ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΚΑΡΤΑΣ ntuAboard G1

Ε.Μ.Π. - ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ. ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΚΑΔ. ΕΤΟΣ 2022-2023

Παρουσίαση της κάρτας ntuAboard_G1

ntuAboard_G1

Συνοπτική περιγραφή ntuAboard_G1

- Η ntuAboard_G1 διαθέτει επαφές διασύνδεσης συμβατές με Arduino shield και μπορεί να υποδεχτεί μικροελεγκτές διαφόρων τεχνολογιών.
- Οι κυριότερες περιφερειακές συσκευές που εμπεριέχει είναι:
 - Ενδεικτικά Leds.
 - Μπουτόν.
 - Θύρα επέκτασης I/O 16 pins με σύνδεση I2C.
 - LCD οθόνη 2 x 16 χαρακτήρων.
 - Πληκτρολόγιο 4 Χ 4 πλήκτρων.
 - Buzzer για παραγωγή ήχου.
 - 4 Ποτενσιόμετρα για παραγωγή ρυθμιζόμενων αναλογικών τάσεων.
 - Μετατροπέα ψηφιακού σήματος σε αναλογικό (DAC) με σύνδεση I2C.
 - 3 αναλογικά φίλτρα για δημιουργία αναλογικών τάσεων από PWM κυματομορφές.
 - 7 Darlington Transistor Drivers για οδήγηση κινητήρων, Led ισχύος, Buzzer κλπ.
 - Αισθητήρα θερμοκρασίας.
 - Προσαρμογέα σειριακής θύρας USART σε USB για σύνδεση με προσωπικό υπολογιστή.
 - Υποδοχή διασύνδεσης του ESP-01 WiFi Module.
 - Υποδοχή διασύνδεσης του RC522 RFID Development Kit.
 - Υποδοχές διασύνδεσης σειριακών θυρών I2C, SPI, USART.

ATmega328PB Xplained Mini Headers and Connectors

MicrochipXplainedMini Pinout

Μικροελεγκτής ATmega328PB

- Ο ATmega328PB χρησιμοποιείται σε πληθώρα εμπορικών εφαρμογών.
- Είναι ο μικροελεγκτής που χρησιμοποιείται στο Arduino UNO.
- Πληροφορίες στη διεύθυνση:

https://www.microchip.com/en-us/product/ATmega328PB

Βασικά χαρακτηριστικά ATmega328PB Xplained Mini

- Ενσωματωμένο mini programmer/debugger (mEDBG).
- Auto-ID για εντοπισμό της κάρτας από το MPLAB® X.
- Πρόσβαση σε όλους τους ακροδέκτες (pins) του μικροελεγκτή ATmega328PB.
- Ένα πράσινο LED ένδειξης της κατάστασης του mEDBG.
- Ένα κίτρινο LED γενικής χρήσης.
- Ένα πιεστικό διακόπτη γενικής χρήσης (Push Button).
- Δύο αισθητήρες αφής (QTouch®).
- Εικονική σειριακή θύρα COM (Virtual COM Port CDC).
- Ενσωματωμένο κρύσταλλο 16 MHz(5V) ή 8 MHz(3,3V).
- Τροφοδοσία δια μέσω της θύρας USB.
- Ρυθμιστής τάσης 3,3V.
- Συμβατοί ακροδέκτες για Arduino Shields.
- Επαφές για SPI Bus Header.

PORT EXPANDER

- Συνδέεται στον μικροελεγκτή δια μέσω της I2C διεπαφής (2 pins).
- Παράγει δύο θύρες εισόδου/εξόδου των 8 bit η καθεμία.

KEYPAD

- Είναι ένα πληκτρολόγιο 16 πλήκτρων
- Συνδέεται σε μία από τις δύο πόρτες του PORT EXPANDER.
- Η συνδεσμολογία του φαίνεται στο παρακάτω σχήμα:

BUTTONS

- Υπάρχει ένα μπουτόν για κάθε ακροδέκτη του μικροελεγκτή.
- Ο ένας ακροδέκτης κάθε μπουτόν συνδέεται στο GND και ο άλλος ακροδέκτης συνδέεται σε ένα pin του μικροελεγκτή.
- Σε κάθε ακροδέκτη παρεμβάλλεται μία αντίσταση για προστασία από υψηλό ρεύμα στα pins του μικροελεγκτή.

