

Advanced CV methods Introduction

Matej Kristan

Laboratorij za Umetne Vizualne Spoznavne Sisteme, Fakulteta za računalništvo in informatiko, Univerza v Ljubljani

About the lecturer

- Name: Matej Kristan
- Where to find me: 2nd floor, ViCoS
 (not in office, in the lab most of time)

- Online contacts and resources:
 - www.vicos.fri.uni-lj.si/matejk
 - ResearchGate
 - Google Scholar
 - eclassroom (https://ucilnica.fri.uni-lj.si/)
 - mail:matej.kristan@fri.uni-lj.si

1. Industrial vision, anomaly, counting

2. ML for geophysics (HIDRA link)

3. Robotic vision

4. Visual object tracking

What will this course be about?

Motion perception and Tracking

Currently hot topics in CV as well as industry

A huge application potential

Application examples

SaadAli, Mubarak Shah ISR2006

Čehovin, Kristan and Leonardis, IEEE TPAMI 2013

Perazzi et al., CVPR 2016

Kristan et al. CVIU 2009

Advanced Methods in Computer Vision

DETAILS ABOUT THE COURSE

Main topics

- 1. Low-level motion estimation techniques
- 2. Tracking regions by generative models (templates)
- 3. Tracking regions by discriminative models
- 4. Bayesian recursive filtering
- 5. Deep-learning-based trackers
- 6. Long-term tracking
- 7. Visual tracking performance evaluation

Leuxarine; Laure

Required background

Programming

(Python experience preferred)

Basic algebra and vector/matrix calculus

(basic, but good foundations)

Basic probability and statistics

(basic, but good foundations)

Basics in signal processing / computer vision desired

(will provide the references to the relevant literature)

Preliminaries on deep learning

- Deep learning is an elementary methodology in computer vision
- Towards the end of semester a lecture on trackers based on CNN
- You are required to be familiar with general neural networks and have a grasp of the basic ideas behind the CNNs.
- If you're not familiar, familiarize yourself:

CS231n: Convolutional Neural Networks for Visual Recognition

http://cs231n.stanford.edu/schedule.html

- Lecture 4 (basics of neural nets)
- Lecture 5 (convolutional neural networks)
- Lecture 6 Lecture 9 (training the networks and some relevant architectures)

Lectures

- First-hand insights on the topics
 - Ask questions!
- Will cover main concepts and go over the necessary derivations
- Attend the lectures and make your own notes!
- Literature/resources:
 - Lecture slides (void of derivations)
 - Recordings of Covid-year lectures available on MS Stream (but increasingly out of date!)
 - Major conference or journal papers

Practicum (Projects)

- Starts in 3rd week of semester
- Goal: Learn the theory by implementing it!
- Implementations in Python

mag. Jer Pelhan

- Complete 5 assignments (start in 3rd week)
 - Implement what you learned at lectures
 - Two-week assignments, brief guidelines, individual work required
 - No formal in-person classes, but consultations available.
 (more on next slide)

Practicum (Projects)

- Assignment opening and submissions:
 - Assignment instructions appear on e-classroom, along with a short video explaining the task
 - Submisson closes in two weeks on Sunday (23:59)
 - Submit a short report & code

mag. Jer Pelhan

- Code will sporadically be checked. Detection of plagiarism will have dire consequences!
- Important: Start early and consult the assistants!
- Consultations: main contact Alan Lukežič
 - Ask by email or arrange consultations in person (<u>alan.lukezic@fri.uni-lj.si</u>)
 - Ask on MSTeams channel and/or arrange an online meeting (<u>link</u>)
 - Disregard the "urnik" ping the assistant anytime

ACVM course Gantt diagram

The A, B and C of the course

- A: 5 lab assignments / practicum
 - Further details at the lab
- B: a few homework assignments
 - To help you follow the lectures
 - Only the first one will be graded
- C: Written exam
 - Mainly theory + basic computations

NOTES:

Positively pass all assignments in (A) – required Pass the written exam (C) – required Homework (B) – not required, but desired

Final grade: A*0.6 + C*0.4 (first HW will contribute to the points in the assignment 1)

Where to find state-of-the-art?

Three top journals of CV: (Source: Cobiss.si)

- IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE TPAMI
- IEEE TIP; Pattern Recognition; IJCV

Top conferences:

(Source: Microsoft academic research)

CVPR - Computer Vision and Pattern Recognition

ICCV - International Conference on Computer Vision

ECCV - European Conference on Computer Vision

FGR - IEEE International Conference on Automatic Face and Gesture Recognition

BMVC - British Machine Vision Conference

WACV - Workshop on Applications of Computer Vision

ACCV - Asian Conference on Computer Vision

Some textbooks/handbooks

- General CV: Computer Vision Models Learning & Inference
 - (<u>freely available</u>)
 - Linear algebra: Appendix C

- Probability: Bayesian Reasoning and Machine Learning
 - (<u>freely available</u>)
 - Vectors, matrices, gradients: Appendix A

- Some readily computed matrix-vector derivatives
 - The matrix cookbook (<u>freely available</u>)

Today – getting on the same page

- Have a look at linearization
 - Most of you should be familiar with this, but I will not assume that

Get some homework (4 exercises)

!! POINTS COUNT FOR ASIGNMENT 1!!

- Turn in the homework by next week (see the e-classroom for exact date)
- Submit via e-classroom

Promise more computer vision fun in the following lectures ©

Advanced computer vision methods

LINEARIZATION IN A NUTSHELL

A task often encountered

- Have a parametric model.
- Find parameters of the model to best fit the data.

A fitting example:
 By how much should be expand/shirk Stan to best fit Olio?

Parameterized Stan's face

• Stan's width parameterized by a scale factor p, i.e., the new image width is $W_{new} = W_{old} \cdot p$

Now we need to compare Stan's warped face to Olio's face...

Parameterized Stan's face

• Difference f(p) between Stan's face deformed by p and Olio's face depends on the

Parameterized Stan's face

• Often we will want to use the function f(p) in our computations, but working with nonlinear functions can complicate calculations.

• Often we will be considering values of f(p) only in the neighborhood of p_{0} :

General problem emerges

- Given a nonlinear function f(x(p)) parameterized by some parameters $p = [p_1, p_2, ..., p_n]$, what is the linear approximation at a neighborhood of parameters p_0 ?
- Linearize by Taylor expansion (ignore higher-order terms).
- See notes that you took at lectures.

Multivariate gradient

Linearization by Taylor expansion

- To brush up on Taylor expansion and linearization, see "<u>Bayesian</u>
 <u>Reasoning and Machine Learning</u>" Appendix A, Section 29.2
- For explanation of the gradient and partial derivatives, specifically, equation (29.2.4) for linearization by Taylor expansion.
- Interactive examples of multivariate

derivatives: http://mathinsight.org/linear.appr

oximation multivariable

