Package 'FDRsampsize'

October 12, 2022

Type Package
Title Compute Sample Size that Meets Requirements for Average Power and FDR
Version 1.0
Author Stan Pounds <stanley.pounds@stjude.org></stanley.pounds@stjude.org>
Maintainer Stan Pounds <stanley.pounds@stjude.org></stanley.pounds@stjude.org>
Depends R (>= $2.15.1$)
Imports stats
Date 2016-01-06
Description Defines a collection of functions to compute average power and sample size for studies that use the false discovery rate as the final measure of statistical significance.
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2016-01-15 10:28:09

R topics documented:

FDRsampsize-package						 										2
afdr						 										3
alpha.fdr						 					 					4
alpha.power						 										5
average.power						 										6
fdr.power						 										7
fdr.sampsize						 					 					8
n.fdr						 					 					9
pi.star						 										11
power.cox						 										11
power.hart						 										12
power.li																13
power.onesampt						 										14
power.oneway						 										15

power.ranksum . power.signtest power.tcorr power.twosampt .			 																											17 18
Index																														20
FDRsampsize-package	An cre		•	0		Per	fo	rn	n I	201	ve	r	an	ıd	Sa	ım	pl	e S	Siz	e (Ca	ılc	ul	ati	01	ıs,	fo	r I	Mi-	-

Description

A general approach to performing power and sample size calculations for microarray studies has been developed in the literature. However, the software associated with those articles implements the approach only for studies that will perform the t-test or one-way ANOVA to compare gene expression across two or more groups. Here, we describe a set of R routines that implement the general method for power and sample size calculations for a wider variety of statistical tests. These routines accept the name of a function that computes the power for the statistical test of interest and thus have the flexibility to perform calculations for virtually any statistical test with a known power formula.

Details

Package: FDRsampsize
Type: Package
Version: 1.0
Date: 2016-01-06
License: GPL(>=2)

Author(s)

Stan Pounds <stanley.pounds@stjude.org>

References

A Onar-Thomas, S Pounds. FDRsampsize: An R package to Perform Generalized Power and Sample Size Calculations for Planning Studies that use the False Discovery Rate to Measure Significance, Manuscript 2016.

Pounds, Stan, and Cheng Cheng. "Sample size determination for the false discovery rate." Bioinformatics 21.23 (2005): 4263-4271.

Jung, Sin-Ho. "Sample size for FDR-control in microarray data analysis." Bioinformatics 21.14 (2005): 3097-3104.

afdr 3

|--|

Compute the anticipated FDR

Description

Compute the anticipated FDR for given sample size, p-value threshold, and effect size.

Usage

```
afdr (n, alpha, pow.func, eff.size, lam = 0.95, eps = 1e-04, ...)
```

Arguments

n	sample size (scalar)
alpha	p-value cut-off (scalar)
pow.func	an R function that computes statistical power
eff.size	effect size vector
lam	p-value at which to evaluate ensemble PDF (for pi.star)
eps	epsilon for numerical differentiation
	additional agruments for the functions

Details

The aFDR is defined by Pounds and Cheng (2005) as the anticipated false discovery rate incurred by performing all tests with p-value threshold alpha given the same size effect size and power function.

Value

the aFDR

References

Pounds, Stan, and Cheng Cheng. "Sample size determination for the false discovery rate." Bioinformatics 21.23 (2005): 4263-4271.

Jung, Sin-Ho. "Sample size for FDR-control in microarray data analysis." Bioinformatics 21.14 (2005): 3097-3104.

```
afdr(n=50,alpha=0.01,pow.func=power.twosampt,eff.size=rep(c(1,0),c(100,900)))
```

4 alpha.fdr

alpha.fdr Find the fixed p-value threshold that controls the FDR at a specified level	alpha.fdr	
---	-----------	--

Description

Find the p-value threshold that satisfies an FDR requirement (if such a threshold exists)

Usage

```
alpha.fdr (fdr, n, pow.func, eff.size, null.effect, lam = 0.95, eps = 1e-04, tol = 1e-04, ...)
```

Arguments

fdr	Desired FDR, scalar
n	sample size
pow.func	an R function to compute statistical power
eff.size	effect size vector
null.effect	value of effect size that corresponds to the null hypothesis
lam	the lambda parameter in computing the pi0 (proportion of tests with a true null) estimate of Storey (2002)
eps	epsilon for numerical differentiation
tol	tolerance for bisection solution to alpha
	additional agruments for the functions

Value

a list with the following components:

fdr the FDR at that alpha alpha the determined alpha

OK indicates if the requirement is met

References

A Onar-Thomas, S Pounds "FDRsampsize: An R package to Perform Generalized Power and Sample Size Calculations for Planning Studies that use the False Discovery Rate to Measure Significance", Manuscript 2015.

