SymPy Code Generation

Aaron Meurer Anthony Scopatz ERGS, University of South Carolina SciPy 2016, Austin, TX

SymPy

- Powerful computer algebra system (CAS) written in pure Python
- BSD licensed
- Usable as a library
- Just released version 1.0

Jupyter SymPy Examples (unsaved changes)


```
In [1]: from sympy import *
           init_printing()
           x, y, z = symbols('x y, z')
           s, t = symbols('s t', positive=True)
In [2]: Integral(exp(-s*t)*log(t), (t, 0, 00))
Out[2]: \int_0^{\infty} \frac{\log(t)}{e^{st}} dt
In [3]: integrate(\exp(-s*t)*log(t), (t, 0, oo)).simplify()
Out[3]: -\frac{1}{s}(\log(s) + \gamma)
In [4]: [x - y + z**2 - 8, x + 2*y - 5, z*x + y - 5]
Out [4]: [x-y+z^2-8, x+2y-5, xz+y-5]
In [5]: solve([x - y + z**2 - 8, x + 2*y - 5, z*x + y - 5], [x, y, z])
          (1, 2, 3), \left(\frac{35}{12} + \frac{5\sqrt{73}}{12}, -\frac{5\sqrt{73}}{24} + \frac{25}{24}, -\frac{5}{4} + \frac{\sqrt{73}}{4}\right), \left(-\frac{5\sqrt{73}}{12} + \frac{3}{12}\right)
In [ ]:
```

Code Generation

- Translate SymPy expressions to another language
- Example: translate |sin(π·x)| to C

```
>>> ccode(abs(sin(pi*x)))
'fabs(sin(M_PI*x))'
```

Languages supported

- (
- Fortran
- MATLAB/Octave
- Python (NumPy/SciPy)
- Julia
- Mathematica

- Javascript
- LLVM
- Rust
- Theano
- Easy to extend to others

Code generation workflow

Code generation workflow

Derive mathematical formulas symbolically

SymPy

Convert symbolic expressions to numeric function

Code generation Use numeric function to solve some problem

Domain specific

Code generation levels of abstraction

Expression

```
'fabs(sin(M_PI*x))'
```

Code printers

Larger block of code

```
#include "f.h"
#include <math.h>

double f(double x) {
    double f_result;
    f_result = fabs(sin(M_PI*x));
    return f_result;
}
```

codegen

Python callable

```
f = ufuncify(x, abs(sin(pi*x)))
```

ufuncify lambdify

1. SymPy can deal with mathematical expressions in a high-level way. For example, it can take symbolic derivatives.

- SymPy can deal with mathematical expressions in a high-level way. For example, it can take symbolic derivatives.
- 2. Using code generation avoids mistakes that come from translating mathematics into low level code.

- SymPy can deal with mathematical expressions in a high-level way. For example, it can take symbolic derivatives.
- 2. Using code generation avoids mistakes that come from translating mathematics into low level code.
- 3. It's possible to deal with expressions that are otherwise too large to write by hand.

- SymPy can deal with mathematical expressions in a high-level way. For example, it can take symbolic derivatives.
- 2. Using code generation avoids mistakes that come from translating mathematics into low level code.
- 3. It's possible to deal with expressions that are otherwise too large to write by hand.
- 4. Some "mathematical" optimizations are possible, which a normal compiler would not be able to do.

Example: lodine-131

lodine-131

- lodine-131 has a half-life of 8.0197 days
- Cells in the thyroid absorb lodine
- Radioactive lodine-131 destroys thyroid cells by short-range beta radiation

