Image compression problem: use one of the grayscale images provided to construct several compressed versions of the image (k=5, 25, 50).

- > restart; with(LinearAlgebra) : with(ImageTools) :
- $\gt cat1 := Read("cat.jpg") :$
- > Preview(cat1); matrixcat := convert(cat1, Matrix);

$$matrixcat := \begin{bmatrix} 253 \times 320 \text{ Matrix} \\ Data \text{ Type: float}_8 \\ Storage: rectangular \\ Order: C_order \end{bmatrix}$$
 (1)

 \rightarrow cat 5 := Read("cat 5.jpg") : Preview(cat 5); matrixcat := convert(cat 5, Matrix);

$$matrixcat := \begin{bmatrix} 253 \times 320 \, Matrix \\ Data \, Type: \, float_8 \\ Storage: \, rectangular \\ Order: \, C_order \end{bmatrix}$$
 (2)

svdimage with k=1..5 used to create cat_5.jpg size 8 KB cat_25.jpg=12 KB cat_50=13 KB original image cat.jpg size 61 KB

> original_size := 61;
$$cat_5_size := 8$$
; $compression_factor_cat_5 := evalf\left(\frac{original_size}{cat_5_size}\right)$

$$cat_5_size := 8$$

$$compression_factor_cat_5 := 7.625000000$$
(3)

 $\rightarrow cat_25 := Read("cat_25.jpg") : Preview(cat_25); matrixcat := convert(cat_25, Matrix);$

$$matrixcat := \begin{bmatrix} 253 \times 320 \, Matrix \\ Data \, Type: \, float_8 \\ Storage: \, rectangular \\ Order: \, C_order \end{bmatrix} \tag{4}$$

> original_size := 61 ;
$$cat_25$$
_size := 12; $compression_factor_cat_25 := evalf\left(\frac{original_size}{cat_25_size}\right)$
original_size := 61
 cat_25 _size := 12
 $compression_factor_cat_25 := 5.083333333$ (5)

 \rightarrow cat_50 := Read("cat_50.jpg"); Preview(cat_50); matrixcat := convert(cat_50, Matrix)

$$cat_50 := \begin{bmatrix} 1..253 \times 1..320 \text{ Array} \\ Data \text{ Type: float}_8 \\ Storage: rectangular} \\ Order: C_order \end{bmatrix}$$

$$matrixcat := \begin{bmatrix} 253 \times 320 \text{ Matrix} \\ Data \text{ Type: float}_8 \\ Storage: rectangular} \\ Order: C_order \end{bmatrix}$$
(6)

> original_size := 61;
$$cat_50_size$$
 := 13; $compression_factor_cat_50$:= $evalf\left(\frac{original_size}{cat_50_size}\right)$
 $original_size$:= 61
 cat_50_size := 13
 $compression_factor_cat_50$:= 4.692307692 (7)