Probability Theory

Ikhan Choi

September 19, 2022

Contents

Ι	Pro	obability distributions	2
1	Ran	dom variables Probability distributions	3
	1.2	Discrete distributions	4
	1.3	Continuous distributions	4
	1.4	Independence	4
2	Con	ditional probablity	5
3	Con	vergence of probability measures	6
	3.1	Weak convergence in $\mathbb R$	6
	3.2	Weak topology in the space of probability measures	6
	3.3	Characteristic functions	9
	3.4	Moments	10
II	Di	screte stochastic process	11
4	Lim	it theorems	12
	4.1	Laws of large numbers	12
	4.2	Renewal theory	14
	4.3	Central limit theorems	14
5	Mar	rtingales	16
	5.1	Submartingales	16
	5.2	Martingale convergence theorem	16
	5.3	Convergence in L^p and uniform integrability	16
	5.4	Optional stopping theorem	16
6	Mar	kov chains	17
III	C	ontinuous stochastic processes	18
7	Bro	wnian motion	19
	7.1	Kolomogorov extension	19
IV	S ₁	tochastic calculus	20

Part I Probability distributions

Random variables

1.1 Probability distributions

1.1 (Sample space). Mathematically, a *sample space* is defined as a measure space (Ω, \mathcal{F}, P) with $P(\Omega) = 1$. Elements and measurable subsets of a sample space are called *outcomes* and *events*, respectively. Let Ω be a fixed sample space. Then, a *random element* is a measurable function $X : \Omega \to S$ to a measurable space S, called the *state space*. If the state space S is the set of real numbers \mathbb{R} together with the Borel σ -algebra, we call the random element S as a *random variable*.

Consider a statistical study of ages of people in the earth. For the study, we set the *population* $\mathcal{P} = \{ \text{ people in the earth } \}$ and the age function $a: \mathcal{P} \to \mathbb{Z}_{\geq 0}$. In probability theory and statistics, we are interested in the estimation of the size of $a^{-1}(k)$ for each $k \in \mathbb{Z}_{\geq 0}$, not in the exact description of the age function a.

Let us say that we conducted an experiment in which n people are randomly chosen with replacement, to verify a hypothesis. If we denote by p_i the ith person, then

Then a reasonable choice for the domain of the functions X_i is $\Omega = \mathcal{P}^n$.

Believing the fatalism, an experiment can be seen as a process of revealing a pre-determined fate ω , which is what we call sample or outcome.

(a)

1.2 (Probability distribution). Let $X : \Omega \to \mathbb{R}$ be a random variable. The (probability) *distribution* of X is the pushforward measure X_*P on \mathbb{R} . The right continuous increasing function F corresponded to X_*P is called the (cumulative) *distribution function*.

If the distribution has discrete support, then we say X is *discrete*. Since a probability measure of discrete support is a countable convex combination of Dirac measures, we can define the (probability) $mass\ function\ p: supp(X_*P) \to [0,1]$. If the distribution is absolutely continuous with respect to the Lebesgue measure, then we say X is *continuous*. By the Radon-Nikodym theorem, we can define the (probability) *density function* $f \in L^1(\mathbb{R})$. The mass and density functions are effective ways to describe distributions of random variables in most applications.

(a)

- 1.3 (Expectation and moments). Chebyshev's inequality
- 1.4 (Joint distribution).
- 1.5 (Distribution of functions). transformation, function

1.2 Discrete distributions

1.3 Continuous distributions

1.4 Independence

1.6 (Dynkin's π - λ lemma). Let \mathcal{P} be a π -system and \mathcal{L} a λ -system respectively. Denote by $\ell(\mathcal{P})$ the smallest λ -system containing \mathcal{P} .

- (a) If $A \in \ell(\mathcal{P})$, then $\mathcal{G}_A := \{B : A \cap B \in \ell(\mathcal{P})\}$ is a λ -system.
- (b) $\ell(\mathcal{P})$ is a π -system.
- (c) If a λ -system is a π -system, then it is a σ -algebra.
- (d) If $\mathcal{P} \subset \mathcal{L}$, then $\sigma(\mathcal{P}) \subset \mathcal{L}$.
- 1.7 (Monotone class lemma).

Exercises

equally likely outcomes coin toss dice roll ball drawing number permutation life time of a light bulb

Conditional probablity

Exercises

2.1 (Monty Hall problem). Suppose you are on a game show, and given the choice of three doors A, B, and C. Behind one door is a car; behind the others, goats. You know that the probabilities a, b, and c = 1 - a - b. You pick a door, say A, and the host, who knows what's behind the doors, opens another door, say B, which has a goat. He then says to you, "Do you want to pick door C?" Is it to your advantage to switch your choice?

