# 第二章: 数字图像基础

#### 视觉感知要素

人视觉是由眼睛中锥状体和杆状体组成的。低照明级别杆状体起作用。在背景照明增强时锥状 体起作用。

## 光和电磁波谱

 $\lambda = \frac{c}{\nu} E = hv$  可见光的波长范围: 约 400~700nm  $\Delta I_{\epsilon}/I$  称为韦伯比

辐射强度:光源流出能量总量;光通量给出观察者从光源感受到的能量,用流明数度量;亮度是光感 受的主观描绘,不能测量,描述彩色感觉参数之一:灰度级用来描述单色光图像的亮度

#### 图像感知与获取

传感器:CCD,CMOS

#### 简单的成像模型

f(x,y)=i(x,y)r(x,y),其中i(x,y)为入射分量(低频),r(x,y)为反射分量(高频)

其中 $0 \le f(x,y), i(x,y) < \infty$   $0 \le r(x,y) \le 1$ ;r=0 全吸收,1 全反射

## 图像取样和量化

对坐标值进行数字化称为取样,对幅度值进行数字化称为量化,原点位于图像的左上角, x 轴向下, y 轴向右

坐标索引:像二维坐标(x, y);线性索引通过计算到坐标(0, 0)的偏移量得到的,行/列扫描

空间分辨率: 图像中可辨别的最小细节 灰度分辨率: 灰度级中可分辨的最小变化;打印机单位距 离可以分辨的最小线对数 DPI;数字图像:图像大小,即行数 x 列数 PPI

图像对比度:一幅图像中最高和最低灰度级间的灰度差为对比度。

基本的图像重取样方法:图像内插。有最近邻内插;常选用双线性(v(x, y) = ax + by + cxy + d 四个 系数可用 4 个最近邻点的 4 个未知方程求出)和双三次内插。

#### 像素间的一些基本关系

 $N_4(p)$ 上下左右, $N_D(p)$ 四个对角, $N_8(p)=N_4(p)\cup N_D(p)$ 

值域 V, V是 0到 255 中的任一个子集

4 邻接:点 q 在 $N_4(p)$ 中,并 q 和 p 具有 V 中的数值

8 邻接:点 q 在 $N_8(p)$ 中,并 q 和 p 具有 V 中的数值

m 邻接(混合邻接): 1.q 在 p 的 $N_4(p)$  或者 2.q 在 p 的 $N_{D(p)}$ 中, $N_4(P) \cap N_4(Q)$ 中没有 V 值的像素

欧氏距离(De):  $D_e(p,q) = \sqrt{(x-s)^2 + (y-t)^2}$  街区距离(D4):  $D_4(p,q) = |x-s| + |y-t|$ 

棋盘距离(D8):  $D_8(p,q) = \max(|x-s|,|y-t|)$ 

## 对应元素运算和矩阵运算

图像相加:取平均降噪。相减:增强差别。相乘和相除:校正阴影。

三个基本量用于描绘彩色光源的质量:发光强度、光通量和亮度。

一幅数字图像占用的空间:  $M \times N \times k$ 。

# 第三章: 灰度变换与空间滤波

## 基本的灰度变换

反转变换S = L - 1 - r;增强暗色区域中的白色或灰色细节;

对数变换 $S = c \log(1+r)$ ;将范围较窄的低灰度值映射为范围较宽的

幂律(伽马)变换 $s=cr^{\gamma}$ ;  $\gamma<1$ 变亮,加强暗细节;反之变暗,加强亮细节;可增强对比度 分段线性变换:

1.对比度拉伸:提高灰度级的动态范围,改善对比度:

2. 灰度级分层:突出某区间灰度. 其他位置可不变也可降级:

3.比特平面分层:8bit 灰度图分割成 8 个比特面,(左)高位表示主体信息,低位给出不同程度的细节

直方图容器: $h(r_k) = n_k$ ,  $k = 0, 1, 2, \dots, L - 1$ ;  $n_k$ 是 f 中灰度为 $r_k$ 的像素的数量; k 越大越白

直方图:对容器归一化 $p(r_k) = \frac{h(r_k)}{h(N)} = \frac{n}{MN}$  无空间信息,不同图像可能直方图相似,同一图像切片的直方图有可加性;若一幅图像其像素占有全 部可能的灰度级并且分布均匀,这样的图像灰度对比 度高、细节会相对明显

假设s=T(r)在 $0 \le r \le L-1$ ,T(r)严格单调递增且 $0 \le T(r) \le L-1$ 。

变换前后的 pdf 为 $p_{r(r)}, p_{s(s)}$ 

若T(r)还可微,有 $p_s(s) = p_r(r) \left| \frac{dr}{ds} \right|$ 

连续情况  $s=T(r)=(L-1)\int_0^r p_r(w)dw$  变换后  $p_s=\frac{1}{L-1}$ 完全平坦 离散情况  $s_k=T(r_k)=(L-1)\sum_{j=0}^k p_r(r_j)=(L-1)\sum_{j=0}^k \frac{n_k}{MN}$  无法得到完全平坦的分布 目的:使图像产生灰度级丰富且动态范围大的图像灰度;期望得到均匀分布直方图;数字图像均衡化 只是连续情况的近似;简并:灰度级减少了(不同的灰度变换到同一灰度)

### 匹配(规定化)

使得直方图变换到规定的分布;均衡可以看作是匹配的特例

输入原始图 $p_{r(r)}$ ,目标图像 $p_{z(z)}$ ,求输入r到输出z的变换公式 把原始图像和目标图像都用均衡化的作为桥梁

连续: 原图均衡化  $s=T(r)=(L-1)\int_0^r p_r(w)\,\mathrm{d}w$ ;目标图均衡化  $s=G(z)=(L-1)\int_0^z p_z(\nu)\,\mathrm{d}\nu$ 均衡化图求逆得到目标 $z = G^{-1}(s) = G^{-1}[T(r)]$ 

离散:  $q,k \in [0,L-1]$   $s_k = T(r_k) = (L-1) \sum_{j=0}^k p_r \big( r_j \big)$  ;  $s_k = G \big( z_q \big) = (L-1) \sum_{i=0}^q p_z (z_i)$  ;  $z_q = G^{-1}(s_k)$ 

 $s_k$ 定义域和值域都是离散且有限,可用一表格记录其对应关系,并采样遍历方式找到最优匹配值, 无需求逆

## 局部处理

图像/图像块(全局/局部)的统计距计算

设 $p(r_i) = \frac{n_i}{n}, \quad i = 0, 1, 2, ..., L - 1$ 

灰度级r相对于均值 m 的n阶中心矩为:  $\mu_n(r) = \sum_{i=0}^{L-1} (r_i - m)^n p(r_i)$ 

m 是 r 的均值: $m = \sum_{i=0}^{L-1} r_i p(r_i)$  衡量明暗程度 n = 2为方差: $\sigma^2 = \mu_2(r) = \sum_{i=0}^{L-1} (r_i - m)^2 p(r_i)$  衡量灰度变化的程度

局部直方图处理:设置一个函数,对满足特定的 m 和 $\sigma$ 的邻域进行变换,其他不变

### 空间滤波

#### 线件空间滤波

对于大小为 $m \times n$ (行 x 列)的核, m = 2a + 1和n = 2b + 1.其中 a 和 b 是非负整数。

w 是个二维矩阵,左上角从(-a,-b)开始,f左上角从(0,0)开始  $g(x,y) = \sum_{t=-b}^a \sum_{t=-b}^b w(s,t) f(x+s,y+t)$  新像素是旧像素线性组合,核中心和原图左上角开始对齐运算

#### 空间相关与卷积

一维核旋转 180°相当于这个核绕相对于其轴进行翻转。

二维旋转  $180^\circ$ 等效于核关于其一个轴翻转,然后关于另一个轴翻转。 相关 $(w\star f)(x,y)=\sum_{s=a}^a\sum_{t=-b}^{b-b}w(s,t)f(x+s,y+t)$ 卷积 $(w\star f)(x,y)=\sum_{s=-a}^a\sum_{t=-b}^{b-b}w(s,t)f(x-s,y-t)$  等同于将核旋转 180 度后再做相关 卷积满足交换,结合,分配律;相关只满足分配律

N 输出大小,W 输入大小,P 填充大小,S 步长 F 卷积核大小  $N=\frac{(W-F+2P)}{8}+1$ 

两个滤波器大小为 $M \times M$ 和 $N \times N$ ,卷积后的大小是 $(M+N-1) \times (M+N-1)$ 

#### 可分离滤波器核

大小为  $m \times n$  的滤波核可表示为两个向量的积  $w = w_1 w_2^T = w_1 \star w_2$ 

 $w_1w_2$ 为 $m \times 1, n \times 1$ 列向量

(一个列向量和一个行向量的积等于这两个向量的二维卷积)

可分离核执行卷积相对不可分离核执行卷积的计算优势: $C = \frac{MNmn}{MN(m+n)} = \frac{mn}{m+n}$ 

可分离核条件: rank(w) = 1

分离方法: 在核w中找到任何一个非零元素a,值为E; 提取a所在的列与行,形成列向量c和r; ;  $w_1 = c$  ,  $w_2^T = \frac{r}{E}$ 

#### 平滑(低通)空间滤波器

降低相邻灰度的急剧过度,以减少无关细节(噪声),平滑通过对相邻像素求和(积分)实现. 归一化确保亮度不变;低通滤波可去除"无关"细节:即比其核小很多的点/区域

盒式滤波器:每个元素相同;核越大,对越多像素做平均,其平滑程度越明显,细节丢失越多;高斯核函数  $w(s,t)=G(s,t)=Ke^{-\frac{d+d^2}{2\sigma^2}}$ 一般选核大小奇数接近 $6\sigma$  对同一图像,高斯核越大越 模糊;圆对称:到中心点距离r一样,则对应系数一样的;可分离:可写成两个一维的高斯分布相

