基本的R-S触发器(锁存器)

与非门构成的基本R-S触发器

Q与Q互补

Q=1, 状态1(存储信息"1")

Q=0, 状态0 (存储信息"0")

工作原理:

$$\overline{R} = 0$$
 $\overline{S} = 1 \rightarrow Q = 0, \overline{Q} = 1$ 置0或复位(Reset)

$$\bar{R} = 1$$
 $\bar{S} = 0 \rightarrow Q = 1, \bar{Q} = 0$ 置1或置位(Set)

$$\bar{R} = 1$$
 $\bar{S} = 1 \rightarrow Q, \bar{Q}$ 保持

$$\overline{R} = 0$$
 $\overline{S} = 0 \rightarrow Q = \overline{Q} = 1$ #

状态真值表

(描述电路在可能的输入组合 下其输出状态端变化情况)

\overline{R}	\overline{S}	Q^{n+1}
. 0	0	(1)禁用
0	1	0 .
1	0	1
1	1	Q^n (保持)

状态图

(形象直观地描述电路的状态转变情况)

次态方程: $Q^{n+1} = \overline{S} + Q^n \overline{R}$

约束方程: R+S=1

基本的R-S触发器功能描 (1)

次

状态表

(电路在相应的现态和当前逻辑 输入组合作用下应到达的状态)

	$\sqrt{R}S$	7				
۱,	$Q^n \setminus$	00	01	10	11	•
	0	×	0	1	0	
	1	×	0	1	1	Q^{n+}
Ñ	'					

$\overline{R}\overline{S}$	00	01	11	10	
0	×	0	0	1	
1	×	0	1	1	Q^{n+1}

基本的R-S触发器功能描 (2)

工作波形

(便于与实验观察的波形相比较)

激励表

(根据状态转换的要求,确定输入端的信号)

Q^n	Q^{n+1}	\overline{R}	\overline{S}
0	0	×	1
0	1	1	0
1	0	0	1
1	. 1	1	×

基本的R-S触发器

或非门构成的基本R-S触发器

状态转换真值表

R	s	Q ⁿ⁺¹	
0	0	Qn	
0	1	1	
1	0	0	
1	1	0 (不允许)	

基本的R-S触发器的应用

消抖动开关

典型集成R-S触发器

型号	特 性	输入	输 出
74279	4R-S, 与非 结构	\overline{R} 、 \overline{S} 低电平有效	Q
CD4043	4R-S,或非结构	R、 S 高电平有效	Q (三态)
CD4044	4R-S, 与非 结构	\overline{R} 、 \overline{S} 低电平有效	Q (三态)

74279逻辑符号

CD403逻辑符号

时钟R-S触发器

工作原理:

当CP=0时,G₃、G4被封锁,输出Q、 Q与RS无关,保持不变

当CP=1时,Qn+1随R、S而变。

状态真值表

R	S	Q^{n+1}
0	0	Q^n (不变)
0	1	1
1	0	0
1	1	1(不允许)

时钟R-S触发器

状态表

时钟RS触发器的状态方程为

$$Q^{n+1} = S + \overline{R}Q^n$$

因时钟RS触发器中R、S不能同时输入1,故有约束方程

$$RS = 0$$

状态图

波形图

时钟R-S触发器的应用

锁存器:具有寄存最新输入数据功能的数字器件。 英文是Latch,其数据的存储是在CP时钟有效作 用时间内(如高电平)进行,即所谓"电平触发"。

数据锁存器

图中S=D, $R=\overline{D}$,将它们代入时钟RS触发器的状态方程得:

$$Q^{n+1} = D$$

当*CP*=1时,输入数码D存人触发器;当*CP*=0时,即使 D发生变化,触发器状态将不会发生变化。

常用的D锁存器

型号	特性	CP 端 数	输出端	
74375	四锁存器	2	$Q \sqrt{Q}$	
74373	八锁存器	1(公用)	Q(三态)	
74100	双四锁存器	2	Q	

D触发器在功能上与D锁存器类似,但一般响应于CP的边沿。

D触发器

信号输人端或称激励端

符号">"表示动态输入,说明该触发器响应加于该输入端

的CP信号的上升沿

7474

D触发器

逻辑符号

状态图

D触发器的内部电路

状态表

D触发器的特征方程为

$$Q^{n+1} = D$$

显然,其逻辑功能与前述的 D锁存器相同,但触发特性不 同。

常用的D触发器

型号	特性	CP	输出端	置1端	置0端
7474	2D,正边沿	独立	$Q \sqrt{Q}$	独立、低电平	独立、低电平
74175	4D,正边沿	公共	$Q \sqrt{Q}$	无	公共、低电平
74273	8D,正边沿	公共	Q	无	公共、低电平
74575	8D,正边沿	公共	Q(三态)	无	公共、低电平
CD4013	2D,正边沿	独立	$Q \sqrt{Q}$	独立、高电平	独立、高电平