

SEQUENCE LISTING

> VENETSANAKOS, ELENI

<120> METHODS FOR TREATING CANCER USING PORIMIN AS A TARGET

<130> 26312.0002

<160> 6

<170> PatentIn version 3.1

<210> 1

<211> 3338

<212> DNA

<213> HUMAN PORIMIN

cccagcccgg ccccgccgcc ccggctgcgc acgcgacgcc ccctccaggc cccgctcctg 60 cgccctattt ggtcattcgg ggggcaagcg gcgggagggg aaacgtgcgc ggccgaaggg 120 gaageggage eggeegge tgegeagagg ageegetete geegeegeea ceteggetgg 180 240 gageceaega ggetgeegea teetgeeete ggaacaatgg gaeteggege gegaggtget tgggccgcgc tgctcctggg gacgctgcag gtgctagcgc tgctgggggc cgcccatgaa 300 360 agcgcagcca tggcggagac tctccaacat gtgccttctg accatacaaa tgaaacttcc 420 aacagtactg tgaaaccacc aacttcagtt gcctcagact ccagtaatac aacggtcacc accatgaaac ctacagegge atctaataca acaacaccag ggatggtete aacaaatatg 480 540 acttctacca ccttaaagtc tacacccaaa acaacaagtg tttcacagaa cacatctcag atatcaacat ccacaatgac cgtaacccac aatagttcag tgacatctgc tgcttcatca 600 660 gtaacaatca caacaactat gcattctgaa gcaaagaaag gatcaaaatt tgatactggg

agctttgttg	gtggtattgt	attaacgctg	ggagttttat	ctattcttta	cattggatgc	720
aaaatgtatt	actcaagaag	aggcattcgg	tatcgaacca	tagatgaaca	tgatgccatc	780
atttaaggaa	atccatggac	caaggatgga	atacagattg	atgctgccct	atcaattaat	840
tttggtttat	taatagttta	aaacaatatt	ctctttttga	aaatagtata	aacaggccat	900
gcatataatg	tacagtgtat	tacgtaaata	tgtaaagatt	cttcaaggta	acaagggttt	960
gggttttgaa	ataaacatct	ggatcttata	gaccgttcat	acaatggttt	tagcaagttc	1020
atagtaagac	aaacaagtcc	tatcttttt	tttttggctg	gggtgggggc	attggtcaca	1080
tatgaccagt	aattgaaaga	cgtcatcact	gaaagacaga	atgccatctg	ggcatacaaa	1140
taagaagttt	gtcacagcac	tcaggatttt	gggtatcttt	tgtagctcac	ataaagaact	1200
tcagtgcttt	tcagagctgg	atatatctta	attactaatg	ccacacagaa	attatacaat	1260
caaactagat	ctgaagcata	atttaagaaa	aacatcaaca	ttttttgtgc	tttaaactgt	1320
agtagttggt	ctagaaacaa	aatactccaa	gaaaaagaaa	attttcaaat	aaaacccaaa	1380
ataatagctt	tgcttagccc	tgttagggat	ccattggagc	attaaggagc	acatatttt	1440
attaacttct	tttgagcttt	caatgttgat	gtaatttttg	ttctctgtgt	aatttaggta	1500
aactgcagtg	tttaacataa	taatgtttta	aagacttagt	tgtcagtatt	aaataatcct	1560
ggcattatag	ggaaaaaacc	tcctagaagt	tagattattt	gctactgtga	gaatattgtc	1620
accactggaa	gttactttag	ttcatttaat	tttaatttta	tattttgtga	atattttaag	1680
aactgtagag	ctgctttcaa	tatctagaaa	tttttaattg	agtgtaaaca	cacctaactt	1740
taagaaaaag	aaccgcttgt	atgattttca	aaagaacatt	tagaattcta	tagagtcaaa	1800
actatagcgt	aatgctgtgt	ttattaagcc	agggattgtg	ggacttcccc	caggcaacta	1860
aacctgcagg	atgaaaatgc	tatattttct	ttcatgcact	gtcgatatta	ctcagatttg	1920
gggaaatgac	atttttatac	taaaacaaac	accaaaatat	tttagaataa	attcttagaa	1980
agttttgaga	ggaattttta	gagaggacat	ttcctccttc	ctgatttgga	tattccctca	2040
aatccctcct	cttactccat	gctgaaggag	aagtactctc	agatgcatta	tgttaatgga	2100
gagaaaaagc	acagtattgt	agagacacca	atattagcta	atgtattttg	gagtgttttc	2160
cattttacag	tttatattcc	agcactcaaa	actcagggtc	aagttttaac	aaaagaggta	2220
tgtagtcaca	gtaaatacta	agatggcatt	tctatctcag	agggccaaag	tgaatcacac	2280
cagtttctga	aggtcctaaa	aatagctcag	atgtcctaat	gaacatgcac	ctacatttaa	2340
taggagtaca	ataaaactgt	tgtcagcttt	tgttttacag	agaacgctag	atattaagaa	2400

