МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

VT	BI	ED	W	ПΛ	Ю

	Заведующий кафедрой
Программирования и инфор	омационных технологий
A	проф. Махортов С.Д,
	03.07.2023

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.О.16 Алгоритмы и структуры данных

1. Код и наименование направления подготовки/специальности:

09.03.02 Информационные системы и технологии

2. Профиль подготовки/специализация:

Информационные системы в телекоммуникациях

- 3. Квалификация (степень) выпускника: Бакалавр
- 4. Форма обучения: Очная
- 5. Кафедра, отвечающая за реализацию дисциплины:

Программирования и информационных технологий

6. Составители программы:

ст. преподаватель каф. ПиИТ Соломатин Дмитрий Иванович

e-mail: solomatin@cs.vsu.ru факультет: Компьютерных наук

кафедра: Программирования и информационных технологий

7. Рекомендована:

НМС ф-та компьютерных наук, протокол № 7 от 03.07.2023								

8. Учебный год: 2023-2024 Семестр(ы): 2

9. Цели и задачи учебной дисциплины:

Изучение студентами классических структур данных (связные списки, различные виды деревьев, хеш-таблицы, графы) и алгоритмов, которые лежат в их основе или используют данные структуры, развитие базовых навыков проектирования и анализа алгоритмов, а также применения изученных алгоритмов и структур данных в решении практических задач.

10. Место учебной дисциплины в структуре ООП:

Учебная дисциплина относится к обязательной части блока Б1.

Для успешного освоения дисциплины необходимы знание одного из современных языков программирования и практические навыки составления программ.

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников):

Код	Название компетенции	Код(ы)	Индикатор(ы)	Планируемые результаты обучения
ОПК-6	Способен разрабатывать алгоритмы и программы, пригодные для практического применения в области информационных систем и технологий	ОПК-6.1	Знает методы алгоритмизации, языки и технологии программирования, пригодные для практического применения в области информационных систем и технологий	Знать: классические структуры данных (связные списки, различные виды деревьев, хештаблицы, графы) и типичные варианты практического применения данных структур в области информационных систем и технологий
		ОПК-6.2	Умеет применять методы алгоритмизации, языки и технологии программирования при решении профессиональных задач в области информационных систем и технологий	Уметь: применять динамические структуры данных и базовые алгоритмы (поиск, сортировка, перебор и т.п.) при решении профессиональных задач в области информационных систем и технологий

12. Объем дисциплины в зачетных единицах/час. (в соответствии с уч. планом) – 4 / 144.

Форма промежуточной аттестации – Экзамен

13. Виды учебной работы

Вид учебной работы		Трудоемкость				
		Всего	По семестрам			
		Bcero	2 сем.	-	_	
Аудиторные заняти	Я	66	66	ı	_	
	лекции	34	34	_	_	
в том числе:	практические	16	16	-	_	
	лабораторные	16	16	_	_	
Самостоятельная р	Самостоятельная работа		42	ı	_	
в том числе: курсовая работа (проект)		_	_	ı	_	
Форма промежуточ (зачет – 0 час. / экз		36	36	_	_	

	Трудоемкость				
Вид учебной работы	Всего -	По семестрам			
		2 сем.	-	-	
Итого:	144	144	_	_	

13.1. Содержание дисциплины

			Реализация
Nº ⊓/⊓	Наименование раздела дисциплины	Содержание раздела дисциплины	раздела дисциплины с помощью онлайн-курса, ЭУМК
		1. Лекции	
1.1	Введение в предмет	Цели и задачи изучения дисциплины, связь алгоритмов	
4.0		и структур данных	
1.2	Основы объектно- ориентированного программирования (инкапсуляция)	Принципы объектно ориентированного подхода; понятие класса и его экземпляров; различия между static-функциями и методами классов; классы как расширение концепции типа данных в виде объединения данных и методов их обработки, понятие состояния объекта, примеры; принципы инкапсуляции; понятие наследования и полиморфизма; класс Object и его методы	
1.3	Понятие сложности алгоритма	Понятие алгоритма, свойства алгоритма, задача оценки и сравнения эффективности алгоритмов; временная и пространственная сложность, асимптотические оценки сложности алгоритмов для различных случаев и их свойства; практические принципы оценки сложности алгоритмов в О-нотации, примеры алгоритмов с различной сложностью	
1.4	Алгоритмы сортировки: свойства, простые алгоритмы O(n^2)	Свойства алгоритмов сортировки: время (временная сложность), память (пространственная сложность), устойчивость и естественность поведения, внутренние и внешние сортировки; простые сортировки и их свойства: пузырьковая сортировка, сортировка выбором, сортировка вставками; реализация указанных сортировок в обобщенном (generic) виде с параметром в виде функции сравнения элементов; вызов встроенной функции сортировки	
1.5	«Быстрые» алгоритмы сортировки	Классические «быстрые» (O(n*log(n)) сортировки со сравнением элементом: сортировка слиянием (merge sort), быстрая сортировка (quick sort), пирамидальная сортировка (heap sort); сортировки «без сравнений»: сортировка подсчетом (counting sort), блочная сортировка (bucket sort)	
1.6	Классификация структур данных, обзор коллекций языка Java	Классификация структур данных по принципу обращения к элементам: записи (классы), массивы, списки, словари, а также стеки и очереди; обзор коллекций Java как реализаций указанных структур данных: List <t> (ArrayList, LinkedList), Map<k, v=""> (TreeMap, HashMap), Stack<t>, Queue<t>, практические примеры их применения</t></t></k,></t>	
1.7	Односвязные и двусвязные списки, стеки, очереди	Архитектура односвязных и двусвязных списков, основные операции; реализация указанных структур данных в виде классов с использованием инкапсуляции; реализация стека и очереди на основе односвязного списка	

