Routes of π -electron delocalization in 4-substituted-1,2-benzoquinone

H. Szatylowicz, *,a T. M. Krygowski, *,b M. Palusiak, c J. Poater, d M. Solàd

^a Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland)

halina@ch.pw.edu.pl

^b Department of Chemistry, Warsaw University, Pasteura 1, 02-093 Warsaw (Poland) tmkryg@chem.uw.edu.pl

^c Department of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź (Poland)

^d Institut de Química Computacional and Departament de Química, Universitat de Girona, Campus de Montilivi, 17071 Girona, Catalonia (Spain)

Supporting Information

Figure S1 . Relationship between SESE values and substituent constants σ .	SI2
Figure S2. Relationship between HOMA (a) of the ring and (b) for transmission paths OC20	C3C4
and OC1C6C5C4, and SESE values.	SI3
Figure S3. Dependence of electron density at BCP for CO bonds on their bond lengths.	SI4
Figure S4. Dependence of electron density at BCP of a1, b1 and c1 CC bonds on their length	iS.
	SI4
Figure S5. Relationship between Mulliken charges on the oxygen atom of the C=O groups v	alues
and substituent constants σ	SI5
Figure S6. Relationship between frequency values for the C=O groups and substituent	
constants σ	SI5
Table S1. Bond lengths, their mean values and estimated standard deviations for	
4-X-orthobenzoquinone.	SI6
Table S2. Geometrical and energetic parameters of the O···H-F hydrogen bond	
in 4 - X - $ortho$ quinone ($X = H$ and NMe_2) complexes optimized without constraints	SI7
Table S3 . π-electron delocalization: HOMA, MCI, DI and FLU for 4-X- <i>ortho</i> -benzoquinone	SI8
Cartesian coordinates of optimized 4-X- <i>ortho</i> -benzoquinone and H-bonded systems	SI9

Application of homodesmotic reaction (Scheme 6) allows us to relate substituent effects stabilization energy, SESE, to substituent constants σ_p^+ for electron donating substituents and for others σ_p (see Fig. S1), changes in aromaticity of the ring (see Fig. S2a) and changes in delocalization in paths OC2C3C4 (*meta* type way) and OC1C6C5C4 (*para* type way). As we see, due to a significant equivalency of SESE and substituent constants σ (σ_p^+ for electron donating substituents and σ_p for others) dependences in Figs S1 and S2b resemble those in Figs 5 and 1.

Figure S1. Relationship between SESE values (see Scheme 6) and substituent constants σ (σ_p^+ for electron donating substituents and for others σ_p), cc = -0.975.

Figure S2. Relationship between HOMA (a) of the ring and (b) for transmission paths OC2C3C4 (*meta* type way) and OC1C6C5C4 (*para* type way), and SESE values (see Scheme 4); cc = 0.872, 0.962 and -0.853, respectively.

Figure S3. Dependence of electron density at BCP, ρ_{BCP} , for CO bonds on their bond lengths, $d_{C=O}$. The value of cc for the regression is equal to -0.994.

Figure S4. Dependence of electron density at BCP, ρ_{BCP} , of a1 (green), b1 (red) and c1 (yellow) CC bonds on their lengths, d_{CC} . The value of cc for the overall regression is equal to -0.996.

Figure S5. Relationship between Mulliken charges on the oxygen atom of the C=O groups values (O(C1) and O(C2), see Scheme 5) and substituent constants σ (σ_p^+ for electron donating substituents and for others σ_p); cc = 0.904 and 0.983, respectively.

Figure S6. Relationship between frequency values for the C=O groups (C1=O and C2=O, see Scheme 5) and substituent constants σ (σ_p^+ for electron donating substituents and for others σ_p); cc = 0.814 and 0.944, respectively.

Table S1. Bond lengths (Å) and their mean values and estimated standard deviations (esd) for 4-X-*ortho*-benzoquinone, see Scheme 5.

