What it Takes to Develop New MEMS Products: Reality Check

Alissa M. Fitzgerald, Ph.D. | June 22, 2010

Overview

- About AMFitzgerald
- What are MEMS?
- Industry supply chain
- Captive or fabless?
- Challenges
- Summary

Mission

MEMS Product Development

We turn your ideas into silicon.

Fully integrated services: concept to foundry

- Complete design and project management
- Feasibility and cost analysis
- Design optimization using simulation
- Process development on 100 mm or 150 mm wafers
 - Prototype fabrication with own staff engineers at UC Berkeley's Microlab
- Test system development
- Packaging, system integration
- Technology transfer to foundries for production

MEMS design and prototyping expertise

Technologies we have developed:

- Piezoresistive sensors
- Piezoelectric (AIN and ZnO) sensors
- Capacitive sensors
- Electrostatic actuators
- Micro-cantilevers
- Microfluidics
- Mold masters
- Gratings and lenses (x-ray, optical, acoustic)
- Solar cells

Over 60 clients served

Application areas:

- Consumer electronics
- Medical implant
- Medical diagnostics
- Infrared imaging
- Industrial safety
- System health monitoring
- Ultrasound imaging
- Optical telecom
- Solid state lasers
- Chip cooling
- Cell culture
- Drug discovery
- Gas flow metering
- Advanced packaging
- Solar

What are MEMS?

- Micro Electro Mechanical Systems
 - Not a platform device technology
 - But a powerful manufacturing technology for miniaturization
- Semiconductor process heritage

Airbag sensors (1980)

Source: Ed Phillips

Airbag sensors (2005)

Challenge of MEMS development

- High technical complexity
 - Coupled physics
 - Moving parts
 - Environmental exposure
 - Test and packaging challenges

Microvision Pico-P

TI DLP pixels

Why MEMS are exciting for so many applications

- Smaller, better, cheaper
 - But not always all three
- Ease of electronics integration enables sophisticated capabilities in small form factor:
 - Multiple sensors
 - Signal processing and analysis
 - Telemetry capability
 - Low power

Stacked MEMS and ASIC chips, wirebonded

Integrated Pressure Sensor

Source: IMD

Source: Chipworks/Kionix

MEMS are not ICs

- Parallels to IC are misleading
 - IC design to product < 18 months
 - Enabled by well established processes, design rules, sophisticated simulation software
 - Competitive wafer costs
- MEMS design to product timeline > 5 years typical
 - Lack of sophisticated simulation tools and process standards
 - Solutions evolving slowly
 - Wafer costs vary widely

MEMS Supplier Ecosystem: circa 1995

Only large, vertical companies can do this (and did)

Large companies dominate industry today

MEMS Supplier Ecosystem: 2010

Specialization reduces resource requirements

Development timelines have improved significantly

MEMS Development Timelines: Survey

How long does it take to develop new MEMS products (from existing technology)?

(N = 16)

Source: MEMS Industry Group (2009)

Viable business models for new MEMS companies

"Real men have fabs." – Jerry Sanders, AMD

Today: "Smart MEMS companies don't have fabs"

- Fabless
 - Plenty of capacity
- Hybrid or Fab-Lite
 - Adds value with specialty processes/equipment that are kept in-house
 - Release processes, calibration, integration
 - Can be an IP control strategy, especially when there is "secret sauce"

Working with foundries

- Choosing the right foundry partner is essential and should be viewed as a long term relationship
 - Partner, not vendor
 - Cannot just throw MEMS designs "over the fence"
 - Switching foundries = starting over (\$\$\$ and time)

Foundry selection

- Evaluate process capability, experience with your type of product
- Make sure you have compatible:
 - Business models
 - Timelines
 - Expectations
 - Quality standards
 - Product volumes ideally, don't want to be smallest or largest customer

Not all MEMS will need 200mm wafers

Number of Wafers Needed to Produce 10M Units (85% yield)

Typical timeline: Always longer than you expect

Cost of New Device (Fabless) Development: Minimums

Development challenges: Process know-how

- Much of MEMS process design is still art
 - Few formal standards
 - Diverse tool set process experience is situational
 - Foundry-specific design rules NOT available for existing simulation packages
 - No ability for end-to-end simulation prior to fab start
 - Good MEMS design requires having good process engineers

Development challenges: Human resources

- MEMS companies need skilled and experienced engineers
 - In the US, these skills learned in graduate school programs, at PhD level
 - Very few PhD grads per year, and many need visas
- Even fabless MEMS product companies should have experienced process engineers on staff

MEMS patent landscape

- USPTO grants MEMS patents very liberally (my opinion)
 - Many overlapping claims between patents
 - Need for cross-licensing between competitors, in order to achieve "freedom to operate"
 - Fights and deals:
 - Microfluidics: Caliper vs. ACLARA (lost)
 - Microphones: Knowles vs. Akustica (deal)
 - Microphones: ADI vs. Knowles (TBD)
 - Oscillators next?

MEMS IP value is transient

- Creative end-run around possible
- As more competitors enter market, profit margins for entire sector regress towards mean, IP value deflates
- Fabrication process IP protection has pros and cons
 - Easily defended, but:
 - Shackles you to a process that may prove inefficient or obsolete over time
- Deals, licenses, etc. should acknowledge time constant of the IP's value

Conclusions

- It's a tough business, but improving
- Be realistic about funding and R&D timelines
- Leverage foundries, standard tools, processes, and methods to the extent possible
- Consider buying/licensing existing MEMS technology before attempting to build your own
- Customers want system functionality, not just chips