I-131 decays with a half-life of 8.02 days

131
$$\rightarrow \beta^- + 131^*Xe$$

131 $\rightarrow \beta^- + 131Xe$
131*Xe $\rightarrow 131Xe$

$$\frac{\partial x_i}{\partial t} = -\lambda_i x_i(t) + \sum_{i \neq j} \lambda_j \gamma_{j \to i} x_j(t)$$

```
In [1]: from sympy import *
        init printing()
        t = symbols('t')
        I131, Xe131, Xe131m = symbols([r'^{131}I', r'^{131}Xe', r'^{131*}Xe'], cl
        T I131, T Xe131m = symbols('T_I131, T_Xe131m')
        lambda I131, lambda Xe131, lambda Xe131m = symbols([r'\lambda {^{131}\mat}])
        gamma I131 Xe131, gamma I131 Xe131m, gamma Xe131m Xe131 = symbols([r'\gam
In [2]: from sympy.physics.units import days, seconds
        values = {
            T I131: 8.0197*days,
            T Xe131m: 11.84*days,
            lambda I131: log(2.)*seconds/T I131,
            lambda Xe131: 0,
            lambda Xe131m: log(2.)*seconds/T Xe131m,
            gamma I131 Xe131: 0.89,
            gamma I131 Xe131m: 0.11,
            gamma Xe131m Xe131: 1,
        var names = {
            I131: "I131",
            Xe131: "Xe131",
            Xe131m: "Xe131m",
        }
```

```
In [3]: system = Tuple(
                       Eq(I131(t).diff(t), -lambda I131*I131(t)),
                       Eq(Xe131(t).diff(t), -lambda_Xe131*Xe131(t) + lambda_I131*gamma_I131_
                       Eq(Xe131m(t).diff(t), -lambda_Xe131m*Xe131m(t) + lambda_I131*gamma_I1
Out [4]:  \left( \frac{d}{dt} \, ^{131}I(t) = -\lambda_{131I} \, ^{131}I(t), \quad \frac{d}{dt} \, ^{131}Xe(t) = \gamma_{131*Xe} \lambda_{131*Xe} \lambda_{131*Xe} \, ^{131*}Xe(t) + \gamma_{131I \to 131Xe} \lambda_{131I} \, ^{131}Xe(t) \right) 
                                                             \frac{d}{dt} \, ^{131*} \mathrm{Xe}(t) = \gamma_{^{131}\mathrm{I} \to ^{131*}\mathrm{Xe}} \lambda_{^{131}\mathrm{I}} \, ^{131}\mathrm{I}(t) - \lambda_{^{131*}\mathrm{Xe}} \, ^{131*}\mathrm{Xe}(t) \right)
In [5]: nsystem = system.subs(values).subs(values)
                nsystem
Out [5]: \left(\frac{d}{dt}^{131}I(t) = -1.00035373044333 \cdot 10^{-6}^{131}I(t), \quad \frac{d}{dt}^{131}Xe(t) = 6.7757912263821 \cdot 10^{-6}^{131}I(t)\right)
                                                       \frac{a}{dt}^{131*} \text{Xe}(t) = -6.7757912263821 \cdot 10^{-7} \, ^{131*} \text{Xe}(t) + 1.1003891
```

In [6]: sols = Tuple(*dsolve(system, [I131(t), Xe131(t), Xe131m(t)], ics={I131(0)
 sols

Out[6]:

$$\left(131 \text{I}(t) = \frac{\gamma_{131 \text{I} \to 131 * \text{Xe}} \lambda_{131 \text{I}} e^{-\lambda_{131 \text{I}} t}}{\lambda_{131 * \text{Xe}} - \lambda_{131 \text{I}}} \left(-\frac{\gamma_{131 * \text{Xe} \to 131 \text{Xe}} \lambda_{131 \text{Xe}} \lambda_{131 \text{I}}}{\gamma_{131 \text{I} \to 131 \text{Xe}} \lambda_{131 \text{I}}} - \frac{1}{\gamma_{131 \text{I} \to 131 * \text{Xe}} \lambda_{131 \text{I}}} \left(-\frac{\gamma_{131 * \text{Xe} \to 131 \text{Xe}} \lambda_{131 \text{I}}}{\gamma_{131 \text{I} \to 131 * \text{Xe}} \lambda_{131 \text{I}}}\right) - \frac{1}{\gamma_{131 \text{I} \to 131 * \text{Xe}} \lambda_{131 \text{I}}} \left(-\frac{\gamma_{131 * \text{Xe} \to 131 \text{Xe}} \lambda_{131 \text{I}}}{\gamma_{131 \text{I} \to 131 * \text{Xe}} \lambda_{131 \text{I}}}\right) - \frac{1}{\gamma_{131 \text{I} \to 131 * \text{Xe}} \lambda_{131 \text{I}}}\right) - \frac{1}{\gamma_{131 \text{I} \to 131 * \text{Xe}} \lambda_{131 \text{I}}} \left(-\frac{\gamma_{131 * \text{Xe} \to 131 \text{Xe}} \lambda_{131 \text{I}}}{\gamma_{131 \text{I} \to 131 * \text{Xe}} \lambda_{131 \text{I}}}\right) - \frac{1}{\gamma_{131 \text{I} \to 131 * \text{Xe}} \lambda_{131 \text{I}}}\right) - \frac{1}{\gamma_{131 \text{I} \to 131 * \text{Xe}} \lambda_{131 \text{I}}} \left(-\frac{\gamma_{131 * \text{Xe} \to 131 \text{Xe}} \lambda_{131 \text{I}}}{\gamma_{131 \text{I} \to 131 * \text{Xe}} \lambda_{131 \text{I}}}\right) - \frac{1}{\gamma_{131 \text{I} \to 131 * \text{Xe}} \lambda_{131 \text{I}}}\right) - \frac{1}{\gamma_{131 \text{I} \to 131 * \text{Xe}} \lambda_{131 \text{I}}}$$

