

# Winning Space Race with Data Science

SARTHAK JAIN 16<sup>th</sup> June 2024



## Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

## **Executive Summary**

## Summary of methodologies

- Data Collection through API
- Data Collection with Web Scraping
- Data Wrangling
- Exploratory Data Analysis with SQL
- Exploratory Data Analysis with Data Visualization
- Interactive Visual Analytics with Folium
- Machine Learning Prediction

#### Summary of all results

- Exploratory Data Analysis result
- Interactive analytics in screenshots
- Predictive Analytics result

## Introduction

Project background and context

Space X advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because Space X can reuse the first stage. Therefore, if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against space X for a rocket launch. This goal of the project is to create a machine learning pipeline to predict if the first stage will land successfully.

- Problems you want to find answers
- What factors determine if the rocket will land successfully?
- The interaction amongst various features that determine the success rate of a successful landing.
- What operating conditions needs to be in place to ensure a successful landing program.



# Methodology

#### **Executive Summary**

- Data collection methodology:
  - Using SpaceX Rest API
  - Using Web Scrapping from Wikipedia
- Perform data wrangling
  - Filtering the data
  - Filling missing values
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
  - Build, train, and evaluate models using various algorithms

#### **Data Collection**

Describe how data sets were collected.

We collected data using a combination of SpaceX REST API requests and web scraping from a table in SpaceX's Wikipedia entry. We had to utilize both methods to gather comprehensive information about the launches for a more thorough analysis.

You need to present your data collection process use key phrases and flowcharts

The following data columns were obtained using SpaceX REST API: Flight Number, Date, Booster Version, Payload Mass, Orbit, Launch Site, Outcome, Flights, Grid Fins, Reused, Legs, Landing Pad, Block, Reused Count, Serial, Longitude, Latitude.

## Data Collection – SpaceX API

- Data collected via API followed the below process.
- Launch data collected included date, payload size, rocket booster version, launch site, and launch outcome.

#### SpaceX REST API process



## **Data Collection - Scraping**

- Data collected via web scraping followed the below process.
- Launch data collected included date, payload size, rocket booster version, launch site, and launch outcome.

#### SpaceX REST API process



# **Data Wrangling**

- Conducted data wrangling on the collected data.
- The purpose of data wrangling was to perform initial exploratory data analysis (EDA) and identify potential patterns in the data and define labels for training supervised learning models.
- Tasks in this step included:
  - Calculating the number of launches at each site
  - Calculating the number and occurrence of each launch orbit
  - Calculate the number and occurrence of mission outcome per orbit type.
  - Calculating the number of each landing outcome
  - Creating a binary landing outcome label
- For the landing outcome label, "1" represents the first stage booster successfully landed, and "O" represents the booster was unsuccessful in landing.

## **EDA** with Data Visualization

- As part of the EDA process, several plots were created to examine trends in the data.
- Scatter Plot: Show the relationship/correlation between two variables. Used to identify patterns. The following scatter plots were created:
  - Flight Number vs Payload Mass, with color indicating launch outcome
  - Flight Number vs Launch Site Location, with color indicating launch outcome
  - Payload Mass vs Launch Site Location, with color indicating launch outcome
  - Flight Number vs Orbit Type, with color indicating launch outcome
  - Payload Mass vs Orbit Type, with color indicating launch outcome
- Bar Chart: Used to compare values among discrete categories. The bar chart created for this
  analysis illustrated success rate for each launch orbit type.
- Line Chart: Typically used to show time series trends. The line chart created for this analysis illustrated annual success rate over time (from 2010-2020)

## **EDA** with Data Visualization - Continued

• Scatter Plot:



• Bar Chart:



• Line Chart:



## EDA with SQL

- Used SQL to conduct additional EDA on launch data, performing various queries to better understand the data and identify any trends or patterns.
- The following queries were performed:
  - Display the names of the unique launch sites.
  - Display 5 records where launch sites begin with the string "CCA".
  - Display the total payload mass caried by boosters launched for NASA (CRS).
  - Display the average payload mass carried by F9 v1.1 boosters.
  - List the date when the first successful landing outcome on a ground pad was achieved.
  - List the names of the boosters which landed successfully on a drone ship and have a payload mass between 4000 kg and 6000 kg.
  - List the total number of successful and unsuccessful mission outcomes.
  - List the names of the booster versions which carried the maximum payload mass
  - List records that failed landings on drone ships in 2015
  - Rank the count of landing outcomes between 06/04/2010 and 03/20/2017 in descending order

## Build an Interactive Map with Folium

- Built an interactive map using the Folium library to illustrate geospatial data related to the launches.
- First, created to a map to show all launch sites.
  - Added circles to denote the location of each launch site, with a popup label displaying the site name.
  - Added markers to display the name of the launch site by each circle.
- Next, indicated the result of the launches at each site.
  - Added markers for each launch and added color to indicate success (green) or failure (red).
  - Created marker clusters at each site to improve readability.
- Last, calculated distance from each launch site to nearby points of interest (highway, railroad, airport, etc.).
  - Added MousePosition to determine coordinates and wrote function to calculate distances between coordinates.
  - Added a PolyLine between site CCAFS SLC-40 and the coastline, with distance as the label.
  - Added a PolyLine with distance between site VAFB SLC-4E and the nearest railroad.
  - Added a PloyLine with distance between site VAFB SLC-4E and the nearest city.

