Algebra II, Sheet 6

Remarks and Solutions

Exercise 1.

For every multiindex $\mu = (\mu_1, \dots, \mu_n)$ we denote by $x^{\mu} \in k[x_1, \dots, x_n]$ the element

$$x^{\mu} \coloneqq x_1^{\mu_1} \cdots x_n^{\mu_n}$$
.

(a)

For every $f \in k[x_1, \ldots, x_n]$ the element

$$f' \coloneqq \sum_{g \in G} g.f$$

is G-invariant because

$$g.f' = g. \sum_{g' \in G} g'.f = \sum_{g' \in G} gg'.f = \sum_{g'' \in G} g''.f = f.$$

For every multiindex $\mu = (\mu_1, \dots, \mu_n)$ we choose $f = x^{\mu}$, and thus set

$$J_{\mu} \coloneqq \sum_{g \in G} g.x^{\mu} \,.$$

(b)

It holds for every $G\text{-invariant }f\in k[x_1,\ldots,x_n]^G$ that

$$\sum_{g \in G} g.f = \sum_{g \in G} f = |G|f \,.$$

But with $f = \sum_{\mu} a_{\mu} x^{\mu}$ it also holds that

$$\sum_{g\in G}g.f=\sum_{g\in G}g.\sum_{\mu}a_{\mu}x^{\mu}=\sum_{\mu}a_{\mu}\sum_{g\in G}g.x^{\mu}=\sum_{\mu}a_{\mu}J_{\mu}\,.$$

Remark 1. If $\operatorname{char}(k) \nmid |G|$ and V is any representation of G over k then the map

$$R: V \to V$$
, $v \mapsto \frac{1}{|G|} \sum_{g \in G} g.v$

is a projection of V onto the subspace of invariants $V^G \subseteq V$. This projection is known as the Reynolds operator.

(c)

Let h := |G| and let $G = \{g_1, \dots, g_h\}$.

It follows from the previous part of the exercise that $k[x_1, \ldots, x_n]$ is generated by the G-invariants J_{μ} as a vector space, where $\mu \in \mathbb{N}^n$, because the factor |G| is invertible in k. It therefore sufficies to show that every J_{μ} can be written as polynomial in those J_{ν} for which $|\nu| \leq h$.

those J_{ν} for which $|\nu| \leq h$. For every $j \geq 0$ let $p_j = Y_1^j + \dots + Y_h^j \in k[Y_1, \dots, Y_h]$ be the *j*-th power symmetric polynomial. For the elements

$$y_i := (g_i.x_1)Z_1 + \dots + (g_i.x_n)Z_n \in k[x_1,\dots,x_n][Z_1,\dots,Z_n]$$

with i = 1, ..., h we then have that

$$p_{j}(y_{1},...,y_{n}) = y_{1}^{j} + \cdots + y_{h}^{j}$$

$$= \sum_{i=1}^{h} \left[(g_{i}.x_{1})Z_{1} + \cdots + (g_{i}.x_{n})Z_{n} \right]^{j}$$

$$= \sum_{i=1}^{h} \sum_{|\mu|=j} \binom{j}{\mu_{1},...,\mu_{n}} \left[(g_{i}.x_{1})Z_{1}]^{\mu_{1}} \cdots \left[(g_{i}.x_{n})Z_{n} \right]^{\mu_{n}}$$

$$= \sum_{i=1}^{h} \sum_{|\mu|=j} \binom{j}{\mu_{1},...,\mu_{n}} \left(g_{i}.x_{1})^{\mu_{1}} \cdots (g_{i}.x_{n})^{\mu_{n}} Z^{\mu} \right)$$

$$= \sum_{|\mu|=j} \binom{j}{\mu_{1},...,\mu_{n}} \left[\sum_{i=1}^{h} (g_{i}.x_{1})^{\mu_{1}} \cdots (g_{i}.x_{n})^{\mu_{n}} \right] Z^{\mu}$$

$$= \sum_{|\mu|=j} \binom{j}{\mu_{1},...,\mu_{n}} \int_{1}^{h} \sum_{i=1}^{h} g_{i}.x^{\mu} Z^{\mu}$$

$$= \sum_{|\mu|=j} \binom{j}{\mu_{1},...,\mu_{n}} J_{\mu}Z^{\mu}.$$

This shows that J_{μ} is, up to the factor

$$C_{\mu} \coloneqq \begin{pmatrix} |\mu| \\ \mu_1, \dots, \mu_n \end{pmatrix},$$

the coefficient of the monomial Z^{μ} in $p_j(y_1, \ldots, y_n)$.