$$^{131}Xe(t) = -\frac{\gamma_{131*Xe \to 131Xe}\gamma_{131I \to 131*Xe}\lambda_{131I}e^{-\lambda_{131}Xe}\lambda_{131I}e^{-\lambda_{131}Xe}t}{(-\lambda_{131*Xe} + \lambda_{131I})(\lambda_{131*Xe} - \lambda_{131Xe})} + \frac{\gamma_{131I \to 131Xe}\lambda_{131I}e^{-\lambda_{131I}t}}{(\lambda_{131*Xe} - \lambda_{131I})(\lambda_{131I} - \lambda_{131Xe})} \left(-\frac{\gamma_{131*Xe}\lambda_{131I}e^{-\lambda_{131I}t}}{(\lambda_{131*Xe} + \lambda_{131I})(\lambda_{131I} - \lambda_{131Xe})}\right) + \frac{\lambda_{131I}(\gamma_{131*Xe \to 131Xe}\gamma_{131I \to 131*Xe}\lambda_{131*Xe} + \gamma_{131I \to 131Xe}\lambda_{131*Xe} - \gamma_{131I \to 131Xe})}{\lambda_{131*Xe}\lambda_{131I} - \lambda_{131*Xe}\lambda_{131IXe} - \lambda_{131I}\lambda_{131Xe} + \lambda_{131Xe}^{2}}$$

$$^{131*}Xe(t) = \frac{\gamma_{^{131}I \to ^{131*}Xe} \lambda_{^{131}I} e^{-\lambda_{^{131}I}t}}{\lambda_{^{131*}Xe} - \lambda_{^{131}I}} + \frac{\gamma_{^{131}I \to ^{131*}Xe} \lambda_{^{131}I} e^{-\lambda_{^{131}I}t}}{-\lambda_{^{131*}Xe} + \lambda_{^{13}I}}$$

In [7]: nsols = Tuple(*dsolve(nsystem, [I131(t), Xe131(t), Xe131m(t)], ics={I131(
 nsols

Out [7]:
$$\left(^{131}\text{I}(t) = 1.0e^{-1.00035373044333 \cdot 10^{-6}t}, \quad ^{131}\text{Xe}(t) = 1.0 - 0.659084365102216}e^{-1.0003537304433} \right)$$

$$^{131*}Xe(t) = -0.340915634897788e^{-1.00035373044333 \cdot 10^{-6}t} + 0.3409156$$

```
In [76]: from sympy.utilities.autowrap import ufuncify
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
```


- This is a simple example, because the decay of ¹³¹I only results in three species, ¹³¹I, ^{131*}Xe, and ¹³¹Xe
- A typical decay chain may result in hundreds of species
- With SymPy, we can avoid mistakes by representing the decay equations in a high level way, and deriving the low level representations

Example: n-link pendulum on cart (PyDy)

