# **Advanced Calculus III**

Ji, Yong-hyeon

February 6, 2025

We cover the following topics in this note.

- Limit of a Function  $(\varepsilon \delta)$
- Continuity of a Function
- Monotone Convergent Theorem (MCT)
- Nested Interval Property (NIP)
- Bolzano-Weierstrass Theorem
- Limit Superior and Limit Inferior

What is 0 for the set  $S = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$ ?



**Note** (Open  $\varepsilon$ -ball). The open  $\varepsilon$ -ball of x in S is  $B_{\varepsilon}(x) := \{ y \in S : d(x,y) < \varepsilon \}$ .

## **Limit Point (Metric Space)**

**Definition.** Let (X, d) be a metric space. Let  $S \subseteq X$ . A point  $p \in X$  is a **limit point** of S if and only if

$$\forall \varepsilon > 0, \ B_{\varepsilon}(p) \cap (S \setminus \{p\}) \neq \emptyset.$$

That is,

$$\forall \varepsilon > 0, \ \left\{ x \in S : 0 < d(x,p) < \varepsilon \right\} \neq \varnothing.$$



# **Remark.** Note that a limit point p may NOT belong to S.

**Note** (Limit Point (Topology)). Let  $(X, \tau)$  be a topological space. For a subset  $S \subseteq X$ . A point  $p \in X$  is a limit point of S if and only if

$$\forall U \in \tau \text{ with } p \in U, \ U \cap (S \setminus \{p\}) \neq \emptyset.$$

**Example.** Let  $S = (a, b) \subseteq \mathbb{R}$ :



(i) Consider p with p < a:



Let  $\varepsilon := \frac{a-p}{2} > 0$ . Then  $B_{\varepsilon}(p) \cap (S \setminus \{p\}) = \emptyset$ . Thus, p < a is NOT a limit point.

(ii) Consider p = a:



Let  $\varepsilon > 0$ . Then  $B_{\varepsilon}(p) \cap (S \setminus \{p\}) \neq \emptyset$ . Thus, p = a is a limit point of S = (a, b).

By (i) and (ii), the set of all limit points of (a, b) is [a, b].

**Example.** Let  $S = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$ :



- Consider  $p = \frac{1}{n} \in S$ . No point of S is a limit point.
- Consider p = 0.



Let  $\varepsilon > 0$ . By Archimedian property,  $\exists n \in \mathbb{N}$  such that  $n > \frac{1}{\varepsilon}$ , and so  $1/n \in B_{\varepsilon}(0) \cap S$ . Thus, p = 0 is a limit point of  $S = \{1/n : n \in \mathbb{N}\}$ .

**Example.** Let  $S = \mathbb{Q}$ .

• Consider  $p \in \mathbb{R}$ . Let  $\varepsilon > 0$ . By density of rationals,

$$\exists r \in \mathbb{Q} \text{ such that } p < r < p + \varepsilon.$$

Then  $r \in B_{\varepsilon}(p) \cap S$  with  $r \neq p$ , i.e., r is a limit points. Thus, all reals are limit points of  $\mathbb{Q}$ .

# **\star** Limit of a Function ( $\varepsilon - \delta$ ) $\star$

**Definition.** Let  $f: X \to \mathbb{R}$  be a function defined on a subset  $X \subseteq \mathbb{R}$  of a metric space, and let  $p \in X$  be a limit point of X. We say that  $L \in \mathbb{R}$  is the **limit of the function** f **as** x **approaches** p if

$$\forall \varepsilon > 0$$
,  $\exists \delta > 0$  such that  $\forall x \in X$ ,  $0 < |x - p| < \delta \implies |f(x) - L| < \varepsilon$ 

We write

$$\lim_{x \to p} f(x) = L$$



#### Remark.

$$\lim_{x \to p} f(x) \neq L \iff \exists \varepsilon > 0 : [\forall \delta > 0 : \exists x \in X : 0 < |x - p| < \delta \text{ but } |f(x) - L| > 0].$$

#### Continuity of a Function

**Definition.** Let  $f: X \to \mathbb{R}$  be a function defined on a subset  $X \subseteq \mathbb{R}$  of a metric space, and let  $p \in X$ . The function f is **continuous** at p if and only if

$$\lim_{x \to p} f(x) = f(p).$$

That is,

$$\forall \varepsilon > 0$$
,  $\exists \delta > 0$  such that  $|x - p| < \delta \implies |f(x) - f(p)| < \varepsilon$ .

**Remark** (Continuity of a Set). The function f is continuous on subset  $S \subseteq X$  if it is continuous at every point  $p \in S$ .

**Remark** (Continuity in a Topological Space). Let  $(X, \tau_X)$  and  $(Y, \tau_Y)$  are topological spaces.  $f: X \to Y$  is **continuous** if and only if

$$U_Y \in \tau_Y \implies f^{-1}[U_Y] \in \tau_X,$$

where  $f^{-1}[U_Y] = \{x \in X : f(x) \in U_Y\}$  is the preimage of  $U_Y$  under f.

