Consider the Blasius solution for a laminar flat plate boundary layer. The nondimensional slope at the wall is given by equation 1 below.

$$\left. \frac{d(u/U)}{d\eta} \right|_{\eta=0} = f''(0) = 0.332 \tag{1}$$

Transform this result to physical variables and show that the following equation is correct.

$$\tau_w = 0.332 \cdot \rho U^2 \sqrt{Re_x} \tag{2}$$

### Solution

At the wall, we specify that the shear stress is given by

$$\tau_w = \mu \left(\frac{du}{dy}\right)_{y=0} \tag{3}$$

From the Blasius,

$$\eta = y\sqrt{\frac{U}{\nu x}}$$

$$\implies d\eta = \sqrt{\frac{U}{\nu x}}dy$$

$$\eta = 0 \implies y = 0$$

Then,

$$\frac{df'}{d\eta} = \frac{d(u/U)}{d\eta}$$
$$= \frac{d(u/U)}{dy\sqrt{\frac{U}{\nu x}}}$$
$$= \frac{du}{dy}\frac{1}{U}\sqrt{\frac{\nu x}{U}}$$

Then from the solution,

$$\frac{d(u/U)}{d\eta}\bigg|_{\eta=0} = 0.332$$

$$= \frac{du}{dy}\bigg|_{y=0} \frac{1}{U} \sqrt{\frac{\nu x}{U}}$$

Solving for  $\frac{du}{dy}\Big|_{y=0}$ ,

$$\implies \left. \frac{du}{dy} \right|_{y=0} = 0.332 U \sqrt{\frac{U}{\nu x}}$$

Substituting this into (3),

$$\tau_w = \mu \frac{du}{dy} \Big|_{y=0}$$

$$= \mu \cdot 0.332U \sqrt{\frac{U}{\nu x}}$$

$$= 0.332U \sqrt{\frac{\mu^2 U}{\frac{\mu}{\rho} x}}$$

$$= 0.332U \sqrt{\frac{\mu \rho U}{x} \cdot \frac{\rho U}{\rho U}}$$

$$= 0.332U \sqrt{\rho^2 U^2 \cdot \frac{\mu}{\rho U x}}$$

$$= \boxed{0.332 \frac{\rho U^2}{\sqrt{Re_x}}}$$

Thus, we have shown that equation (2) is correct.

In order to avoid boundary layer interference, engineers design a "boundary layer scoop" to skim off the boundary layer in a large wind tunnel (see Figure 1). The scoop is constructed of thin sheet metal. The air is at  $20^{\circ}$ C and flows at V = 45.0 m/s. How high (dimension h) should the scoop be at downstream distance x = 1.45 m?



Figure 1: Boundary Layer Scoop

First, calculate the Reynolds number at x = 1.45m. The kinematic viscosity of air at  $20^{\circ}C$  is  $\nu = 1.516 \times 10^{-5} m^2/s$  [1].

$$\text{Re}_x = \frac{Vx}{\nu} = \frac{45.0 \times 1.45}{1.516 \times 10^{-5}} = 4.30 \times 10^6$$

This is past the Re<sub>engineer</sub> =  $5 \times 10^5$  threshold, so this is turbulent. Using the turbulent boundary layer thickness equation,

$$\frac{\delta}{x} = \frac{0.16}{\text{Re}_x^{1/7}}$$
$$= \frac{0.16}{(4.30 \times 10^6)^{1/7}}$$
$$= 0.0181 \times 10^{-3}$$

Then,

$$\delta = 0.0181 \times 10^{-3} \times 1.45$$
$$= 2.62 \times 10^{-5}$$
$$= 26.2 \text{ mm}$$

So the scoop should be at least 26.2 mm high at x = 1.45m.

The streamwise velocity component of a steady, incompressible, laminar, flat plate boundary layer of boundary layer thickness  $\delta$  is approximated by the simple linear expression,  $u = Uy/\delta$  for  $y < \delta$ , and u = U for  $y > \delta$  (see Figure 2). Generate expressions for displacement thickness and momentum thickness as functions of  $\delta$ , based on this linear approximation. Compare the approximate values of  $\delta^*/\delta$  and  $\theta/\delta$  to the values of  $\delta^*/\delta$  and  $\theta/\delta$  obtained from the Blasius solution.



