

Blockchain Security | Smart Contract Audits | KYC Development | Marketing

MADE IN GERMANY

Kelp

Audit

Security Assessment 11. May, 2023

For

Kep

Disclaimer	3
Description	5
Project Engagement	5
Logo	5
Contract Link	5
Methodology	7
Used Code from other Frameworks/Smart Contracts (direct imports)	8
Tested Contract Files	9
Source Lines	10
Risk Level	10
Capabilities	11
Inheritance Graph	12
CallGraph	13
Scope of Work/Verify Claims	14
Modifiers and public functions	24
Source Units in Scope	26
Critical issues	27
High issues	27
Medium issues	27
Low issues	27
Informational issues	27
Audit Comments	28
SWC Attacks	29

Disclaimer

<u>SolidProof.io</u> reports are not, nor should be considered, an "endorsement" or "disapproval" of any particular project or team. These reports are not, nor should be considered, an indication of the economics or value of any "product" or "asset" created by any team. SolidProof.io do not cover testing or auditing the integration with external contract or services (such as Unicrypt, Uniswap, PancakeSwap etc'...)

SolidProof.io Audits do not provide any warranty or guarantee regarding the absolute bug- free nature of the technology analyzed, nor do they provide any indication of the technology proprietors. SolidProof Audits should not be used in any way to make decisions around investment or involvement with any particular project. These reports in no way provide investment advice, nor should be leveraged as investment advice of any sort.

SolidProof.io Reports represent an extensive auditing process intending to help our customers increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and blockchain technology. Blockchain technology and cryptographic assets present a high level of ongoing risk. SolidProof's position is that each company and individual are responsible for their own due diligence and continuous security. SolidProof in no way claims any guarantee of security or functionality of the technology we agree to analyze.

Version	Date	Description
1.0	10. May 2023	Layout projectAutomated-/Manual-Security TestingSummary

Network

Binance Smart Chain (BEP20)

Website

https://kelp.finance

Telegram

https://t.me/kelpfinance

Twitter

https://twitter.com/KelpFinance

Facebook

https://www.facebook.com/kelpfinance

Youtube

https://www.youtube.com/@kelpfinance

Description

TBA

Project Engagement

During the 9th of May 2023, **Kelp Team** engaged Solidproof.io to audit smart contracts that they created. The engagement was technical in nature and focused on identifying security flaws in the design and implementation of the contracts. They provided Solidproof.io with access to their code repository and whitepaper.

Contract Link

v1.0

- · Github
 - https://github.com/DioneProtocol/Governance-sc
 - · Commit: 75bd04a

Vulnerability & Risk Level

Risk represents the probability that a certain source-threat will exploit vulnerability, and the impact of that event on the organization or system. Risk Level is computed based on CVSS version 3.0.

Level	Value	Vulnerability	Risk (Required Action)
Critical	9 - 10	A vulnerability that can disrupt the contract functioning in a number of scenarios, or creates a risk that the contract may be broken.	Immediate action to reduce risk level.
High	7 – 8.9	A vulnerability that affects the desired outcome when using a contract, or provides the opportunity to use a contract in an unintended way.	Implementation of corrective actions as soon aspossible.
Medium	4 – 6.9	A vulnerability that could affect the desired outcome of executing the contract in a specific scenario.	Implementation of corrective actions in a certain period.
Low	2 – 3.9	A vulnerability that does not have a significant impact on possible scenarios for the use of the contract and is probably subjective.	Implementation of certain corrective actions or accepting the risk.
Informational	0 – 1.9	A vulnerability that have informational character but is not effecting any of the code.	An observation that does not determine a level of risk

Auditing Strategy and Techniques Applied

Throughout the review process, care was taken to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices. To do so, reviewed line-by-line by our team of expert pentesters and smart contract developers, documenting any issues as there were discovered.

