A spectral sequence for cohomology of knot space

Syunji Moriya

Osaka Prefecture University moriyasy@gmail.com

Notations

- M: closed smooth manifold of dimension $\mathbf{d} > 4$.
- Emb(S¹, M): The space of smooth embeddings S¹ → M with C[∞]-topology, which we call the space of knots in M (without any base point condition).
- k: a fixed commutative ring (which is a PID). We do not restrict to a field of characteristic
- $H_*(H^*)$: singular (co)homology with coefficients in **k**.

Syunji Moriya (O.P.U.) Knot space 2/45

Motivation

- Recently, Emb(S¹, M) is studied by Arone-Szymik, Budney-Gabai, and Kupers using Goodwillie-Weiss embedding calculus
- Motivation: construction of a computable spectral sequence (s.s.) converging to
 H*(Emb(S¹, M); k) for a simply connected M

Syunji Moriya (O.P.U.) Knot space 3/45

Main results

Syunji Moriya (O.P.U.) Knot space 4/45

Our spectral sequence, which we call Čech spectral sequence and denote by $\mathbb{E}_r^{p,q}$, has an algebraic presentation of E_2 -page when

- $H^*(M)$ is a free **k**-module, and
- the Euler number $\chi(M) = 0 \in \mathbf{k}$ or $\chi(M)$ is invertible in \mathbf{k} $(\chi(M) \in \mathbf{k}$ via the ring hom $\mathbb{Z} \to \mathbf{k})$

We state main results separately into the cases of $\chi(M) = 0$ or invertible

Poincaré algebra

Definition 1

A Poincaré algebra \mathcal{H}^* of dimension **d** is

a pair of a graded commutative algebra \mathcal{H}^* and a linear isomorphism $\epsilon: \mathcal{H}^d \to \mathbf{k}$ s. t.

$$\mathcal{H}^* \otimes \mathcal{H}^* \stackrel{\text{multiplication}}{\longrightarrow} \mathcal{H}^* \stackrel{\epsilon}{\rightarrow} \mathbf{k}$$

induces a linear isomorphism $\mathcal{H}^* \cong (\mathcal{H}^{\mathbf{d}-*})^{\vee}$.

Let $\{a_i\}_i$ be a linear basis of \mathcal{H}^* and

 $(b_{ij})_{ij}$ denote the inverse of the matrix $(\epsilon(a_i \cdot a_j))_{ij}$.

 $\Delta_{\mathcal{H}}$: the diagonal class for \mathcal{H}^* given by

$$\Delta_{\mathcal{H}} = \sum_{i,j} (-1)^{|a_j|} b_{ji} a_i \otimes a_j$$
.

Poincaré algebra

If M is oriented, and $H^*(M)$ is a free **k**-module, fixing an orientation on M, $H^*(M)$ is Poincaré algebra by ϵ : $fund.class \mapsto 1 \in \mathbf{k}$.

simplicial dg-algebra $A^{\star *}_{\bullet}(\mathcal{H})$

 \mathcal{H}^* : 1-connected (i.e. $\mathcal{H}^1=0$) Poincaré algebra of dim. **d**.

 $e_i: \mathcal{H}^* \to (\mathcal{H}^*)^{\otimes n+1}: a \mapsto 1 \otimes \cdots \otimes a \otimes \cdots \otimes 1$, insertion to *i*-th factor.

$$A_n^{\star *}(\mathcal{H}) := (\mathcal{H}^*)^{\otimes n+1} \otimes \bigwedge \{y_i, g_{ij} \mid 0 \leq i, j \leq n\}/I$$

with deg $y_i = (0, \mathbf{d} - 1)$, deg $g_{ij} = (-1, \mathbf{d})$.

