Digital Circuit Fall 2019

Yuxuan Zhang, XJTU, 2160909016

Session 1 - Logical caculation and Binary code

Session 1 Notes

Logical Caculation

Basic logical operations:

NAME	OPERATOR	Example	Description
AND	×	AB	All inputs are true
OR	+	A + B	One or more inputs are true
NOT	\overline{A}	\overline{A}	Reverse input
XOR	Φ	$A \oplus B$	One and only one input is true

Important tricks:

$$\overline{AB} = \bar{A} + \bar{B} \tag{1}$$

$$\overline{A+B} = \bar{A}\,\bar{B} \tag{2}$$

$$A + \bar{A}B = A + B \tag{3}$$

$$A + AB = A \tag{4}$$

Session 1 Homework

• **Problem 1 - 2.3 (3)** Convert 145.6875_D to Binary.

For integer part:

 $145_D = 1001\ 0001_B$

For decimal part:

 $0.6875_D = 0.1011_B$

Hence:

 $145.6875_D = 1001\ 0001.1011_B$

• Problem 2 - 2.7 (4) Prove Logical Equation: BC + AD = (B+A)(B+D)(A+C)(C+D).

Proof:

LHS:

$$AB + CD = \overline{\overline{BC} + A\overline{D}}$$

$$= \overline{\overline{BC} \overline{AD}}$$

$$= \overline{(\overline{B} + \overline{C})(\overline{A} + \overline{D})}$$

$$= \overline{\overline{A}\overline{B} + \overline{B}\overline{D} + \overline{A}\overline{C} + \overline{C}\overline{D}}$$

RHS:

$$(B+A)(B+D)(A+C)(C+D) = \overline{(B+A)(B+D)(A+C)(C+D)}$$

$$= \overline{(B+A)} + \overline{(B+D)} + \overline{(A+C)} + \overline{(C+D)}$$

$$= \overline{A}\overline{B} + \overline{B}\overline{D} + \overline{A}\overline{C} + \overline{C}\overline{D}$$

Hence:

LHS=RHS

Prove Complete.

• Problem 3 - 2.8 (4) Find the Reverse Expression of Logical function $L_4=(A+\bar{B})(\bar{A}+\bar{B}+C)$.

$$\overline{L_4} = \overline{(A + \bar{B})(\bar{A} + \bar{B} + C)}$$

$$= \overline{(A + \bar{B})} + \overline{(\bar{A} + \bar{B} + C)}$$

$$= \bar{A}B + (\overline{\bar{A} + \bar{B}})\bar{C}$$

$$= \bar{A}B + AB\bar{C}$$

$$= \bar{A}B + B\bar{C}$$

• **Problem 4 - 2.11** Consider a specific Logical Circuit with three input A, B and C, its output is 1 when ture inputs are more than false inputs, vice versa. Draw value chart of this circuit and find its Logic Expression.

A	B	C	Output	
0	0	0	0	
1	0	0	0	
0	1	0	0	
1	1	0	1	
0	1	1	1	
1	1	1	1	
0	0	1	0	
1	0	1	1	
L = AB + BC + AC				

• **Problem 5 - 2.13 (7)** Simplify Logical Function: $L = \overline{(AB + \bar{B}C)(AC + \bar{A}\bar{C})}$.

$$L = \overline{(AB + \bar{B}C)(AC + \bar{A}\bar{C})}$$

$$= \overline{(AB + \bar{B}C)} + \overline{(AC + \bar{A}\bar{C})}$$

$$= \overline{AB}\,\overline{BC} + \overline{AC}\,\overline{A\bar{C}}$$

$$= (\bar{A} + \bar{B})(B + \bar{C}) + (\bar{A} + \bar{C})(A + C)$$

$$= \bar{A}B + \bar{A}\bar{C} + \bar{B}B + \bar{B}\bar{C} + \bar{A}A + \bar{A}C + \bar{C}A + \bar{C}C$$

$$= \bar{A}(\bar{C} + C) + \bar{A}B + \bar{B}\bar{C} + \bar{C}A$$

$$= \bar{A} + \bar{B}\bar{C} + \bar{C}A$$

$$= \bar{A} + \bar{B}\bar{C} + \bar{C}$$

$$= \bar{A} + \bar{C}$$

• **Problem 6 - 2.15 (6)** Use Carno Chart to simplify $L = \Sigma m(2, 3, 4, 5, 9) + \Sigma d(10, 11, 12, 13)$.

$$L = \bar{A}D + A\bar{D} + BC\bar{D}$$

Session 2 - Digital circuit architecture

Session 2 Homework

• Problem 1 - 3.11 Analyze logic circuit.

