PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-078339

(43) Date of publication of application: 15.03.2002

(51)Int.CI.

H02M 3/28

(21)Application number: 2000-255029

(71)Applicant: SANKEN ELECTRIC CO LTD

(22)Date of filing:

25.08.2000

(72)Inventor: TSURUYA MAMORU

(54) DC-DC CONVERTER

(57)Abstract:

PROBLEM TO BE SOLVED: To reduce the noise of a DC-DC converter and to improve the efficiency of the DC-DC converter.

SOLUTION: A series circuit composed of a switching device Q1 and the primary winding 8 of a transformer 2 is connected to a DC power supply 1. Second and third diodes D2 and D3 and second and third switching devices Q2 and Q3, comprising a synchronous rectifier circuit, pare connected to the secondary winding 9 of the transformer 2. The second and third switching devices Q2 and Q3 are driven by the voltage of the secondary winding. A surge absorption circuit 15a is connected to the primary winding 8. The surge absorption circuit 15a consists of a series circuit, having a long accumulation time and comprising a diode 21, a resistor 20, and a capacitor 17.

LEGAL STATUS

[Date of request for examination]

Date of sending the examiner's decision of rejection]

Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19) 日本国特許庁(JP)

(12) 公開特許公報 (A) (11) 特許出願公開番号

特開2002-78339

(P2002-78339A)

(43) 公開日 平成14年3月15日(2002.3.15)

(51) Int. Cl. 7

H 0 2 M

3/28

識別記号

FΙ

テーマコート*(参考)

H02M

R 5H730

F

審査請求 未請求 請求項の数8

OL

(全13頁)

(21)出願番号

特願2000-255029(P2000-255029)

(22)出願日

平成12年8月25日(2000.8.25)

(71)出願人 000106276

3/28

サンケン電気株式会社

埼玉県新座市北野3丁目6番3号

(72) 発明者 鶴谷 守

埼玉県新座市北野三丁目6番3号 サンケン

電気株式会社内

(74)代理人 100072154

弁理士 高野 則次

Fターム(参考) 5H730 AA14 AA20 BB23 BB57 DD04

DD41 EE08 EE14 FD01 FG05

(54) 【発明の名称】 DC-DCコンバータ

(57)【要約】

【課題】 DC-DCコンバータのノイズの低減及び効 率向上が要求されている。

【解決手段】 スイッチング素子Q1とトランス2の1 次巻線8との直列回路を直流電源1に接続する。トラン ス2の2次巻線9に同期整流回路を構成する第2及び第 3のダイオードD2、D3と第2及び第3のスイッチング 素子Q2、Q3を接続する。第2及び第3のスイッチング 素子Q2、Q3を2次巻線の電圧で駆動する。1次巻線8 に並列にサージ吸収回路15aを接続する。サージ吸収 回路15aを蓄積時間の長いダイオード21と抵抗20 とコンデンサ17との直列回路で構成する。

【特許請求の範囲】

【請求項1】 負荷に直流電力を供給するためのDC-DCコンバータであって、

1

直流電圧を供給する直流電源と、

前記直流電圧を繰返してオン・オフするために前記直流 電源の一端と他端との間に接続され、且つ第1及び第2 の主端子と制御端子とを有している主スイッチング素子 と、

前記主スイッチング素子を介して前記直流電源の一端と 他端との間に接続された1次巻線と前記1次巻線に電磁 10 結合された2次巻線とを有し且つ前記1次巻線はインダ クタンスと浮遊容量とを有しているトランスと、

前記2次巻線の電圧を直流電圧に変換するための同期整流用スイッチング素子とダイオードとを含み且つ前記同期整流用スイッチング素子が前記2次巻線の電圧で駆動されるように形成されている同期整流回路と、

前記主スイッチング素子をオン・オフ制御するための制 御回路と、

前記主スイッチング素子のターンオフ時に前記主スイッチング素子に印加されるサージ電圧を吸収するために前 20記1次巻線に対して並列に接続されたサージ吸収用コンデンサと、

前記主スイッチング素子がオン状態の時に非導通状態に保たれ、前記主スイッチング素子のターンオフ時に順方向バイアスされる方向性を有して前記サージ吸収用コンデンサに直列に接続され、且つ前記1次巻線のインダクタンスとこのインダクタンスに対して電気的に並列に分布している浮遊容量とに基づいて前記1次巻線に生じる振動電圧の周期の1/2よりも長く且つ前記主スイッチング素子の最小オフ期間よりも短い蓄積時間を有してい30る整流ダイオードと、

前記サージ吸収用コンデンサと前記整流ダイオードとの 両方に直列に接続された直列抵抗とを有していることを 特徴とするDC-DCコンバータ。

【請求項2】 更に、前記サージ吸収用コンデンサに対して並列に接続された放電用の並列抵抗を有していることを特徴とする請求項1記載のDC-DCコンバータ。 【請求項3】 前記並列抵抗は、前記サージ吸収用コンデンサと前記直列抵抗との直列回路に対して並列に接続されていることを特徴とする請求項2記載のDC-DC 40

【請求項4】 更に、前記整流ダイオードの蓄積時間よりも短い蓄積時間を有する別の整流ダイオードを有し、この別の整流ダイオードは前記直列抵抗に並列に接続されていることを特徴とする請求項2記載のDC-DCコンバータ。

