 1
Unfactored: Dead Live	151	848 2797	
Factored: Uplift Total Bearing:	610 151	3645	
Capacity Beam Support Anal/Des	947 1230	3645 3810	
Beam Support Load comb Length	0.16 0.12 #1 0.50* 0.50*	1.00 0.96 #2 1.55	
Min req'd Cb Cb min Cb support Fcp sup	1.00 1.00 1.07 625	1.55 1.24 1.24 1.07 625	

*Minimum bearing length setting used: 1/2" for end supports

Maximum reaction on at least one support is from a different load combination than the critical one for bearing design, shown here, due to Kd factor. See Analysis results for reaction from critical load combination.

Lake Geneva - Vacation Rental - Cantievered Beam Line 1 Glulam-Bal., West Species, 24F-1.8E WS, 5-1/2"x16-1/2"

11 laminations, 5-1/2" maximum width, Supports: All - Timber-soft Beam, D.Fir-L No.2

Total length: 21'-0.3"; volume = 13.2 cu.ft.;

Service: wet; Lateral support: top= at supports, bottom= at supports;

SOFTWARE FOR WOOD DESIGN

Cantilever Beam - Line 5

WoodWorks® Sizer 10.4

Page 2

Analysis vs. Allowable Stress and Deflection using NDS 2012:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 43	Fv' = 232	psi	fv/Fv' = 0.18
Bending(-)	fb = 598	Fb' = 1847	psi	fb/Fb' = 0.32
Deflection:				
Interior Live	$-0.09 = \langle L/999$	0.53 = L/360	in	0.17
Total	$-0.12 = \langle L/999$	0.80 = L/240	in	0.15
Cantil. Live	0.20 = L/303	0.33 = L/180	in	0.59
Total	0.27 = L/224	0.50 = L/120	in	0.53

Additional Data:

FACTORS:	F/E(ps:	i)CD	CM	Ct	\mathtt{CL}	CV	Cfu	Cr	Cfrt	Notes	Cn*Cvr	LC#
Fv ,	265	1.00	0.88	1.00				_	1.00	1.00	1.00	2
Fb'-	2400	1.00	0.80	1.00	0.969	0.962	1.00	1.00	1.00	1.00		2
Fcp'	650	-	0.53	1.00		-	-	-	1.00	_	_	_
E'	1.8 mil	llion	0.83	1.00	_	_	-	-	1.00	_	_	2
Eminy'	0.85 mil	llion	0.83	1.00	-	-		_	1.00	-		2

Only the lesser of CL and CV is applied, as per NDS 5.3.6

CRITICAL LOAD COMBINATIONS:

```
Shear : LC \#2 = D+L, V = 2699, V designed Bending(-): LC \#2 = D+L, M = 12433 lbs-ft
                                                  2699, V design =
                                                                                 2595 lbs
```

Deflection: LC #2 = D+L (live) LC #2 = D+L(total)

D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake

All LC's are listed in the Analysis output

Load Patterns: s=S/2, X=L+S or L+Lr, =no pattern load in this span Load combinations: ASCE 7-10 / IBC 2012

CALCULATIONS:

3706e06 lb-in2 Deflection: EI =

"Live" deflection = Deflection from all non-dead loads (live, wind, snow...)

Total Deflection = 2.00(Dead Load Deflection) + Live Load Deflection.

Lateral stability (-): Lu = 16' Le = 27'-2.00" RB =

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007
- 4. Grades with equal bending capacity in the top and bottom edges of the beam cross-section are recommended for continuous beams.
- 5. GLULAM: bxd = actual breadth x actual depth.
- 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.
- 7. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

A Wall-tech Company

PROJECT	10 L 10 L 10 L 10 L 10 L 10 L 10 L 10 L
DESCR	PROJ. NO
CALCULATED BY	DATE
CHECKED BY	DATE
SCALE	SHEET NO

NEW PO	957 - LINE CZ	NEW POST - GRIPGE BEAT
	Pol = 2 (5427) + 2 (3501d) Pol = 2 (4092) + 2 (1931) = 12040	Por = 2(3062):6024
EGNORE UP LIFT SLIGHT LOAD	7.0	3
	456 5/8-10" DONG FIR LZ	
•		

PROJECT

May 1, 2017 03:31

New Post - Line C2

Design Check Calculation Sheet

WoodWorks Sizer 10.4

Loads:

Load	Type	Distributio	n Pat-	Location [f	t] Magnitud	Magnitude	
			tern	Start En	d Start	End	
Load1	Dead	Axial		(Ecc. = 0.00)	") 12046		lbs
Load2	Snow	Axial		(Ecc. = 0.00)	") 17866		lbs
Self-weight	Dead	Axial		·	53		lbs

Load magnitude does not include Normal Importance factor from Table 4.2.3.2, which is applied during analysis.

