Appendix I

Definitions of the SI Base Units

Metre (m): The metre, symbol m, is the SI unit of length. It is defined by taking the fixed numerical value of the speed of light in vacuum c to be 299792458 when expressed in the unit ms-1, where the second is defined in terms of the caesium frequency.

Kilogram (k): The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the fixed numerical value of the planck constant h to be 6.62607015 ×10⁻³⁴ when expressed in the unit Js, which is equal to kgm2s-1, where the metre and the second are defined in terms of c and Δ *Vcs*.

Second (s): The symbol s, is the SI unit of time. It is defined by taking the fixed numerical value of the caesium frequency Δ Vcs, the unperturbed ground-state hyperfine transition frequency of the caesium-133 atom, to be 9192631770 when expressed in the unit Hz, which is equal to s^{-1} .

Ampere (A): The ampere, symbol A, is the SI unit of electric current. It is defined by taking the fixed numerical value of the elementary charge e to be $1.602176634 \times 10^{-19}$ when expressed in the unit \underline{C} , which is equal to A s, where the second is defined in terms of.

Kelvin (K): The Kelvin, symbol K, is the SI unit of thermodynamic temperature. It is defined by taking the fixed numerical value of the Boltzmann constant K to be 1.380649×10^{-23} when expressed in the unit JK⁻¹, which is equal to kgm²s⁻²K⁻¹, where the kilogram, metre and second are defined in terms of h, c and ΔVcs .

Mole (mol): The mole, symbol mol, is the SI unit of amount of substance. One mole contains exactly $6.02214076 \times 10^{23}$ elementary entities. This number is the fixed numerical value of the Avogadro constant, $N_{\rm A}$, when expressed in the unit mol⁻¹ and is called the Avogadro number. The amount of substance, symbol n, of a system is a measure of the number of specified elementary entities. An elementary entity may be an atom, a molecule, an ion, an electron, any other particle or specified group of particles.

Candela (cd): The candela, symbol cd is the SI unit of luminous intensity in a given direction. It is defined by taking the fixed numerical value of the luminous efficacy of monochromatic radiation of frequency 540×10^{12} Hz, K_{cd} , to be 683 when expressed in the unit lm·W⁻¹, which is equal to cd·sr·W⁻¹, or cd sr kg⁻¹m⁻²s³, where the kilogram, metre and second are defined in terms of h, c and Δ Vcs.

(The symbols listed here are internationally agreed and should not be changed in other languages and scripts.

Appendix II

Elements, their Atomic Number and Molar Mass

Element	Symbol	Atomic Number	Molar mass/ (g mol ⁻¹)
Actinium	Ac	89	227.03
Aluminium	A1	13	26.98
Americium	Am	95	(243)
Antimony	Sb	51	121.75
Argon	Ar	18	39.95
Arsenic	As	33	74.92
Astatine	At	85	210
Barium	Ba	56	137.34
Berkelium	Bk	97	(247)
Beryllium	Be	4	9.01
Bismuth	Bi	83	208.98
Bohrium	Bh	107	(264)
Boron	В	5	10.81
Bromine	Br	35	79.91
Cadmium	Cd	48	112.40
Caesium	Cs	55	132.91
Calcium	Ca	20	40.08
Californium	Cf	98	251.08
Carbon	C	6	12.01
Cerium	Ce	58	140.12
Chlorine	Cl	17	35.45
	Cr	24	
Chromium	Co	27	52.00
Cobalt			58.93
Copper	Cu	29	63.54
Curium	Cm	96	247.07
Dubnium	Db	105	(263)
Dysprosium	Dy	66	162.50
Einsteinium	Es	99	(252)
Erbium	Er	68	167.26
Europium	Eu	63	151.96
Fermium	Fm	100	(257.10)
Fluorine	F	9	19.00
Francium	Fr	87	(223)
Gadolinium	Gd	64	157.25
Gallium	Ga	31	69.72
Germanium	Ge	32	72.61
Gold	Au	79	196.97
Hafnium	Hf	72	178.49
Hassium	Hs	108	(269)
Helium	He	2	4.00
Holmium	Но	67	164.93
Hydrogen	H	1	1.0079
Indium	In	49	114.82
Iodine	I	53	126.90
Iridium	Ir	77	192.2
Iron	Fe	26	55.85
Krypton	Kr	36	83.80
Lanthanum	La	57	138.91
Lawrencium	Lr	103	(262.1)
Lead	Pb	82	207.19
Lithium	Li	3	6.94
Lutetium	Lu	71	174.96
Magnesium	Mg	12	24.31
Manganese	Mn	25	54.94
Meitneium	Mt	109	(268)