**Note.**  $[p \Rightarrow (q \Rightarrow r)] \equiv [p \Rightarrow (\neg q \lor r)] \equiv [\neg p \lor (\neg q \lor r)] \equiv [\neg (p \land q) \lor r] \equiv [(p \land q) \Rightarrow r].$ 

# **Limit of Function by Convergent Sequences**

**Theorem.** Let  $f: X \to \mathbb{R}$  be a function defined on a subset  $\emptyset \neq X \subseteq \mathbb{R}$  of a metric space, and let p is a limit point of X. Then

$$\lim_{x \to p} f(x) = L \iff \left[ \forall \{x_n\} \subseteq X \setminus \{p\}, \left( \lim_{n \to \infty} x_n = p \implies \lim_{n \to \infty} f(x_n) = L \right) \right].$$



*Proof.* ( $\Rightarrow$ ) Let  $\lim_{x\to p} f(x) = L$ . Let  $\{x_n\} \subseteq X \setminus \{p\}$  be a sequence, and let  $\lim_{n\to\infty} x_n = p$ . We NTS that

$$\lim_{n\to\infty} f(x_n) = L, \quad \text{i.e.,} \quad \forall \varepsilon > 0 : \exists N \in \mathbb{N} : n \ge N \Longrightarrow |f(x_n) - L| < \varepsilon.$$

Let  $\varepsilon > 0$ . Since  $\lim_{x \to p} f(x) = L$ , we know

$$\exists \delta > 0 \text{ such that } 0 < |x - p| < \delta \implies |f(x) - L| < \varepsilon.$$
 (\*)

Since  $\lim_{n\to\infty} x_n = p$ , we obtain  $\exists N \in \mathbb{N}$  s.t.  $n \ge N \Rightarrow |x_n - p| < \delta$ . Thus, if  $n \ge N$  then,

$$|x_n - p| < \delta \implies 0 < |x_n - p| < \delta \quad \because x_n \neq p$$
  
$$\implies |f(x_n) - L| < \varepsilon \quad \text{by (*)}$$

Thus,  $\lim_{n\to\infty} f(x_n) = L$ .

( $\Leftarrow$ ) Let the RHS holds. Assume, for the contradiction, that  $\lim_{x\to p} f(x) \neq L$ , i.e.,

$$\exists \varepsilon > 0 : \forall \delta > 0 : \exists x_{\delta} \in X : 0 < |x_{\delta} - p| < \delta \text{ but } |f(x_{\delta}) - L| \ge \varepsilon.$$

Take  $\delta = 1/n$  for  $n \in \mathbb{N}$ . Then

$$\exists x_n \in X \text{ such that } 0 < |x_n - p| < \frac{1}{n} \text{ but } |f(x_n) - L| \ge \varepsilon.$$

(Axiom of Countable Choice) This means that

$$\forall n \in \mathbb{N} : \exists \{x_n\} \subseteq X \setminus \{p\} \text{ such that } 0 < |x_n - p| < \frac{1}{n} \text{ but } |f(x_n) - L| \ge \varepsilon.$$

By Squeeze Theorem, we have  $\lim_{n\to\infty} x_n = p$  since  $0 < |x_n - p| < 1/n$ . Since the RHS holds, we obtain  $\lim_{n\to\infty} f(x_n) = L$ . Then, for some  $\varepsilon > 0$ ,

$$\exists N \in \mathbb{N} \text{ such that } n \geq N \implies |f(x_n) - L| < \varepsilon \not$$

## Continuity of Function by Convergent Sequences

**Corollary.** Let  $f: X \to \mathbb{R}$  be a function defined on a subset  $\emptyset \neq X \subseteq \mathbb{R}$  of a metric space, and let p is a limit point of X. Then

$$\lim_{x \to p} f(x) = f(p) \iff \left[ \forall \{x_n\} \subseteq X, \left( \lim_{n \to \infty} x_n = p \implies \lim_{n \to \infty} f(x_n) = f(p) \right) \right].$$

# Squeeze Theorem; Sandwich Theorem

#### Theorem. Let

- (i)  $\lim_{n\to\infty} a_n = L = \lim_{n\to\infty} b_n;$
- (ii)  $\exists n_0 \in \mathbb{N} \text{ such that } a_n \leq c_n \leq b_n \text{ for all } n \geq n_0.$

Then  $\lim_{n\to\infty} c_n = L$ .

*Proof.* Let  $\varepsilon > 0$ . Since  $\lim_{n \to \infty} a_n = L$  and  $\lim_{n \to \infty} a_n = L$ , we have

 $\exists n_1 \in \mathbb{N} \text{ such that } n \geq n_1 \implies L - \varepsilon < a_n < L + \varepsilon$ ,

 $\exists n_2 \in \mathbb{N} \text{ such that } n \geq n_2 \implies L - \varepsilon < b_n < L + \varepsilon.$ 

Let  $N := \max \{n_0, n_1, n_2\}$ . If  $n \ge N$  then

$$L - \varepsilon < a_n \le c_n \le b_n < L_+ \varepsilon,$$

and so  $|c_n - L| < \varepsilon$ .

**Example.**  $\lim_{n \to \infty} \frac{\sin n}{n} = 0.$ 



Note. Recall that

"A convergent sequence is bounded."

Formally,

$$\exists A \in \mathbb{R} \text{ s.t. } A = \lim_{n \to \infty} a_n \implies \exists M \in \mathbb{R} \text{ s.t. } \forall n \in \mathbb{N}, |a_n| \leq M.$$

However, the converse is not necessarily true:

$$\exists A \in \mathbb{R} \text{ s.t. } A = \lim_{n \to \infty} a_n \iff \exists M \in \mathbb{R} \text{ s.t. } \forall n \in \mathbb{N}, |a_n| \leq M.$$

To illustrate, consider the sequence  $\{a_n\} = 1 - (-1)^n$  that is bounded, yet it does not converge.