X	σ_{p}	$\sigma_p^{\;+}$	a1	b1	c1	c2	b2	a2	C1=O	C2=O
4-NO	0.91		1.5668	1.4781	1.3496	1.4623	1.3440	1.4764	1.2091	1.2087
4-NO ₂	0.78	0.79	1.5647	1.4809	1.3416	1.4581	1.3449	1.4743	1.2091	1.2079
4-CN	0.66	0.66	1.5632	1.4752	1.3535	1.4725	1.3434	1.4748	1.2092	1.2097
4-СНО	0.42	0.73	1.5656	1.4765	1.3512	1.4665	1.3442	1.4740	1.2100	1.2098
4-H	0.00	0.00	1.5678	1.4739	1.3464	1.4626	1.3464	1.4739	1.2110	1.2110
4-CH ₃	-0.17	-0.31	1.5644	1.4678	1.3510	1.4726	1.3445	1.4735	1.2111	1.2129
4-OCH ₃	-0.27	-0.78	1.5653	1.4571	1.3579	1.4686	1.3408	1.4774	1.2101	1.2150
4-OH	-0.37	-0.92	1.5667	1.4566	1.3545	1.4659	1.3413	1.4786	1.2096	1.2142
4-NH ₂	-0.66	-1.30	1.5629	1.4452	1.3657	1.4731	1.3397	1.4811	1.2101	1.2189
4-NHMe	-0.70	-1.81	1.5619	1.4449	1.3704	1.4736	1.3392	1.4807	1.2106	1.2197
4-N(Me) ₂	-0.83	-1.70	1.5566	1.4435	1.3774	1.4771	1.3410	1.4776	1.2114	1.2214
		mean val.	1.564	1.464	1.356	1.468	1.343	1.477	1.210	1.214
		esd.	0.003	0.015	0.011	0.006	0.002	0.003	0.001	0.005

Table S2. Geometrical (Å and deg.) and energetic parameters (kcal/mol) of the O···H-F hydrogen bond in 4-X-*ortho*-benzoquinone (X = H and NMe_2) complexes optimized without constraints. For comparison: with O···H-F turned towards the nearest hydrogen atom (a) and with O···H-F turned towards the nearest oxygen atom (b).

4-X-		C1=O	ОН	H-F	C2=0	О…Н	H-F	$\Delta E_{ m HB}$	angle	angle
T 21					C2	0 11	11 1	/kcal/mol	C=O···H	IO···H-F
a)										
4-H		1.211			1.211					
	O···HF	1.220	1.704	0.945	1.210			-9.35	118.9	167.0
4-NMe ₂		1.211			1.221					
	O1···HF	1.221	1.678	0.948	1.221			-10.58	119.0	168.3
	O2···HF	1.210			1.237	1.609	0.959	-13.41	116.5	170.6
b)										
4-H		1.211			1.211					
	O…HF	1.217	1.797	0.937	1.210			-8.36	134.4	166.7
4-NMe ₂		1.211			1.221					
	O1···HF	1.217	1.797	0.938	1.221			-9.58	132.0	162.8
	O2…HF	1.210			1.231	1.709	0.944	-11.36	135.4	168.8

Table S3. π -electron delocalization: HOMA, MCI, DI and FLU for 4-X-*ortho*-benzoquinone, see Scheme 5.

	НС	OMA	MC	I /a.u.	DI	/a.u.	НОМА	MCI/a.u	.FLU /a.u.
X	OC2C3C4	OC1C6C5C 4		OC1C6C5C4	C2O	C10	ring	ring	ring
4-NO	0.009	-0.107	-0.0057	-0.0045	1.464	1.455	-1.442	0.0023	0.0757
4-NO ₂	-0.098	-0.040	-0.0031	-0.0046	1.464	1.455	-1.415	0.0023	0.0764
4-CN	0.085	-0.195	-0.0027	-0.0043	1.455	1.456	-1.411	0.0024	0.0760
4-СНО	0.052	-0.115	-0.0042	-0.0045	1.459	1.450	-1.413	0.0024	0.0763
4-H	0.064	-0.059	-0.0016	-0.0046	1.449	1.449	-1.409	0.0024	0.0757
4-CH ₃	0.192	-0.169	-0.0006	-0.0045	1.438	1.451	-1.372	0.0024	0.0752
4-OCH ₃	0.381	-0.196	0.0052	-0.0045	1.419	1.452	-1.312	0.0024	0.0739
4-OH	0.363	-0.181	0.0049	-0.0047	1.420	1.456	-1.329	0.0024	0.0741
4-NH ₂	0.565	-0.294	0.0091	-0.0043	1.398	1.454	-1.260	0.0026	0.0714
4-NHMe	0.588	-0.296	0.0099	-0.0040	1.393	1.451	-1.237	0.0027	0.0710
4-N(Me) ₂	0.626	-0.284	0.0105	-0.0040	1.388	1.448	-1.139	0.0028	0.0690

