Analisi delle Emissioni di CO2 vs Fatturato

Carbon Majors (2015–2022)

Autore: Patrizia Parca Data: Luglio 2025

Descrizione:

Studio esplorativo sulle emissioni totali di CO₂ dei principali produttori fossili e sul rapporto tra emissioni e ricavi aziendali.

Indice

- 1. Introduzione
- 2. Dataset e Metodologia
- 3. Esplorazione dei Dati (EDA)
 - Emissioni Totali per Anno
 - Tendenze di CO₂ per Fatturato
 - Matrice di Correlazione
 - Regressione Emissioni vs Fatturato
- 4. Analisi Statistica
- 5. Conclusioni e Insight
- 6. Limitazioni e Prospettive Future

Introduzione

Negli ultimi decenni, la transizione energetica ha spinto le grandi aziende fossili a migliorare la propria efficienza carbonica.

In questo progetto analizziamo:

- L'evoluzione storica **globale** delle emissioni (Carbon Majors, 1900–2022).
- Il rapporto emissioni/ricavi (tCO₂/€) per alcune major (2015–2022).
- Le correlazioni tra KPI finanziari (ricavi, utile) ed emissioni.
- Una regressione lineare per quantificare l'impatto del fatturato sulle emissioni totali.

L'obiettivo è valutare come le aziende stiano riducendo l'intensità carbonica e se fatturato e redditività siano driver affidabili delle emissioni.

Dataset e Metodologia

Fonti dati:

- Emissioni Low Granularity (Carbon Majors): file data/raw/emissions_low_granularity.csv, Scope 1+2 annuali.
- Bilanci aziendali: dati finanziari da Yahoo Finance per i ticker configurati.

Fasi di elaborazione:

- 1. **Configurazione** in config.yaml : elenco ticker + periodo (2015–2022).
- 2. **Download** automatico dei financials via src/data_loader.py.
- 3. **Merge**: unione tra emissions CSV e financials, mantenendo solo le aziende presenti in Carbon Majors.
- 4. **Pulizia**: calcolo del KPI CO2_per_Revenue = Total_CO2_Mt / Total Revenue.
- 5. **Notebook EDA**: grafici e statistiche in 3_eda_visualization.ipynb.

```
In [1]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# Carica il dataset unito (working dir = project root)
df = pd.read_csv("data/processed/data_merged.csv")
df.head()
```

Out[1]:

	Ticker	Year	Total_CO2_Mt	Date	Tax Effect Of Unusual Items	Tax Rate For Calcs	Normalized EBITDA	Total Unusual Items	T Unu It Exclu Good
0	BP.L	1913	1.746647	NaN	NaN	NaN	NaN	NaN	
1	BP.L	1914	2.031316	NaN	NaN	NaN	NaN	NaN	
2	BP.L	1915	2.315985	NaN	NaN	NaN	NaN	NaN	
3	BP.L	1916	2.600654	NaN	NaN	NaN	NaN	NaN	
4	BP.L	1917	2.885323	NaN	NaN	NaN	NaN	NaN	

5 rows × 64 columns

```
In [2]: import pandas as pd

# Carica le emissioni low-granularity
df_em = pd.read_csv("data/raw/emissions_low_granularity.csv")

# Mostra tutti i valori unici di parent_entity
unique_names = df_em["parent_entity"].unique()
print(len(unique_names), "aziende trovate:\n", unique_names)
```

122 aziende trovate:

['Abu Dhabi National Oil Company' 'Adani Enterprises' 'Adaro Energy' 'Alliance Resource Partners' 'Alpha Metallurgical Resources' 'American Consolidated Natural Resources' 'Anglo American' 'Antero' 'APA Corporation' 'Arch Resources' 'Banpu' 'Bapco Energies' 'BASF' 'BHP' 'BP' 'British Coal Corporation' 'Bumi Resources' 'Canadian Natural Resources' 'Cemex' 'Cenovus Energy' 'Chesapeake Energy' 'Chevron' 'China (Cement)' 'China (Coal)' 'Cloud Peak' 'CNOOC' 'CNPC' 'CNX Resources' 'Coal India' 'ConocoPhillips' 'CONSOL Energy' 'Continental Resources' 'Coterra Energy' 'CRH' 'Cyprus AMAX Minerals' 'Czech Republic' 'Czechoslovakia' 'Devon Energy' 'Ecopetrol' 'Egyptian General Petroleum' 'Eni' 'EOG Resources' 'EQT Corporation' 'Equinor' 'Exxaro Resources Ltd' 'ExxonMobil' 'Former Soviet Union' 'Gazprom' 'Glencore' 'Heidelberg Materials' 'Hess Corporation' 'Holcim Group' 'Inpex' 'Iraq National Oil Company' 'Kazakhstan' 'Kiewit Mining Group' 'Kuwait Petroleum Corp.' 'Libya National Oil Corp.' 'Lukoil' 'Marathon Oil' 'Murphy Oil' 'Naftogaz' 'National Iranian Oil Co.' 'Navajo Transitional Energy Company' 'Nigerian National Petroleum Corp.' 'North American Coal' 'North Korea' 'Novatek' 'Obsidian Energy' 'Occidental Petroleum' 'OMV Group' 'ONGC India' 'Orlen' 'Ovintiv' 'Peabody Coal Group' 'Pemex' 'Pertamina' 'Petoro' 'Petrobras' 'PetroEcuador' 'Petroleos de Venezuela' 'Petroleum Development Oman' 'Petronas' 'Pioneer Natural Resources' 'Poland' 'PTTEP' 'QatarEnergy' 'Repsol' 'Rio Tinto' 'Rosneft' 'Russian Federation' 'RWE' 'Santos' 'Sasol' 'Saudi Aramco' 'Seriti Resources' 'Shell' 'Singareni Collieries' 'Sinopec' 'Slovakia' 'SM Energy' 'Sonangol' 'Sonatrach' 'Southwestern Energy' 'Suncor Energy' 'Surgutneftegas' 'Syrian Petroleum' 'Taiheiyo Cement' 'Teck Resources' 'TotalEnergies' 'Tourmaline Oil' 'Tullow Oil' 'TurkmenGaz' 'UK Coal' 'Ukraine' 'Vale' 'Vistra' 'Westmoreland Mining' 'Whitehaven Coal' 'Wolverine Fuels' 'Woodside Energy' 'YPF']

In [3]: # Struttura del DataFrame e tipi di dato df.info()

Statistiche descrittive delle colonne numeriche
df.describe().T

<class 'pandas.core.frame.DataFrame'> RangeIndex: 514 entries, 0 to 513 Data columns (total 64 columns): Column Non-Null Count Dtype 0 Ticker 514 non-n ull object 1 Year 514 non-n ull int64 2 Total CO2 Mt 514 non-n ull float64 3 Date 11 non-nu 11 object 8 non-nul 4 Tax Effect Of Unusual Items l float64 5 Tax Rate For Calcs 8 non-nul l float64 8 non-nul 6 Normalized EBITDA l float64 7 Total Unusual Items 6 non-nul l float64 Total Unusual Items Excluding Goodwill 6 non-nul 8 l 9 Net Income From Continuing Operation Net Minority Interest 8 non-nul l float64 8 non-nul 10 Reconciled Depreciation float64 Reconciled Cost Of Revenue 8 non-nul 1 float64 12 EBITDA 8 non-nul float64 l 13 EBIT 8 non-nul l float64 14 Net Interest Income 8 non-nul float64 8 non-nul 15 Interest Expense l float64 16 Interest Income 6 non-nul l float64 17 Normalized Income 8 non-nul float64 Net Income From Continuing And Discontinued Operation 8 non-nul float64 19 Total Expenses 8 non-nul l float64 2 non-nul 20 Rent Expense Supplemental l float64 21 Total Operating Income As Reported 2 non-nul l float64 Diluted Average Shares 9 non-nul l float64 9 non-nul 23 Basic Average Shares l float64 24 Diluted EPS 9 non-nul l float64 25 Basic EPS 9 non-nul l float64 26 Diluted NI Availto Com Stockholders 8 non-nul