(a) Find the condition for a, b, c that the participant benefits when changed the choice.

Proof. Let A, B, and C be the events that a car is behind the doors A, B, and C, respectively. Let X the event that the game host opened B. Note $\{A, B, C\}$ is a partition of the sample space Ω , and X is independent to A, B, and C. Then, P(A) = P(B) = P(C) = 1/3, and

$$P(X|A) = \frac{1}{2}, \quad P(X|B) = 0, \quad P(X|C) = 1.$$

Therefore,

$$P(C|X) = \frac{P(X \cap C)}{P(X)}$$

$$= \frac{P(X|C)P(C)}{P(X|A)P(A) + P(X|B)P(B) + P(X|C)P(C)}$$

$$= \frac{1 \cdot \frac{1}{3}}{\frac{1}{2} \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}} = \frac{2}{3}.$$

Similarly, $P(A|X) = \frac{1}{3}$ and P(B|X) = 0.

Convergence of probability measures

3.1 Weak convergence in \mathbb{R}

- **3.1** (Portemanteau theorem). Let F_n and F be distribution functions $\mathbb{R} \to [0,1]$. We will define the *weak convergence* as follows: F_n converges weakly to F if $F_n(x) \to F(x)$ for every continuity point x of F(x).
 - (a) $F_n(x) \to F(x)$ for all continuity points x of F.
- 3.2 (Skorokhod representation theorem).
- 3.3 (Continuous mapping theorem).
- 3.4 (Slutsky's theorem).
- **3.5** (Helly's selection theorem). (a) Monotonically increasing functions $F_n : \mathbb{R} \to [0,1]$ has a pointwise convergent subsequence.
 - (b) If $(F_n)_n$ is tight, then
- **3.6** (Properties of probability Borel measures). Let *S* be a topological space.
 - (a) Every single probability Borel measure is regular if *S* is perfectly normal. (inner approximateion by closed sets)
 - (b) Every single probability Borel measure is tight if *S* is Polish. (inner approximation by compact sets)

3.2 Weak topology in the space of probability measures

3.7 (Local limit theorems). Suppose f_n and f are density functions.

(a) If $f_n \to f$ a.s., then $f_n \to f$ in L^1 .

(Scheffé's theorem)

- (b) $f_n \to f$ in L^1 if and only if in total variation.
- (c) If $f_n \to f$ in total variation, then $f_n \to f$ weakly.
- **3.8** (Portmanteau theorem). Let *S* be a normal space and, μ_{α} be a net in Prob(*S*). We define the *weak convergence* as follows: μ_{α} converges weakly to μ if

$$\int f \, d\mu_{\alpha} \to \int f \, d\mu$$

for every $f \in C_b(S)$. The following statements are all equivalent.

- (a) $\mu_{\alpha} \Rightarrow \mu$
- (b) $\mu_a(g) \to \mu(g)$ for every uniformly continuous $g \in C_b(S)$.
- (c) $\limsup_{\alpha} \mu_{\alpha}(F) \leq \mu(F)$ for every closed F.
- (d) $\liminf_{\alpha} \mu_{\alpha}(U) \ge \mu(U)$ for every open U.
- (e) $\lim_{\alpha} \mu_{\alpha}(A) = \mu(A)$ for every Borel A such that $\mu(\partial A) = 0$.

Proof. (a) \Rightarrow (b) Clear.

(b)⇒(c) Let *U* be an open set such that $F \subset U$. There is uniformly continuous $g \in C_b(S)$ such that $\mathbf{1}_F \leq g \leq \mathbf{1}_U$. Therefore,

$$\limsup_{\alpha} \mu_{\alpha}(F) \leq \limsup_{\alpha} \mu_{\alpha}(g) = \mu(g) \leq \mu(U).$$

By the outer regularity of μ , we obtain $\limsup_{\alpha} \mu_{\alpha}(F) \leq \mu(F)$.

