University of Wisconsin-Milwaukee

Modern Algebra Math 531

Exam 1

Author
Theodore Koss

Supervisor Dr. Burns Healy

January 19, 2024

If a, b are coprime and b, c are coprime, then must a, c be coprime? If so, prove. If not, provide a counterexample. What can you conclude about whether "is coprime to" is an equivalence relation among positive integers. If it is, prove it; if not, declare which axiom it fails.

- (a) Consider a = 2, b = 5, c = 6. Clearly gcd(2,5) = 1 and gcd(5,6) = 1, however, gcd(2,6) = 2. Thus, a, c are not necessarily coprime when a, b and b, c are.
- (b) We can use the above result to prove "is coprime to" is not an equivalence relation over \mathbb{Z}^+ , because it fails the axiom of transitivity.

2 Problem 2

Let $\mathbb{Z}_k \setminus \{[0]_k\}$ be the set \mathbb{Z}_k without the zero element. What condition on the integer k makes $(\mathbb{Z}_k \setminus \{[0]_k\}, \cdot)$ a group? Prove this condition is both sufficient and necessary.

Proof. k must be a prime number.

- Necessity: $A \Longrightarrow B$. Assume k is prime, then the set $\mathbb{Z}_k \setminus \{[0]_k\}$, with the binary operation \cdot , has:
 - 1. Closure: As $\forall a, b \in \mathbb{Z}_k \setminus \{[0]_k\}$, with prime k, it is impossible to multiply two elements to be equivalent to $[0]_k$.
 - 2. Identity: The element $[1]_k = e$. Of course.
 - 3. Inverses: $\forall a \in \mathbb{Z}_k \setminus \{[0]_k\}$, by Bezout's Identity since $\gcd(a, k) = 1$, $\exists x, y \in \mathbb{Z}$ such that ax + ky = 1, reduce modulo k to achieve: ax = 1. Thus $x \in \mathbb{Z}_k \setminus \{[0]_k\}$ is the inverse of a.
 - 4. Associativity: Since multiplication over the integers mod k is well defined, \cdot is associative.

Therefore $(\mathbb{Z}_k \setminus \{[0]_k\}, \cdot)$ is a group.

• Sufficiency: $B \Longrightarrow A$, or $\neg A \Longrightarrow \neg B$. To the contrary, assume k is composite. Then k = pq, for some $p, q \neq 1 \in \mathbb{Z}_k \setminus \{[0]_k\}$. This shows that there exists some $a, b \in \mathbb{Z}_k \setminus \{[0]_k\}$ such that $ab = k \equiv [0]_k \notin \mathbb{Z}_k \setminus \{[0]_k\}$. Thus $(\mathbb{Z}_k \setminus \{[0]_k\}, \cdot)$ is not closed, and is therefore not a group. As required.

QED

3 Problem 3

Prove that, for an arbitrary integer $n \geq 2$, any integer M can be written as m = an + r, where $a \in \mathbb{Z}$ and $2n \leq r < 3n$.

Proof. To show existence, we consider some set

$$S = \{m - an = r | a \in \mathbb{Z}\}, m - an \ge 0$$

If we can prove this set is nonempty, by the well ordering principle, there will be a least element. There are two cases for r.

- (i) $m \ge 0$, in this case, we set a = 0 and achieve the following: $r = m 0n = m \in S$.
- (ii) m < 0, then we can set a = m. Then r = m an = m mn = m(1-n). And since m < 0 and $n \ge 2$, a(1-d) is, of course, an element of S.

Thus S is nonempty, and therefore has a least element r = m - an, rearranging this we get our original equation must be true: m = an + r.

