Ejercicios Algebra Relacional

	In progress
	Onstrucción de software y toma de decisiones
■ Due date	
⊙ Туре	

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/3eafa6bc-f742-4f 5a-88e0-02f5d5605f60/Construccion_de_software_y_toma_de_decisiones_Activ idad_1.pdf

Actividad 1: TORNEO INTERNACIONAL

 COMPETENCIA (NombreCompetencia: STRING, NumPtos: INTEGER, Tipo: String)

NombreCompetencia	NumPtos	Tipo

 PARTICIPANTE (Número: INT, Apellidos: STRING, Nombre, STRING, Nacionalidad, STRING)

Número	Apellidos	Nombre	Nacionalidad

PUNTOS ACUMULADOS (Número: INT, Puntos: INT)

Número	Puntos

• CLASIFICACIÓN (NombreCompetencia: STRING, Número: INT, Lugar: INT)

NombreCompetencia	Número	Lugar

Queries:

- 1. Apellidos y nombre de los participantes de nacionalidad mexicana
 - (Π Apellidos, Nombre (σ Nacionalidad = Mexicana) (PARTICIPANTE))
- 2. Apellidos, nombre y puntos acumulados de los participantes de USA
 - (Π Apellidos, Nombre(σ Nacionalidad = USA(PARTICIPANTE \bowtie PUNTOS ACUMULADOS)))
- 3. Apellidos y nombre de los participantes que se clasificaron en primer lugar en al menos una competencia.
 - (Π Apellidos, Nombre(PARTICIPANTES) \cap (Π Lugar(σ Lugar = 1 (CLASIFICACIÓN)))
- 4. Nombre de las competencias en las que intervinieron los participantes mexicanos.
 - (Π NombreCompetencia (CLASIFICACIÓN)) \cap (Π Nacionalidad(σ Nacionalidad = Mexicana) (PARTICIPANTE))
- 5. Apellidos y nombre de los participantes que nunca se clasificaron en primer lugar en alguna competencia
 - (Π Apellidos, Nombre(PARTICIPANTES) (Π Apellidos, Nombre(σ Lugar = 1 (CLASIFICACIÓN)))
- 6. Apellidos y Nombre de los participantes que siempre se clasificaron en alguna competencia
 - (Π Apellidos, Nombre (PARTICIPANTES \bowtie CLASIFICACIÓN))
- 7. Nombre de la competencia que aporta el máximo de puntos
 - (Π NombreCompetencia (σ NumPuntos = max (competencia)))

Esta fue la primera solución, en la cual se realiza una una selección donde el número de puntos sea el máximo de los puntos en la tabla competencia.

• $R1 = \Pi_{NumPtos}(COMPETENCIA)$

```
R2 = \Pi_{NumPtos}(COMPETENCIA)
R3 = \rho_{tabla1}(R1)
R4 = \rho_{tabla2}(R2)
R5 = \rho_{NumPtos/Puntitos}(R4)
R6 = R3 \times R5
R7 = \sigma_{NumPtos < Puntitos}(R6)
R8 = \Pi Puntitos(R7)
R9 = R1 - R8
\Pi_{NombreCompetencia(COMPETENCIA \bowtie R9)}
```

Se concatena competencia con R9 que es el mayor número de puntos, y así conseguir el nombre de la competencia con el mayor número de puntos

8. Países (nacionalidades) que participaron en todas las competencias

• (∏ Nacionalidad (PARTICIPANTE ⋈ CLASIFICACIÓN))

Considerando que la tabla PARTICIPANTE y CLASIFICACIÓN ambas tienen el atributo NÚMERO INT. es posible crear una concatenación de ambas. Esto forma un producto cartesiano de sus dos argumentos, realiza una selección forzando la igualdad de los atributos que aparecen en ambos esquemas de relación y elimina los duplicados. Usando proyección para mostrar la Nacionalidad de todos los participantes en las competencias.

Notas - Apoyo

Cuantificadores matemáticos

símbolo	nombre	lectura informal
\wedge	conjunción	'y'
V	disyunción	o'
\supset	condicional	'Si entonces'
\neg	negación	'no'
\forall	cuantificador universal	'para todo'
3	cuantificador existencial	'existe'
\approx	identidad	'es (idéntico a)'

nombre \times oficio \times sueldo \rightarrow es una relación, un conjunto donde no puede haber elementos repetidos

Selección:

solo escogen elementos con ciertas características, resulta en nueva tabla

obtiene filas que satisfacen un predicado

 σ nombre-sucursal = <<Navacerrada>> (préstamo)

→ es decir, selecciona los elementos de la tabla préstamo cuyo nombre de sucursal sea Navacerrada

Proyección: El proceso consiste en la obtención de una nueva tabla formada por alguna de las columnas seleccionadas de otra tabla existente.

crea lista de atributos que se desea que aparezcan como subíndice.

Inúmero-préstamo, importe(préstamo)
 → es decir, muestra el número de préstamo y el importe de la tabla préstamo

Concatenación

forma un producto cartesiano de sus dos argumentos, realiza una selección forzando la igualdad de los atributos que aparecen en ambos esquemas de relación y elimina los duplicados

 Π nombre-cliente, número-préstamo, importe(prestatario \bowtie préstamo)

Concatenación

Predicado

Tabla 1

Tabla 2

⊓nombre-cliente, número-préstamo, importe (prestatario™ préstamo)

nombre-cliente	número-préstamo	importe
Fernández	P-16	1.300
Gómez	P-23	2.000
Gómez	P-11	900
López	P-15	1.500
Pérez	P-93	500
Santos	P-17	1.000
Sotoca	P-14	1.500
Valdivieso	P-17	1.000

Tabla resultante

Selección y proyección:

Selección y proyección

	Ingenieros			
id	nombre	edad	añosTrabajados	
123	Leon	39	15	
234	Tomas	34	10	
345	Jose	45	21	
143	Josefa	25	1	

"Seleccionar a la persona con el nombre Tomas y proyectar el numero de años trabajados"

Concatenación: obtención de nueva tabla uniendo dos tablas ya existentes. unión de filas si en ambas coincide una <u>columna específica</u>.

Unión: tabla formada por la agregación de filas de dos tablas que ya existen, deben de tener la misma estructura y nombres de columnas

Intersección: resulta en tabla formada por las filas comunes entre tablas existentes.

Diferencia: tabla formada por las filas de una tabla que no aparecen en otra tabla. estas tablas tienen que tener la misma estructura y nombres de columna

Diferencia

Elementos que esten en una tabla pero no en la otra

Diferencia

$\begin{array}{c|c} & \textbf{Predicado} \\ \hline \Pi_{nombre\text{-}cliente} \left(impositor\right) - \Pi_{nombre\text{-}cliente} \left(prestatario\right) \\ \hline \textbf{Tabla 1} & \textbf{Tabla 2} \\ \hline & \textbf{Abril} \\ \textbf{González} \\ \textbf{Rupérez} \end{array}$

Tabla resultante