Simulated Annealing

Winter 2024

Population versus Individual

Hill Climb

- The simplest individual-based search method
- Start at a random solution; consider various moves within the neighborhood; accept the ones when advantageous; repeat until no more move can be made

Pseudocode of Hill Climbing

Select a starting solution $s_0 \in S$

While termination condition is not met:

iteration limit or $f(s_0) < f(s)$ for all $s \in N(s_0)$

Select s such that $f(s) < f(s_0)$

Replace s_0 by s

Return s_0 as the approximation to the optimal solution

** For minimization problem

Disadvantages of hill climbing

- It is very likely to get stuck in local optimal solutions
- Solution quality is highly sensitive to the initial solution
 (P always leads to Q; R can be improved a lot more to★)
- Hard to decide where to go if all the neighbors have the same objective value (After T, where to go?)

Possible Improvements

- Hill climbing in inner-loop and re-start the initialization in outer-loop
- Increase the range (vision) of neighborhood
- Allow "bad move" whose frequency is governed by a probability function

Simulated Annealing: Thermodynamics

- Metropolis's work in statistical thermodynamics
- At temperature t, the probability of an increase in energy of magnitude $\triangle E$ is given by

 $P(\triangle E) = \exp(-\triangle E / \alpha t)$

where a is Boltzmann's constant

1.38065 x 10⁻²³ joules/kelvin

Dr. Nicolas Metropolis 1915-1999

Dr. Ludwig Boltzmann 1844-1902

Simulated Annealing

- If solid material is heated past its melting point and then cooled back into a solid state, the structural property depends on the **cooling rate**
- The heat causes the atoms to become unstuck from their initial positions (a local minimum of the internal energy) and wander randomly through states of higher energy
- Slow cooling gives them more chances of finding configurations with lower internal energy than the initial one

Physical Analogy

- If the cooling is done too fast, the resulting solid will be frozen into a locally optimal structure, such as a glass or a crystal with several defects in the structure.
- Inspiration: Finding low energy states of a solid by initially melting the substance, and then lowing the temperature slowly

Concept

Prof. Kirkpatrick Computer Science

- Kirkpatrick, Gelatt, Jr., and Vecchi, (1983) "Optimization by Simulated Annealing", *Science*, 220(4598), 671-680.
- Each step of the Simulated Annealing (SA) algorithm replaces the current solution by a random "nearby" solution, chosen with a probability that depends on the difference between the corresponding function values and on a global parameter *T* (temperature), that is gradually decreased during the process.

Flowchart

Pseudocode of SA (1)

Select an initial solution s_0 ; initial temperature t_0

Select a temperature reduction function (cooling schedule) T(k): k is the reduction step

Outer: While temperature > final_temperature

Inner: While iteration limit n_{iter} is not reached

Select
$$s \in N(s_0)$$

$$\delta = f(s) - f(s_0)$$

If $\delta < 0$ (for minimization problem) $\delta > 0$ for maximization

$$s_0 = s$$
 #always accept better moves

Pseudocode of SA (2)

```
Else #may accept worse moves
generate r \sim U(0,1)
If r < \exp(-\delta / t), s_0 = s (for minimization)
```

If $r < \exp(\delta / t)$, $s_0 = s$ (for maximization)

End Inner

$$t = T(k)$$

End Outer

Return s_0

Probability of Adverse Move

• Probability $\exp(-\delta/t)$ is related to δ and t

larger $\delta \longrightarrow$ smaller acceptance probability

(less likely to accept worse move)

lower temperature → smaller acceptance probability

(decreasing probability as temperature drops)

Application of Computational Intelligence in Engineering

Key issues

For worse moves, if $r < \exp(-\delta / t)$, $s_0 = s$

- Decreasing temperature → Decrease the probability of accepting bad moves
- Allow a bad move but the probability of accepting it is inverse proportional to the difference from the previous move
- Increasing the number of iterations at each temperature → spend more efforts in later iterations

Numerical Example

Maximize $f(x)=x^3-60x^2+900x+100$; x=[0~31]

Starting temperature t_0 =500

Cooling schedule $T(k)=t_00.9^k$; $n_{\text{iter}}=1$ (1 iteration at each temperature)

x is expressed as 5-bit representation; its neighborhood

is selected based on one-bit change

Initial random solution: (10011)

Initial $x: 2^4+2^1+2^0=19$

Initial f(x): 2399

Application of Computational Intelligence in Engineering

Experiment Result

If $r < ovn(\Sigma/4)$

				If $r < \exp(\delta / t)$, $s_0 = s$				exp(-112/500)=0.7	
T(k)	Selected bit	String	x	f(x)	δ	Move Prob.	r random	Move?	
500	1	00011	3	2287	-112	0.79932	0.638	YES	
450	3	00111	7	3803	>0		[exp(-247/4	05)=0.54342
405	5	00110	6	3556	-247	0.54342	0.124	YES	
364.5	2	01110	14	3684	>0				
328.0	4	01100	12	3988	>0				
295.2	3	01000	8	3972	-16	0.94724	0.837	YES	
265.7	4	01010	10	4100	>0				Optimal
239.1	5	01011	11	4071	-29	0.88578	0.419	YES	Move away
215.2	1	11011	27	343	-3728	3.00E-08	0.573	NO	
193.7	2	00011	3	2287	-1784	0.0001	0.249	NO	

exp(-112/500)=0.79932

Generic Decisions

- Initial temperature
- Final temperature
- Cooling schedule
 - Deceasing function
- Number of iteration at each temperature: n_{iter}
 - Spend longer time at lower temperatures
 - Increasing function