# Monotone Sequence

**Definition.** A sequence  $\{a_n\}_{n=1}^{\infty}$  is said to be **monotone** if it is either **monotone increasing** or **monotone decreasing**.

- (1) A sequence  $\{a_n\}_{n=1}^{\infty}$  is **monotone increasing** if  $a_n \leq a_{n+1}$  for all  $n \in \mathbb{N}$ . Alternatively, it is **strictly increasing** if  $a_n < a_{n+1}$  for all  $n \in \mathbb{N}$ .
- (2) A sequence  $\{a_n\}_{n=1}^{\infty}$  is **monotone decreasing** if  $a_{n+1} \leq a_n$  for all  $n \in \mathbb{N}$ . Alternatively, it is **strictly decreasing** if  $a_{n+1} < a_n$  for all  $n \in \mathbb{N}$ .

**Remark.** A sequence  $\{a_n\}$  is monotone if  $\begin{cases} a_n \le a_{n+1} & \text{(monotone increasing)} \\ a_{n+1} \le a_n & \text{(monotone decreasing)} \end{cases}$ 

Example.

- $\{n\}_{n=1}^{\infty}$  is monotone increasing.
- $\{1/n\}_{n=1}^{\infty}$  is monotone decreasing.

#### Monotone Convergence Theorem (MCT)

**Theorem.** A monotone sequence of real numbers  $\{a_n\}$  is convergent if and only if it is bounded.

(1) Let  $\{a_n\}$  be an monotone increasing sequence of real numbers that is bounded above. Then

$$\lim_{n\to\infty}a_n=\sup\left\{a_n:n\in\mathbb{N}\right\}.$$

(2) Let  $\{b_n\}$  be an monotone decreasing sequence of real numbers that is <u>bounded below</u>. Then

$$\lim_{n\to\infty}b_n=\inf\{b_n:n\in\mathbb{N}\}.$$

Proof.

(1) Suppose that a sequence  $\{a_n\}$  is monotone increasing and bounded above. Consider the set  $\{a_n : n \in \mathbb{N}\} \subseteq \mathbb{R}$ , which is non-empty and bounded above by assumption. By **Least Upper Bound Property**<sup>1</sup>,

$$\exists \alpha \in \mathbb{R} \text{ such that } \alpha = \sup \{a_n : n \in \mathbb{N}\}.$$

We claim that:

$$\lim_{n\to\infty} a_n = \alpha = \sup \left\{ a_n : n \in \mathbb{N} \right\}.$$

Let  $\varepsilon > 0$ . Since  $\alpha$  is the supremum (*least* upper bound) of  $\{a_n : n \in \mathbb{N}\}$ , it follows that  $\alpha - \varepsilon$  is not an upper bound of  $\{a_n : n \in \mathbb{N}\}$ . Thus,  $\neg [\forall N \in \mathbb{N}, a_N \leq \alpha - \varepsilon]$ , i.e.,

$$\exists N \in \mathbb{N}$$
 such that  $\alpha - \varepsilon < a_N$ .

Since  $\{a_n\}$  is monotone increasing,

$$\alpha - \varepsilon < a_N \le a_n$$

for all  $n \ge N$ . Therefore,

$$\alpha - \varepsilon \overset{\alpha = \sup\{a_n\}}{\underset{\varepsilon > 0}{<}} \overset{\{a_n\}}{a_N} \overset{\text{is monotone increasing}}{\underset{n \ge N}{\leq}} \overset{\alpha}{a_n} \overset{\text{is an upper bound}}{\leq} \overset{\varepsilon > 0}{\alpha} \overset{\varepsilon > 0}{<} \alpha + \varepsilon.$$

This implies that  $|a_n - \alpha| < \varepsilon$  for all  $n \ge N$ .

<sup>&</sup>lt;sup>1</sup>Every non-empty subset of  $\mathbb R$  that is bounded above has the supremum in  $\mathbb R$ .

(2) Suppose that a sequence  $\{b_n\}$  is monotone decreasing and bounded below. Consider the set  $\{b_n : n \in \mathbb{N}\} \subseteq \mathbb{R}$ , which is non-empty and bounded below by assumption. By **Greatest Lower Bound Property**<sup>2</sup>,

$$\exists \beta \in \mathbb{R} \text{ such that } \beta = \inf \{b_n : n \in \mathbb{N}\}.$$

We claim that:

$$\lim_{n\to\infty}b_n=\beta=\inf\{b_n:n\in\mathbb{N}\}.$$

Let  $\varepsilon > 0$ . Since  $\beta$  is the infimum (*greatest* lower bound) of  $\{b_n : n \in \mathbb{N}\}$ , it follows that  $\beta + \varepsilon$  is not a lower bound of  $\{b_n : n \in \mathbb{N}\}$ . Thus,  $\neg [\forall N \in \mathbb{N}, \beta + \varepsilon \leq b_N]$ , i.e.,

$$\exists N \in \mathbb{N}$$
 such that  $b_N < \beta + \varepsilon$ .

Since  $\{b_n\}$  is monotone decreasing,

$$b_n \le b_N < \beta + \varepsilon$$

for all  $n \geq N$ . Therefore,

$$\beta - \varepsilon \overset{\varepsilon > 0}{<} \beta \overset{\beta \text{ is a lower bound}}{\leq} b_n \overset{\{b_n\} \text{ is monotone decreasing }}{\underset{n \geq N}{\leq}} b_N \overset{\beta = \inf\{b_n\}}{\underset{\varepsilon > 0}{<}} \beta + \varepsilon$$

This implies that  $|b_n - \beta| < \varepsilon$  for all  $n \ge N$ .

