IIT KANPUR

CS345A - AlgorithmsII

Assignment 4

Anjani Kumar 11101 Sumedh Masulkar 11736

Contents

1	Short	est path: An adventurous drive in Thar desert
	1.1	Problem
	1.2	Brief Description:
	1.3	Pseudo Code:
	1.4	Proof Of Correctness
	1.5	Time Complexity
2	Optin	nizing your time during exam days
	2.1	Brief description
	2.2	Functions used
	2.3	Pseudo code
	2.4	Proof of Correctness
	2.5	Time Complexity
	2.6	Space Complexity
3	Dyna	mic Programming again
	3.1	problem
	3.2	Brief Description
	3.3	Functions used
	3.4	Pseudo code
	3.5	Proof of Correctness
	3.6	Time complexity

1 Shortest path: An adventurous drive in Thar desert

1.1 Problem

Given a graph G containing nodes $\{s, d, junctions\}$, out of which some junctions are fuel-stations, Edges: the roads connecting the nodes, and the maximum capacity c of the bike before it needs refilling. We need to find shortest feasible path from s to d, if it exists, otherwise notify that it does not exists.

1.2 Brief Description:

The problem can be modelled using 2 graphs: G(V, E):

- The nodes V are junctions present in the desert.
- The edges E are the roads connecting those junctions.

 $G_f(V_f, E_f)$:

- The nodes V_f are the start, end, and the fuel stations.
- The edges E_f are the *feasible* roads connecting those junctions.
- Initially, G_f contains no edges.

The algorithm returns the shortest feasible path between s and d, if possible. Else, it returns no path.

We are using **Dijkstra's** algorithm, multiple times to find the feasible path.

Construction of G_f :

- \bullet insert s
- Begin Dijkstra's algorithm from s in graph G and insert the edges from s to other nodes of G_f accordingly.
- For all fuel stations in G_f , begin Dijkstra's algorithm from them in graph G, update the edges in G_f according to minimum distance between nodes.
- Delete all the edges in G_f whose weights are more than capacity of bike (c).

Functions used:

- Dijkstra's_Mod (G_f, G, u) Runs Dijkstra's algorithm from node u in graph G and update edges in graph G_f accordingly.
- update(G, u, v, w)In the input graph G, it inserts an edge between nodes u and v with weight w, if there was no edge previously. Otherwise, if $w < weight_{(u,v)}$ it updates the weight of edge (u,v) to w.

- Delete(G,c)Deletes any edge in input graph G whose weight is more than c.
- Pathfinder(T, u, v)Returns the path from u to v in tree T using BFS traversal, if it exists. Else it returns NULL.

1.3 Pseudo Code:

```
Algorithm 1: Pseudo-code for Dijkstra's_Mod(G_f, G, u)

1 Tree \leftarrow Dijkstra's(G, u)

2 for \forall v \in T do

3 | if v \in \{s, d, fuel - pump\} then

4 | Insert(G_f, u, v, w)
```

```
Algorithm 2: Pseudo-code for Find_Path(G, s, d, c)

1 Create a graph G_f(V_f, E_f) with V_f \leftarrow \{s, d, fuel - stations\}

2 E_f \leftarrow NULL

3 Dijkstra's_Mod(G_f, G, s)

4 for \forall u \in G_f - \{s\} do

5 \bigcup Dijkstra's_Mod(G_f, G, u)

6 Delete(G_f, c)

7 Path \leftarrow Dijkstra's(G_f, s)

8 return Pathfinder(Path, s, d)
```

1.4 Proof Of Correctness

2 cases are possible for a given input G:

- Case 1: If there is no feasible path in G.
- Case 2: If \exists a feasible path from s to d in G.

Claim: In case 1, there would be no path from s to d in graph G_f .

Proof: Case 1 can be further divided into 2 cases:

- Case 1A: There is no path from s to d in G.
 - We are using the result of dijkstra's algorithm applied on graph G to update edges in G_f . Hence, a path from s to d in G_f in this case is not possible.
- Case 1B: There is a path from s to d but it is not feasible.

- In this case, some edges in the path have weights > c.
- The Delete function used by the algorithm removes all the edges E_f in G_f such that $w_{G_f} > c$. Hence, there is no path in G_f between s and d.

Claim: In Case 2, There will always be a path from s to d in G_f .

Proof: Case 2 can be further divided into 2 cases:

- Case 2A: The path requires no refilling.
 - In this case, \exists a path from s to d with distance $\leq c$.
 - Since all the shortest edges in G with $weight \leq c$ are kept in G_f , therefore G_f will also contain that path.
- Case 2B: The path requires refilling.
 - In this case, the path has distance > c, and has edges with weight $\leq c$.
 - Using the **shortest sub-path** rule, if the given feasible path between s and d is the shortest, then all its edges will also have the minimum weight possible.
 - Since we are using **Dijkstra's** algorithm to build edges in g_f , at the end of the algorithm, all the edges in G_f will be of minimum possible weight.
 - Hence the optimal path will also be present in G_f .

