

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра «Информатика и вычислительная техника»

ПРИКЛАДНАЯ ТЕОРИЯ ЦИФРОВЫХ АВТОМАТОВ

ЛАБОРАТОРНЫЙ ПРАКТИКУМ

Печатается по решению методического совета Института автоматики и информационных технологий (протокол № 6 от 28.01.2025 г.).

УДК 004.92(076.5)

Пугачёв А.И.

Прикладная теория цифровых автоматов: лабораторный практикум / A.И. *Пугачёв.* – Самара: Самар. гос. техн. ун-т, 2025. – 48 с.

Методические указания предназначены для обучающихся по программе бакалавриата по направлениям 09.03.01 – Информатика и вычислительная техника.

УДК 004.92(076.5) ББК 32.97я73

- © А.И. Пугачёв, 2025
- © Самарский государственный технический университет, 2025

ОГЛАВЛЕНИЕ

BBE,	дение	3
1.	ТЕОРИЯ ПРОЕКТИРОВАНИЯ ЦИФРОВЫХ АВТОМАТОВ	4
1.1	Абстрактные автоматы Мили и Мура	4
1.2	ФУНКЦИЯ ЗАКЛЮЧИТЕЛЬНОГО СОСТОЯНИЯ	8
1.3		
1.4	Эквивалентные автоматы	11
1.5		
1.6		
1.7		
1.8	Этапы синтеза автоматов типа Мура и Мили по ГСА	18
2.	ЛАБОРАТОРНЫЕ РАБОТЫ	20
2.1	ЛАБОРАТОРНАЯ РАБОТА № 1	20
2.2	ЛАБОРАТОРНАЯ РАБОТА № 2	22
2.3		
2.4	ЛАБОРАТОРНАЯ РАБОТА № 4	25
СПИ	СОК ЛИТЕРАТУРЫ	27
ПРИ	ЛОЖЕНИЕ 1. ГСА	28
ПРИ	ЛОЖЕНИЕ 2. ОБРАЗЕЦ ТИТУЛЬНОГО ЛИСТА К ЛАБОРАТОРНО	Й РАБОТЕ 48

ВВЕДЕНИЕ

Дисциплина «Прикладная теория цифровых автоматов» в направлении 09.03.01 «Информатика и вычислительная техника» является фундаментальной, поскольку закладывает базовые знания и навыки разработки систем дискретной автоматики и вычислительной техники.

1. ТЕОРИЯ ПРОЕКТИРОВАНИЯ ЦИФРОВЫХ АВТОМАТОВ

1.1 Абстрактные автоматы Мили и Мура

Абстрактный автомат (AA) — математическая модель реальных технических устройств. Абстрактный автомат описывается шестикомпонентным набором

$$\mathbf{S} = (\mathbf{A}, \mathbf{Z}, \mathbf{W}, \delta, \lambda, a_1). \tag{1.1}$$

 $\mathbf{A} = \{a_1, ..., a_m, ..., a_M\}$ — множество состояний или алфавит состояний AA.

 $\mathbf{Z} = \{z_1, ..., z_f, ..., z_F\}$ — множество входных сигналов или входной алфавит AA.

 $\mathbf{W} = \{w_1, ..., w_g, ..., w_G\}$ — множество выходных сигналов или выходной алфавит AA.

 δ — функция переходов AA, которая для каждого текущего состояния автомата $a_m(t)$ с учетом текущего входного символа $z_f(t)$ задает состояние $a_s(t+1)$, в котором автомат будет находиться в течение следующего такта его функционирования, то есть

$$a_s(t+1) = \delta(a_m(t), z_f(t)), \ a_s, a_m \in \mathbf{A}, z_f \in \mathbf{Z}.$$
 (1.2)

 λ — функция выходов AA, задает алгоритм формирования его выходных сигналов w_g .

 a_1 – начальное состояние AA.

Под алфавитом понимается непустое множество попарно различимых символов. Символы — это элементы алфавита. Слово — конечная, упорядоченная последовательность символов.

АА имеет один вход Z и один выход W (рисунок 1.1).

Рисунок 1.1 – Абстрактный автомат

Работа AA состоит в преобразовании слов входного алфавита в слова выходного алфавита.

В теории цифровых автоматов различают два основных закона (модели) формирования выходных сигналов: модель Мили и модель Мура.

Функция переходов для обоих автоматов одинакова, то есть это функция (1.2). Автоматы отличаются функциями выходов.