Molybdenum Mo 42 95 Neodymium Nd 60 144 Neon Ne 10 20 Neptunium Np 93 (237 Nickel Ni 28 58 Niobium Nb 41 92 Nitrogen N 7 14.0 Nobelium No 102 (2 Osmium Os 76 19 Oxygen O 8 16 Oxygen O 8 16 Palladium Pd 46 10 Phosphorus P 15 30 Platinum Pt 78 195 Platinum Pt 78 195 Platinum Pt 78 195 Platinum Pt 78 195 Plutonium Pt 78 195 Plutonium Pt 78 195 Prosesodymium	ss/ ol ⁻¹)
Neodymium Nd 60 144 Neon Ne 10 26 Neptunium Np 93 (237 Nickel Ni 28 58 Niobium Nb 41 92 Nitrogen N 7 14.0 Nobelium No 102 (6 Osmium Os 76 19 Oxygen O 8 16 Palladium Pd 46 11 Phosphorus P 15 30 Platinum Pt 78 195 Platinum <td< td=""><td>).59</td></td<>).59
Neon Ne 10 20 Neptunium Np 93 (237 Nickel Ni 28 58 Niobium Nb 41 92 Nitrogen N 7 14.0 Nobelium No 102 (2 Osmium Os 76 19 Oxygen O 8 16 Palladium Pd 46 10 Phosphorus P 15 30 Platinum Pt 78 195 Promethium <t< td=""><td>5.94</td></t<>	5.94
Neptunium Np 93 (237 Nickel Ni 28 58 Nichzel Nichzel 41 92 Nichzel Nichzel 140 94 Nobelium No 102 (2 Osmium Os 76 19 Osmium Os 76 19 Oxygen O 8 16 Palladium Pd 46 10 Palladium Pt 78 195 Platinum Pt 78 195 Platinum Pt 78 195 Platinum Pt 78 195 Platinum Pt 78 195 Protasium Pt 78 195 Prascodymium	1.24
Nickel Ni 28 58 Niobium Nb 41 92 Nitrogen N 7 14,0 Nobelium No 102 (2 Osmium Os 76 19 Oxygen O 8 16 Palladium Pd 46 10 Phosphorus P 15 33 Platinum Pt 78 195 Plutonium Pu 94 (2 Potassium Ft 19 39 Praseodymium Pr 59 140 Prosectinium Pm 61 (1 Prosectinium Pm 61 (2 Radium Ra 88 (2 Radi	0.18
Niobium Nb 41 92 Nitrogen N 7 14.0 Nobelium No 102 (2 Osmium Os 76 19 Osmium Os 76 19 Oxygen O 8 16 Paladium Pd 46 10 Phosphorus P 15 30 Platinum Pt 78 195 Praseodymium	.05)
Nitrogen N 7 14.0 Nobelium No 102 (2 Osmium Os 76 19 Oxygen O 8 16 Oxygen O 8 16 Oxygen O 8 16 Palladium Pd 46 11 Phosphorus P 15 30 Platinum Pt 78 195 Protestium Pt 78 14 Protestium <td< td=""><td>3.71</td></td<>	3.71
Nobelium No 102 (Comium) Osmium Os 76 19 Oxygen O 8 16 Palladium Pd 46 16 Phosphorus P 15 36 Platinum Pt 78 195 Platinum Pt 78 195 Plutonium Pu 94 (Company) Promethium Pu 94 (Company) Praseodymium Pr 59 144 Promethium Pm 61 (Company) Promethium Pm 61 (Company) Radium Ra 88 (Company) Radium Ra <td< td=""><td>2.91</td></td<>	2.91
Osmium Os 76 19 Oxygen O 8 16 Oxygen O 8 16 Palladium Pd 46 10 Phosphorus P 15 30 Platinum Pt 78 199 Platinum Pt 78 199 Platinum Pt 94 (2 Polonium Po 84 Potassium K 19 39 Praseodymium Pr 59 140 Protassium K 19 39 Praseodymium Pr 59 140 Protassium Pm 61 (1 Praseodymium Pr 59 140 Praseodymium Pr 59 140 Protassium Ra 88 (2 Radium Ra 88 (2 Radium Ra 88 (2 Radium Ra	
Oxygen O 8 16 Palladium Pd 46 10 Phosphorus P 15 30 Platinum Pt 78 195 Platinum Pt 78 195 Plutonium Pu 94 (2 Plutonium Pu 94 (2 Plutonium Po 84 Potassium K 19 39 Praseodymium Pr 59 146 Proseodymium Pr 59 146 Radium Ra 88 (2 Radium Ra 88 (2 Radium Ra 86 (2 Radium Ra 86 (2 Renium <td< td=""><td>259)</td></td<>	259)
Palladium Pd 46 10 Phosphorus P 15 30 Platinum Pt 78 195 Platinum Pt 78 195 Plutonium Pu 94 (2 Polonium Po 84 Polonium Po 84 Potassium K 19 39 39 140 Praseodymium Pr 59 140 140 140 Promethium Pm 61 (1 12 140	90.2
Phosphorus P 15 30 Platinum Pt 78 195 Plutonium Pu 94 (2 Polonium Po 84 Potassium K 19 33 Praseodymium Pr 59 144 Promethium Pm 61 (2 Promethium Pm 61 (2 Promethium Pm 61 (2 Radium Ra 88 (2 Radium Ra 88 (2 Radium Ra 86 (2 Radium Ra 86 (2 Rhodium Rh 45 102 Rubidium Rb 37 85 Ruthenium Ru 44 10 Rutheridum Rf 104 (2 Samarium Sm 62 15 Scandium Sc 21 44 Seaborgium Sg	5.00
Platinum Pt 78 198 Plutonium Pu 94 (2 Polonium Po 84 Potassium K 19 39 Praseodymium Pr 59 144 Promethium Pm 61 (3 Promethium Pm 61 (3 Promethium Pm 61 (3 Radium Ra 88 (4 Radium Ra 88 (2 Radium Ra 86 (2 Readon Rn 86 (3 Rhodium Rh 45 102 Rubidium Rb 37 85 Ruthenium Ru 44 10 Rutherium Rt 104 (2 Samarium Sm 62 15 Scandium Sc 21 44 Seaborgium Sg 106 (2 Selenium Se	06.4
Plutonium Pu 94 (2) Polonium Po 84 Potassium K 19 39 Praseodymium Pr 59 140 Promethium Pm 61 (3) Promethium Pm 61 (4) Promethium Pa 91 23 Radium Ra 88 (2) Radium Ra 86 (2) Rhenium Re 75 18 Rhodium Rh 45 102 Rubidium Rb 37 85 Ruthenium Ru 44 10 Rutherium Ru 44 10 Samarium Sm 62 150 Scandium Sc 21 46 Seaborgium Sg 106 (2 Selenium Se 34 78 Silicon Si 14 28 Soliom Na).97
Polonium Po 84 Potassium K 19 39 Praseodymium Pr 59 146 Promethium Pm 61 (17 Protactinium Pa 91 23: Radium Ra 88 (2 Radium Ra 86 (2 Rhenium Re 75 18 Rhodium Rh 45 10 Rubidium Rb 37 85 Ruthenium Rt 104 (2 Samarium Sm 62 150 Samarium Sm 62 150 Scandium Sg 106 (2 Selenium Se 34 78 Silicon Si <td< td=""><td>5.09</td></td<>	5.09
Potassium K 19 38 Praseodymium Pr 59 140 Promethium Pm 61 (1 Promethium Pm 61 (2 Promethium Pm 61 (2 Promethium Ra 91 23 Radium Ra 88 (2 Radium Ra 88 (2 Radium Ra 86 (2 Rhenium Re 75 18 Rhodium Rh 45 102 Ruthenium Rh 45 102 Ruthenium Rh 44 102 Rutherium Ru 44 104 Samarium Sm 62 156 Scandium Sc 21 44 Scandium Sc 21 44 Seaborgium Sg 106 (2 Selenium Se 34 78 Silicon	244)
Praseodymium Pr 59 140 Promethium Pm 61 (1 Protactinium Pa 91 23 Radium Ra 88 (2 Radium Ra 86 (2 Radon Rn 86 (2 Rhodium Re 75 18 Rhodium Rh 45 102 Rubidium Rb 37 85 Ruthenium Ru 44 10 Rutherium Ru 44 10 Samarium Sm 62 15 Scandium Sc 21 44 Scandium Sc 21 44 Seaborgium Sg 106 (2 Selenium Se 34 78 Silicon Si 14 28 Silver Ag 47 10 Sodium Na 11 22 Scondium <td< td=""><td>210</td></td<>	210
