4. ESPAÇOS VETORIAIS

4.1 O espaço \mathbb{R}^n

Seja $n \in \mathbb{N}$. O conjunto dos n-uplos ordenados de números reais, isto é, o conjunto dos elementos da forma

$$\boldsymbol{x} = (x_1, x_2, \dots, x_n), \ x_i \in \mathbb{R}$$

é designado por \mathbb{R}^n .

Dois elementos $x = (x_i)$ e $y = (y_i)$ de \mathbb{R}^n dizem-se iguais se e só se as componentes homólogas são iguais, isto é,

$$x_i = y_i, \qquad i = 1, 2, \dots, n.$$

isoares@math.uminho.pt

Notação:

- ▶ o elemento de \mathbb{R}^n cujas componentes são todas iguais a zero representa-se por $\mathbf{0}$.
- Se $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, -x representa o elemento de \mathbb{R}^n cujas componentes são os simétricos das componentes homólogas de x, isto é, $-x = (-x_1, -x_2, \dots, -x_n)$.

Em \mathbb{R}^n definimos duas operações:

1 Adição

$$(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

2 Multiplicação por um número real

$$\alpha(x_1, x_2, \dots, x_n) = (\alpha x_1, \alpha x_2, \dots, \alpha x_n).$$

Teorema: Sejam x, y, z elementos de \mathbb{R}^n e sejam α, β números reais. Então

1.
$$x + y = y + x$$
.

2.
$$x + (y + z) = (x + y) + z$$
.

3.
$$x + 0 = x$$
.

4.
$$x + (-x) = 0$$
.

5.
$$\alpha(\boldsymbol{x} + \boldsymbol{y}) = \alpha \boldsymbol{x} + \alpha \boldsymbol{y}$$
.

6.
$$(\alpha + \beta) \mathbf{x} = \alpha \mathbf{x} + \beta \mathbf{x}$$
.

7.
$$\alpha(\beta \mathbf{x}) = (\alpha \beta) \mathbf{x}$$
.

8.
$$1x = x$$
.

Porque o conjunto \mathbb{R}^n algebrizado com as operações de adição e multiplicação por um número real satisfaz as propriedades listadas no teorema anterior diz-se que \mathbb{R}^n é um espaço vetorial real.

Os elementos de \mathbb{R}^n são chamados vetores do espaço \mathbb{R}^n .

 $\mathbf{0}$ é designado por vetor nulo de \mathbb{R}^n .

Os espaços \mathbb{R}^2 e \mathbb{R}^3 adquirem um significado geométrico quando "identificados" respetivamente, com o conjunto dos vetores de um plano, e com o conjunto dos vetores do espaço ordinário.

4.2 Espaço vetorial - definição

Seja V um conjunto no qual estão definidas duas operações:

① uma que designamos por adição e que associa a cada par (u, v) de elementos de V, um e um só elemento de V, representado por

u + v

② outra operação, que designamos por multiplicação escalar e que associa a cada número real α e cada elemento u de V, um e um só elemento de V, representado por

 $\alpha . \boldsymbol{u}$ OU $\alpha \boldsymbol{u}$

Definição: Diz-se que V é um espaço vetorial real se estas operações satisfazem as seguintes propriedades:

1. $\forall u, v \in V, u + v = v + u$.

comutatividade da adição

- 2. $\forall m{u}, m{v}, m{w} \in V, \ m{u} + (m{v} + m{w}) = (m{u} + m{v}) + m{w}.$ associatividade da adição
- 3. $\exists \mathbf{0}_V \in V \ \forall \mathbf{u} \in V : \mathbf{u} + \mathbf{0}_V = \mathbf{0}_V + \mathbf{u} = \mathbf{u}.$

existência de elemento neutro da adição

4. $\forall u \in V \exists u' \in V : u + u' = \mathbf{0}_V = u' + u$.

existência de elemento simétrico da adição

- 5. $\forall \alpha, \beta \in \mathbb{R}, \ \forall \boldsymbol{u} \in V, \ (\alpha + \beta) \ \boldsymbol{u} = \alpha \ \boldsymbol{u} + \beta \ \boldsymbol{u}.$ distributividade da multiplicação escalar relativamente à adição em \mathbb{R}
- 6. $\forall \alpha \in \mathbb{R}, \ \forall \boldsymbol{u}, \boldsymbol{v} \in V, \ \alpha(\boldsymbol{u} + \boldsymbol{v}) = \alpha \, \boldsymbol{u} + \alpha \, \boldsymbol{v}.$ distributividade da multiplicação escalar relativamente à adição em V
- 7. $\forall \alpha, \beta \in \mathbb{R}, \ \forall \boldsymbol{u} \in V, \ (\alpha \beta) \ \boldsymbol{u} = \alpha(\beta \boldsymbol{u}).$