Pounds, Stan, and Cheng Cheng. "Sample size determination for the false discovery rate." Bioinformatics 21.23 (2005): 4263-4271.

Jung, Sin-Ho. "Sample size for FDR-control in microarray data analysis." Bioinformatics 21.14 (2005): 3097-3104.

alpha.power 5

Examples

alpha.power

Find the p-value threshold that gives a specified average power

Description

Find p-value cut-off that yields desired average power given n and effect size

Usage

Arguments

ave.pow desired average power (scalar)

n sample size

pow. func name of R function to compute statistical power

eff.size effect size vector

null.effect value of effect size that corresponds to null hypothesis

tol tolerance for bisection solution to alpha additional agruments for the functions

Value

a list with the following components:

alpha desired value of alpha ave.pow average power at that alpha

References

A Onar-Thomas, S Pounds. "FDRsampsize: An R package to Perform Generalized Power and Sample Size Calculations for Planning Studies that use the False Discovery Rate to Measure Significance", Manuscript 2015. Pounds, Stan, and Cheng Cheng. "Sample size determination for the false discovery rate." Bioinformatics 21.23 (2005): 4263-4271.

Jung, Sin-Ho. "Sample size for FDR-control in microarray data analysis." Bioinformatics 21.14 (2005): 3097-3104.

6 average.power

average.power	Compute average power for a given sample size	

Description

Compute average power for given sample size, effect size, and p-value threshold

Usage

```
average.power (n, alpha, pow.func, eff.size, null.effect, ...)
```

Arguments

n	sample size
alpha	p-value cut off (scalar)
pow.func	an R function to compute statistical power
eff.size	effect size vector
null.effect	value of effect size that corresponds to null hypothesis
	additional agruments for the functions

Value

```
average power (scalar)
```

References

Pounds, Stan, and Cheng Cheng. "Sample size determination for the false discovery rate." Bioinformatics 21.23 (2005): 4263-4271. Gadbury GL, et al. (2004) Power and sample size estimation in high dimensional biology. Statistical Methods in Medical Research 13(4):325-38. Jung, Sin-Ho. "Sample size for FDR-control in microarray data analysis." Bioinformatics 21.14 (2005): 3097-3104.

```
\label{eq:average_power} a verage.power(n=50,alpha=0.01,pow.func=power.twosampt,\\ eff.size=rep(0:1,c(900,100)),null.effect=0)
```

fdr.power 7

compare the average power at a specific IBR control level	fdr.power	Compute the average power at a specific FDR control level
---	-----------	---

Description

Compute the average power at a specific level of FDR control for a given effect size and sample size

Usage

```
fdr.power (fdr, n, pow.func, eff.size, null.effect, lam = 0.95,
    eps = 1e-04, tol = 1e-04, ...)
```

Arguments

fdr	Desired FDR, scalar
n	sample size
pow.func	name of R function to compute statistical power
eff.size	effect size vector; will be provided as the third argument of pow.func
null.effect	value of effect size that corresponds to null hypothesis
lam	name of R function to compute statistical power
eps	epsilon for numerical differentiation
tol	tolerance for bisection solution to alpha
	additional agruments for the functions

Value

average power (scalar) of the tests with a false null hypothesis

References

A Onar-Thomas, S Pounds "FDRsampsize: An R package to Perform Generalized Power and Sample Size Calculations for Planning Studies that use the False Discovery Rate to Measure Significance", Manuscript 2016.

Gadbury GL, et al. (2004) Power and sample size estimation in high dimensional biology. Statistical Methods in Medical Research 13(4):325-38.

