

Figura 5.4

- a) Expresión de $\begin{pmatrix} 3 \\ -4 \end{pmatrix}$ en términos de la base canónica $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$.
- b) Expresión de $\begin{pmatrix} 3 \\ -4 \end{pmatrix}$ en términos de la base $\left\{ \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \end{pmatrix} \right\}$.

términos de la base B_1 . Esto no es ambiguo porque los coeficientes b_i en (5.6.5) son únicos, según

el teorema 5.5.1. De igual manera, $(\mathbf{x})_{B_2} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$ tiene un significado similar. Suponga que $\mathbf{w}_1 = a_1 \mathbf{u}_1$

 $+ a_2 \mathbf{u}_2 + \cdots + a_n \mathbf{u}_n$ y $\mathbf{w}_2 = b_1 \mathbf{u}_1 + b_2 \mathbf{u}_2 + \cdots + b_n \mathbf{u}_n$. Entonces $\mathbf{w}_1 + \mathbf{w}_2 = (a_1 + b_1) \mathbf{u}_1 + (a_2 + b_2) \mathbf{u}_2 + \cdots + (a_n + b_n) \mathbf{u}_n$, de manera que

$$(\mathbf{w}_1 + \mathbf{w}_2)_{B_1} = (\mathbf{w}_1)_{B_1} + (\mathbf{w}_2)_{B_1}$$

Es decir, en la nueva notación se pueden sumar vectores igual que como se suman en \mathbb{R}^n . Los coeficientes de la "suma" de vectores son las sumas de los coeficientes de los dos vectores individuales. Más aún, es sencillo demostrar que

$$\alpha(\mathbf{w})_{B_1} = (\alpha \mathbf{w})_{B_1}$$

Ahora, como B_2 es una base, cada \mathbf{u}_j en B_1 se puede escribir como una combinación lineal de las \mathbf{v}_i . Así, existe un conjunto único de escalares $a_{1j}, a_{2j}, \ldots, a_{nj}$ tales que para $j = 1, 2, \ldots, n$

$$\mathbf{u}_{i} = a_{1i}\mathbf{v}_{1} + a_{2i}\mathbf{v}_{2} + \dots + a_{ni}\mathbf{v}_{n}$$
 (5.6.7)

o sea,

$$(\mathbf{u}_j)_{B2} = \begin{pmatrix} a_{1f} \\ a_{2f} \\ \vdots \\ a_{nf} \end{pmatrix}$$
 (5.6.8)