Exploring Adverse Drug Effect Discovery from Data Mining of Clinical Notes

Slides from Josh Smith, PhD

Overview

- Hypothesis: Drugs and findings that co-occur together more often in clinical documents do so for a cause-and-effect reason (e.g., indication/treatment or AE).
- Goal: Identify the drug and finding concepts that co-occur in a large number of H&P notes.
- Implementation: If we can rule out those which co-occur for known reasons (indications or adverse effects), those that remain could be unknown side effects.

Adverse Effects

Premarket Evaluation of Drugs

- FDA requires testing for both efficacy and safety before a drug is sold in the marketplace
- Phase 1. 20-80 people; initial testing to determine metabolism, pharmacologic action, safe dosage range, and side effects
- Phase 2. 100-300 people; controlled trial; tests drug effectiveness in treating a particular condition; further evaluates drug safety
- Phase 3. 1000-3000 people; controlled or uncontrolled; risk-benefit relationship

Premarket Evaluation of Drugs

- AEs do not always arise in pre-market trials
 - Trials are relatively brief and small; cannot detect rare effects occurring in fewer than 1 in 10,000
 - Inclusion criteria are often restrictive in terms of age, race, gender, and health status
 - Trials rarely emulate the varying conditions of medication use by the public
 - Trials cannot fully explore effects of comorbid conditions, ranges of dosing, duration, and interactions with other medications

Examples of significant AEs

- Rofecoxib (Vioxx) a COX-2 selective NSAID
- 1999: Approved by the FDA to treat arthritis, acute pain in adults, and dysmenorrhea.
- Sold over 80 million prescriptions worldwide over 5 years.
- 2004: Withdrawn from the market after evidence linked the drug with myocardial infarction (MI) and stroke

Recent Examples - Rosiglitazone

- Rosiglitazone (Avandia) drug used for treatment of Type 2 diabetes
 - 1999: FDA approval
 - 2006: Sales of ~\$2.2 billion
 - 2007: Linked with MI and other CV effects
 - 2010: Removed from the market in Europe and severely restricted by the FDA
- Other recent examples include Statins and Risperidone (Risperdal)

Prevalence of AEs

- 2004 A study¹ of ~20,000 inpatients showed
 6.5% of admissions were associated with ADRs
 - ADR directly led to admission in 80% of cases
- 2008 A systematic review² of 25 studies involving 100,000+ patients showed ~5.3% of admission were associated with ADRs
- 2010 An inpatient study³ in a Dutch hospital found 19-29% of admissions were due to ADRs

^{1.} Pirmohamed, et al. Adverse drug reactions as cause of admission to hospital... BMJ 2004 Jul;329(7456):15–19.

^{2.} Kongkaew, et al. Hospital Admissions Associated with Adverse Drug Reactions... Ann Pharmacother 2008 Jul; 42(7/8):1017–1025.

^{3.} Atiqi, et al. Prevalence of iatrogenic admissions to the Departments of Medicine/Cardiology/ Pulmonology in a 1,250 bed general hospital. Int J Clin Pharmacol Ther 2010 Aug;48(8):517–524.

Pharmacovigilance

- Comprises the detection, assessment, understanding, and prevention of AEs at both normal and excessive doses
- Began in the 1960's after the tragic widespread effects of Thalidomide use during pregnancy
- Includes pre-marketing risk assessment, ongoing risk minimization, and post-marketing surveillance

Post-Marketing Surveillance

- Spontaneous Reports
 - Reports of suspected AEs by hospitals, healthcare professionals, patients, and drug manufacturers
- Spontaneous Reporting Systems (SRS)
 - FDA MedWatch and AERS
 - EMA EudraVigilance
 - WHO International Drug Monitoring Programme

Spontaneous Reporting Systems

- Modern methods use analysis of aggregate data to detect and evaluate AE "signals"
 - Popular methods include the Proportional Reporting Ratio (PRR), Reporting Odds Ratio (ROR), Pearson's Chi-Square Test, and the Poisson Probability Test.
 - Other methods that have been used include correlation analysis, regression analysis, neural networks, empirical Bayes screening, and many others.

Shortcoming of SRS

- Problems with spontaneous reports
 - Under-, Over-, and Duplicate Reporting
 - Voluntary
 - Serious vs. non-serious AEs
 - Limited temporal information
- Many methods are "numerator-based"
- These methods are for identifying hypotheses; definitive proof still requires clinical and experimental research.

AE Detection From Other Sources

- SRS were once the only sources of large scale
 AE data, but EMRs now contain similar data.
- It has been shown that AE information is present in EMRs.¹
- As late as 2005, few, if any, major stakeholders had the goal of hypothesis-free examination of large databases in efforts to find new AEs.²
- While some methods compensate for SRS shortcoming, the field must explore EMRs as a data source.

