Коллоквиум 1

Денис Козлов Telegram

Версия от 15.10.2020 16:57

36. Что такое перестановка членов ряда? Приведите пример.

Пусть $f: \mathbb{N} \to \mathbb{N}$ биекция.

Говорят, что ряд $\sum b_n$ получен из ряда $\sum a_n$ перестановкой членов, если \exists биекция $f:\ b_n=a_{f(n)}.$

Пример.

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} = -1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \dots = -\ln 2.$$

Пусть $\sum b_n$ получен так: сложим сначала p положительных слагаемых из $\sum a_n$, потом q отрицательных, затем снова p положительных и так далее $(p,q\in\mathbb{N},$ берем слагаемые по возрастанию их индексов).

46. В каком случае бесконечное произведение называется сходящимся абсолютно? Сформулируйте и докажите критерий абсолютной сходимости бесконечного произведения.

$$\prod_{n=1}^{\infty}a_n$$
 наз-ся абсолютно сходящимся, если абсолютно сх-ся соответствующий ряд из логарифмов $\sum_{n=1}^{\infty}\ln a_n$.

Критерий абс. сх-ти:

$$\prod_{n=1}^{\infty} a_n \operatorname{сход. aбс.} \iff \sum_{n=1}^{\infty} (a_n - 1) \operatorname{сход. aбc.}$$

Доказательство. Пусть $a_n = 1 + \alpha_n$; $\alpha_n \to 0$. \circledast

Тогда
$$\ln a_n = \ln(1+\alpha_n) = \alpha_n + \overline{o}(\alpha_n) = \alpha_n(1+\overline{o}(1)) \implies |\ln a_n| = |\alpha_n| \cdot (1+\overline{o}(1)),$$
 то есть $|\ln a_n| \sim |\alpha_n|$.

Возможно, тут стоит упомянуть, что необходимое условие сходимости $\sum_{n=1}^{\infty} |\ln a_n|$ это $|\ln a_n| \to 0 \iff a_n \to 1$.

1

Поэтому, если
$$\prod_{n=1}^{\infty} a_n$$
 сход. абс., то \circledast у нас верно всегда.

56. Докажите, что если 2 функциональные последовательности сходятся равномерно к ограниченным предельным функциям, то их произведение также сходится равномерно к произведению этих предельных функций.

Доказательство. Пусть наши последовательности - $\{f_n\}$, $\{g_n\}$; их предельные функции - f,g соотв.

Знаем: $\forall \ \varepsilon_1, \varepsilon_2 \ \exists \ N_1(\varepsilon_1), \ N_2(\varepsilon_2) : |f_n(x) - f(x)| < \varepsilon_1; \ |g_m(x) - g(x)| < \varepsilon_2 \ \text{при} \ n \geqslant N_1(\varepsilon_1), \ m \geqslant N_2(\varepsilon_2).$

Пусть |f(x)| ограничен ограничен какой-нибудь константой C_1 .

Так как |g(x)| ограничен, то $|g_n(x)|$ ограничен какой-нибудь константой C_2 . Следовательно,

$$\begin{split} |f_n(x) \cdot g_n(x) - f(x) \cdot g(x)| &= \\ &= |f_n(x) \cdot g_n(x) - f(x) \cdot g_n(x) + f(x) \cdot g_n(x) - f(x) \cdot g(x)| \leqslant \\ &\leqslant |f_n(x) \cdot g_n(x) - f(x) \cdot g_n(x)| + |f(x) \cdot g(x) - f(x) \cdot g_n(x)| = \\ &= |g_n(x)| \cdot |f_n(x) - f(x)| + |f(x)| \cdot |g(x) - g_n(x)| \leqslant C_2 \cdot \varepsilon_1 + C_1 \cdot \varepsilon_2 \text{ (начиная с } n = \max(N_1(\varepsilon_1), N_2(\varepsilon_2)). \end{split}$$

Теперь возьмем произвольный $\varepsilon > 0$, и положим $\varepsilon_1 = \frac{\varepsilon}{3 \cdot C_2}$; $\varepsilon_2 = \frac{\varepsilon}{3 \cdot C_1}$.