对比: 高斯核更适合去噪和平滑处理;盒式核更适合锐化和边缘增强。

### 锐化(高通)空间滤波器

凸显灰度的过渡部分,以增强图像中的细节。锐化用相邻像素差分(导数)来实现. 一维差分  $\frac{\partial f}{\partial x} = f(x+1) - f(x)$   $\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$ 

# 拉普拉斯算子

乘形式

连续:  $\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$ 

离散:  $\nabla^2 f = [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)] - 4f(x,y)$ 

常见拉普拉斯滤波器特点:1. 中心对称; 2. 中间值的绝对值大; 3. 和为零。 
$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{pmatrix}$$
 
$$g(x,y) = \begin{cases} f(x,y) - \nabla^2 f(x,y), & \text{side Hamilian derivations} \\ f(x,y) + \nabla^2 f(x,y), & \text{side Hamilian derivations} \end{cases}$$

# 钝化掩蔽和高提升滤波

用于增强图像的细节和边缘

模糊图像 $\hat{f}(x,y)$  模板 $g_{mask}(x,y)=f(x,y)-\hat{f}(x,y)$  加权相加  $g(x,y)=f(x,y)+kg_{mask}(x,y)$  k=1 为钝化掩蔽 k>1 为高提升滤波 k<1 不强调钝化模板的贡献

## 低通、高通、带阻和带通滤波器

单位冲激中心和滤波器核中心重合

低通 lp(x,y), 高通  $hp(x,y) = \delta(x,y) - lp(x,y)$ 

 $br(x,y) = \delta(x,y) - [lp_1(x,y) + [\delta(x,y) - lp_2(x,y)]]$ 

# 第四章:频率域滤波

在空域不好解决的问题,在频域上可能变得非常容易(性能及时间上);不同于空域像素的调整, 对频谱系数修改会作用于整个空域图像。空域适合:局部特征、实时操作、简单的像素级调整。 频域适合: 全局特征、复杂操作、周期性噪声去除、压缩等。

# 采样

 $_{\infty}\,\delta(x-n\Delta T)$ 周期冲激串  $s_{\Delta T}(t) = \sum_{n=-\infty}^{\infty}$ 

取样后函数 $\tilde{f}(t) = f(t)s_{\Delta T}(t) = \sum_{n=-\infty}^{\infty} f(t)\delta(t-n\Delta T)$  积分得到取样点的值 $f_k(k) = \int_{-\infty}^{\infty} f(t)\delta(t-k\Delta T)\mathrm{d}t = f(k\Delta T)$ 

采样定理:采样率 $f_s$ 应大于等于信号最高频率的两倍,即 $f_s>2f_{
m max}$ ,否则会出现混叠现象。

# 单变量的傅里叶变换

连续  $f(t) = \int_{-\infty}^{\infty} F(\mu)e^{j2\pi\mu t} d\mu$   $F(\mu) = \int_{-\infty}^{\infty} ; f(t)e^{-j2\pi\mu t} dt$  离散  $u, x \in [0, M-1]$   $F(u) = \sum_{n=0}^{M-1} f(x)e^{-j2\pi ux/M}; f(x) = \frac{1}{M} \sum_{u=0}^{M-1} F(u)e^{j2\pi ux/M}$  冲激性质:  $\int_{-\infty}^{\infty} e^{j\omega t} d\omega = 2\pi\delta(t); f(t)\delta(t) = f(0)\delta(t); \int_{-\infty}^{\infty} f(t)\delta(t-t_0) dt = f(t_0)$ 

 $\sum_{k=0}^{n-1} e^{-i2\pi \frac{mk}{n}} = \{ \begin{smallmatrix} n, & \frac{1}{2^n} \mathbb{R} & m \equiv 0 (\bmod n) \\ 0, & & \text{find} \end{smallmatrix} ; \int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi} \; ; \sum_{x=0}^{M-1} e^{-j\frac{2\pi kx}{M}} = M\delta(k)$  $\delta(k,l) = \delta(k) \cdot \delta(l) \; ; \; \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} e^{-j\left(\frac{2\pi kx}{M} + \frac{2\pi ly}{N}\right)} = MN\delta(k,l)$ 

### 二变量函数的傅里叶变换

### 二维 DFT 和 IDFT 性质

**谱**  $|F(u,\nu)| = \left[R^2(u,\nu) + I^2(u,\nu)\right]^{1/2})$  相角 $\phi(u,v) = \arctan\left[\frac{I(u,v)}{R(u,v)}\right]$  R 实部,I 虚部 极坐标  $F(u, \nu) = |F(u, \nu)|e^{j\phi(u, v)}$ 

周期性(k 为整数)  $F(u,v) = F(u + k_1 M, v + k_2 N)$ 

 $f(x,y) = f(x + k_1 M, y + k_2 N)$ 

卷积  $(f\star h)(x,y) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n) h(x-m,y-n)$ 

相关  $(f\star h)(x,y)=\sum_{m=0}^{M-1}\sum_{n=0}^{N-1}f^*(m,n)h(x+m,y+n)$ 

使用 DFT 算法求 IDFT  $MNf^*(x,y)=\sum_{u=0}^{M-1}\sum_{v=0}^{N-1}F^*(u,v)\mathrm{e}^{-\mathrm{j}2\pi(ux/M+\nu y/N)}$  结果取复共轭并除以 M 就可得到反变换; **共轭对称性** $F(-u,-v)=F^*(u,v)$ 

离散单位冲激  $\delta(x,y) \Leftrightarrow 1,1 \Leftrightarrow MN\delta(u,v)$ 

**卷积定理** $(f\star h)(x,y)\Leftrightarrow (F\cdot H)(u,v)\parallel (f\cdot h)(x,y)\Leftrightarrow \frac{1}{MN}(F\star H)(u,v)$ 

平移性 f(x,y)e $^{\mathrm{j}2\pi(u_0x/M+v_0y/N)}$   $\Leftrightarrow$   $F(u-u_0,v-v_0)$   $f(x-x_0,y-y_0)$   $\Leftrightarrow$  F(u,v)e $^{\mathrm{j}2\pi(ux_0/M+\nu y_0/N)}$ 

 $\delta(x-a,y-b) \Leftrightarrow e^{-j2\pi(ua+vb)}$ 

#### 频率域滤波

(1)对图像 f(x,y)进行零填充(长宽均变为两倍,变为 $P \times Q$ 

(2)频谱中心化: 用 $(-1)^{x+y} = e^{j\pi(x+y)}$ 乘以填充后的图像

(3)计算(2)结果的 DFT, 即F(u, v);

(4)用滤波器函数(中心在(P/2,Q/2))H(u,v)乘以F(u,v):G(u,v)=H(u,v)F(u,v)

(5)计算(4)中结果的 IDFT, $g(x,y)=F^{-1}(G(u,v))$ 理论值为实数,计算误差会导致寄生复成分 (6)得到(5)结果中的实部;

(7) 用 $(-1)^{\{(x+y)\}}$ 乘以(6)中的结果

(8)提取(7)中的左上角(与输入图像同大小)。

## 低通频率域滤波器

理想低通滤波器 ILPF  $D_0$ 为截止频率;  $D(u,v) = [(u-M/2)^2 + (v-N/2)^2]$ ; H(u,v) =

(d),  $D(u,v) > D_0^{-1}$  截止频率位置 D0 决定了通过的频率成分所包含的功率,以及在总功率中所占的比例总功率 $P_T = \sum_{v=0}^{Q-1} \sum_{v=0}^{Q-1} P(u,v) = \sum_{v=0}^{Q-1} \sum_{v=0}^{Q-1} |F(u,v)|^2$  在 D(u,v)内的功率占比  $\alpha = 100 \sum_{u} \sum_{v} P(u,v)/P_T \quad where \quad D(u,v) \leq D_0$  理想的低通滤波器无法通过电子元件实现:通过计算机模拟会出现模糊与振铃现象

巴特沃斯 BLPF  $H(u,v)=\frac{1}{1+(D(u,v)/D_0]^{2n}}$ ; 高斯 GLPF  $H(u,v)=e^{-D^2(u,v)/2D_0^2}$  无振铃效应 例子:低分辨率文本字符修复, 簡部柔和, 去除传感器扫描线

### 高通滤波器

对低通滤波相反操作得到高通:

 $H_{HP}(u,v) = 1 - H_{LP}(u,v); h_{HP} = \delta(x,y) - h_{LP}(x,y) \neq 1 - h_{LP}(x,y)$  理想 IHPF:  $H(u,v) = \begin{cases} 1, & D(u,v) \leq D_0 \\ 1, & D(u,v) > D_0 \end{cases}$  巴特沃斯:  $H(u,v) = \frac{1}{1+|D_0/D(u,v)|^{2n_0^2}}; 高斯: H(u,v) = 1 - e^{-D^2(u,v)/2D_0^2}$  類域対象対象で第2、 $H(u,v) = \frac{1}{1+|D_0/D(u,v)|^{2n_0^2}}; 1 + \frac{1}{1+|D$ 