^{1.} Wang, et al. Selecting information in electronic health records for knowledge acquisition. JBMI 2010 Aug;43(4):595–601.

^{2.} Roden DM. An underrecognized challenge in evaluating postmarketing drug safety. Circulation 2005 Jan;111(3):246–248.

AE Discovery From EMRs

- Carol Friedman and colleagues at Columbia
 - Used NLP to extract diseases and related symptoms from discharge summaries, as well as drug concepts.¹
 - Used co-occurrence statistics to find correlations between seven drugs/drug classes and their known AEs from ~25,000 discharge summaries.²
 - Based on dates of discharge summaries, showed that some AEs appeared in notes in significant number before they were "discovered."

^{1.} Wang, et al. Automated knowledge acquisition from clinical narrative reports. AMIA Annu Symp Proc 2008;783–787.

^{2.} Wang, et al. Active Computerized Pharmacovigilance Using Natural Language Processing, Statistics, and Electronic Health Records: A Feasibility Study. JAMIA 2009 Mar;16(3):328–337.

AE Discovery From EMRs

- FDA Sentinel Initiative¹
 - "Create a linked, sustainable system that will draw on existing automated healthcare data from multiple sources to actively monitor the safety of medical products continuously and in real time."
 - Will make use of data mining on healthcare information from sources such as hospitals and insurance companies.

Overview: Feasibility of Detecting AEs

- Using NLP, we extracted drug and finding concepts from a corpus of H&Ps.
- We calculated the statistical correlation between drugs and findings appearing in the notes.
- We used DEB to categorize known drug-finding pairs.
- We did an informal exploratory analysis to determine if drug-finding correlations seemed valid and if recently discovered AEs could be detected.

H&P Notes

- We obtained 500,000 "likely H&Ps" from the SD, but needed to further refinement.
- We used SecTag to identify sections in the note, then defined criteria for a "high quality" H&P
- We required that at least 2/3 criteria be met.
 - 366,545 H&Ps remained out of ~500,000

Criterio	Sections Present in the note
n	
1	(History of Present Illness OR Past Medical History) AND Physical Exam
2	At least 4 of (Review of Systems Chief Complaint Assessment Family Medical History Medications (History of Present Illness Past Medical History))
3	At least 5 of (Vital Signs Pulmonary Exam Cardiovascular Exam Neurological Exam HEENT Exam Abdominal Exam Lymphatic Exam Extremity Exam General Exam)

Extracting Drug-Finding Pairs

Drugs Drug-Finding Pairs We used the sar ntic-type A-1with DEB. A-2ach note, v A-3H&P B-1sected a list of finding concepts B-2acted a list of drug concepts. B-3<u>Findings</u> of zil drug-f C-1counted the acc C-2C-3

Extracting Findings from H&Ps

- Used KMCI and SecTag to identify findings in H&Ps
- Added CUIs to "finding list" if...
 - it was of the relevant semantic type.
 - it had not been seen before in current note.
 - it was not in an excluded section of an H&P note.
 - We did not include concepts from Family Medical History sections, as they were less likely to be related directly to the patient

Extracting Drugs from H&Ps

- Using SecTag, extracted H&P sections to use as input to MedEx
 - Included H&P sections likely to contain past or current medications, such as History of Present Illness, Past Medical History, Medications, Medication History, etc.
 - Did not include "Plan" sections, which contain future medications.
- Added CUIs to "drug list" if...
 - it had appropriate semantic type.
 - at least one MedEx signature field was present.
 - it had not been seen before in current note.

Filtering Drug-Finding Pairs

- Drug mapping to generic ingredients
 - Mapping to drug ingredients using RxNorm, per DEB methods
 - Improved over DEB by creating manual mapping for frequently appearing drugs that lacked mappings
- Removing irrelevant concepts
 - Manually removed most frequently occurring nondescriptive and irrelevant extracted concepts
 - Examples: "blood for culture," "date of admission," "annual exam," etc.

Analysis of Drug-Finding Pairs

- For each drug-finding pair, we calculated the odds ratio and Pearson's Chi-square in set of H&Ps.
- For a drug-finding pair to remain in the analysis, we required it to appear in at least 100 notes.
- Since we performed the Chi-square test \sim 100,000 times, we used a Bonferroni correction to correct for multiple testing $p <= 10^{-8}$.

Identifying Known D-F Pairs

 KMCI, MedEx, and DEB all use UMLS CUIs to designate concepts, so checking for a drugfinding pair in DEB required only simple matching.

