No. 67.

Cts.

60

## HYDRAULIC TABLES

FOR THE

CALCULATION OF THE DISCHARGE

THROUGH

SEWERS, PIPES AND CONDUITS;

BASED ON KUTTER'S FORMULA.

By P. J. FLYNN, Civil Engineer.

REPRINTED FROM VAN NOSTRAND'S MAGAZINE,

### Handle with **EXTREME CARE**

This volume is damaged or brittle and **CANNOT** be repaired!

- photocopy only if necessary
   return to staff
- do not put in bookdrop

Gerstein Science Information Centre

NEW YORK:

D. VAN NOSTRAND, PUBLISHER,

23 MURRAY AND 27 WARREN STREET. 1883.

#### THE VAN NOSTRAND SCIENCE SERIES.

18mo, Green Boards. Price 50 Cents Each.

Amply Illustrated when the Subject Demands.

- No. 1.—CHIMNEYS FOR FURNACES, FIREPLACES AND STEAM BOILERS. By R. Armstrong, C. E. 2d Edition, with an Essay on High Chimneys, by Pinzger.
- No 2.-STEAM BOILER EXPLOSIONS. By Zerah Colburn.
- No. 3.—PRACTICAL DESIGNING OF RETAINING WALLS. By Arthur Jacob, A. B.
- No. 4.—PROPORTIONS OF PINS USED IN BRIDGES. By Charles Bender, C. E.
- No. 5.—VENTILATION OF BUILDINGS. By W. F. Butler. Edited and Enlarged by Jas. L. Greenleaf. 2d Edition.
- No. 6.—ON THE DESIGNING AND CONSTRUCTION OF STORAGE RESERVOIRS. By Arthur Jacob, A.B.
- No. 7.—SURCHARGED AND DIFFERENT FORMS OF RETAINING WALLS. By Jas. S. Tate, C. E.
- No. 8.—A TREATISE ON THE COMPOUND ENGINE. By John Turnbull, Jr. 2d Edition. With Additions by Prof. S. W. Robinson.
- No. 9.—FUEL. By C. William Siemens, D. C. L., to which is appended the VALUE OF ARTIFICIAL FUELS AS COMPARED WITH COAL. By John Wormald, C. E.
- No. 10.—COMPOUND ENGINES. Translated from the French of A. Mallet With Results of American Practice, by R. H. Buel, C. E. 2d Edition.
- No. 11.—THEORY OF ARCHES. By Prof. W. Allan.
- No. 12.—A THEORY OF VOUSSOIR ARCHES. By Prof. W. E. Cain.
- No. 13.—GASES MET WITH IN COAL MINES. By J. J. Atkinson. 3d Edition, Revised. To which is added THE ACTION OF COAL DUSTS. By E. H. Williams, Jr., E. M.
- No. 14.-FRICTION OF AIR IN MINES. By J. J. Atkinson.
- No. 15.—SKEW ARCHES. By Prof. E. W. Hyde, C. E.
- No. 16.—A GRAPHIC METHOD FOR SOLVING CERTAIN ALGEBRAICAL EQUATIONS. By Prof. Geo. L. Vose.
- No. 17.—WATER AND WATER SUPPLY. By Prof. W. H. Corfield, M. A.
- No. 18. -SEWERAGE AND SEWAGE UTILIZATION. By Prof. W. H. Corfield.
- No. 19.—STRENGTH OF BEAMS UNDER TRANSVERSE LOADS. By Prof. W. Allan.
- No. 20.-BRIDGE AND TUNNEL CENTRES. By John B. McMasters, C. E.
- No. 21.—SAFETY VALVES. By Richard H. Buel, C. E.

# HYDRAULIC TABLES

FOR THE

CALCULATION OF THE DISCHARGE

 ${\tt THROUGH}$ 

### SEWERS, PIPES AND CONDUITS;

BASED ON KUTTER'S FORMULA.

By P. J. FLYNN, Civil Engineer.

REPRINTED FROM VAN NOSTRAND'S MAGAZINE,



NEW YORK:

D. VAN NOSTRAND, PUBLISHER, 23 MURRAY AND 27 WARREN STREET.

1883.

107111

ELECTRONIC VERSION
AVAILABLE

900248 wii-276A

#### ERRATA.

Page 19, 9th line from top,

 $\frac{81.26}{5}$  = 16.252 should be  $\frac{81.24}{5}$  = 16.248.

Page 19, 5th line from bottom,

 $\frac{81.26}{1796.5}$  = .045232 should be  $\frac{81.24}{1796.5}$  = .045221.

Page 26, third column, 4th line from bottom, 1.558 should be 1.458.

" 30, fifth column, 4th line from bottom, 80216 should be 80916.

" 35, third column, bottom line, .121286 should be .121268.

"48, second column, 6th line from bottom, .004081623 should be .004081633.

" 51, second column, 4th line from top, .008546099 should be .003546099.

" 64, second column, 8th line from top, .001136752 should be .002136752.

" 65, second column, 3d line from bottom, .092057613 should be .002057613.

" 66, third column, 4th line from top, .045085 should be .045038.

" 68, second column, 1st line from top, .001944246 should be .001934236.

" 68, second column, 2d line from top, .008930502 should be .001930502.

" 90, second column, 3d line from top, .001290190 should be .001209190.

" 112, 14th line from top, .03271 should be .03371.

"133, second column, 2d line from top, 2.156 should be 3.156.

"133, fifth column, 1st line from top, 203,98 should be 208.58.

"134, second column, 6th line from bottom, 12.999 should be 11.999.



#### PREFACE.

The usefulness of such tables as are presented in the following pages requires no demonstration in a preface. A glance at the explanatory text and tabular arrangement of the values will be sufficient to convince the practical engineer, who has ever had occasion to apply Kutter's formula, that the present collection is in an eminent degree of the labor saving kind.

EDITOR OF MAGAZINE.

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

### Hydraulic Tables Based on Kutter's Formula.

The tables given below are intended to facilitate the calculation of velocities, discharges, slopes and dimensions of sewers and other conduits, and their use will effect a great saving of time; as, for instance, instead of calculating the velocity and discharge by the use of a troublesome formula, the same result, practically, will be arrived at by taking the product of two factors given in the tables.

Kutter's formula is a complicated equation, and in its general form is:

$$v = c\sqrt{rs}$$
 in which

$$c = \left\{ \frac{41.6 + \frac{1.811}{n} + \frac{.00281}{s}}{1 + \left( (41.6 + \frac{.00281}{s}) \times \frac{n}{\sqrt{r}} \right)} \right\}$$

In this and the following formulæ,

v=mean velocity in feet per second.

c=coefficient of mean velocity.

s=fall of water surface (h) in any distance (l) divided by that distance =  $\frac{h}{2}$  = sine of slope.

r=hydraulic mean depth=area of cross section of water divided by wetted

perimeter  $= \frac{a}{p}$ .

d=diameter of circular channel.

a := area of cross section of water.

p=wetted perimeter.

Q=discharge in cubic feet per second.

- n=the natural coefficient depending on the nature of the bed, that is, the lining of the channel over which the water flows, which throughout this article, and in the preparation of the tables, has been taken at .015.
- Mr. J. C. Trautwine, in his *Engineer's Pocket Book*, states that, "In consideration of the rough character of sewer brickwork generally," he has taken n=.015 in Kutter's formula when he calculated the velocities in sewers.

Mr. R. Hering, in a paper read before the American Society of Civil Engineers in 1878 on the velocity and discharge of sewers, gave :

"n=.015" for "foul and slightly tuberculated iron: cement and terra cotta pipes with imperfect joints, and in bad order; well dressed stonework and second-class brickwork." The tables do not apply to channels with smooth or plastered surfaces. They are intended to apply only to sewers, conduits and other channels whose surfaces exposed to the flow of water are of second-class brickwork, or have surfaces of other material equally rough, such, for instance, as those given above from Mr. Hering's paper.

The general form of Kutter's formula is:

$$v = c\sqrt{r_s} = c\sqrt{r} \times \sqrt{s}$$
 . . . (1).

from which

$$\mathbf{Q} = a\mathbf{v} = a\mathbf{c}\sqrt{r} \times \sqrt{s} . . . . . (5).$$

from which

$$ac\sqrt{r} = \frac{Q}{\sqrt{s}} \cdot \cdot \cdot \cdot \cdot (7).$$

$$s = \left(\frac{Q}{ac\sqrt{r}}\right)^2 \dots \dots \dots \dots (9).$$

The values of  $c\sqrt{r}$  and  $ac\sqrt{r}$  for 173 diameters are given in Table 1, and the values of  $\sqrt{s}$  for 1072 slopes are given in Table 2. It will then be seen that a large range of channels numbering 185456 are included in these tables. The velocity is found by the product of two factors  $c\sqrt{r}$  and  $\sqrt{s}$ , and in a similar way the discharge is found by the product of the two factors  $ac\sqrt{r}$  and  $\sqrt{s}$ .

In Kutter's formula given above the value of c is found from an equation in-

volving the value of r, n and s, so that any change in the value of s would cause a change in the value of c, but as the influence of s on the value of c is not very marked in such slopes as are usually adopted for sewers and conduits, the value of the coefficient has been calculated for one slope, that of 1 in 1000 or s=.001. This value of the coefficient is practically constant for all values of s with a steeper slope than 1 in 1000, and as sewers are generally designed with steeper slopes than 1 in 1000, the tables are well adapted to facilitate the calculations. For flatter slopes than 1 in 1000 up to even 2 feet per mile, or 1 in 2640, the tables give results showing a maximum error in the case of a sewer 2 feet in diameter of less than 2 per cent., and in the case of a sewer 8 feet in diameter less than 1 per cent.; therefore, for all practical purposes, the tables are sufficiently accurate.

The hydraulic mean depth of a cylindrical conduit flowing full is equal to one-fourth of the diameter.

The mean velocity in circular sewers

and conduits is the same when running half full as when running full.

APPLICATION AND USE OF THE TABLES.

To find the mean velocity in feet per second and the discharge in cubic feet per second.

Example 1.—A circular brick sewer has a diameter of 3 feet and a fall of 1 in 500. What is its mean velocity in feet per second and also its discharge in cubic feet per second?

By formula (1)  $v = c\sqrt{r} \times \sqrt{s}$ .

In column 4 of table 1 and opposite 3 feet diameter the value  $c\sqrt{r}$  is found equal to 80.77, and in table 2 opposite 1 in 500 the value of  $\sqrt{s}$  is found equal to .044721; substituting these values in equation, we have:

 $v = 80.77 \times .044721$ 

=3.61 feet per second the mean velocity.

By formula (5)  $Q=av=a\times 3.61$ , but by table 2 the area of a sewer 3 feet in diameter=7.068; substitute this value in equation and

 $Q = 7.068 \times 3.61$ 

=25.52, the discharge in cubic feet per second.

Again, as a check,

By formula (5)  $Q = ac\sqrt{r} \times \sqrt{s}$ .

In column 4 of table 1, and opposite 3 feet diameter the value of  $ac\sqrt{r}$  is given as 570.9, substituting this value and also the value of  $\sqrt{s}$ , as found above, in equation we have

Q=570.9×.044721=25.53 cubic feet per second the discharge, which is the same as already found above.

Example 2.—To find the diameter.—
(d). The grade (s) of a sewer is to be 1 in 480, and its mean velocity (v) 4 feet per second. What is the required diameter? By formula (2),

$$c\sqrt{r} = \frac{v}{\sqrt{s}}$$

In column 3 of table 2 we find for a slope of 1 in 480 that  $\sqrt{s}$  is equal to .045644. Substitute this in equation, and also the value of v already given, and

$$c\sqrt{r} = \frac{4}{.045644} = 87.63.$$

Now look in column 4 of table 1 for the nearest value of  $c\sqrt{r}$  to this which we find to be 87.15, opposite 3 feet 4 inches in diameter, which is the diameter required.

Example 3.—To find the grade of Sewer.—A sewer 2 feet 6 inches diameter is to have a velocity when running full or half full of not more than  $3\frac{1}{2}$  feet a second. What should its grade be?

By formula (3) 
$$\sqrt{s} = \frac{v}{c\sqrt{r}}$$
.

In column 4 of table 1 find opposite the diameter 2 feet 6 inches that  $c\sqrt{r}$  is equal to 70.74. Substitute this value and also the value of v already given in equation,

and 
$$\sqrt{s} = \frac{3.5}{70.74} = .049477$$
. Now look out

the nearest the value of  $\sqrt{s}$  to this in column 3 of table 2, which we find to be .049507, opposite a slope of 1 in 408, which is the required grade.

To find the grade of sewer when the grade is not given in Table 2.

Example 4.—A sewer having a diameter of 8 feet is to have a velocity of

3½ feet per second. What is its required grade?

By formula (3)  $\sqrt{s} = \frac{v}{c\sqrt{r}}$ . Look out the value of  $c\sqrt{r}$  for 8 feet diameter in Table 1, and it will be found to be 158.7. Substitute this value and also the value of v already given in equation, and

$$\sqrt{s} = \frac{3.5}{158.7} = .022054.$$

On looking for this value of  $\sqrt{s}$  in Table 2 it is not to be found, therefore square each side of equation

$$\sqrt{s}$$
=.022054 and we get  $s$ =.000486379

and  $\frac{1}{.000486379}$ =2056, therefore the slope is 1 in 2056.

To find the diameter (d).

Example 5.—A sewer is to discharge 9 cubic per second and its grade is to be 1 in 200. What is its diameter to be?

By formula (7)  $ac\sqrt{r} = \frac{Q}{\sqrt{s}}$ . In the

third column of Table 2 and opposite 1 in 200 the value of  $\sqrt{s}$  is found to be .070710. Substitute this value and the discharge already given in equation, and

we have  $ac\sqrt{r} = \frac{9}{.070710} = 127.28$ . In column 5 of Table 1, the value of  $ac\sqrt{r}$  nearest to this we find to be 130.58, opposite to which is the diameter of 1 foot 9 inches, which is the diameter required.

To find the grade or slope of sewer. (s).

Example 6.—A sewer 6 feet in diameter is required to discharge 180 cubic feet of water per second. What should be its slope?

By formula (8)  $\sqrt{s} = \frac{Q}{ac\sqrt{r}}$ . In column 5 of Table 1 and opposite 6 feet in diameter the valve of  $ac\sqrt{r}$  is found equal to 3702.3. Substitute this and also the value of Q in equation, and we have

$$\sqrt{s} = \frac{180}{3702.3} = .048618$$
. Now in

column 4 of Table 2 look out the number nearest to this, which will be found to be .048621 opposite a slope 1 in 423, therefore the required grade is 1 in 423.

To find diameters in a series of sewers with increasing discharge.

Example 7.—A circular sewer has for 500 feet in length to discharge 10 cubic feet per second, then for 600 feet more has to discharge 12 cubic feet feet per second, and again for 700 feet, farther on 15 cubic feet per second. The total fall available is 5 feet. What is the required diameter and fall of each section? The total length is 1800 feet and  $\frac{5}{1800} = .002777 = s$  and  $\sqrt{.002777} = .052705 = \sqrt{s}$ .

By formula (7) 
$$ac\sqrt{r} = \frac{Q}{\sqrt{s}}$$
.

In this equation substitute values of Q and s for each section and find the corresponding diameters, which will be the diameters required.

$$ac\sqrt{r} = \frac{10}{.052705} = 189.7$$

$$ac\sqrt{r} = \frac{12}{.052705} = 227.7$$

$$ac\sqrt{r} = \frac{15}{.052705} = 284.6$$

$$ac\sqrt{r} = \frac{15}{.052705} = 284.6$$

$$ac\sqrt{r} = \frac{h}{l} \therefore h = sl, \text{ therefore the}$$
Fall of first section =  $sl = .002777$ 

 $\times 500.....=1.39 \text{ ft.}$ Fall of second section = sl = .002777

×600.....=1.67 "

Fall of third section=sl=.002777 ×700....=1.95 "

We have, therefore,

1st section, diameter 2'-0'', fall 1.39 ft.

2d " " 2'-2" " 1.67 " 3d " " 2'-4" " 1.94 "

To find velocity and discharge of trapezoidal channel.

Example 8.—A trapezoidal channel lined with brickwork, 6 feet wide at bottom and with side slopes of 1 to 1, has 2

feet in depth of water and a grade of 1 in 160. What is its velocity and discharge per second?

Area 
$$(a) = \frac{6+10}{2} \times 2 = 16$$
 square feet.

Wetted perimeter  $(p) = 2 \times \sqrt{2^2 \times 2^2} + 6 = 11.66$  feet.

