Prof. G. de Cesare Esercizi d'esame di Elettronica Ingegneria Informatica/Automatica Anno 2015

1) Del circuito seguente,

- Determinare il valore di *Vout* con Vin = 0 V.
- Calcolare i valori minimo e massimo di Vin per cui se $Vin_{min} < Vin < Vin_{max}$ il transistore Q_1 si trova in zona di saturazione.

Amplificatore Operazionale ideale con $L^+ = -L^- = 10V$

$$Q_I$$
: [$V_T = 2 \text{ V}$; $K = 0.5 \text{ mA/V}^2$; $\lambda = 0$]

$$R_1 = R_2 = 1 \text{ k}\Omega; \quad R_D = 2 \text{ k}\Omega;$$

$$V_{DD} = 10 \text{ V}; \quad V_I = 2 \text{ V}$$

1) Del circuito seguente, in presenza del segnale di tensione impulsivo in ingresso $V_{\rm IN}$, determinare l'andamento della tensione di uscita nel tempo, specificando i punti significativi.

Amplificatore Operazionale ideale con $L^+ = -L^- = 10V$

 $R_I = 1 \text{ k}\Omega$; $R_2 = 2 \text{ k}\Omega$; $R_3 = 4 \text{ k}\Omega$; C = 25 nF

- 1) Del circuito seguente, determinare:
- lo stato di polarizzazione del transistore Q_1 ($V_{GS},\,V_{DS},\,I_D$)
- l'andamento nel tempo della tensione di uscita V_{OUT} in presenza del segnale di tensione in b) ingresso V_{IN} riportato in figura.

Amplificatore Operazionale ideale con
$$L^+ = -L^- = 12V$$

 $\mathbf{Q_1}$: $V_T = 1 \text{ V}$; $K = 0.5 \text{ mA/V}^2$; $\lambda = 0$, $\chi = 0$

$$C = 10 \text{ nF}$$
 $V_{DD} = 10 \text{ V}$ $V_{I} = 2 \text{ V}$

$$R_I = 1 \text{ k}\Omega$$
 $R_D = 2 \text{ k}\Omega$ $R_L = 2 \text{ k}\Omega$

1) Del circuito seguente, in presenza del segnale a gradino di tensione V_1 , determinare e tracciare il grafico dell'andamento nel tempo delle tensioni V_{01} , V_{02} , e V_{out} .

Amplificatore Operazionale ideale;

$$L^+ = -L^- = 5 \text{ V}$$

$$R_I = 100 \text{ k}\Omega$$
; $R_2 = 20 \text{ k}\Omega$; $V_2 = 4 \text{ V}$; $C_I = 10 \text{ nF}$; $C_2 = 10 \text{ nF}$

$$V_2 = 4 \text{ V}$$

$$C_2 = 10 \text{ nF}$$

- 1) Dato il circuito di figura, calcolare:
 - a) il valore della resistenza R_S per avere una tensione di uscita in continua $V_{OUT} = 1$ V.
 - b) il guadagno di tensione per piccoli segnali $A_v = v_{out}/v_{sig}$.

$$Q_I \equiv [V_T = 2V; K = 0.5 \text{mA/V}^2; \lambda = 0, \chi = 0]$$

$$\mathbf{\textit{R}}_{\textit{G}} = 10 \mathrm{k}\Omega; \quad \mathbf{\textit{R}}_{\textit{sig}} = 50\Omega; \quad \mathbf{\textit{R}}_{\textit{D}} = 2 \mathrm{k}\Omega; \quad \mathbf{\textit{R}}_{\textit{L}} = 2 \mathrm{k}\Omega$$

$$C \rightarrow +\infty$$
, $V_{DD} = 6V$ $v_{OUT} = V_{OUT} + v_{out}$

Si consideri il circuito riportato in figura.

Data la presenza del gradino di corrente I_I e del generatore di tensione costante V_I , rispettivamente agli ingressi invertente e non-invertente dell'amplificatore operazionale, determinare l'andamento temporale della tensione sul condensatore $V_C(t)$ e della tensione di uscita $V_{out}(t)$.

Op Amp ideale
$$V_{sat}^+ = -V_{sat}^- = 10 \text{ V}$$

 $R_I = 2k\Omega$ $R_2 = 6k\Omega$ $C = 100 \text{ nF}$ $V_I = 5 \text{ V}$

1) Dato il circuito in figura, dove

$$\begin{array}{lll} V_{DD}\!=5~V & V_T\!=2~V & K=0,5~mA/V^2, \\ \\ R_G\!=7,\!5~k\Omega & R_D\!=2~k\Omega & R_L\!=2~k~\Omega & R_L\!=1~K\Omega & C=\infty \end{array}$$

determinare il valore della corrente di polarizzazione $\,\,I_{1}$ per avere il guadagno $i_{out}/i_{s}.=$ -10 $\,$

Del circuito seguente:

- calcolare il valore della resistenza di Drain R_D che polarizza il transistore con una V_{DS} pari a 5V;
- con il valore trovato calcolare il guadagno di corrente $A_i = i_{out}/i_s$.

 $V_{DD} = 5V; I_1 = 2mA$

 Q_I : $V_T = 2 \text{ V}$; $K = 0.5 \text{ mA/V}^2$; $\lambda = 0$

 $\mathbf{R}_{\mathbf{G}} = 7.5 \mathrm{k}\Omega; \quad \mathbf{R}_{\mathbf{L}} = 1 \mathrm{k}\Omega; \quad \mathbf{C} = \infty$

Calcolare lo stato di polarizzazione dei due transistori (V_{GS} , I_D , V_{DS}), e il guadagno di tensione per piccoli segnali v_{out}/v_{in} dell'amplificatore seguente,

Q₁ (NMOS arricchimento): $V_{Tl}=2V$; $k_1=0.5 \text{ mA/V}^2$; $\lambda=0, \chi=0$ **Q**₂ (NMOS svuotamento): $V_{T2}=-2V$; $k_2=0.5 \text{ mA/V}^2$; $\lambda=0, \chi=0$

 $V_{DD} = 10$ V $R_1 = 10$ M Ω $R_2 = 1$ k Ω $R_L = 10$ k Ω $C_1 = C_2 = C_3 = \infty$

Del circuito seguente,

- Determinare il punto di polarizzazione del transistor Q_1 (V_{GS} , V_{DS} , I_D)
- Calcolare l'amplificazione di tensione per piccoli segnali $A_v = v_{out} / v_{in}$

$$V_{DD} = 10 \text{ V}$$
 $V_I = 2 \text{ V}$
 $R_I = 1 \text{ k}\Omega$ $R_D = 2 \text{ k}\Omega$ $R_L = 10 \text{ k}\Omega$

Q₁:
$$V_T = 1 \text{ V}; \qquad K = 0.5 \text{ mA/V}^2; \qquad \lambda = 0, \ \chi = 0$$

Amplificatore Operazionale ideale con $L^+ = -L^- = 10$ V