Verteilungen

WS 2023 - 24

DI Emil Marinov

Übersicht

1.	Zufallsvariablen und ihre Verteilungen	3 - 10
2.	Binomialverteilung	11 – 13
3.	Normalverteilung	14 – 20

Grundlegendes zu Zufallsvariablen und Wahrscheinlichkeitsverteilungen

Zufallsvariable (ZV)

Ergebnisse von Zufallsexperimenten sind nicht unbedingt durch reelle Zahlen gegeben.

Beispiele: Werfen einer Münze: "Kopf" oder "Zahl" Ziehen einer Karte: "As", "Karo", ...

Auch wenn die Ergebnisse durch reelle Zahlen gegeben sind, sind die Ausgänge des Zufallsexperimentes nicht immer von Interesse. Interessanter sind die (Eintritts-) Wahrscheinlichkeiten. Wir benötigen also eine Vorschrift, die jedem Ausgang des Zufallsexperiments eine reelle Zahl zuordnet.

Diese Zuordnung $Z: \Omega \to \mathbb{R}$ nennt man **Zufallsvariable Z**.

Eine ZV Z ist also eine Größe, die beim zufälligen Auftreten eines Elementarereignisses $\omega \in \Omega$ einen reellen Wert $Z(\omega)$ annimmt.

Diskrete und stetige ZV

Die Unterscheidung in diskrete und stetige ZV erfolgt nach der gleichen Definition bzw. Analogie zu den diskreten und stetigen Merkmalen.

- diskret: ZV kann endlich oder abzählbar-unendlich viele Werte annehmen
- stetig: ZV kann jeden beliebigen Wert eines Intervalls annehmen

Beispiele:

- Anzahl der verkauften Autos pro Tag (diskrete Zufallsvariable)
- Umsatz in einer Woche (stetige Zufallsvariable)

Es gibt zwei Methoden mit deren Hilfe sich Verteilungen beschreiben lassen

Verteilungsfunktion F₇

$$F_Z(x) = P(Z \le x)$$

Wahrscheinlichkeitsfunktion f₇ für diskrete ZV

$$f_Z(x) = P(Z = x)$$

Wahrscheinlichkeitsdichtefunktion f₇ oder kurz: Dichtefunktion für stetige ZV

$$f_Z(x) = F_Z{'}(x)$$

Beispiel:

In einer Produktion von elektronischen Bauteilen beträgt die Ausschussquote 15%.

Zufallsvariable X: Anzahl der fehlerhaften Teile aus einer Stichprobe von 3 Stück.

х	f(x)	F(x)
0	$0.85^3 = 61.41\%$	61.41%
1	$0.85^2 \cdot 0.15 \cdot 3 = 32.51\%$	93.92%
2	$0.85 \cdot 0.15^2 \cdot 3 = 5.74\%$	99.66%
3	$0.15^3 = 0.34\%$	100%

Stetige Zufallsvariablen

Verteilungsfunktion F₇ für stetige Zufallsvariable Z

$$F_Z(x) = P(Z \le x)$$

Dichtefunktion f₇ für stetige Zufallsvariable Z

$$f_Z(x) = F_Z{'}(x)$$

Beispiel:

Die Lieferzeit eines Zukaufteils ist gleichmäßig zwischen 5 und 10 Tagen verteilt.

stetige Zufallsvariable Z: Wartezeit auf Zukaufteil mögliche Werte x: [5, 10]

Erwartungswert

Erwartungswert einer diskreten Zufallsvariable

$$E(Z) = \sum_{i=1}^{n} x_i \cdot f_Z(x_i)$$

Erwartungswert einer stetigen Zufallsvariable

$$E(Z) = \int_{-\infty}^{\infty} x \cdot f_Z(x) dx$$

Beispiel:

Zufallsvariable X: Anzahl der fehlerhaften Teile aus einer Stichprobe von 3 Stück bei einer Ausschussquote von 15%.

х	f(x)
0	61.41%
1	32.51%
2	5.74%
3	0.34%

$$E(X) = 0 \cdot 0.6141 + 1 \cdot 0.3251 + 2 \cdot 0.0574 + 3 \cdot 0.0034 = 0.45$$

Varianz und Streuung

Varianz: mittlere quadratische Abweichung vom Erwartungswert

$$Var(Z) = E\left(\left(Z - E(Z)\right)^{2}\right)$$

Streuung: Wurzel aus der Varianz

$$\sigma = \sqrt{Var(Z)}$$

Beispiel:

Zufallsvariable X: Anzahl der fehlerhaften Teile in einer Stichprobe von 3 Stück bei einer Ausschussquote von 15%

х	f(x)	(x-E(x)) ²
0	61.41%	0.203
1	32.51%	0.303
2	5.74%	2.403
3	0.34%	6.503

$$Var(X) = 0.6141 \cdot 0.203 + 0.3251 \cdot 0.303 + 0.0574 \cdot 2.403 + 0.0034 \cdot 6.503 = 0.3825$$

 $\sigma(X) = 0.62$

Zusammenfassung

Beschreibende Statistik	Wahrscheinlichkeit und Verteilungen
Merkmal	Zufallsvariable
relative Häufigkeit	Wahrscheinlichkeit
Histogramm	Verteilungsdichte
kumulierte relative Häufigkeit	Verteilungsfunktion
arithmetisches Mittel	Erwartungswert
empirische Varianz	Varianz

Kontrollfragen		
Thema	Zufallsvariablen	
Fragen	 Die Wartezeit Z auf einen Zukaufteil ist gleichmäßig zwischen 5 und 10 Tagen verteilt. Beschreiben Sie die Dichtefunktion und die Verteilungsfunktion von Z mit Hilfe von Formeln. Berechnen Sie mit Hilfe der Verteilungen die Wahrscheinlichkeiten P(Z ≤ 6) und P(7 ≤ Z ≤ 9) Wie groß ist der Erwartungswert für Z? 	

