Sistema de Ponto Flutuante

Prof. Americo Cunha

Universidade do Estado do Rio de Janeiro - UERJ

americo.cunha@uerj.br

www.americocunha.org

Números no Papel

Uma quantidade infinita de números ao longo de uma reta contínua

Números no Computador

Uma quantidade finita de números ao longo de uma reta discreta

A noção de sistema de ponto flutuante

O *sistema de ponto flutuante* $F \subset \mathbb{R}$ é subconjunto dos reais cujos elementos tem o seguinte formato:

$$\underbrace{\mathtt{fl}(x)}_{\textit{float de} \ \times} = \pm \underbrace{(0, d_1 \ d_2 \ \cdots, \ d_t)_{\beta}}_{\textit{mantissa}} \times \beta^{\mathsf{e}},$$

onde os dígitos $\{d_i\}_{i=1}^t$ são inteiros tais que $0 \le d_i \le \beta - 1$ e $d_1 \ne 0$.

O sistema é caracterizado por quatro números inteiros:

- a base $\beta > 1$ (também chamada de radix),
- a precisão $t \ge 1$ (quantidade de dígitos significativos), e
- o intervalo do expoente $m \le e \le M$.

Notação:

$$F(\beta, t, m, M)$$

ou

$$(\beta, t, m, M)$$

Considere o sistema de ponto flutuante

$$F(\beta, t, m, M) = F(2, 3, -1, 3)$$

- Quais números são representáveis nesse sistema?
- Qual o menor número representável (em módulo e não nulo)?
- Qual o maior número representável (em módulo)?

$$\mathtt{fl}(x) = \pm (0, d_1 d_2 d_3)_2 \times 2^e, \ d_1 = 1, \ d_2, d_3 \in \{0, 1\}, \ -1 \le e \le 3$$

$$\mathtt{fl}\left(x\right) = \pm \left(0, \mathit{d}_{1} \; \mathit{d}_{2} \; \mathit{d}_{3}\right)_{2} \; \times \; 2^{e}, \; \; \mathit{d}_{1} = 1, \; \; \mathit{d}_{2}, \mathit{d}_{3} \in \{0, 1\}, \; \, -1 \leq e \leq 3$$

$$\mathtt{fl}\left(x\right) = \pm \left(0, \mathit{d}_{1} \: \mathit{d}_{2} \: \mathit{d}_{3}\right)_{2} \: \times \: 2^{e}, \: \: \mathit{d}_{1} = 1, \: \: \mathit{d}_{2}, \mathit{d}_{3} \in \{0, 1\}, \: \: -1 \leq e \leq 3$$

```
\pm (0,100)_2 \times 2^{-1}
                                 \pm 0,2500
                                                   \pm (0,110)_2 \times 2^{-1}
                                                                                       \pm 0,3750
\pm (0,100)_{2} \times 2^{+0}
                                                    \pm (0,110)_{2} \times 2^{+0}
                                  \pm 0,5000
                                                                                       \pm 0,7500
\pm (0,100)_{2} \times 2^{+1}
                                                    \pm (0,110)_{2} \times 2^{+1}
                                  \pm 1,0000
                                                                                = \pm 1,5000
\pm (0,100)_2 \times 2^{+2}
                                                    \pm (0,110)_2 \times 2^{+2}
                                  \pm 2,0000
                                                                                       \pm 3,0000
\pm (0,100)_2 \times 2^{+3}
                                                    \pm (0,110)_2 \times 2^{+3}
                                  \pm 4,0000
                                                                                       \pm 6,0000
\pm (0,101)_2 \times 2^{-1}
                                                    \pm (0,111)_2 \times 2^{-1}
                                  \pm 0,3125
                                                                                       \pm 0,4375
\pm (0,101)_{2} \times 2^{+0}
                                                    \pm (0,111)_{2}^{-} \times 2^{+0}
                                  \pm 0,6250
                                                                                       \pm 0.8750
\pm (0,101)_2 \times 2^{+1}
                                                    \pm (0,111)_2 \times 2^{+1}
                                 \pm 1,2500
                                                                                     \pm 1,7500
\pm (0,101)_2 \times 2^{+2}
                                                    \pm (0,111)_2 \times 2^{+2}
                                 \pm 2,5000
                                                                                = \pm 3,5000
\pm (0,101)_{2} \times 2^{+3}
                                                    \pm (0,111)_{2} \times 2^{+3}
                            =
                                   \pm 5,0000
                                                                                       \pm 7,0000
```


$$\mathtt{fl}\left(x\right) = \pm \left(0, \mathit{d}_{1} \: \mathit{d}_{2} \: \mathit{d}_{3}\right)_{2} \: \times \: 2^{e}, \: \: \mathit{d}_{1} = 1, \: \: \mathit{d}_{2}, \mathit{d}_{3} \in \{0, 1\}, \: \: -1 \leq e \leq 3$$

3.0

4.0

0.5 - 1.0

2.0

5.0

6.0

7.0

• 41 números são representáveis:

40 números tabela anterior, mais o zero!

