Амплітудно-частотні характеристики шаруватих пластин і гофрованих циліндричних оболонок

Горячко Тарас Всеволодович

Науковий керівник: доктор фізико-математичних наук, професор Марчук М.В.

Інститут прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України

Вступ

Мета дисертаційної роботи

Розвиток методу збурень в поєднанні з методом скінченних елементів стосовно задач визначення амплітудно-частотних характеристик шаруватих пластин і гофрованих циліндричних оболонок за лінійних та геометрично нелінійних коливань.

Об'єкт дослідження

Процеси лінійних і геометрично нелінійних коливань шаруватих пластин і гофрованих циліндричних оболонок.

Предмет дослідження

Спектри власних частот та амплітудно-частотні залежності шаруватих пластин і гофрованих циліндричних оболонок за лінійних та геометрично нелінійних коливань.

Публікації та апробації за темою дисертації

За результатами досліджень опубліковано 17 наукових робіт, із них 2 статті у журналі, який реферується наукометричною базою Scopus:

- Marchuk M., Goriachko T., Pakosh V. Geometrically Nonlinear Free Transversal Vibrations of Thin-Walled Elongated Panels with Arbitrary Generatrix // Vibrations in Physical Systems. – 2014. – Vol. 26. – P. 153–160.
- 2. Marchuk M., Goriachko T., Pakosh V. Natural Frequencies of Layered Elongated Cylindrical Panels for Geometrically Nonlinear Deformation at Discrete Consideration of Components // Vibrations in Physical Systems. 2016. Vol. 27. P. 255–264.

Розділ 1. Огляд публікацій за проблемою визначення амплітудно-частотних характеристик шаруватих пластин і гофрованих циліндричних оболонок за лінійного та геометрично нелінійного деформування

Дослідження напружено-деформованого стану тонкостінних елементів конструкцій на основі уточнених теорій відображені в роботах

С. О. Амбарцумяна, В. З. Власова, Й. І. Воровича, К. З. Галімова,

О. Л. Гольденвейзера, Я. М. Григоренка, О. М. Гузя, Л. Донелла,

Р. Міндліна, П. Нагді, Е. Рейснера, С. П. Тимошенка та інших учених.

Постановкам задач про геометрично нелінійні коливання пластин і оболонок та розробці методів їх розв'язання присвячені праці Н. А. Алумяе,

О. І. Беспалової, В. В. Болотіна, В. Є. Вериженка, А. С. Вольміра,

В. Т. Грінченка, Е. І. Григолюка, О. Я. Григоренка, Я. М. Григоренка,

Я. О. Жука, Б. Я. Кантора, Я. Ф. Каюка, М. С. Корнішина, В. А. Криська,

Л. В. Курпи, Р. М. Кушніра, М. В. Марчука, А.П. Мукоєда,

С. П. Тимошенка, І. М. Турчина, М. Amabili, J. Awrejcewicz, I. K. Banerjee,

I. C. Chen, Li. A. Dong, C. L. Dym, D. A. Evenren, P. B. Goncalves,

E. L. Jansen, L. Librescu, M. Sundhakar, Т. Ueda та інших учених.

Розробці та розвиненню методу скінченних елементів для нелінійних задач присвячені роботи А. С. Городецького, І. І. Дияка, В. Г. Піскунова,

В. А. Постнова, О. О. Рассказова, Л. А. Розіна, Р. Б. Рікардса,

М. В. Марчука, І. С. Мухи, Я. Г. Савули, А. С. Сахарова,

М. М. Шапошнікова, Г. А. Шинкаренка, К.-J. Bathe, Т. Belytschko,

M. A. Crisfield, R. H. Gallager, J. N. Reddy, J. T. Oden, G. Streng, E. L. Wilson,

O. C. Zienkiewicz та інших учених.

Розділ 1.

Застосуванню методу збурень для нелінійних задач стількості і коливань присвячені роботи D. A. Evensen, A. H. Nayfeh and D. T. Mook, L. W. Rehfield, B. Budiansky, J. Wedel-Heinen, E. L. Jansen, T. Rahman, R. Lewandowski, E. J. Hinch та інших учених.

Дослідженню коливань гофрованих оболонок і пластин присвячені роботи Н. П. Семенюка, Г. Р. Гулгазаряна, Л. Г. Гулгазаряна, К. М. Liew, N. K. Mandal, G. Kress, M. Winkler та інших учених.

Розділ 2. РІВНЯННЯ ДИНАМІЧНО НАПРУЖЕНОГО СТАНУ ЗА ГЕОМЕТРИЧНО НЕЛІНІЙНОГО ДЕФОРМУВАННЯ

Співвідношення просторової геометрично нелінійної динамічної теорії пружності в криволінійній системі координат.

