Ein Vergleich zwischen Random Forest und Gradient Boosting als geeignetes Prognoseverfahren anhand von Immoblilienwerten in Boston.

> JOHANNES GUTENBERG UNIVERSITÄT MAINZ

AGENDA

- 1. Einleitung
- 2. Theoretischer Rahmen
- 3. Experimenteller Aufbau
- 4. Ergebnisse
- 5. Diskussion
- 6. Fazit

IMMOBILIENPREISE

METHODIK

Was wird <u>nicht</u> betrachtet:

Ermittlung von Kausalitäten

Traditionelle, ökonometrische Modelle

Was wird hingegen untersucht:

Bestimmung von validen Prognosen

Random Forest und Gradient Boosting

ABGRENZUNG DER MODELLE

Ensemble-Methoden

- Sowohl bei RF, als auch bei GB werden eine Reihe von Klassifizierern generiert, die wiederum neue Datenpunkte erzeugen (Dietterich, 2000)
- Der Hauptunterschied zwischen beiden Konzepten liegt in der Generierung und Aggregation der Klassifizierer → Entscheidungsbäume

Random Forest (RF)

Entscheidungsbäume durch Bagging generiert (Breiman, 2001)

Gradient Boosting (GB)

Entscheidungsbäume erfolgt die Generierung additiv (Friedman, 2001)

AKTUELLER FORSCHUNGSSTAND

Stärken:

- Präzise Vorhersagen im Trainings- und Testverfahren (Ho et al., 2020; Hjort et al., 2022)
- Leistungssteigerungen möglich durch Verwendung von:
 - Angepasste Verlustfunktionen (Hjort et al., 2022)
 - Verwendung von Hybridmodellen (Hjort et al., 2022; Lu et al., 2017; Truong et al., 2020)
- Abseits vom Wohnungsmarkt weitere Anwendungen möglich (Yoon, 2021; Callens et al., 2020)

Limitationen:

- Blackbox-Eigenschaften (Ho et al., 2020)
- RF neigen stärker dazu, Daten überanzupassen als GB (Truong et al., 2020)
- RF haben eine höhere Laufzeit gezeigt als GB bedingt durch gewählte Struktur (Truong et al., 2020)
- Exogene Schocks werden tendenziell nicht erfasst (Yoon, 2021)

WIE FINDET MAN DAS BESTE MODELL?

Optimierung

Hyperparameter

Bias-variance tradeoff

Random Forest

Gradient Boosting

k-fold cross validation

Anzahl Entscheidungsbäume Anzahl Entscheidungsbäume

Lernrate

BOSTON HOUSING DATA

- Datensatz mit 506 Beobachtungen
- Ausschluss von Beobachtungen mit einem Median (MEDV) ≥ 50.000 \$
 - 490 Realisationen übrig
- Berücksichtigung von Variablen mit hohen Erklärungsgehalt für MEDV
- Standardisierung der verbliebenen, unabhängigen Variablen

ALGORITHMUS ZU RANDOM FOREST

Ermittlung einer RF-Prognose gemäß folgender Schritte (Breiman, 2001; Yoon, 2021)

Schritt 1. Für m = 1 bis M:

 Erstelle aus den Trainingsdaten eine Bootstrap-Stichprobe Z der Größe N.

Schritt 1a

Schritt 1b

- Generiere einen zufälligen Entscheidungsbaum T_m für die Bootstrap-Daten.
- Wähle x Variablen aus den p Variablen zufällig aus.

Schritt 1b.i

Schritt 1b.ii

- Wähle die beste Variable und den besten Splitpunkt unter den Variablen.
- Teile den Knoten in zwei Tochterknoten auf. Die Aufteilung soll den RMSE minimieren.

Schritt 1b.iii

Schritt 2

• Ausgabe der Ensembles von Bäumen $\{T\}_{m=1}^{M}$

ALGORITHMUS ZU GRADIENT BOOSTING

Ermittlung einer RF-Prognose gemäß folgender Schritte (Friedman, 2001; Yoon, 2021)

Input. Ein Datensatz $\{[x_i, y_i]\}_{i=1}^n$ mit einer differenzierbaren Verlustfunktion $L(y_i, F(x))$:

Schritt 2. Für m = 1 bis M:

$$F_0(x) = \underset{\gamma}{argmin} \sum_{i=1}^n L(\gamma_i, y) \qquad \qquad \tilde{\gamma}_{im} = -\left[\frac{\partial L(\gamma_i, F(x_i))}{\partial F(x_i)}\right]_{F(x) = F_{m-1}(x)} \qquad \qquad \gamma_{jm} = \underset{\gamma}{argmin} \sum_{x_j \in R_{ij}} L(y_i, F_{m-1}(x_i) + \gamma) \qquad \qquad F_m(x) = F_{m-1}(x) + v \sum_{j=1}^{J_m} \gamma_{jm} I(x_j \in R_{ij})$$

