

DEPARTMENT OF THE INTERIOR Ray Lyman Wilbur, Secretary

U. S. GEOLOGICAL SURVEY
George Otis Smith, Director

Bulletin 809

FORMULAS AND TABLES

FOR THE

CONSTRUCTION OF POLYCONIC PROJECTIONS

Compiled by C. H. BIRDSEYE

UNITED STATES
GOVERNMENT PRINTING OFFICE
WASHINGTON: 1929

DESCRIPTION OF THE PROPERTY.

C. S. GEOTOGE S. of BYLL

Bulletin 800

FORMULAS AND TABLES

CONSTRUCTION OF POLYCONE PROTECTIONS

ADDITIONAL COPIES

OF THIS PUBLICATION MAY BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS U.S.GOVERNMENT PRINTING OFFICE WASHINGTON, D. C.

AT

25 CENTS PER COPY

CONTENTS

Preface.
General considerations
Choice of a projection
Advantages and disadvantages of the polyconic projection
Characteristics of the polyconic projection
Theory of the American polyconic projection
Clarke's spheroid
Constants of the generating ellipse
Radii of curvature
Meridional arcs
Arcs of the parallel
Rectangular coordinates
Analysis of formulas
Conversion data
Construction of projections
Different methods of construction
Geological Survey method
Interpolation for other scales
Modified polyconic projection of map of the world on the millionth scale
General specifications
Joining of sheets
Drawing of parallels
Description of tables
Method of construction of projection
Theory of the modified polyconic projection
Nomenclature
Dimensions of the spheroid
Radii of curvature
Order of computations
Lengths of the meridians.
Rectangular coordinates
Table 1. Coordinates for the projection of maps, scale 1:96,000
2. Coordinates for the projection of maps, scale 1:48,000
3. Coordinates for the projection of maps, scale 1:31,680
4. Coordinates for the projection of maps, scale 1:24,000
5. Coordinates for modified polyconic projection of map of the
world, natural scale, in meters
6. Coordinates for modified polyconic projection of map of the
world, scale 1:1,000,000, in inches
Index

ILLUSTRATIONS

			Page
FIGURE	1.	Elements of generating ellipse	5
	2.	Elements of ellipsoid and tangent cone	16
		Sector of tangent cone	16
		Developed cone	17
	5.	Polyconic projection of 15-minute quadrangle	22
	6.	Junction of sheets of map of the world	27
	7.	Special scale used by the United States Geological Survey	32
	8.	Construction of modified polyconic projection	34
	9.	Computation of modified polyconic projection tables	39

IV

PREFACE

The primary purpose of this publication is to provide tables for the construction of polyconic projections of topographic maps of standard quadrangles without any interpolation. Bulletin 650, "Geographic tables and formulas," gives many of the data needed, but the projection tables in that bulletin are incomplete, and many of them require difficult interpolation. The tables given herewith have been prepared with arguments for each meridian and parallel represented on maps of standard quadrangles, and the data are given in inches for each of the standard field scales employed by the Geological Survey. Tables in the same form have also been prepared for the two scales on which most of the quadrangle maps of the Geological Survey are published in final form-1:62,500, 1:125,000and also for the scales 1:63,360, 1:20,000, 1:12,000, and 1:10,000. On account of lack of funds for printing, these tables have not been included in this publication, but it is hoped that they can be published at a later date.

A secondary purpose is to present in one publication all of the theory of the polyconic projection, with the formulas developed in detail and their use so explained that the engineer or cartographer with only an average knowledge of mathematics can understand and use them. Complete instructions are given for making polyconic projections of standard quadrangles by means of these tables.

The theory of the modified polyconic projection of the international map of the world is also explained, and tables for its construction are given with the data in meters on the natural scale as well as in inches on the scale of 1:1,000,000. For the first time these data

have been computed for each degree of latitude.

The tables have been computed by members of the computing section of the United States Geological Survey, under the supervision of George T. Hawkins. The author is indebted to David H. Baldwin and Edward W. Tibbott, of the Geological Survey, and to Oscar Adams, of the United States Coast and Geodetic Survey, for valuable advice and critical review. Notices of errors and suggestions for improvement of the material are invited.

C. H. Birdseye, Chief Topographic Engineer.

The construction of polynomic projections of the construction of the construction of the construction of polynomic projections of the construction of the construction

the forest of the second of th

-arrange and the space spring discovering the billions will be a result and if
-construent with the space spring permanent of the construent was been as the construent of the

The state of the second of the

The state of the s

FORMULAS AND TABLES FOR THE CONSTRUCTION OF POLYCONIC PROJECTIONS

Compiled by C. H. BIRDSEYE

GENERAL CONSIDERATIONS

Choice of a projection.—In mapping large areas the engineer is confronted with the problem of representing accurately on the plane surface of a map the details that exist on the earth's spherical surface. As it is impossible to do this exactly, he must resort to the use of some convention that will represent the earth's surface with the least distortion. The systematic drawing on a plane surface of lines that represent reference lines on the spherical surface of the earth is called a map projection. There are many systems of projection, each of which fulfills certain desirable conditions but none of which is ideal. The choice of the proper projection to use for a certain map is not always easy but depends largely on the extent of the area to be represented and on the use to which the map will be put. The best treatise on map projection published in English is United States Coast and Geodetic Survey Special Publication 68, "Elements of map projection."

