STATISTICAL INFERENCES (2cr) Chapter 8 Sampling Distributions & Data Descriptions

Zhong Guan

Math, IUSB

Outline

- 1 8.5 Sampling Distribution of S^2 .
 - Percentage Point of χ^2 -Distribution
 - Degrees of Freedom

- 2 8.6 t-Distribution
 - Graph of Standard normal and Student's t-Distribution
 - Percentage Point of t-Distribution

• In the previous section, we assume σ is known. By the CLT, the distribution of

$$Z = rac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

- However, in application, we rarely know σ^2 . We estimate σ^2 by $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$.
- What is the sampling distribution of S²?
- What is the sampling distribution of $rac{\overline{X} \mu}{S/\sqrt{n}}$?

• In the previous section, we assume σ is known. By the CLT, the distribution of

$$Z = rac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

- However, in application, we rarely know σ^2 . We estimate σ^2 by $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$.
- What is the sampling distribution of S²?
- What is the sampling distribution of $\frac{\overline{X}-\mu}{S/\sqrt{n}}$?

• In the previous section, we assume σ is known. By the CLT, the distribution of

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

- However, in application, we rarely know σ^2 . We estimate σ^2 by $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$.
- What is the sampling distribution of S²?
- What is the sampling distribution of $rac{\overline{X}-\mu}{S/\sqrt{n}}$?

• In the previous section, we assume σ is known. By the CLT, the distribution of

$$Z = rac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

- However, in application, we rarely know σ^2 . We estimate σ^2 by $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$.
- What is the sampling distribution of S²?
- What is the sampling distribution of $\frac{\overline{X}-\mu}{S/\sqrt{n}}$?

Sampling Distribution of S²

Theorem 1. If $X_1, X_2, ..., X_n$ is a random sample of size n from $N(\mu, \sigma^2)$, then

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2 \sim \chi^2(n-1)$$

See Section 6.8 for information about χ^2 distribution.

Sampling Distribution of S²

Theorem 1. If $X_1, X_2, ..., X_n$ is a random sample of size n from $N(\mu, \sigma^2)$, then

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2 \sim \chi^2(n-1).$$

See Section 6.8 for information about χ^2 distribution.

Sampling Distribution of S2

Theorem 1. If $X_1, X_2, ..., X_n$ is a random sample of size n from $N(\mu, \sigma^2)$, then

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2 \sim \chi^2(n-1).$$

See Section 6.8 for information about χ^2 distribution.

Outline

- 1 8.5 Sampling Distribution of S^2 .
 - Percentage Point of χ^2 -Distribution
 - Degrees of Freedom

- 2 8.6 t-Distribution
 - Graph of Standard normal and Student's t-Distribution
 - Percentage Point of t-Distribution

Percentage Point of χ^2 -Distribution

Percentage Point of χ^2 **-Distribution** The Percentage points of the χ^2 -distribution are given in Table A-5.

Percentage Point of χ^2 -Distribution

Percentage Point of χ^2 **-Distribution** The Percentage points of the χ^2 -distribution are given in Table A-5.

Example

Example 1. A manufacturer of car batteries guarantees that his batteries will last, on the average, 3 years with a standard deviation of 1 year. If five of these batteries have lifetimes of 1.9, 2.4, 3.0, 3.5, and 4.2 years, is the manufacturer still convinced that his batteries have a standard deviation of 1 year? Assume that the battery lifetime follows a normal distribution.