Автомат Мили формирует текущий выходной символ с учетом как текущего состояния автомата, так и текущего входного символа:

$$w_g(t) = \lambda(a_m(t), z_f(t)), \ a_m \in \mathbf{A}, w_g \in \mathbf{W}, z_f \in \mathbf{Z}. \tag{1.3}$$

Автомат Мура формирует текущий выходной сигнал с учетом только текущего состояния автомата:

$$w_g(t) = \lambda(a_m(t)), \ a_m \in \mathbf{A}, w_g \in \mathbf{W}. \tag{1.4}$$

Как видно из определения двух моделей автоматов, у автомата Мили на текущем такте выходной символ зависит от входного символа, а у автомата Мура – не зависит.

Текущий такт t работы AA состоит в следующем:

- в течение всего такта автомат находится в состоянии $a_m(t)$ и на его входе задан некоторый символ z(t);
- в соответствии с моделью (1.3), либо (1.4) на выходе автомата в течение всего рассматриваемого такта сформирован некоторый символ w(t) выходного алфавита;
- в момент окончания текущего такта автомат переходит в следующее состояние (которое может повторить текущее) и одновременно с этим на входе автомата задается очередной символ входной цепочки.

Длительность каждого такта больше нуля, но она никак не сопоставляется с реальным физическим временем. При этом считается,

что все изменения в автомате (новый символ на входе, новый символ на выходе, новое состояние) происходят мгновенно.

Основным начальным языком описания служит язык графических схем алгоритмов (ГСА).

 ${\it B}$ автоматных языках поведение автомата задается путем явного задания функций δ и λ .

Среди автоматных языков наиболее распространены *таблицы и графы переходов и выходов*.

В таблице переходов для каждой пары (a_m, z_f) задается переход в новое состояние (Табл. 1.1).

Таблица 1.1 Таблица переходов автомата

δ	a_1	a_2		a_M
z_1	a_2	a_1	a_k	a_4
z_2	a_3	a_2	a_k	a_1
• • •	a_k	a_k	a_k	a_k
\mathcal{Z}_F	a_5	a_4	a_k	a_3

В таблице выходов автомата Мили для каждой пары (a_m, z_f) задается символ, формируемый при переходе в новое состояние (Табл. 1.2).

Таблица выходов автомата Мили

λ	a_1	a_2	•••	a_M
z_1	w_1	w_2	W_g	w_3
z_2	w_2	w_3	w_g	w_1
•••	w_g	W_g	w_g	w_g
\mathcal{Z}_F	w_4	w_1	W_g	w_3

Таблицы переходов и выходов могут быть объединены в единую *совмещенную* таблицу переходов и выходов. Совмещенная таблица переходов и выходов автомата Мили (Табл. 1.3).

 Таблица 1.3

 Совмещенная таблица переходов и выходов автомата Мили

δ/λ	a_1	a_2	•••	a_M
z_1	a_2 / w_1	a_1 / w_2	a_k / w_g	a_4/w_3
z_2	a_3 / w_2	a_2/w_3	a_k / w_g	a_1 / w_1
•••	a_k / w_g	a_k / w_g	a_k / w_g	a_k / w_g
\mathcal{Z}_F	a_5 / w_4	a_4 / w_1	a_k / w_g	a_3 / w_3

Автомат Мура задается одной *отмеченной таблицей переходов*: состояниям автомата сопоставлены выходные символы.

В таблице 1.4 функция выходов задана двумя верхними строками таблицы: выходные символы сопоставлены состояниям вне зависимости от входных символов.

Таблица 1.4 Отмеченная таблица переходов автомата Мура

δ, λ	w_1	w_2	•••	w_4
0, 7.	a_1	a_2	•••	a_M
z_1	a_2	a_1	a_k	a_4
z_2	a_3	a_2	a_k	a_1
	a_k	a_k	a_k	a_k
\mathcal{Z}_F	a_5	a_4	a_k	a_3

Граф автомата — это ориентированный граф, вершинам которого соответствуют состояния автомата, а дугам — переходы автомата от текущих состояний к следующим.

Дуге (a_m, a_s) , направленной от вершины a_m к вершине a_s , приписывается входной сигнал z_f , а в модели Мили добавляется выходной сигнал $w_g = \lambda(a_m, z_f)$. Метка, приписываемая дуге, ставится у начала дуги желательно над дугой, либо справа от нее.

Пример графа автомата Мили приведен на рисунке 1.2.

Рисунок 1.2 - Граф автомата Мили

В графе автомата Мура выходной символ $w_g = \lambda(a_m)$ приписывается вершине графа, то есть, состоянию автомата.