№ п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК
1.8	Деревья, двоичные деревья поиска	Организация данных в виде дерева, терминология, обход и способы отображения деревьев, двоичные деревья; двоичные деревья; двоичные деревья поиска: идея и основные операции, реализация в виде классов, понятие сбалансированности дерева; реализация множества (Set <t>) и словаря (Мар<t>) с помощью двоичного дерева поиска</t></t>	
1.9	AVL-дереья	AVL-деревья: идея, операции вставки и удаления, балансировка (R-/L-, RL-/LR-повороты), оценка сложности операций	
1.10	2-3-, 2-3-4- и красно- черные деревья	2-3- и 2-3-4- деревья: идея и основные операции; красно-черные деревья как вариант представления 2-3-4-деревьев, основные операции для красно-черных деревьев и оценка сложности	
1.11	Хеширование (hash- таблицы)	Наsh-таблицы как вариант структуры с потенциальным временем доступа по ключу O(1), понятие hash-функции и ее качество, стратегии разрешения коллизий — открытая и закрытая адресации, реализация множества (Set <t>) и словаря (Map<t>) с помощью hash-таблиц, сравнение с деревьями поиска; комбинации hash-таблиц с деревьями поиска против «плохих» hash-функций</t></t>	
1.12	Основы теории графов	Графы: основные понятия и определения; способы задания (хранения) графов (матрица смежности, списки смежности) и универсальный интерфейс представления графов для алгоритмов	
1.13	Обход графов, поиск в глубину, поиск в ширину	Реализация обхода графов (поиска) в глубину и ширину; отображение графов с помощью библиотеки Graphviz	
1.14	Оптимизационные алгоритмы на графах (кратчайшие пути, минимальное остовное дерево)	Поиск кратчайших путей в графе: алгоритм Дейкстры, алгоритм Беллмана-Форда, алгоритм Флойда-Уоршелла; поиск минимального остовного дерева: алгоритм Прима, алгоритм Краскала	
1.15	Примеры практических задач на графах	Эйлеров граф, Гамильтонов граф; примеры практических задач, которые сводятся к задачам на графах	
		2. Практические занятия	
2.1	Основы объектно- ориентированного программирования (инкапсуляция)	Принципы объектно ориентированного подхода; понятие класса и его экземпляров; различия между static-функциями и методами классов; классы как расширение концепции типа данных в виде объединения данных и методов их обработки, понятие состояния объекта, примеры; принципы инкапсуляции; понятие наследования и полиморфизма; класс Object и его методы	
2.2	Понятие сложности алгоритма	Понятие алгоритма, свойства алгоритма, задача оценки и сравнения эффективности алгоритмов; временная и пространственная сложность, асимптотические оценки сложности алгоритмов для различных случаев и их свойства; практические принципы оценки сложности алгоритмов в О-нотации, примеры алгоритмов с различной сложностью	

Nº п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК
2.3	Алгоритмы сортировки: свойства, простые алгоритмы O(n^2)	Свойства алгоритмов сортировки: время (временная сложность), память (пространственная сложность), устойчивость и естественность поведения, внутренние и внешние сортировки; простые сортировки и их свойства: пузырьковая сортировка, сортировка выбором, сортировка вставками; реализация указанных сортировок в обобщенном (generic) виде с параметром в виде функции сравнения элементов; вызов встроенной функции сортировки	
2.4	«Быстрые» алгоритмы сортировки	Классические «быстрые» (O(n*log(n)) сортировки со сравнением элементом: сортировка слиянием (merge sort), быстрая сортировка (quick sort), пирамидальная сортировка (heap sort); сортировки «без сравнений»: сортировка подсчетом (counting sort), блочная сортировка (bucket sort)	
2.5	Классификация структур данных, обзор коллекций языка Java	Классификация структур данных по принципу обращения к элементам: записи (классы), массивы, списки, словари, а также стеки и очереди; обзор коллекций Java как реализаций указанных структур данных: List <t> (ArrayList, LinkedList), Map<k, v=""> (TreeMap, HashMap), Stack<t>, Queue<t>, практические примеры их применения</t></t></k,></t>	
2.6	Односвязные и двусвязные списки, стеки, очереди	Архитектура односвязных и двусвязных списков, основные операции; реализация указанных структур данных в виде классов с использованием инкапсуляции; реализация стека и очереди на основе односвязного списка	
2.7	Деревья, двоичные деревья поиска	Организация данных в виде дерева, терминология, обход и способы отображения деревьев, двоичные деревья; двоичные деревья; двоичные деревья поиска: идея и основные операции, реализация в виде классов, понятие сбалансированности дерева; реализация множества (Set <t>) и словаря (Мар<t>) с помощью двоичного дерева поиска</t></t>	
2.8	AVL-дереья	AVL-деревья: идея, операции вставки и удаления, балансировка (R-/L-, RL-/LR-повороты), оценка сложности операций	
2.9	2-3-, 2-3-4- и красно- черные деревья	2-3- и 2-3-4- деревья: идея и основные операции; красно-черные деревья как вариант представления 2-3-4-деревьев, основные операции для красно-черных деревьев и оценка сложности	
2.10	Хеширование (hash- таблицы)	Наsh-таблицы как вариант структуры с потенциальным временем доступа по ключу O(1), понятие hash-функции и ее качество, стратегии разрешения коллизий — открытая и закрытая адресации, реализация множества (Set <t>) и словаря (Мар<t>) с помощью hash-таблиц, сравнение с деревьями поиска; комбинации hash-таблиц с деревьями поиска против «плохих» hash-функций</t></t>	
2.11	Основы теории графов	Графы: основные понятия и определения; способы задания (хранения) графов (матрица смежности, списки смежности) и универсальный интерфейс представления графов для алгоритмов	
2.12	Обход графов, поиск в глубину, поиск в ширину	Реализация обхода графов (поиска) в глубину и ширину; отображение графов с помощью библиотеки Graphviz	

