Поиск объектов на изображении. Нейросетевые модели.

Евгений Борисов

Classification — классификация изображения по типу объекта, которое оно содержит;

Semantic segmentation — определение всех пикселей объектов определённого класса или фона на изображении. Если несколько объектов одного класса перекрываются, их пиксели никак не отделяются друг от друга;

Object detection — обнаружение всех объектов указанных классов и определение охватывающей рамки для каждого из них;

Instance segmentation — определение пикселей, принадлежащих каждому объекту каждого класса по отдельности;

Модель объекта

Цветовые фильтры

Выделение и анализ контуров

Сопоставление с шаблоном

Работа с особыми точками

Методы машинного обучения

Модель фона

Усреднённый фон

Модель фона по Гауссу

Смесь гауссиан как модель фона

Нейросети

Модель фона с помощью нейросети

семантическая сегментация

Semantic segmentation

FCN: Fully Convolutional Networks

https://arxiv.org/pdf/1411.4038.pdf

выход — карты поточечной оценки

для каждого класса своя карта

размер входного изображения = размеру входной карты

сравниваем выходные карты поточечно, для каждой точки определяем карту-победителя

изображение обрабатывается свёрточными слоями на выходе выполняем обратную свёртку

https://vesnins.ru/vychislitelnaya-fotografiya-budushhee-fotografii-eto-kod

FCN: Fully Convolutional Networks

Пример — ищем людей на картинке (датасет Pascal VOC)

Модель объекта с помощью нейросети

Задача классификации

Локализация объектов: метод скользящего окна

- 1.задать размер окна
- 2.пройти окном изображение
- 3.на каждом шаге выполняем классификацию содержимого окна
- 4.изменить размер окна и повторить процедуру с п.2
- 5.обрабатываем результаты

Object detection

Region Based Convolutional Neural Networks (R-CNN)

изображение разделяется на части

каждую часть проверяем классификатором

Faster-R-CNN

- принимаем картинку на вход
- картинка прогоняется через CNN, формируем feature maps
- определяем регионы-кандидаты (возможно содержащие объекты)
- выделяем эти регионы
- и применяем к ним классификатор картинок

git clone https://github.com/mechanoid5/ml_lectorium.git

Борисов E.C. О задаче поиска объекта на изображении. http://mechanoid.su/cv-image-detector.html

Борисов E.C. Классификатор изображений на основе свёрточной сети. -- http://mechanoid.su/ml-lenet.html

Fully Convolutional Networks for Semantic Segmentation https://arxiv.org/pdf/1411.4038.pdf

FCN — Fully Convolutional Network (Semantic Segmentation) https://towardsdatascience.com/review-fcn-semantic-segmentation-eb8c9b50d2d1