Some questions about sequences!

- 1. (Really a functional equation question, but oh well) Let a_0, a_1, a_2, \cdots be a sequence such that $a_1 = 1$ and $a_{m+n} + a_{m-n} = \frac{1}{2}(a_{2m} + a_{2n})$ whenever $m \ge n \ge 0$. Determine a_{2021} .
- 2. (Australia 1976) Let $a_1, a_2 \in \mathbb{Z}$ such that $0 < a_1, a_2 < 10000$. For $k \ge 3$, (recursively) define $a_k = \min_{1 \le i < j < k} |a_i a_j|$. Find the smallest positive integer N such that $x_N = 0$, regardless of a_1, a_2 .
- 3. Fix $0 \le a_0 \le 1$. (Recursively) define $a_{n+1} = 1 |1 2a_n|$ whenever $n \ge 0$. Characterize those a_0 such that the sequence a_0, a_1, a_2, \cdots is periodic.
- 4. (IMO 1994 Shortlist) Let $a_0 = 1994$, and for $n \ge 0$ define $a_{n+1} = \frac{a_n^2}{a_n + 1}$. Prove that, for $0 \le k \le 998$, we have that the floor of a_k is equal to 1994 n.
- 5. (Found this last minute, no idea how to do it but haven't tried) Fix $a \in (0,1)$ and fix n to be a positive integer. Recursively define a_0, a_1, \dots, a_n as follows:

$$a_0 = a$$
 $a_{k+1} = a_k + \frac{1}{n}a_k^2$ for $0 \le k \le n - 1$

Prove there exists a number A, which may depend on a but not on n, such that $0 < n(A-a_n) < A^3$.

- 6. (IMO 1995 (in Canada!)) We are given $x_0, x_1, \dots, x_{1994}, x_{1995} \in \mathbb{R}$ such that $x_0 = x_{1995}$ and $x_{i-1} + \frac{2}{x_{i-1}} = 2x_i + \frac{1}{x_i}$ for all $1 \le i \le 1995$. Determine the maximal possible value of x_0 .
- 7. (IMO 1982, # 3) We are given a sequence x_0, x_1, x_2, \cdots of positive real numbers such that $x_0 = 1$ and $x_{i+1} \le x_i$ for all $i \ge 0$. Prove there exists $N \in \mathbb{N}$ such that $\frac{x_0^2}{x_1} + \frac{x_1^2}{x_2} + \cdots + \frac{x_{N-1}^2}{x_N} \ge 3.999$.