#### Divergence of Sequence

**Definition.** Let  $\{a_n\}$  be a sequence of real numbers.

(1) We say that the sequence  $\{a_n\}$  diverges to infinity (or tends to infinity) if

$$\forall M \in \mathbb{R}, \exists N \in \mathbb{N} \text{ such that } n \geq N \implies M < a_n$$

and write  $\lim_{n\to\infty} a_n = +\infty$ .

(2) We say that the sequence  $\{a_n\}$  diverges to minus infinity (or tends to infinity) if

$$\forall M \in \mathbb{R}, \ \exists N \in \mathbb{N} \text{ such that } n \geq N \implies a_n < M,$$

and write  $\lim_{n\to\infty} a_n = -\infty$ .

(3) We say that  $\{a_n\}$  is properly divergent in case we have either  $\lim_{n\to\infty} a_n = +\infty$  or  $\lim_{n\to\infty} = -\infty$ 

 $<sup>^2</sup>$ Every non-empty subset of  $\mathbb R$  that is bounded below has the infimum in  $\mathbb R$ .

Note. Recall that

**(Monotonicity)** A sequence  $\{a_n\}$  is monotone increasing if  $a_n \leq a_{n+1}$  for all  $n \in \mathbb{N}$ ;

(**Not Bounded Above**) The sequence  $\{a_n\}$  is not bounded above if

$$\neg [\exists M \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ a_n \leq M] \equiv [\forall M \in \mathbb{R}, \ \exists n \in \mathbb{N} \text{ such that } a_n > M].$$

We claim that a sequence  $\{a_n\}$  that is monotone increasing and not bounded above diverges to infinity:

*Proof.* Let  $M \in \mathbb{R}$ . Since  $\{a_n\}$  is not bounded above,

$$\exists n_0 \in \mathbb{N} \text{ such that } a_{n_0} > M.$$

Since  $\{a_n\}$  is monotonic increasing, it fllows that

$$a_{n_0} \leq a_n$$
,  $\forall n \geq n_0$ .

Thus

$$n \geq n_0 \stackrel{\text{monotone increasing}}{\Longrightarrow} a_{n_0} \leq a_n \stackrel{\text{Not Bounded Above}}{\Longrightarrow} M < a_{n_0} < a_n.$$

Hence it is proved.

Note that

**Lemma.** Let  $\{a_n\}$  and  $\{b_n\}$  be sequences of real numbers. Then

$$[\forall n \in \mathbb{N}, \ a_n \leq b_n] \implies \lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n.$$

*Proof.* Let  $a = \lim_{n \to \infty} a_n$  and  $b = \lim_{n \to \infty} b_n$ . Suppose that a > b. Let  $\varepsilon = a - b > 0$ . Then

$$\exists N_1 \in \mathbb{N} \text{ such that } n \geq N_1 \implies |a_n - a| < \varepsilon$$
,

$$\exists N_2 \in \mathbb{N} \text{ such that } n \geq N_2 \implies |b_n - b| < \varepsilon.$$

Let  $N := \max\{N_1, N_2\}$ . Then  $b_N < b + \varepsilon < a + \varepsilon < a_N \not>$ . Hence  $a \le b$ , i.e.,  $\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n$ .

**Note.** Let  $I_n = \left(0, \frac{1}{n}\right) \subseteq \mathbb{R}$  for all  $n \in \mathbb{N}$ .



Suppose that  $x \in \bigcap_{n=1}^{\infty} I_n$  then  $x \in I_n$  for all  $n \ge 1$ . That is,

$$0 < x < \frac{1}{n}$$
 for all  $n \ge 1$ .

By Archimedian property,  $\exists n_0 \in \mathbb{N} \text{ s.t. } n_0 x > 1 \not\exists \text{. Hence } \bigcap_{n=1}^{\infty} I_n = \emptyset.$ 

**Note.** Let  $I_n = [n, \infty) \subseteq \mathbb{R}$  for all  $n \in \mathbb{N}$ .



Suppose that  $x \in \bigcap_{n=1}^{\infty} I_n$  then  $x \in I_n$  for all  $n \ge 1$ . That is,

$$n \le x$$
 for all  $n \ge 1$ .

By Archimedian property,  $\exists n_0 \in \mathbb{N} \text{ s.t. } x < n_0 \not \exists \text{ Hence } \bigcap_{n=1}^{\infty} I_n = \emptyset.$ 

#### Nested Interval Property (NIP)

**Theorem.** Let  $a_n \le b_n$  for all  $n \in \mathbb{N}$ , and let  $\{[a_n, b_n]\}_{i=1}^{\infty} \subseteq \mathbb{R}$  be a sequence of bounded and closed intervals satisfying  $[a_{n+1}, b_{n+1}] \subseteq [a_n, b_n]$  for all  $n \in \mathbb{N}$ . Then

$$\bigcap_{n=1}^{\infty} [a_n, b_n] := \left\{ x \in \mathbb{R} : x \in [a_n, b_n] \text{ for all } n \in \mathbb{N} \right\} \neq \emptyset.$$

If  $\lim_{n\to\infty} (b_n - a_n) = 0$ , then  $\left|\bigcap_{n=1}^{\infty} [a_n, b_n]\right| = 1$ .



*Proof.* Since  $[a_{n+1}, b_{n+1}] \subseteq [a_n, b_n]$  for all  $n \in \mathbb{N}$ , we know the sequence  $\{a_n\}$  is monotone increasing, and the sequence  $\{b_n\}$  is monotone decreasing. In other words,

$$a_1 \leq a_2 \leq \cdots \leq a_n \leq \cdots \leq b_n \leq \cdots b_2 \leq b_1$$
.

