Programação Matemática

Maristela Santos

Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo

Forma geral de um PL

- Em vários problemas que formulamos, obtivemos:
 - Um objetivo de otimização (maximizar ou minimizar);
 - Restrições de igualdade = ;
 - Restrições de desigualdade do tipo ≥ ;
 - Restrições de desigualdade do tipo ≤ .

Forma Padrão - Definição

$$\begin{aligned} & \text{Minimizar } f(x_1, \, x_2, \dots, \, x_n) = c_1 x_1 + c_2 x_2 + \, \dots + c_n x_n \\ & a_{11} x_1 + a_{12} x_2 + \, \dots + a_{1n} x_n = \, b_1 \\ & a_{21} x_1 + a_{22} x_2 + \, \dots + a_{2n} \, x_n = \, b_2 \\ & \vdots \\ & a_{m1} x_1 + a_{m2} x_2 + \, \dots + a_{mn} \, x_n = \, b_m \\ & x_1 \geq 0, \, x_2 \geq 0, \, \dots, \, x_n \geq 0. \end{aligned}$$

- ■Características da forma padrão:
 - ✓ Problema de minimização
 - ✓Todas as restrições são de igualdade
 - ✓ Todas as variáveis são não-negativas
 - ✓ Considerar b ≥ 0 .

Forma Padrão (matricial)

Minimizar
$$f(\mathbf{x}) = \mathbf{c}^{T}\mathbf{x}$$

 $\mathbf{A}\mathbf{x} = \mathbf{b}$
 $\mathbf{x} \ge \mathbf{0}$,

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
Matriz mXn chamada matriz dos coeficientes (matriz tecnológica)

$$\mathbf{c}^{\mathrm{T}} = (c_1 \quad c_2 \quad \cdots \quad c_n)$$
 Vetor de Custos $\mathbf{x}^{\mathrm{T}} = (x_1 \quad x_2 \quad \cdots \quad x_n)$ Vetor das Variáveis

$$\mathbf{b}^{\mathrm{T}} = (b_1 \quad b_2 \quad \cdots \quad b_m)$$
 Vetor dos termos Independentes ou de recursos

Solução Factível - Definição

- Definição 1: Uma solução (x₁,x₂,...xn) é factível se atende a todas as restrições do problema (Ax=b) e as condições de não-negatividade (x≥0).
- Definição 2: O conjunto S={x tal que Ax=b, x≥0}
 é denominado de conjunto de soluções factíveis (também chamado de região factível).

Solução Factível - exemplo

Minimizar
$$f(x_1, x_2, x_3) = 2x_1 - x_2 + 4x_3$$

 $x_1 + 2x_2 + x_3 = 3$
 $x_2 + 2x_3 = 4$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0.$

$$x^T = (1, 0, 2)$$
 é factível. $f(1,0,2)=10$.

$$x^{T} = (0.25, 0.5, 1.75)$$
 é factível ? f?

Solução Ótima - Definição

 Definição 3: Uma solução factível que fornece o menor valor à função objetivo f é chamada solução ótima, denotada por: (x*1,x*2,...x*n).

ou seja:

$$(x^*_1, x^*_2, \dots x^*_n) \subseteq S$$
 é ótima se,

$$f(x_1^*, x_2^*, ..., x_n^*) \le f(x_1, x_2, ..., x_n) \quad \forall \quad (x_1, x_2, ..., x_n) \longleftarrow S$$

Problemas de maximização

Max
$$c_1x_1 + c_2x_2 + ... + c_n x_n = Min - c_1x_1 - c_2x_2 - ... - c_nx_n$$

Pois

 $f(\mathbf{x}^*) \ge f(\mathbf{x})$, para toda solução \mathbf{x} factível.

 $-f(\mathbf{x}^*) \le -f(\mathbf{x})$, para toda solução \mathbf{x} factível

• Restrição de desigualdade:

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \le b_1$$

Variável de folga (Xk)

$$x_k = b_1 - a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \ge 0$$

Restrição na forma de igualdade:

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n + x_k = b_1$$

• Restrição de desigualdade:

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \ge b_1$$

Variável de folga (^Xk)

$$x_k = a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n - b_1 \ge 0$$

Restrição na forma de igualdade:

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n - x_k = b_1$$

Variáveis livres
 x_i irrestrita.

$$x_i = x_i^+ - x_i^-$$
, com $x_i^+ \ge 0$, $x_i^- \ge 0$.