Methodology

The auditing process follows a routine series of steps:

- 1. Code review that includes the following:
 - i) Review of the specifications, sources, and instructions provided to SolidProof to make sure we understand the size, scope, and functionality of the smart contract.
 - ii) Manual review of code, which is the process of reading source code line-byline in an attempt to identify potential vulnerabilities.
 - iii) Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to SolidProof describe.
- 2. Testing and automated analysis that includes the following:
 - i) Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run those test cases.
 - ii) Symbolic execution, which is analysing a program to determine what inputs causes each part of a program to execute.
- 3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the established industry and academic practices, recommendations, and research.
- 4. Specific, itemized, actionable recommendations to help you take steps to secure your smart contracts.

Used Code from other Frameworks/Smart Contracts (direct imports)

Imported packages:

Dependency / Import Path	Count
@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol	2
@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol	2
@openzeppelin/contracts-upgradeable/security/ReentrancyGuardUpgradeable.sol	2
@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol	2
@openzeppelin/contracts-upgradeable/token/ERC20/utils/SafeERC20Upgradeable.sol	2
@openzeppelin/contracts-upgradeable/utils/math/SafeMathUpgradeable.sol	2
@openzeppelin/contracts/token/ERC20/IERC20.sol	1

Tested Contract Files

This audit covered the following files listed below with a SHA-1 Hash.

A file with a different Hash has been modified, intentionally or otherwise, after the security review. A different Hash could be (but not necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of this review.

v1.0

File Name	SHA-1 Hash
contracts/interfaces/IPancakePair.sol	e428bf025c93ffcf5d42b085885b49f0e3060dfe
contracts/interfaces/IPancakeSwapRouter.sol	8807123886bb0460ef4a1137775f0b75e00dbc19
contracts/CrowdSale.sol	67df0d046ec38e292c68655ca1cb249fa03afc26
contracts/KelpToken.sol	f8badb1882f0127f04f6f6f8e5bda1d142f8c254

Metrics

Source Lines v1.0

Capabilities

Components

Version	Contracts	Libraries	Interfaces	Abstract
1.0	2	0	2	0

Exposed Functions

This section lists functions that are explicitly declared public or payable. Please note that getter methods for public stateVars are not included.

Ve	rsion	Public	Payable
1.0		50	1

Version	External	Internal	Private	Pure	View
1.0	42	30	0	5	18

State Variables

Version	Total	Public
1.0	20	19

Capabilities

Version	Solidity Versions observed	Experim ental Features	Can Receive Funds	Uses Assembl Y	Has Destroya ble Contract s
1.0	^0.8.1 2		yes		

Version	Transfer s ETH	Low- Level Calls	Deleg ateCa II	Uses Hash Function s	EC Rec ove r	New/ Create/ Create2	
---------	-------------------	------------------------	----------------------	-------------------------------	-----------------------	----------------------------	--

1.0 yes	
---------	--

Inheritance Graph

v1.0

CallGraph

v1.0

Scope of Work/Verify Claims

The above token Team provided us with the files that needs to be tested (Github, Bscscan, Etherscan, files, etc.). The scope of the audit is the main contract (usual the same name as team appended with .sol).

We will verify the following claims:

- 1. Is contract an upgradeable
- 2. Correct implementation of Token standard
- 3. Deployer cannot mint any new tokens
- 4. Deployer cannot burn or lock user funds
- 5. Deployer cannot pause the contract
- 6. Deployer cannot set fees
- 7. Deployer cannot blacklist/antisnipe addresses
- 8. Overall checkup (Smart Contract Security)

Is contract an upgradeable

Name Is contract an upgradeable? Yes

Comments:

v1.0

- Owner can deploy a new version of the contract which can change any limit and give owner new privileges
 - Be aware of this and do your own research for the contract which is the contract pointing to

Correct implementation of Token standard

	ERC20					
Function	Function Description					
TotalSupply	Provides information about the total token supply	\checkmark	√	\checkmark		
BalanceOf	Provides account balance of the owner's account	\checkmark	√	\checkmark		
Transfer	Executes transfers of a specified number of tokens to a specified address	√	√	√		
TransferFrom	Executes transfers of a specified number of tokens from a specified address	√	√	√		
Approve	Allow a spender to withdraw a set number of tokens from a specified account	1	√	√		
Allowance	Returns a set number of tokens from a spender to the owner	√	1	✓		

