Name : Trakshay Balagotra Contact Number: +91 8308103278 Mail ID: trakshay.balagotra@outlook.com

Forage Quantium Data Analytics Task 2: Experimenting and Uplift Testing

1. Importing the necessary dependencies

```
import pandas as pd
import panuas as pu
import numpy as np
import matplotlib.pyplot as plt
import plotly.express as px
import plotly.graph_objects as go
import seaborn as sns
```

2. Reading the dataset

data = pd.read_csv('QVI_data.csv')

data.head()

₹	LYLTY_CARD_	NBR	DATE	STORE_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_SALES	PACK_SIZE	BRAND	LIFESTAGE	PREMIUM_CUSTOMER	
	0 1	1000	2018-10- 17	1	1	5	Natural Chip Compny SeaSalt175g	2	6.0	175	NATURAL	YOUNG SINGLES/COUPLES	Premium	11.
	1 1	1002	2018-09- 16	1	2	58	Red Rock Deli Chikn&Garlic Aioli 150g	1	2.7	150	RRD	YOUNG SINGLES/COUPLES	Mainstream	
	2 1	1003	2019-03- 07	1	3	52	Grain Waves Sour Cream&Chives 210G	1	3.6	210	GRNWVES	YOUNG FAMILIES	Budget	
			2019-03-			400	Natural ChipCo Honv Sov		^ ^		MATTIES	VOLUMO EARTH IEO	ъ	

data.info()

cclass 'pandas.core.frame.DataFrame'>
RangeIndex: 264834 entries, 0 to 264833
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	LYLTY_CARD_NBR	264834 non-null	int64
1	DATE	264834 non-null	object
2	STORE_NBR	264834 non-null	int64
3	TXN_ID	264834 non-null	int64
4	PROD_NBR	264834 non-null	int64
5	PROD_NAME	264834 non-null	object
6	PROD_QTY	264834 non-null	int64
7	TOT_SALES	264834 non-null	float64
8	PACK_SIZE	264834 non-null	int64
9	BRAND	264834 non-null	object
10	LIFESTAGE	264834 non-null	object
11	PREMIUM_CUSTOMER	264834 non-null	object
dtyp	es: float64(1), in	t64(6), object(5)	
memo	ry usage: 24.2+ MB		

data.BRAND.value_counts()

 $\overline{\pm}$

	count
BRAND	
KETTLE	41288
SMITHS	31823
DORITOS	28145
PRINGLES	25102
RRD	17779
WOOLWORTHS	14757
INFUZIONS	14201
THINS	14075
COBS	9693
TOSTITOS	9471
TWISTIES	9454
OLD	9324
GRNWVES	7740
NATURAL	7469
TYRRELLS	6442
CHEEZELS	4603
ccs	4551
SUNBITES	3008
CHEETOS	2927
BURGER	1564
FRENCH	1418

counts = data.BRAND.value_counts()

dtype: int64

```
# Create a bar chart using Plotly Express with different colors
fig = px.bar(
    x=counts.index.
    y=counts.values,
    labels={'y': 'Count', 'x':'Brand Name'},
    {\tt color=counts.index} ,
    color_discrete_map={ctype: color for ctype, color in zip(counts.index, colors)}, # Assign custom colors title='Count of Brand',
for i, count in enumerate(counts.values):
    fig.add_annotation(
        x=counts.index[i],
        y=count,
text=str(count),
        showarrow=True,
        arrowhead=5,
        ax=0.
        ay=-20,
# Add a legend
fig.update_layout(legend=dict(title=dict(text='Legend')), height = 1000)
# Show the plot
fig.show()
```

∑₹

Count of Brand


```
counts = data['PACK_SIZE'].value_counts()

# Plotting the counts
plt.figure(figsize=(11, 15))

for i, (value, count) in enumerate(counts.items()):
    plt.bar(i, count)
    plt.text(i, count + 0.1, str(count), ha='center', va='bottom', rotation=90)

plt.title('Count by Pack Size')
plt.ylabel('Pack Size')
plt.ylabel('Count')
plt.xicks(range(len(counts)), counts.index, rotation=45)

# Display the plot
plt.show()
```


data['DATE'] = pd.to_datetime(data['DATE'], format='%Y-%m-%d')