Пример графа автомата Мура приведен на рисунке 1.3.

Рисунок 1.3 - Граф автомата Мура

1.2 Функция заключительного состояния

Расширим функции δ и λ , определив их на множестве пар вида (состояние, входное слово).

Обозначим:

- $\xi = z_{i1}z_{i2}...z_{ik}$ *i* -е входное слово длиной k символов;
- ${\bf E}$ множество всех конечных входных слов ненулевой длины.

Функция заключительного состояния $\tilde{\delta}(a_m, \xi)$ на множестве $\mathbf{A} \times (\mathbf{E} \cup \{e\})$, где e - пустое слово, определяется как **заключительное состояние, в которое перейдет автомат** из состояния a_m под действием входного слова ξ :

1. $\tilde{\delta}(a_m,e) = a_m$ для всех $a_m \in \mathbf{A}$, где e - пустое слово;

$$2.\ \tilde{\delta}(a_m,z_{i1}...z_{ik}) = \delta\Big(\delta\Big(\delta\Big(...\Big(\delta\big(a_m,z_{i1}\big),z_{i2}\big),...\Big),z_{ik-1}\Big),z_{ik}\Big) = \\ \delta(a_{ik},z_{ik}),\ \text{если}\ \tilde{\delta}(a_m,\xi)\ \text{определена для всех }j=1,2,...,k; \\ \text{не определена в противном случае.}$$

1.3 Функция заключительного выхода и реакция автомата

Функция заключительного выхода $\tilde{\lambda}(a_m,\xi)$ автомата на множестве $\mathbf{A} \times (\mathbf{E} \cup \{e\})$ — это выходной сигнал, который появляется в результате действия последнего символа цепочки ξ .

В автомате Мура — это выходной сигнал, отмечающий заключительное состояние. В автомате Мили — это выходной сигнал, появляющийся на переходе в заключительное состояние.

Автомат Мура:

$$\tilde{\lambda}(a_m,\xi) = \begin{cases} \lambda \Big(\tilde{\delta}(a_m,\xi)\Big) \text{ для } \xi \in \mathbf{E}, \text{ если } \tilde{\delta}(a_m,\xi) \text{ определена;} \\ \text{не определена в противном случае.} \end{cases}$$

Автомат Мили:

$$\tilde{\lambda}(a_m,\xi) = \begin{cases} \lambda\Big(\tilde{\delta}(a_m,\xi'),z_{ik}\Big), \, \xi = \xi'z_{ik}, \text{ если } \tilde{\delta}(a_m,\xi) \text{ определена;} \\ \text{не определена в противном случае.} \end{cases}$$

Пример: для автомата Мили на рисуноке 1.2 найдем $\tilde{\lambda}(a_1,z_1z_2z_1z_1)$.

Решение.

$$\tilde{\delta}(a_1, z_1 z_2 z_1 z_1) = \tilde{\delta}(\delta(a_1, z_1), z_2 z_1 z_1) = \tilde{\delta}(\delta(a_2, z_2), z_1 z_1) = \tilde{\delta}(\delta(a_2, z_1), z_1) = \delta(a_3, z_1) = a_2.$$

Задача решается отслеживанием по графу (рисунок 1.4) последовательности переходов автомата под действием заданной входной цепочки: $a_1 \to a_2 \to a_2 \to a_3 \to a_2$.

Последний переход автомата под действием заданной входной цепочки это переход $a_3 \to a_2$ под действием символа z_1 . Поэтому $\tilde{\lambda}(a_1,z_1z_2z_1z_1) = \lambda(a_3,z_1) = w_3$.

Реакция автомата $w(a_m, \zeta)$ в состоянии a_m на входное слово ζ - это цепочка выходных символов (выходное слово) $w(a_m, \zeta) = w_{i2}w_{i3}...w_{i(k+1)}$ вырабатываемая автоматом под действием входной цепочки.

Для модели Мили:

$$w(a_{m},\xi) = \begin{cases} \lambda(a_{m},z_{i1})\lambda(\delta(a_{m},z_{i1}),z_{i2})...\lambda(\tilde{\delta}(a_{m},\xi'),z_{ik}) = w_{i1}w_{i2}...w_{ik},\\ \text{если } \tilde{\delta}(a_{m},\xi) \text{ определена;}\\ \text{не определена в противном случае.} \end{cases}$$
 (1.5)

Для модели Мура:

$$w(a_m,\xi) = \begin{cases} \lambda \left(\delta(a_m,z_{i1})\right)...\lambda \left(\delta\left(\delta(a_m,z_{i1}),z_{i2}\right)\right)...\lambda \left(\tilde{\delta}(a_m,\xi)\right) = w_{i1}w_{i2}...w_{ik},\\ \text{если } \tilde{\delta}(a_m,\xi) \text{ определена;}\\ \text{не определена в противном случае.} \end{cases} \tag{1.6}$$

Обратим внимание, что выходной сигнал вырабатываемый автоматом Мура в состоянии a_m не входит в цепочку $w(a_m, \xi)$, так как он не является следствием действия первого символа входной цепочки.

