CPU 设计文档

一、 数据通路设计

(1) pc (程序计数器)

模块端口说明如下:

表 1 pc 端口说明

序号	信号名	方向	描述
1	Clk	I	时钟信号
2	Reset	I	复位信号
3	En	I	使能信号
4	NPC[31:0]	I	下一个PC值
5	PC[31:0]	0	当前的PC值

模块功能定义如下:

表 2 pc 功能定义

序号	功能名称	功能描述
1	更新PC值	当时钟上升沿到来时,将NPC写入PC
2	输出	输出当前PC的值

(2) im(指令存储器)

模块端口说明如下:

表3 im端口说明

序号	端口名 方向		描述
1	Addr[11:2]	I	当前PC的[11:2]位
2	Instr[31:0]	0	指令存储器中以Addr为地址的指令

模块功能定义如下:

表 4 im 功能定义

序号	功能名称	功能描述
1	初始化	将code.txt中的内容读入指令存储器中
2	输出	输出指令存储器中Addr所对应地址的指令的值

(2) grf(通用寄存器组)

模块端口说明如下:

表 5 grf 端口说明

序号	信号名	方向	描述
1	RAddr1[4:0]	Ι	读寄存器地址1
2	RAddr2[4:0]	Ι	读寄存器地址2
3	WAddr[4:0]	Ι	写寄存器地址
4	4 WData[31:0]		写入寄存器的数据
5 RegWrite		Ι	寄存器写使能信号
6	Clk	Ι	时钟信号
7	RData1[31:0]	О	输出地址RAddr1的寄存器中的数据
8	RData2[31:0]	О	输出地址RAddr2的寄存器中的数据

模块功能定义如下:

表 6 grf 功能定义

序号	功能名称	功能描述
1	读寄存器	输出端口RData1和RData2分别输出以输入信号RAddr1和RAddr2 为地址的寄存器中的数据
2	写寄存器	当始终上升沿到来时,若写使能信号为1,则将输入信号 WData中的数据写入以输入信号WAddr为地址的寄存器中

(3) alu (算术逻辑单元)

序号	信号名	方向	描述
1	Data1[31:0]	I	参与ALU运算的第一个值
2	Data2[31:0]	I	参与ALU运算的第二个值
3	ALUOp[2:0]	I	ALU功能的选择信号 000 : ALU进行加法运算 001 : ALU进行减法运算 010 : ALU进行或运算 011 : ALU进行与运算
4	ALUResult[31:0]	0	ALU的计算结果

模块功能定义如下:

表 8 alu 功能定义

序号	功能名称 功能描述	
1	加法运算	ALUResult = Data1 + Data2
2	减法运算 AUResult = Data1 - Data2	
3	与运算	ALUResult = Datal & Data2
4	或运算	ALUResult = Data1 Data2

(3) dm (数据存储器)

模块端口说明如下:

表 9 dm 端口说明

序号	5号 信号名		描述
1	Addr[4:0]	I	数据存储器读写的地址
2	2 WData[31:0]		将要写进数据存储器的数据
3	3 MemWrite		数据存储器的写使能端
4	4 Clk		时钟信号
5	5 Reset		复位信号
6	RData[31:0]	0	输出从数据存储器中读取的值

模块功能定义如下:

表 10 dm 功能定义

序号	功能名称	功能描述		
1	读数据存储器	输出端口Data输出数据存储器在地址为MemAddr处的数据		
2	写数据存储器	当时钟上升沿到来时,若MemWrite为1,且Reset信号为0,则将输入信号MemData中的数据写入数据存储器在MemAddr所对应的地址中		
3	复位	当时钟上升沿到来时,若Reset信号为1,将数据存储器的内容置为0		

(4) EXT(数据扩展单元)

模块端口说明如下:

表 11 ext 端口说明

序号	信号名	方向	描述
1	In[15:0]	I	扩展单元的输入信号
2	ExtOp[1:0]	I	扩展方式的选择信号 00 : 进行符号扩展 01 : 进行零扩展 10 : 进行低位零扩展
3	Out[31:0]	0	扩展单元的输出信号