Promethium Pm 61 (5) Protactinium Pa 91 23:3 Radium Ra 88 (2) Radon Rn 86 (2) Radon Rn 86 (2) Rhodium Re 75 18 Rhodium Rh 45 102 Rubidium Rb 37 85 Ruthenium Ru 44 10 Rutheridum Rf 104 (2) Samarium Sm 62 15 Scandium Sc 21 44 Seaborgium Sg 106 (2) Selenium Se 34 78 Silicon Si 14 28 Silver Ag 47 10 Sodium Na 11 22 Strontium Sr 38 87 Sulphur S 16 32 Tantalum	9.10
Protactinium Pa 91 23 Radium Ra 88 (2 Radon Rn 86 (2 Rhenium Re 75 18 Rhodium Rh 45 102 Rubidium Rb 37 85 Ruthenium Ru 44 10 Rutherfordium Rf 104 (2 Samarium Sm 62 150 Scandium Sc 21 44 Seaborgium Sg 106 (2 Selenium Se 34 78 Silicon Si 14 28 Silver Ag 47 107 Sodium Na 11 22 Sodium Na 11 22 Strontium Sr 38 87 Sulphur S 16 32 Tantalum Ta 73 180 Technetium <	
Radium Ra 88 (2 Radon Rn 86 (2 Rhenium Re 75 18 Rhodium Rh 45 102 Rubidium Rb 37 85 Ruthenium Ru 44 10 Rutherfordium Rf 104 (2 Samarium Sm 62 150 Scandium Sc 21 44 Seaborgium Sg 106 (2 Selenium Se 34 78 Silicon Si 14 28 Silver Ag 47 107 Sodium Na 11 22 Sodium Na 11 22 Strontium Sr 38 87 Sulphur S 16 32 Tantalum Ta 73 180 Technetium Tc 43 (98 Tellurium <td< td=""><td>l45)</td></td<>	l45)
Radon Rn 86 (2) Rhenium Re 75 18 Rhodium Rh 45 102 Rubidium Rb 37 85 Ruthenium Ru 44 102 Rutherfordium Rf 104 (2 Samarium Sm 62 150 Scandium Sc 21 44 Seaborgium Sg 106 (2 Selenium Se 34 78 Silicon Si 14 28 Silver Ag 47 107 Sodium Na 11 22 Sodium Na 11 22 Strontium Sr 38 87 Sulphur S 16 32 Tantalum Ta 73 180 Technetium Tc 43 (98 Tellurium Te 52 127 Terbium	
Rhenium Re 75 18 Rhodium Rh 45 102 Rubidium Rb 37 85 Ruthenium Ru 44 102 Rutherfordium Rf 104 (2 Samarium Sm 62 156 Scandium Sc 21 44 Seaborgium Sg 106 (2 Selenium Se 34 78 Silicon Si 14 28 Silver Ag 47 107 Sodium Na 11 22 Strontium Sr 38 87 Sulphur S 16 32 Tantalum Ta 73 180 Technetium Tc 43 (98 Tellurium Te 52 127 Terbium Tb 65 158	226)
Rhodium Rh 45 102 Rubidium Rb 37 85 Ruthenium Ru 44 103 Rutherfordium Rf 104 (2 Samarium Sm 62 156 Scandium Sc 21 44 Seaborgium Sg 106 (2 Selenium Se 34 78 Silicon Si 14 28 Silver Ag 47 107 Sodium Na 11 22 Strontium Sr 38 87 Sulphur S 16 32 Tantalum Ta 73 180 Technetium Tc 43 (98 Tellurium Te 52 127 Terbium Tb 65 158	222)
Rubidium Rb 37 85 Ruthenium Ru 44 107 Rutherfordium Rf 104 (2 Samarium Sm 62 150 Scandium Sc 21 44 Seaborgium Sg 106 (2 Selenium Se 34 78 Silicon Si 14 28 Silver Ag 47 107 Sodium Na 11 22 Strontium Sr 38 87 Sulphur S 16 32 Tantalum Ta 73 18 Technetium Tc 43 (98 Tellurium Te 52 127 Terbium Tb 65 158	36.2
Ruthenium Ru 44 10.2 Rutherfordium Rf 104 (2 Samarium Sm 62 156 Scandium Sc 21 44 Seaborgium Sg 106 (2 Selenium Se 34 78 Silicon Si 14 28 Silver Ag 47 107 Sodium Na 11 22 Strontium Sr 38 87 Sulphur S 16 32 Tantalum Ta 73 186 Technetium Tc 43 (98 Tellurium Te 52 127 Terbium Tb 65 158	
Rutherfordium Rf 104 (2) Samarium Sm 62 150 Scandium Sc 21 44 Seaborgium Sg 106 (2) Selenium Se 34 78 Silicon Si 14 28 Silver Ag 47 107 Sodium Na 11 22 Strontium Sr 38 87 Sulphur S 16 32 Tantalum Ta 73 180 Technetium Tc 43 (98 Tellurium Te 52 127 Terbium Tb 65 158	5.47
Samarium Sm 62 150 Scandium Sc 21 44 Seaborgium Sg 106 (2 Selenium Se 34 78 Silicon Si 14 28 Silver Ag 47 107 Sodium Na 11 22 Strontium Sr 38 87 Sulphur S 16 32 Tantalum Ta 73 180 Technetium Tc 43 (98 Tellurium Te 52 127 Terbium Tb 65 158	
Scandium Sc 21 44 Seaborgium Sg 106 (2 Selenium Se 34 78 Silicon Si 14 28 Silver Ag 47 107 Sodium Na 11 22 Strontium Sr 38 87 Sulphur S 16 32 Tantalum Ta 73 180 Technetium Tc 43 (98 Tellurium Te 52 127 Terbium Tb 65 158	261)
Seaborgium Sg 106 (2 Selenium Se 34 78 Silicon Si 14 28 Silver Ag 47 107 Sodium Na 11 22 Strontium Sr 38 87 Sulphur S 16 32 Tantalum Ta 73 180 Technetium Tc 43 (98 Tellurium Te 52 127 Terbium Tb 65 158	
Selenium Se 34 78 Silicon Si 14 28 Silver Ag 47 107 Sodium Na 11 22 Strontium Sr 38 87 Sulphur S 16 32 Tantalum Ta 73 18 Technetium Tc 43 (98 Tellurium Te 52 127 Terbium Tb 65 158	1.96
Silicon Si 14 28 Silver Ag 47 107 Sodium Na 11 22 Strontium Sr 38 87 Sulphur S 16 32 Tantalum Ta 73 180 Technetium Tc 43 (98 Tellurium Te 52 127 Terbium Tb 65 158	266)
Silver Ag 47 107 Sodium Na 11 22 Strontium Sr 38 87 Sulphur S 16 32 Tantalum Ta 73 180 Technetium Tc 43 (98 Tellurium Te 52 127 Terbium Tb 65 158	3.96
Sodium Na 11 22 Strontium Sr 38 87 Sulphur S 16 32 Tantalum Ta 73 180 Technetium Tc 43 (98 Tellurium Te 52 127 Terbium Tb 65 158	
Strontium Sr 38 87 Sulphur S 16 32 Tantalum Ta 73 180 Technetium Tc 43 (98 Tellurium Te 52 127 Terbium Tb 65 158	2.99
Sulphur S 16 32 Tantalum Ta 73 180 Technetium Tc 43 (98 Tellurium Te 52 127 Terbium Tb 65 158	
Tantalum Ta 73 180 Technetium Tc 43 (98 Tellurium Te 52 127 Terbium Tb 65 158	2.06
Technetium Tc 43 (98 Tellurium Te 52 127 Terbium Tb 65 158	
Tellurium Te 52 127 Terbium Tb 65 158	
Terbium Tb 65 158	
Thallium Tl 81 204	1.37
	2.04
	3.93
	3.69
	7.88
	3.85
1 8 1 1	277)
,	269)
	272)
,	3.03
).94
	.30
	3.04
Yttrium Y 39 88	3.91
Zinc Zn 30 65	
Zirconium Zr 40 91	5.37

