2. Getting started

Hsu, Lih-Hsing

Computer Theory Lab.

2.1 Insertion sort

- Example: Sorting problem
 - Input: A sequence of *n* numbers $\langle a_1, a_2, ..., a_n \rangle$
 - Output: A permutation $\langle a_1, a_2, ..., a_n' \rangle$ of the input sequence such that $a_1 \leq a_2 \leq ... \leq a_n$.

The number that we wish to sort are known as the *keys*.

Pseudocode

Insertion sort

```
Insertion-sort(A)
1 for j \leftarrow 2 to length[A]
    do key←A[/]
2
3
       *Insert A[j] into the sorted sequence A[1..j-1]
        i \leftarrow j - 1
4
        while i>0 and A[i]>key
5
             do A[i+1] \leftarrow A[i]
6
7
             i \leftarrow i - 1
        A[i+1] \leftarrow \text{key}
8
```

Chapter 2 P.3

Computer Theory Lab.

The operation of Insertion-Sort

Sorted in place :

The numbers are rearranged within the array A, with at most a constant number of them sorted outside the array at any time.

Loop invariant :

At the start of each iteration of the for loop of line 1-8, the subarray A[1..j-1] consists of the elements originally in A[1..j-1] but in sorted order.

Chapter 2 P.5

Computer Theory Lab.

2.2 Analyzing algorithms

Analyzing an algorithm has come to mean predicting the resources that the algorithm requires.

- <u>Resources:</u> memory, communication, bandwidth, logic gate, time.
- Assumption: one processor, RAM
- (We shall have occasion to investigate models for parallel computers and digital hardware.)

2.2 Analyzing algorithms

- The best notion for input size depends on the problem being studied..
- The running time of an algorithm on a particular input is the number of primitive operations or "steps" executed. It is convenient to define the notion of step so that it is as machine-independent as possible

Chapter 2

Computer Theory Lab.

P.7

Insertion-sort(A)		cost	times
1 for $j \leftarrow 2$ to length[A]		c_1	n
2	do key←A[<i>j</i>]	<i>c</i> ₂	n-1
3	*Insert A[j] into the		
	sorted sequence A[1j-1]	0	
4	<i>i</i> ← <i>j</i> -1	C4	n-1
5	while <i>i</i> >0 and <i>A</i> [<i>i</i>]>key	_	$\sum_{j=2}^{n} t_{j}$
6	do $A[i+1] \leftarrow A[i]$	<i>c</i> 6	$\sum_{j=2}^{n} (t_j - 1)$ $\sum_{j=2}^{n} (t_j - 1)$ $j=2$
7	<i>i</i> ← <i>i</i> -1	<i>c</i> 7	$\sum_{j=2}^{n} (t_j - 1)$
8	<i>A</i> [<i>i</i> +1] ←key	<i>c</i> 8	n-1
<i>t</i> :	· the number of times the while loop test		

in line 5 is executed for the value of j.

Chapter 2

the running time

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

• $t_j = 1$ for j = 2,3,...,n: Linear function on n

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$

Chapter 2

Computer Theory Lab.

P.9

the running time

• $t_j = j$ for j = 2,3,...,n: quadratic function on n.

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (\frac{n(n+1)}{2} - 1) + c_6 (\frac{n(n-1)}{2}) + c_7 (\frac{n(n-1)}{2}) + c_8 (n-1)$$

$$= (\frac{c_5 + c_6 + c_7}{2}) n^2 - (c_1 + c_2 + c_4 + \frac{c_5 - c_6 - c_7}{2} + c_8) n$$

$$- (c_2 + c_4 + c_5 + c_8)$$

Chapter 2

Worst-case and average-case analysis

- Usually, we concentrate on finding only on the worst-case running time
- Reason:
 - It is an upper bound on the running time
 - The worst case occurs fair often
 - The average case is often as bad as the worst case. For example, the insertion sort. Again, quadratic function.

Chapter 2 P.11

Computer Theory Lab.

Order of growth

- In some particular cases, we shall be interested in average-case, or expect running time of an algorithm.
- It is the rate of growth, or order of growth, of the running time that really interests us.

2.3 Designing algorithms

- There are many ways to design algorithms:
- Incremental approach: insertion sort
- Divide-and-conquer: merge sort
 - recursive:
 - divide
 - conquer
 - combine

Chapter 2

P.13

Computer Theory Lab.

Merge(A,p,q,r)

- $1 \quad n_1 \leftarrow q p + 1$
- $2 \quad n_2 \leftarrow r q$
- 3 create array L[1.. $n_1 + 1$] and R[1.. $n_2 + 1$]
- 4 for $i \leftarrow 1$ to n_1
- 5 **do** L[i] \leftarrow A[p + i 1]
- 6 for $j \leftarrow 1$ to n_2
- 7 **do** R[i] \leftarrow A[q + j]
- 8 $L[n_1 + 1] \leftarrow \infty$
- 9 $R[n_2 + 1] \leftarrow \infty$

Merge(A,p,q,r)

```
10
       i \leftarrow 1
    j ←1
11
     for k \leftarrow p to r
12
13
         do if L[i] \leq R[j]
14
                 then A[k] \leftarrow L[i]
             i \leftarrow i + 1
15
        else A[k] \leftarrow R[j]
16
            j \leftarrow i + 1
17
```

Chapter 2

Computer Theory Lab.

P.15

Example of Merge Sort

Computer Theory Lab.

MERGE-SORT(A,p,r)

1 **if** p < r

2 then $q \leftarrow \lfloor (p+r)/2 \rfloor$

 $3 \qquad MERGE-SORT(A,p,q)$

4 MERGE-SORT(A,q+1,r)

5 MERGE(A,p,q,r)

Chapter 2 P.19

Computer Theory Lab.

Analysis of merge sort

Analyzing divide-and-conquer algorithms

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \le c \\ aT(n/b) + D(n) + c(n) & \text{otherwise} \end{cases}$$

See Chapter 4

Analysis of merge sort

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$
$$T(n) = \Theta(n \log n)$$

Analysis of merge sort

$$T(n) = \begin{cases} c & if n = 1\\ 2T(n/2) + cn & if n > 1 \end{cases}$$

where the constant c represents the time require to solve problems of size 1 as well as the time per array element of the divide and combine steps.

Chapter 2 P.21

Computer Theory Lab.

Chapter 2 P.22

(d)

Outperforms insertion sort!