SIM Denoising Pipeline

Generated by Doxygen 1.9.1

1 Namespace Index	1
1.1 Packages	1
2 Hierarchical Index	3
2.1 Class Hierarchy	3
3 Class Index	5
3.1 Class List	5
4 File Index	7
4.1 File List	7
5 Namespace Documentation	9
5.1 analyse Namespace Reference	9
5.1.1 Function Documentation	10
5.1.1.1 reshape_to_bcwh()	10
5.1.2 Variable Documentation	10
5.1.2.1 args	10
5.1.2.2 ckpt	10
5.1.2.3 cmap	
5.1.2.4 default	10
5.1.2.5 device	11
5.1.2.6 df	11
5.1.2.7 exist ok	11
5.1.2.8 gt	
5.1.2.9 gt_dir	
5.1.2.10 gt_files	
5.1.2.11 gt_samples	
5.1.2.12 img_idx	
5.1.2.13 int	
5.1.2.14 model	
5.1.2.15 model_1	
5.1.2.16 model_1_dir	
5.1.2.17 model 1 files	
	
5.1.2.18 model_1_samples	
5.1.2.20 model_2_dir	
5.1.2.21 model_2_files	
5.1.2.22 model_2_samples	
5.1.2.23 N	
5.1.2.24 output_dir	
5.1.2.25 parents	
5.1.2.26 parser	
5.1.2.27 psnr	14

5.1.2.28 raw	14
5.1.2.29 raw_dir	14
5.1.2.30 raw_files	14
5.1.2.31 raw_samples	14
5.1.2.32 RCAN_hyperparameters	14
5.1.2.33 required	15
5.1.2.34 rng	15
5.1.2.35 ssim	15
5.1.2.36 str	15
5.1.2.37 True	15
5.1.2.38 type	15
5.2 apply Namespace Reference	15
5.2.1 Function Documentation	16
5.2.1.1 normalize_between_zero_and_one()	16
5.2.2 Variable Documentation	16
5.2.2.1 action	16
5.2.2.2 args	17
5.2.2.3 choices	17
5.2.2.4 ckpt	17
5.2.2.5 data	17
5.2.2.6 default	17
5.2.2.7 device	17
5.2.2.8 imagej	17
5.2.2.9 input_path	18
5.2.2.10 int	18
5.2.2.11 model	18
5.2.2.12 output_file	18
5.2.2.13 output_path	18
5.2.2.14 overlap_shape	18
5.2.2.15 parents	18
5.2.2.16 parser	19
5.2.2.17 percentile	19
5.2.2.18 raw	19
5.2.2.19 raw_files	19
5.2.2.20 RCAN_hyperparameters	19
5.2.2.21 required	19
5.2.2.22 restored	19
5.2.2.23 str	20
5.2.2.24 type	20
5.3 convert_omx_to_czxy Namespace Reference	20
5.3.1 Variable Documentation	20
5.3.1.1 action	20

5.3.1.2 args	20
5.3.1.3 converted	21
5.3.1.4 imagej	21
5.3.1.5 input_dir	21
5.3.1.6 input_files	21
5.3.1.7 int	21
5.3.1.8 n_angles	21
5.3.1.9 n_phases	21
5.3.1.10 original	22
5.3.1.11 parser	22
5.3.1.12 required	22
5.3.1.13 str	22
5.3.1.14 type	22
5.4 convert_omx_to_paz Namespace Reference	22
5.4.1 Variable Documentation	23
5.4.1.1 action	23
5.4.1.2 args	23
5.4.1.3 converted	23
5.4.1.4 imagej	23
5.4.1.5 input_dir	23
5.4.1.6 input_files	23
5.4.1.7 int	23
5.4.1.8 n_angles	24
5.4.1.9 n_phases	24
5.4.1.10 original	24
5.4.1.11 parser	24
5.4.1.12 required	24
5.4.1.13 str	24
5.4.1.14 type	24
5.5 convert_slices_to_volumes Namespace Reference	25
5.5.1 Variable Documentation	25
5.5.1.1 args	25
5.5.1.2 default	25
5.5.1.3 exist_ok	25
5.5.1.4 imagej	26
5.5.1.5 input_dir	26
5.5.1.6 input_files	26
5.5.1.7 input_slice	26
5.5.1.8 output_dir	26
5.5.1.9 output_file	26
5.5.1.10 parents	26
5.5.1.11 parser	27

5.5.1.12 required	 . 27
5.5.1.13 str	 . 27
5.5.1.14 subvolume	 . 27
5.5.1.15 True	 . 27
5.5.1.16 tuple_of_ints	 . 27
5.5.1.17 type	 . 27
5.5.1.18 volume	 . 28
5.6 generate_sim Namespace Reference	 . 28
5.6.1 Function Documentation	 . 28
5.6.1.1 arange_zero()	 . 28
5.6.1.2 threshold_norm()	 . 28
5.6.2 Variable Documentation	 . 29
5.6.2.1 args	 . 29
5.6.2.2 default	 . 29
5.6.2.3 int	 . 29
5.6.2.4 parser	 . 29
5.6.2.5 required	 . 29
5.6.2.6 runner	 . 29
5.6.2.7 str	 . 30
5.6.2.8 type	 . 30
5.7 image_noising Namespace Reference	 . 30
5.7.1 Function Documentation	 . 31
5.7.1.1 save_image_pair()	 . 31
5.7.2 Variable Documentation	 . 31
5.7.2.1 args	 . 31
5.7.2.2 choices	 . 31
5.7.2.3 data	 . 31
5.7.2.4 default	 . 31
5.7.2.5 float	 . 31
5.7.2.6 gt	 . 32
5.7.2.7 img_idx_all	 . 32
5.7.2.8 img_idx_test	 . 32
5.7.2.9 img_idx_train	 . 32
5.7.2.10 img_idx_val	 . 32
5.7.2.11 input_path	 . 32
5.7.2.12 int	 . 32
5.7.2.13 n_acquisitions	 . 32
5.7.2.14 n_img	 . 33
5.7.2.15 output_path	 . 33
5.7.2.16 output_test_gt_path	 . 33
5.7.2.17 output_test_raw_path	 . 33
5.7.2.18 output_train_gt_path	 . 33

5.7.2.19 output_train_raw_path	33
5.7.2.20 output_val_gt_path	33
5.7.2.21 output_val_raw_path	33
5.7.2.22 parents	34
5.7.2.23 parser	34
5.7.2.24 required	34
5.7.2.25 rng	34
5.7.2.26 split	34
5.7.2.27 str	34
5.7.2.28 train_size	34
5.7.2.29 type	34
5.7.2.30 val_size	35
5.8 manage_stack Namespace Reference	35
5.8.1 Variable Documentation	35
5.8.1.1 action	35
5.8.1.2 args	35
5.8.1.3 choices	36
5.8.1.4 default	36
5.8.1.5 exist_ok	36
5.8.1.6 filename	36
5.8.1.7 files	36
5.8.1.8 img_data	36
5.8.1.9 int	36
5.8.1.10 n_acq	37
5.8.1.11 n_z	37
5.8.1.12 number_of_stacks	37
5.8.1.13 output_data	37
5.8.1.14 output_dir	37
5.8.1.15 output_file	37
5.8.1.16 parents	37
5.8.1.17 parser	38
5.8.1.18 required	38
5.8.1.19 sample	38
5.8.1.20 stack	38
5.8.1.21 stack_number	38
5.8.1.22 str	38
5.8.1.23 True	39
5.8.1.24 type	39
5.9 rcan Namespace Reference	39
5.10 rcan.data_generator Namespace Reference	39
5.10.1 Function Documentation	39
5.10.1.1 load SIM dataset()	39

5.11 rcan.model Namespace Reference	40
5.11.1 Function Documentation	41
5.11.1.1 _conv()	41
5.11.1.2 _destandardize()	41
5.11.1.3 _global_average_pooling()	42
5.11.1.4 _standardize()	42
5.12 rcan.plotting Namespace Reference	42
5.12.1 Function Documentation	42
5.12.1.1 plot_learning_curve()	43
5.12.1.2 plot_reconstructions()	43
5.13 rcan.utils Namespace Reference	44
5.13.1 Function Documentation	44
5.13.1.1 apply()	44
5.13.1.2 load_rcan_checkpoint()	45
5.13.1.3 normalize()	45
5.13.1.4 References	46
5.13.1.5 percentile()	46
5.13.1.6 tuple_of_ints()	46
5.14 recon_postprocess Namespace Reference	46
5.14.1 Variable Documentation	46
5.14.1.1 args	46
5.14.1.2 files	46
5.14.1.3 img_data	47
5.14.1.4 parser	47
5.14.1.5 required	47
5.14.1.6 str	47
5.14.1.7 type	47
5.15 recon_preprocess Namespace Reference	47
5.15.1 Function Documentation	48
5.15.1.1 normalize_acquisition_intensity()	48
5.15.2 Variable Documentation	48
5.15.2.1 action	48
5.15.2.2 args	48
5.15.2.3 choices	48
5.15.2.4 default	48
5.15.2.5 exist_ok	48
5.15.2.6 files	49
5.15.2.7 img_data	49
5.15.2.8 int	49
5.15.2.9 output_dir	49
5.15.2.10 output_file	49
5.15.2.11 parents	49

5.15.2.12 parser	 . 49
5.15.2.13 percentile	 . 49
5.15.2.14 required	 . 50
5.15.2.15 str	 . 50
5.15.2.16 True	 . 50
5.15.2.17 type	 . 50
5.16 stats Namespace Reference	 . 50
5.16.1 Function Documentation	 . 51
5.16.1.1 paired_t()	 . 51
5.16.2 Variable Documentation	 . 51
5.16.2.1 alpha	 . 52
5.16.2.2 args	 . 52
5.16.2.3 ax	 . 52
5.16.2.4 choices	 . 52
5.16.2.5 color	 . 52
5.16.2.6 data	 . 52
5.16.2.7 default	 . 52
5.16.2.8 df	 . 53
5.16.2.9 dflong	 . 53
5.16.2.10 dflongssim	 . 53
5.16.2.11 dodge	 . 53
5.16.2.12 exist_ok	 . 53
5.16.2.13 fig	 . 54
5.16.2.14 figsize	 . 54
5.16.2.15 hist_range_psnr	 . 54
5.16.2.16 hist_range_ssim	 . 54
5.16.2.17 hue	 . 54
5.16.2.18 int	 . 54
5.16.2.19 legend	 . 55
5.16.2.20 lw	 . 55
5.16.2.21 mean_psnr_1	 . 55
5.16.2.22 mean_psnr_2	 . 55
5.16.2.23 mean_ssim_1	 . 55
5.16.2.24 mean_ssim_2	 . 55
5.16.2.25 output_dir	 . 55
5.16.2.26 palette	 . 56
5.16.2.27 parents	 . 56
5.16.2.28 parser	 . 56
5.16.2.29 psnr_cols	 . 56
5.16.2.30 psnr_diff_1_max	 . 56
5.16.2.31 psnr_diff_1_min	 . 56
5.16.2.32 psnr_diff_2_max	 . 57

5.16.2.33 psnr_diff_2_min	 . 57
5.16.2.34 range	 . 57
5.16.2.35 required	 . 57
5.16.2.36 se_psnr_1	 . 57
5.16.2.37 se_psnr_2	 . 57
5.16.2.38 se_ssim_1	 . 58
5.16.2.39 se_ssim_2	 . 58
5.16.2.40 ssim_cols	 . 58
5.16.2.41 ssim_diff_1_max	 . 58
5.16.2.42 ssim_diff_1_min	 . 58
5.16.2.43 ssim_diff_2_max	 . 59
5.16.2.44 ssim_diff_2_min	 . 59
5.16.2.45 str	 . 59
5.16.2.46 title	 . 59
5.16.2.47 True	 . 59
5.16.2.48 type	 . 59
5.16.2.49 x	 . 59
5.16.2.50 xlabel	 . 60
5.16.2.51 y	 . 60
5.17 synthetic_sim Namespace Reference	 . 60
5.18 synthetic_sim.otf Namespace Reference	 . 60
5.18.1 Function Documentation	 . 60
5.18.1.1 calc_psf()	 . 60
5.19 train Namespace Reference	 . 61
5.19.1 Function Documentation	 . 61
5.19.1.1 load_data_paths()	 . 62
5.19.1.2 train()	 . 62
5.19.2 Variable Documentation	 . 62
5.19.2.1 args	 . 62
5.19.2.2 ckpt	 . 62
5.19.2.3 ckpt_path	 . 62
5.19.2.4 config	 . 63
5.19.2.5 device	 . 63
5.19.2.6 exist_ok	 . 63
5.19.2.7 input_shape	 . 63
5.19.2.8 losses_train_epoch	 . 63
5.19.2.9 losses_val_epoch	 . 63
5.19.2.10 model	 . 63
5.19.2.11 n_accumulations	 . 64
5.19.2.12 ndim	 . 64
5.19.2.13 nepoch	 . 64
5.19.2.14 optimizer	 . 64

5.19.2.15 output_dir	 . 64
5.19.2.16 parents	 . 64
5.19.2.17 parser	 . 64
5.19.2.18 psnr_train_epoch	 . 65
5.19.2.19 psnr_val_epoch	 . 65
5.19.2.20 RCAN_hyperparameters	 . 65
5.19.2.21 required	 . 65
5.19.2.22 saveinterval	 . 65
5.19.2.23 scheduler	 . 65
5.19.2.24 schema	 . 66
5.19.2.25 ssim_train_epoch	 . 66
5.19.2.26 ssim_val_epoch	 . 66
5.19.2.27 start_epoch	 . 66
5.19.2.28 str	 . 66
5.19.2.29 train_loader	 . 66
5.19.2.30 True	 . 67
5.19.2.31 type	 . 67
5.19.2.32 val_loader	 . 67
6 Class Documentation	69
6.1 rcan.modelchannel_attention_block Class Reference	
6.1.1 Detailed Description	
6.1.1.1 References	
6.1.2 Constructor & Destructor Documentation	
6.1.2.1 init ()	
6.1.3 Member Function Documentation	
6.1.3.1 forward()	
6.1.4 Member Data Documentation	 . 71
6.1.4.1 conv_1	 . 71
6.1.4.2 conv_2	 . 71
6.1.4.3 global_average_pooling	 . 71
6.2 rcan.modelresidual_channel_attention_blocks Class Reference	 . 72
6.2.1 Detailed Description	 . 73
6.2.1.1 References	 . 73
6.2.2 Constructor & Destructor Documentation	 . 73
6.2.2.1init()	 . 73
6.2.3 Member Function Documentation	 . 73
6.2.3.1 forward()	 . 73
6.2.4 Member Data Documentation	 . 74
6.2.4.1 channel_attention_block_list	 . 74
6.2.4.2 conv_list	
6.2.4.3 repeat	 . 74

6.2.4.4 residual_scaling	74
6.3 synthetic_sim.otf.PsfParameters Class Reference	74
6.3.1 Detailed Description	75
6.3.2 Member Data Documentation	75
6.3.2.1 Callable	75
6.3.2.2 float	75
6.3.2.3 int	75
6.4 rcan.model.RCAN Class Reference	76
6.4.1 Detailed Description	77
6.4.1.1 References	77
6.4.2 Constructor & Destructor Documentation	77
6.4.2.1init()	77
6.4.3 Member Function Documentation	78
6.4.3.1 forward()	78
6.4.4 Member Data Documentation	78
6.4.4.1 conv_input	78
6.4.4.2 conv_list	78
6.4.4.3 conv_output	78
6.4.4.4 num_residual_groups	79
6.4.4.5 rcab_list	79
6.5 rcan.data_generator.SIM_Dataset Class Reference	79
6.5.1 Detailed Description	80
6.5.2 Constructor & Destructor Documentation	80
6.5.2.1init()	80
6.5.3 Member Function Documentation	81
6.5.3.1getitem()	81
6.5.3.2len()	82
6.5.3.3 _scale()	82
6.5.4 Member Data Documentation	82
6.5.4.1 _area_threshold	82
6.5.4.2 _intensity_threshold	82
6.5.4.3 _scale_factor	82
6.5.4.4 _shape	82
6.5.4.5 _transform_function	82
6.5.4.6 _y	83
6.5.4.7 output_shape	83
6.5.4.8 output_signature	83
6.5.4.9 p_max	83
6.5.4.10 p_min	83
6.5.4.11 steps_per_epoch	83
6.6 generate_sim.SimulationRunner Class Reference	83
6.6.1 Detailed Description	84