#Extracting Year from DATE column
data['Year'] = data['DATE'].dt.year

#Extracting Month_name and Year from DATE column
data['Month_Year'] = data['DATE'].dt.strftime('%B %Y')

#Extracting Month_name from DATE column
data['Month_Name'] = data['DATE'].dt.strftime('%B')

##Extracting Quater from DATE column
data['Quarter'] = data['DATE'].dt.quarter

#Extracting Quater and Year from DATE column
data['Quarter_Year'] = data['DATE'].dt.to_period('Q')

#Extracting WEEKDAY from DATE column
data['Weekday'] = data['DATE'].dt.day_name()

data.head()

₹	LYLTY_CARD_NE	BR	DATE	STORE_NBR	TXN_ID	PROD_NE	R PROD_NAME	PROD_QTY	TOT_SALES	PACK_SIZE	BRAND	LIFESTAGE	PREMIUM_CUSTOMER	Year	Month_Year	Month_Name	Qua
0	10		2018- 10-17	1	1		Natural Chip 5 Compny SeaSalt175g	2	6.0	175	6 NATURAL	YOUNG SINGLES/COUPLES		2018	October 2018		
1	10		2018- 09-16	1	1 2	2 58	Red Rock Deli 68 Chikn&Garlic Aioli 150g	: 1	2.7	150	RRD	YOUNG SINGLES/COUPLES		2018	September 2018		
2	2 100		2019- 03-07	1	1 3	3 52	Grain Waves Sour Cream&Chives 210G	1	3.6	210	GRNWVES	YOUNG FAMILIES	Budget	2019	March 2019	March	
3	3 100		2019- 03-08	1	1 4	1 106	Natural ChipCo Hony Soy Chckn175g	, 1	3.0	175	6 NATURAL	YOUNG FAMILIES	Budget	2019	March 2019	March	
4	100		2018- 11-02	1	1 5	5 96	WW Original Stacked Chips 160g	1	1.9	160	WOOLWORTHS	OLDER SINGLES/COUPLES		2018	November 2018		
4					_												

#Saving the updated dataset
data.to_csv('updated_data.csv') data.to_excel('updated_data.xlsx')

data.head()

_	LYLTY_CARD_NBR	DATE	STORE_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_SALES	PACK_SIZE	BRAND	LIFESTAGE	PREMIUM_CUSTOMER	Year	Month_Year	Month_Name	Qua
0	1000	2018- 10-17	1	1	5	Natural Chip Compny SeaSalt175g	2	6.0	175	NATURAL	YOUNG SINGLES/COUPLES	Premium	2018	October 2018	October	
1	1002	2018- 09-16		2	58	Red Rock Deli Chikn&Garlic Aioli 150g	1	2.7	150	RRD	YOUNG SINGLES/COUPLES	Mainstream	2018	September 2018	September	
2	1003	2019- 03-07	1	3	52	Grain Waves Sour Cream&Chives 210G	1	3.6	210	GRNWVES	YOUNG FAMILIES	Budget	2019	March 2019	March	
3	1003	2019- 03-08		4	106	Natural ChipCo Hony Soy Chckn175g	1	3.0	175	NATURAL	YOUNG FAMILIES	Budget	2019	March 2019	March	
4	1004	2018- 11-02		5	96	WW Original Stacked Chips 160g	1	1.9	160	WOOLWORTHS	OLDER SINGLES/COUPLES	Mainstream	2018	November 2018	November	
4																

```
sns.set_theme(style="whitegrid")
g = sns.catplot(
```

for ax in g.axes.flat:
 for p in ax.patches:

g.set_xticklabels(rotation=90)
g.set_axis_labels("LIFESTAGE", "TOT_SALES")
g.legend.set_title("Distribution of Total Sales by Lifestage and Customer Type")

