第八次作业

洪艺中 12335025

2024年4月26日

0.1 问题 1: 177 页习题 1

题目 1. 设 (M,g) 是 Riemann 流形, $C:(a,b)\to M$, $r\mapsto C(t)$ 为光滑曲线, 则参数变换 t=t(s) 后, C 为测地线的充要条件是: 曲线 C 在局部坐标下的方程 $x^i=x^i(t)$ 满足微分方程

$$\frac{\mathrm{d}^2 x^i}{\mathrm{d}t^2} + \Gamma^i_{jk} \frac{\mathrm{d}x^j}{\mathrm{d}t} \frac{\mathrm{d}x^k}{\mathrm{d}t} = f(t) \frac{\mathrm{d}x^i}{\mathrm{d}t},$$

其中 $f \in C$ 上的函数, t 为任意参数.

解答. 如果变换后是测地线,则

$$\frac{\mathrm{d}^2 x^i}{\mathrm{d}s^2} + \Gamma^i_{jk} \frac{\mathrm{d}x^j}{\mathrm{d}s} \frac{\mathrm{d}x^k}{\mathrm{d}s} = 0.$$

而

$$\frac{\mathrm{d}x^j}{\mathrm{d}s} = t'(s)\frac{\mathrm{d}x^j}{\mathrm{d}t}, \quad \frac{\mathrm{d}^2x^i}{\mathrm{d}s^2} = (t'(s))^2\frac{\mathrm{d}^2x^i}{\mathrm{d}t^2} + t''(s)\frac{\mathrm{d}x^j}{\mathrm{d}t}.$$

所以代入

$$(t'(s))^{2} \frac{\mathrm{d}^{2} x^{i}}{\mathrm{d}t^{2}} + t''(s) \frac{\mathrm{d}x^{j}}{\mathrm{d}t} + (t'(s))^{2} \Gamma^{i}_{jk} \frac{\mathrm{d}x^{j}}{\mathrm{d}s} \frac{\mathrm{d}x^{k}}{\mathrm{d}s} = 0,$$

因此

$$\frac{\mathrm{d}^2 x^i}{\mathrm{d}t^2} + \Gamma^i_{jk} \frac{\mathrm{d}x^j}{\mathrm{d}t} \frac{\mathrm{d}x^k}{\mathrm{d}t} = -\frac{t''(s)}{(t'(s))^2} \frac{\mathrm{d}x^i}{\mathrm{d}t}.$$

0.2 问题 2

题目 2. 给定 (M,g) 上的两个点 p 和 q. 令 $\Omega_{p,q} = \{ 光滑曲线\sigma \colon [a,b] \to M : \sigma(a) = p, \sigma(b) = q, \dot{\sigma} \neq 0 \}$. 记 $|\dot{\sigma}|^2(t) = \langle \dot{\sigma}(t), \dot{\sigma}(t) \rangle_{g|_{\sigma(t)}}$. 曲线的能量泛函定义为

$$E(\sigma) := \int_a^b |\dot{\sigma}|^2(t) \, \mathrm{d}t.$$

- 1. 证明: 如果曲线 $\gamma \in \Omega_{p,q}$ 使得 $E(\gamma) = \inf\{E(\sigma): \sigma \in \Omega_{p,q}\}$. 则 γ 是测地线;
- 2. 证明: 曲线 σ 的长度 $L(\sigma) = \int_a^b |\dot{\sigma}| \, \mathrm{d}t$ 与其能量 $E(\sigma)$ 之间满足关系:

$$L(\sigma) \leqslant (b-a)^{\frac{1}{2}} [E(\sigma)]^{\frac{1}{2}},$$

且等号成立当且仅当 $|\dot{\sigma}|$ = 常数;

3. 不像课堂上那样去计算弧长泛函 $L(\sigma)$ 的一阶变分, 而是利用 (1) 和 (2) 的结论, 证明: 如果 $L(\gamma) = \inf\{L(\sigma): \sigma \in \Omega_{p,q}\}$, 则 γ 是测地线.

