Breast Cancer Prediction Analysis

Joseph Gyorda, Kevin Rouse, Anton Hung, Digvijay Yadav, Bofan Chen (Team Dunphy 101)

Overview

- Introduction and Motivations
- 2. Exploratory Data Analysis (EDA)
 - a. Principal Component Analysis (PCA)
- 3. Feature Selection with LASSO
- 4. Prediction of Malignant Tumors
 - a. K-Means Clustering
 - b. Linear Discriminant Analysis (LDA)
 - c. Decision Tree/Random Forest
 - d. Neural Network
- 5. Discussion of Results/Conclusion

Introduction and Motivations

Motivations

- Breast cancer is a serious and prevalent disease
 - 1 out of 8 women develop breast cancer in the US¹
 - o 1 out of 3 new cancer cases in women are breast cancer¹
- Most biopsied tumors are benign (non-cancerous)—only 20% are malignant (cancerous)²
- Accordingly, identifying characteristics of malignant tumors is important to avoid mistreatment of cancer (e.g., unnecessary chemotherapy)
- Highly accurate classification models may support healthcare decision making and tumor identification

https://www.cancer.org/cancer/breast-cancer/about/how-common-is-breast-cancer.html

²https://cancer.stonybrookmedicine.edu/breast-cancer-team/patients/bse/breastlumps

Introduction to Dataset

- Wisconsin Tumor Dataset with tumor information collected from N=569 individuals³
- "Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe
 characteristics of the cell nuclei present in the image."
- Outcome variable was tumor diagnosis: benign (coded as 0, N=357, ~63%) malignant (coded as 1, N=212, ~37%)
- Variables:
 - 1. **radius** (mean of distances from center to points on the perimeter)
 - 2. **texture** (standard deviation of gray-scale values)
 - 3. **perimeter**
 - 4. area
 - 5. **smoothness** (local variation in radius lengths)
 - 6. **compactness** (perimeter^2 / area 1.0)
 - 7. **concavity** (severity of concave portions of the contour)
 - 8. **concave points** (number of concave portions of the contour)
 - 9. **symmetry**
 - 10. **fractal dimension** ("coastline approximation" 1)
- Mean, standard error, and "worst" value for each feature calculated, totalling <u>10*3≠30 variables</u>

³https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data

Exploratory Data Analysis

- Looked at missing values, data types, number of unique values in each column
- Checked the distribution of the variables
- Encode target variable (M = malignant, B = benign) to 1, 0

2 print(df.isna().su √ 0.2s		✓ 0.2s		<pre>2 print(df.nunique()) 3</pre>				
id	0	id	int64	✓ 0.2s				
diagnosis	0	diagnosis	int64	id	569			
radius_mean	0	radius_mean	float64	diagnosis	2			
texture_mean	0	texture_mean	float64	radius_mean	456			
perimeter_mean	0	perimeter_mean	float64	texture_mean	479			
area_mean	0	area_mean	float64	perimeter_mean	522			
smoothness_mean	0	smoothness_mean	float64	area_mean	539			
compactness_mean	0	compactness_mean	float64	smoothness_mean	474			
concavity_mean	0	concavity_mean	float64	compactness_mean	537			
concave points_mean	0	concave points_mean	float64	concavity_mean	537			
symmetry_mean	0	symmetry_mean	float64	concave points_mean	542			
fractal_dimension_mean	0	fractal_dimension_mean	float64	symmetry_mean	432			
radius_se	0	radius_se	float64	fractal_dimension_mean	499			
texture_se	0	texture_se	float64	radius_se	540			
perimeter_se	0	perimeter_se	float64	texture_se	519 533			
area_se	0	area_se	float64	perimeter_se	528			
smoothness_se	0	smoothness_se	float64	area_se	547			
compactness_se	0	compactness_se	float64	smoothness_se	547			
concavity_se	0	concavity se	float64	compactness_se	533			
concave points_se	0	concave points se	float64	concavity_se concave points_se	507			
symmetry_se	0	symmetry_se	float64		498			
fractal_dimension_se	0	fractal_dimension_se	float64	symmetry_se fractal dimension se	545			
radius_worst	0	radius worst	float64	radius_worst	457			
texture_worst	0	texture_worst	float64	texture worst	511			
perimeter_worst	0	perimeter_worst	float64	perimeter_worst	514			
area_worst	0	area_worst	float64	area_worst	544			
smoothness_worst	0	smoothness worst	float64	smoothness_worst	411			
compactness_worst	0	compactness worst	float64	compactness_worst	529			
concavity_worst	0	concavity_worst	float64	concavity_worst	539			
concave points_worst	0	concavity_worst	float64	concave points worst	492			
symmetry_worst	0	symmetry_worst	float64	symmetry_worst	500			
fractal_dimension_worst	0	fractal dimension worst	float64	fractal_dimension_worst	535			
Unnamed: 32	569		float64	Unnamed: 32	9			
44 4.464		Unnamed: 32	1104104		-			