频域拉普拉斯算子:  $H(u,v) = -4\pi^2(u^2+v^2)$  中心化版 $H(u,v) = -4\pi^2[(u-P/2)^2+v^2]$ 

 $(v - Q/2)^2$  =  $-4\pi^2 D^2(u, v)$ 

基于锐化滤波的图像增强 $g(x,y)=f(x,y)+c\nabla^2 f(x,y)$ ;其中二阶梯度傅里叶变换为 H\*F

高提升滤波:  $H_{hb}(u,v)=(A-1)+H_{hp}(u,v)$ 

高频加强滤波:  $H_{hfe}(u,v)=a+bH_{hp}(u,v)$ a 控制原始贡献,b 控制高通贡献 同志滤波  $H(u,v)=(\gamma_H-\gamma_L)\left[1-e^{-c(D^2(u,v)/D_0^2)}\right]+\gamma_L$ 衰減图像的低频成分(光照分量),增 强高频成分 (反射分量)

其中 $\gamma_L < 1$ 低频成分增益因且 $\gamma_H > 1$ 高频成分增益因子;c用于控制滤波器函数斜面的锐化

### 带阳滤波器

理想帶阻(IBRF)  $H(u,v) = \begin{cases} 0 & C_0 - \frac{W}{2} \le D(u,v) \le C_0 + \frac{W}{2} \\ 1 & \pm \text{Net } \end{cases}$  高斯带阻(GBRF)  $H(u,v) = 1 - e^{-\left(\frac{D^2(u,v) - C_0^2}{D(u,v)W^2}\right)^2}$  巴特沃斯带阻 (BBRF)  $H(u,v) = \frac{1}{1 + \left(\frac{D(u,v)W}{D^2(u,v) - C_0^2}\right)^{2n}}$  带阻作用: 去除摩尔纹; 去除周期干扰

## 快速傅里叶变换

利用傅里叶变换基底性质,将M个数据的傅里叶变换转为 2 组 $\frac{M}{2}$ 个数据的傅里叶变换,此时计 算量从  $M^2$  降低为  $\frac{M^2}{2}$ 

异里 $M^{-}$  [中版人]  $\frac{1}{2}$   $F(u) = \sum_{k=0}^{K-1} f(2x)W_{2K}^{u(2x)} + \sum_{x=0}^{K-1} f(2x+1)W_{2K}^{u(2x+1)}$  偶数部分+奇数部分 $W_M = e^{-j2\pi/M}$ ;  $W_M^{ux} = (W_M)^{ux} = e^{-j2\pi ux/M}$ ;  $W_{2K}^{2ux} = W_k^{ux}$ 

 $F_{even}(u) = \sum_{x=0}^{K-1} f(2x) W_K^{ux} \quad F_{odd}(u) = \sum_{x=0}^{K-1} f(2x+1) W_K^{ux}$  $F(u) = F_{even}(u) + F_{odd}(u) W^u_{2K} \label{eq:full}$ 

 $F(u+K) = F_{even}(u) - F_{odd}(u)W^u_{2K} \label{eq:fuk}$ 

### 第五章:图像复原与重建

## 图像退化/复原模型

建模图像退化为用 h 算子和 f 运算,加上加性噪声 $\eta$ ,生成一幅退化图像 g

空域:  $g(x,y)=(h\star f)(x,y)+\eta(x,y)$ ; 频域: G(u,v)=H(u,v)F(u,v)+N(u,v)

高斯  $p(z) = \frac{1}{\sqrt{2\pi}\sigma}e^{-(z-\bar{z})^2/2\sigma^2}$ ; 瑞利  $p(z) = \{\frac{2}{b}(z-a)e^{-(z-a)^2-b}, z \ge a \atop 0, z < a} \|\bar{z} = a + \sqrt{\pi b/4}, \sigma^2 = \frac{b(4-\pi)}{4}\}$ 周期  $p(z) = \frac{1}{\sqrt{2\pi}\sigma}e^{-(\mathbf{t}-\mathbf{z}^2)/2\sigma}$  : **満利**  $p(z) = \frac{1}{\delta}e^{-\mathbf{t}-\mathbf{z}}$  : **満利**  $p(z) = \frac{1}{\delta}e^{-\mathbf{t}-\mathbf{z}}$  : **愛尔兰(如马)**  $p(z) = \frac{a^b_-b^{-1}_-c^{-az}}{(b^-1)^{-1}}e^{-az}$  .  $z \ge 0$  |  $\bar{z} = \frac{b}{a}$ ,  $\sigma^2 = \frac{b}{a^2}$  a > 0, b 正整数 指数  $p(z) = \frac{1}{\delta}e^{-az^2} = \frac{1}{\delta}e^{-az^2}$  は  $\bar{z} = \frac{1}{a}e^{-az^2} = \frac{1}{a^2}e^{-az^2}$  は  $\bar{z} = \frac{1}{a}e^{-az^2}$  は  $\bar{z} = \frac{1}{a}e^{-az^2}$  は  $\bar{z} = \frac{1}{\delta}e^{-az^2}$  : **椒益**  $p(z) = \frac{P_s}{b^-}$  .  $z = 2^{b-1}$  は  $\bar{z} = \frac{1}{\delta}e^{-az^2}$  は  $\bar{z} = \frac{1}{\delta}e^{-az^2}$  : **椒益**  $p(z) = \frac{P_s}{b^-}$  . z = 0 は  $\bar{z} = 0$  は  $\bar{z}$ 

伽马和指数模拟激光成像;均匀:随机数在指定范围内均匀分布;椒盐:成像设备中的瞬时故障或错

噪声估计参数参数 $\overline{z}=\sum_{i=0}^{L-1}z_ip_S(z_i)$   $\sigma^2=\sum_{i=0}^{L-1}(z_i-\overline{z})^2p_S(z_i)$ 

# 只存在噪声的复原——空间滤波

仅被加性噪声退化后:  $g(x,y) = f(x,y) + \eta(x,y)$  G(u,v) = F(u,v) + N(u,v) (噪声未知) 当仅有加性噪声时,可考虑空间滤波方法,利用图像相邻像素之间的的相似性,降低噪声的影 响,甚至可以有效去除噪声。

 $S_{xy}$ 表示中心在(x,y),尺寸为 $m \times n$ 的矩形子图像窗口

算术平均  $\hat{f}(x,y) = \frac{1}{mn} \sum_{(r,c) \in S_{xy}} g(r,c)$ ; ;平滑图像的局部变化;在模糊了结果的同时减少了噪声

几何平均滤波  $\hat{f}(x,y) = \left[\prod_{(r,c) \in S_{xy}} g(r,c)\right]^{\frac{1}{mn}}$ ; 平滑度可以与算术均值相比;图像细节丢失更少 谐波平均滤波  $\hat{f}(x,y) = \frac{nn}{\sum_{(r,c)\in S_{xy}} \frac{n}{y(r,c)}}$  适用"盐粒" 和 类似高斯噪声的噪声,不适用于"胡椒";

反谐波平均  $\hat{f}(x,y) = \frac{\sum_{(r,c) \in S_{xy}} g(r,c)^{Q+1}}{\sum_{(r,c) \in S_{xy}} g(r,c)^{Q}}$  Q 称为滤波器的阶数,>0 用于胡椒,<0 用于盐粒,=0 变为算 数平均,=-1 变为谐波平均

### 统计排序

中值  $\hat{f}(x,y)=median_{(r,c)\in S_{xy}}\{g(r,c)\}$  与大小相同的线性平滑(均值)滤波相比,有效地降低某些随机噪声,且模糊度要小得多;对于单极和双极冲激噪声效果好

最大值  $\hat{f}(x,y) = \max_{(r,c) \in S_{xy}} \{g(r,c)\}$  发现最亮点;过滤胡椒

最小值  $\hat{f}(x,y)=\min_{\{r,c\}\in S_{xy}}\{g(r,c)\}$  发现最暗点;过滤盐粒中点  $\hat{f}(x,y)=\frac{1}{2}[\max_{\{r,c\}\in S_{xy}}\{g(r,c)\}+\min_{\{r,c\}\in S_{xy}}\{g(r,c)\}]$ 统计排序滤波器和平均滤波器;适合处理随机分布的噪声,如高斯噪声和均匀噪声

修正后的阿尔法均值滤波  $\hat{f}(x,y) = \frac{1}{mn-d} \sum_{(r,c) \in S_{xy}} g_R(r,c)$ 

在S邻域内去掉 $g(\mathbf{r},\mathbf{c})$ 最高灰度值的d/2 和最低灰度值的d/2  $g_R(r,c)$ 代表剩余的mn-d个像素.d=0变为算数平均;d=mn-1变为中值;当 d 取其它值时,适用于包括多种噪声的情况下,例如高 斯噪声和椒盐噪声混合的情况。

用 $S_{xy}$ 的区域内图像的统计特征进行处理

自适应局部降噪

g(x,y)表示噪声图像在点(x,y)上的值; $\sigma^2_\eta$ 噪声方差  $\overline{z}_{S_{xy}}$ 在 $S_{xy}$ 上像素点的局部平均灰度; $\sigma^2_{S_{xy}}$ 在 $S_{xy}$ 上像素点的局部方差;假设  $\sigma_n^2 \leq \sigma_{S_{--}}^2$ 

$$\hat{f}(x,y) = g(x,y) - \frac{\sigma_{\eta}^2}{\sigma_{S_{xy}}^2} \Big[ g(x,y) - \overline{z}_{S_{xy}} \Big]$$

 $z_{min}$ 是 $S_{xy}$ 中的最小灰度值; $z_{max}$ 是 $S_{xy}$ 中的最大灰度值; $z_{med}$ 是 $S_{xy}$ 中的灰度值的中值; $z_{xy}$ 是坐标(x,y)处的灰度值; $S_{max}$ 是 $S_{xy}$ 允许的最大尺寸。