- (c)⇔(d) Clear.
- $(c)+(d)\Rightarrow(e)$ It easily follows from

$$\limsup_{\alpha} \mu_{\alpha}(\overline{A}) \leq \mu(\overline{A}) = \mu(A) = \mu(A^{\circ}) \leq \liminf_{\alpha} \mu_{\alpha}(A^{\circ}).$$

(e) \Rightarrow (a) Let $g \in C_b(S)$ and $\varepsilon > 0$. Since the pushforward measure $g_*\mu$ has at most countably many mass points, there is a partition $(t_i)_{i=0}^n$ of an interval containing $[-\|g\|, \|g\|]$ such that $|t_{i+1} - t_i| < \varepsilon$ and $\mu(\{x: g(x) = t_i\}) = 0$ for each i. Let $(A_i)_{i=0}^{n-1}$ be a Borel decomposition of S given by $A_i := g^{-1}([t_i, t_{i+1}))$, and define $f_\varepsilon := \sum_{i=0}^{n-1} t_i \mathbf{1}_{A_i}$ so that we have $\sup_{x \in S} |g_\varepsilon(x) - g(x)| \le \varepsilon$. From

$$\begin{split} |\mu_{\alpha}(g) - \mu(g)| &\leq |\mu_{\alpha}(g - g_{\varepsilon})| + |\mu_{\alpha}(g_{\varepsilon}) - \mu(g_{\varepsilon})| + |\mu(g_{\varepsilon} - g)| \\ &\leq \varepsilon + \sum_{i=0}^{n-1} |t_{i}| |\mu_{\alpha}(A_{i}) - \mu(A_{i})| + \varepsilon, \end{split}$$

we get

$$\limsup_{\alpha} |\mu_{\alpha}(g) - \mu(g)| < 2\varepsilon.$$

Since ε is arbitrary, we are done.

- **3.9** (Embedding by Dirac measures). Let *S* be a normal space.
 - (a) $S \to \text{Prob}(S)$ is an embedding.
 - (b) $S \subset \text{Prob}(S)$ is sequentially closed.
 - (c)

Proof. (a) It uses Urysohn.

- (b) It uses (b)=>(c) of Portmanteau.
- **3.10** (Lévy-Prokhorov metric). Let *S* be a metric space, and Prob(*S*) be the set of probability (regular) Borel measures on *S*. Define $\pi : \text{Prob}(S) \times \text{Prob}(S) \to [0, \infty)$ such that

$$\pi(\mu, \nu) := \inf\{\alpha > 0 : \mu(A) \le \nu(A^{\alpha}) + \alpha, \ \nu(A) \le \mu(A^{\alpha}) + \alpha, \ \forall A \in \mathcal{B}(S)\},\$$

where A^{α} is the α -neighborhood of α .

- (a) π is a metric.
- (b) $\mu_n \to \mu$ in π implies $\mu_n \Rightarrow \mu$.
- (c) $\mu_{\alpha} \Rightarrow \mu$ implies $\mu_{\alpha} \rightarrow \mu$ in π , if *S* is separable.

- (d) (S,d) is separable if and only if $(Prob(S), \pi)$ is separable.
- (e) (S,d) is compact if and only if $(Prob(S), \pi)$ is compact
- (f) (S, d) is complete if and only if $(Prob(S), \pi)$ is complete.

Proof. (c)

3.11 (Direct direction of Prokhorov's theorem). Let S be a Polish space. Let Prob(S) be the space of probability measures on S endowed with the topology of weak convergence. Prokhorov's theorem states that a subset of Prob(S) is relatively compact if and only if it is tight. We prove one direction, in which the construction of a sufficiently large compact set is a main issue.

Let $\mu \in \text{Prob}(S)$ and let M be a relatively compact subset of Prob(S).

(a) Every open cover $\{B_{\alpha}\}_{\alpha}$ of S has a finite subcollection $\{B_i\}_i$ for each $\varepsilon > 0$ such that

$$\mu\left(\bigcup_{i}B_{i}\right)>1-\varepsilon.$$

(b) Every open cover $\{B_{\alpha}\}_{\alpha}$ of S has a finite subcollection $\{B_i\}_i$ for each $\varepsilon > 0$ such that

$$\inf_{\mu\in M}\mu\Big(\bigcup_i B_i\Big)>1-\varepsilon.$$

(c) *M* is tight: there is a compact $K \subset S$ for each $\varepsilon > 0$ such that

$$\inf_{\mu \in M} \mu(K) > 1 - \varepsilon.$$

Proof. (a) Since a separable metric space is Lindelöf, we may assume $\{B_{\alpha}\}_{\alpha} = \{B_i\}_{i=1}^{\infty}$ is countable. Then, we can deduce the conclusion from the continuity from below and the fact $\mu_0(S) = 1$.