Cartesian coordinates of optimized 4-X-ortho-benzoquinone and H-bonded systems

4 -	NO-ortho-ben	zoquinone		4 - 0	4-CN-ortho-benzoquinone					
E_{to}	ot=-510.87221	67 hartree		E_{to}	E_{tot} =-473.8089935 hartree					
С	0.000000	0.000000	0.00000	С	0.000000	0.000000	0.000000			
С	0.000000	0.000000	1.566844	С	0.00000	0.000000	1.563199			
С	1.318806	0.000000	2.234364	С	1.310869	0.000000	2.239757			
С	2.447832	0.000000	1.494924	С	2.455024	0.000000	1.516569			
С	2.458344	0.000000	0.032666	С	2.454669	0.000000	0.044116			
С	1.314292	0.000000	-0.672581	С	1.315146	0.000000	-0.667442			
0	-1.049994	0.000000	-0.599541	0	-1.046679	0.000000	-0.605529			
0	-1.039831	0.000000	2.183015	0	-1.042594	0.000000	2.176602			
Η	1.358194	0.00000	3.318147	H	1.311944	0.000000	3.323023			
N	3.678427	0.00000	2.267678	С	3.727451	0.000000	2.173326			
Η	3.428507	0.00000	-0.450033	H	3.418794	0.00000	-0.451108			
Η	1.303212	0.000000	-1.756610	H	1.315566	0.000000	-1.751163			
0	4.688792	0.000000	1.603046	N	4.765007	0.000000	2.680942			

4 -	NO ₂ - <i>ortho</i> -be	nzoquinone		4 -	4-CHO- <i>ortho</i> -benzoquinone				
E_{tot} =-586.1034646 hartree					E_{tot} =-494.904085 hartree				
С	0.00000	0.00000	0.00000	С	0.00000	0.000000	0.00000		
C	0.00000	0.00000	1.564701	С	0.00000	0.000000	1.565596		
C	1.316284	0.00000	2.243360	C	1.316850	0.000000	2.233365		
C	2.432966	0.00000	1.499730	C	2.458878	0.000000	1.511132		
C	2.458172	0.00000	0.041851	C	2.454556	0.000000	0.044683		
C	1.315034	0.00000	-0.666602	C	1.314310	0.000000	-0.667247		
0	-1.048698	0.00000	-0.601754	0	-1.050226	0.000000	-0.600853		
0	-1.038673	0.00000	2.181217	0	-1.041353	0.000000	2.181408		
Η	1.343434	0.00000	3.325271	Н	1.320621	0.000000	3.319243		
N	3.755769	0.00000	2.199756	C	3.767976	0.000000	2.221075		
Η	3.427706	0.00000	-0.437687	Н	3.424317	0.000000	-0.440099		
Η	1.314230	0.00000	-1.750063	Н	1.310101	0.000000	-1.751287		
0	3.751387	0.00000	3.418593	0	4.835195	0.000000	1.654876		
0	4.753359	0.000000	1.492186	Н	3.699733	0.000000	3.326326		

$ortho\text{-benzoquinone} \\ E_{tot}\text{=-381.5498469 hart}$	ree	_	4-OCH $_3$ -ortho-benzoquinone E_{tot} =-496.1166191 hartree				
C 0.000000 0.000 C 0.000000 0.000 C 1.313276 0.000 C 2.449874 0.000 C 1.313253 0.000 C 1.313253 0.000 C 1.048731 0.000 H 1.311434 0.000 H 3.411696 0.000 H 3.411673 0.000 H 1.311394 0.000	000 1.567792 000 2.236854 000 1.515178 000 0.052624 000 -0.669050 000 -0.605564 000 2.173373 000 3.320801 000 2.017308 000 -0.449529	СССССООНОННСНН	0.000000 0.000000 1.293509 2.442671 2.449512 1.315797 -1.042636 -1.060120 1.277412 3.691252 3.425941 1.315999 3.862085 4.936639 3.415326 3.415261	0.000000 0.000000 0.000000 -0.000022 -0.000032 0.000035 -0.000004 0.000003 -0.000014 -0.000056 -0.000044 0.000013 0.000051 -0.894837 0.894833	0.000000 1.565289 2.236000 1.512627 0.043999 -0.671905 -0.614128 2.158966 3.317304 2.011327 -0.427600 -1.755660 3.431670 3.598624 3.873257 3.873247		

