WHAT IS CLAIMED IS:

1	1. A method comprising:
2	adding a first plurality of data elements to a second plurality of data elements
3	generating a plurality of intermediate results;
4	adding two of the plurality of intermediate results and repeating with different
5	combinations of the plurality of intermediate results generating a plurality
6	of sum results; and
7	discarding the two least significant bits of each sum result of the plurality of sum
8	results.
9	2. The method as recited in Claim 1, further comprising:
10	performing a carry in of a value of one when performing the adding the first
11	plurality of data elements to the second plurality of data elements.
12	3. The method as recited in Claim 1, further comprising:
13	performing a carry in of a rounding term when performing the adding the two of
14	the plurality of intermediate results and the repeating.
15	4. The method as recited in Claim 3, wherein the rounding term is a variable
16	capable of having a value of one and, at a different time, a value of zero.
17	5. The method as recited in Claim 1, further comprising:
18	performing a carry in of a value of one when adding the first plurality of data
19	elements to the second plurality of data elements; and

20	performing a carry in of a rounding term when adding the two of the plurality of
21	intermediate results and when repeating.

- 6. The method as recited in Claim 1, wherein the first plurality of data elements and the second plurality of data elements each comprise eight eight-bit unsigned data elements.
- 7. The method as recited in Claim 1, wherein the first plurality of data elements
 and the second plurality of data elements each comprise eight sixteen-bit data elements.
- 8. The method as recited in Claim 1, wherein the method comprises executing a Single-Instruction/Multiple-Data (SIMD) instruction.
- 9. The method as recited in Claim 1, wherein the method is performed utilizing
 Single-Instruction/Multiple-Data (SIMD) circuitry.
- 31 10. A method comprising:

22

23

24

- 32 adding an ith data element of a first source to an ith data element of a second
- source creating an i_{th} intermediate result for i = 1 to N, wherein N is an
- integer greater than 1;

- adding a j_{th} intermediate result to a (j+1)_{th} intermediate result creating a j_{th} sum
- result for j = 1 to (N-1); and
- 37 discarding two least significant bits of each j_{th} sum result.
- 38 11. The method as recited in Claim 10, further comprising:

39	performing a carry in of a value of one when adding the 1th data element of the
40	first source to the i_{th} data element of the second source; and
41	performing a carry in of a rounding term when adding the j_{th} intermediate result to
42	the $(j+1)_{th}$ intermediate result.
•	
43	12. The method as recited in Claim 11, wherein the rounding term is selected
44	from a group consisting of a value of one and a value of zero.
45	13. The method as recited in Claim 10, wherein $N = 8$.
16	
46	14. The method as recited in Claim 10, wherein the method is performed during
47	execution of a Single-Instruction/Multiple-Data (SIMD) instruction.
48	15. An apparatus comprising:
49	a plurality of first adders, each first adder of the plurality of first adders operative
50	to add two operands of a plurality of operands into one of a plurality of
51	intermediate results;
52	a plurality of second adders, each second adder of the plurality of second adders
53	operative to add two intermediate results of the plurality of intermediate
54	results into one of a plurality of sum results; and
55	discard circuitry operative to discard the two least significant bits of each sum
56	result of the plurality of sum results.

16. The apparatus as recited in Claim 15, wherein the plurality of first adders comprises eight first adders and the plurality of second adders comprises seven second adders.

- 17. The apparatus as recited in Claim 15, wherein the discard circuitry comprises
 a plurality of shift registers.
 - 18. The apparatus as recited in Claim 15, wherein each of the first adders are operative to add two eight-bit input operands producing a nine-bit intermediate operand and each of the second adders are operative to add two nine-bit intermediate operands producing a ten-bit output operand.
 - 19. The apparatus as recited in Claim 15, wherein each of the first adders are operative to add two sixteen-bit input operands producing a seventeen-bit intermediate operand and each of the second adders are operative to add two seventeen-bit intermediate operands producing an eighteen-bit operand.
 - 20. The apparatus as recited in Claim 15, wherein routing of the plurality of operands and the plurality of intermediate results to the plurality of first adders and the plurality of second adders is selected according to microcode identified by a Single-Instruction/Multiple-Data (SIMD) instruction.
- 74 21. The apparatus as recited in Claim 15, wherein routing of the plurality of operands and the plurality of intermediate results to the plurality of first adders and the

- plurality of second adders is selected according to decode logic and a Single Instruction/Multiple-Data (SIMD) instruction.
- 78 22. The apparatus as recited in Claim 15, wherein the plurality of first adders, the 79 plurality of second adders, and the discard circuitry form a Single-Instruction/Multiple-80 Data (SIMD) instruction execution circuit.