.: Hydraulic mean depth

$$(r) = \frac{a}{p} = \frac{16}{11.66} = 1.372.$$

In column 3 of Table 1 look out the nearest value of r to this which we find to be 1.375, and corresponding to this we find  $c\sqrt{r}$  equal to 123.5. In Table 2 for a slope of 1 in 160 the value of  $\sqrt{s}$  is found to be =.079057.

Now by formula (1)  $v=c\sqrt{r}\times\sqrt{s}$  and """ (5) Q=av substituting the values above found of the factors, then  $v=123.5\times079057=9.76$  feet per second and  $Q=16\times9.76=156.2$  cubic feet per second, therefore the mean velocity is equal to 9.76 feet per second and the discharge equal to 156.2 cubic feet per second.

To find the dimensions of a circular sewer to replace a rectangular brick channel.

Example 9.—An open brick channel 5 feet wide at bottom, with vertical sides, has a depth of water in floods of 3 feet and a slope of 1 in 520. It is intended to substitute for it a circular sewer whose mean velocity flowing full shall be about 5 ft. per second. What should be the diameter and grade of the new circular sewer flowing full?

In Table 2 the  $\sqrt{s}$  for a grade of 1 in 520=.043853.

Area of rectangular channel  $(a) = 5 \times 3$ =15 sq. ft. Wetted perimeter (p) = 3 + 5 + 3 = 11 feet.  $\therefore$  Hydraulic mean depth

 $(r) = \frac{a}{p} = \frac{15}{11} = 1.364$ . In Table 1 find corresponding to this hydraulic mean depth the nearest  $c\sqrt{r}$ , which is 123.5.

By formula (5)  $Q=a\times c\sqrt{r}\times\sqrt{s}$  substitute the values found above, of the factors in right hand side of equation, and  $Q=15\times123.5\times.043853=81.24$  cubic feet

per second, the discharge from the rectangular channel.

We have now to find the diameter and grade of a circular sewer to convey this quantity of water with a velocity not greater than 5 feet per second.

By formula (6)  $a = \frac{Q}{v}$  substitute values  $a = \frac{81.26}{5} = 16.252$  square feet=area of circular sewer. In column 2 of Table 1 we find the area nearest in value to this = 16.499, and the corresponding diameter equal to 4 feet 7 inches, and at the same time find the value of the corresponding  $ac\sqrt{r}$  which is 1796.5.

By formula  $(8)\sqrt{s} = \frac{Q}{ac\sqrt{r}}$  substitute values of Q and  $ac\sqrt{r}$  found above and

$$\sqrt{s} = \frac{81.26}{1796.5} = 045232.$$

In Table 2 we find the grade corresonding to this equal to 1 in 489, therefore the diameter of circular sewer is 4 feet 7 inches, and the grade 1 in 489.



### CIRCULAR SEWERS AND CON-DUITS FLOWING FULL.

Table 1.—Giving Values of a and r and also the Factors  $c\sqrt{r}$  and also  $ac\sqrt{r}$ .

These factors are to be used only where the value of n, that is the coefficient of roughness of lining of channel=.c15, as in second class or rough-faced brickwork, well-dressed stone work, foul and slightly tuberculated iron, cement and terra cotta pipes with imperfect joints and in bad order.

 $v=c \ Vr \times \ Vs. \ Q=av=ac \ Vr \times \ Vs.$ 

| ame |   | = area in<br>quare ft. | r=hy-<br>draulic<br>mean<br>depth. | For velocity. | For discharge. $ac \sqrt{r}$ |
|-----|---|------------------------|------------------------------------|---------------|------------------------------|
| 0   | 5 | 0.136                  | 0.104                              | 17.36         | 2.3615                       |
| 0   | 6 | 0.196                  | 0.125                              | 20,21         | 3.9604                       |
| 0   | 7 | 0.267                  | 0.146                              | 22.95         | 6.1268                       |
| 0   | 8 | 0.349                  | 0.167                              | 25.56         | 8.9194                       |

| d = ame in ft. | eter | a = area in square ft. | r=hy-<br>draulic<br>mean<br>depth. | For velocity. | For discharge |
|----------------|------|------------------------|------------------------------------|---------------|---------------|
| 0              | 9    | 0.442                  | 0.187                              | 28.10         | 12.421        |
| 0              | 10   | 0.545                  | 0.208                              | 30.52         | 16.633        |
| 0              | 11   | 0.660                  | 0.229                              | 33.03         | 21.798        |
| I              | 0    | 0.785                  | 0.250                              | 35.40         | 27.803        |
| I              | I    | 0.922                  | 0.271                              | 37.60         | 34.664        |
| I              | 2    | 1 069                  | 0.292                              | 39.85         | 42.602        |
| I              | 3    | I.227                  | 0.312                              | 42.05         | 51.600        |
| I              | 4    | 1.396                  | 0.333                              | 44.19         | 61.685        |
| I              | 5    | 1.576                  | 0.354                              | 46.36         | 73.066        |
| I              | 6    | 1.767                  | 0.375                              | 48.38         | 85.496        |
| I              | 7    | 1.969                  | 0.396                              | 50.40         | 99.242        |
| I              | 8    | 2.182                  | 0.417                              | 52.45         | 114.46        |
| I              | 9    | 2.405                  | 0.437                              | 54.29         | 130.58        |

| i | di-<br>eter<br>n<br>in. | square ft. | r=hy-<br>draulic<br>mean<br>depth. | For velocity. | For discharge ac $\sqrt{r}$ |
|---|-------------------------|------------|------------------------------------|---------------|-----------------------------|
| I | 10                      | 2.640      | 0.458                              | 56.29         | 148.61                      |
| I | 11                      | 2.885      | 0.479                              | 58.20         | 167.90                      |
| 2 | 0                       | 3.142      | 0.500                              | 60.08         | 188.77                      |
| 2 | I                       | 3.409      | 0.521                              | 61.95         | 211.20                      |
| 2 | 2                       | 3.687      | 0.542                              | 63,72         | 234.94                      |
| 2 | 3                       | 3.976      | 0.562                              | 65.51         | 260.47                      |
| 2 | 4                       | 4.276      | 0.583                              | 67.32         | 287.87                      |
| 2 | 5                       | 4.587      | 0.604                              | 69.02         | 316.59                      |
| 2 | 6                       | 4.909      | 0.625                              | 70.74         | 347.28                      |
| 2 | 7                       | 5.241      | 0.646                              | 72.59         | 380.46                      |
| 2 | 8                       | 5.585      | 0.667                              | 74.27         | 414.81                      |
| 2 | 9                       | 5 · 939    | 0.687                              | 75.98         | 451.23                      |
| 2 | 10                      | 6.305      | 0.708                              | 77.56         | 488.99                      |

| ame | 1  | a = area in square ft. | r=hy-<br>draulic<br>mean<br>depth. | For velocity. | For discharge ac Vr |
|-----|----|------------------------|------------------------------------|---------------|---------------------|
| 2   | ΙΙ | 6.681                  | 0.729                              | 79.16         | 528.85              |
| 3   | 0  | 7.068                  | 0.750                              | 80.77         | 570.90              |
| 3   | I  | 7.466                  | 0.771                              | 82.39         | 615.14              |
| 3   | 2  | 7.875                  | 0.792                              | 84.03         | 661.77              |
| 3   | 3  | 8.295                  | 0.812                              | 85.54         | 709.56              |
| 3   | 4  | 8.726                  | 0.833                              | 87.15         | 760.44              |
| 3   | 5  | 9.169                  | 0.854                              | 88.61         | 812.38              |
| 3   | 6  | 9.621                  | 0.875                              | 90.11         | 866.91              |
| 3   | 7  | 10.084                 | 0.896                              | 91.60         | 923.70              |
| 3   | €8 | 10.559                 | 0.917                              | 93.11         | 983.11              |
| 3   | 9  | 11.044                 | 0.937                              | 94.62         | 1045.0              |
| 3   | 10 | 11.541                 | 0.958                              | 96.15         | 1109.6              |
| 3   | 11 | 12.048                 | 0.979                              | 97.55         | 1175.2              |

| d=<br>ame<br>ir<br>ft. | eter | a = area in square ft. | r=hy-<br>draulic<br>mean<br>depth. | For velocity. | For discharge ac Vr |
|------------------------|------|------------------------|------------------------------------|---------------|---------------------|
| 4                      | 0    | 12.566                 | 1.000                              | 99.10         | 1245.3              |
| 4                      | I    | 13.096                 | Ι.02Ι                              | 100.5         | 1315.8              |
| 4                      | 2    | 13.635                 | 1.042                              | 102.0         | 1390.8              |
| 4                      | 3    | 14.186                 | 1.062                              | 103.4         | 1466.7              |
| 4                      | 4    | 14.748                 | 1.083                              | 104.8         | 1545.7              |
| 4                      | 5    | 15.321                 | 1.104                              | 106.2         | 1627.0              |
| 4                      | 6    | 15.904                 | 1.125                              | 107.6         | 1711.4              |
| 4                      | 7    | 16.499                 | 1.146                              | 108.9         | 1796.5              |
| 4                      | 8    | 17.104                 | 1.167                              | 110.3         | 1886.8              |
| 4                      | 9    | 17.721                 | 1.187                              | 111.6         | 1977.7              |
| 4                      | 10   | 18.348                 | 1.208                              | 113.0         | 2074.1              |
| 4                      | ΙI   | 18.986                 | 1.229                              | 114.4         | 2172.9              |
| 5                      | 0    | 19.635                 | 1.250                              | 115.7         | 2272.7              |

| am | di-<br>eter<br>in<br>in. | a=area in square ft. | r=hy-<br>draulic<br>mean<br>depth. | For velocity. | For discharge |
|----|--------------------------|----------------------|------------------------------------|---------------|---------------|
| 5  | I                        | 20.295               | 1.271                              | 117.1         | 2376.7        |
| 5  | 2                        | 20.966               | 1.292                              | τ18.4         | 2482.0        |
| 5  | 3                        | 21.648               | 1.312                              | 119.7         | 2590.5        |
| 5  | 4                        | 22.340               | 1.333                              | 121.0         | 2702.1        |
| 5  | 5                        | 23.044               | 1.354                              | 122.2         | 2816.7        |
| 5  | 6                        | 23.758               | 1.375                              | 123.5         | 2934.8        |
| 5  | 7                        | 24.484               | 1.396                              | 124.8         | 3056.4        |
| 5  | 8                        | 25.220               | 1.417                              | 126.0         | 3177.3        |
| 5  | 9                        | 25.967               | 1.437                              | 127.3         | 3305.6        |
| 5  | 10                       | 26.725               | 1.558                              | 128.6         | 3436.3        |
| 5  | 11                       | 27 . 494             | 1.479                              | 129.7         | 3566.6        |
| 6  | 0                        | 28.274               | 1.500                              | 131.0         | 3702.3        |
| 6  | 3                        | 30.680               | 1.562                              | 134.6         | 4130.3        |

|     |   | a = area in square ft. | r=hy-<br>draulic<br>mean<br>depth. | For velocity. | For discharge |
|-----|---|------------------------|------------------------------------|---------------|---------------|
| 6   | 6 | 33.183                 | 1.625                              | 138.3         | 4588.3        |
| 6   | 9 | 35.785                 | 1.687                              | 141.8         | 5074.7        |
| 7   | 0 | 38.485                 | 1.750                              | 145.3         | 5591.6        |
| 7   | 3 | 41.283                 | 1.812                              | 148.7         | 6136.8        |
| 7   | 6 | 44.179                 | 1.875                              | 152.0         | 6717.0        |
| 7   | 9 | 47.173                 | 1.937                              | 155.5         | 7333 · 5      |
| 8   | 0 | 50.266                 | 2.000                              | 158.7         | 7978.3        |
| . 8 | 3 | 53.456                 | 2.062                              | 162.0         | 8658.8        |
| 8   | 6 | 56.745                 | 2.125                              | 165.3         | 9377 - 9      |
| 8   | 9 | 60.132                 | 2.187                              | 168.4         | 10128         |
| 9   | 0 | 63.617                 | 2.250                              | 171.6         | 10917         |
| 9   | 3 | 67.201                 | 2.312                              | 174.7         | 11740         |
| 9   | 6 | 70.882                 | 2.375                              | 177.7         | 12594         |

| d = ame ir ft. | eter | a=area in square ft. | r=hy-<br>draulic<br>mean<br>depth. | For velocity. | For discharge |
|----------------|------|----------------------|------------------------------------|---------------|---------------|
| 9              | 9    | 74.662               | 2.437                              | 180.7         | 13489         |
| 10             | 0    | 78.540               | 2.500                              | 183.7         | 14426         |
| 10             | 3    | 82.516               | 2.562                              | 186.7         | 15406         |
| 10             | 6    | 86.590               | 2.625                              | 189.5         | 16412         |
| 10             | 9    | 90.763               | 2.687                              | 192.4         | 17462         |
| 11             | 0    | 95.033               | 2.750                              | 195.2         | 18555         |
| 11             | 3    | 99.402               | 2.812                              | 198.1         | 19694         |
| 11             | 6    | 103.87               | 2.875                              | 201.0         | 20879         |
| 11             | 9    | 108.43               | 2.937                              | 203.7         | 22093         |
| I 2            | 0    | 113.10               | 3.000                              | 206.5         | 23352         |
| I 2            | 3    | 117.86               | 3.062                              | 209.2         | 24658         |
| I 2            | 6    | 122.72               | 3.125                              | 212.0         | 26012         |
| I 2            | 9    | 127.68               | 3.187                              | 214.6         | 27399         |
| 13             | 0    | 132.73               | 3.250                              | 217.4         | 28850         |

| ir | ter | a = area in square ft. | r=hy-<br>draulic<br>mean<br>depth. | For velocity. $c \sqrt{r}$ | For discharge $a^c \sqrt[r]{r}$ |
|----|-----|------------------------|------------------------------------|----------------------------|---------------------------------|
| 13 | 3   | 137.88                 | 3.312                              | 220.0                      | 30330                           |
| 13 | 6   | 143.14                 | 3.375                              | 222.6                      | 31860                           |
| 13 | 9   | 148.49                 | 3 · 437                            | 225.2                      | 33441                           |
| 14 | 0   | 153.94                 | 3.500                              | 227.8                      | 35073                           |
| 14 | 3   | 159.48                 | 3.562                              | 230.0                      | 36736                           |
| 14 | 6   | 165.13                 | 3.625                              | 232.9                      | 38454                           |
| 14 | 9   | 170.87                 | 3.687                              | 235 · 4                    | 40221                           |
| 15 | 0   | 176.72                 | 3.750                              | 237.9                      | 42040                           |
| 15 | 3   | 182.65                 | 3.812                              | 240.5                      | 43931                           |
| 15 | 6   | 188.69                 | 3.875                              | 242.8                      | 45820                           |
| 15 | 9   | 194.83                 | 3.937                              | 245.3                      | 47792                           |
| 16 | o   | 201.06                 | 4.000                              | 247.8                      | 49823                           |
| 16 | 3   | 207.40                 | 4.062                              | 250.3                      | 51904                           |
| 16 | 6   | 213.83                 | 4.125                              | 252.7                      | 54056                           |

| d=<br>ame<br>ir<br>ft. | ter | a = area in square ft. | r=hy-<br>draulic<br>mean<br>depth. | For velocity. $c \sqrt{r}$ | For discharge ac Vr |
|------------------------|-----|------------------------|------------------------------------|----------------------------|---------------------|
| 16                     | 9   | 220.35                 | 4.187                              | 254.9                      | 56171               |
| 17                     | 0   | 226.98                 | 4.250                              | 257.2                      | 58387               |
| 17                     | 3   | 233.71                 | 4.312                              | 259.7                      | 60700               |
| 17                     | 6   | 240.53                 | 4.375                              | 261.9                      | 62999               |
| 17                     | 9   | 247 · 45               | 4 · 437                            | 264.4                      | 65428               |
| 18                     | 0   | 254.47                 | 4.500                              | 266.6                      | 67839               |
| 18                     | 3   | 261.59                 | 4.562                              | 268.9                      | 70346               |
| 18                     | 6   | 268.80                 | 4.625                              | 271.3                      | 72916               |
| 18                     | 9   | 276.12                 | 4.687                              | 273.5                      | 75507               |
| 19                     | 0   | 283.53                 | 4.750                              | 275.8                      | 78201               |
| 19                     | 3   | 291.04                 | 4.812                              | 278.0                      | 80216               |
| 19                     | 6   | 298.65                 | 4.875                              | 280.2                      | 83686               |
| 19                     | 9   | 306.36                 | 4.937                              | 282.4                      | 86526               |
| 20                     | 0   | 314.16                 | 5.000                              | 284.6                      | 89423               |

TABLE 2.