Под реакцией автомата Мура в состоянии a_m на входное слово $\zeta = z_{i1}z_{i2}...z_{ik}$ длиной k символов понимается выходное слово

 $w_{i2}w_{i3}...w_{i(k+1)}$ длиной k символов, но сдвинутое на 1 такт автоматного времени сравнительно с реакцией автомата Мили.

1.4 Эквивалентные автоматы

Два автомата S_A и S_B с одинаковыми входными и выходными алфавитами называются эквивалентными, если после установки их в начальные состояния их реакции на любое входное слово совпаданот.

Для данного автомата Мили всегда можно построить эквивалентный ему автомат Мура, и наоборот.

1.5 Преобразование автомата Мура в автомат Мили

При преобразованиях автоматов модели Мили в модель Мура и наоборот выходным сигналом автомата Мура $\lambda(a_1)$, связанным с начальным состоянием, следует пренебрегать, поскольку этот сигнал не является следствием какого-либо входного сигнала.

На рисунке 1.4 для наглядности показаны эквивалентные переходы автоматов Мура и Мили.

Граф автомата Мура

Граф автомата Мили

Рисунок 1.4 – Пример переходов двух автоматов

Дан автомат Мура $\mathbf{S}_A = (\mathbf{A}_A, \mathbf{Z}_A, \mathbf{W}_A, \delta_A, \lambda_A, a_{1A}).$

Требуется построить автомат Мили $\mathbf{S}_{B} = (\mathbf{A}_{B}, \mathbf{Z}_{B}, \mathbf{W}_{B}, \delta_{B}, \lambda_{B}, a_{1B}),$ эквивалентный заданному автомату Мура.

Для решения задачи необходимо принять следующие равенства:

$$\mathbf{A}_{B} = \mathbf{A}_{A}, \mathbf{Z}_{B} = \mathbf{Z}_{A}, \mathbf{W}_{B} = \mathbf{W}_{A}, a_{1B} = a_{1A} = a_{1}, \delta_{B} = \delta_{A}.$$

Осталось определить функцию $\lambda_B: \mathbf{A}_B \times \mathbf{Z}_B \to \mathbf{W}_B$.

Если в автомате Мура $\delta_A(a_m,z_f)=a_S$ и $\lambda(a_S)=w_g$, то в автомате Мили зададим $\lambda(a_m,z_f)=w_g$. Это значит, что выходной сигнал w_g переносится на все дуги, входящие в вершину a_S .

На рисунке 1.5 приведен конкретный пример преобразования автомата Мура в автомат Мили.

Рисунок 1.5 – Автомат Мура и эквивалентный ему автомат Мили

При табличном способе задания автоматов:

1 - таблицы переходов двух автоматов совпадают, поскольку $\delta_{\scriptscriptstyle B} = \delta_{\scriptscriptstyle A}\,;$

- 2 совмещенная таблица переходов и выходов искомого автомата Мили \mathbf{S}_B строится дополнением таблицы переходов автоматов на основе содержимого отмеченной таблицы переходов (ОТП) автомата Мура \mathbf{S}_A по следующим правилам:
- 2.1 для каждого состояния $a \in \mathbf{A}_A$ из ОТП выбирается символ выходного алфавита $w = \lambda_A(a)$;
- $2.2\,$ выбранный символ w дописывается во все клетки таблицы переходов, содержащие символ состояния a_m такой, что $\delta_A(a_m, *) = a$, где символ * означает любой символ входного алфавита.

Сформулированные правила вытекают из рисунка 1.4.

Из изложенного способа построения автомата Мили \mathbf{S}_B очевидно, что он эквивалентен заданному автомату Мура \mathbf{S}_A .

1.6 Преобразование автомата Мили в автомат Мура

На рисунке 1.6 даны примеры переходов автомата Мили и эквивалентные им переходы автомата Мура.

Каждая пара (a_s, w_g) графа автомата Мили, где w_g — символ на стрелке входящей в a_s , порождает в графе автомата Мура отдельную вершину a_s' , отмеченную символом w_g .