By Monotone Convergence Theorem, we obtain

$$\lim_{n\to\infty} a_n = \sup_{n\in\mathbb{N}} a_n \quad \text{and} \quad \lim_{n\to\infty} b_n = \inf_{n\in\mathbb{N}} b_n$$

Thus,

$$[\forall n \in \mathbb{N}, \ a_n \le b_n] \implies \lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n \implies \sup_{n \in \mathbb{N}} a_n \le \inf_{n \in \mathbb{N}} b_n \tag{*}$$

Then

$$x \in \bigcap_{n=1}^{\infty} [a_n, b_n] \iff \forall n \in \mathbb{N}, \ a_n \le x \le b_n \iff \sup_{n \in \mathbb{N}} a_n \le x \le \inf_{n \in \mathbb{N}} b_n$$
$$\iff x \in [\sup_{n \in \mathbb{N}} a_n, \inf_{n \in \mathbb{N}} b_n].$$

By Set Equality, we have

$$\bigcap_{n=1}^{\infty} [a_n, b_n] = [\sup_{n \in \mathbb{N}} a_n, \inf_{n \in \mathbb{N}} b_n],$$

and so  $[\sup_{n\in\mathbb{N}}a_n,\inf_{n\in\mathbb{N}}b_n]\neq\emptyset$  by Least Upper Bound Property.

# Monotonicity of Supremum and Infimum

**Proposition.** Let  $\{a_n\}$ ,  $\{b_n\} \subseteq \mathbb{R}$  be sequences of real numbers. Let  $\{b_n\}$  is a subsequence of  $\{a_n\}$ , i.e.,  $\{b_n\} \subseteq \{a_n\}$ . Then

- $(1) \sup \{b_n\} \leq \sup \{a_n\};$
- (2)  $\inf \{a_n\} \leq \inf \{b_n\}.$

Proof. (1) Since

$$\beta \in \{b_n\} \stackrel{\{b_n\} \subseteq \{a_n\}}{\Longrightarrow} \beta \in \{a_n\} \stackrel{\sup\{a_n\}}{\Longrightarrow} \beta \le \sup\{a_n\},$$

 $\sup \{a_n\}$  be an upper bound of  $\{b_n\}$ . Since  $\sup \{b_n\}$  is the *least* upper bound of  $\{b_n\}$ , we have  $\sup \{b_n\} \le \sup \{a_n\}$ .

(2) Since

$$\beta \in \{b_n\} \stackrel{\{b_n\} \subseteq \{a_n\}}{\Longrightarrow} \beta \in \{a_n\} \stackrel{\inf\{a_n\}}{\Longrightarrow} \inf\{a_n\} \le \beta,$$

inf  $\{a_n\}$  be a lower bound of  $\{b_n\}$ . Since inf  $\{b_n\}$  is the *greatest* lower bound of  $\{b_n\}$ , we have inf  $\{a_n\} \leq \inf\{b_n\}$ .

Observation.

• What is  $\pm 1$  for the set  $S = \{(-1)^n : n \in \mathbb{N}\}$ ?



• What is  $\pm 1$  for the set  $S = \left\{ (-1)^n + \frac{1}{n} : n \in \mathbb{N} \right\}$ ?



Let  $\{x_n\}_{i=1}^{\infty}$  be a sequence in  $\mathbb{R}$ . Define

$$s_1 = \sup \{x_1, x_2, x_3, ...\} = \sup \{x_k : k \ge 1\},$$
  
 $s_1 = \sup \{x_2, x_3, x_4, ...\} = \sup \{x_k : k \ge 2\},$   
 $\vdots$   
 $s_n = \sup \{x_k, x_{k+1}, ...\} = \sup \{x_k : k \ge n\}.$ 

By monotonicity of supremum,

$$s_1 \ge s_2 \ge \cdots \ge s_n \ge s_{n+1} \ge \cdots$$
.

That is,  $\{s_n\}_{n=1}^{\infty}$  be a monotone decreasing sequence. Similarly, for  $t_n = \inf\{x_k, x_{k+1}, \dots\} = \inf\{x_k : k \ge n\}$ , we have a monotone increasing sequence  $\{t_n\}_{n=1}^{\infty}$ . For example,

| $n \mid$ | $(-1)^n$ | $\frac{1}{n}$              | $x_n = (-1)^n + \frac{1}{n}$ | $ \sup \{x_k : k \ge n\} (=: s_n)$ | $\inf \left\{ x_k : k \ge n \right\} (=: t_n)$ |
|----------|----------|----------------------------|------------------------------|------------------------------------|------------------------------------------------|
| 1        | -1       | 1                          | 0                            | 1.5                                | -1                                             |
| 2        | 1        | $\frac{1}{2} = 0.5$        | $\frac{3}{2} = 1.5$          | 1.5                                | -1                                             |
| 3        | -1       | $\frac{1}{3} \approx 0.33$ | $-\frac{2}{3} \approx -0.67$ | 1.25                               | -1                                             |
| 4        | 1        | $\frac{1}{4} = 0.25$       | $\frac{5}{4} = 1.25$         | 1.25                               | -1                                             |
| 5        | -1       | $\frac{1}{5} = 0.2$        | $-\frac{4}{5} = -0.8$        | 1.17                               | -1                                             |
| 6        | 1        | $\frac{1}{6} \approx 0.17$ | $\frac{7}{6} \approx 1.17$   | 1.17                               | -1                                             |

