
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866)

217-9197 (toll free).

Reviewer: markspencer

Timestamp: Wed Jul 11 15:09:22 EDT 2007

Validated By CRFValidator v 1.0.2

Application No: 10769831 Version No: 2.0

Input Set:

Output Set:

Started: 2007-07-05 15:53:43.139

Finished: 2007-07-05 15:53:44.349

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 210 ms

Total Warnings: 20

Total Errors: 0

No. of SeqIDs Defined: 24

Actual SeqID Count: 24

Error code		Error Descript	ion								
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(2)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(3)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(4)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(5)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(6)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(7)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(8)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(9)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(10)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(11)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(12)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(13)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(14)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(15)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(16)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(17)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(18)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(19)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(20)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(21)

Input Set:

Output Set:

Started: 2007-07-05 15:53:43.139

Finished: 2007-07-05 15:53:44.349

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 210 ms

Total Warnings: 20

Total Errors: 0

No. of SeqIDs Defined: 24

Actual SeqID Count: 24

Error code Error Description

This error has occured more than 20 times, will not be displayed

SEQUENCE LISTING

```
<110> Schwabe, Nikolai F
      Tan, Linda C
      Catherine, Napper E
      Fry, Jeremy W
      Pang, Susan
<120> CHIMERIC MHC PROTEIN AND OLIGOMER THEREOF
<130> S-844-US
<140> 10769831
<141> 2004-02-02
<150> US 10/769,831
<151> 2004-02-02
<150> PCT/EP03/09056
<151> 2003-08-14
<160> 24
<170> PatentIn version 3.4
<210> 1
<211> 9
<212> PRT
<213> Epstein-Barr virus
<400> 1
Gly Leu Cys Thr Leu Val Ala Met Leu
<210> 2
<211> 38
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide (forward)
<400> 2
                                                                    38
gcatcaccat atgatccagc gtactccaaa gattcagg
<210> 3
<211> 36
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide (reverse)
```

<400> 3

```
36
```

```
<210> 4
<211> 20
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide (forward)
<400> 4
                                                                    20
taatacgact cactataggg
<210> 5
<211> 19
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide (reverse)
<400> 5
gctagttatt gctcagcgg
                                                                    19
<210> 6
<211> 15
<212> PRT
<213> Artificial
<220>
<223> Synthetic Construct
<400> 6
Ser Leu Asn Asp Ile Phe Glu Ala Gln Lys Ile Glu Trp His Glu
              5
                                  10
                                                      15
<210> 7
<211> 15
<212> PRT
<213> Artificial
<220>
<223> Synthetic Construct
<400> 7
Pro Gln Pro Gln Pro Lys Pro Gln Pro Lys Pro Glu Pro Glu Thr
              5
                                 10
```

<210> 8 <211> 80

```
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide (forward)
<400> 8
                                                                     60
taaagcttca gggccagagc ccgttgggct cagacctggg cccgcagatg cttcgggaac
tgcaggaaac caacgcggcg
                                                                     80
<210> 9
<211> 81
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide (reverse)
<400> 9
gaacgtgate teectgaeet getgeegeag eageteeege acgteetgea gegeegegtt
                                                                     60
ggtttcctgc agttcccgaa g
                                                                     81
<210> 10
<211> 81
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide (forward)
<400> 10
ctgcaggacg tccgggagct gctgcggcag caggtcaggg agatcacgtt cctgaaaaac
                                                                     81
acggtgatgg agtgtgacgc g
<210> 11
<211> 80
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide (reverse)
<400> 11
tacggccgca cgctgggtag gccggtgcgt actgactgct gcatcccgca cgcgtcacac
                                                                     60
tccatcaccg tgtttttcag
                                                                     80
<210> 12
<211> 108
```

