Математическая логика и теория алгоритмов

Посов Илья Александрович

запись конспекта: Блюдин Андрей и Хаматов Вадим

Содержание

1	\mathbf{Ma}	Латематическая логика						
	1.1	Исчис	ление высказываний	1				
		1.1.1	Основные понятия	1				
		1.1.2	Функции от 1 переменной (их определения)	2				
		1.1.3	Функции от 2 переменных (их определения)	3				
		1.1.4	Приоритеты операций	5				
		1.1.5	Алгебраические преобразования логических выра-					
			жений	5				
		1.1.6	Таблица эквивалентных логических выражений	6				
		1.1.7	Многочлены Жегалкина	8				

1 Математическая логика

1.1 Исчисление высказываний

1.1.1 Основные понятия

Определение. Логическая функция — это множество из 2 элементов. Также, логической функцией называют множество логических значений $B = \{0,1\}$, где 0 — это ложь (false), а 1 — это истина (true)

Определение. Логическая функция от n переменных

$$f:B^n\to B$$

Замечание. Часто логические функции вводят как перечисление возможных аргументов и значений функции при этих аргументах

X	у	f(x,y)
0	0	0
0	1	1
1	0	1
1	1	1

Таблица 1: Таблица истинности для f(x, y)

Пример. Введем функцию f(x, y)

Эту же функцию можно задать функцией f(x,y) = max(x,y)

Утверждение. Функция от п переменных может быть $f(x_1, x_2, x_3, \dots, x_n)$

x_1	x_2	 x_n	$f(x_1,x_2,\ldots,x_n)$
0	0	 0	0 или 1
		 	0 или 1
1	1	 1	0 или 1

Таблица 2: Таблица истинности для $f(x_1, x_2, \dots, x_n)$

При этом количество всех возможных наборов аргументов равняется 2^n , а количество всех возможных функций при всех возможных наборах аргументов равняется 2^{2^n}

Следствие. Посчитаем количество таких функий для разных п

$$n=1$$
 $2^2=4$ функций $f(x)$ $n=2$ $2^{2^2}=16$ функций $f(x,y)$ $n=3$ $2^{2^3}=2^8=256$ функций $f(x,y,z)$

1.1.2 Функции от 1 переменной (их определения)

Пример. Перечислим все возможные функции от 1 переменной

\boldsymbol{x}	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$
0	0	0	1	1
1	0	1	0	1

Данные функции имеют значение:

$$f_1(x) = 0 - функция 0$$

$$f_2(x) = x$$
 — функция x

$$f_3(x) = !x, \bar{x}, \neg x, \text{ not } x - функция отрицания (не x)$$

$$f_4(x) = 1 - функция 1$$

1.1.3 Функции от 2 переменных (их определения)

Пример. Перечислим все возможные функции от 2 переменных

x	y	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$	$f_5(x)$	$f_6(x)$	$f_7(x)$	$f_8(x)$
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

Таблица 3: Таблица истинности для f(x,y)

Продолжение:

\boldsymbol{x}	y	$f_9(x)$	$f_{10}(x)$	$f_{11}(x)$	$f_{12}(x)$	$f_{13}(x)$	$f_{14}(x)$	$f_{15}(x)$	$f_{16}(x)$
0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

Таблица 4: Таблица истинности для f(x,y)

Перечислим основные значения функций:

 $f_2(x,y)$ — это конъюнкция или "лочическое и"или логическое умножение $(xy,x\&y,x\land y)$

 $f_7(x,y)$ — это исключающее или $(x+y,xXORy,x\oplus y)$, также данную функцию можно ассоциировать как (x+y)mod2

 $f_8(x,y)$ — это логическое или, но ее можно также записать как $max(x,y) \; (x|y,x\vee y)$

```
f_{10}(x,y) — это эквивалентность (x \Leftrightarrow y, x \equiv y, x == y)
```

 $f_{14}(x,y)$ — это импликация $(x \Rightarrow y, x \rightarrow y)$

Импликация работает так, что истина следует из чего угодно:

лешия не существует \Rightarrow русалок не существует $= 1 \ (1 \Rightarrow 1 = 1)$

допса скучная \Rightarrow русалок не существует $= 1 \ (0 \Rightarrow 1 = 1)$

русалки существуют \Rightarrow драконы существуют $= 1 \ (0 \Rightarrow 0 = 1)$

 $x \Rightarrow y = 0$ только если x = 1, а y = 0

 $f_{12}(x,y)$ — это обратная импликация $(x \Leftarrow y = y \Rightarrow x)$

 $f_9(x,y)$ — стрелка Пирса $(x \downarrow y = \overline{x \lor y})$

 $f_{15}(x,y)$ — штрих Шеффера $(x|y=\overline{xy})$

 $f_3(x,y)$ — запрет по у $(x>y=\overline{x\Rightarrow y})$

 $f_1(x,y) - 0$

 $f_4(x,y) - x$

$$f_5(x,y)$$
 — запрет по х $(x < y = \overline{x \Leftarrow y})$ $f_6(x,y)$ — y $f_{11}(x,y)$ — не у $(\neg y)$ $f_{13}(x,y)$ — не х $(\neg x)$ $f_{16}(x,y)$ — 1

Определение. Логические выражения — способ задания логических функций с помощью переменных, цифр 0 или 1 и операций:

$$\cdot$$
 \vee \Rightarrow \Leftrightarrow $+$ \equiv $|$ \downarrow $<$ $>$

Пример. Примеры логических выражений:

$$(x \lor y) = (x \Rightarrow yz) \lor (y \equiv z) (0 \Rightarrow x) \lor (1 \Rightarrow y)$$

Определение. Значения логического выражения можно записать **Таблицей истинности**

Пример. $f(x, y, z) = (x \lor y)z$

X	у	\mathbf{z}	f(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Замечание. Порядок строчек в таблеце истинности может быть любым, но лучше использовать как у двоичных чисел

Утверждение. Таблицы истинности часто считают постепенно

X	у	Z	$x \lor y$	$(x \lor y)z$
				• • •

1.1.4 Приоритеты операций

· ∨ + ≡

Пример. Примеры приоритетов операций:

1.1.5 Алгебраические преобразования логических выражений

Определение. Алгебраические преобразования логических выражений — изменяем выражения по правилам, обычно в сторону упрощения

Пример.
$$(0 \Rightarrow x) \lor (1 \Rightarrow y) = 1 \lor (1 \Rightarrow y) = 1$$

Утверждение 1.

$$\overline{\overline{x}} = x$$

Доказательство:

x	\overline{x}	$\overline{\overline{x}}$
0	1	0
1	0	1

Утверждение 2. $\Pi pu \vee :$

$$1 \lor x = 1$$

$$0 \lor x = x$$

$$x \lor y = y \lor x$$

1.1.6 Таблица эквивалентных логических выражений

Утверждение. $x \lor y = y \lor x$ - симметричность

$$x \lor 0 = x$$

$$x \lor 1 = 1$$

$$x \lor x = x$$

$$x \vee \overline{x} = 1$$

Доказательство:

x	\overline{x}	$x \vee \overline{x}$
0	1	$0 \lor 1 = 1$
1	0	$1 \lor 0 = 1$

$$xy = yx$$

$$x * 0 = 0$$

$$x * 1 = x$$

$$x * x = x$$

$$x * \overline{x} = 0$$

$$x + y = y + x$$

$$x + 0 = x$$

$$x + 1 = \overline{x}$$

$$x + x = 0$$

$$x + \overline{x} = 1$$

Утверждение. $x \lor (y \lor z) = (x \lor y) \lor z$ - ассоциативность Ассоциативность означает, что порядок скобок не важен

Пример. $x\Rightarrow y\neq y\Rightarrow x$ - не симметричная функция

Доказательство:

ху	$x \Rightarrow y$	$y \Rightarrow x$
0 0	1	1
0 1	1	0
1 0	0	1
1 1	1	1

3амечание. $x \Rightarrow y \neq y \Rightarrow x$

$$x \Rightarrow 0 = \overline{x}$$

$$0 \Rightarrow x = 1$$

Доказательство:

X	$x \Rightarrow 0$
0	$0 \Rightarrow 0 = 1$
1	$1 \Rightarrow 0 = 0$

$$x \Rightarrow 1 = 1$$

$$1 \Rightarrow x = x$$

$$x \Rightarrow x = 1$$

$$x \Rightarrow \overline{x} = \overline{x}$$

$$\overline{x} \Rightarrow x = x$$

 $\overline{x} \Rightarrow y \Rightarrow z$ договоримся, что это $x \Rightarrow y(y \Rightarrow z) \neq (x \Rightarrow y) \Rightarrow z$

хуг	$x \Rightarrow y$	$y \Rightarrow z$	$x \Rightarrow (y \Rightarrow z)$	$(x \Rightarrow y) \Rightarrow z$
0 0 0	1	1	1	0
0 0 1	1	1	1	1
0 1 0	1	0	1	0
0 1 1	1	1	1	1
1 0 0	0	1	1	1
101	0	1	1	1
1 1 0	1	0	0	0
1 1 1	1	1	1	1

$$x \Leftrightarrow y = y \Leftrightarrow x$$

$$x \Leftrightarrow 0 = \overline{x}$$

$$x \Leftrightarrow 1 = x$$

$$x \Leftrightarrow x = 1$$

$$x \Leftrightarrow \overline{x} = 0$$

$$x \Leftrightarrow (y \Leftrightarrow z) = (x \Leftrightarrow y) \Leftrightarrow z$$
 - ассоциативно

Утверждение. Дистрибутивность

$$(x \lor y)z = xz \lor yz$$

$$(x+y)z = xz + yz$$
 по таблице истинности

$$(x\&y)\lor z \ (xy\lor z=(x\lor z)(y\lor z)$$

$$(x \vee y)\&z = (x\&z) \vee (y\&z)$$

$$(x\&y)\vee z=(x\vee z)\&(y\vee z)$$

Замечание. $(x_1 \lor x_2 \lor x_3)(y_1 \lor y_2) = (x_1 \lor x_2 \lor x_3)y_1 \lor (x_1 \lor x_2 \lor x_3)y_2 = x_1y_1 \lor x_2y_1 \lor x_3y_1 \lor x_1y_2 \lor x_2y_2 \lor x_3y_2$ $xy \lor z = (x \lor z)(y \lor z) = xy \lor xz \lor zy \lor zz = xy \lor xz \lor zy \lor z + 1 = xy \lor z(x \lor y \lor 1) = xy \lor z$ $x + y = \overline{x} \Rightarrow y - c \text{мотри Таблицу истинности}$ $(x \Rightarrow y)(y \Rightarrow x) = x \Rightarrow y$

1.1.7 Многочлены Жегалкина

Замечание. Одну и ту же функцию можно записать по разному.

В алгебре: $f(x) = 1 + x = x + 1 = x + 5 - 4 = \sin(x - x) + x = \dots$ В логике: $f(x,y) = x \lor y = x \lor y \lor 0 = (x \lor y)(\overline{y} \lor y = x\overline{y} \lor y$ (= -дистрибутивность)

Многочлены Жегалкина для логической формулы

Определение. $f(x_1....x_n)$ - это многочлен с переменными хі, конспектами 0,1 и со степенями переменных ≤ 1 . Это многочлены от хі $\mathbf{Z_2}$

Пример.
$$f(x, y, z) = 1 + x + yz + xyz$$
 $1 + x$ $xy + xyz$
 $1 + xy$

He многочлены
 $1 + x + (y \lor z)$

 $1+x+z^2$ нельзя степень 2

3амечание. В общем случае многочлен от 1 переменной ($_i=0$ или 1)

$$a_0+a_1x$$
 от $2yx$: $a_0+a_1x+a_2y+a_3xy$ от $3ex$: $a_0+a_1x+a_2y+a_3z+a_4xy+a_5xz+a_6yz+a_7xyz$