The ideal I is generated by

$$y_i^2 = g_{ij}^2 = 0$$
, $g_{ii} = 0$, $(e_i a - e_j a)g_{ij} = 0$ $(a \in \mathcal{H}^*)$, $g_{ij} = (-1)^d g_{ji}$, $g_{ij}g_{jk} + g_{jk}g_{ki} + g_{ki}g_{ij} = 0$ (3-term relation)

The differential is given by $\partial(a) = 0$ for $a \in \mathcal{H}^{\otimes n+1}$ and $\partial(g_{ij}) = f_{ij}\Delta_{\mathcal{H}}$, where $f_{ij}: H \otimes H \to H^{\otimes n+1}$ is insertion to *i*-th and *j*-th factors.

simplicial dg-algebra $A_{\bullet}^{\star *}(\mathcal{H})$

• The face $d_i:A_n^{\star\,*}(\mathcal{H})\to A_{n-1}^{\star\,*}(\mathcal{H})\ (0\leq i\leq n):$ is given by $d_i(a_0\otimes\cdots\otimes a_n)=\left\{\begin{array}{ll}a_0\otimes\cdots\otimes a_ia_{i+1}\otimes\cdots a_n&(0\leq i\leq n-1)\\\pm a_na_0\otimes\cdots\otimes a_{n-1}&(i=n)\end{array}\right.$ and $d_i(g_{j,k})=g_{j',k'}\text{ where }j'=\left\{\begin{array}{ll}j&(j\leq i)\\j-1&(j>i)\end{array}\right.,\text{ similarly for }k'.$

• the degeneracy $s_i: A_n^{\star *}(\mathcal{H}) \to A_{n+1}^{\star *}(\mathcal{H})$: insertion of 1 to *i*-th factor and skip the index i+1.

Syunji Moriya (O.P.U.) Knot space 9/45

Main theorem : the case of $\chi(M) = 0$

$$A_{\bullet}^{**}(\mathcal{H}) \longmapsto NA_{\bullet}^{**}(\mathcal{H})$$
 (normalization)
 $\longmapsto H(NA_{\bullet}^{**}(\mathcal{H}))$ (homology of total complex)

Theorem 2

M: 1-connected manifold.

Set $\mathcal{H}^* = H^*(M)$ and suppose that \mathcal{H}^* is a free **k**-module and $\chi(M) = 0 \in \mathbf{k}$

$$\exists$$
 a spec. seq. : $\check{\mathbb{E}}_2^{p\,q} \cong H(NA_{\bullet}^{\star\,*}(\mathcal{H})) \Rightarrow H^{p+q}(Emb(S^1,M)),$

where bidegree is given by $p = *, q = \star - \bullet$

Syunji Moriya (O.P.U.) Knot space 10/45

Remark 3

 $\check{\mathbb{E}}_2^{p,q}$ has a graded commutative ring structure but its relation to the ring $H^*(Emb(S^1, M))$ an whether it induces ring structure on pages after E_2 is unclear for the speaker. It may be related to comparison of filtered ring objects in spectra and complexes

simplicial dg-algebra $B_{\bullet}^{\star *}(\mathcal{H})$

 \mathcal{H}^* : 1-connected Poincaré algebra of dimension **d**.

Define a Poincaré algebra SH^* of dimension 2d - 1 as follows:

$$S\mathcal{H}^* = \mathcal{H}^{\leq \mathbf{d}-2} \oplus \mathcal{H}^{\geq 2}[\mathbf{d}-1]$$

 $a \cdot \bar{b} = \overline{a \cdot b}$

for $a \in H^{\leq \mathbf{d}-2}$, $\bar{b} \in \mathcal{H}^{\geq 2}[\mathbf{d}-1]$ corresponding to $b \in \mathcal{H}^{\geq 2}$

