A Question...

Case Study: How XYZ Co. Leveraged Existing Investment to Transform the WAN

Owen Parsons (BSc. Internet Computing, CCNA-RS, CCDA)

Network & Security Architect

Today's Topic

A case study of the WAN transformation or "FlexVPN Project" for XYZ
 Co.

• XYZ Co. is mining company with operations in the US and EMEA

Project scope covered the global WAN

A foundation level understanding of the material is assumed

Agenda

1 Challenges

2 Solutions

3 Results

Challenges

Business Challenges

Business Challenge

- Inconsistent / unreliable application experience
- Crew welfare poor social Internet
- 24/7 operations & multiple time zones
- Global cost reduction targets

IT Department Challenge

- Lack of visibility & control toolset, inconsistent QoS
- Fix without impacting business applications
 - Keep the network up with no NOC, no on-call & 1.5 engineers
 - Very small discretionary budget

IT & Technical Challenges

- Remit to reduce reliance on MPLS services
- QoS policy limitations & complexity due to NNI service
- Remit to enhance security
- Most sites without qualified remote hands
- Requirement for 3rd party interoperability
- Site inconsistencies (e.g. ISR 4K, ISR G2, PPPoE, VSAT, bandwidth, MTU)

Solutions

Features, Products and Services

*New items

FlexVPN

- A single global WAN overlay fabric
 - Transport & connection independence
 - Dynamic, policy based path selection
 - Service chaining support
 - A simple control and management toolset
 - Strong security through PKI & encryption

Complimentary & Integrated Solutions

FlexVPN works with everything

- QoS FlexVPN per-tunnel, egress shaping, ingress policing
- DMVPN over FlexVPN for backhauled spoke social Internet access
- DIA for spoke Internet access on larger bandwidth sites
- Umbrella & ZBFW for web security
- Automation of operations EEM, zero-touch, self-documenting
- Toolset Prime Infrastructure, LiveAction & Opengear

Results

FlexVPN Project

Challenges met

- ✓ Application experience
 - Modular, hierarchical, automated QoS polices and decoupling internal markings from provider
- ✓ Crew welfare
 - Great feedback for both DMVPN and DIA deployments
- ✓ 3rd party interoperability
 - IKEv2 and BGP typically supported on modern, enterprise class edge devices
 - Riverbed SteelHead WAN optimization

FlexVPN Project

Challenges met

- √ Security enhancements
 - PKI based AAA, Smart Defaults, MPLS encryption, VRF segmentation, ZBFW
- ✓ Reduced reliance on MPLS services
 - Demonstrated reliable, quality, secure communications over Internet
- ✓ Network uptime & service availability
 - Up to 4 failover paths to corporate services per spoke
- ✓ Site inconsistencies
 - <u>Flex</u>VPN is accurate non-prescriptive deployment, modular & reusable CLI

FlexVPN Project

Challenges met

- ✓ Resource challenges
 - Reusable modular CLI & scripting/automation = faster deployment
 - Globally consistent & self-documenting configuration = faster troubleshooting
 - Happy users = fewer support calls
- ✓ Budget challenges
 - Using features already available within existing hardware and licensing resulted in insignificant spend

The answer to the original question

Other Solutions

And why I didn't use them

- IWAN
 - Too prescriptive, unofficially heading towards legacy
- SD-WAN (née Viptela)
 - Wasn't integrated yet, several sites are ISR G2
- DMVPN
 - FlexVPN is the evolution of DMVPN, with less configuration
- A different vendor
 - Wouldn't meet the goal of leveraging existing investment

Questions

Thank You

Overtime Slides

Spoke Internet Access

Via Hub when < 10Mbps

- All Internet traffic backhauled to regional hubs
- Failover between hubs (upstream failure only)
- Umbrella on spoke, ZBFW on hub
- QoS via tunnel-in-tunnel, egress shaping & scavenger class

DIA when >= 10Mbps

- Local breakout of all social and corporate Internet traffic
- No failover (single local circuit)

Umbrella & ZBFW on spoke

QoS via ingress policing & egress shaping

Quality of Service

QoS Challenges

 How do I prevent a large bandwidth site from flooding a smaller bandwidth site?