Pounds S and Cheng C (2005) Sample size determination for the false discovery rate. Bioinformatics 21(23): 4263-71.

8 fdr.sampsize

fdr.sampsize	Determine sample size required to achieve a desired average power while controlling the FDR at a specified level.

Description

Determines the sample size needed to achieve a desired average power while controlling the FDR at a specified level.

Usage

```
fdr.sampsize (fdr, ave.pow, pow.func, eff.size, null.effect, max.n = 500,
    min.n = 5, tol = 1e-05, eps = 1e-05, lam = 0.95, ...)
## S3 method for class 'fdr.sampsize'
print(x,...)
```

Arguments

fdr	Desired FDR (scalar numeric)
ave.pow	Desired average power (scalar numeric)
pow.func	Character string name of function to compute power; must accept n, alpha, and eff.size as its first three arguments. Other optional arguments may also be provided.
eff.size	Numeric vector of effect sizes; interally, this will be provided as the third argument of pow.func
null.effect	Scalar value of the effect size under the null hypothesis. This may be 0 or 1 for tests that respectively use differences or ratios for comparisons.
max.n	Maximum n to consider
min.n	Minimum n to consider
tol	Tolerance for bisection calculations
eps	Epsilon for numerical differentiation
lam	Lambda for computing anticipated pi0 estimate, see Storey 2002.
x	result of the fdr.sampsize function
	additional arguments for pow.func

Details

This function checks the technical conditions regarding whether the desired FDR can be achieved by min.n or max.n before calling n.fdr. Thus, for most applications, fdr.sampsize should be used instead of n.fdr.

n.fdr 9

Value

fdr. sampsize returns an object of class 'FDRsampsize', which is a list with the following components:

OK	indicates if the requirement is met
n	the computed sample size
alpha	the p-value threshold that gives the desired FDR
fdr.hat	anticipated value of the FDR estimate given n and effect size
act.fdr	actual expected FDR given n and effect size
ave.pow	average power
act.pi	actual value of pi0, the proportion of tests with a true null hypothesis.
pi.hat	expected value of the pi0 estimate
eff.size	input effect size vector

References

A Onar-Thomas, S Pounds. "FDRsampsize: An R package to Perform Generalized Power and Sample Size Calculations for Planning Studies that use the False Discovery Rate to Measure Significance", Manuscript 2015.

Pounds, Stan, and Cheng Cheng. "Sample size determination for the false discovery rate." Bioinformatics 21.23 (2005): 4263-4271.

Jung, Sin-Ho. "Sample size for FDR-control in microarray data analysis." Bioinformatics 21.14 (2005): 3097-3104.

Examples

n.fdr

Find the sample size that meets desired FDR and power criteria

Description

Find smallest sample size that meets requirements for average power and FDR

Usage

```
n.fdr (ave.pow, fdr, pow.func, eff.size, null.effect, lam = 0.95, eps = 1e-04, n0 = 5, n1 = 500, tol = <math>1e-06, ...)
```

10 n.fdr

Arguments

ave.pow required average power (scalar)

fdr required FDR (scalar)

pow. func name of R function that computes statistical power

eff.size effect size vector

null.effect Value of effect size that indicates null

lam p-value at which to evaluate ensemble PDF

eps epsilon for numerical differentiation

n0 smallest sample size to be considered for bisection
 n1 maximum sample size to be considered for bisection

tol tolerance for solving for alpha in iterationsadditional agruments for the functions

Details

This performs the sample size calculation without checking whether the minimum or maximum sample size satisfy the desired requirements. The fdr.sampsize function checks these conditions and then calls n.fdr. Thus, many users will may prefer to use the sampsize.fdr function instead of n.fdr.

Value

a list with the following components:

n a sample size estimate alpha the p-value cut-off

fdr.hat an approximation to the expected value of the FDR estimate given n

ave.pow the average power fdr.act the actual FDR given n

pi.hat expected value of the pi.hat estimator given n

act.pi actual pi0

References

A Onar-Thomas, S Pounds. "FDRsampsize: An R package to Perform Generalized Power and Sample Size Calculations for Planning Studies that use the False Discovery Rate to Measure Significance", Manuscript 2015.