Solution:
$$\bar{x} = \frac{1.9 + 2.4 + 3.0 + 3.5 + 4.2}{5} = 3$$
,

$$\sum x_i^2 = 1.9^2 + 2.4^2 + 3.0^2 + 3.5^2 + 4.2^2 = 48.26$$

$$s^2 = \frac{1}{n-1} \left(\sum x_i^2 - n\bar{x}^2 \right) = \frac{1}{4} [48.26 - (5)(3^2)] = 0.815$$

Since $\sigma = 1$ $\chi^2 = \frac{(n-1)S^2}{\sigma^2} = (5-1)(0.815) = 3.26$ Using Table A.5,

$$P(\chi^2 \le 3.26) = 1 - P(\chi^2 > 3.26) > 1 - P(\chi^2 > 2.195) = 0.3$$

Using Exce

$$P(\chi^2 \leqslant 3.26) = 0.485$$

So it is likely to have an observed χ^2 as small as 3.26. There is no strong evidence against the hypothesis $\sigma=1$.

Solution:
$$\bar{x} = \frac{1.9 + 2.4 + 3.0 + 3.5 + 4.2}{5} = 3,$$

$$\sum x_i^2 = 1.9^2 + 2.4^2 + 3.0^2 + 3.5^2 + 4.2^2 = 48.26$$

$$s^2 = \frac{1}{n-1} \left(\sum x_i^2 - n\bar{x}^2 \right) = \frac{1}{4} [48.26 - (5)(3^2)] = 0.815$$

Since $\sigma = 1$ $\chi^2 = \frac{(n-1)S^2}{\sigma^2} = (5-1)(0.815) = 3.26$. Using Table A.5,

$$P(\chi^2 \le 3.26) = 1 - P(\chi^2 > 3.26) > 1 - P(\chi^2 > 2.195) = 0.3$$

Using Exce

$$P(\chi^2 \le 3.26) = 0.485$$

So it is likely to have an observed χ^2 as small as 3.26. There is no strong evidence against the hypothesis $\sigma = 1$.

Solution:
$$\bar{x} = \frac{1.9 + 2.4 + 3.0 + 3.5 + 4.2}{5} = 3,$$

$$\sum x_i^2 = 1.9^2 + 2.4^2 + 3.0^2 + 3.5^2 + 4.2^2 = 48.26$$

$$s^2 = \frac{1}{n-1} \left(\sum x_i^2 - n\bar{x}^2 \right) = \frac{1}{4} [48.26 - (5)(3^2)] = 0.815$$

Since
$$\sigma = 1$$
 $\chi^2 = \frac{(n-1)S^2}{\sigma^2} = (5-1)(0.815) = 3.26$. Using Table A.5.

$$P(\chi^2 \le 3.26) = 1 - P(\chi^2 > 3.26) > 1 - P(\chi^2 > 2.195) = 0.3$$

Using Exce

$$P(\chi^2 \leqslant 3.26) = 0.485$$

So it is likely to have an observed χ^2 as small as 3.26. There is no strong evidence against the hypothesis $\sigma = 1$.

Solution:
$$\bar{x} = \frac{1.9 + 2.4 + 3.0 + 3.5 + 4.2}{5} = 3$$
,

$$\sum x_i^2 = 1.9^2 + 2.4^2 + 3.0^2 + 3.5^2 + 4.2^2 = 48.26$$

$$x_i^2 = \frac{1}{2} \left(\sum x_i^2 + 2.4^2 + 3.0^2 + 3.5^2 + 4.2^2 + 4.$$

$$s^2 = \frac{1}{n-1} \left(\sum x_i^2 - n\bar{x}^2 \right) = \frac{1}{4} [48.26 - (5)(3^2)] = 0.815$$

Since $\sigma=1$ $\chi^2=\frac{(n-1)S^2}{\sigma^2}=(5-1)(0.815)=3.26.$ Using Table A.5,

$$P(\chi^2 \le 3.26) = 1 - P(\chi^2 > 3.26) > 1 - P(\chi^2 > 2.195) = 0.3$$

Using Exce

$$P(\chi^2 \leqslant 3.26) = 0.485$$

So it is likely to have an observed χ^2 as small as 3.26. There is no strong evidence against the hypothesis $\sigma=1$.