O menor número representável (em módulo e não nulo) é

$$L = (0, 100)_2 \times 2^{-1} = 0, 25.$$

• O maior número representável (em módulo) é

$$U = (0,111)_2 \times 2^3 = 7,0.$$

Alguns fatos sobre sistemas de ponto flutuante

No sistema de ponto flutuante $F(\beta, t, m, M)$:

O menor número representável (em módulo e não nulo) é

$$L = (0, 1 \underbrace{00 \cdots 0}_{t-1 \text{ vezes}})_{\beta} \times \beta^m$$

O maior número representável (em módulo) é

$$U = (0, (\beta - 1)(\beta - 1) \cdots (\beta - 1))_{\beta} \times \beta^{M}$$

O número zero admite diversas representações:

$$\mathtt{fl}\left(0\right) = (0, \underbrace{00\cdots 0}_{t \text{ vezes}})_{eta} imes eta^{e}, \quad m \leq e \leq M$$

A geometria de um sistema de ponto flutuante

A região de underflow é definida por

$$\mathcal{U} = \{ \mathtt{fl}(x) \in F(\beta, t, m, M) \mid |\mathtt{fl}(x)| < L \text{ e } \mathtt{fl}(x) \neq 0 \}$$

A região de overflow é definida por

$$\mathcal{O} = \{ \mathtt{fl}(x) \in F(\beta, t, m, M) \mid |\mathtt{fl}(x)| > U \}$$

A região representável é definida por

$$\mathcal{R} = \{ \mathtt{fl}(x) \in F(\beta, t, m, M) \mid L \leq |\mathtt{fl}(x)| \leq U \} \cup \{0\}$$

Representação exata ou aproximada

O real a seguir não admite representação exata em $F(\beta, t, m, M)$:

$$x = (0, d_1 d_2 \cdots d_{t-1} d_t d_{t+1} d_{t+2} \cdots)_{\beta} \times \beta^e$$

Isso ocorre porque x tem mais de t dígitos!

Nesses casos uma representação não exata (aproximação) do real x em $F(\beta, t, m, M)$ se faz necessária.

Existem duas estratégias para construir tal aproximação:

- Truncamento
- Arredondamento

Truncamento ou arredondamento?

Truncamento

$$\mathtt{fl}\left(x
ight)=\pm\,\left(0,d_{1}\,d_{2}\,\cdots\,,\,d_{t}
ight)_{eta}\, imes\,eta^{e}$$

Arredondamento

$$\mathtt{fl}\left(x\right) = \left\{ \begin{array}{ll} \pm \left(0, d_1 \, d_2 \, \cdots \, d_t\right)_{\beta} \, \times \, \beta^e & \text{se } d_{t+1} < \beta/2 \\ \pm \left(0, d_1 \, d_2 \, \cdots \, d_t + \beta^{-t}\right)_{\beta} \, \times \, \beta^e & \text{se } d_{t+1} > \beta/2 \end{array} \right.$$

Se $d_{t+1}=eta/2$, arredonda-se para o número par mais próximo

Truncamento ou arredondamento?

• Truncamento (+ rápido)

$$\mathtt{fl}\left(x\right) = \pm \; (0, \mathit{d}_1 \; \mathit{d}_2 \; \cdots \; , \; \mathit{d}_t)_{\beta} \; \times \; \beta^e$$

Arredondamento

$$\mathtt{fl}(x) = \left\{ \begin{array}{ll} \pm (0, d_1 \, d_2 \, \cdots \, d_t)_\beta \, \times \, \beta^{\mathsf{e}} & \mathsf{se} \, d_{t+1} < \beta/2 \\ \pm \, \left(0, d_1 \, d_2 \, \cdots \, d_t + \beta^{-t}\right)_\beta \, \times \, \beta^{\mathsf{e}} & \mathsf{se} \, d_{t+1} > \beta/2 \end{array} \right.$$

Se $d_{t+1}=eta/2$, arredonda-se para o número par mais próximo

Truncamento ou arredondamento?