GIVING VALUES OF s AND  $\sqrt{s}$ .

s=sine of slope=fall of water surface (h) in any distance (l), divided by that distance= $\frac{h}{l}$ .

| Slope<br>I in | s=sine of slope. | $\sqrt{s}$ . |
|---------------|------------------|--------------|
| 4             | .25000000        | .500000      |
| 5             | .20000000        | .447214      |
| 6             | .166666660       | .408248      |
| 7             | .142857143       | .377978      |
| 8             | .12500000        | .353553      |
| . 9           | .111111111       | .333333      |
| 10            | .100000000       | . 316228     |
| ΙΙ            | .090909090       | . 301511     |
| I 2           | .083333333       | . 288675     |

| Slope<br>1 in | s=sine of slope. | $\sqrt{s}$ . |
|---------------|------------------|--------------|
| 13            | .076923077       | .277350      |
| 14            | .071428571       | . 267 26 1   |
| 15            | .066666667       | . 258199     |
| 16            | .062500000       | . 250000     |
| 17            | .058823529       | . 242536     |
| 18            | .05555555        | . 235702     |
| 19            | .052631579       | . 229416     |
| 20            | .05000000        | . 223607     |
| 21            | .047619048       | . 218218     |
| 22            | .045454545       | . 213200     |
| 23            | .043478261       | . 208514     |
| 24            | .041666667       | . 204124     |
| 25            | .04000000        | . 200000     |
| 26            | .038461538       | .196116      |

| Slope<br>1 in | s=sine of slope. | √s.      |
|---------------|------------------|----------|
| 27            | .037037037       | . 192450 |
| 28            | .035714286       | . 188982 |
| 29            | .034452759       | . 185695 |
| 30            | .033333333       | . 182574 |
| 31            | .032258065       | . 179605 |
| 32            | .031250000       | . 176777 |
| 33            | .030303030       | . 174077 |
| 34            | .029411765       | . 171499 |
| 35            | .028571429       | . 169031 |
| 36            | .027777778       | . 166667 |
| 37            | .027027027       | . 164399 |
| 38            | .026315789       | . 162221 |
| 39            | .025641026       | .160125  |
| 40            | .02500000        | .158114  |

| Slope<br>I in | s=sine of slope. | $\sqrt{s}$ .  |
|---------------|------------------|---------------|
| 41            | .024390244       | .156174       |
| 42            | .023809524       | .154303       |
| 43            | .023255814       | . 152499      |
| 44            | .022727273       | . 150756      |
| 45            | .02222222        | . 149071      |
| 46            | .021739130       | . 147444      |
| 47            | .021276600       | . 145865      |
| 48            | .020833333       | . 144337      |
| 49            | .020408163       | . 142857      |
| 50            | .02000000        | . 141421      |
| 51            | .019607843       | . 140028      |
| 52            | .019230769       | . 138676      |
| 53            | .018867925       | . 1 3 7 3 6 1 |
| 54            | .018518519       | . 136085      |

| Slope<br>I in | s=sine of slope. | $\sqrt{s}$ . |
|---------------|------------------|--------------|
| 55            | .018181818       | . 134839     |
| 56            | .017850143       | .133630      |
| 57            | .017543860       | .132453      |
| 58            | .017241379       | .131305      |
| 59            | .016949153       | .130189      |
| 60            | .016666667       | .129100      |
| 61            | .016393443       | . 128037     |
| 62            | .016129032       | .127000      |
| 63            | .015873016       | . 125988     |
| 64            | .015625000       | .125000      |
| 65            | .015384615       | . 124035     |
| 66            | .015151515       | .123091      |
| 67            | .014925353       | .122169      |
| 68            | .014705882       | .121286      |

| Slope<br>I in | s=sine of slope. | $\sqrt{s}$ . |
|---------------|------------------|--------------|
| 69            | .014492754       | .120386      |
| 70            | .014285714       | .119524      |
| 71            | .014084507       | .118678      |
| 72            | .013888889       | .117851      |
| 73            | .013698630       | .117041      |
| 74            | .013513514       | .116248      |
| 75            | .013333333       | . 115470     |
| 76            | .013157895       | .114708      |
| 77            | .012987013       | . 113961     |
| 78            | .012820513       | .113228      |
| 79            | .012658228       | .112509      |
| 80            | .012500000       | .111803      |
| 81            | .012345679       | .111111      |
| 82            | .012195122       | .110431      |

| Slope<br>I in | s=sine of slope. | √s.      |
|---------------|------------------|----------|
| 83            | .012048193       | . 109764 |
| 84            | .011904762       | . 109109 |
| 85            | .011764706       | . 108465 |
| 86            | .011627907       | . 107833 |
| 87            | .011494253       | . 107211 |
| 88            | .011363636       | . 106600 |
| 89            | .011235955       | . 106000 |
| 90            | .011111110       | . 105409 |
| . 91          | .010989011       | . 104828 |
| 92            | .010869565       | . 104257 |
| 93            | .010752688       | . 103695 |
| 94            | .010638298       | .103142  |
| 95            | .010526316       | . 102598 |
| 96            | .010416667       | .102062  |

| Slope<br>I in | s=sine of slope. | $\sqrt{s}$ . |
|---------------|------------------|--------------|
| 97            | .010309278       | .101535      |
| 98            | .010204082       | .101015      |
| 99            | .010101010       | .100504      |
| 100           | .010000000       | .100000      |
| 101           | .009900990       | .099504      |
| 102           | .009803922       | .099015      |
| 103           | .009708738       | .098533      |
| 104           | .009615385       | .098058      |
| 105           | .009523810       | .097590 .    |
| 106           | .009433962       | .097129      |
| 107           | .009345794       | .096674      |
| 108           | .009259259       | .096225      |
| 109           | .009174312       | .095783      |
| 110           | .009090909       | . 095346     |

| Slope<br>I in | s=sine of slope. | √s       |
|---------------|------------------|----------|
| III           | .009009009       | .094916  |
| I I 2         | .008928571       | . 094491 |
| 113           | .008849558       | .094072  |
| 114           | .008771930       | .093659  |
| 115           | .008695652       | .093250  |
| 116           | .008620690       | .092848  |
| 117           | .008547009       | .092450  |
| 811           | .008474576       | .092057  |
| 119           | .008403361       | .091669  |
| 120           | .008333333       | .091287  |
| I 2 I         | .008264463       | .090909  |
| I 2 2         | .008196721       | .090536  |
| 123           | .008130081       | .090167  |
| 124           | .008064516       | .089803  |

| Slope<br>I in | s=sine of slope. | $\sqrt{s}$ . |
|---------------|------------------|--------------|
| 125           | .00800000        | .089442      |
| i 26          | .007836508       | .089087      |
| 127           | .007874016       | .088736      |
| 128           | .007812500       | .088388      |
| 129           | .007751938       | .088045      |
| 130           | .007692308       | .087706      |
| 131           | .007633588       | .087370      |
| 132           | .007575758       | .087039      |
| 133           | .007518797       | .086711      |
| 134           | .007462687       | .086387      |
| 135           | .007407407       | .086066      |
| 136           | .007352941       | .085749      |
| 137           | .007299270       | .085436      |
| 138           | .007246377       | .085126      |

| Slope<br>I in | s=sine of slope. | √s.      |
|---------------|------------------|----------|
| 139           | .007194245       | .084819  |
| 140           | .007142857       | .084516  |
| 141           | .007092199       | .084215  |
| 142           | .007042254       | .083918  |
| 143           | .006993007       | .083624  |
| 144           | .006944444       | .083333  |
| 145           | .006896552       | . 083046 |
| 146           | .006849315       | .082760  |
| 147           | .006802721       | .082479  |
| 148           | .006756757       | .082199  |
| 149           | .006711409       | .081923  |
| 150           | .006666667       | .081650  |
| 151           | .006622517       | .081379  |
| 152           | .006578947       | .081111  |

| Slope<br>I in | s=sine of slope. | √s.      |
|---------------|------------------|----------|
| 153           | .006535948       | .080845  |
| 154           | .006493506       | .080582  |
| 155           | .006451613       | .080322  |
| 156           | .006410256       | .080065  |
| 157           | .006369427       | .079809  |
| 158           | .006329114       | .079556  |
| 159           | .006289308       | .079305  |
| 160           | .006250000       | . 079057 |
| 161           | .006211180       | .078811  |
| 162           | .006172840       | .078568  |
| 163           | .006134969       | .078326  |
| 164           | .006097561       | .078087  |
| 165           | .006060606       | .077850  |
| 166           | .006024096       | .077615  |

| Slope<br>1 in | s=sine of slope. | √s.     |
|---------------|------------------|---------|
| 167           | .005988024       | .077382 |
| 168           | .005952381       | .077152 |
| 169           | .005917160       | .076923 |
| 170           | .005882353       | .076697 |
| 171           | .005847953       | .076472 |
| 172           | .005813953       | .076249 |
| 173           | .005780347       | .076029 |
| 174           | .005747126       | .075810 |
| 175           | .005714286       | .075593 |
| 176           | .005681818       | .075378 |
| 177           | .005649718       | .075164 |
| 178           | .005617978       | .074953 |
| 179           | .005586592       | .074744 |
| 180           | .00555556        | .074536 |

| Slope<br>I in | s=sine of slope. | $\sqrt{s}$ . |
|---------------|------------------|--------------|
| 181           | .005524862       | .074329      |
| 182           | .005494505       | .074125      |
| 183           | .005464481       | .073922      |
| 184           | .005434783       | .073721      |
| 185           | .005405405       | .073521      |
| 186           | .005376344       | .073324      |
| 187           | .005347594       | .073127      |
| 188           | .005319149       | .072932      |
| 189           | .005291005       | .072739      |
| 190           | .005263158       | .072548      |
| 191           | .005235602       | .072357      |
| 192           | .005208333 .     | .072169      |
| 193           | .005181347       | .071982      |
| 194           | .005154639       | .071796      |

| Slope<br>I in | s=sine of slope. | √s      |
|---------------|------------------|---------|
| 195           | .005128205       | .071612 |
| 196           | .005102041       | .071429 |
| 197           | .005076142       | .071247 |
| 198           | .005050505       | .071067 |
| 199           | .005025126       | .070888 |
| 200           | .005000000       | .070710 |
| 201           | .004975124       | .070534 |
| 202           | .004950495       | .070359 |
| 203           | .004926108       | .070186 |
| 204           | .004901961       | .070014 |
| 205           | .004878049       | .069843 |
| 206           | .004854369       | .069673 |
| 207           | .004830918       | .069505 |
| 208           | .004807692       | .069338 |

| Slope<br>1 in | s=sine of slope. | √s.     |
|---------------|------------------|---------|
| 209           | .004784689       | .069172 |
| 210           | .004761905       | .069007 |
| 211           | 004739336        | .068843 |
| 212           | .004716981       | .068680 |
| 213           | .004694836       | .068519 |
| 214           | .004672897       | .068358 |
| 215           | .004651163       | .068199 |
| 216           | .004629630       | .068041 |
| 217           | .004608295       | .067885 |
| 218           | .004587156       | .067729 |
| 219           | .004566210       | .067574 |
| 220           | . 004545455      | .067419 |
| 221           | .004524887       | .067267 |
| 222           | .004504505       | .067116 |

| Slope<br>I in | s=sine of slope. | √s.<br>  |
|---------------|------------------|----------|
| 223           | .004484305       | . 066965 |
| 224           | .004464286       | .066815  |
| 225           | .004444444       | .066667  |
| 226           | .004424779       | .066519  |
| 227           | .004405286       | .066372  |
| 228           | .004385965       | .066227  |
| 229           | .004366812       | . 066082 |
| 230           | .004347826       | .065938  |
| 231           | .004329004       | . 065795 |
| 232           | .004310345       | . 065653 |
| 233           | .004291845       | .065512  |
| 234           | .004273504       | .065372  |
| 235           | .004255319       | .065233  |
| 236           | .004237288       | . 065094 |

| CI            |                    |          |
|---------------|--------------------|----------|
| Slope<br>1 in | s=sine of slope.   | √s.      |
| 237           | .004219409         | .064957  |
| 238           | .004201681         | .064820  |
| 239           | .004184100         | . 064685 |
| 240           | .004166667         | .064549  |
| 241           | .004149378         | .064416  |
| 242           | <b>~</b> 004132231 | .064283  |
| 243           | .004115226         | .064150  |
| 244           | .004098361         | . 064018 |
| 245           | .004081623         | .063888  |
| 246           | .004065041         | .063758  |
| 247           | .004048583         | . 063629 |
| 248           | .004032258         | .063500  |
| 249           | .004016064         | .063372  |
| 250           | .004000000         | .063246  |
|               |                    |          |

| Slope<br>I in | s=sine of slope. | $\sqrt{s}$ . |
|---------------|------------------|--------------|
| 251           | .003984064       | .063119      |
| 252           | .003968254       | .062994      |
| 253           | .003952569       | .062870      |
| 254           | .003937008       | .062746      |
| 255           | .003921569       | .062622      |
| 256           | .003906250       | .062500      |
| 257           | .003891051       | .062378      |
| 258           | .003875969       | .062257      |
| 259           | .003861004       | . 062137     |
| 260           | .003846154       | .062018      |
| 261           | .003831418       | . 06 1 8 9 9 |
| 262           | .003816794       | .061780      |
| 263           | .003802281       | .061662      |
| 264           | .003787879       | . 06 1 5 4 6 |

| Slope<br>I in | s=sine of slope. | v s.     |
|---------------|------------------|----------|
| 265           | .003773585       | .061430  |
| 266           | .003759398       | .061,314 |
| 267           | .003745319       | .061199  |
| 268           | .003731343       | .061085  |
| 269           | .003717472       | .060971  |
| 270           | .003703704       | .060858  |
| 271           | .003690037       | .060746  |
| 272           | .003676471       | .060634  |
| 273           | .003663004       | .060523  |
| 274           | .003649635       | .060412  |
| 275           | .003636364       | .060302  |
| 276           | .003623188       | .060193  |
| 277           | .003610108       | .060084  |
| 278           | .003597122       | .059976  |

| Slope<br>1 in | $s = \sin \theta$ of slope. | √s.      |
|---------------|-----------------------------|----------|
| 279           | .003584229                  | .059868  |
| 280           | .003571429                  | .059761  |
| 281           | .003558719                  | .059655  |
| 282           | .008546099                  | .059549  |
| 283           | .003533569                  | .059444  |
| 284           | .003521127                  | .059339  |
| 285           | .003508772                  | .059235  |
| 286           | .003496503                  | .059131  |
| 287           | .003484321                  | .059028  |
| 288           | .003472222                  | .058926  |
| 289           | .003460208                  | .058824  |
| 290           | .003448276                  | .058722  |
| 291           | .003436426                  | .058621  |
| 292           | .003424658                  | . 058520 |

| Slope<br>I in | s=side of slope. | √s•      |
|---------------|------------------|----------|
| 293           | .003412969       | .058420  |
| 294           | .003401361       | . 058321 |
| 295           | .003389831       | .058222  |
| 296           | .003378378       | .058124  |
| 297           | .003367003       | .058026  |
| 298           | .003355705       | .057929  |
| 299           | .003344482       | .057831  |
| 300           | .003333333       | ·°57735  |
| 301           | .003322259       | .057639  |
| 302           | .003311258       | .057544  |
| 303           | .003300330       | .057449  |
| 304           | .003289474       | .057354  |
| 305           | .003278689       | .057260  |
| 306           | .003267974       | .057166  |

| Slope<br>I in | s=sine of slope. | √s.      |
|---------------|------------------|----------|
| 307           | .003257329       | .057073  |
| 308           | .003246753       | .056980  |
| 309           | .003236246       | .056888  |
| 310           | .003225806       | .056796  |
| 311           | .003215434       | .056705  |
| 312           | .003205128       | .056614  |
| 313           | .003194888       | .056523  |
| 314           | .003184713       | .056433  |
| 315           | .003174603       | .056344  |
| 316           | .003164557       | .056254  |
| 317           | .003154574       | . 056165 |
| 318           | .003144654       | .056077  |
| 319           | .003134796       | .055989  |
| 320           | .003125000       | . 055902 |

| Slope<br>1 in | s=sine of slope. | Vs.     |
|---------------|------------------|---------|
| 321           | .003115265       | .055815 |
| 322           | .003105590       | .055728 |
| 323           | .003095975       | .055641 |
| 324           | .003086420       | .055556 |
| 325           | .003076923       | .055470 |
| 326           | .003067485       | .055385 |
| 327           | .003058104       | .055300 |
| 328           | .003048780       | .055216 |
| 329           | .003039514       | .055132 |
| 330           | .003030303       | .055048 |
| 331           | .003021148       | .054965 |
| 332           | .003012048       | .054882 |
| 333           | .003003003       | .054799 |
| 334           | .002994012       | .054717 |