Рис. 2.1: Криволінійний пружний шар у декартовій системі координат

Напружено-деформований стан описується

$$\vec{u} = u^i \vec{R_i} = u_i \vec{R^i}, \tag{2.1}$$

$$\hat{\varepsilon} = \varepsilon^{ij} \vec{R_i} \vec{R_j} = \varepsilon_{ij} \vec{R^i} \vec{R^j}, \tag{2.2}$$

$$\hat{\Sigma} = \sigma^{ij} \vec{R_i} \vec{R_j} = \sigma_{ij} \vec{R^i} \vec{R^j}, \tag{2.3}$$

$$\varepsilon_{ij} = \frac{1}{2} \left(\nabla_i u_j + \nabla_j u_i + \nabla_i u^j \nabla_j u_k \right), \qquad (2.4)$$

$$\sigma^{ij} = C^{ijkm} \varepsilon_{km}. \tag{2.5}$$

Рівняння руху

$$div\hat{P} = \rho \frac{\partial^2 \vec{u}}{\partial t^2},\tag{2.6}$$

де \hat{P} — перший несиметричний тензор Кірхгофа-Піоли, ho — скалярне поле, яке визначає густину шару, t — змінна за часовою координатою.

Граничні умови на лицевих поверхнях

$$P^{3i}\left(\alpha_1, \alpha_2, \pm \frac{h}{2}, t\right) = X_{3i}^{\pm}\left(\alpha_1, \alpha_2, t\right).$$
 (2.7)

Граничні умови на боковій поверхні $\Omega = \Omega_{\sigma} + \Omega_{u}$

$$P^{im}(\alpha_1, \alpha_2, \alpha_3, t) n_i = f^m(\alpha_1, \alpha_2, \alpha_3, t), i = 1, 2, 3, m = 1, 2, 3, (\alpha_1, \alpha_2, \alpha_3) \in \Omega_{\sigma};$$
(2.8)

$$u^{i}(\alpha_{1}, \alpha_{2}, \alpha_{3}, t) = g^{i}(\alpha_{1}, \alpha_{2}, \alpha_{3}, t), i = 1, 2, 3, (\alpha_{1}, \alpha_{2}, \alpha_{3}) \in \Omega_{u}.$$
 (2.9)

Початкові умови

$$u^{i}\Big|_{t=t_{0}} = u_{0}^{i}(\alpha_{1}, \alpha_{2}, \alpha_{3}), \frac{\partial u^{i}}{\partial t}\Big|_{t=t_{0}} = v_{0}^{i}(\alpha_{1}, \alpha_{2}, \alpha_{3}), i = 1, 2, 3.$$
 (2.10)

Побудова одновимірної моделі на основі двовимірної.

Апроксимація переміщень u_1 та u_3 , за координатою α_3

$$u_1(\alpha_1, \alpha_3) = u_{10}(\alpha_1) p_0(\alpha_3) + u_{11}(\alpha_1) p_1(\alpha_3) + u_{12}(\alpha_1) p_2(\alpha_3),$$
 (2.11)

$$u_3(\alpha_1, \alpha_3) = u_{30}(\alpha_1) p_0(\alpha_3) + u_{31}(\alpha_1) p_1(\alpha_3) + u_{32}(\alpha_1) p_2(\alpha_3), \qquad (2.12)$$

де поліноми p_0, p_1 та p_2 мають вигляд

$$p_0(\alpha_3) = \frac{1}{2} - \frac{\alpha_3}{h}, p_1(\alpha_3) = \frac{1}{2} + \frac{\alpha_3}{h}, p_2(\alpha_3) = 1 - \left(\frac{2\alpha_3}{h}\right)^2,$$
 (2.13)

h — товщина шару.

Рис. 2.2: Графіки поліномів p_0 , p_1 та p_2 на проміжку [-0.5;0.5]

Рис. 2.3: Циліндричний шар в декартовій системі координат.

$$\varepsilon_{ij}\left(\alpha_{1},\alpha_{3}\right) = \frac{\varepsilon_{ij0}\left(\alpha_{1}\right)p_{0}\left(\alpha_{3}\right) + \varepsilon_{ij1}\left(\alpha_{1}\right)p_{1}\left(\alpha_{3}\right) + \varepsilon_{ij2}\left(\alpha_{1}\right)p_{2}\left(\alpha_{3}\right)}{1 + \alpha_{3}K\left(\alpha_{1}\right)},$$

$$\varepsilon_{ijk} = e_{ijk}\left(\alpha_{1}\right) + \eta_{ijk}\left(\alpha_{1}\right), \quad i, j = 1, 3, k = 0, 1, 2,$$

$$(2.14)$$

де $e_{ijk}\left(\alpha_{1}\right)$ — лінійна складова, $\eta_{ijk}\left(\alpha_{1}\right)$ — нелінійна складова.