(z,y)见的永汉祖。 $S_{max}$ 尼 $z_{xy}$ 几年的取入八勺。 层次 A: 若 $z_{min} < z_{med} < z_{max}$ ,则转到层次B 否则,增 $S_{xy}$ 的尺寸, 若 $S_{xy} \le S_{max}$ 则重复层次 A 否则,输出 $z_{med}$ 层次 B: 若 $z_{min} < z_{xy} < z_{max}$ ,则输出  $z_{xy}$  否则,输出 $z_{med}$ 普通的中值消除噪声的同时导致图像细节明显缺失;自适应中值能够额外保留图像细节

#### 频域滤波降低周期噪声

路波滤波器:阻止或通过事先定义的頻率矩形邻域中的頻率  $H_{NR}(u,\nu) = \prod_{k=1}^Q H_k(u,\nu)H_{-k}(u,\nu)$   $H_{k(u,\nu)}$  和  $H_{-k}(u,\nu)$ 分别是中心为  $(u_k,\nu_k)$  和  $(-u_k,-\nu_k)$  的高通滤波器传递函数; $D_k(u,v) = \left[(u-M/2-u_k)^2+(v-N/2-v_k)^2\right]^{1/2}$  ; $D_{-k}(u,v) = \left[(u-M/2+u_k)^2+(v-N/2+v_k)^2\right]^{1/2}$  所 管持沃斯陷波带阻(3 陷波对)  $H_{NR}(u,\nu) = \prod_{k=1}^3 \left[\frac{1}{1+[D_{0k}/D_k(u,\nu)]^n}\right]^{\frac{1}{1+[D_{0k}/D_{-k}(u,\nu)]^n}}$  除效性描述地  $\mathbb{P}(NR)$  为提明)  $H_{-k}(u,\nu) = 1$   $H_{-k}(v,\nu)$   $H_{-k}(v,$ 陷波带通滤波器(NR 为带阻)  $H_{\mathrm{NP}}(u,\nu)=1-H_{\mathrm{NR}}(u,\nu)$ 

存在多个干扰分量时,简单的滤波器传递函数在滤波过程中可能过多地滤除图像信息 最优陷波:1.分离干扰模式的各个主要贡献;2.从被污染图像中减去该模式的一个可变加权部分 假设 G 是被污染图像 DFT 1.算出 $\eta, N(u, \nu) = H_{\mathrm{NP}}(u, \nu)G(u, \nu)$   $\eta(x, y) = H_{\mathrm{NP}}(u, \nu)G(u, \nu)$  $F^{-1}\{H_{\rm NP}(u,\nu)G(u,\nu)\}\; \hat{f}(x,y) = g(x,y) - w(x,y)\eta(x,y)$ 2.求可变加权部分 $w(x,y) = \frac{\overline{g\cdot \eta} - \overline{g\cdot \eta}}{\overline{\eta^2} - \overline{\eta^2}}$ 

### 线性位置不变退化

如果退化模型为线性和位置不变的,则满足 Ch5 顶部建模的空域,频域表达式.许多退化类型可以近 似表示为线性的位置不变过程; 而非线性的与位置有关的技术难以求解。

### 估计退化函数

1.观察法:收集图像自身的信息来估计 H; 2.试验法:使用与获取退化图像的设备相似的装置; 3.数学 建模法:建立退化模型,模型要把引起退化的环境因素考虑在内

 $\hat{F}(u,v) = \frac{G(u,v)}{H(u,v)} = F(u,v) + \frac{N(u,v)}{H(u,v)}$ ;问题:N 一般未知,挡 H 的任何元素为 0 或者较小时,后面分数 项主导了结果:解决方法:限制滤波频率,从而减少遇到零值的可能性(H(0,0)的值最大).

## 最小均方误差(维纳)滤波

 $S_{f(u,v)}=|F(u,v)|^2$ 为未退化函数功率;  $S_{\eta}(u,v)=|N(u,v)|^2$ 为噪声功率谱;

$$\hat{F}(u,v) = \left[\frac{1}{H(u,v)} \frac{|H(u,v)|^2}{|H(u,v)|^2 + S_{\eta}(u,v)/S_{f}(u,v)}\right] G(u,v)$$

假设两个功率谱之比为常数 K,有  $\hat{F}(u,v) = \left[\frac{1}{H(u,v)} \frac{|H(u,v)|^2}{|H(u,v)|^2 + K}\right] G(u,v)$  K 通常在复原时调整

信噪比:频域 SNR =  $\frac{\sum_{k=0}^{M-1}\sum_{v=0}^{N-1}|F(u,v)|^2}{\sum_{k=0}^{M-1}\sum_{v=0}^{N-1}|N(u,v)|^2}$  空域SNR =  $\frac{\sum_{x=0}^{M-1}\sum_{v=0}^{N-1}f(x,y)^2}{\sum_{x=0}^{M-1}\sum_{v=0}^{N-1}|f(x,y)|^2}$  均方误差 MSE =  $\frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left[ f(x,y) - \hat{f}(x,y) \right]^2$ 

### 约束最小二乘方滤波

约束 $g-H\hat{f}|^2=|\eta|^2$  准则函数最小化 $C=\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}\left[\nabla^2 f(x,y)\right]^2$ 最佳问题的解 $\hat{f}(u,v)=\left[\frac{H^*(u,v)}{|H(u,v)|^2+\gamma|P(u,v)|^2}\right]G(u,v)$  当 $\gamma=0$  时,退变成逆滤波 P(u,v) 为p(x,y) 的傅里叶变换 p(x,y)为拉普拉斯空间卷积核 使制度 p(x,y)

估计 $\gamma$ :设 $\|r\|^2 = \|g - H\hat{f}\|^2$ ,通过 $\|\mathbf{r}\|^2 = \|\eta\|^2 \pm a$ ,由于 r 关于 $\gamma$ 单调, $\|\mathbf{r}\|^2 < \|\eta\|^2 - a$ 增加 $\gamma$ ; $\|\mathbf{r}\|^2 >$  $\|\eta\|^2 + a减少\gamma$ 

估计 $\|\eta\|^2$ : $\|\eta\|^2 = MN[\sigma_\eta^2 + \overline{\eta}^2]$ 用方差和均值

## 几何均值滤波

$$\hat{F}(u,v) = \left[\frac{H^*(u,v)}{|H(u,v)|^2}\right]^a \left[\frac{H^*(u,v)}{|H(u,v)|^2 + \beta \left[\frac{S_{\eta}(u,v)}{S_{f}(u,v)}\right]}\right]^1$$

当  $\alpha=0$  时,滤波器退化为逆滤波器;当  $\alpha=0$  时,滤波器退化为参数维纳滤波器;当  $\alpha=0,\beta=1$  时,滤波器退化为标准维纳滤波器,当  $\alpha=\frac{1}{2}$  时,滤波器为几何均值滤波器;当  $\beta=1,\alpha$  减到  $\frac{1}{2}$  以上, 它接近逆滤波器,当  $\beta = 1, \alpha$  减到  $\frac{1}{5}$  以下,它接近维纳滤波器;当  $\beta = 1, \alpha = \frac{1}{5}$  时,它被称为谱均衡 滤波器:

## 第六章: 彩色图像处理

## 彩色基础

度:观察者从光源感知的总能量,单位为流明(红外的光强接近零);亮度:主观描绘子,不可测

量,体现发光强度的消色概念。 区分不同颜色:色调: 感知的主导色, 跟主波长相关;饱和度: 相对纯度, 与一种色调混合的白光量; 亮度: 发光强度的消色概念.色调和饱和度一起称为色度

# 彩色模型

### RGR

针对彩色显色器和彩色摄像机开发,一个颜色有8比特,28 = 256种颜色,全彩色则是24比特图像

#### CMYK

颜料颜色,针对彩色打印开发;CMY(青色、深红、黄色)是 RGB 的补色;K 是黑色,用于调节色彩

RGB->CMY: 
$$\begin{pmatrix} C \\ M \\ Y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

RGB->CMYK: $K = 1 - \max(R, G, B); C = \frac{1-R-K}{1-K}; M = \frac{1-G-K}{1-K}; Y = \frac{1-B-K}{1-K}$ 

CMY->CMYK:  $K = \min(C, M, Y)K = 1$ 则 CMY 都是 0;

 $K \neq 1 \cup C = (C - K)/(1 - K); M = (M - K)/(1 - K); Y = (Y - K)/(1 - K)$ 

CMYK->CMY: C = C(1 - K) + K: M = M(1 - K) + K: Y = Y(1 - Y) + K

针对人们描述和解释颜色的方式开发,解除了亮度和色彩信息的联系; h 色调(角度),s 饱和度(鲜 艳程度),i强度(颜色的明暗程度,平均灰度)

$$\begin{array}{l} RGB - TBI \\ \theta = \arccos \Big( \frac{(R-G) + (R-B)}{2\sqrt{(R-G)^2 + (R-B)(G-B)}} \Big) \ H = \begin{cases} 360 - \theta & G < B \\ \theta & G \ge B \end{cases} \\ S = 1 - \frac{3}{R + G + B} \cdot \min(R, G, B) \ I = \frac{R + G + B}{3} \end{array}$$

$$\begin{array}{l} RG \ \boxtimes G0^\circ \leq H < 120^\circ \\ R = I \cdot (1 + \frac{S \cdot \cos(H)}{\cos(60^\circ - H)}); G = 1 - (R + B); B = I \cdot (1 - S) \\ 2.GB \ \boxtimes \underbrace{\prod (120^\circ \leq H < 240^\circ \\ H' = H - 120^\circ} \end{array}$$

$$G = I \cdot \left(1 + \frac{S \cdot \cos(H')}{\cos(60^\circ - H')}\right); B = 1 - (R+G); R = I \cdot (1-S)$$