| Slope<br>I in | s=sine of slope. | √s      |
|---------------|------------------|---------|
| 335           | .002985075       | .054636 |
| 336           | .002976190       | .054555 |
| 337           | .002967359       | .054474 |
| 338           | .002958580       | .054393 |
| 339           | .002949853       | .054312 |
| 340           | .002941176       | .054232 |
| 341           | .002932551       | .054153 |
| 342           | .002923977       | .054074 |
| 343           | .002915452       | .053995 |
| 344           | .002906977       | .053916 |
| 345           | .002898551       | .053838 |
| 346           | .002890171       | .053760 |
| 347           | .002881844       | .053683 |
| 348           | .002873563       | .053606 |

| Slope | s=sine of slope. | $\sqrt{s}$ . |
|-------|------------------|--------------|
| I in  |                  |              |
| 349   | .002865330       | .053529      |
| 350   | .002857143       | .053452      |
| 351   | .002849003       | .053376      |
| 352   | .002840909       | .053300      |
| 353   | .002832861       | .053224      |
| 354   | .002824859       | .053149      |
| 355   | .002816901       | .053074      |
| 356   | .002808989       | .052999      |
| 357   | .002801120       | .052925      |
| 358   | .002793296       | . 052851     |
| 359   | .002785515       | .052778      |
| 360   | .002777778       | .052705      |
| 361   | .002770083       | .052632      |
| 362   | .002762431       | .052559      |

| Slope<br>I in | s=sine of slope. | √s           |
|---------------|------------------|--------------|
| 363           | .002754821       | .052486      |
| 364           | .002747253       | .052414      |
| 365           | .002739726       | .052342      |
| 366           | .002732240       | .052270      |
| 367           | .002724796       | .052199      |
| 368           | .002717391       | .052129      |
| 369           | .002710027       | .052060      |
| 370           | .002702703       | .051988      |
| 371           | .002695418       | .051917      |
| 372           | .002688172       | .051847      |
| 373           | .002680965       | .051778      |
| 374           | .002673797       | .051709      |
| 375           | .002666667       | . 05 1 6 4 0 |
| 376           | .002659574       | .051571      |

| Slope I in | s=sine of slope. | √s       |
|------------|------------------|----------|
| 377 .      | .002652520       | .051502  |
| 378        | .002645503       | .051434  |
| 379        | .002638522       | .051366  |
| 380        | .002631579       | .051299  |
| 381        | .002624672       | .051231  |
| 382        | .002617801       | .051164  |
| 383        | .002610966       | .051097  |
| 384        | .002604167       | .051031  |
| 385        | .002597403       | .050965  |
| 386        | .002590674       | . 050899 |
| 387        | .002583979       | .050833  |
| 388        | .002577320       | .050767  |
| 389        | .002570694       | .050702  |
| 390        | .002564103       | . 050637 |

| Slope<br>1 in | s=sine of slope. | √s.     |
|---------------|------------------|---------|
| 391           | .002557545       | .050572 |
| 392           | .002551020       | .050507 |
| 393           | .002544529       | .050443 |
| 394           | .002538071       | .050379 |
| 395           | .002531646       | .050315 |
| 396           | .002525253       | .050252 |
| 397           | .002518892       | .050188 |
| 398           | .002512563       | .050125 |
| 399           | .002506266       | .050062 |
| 400           | .002500000       | .050000 |
| 401           | .002493766       | .049938 |
| 402           | .002487562       | .049876 |
| 403           | 002481390        | .049814 |
| 404           | .002475248       | .049752 |

| Slope<br>I in | s=sine of slope. | $\sqrt{s}$ . |
|---------------|------------------|--------------|
| 405           | .002469136       | .049690      |
| 406           | .002463054       | .049629      |
| 407           | .002457002       | .049568      |
| 408           | .002450980       | .049507      |
| 409           | .002444988       | .049447      |
| 410           | .002439024       | .049387      |
| 411           | .002433090       | .049326      |
| 412           | .002427184       | .049266      |
| 413           | .002421308       | .049207      |
| 414           | .002415459       | .049147      |
| 415           | .002409639       | .049088      |
| 416           | .002403846       | .049029      |
| 417           | .002398082       | .048970      |
| 418           | .002392344       | .048911      |

| Slope<br>I in | s=sine of slope. | $\sqrt{s}$ . |
|---------------|------------------|--------------|
| 419           | .002386635       | .048853      |
| 420           | .002380952       | .048795      |
| 421           | .002375297       | .048737      |
| 422           | .002369668       | .048679      |
| 423           | .002364066       | . 048621     |
| 424           | .002358491       | .048564      |
| 425           | .002352941       | .048507      |
| 426           | .002347418       | .048450      |
| 427           | .002341920       | .048393      |
| 428           | .002336449       | .048337      |
| 429           | .002331002       | .048280      |
| 430           | .002325581       | .048224      |
| 431           | .002320186       | .048168      |
| 432           | .002314815       | .048113      |

| Slope<br>I in | s=sine of slope. | √s      |
|---------------|------------------|---------|
| 433           | .002309469       | .048057 |
| 434           | .002304147       | .048001 |
| 435           | .002298851       | .047946 |
| 436           | .002293578       | .047891 |
| 437           | .002288330       | .047836 |
| 438           | .002283105       | .047782 |
| 439           | .002277904       | .047728 |
| 440           | .002272727       | .047673 |
| 441           | .002267574       | .047619 |
| 442           | .002262443       | .047565 |
| 443           | .002257336       | .047511 |
| 444           | .002252252       | .047458 |
| 445           | .002247191       | .047404 |
| 446           | .002242152       | .047351 |

| Slope<br>1 in | s=sine of slope. | √s.      |
|---------------|------------------|----------|
| 447           | .002237136       | .047298  |
| 448           | .002232143       | .047245  |
| 449           | .002227194       | .047193  |
| 450           | .00222222        | .047140  |
| 451           | .002217295       | .047088  |
| 452           | .002212389       | .047036  |
| 453           | .002207506       | .046984  |
| 454           | .002202643       | .046932  |
| 455           | .002197802       | . 046880 |
| 456           | .002192982       | .046829  |
| 457           | .002188184       | .046778  |
| 458           | .002183406       | .046726  |
| 459           | .002178649       | .046676  |
| 450           | .002173913       | .046625  |

| Slope<br>I in | s=sine of slope. | $\sqrt{s}$ . |
|---------------|------------------|--------------|
| 461           | .002169197       | .046575      |
| 462           | .002164502       | .046524      |
| 463           | .002159827       | .046474      |
| 464           | .002155172       | .046424      |
| 465           | .002150538       | .046374      |
| 466           | .002145923       | .046324      |
| 467           | .002141328       | .046274      |
| 468           | .001136752       | .046225      |
| 469           | .002132196       | .046176      |
| 470           | .002127660       | . 046126     |
| 471           | .002123142       | .046077      |
| 472           | .002118644       | .046029      |
| 473           | .002114165       | .045980      |
| 474           | .002109705       | .045932      |

| Slope<br>I in | s=sine of slope. | √s.      |
|---------------|------------------|----------|
| 475           | .002105263       | .045883  |
| 476           | .002100840       | . 045835 |
| 477           | .002096436       | .045787  |
| 478           | .002092050       | .045739  |
| 479           | .002087683       | .045691  |
| 480           | .002083333       | .045644  |
| 481           | .002079002       | .045596  |
| 482           | .002074689       | .045549  |
| 483           | .002070393       | .045502  |
| 484           | .002066116       | .045454  |
| 485           | .002061856       | .045407  |
| 486           | .092057613       | .045361  |
| 487           | .002053388       | .045314  |
| 488           | .002049180       | .045268  |

| Slope<br>I in | s=sine of slope. | √ <u>s.</u> |
|---------------|------------------|-------------|
| 489           | .002044990       | .045222     |
| 490           | .002040816       | .045175     |
| 491           | .002036660       | .045129     |
| 492           | .002032520       | .045085     |
| 493           | .002028398       | .045037     |
| 494           | .002024291       | .044992     |
| 495           | .002020202       | .044947     |
| 496           | .002016128       | .044901     |
| 497           | .002012072       | .044856     |
| 498           | .002008032       | .044811     |
| 499           | .002004008       | .044766     |
| 500           | .002000000       | .044721     |
| 501           | .001996008       | .044677     |
| 502           | .001992032       | .044632     |

| Slope<br>1 in | s=sine of slope. | √s.     |
|---------------|------------------|---------|
| 503           | .001988072       | .044588 |
| 504           | .001984127       | .044544 |
| 505           | .001980198       | .044499 |
| 506           | .001976285       | .044455 |
| 507           | .001972387       | .044412 |
| 508           | .001968504       | .044368 |
| 509           | .001964637       | .044324 |
| 510           | .001960784       | .044281 |
| 511           | .001956947       | .044237 |
| 512           | .001953125       | .044194 |
| 513           | .001949318       | .044151 |
| 514           | .001945525       | .044108 |
| 515           | .001941748       | .044065 |
| 516           | .001937984       | .044022 |

| Slope<br>I in | s=sine of slope. | . Vs.    |
|---------------|------------------|----------|
| 517           | .001944246       | .043979  |
| 518           | .008930502       | .043937  |
| 519           | .001926782       | .043895  |
| 520           | .001923077       | .043853  |
| 521           | .001919386       | .043811  |
| 522           | .001915709       | .043769  |
| 523           | .001912046       | .043727  |
| 524           | .001908397       | . 043685 |
| 525           | .001904762       | .043644  |
| 526           | .001901141       | .043602  |
| 527           | .001897533       | .043561  |
| 528           | .001893939       | .043519  |
| 529           | .001890359       | .043478  |
| 530           | .001886792       | .043437  |

| Slope<br>1 in | s=sine of slope. | √s.      |
|---------------|------------------|----------|
| 531           | .001883239       | .043396  |
| 532           | .001879699       | .043355  |
| 533           | .001876173       | .044315  |
| 534           | .001872659       | .043274  |
| 535           | .001869159       | .043234  |
| 536           | .001865672       | .043193  |
| 537           | .001862197       | .043153  |
| 538           | .001858736       | .043113  |
| 539           | .001855288       | .043073  |
| 540           | .001851852       | . 043033 |
| 541           | .001848429       | .042993  |
| 542           | .001845018       | .042953  |
| 543           | .001841621       | .042914  |
| 544           | .001838235       | .042874  |

| Slope<br>I in | s=sine of slope. | $\sqrt{s}$ . |
|---------------|------------------|--------------|
| 545           | .001834862       | .042835      |
| 546           | .001831502       | .042796      |
| 547           | .001828154       | .042757      |
| 548           | .001824817       | .042718      |
| 549           | .001821494       | .042679      |
| 550           | .001818182       | .042640      |
| 551           | .001814882       | .042601      |
| 552           | .001811594       | .042563      |
| 553           | .001808318       | .042524      |
| 554           | .001805054       | .042486      |
| 555           | .001801802       | .042448      |
| 556           | .001798561       | .042410      |
| 557           | .001795332       | .042371      |
| 558           | .001792115       | .042333      |

| Slope<br>1 in | s=sine of slope. | $\sqrt{s}$ . |
|---------------|------------------|--------------|
| 559           | .001788909       | .042295      |
| 560           | .001785714       | .042258      |
| 561           | .001782531       | .042220      |
| 562           | .001779359       | .042183      |
| 563           | .001776199       | .042145      |
| 564           | .001773050       | .042108      |
| 565           | .001769912       | .042070      |
| 566           | .001766784       | .042033      |
| 567           | .001763668       | .041996      |
| 568           | .001760563       | .041959      |
| 569           | .001757469       | .041922      |
| 570           | .001754386       | .041885      |
| 571           | .001751313       | .041848      |
| 572           | .001748252       | .041812      |

| Slope<br>1 in | s=sine of slope. | $\sqrt{s}$ . |
|---------------|------------------|--------------|
| 573           | .001745201       | .041776      |
| 574           | .001742160       | .041739      |
| 575           | .001739130       | .041703      |
| 576           | .001736111       | .041667      |
| 577           | .001733102       | .041630      |
| 578           | .001730104       | .041594      |
| 579           | .001727116       | .041559      |
| 580           | .001724138       | .041523      |
| 581           | .001721170       | .041487      |
| 582           | .001718213       | .041451      |
| 583           | .001715266       | .041416      |
| 584           | .001712329       | .041380      |
| 585           | .001709420       | .041345      |
| 586           | .001706485       | .041309      |

| Slope<br>1 in | s=sine of slope. | $\sqrt{s}$ . |
|---------------|------------------|--------------|
| 587           | .001703578       | .041274      |
| 588           | .001700680       | .041239      |
| 589           | .001697793       | .041204      |
| 590           | .001694915       | .041169      |
| 591           | .001692047       | .041135      |
| 592           | .001689189       | .041100      |
| 593           | .001686341       | .041065      |
| 594           | .001683502       | .041031      |
| 595           | .001680672       | . 040996     |
| 596           | .001677852       | . 040961     |
| 597           | .001675042       | .040927      |
| 598           | 001672241        | .040893      |
| 599           | .001669449       | .040859      |
| 600           | .001666667       | .040825      |

| Slope<br>I in | s=sine of slope. | √s       |
|---------------|------------------|----------|
| 601           | .001663894       | .040791  |
| 602           | .001661130       | .040757  |
| 603           | .001658375       | .040723  |
| 604           | .001655629       | .040689  |
| 605           | .001652893       | .040656  |
| 606           | .001650165       | .040622  |
| 607           | .001647446       | . 040589 |
| 608           | .001644737       | .040555  |
| 609           | .001642036       | .040522  |
| 610           | .001639344       | .040489  |
| 611           | .001636661       | .040456  |
| 612           | .001633987       | .040422  |
| 613           | .001631321       | . 040389 |
| 614           | .001628664       | .040357  |

| Slope<br>I in | s=sine of slope. | √s      |
|---------------|------------------|---------|
| 615           | .001626016       | .040324 |
| 616           | .001623377       | .040291 |
| 617           | .001620746       | .040258 |
| 618           | .001618123       | .040226 |
| 619           | .001615509       | .040193 |
| 620           | .001612903       | .040161 |
| 621           | .001610306       | .040128 |
| 622           | .001607717       | .040096 |
| 623           | .001605136       | .040064 |
| 624           | .001602564       | .040032 |
| 625           | .001600000       | .040000 |
| 626           | .001597444       | .039968 |
| 627           | .001594896       | .039936 |
| 628           | .001592357       | .039904 |

| Slope<br>1 in | s=sine of slope. | $\sqrt{s}$ . |
|---------------|------------------|--------------|
| 629           | .001589825       | .039873      |
| 630           | .001587302       | .039841      |
| 631           | .001584786       | .039809      |
| 632           | .001582278       | .039778      |
| 633           | .001579779       | .039746      |
| 634           | .001577287       | .039715      |
| 635           | .001574803       | .039684      |
| 636           | .001572327       | .039653      |
| 637           | .001569859       | .039621      |
| 638           | .001567398       | . 039590     |
| 639           | .001564945       | .039559      |
| 640           | .001562500       | .039528      |
| 641           | .001560062       | .039498      |
| 642           | 001557632        | . 039467     |

| Slope<br>I in | s=sine of slope. | √s.     |
|---------------|------------------|---------|
| 643           | .001555210       | .039436 |
| 644           | .001552795       | 039405  |
| 645           | .001550388       | .039375 |
| 646           | .001547988       | .039344 |
| 647           | .001545595       | .039314 |
| 648           | .001543210       | .039284 |
| 649           | .001540832       | .039253 |
| 650           | .001538462       | .039223 |
| 651           | .001536098       | .039193 |
| 652           | .001533742       | .039163 |
| 653           | .001531394       | .038133 |
| 654           | .001529052       | .039103 |
| 655           | .001526718       | .039073 |
| 656           | .001524390       | .039043 |

| Slope<br>1 in | s=sine of slope. | √s.     |
|---------------|------------------|---------|
| 657           | .001522070       | .039013 |
| 658           | .001519757       | .038984 |
| 659           | .001517451       | .038954 |
| 660           | .001515152       | .038925 |
| 661           | .001512859       | .038895 |
| 662           | .001510574       | .038866 |
| 663           | .001508296       | .038837 |
| 664           | .001506024       | .038808 |
| 665           | .001503759       | .038778 |
| 666           | .001501502       | .038749 |
| 667           | .001499250       | .038720 |
| 668           | .001497006       | .038691 |
| 669           | .001494768       | .038662 |
| 670           | .001492537       | .038633 |