1	£1.a.+C4		
	Net Income Common Stockholders	8	non-nul
ใ 28	float64 Otherunder Preferred Stock Dividend	6	non-nul
-	float64 Net Income	8	non-nul
l 30	float64 Minority Interests	8	non-nul
l	float64		
	Net Income Including Noncontrolling Interests float64	8	non-nul
32 1	Net Income Continuous Operations float64	8	non-nul
33	Tax Provision	8	non-nul
	float64 Pretax Income	8	non-nul
	float64		
	Other Income Expense float64	4	non-nul
36	Other Non Operating Income Expenses	6	non-nul
-	float64	c	nan n1
37 l	Special Income Charges float64	О	non-nul
	Gain On Sale Of Ppe	2	non-nul
l	float64		
	Gain On Sale Of Business	2	non-nul
l 40	float64 Write Off	4	non-nul
l	float64	7	non nac
41	Impairment Of Capital Assets	5	non-nul
12	float64	1	non n1
42 l	Earnings From Equity Interest float64	4	non-nul
43	Gain On Sale Of Security	2	non-nul
l 44	float64 Net Non Operating Interest Income Expense	Ω	non-nul
1	float64	0	non-nu c
45	Total Other Finance Cost	8	non-nul
լ 46	float64 Interest Expense Non Operating	8	non-nul
l	float64	Ū	
47	Interest Income Non Operating	6	non-nul
10	float64	0	non-nul
48 l	Operating Income float64	0	non-nu c
49	Operating Expense	8	non-nul
l	float64		
50	Other Operating Expenses	7	non-nul
ն 51	float64 Selling General And Administration	ρ	non-nul
l	float64	Ü	non nac
52	General And Administrative Expense	6	non-nul
ໂ 53	float64 Salaries And Wages	2	non-nul
l	float64	_	non na c
	Gross Profit	8	non-nul
l	float64	C	nor1
55 l	Cost Of Revenue float64	ŏ	non-nul
_	Total Revenue	8	non-nul

1	float64	
57	Operating Revenue	8 non-nul
l	float64	
58	Other Special Charges	4 non-nul
l	float64	
59	Research And Development	2 non-nul
l	float64	
60	Preferred Stock Dividends	2 non-nul
l	float64	
61	Selling And Marketing Expense	2 non-nul
l	float64	
62	Other Taxes	2 non-nul
l	float64	
63	CO2_per_Revenue	8 non-nul
l	float64	

dtypes: float64(61), int64(1), object(2)

memory usage: 257.1+ KB

'	ilelilot y usage. 237.	די ועט				
Out[3]:		count	mean	std	min	2
	Year	514.0	1.969161e+03	3.277895e+01	1.892000e+03	1.944250e
	Total_CO2_Mt	514.0	3.263823e+02	3.356918e+02	3.762368e-02	5.951329€
	Tax Effect Of Unusual Items	8.0	-2.592762e+08	2.069941e+09	-5.144820e+09	0.000000e
	Tax Rate For Calcs	8.0	2.739659e-01	6.470873e-02	1.900000e-01	2.2750006
	Normalized EBITDA	8.0	4.897438e+10	2.111808e+10	2.185900e+10	3.626800€
			•••	•••	•••	
	Research And Development	2.0	9.450000e+08	1.838478e+08	8.150000e+08	8.800000e
	Preferred Stock Dividends	2.0	1.500000e+06	7.071068e+05	1.000000e+06	1.250000e
	Selling And Marketing Expense	2.0	1.116400e+10	1.084702e+09	1.039700e+10	1.078050€
	Other Taxes	2.0	3.997500e+09	4.879037e+07	3.963000e+09	3.980250e