<212> DNA

```
<213> Artificial
<220>
<223> Oligonucleotide (forward)
<400> 12
tgcgggatgc agcagtcagt acgcaccggc ctacccagcg tacggccgcc gcagccgcag
                                                                   60
ccgaaaccgc agccgaaacc ggaaccggaa actagtttga acgacatc
                                                                    108
<210> 13
<211> 96
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide (reverse)
<400> 13
tactcgagtt cgtgccattc gattttctga gcctcgaaga tgtcgttcaa actagtttcc
ggttccggtt tcggctgcgg tttcggctgc ggctgc
                                                                     96
<210> 14
<211> 72
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide (forward)
<400> 14
gatccggtgg tggtggttct ggtggtggtg gttctggtgg tggtggttct ggtggtggtg
                                                                     60
                                                                     72
gttctggtgg ta
<210> 15
<211> 72
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide (reverse)
<400> 15
agettaceae cagaaceaee aceaecagaa ceaecaeeae cagaaceaee aceaecagaa
                                                                     60
                                                                     72
ccaccaccac cg
<210> 16
<211> 25
<212> PRT
<213> Artificial
```

```
<223> Synthetic Construct
<400> 16
Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly
              5
                               10
Ser Gly Gly Gly Ser Gly Gly Lys
        20
<210> 17
<211> 24
<212> PRT
<213> Artificial
<220>
<223> Synthetic Construct
<400> 17
Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Ser
             5
                                10
Gly Gly Gly Ser Gly Gly Lys
         20
<210> 18
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide (forward)
<400> 18
                                                                 22
gagacatggg aggtggtggt gg
<210> 19
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide (reverse)
<400> 19
                                                                 22
ccaccaccac ctcccatgtc tc
```

<220>

```
<211> 35
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide (forward)
<400> 20
gcatcaccat gggttctcac tctatgaggt atttc
                                                                    35
<210> 21
<211> 37
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide (reverse)
<400> 21
                                                                    37
gcatacggat ccttacggct cccatctcag ggtgagg
<210> 22
<211> 64
<212> PRT
<213> Rat
<400> 22
Gln Gly Gln Ile Pro Leu Gly Gly Asp Leu Ala Pro Gln Met Leu Arg
               5
                                  10
Glu Leu Gln Glu Thr Asn Ala Ala Leu Gln Asp Val Arg Glu Leu Leu
           20
                             25
Arg Gln Gln Val Lys Glu Ile Thr Phe Leu Lys Asn Thr Val Met Glu
       35
                           40
Cys Asp Ala Cys Gly Met Gln Pro Ala Arg Thr Pro Gly Leu Ser Val
   50
                      55
                                         60
<210> 23
<211> 757
<212> PRT
<213> Homo sapiens
<300>
<308> Genbank/1705995
<309> 1996-10-01
<313> (1)..(757)
```

<400> 23

Met 1	Val	Pro	Asp	Thr 5	Ala	Cys	Val	Leu	Leu 10	Leu	Thr	Leu	Ala	Ala 15	Leu
Gly	Ala	Ser	Gly 20	Gln	Gly	Gln	Ser	Pro 25	Leu	Gly	Ser	Asp	Leu 30	Gly	Pro
Gln	Met	Leu 35	Arg	Glu	Leu	Gln	Glu 40	Thr	Asn	Ala	Ala	Leu 45	Gln	Asp	Val
Arg	Asp 50	Trp	Leu	Arg	Gln	Gln 55	Val	Arg	Glu	Ile	Thr 60	Phe	Leu	Lys	Asn
Thr 65	Val	Met	Glu	Cys	Asp 70	Ala	Cys	Gly	Met	Gln 75	Gln	Ser	Val	Arg	Thr 80
Gly	Leu	Pro	Ser	Val 85	Arg	Pro	Leu	Leu	His 90	Cys	Ala	Pro	Gly	Phe 95	Cys
Phe	Pro	Gly	Val 100	Ala	Суз	Ile	Gln	Thr 105	Glu	Ser	Gly	Gly	Arg 110	Cys	Gly
Pro	Суз	Pro 115	Ala	Gly	Phe	Thr	Gly 120	Asn	Gly	Ser	His	Cys 125	Thr	Asp	Val
Asn	Glu 130	Суз	Asn	Ala	His	Pro 135	Суз	Phe	Pro	Arg	Val 140	Arg	Суз	Ile	Asn
Thr 145	Ser	Pro	Gly	Phe	Arg 150	Суз	Glu	Ala	Суз	Pro 155	Pro	Gly	Tyr	Ser	Gly 160
Pro	Thr	His	Gln	Gly 165	Val	Gly	Leu	Ala	Phe 170	Ala	Lys	Ala	Asn	Lys 175	Gln
Val	Суз	Thr	Asp 180	Ile	Asn	Glu	Суз	Glu 185	Thr	Gly	Gln	His	Asn 190	Cys	Val
Pro	Asn	Ser 195	Val	Суз	Ile	Asn	Thr 200	Arg	Gly	Ser	Phe	Gln 205	Суз	Gly	Pro
Суз	Gln 210	Pro	Gly	Phe	Val	Gly 215	Asp	Gln	Ala	Ser	Gly 220	Суз	Gln	Arg	Gly