コンバータ。

【請求項5】 前記直列抵抗は前記整流ダイオードと同一の包囲体に収容されていることを特徴とする請求項1 又は2記載のDC-DCコンバータ。

【請求項6】 前記サージ吸収用コンデンサは、前記1 50 第2及び第3のスイッチング素子Q2、Q3と第2及び第

次巻線に対して前記直流電源を介さないで並列に接続されていることを特徴とする請求項1万至5のいずれかに 記載のDC-DCコンバータ。

2

【請求項7】 前記サージ吸収用コンデンサは、前記1 次巻線に対して前記直流電源を介して並列に接続され且 つ前記主スイッチング素子に対して並列に接続されてい ることを特徴とする請求項1乃至5のいずれかに記載の DC-DCコンバータ。

【請求項8】 前記蓄積時間は $125 \text{ n s} \sim 7 \mu \text{ s}$ の範囲の値である請求項1 乃至7 o いずれかに記載のDC-DCコンバータ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、負荷に直流電力を 供給するための直流—直流変換器即ちDC-DCコンバータに関する。

[0002]

【従来の技術及び発明が解決しようとする課題】従来の典型的なDC-DCコンバータは、直流電源にトランスの1次巻線を介して接続されたスイッチング素子と、これをオン・オフするための制御回路と、トランスの2次巻線に接続された整流回路と、整流回路に接続された平滑回路とから成る。この種のDC-DCコンバータにおいて、整流回路はダイオード又はショットキバリアダイオードで構成される。しかし、ダイオードにおける電圧降下が0.5~0.8 V程度となり、DC-DCコンバータの効率低下の要因になる。この効率低下は特に出力電圧が2V、3.3 V、5 Vのように比較的低い場合に顕著になる。この種の問題を解決するために、図1に示すように整流回路にスイッチ素子を付加して同期整流回路を構成することが知られている。

【0003】図1のDC-DCコンパータは、フォワー ド型DC-DCコンバータと呼ばれているものであっ て、例えば整流平滑回路から成る直流電源1と、トラン ス2と、主スイッチング索子としての第1のスイッチン グ素子Q1と、同期整流回路3と、平滑回路4と、制御 回路5と、電圧検出回路6と、スナバ (snubber) 用コ ンデンサCと第1のダイオードD1とを有する。トラン ス2は磁気コア7に巻き回され且つ相互に電磁結合され た1次及び2次巻線8、9を有する。FETから成る第 1のスイッチング素子Q1は第1及び第2の主端子とし てドレイン電極Dとソース電極S及び制御端子としての ゲート電極Gを有する。第1のスイッチング素子Q1の 一方の端子即ちドレイン電極Dはインダクタンスを有す る1次巻線8を介して直流電源1の一方の端子1aに接 続され、第1のスイッチング素子Q1の他方の端子即ち ソース電極 S は 直流電源 1 の他方の端子 1 b に接続され ている。同期整流回路3は2次巻線9の一端9a及び他 端9bに接続されており、FETから成る同期整流用の

3のダイオードD2、D3とを有する。第2のスイッチン グ素子Q2の第1の主端子であるドレイン電極は2次巻 線9の他端9bに接続され、この制御端子としてのゲー ト電極は2次巻線9の一端9aに接続されている。第3 のスイッチング素子Q3の第1の主端子としてのドレイ ン電極は2次巻線9の一端に接続され、この第2の主端 子としてのソース電極は第2のスイッチング素子Q2の 第2の主端子としてのソース電極に接続され、この制御 端子としてのゲート電極は2次巻線9の他端9bに接続 されている。第2及び第3のダイオードD2、D3は第2 10 及び第3のスイッチング素子Q2、Q3に並列に接続され ている。第2のダイオードD2の方向は第1のスイッチ ング素子Q1のオン期間に2次巻線9に得られる電圧に よって順方向バイアスされるように決定されている。第 3のダイオードD3の方向は第1のスイッチング案子Q1 のオン期間に2次巻線9に得られる電圧によって逆バイ アスされるように決定されている。第1、第2及び第3 のダイオードD1, D2、D3は、第1、第2及び第3の スイッチング素子Q1、Q2、Q3と同一の半導体基体に 形成された内蔵又は寄生ダイオードである。 1次巻線8 と2次巻線9との極性は図1で黒丸で示すように設定さ れている。従って、2次巻線9に接続された第2のスイ ッチング素子Q2及び第2のダイオードD2は第1のスイ ッチング素子Q1のオン期間に導通する。

