Implicancia de Tenacibaculosis en la mortalidad de Salmón del Atlántico

Diplomado en Análisis de datos con R para la Acuicultura

Constanza Pino Ajenjo

Pontificia Universidad Católica de Valparaíso

2022-06-21

Índice

Introducción

- 1. Descripción del problema a resolver
- 2. Variables de estudio
- 3. Factores a analizar
- 4. Número total de observaciones
- 5. Resumen de los métodos estadísticos aplicados
- 6. Hipótesis
- 7. Conclusión principal

Índice

Desarrollo

- 1. Preparación de los datos
- 2. Tablas de resumen
- 3.

Introducción

1. Descripción del problema a resolver: Tenacibaculosis es una infección bacteriana cuya etiología Tenacibaculum maritimus (Flexibacter maritimus) afecta principalmente al cultivo de Salmón del Atlántico. Principalmente se evidencian lesiones macroscópicas en la superficie del cuerpo; úlceras, necrosis, boca erosionada, aletas deshilachadas y cola con pudrición, y a veces necrosis en las branquias y los ojos (congestión choroidal y hemorragia sub-choroidal, a veces con ruptura del ojo). Debido a su impacto en la salud de Salmón del Atlántico, es importante analizar la influencia de esta enfermedad en la mortalidad en los centros de cultivo en agua de mar.

Introducción

- 2. Variables de estudio: En este trabajo se observan las variables obtenidas durante los últimos cinco años en cuanto a número de ingreso de peces a cada centro de cultivo en agua de mar, peso promedio de los peces cosechados en kilogramos (Peso_cosecha), número de mortalidad total (Mortalidad) y número de mortalidad causada por Tenacibaculosis (Mort_Tena), número de mortalidad por Enfermedad Bacteriana del Riñón (Mort_BKD) y número de mortalidad por Septicemia Rickettsial Salmonídea (Mort_SRS).
- **3. Factores a analizar:** Los factores son las variables Unidad en agua de mar (Unidad) y tipo de alimento (Alimento).
- **4. Número total de observaciones:** Se analizan los resultados observados en 236 unidades o jaulas de cultivo en agua de mar.

Introducción

5. Resumen de los métodos estadísticos aplicados:

6. Hipótesis:

- ► Hipótesis nula (H0) es que Tenacibaculosis no afecta significativamente la mortalidad de Salmón del Atlántico.
- ► Hipotesis alternativa (H1) es que Tenacibaculosis si afecta significativamente la mortalidad de Salmón del Atlántico.

7. Conclusión principal:

1. Preparación de los datos

1.1. Cargar la base de datos en el objeto Tena:

```
Tena <- read_excel("Tenacibaculosis.xlsx", sheet=1,na="NA")
Tena <- na.omit(Tena)
head(Tena)</pre>
```

```
## # A tibble: 6 x 11
     Unidad Generación `ID Centro` `Unidad origen` Alime
##
      <dbl>
                 <dbl> <chr>
                                       <chr>>
                                                        <chr>
##
## 1
                  2019 SW05 - Linguar 01
                                                        BES1
## 2
                  2019 SW05 - Linguar 02
                                                        BES1
## 3
                  2019 SW05 - Linguar 03
                                                        BES1
## 4
          4
                  2019 SW05 - Linguar 04
                                                        BES1
## 5
          5
                  2019 SW05 - Linguar 05
                                                        BES1
## 6
          6
                  2019 SW05 - Linguar 06
                                                        BES1
     ... with 4 more variables: Mortalidad <dbl>, Mort Tena
```

1.2. Ordenar Tena creando un objeto tidy_Tena con las variables de interés:

tidy_Tena <- select(Tena,Unidad,Alimento,Ingreso,Peso_cose
head(tidy_Tena)</pre>

```
## # A tibble: 6 x 8
     Unidad Alimento Ingreso Peso cosecha Mortalidad Mort
##
##
      <dbl> <chr>
                        <dbl>
                                      <dbl>
                                                  <dbl>
                                        5.3
                                                   6748
## 1
          1 BES1
                        83334
                                        4.9
## 2
          2 BES1
                        83044
                                                   5850
                                        5.3
## 3
          3 BES1
                        83333
                                                   8116
## 4
          4 BES1
                        83622
                                        5
                                                   4632
## 5
          5 BES1
                        83334
                                        5.7
                                                  12765
## 6
          6 BES1
                        83150
                                        5.2
                                                  10187
```

