CSE 251 Electronic Devices And Circuit Lab

Name: Suraiza Binte Akbar

Student ID: 20301007

Gercoup: 01

Semesteri: Fall - 22

Date of performance: 30.10.22

Date of Submission: 12,11.22

Cincuit1: NAND GATE

USING MOSFET CITCUIT 2: 1 ogical function f=xy+z using MOSFET

Data Table 1: Verification of The Truth Tables of Logic Gate and Logical Function

1. NAND Gate

Input Voltage,	Input Voltage,	State of LED	Boolean Output
V_x (volt)	V_y (volt)	(On/Off)	(0 or 1)
0V	0V	DN	
0V	5V	ON	
5V	0V	ON	
5V	5V	OFF	0

2. Logical Function, $f = \overline{xy + z}$

Input Voltage, V_x (volt)	Input Voltage, V_{ν} (volt)	Input Voltage, V _z (volt)	State of LED (On/Off)	Boolean Output (0 or 1)
0V	0V	ÔV	NN.	The Mark
0V	OV	5V	OFF	0
0V	5V	0V	nN	
0V	5V	5V	Oft	Ď
5V	OV	0V	ON	1
5V	0V	5V	DIF	2
5V	5V	0V	326	1
5V	5V	5V	0/1	n

Bring. or

Task-02: I-V Characteristics of a MOSFET

Circuit 3: Circuit for measurement of IV characteristics (t_{ps} vs V_{ps}) of MOSFET

Procedure

- 1. For studying the IV characteristics of MOSFET, construct the Circuit 3, keeping $R=2.2\ k\Omega$.
- 2. Now, keeping V_{GS} constant exactly at 2.9 V, increase V_{DD} from 0 V to 20 V and measure the corresponding voltage across the resistor V_R . Calculate the drain current, I_{DS} for each value of V_{DD} by using, $I_{DS} = \frac{V_R}{R}$. In addition to this, measure the drain-source voltage V_{DS} . Fill in the Data Table 2.
- 3. Repeat Step-2 for $V_{GS}=2.85~{
 m V}$ and Fill in the Data Table 3.

Data Table 2: I-V Characteristics Data for $V_{GS} = 2.9 \text{ V}$

Equivalent Resistance, $R_{eq} = 0.77$ (using Multimeter)

V_{DD}	V_{DS}	V_R	$I_{DS} = V_R/R_{eq}$
(volt)	(volt)	(volt)	(mA)
0	1.5mV	45.7mV	0.063
2	0.793		1.599
4	2.77	1.195	1.662
6	4.74	1.201	1.66
8	6.78	1.203	1.673
10	2.29	1.22	1.69
12			
12	10.52	1.28	1.78
14	12.80	1.28	1.78
		1.	JE 0 3

V_{DD}	VDS	V_R	$I_{DS} = V_R/R_{eq}$
(volt)	(volt)	(volt)	(mA)
01	Vm Cp	0.915	1.273
1.5	0.29	1.057	1.47
2.5	1.3014	0.115	1.550
3	1.83	1.28	11780
5	3.82	1.156	1.60
(a) (F)			
	6.2		
		17.7	40

Data Table 3: I-V Characteristics Data for $V_{GS}=2.85~\mathrm{V}$

Equivalent Resistance. Req = 0.719 (using Multimeter)

V_{DD}	V_{DS}	V_R	$I_{DS} = V_R/R_{eq}$
(volt)	(volt)	(volt)	(mA)
0	1.6mb	1.8mV	2.50 x10-3
2	1.23	0. X314	1.016
4	3119	0.722	1.004
6	5.3	0.729	1.006
8	7.28	0.730	1.01
10	9.17	0.733	1.01
12	11.28	0.739	1.02
14	13.22	0,738	1.02
· .			

$ V_{DD} $	V_{DS}	V_R	$I_{DS} = V_R/R_{eq}$ (mA)
V_{DD} (volt)	(volt)	(volt)	(mA)
1	23244	0.65	0.90
1.5	0.762V	D. 72	1.001
2.5	17124	0716	0.99.5
3	2.2994	0.727	1.011
5	4.220	0. 705	0.981

30.10.22

Task-03: Plotting Graphs on Excel (Home Task)

In this task, we will use the experimental data to plot the I-V characteristics of MOSFET.

- 1. Create a Google spreadsheet by visiting https://docs.google.com/spreadsheets
- 2. Fill in the spreadsheet with the data of Table 2 for $V_{GS} = 2.9 \text{ V}$ (refer to your labsheet). Select both the columns of V_{DS} and I_{DS} (to select a column, click on the column head, e.g., 'B'. Then hold CTRL while clicking the second column, e.g., 'D', to select both columns).

V_DD (volt)	V_DS (voit)	V_R (Volt)	I_DS (mA)
0	0	c	0
3	9.00€-03	2 942	2.971717172
6	2 15E-02	5.93	5.98989899
9	3.87E-02	8.87	9.95959596
12	6.97E-02	11 79	11 90909091
15	1.57E-01	14.58	14 82829283
16	3.35E-01	15 56	15.71717172
16 5	6 44E-01	15.79	15 94949495
17	8.87E-01	15 85	14 01010101
17.5	1 78E+00	15.9	19 06060606
18	1 98E -00	16	19 16161616
19	2.67E+00	15.97	18.13131313
20	3 35E+00	16 27	15 43434343
21	4 48E -00	16 29	18 45454545

3. Select Insert → Chart.

4. A Chart Editor section should pop up at the right side of your screen. If it doesn't show up, then double click on the graph. Go the setup section in the chart editor and change the 'Chart type' to 'Scatter Chart' or 'Line Chart'. Keep V_{GS} on the x-axis, and the current I_D on the y-axis.

I_DS vs. V_DS #Table 2

I_DS vs. V_DS #Table 3

🕻 Aaisha 🔁 Draft1

Discussion:

while doing the experiment there was fluctuation of voltage source. We also faced problem in the voltage meter. There were also problem when implementing the circuit in breadboard.