| Slope<br>I in | s=sine of slope. | √s.     |
|---------------|------------------|---------|
| 671           | .001490313       | .038604 |
| 672           | .001488095       | .038576 |
| 673           | .001485884       | .038547 |
| 674           | .001483680       | .038518 |
| 675           | .001481481       | .038490 |
| 676           | .001479290       | .038461 |
| 677           | .001477105       | .038433 |
| 678           | .001474926       | .038405 |
| 679           | .001472754       | .038376 |
| 680           | .001470588       | .038348 |
| 681           | .001468429       | .038320 |
| 682           | .001466276       | .038292 |
| 683           | .001464129       | .038264 |
| 684           | .001461988       | .038236 |

| Slope<br>1 in | s=sine of slope. | √s.      |
|---------------|------------------|----------|
| 685           | .001459854       | .038208  |
| 686           | .001457726       | .038180  |
| 687           | .001455604       | .038152  |
| 688           | .001453488       | .038125  |
| <b>6</b> 89   | .001451379       | .038097  |
| 690           | .001449275       | .038069  |
| 691           | .001447178       | .038042  |
| 692           | .001445087       | .038014  |
| 693           | .001443001       | .037987  |
| 694           | .001440922       | .037959  |
| 695           | .001438849       | .037932  |
| 696           | .001436782       | .037905  |
| 697           | .001434720       | .037878  |
| 698           | .001432665       | . 037851 |

| Slope<br>1 in | s=sine of slope. | √s.     |
|---------------|------------------|---------|
| 699           | .001430615       | .037824 |
| 700           | .001428571       | .037796 |
| 701           | .001426534       | .037769 |
| 702           | .001424501       | .037743 |
| 703           | .001422475       | .037716 |
| 704           | .001420455       | .037689 |
| 705           | .001418440       | .037662 |
| 706           | .001416431       | .037636 |
| 707           | .001414427       | .037609 |
| 708           | .001412429       | .037582 |
| 709           | .001410437       | .037556 |
| 710           | .001408451       | .037529 |
| 711           | .001406470       | .037503 |
| 712           | .001404494       | .037477 |

| Slope<br>1 in | s=sine of slope. | √s.     |
|---------------|------------------|---------|
| 713           | .001402525       | .037450 |
| 714           | .001400560       | .037424 |
| 715           | .001398601       | .037398 |
| 716           | .001396648       | .037372 |
| 717           | .001394700       | .037346 |
| 718           | .001392758       | .037320 |
| 719           | .001390821       | .037294 |
| 720           | .001388889       | .037268 |
| 721           | .001386963       | .037242 |
| 722           | .001385042       | .037216 |
| 723           | .001383126       | .037190 |
| 724           | .001381215       | .037164 |
| 725           | .001379310       | .037139 |
| 726           | .001377410       | .037113 |

| Slope<br>I in | s = sine of slope. | √s.     |
|---------------|--------------------|---------|
| 727           | .001375516         | .037088 |
| 728           | .001373626         | .037063 |
| 729           | .001371742         | .037037 |
| 730           | .001369863         | .037012 |
| 731           | .001367989,        | .036986 |
| 732           | .001366120         | .036961 |
| 733           | .001364256         | .036936 |
| 734           | .001362398         | .036911 |
| 735           | .001360544         | .036885 |
| 736           | .001358696         | .036860 |
| 737           | .001356852         | .036835 |
| 738           | .001355014         | .036810 |
| 739           | .001353180         | .036786 |
| 740           | .001351351         | .036761 |

| Slope<br>1 in | s=sine of slope. | $\sqrt{s}$ . |
|---------------|------------------|--------------|
| 741           | .001349528       | .036736      |
| 742           | .001347709       | . 036711     |
| 743           | .001345895       | .036686      |
| 744           | .001344086       | . 036662     |
| 745           | .001342282       | .036637      |
| 746           | .001340483       | .036613      |
| 747           | .001338688       | .036588      |
| 748           | .001336898       | .036563      |
| 749           | .001335113       | .036539      |
| 750           | .001333333       | .036515      |
| 751           | .001331558       | .036490      |
| 752           | .001329787       | .036466      |
| 753           | .001328021       | .036442      |
| 754           | .001326260       | .036418      |

| Slope<br>I in | s=sine of slope. | Vs.     |
|---------------|------------------|---------|
| 755           | .001324503       | .036394 |
| 756           | .001322751       | .036370 |
| 757           | .0013210C4       | .036346 |
| 758           | .001319261       | .036322 |
| 759           | .001317523       | .036298 |
| 760           | _001315789       | .036274 |
| 761           | .001314060       | .036250 |
| 762           | .001312336       | .036226 |
| 763           | .001310616       | .036202 |
| 764           | .001308901       | .036179 |
| 765           | .001307190       | .036155 |
| 766           | .001305483       | .036131 |
| 767           | .001303781       | .036108 |
| 768           | .001302083       | .036084 |

| Slope<br>1 in | s=sine of slope. | √s.     |
|---------------|------------------|---------|
| 769           | .001300390       | .036061 |
| 770           | .001298701       | .036038 |
| <b>77</b> I   | .001297017       | .036014 |
| 772           | .001295337       | .035991 |
| 773           | .001293661       | .035967 |
| 774           | .001291990       | .035944 |
| 775           | .001290323       | .035921 |
| 776           | .001288660       | .035898 |
| <b>7</b> 77   | .001287001       | .035875 |
| 778           | .001285347       | .035852 |
| 779           | . 201283697      | .035829 |
| 780           | .001282051       | .035806 |
| 781           | .001280410       | .035783 |
| 782           | .001278772       | .035760 |

| Slope | s=sine of slope. | √s      |
|-------|------------------|---------|
| 783   | .001277139       | .035737 |
| 784   | .001275510       | .035714 |
| 785   | .001273885       | .035691 |
| 786   | .001272265       | .035669 |
| 787   | .001270648       | .035646 |
| 788   | .001269036       | .035623 |
| 789   | .001267427       | .035601 |
| 790   | .001265823       | .035578 |
| 791   | .001264223       | .035556 |
| 792   | .001252626       | .035533 |
| 793   | .001261034       | .035511 |
| 794   | .001259446       | .035489 |
| 795   | .001257862       | .035466 |
| 796   | .001256281       | .035444 |

| Slope<br>I in | s = sine of slope. | √s.     |
|---------------|--------------------|---------|
| 797           | .001254705         | .035422 |
| 798           | .001253133         | .035399 |
| 799           | .001251564         | .035377 |
| 800           | .001250000         | .035355 |
| 801           | .001248439         | .035333 |
| 802           | .001246883         | .035311 |
| 803           | .001245330         | .035289 |
| 804           | .001243781         | .035267 |
| 805           | .001242236         | .035245 |
| 806           | .001240695         | .035223 |
| 807           | .001239157         | .035201 |
| 808           | .001237624         | .035179 |
| 809           | .001236094         | .035158 |
| 810           | .001234568         | .035136 |

| Slope<br>1 in | s=sine of slope. | √s.      |
|---------------|------------------|----------|
| 811           | .001233046       | .035115  |
| 812           | .001231527       | .035093  |
| 813           | .001230012       | .035071  |
| 814           | .001228501       | .035050  |
| 815           | .001226994       | .035028  |
| 816           | .001225490       | .035007  |
| 817           | .001223999       | . 034985 |
| 818           | .001222494       | .034964  |
| 819           | .001221001       | .034943  |
| 820           | .001219512       | .034922  |
| 821           | .001218027       | .034900  |
| 822           | .001216545       | .034879  |
| 823           | .001215067       | .034858  |
| 824           | .001213592       | .034837  |

| Slope<br>I in | s=sine of slope. | $\sqrt{s}$ . |
|---------------|------------------|--------------|
| 825           | .001212121       | .034816      |
| 826           | .001210654       | .034794      |
| 827           | .001290190       | .034773      |
| 828           | .001207729       | .034752      |
| 829           | .001206273       | .034731      |
| 830           | .001204819       | .034710      |
| 831           | .001203369       | .034689      |
| 832           | .001201923       | .034669      |
| 833           | .001200480       | .034648      |
| 834           | .001199041       | .034627      |
| 835           | .001197605       | .034606      |
| 836           | .001196172       | .034586      |
| 837           | .001194743       | .034565      |
| 838           | .001193317       | .034544      |

| Slope<br>I in | $s = \sin \theta$ of slope. | √s.      |
|---------------|-----------------------------|----------|
| 839           | .001191895                  | .034524  |
| 840           | .001190476                  | . 034503 |
| 841           | .001189061                  | .034483  |
| 842           | .001187648                  | .034462  |
| 843           | .001186240                  | .034442  |
| 844           | .001184834                  | .034421  |
| 845           | .001183432                  | .034401  |
| 846           | .001182033                  | .034381  |
| 847           | .001180638                  | .034360  |
| 848           | .001179245                  | .034340  |
| 849           | .001177856                  | .034320  |
| 850           | .001176471                  | .034300  |
| 851           | .001175088                  | .034279  |
| 852           | .001173709                  | .034259  |

| Slope<br>1 in | s=sine of slope. | √s.     |
|---------------|------------------|---------|
| 853           | .001172333       | .034239 |
| 854           | .001170960       | .034219 |
| 855           | .001169591       | .034199 |
| 856           | .001168224       | .034179 |
| 857           | .001166861       | .034159 |
| 858           | .001165501       | .034139 |
| 859           | .001164144       | .034119 |
| ·860          | .001162791       | .034099 |
| 861           | .001161440       | .034080 |
| 862           | .001160093       | .034060 |
| 863           | .001158749       | .034040 |
| 864           | .001157407       | .034021 |
| 865           | .001156069       | .034001 |
| 866           | .001154734       | .033981 |

| Slope<br>1 in | s=sine of slope. | √s.     |
|---------------|------------------|---------|
| 867           | .001153403       | .033962 |
| 868           | .001152074       | .033942 |
| 869           | .001150748       | .033923 |
| 870           | .001149425       | .033903 |
| 871           | .001148106       | .033883 |
| 872           | .001146789       | .033864 |
| 873           | .001145475       | .033845 |
| 874           | .001144165       | .033825 |
| 875           | .001142857       | .033806 |
| 876           | .001141553       | .033787 |
| 877           | .001140251       | .033768 |
| 878           | .001138952       | .033748 |
| 879           | .001137656       | .033729 |
| 880           | .001136364       | .033710 |

| Slope<br>I in | s=sine of slope. | $\sqrt{s}$ . |
|---------------|------------------|--------------|
| 881           | .001135074       | .033691      |
| 882           | .001133787       | .033672      |
| 883           | .001132503       | .033653      |
| 884           | .001131222       | .033633      |
| 885 .         | .001129944       | .033614      |
| 886           | .001128668       | .033595      |
| 887           | .001127396       | .033577      |
| 888           | .001126126       | .033558      |
| 889           | .001124859       | .033539      |
| 890           | .001123596       | .033520      |
| 891           | .001122334       | .033501      |
| 892           | .001121076       | .033483      |
| 893           | .001119821       | .033464      |
| 894           | .001118568       | .033445      |

| Slope<br>1 in | s=sine of slope. | √s      |
|---------------|------------------|---------|
| 895           | .001117318       | .033426 |
| 896           | .001116071       | .033408 |
| 897           | .001114827       | .033389 |
| 898           | .001113586       | .033370 |
| 899           | .001112347       | .033352 |
| 900           | .00111111        | .033333 |
| 901           | .001109878       | .033315 |
| 902           | .001108647       | .033296 |
| 903           | .001107420       | .033278 |
| 904           | .001106195       | .033259 |
| 905           | .001104972       | .033241 |
| 906           | .001103753       | .033223 |
| 907           | .001102536       | .033204 |
| 908           | .001101322       | .033186 |

| Slope<br>1 in | s=sine of slope. | $\sqrt{s}$ . |
|---------------|------------------|--------------|
| 909           | .001100110       | .033108      |
| 910           | .001098901       | .033149      |
| 911           | .001097695       | .033131      |
| 912           | .001096491       | .033113      |
| 913           | .001095290       | .033095      |
| 914           | .001094092       | .033077      |
| 915           | .001092896       | .033059      |
| 916           | .001091703       | .033041      |
| 917           | .001090513       | .033023      |
| 918           | .001089325       | .033005      |
| 919           | .001088139       | .032987      |
| 920           | .001086957       | .032969      |
| 921           | .001085776       | .032951      |
| 922           | .001084599       | .032933      |

| Slope<br>I in | s=sine of slope. | √s.      |
|---------------|------------------|----------|
| 923           | .001083423       | .032915  |
| 924           | .001082251       | .032897  |
| 925           | .001081081       | .032879  |
| 926           | .001079914       | .032862  |
| 927           | .001078749       | . 032844 |
| 928           | .001077586       | .032826  |
| 929           | .001076426       | . 032809 |
| 930           | .001075269       | .032791  |
| 931           | .001074114       | .032774  |
| 932           | .001072961       | .032756  |
| 933           | .001071811       | .032738  |
| 934           | .001070664       | .032721  |
| 935           | .001069519       | .032703  |
| 936           | .001068376       | .032686  |

| Slope<br>1 in | s=sine of slope. | $\sqrt{s}$ . |
|---------------|------------------|--------------|
| 937           | .001067236       | .032669      |
| 938           | .001066098       | .032651      |
| 939           | .001064963       | .032634      |
| 940           | .001063830       | .032616      |
| 941           | .001062699       | .032599      |
| 942           | .001061571       | .032582      |
| 943           | .001060445       | .032565      |
| 944           | .001059322       | .032547      |
| 945           | .001058201       | .032530      |
| 946           | .001057082       | .032513      |
| 947           | .001055966       | .032496      |
| 948           | .001054852       | .032479      |
| 949           | .001053741       | .032461      |
| 950           | .001052632       | :032444      |

| Slope<br>1 in | s=sine of slope. | √s.     |
|---------------|------------------|---------|
| 951           | .001051525       | .032427 |
| 952           | .001050420       | .032410 |
| 953           | .001049318       | .032393 |
| 954           | .001048218       | .032376 |
| 955           | .001047120       | .032359 |
| 956           | .001046025       | .032342 |
| 957           | .001044932       | .032325 |
| 958           | .001343841       | .032309 |
| 959           | .001042753       | .032292 |
| 960           | .001041667       | .032275 |
| 961           | .001040583       | .032258 |
| 962           | .001039501       | .032241 |
| 963           | .001038422       | .032224 |
| 964           | .001037344       | .032208 |

| -             | A                |         |
|---------------|------------------|---------|
| Slope<br>1 in | s=sine of slope. | √s.     |
| 965           | .001036269       | .032191 |
| 966           | .001035197       | .032174 |
| 967           | .001034126       | .032158 |
| 968           | .001033058       | .032141 |
| 969           | .001031992       | .032125 |
| 970           | .001030928       | .032108 |
| 971           | .001029866       | .032091 |
| 972           | .001028807       | .032075 |
| 973           | .001027749       | .032059 |
| 974           | .001026694       | .032042 |
| 975           | .001025641       | .032026 |
| 976           | .001024590       | .032009 |
| 977           | .001023541       | .031993 |
| 978           | .001022495       | .031977 |

| Slope<br>1 in | s=sine of slope. | Vs.     |
|---------------|------------------|---------|
| 979           | .001021450       | .031960 |
| 98o           | .001020408       | .031944 |
| 981           | .001019368       | .031928 |
| 982           | .001018330       | .031911 |
| 983           | .001017294       | .031895 |
| 984           | .001016260       | .031879 |
| 985           | .001015228       | .031863 |
| 986           | .001014199       | .031847 |
| 987           | .001013171       | .031830 |
| 988           | .001012146       | .031814 |
| 989           | .001011122       | .031798 |
| 990           | .00101010        | .031782 |
| 991           | 001009082        | .031766 |
| 992           | .001008065       | .031750 |

| Slope<br>I in | s=sine of slope. | √s.     |
|---------------|------------------|---------|
| 993           | .001007049       | .031734 |
| 994           | .001006036       | .031718 |
| 995           | .001005025       | .031702 |
| 996           | .001004016       | .031686 |
| 997           | .001003009       | .031670 |
| 998           | .001002004       | .031654 |
| 99 <b>9</b>   | .001001001       | .031639 |
| 1000          | .00100000        | .031623 |
| 1010          | .000990099       | .031466 |
| 1020          | .000980392       | .031311 |
| 1030          | .000970873       | .031159 |
| 1040          | .000961538       | .031009 |
| 1050          | .000952381       | .030861 |
| 1060          | .000943396       | .030715 |