- How do I provide good social Internet without affecting business critical applications?
- How do I control Internet traffic?

Quality of Service

QoS Solutions – Flood Prevention

- FlexVPN hub-to-spoke per-tunnel QoS
- Utilised certificate attributes to dynamically apply QoS policies*

CN=wcrgw01.xyzco.local,OU=flex-ap#FlexClient#1.75m#,O=xyzcoUS-W,L=FlexClient,C=US

FlexVPN Mesh per-tunnel QoS

Matches a QoS policy on the hub *exactly*

Tested, but ingress policing proved more suitable

Quality of Service

QoS Solutions - Social Internet & Internet Control

Via Hub – Egress Only

DIA – Ingress/Egress

Social Internet DMVPN

Anycast Redundancy

- iBGP (global routing table)
 - Hubs send 0.0.0.0/0
 - Spoke sends 10.x.0.0/16
 - Metric = Local Preference
- Hubs have Lo23 Anycast IP
- Spoke connects to mGRE Tu25323 via preferred Lo23 IP
- EIGRP (social VRF)
 - Hub sends 0.0.0.0/0
 - Spoke sends 10.x.23.0/24

Social Internet DMVPN

Anycast Redundancy - Failover

- FlexVPN tunnel to Hub 1 is lost
- DMVPN tunnel to Hub 1 drops
- Spoke has a route to Lo23 IP via FlexVPN tunnel to Hub 2
- Spoke establishes DMVPN tunnel to Hub 2
- EIGRP (social VRF) establishes and service is restored

Solutions for Reducing Overhead

Minimal Touch Configuration

- Modular & reusable CLI constructs
 - Easy templating in Prime Infrastructure
- Automation of operations
 - Routing protocols, dynamic BGP peers, Virtual Templates, mGRE, IP pools, EEM, FlexVPN AAA based configuration etc.
- Near zero-touch on hubs for FlexVPN
 - dVTI = zero touch
 - sVTI = one push from PI and one from LiveNX

Solutions for Reducing Overhead

Interface & Path Information

- GRE supports CDP
 - sVTI CDP triggers EEM script event to update interface description
 - dVTI Can't update description of VA interface, check CDP table directly
- Tunnel interface IPs in DNS
 - Standard provider practice, significantly enhances traceroute
 - Simplified with PowerShell

Social Internet DMVPN

How did it help?

- ✓ Application experience
 - Full circuit bandwidth available to business applications on demand
- ✓ Crew welfare
 - Full circuit bandwidth available to social Internet when not required by business applications
- ✓ Resource challenges
 - Zero-touch deployment hub-side and almost identical spoke configuration
 - 'ip address dhcp' option missing/removed on spoke ISR4k tunnel configuration

Direct Internet Access

How did it help?

- ✓ Application experience
 - Increasing bandwidth available for corporate applications resulted in great feedback
- ✓ Resource challenges
 - Happy users = fewer support calls
 - Zero-touch deployment on hubs
- ✓ Budget challenges
 - Maximised ROI on all spoke Internet services and reduced load on the hub Internet

LiveAction LiveNX

How did it help?

- ✓ QoS toolset & consistency
 - Central QoS management = global consistency
 - Second-to-none visibility of the entire WAN+
- ✓ Resource challenges
 - Able to rapidly pin-point issues (proactively)
 - Effort of MACs dramatically reduced
 - Very easy setup, very intuitive interface

Opengear Out-Of-Band

How did it help?

- ✓ Remote hands
 - After easy deployment significantly reduces reliance on remote hands
 - Remote hands only need basic knowledge
- ✓ Resource challenges
 - Reduced cross-time zone resource scheduling
 - True OOB takes the fear out of remote changes

NOTE: Where this wasn't an option EEM saved the day