Monte Carlo Probability Boosting

Min-Cut

Outline

- Monte-Carlo Algorithms
 - Probability Amplification/Boosting
- Min-Cut
 - Edge contraction
 - Contraction algorithm
 - Amplification

Outline

- Monte-Carlo Algorithms
 - Probability Amplification/Boosting
- Min-Cut
 - Edge contraction
 - Contraction algorithm
 - Amplification

Learning objectives:

You are able to

- apply probability amplification to Monte Carlo algorithms with one-sided error
- state the definition of a minimum-cut
- state the definition of edge-contraction
- analyze the error probability of the contraction algorithm

Recap – Monte Carlo Algorithms

Monte-Carlo:

The algorithm gives a correct output with probability p, for some 0 .

Amplification

Monte-Carlo:

The algorithm gives a correct output with probability p, for some 0 .

The output is sometimes correct!

Amplification

Monte-Carlo:

The algorithm gives a correct output with probability p, for some 0 .

The output is sometimes correct!

One-sided error:

Consider a decision problem. If the algorithm say "no", it is allowed to be wrong (w.p. 1-p). If it says "yes", then the answer must be correct.

Amplification

Monte-Carlo:

The algorithm gives a correct output with probability p, for some 0 .

The output is sometimes correct!

One-sided error:

Consider a decision problem. If the algorithm say "no", it is allowed to be wrong (w.p. 1-p). If it says "yes", then the answer must be correct.

Run the algorithm x times, output "yes" if any run results in a "yes" answer.

Output is correct w.p. $(1-p)^x$

Outline

- Monte-Carlo Algorithms
 - Probability Amplification/Boosting
- Min-Cut
 - Edge contraction
 - Contraction algorithm
 - Amplification

Cut $C \subseteq E$ of graph G = (V, E): Divides the graph into two parts S and $V \setminus S$, s.t., if for $\{u, v\} \in E$ $u \in S$ and $v \in V \setminus S$ then $e \in C$.

The set *C* is called a *cut-set*.

Cut $C \subseteq E$ of graph G = (V, E): Divides the graph into two parts S and $V \setminus S$, s.t., if for $\{u, v\} \in E$ $u \in S$ and $v \in V \setminus S$ then $e \in C$.

The set C is called a cut-set.

Few edges across the well-connected components.

Few edges across the well-connected components.

Community Detection:

Clusters with few edges between then are dissimilar.

A Simple Graph:

At most one edge between a pair of nodes.

A Multi-Graph:

Many edges between pairs of nodes

Edge contraction of $e = \{u, v\}$:

Consider graph G = (V, E).

$$G/e = (V', E')$$
 such that

- 1. nodes u and v are merged into a new node w
- 2. if $\{u', u\} \in E$, then we add $\{u', w\}$ to E'
- 3. if $\{v', v\} \in E$, then we add $\{v', w\}$ to E'
- 4. all edges not involving u or v are added to E'

Edge contraction of $e = \{u, v\}$:

Consider graph G = (V, E).

We obtain a new graph

$$G/e = (V', E')$$
 such that

- 1. nodes u and v are merged into a new node w
- 2. if $\{u', u\} \in E$, then we add $\{u', w\}$ to E'
- 3. if $\{v', v\} \in E$, then we add $\{v', w\}$ to E'
- 4. all edges not involving u or v are added to E'

Standard notation

Edge contraction of $e = \{u, v\}$:

Consider graph G = (V, E).