## Build a Dashboard with Plotly Dash

- Used Plotly Dash to build an interactive dashboard, allowing users to adjust parameters and see updated charts in real time.
- Created a Pie Chart with a dropdown menu listing the launch sites.
  - When all launch sites selected, pie chart displays the percent of successful launches at each site.
  - When a single launch site selected, pie chart displays number of successes and failures at that site.
  - This is a useful visualization for identifying which site experienced the most successful launches.
- Created a Scatter Chart of Payload Mass vs. Launch Outcomes for each Booster version.
  - Displays any correlation between payload mass and success rates.
  - Coloring points by Booster version provides additional information which Boosters have the highest success rates.
  - Created range slider for Payload Mass, allowing the user to set a range for the x-axis on the chart.

# Predictive Analysis (Classification)



## Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results



## Flight Number vs. Launch Site



- Flight numbers are on the x-axis, launch sites are on the y-axis, with blue data points indicating mission failure and orange data points indicating mission success.
- Site CCAFS SLC 40 had the highest number of launches, including 18 of the first 20 launches.
- Success rate improved over time, with early launches having a high failure rate, and later launches experiencing higher success rates.

## Payload vs. Launch Site



- Payload Mass (in kg) is on the x-axis, Launch Site is on the y-axis, with blue data points indicating failure, and orange data points representing success.
- The majority of the launches carried payloads less than 7,000 kg.
- Site VAFB SLC 4E did not launch a rocket with a payload greater than 10,000 kg.
- High payload launches (greater than 8,000 kg) experienced a high success rate.

# Success Rate vs. Orbit Type

- Orbit type is the x-axis, success rate is on the y-axis.
- ES-L1, GEO, HEO, and SSO had the highest success rates at 100%.
- SO had the lowest success rate, at 0%.
- GTO, ISS, LEO, MEO, and PO all had success rates between 50% and 80%.



# Flight Number vs. Orbit Type



- Flight number is on the x-axis, orbit type is on the y-axis, with blue data points indicating mission failure and orange data points indicating mission success.
- Majority of launches up to flight 55 had orbits of LEO, ISS, PO, or GTO.
- For LEO, success rate appears to improve over the launches, while GTO does not demonstrate a clear relationship.

22

## Payload vs. Orbit Type



- Payload Mass (in kg) is the x-axis, orbit type is the y-axis, with blue data points indicating mission failure and orange data points indicating success.
- Success rates for PO, ISS, and LEO increase as payload mass increases.
- GTO does not display any clear correlation between success and payload mass.

# Launch Success Yearly Trend

- Year is the x-axis, success rate is the yaxis.
- Launches from 2010-2013 had a 0% success rate.
- Success rate improved between 2013-2020.
- There is drastically improvement between 2015-2017.
- There is a drop in success rate between 2017-2018



## All Launch Site Names

Query: select distinct launch\_site from SPACEXDATASET

• Result:

#### launch\_site

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E

# Launch Site Names Begin with 'CCA'

• Query: select \* from SPACEXDATASET where launch\_site like 'CCA%' limit 5;

• Result:

| DATE           | timeutc_ | booster_version | launch_site     | payload                                                                         | payload_masskg_ | orbit        | customer              | mission_outcome | landing_outcome     |
|----------------|----------|-----------------|-----------------|---------------------------------------------------------------------------------|-----------------|--------------|-----------------------|-----------------|---------------------|
| 2010-<br>06-04 | 18:45:00 | F9 v1.0 B0003   | CCAFS LC-<br>40 | Dragon<br>Spacecraft<br>Qualification<br>Unit                                   | 0               | LEO          | SpaceX                | Success         | Failure (parachute) |
| 2010-<br>12-08 | 15:43:00 | F9 v1.0 B0004   | CCAFS LC-<br>40 | Dragon<br>demo flight<br>C1, two<br>CubeSats,<br>barrel of<br>Brouere<br>cheese | 0               | LEO<br>(ISS) | NASA<br>(COTS)<br>NRO | Success         | Failure (parachute) |
| 2012-<br>05-22 | 07:44:00 | F9 v1.0 B0005   | CCAFS LC-<br>40 | Dragon<br>demo flight<br>C2                                                     | 525             | LEO<br>(ISS) | NASA<br>(COTS)        | Success         | No attempt          |
| 2012-<br>10-08 | 00:35:00 | F9 v1.0 B0006   | CCAFS LC-<br>40 | SpaceX<br>CRS-1                                                                 | 500             | LEO<br>(ISS) | NASA<br>(CRS)         | Success         | No attempt          |
| 2013-<br>03-01 | 15:10:00 | F9 v1.0 B0007   | CCAFS LC-<br>40 | SpaceX<br>CRS-2                                                                 | 677             | LEO<br>(ISS) | NASA<br>(CRS)         | Success         | No attempt          |

# **Total Payload Mass**

Query: select sum(payload\_mass\_\_kg\_) as total\_payload\_mass from SPACEXDATASET where customer = 'NASA (CRS)';

• Result : total\_payload\_mass 45596

## Average Payload Mass by F9 v1.1

- Query : select avg(payload\_mass\_kg\_) as average\_payload\_mass from SPACEXDATASET where booster\_version like '%F9 v1.1%';
- Result : average\_payload\_mass

2534

## First Successful Ground Landing Date

- Query: select min(date) as first\_successful\_landing from SPACEXDATASET where landing\_outcome = 'Success (ground pad)';
- Result:

first\_successful\_landing

2015-12-22

#### Successful Drone Ship Landing with Payload between 4000 and 6000

• Query: select booster\_version from SPACEXDATASET where landing\_\_outcome = 'Success (drone ship)' and payload\_mass\_\_kg\_ between 4000 and 6000;

#### • Result:

#### booster\_version

F9 FT B1022

F9 FT B1026

F9 FT B1021.2

F9 FT B1031.2

#### Total Number of Successful and Failure Mission Outcomes

 Query: select mission\_outcome, count(\*) as total\_number from SPACEXDATASET group by mission\_outcome;

| • Result : | mission_outcome                  | total_number |  |
|------------|----------------------------------|--------------|--|
|            | Failure (in flight)              | 1            |  |
|            | Success                          | 99           |  |
|            | Success (payload status unclear) | 1            |  |

# **Boosters Carried Maximum Payload**

Query: select booster\_version from SPACEXDATASET where payload\_mass\_\_kg\_ = (select max(payload\_mass\_\_kg\_) from SPACEXDATASET);

• Result:

```
F9 B5 B1048.4
F9 B5 B1049.4
F9 B5 B1051.3
F9 B5 B1056.4
F9 B5 B1048.5
F9 B5 B1049.5
F9 B5 B1060.2
F9 B5 B1051.6
F9 B5 B1060.3
F9 B5 B1049.7
```

## 2015 Launch Records

Query: select monthname() as month, , booster\_version, launch\_site, landing\_outcome
 from SPACEXDATASET wherelanding\_outcome = 'Failure (drone ship)' and year()=2015;

#### Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

Query: select landing\_\_outcome, count(\*) as count\_outcomes from SPACEXDATASET where between '2010-06-04' and '2017-03-20' group by landing\_\_outcome order by count\_outcomes desc;

#### • Result:

| landing_outcome        | count_outcomes |
|------------------------|----------------|
| No attempt             | 10             |
| Failure (drone ship)   | 5              |
| Success (drone ship)   | 5              |
| Controlled (ocean)     | 3              |
| Success (ground pad)   | 3              |
| Failure (parachute)    | 2              |
| Uncontrolled (ocean)   | 2              |
| Precluded (drone ship) | 1              |



## Map Of All SpaceX Falcon 9 Launch Site



- This map shows the location of the two launch sites.
- All launch sites are in the southern portion of the United States and are close to the coast.

# Launch Outcome By Site



- Added Marker Clusters to each launch site to indicate the number of launches at each site.
- The top map illustrates the small scale view. Yellow circles represent the clusters, the number showing the number of launches.
- The bottom map shows a zoomed in view of the VAFB SLC 4E launch site.
   Markers in the cluster are assigned a color:
  - Red Failed landing
  - Green Successful landing

## Launch Site Distance To Landmark



 All launch sites are near the coast to launch rockets over the water and are near a major transportation route (highway/railroad)



## Classification Accuracy

- The Decision Tree Classification Model scored the best of the four models.
- All four models have similar accuracy scores.
  - Highest = Decision Tree (0.889)
  - Lowest = Logistic Regression (0.846)
- All models have the same accuracy score on the test data set (0.833).
- As new data becomes available for training, one model may appear as the definitive best.

## **Confusion Matrix**

- Models predicted the outcome of 18 launches.
  - Accurately predicted 15 of 18 outcomes. (83.3%)
  - 3 of the predicted successes failed. (16.7%)



## **Conclusions**

#### • Findings from Exploratory Data Analysis (EDA):

- As more rockets are launched, success rate improves (flight number and success rate positively correlated).
- ES-L1, GEO, HEO, and SSO orbits had the highest success rates (100%).
- Success rates improved from 2013-2020, from 0% to ~80%.

#### Findings from Proximities Analysis:

- Launch sites are in the southern United States, as near the equator as practical.
- Launch sites are near the coast and a major highway or railroad.

#### From Predictive Analysis:

- Decision Tree Classification scored the best, but all four models performed similarly well.
- All models experienced Type I errors, which is the less desirable error and can result in underestimate costs.
- As new data is available, using it to train/test the data should improve results.