 $3.\mathrm{BR}$  扇区 $240^\circ \le H < 360^\circ$   $H' = H - 240^\circ$ 

$$H' = H - 240^{\circ}$$
  
 $B = I \cdot \left(1 + \frac{S \cdot \cos(H')}{\cos(60^{\circ} - H')}\right); R = 1 - (G + B); G = I \cdot (1 - S)$ 

基于人眼视觉感知的模型,不依赖于具体的设备(如显示器、打印机等),因此可以在不同设备 之间保持颜色的一致性。

$$\begin{split} & X_w = 0.95047, Y_w = 1.000, Z_w = 1.08883 \\ & L_\star = 116*h \left(\frac{Y}{Y_W}\right) - 16; a_\star = 500* \left[h\left(\frac{X}{X_W}\right) - h\left(\frac{Y}{Y_W}\right)\right]; b_\star = 200* \left[h\left(\frac{Y}{Y_W}\right) - h\left(\frac{Z}{Z_W}\right)\right] \\ & h(q) = \begin{cases} \frac{(\frac{3}{2}) * q^{\frac{3}{2}}}{1.87 * q + \frac{16}{116} q \le 0.008856} \end{cases} \end{split}$$

L表示亮度,范围从 0 (黑色) 到 100 (白色)。a表示从绿色到红色的轴。b表示从蓝色到黄色 的轴。h(q)是一个辅助函数,用于处理非线性变换。

**采用多种颜色进行灰度分层**: [0,L-1]灰度级别,分为 P+1 个区间, $I_1,I_2,\cdots,I_{P+1}$ ,属于某个区间就赋 值一个彩色;若 $f(x,y)\in I_k$ 则令 $f(x,y)=c_k$  **假彩色增强:** 设置 $f_R,f_G,f_B$ 三个函数,把灰度映射为 不同通道的颜色

### 全彩色图像处理基础

1.标量框架:分别处理每幅灰度级分量图像(像素值为标量),将处理后的各分量图像合成一幅 彩色图像。 2.向量框架: 直接处理彩色像素, 将彩色像素视为向量处理。

## 彩色变换

 $s_i = T_i(r_i), \quad i \in [i,n]$  n 为分量图像总数,ri 为输入 i 分量灰度, $s_i$ 为输出 i 分量灰度 三种颜色模型下提高亮度: RGB 三个分量乘以常数 k;CMY 求线性变化 $s_i = kr_i + (1-k), \ i =$ 1,2,3;CMYK 只需改变第四个分量(K) $s_i=kr_i+(1-k),\ i=4$ 补色:彩色环: 首先等距离地放置三原色,其次将二次色等距离地放置在原色之间 在彩色环上,

与一种色调直接相对立的另一色调称为补色

### 彩色分层

突出图像中某个特定的彩色范围,有助于将目标从周围分离出来;基于假设:在同一色彩空间下, 相邻的点具有相近的颜色。

感兴趣的颜色被宽度为W、中心在原型(即平均)颜色并具有分量 $a_i$ 的立方体(n>3 时为超立方体)

$$\begin{split} s_i &= \begin{cases} 0.5,, & [|r_j - a_j| > W/2]_{1 \le j \le n} & i = 1, 2, \cdots, n \\ r_i,, & \sharp \& & \end{cases} \\ \text{$\mathbf{H}$} & \longrightarrow \nabla \mathbb{F}(\mathbf{k} \times \mathbb{F}(\mathbf{k})) \times \mathbb{F}(\mathbf{k}) \\ \text{$\mathbf{h}$} &= \begin{cases} 0.5, & \sum_{j=1}^n (r_j - a_j)^2 > R_0^2 \\ r_i, & \sharp \& \end{cases} \\ & i = 1, 2, \cdots, n \end{split}$$

## 平滑和锐化

$$\begin{array}{l} \stackrel{\mathrm{T}}{\to} \stackrel{\mathrm{M}}{\to} \overline{c}(x,y) = \begin{pmatrix} \frac{1}{K} \sum_{(s,t) \in S_{xy}} R(s,t) \\ \frac{1}{K} \sum_{(s,t) \in S_{xy}} G(s,t) \\ \frac{1}{K} \sum_{(s,t) \in S} B(s,t) \end{pmatrix}; \stackrel{\mathrm{M}}{\to} \& \nabla^2 c(x,y) = \begin{pmatrix} \nabla^2 R(x,y) \\ \nabla^2 G(x,y) \\ \nabla^2 B(x,y) \end{pmatrix}$$

### 分割图像

HSI:如果按颜色分割,考虑色调(H);可以用饱和度(S),大于某个阈值分割

RGB: 令 z 表示 RGB 空间中的任意一点,RGB 向量 a 来表示分割颜色样本集平均颜色

欧氏距离为  $D(z,a)=|z-a|=\left[(z-a)^{\mathrm{T}}(z-a)\right]^{\frac{1}{2}}=\left[(z_R-a_R)^2+(z_G-a_G)^2+(z_B-a_B)^2\right]^{\frac{1}{2}}$   $D(z,a)\leq D_0$ 的点的轨迹是半径为 $D_0$ 的一个实心球体

马哈拉诺比斯距离  $D(z,a) = \left[(z-a)^{\mathrm{T}}C^{-1}(z-a)\right]^{\frac{1}{2}}; D(z,a) \leq D_0$ 的点的轨迹是半径为 $D_0$ 的一个 实心三维椭球体

两个方法都计算代价也很高昂,一般用边界盒关于 a 居中,它沿各坐标轴的长度与样本沿坐标轴 的标准差成比例

Di Zenzo 法:不分通道计算梯度的处理方法; $\mathbf{u} = \frac{\partial R}{\partial x}\mathbf{r} + \frac{\partial G}{\partial x}\mathbf{g} + \frac{\partial B}{\partial x}\mathbf{b} \quad \mathbf{v} = \frac{\partial R}{\partial y}\mathbf{r} + \frac{\partial G}{\partial y}\mathbf{g} + \frac{\partial B}{\partial y}\mathbf{b}$   $g_{xx} = \mathbf{u} \cdot \mathbf{u} = \mathbf{u}^T \mathbf{u} = \left|\frac{\partial R}{\partial x}\right|^2 + \left|\frac{\partial G}{\partial x}\right|^2 + \left|\frac{\partial B}{\partial x}\right|^2 g_{yy} = \mathbf{v} \cdot \mathbf{v} = \mathbf{v}^T \mathbf{v} = \left|\frac{\partial R}{\partial y}\right|^2 + \left|\frac{\partial G}{\partial y}\right|^2 + \left|\frac{\partial B}{\partial y}\right|^2 g_{yy} = \mathbf{v} \cdot \mathbf{v} = \mathbf{v}^T \mathbf{v} = \frac{\partial R}{\partial x} \frac{\partial R}{\partial y} + \frac{\partial G}{\partial y} \frac{\partial G}{\partial y} + \frac{\partial B}{\partial x} \frac{\partial G}{\partial y} + \frac{\partial G}{\partial y} \frac{\partial G}{\partial y} + \frac{\partial G$ 坐标 x,y 处 $\theta$ 方向的变化率为 $F_{\theta}(x,y)$  =

 $\left\{ \frac{1}{2} \left[ \left( g_{xx} + g_{yy} \right) + \left( g_{xx} - g_{yy} \right) \cos 2\theta(x,y) + 2g_{xy} \sin 2\theta(x,y) \right] \right\}^{\frac{1}{2}}$ 

只有一个 RGB 通道受到噪声污染时,到 HSI 的转换会将噪声分布到所有 HSI 分量图像上

# 第九章:形态学图像处理

目标通常定义为前景像素集合;结构元可以按照前景像素和背景像素来规定,原点用黑色点。

平移  $(B)_z = \{c \mid c = b + z, b \in B\}$  将 B 的原点平移到点 z反射  $\hat{B} = \{w \mid w = -b, b \in B\}$  相对于 B 的原点反射(转 180°) 补集  $A^c = \{w \mid w \notin A\}$  不属于 A 的点集

差集  $A-B=\{w\mid w\in A, w\notin B\}=A\bigcap B^c$  属于 A 但不属于 B 的点集

**腐蚀**  $A \ominus B = \{z \mid (B)_z \subseteq A\} = \{z \mid (B)_z \cap A^c = \emptyset\}$  腐蚀 A 的边界(I);能缩小、细化二值图像中 的目标

膨胀  $A \oplus B = \{z \mid (\hat{B})_z \cap A \neq \emptyset\}$  膨胀 A 的边界(I);可修复图像中的断裂字符 对偶性  $(A \ominus B)^c = A^c \oplus \hat{B}; (A \oplus B)^c = A^c \ominus \hat{B}$ 

**开运算**  $A\circ B=(A\ominus B)\oplus B=igcup \{(B)_z\mid (B)_z\subseteq A\}$  平滑轮廓,断开狭窄区域,删除小孤岛和 尖刺(I);幂等律;当 B 在 A 的边界内侧滚动时,B 所能到达的 A 的边界的最远点;B 的所有平移的

闭运算  $A \bullet B = (A \oplus B) \ominus B = [\bigcup \{(B)_z | (B)_z \cap A = \emptyset \}]^c$  平滑轮廓,弥合狭窄断裂和细长沟道, 删除小孔洞(I);幂等律;当 B 在 A 的边界**外侧**滚动时,B 所能到达的 A 的边界的最远点;B 的所有 不与 A 重叠的平移的并集的补集。