By Monotone Convergent Theorem,  $\{s_n\}$  and  $\{t_n\}$  are converges, and so



Remark. Consider

$$x_n := (-1)^n + (-1)^n \cdot \frac{1}{n}$$





#### **Limit Superior and Limit Inferior**

**Definition.** Let  $\{x_n\}$  be a sequence of real numbers. Suppose that  $\{x_n\}$  is bounded.

(1) The **limit superior** of  $\{x_n\}$ , denoted by  $\limsup_{n\to\infty} x_n$  (or  $\overline{\lim_{n\to\infty}} x_n$ ) is defined as

$$\limsup_{n\to\infty} x_n := \lim_{n\to\infty} \left( \sup_{k\geq n} x_k \right) = \inf_{n\in\mathbb{N}} \left( \sup_{k\geq n} x_k \right),$$

where  $\sup_{k\geq n} x_k$  represents the supremum of the subsequence  $\{x_k : k \geq n\}$ .

(2) The **limit inferior** of  $\{x_n\}$ , denoted by  $\liminf_{n\to\infty} x_n$  (or  $\lim_{n\to\infty} x_n$ ) is defined as

$$\liminf_{n\to\infty} x_n := \lim_{n\to\infty} \left( \inf_{k\geq n} x_k \right) = \sup_{n\in\mathbb{N}} \left( \inf_{k\geq n} x_k \right),$$

where  $\inf_{k \ge n} x_k$  represents the infimum of the subsequence  $\{x_k : k \ge n\}$ .

**Note** (Extended Real Number Line). The **extended real number line**  $\overline{\mathbb{R}}$  is defined as

$$\overline{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\}$$
.

That is, the set of real numbers together with two symbols  $+\infty$ ,  $-\infty$  such that

$$\forall x \in \mathbb{R}, -\infty < x < +\infty.$$

#### **Bolzano-Weierstrass Theorem**

**Theorem.** A bounded sequence of real numbers has a convergent subsequence.

Proof. TBA

**Proposition.** Let  $\{x_n\}$ ,  $\{y_n\}$  be bounded sequences of real numbers. Then

- $(1) \lim_{n \to \infty} \inf x_n \le \limsup_{n \to \infty} x_n.$
- (2)  $\limsup_{n \to \infty} x_n = L = \liminf_{n \to \infty} x_n \iff \exists \lim_{n \to \infty} x_n = L.$

**Remark.**  $\limsup x_n = \liminf x_n \iff \exists \lim_{n \to \infty} x_n \in \mathbb{R} \cup \{\pm \infty\}.$ 

*Proof.* Let  $s_n := \sup_{k \ge n} x_k$  and  $t_n := \inf_{k \ge n} x_k$  for each  $n \ge 1$ . Then  $\{s_n\}$  is monotone decreasing and  $\{t_n\}$  is monotone increasing. And so

$$\limsup_{n\to\infty} x_n = \lim_{n\to\infty} \left( \sup_{k\geq n} x_k \right) = \lim_{n\to\infty} s_n \quad \text{and} \quad \liminf_{n\to\infty} x_n = \lim_{n\to\infty} \left( \inf_{k\geq n} x_k \right) = \lim_{n\to\infty} t_n.$$

- (1)  $[\forall n \in \mathbb{N}, t_n \le s_n] \implies \lim_{n \to \infty} t_n \le \lim_{n \to \infty} s_n \implies \liminf_{n \to \infty} (x_n) \le \limsup_{n \to \infty} (x_n).$
- (2)  $(\Rightarrow)$  Note that

$$t_n = \inf_{k \ge n} x_k \le x_n \le \sup_{k \ge n} x_k = s_n.$$

By Squeeze Theorem, we have  $\lim_{n\to\infty} x_n = L$ .

 $(\Leftarrow)$  Let  $\varepsilon > 0$ . Since  $\lim_{n \to \infty} x_n = L$ ,

$$\exists n \in \mathbb{N} \text{ such that } n \geq N \implies |x_n - L| < \frac{\varepsilon}{2}.$$

Since  $\{s_n\}$  is monotone decreasing and  $\{t_n\}$  is monotone increasing, we have

Each 
$$t_i$$
 is the "greatest" lower bound 
$$L-\varepsilon < L-\frac{\varepsilon}{2} \leq t_N \leq t_n \leq s_n \leq s_N \leq L+\frac{\varepsilon}{2} < L+\varepsilon.$$
  $\{t_n\}$  is monotone increasing and  $n \geq N$ 

Therefore,  $\limsup_{n\to\infty} (x_n) = \lim_{n\to\infty} s_n = L$  and  $\liminf_{n\to\infty} (x_n) = \lim_{n\to\infty} t_n = L$ .

**Theorem.** Let  $\limsup_{n\to\infty} x_n \in \mathbb{R}$  and  $\liminf_{n\to\infty} x_n \in \mathbb{R}$ .

- $(1) \ \text{lim sup} \ x_n = s \iff \forall \varepsilon > 0, \ \begin{cases} \text{(i)} \ \exists n_0 \in \mathbb{N} \ such \ that} \ \forall n \geq n_0, \ x_n < s + \varepsilon \\ \text{(ii)} \ \forall n \in \mathbb{N}, \ \exists k \geq n \ such \ that} \ s \varepsilon < x_k \end{cases}.$
- (2)  $\liminf x_n = t \iff \forall \varepsilon > 0, \begin{cases} (i) \exists n_0 \in \mathbb{N} \text{ such that } \forall n \geq n_0, \ t \varepsilon < x_n \\ (ii) \forall n \in \mathbb{N}, \ \exists k \geq n \text{ such that } x_k < t + \varepsilon \end{cases}$

Proof. (1)



(⇒) Assume that  $\limsup x_n = s$ . Let  $\varepsilon > 0$ .