6.6.2 Constructor & Destructor Documentation	84
6.6.2.1init()	84
6.6.3 Member Function Documentation	84
6.6.3.1 do_sim()	84
6.6.3.2 run()	85
6.6.4 Member Data Documentation	85
6.6.4.1 input_dir	85
6.6.4.2 input_files	85
6.6.4.3 output_dir	85
6.6.4.4 range	85
6.6.4.5 z_offset	85
6.7 generate_sim.Simulator Class Reference	86
6.7.1 Detailed Description	87
6.7.2 Constructor & Destructor Documentation	87
6.7.2.1init()	87
6.7.3 Member Function Documentation	87
6.7.3.1 add_noise()	87
6.7.3.2 illumination()	87
6.7.3.3 in_focus_plane()	88
6.7.3.4 params_dict()	88
6.7.3.5 psf()	88
6.7.3.6 psf_params()	88
6.7.3.7 randomise()	88
6.7.3.8 simulate_ideal_superres()	88
6.7.3.9 simulate_sim()	89
6.7.3.10 wavevectors()	89
6.7.4 Member Data Documentation	89
6.7.4.1 _illumination	89
6.7.4.2 _psf	89
6.7.4.3 _superres_psf	89
6.7.4.4 angle_error	89
6.7.4.5 beam_position	90
6.7.4.6 delta_z_p	90
6.7.4.7 k0	90
6.7.4.8 k_exc	90
6.7.4.9 lambda0	90
6.7.4.10 lambda_exc	90
6.7.4.11 n_angles	90
6.7.4.12 n_g	90
6.7.4.13 n_i	91
6.7.4.14 n_rotations	91
6.7.4.15 n_sample	91

	6.7.4.16 n_shifts	91
	6.7.4.17 n_x	91
	6.7.4.18 n_z	91
	6.7.4.19 poisson_photons	91
	6.7.4.20 res_axial	91
	6.7.4.21 res_lateral	92
	6.7.4.22 signal_to_noise	92
	6.7.4.23 z	92
	6.7.4.24 z_p	92
7	File Documentation	93
	7.1 /home/jhughes2712/projects/sim_project/jh2284/src/analyse.py File Reference	93
	7.1.1 Detailed Description	94
	7.2 /home/jhughes2712/projects/sim_project/jh2284/src/apply.py File Reference	94
	7.2.1 Detailed Description	95
	7.3 /home/jhughes2712/projects/sim_project/jh2284/src/convert_omx_to_czxy.py File Reference	96
	7.3.1 Detailed Description	96
	7.4 /home/jhughes2712/projects/sim_project/jh2284/src/convert_omx_to_paz.py File Reference	97
	7.4.1 Detailed Description	97
	7.5 /home/jhughes2712/projects/sim_project/jh2284/src/convert_slices_to_volumes.py File Reference	97
	7.5.1 Detailed Description	98
	7.6 /home/jhughes2712/projects/sim_project/jh2284/src/generate_sim.py File Reference	98
	7.6.1 Detailed Description	99
	7.7 /home/jhughes2712/projects/sim_project/jh2284/src/image_noising.py File Reference	99
	7.7.1 Detailed Description	100
	7.8 /home/jhughes2712/projects/sim_project/jh2284/src/manage_stack.py File Reference	101
	7.8.1 Detailed Description	101
	7.9 /home/jhughes2712/projects/sim_project/jh2284/src/rcan/initpy File Reference	102
	7.10 /home/jhughes2712/projects/sim_project/jh2284/src/synthetic_sim/initpy File Reference	102
	7.11 /home/jhughes2712/projects/sim_project/jh2284/src/rcan/data_generator.py File Reference	102
	7.11.1 Detailed Description	103
	7.12 /home/jhughes2712/projects/sim_project/jh2284/src/rcan/model.py File Reference	103
	7.12.1 Detailed Description	104
	7.13 /home/jhughes2712/projects/sim_project/jh2284/src/rcan/plotting.py File Reference	104
	7.13.1 Detailed Description	104
	7.14 /home/jhughes2712/projects/sim_project/jh2284/src/rcan/utils.py File Reference	104
	7.14.1 Detailed Description	105
	7.15 /home/jhughes2712/projects/sim_project/jh2284/src/recon_postprocess.py File Reference	105
	7.15.1 Detailed Description	106
	7.16 /home/jhughes2712/projects/sim_project/jh2284/src/recon_preprocess.py File Reference	106
	7.16.1 Detailed Description	107
	7.17 /home/jhughes2712/projects/sim_project/jh2284/src/stats.py File Reference	107

	xiii
7.18 /home/jhughes2712/projects/sim_project/jh2284/src/synthetic_sim/otf.py File Reference	. 108
7.19 /home/jhughes2712/projects/sim_project/jh2284/src/train.py File Reference	. 109
7.19.1 Detailed Description	. 110
Index	111

Namespace Index

1.1 Packages

Here are the packages with brief descriptions (if available):

analyse	9
apply	15
convert_omx_to_czxy	20
convert_omx_to_paz	22
convert_slices_to_volumes	25
generate_sim	28
image_noising	30
manage_stack	35
rcan	39
rcan.data_generator	39
rcan.model	40
rcan.plotting	42
rcan.utils	44
recon_postprocess	46
recon_preprocess	47
stats	50
synthetic_sim	60
synthetic_sim.otf	60
train	61

2 Namespace Index

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

torch.nn.Module
rcan.model.RCAN
rcan.modelchannel_attention_block
rcan.modelresidual_channel_attention_blocks
synthetic_sim.otf.PsfParameters
generate_sim.SimulationRunner
generate_sim.Simulator
Dataset
rcan.data generator.SIM Dataset

4 Hierarchical Index

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

rcan.modelchannel_attention_block	
Implements channel attention block/layer	69
rcan.modelresidual_channel_attention_blocks	
Implements residual group based on [1]	72
synthetic_sim.otf.PsfParameters	
Class to store PSF parameters	74
rcan.model.RCAN	
Builds a residual channel attention network	76
rcan.data_generator.SIM_Dataset	
Generates batches of images with real-time data augmentation	79
generate_sim.SimulationRunner	
Class which performs a batch of simulations, either sequentially or in parallel	83
generate_sim.Simulator	
The Simulator class encapsulates the state of a 3D microscope simulation	86

6 Class Index

File Index

4.1 File List

Here is a list of all files with brief descriptions:

/home/jhughes2712/projects/sim_project/jh2284/src/analyse.py	
Script producing plots and small datasets that summarise the performance of models	93
/home/jhughes2712/projects/sim_project/jh2284/src/apply.py	
Script producing restored images resulting from an RCAN denoiser being applied to low SNR	
images	94
/home/jhughes2712/projects/sim_project/jh2284/src/convert_omx_to_czxy.py	
Script enabling .tif file conversion between OMX and CZXY	96
/home/jhughes2712/projects/sim_project/jh2284/src/convert_omx_to_paz.py	
Script enabling .tif file conversion between OMX and PAZ	97
/home/jhughes2712/projects/sim_project/jh2284/src/convert_slices_to_volumes.py	
Script enabling construction of 3D image volumes from large RGB 2D image slices	97
/home/jhughes2712/projects/sim_project/jh2284/src/generate_sim.py	
Script simulating the acquisition of 3D SIM image volumes	98
/home/jhughes2712/projects/sim_project/jh2284/src/image_noising.py	
Script which converts a directory of high-SNR SIM images into a training dataset	99
/home/jhughes2712/projects/sim_project/jh2284/src/manage_stack.py	
Script handling the stacking and unstacking of groups of images, for the purpose of batch recon-	
structions	101
/home/jhughes2712/projects/sim_project/jh2284/src/recon_postprocess.py	
Script handling the postprocessing of SIM reconstructions	105
/home/jhughes2712/projects/sim_project/jh2284/src/recon_preprocess.py	
Script handling the preprocessing of images before SIM reconstruction	106
/home/jhughes2712/projects/sim_project/jh2284/src/stats.py	107
/home/jhughes2712/projects/sim_project/jh2284/src/train.py	
Script used to train RCAN	109
/home/jhughes2712/projects/sim_project/jh2284/src/rcan/initpy	102
/home/jhughes2712/projects/sim_project/jh2284/src/rcan/data_generator.py	
Module that handles processing and batching of data during training loop	102
/home/jhughes2712/projects/sim_project/jh2284/src/rcan/model.py	
Module defining the RCAN model architecture	103
/home/jhughes2712/projects/sim_project/jh2284/src/rcan/plotting.py	
Module providing helper functions for matplotlib plots	104
/home/jhughes2712/projects/sim_project/jh2284/src/rcan/utils.py	
Contains utility functions for the training loop and inference	104
/home/jhughes2712/projects/sim_project/jh2284/src/synthetic_sim/initpy	102
/home/jhughes2712/projects/sim_project/jh2284/src/synthetic_sim/otf.py	108

8 File Index

Namespace Documentation

5.1 analyse Namespace Reference

Functions

• def reshape_to_bcwh (data)

Variables

```
• parser = argparse.ArgumentParser()
type
• str
· required

    default

• args = parser.parse_args()
• output_dir = pathlib.Path(args.output_dir)
parents
• True
· exist ok
• tuple device

    ckpt

    model

• RCAN_hyperparameters = ckpt["hyperparameters"]
• gt_dir = pathlib.Path(args.gt_dir)
• raw_dir = pathlib.Path(args.raw_dir)
• model_1_dir = pathlib.Path(args.model_1_dir)
• gt_files = sorted(list(gt_dir.glob(args.glob_str)))
raw_files = sorted(list(raw_dir.glob(args.glob_str)))
model_1_files = sorted(list(model_1_dir.glob(args.glob_str)))
• model_2_dir = pathlib.Path(args.model_2_dir)

    model_2_files = sorted(list(model_2_dir.glob(args.glob_str)))

• psnr = PSNR(data_range=65536, device=device)
• ssim
• df
• N = len(gt files)
```

def gt = reshape_to_bcwh(tifffile.imread(gt_files[i]))

def raw = reshape_to_bcwh(tifffile.imread(raw_files[i]))
def model_1 = reshape_to_bcwh(tifffile.imread(model_1_files[i]))
def model_2 = reshape_to_bcwh(tifffile.imread(model_2_files[i]))
rng = np.random.default_rng(seed=31052024)
img_idx = list(range(N))
list gt_samples = [np.squeeze(tifffile.imread(gt_files[i])) for i in img_idx]
list raw_samples = [np.squeeze(tifffile.imread(raw_files[i])) for i in img_idx]
list model_1_samples
list model_2_samples

5.1.1 Function Documentation

5.1.1.1 reshape_to_bcwh()

• cmap

5.1.2 Variable Documentation

5.1.2.1 args

```
analyse.args = parser.parse_args()
```

5.1.2.2 ckpt

analyse.ckpt

5.1.2.3 cmap

analyse.cmap

5.1.2.4 default

analyse.default

5.1.2.5 device

tuple analyse.device

Initial value:

```
1 = (
2          torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
3          )
```

5.1.2.6 df

analyse.df

Initial value:

5.1.2.7 exist_ok

analyse.exist_ok

5.1.2.8 gt

```
def analyse.gt = reshape_to_bcwh(tifffile.imread(gt_files[i]))
```

5.1.2.9 gt_dir

```
analyse.gt_dir = pathlib.Path(args.gt_dir)
```

5.1.2.10 gt_files

```
analyse.gt_files = sorted(list(gt_dir.glob(args.glob_str)))
```

5.1.2.11 gt_samples

```
list \ analyse.gt\_samples = [np.squeeze(tifffile.imread(gt\_files[i])) \ for \ i \ in \ img\_idx]
```

5.1.2.12 img_idx

```
analyse.img_idx = list(range(N))
```

5.1.2.13 int

analyse.int

5.1.2.14 model

analyse.model

5.1.2.15 model_1

```
def analyse.model_1 = reshape_to_bcwh(tifffile.imread(model_1_files[i]))
```

5.1.2.16 model_1_dir

```
analyse.model_1_dir = pathlib.Path(args.model_1_dir)
```

5.1.2.17 model_1_files

```
analyse.model_1_files = sorted(list(model_1_dir.glob(args.glob_str)))
```

5.1.2.18 model_1_samples

```
list analyse.model_1_samples
```

Initial value:

5.1.2.19 model_2

```
def analyse.model_2 = reshape_to_bcwh(tifffile.imread(model_2_files[i]))
```

5.1.2.20 model_2_dir

```
analyse.model_2_dir = pathlib.Path(args.model_2_dir)
```

5.1.2.21 model_2_files

```
list analyse.model_2_files = sorted(list(model_2_dir.glob(args.glob_str)))
```

5.1.2.22 model_2_samples

```
analyse.model_2_samples
```

Initial value:

5.1.2.23 N

```
analyse.N = len(gt_files)
```

5.1.2.24 output_dir

```
analyse.output_dir = pathlib.Path(args.output_dir)
```

5.1.2.25 parents

```
analyse.parents
```

5.1.2.26 parser

```
analyse.parser = argparse.ArgumentParser()
```

5.1.2.27 psnr

```
analyse.psnr = PSNR(data_range=65536, device=device)
```

5.1.2.28 raw

```
def analyse.raw = reshape_to_bcwh(tifffile.imread(raw_files[i]))
```

5.1.2.29 raw_dir

```
analyse.raw_dir = pathlib.Path(args.raw_dir)
```

5.1.2.30 raw_files

```
analyse.raw_files = sorted(list(raw_dir.glob(args.glob_str)))
```

5.1.2.31 raw_samples

```
list analyse.raw_samples = [np.squeeze(tifffile.imread(raw_files[i])) for i in img_idx]
```

5.1.2.32 RCAN_hyperparameters

```
analyse.RCAN_hyperparameters = ckpt["hyperparameters"]
```

5.1.2.33 required

```
analyse.required
```

5.1.2.34 rng

```
analyse.rng = np.random.default_rng(seed=31052024)
```

5.1.2.35 ssim

analyse.ssim

Initial value:

5.1.2.36 str

analyse.str

5.1.2.37 True

analyse.True

5.1.2.38 type

analyse.type

5.2 apply Namespace Reference

Functions

• def normalize_between_zero_and_one (m)

Variables

- parser = argparse.ArgumentParser()
- type
- str
- required
- int
- · choices
- default
- percentile
- action
- args = parser.parse_args()
- input_path = pathlib.Path(args.input)
- output_path = pathlib.Path(args.output)
- parents
- raw_files = sorted(input_path.glob("*.tif"))
- data = itertools.zip_longest(raw_files, [])
- tuple device
- ckpt
- model
- RCAN_hyperparameters = ckpt["hyperparameters"]
- list overlap_shape
- raw = normalize(tifffile.imread(raw_file), args.p_min, args.p_max)
- restored
- output_file = output_path / ("pred_" + raw_file.name)
- imagej

5.2.1 Function Documentation

5.2.1.1 normalize_between_zero_and_one()

```
def apply.normalize_between_zero_and_one ( \it m )
```

5.2.2 Variable Documentation

5.2.2.1 action

apply.action

5.2.2.2 args

```
apply.args = parser.parse_args()
```

5.2.2.3 choices

apply.choices

5.2.2.4 ckpt

apply.ckpt

5.2.2.5 data

```
list apply.data = itertools.zip_longest(raw_files, [])
```

5.2.2.6 default

apply.default

5.2.2.7 device

tuple apply.device

Initial value:

```
1 = (
2 torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
3 )
```

5.2.2.8 imagej

apply.imagej

5.2.2.9 input_path

```
apply.input_path = pathlib.Path(args.input)
```

5.2.2.10 int

apply.int

5.2.2.11 model

apply.model

5.2.2.12 output_file

```
apply.output_file = output_path / ("pred_" + raw_file.name)
```

5.2.2.13 output_path

```
apply.output_path = pathlib.Path(args.output)
```

5.2.2.14 overlap_shape

apply.overlap_shape

Initial value:

```
1 = [
2          max(1, x // 8) if x > 2 else 0
3          for x in RCAN_hyperparameters["input_shape"]
```

5.2.2.15 parents

apply.parents

5.2.2.16 parser

```
apply.parser = argparse.ArgumentParser()
```

5.2.2.17 percentile

apply.percentile

5.2.2.18 raw

```
apply.raw = normalize(tifffile.imread(raw_file), args.p_min, args.p_max)
```

5.2.2.19 raw_files

```
apply.raw_files = sorted(input_path.glob("*.tif"))
```

5.2.2.20 RCAN_hyperparameters

```
apply.RCAN_hyperparameters = ckpt["hyperparameters"]
```

5.2.2.21 required

apply.required

5.2.2.22 restored

def apply.restored

Initial value:

5.2.2.23 str

apply.str

5.2.2.24 type

apply.type

5.3 convert_omx_to_czxy Namespace Reference

Variables

- parser = argparse.ArgumentParser()
- type
- str
- required
- int
- action
- args = parser.parse_args()
- input_dir = pathlib.Path(args.input)
- input_files = sorted(input_dir.rglob("*.tif"))
- original = tifffile.imread(input_file)
- n_phases = args.num_phases
- n_angles = args.num_angles
- converted
- imagej

5.3.1 Variable Documentation

5.3.1.1 action

 $\verb"convert_omx_to_czxy.action"$

5.3.1.2 args

convert_omx_to_czxy.args = parser.parse_args()

5.3.1.3 converted

convert_omx_to_czxy.converted

Initial value:

5.3.1.4 imagej

```
convert_omx_to_czxy.imagej
```

5.3.1.5 input_dir

```
convert_omx_to_czxy.input_dir = pathlib.Path(args.input)
```

5.3.1.6 input_files

```
convert_omx_to_czxy.input_files = sorted(input_dir.rglob("*.tif"))
```

5.3.1.7 int

```
convert_omx_to_czxy.int
```

5.3.1.8 n_angles

```
convert_omx_to_czxy.n_angles = args.num_angles
```

5.3.1.9 n_phases

```
convert_omx_to_czxy.n_phases = args.num_phases
```

5.3.1.10 original

```
convert_omx_to_czxy.original = tifffile.imread(input_file)
```

