This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1. (Original) A liquid-crystalline medium having a helically twisted structure comprising a nematic component and an optically active component, wherein:

the optically active component comprises one or more chiral compounds whose helical twisting power and concentration are selected in such a way that the helix pitch of the medium is $\leq 1~\mu m$, and

the medium has a birefringence Δn of ≤ 0.16 .

2. (Original) A liquid-crystalline medium having a helically twisted structure comprising a nematic component and an optically active component, wherein:

the optically active component comprises one or more chiral compounds whose helical twisting power and concentration are selected in such a way that the helix pitch of the medium is $\leq 1~\mu m$, and

the nematic component comprises one or more compounds of the formula I

$$R \xrightarrow{A^{1}} A^{2} \longrightarrow Z^{1} \longrightarrow CN$$

$$I$$

and one or more compounds of the formula II

in which

R and R⁰ are each, independently of one another, H or an alkyl or alkenyl radical having from 1 to 15 carbon atoms which is unsubstituted, monosubstituted by CN or CF₃ or at least monosubstituted by halogen, where one or more CH₂ groups in these radicals are optionally, independently of one another, replaced by -O-, -S-,

such a way that O atoms are not linked directly to one another,

$$A^1$$
 and A^2 are each, independently of one another, or A^5 or A^5

 L^1 , L^2 , L^5 and L^6 are each, independently of one another, H or F,

Z¹ is -COO- or, if at least one of the radicals A¹ and A² is trans-1,4-cyclohexylene, is alternatively -CH₂CH₂- or a single bond,

Y¹ and Y² are each, independently of one another, H or F,

X⁰ is F, Cl, CN, halogenated alkyl, alkenyl or alkoxy having from 1 to 6 carbon atoms, and

a and bare each, independently of one another, 0 or 1.

3. (Currently Amended) A medium according to Claim 2, with which additionally comprises one or more alkenyl compounds selected from the following formulae:

$$R^3 - H - A^3 - R^4$$

$$R^3 - H - Q-Y$$
 III2

in which

A³ is 1,4-phenylene or trans-1,4-cyclohexylene,

c is 0 or 1,

R³ is an alkenyl group having from 2 to 7 carbon atoms,

R⁴ is an alkyl, alkoxy or alkenyl group having from 1 to 12 carbon atoms, in which one or two non-adjacent CH₂ groups are optionally replaced by -O-, -CH=CH-, -C≡C-, -CO-, -OCO- or -COO- in such a way that O atoms are not linked directly to one another,

Q is CF₂, OCF₂, CFH, OCFH or a single bond,

Y is F or Cl, and

 L^1 and L^2 are each, independently of one another, H or F.

provided that when the compound is of formula III2, it is different from the compound of formula II in the medium.

4. (Original) A medium according to Claim 2, which additionally comprises one or more compounds selected from the following formulae:

in which R^1 and R^2 have one of the meanings indicated for R in the formula I, and L is H or F.

5. (Original) A medium according to Claim 3, which additionally comprises one or more compounds selected from the following formulae:

$$R^1 \longrightarrow H \longrightarrow O \longrightarrow H \longrightarrow R^2$$

IV25

 $R^1 \longrightarrow H \longrightarrow H \longrightarrow R^2$

IV27

in which R^1 and R^2 have one of the meanings indicated for R in the formula I, and L is H or F.

6. (Original) A medium according to Claim 2, wherein the proportion of compounds of the formula I in the mixture as a whole is from 7 to 80% by weight.

- 7. (Original) A medium according to Claim 2, wherein the proportion of compounds of the formula II in the mixture as a whole is from 5 to 50% by weight.
- 8. (Original) A medium according to Claim 2, wherein the proportion of the optically active component is from 0.01 to 7%.
- 9. (Original) A medium according to Claim 2, wherein the medium has a reflection wavelength in the range from 400 to 800 nm.
- 10. (Currently Amended) A medium according to Claim 2, wherein the medium has a birefringence Δn of ≤ 0.16 .
- 11. (Original) An electro-optical liquid-crystal display containing a liquid-crystalline medium according Claim 1.
- 12. (Original) An electro-optical liquid-crystal display containing a liquid-crystalline medium according Claim 2.
- 13. (Original) An electro-optical liquid-crystal display according to Claim 11, which display is a cholesteric, SSCT, PSCT or flexoelectric display.