dtype: int64

1 6	df.describe()																			
√ 0.7s																				
	id	diagnosis	radius_mean	texture_mean	n perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean		texture_worst	perimeter_worst	area_worst	smoothness_worst	compactness_worst	concavity_worst	concave points_worst	symmetry_worst	fractal_dimension_worst
count !	5.690000e+02	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000		569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000
mean	3.037183e+07	0.372583	14.127292	19.289649	91.969033	654.889104	0.096360	0.104341	0.088799	0.048919		25.677223	107.261213	880.583128	0.132369	0.254265	0.272188	0.114606	0.290076	0.083946
std	1.250206e+08	0.483918	3.524049	4.301036	24.298981	351.914129	0.014064	0.052813	0.079720	0.038803		6.146258	33.602542	569.356993	0.022832	0.157336	0.208624	0.065732	0.061867	0.018061
min	8.670000e+03	0.000000	6.981000	9.710000	43.790000	143.500000	0.052630	0.019380	0.000000	0.000000		12.020000	50.410000	185.200000	0.071170	0.027290	0.000000	0.000000	0.156500	0.055040
25%	8.692180e+05	0.000000	11.700000	16.170000	75.170000	420.300000	0.086370	0.064920	0.029560	0.020310	***	21.080000	84.110000	515.300000	0.116600	0.147200	0.114500	0.064930	0.250400	0.071460
50%	9.060240e+05	0.000000	13.370000	18.840000	86.240000	551.100000	0.095870	0.092630	0.061540	0.033500		25.410000	97.660000	686.500000	0.131300	0.211900	0.226700	0.099930	0.282200	0.080040
75%	8.813129e+06	1.000000	15.780000	21.800000	104.100000	782.700000	0.105300	0.130400	0.130700	0.074000		29.720000	125.400000	1084.000000	0.146000	0.339100	0.382900	0.161400	0.317900	0.092080
max	9.113205e+08	1.000000	28.110000	39.280000	188.500000	2501.000000	0.163400	0.345400	0.426800	0.201200	***	49.540000	251.200000	4254.000000	0.222600	1.058000	1.252000	0.291000	0.663800	0.207500
8 rows ×	33 columns																			

dtype: int64

dtype: object

- Partial correlation plot: measures the strength of the linear relationship between two variables while controlling for the effects of one or more additional variables
- Help remove the influence of confounding factors and produce a more accurate prediction model
- The variables that are highly correlated with the diagnosis may have low correlation values in the partial correlation plot due to the effects of other variables

- Balanced dataset
- Clear separation between the diagnosis groups in the scatter plot of concave points_worst vs radius_worst
- The mean radius for malignant tumors tends to be larger than that for benign tumors in the violin plot of radius_mean by diagnosis

Principal Component Analysis (PCA)