【0004】平滑回路4は平滑用リアクトル10と平滑 用コンデンサ11とから成る。平滑用コンデンサ11は 平滑用リアクトル10を介して転流用の第3のスイッチ ング素子Q3に並列に接続されている。なお、ここで は、第3のスイッチング素子Q3を同期整流回路3に含 めたが、平滑回路4の一部と考えることもできる。平滑 30 用コンデンサ11に接続された対の出力端子12、13 間に負荷14が接続されている。電圧検出回路6は対の 出力端子12、13間の電圧を検出し、制御回路5に送 る。電圧検出回路6は、一般には、出力電圧を検出する ための分圧抵抗と、基準電圧源と、誤差増幅器とから成 り、分圧抵抗から得られる出力電圧の検出値と基準電圧 源の基準電圧とが誤差増幅器に入力し、誤差増幅器の出 力が電圧検出信号又は電圧帰還制御となる。制御回路5 は出力端子12、13間の電圧を一定にするための制御 信号を形成し、これによって第1のスイッチング素子Q 40 1をオン・オフ制御する。図1の制御回路5を概略的に 示す図2から明らかなように、この制御回路5は、鋸波 発生器5aと比較器5bと駆動回路5cとから成り、例 えば20~150kHz 程度の周波数の鋸波電圧とライン 6 a の図1の電圧検出回路6の出力電圧とを比較して方 形波パルスを作成し、このパルスを含む制御信号を駆動 回路5cを介してスイッチング素子Q1のゲート電極G に送る。なお、電圧検出回路6と制御回路5とは一般に は光結合されている。

【0005】図3の(A)は図1の第1のスイッチング 50 って、リアクトル10とコンデンサ11と第3のダイオ

素子Q1のゲート制御信号V_{G1}、(B)(D)(E)は第 1、第2及び第3のスイッチング素子Q1、Q2、Q3の 対の主端子間即ちドレイン・ソース間電圧Voi、Vo2、 V₉₃、(C) は 2 次 巻 線 9 の 電 圧 V 9 を 示す。 この 図 3 から明らかなように、t0~t1、t5~t6で第1のスイ ッチング素子Q1が図3 (A) の制御信号でオン制御さ れると、これが導通状態となり、この主端子間電圧Vol は図3 (B) に示すように零に近い値になる。第1のス イッチング素子Q1のオン期間 t0~ t1、 t5~ t6に は、2次巻線9の電圧V9は図3(C)に示すように正方 向に発生するので、第2のダイオードD2は順バイアス 状態となり、また、Nチャネル絶縁ゲート型電界効果ト ランジスタから第2のスイッチング素子Q2は2次巻線 9の電圧V9によってオン駆動される。従って、t0~t 1、t5~t6のオン期間Tonにおける第2のスイッチ ング素子Q2の主端子間電圧Vo2は図3(D)に示すよ うに零に近い値になる。また、第3のスイッチング素子 Q3及び第3のダイオードD3は、t0~t1、t5~t6の オン期間Tonに逆バイアス状態にあるので、第3のス イッチング素子Q3の主端子間の電圧Vosは図3(E) に示すように2次巻線9の電圧V9にほぼ一致した高い 値になる。

【0006】第1のスイッチング素子Q1が t 1 時点で オフ制御されると、オン期間Tonにトランス2に蓄積 されたエネルギの放出によって1次巻線8に発生するフ ライバック電圧Vfと電源1の電圧Esとの和の電圧E s+Vf が第1のスイッチング素子Q1に印加される。 第1のスイッチング素子Q1にはソフトスイッチング用 又はスナバ用コンデンサCが並列に接続されているの で、このコンデンサCによってサージ電圧が吸収され、 コンデンサCの電圧即ち第1のスイッチング素子Q1の 端子間電圧Voiの急激な上昇が抑えられ、この電圧Voi は図3 (B) に示すようにt1~t3期間に徐々に上昇す る。コンデンサCの充電が t 3時転で終了すると、 t 3~ t4期間でコンデンサCの放電が生じ、コンデンサCの エネルギの一部が電源1に回生される。コンデンサCの 放電は、この電圧Vo1と電源1の電圧Esとが同一にな る t 4時点で終了する。その後 t 4~ t 5区間の第1のス イッチング素子Q1の電圧Voiは電源電圧Esに保たれ る。 t1~ t5のオフ期間Toffに1次巻線8に印加さ れる電圧は、第1のスイッチング素子Q1の電圧Voiと 電源電圧Esとの差の電圧であり、正弦波状に変化する 電圧になる。この結果、2次巻線9の電圧V9が図3 (C) に示すように t1~ t5期間に正弦波状に変化す る。オフ期間Toffには第2のダイオードD2及び第 2のスイッチング素子Q2は逆バイアス状態になるの で、この端子間電圧Vocは図3(D)に示すように2次 巻線9の電圧V9に対応した値になる。オフ期間Tof fには平滑用リアクトル10の蓄積エネルギの放出によ

ードD3又はスイッチング素子Q3の回路に電流が流れる。オフ期間Toffにおいて、第3のダイオードD3は、2次巻線9の電圧V9に無関係に導通状態に転換するが、第3のスイッチング素子Q3は2次巻線9の電圧V9に依存してオン状態に転換する。即ち、2次巻線9の逆方向の電圧V9が第3のスイッチング素子Q3をオンにすることができるゲート・ソース間電圧のしきい値をVthを横切っている期間t2~t4で第3のスイッチング素子Q3はオンになる。2次巻線の電圧V9は、t1~t2及びt4~t5区間でしきい値Vthに達しないで、この区間では第3のスイッチング素子Q3がオフ状態に保たれ、第3のダイオードD3のみが導通している時の第3のスイッチング素子Q3の端子間電圧Vosの値はVa(約0.6V)であり、第3のスイッチング素子Q3がオンになった時のこの端子間電圧Vosの値はVbであり、V

