COMPSCI 351

Fundamentals of Database Systems

Strategic Exercise 2 - Model answers ${\bf SQL}$

Exercise 1.

Consider the following relational database schema

- Suppliers={sid,sname,address} with key {sid},

create table Suppliers(
sid number(10) Primary Key,
sname varchar(40) NOT NULL,
address varchar(60) NOT NULL);

- Parts={pid, pname, color} with key {pid},

create table Parts(
pid number(15) PRIMARY KEY,
pname varchar(30) NOT NULL,
color varchar(15) NOT NULL);

- Catalog={sid,pid,cost} with key {sid,pid} and foreign keys
 - $[sid] \subseteq Suppliers[sid]$ and
 - $[pid] \subseteq PARTS[pid]$

CREATE TABLE CATALOG(
sid number(10),
pid number(15),
cost real NOT NULL,
PRIMARY KEY (sid, pid),
FOREIGN KEY sid REFERENCES SUPPLIERS,
FOREIGN KEY pid REFERENCES PARTS);

Define this database schema in SQL, as close as possible.

Exercise 2.

Consider the SQL database schema from the previous exercise. Write down the following queries in SQL.

a. Find the *pnames* of parts for which there is some supplier.

```
SELECT DISTINCT P.pname FROM PARTS P, CATALOG C WHERE P.pid = C.pid;
```

b. Find the *snames* of suppliers who supply every part.

```
SELECT S.sname
FROM SUPPLIERS S
WHERE NOT EXISTS (( SELECT P.pid
FROM PARTS P )
EXCEPT
( SELECT C.pid
FROM CATALOG C
WHERE C.sid = S.sid ));
```

c. Find the *snames* of suppliers who supply every red part.

```
SELECT S.sname
FROM SUPPLIERS S
WHERE NOT EXISTS (( SELECT P.pid
FROM PARTS P
WHERE P.color = 'red' )
EXCEPT
( SELECT C.pid
FROM CATALOG C
WHERE C.sid = S.sid));
```

d. Find the *pnames* of parts supplied by Acme Widget Suppliers and no one else.

```
SELECT P.pname

FROM PARTS P, CATALOG C, SUPPLIERS S

WHERE P.pid = C.pid AND C.sid = S.sid

AND S.sname = 'Acme Widget Suppliers'

AND NOT EXISTS ( SELECT *

FROM CATALOG C1, SUPPLIERS S1

WHERE P.pid = C1.pid AND C1.sid = S1.sid AND

S1.sname <> 'Acme Widget Suppliers');
```

e. Find the *sids* of suppliers who charge more for some part than the average cost of that part (averaged over all the suppliers who supply that part).

```
\label{eq:cost} \begin{array}{l} \text{SELECT DISTINCT C.sid} \\ \text{FROM CATALOG C} \\ \text{WHERE C.cost} > ( \text{ SELECT AVG (C1.cost)} \\ \text{FROM CATALOG C1} \\ \text{WHERE C1.pid} = \text{C.pid} ); \end{array}
```

f. For each part, find the *sname* of the supplier who charges the most for that part.

```
SELECT P.pid, S.sname
FROM PARTS P, SUPPLIERS S, CATALOG C
WHERE C.pid = P.pid AND
C.sid = S.sid AND
C.cost = (SELECT MAX (C1.cost)
FROM CATALOG C1
WHERE C1.pid = P.pid);
```

g. Find the *sids* of suppliers who supply only red parts.

```
SELECT DISTINCT C.sid
FROM CATALOG C
WHERE NOT EXISTS ( SELECT *
FROM PARTS P
WHERE P.pid = C.pid AND P.color <> 'Red');
```

h. Find the *sids* of suppliers who supply a red part and a green part.

```
SELECT DISTINCT C.sid

FROM CATALOG C, PARTS P

WHERE C.pid = P.pid AND P.color = 'Red'

INTERSECT

SELECT DISTINCT C1.sid

FROM CATALOG C1, PARTS P1

WHERE C1.pid = P1.pid AND P1.color = 'Green';
```

i. Find the sids of suppliers who supply a red part or a green part.

```
SELECT DISTINCT C.sid

FROM CATALOG C, PARTS P

WHERE C.pid = P.pid AND P.color = 'Red'
UNION

SELECT DISTINCT C1.sid

FROM CATALOG C1, PARTS P1

WHERE C1.pid = P1.pid AND P1.color = 'Green';
```

j. For every supplier that only supplies green parts, print the name of the supplier and the total number of parts that she supplies.

```
SELECT S.sid, S.sname, COUNT(*) as PartCount FROM SUPPLIERS S, PARTS P, CATALOG C WHERE P.pid = C.pid AND C.sid = S.sid GROUP BY S.sname, S.sid HAVING EVERY (P.color='Green');
```

k. For every supplier that supplies a green part and a red part, print the name and price of the most expensive part that she supplies.

```
SELECT S.sid, S.sname, MAX(C.cost) as MaxCost
FROM SUPPLIERS S, PARTS P, CATALOG C
WHERE P.pid = C.pid AND C.sid = S.sid
GROUP BY S.sid, S.sname
HAVING ANY (P.color='green') AND ANY (P.color = 'red');
```