5.3.1.11 parser

```
convert_omx_to_czxy.parser = argparse.ArgumentParser()
```

5.3.1.12 required

```
convert_omx_to_czxy.required
```

5.3.1.13 str

```
convert_omx_to_czxy.str
```

5.3.1.14 type

convert_omx_to_czxy.type

5.4 convert_omx_to_paz Namespace Reference

Variables

- parser = argparse.ArgumentParser()
- type
- str
- required
- int
- action
- args = parser.parse_args()
- input_dir = pathlib.Path(args.input)
- input_files = sorted(input_dir.rglob("*.tif"))
- original = tifffile.imread(input_file)
- n_phases = args.num_phases
- n_angles = args.num_angles
- converted = np.zeros_like(original)
- imagej

5.4.1 Variable Documentation

5.4.1.1 action

convert_omx_to_paz.action

5.4.1.2 args

convert_omx_to_paz.args = parser.parse_args()

5.4.1.3 converted

convert_omx_to_paz.converted = np.zeros_like(original)

5.4.1.4 imagej

convert_omx_to_paz.imagej

5.4.1.5 input_dir

convert_omx_to_paz.input_dir = pathlib.Path(args.input)

5.4.1.6 input_files

convert_omx_to_paz.input_files = sorted(input_dir.rglob("*.tif"))

5.4.1.7 int

convert_omx_to_paz.int

5.4.1.8 n_angles

convert_omx_to_paz.n_angles = args.num_angles

5.4.1.9 n_phases

convert_omx_to_paz.n_phases = args.num_phases

5.4.1.10 original

convert_omx_to_paz.original = tifffile.imread(input_file)

5.4.1.11 parser

convert_omx_to_paz.parser = argparse.ArgumentParser()

5.4.1.12 required

convert_omx_to_paz.required

5.4.1.13 str

convert_omx_to_paz.str

5.4.1.14 type

convert_omx_to_paz.type

5.5 convert_slices_to_volumes Namespace Reference

Variables

- parser = argparse.ArgumentParser()
- type
- str
- required
- tuple_of_ints
- default
- args = parser.parse_args()
- input_dir = pathlib.Path(args.input)
- output_dir = pathlib.Path(args.output)
- input_files = sorted(input_dir.glob("*.tif"))
- parents
- True
- exist_ok
- volume = np.zeros((len(input_files), 3061, 4096), dtype=np.uint8)
- input_slice = tifffile.imread(file)
- subvolume
- tuple output file
- imagej

5.5.1 Variable Documentation

5.5.1.1 args

```
convert_slices_to_volumes.args = parser.parse_args()
```

5.5.1.2 default

```
convert_slices_to_volumes.default
```

5.5.1.3 exist_ok

convert_slices_to_volumes.exist_ok

5.5.1.4 imagej

```
convert_slices_to_volumes.imagej
```

5.5.1.5 input_dir

```
convert_slices_to_volumes.input_dir = pathlib.Path(args.input)
```

5.5.1.6 input_files

```
convert_slices_to_volumes.input_files = sorted(input_dir.glob("*.tif"))
```

5.5.1.7 input_slice

```
convert_slices_to_volumes.input_slice = tifffile.imread(file)
```

5.5.1.8 output_dir

```
convert_slices_to_volumes.output_dir = pathlib.Path(args.output)
```

5.5.1.9 output_file

 $\verb|tuple convert_slices_to_volumes.output_file|\\$

Initial value:

5.5.1.10 parents

```
{\tt convert\_slices\_to\_volumes.parents}
```

5.5.1.11 parser

```
convert_slices_to_volumes.parser = argparse.ArgumentParser()
```

5.5.1.12 required

```
convert_slices_to_volumes.required
```

5.5.1.13 str

```
convert_slices_to_volumes.str
```

5.5.1.14 subvolume

convert_slices_to_volumes.subvolume

Initial value:

5.5.1.15 True

```
convert_slices_to_volumes.True
```

5.5.1.16 tuple_of_ints

```
convert_slices_to_volumes.tuple_of_ints
```

5.5.1.17 type

```
convert_slices_to_volumes.type
```

5.5.1.18 volume

```
convert_slices_to_volumes.volume = np.zeros((len(input_files), 3061, 4096), dtype=np.uint8)
```

5.6 generate_sim Namespace Reference

Classes

· class Simulator

The Simulator class encapsulates the state of a 3D microscope simulation.

• class SimulationRunner

Class which performs a batch of simulations, either sequentially or in parallel.

Functions

- def arange_zero (n, spacing=1)
- def threshold_norm (sample)

Applies a threshold and normalises the sample to improve contrast.

Variables

- parser = argparse.ArgumentParser()
- type
- str
- · required
- int
- default
- args = parser.parse_args()
- runner

5.6.1 Function Documentation

5.6.1.1 arange_zero()

5.6.1.2 threshold_norm()

Applies a threshold and normalises the sample to improve contrast.

5.6.2 Variable Documentation

5.6.2.1 args

```
generate_sim.args = parser.parse_args()
```

5.6.2.2 default

```
{\tt generate\_sim.default}
```

5.6.2.3 int

generate_sim.int

5.6.2.4 parser

```
generate_sim.parser = argparse.ArgumentParser()
```

5.6.2.5 required

generate_sim.required

5.6.2.6 runner

generate_sim.runner

Initial value:

```
1 = SimulationRunner(
2    args.input, args.output, range(args.start, args.end), args.z_offset
3 )
```

5.6.2.7 str

```
generate_sim.str
```

5.6.2.8 type

```
generate_sim.type
```

5.7 image_noising Namespace Reference

Functions

• def save_image_pair (gt_img, split, name, channel_idx)

Variables

- parser = argparse.ArgumentParser()
- type
- str
- · required
- int
- · choices
- float
- default
- args = parser.parse_args()
- input_path = pathlib.Path(args.input)
- output_path = pathlib.Path(args.output)
- parents
- output_train_gt_path = output_path.joinpath("Training", "GT")
- output_train_raw_path = output_path.joinpath("Training", "Raw")
- output val gt path = output path.joinpath("Validation", "GT")
- output_val_raw_path = output_path.joinpath("Validation", "Raw")
- output_test_gt_path = output_path.joinpath("Testing", "GT")
- output test raw path = output path.joinpath("Testing", "Raw")
- data = sorted(input_path.glob("*.tif"))
- n_acquisitions = tifffile.imread(data[0]).shape[0] // args.channels
- n img = len(data)
- train_size = int((1 args.test_fraction) * n_img)
- val_size = int(args.val_fraction * train_size)
- rng = np.random.default_rng(seed=25042024)
- img_idx_all = list(range(n_img))
- img_idx_test = img_idx_all[train_size:]
- img_idx_train = img_idx_all[: train_size val_size]
- img_idx_val = img_idx_all[train_size val_size : train_size]
- gt = tifffile.imread(img_file)
- string split = "train"

5.7.1 Function Documentation

5.7.1.1 save_image_pair()

5.7.2 Variable Documentation

5.7.2.1 args

```
image_noising.args = parser.parse_args()
```

5.7.2.2 choices

image_noising.choices

5.7.2.3 data

```
list image_noising.data = sorted(input_path.glob("*.tif"))
```

5.7.2.4 default

image_noising.default

5.7.2.5 float

image_noising.float

5.7.2.6 gt

```
image_noising.gt = tifffile.imread(img_file)
```

5.7.2.7 img_idx_all

```
image_noising.img_idx_all = list(range(n_img))
```

5.7.2.8 img_idx_test

```
image_noising.img_idx_test = img_idx_all[train_size:]
```

5.7.2.9 img_idx_train

```
image_noising.img_idx_train = img_idx_all[: train_size - val_size]
```

5.7.2.10 img_idx_val

```
image_noising.img_idx_val = img_idx_all[train_size - val_size : train_size]
```

5.7.2.11 input_path

```
image_noising.input_path = pathlib.Path(args.input)
```

5.7.2.12 int

image_noising.int

5.7.2.13 n_acquisitions

5.7.2.14 n_img

```
image_noising.n_img = len(data)
```

5.7.2.15 output_path

```
image_noising.output_path = pathlib.Path(args.output)
```

5.7.2.16 output_test_gt_path

```
image\_noising.output\_test\_gt\_path = output\_path.joinpath("Testing", "GT")
```

5.7.2.17 output_test_raw_path

```
image_noising.output_test_raw_path = output_path.joinpath("Testing", "Raw")
```

5.7.2.18 output_train_gt_path

```
image_noising.output_train_gt_path = output_path.joinpath("Training", "GT")
```

5.7.2.19 output train raw path

```
image_noising.output_train_raw_path = output_path.joinpath("Training", "Raw")
```

5.7.2.20 output_val_gt_path

```
image_noising.output_val_gt_path = output_path.joinpath("Validation", "GT")
```

5.7.2.21 output_val_raw_path

```
image_noising.output_val_raw_path = output_path.joinpath("Validation", "Raw")
```

5.7.2.22 parents

image_noising.parents

5.7.2.23 parser

image_noising.parser = argparse.ArgumentParser()

5.7.2.24 required

image_noising.required

5.7.2.25 rng

image_noising.rng = np.random.default_rng(seed=25042024)

5.7.2.26 split

string image_noising.split = "train"

5.7.2.27 str

image_noising.str

5.7.2.28 train_size

image_noising.train_size = int((1 - args.test_fraction) * n_img)

5.7.2.29 type

image_noising.type

5.7.2.30 val_size

```
image_noising.val_size = int(args.val_fraction * train_size)
```

5.8 manage_stack Namespace Reference

Variables

- parser = argparse.ArgumentParser()
- type
- str
- required
- int
- · choices
- · default
- action
- args = parser.parse_args()
- output_dir = pathlib.Path(args.output_dir)
- · parents
- True
- exist ok
- files = sorted(list(pathlib.Path(args.input_dir).glob(args.glob_str)))
- int stack_number = -1 else args.stack_number
- int number_of_stacks = len(files) // stack_number
- sample = tifffile.imread(files[0])
- stack
- img_data = tifffile.imread(input_file)
- tuple filename
- tuple output_file = output_dir / filename
- n_acq = args.num_acquisitions
- n_z = sample.shape[0] // n_acq
- · output_data

5.8.1 Variable Documentation

5.8.1.1 action

manage_stack.action

5.8.1.2 args

```
manage_stack.args = parser.parse_args()
```

5.8.1.3 choices

manage_stack.choices

5.8.1.4 default

manage_stack.default

5.8.1.5 exist_ok

 $manage_stack.exist_ok$

5.8.1.6 filename

tuple manage_stack.filename

Initial value:

5.8.1.7 files

```
manage_stack.files = sorted(list(pathlib.Path(args.input_dir).glob(args.glob_str)))
```

5.8.1.8 img_data

```
manage_stack.img_data = tifffile.imread(input_file)
```

5.8.1.9 int

manage_stack.int

5.8.1.10 n_acq

```
manage_stack.n_acq = args.num_acquisitions
```

5.8.1.11 n_z

```
manage_stack.n_z = sample.shape[0] // n_acq
```

5.8.1.12 number_of_stacks

```
int manage_stack.number_of_stacks = len(files) // stack_number
```

5.8.1.13 output_data

manage_stack.output_data

Initial value:

5.8.1.14 output_dir

```
manage_stack.output_dir = pathlib.Path(args.output_dir)
```

5.8.1.15 output_file

```
string manage_stack.output_file = output_dir / filename
```

5.8.1.16 parents

```
manage_stack.parents
```

5.8.1.17 parser

```
manage_stack.parser = argparse.ArgumentParser()
```

5.8.1.18 required

manage_stack.required

5.8.1.19 sample

```
manage_stack.sample = tifffile.imread(files[0])
```

5.8.1.20 stack

manage_stack.stack

Initial value:

5.8.1.21 stack_number

```
int manage_stack.stack_number = -1 else args.stack_number
```

5.8.1.22 str

manage_stack.str

5.8.1.23 True

```
manage_stack.True
```

5.8.1.24 type

```
manage_stack.type
```

5.9 rcan Namespace Reference

Namespaces

- · data_generator
- model
- plotting
- utils

5.10 rcan.data_generator Namespace Reference

Classes

· class SIM_Dataset

Generates batches of images with real-time data augmentation.

Functions

def load_SIM_dataset (images, shape, batch_size, transform_function, intensity_threshold, area_threshold, scale_factor, steps_per_epoch, p_min, p_max)

Wraps SIM_Dataset object in a PyTorch Dataloader object to enable batch loading.

5.10.1 Function Documentation

5.10.1.1 load_SIM_dataset()

Wraps SIM_Dataset object in a PyTorch Dataloader object to enable batch loading.

Parameters

images	(list[dict]) - List of dictionaries of data pairs with keys ["raw","gt"]. Images in CZXY format
shape	(tuple[int]) - Shape of batch images excluding the channel dimension
batch_size	(int) - Batch size
transform_function	(str or callable or None) - Function used for data augmentation. Typically you will set transform_function='rotate_and_flip' to apply combination of randomly selected image rotation and flipping. Alternatively, you can specify an arbitrary transformation function which takes two input images (source and target) and returns transformed images. If transform_function=None, no augmentation will be performed
intensity_threshold	(float) - If $intensity_threshold > 0$, pixels whose intensities are greater than this threshold will be considered as foreground
area_ratio_threshold	(float) - Threshold between 0 and 1. If intensity_threshold > 0, the generator calculates the ratio of foreground pixels in a target patch, and rejects the patch if the ratio is smaller than this threshold
scale_factor	(int) - Scale factor for the target patch size. Positive and negative values mean up- and down-scaling respectively.
steps_per_epoch	(int) - Determines how many times each image is used to generate a patch per batch
p_min	(float) - Minimum percentile used for scaling
p_max	(float) - Maximum percentile used for scaling

Returns

torch.utils.data.DataLoader object

5.11 rcan.model Namespace Reference

Classes

- class _channel_attention_block
 - Implements channel attention block/layer.
- class _residual_channel_attention_blocks
 - Implements residual group based on [1].
- class RCAN

Builds a residual channel attention network.

Functions

- def _conv (ndim, in_filters, out_filters, kernel_size, padding="same", **kwargs)
 - Returns the appropriate torch.nn convolution layer based on parameters.
- def _global_average_pooling (ndim)
 - Returns the appropriate torch.nn pooling layer based on parameters.
- def _standardize (x)
 - Standardises input data.
- def _destandardize (x)

Inverse of _standardize.

5.11.1 Function Documentation

5.11.1.1 _conv()

Returns the appropriate torch.nn convolution layer based on parameters.

Parameters

ndim	(int) - Specifies a 1, 2, or 3 dimensional convolution kernel
in_filters	(int) - Number of hidden input channels
out_filters	(int) - Number of hidden output channels
kernel_size	(int or tuple) Size of convolution kernel
padding	(str, optional) - Border padding strategy. Default: "same"

Returns

torch.nn.Module object of the specified type

5.11.1.2 _destandardize()

```
\begin{tabular}{ll} $\operatorname{def rcan.model.\_destandardize} & ( & $x$ ) & [\operatorname{private}] \end{tabular}
```

Inverse of _standardize.

Parameters

```
x (torch.Tensor) Input
```

Returns

torch. Tensor representing destandardised output.

5.11.1.3 _global_average_pooling()

Returns the appropriate torch.nn pooling layer based on parameters.

Parameters

```
ndim (int) - Specifies a 2 or 3 dimensional convolution kernel
```

Returns

torch.nn.Module object of the specified type

5.11.1.4 _standardize()

Standardises input data.

Standardize the signal so that the range becomes [-1, 1] (assuming the original range is [0, 1]).

Parameters

```
x (torch.Tensor) Input
```

Returns

torch. Tensor representing standardised output

5.12 rcan.plotting Namespace Reference

Functions

def plot_learning_curve (losses_train, losses_val, psnr_train, psnr_val, ssim_train, ssim_val, figsize, output
 —path)

Plots the learning curve metrics from a model checkpoint according to loss, PSNR, and SSIM.

def plot_reconstructions (device, output_path, dim, gt_imgs, raw_imgs, model_1_imgs, model_2_
imgs=None, cmap="inferno")

Plots a sample of reconstructions comparing GT vs Raw vs Restored.

5.12.1 Function Documentation

5.12.1.1 plot_learning_curve()

Plots the learning curve metrics from a model checkpoint according to loss, PSNR, and SSIM.

Parameters

losses_train	(list[float]) - List of training losses
losses_val	(list[float]) - List of validation losses
psnr_train	(list[float]) - List of training psnrs
psnr_val	(list[float]) - List of validation psnrs
ssim_train	(list[float]) - List of training ssims
ssim_val	(list[float]) - List of validation ssims
figsize	(tuple[int]) - Specifies matplotlib layout size
output_path	(str) - Determines where plot is saved

5.12.1.2 plot_reconstructions()

Plots a sample of reconstructions comparing GT vs Raw vs Restored.