- 14. (Original) An electro-optical liquid-crystal display according to Claim 12, which display is a cholesteric, SSCT, PSCT or flexoelectric display.
- 15. (New) An electro-optical liquid-crystal display according to Claim 11, wherein the display has a layer thickness of the liquid crystal cell, d, and the medium has a helix pitch, p, such that the ratio d/p is from 2 to 20.
- 16. (New) An electro-optical liquid-crystal display according to Claim 12, wherein the display has a layer thickness of the liquid crystal cell, d, and the medium has a helix pitch, p, such that the ratio d/p is from 2 to 20.
- 17. (New) A medium according to claim 1, wherein the helix pitch of the medium is from 200 nm to 750 nm.
- 18. (New) A medium according to claim 2, wherein the helix pitch of the medium is from 200 nm to 750 nm.
- 19. (New) A medium according to claim 1, wherein the optically active component exhibits a helical twisting power of 20 µm⁻¹ or more.
- 20. (New) A medium according to claim 2, wherein the optically active component exhibits a helical twisting power of 20 µm⁻¹ or more.

21. (New) A medium according to claim 1, wherein the optically active component includes at least one compound of the following:

- cholesteryl nonanoate,
- compounds of the formulae VII to IX:

$$C_6H_{13}$$
 H COO O COO - CH - C_2H_5 $*$ $(R/S-811)$

$$C_5H_{11}$$
 H O COO O H C_5H_{11} $VIII$ $(R/S-1011)$

$$C_3H_7$$
 H
 O
 F
 O
 C_4H_13
 F
 $(R/S-2011)$

compounds of the formula X:

$$R^{0} \xrightarrow{F} Z^{0} \xrightarrow{E} COO \xrightarrow{H} O$$

$$(R,S) \xrightarrow{H} OOC \xrightarrow{E} Z^{0} \xrightarrow{F} R^{0}$$

$$X$$

compounds of the formula XI:

wherein, in formula X and XI,

E and F are each, independently of one another; 1,4-phenylene, which is optionally monosubstituted, disubstituted or trisubstituted by L; or 1,4-cyclohexylene,

L is H, F, Cl, CN or optionally halogenated alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl or alkoxycarbonyloxy having 1-7 carbon atoms,

v is 0 or 1,

Z⁰is -COO-, -OCO-, -CH₂CH₂- or a single bond, and

R is alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl or alkylcarbonyloxy having 1-12 carbon atoms,

compounds of the formula XII:

$$(Y^{31})_{y1}$$
 B
 U^{1}
 V^{1}
 W^{11}
 V^{32}
 V^{3

in which:

 X^{31} , X^{32} , Y^{31} and Y^{32} are each, independently of one another: H; F; Cl; Br; I; CN; SCN; SF_{5;} straight-chain or branched alkyl having up to 25 carbon atoms, unsubstituted

or monosubstituted or polysubstituted by F, Cl, Br, I or CN, and in which one or more non-adjacent CH₂ group, independently of one another, are optionally replaced by -O-, -S-, -NH-, -NR⁰⁰-, -CO-, -COO-, -OCO-O-, -S-CO-, -CO-S-, -CH=CH- or -C≡C- in such a way that O and/or S atoms are not linked directly to one another; a polymerizable group; cycloalkyl or aryl having up to 20 carbon atoms, which are optionally monosubstituted or polysubstituted by L or a polymerizable group,

 R^{00} is H or alkyl having from 1 to 4 carbon atoms, x^1 and x^2 are each, independently of one another, 0, 1 or 2, y^1 and y^2 are each, independently of one another, 0, 1, 2, 3 or 4,

B and C are each, independently of one another, an aromatic or partially or fully saturated aliphatic six-membered ring, in which one or more CH groups are optionally replaced by N and one or more CH₂ groups are optionally replaced by O and/or S,

one of the radicals W^{11} and W^{22} is $-Z^{11}-A^{11}-(Z^{22}-A^{22})_m-R^{31}$ and the other is R^{32} or A^{33} , or both radicals W^{11} and W^{22} are $-Z^{11}-A^{11}-(Z^{22}-A^{22})_m-R^{31}$, where W^1 and W^2 are not simultaneously H, or

U¹ and U² are each, independently of one another, CH₂, O, S, CO or CS,

 V^1 and V^2 are each, independently of one another, $(CH_2)_n$, in which up to four non-adjacent CH_2 groups are optionally replaced by O and/or S, and one of the radicals V^1 and V^2 or, if

$$X_{W^{22}}^{V^{11}}$$
 is $Z^{11}-A^{11}-(Z^{22}-A^{22})_{m}-R^{31}$

one or both radicals V¹ and V² are alternatively a single bond,

n is an integer from 1 to 7,

 Z^{11} and Z^{22} are each, independently of one another, -O-, -S-, -CO-, -COO-, -OCO-, -O-COO-, -CO-NR⁰⁰-, -NR⁰⁰-CO-, -OCH₂-, -CH₂O-, -SCH₂-, -CH₂S-, -CF₂O-, -OCF₂-, -CF₂S-, -SCF₂-, -CH₂CH₂-, -CF₂CH₂-, -CF₂CF₂-, -CH=CH-, -CH=N-, -N=CH-, -N=N-, -CF=CH-, -CH=CF-, -CF=CF-, -C=C-, -CH=CH-COO-, -OCO-CH=CH- or a single bond,