1.3. Explorar si las variables son números o carácteres:

```
str(tidy Tena)
## tibble [236 x 8] (S3: tbl_df/tbl/data.frame)
                 : num [1:236] 1 2 3 4 5 6 7 8 9 10 ...
##
   $ Unidad
##
   $ Alimento : chr [1:236] "BES1" "BES1" "BES1" "BES1"
   $ Ingreso : num [1:236] 83334 83044 83333 83622 833
##
   $ Peso_cosecha: num [1:236] 5.3 4.9 5.3 5 5.7 5.2 4.6 $
##
##
   $ Mortalidad : num [1:236] 6748 5850 8116 4632 12765
##
   $ Mort Tena : num [1:236] 0 0 11 7 64 92 0 91 1 84 .
   $ Mort BKD : num [1:236] 816 39 157 31 20 24 34 18 3
##
    $ Mort SRS : num [1:236] 254 331 430 275 1195 ...
##
```

1.4. Transformar Unidad y Alimento a factor usando as.factor, luego visualizar que Unidad y Alimento estén transformados adecuadamente a factor y que los datos están balanceados:

```
tidy_Tena$Unidad <- as.factor(tidy_Tena$Unidad)
tidy_Tena$Alimento <- as.factor(tidy_Tena$Alimento)
summary(tidy_Tena)</pre>
```

##	Un	idad		Alim	nento	o Ing	reso	Peso	cose
##	1	:	1	BES1	: 83	Min.	: 5000	0 Min.	:0.0
##	2	:	1	BES1S2	2: 17	' 1st Qu	.: 7857	2 1st (Qu.:0.0
##	3	:	1	BS1	:118	Median	: 8500	0 Media	an :4.9
##	4	:	1	BS1S2	: 14	Mean	: 8570	3 Mean	:3.
##	5	:	1	ES1S2	: 4	3rd Qu	.: 9621	1 3rd (Qu.:5.
##	6	:	1			Max.	:13822	8 Max.	:6.3
##	(Other):23	0						
##	Mort	_Ten	.a		Mor	t_BKD	Мо	rt_SRS	
##	Min		Λ	∩ Mi	n	· 14 0	Min	. 0	Λ
			Consta	anza Pino Aje	enjo	Implicancia de Tena	cibaculosis en	la mortalidad de S	almón del A

2. Tablas de resumen:

En la tabla 1 se muestra la base de datos que se utiliza en este trabajo. Luego, en la tabla 2 está un resumen de estadística descriptiva.

2.1. Generar una tabla con la base de datos de tidy_Tena con función datatable:

```
## QStandardPaths: XDG_RUNTIME_DIR not set, defaulting to
## TypeError: Attempting to change the setter of an unconf.
```

DT::datatable(tidy_Tena, caption="Tabla 1. Número de peces :

TypeError: Attempting to change the setter of an unconf

2.2. Generar un resumen de estadística descriptiva con función pander:

pander(summary(tidy_Tena,caption="Tabla 2. Resumen data fra

Table 1: Table continues below

Unidad	Alimento	Ingreso	Peso_cosecha	Mortalidad
1:1	BES1 :	Min. :	Min. :0.000	Min. : 449
	83	50000		
2:1	BES1S2:	1st Qu.:	1st	1st Qu.:
	17	78572	Qu.:0.000	8532
3:1	BS1 :118	Median :	Median	Median
		85000	:4.900	:13488
4:1	BS1S2:	Mean:	Mean	Mean
	14	85703	:3.777	:14629
5:1	ES1S2:	3rd Qu.:	3rd	3rd