However this does not show uniqueness of a and r. To prove this, consider some elements b, s (haha, get it?) satisfy m = bn + s. Then, we may assume $s \ge r$, and thus, $0 \le r - s < n$. Since m = bn + s = an + r, the following holds:

$$r - s = n(b - a)$$

Which, by definition, means n divides r-s, which implies either $r-s \ge d$ or r-s=0. But, since we know $0 \le r-s < n$, r-s=0 and therefore r=s. This, of course, implies b=a, therefore r and a are unique. QED

Let k, n be arbitrary positive integers. Find a matrix M_k that has order k as an element of the group $GL_n(\mathbb{C})$.

```
Proof. GL_n(\mathbb{C}) = \{A = [a_{ij}]_{n \times n}\}, such that |A| \neq 0 and a_{ij} \in \mathbb{C}. This is the group of matrices of n \times n order, with nonzero determinants.

Thus, upper or lower triangular matrix will have determinant |A| = \underbrace{a_{11} \cdot a_{22} \cdot \ldots \cdot a_{nn}}_{\text{Product of diagonal elements.}}
```

which will of course be nonzero, since all of $a_{11} \cdot a_{22} \cdot ... \cdot a_{nn}$ are nonzero. QED

5 Problem 5

Let P, Q be regular polygons. Let G_P, G_Q be the group of rigid motions of P, Q, respectively. Show that if there is an isomorphism between G_P, G_Q , then the polygons are similar. Do they also have to be congruent?

Proof. Consider the regular polygons P,Q, and consider the polygon to be a n-gon, and m-gon respectively. Then $G_P = D_n$, and $G_Q = D_m$. Therefore the order of the rigid motion groups G_P, G_Q are 2n, and 2m, respectively (This is proven in problem 7). Since $|G_P|, |G_Q| \neq \infty$, in order for there to be an isomorphism $\phi: G_P \to G_Q, |G_P| = |G_Q|$. Therefore, 2m = 2n, this necessarily implies m = n. And by this result in geometry, all regular simple polygons with the same number of sides are similar. Thus, P must be similar to Q if there exists an isomorphism between their respective groups. However, this result has nothing to do with the congruence of these two polygons.

Counterexample: consider P to be some regular 4-gon with area 4, whose rigid motion group is isomorphic to some other rigid motion group of a polygon, Q, with area 25. Then, by our result above, Q must also be a square (regular 4-gon). These two rigid motion groups are isomorphic, however clearly, $4 \neq 25$ and therefore they are not congruent.

So if there exists an isomorphism between rigid motion groups G_P and G_Q for regular polygons P and Q, then P and Q must be similar, however they do not necessarily have to be congruent. QED

Define \mathbb{C}_r to be the set $\{a + rbi | a, b \in \mathbb{R}\}$ for each $r \in \mathbb{R}$.

• Prove that this set is a group under addition.

Proof. To be a group, the following must be true:

- (a) Closure: This holds because $\forall n, m \in \mathbb{C}_r$, where $n = a_n + rb_n i$, and $m = a_m + rb_m i$, their sum, $n + m = \underbrace{a_n + a_m}_{\text{Real part}} + \underbrace{ri(b_n + b_m)}_{\text{Imaginary part}} \in \mathbb{C}_r$.
- (b) Existence of identity: The identity element is 0, n + 0 = n.
- (c) Existence of inverses: For each element $n = a_n + rb_n i$, the inverse is $n^{-1} = -a_n rb_n i \in \mathbb{C}_r$. Therefore every element has inverses.
- (d) Associativity of addition, this holds because $\forall n, m, l \in \mathbb{C}_r$, n + (m+l) = (n+m) + l.

Thus, $(\mathbb{C}_r, +)$ is a group. QED

• For what values of r are the groups $(\mathbb{C}, +)$ and $(\mathbb{C}_r, +)$ isomorphic?