Resolução Gráfica

- Resolver um PL consiste em determinar uma solução ótima.
- Resolução gráfica: Problemas com duas variáveis.
- Visualização.

Resolução Gráfica - Exemplo

Maximizar
$$f(x_1, x_2) = x_1 + 2x_2$$

 $x_1 + x_2 \le 4$
 $x_1 \le 2$
 $x_2 \le 3$
 $x_1 \ge 0, x_2 \ge 0.$

Solução Gráfica - Região factível

$$\mathbf{S} = \{(x_1, x_2) \text{ tal que } x_1 + x_2 \le 4, x_1 \le 2, x_2 \le 3, x_1 \ge 0, x_2 \ge 0\}$$

Solução Gráfica – Região factível

$$\mathbf{S} = \{(x_1, x_2) \text{ tal que } x_1 + x_2 \le 4, x_1 \le 2, x_2 \le 3, x_1 \ge 0, x_2 \ge 0\}$$

Resolução Gráfica - Exemplo

Resolução Gráfica – Conceitos básicos Região Factível

Considere uma reta qualquer:

$$a_1x_1 + a_2x_2 = b$$

• Afirmação: O vetor $\mathbf{a} = (a_1 \ a_2)^T$ é perpendicular à reta.

Resolução Gráfica – Conceitos básicos Região Factível

Prova:

Com a notação matricial da reta: $a^Tx=b$, onde $a^T=(a_1, a_2)$ e $x^T=(x_1, x_2)$. Considerando x^1 e x^2 dois pontos da reta, isto é, $a^Tx^1=b$ $a^Tx^2=b$, e $y=x^2-x^1$.

Então: $a^{T}y = a^{T}(x^{2}-x^{1}) = a^{T}x^{1} - a^{T}x^{2} = b - b = 0.$

Em geral, quando o espaço é o **R**ⁿ, a equação **a**^T**x**=b define um conjunto chamado *hiperplano* e o vetor **a** é perpendicular ao hiperplano.

Resolução Gráfica – Conceitos básicos Região factível

Afirmação: O vetor **a** aponta para o lado do plano cujos pontos satisfazem: **a**^T**x**>b.

Prova:

Os pontos do lado que aponta o vetor **a** são dados por: $\mathbf{x}=\mathbf{x}^1+\delta\mathbf{a}, \ \delta>0$

Portanto,

 $a^{T}x = a^{T}(x^{1} + \delta a) = a^{T}x^{1} + \delta a^{T}a = b + \delta ||a||^{2} > b$, pois $\delta > 0$ e $||a||^{2} = > 0$ (considerando $a \neq 0$.).

Resolução Gráfica – Conceitos básicos Região Factível

Afirmação: O vetor **a** aponta para o lado do plano cujos pontos satisfazem: **a**^T**x**>b.

Prova:

Os pontos do lado que aponta o vetor a são dados por:

$$x=x^1+\delta a$$
, $\delta > 0$

Portanto,

$$\mathbf{a}^{\mathsf{T}}\mathbf{x} = \mathbf{a}^{\mathsf{T}}(\mathbf{x}^{1} + \delta \mathbf{a}) = \mathbf{a}^{\mathsf{T}}\mathbf{x}^{1} + \delta \mathbf{a}^{\mathsf{T}}\mathbf{a} = \mathbf{b} + \delta ||\mathbf{a}||^{2} > \mathbf{b},$$
 pois $\delta > 0$ e $||\mathbf{a}||^{2} = 0$ (considerando $\mathbf{a} \neq \mathbf{0}$.).

Pode-se utilizar deste resultado para desenhar a região factível S={x tal que Ax<=b, x≥0}.

Resolução Gráfica - Exemplo

Pontos extremos

 Se um problema de otimização linear tem uma solução ótima, então existe um vértice ótimo.