(b) Suppose that the conclusion is not true so that there are $\varepsilon > 0$ and a sequence $\mu_n \in M$ such that

$$\mu_n\left(\bigcup_{i=1}^n B_i\right) \leq 1 - \varepsilon.$$

If we take a subsequence $(\mu_{n_k})_k$ that converges weakly to $\mu \in \overline{M}$ using the compactness of \overline{M} , then by the Portmanteau theorem we have for any n that

$$\mu\left(\bigcup_{i=1}^{n} B_{i}\right) \leq \liminf_{k \to \infty} \mu_{n_{k}}\left(\bigcup_{i=1}^{n} B_{i}\right) \leq \liminf_{k \to \infty} \mu_{n_{k}}\left(\bigcup_{i=1}^{n_{k}} B_{i}\right) \leq 1 - \varepsilon.$$

By taking n sufficiently large, we lead a contradiction to the part (a).

(c) Here we need metrizability, which leads to the exitence of countable fundamental system of uniformity for $\frac{\varepsilon}{2^m}$ argument. Also we need the completeness to change the total boundedness to compactness.

Let $\{x_i\}_{i=1}^{\infty}$ be a dense set in S. Then, since $\{B(x_i, \frac{1}{m})\}_{i=1}^{\infty}$ is a countable open cover of S for each integer m > 0, there is a finite $n_m > 0$ such that

$$\inf_{\mu\in M}\mu\Big(\bigcup_{i=1}^{n_m}B(x_i,\frac{1}{m})\Big)>1-\frac{\varepsilon}{2^m}.$$

Define

$$K:=\bigcap_{m=1}^{\infty}\bigcup_{i=1}^{n_m}\overline{B(x_i,\frac{1}{m})}.$$

It is closed and totally bounded in a complete metric space S, so K is compact. Moreover, we can verify

$$1 - \mu(K) = \mu\left(\bigcup_{m=1}^{\infty} \bigcap_{i=1}^{n_m} \overline{B(x_i, \frac{1}{m})}^c\right) \leq \sum_{m=1}^{\infty} \left(1 - \mu\left(\bigcup_{i=1}^{n_m} B(x_i, \frac{1}{m})\right)\right) < \varepsilon$$

for every $\mu \in M$, so M is tight.

3.12 (Converse direction of Prokhorov's theorem). The "converse" direction of Prokhorov's theorem is related to a construction of measure and considered to be more difficult. However, it holds in a general setting.

Let S be a normal space. Let $\operatorname{Prob}(S)$ be the space of probability measures on S endowed with the topology of weak convergence. Let M be a tight subset of $\operatorname{Prob}(S)$ and let $(\mu_{\alpha})_{\alpha} \subset M$ be a net. We want to show that it has a convergent subnet in $\operatorname{Prob}(S)$.

(a) *M* is relatively compact.

Proof. Let βS be the Stone-Čech compactification of S. The inclusion $\iota: S \to \beta S$ is a topological embedding because S is completely regular. Pushforward the measures μ_{α} to make them probability Borel measures $\nu_{\alpha} := \iota_* \mu_{\alpha}$ on βS . We want to take a convergent subnet of $\nu_{\alpha} \in \operatorname{Prob}(\beta S)$, and to show the limit is in fact contained in $\operatorname{Prob}(S)$.

Our first claim is that the measure ν_{α} is regular for each α , that is, $\nu_{\alpha} \in \operatorname{Prob}(\beta S)$. For any Borel $E \subset \beta S$ and any $\varepsilon > 0$, there is $F \subset E \cap S$ that is closed in S such that $\mu_{\alpha}(E \cap S) < \mu_{\alpha}(F) + \varepsilon/2$ by inner regularity, and there is K that is compact in S such that $\mu_{\alpha}(S \setminus K) < \varepsilon/2$ by tightness. Then, the inequality

$$\nu_{\alpha}(E) = \mu_{\alpha}(E \cap S) < \mu_{\alpha}(F) + \frac{\varepsilon}{2} < \mu_{\alpha}(F \cap K) + \varepsilon = \nu_{\alpha}(F \cap K) + \varepsilon$$

proves the regularity of ν_{α} since $F \cap K$ is compact in both S and βS with $F \cap K \subset E$. The space $\operatorname{Prob}(\beta S)$ is compact by the Banach-Alaoglu theorem and the Riesz-Markov-Kakutani representation theorem. Therefore, ν_{α} has a subnet ν_{β} that converges to $\nu \in \operatorname{Prob}(\beta S)$.