$$\begin{split} e_{11k}\left(\alpha_{1}\right) &= \frac{1}{A\left(\alpha_{1}\right)} \frac{du_{1k}}{d\alpha_{1}} + u_{3k}K\left(\alpha_{1}\right), k = 0, 1, 2, \\ e_{130}\left(\alpha_{1}\right) &= u_{10}\left(-\frac{1}{h} - \frac{K\left(\alpha_{1}\right)}{2}\right) + u_{11}\left(\frac{1}{h} - \frac{K\left(\alpha_{1}\right)}{2}\right) + \\ &\quad + u_{12}\left(\frac{4}{h} - 2K\left(\alpha_{1}\right)\right) + \frac{1}{A\left(\alpha_{1}\right)} \frac{du_{30}}{d\alpha_{1}}, \\ e_{131}\left(\alpha_{1}\right) &= u_{10}\left(-\frac{1}{h} - \frac{K\left(\alpha_{1}\right)}{2}\right) + u_{11}\left(\frac{1}{h} - \frac{K\left(\alpha_{1}\right)}{2}\right) + \\ &\quad + u_{12}\left(-\frac{4}{h} - 2K\left(\alpha_{1}\right)\right) + \frac{1}{A\left(\alpha_{1}\right)} \frac{du_{31}}{d\alpha_{1}}, \\ e_{132}\left(\alpha_{1}\right) &= \frac{1}{A\left(\alpha_{1}\right)} \frac{du_{32}}{d\alpha_{1}} + u_{12}K\left(\alpha_{1}\right), \\ e_{330}\left(\alpha_{1}\right) &= u_{30}\left(-\frac{1}{h} + \frac{K\left(\alpha_{1}\right)}{2}\right) + u_{31}\left(\frac{1}{h} - \frac{K\left(\alpha_{1}\right)}{2}\right) + \\ &\quad + u_{32}\left(\frac{4}{h} - 2K\left(\alpha_{1}\right)\right), \\ e_{331}\left(\alpha_{1}\right) &= u_{30}\left(-\frac{1}{h} - \frac{K\left(\alpha_{1}\right)}{2}\right) + u_{31}\left(\frac{1}{h} + \frac{K\left(\alpha_{1}\right)}{2}\right) + \\ &\quad + u_{32}\left(-\frac{4}{h} - 2K\left(\alpha_{1}\right)\right), \\ e_{332}\left(\alpha_{1}\right) &= 2K\left(\alpha_{1}\right)u_{32}. \end{split}$$

$$\eta_{13k}\left(\alpha_{1}\right)=0,\quad k=0,1,2,i=1,3,$$

$$\Theta_{0}\left(\alpha_{1}\right)=\frac{1}{32}\begin{bmatrix}16+6Kh+K^{2}h^{2}&4Kh+2K^{2}h^{2}&16+16Kh+4K^{2}h^{2}\\4Kh+2K^{2}h^{2}&-2Kh+K^{2}h^{2}&-16Kh+4K^{2}h^{2}\\16+16Kh+4K^{2}h^{2}&-16Kh+4K^{2}h^{2}&-16+8Kh+4K^{2}h^{2}\end{bmatrix},$$

$$\Theta_{1}\left(\alpha_{1}\right)=\frac{1}{32}\begin{bmatrix}2Kh+K^{2}h^{2}&-4Kh+2K^{2}h^{2}&-16+4K^{2}h^{2}\\-4Kh+2K^{2}h^{2}&16-6Kh+K^{2}h^{2}&16-16Kh+4K^{2}h^{2}\\-16+4K^{2}h^{2}&16-16Kh+4K^{2}h^{2}&-16-8Kh+4K^{2}h^{2}\end{bmatrix},$$

$$\Theta_{2}\left(\alpha_{1}\right)=\frac{1}{32}\begin{bmatrix}-4-4Kh-K^{2}h^{2}&8-2K^{2}h^{2}&16-8Kh-K^{2}h^{2}\\8-2K^{2}h^{2}&-4+4Kh-K^{2}h^{2}&16+8Kh-4K^{2}h^{2}\\16+16Kh+4K^{2}h^{2}&16+8Kh-4K^{2}h^{2}\end{bmatrix}.$$