1.5 Time Complexity

- Update take O(1) time.
- Dijkstra's_Mod takes O(mlog n) time.
- **Delete** takes O(m) time.
- Pathfinder performs simple BFS traversal, hence it takes O(m+n) time.
- Dijkstra's_Mod is called fo evey node in G_f .
- Hence the total time taken T is:

$$T = c_1 O(mlog \ n) + c_2 n O(mlog \ n) + c_3 O(m+n)$$
$$T = O(mnlog \ n)$$

2 Optimizing your time during exam days

2.1 Brief description

- In order to maximize the average, we need to maximize the sum of all the grades obtained in different courses.
- The problem can be solved using Dynamic Programming.
- The optimal solution for the grades would follow the given recursion:

$$Opt(i,h) = max_{i \in 0 \text{ to } h}(f_i(j) + Opt(i-1,h-j))$$

- We are using 2 matrix: grade and max_time.
- grade[i][j] stores the optimum grade for i courses that are given a total of j hours.
- $max_time[i][j]$ stores the hours required by the i^{th} course when a total of i courses are given j hours.
- For a single course, grade[1][h] is simply $f_1(h)$
- In case of finding optimal solution for multiple courses, the algorithm iteratively computes the *grade* and *max_time* matrix using the formula in 2.1.
- The hours required for each course can be calculated using back tracking.

2.2 Functions used

- Optimize(n, H)It computes the matrix grade[i][j] and $max_time[i][j]$.
- getHours(n, H)It returns the amount of hours required for each course to achieve maximum grades using backtracking. Suppose the input is (i, h) Then the hours for course i - 1 will be given by max_time $[i - 1][h - max_time[i][h]]$.

2.3 Pseudo code

```
Algorithm 3: Pseudo code for Optimize(n, H)
 1 for h \leftarrow 0 to H do
        \operatorname{grade}[1][h] \leftarrow f_1(h)
       \max_{\text{time}}[1][h] \leftarrow h
4 for i \leftarrow 2 to n do
        for h \leftarrow 0 to H do
             temp\_grade \leftarrow 0
6
             for j \leftarrow 0 to h do
                 if (f_i(j) + grade[i-1][h-j] \ge temp\_grade) then
8
9
                     temp\_grade \leftarrow f_i(j) + grade[i-1][h-j]
10
             grade[i][h] \leftarrow temp\_grade
11
             \max_{t}[i][h] \leftarrow temp_{j}
12
```

```
Algorithm 4: Pseudo code for getHours(n, H)

1 h \leftarrow H

2 for i \leftarrow n to 1 do

3 bour[i] \leftarrow max\_time[i][h]

4 h \leftarrow h - hour[i]
```

```
Algorithm 5: Pseudo code for main()

1 Optimize(n, H)
2 getHours(n, H)
```

2.4 Proof of Correctness

To Prove:

$$Opt(i,h) = max_{j \in 0 \text{ to } h}(f_i(j) + Opt(i-1,h-j))$$

Where Opt(i, h) is the optimal solution for i courses given a total of h hours.

Proof by Induction

• Base Case:

In case of only 1 course, entire hours will be given to that course since $f_i(h)$ is non decreasing.

• Induction Hypothesis:

Let us assume that the theorem is true for i-1 courses. Hence, for $\forall h \in H$, we know the optimal solution for i-1 courses.

• Induction step:

For the i^{th} course, the **Optimize** function takes the following sum for $\forall j \in h$:

$$f_i(j) + Opt(i-1,h-j)$$

and keeps the maximum value among those j.

This step is repeated for $\forall h \in H$, so using optimal solution for $(i-1)^{th}$ step, we have got optimal solution for i^{th} step.

• Hence proved.

2.5 Time Complexity

As can be seen from the pseudo code, it take $O(nH^2)$ to perform **Optimize** and it takes O(n) time to perform **getHours**.

Hence the overall time complexity is $O(nH^2)$.

2.6 Space Complexity

We are using 2 matrix of size $n \times H$. Therefore total space taken is O(nH).

3 Dynamic Programming again

3.1 problem

Given a set of graphs $\{G_0, G_1, ..., G_b\}$, each containing n nodes such that $\{s, t\} \in$ the vertices of all graphs.

