

"When will the food get here?"

How ETAs are calculated and why they're so wrong

### **Autofleet - Optimizing Fleets, Making the World Better**

### Simulator

Accelerate fleet innovation through simulation

### **Vehicle as a Service**

Optimize existing business models to maximize fleet performance

### Ride as a Service

Launch new on-demand business models and mobility services







### 3 Million chances per month to F-up ETA Calculations



Tens of thousands of vehicles



Activity in over 15 countries



Over 3M rides processed per month

























### **ETA - Estimated time of arrival**









# The 3 Commandments of ETA Calculations and Customer Expectations



Thou shalt show <u>attractive</u> ETAs



Thou shall show <u>accurate</u> ETAs



Thou shall show stable ETAs





### **Commandment 1: Attractive ETAs**

Conversion rate falls significantly as ETA goes up.

High ETAs are bad for business.

Graph at right is typical of street-hail/taxi business. For others, the curve may differ







### **Commandment 2: Accurate ETAs**

Commandment 2 prevents operators from trying to boost conversion rate through presenting incorrect ETAs.

The ETA must be accurate and aligned with what was shown to the customer a moment ago





### **Commandment 3: Stable ETAs**

Being right isn't good enough: ETAs must remain stable in order to maintain customer satisfaction. Large jumps could cause cancellations or incorrect waiting





## Mapping and Routing Toolbox

Map agnostic Routing Engine



Adjust maps provider settings for optimistic/pessimistic, best guess

Add abstraction layer withinplatform to manipulate provider responses

Redundancy, redundancy, redundancy



### **Impact of Driver Behaviour**

The longer the delay in arrival time, the more reroutes sent to the driver → drivers who do not follow routing directions cause larger delay





### **Sample - Driver Deviating from Route**

Driver (on bicycle) did not follow route, caused 60% delay in arrival time





### **Impact of Driver Behaviour**

Certain drivers are much more likely to arrive late to projected ETAs





### **Operation Specific Route Calculations: Cooking Time**

### Goal



**Reduced Delivery Time:** Reduce delivery time by reducing the time the driver is waiting for the food



**Better Food Quality:** Increase food quality by reducing the time the food is waiting for the driver





### **Duration at Pickup - by Restaurant**

Some restaurants take longer with order preparation than others, potentially causing the additional time at pickup at those specific locations





### **Vehicle Specific Route Calculations**

Bicycles have the longest delay in ETA/ATA and also the highest frequency of reroutes.

If model considerations are working, ETA/ ATA difference should be equally small for all vehicle models.



Model



### **Vehicle Specific Route Calculations**



Cargo bike -12 km/hr



Trailer bike -8 km/hr





# Thank You autofleet