Região factível ilimitada

minimização

 x_1

Múltiplos ótimos

Região factível ilimitada e infinitas soluções ótimas (conjunto ilimitado de soluções Ótimas).

Região infactível

Solução degenerada

Exemplo: sol. degenerada

Maximizar
$$f(x_1, x_2) = x_1 + 3x_2$$

 $x_2 \le 4$
 $x_1 + x_2 \le 6$
 $x_1 \le 3$
 $5x_1 + x_2 \le 18$
 $x_1 \ge 0, x_2 \le 0$.

Método simplex (e met. de pontos interiores)

Exercícios

1) Considere o seguinte problema:

```
Minimizar f(x_1, x_2) = -x_1 - x_2
Sujeito a: -x_1 + x_2 \le 2
2x_1 - x_2 \le 6
x_1 \ge 0, x_2 \ge 0
```

- a) Resolva o problema graficamente (isto é, desenhe a região factível e a(s) solução(ões) ótima(s)).
- b) A solução $x_1 = x_2 = 0$ é um vértice da região factível? Identifique todos os vértices da região factível.
- c) Desenhe as soluções $\mathbf{x}^1 = () = (1 \ 1)$ e $\mathbf{x}^2 = () = (5, \ 1)$. Estas soluções são factíveis? Por que?
- e) Considere agora uma outra função objetivo: *Minimizar* $f(x_1, x_2) = x_1 x_2$. Verifique se a solução ótima obtida no item a. é também ótima considerando esta nova função objetivo.

Há múltiplas soluções ótimas? Identifique no gráfico.

Exercícios

2. Considere o seguinte problema:

```
Minimizar f(x_1, x_2) = x_1 + x_2

Sujeito a: -x_1 + x_2 \ge 2

2x_1 - x_2 \le 6

x_1 \ge 0, x_2 \ge 0.
```

Resolva o problema graficamente.

- Considere agora: $Maximizar f(x_1, x_2) = x_1 + x_2$ sujeito às mesmas restrições. O que mudou?
- Construa uma nova função objetivo de modo que o problema tenha: i) um segmento de soluções ótimas; ii) uma semi-reta de solução ótimas.
- d) considere o problema do item b) e inclua a terceira restrição $X_1 + X_2 \le 1$. Resolva o problema resultante

Conceitos básicos

 Consideramos sempre o problema na forma padrão:

Minimizar
$$f(\mathbf{x}) = \mathbf{c}^{\mathrm{T}}\mathbf{x}$$

 $\mathbf{A}\mathbf{x} = \mathbf{b}$
 $\mathbf{x} \ge \mathbf{0}$.

```
Dimensões:
```

```
A (m \times n)
b (m \times 1)
```

Soluções básicas

Considere a seguinte região factível no R²

$$\begin{array}{ccc} x_1 & + & x_2 \leq 6 \\ x_1 & - & x_2 \leq 4 \\ 3x_1 & + & x_2 \geq 3 \\ x_1 \geq 0, & x_2 \geq 0. \end{array}$$

$$\begin{aligned} x_3 &= 6 - (x_1 + x_2) &\geq 0 \\ x_4 &= 4 - (x_1 - x_2) &\geq 0 \\ x_5 &= (3x_1 + x_2) - 3 &\geq 0, \end{aligned}$$

variáveis de folga

$$\begin{array}{lll} x_1 + x_2 + & x_3 & = 6 \\ x_1 - x_2 & + x_4 & = 4 \\ 3x_1 + x_2 & -x_5 & = 3 \\ x_1 \ge 0, \, x_2 \ge 0, \, x_3 \ge 0, \, x_4 \ge 0, \, x_5 \ge 0. \end{array}$$

Forma padrão

Exemplo

$$\begin{array}{lll} x_1 + x_2 + & x_3 & = 6 \\ x_1 - x_2 & + x_4 & = 4 \\ 3x_1 + x_2 & -x_5 & = 3 \\ x_1 \ge 0, \, x_2 \ge 0, \, x_3 \ge 0, \, x_4 \ge 0, \, x_5 \ge 0. \end{array}$$

