3D Point Cloud Network Configurations

This document provides detailed network architectures and configurations for 5 state-of-the-art 3D sparse convolution networks used in LiDAR point cloud processing.

Overview

All networks are designed for semantic segmentation of 3D point clouds with the following standard configuration: - **Input**: 100,000 points with 4 channels (x, y, z, intensity) - **Output**: 20 semantic classes - **Voxel size**: 0.05m resolution - **Sparsity modeling**: Advanced spatial, feature, weight, and channel sparsity

Sparsity Configuration

Default Sparsity Parameters

@dataclass

```
class SparsityConfig:
    spatial_sparsity: float = 0.05  # 5% spatial occupancy (LiDAR typical)
    feature_sparsity: float = 0.5  # 50% feature sparsity (ReLU zeros)
    weight_sparsity: float = 0.3  # 30% weight sparsity (conservative pruning)
    channel_sparsity: float = 0.0  # No channel pruning
```

Dataset-Specific Spatial Sparsity

• SemanticKITTI: 3-5% voxel occupancy

• nuScenes: 8-12% voxel occupancy

ScanNet (indoor): 15-25% voxel occupancy
S3DIS (indoor): 20-30% voxel occupancy

Weight Sparsity Potential

Conserva Network acc loss)	tive ($<1\%$ Moderate loss)	$(<3\% \text{ acc} \text{Aggressive } (<5\% \text{ acc} \\ \text{loss})$
Minkowsk B0 %	50%	70%
SPVNAS 25%	45%	65%
LargeKern2031D	40%	60%
VoxelNeX 25%	45%	65%
RSN 30%	50%	70%

1. MinkowskiNet

Paper: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Net-

works

Repository: https://github.com/NVIDIA/MinkowskiEngine

Architecture Overview

MinkowskiNet follows a U-Net style encoder-decoder architecture with sparse convolutions.

Network Configuration

Initial Convolution

• Input: 4 channels \rightarrow 32 channels

• Kernel size: $3 \times 3 \times 3$

• Operation: Sparse 3D convolution

Encoder (Downsampling Path)

Stage	Input Channels	Output Channels	Stride	Kernel Size	Operation
1	32	64	2	3×3×3	Sparse conv + downsam- ple
2	64	128	2	$3\times3\times3$	Sparse conv + downsam- ple
3	128	256	2	$3\times3\times3$	Sparse conv + downsam- ple
4	256	512	2	$3\times3\times3$	Sparse conv + downsam- ple

Decoder (Upsampling Path)

Stage	Input Channels	Output Channels	Stride	Kernel Size	Operation
1	512	256	2	$3\times3\times3$	Transposed conv + upsample
2	256	128	2	$3\times3\times3$	Transposed conv + upsample
3	128	64	2	$3\times3\times3$	Transposed conv + upsample
4	64	32	2	$3\times3\times3$	Transposed conv + upsample

Classification Head

• Input: 32 channels \rightarrow 20 classes

• Kernel size: $1 \times 1 \times 1$

• Operation: Point-wise classification

Key Features

• Symmetric encoder-decoder design

• Consistent $3 \times 3 \times 3$ kernel size throughout

• $8 \times$ downsampling in encoder (2³ at each stage)

• Skip connections between encoder and decoder stages

2. SPVNAS (Sparse Point-Voxel NAS)

Paper: Searching Efficient 3D Architectures with Sparse Point-Voxel Convolu-

tion

 ${\bf Repository:\ https://github.com/mit-han-lab/spvnas}$

Architecture Overview

SPVNAS uses Neural Architecture Search (NAS) to find efficient sparse convolution architectures with optimized channel configurations.