The value given in parenthesis is the molar mass of the isotope of largest known half-life.

A.	Specific and Molar Heat Capacities for Some Substances at 298 K and one
	Atmospheric Pressure

Atmospheric Pressure		
Substance	Specific Heat Capacity (J/g)	Molar Heat Capacity (J/mol)
air	0.720	20.8
water (liquid)	4.184	75.4
ammonia (gas)	2.06	35.1
hydrogen chloride	0.797	29.1
hydrogen bromide	0.360	29.1
ammonia (liquid)	4.70	79.9
ethyl alcohol (liquid)	2.46	113.16
ethylene glycol (liquid)	2.42	152.52
water (solid)	2.06	37.08
carbon tetrachloride (liquid)	0.861	132.59
chlorofluorocarbon (CCl ₂ F ₂)	0.5980	72.35
ozone	0.817	39.2
neon	1.03	20.7
chlorine	0.477	33.8
bromine	0.473	75.6
iron	0.460	25.1
copper	0.385	24.7
aluminium	0.902	24.35
gold	0.128	25.2
graphite	0.720	8.65

Gas	$C_{ m p}$	$C_{\rm v}$	C_{p} - C_{v}	C_{p} / C_{v}	
Monatomic*					
helium	20.9	12.8	8.28	1.63	
argon	20.8	12.5	8.33	1.66	
iodine	20.9	12.6	8.37	1.66	
mercury	20.8	12.5	8.33	1.66	
Diatomic†					
hydrogen	28.6	20.2	8.33	1.41	
oxygen	29.1	20.8	8.33	1.39	
nitrogen	29.0	20.7	8.30	1.40	
hydrogen chloride	29.6	21.0	8.60	1.39	
carbon monoxide	29.0	21.0	8.00	1.41	
Triatomic†					
nitrous oxide	39.0	30.5	8.50	1.28	
carbon dioxide	37.5	29.0	8.50	1.29	
Polyatomic†					
ethane	53.2	44.6	8.60	1.19	

^{*}Translational kinetic energy only. †Translational, vibrational and rotational energy.

Appendix IV

Physical Constants

Quantity	Symbol	Traditional Units	SI Units
Acceleration of gravity	g	980.6 cm/s	9.806 m/s
Atomic mass unit (1/12	amu	$1.6606 \times 10^{-24} \text{ g}$	$1.6606 \times 10^{-27} \text{ kg}$
the mass of ¹² C atom)	or u		
Avogadro constant	$N_{_{ m A}}$	6.022×10^{23}	6.022×10^{23}
		particles/mol	particles/mol
Bohr radius	$a_{_{\mathrm{o}}}$	0.52918 Å 5.2918 × 10 ⁻⁹ cm	$5.2918 \times 10^{-11} \text{ m}$
Boltzmann constant	k	$1.3807 \times 10^{-16} \text{ erg/K}$	$1.3807 \times 10^{-23} \mathrm{J/K}$
Charge-to-mass ratio of electron	e/m	$1.758820 \times 10^8 \text{ coulomb/g}$	$1.7588 \times 10^{11} \text{ C/kg}$
Electronic charge	e	1.602176×10^{-19} coulomb 4.8033×10^{-19} esu	1.60219 × 10 ⁻¹⁹ C
Electron rest mass	$m_{_{e}}$	9.109382 ×10 ⁻²⁸ g 0.00054859 u	9.10952 ×10 ⁻³¹ kg
Faraday constant	F	96,487 coulombs/eq 23.06 kcal/volt. eq	96,487 C/mol e ⁻ 96,487 J/V.mol e ⁻
Gas constant	R	$0.8206 \; \frac{L \; atm}{mol \; K}$	$8.3145 \; \frac{\text{kPa dm}^3}{\text{mol K}}$
		$1.987 \; \frac{\mathrm{cal}}{\mathrm{mol} \; \mathrm{K}}$	8.3145 J/mol.K
Molar volume (STP)	$V_{_m}$	22.710981 L/mol	$22.710981 \times 10^{-3} \text{ m}^3/\text{mol}$
11101011 10101110 (011)	m	220. 10501 2, 11101	22.710981 dm ³ /mol
Neutron rest mass	m_n	1.674927 × 10 ⁻²⁴ g 1.008665 u	$1.67495 \times 10^{-27} \text{ kg}$
Planck constant	h	$6.6262 \times 10^{-27} \text{ ergs}$	$6.6262 \times 10^{-34} \mathrm{J s}$
Proton rest mass	m_p	1.6726216 ×10 ⁻²⁴ g 1.007277 u	1.6726 ×10 ⁻²⁷ kg
Rydberg constant	$R_{_{\infty}}$	$3.289 \times 10^{15} \text{ cycles/s}$	$1.0974 \times 10^7 \text{m}^{-1}$
		$2.1799 \times 10^{-11} \mathrm{erg}$	$2.1799 \times 10^{-18} \mathrm{J}$
Speed of light (in a vacuum)	c	2.9979 ×10 ¹⁰ cm/s (186,281 miles/second)	2.9979 × 10 ⁸ m/s

2.303 R = 4.576 cal/mol K = 19.15 J/mol K $\pi = 3.1416$ 2.303 RT (at 25°C) = 1364 cal/mol = 5709 J/mol e = 2.71828 $\ln X = 2.303 \log X$

Appendix V

Some Useful Conversion Factors

Common Unit of Mass and Weight 1 pound = 453.59 grams

1 pound = 453.59 grams = 0.45359 kilogram 1 kilogram = 1000 grams = 2.205 pounds 1 gram = 10 decigrams = 100 centigrams = 1000 milligrams 1 gram = 6.022 × 10²³ atomic mass units or u 1 atomic mass unit = 1.6606 × 10⁻²⁴ gram 1 metric tonne = 1000 kilograms = 2205 pounds

Common Unit of Volume 1 quart = 0.9463 litre 1 litre = 1.056 quarts

1 litre = 1 cubic decimetre = 1000 cubic centimetres = 0.001 cubic metre 1 millilitre = 1 cubic centimetre = 0.001 litre = 1.056×10^{-3} quart 1 cubic foot = 28.316 litres = 29.902 quarts = 7.475 gallons

Common Units of Energy 1 joule = 1×10^7 ergs

1 thermochemical calorie**

= 4.184 joules = 4.184×10^7 ergs

= 4.129×10^{-2} litre-atmospheres

= 2.612×10^{19} electron volts

1 ergs = 1×10^{-7} joule = 2.3901×10^{-8} calorie

1 electron volt = 1.6022×10^{-19} joule

 $= 1.6022 \times 10^{-12} \text{ erg}$

= 96.487 kJ/mol†

1 litre-atmosphere = 24.217 calories

= 101.32 joules

 $= 1.0132 \times 10^9 \text{ ergs}$

1 British thermal unit = 1055.06 joules

 $= 1.05506 \times 10^{10} \,\mathrm{ergs}$

= 252.2 calories

Common Units of Length 1 inch = 2.54 centimetres (exactly)

1 mile = 5280 feet = 1.609 kilometres

1 yard = 36 inches = 0.9144 metre

1 metre = 100 centimetres = 39.37 inches

= 3.281 feet

= 1.094 yards

1 kilometre = 1000 metres = 1094 yards

= 0.6215 mile

1 Angstrom = 1.0×10^{-8} centimetre

= 0.10 nanometre

 $= 1.0 \times 10^{-10} \text{ metre}$

 $= 3.937 \times 10^{-9}$ inch

Common Units of Force* and Pressure

1 atmosphere = 760 millimetres of mercury

= 1.013×10^5 pascals

= 14.70 pounds per square inch

 $1 \text{ bar} = 10^5 \text{ pascals}$

1 torr = 1 millimetre of mercury

1 pascal = $1 \text{ kg/ms}^2 = 1 \text{ N/m}^2$

Temperature SI Base Unit: Kelvin (K)

 $K = -273.15^{\circ}C$

 $K = ^{\circ}C + 273.15$

F = 1.8(C) + 32

 $^{\circ}$ C = $\frac{^{\circ}F - 32}{1.8}$

^{*} Force: 1 newton (N) = 1 kg m/s², i.e., the force that, when applied for 1 second, gives a 1-kilogram mass a velocity of 1 metre per second.