Initial Temperature

For worse moves, if $r < \exp(-\delta / t)$, $s_0 = s$

- If too hot, we are conducting a pure random search (always accept worse moves)
- If too cold, we are implementing hill climbing (do not allow worse moves at all)
- Preliminary run: Start high, freeze quickly until <u>about</u> 50%~80% of worse moves are accepted; use this as the initial temperature

Final Temperature

- It is usual to let the temperature decrease until it is close to zero
- Sufficient to stop when the chance of accepting a bad move is negligible

Cooling Schedule (1)

- Geometrical $T(k) = t_0 a^k$; a is a constant smaller than (close to) 1
- Logarithmic $T(k) = t_0 \ln(2) / \ln(k) \ k \ge 2$

to 0

• Exponential $T(k) = t_0 \exp(-c/k)$; c is a small positive constant close

Cooling Schedule (2)

- Lundy and Mees (1986) $T(k) = T(k-1) / (1+\gamma T(k-1)); \gamma \text{ is a small constant}$
- Aarts and Korst (1989)

```
T(k) = T(k-1) / [1+(T(k-1)ln(1+\gamma)/3\sigma_t)];

\sigma_t is the standard deviation at temperature t;

\gamma is a constant
```

Number of Iterations (1)

- Allow enough iterations at each temperature so that the system stabilises at that temperature
- The number of iterations may vary at different temperatures

Number of Iterations (2)

- A fixed constant
- Linearly increasing $n_{\text{iter}} = \alpha(t_0 t) + \beta$; α and β are constants
- Other increasing functions
- When a certain number of better solutions have been found, stop the iterations; go to next temperature

Number of Iterations (3)

• Compromise:

- either doing a large number of iterations at a few temperatures
- or a small number of iterations at many temperatures
- a balance between the two

Variant:

Acceptance Probability

- Simplification on the distribution
- 1. $P(t) = 1 \delta / t$; $\delta < t$
- 2. Discrete options

Iterations 1~100: 0.8

Iterations 101~200: 0.6

Iterations 201~300: 0.4

Variant:

Alternative Cooling Schedules

- T_i is the temperature for step i, where i increases to N
- The initial and final temperatures, T_0 and T_N

Variant: Neighborhood (1)

- Neighborhood definition is implicit, not shown in the algorithm
- Real-valued neighborhood: analogous to real-valued mutation
- Discrete neighborhood:
 - probability of choosing the next solution may be in inverse relation to the distance from the current solution

Variant: Neighborhood (2)

- Permutation neighborhood:
 - Inversion

$$[1\ \underline{3}\ \underline{4}\ 2\ 6\ 5]$$

Transposition

- Displacement

- 2-opt (Croes, 1958)

Variant: Fixed Temperature

- Simulated annealing does most of its work during cooling stage
- Annealing at a constant temperature
 - Searching for the optimum temperature, which determines the acceptance probability
 - Use the acceptance probability throughout the process

Variant: Reheating

- When a move is accepted, cool the system by $t = t / (1+\beta)$; β is a constant >0
- When a move is rejected, heat the system by $t = t / (1-\gamma)$; γ is a constant >0

following example, β =0.2 and γ =0.1, original string=[10011]

T(k)	Selected bit	String	X	f	δ	Move Prob.	Move?	String
500	1	00011	3	2287	-112	0.799315	YES	00011
416.7	3	00111	7	3803	>0		YES	00111
347.2	5	00110	6	3556	-247	0.543418	NO	00111
385.8	2	01111	15	3475	-328	0.427340	YES	01111

347.2/(1-0.1)

Variant: Objective Function

- The objective function is calculated at every iteration of the algorithm
- If calculation is expensive (e.g., simulation, finite element method)
 - Approximate the objective value (e.g., using fewer simulation runs); focus only on potentially good solutions
 - Evaluate just the changes and update the previous objective value
 - Keep cache to store objective values that have already been evaluated; may need a large memory space

Parallel Implementation

- Independent runs on different computing processors, with limited communication
- Split the search space into parts, each to be assigned to a particular processor
- Each processor checks the solution and test for acceptance independently. An accepted solution is conveyed to all the other processors

Hybrid with Other Algorithms

- Start with a solution that has been heuristically built by greedy algorithm or other meta-heuristics, such as GA or PSO
- Switch between different algorithms iteratively; usually use GA or PSO for global search and SA for local search
- Use SA to fine tune the control parameters of other algorithms

GA: crossover rate, mutation rate

PSO: w, c_1 , c_2 , and V_{max}

Summary of SA

- Individual-based, not population-based
- Simple in coding
- Use a nested loop structure
- No memory of past experience
- More complicated to fine tune the algorithm; particularly decreasing cooling schedule and increasing function of iterations