(i) Since 
$$s = \lim_{n \to \infty} \left( \sup_{k \ge n} x_k \right)$$
,

$$\exists n_0 \in \mathbb{N} \text{ such that } n \ge n_0 \implies \left| \sup_{k \ge n} x_k - s \right| < \varepsilon$$

$$\implies s - \varepsilon < \sup_{k \ge n} x_k < s + \varepsilon$$

$$\implies x_n \le \sup_{k \ge n} x_k < s + \varepsilon$$

$$\implies x_n < s + \varepsilon.$$

Thus, there exits  $n_0 \in \mathbb{N}$  such that if  $n \ge n_0$  then  $x_n < s + \varepsilon$ .

(ii) Let  $n \in \mathbb{N}$ . Recall that, for  $S \subseteq \mathbb{R}$ ,

$$\lambda = \sup S \iff \forall \varepsilon > 0, \ \exists x_{\varepsilon} \in S \text{ s.t. } \lambda - \varepsilon < x_{\varepsilon} \le \lambda.$$

This guarantee the following:

$$\exists x \in \{x_k : k \ge n\} \text{ s.t. } \sup_{k \ge n} x_k - \varepsilon < x \le \sup_{k \ge n} x_k.$$

In other words,  $\exists k \geq n \text{ s.t. } \sup_{k > n} x_k - \varepsilon < x_k, \text{ and so }$ 

$$\inf_{n\geq 1} \left( \sup_{k\geq n} x_k \right) - \varepsilon \leq \sup_{k\geq n} x_k - \varepsilon < x_k.$$

(⇐) Let  $\varepsilon > 0$ . Assume that  $s \in \mathbb{R}$  satisfies (i) and (ii). By (i), we know that

$$\exists n_0(\varepsilon) \in \mathbb{N} \text{ s.t. } \forall n \geq n_0(\varepsilon), \ x_n < s + \varepsilon/2.$$

Then if  $k \ge n \ge n_0$ , we also have  $k \ge n_0$ . This means that  $x_k < s + \varepsilon/2$ . Thus,

$$\sup_{k \ge n} x_k \le s + \varepsilon/2 < s + \varepsilon.$$

for all  $n \ge n_0$ . Form (ii), we have

$$\forall n \in \mathbb{N}, \ \exists k \geq n \text{ s.t. } s - \varepsilon/2 < x_k.$$

By the definition of supremum,  $s - \varepsilon/2 < x_k \le \sup_{k>n} x_k$  and so

$$s-\varepsilon < s-\varepsilon/2 < \sup_{k\geq n} x_k.$$

for all  $n \in \mathbb{N}$ . Here, we get two inequalities:

- Upper bound for large n: ∀n ≥ n<sub>0</sub>(ε), sup x<sub>k</sub> < s + ε.
- Lower bound for all n: ∀n ∈  $\mathbb{N}$ , s −  $\varepsilon$  <  $\sup_{k>n} x_k$ .

Then, for all  $n \ge n_0(\varepsilon)$ ,

$$s-\varepsilon < \sup_{k\geq n} x_k < s+\varepsilon.$$

Hence,

$$\lim_{n\to\infty} \left( \sup_{k\geq n} x_k \right) = s, \quad \text{i.e.} \quad , \limsup_{n\to\infty} x_n = s.$$

(2)



- $(\Rightarrow)$  Assume that  $\liminf_{n\to\infty} x_n = t$ . Let  $\varepsilon > 0$ .
  - (i) Since  $t = \lim_{n \to \infty} \left( \inf_{k \ge n} x_k \right)$ ,

$$\exists n_0 \in \mathbb{N} \text{ such that } n \ge n_0 \implies \left| \inf_{k \ge n} x_k - t \right| < \varepsilon$$

$$\implies t - \varepsilon < \inf_{k \ge n} x_k < t + \varepsilon$$

$$\implies t - \varepsilon < \inf_{k \ge n} x_k \le x_n$$

$$\implies t - \varepsilon < x_n.$$

Thus, there exits  $n_0 \in \mathbb{N}$  such that if  $n \ge n_0$  then  $s - \varepsilon < x_n$ .

(ii) Let  $n \in \mathbb{N}$ . Recall that, for  $T \subseteq \mathbb{R}$ ,

$$\gamma = \inf T \iff \forall \varepsilon > 0, \ \exists x_{\varepsilon} \in T \text{ s.t. } \gamma \leq x_{\varepsilon} < \gamma + \varepsilon.$$

This guarantee the following:

$$\exists x \in \{x_k : k \ge n\} \text{ s.t. } \inf_{k \ge n} x_k \le x < \inf_{k \ge n} x_k + \varepsilon.$$

In other words,  $\exists k \ge n \text{ s.t. } x_k < \inf_{k \ge n} x_k + \varepsilon$ , and so

$$x_k < \inf_{k \ge n} x_k + \varepsilon \le \sup_{n \ge 1} \left( \inf_{k \ge n} x_k \right) + \varepsilon.$$

