"Counting Sample Points"

1) Rule of Multiplication:

If a compound experiment consists of two experiments such that the first experiment has exactly in distinct outcomes and if correspondingly there are exactly in distinct outcomes of 2nd experiment, then the compound experiment has exactly mixin outcomes.

Example:

tossing a coin has 2 outcomes and rolling a dice has exactly 6 outcomes, therefore compound experiment has exactly

2 x 6 = 12 possible outcomes.

And if there are more than 2 experiments (say, Kexperiments), then total number of Sample points will be:

 $n(s) = n_1 \times n_2 \times n_3 \times \cdots \times n_k$

2) Permutation:

A permutation is any ordered subset from a set of n distinct objects. The number of permutations of r objects, selected in a definite order from n distinct objects is denoted by Pr. (Dependent) Example:

from a class of 64 students, In how many ways first three positions can be chosen as 1st position, 2 position and 3rd position.

Note: And Miliply intersection

Note: And Miliply Union

2) Or Add Dings

64 de x 163 m x 62

= 249,984

Same as:

i.e; 64 P = 249,984

× — ×

OL

15

 $P_3 = 2730$

3) Combination: A combination is any subset of robjects, selected without regard to their order, from a set of n distinct objects. The total number of such combinations is denoted by n c. (Independent) case

Example:

From a class of 64 students, In how many ways any of three students can be chosen?

50/1-

C = 41,664.

* Groups

Practice: A club consists of 15 members. In how many ways can a committee of three members be selected?

Sel:-

15

 $C_3 = 455$