Syunji Moriya (O.P.U.) Knot space 12/45

simplicial dg-algebra $B_{\bullet}^{\star *}(\mathcal{H})$

Set

$$B_n^{\star *}(\mathcal{H}) := (S\mathcal{H}^*)^{\otimes n+1} \otimes \bigwedge \{h_{ij}, g_{ij} \mid 0 \leq i, j \leq n\}/\mathcal{J}$$

with deg $g_{ij} = (-1, \mathbf{d})$, deg $h_{ij} = (-1, 2\mathbf{d} - 1)$. The ideal \mathcal{J} is generated by

$$g_{ij}^2 = h_{ij}^2 = 0, \quad h_{ii} = g_{ii} = 0,$$
 $g_{ij} = g_{ji} \quad h_{ij} = -h_{ji}$ $(e_i a - e_j a)g_{ij} = 0,$ $(e_i a - e_j a)h_{ij} = 0 \quad (a \in S\mathcal{H}^*),$ 3-term relations for g_{ij} and for h_{ij} , $(h_{ij} + h_{ki})g_{jk} = (h_{ij} + h_{jk})g_{ij}$

The differential is given by $\partial a = 0$ for $a \in \mathcal{SH}^{\otimes n+1}$ and

$$\partial(g_{ij}) = f_{ij}\Delta_{\mathcal{H}}, \ \partial(h_{ij}) = f_{ij}\Delta_{\mathcal{SH}}.$$

The face and degeneracy is similar to $A_{\bullet}^{\star *}(\mathcal{H})$.

Main theorem : the case $\chi(M)$ is invertible

Theorem 4

M: 1-connected manifold. Set $\mathcal{H}^* = H^*(M)$ and suppose that \mathcal{H}^* is a free **k**-module and $\chi(M)$ is invertible in **k**

$$^{\exists}$$
 a spec. seq. : $\check{\mathbb{E}}_{2}^{p \, q} \cong H(NB_{\bullet}^{\star \, *}(\mathcal{H})) \Rightarrow H^{p+q}(Emb(S^{1}, M)),$

where bidegree is given by $p = *, q = \star - \bullet$

We call the above spectral sequences the Čech spectral sequences.

Syunji Moriya (O.P.U.) Knot space 14/45

Remark 5

 $\check{\mathbb{E}}_2^{p\,q}$ has a graded commutative ring structure but its relation to the ring $H^*(Emb(S^1, M))$ an whether it induces ring structure on pages after E_2 is unclear for the speaker. It may be related to comparison of filtered ring objects in spectra and complexes

Other spectral sequences

- Vassiliev (1997) defined a s.s. converging to $H^*(LM, Emb(S^1, M))$ by discriminant method.
 - It is applicable to arbitrary manifold (including non-orientable one).
 - Its E_2 -page has an interesting description but somewhat complicated for the speaker.
- Sinha (2009) defined a cosimplicial model for a variant of $Emb(S^1, M)$, which induces a Bousfield-Kan cohomology s.s.
 - A version of this s.s. for long knots in \mathbb{R}^d leads to the collapse of Vassiliev s.s. by Lambrechts-Turchin-Volić (2010) in $ch(\mathbf{k}) = 0$ and vanish of some differentials by de Brito-Horel (2020) in $ch(\mathbf{k}) > 0$.
 - E₂-page is described by cohomology of ordered configuration spaces of points in M with a tangent vector, which is difficult to compute for general M.

Computation for $M = S^k \times S^l$, (odd)×(even)

Corollary 6

 $\mathbf{k}: \mathbb{Z} \text{ or } \mathbb{F}_{\mathfrak{p}} \text{ with } \mathfrak{p} \text{ prime. } k: \text{ an odd number, } l: \text{ an even number}$ with $k+5 \leq l \leq 2k-3$ and $|3k-2l| \geq 2$, or $l+5 \leq k \leq 2l-3$ and $|3l-2k| \geq 2$. $H^*:=H^*(Emb(S^1,S^k\times S^l)).$

- **1** We have isomorphisms $H^i = \mathbf{k}$ (i = k 1, k, 2k 2, 2k 1, k + l).
- ② If $\mathbf{k} = \mathbb{F}_{\mathfrak{p}}$ with $\mathfrak{p} \neq 2$, we have isomorphisms

$$H^{i} = \mathbf{k}^{2} (i = k + l - 2, k + l - 1, 2k + l - 3, 2k + l - 2, 2k + l - 1).$$

The inequalities ensure that differentials vanish by degree reason.