Alguns pontos

Ponto **A**:

$$x_1 = 3$$

 $x_2 = 2$
 $x_3 = 6 - (3 + 2) = 1$
 $x_4 = 4 - (3 - 2) = 3$
 $x_5 = (3 \times 3 + 2) - 3 = 8$

Ponto B:

$$x_1 = 1$$

 $x_2 = 3$
 $x_3 = 6 - (1 + 3) = 2$
 $x_4 = 4 - (1 - 3) = 6$
 $x_5 = (3 \times 1 + 2) - 3 = 3$

Ponto **C**:

$$x_1 = 2$$

 $x_2 = 4$
 $x_3 = 6 - (2 + 4) = 0$
 $x_4 = 4 - (2 - 4) = 6$
 $x_5 = (3 \times 2 + 2) - 3 = 7$

Ponto **D**:

$$x_1 = 5$$

 $x_2 = 1$
 $x_3 = 6 - (5 + 1) = 0$
 $x_4 = 4 - (5 - 1) = 0$
 $x_5 = (3 \times 5 + 1) - 3 = 13$.

Factiveis (Por quê?)

(construção e não-negatividade)

Alguns pontos

Ponto A:

$$x_1 = 3$$

 $x_2 = 2$
 $x_3 = 6 - (3 + 2) = 1$
 $x_4 = 4 - (3 - 2) = 3$
 $x_5 = (3 \times 3 + 2) - 3 = 8$

Ponto **B**:

$$x_1 = 1$$
 $x_2 = 3$
 $x_3 = 6 - (1 + 3) = 2$
 $x_4 = 4 - (1 - 3) = 6$
 $x_5 = (3 \times 1 + 2) - 3 = 3$

No interior da região factível (todas as variáveis de folga são positivas).

Alguns pontos

Ponto **C**:

$$x_1 = 2$$

$$x_{2} = 4$$

$$x_3 = 6 - (2 + 4) = 0$$

$$x_4 = 4 - (2 - 4) = 6$$

$$x_5 = (3 \times 2 + 2) - 3 = 7$$

Ponto **D**:

$$x_1 = 5$$

$$x_0 = 1$$

$$x_3 = 6 - (5 + 1) = 0$$

$$x_4 = 4 - (5 - 1) = 0$$

$$x_5 = (3 \times 5 + 1) - 3 = 13.$$

Na fronteira (alguma variável se anula)!

Variáveis nulas indicam restrições ativas! Mais de uma variável se anula: vértice (mais de uma restrição ativa)!

Outros pontos

Ponto **E**:

$$x_1 = 4$$
 $x_2 = 5$
 $x_3 = 6 - (4 + 5) = -3$
 $x_4 = 4 - (4 - 5) = 5$
 $x_5 = (3 \times 4 + 5) - 3 = 14$

Ponto **F**:

$$x_1 = 6$$

 $x_2 = 0$
 $x_3 = 6 - (6 + 0) = 0$
 $x_4 = 4 - (6 - 0) = -2$
 $x_5 = (3 \times 6 + 0) - 3 = 15$

Infactíveis:

Respeitam o sistema Ax = b mas não respeitam as restrições de não-negatividade!

Região factível e vérctices

Teorema 1: A região factível S={x Rⁿ tal que Ax=b,
 x≥0} é convexa.

Vértices

- Vimos que sempre que existe uma solução ótima, existe um vértice ótimo.
- Também intuímos que uma maneira de achar a solução ótima seria visitar os vértices factíveis sucessivamente

Como determinar vértices sem o auxílio do gráfico?

Vértices

 Duas restrições ativas*: duas variáveis nulas!

