2/23/22 Classification, KNN	
<u>Clasificaton</u>	
-training set: train a model to learn a rule	
- we training set to <u>label</u>	
ex: Model: f: age x tumor size > dyes, no }	
apply model to our dataset	
Toulcs: credit cord froud detection	
Techniques: Naive Bayes, Neural Network	
KNN	
1) compute distance of unseen record	
2) identify k nearest neighbour	
3) aggregate	
Aggregate method:	
· majority rule	
· weighted majority based on distance $lw = Vd^2$)	
Choosing k:	
if small -> sensitive to noise + overfithing (need to be general, not too specific)	
if big -> include points from other class	
X27 + +	
X2	
- Decision Boundary	
> x ₁	
Pros: based on similarity, simple, Black Box model, adapts to new attributes	
Cons: expensive	
Decision Trees	
walk through the tree and make prediction	
How to build the free: Hunt's Algorithm	
-split up the dataset to get single class	
- Goal: Find the best affilibution that majority of one does in each class	