Syunji Moriya (O.P.U.) Knot space 17/45

Computation for $M = S^k \times S^l$, (even)×(even)

Corollary 7

Suppose $2 \in \mathbf{k}^{\times}$.

k, l: two even numbers with $k + 2 \le l \le 2k - 2$ and $|3k - 2l| \ge 2$.

$$H^* := H^*(Emb(S^1, S^k \times S^l)).$$

We have isomorphisms

$$H^{i} = \mathbf{k} \quad (i = k - 1, k, l - 1, l, k + l - 3, k + l - 2, k + l - 1, 3k).$$

For any other degree $i \le 2k + l$, $H^i = 0$.

The inequalities ensure that differentials vanish by degree reason.

$\pi_1(Emb(S^1, M))$ for 4-dimensional M

```
Imm(S^1, M): the space of immersions S^1 \to M
Question by Arone-Szymik: Is there a simp. conn. 4-dim M s.t. the inclusion i_M : Emb(S^1, M) \to Imm(S^1, M) has a non-trivial kernel on \pi_1.
(This map is always surjective.)
```


Syunji Moriya (O.P.U.) Knot space 19/45

$\pi_1(Emb(S^1, M))$ for 4-dimensional M

Corollary 8

M: simply connected, $\mathbf{d} = 4$, $H_2(M; \mathbb{Z}) \neq 0$, and

the intersection form on $H_2(M; \mathbb{F}_2)$ is represented by a matrix of which the inverse has at least one non-zero diagonal component.

Then, the inclusion i_M induces an isomorphism on π_1 . In particular,

$$\pi_1(Emb(S^1, M)) \cong H_2(M; \mathbb{Z}).$$

- For example, $M = \mathbb{C}P^2 \# \mathbb{C}P^2$ satisfies the assumption while $M = S^2 \times S^2$ does not.
- For the case $H_2(M) = 0$, by Arone-Szymik, $Emb(S^1, M)$ is simply connected.
- The case of all of the diagonal components of the matrix being zero is unclear for the speaker.

Construction of Čech s.s.

Syunji Moriya (O.P.U.) Knot space 21/45

Sinha's cosimplicial model

- Goodwillie-Weiss embedding calculus is a framework which relates embedding spaces and configuration spaces of points in manifolds.
- Based on this, Turchin (2013) and de Brito-Weiss (2013) prove a beautiful theorem which states that that Emb(N, M) is weak htpy equiv. to a space of derived maps of right modules of (framed) configuration spaces of points in N or M.
- For knot spaces, another beautiful model which fits with Bousfield-Kan s.s. is Sinha's cosimplicial model. This is also based on the calculus.

(co)module over an operad

- A (non-symmetric) operad is a (non-symmetric) sequence $\{O(n)\}_{n\geq 1}$ with a partial composition $(-\circ_i -): O(m)\otimes O(n)\to O(m+n-1)$ satisfying some axioms. (\otimes : the monoidal product of the underlying monoidal category)
- A (right) *O*-module is a symmetric sequence $X = \{X(n)\}_{n \ge 1}$ with a partial composition $(-\circ_i -): X(n) \otimes O(m) \to X(m+n-1)$.
- A (left) *O*-comodule is a symmetric sequence $X = \{X(n)\}_{n \ge 1}$ with a partial composition $(-\circ_i -) : O(m) \otimes X(m+n-1) \to X(n)$.

