IN THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

- 1. (currently amended) A method for measuring residual chromatic dispersion in an
- optical transmission system, the method comprising the steps of:
- introducing a predetermined amount of chromatic dispersion at the receive end of
 the system;
- 5 measuring a bit error rate for the system corresponding to the predetermined 6 amount of chromatic dispersion; and
- iterating the introducing and measuring steps over a plurality of introduced

 chromatic dispersion values until the bit error rate is a minimum over all measured bit

 ror rates, wherein the residual chromatic dispersion in the optical transmission system

 represented by a complement of the predetermined introduced amount of chromatic
- 11 dispersion at which the minimum bit error rate is achieved.
- 1 2. (original) The method as defined in claim 1 wherein step of iterating is responsive to
- 2 the bit error rate in the measuring step and includes selecting a new predetermined
- 3 amount of chromatic dispersion for the introducing step.
- 1 3. (original) The method as defined in claim 2 wherein the step of selecting further
- 2 includes controlling selection of the predetermined amount of chromatic dispersion in a
- 3 manner to produce a minimum bit error rate.
- 1 4. (currently amended) The method as defined in claim 1 further including the step of
- 2 compensating at least some portion of the residual chromatic dispersion in the optical
- 3 transmission system by selecting a compensating amount from a chromatic dispersion

```
Serial No. 10/813,154
Page 3 of 11
```

- 4 range including 0 ps/nm through and including the predeterminedintroduced amount of
- 5 chromatic dispersion at which the minimum bit error rate was achieved.
- 1 5. (original) The method as defined in claim 4 wherein step of iterating is responsive to
- 2 the bit error rate in the measuring step and includes selecting a new predetermined
- 3 amount of chromatic dispersion for the introducing step.
- 6. (original) The method as defined in claim 5 wherein the step of selecting further
- 2 includes controlling selection of the predetermined amount of chromatic dispersion in a
- 3 manner to produce a minimum bit error rate.
- 7. (currently amended) Apparatus for measuring residual chromatic dispersion in an
- 2 optical transmission system, the apparatus comprising:
- a dispersion compensator for introducing a predetermined amount of chromatic
- 4 dispersion at the receive end of the system;
- a bit error rate test element for measuring a bit error rate for the system
- 6 corresponding to the predetermined amount of chromatic dispersion; and
- 7 a control element coupled to said compensator and said test element for adjusting
- 8 said compensator to introduce a new predetermined amount of chromatic dispersion over
- a plurality of chromatic dispersion values in order to reduce the bit error rate for the
- 10 system; wherein at least a portion of the residual chromatic dispersion in the optical
- by stem, wherein at least a portion of the residual chromatic dispersion in the optical
- 11 transmission system is represented by a complement of the predetermined amount of
- 12 chromatic dispersion at which the reduced bit error rate was achieved.
- 1 8. (currently amended) The apparatus as defined in claim 7 wherein the control element
- 2 adjusts the compensator to a new predetermined amount of chromatic dispersion in order
- 3 to minimize theascertain the minimum bit error rate for the system over a plurality of
- introduced chromatic chromatic dispersion values, and the residual chromatic dispersion
- 5 in the optical transmission system being is represented by a complement of the

```
Serial No. 10/813,154
Page 4 of 11
```

- 6 predetermined amount of chromatic dispersion at which a minimum bit error rate is
- 7 achieved.
- 1 9. (currently amended) The apparatus as defined in claim 8 wherein the control element
- 2 adjusts the dispersion compensator to a compensating amount of chromatic dispersion
- 3 selected from a chromatic dispersion range including 0 ps/nm through and including the
- 4 predeterminedintroduced amount of chromatic dispersion at which the minimum bit error
- 5 rate was achieved.
- 10. (currently amended) Apparatus for measuring residual chromatic dispersion at an
- 2 intermediate location in an optical transmission system, the apparatus comprising:
- a dispersion compensator for introducing a predetermined amount of chromatic
- 4 dispersion over a plurality of chromatic dispersion values to an optical signal from the
- 5 intermediate location:
- an optical receiver for receiving the optical signal comprising the predetermined
 amount of chromatic dispersion;
- a bit error rate test element for receiving at least a portion of a signal output from
- 9 the optical receiver and measuring a bit error rate at the intermediate location for the
- 10 system corresponding to the predetermined amount of chromatic dispersion; and
- a control element coupled to the compensator and the test element for iteratively
- 12 adjusting the compensator to a new predetermined amount of chromatic dispersion until
- 13 the bit error rate test element measures a minimum bit error rate; wherein the residual
- 14 chromatic dispersion at the intermediate location in the optical transmission system is
- 15 represented by a complement of the predetermined amount of chromatic dispersion at
- 16 which the minimum bit error rate is achieved.
 - 1 11. (previously presented) A method for measuring residual chromatic dispersion at an
- 2 intermediate location in an optical transmission system, the method comprising:

- introducing a predetermined amount of chromatic dispersion <u>over a plurality of</u>

 chromatic dispersion values to an optical signal from the intermediate location using a
- 5 dispersion compensator;
- directing the optical signal comprising the predetermined amount of chromatic dispersion to an optical receiver;
- directing at least a portion of a signal output from the optical receiver to a bit error
 rate test element;
- measuring a bit error rate corresponding to the predetermined amount of
 chromatic dispersion using the bit error rate test element; and
- iteratively adjusting the compensator to introduce a new predetermined amount of chromatic dispersion and measuring the bit error rate until a minimum bit error rate is achieved; wherein the residual chromatic dispersion at the intermediate location in the optical transmission system is represented by a complement of the predetermined amount
- 6 of chromatic dispersion at which the minimum bit error rate is achieved.