	3	enzoquinone		_	4-OH-ortho-benzoquinone				
$\mathrm{E}_{\mathrm{tot}}$ =-420.8813657 hartree				\mathbf{E}_{tc}	_t =-456.80479	24 hartree			
С	0.000000	0.000000	0.000000	С	0.00000	0.000000	0.000000		
С	0.000000	0.00000	1.564385	С	0.00000	0.000000	1.566708		
С	1.306059	0.00000	2.234241	С	1.297968	0.000000	2.227755		
С	2.464092	0.001632	1.538500	С	2.440933	0.000000	1.500998		
С	2.447931	0.002047	0.065945	С	2.451976	0.000000	0.035169		
С	1.316940	0.002066	-0.661023	С	1.314881	0.000000	-0.676239		
0	-1.044613	-0.002459	-0.612729	0	-1.043116	0.000000	-0.612403		
0	-1.052694	0.001246	2.166787	0	-1.057805	0.000000	2.162755		
Η	1.290594	0.000347	3.318878	H	1.304239	0.000000	3.312952		
С	3.808978	0.002686	2.206581	0	3.685982	0.000000	2.026708		
Η	3.410554	0.002143	-0.437152	H	3.426579	0.000000	-0.439900		
Η	1.323451	0.002037	-1.745105	H	1.310719	0.000000	-1.759892		
Η	3.720195	0.000742	3.293073	H	3.644737	0.000000	2.991290		
Η	4.390251	-0.875092	1.903814						
Η	4.387116	0.883782	1.907262						

$\begin{array}{l} \text{4-NH}_2\text{-}\textit{ortho}\text{-}\text{benzo} \\ E_{tot}\text{=-436.9374779} \end{array}$	_		4-N(CH $_{\scriptscriptstyle 3}$) $_{\scriptscriptstyle 2}$ -ortho-benzoquinone ${\rm E}_{tot}$ =-515.5650977 hartree				
C 0.000000 (C 1.288031 (C 2.454892 (C 2.452789 (C 1.317820 (C 1.036418 (C 1.067122 (C 1.289234 (C 1.28924 (C 1.289	0.000000 0.000 0.000000 1.562 0.000000 2.218 0.002308 0.035 0.002308 0.035 0.001406 -0.624 0.001492 3.302 0.001592 3.302 0.032281 2.095 0.009640 -0.466 0.000122 -1.760 0.068108 3.093 0.138352 1.553	2917 C 3344 C 3670 C 5595 C 5132 C 4735 O 4860 O 2977 H 5320 N 5269 H	0.000000 0.000000 1.283942 2.474432 2.457633 1.320154 -1.033231 -1.068694 1.249786 3.692446 3.402537 1.323884 3.735815 3.249322 4.771883 3.230788 4.956135 5.061132 5.070149 5.774002	0.000000 0.000000 0.000000 0.000237 -0.001315 -0.001538 0.001260 -0.000553 -0.000625 0.003078 -0.002029 -0.002349 0.004612 -0.886809 0.016516 0.886889 -0.012861 -0.911354 0.869188 -0.007975	0.000000 1.556621 2.216376 1.523487 0.046485 -0.663704 -0.632398 2.147994 3.296319 2.146024 -0.480498 -1.747939 3.603960 4.014441 3.934571 4.010911 1.408577 0.792886 0.771435 2.125576		

${\tt 4-NHCH_3-} or tho\text{-} benzoquinone$ $E_{tot} \hbox{=-476.2559526 hartree}$

С	0.000000	0.00000	0.000000
C	0.00000	0.00000	1.561897
C	1.286096	0.00000	2.220507
C	2.457580	0.000327	1.509375
C	2.451772	0.000826	0.035747
C	1.317370	0.000781	-0.675915
0	-1.036170	-0.000739	-0.625998
0	-1.068911	-0.000084	2.149388
Η	1.275109	-0.000381	3.302653
N	3.691494	0.000456	2.082235
Η	3.415192	0.001319	-0.467509
Η	1.314349	0.001154	-1.759983
C	3.919727	-0.000188	3.514243
Η	4.993044	0.000972	3.699989
Η	3.482726	0.887140	3.983814
Η	3.484700	-0.888991	3.982905
Η	4.493898	0.000007	1.475081