Thanks to Jason Moore

PyDy

- Multibody dynamics
- SymPy is used to derive the equations of motion for a mechanical system
- The resulting equations are a large system of nonlinear ODEs which need to be integrated (F=Ma)
- Code generation allows creating fast callbacks which can be integrated over many time steps

- Needs to be fast because:
 - Realtime simulation
 - Optimal control
 - Stiff systems require more time steps

n-link pendulum on a cart

```
In [1]:
        from IPython.display import SVG
         SVG(filename='examples/npendulum/n-pendulum-with-cart.svg')
Out[1]:
                                              m_{n+1}
```

```
In [2]: from pydy.models import n_link_pendulum_on_cart
    import sympy as sym
    import numpy as np
    sym.physics.mechanics.init_vprinting(use_latex='png')

In [3]: n = 3
    sys = n_link_pendulum_on_cart(n)

Pendulum arms upright, no velocities.

In [4]: sys.initial_conditions = {k: i for k, i in zip(sys.states, np.hstack((0.0, # q0)))
```

Give a small "bump" force on the cart.

```
In [6]: sys.specifieds = \{k: lambda x, t: le-3 if t < 0.01 else 0 for k in sys.specifieds_symbols\}
```

In [7]: sys.times = np.linspace(0, 10, 1000)

```
-l_0 m_1 \sin(q_1) - l_0 m_2 \sin(q_1) - l_0 m_3 \sin(q_1)
                                                                                                                                                                                                                                                                                                                                                                      -l_1m_2\sin(q_2) - l_1m_3\sin(q_2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     -l_2m_3\sin(q_3)
    Out[8]:
                                                                                                                                                                                                    l_0^2 m_1 + l_0^2 m_2 + l_0^2 m_3
                                                                                                                                                                                                                                                                                                               -l_0m_1\sin(q_1) - l_0m_2\sin(q_1) - l_0m_3\sin(q_1)
                                                                                                                                                                                                                                                                                                                                                                                      l_1^2 m_2 + l_1^2 m_3
                                                         -l_1 m_2 \sin(q_2) - l_1 m_3 \sin(q_2)
                                                                                                                                     l_0 l_1 m_2 \left( \sin \left( q_1 \right) \sin \left( q_2 \right) + \cos \left( q_1 \right) \cos \left( q_2 \right) \right) + l_0 l_1 m_3 \left( \sin \left( q_1 \right) \sin \left( q_2 \right) + \cos \left( q_1 \right) \cos \left( q_2 \right) \right)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          l_1 l_2 m_3 \left( \sin (q_2) \sin (q_3) + \cos (q_2) \cos (q_3) \right)
                                                                        -l_2 m_3 \sin{(q_3)}
                                                                                                                                                                               l_0 l_2 m_3 \left( \sin \left( q_1 \right) \sin \left( q_3 \right) + \cos \left( q_1 \right) \cos \left( q_3 \right) \right)
                                                                                                                                                                                                                                                                                                                                                           l_1 l_2 m_3 \left( \sin \left( q_2 \right) \sin \left( q_3 \right) + \cos \left( q_2 \right) \cos \left( q_3 \right) \right)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              l_{2}^{2}m_{3}
                                        sym.trigsimp(sys.eom method.mass matrix)
    Out[9]:
                                                                                                                                                                                         -l_0 (m_1 + m_2 + m_3) \sin (q_1)