Network Configuration

Stem Convolutions

Layer	Input Channels	Output Channels	Kernel Size	Operation
Stem 1	4	32	$3\times3\times3$	Sparse 3D conv
Stem 2	32	32	$3 \times 3 \times 3$	Sparse 3D conv

SPVNAS Blocks (NAS-Optimized)

Block	Input Channels	Output Channels	Kernel Size	Stride	Description
1	32	48	$3\times3\times3$	1	Efficient expansion
2	48	64	$3\times3\times3$	2	Moderate growth + downsam- ple
3	64	128	$3 \times 3 \times 3$	1	Standard growth
4	128	256	$3\times3\times3$	2	Final expansion + downsam- ple

Decoder with Skip Connections

Stage	Input Channels	Output Channels	Kernel Size	Operation
1	256	128	$3\times3\times3$	Upsample $(4\times)$
2	128	64	$3 \times 3 \times 3$	Upsample $(4\times)$
3	64	32	$3 \times 3 \times 3$	Upsample $(4\times)$

Point-wise Classification

• Input: 32 channels \rightarrow 20 classes

• Kernel size: $1 \times 1 \times 1$

• Operation: Point-wise sparse convolution

Key Features

• NAS-optimized channel progression: $32 \rightarrow 48 \rightarrow 64 \rightarrow 128 \rightarrow 256$

 $\bullet\,$ Strategic downsampling at blocks 2 and 4

• Efficient $4 \times$ upsampling in decoder

• Skip connections for feature fusion

3. LargeKernel3D

Paper: Large Kernel Convolutions for 3D Processing

Repository: https://github.com/dvlab-research/LargeKernel3D

Architecture Overview

LargeKernel3D explores the use of large kernel convolutions $(5 \times 5 \times 5, 7 \times 7 \times 7, 9 \times 9 \times 9)$ to capture extended spatial context in 3D scenes.

Network Configuration

Stem Layer

• Input: 4 channels \rightarrow 64 channels

• Kernel size: $3 \times 3 \times 3$

• Operation: Standard sparse convolution

Large Kernel Stages

Stage	Input Channels	Output Channels	Kernel Size	Stride	Description
1	64	96	$5 \times 5 \times 5$	1	Medium kernel
2	96	128	7×7×7	2	Large kernel + downsam- ple
3	128	192	$9 \times 9 \times 9$	1	Very large kernel
4	192	256	7×7×7	2	Large kernel + downsam- ple

Decoder with Progressive Kernel Reduction

Stage	Input Channels	Output Channels	Kernel Size	Operation
1	256	192	$5 \times 5 \times 5$	Upsample $(4\times)$
2	192	128	$3\times3\times3$	Upsample $(4\times)$
3	128	64	$3\times3\times3$	Upsample $(4\times)$

Classification Head

• Input: 64 channels \rightarrow 20 classes

• Kernel size: $1 \times 1 \times 1$

• Operation: Point-wise classification

Key Features

• Progressive kernel size increase: $3 \rightarrow 5 \rightarrow 7 \rightarrow 9 \rightarrow 7$

• Largest kernel $(9 \times 9 \times 9)$ for maximum receptive field

• Progressive kernel size reduction in decoder

• Balanced channel growth: $64 \rightarrow 96 \rightarrow 128 \rightarrow 192 \rightarrow 256$

4. VoxelNeXt

Paper: VoxelNeXt: Fully Sparse VoxelNet for 3D Object Detection and Tracking **Repository**: https://github.com/dvlab-research/VoxelNeXt

Architecture Overview

VoxelNeXt adapts ConvNeXt design principles to 3D voxel processing with depthwise convolutions and MLP blocks.

Network Configuration

Patchify Operation

• Input: 4 channels \rightarrow 48 channels

• Kernel size: $4 \times 4 \times 4$

• Operation: ConvNeXt-style patchify

ConvNeXt-Style Stages

Stage	Input Channels	Output Channels	Blocks	Kernel Size	Downsampling
1	48	96	2	$3\times3\times3$	8× (aggressive)
2	96	192	2	$3\times3\times3$	8× (aggressive)
3	192	384	6	$3\times3\times3$	8× (main stage)
4	384	768	2	$3\times3\times3$	8× (aggressive)

ConvNeXt Block Structure Each block contains: 1. Depthwise Convolution: Channel-wise $3\times3\times3$ convolution 2. MLP Expansion: $1\times1\times1$ conv with $4\times$ channel expansion 3. MLP Contraction: $1\times1\times1$ conv back to original

channels

Block: DW Conv $(3\times3\times3) \rightarrow MLP$ $(4\times expansion) \rightarrow MLP$ (contraction)

Classification Head

• Input: 768 channels \rightarrow 20 classes

• Kernel size: $1 \times 1 \times 1$

• **Operation**: Global average pooling + classification

Key Features

• ConvNeXt-inspired design for 3D processing

• Aggressive 8× downsampling per stage

• Depthwise separable convolutions for efficiency

• 4× MLP expansion ratio (similar to ConvNeXt)

• Largest channel dimension: 768

5. RSN (Range Sparse Net)

Paper: Range Sparse Net for LiDAR 3D Object Detection Repository: https://github.com/caiyuanhao1998/RSN

Architecture Overview

RSN is specifically designed for LiDAR processing with range-aware features and efficient skip connections.

