T1G6

Gabriel Jenner de Faria Orsi 10772800 João Pedro Dias Nunes 10705846 Luís Eduardo Carvalho 9837010 Rogério Yukio Tamaoki Rodriguez 10772709

Introdução à Qualidade - L2

Brasil

Maio - 2021

Lista de ilustrações

Figura 1 –	Assinatura de João Pedro Dias Nunes	4
Figura 2 –	Assinatura de Gabriel Jenner de Faria Orsi	4
Figura 3 –	Assinatura de Luís Eduardo Carvalho	4
Figura 4 –	Assinatura de Rogério Yukio Tamaoki Rodriguez	4
Figura 5 –	Diagrama de causa e efeito	6
Figura 6 –	Tabela de coeficiente de abrangência	13

Lista de tabelas

Tabela 1 –	Medições realizadas pelos alunos	8
Tabela 2 –	Resumo das medições	Ĝ
Tabela 3 –	Medições e incertezas	14

Sumário

1	RESPOSTAS ÀS QUESTÕES	5
1.1	Descrever brevemente os instrumentos e o procedimento de medição.	5
1.2	Fazer o diagrama de Ishikawa com os principais efeitos considerados	
	na determinação das incertezas de medição.	5
1.3	Realizar uma série de medidas de cada grandeza direta. Certifique-	
	se de que o número de repetições de cada medida seja adequado,	
	e.g., com base nas suas medidas anteriores, estime o tamanho ade-	
	quado da amostra.	7
1.4	Estimar as três grandezas.	7
1.5	Realize as estimativas de tipo A das incertezas.	9
1.6	Realize as estimativas de tipo B das incertezas.	10
1.7	Determinar os coeficientes de sensibilidade.	10
1.8	Estimar a incerteza combinada.	11
1.9	Estimar o número de graus de liberdade efetivo.	12
1.10	Determinar o coeficiente de abrangência.	12
1.11	Estimar a incerteza combinada expandida.	14
1.12	Expressar as grandezas e suas incertezas de medição segundo reco-	
	mendação do ISO GUM.	14
1.13	Compare os resultados dos diversos anéis medidos pelo grupo	15
	REFERÊNCIAS	16

Assinaturas

Figura 1 – Assinatura de João Pedro Dias Nunes

Figura 2 – Assinatura de Gabriel Jenner de Faria Orsi

Figura 3 – Assinatura de Luís Eduardo Carvalho

Figura 4 – Assinatura de Rogério Yukio Tamaoki Rodriguez

1 Respostas às questões

Pede-se para as três grandezas, i.e., massa, área alar e densidade do papel.

Na estimação das incertezas de medição utilizar um nível de confiança de 95,45%.

Cada grupo deverá entregar um relatório com os resultados em um único arquivo em formato pdf com o seguinte nome "L2 - TxGy.pdf", onde x e y deverão ser substituídos pelos números da turma e do grupo que elaborou o relatório.

1.1 Descrever brevemente os instrumentos e o procedimento de medição.

Os instrumentos de medição consistem em uma régua de 30 cm e uma balança culinária digital. As incertezas dos instrumentos correspondem à metade da menor medida do instrumento. Para o caso da régua, cuja menor medida é 1 mm, a incerteza corresponde a 0,5 mm. Para o caso da balança, cuja menor medida é de 0,1 g corresponde a 0,05 g, e a capacidade máxima da balança é de 1 kg.

1.2 Fazer o diagrama de Ishikawa com os principais efeitos considerados na determinação das incertezas de medição.

 ${\bf A}$ figura 5 mostra o diagrama de Ishikawa para os principais causas das incertezas de medição.

Figura 5 – Diagrama de causa e efeito

Código R:

```
library(qcc)
```

```
cManpower <- c("Execu oudasumedidas","Paralaxe","Errosudeu
    recorte")

cMaterials <- c("Baterias","L mpadas","R gua","Balan a")

cMachines <- c("Baixauprecis oudaur gua","Baixauprecis oudau
    balan a")

cMethods <- c("Medi oumanual
dosucomprimentos","Padroniza o
dasumedidas","Manuseio
dosuequipamentos")

cMeasurements <- c("Ilumina ouambiente","R gua","Balan a")

cEnvironment <- c("Temperatura","Umidadeurelativa","Localiza ou
    ")</pre>
```

1.3 Realizar uma série de medidas de cada grandeza direta. Certifiquese de que o número de repetições de cada medida seja adequado, e.g., com base nas suas medidas anteriores, estime o tamanho adequado da amostra.