B общем случае $f(x1....x_n)$ $a_0+a_1x_1+...+a_nx_n+ax_1x_2+ax_1x_3+...$ (все пары переменных) + $ax_1x_2x_3+ax_1x_3x_2$ \leftarrow все тройки перменных $+ax_1x_2x_3...x_n$

Определение. $\forall f(x_1...x_n)$ - логические функция $\exists !$ многочлен Жегалкина $g(x_1...x_n): f=g$

Замечание. Всего 4 функции от 1ой переменной

$$f(x) = 0 = \overline{x} = 0 + 0x$$

$$f(x) = 1 = 1 = 1 + 0x$$

$$f(x) = x = x = 0 + 1x$$

$$f(x) = \overline{x} = 1 + x = 1 + 1x$$

Докозательство:

Определение. Разные многочлены - это разные логические функции

т.е.
$$f(x_1...x_n = a_0 + ... + a_1x_1...x_n$$

 $g(x_1...x_n) = b_0 + ... + bx_1...x_n$
 $\exists !: a_i \neq b_i$ различающийся

Доказательство:

Возьмем индекс с самым большик количеством переменных

$$f(x, y, z) = 1 + x + xy + xyz = \dots + 1x + Dy + Dz + 1xy$$

$$g(x, y, z) = 1 + y + z + xyz... + Dx + 1y + 1z$$

для переменных этого слагаемого подставим 1 Оху

 ∂ ля остальных переменных : θ

$$[B]$$
 npumepe $x = 1, y = 0, z = 0 : f(1,0,0)g(1,0,0)$

u в f u в g все другие слагаемые равны θ

Tenepo f(...) u q(...)

$$f(...) = a_i x_1 x_2 x_3 \neq b_i x_1 x_2 x_3 \Rightarrow f(x_1 ... x_n) \neq y$$

Доказательство:

Проверим, что многочленов Жегалкина столько, сколько функций:

Посчитаем

$$a_0 + a_1x_1 + \dots + a_1x_1x_2\dots x_n$$

Сколько слагаемых:

1) 1 слагаемых без переменных

п слагаемых с переменной

$$a_1x_1 + \dots + a_nx_n$$

 C_n^2 - слагаемых с $\mathcal Z$ - мя переменными

$$S_n^n$$
 - слагаемых с S_n^n - мя переменными S_n^n - слагаемых с S_n^n - переменными S_n^n - слагаемых с S_n^n - S_n^n -

Пример. $a_0 + a_1 x$ - 2 слагаемых

$$a_0 + a_1 x + a_2 y + a_3 x y - 2^2 = 4$$
 слагаемых

2) Все слагаемых имею вид: $x_1, x_2, x_3...x_n$ (0 или 1) - 2^n слагаемых

Итого: многочлен Жегалкина от n переменных

Задача. Сколько разных многочленов?

Это столько же, сколько логический функций

Итог:

Следствие: Любая логическая функция может быть представлена в виде многочлена Жегалкина

```
Пример. f(x,y)=x\vee y f(x,y)=x*y - уже многочлен Жегалкина Метод неопределенных коэффициентов: Подберем x\vee y=a_0+a_1x+a_2y+a_3xy f(0,0)=0 f(0,0)=a_0+a_1*0+a_2*0+a_3... f(1,0)=1\vee 0=1 f(1,0)=a_0+a_1=a_1 (a_0=0,\Rightarrow a_1=1) f(0,1)= аналогично \Rightarrow a_1=1 f(x,y)=x+y+a_3xy f(1,1)=1\vee 1=1 f(1,1)=1+1+a_3=0+a_3=a_3, a_3=1 Ответ: x\vee y=x+y+xy
```