Unconstrained Optimization

Anders Poirel

June 5, 2019

University of California, Santa Cruz

Multivariable Calculus

- Gradient of f: $\nabla f = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)$
- \mathbf{x}^* is a stationary point of $f: \nabla f(\mathbf{x}^*) = \mathbf{0}$
- Directional derivative of f at \mathbf{x} along direction \mathbf{v} : $\frac{d}{dt}f(\mathbf{x} + t\mathbf{v})\Big|_{t=0} = \nabla f(\mathbf{x}) \cdot \mathbf{v}$

• Hessian of
$$f$$
: $\nabla^2 f = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$

• $n \times n$ matrix A is positive definite: $\forall z \neq 0, z^T Az > 0$

1

Finding Local Minima

Sufficient Conditions for Local Minima

Suppose ∇^f is continous in an open neighborhood of \mathbf{x}^* ,and

 $\nabla f(\mathbf{x}^*) = \mathbf{0}$, and $\nabla^2 f(\mathbf{x}^*)$ is positive definite.

Then \mathbf{x}^* is a strict local minimum.

Problem

Let $f: \mathbb{R}^n \to \mathbb{R}$.

- We assume f is C^1 , that is, for all \mathbf{x} , $\nabla f(\mathbf{x})$ exist and is continuous.
- We want to find $\operatorname{argmin}_{\mathbf{x}} f(\mathbf{x})$
- However, this problem does not always have a closed solution (or finding one is impractical), so we want a numerical method to solve this.

3

Descent Directions (1)

Steepest descent

At \mathbf{x} , the direction along which f is decreasing the most rapidly is $\mathbf{p} = -\nabla f(\mathbf{x})$

Proof

Let θ be the angle between ∇f and \mathbf{p} .

The directional derivative of f at \mathbf{x} is given by

$$\nabla f(\mathbf{x}) \cdot \mathbf{p} = \|\nabla f(\mathbf{x})\| \|\mathbf{p}\| \cos(\theta)$$
. This is minimized when $\cos(\theta) = \pm \pi$, that is, $\mathbf{p} = -c \nabla f(\mathbf{x})$.

4

Descent Directions (2)

- In general, we are "going down" as long as the direction is not orthoronal to ∇f :
- **p** is a descent direction at **x**: $-\frac{\pi}{2} < (\nabla f(\mathbf{x}), \mathbf{p}) < \frac{\pi}{2}$
- So to tend towards a minimum from a point $\mathbf{x_k}$, perform an update of the form $\mathbf{x_{k+1}} = \mathbf{x_k} + \alpha \mathbf{p_k}$

Wolfe Conditions (1)

Sufficient Decrease

 α_k should yield a large enough decrease in f:

$$f(\mathbf{x_k} + \alpha_k \mathbf{p_k}) \le f(\mathbf{x_k}) + c_1 \alpha_k \nabla f(\mathbf{x_k})$$

Where $0 < c_1 < 1$

 i.e reduction in f should be proportional to both the step length and the directional derivative.

Figure 1: Sufficient decrease condition

Wolfe Conditions (2)

Curvature Condition

• Sufficient decrease condition is satisfied for all sufficiently small a, so we want to prevent steps lengths α_k that are too small: $\nabla f(\mathbf{x_k} + \alpha_k \mathbf{p_k})^{\top} \mathbf{p_k} \geq c_2 \nabla f(\mathbf{x_k})^{\top} \mathbf{p_k} \text{ Where}$

 $0 < c_1 < c_2 < 1$.

Figure 2: Curvature condition

Line Search Methods

Putting all of this together we get an optimization algorithm: Set a starting point $\mathbf{x_0}$. Then for $k=1,2,\ldots$,

$$\mathbf{x}_{\mathbf{k}+\mathbf{1}} = \mathbf{x}_{\mathbf{k}} + \alpha_k \mathbf{p}_{\mathbf{k}}$$

Where $\mathbf{p_k}$ is a descent direction and α_k satisfies the Wolfe conditions. As we get closer to a stationary point, $\mathbf{p_k}$ approaches $\mathbf{0}$.

