

TRƯỜNG THPT CÁT TIỀN <u>TÔ: TOÁN – TIN</u>

Thời gian làm bài: 45 phút; (25 câu trắc nghiêm) 22/02/2017

(Thí sinh không được sử dụng tài liệu)

Họ, tên thí sinh: Lớp:

BẢNG ĐÁP ÁN

CÂU 1:	CÂU 6:	CÂU 11:	CÂU 16:	CÂU 21:
CÂU 2:	CÂU 7:	CÂU 12:	CÂU 17:	CÂU 22:
CÂU 3:	CÂU 8:	CÂU 13:	CÂU 18:	CÂU 23:
CÂU 4:	CÂU 9:	CÂU 14:	CÂU 19:	CÂU 24:
CÂU 5:	CÂU 10:	CÂU 15:	CÂU 20:	CÂU 25:

Câu 1: Cho số thực a thỏa mãn $\int_{0}^{a} e^{x+1} dx = e^{2} - 1$, khi đó a có giá trị bằng

A. 0.

C. 1.

D. 2.

Câu 2: Tích phân $I = \int_{1}^{e} \frac{\sqrt{8 \ln x + 1}}{x} dx$ bằng

A. -2.

- C. $\ln 2 \frac{3}{4}$.
- **D.** $\ln 3 \frac{3}{5}$.

Câu 3: Giá trị của tích phân $I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^{2007} x}{\sin^{2007} x + \cos^{2007} x} dx$ là

- $\mathbf{A} \cdot I = \frac{\pi}{2}$.
- **B.** $I = \frac{\pi}{4}$. **D.** $I = \frac{5\pi}{4}$.

Câu 4: Cho hình phẳng giới hạn bởi các đường $y = x.\sqrt{\ln x}$, y = 0, x = e quay xung quanh trục Ox. Thể tích của khối tròn xoay tạo thành bằng:

- **B.** $\pi \cdot \frac{4e^3 1}{9}$
- C. $\pi \cdot \frac{2e^3 + 1}{9}$
- **D.** $\pi \cdot \frac{2e^3 1}{9}$

Câu 5: Tích phân $I = \int_{-\pi}^{2} \frac{dx}{\sin x}$ có giá trị bằng

A.
$$2 \ln \frac{1}{3}$$
.

$$C. \frac{1}{2} \ln 3$$
.

D.
$$\frac{1}{2} \ln \frac{1}{3}$$
.

Câu 6: Cho hàm số f liên tục trên đoạn [0;6]. Nếu $\int_{1}^{3} f(x)dx = 2$ và $\int_{1}^{3} f(x)dx = 7$ thì $\int_{2}^{3} f(x)dx$ có giá trị băng

$$B. -5$$

Câu 7: Tất cả các giá trị của tham số m thỏa mãn $\int_{0}^{\infty} (2x+5) dx = 6$ là

A.
$$m = 1, m = -6$$
.

B.
$$m = -1, m = -6$$
.

C.
$$m = -1, m = 6$$
.

D.
$$m = 1, m = 6$$

Câu 8: Cho $f(x) = \frac{4m}{\pi} + \sin^2 x$. Tìm m để nguyên hàm F(x) của hàm số f(x) thỏa mãn F(0) = 1 và

$$F\left(\frac{\pi}{4}\right) = \frac{\pi}{8}.$$

$$A. -\frac{3}{4}$$
.

