ARM Cortex M4 Intro

Núcleos ARM Cortex-M™ cores

- Esqueça a tradicional classificação 8/16/32-bit e obtenha
 - Arquitetura semelhante através de todas aplicações
 - Cada produto otimizado para baixíssimo consumo

Cortex-M0/M0+

Aplicações 8/16-bit

Cortex-M3

Aplicações 16/32-bit

Cortex-M4

Aplicações 32-bit/DSC

Compatibilidade de código binário e ferramentas

Low-Power Leadership from ARM

32-bit Core

- STM32 F4 Cortex-M4
- STM32 F3 Cortex-M4
- STM32 F2 Cortex-M3
- STM32 F1 Cortex-M3
- STM32 F0 Cortex-M0
- STM32 L0 Cortex-M0+
- STM32 L1 Cortex-M3

Processadores Cortex-M compatibilidade binária

Processamento geral Tarefas controle I/O

bits

ARM Cortex™-M4 Core

ARM Cortex M4 Core

ARM Cortex M4 Core STM32F411

Core ARM M4 32 bits
Cortex com unidade de
ponto flutuante
512 Kbytes memória
Flash
128 Kbytes RAM

Gerenciamento de clock, reset e alimentação

Conversor A/D de 12 bits, 2,4Msps e até 16 canais

16 controladores de DMA de uso geral

Até 11 Timers :
6 de 16 bits,
2 de 32 bits,
2 watchdogs
SysTick

Até 81 pinos de E/S

13 interfaces de comunicação I2C USART SPI SDIO -interface de audio USB 2.0

RTC

Arquitetura do sistema

Periféricos Cortex M4

- SysTick
- Controlador de Interrupção Aninhado e Vetorado(NVIC)
- Bloco de Controle do Sistema (SCB)
- Unidade de Proteção de Memória (MPU)
- Unidade de Ponto Flutuante

SysTick (Temporizador do sistema)

- SysTick fornece um contador decrementador de 24-bits, com um mecanismo de controle flexível.
 - O contador pode ser usado de diferentes maneiras, como :
 - Um temporizador de ticl para RTOS tick com disparo a uma taxa programável (por exemplo, 100 Hz) e chama a rotina de SysTick.
 - Um temporizador alarme de alta velocidade .
 - Um alarme ou temporizador de sinalização de taxa variável.
 - Um contador simples que pode ser utilizado pelo software para medir tempo de execução ou tempo utilizado em determinada tarefa.
 - Uma fonte de clock interno.
 O campo de bits COUNTFLAG nos registradores de controle e estatus podem ser utilizados para determinar se uma ação é completada dentro de um tempo pré-definico, como parte do laço de controle dinâmico do clock.

NVIC - Interrupções

- Salvamento / restauração automática do contexto e entrada direta na tabela de vetores de funções.
- Nested Vectored Interrupt Controller (NVIC) prioriza e manipula todas as excessões
- Suporte à Tail-chaining
- Implementação de interrupções Preemptivas e Aninhadas
- Agrupamento de prioridades
- Possibilidade de relocação da tabela de vetores
- Processos só tem acesso completo ao NVIC em modo privilegiado
- 10 tipos de excessões do núcleo do Cortex M3 com priodidade programável, exceto Reset, NMI, Hard fault (maiores prioridades)
- Até 53 interrupções de periféricos(GPIOs, PWMs, ADCs etc.)

Modelo de Excessões

- Modelo de Excessões manipula todas as interrupções, falhas síncronas e excessões SVC
 - Excessões causam travamento na máquina de estados da cpu
- Manipulação de excessões é tão trivial quanto manipulação de registradores. É realizado em hardware.
 - Não é necessário código em assembler.
 - Rotinas de serviço de interrupção em 'C' void IRQ(void) { /* my handler */ }

	I
PREVIOUS TOP-OF-STACK VALUE	
xPSR	OLD SP POINTED HERE
PC	
LR	
R12	
R3	
R2	
R1	
R0	NEW SP POINTS HERE

MPU

- Memory Protection Unit (MPU)
- Beneficios
 - Reforça as regras de privilégio
 - Reforça as regras de acesso
 - Separa os processos
- Características
 - 8 regiões de proteção (sem acesso, somente leitura, leitura escrita) de faixas a partir de 32 B a 4GB.
 - Permissões de acesso (privilegiada/usuário)
 - Regiões com sobrepoisição de proteção com prioridades por região.
 - Erros e violação de permissões da MPU invocam o manipulador de falhas "MemManage"

FPU

- Floating Point Unit
- A FPU suporta operações de precisão simples, como soma, subtração, multiplicação, divisão, multiplicação e acumulação e raiz quadrada.
- Provê conversão entre os formatos de ponto fixo e ponto flutuante, além de instruções com constantes do tipo ponto flutuante.
- A FPU fornece funcionalidades de computação em ponto fltutuante compatíveis com as normas ANSI/IEEE Std 754-2008, IEEE Standard for Binary Floating-Point Arithmetic, referidas como padrão IEEE 754.
- A FPU contém registradore de 32 bits, precisão simples, que podem ser acessados como 16 registradores tipo double-word, para operações de leitura, armazenagem e movimentação.

•