associatividade mista da multiplicação escalar

8. $\forall u \in V, \ 1 . u = u.$

Exemplos

- 1. O conjunto $\mathbb{R}^{m \times n}$ das matrizes reais de ordem $m \times n$, com as operações usuais de adição de matrizes e de multiplicação por um número, é um espaço vetorial real.
- 2. O conjunto $\mathcal{P}_n(x)$ dos polinómios, na variável x, com coeficientes reais, de grau inferior ou igual a n, com $n \in \mathbb{N}_0$, isto é,

$$\mathcal{P}_n(x) = \{a_n x^n + \dots + a_1 x + a_0 : a_0, \dots, a_n \in \mathbb{R}\},\$$

é um espaço vetorial real para a adição usual de polinómios e multiplicação de um polinómio por um número real.

E o conjunto
$$\{a_nx^n + \cdots + a_1x + a_0 : a_i \in \mathbb{R}, a_n \neq 0\}$$
?

Os elementos de um espaço vetorial chamam-se vetores e os elementos de $\mathbb R$ são chamados escalares.

Nota: Os espaços vetoriais que definimos são espaços vetoriais reais porque os escalares usados na multiplicação escalar são números reais; existem também espaços vetoriais complexos, quando os escalares forem números complexos (e até espaços em que os escalares pertencem a outros conjuntos que não $\mathbb R$ ou $\mathbb C$).

Como, neste curso, consideramos apenas espaços vetoriais reais, quando falarmos em espaço vetorial, tal deverá ser entendido com o significado de espaço vetorial real .

• Os espaços vetoriais \mathbb{R}^n , $\mathbb{R}^{n \times 1}$ e $\mathbb{R}^{1 \times n}$

$$\mathbb{R}^{n}$$

$$(x_{1}, \dots, x_{n}) + (y_{1}, \dots, y_{n}) = (x_{1} + y_{1}, \dots, x_{n} + y_{n})$$

$$\begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} + \begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \end{pmatrix} = \begin{pmatrix} x_{1} + y_{1} \\ \vdots \\ x_{n} + y_{n} \end{pmatrix}$$

$$\alpha(x_{1}, \dots, x_{n}) = (\alpha x_{1}, \dots, \alpha x_{n})$$

$$\alpha\begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} = \begin{pmatrix} \alpha x_{1} \\ \vdots \\ \alpha x_{n} \end{pmatrix}$$

Os espaços vetoriais \mathbb{R}^n , $\mathbb{R}^{n\times 1}$ e $\mathbb{R}^{1\times n}$ são "o mesmo", pelo que não os distinguiremos e falaremos sempre em \mathbb{R}^n .

Teorema: Seja V um espaço vetorial.

- 1. O elemento neutro para a adição é único (representamo-lo por $\mathbf{0}_V$ ou apenas $\mathbf{0}$).
- 2. Para cada $v \in V$, o simétrico de v é único (representamo-lo por -v).
- 3. Para quaisquer vetores $u, v, w \in V$ e quaisquer escalares α, β , tem-se

$$\mathbf{v} + \mathbf{v} = \mathbf{u} + \mathbf{w} \Rightarrow \mathbf{v} = \mathbf{w}$$

$$\mathbf{v} + \mathbf{u} = \mathbf{w} + \mathbf{u} \Rightarrow \mathbf{v} = \mathbf{w}$$

$$ightharpoonup \alpha \mathbf{0} = \mathbf{0}$$

$$\mathbf{v} = \mathbf{0}$$

$$(-\alpha)v = \alpha(-v) = -(\alpha v)$$
; em particular, $(-1)v = -v$

$$ho$$
 $\alpha v = 0 \Rightarrow \alpha = 0$ ou $v = 0$

$$ightharpoonup \alpha \boldsymbol{u} = \alpha \boldsymbol{v}, \alpha \neq 0 \Rightarrow \boldsymbol{u} = \boldsymbol{v}$$

Definição: Um subconjunto não vazio U de um espaço vetorial V é chamado um subespaço vetorial (ou apenas subespaço) de V se

- 1. $\forall \boldsymbol{u}, \boldsymbol{v} \in U, \ \boldsymbol{u} + \boldsymbol{v} \in U$
- 2. $\forall \alpha \in \mathbb{R}, \ \forall \boldsymbol{u} \in U, \ \alpha \, \boldsymbol{u} \in U$.

Exemplos

- ▶ O conjunto $S_1 = \{(x,y) \in \mathbb{R}^2 : x = 0\}$ é um subespaço vetorial de \mathbb{R}^2 .
- ▶ O conjunto $S_2 = \{(x, y) \in \mathbb{R}^2 : x = 1\}$ não é um subespaço vetorial de \mathbb{R}^2 .

