Largest eigenvalue of sparse random graphs

Keven Qiu, Frank Jin

April 3, 2025

Table of Contents

Introduction and Main Result

Preliminary Results

Proof of Main Result

Table of Contents

1 Introduction and Main Result

2 Preliminary Results

Proof of Main Result

Introduction

Definition (Random Graph G(n, p))

A discrete probability space composed of all labeled graphs on vertices [n] where each edge (i,j) where $i \neq j$ appears randomly and independently with probability p.

Definition (Almost Surely (a.s.))

A graph property $\mathcal A$ holds almost surely in G(n,p) if the probability that G(n,p) has $\mathcal A$ approaches 1 as $n\to\infty$.

Previous Work

- For $p(n)\gg\log n$, average degree \bar{d} and maximum degree Δ are asymptotically equal to np. We know $\bar{d}\leq\lambda_1\leq\Delta$ so $\lambda_1=(1+o(1))np$
- For p(n)=c where c is constant, λ_1 has asymptotically a normal distribution with expectation (n-1)p+(1-p) and variance 2p(1-p) (Furedi and Komlos)
- For p(n) = 1/n, spectral radius $\max_i \{|\lambda_i|\}$ tends to infinity as $n \to \infty$ (Khorunzhy and Vengerovsky)
- What about **sparse** random graphs (i.e. $p(n) \in O(\log n)$)?

Main Result

Theorem

Let G = G(n, p) be a random graph and let Δ be the max degree of G. Then almost surely the largest eigenvalue of G satisfies

$$\lambda_1(G) = (1 + o(1)) \max\left(\sqrt{\Delta}, np\right)$$

where o(1) tends to 0 as $\max\left(\sqrt{\Delta}, np\right)$ tends to infinity.

Proof Outline

- Given a random graph G = G(n, p), partition its vertices into edge-disjoint subgraphs G_i that have more structure to work with
- **②** Find bounds on $\lambda_1(G_i)$ for each of the subgraphs (next section)
- § Since $G = \bigcup_i G_i$, use A4 Q8: $\lambda_1(G) = \sum_i \lambda_1(G_i)$ (or $\lambda_1(G) = \max_i \lambda_1(G_i)$ when vertex-disjoint) to complete the proof

Table of Contents

Introduction and Main Result

Preliminary Results

Proof of Main Result

Maximum Degree

Definition (Δ_p)

$$\Delta_p = \max\{k : \mathbb{E}[\#v \in V(G) : \deg(v) = k] \ge 1\}$$

Lemma (2.1)

Let G = G(n, p) be a random graph. Then

- ① The maximum degree of G almost surely satisfies $\Delta(G) = (1 + o(1))\Delta_p$.
- **1** If $np \rightarrow 0$, then almost surely G is a forest.
- If $p \leq \frac{e^{-(\log \log n)^2}}{n}$, then almost surely all connected components of G are size of at most $(1 + o(1))\Delta_p$.
- If $p \le \frac{\log^{1/2} n}{n}$, then almost surely every vertex of G is contained in at most one cycle of length ≤ 4 .

- Note for $v \in V(G)$, $\deg(v) \sim \text{Binomial}(n-1,p)$. Using Chernoff bounds, one can show the upper asymptotic bound
- Count

$$\mathbb{E}[\# \text{ cycles length } k] = \binom{n}{k} \frac{(k-1)!}{2} p^k$$

Observe if $np \to 0$, then $\sum_{k=3}^{\infty} \mathbb{E}[\# \text{ cycles length } k] = 0$.

- This choice of p yields $np \to 0$, so G is a.s. a forest by (ii). Define r.v. Y to be the number of trees $t > (1+o(1))\Delta_p$ vertices. One can show $\mathbb{E}[Y] = \binom{n}{t} t^{t-2} p^{t-1} \le o(1)$ (Cayley's Formula).
- ullet The expected number of cycles of length $s,t\leq 4$ with overlapping vertices is bounded above by

$$O(n^s n^{t-1} p^{s+t}) \le O(\log^4 n/n) \le o(1)$$

Random Set Intersection

Lemma (2.2)

Let $p \ge \frac{e^{-(\log \log n)^2}}{n}$ and let X be the set of vertices of a random graph G = G(n,p) with degree larger than $np(1+1/\log \log n) + \Delta_p^{1/3}$. Then

- Almost surely every cycle of G of length k intersects X in less than k/2 vertices.

