Probleme propuse de Prof. Oprina

1. Definim multimea:

$$\mathbb{C}_n[X] = \{ P \in \mathbb{C}[X] \mid \operatorname{grad} P \leq n \}.$$

Arătați că:

- (a) $(\mathbb{C}_n[X], +)$ este un \mathbb{C} -spațiu vectorial de dimensiune n+1;
- (b) $\forall a \in \mathbb{C}$ fixat, multimea:

$$B = \{1, X - a, (X - a)^2, ..., (X - a)^n\}$$

este o bază în $\mathbb{C}_n[X]$;

(c) Dacă $f \in \mathbb{C}_n[X]$, atunci:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} (X - a)^{k}$$
 (Taylor).

- 2. Fie \Bbbk un corp comutativ și considerăm sistemul liniar AX=0, cu $A\in M_n(\Bbbk).$ Arătați că:
- (a) $S \le \mathbb{k}^n$, unde S este mulțimea soluțiilor sistemului;
- (b) Există $\varphi: \mathbb{k}^n \to \mathbb{k}^n$ liniară astfel încît Ker $\varphi = S$ (Indicație: $\varphi(x) = Ax$);
- (c) $\dim_{\mathbb{K}} S = n r$, unde $R = \operatorname{rang}(A)$.
 - 3. Fie $A \in M_n(\mathbb{R})$, cu $A \neq 0$ și $\det A = 0$.

Să se arate că există $B \in M_n(\mathbb{R})$, cu $B \neq 0$, astfel încît AB = 0.