Parameters

device	(torch.device) - Handles the processing unit for torch
output_path	(str) - Determines where the plot is saved
dim	(int) - Dimensionality of the images
gt_imgs	(list[np.ndarray]) - List containing GT image arrays
raw_imgs	(list[np.ndarray]) - List containing Raw image arrays
model_1_imgs	(list[np.ndarray]) - List containing Step 1 image arrays
model_2_imgs	(list[np.ndarray], optional) - List containing Step 2 image arrays. Default: None
стар	(str) - Matplotlib colormap string

5.13 rcan.utils Namespace Reference

Functions

def normalize (image, p min=2, p max=99.9, dtype="float32")

Normalizes the image intensity so that the p_min -th and the p_max -th percentiles are converted to 0 and 1 respectively.

• def apply (model, data, model_input_image_shape, model_output_image_shape, num_input_channels, num_output_channels, batch_size, device, overlap_shape=None, verbose=False)

Applies a model to an input image.

def load_rcan_checkpoint (ckpt_path, device)

Enables loading of RCAN checkpointed model.

• def tuple_of_ints (string)

Defines behaviour of parsing tuples of ints (argparse).

• def percentile (x)

Defines behaviour of parsing percentiles (argparse).

5.13.1 Function Documentation

5.13.1.1 apply()

Applies a model to an input image.

The input image stack is split into sub-blocks with model's input size, then the model is applied block by block.

Parameters

model	(torch.nn.module) - PyTorch model
data	(array_like or list of array_like) - Input data. Either an image or a list of images
batch_size	(int) - Controls the batch size used to process image data
device	(torch.device) - PyTorch device object to specify processor to use
overlap_shape	(tuple of int or None) - Overlap size between sub-blocks in each dimension. If not specified, a default size ((32, 32) for 2D and (2, 32, 32) for 3D) is used. Results at overlapped areas are blended together linearly

Returns

np.ndarray Result image

5.13.1.2 load_rcan_checkpoint()

Enables loading of RCAN checkpointed model.

Uses the hyperparameters key saved in checkpoint file in order to avoid the need to know the architecture specifications in advance.

Parameters

ckpt_path	(str) - filepath for checkpoint, should end in .pth
device	(torch.device) - handles processing unit for torch

Returns

tuple of checkpoint, and model with weights loaded

5.13.1.3 normalize()

Normalizes the image intensity so that the p_min -th and the p_max -th percentiles are converted to 0 and 1 respectively.

Parameters

image	(np.ndarray) - Image to apply the normalization to
p_min	(float, optional) - Percentile that is mapped to zero. Default: 2
p_max	(float, optional) - Percentile that is mapped to one. Default: 99.9
dtype	(str) - Datatype to use for the output

Returns

np.ndarray Image with transformed pixel values

5.13.1.4 References

Content-Aware Image Restoration: Pushing the Limits of Fluorescence Microscopy https://doi.epsightarrow org/10.1038/s41592-018-0216-7

5.13.1.5 percentile()

```
\begin{tabular}{ll} def rcan.utils.percentile ( & x ) \end{tabular}
```

Defines behaviour of parsing percentiles (argparse).

5.13.1.6 tuple_of_ints()

Defines behaviour of parsing tuples of ints (argparse).

5.14 recon_postprocess Namespace Reference

Variables

- parser = argparse.ArgumentParser()
- type
- str
- required
- args = parser.parse_args()
- files = sorted(list(pathlib.Path(args.input_dir).rglob("*.tif")))
- img data = tifffile.imread(input file)

5.14.1 Variable Documentation

5.14.1.1 args

```
recon_postprocess.args = parser.parse_args()
```

5.14.1.2 files

```
recon_postprocess.files = sorted(list(pathlib.Path(args.input_dir).rglob("*.tif")))
```

5.14.1.3 img_data

```
tuple recon_postprocess.img_data = tifffile.imread(input_file)
```

5.14.1.4 parser

```
recon_postprocess.parser = argparse.ArgumentParser()
```

5.14.1.5 required

recon_postprocess.required

5.14.1.6 str

recon_postprocess.str

5.14.1.7 type

recon_postprocess.type

5.15 recon_preprocess Namespace Reference

Functions

• def normalize_acquisition_intensity (data, dim)

Variables

- parser = argparse.ArgumentParser()
- type
- str
- required
- int
- · choices
- · percentile
- default
- action
- args = parser.parse_args()
- output_dir = pathlib.Path(args.output_dir)
- parents
- True
- exist_ok
- files = sorted(list(pathlib.Path(args.input_dir).glob("*.tif")))
- img_data = tifffile.imread(input_file).astype("float32")
- output_file = output_dir / input_file.name

5.15.1 Function Documentation

5.15.1.1 normalize_acquisition_intensity()

```
def recon_preprocess.normalize_acquisition_intensity ( data, dim )
```

5.15.2 Variable Documentation

5.15.2.1 action

recon_preprocess.action

5.15.2.2 args

```
recon_preprocess.args = parser.parse_args()
```

5.15.2.3 choices

recon_preprocess.choices

5.15.2.4 default

recon_preprocess.default

5.15.2.5 exist_ok

recon_preprocess.exist_ok

5.15.2.6 files

recon_preprocess.files = sorted(list(pathlib.Path(args.input_dir).glob("*.tif")))

5.15.2.7 img_data

int recon_preprocess.img_data = tifffile.imread(input_file).astype("float32")

5.15.2.8 int

recon_preprocess.int

5.15.2.9 output_dir

recon_preprocess.output_dir = pathlib.Path(args.output_dir)

5.15.2.10 output_file

recon_preprocess.output_file = output_dir / input_file.name

5.15.2.11 parents

recon_preprocess.parents

5.15.2.12 parser

recon_preprocess.parser = argparse.ArgumentParser()

5.15.2.13 percentile

recon_preprocess.percentile

5.15.2.14 required

recon_preprocess.required

5.15.2.15 str

recon_preprocess.str

5.15.2.16 True

recon_preprocess.True

5.15.2.17 type

recon_preprocess.type

5.16 stats Namespace Reference

Functions

• def paired_t (gt_data, data)

Variables

- parser = argparse.ArgumentParser()
- type
- str
- required
- int
- choices
- default
- args = parser.parse_args()
- output_dir = pathlib.Path(args.output_dir)
- parents
- True
- exist_ok
- **df**
- fig
- ax
- figsize
- psnr_diff_1_max

```
• psnr_diff_2_max
• psnr_diff_1_min
• psnr_diff_2_min
• tuple hist_range_psnr
• ssim_diff_1_max
ssim_diff_2_max
• ssim_diff_1_min
• ssim_diff_2_min
• tuple hist_range_ssim

    xlabel

    title

    range

    color

mean_psnr_1 = np.mean(np.array(df['psnr_model_1']) - np.array(df['psnr_raw']))
• se_psnr_1
mean_ssim_1 = np.mean(np.array(df['ssim_model_1']) - np.array(df['ssim_raw']))
• se_ssim_1
mean_psnr_2
• se_psnr_2
• mean_ssim_2
• se_ssim_2
• int psnr_cols = 2 else df.columns[1:3]
• int ssim_cols = 2 else df.columns[3:5]

    dflong

• dflongssim
• data
• X
• y

    hue

• dodge

    legend

    palette

• alpha
```

5.16.1 Function Documentation

5.16.1.1 paired_t()

lw

```
def stats.paired_t (
    gt_data,
    data)
```

5.16.2 Variable Documentation

5.16.2.1 alpha

stats.alpha

5.16.2.2 args

stats.args = parser.parse_args()

5.16.2.3 ax

stats.ax

5.16.2.4 choices

stats.choices

5.16.2.5 color

stats.color

5.16.2.6 data

stats.data

5.16.2.7 default

stats.default

5.16.2.8 df

stats.df

Initial value:

```
1 = pd.read_csv(
2    pathlib.Path(args.dataset),
3    index_col=False
4 ).drop(columns="Unnamed: 0")
```

5.16.2.9 dflong

stats.dflong

Initial value:

```
1 = pd.melt(
2     df,
3     id_vars=["file"],
4     value_vars=df.columns[1:4],
5     var_name="type",
6     value_name="psnr"
7 )
```

5.16.2.10 dflongssim

stats.dflongssim

Initial value:

```
1 = pd.melt(
2     df,
3     id_vars=["file"],
4     value_vars=df.columns[4:7],
5     var_name="type",
6     value_name="ssim"
7 )
```

5.16.2.11 dodge

stats.dodge

5.16.2.12 exist_ok

 $stats.exist_ok$

5.16.2.13 fig

stats.fig

5.16.2.14 figsize

stats.figsize

5.16.2.15 hist_range_psnr

tuple stats.hist_range_psnr

Initial value:

```
1 = (
2    min(psnr_diff_1_min, psnr_diff_2_min),
3    max(psnr_diff_1_max, psnr_diff_2_max)
4 )
```

5.16.2.16 hist_range_ssim

tuple stats.hist_range_ssim

Initial value:

```
1 = (
2    min(ssim_diff_1_min, ssim_diff_2_min),
3    max(ssim_diff_1_max, ssim_diff_2_max)
4 )
```

5.16.2.17 hue

stats.hue

5.16.2.18 int

stats.int

5.16.2.19 legend

```
stats.legend
```

5.16.2.20 lw

stats.lw

5.16.2.21 mean_psnr_1

```
stats.mean_psnr_1 = np.mean(np.array(df['psnr_model_1']) - np.array(df['psnr_raw']))
```

5.16.2.22 mean_psnr_2

stats.mean_psnr_2

Initial value:

5.16.2.23 mean_ssim_1

```
stats.mean\_ssim\_1 = np.mean(np.array(df['ssim\_model\_1']) - np.array(df['ssim\_raw']))
```

5.16.2.24 mean_ssim_2

stats.mean_ssim_2

Initial value:

5.16.2.25 output_dir

```
stats.output_dir = pathlib.Path(args.output_dir)
```

5.16.2.26 palette

stats.palette

5.16.2.27 parents

stats.parents

5.16.2.28 parser

```
stats.parser = argparse.ArgumentParser()
```

5.16.2.29 psnr_cols

```
int stats.psnr_cols = 2 else df.columns[1:3]
```

5.16.2.30 psnr_diff_1_max

stats.psnr_diff_1_max

Initial value:

```
1 = np.max(
2 np.array(df["psnr_model_1"]) - np.array(df["psnr_raw"])
3)
```

5.16.2.31 psnr_diff_1_min

stats.psnr_diff_1_min

Initial value:

```
1 = np.min(
2     np.array(df["psnr_model_1"]) - np.array(df["psnr_raw"])
3 )
```

5.16.2.32 psnr_diff_2_max

```
stats.psnr_diff_2_max
```

Initial value:

5.16.2.33 psnr_diff_2_min

```
stats.psnr_diff_2_min
```

Initial value:

5.16.2.34 range

stats.range

5.16.2.35 required

stats.required

5.16.2.36 se_psnr_1

```
stats.se_psnr_1
```

Initial value:

5.16.2.37 se_psnr_2

stats.se_psnr_2

5.16.2.38 se_ssim_1

```
stats.se_ssim_1
```

Initial value:

```
1 = np.std(
2     np.array(df['ssim_model_1']) - np.array(df['ssim_raw']), ddof=1
3 )/np.sqrt(len(df['ssim_model_1']))
```

5.16.2.39 se_ssim_2

```
stats.se_ssim_2
```

Initial value:

5.16.2.40 ssim_cols

```
int stats.ssim_cols = 2 else df.columns[3:5]
```

5.16.2.41 ssim_diff_1_max

```
stats.ssim_diff_1_max
```

Initial value:

5.16.2.42 ssim_diff_1_min

```
stats.ssim_diff_1_min
```

5.16.2.43 ssim_diff_2_max

```
stats.ssim_diff_2_max
```

Initial value:

5.16.2.44 ssim_diff_2_min

```
stats.ssim_diff_2_min
```

Initial value:

5.16.2.45 str

stats.str

5.16.2.46 title

stats.title

5.16.2.47 True

stats.True

5.16.2.48 type

stats.type

5.16.2.49 x

stats.x

5.16.2.50 xlabel

```
stats.xlabel
```

5.16.2.51 y

stats.y

5.17 synthetic_sim Namespace Reference

Namespaces

otf

5.18 synthetic_sim.otf Namespace Reference

Classes

class PsfParameters

Class to store PSF parameters.

Functions

• def calc_psf (params)

Calculate an approximate Gibson-Lanni PSF based on the parameters provided.

5.18.1 Function Documentation

5.18.1.1 calc_psf()

```
def synthetic_sim.otf.calc_psf (
          params )
```

Calculate an approximate Gibson-Lanni PSF based on the parameters provided.

Code ported from MATLAB, original copyright Jizhou Li, 2016, The Chinese University of Hong Kong.

Parameters

params (PsfParameters) - dataclass storing the PSF parameters

Returns

psf (np.ndarray) - array representing the PSF

5.19 train Namespace Reference

Functions

- def load_data_paths (config, data_type)
- def train (train_loader, val_loader, optimizer, scheduler, net, batchsize, n_accumulations, saveinterval, nepoch, start_epoch=0, losses_train_epoch=[], losses_val_epoch=[], psnr_train_epoch=[], psnr_val_epoch=[], ssim_train_epoch=[], ssim_val_epoch=[])

Variables

- parser = argparse.ArgumentParser()
- type
- str
- · required
- args = parser.parse_args()
- · dictionary schema
- config = json.load(f)
- int ndim = tifffile.imread(training_data[0]["raw"]).ndim 1
- input_shape = config["input_shape"]
- tuple device
- ckpt_path = None if args.model_ckpt is None else pathlib.Path(args.model_ckpt)
- model
- dictionary RCAN_hyperparameters
- ckpt
- train_loader
- · val loader
- · optimizer
- · scheduler
- output_dir = pathlib.Path(args.output_dir)
- parents
- True
- exist_ok
- n_accumulations
- saveinterval
- nepoch
- · start epoch
- · losses_train_epoch
- · losses_val_epoch
- psnr_train_epoch
- · psnr_val_epoch
- ssim_train_epoch
- ssim_val_epoch

5.19.1 Function Documentation

5.19.1.1 load_data_paths()

5.19.1.2 train()

```
def train.train (
             train_loader,
             val_loader,
             optimizer,
              scheduler,
             net,
             batchsize,
             n_accumulations,
             saveinterval,
             nepoch,
             start_epoch = 0,
             losses_train_epoch = [],
             losses_val_epoch = [],
             psnr_train_epoch = [],
             psnr_val_epoch = [],
             ssim_train_epoch = [],
              ssim_val_epoch = [] )
```

5.19.2 Variable Documentation

5.19.2.1 args

```
train.args = parser.parse_args()
```

5.19.2.2 ckpt

train.ckpt

5.19.2.3 ckpt_path

train.ckpt_path = None if args.model_ckpt is None else pathlib.Path(args.model_ckpt)

5.19.2.4 config

```
train.config = json.load(f)
```

5.19.2.5 device

tuple train.device

Initial value:

```
1 = (
2  torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
3 )
```

5.19.2.6 exist_ok

train.exist_ok

5.19.2.7 input_shape

```
tuple train.input_shape = config["input_shape"]
```

5.19.2.8 losses_train_epoch

train.losses_train_epoch

5.19.2.9 losses_val_epoch

train.losses_val_epoch

5.19.2.10 model

train.model

```
1 = RCAN(
2     input_shape,
3     num_input_channels=config["num_input_channels"],
4     num_hidden_channels=config["num_hidden_channels"],
5     num_residual_blocks=config["num_residual_blocks"],
6     num_residual_groups=config["num_residual_groups"],
7     channel_reduction=config["channel_reduction"],
8     residual_scaling=1.0,
9     num_output_channels=config["num_output_channels"],
10    )
```

5.19.2.11 n_accumulations

train.n_accumulations

5.19.2.12 ndim

```
int train.ndim = tifffile.imread(training_data[0]["raw"]).ndim - 1
```

5.19.2.13 nepoch

train.nepoch

5.19.2.14 optimizer

train.optimizer

Initial value:

```
1 = torch.optim.Adam(
2     model.parameters(), lr=config["initial_learning_rate"]
3 )
```

5.19.2.15 output_dir

```
train.output_dir = pathlib.Path(args.output_dir)
```

5.19.2.16 parents

train.parents

5.19.2.17 parser

```
train.parser = argparse.ArgumentParser()
```

5.19.2.18 psnr_train_epoch

```
train.psnr_train_epoch
```

5.19.2.19 psnr_val_epoch

train.psnr_val_epoch

5.19.2.20 RCAN_hyperparameters

train.RCAN_hyperparameters

Initial value:

```
1 = {
2          "input_shape": input_shape,
3          "num_input_channels": config["num_input_channels"],
4          "num_hidden_channels": config["num_hidden_channels"],
5          "num_residual_blocks": config["num_residual_blocks"],
6          "num_residual_groups": config["num_residual_groups"],
7          "channel_reduction": config["channel_reduction"],
8          "residual_scaling": 1.0,
9          "num_output_channels": config["num_output_channels"],
10          "num_output_channels": config["num_output_channels"],
```

5.19.2.21 required

train.required

5.19.2.22 saveinterval

train.saveinterval

5.19.2.23 scheduler

train.scheduler

```
1 = torch.optim.lr_scheduler.StepLR(
2 optimizer, step_size=config["epochs"] // 4, gamma=config["lr_decay"]
3)
```

5.19.2.24 schema

dictionary train.schema

5.19.2.25 ssim_train_epoch

train.ssim_train_epoch

5.19.2.26 ssim_val_epoch

train.ssim_val_epoch

5.19.2.27 start_epoch

train.start_epoch

5.19.2.28 str

train.str

5.19.2.29 train_loader

train.train_loader

5.19.2.30 True

train.True

5.19.2.31 type

train.type

5.19.2.32 val_loader

train.val_loader

```
1 = load_SIM_dataset(
2     validation_data,
3     input_shape,
4     batch_size=config["batch_size"],
5     transform_function=(
6         "rotate_and_flip" if config["data_augmentation"] else None
7     ),
8     intensity_threshold=config["intensity_threshold"],
9     area_threshold=config["area_ratio_threshold"],
10     scale_factor=1,
11     steps_per_epoch=config["steps_per_epoch"],
12     p_min=config["p_min"],
13     p_max=config["p_max"],
14     )
```

Chapter 6

Class Documentation

6.1 rcan.model._channel_attention_block Class Reference

Implements channel attention block/layer.