data=data, kind="bar", x="LIFESTAGE", y="TOT_SALES", hue="PREMIUM_CUSTOMER", palette="dark", alpha=0.6, height=8, aspect=1.0


```
sns.set_theme(style="whitegrid")
g = sns.catplot(
    data=data, kind="bar",
    x="LIFESTAGE", y="PACK_SIZE", hue="PREMIUM_CUSTOMER", palette="dark", alpha=0.6, height=8, aspect=1.0
)

for ax in g.axes.flat:
    for p in ax.patches:
        ax.annotate(f'{p.get_height():.2f}', (p.get_x() + p.get_width() / 2., p.get_height()),
        ha='center', va='bottom', xytext=(0, 10), textcoords='offset points', rotation=90)
g.set_axis_labels("LIFESTAGE", "PACK_SIZE")
g.legend.set_title("Distribution of Pack Size by Lifestage and Customer Type")
```



```
for ax in g.axes.flat:
    g.set_xticklabels(rotation=90)
g.set_axis_labels("Quarter_Year", "PACK_SIZE")
g.legend.set_title("Distribution of Pack Size by Quarter Year and Customer Type")
₹
                                                                          183.36
                    182.53
                          182.69
                                                                                                  182.87
                                                                                                        182.80
                                181.76
                                            182.24
                                                  182.44
                                                        182.31
                                                                    181.73
                                                                                181.86
                                                                                           182.09
          175
          150
          125
      PACK SIZE
          100
                                                                    Distribution of Pack Size by Quarter Year and Customer Type
                                                                                             Premium
Mainstre
                                                                                                   Mainstream
                                                                                                 Budget
           75
           50
           25
                          0.00
            0
                                                  2018Q3
                                                                          201901
                           2018Q4
                                                        Quarter_Year
```

data=data, kind="bar",
x="Quarter_Year", y="PACK_SIZE", hue="PREMIUM_CUSTOMER", palette="dark", alpha=0.6, height=8, aspect=1.0

sns.set_theme(style="whitegrid")

g = sns.catplot(


```
for ax in g.axes.flat:
      for p in ax.patches:
           ax.annotate(f'(p.get_height():.2f)', (p.get_x() + p.get_width() / 2., p.get_height()),
ha='center', va='bottom', xytext=(0, 10), textcoords='offset points', rotation=90)
g.set_xticklabels(rotation=90)
g.set_axis_labels("Weekday", "PROD_QTY")
g.legend.set_title("Distribution of Product Quantity by Weekday and Customer Type")
<del>∑</del>*
                                                                                                                      1.91
1.90
1.91
                                                                                                                                        1.91
1.91
1.91
                                                              1.91
1.90
1.91
                                                                                 1.91
1.90
1.91
                                                                                                   1.90
              1.75
             1.50
              1.25
         PROD_0TY
                                                                                      Distribution of Product Quantity by Weekday and Customer Type
                                                                                                                                    Premium
Mainstream
                                                                                                                                     Budget
             0.75
              0.50
             0.25
              0.00
                                                                                     Friday
                                                Sunday
                              Wednesday
                                                                   Thursday
                                                                                                        Tuesday
                                                                                                                           Saturday
                                                                                                                                             Monday
                                                                                Weekday
```

data=data, kind="bar",
x="Weekday", y="PROD_QTY", hue="PREMIUM_CUSTOMER", palette="dark", alpha=0.6, height=8, aspect=1.0

plt.figure(figsize=(15, 10))
Select only numerical features for correlation calculation
numerical_data = data.select_dtypes(include=np.number)
sns.heatmap(numerical_data.corr(), annot=True)