^{**} The amount of heat required to raise the temperature of one gram of water from 14.5°C to 15.5°C.

[†] Note that the other units are per particle and must be multiplied by 6.022×10^{23} to be strictly comparable.

Appendix VI

Thermodynamic Data at 298 K

INORGANIC SUBSTANCES

Substance	Enthalpy of formation, $\Delta_{\mathbf{f}}\mathbf{H}^{\ominus}$ (kJ mol ⁻¹)	Gibbs Energy of formation, $\triangle_{f}G^{\ominus}/\ (kJ\ mol^{-1})$	Entropy,* S /(J K ⁻¹ mol ⁻¹)
Aluminium			
Al(s)	0	0	28.33
A1 ³⁺ (aq)	- 524.7	-481.2	-321.7
$Al_2O_3(s)$	-1675.7	-1582.3	50.92
$A1(OH)_3(s)$	-1276	_	70
AlCl ₃ (s)	-704.2	-628.8	110.67
Antimony			
SbH ₃ (g)	145.11	147.75	232.78
SbCl ₃ (g)	-313.8	-301.2	337.80
SbCl ₅ (g)	-394.34	-334.29	401.94
Arsenic			
As(s), gray	0	0	35.1
$As_2S_3(s)$	-169.0	-168.6	163.6
AsO ₄ ³ -(aq)	-888.14	-648.41	-162.8
Barium			
Ba(s)	0	0	62.8
Ba ²⁺ (aq)	-537.64	-560.77	9.6
BaO(s)	-553.5	-525.1	70.42
BaCO ₃ (s)	-1216.3	-1137.6	112.1
BaCO ₃ (aq)	-1214.78	-1088.59	-47.3
Boron			
3(s)	0	0	5.86
$B_2O_3(s)$	-1272.8	-1193.7	53.97
$BF_3(g)$	-1137.0	-1120.3	254.12
Bromine -	X		
Br ₂ (1)	0	0	152.23
$\operatorname{Br}_{2}(g)$	30.91	3.11	245.46
Br(g)	111.88	82.40	175.02
Br-(aq)	-121.55	-103.96	82.4
IBr(g)	-36.40	-53.45	198.70
BrF ₃ (g)	-255.60	-229.43	292.53
Calcium			
Ca(s)	0	0	41.42
Ca(g)	178.2	144.3	154.88
Ca ²⁺ (aq)	-542.83	-553.58	-53.1

Substance	Enthalpy of formation, $\Delta_{\mathbf{f}} H^{\ominus} / \text{ (kJ mol}^{-1}\text{)}$	Gibbs Energy of formation, $\Delta_{\mathbf{f}}\mathbf{G}^{\scriptscriptstyle\ominus}/\ (\mathbf{kJ\ mol^{\scriptscriptstyle-1}})$	Entropy,* S [⊕] /(J K ⁻¹ mol ⁻¹)
Calcium (continued)			
CaO(s)	-635.09	-604.03	39.75
Ca(OH) ₂ (s)	-986.09	-898.49	83.39
$Ca(OH)_{2}^{2}(aq)$	-1002.82	-868.07	-74.5
CaCO ₃ (s), calcite	-1206.92	-1128.8	92.9
CaCO ₃ (s), aragonite	-1207.1	-1127.8	88.7
CaCO ₃ (aq)	-1219.97	-1081.39	-110.0
$CaF_{2}(s)$	-1219.6	-1167.3	68.87
CaF ₂ (aq)	-1208.09	-1111.15	-80.8
CaCl ₂ (s)	-795.8	-748.1	104.6
CaCl ₂ (aq)	-877.1	-816.0	59.8
CaBr ₂ (s)	-682.8	-663.6	130
$CaC_{2}(s)$	-59.8	-64.9	69.96
CaS(s)	-482.4	-477.4	56.5
CaSO ₄ (s)	-1434.11	-1321.79	106.7
CaSO ₄ (aq)	-1452.10	-1298.10	-33.1
Carbon**		1 . 6	
C(s), graphite	0	0	5.740
C(s), diamond	1.895	2.900	2.377
C(g)	716.68	671.26	158.10
CO(g)	-110.53	-137.17	197.67
$CO_{2}(g)$	-393.51	-394.36	213.74
$CO_3^{\frac{7}{2}}$ (aq)	-677.14	-527.81	-56.9
CCl ₄ (1)	-135.44	-65.21	216.40
CS ₂ (1)	89.70	65.27	151.34
HCN(g)	135.1	124.7	201.78
HCN(1)	108.87	124.97	112.84
Cerium			
Ce(s)		0	72.0
Ce ³⁺ (aq)	-696.2	-672.0	-205
Ce ⁴⁺ (aq)	-537.2	-503.8	-301
Chlorine	Y		
$\operatorname{Cl}_2(g)$	0	0	223.07
21(g)	121.68	105.68	165.20
Cl ⁻ (aq)	-167.16	-131.23	56.5
HC1(g)	-92.31	-95.30	186.91
HCl(aq)	-167.16	-131.23	56.5
Copper Cu(s)	0	0	33.15
Cu ⁺ (aq)	71.67	49.98	40.6
Cu ²⁺ (aq)	64.77	65.49	-99.6
Cu ₂ O(aq)	-168.6	-146.0	93.14
CuO(s)	-157.3	-129.7	42.63
CuSO ₄ (s)	-771.36	-661.8	109
$CuSO_4.5H_2O(s)$	-2279.7	-1879.7	300.4

^{**} For organic compounds, a separate table is provided in continuation.

