Exam 1 - Units, Vectors, and Kinematics

Class Number: PHYS 1061 H002 Instructor: Michael Haas

Name:

Date: ___/__/

Please read and follow all instructions carefully. Use the back of the sheet if necessary. Mars has $g=3.72 \frac{\mathrm{m}}{\mathrm{s}^2}$

| Score: _______ / 42 + Bonus: ______ / 6 = Total: ______ / 42 || Final: ______% -> [A, B, C, D, F]

Problem #1 (3 points)

A truck with mass $12.3 \mathrm{Mg}$ collides with a bug with mass $0.432 \mathrm{g}$. How does the magnitude of the bug's force on the truck compare to the magnitude of the truck's force on the bug?

- A. The bug's force on the truck is greater than the truck's force on the bug.
- B. The truck's force on the bug is greater than the bug's force on the truck.
- C. The two forces are equal in magnitude.
- D. It is impossible to determine without more information.

Problem #2 (3 points)

A $10.0 \mathrm{kg}$ box is at rest on an inclined ramp. Which of the following correctly describes the magnitude of force due to static friction?

A.
$$|ec{f}_s| = |ec{W}|$$

B.
$$|ec{f}_s| = |ec{N}|$$

C.
$$|ec{f}_s| = |ec{W}_\perp|$$

D.
$$|ec{f}_s| = |ec{W}_{\parallel}|$$

$$\operatorname{E.} |\vec{f}_s| = 0$$

Problem #3 (3 points)

A baby is pushing on a walker with a force of $10.0\mathrm{N}$ at an angle of 30.0° above the horizontal. What is the magnitude of the horizontal component of the force he is applying?

A.
$$F_x=10.0\mathrm{N}\cos(30.0^\circ)$$

B.
$$F_x=10.0\mathrm{N}\sin(30.0^\circ)$$

$$\mathrm{C.}\,F_x=10.0\mathrm{N}$$

D.
$$F_x=10.0\mathrm{N}\tan(30.0^\circ)$$

Problem #4 (3 points)

Which of the following is not one of Newton's laws of motion?

A.
$$ec{F}=mec{a}$$

B. When in equilibrium:
$$ec{F}_{
m net}=0$$

C.
$$f=\mu N$$

D.
$$ec{F}_{
m AB} = -ec{F}_{
m BA}$$

Problem #5 (3 points)

Arthur Dent is in an elevator on the planet Squornshellous Zeta where the gravitational acceleration is $g_{\rm Squornshellous}=5.70\frac{\rm m}{\rm s^2}$. The elevator is accelerating upwards at $2.00\frac{\rm m}{\rm s^2}$. What is the magnitude of the normal force on Arthur if his mass is $70.0{\rm kg}$?

A.
$$N=mg=399.rac{ ext{kg·m}}{ ext{s}^2}$$
B. $N=mg+ma=539.rac{ ext{kg·m}}{ ext{s}^2}$
C. $N=mg-ma=259.rac{ ext{kg·m}}{ ext{s}^2}$
D. $N=ma=140.rac{ ext{kg·m}}{ ext{s}^2}$

Problem #6 (3 points)

Boudreaux is moving a box along a horizontal surface, but he can't decide if he should push the box by exerting force \vec{F}_1 , or pull the box by exerting force \vec{F}_2 . Assuming both forces are at the same angle from the horizontal, which one gives the least friction between the box and the surface?

- A. $ec{F}_1$
- в. $ec{F}_2$
- C. Both forces result in the same friction.
- D. It is impossible to determine without more information.

Problem #7 (3 points)

An object is hanging by a string from the ceiling of an elevator. The elevator is slowing down while moving upward. What can be said about the magnitude of the tension in the string?

- A. The magnitude of the tension is less than the magnitude of the resting weight of the object.
- B. The tension in the string cannot be determined without knowing the speed of the elevator.
- C. The magnitude of the tension is greater than the magnitude of the resting weight of the object.
- D. The tension in the string is zero.
- E. The magnitude of the tension in the string is equal to the magnitude of the resting weight of the object.

Bonus #8 (3 points)

Bonus est omnis divisa in partes tres: Who is the half blood prince? How many centimeters is 3.20 km? Write out the first 5 numbers in the Fibonacci sequence.

each of his arms as ideal tension ropes. Question #1 (3 points) Draw a free body diagram for Godric showing all forces acting on him. Question #2 (3 points) What is the tension in his right arm? Question #3 (3 points) What would the tension in the right arm be if they were in an elevator accelerating upward at 2.00 \(\frac{m}{s^2} \)?	Question #1 (3 points)	
Question #2 (3 points) Question #3 (3 points)		
Question #2 (3 points) What is the tension in his right arm? Question #3 (3 points)		
What is the tension in his right arm? Question #3 (3 points)		
What is the tension in his right arm? Question #3 (3 points)		
Bonus #10 (3 points) What would the tension in the left arm be if they were on the surface of Mars?		o surface of Marc?

Problem #9 (9 points)

Problem #11 (12 points)

Two boxes are connected by a string (assume massless, frictionless string that never breaks) over a pulley. Box 1 has mass $10.0 \mathrm{kg}$ and is on a table where the coefficient of kinetic friction is $\mu_k = 0.200$. Box 2 has mass $5.00 {
m kg}$ and is hanging from the string. The system is in motion (meaning $v_{x_{
m Box1}}
eq 0$). Question #1 (3 points)

Draw a free body diagram for each box showing all forces acting on it.