As medições foram realizadas, e os resultados estão na tabela 3.

1.4 Estimar as três grandezas.

A massa é medida direta. A área alar é o produto da corda e a envergadura da asa.

$$A_{alar} = C \times E$$

e a densidade é a fração entre a massa e a área total (área alar e do corpo):

$$\rho = \frac{m}{C \times E + 2 \times C \times H}$$

Portanto, os resultados são mostrados abaixo:

Tabela 1 – Medições realizadas pelos alunos

Densidade ρ	72,4	6,02	73,8	72,4	7.07	75.5	76,8	75,8	72,9	7.5.7	72,4	74.5	75,0	73,2	72,4	6,02	73,8	7.07	73,5	72,3
A. Corpo A_C	215,8	212,8	211,4	215,8	212,8	213,0	210,0	211,6	213,0	213,0	214,4	215,8	214,4	212,8	214,4	212,8	211,4	212,8	212,8	215,8
A. Alar A_{alar}	156,9	154,0	154,7	156,9	154,7	157,6	154,7	157,6	157,6	156,9	158,3	159,8	159,0	156,1	158,3	154,0	154,7	154,7	154,7	157,6
m	2,7	2,6	2,7	2,7	2,6	2,8	2,8	2,8	2,7	2,8	2,7	2,8	2,8	2,7	2,7	2,6	2,7	2,6	2,7	2,7
Altura Tronco H	15,2	15,2	15,1	15,2	15,2	15,0	15,0	14,9	15,0	15,0	15,1	15,2	15,1	15,2	15,1	15,2	15,1	15,2	15,2	15,2
Envergadura E	22,1	22,0	22,1	22,1	22,1	22,2	22,1	22,2	22,2	22,1	22,3	22,5	22,4	22,3	22,3	22,0	22,1	22,1	22,1	22,2
Corda Asa C	7,1	7,0	7,0	7,1	7,0	7,1	7,0	7,1	7,1	7,1	7,1	7,1	7,1	7,0	7,1	7,0	7,0	7,0	7,0	7,1
Helicóptero			1	1	1	2	2	2	2	2	က	3	3	3	3	4	4	4	4	4
Aluno	Rogerio	Rogerio	Rogerio	Rogerio	Rogerio	Joao	Joao	Joao	Joao	Joao	Orsi	Orsi	Orsi	Orsi	Orsi	Luis	Luis	Luis	Luis	Luis
Medição	П	2	3	4	ಬ	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20

Pode-se utilizar o código em R para obtermos as informações dos dados.

Tabela 2 –	Resumo	das	medições
			,

Parâmetro	N	Média	Desv. Pad.	Mín	Q1	Q3	Máx
Corda da Asa	20	7.055	0.051	7.000	7.000	7.100	7.100
Envergadura	20	22.175	0.129	22.000	22.100	22.225	22.500
Altura Tronco	20	15.120	0.095	14.900	15.075	15.200	15.200
Massa	20	2.710	0.072	2.600	2.700	2.800	2.800
Area Alar	20	156.448	1.796	154.000	154.700	157.620	159.750
Area Corpo	20	213.340	1.660	210.000	212.800	214.420	215.840
Densidade	20	73.285	1.821	70.748	72.400	74.656	76.775

Realize as estimativas de tipo A das incertezas. 1.5

A estimativa de incertezas do tipo A é dada pela equação:

$$u(x_i) = \frac{\sigma}{\sqrt{n}} \tag{1.1}$$

sendo x_i a grandeza que está sendo medida, σ o desvio padrão das medições e n o número de medidas realizadas. Aplicando isso para a massa m, área alar A_a e densidade ρ a partir dos valores de desvio padrão expostos na tabela 2, chega-se nos seguintes resultados:

$$u(m) = \frac{\sigma}{\sqrt{n}} = 0.0160591 \ g \tag{1.2}$$

$$u(A_{alar}) = \frac{\sigma}{\sqrt{n}} = 0.401575 \ cm^2$$

$$u(\rho) = \frac{\sigma}{\sqrt{n}} = 0.407275 \ g/m^2$$
(1.3)

$$u(\rho) = \frac{\sigma}{\sqrt{n}} = 0.407275 \ g/m^2$$
 (1.4)

Código R.

```
n <- 20
sm <- 0.07181848
sAa <- 1.795898
srho <- 1.821389
um <- sm/sqrt(n)
uAa <- sAa/sqrt(n)
urho <- srho/sqrt(n)
```

