

Institute of Stochastics

Stochastic Geometry | Summer term 2020

PD. Dr. Steffen Winter Steffen Betsch, M.Sc.

Work Sheet 12

Instructions for week 12 (July 6th to July 10th):

- Work through Section 4.4 of the lecture notes.
- Answer the control questions 1) to 3), and solve Problems 1 to 4 of the exercises below.
- Please hand in your solutions to the exercises for correction until the morning of Monday, July 13th. For the procedure, please have a look at the general information in Ilias. The submission of solutions is voluntary.

Control questions to monitor your progress:

- 1) Specify (4.20) and the formula in Theorem 4.35 for a Boolean model in $\mathbb R$ and obtain expressions for δ_0 and δ_1 in terms of the densities $\gamma=\gamma_0$ and γ_1 . What does it mean for Z to be isotropic in this case?
- 2) Verify the equation for the intensity γ in terms of the densities δ_i in Remark 4.38.
- 3) In the proof of Theorem 4.40, why is it enough to consider functions f such that $f(x_1, ..., x_n) = 0$ whenever $x_i = x_j$ for some $i \neq j$?

Exercises for week 12:

Problem 1 (Concerning Remark 4.29)

Let $m \in \{0, ..., d\}$, $K \in \mathcal{K}^d$, and let $f : \mathcal{K}^d \to \mathbb{R}$ be a measurable map. Prove that

$$\int_{G(d,d-m)} f(K|L^{\perp}) \, \mathrm{d} \nu_{d-m}(L) = \int_{G(d,m)} f(K|L) \, \mathrm{d} \nu_{m}(L),$$

where K|L (or $K|L^{\perp}$) denotes the orthogonal projection of K onto L (or onto L^{\perp}), and where v_q is the SO_d -invariant probability measure on G(d,q) (for $q \in \{0,\ldots,d\}$) from Theorem 4.25.

Problem 2 (Steiner's formula as a special case of the principal kinematic formula)

Show that Steiner's formula (Theorem 3.33) follows from the principal kinematic formula (Theorem 4.33).

Problem 3 (Geometric densities of the Boolean model)

Let Z be a stationary and isotropic Boolean model in \mathbb{R}^3 with intensity parameter $\gamma > 0$ and with a distribution \mathbb{Q} of the typical grain which is concentrated on $\mathcal{K}^3 \setminus \{\emptyset\}$.

- a) Determine the densities $\delta_0, \dots, \delta_3$ in terms of $\gamma_0, \dots, \gamma_3$.
- b) Assume that

$$\delta_0 = 0.34, \quad \delta_1 = 0.1, \quad \delta_2 = 0.11, \quad \delta_3 = 0.52.$$

Determine the intensity γ .

c) Let $M \in \mathcal{K}_0$, where \mathcal{K}_0 is defined via the center of the circumball of the convex and compact sets, and $\mathbb{Q}(\cdot) := \int_{SO_3} \mathbb{1}\{\vartheta M \in \cdot\} \, d\nu(\vartheta)$, where ν is the SO_3 -invariant probability measure on SO_3 from Theorem 4.23. Assume that

$$\delta_0 = 10, \quad \delta_1 = 20, \quad \delta_2 = 0, \quad \delta_3 = 0.$$

Calculate the intensity γ . Given these values, what can you say about the set M?

Problem 4 (Concerning Remark 4.39)

Let $W \in \mathcal{K}^d$ with $V_d(W) > 0$, and let Z be a stationary Boolean model with typical grain Z_0 such that $\mathbb{E}\big[\big(\lambda^d(Z_0)\big)^2\big] < \infty$. Denote by p_Z the volume fraction of Z (see Definition 1.30 and Theorem 1.31).

a) Prove that $\int_{\mathbb{R}^d} (C(x) - p_Z^2) dx < \infty$.

Hint: You may use that $e^t - 1 \le t \cdot e^t$ for each $t \ge 0$.

b) Denote by C the covariance function of Z from Definition 3.18. Prove that

$$\sigma_{d,d} := \lim_{r \to \infty} \frac{\operatorname{Var} \left(V_d (Z \cap r \cdot W) \right)}{\lambda^d (r \cdot W)} = \int_{\mathbb{R}^d} \left(C(x) - p_Z^2 \right) \mathrm{d}x.$$

The solutions to these problems will be uploaded on July 13th.