Lateral Reactions (lbs):

New Post - Line C2 Glulam-Axial, West Species, 2 (DF L2), 5-1/8"x6"

4 laminations, 5-1/8" maximum width,

Support: Non-wood

Total length: 7'-6.0"; volume = 1.6 cu.ft.;

Pinned base; Load face = width(b); Ke x Lb: $1.0 \times 7.5 = 7.5$ [ft]; Ke x Ld: $1.0 \times 7.5 = 7.5$ [ft];

Analysis vs. Allowable Stress and Deflection using NDS 2012:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Axial	fc = 974	Fc' = 1712	psi	fc/Fc' = 0.57
Axial Bearing	fc = 974	Fc* = 2242	psi	fc/Fc* = 0.43

Additional Data:

FACTORS:	F/E(p	si)CD	CM	Ct	CL/CP	CV	Cfu	\mathtt{Cr}	Cfrt	Notes	LC#
Fc'	1950	1.15	1.00	1.00	0.764	-	_	-	1.00	_	2
Fc*	1950	1.15	1.00	1.00	_	_	_	_ `	1.00	_	2

CRITICAL LOAD COMBINATIONS:

Axial : LC #2 = D+S, P = 29965 1bs

D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake

All LC's are listed in the Analysis output

Load combinations: ASCE 7-10 / IBC 2012

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007
- 4. GLULAM: bxd = actual breadth x actual depth.

	WoodWorks® Sizer	SOFTWARE FOR WOOD DESIGN	
New Post - Line C2	10/00 d10/0 vls	o@ Sizor 10 4	Dana 2

New Post - Line C2

WoodWorks® Sizer 10.4

Page 2

PROJECT

May 1, 2017 03:31

New Post @ Ridge Beam Line B

Design Check Calculation Sheet

WoodWorks Sizer 10.4

Loads:

Load	Туре	Distribution	Pat-	Location [ft]	Magnitude	Unit
		<u> </u>	tern	Start End	Start End	
Load1	Dead	Axial		(Ecc. = 0.00")	6124	lbs
Load2	Snow	Axial		(Ecc. = 0.00")	9066	lbs
Self-weight	Dead	Axial			92	lbs

Load magnitude does not include Normal Importance factor from Table 4.2.3.2, which is applied during analysis.

Lateral Reactions (lbs):

New Post - Ridge Beam Glulam-Axial, West Species, 2 (DF L2), 5-1/8"x6"

4 laminations, 5-1/8" maximum width,

Support: Non-wood

Total length: 13'; volume = 2.8 cu.ft.;

Pinned base; Load face = width(b); Ke x Lb: 1.0 x 13.0 = 13.0 [ft]; Ke x Ld: 1.0 x 13.0 = 13.0 [ft];

Analysis vs. Allowable Stress and Deflection using NDS 2012:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Axial	fc = 497	Fc' = 720	psi	fc/Fc' = 0.69
Axial Bearing	fc = 497	Fc* = 2242	psi	$fc/Fc^* = 0.22$

Additional Data:

FACTORS:	F/E(p	si)CD	CM	Ct	CL/CP	CV	Cfu	Cr	Cfrt	Notes	LC#
Fc'	1950	1.15	1.00	1.00	0.321	_		_	1.00	_	2
Fc*	1950	1.15	1.00	1.00	-	_	_	_	1.00	_	2

CRITICAL LOAD COMBINATIONS:

Axial : LC #2 = D+S, P = 15282 lbs

D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake

All LC's are listed in the Analysis output

Load combinations: ASCE 7-10 / IBC 2012

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007
- 4. GLULAM: bxd = actual breadth x actual depth.

 WoodWorks® Sizer
 SOFTWARE FOR WOOD DESIGN

 New Post @ Ridge Beam Line B
 WoodWorks® Sizer 10.4
 Page 2

PROJECT	
DESCR	PROJ. NO
CALCULATED BY	DATE
CHECKED BY	DATE
SCALE	SHEET NO.

A Wall-tech Company	SCALESHEET NO
LATERAL BRACING	END WALL WIND LOAD
NEW WALL BRACING CLINE C	ROOF LEVEL
MWFRS BASE PRESSURE = 17.105F	PWZ = 17.1psf (98 F) + 17.1psf (8.25/2) (28
END WALL WIND PRESSURE	Pw2 = 182516
GABLE END ROOF PROJECTION AREA = 1/2 (28FT x7 FT) = 98FT 2	SECOND FLOOR
70	PWZNO = 17.1psf (8.25/2+9.75/2) 28 FT
ROOF	PW2ND = 2155psp USE 2500'b
SELOND FLOOR	
FIRST FLOOR	
28"	

PROJECT	
DESCR	PROJ. NO
CALCULATED BY	DATE
CHECKED BY	DATE
SCALE	SHEET NO.