| Slope<br>I in | s=sine of slope. | √s.     |
|---------------|------------------|---------|
| 1070          | .000934579       | .030571 |
| 1080          | .000925926       | .030429 |
| 1090          | .000917431       | .030289 |
| 1100          | .000909090       | .030151 |
| 1110          | .000900900       | .030015 |
| 1120          | .000892857       | .029881 |
| 1130          | .000884956       | .029748 |
| 1140          | .000877193       | .029617 |
| 1150          | .000869566       | .029488 |
| 1160          | .000862069       | .029361 |
| 1170          | .000854701       | .029235 |
| 1180          | .000847458       | .029111 |
| 1190          | .000840336       | .028988 |
| 1200          | .000833333       | .028868 |

| Slope<br>1 in | s=sine of slope. | $\sqrt{s}$ . |
|---------------|------------------|--------------|
| 1220          | .000819672       | .028630      |
| 1240          | .000806452       | .028398      |
| 1260          | .000793651       | .028172      |
| 1280          | .000781250       | .027951      |
| 1300          | .000769231       | .027735      |
| 1320          | .000757576       | .027524      |
| 1340          | .000746268       | .027318      |
| 1360          | .000735294       | .027116      |
| 1380          | .000724638       | .026919      |
| 1400          | .000714286       | .026726      |
| 1420          | .000704225       | .026537      |
| 1440          | .000694444       | .026352      |
| 1460          | .000684932       | .026171      |
| 1480          | .000675675       | .025994      |

| warmer and    |                  |         |
|---------------|------------------|---------|
| Slope<br>1 in | s=sine of slope. | √s      |
| 1500          | .000666666       | .025820 |
| 1520          | .000657895       | .025649 |
| 1540          | .000649351       | .025482 |
| 1560          | .000641025       | .025318 |
| 1580          | .000632911       | .025158 |
| 1600          | .000625000       | .025000 |
| 1620          | .000617284       | .024845 |
| 1640          | .000609756       | .024693 |
| 1660          | .000602409       | .024744 |
| 1680          | .000595238       | .024398 |
| 1700          | .000588235       | .024254 |
| 1720          | .000581395       | .024112 |
| 1740          | .000574712       | .023973 |
| 1760          | .000568182       | .023836 |

| Slope<br>I in | s=sine of slope. | $\sqrt{s}$ . |
|---------------|------------------|--------------|
| 1780          | .000561798       | .023702      |
| 1800          | .000555555       | .023570      |
| 1820          | .000549450       | .023440      |
| 1840          | .000543478       | .023313      |
| 1860          | .000537634       | .023187      |
| 1880          | .000531915       | .023063      |
| 1900          | .000526316       | .022942      |
| 1920          | .000520833       | .022822      |
| 1940          | .000515464       | .022704      |
| 1960          | .000510204       | .022588      |
| 1980          | .000505050       | .022473      |
| 2000          | .000500000       | .022361      |
| 2040          | .000490196       | .022140      |
| 2080          | .000480769       | .021927      |

| Slope<br>I in | s=sine of slope. | $\sqrt{s}$ . |
|---------------|------------------|--------------|
| 2120          | .000471698       | .021719      |
| 2160          | .000462963       | .021517      |
| 2200          | .000454545       | .021320      |
| 2240          | .000446429       | .021129      |
| 2280          | .000438597       | .020943      |
| 2320          | .000431034       | .020761      |
| 2360          | .000423729       | .020585      |
| 2400          | .000416666       | .020412      |
| 2440          | .000409836       | .020244      |
| 2480          | .000403226       | .020080      |
| 2520          | .000396825       | .019920      |
| 2560          | .000390625       | .019764      |
| 2600          | .000384615       | .019612      |
| 2640          | .000378787       | .019463      |



# EGG-SHAPED SEWERS.

INTERNAL DIMENSIONS.



# Hydraulic Tables Based on Kutter's Formula.

Egg-Shaped Sewers.—Internal Dimensions.

Depth of vertical diameter is 1.5 times the greatest transverse diameter; that is, the diameter of top of arch.

Let D=greatest transverse diameter, that is the diameter of top or

$$\operatorname{arch} = \frac{2H}{3}$$
, then

H=depth of sewer or vertical diameter=1.5D.

B=radius of bottom or invert= $\frac{\mathbf{H}}{6}$ .

R=radius of sides=H.

By reference to column  $c\sqrt{r}$  in Tables 3 and 4 it will be seen that the mean velocity of an egg-shaped sewer flowing two-thirds full is always *greater* than that of the mean velocity of same sewer flowing

full. When the slopes are equal, columns  $c\sqrt{r}$  and  $ac\sqrt{r}$  give a ready means for comparing velocities and discharges.

APPLICATION AND USE OF THE TABLES.

To find the velocity and discharge in an egg-shaped sewer.

Example 10.—An egg-shaped sewer 7 feet by 10 feet 6 inches has a slope of 6 feet per mile. What is its velocity and discharge flowing full, flowing two-thirds full depth and one-third full depth?

A slope of 6 feet per mile is equal to 1 in 880, opposite to which in Table 2 the value of  $\sqrt{s}$  is found to be=.03271.

In Tables 3, 4 and 5 opposite a transverse diameter of 7 feet find the values of  $c\sqrt{r}$  and  $ac\sqrt{r}$  and substitute them and also the value of  $\sqrt{s}$  above found in formula (1)  $v = c\sqrt{r} \times \sqrt{s}$ .

" (5)  $Q = ac\sqrt{r} \times \sqrt{s}$  and we get the following:

 $\text{Full depth.} \left\{ \begin{aligned} v = & 160.2 \times .03371 = 5.4 \text{ feet} \\ \text{per second.} \\ \text{Q} = & 9015.7 \times .03371 = 303.9 \\ \text{cubic feet per second.} \end{aligned} \right.$ 

 $\begin{array}{l} \text{Two-thirds} \\ \text{depth.} \\ \end{array} \begin{cases} v\!=\!169.6\!\times\!.03371\!=\!5.72 \text{ feet} \\ \text{ per second.} \\ \text{Q}\!=\!6283.5\!\times\!.03371\!=\!211.8 \\ \text{ cubic feet per second.} \\ \end{cases} \\ \text{One-third} \\ \text{depth.} \\ \begin{cases} v\!=\!127.9\!\times\!.03371\!=\!4.31 \text{ feet} \\ \text{ per second.} \\ \text{Q}\!=\!1779.4\!\times\!.03371\!=\!59.98 \\ \text{ cubic feet per second.} \\ \end{cases}$ 

To find the dimensions of an eggshaped sewer to replace a circular sewer.

Example 11.—A circular sewer 5 feet diameter and 4800 feet long has a fall of 16 feet. It is to be removed and replaced by an egg-shaped sewer with a fall of 8 feet whose discharge flowing full shall equal that of the circular sewer flowing full? Give dimensions of egg-shaped sewer.

A fall of 16 in 4800=1 in 300 and in Table 2 the  $\sqrt{s}$  corresponding to this is .057735. In Table 1 opposite 5 feet diameter the value  $ac\sqrt{r}$  is 2272.7, substitute this value and also the value of  $\sqrt{s}$  in formula (5)  $Q=ac\sqrt{r}\times\sqrt{s}$  and we have  $Q=2272.7\times.057735=131.21$  cubic feet per second, the discharge of the circular

sewer. The egg-shaped sewer is to have a fall of 8 in 4800=1 in 600, and in Table 2 the equivalent  $\sqrt{s}$  is 040825, substitute this value and also the discharge found above in

formula (7) 
$$ac\sqrt{r} = \frac{Q}{\sqrt{s}} = \frac{131.21}{.040825} = 3213.9.$$

In Table 3, the nearest value of  $ac\sqrt{r}$  to this is 3353 opposite a transverse diameter 4 feet 10 inches, therefore the egg-shaped sewer is to be 4 feet 10 inches by 7 feet 3 inches.

To find the diameter of a circular sewer whose discharge flowing full shall equal that of an egg-shaped sewer flowing one-third full depth.

Example 12.—Find the diameter of a circular sewer whose discharge flowing full shall equal that of the egg-shaped sewer in last example flowing one-third full the slope being the same in each.

In Table 5 and opposite transverse diameter 4 feet 10 inches the value of  $ac\sqrt{r}$  = 657.53.

In Table 1 the value of  $ac\sqrt{r}$  nearest to this is found to be 661.77 opposite a diameter of 3 feet 2 inches, which is the diameter of the circular sewer required.

To find the diameter of a circular sewer whose velocity flowing full shall equal that of an egg-shaped sewer flowing one-third full depth.

Example 13.—What is the diameter of a circular sewer whose mean velocity flowing full shall equal that of an egg-shaped sewer 4 feet by 6 feet flowing one-third full, the grade in each being the the same?

In Table 5 and opposite the transverse diameter 4 feet the value of  $c\sqrt{r}$ =86.61.

In Table 1 the value of  $c\sqrt{r}$  nearest to this is 87.15, opposite diameter 3 feet 4 inches, which is the diameter of the circular sewer required.

To find the dimensions and slope of an egg-shaped sewer flowing full, the mean velocity and discharge being given.

Example 14.—An egg-shaped sewer flowing full is to have a mean velocity not

greater than 5 feet per second, and is to discharge 108 cubic feet per second. What is size and slope?

By formula (6)  $a = \frac{Q}{v}$  substitute values

of Q and v given and  $a = \frac{108}{5} = 21.6$  square feet.

In column 2 of Table 3 the nearest area to this is 21.556 opposite the transverse diameter 4 feet 4 inches, therefore the sewer required is 4 feet 4 inches by 6 feet 6 inches. At the same time the value of  $ac\sqrt{r}$  opposite 4 feet 4 inches diameter is found equal to 2501.4, substitute this and also value of

formula (8) 
$$\sqrt{s} = \frac{Q}{ac\sqrt{r}} = \frac{108}{2501.4} =$$

.043176, and in Table 2 the nearest value of  $\sqrt{s}$  to this is .043193 opposite the slope of 1 in 536, which is slope of sewer.

The diameter and slope of a circular sewer being given, to find dimensions and slope of an egg-shaped sewer whose discharge flowing two-thirds depth shall equal that of the circular sewer flowing full and whose velocity at same depth shall not exceed a certain rate.

Example 15.—A circular sewer 6 feet in diameter and with a slope of 1 in 600 is to be removed and to be replaced by an egg-shaped sewer whose discharge flowing at two-thirds of its full depth shall be equal to that of the circular sewer flowing full and whose mean velocity at the same two-thirds depth shall not exceed 5 feet per second? Give dimensions and slope of egg-shaped sewer.

In Table 1 and opposite 6 feet diameter the value of  $ae\sqrt{r}$  is 3702 3, and in Table 2 opposite 1 in 600 the value of  $\sqrt{s}$  is .040825, substitute these values in formula

(5)  $Q = ac\sqrt{r} \times \sqrt{s}$  and we get

Q=3702.3 × .040825 = 151.15 cubic feet per second, the discharge of the circular sewer. Now substitute this discharge and the velocity above given 5 feet per second in formula (6)  $a=\frac{Q}{v}$  and

we get  $a = \frac{151.15}{5} = 30.23$  square feet, the

area at two-thirds depth of the egg-shaped sewer. In column 2 of Table 4 the nearest area to this is 30.317 opposite a transverse diameter of 6 feet 4 inches, therefore the dimensions of egg-shaped sewer are 6 feet 4 inches by 9 feet 6 inches.

At the same time take out the value of  $a c \sqrt{r}$  opposite 6 feet 4 inches, which is 4811.9. Substitute this and also the value of Q found in formula (8)

$$\sqrt{s} = \frac{Q}{ac\sqrt{r}} = .031412$$

and this not being found in Table 1, square each side and

$$s = .0009867,$$

and  $\frac{1}{.0009867} = 1013$  nearly, therefore the slope of egg-shaped sewer is 1 in 1013

and its size 6 feet 4 inches by 9 feet 6 inches.

To find the dimensions and grade of an egg-shaped sewer to have a certain discharge flowing full, and whose mean velocity shall not exceed a certain rate when flowing two-thirds full depth. Example 16.—An egg-shaped sewer is to discharge 110 cubic feet per second flowing full and its mean velocity flowing two-thirds full depth is not to exceed 5 feet per second? Find its dimensions and slope.

As a first approximation assume the velocity flowing full at 5 feet per second, then  $\frac{110}{5}$  = 22 square feet the area of egg-

shaped sewer flowing full, and in Table 3 opposite this area the transverse diameter 4 feet 4 inches is found. Now with this diameter

the value of  $c\sqrt{r}$  full depth =116.0 the value of  $c\sqrt{r}$  two-thirds depth=123.1 therefore we may assume that the velocity of sewer flowing full is for 4 feet 4 inches, transverse diameter about 6 per cent. less than when flowing two-thirds full, that is, assuming the velocity at two-thirds depth 5 feet per second, the velocity at full depth will be about 4.7 feet per second. Substituting this velocity and also discharge

in formula (6)  $a = \frac{Q}{v} = \frac{110}{4.7} = 23.4$  the area

of egg-shaped sewer flowing full. In Table 3 the transverse diameter opposite this is 4 feet 6 inches, which is the diameter required of the egg-shaped sewer. At the same time that diameter is found look out the value of  $ac\sqrt{r}$  which is 2770, substitute this in

formula (8) . 
$$\sqrt{s} = \frac{Q}{ac\sqrt{s}}$$
  
=  $\frac{110}{2770} = .039711$ .

In Table 2 the  $\sqrt{s}$  nearest to this is .039715 opposite a slope of 1 in 634, therefore the dimensions of egg-shaped sewer are 4 feet 6 inches by 6 feet 9 inches and its slope 1 in 634.

Now in Table 4 the value of  $c\sqrt{r}$  opposite transverse diameter of 4 feet 6 inches is 126.3, substitute this and also value of  $\sqrt{s}$  above found in

formula (1)  $v = c\sqrt{r} \times \sqrt{s}$  and we have  $v = 126.3 \times .039711 = 5$  feet per second, the mean velocity of sewer flowing two-thirds full.

Table 3.—Giving Values of a and r and also the Factors  $c\sqrt{r}$  and  $ac\sqrt{r}$  for Corresponding Transverse Diameters of Egg-Shaped Sewers, Flowing full depth, given in First Column.

These factors are to be used only where the value of n, that is the coefficient of roughness of lining of channel = .015, as in second-class or rough-faced brickwork, well-dressed stone work, foul and slightly tuberculated iron, cement and terra-cotta pipes with imperfect joints and in bad order.

Area of egg-shaped sewer flowing full depth =  $D^2 \times 1.148525$ .

Perimeter of egg-shaped sewer flowing full depth =  $D \times 3.9649$ .

Hydraulic mean depth of egg-shaped sewer flowing full depth =  $D \times 0.2897$ .