Ala 225	Gln	Arg	Phe	Cys	Pro 230	Asp	Gly	Ser	Pro	Ser 235	Glu	Суз	His	Glu	His 240
Ala	Asp	Cys	Val	Leu 245	Glu	Arg	Asp	Gly	Ser 250	Arg	Ser	Cys	Val	Cys 255	Arg
Val	Gly	Trp	Ala 260	Gly	Asn	Gly	Ile	Leu 265	Суз	Gly	Arg	Asp	Thr 270	Asp	Leu
Asp	Gly	Phe 275	Pro	Asp	Glu	Lys	Leu 280	Arg	Суз	Pro	Glu	Pro 285	Gln	Суз	Arg
Lys	Asp 290	Asn	Суз	Val	Thr	Val 295	Pro	Asn	Ser	Gly	Gln 300	Glu	Asp	Val	Asp
Arg 305	Asp	Gly	Ile	Gly	Asp 310	Ala	Суз	Asp	Pro	Asp 315	Ala	Asp	Gly	Asp	Gly 320
Val	Pro	Asn	Glu	Lys 325	Asp	Asn	Cys	Pro	14 Leu 330	Val	Arg	Asn	Pro	Asp 335	Gln
			340					345					350	Cys	
		355					360					365	_	Arg	
	370					375					380			Gln	
385					390					395		_		Asp	400
				405					410					Asn 415	
			420					425					430	Asp	
Asp	GIN	435	GIN	Asp	стх	Asp	G1y 440	нls	GIN	Asp	ser	Arg 445	Asp	Asn	cys

Pro Thr Val Pro Asn Ser Ala Gln Glu Asp Ser Asp His Asp Gly Gln

450 455 460

Gly Asp Ala Cys Asp Asp Asp Asp Asp Asp Gly Val Pro Asp Ser 465 470 475 480 Arg Asp Asn Cys Arg Leu Val Pro Asn Pro Gly Gln Glu Asp Ala Asp 485 490 Arg Asp Gly Val Gly Asp Val Cys Gln Asp Asp Phe Asp Ala Asp Lys 500 505 510 Val Val Asp Lys Ile Asp Val Cys Pro Glu Asn Ala Glu Val Thr Leu 520 525 515 Thr Asp Phe Arg Ala Phe Gln Thr Val Val Leu Asp Pro Glu Gly Asp 530 535 540 Ala Gln Ile Asp Pro Asn Trp Val Val Leu Asn Gln Gly Arg Glu Ile 550 555 560 Val Gln Thr Met Asn Ser Asp Pro Gly Leu Ala Val Gly Tyr Thr Ala 565 570 Phe Asn Gly Val Asp Phe Glu Gly Thr Phe His Val Asn Thr Val Thr 580 585 Asp Asp Asp Tyr Ala Gly Phe Ile Phe Gly Tyr Gln Asp Ser Ser Ser 595 600 605 Phe Tyr Val Val Met Trp Lys Gln Met Glu Gln Thr Tyr Trp Gln Ala 610 615 620 Asn Pro Phe Arg Ala Val Ala Glu Pro Gly Ile Gln Leu Lys Ala Val 625 630 635 640 Lys Ser Ser Thr Gly Pro Gly Glu Gln Leu Arg Asn Ala Leu Trp His 645 650 655 Thr Gly Asp Thr Glu Ser Gln Val Arg Leu Leu Trp Lys Asp Pro Arg 665 660

Asn Val Gly Trp Lys Asp Lys Lys Ser Tyr Arg Trp Phe Leu Gln His

685

680

675

Arg Pro Gln Val Gly Tyr Ile Arg Val Arg Phe Tyr Glu Gly Pro Glu 690 695 700

Leu Val Ala Asp Ser Asn Val Val Leu Asp Thr Thr Met Arg Gly Gly 705 710 715 720

Arg Leu Gly Val Phe Cys Phe Ser Gln Glu Asn Ile Ile Trp Ala Asn 725 730 735

Leu Arg Tyr Arg Cys Asn Asp Thr Ile Pro Glu Asp Tyr Glu Thr His 740 745 750

Gln Leu Arg Gln Ala 755

<210> 24

<211> 67

<212> PRT

<213> Homo sapiens

<400> 24

Gln Gly Gln Ser Pro Leu Gly Ser Asp Leu Gly Pro Gln Met Leu Arg
1 5 10 15

Glu Leu Gln Glu Thr Asn Ala Ala Leu Gln Asp Val Arg Asp Trp Leu 20 25 30

Arg Gln Gln Val Arg Glu Ile Thr Phe Leu Lys Asn Thr Val Met Glu 35 40 45

Cys Asp Ala Cys Gly Met Gln Gln Ser Val Arg Thr Gly Leu Pro Ser 50 55 60

Val Arg Pro

65