Solution:
$$\bar{x} = \frac{1.9 + 2.4 + 3.0 + 3.5 + 4.2}{5} = 3,$$

$$\sum x_i^2 = 1.9^2 + 2.4^2 + 3.0^2 + 3.5^2 + 4.2^2 = 48.26$$

$$s^2 = \frac{1}{n-1} \left(\sum x_i^2 - n\bar{x}^2 \right) = \frac{1}{4} [48.26 - (5)(3^2)] = 0.815$$

Since
$$\sigma=1$$
 $\chi^2=\frac{(n-1)S^2}{\sigma^2}=(5-1)(0.815)=3.26.$ Using Table A.5,

$$P(\chi^2 \le 3.26) = 1 - P(\chi^2 > 3.26) > 1 - P(\chi^2 > 2.195) = 0.3$$

Using Excel

$$P(\chi^2 \leqslant 3.26) = 0.485$$

So it is likely to have an observed χ^2 as small as 3.26. There is no strong evidence against the hypothesis $\sigma=1$.

Solution:
$$\bar{x} = \frac{1.9 + 2.4 + 3.0 + 3.5 + 4.2}{5} = 3$$
,

$$\sum x_i^2 = 1.9^2 + 2.4^2 + 3.0^2 + 3.5^2 + 4.2^2 = 48.26$$

$$s^2 = \frac{1}{n-1} \left(\sum x_i^2 - n\bar{x}^2 \right) = \frac{1}{4} [48.26 - (5)(3^2)] = 0.815$$

Since $\sigma = 1$ $\chi^2 = \frac{(n-1)S^2}{\sigma^2} = (5-1)(0.815) = 3.26$. Using Table A.5,

$$P(\chi^2 \le 3.26) = 1 - P(\chi^2 > 3.26) > 1 - P(\chi^2 > 2.195) = 0.3$$

Using Excel

$$P(\chi^2 \leqslant 3.26) = 0.485$$

So it is likely to have an observed χ^2 as small as 3.26. There is no strong evidence against the hypothesis $\sigma = 1$.

Outline

- 1 8.5 Sampling Distribution of S^2 .
 - Percentage Point of χ^2 -Distribution
 - Degrees of Freedom

- 2 8.6 t-Distribution
 - Graph of Standard normal and Student's t-Distribution
 - Percentage Point of t-Distribution

• If μ is known, we estimate σ^2 by

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$$

Let $Y_i = X_i - \mu$, i = 1, 2, ..., n. Y_i 's are n independent normal r.v.'s. So

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n Y_i^2$$

We have *n* independent *pieces of information* to estimate σ^2 .

$$S^2 = \frac{1}{n-1} \sum_{j=1}^{n} (X_j - \bar{X}_j)^2$$

• If μ is known, we estimate σ^2 by

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$$

Let $Y_i = X_i - \mu$, i = 1, 2, ..., n. Y_i 's are n independent normal r.v.'s. So

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n Y_i^2$$

We have *n* independent *pieces of information* to estimate σ^2 .

$$S^{2} = \frac{1}{n-1} \sum_{j=1}^{n} (X_{j} - \bar{X})^{2}$$

• If μ is known, we estimate σ^2 by

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$$

Let $Y_i = X_i - \mu$, i = 1, 2, ..., n. Y_i 's are n independent normal r.v.'s. So

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n Y_i^2$$

We have *n* independent *pieces of information* to estimate σ^2 .

• If μ is known, we estimate σ^2 by

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$$

Let $Y_i = X_i - \mu$, i = 1, 2, ..., n. Y_i 's are n independent normal r.v.'s. So

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n Y_i^2$$

We have *n* independent *pieces of information* to estimate σ^2 .

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

• If μ is known, we estimate σ^2 by

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$$

Let $Y_i = X_i - \mu$, i = 1, 2, ..., n. Y_i 's are n independent normal r.v.'s. So

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n Y_i^2$$

We have *n* independent *pieces of information* to estimate σ^2 .

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

- (a) $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \overline{X})^2$ are independent.
- (b) $T = \sqrt{n(X \mu)}/S$ has a **Student's** t **distribution** with d.f. n 1 and p.d.f.

$$h(t) = \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)} \left(1 + \frac{t^2}{n-1}\right)^{-n/2}, \quad -\infty < t < \infty$$

- (a) $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \overline{X})^2$ are independent.
- (b) $T = \sqrt{n}(X \mu)/S$ has a **Student's** t **distribution** with d.f. n-1 and p.d.f.

$$h(t) = \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)} \left(1 + \frac{t^2}{n-1}\right)^{-n/2}, \quad -\infty < t < \infty$$

- (a) $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \overline{X})^2$ are independent.
- (b) $T = \sqrt{n}(\overline{X} \mu)/S$ has a **Student's** t **distribution** with d.f. n-1 and p.d.f.

$$h(t) = \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)} \left(1 + \frac{t^2}{n-1}\right)^{-n/2}, \quad -\infty < t < \infty$$

- (a) $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \overline{X})^2$ are independent.
- (b) $T = \sqrt{n}(\overline{X} \mu)/S$ has a **Student's** t **distribution** with d.f. n-1 and p.d.f.

$$h(t) = \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)} \left(1 + \frac{t^2}{n-1}\right)^{-n/2}, \quad -\infty < t < \infty$$

Outline

- 1 8.5 Sampling Distribution of S^2
 - Percentage Point of χ^2 -Distribution
 - Degrees of Freedom

- 2 8.6 t-Distribution
 - Graph of Standard normal and Student's t-Distribution
 - Percentage Point of t-Distribution

Graph of Student's t-Distribution

Graph of Student's *t***-Distribution**

Similar to N(0,1) and Symmetric about 0.

Outline

- 1 8.5 Sampling Distribution of S^2
 - Percentage Point of χ^2 -Distribution
 - Degrees of Freedom

- 2 8.6 t-Distribution
 - Graph of Standard normal and Student's t-Distribution
 - Percentage Point of t-Distribution

Percentage Point of *t*-Distribution

Percentage Point of *t***-Distribution** The Percentage points of the *t*-distribution are given in Table A-4.

Density of t-Distribution

Examples

Example 2. A certain machine makes resistors have a conjectured mean resistance of 40 ohms but unknown standard deviation. Assume resistance has normal distribution. An observed sample of 36 of these resistors indicates a sample average of 39.1 ohms and sample standard deviation of 1.7 ohms. Does this sample information appear to support or refute the conjecture that $\mu = 40$ ohms?

Solution of Example 2. If the conjecture $\mu = 40$ is true, then by the t statistic

$$T = \sqrt{n}(\overline{X} - \mu)/S$$

has a **Student's** t **distribution** with d.f. 35. The observed value of |T| is

$$|t| = \frac{\sqrt{n}|\bar{x} - \mu|}{s} = \frac{\sqrt{36}|39.1 - 40|}{1.7} = 3.18$$

How likely can the value of the t statistic T be as far away from its center 0 as the observed t = 3.18?

That is, if $\mu = 40$.

$$P(|T| \ge 3.18) = ?$$

Solution of Example 2. If the conjecture $\mu = 40$ is true, then by the t statistic

$$T = \sqrt{n}(\overline{X} - \mu)/S$$

has a **Student's** t **distribution** with d.f. 35. The observed value of |T| is

$$|t| = \frac{\sqrt{n}|\bar{x} - \mu|}{s} = \frac{\sqrt{36}|39.1 - 40|}{1.7} = 3.18$$

How likely can the value of the t statistic T be as far away from its center 0 as the observed t = 3.18?

That is, if $\mu = 40$,

$$P(|T| \ge 3.18) = ?$$

Solution of Example 2. If the conjecture $\mu = 40$ is true, then by the t statistic

$$T = \sqrt{n}(\overline{X} - \mu)/S$$

has a **Student's** t **distribution** with d.f. 35. The observed value of |T| is

$$|t| = \frac{\sqrt{n}|\bar{x} - \mu|}{s} = \frac{\sqrt{36}|39.1 - 40|}{1.7} = 3.18$$

How likely can the value of the t statistic T be as far away from its center 0 as the observed t = 3.18?