We know that for every j > h the j-th power symmetric polynomial p_j can be expressed as a k-polynomial in the power symmetric polynomials p_1, \ldots, p_h because $\operatorname{char}(k) = 0$. It follows that the coefficients of $p_j(y_1, \ldots, y_n)$ are k-polynomials in the coefficients of $p_1(y_1, \ldots, y_n), \ldots, p_h(y_1, \ldots, y_n)$.

This shows for every multiindex μ that the G-invariant $C_{\mu}J_{\mu}$ can be expressed as a k-polynomial in the G-invariants $C_{\nu}J_{\nu}$ with $|\nu| \leq h$. The factor C_{μ} is invertible in k, hence every J_{μ} is a k-polynomial in those J_{ν} with $|\nu| \leq h$.

Remark 2. Let V be a finite-dimensional of a finite group G over k. The *Noether number of* V is given by

 $\beta(V,G) = \inf\{d \geq 0 \mid \mathcal{P}(V)^G \text{ is generated by homogeneous elements of degree} \leq d\},$ and the *Noether number of G* is given by

```
\beta(G) := \sup \{ \beta(V, G) \mid V \text{ is a finite-dimensional representation of } G \text{ over } k \}.
```

Noether's theorem (1915) shows that $\beta(G) \leq |G|$ if $\operatorname{char}(k) = 0$, which is known as the *Noether bound*. This result can be strengthened in various ways:

- Fogarty (2001) showed that that the Noether bound holds under the weaker assumption that $\operatorname{char}(k) \nmid |G|$.
- Fleischmann (2000) showed the more general result that if $H \subseteq G$ is a normal subgroup with $\operatorname{char}(k) \nmid [G:H]$, then $\beta(V,G) \leq \beta(V,H) \cdot [G:H]$.
- Schmid (1991) showed for $\operatorname{char}(k) = 0$ that $\beta(G) \leq \beta(H)[G:H]$ for every subgroup $H \subseteq G$, and that $\beta(G) \leq \beta(H)\beta(G/H)$ if H is normal in G.
- It is an open problem if $\beta(G) \leq \beta(H)[G:H]$ holds for every subgroup $H \subseteq G$ under the weaker condition that $\operatorname{char}(k) \nmid [G:H]$.

Exercise 2.

(a)

Let more generally R be any ring and let M be an R-module. Recall that a submodule $N \subseteq M$ is maximal if it follows for every intermediate submodule $N \subseteq P \subseteq M$ that P = N or P = M. This is equivalent to the quotient module M/N having precisely two submodules, i.e. equivalent to M/N being simple. It follows in particular that R/M is simple for every maximal left ideal $M \subseteq R$.

Every simple R-module S is already of this form. The module S is cyclic: It holds that $S \neq 0$ and for $x \in S$ with $x \neq 0$ the submodule $\langle x \rangle$ is a nonzero submodule of S. Hence $S = \langle x \rangle$ because S is simple. This shows that $S \cong R/M$ for some module M. The simplicity of S is by the above argumentation equivalent to M being maximal.

The maximal ideals in \mathbb{Z} are $p\mathbb{Z}$ with p prime. The simple \mathbb{Z} -modules are therefore (up to isomorphism) precisely $\mathbb{Z}/p\mathbb{Z}$ with p prime.

Remark 3. We have seen above that a simple module S is not only cyclic, but that every nonzero element $x \in S$ is already a cyclic generator. This is an equivalent characterization of simple modules: A module S is simple if and only if $S \neq 0$ and every nonzero $x \in S$ is a cyclic generator.

Indeed, if S satisfies this condition(s), then S contains no proper nonzero cyclic submodule, and hence no proper nonzero submodule. Since $S \neq 0$, this means that S is simple.