We have to find a polynomial time algorithm to find the sequence of paths $P_0, P_1, ..., P_b$ of minimum cost given by:

$$cost(P_0, P_1, ..., P_b) = \sum_{i=0}^{b} l(P_i) + k * changes(P_0, P_1, ..., P_b)$$

where, $l(P_i)$ is the number of edges in P_i

and $changes(P_0, P_1, ..., P_b)$ is the number of indices $i~(0 \leq i \leq b-1)$ for which $P_i \neq P_{i+1}$

3.2 Brief Description

- The problem is solved using Dynamic programming.
- Let $G = \{G_0, G_1, ..., G_b\}$ be a set of graphs with n nodes in each graph.
- We define Intersect(i, j) as:

$$Intersect(i,j) = \bigcap_{k=i}^{k=j} (G_k) \forall (0 \le i \le j \le b)$$

The graph Intersect(i, j) obtained contains n nodes and the common edges in graphs $G_i, G_{i+1}..., G_j$. Each Intersect(i, j) is given the following parameters:

- shortest(i, j): It is the number of edges in the shortest path from s to t in Intersect(i, j).
- -sPath(i,j): It is the shortest path from s to t in Intersect(i,j).
- Define costMin(i) for a graph G_i such that costMin(i) stores the minimum of $cost(P_0, P_1, ..., P_i)$ in the set of graphs $\{G_0, G_1, ..., G_i\}$. The following recursion holds for costMin(i): costMin(i)=

$$min((i+1)*shortest(0,i), min_{i=0}^{j=i}(costMin(j)+(i-j)*shortest(j+1,i)+k))$$

- This computation can be done iteratively by incrementing i from $(0 \ to \ b)$ as costMin(i) depends on shortest(i,j) and $\{costMin(j) \ \forall \ 0 \le j \le i\}$; both of which have already been computed beforehand.
- The algorithm maintains the sequence $(P_0, P_1, ...)$ in the following manner:
 - Suppose the $(i-1)^{th}$ sequence $(P_0, P_1, ..., P_{i-1})$ is computed correctly.
 - In the i^{th} iteration, costMin(i) comes out to be minimum for some $(0 \le j \le i)$. In that case, the sequence $(P_{j+1}, ..., P_i)$ is updated to sPath(j, i) and the rest of the sequence remains as it is.

3.3 Functions used

• pathfinder(G, s, t): It performs BFS traversal on graph $Intersect(i, j) = \bigcap_{k=i}^{k=j} (G_k) \forall (0 \leq i \leq j \leq b)$ and returns the shortest path, and the length of that path in Intersect(i, j).

3.4 Pseudo code

```
Algorithm 6: Pseudo code for sequence(G,s,t,b,k)
 1 pathfinder(G, shortest, sPath) for i \leftarrow 0 to b do
       min \leftarrow (i+1) * shortest(0,i)
       pos \leftarrow 0
 3
       for j \leftarrow 0 to i - 1 do
 4
           if min > costMin(j) + (i - j) * shortest(j + 1, i) + k then
 5
               min \leftarrow costMin(j) + (i - j) * shortest(j + 1, i) + k
6
               pos \leftarrow j + 1
 7
       costMin(i) \leftarrow min
8
       for j \leftarrow 0 to i do
9
           if j \leq pos - 1 then
10
               minPath[i][j] \leftarrow minPath[pos-1][j]
11
               else
12
                   minPath[i][j] \leftarrow sPath(pos, i)
13
14 return minPath/b/
```

3.5 Proof of Correctness

```
To Prove: costMin(i) = \\ min((i+1)*shortest(0,i), min_{j=0}^{j=i}(costMin(j)+(i-j)*shortest(j+1,i)+k))
```

Where costMin(i) for a graph G_i such that costMin(i) stores the minimum of $cost(P_0, P_1, ..., P_i)$ in the set of graphs $\{G_0, G_1, ..., G_i\}$.

Proof by Induction

- Base Case:
 - In case of only 1 graph, shortest (0,0) will store the length of shortest path between s and t in G(0,0), which is trivial to prove.
- Induction Hypothesis: Let us assume that the theorem is true for i-1 graphs.
- Induction step: After inserting i^{th} graph, \exists an optimal path sequences $(P_0, P_1, ...P_i)$, such that $P_i = P_{i-1} = P_{i-2}.... = P_{j+1} \neq P_j$, the cost for graphs $(G_0, G_1, ...G_i)$ will be

 $P_i = P_{i-1} = P_{i-2}..... = P_{j+1} \neq P_j$, the cost for graphs (G_0, G_1,G_i) will be $\operatorname{costMin}(j) + (i-j)^*\operatorname{shortest}(j+1,i) + \operatorname{K}(\operatorname{penalty for } P_{j+1} \neq P_j)$. Therefore, finding all such possibilities $\forall j < i$, and taking minimum cost will give the optimal solution for i.

• Hence proved.

3.6 Time complexity

- pathfinder(G, s, t): pathfinder computes $Intersect(i, j) \ \forall (0 \le i \le j \le b)$. $\exists \ O(b^2)$ pairs of (i, j). For finding the intersection, at most b graphs are examined and each graph can have at most $O(n^2)$ edges. Therefore each (i, j) pair takes $O(bn^2)$ time, and for $O(b^2)$ pairs, time complexity would be $O(n^2b^3)$.
- sequence(G, s, t, b, k): From the pseudo code, its time complexity is $T(pathfinder) + C * O(b^2)$. Hence the overall time complexity is $O(n^2b^3)$.