ST-1 60205

Adity a singh 2x19/EP/005

(a) = = 7 (pvq)

Correct option => (c) continguegy

(Prq) > q. (Tantology) = covert opt > (a) (b)

9-> (prq) (Tantology)

19 "2 is odd and -3 is not negative".

correct option = (d).

[5] if $p \rightarrow q$ in folge, then p = tour, q = false.

i. $\{r(p \land q)\} \rightarrow q \Rightarrow false$.

consert option \Rightarrow (b) False.

(a) "of the Ensurance company pays me,
then the flood destroys my house or the fine
destroys the house.

$$2^{m} - 2^{n} = 56$$
 $2^{n}(2^{m+n} - 1) = 5$
even odd
 (8)
 (7)

$$9x7=56$$
 $9n=8$, $2^{m-n}=7$
 $9n=6$, $n=3$

$$n=3$$
, $m-3=3$
 $m=6$.

1 sare of the MA

- $\partial + x \left(P(x) \wedge Q(x) \right) = \forall x P(x) \wedge \forall x Q(x)$
- (i) fx(P(x)VQ(x) = fxP(x)V fxQ(x)
- \vec{n}) $\exists x (P(x)^{(y)}) (Q(y) \rightarrow P(x,y)).$
- (10) i) concluded that $P(\mathbf{x})$ is true, where \mathbf{x} is a particular member of dominin, given the premier $\forall \mathbf{x} \ P(\mathbf{x})$.
 - (8) \$\frac{1}{2} \psi \text{p(x)} is true, given that premiée P(e) is true for all elements c in that domain.

particular element in the domain of universal quantifier, from Q(a) number also be true.