PORTB LEDS

- Σε κάθε ακροδέκτη του PORTB υπάρχει συνδεδεμένο ένα led.
- Μεταξύ του PORTB και των leds παρεμβάλλεται ένα ολοκληρωμένο για προσαρμογή της τάσης του μικροελεγκτή και για απομόνωση των leds από το PORTB όταν απαιτείται.

PORTC LEDS

- Σε κάθε ακροδέκτη του PORTC υπάρχει συνδεδεμένο ένα led.
- Μεταξύ του PORTC και των leds παρεμβάλλεται ένα ολοκληρωμένο για προσαρμογή της τάσης του μικροελεγκτή και για απομόνωση των leds από το PORTC όταν απαιτείται.

PORTD LEDS

- Σε κάθε ακροδέκτη του PORTD μπορεί να συδεθεί ένα led.
- Μεταξύ του PORTD και των leds παρεμβάλλεται ένα ολοκληρωμένο για προσαρμογή της τάσης και για απομόνωση των leds όταν απαιτείται.
- Τα leds συνδέονται στον κονέκτορα ΟCT22. Το PORTD συνδέεται στον κονέκτορα ΟCT17, οπότε κάνοντας χρήση βραχυκυκλωτήρων γίνονται οι συνδέσεις που απαιτούνται.
- Εναλλακτικά, στα led αυτά μπορούν να συνδεθούν με καλώδιο και οι ακροδέκτες του extended port.

USB TO SERIAL

 Η διάταξη αυτή χρησιμοποιείται για σύνδεση της σειριακής Θύρας του μικροελεγκτή σε μία USB θύρα ενός PC.

POTENSIOMETERS

 Το ntuAboard_G1 διαθέτει 4 ποτενσιόμετρα για παραγωγή 4 αναλογικών τάσεων, οι οποίες μπορούν να χρησιμοποιηθούν για τον έλεγχο του ADC μετατροπέα.

ESP8266 WiFi Module

• Το ntuAboard_G1 διαθέτει 1 κονέκτορα με 8 ακροδέκτες (P1) στον οποίο μπορεί να συνδεθεί το ESP8266 WiFi Module για εγκαθίδρυση ασύρματης επικοινωνίας.

RFID

- Το ntuAboard_G1 διαθέτει 1 κονέκτορα με 8 ακροδέκτες (OCT38) στον οποίο μπορεί να συνδεθεί το RC522 RFID Development Kit.
- Μεταξύ του μικροελεγκτή και του RC522 RFID παρεμβάλλεται ένα ολοκληρωμένο για προσαρμογή της τάσης για απομόνωση όταν απαιτείται.

PWM FILTERS

- Ο μικροελεγκτής μπορεί να παράγει PWM κυματομορφές με μεταβλητό duty cycle.
- Το ntuAboard_G1 διαθέτει 3 αναλογικά φίλτρα τα οποία χρησιμεύουν για παραγωγή μεταβαλλόμενων DC τάσεων από τις PWM εξόδους.

BUZZER and TRANSISTOR ARRAY IC

- Το ntuAboard_G1 έχει ενσωματωμένο ένα ολοκληρωμένο 7 καναλιών ενίσχυσης με darlington transistors
- Σε ένα από αυτά τα κανάλια μπορεί να συνδεθεί ένα buzzer.

PORTB and PORTC CONNECTIONS

 Στο παρακάτω σχήμα φαίνονται οι διάφορες συνδέσεις που είναι διαθέσιμες για καθέναν από τους ακροδέκτες του PORTB και του PORTC.

PORTD CONNECTIONS

 Στο παρακάτω σχήμα φαίνονται οι διάφορες συνδέσεις που είναι διαθέσιμες για καθέναν από τους ακροδέκτες του PORTD.

VOLTAGE REGULATORS

- To ntuAboard_G1 διαθέτει 2 voltage regulators για παραγωγή DC τάσεων 3,3Volt και 5 Volt.
- Η τροφοδοσία των voltage regulators γίνεται από μία εξωτερική DC τάση που εφαρμόζεται στον connector J2 και η τιμή της κυμαίνεται από 7 έως 13 volt.

VOLTAGE SELECTORS

- Το ntuAboard_G1 παρέχει τη δυνατότητα επιλογής της τάσης τροφοδοσίας του είτε από την κάρτα ATmega328PB Xplained Mini είτε από τα 2 voltage regulators που ενσωματώνει.
- Η επιλογή αυτή γίνεται από τους κονέκτορες OCT6 και OCT7 με χρήση κατάλληλων βραχυκυκλωτήρων, όπως φαίνεται στο διπλανό σχήμα.
- Με τον κονέκτορα OCT18
 επιλέγετε εάν η τάση VLOGIC
 του ntuAboard_G1 είναι
 3,3Volt ή 5Volt.