H-bonded complexes NMe2-ortho-benzoquinone O1...HF linear ortho-benzoquinone O...HF linear E_{tot} = -616.060475740 hartree E_{tot} = -482.043692799 hartree 0.000000 0.000000 0.00000 0.000000 0.00000 C 0.000000 0.00000 1.555079 0.000000 0.00000 0.00000 C 1.283141 0.00000 2.211441 С 1.566968 С 0.00000 C 2.471455 0.000195 1.513993 1.313289 2.234956 С C 2.447524 -0.001256 0.036613 2.447252 0.00000 1.510099 С 2.439965 0.00000 0.047181 C 1.308824 -0.001461 -0.672926 С 0 -1.040811 0.001217 -0.626256 1.302266 0.00000 -0.675137 0 -1.056126 0.00000 -0.599289 0 -1.071881 -0.000563 2.139079 0 -1.050784 0.000000 2.166149 Η 1.251469 -0.000659 3.291195 Ν 3.691031 0.002914 Η 1.311982 0.00000 3.318656 2.129245 Η 3.390190 -0.001898 -0.494173 Η 3.411242 0.00000 2.007333 3.399706 0.00000 -0.458684 Η 1.309130 -0.002198 -1.756896 Η C 3.740556 0.004630 3.587796 Η 1.299150 0.00000 -1.758840 Η 3.255597 -0.886946 3.999242 Η 0.00000 -1.485507 -2.617907 Η 4.777810 0.016409 3.913930 -3.428655 0.00000 -1.945558 Η 3.237274 0.887253 3.995689 C 4.952875 -0.012560 1.386543 Η 5.055229 -0.911173 0.771027 Η 5.064083 0.870234 0.750335 ortho-benzoquinone O...HF -> O -0.007952 Η 5.772829 2.100816 Η -2.561906 0.002995 -1.541498 $E_{tot} = -482.045518547$ hartree 0.003931 -3.362171 -2.023017 0.00000 0.000000 0.000000 0.00000 0.00000 1.564300 С 1.310951 0.000000 2.234210 С 2.44443 -0.000483 1.508322 С 2.436899 -0.000923 0.045141 С 1.299263 -0.000728 -0.677510 NMe2-ortho-benzoquinone O1...HF -> O 0 -1.056774 0.000572 -0.603587 E_{tot} = -616.062711893 hartree Ο -1.055166 -0.000002 2.156521 0.000000 0.00000 Η 1.309493 0.000281 3.317809 0.00000 С 0.00000 0.00000 1.551888 Η 3.408601 -0.000584 2.005067 С 2.210923 Η -0.001402 -0.460512 1.279730 0.00000 3.396642 С Η -0.000999 -1.761100 2.467698 -0.003895 1.511805 1.294580 С Η -2.785299 0.001523 -0.111524 2.443635 -0.005722 0.033898 C -0.069227 1.305129 -0.003875 -0.676168 -3.721014 0.002082 0 -1.043262 0.002373 -0.626942 0 -1.077828 2.126462 0.003533 Η 1.248156 0.006277 3.290582 Ν -0.013858 2.125939 3.687262 Η -0.012215 -0.496274 ortho-benzoquinone O...HF -> H 3.386556 -1.759975 Η 1.303906 -0.007321 $E_{tot} = -482.047100292$ hartree -0.029842 C 3.584566 3.738524 0.00000 0.000000 0.000000 Η 3.203080 -0.897375 3.982118 С 0.00000 0.000000 1.564811 Η 4.774983 -0.085937 3.908701 С 1.313896 0.00000 2.230735 Η 3.287887 0.874803 4.007531 2.446362 -0.001040 1.503608 С 4.948073 0.051720 1.383727 C 2.435261 -0.001782 0.040868 -0.822014 Η 5.090490 0.741178 C 1.297019 -0.001274 -0.681431 0.775258 Η 5.018436 0.957962 -1.068757 0.000565 -0.588339 Η 5.767468 0.070995 2.098388 0 -1.049914 0.000182 2.165594 0.009658 Η -2.761715 -0.101462 Η 1.313833 0.000533 3.314354 -3.699898 0.013640 -0.104321 Η 3.411429 -0.001375 1.998724 Η 3.393578 -0.002758 -0.467585 Η 1.292696 -0.001673 -1.765464 Η -1.071068 0.003018 -2.291934 -0.860233 0.004764 -3.212881

