Índice general

1.	Introducción	•
2.	Ejercicios Iniciales de EDP	ţ
3.	Más Ejercicios	(

Capítulo 1

Introducción

Misma numeración que PDF con ejercicios. Resuelto hasta 2.4 (b).

Notación

■ log es por defecto ln.

Actualizado a 8 de febrero de 2020.

Capítulo 2

Ejercicios Iniciales de EDP

2.1. Ejercicios

Encontrar las soluciones u(x,y) de las siguientes ecuaciones diferenciales: (a) $u_x = 0$ (b) $u_y = 0$

Solución 2.1

- (a) $u = \int u_x dx = \int 0 \cdot dx = 0 + \phi(y) \rightarrow u(x, y) = \phi(x)$ Comprobación: $\frac{\partial \phi}{\partial x} = u_x = 0$ Ejemplos: $\phi(y) = \sin y$, $\exp -y^2$, $\frac{1+y^2}{y-1}$, etc.
- (b) Procedimiento idéntico a 2.1 (a). $u(x,y) = \phi(x)$

2.2. Ejercicios

Resolver: (a) $u_{xx} = 0$ (b) $u_{xy} = 0$

Solución 2.2

(a) $u_x = \int u_{xx} dx = 0 + \phi_0(y) \to u = \int u_x dx = \phi_0(y) \cdot x + \phi_1(y) \ u(x,y) = \phi_0(y) \cdot x + \phi_1(y)$

Comprobación: $\frac{\partial^2 u}{\partial x^2} = 0$

Ejemplos: $u(x,y) = \sin y \cdot x + \cos y$, $\exp -y^2 \cdot x + \log y$, etc.

(b) Procedimiento idéntico a 2.2 (a). $u(x,y) = \phi_1(x) + \phi_2(y)$

Nota: Las funciones $\phi(x)$ y $\phi(y)$ deben ser de clase C^1 .

Ejemplo: $u(x,y) = \alpha \cdot x + \beta \cdot y$, etc.

2.3. Ejercicios

Resolver: (a) $u_{xx} - u = 0$ (b) $u_{xx} + 4u = 0$

Solución 2.3

- (a) Separando variables: $u(x,y) = F(x)G(y) \rightarrow u_{xx} = F''(x)G(y)$ Sustituyendo: F''(x)G(y) - F(x)G(y) = 0Es decir: F''(x) = F(x), cuyo polinomio característico es: $\lambda^2 - 1 = 0$, con $\lambda_{1,2} = \pm 1$. Por lo tanto, $F(x) = c_1 \cdot e^{+x} + c_2 \cdot e^{-x}$. Entonces, $u(x,y) = (c_1 \cdot e^{+x} + c_2 \cdot e^{-x}) \cdot G(y)$, donde G(y) es una función arbitraria de y.
- (b) Procedimiento idéntico a 2.3 (a). $p(\lambda) = \lambda^2 + 4, \ \lambda_{1,2} = \pm 2i.$ $u(x,y) = (c_1 \cdot \cos 2x + c_2 \cdot \sin 2x) \cdot G(y).$

2.4. Ejercicios

Resolver: (a) $u_y - 2yu = 0$ (b) $u_x = 2xyu$

Solución 2.4

(a) Separación de variables: $u(x,y) = F(x)G(y) \rightarrow u_y = F(x)G'(y)$

$$F(x)G'(y) + 2yF(x)G(y) = 0$$

$$\frac{G'}{G} = -2y \to \int \frac{G'}{G} = -2\int y \, dy \to \log G = -y^2$$

Entonces, $G(y) = e^{-y^2} \rightarrow u(x, y) = F(x) \cdot e^{-y^2}$

(b) Método de las Características Ejercicio 2.4 (b)

Se puede aplicar el método de las características en toda ecuación de la forma:

$$Au_y + Bu_x = Hu + F$$

2.5. EJERCICIOS

7

donde A, B, H, F son f(x, y). Pero como en este caso la ecuación es incompleta, se consigue lo mismo que con integración directa.

Cabe destacar que la ecuación característica, y = K, implica que aparecerá una función arbitraria de y.

Integración Directa Ejercicio 2.4 (b)

$$\int \frac{u'}{u} = 2y \cdot \int x \ dx \to \log u = yx^2 + \phi(y)$$

Entonces, $u(x,y) = G(y) \cdot e^{yx^2}$.

2.5. Ejercicios

Resolver: (a) $u_{xy} = -u_x$

Solución 2.5

- (a) A
- (b) B

2.6. Ejercicios

Resolver: (a) $u_{xyy} + u_x = 0$

Solución 2.6

(a) A

2.7. Ejercicios. Problema de Valor Inicial

Resolver para u(x,t):

*
$$\frac{\partial u}{\partial t} = -q(x)u(x,t), \quad 0 < x < \infty, \quad t > 0$$

*
$$u(x,0) \equiv u_0(x), \qquad 0 < x < \infty, \quad t = 0$$

*
$$signo(q(x)) \to \lim_{t \to \infty} u(x,t) = 0.$$

Solución 2.7

(a) A

Capítulo 3 Más Ejercicios

Ejercicios