UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO

UNIVASF

COLEGIADO DE ENGENHARIA MECÂNICA

Cálculo Diferencial e Integral I

Atividade I - Números Reais

Questão 1. Represente, na reta numérica, os intervalos: $[1,4], (-2,3), [2,5], (\pi,7), [0,2] \cup (2,6], [-1,5] \cap [2,3], (-\infty,-2) \cap (1,4] e(-\infty,10^7) \cup (2,\infty).$

Questão 2 (1,5). Resolva as equações, em \mathbb{R} : a. $x \cdot (1-x) \cdot (5-6x) = 0$, b. $x = x^2$, c. $(x+1)^2 = 0$, d. $x^2 - 1 = 0$, e. $x^2 + 1 = 0$, f. $x^2 + 10x + 25 = 0$, g. $2x^2 - 10x + 12 = 0$, h. $\frac{2x^2 - 5x}{x - x^3} = 0$.

Questão 3 (1,5). No item h, da questão anterior, qual seria o domínio da equação? É possivel resolver tal equação para todo $x \in \mathbb{R}$? Justifique!

Questão 4 (2,0). Estude o sinal das expressões algébricas: a. $x^2 - 2x + 1$, b. $-x^2 + x + 3$, c. 3x - 2, d. $\frac{x-2}{x}$, e. $x^3 - 1$, f. (x - 3)(x + 4), g. $x^3 + 8$, h. $\sqrt{x + 4}$, i. $\sqrt[3]{x^2 - 1}$.

Questão 5. Com base no item anterior, determine o conjunto solução das inequações: a. $x^2 - 2x + 1 > 0$, b. $-x^2 + x + 3 < 0$, c. 3x - 2 > 0, d. $\frac{x - 2}{x} \le 0$, e. $x^3 - 1 < 0$, f. $(x - 3)(x + 4) \le 0$, g. $x^3 + 8 > 0$, h. $\sqrt{x + 4} < 0$, i. $\sqrt[3]{x^2 - 1} < 0$.

Questão 6. Existe alguma diferença entre resolver $\frac{x-1}{x+2} = 5$ e $\frac{x-1}{x+2} = 5$? Justifique!

Questão 7. O módulo ou valor absoluto de um número real x é a distância do ponto à origem. Em símbolos,

$$|x| := \begin{cases} x, & se \ x > 0 \\ 0, & se \ x = 0 \\ -x, & sex < 0 \end{cases}$$

Com base na definição acima, escreva como ficaria: a. |x-2|, b. |x-1|, c. $|x^2-9|$

Questão 8. Como seria a distribuição de |x-2| + |x-1|?

Questão 9. Resolva: a. |x+3|=2, b. $|x+2|\geq 4$, c. |5x+1|>2,