                                                                                                                                                                                                                                                                                                                                                  -l_1(m_2+m_3)\sin(q_2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          -l_2 m_3 \sin{(q_3)}
                                                            m_0 + m_1 + m_2 + m_3
                                             -l_0(m_1+m_2+m_3)\sin(q_1)
                                                                                                                                                                                                          l_0^2 m_1 + l_0^2 m_2 + l_0^2 m_3
                                                                                                                                                                                                                                                                                                                                      l_0 l_1 (m_2 + m_3) \cos (q_1 - q_2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              l_0 l_2 m_3 \cos{(q_1 - q_3)}
                                                        -l_1\left(m_2+m_3\right)\sin\left(q_2\right)
                                                                                                                                                                                                                                                                                                                                                                  l_1^2m_2 + l_1^2m_3
                                                                                                                                                                                          l_0 l_1 (m_2 + m_3) \cos (q_1 - q_2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              l_1 l_2 m_3 \cos{(q_2 - q_3)}
                                                                            -l_2m_3\sin(q_3)
                                                                                                                                                                                                             l_0 l_2 m_3 \cos{(q_1 - q_3)}
                                                                                                                                                                                                                                                                                                                                                        l_1 l_2 m_3 \cos(q_2 - q_3)
In [10]:
                                         sys.eom method.forcing
                                                                                                                                                            l_0 m_1 u_1^2 \cos(q_1) + l_0 m_2 u_1^2 \cos(q_1) + l_0 m_3 u_1^2 \cos(q_1) + l_1 m_2 u_2^2 \cos(q_2) + l_1 m_3 u_2^2 \cos(q_2) + l_2 m_3 u_3^2 \cos(q_3) + F
Out[10]:
                                            -gl_0m_1\cos{(q_1)} - gl_0m_2\cos{(q_1)} - gl_0m_3\cos{(q_1)} + l_0l_1m_2\left(-\sin{(q_1)}\cos{(q_2)} + \sin{(q_2)}\cos{(q_1)}\right)u_2^2 + l_0l_1m_3\left(-\sin{(q_1)}\cos{(q_2)} + \sin{(q_2)}\cos{(q_1)}\right)u_2^2 + l_0l_2m_3\left(-\sin{(q_1)}\cos{(q_2)} + \sin{(q_2)}\cos{(q_2)}\right)u_2^2 + l_0l_2m_3\left(-\sin{(q_2)}\cos{(q_2)} + \sin{(q_2)}\cos{(q_2)}\right)u_2^2 + l_0l_2m_3\left(-\sin{(q_2)}\cos{(q_2)}\right)u_2^2 + l_0l_2m_3\left(-\sin{(q_2)}\cos{(q_2)}\right)u_2^2 + l_0l_2m_3\left(-\sin{(q_2)}\cos{(q_2)}\right)u_2^2 + l_0l_2m_3\left(-\sin{(q_2)}\cos{(q_2)}\right)u_2^2 + l_0l_2m_3\left(-\sin
                                                                      -gl_1m_2\cos(q_2) - gl_1m_3\cos(q_2) + l_0l_1m_2(\sin(q_1)\cos(q_2) - \sin(q_2)\cos(q_1))u_1^2 + l_0l_1m_3(\sin(q_1)\cos(q_2) - \sin(q_2)\cos(q_1))u_1^2 + l_1l_2m_3(-\sin(q_2)\cos(q_3) + \sin(q_3)\cos(q_2))u_2^2
                                                                                                                                                            -ql_2m_3\cos(q_3) + l_0l_2m_3(\sin(q_1)\cos(q_3) - \sin(q_3)\cos(q_1))u_1^2 + l_1l_2m_3(\sin(q_2)\cos(q_3) - \sin(q_3)\cos(q_2))u_2^2
In [11]:
                                         sym.trigsimp(sys.eom method.forcing)
```