 $f\ddot{\mathbf{u}}\mathbf{r}\,i=1\ldots\,N$

DAS HYBRIDMODELL

Hybridmodell: Voting Regression

- Kombination von gegebenen Schätzern zu einem Meta-Schätzer
- Gewichtungen der Einzelschätzer möglich
- Diversifikation von Schwächen der gegebenen Einzelschätzer möglich
- Finale Gewichtung: $\frac{5}{6} GB + \frac{1}{6} RF$

Meta-Schätzung

TRAINING- UND TESTVERFAHREN

Der höchsten Score bzw. der geringsten Fehler:

Training

Random Forest Test

Voting Regression

Tabelle 4: Ergebnisse der Vorhersagen

Modell	R	2	RMSE			
Modell	Train	Test	Train	Test		
Random Forest	0.96749	0.84397	1.35815	3.4552		
Gradient Boosting	0.951740	0.86452	1.65491	3.21963		
Voting Regression	0.95658	0.86560	1.5695	3.20686		

Quelle: Eigene Darstellung

Abbildung 5: Graphen zu Training- und Testdaten

STATISTISCHE EVALUIERUNG

Wie verhalten sich die Modelle bei wiederholten Training bzw. Testen?

- Nach 150x Wiederholungen bleibt das Ergebnis unverändert
- Mittelwertdifferenzen bei fast allen Kombinationen mindestens auf dem 1%-Niveau signifikant
- Lediglich GB vs. Vote ist nicht signifikant von Null verschieden

Tabelle 5: Schätzung der Gütemaße mit n =150 Iterationen

	R^2		RN	MSE	R ² : Kreuzvalidierung		
Modell	Mean	Std.Dev	Mean	Std.Dev	Mean	Std.Dev	
Random Forest	0.9672	0.0002	1.3637	0.0055	0.8498	0.0658	
Gradient Boosting	0.9517	0.0	1.6549	0.0000	0.8583	0.0562	
Voting Regression	0.9566	0.0000	1.5691	0.0007	0.8603	0.0569	

Quelle: Eigene Darstellung

Tabelle 6: T-test mit df = 149 für die Gütemaße

	R ²		RM	SE	R ² : Kreuzvalidierung		
Nullhypothese	t-Value	p-Value	t-Value	p-Value	t-Value	p-Value 0.0001	
$\mu_{RF} = \mu_{GB}$	710.98**	0.0	641.78**	0.0	3.84**		
$\mu_{RF} = \mu_{Vote}$	481.97**	0.0	448.98**	0.0	4.70**	0.0	
$\mu_{GB} = \mu_{Vote}$	1504.92**	0.0	1460.84**	0.0	0.96	0.3351	

p < 0.01 entspricht ** p < 0.05 entspricht *

STÄRKEN UND LIMITATIONEN

- Performance von allen Modellen insgesamt als sehr gut zu bewerten!
- Was es noch zu beachten gilt:

Random Forest

- Neigt eher zu Overfitting (Truong et al., 2020)
- Laufzeit schneller als GB aufgrund der Parallelisierung (Carreira-Perpiñán & Zharmagambetov, 2020)

Hyperparameter

- Gittersuche als Vertreter der uninformierten Methoden
- Verwendung von informierten Methoden, um optimale Kombination sicherzustellen (Callens et al., 2020).

Hybridmodell

- Konnte homogene Modelle übertreffen (Hjort et al., 2022; Lu et al., 2017; Truong et al., 2020).
- Möglichkeit, Schwächen der einzelnen Schätzer zu diversifizieren
- Um die Informationen optimal mit dem Meta-Schätzer zu erfassen, sollten die einzelnen Schätzer ebenfalls optimiert sein

Weitere Verbesserungen

- Verwendung von größeren Datensätzen
- Untersuchung von weiteren Verlustfunktionen (Hjort et al., 2022)

BEFUNDE UND WEITERER AUSBLICK

Befunde

RF erzielt das beste Resultat im Training, dafür Overfitting

GB erzielt bessere Resultate für Testdaten als RF

Voting Regression erzielt das beste Resultat für die Testdaten bzw. die Kreuzvalidierung

