where $R^{\varepsilon} = R_2^{\varepsilon} + \text{div}(R_1^{\varepsilon}) + R_3^{\varepsilon} + R_4^{\varepsilon}$ and C_1 is some positive constant independent of ε . Therefore,

$$\lim_{\varepsilon \to 0} \left\| \frac{G(I + \varepsilon h) - G(I)}{\varepsilon} - (\xi, \eta) \right\|_{X} = \lim_{\varepsilon \to 0} \left\| (\tilde{\xi}, \tilde{\eta}) \right\|_{X} = 0.$$

This establishes the Gâteaux differentiability of G at I in the direction h, with $G'(I)h = (\xi, \eta)$.

Now, we establish a result on the differentiability of the cost functional:

Theorem 4.1 (On the Gâteau-differentiability of the Cost Functional). Let Assumptions (A1)-(A10) hold. Then the cost functional J is Gâteaux differentiable at any $I \in \mathcal{U}_{ad}$. Furthermore, for any direction $h \in L^{\infty}(0,T)$, the Gâteaux derivative of J at I in the direction h is given by:

$$\langle J'(I), h \rangle = \int_0^T \left[\alpha \int_{\mathbb{R}^N} \xi(t, x) dx + 2\beta I(t) h(t) \right] dt + \gamma \int_{\mathbb{R}^N} \xi(T, x) dx \tag{45}$$

where (ξ, η) is the solution to the linearized system (35).

Proof. Let $I \in \mathcal{U}_{ad}$ and define the functional $L_I : L^{\infty}(0,T) \to \mathbb{R}$ by:

$$\langle L_I, h \rangle = \int_0^T \left[\alpha \int_{\mathbb{R}^N} \xi(t, x) dx + 2\beta I(t) h(t) \right] dt + \gamma \int_{\mathbb{R}^N} \xi(T, x) dx$$
 (46)

where (ξ, η) solves the linearized system (35) with the direction h. Now let $h_1, h_2 \in L^{\infty}(0, T)$ and $\lambda \in \mathbb{R}$, and let us consider $h = h_1 + \lambda h_2$, with (ξ_1, η_1) and (ξ_2, η_2) are the solutions to the linearized system corresponding to directions h_1 and h_2 respectively. By the linearity of system (35), the solution (ξ, η) corresponding to h satisfies $\xi = \xi_1 + \lambda \xi_2$ and $\eta = \eta_1 + \lambda \eta_2$. Consequently:

$$\langle L_I, h_1 + \lambda h_2 \rangle = \int_0^T \left[\alpha \int_{\mathbb{R}^N} (\xi_1 + \lambda \xi_2) dx + 2\beta I(t) (h_1(t) + \lambda h_2(t)) \right] dt + \gamma \int_{\mathbb{R}^N} (\xi_1 + \lambda \xi_2) (T, x) dx$$
$$= \langle L_I, h_1 \rangle + \lambda \langle L_I, h_2 \rangle.$$

Therefore L_I is linear. Furthermore, for any $h \in L^{\infty}(0,T)$, by using the estimates from Lemma 4.1 we obtain:

$$|\langle L_I, h \rangle| \le \alpha \int_0^T \int_{\mathbb{R}^N} |\xi(t, x)| dx dt + 2\beta ||I||_{L^{\infty}} ||h||_{L^{\infty}} T + \gamma \int_{\mathbb{R}^N} |\xi(T, x)| dx \le C_1 ||h||_{L^{\infty}(0, T)},$$

where C_1 is a positive constant depending on α , β , γ , T, and the bounds from Lemma 4.1. Therefore L_I is continuous.

To show that L_I represents the Gâteaux derivative of J, let $h \in L^{\infty}(0,T)$, $\varepsilon > 0$, and let define $I^{\varepsilon} = I + \varepsilon h$ and let $(p^{\varepsilon}, d^{\varepsilon}) = G(I^{\varepsilon})$ and (p, d) = G(I). Let define $\Phi_I(\varepsilon) = \frac{J(I^{\varepsilon}) - J(I)}{\varepsilon}$, we have:

$$\Phi_{I}(\varepsilon) = \int_{0}^{T} \left[\alpha \int_{\mathbb{R}^{N}} \frac{p^{\varepsilon} - p}{\varepsilon} dx + \beta \frac{(I^{\varepsilon})^{2} - I^{2}}{\varepsilon} \right] dt + \gamma \int_{\mathbb{R}^{N}} \frac{p^{\varepsilon}(T, x) - p(T, x)}{\varepsilon} dx$$
$$= \int_{0}^{T} \left[\alpha \int_{\mathbb{R}^{N}} \xi^{\varepsilon} dx + \beta (2Ih + \varepsilon h^{2}) \right] dt + \gamma \int_{\mathbb{R}^{N}} \xi^{\varepsilon}(T, x) dx$$

where $\xi^{\varepsilon} = (p^{\varepsilon} - p)/\varepsilon$. By Lemma 4.1, we have $\xi^{\varepsilon} \to \xi$ in X as $\varepsilon \to 0$, where ξ is the solution to the linearized system (35). Therefore:

$$\lim_{\varepsilon \to 0} \Phi_I(\varepsilon) = \int_0^T \left[\alpha \int_{\mathbb{R}^N} \xi(t, x) dx + 2\beta I(t) h(t) \right] dt + \gamma \int_{\mathbb{R}^N} \xi(T, x) dx = \langle L_I, h \rangle. \tag{47}$$

This establishes that J is Gâteaux differentiable at I with derivative $J'(I) = L_I$, which complete the proof.