1.6 Realize as estimativas de tipo B das incertezas.

Para um nível de 95,45%, de acordo com a tabela G1 do guia de incertezas (INMETRO, 2008), o fator de abrangência k_p correspondente é de 2. Sendo a incerteza da balança igual a 0,05 g, obtém-se a estimativa tipo B de incerteza:

$$u_B(m) = \frac{\Delta m}{k_p} = \frac{0.05}{2} = 0.025 \ g$$
 (1.5)

A incerteza da régua é de 0,05 cm, propagando esta incerteza pela fórmula de propagação exposta em 1.6 (INMETRO, 2008), aplicando para a área e densidade e a partir das médias expostas na tabela 2, chega-se à incerteza dessas medidas expostas em 1.7 e 1.8.

$$\Delta z = \sqrt{\sum_{i} \left(\frac{\delta z}{\delta x_{i}}\right)^{2} (\Delta x_{i})^{2}}$$
 (1.6)

$$\delta A_{alar} = 1.160624832 \ cm^2 \tag{1.7}$$

$$\delta \rho = 1.409947189 \ g/m^2 \tag{1.8}$$

Assim, as estimativas de incertezas tipo B da área alar e da densidade são:

$$u_B(A_{alar}) = \frac{\delta A_{alar}}{2} = 0.580312416 \ cm^2$$
 (1.9)

$$u_B(\rho) = \frac{\delta \rho}{2} = 0.704973594 \ g/m^2$$
 (1.10)

1.7 Determinar os coeficientes de sensibilidade.

Os coeficientes de sensibilidade de acordo com Inmetro (2008) são dados por:

$$\frac{\partial f}{\partial x_i} \tag{1.11}$$

portanto, para a massa, o coeficiente é:

$$\frac{\partial m}{\partial m} = 1$$

para a área alar:

$$\frac{\partial(C\times E)}{\partial C}=E$$

e

$$\frac{\partial (C \times E)}{\partial E} = C$$

e, para a densidade:

$$\frac{\partial \rho}{\partial m} = \frac{1}{C \times E + 2 \times C \times H}$$
$$\frac{\partial \rho}{\partial C} = \frac{1}{E + 2 \times H} \times \frac{-1}{C^2}$$
$$\frac{\partial \rho}{\partial E} = \frac{-mC}{C \times E + 2 \times C \times H}$$

substituindo m, C, E e H pelos seus respectivos valores esperados, para a área alar:

$$\frac{\partial(C \times E)}{\partial C} = E = 22,175$$

e

$$\frac{\partial(C \times E)}{\partial E} = C = 7,055$$

e, para a densidade:

$$\begin{split} \frac{\partial \rho}{\partial m} &= \frac{1}{C \times E + 2 \times C \times H} = 0,0027 \\ \frac{\partial \rho}{\partial C} &= \frac{1}{E + 2 \times H} \times \frac{-1}{C^2} = -0,0003833 \\ \frac{\partial \rho}{\partial E} &= \frac{-mC}{C \times E + 2 \times C \times H} = 0,00013981 \end{split}$$

1.8 Estimar a incerteza combinada.

A incerteza combinada do tipo A u_c de uma medição indireta com entradas x_i é dada por Inmetro (2008):

$$u_c^2 = \sum_{i=1}^N \left(\frac{\partial f}{\partial x_i}\right)^2 u_i^2 \tag{1.12}$$

Para a massa, é direto, então é:

$$u_m = \frac{0.072}{\sqrt{20}} = 0.016g$$

Para a área alar:

$$u_{A_a} = \sqrt{\left(\frac{\partial(C \times E)}{\partial C}\right)^2 \frac{\sigma_C^2}{n} + \left(\frac{\partial(C \times E)}{\partial E}\right)^2 \frac{\sigma_E^2}{n}}$$

os coeficientes de sensibilidades já foram calculados no item anterior, dessa forma, apenas calculamos, com as incertezas da corda e da envergadura na tabela 2. Portanto:

$$u_{A_a} = 0.32cm^2$$

Finalmente, a da densidade do papel é dada por:

$$u_{\rho} = \sqrt{\left(\frac{\partial \rho}{\partial C}\right)^2 \frac{\sigma_C^2}{n} + \left(\frac{\partial \rho}{\partial E}\right)^2 \frac{\sigma_E^2}{n} + \left(\frac{\partial \rho}{\partial m}\right)^2 \frac{\sigma_m^2}{n}}$$

novamente, os valores das incertezas já foram calculados, na tabela 2, e os coeficientes de sensibilidade no item anterior. Portanto:

$$u_{\rho} = 0.04g/m^2$$

1.9 Estimar o número de graus de liberdade efetivo.

De acordo com Inmetro (2008), a fórmula de **Welch-Satterthwaite** para cálculo de graus de liberdade efetivo é:

$$\nu_{eff} = \frac{u_c^4}{\sum_{i=1}^{N} \frac{u_i^4}{\nu_i}} \tag{1.13}$$

Para a massa, é direto, portanto:

$$\nu_{eff_m} = 20 - 1 = 19$$

Para a área alar:

$$\nu_{eff_{A_a}} = \frac{u_{A_a^4}}{\frac{u_C^4}{n-1} + \frac{u_E^4}{n-1}} = 208913$$

mas como o número de graus de liberdade não pode ser maior do que a soma dos graus de liberdade de suas componentes, temos que:

$$\nu_{eff_{Aa}} = 38$$

Finalmente, para a densidade:

$$\nu_{eff_{\rho}} = \frac{u_{\rho}^4}{\frac{u_{C}^4}{n-1} + \frac{u_{E}^4}{n-1} + \frac{u_{H}^4}{n-1}} = 19$$

1.10 Determinar o coeficiente de abrangência.

De acordo com as seções anteriores, tem-se 19 graus de liberdade efetivos para massa e densidade, enquanto se tem 38 graus de liberdade efetivos para área alar. Considerando nível de confiança de 95,45%, pode-se obter o coeficiente de abrangência $k_{95,45\%}$ de cada grandeza através da tabela 6, retirada de Inmetro (2008).

Dessa maneira, tem-se $k_{95,45\%}=2.14$ para a massa e densidade. Ainda, aproximase os 38 graus de liberdade da área alar para 40 graus de liberdade, resultando em $k_{95,45\%}=2.06$ para a área.

Figura 6 – Tabela de coeficiente de abrangência

Graus de liberdade	Fração p em porcentagem									
v	68,27 ^{a)}	90	95	95,45 ^{a)}	99	99,73ª				
1	1,84	6,31	12,71	13,97	63,66	235,78				
2	1,32	2,92	4,30	4,53	9,92	19,21				
3	1,20	2,35	3,18	3,31	5,84	9,22				
4	1,14	2,13	2,78	2,87	4,60	6,62				
5	1,11	2,02	2,57	2,65	4,03	5,51				
6	1,09	1,94	2,45	2,52	3,71	4,90				
7	1,08	1,89	2,36	2,43	3,50	4,53				
8	1,07	1,86	2,31	2,37	3,36	4,28				
9	1,06	1,83	2,26	2,32	3,25	4,09				
10	1,05	1,81	2,23	2,28	3,17	3,96				
11	1,05	1,80	2,20	2,25	3,11	3,85				
12	1,04	1,78	2,18	2,23	3,05	3,76				
13	1,04	1,77	2,16	2,21	3,01	3,69				
14	1,04	1,76	2,14	2,20	2,98	3,64				
15	1,03	1,75	2,13	2,18	2,95	3,59				
16	1,03	1,75	2,12	2,17	2,92	3,54				
17	1,03	1,74	2,11	2,16	2,90	3,51				
18	1,03	1,73	2,10	2,15	2,88	3,48				
19	1,03	1,73	2,09	2,14	2,86	3,45				
20	1,03	1,72	2,09	2,13	2,85	3,42				
25	1,02	1,71	2,06	2,11	2,79	3,33				
30	1,02	1,70	2,04	2,09	2,75	3,27				
35	1,01	1,69	2,03	2,07	2,72	3,23				
40	1,01	1,68	2,02	2,06	2,70	3,20				
45	1,01	1,68	2,01	2,06	2,69	3,18				
50	1,01	1,68	2,01	2,05	2,68	3,16				
100	1,005	1,660	1,984	2,025	2,626	3,077				
00	1,000	1,645	1,960	2,000	2,576	3,000				

a) Para uma grandeza z descrita por uma distribuição normal, com esperança μ_z e desvio-padrão σ , o intervalo $\mu_z \pm k\sigma$ abrange p = 68,27, 95,45 e 99,73 por cento da distribuição para k = 1, 2 e 3, respectivamente.

1.11 Estimar a incerteza combinada expandida.

Agora em posse das incertezas combinadas e do coeficiente de abrangência, calcula-se a incerteza combinada expandida $U_{95,45\%}=k_{95,45\%}u_c(y)$. Assim têm-se, aproximadamente, $U_{95,45\%}=0.034g$ para massa, $U_{95,45\%}=0.086g/m^2$ para a densidade e $U_{95,45\%}=0.66cm^2$ para a área alar.

