Learning Objectives

- Be able to use material and spatial descriptions of variables and their time derivatives.
- Be able to compute infinitesimal strain (strain rate) tensor given a displacement (velocity) field.
- Know meaning of the different components of the infinitesimal strain (rate) tensor
- Be able to find principal strain(rate)s and strain (rate) invariants and know what they represent
- Understand difference between infinitesimal and finite strain
- Be able to use the conservation of mass equation

Displacement

Can result in

- (a) Rigid body motion
- (b) Deformation of the body

Rigid body motion

- Translation: $\mathbf{x}' = \boldsymbol{\xi} + \mathbf{c}(t)$, with $\mathbf{c}(0) = \mathbf{0}$
 - \Rightarrow **u**=**x**'- ξ , each point same **u**(t)=**c**(t)
- Rotation: \mathbf{x}' - \mathbf{b} = $\mathbf{R}(t)(\boldsymbol{\xi}$ - $\mathbf{b})$, where $\mathbf{R}(t)$ is rotation tensor, with $\mathbf{R}(0)$ = \mathbf{I} , \mathbf{b} is the point of rotation. $\mathbf{R}(t)$ is an orthogonal transformation (preserves lengths and angles, $\mathbf{R}^T\mathbf{R}$ = \mathbf{I} , $\det(\mathbf{R})$ = $\mathbf{1}$)

If \mathbf{u} depends on \mathbf{x} and t, then internal deformation

Displacement

translation & deformation

Deformation tensor

$$P_1$$
 at $r \rightarrow P'_1$ at $r+u(r)$, P_2 at $r+dr \rightarrow P'_2$ at $r+dr+u(r+dr)$.

$$dr' = P'_2 - P'_1 = dr + [u(r+dr) - u(r)] = dr + \nabla u(r) \cdot dr = dr + du(r)$$

deformation of P₂-P₁ described by:
$$du_i = \frac{\partial u_i}{\partial x_i} dx_j$$

$$\mathbf{d}\mathbf{u} = \nabla \mathbf{u} \cdot \mathbf{d}\mathbf{r} = \mathbf{d}\mathbf{r} \cdot \nabla^{\mathrm{T}}\mathbf{u}$$

$$du_{i} = \frac{\partial u_{i}}{\partial x_{j}} dx_{j} : \begin{pmatrix} du_{1} \\ du_{2} \\ du_{3} \end{pmatrix} = \begin{bmatrix} \frac{\partial u_{1}}{\partial x_{1}} & \frac{\partial u_{1}}{\partial x_{2}} & \frac{\partial u_{1}}{\partial x_{3}} \\ \frac{\partial u_{2}}{\partial x_{1}} & \frac{\partial u_{2}}{\partial x_{2}} & \frac{\partial u_{2}}{\partial x_{3}} \\ \frac{\partial u_{3}}{\partial x_{1}} & \frac{\partial u_{3}}{\partial x_{2}} & \frac{\partial u_{3}}{\partial x_{3}} \end{bmatrix} \begin{pmatrix} dx_{1} \\ dx_{2} \\ dx_{3} \end{pmatrix}$$

$$\frac{\partial u_{i}}{\partial x_{j}} = \frac{1}{2} \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} \right) + \frac{1}{2} \left(\frac{\partial u_{i}}{\partial x_{j}} - \frac{\partial u_{j}}{\partial x_{i}} \right)$$

$$\frac{\partial u_{ij}}{\partial x_{j}} = \frac{1}{2} \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} \right) + \frac{1}{2} \left(\frac{\partial u_{i}}{\partial x_{j}} - \frac{\partial u_{j}}{\partial x_{i}} \right)$$

Total deformation is:

- rigid body translation $\mathbf{u}(\mathbf{r})$
- rigid body rotation ω·dr
- internal deformation, strain **\varepsilon dr** result of stresses

Infinitesimal strain and rotation tensors

$$\boldsymbol{\varepsilon} = \begin{bmatrix} \frac{\partial \mathbf{u}_1}{\partial \mathbf{x}_1} & \frac{1}{2} \left(\frac{\partial \mathbf{u}_1}{\partial \mathbf{x}_2} + \frac{\partial \mathbf{u}_2}{\partial \mathbf{x}_1} \right) & \frac{1}{2} \left(\frac{\partial \mathbf{u}_1}{\partial \mathbf{x}_3} + \frac{\partial \mathbf{u}_3}{\partial \mathbf{x}_1} \right) \\ \frac{1}{2} \left(\frac{\partial \mathbf{u}_1}{\partial \mathbf{x}_2} + \frac{\partial \mathbf{u}_2}{\partial \mathbf{x}_1} \right) & \frac{\partial \mathbf{u}_2}{\partial \mathbf{x}_2} & \frac{1}{2} \left(\frac{\partial \mathbf{u}_2}{\partial \mathbf{x}_3} + \frac{\partial \mathbf{u}_3}{\partial \mathbf{x}_2} \right) \\ \frac{1}{2} \left(\frac{\partial \mathbf{u}_1}{\partial \mathbf{x}_3} + \frac{\partial \mathbf{u}_3}{\partial \mathbf{x}_1} \right) & \frac{1}{2} \left(\frac{\partial \mathbf{u}_2}{\partial \mathbf{x}_3} + \frac{\partial \mathbf{u}_3}{\partial \mathbf{x}_2} \right) & \frac{\partial \mathbf{u}_3}{\partial \mathbf{x}_3} \end{bmatrix}$$