→ <Axes: >

<axes:></axes:>										- 1.00
LYLTY_CARD_NBR	1	0.95	0.95	0.0018	0.0023	0.0014	0.00071	-0.0019	0.0028	1.00
STORE_NBR	0.95	1	1	0.0023	0.0048	0.0017	0.00026	0.0003	0.00047	- 0.75
TXN_ID	0.95	1	1	0.0026	0.0049	0.002	0.00023	6.2e-05	0.00071	- 0.50
PROD_NBR	0.0018	0.0023	0.0026	1	-0.002	-0.16	-0.23	-0.0037	0.0025	- 0.25
PROD_QTY	0.0023	0.0048	0.0049	-0.002	1	0.53	0.0018	-0.002	0.0012	- 0.00
TOT_SALES	0.0014	0.0017	0.002	-0.16	0.53	1	0.37	-0.0018	0.00043	0.25
PACK_SIZE	0.00071	0.00026	0.00023	-0.23	0.0018	0.37	1	0.0015	-0.00096	
Year	-0.0019	0.0003	6.2e-05	-0.0037	-0.002	-0.0018	0.0015	1	-0.89	- -0.50
Quarter	0.0028	0.00047	0.00071	0.0025	0.0012	0.00043	-0.00096	-0.89	1	0.75
	LYLTY_CARD_NBR	STORE_NBR	D TXN ID	PROD_NBR	PROD_QTY	TOT_SALES	PACK_SIZE	Year	Quarter	_

3. Experimenting and Uplift Testing

```
total_sales.head(15)
₹
                                  TOT_SALES #
      STORE_NBR
                     Month_Year
                                               ıl.
          1
                    April 2019
                                      192 9
                   August 2018
                                       176.1
                                      189.6
                 December 2018
                  February 2019
                                      225.4
                  January 2019
                                      154 8
                    July 2018
                                      206.9
                    June 2019
                                      174.1
                   March 2019
                                       192.9
                                      221.4
                    May 2019
                  November 2018
                                       192.6
                   October 2018
                                      188.1
                  September 2018
                                      278.8
          2
                    April 2019
                                      196.5
                   August 2018
                                      193.8
                 December 2018
                                      136.0
 Next steps: Generate code with total_sales  

Output

Description: View recommended plots
                                                                          New interactive sheet
total_customers=data.groupby(["STORE_NBR", "Month_Year"])["LYLTY_CARD_NBR"].nunique()
total_customers=total_customers.to_frame()
total_customers.head(15)
∓*
                                                   LYLTY_CARD_NBR
      STORE_NBR
                     Month_Year
                                                    1
                    April 2019
          1
                                              42
                   August 2018
                                              42
                  December 2018
                                              42
                  February 2019
                                              52
                  January 2019
                                              35
                    July 2018
                                               49
                    June 2019
                                              42
                   March 2019
                                               45
                    May 2019
                                              46
                  November 2018
                                              46
                  October 2018
                                              44
                 September 2018
                                               59
                    April 2019
                                               47
                   August 2018
                                               39
                  December 2018
                                               35
 Next steps: Generate code with total_customers View recommended plots
                                                                              New interactive sheet
total\_customers=data.groupby(["STORE\_NBR", "Month\_Year"])["LYLTY\_CARD\_NBR"].nunique()
total_customers=total_customers.to_frame()
total_customers.head(15)
₹
                                  LYLTY_CARD_NBR ==
      STORE_NBR
                     Month_Year
                                                    11
                                              42
                    April 2019
                   August 2018
                                              42
                  December 2018
                                              42
                  February 2019
                                              52
                                              35
                  January 2019
                    July 2018
                                              49
                    June 2019
                                              42
                   March 2019
                                              45
                    May 2019
                                              46
                  November 2018
                                              46
                   October 2018
                 September 2018
                                               59
                                              47
                    April 2019
                   August 2018
                                              39
                  December 2018
                                               35
```



```
₹
        Month_Year
       April 2019
      August 2018 9
     December 2018 9
      February 2019 8
      January 2019 9
       July 2018
                   6
       June 2019
                   8
       March 2019
       May 2019
     November 2018 8
      October 2018 7
     September 2018 8
    dtype: int64
unrecorded_stores=[]
for i in recorded_stores.index:
   if recorded_stores.loc[i].isnull().any():
      unrecorded_stores.append(i)
unrecorded_stores
→ [11, 31, 44, 76, 85, 92, 117, 193, 206, 211, 218, 252]
dataframe=dataframe.drop(unrecorded_stores, axis=0)
dataframe
STORE_NBR
                  Month_Year
                                                              ıl.
        1
                 April 2019
                                 192.9
                                           42
                                                   1.023810
                                                              1
                               176.1
                August 2018
                                                 1.023810
                                           42
               December 2018
                             189.6 42
                                                1.119048
               February 2019
                              225.4
                                            52
                                                   1.057692
                January 2019
                                 154.8
                                            35
                                                    1.028571
                 ...
       272
                March 2019
                              442.3
                                            50
                                                1.060000
                 May 2019
                               314.6
                                           34
                                                1.176471
               November 2018
                                 376.2
                                            41
                                                    1.097561
                October 2018
                                430.6
                                            44
                                                    1.136364
               September 2018
                                 304.7
                                            32
                                                    1.125000
    3120 rows × 3 columns
Next steps: Generate code with dataframe View recommended plots New interactive sheet
A. Pre-Trial Duration -- Before February 2019
pre_trial_data = dataframe.loc[pd.to_datetime(dataframe.index.get_level_values("Month_Year"), format="%B %Y") < "2019-02"]</pre>
pre_trial_data=pre_trial_data.reset_index()
pre_trial_data
<del>_</del>_
          STORE_NBR
                       Month_Year TOT_SALES TOT_CUST TXN_PER_CUST
                                                                   \blacksquare
                                     176.1 42
      0
                 1
                       August 2018
                                                        1.023810
                                                                   ıl.
      1
                 1 December 2018
                                   189.6 42
                                                        1.119048
      2
                1 January 2019
                                   154.8
                                               35
                                                        1 028571
      3
                 1
                         July 2018
                                      206.9
                                                 49
                                                         1.061224
      4
                1 November 2018
                                     192.6
                                                 46
                                                        1 021739
      ...
                ...
                                   423.0
               272 January 2019
     1815
                                                 46
                                                        1.086957
     1816
               272
                         July 2018
                                      433.1
                                                 48
                                                         1.083333
                                   376.2
     1817
               272 November 2018
                                                 41
                                                        1.097561
     1818
               272 October 2018
                                   430.6
                                                 44
                                                         1.136364
     1819
               272 September 2018
                                     304.7
                                                 32
                                                         1.125000
    1820 rows × 5 columns
Next steps: ( Generate code with pre_trial_data ) ( View recommended plots ) ( New interactive sheet )
```