模块功能定义如下:

表 12 ext 功能定义

序号	功能名称	功能描述
1	符号扩展	输出信号的低16位与输入信号相同, 高16位为输入信号的符号位
2	零扩展	输出信号的低16位与输入信号相同,高16位为0
3	低位零扩展	输出信号的高16位与输入信号相同,低16为为0

(5) NPC

模块端口定义如下:

表 13 NPC 端口说明

序号	端口名称	方向	说明
1	PCplus4[31:0]	Ι	当前的PC值加4
2	I_Addr[25:0]	Ι	当前32位指令的低26位
3	R_Addr[31:0]	Ι	保存在寄存器中的地址
4	NPCSe1[1:0]	I	选择下一个pc的值
5	Equal	Ι	beq的分支条件是否成立
6	NPC	0	下一个PC的值(若发生分支或跳转)
7	PCplus8	0	当前的PC值加8

模块功能定义如下:

表 14 NPC 功能定义

序号	功能名称	功能描述
1	输出	根据选择信号输出下一个PC的值(若发生分支或跳转)

二、 控制器设计

(1) 控制器

ctrl_D 端口说明如下:

序号	信号名	方向	描述	
1	Instr[31:0]	Ι	F/D级流水线寄存器中的Instr值	
2	EXTOp[1:0]	0 扩展单元的功能选择信号		
3	NPCSe1[1:0]	0	NPC的功能选择信号	
4	isBranch	0	是否发生跳转或分支	

ctrl_E端口说明如下:

序号	信号名	信号名 方向 描述			
1	Instr[31:0]	I D/E级流水线寄存器的Instr值			
2	ALUOp[2:0]	0	ALU功能选择信号		
3	ALUSrc[1:0]	0	ALU的运算数据选择信号		

ctrl_M 端口说明如下:

序号	信号名	方向	描述
1	Instr[31:0]	I	E/M级流水线寄存器的Instr值
2	MemWrite	0	数据存储器的写使能信号

ctrl_W端口说明如下:

序号	信号名	方向	描述
1	Instr[31:0]	Ι	M/W级流水线寄存器中的Instr值
2	RegWrite	0	寄存器的写使能信号
3	RegDst[1:0]	0	寄存器写入地址选择信号
4	RegSrc[1:0]	0	寄存器写入数据选择信号

控制信号真值表如下:

	addu	subu	jr	ori	lw	sw	beq	lui	jal
Op	000000	000000	000000	001101	100011	1010111	000100	001111	000011
Funct	100001	100011	001000						
nPC_Op[1]	0	0	1	0	0	0	0	0	1
nPC_Op[0]	0	0	1	0	0	0	Zero	0	0
RegWrite	1	1	0	1	1	0	0	1	1
RegDst[1]	0	0	X	0	0	X	X	0	1
RegDst[0]	1	1	X	0	0	X	X	0	0
RegSrc[1]	0	0	X	0	0	X	X	0	1
RegSrc[0]	0	0	X	0	1	X	X	0	0
ExtOp[1]	X	X	X	0	0	0	X	1	X
ExtOp[0]	X	X	X	1	0	0	X	0	X
ALUOp[1]	0	0	X	1	0	0	0	1	X
ALUOp[0]	0	1	X	0	0	0	0	0	X
ALUSrc	0	0	X	1	1	1	0	1	Х
MemWrite	0	0	0	р	0	1	0	0	0

控制信号意义如下:

序号	控制信号	意义
1	NPCSe1[1:0]	控制分支的信号,分支指令需要将该信号置为1
2	RegWrite	寄存器写使能信号,但需要些寄存器时将此信号置为1
3	RegDst[1:0]	选择寄存器的写入地址, 当此信号为00时,选择指令的rt字段([20:16])为寄存器的写入地址; 当此信号为01时,选择指令的rd字段([15:11])为寄存器的写入地址; 当此信号为10时,选择0x1f为寄存器的写入地址
4	RegSrc[1:0]	选择寄存器的写入数据, 当此信号为00时,选择ALU的计算结果作为寄存器堆的写入值; 当此信号为01时,选择从数据存储器中取出的信号作为寄存器堆的写入值; 当此信号为10时,选择PC+4作为寄存器堆的写入值
5	ExtOp[1:0]	Ext功能选择信号,根据指令需要进行的扩展类型来设置为相应的值
6	ALUOp[2:0]	ALU功能选择信号,根据指令需要执行的运算种类来设置相应的值
7	ALUSrc	当此信号为0时,选择指令的rt字段([20:16])为地址的寄存器中的数据作为ALU的第二个运算数; 当此信号为1时,选择经扩展后的立即数作为ALU的第二个运算数。
8	MemWrite	数据存储器写使能信号,当需要写数据存储器时将此信号置为1

(2) 阻塞控制器

阻塞控制器端口说明如下:

序号	信号名	方向	描述
1	FD_Instr[31:0]	Ι	F/D级流水线寄存器中的Instr值
2	DE_Instr[31:0]	Ι	D/E级流水线寄存器中的Instr值
3	EM_Instr[31:0]	Ι	E/M级流水线寄存器中的Instr值
4	StallPC	0	是否阻塞PC
5	Stal1FD	0	是否阻塞F/D流水线寄存器
6	FlushDE	0	是否清空D/E流水线寄存器中的值

阻塞发生条件如下:

IF/ID当前指令			ID/EX(Tnew)					EX/MEM(Tnew)				
指令 类型	源寄 存器	Tuse	cal_r 1/rd	cal_i 1/rt	load 2/rt	jal 0/31	jalr 0/rd	cal_r 0/rd	cal_i 0/rt	load 1/rt	jal 0/31	jalr 0/rd
be q	rs/rt	0	暂停	暂停	暂停					暂停		
jalr	rs	0	暂停	暂停	暂停					暂停		
cal_r	rs/rt	1			暂停							
cal_i	rs	1			暂停							
load	rs	1			暂停							
atomo	rs	1		·	暂停							
store	rt	2										_

(3) 转发控制器

转发控制器端口定义如下:

序号	信号名	方向	描述
1	FD_Instr[31:0]	Ι	F/D级流水线寄存器中的Instr值
2	DE_Instr[31:0]	Ι	D/E级流水线寄存器中的Instr值
3	EM_Instr[31:0]	Ι	E/M级流水线寄存器中的Instr值
4	MW_Instr[31:0]	Ι	M/W级流水线寄存器中的Instr值
5	BypassDrs	0	转发信号1,控制D阶段相等比较的输入
6	BypassDrt	0	转发信号2,控制D阶段相等比较的输入
7	BypassErs	0	转发信号3,控制ALU的输入
8	BypassErt	0	转发信号4,控制ALU的输入
9	BypassMrt	0	转发信号5,控制DM的写入值

转发条件如下:

流水级	源寄存器	涉及指令	转发MUX	控制信号	输入0
IF/ID	rs	beq, jalr	MUXB_D_rs	BypassDrs	D_GPR_RData1
	rt	beq	MUXB_D_rt	BypassDrt	D_GPR_RData2
ID/EX	rs	cal_r, cal_i, ld, st	MUXB_E_rs	BypassErs	DE_RData1
	rt	cal_r	MUXB_E_rt	BypassErt	DE_RData2
EX/MEM	rt	store	MUXB_M_rt	BypassMrt	EM_M_Wdata
ID/EX	(Tnew)		EX/MEM	(Tnew)	
jal	jalr	cal_r	cal_i	jal	jalr
0/31	0/rd	0/rd	0/rt	0/31	0/rd
DE_PCplus8	DE_PCplus8	EM_ALUOut	EM_ALUOut	EM_PCplus8	EM_PCplus8
DE_PCplus8	DE_PCplus8	EM_ALUOut	EM_ALUOut	EM_PCplus8	EM_PCplus8
		EM_ALUOut	EM_ALUOut	EM_PCplus8	EM_PCplus8
		EM_ALUOut	EM_ALUOut	EM_PCplus8	EM_PCplus8
		MEM/WB(Tnew)			
cal_r	cal_i	load	jal	jalr	
0/rd	0/rt	0/rt	0/31	0/rd	
MW_ALUOut	MW_ALUOut	MW_DM_Rdata	MW_PCplus8	MW_PCplus8	
MW_ALUOut	MW_ALUOut	MW_DM_Rdata	MW_PCplus8	MW_PCplus8	
MW_ALUOut	MW_ALUOut	MW_DM_Rdata	MW_PCplus8	MW_PCplus8	
MW_ALUOut	MW_ALUOut	MW_DM_Rdata	MW_PCplus8	MW_PCplus8	
MW_ALUOut	MW_ALUOut	MW_DM_Rdata	MW_PCplus8	MW_PCplus8	