A¹¹, A²² and A³³ are each, independently of one another: 1,4-phenylene, in which, in addition, one or more CH groups are optionally replaced by N; 1,4-cyclohexylene, in which, one or more non-adjacent CH₂ groups are optionally replaced by O and/or S; 1,3-dioxolane-4,5-diyl; 1,4-cyclohexenylene; 1,4-bicyclo[2.2.2]octylene; piperidine-1,4-diyl; naphthalene-2,6-diyl; decahydronaphthalene-2,6-diyl; or 1,2,3,4-tetrahydronaphthalene-2,6-diyl; where all these groups are unsubstituted or monosubstituted or polysubstituted by L, and A¹¹ is alternatively a single bond,

L is halogen, CN, NO₂ or an alkyl, alkoxy, alkylcarbonyl or alkoxycarbonyl group having from 1 to 7 carbon atoms, in which one or more H atoms are optionally replaced by F or Cl,

m is in each case, independently of one another, 0, 1, 2 or 3, and

R³¹ and R³² are each, independently of one another: H; F; Cl; Br; I; CN; SCN; OH; SF₅; straight-chain or branched alkyl having up to 25 carbon atoms, which is unsubstituted or monosubstituted or polysubstituted by F, Cl, Br, I or CN, and in which, one or more non-adjacent CH₂ groups, each independently of one another, are optionally replaced by -O-, -S-, -NH-, -NR⁰⁰-, -CO-, -COO-, -OCO-O-, -S-CO-, -CO-S-, -CH=CH- or -C≡C- in such a way that O and/or S atoms are not linked directly to one another; or a polymerizable group,

compounds of the formula XIII:

$$V^{11}$$
 V^{22}
 V^{22}
 V^{22}
 V^{23}
 V^{24}
 V^{25}
 V^{25}
 V^{25}
 V^{25}
 V^{25}
 V^{25}
 V^{25}

in which:

 Y^{11} and Y^{22} are each, independently of one another: H; F; Cl; Br; I; CN; SCN; SF₅; a chiral or achiral alkyl having up to 30 carbon atoms, which is optionally unsubstituted or monosubstituted or polysubstituted by F, Cl, Br, I or CN, and in which one or more non-adjacent CH₂ groups are each, independently of one another, optionally replaced by -O-, -S-, -NH-, -N(CH₃)-, -CO-, -COO-, -OCO-O-, -S-CO-, -CO-S-, -CH=CH- or -C=C- in such a way that O atoms are not linked directly to one another; or a polymerizable group,

one of the radicals W^1 and W^2 is $-Z^{11}-A^{11}-(Z^{22}-A^{22})_m-R^{11}$ and the other is H, R^{22} or A^{33} , or both radicals W^1 and W^2 are $-Z^1-A^1-(Z^2-A^2)_m-R$, where W^1 and W^2 are not simultaneously H, or

$$X^{1}$$
 is $Z^{11}-A^{11}-(Z^{22}-A^{22})_m-R^{11}$

 Z^{11} and Z^{22} are each, independently of one another, -O-, -S-, -CO-, -COO-, -OCO-, -O-COO-, -CO-N(R⁰⁰)-, -N(R⁰⁰)-CO-, -OCH₂-, -CH₂O-, -SCH₂-, -CH₂S-, -CF₂O-, -OCF₂-, -CF₂S-, -SCF₂-, -CH₂CH₂-, -CF₂CH₂-, -CH₂CF₂-, -CH=CH-, -CH=N-, -N=CH-, -N=N-, -CF=CH-, -CH=CF-, -CF=CF-, -C=C-, -CH=CH-COO-, -OCO-CH=CH- or a single bond,

R⁰⁰ is H or alkyl having from 1 to 4 carbon atoms,

A¹¹, A²² and A³³ are each, independently of one another: 1,4-phenylene, in which, one or more CH groups are optionally replaced by N; 1,4-cyclohexylene, in which one or more non-adjacent CH₂ groups are optionally replaced by O and/or S; 1,3-dioxolane-4,5-diyl; 1,4-cyclohexenylene; 1,4-bicyclo[2.2.2]octylene; piperidine-1,4-diyl; naphthalene-2,6-diyl; decahydronaphthalene-2,6-diyl; or 1,2,3,4-tetrahydronaphthalene-2,6-diyl, where all these groups are unsubstituted or monosubstituted or polysubstituted by halogen, CN or NO₂ or alkyl, alkoxy, alkylcarbonyl or alkoxycarbonyl having from 1 to 7 carbon atoms, in which one or more H atoms are optionally replaced by F or Cl, and A¹¹ is alternatively a single bond,

m is 0, 1, 2 or 3, and

 R^{11} and R^{22} are each, independently of one another, as defined for Y^{11} ,

compounds of formula XIV

$$X^{1}$$
-O
 X^{2}
 X^{2} -O
 X^{3}
 X^{4}
 X^{2}

in which

 X^{1} and X^{2} are H, or together form a bivalent radical selected from the group consisting of -CH₂-, -CHR¹¹-, -CR¹¹₂-, -SiR¹¹₂- and 1,1-cycloalkylidene,