Advantages and disadvantages of the polyconic projection.—The topographic engineer needs a projection which is simple in construction, which can be used to represent small areas on any part of the globe, and which, for each small area to which it is applied, preserves shapes, areas, distances, and azimuths in their true relation to the surface of the earth. For areas of small extent the polyconic projection meets all these needs, and it was adopted for the standard topographic map of the United States, in which the 1° quadrangle is the largest unit and the 15' quadrangle is the average unit. Misuse of this projection in attempts to spread it over large areas—that is, to construct a single map of a large area—has developed serious errors and gross exaggeration of details. For example, the polyconic projection is not at all suitable for a single-sheet map of the United States or of a large State, although it has been so employed. Its greatest advantage lies in the facts that it has been computed for all latitudes of the entire spheroid and that it represents a small area on any part of the earth's surface just as well as one on any other part.

Characteristics of the polyconic projection.—The polyconic projection takes its name from the fact that it is based on the development of a large number of cones each conceived to be tangent to the spheroid at a parallel of latitude to be represented on the map. It has been computed for every minute of latitude from 0° to 90°, and existing tables make its construction very easy. It was devised by Ferdinand Hassler, the first superintendent of the United States Coast and Geodetic Survey, and has been computed by that bureau. The theory of the projection and tables for its construction are given in Coast and Geodetic Survey Special Publications 57 and 5.

In this projection a central meridian is drawn as a straight line. and the intersections of the parallels are spaced true to scale along this central meridian. Each parallel is then laid down separately by means of a cone whose base is tangent to the earth's surface at that parallel, with the vertex of the developed cone on the extension of the central meridian. The arcs of the parallels thus drawn are subdivided to true scale, and the meridians are drawn through these subdivisions. As a result the central meridian is shown as a straight line, and theoretically all other meridians are shown as curves. As the meridians and parallels nowhere intersect at right angles, except along the central meridian, and as all the other meridians are drawn as curves concave toward the central meridian. it is theoretically impossible to fit together in a row, east and west, two maps each of which is developed on its own central meridian. as their joining edges are curved in opposite directions. However, in practice and within certain limits this theoretical condition does not exist. It is impossible for a draftsman or an engraver to draw the limiting meridians of a 1° or smaller quadrangle within the latitudinal limits of the United States other than as straight lines. Moreover, as the projection is extended from the central meridian the length of the meridians is theoretically increased, but even in latitude 60° the difference in length between the line representing the limiting meridian of a 1° quadrangle and the line representing the central meridian is too small to be plotted, and the lengths of all the meridians on a projection of 1° or smaller may be assumed to be the same. Therefore, a row of maps east and west will join perfectly, although as the north edge of each map is shorter than the south edge the row will form a curve. A tier of maps north and south will also join with sufficient accuracy. Theoretically, there will be small gores between the edges of each east-west row of maps and the next row to the north or south, but in actual practice the distortion of map paper due to changes in atmospheric conditions is greater than the error of joining, so that by slightly stretching the outer tiers a moderate number of maps-say five or six each way-can be joined with approximately perfect accuracy. Seldom, if ever, will a map user

wish to join more than five or six quadrangle maps in any direction. The limits in the size of tables or wall space make further extension impracticable, and therefore the theoretical weaknesses of this projection can be ignored so far as maps of small quadrangles are concerned.

THEORY OF THE AMERICAN POLYCONIC PROJECTION

Clarke's spheroid.—The data in the following tables for the polyconic projection of maps are based on the dimensions of the spheroid determined by Col. A. R. Clarke, R. E., in 1866, as expressed by Clarke in meters but not as expressed by him in feet. Although the International Geophysical Union has adopted the Hayford spheroid as the most exactly determined representation of the size and shape of the earth, and the dimensions of the Hayford spheroid are now used in geophysical research, still the Clarke spheroid represents very closely the true size and shape of the earth, and most of the existing tables for the projection of maps are based on it. In the following tables the data are merely converted from measurements on the spheroid in meters, given in United States Coast and Geodetic Survey Special Publication 5, to inches on the several map scales employed by the United States Geological Survey. Some interpolation has been required in order to provide data for arguments for use in the construction of standard projections of 7½' and 15' quadrangles, such as latitude and longitude intervals of 11/4', 21/2', 33/4', and 71/2'. Interpolation has also been employed in the conversion of the data, which may have resulted in errors of 0.001 inch in the tables, but one one-thousandth of an inch can not be plotted.