A	Wall-tech	Com	pany

LATERA	L BARCING	i Landinic	SIAGRAM
1	R00F3L = 15		1
Married Marrie			
Pwz = 2006	P Gri	al la April	- Company of the Comp
32	Te	200	
ao 1	FLOOR 70"/F	X	111
Rum=2500	GLUERO	24.60	
	T2~10	200	
<u>ح</u> م			
		28.44	
	18F7	de allego de l'Architecture de	•
∫ T= <i>c</i>	•		T= C
ROD	Fy:36,000 rev:0.60	0 ps i (36,000)	:21, 600°

ZNO FLOCAL BRACE
PWR = 2000 16
$T_{\rm p} = \frac{2000^{16}}{\cos 24.60} = 2200^{16}$
Acop = 220016 = 0.101/12 21,600 A= Td2
MIN d = 0.36"
Pce = 220016 (5, N 24.60) = 91616
15° Fland O'S Com
PW = 2000 - 2500 - 4500 6
Two = 4500 b = 511816
ARDO = 5.118 : 0.24 ~2
Min d = 0.55, N
Perno = 5118 (5, n 28.440) = 243816
NET UPLIFT & COLUMN BASE
T=C = 200012 (18FT) + 2500(9.75) -70(2)(18)/2
185
T= C= 2094/b

SUPPLEMENTAL FOUNDATION CALCULATIONS

For

640 West Main Street Lake Geneva, Wisconsin

by

Date: May 14, 2017

A Wall-tech Company

PROJECT LAKE GENE	VA-VACATION RENJA
DESCR.	PROJ. NO
CALCULATED BY	DATE
CHECKED BY	DATE

SCALE

SHEET NO.

FOUNDATION	EXISTING WALL FTG CHK-LINEC. 2
· ASSUMED ALLOWABLE	POST LOCATION C.1.2
SOIL BRG PRESSURE = 1750PSF-	ROOF
· CONCRETE F/c = 3000 psi	Por=3506+5427 Por=1931+4092
· Fy (REBAD) = 60,000ps i	P2ND FL
	PLL = CE930
556 0.00 (1) 150 100 (0)	POL" 126015
NEW FTG ANEW INTERLOSZ COL- (LOCATION B-Z	12NO FLPANO.
NEW FIG. COL. LOAD (LOV. B.Z)	Pol: 80015
200000000000000000000000000000000000000	
PSN: 904616	
POL = 612415	
2 200 FLOOR	
PL -7012'6	
POL = 210015	b=16FS EDOTING
	FOOTING
P+07 = 24,302	
TRIB AREA = 252572	PTOTAL = 1785616
LLn=0= 0.72 (45825%	TOTAL TO SE
LLn=0= 0.72 (45E25%	MIN. EXISTING FTG WINTH NEEDED
(LLREO)	a = 17856 + (10/12) 8FT (150PCF) WALL
1 6	10 ^F)
T. I	a= 2116/6/85 (13)
5: 122549 - 3,58 FT	MIN Spen: 2116 12/65 1.2/65
USE 4'-0" x4 B" x)2"	MIN EXISTING FTG WIDTH
W/SH4'SEACH WAY	NEEDED IS 1:3" E FIELD VERIFY

PROJECT LAKEGENEVA	A-VACTICAL RENTAL
DESCR.	PROJ. NO
CALCULATED BY ADF	DATE
CHECKED BY	DATE

_ SHEET NO._

SCALE__

A Wall-tech Company	
DRILLED PIET ADECIL POST C STAIR Pol = 1268416 Pol = 269815	AST 5 1.5% 2 AST = 1.88, ~ 2 USE - 8-45 BARS
CANTILEVER BEAM LINE 2-WITH ADDED COL.	VERTICAL
PG FF. 25 CALS	
MIN PIEN DIAMETER REED	
A=TTd2/4 AREGO = 12684/6+2698 58.79 F,2	
d = \(\) \(\) \(\) = 3,34 F5	
287 & PIER N.G.	
REVISE TO 40"4 PIB2	

PROJECT LAILE GENEVA -VACATION RENTAL		
DESCR.	PROJ. NO	
CALCULATED BY 45P	DATE	
CHECKED BY	DATE	
SCALE	SHEET NO	

A Wa	II-teci	h Com	pany
------	---------	-------	------

A Wall-lectr Company	
EXISTING FON WALL CHK BNEW COL. B-5.0 POL = 275815 201-450015	FOUNDATION SUMMARY 1. ORIGINAL FTG SHOWN AS 3'. 6'73'. 6' 15 4.6070 OVELSTRESSED a. REVISE TO 4'. 6' X4'. 0' X7' DEEP W/ S. H4'S EACH WAY
2 ND POL 4562 PL = 450016 POL 3937 This A = 225 FT YOURS 25076	2. EXISTING FOUNDATION WALLS W/ NEW COLUMONS ON TOP REQUIRES A. MIN OF 1:3" WIDE @ FULL HEIGHT WALL & Z! O" WIDE @ LINE S.O
25070 Pror = 22090 16 (w/L.L. PEO)	3. REVISE 28" & DRILLED PIER TO 40" WIDE
LINE LOAD (OVER 867) WIDE = 22090+10/12(4)(,50) WIDE = 32101 12/67 MIN WALL FIG= 3261 12/65 1750 WIDTH = 1.866	

.. SCALE_