Course Introduction

SWEN304 / SWEN439

Database System Engineering

Trimester 1, 2021

Lecturer: Dr Hui Ma

Engineering and Computer Science

- Lecturer and course coordinator:
 - A/Prof. Hui Ma
 - CO 259
 - Ph: (extn) 5657
 - Hui.Ma@ecs.vuw.ac.nz
 - Office hour: 2-3pm, Thursday

- Tutors:
 - Tao Shi <u>Tao.Shi@ecs.vuw.ac.nz</u>
 - Hiroshika Premarathne <u>premarhiro@myvuw.ac.nz</u>
 - Vincent Yu <u>yuyong1@myvuw.ac.nz</u>
 - Kaan Demir <u>demirkaan97@gmail.com</u>

- School office: CO358, Ph. 463 5341
- Class representative:
 - please nominate and fill the form at:

http://www.vuwsa.org.nz/class-representatives/

Victoria Lectures Lectures

Three lectures per week (2 lectures + 1 tutorial)

Day	Time	Where
Tuesday	11:00 12:00	HM LT002
Thursday	11:00 12:00	HM LT104
Friday	11:00 12:00	HM LT104

- Slides will be posted on the course website
- Expected workload: 10 hours a week

Tutorials and Help Desks

- Lectures and tutorials will not be strictly divided
- In principle, Friday time slots will be for tutorials
- What:
 - Stuff from lectures,
 - extending stuff from lectures,
 - Assignments, and
 - Projects
- Help desks will be offered from week 2 in the labs (CO238 or CO246) to help you with your assignments and projects
 - Details will be posted on the course website and announced in the lectures

SWEN304 Assessment

Assessment:

Assignment 1:

Assignment 2:

Assignment 3:

Project 1:

Project 2:

Test 35%

15% 10% 10%) 35%

20%] 10%| **30%**|

SWEN439 Assessment

Assessment:

Assignment 1:

Assignment 2:

Assignment 3:

Project 1:

Project 2:

Essay 15%

Test 30%

15% 5% 5% 25% 70% 20% 10% 30%

To Pass the Course

- Mandatory Requirements:
 - at least 40% of the overall marks for projects and assignments
 - achieve at least a D grade for the test
- To pass the course
 - meet the mandatory requirements
 - at least 50% grade overall

Online Resources

 Slides and other information will be posted on the course website:

https://ecs.wgtn.ac.nz/Courses/SWEN304_2021T1/WebHomehttps://ecs.wgtn.ac.nz/Courses/SWEN439_2021T1/WebHomehttps://ecs.wgtn.ac.nz/Courses/S

Discussion Forum for Assignment 1-3, Project1-2:

https://ecs.wgtn.ac.nz/cgi-bin/yabb/YaBB.pl?board=SWEN304 2020T1

Discussion Forum for SWEN439 Essay:

https://ecs.wgtn.ac.nz/cgi-bin/yabb/YaBB.pl?board=SWEN439_2021T1

Zoom Link to attend the lecture

https://vuw.zoom.us/my/swen304

 Video of Lectures can be accessed via Blackboard

- Assignments and Projects
 - Helpful Links:
 - PostgreSQL documentation,
 - Java Tutorial Manual

General Information

- Prerequisite:
 - COMP 261 or SWEN 221; and
 - ENGR 123 or MATH 161
- Textbook:

ElMasri, Navathe: **Fundamentals of Database Systems,** Sixth Edition, Addison Wesley

Why Learn Database Systems?

- Databases and database systems are essential components of everyday life
 - Traditional database applications: student records, census data, bank accounts, etc.
 - Multimedia databases: images, audio, video streams
 - Geographic information systems (GIS): maps, weather data, satellite images
 - Data warehouses and online analytical processing (OLAP)
 - Real-time and Active Databases
 - Many other applications

Why Learn Database Systems?

- Databases play a critical role in almost all areas where computers are used, e.g. business, e-commerce, engineering, medicine, government, education
- The efficiency of an application depends on the quality of (logical and physical) data organization
- Databases is a matured area with a sound theoretical foundation and great practical knowledge
- We need to understand fundamentals of database technology
- This course is an introduction to database systems and database system engineering

UNIVERSITY database

 Information concerning students, courses, and grades in a university environment

Data records

- STUDENT
- COURSE
- GRADES
- Specify structure of records of each file by specifying data type for each data element
 - String of alphabetic characters
 - Integer, etc.

- Construct UNIVERSITY database
 - Store data to represent each student, course, and grade report as a record in an appropriate file
- Relationships among the records
- We can query and update the database

An Example (cont'd.)

- Examples of queries:
 - Retrieve the transcript
 - List the names of students who took the 'SWEN304' course and their grades
 - List the prerequisites of the 'SWEN304' course
- Examples of updates:
 - Change the major of 'Smith' to 'SWEN'
 - Create a new course 'WISE'
 - Enter a grade of 'A' for 'Smith' in the 'SWEN304'

- Phases for designing a database:
 - Requirements specification and analysis
 - Conceptual design
 - Logical design
 - Physical design

An Example (cont'd.)

STUDENT				
ld	Lname	Fname	Major	
300111	Smith	Susan	COMP	
300121	Bond	James	MATH	
300132	Smith	Susan	COMP	

Course				
Course_id	Cname	Points	Dept	
SWEN304	DB sys	15	Engineering	
COMP301	softEng	20	Engineering	
MATH214	DisMat	15	Mathematics	

GRADES				
ld	Course_id	Grade		
300111	SWEN304	A+		
300111	COMP301	Α		
300111	MATH214	Α		
300121	COMP301	В		
300132	COMP301	С		
300121	SWEN304	B+		
300132	SWEN304	C+		

Actors on the Scene

- Database administrators (DBA) are responsible for:
 - Authorizing access to the database
 - Coordinating and monitoring its use
 - Acquiring software and hardware resources
- Database designers are responsible for:
 - Identifying the data to be stored
 - Choosing appropriate structures to represent and store this data
- End users: people whose jobs require access to the database
 - e.g., Casual users, Naïve or parametric users, sophisticated users, standalone users

Actors on the Scene (cont'd.)

System analysts

Determine requirements of end users

Application programmers

Implement these specifications as programs

Workers behind the Scene

DBMS system designers and implementers

 Design and implement the DBMS modules and interfaces as a software package

Tool developers

Design and implement tools

Operators and maintenance personnel

 Responsible for running and maintenance of hardware and software environment for database systems

Victoria Victoria Tr. Whare Williampe of the Dock of the Ras a Mail Topics Topics Topics

- Introduction to Database Systems (basic terms and concepts),
- Relational data model (RDM) and database management system (DBMS),
- Structured Query Language (SQL),
- Query optimization

- Database Design
 - ER Data Model
 - Update Anomalies
 - Lossless Join
 - Functional Dependencies
 - Normal Forms and Normalization
- Transaction processing, concurrency control, and recovery

Plan for next lecture

- Databases (DB) and data
- Database management systems (DBMS)
- Database systems (DBS)

- Reading:
 - Chapter 1 of the textbook