Introduction to Machine Learning

Random Forest: Introduction

Learning goals

- Know how random forests are defined by extending the idea of bagging
- Understand that the goal is to decorrelate the trees
- Understand that the out-of-bag error is a way to obtain unbiased estimates of the generalization error during training

RANDOM FORESTS

Modification of bagging for trees proposed by Breiman (2001):

- Tree base learners on bootstrap samples of the data
- Uses decorrelated trees by randomizing splits (see below)
- Tree base learners are usually fully expanded, without aggressive early stopping or pruning, to increase variance of the ensemble

RANDOM FEATURE SAMPLING

- From our analysis of bagging risk we can see that decorrelating trees improves the ensemble
- Simple randomized approach:
 At each node of each tree, randomly draw mtry ≤ p candidate features to consider for splitting. Recommended values:
 - Classification: mtry = $\lfloor \sqrt{p} \rfloor$
 - Regression: $mtry = \lfloor p/3 \rfloor$

EFFECT OF ENSEMBLE SIZE

EFFECT OF ENSEMBLE SIZE

EFFECT OF ENSEMBLE SIZE

OUT-OF-BAG ERROR ESTIMATE

With the RF it is possible to obtain unbiased estimates of the generalization error directly during training, based on the out-of-bag observations for each tree:

OUT-OF-BAG ERROR ESTIMATE

- OOB size: $P(\text{not drawn}) = \left(1 \frac{1}{n}\right)^n \stackrel{n \to \infty}{\longrightarrow} \frac{1}{e} \approx 0.37$
- Predict all observations with trees that didn't use them for training and compute average loss of these predictions
- Similar to 3-CV, can be used for a quick model selection