 X^3 and X^4 have one of the meanings indicated for X^1 and X^2 ,

 Y^1 , Y^2 , Y^3 and Y^4 may be identical or different and are each, independently of one another, R^{11} , A or M- R^{22} ,

A is a cyclic group,

M is a mesogenic group, and

R¹¹ and R²² are each, independently of one another: H; F; Cl; Br; CN; SCN; SF₅; a chiral or achiral alkyl having up to 30 carbon atoms, which is unsubstituted or monosubstituted or polysubstituted by F, Cl, Br, I or CN, and in which one or more non-adjacent CH₂ groups are each, independently of one another, optionally replaced by -O-, -S-, -NH-, -N(CH₃)-, -CO-, -COO-, -OCO-O-, -S-CO-, -CO-S-, -CH=CH- or -C=C- in such a way that O atoms are not linked directly to one another; or are a polymerizable group, where at least one of the radicals Y¹, Y², Y³ and Y⁴ is M-R²²,

compounds of the formula XV

in which

R¹¹ and R²² are each, independently of one another: H; F; Cl; Br; CN; SCN; SF₅; a chiral or achiral alkyl having up to 30 carbon atoms, which is unsubstituted or monosubstituted or polysubstituted by F, Cl, Br, I or CN, and in which one or more non-adjacent CH₂ groups are each, independently of one another, optionally replaced by -O-, -S-, -NH-, -N(CH₃)-, -CO-, -COO-, -OCO-, -OCO-O-, -S-CO-, -CO-S-, -CH=CH- or -C≡C- in such a way that O atoms are not linked directly to one another; a chiral radical containing one or more aromatic or aliphatic ring groups, which optionally contains fused or spiro-linked rings and one or more heteroatoms; or a polymerizable group,

 X^{11} and X^{22} are each, independently of one another, -CF₂O-, -OCF₂-, -CF₂S-, -SCF₂-, -CF₂CH₂-, -CF₂CF₂-, -CF₂CF₂-, -CF=CH-, -CH=CF-, -CF=CF- or a single bond.

 Z^{11} is in each case, independently of one another, -O-, -S-, -CO-, -COO-, -OCO-, -O-COO-, -CO-N(R⁰⁰)-, -N(R⁰⁰)-CO-, -OCH₂-, -CH₂O-, -SCH₂-, -CH₂S-, -CF₂O-, -OCF₂-, -CF₂S-, -SCF₂-, -CH₂CH₂-, -CF₂CF₂-, -CF₂CF₂-, -CH=CH-, -CF=CH-, -CH=CF-, -CF=CF-, -C=C-, -CH=CH-COO-, -OCO-CH=CH- or a single bond,

R⁰⁰ is H or alkyl having from 1 to 4 carbon atoms,

A¹¹ and A²² are each, independently of one another: 1,4-phenylene, in which, in addition, one or more CH groups are optionally replaced by N; 1,4-cyclohexylene, in which one or two non-adjacent CH₂ groups are optionally replaced by O and/or S; 1,3-dioxolane-4,5-diyl; cyclohexenylene; bicyclo[2.2.2]octylene; piperidine-1,4-diyl; naphthalene-2,6-diyl; decahydronaphthalene-2,6-diyl; or 1,2,3,4-tetrahydronaphthalene-2,6-

diyl, where all of these groups are unsubstituted or monosubstituted or polysubstituted by halogen, CN or NO₂ or alkyl, alkoxy, alkylcarbonyl or alkoxycarbonyl having from 1 to 7 carbon atoms, in which one or more H atoms are optionally replaced by F or Cl, and

provided that at least one of the radicals X^{11} , X^{22} and Z^{11} is -CF₂O-, -OCF₂-, -CF₂S-, -SCF₂-, -CF₂CH₂-, -CF₂CF₂-, -CF=CH- or -CF=CF- and at least one of the radicals R^{11} and R^{22} is a chiral group,

compounds of the formula XVI

$$R^{11}-X^{33}-(A^{11}-Z^{11})_m-G-(Z^{22}-A^{22})_n-X^{44}-R^{22}$$
 XVI

in which

 R^{11} and R^{22} are each, independently of one another: H; F; Cl; Br; CN; SCN; SF₅; or a chiral or achiral alkyl having up to 30 carbon atoms, which is unsubstituted or monosubstituted or polysubstituted by F, Cl, Br, I or CN, and in which one or more non-adjacent CH_2 groups are each, independently of one another, optionally replaced by -O-, -S-, -NH-, -N(CH₃)-, -CO-, -COO-, -OCO-O-, -S-CO-, -CO-S-, -CH=CH- or -C=C- in such a way that O atoms are not linked directly to one another; or a polymerizable group,

