
Sequence Listing was accepted.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866)

217-9197 (toll free).

Reviewer: Keisha Douglas

Timestamp: [year=2009; month=1; day=12; hr=16; min=39; sec=32; ms=229;]

Validated By CRFValidator v 1.0.3

Application No: 10568745 Version No: 1.0

Input Set:

Output Set:

Started: 2008-12-30 16:10:56.798

Finished: 2008-12-30 16:10:58.883

Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 85 ms

Total Warnings: 30

Total Errors: 2

No. of SeqIDs Defined: 30

Actual SeqID Count: 30

Error code		Error Description
W	213	Artificial or Unknown found in <213> in SEQ ID (1)
W	213	Artificial or Unknown found in <213> in SEQ ID (2)
W	213	Artificial or Unknown found in <213> in SEQ ID (3)
W	213	Artificial or Unknown found in <213> in SEQ ID (4)
W	213	Artificial or Unknown found in <213> in SEQ ID (5)
W	213	Artificial or Unknown found in <213> in SEQ ID (6)
W	213	Artificial or Unknown found in <213> in SEQ ID (7)
W	213	Artificial or Unknown found in <213> in SEQ ID (8)
W	402	Undefined organism found in <213> in SEQ ID (9)
E	257	Invalid sequence data feature in <221> in SEQ ID (9)
W	402	Undefined organism found in <213> in SEQ ID (10)
Ε	257	Invalid sequence data feature in <221> in SEQ ID (10)
W	213	Artificial or Unknown found in <213> in SEQ ID (11)
W	213	Artificial or Unknown found in <213> in SEQ ID (12)
W	213	Artificial or Unknown found in <213> in SEQ ID (13)
W	213	Artificial or Unknown found in <213> in SEQ ID (14)
W	213	Artificial or Unknown found in <213> in SEQ ID (15)
W	213	Artificial or Unknown found in <213> in SEQ ID (16)
W	213	Artificial or Unknown found in <213> in SEQ ID (17)
W	213	Artificial or Unknown found in <213> in SEQ ID (18)

Input Set:

Output Set:

Started: 2008-12-30 16:10:56.798 **Finished:** 2008-12-30 16:10:58.883

Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 85 ms

Total Warnings: 30

Total Errors: 2

No. of SeqIDs Defined: 30

Actual SeqID Count: 30

Err	or code	Error Description								
W	213	Artificial or Unknown found in <213> in SEQ ID (19)								
W	213	Artificial or Unknown found in <213> in SEQ ID (20)								
W	213	Artificial or Unknown found in <213> in SEQ ID (21)								
W	213	Artificial or Unknown found in <213> in SEQ ID (22) This error has occured more than 20 times, will not be displayed								

SEQUENCE LISTING

```
<110> IDENO, Mitsuko
      MURAKI, Nobuko
      OGAWA, Kinuko
      KISHIMOTO, Masayuki
      ENOKI, Tatsuji
      SAGAWA, Hiroaki
      KATO, Ikunoshin
<120> PROCESS FOR PRODUCING CYTOTOXIC LYMPHOCYTES
<130> 1422-0709PUS1
<140> 10568745
<141> 2008-12-30
<150> PCT/JP2004/012238
<151> 2004-08-19
<150> JP 2003-298208
<151> 2003-08-22
<150> JP 2004-699
<151> 2004-01-05
<150> JP 2004-115648
<151> 2004-04-09
<150> JP 2004-222441
<151> 2004-07-29
<160> 30
<170> PatentIn version 3.5
<210> 1
<211> 87
<212> PRT
<213> Artificial Sequence
<220>
<223> Chemically synthesized partial region of fibronectin named III-8
<400> 1
Pro Thr Asp Leu Arg Phe Thr Asn Ile Gly Pro Asp Thr Met Arg Val
              5
                                  10
Thr Trp Ala Pro Pro Pro Ser Ile Asp Leu Thr Asn Phe Leu Val Arg
           20
                               25
```