になった時のこの端子間電圧Vosの値はVbであり、V aはVbよりも高い。従って、t1~t2、t4~t5区間 では同期整流による電圧降下低減及び損失の低減の効果 を得ることができない。また、第1のスイッチング素子 Q1のタ-ンオン時点にコンデンサCに電荷が残ってい るので、ターンオン時にこれが放出され、損失になる。 【0007】図1のスナバ用コンデンサCの代わりに、 図4に示すスナバ回路即ちサージ吸収回路15を設ける ことが考えられる。このサージ吸収回路15は、ダイオ ード16とサージ吸収用コンデンサ17と抵抗18とか ら成る。サージ吸収用コンデンサ17はダイオード16 を介して1次巻線8に並列に接続されている。抵抗18 はサージ吸収用コンデンサ17に並列に接続されてい る。ダイオード16はスイッチング素子Q3がターンオ フした時に1次巻線8に発生する電圧で順方向バイアス 30 される向きに接続されている。図4においてサージ吸収・ 回路15以外は図1と同一に形成されている。

【0008】DC-DCコンバータの正常動作中には、サージ吸収用コンデンサ17が図4に示す極性に充電されている。スイッチング素子Q1のターンオフ時には、1次巻線8の電圧V1がサージ吸収用コンデンサ17の電圧Vcよりも高くなるので、ダイオード16が導通状態となり、サージ電圧がコンデンサ17で吸収される。ダイオード16が導通状態の時には、1次巻線8の電圧V1がサージ吸収用コンデンサ17でクランプされる。その後、1次巻線8の電圧V1がサージ吸収用コンデンサ17の電圧Vcよりも低くなると、ダイオード16が非導通状態となる。サージ吸収用コンデンサ17の放電電流が抵抗18を介して流れるので、コンデンサ17の は低くなることはない。

【0009】ところで、1次巻線8は、図4で破線で示すようにインダクタンスL及び寄生容量即ち浮遊容量C 1を有し、更にスイッチング素子Q1も浮遊容量C2を有する。なお、以下の説明においてインダクタンスLに対 50

して電気的に並列に分布している浮遊容量の合計C1+C2を単に浮遊容量Cとする。インダクタンスLは漏れインダクタンスと励磁インダクタンスとの和からなり、漏れインダクタンスは等価的に1次巻線8に直列に接続され、励磁インダクタンスは等価的に1次巻線8に並列に接続される。浮遊容量Cは等価的に1次巻線8のインダクタンスLに並列に接続される。この結果、LC共振回路即ちリンギング回路が形成される。なお、浮遊容量Cはサージ吸収用コンデンサ17及び出力平滑用コンデンサ11の容量よりも大幅に小さい。また、LC共振回

路の共振周波数 f 0 は

1/{2 π √(LC)}即51/{2 π (LC)^{1/2}} になる。このLC共振回路のインダクタンスLは1次巻 線8によって与えられるので、スイッチング素子Q1の ドレイン・ソース間電圧は、電源1の電圧Es と1次巻 線8に発生するフライバック電圧との和になる。 スイッ チング素子Q1のターンオフ時において、ダイオード1 6がオンになってサージ吸収用コンデンサ17によってサ ージ電圧が吸収された後にダイオード16がオフになる と、LC回路によってリンギングが生じ、図5のt1~ t2 期間及び図6のt1以後に示すようにドレイン・ソ ース間電圧V_{DS}が比較的髙い値になる。図6を参照し て、スイッチング素子Q1のターンオフ時の動作を更に 詳しく説明する。図6のVpsの波形は図5のVpsの波形 の一部を拡大して示し、 I d はダイオード16の電流を 示す。スイッチング素子Q1が図6のt1でタ-ンオフ 制御されると、ドレイン・ソース間電圧Vpsがサージ電 圧を伴う高い電圧になる。しかし、 t2~ t5に示すよう に僅かな遅れを有してダイオード16の電流 I dが流れる ので、ドレイン・ソース間電圧Vpsが制限される。ダイ オード16の電流 I dはt2~t3区間で正方向に流れ、 t3~t5区間で逆方向に流れる。t3~t5区間は逆回復 時間 trrであり、t3~t4区間は蓄積時間tsである。t 4~ t 5区間はダイオード16の p n 接合において、逆方向 阻止能力が回復するように空乏層が広がるために必要な 時間であり、一般にtdで示される。電気回路的にダイ オード16は蓄積時間 t s が終了するまでオン状態とみ なすことができるので、図6においてt4まではLCの リンギング回路がダイオード16を介してコンデンサ1 7に並列接続されている。この結果、 t 4時点まではL Cによるリンギングが阻止されている。しかし、t4後 にリンギングが開始する。 t 6時でリンギングの電圧が コンデンサ17の電圧よりも高くなろうとすると、 t6 ~ t7区間に示すように再び抑制される。図4では t7以 後にはダイオード16がオンにならず、サージ吸収効果 を伴わないリンギングが発生し、このレベルが徐々に低 下する。上述のようにリンギングが発生すると、これが 髙周波ノイズとなり、外部回路を妨害する。また、スイ ッチング素子Q1のドレイン・ソース間の耐圧が低い時 には、リンギングによってスイッチング素子Q1が破壊 7

