INDIAN INSTITUTE OF SPACE SCIENCE AND TECHNOLOGY THIRUVANANTHAPURAM 695 547

End Semester Examination - May 2015

B. Tech - II Semester

MA121 - Vector Calculus and Differential Equations

Date: 13/05/2015 Time: 1.30 pm - 4.30 pm Max. Marks: 100

SECTION A (Attempt all 10 questions - 10x5= 50 marks.)

- 1. Is it true that if each f_n and the point wise limit function $f(x) = \lim_{n \to \infty} f_n(x)$ are continuous, then f_n converges to f uniformly. Justify your answer with an example.
- 2. Show that the series $f(x) = \sum_{n=0}^{\infty} e^{-nx} \cos nx$ converges uniformly on $0 < x < \infty$. Also check whether the following term by term derivative of the series can be justified: [5] $f'(x) = -\sum_{n=0}^{\infty} ne^{-nx}(\cos nx + \sin nx).$
- 3. Define directional derivative of a function $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ at a point P_0 along a vector \vec{v} . Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ be defined by $f(x,y) = \sqrt{x^2 + y^2}$. Let \vec{v} be a **unit vector** in \mathbb{R}^2 ; does $D_{\vec{v}}(f)|_{(0,0)}$ exist? Is f differentiable at (0,0)? [3+2].
- 4. Define arc length function of a smooth curve $C: \vec{\gamma}(t), t \in [a, b]$ with initial point $\gamma(a)$. Let C be a curve given by $C: x^2 + y^2 = 1, y = x \tan z$ with initial point (1, 0, 0). Give a parametrization to the curve. Find the "arc length function" of the curve. [2+3]
- 5. Let $\vec{\gamma}:[a,b] \longrightarrow \mathbb{R}^3$ be a non-constant smooth curve. Show that $\vec{\gamma}'(t) \neq \vec{0}$ for all $t \in [a,b]$. Express $-\vec{\gamma}$ in terms of $\vec{\gamma}$. Is $-\vec{\gamma}$ a smooth curve? Justify your answer. [3+1+1]
- 6. Using Green's theorem find the area of the region bounded by $x^2 + y^2 = 4$, $y \ge 0$; x y 2 = 0; and x + y + 2 = 0 on the XY-plane.
- 7. Does Picard theorem guarantee that there exist an interval on which the following initial value problems have a unique solution? If yes, find it and also justify your answer. [5]
 - (a) $\frac{dy}{dx} = y^{\frac{1}{2}}, \quad y(0) = 0.$
 - (b) $\frac{dy}{dx} = x^2|y|$, $y(0) = \frac{1}{2}$.
- 8. Find the general solution of y'' f(x)y' + [f(x) 1]y = 0, where f is a continuous function on \mathbb{R} .
- 9. Using method of undetermined coefficients, find particular solution of the following differential equations. [5]
 - (a) $y'' + y = \sin x$.
 - (b) $y''' + 2y'' y' = 3x^2 2x + 1$.

- 10. Find the first three terms of the Legendre series of the following functions.
 - (a) $f(x) = \begin{cases} 0, & -1 \le x < 0, \\ x, & 0 \le x \le 1. \end{cases}$
 - (b) $f(x) = e^x$.

SECTION B (Attempt any 5 questions - 5x10= 50 marks.)

[5]

- 11. Let $f_n(x) = n^c x (1 x^2)^n$ for x real and $n \ge 1$.
 - (a) Prove that $\{f_n\}$ converges pointwise on [0,1] for every real c. [2]
 - (b) Find the values of c for which the convergence is uniform on [0, 1]. [4]
 - (c) Also determine the values of c for which the following is true [2]

$$\lim_{n \to \infty} \int_0^1 f_n(x) dx = \int_0^1 \lim_{n \to \infty} f_n(x) dx.$$

- (d) Suppose $\{g_n\}$ is a sequence of continuous functions satisfying the integral identity given in question (c). Does it imply the uniform convergence of $\{g_n\}$? [2]
- 12. (a) Check whether the series $\sum_{n=1}^{\infty} \frac{x}{n(1+nx^2)}$ converges uniformly on \mathbb{R} . [3]
 - (b) Prove the following with appropriate justification: $\int_0^1 \sum_{n=1}^\infty \frac{x}{(n+x^2)^2} dx = \frac{1}{2}.$ [7]
- 13. (a) Let $\overrightarrow{F}(x,y,z) = (ye^z + z\cos x, xe^z + 1, xye^z + \sin x + 1)$ be a vector field and C a curve defined by $C = C_1 * C_2 * C_3$ where C_1 is the straight line segment $(0,0,0) \longrightarrow (\pi,0,-\pi); C_2 : \gamma(t) = (\pi+t, (\pi+t)\sin(\pi+t), (\pi+t)\cos(\pi+t))$ where $t \in [0,\pi];$ and C_3 is the straight line segment $(2\pi,0,2\pi) \longrightarrow (1,0,0)$. Evaluate $\int_C \overrightarrow{F}$, if exists. Is the integral path independent? Justify your answer. [3+2]
 - (b) Suppose that at time t=0 a particle is ejected from the surface $x^2+y^2-z^2=-1$ at the point $(1,1,\sqrt{3})$ along the normal to the surface, which is directed toward the xy plane with a speed of 10 units per second. When and where does it cross the xy plane? [5]
- 14. (a) Verify multiply connected version of Stoke's theorem for the vector field

- (b) Let \overrightarrow{F} be a smooth vector field with domain $\mathbb{R}^2 \{(0,0)\}$ having Curl zero. Let C_1 and C_2 be any two positively oriented loops on XY-plane around (0,0) such that C_1 and C_2 do not intersect each other (e.g. concentric circles). Using **Green's** theorem on simply-connected domains show that the line integrals of \overrightarrow{F} along C_1 and along C_2 are the same.
- 15. Find the general solution of the following differential equation

$$x^{2}y'' + (x^{2} - 3x)y' + 3y = 0.$$
[10]

16. Consider the following second order differential equation

$$y'' + P(x)y' + Q(x)y = R(x), x \in I = (-1, 1).$$
(1)

Then prove or disprove the following for arbitrary real constants c_1 and c_2 :

- (a) If $R(x) = 0 \quad \forall x \in I$, y_1 and y_2 are any two solutions of (1), then $c_1y_1 + c_2y_2$ is the general solution of (1).
- (b) If $R(x) \neq 0$ for some $x \in I$, y_1 and y_2 are any two solutions (1), then $c_1y_1 + c_2y_2$ is the general solution of (1).
- (c) Let $R(x) = 0 \quad \forall x \in I$, then there exist P and Q such that x^2 and x|x| are solutions of (1). Justify your answer. [4]

END