Переходы автомата Мили

Переходы автомата Мура

Дан автомат Мили $\mathbf{S}_A = (\mathbf{A}_A, \mathbf{Z}_A, \mathbf{W}_A, \delta_A, \lambda_A, a_{1A}).$

Требуется построить автомат Мура $\mathbf{S}_B = (\mathbf{A}_B, \mathbf{Z}_B, \mathbf{W}_B, \delta_B, \lambda_B, a_{1B})$ эквивалентный заданному автомату Мили.

Необходимые условия эквивалентности автоматов:

$$\mathbf{Z}_B = \mathbf{Z}_A$$
; $\mathbf{W}_B = \mathbf{W}_A$.

Рисунок 1.6 показывает, что $|{\bf A}_B|\!\ge\!|{\bf A}_A|$. Поэтому в общем случае $\delta_B \neq \delta_A$.

1) Определим λ_B и \mathbf{A}_B .

Каждому состоянию $a_s \in \mathbf{A}_A$ поставим в соответствие множество λ_S состояний, отмеченных выходными символами, то есть, множество пар вида (a_s, w_g) , где w_g — выходной символ, приписанный на графе автомата Мили дуге, входящей в вершину a_s :

$$\lambda_s = \left\{ (a_s, w_g) \middle| \left(\delta_A(a_m, z_f) = a_s \right) \land \left(\lambda(a_m, z_f) = w_g \right) \right\}. \tag{1.7}$$

Для графа на рисунке 1.7 $\lambda_s = (a_s', w_1), (a_s'', w_2), (a_s''', w_3)$.

Рисунок 1.7

Число элементов в λ_s можно взять равным числу дуг, входящих в a_s . При этом новый автомат в большинстве случае будет иметь избы-

точное число состояний, что нежелательно. Для исключения такой избыточности следует задать в λ_S столько различных пар, сколько различных выходных сигналов приписано дугам, входящим в вершину a_S .

Искомая функция выходов λ_B задается объединением всех множеств λ_S .

$$\lambda_B = \bigcup_{s=1}^M \lambda_s, \tag{1.8}$$

где M - количество состояний в \mathbf{S}_A .

При этом искомое множество \mathbf{A}_B задается множеством имен состояний, входящих в пары $a_s, w_g \in \lambda_s$.

- 2) Определим δ_B .
- 2.1. Каждому состоянию S_B , представляющему собой пару вида (a_s, w_g) , ставится в соответствие выходной сигнал w_g .
- 2.2. Если в \mathbf{S}_A есть переход $\delta_A(a_m,z_f)=a_s$ и при этом $\lambda_A(a_m,z_f)=w_k$, то в \mathbf{S}_B будет переход из множества состояний \mathbf{A}_B , порождаемых состоянием a_m , в состояние (a_s,w_k) под действием того же входного сигнала z_f .
- 3) В качестве начального состояния a_{1B} можно назначить любое из отмеченных состояний множества λ_1 , порожденного состоянием a_{1A} .

Пример.

Дан автомат Мили S_A . Требуется построить эквивалентный ему автомат Мура S_B (рисунок 1.8).

Рисунок 1.8 – Автомат Мили и эквивалентный ему автомат Мура

В заданном автомате Мили \mathbf{S}_A имеем:

$$\mathbf{Z}_A = \{z_1, z_2\}; \mathbf{W}_A = \{w_1, w_2, w_3\}; \mathbf{A}_A = \{a_1, a_2, a_3\}; a_{1A} = a_1.$$

Функции δ_A и λ_A определены графом автомата.

В процессе проектирования автомата Мура \mathbf{S}_B согласно моделям (1.7) и (1.8) созданы множества отмеченных состояний автомата Мура: $\lambda_1 = (a_1, w_1)$; $\lambda_2 = (a_2, w_1), (a_2, w_3)$; $\lambda_3 = (a_3, w_3), (a_3, w_2)$.

При этом:
$$\lambda_{B} = (a_{1}, w_{1}), (a_{2}^{'}, w_{1}), (a_{2}^{''}, w_{3}), (a_{3}^{''}, w_{3}), (a_{3}^{''}, w_{2})$$
 и

$$\mathbf{A}_{B} = a_{1}, a_{2}^{'}, a_{2}^{''}, a_{3}^{'}, a_{3}^{''}$$
.

Дуги нового графа заданы согласно примеру, показанному на рисунке 1.6.

Рассмотренные преобразования автоматов показывают, что при преобразовании автомата Мура в автомат Мили количество состояний автомата сохраняется. При преобразовании автомата Мили в автомат Мура количество состояний может увеличиваться.

