

Prim's Algorithm

- 1. Create a set mst to keep track of vertices included in MST.
- 2. Also keep track of parent of each vertex. Initialize parent of each vertex -1.
- 3. Assign a key to all vertices in the input graph. Key for all vertices should be initialized to INF. The start vertex key should be 0.
- 4. While mst doesn't include all the vertices $\leftarrow \lor times$
 - i. Pick a vertex u which is not there in mst and has minimum key. $\leftarrow \lor times$
 - ii. Include vertex u to mst.
 - iii. Update key and parent of all adjacent vertices of u. $\leftarrow V$ times
 - For each adjacent vertex v,
 - if weight of edge u-v is less than the current key of v, then update the key as weight of u-v.
 - **b**. Record u as parent of v.

$$T(n) = O(v^2)$$

Start

Prim's Algorithm


```
int findMinkeyVertex (int key[], boolean mst[]) {

int minkey = \infty, \quad \text{minkeyVertex} = 1;

for (int i=0; i< vertex (ount; i+t) {

if ( imst[i] & key[i] < minkey) {

minkey = key[i])

minkeyVertex = l;

return minkeyVertex;
```


Dijkstra's Algorithm

- 1. Create a set spt to keep track of vertices included in shortest path tree. (SPT)
- 2. Track distance of all vertices in the input graph. Distance for all vertices should be initialized to INF. The start vertex distance should be 0.
- 3. While spt doesn't include all the vertices
 - i. Pick a vertex u which is not there in spt and has minimum distance.
 - ii. Include vertex u to spt.
 - iii. Update distances of all adjacent vertices of u.

For each adjacent vertex v,

if distance of u + weight of edge u-v is less than the current distance of v, then update its distance as distance of u + weight of edge u-v.

$$S(V) = O(V)$$

Dijkstra's Algorithm

Dijkstra's Algorithm

Bellman Ford Algorithm

1. Initializes distances from the source to all vertices as infinite and distance to the source itself as 0.

2. Calculates shortest distance V-1 times: $\sim V-1$ times

For each edge u-v, $\rightarrow \vdash times$ if dist[v] > dist[u] + weight of edge u-v,

then update dist[v], so that

dist[v] = dist[u] + weight of edge u-v.

3. Check if negative edge cycle in the graph:—I time

For each edge u-v,

if dist[v] > dist[u] + weight of edge (u,v),

then graph has -ve weight cycle.

Time & (V-1) E+ E
Time & VE-E+E

Bellaman Ford Algorithm

	0	1	2	3	4
	0	∞	∞	8	00
Pass 1	D	6	5	8	8
Pass 2	0	3	5	9	W
Pass 3	0	3	5	2	8
Pass 4	0	3	5	2	5

Thank you!!!

Devendra Dhande

devendra.dhande@sunbeaminfo.com