Problem 1. Dirac delta functional.

Proof.

$$||T||_{\infty} = \sup_{\|f\|_{\infty} \neq 0} \frac{||\delta(f)||}{\|f\|_{\infty}} = \sup_{\|f\|_{\infty} \neq 0} \frac{|f(0)|}{\|f\|_{\infty}} \leqslant 1;$$

$$||T||_{1} = \sup_{\|f\|_{1} \neq 0} \frac{||\delta(f)||}{\|f\|_{1}} = \sup_{\|f\|_{1} \neq 0} \frac{|f(0)|}{\|f\|_{1}} \to \infty,$$

since for $f_n(x)=1-nx$ on $[0,\frac{1}{n}]$ and $f_n(x)=0$ otherwise, $\|f_n\|_1=\frac{1}{2n}\to 0$ while $f_n(0)=1$. Let f=1 on [0,1], f is continuous function and $\|T\|_\infty$ can achieve 1.

Problem 2. Schauder basis

Proof. For our convenience, I adopt slightly different notations from the book.

$$g_{0,0}(x) = 1$$
 and $g_{0,1}(x) = x$.

For $k \geqslant 1$ and $1 \leqslant m \leqslant 2^{k-1}$, we define $g_{k,m}(x) = 1 - 2^k |x - \frac{2m-1}{2^k}|$ on $\left[\frac{m-1}{2^{k-1}}, \frac{m}{2^{k-1}}\right]$.

Figure 1: Basis function

Given a $f \in C[0,1]$, we define f_n recursively.

 $f_1(x) = c_1 g_{0,0}(x)$ where $c_1 = f(0)$ such that $f_1(0) = f(0)$, due to the fact $g_{0,0}(0) = 1$.

 $f_2(x) = f_1(x) + c_2 g_{0,1}(x)$ where $c_2 = f(1) - f_1(1)$ such that $f_2(1) = f(1)$, due to the fact that $g_{0,1}(1) = 1$. Note that $g_{0,1}(0) = 0$, we have $f_2(0) = f(0)$ as well.

 $f_3(x) = f_2(x) + c_3 g_{1,1}(x)$ where $c_3 = f(\frac{1}{2}) - f_2(\frac{1}{2})$ such that $f_3(\frac{1}{2}) = f(\frac{1}{2})$, due to the fact that $g_{1,1}(\frac{1}{2}) = 1$. Note that $g_{1,1}(0) = g_{1,1}(1) = 0$, we have $f_3(0) = f(0)$ and $f_3(1) = f(1)$ as well.

 $f_4(x)=f_3(x)+c_4g_{2,1}(x)$ where c_4 be such that $f_4(\frac{1}{4})=f(\frac{1}{4})$. In the meanwhile, $f_4(0)=f(0)$, $f_4(\frac{1}{2})=f(\frac{1}{2})$ and $f_4(1)=f(1)$. In this way, we recursively define c_n and f_n .

Figure 3: $f_4(x)$ approximation

Furthermore, for $n \geqslant 2$ suppose $f_{n+1}(x) = f_n(x) + c_{n+1}g_{k,m}(x)$, then $n+1 = \frac{k(k-1)}{2} + m + 2$ holds. And $f_{n+1}(x) = f(x)$ for $x = 0, 1, \frac{1}{2}, \cdots, \frac{1}{2^{k-1}}, \cdots, \frac{2^{k-1}-1}{2^k}, \frac{1}{2^k}, \cdots, \frac{2m-1}{2^k}$.

Last observation is that $f_n(x)$ is piecewise linear function.

We claim $(g_{k,m})$ form a Schauder Basis.

First we note that (c_n) is uniquely determined because $g_{0,0}(x)$ is the only function that is nonzero at x=0, $g_{0,1}$ is the only function that is nonzero at x=1, $g_{1,1}$ is the only function that is nonzero at $x=\frac{1}{2}$, etc... If we have two different (c_n) and (c'_n) that induce (f_n) and (f'_n) . If (f_n) and f'_n uniformly converges to f, (f_n) and f'_n pointwisely converges to f. Restriction on points $x=\frac{m}{2^k}$ for $1\leqslant m\leqslant 2^k$ and all $k\geqslant 1$, leads contradictions.

Second, we show that f_n converges to f pointwisely.

If $x = \frac{m}{2^k}$ for some $1 \le m \le 2^k$ and some $k \ge 1$, by construction, there exists a large N such that for $n \ge N$, $f_n(x) = f(x)$.

