# Introduction to Data Management

Shelley Knuth shelley.knuth@colorado.edu

Andrew Johnson andrew.m.johnson@colorado.edu

www.rc.colorado.edu

Questions? #RC\_Meetups

Link to survey on this topic: <a href="http://goo.gl/forms/8VidcwOhRT">http://goo.gl/forms/8VidcwOhRT</a>

#### Slides:

https://github.com/ResearchComputing/Final Tutorials/blob/master/intro\_data\_management.pdf

#### **Outline**

- What is research data and why do we care about managing it?
- How to manage data properly
  - Formats
  - Metadata
  - Storage
  - Sharing
- Competitive in research
- Data management plans
- Resources

#### What is research data?

- White House Office of Management and Budget:
  - "The recorded factual material commonly accepted in the scientific community as necessary to validate research findings."
- Data itself can really, can be anything!
  - Anything that can be stored on your system

# Why do we care about managing research data?

- Good for science:
  - Reproducibility
  - Efficiency
  - Innovation
- Good for you:
  - Let's keep that data safe!
  - More usage (including citations)
  - More exposure to potential collaborators
  - More competitive grant applications
- Becoming increasingly required
  - Funding agencies, DMPs

#### **Data Workflow**

- Many projects follow a similar workflow:
  - Data is produced or collected
  - Data needs to be cleaned/corrected to be used
  - Data is analyzed and visualized
    - Won't cover here as not a focus of data management
  - Data is stored
  - Data is shared

How do we do each properly?

#### Production/Collection of Data

- Can you explain your dataset?
  - Think before you begin!
- What type/format of data is going to be generated?
  - Images? Text files?
- How large will the files/dataset be?
- What can I expect for growth rates?
  - Can I manage this dataset with my current computing resources?
- What products may be collected or generated?
  - Software
  - Code

#### Data formats

- Data formats:
  - Avoid proprietary formats
- Non-proprietary file formats are the most appropriate to use to ensure access to the data in the future
- Proprietary formats:
  - .docx
  - .pptx
  - x|sx
  - .psd
  - .mov

- Non-proprietary formats:
  - .txt
  - .pdf
  - .CSV
  - .tif
  - .mp4

Know what software can be used to read the data

#### Metadata

- Data about data!
- Describes relevant data for re-creation and re-use
- Information to include:
  - Contact information about who is in charge of data
  - How the data was collected
  - Important information in collection process
  - Date, location of collection, etc
  - Units
  - Other relevant information

#### Metadata

- As simple as a text file! Example:
   http://www.usap-data.org/entry/NSF-ANT07-39464/2013-01-22 09-39-50/
- Other options: Standardized XML code
- Good metadata should follow community- or disciplinebased standards:
  - http://www.dcc.ac.uk/resources/metadata-standards
- Use consistent and documented conventions in the absence of standards
- Very important!!

# Data cleaning/correcting

- Very rarely is data that is newly collected perfect
- May need to:
  - Eliminate spurious data
  - Column headers?
  - Reformat dates
  - Convert file formats
  - Change units
- Could do an entire class on data cleaning and correcting
- Document your changes!!!

# Identifying and Removing Outliers

- What is an acceptable range for your data?
  - Are you sure?
- Does the data fall within this range?
- Plot it!
- Data not in range? Why not?
  - Human error?
  - Instrument failure?
  - Data is possible but never seen it before?
    - Ozone hole satellite data
    - Must be sure before you delete data!!!!
- Confident in outliers?
  - Set missing data values

# Data cleaning/correcting

- Use standard formats
  - netCDF is a good one
    - Standard format
    - Openly available
    - Can be used by many software programs
    - Can describe data within the file (metadata)
  - Don't know netCDF?
    - Text, CSV, etc.
    - Anything that can be used by multiple programs/people and will be around
- ALWAYS keep your original file safe
  - Multiple locations

## Policies for backing up data

- What will you do to ensure that the data collected as part of this important project is kept for long term use?
- Keep in mind:
  - How not to lose the data
  - How can others reuse the data
    - Related to sharing...next...
  - How can you maintain the integrity of the data?
- Store data, metadata, products, anything needed to reuse the data
- During project and after project may be different

#### Data Backup

- Purpose: to make sure data doesn't disappear
  - Storage: Back up data on tape, disk, cloud
  - Archive: Data fixed to one location, keep secure, identifiers
  - Preservation: Specific items maintained over time
    - Ensures continued and reliable use of valued data
  - Curation: Continuous updating, interaction with data creators and users, adds value to dataset
- Most researchers do somewhere between archiving and preservation for final dataset