Syunji Moriya (O.P.U.) Knot space 23/45

little interval operad \mathcal{D}_1

 \mathcal{D}_1 : the little interval operads

An element of $\mathcal{D}_1(n)$ is the *n*-tuple $\mathfrak{c}=(c_1,\ldots,c_n)$ of closed intervals $c_i\subset\left[-\frac{1}{2},\frac{1}{2}\right]$ s. t. $c_i\cap c_j=\emptyset$ for $i\neq j$, and the labeling of $1,\ldots,n$ is consistent with order of the interval [-1/2,1/2]

Figure: partial composition of \mathcal{D}_1

A \mathcal{D}_1 -module F^M

Fix a Riemanniann metric on M, \widehat{M} : the tangent sphere bundle of M δ : a number s.t. $0 < \delta$ <the injectivity radius of M

- $Ball_n(M) := \{(D_1, \dots, D_n) \mid D_i \text{ is a closed geodesic ball of radius } < \delta, \ D_i \cap D_j = \emptyset \text{ if } i \neq j\},$ topologized as a subspace of $M^n \times \mathbb{R}^n$ via (center, radius)-inclusion
- Define $F^{M}(n)$ as the following pullback

Syunji Moriya (O.P.U.) Knot space 25/45

partial composition
$$(-\circ_i -): F^M(n) \times \mathcal{D}_1(m) \to F^M(m+n-1)$$

The partial composition is a "perturbed diagonal map"

A \mathcal{A}_{∞} -comodule X_A

- ullet \mathcal{A}_{∞} : the associahedral chain operad
 - generators $\{\mu_k \in \mathcal{A}_{\infty}(k)\}_{k \geq 2}$ ($|\mu_k| = -k + 2$)

•
$$d\mu_k = \sum_{\substack{l, p, q \\ l+p=k-1}} \pm \mu_l \circ_{p+1} \mu_q$$

- For an \mathcal{A}_{∞} -algebra A, Define a \mathcal{A}_{∞} -comodule X_A by
 - $X_A(n) := A^{\otimes n}$
 - $\mu_m \circ_i (a_1 \otimes \cdots a_{m+n-1}) := a_0 \otimes \cdots \otimes \mu_m (a_i, \ldots, a_{i+m-1}) \otimes \cdots \otimes a_{m+n-1}$
 - the action of Σ_n is the standard permutation of factors.

Syunji Moriya (O.P.U.) Knot space 27/45

Hochschild complex of \mathcal{A}_{∞} -comodule

For an \mathcal{A}_{∞} -algebra A, Getzler-Jones defined a Hochschild complex $\mathbf{C}(A,A)$ as a natural generalization of that of an associative algebra.

The following lemma is a straightforward extension of Getzler-Jones.

Lemma 9

For a \mathcal{A}_{∞} -comodule, X, there is a functorial bigraded complex $CH_{\bullet}X$ s.t.

- For $X = X_A$, $CH_{\bullet}X_A$ is quasi-isom. to $\mathbf{C}(A, A)$.
- $CH_nX = X(n+1)$
- total degree is $* \bullet$, where * is the original cochain degree of X(n + 1)

Syunji Moriya (O.P.U.) Knot space 28/45

from module to comodule

```
\mathcal{D}_1-module F^M
\longmapsto C_*(\mathcal{D}_1)-module C_*(F^M)
\longmapsto C_*(\mathcal{D}_1)-comodule C^*(F^M)
((\alpha \circ_i f)(\sigma) = f(\sigma \circ_i \alpha) \text{ for } \alpha \in C_*(\mathcal{D}_1(m)), \, \sigma \in C_*(F^M(n)), \, f \in C_*(F^M(m+n-1)))
\longmapsto \mathcal{A}_{\infty}-comodule C^*(F^M).
(pulling back partial comp. by a fixed map \mathcal{A}_{\infty} \to C_*(\mathcal{D}_1))
```

Syunji Moriya (O.P.U.) Knot space 29/45

Sinha spectral sequence

Filtering $CH_{\bullet}C^*(F^M)$ by the grading \bullet , we have a spectral sequence $\mathbb{E}_r^{p,q}$

Lemma 10

- $\mathbb{E}_r^{p,q}$ is isom. to Bousfield-Kan cohomology s.s. associated to the (analogue of)Sinha's cosimplicial model,
- (essentially, Sinha 2009) $\mathbb{E}_r^{p,q}$ converges to $H^*(Emb(S^1,M))$ if M is simp. conn.
- $\mathbb{E}_1^{pq} \cong H^q(F^M(p+1))$

(Sinha considered manifolds with boundary and embeddings with some base point condition.)

