Assessment Schedule – 2018 Scholarship Calculus (93202)

Evidence Statement

Q	Solution	1–4 No award	5-6 Schol	7–8 OS
ONE (a)	P: $(\cos \alpha, \sin \alpha)$; Q: $(\cos \beta, \sin \beta)$; R: $(\cos(\alpha - \beta), \sin(\alpha - \beta))$ $\angle ROA = \alpha - \beta = \angle POQ$, hence $PQ = RA$ $PQ^{2} = (\cos \alpha - \cos \beta)^{2} + (\sin \alpha - \sin \beta)^{2}$ $= \cos^{2} \alpha - 2\cos \alpha \cos \beta + \cos^{2} \beta + \sin^{2} \alpha - 2\sin \alpha \sin \beta + \sin^{2} \beta$ $= 2 - 2\cos \alpha \cos \beta - 2\sin \alpha \sin \beta$ Using the Cosine Rule $RA^{2} = 1 + 1 - 2\cos(\alpha - \beta)$ Since $PQ = RA$, $1 + 1 - 2\cos(\alpha - \beta) = 2 - 2\cos \alpha \cos \beta - 2\sin \alpha \sin \beta$ $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$	Shows understanding of relevant mathematical concepts, and some progress towards solutions to problems.	Application of high-level mathematical knowledge and skills, leading to partial solutions to complex problems.	Application of high-level mathematical knowledge and skills, perception and insight / convincing communication shown in finding correct solutions to complex problems.
(b)	By the sine rule $\frac{\sin P}{OA} = \frac{\sin A}{OP}$ and so $\sin P = \frac{OA \sin A}{OP}$ OA and OP are of constant length i.e. $\sin P = k \sin A$ where $k = \frac{OA}{OP}$ So, $\sin P$ is max and hence $\angle APO$ is max when $\sin A = 1$, i.e. $\angle A = \frac{\pi}{2}$, $PA \perp OA$, with P on either side of OA.			

(c)	$\frac{\cos\theta}{1+\sin\theta} - \frac{\sin\theta}{1+\cos\theta} = \frac{\cos\theta + \cos^2\theta - \sin\theta - \sin^2\theta}{1+\sin\theta + \cos\theta + \sin\theta\cos\theta}$		
	$= \frac{\cos\theta - \sin\theta + (\cos\theta - \sin\theta)(\cos\theta + \sin\theta)}{1 + \sin\theta + \cos\theta + \sin\theta\cos\theta}$		
	$= \frac{(\cos\theta - \sin\theta)(1 + \cos\theta + \sin\theta)}{1 + \sin\theta + \cos\theta + \sin\theta\cos\theta}$		
	$= \frac{2(\cos\theta - \sin\theta)(1 + \cos\theta + \sin\theta)}{2 + 2\sin\theta + 2\cos\theta + 2\sin\theta\cos\theta}$		
	$= \frac{2(\cos\theta - \sin\theta)(1 + \cos\theta + \sin\theta)}{1 + \sin^2\theta + \cos^2\theta + 2\sin\theta + 2\cos\theta + 2\sin\theta\cos\theta}$		
	$=\frac{2(\cos\theta-\sin\theta)(1+\cos\theta+\sin\theta)}{(1+\sin\theta+\cos\theta)^2}$		
	$=\frac{2(\cos\theta-\sin\theta)}{1+\sin\theta+\cos\theta}$		

Q	Solution	1–4 No award	5–6 Schol	7–8 OS
TWO (a)(i)	Singularities (discontinuous at these points.): $x = \left\{ -\frac{2}{3}, \frac{3}{5}, \frac{5 \pm \sqrt{13}}{2} \right\}$	Shows understanding of relevant mathematical concepts, and some progress towards solutions to problems.	Application of high-level mathematical knowledge and skills, leading to partial solutions to complex problems.	Application of high-level mathematical knowledge and skills, perception and insight / convincing communication
(ii)	$\lim_{x \to \frac{1}{2}} f(x) = \left\{ \frac{2\left[\frac{1}{2}\right]^2 - 1}{\left(3 \times \frac{1}{2} + 2\right)\left(5 \times \frac{1}{2} - 3\right)} - \frac{2 - 3 \times \frac{1}{2}}{\left(\left[\frac{1}{2}\right]^2 - 5 \times \frac{1}{2} + 3\right)} \right\} = \frac{-8}{21}$			shown in finding correct solutions to complex problems.
(b)	Points of intersection: from $xy = \sqrt{2}$ write $y = \frac{\sqrt{2}}{x}$.			
	Substituting into second equation			
	$x^2 - \left(\frac{\sqrt{2}}{x}\right)^2 = 1$			
	$x^4 - 2 = x^2$			
	$(x^2+1)(x^2-2)=0$			
	So $(x^2 - 2) = 0$, hence $x = \pm \sqrt{2}$			
	Curves intersect at $(\sqrt{2},1)$ and $(-\sqrt{2},-1)$			
	For the curve $xy = \sqrt{2}$,			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\alpha^2}{2}$			
	Which evaluates to $\frac{-1}{\sqrt{2}}$ at both intersection points.			
	For the curve $x^2 - y^2 = 1$			

