**Ray Tracing** 

COMP557
Paul Kry

## Ray tracing idea



## Ray tracing algorithm





#### **Generating eye rays**

Use window analogy directly



#### **Generating eye rays**



#### **Generating eye rays—orthographic**

Just need to compute the view plane point s:



## **Generating eye rays—orthographic**

$$\mathbf{s} = \mathbf{e} + u\mathbf{u} + v\mathbf{v}$$
  
 $\mathbf{p} = \mathbf{s}; \ \mathbf{d} = -\mathbf{w}$   
 $\mathbf{r}(t) = \mathbf{p} + t\mathbf{d}$ 



#### **Generating eye rays—perspective**

- View rectangle needs to be away from viewpoint
- Distance is important: "focal length" of camera
  - still use camera frame but position view rectangle away from viewpoint
  - ray origin always e
  - ray direction now controlled by s



#### **Generating eye rays—perspective**

- Compute s in the same way; just subtract dw
  - coordinates of **s** are (u, v, -d)



#### Pixel-to-image mapping

• One last detail: (u, v) coordinates of a pixel



# **Ray intersection**



#### Ray: a half line

Standard representation: point p and direction d

$$\mathbf{r}(t) = \mathbf{p} + t\mathbf{d}$$

- this is a parametric equation for the line
- lets us directly generate the points on the line
- if we restrict to t > 0 then we have a ray
- note replacing **d** with a**d** doesn't change ray (a > 0)



## Ray-sphere intersection: algebraic

Condition 1: point is on ray

$$\mathbf{r}(t) = \mathbf{p} + t\mathbf{d}$$

- Condition 2: point is on sphere
  - assume unit sphere; see Shirley or notes for general

$$\|\mathbf{x}\| = 1 \Leftrightarrow \|\mathbf{x}\|^2 = 1$$

$$f(\mathbf{x}) = \mathbf{x} \cdot \mathbf{x} - 1 = 0$$

• Substitute:

$$(\mathbf{p} + t\mathbf{d}) \cdot (\mathbf{p} + t\mathbf{d}) - 1 = 0$$

this is a quadratic equation in t

#### Ray-sphere intersection: algebraic

• Solution for *t* by quadratic formula:

$$t = \frac{-\mathbf{d} \cdot \mathbf{p} \pm \sqrt{(\mathbf{d} \cdot \mathbf{p})^2 - (\mathbf{d} \cdot \mathbf{d})(\mathbf{p} \cdot \mathbf{p} - 1)}}{\mathbf{d} \cdot \mathbf{d}}$$
$$t = -\mathbf{d} \cdot \mathbf{p} \pm \sqrt{(\mathbf{d} \cdot \mathbf{p})^2 - \mathbf{p} \cdot \mathbf{p} + 1}$$

- simpler form holds when d is a unit vector
   but we won't assume this in practice (reason later)
- I'll use the unit-vector form to make the geometric interpretation

#### **Ray-box intersection**

- Could intersect with 6 faces individually
- Better way: box is the intersection of 3 slabs



## **Ray-slab intersection**

- 2D example
- 3D is the same!

$$p_x + t_{x\min} d_x = x_{\min}$$
$$t_{x\min} = (x_{\min} - p_x)/d_x$$

$$p_y + t_{y\min} d_y = y_{\min}$$
$$t_{y\min} = (y_{\min} - p_y)/d_y$$



## **Intersecting intersections**

- Each intersection is an interval
- Want last entry point and first exit point





$$t_{\min} = \max(t_{x\min}, t_{y\min})$$
$$t_{\max} = \min(t_{x\max}, t_{y\max})$$

 $t \in [t_{xmin}, t_{xmax}]$   $t \in [t_{ymin}, t_{ymax}]$ 

 $t \in [t_{xmin}, t_{xmax}] \cap [t_{ymin}, t_{ymax}]$ 

#### Ray-triangle intersection

Condition 1: point is on ray

$$\mathbf{r}(t) = \mathbf{p} + t\mathbf{d}$$

• Condition 2: point is on plane

$$(\mathbf{x} - \mathbf{a}) \cdot \mathbf{n} = 0$$

- Condition 3: point is on the inside of all three edges
- First solve 1&2 (ray-plane intersection)
  - substitute and solve for t:

$$(\mathbf{p} + t\mathbf{d} - \mathbf{a}) \cdot \mathbf{n} = 0$$
$$t = \frac{(\mathbf{a} - \mathbf{p}) \cdot \mathbf{n}}{\mathbf{d} \cdot \mathbf{n}}$$

## **Ray-triangle intersection**

In plane, triangle is the intersection of 3 half spaces



#### Inside-edge test

- Need outside vs. inside
- Reduce to clockwise vs. counterclockwise
  - vector of edge to vector to x
- Use cross product to decide





#### Ray-triangle intersection

$$(\mathbf{b} - \mathbf{a}) \times (\mathbf{x} - \mathbf{a}) \cdot \mathbf{n} > 0$$

$$(\mathbf{c} - \mathbf{b}) \times (\mathbf{x} - \mathbf{b}) \cdot \mathbf{n} > 0$$

$$(\mathbf{a} - \mathbf{c}) \times (\mathbf{x} - \mathbf{c}) \cdot \mathbf{n} > 0$$



#### Ray-triangle intersection

- See book too...
  - See Section 4.4.2 for method based on linear systems and Cramer's rule
  - See also Section 2.7 with respect to barycentric coordinates