Idea: (i) says a.s. the intersection is *less* than k/2 vertices. Estimate the probability of an intersection of at *least* k/2 vertices and show this is bounded by o(1). Same idea for (ii), but omitted for brevity.

We will only show the $e^{-(\log\log n)^2/n} \le p \le \log^{1/4} n/n$ case. Aside from some counting differences, the $p \ge \log^{1/4} n/n$ case is very similar. Consider an arbitrary set of vertices T where |T| = t and all $v \in T$ have $\deg(v) \ge d$ where $d := \log^{1/3} n/\log\log n$. There are two types of edges from vertices of T:

- lacktriangledown edges in the cut (T, V(G) T)
- internal edges

One can see that $\sum_{v \in \mathcal{T}} \deg(v) = 2|\text{internal edges}| + |\text{cut edges}| \ge dt$. If both |internal edges|, |cut edges| $< \frac{dt}{3}$, then we have dt < dt: contradiction. So at least one of |internal edges| $\ge \frac{dt}{3}$ or |cut edges| $\ge \frac{dt}{3}$.

Let's count both cases:

• cut edges: Binomial (t(n-t), p).

$$\binom{t(n-t)}{dt/3}p^{dt/3} \le e^{-\Omega(t\log^{1/3}n)}$$

② internal edges: Binomial(t(t-1)/2, p).

$$\binom{t(t-1)/2}{dt/3}p^{dt/3} \le e^{-\Omega(t\log^{1/3}n)}$$

Note: our choice of d satisfies $d < np(1+1/\log\log n) + \Delta_p^{1/3}$ which is the minimum degree requirement for vertices in set X of the lemma statement. So, the probability all vertices in set X that have degree at least $np(1+1/\log\log n) + \Delta_p^{1/3}$ is also at most $e^{-\Omega(t\log^{1/3}n)}$. Also, replacing t with 2t doesn't change the argument.

Now, let's estimate the probability of a cycle of length k with at least k/2 vertices be contained in X. This counting is by choosing k vertices for a cycle alongside their edges, then choosing a set T of size $t = \lceil k/2 \rceil$, requiring all elements of T to belong to X.

$$\sum_{k\geq 3} n^k p^k \binom{k}{\lceil k/2 \rceil} e^{-\Omega(\lceil k/2 \rceil \log^{1/3} n)} \leq o(1)$$

Neighbor Property of a Vertex

Lemma (2.3)

Let G = G(n,p) be a random graph with $\frac{e^{-(\log\log n)^2}}{n} \le p \le \frac{\log^{1/2} n}{n}$. Then almost surely G contains no vertex which has at least $\Delta_p^{1/3}$ other vertices of G with degree $\ge \Delta_p^{3/4}$ within distance ≤ 2 .

Lemma 2.3 Proof

By contradiction, claim such a vertex v exists. Then consider the subgraph which is a tree rooted at v.

Where $k:=\Delta_p^{1/3}$, we see this tree has size t where $k+1 \leq t \leq 2k+1$. Each u_i has degree $\geq \Delta_p^{3/4}$ by assumption, so each u_i has $\geq \Delta_p^{3/4} - t \geq \frac{1}{2} \Delta_p^{3/4}$ neighbors outside T.

Lemma 2.3 Proof

Consider the cut (T, V(G) - T) which has at least $\frac{1}{2}\Delta_p^{3/4} \times k = \frac{1}{2}\Delta_p^{13/12}$ edges. Since the number of edges follows Binomial(t(n-t), p): we see

$$\binom{t(n-t)}{\frac{1}{2}\Delta_p^{13/12}}p^{\frac{1}{2}\Delta_p^{13/12}} \le e^{-\log^{25/24}n}$$

Counting by summing across all possible tree sizes using Cayley's formula:

$$\sum_{k+1 \le t \le 2k+1} \binom{n}{t} t^{t-2} p^{t-1} e^{-\log^{25/24} n} \le o(1)$$

so a.s., no such tree exists.