Modell der Binomialverteilung

- Zufallsexperiment wird n Mal (unabhängig) wiederholt
- Erfolg tritt mit Wahrscheinlichkeit p ein
- Zufallsvariable Z: Anzahl der Erfolge bei n Wiederholungen
- Z ist dann binomialverteilt mit den Parametern n und p
- Schreibweise: Z ~ B (n, p)

Beispiele:

- Anzahl der Sechser bei 10 Mal Würfeln (n = 10, p = 1/6)
- Anzahl der fehlerhaften Stück in einer Stichprobe

(n ... Stichprobenumfang,

p ... Ausschussanteil)

 3-maliges Ziehen von Kugeln (mit Zurücklegen) aus einer Schachtel mit 4 schwarzen und 5 roten Kugeln, Z ... Anzahl der roten Kugeln,

 $Z \sim B (3, 5/9)$

Wahrscheinlichkeitsfunktion für binomialverteilte Zufallsvariable

$$f_Z(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Erwartungswert und Varianz

$$E(Z) = np$$

$$Var(Z) = np(1-p)$$

Beispiel:

Zufallsvariable X: Anzahl der nicht fehlerhaften Teile in einer Stichprobe von 3 Stück bei einer Ausschussquote von 15%

X ist binomialverteilt mit n = 3, p = 0.15

$$p(X = 2) = f_X(2) = {3 \choose 2} 0.15^2 \cdot 0.85^1 = 0.0574$$

$$E(X) = n \cdot p = 3 \cdot 0.15 = 0.45$$

$$Var(X) = n \cdot p \cdot (1 - p) = 3 \cdot 0.15 \cdot 0.85 = 0.3825$$

Eine Zufallsvariable Z heißt normalverteilt mit den Parametern μ und σ^2 , wenn sie folgende **Dichtefunktion** besitzt:

$$f_Z(z) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(z-\mu)^2}{2\sigma^2}\right)$$

- Schreibweise: $Z \sim N (\mu, \sigma^2)$
- Erwartungswert: μ
- Varianz: σ²

Berechnung von Wahrscheinlichkeiten,

wenn Z ~ N (μ , σ^2)

$$P(Z \le a) = F_{N(\mu,\sigma^2)}(a)$$

$$P(Z \ge a) = 1 - F_{N(\mu,\sigma^2)}(a)$$

$$P(a \le Z \le b) = F_{N(\mu,\sigma^2)}(b) - F_{N(\mu,\sigma^2)}(a)$$

Quantile

- Umkehrfunktion zur Verteilungsfunktion
- gegeben: Wahrscheinlichkeit p
- gesucht: x-Wert, sodass p = F(x)
- Quantil q(p) = x

Standardnormalverteilung

- Normalverteilung mit Erwartungswert 0 und Varianz 1
 Z ~ N (0, 1)
- Jede Normalverteilung kann auf die Standardnormalverteilung zurückgeführt werden.
- Standardisierung: $X \sim N (\mu, \sigma^2) \Rightarrow Z \sim N (0, 1)$ mit

$$Z = \frac{x - \mu}{\sigma}$$

Zentraler Grenzverteilungssatz

Z₁, Z₂, ..., Z_n sind unabhängige Zufallsvariablen

Erwartungswerte $E(Z_i) = \mu_i$

Varianzen $Var(Z_i) = \sigma_i^2$

Dann ist die Summe $Z = Z_1 + Z_2 + ... + Z_n$ annähernd normalverteilt mit

$$E(Z) = \mu_1 + \mu_2 + \ldots + \mu_n$$

$$Var(Z) = \sigma_1^2 + \sigma_2^2 + \dots + \sigma_n^2$$

Kontrollfragen

Thema	Normalverteilung
Fragen	Auf einer Anlage wird Zucker in Packungen abgefüllt. Der Mindestinhalt einer Packung soll 1000g betragen. Da die Anlage mit einer Standardabweichung von 1.5 g arbeitet, ist das Abfüllgewicht auf 1002 g eingestellt.
	 Wie groß ist die Wahrscheinlichkeit, dass eine zufällig ausgewählte Packung unterfüllt ist? mehr als 1005 g wiegt? zwischen 1000 g und 1004 g wiegt? Welches Mindestgewicht erreichen 95% der Packungen? Auf welches Abfüllgewicht muss die Anlage eingestellt werden, damit nur max. 3% der Packungen unterfüllt sind?