control_stores=pre_trial_data[(pre_trial_data.STORE_NBR!=77) & (pre_trial_data.STORE_NBR!=86) & (pre_trial_data.STORE_NBR!=88)][["TOT_SALES", "TOT_CUST", "TXN_PER_CUST"]].groupby(pre_trial_data.STORE_NBR!=86)

recorded_stores.isnull().sum()

control_stores

 $\label{local-difference} difference=(trial_stores.loc[77]-difference).sort_values(by="TOT_SALES", ascending=False) \\ difference["DIFFERENCE"]=difference["TOT_SALES"]-difference["TOT_SALES"].mean()$

÷		TOT_SALES	TOT_CUST	TXN_PER_CUST	DIFFERENCE	
	STORE_NBR					ıl.
	139	1493.2	257.0	0.405289	609.34	
	135	1486.9	256.0	0.012432	603.04	
	161	1459.0	252.0	0.405289	575.14	
	233	39.2	1.0	0.115969	-844.66	
	46	-59.0	-3.0	0.094215	-942.86	

Store Number: 86

difference=control_stores.loc[control_stores.corrwith(trial_stores.loc[86], axis=1).nlargest(5).index] difference=(trial_stores.loc[86]-difference).sort_values(by="TOT_SALES", ascending=False) difference["DIFFERENCE"]=difference["TOT_SALES"]-difference["TOT_SALES"].mean() difference.sort_values(by="DIFFERENCE", ascending=False)