Warning 4. Different maximal ideals $M, M' \subseteq R$ may given isomorphic simple modules $R/M \cong R/M'$. An example for this is $R = M_n(k)$ with $n \ge 2$ and k a field.

(b)

If R is an integral domain that is not a field then R not semisimple: It holds for any two nonzero ideals $I, J \subseteq R$ that $I \cap J \supseteq IJ \neq 0$, and hence that the sum I+J is not direct. If $x \in R$ is a nonzero non-unit then this shows that the generated ideal $\langle x \rangle$ has no direct complement.

In particular $2\mathbb{Z} \subseteq \mathbb{Z}$ has no direct complement.

(c)

Every semisimple \mathbb{Z} -module M is by part (a) of the form

$$M \cong \bigoplus_{i \in I} \mathbb{Z}/p_i$$

for some primes p_i . The primes p_i are in particular square-free, which proves the statement

Remark 5. One has for every $n \ge 0$ that \mathbb{Z}/n is semisimple if and only if n is square-free. Indeed, if n = 0 then $\mathbb{Z}/n = \mathbb{Z}$ is not semisimple, and if n = 1 then $\mathbb{Z}/n = 0$ is semisimple. For $n \ge 2$ we have $n = p_1^{n_1} \cdots p_r^{n_r}$ for some pairwise different primes p_i and exponents $n_i \ge 1$. Then

$$\mathbb{Z}/n \cong \mathbb{Z}/p_1^{n_1} \oplus \cdots \oplus \mathbb{Z}/p_r^{n_r}$$

by the chinese reminder theorem. This is already a decomposition into indecomposable \mathbb{Z} -modules by the classification of finitely generated abelian groups. Hence \mathbb{Z}/n is semisimple if and only if every summand $\mathbb{Z}/p_i^{n_i}$ is already simple. We have seen above that this is the case if and only if every $p_i^{n_i}$ is prime, i.e. if and only if $n_i = 1$ for every $i = 1, \ldots, r$.

It follows that a \mathbb{Z} -module M is semisimple if and only if $M \cong \bigoplus_i \mathbb{Z}/n_i$ where the n_i are square-free integers.

Exercise 3.

Recall the universal properties of the direct sum and the direct product:

• Let $(M_{\alpha})_{\alpha \in A}$ be a collection of R-modules and let N be another R-module. For every $\alpha \in A$ let $i_{\alpha} \colon M_{\alpha} \to \bigoplus_{\beta \in A} M_{\beta}$ be the inclusion into the α -th summand. Then every choice of homomorphism $f_{\alpha} \colon M_{\alpha} \to N$ with $\alpha \in A$ can be uniquely extended to a homomorphism $f \colon \bigoplus_{\alpha \in A} M_{\alpha} \to N$, in the sense that $f \circ i_{\alpha} = f_{\alpha}$ for every $\alpha \in A$. The homomorphism f is given on elements by

$$f\left((m_{\alpha})_{\alpha \in A}\right) = \sum_{\alpha \in A} f_{\alpha}(m_{\alpha})$$

for every $(m_{\alpha})_{\alpha \in A} \in \bigoplus_{\alpha \in A} M_{\alpha}$. Note that f is well-defined because $m_{\alpha} = 0$ for all but finitely many $\alpha \in A$, and hence also $f_{\alpha}(m_{\alpha}) = 0$ for all but finitely many $\alpha \in A$. This construction results in an isomorphism of abelian groups

$$\operatorname{Hom}_R\left(\bigoplus_{\alpha\in A}M_\alpha,N\right)\longleftrightarrow\prod_{\alpha\in A}\operatorname{Hom}_R(M_\alpha,N)$$
.

• Let M be an R-module and let $(N_{\alpha})_{\alpha \in A}$ be a collection of R-modules. For every $\alpha \in A$ let $p_{\alpha} \colon \prod_{\beta \in A} N_{\beta} \to N_{\alpha}$ be the projection onto the α -th factor.