B.
$$\frac{3}{4}$$
.

C.
$$-\frac{4}{3}$$
 D. $\frac{4}{3}$

D.
$$\frac{4}{3}$$

Câu 9: Kết quả phép tính tích phân $I = \int_{1}^{5} \frac{dx}{x\sqrt{3x+1}}$ có dạng $I = a \ln 3 + b \ln 5$ $(a, b \in \mathbb{Z})$. Khi đó

$$a^2 + ab + 3b^2$$
 có giá trị là

Câu 10: Tính $\int 2x \ln(x-1) dx$ bằng:

A.
$$(x^2-1)\ln(x-1)-\frac{x^2}{2}-x+C$$
.

B.
$$x^2 \ln(x-1) - \frac{x^2}{2} - x + C$$
.

C.
$$(x^2+1)\ln(x-1)-\frac{x^2}{2}-x+C$$
.

D.
$$(x^2-1)\ln(x-1)-\frac{x^2}{2}+x+C$$
.

Câu 11: Diện tích hình phẳng được giới hạn bởi parabol $y = 2 - x^2$ và đường thẳng y = -x là

A.
$$\frac{9}{2}$$

B.
$$\frac{9}{4}$$

D.
$$\frac{7}{2}$$

Câu 12: Cho $I_1 = \int_{0}^{\frac{\pi}{2}} \cos x \sqrt{3 \sin x + 1} dx$, $I_2 = \int_{0}^{\frac{\pi}{2}} \frac{\sin 2x}{(\sin x + 2)^2} dx$. Khẳng định nào sau đây là **sai** ?

A.
$$I_1 = \frac{14}{9}$$
.

B.
$$I_1 > I_2$$
.

C.
$$I_2 = 2 \ln \frac{3}{2} + \frac{3}{2}$$
. **D.** $I_2 = 2 \ln \frac{3}{2} - \frac{2}{3}$

D.
$$I_2 = 2 \ln \frac{3}{2} - \frac{2}{3}$$

Câu 13: Biết hàm số $f(x) = (6x+1)^2$ có một nguyên hàm là $F(x) = ax^3 + bx^2 + cx + d$ thoả mãn điều kiện F(-1) = 20. Tính tổng a+b+c+d.

Câu 14: Tích phân $\int x(x-1)dx$ có giá trị bằng với tích phân nào trong các tích phân dưới đây ?

$$\mathbf{A.} \int_{0}^{\pi} \cos(3x+\pi) dx . \qquad \mathbf{B.} \ 3 \int_{0}^{3\pi} \sin x dx .$$

$$\mathbf{B.} \ 3 \int_{0}^{3\pi} \sin x dx \,.$$

$$\mathbf{C.} \int_{0}^{2} (x^{2} + x - 3) dx$$
. $\mathbf{D.} \int_{0}^{\ln \sqrt{10}} e^{2x} dx$.

D.
$$\int_{0}^{\ln \sqrt{10}} e^{2x} dx$$

$$\mathbf{A.}\ V = \pi \left(\sqrt{3} - \frac{\pi}{3} \right)$$

B.
$$V = \pi \left(\sqrt{3} - \frac{\pi}{3} \right)$$
 C. $V = \pi \left(\sqrt{3} - \frac{\pi}{3} \right)$ **D.** $V = \pi \left(\sqrt{3} - \frac{\pi}{3} \right)$

$$\mathbf{C.}\ V = \pi \left(\sqrt{3} - \frac{\pi}{3}\right)$$

D.
$$V = \pi \left(\sqrt{3} - \frac{\pi}{3} \right)$$

Câu 16: Cho hàm số f liên tục trên $\mathbb R$ thỏa $f(x)+f(-x)=\sqrt{2+2\cos 2x}$, với mọi $x\in\mathbb R$. Giá trị của

tích phân $I = \int_{-\pi}^{\pi} f(x)dx$ là

Câu 17: Tính $F(x) = \int xe^{\frac{x}{3}} dx$. Chọn kết quả đúng

A.
$$F(x) = 3(x-3)e^{\frac{x}{3}} + C$$

B.
$$F(x) = (x+3)e^{\frac{x}{3}} + C$$

C.
$$F(x) = \frac{x-3}{3}e^{\frac{x}{3}} + C$$

D.
$$F(x) = \frac{x+3}{3}e^{\frac{x}{3}} + C$$

Câu 18: Diện tích hình phẳng giới hạn bởi đường cong $y = x^3 - 4x$, trục hoành và hai đường thẳng x = -3, x = 4 là

$$\frac{202}{3}$$

$$\frac{203}{4}$$

C.
$$\frac{201}{5}$$

D.
$$\frac{201}{4}$$

Câu 19: Một nguyên hàm F(x) của hàm số $f(x) = (e^{-x} + e^x)^2$ thỏa mãn điều kiện F(0) = 1 là