对偶性  $(A \circ B)^c = A^c \bullet \hat{B}; (A \bullet B)^c = A^c \circ \hat{B}$ 

**击中与击不中**  $I \circledast B_{1,2} = \left\{z \mid (B_1)_z \subseteq A \land (B_2)_z \subseteq A^c \right\} = (A \ominus B_1) \cap (A^c \ominus B_2)$  前景中检测形 状的 B1, 在背景中检测形状的 B2 同时满足的保留

**边界提取**  $\beta(A) = A - (A \ominus B)$  提取集合 A 的边界上的点集(I)

**孔洞填充**  $X_k = (X_{k-1} \oplus B) \bigcap I^c, \quad k=1,2,3,\cdots$  填充 A 中的孔洞,  $X_0$  初始化为 I大小,在每个 孔洞中填充 1.在其他位置填充 0

提取连通分量  $X_k = (X_{k-1} \oplus B) \cap I, \quad k = 1, 2, 3, \cdots$  寻找 I 中的连通分量(I)

**凸壳**  $X_k^i = \left(X_{k-1}^i \circledast B^i\right) \bigcup X_{k-1}^i, i=1,2,3,4$  计算 I 中前景像素的凸壳(I)

细化  $A \otimes B = A - (A \circledast B)$  细化集合 A , 移除多余分支(I)

粗化  $A \odot B = A \bigcup (A \circledast B)$  使用结构元粗化集合 A (I)

骨架  $S(A)=\bigcup_{k=0}^{K}S_{k(A)}, \quad S_{k(A)}=(A\ominus k_B)-(A\ominus k_B)\circ B$  寻找集合 A 的骨架(I) 裁剪  $X_1=A\otimes\{B\}$  ;  $X_2=\bigcup_{k=1}^{8}(X_1\otimes B^k)$  ;  $X_3=(X_2\oplus H)\cap A$  ;  $X_4=X_1\cup X_3$   $X_4$  是裁剪集合 A 后的结果。结构元(V)用于前两个公式,H 裁剪用于第三个公式(I)

通常用于细化和骨架绘制算法的后处理.用于消除"毛刺"—比较短的像素端点,比如说小于等于3 个像素长度.

#### 灰度级形态学

把膨胀、腐蚀、开运算和闭运算的基本运算扩展到灰度图像

平坦结构元:内部灰度值相同;非平坦结构元的灰度值会随它们的定义域变化

补集定义 $f^{c(x,y)} = -f(x,y)$  反射定义 $\hat{b}(x,y) = b(-x,-y)$ 

灰度腐蚀 平坦 $[f\ominus b](x,y)=\min_{(s,t)\in b}\{f(x+s,y+t)\}$  非平坦 $[f\ominus b_N](x,y)=$ 

灰度腐蚀和膨胀相对于补集和反射是对偶的(这里省略参数)

 $(f \ominus b)^c = f^c \oplus \hat{b} \quad (f \oplus b)^c = f^c \ominus \hat{b}$ 

开运算 $f \circ b = (f \ominus b) \oplus b$  闭运算 $f \bullet b = (f \oplus b) \ominus b$  它们也是对偶的 开运算经常用于去除小而明亮的细节;闭运算经常用于去除小而黑暗的细节

从信号图像看开削峰,闭填谷;两个都满足图片中的性质

#### 灰度级开操作满足下列性质:

(i) f ∘ b ↓ f

(ii) 如果  $f_1$ - $f_2$  则  $f_1 \circ b$ - $f_2 \circ b$ 

(iii)  $(f \circ b) \circ b = f \circ b$ 

形态学梯度  $g=(f\oplus b)-(f\ominus b)$  ; 显示边缘 顶帽变换  $T_{hat}(f)=f-(f\circ b)$  亦称"白顶帽"变换,用 于暗背景上亮物体;暗背景下亮目标分割

底帽变换  $B_{hat}(f)=(fullet b)-f$  亦称"黑底帽"变换,用于亮背景上暗物体;亮背景下暗目标分割 粒度测定:使用逐渐增大的结构元对图像进行开运算。某个特殊尺寸的开运算对包含类似尺寸的 颗粒的输入图像的区域产生最大的效果。

# 第十章:图像分割

## 背景知识

差分: 前向  $\frac{\partial f(x)}{\partial x} = f(x+1) - f(x)$  后向  $\frac{\partial f(x)}{\partial x} = f(x) - f(x-1)$  中值  $\frac{\partial f(x)}{\partial x} = \frac{f(x+1) - f(x-1)}{2}$  二阶  $\frac{\partial^2 f(x)}{\partial x^2} = f(x+1) - 2f(x) + f(x-1)$ 

一阶导 a) 在恒定灰度区域为零; b) 在灰度台阶和斜坡开始处不为零; c) 在灰度斜坡上不为零 二阶导 a) 在恒定灰度区域为零; b) 在灰度台阶和斜坡开始处不为零; c) 在灰度斜坡上为零 (1)一阶导产生粗边缘; (2)二阶导对精细细节(如细线、孤立点和噪声)有更强的响应; (3)二阶导 在灰度斜坡和台阶过渡处会产生双边缘响应; (4)二阶导的符号可用于确定边缘的过渡是从亮到 暗(正)还是从暗到亮(负)。

滤波器在核的中心点的响应是 $Z = \sum_{k=1}^9 w_k z_k \le 1,2,3$  为核第一行,以此类推

## 孤立点检测

拉普拉斯  $\nabla^2 f(x,y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) -$ 

超过阈值 T 的标记  $g(x,y) = \begin{cases} 1, |Z(x,y)| > T \\ 0, \text{ 其他} \end{cases}$  $\nabla^2 f = Z$ 

### 线检测

拉普拉斯核是各向同性的、特殊方向线检测通常采用如下 4 种摸板

水平: 
$$\begin{pmatrix} -1 & -1 & -1 \\ 2 & 2 & 2 \\ -1 & -1 & -1 \end{pmatrix}$$
 +45°:  $\begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & 2 & -1 \end{pmatrix}$  垂直:  $\begin{pmatrix} -1 & 2 & -1 \\ -1 & 2 & -1 \\ -1 & 2 & -1 \end{pmatrix}$  -45°:  $\begin{pmatrix} -1 & 1 & 2 \\ -1 & 2 & -1 \\ 2 & 1 & -1 \end{pmatrix}$  如果上述 4 种模 板产生的响应分别为: Ri,如果 $|\mathbf{R}\mathbf{i}(\mathbf{x},\mathbf{y})|$ > $|\mathbf{R}\mathbf{j}(\mathbf{x},\mathbf{y})|$ ,并且 i $\mathbf{j}$ i,则认为此点与模板 i 方向的线有关。

### 边缘检测

梯度 
$$\nabla f(x,y) \equiv \operatorname{grad}[f(x,y)] \equiv \begin{bmatrix} g_x(x,y) \\ g_y(x,y) \end{bmatrix} = \begin{bmatrix} \frac{\partial f(x,y)}{\partial y} \\ \frac{\partial f(x,y)}{\partial y} \end{bmatrix}$$
 梯度幅度(L2)  $M(x,y) = \|\nabla f(x,y)\| = \sqrt{g_x^2(x,y) + g_y^2(x,y)}$  绝对值来近似梯度幅度(L1):  $M(x,y) \approx |g_x| + |g_y|$  梯度方向(垂直边缘)  $\alpha(x,y) = \arctan \begin{bmatrix} \frac{1}{g_y(x,y)} \end{bmatrix}$ 

$$\begin{pmatrix} z_1 & z_2 & z_3 \\ z_4 & z_5 & z_6 \end{pmatrix}$$

Robert 算子  $g_x = \frac{\partial f}{\partial x} = (z_9 - z_5) \ g_y = \frac{\partial f}{\partial y} = (z_8 - z_6)$ Prewitt 算子  $g_x = \frac{\partial f}{\partial x} = (z_7 + z_8 + z_9) - (z_1 + z_2 + z_3) \ g_y = \frac{\partial f}{\partial y} = (z_3 + z_6 + z_9) - (z_1 + z_4 + z_7)$ Sobel 算子  $g_x = \frac{\partial f}{\partial x} = (z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3) \ g_y = \frac{\partial f}{\partial y} = (z_3 + 2z_6 + z_9) - (z_1 + 2z_4 + z_7)$ 

与 Sobel 相比, Prewitt 更简单, 但 Sobel 能更好抑制 (平滑) 噪声。

Kirsch 罗盘核: 用于检测 8 个罗盘方向的边缘幅度和方向

二维高斯函数,  $G(x,y) = e^{-\frac{x^2+y^2}{2\sigma^2}}$ ; 高斯拉普拉斯(LoG)函数:  $\nabla^2 G(x,y) = \left(\frac{x^2+y^2-2\sigma^2}{\sigma^4}\right)e^{-\frac{x^2+y^2}{2\sigma^2}}$ Marr-Hildreth 算法  $g(x,y) = [\nabla^2 G(x,y)] \star f(x,y) = \nabla^2 [G(x,y) \star f(x,y)]$  寻找 g(x,y)的过零点 来确定 f(x,y)中边缘的位置

