A Book of Abstract Algebra (2nd Edition)

Chapter 16,	Problem 6EM
-------------	-------------

Bookmark

Show all steps: ON

ON

Problem

Let p be a prime number. A finite group G is called a p-group if the order of every element x in G is a power p. (The orders of different elements may be different powers of p.) If H is a subgroup of any finite group G, and H is a p-group, we call H a p-subgroip of G. Finally, if K is a p-subgroup of G, and G is maximal (in the sense that G is not contained in any larger G subgroup of G), then G is called a G-Sylow subgroup of G.

If $a \in N$ and the order of p is a power of p, then the order of Ka (in N/K) is also a power of p. (Why?) Thus, Ka = K.(Why?)

Step-by-step solution

Step 1 of 3

Suppose that G is a p-group, so order of each element x in G will be the power of p. Let K is a p-Sylow subgroup of G and N = N(K) be the normalizer of K.

Assume that $a \in N$, and the order of coset Ka in N/K is a power of p. Let $S = \langle Ka \rangle$ is the cyclic subgroup of N/K generated by Ka.

Objective is to prove that if $a \in N$ and the order of a is a power of p, then the order of Ka in N/K is also a power of p. And then Ka = K.

Comment

Step 2 of 3

Let $|a| = p^j$, for some integer j. Consider arbitrary element (coset) $Ka \in N/K$. Now calculate the following power of this coset:

$$(Ka)^{p^{j}} = Ka^{p^{j}}$$
$$= Ke$$
$$= K.$$

Since no no of p , so Ka	on-identity element of N/K has order a power of p and order of Ka is some power $a=K$.
Comment	
	Step 3 of 3
Hence, if a	$a \in N$ and $ a = p^j$ then the order of Ka in N/K is also a power of p .
Comment	

Note that K is the identity element of quotient group N/K. So, the equation $(Ka)^{p^j} = K$ implies that the order of coset Ka must be a divisor of p^j . That is, order of Ka will be some power of

The second step is obtained from the condition that $|a| = p^{j}$, so $a^{p^{j}} = e^{-c}$

p.