Substance	Enthalpy of formation, $\Delta_{\rm f} H^{\rm o}/$ (kJ mol ⁻¹)	Gibbs Energy of formation, $\Delta_{\rm f} { m G}^{\rm p}/$ (kJ mol ⁻¹)	Entropy,* S [⊕] /(J K ⁻¹ mol ⁻¹)
Deuterium			
$D_2(g)$	0	0	144.96
$D_2^{2O}(g)$	-249.20	-234.54	198.34
$O_2^2O(1)$	-294.60	-243.44	75.94
Fluorine			
$F_2(g)$	0	0	202.78
⁷⁻ (aq)	-332.63	-278.79	-13.8
łF(g)	-271.1	-273.2	173.78
HF(aq)	-332.63	-278.79	-13.8
<i>Hydrogen</i> (see also Г	Deuterium)		
$H_2(g)$	0	0	130.68
I(g)	217.97	203.25	114.71
I ⁺ (aq)	0	0	0
I ₂ O(1)	-285.83	-237.13	69.91
$H_2O(g)$	-241.82	-228.57	188.83
I ₂ O ₂ (1)	-187.78	-120.35	109.6
I ₂ O ₂ (aq)	-191.17	-134.03	143.9
odine			116.14
(s)	0	0	116.14
(g)	62.44	19.33	260.69
(aq)	-55.19	-51.57	111.3
II(g)	26.48	1.70	206.59
ron 'e(s)	0	0	27.28
e ²⁺ (aq)	-89.1	-78.90	-137.7
e ³⁺ (aq)	-48.5	-4.7	-315.9
$e_3O_4(s)$, magnetite	-1118.4	-1015.4	146.4
$e_{2}O_{3}(s)$, haematite	-824.2	742.2	87.40
$eS(s,\alpha)$	-100.0	-100.4	60.29
eS(aq)		6.9	_
$eS_2(s)$	-178.2	-166.9	52.93
ead	()		
b(s)	0	0	64.81
b ²⁺ (aq)	-1.7	-24.43	10.5
$bO_2(s)$	-277.4	-217.33	68.6
bSO ₄ (s)	-919.94	-813.14	148.57
$bBr_2(s)$	-278.7	-261.92	161.5
bBr ₂ (aq)	-244.8	-232.34	175.3
<i>lagnesium</i>	7		
Ig(s)	0	0	32.68
Ig(g)	147.70	113.10	148.65
Ig ²⁺ (aq)	-466.85	-454.8	-138.1
IgO(s)	-601.70	-569.43	26.94
IgCO ₃ (s)	-1095.8	-1012.1	65.7
$IgBr_2(s)$	-524.3	-503.8	117.2

Substance	Enthalpy of formation, $\Delta_{\rm f} H^{\rm o}/$ (kJ mol ⁻¹)	Gibbs Energy of formation, $\Delta_{\mathbf{f}}\mathbf{G}^{\scriptscriptstyle\ominus}/\ (\mathbf{kJ\ mol^{\scriptscriptstyle-1}})$	Entropy,* S [©] /(J K ⁻¹ mol ⁻¹)
Mercury			
	0	0	76.00
Hg(1)			76.02
Hg(g)	61.32	31.82	174.96
HgO(s)	-90.83	-58.54	70.29
$Hg_2Cl_2(s)$	-265.22	-210.75	192.5
Vitrogen			
$N_2(g)$	0	0	191.61
NO(g)	90.25	86.55	210.76
$N_2O(g)$	82.05	104.20	219.85
NO ₂ (g)	33.18	51.31	240.06
$N_2O_4(g)$	9.16	97.89	304.29
$HNO_3(1)$	-174.10	-80.71	155.60
INO ₃ (aq)	-207.36	-111.25	146.4
O_3^- (aq)	-205.0	-108.74	146.4
$IH_3(g)$	-46.11	-16.45	192.45
IH₃(aq)	-80.29	-26.50	111.3
IH ⁺ ₄ (aq)	-132.51	-79.31	113.4
IH ₂ OH(s)	-114.2		
$IN_3(g)$	294.1	328.1	238.97
$I_{2}H_{4}(1)$	50.63	149.34 -183.87	121.21
$IH_4NO_3(s)$	-365.56 -314.43	-163.67 -202.87	151.08 94.6
$IH_4Cl(s)$	-314.43 -295.31	-202.87 -88.75	186.2
VH ₄ ClO ₄ (s)	-295.51	-00.75	100.2
Oxygen			
$O_2(g)$	0	0	205.14
O ₃ (g)	142.7	163.2	238.93
OH ⁻ (aq)	-229.99	-157.24	-10.75
Phosphorus			
(s), white	0	0	41.09
2 ₄ (g)	58.91	24.44	279.98
H ₃ (g)	5.4	13.4	210.23
³ (8) ₄ O ₁₀ (s)	-2984.0	-2697.0	228.86
$I_3PO_3(aq)$	-964.8		_
$I_3PO_4(1)$	-1266.9		
	-1277.4	1019.7	
I ₃ PO ₄ (aq)		-1018.7	017 10
Cl ₃ (1)	-319.7 -327.0	-272.3 267.8	217.18
C1 ₃ (g)	-287.0	-267.8	311.78
Cl ₅ (g)	-374.9	-305.0	364.6
Potassium (
ζ (s)	0	0	64.18
X(g)	89.24	60.59	160.34
(3) (aq)	-252.38	-283.27	102.5
OH(s)	-424.76	-379.08	78.9
KOH(aq)	-482.37	-440.50	91.6
KF(s)	-567.27	-537.75	66.57

Substance	Enthalpy of formation, $\Delta_{\mathbf{f}} \mathbf{H}^{\oplus} / \text{ (kJ mol}^{-1} \text{)}$	Gibbs Energy of formation, $\Delta_{\rm f} G^{\rm o}/$ (kJ mol ⁻¹)	Entropy,* S [⊕] /(J K ⁻¹ mol ⁻¹)
Potassium (continu	ied)		
KCl(s)	-436.75	-409.14	82.59
• •	-430.73 -393.80	-409.14 -380.66	95.90
KBr(s)	-327.90	-380.00 -324.89	106.32
KI(s)	-397.73	-324.69 -296.25	143.1
KClO ₃ (s)			
KClO ₄ (s)	-432.75	-303.09	151.0
K ₂ S(s)	-380.7	-364.0	105
K ₂ S(aq)	-471.5	-480.7	190.4
Silicon			
Si(s)	0	0	18.83
$SiO_2(s,\alpha)$ Silver	-910.94	-856.64	41.84
	0	0	42.55
Ag(s)	105.58	77.11	42.55 72.68
Ag ⁺ (aq)		-11.20	
$Ag_2O(s)$	-31.05		121.3
AgBr(s)	-100.37	-96.90	107.1
AgBr(aq)	-15.98	-26.86	155.2
AgCl(s)	-127.07	-109.79	96.2
AgCl(aq)	-61.58	-54.12	129.3
AgI(s)	-61.84	-66.19	115.5
AgI(aq)	50.38	25.52	184.1
AgNO ₃ (s)	-124.39	-33.41	140.92
Sodium			F1 01
Na(s)	0	0	51.21
Na(g)	107.32	76.76	153.71
Na ⁺ (aq)	-240.12	-261.91	59.0
NaOH(s)	-425.61	-379.49	64.46
NaOH(aq)	-470.11	-419.15	48.1
NaCl(s)	-411.15	-384.14	72.13
NaCl(aq)	-407.3	-393.1	115.5
NaBr(s)	-361.06	-348.98	86.82
NaI(s)	-287.78	-286.06	98.53
NaHCO ₃ (s)	-947.7	-851.9	102.1
Na ₂ CO ₃ (s)	-1130.9	-1047.7	136.0
Sulphur			
S(s), rhombic	0	0	31.80
S(s), monoclinic	0.33	0.1	32.6
S ²⁻ (aq)	33.1	85.8	-14.6
SO ₂ (g)	-296.83	-300.19	248.22
SO ₃ (g)	-395.72	-371.06	256.76
H ₂ SO ₄ (1)	-813.99	-690.00	156.90
$H_2^2SO_4(aq)$	-909.27	-744.53	20.1
SO ₄ -(aq)	-909.27 -20.63	-744.53 -33.56	20.1
$H_2S(g)$	-20.63	-33.56	205.79
H ₂ S(aq)	-39.7	-27.83	121
$SF_6(g)$	-1209	-1105.3	291.82

Substance	Enthalpy of formation, $\Delta_{\mathbf{f}} H^{\oplus} / \text{ (kJ mol}^{-1}\text{)}$	Gibbs Energy of formation, $\Delta_{\bf f} {\bf G}^{\circ} /$ (kJ mol ⁻¹)	Entropy,* S [⊕] /(J K ⁻¹ mol ⁻¹)
Tin			
Sn(s), white	0	0	51.55
Sn(s), gray	-2.09	0.13	44.14
SnO(s)	-285.8	-256.9	56.5
$SnO_2(s)$	-580.7	-519.6	52.3
Zinc			
Zn(s)	0	0	41.63
$Zn^{2+}(aq)$	-153.89	-147.06	-112.1
ZnO(s)	-348.28	-318.30	43.64
Zn(g)	+130.73	+95.14	160.93

^{*}The entropies of individual ions in solution are determined by setting the entropy of H^+ in water equal to 0 and then defining the entropies of all other ions relative to this value; hence a negative entropy is one that is lower than the entropy of H^+ in water.