Network Configuration

Initial Feature Extraction

• Input: 4 channels \rightarrow 32 channels

• Kernel size: $3 \times 3 \times 3$

• Operation: LiDAR-optimized sparse convolution

Range-Aware Encoder

Stage	Input Channels	Output Channels	Kernel Size	Stride	Features
1	32	64	$3\times3\times3$	2	Main + residual paths
2	64	128	$3\times3\times3$	2	Main + residual paths

Stage	Input Channels	Output Channels	Kernel Size	Stride	Features
3	128	256	$3\times3\times3$	2	Main + residual paths
4	256	512	$3\times3\times3$	2	Main + residual paths

Range-Aware Decoder with Skip Connections

Stage	Input Channels	Output Channels	Kernel Size	Stride	Skip Connection
1	512	256	$3\times3\times3$	2	From encoder stage 4
2	256	128	$3\times3\times3$	2	From encoder stage 3
3	128	64	$3\times3\times3$	2	From encoder stage 2
4	64	32	$3\times3\times3$	2	From encoder stage 1

Range-Aware Feature Fusion

• Input: 32 channels \rightarrow 64 channels

• Kernel size: $1 \times 1 \times 1$

• Operation: Multi-scale feature fusion

Final Classification

• Input: 64 channels \rightarrow 20 classes

• Kernel size: $1 \times 1 \times 1$

• Operation: Point-wise classification

Key Features

• Range-aware processing for LiDAR data

• Dual-path architecture (main + residual)

• Symmetric encoder-decoder with skip connections

• Multi-scale feature fusion

• LiDAR-specific optimizations

Performance Characteristics

MAC Operations Comparison

The networks show different computational profiles:

- 1. Most Efficient: SPVNAS (NAS-optimized channels)
- 2. Balanced: MinkowskiNet (symmetric design)
- 3. Large Receptive Field: LargeKernel3D (large kernels)
- 4. Feature Rich: VoxelNeXt (deep stages)
- 5. Range Optimized: RSN (LiDAR-specific)

Memory vs Compute Bound Analysis

- Early layers: Memory-bound (gather dominates)
- Deep layers: Compute-bound (GEMM dominates)
- Large kernels: Higher compute intensity
- Skip connections: Additional memory traffic

Sparsity Utilization

All networks benefit significantly from: - **Spatial sparsity**: 3-7% occupancy reduces computation by $\sim 20 \times$ - **Feature sparsity**: ReLU zeros provide additional $2 \times$ reduction - **Weight sparsity**: Pruning enables $1.5\text{-}3 \times$ further reduction - **Combined effect**: Up to $100 \times$ total speedup possible

Implementation Notes

Sparse Convolution Types

- 1. Standard Sparse Conv: Allows sparsity pattern changes
- 2. Submanifold Conv: Maintains input sparsity pattern
- 3. Strided Conv: Downsampling with sparsity handling
- 4. Transposed Conv: Upsampling with sparsity restoration

Memory Optimization

- Gather operations: Collect sparse features
- Hash tables: Fast neighbor lookup
- Memory pooling: Efficient allocation
- Gradient checkpointing: Reduced memory during training

Hardware Considerations

- GPU utilization: Irregular memory access patterns
- Memory bandwidth: Gather-scatter operations
- Cache efficiency: Spatial locality in 3D data