Otherwise, since f is uniformly continuous on [0,1], for any $\varepsilon>0$, there exists $\delta>0$ such that $|x-y|\leqslant \delta$ implies $|f(x)-f(y)|\leqslant \frac{\varepsilon}{2}$. We pick K such that $2^{-K}\leqslant \delta$ and partition [0,1] into $[\frac{m-1}{2^k},\frac{m}{2^k}]$ for $m=1,2,\cdots,2^k$. By definition, $g_{k+1,m}$ is compactly support on $[\frac{m-1}{2^k},\frac{m}{2^k}]$.

into $[\frac{m-1}{2^k}, \frac{m}{2^k}]$ for $m = 1, 2, \dots, 2^k$. By definition, $g_{k+1,m}$ is compactly support on $[\frac{m-1}{2^k}, \frac{m}{2^k}]$. Suppose $x \in (\frac{m-1}{2^k}, \frac{m}{2^k})$, and let $n+1 = \frac{k(k-1)}{2} + m + 2$, then $f_{n+1}(x) = f(x)$ on $x = 0, 1, \frac{1}{2}, \dots, \frac{1}{2^{k-1}}, \dots, \frac{2^{k-1}-1}{2^{k-1}}, \frac{1}{2^k}, \dots, \frac{2m-1}{2^k}$, which includes $\frac{m-1}{2^k}$ and $\frac{m}{2^k}$.

$$|f(x) - f_{n+1}(x)| \le |f(x) - f(x_l)| + |f(x) - f(x_r)| \le \varepsilon,$$

where x_l and x_r depend on n+1 being such that $f_{n+1}(x)$ is linear on $[x_l,x_r]$. This comes from the concern that suppose the $\delta=\frac{1}{2}$ and $x\in[0,\frac{1}{2}]$ as shown in graph $f_3(x)$ approximation. We need to show the $|f(x)-f_N(x)|\leqslant \varepsilon$ for $N\geqslant 3$. For N=4 as an example, $f_4(x)$ is no more linear on $[0,\frac{1}{2}]$. Using $|f(x)-f_4(x)|=|f(x)-f_4(0)+f_4(0)-f_4(x)|$ or $|f(x)-f_4(x)|=|f(x)-f_4(\frac{1}{2})+f_4(\frac{1}{2})-f_4(x)|$ may not work if f is mixed as partial concave and partial convex in $[0,\frac{1}{2}]$. Hence we need to find an interval $[x_l,x_r]$ depending on N.

Therefore,

$$||f - f_{n+1}||_{\infty} = \max_{1 \le m \le 2^k} \left\{ \max_{x \in \left[\frac{m-1}{2^k}, \frac{m}{2^k}\right]} |f(x) - f_{n+1}(x)| \right\} \le \varepsilon.$$

Proof. By direct computation, r(A) = ab. By direct computation,

$$A^{2n} = \begin{pmatrix} (ab)^{2n} & 0 \\ 0 & (ab)^{2n} \end{pmatrix}, \qquad A^{2n+1} = \begin{pmatrix} 0 & (ab)^{2n}a^2 \\ (ab)^{2n}b^2 & 0 \end{pmatrix}.$$

By the definition of Euclidean norm and the fact a > b > 0, we have

$$||A^{2n}||_2 = a^{2n}b^{2n}, \qquad ||A^{2n+1}|| = a^{2n+2}b^{2n}.$$

$$\operatorname{Hence}\left\{\left\|A^{n}\right\|^{1/n}\right\} = \left\{ab, a^{1+1/(2n+1)}b^{1-1/(2n+1)}\right\} \to ab \text{ as } n \to \infty, \text{ which yields that } r(A) = \lim_{n \to \infty} \left\|A^{n}\right\|^{1/n}.$$

Problem 4. Exercise 5.5

Proof.

$$|Kf(x)| = |\int_0^1 k(x,y)f(y)dy| \le ||f||_{\infty} \int_0^1 |k(x,y)|dy,$$

which yields that

$$||Kf||_{\infty} \le ||f||_{\infty} \max_{0 \le x \le 1} \left\{ \int_{0}^{1} |k(x,y)| dy \right\}.$$

Since k is uniformly continuous on $[0,1] \times [0,1]$, $|k(x,y)| \leqslant M$ for some constant $M \geqslant 0$.