Pounds, Stan, and Cheng Cheng. "Sample size determination for the false discovery rate." Bioinformatics 21.23 (2005): 4263-4271.

Jung, Sin-Ho. "Sample size for FDR-control in microarray data analysis." Bioinformatics 21.14 (2005): 3097-3104.

pi.star 11

pi.star

Compute the anticipated null proportion estimate

Description

Compute an approximation of the expected value of the null proportion estimate given the sample size and effect size.

Usage

```
pi.star (n, pow.func, eff.size, lam = 0.95, eps = 1e-04, ...)
```

Arguments

n	sample size
pow.func	an R function to compute statistical power
eff.size	effect size vector
lam	p-value at which to numerically evaluate p-value pdf (scalar)
eps	epsilon for numerical differentiation
	additional agruments for the functions

Value

scalar value for approximated E(pi.hat)

References

#> Pounds, Stan, and Cheng Cheng. "Sample size determination for the false discovery rate." Bioinformatics 21.23 (2005): 4263-4271.

power.cox

Compute the power of a single-predictor Cox regression model

Description

Use the formula of Hseih and Lavori (2000) to compute the power of a single-predictor Cox model.

Usage

```
power.cox (n, alpha, logHR, v)
```

12 power.hart

Arguments

n	number of events (scalar)
alpha	p-value threshold (scalar)
logHR	log hazard ratio (vector)
V	variance of predictor variable (vector)

Value

vector of power estimates for two-sided test

References

Hsieh, FY and Lavori, Philip W (2000) Sample-size calculations for the Cox proportional hazards regression model with nonbinary covariates. Controlled Clinical Trials 21(6):552-560.

Examples

power.hart Compute Power for RNA-seq Experiments Assuming Negative Binomial Distribution.

Description

Use the formula of Hart et al (2013) to compute power for comparing RNA-seq expression across two groups assuming a negative binomial distribution.

Usage

```
power.hart (n, alpha, log.fc, mu, sig)
```

Arguments

n	per-group sample size (scalar)
alpha	p-value threshold (scalar)
log.fc	log fold-change (vector), usual null hypothesis is log.fc=0
mu	read depth per gene (vector, same length as log.fc)
sig	coefficient of variation (CV) per gene (vector, same length as log.fc)

power.li 13

Details

This function is based on equation (1) of Hart et al (2013). It assumes a negative binomial model for RNA-seq read counts and equal sample size per group.

Value

vector of power estimates for the set of two-sided tests

References

SN Hart, TM Therneau, Y Zhang, GA Poland, and J-P Kocher (2013). Calculating Sample Size Estimates for RNA Sequencing Data. Journal of Computational Biology 20: 970-978.

Examples

power.li

Compute Power for RNA-Seq Experiments Assuming Poisson Distribution

Description

Use the formula of Li et al (2013) to compute power for comparing RNA-seq expression across two groups assuming the Poisson distribution.

Usage

```
power.li (n, alpha, rho, mu0, w = 1, type = "w")
```

Arguments

n	per-group sample size
alpha	p-value threshold
rho	fold-change, usual null hypothesis is that rho=1
mu0	average count in control group
W	ratio of total number of
type	type of test: "w" for Wald, "s" for score, "lw" for log-transformed Wald, "ls" for log-transformed score.

14 power.onesampt

Details

This function computes the power for each of a series of two-sided tests defined by the input parameters. The power is based on the sample size formulas in equations 10-13 of Li et al (2013). Also, note that the null effect is set to 1 in the examples because the usual null hypothesis is that the fold-change = 1.

Value

vector of power estimates for two-sided tests

References

C-I Li, P-F Su, Y Guo, and Y Shyr (2013). Sample size calculation for differential expression analysis of RNA-seq data under Poisson distribution. Int J Comput Biol Drug Des 6(4). doi:10.1504/IJCBDD.2013.056830

Examples

power.onesampt

Compute power of the one-sample t-test

Description

Estimate power of the one-sample t-test; Uses classical power formula for one-sample t-test

Usage

```
power.onesampt (n, alpha, delta, sigma = 1)
```

Arguments

```
n number of events (scalar)

alpha p-value threshold (scalar)

delta difference of actual mean from null mean (vector)

sigma standard deviation (vector or scalar, default=1)
```