→ Das Hybridmodell ist zu bevorzugen

VIELEN DANK FÜR IHRE AUFMERKSAMKEIT

LITERATURVERZEICHNIS

- Breiman, L. (2001). Random Forests. *Machine Learning*, 45(1), 5–32.
- Callens, A., Morichon, D., Abadie, S., Delpey, M. & Liquet, B. (2020). Using Random forest and Gradient boosting trees to improve wave forecast at a specific location. *Applied Ocean Research*, 104, 102339.
- Carreira-Perpiñán, M. Á. & Zharmagambetov, A. (2020). Ensembles of Bagged TAO Trees Consistently Improve over Random Forests, AdaBoost and Gradient Boosting. In J. Wing & D. Madigan (Hrsg.), *Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference* (S. 35–46). ACM.
- Destatis. (2022). Häuserpreisindex, Preisindex für Bauland: Deutschland, Jahre. Statistisches Bundesamt. https://www-genesis.destatis.de/genesis//online?operation=table&code=61262-0001&bypass=true&levelindex=0&levelid=1652035420387#abreadcrumb
- Dietterich, T. G. (2000). Ensemble Methods in Machine Learning. In J. Kittler & F. Roli (Hrsg.), *Lecture Notes in Computer Science: Bd. 1857. Multiple classifier systems: First international workshop, MCS 2000* (Bd. 1857, S. 1–15). Springer. https://doi.org/10.1007/3-540-45014-9_1
- Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5).
- G, T. R., Bhattacharya, S., Maddikunta, P. K. R., Hakak, S., Khan, W. Z., Bashir, A. K., Jolfaei, A. & Tariq, U. (2020). Antlion re-sampling based deep neural network model for classification of imbalanced multimodal stroke dataset. *Multimedia Tools and Applications*. Vorab-Onlinepublikation. https://doi.org/10.1007/s11042-020-09988-y
- Harrison, D. & Rubinfeld, D. L. (1978). Hedonic housing prices and the demand for clean air. *Journal of Environmental Economics and Management*, *5*(1), 81–102. https://doi.org/10.1016/0095-0696(78)90006-2
- Hastie, T., Tibshirani, R. & Friedman, J. H. (2017). The elements of statistical learning: Data mining, inference, and prediction. Springer Series in Statistics. Springer.
- Hjort, A., Pensar, J., Scheel, I. & Sommervoll, D. E. (2022). House price prediction with gradient boosted trees under different loss functions. *Journal of Property Research*, 1–27.
- Ho, W. K., Tang, B.-S. & Wong, S. W. (2020). Predicting property prices with machine learning algorithms. *Journal of Property Research*, 38(1), 48–70.

LITERATURVERZEICHNIS

- James, G., Witten, D., Hastie, T. & Tibshirani, R. (2013). An Introduction to Statistical Learning (Bd. 103). Springer New York.
- Kim, J., Won, J., Kim, H. & Heo, J. (2021). Machine-Learning-Based Prediction of Land Prices in Seoul, South Korea. Sustainability, 13(23), 13088. https://doi.org/10.3390/su132313088
- Lu, S., Li, Z., Qin, Z., Yang, X. & Goh, R. S. M. (2017). A hybrid regression technique for house prices prediction. In 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (S. 319–323). IEEE.
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. & Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825--2830.
- Truong, Q., Nguyen, M., Dang, H. & Mei, B. (2020). Housing Price Prediction via Improved Machine Learning Techniques. Procedia Computer Science, 174, 433–442.
- The University of Toronto. (1996). The Boston Housing Dataset: A Dataset derived from information collected by the U.S. Census Service concerning housing in the area of Boston Mass.

 The University of Toronto. https://www.cs.toronto.edu/~delve/data/boston/bosto
- Wang, R., Ma, H. & Wang, C. (2022). An Ensemble Learning Framework for Detecting Protein Complexes From PPI Networks. Frontiers in genetics, 13, 839949.
- Wu, J., Chen, S. & Liu, X. (2020). Efficient hyperparameter optimization through model-based reinforcement learning. Neurocomputing, 409, 381–393. https://doi.org/10.1016/j.neucom.2020.06.064
- Yoon, J. (2021). Forecasting of Real GDP Growth Using Machine Learning Models: Gradient Boosting and Random Forest Approach. Computational Economics, 57(1), 247–265.