Начиная с $n = \max(N_1(\varepsilon_1), N_2(\varepsilon_2))$ верно, что $|f_n(x) \cdot g_n(x) - f(x) \cdot g(x)| \le \varepsilon/3 + \varepsilon/3 < \varepsilon$. Мы победили.

66. Сформулируйте теорему о почленном дифференцировании функциональной последовательности.

$$-\infty \leqslant a < b \leqslant +\infty$$
, $D = (a, b)$ или $D = [a, b]$.

Пусть f_n дифф. на мн-ве D, и $f_n' \overset{D}{\rightrightarrows} g$, $\exists \ c \in D : \{f_n(c)\}$ сходится.

Тогда \exists такая предельная функция $f:f_n\stackrel{D}{\to} f$ (причем, если D ограничена, то $f_n\stackrel{D}{\rightrightarrows} f$), что f дифф., и f'=g.

Говоря иначе, $\left(\lim_{n\to\infty}f_n(x)\right)'=\lim_{n\to\infty}f_n'(x)$.

69. Дайте определение равномерной сходимости функционального ряда.

$$D\subseteq\mathbb{R},\ a_n:D o\mathbb{R}.$$
 Рассмотрим функциональный ряд $\sum_{n=1}^\infty a_n(x),$ и его ч.с. $S_N(x):=\sum_{n=1}^N a_n(x).$

Говорят, что ряд сх-ся равномерно на D, если последовательность $\{S_N\}$ сх-ся равномерно на D.

77. Сформулируйте признак Лейбница равномерной сходимости знакочередующегося функционального ряда.

Рассмотрим знакочередующийся функциональный ряд: $\sum_{n=1}^{\infty} (-1)^n u_n(x), \ u_n(x) \geqslant 0$ на D.

Если $u_n(x)\downarrow_{(n)}$ и $u_n\stackrel{D}{\Longrightarrow} 0$, то ряд сходится равномерно.

79. Сформулируйте признак Абеля равномерной сходимости функционального ряда.

Рассмотрим ряд $\sum_{n=1}^{\infty} a_n(x)b_n(x) = \circledast$.

Если $a_n(x)$ мотонна по n (при $\forall x \in D \subseteq \mathbb{R}$) и $\|a_n\| \leqslant C$ при всех n,

а ряд $\sum b_n(x)$ сх-ся равномерно, то \circledast сх-ся равномерно.

86. Докажите, что если степенной ряд $\sum c_n(x-x_0)^n$ расходится в точке x_1 , то он расходится во всех точках x, для которых $|x-x_0|>|x_1-x_0|$.

Доказательство. Докажем, что если $\sum c_n(x-x_0)^n$ сходится в точке x_1 , то он сходится во всех точках x, для которых $|x-x_0|<|x_1-x_0|$ \circledast . Из этого будет следовать сформулированное выше утверждение (методом от противного).

Итак, доказываем \circledast . (Будем рассматривать нетривиальный случай $x_1 \neq x_0$, иначе очевидно).

$$\left| \sum_{n=m}^{N} c_n (x - x_0)^n \right| = \left| \sum_{n=m}^{N} c_n \cdot (x_1 - x_0)^n \cdot \left(\frac{x - x_0}{x_1 - x_0} \right)^n \right| \leqslant \sum_{n=m}^{N} \left| c_n \cdot (x_1 - x_0)^n \right| \cdot \left| \frac{x - x_0}{x_1 - x_0} \right|^n = \bigstar.$$

Заметим, что $|c_n\cdot (x_1-x_0)^n|<\varepsilon$ при $m\geqslant n_0(\varepsilon)$ (следствие из необходимого условия сходимости).

Далее, (при наших условиях) $\sum \left| \frac{x-x_0}{x_1-x_0} \right|^n$ образуют геом. прогрессию, где $q = \left| \frac{x-x_0}{x_1-x_0} \right| < 1$.