Recall that μ_{β} is tight. For each $\varepsilon > 0$, there is a compact $K \subset S$ such that $\nu_{\beta}(K) = \mu_{\beta}(K) \ge 1 - \varepsilon$ for all β . Then, by the Portmanteau theorem, we have

$$\nu(S) \ge \nu(K) \ge \limsup_{\beta} \nu_{\beta}(K) \ge 1 - \varepsilon.$$

Since ε is arbitrary, ν is concentrated on S, i.e. $\nu(S) = 1$. Now we restrict ν to S in order to obtain μ , which is a probability Borel measure on S.

From the definition of weak convergence we have

$$\int_{\beta S} f \, d\nu_{\beta} \to \int_{\beta S} f \, d\nu$$

for all $f \in C(\beta S)$. Since $\nu_{\beta}(\beta S \setminus S) = \nu(\beta S \setminus S) = 0$ and the restriction $C(\beta S) \to C_b(S)$ is an isomorphism due to the universal property of βS ,

$$\int_{S} f \, d\mu_{\beta} \to \int_{S} f \, d\mu$$

for all $f \in C_b(S)$, so μ_{β} converges weakly to $\mu \in \text{Prob}(S)$.

3.3 Characteristic functions

3.13 (Characteristic functions). Let μ be a probability measure on \mathbb{R} . Then, the *characteristic function* of μ is defined by

$$\varphi(t) := Ee^{itX} = \int e^{itx} d\mu(x).$$

Note that $\varphi(t) = \hat{\mu}(-t)$ where $\hat{\mu}$ is the Fourier transform of $\mu \in \mathcal{S}'(\mathbb{R})$.

(a)
$$\varphi \in C_b(\mathbb{R})$$
.

3.14 (Inversion formula). Let μ be a probability measure on \mathbb{R} and φ its characteristic function.

(a) For a < b, we have

$$\mu((a,b)) + \frac{1}{2}\mu(\{a,b\}) = \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \varphi(t) dt.$$

(b) For $a \in \mathbb{R}$, we have

$$\mu(\lbrace a\rbrace) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} e^{-ita} \varphi(t) dt$$

(c) If $\varphi \in L^1(\mathbb{R})$, then μ has density

$$f(x) = \frac{1}{2\pi} \int e^{-itx} \varphi(t) dt$$

in $C_0(\mathbb{R}) \cap L^1(\mathbb{R})$.

- **3.15** (Lévy's continuity theorem). The continuity theorem provides with a tool to verify the weak convergence in terms of characteristic functions. Let μ_n and μ be probability distributions on \mathbb{R} with characteristic functions φ_n and φ .
 - (a) If $\mu_n \to \mu$ weakly, then $\varphi_n \to \varphi$ pointwise.
 - (b) If $\varphi_n \to \varphi$ pointwise and φ is continuous at zero, then $(\mu_n)_n$ is tight and $\mu_n \to \mu$ weakly.

Proof. (a) For each t,

$$\varphi_n(t) = \int e^{itx} d\mu_n(x) \to \int e^{itx} d\mu(x) = \varphi(t)$$

because $e^{itx} \in C_b(\mathbb{R})$.

(b)

3.16 (Criteria for characteristic functions). Bochner's theorem and Polya's criterion

There are two ways to represent a measure: A measure μ is absolutely continuous iff its distribution F is absolutely continuous iff its density f is integrable. So, the fourier transform of an absolutely continuous measure is just the fourier transform of L^1 functions.

3.4 Moments

moment problem

moment generating function defined on $|t| < \delta$

Exercises

- **3.17.** Let φ_n be characteristic functions of probability measures μ_n on \mathbb{R} . If there is a continuous function φ such that $\varphi_n = \varphi$ on $n^{-1}\mathbb{Z}$, then μ_n converges weakly.
- 3.18 (Convergence determining class).
- **3.19** (Vauge convergence). Let *S* be a locally compact Hausdorff space.
 - (a) $\mu_{\alpha} \to \mu$ vaguely if and only if $\int g d\mu_{\alpha} \to \int g d\mu$ for all $g \in C_c(S)$.
 - (b) $\mu_{\alpha} \rightarrow \mu$ weakly if and only if vaguely.
 - (c) $\delta_n \rightarrow 0$ vaguely but not weakly. (escaping to infinity)

 \square

Part II Discrete stochastic process

Limit theorems

4.1 Laws of large numbers

Our purpose is to find appropriate a_n and slowly growing b_n such that $(S_n - a_n)/b_n \to 0$ in probability or almost surely.