Observação: Um subespaço de V é, ele próprio, um espaço vetorial (para as operações nele naturalmente definidas por ser um subconjunto de V).

Definição: Sejam u_1, \ldots, u_n vetores de um espaço vetorial V. Diz-se que $v \in V$ é combinação linear dos vetores u_1, \ldots, u_n se

$$\boldsymbol{v} = \alpha_1 \boldsymbol{u}_1 + \alpha_2 \boldsymbol{u}_2 + \dots + \alpha_n \boldsymbol{u}_n,$$

 $\operatorname{com} \alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{R}.$

Os escalares $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{R}$ dizem-se coeficientes da combinação linear.

Exemplos

1. O vetor v=(3,0) de \mathbb{R}^2 é combinação linear dos vetores $u_1=(5,-2)$ e $u_2=(1,-1)$, uma vez que

$$\boldsymbol{v} = \boldsymbol{u}_1 - 2\,\boldsymbol{u}_2.$$

2. O vetor v = (3,0) de \mathbb{R}^2 não é combinação linear dos vetores $u_1 = (-2,2)$ e $u_2 = (1,-1)$. (Porquê?)

Teorema: Se $u_1, u_2, ..., u_n$ são vetores de um espaço vetorial V, então o conjunto U formado por todas as combinações lineares destes vetores é um subespaço vetorial de V.

Demonstração:

- ① U é não vazio, pois $\mathbf{0} = 0 \, \mathbf{v}_1 + 0 \, \mathbf{v}_2 + \cdots + 0 \, \mathbf{v}_n$., i. e. $\mathbf{0} \in U$
- ② Se $u, v \in U$, isto é, se $u = \alpha_1 u_1 + \cdots + \alpha_n u_n$ e $v = \beta_1 u_1 + \cdots + \beta_n u_n$, então

$$\mathbf{u} + \mathbf{v} = (\alpha_1 \mathbf{u}_1 + \dots + \alpha_n \mathbf{u}_n) + (\beta_1 \mathbf{u}_1 + \dots + \beta_n \mathbf{u}_n)$$

= $(\alpha_1 + \beta_1) \mathbf{u}_1 + \dots + (\alpha_n + \beta_n) \mathbf{u}_n$.

Logo $u + v \in U$, porque é combinação linear de u_1, u_2, \dots, u_n .

3 Também

$$\alpha \mathbf{u} = \alpha(\alpha_1 \mathbf{u}_1 + \dots + \alpha_n \mathbf{u}_n) = (\alpha \alpha_1) \mathbf{u}_1 + \dots + (\alpha \alpha_n) \mathbf{u}_n$$
pertence a U .

O subespaço formado por todas as combinações lineares dos vetores u_1, \ldots, u_n chama-se subespaço gerado pelos vetores u_1, \ldots, u_n e denota-se por $\langle u_1, \ldots, u_n \rangle$, i.e.

$$\langle \boldsymbol{u}_1, \dots, \boldsymbol{u}_n \rangle = \{\alpha_1 \boldsymbol{u}_1 + \dots + \alpha_n \boldsymbol{u}_n : \alpha_i \in \mathbb{R}\}$$

Se $U = \langle u_1, \dots, u_n \rangle$, diz-se que u_1, \dots, u_n geram U ou são geradores de U.

Exemplos

1.
$$\langle (1,0) \rangle = \{(a,b) \in \mathbb{R}^2 : b = 0\}$$

2.
$$\langle (1,1), (2,3) \rangle = \mathbb{R}^2$$

3.
$$\langle (1,1,1), (1,0,1) \rangle = \{ (a,b,c) \in \mathbb{R}^3 : a=c \}$$

O conjunto

$$S = \{(a, b, c) \in \mathbb{R}^3 : a = 2b + c\}$$

é um subespaço de \mathbb{R}^3 . Indique um conjunto de geradores deste subespaço.

Teorema: Sejam u_1, \ldots, u_n e v vetores de um espaço vetorial V. Então, o vetor v é combinação linear de u_1, u_2, \ldots, u_n se e só se

$$\langle \boldsymbol{u}_1,\ldots,\boldsymbol{u}_n\rangle=\langle \boldsymbol{u}_1,\boldsymbol{u}_2,\ldots,\boldsymbol{u}_n,\boldsymbol{v}\rangle$$
.

Demonstração:

Suponhamos que v é combinação linear de u_1, \ldots, u_n e mostremos que

$$\langle \boldsymbol{u}_1,\ldots,\boldsymbol{u}_n\rangle=\langle \boldsymbol{u}_1,\ldots,\boldsymbol{u}_n,\boldsymbol{v}\rangle$$
.

