Markov Decision Process

- 1. Introduction to MDP
- 1.1 MDP problem

A MDP is a tuple $\langle S, A, P, R, \gamma \rangle$, where:

- S: a finite set of **states**
- A: a finite set of **actions**
- P: a state transition probability matrix, P[s'|s, a], which can be represented as a 3D matrix
- R: a reward function, R(s)
- γ : a discount factor, $\gamma \in [0,1]$

Markov assumption: state transition probability only depends on the current state s, not the history of earlier states.

1.2 Solution to MDP problem

- The solution to a MDP problem is a **policy**, $\pi(s)$
- $\pi(s)$ is a function from state to action. It outputs an appropriate action for each state the agent is in
- Optimal policy π^* : a policy that generates highest expected utility
- π^* varies within the same problem with different rewards and risks

1.3 Evaluation of policy

- Expected utility of executing π starting from s: $U^{\pi}(s) = E[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t})]$
- Utility of a state $U^{\pi^*}(s)$ is the expected sum of discounted reward of executing an **optimal policy** from s. Often called **value function**.
- Given the value function, we can compute an optimal policy as $\pi^*(s) = \arg\max_a \sum_{s'} P(s'|s,a) U(s')$

- 2. Value iteration
- 2.1 Bellman equation

Bellman equation: the utility of a state is its immediate reward plus expected utility of mext states, given optimal action. $U(s) = R(s) + \arg\max_a P(s'|s,a) U(s')$

2.2 Value iteration

2.2.1 Algorithm

Algorithm 1: Value Iteration

function VALUE-ITERATION(mdp, ϵ) returns a utility function; Input: mdp, an MDP with states S, actions A(s), transition model P(s'|s,a), rewards R(s), discount γ ; ϵ , the maximum error allowed in the utility of any state in an iteration

Output: U

з repeat

2 Persistent: U, U', vectors of utilities for states in S, initially zero; δ , the maximum change in the utility of any state in an iteration;

- 11 until $\delta < \epsilon(1-\gamma)/\gamma$; 12 return U
 - The value iteration algorithm repeatedly does Bellman update: $U_{t+1}(s) \leftarrow R(s) + \gamma \arg\max_{a \in A(s)} \sum_{s'} P(s'|s,a) U_t(s')$
 - Value iteration converges to the unique value function for discounted problems with $\gamma < 1$.

2.2.2 Contraction

- Bellman update $U_{t+1} \leftarrow BU_t$, where B is the Bellman update operator, is a **contraction**: $|BU BU'| \le \gamma |U U'|$
 - This is because $\left| \arg \max_{a} f(a) \arg \max_{a} g(a) \right| \le \arg \max_{a} |f(a) g(a)|$
- Repeated application of a contraction reaches a unique fixed point U, where BU = U (equilibrium). For any initial state U_0 :

$$|BU_{t} - BU| = |BU_{t} - U|$$

$$\leq \gamma |U_{t} - U|$$

$$= \gamma |BU_{t-1} - U|$$

$$\leq \dots$$

$$= \dots$$

$$\leq \gamma^{t} |U_{0} - U|$$

$$(1)$$

- Bellman update converges exponentially
- $-|U_0-U| \leq R_{max}/(1-\gamma)$, if U_0 is initialized to 0

$$U_{t} = R_{0} + \gamma R_{1} + \gamma^{2} R_{2} + \dots \gamma^{t} R_{t}$$

$$\leq R_{max} + \gamma R_{max} + \gamma^{2} R_{max} + \dots \gamma^{t} R_{max}$$

$$= \frac{R_{max}}{1 - \gamma}$$
(2)

All states are bounded by $\pm \times \frac{R_{max}}{1-\gamma}$

- If we run N iterations to get error at most ϵ , we have:
 - $\gamma^N R_{max}/(1-\gamma) \le \epsilon \implies N = \lceil log(R_{max}/\epsilon(1-\gamma))/log(1/\gamma) \rceil$
- Terminal condition: $|U_{t+1} U_t| \le \epsilon (1 \gamma)/\gamma \implies |U_{t+1} U| \le \epsilon$

3. Policy iteration

• Policy iteration takes the advantage that utility function does not need to be highly accurate to give correct policy, e.g. if one action is clearly better than others.