#### Image so far

With eye ray generation and sphere intersection

```
Surface s = new Sphere((0.0, 0.0,
0.0), 1.0);
for 0 <= iy < ny
    for 0 <= ix < nx {
        ray = camera.getRay(ix, iy);
        hitSurface, t =
s.intersect(ray, 0, +inf)
        if hitSurface is not null
        image.set(ix, iy, white);
}</pre>
```



#### Intersection against many shapes

```
Group.intersect (ray, tMin, tMax) {
    tBest = +inf; firstSurface = null;
    for surface in surfaceList {
        hitSurface, t = surface.intersect(ray, tMin, tBest);
        if hitSurface is not null {
            tBest = t;
            firstSurface = hitSurface;
        }
    }
    return hitSurface, tBest;
}
```

#### Image so far

With eye ray generation and scene intersection

```
for 0 <= iy < ny
    for 0 <= ix < nx {
        ray = camera.getRay(ix, iy);
        c = scene.trace(ray, 0, +inf);
        image.set(ix, iy, c);
}</pre>
```

```
Scene.trace(ray, tMin, tMax) {
    surface, t = surfs.intersect(ray, tMin, tMax);
    if (surface != null) return surface.color();
    else return black;
}
```

## **Shading**

- Compute light reflected toward camera
- Inputs:
  - eye direction
  - light direction(for each of many lights)
  - surface normal
  - surface parameters(color, shininess, ...)
- Exact same equations as seen previously...



#### **Shadows**

- Surface is only illuminated if nothing blocks its view of the light.
- With ray tracing it's easy to check
  - just intersect a ray with the scene!

#### Image so far

```
Surface.shade(ray, point, normal, light) {
    shadRay = (point, light.pos - point);
    if (shadRay not blocked) {
        v = -normalize(ray.direction);
        l = normalize(light.pos - point);
        // compute shading
    }
    return black;
}
```

#### **Shadow rounding errors**

• Don't fall victim to one of the classic blunders:



- What's going on?
  - hint: at what t does the shadow ray intersect the surface you're shading?

#### **Shadow rounding errors**

Solution: shadow rays start a tiny distance from the

surface



Do this by moving the start point, or by limiting the t range

#### Mirror reflection

- Consider perfectly shiny surface
  - there isn't a highlight
  - instead there's a reflection of other objects
- Can render this using recursive ray tracing
  - to find out mirror reflection color, ask what color is seen from surface point in reflection direction
  - already computing reflection direction for Phong...
- "Glazed" material has mirror reflection and diffuse

$$L = L_a + L_d + L_m$$

- where  $L_m$  is evaluated by tracing a new ray

#### Mirror reflection

- Intensity depends on view direction
  - reflects incident light from mirror direction



$$\mathbf{r} = \mathbf{v} + 2((\mathbf{n} \cdot \mathbf{v})\mathbf{n} - \mathbf{v})$$
  
=  $2(\mathbf{n} \cdot \mathbf{v})\mathbf{n} - \mathbf{v}$ 

## **Diffuse + mirror reflection (glazed)**



(glazed material on floor)

#### Ray tracer architecture 101

- You want a class called Ray
  - point and direction; evaluate(t)
  - possible: tMin, tMax
- Some things can be intersected with rays
  - individual surfaces
  - groups of surfaces (acceleration goes here)
  - the whole scene
  - make these all subclasses of Surface
  - limit the range of valid t values (e.g. shadow rays)
- Once you have the visible intersection, compute the color
  - may want to separate shading code from geometry
  - separate class: Material (each Surface holds a reference to one)
  - its job is to compute the color

#### **Architectural practicalities**

#### Return values

- surface intersection tends to want to return multiple values
  - t, surface or shader, normal vector, maybe surface point
- typical solution: an intersection record
  - a class with fields for all these things
  - keep track of the intersection record for the closest intersection

#### Efficiency

- in Java the (or, a) key to being fast is to minimize creation of objects
- what objects are created for every ray? try to find a place for them where you can reuse them.
- Shadow rays can be cheaper (any intersection will do, don't need closest)
- but: "First Get it Right, Then Make it Fast"

#### **Debugging strategies**

- Test with small images
- Set breakpoints!!!
  - E.g., conditional on a specific pixel
- Make sure your rays are in the correct direction
  - For example, is the ray for the center of the image what you expect it to be?
- Watch out for other common mistakes...

## **Quadrics**

#### http://en.wikipedia.org/wiki/Quadric



#### **Quadrics**

In non-homogeneous coordinates we can write

$$[x \ y \ z]A \begin{bmatrix} x \\ y \\ z \end{bmatrix} + b^T \begin{bmatrix} x \\ y \\ z \end{bmatrix} + c = 0 \qquad A \in \mathbb{R}^{3 \times 3} \quad b \in \mathbb{R}^{3 \times 3} \quad c \in \mathbb{R}$$

• In homogeneous coordinates, use  $Q \in \mathbb{R}^{4 \times 4}$  matrix

$$Q = \begin{bmatrix} A & \frac{1}{2}b \\ \frac{1}{2}b^T & c \end{bmatrix} \qquad \mathbf{x}^T Q \mathbf{x} = 0 \qquad \mathbf{x} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \mathbf{r}(t) = \mathbf{p} + t\mathbf{d}$$

- Solution is same as ray sphere intersection.
  - Replace x with ray equation,
  - Expand, solve for t
  - Given intersection point x, what is the normal?