• Truncamento (+ rápido)

$$\mathtt{fl}\left(x\right)=\pm\ (0,d_1\,d_2\,\cdots\,,\,d_t)_{\beta}\,\times\,\beta^e$$

Arredondamento (+ preciso)

$$\mathtt{fl}(x) = \left\{ \begin{array}{ll} \pm (0, d_1 \, d_2 \, \cdots \, d_t)_\beta \, \times \, \beta^{\mathsf{e}} & \mathsf{se} \, d_{t+1} < \beta/2 \\ \pm \, \left(0, d_1 \, d_2 \, \cdots \, d_t + \beta^{-t}\right)_\beta \, \times \, \beta^{\mathsf{e}} & \mathsf{se} \, d_{t+1} > \beta/2 \end{array} \right.$$

Se $d_{t+1}=eta/2$, arredonda-se para o número par mais próximo

Erros numa representação em ponto flutuante

Erro absoluto

$$|x - fl(x)| \le \begin{cases} 2 \epsilon_M \beta^e, & \text{truncamento} \\ \epsilon_M \beta^e, & \text{arredondamento} \end{cases}$$

• Erro relativo (para $x \neq 0$)

$$\frac{|x - \mathtt{fl}(x)|}{|x|} \leq \begin{cases} 2\,\epsilon_M, & \mathsf{truncamento} \\ \epsilon_M, & \mathsf{arredondamento} \end{cases}$$

• $\epsilon_M = \frac{1}{2} \beta^{-t}$ é denominado precisão da máquina (menor número representável tal que $1 + \epsilon_M \neq 1$)

IEEE 754 - 2008 (o padrão dos computadores modernos)

Padrão técnico para cálculo de ponto flutuante, estabelecido em 1985 pelo Instituto de Engenheiros Elétricos e Eletrônicos (IEEE)

$$fl(x) = \underbrace{(-1)^s}_{sinal} \underbrace{(1, b_1 b_2 \cdots, b_{t-1})_2}_{mantissa} \times 2^{e-M}$$

onde s = 0 se $x \ge 0$, s = 1 se x < 0 e $b_j \in \{0, 1\}$

tipo	sinal	expoente	mantissa	bits	β	t	m	М	ϵ_{M}
		5	10	16	2	11	-14	15	$pprox 10^{-03}$ $pprox 10^{-07}$
single	1	8	23	32	2	24	-126	127	$pprox 10^{-07}$
double	1	11	52	64	2	53	-1022	1023	$pprox 10^{-16}$

IEEE Standard for Floating-Point Arithmetic, in IEEE Std 754-2008, Aug. 29 2008.

https://doi.org/10.1109/IEEESTD.2008.4610935

IEEE 754 - 2008 (o padrão dos computadores modernos)

Considere o número $x = (0, 15625)_{10} = (1, 01)_2 \times 2^{-3}$.

• precisão simples (single)

5	sign exponent(8-bit)										fraction (23-bit)																						
	١								\neg																								
	0	0	1	1	1	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	=0.15625
	0								0																							0	
	31	31 23																													0		

* Figura obtida em https://en.wikipedia.org/wiki/Floating-point_arithmetic © $\$ © () $\$

IEEE 754 - 2008 (o padrão dos computadores modernos)

precisão dupla (double)

- valores especiais
 - Zero e = todos 0, mantissa = todos 0, s atrbitrátio
 - $+\infty$ e = todos 1, mantissa = todos 0, s = 0
 - $-\infty$ e = todos 1, mantissa = todos 0, s = 1
 - NaN e = todos 1, mantissa \neq 0 (not a number)

* Figura obtida em https://en.wikipedia.org/wiki/Double-precision_floating-point_format 🕾 🕀 🕏

Para pensar em casa ...

Exercício teórico:

Considere o sistema de ponto flutuante $(\beta, t, m, M) = (10, 3, -3, 4)$, onde a parcela que não pode ser incorporada à mantissa é truncada.

- Qual a região de overflow desse sistema?
- Qual a região de underflow desse sistema?
- Qual a representação de $\alpha=10^{-5}$ nesse sistema?

Exercício computacional:

Implemente no GNU Octave um algoritmo para calcular a precisão da máquina ϵ_M .

Como citar esse material?

A. Cunha, *Sistema de Ponto Flutuante*, Universidade do Estado do Rio de Janeiro – UERJ, 2020.

Essas notas de aula podem ser compartilhadas nos termos da licença Creative Commons BY-NC-ND 3.0, com propósitos exclusivamente educacionais.