高斯差分(DoG)来近似式的 LoG 函数  $D_G(x,y)=\frac{1}{2\pi\sigma_1^2}e^{-\frac{x^2+y^2}{2\sigma_1^2}}-\frac{1}{2\pi\sigma_2^2}e^{-\frac{x^2+y^2}{2\sigma_2^2}}$  Canny 坎尼 1.用一个高斯滤波器平滑输入图 $f_s(x,y)=G(x,y)\star f(x,y)$  2.计算梯度幅值图像 $M_S$  (L2)和角度图像 $\alpha(x,y)=\tan^{-1}\left[\frac{g_0(x,y)}{g_s(x,y)}\right]$  3.对梯度幅值图像应用非极大值抑制进行细化边缘 4.用双阈值处理和连通性分析来检测与连接边缘

非极大值抑制 寻找最接近  $\alpha$  方向  $\mathrm{dk}$ ,修改值 $g_N(x,y)=\left\{egin{array}{l} & M_s(x,y) & \mathrm{odd}_k & \mathrm{fin} \end{array}\right.$ 双阈值化处理 $g_{NH}(x,y)=g_N(x,y)\geq T_H$ 强边缘(存在间断)  $g_{NL}(x,y)=g_N(x,y)\geq T_L$ 强边缘+弱 边缘  $g_{NL}(x,y)=g_{NL}(x,y)-g_{NH}(x,y)$ 弱边缘

满足条件则连接  $|M(s,t)-M(x,y)| \le E |\alpha(s,t)-\alpha(x,y)| \le A$ 

**霍夫变换**  $\rho(\theta) = x\cos\theta + y\sin\theta = R\cos(\theta - \phi) = \sqrt{x^2 + y^2}\cos\left(\theta - \arctan\frac{x}{y}\right)$ 

单阈值 
$$g(x,y) = \begin{cases} 1 & f(x,y) \geq T \\ 0 & f(x,y) \leq T \end{cases}$$

双阈值 
$$g(x,y) = \begin{cases} a, & f(x,y) > T_2 \\ b, & T_1 < f(x,y) \le T_2 \\ c, & f(x,y) \le T_1 \end{cases}$$

#### 基本的全局阈值化

- 1. 为全局阈值T选择一个初始估计值。 2. 在  $g(x,y) = \begin{cases} 1, f(x,y) > T \\ 0, f(x,y) \leq T \end{cases}$  中月 中用T分割图像。这将产生两组像素: 由灰度值大于T的所有 像素组成的 $G_1$ ,由所有小于等于T的像素组成的 $G_2$
- 3. 对  $G_1$  和  $G_2$ 中的像素分别计算平均灰度值(均值) $m_1$ 和  $m_2$
- 4. 在 $m_1$ 和  $m_2$ 之间计算一个新的阈值:  $T = \frac{m_1 + m_2}{2}$
- 5. 重复步骤 2 到步骤 4,直到连续迭代中的两个T值间的差小于某个预定义的值 $\Delta T$ 为止。

(选择 k 最大化  $\sigma_B^2$ )

アペニティ バンドレジョ ) 扩展到多阈值  $\sigma_B^2 = \sum_{k=1}^K P_k (m_k - m_G)^2$  ;  $\sigma_B^2 \left(k_1^*, k_2^*, \cdots, k_{K-1}^* \right) = \max_{0 < k_1 < k_2 < \cdots k_K < L-1} \sigma_B^2 (k_1, k_2, \cdots, k_{K-1})$ 

# 区域生长 分离 聚合

## 区域生长

- 1. **初始种子区域**: 从种子数组 S(x,y)中找到所有连通分量,并将这些区域标记为 1,其他位置标 记为0。
- 2. **条件筛选**:根据谓词 Q 对图像 f(x,y)进行筛选,形成新的图像 f,其中满足条件的像素标记为
- 3. 区域扩展:将所有在图像 f 中 8 连通到种子点的 1 值点添加到 S 中,形成新的图像 g。
- 4. **连通区域标记**:用不同的标签标记图像 g 中的每个连通分量,得到最终的区域生长分割结果。

分离聚合 令 R 表示整个图像区域, Q 是针对区域的一个逻辑谓词比如

 $Q = \begin{cases} \text{true } \sigma > \alpha \land 0 < m < b \\ \text{false otherwise} \end{cases}$ 

- 1把满足Q(Ri)=FALSE的任何Ri区域分离为四个不相交的子象限区域;
- 2 无法进一步分离时,聚合满足谓词逻辑 $Q(R_j \cup R_k) = \text{TRUE}$ 的任意两个邻接区域 Rj 和 Rk; 3 在无法进一步聚合时停止。





### 分水岭变换

- 1. 梯度图像: ,算法使用图像的梯度图像 g(x,y),其中包含多个区域极小值  $M_{\{1\}}, M_{\{2\}}, M_{\{g\}}$  。 这些极小值对应于图像中的局部低谷。
- 2. 汇水盆地:每个区域极小值  $M_{\{i\}}$  都有一个与之相关联的汇水盆地  $C(M_i)$ ,这些汇水盆地中的 点形成一个连通分量。
- 3. 淹没过程: 算法通过模拟水位从最小值 min 逐渐上升到最大值 max 的过程来分割图像。在每 个水位 n, 集合 T[n] 包含所有灰度值小于 n 的点。
- 4. 二值图像: 在每个水位 n, T[n] 可以被视为一幅二值图像, 其中黑点表示位于平面 g(x,y) = n下方的点。
- 5. 汇水盆地分割: 随着水位上升, 算法通过比较当前水位 n 的连通分量与前一水位 n-1 的汇 水盆地,来确定是否需要构建水坝以防止不同汇水盆地的水流溢出。
- 6. 水坝构建: 当水位上升到某个点时,如果发现有多个汇水盆地的水流可能溢出,算法会在这 些汇水盆地之间构建水坝(即分割线),以阻止水流混合。

缺点:受噪声影响大;容易过度分割

## 分割中运动的使用

基本方法: 逐像素地比较  $t_i$  和  $t_j$  两帧图像 f(x,y) 可以获得相应的差值图像:  $d_{ij}(x,y)$  = エアルム・ベルスルビルス  $t_i$  や  $t_j$  内侧包阁 J(x,y)  $\begin{cases} 1 |f(x,y,t_i)-f(x,y,t_j)|>T \\ 0 # \ell \end{cases}$  其中 T 是一个非负阈值。

累积差值:将参考图像 R(x,y) 与序列中的每个后续图像进行比较。当当前图像中的像素与参考图 像不同时,累积差分图像中每个像素的计数器会增加。在检查第t帧时,累积差分图像显示该像 素与参考图像中对应像素的差异次数。

绝对 ADI:  $A_k(x,y) = \begin{cases} A_{k-1}(x,y) + 1 & \text{in} \mathbb{R} \ |R(x,y) - f(x,y,t_x)| > T \\ A_{k-1}(x,y) & \text{ <table-row> <table-row>} \end{cases}$ 正 ADI: $P_k(x,y) = \begin{cases} P_{k-1}(x,y) + 1 & \text{如果} & R(x,y) - f(x,y,t_x) > T \\ P_{k-1}(x,y) & 香料 \end{cases}$  $\text{MADI:}N_k(x,y) = \begin{cases} N_{k-1}(x,y) + 1 & \text{in } \mathbb{R} \\ N_{k-1}(x,y) & \text{sol} \end{cases} R(x,y) - f(x,y,t_x) < -T$ 

# 第十一章 特征提取

### 边界预处理

跟踪二值图像中1值区域 R 的边界算法:从左上角标记为1的点开始,按顺时针找8邻域中下一个 1,然后继续从下一个1开始执行算法,直到回到起点

弗里曼链码 基于线段的 4 连通或 8 连通,使用一种编号方案对每个线段的方向进行编码。用于 表示由顺次连接的具有指定长度和方向的直线段组成的边界。



从起点开始,往哪个箭头方向走就标记哪个数字,直到回到起点;形状和链码是一一对应的;改变起 点会让链码循环位移

**归一化**:循环位移后数字最小的链码

**差分**:相邻的做差,i 为当前 a[i+1] - a[i],最后加一个起点-终点;之后对 4 或者 8 取  $\operatorname{mod};D = [(C_2 - C_2)]$  $C_1)\operatorname{mod} m, (C_3-C_2)\operatorname{mod} m, ..., (C_1-C_n)\operatorname{mod} m]$ 

形状数(差分+归一化)将码按一个方向循环,使其构成的自然数最小序列;形状数的阶n 定义为形 状数中的数字的数量。

**斜率链码** 在曲线周围放置**等长**的直线段得到,其中的直线段的端点与曲线相接,直线段的斜率记

最小周长多边形:使用尽量少的线段来得到给定边界的基本形状;;先找所有凸起和凹陷点,然后凹 顶点需要镜像; $\mathbf{A} = \begin{bmatrix} a_s & a_y & 1 \\ b_s & b_y & 1 \\ c_s & c_y & 1 \end{bmatrix}$  abc 三点行列式,逆时针行列式为正,顺时针为负,共线为  $\mathbf{0}$  . **初始化:** 定义起始点  $V_0$ 、W 爬行点  $W_c$ 、B 爬行点  $B_c$ 。设置当前检查的项点为  $V_k$ 。 2. **条件检查:** 从  $W_c = B_c = V_0$  开始,依次检查  $V_k$  和  $V_k + 1$  是否满足以下任一条件:  $V_k$  位于线段对  $(V_L, W_c)$  的直线的正侧(即符号函数  $sgn(V_L, W_c, V_k) > 0$ )。