Inheritance diagram for rcan.model._channel_attention_block:

 $Collaboration\ diagram\ for\ rcan.model._channel_attention_block:$

Public Member Functions

```
    def __init__ (self, ndim, num_channels, reduction=16)
        Initialises class.

    def forward (self, x)
        Forward method for class.
```

Public Attributes

- · global_average_pooling
- conv 1
- conv 2

6.1.1 Detailed Description

Implements channel attention block/layer.

Instantiates a simple attention mechanism which pools all spatial information in each channel, and computes channel attention weights through a series of linear transformations and activation layers. Builds part of the architecture originally presented in [1]. Software implementation based on [2].

6.1.1.1 References

[1] Image Super-Resolution Using Very Deep Residual Channel Attention Networks https://arxiv.eporg/abs/1807.02758 [2] Fast, multicolour optical sectioning over extended fields of view by combining interferometric SIM with machine learning https://doi.org/10.1364/BOE.510912 (Implementation based on CALayer from the paper's source code: https://github.com/edward-n-ward/ML-OS-eporghold-blob/master/RCAN/Training%20code/models.py)

6.1.2 Constructor & Destructor Documentation

```
6.1.2.1 __init__()
```

Initialises class.

Parameters

ndim	(int) - Feature dimensionality
num_channels	(int) - Number of hidden channels
reduction	(int, optional) - Factor to reduce the number of channels by during the attention weight computation. Default: 16.

6.1.3 Member Function Documentation

6.1.3.1 forward()

Forward method for class.

Parameters

```
x (torch.Tensor) Input
```

Returns

torch. Tensor representing x multiplied by attention weights across channels.

6.1.4 Member Data Documentation

6.1.4.1 conv_1

```
rcan.model._channel_attention_block.conv_1
```

6.1.4.2 conv_2

```
rcan.model._channel_attention_block.conv_2
```

6.1.4.3 global_average_pooling

```
\verb|rcan.model._channel_attention_block.global_average_pooling|\\
```

The documentation for this class was generated from the following file:

• /home/jhughes2712/projects/sim_project/jh2284/src/rcan/model.py

6.2 rcan.model._residual_channel_attention_blocks Class Reference

Implements residual group based on [1].

Inheritance diagram for rcan.model._residual_channel_attention_blocks:

Collaboration diagram for rcan.model._residual_channel_attention_blocks:

Public Member Functions

- def __init__ (self, ndim, num_channels, repeat=1, channel_reduction=8, residual_scaling=1.0)
 Initialises object.
- def forward (self, x)

Forward method for class.

Public Attributes

- repeat
- residual_scaling
- conv list
- channel_attention_block_list

6.2.1 Detailed Description

Implements residual group based on [1].

6.2.1.1 References

[1] Fast, multicolour optical sectioning over extended fields of view by combining interferometric SIM with machine learning https://doi.org/10.1364/BOE.510912 (Implementation based on ResidualGroup from the paper's source code: https://github.com/edward-n-ward/ML-OS-SIM/blob/master/edward-n-ward/ML-OS-SIM/blob/m

6.2.2 Constructor & Destructor Documentation

```
6.2.2.1 __init__()
```

Initialises object.

Parameters

ndim	(int) - Spatial dimension of input features
num_channels	(int) - Number of hidden channels
repeat	(int) - Number of residual blocks in group
channel_reduction	(int) - Channel reduction during attention mechanism
residual_scaling	(float) - output multiplier before residual connection

6.2.3 Member Function Documentation

6.2.3.1 forward()

```
def rcan.model._residual_channel_attention_blocks.forward ( self, \\ x \ )
```

Forward method for class.

Parameters

x (torch.Tensor) - Input values

Returns

torch. Tensor representing output values

6.2.4 Member Data Documentation

6.2.4.1 channel_attention_block_list

rcan.model._residual_channel_attention_blocks.channel_attention_block_list

6.2.4.2 conv_list

rcan.model._residual_channel_attention_blocks.conv_list

6.2.4.3 repeat

 $\verb|rcan.model._residual_channel_attention_blocks.repeat|\\$

6.2.4.4 residual_scaling

rcan.model._residual_channel_attention_blocks.residual_scaling

The documentation for this class was generated from the following file:

• /home/jhughes2712/projects/sim_project/jh2284/src/rcan/model.py

6.3 synthetic_sim.otf.PsfParameters Class Reference

Class to store PSF parameters.

Static Public Attributes

- int
- float
- Callable

6.3.1 Detailed Description

Class to store PSF parameters.

 ${\tt @details}$ Class to store the parameters used to evaluate an approximate Gibson-Lanni PSF. Default values are provided except for the PSF size.

6.3.2 Member Data Documentation

6.3.2.1 Callable

synthetic_sim.otf.PsfParameters.Callable [static]

6.3.2.2 float

synthetic_sim.otf.PsfParameters.float [static]

6.3.2.3 int

synthetic_sim.otf.PsfParameters.int [static]

The documentation for this class was generated from the following file:

/home/jhughes2712/projects/sim_project/jh2284/src/synthetic_sim/otf.py

6.4 rcan.model.RCAN Class Reference

Builds a residual channel attention network.

Inheritance diagram for rcan.model.RCAN:

Collaboration diagram for rcan.model.RCAN:

Public Member Functions

def __init__ (self, input_shape=(16, 256, 256), *num_input_channels=9, num_hidden_channels=32, num
 _residual_blocks=3, num_residual_groups=5, channel_reduction=8, residual_scaling=1.0, num_output_
 channels=-1)

Initialises object.

• def forward (self, x)

Forward method for class.

Public Attributes

- num_residual_groups
- rcab_list
- conv_input
- conv_list
- conv_output

6.4.1 Detailed Description

Builds a residual channel attention network.

Note that the upscale module at the end of the network is omitted so that the input and output of the model have the same size.

6.4.1.1 References

6.4.2 Constructor & Destructor Documentation

6.4.2.1 __init__()

Initialises object.

Builds a residual channel attention network. Note that the upscale module at the end of the network is omitted so that the input and output of the model have the same size.

Parameters

input_shape	(tuple[int]) - Input shape of the model.
num_channels	(int) - Number of feature channels.
num_residual_blocks	(int) - Number of residual channel attention blocks in each residual group.
num_residual_groups	(int) - Number of residual groups.
channel_reduction	(int) - Channel reduction ratio for channel attention.
residual_scaling	(float) - Scaling factor applied to the residual component in the residual channel attention block.
num_output_channels	(int) - Number of channels in the output image. if negative, it is set to the same number as the input.

Returns

torch.nn.Module PyTorch model instance.

6.4.3 Member Function Documentation

6.4.3.1 forward()

```
def rcan.model.RCAN.forward ( self, \\ x \ )
```

Forward method for class.

Parameters

```
x (torch.Tensor) - Input
```

Returns

torch.Tensor Output

6.4.4 Member Data Documentation

6.4.4.1 conv_input

rcan.model.RCAN.conv_input

6.4.4.2 conv_list

rcan.model.RCAN.conv_list

6.4.4.3 conv_output

rcan.model.RCAN.conv_output

6.4.4.4 num_residual_groups

rcan.model.RCAN.num_residual_groups

6.4.4.5 rcab_list

rcan.model.RCAN.rcab_list

The documentation for this class was generated from the following file:

• /home/jhughes2712/projects/sim_project/jh2284/src/rcan/model.py

6.5 rcan.data_generator.SIM_Dataset Class Reference

Generates batches of images with real-time data augmentation.

Inheritance diagram for rcan.data_generator.SIM_Dataset:

 $Collaboration\ diagram\ for\ rcan.data_generator.SIM_Dataset:$

Public Member Functions

```
    def __init__ (self, images, shape, transform_function="rotate_and_flip", intensity_threshold=0.0, area_ratio
    _threshold=0.0, scale_factor=1, steps_per_epoch=1, p_min=2.0, p_max=99.9)
        Initialises object.
    def __getitem__ (self, j)
        Method used during batch loading.
    def __len__ (self)
```

Public Attributes

- · steps per epoch
- p_min
- p_max
- output_shape
- output_signature

Private Member Functions

• def scale (self, shape)

Private Attributes

- shape
- _transform_function
- _intensity_threshold
- · _area_threshold
- _scale_factor
- _y

6.5.1 Detailed Description

Generates batches of images with real-time data augmentation.

6.5.2 Constructor & Destructor Documentation

Initialises object.

Parameters

images	(list[dict]) - List of dictionaries of data pairs with keys ["raw","gt"]. Images in CZXY format
shape	(tuple[int]) - Shape of batch images excluding the channel dimension
transform_function	(str or callable, optional) - Function used for data augmentation. Typically you will set transform_function='rotate_and_flip' to apply combination of randomly selected image rotation and flipping. Alternatively, you can specify an arbitrary transformation function which takes two input images (source and target) and returns transformed images. If transform_function=None, no augmentation will be performed. Default: "rotate_and_flip"
intensity_threshold	(float, optional) - If $intensity_threshold > 0$, pixels whose intensities are greater than this threshold will be considered as foreground. Default: 0.0
area_ratio_threshold	(float, optional) - Threshold between 0 and 1. If $intensity_threshold > 0$, the generator calculates the ratio of foreground pixels in a target patch, and rejects the patch if the ratio is smaller than this threshold. Default: 0.0
scale_factor	(int, optional) - Scale factor for the target patch size. Positive and negative values mean up- and down-scaling respectively. Default: 1
steps_per_epoch	(int, optional) - Determines how many times each image is used to generate a patch per batch. Default: 1
p_min	(float, optional) - Minimum percentile used for scaling. Default: 2.0
p_max	(float, optional) - Maximum percentile used for scaling. Default: 99.9

6.5.3 Member Function Documentation

6.5.3.1 __getitem__()

Method used during batch loading.

Standardises pixel values and takes patches from the image pair. Also implements the rejection of patches based on area/intensity threshold, if $self._intensity_threshold > 0$. Augments data pair.

Parameters

j (int) - Index of data to be loaded. Note that if self.steps_per_epoch > 1, this can be more than the dataset size, in which case it is interpreted modulo the dataset size.

Returns

tuple(torch.Tensor) raw-gt image pair

6.5.4 Member Data Documentation

6.5.4.1 _area_threshold

rcan.data_generator.SIM_Dataset._area_threshold [private]

6.5.4.2 _intensity_threshold

 ${\tt rcan.data_generator.SIM_Dataset._intensity_threshold} \quad [{\tt private}]$

6.5.4.3 _scale_factor

rcan.data_generator.SIM_Dataset._scale_factor [private]

6.5.4.4 _shape

rcan.data_generator.SIM_Dataset._shape [private]

6.5.4.5 _transform_function

 $\verb|rcan.data_generator.SIM_Dataset._transform_function|| [private]|$

6.5.4.6 _y

rcan.data_generator.SIM_Dataset._y [private]

6.5.4.7 output_shape

rcan.data_generator.SIM_Dataset.output_shape

6.5.4.8 output_signature

rcan.data_generator.SIM_Dataset.output_signature

6.5.4.9 p_max

rcan.data_generator.SIM_Dataset.p_max

6.5.4.10 p_min

rcan.data_generator.SIM_Dataset.p_min

6.5.4.11 steps_per_epoch

rcan.data_generator.SIM_Dataset.steps_per_epoch

The documentation for this class was generated from the following file:

/home/jhughes2712/projects/sim_project/jh2284/src/rcan/data_generator.py

6.6 generate_sim.SimulationRunner Class Reference

Class which performs a batch of simulations, either sequentially or in parallel.

Public Member Functions

```
    def __init__ (self, input_dir, output_dir, index_range, z_offset)
```

• def do sim (self, i, sim, vol)

Creates a new random virtual microscope simulator, takes a new sample from the VHP dataset, runs the simulation on the sample, and saves the results, along with the ground truth, in a single TIFF file.

• def run (self)

Runs a series of simulations sequentially.

Public Attributes

- · input dir
- input_files
- · output dir
- range
- z_offset

6.6.1 Detailed Description

Class which performs a batch of simulations, either sequentially or in parallel.

6.6.2 Constructor & Destructor Documentation

6.6.3 Member Function Documentation

6.6.3.1 do_sim()

Creates a new random virtual microscope simulator, takes a new sample from the VHP dataset, runs the simulation on the sample, and saves the results, along with the ground truth, in a single TIFF file.

The parameters are saved in an accompanying JSON file.

6.6.3.2 run()

```
\label{eq:constraint} \mbox{def generate\_sim.SimulationRunner.run (} \\ self \mbox{)}
```

Runs a series of simulations sequentially.

6.6.4 Member Data Documentation

6.6.4.1 input_dir

generate_sim.SimulationRunner.input_dir

6.6.4.2 input_files

generate_sim.SimulationRunner.input_files

6.6.4.3 output_dir

generate_sim.SimulationRunner.output_dir

6.6.4.4 range

generate_sim.SimulationRunner.range

6.6.4.5 z_offset

 ${\tt generate_sim.SimulationRunner.z_offset}$

The documentation for this class was generated from the following file:

• /home/jhughes2712/projects/sim_project/jh2284/src/generate_sim.py

6.7 generate_sim.Simulator Class Reference

The Simulator class encapsulates the state of a 3D microscope simulation.

Public Member Functions

- def __init__ (self, **kwargs)
- def randomise (self)
- def params_dict (self)
- def psf_params (self)
- def wavevectors (self)

Calculates wavevectors inside the sample for the three beams, for a given number of rotations of those beams.

def illumination (self)

Calculates the illumination intensity in the sample; returns ndarray of shape (n_rotations, n_shifts, n_x, n_x, n_z)

def in_focus_plane (self, sample)

Returns the designated 'ground truth' plane.

def psf (self)

Calculates a PSF if it has not been done already.

• def simulate_sim (self, sample)

Calculates the 15 simulated SIM images for a given sample.

• def simulate_ideal_superres (self, sample)

Simulates the best-case scenario for a 3D SIM reconstruction, by convolving the in-focus plane with a small PSF.

• def add_noise (self, image)

Adds a combination of Gaussian and Poissonian noise to the image.

Public Attributes

- n_shifts
- n_angles
- n_x
- n_z
- · n rotations
- res_axial
- res lateral
- delta_z_p
- n_sample
- n_i
- n_g
- **Z**
- z_p
- angle_error
- poisson_photons
- signal_to_noise
- lambda0
- k0
- lambda_exc
- k exc
- · beam position

Private Attributes

- _psf
- _superres_psf
- illumination

6.7.1 Detailed Description

The Simulator class encapsulates the state of a 3D microscope simulation.

A single instance of this class corresponds to a specific set of microscope parameters. These parameters are randomly chosen upon object creation.

6.7.2 Constructor & Destructor Documentation

6.7.3 Member Function Documentation

6.7.3.1 add_noise()

Adds a combination of Gaussian and Poissonian noise to the image.

6.7.3.2 illumination()

```
\label{eq:continuous} \mbox{def generate\_sim.Simulator.illumination (} \\ self \mbox{)}
```

Calculates the illumination intensity in the sample; returns ndarray of shape (n_rotations, n_shifts, n_x, n_x, n_z)

6.7.3.3 in_focus_plane()

```
def generate_sim.Simulator.in_focus_plane ( self, \\ sample )
```

Returns the designated 'ground truth' plane.

6.7.3.4 params_dict()

```
\label{lem:condition} \mbox{def generate\_sim.Simulator.params\_dict (} \\ self \mbox{)}
```

6.7.3.5 psf()

Calculates a PSF if it has not been done already.

6.7.3.6 psf_params()

```
\begin{tabular}{ll} \tt def generate\_sim.Simulator.psf\_params & \\ self \end{tabular} \label{eq:self}
```

6.7.3.7 randomise()

```
\begin{tabular}{ll} \tt def generate\_sim.Simulator.randomise ( \\ & self ) \end{tabular}
```

6.7.3.8 simulate_ideal_superres()

Simulates the best-case scenario for a 3D SIM reconstruction, by convolving the in-focus plane with a small PSF.

6.7.3.9 simulate_sim()

```
def generate_sim.Simulator.simulate_sim ( self, \\ sample )
```

Calculates the 15 simulated SIM images for a given sample.

