110550126 曾家祐

Numerical methods Assignment 5

1.

We first initial the table at start point, and we use the for loop to iterate and complete the table to get the answer at t= 2;

```
1
         clear;
                                                              clear;
 2
         clc:
 3
         dydt = @(y,t) y^2 + t^2;
                                                     3
                                                             dydt = @(y,t) y^2 + t^2;
 4
        h = 0.1;
                                                     4
                                                             h = 0.05;
        start = 1;
 5
                                                     5
                                                             start = 1;
 6
        end_ = 2;
                                                             end_ = 2;
        n = (end_-start)/h+1;
                                                             n = (end_-start)/h+1;
                                                     8
 9
        x = linspace(start,end_,n);
                                                            x = linspace(start,end_,n);
10
        x = x.;
                                                    10
                                                            x = x.';
11
        table = zeros(n,4);
                                                             table = zeros(n,4);
                                                    11
12
        table(:,1) = x;
                                                    12
                                                             table(:,1) = x;
13
        table(1,2) = 0;
                                                    13
                                                             table(1,2) = 0;
                                                   14
15
       table(1,3) = dydt(table(1,2),table(1,1));
                                                             table(1,3) = dydt(table(1,2),table(1,1));
15
        table(1,4) = table(1,3)*h;
                                                             table(1,4) = table(1,3)*h;
16   for i = 2:n
            table(i,2) = table(i-1,2)+table(i-1,4); 17
17
                                                                 table(i,2) = table(i-1,2)+table(i-1,4);
18
            table(i,3) = dydt(table(i,2),table(i,1)); 18
                                                                 table(i,3) = dydt(table(i,2),table(i,1));
            table(i,4) = table(i,3)*h;
19
                                                                 table(i,4) = table(i,3)*h;
                                                    20
                                                              end
         table
                                                    21
                                                             table
```

Result for h = 0.1

t	у	y'	hy'
1	0	1	0.1
1.1	0.1	1.22	0.122
1.2	0.222	1.489284	0.148928
1.3	0.370928	1.827588	0.182759
1.4	0.553687	2.26657	0.226657
1.5	0.780344	2.858937	0.285894
1.6	1.066238	3.696863	0.369686
1.7	1.435924	4.951878	0.495188
1.8	1.931112	6.969193	0.696919
1.9	2.628031	10.51655	1.051655
2	3.679686	17.54009	1.754009

Result for h = 0.05

t	у	y'	hy'
1	0	1	0.05
1.05	0.05	1.105	0.05525
1.1	0.10525	1.221078	0.061054
1.15	0.166304	1.350157	0.067508
1.2	0.233812	1.494668	0.074733
1.25	0.308545	1.6577	0.082885
1.3	0.39143	1.843218	0.092161
1.35	0.483591	2.05636	0.102818
1.4	0.586409	2.303876	0.115194
1.45	0.701603	2.594746	0.129737
1.5	0.83134	2.941126	0.147056
1.55	0.978396	3.35976	0.167988
1.6	1.146384	3.874197	0.19371
1.65	1.340094	4.518353	0.225918
1.7	1.566012	5.342393	0.26712
1.75	1.833132	6.422871	0.321144
1.8	2.154275	7.880901	0.394045
1.85	2.54832	9.916436	0.495822
1.9	3.044142	12.8768	0.64384
1.95	3.687982	17.40371	0.870186
2	4.558168	24.77689	1.238845

Result for h = 0.1 is 3.679686

Result for h = 0.05 is 4.558168

We use the answer we got before and use will loop for iteration until the difference is less than 1e-6. We can get the accuracy of using h=0.05 is 93.11%.

```
1
          clear;
2
          clc;
3
          n = 2;
          h_01 = 3.679686;
4
5
          h_005= 4.558168;
6
          pre = 3.679686;
7
          cur = 4.558168;
8
         while abs(cur - pre) > 1e-6
              next = cur + (cur - pre)/(2^n - 1);
9
10
              pre = cur;
             cur = next;
11
                                                         ans =
              n = n + 1;
12
13
                                                             0.9311
14
          1-(abs(cur-h_005)/cur)
```

