学而时习之

刘聪

liuc@seu.edu.cn

Three questions

■ 你是谁? 从哪来? 到哪去?

- 这门课讲什么?
- ■和其他课程的关系是什么?
- ■后八周要讲什么?

这门课讲什么?

敲黑板 ...

和《制冷原理》:

和《制冷原理》:

把握结构,形成体系:

后八周

■跟着框架体系走

第六章 空调系统的运行调节

- ◆ 空调系统的供冷供热能力在设计阶段由什么确定的?
- ◆ 实际运行过程中冷热负荷如何?
- ◆ 系统在部分负荷条件下有什么问题?

■新建一个大楼/厂房,它的空调系统是怎么确 定的?

算负荷 (太阳,围护结构, 人员,设备...)

建筑师给造型

算负荷 (太阳,围护结构, 人员,设备...) 建筑师 给造型 定形式 (集中-一/二次回风 ; 半集中-FCU、诱导器)

问题: 买篮子是买大的还是买小的?

运行调节:

空气处理设备按室内负荷在最不利条件下设计; 室外空气状态等于设计计算参数的时间是极少的; 室内余热量和余湿量经常变化;

意义:

全年内, 既能满足室内温湿度要求, 又能达到经济运行的目的;

要求:

空调范围/室内空气温湿度允许波动区:

图 6-1 室内空气温湿度允许波动区

空气调节的目标

■ 满足以下指标 (GB 50376-2012)

表 3.0.2 人员长期逗留区域空调室内设计参数

类别	热舒适度等级	温度 (℃)	相对湿度 (%)	风速 (m/s)
供热工况	I级	22~24	≥30	≤0.2
	Ⅱ级	18~22	_	€0.2
供冷工况	I级	24~26	40~60	€0.25
	Ⅱ级	26~28	€70	€0.3

第一节 室内热湿负荷变化时的运行调节

室外状态点不变化。

- 一、定露点和变露点的调节方法
 - (一) 室内余热量变化、余湿量 基本不变
 - 条件:在室内余热量变小、余湿量不变的情况下, ε?。
 - 结果: ?

第一节 室内热湿负荷变化时的运行调节

室外状态点不变化。

- 一、定露点和变露点的调节方法 (一)室内余热量变化、余湿量
 - 条件:在室内余热量变小、余湿量不变的情况下,**ε**随之减小。
 - 结果: ?

基本不变

第一节 室内热湿负荷变化时的运行调节

室外状态点不变化。

- 一、定露点和变露点的调节方法 (一)室内余热量变化、余湿量 基本不变
 - 条件:在室内余热量变小、余湿量不变的情况下,**ε**随之减小。
 - 结果: 室内状态将按减温的方向 变化,房间最终的状态N'。

■ 目标:调回N点,如何实现?

图 6-2 室内状态点变化(定露点)

- □ 采用定露点调节再热量的方法。
- □ 可以集中在空调机组内进行,也可在通向各个房间的送风 支风道上设精加热器进行调节。

采用变露点调节再热量的方法

调节喷水温度或表冷器进水温度

采用变露点调节再热量的方法

调节喷水温度或表冷器进水温度

图6-5和6-6有何特别?

定露点控制调节法适用于室 内相对湿度的允许波动范围较大 或室内余湿量变化不大的场合。

只有当室内空气温湿度精度 要求很高且室内余湿量变化较大 时,才须采用既变露点又变再热 量的变露点控制调节法。

室外状态点不变化。

- (一) 室内余热量变化、余湿量 基本不变
 - 条件:在室内余热量变小、余湿量不变的情况下,**ε**随之减小。
 - 结果: 室内状态将按减温的方向 变化,房间最终的状态N'。
 - 目标: 仅需保证温度不变,如何 实现?

图 6-2 室内状态点变化(定露点)

四、调节送风量 更风量系统

变风量调节不能同时保 证温度和湿度两个参数不变, 只能保证其中一个参数不变, 而另一个参数还须通过其他方 法加以调节才能保证。

图 4-21 保持(tw-to)不变的变风量调节方法

当室内余热量、余湿量不按比例变化时,企图单用变风量的调节方法同时保证恒温和恒湿是不可能的。<mark>只是在仅有恒温或仅有恒湿要求的场合,才能使用单一的变风量调节方法</mark>。

习题:

- 某空调房间室内设计参数为t=22℃, φ=55%, 设计条件下房间余热量为Q=40kW, 余湿量为w=14.4kg/h, 送风温差为8℃, 运行至某一时刻余热量变成20kw, 余湿量未变, 试回答:
- (1)仍用原送风状态送风,室内的温度和相对湿度将 是多少?
- (2)如果采用定风量、定露点、变再热量的调节方法,此时送风温度应该是多少度?
- (3)如果此时余湿量变成9kg/h,应采用什么运行调节方法?采用什么送风参数?

湿空气参数逻辑关系结构图

- ■定义过程 OT 和温度的关系

10:40:57 32