We obtain a new graph C/c = (V', F') such the

$$G/e = (V', E')$$
 such that

- 1. nodes u and v are merged into a new node w
- 2. if $\{u', u\} \in E$, then we add $\{u', w\}$ to E'
- 3. if $\{v', v\} \in E$, then we add $\{v', w\}$ to E'
- 4. all edges not involving u or v are added to E'

Edge contraction of $e = \{u, v\}$:

Consider graph G = (V, E).

$$G/e = (V', E')$$
 such that

- 1. nodes u and v are merged into a new node w
- 2. if $\{u', u\} \in E$, then we add $\{u', w\}$ to E'
- 3. if $\{v', v\} \in E$, then we add $\{v', w\}$ to E'
- 4. all edges not involving u or v are added to E'

Edge contraction of $e = \{u, v\}$:

Consider graph G = (V, E).

$$G/e = (V', E')$$
 such that

- 1. nodes u and v are merged into a new node w
- 2. if $\{u', u\} \in E$, then we add $\{u', w\}$ to E'
- 3. if $\{v', v\} \in E$, then we add $\{v', w\}$ to E'
- 4. all edges not involving u or v are added to E'

Edge contraction of $e = \{u, v\}$:

Consider graph G = (V, E).

$$G/e = (V', E')$$
 such that

- 1. nodes u and v are merged into a new node w
- 2. if $\{u', u\} \in E$, then we add $\{u', w\}$ to E'
- 3. if $\{v', v\} \in E$, then we add $\{v', w\}$ to E'
- 4. all edges not involving u or v are added to E'

Outline

- Monte-Carlo Algorithms
 - Probability Amplification/Boosting
- Min-Cut
 - Edge contraction
 - Contraction algorithm
 - Amplification

Theorem:

There is a polynomial time Monte Carlo algorithm to find a Minimum Cut.

Corollary:

There is a polynomial time algorithm to find a Minimum Cut with high probability.

The Algorithm (Karger'93):

Let G = (V, E) be a connected graph

While |V| > 2:

Pick an edge *e* uniformly at random.

$$G \coloneqq G/e$$

Return the unique cut of contracted graph G

The Algorithm (Karger'93):

Let G = (V, E) be a connected graph

While |V| > 2:

Pick an edge *e* uniformly at random.

$$G \coloneqq G/e$$

Return the unique cut of contracted graph G

Outline

- Monte-Carlo Algorithms
 - Probability Amplification/Boosting
- Min-Cut
 - Edge contraction
 - Contraction algorithm
 - Amplification

Theorem:

There is a polynomial time Monte Carlo algorithm to find a Minimum Cut.

Corollary:

There is a polynomial time algorithm to find a Minimum Cut with high probability.

The Contraction Algorithm - Runtime

While |V| > 2:
Pick an edge euniformly at random. G := G/e

Sloppy Analysis:

The algorithm runs in polynomial time.

Outline

- Monte-Carlo Algorithms
 - Probability Amplification/Boosting
- Min-Cut
 - Edge contraction
 - Contraction algorithm
 - Amplification

Theorem:

There is a polynomial time Monte Carlo algorithm to find a Minimum Cut.

Corollary:

There is a polynomial time algorithm to find a Minimum Cut with high probability.

The Contraction Algorithm - Correctness

Observation:

A cut in G/e is also a cut in G.

Proof:

Let C be the set of edges that define a cut $(S, V \setminus S)$ in G/e and let $e = \{u, v\}$ (in G).

Suppose that there is an edge e' between S and $V \setminus S$ in G.

The Contraction Algorithm - Correctness

Observation:

A cut in G/e is also a cut in G.

Proof:

Let C be the set of edges that define a cut $(S, V \setminus S)$ in G/e and let $e = \{u, v\}$ (in G).

Suppose that there is an edge e' between S and $V \setminus S$ in G. If $e' \cap e = \emptyset$, then e' also crosses $(S, V \setminus S)$ in G/e and hence, must be in C.

The Contraction Algorithm - Correctness

Observation:

A cut in G/e is also a cut in G.

Proof:

Let C be the set of edges that define a cut $(S, V \setminus S)$ in G/e and let $e = \{u, v\}$ (in G).

Suppose that there is an edge e' between S and $V \setminus S$ in G and that $u \in e'$. Since both endpoints of e are in S and $e' \neq e, e'$ must still cross the cut in G/e. Therefore, $e' \in C$.