Nº п/п	Наименование раздела дисциплины Оптимизационные алгоритмы на графах (кратчайшие пути, минимальное остовное дерево)	Содержание раздела дисциплины Поиск кратчайших путей в графе: алгоритм Дейкстры, алгоритм Беллмана-Форда, алгоритм Флойда-Уоршелла; поиск минимального остовного дерева: алгоритм Прима, алгоритм Краскала	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК
2.14	Примеры практических задач на графах	Эйлеров граф, Гамильтонов граф; примеры практических задач, которые сводятся к задачам на графах	
		3. Лабораторные работы	L
3.1	Основы объектно- ориентированного программирования (инкапсуляция)	Принципы объектно ориентированного подхода; понятие класса и его экземпляров; различия между static-функциями и методами классов; классы как расширение концепции типа данных в виде объединения данных и методов их обработки, понятие состояния объекта, примеры; принципы инкапсуляции; понятие наследования и полиморфизма; класс Object и его методы	
3.2	Понятие сложности алгоритма	Понятие алгоритма, свойства алгоритма, задача оценки и сравнения эффективности алгоритмов; временная и пространственная сложность, асимптотические оценки сложности алгоритмов для различных случаев и их свойства; практические принципы оценки сложности алгоритмов в О-нотации, примеры алгоритмов с различной сложностью	
3.3	Алгоритмы сортировки: свойства, простые алгоритмы O(n^2)	Свойства алгоритмов сортировки: время (временная сложность), память (пространственная сложность), устойчивость и естественность поведения, внутренние и внешние сортировки; простые сортировки и их свойства: пузырьковая сортировка, сортировка выбором, сортировка вставками; реализация указанных сортировок в обобщенном (generic) виде с параметром в виде функции сравнения элементов; вызов встроенной функции сортировки	
3.4	«Быстрые» алгоритмы сортировки	Классические «быстрые» (O(n*log(n)) сортировки со сравнением элементом: сортировка слиянием (merge sort), быстрая сортировка (quick sort), пирамидальная сортировка (heap sort); сортировки «без сравнений»: сортировка подсчетом (counting sort), блочная сортировка (bucket sort)	
3.5	Классификация структур данных, обзор коллекций языка Java	Классификация структур данных по принципу обращения к элементам: записи (классы), массивы, списки, словари, а также стеки и очереди; обзор коллекций Java как реализаций указанных структур данных: List <t> (ArrayList, LinkedList), Map<k, v=""> (TreeMap, HashMap), Stack<t>, Queue<t>, практические примеры их применения</t></t></k,></t>	
3.6	Односвязные и двусвязные списки, стеки, очереди	Архитектура односвязных и двусвязных списков, основные операции; реализация указанных структур данных в виде классов с использованием инкапсуляции; реализация стека и очереди на основе односвязного списка	
3.7	Деревья, двоичные деревья поиска	Организация данных в виде дерева, терминология, обход и способы отображения деревьев, двоичные деревья; двоичные деревья; двоичные деревья поиска: идея и основные операции, реализация в виде классов, понятие сбалансированности дерева; реализация множества (Set <t>) и словаря (Мар<t>) с помощью двоичного дерева поиска</t></t>	

Nº ⊓/⊓	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК
3.8	AVL-дереья	AVL-деревья: идея, операции вставки и удаления, балансировка (R-/L-, RL-/LR-повороты), оценка сложности операций	
3.9	2-3-, 2-3-4- и красно- черные деревья	2-3- и 2-3-4- деревья: идея и основные операции; красно-черные деревья как вариант представления 2-3-4-деревьев, основные операции для красно-черных деревьев и оценка сложности	
3.10	Хеширование (hash- таблицы)	Наsh-таблицы как вариант структуры с потенциальным временем доступа по ключу O(1), понятие hash-функции и ее качество, стратегии разрешения коллизий — открытая и закрытая адресации, реализация множества (Set <t>) и словаря (Map<t>) с помощью hash-таблиц, сравнение с деревьями поиска; комбинации hash-таблиц с деревьями поиска против «плохих» hash-функций</t></t>	
3.11	Основы теории графов	Графы: основные понятия и определения; способы задания (хранения) графов (матрица смежности, списки смежности) и универсальный интерфейс представления графов для алгоритмов	
3.12	Обход графов, поиск в глубину, поиск в ширину	Реализация обхода графов (поиска) в глубину и ширину; отображение графов с помощью библиотеки Graphviz	
3.13	Оптимизационные алгоритмы на графах (кратчайшие пути, минимальное остовное дерево)	Поиск кратчайших путей в графе: алгоритм Дейкстры, алгоритм Беллмана-Форда, алгоритм Флойда-Уоршелла; поиск минимального остовного дерева: алгоритм Прима, алгоритм Краскала	
3.14	Примеры практических задач на графах	Эйлеров граф, Гамильтонов граф; примеры практических задач, которые сводятся к задачам на графах	

