MACHINE LEARNING USING R

Class 3 Intensive

naïve Bayes

- Classification using Supervised Learning
- naive Bayes uses data about prior events to estimate the probability of future events.
- Bayesian classifiers are best applied to problems in which the information from numerous attributes should be considered simultaneously in order to estimate the probability of an outcome.

Example:

- Using frequency of words in spam emails, determine if the incoming message is span or not
- Using past disease data, diagnosing medical condition
- Using past weather conditions, determine if it s a good day to play golf
- Based on Income and Debt, classify if a person will default on payment

naïve Bayes: Probability

- It rained 3 days out of the last 10 days
 - Probability of rain can be estimated as (3/10)*100 or 30%.
- P(A) denotes probability of event A
 - P(rain) = 0.30
- Total probability of all possible outcomes in a trial must be 100%
 - P(rain) + P(no rain) = 1 or P(no rain) = 0.7
 - i.e. 70% probability of no rain
 - This works because rain and no rain events cannot occur at the same time i.e. they are mutually exclusive and exhaustive
 - $P(\neg rain) = 0.7$

naïve Bayes: Joint Probability

- In reality we are monitoring events that are non-mutually exclusive.
- If some event occurs with event of interest, we could use them to make predictions.
- Joint Probability $P(A \cap B) = P(A) * P(B)$
- Example:
 - Clouds can be present in the sky on a day when it rains but they could also be present on non-rainy days.
 - 25% of days when there were clouds, it rained.
 - Joint probability P(rain ∩ clouds) = P(rain) * P(clouds) = 0.3*0.25
 = 0.075

This is case for independent events. In reality rain and clouds are highly dependent.

naïve Bayes: Conditional Probability

 Relationship between dependent events can be described using Bayes' Theorem:

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)} = \frac{P(A \cap B)}{P(B)}$$

- Prior probability P(A): without any additional evidence, most reasonable guess that it will rain i.e 30%
- Likelihood P(B|A): probability that clouds appeared on previous rainy days
- Marginal Likelihood P(B): probability that clouds appeared on any day
- Posterior Probability P(A|B): how likely it will rain today
 - Posterior Probability > 50%: it will rain today

$$P(rain \mid clouds) = \frac{P(clouds \mid rain) * P(rain)}{P(clouds)}$$

naïve Bayes: Conditional Probability

	clo		
Frequency	Yes	No	Total
rain	23	7	30
no rain	2	68	70
Total	25	75	100

	clo		
Likelihood	Yes	No	Total
rain	23 / 30	7 / 30	30
no rain	2/70	68 / 70	70
Total	25 /100	75 /100	100

Likelihood: 23 / 30

Prior Probability: 30/100

Marginal likelihood: 25 / 100

Posterior Probability = ((23/30)*(30/100))/(25/100) = 0.92

There is a 92% chance of rain if there are clouds in the sky.

naïve Bayes classification

	cloud	ls (a1)	wind	(a2)	humidi	ty (a3)	
Likelihood	Yes	No	Yes	No	Yes	No	Total
rain	23 / 30	7 / 30	20 / 30	10 / 30	22 / 30	8 / 30	30
no rain	2 / 70	68 / 70	25 / 70	45 /70	10 / 70	60 / 70	70
Total	25 / 100	75 / 100	45 / 100	55 /100	32 / 100	68 / 100	100

Let us evaluate if it will rain on a day when there are clouds and it is humid but there is no wind:

$$P(rain \mid a1 \cap \neg a2 \cap a3) = \frac{P(a1 \cap \neg a2 \cap a3 \mid rain) * P(rain)}{P(a1 \cap \neg a2 \cap a3)}$$

This formula is computationally difficult to solve because of additional features. If we assume class-conditional independence, we can much easily compute probabilities.

Class-conditional independence means that events are independent so long as they are conditioned on the same class value.

naïve Bayes classification

- Recall: $P(A \cap B) = P(A) * P(B)$
- The previous formula simplifies to:

$$P(rain \mid a1 \ \cap \neg a2 \ \cap a3) = \frac{P(a1 \mid rain)P(\neg a2 \mid rain)P(a3 \mid rain)P(rain)}{P(a1)P(\neg a2)P(a3)}$$

- overall likelihood of rain=
 ((23/30) * (10/30) * (22/30) * (30/100)) = 0.056
- overall likelihood of no rain =
 ((2/70) * (45/70) * (10/70) * (70/100)) = 0.002

naïve Bayes classification

- overall likelihood of rain=
 ((23/30) * (10/30) * (22/30) * (30/100)) = 0.056
- overall likelihood of no rain =
 ((2/70) * (45/70) * (10/70) * (70/100)) = 0.002
- Probability of rain =
 likelihood of rain/(likelihood of rain + no rain)
 = 0.056/(0.056+0.002) = 0.96
- Probability of no rain =
 likelihood of no rain/(likelihood of rain + no rain)
 = 0.002/(0.056+0.002) = 0.04

Laplace Estimator

	cloud	ls (a1)	wind	(a2)	humidi	ty (a3)	
Likelihood	Yes	No	Yes	No	Yes	No	Total
rain	23 / 30	7 / 30	0/30	30 / 30	22 / 30	8 / 30	30
no rain	2/70	68 / 70	30 / 70	45 /70	10 / 70	60 / 70	70
Total	25 / 100	75 / 100	45 / 100	55 /100	32 / 100	68 / 100	100

overall likelihood of rain=

overall likelihood of no rain =

Probability of rain = 0/(0+0.001) =

Probability of no rain = 0.001/(0+0.001) =

Laplace Estimator

	clouds (a1)		wind (a2)		humidity (a3)		
Likelihood	Yes	No	Yes	No	Yes	No	Total
rain	23 / 30	7 / 30	0 / 30	30 / 30	22 / 30	8 / 30	30
no rain	2/70	68 / 70	30 / 70	45 /70	10 / 70	60 / 70	70
Total	25 / 100	75 / 100	45 / 100	55 /100	32 / 100	68 / 100	100

overall likelihood of rain= ((23/30) * (0/30) * (22/30) * (30/100)) = 0

overall likelihood of no rain = ((2/70) * (30/70) * (10/70) * (70/100)) = 0.001

Probability of rain = 0/(0+0.001) = 0

Probability of no rain = 0.001/(0+0.001) = 1

Laplace Estimator

- Laplace estimator adds a small number to each of the counts in the frequency table, which ensures that each feature has a non-zero probability of occurring within each class.
- Typically Laplace estimator is set to 1 but it can be set to any value and does not necessarily have to be same for all the features.
- overall likelihood of rain=
 ((24/33) * (1/33) * (23/33) * (30/100)) = 0.005
- overall likelihood of no rain =
 ((3/73) * (31/73) * (11/73) * (70/100)) = 0.002
- Probability of rain = 0.005/(0.005+0.002) = 0.71
- Probability of no rain = 0.002/(0.005+0.002) = 0.29

Numeric features and naïve Bayes

- Since naïve Bayes uses frequency table for learning, each feature must be categorical.
- Numeric features do not have categories, hence naïve Bayes does not directly work directly
- Solution is to discretize data:
 - Binning
 - Cut Points
- Discretizing a numeric feature always results in a reduction of information, as the feature's original granularity is reduced to a smaller number of categories. It is important to strike a balance, since too few bins can result in important trends being obscured, while too many bins can result in small counts in the naive Bayes frequency table

naïve Bayes: Advantages

- The advantage of Naïve Bayes is that it is relatively simple and straightforward to use.
- It is suitable when the training set is relative small, and may contain some noisy and missing data.
- Moreover, you can easily obtain the probability for a prediction.
- Requires relatively few examples for training, but also works well with very large numbers of examples

naïve Bayes: Disadvantages

- The drawbacks of Naïve Bayes are that it assumes that all features are independent and equally important, which is very unlikely in real-world cases.
- Not ideal for datasets with large numbers of numeric features
- Estimated probabilities are less reliable than the predicted classes

naïve Bayes: Data

 Download the sms_spam.csv file from the Packt Publishing's website and save it to your R working directory.

- getwd()
- setwd(dir)

EXPLORING AND PREPARING THE DATA

install.packages("tm") library(tm)

Corpus: A collection of text documents. Main structure of managing documents in tm

VCorpus

Volatile Corpus. Creates an R object to store text documents held fully in memory.

PCorpus

Permanent Corpus. Creates an R object to store text documents stored outside of R in a database for example.

VCorpus (x, renderControl)

X

Source Object. Specified to abstract input location and acquire content in a uniform way.

getSources()

renderControl List of named components reader and language

getReaders()

Build a corpus using the text mining (tm) package

```
sms_corpus <-
VCorpus(VectorSource(sms_raw$text))</pre>
```

Examine the SMS corpus

```
print(sms_corpus)
inspect(sms_corpus[1:3])
as.character(sms_corpus[[1]])
lapply(sms_corpus[1:3], as.character)
```

Clean up the SMS corpus using tm map ()

Get available transformation for tm map function: getTransformations()

"removeNumbers"

"removePunctuation"

"removeWords"

"stemDocument"

"stripWhitespace"

Content transformer "tolower"

Remove numbers from a text document

Remove punctuation marks from a text document

Remove words from a text document. eg stopwords()

Stem words in a text document using Porter's

stemming algorithm.

Strip extra whitespace from a text document. Multiple whitespace characters are collapsed to a single blank.

Convert text to lowercase.

Also check out qsub()

Tokenization: Split data into individual components (single elements of a text string).

For SMS data, tokens are words.

Creating term-document matrix, also called sparse matrix:

DocumentTermMatrix()

	term1	term2	term3
Doc1	0	0	1
Doc2	1	0	0

- the columns are the union of words in our corpus
- the rows correspond to each text message
- the cells are the number of times each word is seen

TermDocumentMatrix()

	Doc1	Doc2
term1	0	1
term2	0	0
term3	1	0

- the rows are the union of words in our corpus
- the columns correspond to each text message
- the cells are the number of times each word is seen.

Text Mining: Data Preparation

Let us split the data 75% for training and 25% for testing.

- Split the raw data:
 sms_train = sms_raw[1:4200,] # about 75%
 sms_test = sms_raw[4201:5574,] # the rest
- Split the document-term matrix sms_dtm_train = sms_dtm[1:4200,] sms_dtm_test = sms_dtm[4201:5574,]
- Split the corpus
 sms_corpus.train = sms_corpus_clean[1:4200]
 sms_corpus.test = sms_corpus_clean[4201:5574]
- Split raw data labels
 sms_train_labels <- sms_raw[1:4169,]\$type
 sms_test_labels <- sms_raw[4170:5559,]\$type
- Subset raw data based type
 spam <- subset(sms_raw, type == "spam")
 ham <- subset(sms_raw, type == "ham")

Text Mining: Data Visualization

Word cloud is a visual way to depict frequency at which words appear in text data

```
install.packages("worldcloud")
library(worldcloud)
pal <-brewer.pal(12, "Paired")</pre>
          brewer.pal: package RColorBrewer.
                    Creates nice looking color palettes especially for thematic maps

    Word Cloud of all data

wordcloud(sms corpus clean, min.freq = 50, random.order = FALSE, colours = pal)

    Word Cloud of spam data

wordcloud(spam\pmtext, max.words = 40, scale = c(3, 0.5), random.order = FALSE,
colors = pal)

    Word Cloud of ham data

wordcloud(ham\text{stext}, max.words = 40, scale = c(3, 0.5), random.order = FALSE,
colors = pal)
```

Text Mining: Data Visualization

home later

Text Mining: Frequent Terms

```
sms dtm freg train <- removeSparseTerms(sms dtm train, 0.999)
sms_dtm_freq train
# indicator features for frequent words
findFreqTerms(sms dtm train, 5)
# save frequently-appearing terms to a character vector
sms freq words <- findFreqTerms(sms dtm train, 5)
str(sms freq words)
# create DTMs with only the frequent terms
sms dtm freq train <- sms dtm train[, sms freq words]
sms dtm freq test <- sms dtm test[, sms freq words]
# convert counts to a factor
convert counts <- function(x) {
 x \leftarrow ifelse(x > 0, "Yes", "No")
# apply() convert counts() to columns of train/test data
sms train <- apply(sms dtm freq train, MARGIN = 2, convert counts)
sms test <- apply(sms dtm freq test, MARGIN = 2, convert counts)
```

TRAINING A MODEL ON THE DATA

Training a model on the data

library(e1071)

• sms_classifier <- naiveBayes(sms_train, sms_train_labels)

EVALUATING MODEL PERFORMANCE

Evaluating model performance

```
• sms_test_pred <- predict(sms_classifier,
sms_test)
```

- library(gmodels)

IMPROVING MODEL PERFORMANCE

Improving model performance

Text Mining: Reading Assignment

Documentation on tm package:

https://cran.r-project.org/web/packages/tm/vignettes/tm.pdf

Tidy in an alternate to tm:

http://tidytextmining.com/tidytext.html

RStudio cheatsheets:

https://www.rstudio.com/resources/cheatsheets/

Coding Challenge

Build a naïve Bayes model for Titanic dataset to predict if a passenger Survived or not.

Build a naïve Bayes model for HairEyeColor dataset to predict the sex based on hair and eye color.

Build a naïve Bayes model for HouseVote84 dataset in 'mlbench' package to predict the Class of the representative based on votes.