1.7 Синтез структурных автоматов Мили и Мура с жесткой логикой

Абстрактный автомат (AA) — математическая модель реальных технических устройств. Абстрактный автомат описывается шестикомпонентным набором.

В отличие от абстрактных математических моделей автоматов, рассмотренных выше, *структурный автомат* задается внутренним устройством на уровне электрических структурных схем и учитывает структуру входных и выходных символов.

Входному и выходному алфавитам абстрактного автомата соответствуют *структурные входной* (**X**) *и выходной* (**Y**) *алфавиты* структурного автомата. Везде далее используется двоичный структурный алфавит. При этом символы всех алфавитов абстрактного автомата кодируются векторами конечной длины, компоненты которых принимают одно из двух возможных значений: 0, либо 1.

Задачей этапа структурного синтеза автомата является построение электрической схемы, реализующей автомат в заданном элементном базисе.

Существует общий конструктивный прием, называемый *канони-ческим методом структурного синтеза*, который задачу структурного синтеза автомата сводит к задаче синтеза комбинационных схем. Результатом этого метода является *система логических уравнений*, *называемых каноническими*, описывающих:

- сигналы структурного выходного алфавита \mathbf{Y} как функции от сигналов структурного входного алфавита \mathbf{X} и сигналов структурного алфавита \mathbf{Q} состояний автомата;
- внутренние сигналы автомата как функции сигналов **X** и **Q**.

В каноническом методе структурного синтеза автомат представляется в виде памяти, хранящей текущий *код состояния автомата*, и комбинационной схемы.

1.8 Этапы синтеза автоматов типа Мура и Мили по ГСА

Процесс синтеза автомата зависит от следующих факторов:

- от критерия синтеза:
- минимум оборудования;
- максимум быстродействия;
- от типа автомата (Мили, Мура);
- от элементной базы;
- от способа кодирования состояний;
- от принятой структурной схемы автомата.

Синтез (проектирование) автомата по содержательной ГСА осуществляется в несколько этапов.

- 1. Построение структурной схемы автомата с учетом выбранного (заданного) типа автомата (Мили, Мура), а также особенностей элементной базы, заданной для построения автомата.
- 2. Кодирование микроопераций (МО) и логических условий (ЛУ) с последующим преобразованием содержательной ГСА в закодированную ГСА путем замены содержательного описания МО и ЛУ на их заданные обозначения.
- 3. Разметка закодированной ГСА поименованными метками состояний автомата. Эту процедура кратко называется «разметка состояний».
- 4. Кодирование состояний автомата. Выбранный принцип кодирования состояний может существенно повлиять на структуру авто-

мата на жесткой логике и, как следствие, на сложность реализации структурных компонент автомата.

- 5. Построение прямой и обратной таблиц переходов.
- 6. Построение логических выражений для выходных сигналов автомата и функций возбуждения элементов памяти автомата. Это соответствует построению конкретных математических моделей функции переходов и функции выходов структурного автомата.
- 7. Проектирование памяти состояний и комбинационной схемы автомата по логическим выражениям. На этом этапе учитывается заданный логический базис, определяющий доступные типы опрерационных элементов, и выбранный принцип кодирования состояний автомата.

Проектируя автоматы по ГСА, необходимо понимать следующие особенности МП, заданной в виде ГСА.

- 1. Вершина «*Начало*» это указатель на начальное состояние автомата: на состояние, соответствующее первому шагу выполнения алгоритма управления. В схемной реализации автомата этому указателю должна соответствовать электрическая цепь, сигнал на входе которой (сигнал «Сброс») обеспечивает запись на память состояний автомата кода его начального состояния.
- 2. Достижение вершины «Конец» должно перевести автомат в его начальное состояние, подготавливая автомат к очередному выполнению МП. Поэтому на входе вершины «Конец» необходимо ставить метку повторяющую метку начального состояния.

2. Лабораторные работы

2.1 Лабораторная работа № 1

Тема: «Абстрактные автоматы моделей Мили и Мура»

Цель работы — Программное моделирование абстрактных автоматов Мили и Мура.

Программное обеспечение. Для выполнения лабораторной работы на компьютере должен быть установлен пакет программ Microsoft Visual Studio.

Задание

Построть модель абстрактного автомата-преобразователя, реализованную в виде программы.