Variances of the First Ten Principle Components

Feature Selection: LASSO

LASSO Regression with Cross Validation

- We scaled the dataset using MinMax Scaling algorithm. Ensuring that all the features are on similar scale, thereby preventing any bias in the model. Since some machine learning algorithms tend to be impacted by numerical instability, using this transformation we eliminate those issues.
- Scaled data was passed into Lasso regression model with 5 fold cross validation to avoid data leakage, and overfitting.
- From 30 variables, 21 variables were selected by the regression model, with an Accuracy of 0.963.

```
#Using LassoCV

lasso_model = LassoCV(cv=5, random_state=40)
lasso_model.fit(xtrain, ytrain)
```

```
x' = \frac{x - \min(x)}{\max(x) - \min(x)}
```

```
In [9]: from sklearn.metrics import f1_score
    coef = pd.Series(lasso_model.coef_, index=breast_data.columns[2:])
    best_cols = coef[coef != 0].index.tolist()
    ypred = lasso_model.predict(xtest)

# calculate the accuracy of the predictions
    accuracy = f1_score(ytest, ypred.round())

# print the selected columns and the accuracy of the predictions
    print("Selected columns: " + ", ".join(best_cols))
    print("Accuracy:", round(accuracy, 4))

Selected columns: texture_mean, area_mean, compactness_mean, concavity_mean, concave points_mean, fractal_dimension_m
    ean, radius_se, texture_se, smoothness_se, compactness_se, concavity_se, concave points_se, symmetry_se, radius_wors
    t, texture_worst, area_worst, smoothness_worst, concavity_worst, concave points_worst, symmetry_worst, fractal_dimens
    ion_worst
    Accuracy: 0.963
```

Features selected by Lasso

- After analyzing the data on 5 fold cross-validation set, we found that 21 features were important for further analysis, since their estimates weren't reduced to zero.
- The model also explains relationship between different columns and the outcome variable, ex.
 Columns like concavity_se, area_worst negatively influence the outcome of cancer, whereas columns like smoothness, radius_worst, positively influence the outcome.

Prediction Models

K-Means Clustering

- Used k-means clustering and compared to given labels (malignant vs. benign)
- Used k = 2 since the actual outcome is binary
- In the table, 1 = benign, 2 = malignant for the clusters
- K-means algorithm over classifies individuals into the benign group
- Accuracy of 85%, silhouette score 0.70

```
Benign Malignant
1 356 82
2 1 130
```

Labels From Dataset

K-Means clustering

Linear Discriminant Analysis (LDA)

- Supervised classification method
- LDA projects the data onto a subspace
 - Minimize variance within classes, maximize distance between classes

Approach:

- Train vs test split
- Fit to training data, predict on testing data
- Compared the fitted labels to the actual labels
- Accuracy of 96%
- Higher accuracy than k-means

		В	М			В	M
Training Accuracy:	В	286	1	Testing Accuracy:	В	167	2
96%	M	16	152	96%	Μ	8	84

LDA

LDA fit on test subset

Decision Tree

- Used 80%/20% train/test split to subset data
- rpart() function in R used with default parameters to fit model on train set, then predict on test

Random Forest

- Used RandomForest() in R to fit model on 80% train set
- Number of trees = 500, features per split = sqrt(p) (p=21)

```
pred_rf_te 0 1
0 166 3
1 3 89
```


Feature Importance of Random Forest Model

Neural Network

- 1 input layer, 1 hidden layer, and 1 output layer of 1 neuron, with ReLU activation functions for the input and hidden layers (simple, computationally efficient), and sigmoid activation function for the output layer (used when output layer of binary classification problems)
- 50 epochs (number of times the entire dataset is passed through the neural network during the training process)
- batch size of 32 (the model updates its weights and biases based on 32 training examples at a time.)

Test loss: 0.069, Test accuracy: 0.982

```
ReLu: f(x) = max(0, x)
Sigmoid: f(x) = 1 / (1 + exp(-x))
```

Discussion

Discussion of Model Results

- PCA able to explain majority of variance in data & visualize diagnosis clusters
- Out of 30 variables, Lasso Regression model identifies 21 as most informative; these variables were included in all classification models
- All classifications obtained high performance (AUC > 0.95)
 - Neural network had the best performance
 - Decision tree likely the best model for clinical interpretability
- Variables for tumor radius, concavity points, and area were among most informative predictors

Thank you!