$$||K|| = \sup \frac{||Kf||_{\infty}}{||f||_{\infty}} \leqslant \max_{0 \leqslant x \leqslant 1} \left\{ \int_0^1 |k(x,y)| \mathrm{d}y \right\} \leqslant M.$$

To show $||K|| \geqslant \max_{0 \leqslant x \leqslant 1} \left\{ \int_0^1 |k(x,y)| dy \right\}$, we define

$$g_n(x) = \begin{cases} -1 & -1 \leqslant x < -\frac{1}{n}; \\ nx & -\frac{1}{n} \leqslant x \leqslant \frac{1}{n}; \\ 1 & \frac{1}{n} < x \leqslant 1. \end{cases}$$

For each $x_0 \in [0, 1]$, let $f(y) = g_n(k(x_0, y))$. Then

$$|Kf_{n}(x_{0})| = |\int_{0}^{1} k(x_{0}, y) f_{n}(y) dy|$$

$$= |\int_{0}^{1} k(x_{0}, y) g_{n}(k(x_{0}, y)) dy|$$

$$= |\int_{|k(x_{0}, y)| \leq \frac{1}{n}} k(x_{0}, y) g_{n}(k(x_{0}, y)) dy| + |\int_{|k(x_{0}, y)| \geq \frac{1}{n}} k(x_{0}, y) g_{n}(k(x_{0}, y)) dy|$$

$$= |\int_{|k(x_{0}, y)| \leq \frac{1}{n}} n(k(x_{0}, y))^{2} dy| + \int_{|k(x_{0}, y)| \geq \frac{1}{n}} |k(x_{0}, y)| dy$$

$$= \int_{|k(x_{0}, y)| \geq \frac{1}{n}} |k(x_{0}, y)| dy$$

$$= \int_{0}^{1} |k(x_{0}, y)| dy - \int_{|k(x_{0}, y)| \leq \frac{1}{n}} |k(x_{0}, y)| dy$$

$$\geqslant \int_{0}^{1} |k(x_{0}, y)| dy - \frac{1}{n}.$$

Note that $\|f_n\|_{\infty}=1$, take maximum on both sides and take n sufficiently large, we have

$$||K||_{\infty} = \sup_{\|f\|_{\infty} = 1} ||Kf||_{\infty} \geqslant ||Kf_n||_{\infty} = \max_{x_0 \in [0,1]} |Kf_n(x_0)| \geqslant \max_{x_0 \in [0,1]} \left\{ \int_0^1 |k(x_0, y)| dy \right\}.$$

Let $k(x, y) = \sin(2\pi x)$. Then

$$||K|| = \max_{0 \le x \le 1} \left\{ \int_0^1 |\sin(2\pi x)| dy \right\} = 1;$$

however,

$$K^{2}f(x) = \int_{0}^{1} k(x,y)(Kf(y))dy$$

$$= \int_{0}^{1} k(x,y) \int_{0}^{1} k(y,z)f(z)dzdy$$

$$= \int_{0}^{1} \int_{0}^{1} \sin(2\pi x)\sin(2\pi y)f(z)dzdy$$

$$= \sin(2\pi x) \int_{0}^{1} f(z)(\int_{0}^{1} \sin(2\pi y)dy)dz$$

$$= 0.$$

In this case, $||K^2|| = 0$.

Proof. On one hand, if there exist a constant C > 0 such that

$$||x||_1 \leqslant C||x||_2, \forall x \in X,$$

then given any sequence (x_n) that $||x_n||_2 \to 0$, we have $||x_n||_1 \to 0$. On the other hand, we prove by contradiction.

Suppose for any n > 0, there exists a $x_n \in X$ such that

$$||x_n||_1 > n||x_n||_2$$
.

Let $y_n = \frac{x_n}{\|x_n\|_2 \sqrt{n}}$. Since X is linear space, $y_n \in X$. And

$$||y_n||_2 = \frac{1}{\sqrt{n}||x_n||_2} ||x_n||_2 = \frac{1}{\sqrt{n}} \to 0.$$

Since $\|\|_2$ is stronger than $\|\|_1$, it implies that $\|y_n\|_1 \to 0$. However,

$$||y_n||_1 = \frac{1}{\sqrt{n}||x_n||_2} ||x_n||_1 > \frac{n||x_n||_2}{\sqrt{n}||x_n||_2} = \sqrt{n} \to \infty,$$

which yields contradiction!