Advanced Calculus - Polar Coordinates

GR Phaijoo, PhD

Department of Mathematics
School of Science, Kathmandu University
Kavre, Dhulikhel

August 15, 2023

Polar Coordinates

Definition

- Fix an origin O (called the pole)
- ► Fix an initial ray from the origin (called initial ray)
- ▶ $P(r, \theta)$ where OP = r, (directed distance from the point O to P.

FIGURE 11.18 To define polar coordinates for the plane, we start with an origin, called the pole, and an initial ray.

4 ₱ ▶ **4** ≣ ▶ **4** ≣ ▶ **9 9 0**

Polar coordinates are not unique...

- For r=2, $\theta=\pi/4$, the complete list of angles is $\pi/4$, $\pi/4+2\pi$, $\pi/4+4\pi$, $\pi/4+6\pi$, $+\cdots$
- For r=-2, $\theta=5\pi/4$ the complete list of angles is $5\pi/4$, $5\pi/4+2\pi$, $5\pi/4+4\pi$, $5\pi/4+6\pi$, $+\cdots$

For the point $P(r,\theta)$, the equivalent polar coordinates are $P(r,\theta+2n\pi)$, $n=0,\pm 1,\pm 2,\pm 3,\cdots$

Polar Coordinates

FIGURE 11.19 Polar coordinates are not unique.

FIGURE 11.20 Polar coordinates can have negative *r*-values.

Examples

- 1. Find all polar coordinates of the point $P(1, \pi/3)$.
- 2. Plot the following points.

a.
$$(2, \pi/2)$$

a.
$$(2, \pi/2)$$
 b. $(-3, \pi/4)$ c. $(-2, \pi/3)$

c.
$$(-2, \pi/3)$$

3. Which polar coordinate pairs label the same point?

c.
$$(2,2\pi/3)$$
 e. $(r,\pi+\theta)$

e.
$$(r, \pi + \theta)$$

b.
$$(-3, \pi)$$

d.
$$(-2, -\pi/3)$$
 f. $(-r, \theta)$

f.
$$(-r, \theta)$$

Polar Equations and Graphs

Equation	Graph
r = a	Circle of radius $ a $ centered at origin.
$\theta = \theta_0$	Line through origin making an angle θ_0 with the initial ray.

Polar Equations and Graphs

Equation Graph

r = a Circle of radius |a| centered at origin.

 $\theta=\theta_0$ Line through origin making an angle θ_0 with the initial ray.

Polar Equations and Graphs

Equation Graph

r = a Circle of radius |a| centered at origin.

 $heta= heta_0$ Line through origin making an angle $heta_0$ with the initial ray.

What does $r = r_0$, $\theta = \theta_0$ represent?

Equations of axes???

- a. r = 1, r = -1
- b. $1 \le r \le 2$ and $0 \le \theta \le \pi/2$
- c. $-3 \le r \le 2$ and $\theta = \pi/4$
- d. $2\pi/3 \le \theta \le 5\pi/6$ (no restriction on r)

- a. r = 1, r = -1
- b. $1 \le r \le 2$ and $0 \le \theta \le \pi/2$
- c. $-3 \le r \le 2$ and $\theta = \pi/4$
- d. $2\pi/3 \le \theta \le 5\pi/6$ (no restriction on r)

Figure: Graph of equation (c)

- a. r = 1, r = -1
- b. $1 \le r \le 2$ and $0 \le \theta \le \pi/2$
- c. $-3 \le r \le 2$ and $\theta = \pi/4$
- d. $2\pi/3 \le \theta \le 5\pi/6$ (no restriction on r)

Figure: Graph of equation (c)

Figure: Graph of equation (b)

- a. r = 1, r = -1
- b. $1 \le r \le 2$ and $0 \le \theta \le \pi/2$
- c. $-3 \le r \le 2$ and $\theta = \pi/4$
- d. $2\pi/3 \le \theta \le 5\pi/6$ (no restriction on r)

Figure: Graph of equation (c)

Figure: Graph of equation (b)

Figure: Graph of equation (d)

Examples

Graph the sets of points whose polar coordinates satisfy the following

a.
$$r = 2$$

c.
$$-\pi/4 \le \theta \le \pi/4$$
, $-1 \le r \le 1$

e.
$$0 \le r \le 2$$

g.
$$r \ge 1$$

b.
$$0 \le \theta \le \pi/6, r \ge 0$$

d.
$$\theta = \pi/2$$
, $r \ge 0$

f.
$$\theta = \pi/2, r \le 0$$

h.
$$0 \le \theta \le \pi$$
, $r = 1$

Relating Polar and Cartesian Coordinates

Relation

$$x = r \cos \theta$$
, $y = r \sin \theta$ (Polar - Cartesian)
 $r^2 = x^2 + y^2$, $\tan \theta = \frac{y}{x}$ (Cartesian - Polar)

Write equivalent Cartesian equations.

a.
$$r \sin \theta = 2$$
 b. $r = -3 \sec \theta$

b.
$$r = -3 \sec \theta$$

c.
$$r^2 \sin 2\theta = 2$$
 d. $r = 1 - \cos \theta$

d.
$$r=1-\cos\theta$$

e.
$$r = 1 + 2r \cos t$$

e.
$$r = 1 + 2r\cos\theta$$
 f. $r = 2\cos\theta - \sin\theta$

g.
$$r \sin \left(\theta + \frac{\pi}{6}\right) = 2$$

g.
$$r \sin \left(\theta + \frac{\pi}{6}\right) = 2$$
 h. $r \sin \theta = \ln r + \ln \cos \theta$

Write equivalent Polar equations.

a.
$$x = 1$$

b.
$$x^2 + y^2 = 4$$

a.
$$x = 1$$
 b. $x^2 + y^2 = 4$ **c.** $x^2 + xy + y^2 = 1$

THE END