Sejam

$$U = \langle \boldsymbol{u}_1, \dots, \boldsymbol{u}_n \rangle$$
 e $U' = \langle \boldsymbol{u}_1, \dots, \boldsymbol{u}_n, \boldsymbol{v} \rangle$

Se $x \in U$ então

$$\boldsymbol{x} = \alpha_1 \boldsymbol{u}_1 + \alpha_2 \boldsymbol{u}_2 + \dots + \alpha_n \boldsymbol{u}_n = \alpha_1 \boldsymbol{u}_1 + \dots + \alpha_n \boldsymbol{u}_n + 0 \boldsymbol{v},$$

logo
$$x \in U'$$
, i.e. $U \subset U'$.

Se $y \in U'$ então

$$\boldsymbol{y} = \alpha_1 \boldsymbol{u}_1 + \dots + \alpha_n \boldsymbol{u}_n + \alpha_{n+1} \boldsymbol{v}$$

onde $\alpha_1,\ldots,\alpha_n,\alpha_{n+1}\in\mathbb{R}.$ Como ${\boldsymbol v}$ é combinação linear de ${\boldsymbol u}_1,\ldots,{\boldsymbol u}_n$ então

$$\boldsymbol{v} = \beta_1 \boldsymbol{u}_1 + \dots + \beta_n \boldsymbol{u}_n,$$

com $\beta_1, \ldots, \beta_n \in \mathbb{R}$. Donde, substituindo,

$$\mathbf{y} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \dots + \alpha_n \mathbf{u}_n + \alpha_{n+1} (\beta_1 \mathbf{u}_1 + \beta_2 \mathbf{u}_2 + \dots + \beta_n \mathbf{u}_n)$$

$$= (\alpha_1 + \alpha_{n+1}\beta_1) \mathbf{u}_1 + (\alpha_2 + \alpha_{n+1}\beta_2) \mathbf{u}_2 + \dots + (\alpha_n + \alpha_{n+1}\beta_n) \mathbf{u}_n$$

ou seja $y \in U$, i.e. $U' \subset U$.

Como $U' \subset U$ e $U \subset U'$, conclui-se que U = U'.

▶ Para mostrar que, se $\langle u_1,\ldots,u_n\rangle=\langle u_1,\ldots,u_n,v\rangle$, então v é combinação linear de u_1,\ldots,u_n basta notar que $v\in\langle u_1,\ldots,u_n,v\rangle$ (porquê?), donde $v\in\langle u_1,\ldots,u_n\rangle$, ou seja, v é combinação linear de u_1,\ldots,u_n .

Teorema:

Sejam u_1, \ldots, u_n vetores de um espaço vetorial V e sejam v_1, \ldots, v_n vetores obtidos de u_1, \ldots, u_n por uma das seguintes operações:

- 1. troca da ordem de dois vetores:
- 2. multiplicação de um dos vetores por um escalar não nulo;
- substituição de um vetor pela sua soma com um múltiplo de outro.

Tem-se então

$$\langle \boldsymbol{u}_1,\ldots,\boldsymbol{u}_n\rangle=\langle \boldsymbol{v}_1,\ldots,\boldsymbol{v}_n\rangle$$
.

Demonstração: ver folha de exercícios.

4.3 Bases e dimensão

Definição: Os vetores v_1, v_2, \ldots, v_n de um espaço vetorial V dizem-se linearmente independentes se só for possível escrever o vetor nulo como combinação linear de v_1, v_2, \ldots, v_n considerando todos os coeficientes iguais a zero, i.e. se tivermos

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n = \mathbf{0} \Rightarrow \alpha_1 = \alpha_2 = \dots = \alpha_n = 0.$$

Os vetores v_1, v_2, \dots, v_m dizem-se linearmente dependentes se não são linearmente independentes.

Exemplos

- 1. Os vetores de \mathbb{R}^2 , u=(1,2) e v=(2,4) são linearmente dependentes.
- 2. Os vetores de \mathbb{R}^3 , $\boldsymbol{u}=(1,2,0)$ e $\boldsymbol{v}=(1,2,4)$ são linearmente independentes.
- 3. Os vetores de \mathbb{R}^3 , u=(1,2,0), v=(1,2,4) e w=(1,0,0) são linearmente independentes.

Teorema: Os vetores v_1, v_2, \ldots, v_n $(n \ge 2)$ de um espaço vetorial V são linearmente dependentes se e só se (pelo menos) um dos vetores puder ser escrito combinação linear dos restantes.

Demonstração:

▶ Sejam v_1, v_2, \dots, v_n linearmente dependentes.

Então pode ter-se

$$\alpha_1 \boldsymbol{v}_1 + \alpha_2 \boldsymbol{v}_2 + \dots + \alpha_n \boldsymbol{v}_n = \boldsymbol{0}$$

com pelo menos um dos coeficientes diferente de zero.