 $l_0 m_1 u_1^2 \cos(q_1) + l_0 m_2 u_1^2 \cos(q_1) + l_0 m_3 u_1^2 \cos(q_1) + l_1 m_2 u_2^2 \cos(q_2) + l_1 m_3 u_2^2 \cos(q_2) + l_2 m_3 u_3^2 \cos(q_3) + F$

 $-l_0 \left(g m_1 \cos \left(q_1\right) + g m_2 \cos \left(q_1\right) + g m_3 \cos \left(q_1\right) + l_1 m_2 u_2^2 \sin \left(q_1 - q_2\right) + l_1 m_3 u_2^2 \sin \left(q_1 - q_2\right) + l_2 m_3 u_3^2 \sin \left(q_1 - q_3\right)\right)$

 $l_1\left(-gm_2\cos(q_2)-gm_3\cos(q_2)+l_0m_2u_1^2\sin(q_1-q_2)+l_0m_3u_1^2\sin(q_1-q_2)-l_2m_3u_3^2\sin(q_2-q_3)\right)$

 $l_2m_3\left(-g\cos(q_3)+l_0u_1^2\sin(q_1-q_3)+l_1u_2^2\sin(q_2-q_3)\right)$

In [8]:

Out[11]:

sys.eom method.mass matrix

- trigsimp() can simplify the equations of motion significantly
 - In this example,
 sin(x)·cos(y) sin(y)·cos(x) → sin(x y)
- The equations must be evaluated at each time step, so this can make a significant difference in performance

 PyDy automatically generates a fast ODE solve callback using SymPy code generation and Cython

```
In [12]: sys.generate_ode_function(generator="cython")
x = sys.integrate()
```

```
In [13]:
          import matplotlib.pyplot as plt
          %matplotlib inline
          from IPython.core.pylabtools import figsize
          figsize(8.0, 6.0)
In [14]: lines = plt.plot(sys.times, x[:, :x.shape[1] // 2])
          lab = plt.xlabel('Time [sec]')
          leg = plt.legend(sys.states[:x.shape[1] // 2])
            20
                                                                   q0(t)
                                                                   q1(t)
            10
                                                                   q2(t)
                                                                   q3(t)
           -10
           -20
           -30
           -40
           -50
                         2
                                                 6
                                                                       10
                                                            8
                                        Time [sec]
```

Animation (code not shown)

Animation (code not shown)

We can control the pendulum by forcing the cart

Apply the force *f* to keep the pendulum upright

```
[1]:
        from IPython.display import SVG
         SVG(filename='examples/npendulum/n-pendulum-with-cart.svg')
Out[1]:
                                               m_{n+1}
                                       m_1
```

Linearized Controller

```
In [19]: equilibrium_point = [sym.S(0)] + [sym.pi / 2]*n + [sym.S(0)]*(n + 1)
         equilibrium dict = dict(zip(sys.states, equilibrium point))
         A, B, r = sys.eom method.linearize(new method=True, op point=equilibrium dict, A and B=True)
In [20]:
         A = sym.matrix2numpy(A.subs(sys.constants), dtype=float)
         B = sym.matrix2numpy(B.subs(sys.constants), dtype=float)
         equilibrium point = np.asarray(equilibrium point, dtype=float)
In [21]: import scipy.linalg
         X = scipy.linalg.solve continuous are(A, B, np.eye(A.shape[0]), np.eye(B.shape[1]));
         K = np.dot(B.T, X);
         sys.specifieds = \{k: lambda x, t: np.dot(K, equilibrium point - x) for k in sys.specifieds symbols\}
In [22]:
         Start a little offset
In [23]: sys.initial conditions = {k: i for k, i in zip(sys.states,
                                              np.hstack((0.0,
                                                                        # q0
                                               np.pi*0.55,
                                                                         # q1
                                              (np.pi/2) * np.ones(n-1), # q2...qn+1
                                              0 * np.ones(n+1))))}
                                                                      # u0...un+1
In [24]: x = sys.integrate()
```

Linearized Controller

```
In [19]: equilibrium_point = [sym.S(0)] + [sym.pi / 2]*n + [sym.S(0)]*(n + 1)
         equilibrium dict = dict(zip(sys.states, equilibrium point))
         A, B, r = sys.eom method.linearize(new method=True, op point=equilibrium dict, A and B=True)
In [20]:
         A = sym.matrix2numpy(A.subs(sys.constants), dtype=float)
         B = sym.matrix2numpy(B.subs(sys.constants), dtype=float)
         equilibrium point = np.asarray(equilibrium point, dtype=float)
In [21]: import scipy.linalg
         X = scipy.linalg.solve continuous are(A, B, np.eye(A.shape[0]), np.eye(B.shape[1]));
         K = np.dot(B.T, X);
         sys.specifieds = \{k: lambda x, t: np.dot(K, equilibrium point - x) for k in sys.specifieds symbols\}
In [22]:
         Start a little offset
In [23]: sys.initial conditions = {k: i for k, i in zip(sys.states,
                                              np.hstack((0.0,
                                                                        # q0
                                               np.pi*0.55,
                                                                         # q1
                                              (np.pi/2) * np.ones(n-1), # q2...qn+1
                                              0 * np.ones(n+1))))}
                                                                      # u0...un+1
In [24]: x = sys.integrate()
```

```
lines = plt.plot(sys.times, x[:, :x.shape[1] // 2])
In [25]:
           lab = plt.xlabel('Time [sec]')
           leg = plt.legend(sys.states[:x.shape[1] // 2])
             2.0
                                                                        q0(t)
                                                                        q1(t)
                                                                        q2(t)
             1.5
                                                                        q3(t)
             1.0
             0.5
             0.0
           -0.5
           -1.0
                           2
                                                                             10
                                           Time [sec]
```