Tyr Ser Pro Val Lys Asn Glu Glu Asp Val Ala Glu Leu Ser Ile Ser 35 40 45 Pro Ser Asp Asn Ala Val Val Leu Thr Asn Leu Leu Pro Gly Thr Glu 55 Tyr Val Val Ser Val Ser Ser Val Tyr Glu Gln His Glu Ser Thr Pro 65 Leu Arg Gly Arg Gln Lys Thr 85 <210> 2 <211> 90 <212> PRT <213> Artificial Sequence <220> <223> Chemically synthesized partial region of fibronectin named III-9 <400> 2 Gly Leu Asp Ser Pro Thr Gly Ile Asp Phe Ser Asp Ile Thr Ala Asn 1 5 10 15 Ser Phe Thr Val His Trp Ile Ala Pro Arg Ala Thr Ile Thr Gly Tyr 25 Arg Ile Arg His His Pro Glu His Phe Ser Gly Arg Pro Arg Glu Asp 35 40 Arg Val Pro His Ser Arg Asn Ser Ile Thr Leu Thr Asn Leu Thr Pro 50 55 Gly Thr Glu Tyr Val Val Ser Ile Val Ala Leu Asn Gly Arg Glu Glu 70 75 65 80 Ser Pro Leu Leu Ile Gly Gln Gln Ser Thr <210> 3 <211> 94 <212> PRT <213> Artificial Sequence

<223> Chemically synthesized partial region of fibronectin named III-10

<400> 3

<220>

1	Pro Arg 5	Asp Leu	Glu Val 10	Val Ala	Ala Thr	Pro Thr 15
Ser Leu Leu Ile 20	Ser Trp	Asp Ala	Pro Ala 25	Val Thr	Val Arg 30	Tyr Tyr
Arg Ile Thr Tyr 35	Gly Glu	Thr Gly 40	Gly Asn	Ser Pro	Val Gln 45	Glu Phe
Thr Val Pro Gly	Ser Lys	Ser Thr 55	Ala Thr	Ile Ser 60	Gly Leu	Lys Pro
Gly Val Asp Tyr	Thr Ile	Thr Val	Tyr Ala	Val Thr 75	Gly Arg	Gly Asp 80
Ser Pro Ala Ser	Ser Lys 85	Pro Ile	Ser Ile 90	Asn Tyr	Arg Thr	
<210> 4 <211> 84 <212> PRT						
	al Sequer	nce				
<213> Artifici <220> <223> Chemical			artial re	egion of	fibronec	ctin named III-11
<213> Artifici			artial re	egion of	fibroned	ctin named III-11
<213> Artifici <220> <223> Chemical	ly synthe	esized pa				
<213> Artificion <220> <223> Chemical <400> 4 Gln Met Gln Val	ly synthe Thr Asp 5	esized pa	Asp Asn 10	Ser Ile	Ser Val	Lys Trp 15
<213> Artificit <220> <223> Chemical <400> 4 Gln Met Gln Val 1	ly synthe Thr Asp 5	esized pa	Asp Asn 10 Gly Tyr 25	Ser Ile	Ser Val Thr Thr 30	Lys Trp 15 Thr Pro
<213> Artificial <220> <223> Chemical <400> 4 Gln Met Gln Val 1 Leu Pro Ser Ser 20 Lys Asn Gly Pro	ly synthe Thr Asp 5 Ser Pro	esized particles of the Val Thr Lys 40	Asp Asn 10 Gly Tyr 25 Thr Lys	Ser Ile Arg Val	Ser Val Thr Thr 30 Gly Pro 45	Lys Trp 15 Thr Pro

```
<210> 5
<211> 92
<212> PRT
<213> Artificial Sequence
<220>
<223> Chemically synthesized partial region of fibronectin named III-12
<400> 5
Ala Ile Pro Ala Pro Thr Asp Leu Lys Phe Thr Gln Val Thr Pro Thr
Ser Leu Ser Ala Gln Trp Thr Pro Pro Asn Val Gln Leu Thr Gly Tyr
       20
                25
Arg Val Arg Val Thr Pro Lys Glu Lys Thr Gly Pro Met Lys Glu Ile
                      40
      35
Asn Leu Ala Pro Asp Ser Ser Ser Val Val Ser Gly Leu Met Val
   50 55 60
Ala Thr Lys Tyr Glu Val Ser Val Tyr Ala Leu Lys Asp Thr Leu Thr
                 70
                                    75
Ser Arg Pro Ala Gln Gly Val Val Thr Thr Leu Glu
             85
                                90
<210> 6
<211> 89
<212> PRT
<213> Artificial Sequence
<220>
<223> Chemically synthesized partial region of fibronectin named III-13
<400> 6
Asn Val Ser Pro Pro Arg Ala Arg Val Thr Asp Ala Thr Glu Thr
                               10
Thr Ile Thr Ile Ser Trp Arg Thr Lys Thr Glu Thr Ile Thr Gly Phe
          20
                         25
Gln Val Asp Ala Val Pro Ala Asn Gly Gln Thr Pro Ile Gln Arg Thr
```