TEMPERATURE SENSOR

• Στον κονέκτορα OCT32 μπορεί να συνδεθεί ένας αισθητήρας θερμοκρασίας και με τον κονέκτορα OCT30 επιλέγετε εάν αυτός ο αισθητήρας είναι συνδεδεμένος ή όχι.

DIGITAL TO ANALONG CONVERTER (DAC)

- Το ntuAboard_G1 διαθέτει ένα μετατροπέα ψηφιακού σήματος σε αναλογικό(DAC).
- Ο DAC μετατροπέας συνδέεται στη I2C θύρα, χρησιμοποιώντας μόνο δύο ακροδέκτες του μικροελεγκτή, όπως φαίνεται στο παρακάτω σχήμα:

2x16 LCD

- Το ntuAboard_G1 διαθέτει μία lcd οθόνη 2x16 χαρακτήρων.
- Μεταξύ της οθόνης και του μικροελεγκτή παρεμβάλλεται ένα ολοκληρωμένο για προσαρμογή της τάσης.

2x16 LCD

 Κάνοντας χρήση των κονεκτόρων OCT34, OCT35 και OCT37 μπορούμε να επιλέξουμε εάν η lcd οθόνη θα συνδεθεί στο PORTD ή στο PORT EXPANDER.

DIP SWITCHES

 Με τα dip switches SW1 επιλέγουμε τη σύνδεση ή όχι για τα leds των τριών θυρών, για τον ακροδέκτη TX(ESP) και για την τροφοδοσία του αισθητήρα θερμοκρασίας.

MPLAB X Kit Window

MPLAB X: File>New Project

Select Device and Tool

MPLAB X: Select assembler

X

Steps

- 1. Choose Project
- 2. Select Device
- Select Header
- Select Plugin Board
- 5. Select Compiler
- Select Project Name and Folder

Select Compiler

Compiler Toolchains

- **±**...XC8
- -avrasm2

---avrasm2 (v2.2.8) [C:\Program Files (x86)\Atmel\Studio\7.0\toolchain\avr8\avrassembler]

....IAR for AVR

Finish

Cancel

Help

MPLAB X: New File

MPLAB X: File Name and Location


```
Παράδειγμα assembly
.include "m328PBdef.inc" ;ATmega328P microcontroller definitions
; delay = (1000*F1+14) cycles (abougt DEL mS in mSeconds)
.equ FOSC MHZ=16 ;MHz
.equ DEL mS=1 ;mS
.equ F1=FOSC MHZ*DEL mS
:Init Stack Pointer
   ldi r24, LOW (RAMEND)
   out SPL, r24
   ldi r24, HIGH (RAMEND)
   out SPH, r24
; Init PORTD as output
   ser r26
   out DDRD , r26
   ldi r24, low(F1) ;
   ldi r25, high(Fl) ;Set delay
loop1:
   ser r26
   out PORTD, r26
   rcall delay outer ; mS
   clr r26
   out PORTD, r26
   rcall delay outer ; mS
   rjmp loopl
```

```
Παράδειγμα assembly (Συνέχεια)
; this routine is used to produce a delay 993 cycles
delay inner:
   ldi r23, 247 ; (1 cycle)
loop3:
   dec r23
                     ; 1 cycle
                        ; 1 cycle
   nop
                  ; 1 or 2 cycles
   brne loop3
                         ; 1 cycle
   nop
                         ; 4 cycles
   ret
;this routine is used to produce a delay of (1000*F1+14) cycles
delay outer:
   push r24
                    ; (2 cycles)
   push r25
                        ; (2 cycles) Save r24:r25
loop4:
   rcall delay_inner ; (3+993)=996 cycles
   sbiw r24 ,1 ; 2 cycles
   brne loop4
                         ; 1 or 2 cycles
   pop r25
                         ; (2 cycles)
                         ; (2 cycles) Restore r24:r25
   pop r24
   ret
                         ;4 cycles
```

Παράδειγμα σε γλώσσα C

```
#define F CPU 1600000UL
#include <util/delay.h>
#include <avr/io.h>
#define DEL 1000U
int main(void)
    DDRD = 0xFF;
    while (1)
    PORTD = 0x00;
    delay ms(DEL);
    PORTD = 0xFF;
    delay_ms(DEL);
```