Elliptic Curves - Assignment 1

Matteo Durante, s2303760, Leiden University

22nd February 2019

Exercise 2

(b) Consider the following system of equations:

$$\begin{cases} y^2 = x^3 + 2x^2 \\ y = \lambda x \end{cases} \begin{cases} x^3 + (2 - \lambda^2)x^2 = x^2(x + (2 - \lambda^2)) = 0 \\ y = \lambda x \end{cases}$$

The second order equation in x has solutions given by 0 and $\lambda^2 - 2$ and, since $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$, $2 - \lambda^2 \neq 0$ for $\lambda \in \mathbb{Q}$, thus the only solution $\neq (0,0)$ of the system of equations is $P_{\lambda} = (\lambda^2 - 2, \lambda^3 - 2\lambda)$.

(c) Notice that, as $\lambda \in \mathbb{Q}$ varies, we get every point of C (except for those with x = 0) as a solution of the previous system of equations.

Indeed notice that, if x = 0, then y = 0 for any point in C. This means that, given $P = (a, b) \in C \setminus (0, 0), a \neq 0$. Then, since $a, b \in \mathbb{Q}, b/a \in \mathbb{Q}$ and thus $(a, b) = P_{\lambda}$ for a unique $\lambda = b/a \in \mathbb{Q}$.

Now, since each $\lambda \in \mathbb{Q}$ locates a unique $P_{\lambda} \in C \setminus (0,0)$ (the one s.t. $b/a = \lambda$), we may parametrize bijectively the \mathbb{Q} -rational points in C through the following function:

$$f: \mathbb{P}^{1}_{\mathbb{Q}} \to C$$

$$(\lambda:i) \mapsto \begin{cases} ((\lambda/i)^{2} - 2, (\lambda/i)^{3} - 2(\lambda/i)) & \text{if } i \neq 0 \\ (0,0) & \text{otherwise} \end{cases}$$

Exercise 3

(b) Consider the polynomial $g(x,y) = f(x) - y^2$, $f(x) \in \mathbb{K}[x]$. It is s.t. $\nabla g = (f'(x), -2y)$. Since an affine curve C is s.t. dim C = 1, it is smooth at $P \in C$ if and only if $\nabla g(P) \neq (0,0)$, i.e. if and only if it has rank 2 - 1 = 1.

Now, given $P \in C$, $\nabla g(P) = (0,0)$ if and only if $f'(p_1) = -2y(p_2) = 0$, which combined with g(P) = 0 is equivalent to $f(p_1) = f'(p_1) = 0$, $p_2 = 0$, i.e. $p_1 \in \overline{\mathbb{K}}$ is a multiple root of f(x) and the second coordinate is 0. This means that such a curve presents a singular point if and only if f(x) has a multiple root over $\overline{\mathbb{K}}$.

(c) We know that $f(x) = x^3 + ax + b$ defines a smooth curve C if and only if it is separable. i.e. it doesn't have a multiple root. This is equivalent to $\Delta(f) \neq 0$. Remember that $\Delta(f) = (-1)^{\frac{3\cdot 2}{2}} Res(f, f') = -Res(f, f') = -Res(f', f)$.

Let $char(\mathbb{K}) = 3$. Then, f'(x) = a.

If a = 0, $f(x) = x^3 + b = (x + \sqrt[3]{b})^3$ has a triple root, $\sqrt[3]{b}$, and $4a^3 + 27b^2 = 4 \cdot 0 + 0 \cdot b^2 = 0$. If $a \neq 0$, $Res(f', f) = a^3 \neq 0$ and $4a^3 + 27b^2 = 4a^3 \neq 0$. Let $char(\mathbb{K}) \neq 2, 3$. Then, $f'(x) = 3x^2 + a$ has roots $\pm \sqrt{-\frac{a}{3}}$. It follows that $Res(f', f) = 3^3 \cdot f(\sqrt{-\frac{a}{3}}) \cdot f(-\sqrt{-\frac{a}{3}}) = 3^3(-\frac{a}{3}\sqrt{-\frac{a}{3}} + a\sqrt{-\frac{a}{3}} + b)(\frac{a}{3}\sqrt{-\frac{a}{3}} - a\sqrt{-\frac{a}{3}} + b) = 4a^3 + 27b^3$, hence f(x) has a multiple root if and only if $4a^3 + 27b^2 = 0$.

Exercise 6

(b) Let $a \in \mathbb{K}^*$. Then, since v is a group homomorphism, $v(a^{-1}) = -v(a)$, thus for any $a \in R_v \setminus \{0\}$ we have that v(a) = 0 implies $v(a^{-1}) = 0$ and therefore $a^{-1} \in R_v$, i.e. $a \in R_v^*$, while v(a) > 0 implies $v(a^{-1}) < 0$ and $a^{-1} \notin R_v$.

Observe that v(-a) = v(a) + v(-1) = v(a) for every $a \in \mathbb{K}$.

Let $a, b \in R_v \setminus \{0\}$ and suppose $v(a) \ge v(b)$. Then, $v(ab^{-1}) = v(a) - v(b) \ge 0$, thus $ab^{-1} \in R_v$ and, since $a = a(b^{-1}b) = (ab^{-1})b$, $a \in (b)$. This implies that R_v is a PID, as every non-zero ideal is generated by its element of lowest norm, which exists because $v(\mathfrak{a}) \subset \mathbb{N}$ is bounded below for every non-zero ideal \mathfrak{a} of R_v .

Consider now $\mathfrak{m} = \{0\} \cup \{a \in R_v \mid v(a) > 0\}$ and take $a, b \in \mathfrak{m}, c \in R_v$. Since $v(a - b) \ge \min\{v(a), v(-b)\} > 0$ and $v(ac) = v(a) + v(c) \ge v(a) > 0$, $a - b, ac \in \mathfrak{m}$. It follows that \mathfrak{m} is a proper ideal of R_v , hence it is principal. Furthermore, it contains every non-invertible element of R_v , which will then be local with maximal ideal \mathfrak{m} .

Let $\pi \in \mathfrak{m}$ be s.t. $v(\pi) = 1$. Any element $a \in \mathfrak{m}$ has norm ≥ 1 , thus by what we observed $a \in (\pi)$ and we are done.

(c) As stated earlier, every non-zero ideal $\mathfrak{a} \subset R_v$ is principal and generated by its element of lowest norm. Let $(a) = \mathfrak{a}$. Then, for some $n \in \mathbb{Z}_{n \geq 0}$, $v(a) = n = v(\pi^n)$ and therefore, by previous observations, $a \in (\pi^n)$, but at the same time $\pi^n \in (a)$. It follows that $\mathfrak{a} = (\pi^n)$.