Maximum Eigenvalue Upper and Lower Bounds

Proposition (3.1)

Let G be a graph on n vertices and m edges. Then

- ② If $E(G) = \bigcup_i E(G_i)$, then $\lambda_1(G) \leq \sum_i \lambda_1(G_i)$. If in addition G_i 's are vertex disjoint, $\lambda_1(G) = \max_i \lambda_1(G_i)$
- **3** If G is a forest, then $\lambda_1(G) \leq \min(2\sqrt{\Delta-1}, \sqrt{n-1})$. If G is a star on $\Delta+1$ vertices then $\lambda_1(G) = \sqrt{\Delta}$
- If G is bipartite such that degrees on both sides of bipartition are bounded by Δ_1 and Δ_2 respectively, $\lambda_1(G) \leq \sqrt{\Delta_1 \Delta_2}$

Prop 3.1 Proof Sketch

- See Assign 4 Q10
- See Assign 4 Q8
- **③** From class, $\operatorname{tr}(A^2) = 2|E(G)| \le 2(n-1)$. Also $\operatorname{tr}(A^2) = \sum_i \lambda_i^2$ and since *G* is bipartite, $\lambda_1 = -\lambda_n$ (Perron-Frobenius). So

$$(\lambda_1)^2 + (\lambda_n)^2 \le 2(n-1) \Longrightarrow 2\lambda_1^2 \le 2(n-1) \Longrightarrow \lambda_1 \le \sqrt{n-1}$$

For $\lambda_1 \leq 2\sqrt{\Delta-1}$, see paper Bounding the largest eigenvalue of trees in terms of the largest vertex degree

• Consider bipartite graph G's adjacency matrix A. Since $(A^2)_{ij}$ counts the number of 2-walks from i to j and G is bipartite, any given 2-walk has at most Δ_1 choices "there" and Δ_2 choices "back" so a maximum row sum is $\Delta_1\Delta_2$, which is an upper bound on the maximum eigenvalue. So

$$\lambda_1(A^2) = \lambda_1^2(G) \le \Delta_1 \Delta_2 \Longrightarrow \lambda_1 \le \sqrt{\Delta_1 \Delta_2}$$

Table of Contents

Introduction and Main Result

2 Preliminary Results

Proof of Main Result

Main Result

To recap:

Theorem

Let G = G(n, p) be a random graph and let Δ be the max degree of G. Then almost surely the largest eigenvalue of G satisfies

$$\lambda_1(G) = (1 + o(1)) \max\left(\sqrt{\Delta}, np\right)$$

where o(1) tends to 0 as $\max\left(\sqrt{\Delta}, np\right)$ tends to infinity.

Main Result Proof Outline

To recap:

- Given a random graph G = G(n, p), partition its vertices into edge-disjoint subgraphs G_i that have more structure to work with
- ② Find bounds on $\lambda_1(G_i)$ for each of the subgraphs (using results from the previous section)
- § Since $G = \bigcup_i G_i$, use A4 Q8: $\lambda_1(G) = \sum_i \lambda_1(G_i)$ (or $\lambda_1(G) = \max_i \lambda_1(G_i)$ when vertex-disjoint) to complete the proof

Case 1: "very sparse" $p \le e^{-(\log \log n)^2}/n$

If $p \leq e^{-(\log\log n)^2}/n$, G is a disjoint union of trees of size at most $(1+o(1))\Delta_p$ (Lemma 2.1). Then $\lambda_1(G) \leq (1+o(1))\sqrt{\Delta_p}$ (Prop 3.1). By Lemma 2.1, $\Delta = (1+o(1))\Delta_p$ a.s, so $\lambda_1(G) \geq (1+o(1))\sqrt{\Delta_p}$ too by Prop 3.1.

One can verify $\Delta_p = o((np)^2)$ here. So, it suffices to prove

$$\lambda_1(G)=(1+o(1))\max(\sqrt{\Delta_p},np)=(1+o(1))np$$

• " \geq ": Recall edges follow Binomial($\binom{n}{2}$, p). Then

$$\mathbb{E}[\# \text{ edges}] = \binom{n}{2} p \approx \frac{n^2}{2} p,$$

so expected average degree is $\frac{2m}{n} = np$, which is a lower bound (3.1)

• "≤": Split *G* into subgraphs:

- G_1 : induced by vertices v where $\deg(v) > np(1+1/\log\log n) + \Delta_p^{1/3}$.
- G_2 : induced by vertices $V(G) V(G_1)$
- G_3 : bipartite graph of cut edges in $(V(G_1), V(G) V(G_1))$

