实验 2-3 报告

学号: 2016K8009908007

姓名: 薛峰

一、实验任务

实验目的:

- (一) 在之前的基础上新增如下 18 条指令: J、BGEZ、BGTZ、BLEZ、BLTZ、BLTZAL、BGEZAL、JALR、LB、LBU、LH、LHU、LWL、LWR、SB、SH、SWL、SWR;
 - (二) 计算自实现 myCPU 的性能;
 - (三) 优化 myCPU 的性能。

检验方法:

- (一) 仿真和上板运行 lab2 func 3 通过;
- (二) 仿真和上板运行性能测试程序 Coremark 和 dhrystone 通过。

二、实验设计

该项目总体分为以下几个模块:myCPU(顶层模块), ID_stage(译码模块), EX_stage(执行模块), MEM_stage(访存模块), WB_stage(写回模块), cpu_control(控制模块), reg_file(寄存器堆), ALU(运算器), mul(乘法器), div(除法器),

各个模块之间的关系如下:

项目的总体设计与之前阶段相同,仅在其基础上增添 18 条指令,除了非对齐访存指令外,其他指令只需要修改控制模块的控制信号即可。对于非对齐访存指令,除了要修改控制信号,还需要修改写内存或写寄存器的值,只需要分别在 EX 模块和 WB 模块进行修改即可。其余模块内部的细节和之前的实验一致。

三、实验过程

(一) 实验流水账

时间	记录
10月11日	一、将各个阶段模块化,并进行行为仿真;
14: 00~19: 30	二、行为仿真通过。
10月12日	一、增添 18 条新指令,并进行行为仿真和上板验证,最终仿真通过,上板通过;
13: 40~15: 30	二、 仿真和上板运行性能测试程序 Coremark 和 dhrystone,均通过。
10月14日	一、提高 CPU 频率,运行性能测试程序 Coremark 和 dhrystone;
14: 30~16: 20	二、将频率提高到 70MHz,上板运行通过。

(二) 错误记录

1、错误1

(1) 错误现象

在仿真运行 lab2-3 程序时,控制台报错,错误显示 PC 和写寄存器号均正确,wdata 错误,并且仅第二字节错误。

(2) 分析定位过程

定位到该指令,发现是 lw 指令,因此寻找修改该地址上数据的指令。发现该指令之前有一条 sb 指令,并且恰好是存第三字节,发现存入的数据不对,因此检查该部分代码。

(3) 错误原因

发现对忘记修改 sb, sh 等指令存入内存的值,即存入的值是按照 sw 指令写的,所以会出现存入的第二比特位的数据错误。

(4) 修正效果

将该部分添加上去之后仿真顺利通过。

(5) 归纳总结

该错误属于笔误, 忘记修改存入内存的数据。

2、错误2

(1) 错误现象

在将频率提高到 70MHz 之后在此仿真运行 dhrystone 程序控制台报错,但提高频率前该程序可以仿真并上板验证通过。

(2) 分析定位过程

于是对比之前的 trace 和新编译出来的 test.s 发现新的 test.s 与之前的 test.s 第一个 jal 指令跳转的地址不同,但执行的指令是一样的,因此需要重新生成 trace。

(3) 错误原因

提高频率后未重新生成 trace。

(4) 修正效果

重新生成 trace 后再进行仿真, 仿真通过。

(5) 归纳总结

之前看到助教老师在 piazza 上有说不需要重生成 trace

四、实验总结

此次实验相较于前几次实验轻松很多,仅添加了一些指令,总体架构没变。但是周四那天我将每个阶段都模块化,因为每个阶段需要传的控制信号与数据有很多,尤其是 EX 阶段,因此很容易写错。因此这一部分花费了挺多时间。但是将各个模块分开写之后,代码将更清晰,有利于以后实验对该项目的修改。