On Interacting Particles in 1D and 2D (Skeleton Edition) (Completeness and Scheduling Estimates in Contents)

Joshua DM Hellier

Doctor of Philosophy
The University of Edinburgh
July 2018

Abstract

This is the skeleton of the thesis, in terms of the chapters etc planned. The Conclusions are still a little fluid, and the Results will consist of a large number of graphs, so I'll probably arrange that in a little more detail when I get to it. Underneath the chapter headings I have put the percentage of completion, and where I have written stuff I have broken this down by section, subsection etc. As of now I have written just under half of the Analytics chapter; I suspect that that chapter will constitute a little over a quarter of the finished thesis. According to my current estimates, I need a further 9 weeks to complete the thesis, which would imply completion in mid-August. However, this might be an underestimate and is partially dependent upon obtaining decent 2d data soon, which might not happen as my calculations keep failing. Thus, I think an extension of one month might be a good idea, just to make absolutely sure it's finished.

Contents

Al	Abstract						
Co	Contents						
Li	ist of Figures						
Li	st of	Tables		vi			
1		Preliminary Work, Background and Motivation (0% done) Needs 3 weeks)					
	1.1	The T	${ m iO_{f 2}/Ti}$ Interface System	2			
	1.2	Initial	Attempts to Model the ${\rm TiO_2/Ti}$ Interface System	2			
		1.2.1	The Difficulties of Nonequilibrium Statistical Mechanics	2			
		1.2.2	Dynamics of Ionic Crystals	2			
		1.2.3	Initial Work Done with MD	2			
		1.2.4	The Problems with MD	2			
	1.3	Simple	e Large-Scale Models of the Ti/O/Nb Interacting System	2			
		1.3.1	Proposed Linear System	2			
		1.3.2	Attempts to create a Suitable Nonlinear System	2			
		1.3.3	Parametrisation from a Microscopic Model	2			

	1.4	The Sticky Particle Model		
		1.4.1	Model Motivation	2
		1.4.2	Model Definition	2
		1.4.3	Model Properties	2
		1.4.4	Relation to Existing Literature	2
		1.4.5	Generalisation to Higher Dimensions	2
	1.5	Implie	eations of Initial Work for the PhD Direction	2
		1.5.1	Why the Change of Direction?	2
		1.5.2	Why Investigate Flow in the SPM?	2
2		nalytical Results about the SPM (45% done) (Needs 2 more eeks)		
	2.1	Solvin	g Problems in Nonequlibrium Statistical Mechanics	3
		2.1.1	Equilibrium Statistical Mechanics	3
		2.1.2	Nonequlibrium Statistical Mechanics	4
		2.1.3	Where does the SPM stand?	4
	2.2	Simila	arities between the SPM and Established Models in 1D	4
		2.2.1	Relationship with the Ising Model	4
		2.2.2	Correlation Functions	4
		2.2.3	Equivalence with the Misanthrope Process	5
		2.2.4	Differences Between SEP and the SPM	5
	2.3	Using	the Mean-Field Approximation on the SPM	5
		2.3.1	Lattice MFT Derivation	5
		2.3.2	Continuum Limit MFT Derivation	5
		2.3.3	Negative Diffusion Coefficients	5

		2.3.4	Continuum Limit MFT Solutions	5
		2.3.5	Continuum MFT Breakdown	5
	2.4	The S	PM in Higher Dimensions	6
3	Nu	merica	l Results about the SPM (0% done) (Needs 2 weeks)	7
	3.1	Nume	rical Simulations of Continuous-Time Markov Processes	7
		3.1.1	Known Methods	7
		3.1.2	KMCLib	7
		3.1.3	Running KMCLib on Eddie3	7
	3.2	Calcul	lation Results	7
		3.2.1	1D	7
		3.2.2	2D	7
4			(0%) done) (Needs unknown amount of time, $(2 weeks)$	8
A			ings (25% done) (Doesn't need much time, is done er chapters are made)	9
	A 1	1d Isii	ng Correlation Functions	g

List of Figures

List of Tables

Preliminary Work, Background and Motivation (0% done) (Needs 3 weeks)

The TiO₂/Ti Interface System

Initial Attempts to Model the TiO₂/Ti Interface System

The Difficulties of Nonequilibrium Statistical Mechanics

Dynamics of Ionic Crystals

Initial Work Done with MD

The Problems with MD

Simple Large-Scale Models of the Ti/O/Nb Interacting System

Proposed Linear System

Attempts to create a Suitable Nonlinear System

Parametrisation from a Microscopic Model

The Sticky Particle Model

Model Motivation

Model Definition

Model Properties

Relation to Existing Literature

Generalisation to Higher Dimensions

2

Analytical Results about the SPM (45% done) (Needs 2 more weeks)

45% done.

Solving Problems in Nonequlibrium Statistical Mechanics

12.5 % done.

Equilibrium Statistical Mechanics

25% done.

Exact Solutions

50% done.

Approximations

Nonequlibrium Statistical Mechanics

Exact Solutions
0% done.
Approximations
0% done.
Similarities and Differences Between Nonequlibrium and Equilibrium Statistical Mechanics
Where does the SPM stand?
0% done.
Similarities between the SPM and Established Models in 1D
Models in 1D
Models in 1D 80% done.
Models in 1D $$80\%$\ done.$ Relationship with the Ising Model

Equivalence with the Misanthrope Process
100% done.
Differences Between SEP and the SPM
0% done.
Using the Mean-Field Approximation on the SPM
40% done.
Lattice MFT Derivation
100% done.
Continuum Limit MFT Derivation
90% done.
Negative Diffusion Coefficients
0% done.
Continuum Limit MFT Solutions
0% done.
Continuum MFT Breakdown
0% done.

The SPM in Higher Dimensions

Numerical Results about the SPM (0% done) (Needs 2 weeks)

0% done.

Numerical Simulations of Continuous-Time Markov Processes

Known Methods

KMCLib

Running KMCLib on Eddie3

Calculation Results

1D

2D

Conclusions (0% done) (Needs unknown amount of time, probably 2 weeks)

Appendix A

Code Listings (25% done) (Doesn't need much time, is done as the other chapters are made)

25 % done.

1d Ising Correlation Functions