1 Generative modelling

Learn $p_{\text{model}} \approx p_{\text{data}}$, sample from p_{model} .

- Explicit density:
- Approximate:
- * Variational: VAE, Diffusion
- * Markov Chain: Boltzmann machine
- Tractable:
- FVSBN/NADE/MADE * Autoregressive: Pixel(C/R)NN, WaveNet/TCN, Autor. Transf., $\alpha^{(i)} \mathbf{x}_{< i}^{\mathsf{T}}$, complexity n^2 , but model is linear.
- Normalizing Flows
- Implicit density:
- Direct: Generative Adversarial Networks
- MC: Generative Stochastic Networks

are NNs. Optimal linear autoencoder is PCA. Undercomplete: |Z| < |X|, else overcomplete. Overcomp. is for denoising, inpainting. Latent space should be continuous and inter polable. Autoencoder spaces are neither, so they are only good for reconstruction.

2 Variational AutoEncoder (VAE)

Sample z from prior $p_{\theta}(z)$, to decode use con ditional $p_{\theta}(x \mid z)$ defined by a NN.

 $D_{\text{KL}}(P||Q) := \int_{\mathcal{X}} p(x) \log \frac{p(x)}{q(x)} dx$: KL diver gence, measure similarity of prob. distr. $D_{\text{KL}}(P||Q) \neq D_{\text{KL}}(Q||P), D_{\text{KL}}(P||Q) \geq 0$ to max., let enc. NN be $q_{\phi}(z \mid x)$, $\log p_{\theta}(x^i) =$ $\mathbb{E}_{z} \left[\log p_{\theta}(x^{i} \mid z) \right] - D_{\mathrm{KL}}(q_{\phi}(z \mid x^{i}) || p_{\theta}(z)) +$ use ≥ 0 to ignore it; Orange is reconstruction Use conv. stacks to mask correctly. loss, clusters similar samples; Purple makes posterior close to prior, adds cont. and interp. hard to evaluate others. Orange – Purple is **ELBO**, maximize it.

 $x \xrightarrow{\mathrm{enc}} \mu_{z|x}, \Sigma_{z|x} \xrightarrow{\mathrm{sample}} z \xrightarrow{\mathrm{dec}} \mu_{x|z}, \Sigma_{x|z} \xrightarrow{\mathrm{sample}} \hat{x}$ Backprop through sample by reparametr.: z = $\mu + \sigma \epsilon$. For inference, use μ directly.

with semi-supervised learning by making zconditionally independent of given features y.

2.1 β -VAE

Disentangle by $\max_{\theta,\phi} \mathbb{E}_x \left[\mathbb{E}_{z \sim q_{\phi}} \log p_{\theta}(x \mid z) \right]$ s.t. $D_{\text{KL}}(q_{\phi}(z \mid x) \| p_{\theta}(z)) < \delta$, with KKT: $|\mathbf{x}_t|$ is a convex combination of the past steps, max Orange – β Purple.

3 Autoregressive generative models

variable at previous time steps

maybe with Y missing. Sequence models are M to avoid looking into the future: generative: from $x_i \dots x_{i+k}$ predict x_{i+k+1} .

Tabular approach: $p(\mathbf{x}) = \prod_i p(x_i \mid \mathbf{x}_{< i}),$ needs 2^{i-1} params. Independence assumption is too strong. Let $p_{\theta_i}(x_i \mid \mathbf{x}_{< i}) =$ Bern($f_i(\mathbf{x}_{< i})$), where f_i is a NN. Fully Visi**ble Sigmoid Belief Networks**: $f_i = \sigma(\alpha_0^{(i)} + |$

Neural Autoregressive Density Estimator: add hidden layer. $\mathbf{h}_i = \sigma(\mathbf{b} + \mathbf{W}_{1 \le i} \mathbf{x}_{\le i}), \, \hat{\mathbf{x}}_i =$ $\sigma(c_i + V_i, h_i)$. Order of x can be arbitrary but fixed. Train by max log-likelihood in O(TD), Autoencoder: $X \rightarrow Z \rightarrow X$, $q \circ f \approx id$, f and $g \mid_{can}$ use 2nd order optimizers, can use **teacher forcing**: feed GT as previous output.

> Extensions: Convolutional; Real-valued: conditionals by mixture of gaussians; Order-less and deep: one DNN predicts $p(x_k \mid x_{i_1} \dots x_{i_i})$.

> Masked Autoencoder Distribution Estimator: mask out weights s.t. no information flows from x_d ... to \hat{x}_d . Large hidden layers needed. Trains as fast as autoencoders, but sampling needs D forward passes.

PixelRNN: generate pixels from corner, dependency on previous pixels is by RNN (LSTM). **PixelCNN**: also from corner, but condition by Likelihood $p_{\theta}(x) = \int_{z} p_{\theta}(x \mid z) p_{\theta}(z) dz$ is hard | CNN over context region (perceptive field) \Rightarrow parallelize. For conditionals use masked convolutions. Channels: model R from context, G from R + cont., B from G + R + cont. Training $D_{\text{KL}}(q_{\phi}(z \mid x^i) || p_{\theta}(z \mid x^i))$. Red is intractable, is parallel, but inference is sequential \Rightarrow slow.

NLL is a natural metric for autoreg. models,

WaveNet: audio is high-dimensional. Use dilated convolutions to increase perceptive field with multiple layers.

AR does not work for high res images/video, Disentanglement: features should correspond | convert the images into a series of tokens with to distinct factors of variation. Can be done an AE: Vector-quantized VAE. The codebook

is a set of vectors. $x \xrightarrow{\text{enc}} z \xrightarrow{\text{codebook}} z_q \xrightarrow{\text{dec}} \hat{x}$.

We can run an AR model in the latent space.

Attention

with access to all past steps. For $X \in \mathbb{R}^{T \times D}$: $K = XW_K, V = XW_V, Q = XW_O$. Check pair-Autoregression: use data from the same input wise similarity between query and keys via dot product: let attention weights be $\alpha =$ Discriminative: $P(Y \mid X)$, generative: P(X, Y), Softmax (QK^T/\sqrt{D}) , $\alpha \in \mathbb{R}^{1 \times T}$. Adding mask

$$X = \operatorname{Softmax} \left(\frac{(XW_Q)(XW_K)^{\mathsf{T}}}{\sqrt{D}} + M \right) (XW_V)$$

Multi-head attn. splits W into h heads, then concatenates them. Positional encoding injects information about the position of the token. Attn. is $O(T^2D)$.