( $\Leftarrow$ ) Let  $\varepsilon$  > 0. Assume that t ∈  $\mathbb{R}$  satisfies (i) and (ii). By (i), we know that

$$\exists n_0(\varepsilon) \in \mathbb{N} \text{ s.t. } \forall n \geq n_0(\varepsilon), \ t - \varepsilon/2 < x_n.$$

Then if  $k \ge n \ge n_0$ , we also have  $k \ge n_0$ . This means that  $t - \varepsilon/2 < x_k$ . Thus,

$$t - \varepsilon < t - \varepsilon/2 \le \inf_{k > n} x_k$$

for all  $n \ge n_0$ . Form (ii), we have

$$\forall n \in \mathbb{N}, \ \exists k \geq n \text{ s.t. } x_k < t + \varepsilon/2.$$

By the definition of infimum,  $\inf_{k \ge n} x_k \le x_k < t + \varepsilon/2$  and so

$$\inf_{k \ge n} x_k < t + \varepsilon/2 < t + \varepsilon.$$

for all  $n \in \mathbb{N}$ . Here, we get two inequalities:

- Lower bound for large  $n: \forall n \geq n_0(\varepsilon), \ t \varepsilon < \inf_{k > n} x_k$ .
- Upper bound for all n: ∀n ∈  $\mathbb{N}$ ,  $\inf_{k \ge n} x_k < t + ε$ .

Then, for all  $n \ge n_0(\varepsilon)$ ,

$$t-\varepsilon < \inf_{k\geq n} x_k < t+\varepsilon.$$

Hence,

$$\lim_{n\to\infty} \left(\inf_{k\geq n} x_k\right) = t, \quad \text{i.e.} \quad , \liminf_{n\to\infty} x_n = t.$$

**Proposition.** Let  $\{x_n\}$ ,  $\{y_n\}$  be bounded sequences of real numbers. Then

- (1)  $\liminf (x_n) + \liminf (y_n) \le \liminf (x_n + y_n)$ .
- (2)  $\limsup (x_n + y_n) \le \limsup (x_n) + \limsup (y_n)$ .

Proof. (1) Since

$$\inf_{k \ge n} x_k \le x_k \text{ and } \inf_{k \ge n} y_k \le y_k \implies \inf_{k \ge n} x_k + \inf_{k \ge n} y_k \le x_k + y_k$$

for each  $k \ge n$ , we have

$$\forall n \in \mathbb{N}, \inf_{k \ge n} x_k + \inf_{k \ge n} y_k \le \inf_{k \ge n} (x_k + y_k).$$

This implies that

$$\lim_{n \to \infty} \left( \inf_{k \ge n} x_k + \inf_{k \ge n} y_k \right) \le \lim_{n \to \infty} \left( \inf_{k \ge n} (x_k + y_k) \right),$$

$$\lim_{n \to \infty} \left( \inf_{k \ge n} x_k \right) + \lim_{n \to \infty} \left( \inf_{k \ge n} y_k \right) \le \lim_{n \to \infty} \left( \inf_{k \ge n} (x_k + y_k) \right),$$

$$\lim_{n \to \infty} \inf_{n \to \infty} x_n + \lim_{n \to \infty} \inf_{n \to \infty} y_n \le \lim_{n \to \infty} \inf_{n \to \infty} (x_n + y_n).$$

(2) Since

$$x_k \le \sup_{k \ge n} x_k$$
 and  $y_k \le \sup_{k \ge n} y_k \implies x_k + y_k \le \sup_{k \ge n} x_k + \sup_{k \ge n} y_k$ 

for each  $k \ge n$ , we have

$$\forall n \in \mathbb{N}, \sup_{k \geq n} (x_k + y_k) \leq \sup_{k \geq n} x_k + \sup_{k \geq n} y_k.$$

This implies that

$$\lim_{n \to \infty} \left( \sup_{k \ge n} (x_k + y_k) \right) \le \lim_{n \to \infty} \left( \sup_{k \ge n} x_k + \sup_{k \ge n} y_k \right),$$

$$\lim_{n \to \infty} \left( \sup_{k \ge n} (x_k + y_k) \right) \le \lim_{n \to \infty} \left( \sup_{k \ge n} x_k \right) + \lim_{n \to \infty} \left( \sup_{k \ge n} y_k \right),$$

$$\lim_{n \to \infty} \sup \left( x_n + y_n \right) \le \lim_{n \to \infty} \sup x_n + \lim_{n \to \infty} \sup y_n.$$

References

- [1] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 10. 해석학 개론 (e) 엡실론-델타와 수열의 수렴성" YouTube Video, 25:57. Published September 29, 2019. URL: https://youtu.be/2Ml3G\_Duffk?si=qo-CVgW3Ukd4ADRL.
- [2] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 11. 해석학 개론 (f) MCT and NIP" YouTube Video, 20:17. Published October 1, 2019. URL: https://youtu.be/YdnBQaY5eDk?si=BNe0Ue4iq2P9Fxsd.
- [3] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 12. 해석학 개론 (g) Limsup, Liminf" YouTube Video, 34:31. Published October 2, 2019. URL: https://youtu.be/4Q1cm3VQPUE?si=phAhKwnOxdnRAiRR.

# A Equivalent Statements of the Least Upper Bound Property

**Theorem.** Monotone Convergence Theorem ← Nested Interval Property

*Proof.*  $(\Rightarrow)$  See Nested Interval Property.

(**⇐**) TBA

**Theorem.** Least Upper Bound Property ← Monotone Convergence Theorem

*Proof.* ( $\Rightarrow$ ) See Monotone Convergence Theorem.

(**⇐**) TBA