2.

```
Stati f(t) It = Xn+1-Xn = Co-fat + Cifn + Cifn+ Cifn+ Cifn+ Cifn+ Cifn+
             if f(t)=1
          => Shidt = h= CotCi+Cz+Cz
                 Sh hot = = h= Coxh+Coxo+Cox(H)+Coxf2h)
      Sohidt=3h= (oh+ (x0+ Cx(h)+(xx(2h)2
Sohidt=qh= (oh+Cx0+Cx(h)+(xx(2h)2
= 1 0 -1 -2 | C<sub>1</sub> | - L | 1/3 | | C<sub>2</sub> | - L | 1/3 | | C<sub>2</sub> | - L | 1/3 | | C<sub>3</sub> | - L | 1/3 | | C<sub>3</sub> | | C<sub>3</sub> | - L | 1/3 | | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | C<sub>3</sub> | C<sub>3</sub> | - L | 1/3 | C<sub>3</sub> | 
      => xn+ = xn+ 24 [9 fn+1+19fn-5fn++fn-2]-19 /3/8/8)
```

3.

We first initial the function

And use ode 45 to predict y

```
From T = 0.0.2 ... 1.0
```

```
6
  7
          T = linspace(0.2,1,5);
  8
          for i = 1:5
 9
 10
 11
              [t, y] = ode45(@f, [0 T(i)], [0; 1; 0]);
              predict_y(i+1) = y(length(y),1);
 12
 13
              dy(i+1) = y(length(y),2);
 14
          end
 15
          predict y
    predict_y =
                  0.2001 0.4021 0.6108 0.8340 1.0825
(b)
```

Having y(0) y(0.2) y(0.4) y(0.6) we can use Adams-Moulton method to get y(5) and y(6) to get the solution y(1) = 1.1577

```
17
18
19
20
21
22
corrector predict_y(5) + 0.2/24*(9*dy(6)+19*dy(5)-5*dy(4)+dy(3))

ans =

1.1577
```

(C) we use corrector to get the preciser ans and use it to compare with origin y(1) to calculate the error rate = 99.992445%

```
%c
corrector = predict_y(5) + 0.2/24*(9*dy(6)+19*dy(5)-5*dy(4)+dy(3))
error_rate = abs((corrector-predict_y(6))/corrector)
accuracy = 1-error_rate;
fprintf("accuracy=%.8f", accuracy)

corrector =

1.1576

error_rate =

7.5553e-05

accuracy=0.99992445>>
```

4.

(a)

```
4. (a)
y'' = -\frac{y}{4}, \quad y(0) = 0 \quad y(n) = 2
y'(\theta_{\tilde{n}}) = \frac{y(\theta_{\tilde{n}}) - y(\theta_{\tilde{n}}) - y(\theta_{\tilde{n}}) + y(\theta_{\tilde{n}})}{2h}
y''(\theta_{\tilde{n}}) = \frac{y(\theta_{\tilde{n}}) - y(\theta_{\tilde{n}}) + y(\theta_{\tilde{n}})}{h^{2}}
y'(b_{k}) = \frac{1000}{2h}
y'_{k} = 4 \Rightarrow 1/6 = 0
from y'_{k} = \frac{1}{4} = \frac
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              y=2 \sin \left(\frac{\theta}{a}\right) \Rightarrow x_{4} + \cos \left(\frac{\theta}{a}\right) \Rightarrow \left(\frac{y'(\frac{\pi}{a})}{y'(\frac{\pi}{a})}\right) = \begin{bmatrix} 0.9239 \\ 0.7091 \\ 0.827 \end{bmatrix} \Rightarrow error = \begin{bmatrix} 0.0189 \\ 0.0173 \\ 0.044 \end{bmatrix}
```