35 40 45

```
Ile Lys Pro Asp Val Arg Ser Tyr Thr Ile Thr Gly Leu Gln Pro Gly
   50
Thr Asp Tyr Lys Ile Tyr Leu Tyr Thr Leu Asn Asp Asn Ala Arg Ser
               70
                         75
Ser Pro Val Val Ile Asp Ala Ser Thr
            85
<210> 7
<211> 90
<212> PRT
<213> Artificial Sequence
<223> Chemically synthesized partial region of fibronectin named III-14
<400> 7
Ala Ile Asp Ala Pro Ser Asn Leu Arg Phe Leu Ala Thr Thr Pro Asn
                  10
Ser Leu Leu Val Ser Trp Gln Pro Pro Arg Ala Arg Ile Thr Gly Tyr
       20
                     25
Ile Ile Lys Tyr Glu Lys Pro Gly Ser Pro Pro Arg Glu Val Val Pro
     35
              40
Arg Pro Arg Pro Gly Val Thr Glu Ala Thr Ile Thr Gly Leu Glu Pro
   50
                  55
                                     60
Gly Thr Glu Tyr Thr Ile Tyr Val Ile Ala Leu Lys Asn Asn Gln Lys
65 70 75 80
Ser Glu Pro Leu Ile Gly Arg Lys Lys Thr
          85
<210> 8
<211> 25
<212> PRT
<213> Artificial Sequence
<220>
<223> Chemically synthesized partial region of fibronectin named CS-1
```

<400> 8

Asp Glu Leu Pro Gln Leu Val Thr Leu Pro His Pro Asn Leu His Gly 10 15 Pro Glu Ile Leu Asp Val Pro Ser Thr 20 25 <210> 9 <211> 274 <212> PRT <213> Human <220> <221> misc <222> (1)..(274) <223> Fibronectin fragment named C-274 <400> 9 Pro Thr Asp Leu Arg Phe Thr Asn Ile Gly Pro Asp Thr Met Arg Val 1 5 10 15 Thr Trp Ala Pro Pro Pro Ser Ile Asp Leu Thr Asn Phe Leu Val Arg 20 25 30 Tyr Ser Pro Val Lys Asn Glu Glu Asp Val Ala Glu Leu Ser Ile Ser 35 40 45 Pro Ser Asp Asn Ala Val Val Leu Thr Asn Leu Leu Pro Gly Thr Glu 55 60 Tyr Val Val Ser Val Ser Ser Val Tyr Glu Gln His Glu Ser Thr Pro 65 70 75 80 Leu Arg Gly Arg Gln Lys Thr Gly Leu Asp Ser Pro Thr Gly Ile Asp Phe Ser Asp Ile Thr Ala Asn Ser Phe Thr Val His Trp Ile Ala Pro 105 100 110

Arg Ala Thr Ile Thr Gly Tyr Arg Ile Arg His His Pro Glu His Phe 115 120 125

Ser Gly Arg Pro Arg Glu Asp Arg Val Pro His Ser Arg Asn Ser Ile

140

130 135

Thr Leu Thr Asn Leu Thr Pro Gly Thr Glu Tyr Val Val Ser Ile Val 145 150 155 160 Ala Leu Asn Gly Arg Glu Glu Ser Pro Leu Leu Ile Gly Gln Gln Ser 165 170 175 Thr Val Ser Asp Val Pro Arg Asp Leu Glu Val Val Ala Ala Thr Pro 180 185 Thr Ser Leu Leu Ile Ser Trp Asp Ala Pro Ala Val Thr Val Arg Tyr 200 205 Tyr Arg Ile Thr Tyr Gly Glu Thr Gly Gly Asn Ser Pro Val Gln Glu 210 215 220 Phe Thr Val Pro Gly Ser Lys Ser Thr Ala Thr Ile Ser Gly Leu Lys 235 225 230 Pro Gly Val Asp Tyr Thr Ile Thr Val Tyr Ala Val Thr Gly Arg Gly 245 250 255 Asp Ser Pro Ala Ser Ser Lys Pro Ile Ser Ile Asn Tyr Arg Thr Glu 260 265 Ile Asp <210> 10 <211> 271 <212> PRT <213> Human <220> <221> misc <222> (1)..(271) <223> Fibronectin fragment named H-271 <400> 10 Ala Ile Pro Ala Pro Thr Asp Leu Lys Phe Thr Gln Val Thr Pro Thr 1 5 10 15