 $\eta_{iik}(\alpha_1) = \begin{bmatrix} \omega_{20} & \omega_{21} & \omega_{22} \end{bmatrix} \Theta_k(\alpha_1) \begin{bmatrix} \omega_{20} & \omega_{21} & \omega_{22} \end{bmatrix}^T,$

$$\omega_{20}(\alpha_{1}) = \frac{1}{2} \left[u_{10} \left(-\frac{1}{h} + \frac{3K(\alpha_{1})}{2} \right) + u_{11} \left(\frac{1}{h} - \frac{K(\alpha_{1})}{2} \right) + u_{12} \left(\frac{4}{h} - 2K(\alpha_{1}) \right) - \frac{1}{A(\alpha_{1})} \frac{du_{30}}{d\alpha_{1}} \right],$$

$$\omega_{21}(\alpha_{1}) = \frac{1}{2} \left[-u_{10} \left(\frac{1}{h} + \frac{K(\alpha_{1})}{2} \right) + u_{11} \left(\frac{1}{h} + \frac{3K(\alpha_{1})}{2} \right) - u_{12} \left(\frac{4}{h} + 2K(\alpha_{1}) \right) - \frac{1}{A(\alpha_{1})} \frac{du_{31}}{d\alpha_{1}} \right],$$

$$\omega_{22}(\alpha_{1}) = \frac{1}{2} \left[3K(\alpha_{1}) u_{12} - \frac{1}{A(\alpha_{1})} \frac{du_{30}}{d\alpha_{1}} \right].$$
(2.18)

де $A\left(\alpha_1\right)$ — коефіцієнт першої квадратичної форми серединної поверхні оболонки, $K\left(\alpha_1\right)$ — головна кривина напрямної в напрямку осі α_1 .

Варіаційна постановка задачі для одновимірної моделі.

$$\int_{0}^{L} \delta \overline{u}^{\prime T} \left(E^{\prime} + E_{NL}^{\prime} \right)^{T} C^{\prime} \left(E^{\prime} + E_{NL}^{\prime (1)} \right) \overline{u}^{\prime} A \left(\alpha_{1} \right) d\alpha_{1} +$$

$$+ \int_{0}^{L} \rho_{0} \delta \overline{u}^{\prime T} B^{\prime} \frac{\partial^{2} \overline{u}^{\prime}}{\partial t^{2}} A \left(\alpha_{1} \right) d\alpha_{1} = 0, \quad (2.19)$$

де

$$\overline{u}' = \left(u_{10}, \frac{du_{10}}{d\alpha_1}, u_{11}, \frac{du_{11}}{d\alpha_1}, u_{12}, \frac{du_{12}}{d\alpha_1}, u_{30}, \frac{du_{30}}{d\alpha_1}, u_{31}, \frac{du_{31}}{d\alpha_1}, u_{32}, \frac{du_{32}}{d\alpha_1}\right)^T,$$

$$C' = \begin{bmatrix} C'_{11} & C'_{13} & 0 \\ C'_{13} & C'_{33} & 0 \\ 0 & 0 & C'_{55} \end{bmatrix}, \quad C'_{ij} = hC_{ij} \begin{bmatrix} 1/3 & 1/6 & 1/3 \\ 1/6 & 1/3 & 1/3 \\ 1/3 & 1/3 & 8/15 \end{bmatrix}, i, j = 1, 3, 5,$$

$$B' = \left[\begin{array}{cccc} B'_0 & 0 \\ 0 & B'_0 \end{array} \right], \quad B'_0 = h \left[\begin{array}{ccccc} 1/3 & 0 & 1/6 & 0 & 1/3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1/6 & 0 & 1/3 & 0 & 1/3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1/3 & 0 & 1/3 & 0 & 8/15 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right],$$

матриці $E',\,E'_{NL}$ та $E'^{(1)}_{NL}$ побудовані з (2.15), (2.17) та (2.18).

Висновки до розділу 2

- У розділі розглянута загальна диференціальна постановка задачі про динамічний напружено-деформований стан ортотропного криволінійного шару за геометрично нелінійного деформування.
- На цій основі зроблено постановку еквівалентної варіаційної задачі відносно компонент вектора просторових переміщень в довільній циліндричній системі координат.
- Отримані співвідношення для компонент тензора деформацій Гріна, шляхом використання квадратичних апроксимацій для компонент вектора переміщень за нормальною до серединної поверхні шару координатою.
- Отримано одновимірну варіаційну задачу про динамічний напружено-деформований стан ортотропного криволінійного шару за геометрично нелінійного деформування з використанням квадратичних апроксимації за нормальною до серединної поверхні шару координатою.