Suponhamos que $\alpha_1 \neq 0.$ ¹ Então podemos escrever

$$\mathbf{v}_1 = -\frac{\alpha_2}{\alpha_1} \mathbf{v}_2 - \dots - \frac{\alpha_n}{\alpha_1} \mathbf{v}_n.$$

Donde, v_1 é combinação linear dos restantes vetores.

¹A demonstração será totalmente análoga se considerarmos outro escalar não nulo.

ightharpoonup Suponhamos agora que um dos vetores v_1, v_2, \ldots, v_n , por exemplo v_1 , é combinação linear dos restantes, i.e.

$$\boldsymbol{v}_1 = \alpha_2 \boldsymbol{v}_2 + \dots + \alpha_n \boldsymbol{v}_n.$$

Vem então

$$\boldsymbol{v}_1 - \alpha_2 \boldsymbol{v}_2 - \dots - \alpha_n \boldsymbol{v}_n = \boldsymbol{0}$$

Tem-se assim uma combinação linear nula com pelo menos um dos coeficientes diferente de zero (o de v_1 , que vale 1), pelos que os vetores v_1, v_2, \ldots, v_n são linearmente dependentes.

Exemplos

- 1. Os vetores de \mathbb{R}^2 , u=(1,2) e v=(2,4) são linearmente dependentes, porque v=2u.
- 2. Os vetores de \mathbb{R}^3 , u=(1,2,0), v=(1,2,4) e w=(3,6,4) são linearmente dependentes, porque w=2u+v.

Teorema: Se v_1, \ldots, v_n são vetores linearmente independentes de um espaço vetorial V e v não é combinação linear de v_1, \ldots, v_n , então v_1, \ldots, v_n, v são linearmente independentes.

Demonstração:

Consideremos

$$\alpha_1 \boldsymbol{v}_1 + \dots + \alpha_n \boldsymbol{v}_n + \alpha_{n+1} \boldsymbol{v} = \boldsymbol{0}$$

e mostremos que terá de ser $\alpha_1 = \cdots = \alpha_n = \alpha_{n+1} = 0$.

Se α_{n+1} fosse diferente de zero, poder-se-ia escrever v como combinação linear de v_1,\ldots,v_n , o que iria contra a hipótese. Logo, temos de ter $\alpha_{n+1}=0$. Mas então, ficamos com

$$\alpha_1 \boldsymbol{v}_1 + \cdots + \alpha_n \boldsymbol{v}_n = \boldsymbol{0}.$$

Como, por hipótese, v_1, \ldots, v_n são vetores linearmente independentes, isto implica que terá de ser $\alpha_1 = \cdots = \alpha_n = 0$.

Teorema:

Sejam u_1, \ldots, u_n vetores de um espaço vetorial V e sejam v_1, \ldots, v_n vetores obtidos de u_1, \ldots, u_n por uma das seguintes operações:

- 1. troca da ordem de dois vetores;
- 2. multiplicação de um dos vetores por um escalar não nulo;
- substituição de um vetor pela sua soma com um múltiplo de outro.

Os vetores v_1, \ldots, v_n são linearmente independentes (dependentes) sse u_1, \ldots, u_n são linearmente independentes (dependentes).

Demonstração: ver folha de exercícios.

Definição: Uma sequência de vetores (v_1, v_2, \ldots, v_n) de um espaço vetorial V é uma base de V se os vetores v_1, v_2, \ldots, v_n são linearmente independentes e geram V.

Exemplos

- 1. Os vetores de \mathbb{R}^2 , u = (1,0) e v = (0,1) são linearmente independentes e geram \mathbb{R}^2 , logo (u,v) é uma base de \mathbb{R}^2 .
- 2. Os vetores de \mathbb{R}^2 , u=(1,0) e v=(2,0) não são linearmente independentes nem geram \mathbb{R}^2 , logo (u,v) não é uma base de \mathbb{R}^2 .
- 3. O vetor de \mathbb{R}^2 , u = (1,0) é linearmente independente, mas não gera \mathbb{R}^2 , logo (u) não é uma base de \mathbb{R}^2 .
- 4. Os vetores de \mathbb{R}^2 , u=(1,0), v=(0,1) e w=(1,2) geram \mathbb{R}^2 , mas não são linearmente independentes, logo (u,v,w) não é uma base de \mathbb{R}^2

Exemplos

1. A sequência (e_1, e_2, \dots, e_n) , com

$$e_1 = (1, 0, \dots, 0), \quad e_2 = (0, 1, \dots, 0), \dots, e_n = (0, 0, \dots, 1)$$

é uma base de \mathbb{R}^n .