4.1 (Kolmogorov-Feller theorem). Let X_i be an uncorrelated sequence of random variables such that

$$\lim_{x\to\infty}\sup_i xP(|X_i|>x)=0.$$

This condition is called the *Kolmogorov-Feller* condition. Let $Y_{n,i} := X_i \mathbf{1}_{|X_i| \le c_n}$.

(a) We have

$$\lim_{n\to\infty} P(S_n \neq T_n) = 0$$

if $n \lesssim c_n$.

(b) We have

$$\lim_{n\to\infty} P\left(\left|\frac{T_n - ET_n}{b_n}\right| > \varepsilon\right) = 0$$

if $nc_n \lesssim b_n^2$.

(c) We have

$$\frac{S_n - ET_n}{n} \to 0$$

in probability.

Proof. Write $g(x) := \sup_i xP(|X_i| > x)$ so that $g(x) \to 0$ as $x \to \infty$.

(a) It follows from

$$P(S_n \neq T_n) \le \sum_{i=1}^n P(|X_i| > c_n) \le \sum_{i=1}^n \frac{1}{c_n} g(c_n) \lesssim g(c_n).$$

(b) We write

$$P\left(\left|\frac{T_n - ET_n}{b_n}\right| > \varepsilon\right) \le \frac{1}{\varepsilon^2 b_n^2} E|T_n - ET_n|^2$$

$$= \frac{1}{\varepsilon^2 b_n^2} \sum_{i=1}^n E|Y_{n,i} - EY_{n,i}|^2$$

$$\le \frac{1}{\varepsilon^2 b_n^2} \sum_{i=1}^n E|X_i \mathbf{1}_{|X_i| \le c_n}|^2$$

$$= \frac{1}{\varepsilon^2 b_n^2} \sum_{i=1}^n \int_0^{c_n} 2x P(|X_i| > x) dx$$

$$\le \frac{2n}{\varepsilon^2 b_n^2} \int_0^{c_n} g(x) dx$$

$$= \frac{2nc_n}{\varepsilon^2 b_n^2} \int_0^1 g(c_n x) dx$$

$$\lesssim \int_0^1 g(c_n x) dx.$$

Since $g(x) \le x$ and $g(x) \to 0$ as $x \to \infty$, the function g is bounded. By the bounded convergence theorem, we get $\int_0^1 g(c_n x) dx \to 0$ as $n \to \infty$.

4.2 (St. Petersburg paradox). We want see the asymptotic behavior of the partial sums S_n of i.i.d. random variables X_i such that $E|X_i| = \infty$. Let

$$P(X_n = 2^m) = 2^{-m}$$
 for $m \ge 1$.

Let $Y_{n,i} := X_i \mathbf{1}_{|X_i| < c_n}$.

(a) We have

$$\lim_{n\to\infty} P(S_n \neq T_n) = 0$$

if $n \ll c_n$.

(b) We have

$$\lim_{n\to\infty} P\left(\left|\frac{T_n - ET_n}{b_n}\right| > \varepsilon\right) = 0$$

if $nc_n \ll b_n^2$.

(c) We have

$$\frac{S_n - n \log_2 n}{n^{1+\varepsilon}} \to 0$$

in probability for every $\varepsilon > 0$.

Proof. (a) It follows from

$$P(S_n \neq T_n) \leq \sum_{i=1}^n P(X_i \neq Y_{n,i}) = \sum_{i=1}^n P(|X_i| > c_n) \leq \sum_{i=1}^n \frac{2}{c_n} = \frac{2n}{c_n}.$$

(b) It follows from

$$\begin{split} P\left(\left|\frac{T_n - ET_n}{b_n}\right| > \varepsilon\right) &\leq \frac{1}{\varepsilon^2 b_n^2} E|T_n - ET_n|^2 \\ &= \frac{1}{\varepsilon^2 b_n^2} \sum_{i=1}^n E|Y_{n,i} - EY_{n,i}|^2 \\ &\leq \frac{1}{\varepsilon^2 b_n^2} \sum_{i=1}^n E|X_i \mathbf{1}_{|X_i| \leq c_n}|^2 \\ &\leq \frac{1}{\varepsilon^2 b_n^2} n \cdot 2c_n \end{split}$$

4.3 (Borel-Cantelli lemmas).

4.4 (Head runs).