Write functions of contract v1.0

CrowdSale.sol

buyKelpWithBUSD buyTokensBNB buyTokensBUSD initialize initiatePrivateSale pauseSale renounceOwnership transferOwnership unpauseSale updateKelpToken updateKelpWallet updateSaleInfo updateTreasury

KelpToken.sol

Deployer cannot mint any new tokens

Name	Exist	Tested	Status
Deployer cannot mint	\checkmark	√	√
Max / Total Supply		80000	000000

Deployer cannot burn or lock user funds

Name	Exist	Tested	Status
Deployer cannot lock	\checkmark	√	X
Deployer cannot burn	-	-	-

Comments:

v1.0

• Owner can lock by setting the kelp address to an address that doesn't support the transferFrom function. Additionally to it the owner can also decrease the allowance of the kelp wallet.

Deployer cannot pause the contract

Name	Exist	Tested	Status
Deployer cannot pause	\checkmark	√	X

Comments:

v1.0

 Owner can pause CrowdSale contract as long as the the current time is between the range of startTime an endTime (14 days)

Deployer cannot set fees

Name	Exist	Tested	Status
Deployer cannot set fees over 25%	-	-	-
Deployer cannot set fees to nearly 100% or to 100%	-	_	-

Deployer can blacklist/antisnipe addresses

Name	Exist	Tested	Status
Deployer cannot blacklist/antisnipe addresses	-	-	-

Overall checkup (Smart Contract Security)

Legend

Attribute	Symbol
Verified / Checked	\checkmark
Partly Verified	×
Unverified / Not checked	X
Not available	-

Modifiers and public functions v1.0

CrowdSale KelpToken initialize initialize initializer initiatePrivateSale transfer ⊗ onlyOwner nonReentrant updateSaleInfo transferFrom ⊗ onlyOwner nonReentrant updateKelpToken ⊗ onlyOwner approve updateKelpWallet nonReentrant ⊗ onlyOwner increaseApproval updateTreasury nonReentrant ⊗ onlyOwner decreaseApproval pauseSale ⊗ onlyOwner unpauseSale ⊗ onlyOwner 🔷 buyTokensBNB 👸 buyTokensBUSD nonReentrant OnSale buyKelpWithBUSD nonReentrant

Comments

- In the CrowSale contract the owner has following permissions:
 - initiatePrivateSale
 - Initiate private sale as long as the _startTime is above the current timestamp. The owner is able to call this function all the time. If it is the purposes that the owner can start sales again it is recommended to prevent the call when a sale is running.
 - updateSaleInfo

- Update the initiated infos as long as the sale is not started already. The owner is able to set the saleLimit and tokenPrice to an arbitrary value in the uint256 range.
- updateKelpToken
 - Updating the kelp token address. If the kelp token address is an address where the kelpWallet has no funds in it the crowdsale contract will not work properly
- updateKelpWallet
 - Updating the kelp wallet from where the tokens will be send
- updateTreasury
 - Updating the treasury where the native tokens will be sen after buying tokens with bnb and busd. This can be also a EOA (External owned address) who can get out the funds.
- Pause-/unpauseSale
 - Pause and unpause the contract. pauseSale can only be called if the current timestamp is between the range of start and end time

Please check if an OnlyOwner or similar restrictive modifier has been forgotten.

