

Reducing Forecast Instability with Deep Learning

Van Belle, J., Crevits, R., and Verbeke, W. (2022). Improving forecast stability using deep learning. *International Journal of Forecasting*.

We advise customers on how to make better demand forecasts

What is a good forecast?

Excellent **forecast accuracy** for every product

Besides that, we need:

Accuracy on aggregations like Country, Brand, ...

• Probabilistic forecasts

• Stable forecasts

• Explainable forecasts

Bridgestone

Tires

What is a good forecast?

Excellent **forecast accuracy** for every product

Besides that, we need:

Accuracy on aggregations like Country, Brand, ...

• Probabilistic forecasts

Stable forecasts

• Explainable forecasts

What is forecast stability? Example

- Example: a pharmaceutical company forecasts two times:
 - 6 months ahead: to forecast the amount of bulk product needed
 - 3 months ahead: to forecast how much is needed of each SKU

What is forecast stability? Example

- Example: a pharmaceutical company forecasts two times:
 - 6 months ahead: to forecast the amount of bulk product needed
 - 3 months ahead: to forecast how much is needed of each SKU

What is forecast stability? Example

- Example: a pharmaceutical company forecasts two times:
 - 6 months ahead: to forecast the amount of bulk product needed
 - 3 months ahead: to forecast how much is needed of each SKU

What is forecast stability? Example

- Example: a pharmaceutical company forecasts two times:
 - 6 months ahead: to forecast the amount of bulk product needed
 - 3 months ahead: to forecast how much is needed of each SKU

- →A change of 10% is good if it effectively brings the forecast closer to the actual.
- →The change of 10% causes a change in the supply planning based on the forecast.
- → Changing the plan has a cost (Li and Disney, 2017)

Goal: reduce rolling origin forecast instability without a loss in accuracy

Rolling origin ETS forecasts - M578

N-BEATS (Oreshkin et al., 2020)

- Univariate time series point forecasting
- Global: train one model with a set of global model parameters that are estimated jointly across time series

Model output (forecast period)

- N-BEATS: global deep learning model for univariate time series point forecasting
 - State-of-the-art performance on M3 and M4 competition data sets

$$\mathbf{W}^* = \underset{\mathbf{W}}{\operatorname{arg\,min}} \sum_{j} L(\mathbf{y}_{h|t}^j, \hat{\mathbf{y}}_{h|t}^j)$$
$$\hat{\mathbf{y}}_{h|t}^j = f(\mathbf{x}_{T|t}^j; \mathbf{W})$$

N-BEATS-S: reduce forecast instability for deep learning models

N-BEATS-S

N-BEATS

+

adding forecast (in)stability component to loss function to optimize forecasts from both

- (1) traditional forecast accuracy and
- (2) forecast stability perspective

Experiment: sMAPE per horizon on M4 data

Forecast accuracy

sMAPE =
$$\frac{200}{h} \sum_{i=1}^{h} \frac{|y_{t+i} - \hat{y}_{t+i|t}|}{|y_{t+i}| + |\hat{y}_{t+i|t}|}$$

Time	131	132	133	134	135	136	137	138	139	140	141	142
Actuals	5232	5556	5690	6050	6270	6268	5956	5777	5288	5248	5480	5456
MNN	5232	5232	5232	5232	5232	5232						
MNN		5232	5232	5232	5232	5232	5232					
MNN			5556	5556	5556	5556	5556	5556				
MNN				5690	5690	5690	5690	5690	5690			
MAN			• • •		6084	6121	6159	6196	6234	6271		
MAdN						6379	6467	6538	6594	6639	6675	
MAdN							6334	6386	6428	6462	6488	6510

Forecast updating generally gives rise to more accurate period-specific forecasts \rightarrow benefits

Horizon h	1	2	3	4	5	6	Overall
sMAPE	3.63	7.6	11.39	14.12	14.45	13.89	10.85

Experiment: sMAPE per horizon on M4 data

Forecast stability

$$sMAPC = \frac{200}{h-1} \sum_{i=1}^{h-1} \frac{|\hat{y}_{t+i|t} - \hat{y}_{t+i|t-1}|}{|\hat{y}_{t+i|t}| + |\hat{y}_{t+i|t-1}|}$$