 X^{33} , X^{44} , Z^{11} and Z^{22} are each, independently of one another, -O-, -S-, -CO-, -COO-, -OCO-, -O-COO-, -CO-N(R⁰⁰)-, -N(R⁰⁰)-CO-, -OCH₂-, -CH₂O-, -SCH₂-, -CH₂S-, -CF₂O-, -OCF₂-, -CF₂S-, -SCF₂-, -CH₂CH₂-, -CF₂CH₂-, -CH₂CF₂-, -CH=CH-, -CF=CH-, -CH=CF-, -CF=CF-, -C=C-, -CH=CH-COO-, -OCO-CH=CH- or a single bond,

R⁰⁰ is H or alkyl having from 1 to 4 carbon atoms,

A¹¹ and A²² are each, independently of one another: 1,4-phenylene, in which one or more CH groups are optionally replaced by N; 1,4-cyclohexylene, in which one or two non-adjacent CH₂ groups are optionally replaced by O and/or S; 1,3-dioxolane-4,5-diyl; cyclohexenylene; bicyclo[2.2.2]octylene; piperidine-1,4-diyl; naphthalene-2,6-diyl; decahydronaphthalene-2,6-diyl; or 1,2,3,4-tetrahydronaphthalen-2,6-diyl; where all these groups are unsubstituted or monosubstituted or polysubstituted by halogen, CN or NO₂ or alkyl, alkoxy, alkylcarbonyl or alkoxycarbonyl having from 1 to 7 carbon atoms, in which one or more H atoms are optionally replaced by F or Cl,

m and n are each, independently of one another, 1, 2, 3 or 4, and G is a bivalent chiral group,

in which at least one of the radicals X^{33} , X^{44} , Z^{11} and Z^{22} is -CF₂O-, -OCF₂-, -CF₂S-, -SCF₂-, -CF₂CH₂-, -CF₂CF₂-, -CF=CH- or -CF=CF-.

- **22.** (New) A medium according to claim 2, wherein the optically active component includes at least one compound of the following:
- cholesteryl nonanoate,
- compounds of the formulae VII to IX:

$$C_6H_{13}$$
 \longrightarrow $COO-COO-CH-C_2H_5$ $(R/S-811)$

$$C_5H_{11}$$
 H O COO \star OOC O H C_5H_{11} $VIII$ $(R/S-1011)$

$$C_3H_7$$

H

H

O

O

CH- C_6H_{13}

IX

(R/S-2011)

compounds of the formula X:

$$R^{0}$$
 F Z^{0} E COO H O X (R,S) H OOC E Z^{0} F R^{0}

compounds of the formula XI:

wherein, in formula X and XI,

E and F are each, independently of one another; 1,4-phenylene, which is optionally monosubstituted, disubstituted or trisubstituted by L; or 1,4-cyclohexylene,

L is H, F, Cl, CN or optionally halogenated alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl or alkoxycarbonyloxy having 1-7 carbon atoms,

v is 0 or 1,

Z⁰is -COO-, -OCO-, -CH₂CH₂- or a single bond, and

R is alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl or alkylcarbonyloxy having 1-12 carbon atoms,

compounds of the formula XII:

$$(Y^{31})_{y1}$$
 B
 $U^{1}-V^{1}$
 W^{11}
 $(Y^{32})_{y2}$
 $(X^{32})_{x2}$
 $(X^{32})_{x2}$

in which:

X³¹, X³², Y³¹ and Y³² are each, independently of one another: H; F; Cl; Br; I; CN; SCN; SF₅; straight-chain or branched alkyl having up to 25 carbon atoms, optionally unsubstituted or monosubstituted or polysubstituted by F, Cl, Br, I or CN, and in which one or more non-adjacent CH₂ group, independently of one another, are optionally replaced by -O-, -S-, -NH-, -NR⁰⁰-, -CO-, -COO-, -OCO-O-, -S-CO-, -CO-S-, -CH=CH- or -C≡C- in such a way that O and/or S atoms are not linked directly to one another; a polymerizable group; cycloalkyl or aryl having up to 20 carbon atoms, which are optionally monosubstituted or polysubstituted by L or a polymerizable group,