Мощности алфавитов **A**, **Z** и **W**, входящих в модель автомата **S**, должны равняться 4-5. Для упрощения можно все алфавиты задать одинаковыми. Желательно элементы каждого алфавита задавать символами, указывающими на конкретный алфавит, и цифрами, например: **A** = $\{a1, a2, a3, a4, a5\}$.

Порядок проведения работы

- 1. Создайте в Visual Studio новый проект Visual C++ в виде Windows-приложения.
- 2. Используя встроенный в язык программирования генератор псевдослучайных числовых последовательностей, сгенерировать:
 - случайное содержание таблицы переходов автомата;
 - случайное содержание таблицы выходов автомата Мили;
 - случайное содержание таблицы выходов автомата Мура;
 - случайное входное слово длиной 8 10 символов.
- 3. Программа, используя содержание сгенерированных таблиц и входного слова, должна:

- вывести на экран содержание всех сгенерированных данных, организованное в виде соответствующих таблиц и входное слово в виде строки символов;
- вывести на экран реакцию двух моделей автоматов на входное слово.
- вывести на экран значение функции заключительного состояния отдельно для двух моделей автоматов;
- вывести на экран значение функции заключительного выхода отдельно для двух моделей автоматов.

Содержание отчета

Отчет должен включать

- цель работы;
- текст задания;
- текст программы с комментариями;
- результаты тестирования;
- конечные результаты;
- выводы.

Контрольные вопросы

- 1. Чем отличаются между собой абстрактные автоматы Мили и Мура?
- 2. Записать функции выходов и переходов автомата Мили в виде функционального соответствия между множествами и в виде функций для текущего такта работы автомата.
- 3. Записать функции выходов и переходов автомата Мура в виде функционального соответствия между множествами и в виде функций для текущего такта работы автомата.
- 4. Записать функции заключительного выхода и заключительного состояния для автомата Мили.
- 5. Записать функции заключительного выхода и заключительного состояния для автомата Мура.

2.2 Лабораторная работа № 2

Тема: «Преобразования моделей автоматов»

Цель работы — практическое знакомство методом преобразования абстрактного автомата Мили в автомат Мура.

Программное обеспечение. Для выполнения лабораторной работы на компьютере должен быть установлен пакет программ Microsoft Visual Studio.

Задание

Преобразовать модель абстрактного автомата Мили в автомат Мура.

Порядок проведения работы

- 1. Используя программу из лабораторной работы № 1, сгенерировать модель автомата Мили в виде таблиц, задающих функции переходов и выходов автомата.
- 2. Построить граф, задающий автомат Мили.
- 3. Граф автомата Мили преобразовать в граф автомата Мура.

Графы можно рисовать от руки.

Содержание отчета

Отчет должен включать

- цель работы;
- текст задания;
- текст программы с комментариями;
- алфавиты алфавитов A, Z и W;
- таблицу переходов и таблицу выходов автомата Мили;
- граф автомата Мили;
- граф автомата Мура;
- выводы.

Контрольные вопросы

- 1. Для автомата Мили, заданного графом переходов и выходов, построить граф автомата Мура, эквивалентного заданному автомату Мили.
- 2. Чем отличаются функции заключительного выхода автоматов Мили и Мура?

2.3 Лабораторная работа № 3

Тема: «Автомат Мура на жесткой логике»

Цель работы — проектирование по заданной абстрактной ГСА МПА модели Мура на жесткой логике с памятью на D триггерах.

Программное обеспечение. Программа моделирования электронных схем Multisim 10.

Задание

На основе индивидуального варианта задания (табл. 2.1):

- спроектировать функциональную схему автомата;
- смоделировать функциональную схему автомата в Multisim 10.

Порядок проведения работы

- 1. На заданной ГСА выполнить разметку состояний автомата.
- 2. Разработатать прямую таблицу переходов.
- 3. Выполнить кодирование состояний.
- 4. Сформировать обратную структурную таблицу.
- 5. Сформировать функции переходов и выходов.
- 6. Разработать функциональную схему автомата.
- 7. Выполнить моделирование разработанной схемы автомата в программе моделирования электронных схем Multisim_10. В главном меню выберите пункт «Simulate/Digital Simu-lation Settings...» и установите режим Real.

Варианты заданий на проектирование автомата

 $\it Taблица~2.1$ Варианты заданий на пректирование автомата Мура

Вариант №	Номер ГСА
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	10
11	11
12	12

Содержание отчета

Отчет должен включать

- таблица переходов автомата Мура;
- таблица выходов автомата Мура;
- кодирование состояний автомата;
- функции переходов и выходов;
- функциональная схема автомата;
- схема модели автомата в программе Multisim_10
- выводы.

