HW2

Please type or photograph your solution and turn it into a pdf before submitting it to Canvas. The first two problems will be graded for correctness.

- 1. Let A be a set. $+_A: P(A) \times P(A) \to P(A)$ defined as $(B,C) \mapsto (B \cup C) \setminus (B \cap C)$. Then:
 - (a) Show that $(P(A), +_A)$ is an abelian group.
 - (b) Let $A' \subseteq A$, show that $B \mapsto B \cap A'$ is a homomorphism from $(P(A), +_A)$ to $(P(A'), +_{A'})$.
 - (c) Let $F = \{B \in P(A) : B \text{ is finite or } A \setminus B \text{ is finite}\}$. Show that F is a subgroup of $(P(A), +_A)$.
- 2. Let G be a group, H_1 , H_2 be two subgroups.
 - (a) Show that $H_1 \cap H_2 \leq G$.
 - (b) Show that $H_1 \cup H_2 \leq G$ iff $H_1 \leq H_2$ or $H_2 \leq H_1$.
 - (c) Let G be the group of integers and the group operation is addition. Write down two subgroups whose union is no longer a subgroup.
- 3. Show that the set of $n \times n$ matrices with integer entries and determinant 1 form a group under matrix multiplication. (These groups are denoted as $SL(n,\mathbb{Z})$.
- 4. Let G be a group, show that G has only the identity element iff for any group H, Hom(H,G) has exactly one element.
- 5. Show that for any group G, any $g \in G$, there is a unique group homomorphism from $(\mathbb{Z}, +)$ to G, sending 1 to g.
- 6. Let M be a set, $*: M \times M \to M$ be a function, such that for any $a,b,c \in M$, *(a,*(b,c)) = *(*(a,b),c), *(a,b) = *(b,a), and there is an element $e \in M$ such that for any $a \in M$, *(e,a) = *(a,e) = a. Let $: (M \times M) \times (M \times M) \to M \times M$ be $((a,b),(c,d)) \mapsto (*(a,c),*(b,d))$, \sim a relation on $M \times M$ defined as $\sim = \{((a,b),(c,d)) \in (M \times M) \times (M \times M) :$ there exists $k \in M$, $*(*(a,d),k) = *(*(b,c),k)\}$
 - (a) Show that \sim is an equivalence relation.
 - (b) Let $G = (M \times M) / \sim$. Show that $([a], [b]) \mapsto [\cdot (a, b)]$ is a function from $G \times G$ to G. Denote it as \cdot' .

- (c) Show that (G, \cdot') is an abelian group. This is called the Grothendieck group of (M, *).
- (d) Show that there is a bijective homomorphism from the Grothendieck group of $(\mathbb{Z}\setminus\{0\},\times)$ to the group $(\mathbb{Q}\setminus\{0\},\times)$.

Answer:

- 1. (a) $+_A$ is clearly well defined, and from definition one can see that $B+_A$ $C=C+_AB$ for any $B,C\in P(A)$.
 - i. Associativity: if $B, C, D \in P(A)$, $a \in A$ lies in $B +_A C$ iff a is in B or C but not both, hence a is in $(B +_A C) +_A D$ iff a is in B but not C or D, C but not B or D, D but not B or C, or in all three sets B, C and D. Similarly $a \in B +_A (C +_A D)$ can be shown to have the same meaning, hence $(B +_A C) +_A D = B +_A (C +_A D)$.
 - ii. Identity element is \emptyset , because $(\emptyset \cup B) \setminus (\emptyset \cap B) = B \setminus \emptyset = B$.
 - iii. The inverse of $B \in P(A)$ is the element B itself.

These show that $(P(A), +_A)$ is an abelian group.