13.2. Темы (разделы) дисциплины и виды занятий

		Виды занятий (часов)				
Nº ⊓/⊓	Наименование темы (раздела) дисциплины	Лекции	Практи- ческие	Лабора- торные	Самостоя- тельная работа	Всего
1	Введение в предмет	1	ı	_	1	2
2	Основы объектно-	2	1	1	5	9
	ориентированного					
	программирования (инкапсуляция)					
3	Понятие сложности алгоритма	2	1	1	3	7
4	Алгоритмы сортировки: свойства, простые алгоритмы O(n^2)	2	1	1	2	6
5	«Быстрые» алгоритмы сортировки	2	1	1	3	7
6	Классификация структур данных, обзор коллекций языка Java	2	1	1	3	7
7	Односвязные и двусвязные списки, стеки, очереди	2	1	1	3	7
8	Деревья, двоичные деревья поиска	2	1	1	3	7
9	AVL-дереья	2	1	1	3	7
10	2-3-, 2-3-4- и красно-черные деревья	3	1	1	3	8
11	Хеширование (hash-таблицы)	2	1	1	2	6

		Виды занятий (часов)				
Nº п/п	Наименование темы (раздела) дисциплины	Лекции	Практи- ческие	Лабора- торные	Самостоя- тельная работа	Всего
12	Основы теории графов	2	1	1	2	6
13	Обход графов, поиск в глубину, поиск в ширину	2	1	1	3	7
14	Оптимизационные алгоритмы на графах (кратчайшие пути, минимальное остовное дерево)	4	2	2	4	12
15	Примеры практических задач на графах	4	2	2	2	10
	Итого:	34	16	16	42	108

14. Методические указания для обучающихся по освоению дисциплины

Рекомендуется работа с конспектами лекций, презентационным материалом, выполнение всех лабораторных и контрольных работ, заданий текущей аттестации. Учебные и методические материалы по дисциплине размещены на сетевом диске, доступным на любом компьютере в локальной сети ФКН.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины

а) основная литература:

Nº	Источник			
п/п	инготочник			
1	Седжвик, Роберт. Фундаментальные алгоритмы на Java : Пер. с англ. / Р. Седжвик .— М. :			
	DiaSoft, 2003. — Ч.1-4: Анализ. Структуры данных. Сортировка. Поиск .— 2003 .— 680 с. : ил. —			
	Библиогр. в конце глав Предм. указ.: с. 680-687 .— Парал. тит. л. англ. — ISBN 966-7992-22-5.			
2	Лафоре, Роберт. Структуры данных и алгоритмы в Java = Data structures @ algorithms in Java /			
	Роберт Лафоре ; [пер. с англ. Е. Матвеева] .— 2-е изд. — Санкт-Петербург [и др.] : Питер, 2014			
	.— 701 с. : ил., табл. — (Классика computer science) .— Библиогр.: с.683-685 .— Алф. указ.: с.695-			
	701 .— ISBN 985-5-496-00740-5.			
3	Кормен, Томас. Алгоритмы : Построение и анализ : [Учебник] / Т. Кормен, Ч. Лейзерсон, Р.			
	Ривест ; Пер. с англ. К. Белов и др.; Науч. ред. А. Шень .— М. : МЦНМО, 2002 .— 955 с. : ил. —			
	(Классические учебники: computer science) .— ISBN 5-900916-37-5.			
4	Ахо, Альфред В. Структуры данных и алгоритмы : [Учебное пособие] / Альфред В. Ахо, Джон Э.			
	Хопкрофт, Джеффри Д. Ульман; Пер. с англ. и ред. А.А. Минько .— М. и др. : Вильямс, 2003 .—			
	382 с. : ил., табл. — Парал. тит. л. англ. — Библиогр.: с.369-374 .— Предм. указ.: с. 375-382 .—			
	ISBN 5-8459-0122-7.			

б) дополнительная литература:

№ п/п	Источник
5	Седжвик, Роберт. Фундаментальные алгоритмы на С++ / Р. Седжвик .— М. и др. : DiaSoft, 2002. — Ч.1-4: Анализ. Структуры данных. Сортировка. Поиск .— 2002 .— 687 с. : ил. — ISBN 5-93772- 047-4.
6	Седжвик, Роберт. Фундаментальные алгоритмы на С++ / Р. Седжвик .— М. и др. : DiaSoft, 2002. — Ч.5: Алгоритмы на графах .— 2002 .— 484 с. : ил. — Парал. тит. л. англ. — ISBN 5-93772-054-7 .— ISBN 0-201-36118-3.
7	Седжвик, Роберт. Фундаментальные алгоритмы на С : Пер. с англ. / Р. Седжвик ; Принстонский ун-т .— 3-е изд. — СПб. и др. : DiaSoft, 2003. — Ч.1-4: Анализ. Структуры данных. Сортировка. Поиск .— 2003 .— 670 с. : ил. — Парал. тит. л. англ. — ISBN 5-93772-081-4.
8	Седжвик, Роберт. Фундаментальные алгоритмы на С : Пер. с англ. / Р. Седжвик ; Принстонский ун-т .— 3-е изд. — СПб., и др. : DiaSoft, 2003. — Ч.5: Алгоритмы на графах .— 2003 .— С.661-1127 : ил .— Парал. тит. л. англ. — ISBN 5-93772-082-2.

