I | Question de cours

Présenter le défaut d'un œil hypermétrope **avec un schéma**, comment corriger ce défaut et les points caractéristique du verre correcteur et de l'œil qui doivent être confondus pour corriger la vision de loin. Une schématisation optique (du type $AB \xrightarrow{\mathcal{L}} A'B'$) et un schéma sont nécessaires ;

II Doublet de Huygens

Un doublet de lentilles non accolées est constitué d'une lentille convergente L_1 de centre optique O_1 , de distance focale f'_1 et d'une autre lentille convergente L_2 de centre optique O_2 , de distance focale f'_2 . On note $e = \overline{O_1 O_2} > 0$. Un doublet de Huygens est de type :

$$f_1' = 3a \qquad e = 2a \qquad f_2' = a$$

Pour l'application numérique, on prendra $a=2,0\,\mathrm{cm}$. On note $\Delta=\overline{F_1'F_2}$.

1. Déterminer par construction géométrique les foyers objet et image, notés F et F', du doublet optique. Sur le schéma, on prendra un carreau pour $1,0\,\mathrm{cm}$.

2. Exprimer $\overline{F_1F}$ et $\overline{F_2'F'}$ en fonction de e, f_1' et f_2' . Faire l'application numérique. Conclure.

I | Question de cours

Savoir comment se modélise un microscope et construire le chemin de deux rayons parallèles quelconques. Les positions des points d'intérêt nécessaires au tracé seront données par l'examinataire. Définir alors le grossissement **sans** donner ou démontrer son expression, en donner un ordre de grandeur et commenter son signe ;

II Doublet

Données. Relations de conjugaison et de grandissement pour une lentille mince :

$$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{f'} \qquad ; \qquad \gamma = \frac{\overline{OA'}}{\overline{OA}}.$$

La distance focale image est notée f' alors que la distance focale objet est notée f = -f'.

- 1. Déterminer, par construction géométrique, la position de l'image A' de l'objet A à travers le système de deux lentilles L_1 et L_2 . On précisera la position de l'image intermédiaire A_1 (image de A par L_1 ainsi que sa nature (réelle ou virtuelle)).
- 2. Vérifier le résultat en utilisant la relation de conjugaison.
- 3. Tracer un faisceau de rayons issu de A.

[| Question de cours

Démontrer le théorème des vergences pour les lentilles accolées, et démontrer la relation du grandissement d'une association de lentilles en fonction du grandissement de chacune des lentilles.

II Lunette astronomique

On considère une lunette astronomique formée d'un objectif constitué d'une lentille mince convergente de distance focale $f'_1 = \overline{O_1 F'_1}$ et d'un oculaire constitué d'une lentille mince convergente de distance focale $f'_2 = \overline{O_2 F'_2}$. Ces deux lentilles ont même axe optique Δ . On rappelle qu'un œil normal voit un objet sans accommoder quand celui-ci est placé à l'infini. On souhaite observer la planète Mars, qui est vue à l'œil nu sous un diamètre apparent 2α , symétriquement par rapport à l'axe optique de la lunette. Pour voir la planète nette à travers la lunette, on forme un système afocal.

- 1. Définir un système afocal. Que cela implique-t-il pour les positions des lentilles ?
- 2. On note α l'angle sous lequel est vu le bord extrême de la planète Mars. Cet objet est supposé être à l'infini. Dans le cas où $f'_1 = 5f'_2$, faire une construction graphique. On placera $\overline{A'B'}$ l'image intermédiaire sur ce schéma.

On note α' l'angle orienté que forment les rayons émergents extrêmes en sortie de la lunette par rapport à l'axe optique.

Placer l'angle α' sur la figure précédente. L'image est-elle droite ou renversée ?

3. La lunette est caractérisée par son grossissement $G = \alpha'/\alpha$. Exprimer G en fonction de f'_1 et de f'_2 . Commenter son signe. On rappelle que les lentilles sont utilisées dans les conditions de Gauss.

On veut augmenter le grossissement de cette lunette et redresser l'image. Pour cela, on interpose entre L_1 et L_2 une lentille convergente L_3 de distance focale $f'_3 = \overline{O_3F'_3}$. L'oculaire L_2 est déplacé pour avoir de la planète une image nette à l'infini à travers le nouvel ensemble optique.

- 4. Quel couple de points doit conjuguer L_3 pour qu'il en soit ainsi?
- 5. On appelle γ_3 , le grandissement de la lentille L_3 . En déduire $\overline{O_3F_1'}$ en fonction de f_3' et γ_3 .
- 6. Faire un tracé de rayons de cette situation. On appellera $\overline{A'B'}$ la première image intermédiaire et $\overline{A''B''}$ la seconde image intermédiaire. Déterminer graphiquement ces images intermédiaires, ainsi que les positions des foyers objet F_3 et image F_3' de la lentille L_3 .
- 7. En déduire le nouveau grossissement G' en fonction de γ_3 , f'_1 et f'_2 . On notera α'' l'angle sous lequel est vue l'image finale que l'on placera sur la figure précédente.

$oxed{ | Question de cours }$

Savoir comment se modélise une lunette de **Kepler** et construire le chemin de deux rayons parallèles quelconques. Les positions des points d'intérêt nécessaires au tracé seront données par l'examinataire. Définir alors le grossissement, **donner et démontrer** son expression, en donner un ordre de grandeur et commenter son signe.

II Système catadioptrique

Un système optique est formé d'une lentille mince L convergente de distance focale image $f' = 30 \,\mathrm{cm}$ et d'un miroir plan disposé à 15 cm derrière la lentille, dont la normale est parallèle à l'axe optique de L. On dispose d'un objet AB situé à 15cm en avant de la lentille.

On notera B_1 l'image donnée par la lentille L du point B, puis B_2 l'image donnée par le miroir M du point B_1 et enfin B' l'image finale que donne L de B_2 .

1. Compléter les tracés des deux rayons passant par B jusqu'à obtenir l'image définitive A'B' sur la figure ci-dessous. Préciser les propriétés utilisées au fur et à mesure. Il n'est pas indispensable de positionner les images intermédiaires.

- 2. Retrouver les positions des images successives grâce aux formules de conjugaison Descartes de la lentille et aux propriétés du miroir plan. Pour cela on exprimera :
 - $\overline{OA_1}$ en fonction de f' et \overline{OA} . La calculer.
 - $\bullet\,$ Puis $\overline{OA_2}$ en fonction de $\overline{OA_1}$ et \overline{OS} . La calculer.
 - et enfin $\overline{OA'}$ en fonction de f' et $\overline{OA_2}$. La calculer.