

COMP3055 Machine Learning

Topic 1 – Introduction

Ying Weng 2024 Autumn

COMP3055 Machine Learning

Ying WENG

Teaching for 6 weeks

Office: PMB-341

Office hour: Monday 14:00 – 16:00

Email: ying.weng@nottingham.edu.cn

Zheng LU

Teaching for 6 weeks (Module Convenor)

Office: PMB-426

Office hour: TBC

Email: <u>zheng.lu@nottingham.edu.cn</u>

- Lecture
- Lab
 - Tuesday 16:00-18:00, IAMET-406
 - For the 1st Teaching Week, there is no lab on Tuesday 24th Sep

Lecture Schedule

Plan ahead

All material on Moodle

Regular update

Lab Schedule

 Lab sessions will provide you hands on experiences what you learned during the lecture sessions

Lab materials will be published on Moodle

Summary of Content

- Provide you with an introduction to machine learning, pattern recognition, and data mining techniques
- Enable you to consider both systems which are able to develop their own rules from trial-and-error experience to solve problems
- Find patterns in data without any supervision. Data mining techniques will make generation of new knowledge possible, including big datasets.
 This is now fashionably termed 'Big Data' science
- Cover a range of topics including: machine learning foundations; pattern recognition foundations; applications of machine learning; data mining techniques and evaluating hypotheses; artificial neural networks; deep learning
- You'll spend six hours each week (on average) in lectures and computer practice for this module

Assessments

❖ Exam: 70%

2 hour written examination

❖ Coursework: 30%

1 piece of individual programming assignment

Textbooks

 Tom M. Mitchell, Machine Learning, McGraw-Hill

 Chris Bishop, Pattern Recognition and Machine Learning, Springer

Some of recent technical papers

Topics

- Design learning systems
- Data collection
- Learning theory practice
- Instance based learning, KNN etc.
- Bayesian learning
- Data processing representation
- Unsupervised learning, clustering, K-Means etc.
- Decision tree, random forest
- Perceptron, multilayer perceptron
- Support vector machine
- Deep learning, CNN etc.
- ...
- (to be continued)

How to Get 70+

Studying...

- You are recommended to study the relevant notes before attending the lecture or lab.
- Review as soon as possible to maximize retention.

• Practice...

- Do the lab exercise yourself and repeat the practice for better learning.
- If you get help on the labs, don't just blindly accept it, but try to understand what each part of the code is doing.
- Do the Math in the lecture for better understanding.

Assignments...

- Start work on the assignment when they are released, and come up with a good plan to finish it.
- It will take longer than you expect to fix problems in your program, so make sure you have plenty of time to complete.

Do the thing right, Do the right thing

A Few Quotes

- "A breakthrough in machine learning would be worth ten Microsofts" (Bill Gates, Chairman, Microsoft)
- "Machine learning is the next Internet" (Tony Tether, Director, DARPA)
- Machine learning is the hot new thing" (John Hennessy, President, Stanford)
- "Machine learning is going to result in a real revolution" (Greg Papadopoulos, CTO, Sun)
- "Machine learning is today's discontinuity" (Jerry Yang, CEO, Yahoo)

ChatGPT

- ❖ An artificial intelligence (AI) chatbot developed by OpenAI and release in November 2022
- Built on top of GPT-4 foundational large language model (LLM)
- Fine-tuned to transfer learning

incredible, powerful, helpful

ChatGPT has rapidly immersed itself into our lives. I think everyone has read articles related to it.

ChatGPT is a milestone in the era of large models.

What is Machine Learning?

- It is very hard to write programs that solve problems like recognizing a face.
 - We don't know what program to write because we don't know how our brain does it.
 - Even if we had a good idea about how to do it, the program might be horrendously complicated.
- Instead of writing a program by hand, we collect lots of examples that specify the correct output for a given input.
- A machine learning algorithm then takes these examples and produces a program that does the job.
 - The program produced by the learning algorithm may look very different from a typical hand-written program. It may contain millions of numbers.
 - If we do it right, the program works for new cases as well as the ones we trained it on.

What is Machine Learning?

- Automating automation
- Getting computers to program themselves
- Writing software is the bottleneck
- Let the data do the work instead!

What is Machine Learning?

- Machine Learning is making great strides
 - Large, good data sets
 - Computer power
 - Progress in algorithms
- Many interesting applications
 - Commercial
 - Scientific

Traditional Programming

Machine Learning

Magic?

No, more like gardening

- Seeds = Algorithms
- Nutrients = Data
- Gardener = You
- Plants = Programs

Task: Handwriting Recognition It is very hard to say what makes a 2

Task: Classification
Object recognition

Task: Clustering Crime prediction using k-means clustering

More Sample Applications

- Web search
- Healthcare
- Robotics
- Information extraction
- Finance
- E-commerce
- Computational biology
- Space exploration
- Social networks
- [Your favorite area]

Types of Learning

Supervised learning

Types of Learning

Unsupervised learning

Types of Learning

Supervised (inductive) learning

Training data includes desired outputs

Unsupervised learning

- Training data does not include desired outputs
- This is the new frontier of machine learning because most big datasets do not come with labels

Semi-supervised learning

Training data includes a few desired outputs

Semi-supervised Learning

Motivation: labeled data are expensive

unlabeled data are free

labeled

Medical field:

- The process of labeling medical images requires specialized expertise and is often time-consuming and expensive.
- This is due to the complexity of medical images, the need for high-quality annotations, and the limited availability of trained medical professionals.

Framework

Programming languages

- Python
- C++
- **—** ...

Many libraries

- PyTorch
- TensorFlow
- **—** ...

Evaluation

- Accuracy
- Precision and recall
- Squared error
- Likelihood
- Posterior probability
- Cost / Utility
- Entropy
- etc.

Issues

 Many machine learning/AI projects fail (Gartner claims 85%)

• Ethics

Reasons for Failure

- Asking the wrong question
- Trying to solve the wrong problem
- Not having enough data
- Not having the right data
- Hiring the wrong people
- Using the wrong tools
- Not having the right model
- Not having the right yardstick

Any Questions?