Time	131	132	133	134	135	136	137	138	139	140	141	142
Actuals	5232	5556	5690	6050	6270	6268	5956	5777	5288	5248	5480	5456
MNN	5232	5232	5232	5232	5232	5232						
MNN		5232	5232	5232	5232	5232	5232					
MNN			5556	5556	5556	5556	5556	5556				
MNN				5690	5690	5690	5690	5690	5690			
MAN			• • •		6084	6121	6159	6196	6234	6271		
MAdN						6379	6467	6538	6594	6639	6675	
MAdN							6334	6386	6428	6462	6488	6510

Forecast updating induces instability which leads to revisions to supply plans \rightarrow costs

Empirical evaluation

- Rolling forecasting origin evaluation on M3 (1,428) and M4 (48k) monthly data sets: 13 series of 1- to 6-month ahead forecasts
- N-BEATS-S (vs. N-BEATS)
 - More stable forecasts without causing a loss in forecast accuracy
 - Even improvements in forecast accuracy

	M3 m	onthly	M4 m	onthly
	sMAPE	sMAPC	sMAPE	sMAPC
N-BEATS	11.47	3.90	9.29	4.56
N-BEATS weight decay	11.50	3.75	9.28	4.26
N-BEATS dropout	-	-	9.37	4.59
N-BEATS T ensemble	11.42	3.87	9.06	4.08
N-BEATS origin ensemble	11.60	1.35	9.72	1.54
N-BEATS-S	11.40	2.85	9.23	3.22
N-BEATS-S weight decay	11.41 _	2.74	9.24	3.05
N-BEATS-S T ensemble	11.37	2.32	9.06	2.74
N-BEATS-S origin ensemble	11.59	1.07	9.77	1.17
ĒTS	11.34	3.21	9.98	4.37

	M3 m	onthly	M4 m	onthly
	RMSSE	RMSSC	RMSSE	RMSSC
N-BEATS	1.110	0.397	1.275	0.622
N-BEATS weight decay	1.093	0.396	1.302	0.613
N-BEATS dropout	-	-	1.307	0.640
N-BEATS T ensemble	1.086	0.381	1.234	0.551
N-BEATS origin ensemble	1.183	0.160	1.360	0.233
N-BEATS-S	1.088	0.317	1.278	-0.467
N-BEATS-S weight decay	$-1.09\bar{4}$	0.329	1.306	-0.459
N-BEATS-S T ensemble	1.102	0.272	1.237	0.399
N-BEATS-S origin ensemble	1.161	0.136	1.377	0.188
ETS	1.048	$\overline{0.411}$	1.322	0.595

Adding stability in the loss has a regularization effect

Stability in the loss has a regularization **OMP**. effect, preventing overfitting

N-BEATS-S: reduce forecast instability for deep learning models

N-BEATS-S

N-BEATS

+

adding forecast (in)stability component to loss function to optimize forecasts from both

- (1) traditional forecast accuracy and
- (2) forecast stability perspective

Conclusion

N-BEATS-S

- Optimize forecasts from both accuracy and stability perspective by adding forecast instability component to loss function
- Forecast instability: variability in forecasts for a specific time period due to updating forecasts when new observations become available

N-BEATS-S vs. N-BEATS

- Experimental results for monthly M3/M4 data
- More stable forecasts without causing loss in accuracy
- Even improvements in accuracy
 - → regularization

What is next?

Make one forecast version which is:

Accurate on 'all' levels of detail

- Stable
- <u>윶</u>
- Probabilistic

- Explainable and trustworthy 🧞
- Evaluated on supply chain goals

What is next?

Make one forecast version which is:

- Accurate on 'all' levels of detail
- Stable
- Probabilistic
- Explainable and trustworthy
- Evaluated on supply chain goals

