The sphere eversion project

Patrick Massot

Oliver Nash

Floris van Doorn

May 25, 2023

0.1 Generalities

Fix a field K.

Definition 0.1. A valuation $v: K \to \mathbb{Z}$ on K is discrete if it is non-archimedean and surjective.

We have the

Proposition 0.2 ([?, Chap I, \S 1, Proposition 1]). If K is complete with respect to a discrete valuation v, then its unit ball K° is a discrete valuation ring.

Lemma 0.3 ([?, Chap II,§2, last part of Proposition 3]). If K is complete with respect to a discrete valuation v and if L/K is a finite extension, then L has a discrete valuation $w: L \to \mathbb{Z}$ inducing v and L is complete with respect to w.

Moreover,

Proposition 0.4 ([?, Chap II,§2, Proposition 3]). If K is complete with respect to a discrete valuation v and if L/K is a finite extension, then the integral closure of K° inside L coincides L° and so, in particular, it is a discrete valuation ring by 0.2. Moreover, L° is a finite, free K° -module of rank n = [L:K].

0.2 Local Fields

Definition 0.5. A (nonarchimedean) local field is a field complete with respect to a discrete valuation and with finite residue field.

Definition 0.6. A mixed characteristic local field is a finite field extension of the field \mathbb{Q}_p of p-adic numbers, for some prime p.

Definition 0.7. An equal characteristic local field is a finite field extension of the field $\mathbb{F}_p((X))$, for some prime p.

Lemma 0.8. A mixed characteristic local field is a local field.

Lemma 0.9. An equal characteristic local field is a local field.

0.2.1 Ramification Index

- 1. Define a local ramification index to get rid of the variables $\mathfrak p$ and $\mathfrak P$ in the mathlib definition
- 2. Obtain from there the formula n = ef
- 3. Prove that \mathbb{Q}_p and $\mathbb{F}_p((X))$ are unramified
- 4. If possible, go through [?, Chap. I, §6] (before completion, the results there hold for DVR's).

0.3 Global to Local

Starting with a Dedekind domain R and a non-zero maximal ideal \mathfrak{p} , let $K = \operatorname{Frac}(R)$. Then we prove the

Proposition 0.10 ([?, Chap. II, §2, Théorème 1]). The completion $K_{\mathfrak{p}}$ has a discrete valuation extending the valuation $v_{\mathfrak{p}}$ and such that $K_{\mathfrak{p}}^{\circ} = R_{\mathfrak{p}}$. In particular, this localization is a DVR by Proposition 0.2.

Proposition 0.11. Let F be a number field and let v be a finite place of residue characteristic p. Then F_v is a mixed characteristic local field with residue characteristic p.

Proposition 0.12. Let F be a function field and let v be any place. Then F_v is an equal characteristic local field with residue characteristic p.

Blablabla