Ponto **D**:
$$\begin{cases} x_3 = 0 \\ x_4 = 0 \end{cases}$$

3 equações, 3 incógnitas $\begin{cases} x_1 = 5 \\ x_2 = 1 \end{cases}$

* Caso geral: n-m variáveis nulas.

$$\begin{cases} x_1 = 5 \\ x_2 = 1 \\ x_5 = 13 . \end{cases}$$

Vértices

Factiveis:

 Ao fixar (n-m) variáveis em zero, a resolução do sistema resulta em valores positivos para as variáveis restantes. (Ex. ponto D)

Infactíveis

 Ao fixar (n-m) variáveis em zero, a resolução do sistema resulta em ao menos um valor negativo para as variáveis restantes. (Ex. ponto F)

Escrevendo o sistema

$$\mathbf{A}\mathbf{x} = \mathbf{b} \iff \begin{bmatrix} x_1 + x_2 + x_3 \\ x_1 - x_2 + x_4 \\ 3x_1 + x_2 - x_5 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 3 \end{bmatrix}$$

Apesar de fixarmos (n-m) variáveis em zero (no exemplo, x_3 e x_4), continuamos as escrevendo (embora de maneira isolada):

$$\begin{bmatrix} x_1 + x_2 \\ x_1 - x_2 \\ 3x_1 + x_2 - x_5 \end{bmatrix} + \begin{bmatrix} x_3 \\ x_4 \\ 0 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 3 \end{bmatrix}$$
variáveis restantes
variáveis a serem fixadas

Escrevendo o sistema

$$\begin{bmatrix} x_1 + x_2 \\ x_1 - x_2 \\ 3x_1 + x_2 - x_5 \end{bmatrix} + \begin{bmatrix} x_3 \\ x_4 \\ 0 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 3 \end{bmatrix}$$
variáveis restantes
variáveis a serem fixadas

Em notação matricial

$$\begin{bmatrix}
1 & 1 & 0 \\
1 & -1 & 0 \\
3 & 1 & -1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_5
\end{bmatrix}
+
\begin{bmatrix}
1 & 0 \\
0 & 1 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
x_3 \\
x_4
\end{bmatrix}
=
\begin{bmatrix}
6 \\
4 \\
3
\end{bmatrix}$$

$$\mathbf{B}$$

$$\mathbf{N}$$

Índices:

$$B = (B_1 B_2 B_3):$$

$$N = (N_1 N_2):$$

$$B_1 = 1, \ B_2 = 2, \ B_3 = 5,$$

$$N_1 = 3, \ N_2 = 4,$$

Referenciando

$$\begin{bmatrix}
1 & 1 & 0 \\
1 & -1 & 0 \\
3 & 1 & -1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_5
\end{bmatrix}
+
\begin{bmatrix}
1 & 0 \\
0 & 1 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
x_3 \\
x_4
\end{bmatrix}
=
\begin{bmatrix}
6 \\
4 \\
3
\end{bmatrix}$$

$$\mathbf{B}$$

$$\mathbf{X}_{\mathbf{R}}$$

$$\mathbf{N}$$

Índices:

$$B = (B_1 \, B_2 \, B_3) \colon$$

$$N = (N_1 \, N_2) \colon$$

$$B_1 = 1, \ B_2 = 2, \ B_3 = 5,$$

$$N_1 = 3, \ N_2 = 4,$$

colunas associadas

$$\mathbf{x}_{B} = \begin{bmatrix} x_{B_{1}} \\ x_{B_{2}} \\ x_{B_{3}} \end{bmatrix} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{5} \end{bmatrix}$$

$$\mathbf{x}_N = \begin{bmatrix} x_{N_1} \\ x_{N_2} \end{bmatrix} = \begin{bmatrix} x_3 \\ x_4 \end{bmatrix}.$$

Resumindo

 Temos um problema de otimização e o escrevemos na forma padrão.

Minimizar
$$f(\mathbf{x}) = \mathbf{c}^{\mathrm{T}}\mathbf{x}$$

 $\mathbf{A}\mathbf{x} = \mathbf{b}$
 $\mathbf{x} \ge \mathbf{0}$

Escrevemos o sistema Ax=b na forma:

$$Ax = b \iff Bx_{R} + Nx_{N} = b$$

Resumindo

Escolhendo (n-m) variáveis para x_N e o restante para X_B.

$$\mathbf{A}\mathbf{x} = \mathbf{b} \iff \mathbf{B}\mathbf{x}_{\mathbf{R}} + \mathbf{N}\mathbf{x}_{\mathbf{N}} = \mathbf{b}$$

- x_N=0 (e colunas de B invertível)
- BX_B = b é um sistema com o mesmo número de equações e incógnitas (m). Se as variáveis solução desse sistema são ≥ 0, vértice factível. Caso contrário, vértice Infactível.