Figure 2: Flat Plate Boundary Layer

By conservation of mass,

$$\delta^* = \int_0^\delta \left(1 - \frac{y}{\delta}\right) dy$$
$$= \left[y - \frac{y^2}{2\delta}\right]_0^\delta$$
$$= \delta - \frac{\delta^2}{2\delta}$$
$$= \frac{\delta}{2}$$

or more conveniently,

$$\frac{\delta^*}{\delta} = \frac{1}{2}$$

By conservation of momentum,

$$\theta = \int_0^\delta \frac{u}{U} \left( 1 - \frac{u}{U} \right) dy$$

$$= \int_0^\delta \frac{y}{\delta} \left( 1 - \frac{y}{\delta} \right) dy$$

$$= \int_0^\delta \left( \frac{y}{\delta} - \frac{y^2}{\delta^2} \right) dy$$

$$= \left[ \frac{y^2}{2\delta} - \frac{y^3}{3\delta^2} \right]_0^\delta$$

$$= \frac{\delta^2}{2\delta} - \frac{\delta^3}{3\delta^2}$$

$$= \frac{\delta}{2} - \frac{\delta}{3}$$

$$= \frac{\delta}{6}$$

or more conveniently,

$$\theta = \frac{1}{6}$$

Recall from the Blasius solution for laminar boundary layers on a flat plate,

$$\frac{\delta}{x} = \frac{4.91}{\sqrt{\text{Re}_x}}$$

$$\frac{\delta^*}{x} = \frac{1.72}{\sqrt{\text{Re}_x}}$$

$$\frac{\theta}{x} = \frac{0.664}{\sqrt{\text{Re}_x}}$$

Then,

$$\boxed{ \frac{\delta^*}{\delta} = \frac{1.72}{4.91} = 0.350 \\ \frac{\theta}{\delta} = \frac{0.664}{4.91} = 0.135 }$$

The relative errors are then,

Error<sub>$$\delta^*$$</sub> =  $\frac{0.350 - 0.5}{0.350} \times 100\% = 42.9\%$   
Error <sub>$\theta$</sub>  =  $\frac{0.135 - 0.166}{0.135} \times 100\% = 23.0\%$ 

The approximation is not very accurate, with high errors in both  $\delta^*$  and  $\theta$ .

Helium  $(k = 1.667 \text{ and } c_P = 5.1926kJ/(kg \cdot K))$  enters a converging-diverging nozzle at 0.7MPa, 800K, and 100m/s. What are the lowest temperature and pressure that can be obtained at the throat of the nozzle?

#### Solution

Assume

- The flow is steady, adiabatic, and one dimensional
- Isentropic flow
- Helium is an ideal gas

Let us first find the stagnation temperature and pressure at the inlet. Then,

$$T_0 = T + \frac{V^2}{2c_p}$$

$$= 800 + \frac{100^2}{2(5.1926) \cdot 1000}$$

$$= 800 + 0.0096$$

$$= 800.96 \text{ K}$$

and,

$$P_0 = P\left(\frac{T_0}{T}\right)^{\frac{k}{k-1}}$$

$$= 0.7 \left(\frac{800.96}{800}\right)^{\frac{1.667}{0.667}}$$

$$= 0.7021 \text{ MPa}$$

At the throat, the lowest temperature and pressure is the critical properties, which can be found by

$$T^* = T_0 \left(\frac{2}{k+1}\right)$$
= 800.96  $\left(\frac{2}{1.667+1}\right)$ 
=  $\boxed{600.64 \text{ K}}$ 

and,

$$P^* = P_0 \left(\frac{2}{k+1}\right)^{\frac{k}{k-1}}$$
$$= 0.7021 \left(\frac{2}{1.667+1}\right)^{\frac{1.667}{0.667}}$$
$$= \boxed{0.3420 \text{ MPa}}$$

An aircraft is designed to cruise at Mach number Ma = 1.1 at 12,000 m where the atmospheric temperature is 236.15 K. Determine the stagnation temperature on the leading edge of the wing.