ORGANIC COMPOUNDS

Substance	Enthalpy of combustion, $\Delta_c H^{\circ}$ (kJ mol ⁻¹)	Enthalpy of formation, ∆ _f H [⊕] / (kJ mol ⁻¹)	Gibbs Energy of formation, $\Delta_{\mathbf{f}}\mathbf{G}^{\ominus}$ (kJ mol ⁻¹)	Entropy,
Hydrocarbons				
CH ₄ (g), methane	-890	-74.81	-50.72	186.26
$C_2H_2(g)$, ethyne (acetylene)	-1300	226.73	209.20	200.94
$C_2H_4(g)$, ethene(ethylene)	-1411	52.26	68.15	219.56
$C_2H_6(g)$, ethane	-1560	-84.68	-32.82	229.60
C ₃ H ₆ (g), propene (propylene)	-2058	20.42	62.78	266.6
C ₃ H ₆ (g), cyclopropane	-2091	53.30	104.45	237.4
C ₃ H ₈ (g), propane	-2220	-103.85	-23.49	270.2
$C_4H_{10}(g)$, butane	-2878	-126.15	-17.03	310.1
$C_5H_{12}(g)$, pentane	-3537	-146.44	-8.20	349
C ₆ H ₆ (l), benzene	-3268	49.0	124.3	173.3
$C_6^{\dagger}H_6(g)$	-3302	_	_	_
$C_7^{H_8}(l)$, toluene	-3910	12.0	113.8	221.0
$C_7H_8(g)$	-3953	_	_	_
C ₆ H ₁₂ (l), cyclohexane	-3920	-156.4	26.7	204.4
$C_6H_{12}(g),$	-3953	_	_	_
$C_8H_{18}(l)$, octane	-5471	-249.9	6.4	358
Alcohols and phenols				
CH ₃ OH(l), methanol	-726	-238.86	-166.27	126.8
CH ₃ OH(g)	-764	-200.66	-161.96	239.81
$C_2H_5OH(l)$, ethanol	-1368	-277.69	-174.78	160.7
$C_2H_5OH(g)$	-1409	-235.10	-168.49	282.70
C ₆ H ₅ OH(s), phenol	-3054	-164.6	-50.42	144.0

Substance	Enthalpy of combustion, $\Delta_c H^{\circ}$ (kJ mol ⁻¹)	Enthalpy of formation, $\Delta_{\rm f} H^{\odot} / \text{ (kJ mol}^{-1}\text{)}$	Gibbs Energy of formation, $\Delta_{\rm f} G^{\circ} / ({\rm kJ~mol^{-1}})$	Entropy, S [©] /(J K ⁻¹ mol ⁻¹)
Carboxylic acid				
HCOOH(l), formic acid	-255	-424.72	-361.35	128.95
CH ₃ COOH(l), acetic acid	-875	-484.5	-389.9	159.8
CH ₃ COOH (aq)	_	-485.76	-396.64	86.6
(COOH) ₂ (s), oxalic acid	-254	-827.2	-697.9	120
C ₆ H ₅ COOH(s), benzoic acid	-3227	-385.1	-245.3	167.6
Aldehydes and ketones				
HCHO(g), methanal	-571	-108.57	-102.53	218.77
(formaldehyde)			100.10	
CH ₃ CHO(l), ethanal (acetaldehyde)	-1166	-192.30	-128.12	160.2
CH ₂ CHO(g)	-1192	-166.19	-128.86	250.3
CH ₃ COCH ₃ (l), propanone (acetone)	-1790	-248.1	-155.4	200
Sugars			.6	
$C_6H_{12}O_6(s)$, glucose	-2808	-1268	-910	212
$C_6 H_{12} O_6 (aq)$	_		-917	_
C ₆ H ₁₂ O ₆ (s), fructose	-2810	-1266		_
$C_{12}H_{22}O_{11}(s)$, sucrose	-5645	-2222	-1545	360
Nitrogen compounds		, ,		
CO(NH ₂) ₂ (s), urea	-632	-333.51	-197.33	104.60
$C_6H_5NH_2(1)$, aniline	-3393	31.6	149.1	191.3
NH ₂ CH ₂ COOH(s), glycine	-969	-532.9	-373.4	103.51
CH ₃ NH ₂ (g), methylamine	-1085	-22.97	32.16	243.41