ttttgaaatg	gatcatttct	acttgctgtg	cattttaacc	aataatctga	tgaatataga	2460
aaaaaatgat	ccaaaatatg	gatatgattg	gatgtatgta	acacatacat	ggagtatgga	2520
ggaaattttc	tgaaaaatac	atttagatta	gtttagtttg	aaggagaggt	gggctgatgg	2580
ctgagttgta	tgttactaac	ttggccctga	ctggttgtgc	aaccattgct	tcatttcttt	2640
gcaaaatgta	gttaagatat	actttattct	aatgaaggcc	ttttaaattt	gtccactgca	2700
ttcttggtat	ttcactactt	caagtcagtc	agaacttcgt	agaccgacct	gaagtttctt	2760
tttgaatact	tgtttcttta	gcactttgaa	gatagaaaaa	ccacttttta	agtactaagt	2820
catcatttgc	cttgaaagtt	tcctctgcat	tgggtttgaa	gtagtttagt	tatgtctttt	2880
tctctgtatg	taagtagtat	aatttgttac	tttcaaatac	ccgtactttg	aatgtaggtt	2940
tttttgttgt	tgttatctat	aaaaattgag	ggaaatggtt	atgcaaaaaa	atattttgct	3000
ttggaccata	tttcttaagc	ataaaaaaat	gctcagtttt	gcttgcattc	cttgagaatg	3060
tatttatctg	aagatcaaaa	caaacaatcc	agatgtataa	gtactaggca	gaagccaatt	3120
ttaaaatttc	cttgaataat	ccatgaaagg	aataattcaa	atacagataa	acagagttgg	3180
cagtatatta	tagtgataat	tttgtatttt	caamaaaaaa	aaagttaaac	tcttctttc	3240
tttttattat	aatgaccagc	ttttggtatt	tcattgttac	caagttctat	ttttagataa	3300
aattgttctc	cttctaaaaa	aaaaaaaaa	aaaaaaa			3338

<210> 2

<211> 1281

<212> DNA

<213> HUMAN PORIMIN

<400> 2
gcggagccgg cgccggctgc gcagaggagc cgctctcgcc gccgccacct cggctggag 60
cccacgaggc tgccgcatcc tgccctcgga acaatgggac tcggcgcgc aggtgcttgg 120
gccgcgctgc tcctgggac gctgcaggtg ctagcgctgc tgggggccgc ccatgaaagc 180
gcagccatgg cggcatctgc aaacatagag aattctgggc ttccacacaa ctccagtgct 240
aactcaacag agactctcca acatgtgcct tctgaccata caaatgaaac ttccaacagt 300
actgtgaaac caccaacttc agttgcctca gactccagta atacaacggt caccaccatg 360

aaacctacag cggcatctaa tacaacaaca ccaqqqatqq tctcaacaaa tatgacttct 420 accaccttaa agtctacacc caaaacaaca agtgtttcac agaacacatc tcagatatca 480 acatccacaa tgaccgtaac ccacaatagt tcagtgacat ctgctgcttc atcagtaaca 540 600 atcacaacaa ctatgcattc tgaagcaaag aaaggatcaa aatttgatac tgggagcttt 660 gttggtggta ttgtattaac gctgggagtt ttatctattc tttacattgg atgcaaaatg tattactcaa gaagaggcat tcggtatcga accatagatg aacatgatgc catcatttaa 720 780 ggaaatccat ggaccaagga tggaatacag attgatgctg ccctatcaat taattttggt ttattaatag tttaaaacaa tattctcttt ttgaaaatag tataaacagg ccatgcatat 840 900 aatgtacagt gtattacgta aatatgtaaa gattcttcaa ggtaacaagg gtttgggttt 960 tgaaataaac atctggatct tatagaccgt tcatacaatg gttttagcaa gttcatagta 1020 agacaaacaa gtcctatctt ttttttttgg ctggggtggg ggcattggtc acatatgacc agtaattgaa agacgtcatc actgaaagac agaatgccat ctgggcatac aaataagaag 1080 tttgtcacag cactcaggat tttgggtatc ttttgtagct cacataaaga acttcagtgc 1140 ttttcagagc tggatatatc ttaattacta atgccacaca gaaattatac aatcaaacta 1200 gatctgaagc ataatttaag aaaaacatca acattttttg tgctttaaac tgtagtagtt 1260 1281 ggtctagaaa caaaatactc c