Контрольные вопросы

- 1. Какие объекты и функции используются для описания закона функционирования структурного автомата Мура?
- 2. Какие правила необходимо соблюдать при разметке состояний автомата Мура?
- 3. Какое различие между структурными автоматами Мили и Мура?
- 4. Какие элементы памяти могут использоваться в автоматах Мура?

2.4 Лабораторная работа № 4

Тема: «Автомат Мили на жесткой логике»

Цель работы — проектирование по заданной абстрактной ГСА МПА модели Мили на жесткой логике с памятью на D триггерах.

Программное обеспечение. Программа моделирования элетронных схем Multisim 10.

Задание

На основе индивидуального варианта задания (табл. 2.2):

- спроектировать функциональную схему автомата;
- смоделировать функциональную схему автомата в Multisim 10.

Порядок проведения работы

- 1. На заданной ГСА выполнить разметку состояний автомата.
- 2. Разработатать прямую таблицу переходов.
- 3. Выполнить кодирование состояний.
- 4. Сформировать обратную структурную таблицу.
- 5. Сформировать функции переходов и выходов.
- 6. Разработать функциональную схему автомата.
- 7. Выполнить моделирование разработанной схемы автомата в программе моделирования электронных схем Multisim_10. В главном меню выберите пункт «Simulate/Digital Simu-lation Settings...» и установите режим Real.

 Таблица 2.2

 Варианты заданий на пректирование автомата Мили

Вариант №	Номер ГСА
1	7
2	12
3	9
4	16
5	11
6	12
7	8

8	18
9	5
10	17
11	14
12	20

Содержание отчета

Отчет должен включать

- таблица переходов автомата Мили;
- таблица выходов автомата Мили;
- кодирование состояний автомата;
- функции переходов и выходов;
- функциональная схема автомата;
- схема модели автомата в программе Multisim_10
- выводы.

Контрольные вопросы

- 1. Какие объекты и функции используются для описания закона функционирования структурного автомата Мили?
- 2. Какие правила необходимо соблюдать при разметке состояний автомата Мили?
- 3. Какое различие между структурными автоматами Мили и Мура?
- 4. Какие элементы памяти могут использоваться в автоматах Мили?

СПИСОК ЛИТЕРАТУРЫ

- 1. *Мартемьянов Б.В., Кузнецов П.К.* Прикладная теория цифровых автоматов: учеб. пособ. / *Б.В. Мартемьянов, П.К. Кузнецов.* Самара: Самар. гос. техн. унт, 2025. 203 с.
- 1. *Орлов, С.П.* Арифметика ЭВМ и логические основы переключательных функций: учеб. пособ. / *С.П. Орлов, Б.В. Мартемьянов*. 3-е изд., испр. и доп. М.: Машиностроение 1, 2005. 256 с.
- 2. Воронцов, И.В. Теория автоматов и формальных языков: лабораторный практикум / И.В. Воронцов, С.П. Орлов. Самара: Самар. гос. тех. ун-т, 2013. 156 с.

Приложение 1. ГСА

ГСА 1

ГСА 3

ГСА 5

ГСА 6

ГСА 7

ГСА 8

ГСА 9

ГСА 10

ГСА 11

ΓCA 12

ГСА 13

ГСА 14

ΓCA 15

ГСА 16

ГСА 17

ГСА 18

ГСА 19

ГСА 20

Приложение 2. Образец титульного листа к лабораторной работе

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра «Информатика и вычислительная техника»

Прикладная теория цифровых автоматов **Лабораторная работа № ВЕКТОРНЫЙ ГРАФИЧЕСКИЙ РЕДАКТОР**

Вариант индивидуального задания №

Руководитель доцент кафедры «Информатика и вычислительная техника»	Преподаватель	И.О.
Выполнил обучающийся группы 3-ИАИТ-103	Обучающийся	И.О.

Самара 2025

Учебное издание

ПУГАЧЁВ Анатолий Иванович

Прикладная теория цифровых автоматов

В авторской редакции Компьютерная верстка Выпускающий редактор

Подписано в печать 01.05.25 Формат 60×84 1/16. Бумага офсетная Усл. п. л. 1,23. Уч.-изд. л. 1,3 Тираж 50 экз. Рег. № 56/21

Федеральное государственное бюджетное образовательное учреждение высшего образования «Самарский государственный технический университет» 443100, г. Самара, ул. Молодогвардейская, 244. Главный корпус

Отпечатано в типографии Самарского государственного технического университета 443100, г. Самара, ул. Молодогвардейская, 244. Корпус № 8