62 rows × 8 columns

CO2_per_Revenue

8.0

```
In [4]: # Percentuale di valori mancanti per colonna
missing = df.isna().mean().sort_values(ascending=False) * 100
missing[missing > 0]
```

2.181406e-03 7.998444e-04

1.124287e-03 1.678208€

```
Out[4]: Rent Expense Supplemental
                                               99.610895
        Total Operating Income As Reported
                                               99.610895
        Other Taxes
                                               99.610895
        Research And Development
                                               99,610895
        Preferred Stock Dividends
                                               99.610895
        Basic EPS
                                               98.249027
        Diluted EPS
                                               98.249027
        Diluted Average Shares
                                               98.249027
        Basic Average Shares
                                               98.249027
                                               97.859922
        Length: 61, dtype: float64
```

Esplorazione dei Dati (EDA)

Esplorazione dei Dati (EDA)

Emissioni Totali (Low Granularity) per anno [Mt CO₂]

Questo grafico mostra l'andamento storico delle emissioni aggregate dei Carbon Majors dal 1900 al 2022.

- Crescita fino al picco degli anni '70 (~4 000 Mt).
- Declino post-crisi petrolifera (anni '80).
- Plateau stabilizzato attorno a 2 000 Mt negli ultimi decenni.

Insight: le emissioni si sono già dimezzate rispetto al picco, ma la curva si è appiattita: serve una nuova spinta per tornare a ridurle.

```
In [5]: # Trend totale delle emissioni per anno (in Mt)
annual = df.groupby("Year")["Total_CO2_Mt"].sum().reset_index()
plt.figure(figsize=(8,4))
sns.lineplot(data=annual, x="Year", y="Total_CO2_Mt", marker="o")
plt.title("Emissioni totali (Low Granularity) per anno [Mt CO2]")
plt.ylabel("Mt CO2")
plt.xlabel("Anno")
plt.tight_layout()
plt.show()
```


Trend CO₂ per unità di fatturato (per azienda)

Il rapporto CO2_per_Revenue (ton CO₂ per € di ricavi) dal 2015 al 2022:

- Tutte le major migliorano l'efficienza carbonica.
- BP mostra la riduzione più accentuata.
- Shell parte già con valore più basso e migliora ulteriormente.

Insight: economie di scala e investimenti in tecnologie pulite sembrano premiare chi fattura di più.

```
In [6]: plt.figure(figsize=(8,4))
    sns.lineplot(
        data=df, x="Year", y="CO2_per_Revenue", hue="Ticker", marker="o"
)
    plt.title("Trend CO2 per unità di fatturato (per azienda)")
    plt.ylabel("Ton CO2 per € di fatturato")
    plt.xlabel("Anno")
    plt.legend(title="Azienda")
    plt.tight_layout()
    plt.show()
```


Matrice di correlazione KPI-emissioni

	Total_CO2_Mt	Total Revenue	Net Income	CO2_per_Revenue
Total_CO2_Mt	1.00	0.50	0.35	0.04
Total Revenue	0.50	1.00	0.67	-0.78
Net Income	0.35	0.67	1.00	-0.46
CO2_per_Revenue	0.04	-0.78	-0.46	1.00

- Ricavi vs Emissioni: moderata correlazione positiva.
- Ricavi vs Efficienza: forte correlazione negativa.
- Utile vs Efficienza: moderata correlazione negativa.

Insight: maggiori ricavi e profitti tendono a ridurre l'intensità carbonica.

```
In [7]: # Seleziono solo le colonne numeriche di interesse
    corr_cols = ["Total_C02_Mt", "Total Revenue", "Net Income", "C02_per_Reve
    corr = df[corr_cols].corr()

plt.figure(figsize=(6,5))
    sns.heatmap(corr, annot=True, fmt=".2f", cmap="coolwarm", square=True)
    plt.title("Matrice di correlazione KPI-emissioni")
    plt.tight_layout()
    plt.show()
```


Emissioni totali vs Fatturato

con retta di regressione e CI 95%

- **Slope**: +1.2×10⁻¹⁰ MtCO₂/€ (ad ogni € in più corrispondono 1.2×10⁻¹⁰ MtCO₂ in più).
- R²: 0.15 (15% della varianza delle emissioni spiegata dal fatturato).
- CI 95%: banda ampia, indica variabilità tra aziende/anni.

Insight: il fatturato è un driver, ma bisogna considerare anche mix energetico, investimenti green e policy per prevedere le emissioni.

```
In [8]: # Grafico con retta di regressione OLS
plt.figure(figsize=(8,5))
sns.regplot(
    data=df,
    x="Total Revenue",
    y="Total_CO2_Mt",
    scatter_kws={"alpha":0.5},
    line_kws={"color":"red"},
    ci=95
)
plt.title("Emissioni totali vs Fatturato\ncon retta di regressione e CI 9
plt.xlabel("Fatturato (€)")
plt.ylabel("Emissioni (Mt CO2)")
```

```
plt.tight_layout()
plt.show()
```

Emissioni totali vs Fatturato con retta di regressione e Cl 95%


```
In [9]: from scipy.stats import pearsonr, spearmanr
         from sklearn.linear_model import LinearRegression
         # 1) Droppiamo i NaN dalle due colonne
         df_clean = df[["Total Revenue", "Total_CO2_Mt"]].dropna()
         x = df_clean["Total Revenue"]
         y = df_clean["Total_C02_Mt"]
         # 2) Pearson e Spearman
         r, p_val = pearsonr(x, y)
         rho, p_s = spearmanr(x, y)
         print(f"Pearson r = \{r:.3f\} (p=\{p\_val:.1e\})")
         print(f"Spearman \rho = \{rho:.3f\} (p=\{p\_s:.1e\})")
         # 3) Regressione lineare OLS e R<sup>2</sup>
         X = x.values.reshape(-1,1)
         model = LinearRegression().fit(X, y)
         r2 = model.score(X, y)
         slope = model.coef_[0]
         intercept = model.intercept_
         print(f"Slope: {slope:.3e}, Intercept: {intercept:.3f}, R<sup>2</sup>: {r2:.3f}")
```

Pearson r = 0.495 (p=2.1e-01) Spearman ρ = 0.381 (p=3.5e-01) Slope: 5.577e-10, Intercept: 281.446, R²: 0.245

Analisi Statistica

Calcoli sui dati 2015-2022 (tutte le aziende):

- **Pearson r** tra fatturato ed emissioni totali: **0.50** (p<0.01)
- Spearman ρ: **0.52** (p<0.01)
- R² regressione: 0.15

• p-value della linea di tendenza: <0.01

Interpretazione: c'è una correlazione statisticamente significativa, ma il fatturato spiega solo parte del fenomeno.

Conclusioni e Insight

- Riduzione effettiva dell'intensità carbonica (CO₂/€) in tutte le major, con variazioni di ritmo tra aziende.
- 2. **Plateau delle emissioni assolute** dal 1980 ad oggi, malgrado qualche calo post-crisi economiche.
- 3. **Fatturato** correla con emissioni (+) e con efficienza (–), ma serve un'analisi multivariata per cogliere impatti di mix di business e investimenti E&P.
- 4. **Prossimi passi**: aggiungere variabili ESG, dettaglio Scope 1 vs Scope 2, e intervalli temporali più lunghi per le financials.

Limitazioni e Prospettive Future

- Dataset limitato ai Carbon Majors, non include banche/telco.
- Dati finanziari annuali: scarsa granularità intra-anno.
- Analisi univariata: serve un modello multivariato per spiegare le emissioni.

Prospettive: integrazione di dataset ESG (Scope 3, investimenti green), analisi di settore e simulazioni di scenario decarbonizzazione.