# Good practices for data archiving, preservation, storage

- Trusted repository is best!
  - Somewhere people make sure it's safe so you don't have to
  - Disciplinary repository
    - http://www.re3data.org/browse/by-subject/
  - Otherwise somewhere more generic
    - Dryad
  - Or somewhere more local
    - University/industry/research group storage facilities
      - At CU: PetaLibrary

### Data storage: PetaLibrary

- NSF Major Research Instrumentation grant
- Large data collections from faculty and students
- Deposition and storing of data
- Researchers pay for the medium (disk or tape)
- No HIPAA, FERPA, ITAR data
- Infrastructure guaranteed for 4 years

# Good practices for data backup

- Only storing data on thumb drives bad
- Store multiple copies!
- Active management
- Backups!
- Review schedule for preservation

### FAQ about Data Storage

- Q: Where should I store my data?
- A: Somewhere that, at a minimum, can ensure data won't disappear, won't be degraded, and can be accessed easily
- Q: How long do I need to store my data?
- A: Depends on viability of data. Good rule of thumb:
   10 years
- Q: Do I need to store every little file I've ever collected?
- A: Depends on how important those files are to the reuse of data or re-creation of research

# Data access and sharing

- Data sharing becoming very important to funding agencies
  - Reproduce existing research
  - Promote further research
- To share data, must properly manage it
  - Proper formats
  - Metadata
  - Stored properly
    - Might be able to combine sharing and storage in one

## Data access and sharing

- Proper ways to share data:
- Data must be made easily available
  - Not "by request" only
- Share with a place that has a digital object identifier (DOI)
- Embargo periods are ok, within reason
  - Data should be published when articles using data are published
- Security issues?
  - Must consider privacy and intellectual property issues before making data available

#### Re-use and re-distribution

- Things to consider:
- Are there any conditions for people to re-use your data?
  - Proper citation is a good condition
- Any disclaimers?
- You must justify properly any limitations you have on who can use your data

# Where can I share my data?

- Trusted repositories
  - Can store and share data
  - Some charge a fee, some are free
  - Want one with a DOI
- Free example: <u>figshare</u>
- Disciplinary repository
  - http://www.re3data.org/browse/by-subject/
- Generic
  - Dryad
- Personal website?
  - Not great
  - If choose must come up with a schedule for maintenance

# Funding agency requirements

- Data Management Plan (DMP) requirements:
  - National Science Foundation
  - Department of Energy
  - USGS
  - Other agencies and foundations
- More responses to the 2013 White House OSTP public access memo coming soon...

## Data Management Plans

- Learn a lot about data management by looking at funding agency requirements
- Sample DMP for hypothetical NSF Division of Atm. and Geospace Sciences proposal
- Funding requirements:
  - https://dmptool.org/guidance?utf8=%E2%9C%93&q=nsf+ ags&commit=Search
- Sample plan:
  - https://dmptool.org/plans/10130.pdf

#### Successful DMPs

- Should include, at a minimum:
  - A brief description of the data, including size of dataset
  - A plan for storing the data long term
  - A description of what will be included in metadata
  - How you will share the data, without limits (if possible)
  - Making sure you can handle your dataset
  - Want to ensure you've thought about your data

#### **DMPTool**

- With the DMP Tool, you can:
- Create a new DMP based on funding agency templates
- Review public DMPs
- Review requirements for DMPs from different funding agencies
- Email your institution directly for help (once logged in)

# Using Data to Promote Research

- Publish or perish data journals:
  - Geoscience Data Journal
  - Earth System Science Data
  - Scientific Data (Nature)
- Increasing consideration of "products"
  - NSF changed "publications" to "products" on CV
  - Explicitly mentions adding datasets
  - Many universities following suit
- DOIs increase exposure

#### **Available Resources**

- CU Boulder has many services available free of charge
  - Research Data Services
  - data.colorado.edu
  - data-help@colorado.edu
  - Twitter: @cu\_data
  - Facebook: CU Boulder Data
  - DMP Tool: <a href="http://dmptool.org">http://dmptool.org</a>

# Thank you!

- Copyright 2014 by Andrew Johnson and Shelley Knuth
- This work is licensed under a <u>Creative Commons</u> <u>Attribution 3.0 Unported License</u>.
- Questions? Email <u>data-help@colorado.edu</u>
- Link to survey on this topic: <u>http://goo.gl/forms/8VidcwOhRT</u>



Slides:

https://github.com/ResearchComputing/Final\_Tutorials/blob/master/intro\_data\_management.pdf