三、测试程序

```
lui $t0, 0x3424
ori $t0, $t0, 0x2342
lui $t1, 0x5432
ori $t1, $t1, 0x4232
subu $t2, $t1, $t0
addu $t3, $t2, $t0
addu $t4, $t1, $t0
addu $t5, $t0, $t4
ori $t6, $t0, 0x2422
subu $t7, $t6, $t0
ori $t8, $t0, 0x4320
addu $t9, $t0, $t8
ori $s0, $t9, 0x8923
ori $s1, $s0, 0x4239
addu $s2, $t0, $t1
nop
subu $s3, $s2, $t1
nop
addu $s4, $s0, $s3
nop
ori $s5, $s4, 0x3242
nop
ori $s6, $s5, 0x4324
nop
addu $s7, $s6, $0
lui $t2, 0x4243
nop
addu $t3, $t0, $t2
addu $0, $s0, $s1
subu $t2, $t1, $0
subu $0, $t2, $t1
ori $t3, $0, 0x5555
addu $t4, $t3, $0
j jump1
lui $t7, 0x1234
lui $t8, 0x2345
```

jump1:
ori \$t8, \$0, 0x3456
j jump2
lui \$t7, 0x3333
jump2:
ori \$t8, \$t7, 0x3242
loop:
j loop
nop

期望运行结果: 8-25 号寄存器的值分别为:

0x34242342 0x54344232 0x54324232 0x00005555 0x00005555 0xbc7a88b6 0x34242762 0x33330000 0x68488fa7 0x6848cfbf 0x88566574 0x34242342 0x9c6cb2e9 0x9c6cb2eb 0x9c6cf3ef 0x9c6cf3ef

0x33333242 0x684886a4

思考题

1,

1,	
测试类型	测试样例
E_calr_M_calr_rs	subu \$t2, \$t1, \$t0 addu \$t3, \$t2, \$t0
E_calr_M_calr_rt	addu \$t4, \$t1, \$t0 addu \$t5, \$t0, \$t4
E_calr_M_cali_rs	ori \$t6, \$t0, 0x2422 subu \$t7, \$t6, \$t0
E_calr_M_cali_rt	ori \$t8, \$t0, 0x4320 addu \$t9, \$t0, \$t8
E_cali_M_calr_rt	addu \$t9, \$t0, \$t8 ori \$s0, \$t9, 0x8923
E_cali_M_cali_rt	ori \$s0, \$t9, 0x8923 ori \$s1, \$s0, 0x4239
E_calr_W_calr_rs	addu \$s2, \$t0, \$t1 nop subu \$s3, \$s2, \$t1
E_calr_W_calr_rt	subu \$s3, \$s2, \$t1 nop addu \$s4, \$s0, \$s3
E_calr_W_cali_rs	ori \$s6, \$s5, 0x4324 nop addu \$s7, \$s6, \$0
E_calr_W_cali_rt	lui \$t2, 0x4243 nop addu \$t3, \$t0, \$t2
E_cali_W_calr_rt	addu \$s4, \$s0, \$s3 nop ori \$s5, \$s4, 0x3242
E_cali_W_cali_rt	ori \$s5, \$s4, 0x3242 nop ori \$s6, \$s5, 0x4324