Розділ 3. УЗАГАЛЬНЕНИЙ МЕТОД ЗБУРЕНЬ У ЗАДАЧАХ ПРО ГЕОМЕТРИЧНО НЕЛІНІЙНІ КОЛИВАННЯ ОРТОТРОПНОГО КРИВОЛІНІЙНОГО ШАРУ

Метод скінченних елементів стосовно одновимірної моделі.

$$V = \bigcup_{e=1}^{N} V^{(e)}.$$
 (3.1)

Апроксимації переміщень на одновимірному скінченному елементі $V^{(e)} = [\alpha_{1s}; \alpha_{1e}]$

$$\varphi_0 = \frac{1}{2} (1 - \xi) \quad \varphi_1 = \frac{1}{2} (1 + \xi)$$
 (3.2)

де $\xi \in [-1;1].$

$$K_L'\overline{U}' + \left(K_{NL}'^{(1)}\left(\overline{U}'\right) + K_{NL}'^{(2)}\left(\overline{U}', \overline{U}'\right)\right)\overline{U}' + M'\ddot{\overline{U}}' = 0, \tag{3.3}$$

де

$$M' = \sum_{e=1}^{N} \left[\int_{-1}^{1} \rho_0 H'^{(e)}^T B' H'^{(e)} J'^{(e)} A(\xi) d\xi \right], \tag{3.4}$$

$$K'_{L} = \sum_{e=1}^{N} \left[\int_{-1}^{1} H'^{(e)} E'^{T} E'^{T} C' E' H'^{(e)} J'^{(e)} A(\xi) d\xi \right],$$
 (3.5)

$$K_{NL}^{\prime(1)} = \sum_{e=1}^{N} \begin{bmatrix} \int_{-1}^{1} H^{\prime(e)T} E_{NL}^{\prime} \left(\overline{U}^{\prime} \right)^{T} C^{\prime} E^{\prime} H^{\prime(e)} J^{\prime(e)} A(\xi) d\xi + \\ \int_{-1}^{1} H^{\prime(e)T} E^{\prime T} C^{\prime} E_{NL}^{\prime(1)} \left(\overline{U}^{\prime} \right) H^{\prime(e)} J^{\prime(e)} A(\xi) d\xi \end{bmatrix}, \quad (3.6)$$

$$K_{NL}^{(2)} = \sum_{e=1}^{NM} \left[\int_{-1}^{1} \int_{-1}^{1} H^{(e)}^{T} B^{T} E_{NL} \left(\overline{U} \right)^{T} C E_{NL}^{(1)} \left(\overline{U} \right) B H^{(e)} J^{(e)} d\xi d\eta \right]. \tag{3.7}$$

Узагальнення методу збурень до розв'язання результуючої системи нелінійних алгебраїчних рівнянь.

$$K_L\overline{U} + \mu \left(K_{NL}^{(1)}\left(\overline{U}\right) + K_{NL}^{(2)}\left(\overline{U}, \overline{U}\right)\right)\overline{U} + M\ddot{\overline{U}} = 0, \tag{3.8}$$

де $\mu \in [0;1]$ — параметр збурення.

$$\overline{U}(t) = \overline{U}_0(t) + \mu \overline{U}_1(t) + O(\mu^2). \tag{3.9}$$

Секулярний член

$$\overline{U}_S(t) = t \sin \omega t. \tag{3.10}$$

Узагальнення методу збурень

$$K_L = K - \mu K_{L1} + O\left(\mu^2\right). \tag{3.11}$$

Методика відшукання розв'язку (3.3):

- 1. Розв'язання лінійної задачі: $K_L \overline{\phi} + \omega_L^2 M \overline{\phi} = 0$.
- 2. Апроксимація початкової умови $\overline{A} \approx A \overline{\phi}$: $A = \min_{C \in R} ||\overline{A} C \overline{\phi}||$.
- 3. Обчислення матриці:

$$K = K_L + \frac{3}{4} K_{NL}^{(2)} \left(A \overline{\phi}, A \overline{\phi} \right). \tag{3.12}$$

4. Знаходження власної частоти ω геометрично нелінійних коливань:

$$\omega^2 = \overline{\phi}^T K \overline{\phi}. \tag{3.13}$$

5. Визначення амплітуд:

$$x_{1} = -\frac{1}{2\omega^{2}}\overline{\phi}^{T}K_{NL}^{(1)}\left(A\overline{\phi}\right)A\overline{\phi},$$

$$x_{2} = \frac{1}{6\omega^{2}}\overline{\phi}^{T}K_{NL}^{(1)}\left(A\overline{\phi}\right)A\overline{\phi},$$

$$x_{3} = \frac{1}{32\omega^{2}}\overline{\phi}^{T}K_{NL}^{(2)}\left(A\overline{\phi},A\overline{\phi}\right)A\overline{\phi}.$$
(3.14)

6. Наближений розв'язок:

$$\overline{U}(t) = \left[(A - x_1 - x_2 - x_3)\cos\omega t + x_1 + x_2\cos2\omega t + x_3\cos3\omega t \right] \overline{\phi}. \quad (3.15)$$

Висновки до розділу 3

- На основі застосування МСЕ отримано у матричному вигляді системи нелінійних алгебраїчних рівнянь відносно векторів вузлових переміщень, через які визначаються амплітудно-частотні характеристики криволінійного пружного шару.
- Виведені аналітичні формули для коефіцієнтів лінійних і нелінійних матриць жорсткості та мас, які дозволяють проводити їх швидке обчислення.
- ▶ Для розв'язання отриманих систем узагальнено метод збурень.
- На цій основі розроблено методику знаходження значення нелінійної власної частоти і загального розв'язку задачі.