- (b) Denote this map as r, then for every $B, C \in P(A)$, $r(B) +'_A r(C) = ((B \cap A') \cup (C \cap A')) \setminus ((B \cap A') \cap (C \cap A')) = ((B \cup C \setminus (B \cap C)) \cap A' = r(B +_A C).$
- (c) Clearly $\emptyset \in F$. If $B \in F$, because -B = B, $-B \in F$, hence F is closed under inverse. To show that F is closed under group operation, suppose $B, C \in F$. Then there are three cases:
 - i. Both B and C are finite, then $B +_A C \subseteq B \cup C$ is finite hence in F.
 - ii. Both $A \setminus B$ and $A \setminus C$ are finite, then $A \setminus B = (B +_A (A +_A A)) +_A (C +_A (A +_A A)) = ((B +_A A) +_A A) +_A ((C +_A A) +_A A) = (A \setminus B) +_A (A \setminus C) \subseteq (A \setminus B) \cup (A \setminus C)$ is finite, hence in F.
 - iii. B or C is finite, and the complement of the other is finite as well. Suppose B and $A \setminus C$ are both finite, then $A \setminus (B +_A C) = A +_A (B +_A C) = B +_A (A +_A C) = B +_A (A \setminus C) \subseteq B \cup (A \setminus C)$ is finite, hence $B +_A C \in F$.
- 2. (a) Let i be the inclusion map from H_1 to G, then $H_1 \cap H_2 = i^{-1}(H_2)$, hence $H_1 \cap H_2 \leq H_1$. Because the group operation on H_1 is the restriction of the group operation on G, $H_1 \cap H_2$ is non-empty and closed under this group operation and inverse, hence is a subgroup of G.
 - (b) If $H_1 \leq H_2$ or $H_2 \leq H_1$, $H_1 \cup H_2 = H_2$ or H_1 , hence is a subgroup of G. On the other hand, if neither $H_1 \leq H_2$ nor $H_2 \leq H_1$, there are $a \in H_1 \setminus H_2$ and $b \in H_2 \setminus H_1$. Suppose $H_1 \cup H_2 \leq G$, then $ab \in H_1 \cup H_2$. If $ab \in H_1$, then $b = a^{-1}(ab) \in H_1$, a contradiction. If $ab \in H_2$, then $a = (ab)b^{-1} \in H_2$, also a contradiction.
 - (c) By (b) above, we can pick for example $\langle 2 \rangle$ and $\langle 3 \rangle$.

- 3. (a) The product of two integer matrices has integer entries, and the determinant equals the product of their determinant, hence matrix multiplication is a well defined function from $SL(n,\mathbb{Z}) \times SL(n,\mathbb{Z})$ to $SL(n,\mathbb{Z})$.
 - (b) Associativity follows from the associativity of matrix multiplications.
 - (c) The identity element is the identity matrix $I_n \in SL(n, \mathbb{Z})$.
 - (d) By Cramer's rule, the inverse of a matrix is $\frac{1}{\det t}$ times the matrix of cofactors. If $A \in SL(n,\mathbb{Z}), \frac{1}{\det(A)} = 1$, and the matrix of cofactors is an integer matrix, hence A^{-1} is an integer matrix. $\det(A^{-1}) = 1/\det(A) = 1$, hence $A^{-1} \in SL(n,\mathbb{Z})$.
- 4. If G has only the identity, the only map from H to G must be the constant map sending everything to the identity, which is a group homomorphism. If G has more elements than the identity, Hom(G,G) has at least two elements, one being the identity map $g \mapsto g$, one being the constant map $g \mapsto e$.
- 5. It is easy to check that the map $f(n) = \begin{cases} g^n & n > 0 \\ e & n = 0 \text{ is such a group} \\ (g^{-n})^{-1} & n < 0 \end{cases}$

homomorphism. To show that it is unique, if f' is a homomorphism sending 1 to g, then if n > 0, $f'(n) = f'(1+1+\cdots+1) = f'(1)f'(1) \dots f'(1) = f'(1)^n = g^n$, and if n < 0 then $f'(-(-n)) = f'(-n)^{-1} = (g^{-n})^{-1}$, hence f' = f.

- 6. For convenience we write *(a, b) as ab
 - (a) i. If $(a,b) \in M \times M$, ab = ab, hence $(a,b) \sim (a,b)$.
 - ii. If $(a,b),(c,d) \in M \times M$, $(a,b) \sim (c,d)$, then adk = bck, which implies cbk = dak, hence $(c,d) \sim (a,b)$.
 - iii. If $(a,b), (c,d), (s,t) \in M \times M$, $(a,b) \sim (c,d)$, $(c,d) \sim (s,t)$, then adk = bck, ctk' = dsk', hence adkctk = bckdsk' which implies that at(cdkk') = bs(cdkk'), which shows that $(a,b) \sim (s,t)$.
 - (b) To show this is well defined, we only need to show the value doesn't depend on the exact choice of the representative. In other words, suppose $(a,b) \sim (a',b')$, $(c,d) \sim (c',d')$, we need to show that $(ac,bd) \sim (a'c',b'd')$. $(a,b) \sim (a',b')$, $(c,d) \sim (c',d')$ implies that ab'k = ba'k, cd'k' = dc'k', hence (acb'd'kk' = bda'c'kk') which finishes the proof.
 - (c) Associativity and commutativity follows from the associativity and commutativity of M, [(a,a)] is the identity element, and [(a,b)] = [(b,a)].
 - (d) The homomorphism can be defined as [(p,q)] = p/q.

- i. To show that it is well defined, if $(p,q) \sim (p',q'),$ then pq'k = qp'k, hence p/q = p'/q'.
- ii. To show that it is an injection, p/q=p'/q' implies pq'=qp' which implies $(p,q)\sim (p',q')$.
- iii. To show that it is a surjection, every $p/q\in\mathbb{Q}$ is the image of [(p,q)].