Informal Analysis Questions

- Do drug-finding pair classifications derived by applying the DEB to clinical notes appear reasonable most of the time?
- 2. When DEB classifications appear to be incorrect, is there at least a plausible reason that explains the mistake?
- 3. Does there appear to be, at face value, a known clinical reason that can be cited to explain those clinical-note-derived drug-finding pairs that are highly statistically correlated?
- 4. Can the method rank recently discovered drug-AE pairs high enough to suggest future potential for more careful side effect discovery?

Results

- We started with 500,000 H&P notes.
- After using SecTag to filter out lower-quality H&Ps, we had ~366,600 H&Ps.
- From them, we extracted 809,478 drug-finding pairs composed of 1755 distinct drugs and 10,723 distinct findings.
- After requiring a min co-occurrence count of 100, we retained 75,749 pairs composed of 666 distinct drugs and 2182 distinct findings.

Results

- After the Bonferroni correction, there were 39,304 pairs with a significant chi-square value.
- 10,500 were identified as AEs, 3417 as INDs.
- We show the highest ranked correlations overall and for each of the following drugs:
 - Rofecoxib
 - Rosiglitazone
 - Risperidone
 - Statins

Results – Top-Ranked Correlations

Drug	Finding	cocount	odds	chisq	det	Review by Expert
Thyroxine	Hypothyroidism	13422	59.93	122517.76	IND	OK
Dornase Alfa	Pancreatic Insufficiency	773	637.71	105067.22		Confounder, due to CF
Dornase Alta	Cystic Fibrosis	1418	1658.53	90518.37	IND	OK
Tobramycin	Pancreatic Insufficiency	647	368.44	72462.81		Confounder, due to CF
Tobramycin	Cystic Fibrosis	1212	346.65	64923.85	IND	OK
Allopurinol	Gout	2778	79.57	61419.85	IND	OK
Insulin	Diabetes Mellitus, Insulin-Dependent	6179	32.76	55082.08	IND	ОК
Furosemide	Congestive heart failure	11955	12.04	44120.11	IND	ОК
Nitroglycerin	Coronary Arteriosclerosis	10379	17	42400.06	IND	ОК
Colchicine	Gout	1650	90.31	40544.75	IND	ОК
Insulin	Diabetes Mellitus	11478	10.59	36228.16	IND	ОК
Lactulose	Hepatic Encephalopathy	747	116.26	35601.03	IND	ок
Aspirin	Coronary Arteriosclerosis	19026	6.83	35539.91		Prophylaxis and early RX; IND
Statins	Hyperlipidemia	15536	7.73	35356.23	IND	ОК
valacyclovir	Graft-vs-Host Disease	765	96.44	33656.09		Confounder, herpes prophylaxis or transplant patient treatment
Albuterol	Asthma	9549	10.01	32429.05	IND	ОК
donepezil	Dementia	901	96.29	31183.81	IND	OK 27

Results – Top-Ranked Corr. (cont.)

	Drug	Finding	cocount	odds	chisq	det	Review by Expert	
	Nitroglycerin	Chest Pain	9501	11.42	29787.4	IND	ОК	
	clonidogrel	Coronary Arteriosclerosis	7289	14 41	28112.3		IND	
	Illicit Drugs	abnormal bruising	728	87.24	28061.35		Too broad	
	Digoxin	Congestive heart failure	4728	15.16	26264.48	IND	ОК	
	Sinemet	Parkinson Disease	756	115.75	25794.43		Multi-component drug; IND	
	latanoprost	Glaucoma	663	97.64	24977.36	IND*	ОК	
	Statins	Coronary Arteriosclerosis	15692	5.34	24296.85		IND	
	mesalamine	Crohn's disease	610	101.51	23912.73	IND	ОК	
	Cocaine	Cocaine Ahuse	552	98.09	23906.61		Trivial	
	Albuterol	Exacerbation of asthma	2553	30.84	23675.4	AE	Incorrect – IND	
	Aspirin	Hypertensive disease	33022	4.51	23593.69	IND	Confounder, stroke/MI prophylaxis	
	Hydroxychloroquine	Lupus Erythematosus, Systemic	572	86.91	23029.24	IND	ОК	
	mesalamine	Ulcerative Colitis	423	105.89	22653.9	IND	ОК	
,	Levetiracetam	Seizures	2804	37.2	22565.16	IND	ОК	
	Insulin	Diabetes Mellitus, Non- Insulin-Dependent	7624	7.81	22347.89	IND	ОК	
	Statins	Hypertensive disease	30117	4.65	22289.33	IND	Confounder, stroke/MI prophylaxis	
		Benign prostatic					ОК	
	tamsulosin	hypertrophy	1430	31.73	22267.01	IND	OK	-
	Insulin	Diabetic Ketoacidosis	2014	47.45	22213.8	IND	ОК	28