A.
$$F(x) = -\frac{1}{2}e^{-2x} + \frac{1}{2}e^{2x} + 2x + 1$$
.

B.
$$F(x) = -2e^{-2x} + 2e^{2x} + 2x + 1$$
.

C.
$$F(x) = -\frac{1}{2}e^{-2x} + \frac{1}{2}e^{2x} + 2x$$
.
D. $F(x) = -\frac{1}{2}e^{-2x} + \frac{1}{2}e^{2x} + 2x - 1$.

D.
$$F(x) = -\frac{1}{2}e^{-2x} + \frac{1}{2}e^{2x} + 2x - 1$$

Câu 20: Hàm số $F(x) = 3x^2 - \frac{1}{\sqrt{x}} + \frac{1}{x^2} - 1$ có một nguyên hàm là

A.
$$f(x) = x^3 - 2\sqrt{x} - \frac{1}{x} - x$$
.

B.
$$f(x) = x^3 - \sqrt{x} - \frac{1}{x} - x$$
.

C.
$$f(x) = x^3 - 2\sqrt{x} + \frac{1}{x}$$

D.
$$f(x) = x^3 - \frac{1}{2}\sqrt{x} - \frac{1}{x} - x$$
.

Câu 21: Nếu $\int_{-2}^{0} (5 - e^{-x}) dx = K - e^{2}$ thì giá trị của K là: **A.** 11. **B.** 9. **C.**

Câu 22: Hàm số $f(x) = x\sqrt{x+1}$ có một nguyên hàm là F(x). Nếu F(0) = 2 thì F(3) bằng

A.
$$\frac{146}{15}$$
.

B.
$$\frac{116}{15}$$
.

$$\mathbf{C.} \frac{886}{105}$$
.

D.
$$\frac{105}{886}$$
.

Câu 23: Tìm hai số thực A, B sao cho $f(x) = A \sin \pi x + B$, biết rằng f'(1) = 2 và $\int f(x) dx = 4$.

$$\mathbf{A.} \begin{cases} A = -2 \\ B = -\frac{2}{\pi} \end{cases}$$

$$\mathbf{B.} \begin{cases} A = 2 \\ B = -\frac{2}{\pi} \end{cases}$$

$$\mathbf{C.} \begin{cases} A = -2 \\ B = \frac{2}{\pi} \end{cases}$$

$$\mathbf{B.} \begin{cases} A=2 \\ B=-\frac{2}{\pi} \end{cases} \qquad \mathbf{C.} \begin{cases} A=-2 \\ B=\frac{2}{\pi} \end{cases} \qquad \mathbf{D.} \begin{cases} A=-\frac{2}{\pi} \\ B=2 \end{cases}$$

Câu 24: Diện tích hình phẳng giới hạn bởi các đường thẳng y = 1, y = x và đồ thị hàm số $y = \frac{x^2}{4}$ trong miền $x \ge 0, y \le 1$ là $\frac{a}{b}$. Khi đó b - a bằng

A. 4

C. 3

D. 1

Câu 25: Xét tích phân $I = \int_{0}^{\pi/3} \frac{\sin 2x}{1 + \cos x} dx$. Thực hiện phép đổi biến $t = \cos x$, ta có thể đưa I về dạng nào sau đây

- **A.** $I = \int_{\frac{1}{2}}^{1} \frac{2t}{1+t} dt$. **B.** $I = \int_{0}^{\pi/4} \frac{2t}{1+t} dt$. **C.** $I = -\int_{\frac{1}{2}}^{1} \frac{2t}{1+t} dt$. **D.** $I = -\int_{0}^{\pi/4} \frac{2t}{1+t} dt$.