- 2. A sequência $(1, x, x^2, \dots, x^n)$ é uma base do espaço $\mathcal{P}_n(x)$ dos polinómios, na variável x, de grau menor ou igual a n.
- 3. $\begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix}$ é uma base de $\mathbb{R}^{2 \times 2}$.

Teorema:

Seja V um espaço vetorial. Se u_1, \ldots, u_m geram V e v_1, \ldots, v_n são vetores de V linearmente independentes, então $m \ge n$.

Corolário: Se um espaço vetorial V tem uma base com n elementos, então todas as bases de V têm n elementos.

Demonstração:

Seja (u_1,\ldots,u_n) uma base de V e seja (v_1,\ldots,v_m) uma outra base de V. Então,

$$\begin{array}{lll} (\boldsymbol{u}_1,\ldots,\boldsymbol{u}_n) \text{ base } & \Rightarrow \boldsymbol{u}_1,\ldots,\boldsymbol{u}_n \text{ geram } V \\ (\boldsymbol{v}_1,\ldots,\boldsymbol{v}_m) \text{ base } & \Rightarrow \boldsymbol{v}_1,\ldots,\boldsymbol{v}_m \text{ lin. indep.} \end{array} \right\} \Rightarrow n \geq m \\ (\boldsymbol{u}_1,\ldots,\boldsymbol{u}_n) \text{ base } & \Rightarrow \boldsymbol{u}_1,\ldots,\boldsymbol{u}_n \text{ lin. indep.} \\ (\boldsymbol{v}_1,\ldots,\boldsymbol{v}_m) \text{ base } & \Rightarrow \boldsymbol{v}_1,\ldots,\boldsymbol{v}_m \text{ geram } V \end{array} \right\} \Rightarrow m \geq n$$

Definição: Se V é um espaço vetorial que admite uma base com n elementos, diz-se que V tem dimensão n e escreve-se $\dim V = n$.

Observação: Se $V = \{ \mathbf{0} \}$, considera-se que \emptyset é base de V e que $\dim V = 0$.

Exemplos

1.
$$\dim \mathbb{R}^2 = 2$$

$$\dim \mathbb{R}^n = ?$$

$$\lim \mathbb{R}^{2\times 2} = 4$$

$$\dim \mathbb{R}^{m \times n} = ?$$

3. dim
$$\mathcal{P}_2(x) = 3$$

$$\dim \mathcal{P}_n(x) = ?$$

4. B = ((-1, 1, 0), (-1, 0, 1)) é uma base do subespaço

$$S = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\},\$$

 $\log o \dim S = 2.$

Corolário: Seja V um espaço vetorial de dimensão n e sejam v_1, \ldots, v_p vetores de V.

- 1. Se p < n, então v_1, \ldots, v_p não geram V.
- 2. Se p > n, então v_1, \dots, v_p não são linearmente independentes.

Dito de outro modo: num espaço de dimensão n, o número mínimo de geradores é n e o número máximo de vetores linearmente independentes é n.

Demonstração: De imediato, tendo em conta o resultado do teorema anterior, a definição de dimensão e a definição de base.

Teorema: Seja V um espaço vetorial de dimensão n.

- 1. Se u_1, \ldots, u_n geram V, então (u_1, \ldots, u_n) é uma base de V.
- 2. Se v_1, \ldots, v_n são vetores de V linearmente independentes, então (v_1, \ldots, v_n) é uma base de V.

Demonstração: Ver folha de exercícios.

Exemplo: Os vetores u=(1,1,1), v=(1,1,0) e w=(1,0,0) são 3 vetores linearmente independentes de \mathbb{R}^3 ; como $\dim \mathbb{R}^3=3$, eles constituem uma base deste espaço.

Para que valores de k os vetores $\boldsymbol{u}=(1,1,1), \, \boldsymbol{v}=(k,-1,-k)$ e $\boldsymbol{w}=(1,k,1)$ constituem uma base de \mathbb{R}^3 ?

4.4 Matrizes e espaços vetoriais

Sejam A e B matrizes reais de ordem $m \times n$ tais que

$$A \xrightarrow{linhas} B.$$

Consideremos as linhas de A e de B como vetores de \mathbb{R}^n . Relembre que:

- 1. As linhas de A geram o mesmo subespaço de \mathbb{R}^n que as linhas de B.
- As linhas de A são linearmente independentes sse as linhas de B são linearmente independentes.

Teorema: As linhas não nulas de uma matriz com a forma em escada são linearmente independentes.