する。図4の直流電源1は、一般には、交流電源に接続した整流平滑回路から成るので、上述の高周波ノイズを除去するために交流入力ラインに比較的高いインピーダンスのノイズ除去用フィルタを設けることが必要になり、電源装置全体の効率低下、コストアップ、外形寸法の増大を招く。また、図4の回路は、第1のスイッチング素子Q1のオフ期間の全部においてフライバック電圧を得ることができないので、図1の回路と同様な問題点を有する。

【0010】そこで、本発明の目的は、スイッチング素 10 子のターンオフ時におけるリングングを防止又は抑制す ることができ且つ電力損失を低減することができるDC -DCコンバータを提供することにある。

[0011]

【課題を解決するための手段】上記課題を解決し、上記 目的を達成するための本発明は、負荷に直流電力を供給 するためのDC-DCコンパータであって、直流電圧を 供給する直流電源と、前記直流電圧を繰返してオン・オ フするために前記直流電源の一端と他端との間に接続さ れ、且つ第1及び第2の主端子と制御端子とを有してい 20 る主スイッチング素子と、前記主スイッチング素子を介 して前記直流電源の一端と他端との間に接続された1次 巻線と前記1次巻線に電磁結合された2次巻線とを有し 且つ前記1次巻線はインダクタンスと浮遊容量とを有し ているトランスと、前記2次巻線の電圧を直流電圧に変 換するための同期整流用スイッチング素子とダイオード とを含み且つ前記同期整流調整用スイッチング素子が前 記2次巻線の電圧で駆動されるように形成されている同 期整流回路と、前記主スイッチング素子をオン・オフ制 御するための制御回路と、前記主スイッチング素子のタ ーンオフ時に前記主スイッチング素子に印加されるサー ジ電圧を吸収するために前記1次巻線に対して並列に接 続されたサージ吸収用コンデンサと、前記主スイッチン グ素子がオン状態の時に非導通状態に保たれ、前記主ス イッチング素子のターンオフ時に順方向バイアスされる 方向性を有して前記サージ吸収用コンデンサに直列に接 続され、且つ前記1次巻線のインダクタンスとこのイン ダクタンスに対して電気的に並列に分布している浮遊容 量とに基づいて前記1次巻線に生じる振動電圧の周期の 1/2よりも長く且つ前記主スイッチング素子の最小オ 40 フ期間よりも短い蓄積時間を有している整流ダイオード と、前記サージ吸収用コンデンサと前記整流ダイオード との両方に直列に接続された直列抵抗とを有しているこ とを特徴とするDC-DCコンバータに係わるものであ る。

【0012】なお、請求項2に示すように、サージ吸収 用コンデンサに並列に放電用の並列抵抗を接続すること ができる。また、請求項3に示すように並列抵抗を、サ ージ吸収用コンデンサと直列抵抗との直列回路に対して 並列に接続することができる。また、請求項4に示すよ 50 8

うに蓄積時間の長い整流ダイオードよりも短い蓄積時間の別の整流ダイオードを直列抵抗に対して並列に接続することができる。また、請求項5に示すように直列抵抗と整流ダイオードとを同一の包囲体に収容することができる。また、請求項6に示すようにサージ吸収回路をトランスの1次巻線に対して並列に接続することができる。また、請求項7に示すようにサージ吸収回路を主スイッチング素子に対して並列に接続することができる。また、請求項8に示すように蓄積時間を125 n s ~7 μ s の範囲の値することが望ましい。

[0013]

【発明の効果】各請求項の発明によれば次の効果を得る ことができる。

- (1) サージ吸収用コンデンサの容量、抵抗の値等の 調整によって同期整流用スイッチング素子のオン制御期 間を長くすることができ、効率向上を図ることができ る。
- (2) 主スイッチング素子がターンオフ制御された時に1次巻線に発生する高電圧(サージ電圧)によって整流ダイオードを通ってサージ吸収用コンデンサに電流が流れ、サージ電圧が吸収される。その後、整流ダイオードは逆バイアス状態となるが、比較的長い蓄積時間を有するために逆バイアス状態であるにも拘らず、導通状態を維持する。従って、1次巻線に対してサージ吸収用コンデンサが並列的に接続された状態が比較的長い期間維持される。この結果、サージ吸収用コンデンサがダイオードを介して浮遊容量に対して並列的に接続された状態となり、1次巻線のインダクタンスと浮遊容量とによるリンギングが抑制又は禁止される。この結果、リンギングによるノイズの発生が抑制され、且つリンギングによるスイッチング素子の破壊が防止される。
- (3) サージ吸収後におけるサージ吸収用コンデンサの電荷が1次巻線を通って放出されるので、出力側又は電源側に電力が回生され、効率が向上する。

【0014】また、請求項2及び3の発明によれば、サージ吸収用コンデンサの放電調整の自由度が高くなる。また、請求項4の発明によれば、直列抵抗の影響を除去してターンオフ直後のサージ吸収を迅速に行うことができる。また、請求項5の発明によれば、直列抵抗と整流ダイオードとの一体化によって部品点数を低減し、コストの低減及び小型化を図ることができる。