$$\frac{dy}{dx} = \frac{x}{y}$$

Which evaluates to $\sqrt{2}$ at both intersection points.

The product of the slopes is -1, so perpendicular.

Note:

At the point of intersection $\left(\alpha, \frac{\sqrt{2}}{\alpha}\right)$,

For the curve $xy = \sqrt{2}$, $\frac{dy}{dx} = -\frac{\sqrt{2}}{\alpha^2}$

For the curve $x^2 - y^2 = 1$, $\frac{dy}{dx} = \frac{\alpha^2}{\sqrt{2}}$

Minimum length of motorway is $40 + 30\sqrt{3}$ km

Q	Solution	1–4 No award	5–6 Schol	7–8 OS
THREE (a)(i)	Let $u = 2x + 5$, then $x = \frac{u - 5}{2}$ and $\frac{dx}{du} = \frac{1}{2}$ $\int_{0}^{5} (2x - 5)\sqrt{2x + 5} dx = \int_{5}^{15} (u - 10)u^{\frac{1}{2}} \frac{dx}{du} du$ $= \int_{5}^{15} \left(u^{\frac{3}{2}} - 10u^{\frac{1}{2}}\right) \frac{1}{2} du$ $= \left[\frac{1}{5}u^{\frac{5}{2}} - \frac{10}{3}u^{\frac{3}{2}}\right]_{5}^{15} = 6.7225$	Shows understanding of relevant mathematical concepts, and some progress towards solutions to problems.	Application of high-level mathematical knowledge and skills, leading to partial solutions to complex problems.	Application of high-level mathematical knowledge and skills, perception and insight / convincing communication shown in finding correct solutions to complex problems.
(ii)	The definite integral cannot be evaluated since $\sqrt{2x-5}$ is not defined for $x < \frac{5}{2}$.			
(b)	Area between diagonal and curve:			
	$\int_{0}^{1} \left\{ x - \left(\frac{B-1}{B} x^{2} + \frac{1}{B} x \right) \right\} dx$ $\int_{0}^{1} \left\{ B - 1 \dots B - 1 \dots 2 \right\} dx$			
	$= \int_{0}^{1} \left\{ \frac{B-1}{B} x - \frac{B-1}{B} x^{2} \right\} dx$			
	$= \frac{\mathbf{B} - 1}{\mathbf{B}} \int_{0}^{1} \left\{ x - x^2 \right\} \mathrm{d}x$			
	$= \frac{B-1}{B} \left[\frac{x^2}{2} - \frac{x^3}{3} \right]_0^1 dx$			
	$=\frac{B-1}{6B}$			
	Area beneath diagonal: $\int_{0}^{1} x dx = \frac{1}{2}$			

Coefficient To find B = 21	ent of inequality = $\frac{B-1}{6B} \div \frac{1}{2} = \frac{B-1}{3B}$ $3 : \frac{B-1}{3B} = \frac{20}{63}$		

(c)	Volume of water flowing from the tank = volume of water flowing out of spout.		
	Cross sectional area of tank × rate at which height is changing		
	= cross sectional area spout $\times v$ water.		
	$\frac{dV}{dt} = \pi \left(\frac{d}{2}\right)^2 v = \pi \left(\frac{d}{2}\right)^2 \sqrt{2gh}$		
	$\frac{dV}{dt} = \pi \left(\frac{D}{2}\right)^2 \frac{\mathrm{d}h}{\mathrm{d}t}$		
	$\frac{D^2}{d^2 \sqrt{2g} \times \sqrt{h}} dh = dt$		
	$\frac{D^2}{d^2\sqrt{2g}}\int_{h_2}^{h_1}\frac{1}{\sqrt{h}}\mathrm{d}h = \left \int_{t_2}^{t_1}\mathrm{d}t\right $		
	$\frac{2D^2}{d^2\sqrt{2g}}\left[\sqrt{h}\right]_{h_2}^{h_1} = \left[t\right]_{t_2}^{t_1}$		
	$\left(\frac{D}{d}\right)^{2} \times \sqrt{\frac{2}{g}} \times \left(\sqrt{h_{1}} - \sqrt{h_{2}}\right) = \left t_{1} - t_{2}\right \left(= \Delta t\right)$		