Standard potentials at 298 K in electrochemical order

Reduction half-reaction	<i>E</i> [⊕] /V	Reduction half-reaction	E [⊕] /V
$H_4XeO_6 + 2H^+ + 2e^- \longrightarrow XeO_3 + 3H_2O$	+3.0	$Cu^+ + e^- \longrightarrow Cu$	+0.52
$F_2 + 2e^- \longrightarrow 2F-$	+2.87	$NiOOH + H_2O + e^- \longrightarrow Ni(OH)_2 + OH^-$	+0.49
$O_3 + 2H^+ + 2e^- \longrightarrow O_2 + H_2O$	+2.07	$Ag_2CrO_4 + 2e^- \longrightarrow 2Ag + CrO_4^2$	+0.45
$S_2O_8^{2-} + 2e^- \longrightarrow 2SO_4^{2-}$	+2.05	$O_2 + 2H_2O + 4e^- \longrightarrow 4OH^-$	+0.40
$Ag^+ + e^- \longrightarrow Ag^+$	+1.98	$ClO_4^- + H_2O + 2e^- \longrightarrow ClO_3^- + 2OH^-$	+0.36
$Co^{3+} + e^- \longrightarrow Co^{2+}$	+1.81	$[Fe(CN)_6]^{3-} + e^- \longrightarrow [Fe(CN)_6]^{4-}$	+0.36
$H_2O_2 + 2H^+ + 2e^- \longrightarrow 2H_2O$	+1.78	$Cu^{2+} + 2e^{-} \longrightarrow Cu$	+0.34
$Au^+ + e^- \longrightarrow Au$	+1.69	$Hg_2Cl_2 + 2e^- \longrightarrow 2Hg + 2Cl^-$	+0.27
$Pb^{4+} + 2e^{-} \longrightarrow Pb^{2+}$	+1.67	$AgCl + e^{-} \longrightarrow Ag + Cl^{-}$	+0.27
$2HClO + 2H^+ + 2e^- \longrightarrow Cl_2 + 2H_2O$	+1.63	$Bi^{3+} + 3e^- \longrightarrow Bi$	+0.20
$Ce^{4+} + e^{-} \longrightarrow Ce^{3+}$	+1.61	$SO_4^{2-} + 4H^+ + 2e^- \longrightarrow H_2SO_3 + H_2O$	+0.17
$2HBrO + 2H^+ + 2e^- \longrightarrow Br_2 + 2H_2O$	+1.60	$Cu^{2+} + e^{-} \longrightarrow Cu^{+}$	+0.16
$MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2^+} + 4H_2^0$	+1.51	$Sn^{4+} + 2e^- \longrightarrow Sn^{2+}$	+0.15
$Mn^{3+} + e^- \longrightarrow Mn^{2+}$	+1.51	$AgBr + e^{-} \longrightarrow Ag + Br^{-}$	+0.07
$Au^{3+} + 3e^{-} \longrightarrow Au$	+1.40	$Ti^{4+} + e^- \longrightarrow Ti^{3+}$	0.00
$Cl_2 + 2e^- \longrightarrow 2Cl^-$	+1.36	$2H^+ + 2e - \longrightarrow H_2$	0.0 by
$Cr_2O_7^{2-} + 14H^+ + 6e^- \longrightarrow 2Cr^{3+} + 7H_2O$	+1.33	$Fe^{3+} + 3e^- \longrightarrow Fe$	definition -0.04
$O_3 + H_2O + 2e^- \longrightarrow O_2 + 2OH^-$	+1.24	$O_2 + H_2O + 2e^- \longrightarrow HO_2^- + OH^-$	-0.04 -0.08
$O_2 + 4H^+ + 4e^- \longrightarrow 2H_2O$	+1.23	$O_2 \lor \Pi_2 O \lor 2e \longrightarrow \PiO_2 \lor O\Pi$ $Pb^{2*} + 2e^- \longrightarrow Pb$	-0.03 -0.13
$\text{ClO}_4^- + 2\text{H}^+ + 2\text{e}^- \longrightarrow \text{ClO}_3^- + 2\text{H}_2\text{O}$	+1.23	$ \ln^+ + e^- \longrightarrow \ln $	-0.14
$MnO_2 + 4H^+ + 2e^- \longrightarrow Mn^{2+} + 2H_2O$	+1.23	$\operatorname{Sn}^{2+} + 2e^{-} \longrightarrow \operatorname{Sn}$	-0.14
$Pt^{2+} + 2e^- \longrightarrow Pt$	+1.20	$AgI + e^{-} \longrightarrow Ag + I^{-}$	-0.15
$Br_2 + 2e^- \longrightarrow 2Br^-$	+1.09	$Ni^{2+} + 2e^- \longrightarrow Ni$	-0.23
$Pu^{4+} + e^- \longrightarrow Pu^{3+}$	+0.97	$V^{3+} + e^- \longrightarrow V^{2+}$	-0.26
$NO_3^- + 4H^+ + 3e^- \longrightarrow NO + 2H_2O$	+0.96	$Co^{2+} + 2e^- \longrightarrow Co$	-0.28
$2Hg^{2+} + 2e^{-} \longrightarrow Hg^{2+}_{2}$	+0.92	$In^{3+} + 3e^- \longrightarrow In$	-0.34
$ClO^- + H_2O + 2e^- \longrightarrow Cl^- + 2OH^-$	+0.89	$Tl^+ + e^- \longrightarrow Tl$	-0.34
$Hg^{2+} + 2e^{-} \longrightarrow Hg$	+0.86	$PbSO_4 + 2e^- \longrightarrow Pb + SO_4^{2-}$	-0.36
$NO_3^- + 2H^+ + e^- \longrightarrow NO_2^- + H_2O$	+0.80	$Ti^{3+} + e^- \longrightarrow Ti^{2+}$	-0.37
$Ag^{+} + e^{-} \longrightarrow Ag$	+0.80	$Cd^{2+} + 2e^{-} \longrightarrow Cd$	-0.40
$Hg_2^{2+} + 2e^- \longrightarrow 2Hg$	+0.79	$In^{2+} + e^- \longrightarrow In^+$	-0.40
$Fe^{3+} + e^{-} \longrightarrow Fe^{2+}$	+0.77	$Cr^{3+} + e^- \longrightarrow Cr^{2+}$	-0.41
$BrO^- + H_2O + 2e^- \longrightarrow Br^- + 2OH^-$	+0.76	$Fe^{2+} + 2e^{-} \longrightarrow Fe$	-0.44
$Hg_2SO_4 + 2e^- \longrightarrow 2Hg + SO_4^{2-}$	+0.62	$In^{3+} + 2e^- \longrightarrow In^+$	-0.44
$MnO_4^{2-} + 2H_2O + 2e^- \longrightarrow MnO_2 + 4OH^-$	+0.60	$S + 2e^- \longrightarrow S^{2-}$	-0.48
$MnO_4^- + e^- \longrightarrow MnO_4^2$	+0.56	$In^{3+} + e^- \longrightarrow In^{2+}$	-0.49
$I_2 + 2e^- \longrightarrow 2I^-$	+0.54	$U^{4+} + e^- \longrightarrow U^{3+}$	-0.61
$\Gamma_2 + 2e^- \longrightarrow 3\Gamma$	+0.53	$\operatorname{Cr}^{3+} + 3e^{-} \longrightarrow \operatorname{Cr}$	-0.74
3		$Zn^{2+} + 2e^{-} \longrightarrow Zn$	-0.76

Appendix continued

Reduction half-reaction	<i>E</i> [⊕] /V	Reduction half-reaction	E ⊖/V
$Cd(OH)_2 + 2e^- \longrightarrow Cd + 2OH^-$	-0.81	$La^{3+} + 3e^- \longrightarrow La$	-2.52
$2H_2O + 2e^- \longrightarrow H_2 + 2OH^-$	-0.83	$Na^+ + e^- \longrightarrow Na$	-2.71
$Cr^{2+} + 2e^{-} \longrightarrow Cr$	-0.91	$Ca^{2+} + 2e^{-} \longrightarrow Ca$	-2.87
$Mn^{2+} + 2e^- \longrightarrow Mn$	-1.18	$Sr^{2+} + 2e^- \longrightarrow Sr$	-2.89
$V^{2+} + 2e^- \longrightarrow V$	-1.19	$Ba^{2+} + 2e^{-} \longrightarrow Ba$	-2.91
$Ti^{2+} + 2e^{-} \longrightarrow Ti$	-1.63	$Ra^{2+} + 2e^- \longrightarrow Ra$	-2.92
$A1^{3+} + 3e^- \longrightarrow A1$	-1.66	$Cs^+ + e^- \longrightarrow Cs$	-2.92
$U^{3+} + 3e^{-} \longrightarrow U$	-1.79	$Rb^+ + e^- \longrightarrow Rb$	-2.93
$Sc^{3+} + 3e^{-} \longrightarrow Sc$	-2.09	$K^+ + e^- \longrightarrow K$	-2.93
$Mg^{2+} + 2e^{-} \longrightarrow Mg$	-2.36	$Li^+ + e^- \longrightarrow Li$	-3.05
$Ce^{3+} + 3e^{-} \longrightarrow Ce$	-2.48		