解答.

1. 考虑 γ 上固定端点的变分 $\alpha(t,s)$: $M \times (-\varepsilon,\varepsilon) \to M$, $\alpha(\cdot,0) = \gamma(t)$, $\alpha(a,\cdot) = p$, $\alpha(b,\cdot) = q$. 那么

$$\frac{\mathrm{d}}{\mathrm{d}s}E(\alpha_s(t))|_{s=0}=0.$$

记 $V = \alpha_* (\frac{\partial}{\partial s}), T = \alpha_* (\frac{\partial}{\partial t}).$ 因为 $\left[\frac{\partial}{\partial t}, \frac{\partial}{\partial s}\right] = 0$, 所以 [T, V] = 0. 因此有

$$\frac{\mathrm{d}}{\mathrm{d}s}E(\alpha_s(t))\Big|_{s=0} = \int_a^b V\langle T, T\rangle|_{s=0} \,\mathrm{d}t$$

$$= \int_a^b 2\langle \nabla_V T, T\rangle|_{s=0} \,\mathrm{d}t$$

$$= 2\int_a^b \langle \nabla_T V, T\rangle|_{s=0} \,\mathrm{d}t$$

$$= 2\int_a^b T\langle V, T\rangle|_{s=0} - \langle V, \nabla_T T\rangle|_{s=0} \,\mathrm{d}t$$

$$= 2\langle V, T\rangle|_a^b - 2\int_a^b \langle V, \nabla_T T\rangle|_{s=0} \,\mathrm{d}t$$

$$= -2\int_a^b \langle V, \nabla_T T\rangle|_{s=0} \,\mathrm{d}t = 0.$$

由 V 的任意性, $\nabla_T T|_{s=0} = \nabla_{\dot{\gamma}} \dot{\gamma} = 0$. 即 γ 是测地线.

2. 用 Hölder 不等式, 在 $C^{\infty}([a,b])$ 上,

$$\||\dot{\sigma}(t)|\|_{1} \leqslant \|1\|_{2} \||\dot{\sigma}(t)|^{2}\|_{2} = (b-a)^{\frac{1}{2}} \Big(\int_{a}^{b} \langle \dot{\sigma}(t), \dot{\sigma}(t) \rangle_{g|_{\sigma(t)}} dt \Big)^{\frac{1}{2}} = (b-a)^{\frac{1}{2}} \Big[E(\sigma) \Big]^{\frac{1}{2}},$$

取等时, $|\dot{\sigma}(t)|$ 是 1 的常数倍. 得证.

3. 注意到若 $L(\gamma)=\inf\{L(\sigma)\colon \sigma\in\Omega_{p,q}\}$, 则对任意同起讫点的 σ

$$L(\gamma) \leqslant L(\sigma) \leqslant (b-a)^{\frac{1}{2}} [E(\sigma)]^{\frac{1}{2}}.$$

此外, 我们可以取 $\gamma(t)$ 为匀速测地线, $|\dot{\gamma}| = L(\gamma)$, 这时 b-a=1. 此时由 (2), $L(\gamma) = E(\gamma)^{\frac{1}{2}}$. 所以 对任意 $\sigma \in \Omega_{p,q}$,

$$E(\gamma) \leqslant E(\sigma)$$
.

由 (1), γ 是测地线.

0.3 问题 3

题目 3. 考虑 \mathbb{R}^n 的上半平面 $\mathbb{H}^n = \{(x_1, \cdots, x_{n-1}, x_n) \in \mathbb{R}^n : x_n > 0\}$. 并赋予 \mathbb{H}^n 如下 Riemann 度量

$$ds^{2} = \frac{1}{x_{n}^{2}} (dx_{1}^{2} + \dots + dx_{n-1}^{2} + dx_{n}^{2}).$$

- 1. 证明 (\mathbb{H}^n , $\mathrm{d}s^2$) 的截面曲率是常数 -1;
- 2. 证明 $\ell_1 = \{(0,t) \in \mathbb{R}^n : t > 0\}$ 与 $\ell_2 = \{(0,\cos t,\sin t) \in \mathbb{R}^n : t \in (0,\pi)\}$ 均为 (\mathbb{H}^n, ds^2) 的测地线 (作为集合, 未考虑参数化).

