

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2007 CIRCUIT THEORY & NETWORKS

SEMESTER - 3

Time: 3 Hours]

[Full Marks: 70

GROUP - A

(Multiple Choice Type Questions)

i	a)	one port network	b)	two port network		
•	c)	four port network	d)	none of these.		
) 4	A capacitor C at time $t = 0 + $ with zero initial change acts as a					
ā	a)	short circuit	b)	open circuit		
•	c) .	current source	d)	voltage source.		
) I	Kirchhoff's law fail in case of					
ε	a) Linear networks					
t	o)	Non-linear networks				
c	:)	Dual networks				
Ċ	i)	Distributed parameter ne	etworks.		•	
1	The voltages v 1 & v 2 in the given circuit are					
а	Ŋ	6v, 4v	b)	4v, 6v		
c	:)	5v each	d)	none of these.		

CS/B.TECH(EIE)/SEM-3/EE(EI)-301(NEW)/07/(06) 5

- xi) What is the phase angle between inductor current & the applied voltage in a parallel RL circuit?
 - a) 0°

b) 45°

c) 90°

- d) 30°.
- xii) Thevenein's equivalent resistance of the given circuit is
 - a) 2Ω

b) 0Ω

c) 1Ω

d) α.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. Determine the value of $I_x \& V_x$.

- 3. a) What is linear time invariant system?
 - b) What is impulse response?
 - c) The response of a system is given by $y(t) = c \times (t) + x^3(t)$. State whether the system is time-invariant as time-variant.
- 4. Determine the Z-parameter of the network shown in the fig. Is it a reciprocal network?

5. In the circuit shown below, a voltage $v(t) = 50 \sin(wt + 30^{\circ})$ is applied. Determine the true power, reactive power & power factor.

6. In the network shown below, find R_L which will dissipate maximum power. Determine also maximum power.

GROUP - C

(Long Answer Type Questions)

Answer any three questions.

 $3 \times 15 = 45$

- 7. a) State & explain superposition theorem.
 - b) Find using superposition theorem, the current through the capacitor having reactions -f5 Ω .

- 8. a) Describe the method of measuring reactive power.
 - b) A three phase delta connected RYB system with effective voltage of 400 V, has a balanced load with impedance $3 + j4\Omega$. Calculate
 - f) phase current
 - ii) line current
 - iii) power in each phase.

C8/B.TECH(E1E)/SEM-3/EE(E1)-301(NEW)/07/(08) 7

c) Determine $V(0^+)$, $i(0^+)$, i(2 ms) for the following circuit:

5 + 5 + 5

- a) Determine for a two-port network the condition of reciprocity & condition of symmetry in terms of h-parameters.
 - b) Draw the voltage phases & current phases of a series R-L circuit. Draw also the impedance triangle.
 - c) Find the ratio of $I_1 & I_2$ for the following circuit :

5 + 5 + 5

10. a) Determine current in 3Ω resistor in the following figure:

- b) Find two elements of a series circuit having current $t = 4.24 \cos (5000 t + 45^{\circ})A$, power 180 w & power factor 0.8 lagging.
- c) An RLC series circuit has $R = 100\Omega$, L = 500 mH & C = 40 μ F. Calculate resonant, lower & upper half power frequency. 8 + 4 + 3

CS/B.TECH(EIE)/SEM-3/EE(EI)-301(NEW)/07/(08)

11. a) For the network shown, determine the node voltages.

- b) Determine the step response of series R-L-C circuit. Draw the wave forms of the response.
- c) Determine Q factor of a series R-L-C circuit.

5 + 7 + 3

END