MPC Compilers

Scott Constable

Overview

- Yao's Garbled Circuit Background (from Peter Snyder's wonderful "Yao's Garbled Circuits: Recent Directions and Implementations")
- 2. FairplayMP
- 3. Wysteria

Secure Function Evaluation

"SFE refers to the problem of how two parties can collaborate to correctly compute the output of a function without either party needing to reveal their inputs to the function, either to each other or to a third party." This definition can be condensed to a computation which satisfies three properties:

- 1. Validity
- 2. Privacy
- 3. Fairness

Adversary Models

- Semi-Honest: A semi-honest adversary is assumed to follow the protocol, but may seek to learn additional information while executing the protocol.
- Malicious: A malicious (untrusted)
 adversary is subject to no constraints, and
 may deviate from the protocol in any way
 that will allow him/her to learn additional
 information.

Garbled Circuits

- Transforms any Turing computable function into a boolean circuit, then masks each wire in the circuit so that the party executing the function cannot see the inputs or outputs of each gate.
- One solution to the SFE problem
- Can be adapted to either the semi-honest model (fast) or the malicious model (slow)

Oblivious Transfer

Protocol 1 Semi-Honest 1-out-of-2 Oblivious Transfer

- 1: P1 has a set of two strings, $S = \{s_0, s_1\}$.
- 2: P2 selects $i \in \{0, 1\}$ corresponding to whether she wishes to learn s_0 or s_1 .
- 3: P2 generates a public / private key pair (k^{pub}, k^{pri}) , along with a second value k^{\perp} that is indistinguishable from a public key, but for which P2 has no corresponding private key to decrypt with.
- 4: P2 then advertises these values as public keys (k_0^{pub}, k_1^{pub}) and sets $k_i^{pub} = k^{pub}$ and $k_{i-1}^{pub} = k^{\perp}$.
- 5: P1 generates $c_0 = E_{k_0^{pub}}(s_0)$ and $c_1 = E_{k_1^{pub}}(s_1)$, and sends c_0 and c_1 to P2.
- 6: P2 computes $s_i = D_{k^{pri}}(c_i)$.

Garbled Circuit Protocol

Protocol 2 Yao's Garbled Circuits Protocol

- 1: P1 generates a boolean circuit representation c_c of f that takes input i_{P1} from P1 and i_{P2} from P2.
- 2: P1 transforms c_c by garbling each gate's computation table, creating garbled circuit c_g .
- 3: P1 sends both c_g and the values for the input wires in c_g corresponding to i_{P1} to P2.
- 4: P2 uses 1-out-of-2 OT to receive from P1 the garbled values for i_{P2} in c_g .
- 5: P2 calculates c_g with the garbled versions of i_{P1} and i_{P2} and outputs the result.

Example 1

w_0	w_1	w_2
0	0	0
0	1	1
1	0	1
1	1	1

w_0	w_1	$ w_2 $	garbled value
k_0^0	k_1^0	$\mid k_2^0 \mid$	$H(k_0^0 k_1^0 g_1) \oplus k_2^0$
k_0^0	k_1^1	$oxedsymbol{k_2^1}$	$H(k_0^0 k_1^1 g_1) \oplus k_2^1$
k_0^1	k_1^0	$\mid k_2^1 \mid$	$H(k_0^1 k_1^0 g_1) \oplus k_2^1$
k_0^1	k_1^1	$oxedsymbol{k_2^1}$	$\mid H(k_0^1 k_1^1 g_1) \oplus k_2^1$

Example 2

w_0	w_1	$ w_2 $
0	0	0
0	1	1
1	0	1
1	1	1

w_0	w_1	$\mid w_2 \mid$	garbled value
k_0^0	$\mid k_1^0 \mid$	$\mid k_2^0 \mid$	$H(k_0^0 k_1^0 g_1)\oplus k_2^0$
k_0^0	k_1^1	$oxedsymbol{k_2^1}$	$\mid H(k_0^0 k_1^1 g_1) \oplus k_2^1$
k_0^1	$\mid k_1^0 \mid$	$oxedsymbol{k_2^1}$	$H(k_0^1 k_1^0 g_1) \oplus k_2^1$
k_0^1	k_1^1	k_2^1	$\mid H(k_0^1 k_1^1 g_1) \oplus k_2^1$

$\overline{w_3}$	w_4	w_5
0	0	0
0	1	0
1	0	0
1	1	1

w_2	w_5	w_6
0	0	0
0	1	1
1	0	1
1	1	0

w_3	w_4	w_5	garbled value
k_3^0	$oxedskip k_4^0$	k_5^0	$H(k_3^0 k_4^0 g_2)\oplus k_5^0$
k_3^0	$oxed{k_4^1}$	k_5^0	$H(k_3^0 k_4^1 g_2) \oplus k_5^0$
k_3^1	k_4^0	k_5^0	$H(k_3^1 k_4^0 g_2) \oplus k_5^0$
k_3^1	$oxed{k_4^1}$	k_5^1	$H(k_3^1 k_4^1 g_2) \oplus k_5^1$

w_2	w_5	w_6	garbled value
k_2^0	k_5^0	k_6^0	$H(k_2^0 k_5^0 g_3) \oplus k_6^0$
k_2^0	k_5^1	k_6^1	$H(k_2^0 k_5^1 g_3)\oplus k_6^1$
k_2^1	k_5^0	k_6^1	$H(k_2^1 k_5^0 g_3) \oplus k_6^1$
k_2^1	k_5^1	k_6^0	$H(k_2^1 k_5^1 g_3)\oplus k_6^0$

Security

- 1. OT Protocol
- 2. Securing Circuit Construction
 - a. ZK Proofs
 - b. Cut-and-Choose
- 3. Fairness
- 4. Corrupt Inputs

FairplayMP

- Assumes a semi-honest adversary model
- Two components:
 - A compiler allows users to describe a SFE using a high-level language, SFDL 2.0
 - Cryptographic engine that executes the BMR protocol
- Constant number of communication rounds
- Allows for more than two parties to participate
- Different parties can see different outputs

```
/**
  Second Price Auction:
  Performs a 2nd price auction between 4
  bidders. Only the winning bidder and the
  seller learn the identity of the winner.
  Everyone knows the 2nd highest price.
**/
program SecondPriceAuction{
  const nBidders = 4;
  type Bid = Int<8>; //enough bits for a bid
  // enough bits to represent a winner.
  type WinningBidder = Int <3>;
  type SellerOutput =
  struct{WinningBidder winner,
         Bid winningPrice };
  //Seller has no input
  type Seller = struct{SellerOutput output};
  type BidderOutput =
  struct{Boolean win, Bid winningPrice};
  type Bidder =
  struct{Bid input, BidderOutput output};
  function void main (Seller seller,
                    Bidder[nBidders] bidder){
    var Bid high;
    var Bid second;
    var WinningBidder winner;
    winner = 0; high = bidder [0]. input;
    second = 0:
    // Making the auction.
    for (i=1 \text{ to nBidders} -1)
      if ( bidder [ i ] . input > high ) {
        winner = i;
        second = high;
        high = bidder[i].input;
      else
        if(bidder[i].input > second)
          second = bidder[i].input;
    // Setting the result.
    seller.output.winner = winner;
    seller.output.winningPrice = second;
    for (i=0 \text{ to nBidders} -1)
      bidder [i].output.win = (winner == i);
      bidder[i].output.winningPrice = second;
```

Steps

- 1. Users express SFE algorithm in SFDL 2.0
- 2. Program compiled into a boolean circuit
- Users write a configuration file describing IP addresses, other settings required for protocol execution
- 4. Program executes the SMPC in two steps:
 - Garbled circuit created from boolean circuit according to BMR protocol
 - b. Garbled circuit evaluated by players who are supposed to receive the respective program outputs

Performance

Performance (Cont.)

Wysteria

Observation: In many SMPC scenarios, some (or most) of the overall computation need not be done in the "secure" mode, i.e. garbled circuits.

Wysteria by Example (1)

```
1 let a =par({Alice})= read() in
2 let b =par({Bob})= read() in
3 let out =sec({Alice,Bob})= a>b in
4 out
```

Wysteria by Example (2)

```
is_richer = λa: W {Alice} nat. λb: W {Bob} nat.
let out =sec({Alice, Bob}) = a[Alice] > b[Bob] in
out

let a =par({Alice}) = read() in
let b =par({Bob}) = read() in
let out = is_richer (wire {Alice} a) (wire {Bob} b) in
out
```

Wysteria by Example (3)

```
is_richer = \lambda v: W {Alice,Bob} nat.
let out =sec({Alice,Bob})= v[Alice] > v[Bob] in out
```

```
is_richer ((wire { Alice } a) ++ (wire {Bob} b))
```

Wysteria by Example (4)

```
richest_of = \lambdams:ps. \lambdav: Wms nat.
        let out =sec(ms)=
           wfold (None, v,
               \lambda richest. \lambdap. \lambdan. match richest with
                   None \Rightarrow Some p
Some q \Rightarrow if n > v[q] then Some p
                                                          else Some q) ) )
       in (wire ms out)
1 let all = {Alice,Bob,Charlie} in
let r: W all (ps{singl ∧ ⊆ all} option) =

richest_of all ( wire {Alice} alice_networth

wire {Bob} bob_networth

wire {Charlie} charlie_networth)
```

Wysteria by Example (5)

```
1 /* Bidding round 1 of 2: */
2 let a1 =par({Alice})= read () in
3 let b1 =par({Bob})= read () in
4 let in1 = (wire {Alice} a1) + (wire {Bob} b1) in
5 let (higher1, sa, sb) =sec({Alice,Bob})=
let c = if in1[Alice] > in2[Bob] then Alice else Bob in
   (c, makesh in1[Alice], makesh in1[Bob])
8 in
9 print higher1 ;
11 /* Bidding round 2 of 2: */
12 let a2 =par({Alice})= read () in
13 let b2 =par({Bob})= read () in
14 let in2 = (wire {Alice} a2) ++ (wire {Bob} b2) in
15 let higher2 =sec({Alice,Bob})=
  let (a1, b1) = (combsh sa, combsh sb) in
  let bid_a = (a1 + in2[Alice]) / 2 in
  let bid_b = (b1 + in2[Bob])^{-}/2 in
    if bid_a > bid_b then Alice else Bob
20 in
21 print higher2
```

Syntax

```
Principal p, q ::=  Alice | Bob | Charlie | \cdots Value v, w ::=  x \mid n \mid \mathbf{inj}_i \ v \mid (v_1, v_2) \mid p \mid \{w\} \mid w_1 \cup w_2
  Expression
  e ::= v_1 \oplus v_2 \mid \mathbf{case}(v, x_1.e_1, x_2.e_2) \mid \mathbf{fst}(v) \mid \mathbf{snd}(v) \mid \lambda x.e \mid v_1 v_2
                fix x.\lambda y.e | array(v_1, v_2) | select(v_1, v_2) | update(v_1, v_2, v_3)
              \begin{array}{l} \mathbf{let} \ x = e_1 \ \mathbf{in} \ e_2 \ | \ \mathbf{let} \ x \stackrel{M}{=} \ e_1 \ \mathbf{in} \ e_2 \ | \ \mathbf{wire}_w(v) \ | \ e_1 \ ++ \ e_2 \ | \ v[w] \\ \mathbf{wfold}_w(v_1, v_2, v_3) \ | \ \mathbf{wapp}_w(v_1, v_2) \ | \ \mathbf{waps}_w(v_1, v_2) \end{array}
                \mathbf{wcopy}_{w}(v) \mid \mathbf{makesh}(v) \mid \mathbf{combsh}(v) \mid v
\begin{array}{lll} \text{Type environment} & \Gamma & ::= & . \mid \Gamma, x :_M \tau \mid \Gamma, x : \tau \\ \text{Mode} & M, \ N & ::= & m(w) \mid \top \end{array}
                                              egin{array}{lll} m & ::= & \mathsf{p} \mid \mathsf{s} \\ \epsilon & ::= & \cdot \mid M \mid \epsilon_1, \epsilon_2 \end{array}
Modal operator
Effect
Refinement \phi ::= true |\operatorname{singl}(\nu)| \nu \subseteq w | \nu = w | \phi_1 \wedge \phi_2
                  	au ::=  nat \mid 	au_1 + 	au_2 \mid 	au_1 	imes 	au_2 \mid  ps \phi \mid \mathbf{W} \, w \, 	au_2 \mid 
Type
                                                            | Array \tau | Sh w \tau | x:\tau_1 \stackrel{\epsilon}{\to} \tau_2
```

Typing Goals

- Each variable can only be used in an appropriate mode
- Delegated computations require that all participating principals are present in the current mode
- 3. Parallel local state must remain consistent across parallel principals
- 4. Code in secure blocks must be restricted so that it can be compiled to a boolean circuit

Type Semantics: Value Typing

$$\begin{array}{c} \text{T-INJ} \\ \Gamma \vdash_{M} v : \tau_{i} \\ j \in \{1,2\} \\ \tau_{j} \text{ IsFlat} \\ \Gamma \vdash_{M} x : \tau \end{array} \\ \hline \Gamma \vdash_{M} x : \tau \end{array} \qquad \begin{array}{c} \Gamma \vdash_{M} v : \tau_{i} \\ j \in \{1,2\} \\ \tau_{j} \text{ IsFlat} \\ \Gamma \vdash_{T} \\ \hline \Gamma \vdash_{M} \text{ inj}_{i} v : \tau_{1} + \tau_{2} \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{M} v_{i} : \tau_{i} \\ \hline \Gamma \vdash_{M} (v_{1}, v_{2}) : \tau_{1} \times \tau_{2} \end{array} \qquad \begin{array}{c} \Gamma \vdash_{PRINC} \\ \hline \Gamma \vdash_{M} w : \mathbf{ps} \ (v = \{p\}) \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{M} w : \mathbf{ps} \ (v = \{w\}) \end{array} \qquad \begin{array}{c} \Gamma \vdash_{T} w_{i} : \mathbf{ps} \ (v = \{p\}) \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{M} w_{i} : \mathbf{ps} \ (v = \{w\}) \end{array} \qquad \begin{array}{c} \Gamma \vdash_{T} w_{i} : \mathbf{ps} \ (v = w_{1} \cup w_{2}) \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{T} v : \tau_{1} \\ \hline \Gamma \vdash_{M} v : \tau_{1} \\ \hline \Gamma \vdash_{M} v : \tau_{1} \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{T} v : \tau_{1} \\ \hline \Gamma \vdash_{T} v : \tau_{1} \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{T} v : \tau_{1} \\ \hline \Gamma \vdash_{T} v : \tau_{1} \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{T} v : \tau_{1} \\ \hline \Gamma \vdash_{T} v : \tau_{1} \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{T} v : \tau_{1} \\ \hline \Gamma \vdash_{T} v : \tau_{1} \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{T} v : \tau_{1} \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{T} v : \tau_{1} \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{T} v : \tau_{1} \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{T} v : \tau_{1} \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{T} v : \tau_{1} \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{T} v : \tau_{1} \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{T} v : \tau_{1} \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{T} v : \tau_{1} \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{T} v : \tau_{1} \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{T} v : \tau_{1} \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{T} v : \tau_{1} \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{T} v : \tau_{1} \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{T} v : \tau_{1} \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{T} v : \tau_{1} \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{T} v : \tau_{1} \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{T} v : \tau_{1} \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{T} v : \tau_{1} \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{T} v : \tau_{1} \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{T} v : \tau_{1} \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{T} v : \tau_{1} v : \tau_{1} \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{T} v : \tau_{1} v : \tau_{1} \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{T} v : \tau_{1} v : \tau_{1} \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{T} v : \tau_{1} v : \tau_{1} v : \tau_{1} \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{T} v : \tau_{1} v : \tau_{1} v : \tau_{1} v : \tau_{1} \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{T} v : \tau_{1} v : \tau_{1} v : \tau_{1} \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{T} v : \tau_{1} \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{T} v : \tau_{1} \end{array} \\ \hline \begin{array}{c} \Gamma \vdash_{T} v : \tau_{1} v : \tau_{1}$$

Type Semantics: Delegation

$$\frac{\Gamma \vdash w_2 : \mathbf{ps} \; (\nu = w_1)}{\Gamma \vdash m(w_1) \rhd m(w_2)}$$

$$rac{\Gamma dash w : \mathbf{ps} \; \phi}{\Gamma dash \top
hd m(w)}$$

$$\frac{\Gamma - \text{REFL}}{\Gamma \vdash w_2 : \textbf{ps} \; (\nu = w_1)}{\Gamma \vdash m(w_1) \rhd m(w_2)} \qquad \frac{\Gamma \vdash w : \textbf{ps} \; \phi}{\Gamma \vdash \top \rhd m(w)} \qquad \frac{\Gamma \vdash w_2 : \textbf{ps} \; (\nu \subseteq w_1)}{\Gamma \vdash p(w_1) \rhd p(w_2)}$$

$$\frac{\Gamma \vdash w_2 : \mathbf{ps} \ (\nu = w_1)}{\Gamma \vdash \mathsf{p}(w_1) \rhd \mathsf{s}(w_2)}$$

Type Semantics: Subtyping

$$\frac{\text{S-REFL}}{\Gamma \vdash \tau <: \tau}$$

$$egin{aligned} ext{S-TRANS} \ \Gamma dash au_1 <: au_2 \ \Gamma dash au_2 <: au_3 \ \hline \Gamma dash au_1 <: au_3 \end{aligned}$$

S-SUM
$$\frac{\Gamma \vdash \tau_i <: \tau_i'}{\Gamma \vdash \tau_1 + \tau_2 <: \tau_1' + \tau_2'}$$

$$\frac{\Gamma \vdash \tau_i <: \tau_i'}{\Gamma \vdash \tau_1 \times \tau_2 <: \tau_1' \times \tau_2'}$$

$$\frac{\mathbb{S}\text{-PRINCS}}{\llbracket\Gamma\rrbracket \vDash \phi_1 \Rightarrow \phi_2} \frac{\llbracket\Gamma\rrbracket \vDash \phi_1 \Rightarrow \phi_2}{\Gamma \vdash \mathbf{ps} \ \phi_1 <: \mathbf{ps} \ \phi_2}$$

S-WIRE
$$\Gamma \vdash w_2 : \mathbf{ps} \ (\nu \subseteq w_1)$$

$$\Gamma \vdash \tau_1 <: \tau_2$$

$$\Gamma \vdash \mathbf{W} \ w_1 \ \tau_1 <: \mathbf{W} \ w_2 \ \tau_2$$

$$\begin{array}{c} \text{S-ARRAY} \\ \Gamma \vdash \tau_1 <: \tau_2 \\ \Gamma \vdash \tau_2 <: \tau_1 \\ \hline \Gamma \vdash \textbf{Array} \, \tau_1 <: \textbf{Array} \, \tau_2 \end{array}$$

S-SHARE
$$\Gamma \vdash w_2 : \mathbf{ps} \; (\nu = w_1)$$

$$\Gamma \vdash \tau_1 <: \tau_2$$

$$\Gamma \vdash \tau_2 <: \tau_1$$

$$\Gamma \vdash \mathbf{Sh} \; w_1 \; \tau_1 <: \mathbf{Sh} \; w_2 \; \tau_2$$

S-ARROW
$$\Gamma \vdash \tau_1' <: \tau_1$$

$$\Gamma, x : \tau_1' \vdash \tau_2 <: \tau_2'$$

$$\Gamma \vdash x : \tau_1 \xrightarrow{\epsilon} \tau_2 <: x : \tau_1' \xrightarrow{\epsilon} \tau_2'$$

Type Semantics: Expressions

$$rac{\Gamma ext{-BINOP}}{\Gammadash_M \ v_i: \mathbf{nat}} = rac{\Gammadash_M \ v_i: \mathbf{nat}}{\Gammadash_M \ v_1\oplus v_2: \mathbf{nat};}$$

$$rac{\Gamma ext{-FST}}{\Gammadash_{M} \ v: au_{1} imes au_{2}}{\Gammadash_{M} \ ext{fst}\,(v): au_{1};\cdot}$$

$$\frac{\Gamma\text{-SND}}{\Gamma \vdash_{M} v : \tau_{1} \times \tau_{2}}{\Gamma \vdash_{M} \mathbf{snd} (v) : \tau_{2};}$$

$$rac{\Gamma ext{-LAM}}{\Gammadash au}rac{\Gamma,x: audash_M \ e: au_1;\epsilon}{\Gammadash_M \ \lambda x.e:(x: au\stackrel{\epsilon}{ o} au_1);\cdot}$$

$$\begin{array}{ccc} \Gamma\text{-APP} & \Gamma \vdash_{M} v_{1}: x{:}\tau_{1} \stackrel{\epsilon}{\to} \tau_{2} \\ & \Gamma \vdash v_{2}: \tau_{1} & \Gamma \vdash \tau_{2}[v_{2}/x] \\ \hline \Gamma \vdash M \rhd \epsilon[v_{2}/x] & M = \mathsf{s}(_) \Rightarrow \tau_{2} \ \mathsf{IsFO} \\ \hline & \Gamma \vdash_{M} v_{1} v_{2}: \tau_{2}[v_{2}/x]; \epsilon[v_{2}/x] \end{array}$$

Performance

Thanks! Questions?