Так что
$$\bigstar \leqslant \varepsilon \cdot (q^m + \dots + q^n) \leqslant \varepsilon \cdot q^m \cdot \frac{1}{1-q} \to 0.$$

Почему к нулю? При $m \to \infty$ выражение $q^m \cdot \frac{1}{1-q}$ остается ограниченным одной и той же константой, а ε - это произвольная сколь угодно малая величина.

Итог: ряд сходится по критерию Коши.

87. Выведите формулу Коши-Адамара для радиуса сходимости степенного ряда.

Для степенного ряда $\sum_{n=0}^{\infty} c_n \cdot (x-x_0)^n$, где $\{c_n\}$ - числовая посл-ть, $x_0 \in \mathbb{R}$ фиксирован, $x \in \mathbb{R}$ - переменная, радиус сходимости R вычислим по формуле Коши-Адамара:

$$R = \frac{1}{\overline{\lim} \sqrt[n]{|c_n|}}$$

Доказательство. В нашем ряде $a_n(x) = c_n \cdot (x - x_0)^n$. Применим радикальный признак Коши:

$$\sqrt[n]{|a_n(x)|} = \sqrt[n]{|c_n|} \cdot |x - x_0| \implies \overline{\lim} \sqrt[n]{|a_n(x)|} = \overline{\lim} \sqrt[n]{|c_n|} \cdot |x - x_0| = |x - x_0| \cdot \overline{\lim} \sqrt[n]{|c_n|} \implies \overline{\lim} \sqrt[n]{|a_n(x)|} = \overline{\lim$$

если $|x-x_0| \cdot \overline{\lim} \sqrt[n]{|c_n|} < 1$, то ряд сх-ся;

если $|x-x_0| \cdot \overline{\lim} \sqrt[n]{|c_n|} > 1$, то ряд расх-ся.

Введем $R:=rac{1}{\overline{\lim}\sqrt[n]{|c_n|}}.$

Из полученных результатов ясно, что $|x-x_0| < R \iff |x-x_0| \cdot \overline{\lim} \sqrt[n]{|c_n|} < 1$ и ряд сходится;

 $|x-x_0|>R\iff |x-x_0|\cdot\overline{\lim}\sqrt[n]{|c_n|}>1$ и ряд расходится. А это определение радиуса сходимости.

96. Запишите формулу Тейлора для бесконечно дифференцируемой функции с остаточным членом в формах Лагранжа и Коши.

Если функция f(x) беск. дифф. в точке x_0 , то f(x) можно сопоставить в соотв. ее ряд Тейлора:

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n.$$
 При этом $f(x) = \sum_{n=0}^N \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n + r_N(x).$

Фор-ла Лагранжа:
$$r_N(x)=\frac{f^{(N+1)}(x_0+\Theta(x-x_0))}{(N+1)!}(x-x_0)^{N+1},\;\Theta\in(0,1).$$

Фор-ла Коши:
$$r_N(x) = \frac{f^{(N+1)}(x_0 + \Theta(x-x_0))}{N!} (1-\Theta)^N (x-x_0)^{N+1}, \ \Theta \in (0,1).$$

97. Сформулируйте и докажите утверждение о единственности разложения функции в степенной ряд.

Если $f(x) = \sum_{n=0}^{\infty} c_n \cdot (x-x_0)^n$, $|x-x_0| < \delta$ (говоря иначе, функция представлена степенным рядом в некой окр-ти x_0); то этот степенной ряд - ее ряд Тейлора.

Доказательство.

$$f^{(k)}(x) = \sum_{n=0}^{\infty} c_n \cdot n \cdot (n-1) \dots (n-k+1) \cdot (x-x_0)^{n-k} = \sum_{n=k}^{\infty} c_n \cdot n \cdot (n-1) \dots (n-k+1) \cdot (x-x_0)^{n-k} \implies f^{(k)}(x_0) = c_k \cdot k! \implies c_k = \frac{f^{(k)}(x_0)}{k!}.$$

 $(Мы \ заменили \ в \ первом \ переходе \ нижнюю \ границу \ суммирования \ c \ нуля \ на \ <math>k$, mak kak bce $npedudyщие \ слагаемые \ зануляются)$

То есть функция может быть представлена в виде степенного ряда единственным образом - и это будет ее р.Т.