Truth Table:

$$\begin{array}{c|ccc} A & 0 & 1 \\ \hline L & 1 & 1 \end{array}$$

$$L=True$$

Wave Form $(t_{pd} = 50ns)$:

• Problem 2 - 3.15 (c) Analyze logic circuit.

At the case of $X \to HIGH$:

$$L = Z$$

At the case of $X \to LOW$:

$$L = A\overline{B}$$

• Problem 3 - 3.16 Pull or Push.

应该选用 (a) 方案,因为 74 系列 TTL 可以接受的灌电流 $(I_{OL}=16mA)$ 远大于高电平时的极限输出电流 $(I_{OH}=-0.4mA)$,更适合驱动负载。且在本例中,考虑到 $I_{LED}=10mA$,只有 I_{OL} 满足此条件。

• Problem 4 - 3.20 Mulityfunctional gate array.

(1) Give the expression of Y (no simplification required):

$$Y = \overline{E_3 A B + E_2 \bar{A} B + E_1 A \bar{B} + E_0 \bar{A} \bar{B}}$$

(2) Give the functionality of this circuit with E_3 E_2 E_1 $E_0 \rightarrow 0000 - 0111$:

E		functionality	
0000	Y =	True	
$0\ 0\ 0\ 1$	Y =	$\overline{ar{A}ar{B}}$	= A + B
$0\ 0\ 1\ 0$	Y =	$\overline{Aar{B}}$	$= \bar{A} + B$
$0\ 1\ 0\ 0$	Y =	$\overline{ar{A}B}$	$=A+\bar{B}$
$0\ 0\ 1\ 1$	Y =	$\overline{Aar{B}+ar{A}ar{B}}$	= B
$0\ 1\ 0\ 1$	Y =	$\overline{A}B + \overline{A}\overline{B}$	=A
$0\ 1\ 1\ 0$	Y =	$\overline{A}B + A\overline{B}$	$=AB+\bar{A}\bar{B}$
$0\ 1\ 1\ 1$	Y =	$\overline{A}B + A\overline{B} + \overline{A}\overline{B}$	=AB

(2) Caculate the value range of R according to given conditions:

First of all, we should be aware that there are AT MOST 2 Gates at LOW status. While ALL four gates may be at HIGH status. In case of 3 Highs and 1 Low, we get:

$$\begin{cases} 5V - R \cdot I_{CC} & < 0.3V \\ I_{CC} + 0.4mA \times 2 + 100\mu A \times 3 & < 8mA \end{cases}$$

In case of 4 Highs, we get:

$$\left\{ \begin{array}{ll} 5V - R \cdot I_{CC} & > & 3V \\ I_{CC} + 100 \mu A \times 4 & > & 20 \mu A \times 2 \end{array} \right.$$

Hence:

$$R > 681\Omega$$

Session 3

Session 3 Homework

• Problem 1 - 4.12 Analyze waveform.

ANALYSIS:

At the down-edge of CLK1, Q1 ALWAYS flips itself;

When $Q_1 = 1$, at the down-edge of CLK_2 , Q_2 flips itself;

When $Q_1 = 0$, at the down-edge of CLK_2 , Q_2 is set to 0;

When $Q_2 = 1$, Q_1 is IMMEDIATELY reset to 0;

Hence:

• Problem 2 - 5.4 Analyze logic relations.

ANALYSIS:

 $J_1 \equiv K_1 \equiv 1$, hence Q_1 is flipped at each down-edge of CP

$$J_2 \equiv K_2 = \bar{X} Q_1 + X \bar{Q_1} \equiv X \oplus Q_1$$

$$Y = \bar{X} \, Q_1 \, Q_2 + X \, \bar{Q_1} \, \bar{Q_2}$$

WAVEFORM:

CONCLUSION:

无论当 X = LOW 或 X = HIGH , Y 端均生成一个占空比为 25% , 频率为四分之一 CLK 频率的方波. X 的高低仅改变波的相位.

Session 4 - Digital circuit architecture

Session 4 Homework

• Problem 1 - 7.6 Analyze Specific 74LS153 Functionality.

Truth Table (1ST Enabled):

$_{CD}ackslash^{AB}$	00	01	11	10	Functionality
00	1	1	0	1	, , , , , , , , , , , , , , , , , , , ,
01	1	0	0	0	$not(A \ or \ B)$
11	0	0	0	0	False
10	1	0	1	0	$not(A \ xor \ B)$

$$L = \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}\bar{D} + \bar{A}\bar{C}\bar{D} + \bar{B}\bar{C}\bar{D} + ABC\bar{D}$$

When 1ST is Disabled:

$$L = Z$$

• Problem 2 - 7.7 Logic circuit design.

• Problem 3 - 7.8 Logic circuit design.