Aplicações

Sejam dados m vetores v_1, \ldots, v_m de \mathbb{R}^n .

$$A = egin{pmatrix} oldsymbol{v}_1 \ oldsymbol{v}_2 \ dots \ oldsymbol{v}_m \end{pmatrix} \xrightarrow{linhas} A' = egin{pmatrix} oldsymbol{v}_1' \ oldsymbol{v}_2' \ dots \ oldsymbol{v}_m' \end{pmatrix}$$
 A' com forma em escada

① Verificar se os vetores são linearmente independentes

 $oldsymbol{v}_1,\ldots,oldsymbol{v}_m$ são linearmente independente sse A' não tem linhas nulas

$$\mathsf{sse}\; \boldsymbol{v}_m' \neq \boldsymbol{0}$$

$$sse car(A) = m$$

Exemplos

1. Os vetores $u_1=(1,2,3),\ u_2=(3,2,1)$ e $u_3=(1,0,-1)$ são linearmente dependentes

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 0 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & -4 & -8 \\ 0 & -2 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & -1 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

2. Os vetores $v_1=(1,2,3), v_2=(3,2,1)$ e $v_3=(1,0,1)$ são linearmente independentes

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & -4 & -8 \\ 0 & -2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & -1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

② Determinar uma base e a dimensão de $\mathcal{V} = \langle \boldsymbol{v}_1, \dots, \boldsymbol{v}_m \rangle$

Sendo
$$r=\operatorname{car}(A),\quad (oldsymbol{v}_1',\dots,oldsymbol{v}_r')$$
 é uma base de ${\mathcal V}$ $\operatorname{dim}{\mathcal V}=\operatorname{car}(A)$

Exemplos

1.

$$V_1 = \langle (1,2,3), (3,2,1), (1,0,-1) \rangle$$

 $\dim \mathcal{V}_1 = 2$

((1,2,3),(0,1,2)) é uma base de \mathcal{V}_1

2.

$$\mathcal{V}_2 = \langle (1, 2, 3), (3, 2, 1), (1, 0, 1) \rangle$$

 $\dim \mathcal{V}_2 = 3$ e ((1,2,3),(0,1,2),(0,0,1)) é uma base de \mathcal{V}_2

3 Verificar se $oldsymbol{v} \in \langle oldsymbol{v}_1, \dots, oldsymbol{v}_m angle$

$$oldsymbol{v} \in \langle oldsymbol{v}_1, \dots, oldsymbol{v}_m
angle$$
 sse $\operatorname{car} A = \operatorname{car} \left(rac{A}{oldsymbol{v}}
ight)$

Exemplos

1.
$$(1,0,-1) \in \langle (1,2,3), (3,2,1) \rangle$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 0 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & -4 & -8 \\ 0 & -2 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & -1 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

2.
$$(1,0,1) \notin \langle (1,2,3), (3,2,1) \rangle$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & -4 & -8 \\ 0 & -2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & -1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

4.5 Espaços associados a matrizes

Definição:

Seja A uma matriz real de ordem $m \times n$.

- 1. Chama-se espaço das linhas de A e representa-se por $\mathcal{L}(A)$, ao subespaço de \mathbb{R}^n gerado pelas m linhas de A.
- 2. Chama-se espaço das colunas de A e representa-se por $\mathcal{C}(A)$, ao subespaço de \mathbb{R}^m gerado pelas n colunas de A.

Exemplo:

Exemplo:
$$A = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 2 & -1 & 3 & 1 \\ 3 & -2 & 4 & 1 \end{pmatrix}$$

$$\mathcal{L}(A) = \langle (1, -1, 1, 0), (2, -1, 3, 1), (3, -2, 4, 1) \rangle$$

$$\mathcal{C}(A) = \langle (1, 2, 3), (-1, -1, -2), (1, 3, 4), (0, 1, 1) \rangle$$

$$A \xrightarrow{linhas} \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad \text{dim } \mathcal{L}(A) = 2$$

$$\text{Base } \mathcal{L}(A) : ((1, -1, 1, 0), (0, 1, 1, 1))$$

$$A^{T} \xrightarrow{linhas} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \dim \mathcal{C}(A) = 2$$

$$\text{Base } \mathcal{C}(A) : \ ((1, 2, 3), (0, 1, 1))$$

É possível, conhecendo uma matriz em escada, equivalente por linhas a A, determinar simultaneamente uma base para $\mathcal{L}(A)$ e uma base para $\mathcal{L}(A)$?

$$A = egin{pmatrix} oldsymbol{v}_1 \ oldsymbol{v}_2 \ dots \ oldsymbol{v}_m \end{pmatrix} \xrightarrow{ ext{linhas}} A' = egin{pmatrix} oldsymbol{v}_1' \ oldsymbol{v}_2' \ dots \ oldsymbol{v}_m' \end{pmatrix}$$

 A^\prime matriz em escada

- Uma base para o espaço das linhas de A é constituída pelas linhas não nulas de A'.
- Uma base para o espaço das colunas de A é constituída pelas colunas de A que correspondem às colunas de A' que contêm pivôs- colunas principais.

