Portails Math-Info/Math-Physique L1 S1

Analyse 1

CC2

Documents, calculatrices et portables interdits. Les réponses doivent être accompagnées d'une justification.

Durée: 1h

Exercice 1. a) Calculer la dérivée de la fonction f définie sur $]0, +\infty[$ par $f(x) = \arctan(1/x)$.

b) En déduire $\lim_{x\to 1} \frac{\arctan(1/x) - \frac{\pi}{4}}{x-1}$.

Exercice 2. On définit la fonction $g:[0,+\infty[\to\mathbb{R}]]$ par

$$g(x) = (x-6)\sqrt{x} - 1 = x\sqrt{x} - 6\sqrt{x} - 1 = x^{3/2} - 6x^{1/2} - 1$$
.

On rappelle que x_0 est un point critique de g si $g'(x_0) = 0$.

- a) Calculer g'(x) (pour x > 0) et déterminer le(s) point(s) critique(s) de g.
- b) Déterminer la limite de g en $+\infty$.
- c) Dresser le tableau de variation de g. En déduire le nombre de solutions dans $[0, +\infty[$ de l'équation g(x) = 0.

Exercice 3. On considère les fonctions u et v définies sur \mathbb{R} par $u(x) = e^{2x}$ et $v(x) = e^{-x}$.

- a) Résoudre l'équation u(x) = 8v(x).
- b) On définit la fonction h sur \mathbb{R} par $h(x) = u(x) + 2v(x) = e^{2x} + 2e^{-x}$. Calculer h'(x) et h''(x); on rappelle que h'' désigne la dérivée seconde de h.
- c) Ecrire la formule de Taylor-Young pour la fonction h en 0 à l'ordre 2.
- d) En utilisant c), trouver la limite de $\frac{e^{2x} + 2e^{-x} 3}{x^2}$ lorsque x tend vers 0.

Exercice 4. Calculer les intégrales suivantes.

a)
$$I = \int_0^1 t(t^2 + 1)^2 dt$$
 b) $J = \int_0^{\pi/2} \cos(x) \sin(x) dx$ c) $K = \int_1^e \frac{1 - s^2}{s} ds$