Домашнее задание по алгебре №7.

Михайлов Никита Маратович, ПМИ-167.

Задание 1.

 $\Pi y cm \delta \alpha - \kappa o m n n e \kappa c h u u \kappa o p e h \delta m h o r o u n e h a <math>x^3 - 3x + 1$. $\Pi p e d c m a \delta \delta m e \delta n e m e h m$

$$\frac{\alpha^4 - \alpha^3 + 4\alpha + 3}{\alpha^4 + \alpha^3 - 2\alpha^2 + 1} \in \mathbb{Q}(\alpha)$$

в виде $f(\alpha)$, где $f(x) \in \mathbb{Q}[x]$ и deg $f(x) \leq 2$.

Решение. Так как α – корень данного многочлена, то $A(\alpha) = \alpha^3 - 3\alpha + 1 = 0$. Поэтому разделим числитель и знаменатель на $A(\alpha)$. Тогда исходная дробь будет равна дроби, числитель и знаменатель которой есть остатки от деления на $A(\alpha)$ соответственно.

Заметим, что 1) $\alpha^4 - \alpha^3 + 4\alpha + 3 = (\alpha - 1)A(\alpha) + 3\alpha^2 + 4$; 2) $\alpha^4 + \alpha^3 - 2\alpha^2 + 1 = (\alpha + 1)A(\alpha) + \alpha^2 + 2\alpha$.

Следовательно, исходная дробь ранва дроби $\frac{3\alpha^2+4}{\alpha^2+2\alpha}$. Пусть $g(\alpha)=\alpha^2+2\alpha$, тогда $f(\alpha)=(3\alpha^2+4)\cdot g^{-1}(\alpha)$. Найдем $g^{-1}(\alpha)$.

Примечание. НОД $(a,b)=1\Rightarrow \exists x,y: ax+by=1$, где a,b,x,y – многочлены. Но если α – корень a, то ax=0. Получим by=1, откуда следует, что $y=b^{-1}$

Теперь заметим, что $HOД(A(\alpha), g(\alpha)) = -1$ (дальше все равно будет видно, что действительно -1). Применим расширенный алгоритм Евклида:

- 1. $\alpha^3 3\alpha + 1 = (\alpha^2 + 2\alpha)(\alpha 2) + (\alpha + 1) \Leftrightarrow (\alpha + 1) = \alpha^3 3\alpha + 1 (\alpha^2 + 2\alpha)(\alpha 2) = A(\alpha) (\alpha 2)g(\alpha)$
- 2. $\alpha^2 + 2\alpha = (\alpha + 1)(\alpha + 1) 1 \Leftrightarrow 1 = (\alpha + 1)^2 (\alpha^2 + 2\alpha) = (A(\alpha) (\alpha 2)g(\alpha))(\alpha + 1) g(\alpha)$. Применим тот факт, что $A(\alpha) = 0$, тогда $1 = (2 \alpha)g(\alpha)(\alpha + 1) g(\alpha) = g(\alpha)((2 \alpha)(\alpha + 1) 1) = g(\alpha)(-\alpha^2 + \alpha + 1) = 1$.

Подставим полученный многочлен вместо дроби: $(3\alpha^2+4)(-\alpha^2+\alpha+1) = -3\alpha^4+3\alpha^3-\alpha^2+4\alpha+4$. Возьмем остаток от делания на $A(\alpha)$. Получим: $-10\alpha^2+16\alpha+1$ – искомый элемент.

Задание 2.

Hайдите минимальный многочлен для числа $\sqrt{3}-\sqrt{5}$ над $\mathbb Q$

Решение. Пусть $x=\sqrt{3}-\sqrt{5}$, тогда $x^2=8-2\sqrt{15}\Leftrightarrow 2\sqrt{15}=8-x^2$. Составим $60=(x^2-8)^2\Leftrightarrow x^4-16x^2+4=0$. Покажем, что это минимальный многочлен, убедившись,

что он неприводим над полем \mathbb{Q} . Решим уравнение $x^4-16x^2+4=0$. Обозначим $x^2=t\geq 0$, тогда $t^2-16t+4=0$ \Rightarrow $t_{1,2}=\frac{8\pm\sqrt{64-4}}{1}=8\pm2\sqrt{15}$ \Rightarrow $\begin{bmatrix} t_1=8-2\sqrt{15}\\t_2=8+2\sqrt{15} \end{bmatrix}$ Перейдем к x:

$$\begin{bmatrix} x^2 = 8 - 2\sqrt{15} \\ x^2 = 8 + 2\sqrt{15} \end{bmatrix} \Rightarrow \begin{bmatrix} x_1 = \sqrt{3} - \sqrt{5} \\ x_2 = \sqrt{5} - \sqrt{3} \\ x_3 = \sqrt{3} + \sqrt{5} \\ x_4 = -\sqrt{3} - \sqrt{5} \end{bmatrix}$$
 Корни получились иррациональными, а, следователь-

но, многочлен $x^4 - 16x^2 + 4$ неприводим и минимален над \mathbb{Q} .

Задание 3.

Пусть F – подполе в \mathbb{C} , полученное присоединением к \mathbb{Q} всех комплексных корней многочлена $x^4 + x^2 + 1$ (то есть F – наименьшее подполе в \mathbb{C} , содержащее \mathbb{Q} и все корни этого многочлена). Найдите степень расширения $[F:\mathbb{Q}]$.

Решение. Заметим, что $x^6-1=(x^2-1)(x^4+x^2+1)$ – разность кубов. Поэтому корнями данного многочлена будут все комплексные корни из 1 кроме ± 1 . Все корни можно получить возведением числа $\frac{1}{2}+\frac{\sqrt{3}}{2}i$ в натуральную степень (так как возведение в степень комплексного числа по модулю равного единицу – это есть умножение его угла на степень). Самое маленькое подполе в \mathbb{C} , содержащее корни данного многочлена совпадает с $\mathbb{Q}(\frac{1}{2}+\frac{\sqrt{3}}{2}i)$. Если рассматривать это поле как векторное пространство, то его размерность – 2.

Задание 4.

Пусть $F = \mathbb{C}(x)$ – поле рациональных дробей и $K = \mathbb{C}(y)$, где y = x + 1/x. Найдите степень расширения [F:K].

Решение. Заметим, что x – корень уравнения $x^2 - xy + 1 = 0$ над полем $\mathbb{C}(y)$. Действительно, если подставить вместо y число x + 1/x, то получим $x^2 - x(x + 1/x) + 1 = x^2 - x^2 - 1 + 1 = 0$ – верно. Тогда если x не является элементом $\mathbb{C}(y)$, то степень расширения равна двум(так как через базис $\mathbb{C}(y)$ нельзя будет выразить x). Пусть $x \in \mathbb{C}(y)$, тогда $\exists P(y), Q(y)$ такие, что $x = \frac{P(y)}{Q(y)}$. Тогда рассмотрим предел левой и правой частей при $x \to \pm i$. Тогда $\lim_{x \to \pm i} x + \frac{1}{x} = \frac{1}{2}$

 $\frac{x^2+1}{x}=0$. Тогда предел отношения P к Q будет стремиться либо к 0, либо к бесконечности, либо к отношению свободных членов. Левая часть не стремится ни к нулю, ни к бесконечности. Тогда правая часть тоже не должна к ним стремиться. Тогда очевидно, что если правая часть стремится к отношению свободных членов, то она стремится к такому же число и при замене $x \to -i$. Но левая часть меняет при этом знак. Получили противоречие. Следовательно, степень расширения равна 2.