Results – Rofecoxib

Drug	Finding	cocount	odds	chisq	det
rofecoxil	Degenerative polyarthritis	250	3.35	318.07	IND
rofecoxil	Obesity	253	2.58	188.01	
rofecoxil	Hypertensive disease	598	2	138.74	AE*
rofecoxil	Arthritis	157	2.63	135.18	IND*
rofecoxil	Prothrombin time increased	101	3.1	129.33	
rofecoxil	Rheumatoid Arthritis	212	2.21	113.16	IND*
rofecoxil	Congestive heart failure	170	2.32	107.98	AE*
rofecoxil	Metabolic Diseases	216	2.1	100.06	
rofecoxil	Myocardial Infarction	189	2.17	98.77	AE*
rofecoxil	Chest Pain	267	1.95	94.2	AE*
rofecoxil	Coronary Arteriosclerosis	248	1.98	92.85	
rofecoxil	White blood cell count increased	233	1.96	86.54	
rofecoxil	Mental Depression	238	1.9	80.1	
rofecoxil	Shortness of Breath	260	1.77	66.08	
rofecoxil	Lupus Erythematosus, Discoid	145	1.99	61.54	

Results - Rofecoxib (cont.)

Drug	Finding	cocount	odds	chisq	det	
rofecoxib	Gastroesophageal reflux disease	212	1.8	60.93	AE*	
rofecoxib	Adverse Event Associated with the Gastrointestinal System	107	2 1	55.35		
rofecoxib	Back Pain	119	2.02	54.62	AE*	
rofecoxib	Swelling	113	1 93	44 95		
rofecoxib	Pain	521	1.49	44.48	IND*	
rofecoxib	Hypothyroidism	129	1.83	42.89		
rofecoxib	Osteoporosis	114	1.87	41.58		
rofecoxib	Asthenia	137	1.76	39.41	AE*	
rofecoxib	Gastrointestinal tract finding	112	1.85	39.09		
rofecoxib	Diabetes Mellitus	198	1.6	36.66		
	Chronic Obstructive Airway					
rofecoxib	Disease	126	1.67	29.89		
rofecoxib	Urinary tract infection	121	1.67	28.81	AE*	
rofecoxib	Anemia	135	1.61	27.52		
rofecoxib	Lesion	273	1.44	27.43		
rofecoxib	Cerebrovascular accident	136	1.57	24.86	AE*	

Results – Rosiglitazone

Drug	Finding	cocount	odds	chisq	det	
rosiglitazon	Diabetes Mellitus, Non-Insulin-Dependent	608	9.11	2416.6	IND	
rosiglitazon	Diahetes Mellitus	745	ጸ 77	2334 6	IND	
rociglitazon	Hypertensive disease	1028	5 02	<u> </u>	ΛF	
rosiglitazon	Obesity	420	3.85	611.06		
rosiglitazon	e Hyperlipidemia	384	3.44	475.98		
rosiglitazon	Coronary Arteriosclerosis	396	2.78	320.68		
rosiglitazon	Gastroesophageal reflux disease	300	2.13	139.92		
rosiglitazon	Lupus Erythematosus, Discoid	209	2.37	139.78		
rosiglitazon	hypercholesterolemia	164	2.54	133.66		
rosiglitazon	e Anicteric	808	1.82	123.49		
rosiglitazon	e Arthritis	177	2.36	119.52		
rosiglitazon	Angina Pectoris	116	2.71	113.74		
rosiglitazon	Chronic Obstructive Airway Disease	197	2.18	107.52		
rosiglitazon	Dyspnea on exertion	153	2.21	89.42		
rosiglitazon	e Congestive heart failure	190	2.06	88.6	AE	
rosiglitazon	Shortness of Breath	326	1.79	87.12		
rosiglitazon	Orthoppea	136	2 27	86 62		
rosiglitazon	Myocardial Infarction	214	1.95	83.16	AE	
rosiglitazon	Paroxysmal atrial tachycardia	296	1.79	81.46		
rosiglitazon	Anemia	193	1.9	70.68	AE	
rosiglitazon	Visual impairment	111	2.23	68.43		31

