Structural alignment

- Other than identifying equilibration time, structural alignment is usually one of the first tasks of MD analysis
- Why?
 - In most MD simulations, molecules freely diffuse around the box
 - We are usually
 - uninterested in the overall translation and rotation,
 - interested in fluctuations relative to the macromolecule
- Alignment is often based on a rigid-body translation and rotation to minimize the root mean square deviation (RMSD)
- See <u>Alignment.py</u>, which performs a structural alignment for a series of simulations of ubiquitin and outputs a trajectory of the protein by itself.

Visualizing Trajectories

- can be done by
 - loading a model into VMD
 - loading the trajectory into the model
- I will show you unaligned and aligned trajectories of ubiquitin without water
- For an unaligned simulation in explicit solvent
 - molecules, especially water, can be split across a periodic box
 - you probably don't need to see all water