Animation

Animation

Yes this is possible

https://www.youtube.com/watch?v=cyN-CRNrb3E

We can increase the number of links (n=6)

Out[8]: sym.trigsimp(sys.eom_method.mass_matrix) Out[9]: $m_0 + m_1 + m_2 + m_3 + m_4 + m_5 + m_6$ $-l_0 (m_1 + m_2 + m_3 + m_4 + m_5 + m_6) \sin (q_1)$ $-l_1(m_2+m_3+m_4+m_5+m_6)\sin(q_2)$ $-l_2(m_3+m_4+m_5+m_6)\sin(q_3)$ $-l_3(m_4+m_5+m_6)\sin(q_4)$ $-l_4(m_5+m_6)\sin(q_5)$ $-l_5m_6\sin{(q_6)}$ $l_0^2 m_1 + l_0^2 m_2 + l_0^2 m_3 + l_0^2 m_4 + l_0^2 m_5 + l_0^2 m_6$ $-l_0 (m_1 + m_2 + m_3 + m_4 + m_5 + m_6) \sin (q_1)$ $l_0l_1(m_2+m_3+m_4+m_5+m_6)\cos(q_1-q_2)$ $l_0l_2(m_3+m_4+m_5+m_6)\cos(q_1-q_3)$ $l_0l_3(m_4+m_5+m_6)\cos(q_1-q_4)$ $l_0l_4(m_5+m_6)\cos(q_1-q_5)$ $l_0 l_5 m_6 \cos{(q_1 - q_6)}$ $l_1l_3(m_4+m_5+m_6)\cos(q_2-q_4)$ $l_1l_4(m_5+m_6)\cos(q_2-q_5)$ $l_1l_5m_6\cos\left(q_2-q_6\right)$ $-l_1(m_2+m_3+m_4+m_5+m_6)\sin(q_2)$ $l_0l_1(m_2+m_3+m_4+m_5+m_6)\cos(q_1-q_2)$ $l_1^2 m_2 + l_1^2 m_3 + l_1^2 m_4 + l_1^2 m_5 + l_1^2 m_6$ $l_1l_2(m_3+m_4+m_5+m_6)\cos(q_2-q_3)$ $l_2^2m_3 + l_2^2m_4 + l_2^2m_5 + l_2^2m_6$ $-l_2(m_3+m_4+m_5+m_6)\sin(q_3)$ $l_0l_2(m_3+m_4+m_5+m_6)\cos(q_1-q_3)$ $l_1 l_2 (m_3 + m_4 + m_5 + m_6) \cos (q_2 - q_3)$ $l_2l_3(m_4+m_5+m_6)\cos(q_3-q_4)$ $l_2l_4(m_5+m_6)\cos(q_3-q_5)$ $l_2 l_5 m_6 \cos(q_3 - q_6)$ $l_3^2 m_4 + l_3^2 m_5 + l_3^2 m_6$ $-l_3 (m_4 + m_5 + m_6) \sin (q_4)$ $l_1l_3(m_4+m_5+m_6)\cos(q_2-q_4)$ $l_3l_5m_6\cos\left(q_4-q_6\right)$ $l_0 l_3 (m_4 + m_5 + m_6) \cos (q_1 - q_4)$ $l_2l_3(m_4+m_5+m_6)\cos(q_3-q_4)$ $l_3l_4(m_5+m_6)\cos(q_4-q_5)$ $l_3l_4(m_5+m_6)\cos(q_4-q_5)$ $l_4^2 m_5 + l_4^2 m_6$ $l_4l_5m_6\cos\left(q_5-q_6\right)$ $-l_4(m_5 + m_6)\sin(q_5)$ $l_0l_4(m_5+m_6)\cos(q_1-q_5)$ $l_1l_4(m_5+m_6)\cos(q_2-q_5)$ $l_2l_4(m_5+m_6)\cos(q_3-q_5)$ $l_5^2 m_6$