[0015]

【実施形態】次に、図7~図14を参照して本発明の実施形態を説明する。但し、図7~図14において、図1~図6と実質的に同一部分には同一の符号を付してその説明を省略する。また、図7~図14において相互に共通する部分には同一の符号を付し、これを一方のみで詳しく説明し、他方でのこの説明は省略する。なお、以下の説明においても、必要に応じて図1~図5も参照す

[0016]

【第1の実施形態】図7に示す第1の実施形態のフォワード型DC-DCコンバータは、図4のDC-DCコンバータのサージ吸収回路15の代りに改良されたサージ吸収回路15aを設けた他は、図4と同一に構成したものであり、例えば整流平滑回路から成る直流電源1と、トランス2と、主スイッチング素子としての第1のスイッチング素子Q1と、同期整流回路3と、平滑回路4と、制御回路5と、電圧検出回路6と、サージ吸収回路15aとを有する。

9

【0017】図7の改良されたサージ吸収回路15a は、図4のサージ吸収回路15に抵抗20を付加し、且 つ図4の整流ダイオード16を蓄積時間tsの長い整流 ダイオード21に置き換えた他は図4と同一に構成した ものである。

【0018】抵抗20は1次巻線8の電圧のリンギングのエネルギを消費するものであって、整流ダイオード21及びサージ吸収用コンデンサ17の両方に対して直列に接続されている。従って、この抵抗20を直列抵抗と呼ぶことにする。この直列抵抗20の抵抗値は、直流電源1の電圧Esが140V~280V程度の時に10~3302程度となるように設定され、図7の実施形態では約472である。サージ吸収用コンデンサ17と直列抵抗20との直列回路に対して並列に接続された放電用抵抗18は、好ましくは直列抵抗20よりも大きい値に設定される。なお、この抵抗18を直列抵抗20と区別するために並列抵抗と呼ぶことにする。この並列抵抗18は省くことも可能であるが、サージ吸収用コンデンサ17の放電設定の自由度を高めるために設けることが望ましい。30

【0019】本実施形態の整流ダイオード21は、図4のダイオード16と同様にスイッチング素子Q1のターンオフ時の1次巻線8の電圧V1で順方向バイアスされる向きを有して巻線8とサージ吸収用コンデンサ17との間に接続されている。従って、整流ダイオード21と直列抵抗20とサージ吸収用コンデンサ17との直列回路が1次巻線8に対して並列に接続されている。

【0020】整流ダイオード21の少数キャリアの蓄積時間 tsは、サージ吸収回路15aを設けない状態で、第1のスイッチング素子Q1がオフの時に1次巻線8の40電圧に生じる振動電圧の周期T1の1/2よりも長く且つ第1のスイッチング素子Q1の最小オフ期間よりも短い値を有する。なお、第1のスイッチング素子Q1のオフ時における1次巻線8に生じる振動電圧とは図5及び図6に示すものであって、スイッチング素子Q1のオフ状態における1次巻線8のインダクタンスLとこの浮遊容量C1とスイッチング素子Q1の浮遊容量C2との合計Cとの共振回路によるものであり、第1のスイッチング素子Q1のオン・オフ周波数よりも十分に高い周波数を有する。1次巻線8のインダクタンスLは漏れインダク50

タンスと励磁インダクタンスとの和に相当する。ダイオード21の好ましい蓄積時間は、図5に示す $t1 \sim t2$ のLC共振によるリンギングの発生期間である。リンギングの周波数は約4MHz程度であり、リンギング期間は約 $2.5 \mu s$ 程度、オフ期間は $7 \mu s$ 程度、リンギング周期は250ns程度であるので、ダイオード210蓄積時間は125nsから $7 \mu s$ の範囲、より好ましくは $125\sim500ns$ 程度が望ましい。このダイオード210蓄積時間は例えば300nsであって整流用ダイオードD2、D3及び図400ダイオード1600 蓄積時間(約60ns)よりも大幅に長い。

【0021】ダイオード21はステップ状に順方向電流を流した時の順方向電圧VFの立上り時の値が低いものから成る。ダイオード21のこの特性として、ステップ状に10mAの電流を流した時の順方向の立上り時のピーク値は6.4Vである。蓄積時間ts及び順方向電流の立上り特性を満足するダイオード21としてサンケン電気株式会社が製造しているダイオードSARS01を使用することができる。

20 【0022】次に、図8及び図9を参照して図7のDCーDCコンバータの動作を説明する。図7のDCーDCコンバータは、サージ吸収回路15aの動作を除いて図4のDCーDCコンバータと同様に動作する。即ち、スイッチング素子Q1のゲート・ソース間電圧Vcsを図8(A)に示すように断続的に高レベルにすることによってスイッチング素子Q1がオン・オフ動作し、オン期間Tonにコンデンサ11及び負荷14に電力が供給される。電圧検出回路6及び制御回路5による出力電圧の調整も図1及び図4のDCーDCコンバータと同様に行われる。