Source Units in Scope

v1.0

Туре	File	Logic Contracts	Interfaces	Lines	nLines	nSLOC	Comment Lines	Complex. Score	Capabilities
Q	contracts/interfaces/IPancakePair.sol		1	111	12	9	1	55	
Q	contracts/interfaces/IPancakeSwapRouter.sol		1	17	5	3	1	5	
9	contracts/CrowdSale.sol	1		442	406	215	136	163	. <u>Š</u>
2	contracts/KelpToken.sol	1		180	166	80	65	68	
i Q	Totals	2	2	750	589	307	203	291	. <u>Š</u>

Legend

Attribute	Description				
Lines	total lines of the source unit				
nLines	normalised lines of the source unit (e.g. normalises functions spanning multiple lines)				
nSLOC	normalised source lines of code (only source-code lines; no comments, no blank lines)				
Comment Lines	lines containing single or block comments				
Complexity Score	a custom complexity score derived from code statements that are known to introduce code complexity (branches, loops, calls, external interfaces,)				

Audit Results

Critical issues

No critical issues

High issues

No high issues

Medium issues

No medium issues

Low issues

Issue	File	Type	Line	Description
#1	All	A floating pragma is set	2	The current pragma Solidity directive is ""^0.8.12"".
#2	Main	Local variables shadowing	64, 54	Rename the local variables that shadow another component. It is recommended to move the underscore to the end of the "owner" instead of the beginning.

Informational issues

Issue	File	Type	Line	Description
#1	CrowdS ale	Wrong comment	353	The caller is the one who performs the purchase, not the beneficiary. The beneficiary is only the one who will get the tokens at the end of the purchase.
#2	KelpTok en	Naming convention	33, 26-30	Start a private/internal variables/functions with an underscore. Also write variables that are constant with uppercased letters.

#3	Tests	Unavailable function	See description	The tests are still calling functions that are has been removed from the contracts. Adjust your test cases for the current contract functions. Functions called: - crowdSale.updateKelpOwn er - crowdSale.updateKelpOwn er - crowdSale.updateKelpOwn ar
#4	Tests	Start timestamp	See description	When your contract uses timestamps in the contract (Sale timestamp) it is recommended to start the test cases at a specific time stamp. Otherwise you have to adjust the timestamp in the tests all the time when you try to test your tests on a later time. At this time the test cases will revert with the "can't set startTime in the past" error message.

Audit Comments

We recommend you to use the special form of comments (NatSpec Format, Follow link for more information https://docs.soliditylang.org/en/latest/natspec-format.html) for your contracts to provide rich documentation for functions, return variables and more. This helps investors to make clear what that variables, functions etc. do.

11. May 2023:

- · Anyone is able to buy tokens for other addresses
- Owner can deploy a new version of the contract which can change any limit and give owner new privileges
- · Read whole report and modifiers section for more information

SWC Attacks

ID	Title	Relationships	Status
<u>SW</u> <u>C-1</u> <u>36</u>	Unencrypted Private Data On-Chain	CWE-767: Access to Critical Private Variable via Public Method	PASSED
<u>SW</u> <u>C-1</u> <u>35</u>	Code With No Effects	CWE-1164: Irrelevant Code	PASSED
<u>SW</u> <u>C-1</u> <u>34</u>	Message call with hardcoded gas amount	CWE-655: Improper Initialization	PASSED
<u>SW</u> <u>C-1</u> <u>33</u>	Hash Collisions With Multiple Variable Length Arguments	CWE-294: Authentication Bypass by Capture-replay	PASSED
<u>SW</u> <u>C-1</u> <u>32</u>	Unexpected Ether balance	CWE-667: Improper Locking	PASSED
<u>SW</u> <u>C-1</u> <u>31</u>	Presence of unused variables	CWE-1164: Irrelevant Code	PASSED
<u>SW</u> <u>C-1</u> <u>30</u>	Right-To-Left- Override control character (U+202E)	CWE-451: User Interface (UI) Misrepresentation of Critical Information	PASSED
<u>SW</u> <u>C-1</u> <u>29</u>	Typographical Error	CWE-480: Use of Incorrect Operator	PASSED
<u>SW</u> <u>C-1</u> <u>28</u>	DoS With Block Gas Limit	CWE-400: Uncontrolled Resource Consumption	PASSED