Q	Solution	1-4 No award	5-6 Schol	7-8 OS
FOUR (a)	$\log_3(4-2x) + \log_3 x \le \log_3 9$ $\log_3(4x-2x^2) \le \log_3 9$ $4x-2x^2 \le 9$ $2x^2-4x+9 \ge 0$ Which is true for all $x \in \mathbb{R}$ However, for validity checking, require $4-2x>0$ and $x>0$ i.e. $\left\{x:0 < x < 2\right\}$	Shows understanding of relevant mathematical concepts, and some progress towards solutions to problems.	Application of high-level mathematical knowledge and skills, leading to partial solutions to complex problems.	Application of high-level mathematical knowledge and skills, perception and insight / convincing communication shown in finding correct solutions to complex problems.
(b)	Circle one has centre (8,10) and radius 7. Circle two has centre (-4,5) and radius 6. The distance between their centres is $d = \sqrt{(8 - (-4))^2 + (10 - 5)^2} = 13$. Since this is the sum of their radii, therefore the circles are tangential. Point of tangency: $P(x,y)$ divides the line joining their centres in the ratio 6:7. So $x = \frac{6 \times 8 + 7 \times -4}{6 + 7} = \frac{20}{13}, y = \frac{6 \times 10 + 7 \times 5}{6 + 7} = \frac{95}{13}$			

Q	Solution	1-4 No award	5–6 Schol	7–8 OS
FIVE (a)	$z = \frac{a^2 - bc + a(b+c)i}{2a + (b+c)i} \times \frac{2a - (b+c)i}{2a - (b+c)i}$ $= \frac{2a^3 - 2abc + 2a^2(b+c)i - a^2(b+c)i + bc(b+c)i + a(b+c)^2}{4a^2 + (b+c)^2}$ $Re(z) = \frac{2a^3 - 2abc + a(b+c)^2}{4a^2 + (b+c)^2}$ $= \frac{2a^3 + ab^2 + ac^2}{4a^2 + (b+c)^2}$	Shows understanding of relevant mathematical concepts, and some progress towards solutions to problems.	Application of high-level mathematical knowledge and skills, leading to partial solutions to complex problems.	Application of high-level mathematical knowledge and skills, perception and insight / convincing communication shown in finding correct solutions to complex problems.
(b)(i)	AACV and Δ XYV are similar. Both have a right angle (tangent radius) and they share a common angle at V. So, $\frac{AC}{CV} = \frac{XY}{YV}$ (1) $XY = r_2$ $YV = CV - CY = 120 - (20 + r_2)$ $YV = 100 - r_2$ Substitute into Eq (1) $\frac{20}{120} = \frac{1}{6} = \frac{r_2}{100 - r_2}$ $6r_2 = 100 - r_2$ $r_2 = \frac{100}{7}$ mm (14.285)			

(ii)	Assume in the diagram above, we are looking at the radii r_n and r_{n+1} of spheres centre T and U
	respectively. Then, a similar argument follows as before.
	TO I TODAY INTOXY I I I I I I I I I I I I I I I I I I I

Triangles TRV and USV are both similar to triangle CAV. So:

$$\frac{RT}{TV} = \frac{SU}{UV} = \frac{AC}{CV} = \frac{1}{6}$$

$$\frac{r_n}{TV} = \frac{1}{6}$$
 and $6r_n = TV$. Also $6r_{n+1} = UV$

But
$$TV = TU + UV$$

$$6r_{n} = r_{n} + r_{n+1} + 6r_{n+1}$$
 from which

$$\frac{r_{n+1}}{r_n} = \frac{5}{7}$$

We have a geometric sequence with $T_1 = 20$ and common ratio $r = \frac{5}{7}$.

So the *n*th radius is given by $r_n = 20 \left(\frac{5}{7}\right)^{n-1}$.

$$V = \sum_{n=1}^{\infty} \frac{4}{3} \pi \left(20 \left(\frac{5}{7} \right)^{n-1} \right)^{3} = \frac{4}{3} \pi 20^{3} \sum_{n=1}^{\infty} \left(\frac{5}{7} \right)^{3(n-1)}$$

and since r < 1, the series converges. $S_{\infty} = \frac{a}{1 - r}$

$$V = \frac{4}{3}\pi 20^{3} \times \left\{ \frac{1}{1 - \left(\frac{5}{7}\right)^{3}} \right\} = \frac{5488000\pi}{327} \text{ mm}^{3}$$