 R^{00} is H or alkyl having from 1 to 4 carbon atoms, x^1 and x^2 are each, independently of one another, 0, 1 or 2, y^1 and y^2 are each, independently of one another, 0, 1, 2, 3 or 4,

B and C are each, independently of one another, an aromatic or partially or fully saturated aliphatic six-membered ring, in which one or more CH groups are optionally replaced by N and one or more CH₂ groups are optionally replaced by O and/or S,

one of the radicals W^{11} and W^{22} is $-Z^{11}-A^{11}-(Z^{22}-A^{22})_m-R^{31}$ and the other is R^{32} or A^{33} , or both radicals W^{11} and W^{22} are $-Z^{11}-A^{11}-(Z^{22}-A^{22})_m-R^{31}$, where W^1 and W^2 are not simultaneously H, or

 U^1 and U^2 are each, independently of one another, CH_2 , O, S, CO or CS, V^1 and V^2 are each, independently of one another, $(CH_2)_n$, in which up to four non-adjacent CH_2 groups are optionally replaced by O and/or S, and one of the radicals V^1 and V^2 or, if

$$V^{11}$$
 Z^{11} - A^{11} - $(Z^{22}$ - $A^{22})_m$ - R^{31}

one or both radicals V¹ and V² are alternatively a single bond,

n is an integer from 1 to 7,

 Z^{11} and Z^{22} are each, independently of one another, -O-, -S-, -CO-, -COO-, -OCO-, -O-COO-, -CO-NR⁰⁰-, -NR⁰⁰-CO-, -OCH₂-, -CH₂O-, -SCH₂-, -CH₂S-, -CF₂O-, -OCF₂-, -CF₂S-, -SCF₂-, -CH₂CH₂-, -CF₂CH₂-, -CF₂CF₂-, -CH=CH-, -CH=N-,

-N=CH-, -N=N-, -CF=CH-, -CH=CF-, -CF=CF-, -C≡C-, -CH=CH-COO-, -OCO-CH=CH- or a single bond,

A¹¹, A²² and A³³ are each, independently of one another: 1,4-phenylene, in which, in addition, one or more CH groups are optionally replaced by N; 1,4-cyclohexylene, in which, one or more non-adjacent CH₂ groups are optionally replaced by O and/or S; 1,3-dioxolane-4,5-diyl; 1,4-cyclohexenylene; 1,4-bicyclo[2.2.2]octylene; piperidine-1,4-diyl; naphthalene-2,6-diyl; decahydronaphthalene-2,6-diyl; or 1,2,3,4-tetrahydronaphthalene-2,6-diyl; where all these groups are unsubstituted or monosubstituted or polysubstituted by L, and A¹¹ is alternatively a single bond,

L is halogen, CN, NO₂ or an alkyl, alkoxy, alkylcarbonyl or alkoxycarbonyl group having from 1 to 7 carbon atoms, in which one or more H atoms are optionally replaced by F or Cl,

m is in each case, independently of one another, 0, 1, 2 or 3, and

 R^{31} and R^{32} are each, independently of one another: H; F; Cl; Br; I; CN; SCN; OH; SF₅; straight-chain or branched alkyl having up to 25 carbon atoms, which is unsubstituted or monosubstituted or polysubstituted by F, Cl, Br, I or CN, and in which, one or more non-adjacent CH_2 groups, each independently of one another, are optionally replaced by -O-, -S-, -NH-, -NR⁰⁰-, -CO-, -COO-, -OCO-O-, -S-CO-, -CO-S-, -CH=CH- or -C=C- in such a way that O and/or S atoms are not linked directly to one another; or a polymerizable group,

compounds of the formula XIII:

$$V^{11}$$
 V^{11}
 V^{22}
 V^{22}
 V^{23}
 V^{24}
 V^{25}
 V^{25}
 V^{25}
 V^{25}
 V^{25}
 V^{25}
 V^{25}

in which:

Y¹¹ and Y²² are each, independently of one another: H; F; Cl; Br; I; CN; SCN; SF₅; a chiral or achiral alkyl having up to 30 carbon atoms, which is unsubstituted or monosubstituted or polysubstituted by F, Cl, Br, I or CN, and in which one or more non-adjacent CH₂ groups are each, independently of one another, optionally replaced by -O-, -S-, -NH-, -N(CH₃)-, -CO-, -COO-, -OCO-O-, -S-CO-, -CO-S-, -CH=CH- or -C≡C- in such a way that O atoms are not linked directly to one another; or a polymerizable group,

one of the radicals W^1 and W^2 is $-Z^{11}-A^{11}-(Z^{22}-A^{22})_m-R^{11}$ and the other is H, R^{22} or A^{33} , or both radicals W^1 and W^2 are $-Z^1-A^1-(Z^2-A^2)_m-R$, where W^1 and W^2 are not simultaneously H, or