- For policy iteration, begin with some initial policy π_0 , alternate the following two steps:
 - Policy evaluation: given a policy π_i , and calculate $U_i = U^{\pi_i}$
 - Policy improvement: calculate a new policy π_{i+1} using one step look-ahead based on U_i
- Policy iteration terminates when there is no change in the policy. The number of policies are finite ($|A|^{|S|}$), hence it must terminates

Algorithm 2: Policy iteration

```
1 function POLICY-ITERATION(mdp) returns a policy;
   Input: mdp, an MDP with states S, actions A(s), transition model
               P(s'|s,a)
   Output: \pi
 2 Persistent: U, a vector of utilities for states in S, initially zero; \pi, a
    policy vector indexed by state, initially random;
 з repeat
       U \leftarrow POLICY-EVALUATION(\pi, U, mdp);
 4
       unchanged? \leftarrow true;
 \mathbf{5}
       foreach state \ s \ in \ S \ do
 6
           if \arg \max_{a \in A(s)} \sum_{s'} P(s'|s, a) U(s') > \sum_{s'} P(s'|s, \pi(s)) U(s')
 7
               \pi(s) \leftarrow \arg\max_{a \in A(s)} \sum_{s'} P(s'|s, a) U(s');
 8
               unchanged \leftarrow false
 9
           end
10
       end
12 until unchanged?;
13 return \pi
```

- Policy evaluation equation is similar to Bellman update without a max operator: $U_i(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi_i(s)) U_i(s')$
 - For n states, it can be solved in $O(n^3)$ time
- For large state spaces, often do k iterations instead of converge: modified policy iteration

• To speed up, only pick a subset of states to do either policy improvement for updating in policy evaluation: asynchronous policy iteration

4. Online search

- State spaces grows exponentially with number of variables of a state.
- Value/policy iteration iterates through all states, thus runtime grows exponentially with number of variables
- To handle large state spaces:
 - Function approximation for the value function, e.g. linear function of features, deep neural networks, etc
 - Online search with sampling

4.1 Monte Carlo Tree search

- Algorithm:
 - Selection: The selection function is applied recursively until a leaf node is reached
 - Expansion: One or more nodes are created (depends on the number of next states)
 - **Simulation**: One simulated game is played
 - Backpropagation: The result of the game is backpropagated in the tree
- MCTS repeatedly run trials from the current state (the root for its subtree in online search), where a trial:
 - Repeatedly select node to go to at next level util
 - * target depth reached
 - * selected node has not been discovered: create a new node, run a simulation using a **default policy** till a required depth
 - Back up the outcomes all the way to the root

- This is an anytime policy: when time is up, use the action that looks the best at the root at that time.
- A node n' at the next level is selected by applying an action a to s, then sampling the next state s' according to P(s'|s,a)
- The action is selected by balancing exploration with exploitation
- The estimated value $\overline{V}(n)$ at a node n is the **average return** of all the **trials** at n
 - * The returned $r_t(n)$ of trial t starting from n with state s and next node n' is $R(s) + \gamma r_t(n')$
 - * $\overline{V}(s) = \arg\max_a Q(s, a)$
- The estimated Q-function (action-value function) at n, $\overline{Q}(n,a)$ is the **average return** of all trials at n that starts with action a
 - * $\overline{Q}(r,a)$ at the root r is used to select the action to take at the root.
- All values are updated in the back up operation to the root

4.2 Upper Confidence Tree

- UCT function to select action at node n:
 - $\pi_{UCT}(n) = \arg\max_{a} \overline{Q}(n,a) + c\sqrt{\frac{ln(N(n))}{N(n,a)}}$, where N(n) is the number of times the node has been visited, N(n,a) is the number of trials through n with action a, and c is a constant.
- UCT will eventually converge to the optimal policy with enough trials

5. POMDP

5.1 Define POMDP

- The states are **partially observable**, and we receive some sensor information, **observation**, that can be used for state estimation. The observation/sensor mode is defined by P(e|s), the probability of perceiving evidence e in state s.
- We do not know the actual state the agent is in, but we can track the probability distribution over the possible states. This is **belief state**, or belief for short.

