3D Metric Fields Optimizing Frame Fields in a new Metric

Florin Achermann

University of Berne

Bachelor thesis September 20, 2023

Presentation Overview

Problem Statement

Hexahedral Meshing Integer-Grid Maps Frame Fields

2 Frame Field Control

Metric Fields Measuring Smoothness in new Metric

- 3 Discretization
- **4** Experiments

Representation of geometry

Geometry needs to be represented in computers for applications

(a) Hexahedral mesh of spring ©COMSOL

(b) Stress simulation on spring ©ANSYS

Meshes out of hexahedral elements are prefered in practice

Florin Achermann (Unibe) 3D Metric Fields September 20, 2023

Integer-Grid Maps

Key Idea:

Search for map $\phi: \mathcal{M} \subset \mathbb{R}^3 \to \mathbb{R}^3$ which maps the object to a 3D grid

Figure: Integer-Grid map [Pietroni et al., 2022]

 $\hbox{Direct search is infeasible} \rightarrow \hbox{hard mixed-integer non-convex optimization problem} \\$

Florin Achermann (Unibe) 3D Metric Fields September 20, 2023 4/

Search for Integer-Grid Maps

We want:

$$\phi: \mathcal{M} \to \mathbb{R}^3$$

Idea: Take the Jacobian

$$\nabla \phi: \mathcal{M} \to \mathbb{R}^{3 \times 3}$$

and search for an approximation $F \approx \nabla \phi$. We call $F : \mathcal{M} \to \mathbb{R}^{3 \times 3}$ a frame field. A frame locally represents the deformed edges of a cube.

Frame Fields

Think of F as three vector fields $F_i : \mathbb{R}^3 \to \mathbb{R}^3$

$$F = \begin{pmatrix} \begin{vmatrix} & & | & & | \\ F_1 & F_2 & F_3 \\ | & & | & & | \end{pmatrix}$$

Goals for our frame field:

- Smoothness
- Boundary Alignment: One column should match with surface normal

Why?

Frame Fields

Figure: Left: Missing Boundary Alignment, not smooth. Right: Smooth + Boundary Aligned ©CGG Bern, David Bommes

Optimization Approach

- Goal: Smooth Frame Field + Boundary Aligned
- How to measure smoothness?

Dirichlet Energy

$$E(F) = \int_{\mathcal{M}} ||\nabla F||^2 \tag{1}$$

Controlling frames

- For orthonormal frame field $F^TF = \text{Id}$, extracted elements are unit cubes
- Add metric field g for control of frames
- g-orthonormality $F^TgF = Id$

Figure: Under new metric g, lengths at the top are the same lengths as at the bottom [Fang et al., 2023]

Measuring Smoothness in new Metric

Definitions & Examples

Definition

A prime number is a number that has exactly two divisors.

Example

- 2 is prime (two divisors: 1 and 2).
- 3 is prime (two divisors: 1 and 3).
- 4 is not prime (three divisors: 1, 2, and 4).

You can also use the theorem, lemma, proof and corollary environments.

11/19

Florin Achermann (Unibe) 3D Metric Fields September 20, 2023

Theorem, Corollary & Proof

Theorem (Mass-energy equivalence)

$$E = mc^2$$

Corollary

$$x + y = y + x$$

Proof.

$$\omega + \phi = \epsilon$$

Equation

$$\cos^3\theta = \frac{1}{4}\cos\theta + \frac{3}{4}\cos 3\theta \tag{2}$$

Verbatim

Example (Theorem Slide Code)

```
\begin{frame}
\frametitle{Theorem}
\begin{theorem}[Mass--energy equivalence]
$E = mc^2$
\end{theorem}
\end{frame}
```

Slide without title.

Citing References

An example of the \cite command to cite within the presentation:

This statement requires citation [?].

References

Pietroni et al. (2022) Hex-Mesh Generation and Processing: A Survey ACM Transaction on Graphics

Fang et al. (2023)

Metric-Driven 3D Frame Field Generation IEEE Transactions on Visualization and Com-

IEEE Transactions on Visualization and Computer Graphics.

Acknowledgements

Smith Lab

- Alice Smith
- Devon Brown

Cook Lab

- Margaret
- Jennifer
- Yuan

Funding

- British Royal Navy
- Norwegian Government

The End

Questions? Comments?