解答.

所以

$$\operatorname{Rm}(X,Y,Z,W) = \operatorname{Rm}_0(X,Y,Z,W) - \psi \otimes g_0(X,Y,Z,W) = -\frac{1}{2x_n^2} g_0 \otimes g_0.$$

所以,截面曲率为

$$K(e_i, e_j) = \frac{\operatorname{Rm}(e_i, e_j, e_i, e_j)}{g(e_i, e_i)g(e_j, e_j) - g(e_i, e_j)^2} = \frac{-\frac{1}{2x_n^2}g_0 \otimes g_0}{\frac{1}{2x_n^2}g_0 \otimes g_0} = -1.$$

2. 首先计算联络导数

$$\nabla_{e_n} e_n = 2g_0(e_n, V)e_n - g_0(e_n, e_n)V = -\frac{1}{x_n}e_n,$$

当 $i \neq n$ 时,

$$\nabla_{e_i} e_n = \nabla_{e_n} e_i = g_0(e_n, V) e_i = -\frac{1}{x_n} e_i,$$

以及 $i \neq n$ 时,

$$\nabla_{e_i} e_i = -g_0(e_i, e_i) V = \frac{1}{x_n} e_n.$$

其他联络导数为 0.

对 ℓ_1 , 取参数 $\ell_1(t) = (0, f(t))$, 则 $\dot{\ell}_1(t) = (0, f'(t))$, $(\ell_1)_*(\frac{\mathrm{d}}{\mathrm{d}t}) = f'(t)e_n$

$$\nabla_{\dot{\ell}_1(t)}\dot{\ell}_1(t) = f'(t)e_n(f'(t))e_n + (f')^2(t)\nabla_{e_n}e_n$$

= $f'(t)\left(\frac{f''(t)}{f'(t)} - \frac{f'(t)}{f(t)}\right)e_n$,

所以取参数 $f(t) = e^t$, 则 ℓ_1 成为测地线.

对 ℓ_2 , $\dot{\ell}(t) = (0, -\sin t, \cos t)$. 这里 $x_{n-1} = \cos t$, $x_n = \sin t$, 因为协变导数和延拓是无关的, 所以计

算 $\nabla_{\dot{\ell}_2(t)}\dot{\ell}_2(t)$ 时, 可以考虑延拓的向量场 $-x_ne_{n-1}+x_{n-1}e_n$,

$$\begin{split} \nabla_{\dot{\ell}_2(t)}\dot{\ell}_2(t) &= -x_n\nabla_{e_{n-1}}(-x_ne_{n-1}+x_{n-1}e_n) + x_{n-1}\nabla_{e_n}(-x_ne_{n-1}+x_{n-1}e_n) \\ &= -x_n\left(-\frac{x_n}{x_n}e_n + e_n - \frac{x_{n-1}}{x_n}e_{n-1}\right) + x_{n-1}\left(-e_{n-1} + \frac{x_n}{x_n}e_{n-1} - \frac{x_{n-1}}{x_n}e_n\right) \\ &= \cos t e_{n-1} - \frac{\cos^2 t}{\sin t}e_n \\ &= -\cot t(-\sin t e_{n-1} + \cos t e_n). \end{split}$$

所以由问题 $1, \ell_2$ 是测地线.

0.4 问题 4

题目 4. 设 (M,g) 是一个闭 Riemann 流形 (即连通, 紧致, 没有边界). 假设存在光滑函数 $f\in C^\infty(M)$ 以及常数 $\lambda<0$ 使得

$$Ric + \nabla^2 f = \lambda g.$$

请按如下步骤证明 M 是 Einstein 流形.

