Sprawozdanie lab 1_2

WSI lab1 2

Wartości wszystkich funkcji zostały przybliżone do 5 miejsc po przecinku

▼ Funkcja Booth

Przykładowe ekstrema znalezione przez algorytm

L.p	Wartość funkcji	Współrzędne punktu
1	0.0	[1.00000246 2.99999754]
2	0.0	[1.00000746 2.99999254]
3	0.0	[0.9999949 3.0000051]
4	0.01	[1.00216739 2.99783261]
5	153.24526	[-7.75343539 11.75343525]

L.p	Beta	Liczba kroków	Wartosc funkcji
1	0.05	150	0.0
2	0.05	150	0.0
3	0.05	150	0.0
4	0.01	400	0.00001
5	0.01	100	153.24526

Na podstawie przeprowadzonego doświadczenia możemy stwierdzić, że do otrzymania ekstremum globalnego należy równomiernie zmniejszać betę zwiększająć liczbę kroków lub odwrotnie. Funkcja booth posaida ekstremum globalne w punkcie (1,3) gdzie osiąga wartość 0. Algorytm dobrze sobie poradził z odnalezieniem tej wartości w zadowalającym nas czasie.

Booth Przyk. 1 Beta = 0.05; 150 kroków

Booth Przyk. 2 Beta = 0.05; 150 kroków

Booth Przyk. 3 Beta = 0.05; 150 kroków

Booth Przyk. 4 Beta = 0.01; 400 kroków

Booth Przyk. 5 Beta = 0.01; 100 kroków

▼ f1

Przykładowe ekstrema znalezione przez algorytm

L.p	Beta	Liczba kroków	Wartość funkcji
1	0.00000007	1800	104.79330
2	0.00000007	1800	307.81918
3	0.00000007	1800	1423.92902
4	0.00000002	1500	3900.31986
5	0.00000005	1500	120.73196
6	0.0000001	1800	1110.25707

L.p	Wartość funkcji	Współrzędne punktu
1	104.79330	[-53.95992048 -70.42955972 -29.61018187 -58.32676328 22.08960188 59.93874989 31.92133219 18.55873627 76.68042093 -33.27543599]
2	307.81918	[-46.60799563 -70.42955972 -29.61018187 -58.32676328 22.08960188 59.93874989 39.47169995 18.55873627 76.68042093 -39.47465095]
3	1423.92902	[-33.39734045 -70.42955972 -29.61018187 -58.32676328 22.08960188 59.93874989 53.03893668 18.55873627 76.68042093 -50.61400463]
4	3900.31986	[-18.20778474 -70.42955972 -29.61018187 -58.32676328 22.08960188 59.93874989 68.63848835 18.55873627 76.68042093 -63.4219866]
5	120.73196	[-58.01429137 -70.42955972 -29.61018187 -58.32676328 22.08960188 59.93874989 27.75752587 18.55873627 76.68042093 -29.85675079]
6	1110.25707	[-74.38866617 -70.42955972 -29.61018187 -58.32676328 22.08960188 59.93874989 10.94117452 18.55873627 76.68042093 -16.04971778]

Na podstawie przeprowadzonego doświadczenia możemy stwierdzić, że dla różnych wartości parametru beta otrzymujemy różne ekstrema. Dla naszych ograniczeń kostkowych (-100, 100) parametr beta rzędu 10^{-8} stanowi różnicę 10 rzędów wielkości a mimo to algorytm był w stanie znaleźć punkt w którym wartość funkcji jest zbliżona do wartości optimum globalnego.

F1 Przyk. 1 Beta: 0.000000007 1800 kroków

F1 Przyk. 4 Beta: 0.00000002 1500 kroków

F1 Przyk. 4 beta: 0.00000002 1500 kroków, przybliżenie

▼ f2Przykładowe ekstrema znalezione przez algorytm

L.p	Beta	Liczba kroków	Wartość funkcji
1	1e-18	1000	32015019719670.53
2	1e-18	1000	1.2522975039227843e+17
3	1e-18	1000	5.290844394678611e+16

L.p	Wartość funkcji	Współrzędne punktu
1	32015019719670.53	[66.70630558 -33.51309888 98.52693186 46.94054731 -2.49761609 53.21825933 -77.99550858 36.65824602 -26.11107954 35.32620378]
2	307.81918	[-46.60799563 -70.42955972 -29.61018187 -58.32676328 22.08960188 59.93874989 39.47169995 18.55873627 76.68042093 -39.47465095]
3	5.290844394678611e+16	[58.79381753 -51.2492591 -37.97572474 28.91434467 6.80780384 -13.58208832 -92.15819547 32.50460982 22.76771861 -53.37110394]

Funkcja F2 przyjmuje ogromne wartości, dlatego aby być w stanie ją badać należy ustawić bardzo małą betę i zwiększyć liczbę kroków. Podczas znajdowania optimum dużo zależy od wylosowanego punktu startowego. Algorytm nie jest w stanie znaleźć poprawnego ekstremum dla tej funkcji.

F2 Przyk 1 beta: 1e-18 1000 kroków

F2 Przyk 1 beta: 1e-18 1000 kroków

F2 Przyk 2 beta: 1e-18 1000 kroków

F2 przyk 3 beta: 1e-18 1000 kroków

F2 przyk 3 beta: 1e-18 1000 kroków

▼ f3

L.p	Wartość funkcji	Współrzędne punktu
1	53880.91764	[15.08562731 -69.91799015 -75.76721071 11.79647375 48.78902288 20.34634038 -28.0719482 -14.10314678 30.96578335 -56.78399133]
2	35027.42555	[-46.47883898 -28.88320776 -61.52211155 73.97083859 -17.89382366 -14.30203986 36.99163194 66.47559499 44.81654162 -28.73399413]
3	124636.06168	[73.38570052 7.37504342 -87.58981283 -1.01551532 0.21443188 -9.96783874 -24.81483969 97.84174884 11.15849964 73.05147252]
4	69353.12933	[43.13563113 11.54564339 34.48365077 12.34021144 -63.2332472 9.50601627 -25.61149056 16.98873393 46.33979595 41.11909574]

L.p	Beta	Liczba kroków	Wartosc funkcji
-----	------	---------------	-----------------

L.p	Beta	Liczba kroków	Wartosc funkcji
1	0.000001	100	53880.91764
2	0.00000001	10_000	35027.42555
3	0.00000001	10_000	124636.06168
4	0.00000001	10_000	69353.12933

F3 Przyk. 1(a) beta: 0.0000001 100 kroków

F3 Przyk. 1(b) beta: 0.0000001 100 kroków

F3 przyk. 3 beta: 0.00000001 10000 kroków

F3 przyk. 4 beta: 0.00000001 10000 kroków

Badana funkcja jest bardzo trudna do oceny, ze względu na swoją złożoność. Podobnie jak w przypadku funkcji f2 przy takich obliczeniach bardzo szybko zbliżamy się do dokładności zapisu liczb rzeczywistych w komputrze co dodatkowo utrudnia badanie

takiej funkcji. Otrzymane wyniki bardzo zależą od wylosowanego punktu startowego a znalezione punkty nie są zbliżone do optimum globalnego funkcji. Algorytm nie poradził sobie z optymalizacją tej funkcji.