1.12 Expressar as grandezas e suas incertezas de medição segundo recomendação do ISO GUM.

No intuito de representar as medidas e suas incertezas de medição em unidades e com número de algarismos convenientes, de acordo com o instruído em Inmetro (2008), as incertezas combinadas expandidas foram arredondadas. Especificamente, a incerteza combinada expandida da massa foi arredondada para cima, ao invés de para o número mais próximo, no intuito de evitar a subestimação do erro de medição. Novamente, esse procedimento foi feito de acordo com o exposto pelo em Inmetro (2008).

Medição	Aluno	Helicóptero	Massa m	A. Alar A_{alar}	Densidade ρ
1	Rogerio	1	$2,70 \pm 0,04g$	$156.9 \pm 0.7cm^2$	$72.4 \pm 0.1g/m^2$
2	Rogerio	1	$2,60 \pm 0,04g$	$154.0 \pm 0.7cm^2$	$70.9 \pm 0.1 g/m^2$
3	Rogerio	1	$2,70 \pm 0,04g$	$154.7 \pm 0.7cm^2$	$73.8 \pm 0.1g/m^2$
4	Rogerio	1	$2,70 \pm 0,04g$	$156,9 \pm 0,7cm^2$	$72,4 \pm 0,1g/m^2$
5	Rogerio	1	$2,60 \pm 0,04g$	$154.7 \pm 0.7cm^2$	$70.7 \pm 0.1g/m^2$
6	Joao	2	$2,80 \pm 0,04g$	$157.6 \pm 0.7cm^2$	$75.5 \pm 0.1g/m^2$
7	Joao	2	$2,80 \pm 0,04g$	$154.7 \pm 0.7cm^2$	$76.8 \pm 0.1 g/m^2$
8	Joao	2	$2,\!80 \pm 0,\!04g$	$157.6 \pm 0.7cm^2$	$75.8 \pm 0.1 g/m^2$
9	Joao	2	$2,70 \pm 0,04g$	$157.6 \pm 0.7cm^2$	$72.9 \pm 0.1 g/m^2$
10	Joao	2	$2,\!80 \pm 0,\!04g$	$156,9 \pm 0,7cm^2$	$75,7 \pm 0,1g/m^2$
11	Orsi	3	$2,70 \pm 0,04g$	$158,3 \pm 0,7cm^2$	$72.4 \pm 0.1g/m^2$
12	Orsi	3	$2,\!80 \pm 0,\!04g$	$159.8 \pm 0.7cm^2$	$74.5 \pm 0.1 g/m^2$
13	Orsi	3	$2,\!80 \pm 0,\!04g$	$159,0 \pm 0,7cm^2$	$75.0 \pm 0.1 g/m^2$
14	Orsi	3	$2,70 \pm 0,04g$	$156,1 \pm 0,7cm^2$	$73.2 \pm 0.1 g/m^2$
15	Orsi	3	$2,70 \pm 0,04g$	$158,3 \pm 0,7cm^2$	$72,4 \pm 0,1g/m^2$
16	Luis	4	$2,60 \pm 0,04g$	$154.0 \pm 0.7cm^2$	$70.9 \pm 0.1 g/m^2$
17	Luis	4	$2,70 \pm 0,04g$	$154.7 \pm 0.7cm^2$	$73.8 \pm 0.1 g/m^2$
18	Luis	4	$2,60 \pm 0,04g$	$154.7 \pm 0.7cm^2$	$70.7 \pm 0.1 g/m^2$
19	Luis	4	$2,70 \pm 0,04g$	$154.7 \pm 0.7cm^2$	$73.5 \pm 0.1 g/m^2$
20	Luis	4	$2,70 \pm 0,04g$	157.6 ± 0.7 cm ²	$72.3 \pm 0.1 g/m^2$

Tabela 3 – Medições e incertezas

1.13 Compare os resultados dos diversos anéis medidos pelo grupo.

Observando as medidas das grandezas de massa, área alar e densidade realizadas pelos integrantes, é possível observar que não há uma grande variabilidade entre os resultados. No entanto deve-se ressaltar, que a variação entre as medidas é, em geral, superior às incertezas de medição, indicando variação real para essas grandezas entre os helicópteros.

Referências

INMETRO, G. Guia para a expressão de incerteza de medição. 2008. Andrade and Peixoto. Braz. J. Rad. Sci. 20xx, v. 11, 2008. Citado 4 vezes nas páginas 10, 11, 12 e 14.