Curso 2022-2023

Aplicación práctica

Evaluación y modelado del rendimiento de los sistemas informáticos

Dr. Carlos Juiz García Dra. Belén Bermejo González

Objetivo

El objetivo principal es la evaluación práctica, real y completa de un sistema informático. Para ello se aplicarán todos los conceptos, metodologías y técnicas vistos a lo largo de todo el curso. Se tratarán desde los aspectos relacionados con la monitorización y el benchmarking, pasando por el modelado y llegando finalmente a la predicción de la carga.

Un ejemplo real del camino expuesto se ve en el artículo "The Performance Evaluation Journey of a Flight Seats Availability Service: A Real-world Business Case Study of Transactional Workload Running in Virtual Machines", el cual se recomienda encarecidamente que se tenga a disposición y se comprenda en su totalidad.

Primera parte

Para la realización de esta parte contaremos con los servidores A y B los cuales están dedicados a tareas de cálculo científico. Es decir, las cargas que ejecutan son intensivas en CPU, y por lo tanto éste es su dispositivo más demandado. A continuación, se detallan las características de cada uno de los servidores.

Servidor A

Nombre del servidor: Dell Power Edge T430

Número de CPUs: 16

Tamaño de la memoria RAM: 7753 Mib ($\approx 8 GB$)

Coste: 1245 €

Servidor B

Nombre del servidor: Dell Power Edge T330

Número de CPUs: 8

Tamaño de la memoria RAM: 15258,8 Mib ($\approx 16~GB$)

Coste: 907 €

El administrador de un centro de datos se enfrenta al reto de decidir qué servidor es más adecuado para la ejecución de una carga intensiva de CPU, el servidor A o el servidor B. Actualmente, el tiempo medio para ejecutar la carga en el servidor es de 31,01 segundos. Para realizar una justa comparación, se ha ejecutado la carga intensiva de CPU en los servidores A y B un total de 100 veces, obteniendo los resultados mostrados en la hoja Excel "p1.xls". Además, hemos de tener en cuenta que tanto el servidor A como el servidor B ejecutan 120 unidades de trabajo (en cada una de las ejecuciones).

- 1. ¿Qué servidor resulta más adecuado para el cambio sólo considerando el rendimiento? ¿Por qué? ¿En qué métrica o valor determina la decisión?
- 2. ¿Cómo calcularías la productividad de los servidores A y B? (unidades de trabajo / unidad de tiempo)
- 3. ¿Y si además tenemos en cuenta el coste del servidor? ¿Cuál sería más adecuado? ¿Por qué? ¿En qué métrica o valor te basas?

4. ¿Cómo crees que afectan los recursos hardware de los servidores? ¿Tienen algún tipo de trascendencia en la decisión?

Además, en el fichero "p1.xls" podemos encontrar el consumo de potencia medido en Watts para cada una de las ejecuciones realizadas en los servidores A y B.

- 5. ¿Cuál es el EDP del servidor A y B?
- 6. ¿Cuál de los dos servidores consume más energía? ¿Por qué?
- 7. ¿Por qué hay diferencias entre los valores del consumo de potencia entre las diferentes ejecuciones en un mismo servidor? ¿Y entre ellos?

Segunda parte

Requisitos previos

El alumno ya contará con el entorno Ubuntu (o el que haya considerado) instalado, siendo totalmente funcional. Para asegurarnos de que el entorno está totalmente listo, se deberá poder acceder al directorio /proc. Además, se contará ya con una herramienta para filtrar y limpiar los ficheros de datos como para realizar representaciones gráficas.

En esta parte no se tendrá en cuenta qué tipo de actividad está realizando el sistema mientras se realiza la monitorización de este. Antes de empezar a responder las diferentes partes, se recomienda probar los monitores, sus filtros, el volcado de ficheros y su tratamiento.

Monitorización de la CPU

En esta primera parte, se pide monitorizar la CPU durante 2 horas haciendo uso del monitor TOP. El intervalo de muestreo será de 5 segundos. Los datos obtenidos (ÚTILES) deberán ser guardados en un fichero de salida para posteriormente tratarlos y responder a las siguientes preguntas.

El fichero de salida será en formato Excel (o csv) el cual tendrá el siguiente formato:

Timestamp	% CPU (global)	% CPU (user)	%CPU (system)
	•••	•••	
	•••	•••	

- 1. ¿Cuántas CPUs tiene el sistema que se ha monitorizado? ¿De dónde se ha obtenido esa información?
- 2. ¿Cuál es la utilización media de la CPU en modo usuario, sistema y en global?
- 3. ¿Cómo se comportan las medidas anteriores a lo largo del tiempo de observación? Muestra las tres métricas de forma gráfica.
- 4. ¿Cuál es la sobrecarga provocada por el monitor TOP?

Monitorización de la memoria principal

En esta segunda parte, se pide monitorizar la memoria principal del sistema durante 2 horas haciendo uso del monitor VMSTAT con un intervalo de muestreo de 15 segundos. Los datos

obtenidos (ÚTILES) deberán ser guardados en un fichero de salida para posteriormente tratarlos y responder a las siguientes preguntas.

El fichero de salida será en formato Excel (o csv) el cual tendrá el siguiente formato:

Timestamp	Capacidad disponible	Capacidad utilizada	% Memoria utilizada
	•••		

- 1. ¿Qué capacidad total tiene la memoria principal del sistema? ¿De dónde se ha obtenido ese dato?
- 2. ¿Cuál es la utilización media de la memoria? ¿Y la capacidad media utilizada?
- 3. ¿Cómo se comporta la utilización de la memoria y la capacidad utilizada? Representa estas métricas gráficamente.
- 4. ¿Cuál es la sobrecarga provocada por el monitor VMSTAT?

Pregunta final

¿Qué hubiera pasado si los dos monitores (TOP y VMSTAT) se hubieran lanzado en paralelo? ¿Cómo variaría el cálculo de la sobrecarga? Exprésalo de forma matemática.