4.5 (Strong laws of large numbers for L^1). Proof by Etemadi

Random series proof

4.2 Renewal theory

4.3 Central limit theorems

4.6 (Central limit theorem for L^3). Replacement method by Lindeman and Lyapunov

4.7 (Lindeberg-Feller theorem). Let X_i be independent random variables such that for every $\varepsilon > 0$ we have

$$\lim_{n\to\infty}\frac{1}{s_n^2}\sum_{i=1}^n E|X_i-EX_i|^2\mathbf{1}_{|X_i-EX_i|>\varepsilon s_n}=0.$$

This condition is called the *Lindeberg-Feller* condition. Let $Y_{n,i} := \frac{X_i - EX_i}{s_n}$

(a) We have

$$|Ee^{it(S_n-ES_n)/s_n}-e^{-\frac{1}{2}t^2}| \leq \sum_{i=1}^n |Ee^{itY_{n,i}}-e^{-\frac{1}{2}E(tY_{n,i})^2}|.$$

(b) For any $\varepsilon > 0$, we have an estimate

$$\left| E e^{itY} - \left(1 - \frac{1}{2} E(tY)^2 \right) \right| \lesssim_t \varepsilon EY^2 + EY^2 \mathbf{1}_{|Y| > \varepsilon}$$

for all random variables *Y* such that $EY^2 < \infty$.

(c) For any $\varepsilon > 0$, we have an estimate

$$\left|e^{-\frac{1}{2}E(tY)^2} - \left(1 - \frac{1}{2}E(tY)^2\right)\right| \lesssim_t EY^2(\varepsilon^2 + EY^2\mathbf{1}_{|Y| > \varepsilon}).$$

for all random variables *Y* such that $EY^2 < \infty$.

(d)

Proof. (a) Note

$$Ee^{it(S_n - ES_n)/s_n} = \prod_{i=1}^n Ee^{itY_{n,i}}$$
 and $e^{-\frac{1}{2}t^2} = \prod_{i=1}^n e^{-\frac{1}{2}E(tY_{n,i})^2}$.

(b) Since

$$\left| e^{ix} - \left(1 + ix - \frac{1}{2}x^2 \right) \right| = \left| \frac{i^3}{2} \int_0^x (x - y)^2 e^{iy} \, dy \right| \le \min\{ \frac{1}{6} |x|^3, x^2 \}$$

for $x \in \mathbb{R}$, we have

$$\begin{split} \left| E e^{itY} - \left(1 - \frac{1}{2} E(tY)^2 \right) \right| &\leq E \left| e^{itY} - \left(1 - \frac{1}{2} (tY)^2 \right) \right| \\ &\lesssim_t E \min\{ |Y|^3, Y^2 \} \\ &\leq E |Y|^3 \mathbf{1}_{|Y| \leq \varepsilon} + E Y^2 \mathbf{1}_{|Y| > \varepsilon} \\ &\leq \varepsilon E Y^2 + E Y^2 \mathbf{1}_{|Y| > \varepsilon}. \end{split}$$

(c) Since

$$|e^{-x} - (1-x)| = \left| \int_0^x (x-y)e^{-y} \, dy \right| \le \frac{1}{2}x^2$$

for $x \ge 0$, we have

$$\left| e^{-\frac{1}{2}E(tY)^2} - \left(1 - \frac{1}{2}E(tY)^2\right) \right| \lesssim_t (EY^2)^2 \le EY^2(\varepsilon^2 + EY^2\mathbf{1}_{|Y| > \varepsilon}).$$

4.8. Let $X_n : \Omega \to \mathbb{R}$ be independent random variables. If there is $\delta > 0$ such that the *Lyapunov condition*

 $\lim_{n \to \infty} \frac{1}{s_n^{2+\delta}} \sum_{i=1}^n E|X_i - EX_i|^{2+\delta} = 0$

is satisfied, then

$$\frac{S_n - ES_n}{S_n} \to N(0, 1)$$

weakly, where $S_n := \sum_{i=1}^n X_i$ and $S_n^2 := VS_n$.

Berry-Esseen ineaulity

Exercises

4.9 (Bernstein polynomial). Let $X_n \sim \text{Bern}(x)$ be i.i.d. random variables. Since $S_n \sim \text{Binom}(n,x)$, $E(S_n/n) = x$, $V(S_n/n) = x(1-x)/n$. The L^2 law of large numbers implies $E(|S_n/n-x|^2) \to 0$. Define $f_n(x) := E(f(S_n/n))$. Then, by the uniform continuity $|x-y| < \delta$ implies $|f(x)-f(y)| < \varepsilon$,

$$|f_n(x) - f(x)| \le E(|f(S_n/n) - f(x)|) \le \varepsilon + 2||f||P(|S_n/n - x| \ge \delta) \to \varepsilon.$$

4.10 (High-dimensional cube is almost a sphere). Let $X_n \sim \text{Unif}(-1,1)$ be i.i.d. random variables and $Y_n := X_n^2$. Then, $E(Y_n) = \frac{1}{3}$ and $V(Y_n) \leq 1$.