- Because the max degree of G_2 is $np(1+1/\log\log n) + \Delta_p^{1/3} = (1+o(1))np$, then by Prop 3.1: $\lambda_1(G_2) \leq (1+o(1))np$
- Lemma 2.2: G_1 has no cycles a.s. G_3 is bipartite so cycles must be even length, so half of the cycle's vertices must be in $V(G_1)$, but this is not the case a.s. by Lemma 2.2. So G_1 , G_3 a.s. are forests
 - ▶ Prop 3.1: $\lambda_1(G_1), \lambda_1(G_3) \le 2\sqrt{\Delta_p 1} \le (2 + o(1))\sqrt{\Delta_p}$

Overall:
$$\lambda_1(G) \leq \lambda_1(G_1) + \lambda_1(G_2) + \lambda_1(G_3) = (1 + o(1))np$$

Case 3:
$$e^{-(\log \log n)^2/n} \le p \le \log^{1/2} n/n$$

Must show $\lambda_1(G) = (1 + o(1)) \max(\sqrt{\Delta(G)}, np)$.

• " \geq ": same as before, prop 3.1 (i) gives us

$$\lambda_1(G) \geq (1 + o(1)) \max\left(\sqrt{\Delta(G)}, np\right)$$

• " \leq ": Split G into more subgraphs...

Case 3: $e^{-(\log \log n)^2/n} \le p \le \log^{1/2} n/n$

Case 3: $e^{-(\log \log n)^2/n} \le p \le \log^{1/2} n/n$

- X_1 : $\{v \in V(G) : \deg(v) > \Delta_n^{3/4}\}$
- X_2 : $\{v \in V(G) : np(1+1/\log\log n) + \Delta_p^{1/3} < \deg(v) < \Delta_p^{3/4}\}$
- $X : X_1 \cup X_2$
- Y_1 : V(G) X with ≥ 1 neighbor in X_1 , Y_2 : $V(G) X \cup Y_1$

Case 3: $e^{-(\log \log n)^2/n} \le p \le \log^{1/2} n/n$

- G_1 : induced by X, G_2 : bipartite graph between X_2 and V(G) X
- G_3 : induced by Y_1 , G_4 : bipartite graph between Y_1 and Y_2
- G_5 : induced by Y_2
- G_6 : bipartite graph between X_1 and Y_1

Case 3:
$$e^{-(\log \log n)^2/n} \le p \le \log^{1/2} n/n$$

"
$$\lambda_1(G_1) \leq o(\sqrt{\Delta_p})$$
": forest by Lemma 2.2. By Prop 3.1,
$$\lambda_1(G_1) \leq 2\sqrt{\Delta_p^{7/8}} = o(\sqrt{\Delta_p}) \text{ (max number of neighbours upper bound)}$$
 " $\lambda_1(G_2) \leq o(\sqrt{\Delta_p})$ ": forest by Lemma 2.2. By Prop 3.1,
$$\lambda_1(G_2) \leq 2\sqrt{\Delta_p^{3/4}} = o(\sqrt{\Delta_p}) \text{ (max degree upper bound)}$$

$$\lambda_1(G_3) \leq o(\sqrt{\Delta_p})$$

- G_3 is induced by Y_1 . Suppose $v \in V(G) X$ has $\geq \Delta_p^{1/3} + 1$ neighbors in Y_1 .
- Every neighbor of v has a neighbor in X_1 by definition, so there are $\geq \Delta_p^{1/3} + 1$ paths of length 2 from v to X_1 .
- By Lemma 2.1, v a.s. is in at most one cycle of length 4 \Longrightarrow all but at most 1 of the endpoints in X_1 are different.