Розділ 4. ВІЛЬНІ КОЛИВАННЯ ПЛАСТИН-СМУГ ТА ВИДОВЖЕНИХ ЦИЛІНДРИЧНИХ ПАНЕЛЕЙ

4.1. Пластина-смуга

$$A(\alpha_1) = 1, \quad K(\alpha_1) = 0.$$
 (4.1)

4.1.1 Одношарова пластина-смуга

Геометричні та механічні параметри

$$l = 1_{\rm M}, h = 0.1_{\rm M},$$

 $E_1 = E, v_{13} = v_{31} = 0.3, G_{13} = G;$ (4.2)

Рис. 4.1: Пластина-смуга з защемленими краями

4.1.1.1 Лінійні коливання

Рис. 4.2: Збіжність значення мінімальної частоти при збільшенні кількості скінченних елементів вздовж осі α_3

4.1.1.2 Геометрично нелінійні коливання

3 (3.12) i (3.13)

$$\omega^2 = \omega_0^2 \left(1 + \frac{3}{4} X \left(\frac{w_{max}}{h} \right)^2 \right) \tag{4.3}$$

де ω_0^2 — лінійна власна частота, ω^2 — нелінійна власна частота.

$$X = \frac{\overline{\phi}^T K_{NL}^{(2)} \left(h \overline{\phi}', h \overline{\phi}' \right) \overline{\phi}}{\omega_0^2} \tag{4.4}$$

де $\overline{\phi}'$ — нормований власний вектор $\overline{\phi}$.

 ${
m Taбл.}\ 4.1$: Значення параметра X для різних моделей панелі, видовжені краї якої защемлені

	X
Аналітичне значення ¹	0.8363
Зсувна модель Тимошенко	0.8694
Модель на основі квадратичних апроксимацій	1.4586
Модель на основі просторової теорії	3.2488

¹ Marchuk M., Pakosh V., Lesvk O., Huravewska I. Influence of Pliability to Transversal Deformations of Shear and Compression on Correlation Frequency from Amplitude for Nonlinear Oscillations of Composite Plates // Vibrations in Physical Systems. - 2006. - Vol. XXII. - P. 251-256.

Рис. 4.3: Амплітудно-частотні характеристики, отримані за допомогою узагальненого методу збурень для панелі, видовжені краї якої защемлені

4.1.2 Тришарова пластина-смуга

Рис. 4.4: Тришарова пластина-смуга з нерухомими шарнірами на нижніх ребрах видовжених країв

Умови контакту між шарами

$$u_i^{(k-1)}(\alpha_1, h_{k-1}, t) = u_i^{(k)}(\alpha_1, h_k, t),$$
(4.5)

$$S^{(k-1)3i}(\alpha_1, h_{k-1}, t) = S^{(k)3i}(\alpha_1, h_k, t), \qquad (4.6)$$

$$i = 1, 3, \alpha_1 \in [0; L], k = 2, \dots, N.$$

Граничні умови на лицевих площинах панелі

$$S^{(m)31}(\alpha_1, h_m, t) = S^{(m)33}(\alpha_1, h_m, t) = 0, \alpha_1 \in [0; L], m = 0, N.$$
(4.7)

Геометричні та механічні характеристики

$$L = 1 \text{M}, h = 0.1 \text{M};$$

Сталь:
$$E_1 = E_3 = 210 \cdot 10^9 \text{Па}, v_{13} = v_{31} = 0.3, \rho = 8000 \text{кг/м}^3;$$
 (4.8)

Гума:
$$E_1=E_3=0.1\cdot 10^9 \Pi \text{a}, v_{13}=v_{31}=0.48, \rho=1200 \text{кг/м}^3.$$

Табл. 4.2: Вплив товщини шару гуми (h_r) на мінімальну власну частоту

$\frac{h_r}{h}$	1	0.95	0.9	0.8	0.6	0.4	0
ω_0 , Гц	25.061	72.121	69.587	69.056	84.453	111.765	375.763

 ${
m Taбл.}\ 4.3$: ${
m Bn}$ лив товщини шару гуми (h_r) на значення параметра нелінійності X

$\frac{h_r}{h}$	1	0.95	0.9	0.8	0.6	0.4	0
X	16.1053	44.0470	73.2043	104.7005	92.1796	59.2721	5.7266

Рис. 4.5: Амплітудно-частотні характеристики для тришарової панелі з нерухомими шарнірами на видовжених краях для різних значень h_r