4.11 (Coupon collector's problem). $T_n := \inf\{t : |\{X_i\}_i| = n\}$ Since $X_{n,k} \sim \text{Geo}(1 - \frac{k-1}{n})$, $E(X_{n,k}) = (1 - \frac{k-1}{n})^{-1}$, $V(X_{n,k}) \le (1 - \frac{k-1}{n})^{-2}$. $E(T_n) \sim n \log n$

- 4.12 (An occupancy problem).
- **4.13.** Find the probability that arbitrarily chosen positive integers are coprime.

Poisson convergence, law of rare events, or weak law of small numbers (a single sample makes a significant attibution)

Martingales

- 5.1 Submartingales
- 5.2 Martingale convergence theorem

```
5.1 (Doob's upcrossing inequality). (a)5.2 (Martingale convergence theorems). (a)
```

- **5.3.** (a)
- 5.3 Convergence in L^p and uniform integrability
- 5.4 Optional stopping theorem

Markov chains

Part III Continuous stochastic processes

Brownian motion

7.1 Kolomogorov extension

7.1 (Kolmogorov extension theorem). A rectangle is a finite product $\prod_{i=1}^n A_i \subset \mathbb{R}^n$ of measurable $A_i \subset \mathbb{R}$, and cylinder is a product $A^* \times \mathbb{R}^{\mathbb{N}}$ where A^* is a rectangle. Let \mathcal{A} be the semi-algebra containing \emptyset and all cylinders in $\mathbb{R}^{\mathbb{N}}$. Let $(\mu_n)_n$ be a sequence of probability measures on \mathbb{R}^n that satisfies consistency condition

$$\mu_{n+1}(A^* \times \mathbb{R}) = \mu_n(A^*)$$

for any rectangles $A^* \subset \mathbb{R}^n$, and define a set function $\mu_0 : \mathcal{A} \to [0, \infty]$ by $\mu_0(A) = \mu_n(A^*)$ and $\mu_0(\emptyset) = 0$.

- (a) μ_0 is well-defined.
- (b) μ_0 is finitely additive.
- (c) μ_0 is countably additive if $\mu_0(B_n) \to 0$ for cylinders $B_n \downarrow \emptyset$ as $n \to \infty$.
- (d) If $\mu_0(B_n) \ge \delta$, then we can find decreasing $D_n \subset B_n$ such that $\mu_0(D_n) \ge \frac{\delta}{2}$ and $D_n = D_n^* \times \mathbb{R}^{\mathbb{N}}$ for a compact rectangle D_n^* .
- (e) If $\mu_0(B_n) \ge \delta$, then $\bigcap_{i=1}^{\infty} B_i$ is non-empty.

Proof. (d) Let $B_n = B_n^* \times \mathbb{R}^{\mathbb{N}}$ for a rectangle $B_n^* \subset \mathbb{R}^{r(n)}$. By the inner regularity of $\mu_{r(n)}$, there is a compact rectangle $C_n^* \subset B_n^*$ such that

$$\mu_0(B_n \setminus C_n) = \mu_{r(n)}(B_n^* \setminus C_n^*) < \frac{\delta}{2^{n+1}}.$$

Let $C_n := C_n^* \times \mathbb{R}^{\mathbb{N}}$ and define $D_n := \bigcap_{i=1}^n C_i = D_n^* \times \mathbb{R}^{\mathbb{N}}$. Then,

$$\mu_0(B_n \setminus D_n) \leq \mu_0(\bigcup_{i=1}^n B_n \setminus C_i) \leq \mu_0(\bigcup_{i=1}^n B_i \setminus C_i) < \frac{\delta}{2},$$

which implies $\mu_0(D_n) \geq \frac{\delta}{2}$.

(e) Take any sequence $(\omega_n)_n$ in $\mathbb{R}^{\mathbb{N}}$ such that $\omega_n \in D_n$. Since each $D_n^* \subset \mathbb{R}^{r(n)}$ is compact and non-empty, by diagonal argument, we have a subsequence $(\omega_k)_k$ such that ω_k is pointwise convergent, and its limit is contained in $\bigcap_{i=1}^{\infty} D_i \subset \bigcap_{i=1}^{\infty} B_n = \emptyset$, which is a contradiction that leads $\mu_0(B_n) \to 0$.

Part IV Stochastic calculus