Then every choice of homomorphism $f_{\alpha} \colon M \to N_{\alpha}$ with $\alpha \in A$ can be uniquely combined into a homomorphism $f \colon M \to \prod_{\alpha \in A} N_{\alpha}$, in the sense that $p_{\alpha} \circ f = f_{\alpha}$ for every $\alpha \in A$. The homomorphism f is given on elements by

$$f(m) = (f_{\alpha}(m))_{\alpha \in A}$$

for every $m \in M$.

This construction results in an isomorphism of abelian groups

$$\operatorname{Hom}_{R}\left(M, \prod_{\alpha \in A} M_{\alpha}\right) \longleftrightarrow \prod_{\alpha \in A} \operatorname{Hom}_{R}(M, N_{\alpha}).$$
 (1)

Warning 6. The isomorphism (1) does in general not restrict to an isomorphism

$$\operatorname{Hom}_R\left(M, \bigoplus_{\alpha \in A} M_\alpha\right) \longleftrightarrow \bigoplus_{\alpha \in A} \operatorname{Hom}_R(M, N_\alpha).$$

But it does if M is finitely generated.

We now have that

$$R' = \operatorname{Hom}_{\mathbb{Z}}(E, E) = \operatorname{Hom}_{\mathbb{Z}}\left(\bigoplus_{p} \mathbb{Z}/p, \bigoplus_{q} \mathbb{Z}/q\right) \cong \prod_{p} \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}/p, \bigoplus_{q} \mathbb{Z}/q\right)$$

The inclusion $i \colon \bigoplus_q \mathbb{Z}/q \to \prod_q \mathbb{Z}/q$ induces an inclusion of abelian groups

$$\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}/p,\bigoplus_{q}\mathbb{Z}/q\right) \xrightarrow{i_*} \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}/p,\prod_{q}\mathbb{Z}/q\right) \cong \prod_{q}\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/p,\mathbb{Z}/q)\,.$$

It follows from Schur's lemma that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/p,\mathbb{Z}/q)=0$ if $p\neq q$. (This can also be seen by looking at the *p*-torsion (or *q*-torsion) of both sides.) We have for p=q that

$$\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/p,\mathbb{Z}/p) = \operatorname{Hom}_{\mathbb{Z}/p}(\mathbb{Z}/p,\mathbb{Z}/p) = \operatorname{End}_{\mathbb{Z}/p}(\mathbb{Z}/p) \cong \mathbb{Z}/p$$
.

Hence

$$\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}/p,\prod_{q}\mathbb{Z}/q\right)\cong\mathbb{Z}/p\,,$$

where for $\lambda \in \mathbb{Z}/p$ the corresponding homomorphism is given by

$$\mathbb{Z}/p \xrightarrow{\lambda \cdot (-)} \mathbb{Z}/p \hookrightarrow \prod_{q} \mathbb{Z}/q$$
.

Every such homomorphism restricts to a homomorphism $\mathbb{Z}/p \to \bigoplus_q \mathbb{Z}/q$, hence the above homomorphism i_* is already an isomorphism. We thus find that

$$\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}/p, \bigoplus_{q} \mathbb{Z}/q\right) \cong \mathbb{Z}/p$$
,

with the same description as above.

It follows that

$$R' \cong \prod_p \operatorname{Hom}_{\mathbb{Z}} \left(\mathbb{Z}/p, \bigoplus_q \mathbb{Z}/q \right) \cong \prod_p \mathbb{Z}/p \,,$$

where an element $(\lambda_p)_p \in \prod_p \mathbb{Z}/p$ acts on $(x_p)_p \in E$ via

$$(\lambda_p)_p \cdot (x_p)_p = (\lambda_p x_p)_p.$$

To determine R'' we use the following observation:

Lemma 7. Let R be a commutative ring and let M be an R-module. If $R' = \operatorname{End}_R(M)$ is again commutative then R'' = R'.

Proof. It follows from R being commutative that $R \subseteq R'$, and hence that $R' \supseteq R''$. It holds that $R' \subseteq R''$ because R' is commutative.

We find that $R'' = R' = \prod_{p} \mathbb{Z}/p$. The (unique) ring homomorphism

$$\mathbb{Z} = R \to R'' = \prod_p \mathbb{Z}/p$$

is not surjective, so $R'' \neq R$.