<u>SW</u> <u>C-1</u> <u>27</u>	Arbitrary Jump with Function Type Variable	CWE-695: Use of Low-Level Functionality	PASSED
<u>SW</u> <u>C-1</u> <u>25</u>	Incorrect Inheritance Order	CWE-696: Incorrect Behavior Order	PASSED
<u>SW</u> C-1 24	Write to Arbitrary Storage Location	CWE-123: Write-what-where Condition	PASSED
SW C-1 23	Requirement Violation	CWE-573: Improper Following of Specification by Caller	PASSED
<u>SW</u> <u>C-1</u> <u>22</u>	Lack of Proper Signature Verification	CWE-345: Insufficient Verification of Data Authenticity	PASSED
<u>SW</u> <u>C-1</u> <u>21</u>	Missing Protection against Signature Replay Attacks	CWE-347: Improper Verification of Cryptographic Signature	PASSED
<u>SW</u> <u>C-1</u> <u>20</u>	Weak Sources of Randomness from Chain Attributes	CWE-330: Use of Insufficiently Random Values	PASSED
<u>SW</u> <u>C-11</u> <u>9</u>	Shadowing State Variables	CWE-710: Improper Adherence to Coding Standards	NOT PASSED
<u>SW</u> <u>C-11</u> <u>8</u>	Incorrect Constructor Name	CWE-665: Improper Initialization	PASSED
<u>SW</u> <u>C-11</u> <u>7</u>	Signature Malleability	CWE-347: Improper Verification of Cryptographic Signature	PASSED

<u>SW</u> <u>C-11</u> <u>6</u>	Timestamp Dependence	CWE-829: Inclusion of Functionality from Untrusted Control Sphere	PASSED
<u>SW</u> <u>C-11</u> <u>5</u>	Authorization through tx.origin	CWE-477: Use of Obsolete Function	PASSED
<u>SW</u> <u>C-11</u> <u>4</u>	Transaction Order Dependence	CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')	PASSED
<u>SW</u> <u>C-11</u> <u>3</u>	DoS with Failed Call	CWE-703: Improper Check or Handling of Exceptional Conditions	PASSED
<u>SW</u> <u>C-11</u> <u>2</u>	Delegatecall to Untrusted Callee	CWE-829: Inclusion of Functionality from Untrusted Control Sphere	PASSED
<u>SW</u> <u>C-11</u> <u>1</u>	Use of Deprecated Solidity Functions	CWE-477: Use of Obsolete Function	PASSED
<u>SW</u> <u>C-11</u> <u>O</u>	Assert Violation	CWE-670: Always-Incorrect Control Flow Implementation	PASSED
SW C-1 09	Uninitialized Storage Pointer	CWE-824: Access of Uninitialized Pointer	PASSED
<u>SW</u> <u>C-1</u> <u>08</u>	State Variable Default Visibility	CWE-710: Improper Adherence to Coding Standards	PASSED
SW C-1 07	Reentrancy	CWE-841: Improper Enforcement of Behavioral Workflow	PASSED
<u>SW</u> <u>C-1</u> <u>06</u>	Unprotected SELFDESTRUC T Instruction	CWE-284: Improper Access Control	PASSED

<u>SW</u> <u>C-1</u> <u>05</u>	Unprotected Ether Withdrawal	CWE-284: Improper Access Control	PASSED
<u>SW</u> <u>C-1</u> <u>04</u>	Unchecked Call Return Value	CWE-252: Unchecked Return Value	PASSED
<u>SW</u> <u>C-1</u> <u>03</u>	Floating Pragma	CWE-664: Improper Control of a Resource Through its <u>Lifetime</u>	NOT PASSED
<u>SW</u> <u>C-1</u> <u>02</u>	Outdated Compiler Version	CWE-937: Using Components with Known Vulnerabilities	PASSED
<u>SW</u> <u>C-1</u> <u>01</u>	Integer Overflow and Underflow	CWE-682: Incorrect Calculation	PASSED
<u>SW</u> <u>C-1</u> <u>00</u>	Function Default Visibility	CWE-710: Improper Adherence to Coding Standards	PASSED

Blockchain Security | Smart Contract Audits | KYC Development | Marketing