 $v = c \sqrt{r} \times \sqrt{s}$ .  $Q = av = ac \sqrt{r} \times \sqrt{s}$ .

| tra<br>ve | =<br>ns-<br>rse<br>im.<br>in. | a = area in square ft. | r=hy-<br>draulic<br>mean<br>depth<br>in feet. | For velocity. | For discharge |
|-----------|-------------------------------|------------------------|-----------------------------------------------|---------------|---------------|
| 1         | 0                             | 1.148                  | . 2897                                        | 39.62         | 45.528        |
| I         | 2                             | 1.563                  | . 3380                                        | 44.66         | 69.804        |
| I         | 4                             | 2.041                  | . 3864                                        | 49.57         | 101.17        |
| 1         | 6                             | 2.584                  | .4345                                         | 54.08         | 139.74        |
| I         | 8                             | 3.190                  | .4828                                         | 58.64         | 187.06        |
| 1         | 10                            | 3.860                  | .5311                                         | 62.83         | 242.52        |
| 2         | 0                             | 4.594                  | .5794                                         | 66.93         | 307.48        |
| 2         | 2                             | 5.391                  | .6277                                         | 71.01         | 382.81        |
| 2         | 4                             | 6.253                  | .6760                                         | 74.93         | 468.54        |
| 2         | 6                             | 7.178                  | .7242                                         | 78.76         | 565.34        |
| 2         | 8                             | 8.167                  | .7725                                         | 82.44         | 673.29        |
| 2         | 10                            | 9.220                  | .8208                                         | 86.21         | 794.86        |
| 3         | 0                             | 10.337                 | .8691                                         | 89.70         | 927.23        |

| D<br>tra:<br>ver<br>dia<br>ft. | ns-<br>rse<br>m. | a = area in square ft. | r=hy-<br>draulic<br>mean<br>depth<br>in feet. | For velocity. | For discharge ac Vr |
|--------------------------------|------------------|------------------------|-----------------------------------------------|---------------|---------------------|
| 3                              | 2                | 11.517                 | .9174                                         | 93.25         | 1074.0              |
| 3                              | 4                | 12.761                 | .9657                                         | 96.73         | 1234.4              |
| 3                              | 6                | 14.069                 | 1.014                                         | 100.1         | 1407.6              |
| 3                              | 8                | 15.442                 | 1.062                                         | 103.4         | 1596.7              |
| 3                              | 10               | 16.877                 | 1.111                                         | 106.6         | 1799.1              |
| 4                              | 0                | 18.376                 | 1.159                                         | 109.9         | 2019.5              |
| 4                              | 2                | 19.940                 | 1.207                                         | 113.0         | 2254.0              |
| 4                              | 4                | 21.566                 | 1.255                                         | 116.0         | 2501.4              |
| 4                              | 6                | 23.258                 | 1.304                                         | 119.1         | 2770.0              |
| 4                              | 8                | 25.013                 | 1.352                                         | I 2 2 . I     | 3053.8              |
| 4                              | 10               | 26.830                 | 1.400                                         | 125.0         | 3353.0              |
| 5                              | 0                | 28.713                 | 1.449                                         | 128.0         | 3675.6              |
| 5                              | 2                | 30.660                 | 1.497                                         | 130.7         | 4007.9              |

|   | ns-<br>rse<br>im. | a=area in square ft. | r=hy-<br>draulic<br>mean<br>depth<br>in feet. | For velocity. | For discharge |
|---|-------------------|----------------------|-----------------------------------------------|---------------|---------------|
| 5 | 4                 | 32.669               | 1.545                                         | 133.6         | 4364.9        |
| 5 | 6                 | 34.743               | 1.593                                         | 136.4         | 4738.0        |
| 5 | 8                 | 36.880               | 1.642                                         | 139.2         | 5131.7        |
| 5 | 10                | 39.081               | 1.690                                         | 142.0         | 5548.0        |
| 6 | 0                 | 41.347               | 1.738                                         | 144.6         | 5980.3        |
| 6 | 2                 | 43.676               | 1.787                                         | 147.3         | 6435.1        |
| 6 | 4                 | 46.068               | 1.835                                         | 149.8         | 6902.6        |
| 6 | 6                 | 48.525               | ı 883                                         | 152.5         | 7399.3        |
| 6 | 8                 | 51.046               | 1.931                                         | 155.2         | 7920.6        |
| 6 | 10                | 53.629               | 1.980                                         | 157.7         | 8547.1        |
| 7 | 0                 | 56.278               | 2.028                                         | 160.2         | 9015.7        |
| 7 | 4                 | 61.764               | 2.124                                         | 165.0         | 10192         |
| 7 | 8                 | 67.508               | 2.221                                         | 170.1         | 11482         |

| tra<br>ve<br>dia | ns-<br>rse<br>im.<br>in. | a=area in square ft. | r=hy-<br>draulic<br>mean<br>depth<br>in feet. | For velocity. | For discharge ac 1 r |
|------------------|--------------------------|----------------------|-----------------------------------------------|---------------|----------------------|
| 8                | 0                        | 73.506               | 2.318                                         | 174.8         | 12852                |
| 8                | 4                        | 79.758               | 2.414                                         | 179.6         | 14327                |
| 8                | 8                        | 86.268               | 2.511                                         | 184.3         | τ5898                |
| 9                | 0                        | 93.030               | 2.607                                         | 188.8         | 17563                |
| 9                | 4                        | 100.049              | 2.704                                         | 193.1         | 19323                |
| 9                | 8                        | 107.324              | 2.800                                         | 197.5         | 21198                |
| 10               | 0                        | 114.853              | 2.897                                         | 201.9         | 23191                |
| 10               | 6                        | 126.625              | 3.042                                         | 208.3         | 26376                |
| 11               | 0                        | 138.972              | 3.187                                         | 214.6         | 29822                |
| I 2              | 0                        | 165.388              | 3.476                                         | 226.8         | 37502                |

Table 4.—Giving Values of a and r and also the Factors  $c\sqrt{r}$  and  $ac\sqrt{r}$  por Corresponding Diameters of Egg-Shaped Sewers, Flowing two-thirds full depth, given in First Column.

These factors are to be used only where the value of n, that is the coefficient of roughness of lining of channel == .015 as in second class or rough-faced brickwork, well-dressed stone work, foul and slightly tuberculated iron, cement and terra-cotta pipes with imperfect joints and in bad order.

Area of section of egg-shaped sewer flowing twothirds full depth = D<sup>2</sup> > 0.755825.

Perimeter of section of egg-shaped sewer flowing two-thirds full depth =  $D \times 2.3941$ .

Hydraulic mean depth of section of egg-shaped sewer flowing two-thirds full depth = D×0.3157.

 $v=c\sqrt{r}\times\sqrt{s}$ .  $Q=av=ac\sqrt{r}\times\sqrt{s}$ .

|   | ns-<br>rse<br>m. | a = area in square ft. | r=hy-<br>draulic<br>mean<br>depth<br>in feet. | For velocity. | For discharge. |
|---|------------------|------------------------|-----------------------------------------------|---------------|----------------|
|   | 0                | 0.756                  | 0.316                                         | 42.40         | 32.048         |
| ı | 2                | 1.029                  | 0.368                                         | 47.80         | 49.181         |
| 1 | 4                | 1.344                  | 0.421                                         | 52.82         | 70.993         |
| 1 | 6                | 1.701                  | 0.474                                         | 57.68         | 98.115         |
| 1 | 8                | 2.099                  | 0.526                                         | 62.46         | 131.10         |
| I | Io               | 2.540                  | 0.579                                         | 66.94         | 170.02         |
| 2 | 0                | 3.023                  | 0.631                                         | 71.42         | 216.54         |
| 2 | 2                | 3.548                  | 0.684                                         | 75.59         | 268.19         |
| 2 | 4                | 4.115                  | 0.737                                         | 79.69         | 327.93         |
| 2 | 6                | 4.724                  | 0.789                                         | 83.90         | 396.32         |
| 2 | 8                | 5 · 375                | 0.842                                         | 87.82         | 472.01         |
| 2 | 10               | 6.067                  | 0.894                                         | 91.60         | 555.74         |
| 3 | 0                | 6.802                  | 0.947                                         | 95.33         | 648.40         |

| D<br>tra<br>ver<br>dia<br>ft. | ns-<br>rse | a=area in square ft. | r=hy-<br>draulic<br>mean<br>depth<br>in feet. | For velocity. | For discharge |
|-------------------------------|------------|----------------------|-----------------------------------------------|---------------|---------------|
| 3                             | 2          | 7.579                | 1.000                                         | 99.10         | 751.08        |
| 3                             | 4          | 8.398                | 1.052                                         | 102.7         | 862.41        |
| 3                             | 6          | 9.259                | 1.105                                         | 106.2         | 983.24        |
| 3                             | 8          | 10.161               | 1.158                                         | 109.7         | 1115.1        |
| 3                             | 10         | 11.106               | 1.210                                         | 113.2         | 1256.1        |
| 4                             | 0          | 12.093               | 1.263                                         | 116.5         | 1409.4        |
| 4                             | 2          | 13.123               | 1.315                                         | 119.8         | 1572.1        |
| 4                             | 4          | 14.192               | 1.368                                         | 123.1         | 1746.9        |
| 4                             | 6          | 15.305               | 1.421                                         | 126.3         | 1932.7        |
| 4                             | 8          | 16.460               | 1.473                                         | 129.4         | 2130.5        |
| 4                             | 10         | 17.656               | 1.526                                         | 132.5         | 2338.6        |
| 5                             | 0          | 18.895               | 1.579                                         | 135.5         | 2560.3        |
| 5                             | 2          | 20.177               | 1.631                                         | 138.6         | 2795.9        |

| D:<br>tra<br>ver<br>dia<br>ft. | ns-<br>rse<br>m. | a=area in square ft. | r=hy-<br>draulic<br>mean<br>depth<br>in feet. | For velocity. $c \sqrt{r}$ | For discharge |
|--------------------------------|------------------|----------------------|-----------------------------------------------|----------------------------|---------------|
| 5                              | 4                | 21.498               | 1.684                                         | 141.7                      | 3045.5        |
| 5                              | 6                | 22.863               | 1.736                                         | 144.6                      | 3305.3        |
| 5                              | 8                | 24.270               | 1.789                                         | 147.5                      | 3578.9        |
| 5                              | 10               | 25.718               | I 842                                         | 150.3                      | 3864.8        |
| 6                              | 0                | 27.210               | 1.894                                         | 153.1                      | 4165.3        |
| 6                              | 2                | 28.743               | 1.947                                         | 155.9                      | 4481.6        |
| 6                              | 4                | 30.317               | 1.999                                         | 158.7                      | 4811.9        |
| 6                              | 6                | 31.933               | 2.052                                         | 161.5                      | 5158.5        |
| 6                              | 8                | 33.592               | 2.095                                         | 164.2                      | 5516.6        |
| 6                              | 10               | 35.292               | 2.157                                         | 166.9                      | 5891.0        |
| 7                              | 0                | 37.035               | 2.210                                         | 169.6                      | 6283.5        |
| 7                              | 4                | 40.646               | 2.315                                         | 174.8                      | 7106.8        |
| 7                              | 8                | 44.426               | 2.420                                         | 179.9                      | 7993.0        |

| ve  | ns-<br>rse<br>.m. | a=area in square ft. | r=hy-<br>draulic<br>mean<br>depth<br>in feet. | For velocity. | For discharge ac $\sqrt{r}$ |
|-----|-------------------|----------------------|-----------------------------------------------|---------------|-----------------------------|
| 8   | 0                 | 48.373               | 2.526                                         | 184.9         | 8944.0                      |
| 8   | 4                 | 52.487               | 2.631                                         | 189.8         | 9964.1                      |
| 8   | 8                 | 56.771               | 2.736                                         | 194.6         | 11050                       |
| 9   | 0                 | 61.222               | 2.841                                         | 199.5         | 12213                       |
| 9   | 4                 | 65.840               | 2.947                                         | 204.2         | 13444                       |
| 9   | 8                 | 70.628               | 3.052                                         | 208.7         | 14743                       |
| 10  | 0                 | 75.583               | 3.157                                         | 213.3         | 16125                       |
| 10  | 6                 | 83.330               | 3.315                                         | 220.I         | 18342                       |
| 11  | 0                 | 91.455               | 3 · 473                                       | 226.8         | 20738                       |
| I 2 | 0                 | 108.839              | 3.788                                         | 239 · 4       | 26060                       |

Table 5.—Giving Values of a and r and also the Factors  $c\sqrt{r}$  and  $ac\sqrt{r}$  for Corresponding Diameters of Egg-Shaped Sewers, Flowing one-third full depth, given in First Column.

These factors are to be used only where the value of n, that is the coefficient of roughness of lining of channel = .015 as in second-class or rough-faced brickwork, well-dressed stone work, foul and slightly tuberculated iron, cement and terra-cotta pipes with imperfect joints and in bad order.

Area of section of egg-shaped sewers flowing onethird full depth =  $D^2 \times 0.284$ .

Perimeter of section of egg-shaped sewer flowing one-third full depth =  $D \times I$ . 3747.

Hydraulic mean depth of section of egg-shaped sewers flowing one-third full depth =  $D \times 0.2066$ 

 $v = c \sqrt{r} \times \sqrt{s}$ .  $Q = av = ac \sqrt{r} \times \sqrt{s}$ .

| tra<br>ve | =<br>ins-<br>rse<br>im.<br>in. | a = area in square ft. | r=hy-<br>draulic<br>mean<br>depth<br>in feet. | For velocity. | For discharge ac Vr |
|-----------|--------------------------------|------------------------|-----------------------------------------------|---------------|---------------------|
| I         | 0                              | 0.284                  | 0.207                                         | 30.41         | 8.637               |
| 1         | 2                              | 0.387                  | 0.241                                         | 34.38         | 13.303              |
| I         | 4                              | 0.505                  | 0.276                                         | 38.16         | 19.269              |
| I         | 6                              | 0.639                  | 0.310                                         | 42.23         | 26.98€              |
| I         | 8                              | 0.789                  | 0.344                                         | 45 · 39       | 35.815              |
| I         | 10                             | 0.955                  | 0.379                                         | 48.74         | 46.546              |
| 2         | 0                              | 1.136                  | 0.413                                         | 52.09         | 59.173              |
| 2         | 2                              | 1.333                  | 0 448                                         | 55.29         | 73.696              |
| 2         | 4                              | 1.546                  | 0.482                                         | 58.58         | 90.568              |
| 2         | 6                              | 1.776                  | 0.517                                         | 61.58         | 109.37              |
| 2         | 8                              | 2.020                  | 0.551                                         | 64.49         | 130.26              |
| 2         | 10                             | 2.280                  | 0.585                                         | 67.46         | 153.80              |
| 3         | 0                              | 2.556                  | 0.620                                         | 70.48         | 180.14              |

| ve | ns-<br>rse<br>m. | a = area in square ft. | r=hy-<br>draulic<br>mean<br>depth<br>in feet. | For velocity. $c \sqrt{r}$ | For discharge ac $\sqrt{r}$ |
|----|------------------|------------------------|-----------------------------------------------|----------------------------|-----------------------------|
| 3  | 2                | 2.848                  | 0.654                                         | 73.24                      | 208.98                      |
| 3  | 4                | 2.156                  | 0.689                                         | 75.98                      | 239.79                      |
| 3  | 6                | 3 · 479                | 0.723                                         | 78.63                      | 273.54                      |
| 3  | 8                | 3.818                  | 0.758                                         | 81.31                      | 310.44                      |
| 3  | το               | 4.173                  | 0.792                                         | 84.03                      | 350.67                      |
| 4  | 0                | 4.544                  | 0.826                                         | 86.61                      | 393 - 55                    |
| 4  | 2                | 4.931                  | 0.861                                         | 88.98                      | 438.75                      |
| 4  | 4                | 5 · 333                | 0.895                                         | 91.60                      | 488.50                      |
| 4  | 6                | 5.751                  | 0.930                                         | 94.08                      | 541.04                      |
| 4  | 8                | 6.185                  | 0.964                                         | 96.57                      | 597.29                      |
| 4  | 10               | 6.635                  | 0.999                                         | 99.10                      | 657.53                      |
| 5  | 0                | 7.100                  | 1.033                                         | 101.3                      | 719.27                      |
| 5  | 2                | 7.581                  | 1.068                                         | 103.7                      | 785.86                      |

| D=<br>trans-<br>verse<br>diam.<br>ft. in. |    | a=area in square ft. | r=hy-<br>draulic<br>mean<br>depth<br>in feet. | For velocity. $c \sqrt{r}$ | For discharge ac $\sqrt{r}$ |
|-------------------------------------------|----|----------------------|-----------------------------------------------|----------------------------|-----------------------------|
| 5                                         | 4  | 8.078                | 1.102                                         | 106.1                      | 856.67                      |
| 5                                         | 6  | 8.591                | 1.136                                         | 108.3                      | 930.54                      |
| 5                                         | 8  | 9.120                | 1.171                                         | 110.6                      | 1008.7                      |
| 5                                         | 10 | 9.664                | 1.205                                         | 112.9                      | 1091.0                      |
| 6                                         | 0  | 10.224               | 1.240                                         | 115.0                      | 1175.8                      |
| 6                                         | 2  | 10.800               | 1.274                                         | 117.3                      | 1266.4                      |
| 6                                         | 4  | 11.391               | 1.309                                         | 119.4                      | 1359.8                      |
| 6                                         | 6  | 12.999               | 1.343                                         | 121.5                      | 1458.1                      |
| 6                                         | 8  | 12.622               | 1.377                                         | 123.7                      | 1561.0                      |
| 6                                         | 10 | 13.261               | 1.412                                         | 125.8                      | 1668.8                      |
| 7                                         | 0  | 13.916               | 1.446                                         | 127.9                      | 1779.4                      |
| 7                                         | 4  | 15.273               | 1.515                                         | 131.9                      | 2014.1                      |
| 7                                         | 8  | 16.693               | 1.584                                         | 135.8                      | 2266.7                      |

| -                                         |   |                      |                                               |               |                     |  |
|-------------------------------------------|---|----------------------|-----------------------------------------------|---------------|---------------------|--|
| D=<br>trans-<br>verse<br>diam.<br>ft. in. |   | a=area in square ft. | r=hy-<br>draulic<br>mean<br>depth<br>in feet. | For velocity. | For discharge ac Vr |  |
| 8                                         | 0 | 18.176               | 1.653                                         | 139.9         | 2542.7              |  |
| 8                                         | 4 | 19.722               | 1.722                                         | 143.7         | 2833.8              |  |
| 8                                         | 8 | 21.332               | 1.791                                         | 147.5         | 3146.2              |  |
| 9                                         | 0 | 23.004               | 1.859                                         | 151.3         | 3480.7              |  |
| 9                                         | 4 | 24.739               | 1.928                                         | 155.0         | 3834.7              |  |
| 9                                         | 8 | 26.538               | 1.997                                         | 158.6         | 4208.4              |  |
| 10                                        | 0 | 28.400               | 2.066                                         | 162.1         | 4604.7              |  |
| 10                                        | 6 | 31.311               | 2.169                                         | 167.5         | 5245.3              |  |
| 11                                        | 0 | 34.364               | 2.273                                         | 172.6         | 5932.1              |  |
| I 2                                       | 0 | 40.892               | 2.479                                         | 183.1         | 7489.0              |  |
|                                           |   |                      |                                               |               |                     |  |



\*\*\* Any book in this Catalogue sent free by mail, on receipt of price.