【0023】スイッチング素子Q1が図8の例えばt1 でオフ状態に転換すると、トランス2の蓄積エネルギの 放出に基づいて1次巻線8にサージ電圧が発生するが、 ダイオード21がオンになるために、サージ電圧がコン デンサ17で抑制され、スイッチング素子Q1のドレイ ン・ソース間電圧Vosはさほど高い電圧にならない。サ ージ電圧の吸収でコンデンサ17の電圧が高くなると、 ダイオード21に逆方向電圧が印加される。ダイオード 21にはサージ電圧吸収時に流れた順方向電流の少数キ ャリアが蓄積されているため、逆方向電圧が印加されて もダイオード21は導通状態を維持し、図9のt3~t5 に示すように、ダイオード21の電流 I d が逆方向に流 れる。図9においてt3~t4は蓄積時間tsであり、t 4~t5のtdは、ダイオード21のpn接合において 空乏層が広がる時間である。 蓄積時間 t s の期間には、 1 次巻線 8 及びスイッチング素子Q1等の浮遊容量Cが ダイオード21と振動エネルギ吸収用抵抗20を介して コンデンサ17に並列に接続された状態となり、LCに よる高い周波数の共振回路の形成が阻止され、これより も十分に低い周波数の共振回路が形成される。この結

11 果、1次巻線8の電圧がリンギングしなくなり、スイッ チング素子3のドレイン・ソース間電圧Vpsは図8のt 1 時点で極めて低いレベルのサージ電圧となった後に傾 斜を有して低下し、t2 時点よりも少し前でほぼ一定の 値になる。図8のtl直後でドレイン・ソース間電圧V psが低いのは、順方向電流の立上り時における抵抗及び 電圧V_Fが低いダイオード21を使用しているためであ る。なお、ダイオード21の蓄積時間 t s を比較的短い 150ns程度にすればスイッチング素子のドレイン・ ソース間電圧Vps及びダイオード21の電流Idは図10 に示すように変化する。この場合には低いレベルでリン ギングが生じるが、このリンギングは図2の従来よりは 改善される。上述のようにリンギングによる髙周波ノイ ズが発生しないと、外部回路に対する妨害が少なくな る。また、電源1を整流平滑回路で構成する場合におい ては、この入力交流ラインにリンギングによるノイズを 除去するためのフィルタを接続することが不要になり、 電源装置全体の効率向上及び小型化及び低コスト化を図 ることができる。本実施形態では、サージ吸収用コンデ ンサ17の容量、抵抗18の値の調整によって、図8 (B) に示すように平坦なフライバック電圧Vfがt1 ~t2のオフ期間Toffのほぼ全期間において得られ ている。このため、2次巻線9の電圧V9の絶対値が図 8 (C) に示すようにオフ期間 Toffの大部分のt1 ~ t 2において第3のスイッチング素子Q3のしきい値V thよりも高くなる。 t2~t3区間では2次巻線9の電圧 V9がしきい値Vthよりも低くなるので、第3のスイッ チング素子Q3がオフになり、第3のダイオードD3のみ を通って電流が流れる。従って、図8のt1~t2区間の

【0024】図7のDC-DCコンバータでは、ダイオード21が蓄積時間で導通している間に、コンデンサ17、抵抗20、ダイオード21、1次巻線8の閉回路に40オン期間Tonの電流とは逆向きの電流が流れる。このため、コンデンサ17の放出エネルギが2次巻線9側に回生され、効率向上に寄与する。即ち、抵抗18を介してコンデンサ17の放電の全部を行なわないで、1次巻線8に回生することができる。

第3のスイッチング素子Q3の端子間電圧Vosは図8

(E)に示すように零よりも僅かに高い値になり、 $t1\sim$ $t3区間の電圧Vosは<math>t1\sim t2区間の電圧よりも少し高$

い値になる。図3(E)と図8(E)の比較から明らか

なように、本実施形態のオフ期間Toffにおける第3

のスイッチング素子Q3のオン期間が図3に比べて長く

なるので、同期整流の効果が良好に得られ、損失が少な

[0025]

くなる。

【第2の実施形態】図11に示す第2の実施形態のDC -DCコンバータは、図7のDC-DCコンバータのサ ージ吸収回路15aをサージ吸収回路15bに変形し、 この他は図7と同一に形成したものである。図11のサ 50 ージ吸収回路15bは図5のサージ吸収回路15aの並列抵抗18をコンデンサ17に直接に並列接続した他は、図7と同一に形成したものである。但し、図12に示すように直列抵抗20はダイオード21と一体に形成されている。

【0026】抵抗18、20の接続位置を図12に示すように変形したサージ吸収回路15bの動作は、図7のサージ吸収回路15aと実質的に同一であり、同一の作用効果を得ることができる。

【0027】この第2の実施形態では、更に、抵抗20とダイオード21とが図12に示すように包囲体としての同一の樹脂封止体23に収容されているので、両者を1つの複合部品24として取り扱うことができ、DCーDCコンバータの小型化、低コスト化を図ることができる。図12の複合部品24では、抵抗体チップから成る抵抗20と半導体チップから成るダイオード21とがろう材25で接合され、一方の端子26がろう材27で抵抗20に接合され、他方の端子28がろう材29でダイオード21に接合されている。

[0028]