• Filtering: tracking the probability distribution

Belief state update: $b'(s') = \alpha P(e|s') \sum_{s} P(s'|s, a)b(s)$, α : normalizing constant. We write as b' = FORWARD(b, a, e).

- The belief contains all the information necessary for the agent to act optimally: the optimal action depends only on the agent's current belief.
- Optimal policy can be described as a mapping $\pi^*(b)$ from belief to aciton
- A POMDP agent acts as follows:
 - Given the current belief b, execute the action $a = \pi^*(b)$
 - Receive the observation e
 - Set belief to FORWARD(b, a, e) and repeat
- POMDP can be viewed as a MDP in a belief space:
 - Reward function in the belief space can be defined as: $\rho(b) = \sum_{s} b(s)R(s)$
 - -P(b'|b,a) can be derived from the underlying POMDP
 - Together P(b'|b,a) and $\rho(b)$ defines an **observable** MDP in belief space
 - The optimal policy for this MDP is also the optimal policy for the POMDP

5.2 Value iteration for POMDP

- A policy at a belief b_0 is a **conditional plan**. Multiple conditional plans are possible
- Consider a fixed conditional plan p:
 - Executing p from a state s will have utility $\alpha_p(s)$. Hence, executing it from a belief b will have expected utility $\sum_s b(s)\alpha_p(s)$ or $b\cdot\alpha_p$

- For a fixed conditional plan p, value function $U_p(b) = b \cdot \alpha_p$ is a linear function of b
- The optimal policy is to choose p with highest utility: $U(b) = \arg \max_{p} b \cdot \alpha_{p}$
 - * $U(b) = \arg \max_p b \cdot \alpha_p$ is a hyperplane. The continuous belief space is divided into regions, each corresponding to a conditional plan optimal for that region. U(b) is piecewise linear and convex
- Let ρ be a depth d conditional plan with initial action a followed by depth d-1 subplans p.e for observation e:
 - $\alpha_p(s) = R(s) + \sum_{s'} P(s'|s,a) \sum_{e} P(e|s') \alpha_{p,e}(s')$. This gives rise to the value iteration algorithm.

Algorithm 3: POMDP value iteration

```
1 function POMDP-VALUE-ITERATION(pomdp, e) returns a utility function
```

Input : pomdp, an POMDP with states S, actions A(s), transition model P(s'|s,a), sensor model P(e|s), rewards R(s), discount γ

Output: U

- **2 Persistent:** U, U', sets of plans p with associated utility vector α_p ;
- **3** $U' \leftarrow$ a set containing just the empty plan [], with $\alpha_{\parallel} = R(s)$
- 4 repeat
- 5 $U \leftarrow U'$:
- 6 $U' \leftarrow$ the set of all plans consisting of an action and, for each possible next percept, a plan in U with utility vector computed according to the equation above;
- 7 $U' \leftarrow \text{REMOVE-DOMINATED-PLANS}(U')$
- s until MAX-DIFFERENCE $(U, U') < \epsilon(1 \gamma)/\gamma$;
- $\mathbf{9}$ return U
- 6. Dynamic decision network (DDN)
 - The execution of a POMDP over time can be represented as a dynamic decision network
 - Transition and sensor models represented by a dynamic Bayesian network (DBN)

- Add decision and utility modes to get DDN
- In DBN, state S_t becomes set of variables X_t and evidence/observation variables are E_t
- Action at time t is A_t , transition is $P(X_{t+1}|X_t, A_t)$, and sensor model is $P(E_t|X_t)$
- POMDP solvers need to solve two problems:
 - Belief tracking or filtering problem: given the history observed so far, what is the current belief
 - Planning problem: given the current belief, what is the optimal action to take