### Solution

Assume

- The flow is steady, adiabatic, and one dimensional
- Isentropic flow
- Air is an ideal gas with properties  $c_p = 1.005kJ/(kg\cdot K)$ , k = 1.4, and  $R = 287J/(kg\cdot K)$

First we need to find the speed of air. For an ideal gas,

$$c = \sqrt{kRT}$$

$$Ma = \frac{V}{c}$$

$$\implies V = Ma \cdot c$$

$$= Ma\sqrt{kRT}$$

Then,

$$V = 1.1\sqrt{1.4 \cdot 287 \cdot 236.15}$$
$$= 338.8376 \text{ m/s}$$

Stagnation temperature is then,

$$T_0 = T + \frac{V^2}{2c_p}$$

$$= 236.15 + \frac{(338.8376)^2}{2(1.005) \cdot 1000}$$

$$= \boxed{293.27 \text{ K}}$$

An ideal gas with k = 1.4 is flowing through a nozzle such that the Mach number is 1.6 where the flow area is  $45cm^2$ . Approximating the flow as isentropic, determine the flow area at the location where the Mach number is 0.8.

### **Solution** Assume

- The flow is steady, adiabatic, and one dimensional
- Isentropic flow
- Air is an ideal gas

The relation between flow area to throat area is given by

$$\frac{A_1}{A^*} = \frac{1}{\text{Ma}} \left[ \frac{2}{k+1} \left( 1 + \frac{k-1}{2} \text{Ma}^2 \right) \right]^{(k+1)/(2(k-1))}$$

$$= \frac{1}{1.6} \left[ \frac{2}{1.4+1} \left( 1 + \frac{1.4-1}{2} (1.6)^2 \right) \right]^{(1.4+1)/(2(1.4-1))}$$

$$= 1.250235$$

Then,

$$A^* = \frac{45}{1.250235}$$
$$= 35.993 \text{ cm}^2$$

Then using the same relation, but with Ma = 0.8,

$$\frac{A_2}{A^*} = \frac{1}{0.8} \left[ \frac{2}{1.4+1} \left( 1 + \frac{1.4-1}{2} (0.8)^2 \right) \right]^{(1.4+1)/(2(1.4-1))}$$
$$= 1.03823$$

Then,

$$A_2 = 35.993 \times 1.03823$$
  
=  $37.376 \text{ cm}^2$ 

Air at 900kPa and 400K enters a converging nozzle with a negligible velocity. The throat area of the nozzle is  $10cm^2$ . Approximating the flow as isentropic, calculate and plot the exit pressure, the exit velocity, and the mass flow rate versus the back pressure  $P_b$  for  $0.9 \ge P_b \ge 0.1MPa$ . (Note: Use MATLAB to plot the results)

#### Solution

Assume

- The flow is steady, adiabatic, and one dimensional
- Isentropic flow
- Air is an ideal gas

First find the critical pressure,

$$P^* = P\left(\frac{2}{k+1}\right)^{\frac{k}{k-1}}$$

$$= 900 \left(\frac{2}{1.4+1}\right)^{\frac{1.4}{0.4}}$$

$$= 900 \times 0.5283$$

$$= 475.4536 \text{ kPa}$$

Recall that exit pressure,  $P_e$  is described as

$$P_e = \begin{cases} P_b, & P_b \ge P^* \\ P^*, & P_b < P^* \end{cases}$$

so,

$$P_e = \begin{cases} P_b, & P_b \ge 475.4536\\ 475.4536, & P_b < 475.4536 \end{cases}$$