BESCHREIBUNGEN ZU BOSTON HOUSING DATA

Tabelle 1: Beschreibung von Boston Housing Data

Nummerierung	Variable	Beschreibung
1	CRIM	Pro-Kopf-Verbrechensrate nach Stadt
2	ZN	Anteil der Wohnbauflächen, die für Grundstücke mit einer
		Größe von mehr als 25.000 Quadratmetern ausgewiesen sind
3	INDUS	Anteil der Flächen für Nicht-Einzelhandelsunternehmen je
		Stadt
4	CHAS	Charles River Dummy-Variable (= 1, wenn der Trakt an den
		Fluss grenzt, sonst 0)
5	NOX	Stickstoffoxidkonzentration (Teile pro 10 Millionen)
7	RM	durchschnittliche Anzahl der Zimmer pro Wohnung
7	AGE	Anteil der Eigentumswohnungen, die vor 1940 gebaut wurden
8	DIS	gewichtete Entfernungen zu fünf Bostoner
		Beschäftigungszentren
9	RAD	Index der Erreichbarkeit von Radialautobahnen
10	TAX	Vollwertiger Grundsteuersatz pro 10.000 Dollar
11	PTRATIO	Schüler-Lehrer-Verhältnis nach Stadt
12	В	Anteil der Schwarzen in der Population
13	LSTAT	% unterer Status der Bevölkerung
14	MEDV	Medianwert von Eigenheimen in \$1000s

Quelle: Übersetzt nach Harrison & Rubinfeld (1978, S. 96 & 97)

KORRELATIONSMATRIX

Abbildung 3: Korrelationsmatrix

GETESTETE KOMBINATIONEN UND VERWENDETE **SCHÄTZER**

Tabelle 2: Getestete Hyperparameter mit GridSearchCV

Modell	Hyperparameter	k-Fold		
Random	max_depth= [2,4,6,8,10,12,14,16,18,20]			
Forest	$n_{estimators} = [100, 200, 500, 900, 1000]$			
Tolest	$min_samples_leaf = [2,4,6,8,10]$			
	learning_rate = [0.0001, 0.001, 0.01, 0.1, 0.3]			
Gradient	n_estimators = [100, 200, 500, 900, 1000]			
Boosting	$max_depth = [2,4,6,8,10,12,14,16,18,20]$			
	$min_samples_leaf = [2,4,6,8,10]$			
	weights = [(1,1), (2,1), (3,1), (4,1), (5,1), (1,2), (1,3), (1,4), (1,5)]			
	estimators = [("Random Forest",			
Voting Regression	$Random Forest Regressor\ (max_depth=20, n_estimators=900,$	k = 10		
	min_samples_leaf = 2), ("Gradient Boosting",			
	$Gradient Boosting Regressor\ (max_depth=2, n_estimators=200,$			
	learning_rate = 0.1, min_samples_leaf = 6)]			
	Quelle: Eigene Darstellung			

Tabelle 3: Schätzer mit optimalen Hyperparametern

Modell	Schätzer mit optimalen Hyperparameter
Design Design	RandomForestRegressor (max_depth=20, min_samples_leaf=2,
Random Forest	n_estimators=900)
Gradient Boosting	GradientBoostingRegressor (max_depth=2, min_samples_leaf=6,
	n_estimators=200)
	VotingRegressor (estimators=[('Random Forest',
	RandomForestRegressor (max_depth=20, min_samples_leaf=2,
Voting Regression	n_estimators=900)), ('Gradient Boosting', GradientBoostingRegresson
	(max_depth=2, min_samples_leaf=6,
	n_estimators=200))], weights=(1, 5))
	50.23 MHz 2000 WGG 200400

DESKRIPTIVE STATISTIKEN

\	VAL	LSTAT	INDUS	NOX	PTRATIO	RM	TAX	DIS	AGE	MEDV
CC	ount	490.00	490.00	490.00	490.00	490.00	490.00	490.00	490.00	490.00
m	nean	3.3760E-17	6.5985E-16	6.4200E-16	2.6464E-16	2.2465E-16	9.5389E-16	-1.7832E-16	1.8953E-16	21.64
	std	1.0010E+00	1.0010E+00	7.87						
	min	-1.55	-1.52	-1.45	-2.81	-4.11	-1.32	-1.28	-2.32	5.00
C	0.25	-0.79	-0.87	-0.90	-0.53	-0.56	-0.76	-0.82	-0.84	16.70
C	0.50	-0.18	-0.21	-0.14	0.28	-0.09	-0.46	-0.27	0.30	20.90
C	0.75	0.59	1.03	0.60	0.80	0.51	1.54	0.65	0.91	24.68
r	max	3.54	2.44	2.72	1.65	3.88	1.80	3.93	1.13	48.80

Abbildung 4: Deskriptive Statistiken für Trainings- und Testdatensatz