6.7.3.10 wavevectors()

```
\label{eq:continuous} \mbox{def generate\_sim.Simulator.wavevectors (} \\ self \mbox{)}
```

Calculates wavevectors inside the sample for the three beams, for a given number of rotations of those beams.

Returns ndarray of shape (n rotations, n beams, 3), where n beams = 3

6.7.4 Member Data Documentation

6.7.4.1 illumination

```
generate_sim.Simulator._illumination [private]
```

6.7.4.2 psf

```
generate_sim.Simulator._psf [private]
```

6.7.4.3 _superres_psf

```
generate_sim.Simulator._superres_psf [private]
```

6.7.4.4 angle_error

```
generate_sim.Simulator.angle_error
```

6.7.4.5 beam_position

generate_sim.Simulator.beam_position

6.7.4.6 delta_z_p

generate_sim.Simulator.delta_z_p

6.7.4.7 k0

 ${\tt generate_sim.Simulator.k0}$

6.7.4.8 k_exc

generate_sim.Simulator.k_exc

6.7.4.9 lambda0

generate_sim.Simulator.lambda0

6.7.4.10 lambda_exc

generate_sim.Simulator.lambda_exc

6.7.4.11 n_angles

generate_sim.Simulator.n_angles

6.7.4.12 n_g

generate_sim.Simulator.n_g

6.7.4.13 n_i

generate_sim.Simulator.n_i

6.7.4.14 n_rotations

generate_sim.Simulator.n_rotations

6.7.4.15 n_sample

generate_sim.Simulator.n_sample

6.7.4.16 n_shifts

generate_sim.Simulator.n_shifts

6.7.4.17 n_x

generate_sim.Simulator.n_x

6.7.4.18 n_z

generate_sim.Simulator.n_z

6.7.4.19 poisson_photons

generate_sim.Simulator.poisson_photons

6.7.4.20 res_axial

generate_sim.Simulator.res_axial

6.7.4.21 res_lateral

generate_sim.Simulator.res_lateral

6.7.4.22 signal_to_noise

generate_sim.Simulator.signal_to_noise

6.7.4.23 z

generate_sim.Simulator.z

6.7.4.24 z_p

generate_sim.Simulator.z_p

The documentation for this class was generated from the following file:

• /home/jhughes2712/projects/sim_project/jh2284/src/generate_sim.py

Chapter 7

File Documentation

7.1 /home/jhughes2712/projects/sim_project/jh2284/src/analyse.py File Reference

Script producing plots and small datasets that summarise the performance of models.

Namespaces

· analyse

Functions

def analyse.reshape_to_bcwh (data)

- analyse.parser = argparse.ArgumentParser()
- · analyse.type
- · analyse.str
- · analyse.required
- · analyse.default
- · analyse.int
- analyse.args = parser.parse_args()
- analyse.output_dir = pathlib.Path(args.output_dir)
- · analyse.parents
- analyse.True
- analyse.exist_ok
- tuple analyse.device
- · analyse.ckpt
- analyse.model
- analyse.RCAN_hyperparameters = ckpt["hyperparameters"]
- analyse.gt_dir = pathlib.Path(args.gt_dir)
- analyse.raw_dir = pathlib.Path(args.raw_dir)
- analyse.model_1_dir = pathlib.Path(args.model_1_dir)
- analyse.gt_files = sorted(list(gt_dir.glob(args.glob_str)))

- analyse.raw_files = sorted(list(raw_dir.glob(args.glob_str)))
- analyse.model_1_files = sorted(list(model_1_dir.glob(args.glob_str)))
- analyse.model 2 dir = pathlib.Path(args.model 2 dir)
- analyse.model_2_files = sorted(list(model_2_dir.glob(args.glob_str)))
- analyse.psnr = PSNR(data range=65536, device=device)
- · analyse.ssim
- · analyse.df
- analyse.N = len(gt_files)
- def analyse.gt = reshape to bcwh(tifffile.imread(gt files[i]))
- def analyse.raw = reshape to bcwh(tifffile.imread(raw files[i]))
- def analyse.model 1 = reshape to bcwh(tifffile.imread(model 1 files[i]))
- def analyse.model_2 = reshape_to_bcwh(tifffile.imread(model_2_files[i]))
- analyse.rng = np.random.default_rng(seed=31052024)
- analyse.img_idx = list(range(N))
- list analyse.gt samples = [np.squeeze(tifffile.imread(gt files[i])) for i in img idx]
- list analyse.raw samples = [np.squeeze(tifffile.imread(raw files[i])) for i in img_idx]
- list analyse.model_1_samples
- · list analyse.model 2 samples
- · analyse.cmap

7.1.1 Detailed Description

Script producing plots and small datasets that summarise the performance of models.

This script reads directories of reconstructed images, and compares raw versus model reconstructions versus ground truth. The script then produces summary statistics, saves relevant metrics to a .csv file, and produces samples of cropped image regions for comparison.

Arguments:

- · g: directory path for ground-truth images
- · r: directory path for raw images
- · a: directory path for model-1-restored images
- b: directory path for model-2-restored images
- o: output directory for analysis plots, default "figures/"
- x: filepath for model 1 checkpoint (plots learning curve)
- · y: filepath for model 2 checkpoint (plots learning curve)
- · s: globbing string, to analyse a subset of images
- n: number of sample crops to display, default 0.

7.2 /home/jhughes2712/projects/sim_project/jh2284/src/apply.py File Reference

Script producing restored images resulting from an RCAN denoiser being applied to low SNR images.

Namespaces

apply

Functions

• def apply.normalize_between_zero_and_one (m)

Variables

- apply.parser = argparse.ArgumentParser()
- · apply.type
- · apply.str
- · apply.required
- · apply.int
- · apply.choices
- · apply.default
- apply.percentile
- · apply.action
- apply.args = parser.parse_args()
- apply.input_path = pathlib.Path(args.input)
- apply.output_path = pathlib.Path(args.output)
- · apply.parents
- apply.raw_files = sorted(input_path.glob("*.tif"))
- apply.data = itertools.zip_longest(raw_files, [])
- · tuple apply.device
- · apply.ckpt
- apply.model
- apply.RCAN_hyperparameters = ckpt["hyperparameters"]
- list apply.overlap_shape
- apply.raw = normalize(tifffile.imread(raw_file), args.p_min, args.p_max)
- · apply.restored
- apply.output_file = output_path / ("pred_" + raw_file.name)
- apply.imagej

7.2.1 Detailed Description

Script producing restored images resulting from an RCAN denoiser being applied to low SNR images.

This script takes directories of raw images, and a model checkpoint file, and applies the model to the image in a patched fashion. The details of this patching, and the output datatype, can be configured.

Arguments:

- · m: model checkpoint filepath
- i: low SNR image directory path
- · o: output directory path
- b: specifies pixel bit depth to save for output (8 or 16)
- O: block overlap shape (by default input_shape / 8)

- · p_min: input normalization parameter, percentile maps to zero
- p max: input normalization parameter, percentile maps to one
- · normalize_output_range_between_zero_and_one: scaling for output

Adapted from https://github.com/AiviaCommunity/3D-RCAN/blob/TF2/apply.py

Copyright 2021 SVision Technologies LLC. Copyright 2021-2022 Leica Microsystems, Inc. Creative Commons Attribution-NonCommercial 4.0 International Public License (CC BY-NC 4.0) $https://creativecommons. \leftarrow org/licenses/by-nc/4.0/$

7.3 /home/jhughes2712/projects/sim_project/jh2284/src/convert_omx_ to czxy.py File Reference

Script enabling .tif file conversion between OMX and CZXY.

Namespaces

· convert omx to czxy

Variables

- convert_omx_to_czxy.parser = argparse.ArgumentParser()
- convert_omx_to_czxy.type
- convert_omx_to_czxy.str
- convert_omx_to_czxy.required
- convert_omx_to_czxy.int
- convert_omx_to_czxy.action
- convert_omx_to_czxy.args = parser.parse_args()
- convert_omx_to_czxy.input_dir = pathlib.Path(args.input)
- convert_omx_to_czxy.input_files = sorted(input_dir.rglob("*.tif"))
- convert_omx_to_czxy.original = tifffile.imread(input_file)
- convert_omx_to_czxy.n_phases = args.num_phases
 convert_omx_to_czxy.n_angles = args.num_angles
- convert_omx_to_czxy.converted
- · convert_omx_to_czxy.imagej

7.3.1 Detailed Description

Script enabling .tif file conversion between OMX and CZXY.

This script takes directories of image volumes as input, and converts, in place, between the OMX and CZXY formats (in either direction). In the OMX format, the first dimension is of size n_p hases x n_z x n_z angles; moving along this dimension, the phase changes first, then the z-value, then the angle. The CZXY format is the same, but the z-dimension of the image is separated into the 2nd dimension, so that the first dimension is just n_z phases x n_z angles.

Arguments:

- i: image directory
- · p: number of phases
- · a: number of angles
- b: specifies conversion if not used it will be OMX to CZXY, the b flag reverses this direction.

7.4 /home/jhughes2712/projects/sim_project/jh2284/src/convert_omx_ to_paz.py File Reference

Script enabling .tif file conversion between OMX and PAZ.

Namespaces

convert_omx_to_paz

Variables

- convert omx to paz.parser = argparse.ArgumentParser()
- · convert omx to paz.type
- convert_omx_to_paz.str
- · convert_omx_to_paz.required
- convert_omx_to_paz.int
- convert_omx_to_paz.action
- convert_omx_to_paz.args = parser.parse_args()
- convert omx to paz.input dir = pathlib.Path(args.input)
- convert_omx_to_paz.input_files = sorted(input_dir.rglob("*.tif"))
- convert_omx_to_paz.original = tifffile.imread(input_file)
- convert_omx_to_paz.n_phases = args.num_phases
- convert_omx_to_paz.n_angles = args.num_angles
- convert omx to paz.converted = np.zeros like(original)
- convert_omx_to_paz.imagej

7.4.1 Detailed Description

Script enabling .tif file conversion between OMX and PAZ.

This script takes directories of image volumes as input, and converts, in place, between the OMX and PAZ formats (in either direction). In the OMX format, the first dimension is of size n_phases x n_z x n_angles; moving along this dimension, the phase changes first, then the z-value, then the angle. The PAZ format is the same except the order is changed so that z-values and angels are swapped.

Arguments:

- · i: image directory
- · p: number of phases
- · a: number of angles
- b: specifies conversion if not used it will be OMX to PAZ, the b flag reverses this direction.

7.5 /home/jhughes2712/projects/sim_project/jh2284/src/convert_slices _to_volumes.py File Reference

Script enabling construction of 3D image volumes from large RGB 2D image slices.

Namespaces

· convert_slices_to_volumes

Variables

- convert_slices_to_volumes.parser = argparse.ArgumentParser()
- · convert slices to volumes.type
- convert_slices_to_volumes.str
- · convert_slices_to_volumes.required
- convert_slices_to_volumes.tuple_of_ints
- · convert_slices_to_volumes.default
- convert_slices_to_volumes.args = parser.parse_args()
- convert_slices_to_volumes.input_dir = pathlib.Path(args.input)
- convert slices to volumes.output dir = pathlib.Path(args.output)
- convert_slices_to_volumes.input_files = sorted(input_dir.glob("*.tif"))
- · convert_slices_to_volumes.parents
- · convert_slices_to_volumes.True
- · convert slices to volumes.exist ok
- convert_slices_to_volumes.volume = np.zeros((len(input_files), 3061, 4096), dtype=np.uint8)
- convert_slices_to_volumes.input_slice = tifffile.imread(file)
- · convert_slices_to_volumes.subvolume
- · tuple convert slices to volumes.output file
- · convert_slices_to_volumes.imagej

7.5.1 Detailed Description

Script enabling construction of 3D image volumes from large RGB 2D image slices.

Takes a directory of 2D image slices as input, and converts to 3D volumes. The 2D images are assumed to be ordered z-axially; the number of images is the number of voxels in the z-direction of the 3D volumes. The lateral cross-sections of the 3D images are determined by script arguments. Saves in uint16 depth.

Arguments:

- · i: directory path for 2D images
- · o: directory path for 3D image volumes
- s: start pixel coordinates (x, y)
- j: crop size for image volume (crop_x, crop_y)
- n: number of crops to take in each direction (steps_x, steps_y)
- · I: filename prefix, default "volume"

7.6 /home/jhughes2712/projects/sim_project/jh2284/src/generate_sim.py File Reference

Script simulating the acquisition of 3D SIM image volumes.

Classes

class generate_sim.Simulator

The Simulator class encapsulates the state of a 3D microscope simulation.

· class generate_sim.SimulationRunner

Class which performs a batch of simulations, either sequentially or in parallel.

Namespaces

· generate_sim

Functions

- def generate_sim.arange_zero (n, spacing=1)
- def generate_sim.threshold_norm (sample)

Applies a threshold and normalises the sample to improve contrast.

Variables

- generate_sim.parser = argparse.ArgumentParser()
- generate_sim.type
- · generate sim.str
- generate_sim.required
- generate_sim.int
- generate_sim.default
- generate_sim.args = parser.parse_args()
- generate_sim.runner

7.6.1 Detailed Description

Script simulating the acquisition of 3D SIM image volumes.

Takes a directory of 3D image volumes as input, and produces synthetic 3-beam SIM volumes of size (15, 32, 256, 256).

Arguments:

- · i: directory path of input volumes
- · o: directory path of output volumes
- · s: start index of sorted input files to process
- · e: end index of sorted input files to process
- z: z_offset, used to specify the region of the input volume to use.

7.7 /home/jhughes2712/projects/sim_project/jh2284/src/image_ noising.py File Reference

Script which converts a directory of high-SNR SIM images into a training dataset.

Namespaces

· image noising

Functions

• def image_noising.save_image_pair (gt_img, split, name, channel_idx)

Variables

- image noising.parser = argparse.ArgumentParser()
- · image noising.type
- · image_noising.str
- · image_noising.required
- image_noising.int
- · image noising.choices
- · image noising.float
- · image noising.default
- image noising.args = parser.parse args()
- image_noising.input_path = pathlib.Path(args.input)
- image_noising.output_path = pathlib.Path(args.output)
- · image noising.parents
- image_noising.output_train_gt_path = output_path.joinpath("Training", "GT")
- image_noising.output_train_raw_path = output_path.joinpath("Training", "Raw")
- image noising.output val gt path = output path.joinpath("Validation", "GT")
- image_noising.output_val_raw_path = output_path.joinpath("Validation", "Raw")
- image_noising.output_test_gt_path = output_path.joinpath("Testing", "GT")
- image_noising.output_test_raw_path = output_path.joinpath("Testing", "Raw")
- image_noising.data = sorted(input_path.glob("*.tif"))
- image noising.n acquisitions = tifffile.imread(data[0]).shape[0] // args.channels
- image_noising.n_img = len(data)
- image_noising.train_size = int((1 args.test_fraction) * n_img)
- image_noising.val_size = int(args.val_fraction * train_size)
- image_noising.rng = np.random.default_rng(seed=25042024)
- image_noising.img_idx_all = list(range(n_img))
- image_noising.img_idx_test = img_idx_all[train_size:]
- image noising.img idx train = img idx all[: train size val size]
- image_noising.img_idx_val = img_idx_all[train_size val_size : train_size]
- image noising.gt = tifffile.imread(img file)
- string image_noising.split = "train"

7.7.1 Detailed Description

Script which converts a directory of high-SNR SIM images into a training dataset.

Each image is duplicated so that a low SNR counterpart is produced, simulating the same sample imaged with a lower illumination intensity. The data is then randomly split into train, validation, and testing subsets.

Arguments:

- · i: directory path of input image
- · o: directory path of output
- d: dimension
- s: scale factor used to simulate the low SNR images.
- tf: the fraction of the full dataset used for the hold-out test set.
- vf: the fraction of the training dataset that is reserved for validation during training.

7.8 /home/jhughes2712/projects/sim_project/jh2284/src/manage_ stack.py File Reference

Script handling the stacking and unstacking of groups of images, for the purpose of batch reconstructions.

Namespaces

manage_stack

Variables

- manage_stack.parser = argparse.ArgumentParser()
- manage_stack.type
- · manage_stack.str
- · manage stack.required
- · manage_stack.int
- · manage stack.choices
- manage_stack.default
- manage_stack.action
- manage stack.args = parser.parse args()
- manage_stack.output_dir = pathlib.Path(args.output_dir)
- · manage stack.parents
- manage_stack.True
- manage_stack.exist_ok
- manage_stack.files = sorted(list(pathlib.Path(args.input_dir).glob(args.glob_str)))
- int manage stack.stack number = -1 else args.stack number
- int manage stack.number of stacks = len(files) // stack number
- manage_stack.sample = tifffile.imread(files[0])
- manage_stack.stack
- manage_stack.img_data = tifffile.imread(input_file)
- tuple manage_stack.filename
- tuple manage_stack.output_file = output_dir / filename
- manage_stack.n_acq = args.num_acquisitions
- manage_stack.n_z = sample.shape[0] // n_acq
- manage_stack.output_data

7.8.1 Detailed Description

Script handling the stacking and unstacking of groups of images, for the purpose of batch reconstructions.

Takes a directory of images as input, and either stacks or unstacks the images there according to the configuration. 3D Image Volumes are expected to be in PAZ format.