$$V^{1}$$
 is $Z^{11}-A^{11}-(Z^{22}-A^{22})_{m}-R^{11}$

 Z^{11} and Z^{22} are each, independently of one another, -O-, -S-, -CO-, -COO-, -OCO-, -O-COO-, -CO-N(R⁰⁰)-, -N(R⁰⁰)-CO-, -OCH₂-, -CH₂O-, -SCH₂-, -CH₂S-, -CF₂O-, -OCF₂-, -CF₂S-, -SCF₂-, -CH₂CH₂-, -CF₂CH₂-, -CH₂CF₂-, -CH=CH-, -CH=N-, -N=CH-, -N=N-, -CF=CH-, -CH=CF-, -CF=CF-, -C=C-, -CH=CH-COO-, -OCO-CH=CH- or a single bond,

R⁰⁰ is H or alkyl having from 1 to 4 carbon atoms,

A¹¹, A²² and A³³ are each, independently of one another: 1,4-phenylene, in which, one or more CH groups are optionally replaced by N; 1,4-cyclohexylene, in which one or more non-adjacent CH₂ groups are optionally replaced by O and/or S; 1,3-dioxolane-4,5-diyl; 1,4-cyclohexenylene; 1,4-bicyclo[2.2.2]octylene; piperidine-1,4-diyl; naphthalene-2,6-diyl; decahydronaphthalene-2,6-diyl; or 1,2,3,4-tetrahydronaphthalene-2,6-diyl, where all these groups are unsubstituted or monosubstituted or polysubstituted by halogen, CN or NO₂ or alkyl, alkoxy, alkylcarbonyl or alkoxycarbonyl having from 1 to 7 carbon atoms, in which one or more H atoms are optionally replaced by F or Cl, and A¹¹ is alternatively a single bond,

m is 0, 1, 2 or 3, and R^{11} and R^{22} are each, independently of one another, as defined for Y^{11} ,

compounds of formula XIV

$$X^{1}-O$$
 $X^{2}-O$
 $X^{2}-O$
 X^{3}
 Y^{2}
 Y^{3}
 Y^{4}
 Y^{2}
 Y^{3}
 Y^{4}
 Y^{2}
 Y^{3}
 Y^{4}
 Y^{2}
 Y^{3}
 Y^{4}
 Y^{2}
 Y^{3}
 Y^{4}

in which

 X^{1} and X^{2} are H, or together form a bivalent radical selected from the group consisting of -CH₂-, -CHR¹¹-, -CR¹¹₂-, -SiR¹¹₂- and 1,1-cycloalkylidene,

 X^3 and X^4 have one of the meanings indicated for X^1 and X^2 ,

 Y^1 , Y^2 , Y^3 and Y^4 may be identical or different and are each, independently of one another, R^{11} , A or M-R²²,

A is a cyclic group,

M is a mesogenic group, and

R¹¹ and R²² are each, independently of one another: H; F; Cl; Br; CN; SCN; SF₅; a chiral or achiral alkyl having up to 30 carbon atoms, which is optionally unsubstituted or monosubstituted or polysubstituted by F, Cl, Br, I or CN, and in which one or more non-adjacent CH₂ groups are each, independently of one another, optionally replaced by -O-, -S-, -NH-, -N(CH₃)-, -CO-, -COO-, -OCO-O-, -S-CO-, -CO-S-, -CH=CH- or -C≡C- in such a way that O atoms are not linked directly to one another; or are a polymerizable group, where at least one of the radicals Y¹, Y², Y³ and Y⁴ is M-R²²,

compounds of the formula XV

$$R^{11}-X^{11}-A^{11}-(Z^{11}-A^{22})_m-X^{22}-R^{22}$$
 XV

in which

R¹¹ and R²² are each, independently of one another: H; F; Cl; Br; CN; SCN; SF₅; a chiral or achiral alkyl having up to 30 carbon atoms, which is unsubstituted or monosubstituted or polysubstituted by F, Cl, Br, I or CN, and in which one or more non-adjacent CH₂ groups are each, independently of one another, optionally replaced by -O-, -S-, -NH-, -N(CH₃)-, -CO-, -COO-, -OCO-, -OCO-O-, -S-CO-, -CO-S-, -CH=CH- or -C≡C- in such a way that O atoms are not linked directly to one another; a chiral radical containing one or more aromatic or aliphatic ring groups, which optionally contains fused or spiro-linked rings and one or more heteroatoms; or a polymerizable group,

 X^{11} and X^{22} are each, independently of one another, -CF₂O-, -OCF₂-, -CF₂S-, -SCF₂-, -CF₂CH₂-, -CF₂CF₂-, -CF₂CF₂-, -CF=CH-, -CH=CF-, -CF=CF- or a single bond,