23. An apparatus comprising:

81

88

89

90

91

92

93

94

- a plurality of first adders operative to add an i_{th} data element of a first source to an

 i_{th} data element of a second source generating an i_{th} intermediate result for

 i = 1 to N, wherein N is an integer greater than 1;

 a plurality of second adders operative to add a j_{th} intermediate result to a (j+1)_{th}

 intermediate result generating a j_{th} sum result for j = 1 to (N-1); and

 circuitry operative to discard two least significant bits of each j_{th} sum result.
 - 24. The apparatus as recited in Claim 23, wherein the circuitry comprises a plurality of shift registers.
 - 25. The apparatus as recited in Claim 23, wherein routing of the plurality of operands and the plurality of intermediate results to the plurality of first adders and the plurality of second adders is selected according to microcode identified by a Single-Instruction/Multiple-Data (SIMD)instruction.
 - 26. A method comprising:

Docket No.: P18894

decoding an instruction identifying an averaging operation;

96	executing the instruction on a first source and a second source, wherein the first
97	source comprises a first plurality of data elements and the second source
98	comprises a second plurality of data elements; and
99	storing a result, wherein the result comprises a third plurality of data elements;
100	wherein the executing the instruction comprises:
101	adding successive ones of the first plurality of data elements to successive
102	ones of the second plurality of data elements generating a plurality
103	of intermediate results;
104	adding two of the plurality of intermediate results and repeating with
105	different combinations of the plurality of intermediate results
106	generating a plurality of sum; and
107	discarding the two least significant bits of each sum result of the plurality
108	of sum results generating the result.
109	27. The method as recited in Claim 26, wherein the executing the instruction
110	further comprises:
111	performing a carry in of a value of one when adding the successive ones of the
112	first plurality of data elements to the successive ones of the second
113	plurality of data elements; and
114	performing a carry in of a rounding term when adding the two of the plurality of
115	intermediate results and when repeating.
116	28. The method as recited in Claim 27, wherein the rounding term is selected
117	from a group consisting of a value of one and a value of zero.

118	29. An apparatus comprising:
119	a coprocessor interface unit to identify an instruction for an averaging operation, a
120	first source having a first plurality of data elements and a second source
121	having a second plurality of data elements;
122	an execution unit to perform the averaging operation on the first plurality of data
123	elements and the second plurality of data elements; and
124	a register to store a result having a third plurality of data elements;
125	wherein the execution unit is operative to:
126	add successive ones of the first plurality of data elements to successive
127	ones of the second plurality of data elements generating a plurality
128	of intermediate results;
129	add two of the plurality of intermediate results and repeating with different
130	combinations of the plurality of intermediate results generating a
131	plurality of sum results; and
132	discard the two least significant bits of each sum result of the plurality of
133	sum results forming the result.
134	30. The apparatus as recited in Claim 29, wherein the execution unit is further
135	operative to:
136	perform a carry in of a value of one when adding the successive ones of the first
137	plurality of data elements to the successive ones of the second plurality of
138	data elements; and
139	perform a carry in of a rounding term when adding the two of the plurality of
140	intermediate results and when repeating.

31. The apparatus as recited in Claim 30, wherein the rounding term is selected
from a group consisting of a value of one and a value of zero.

141

142

43	32. A data processing system comprising:
44	an addressable memory to store an instruction for an averaging operation;
45	a processing core coupled to the addressable memory, the processor core
46	comprising:
47	an execution core to access the instruction;
148	a first source register to store a first plurality of data elements;
149	a second source register to store a second plurality of data elements; and
150	a destination register to store a plurality of results of the averaging
151	operation;
152	a wireless interface to receive a digital signal comprising a third plurality of data
153	elements; and
154	an I/O system to provide the first and second plurality of data elements to the first
155	and second source registers from the third plurality of data elements;
156	wherein the execution core is operative to:
157	add successive ones of the first plurality of data elements to successive
158	ones of the second plurality of data elements generating a plurality
159	of intermediate results;
160	add two of the plurality of intermediate results and repeating with different
161	combinations of the plurality of intermediate results generating a
162	plurality of sum results; and

163	discard the two least significant bits of each sum result of the plurality of
164	sum results generating the plurality of results.
165	33. The data processing system as recited in Claim 32, wherein the execution core
166	is further operative to:
167	perform a carry in of a value of one when adding the successive ones of the first
168	plurality of data elements to the successive ones of the second plurality of
169	data elements; and
170	perform a carry in of a rounding term when adding the two of the plurality of
171	intermediate results and when repeating.
172	34. The data processing system as recited in Claim 33, wherein the rounding term
173	is a variable capable of having a value of one and, at a different time, a value of zero.
174	35. An article comprising a machine-readable medium that includes machine
175	readable instructions, the instructions operative to cause a machine to:
176	add a first plurality of data elements to a second plurality of data elements
177	generating a plurality of intermediate results;
178	add two of the plurality of intermediate results and repeating with different
179	combinations of the plurality of intermediate results generating a plurality
180	of sum results; and
181	discard the two least significant bits of each sum result of the plurality of sum
182	results generating a result.
183	36. The article as recited in Claim 35, the instructions further operative to:

184	perform a carry in of a value of one when adding the first plurality of data
185	elements to the second plurality of data elements; and
186	perform a carry in of a rounding term when adding the two of the plurality of
187	intermediate results and when repeating.