Arguments:

- · i: directory path of input images
- · o: directory path of output images
- n: output image name prefix only applies in 'stack' mode

- · d: dimension
- q: number of SIM acquisitions per image currently also used to set the number of z-planes per image when unstacking reconstructions
- · g: glob string used to choose images from input directory
- · u: if used, sets mode to 'unstack'
- · s: start index of sorted input files to process
- · e: end index of sorted input files to process
- t: number of images to stack together only applies in 'stack' mode

7.9 /home/jhughes2712/projects/sim_project/jh2284/src/rcan/__init__.py File Reference

Namespaces

rcan

7.10 /home/jhughes2712/projects/sim_project/jh2284/src/synthetic_- sim/__init__.py File Reference

Namespaces

• synthetic_sim

7.11 /home/jhughes2712/projects/sim_project/jh2284/src/rcan/data_ generator.py File Reference

Module that handles processing and batching of data during training loop.

Classes

· class rcan.data generator.SIM Dataset

Generates batches of images with real-time data augmentation.

Namespaces

rcan.data_generator

Functions

def rcan.data_generator.load_SIM_dataset (images, shape, batch_size, transform_function, intensity_

 threshold, area_threshold, scale_factor, steps_per_epoch, p_min, p_max)

Wraps SIM_Dataset object in a PyTorch Dataloader object to enable batch loading.

7.11.1 Detailed Description

Module that handles processing and batching of data during training loop.

This module primarily defines the SIM_Datatset class which handles image cropping, normalization, augmentation, and intensity-threshold-area based rejection.

 $\label{lower_model} \begin{array}{ll} \textbf{Migrated} & \textbf{from} & \texttt{https://github.com/AiviaCommunity/3D-RCAN/blob/TF2/rcan/data_} \\ & \texttt{generator.py} \end{array}$

Copyright 2021 SVision Technologies LLC. Copyright 2021-2022 Leica Microsystems, Inc. Creative Commons Attribution-NonCommercial 4.0 International Public License (CC BY-NC 4.0) $https://creativecommons. \leftarrow org/licenses/by-nc/4.0/$

7.12 /home/jhughes2712/projects/sim_project/jh2284/src/rcan/model.py File Reference

Module defining the RCAN model architecture.

Classes

· class rcan.model._channel_attention_block

Implements channel attention block/layer.

· class rcan.model._residual_channel_attention_blocks

Implements residual group based on [1].

· class rcan.model.RCAN

Builds a residual channel attention network.

Namespaces

· rcan.model

Functions

• def rcan.model._conv (ndim, in_filters, out_filters, kernel_size, padding="same", **kwargs)

Returns the appropriate torch.nn convolution layer based on parameters.

def rcan.model._global_average_pooling (ndim)

Returns the appropriate torch.nn pooling layer based on parameters.

• def rcan.model._standardize (x)

Standardises input data.

• def rcan.model._destandardize (x)

Inverse of _standardize.

7.12.1 Detailed Description

Module defining the RCAN model architecture.

Module that defines a number of classes inheriting from nn.Module, implementing different levels of the RCAN architecture. This includes the channel attention layer, residual channel attention block, and RCAN itself.

Migrated from https://github.com/AiviaCommunity/3D-RCAN/blob/TF2/rcan/model.py

Copyright 2021 SVision Technologies LLC. Copyright 2021-2022 Leica Microsystems, Inc. Creative Commons Attribution-NonCommercial 4.0 International Public License (CC BY-NC 4.0) $https://creativecommons. \leftarrow org/licenses/by-nc/4.0/$

7.13 /home/jhughes2712/projects/sim_← project/jh2284/src/rcan/plotting.py File Reference

Module providing helper functions for matplotlib plots.

Namespaces

· rcan.plotting

Functions

• def rcan.plotting.plot_learning_curve (losses_train, losses_val, psnr_train, psnr_val, ssim_train, ssim_val, fig-size, output_path)

Plots the learning curve metrics from a model checkpoint according to loss, PSNR, and SSIM.

def rcan.plotting.plot_reconstructions (device, output_path, dim, gt_imgs, raw_imgs, model_1_imgs, model
 2 imgs=None, cmap="inferno")

Plots a sample of reconstructions comparing GT vs Raw vs Restored.

7.13.1 Detailed Description

Module providing helper functions for matplotlib plots.

Provides tools to assist with analysis of trained networks, including samples of restored reconstructions, metrics, and model progress during training.

7.14 /home/jhughes2712/projects/sim_project/jh2284/src/rcan/utils.py File Reference

Contains utility functions for the training loop and inference.

Namespaces

· rcan.utils

Functions

• def rcan.utils.normalize (image, p_min=2, p_max=99.9, dtype="float32")

Normalizes the image intensity so that the p_min -th and the p_max -th percentiles are converted to 0 and 1 respectively.

def rcan.utils.apply (model, data, model_input_image_shape, model_output_image_shape, num_input_

 channels, num_output_channels, batch_size, device, overlap_shape=None, verbose=False)

Applies a model to an input image.

def rcan.utils.load_rcan_checkpoint (ckpt_path, device)

Enables loading of RCAN checkpointed model.

def rcan.utils.tuple_of_ints (string)

Defines behaviour of parsing tuples of ints (argparse).

def rcan.utils.percentile (x)

Defines behaviour of parsing percentiles (argparse).

7.14.1 Detailed Description

Contains utility functions for the training loop and inference.

Migrated from https://github.com/AiviaCommunity/3D-RCAN/blob/TF2/rcan/utils.py

Copyright 2021 SVision Technologies LLC. Creative Commons Attribution-NonCommercial 4.0 International Public License (CC BY-NC 4.0) https://creativecommons.org/licenses/by-nc/4.0/

7.15 /home/jhughes2712/projects/sim_project/jh2284/src/recon_postprocess.py File Reference

Script handling the postprocessing of SIM reconstructions.

Namespaces

recon_postprocess

- recon_postprocess.parser = argparse.ArgumentParser()
- recon_postprocess.type
- · recon postprocess.str
- · recon_postprocess.required
- recon_postprocess.args = parser.parse_args()
- recon_postprocess.files = sorted(list(pathlib.Path(args.input_dir).rglob("*.tif")))
- recon_postprocess.img_data = tifffile.imread(input_file)

7.15.1 Detailed Description

Script handling the postprocessing of SIM reconstructions.

Takes a directory of images as input, clips zero values, and scales to the full 16-bit depth range. Operates in-place.

Arguments:

· i: directory path of input images

7.16 /home/jhughes2712/projects/sim_project/jh2284/src/recon_← preprocess.py File Reference

Script handling the preprocessing of images before SIM reconstruction.

Namespaces

· recon_preprocess

Functions

• def recon_preprocess.normalize_acquisition_intensity (data, dim)

- recon preprocess.parser = argparse.ArgumentParser()
- recon_preprocess.type
- · recon_preprocess.str
- recon_preprocess.required
- · recon_preprocess.int
- recon_preprocess.choices
- recon_preprocess.percentile
- recon_preprocess.default
- recon_preprocess.action
- recon_preprocess.args = parser.parse_args()
- recon_preprocess.output_dir = pathlib.Path(args.output_dir)
- recon_preprocess.parents
- recon_preprocess.True
- recon_preprocess.exist_ok
- recon_preprocess.files = sorted(list(pathlib.Path(args.input_dir).glob("*.tif")))
- recon preprocess.img data = tifffile.imread(input file).astype("float32")
- recon_preprocess.output_file = output_dir / input_file.name

7.16.1 Detailed Description

Script handling the preprocessing of images before SIM reconstruction.

Takes a directory of images as input, equalizes the total acquisition, intensities within each image, subtracts background and extreme pixels on a percentile basis, then scales to the full 16-bit depth range.

Arguments:

- · i: directory path of input images
- · o: directory path of output images
- · d: dimension
- I: lower percentile used for clipping (background)
- u: upper percentile used for clipping (bright values)
- · n: turns on normalization of acquisition intensity

7.17 /home/jhughes2712/projects/sim_project/jh2284/src/stats.py File Reference

Namespaces

stats

Functions

• def stats.paired_t (gt_data, data)

- stats.parser = argparse.ArgumentParser()
- stats.type
- · stats.str
- · stats.required
- · stats.int
- · stats.choices
- stats.default
- stats.args = parser.parse_args()
- stats.output_dir = pathlib.Path(args.output_dir)
- · stats.parents
- · stats.True
- · stats.exist_ok
- · stats.df
- · stats.fig
- stats.ax
- stats.figsize
- stats.psnr_diff_1_max
- stats.psnr_diff_2_max

- stats.psnr_diff_1_min
- stats.psnr_diff_2_min
- · tuple stats.hist_range_psnr
- stats.ssim_diff_1_max
- · stats.ssim diff 2 max
- stats.ssim_diff_1_min
- stats.ssim_diff_2_min
- tuple stats.hist_range_ssim
- · stats.xlabel
- · stats.title
- · stats.range
- · stats.color
- stats.mean_psnr_1 = np.mean(np.array(df['psnr_model_1']) np.array(df['psnr_raw']))
- stats.se psnr 1
- stats.mean_ssim_1 = np.mean(np.array(df['ssim_model_1']) np.array(df['ssim_raw']))
- stats.se ssim 1
- stats.mean_psnr_2
- stats.se_psnr_2
- stats.mean_ssim_2
- stats.se_ssim_2
- int stats.psnr_cols = 2 else df.columns[1:3]
- int stats.ssim_cols = 2 else df.columns[3:5]
- · stats.dflong
- · stats.dflongssim
- stats.data
- stats.x
- · stats.y
- stats.hue
- stats.dodge
- stats.legend
- · stats.palette
- · stats.alpha
- · stats.lw

7.18 /home/jhughes2712/projects/sim_project/jh2284/src/synthetic_ sim/otf.py File Reference

Classes

· class synthetic_sim.otf.PsfParameters

Class to store PSF parameters.

Namespaces

• synthetic_sim.otf

Functions

• def synthetic_sim.otf.calc_psf (params)

Calculate an approximate Gibson-Lanni PSF based on the parameters provided.

7.19 /home/jhughes2712/projects/sim_project/jh2284/src/train.py File Reference

Script used to train RCAN.

Namespaces

train

Functions

- def train.load_data_paths (config, data_type)
- def train.train (train_loader, val_loader, optimizer, scheduler, net, batchsize, n_accumulations, saveinter-val, nepoch, start_epoch=0, losses_train_epoch=[], losses_val_epoch=[], psnr_train_epoch=[], psnr_val_← epoch=[], ssim_train_epoch=[], ssim_val_epoch=[])

- train.parser = argparse.ArgumentParser()
- · train.type
- · train.str
- · train.required
- train.args = parser.parse_args()
- · dictionary train.schema
- train.config = json.load(f)
- int train.ndim = tifffile.imread(training data[0]["raw"]).ndim 1
- train.input_shape = config["input_shape"]
- · tuple train.device
- train.ckpt_path = None if args.model_ckpt is None else pathlib.Path(args.model_ckpt)
- · train.model
- · dictionary train.RCAN_hyperparameters
- · train.ckpt
- train.train_loader
- train.val_loader
- train.optimizer
- · train.scheduler
- train.output_dir = pathlib.Path(args.output_dir)
- · train.parents
- · train.True
- · train.exist_ok
- · train.n accumulations
- · train.saveinterval
- train.nepoch
- train.start_epoch
- train.losses_train_epoch
- train.losses_val_epoch
- train.psnr_train_epoch
- train.psnr_val_epoch
- train.ssim_train_epoch
- · train.ssim_val_epoch

7.19.1 Detailed Description

Script used to train RCAN.

Reads the specified config.json file, and trains an RCAN model accordingly. Intermediate training progress is saved using model checkpoints. Can handle resumed model training if a previous checkpoint is provided.

Arguments:

- · c: filepath for config JSON file
- · o: path of model checkpoint directory
- m: filepath of intermediate model checkpoint (if given, training resumes from this checkpoint)

Adapted from https://github.com/AiviaCommunity/3D-RCAN/blob/TF2/train.py

Index

```
/home/jhughes2712/projects/sim_project/jh2284/src/analyse.py,rcan.data_generator.SIM_Dataset, 81
                                                        area threshold
/home/jhughes2712/projects/sim_project/jh2284/src/apply.py, rcan.data_generator.SIM_Dataset, 82
                                                        conv
/home/jhughes2712/projects/sim_project/jh2284/src/convert_omcato_nozatelpy,1
                                                        destandardize
/home/jhughes2712/projects/sim project/jh2284/src/convert omcato.mpadeby41
                                                        _global_average_pooling
/home/jhughes2712/projects/sim_project/jh2284/src/convert_sliceantonodeluntes.py,
                                                         illumination
/home/jhughes2712/projects/sim project/jh2284/src/generate signerpayrate sim.Simulator, 89
                                                        intensity threshold
/home/jhughes2712/projects/sim_project/jh2284/src/image_noisinappqlata_generator.SIM_Dataset, 82
/home/jhughes2712/projects/sim_project/jh2284/src/manage_stgekerate_sim.Simulator, 89
                                                         _scale
/home/jhughes2712/projects/sim_project/jh2284/src/rcan/__init_rcapy.data_generator.SIM_Dataset, 82
                                                        _scale_factor
/home/jhughes2712/projects/sim_project/jh2284/src/rcan/data_geaerdatoa.pgenerator.SIM_Dataset, 82
          102
                                                        _shape
/home/jhughes2712/projects/sim_project/jh2284/src/rcan/modelrpan.data_generator.SIM_Dataset, 82
                                                         standardize
/home/jhughes2712/projects/sim_project/jh2284/src/rcan/plottingcan, model, 42
                                                         superres psf
/home/jhughes2712/projects/sim project/jh2284/src/rcan/utils.pygenerate sim.Simulator, 89
                                                        transform function
/home/jhughes2712/projects/sim_project/jh2284/src/recon_postpracesstapygenerator.SIM_Dataset, 82
          105
/home/jhughes2712/projects/sim_project/jh2284/src/recon_preprocestapy,generator.SIM_Dataset, 82
/home/jhughes2712/projects/sim_project/jh2284/src/stats.paction
                                                             apply, 16
/home/jhughes2712/projects/sim_project/jh2284/src/synthetic_sfrantom_by_to_czxy, 20
                                                             convert_omx_to_paz, 23
/home/jhughes2712/projects/sim_project/jh2284/src/synthetic_smathage_stack, 35
                                                             recon preprocess, 48
/home/jhughes2712/projects/sim_project/jh2284/src/train.pg,dd_noise
                                                             generate_sim.Simulator, 87
         109
 _getitem
                                                        alpha
                                                             stats, 51
    rcan.data_generator.SIM_Dataset, 81
                                                        analyse, 9
 init
                                                             args, 10
    generate sim.SimulationRunner, 84
                                                             ckpt, 10
    generate sim.Simulator, 87
                                                             cmap, 10
    rcan.data generator.SIM Dataset, 80
                                                             default, 10
    rcan.model. channel attention block, 70
                                                             device, 10
    rcan.model. residual channel attention blocks,
                                                             df, 11
                                                             exist ok, 11
     rcan.model.RCAN, 77
                                                             gt, 11
 len
                                                             gt_dir, 11
```

at files 11	tuno 20
gt_files, 11	type, 20
gt_samples, 11	arange_zero
img_idx, 12	generate_sim, 28
int, 12	args
model, 12	analyse, 10
model_1, 12	apply, 16
model_1_dir, 12	convert_omx_to_czxy, 20
model_1_files, 12	convert_omx_to_paz, 23
model_1_samples, 12	convert_slices_to_volumes, 25
model_2, 13	generate_sim, 29
model_2_dir, 13	image_noising, 31
model_2_files, 13	manage_stack, 35
model_2_samples, 13	recon_postprocess, 46
N, 13	recon_preprocess, 48
output_dir, 13	stats, 52
parents, 13	train, 62
parser, 14	ax
psnr, 14	stats, 52
raw, 14	
raw dir, 14	beam_position
raw_files, 14	generate_sim.Simulator, 89
raw_samples, 14	
RCAN_hyperparameters, 14	calc_psf
required, 14	synthetic sim.otf, 60
•	Callable
reshape_to_bcwh, 10	synthetic_sim.otf.PsfParameters, 75
rng, 15	channel_attention_block_list
ssim, 15	rcan.modelresidual_channel_attention_blocks,
str, 15	74
True, 15	choices
type, 15	apply, 17
angle_error	image_noising, 31
generate_sim.Simulator, 89	manage_stack, 35
apply, 15	-
action, 16	recon_preprocess, 48 stats, 52
args, 16	
choices, 17	ckpt
ckpt, 17	analyse, 10
data, 17	apply, 17
default, 17	train, 62
device, 17	ckpt_path
imagej, 17	train, 62
input path, 17	cmap
int, 18	analyse, 10
model, 18	color
normalize between zero and one, 16	stats, 52
output file, 18	config
output_path, 18	train, 62
overlap shape, 18	conv_1
parents, 18	rcan.modelchannel_attention_block, 71
parser, 18	conv_2
•	rcan.modelchannel_attention_block, 71
percentile, 19	conv_input
raw, 19	rcan.model.RCAN, 78
raw_files, 19	conv_list
rcan.utils, 44	rcan.modelresidual_channel_attention_blocks,
RCAN_hyperparameters, 19	74
required, 19	rcan.model.RCAN, 78
restored, 19	
str, 19	conv_output
	rcan.model.RCAN, 78