Theorem:

The contraction algorithm outputs a minimum cut with probability at least 2/n(n-1).

Consider some minimum cut of size k

We obtain this cut if we always contract in S or in $V \setminus S$.

Consider some minimum cut of size k

We obtain this cut if we always contract in S or in $V \setminus S$.

Consider some minimum cut of size k

We obtain this cut if we always contract in S or in $V \setminus S$.

Observation:

The algorithm runs for n-2 iterations.

Let F_i be the event that no edges of the minimum cut C was contracted in the first i iterations.

Task:

Bound $P(F_{n-2})$.

Let F_i be the event that no edges of the minimum cut C was contracted in the first i iterations.

Tutorial Session:

$$P(F_{n-2}) \ge \frac{2}{n(n-1)}$$

We obtain a cut $C = (S, V \setminus S)$ if we always contract in S or in $V \setminus S$.

The probability that we never contract *C* is

$$P(F_{n-2}) \ge \frac{2}{n(n-1)}$$

Theorem:

The contraction algorithm outputs a minimum cut with probability at least 2/n(n-1).

Outline

- Monte-Carlo Algorithms
 - Probability Amplification/Boosting
- Min-Cut
 - Edge contraction
 - Contraction algorithm
 - Amplification

Theorem:

There is a polynomial time Monte Carlo algorithm to find a Minimum Cut.

Corollary:

There is a polynomial time algorithm to find a Minimum Cut with high probability.

Probability boosting:

The algorithm outputs a minimum cut with high probability.

Theorem:

The contraction algorithm outputs a minimum cut with probability $\frac{2}{n(n-1)} = x$.

 $P(C_1 \text{ and } C_2 \text{ not optimum}) \le (1-x)^2$

Theorem:

The contraction algorithm outputs a minimum cut with probability $\frac{2}{n(n-1)} = x$.

Run contraction algorithm $O((1/x) \log n)$ times.

Probability that the output is not optimum is at most

$$(1-x)^{\left(\frac{c \log n}{x}\right)}$$

Theorem:

The contraction algorithm outputs a minimum cut with probability $\frac{2}{n(n-1)} = x$.

A well-known estimate:

$$1-x \le e^{-x} < 2^{-x}$$

Run contraction algorithm $O((1/x) \log n)$ times.

Probability that the output is not optimum is at most

$$(1-x)^{\left(\frac{c\log n}{x}\right)} \le (2^{-x})^{\left(\frac{c\log n}{x}\right)}$$

Theorem:

The contraction algorithm outputs a minimum cut with probability $\frac{2}{n(n-1)} = x$.

A well-known estimate:

$$1 - x \le e^{-x} < 2^{-x}$$

Run contraction algorithm $O((1/x) \log n)$ times.

Probability that the output is not optimum is at most

$$(1-x)^{\left(\frac{c \log n}{x}\right)} \le (2^{-x})^{\left(\frac{c \log n}{x}\right)}$$

$$= 2^{-c \log n} = n^{-c}$$

Theorem:

The contraction algorithm outputs a minimum cut with probability $\frac{2}{n(n-1)} = x$.

Theorem:

The contraction algorithm outputs a minimum cut with probability $\frac{2}{n(n-1)} = x$.

Run contraction algorithm $O((1/x) \log n)$ times to obtain w.h.p.

Theorem:

The contraction algorithm outputs a minimum cut with probability $\frac{2}{n(n-1)} = x$.

Run contraction algorithm $O((1/x) \log n)$ times to obtain w.h.p.

Observation:

The contraction algorithm runs in polynomial time.

Theorem:

The contraction algorithm outputs a minimum cut with probability $\frac{2}{n(n-1)} = x$.

Run contraction algorithm $O((1/x) \log n)$ times to obtain w.h.p.

Observation:

The contraction algorithm runs in polynomial time.

Corollary:

There is an algorithm to find a minimum cut in polynomial time w.h.p.

Wrap-Up

Edge contraction

Karger's Algorithm
+
Probability Boosting

