3 - Newton's Method (or) Newton-Rophson Method

$$\chi_1 = \chi_0 - \frac{f(\chi_0)}{f'(\chi_0)}$$

$$n_2 = n_1 - \frac{f(a_1)}{f(a_1)}$$

In general,
$$n_{n+1} = n_n - \frac{f(n_n)}{f'(n_n)}$$

(6 decimals)

O obtain approximate voot of n3-5n+120 Corrected & 6 decimals of accuracy. $f(n) = x^3 - 5x + 1$, $f'(n) = 3x^2 - 5$ Slotian f(0) = 1 > 0 } voot lies $b(\omega) = 1$ f(1) = -3 = -3let 20 = 0 7/2 2 2 - f(20) 5.NO Ma 2/n $1 \quad 0 \quad x_0 = 0 \quad x_1 = 0.2$ $\chi_1 = 0.2$ $\chi_2 = 0.2016393$ $\chi_3 = 0.2016396$ 3 2 Greated to 6 decimals The Rot is 0.2016396 of according.

Note:
$$X - \frac{f(x)}{f'(x)} = X - \frac{2x^3 - 5x + 1}{3x^2 - 5}$$

 $X - \left[(x)^3 - 5x + 1\right] \div (3x^2 - 5)$

(2)
$$\pi e^{\pi} - 1 = 0$$
 $f(\pi) = \pi e^{\pi} - 1$
 $f(\theta) = -1 < 0$
 $f'(\pi) = \pi e^{\pi} + e^{\pi}$
 $f(0) = 1.716 > 0$

So rest lies $w = 0.00$

1 0 $\pi_0 = 0$
 $\pi_1 = 1$
 $\pi_2 = 0.6839397$

1 $\pi_1 = 1$
 $\pi_2 = 0.6839397$

2 $\pi_1 = 1$
 $\pi_2 = 0.6839397$

3 $\pi_1 = 0.5673937$
 $\pi_2 = 0.5673937$

4 $\pi_1 = 0.5673937$
 $\pi_2 = 0.5673937$
 $\pi_3 = 0.5673937$
 $\pi_4 = 0.5673937$
 $\pi_5 = 0.5673932$
 $\pi_6 = 0.5673932$

The Rost is 0.5671432.

Note:
$$x - \frac{xe^{x} - 1}{xe^{x} + e^{x}}$$

$$x - \frac{xe^{x} + e^{x}}{xe^{x} + e^{x}}$$

$$x - \left[(xe^{x} - 1) \div (xe^{x} + e^{x}) \right]$$

(3)
$$f(x) = \pi \sin \pi - 1$$

 $f'(x) = \pi \cos \pi + \sin \pi$
 $f(1) = -0.1585 < 0$ 2 bot lies in (1,2)
 $f(2) = 0.81859 > 0$

The Rot is 1.1141571.

$$\frac{\times f(x)}{f'(x)} = \frac{\times f(x) - 1}{\times c_8(x) + Sin(x)}$$

$$\times - \left((\times \text{Sin}(x) - 1) - (\times \text{Cod}(x) + \text{Sin}(x)) \right)$$