Syunji Moriya (O.P.U.) Knot space 30/45

 $F^{M}(n)$ is htpy equiv. to $\vec{C}_{n}(M)$, the configuration spaces of points with tangent vector in M, the following pullback

$$\vec{C}_n(M) \longrightarrow C_n(M)$$
, $C_n(M) = \{(x_1, \dots, x_n) \mid x_i \neq x_j \text{ if } i \neq j\}$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\widehat{M}^{\times n} \longrightarrow M^{\times n}$$

$$\Delta_{\mathrm{fat}}(\mathit{M}) := \cup_{p \neq q} \Delta_{p,q}(\mathit{M}) \subset \mathit{M}^{\times n}, \quad \Delta_{p,q}(\mathit{M}) = \{x_p = x_q\},$$

 $\vec{\Delta}_{\mathrm{fat}}(M)$: the space defined by the pullback

$$\overrightarrow{\Delta}_{\text{fat}}(M) \longrightarrow \Delta_{\text{fat}}(M)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\widehat{M}^{\times n} \longrightarrow M^{\times n}$$

31/45

Syunji Moriya (O.P.U.) Knot space

Idea: replace configuration spaces with fat diagonals via Poincaré-Lefschetz duality

$$C^*(\vec{C}_n(M)) \simeq C_*(\widehat{M}^{\times n}, \vec{\Delta}_{\mathrm{fat}}(M))$$

coming from $\widehat{M}^{\times n} - \vec{C}_n(M) = \vec{\Delta}_{\mathrm{fat}}(M)$ (we are loose on degree) and use Čech resolution

$$C_*(\widehat{M}^{\times n}, \vec{\Delta}_{\mathrm{fat}}(M)) \leftarrow \check{C}_{0\,n}(M) \leftarrow \check{C}_{1\,n}(M) \leftarrow \cdots$$
$$\check{C}_{k,n}(M) = \begin{cases} C_*(\widehat{M}^{\times n}) & (k=0) \\ \oplus_l C_*(\vec{\Delta}_l M) & (k \ge 1) \end{cases}$$

where I runs through set of pairs (p, q) with #I = k, and $\Delta_I(M) = \cap_{(p,q) \in I} \Delta_{p,q}(M)$, following Bendersky-Gitler.

Syunji Moriya (O.P.U.) Knot space 32/45

We want to extend this to a resolution of the comodule.

Soppose we could define partial composition compatible with the differential of Čech complex

$$C_*\mathcal{D}_1(m)\otimes C^*F^M(m+n-1)\overset{P.D.}{\longleftarrow} C_*\mathcal{D}_1(m)\otimes \check{C}_{0\,m+n-1}(M) \overset{}{\longleftarrow} C_*\mathcal{D}_1(m)\otimes \check{C}_{1\,m+n-1}(M) \overset{}{\longleftarrow} \cdots$$

$$\downarrow^{(-\circ_i-)} \qquad \qquad \downarrow^{(-\circ_i-)} \qquad \qquad \downarrow^{(-\circ_i-)}$$

$$C^*(F^M(n))\overset{P.D.}{\longleftarrow} \check{C}_{0\,n}(M) \overset{}{\longleftarrow} \check{C}_{1\,n}(M) \overset{}{\longleftarrow} \cdots$$