NMe2-ortho-benzoquinone O1HF -> H					NMe2-ortho-benzoquinone O2HF -> O				
E_{to}	ot= -616.0643	08651 hartre	ee	E_t	E_{tot} = -616.065551986 hartree				
С	0.000000	0.000000	0.00000	C	0.00000	0.000000	0.00000		
C	0.000000	0.00000	1.553337	C	0.00000	0.000000	1.550062		
С	1.283511	0.000000	2.207383	C	1.265601	0.000000	2.216080		
С	2.470381	-0.001542	1.507009	C	2.462669	0.001471	1.524085		
С	2.442454	0.000851	0.029958	C	2.454523	0.002353	0.046183		
С	1.303553	0.001457	-0.679695	C	1.318917	0.001812	-0.665295		
0	-1.054468	-0.000610	-0.614649	0	-1.037394	-0.002185	-0.623012		
0	-1.071417	-0.000949	2.138584	0	-1.077575	0.000566	2.145283		
Η	1.253643	-0.002788	3.287113	Н	1.228225	0.001139	3.295516		
N	3.691152	-0.003578	2.118745	N	3.670364	-0.000567	2.152451		
Η	3.383571	0.003909	-0.503449	Н	3.401417	0.001362	-0.476418		
Η	1.303413	0.003975	-1.763893	Н	1.320749	0.001162	-1.749206		
С	3.745085	0.006473	3.577094	C	3.708684	-0.012268	3.613196		
Η	3.263232	-0.883845	3.994828	Н	3.198349	-0.895309	4.009685		
Η	4.783319	0.021769	3.899929	Н	4.743491	-0.031823	3.946027		
Η	3.241475	0.890486	3.981529	Н	3.225642	0.879183	4.025901		
C	4.951185	-0.015709	1.372219	C	4.941671	0.021873	1.423271		
Η	5.044163	-0.904726	0.742044	Н	5.071069	-0.869210	0.802650		
Η	5.067346	0.876522	0.750054	Н	5.034848	0.912183	0.795654		
Η	5.772913	-0.030192	2.084300	Н	5.753132	0.041655	2.146680		
Η	-1.019577	-0.000406	-2.291909	Н	-2.723575	0.009996	1.684693		
F	-0.807763	-0.000049	-3.216116	F	-3.664595	0.015409	1.611650		

NMe2-ortho-benzoquinone O2...HF NMe2-ortho-benzoquinone O2...HF -> H linear E_{tot} = -616.063653854 hartree E_{tot} = -616.068828294 hartree 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 С 0.000000 0.000000 0.000000 0.00000 1.548305 1.552866 С 1.268270 2.217267 С 1.260271 2.217500 0.000000 0.000000 С 2.465180 0.000077 1.525407 С 2.459933 0.008703 1.527683 С 2.456609 -0.001477 0.047721 С 2.457319 0.050280 0.018759 С 1.320781 -0.001583 -0.663402 С 1.322205 -0.661713 0.015644 -1.033934 -0.628644 -1.031897 -0.012518 Ο 0.001293 0 -0.632133 -1.078152 -0.000509 2.139321 -1.093605 -0.001474 2.125240 Ο 0 1.224115 -0.004275 Η 1.232294 -0.000666 3.296853 Η 3.297216 3.673208 0.002479 2.153648 3.661635 0.008775 2.163071 Ν Ν 3.403372 -0.002272 -0.475196 3.405243 0.028506 -0.470524 Η Η -0.002357 -1.747394 -1.745594 Η 1.323531 Η 1.324866 0.022069 C 3.711726 0.004327 3.614398 C 3.690292 -0.005126 3.625943 4.020998 3.188167 -0.894527 Η 3.224398 -0.887528 Η 4.017844 4.746659 0.016190 3.947245 4.723360 -0.010117 3.964463 Η Η Η 3.205925 0.887124 4.017401 Η 3.191033 0.878104 4.035320 1.442103 С 4.944201 1.423993 С 4.937737 -0.010964 0.021636 5.051518 -0.908884 0.809111 5.058816 -0.865127 0.813895 Η Η 0.872561 0.790150 0.916552 0.823335 Η 5.058813 Η 5.045950 Η 5.756343 -0.006249 2.146897 Η 5.744635 0.023863 2.170717 -2.583458 -1.055967 -0.001220 2.958124 -0.004519 3.733683 Η Η -3.407577 -0.001609 3.406399 -0.876947 -0.006369 4.675584