4.2. Видовжена циліндрична панель

$$A(\alpha_1) = 1, \quad K(\alpha_1) = \frac{1}{R}.$$
 (4.9)

Геометричні та механічні характеристики

$$l = 1_{\rm M}, h = 0.01_{\rm M},$$

$$E_1 = 40E_3, v_{13} = v_{31} = 0.25, G_{13} = 0.6E_3.$$
 (4.10)

Табл. 4.4: Вплив кривини напрямної (K) на значення параметра X

K, M^{-1}	0.5	0.8	1	1.5	2
X	4.442	4.203	4.002	3.421	2.855

Рис. 4.6: Амплітудно-частотні характеристики для панелі з вуглепластика з для різних значень кривини напрямної K

Рис. 4.7: Залежність найменшої власної частоти (ω_0) від радіуса кривини K і товщини h циліндричної панелі

Висновки до розділу 4

- Показано доцільність використання моделі, побудованої на основі квадратичних апроксимації за нормальною до серединної поверхні шару координатою, шляхом порівняння чисельних результатів отриманих для різних моделей одношарової пластини-смуги.
- На основі розробленої методики отримані числові результати порівняно з розв'язками, отриманими іншими авторами для одношарової пластини смуги. Це дозволило встановити її ефективність.
- У випадку тришарової пластини смуги, що складається двох металевих лицевих та гумового середнього елементів, встановлено, що зі зростанням товщини гумового шару, мінімальна лінійна власна частота спадає. Встановлено, що максимальне значення нелінійної першої власної частоти досягається при 80% заповнені пластини смуги гумовим складником.
- ightharpoonup Для циліндричної панелі встановлено, що зі зростанням кривини вона стає менш жорсткою за нелінійних коливань. Максимальне значення власної лінійної частоти досягається при $K=0.7 \mathrm{m}^{-1}$ та при $h=0.1 \mathrm{m}$.

РОЗДІЛ 5. ВІЛЬНІ КОЛИВАННЯ ГОФРОВАНИХ ЦИЛІНДРИЧНИХ ОБОЛОНОК

5.1. Геометричні співвідношення і базові вектори для видовженої циліндричної панелі з гофруванням

$$x_{1} = (R + g_{A} \cos(g_{v}\theta)) \cos(\theta),$$

$$x_{2} = \alpha_{2},$$

$$x_{3} = (R + g_{A} \cos(g_{v}\theta)) \sin(\theta),$$

$$(5.1)$$

де L — довжина напрямної циліндричного шару,

R — відстань від осі панелі до напрямної циліндричного шару,

h — товщина гофрованого шару,

 g_A — амплітуда гофрування,

 g_v — частота гофрування,

$$\theta = \theta (\alpha_1) = \frac{\pi}{2} + \frac{1}{R} \left(\frac{L}{2} - \alpha_1 \right)$$

Рис. 5.1: Напрямна серединної поверхні шару в декартовій системі координат за $g_v = 20.$

Рис. 5.2: Вектори коваріантної бази \vec{R}_1 (червоний колір) і \vec{R}_3 (синій колір) на верхній лицевій поверхні L=2м, h=0.05м, R=1.25м, $g_A=0.03$ м, $g_v=20$.

Коефіцієнт першої квадратичної форми і головна кривина

$$A\left(\alpha_{1}\right) = \sqrt{w^{2} + z^{2}},\tag{5.2}$$

$$K(\alpha_1) = \frac{\left(wy + 2z^2/R\right)}{A(\alpha_1)^{\frac{3}{2}}},\tag{5.3}$$

де

$$w = 1 + \frac{g_A}{R}\cos(g_v\theta),$$

$$z = \frac{g_A g_v}{R}\sin(g_v\theta),$$

$$y = -\frac{w}{R} + \frac{g_A g_v^2}{R^2}\cos(g_v\theta).$$

5.2. Лінійні коливання.

Геометричні та механічні характеристики

$$L = 2_{\rm M}, h = 0.05_{\rm M}, R = 1.25_{\rm M}, g_A = 0.03_{\rm M}, g_v = 20,$$

$$E_1 = E_3 = 2.1 \cdot 10^{11} \Pi \text{a}, v_{13} = v_{31} = 0.3, G_{13} = 8.1 \cdot 10^{10} \Pi \text{a},$$

$$\rho = 8000 \text{kg/m}^3.$$
(5.4)

Табл. 5.1: Залежність найменшої власної частоти (ω) від частоти гофрування (g_v) панелі

g_v	2	4	6	8	15	20	50	80	100	200	300	500
ω , Гц	105	98	92	110	132	217	2588	8007	11138	20220	18239	12042

Рис. 5.3: Залежність найменшої власної частоти (ω) від частоти гофрування (g_v)

Рис. 5.4: Перша мода гофрованої циліндричної панелі з різними частотами гофрування: а) $g_v=10;$ б) $g_v=20.$

Рис. 5.5: Вигляд гофрованої циліндричної панелі в різних модах: а) друга; б) третя.