Here, P.D means zigzag $C^*F^M(n) \stackrel{\simeq}{\to} C^*(\vec{C}_n(M)) \stackrel{\simeq}{\to} C_*(\widehat{M}^{\times n}, \vec{\Delta}_{\mathrm{fat}}(M)) \leftarrow \check{C}_{0,n}(M)$ (In fact, construction of partial composition is main difficulty)

Syunji Moriya (O.P.U.) Knot space 33/45

So we would have $C_*\mathcal{D}_1$ -comodule of $\check{C}^M_{*\star}$ of double complexes by $\check{C}^M_{*\star}(n) = \check{C}_{\star n}(M)$ (*: homological, \star : Čech). $\longmapsto \mathrm{CH}_{\bullet} \check{C}^M_{*\star}$

By filtering by $\star + \bullet$, we would get Čech s.s. $\check{\mathbb{E}}$, and

By filtering by ullet, we get Sinha s.s. $\mathbb E$

Using this intermediate complex, we could prove convergence for simply connected M.

Difficulty in construction

It is difficult (for me) to define partial compositions compatible with Čech resolution on the chain level.

This problem is analogous to construction of a chain-level intersection product which is associative, has some "geometric description", and makes the following diagram commutative

$$C^*(M) \otimes C^*(M) \xrightarrow{P.D.} C_*(M) \otimes C_*(M)$$

$$\downarrow \cup \qquad \qquad \downarrow int.prod.$$

$$C^*(M) \xrightarrow{P.D.} C_*(M)$$

A nice solution is Atiyah duality and its refinement due to R. Cohen

Syunji Moriya (O.P.U.) Knot space 35/45

Atiyah duality

Here we work in the classical homotopy category of spectra.

(Though we need some model category of spectra to justify technical issue.)

For an embedding $e: M \to \mathbb{R}^K$, ν : a tubuler nbd of e(M) in \mathbb{R}^K .

$$M^{-TM} := \Sigma^{-N} Th(\nu).$$

Different embeddings give equivalent spectra M^{-TM} and equivalence can be chosen consistently. A multiplication on M^{-TM} :

• v_{Δ} : a tubuler neighborhood of image of M in \mathbb{R}^{2K} by the map

$$M \xrightarrow{\text{diagonal}} M \times M \xrightarrow{e \times e} \mathbb{R}^K \times \mathbb{R}^K$$

taken so small that $v_{\Delta} \subset v \times v$

• multiplication $M^{-TM} \wedge M^{-TM} \rightarrow M^{-TM}$ is induced by the composition

$$\Sigma^{-N} Th(\nu) \wedge \Sigma^{-N} Th(\nu) \cong \Sigma^{-2N} Th(\nu \times \nu) \xrightarrow{\text{collapse}} \Sigma^{-2N} Th(\nu \wedge \nu) \cong M^{-TM} \implies \mathbb{R} \longrightarrow \mathbb{R}$$

Syunji Moriya (O.P.U.) Knot space

Atiyah duality

- M^{\vee} : Spanier-Whitehead dual of M with disjoint base point, i.e., $M^{\vee} = Map(M_{+}, \mathbb{S})$ (\mathbb{S} : sphere spectrum)
- M^{\vee} has natural multiplication induced by pullback by $\Delta: M \to M \times M$.

Theorem 11 (Atiyah)

There is an equivalence of commutative ring spectrum

$$M^{\vee} \cong M^{-TM}$$

R. Cohen gave a refinement of this in the category of symmetric spectra. We can justify our idea using this refinement.

Syunji Moriya (O.P.U.) Knot space 37/45

Remark 12

Using the refinement of the duality, Cohen-Jones (2002) proved there is an isomorphism of graded algebra

 $(H_{*+d}(LM), \text{loop product}) \cong (HH^*(C^*(M); C^*(M)), \text{cup product})$

dual comodule

O: topological operad, X: O-module

O can be considered as an operad in the category of spectra.