в) информационные электронно-образовательные ресурсы (официальные ресурсы интернет):

Nº ⊓/⊓	Источник
9	MAXimal::algo [Электронный ресурс] : — Режим доступа: http://e-maxx.ru/algo/

Nº ⊓/⊓	Источник
10	Алгоритмы: теория и практика. Методы [Электронный ресурс] : — Режим доступа: https://stepik.org/course/217/promo
11	Алгоритмы программирования и структуры данных [Электронный ресурс] : — Режим доступа: https://openedu.ru/course/ITMOUniversity/PADS/

16. Перечень учебно-методического обеспечения для самостоятельной работы

Nº п/п	Источник
1	Шилдт, Герберт. Искусство программирования на JAVA : пер. с англ. / Герберт Шилдт, Джеймс
	Холмс .— СПб. [и др.] : БХВ-Петербург, 2005 .— 331 с. : ил. — Парал. тит. л. англ. — Предм. указ.
	: с.330-331, 4000 экз.

17. Информационные технологии, используемые для реализации учебной дисциплины, включая программное обеспечение и информационно-справочные системы (при необходимости)

Nº ⊓/⊓	Наименование
1	OpenJDK - беплатен
2	Среда разработки NetBeans или Intellij IDEA (академическая лицензия или версия Community) -
	бесплатны

18. Материально-техническое обеспечение дисциплины:

Nº	Hamana anna				
п/п	Наименование				
11/11					
1	Мультимедийная лекционная аудитория (корп. 1а, ауд. № 479 или другая подходящая): рабочее				
	место преподавателя: ПК-Intel-i3, проектор, видеокоммутатор, микрофон, аудиосистема,				
	специализированная мебель: доски меловые 2 шт., столы и стулья/лавки в количестве,				
	достаточном для размещения потока студентов; выход в Интернет, доступ к фондам учебно-				
	методической документации и электронным изданиям.				
2	Компьютерный класс (корп. 1a, ауд. № 382-385 или другие подходящие): ПК-Intel-i3 16 шт.,				
	специализированная мебель: доска маркерная 1 шт., столы и стулья в количестве, достаточном				
	для размещения академической группы (подгруппы) студентов; выход в Интернет, доступ к				
	фондам учебно-методической документации и электронным изданиям.				

19. Оценочные средства для проведения текущей и промежуточной аттестаций

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

Nº ⊓/⊓	Наименование раздела дисциплины (модуля)	Компетен- ция(и)	Индикатор(ы) достижения компетенции	Оценочные средства
1	Введение в предмет	ОПК-6	ОПК-6.1	Обязательные практические задания из пункта 20.1 (контроль и оценка выполнения)
2	Основы объектно- ориентированного программирования (инкапсуляция)	ОПК-6	ОПК-6.1, ОПК-6.2	Обязательные практические задания из пункта 20.1 (контроль и оценка выполнения)
3	Понятие сложности алгоритма	ОПК-6	ОПК-6.1, ОПК-6.2	Обязательные практические задания из пункта 20.1 (контроль и оценка выполнения)
4	Алгоритмы сортировки: свойства, простые алгоритмы O(n^2)	ОПК-6	ОПК-6.1, ОПК-6.2	Обязательные практические задания из пункта 20.1 (контроль и оценка выполнения)
5	«Быстрые» алгоритмы сортировки	ОПК-6	ОПК-6.1, ОПК-6.2	Обязательные практические задания из пункта 20.1 (контроль и оценка выполнения)

№ п/п	Наименование раздела дисциплины (модуля)	Компетен- ция(и)	Индикатор(ы) достижения компетенции	Оценочные средства
6	Классификация структур данных, обзор коллекций языка Java	ОПК-6	ОПК-6.1, ОПК-6.2	Обязательные практические задания из пункта 20.1 (контроль и оценка выполнения)
7	Односвязные и двусвязные списки, стеки, очереди	ОПК-6	ОПК-6.1, ОПК-6.2	Обязательные практические задания из пункта 20.1 (контроль и оценка выполнения)
8	Деревья, двоичные деревья поиска	ОПК-6	ОПК-6.1, ОПК-6.2	Обязательные практические задания из пункта 20.1 (контроль и оценка выполнения)
9	AVL-дереья	ОПК-6	ОПК-6.1, ОПК-6.2	Обязательные практические задания из пункта 20.1 (контроль и оценка выполнения)
10	2-3-, 2-3-4- и красно- черные деревья	ОПК-6	ОПК-6.1, ОПК-6.2	Обязательные практические задания из пункта 20.1 (контроль и оценка выполнения)
11	Хеширование (hash- таблицы)	ОПК-6	ОПК-6.1, ОПК-6.2	Обязательные практические задания из пункта 20.1 (контроль и оценка выполнения)
12	Основы теории графов	ОПК-6	ОПК-6.1, ОПК-6.2	Обязательные практические задания из пункта 20.1 (контроль и оценка выполнения)
13	Обход графов, поиск в глубину, поиск в ширину	ОПК-6	ОПК-6.2	Обязательные практические задания из пункта 20.1 (контроль и оценка выполнения)
14	Оптимизационные алгоритмы на графах (кратчайшие пути, минимальное остовное дерево)	ОПК-6	ОПК-6.1, ОПК-6.2	Обязательные практические задания из пункта 20.1 (контроль и оценка выполнения)
15	Примеры практических задач на графах	ОПК-6	ОПК-6.2	Обязательные практические задания из пункта 20.1 (контроль и оценка выполнения)
	Промежуточная аттестация форма контроля – экзамен			Перечень вопросов к экзамену из пункта 20.2

20. Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1 Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью контроля выполнения обязательных практических заданий. Перечень заданий:

Nº	Задание
п/п	oagac
1	Задача 1 – Инкапсуляция (>= 30 индивидуальных вариантов, размещены на общедоступном диске в сети ФКН)
2	Задача 2 – Связные списки (>= 30 индивидуальных вариантов, размещены на общедоступном диске в сети ФКН)
3	Задача 3 – Стеки и очереди (>= 30 индивидуальных вариантов, размещены на общедоступном диске в сети ФКН)
4	Задача 4 – Сортировки (>= 30 индивидуальных вариантов, размещены на общедоступном диске в сети ФКН)
5	Задача 5 – Деревья (>= 30 индивидуальных вариантов, размещены на общедоступном диске в сети ФКН)
6	Задача 6 – Словари (на основе деревьев или hash-функций, >= 30 индивидуальных вариантов, размещены на общедоступном диске в сети ФКН)
7	Задача 7 – Графы 1 (>= 30 индивидуальных вариантов, размещены на общедоступном диске в сети ФКН)
8	Задача 8 – Графы 2 (интерактивное редактирование графа, >= 30 индивидуальных вариантов, размещены на общедоступном диске в сети ФКН)

20.2 Промежуточная аттестация

Для оценивания результатов обучения на зачете используются следующие содержательные показатели (формулируется с учетом конкретных требований дисциплины):

- 1) знание теоретических основ учебного материала, основных определений, понятий и используемой терминологии;
- 2) умение проводить обоснование и представление основных теоретических и практических результатов (теорем, алгоритмов, методик) с использованием математических выкладок, блоксхем, структурных схем и стандартных описаний к ним;
- 3) умение связывать теорию с практикой, иллюстрировать ответ примерами, в том числе, собственными, умение выявлять и анализировать основные закономерности, полученные, в том числе, в ходе выполнения лабораторно-практических заданий;
- 4) умение обосновывать свои суждения и профессиональную позицию по излагаемому вопросу;
- 5) владение навыками программирования и экспериментирования в рамках выполняемых лабораторных заданий;

Различные комбинации перечисленных показателей определяют критерии оценивания результатов обучения (сформированности компетенций) на зачете:

- высокий (углубленный) уровень сформированности компетенций;
- повышенный (продвинутый) уровень сформированности компетенций;
- пороговый (базовый) уровень сформированности компетенций.

Для оценивания результатов обучения на зачете с оценкой используется 4-балльная шкала: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Соотношение показателей, критериев и шкалы оценивания результатов обучения на экзамене представлено в следующей таблице.

Критерии оценивания компетенций	Уровень сформирован ности компетенций	Шкала оценок
Студент владеет основными понятиями учебной дисциплины, может пояснить большинство принципов на примерах; вовремя сдал все практические задания, которые выполнены на высоком уровне, без явных ошибок.	Повышенный уровень	Отлично
Студент владеет основными понятиями учебной дисциплины, однако в ответах на некоторые вопросы допускает неточности; сдал все практические задания, однако к некоторым решениям студента у преподавателя есть замечания.	Базовый уровень	Хорошо
Студент знает основные определения из учебной дисциплины, однако пояснить многие понятия на примерах затрудняется; сдал большую часть практических заданий, однако продемонстрированные решения содержат существенные ошибки.	Пороговый уровень	Удовлетворительно
Студент путается в основных понятиях учебной дисциплины, не может привести примеры; не сдал большую часть практических заданий.	_	Неудовлетвори- тельно

Перечень вопросов к экзамену (зачету):

Nº ⊓/⊓	Вопрос
1	Понятие сложности алгоритма
2	Практические приемы оценки сложности алгоритмов
3	Сортировка слиянием (merge sort): идея, реализация, оценка сложности
4	Быстрая сортировка (quick sort): идея, реализация, оценка сложности
5	Пирамидальная сортировка (heap sort): идея, реализация, оценка сложности
6	Сортировки «без сравнений»: сортировка подсчетом (counting sort), блочная сортировка (bucket sort)
7	Классификация структур данных, обзор классов-коллекций стандартной библиотеки языка Java
8	Принципы реализации структур данных в виде классов с применением инкапсуляции
9	Односвязные списки
10	Двусвязные списки
11	Реализация стека и очереди в виде связного списка

Nº	Родрос
п/п	Вопрос
12	Очередь с приоритетом: идея, возможные варианты эффективной реализации
13	Деревья: терминология, обход и способы отображения деревьев, двоичные деревья
14	Двоичные деревья поиска: основные операции, понятие сбалансированности дерева
15	Реализация множества (Set) и словаря (Мар) на основе двоичного дерева поиска
16	AVL-деревья: идея, операции вставки и удаления, балансировка (R-/L-, RL-/LR-повороты), оценка
	сложности операций
17	2-3- и 2-3-4- деревья: идея и основные операции, оценка сложности
18	Красно-черные деревья: идея и основные операции, оценка сложности
19	Hash-таблицы: понятие hash-функции, коллизии и стратегии их разрешения
20	Реализация множества (Set) и словаря (Мар) на основе hash-таблицы
21	Графы: основные понятия и определения, способы задания (хранения) графов
22	Реализация обхода графов (поиска) в глубину и ширину
23	Отображение графов с помощью библиотеки Graphviz
24	Алгоритм Дейкстры
25	Алгоритм Беллмана-Форда
26	Алгоритм Флойда-Уоршелла
27	Алгоритм Прима
28	Алгоритм Краскала
29	Примеры практических задач, которые сводятся к задачам на графах