$$\omega = \begin{bmatrix} 0 & \frac{1}{2} \left(\frac{\partial u_1}{\partial x_2} - \frac{\partial u_2}{\partial x_1} \right) & \frac{1}{2} \left(\frac{\partial u_1}{\partial x_3} - \frac{\partial u_3}{\partial x_1} \right) \\ \frac{1}{2} \left(\frac{\partial u_2}{\partial x_1} - \frac{\partial u_1}{\partial x_2} \right) & 0 & \frac{1}{2} \left(\frac{\partial u_2}{\partial x_3} - \frac{\partial u_3}{\partial x_2} \right) \\ \frac{1}{2} \left(\frac{\partial u_3}{\partial x_1} - \frac{\partial u_1}{\partial x_3} \right) & \frac{1}{2} \left(\frac{\partial u_3}{\partial x_2} - \frac{\partial u_2}{\partial x_3} \right) & 0 \end{bmatrix}$$

Example displacement – infinitesimal strain

displacement in time interval =1

$$u_{r} = 0.1x^{2}$$

$$u_x = 0.1x^2$$
$$u_y = 0.4xy$$

Example displacement – infinitesimal strain

Example displacement – infinitesimal strain

Example displacement – infinitesimal rotation

diagonal infinitesimal strain tensor elements

For a line segment $\mathbf{dr} = (dx_1,0,0)$ deforming in displacement field $\mathbf{u} = (u_1,0,0)$:

$$x_1 + u_1(x_1)$$
 $x_1 + dx_1 + u_1(x_1) + \frac{\partial u_1}{\partial x_1} dx_1$
 x_1 $x_1 + dx_1$

For small dx₁

the new length $dx'_1 \approx dx_1 + (\partial u_1/\partial x_1)dx_1 = (1+\varepsilon_{11})dx_1$

 $\Rightarrow \varepsilon_{11} = [dx'_1 - dx_1]/dx_1 =$ the relative change in length of a line element, originally in x_1 direction.

The relative change in volume (V'-V)/V of a cube $V=dx_1dx_2dx_3 \approx$

diagonal infinitesimal strain tensor elements

For a line segment $\mathbf{dr} = (dx_1,0,0)$ deforming in velocity field $\mathbf{u} = (u_1,0,0)$:

$$x_1 + u_1(x_1)$$
 $x_1 + dx_1 + u_1(x_1) + \frac{\partial u_1}{\partial x_1} dx_1$
 x_1 $x_1 + dx_1$

the new length $dx'_1 \approx dx_1 + (\partial u_1/\partial x_1)dx_1 = (1+\varepsilon_{11})dx_1$

 $\Rightarrow \varepsilon_{11} = [dx'_1 - dx_1]/dx_1 =$ the relative change in length of a line element, originally in x_1 direction.

The relative change in volume (V'-V)/V of a cube V= $dx_1dx_2dx_3$ $\approx \varepsilon_{11}+\varepsilon_{22}+\varepsilon_{33}=\varepsilon_{ii}=tr(\varepsilon)=\nabla \cdot \mathbf{u}$.

diagonal infinitesimal strain tensor elements

For a line segment $\mathbf{dr} = (dx_1,0,0)$ deforming in velocity field $\mathbf{u} = (u_1,0,0)$:

$$x_1 + u_1(x_1)$$
 $x_1 + dx_1 + u_1(x_1) + \frac{\partial u_1}{\partial x_1} dx_1$
 x_1 $x_1 + dx_1$

the new length $dx'_1 \approx dx_1 + (\partial u_1/\partial x_1)dx_1 = (1+\varepsilon_{11})dx_1$

The relative change in volume (V'-V)/V of a cube V= $dx_1dx_2dx_3$ $\approx \varepsilon_{11}+\varepsilon_{22}+\varepsilon_{33}=\varepsilon_{ii}=tr(\varepsilon)=\nabla \cdot \mathbf{u}$.

off-diagonal infinitesimal strain tensor elements

 $2\varepsilon_{12}$ is the change in angle of an originally 90° angle between dx_1 and dx_2

infinitesimal rotation tensor elements

$$\omega_{12} = -\omega_{21} = \left[(\partial \mathbf{u}_2 / \partial \mathbf{x}_1) - (\partial \mathbf{u}_1 / \partial \mathbf{x}_2) \right] / 2 = (\alpha_1 - \alpha_2) / 2$$

 ω_{12} is common rigid rotation angle of vectors in the dx₁ - dx₂ plane (around x₃)