Exemplo:

$$\begin{pmatrix} 1 & -1 & 1 & 0 \\ 2 & -1 & 3 & 1 \\ 3 & -2 & 4 & 1 \end{pmatrix} \xrightarrow{\text{linhas}} \begin{pmatrix} \boxed{1} & -1 & 1 & 0 \\ 0 & \boxed{1} & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad \begin{array}{c} \mathsf{Base}\,\,\mathcal{L}(A): \\ ((1,-1,1,0),(0,1,1,1)) \\ \mathsf{Base}\,\,\mathcal{C}(A): \\ ((1,2,3),(-1,-1,-2)) \end{array}$$

Teorema: $\dim \mathcal{L}(A) = \dim \mathcal{C}(A) = \operatorname{car} A$

Observação: Definições equivalentes de característica de *A*:

- número de linhas não nulas de qualquer matriz em forma de escada, equivalente por linhas a A;
- dimensão do espaço das linhas de A;
- 3. dimensão do espaço das colunas de A;
- 4. número (máximo) de linhas linearmente independentes de A;
- 5. número (máximo) de colunas linearmente independentes de A

Teorema: Seja A uma matriz de ordem $m \times n$. O sistema Ax = b tem solução se e só se $b \in C(A)$.

que $A\alpha = b$, ou seja, sse tivermos

$$(a_1 \quad \dots \quad a_n) \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = b,$$

onde a_1, \ldots, a_n são as n colunas da matriz A. Tal é equivalente a ter-se

$$\alpha_1 \boldsymbol{a}_1 + \dots + \alpha_n \boldsymbol{a}_n = \boldsymbol{b}$$

o que equivale a dizer que $b \in \langle a_1, \dots, a_n \rangle = C(A)$.

$$\boldsymbol{v} \in \langle \boldsymbol{v}_1, \dots, \boldsymbol{v}_n \rangle \Leftrightarrow \operatorname{car}(B) = \operatorname{car}(B|\boldsymbol{v}),$$

onde B é a matriz com os vetores v_1, \ldots, v_n como colunas.

mif@math.uminho.pt 37 jsoares@math.uminho.pt

Teorema: Seja Ax = 0 um sistema homogéneo de m equações em n incógnitas. O conjunto de soluções deste sistema constitui um subespaço vetorial de \mathbb{R}^n .

Demonstração: Ver folha de exercícios.

Definição: Dada uma matriz real de ordem $m \times n$, chama-se espaço nulo ou núcleo de A, e representa-se por $\mathcal{N}(A)$, ao subespaço de \mathbb{R}^n formado pelas soluções do sistema $Ax = \mathbf{0}$.

Exemplo:
$$A = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & -2 & -1 & 2 \\ -3 & 0 & -3 & -1 & -1 & -2 \\ 1 & 0 & -1 & 0 & 0 & -1 \end{pmatrix}$$

$$\mathcal{N}(A) = \{ \boldsymbol{x} \in \mathbb{R}^6 : A\boldsymbol{x} = \boldsymbol{0} \}$$

$$A \xrightarrow[linhas]{} \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & -2 & -1 & 2 \\ 0 & 0 & -2 & -1 & -1 & -1 \\ 0 & 0 & 0 & 2 & 2 & -2 \end{pmatrix} \longrightarrow \begin{cases} x_1 = 0 \\ x_2 = x_6 - x_5 \\ x_3 = -x_6 \\ x_4 = x_6 - x_5 \end{cases}$$

$$\text{SPI g.i. 6-4=2}$$

$$\mathcal{N}(A) = \{ (0, \beta - \alpha, -\beta, \beta - \alpha, \alpha, \beta) : \alpha, \beta \in \mathbb{R} \}$$

$$\mathcal{N}(A) = \langle (0, -1, 0, -1, 1, 0), (0, 1, -1, 1, 0, 1) \rangle$$

$$\dim \mathcal{N}(A) = 2$$
$$\operatorname{car} A = 4$$

mif@math.uminho.pt 39 jsoares@math.uminho.pt

Teorema: Seja A uma matriz de ordem $m \times n$. Então

$$\dim \mathcal{N}(A) = n - \operatorname{car} A$$

Exemplo: Seja $A \in \mathbb{R}^{10 \times 20}$ uma matriz tal que $\operatorname{car} A = 6$. Então

$$\dim \mathcal{L}(A) = \dim \mathcal{C}(A) = \operatorname{car} A = 6$$

$$\dim \mathcal{N}(A) = 20 - 6 = 14$$

$$\dim \mathcal{N}(A^T) = 10 - 6 = 4$$