20.3. Приведённые ниже задания рекомендуется использовать при проведении диагностических работ для оценки остаточных знаний по дисциплине

Вопросы с множественным ответом (10)

- 1. Выберите все верные для односвязного списка утверждения:
 - Каждый элемент такого списка содержит ссылку (указатель) на следующий элемент списка.
 - Односвязные списки можно использовать только для хранения целых чисел.
 - Односвязный список может быть использован для реализации стека и очереди.
 - Доступ к произвольному элементу списка по индексу осуществляется за линейное время (от размера списка).
- 2. Выберите все верные утверждения для алгоритма быстрой сортировки (QuickSort):
 - С помощью быстрой сортировки можно сортировать только числовые данные.
 - Среднее время работы составляет O(n*log(n))
 - Может быть реализован рекурсивно.
 - Является устойчивым алгоритмом сортировки (равные элементы сохраняют свое взаимное расположение относительно друг друга).
- 3. Укажите, какие алгоритмы работают за логарифмическое время $-O(\log(n))$, если речь идет о наиболее эффективных реализациях:
 - поиск элемента в отсортированном массиве;
 - поиск элемента в сбалансированном двоичном дереве поиска;
 - поиск минимального расстояния между двумя вершинами графа;
 - запись значения в массив по индексу.
- 4. Выберите верные определения двоичного дерева поиска (ДДП):
 - ДДП это двоичное дерево, где каждый элемент число.
 - ДДП это двоичное дерево, в котором все узлы, за исключением листьев, содержат два дочерних узла.

- ДДП это двоичное дерево, для каждого узла которого справедливо утверждение: значение левого потомка меньше значения узла, а значение правого потомка больше значения узла.
- ДДП это двоичное дерево, для каждого узла которого справедливо утверждение: все значения в левом для узла поддереве меньше значения узла, а все значения в правом для узла поддереве больше значения узла.
- 5. Выберите все верные утверждения для связного графа:
 - Связный граф содержит одну компоненту связности.
 - Связный граф не может быть взвешенным.
 - Степень любой вершины связного графа не может быть меньше 2-х.
 - Связный граф обязательно содержит как минимум один цикл.
- 6. Выберите верные утверждения для двусвязного (двунаправленного) списка:
 - Двусвязный список в два раза длиннее при одном и том же количестве элементов. Перебирать элементы (осуществлять итерацию по элементам) в двусвязном списке можно как в прямом (от первого элемента к последнему), так и в обратном порядке.
 - Только двусвязный список может быть использован для реализации очереди.
 - Только двусвязный список может быть использован для реализации стека.
- 7. Алгоритм состоит из 2-х последовательно выполняемых частей. Вычислительная сложность первой части алгоритма $O(n^2)$, второй O(n). Какова вычислительная сложность всего алгоритма?
 - O(n)
 - \bullet O(n²)
 - \bullet O(n³)
 - Для определения вычислительной сложности всего алгоритма недостаточно данных.
- 8. Выберите все верные утверждения для красно-черных деревьев (КЧД):
 - В узлах КЧД могут быть только целые числа.
 - КЧД являются деревьями поиска.
 - Поиск элемента в КЧД с n узлами имеет сложность O(n).
 - Значение в корневом узле дерева, после его добавления, никогда не меняется.
- 9. Выберите все верные утверждения для алгоритма Дейкстры:
 - Алгоритм находит кратчайшие пути от одной из вершин графа до всех остальных.
 - Алгоритм находит кратчайшие пути между все парами вершин графа.
 - Алгоритм может применяться как в ненаправленных, так и в направленных графах.
 - Алгоритм может работать с графами с ребрами с отрицательным весом, если кол-во вершин в графе четное.
- 10. Выберите все верные утверждения для хеш-таблиц:
 - Хеш-таблицы один из эффективных вариантов реализации словарей данных (ассоциативных массивов).
 - Для того, чтобы какой-ли тип данных можно было использовать в качестве ключа в хештаблицах достаточно, чтобы для этого типа была определена операция сравнения.
 - В качестве ключей в хеш-таблицах можно использовать строки.
 - Запись элемента в хеш-таблицу по ключу в среднем требует O(log(n)) времени.

Вопросы с коротким ответом (5)

1. Для взвешенного графа, приведенного на картинке ниже, указать вес минимального остовного дерева?

Ответ: <mark>41</mark>

2. В наивное (примитивное, без балансировки) двоичное дерево поиска, которое вначале пустое, последовательно вставляют следующие значения:

Какой высоты дерево в итоге получится?

Ответ: <mark>5</mark>

3. В AVL-дерево, показанное на рисунке ниже, добавляется значение 65. Какое значение при этом окажется в вершине дерева после балансировки?