(b)

```
clear;
 2
          clc;
 3
          n = 15;
 4
          h = pi/n;
          A = [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
 5
 6
               1 h^2/4-2 1 0 0 0 0 0 0 0 0 0 0 0 0;
 7
               0 1 h^2/4-2 1 0 0 0 0 0 0 0 0 0 0 0 0;
 8
               0 0 1 h^2/4-2 1 0 0 0 0 0 0 0 0 0 0 0;
 9
               0 0 0 1 h^2/4-2 1 0 0 0 0 0 0 0 0 0 0;
               0 0 0 0 1 h^2/4-2 1 0 0 0 0 0 0 0 0 0;
10
               0 0 0 0 0 1 h^2/4-2 1 0 0 0 0 0 0 0 0;
11
               0 0 0 0 0 0 1 h^2/4-2 1 0 0 0 0 0 0;
12
13
               0 0 0 0 0 0 0 1 h^2/4-2 1 0 0 0 0 0 0;
14
               0 0 0 0 0 0 0 0 1 h^2/4-2 1 0 0 0 0 0;
15
               0 0 0 0 0 0 0 0 0 1 h^2/4-2 1 0 0 0 0;
16
               0 0 0 0 0 0 0 0 0 0 1 h^2/4-2 1 0 0 0;
17
               0 0 0 0 0 0 0 0 0 0 0 1 h^2/4-2 1 0 0;
               0 0 0 0 0 0 0 0 0 0 0 0 1 h^2/4-2 1 0;
18
19
               0 0 0 0 0 0 0 0 0 0 0 0 0 1 h^2/4-2 1;
               00000000000000001];
 20
21
          22
          angle = linspace(0,pi,n+1);
23
          y = A \setminus b;
24
          dy = [];
25
          for i = 2:n-1
              dy(i-1) = (y(i+1) - y(i-1))/(2*pi/n);
26
27
          end
          true = [];
28
29
          for i = 2:n-1
30
              true(i-1) = cos(angle(i)/2);
31
          end
32
          dy
33
          true
34
          error = abs(dy-true)
35
          error_rate = error./true
36
          max_error_rate = max(error_rate)
37
Command Window
 max error rate =
      0.0043
```

We use the matlab to calculate that we need h = pi/15 to have max error rate=0.0043< 0.005=0.5%

5. $x''-tx'+tx=t^3=x''=t^3-tx+tx'=f(t,x,x')$ { x61+x61-x11x11=3 = x3=5/2 , h=1/4. X'= Xx1-X2-1 X" = Xx1 - 2Xx+Xx-1 => (1/2+1-2/2+/2-1) - hxf(ti, xi, xi+1-xi+1)=0 $= \begin{cases} 1 & 0 & 0 & 0 & 0 \\ \frac{33}{332} & \frac{-511}{256} & \frac{31}{32} & 0 & 0 \\ 0 & \frac{34}{32} & \frac{-508}{256} & \frac{30}{32} & 0 \\ 0 & 0 & \frac{35}{32} & \frac{-503}{256} & \frac{21}{32} \\ 1 & -1 & 0 & -1 & \frac{3}{4} \end{cases} \begin{pmatrix} 7_{1} \\ 7_{2} \\ 7_{3} \\ 7_{4} \end{pmatrix} = \begin{cases} \frac{51}{2} \\ \frac{1}{2} \\ \frac$ let ta=ih => Xi+1-2 /2 +/x-1- /2x ti+/xtix -/tix // 21 =0 $\frac{1}{2} \int_{-\frac{1}{2}}^{2} h t_{2} \left(\chi_{x+1} + \left(-\frac{1}{2} + \lambda^{2} t_{1}^{2} \right) \chi_{x} + \left(1 + \frac{1}{2} \chi_{x} \right) \chi_{x-1} = h^{2} t_{1}^{2} \\
\Rightarrow \left(1 - \frac{1}{2} \lambda h^{2} \right) \chi_{x+1} + \left(-\frac{1}{2} + \lambda^{2} \lambda^{4} \right) \chi_{x} + \left(1 + \frac{1}{2} \lambda h^{2} \right) \chi_{x-1} = \lambda^{2} \lambda^{2}$ $\begin{array}{lll}
7 & 70 & = \frac{5}{2} \\
\bar{\lambda} = 1 & \frac{31}{32} \chi_2 + \frac{511}{254} \chi_1 + \frac{33}{32} \chi_0 & = \frac{1}{1024} \\
\bar{\lambda} = 2 & \frac{30}{32} \chi_3 + \frac{508}{256} \chi_2 + \frac{31}{32} \chi_1 & = \frac{1}{1024} \\
\bar{\lambda} = 3 & \frac{29}{32} \chi_4 + \frac{503}{256} \chi_3 + \frac{35}{32} \chi_2 & = \frac{27}{1024} \\
\bar{\lambda} = 3 & \frac{29}{32} \chi_4 + \frac{503}{256} \chi_3 + \frac{35}{32} \chi_2 & = \frac{27}{1024} \\
\end{array}$ X(0)'-X(1)+X(1)'=1/2 x'- x4+x4=1/2 => Xo - X4+ X4-73 = 1/2 => X1-70 - X4+ X4-X3 = 1/2 7 Xo=X1 - X3 + X4- hX4=1/2h.