Resolvendo o sistema

E se B não for invertível?

Sempre escolhemos para B, *m* variáveis cujas colunas constituem uma matriz invertível.

 Supor que posto(A)=m (implica m≤n). Se m=n, o sistema tem solução única (não tem problema), na forma padrão admitimos m<n. Ax=b tem infinitas soluções.

Partição básica (Matriz básica) A = [B N]

 B_{mxm} - matriz básica - formada por *m* colunas linearmente independentes de A.

B pode ser escrita como:

$$\mathbf{B} = [\mathbf{a}_{B_1} \ \mathbf{a}_{B_2} \cdots \ \mathbf{a}_{B_m}]$$

Onde B₁, B₂,..., B_m são os índices das colunas escolhidas da matriz A (índices básicos)

Partição básica (Matriz nãobásica) A = [B N]

N_{mx (n-m)} - matriz não-básica - formada pelas *n-m* colunas restantes de A.

N pode ser escrita como:

$$\mathbf{N} = [\mathbf{a}_{N_1} \ \mathbf{a}_{N_2} \cdots \ \mathbf{a}_{Nn-m}]$$

Onde N₁, N₂,..., N_m são os índices das colunas da matriz A que pertencem a N (índices não-básicos)

Partição básica (partição das variáveis)

 Consequentemente, a partição de A em [B N] cria uma partição das variáveis:

Solução geral do sistema

$$\mathbf{A}\mathbf{x} = \mathbf{b} \iff \begin{bmatrix} \mathbf{B}\mathbf{N} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{\mathbf{B}} \\ \mathbf{x}_{\mathbf{N}} \end{bmatrix} = \mathbf{b}$$

$$\mathbf{B}\mathbf{x}_{\mathbf{B}} + \mathbf{N}\mathbf{x}_{\mathbf{N}} = \mathbf{b}.$$

$$\mathbf{x}_{\mathbf{B}} = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_{\mathbf{N}}$$

 A última expressão de x_B é conhecida como solução geral do sistema.

Solução básica

 Considere uma partição básica A=[B,N]. Uma solução é dita básica quando:

$$\begin{cases} \hat{\mathbf{x}}_{\mathbf{B}} = \mathbf{B}^{-1}\mathbf{b} \\ \hat{\mathbf{x}}_{\mathbf{N}} = \mathbf{0}. \end{cases}$$

 Se todas as componentes de x_B são nãonegativas, então temos uma solução básica factível. Caso contrário, temos uma solução básica não-factível.

Voltando ao exemplo

Ponto D:

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_5 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_5 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 3 \end{bmatrix} \Leftrightarrow \mathbf{B}\hat{\mathbf{x}}_{\mathbf{B}} = \mathbf{b}$$

$$\hat{\mathbf{x}}_{\mathrm{B}} = \begin{bmatrix} x_1 \\ x_2 \\ x_5 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \\ 13 \end{bmatrix}$$

Solução básica factível.

Voltando ao exemplo

• Ponto F:

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \\ x_5 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ -1 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 3 \end{bmatrix}$$

$$\hat{\mathbf{x}}_{\mathrm{B}} = \begin{bmatrix} x_1 \\ x_4 \\ x \end{bmatrix} = \begin{bmatrix} 6 \\ -2 \\ \end{bmatrix}$$

Solução básica não-factível

Propriedade básica

 Considere região factível S= {x R | Ax=b, x ≥0}.

Um ponto x**⊆S** é um vértice de **S** se e somente se x for uma solução básica factível.

Propriedade básica II

Se um problema de otimização linear tem uma solução ótima, então existe um vértice ótimo

Método possível

Enumerar todas as soluções básicas (vértices)

$$X_1, X_2, \dots X_K$$

Escolher aquela com melhor função objetivo.

Problema:

K pode ser muito grande!

Simplex

Idéia:

- Partir de uma solução básica factível
- •Visitar apenas as soluções básicas factíveis melhores que ela.

Método Simplex