An *O*-comodule X^{\vee} (in spectra) is defined as follows:

•
$$X^{\vee}(n) = X(n)^{\vee} (= Map(X(n)_{+}, \mathbb{S}))$$

•
$$(a \circ_i f)(x) = f(x \circ_i a)$$
 $(a \in O(m), f \in X^{\vee}(n), x \in X(n))$

Syunji Moriya (O.P.U.) Knot space 39/45

Key theorem

Theorem 13 (M.)

There exists a left \mathcal{D}_1 -comodule \mathcal{TH}_M in symmetric spectra as follows.

lacktriangledown There exists a zigzag of π_* -isomorphisms of left \mathcal{D}_1 -comodules

$$(F^M)^{\vee} \simeq \mathcal{TH}_M$$
.

② TH_M has a natural Čech resolution.

There is a suitable chain functor from spectra to complexes We can justify our idea of construction with these notions.

Outline of proof of Cor. 8

Corollary 14 (=Cor. 8)

M: simply connected, $\mathbf{d} = 4$, $H_2(M; \mathbb{Z}) \neq 0$, and

the intersection form on $H_2(M; \mathbb{F}_2)$ is represented by a matrix of which the inverse has at least one non-zero diagonal component.

Then, the inclusion i_M induces an isomorphism on π_1 . In particular,

$$\pi_1(Emb(S^1, M)) \cong H_2(M; \mathbb{Z}).$$

Syunji Moriya (O.P.U.) Knot space 41/45

Outline of proof of Cor. 8

- Set $H_2 = H_2(M; \mathbb{Z})$.
- By Smale-Hirsch theorem, $Imm(S^1, M) \simeq L\widehat{M}$, so $\pi_1(Imm(S^1, M)) \cong H_2$.
- $\pi_1(Emb(S^1, M))$ is finitely generated and nilpotent by a theorem for nilpotency of homotopy limits by Farjoun (2003) and the Bousfield-Kan homotopy s.s. of Sinha's model.
- It is enough to show the composition

$$Emb(S^1, M) \stackrel{i_M}{\rightarrow} Imm(S^1, M) \stackrel{cl}{\rightarrow} K(H_2, 1)$$

induces isomorphism on $H^1(-; \mathbf{k})$ and monomorphism on $H^2(-; \mathbf{k})$ for any field \mathbf{k} by a theorem of Stallings (1965). (*cl* is the classifying map.)

• i_M is induced by a map of comodules so it induces map of s.s. $\mathbb{E}_r \to E_r$ (E_r is a s.s. for $L\widehat{M}$). Observing this map we have the claim on H^1 , H^2 .

Remark 15

If all of the diagonal components of the inverse of intersection matrix on $H_2(M; \mathbb{F}_2)$ is zero, the map $\check{\mathbb{E}}_{\infty} \to E_{\infty}$ is not a monomorphism for $\mathbf{k} = \mathbb{F}_2$ but this does not necessarily imply the original (non-associated graded) map is not a monomorphism. So in this case, it is still unclear whether i_M is an isomorphism on π_1 .

question/speculation

- Is there an essentially new element i.e. one not coming from $Imm(S^1, M)$ in $H^*(Emb(S^1, M))$ of degree higher than any given degree?
- related question : Are there any operations (e.g. multiplication) on $\mathbb{E}_r^{p,q}$. E_2 -page has a multiplication but it is unclear for $E_{r>2}$.
- For the case of long knots modulo immersion $\overline{Emb}_c(\mathbb{R}, \mathbb{R}^d)$, an analogue of our construction present $C^*(\overline{Emb}_c(\mathbb{R}, \mathbb{R}^d))$ as a homotopy colimit of a diagram of desuspended sphere spectra ($\mathbf{d} \geq 4$). This may lead to a new collapse result.

Syunji Moriya (O.P.U.) Knot space 44/45

Thank you for attention!

Syunji Moriya (O.P.U.) Knot space 45/45