• Parallelization: Thread divergence in sparse operations

Model	Stage	$\begin{array}{c} \text{In} \rightarrow \\ \text{Out} \\ \text{Channels} \end{array}$	Kernel Size		sCitation
RSN	Sparse- CNN 1	$\begin{array}{c} 16 \rightarrow \\ 32 \end{array}$	3^{3}	2	Sun et al., "RSN: Range Sparse Net", CVPR 2021 (CVF Open Access)
	Sparse- CNN 2	$32 \rightarrow 64$	3^3	2	,
	Sparse- CNN 3	$\begin{array}{c} 64 \rightarrow \\ 128 \end{array}$	3^{3}	2	
Cylinde		$5 \to 32$	3^3	3	Zhou et al., "Cylinder3D for LiDAR Segmentation", CVPR 2021 (CVF Open Access)
	Downs		3^{3} ,	1	
	1	64	stride=2		
	Block	$64 \rightarrow$	3^3	5	
	2 64 Downsa 64 p le		0.3	1	
	Downs:	а и мир ю 128	3^3 , stride=2	1	
		$128 \rightarrow 128$	3^3	5	
SPVN	_	$4 \rightarrow 32$	3^3	2	Tang et al., "SPVNAS: Searching Efficient 3D Architectures", ECCV 2020 (ecva.net)
	Voxel Conv	$\begin{array}{c} 32 \rightarrow \\ 64 \end{array}$	3^{3}	2	
	Voxel Conv 3	$\begin{array}{c} 64 \rightarrow \\ 96 \end{array}$	3^{3}	3	
	Voxel Conv	$\begin{array}{c} 96 \rightarrow \\ 128 \end{array}$	3^{3}	3	
Focals	_	$64 \rightarrow [64, 128, 256]$	3^3	(3, 5, 5)	Xu et al., "FocalsConv: Bridging Regular & Submanifold Convs", CVPR 2022 (arXiv)

Model	Stage	$\begin{array}{c} \text{In} \rightarrow \\ \text{Out} \\ \text{Channels} \end{array}$	Kernel Size		s:Citation
	Focal	$64 \rightarrow$	learned	1	
	Conv	64 /	"fo-	per	
		$\begin{array}{c} 128 \rightarrow \\ 128 \end{array}$	cal"	block	
FSD	Block	$32 \rightarrow$	3^3	3	Fan et al., "Fully Sparse 3D Object
	1	64			Detection (SST)", NeurIPS 2022 (lue.fan)
	Downs	a 6 m4p le >	3^{3} ,	1	
	1	128	stride=2		
	Block	$128 \rightarrow$	3^3	5	
	2	256			
	Downs	a 215η6l e→	3^{3} ,	1	
	2	512	stride=2		
LargeK	(eBhoels	$D16 \rightarrow$	3^3	2	Xu et al., "LargeKernel3D: Efficient
	1	32			Large Kernels in 3D Conv", CVPR 2023 (CVF Open Access)
	Block	$32 \rightarrow$	3^3	3	
	2	64			
	LargeC	Co614v→	17^{3}	1	
		128	(parti- tioned)		
	Block	$128 \rightarrow$	3^3	2	
	3	128			
VoxelN	eEXIo ck	$32 \rightarrow$	3^3	3	Zhu et al., "VoxelNeXt: Fully
	1	64			Sparse 3D Detection", CVPR 2023 (CVF Open Access)
	Downs		3^{3} ,	1	
	1	128	stride=2		
		$128 \rightarrow$	3^3	5	
-	2	256	0.10		
LinK	Block		21^{3}	3	Qi et al., "LinK: Linear Kernel
	1	64	(lin-		Sparse Conv", CVPR 2023 (CVF
	D 641		ear)	_	Open Access)
	Downs		21^{3}	1	
	1	128	(lin-		
	DI I	100 .	ear)	0	
	Block	$128 \rightarrow$	21^{3}	3	
	2	256	(lin- ear)		

Model	Stage	$\begin{array}{c} \text{In} \rightarrow \\ \text{Out} \\ \text{Chan-} \\ \text{nels} \end{array}$	Kernel Size		sCitation
SAFDN	MeNtlock 1	$\begin{array}{c} 32 \rightarrow \\ 64 \end{array}$	3^3	3	Liu et al., "SAFDNet: Sparse Adaptive Feature Diffusion", CVPR 2024 (CVF Open Access)
	Downsa 1 Block 2	$\begin{array}{c} \textbf{128} \\ 128 \\ 128 \\ 256 \end{array}$	3 ³ , stride=2 3 ³	1 5	· · · · · · · · · · · · · · · · · · ·