Lipschitz Continuity

• $F: \mathbb{R}^n \to \mathbb{R}^m$ is Lipschitz continous on $S: \exists L > 0$ such that $\forall \mathbf{x}, \mathbf{y} \in S$, $\|F(\mathbf{x}) - F(\mathbf{y})\| \le L\|\mathbf{x} - \mathbf{y}\|$

Figure 3: Lipschitz continuous functions

Convergence of Line Search (1)

Zoutendjik's Theorem

Consider an iteration of the form $\mathbf{x_{k+1}} = \mathbf{x_k} + \alpha_k \mathbf{p_k}$, where:

- $\mathbf{p_k}$ is a descent direction and α_k satisfies the Wolfe conditions.
- f is bounded below in \mathbb{R}^n
- f continuously differentiable in open set \mathcal{N} containing level set $\mathcal{L} = \{x : f(\mathbf{x}) \leq f(\mathbf{x_0})\}$, where $\mathbf{x_0}$ is the starting point of the iteration.
- ∇f is Lipschitz continous on \mathcal{N} .

Then, $\exists M \in \mathbb{R}$ such that

$$\sum_{k=0}^{\infty} \cos^2(\theta_k) \|\nabla f\|^2 \le M$$

Convergence of Line Search (2)

Proof

From second Wolfe condition, and $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k$,

$$(\nabla f(\mathbf{x_{k+1}}) - \nabla f_k)^{\top} \mathbf{p_k} \ge (c_2 - 1) \nabla f_k^{\top} \mathbf{p_k}$$

And the Lipschitz condition implies that $\exists L$ such that

$$(\nabla f(\mathbf{x}_{k+1}) - \nabla f(\mathbf{x}_k))^{\top} \mathbf{p}_k \le \alpha_k L \|\mathbf{p}_k\|^2$$

Convergence of Line Search (3)

Proof (continued)Combining the two previous results yields

$$\alpha_k \geq \frac{c_2 - 1}{L} \frac{(\nabla f(\mathbf{x_k})^{\top} \mathbf{p_k})^2}{\|\mathbf{p_k}\|^2}$$

Substituting this into the first Wolfe condition gives

$$f(\mathbf{x_{k+1}}) \leq f(\mathbf{x_k}) - c_1 \frac{1 - c_2}{L} \frac{(\nabla f(\mathbf{x_k})^{\top} \mathbf{p_k})^2}{\|\mathbf{p_k}\|^2}$$

Convergence of Line Search (4)

Proof (continued)
Using
$$cos(\theta_k) = \frac{\nabla f(\mathbf{x_k})^{\top} \mathbf{p_k}}{\|\nabla f(\mathbf{x_k})\| \|\mathbf{p_k}\|}$$
 yields

$$f(\mathbf{x_{k+1}}) \le f(\mathbf{x_k} - c\cos^2\theta_k) \|\nabla f(\mathbf{x_k})\|^2$$

where $c = \frac{c_1(1-c_2)}{r}$.

Sum this expression over all indices up to k to obtain

$$f(\mathbf{x_{k+1}}) \leq f(\mathbf{x_0}) - c \sum_{j=0}^k \cos^2 \theta_j) \|\nabla f(\mathbf{x_j})\|.$$

Convergence of Line Search (5)

We know that f is bounded below, hence for some C, $f(\mathbf{x_0}) - f(x\mathbf{x_{k+1}}) < C$. By taking limits in the expression in the previous slide, we get

$$\sum_{k=0}^{\infty} \cos^2(\theta_k) ||\nabla f(\mathbf{x_k})|^2 < M$$

For some M > 0.

Convergence of Line Search (6)

Line Search Converges

The sequence of points $\{x_k\}$ given by $x_{k+1} = x_k + \alpha_k p_k$ (where p_k is a descent direction and α_k satisfies the Wolfe conditions) converges to a stationary point.

Proof

As p_k is a descent direction, $\frac{\pi}{2} < \theta_k < \frac{\pi}{2}$. Thus $\exists \delta > 0$ such that for all k, $\cos(\theta_k) > \delta$. We have $\sum_{k=0}^{\infty} \cos^2(\theta_k) \|\nabla f(\mathbf{x_k})\|^2 < M$ hence we must have

$$\lim_{k\to\infty} \|\nabla f(\mathbf{x_k})\| = 0$$

Visualization

https://www.benfrederickson.com/numerical-optimization/

References

- W. Rudin, *Principles of Mathematical Analysis*, McGraw-Hill, 1976.
- J. Nocedal, S. Wright, *Numerical Optimization*, Springer, 2006.