<210> 3

<211> 189

<212> PRT

<213> HUMAN PORIMIN

<400> 3

Met Gly Leu Gly Ala Arg Gly Ala Trp Ala Ala Leu Leu Gly Thr 1 5 10 15

Leu Gln Val Leu Ala Leu Leu Gly Ala Ala His Glu Ser Ala Ala Met 20 25 30

Ala Glu Thr Leu Gln His Val Pro Ser Asp His Thr Asn Glu Thr Ser 35 40 45

Asn Ser Thr Val Lys Pro Pro Thr Ser Val Ala Ser Asp Ser Ser Asn 50 55 60

Thr Thr Val Thr Thr Met Lys Pro Thr Ala Ala Ser Asn Thr Thr Thr 65 70 75 80

Pro Gly Met Val Ser Thr Asn Met Thr Ser Thr Thr Leu Lys Ser Thr 85 90 95

Pro Lys Thr Thr Ser Val Ser Gln Asn Thr Ser Gln Ile Ser Thr Ser 100 105 110

Thr Met Thr Val Thr His Asn Ser Ser Val Thr Ser Ala Ala Ser Ser 115 120 125

Val Thr Ile Thr Thr Met His Ser Glu Ala Lys Lys Gly Ser Lys 130 135 140

Phe Asp Thr Gly Ser Phe Val Gly Gly Ile Val Leu Thr Leu Gly Val 145 150 155 160

Leu Ser Ile Leu Tyr Ile Gly Cys Lys Met Tyr Tyr Ser Arg Arg Gly
165 170 175

Ile Arg Tyr Arg Thr Ile Asp Glu His Asp Ala Ile Ile 180 185

<210> 4

<211> 208

<212> PRT

<213> HUMAN PORIMIN

<400> 4

Met Gly Leu Gly Ala Arg Gly Ala Trp Ala Ala Leu Leu Leu Gly Thr 1 5 10 15

Leu Gl
n Val Leu Ala Leu Leu Gly Ala Ala His Glu Ser Ala Ala Met
 $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Ala Ala Ser Ala Asn Ile Glu Asn Ser Gly Leu Pro His Asn Ser Ser

35

40

45

Ala Asn Ser Thr Glu Thr Leu Gln His Val Pro Ser Asp His Thr Asn 50 60

Glu Thr Ser Asn Ser Thr Val Lys Pro Pro Thr Ser Val Ala Ser Asp 65 70 75 80

Ser Ser Asn Thr Thr Val Thr Thr Met Lys Pro Thr Ala Ala Ser Asn 85 90 95

Thr Thr Thr Pro Gly Met Val Ser Thr Asn Met Thr Ser Thr Thr Leu 100 105 110

Lys Ser Thr Pro Lys Thr Thr Ser Val Ser Gln Asn Thr Ser Gln Ile 115 120 125

Ser Thr Ser Thr Met Thr Val Thr His Asn Ser Ser Val Thr Ser Ala 130 135 140

Ala Ser Ser Val Thr Ile Thr Thr Met His Ser Glu Ala Lys Lys 145 150 155 160

Gly Ser Lys Phe Asp Thr Gly Ser Phe Val Gly Gly Ile Val Leu Thr 165 170 175

Leu Gly Val Leu Ser Ile Leu Tyr Ile Gly Cys Lys Met Tyr Tyr Ser 180 185 190

Arg Arg Gly Ile Arg Tyr Arg Thr Ile Asp Glu His Asp Ala Ile Ile 195 200 205

<210> 5

<211> 118

<212> PRT

<213> Human Porimin

<400> 5

Met Ala Glu Thr Leu Gln His Val Pro Ser Asp His Thr Asn Glu Thr 1 5 10 15

Ser Asn Ser Thr Val Lys Pro Pro Thr Ser Val Ala Ser Asp Ser Ser 20 25 30

Asn Thr Thr Val Thr Thr Met Lys Pro Thr Ala Ala Ser Asn Thr Thr 35 40 45

Thr Pro Gly Met Val Ser Thr Asn Met Thr Ser Thr Thr Leu Lys Ser 50 60

Thr Pro Lys Thr Thr Ser Val Ser Gln Asn Thr Ser Gln Ile Ser Thr 65 70 75 80

Ser Thr Met Thr Val Thr His Asn Ser Ser Val Thr Ser Ala Ala Ser 85 90 95

Ser Val Thr Ile Thr Thr Met His Ser Glu Ala Lys Lys Gly Ser 100 105 110

Lys Phe Asp Thr Gly Ser 115

<210> 6

<211> 137

<212> PRT

<213> Human Porimin

<400> 6

Met Ala Ala Ser Ala Asn Ile Glu Asn Ser Gly Leu Pro His Asn Ser 1 $$ 5 $$ 10 $$ 15

Ser Ala Asn Ser Thr Glu Thr Leu Gln His Val Pro Ser Asp His Thr 20 25 30

Asn Glu Thr Ser Asn Ser Thr Val Lys Pro Pro Thr Ser Val Ala Ser 35 40 45

Asp Ser Ser Asn Thr Thr Val Thr Met Lys Pro Thr Ala Ala Ser 50 60

Asn Thr Thr Thr Pro Gly Met Val Ser Thr Asn Met Thr Ser Thr Thr 65 70 75 80

Leu Lys Ser Thr Pro Lys Thr Thr Ser Val Ser Gln Asn Thr Ser Gln 85 90 95

Ile Ser Thr Ser Thr Met Thr Val Thr His Asn Ser Ser Val Thr Ser 100 105 110

Ala Ala Ser Ser Val Thr Ile Thr Thr Met His Ser Glu Ala Lys 115 120 125

Lys Gly Ser Lys Phe Asp Thr Gly Ser 130 135