Ответ: 60

4. Выполняется следующий фрагмент кода:

```
int[] a = { 1, 3, 4, 7, 4, 3, 2, 4, 3, 4, 2, 4, 3, 3, 1 };
Map<Integer, Integer> map = new HashMap<>();
for (int v: a) {
   int n = map.getOrDefault(v, 0);
   map.put(v, n + 1);
}
```

Какое максимальное значение (обратите внимание, значение, не ключ) будет содержаться в словаре тар после выполнения этого фрагмента?

Ответ: **5**

5. Неориентированный взвешенный граф, состоящий из вершин, пронумерованных от 0 до 7, задан в виде следующей матрицы смежности (номера строк и столбцов нумеруются также с 0-ля и соответствуют номерам вершин, пустые ячейки – отсутствие ребра между соответствующими

вершинами):

			14	17	10		
				3			4
					5		17
14				8			
17	3		8			14	
10		5				8	11
				14	8		3
	4	17			11	3	

Каково кратчайшее расстояние между вершинами 0 и 1?

Ответ: 20

Вопросы развернутые (5)

1. Описать алгоритма Дейкстры (решаемая задача, используемые структуры данных, выполняемые действия, математическая сложность алгоритма). Проиллюстрировать работу данного алгоритма по шагам на каком-либо показательном примере (граф для примера придумать).

Критерии оценивания ответа

Критерии оценивания	Шкала оценок
Обучающийся приводит абсолютно правильное описание алгоритма и действий, которые выполняются на каждом шаге. Для каждого шага верно приведены пересчитываемые значения в используемых алгоритмом структурах данных.	Отлично (90-100 баллов)
Обучающийся приводит правильное описание алгоритма и действий, которые выполняются на каждом шаге, но в объяснениях или в иллюстрации алгоритма есть мелкие неточности или опущены какие-либо важные детали.	Хорошо (70-80 баллов)
В описании алгоритма содержатся ошибки, но с целом суть алгоритма показана правильно.	Удовлетворительно (50-70 баллов)
Суть алгоритма описана неправильно или же в иллюстрации алгоритма по шагам на конкретном примере обучающийся	Неудовлетворительно (менее 50 баллов)

демонстрирует непонимание работы	
алгоритма.	

2. Описать схематично код на любом языке программирования, который на основе связных списков реализует структуру данных «Стек» (включая основные операции).

Критерии оценивания ответа

Критерии оценивания	Шкала оценок
Обучающийся приводит абсолютно правильную реализацию необходимых структур данных и основных операций.	Отлично (90-100 баллов)
Обучающийся приводит абсолютно правильную реализацию необходимых структур данных и основных операций, но в реализации есть мелкие неточности.	Хорошо (70-80 баллов)
В приведенном коде содержатся ошибки, но в целом идея реализации стека на основе связного списка отражена верно.	Удовлетворительно (50-70 баллов)
Код не соответствует задаче или содержит грубые ошибки, демонстрирующие, что обучающийся не понимает принцип работы стека, реализованного на основе связанного списка.	Неудовлетворительно (менее 50 баллов)

3. Описать схематично код на любом языке программирования, который на основе связных списков реализует структуру данных «Очередь» (включая основные операции).

Критерии оценивания ответа

Критерии оценивания	Шкала оценок
Обучающийся приводит абсолютно правильную реализацию необходимых структур данных и основных операций.	Отлично (90-100 баллов)

Обучающийся приводит абсолютно правильную реализацию необходимых структур данных и основных операций, но в реализации есть мелкие неточности.	Хорошо (70-80 баллов)
В приведенном коде содержатся ошибки, но в целом идея реализации очереди на основе связного списка отражена верно.	Удовлетворительно (50-70 баллов)
Код не соответствует задаче или содержит грубые ошибки, демонстрирующие, что обучающийся не понимает принцип работы очереди, реализованной на основе связанного списка.	Неудовлетворительно (менее 50 баллов)

4. Описать принцип реализации словаря на основе хеш-таблицы. Проиллюстрировать общую структуру хеш-таблицы и принцип работы.

Критерии оценивания ответа

Критерии оценивания	Шкала оценок
Обучающийся приводит абсолютно правильное описание идеи и принципов работы хеш-таблиц.	Отлично (90-100 баллов)
Обучающийся приводит описание идеи и принципов работы хеш-таблиц, но некоторые важные аспекты реализации не показаны.	Хорошо (70-80 баллов)
Обучающийся приводит в целом правильное описание описание идеи и принципов работы хеш-таблиц, но в деталях содержатся ошибки.	Удовлетворительно (50-70 баллов)
Принципы работы хеш-таблиц описаны совершенно неправильно или вообще не описаны.	Неудовлетворительно (менее 50 баллов)

5. Пояснить, в чем заключается суть асимптотической оценки сложности алгоритмов с помощью обозначения O(f(n)). Привести примеры.

Критерии оценивания ответа

Критерии оценивания	Шкала оценок
Обучающийся приводит абсолютно правильное определение/объяснение для асимптотической оценки сложности и правильные примеры.	Отлично (90-100 баллов)
Обучающийся приводит в целом правильное определение/объяснение для асимптотической оценки сложности, но с небольшими неточностями.	Хорошо (70-80 баллов)
По ответу обучающего понятно, что в целом он правильно понимает суть оценки сложности алгоритмов, но дать строгое определение/объяснение не может, в примерах могут содержать ошибки.	Удовлетворительно (50-70 баллов)
По ответу обучающегося можно сделать вывод, что суть оценки вычислительной сложности алгоритмов он не понимает.	Неудовлетворительно (менее 50 баллов)