Табл. 5.2: Залежність найменшої власної частоти (ω) від амплітуди гофрування (g_A) панелі.

g_A , M	0	0.015	0.03	0.06	0.1	0.2	0.25	0.3
ω , Γ ц	101	143	217	377	622	675	552	461

Рис. 5.6: Залежність найменшої власної частоти (ω) від амплітуди гофрування (g_A) панелі.

Рис. 5.7: Вигляд гофрованої циліндричної панелі при а) $g_A=0$ м; б) $g_A=0.1$ м; в) $g_A=0.3$ м.

5.3. Геометрично нелінійні коливання.

 $\mathrm{Taбл.}\ 5.3$: Bn лив частоти гофрування (g_v) на значення параметра нелінійності X

1	g_v	2	6	15	20	50
Ì	X	6.6324	7.5217	2.9688	1.2465	0.0728

Рис. 5.8: Амплітудно-частотні характеристики гофрованої панелі для різних значень частоти гофрувань g_v .

	g_A , M	0	0.03	0.1	0.2	0.25	0.3
ĺ	X	6.5853	1.2465	0.0815	2.4986	7.5377	40.1717

Рис. 5.9: Амплітудно-частотні характеристики гофрованої панелі для різних значень амплітуди гофрування (g_A) .

Висновки до розділу 5

- Отримані співвідношення просторової геометрично нелінійної динамічної теорії пружності для гофрованого в коловому напрямку циліндричного шару.
- ▶ У випадку лінійних коливань встановлено:
 - Мінімальна лінійна власна частота спадає коли $g_v \in [0;6]$, потім зростає і при великих значеннях g_v знову спадає. Її мінімальне значення досягається при $q_v = 6$.
 - ightharpoonup Мінімальна лінійна власна частота спочатку зростає, потім спадає при $q_A>0.2$ м.
- ▶ У випадку геометрично нелінійних коливань встановлено:
 - ightharpoonup зі зростанням частоти гофрування g_v на проміжку від 2 до 6, панель стає більш жорсткою, а при $g_v > 6$ стає менш жорсткою.
 - ightharpoonup зі зростанням амплітуди гофрування g_A на проміжку від 0м до 0.1м, панель стає менш жорсткою. Подальше збільшення параметра g_A призводить до зростання жорсткі оболонки.

висновки

У дисертаційній роботі вирішено науково практичне завдання визначення амплітудо-частотних характеристик шаруватих пластин і гофрованих у коловому напрямку циліндричних оболонок. При цьому отриматі наступні результати:

- Отримано нову модель геометрично нелінійного деформування видовжених циліндричних оболонок, яка побудована на основі квадратичних апроксимацій компонент вектора переміщень за нормальною координатою до серединної поверхні шару, і показано її ефективність.
- Узагальнено метод збурень для розв'язання систем нелінійних алгебраїчних рівнянь, що виникають у задачах визначення амплітудно-частотних характеристик пластин і оболонок за геометрично нелінійного деформування.
- Запропоновано нову методику знаходження розв'язку задачі вільних коливань за геометрично нелінійного деформування, на основі методу скінченних елементів і методу збурення. Показано її ефективність шляхом його порівняння з розв'язками, отриманими іншими авторами.

висновки

- Досліджено лінійні та геометрично нелінійні коливання тришарових пластин-смуг, що складається з двох металевих лицевих та гумового середнього шарів.
 - Встановлено, що зі зростанням товщини гумового шару, мінімальна лінійна власна частота спадає, а також, що максимальне значення нелінійної першої власної частоти досягається при 80% заповнені пластини смуги гумовим складником.
- Досліджено лінійні та геометрично нелінійні коливання видовжених циліндричних панелей.
 - Встановлено, що зі зростанням кривини вона стає менш жорсткою за нелінійних коливань. Максимальне значення мінімальної власної лінійної частоти досягається при $K=0.7 \mathrm{m}^{-1}$ та при $h=0.1 \mathrm{m}$.
- ▶ Досліджено лінійні та геометрично нелінійні коливання гофрованої в коловому напрямку видовженої циліндричної палені. Встановлено, що зі зростанням частоти гофрування $g_v \in [2;6]$ вона стає більш жорсткою, а при $g_v > 6$ стає менш жорсткою за нелінійних коливань. Також зі зростанням амплітуди гофрування g_A на проміжку від 0м до 0.1м вона стає менш жорсткою за нелінійних коливань. Подальше збільшення параметра g_A призводить до зростання жорсткі оболонки.