 $l_1 l_5 m_6 \cos (q_2 - q_6)$

sys.eom method.forcing In [10]:

 $-l_5m_6\sin(q_6)$

In [8]:

Out[10]:

In [11]:

Out[11]:

 $l_2 l_5 m_6 \cos{(q_3 - q_6)}$

 $l_3 l_5 m_6 \cos (q_4 - q_6)$

 $l_4 l_5 m_6 \cos{(q_5 - q_6)}$

sym.trigsimp(sys.eom method.forcing)

 $l_0 l_5 m_6 \cos (q_1 - q_6)$

sys.eom method.mass matrix

 $l_{3}m_{1}q_{1}^{2}\cos\left(q_{1}\right) + l_{3}m_{2}q_{1}^{2}\cos\left(q_{1}\right) + l_{3}m_{3}q_{1}^{2}\cos\left(q_{1}\right) + l_{3}m_{3}q_{2}^{2}\cos\left(q_{2}\right) + l_{1}m_{3}q_{2}^{2}\cos\left(q_{2}\right) + l_{1}m_{3}q_{2}^{2}\cos\left(q_{2}\right) + l_{2}m_{3}q_{2}^{2}\cos\left(q_{2}\right) + l_{2}m_{3}q_{2}^{2}\sin\left(q_{1}-q_{2}\right) + l_{2}m_{$ $\frac{l_4\left(-gm_5\cos(q_5)-gm_6\cos(q_5)+l_6m_5u_1^2\sin(q_1-q_5)+l_6m_6v_2^2\sin(q_2-q_5)+l_1m_6v_2^2\sin(q_2-q_5)+l_2m_5v_3^2\cos(q_2-q_5)+l_2m_5v_3^2\cos(q_2-q_5)+l_2m_5v_3^2\cos(q_2-q_5)+l_2m_5v_3^2\cos(q_2-q_5)+l_2m_5v_3^2\cos(q_2-q_5)+l_2m_5v_3^2\cos(q_2-q_5)+l_2m_5v_3^2\cos(q_2-q_5)+l_2m_5v_3^2\cos(q_2-q_5)+l_2m_5v_3^2\cos(q_2-q_5)+l_2m_5v_3^2\cos$

More details on this problem are at https://github.com/pydy/pydy/blob/master/examples/npendulum/n-pendulum-control.ipynb

SymPy expressions are stored as trees

Every expression stores its children expression in args

```
>>> (x**2 + x*y).args
(x**2, x*y)
>>> (x**2 + x*y).args[0].args
(x, 2)
```

```
class CCodePrinter(CodePrinter):
    def _print_Rational(self, expr):
        p, q = int(expr.p), int(expr.q)
        return '%d.0L/%d.0L' % (p, q)
    def _print_Exp1(self, expr):
        return "M E"
    def _print_Pi(self, expr):
        return 'M_PI'
```

- Printer subclasses walk the expression tree and call methods corresponding to children (visitor pattern)
- Subclass CodePrinter, define methods for the expression types to code generate
- Easy to write your own code printers, or to extend existing code printers to do the things you need

Some other libraries that use SymPy code generation

- Chemreac
 - python library for solving chemical kinetics problems with possible diffusion and drift contributions
- SymPyBotics
 - Symbolic Framework for Modeling and Identification of Robot Dynamics

Takeaways

- SymPy can deal with mathematical expressions in a high-level way. For example, it can take symbolic derivatives.
- 2. Using code generation avoids mistakes that come from translating mathematics into low level code.
- 3. It's possible to deal with expressions that are otherwise too large to write by hand.
- 4. Some "mathematical" optimizations are possible, which a normal compiler would not be able to do.

- Mailing list: http://groups.google.com/group/ sympy
- https://github.com/sympy/sympy
- @asmeurer, @SymPy on Twitter
- These slides are at https://github.com/asmeurer/
 SciPy-2016-Talk
- I'll be at the sprints (and other SymPy developers)

Questions