Ministério da Educação Universidade Federal dos Vales do Jequitinhonha e Mucuri Faculdade de Ciências Sociais, Aplicadas e Exatas - FACSAE Departamento de Ciências Exatas - DCEX

Disciplina: Geometria Analítica — Semestre: 2020/1 Prof. Me. Luiz C. M. de Aquino

Lista I

- 1. Represente geometricamente dois vetores \vec{u} e \vec{v} que possuem apenas:
 - (a) a mesma direção;
 - (b) o mesmo sentido e mesma direção;
 - (c) a mesma magnitude (ou comprimento) e mesma direção;
- 2. Efetue as operações $\frac{1}{2}\vec{a} + 2\vec{b}$ e $-2\vec{c} + \vec{d}$ com os vetores indicados abaixo, fazendo o esboço da representação gráfica do resultado.

3. A figura abaixo ilustra o cubo ABCDEFGH. Determine o resultado da operação: $\overrightarrow{BA} + \overrightarrow{HE} + \overrightarrow{CG}$.

- 4. Sejam quaisquer pontos A, B, C, D e E. Determine o resultado da operação: $\overrightarrow{BA} \overrightarrow{BD} + \overrightarrow{CD} \overrightarrow{EA}$. Represente graficamente o seu resultado.
- 5. Classifique as afirmações em Verdadeiro ou Falso.
 - () O vetor $-2\vec{u}$ tem a mesma direção de \vec{u} , mas tem sentido contrário.
 - () O vetor $-2\vec{u}$ tem a metade do comprimento de \vec{u} .
 - () Se \vec{u} e \vec{v} possuem a mesma direção, sentido e comprimento, então $\vec{u} = \vec{v}$.
 - () Para qualquer vetor \vec{u} , temos que $\vec{u} + (-\vec{u}) = \vec{0}$.
 - () Os vetores $\lambda u \in -\lambda u$ possuem comprimentos diferentes.
 - () Sendo $A, B, C \in D$ pontos quaisquer, temos que $\overrightarrow{AB} \overrightarrow{CB} + \overrightarrow{CD} = \overrightarrow{AD}$.
- 6. Sejam \overline{AB} e \overline{CD} dois segmentos paralelos e de comprimento não nulo. Prove que $\overrightarrow{AB} = \lambda \overrightarrow{CD}$.
- 7. Seja ABC um triângulo com M e N os pontos médios de \overline{AB} e \overline{AC} , respectivamente. Prove que \overline{MN} é paralelo à \overline{BC} e $\overline{MN}=\frac{1}{2}\overline{BC}$.
- 8. Prove que as diagonais de um paralelogramo se cruzam ao meio. (Sugestão: considerando que M e N são os pontos médios das diagonais do paralelogramo, prove que $\overrightarrow{MN} = \overrightarrow{0}$ e conclua que M = N.)