Results – Risperidone

 Drug	Finding	cocount	odds	chisq	det	
Risperidone	Schizophrenia	308	42.2	8710.9	IND	
Weberlaane	Trop gottoloney anomia					
Risperidone	Mental disorders	121	25.9	2422.33	IND	
Risperidone	Dementia	269	13.01	2372.91	IND	
Risperidone	HYPOKINESIS GLOBAL	164	16.7	2039.94		
Disporidono	Poor historian	126	12 5	1252 72		
Risperidone	Hypothyroidism	411	4.84	919.79	AE*	
Disposidono	Enilopsy	407	4.2	920 72	IND	
Risperidone	Bipolar Disorder	178	6.12	661.89	IND	
Risperidone	Abnormal mental state	191	5.42	594.93		
Picporidono	Diabatas Mallitus, Insulin Danandant	202	5.06	564 57		
Risperidone	Agitation	210	4.83	544.8	IND	
Risperidone	Congestive heart failure	327	3.3	413.96		
Risperidone	Diabetes Mellitus	444	2.83	378.33	AE	
Risperidone	Hypovolemia	156	4.48	374.39		
Risperidone	Psychiatric problem	169	4.27	372.97		
Risperidone	Coronary Arteriosclerosis	455	2.73	354.89		
Risperidone	Obesity	303	2.8/	251 21	ΛF	
Risperidone	Diahatas Mallitus, Non-Insulin-Danandant	370	2 95	333 1/1	IND	
Risperidone	Hypertensive disease	937	2.41	321.51	AE*	
Risperidone	Rhonchi	115	4.62	297.31		

Results – Statins

Drug	Finding	cocount	odds	chisq	det
Statins	Hyperlipidemia	15536	7.73	35356.23	IND
Statins	Coronary Arteriosclerosis	15692	5.34	24296.85	
Statins	Hypertensive disease	30117	4.65	22289.33	IND
Statins	hypercholesterolemia	7825	6.36	17068.75	IND
Statins	Myocardial Infarction	8511	3.15	7456.66	IND
Statins	Stenosis	4370	4.74	6425.6	
Statins	Diabetes Mellitus	10110	2.6	5996.25	IND
	Diabetes Mellitus, Non-Insulin-				
Statins	Dependent	7419	2.78	5339.97	IND
Statins	Peripheral Vascular Diseases	3751	4.1	5321.13	IND
Statins	Congestive heart failure	6713	2.8	4941.87	
Statins	Angina Pectoris	3702	3.49	4204.19	IND
Statins	Epilepsy	7834	2.34	3880.28	
Statins	Cerebrovascular accident	6866	2.44	3838.77	IND

Results – Statins (cont.)

Drug	Finding	cocount	odds	chisq	det
Statins	Ischemic cardiomyopathy	1815	5.28	3582.31	
Statins	Retina-normal	1449	5.82	3173.03	
Statins	Gastroesophageal reflux disease	8464	2.05	2977.79	
Statins	Ischemia	3301	3	2957.79	IND
Statins	Obesity	7689	2.1	2917.42	IND
Statins	Arthritis	5041	2.42	2856.74	
Statins	Chronic Obstructive Airway Disease	5779	2.28	2828.4	IND
Statins	Dyslipidemias	1840	4.25	2826.03	IND
Statins	Mental Depression	8899	1.98	2820.19	AE
Statins	Memory impairment	312	1.77	84.57	
Statins	Memory Loss	376	1.22	13.19	
Statins	Memory observations	112	1.41	11.3	

Informal Analysis Questions

- Do drug-finding pair classifications derived by applying the DEB to clinical notes appear reasonable most of the time?
- 2. When DEB classifications appear to be incorrect, is there at least a plausible reason that explains the mistake?
- 3. Does there appear to be, at face value, a known clinical reason that can be cited to explain those clinical-note-derived drug-finding pairs that are highly statistically correlated?
- 4. Can the method rank recently discovered drug-AE pairs high enough to suggest future potential for more careful side effect discovery?

Discussion

- There were many significantly correlated drugfinding pairs that seemed reasonable, representing both known AEs or Indications.
- Confounding due to co-morbid conditions and symptoms of a disease was common and must be addressed.
- The DEB pair classifications seemed to be correct in most cases, but there are some obvious mistakes that need to be addressed (e.g. asthma vs. "exacerbation of asthma).

Limitations

- Exploratory study
 - Lack of formal analysis of drug-finding correlations
 - Only reviewed correlations for a few drugs
- Ambiguous nature of finding concepts a problem
- Co-morbidities and confounders problematic
- NLP is sometimes coarse
- Statistical analysis approach must be refined

Conclusion

- The goal of this project was to explore the feasibility of adverse drug effect discovery from data mining on H&P notes.
- We have shown that there are potentially interesting and useful AE signals within a large collection of H&Ps, but more must be done to clearly separate this signal from the noise.