20

【第3の実施形態】図13に示す第3の実施形態のDC -DCコンバータは、図7のサージ吸収回路15aを変 形したサージ吸収回路15cを設け、この他は図7と同 一に構成したものである。図13のサージ吸収回路15 cは図7のサージ吸収回路15aに第2の整流ダイオー ド16aを付加したものに相当する。即ち、図13のサ ージ吸収回路15cは、第1の整流ダイオード21と直 列抵抗20とコンデンサ17との直列回路を図7と同様 に有する。しかし、並列抵抗18は図11と同様にコン デンサ17に直接に並列接続されている。第2の整流ダ イオード16aは直列抵抗20に並列に接続されてい る。第2の整流ダイオード16aは第1の整流ダイオー ド21よりも蓄積時間 tsが短いものであり、図4の従 来の整流ダイオード16と同様な電気的特性を有する。 【0029】図13のDC-DCコンバータにおいてス イッチング素子Q1がターンオフした時には1次巻線8 の電圧によって第1及び第2の整流ダイオード21、1 6 a が導通し、これ等を通ってコンデンサ17にサージ 電流が流れる。従って、第2の整流ダイオード16aは 直列抵抗20のバイパスとして機能している。コンデン サ17がサージ電圧を吸収し、この電圧Vc が高くなる と、第1及び第2の整流ダイオード21、16aは逆バ イアス状態になる。第2の整流ダイオード16 a は蓄積 時間が短いので、比較的短時間の内にオフ状態になる が、第1の整流ダイオード21は蓄積時間が長いので、 オン状態に保たれ、図7の場合と同様にコンデンサ17 と抵抗20と第1の整流ダイオード21との直列回路が 1次巻線8に並列に接続され、1次巻線8の電圧V1の リンギングが防止される。従って、第3の実施形態は第 1の実施形態と同一の効果を有し、更に、第2の整流ダ イオード16aによるバイパス作用によってサージ吸収 を迅速に行うことができるという効果を有する。

[0030]

【第4の実施形態】図14に示す第4の実施例のDC-DCコンバータは、サージ吸収回路15dを第1のスイ ッチング素子Q1に並列に接続し、この他は図7と同一 に構成したものである。即ち、図14のDC-DCコン バータは、サージ吸収用コンデンサ17を電源1を介し て1次巻線8に並列に接続したものである。サージ吸収 回路15 dの接続箇所を図14に示すように変形して も、図14のサージ吸収回路15dは図7のサージ吸収 回路15aと同一であり、且つ1次巻線8に対する関係 は交流的に図7と同一であるので、第1の実施形態と同 様な作用効果を得ることができる。図14の場合には、 コンデンサ17がサージ電圧を吸収した後のダイオード 21の蓄積時間中は、コンデンサ17が電源1と1次巻 線8との直列回路に対して並列に接続された状態とな り、1次巻線8のLCによるリンギング電圧が抑制され る。なお、図11及び図13のDC-DCコンバータの 変形として、ここでのサージ吸収回路15b、15cを 20 図14と同様に第1のスイッチング素子Q1に並列に接 続することができる。

[0031]

【変形例】本発明は上述の実施形態に限定されるもので なく、例えば次の変形が可能なものである。

- スイッチング素子Q1、Q2、Q3をFETに限 ることなく、バイポーラトランジスタ等の半導体スイッ チとすることができる。
- (2) 第2及び第3ダイオードD2、D3を第2及び第 3のスイッチング素子Q2、Q3とは別体の個別ダイオー 30 す回路図である。 ドとすることができる。
- 制御回路5のための電源を形成するためにトラ (3) ンス2に3次巻線を設けることができる。
- (4) 電流帰還制御を行うためにスイッチング素子Q 1に直列に電流検出用抵抗を接続することができる。
- (5) 制御回路5を変形してスイッチング素子Q1の オン・オフ制御形態を変えることができる。また、自励 式DC-DCコンバータとすることができる。

(6) 電源1を電池とすることもできる。

【図面の簡単な説明】

【図1】従来のDC-DCコンバータを示す回路図であ

14

【図2】図1の制御回路を概略的に示すプロック図であ

【図3】図1の各部の電圧を概略的に示す波形図であ

【図4】別の従来のDC-DCコンバータを示す回路図 である。

【図5】図4の各部の電圧を概略的に示す波形図であ

【図6】図4のVpsの一部及びダイオード16の電流を 示す波形図である。

【図7】第1の実施形態のDC-DCコンバータを示す 回路図である。

【図8】図7の各部の電圧を概略的に示す波形図であ

【図9】図8のVpsの一部及び図1のダイオード21の 電流を示す波形図である。

【図10】図1のダイオード21の蓄積時間を短くした 場合のVps及びIdを図9と同様に示す波形図である。

【図11】第2の実施形態のDC-DCコンバータを示 す回路図である。

【図12】図11のダイオードと抵抗の複合素子を概略 的に示す断面図である。

【図13】第3の実施形態のDC-DCコンバータを示 す回路図である。

【図14】第4の実施例形態DC-DCコンバータを示

【符号の説明】

1 電源

2 トランス

Q1,Q2,Q3 スイッチング素子

17 サージ吸収用コンデンサ

18,20 抵抗

21 ダイオード

【図2】

【図12】

[図1]

[図3]

【図5】

【図9】

[図4]

【図8】

[図7]

【図10】

【図11】

[図13]

【図14】