- v has at least $\Delta_p^{1/3}$ vertices in X_1 within distance 2, but lemma 2.3 says a.s. there is no such vertex. So v has $\leq \Delta_p^{1/3}$ neighbors in Y_1 .
- Max degree of G_3 is $\leq \Delta_p^{1/3}$, so $\lambda_1(G_3) \leq \Delta_p^{1/3} = \rho(\sqrt{\Delta_p})$

$$\lambda_1(G_4) \leq o(\sqrt{\Delta_p})$$

- G_4 is bipartite graph between Y_1 and Y_2 .
- Max degree of $v \in Y_1$ is $\leq np(1+1/\log\log n) + \Delta_p^{1/3}$ and from previously, max degree of $v \in Y_2$ is $\leq \Delta_p^{1/3}$.
- By prop 3.1 (iv), $np \leq \log^{1/2} n$, and $\Delta_p = \Omega(\log n/(\log\log n)^2)$ gives us

$$egin{aligned} \lambda_1(G_4) & \leq \sqrt{(np(1+1/\log\log n) + \Delta_p^{1/3})(\Delta_p^{1/3})} \ & \leq \Delta_p^{1/3} + (1+o(1))\Delta_p^{1/6}\sqrt{np} \ & = o(\sqrt{\Delta_p}) \end{aligned}$$

$$\lambda_1(G_5) \leq (1+o(1))np + \Delta_p^{1/3}$$

- G_5 is the subgraph induced by Y_2 . By definition, max degree of G_5 is $\leq (1 + o(1))np + \Delta_p^{1/3}$.
- Thus, $\lambda_1(G_5) \leq (1 + o(1))np + \Delta_p^{1/3}$.

$$\lambda_1(G_6) \leq (1+o(1))\sqrt{\Delta_p} + \Delta_p^{1/3}$$

- G_6 is the bipartite graph between X_1 and Y_1 . Let $T:=\{v\in Y_1:\deg_{G_6}(v)>1\}.$
- Let $u \in X_1$ with $\geq \Delta_p^{1/3}$ neighbours in T. Every neighbour of u in T has an additional neighbor back in $X_1 \setminus \{u\}$.

$$\lambda_1(G_6) \leq (1+o(1))\sqrt{\Delta_p} + \Delta_p^{1/3}$$

- $\geq \Delta_p^{1/3} + 1$ 2-paths from u to $X_1 \setminus \{u\}$. Lemma 2.1 $\Longrightarrow u$ is in at most 1 cycle of length 4 \Longrightarrow all but ≤ 1 endpoint of these paths in X_1 are different $\Longrightarrow u$ has $\geq \Delta_p^{1/3}$ distinct vertices of X_1 in distance 2. Lemma 2.3 implies a.s. there is no vertex u with this property.
- Every vertex in Y_1 has degree at most $\Delta_p^{1/3}$ in G_6 from the bounds on p.

$$\lambda_1(G_6) \leq (1+o(1))\sqrt{\Delta_p} + \Delta_p^{1/3}$$
 Continued

- Let H be subgraph of G_6 containing edges from X_1 to T.
- Max degree of H is $\leq \Delta_p^{1/3} \implies \lambda_1(H) \leq \Delta_p^{1/3}$.
- Max degree of $v \in Y_1 \setminus T$ is 1 and G_6 itself is bipartite, then $G_6 H$ is union of vertex-disjoint stars. The max degree of each star is max degree of G, so

$$\lambda_1(G_6) \leq \lambda_1(H) + \lambda_1(G_6-H) \leq \Delta_{
ho}^{1/3} + (1+o(1))\sqrt{\Delta_{
ho}}$$

$\lambda_1(G)$

- There are no edges between X_1 and Y_2 , so the edges of G are the union of $E(G_i)$ for $i=1,\ldots,6$).
- G_5 and G_6 are vertex disjoint, so $\lambda_1(G_5 \cup G_6) = \max(\lambda_1(G_5), \lambda_1(G_6))$.

$$\lambda_1(\textit{G}_5 \cup \textit{G}_6) = \max\left((1 + o(1))\textit{np} + \Delta_p^{1/3}, (1 + o(1))\sqrt{\Delta_p} + \Delta_p^{1/3}
ight)$$

$$egin{aligned} \lambda_1(G) &= \sum_{i=1}^4 \lambda(G_i) + \max(\lambda_1(G_5), \lambda_1(G_6)) \ &= o(\sqrt{\Delta_p}) + \max\left((1+o(1))np + \Delta_p^{1/3}, (1+o(1))\sqrt{\Delta_p} + \Delta_p^{1/3}
ight) \ &= (1+o(1))\max\left(\sqrt{\Delta_p}, np
ight) \ &= (1+o(1))\max\left(\sqrt{\Delta(G)}, np
ight) \end{aligned}$$