 Z^{11} is in each case, independently of one another, -O-, -S-, -CO-, -COO-, -OCO-, -O-COO-, -CO-N(R⁰⁰)-, -N(R⁰⁰)-CO-, -OCH₂-, -CH₂O-, -SCH₂-, -CH₂S-, -CF₂O-, -OCF₂-, -CF₂S-, -SCF₂-, -CH₂CH₂-, -CF₂CH₂-, -CF₂CF₂-, -CH=CH-, -CF=CH-, -CH=CF-, -CF=CF-, -C=C-, -CH=CH-COO-, -OCO-CH=CH- or a single bond,

R⁰⁰ is H or alkyl having from 1 to 4 carbon atoms,

A¹¹ and A²² are each, independently of one another: 1,4-phenylene, in which, in addition, one or more CH groups are optionally replaced by N; 1,4-cyclohexylene, in which one or two non-adjacent CH₂ groups are optionally replaced by O and/or S; 1,3-dioxolane-4,5-diyl; cyclohexenylene; bicyclo[2.2.2]octylene; piperidine-1,4-diyl; naphthalene-2,6-diyl; decahydronaphthalene-2,6-diyl; or 1,2,3,4-tetrahydronaphthalene-2,6-diyl, where all of these groups are unsubstituted or monosubstituted or polysubstituted by halogen, CN or NO₂ or alkyl, alkoxy, alkylcarbonyl or alkoxycarbonyl having from 1 to 7 carbon atoms, in which one or more H atoms are optionally replaced by F or Cl, and

m is 1, 2, 3, 4 or 5,

provided that at least one of the radicals X^{11} , X^{22} and Z^{11} is -CF₂O-, -OCF₂-, -CF₂S-, -SCF₂-, -CF₂CH₂-, -CF₂CF₂-, -CF=CH- or -CF=CF- and at least one of the radicals R^{11} and R^{22} is a chiral group,

compounds of the formula XVI

$$R^{11}-X^{33}-(A^{11}-Z^{11})_m-G-(Z^{22}-A^{22})_n-X^{44}-R^{22}$$
 XVI

in which

R¹¹ and R²² are each, independently of one another: H; F; Cl; Br; CN; SCN; SF₅; or a chiral or achiral alkyl having up to 30 carbon atoms, which is unsubstituted or monosubstituted or polysubstituted by F, Cl, Br, I or CN, and in which one or more non-adjacent CH₂ groups are each, independently of one another, optionally replaced by -O-, -S-, -NH-, -N(CH₃)-, -CO-, -COO-, -OCO-O-, -S-CO-, -CO-S-, -CH=CH- or -C≡C- in such a way that O atoms are not linked directly to one another; or a polymerizable group,

 X^{33} , X^{44} , Z^{11} and Z^{22} are each, independently of one another, -O-, -S-, -CO-, -COO-, -OCO-, -O-COO-, -CO-N(R⁰⁰)-, -N(R⁰⁰)-CO-, -OCH₂-, -CH₂O-, -SCH₂-, -CH₂S-, -CF₂O-, -OCF₂-, -CF₂S-, -SCF₂-, -CH₂CH₂-, -CF₂CH₂-, -CH₂CF₂-, -CH=CH-, -CF=CH-, -CH=CF-, -CF=CF-, -C=C-, -CH=CH-COO-, -OCO-CH=CH- or a single bond,

R⁰⁰ is H or alkyl having from 1 to 4 carbon atoms,

A¹¹ and A²² are each, independently of one another: 1,4-phenylene, in which one or more CH groups are optionally replaced by N; 1,4-cyclohexylene, in which one or two non-adjacent CH₂ groups are optionally replaced by O and/or S; 1,3-dioxolane-4,5-diyl; cyclohexenylene; bicyclo[2.2.2]octylene; piperidine-1,4-diyl; naphthalene-2,6-diyl; decahydronaphthalene-2,6-diyl; or 1,2,3,4-tetrahydronaphthalen-2,6-diyl; where all these groups are unsubstituted or monosubstituted or polysubstituted by halogen, CN or NO₂ or alkyl, alkoxy, alkylcarbonyl or alkoxycarbonyl having from 1 to 7 carbon atoms, in which one or more H atoms are optionally replaced by F or Cl,

m and n are each, independently of one another, 1, 2, 3 or 4, and G is a bivalent chiral group,

in which at least one of the radicals X^{33} , X^{44} , Z^{11} and Z^{22} is -CF₂O-, -OCF₂-, -CF₂S-, -SCF₂-, -CF₂CH₂-, -CF₂CF₂-, -CF=CH- or -CF=CF-.