Ser Leu Ser Ala Gln Trp Thr Pro Pro Asn Val Gln Leu Thr Gly Tyr 25

20

Arg	Val	Arg 35	Val	Thr	Pro	Lys	Glu 40	Lys	Thr	Gly	Pro	Met 45	Lys	Glu	Ile
Asn	Leu 50	Ala	Pro	Asp	Ser	Ser 55	Ser	Val	Val	Val	Ser 60	Gly	Leu	Met	Val
Ala 65	Thr	Lys	Tyr	Glu	Val 70	Ser	Val	Tyr	Ala	Leu 75	Lys	Asp	Thr	Leu	Thr 80
Ser	Arg	Pro	Ala	Gln 85	Gly	Val	Val	Thr	Thr 90	Leu	Glu	Asn	Val	Ser 95	Pro
Pro	Arg	Arg	Ala 100	Arg	Val	Thr	Asp	Ala 105	Thr	Glu	Thr	Thr	Ile 110	Thr	Ile
Ser	Trp	Arg 115	Thr	Lys	Thr	Glu	Thr 120	Ile	Thr	Gly	Phe	Gln 125	Val	Asp	Ala
Val	Pro 130	Ala	Asn	Gly	Gln	Thr 135	Pro	Ile	Gln	Arg	Thr 140	Ile	Lys	Pro	Asp
Val 145	Arg	Ser	Tyr	Thr	Ile 150	Thr	Gly	Leu	Gln	Pro 155	Gly	Thr	Asp	Tyr	Lys 160
Ile	Tyr	Leu	Tyr	Thr 165	Leu	Asn	Asp	Asn	Ala 170	Arg	Ser	Ser	Pro	Val 175	Val
Ile	Asp	Ala	Ser 180	Thr	Ala	Ile	Asp	Ala 185	Pro	Ser	Asn	Leu	Arg 190	Phe	Leu
Ala	Thr	Thr 195	Pro	Asn	Ser	Leu	Leu 200	Val	Ser	Trp	Gln	Pro 205	Pro	Arg	Ala
Arg	Ile 210	Thr	Gly	Tyr	Ile	Ile 215	Lys	Tyr	Glu	Lys	Pro 220	Gly	Ser	Pro	Pro
Arg 225	Glu	Val	Val	Pro	Arg 230	Pro	Arg	Pro	Gly	Val 235	Thr	Glu	Ala	Thr	Ile 240
Thr	Gly	Leu	Glu	Pro 245	Gly	Thr	Glu	Tyr	Thr 250	Ile	Tyr	Val	Ile	Ala 255	Leu

260 265 270

<210> 11 <211> 296

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic fibronectin fragment named H-296