That is, if $\mu = 40$

$$P(|T| \geqslant 3.18) = ?$$

Solution of Example 2. If the conjecture $\mu = 40$ is true, then by the t statistic

$$T = \sqrt{n}(\overline{X} - \mu)/S$$

has a **Student's** t **distribution** with d.f. 35. The observed value of |T| is

$$|t| = \frac{\sqrt{n}|\bar{x} - \mu|}{s} = \frac{\sqrt{36}|39.1 - 40|}{1.7} = 3.18$$

How likely can the value of the t statistic T be as far away from its center 0 as the observed t = 3.18?

That is, if
$$\mu = 40$$
,

$$P(|T| \geqslant 3.18) = ?$$

$$P(|T| \geqslant 3.18) = P(T \geqslant 3.18) + P(T \leqslant -3.18)$$

$$= P(T \geqslant 3.18) + P(-T \geqslant 3.18) = 2P(T \geqslant 3.18)$$

$$pprox 2[1 - P(Z < 3.18)] = 2(1 - 0.9984605) pprox 0.003079$$

One would experience by chance that a t is 3.18 from 0 in only 3 in 1000 samples of size 36. This sample is an evidence against the conjecture $\mu = 40$ ohms.

$$P(|T| \geqslant 3.18) = P(T \geqslant 3.18) + P(T \leqslant -3.18)$$

$$= P(T \geqslant 3.18) + P(-T \geqslant 3.18) = 2P(T \geqslant 3.18)$$

$$pprox 2[1 - P(Z < 3.18)] = 2(1 - 0.9984605) pprox 0.003079$$

One would experience by chance that a t is 3.18 from 0 in only 3 in 1000 samples of size 36. This sample is an evidence against the conjecture $\mu = 40$ ohms.

$$P(|T| \geqslant 3.18) = P(T \geqslant 3.18) + P(T \leqslant -3.18)$$

$$= P(T \geqslant 3.18) + P(-T \geqslant 3.18) = 2P(T \geqslant 3.18)$$

$$pprox 2[1 - P(Z < 3.18)] = 2(1 - 0.9984605) pprox 0.003079$$

One would experience by chance that a t is 3.18 from 0 in only 3 in 1000 samples of size 36. This sample is an evidence against the conjecture $\mu = 40$ ohms.

$$P(|T| \geqslant 3.18) = P(T \geqslant 3.18) + P(T \leqslant -3.18)$$

$$= P(T \geqslant 3.18) + P(-T \geqslant 3.18) = 2P(T \geqslant 3.18)$$

$$\approx 2[1-P(Z<3.18)] = 2(1-0.9984605) \approx 0.003079$$

One would experience by chance that a t is 3.18 from 0 in only 3 in 1000 samples of size 36. This sample is an evidence against the conjecture $\mu=40$ ohms.

- The probability $P(|T| \ge 3.18 | \mu = 40)$ is called the *p*-value of the *t* statistic t = 3.18.
- Under the condition that the conjecture or hypothesis
 μ = 40 is true, p-value is the probability that we can
 observed a T as extreme as t = 3.18.
- p-value is NOT the probability that the conjecture or hypothesis $\mu = 40$ is true.

- The probability $P(|T| \ge 3.18 | \mu = 40)$ is called the *p*-value of the *t* statistic t = 3.18.
- p-value is NOT the probability that the conjecture or hypothesis $\mu = 40$ is true.

- The probability $P(|T| \ge 3.18 | \mu = 40)$ is called the *p*-value of the *t* statistic t = 3.18.
- p-value is NOT the probability that the conjecture or hypothesis $\mu = 40$ is true.