convert_omx_to_czxy, 20	apply, 17
action, 20	convert_slices_to_volumes, 25
args, 20	generate_sim, 29
converted, 20	image_noising, 31
imagej, <mark>21</mark>	manage_stack, 36
input_dir, 21	recon_preprocess, 48
input_files, 21	stats, 52
int, 21	delta_z_p
n_angles, 21	generate_sim.Simulator, 90
n_phases, 21	device
original, <mark>21</mark>	analyse, 10
parser, 22	apply, 17
required, 22	train, 63
str, 22	df
type, 22	analyse, 11
convert_omx_to_paz, 22	stats, 52
action, 23	dflong
args, 23	stats, 53
converted, 23	dflongssim
imagej, 23	stats, 53
input_dir, 23	do_sim
input_files, 23	generate sim.SimulationRunner, 84
int, 23	dodge
n_angles, 23	stats, 53
n_phases, 24	
original, 24	exist_ok
parser, 24	analyse, 11
required, 24	convert_slices_to_volumes, 25
str, 24	manage_stack, 36
type, 24	recon_preprocess, 48
convert_slices_to_volumes, 25	stats, 53
args, 25	train, 63
default, 25	
exist_ok, 25	fig
imagei, 25	stats, 53
input_dir, 26	figsize
input_files, 26	stats, 54
input_slice, 26	filename
output_dir, 26	manage_stack, 36
output_file, 26	files
parents, 26	manage_stack, 36
parser, 26	recon_postprocess, 46
required, 27	recon_preprocess, 48
str, 27	float
subvolume, 27	image_noising, 31
True, 27	synthetic_sim.otf.PsfParameters, 75
tuple of ints, 27	forward
type, 27	rcan.modelchannel_attention_block, 71
volume, 27	rcan.modelresidual_channel_attention_blocks,
converted	73
convert_omx_to_czxy, 20	rcan.model.RCAN, 78
convert_omx_to_paz, 23	
convert_onix_to_pa2, 20	generate_sim, 28
data	arange_zero, 28
apply, 17	args, 29
image_noising, 31	default, 29
stats, 52	int, 29
default	parser, 29
analyse, 10	required, 29
•	

runner, 29	gt_samples
str, 29	analyse, 11
threshold_norm, 28	
type, 30	hist_range_psnr
generate_sim.SimulationRunner, 83	stats, 54
init, 84	hist_range_ssim
do_sim, 84	stats, 54
input_dir, 85	hue
input_files, 85	stats, 54
output_dir, 85	illumination
range, 85	generate_sim.Simulator, 87
run, 84	image_noising, 30
z_offset, 85	args, 31
generate_sim.Simulator, 86	choices, 31
init, 87 illumination, 89	data, 31
-	default, 31
_psf, 89	float, 31
_superres_psf, 89 add_noise, 87	gt, <mark>31</mark>
angle_error, 89	img idx all, 32
beam_position, 89	img_idx_test, 32
delta_z_p, 90	img_idx_train, 32
illumination, 87	img_idx_val, 32
in_focus_plane, 87	input path, 32
k0, 90	int, 32
k_exc, 90	n_acquisitions, 32
lambda0, 90	n_img, <mark>32</mark>
lambda_exc, 90	output_path, 33
n_angles, 90	output_test_gt_path, 33
n_g, 90	output_test_raw_path, 33
n_i, 90	output_train_gt_path, 33
n_rotations, 91	output_train_raw_path, 33
n_sample, 91	output_val_gt_path, 33
n_shifts, 91	output_val_raw_path, 33
n_x, 91	parents, 33
n z, 91	parser, 34
params_dict, 88	required, 34
poisson_photons, 91	rng, 34
psf, 88	save_image_pair, 31
psf params, 88	split, 34
randomise, 88	str, 34
res_axial, 91	train_size, 34
res lateral, 91	type, <mark>34</mark>
signal_to_noise, 92	val_size, 34
simulate ideal superres, 88	imagej
simulate sim, 88	apply, 17
wavevectors, 89	convert_omx_to_czxy, 21
z, 92	convert_omx_to_paz, 23
z_p, 92	convert_slices_to_volumes, 25
global_average_pooling	img_data
rcan.modelchannel_attention_block, 71	manage_stack, 36
gt	recon_postprocess, 46
analyse, 11	recon_preprocess, 49
image_noising, 31	img_idx
gt_dir	analyse, 12
analyse, 11	img_idx_all
gt_files	image_noising, 32
analyse, 11	img_idx_test
	image_noising, 32

img_idx_train	manage_stack, 35
image_noising, 32	action, 35
img_idx_val	args, 35
image_noising, 32	choices, 35
in_focus_plane	default, 36
generate_sim.Simulator, 87	exist ok, 36
input_dir	filename, 36
convert_omx_to_czxy, 21	files, 36
convert_omx_to_paz, 23	img_data, 36
convert_slices_to_volumes, 26	int, 36
generate_sim.SimulationRunner, 85	n_acq, 36
input_files	n_z, 37
• —	
convert_omx_to_czxy, 21	number_of_stacks, 37
convert_omx_to_paz, 23	output_data, 37
convert_slices_to_volumes, 26	output_dir, 37
generate_sim.SimulationRunner, 85	output_file, 37
input_path	parents, 37
apply, 17	parser, 37
image_noising, 32	required, 38
input_shape	sample, 38
train, 63	stack, 38
input_slice	stack_number, 38
convert_slices_to_volumes, 26	str, 38
int	True, 38
analyse, 12	type, 39
apply, 18	mean_psnr_1
convert_omx_to_czxy, 21	stats, 55
convert_omx_to_paz, 23	mean_psnr_2
generate_sim, 29	stats, 55
image_noising, 32	mean_ssim_1
manage_stack, 36	stats, 55
recon_preprocess, 49	mean_ssim_2
stats, 54	stats, 55
synthetic_sim.otf.PsfParameters, 75	model
Syntholio_Sinnotin on diamotors, 75	analyse, 12
k0	apply, 18
generate_sim.Simulator, 90	train, 63
k exc	model_1
generate sim.Simulator, 90	analyse, 12
gonorato_omnomiator, oo	
lambda0	model_1_dir
generate_sim.Simulator, 90	analyse, 12
lambda exc	model_1_files
generate sim.Simulator, 90	analyse, 12
legend	model_1_samples
stats, 54	analyse, 12
load_data_paths	model_2
train, 61	analyse, 13
load_rcan_checkpoint	model_2_dir
rcan.utils, 45	analyse, 13
	model_2_files
load_SIM_dataset	analyse, 13
rcan.data_generator, 39	model_2_samples
losses_train_epoch	analyse, 13
train, 63	
losses_val_epoch	N
train, 63	analyse, 13
lw	n_accumulations
stats, 55	train, <mark>63</mark>
	n_acq

manage_stack, 36	convert_slices_to_volumes, 26
n_acquisitions	manage_stack, 37
image_noising, 32	recon_preprocess, 49
n_angles	output_path
convert_omx_to_czxy, 21	apply, 18
convert_omx_to_paz, 23	image_noising, 33
generate_sim.Simulator, 90	output_shape
n_g	rcan.data_generator.SIM_Dataset, 83
generate_sim.Simulator, 90	output_signature
n_i	rcan.data_generator.SIM_Dataset, 83
generate_sim.Simulator, 90	output_test_gt_path
n_img	image_noising, 33
image_noising, 32	output_test_raw_path
n_phases	image_noising, 33
convert_omx_to_czxy, 21	output_train_gt_path
convert_omx_to_paz, 24	image_noising, 33
n_rotations	output_train_raw_path
generate_sim.Simulator, 91	image_noising, 33
n_sample	output_val_gt_path
generate sim.Simulator, 91	image_noising, 33
n_shifts	output val raw path
generate_sim.Simulator, 91	image_noising, 33
n x	overlap_shape
generate_sim.Simulator, 91	apply, 18
n_z	αρριγ, το
generate_sim.Simulator, 91	p_max
manage_stack, 37	rcan.data_generator.SIM_Dataset, 83
ndim	p_min
train, 64	rcan.data_generator.SIM_Dataset, 83
	paired_t
nepoch train, 64	stats, 51
normalize	palette
	stats, 55
rcan.utils, 45	params_dict
normalize_acquisition_intensity	generate_sim.Simulator, 88
recon_preprocess, 48	parents
normalize_between_zero_and_one	analyse, 13
apply, 16	apply, 18
num_residual_groups	convert_slices_to_volumes, 26
rcan.model.RCAN, 78	image_noising, 33
number_of_stacks	manage_stack, 37
manage_stack, 37	recon_preprocess, 49
optimizer	stats, 56
train, 64	train, 64
original	parser
convert_omx_to_czxy, 21	analyse, 14
convert_omx_to_paz, 24	apply, 18
output_data	convert_omx_to_czxy, 22
• —	-
manage_stack, 37	convert_omx_to_paz, 24
output_dir	convert_slices_to_volumes, 26
analyse, 13	generate_sim, 29
convert_slices_to_volumes, 26	image_noising, 34
generate_sim.SimulationRunner, 85	manage_stack, 37
manage_stack, 37	recon_postprocess, 47
recon_preprocess, 49	recon_preprocess, 49
stats, 55	stats, 56
train, 64	train, 64
output_file	percentile
apply, 18	apply, 19

rcan.utils, 46	_y, 82
recon_preprocess, 49	output_shape, 83
plot_learning_curve	output_signature, 83
rcan.plotting, 42	p_max, 83
plot_reconstructions	p_min, <mark>83</mark>
rcan.plotting, 43	steps_per_epoch, 83
poisson_photons	rcan.model, 40
generate_sim.Simulator, 91	_conv, 41
psf	_destandardize, 41
generate_sim.Simulator, 88	_global_average_pooling, 41
psf_params	_standardize, 42
generate_sim.Simulator, 88	rcan.modelchannel_attention_block, 69
psnr	init, 70
analyse, 14	conv_1, 71
psnr_cols	conv_2, 71
stats, 56	forward, 71
psnr_diff_1_max	global_average_pooling, 71
stats, 56	rcan.modelresidual_channel_attention_blocks, 72
psnr_diff_1_min	init, 73
stats, 56	channel_attention_block_list, 74
psnr_diff_2_max	conv_list, 74
stats, 56	forward, 73
psnr_diff_2_min	repeat, 74
stats, 57	residual_scaling, 74
psnr_train_epoch	rcan.model.RCAN, 76
train, 64	init, 77
psnr_val_epoch	conv_input, 78
train, 65	conv_list, 78
randomise	conv_output, 78
generate_sim.Simulator, 88	forward, 78
range	num_residual_groups, 78
generate_sim.SimulationRunner, 85	rcab_list, 79
stats, 57	rcan.plotting, 42
raw	plot_learning_curve, 42
analyse, 14	plot_reconstructions, 43
apply, 19	rcan.utils, 44
raw_dir	apply, 44
analyse, 14	load_rcan_checkpoint, 45
raw_files	normalize, 45
analyse, 14	percentile, 46 tuple_of_ints, 46
apply, 19	RCAN_hyperparameters
raw_samples	analyse, 14
analyse, 14	apply, 19
rcab_list	train, 65
rcan.model.RCAN, 79	
rcan, 39	recon_postprocess, 46
rcan.data_generator, 39	args, 46 files, 46
load_SIM_dataset, 39	
rcan.data_generator.SIM_Dataset, 79	img_data, 46 parser, 47
	required, 47
init, 80	str, 47
, 81	type, 47
_area_threshold, 82	recon_preprocess, 47
_intensity_threshold, 82	action, 48
_scale, 82	args, 48
_scale_factor, 82	choices, 48
_shape, 82	default, 48
_transform_function, 82	dolddit, To
_	

	exist_ok, 48	se_psnr_1
	files, 48	stats, 57
	img_data, 49	se_psnr_2
	int, 49	stats, 57
	normalize_acquisition_intensity, 48	se_ssim_1
	output_dir, 49	stats, 57
	output_file, 49	se_ssim_2
	parents, 49	stats, 58
	parser, 49	signal_to_noise
	percentile, 49	generate_sim.Simulator, 92
	required, 49	simulate_ideal_superres
	str, 50	generate_sim.Simulator, 88
	True, 50	simulate sim
	type, 50	generate_sim.Simulator, 88
rono		_
repe		split
	rcan.modelresidual_channel_attention_blocks,	image_noising, 34
	74	ssim
requ		analyse, 15
	analyse, 14	ssim_cols
	apply, 19	stats, 58
	convert_omx_to_czxy, 22	ssim_diff_1_max
	convert_omx_to_paz, 24	stats, 58
	convert_slices_to_volumes, 27	ssim_diff_1_min
	generate_sim, 29	stats, 58
	image_noising, 34	ssim_diff_2_max
	manage_stack, 38	stats, 58
	recon_postprocess, 47	ssim_diff_2_min
	recon_preprocess, 49	stats, 59
	stats, 57	ssim_train_epoch
	train, 65	train, 66
res_		ssim_val_epoch
	generate_sim.Simulator, 91	train, 66
res	lateral	stack
.00_	generate_sim.Simulator, 91	manage stack, 38
roch	ape_to_bcwh	stack number
16311	analyse, 10	manage_stack, 38
rocio	-	
resic	dual_scaling	start_epoch
	rcan.modelresidual_channel_attention_blocks,	train, 66
	74	stats, 50
resto		alpha, 51
	apply, 19	args, 52
rng		ax, 52
	analyse, 15	choices, 52
	image_noising, 34	color, 52
run		data, 52
	generate_sim.SimulationRunner, 84	default, 52
runn	er	df, <mark>52</mark>
	generate_sim, 29	dflong, 53
		dflongssim, 53
sam	ple	dodge, 53
	manage_stack, 38	exist_ok, 53
save	e_image_pair	fig, 53
	image_noising, 31	figsize, 54
save	interval	hist_range_psnr, 54
	train, 65	hist_range_ssim, 54
sche	eduler	hue, 54
	train, 65	int, 54
sche		legend, 54
	train, 65	logoria, o r
	•	

lw, 55	generate_sim, 28
mean_psnr_1, 55	title
mean_psnr_2, 55	stats, 59
mean_ssim_1, 55	train, 61
mean_ssim_2, 55	args, 62
output_dir, 55	ckpt, 62
paired_t, 51	ckpt_path, 62
palette, 55	config, 62
parents, 56	device, 63
parser, 56	exist_ok, 63
psnr_cols, 56	input_shape, 63
psnr_diff_1_max, 56	load_data_paths, 61
psnr_diff_1_min, 56	losses_train_epoch, 63
psnr_diff_2_max, 56	losses_val_epoch, 63
psnr_diff_2_min, 57	model, 63
range, 57	n_accumulations, 63
required, 57	ndim, 64
se_psnr_1, 57	nepoch, 64
se_psnr_2, 57	optimizer, 64
se_ssim_1, 57	output_dir, 64
se_ssim_2, 58	parents, 64
ssim_cols, 58	parser, 64
ssim_diff_1_max, 58	psnr_train_epoch, 64
ssim_diff_1_min, 58	psnr_val_epoch, 65
ssim_diff_2_max, 58	RCAN_hyperparameters, 65
ssim_diff_2_min, 59	required, 65
str, 59	saveinterval, 65
title, 59	scheduler, 65
True, 59	schema, 65
type, 59	ssim_train_epoch, 66
x, 59	ssim_val_epoch, 66
xlabel, 59	start_epoch, 66
y, 60	str, 66
steps_per_epoch	train, 62
rcan.data_generator.SIM_Dataset, 83	train_loader, 66
str	True, 66
analyse, 15	type, 67
apply, 19	val_loader, 67
convert_omx_to_czxy, 22	train_loader
convert_omx_to_paz, 24	train, 66
convert_slices_to_volumes, 27	train_size
generate_sim, 29	image_noising, 34
image_noising, 34	True
manage_stack, 38	analyse, 15
recon_postprocess, 47	convert_slices_to_volumes, 27
recon_preprocess, 50	manage_stack, 38
stats, 59	recon_preprocess, 50
train, 66	stats, 59
subvolume	train, 66
convert_slices_to_volumes, 27	tuple_of_ints
synthetic_sim, 60	convert_slices_to_volumes, 27
synthetic_sim.otf, 60	rcan.utils, 46
calc_psf, 60	type
synthetic_sim.otf.PsfParameters, 74	analyse, 15
Callable, 75	apply, 20
float, 75	convert_omx_to_czxy, 22
int, 75	convert_omx_to_paz, 24
threshold_norm	convert_slices_to_volumes, 27

```
generate_sim, 30
    image_noising, 34
    manage_stack, 39
    recon_postprocess, 47
    recon_preprocess, 50
    stats, 59
    train, 67
val loader
    train, 67
val_size
    image_noising, 34
volume
    convert_slices_to_volumes, 27
wavevectors
    generate_sim.Simulator, 89
Χ
     stats, 59
xlabel
    stats, 59
у
    stats, 60
    generate_sim.Simulator, 92
z_offset
    generate_sim.SimulationRunner, 85
z_p
    generate\_sim.Simulator,\,92
```