- 1. 利用 Ricci 恒等式证明: $\nabla_i \mathrm{Ric}_{jk} \nabla_j \mathrm{Ric}_{ik} = \mathrm{R}^l_{kij} f^l$;
- 2. 利用第二 Bianchi 恒等式证明: $\nabla_i \text{scal} = 2 \text{Ric}_{ij} g^{jk} \nabla_k f$;
- 3. 证明 f 满足这样的方程: $\Delta f |\nabla f|^2 + 2\lambda f = 常数;$
- 4. 证明 f = 常数, 从而 $Ric = \lambda g$.

解答.

1. 直接计算得到

$$\nabla_{i} \operatorname{Ric}_{jk} - \nabla_{j} \operatorname{Ric}_{ik} = \nabla_{i} (\lambda g - \nabla^{2} f)_{jk} - \nabla_{j} (\lambda g - \nabla^{2} f)_{ik}$$

$$= f_{,ikj} - f_{,jki}$$

$$= f_{,l} R_{kij}^{l}.$$

2. 直接计算得到

$$\nabla_{i} \operatorname{scal} = \operatorname{tr}_{jk} \nabla_{i} \operatorname{Ric}_{jk}$$

$$= \operatorname{tr}_{lm} \operatorname{tr}_{jk} R_{jlkm,i}$$

$$= \operatorname{tr}_{lm} \operatorname{tr}_{jk} (-R_{jlmi,k} - R_{jlik,m})$$

$$= \operatorname{tr}_{jk} \operatorname{Ric}_{ji,k} + \operatorname{tr}_{lm} \operatorname{Ric}_{li,m}$$

$$= 2g^{jk} \operatorname{Ric}_{ji,k}$$

所以对 1 中的式子关于 j, k 取迹, 得

$$g^{jk}\nabla_i \operatorname{Ric}_{jk} - g^{jk}\nabla_j \operatorname{Ric}_{ik} = g^{jk} \operatorname{R}_{kij}^l \nabla_l f,$$

即

$$\nabla_i \operatorname{scal} - \frac{1}{2} \nabla_i \operatorname{scal} = \frac{1}{2} \nabla_i \operatorname{scal} = \operatorname{Ric}_i^j \nabla_l f = \operatorname{Ric}_{ij} g^{jk} \nabla_k f.$$

得证.

3. 直接计算得到

$$\begin{split} \nabla_i |\nabla^2 f| &= 2 \langle \nabla_i \nabla f, \nabla f \rangle \\ &= 2 g^{jk} f_{,ij} f_{,k} \\ &= 2 g^{jk} (\lambda g_{ij} - \mathrm{Ric}_{ij}) f_{,k} \\ &= 2 \lambda \delta_i^k f_{,k} - 2 g^{jk} \mathrm{Ric}_{ij} f_{,k} \\ &= 2 \lambda f_{,i} - \nabla_i \mathrm{scal}. \end{split}$$

所以 $\nabla_i(|\nabla^2 f| - \lambda f + \frac{1}{2}\text{scal}) = 0$. 即存在常数 C,

$$|\nabla^2 f| - 2\lambda f + \text{scal} = C'.$$

此外, 直接对 Ric + $\nabla^2 f = \lambda g$ 取迹, 得到

$$scal + \Delta f = \lambda n.$$

上两式作差,得

$$\Delta f - |\nabla f|^2 + 2\lambda f = C' - \lambda n = C.$$

得证.

- 4. 考虑 f 的最大值点 p 和最小值点 q.
- 5. 在最大值点处, $\Delta f \leq 0$, $\nabla f = 0$, 所以 $f(p) = \frac{1}{2\lambda}(C \Delta f) \leq \frac{1}{2\lambda}C$. 在最小值点处, $\Delta f \geq 0$, $\nabla f = 0$, 所以 $f(q) = \frac{1}{2\lambda}(C \Delta f) \geq \frac{1}{2\lambda}C$. 所以 $f(q) \geq f(p)$, 即 f 是常数. 所以

$$Ric = \lambda g$$
.