Assuming air is ideal,

$$c_p T_0 = c_p T + \frac{V^2}{2}$$

$$\implies V = \sqrt{2c_p(T_0 - T)}$$

Let is consider the case where  $P_b < P^*$ . Then,  $P_e = 475.4536$  kPa. Solving for  $T_e$ ,

$$T_e = T_0 \left(\frac{P_e}{P_0}\right)^{\frac{k-1}{k}}$$

$$= 400 \left(\frac{475.4536}{900}\right)^{\frac{0.4}{1.4}}$$

$$= 333.33 \text{ K}$$

Then,

$$V = \sqrt{2 \cdot 1.005 \cdot 10^3 \cdot (400 - 333.33)}$$
  
= 366.069 m/s

For the case where  $P_b \geq P^*$ ,  $P_e = P_b$ . Then,

$$T_e = T_0 \left(\frac{P_e}{P_0}\right)^{\frac{k-1}{k}}$$
$$= 400 \left(\frac{P_b}{900}\right)^{\frac{0.4}{1.4}}$$
$$= 57.278 P_b^{0.286}$$

Then,

$$V = \sqrt{2 \cdot 1.005 \cdot 10^3 \cdot (400 - 57.278 P_b^{0.286})}$$
$$= 44.83 \sqrt{400 - 57.278 P_b^{0.286}}$$

So,

$$V = \begin{cases} 366.069, & P_b < 475.4536 \text{ kPa} \\ 44.83\sqrt{400 - 57.278P_b^{0.286}}, & P_b \ge 475.4536 \text{ kPa} \end{cases}$$

The mass flow rate is given by

$$\dot{m} = \rho_e A V$$

By ideal gas law,

$$\rho_e = \frac{P_e}{RT_e}$$
$$= \frac{P_e}{0.287 \cdot T_e}$$

Then for  $P_b < 475.4536 \text{ kPa}$ ,

$$\rho_e = \frac{475.4536}{0.287 \cdot 333.33}$$
$$= 4.9699479573 \text{ kg/m}^3$$

and for  $P_b \ge 475.4536 \text{ kPa}$ ,

$$\rho_e = \frac{P_b}{0.287 \cdot 57.278 P_b^{0.286}}$$

$$= \frac{1}{0.287 \cdot 57.278 P_b^{0.286-1}}$$

$$= \frac{1}{16.439 P_b^{-0.7143}}$$

Then,

$$\dot{m} = \begin{cases} 4.9699479573 \cdot 10 \times 10^{-4} \cdot 366.069, & P_b < 475.4536 \text{ kPa} \\ \frac{1}{16.439P_b^{-0.7143}} \cdot 10 \times 10^{-4} \cdot 44.83\sqrt{400 - 57.278P_b^{0.286}}, & P_b \ge 475.4536 \text{ kPa} \end{cases}$$

This gets way too complicated, so I'll just make a table using Excel.

| $P_b$ | $P_e$ | $T_e$    | $V_e$    | $ ho_e$          | $\dot{m}$ |
|-------|-------|----------|----------|------------------|-----------|
| (kPa) | (kPa) | (K)      | (m/s)    | $({\rm kg/m^3})$ | (kg/s)    |
| 100   | 100   | 475.4536 | 366.069  | 4.9699           | 1.8193    |
| 200   | 200   | 475.4536 | 366.069  | 4.9699           | 1.8193    |
| 300   | 300   | 475.4536 | 366.069  | 4.9699           | 1.8193    |
| 400   | 400   | 475.4536 | 366.069  | 4.9699           | 1.8193    |
| 500   | 500   | 333.3333 | 366.0601 | 4.9699           | 1.8193    |
| 600   | 600   | 356.2445 | 296.5611 | 5.8684           | 1.7403    |
| 700   | 700   | 372.2853 | 236.0225 | 6.5515           | 1.5463    |
| 800   | 800   | 386.7631 | 163.1142 | 7.2071           | 1.1756    |
| 900   | 900   | 400      | 0        | 7.8397           | 0         |

Plotting the results with Matplotlib [2], Figures 3, 4, and 5 are obtained.



Figure 3: Exit Pressure vs. Back Pressure



Figure 4: Exit Velocity vs. Back Pressure



Figure 5: Mass Flow Rate vs. Back Pressure

# References

- [1] Y. A. Cengel and J. M. Cimbala, *Fluid mechanics: fundamentals and applications*, 4th ed. New York, NY: McGraw-Hill Education, 2018.
- [2] J. D. Hunter, "Matplotlib: A 2d graphics environment," Computing in Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.