# VALUABLE SCIENTIFIC BOOKS.

PUBLISHED BY

### D, VAN NOSTRAND,

23 Murray Street, and 27 Warren Street,

#### NEW YORK.

WEISBACH. A MANUAL OF THEORETICAL MECHANICS. By Julius Weisbach, Ph. D. Translated by Eckley B. Coxe, A.M., M.E., 1,100 pages and 902 wood-cut illustrations. 8vo, cloth. . . . . \$10.00 FRANCIS. LOWELL HYDRAULIC EXPERIMENTS — being a Selection from Experiments on Hydraulic Motors, on the Flow of Water over Weirs, and in open Canals of Uniform, Rectangular Section, made at Lowell, Mass. By J. B. Francis, Civil Engineer. Third edition, revised and enlarged, with

23 copper - plates, beautifully engraved, and about 100 new pages of text. 4to.

15.00

KIRKWOOD. ON THE FILTRATION OF RIVER WATERS, for the Supply of Cities, as practised in Europe. By James P. Kirkwood. Illustrated by 30 double-plate engravings. 4to. cloth.

cloth.

15.00

#### D. VAN NOSTRAND'S PUBLICATIONS.

| SABINE. HISTORY AND PROGRESS OF THE ELEC-<br>TRIC TELEGRAPH, with Descriptions of<br>some of the Apparatus. By Robert Sabine,                                                                                |     |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| C. E. Second edition. 12mo, cloth, DAVIS AND RAE. HAND BOOK OF ELECTRICAL                                                                                                                                    | \$1 | 25  |
| DIAGRAMS AND CONNECTIONS. By Charles<br>H. Davis and Frank B. Rae. Illustrated<br>with 32 full-page illustrations. Second edi-                                                                               | _   |     |
| tion. Oblong 8vo, cloth extra,                                                                                                                                                                               | 2 ( | 90  |
| HASKINS. THE GALVANOMETER, AND ITS USES.<br>A Manual for Electricians and Students.<br>By C. H. Haskins. Illustrated. Pocket<br>form, morocco.                                                               | 1 4 | 50  |
| LARRABEE. CIPHER AND SECRET LETTER AND<br>TELEGRAPAIC CODE, with Hogg's Improve-<br>ments. By C. S. Larrabee. 18mo, flexi-                                                                                   |     |     |
| ble cloth,                                                                                                                                                                                                   | 1   | 00  |
| GILMORE PRACTICAL TREATISE ON LIMES,<br>HYDRAULIC CEMENT, AND MORTARS, By<br>Q. A. Gillmore, LtCol. U. S. Engineers,<br>Brevet Major-General U. S. Army. Fifth<br>edition, revised and enlarged. 8vo, cloth, | 4   | 00  |
| GILLMORE. COIGNET BETON AND OTHER ARTIFI-                                                                                                                                                                    | _   | • • |
| CIAL STONE. By Q.A. Gillmore, Lt. Col. U.S. Engineers, Brevet Major-General U.S. Army. Nine plates, views, etc. 8vo,                                                                                         |     |     |
| cloth,                                                                                                                                                                                                       | 2   | 50  |
| GILLMORE. A PRACTICAL TREATISE ON THE CONSTRUCTION OF ROADS, STREETS, AND PAVEMENTS. By Q. A. Gillmore, LtCol. U. S. Engineers, Brevet Major-General U.                                                      |     |     |
| S. Army. Seventy illustrations. 12mo. clo.,                                                                                                                                                                  | 2   | 00  |
| GILLMORE. REPORT ON STRENGTH OF THE BUILD<br>ING STONES IN THE UNITED STATES, etc.<br>8vo, cloth,                                                                                                            |     | 00  |
| HOLLEY. AMERICAN AND EUROPEAN RAILWAY<br>PRACTICE, in the Economical Generation<br>of Steam. By Alexander L. Holley. B. P.                                                                                   |     |     |
| With 77 lithographed plates. Folio, cloth,                                                                                                                                                                   | 12  | 00  |

#### D. VAN NOSTRAND'S PUBLICATIONS.

| WILLIAMSON. PRACTICAL TABLES IN METE OROLOGY AND HYPSOMETRY, in connection with the use of the Barometer By Col. R. S. Williamson, U. S. A. 4to, flexible cloth,                                                                                              | <b>\$2 50</b> . |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| BUTLER. PROJECTILES AND RIFLED CANNON<br>A Critical Discussion of the Principal Sys<br>tems of Rifling and Projectiles, with Prac-<br>tical Suggestions for their Improvement.<br>By Capt. John S. Butler, Ordnance Corps,<br>U. S. A. 36 Plates. 4to, cloth, | 7 50            |
| BENET ELECTRO-BALLISTIC MACHINES, and<br>the Schultz Chronoscope. By LtCol S.<br>V Benet, Chief of Ordnance U. S. A.<br>Second edition, illustrated. 4to, clotin,                                                                                             | 3 00            |
| MICHAELIS. THE LE BOULENGE CHRONO-<br>GRAPH. With three lithographed folding<br>plates of illustrations. By Bvt. Captian<br>O. E. Michaelis, Ordnance Corpse, U. S. A.<br>4to, cloth,                                                                         | 3 00            |
| NUGENT. Treatise on Optics; or Light and Sight, theoretically and practically treated; with the application to Fine Art and Industrial Pursuits. By E. Nugent. With 103 illustrations. 12mo, cloth.                                                           | 1 50            |
| PEIRCE. SYSTEM OF ANALYTIC MECHANICS. By<br>Benjamin Peirce, Professor of Astronomy<br>and Mathematics in Harvard University.<br>4to: cloth,                                                                                                                  | 10 00           |
| CRAIG WEIGHTS AND MEASURES. An Account<br>of the Decimal System, with Tables of Con-<br>version for Commercial and Scientific<br>Uses. By B. F. Craig, M. D. Square 32mo,<br>linp cloth,                                                                      | 50              |
| ALEXANDER. UNIVERSAL DICTIONARY OF<br>WEIGHTS AND MEASURES, Ancient and<br>Modern, reduced to the standards of the<br>United States of America. By J. H. Alex-                                                                                                |                 |
| an ler. New edition. 8vo, cloth,                                                                                                                                                                                                                              | 3 50            |

#### D. VAN NOSTRAND'S PUBLICATIONS.

| RANDALL. QUARTZ OPERATOR'S HAND-BOOK.<br>By P. M. Randall. New Edition. Revised<br>and Enlarged. Fully illustrated. 12mo,<br>cloth,                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$2 00       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| LORING. A HAND-BOOK ON THE ELECTRO-MAGNETIC TELEGRAPH. By A. E. Loring. 18mo, illustrated. Paper boards, 50 cents; cloth, 75 cents; morocco,                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 00         |
| BARNES. SUBMARINE WARFARE, DEFENSIVE AND OFFENSIVE. Descriptions of the various forms of Torpedors, Submarine Batteries and Torpedo Boats actually used in War. Methods of Ignition by Machinery, Contact Fuzes, and Electricity, and a full account of experiments made to determine the Explosive Force of Gunpowder under Water. Also a discussion of the Offensive Torpedo system; its effect upon Iron-clad Ship systems, and influence upon future Naval Wars. By LieutCom. John S. Barnes, U. S. N. With 20 lithographic plates and many wood-cuts. 8vo, cloth, | 5 00         |
| FOSTER. SUBMARINE BLASTING, in Boston<br>Harbor, Mass. Removal of Tower<br>and Corwin Rocks. By John G. Fost Jr,<br>U. S. Eng, and Byt. Major General U. S.<br>Army. With seven Plates. 4to, cloth,                                                                                                                                                                                                                                                                                                                                                                    | 3 50         |
| PLYMPTON. THE ANEROID BAROMETER: Its Construction and Use, compiled from several sources. 16mo, boards, illustrated, 50 cents; morocco,                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 00         |
| WILLIAMSON. ON THE USE OF THE BAROMETER ON SURVEYS AND RECONNAISSANCES. Part IMeteorology in its Connection with Hypsometry. Part IIBarometric Hypsometry. By R. S. Williamson, Byt. LtCol. U.S.A., Major Corps of Engineers. With illustrative tables and engravings.                                                                                                                                                                                                                                                                                                 | 15.00        |
| tw. cloth, 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15 <b>00</b> |



ļ こうとうころにはなることからいなるとのないであるというとはないとうと



#### THE VAN NOSTRAND SCIENCE SERIES.

- No. 44.-TURBINE WHEELS. By Prof. W. P. Trowbridge.
- No. 45.-THERMODYNAMICS. By Prof H. T. Eddy.
- No. 46.-ICE-MAKING MACHINES. From the French of M. Le Doux.
- No. 47.-LINKAGES: the Different Forms and Uses of Articulated Links. By J. D. C. De Roos.
- No. 48.—THEORY OF SOLID AND BRACED ARCHES. By Wm. Cain. C. E.
- No. 49.—ON THE MOTION OF A SOLID IN A FLUID. Thomas Craig, Ph. D.
- No. 50.-DWELLING HOUSES: their Sanitary Construction and Arrangements. By Prof. Wm. H. Corfield.
- No. 51.-THE TELESCOPE: Its Construction. &c. By Thomas Nolan.
- No. 52.-IMAGINARY QUANTITIES. Translated from the French of M. Argand. By Prof. Hardy.
- No. 53.-INDUCTION COILS: How Made and How Used. 3d Edition.
- No. 54.—KINEMATICS OF MACHINERY. By Prof. Kennedy. With an introduction by Prof. Thurston.
- No. 55.—SEWER GASES. By A. De Varona. No. 56.—THE ACTUAL LATERAL PRESSURE OF EARTH-By Benj. Baker, M. Inst. C. E. WORK.
- No 57.—INCANDESCENT ELECTRIC LIGHTS, By Compte Th. Du Moncel and Wm. Henry Preece. 2d Edition.
- No. 58.-THE VENTILATION OF COAL MINES. By W. Fairley, M. E., F. S. S.
- No. 59.-RAILROAD ECONOMICS; or Notes, with Comments. By S. W. Robinson, C. E.
- No. 60.-STRENGTH OF WROUGHT IRON BRIDGE MEM-BERS. By S. W. Robinson, C. E.
- No. 61.—POTABLE WATER, and the Different Methods of Detecting Impurities. By Chas. W. Folkard.
- No. 62 THE THEORY OF THE GAS ENGINE. By Dugald Clerk.
- No. 63.-HOUSE DRAINAGE AND SANITARY PLUMB-By W. P. Gerhard. 2d Edition.
- No. 64.-ELECTRO-MAGNETS. By Th. du Moncel.
- No. 65.—POCKET LOGARITHMS TO FOUR PLACES OF DECIMALS.
- No. 66.-DYNAMO-ELECTRIC MACHINERY. By Silvanus P. Thompson.
- No. 67.-HYDRAULIC TABLES. By P. J. Flynn, C. E.
- No. 68.—STEAM HEATING. By Robert Briggs.
- No. 69.—CHEMICAL PROBLEMS. By Prof. Fove.
- No. 70. EXPLOSIVE MATERIALS. By M. P. E. Berthelot.
- No. 71.-DYNAMIC ELECTRICITY. By John Hopkinson. J. A. Schoolbred and R. E. Day.

## VAN NOSTRAND'S SCIENCE SERIES.

- No. 40.—TRANSMISSION OF POWER BY COM-PRESSED AIR. By ROBERT ZAHNER, M. E.
- No. 41.—ON THE STRENGTH OF MATERIALS. By WM. KENT. M. E.
- No. 42.—VOUSSOIR ARCHES, applied to Stone Bridges, Tunnels, Domes and Groined Arches. By Wm. CAIN, C.E. Illustrated.
- No. 43.—WAVE AND VORTEX MOTION. By Dr. Thomas Craig, of Johns Hopkins University.
- No. 44.—TURBINE WHEELS. By Prof. W. P. TROWBRIDGE, Columbia College. Illustrated.
- No. 45.—THERMODYNAMICS. By Prof. H. T. Eddy, University of Cincinnati.
- No. 46.—ICE-MAKING MACHINES. From the French of M. Le Doux. Illustrated.
- No. 47.—LINKAGES; the Different Forms and Uses of Articulated Links. By J. D. C. DE Roos.
- No. 48.—THEORY OF SOLID AND BRACED ARCHES. By WM. CAIN, C. E.
- No. 49.—ON THE MOTION OF A SOLID IN A FLUID. By Thomas Craig, Ph.D.
- No. 50.—DWELLING HOUSES; their Sanitary Construction and Arrangements. By Prof. W. H. CORFIELD.
- No. 51.—THE TELESCOPE: The Principles Involved in the Construction of Refracting and Reflecting Telescopes. By Thomas Nolan, B.S.
  - No. 52.—IMAGINARY QUANTITIES: Their Geometrical Interpretation. Translated from the French of M. Argand by Prof. A. S. HARDY.
  - No. 53.—INDUCTION COILS: How Made and How Used. From the Eighth English Edition.
  - No. 54.—THE KINEMATICS OF MACHINERY, or the Elements of Mechanism. By Prof. ALEX. B. W. KENNEDY, C. E. With a Preface by Prof. R. H. THURSTON.

18mo, boards, 50 cents each.
Sent free by mail on receipt of price.

D. VAN NOSTRAND, Publisher, 23 Murray and 27 Warren Sts., New York.

## THE UNIVERSITY SERIES.

I-ON THE PHYSICAL BASIS OF LIFE. By Prof. T. H. HUNLEY, LL.D. F.R.S. With an introduction by a Professor in Yale College. 12mo, pp. 36. Paper Covers. Price 25 cents.

II.—THE CORRELATION OF VITAL AND PHYSICAL FORCES. By Prof. George F. Barker, M.D., of Yale Colleg. 36 pp. Paper Covers. Price 25c.

III.—AS REGARDS PROTOPLASM, in relation to Prof. Huxley's Physical Basis of Life. By J. HUTCHISON STIRLING, F.R.C.C. pp. 72. Price 25 cents.

IV.—ON THE HYPOTHESIC OF EVOLUTION, Physical and Metaphysical. By Prof EDWARD D. COPE, 12mo., 72 pp. Paper Covers. Price 25 cents.

V.—SCIENTIFIC ADDRESSES:—1. On the Me thods and Tendencies of Physical Investigation. 2. On Haze and Dust. 3. On the Scientific Use of the Imagination. By Prof. John Tyndall. F.R.S. 12mo, 74 pp. Paper Covers. Price 25 cents. Flex. Cleth. 50 cts.

NO. VI.—NATURAL SELECTION AS APPLIED TO MAN. By AIVED RUSSELL WALLACE. This paraphlet treats (1) of the Development of Human Races under the law of selection; (2) the limits of Natural Selection as applied to man. 54 pp. Price 25 cents.

NO. VII.—SPECTRUM ANALYSIS. Three lectures by Profs. Roscoe, Huggins, and Lockyer. Finely illustrated. 98 pp. Paper Covers. Price 25 cents.

NO. VIII.—THE SUN. A sketch of the present state of scientific opinion as regards this body, with an account of the most recent discoveries and methods of observation. By Prof. C. A. YOUNG, Ph.D., of Dartmouth College. 58 pp. Paper Covers. Price 25 cents.

NO. IX.—THE EAR'S. A GREAT MAGNET. By A. M. MAYER, Ph.D., of Stevens Institute. A most profoundly interesting lecture on the subject of magnetism. 72 pp. Paper Covers. Price 25 cents. Flexible Cloth, 50 cents.

NO. X.—MYSTERIES OF THE VOICE AND EAR. By Prof. O. N. Rood, Columbia C. llege, New York. One of the most interesting lectures on sound ever delivered. Original discoveries, brilliant experiments. Beautifully illus. 38 pp. Paper Covers 25 cta.