**Transformation Stack** → Transformations are maintained by a **stack**:

ctx.save(): copies the top element (transformation) and pushes on the stack

ctx.restore(): pops the top stack (goes the the latest ctx.save())

ctx.moveTo(x,y): moves the pen (stays there even if we translates or apply transformations)

ctx.lineTo(x,y): creates a line to point

Homogeneous matrix  $\rightarrow$  +1 dimension to the vector (3-d matrix for 2-d vectors) Changes multiplication + addition to only multiplication

$$\begin{bmatrix} acos(\theta) & -sin(\theta) & c \\ sin(\theta) & bcos(\theta) & d \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

This is equal to ctx.translate(c,d) \* ctx.scale(a,b) \* ctx.rotate(theta) GLmatrix mat3.multiply(out, a, b) sets the value of out to a\*b Point (x,y,c) is interpreted as (x/c, y/c) in R2



Curves and Continuity (right implies left)

 $C_0 > G_1 > C_1 > G_2 > C_2 >$ 

C\_0: two curves meet at a common point

G\_1: two curves meet at a common point, and also has same tangent direction

C\_1: two curves meet at a common point, and also has same

tangent direction and magnitude

G\_2: two curves meet at a common point, and also has same tangent direction and magnitude(double derivative direction only)

C\_2: two curves meet at a common point, and also has same tangent direction and magnitude (double derivative as well)

$$\mathbf{f}(u) = \begin{bmatrix} x(u) & y(u) \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & u & u^2 \cdots & u^N \end{bmatrix}}_{\mathbf{u}} \underbrace{\begin{bmatrix} a_0 & b_0 \\ a_1 & b_1 \\ a_2 & b_2 \\ \vdots & \vdots \\ a_N & b_N \end{bmatrix}}_{\mathbf{A}}$$
Arc-length parametrization: The derivative of the parametric curve has a magnitude of  $\mathbf{1} \to |\mathbf{C}'(t)| = \mathbf{1}$ 

Polynomial Curves  $\rightarrow$  f(u) = uA = uBP, b(u) = basis

P = [f(1), f(2), ..., f(n+1)] and C = [u(1), u(2), ..., u(n+1)], then P = CA so A = inv(C)P and B = inv(C)

$$\mathbf{b}(u) = \begin{bmatrix} 1 & u & u^2 & u^3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3 & -2 & 3 & -1 \\ 2 & 1 & -2 & 1 \end{bmatrix} \quad \begin{array}{l} \textbf{Hermites} - \text{fix start/end points \& tangents} \\ \textbf{P} = [\text{start p, start tangent, end p, end tangent}] \\ \textbf{Has C1 but not C2, good local control} \end{array}$$

**B-Splines Curves:** Doesn't necessary go through the control points (can but will lose  $C_2$ ) **Bezier Curves:** Special case of hermite curve. Special property  $\rightarrow$  curve stays in convex hull **Natural Cubic:** Give C(0), C'(0), C''(0), C(1)  $\rightarrow$  very easy to enforce  $C_2$  but loses local control

- For polynomial curves, <u>three</u> of the following properties can be satisfied simultaneously (not all 4!)
  - C2 continuity of the curve

Counter-example: Hermite

- Interpolation of all "control points" Counter-example: B-splines
- Local control of curve Counter-example: Natural cubics
- The polynomials have order no more than 3

Lookat Transform: Transforms from world coordinates to camera coordinates

(static) lookAt(out, eye, center, up) → {mat4}

Generates a look-at matrix with the given eye position, focal point, and up axis.

## Parameters:

| Name   | Туре         | Description                              |
|--------|--------------|------------------------------------------|
| out    | mat4         | mat4 frustum matrix will be written into |
| eye    | ReadonlyVec3 | Position of the viewer                   |
| center | ReadonlyVec3 | Point the viewer is looking at           |
| ир     | ReadonlyVec3 | vec3 pointing up                         |

Center in world coords will lie along the negative part of the w-axis (0,0,-w) Target in world coords will lie on origin

Up vector is a vector (in world coordinates), that when viewed from camera will show as vertical. Up vector is not the same as the v-axis of the camera system! (same plane, but doesn't have to be the same)



John pork wishes you the best :)