Value

vector of power estimates for two-sided test

power.oneway 15

Examples

power.oneway

Compute power of one-way ANOVA

Description

Compute power of one-way ANOVA;Uses classical power formula for ANOVA;Assumes equal variance and sample size

Usage

```
power.oneway (n, alpha, theta, k = 2)
```

Arguments

n per-group sample size (scalar)

alpha p-value threshold (scalar)

theta sum of ((group mean - overall mean)/stdev)^2 across all groups for each hypothesis test (vector)

the number of groups to be compared, default k=2

Details

k

For many applications, the null effect is zero for the parameter theta described above.

Value

vector of power estimates for test of equal means

16 power.ranksum

power.ranksum

Compute power of the rank-sum test

Description

Compute power of rank-sum test; Uses formula of Noether (JASA 1987)

Usage

```
power.ranksum (n, alpha, p)
```

Arguments

```
n sample size (scalar)
alpha p-value threshold (scalar)
p Pr (Y>X), as in Noether (JASA 1987)
```

Details

In most applications, the null effect size will be designated by p = 0.5, which indicates that Thus, in the example below, the argument null effect=0.5 is specified in the call to fdr.sampsize.

Value

vector of power estimates for two-sided tests

References

Noether, Gottfried E (1987) Sample size determination for some common nonparametric tests. Journal of the American Statistical Association, 82:645-647.

```
power.ranksum # show the power function  res=fdr.sampsize(fdr=0.1, \\ ave.pow=0.8, \\ pow.func=power.ranksum, \\ eff.size=rep(c(0.8,0.5),c(100,900)), \\ null.effect=0.5)  res
```

power.signtest 17

power	.signtest

Compute power of the sign test

Description

Use the Noether (1987) formula to compute the power of the sign test

Usage

```
power.signtest (n, alpha, p)
```

Arguments

```
n sample size (scalar)
alpha p-value threshold (scalar)
p Pr (Y>X), as in Noether (JASA 1987)
```

Details

In most applications, the null effect size will be designated by p = 0.5 instead of p = 0. Thus, in the call to fdr.sampsize, we specify null effect=0.5 in the example below.

Value

vector of power estimates for two-sided tests

References

Noether, Gottfried E (1987) Sample size determination for some common nonparametric tests. Journal of the American Statistical Association, 82:645-647.

power.twosampt

power.tcorr

Compute Power of the t-test for non-zero correlation

Description

Estimate power of t-test for non-zero correlation; Uses classical power formula for t-test

Usage

```
power.tcorr (n, alpha, rho)
```

Arguments

n sample size (scalar)
alpha p-value threshold (scalar)

rho population correlation coefficient (vector)

Details

For many applications, the null effect is rho=0.

Value

vector of power estimates for two-sided tests

Examples

```
power.tcorr # show the power function res=fdr.sampsize(fdr=0.1, \\ ave.pow=0.8, \\ pow.func=power.tcorr, \\ eff.size=rep(c(0.3,0),c(100,900)), \\ null.effect=0) res
```

power.twosampt

Compute power of the two-samples t-test

Description

Estimate power of the two-samples t-test; Uses classical power formula for two-sample t-test; Assumes equal variance and sample size

Usage

```
power.twosampt (n, alpha, delta, sigma = 1)
```

power.twosampt 19

Arguments

n	per-group sample size (scalar)
alpha	p-value threshold (scalar)
delta	difference between population means (vector)
sigma	standard deviation (vector or scalar)

Details

For many applications, the null effect is zero difference of means.

Value

vector of power estimates for two-sided test

Index

```
afdr, 3
alpha.fdr, 4
alpha.power, 5
average.power, 6
fdr.power, 7
fdr.sampsize, 8
FDRsampsize (FDRsampsize-package), 2
FDRsampsize-package, 2
n.fdr,9
pi.star, 11
power.cox, 11
power.hart, 12
power.li, 13
power.onesampt, 14
power.oneway, 15
power.ranksum, 16
{\tt power.signtest}, \\ 17
power.tcorr, 18
{\tt power.twosampt}, 18
print.fdr.sampsize(fdr.sampsize), 8
```