Proof. All values $r \in \mathbb{R}$. This is the case because we can set up a bijective homomorphism $\phi: (\mathbb{C}_r, +) \to (\mathbb{C}, +)$ defined by $\phi(n \in \mathbb{C}_r) = m \in \mathbb{C}$. $\forall n = a_n + rb_n i \in \mathbb{C}_r$, the homomorphism $\phi: (\mathbb{C}_r, +) \to (\mathbb{C}, +)$ is rather trivial, as to define a unique element $m = a_m + b_m i \in \mathbb{C}$, simply let $a_m = a_n$ and $b_m = rb_n$. To show ϕ is a bijection, we N2S the following:

- (a) ϕ is injective. This is the case because if we choose some value k for which $\phi(k) = \phi(n) = m$, this means $k = a_k + rb_k i = m \in \mathbb{C}$, but so does $n = a_n + rb_k i$. Which implies that $a_m = a_k = a_n$, and $b_m = rb_k = rb_n$ This shows if there did exist some k, n for which $\phi(k) = \phi(n)$, it would imply that k = n.
- (b) ϕ is surjective. This is also true because $\forall m = a_m + b_m i \in \mathbb{C}$, $\exists n \in \mathbb{C}_r \text{ s.t. } \phi(n) = m$, specifically defined by $n = a_n + rb_n i$ where $a_m = a_n$ and $b_m = rb_n$.

QED

Define the order of a group. Let D_n be the dihedral group and let Sym_n be the symmetric group on n letters. State and prove a relationship between $|D_n|$ and $|Sym_n|$.

The order of a group is the cardinality (or "size") of the group. The relationship between the orders of D_n and Sym_n is $\frac{|Sym_n|}{|D_n|} = \frac{n!}{2n}$.

Proof. For Sym_n , the permutation group is a bijection from a set of n elements to itself. Therefore, if you choose some $a \in Sym_n$, it has n choices to be sent to, then the next element $b \in Sym_n$ has n-1 choices to be sent to. Continue this for all elements of Sym_n , and the result is $|Sym_n| = n!$.

For D_n , this is the group of symmetries of a regular n-gon. WLOG, consider the example n=3. This is the group of symmetries of an equilateral triangle. By inspection, it is easy to see that a rotation by $\frac{360}{3}^{\circ}$ is a symmetry, in fact, a symmetry for each rotation up to $360^{\circ}=e$, in this case 3. We can generalize this to any n-gon to get the first n symmetries. The next n symmetries come from drawing a line through one of the n vertices, then reflecting the shape over this line. Do this for each vertex to get n more symmetries. The final result is n+n=2n symmetries of a regular n-gon, and therefore $|D_n|=2n$.

8 Problem 8

Prove that differentiable, bijective functions from $\mathbb{R} \to \mathbb{R}$ form a group under composition.

Proof. Let $G = \{ \text{Bijections } \phi : \mathbb{R} \to \mathbb{R} \}$. N2S: (G, \circ) is a group, where \circ denotes function composition.

- 1. Closure: A bijection composed with a bijection is necessarily another bijection, therefore G is closed under composition.
- 2. Identity: The element $e = \phi$ where $\phi(x) = x$ is the identity function, and $e \in G$.
- 3. Inverses: For each element $\phi \in G$, ϕ defines some bijection from $\mathbb{R} \to \mathbb{R}$, then there must exist another bijection θ , where θ defines a bijection

from $\mathbb{R} \to \mathbb{R}$. WLOG, as an example, consider the finite sets $X = \{1,2,3\}$ and $Y = \{-1,-2,-3\}$. Of course, a bijection ϕ exists, namely $\phi: X \to Y$ defined by $\phi(x) = -x, \forall x \in X$. There also exists a bijection $\theta: Y \to X$, defined by $\theta(y) = -y, \forall y \in Y$. This θ is the inverse of ϕ , this also means $\phi \circ \theta = e$. We can see this because if we do the bijection ϕ , it's the mapping $1 \to -1, 2 \to -2, 3 \to -3$, then θ is the mapping $-1 \to 1, -2 \to 2, -3 \to 3$. Therefore composing the two is the same as doing nothing. This case can be generalized to the infinite set \mathbb{R} .

4. Associativity: Function composition is associative.

QED