<400> 11

Ala Ile Pro Ala Pro Thr Asp Leu Lys Phe Thr Gln Val Thr Pro Thr 1 5 10 15

Ser Leu Ser Ala Gln Trp Thr Pro Pro Asn Val Gln Leu Thr Gly Tyr
20 25 30

Arg Val Arg Val Thr Pro Lys Glu Lys Thr Gly Pro Met Lys Glu Ile 35 40 45

Asn Leu Ala Pro Asp Ser Ser Ser Val Val Val Ser Gly Leu Met Val 50 55 60

Ala Thr Lys Tyr Glu Val Ser Val Tyr Ala Leu Lys Asp Thr Leu Thr 65 70 75 80

Ser Arg Pro Ala Gln Gly Val Val Thr Thr Leu Glu Asn Val Ser Pro 85 90 95

Pro Arg Arg Ala Arg Val Thr Asp Ala Thr Glu Thr Thr Ile Thr Ile
100 105 110

Ser Trp Arg Thr Lys Thr Glu Thr Ile Thr Gly Phe Gln Val Asp Ala 115 120 125

Val Pro Ala Asn Gly Gln Thr Pro Ile Gln Arg Thr Ile Lys Pro Asp 130 135 140

Ile Tyr Leu Tyr Thr Leu Asn Asp Asn Ala Arg Ser Ser Pro Val Val
165 170 175

Ile Asp Ala Ser Thr Ala Ile Asp Ala Pro Ser Asn Leu Arg Phe Leu 180 185 190 Ala Thr Thr Pro Asn Ser Leu Leu Val Ser Trp Gln Pro Pro Arg Ala 195 200 Arg Ile Thr Gly Tyr Ile Ile Lys Tyr Glu Lys Pro Gly Ser Pro Pro 210 215 220 Arg Glu Val Val Pro Arg Pro Arg Pro Gly Val Thr Glu Ala Thr Ile 230 235 Thr Gly Leu Glu Pro Gly Thr Glu Tyr Thr Ile Tyr Val Ile Ala Leu 245 250 255 Lys Asn Asn Gln Lys Ser Glu Pro Leu Ile Gly Arg Lys Lys Thr Asp 265 260 Glu Leu Pro Gln Leu Val Thr Leu Pro His Pro Asn Leu His Gly Pro 275 280 285 Glu Ile Leu Asp Val Pro Ser Thr 290 295 <210> 12 <211> 549 <212> PRT <213> Artificial Sequence <220> <223> Synthetic fibronectin fragment named CH-271 <400> 12 Pro Thr Asp Leu Arg Phe Thr Asn Ile Gly Pro Asp Thr Met Arg Val 1 5 10 15 Thr Trp Ala Pro Pro Pro Ser Ile Asp Leu Thr Asn Phe Leu Val Arg 25 20 Tyr Ser Pro Val Lys Asn Glu Glu Asp Val Ala Glu Leu Ser Ile Ser 35 40 45

Pro Ser Asp Asn Ala Val Val Leu Thr Asn Leu Pro Gly Thr Glu

50 55 60

Tyr Val Val	Ser Val	Ser Ser 70	Val Tyr	r Glu Gl 75		Glu Ser	Thr	Pro 80
Leu Arg Gly	Arg Gln 85	Lys Thr	Gly Let	ı Asp Se	er Pro	Thr Gly	Ile 95	Asp
Phe Ser Asp	Ile Thr	Ala Asn	Ser Phe		al His	Trp Ile	Ala	Pro
Arg Ala Thr		Gly Tyr	Arg Ile	e Arg Hi	s His	Pro Glu 125	His	Phe
Ser Gly Arg	Pro Arg	Glu Asp	-	l Pro Hi	s Ser 140	Arg Asn	Ser	Ile
Thr Leu Thr	Asn Leu	Thr Pro	Gly Thi	r Glu Ty 15		Val Ser	Ile	Val 160
Ala Leu Asn	Gly Arg 165	Glu Glu	Ser Pro	Leu Le	eu Ile	Gly Gln	Gln 175	Ser
Thr Val Ser	Asp Val	Pro Arg	Asp Let		al Val	Ala Ala 190	Thr	Pro
Thr Ser Leu 195		Ser Trp	Asp Ala	a Pro Al	a Val	Thr Val	Arg	Tyr
Tyr Arg Ile	Thr Tyr	Gly Glu 215	_	y Gly As	sn Ser 220	Pro Val	Gln	Glu
Phe Thr Val	Pro Gly	Ser Lys 230	Ser Thi	r Ala Th 23		Ser Gly	Leu	Lys 240
Pro Gly Val	Asp Tyr 245	Thr Ile	Thr Val	l Tyr Al 250	a Val	Thr Gly	Arg 255	Gly
Asp Ser Pro	Ala Ser 260	Ser Lys	Pro Ile		e Asn	Tyr Arg 270	Thr	Glu
Ile Asp Lys		Met Ala	Ile Pro	o Ala Pr	o Thr	Asp Leu 285	Lys	Phe

Thr Gln Val Thr Pro Thr Ser Leu Ser Ala Gln Trp Thr Pro Pro Asn 290 295 300

Val Gln Leu Thr Gly Tyr Arg Val Arg Val Thr Pro Lys Glu Lys Thr 305 310 315 320

Gly Pro Met Lys Glu Ile Asn Leu Ala Pro Asp Ser Ser Ser Val Val 325 330 335

V