- - 2.  $V_k$  位于线段对  $(V_L,W_c)$  的直线负侧或共线,同时  $V_k$  位于线段对  $(V_L,B_c)$  的直线的正侧 (即  $sgn(V_L,W_c,V_k)<0$  且  $sgn(V_L,B_c,V_k)>0$ )。 3.  $V_k$  位于线段对  $(V_L,B_c)$  的直线的负侧(即  $sgn(V_L,B_c,V_k)<0$ )。
- 3. **爬行更新:** 若满足以上条件之一,则更新爬行点  $W_c$  或  $B_c$ ,并继续搜索下一个顶点。
- 4. 终止条件: 当再次到达起始点(第一个顶点)时停止。所找到的点(多边形的顶点)即为 MPP 的顶点集合。

标记图:把质心到边界的距离画成角度的函数。将原始的二维边界简化为一维函数表示。

### 边界特征描述子

边界 B 的直径  $\operatorname{diameter}(B) = \max_{i,j} [D(\operatorname{pi},\operatorname{pj})]$  D 为距离测度,pi 和 pj 是边界上的点。 长度 $\operatorname{length}_m = \left[ (x_2 - x_1)^2 + (y_2 - y_1)^2 \right]^{1/2}$ 方向 $\operatorname{angle}_m = \arctan\left[ \frac{y_2 - y_1}{x_2 - x_1} \right]$  由长轴端点定义 曲线的曲折度定义为斜率链码链元素的绝对值之和: $\tau = \sum_{i=1}^n (\alpha_i|, \operatorname{式+ph})$  n 是斜率链码中的元素 数量, $|\alpha_i|$ 是链码中元素的值(斜率变化)。

数重, $|a_i|$ 是链的甲元素的值(斜率变化)。 **傅里叶描述子**:二维边界可以被视为复数从而一维化表示为  $s(\mathbf{k}) = \mathbf{x}(\mathbf{k}) + \mathbf{j}\mathbf{y}(\mathbf{k})$ 边界的傅里叶描述子 $a(u) = \sum_{k=0}^{K-1} s(k)e^{-j2\pi uk/K} s(k) = \frac{1}{K} \sum_{i=0}^{K-1} a(u)e^{j2\pi uk/K}$ 只采用前  $\mathbf{P}$  个系数(去除高頻系数)  $s(\mathbf{k}) = \frac{1}{K} \sum_{i=0}^{P-1} a(u)e^{i2\pi uk/K}$  **性质**: 旋转:  $s_{r(\mathbf{k})} = s(\mathbf{k})e^{i\theta}$ ,  $a_{r(u)} = a(u)e^{i\theta}$ ; 平移:  $s_{r(\mathbf{k})} = s(\mathbf{k}) + \Delta_{iy}$ ,  $a_{r(u)} = a(u) + \Delta_{iy}\delta(u)$ ; 缩放:  $s_{s(\mathbf{k})} = \alpha s(\mathbf{k})$ ,  $a_{s(u)} = \alpha a(u)$ ; 起点:  $s_{p(\mathbf{k})} = s(\mathbf{k} - \mathbf{k}_0)$ ,  $a_{p(u)} = \alpha(u)e^{-j2\pi k_0\mu/K}$  **统计近**: 1.把 g(n)的幅度视为离散随机变量 z,形成幅度直方图 p(zi).A 是灰度值最大的区间数量。

将 p 归一化,使其元素之和等于 1,那么 p(zi)是灰度值 zi 的概率估计; z 关于其平均值的 n 阶矩为  $\mu_n(z)=\sum_{i=0}^{A-1}(z_i-m)^np(z_i)$  ; m 是 z 的均值 $m=\sum_{i=0}^{A-1}z_ip(z_i)$ , $\mu_2$ 

是z 大了兵下场值的  $\mathbb{E}[n]$   $\mathcal{L}_{n}(z) = \sum_{i=0}^{n} (z_{i} - m) p(z_{i})$ , $\mathbb{E}[z]$  的方差,只需要前几个矩来区分明显不同形状的标记图。 2.将 g(r)面积归一化为 1,并视为直方图,g(ri)可被视为值 ri 出现的概率。r 是随机变量 K 是边

界上的点数,  $\mu_{n(r)}$  与标记图 g(r)形状直接相关 矩是  $\mu_n(r) = \sum_{i=0}^{K-1} (r_i - m)^n g(r_i)$  其中 $m = \sum_{i=0}^{K-1} r_i g(r_i)$ 

# 区域特征描述子

面积 A 为区域中的**像素数量。周长 p** 是其边界的长度;**紧致度**(无量纲)  $\frac{p^2}{A}$  ;**圆度**(无量纲)  $\frac{4\pi A}{r^2}$ ; 有效直径  $d_e = 2\sqrt{\frac{A}{\pi}}$ 

 $\frac{c}{p^2}$ ,**有从**国任  $a_e = 2\sqrt{\pi}$  偏心率 标准椭圆 eccentricity =  $\frac{c}{a} = \frac{\sqrt{a^2 - b^2}}{a} = \sqrt{1 - (b/a)^2}$   $a \ge b$  任意方向椭圆(协方差矩阵的特征值) eccentricity =  $\sqrt{1 - (\lambda_2/\lambda_1)^2}$   $\lambda_1 \ge \lambda_2$ 拓扑描述子:孔洞的数量 H 和连通分量 C 的数量,定义欧拉数 E = C - H

顶点数表示为 V,将边数表示为 Q,将面数表示为 F时, V-Q+F=E 纹理:统计方法(和统计矩 1 类似),光滑度  $R=1-\frac{1}{1+\sigma^2(z)}\,\sigma^2$  是方差  $\mu_2$  ;一致性  $U=\sum_{i=0}^{L-1}\,p^2(z_i)$  熵  $p=-\sum_{i=0}^{L-1}\,p(z_i)\log_2p(z_i)$ 

共生矩阵中的元素 $g_{ij}$ 值定义为图像  $\mathbf{f}$  中灰度 $(z_i,z_j)$ 的像素对**出现的次数**;像素对不一定是左右的, 可以跨格子;从 $z_i$ 到 $z_j$ 

下面是共生矩阵( $\mathring{K} \times K$ )的描述子,  $p_i j$  等于 G 中第 i,j 项处于 G 的元素之和

- 最大概率 $\max_{\{i,j\}} p_{ij}$ 度量 G 的最强响应,值域是 [0,1] 相关:  $\sum_{i=1}^{K} \sum_{j=1}^{K} (i-m_c)(j-m_c)p_{ij} \over \sigma_r \neq 0, \sigma_c \neq 0$  一个像素在整个图像上与其相邻像素有多相关的
- 相关:  $\frac{\Delta_{i+1} \Delta_{j+1}}{\sigma_i \sigma_i}$   $\sigma_r \neq 0$ ,  $\sigma_c \neq 0$  一个像素在整个图像上与其相邻隊系有多和大时测度,值域是[-1,1]。-1 对应完全负相关,1 对应完全正相关。标准差为 0 时,该测度无定义 对比度:  $\sum_{i=1}^K \sum_{j=1}^K (i-j)^2 p_{ij}$  一个像素在整个图像上与其相邻像素之间的灰度对比度的测度,值域是从 0 到  $(K-1)^2$
- 均匀性(也称能量):  $\sum_{i=1}^K \sum_{j=1}^K p_{ij}^2$  均匀性的一个测度,值域为 [0,1],恒定图像的均匀性为 1 同质性  $\sum_{i=1}^K \sum_{j=1}^K \sum_{i=1}^K \bigcap_{j=1}^K G$  中对角分布的元素的空间接近度的测度,值域为 [0,1]。当 G 是对
- 角阵时,同质性达到最大值 **角**  $-\sum_{i=1}^K \sum_{j=1}^K p_{ij} \log_2 p_{ij}$  G 中元素的随机性的测度。当所有  $p_{ij}$  均匀分布时,熵取最大值,因此最大值为  $2\log_2 K$

极坐标下的频谱函数  $S(r) = \sum_{\theta=0}^{\pi} S_{\theta}(r) \quad S(\theta) = \sum_{r=1}^{R_0} S_r(\theta)$  矩不变量:大小为 MxN 的数字图像 f(x,y)的二维(p+q)阶矩为  $m_{pq} = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} x^p y^q f(x,y)$ ; (p+q)阶中心矩为  $\mu_{pq} = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} (x-\overline{x})^p (y-\overline{y})^q f(x,y)$   $\overline{x} = \frac{m_{10}}{m_{00}}$ ,  $\overline{y} = \frac{m_{01}}{m_{00}}$ 

归一化(p+q)阶中心矩为  $\eta_{pq} = \frac{\mu_{pq}}{\mu_{pq}^{(p)+q)/2+1}}$ 

# 主成分描述子

x 是 n 维列向量,总体平均向量 $m_x=E(x)$ ,向量总体的协方差矩阵(nxn) $C_x=E\left\{(x-x)\right\}$ 

 $m_x)(x-m_x)^T\Big\}$  霍特林变换:令 A 是一个矩阵,这个矩阵的各行由 Cx 的特征向量构成; $y=A(x-m_x)$ 可以证明:  $m_y = E\{y\} = 0$ 

y 的协方差矩阵:  $C_y = AC_xA^T$  ;  $C_y = \begin{bmatrix} \lambda_1 & \lambda_2 & & \\ & \lambda_2 & & \\ & & \lambda_n \end{bmatrix}$ 对角阵对角元。 可通过 y 恢复  $x: x = A^{-1}y + m_x = A^Ty + m_x$ 

近似恢复  $x: \hat{x} = A_k^T y + m_x$ 

代表 k 个最大特征值的 k 个特征向量形成的矩阵。

恢复误差:  $e_{ms} = \sum_{j=1}^{n} \lambda_j - \sum_{j=1}^{k} \lambda_j = \sum_{j=k+1}^{n} \lambda_j$