SHARED DOCKLESS MOBILITY: PREDICTING USAGE

Gillian Foster, Saranya Nagarajan, Katherine Wroble, Malik Ouda, Mounika Tarigopula, Nadia Florez

TABLE OF CONTENTS

BACKGROUND + DATA DESCRIPTION

VISUALIZATIONS

MODELING

04

REFLECTIONS

BACKGROUND

- A new form of transportation: shared dockless mobility
- We use advanced analytics to predict number of trips from shared dockless mobility services by leveraging historical weather and shared dockless mobility data
- Our model will help service provides better meet demand, limit the number of idle scooters and maximize customer satisfaction

DATA DESCRIPTION

- Data preprocessing
 - Original mobility dataset: ~10MM rows of individual trip information
 - Cleaned and merged with weather data
- Data description
 - o April 4, 2018 November 16, 2020
 - o 1450 rows, 23 columns
 - Merged weather + mobility data
 - Mobility data: Number of scooter/bicycle/moped trips, average trip duration and distance, date information
 - Weather data: Temperature, humidity, dew point, wind speed, pressure,
 precipitation

VISUALIZATION: MOBILITY DATA

- Mopeds were introduced in late 2019
- Scooter rides are by far the most popular mode
- Seasonality effects are present
- Covid-19 sharply reduced number of trips from starting in March 2020

VISUALIZATION: MOBILITY DATA

 The plot shows that shared mobility trips occur mostly on Friday, Saturday and Sunday. Particularly, Saturday shows the highest amount of trips

VISUALIZATION: MOBILITY DATA

- On average, weekends have a greater number of trips than weekdays
- Weekends see a steady rise in number of trips throughout morning and early afternoon hours, peak around 3pm and decrease after.
- For weekdays, we see three peaks

VISUALIZATION: WEATHER

- Gathered daily
 weather data for the
 same period as the
 mobility data
- Highest temperature observed during June/July
- Lowest temperature during December/ January

VISUALIZATION: WEATHER VS. TRIPS

- Number of trips at a lower range for 40F<temp>90F
- No distinct correlation between temperature and number of trips for a normal temperature range

MODELING - What Didn't Work

CatBoost

Good for categorical values

XGBoost

Performs well with unbalanced data

Random Forests

Performs well for multi-class object detection

Decision Tree

Good when simplicity is important

MODELING - What Didn't Work

MODELING- What Worked

Linear Regression

Tuned with L1 regularization and limited weather data

One-Hot Encoding

Creating numerical features from weekdays and months

Time Series

Inclusion of the previous day's trip count was our most significant improvement

24,237,005

Final Regression MSE

REFLECTIONS

- Interesting data insights and visualizations
- Achieved minimally accurate model for predicting vehicle usage
- Usefulness of the model
 - Can be used to predict usage and increase or decrease supply accordingly
 - Minimize cost of idle scooters
- Using some weather data improved our model
 - Holiday and event (ACL and SXSW) data could improve our model

THANK YOU!

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik