Analytics for Molecular Dynamics (A4MD)

Towards In Situ Enhanced Adaptive Sampling of Simulation Ensembles

Ian Lumsden, Michael Wyatt, Silvina Caíno-Lores, Michela Taufer

Acknowledgements

Funding and support

- **IBM** (Global University Program)
- **NSF** (BIGDATA: IA: Collaborative Research: In Situ Data Analytics for Next Generation Molecular Dynamics Workflows, NSF award 1741057)

Collaborators

- Cornell University (Michel Cuendet, Ekaterina Kots, Harel Weinstein)
- University of New Mexico (Hector Alexis Carrillo Cabada, Trilce Estrada)
- University of Southern California (Ewa Deelman, Rafael Ferreira da Silva, Tu Mai Anh Do, Loïc Pottier)

And many more!

Frames of an MD trajectory with a stride of 5 steps:

Collective variables serve as proxy for structural and conformational changes

Enhanced Adaptive Sampling (EAS): Motivation

Capturing the process of interest takes significant computational resources

(~ 40 000 GPU node hours)

The amount of "efficient" trajectories is usually low ~ 7%

^{*}The numbers presented refer to the BBL system

Enhanced Adaptive Sampling (EAS): Motivation

Capturing the process of interest takes significant computational resources

(~ 40 000 GPU node hours)

The amount of "efficient" trajectories is usually low ~ 7%

A method to predict if the trajectory is trapped in the initial state can save computational resources

*The numbers presented refer to the BBL system

Case Study: Bovine β-Lactoglobulin (BBL) MD

162 residues X-ray PDB pH 6.2, 7.1, 8.2

Characterisation of Trajectories

Unfavorable trajectory: does not explore the tICA space

From One Trajectory to Many

From One Trajectory to Many

EAS in A4MD

EAS in A4MD

EAS in A4MD

EAS in A4MD: Orchestration

EAS in A4MD: Orchestration

Generalising the Workflow Engine: A4X

Multiple data sources and analysis modules can exchange information in situ through A4X

Goals for the Next Period

- Introduce features that allow the support of enhanced adaptive sampling in MD ensembles
- Orchestrate the ensemble allowing to stop, start and fork of MD jobs
- Evaluate scalability in a larger environment and with workflows of increased complexity
- Provide mechanisms to collect the intermediary and output data from the simulation and analysis
- Incorporate unsupervised learning techniques for extracting collective variables automatically

Analytics for Molecular Dynamics (A4MD)

Towards In Situ Enhanced Adaptive Sampling of Simulation Ensembles

Ian Lumsden, Michael Wyatt, Silvina Caíno-Lores, Michela Taufer