Tables are given for all the standard field scales employed by the Geological Survey for latitudes 0° to 51° or more. As the computation of special projections may be required, the fundamental formulas and demonstrations of their development are given with instructions for their use. The nomenclature employed in the formulas given in different publications on this subject differs, and in some demonstrations of the development of the formulas there may be some doubt as to the meaning of the symbols employed and some confusion in the use of mathematical expressions, such as an arc expressed in terms of the radius. An attempt has therefore been made to explain fully the meaning of each symbol or expression and to make the demonstrations and the instructions as to the use of the formulas so clear that a cartographer with only average knowledge of mathematics can follow them. In these demonstrations the following publications have been consulted freely and to some extent are quoted verbatim: United States Coast and Geodetic Survey Special Publications 5 and 57, Smithsonian Geographic Tables, and United States Geological Survev Bulletins 50 and 650.

Clarke expressed the dimensions of the spheroid in meters and also in English feet. According to him 1 meter=39.370432 inches= 3.28086933 feet. The Smithsonian Geographic Tables and United States Geological Survey Bulletin 50, both prepared by R. S. Woodward, depend on the Clarke spheroid as expressed by him in feet. Some of the tables given in United States Geological Survey Bulletin 650 are extracts from the Smithsonian Geographic Tables and some are extracts from the United States Coast and Geodetic Survey The polyconic projection tables computed by the United States Coast and Geodetic Survey depend on the dimensions of the spheroid as expressed by Clarke in meters, and the tables given herein depend on these dimensions and on the legal value in the United States of 1 meter = 39.37 inches = 3.28083333 feet. This figure does not express the absolutely correct relation between the international meter and the inch, but it is close enough for all practical purposes of map projection. Therefore, in order to reduce the dimensions of the spheroid as given by Clarke and Woodward in feet, and any tables of length based thereon, to corresponding values given in the United States Coast and Geodetic Survey Tables and those in this publication, it is necessary to multiply by the fraction $\frac{39.37}{39.370432} = 0.99998903$

tion, it is necessary to multiply by the fraction $\frac{39.370432}{39.370432} = 0.99998903$ (log. 9.99999523–10).

Constants of the generating ellipse.—The constants of the generating ellipse of a spheroid for which values are required in the computation of projection tables are defined as follows:

a = semimajor axis. b = semiminor axis. e = eccentricity.

$$n = \frac{a - b}{a + b} = \frac{1 - \sqrt{1 - e^2}}{1 + \sqrt{1 - e^2}}$$

The values of these constants with their logarithms for the Clarke spheroid of 1866 expressed in meters as used in computing the tables in this publication are:

 $\begin{array}{lll} a & = 6,378,206.4 \ meters. \\ b & = 6,356,583.8 \ meters. \\ e^2 & = 0.0067686580. \\ n & = 0.0016979157. \\ \end{array} \qquad \begin{array}{ll} \log \ a & = 6.8046985690. \\ \log \ b & = 6.8032237768. \\ \log \ e^2 & = 7.8305025710-10. \\ \log \ n & = 7.2299161198-10. \end{array}$

Radii of curvature.—The principal radii of curvature of an ellipsoid (see fig. 1) are

 $\rho_{\rm m}$ = the radius of curvature of a meridional section.

 ρ_n = the radius of curvature of a section normal to the meridian.

Both are constant for a given latitude, but for precise computations infinitely small sections of the circumference of the meridional ellipse must be considered, because meridional arcs cover a range of latitude,

and therefore ρ_m must be evaluated for infinitely small changes in latitude.

In Figure 1, let APP'D represent a quadrant of the generating ellipse; AQQ'B, a quadrant of the circumscribed circle; EFF'D, a quadrant of the inscribed circle; P and P', two contiguous points on the ellipse at the ends of the infinitely small arc ds; PK and P'K $(=\rho_m)$, the normals at P and P', or the radius of curvature of the infinitely small meridional arc ds; PK' $(=\rho_n)$, the radius of curvature of a section normal to the meridian; OA (=a), the semimajor axis; OD (=b), the semiminor axis; the angle XRP = ϕ , the latitude of the point P; and the angle XOQ = ψ , the geocentric latitude of the point P.

FIGURE 1.—Elements of generating ellipse

Expressing the coordinates of the point P in parametric form, we have

$$x = a \cos \psi$$
$$y = b \sin \psi$$

As the point moves from P to P' the small changes in x and y are PF (=-dx) and FP' (=dy), respectively. If the two equations are differentiated, ψ being regarded as a variable angle and x and y as functions of ψ , then

$$d\mathbf{x} = -\mathbf{a} \sin \psi \, d\psi$$
$$d\mathbf{y} = \mathbf{b} \cos \psi \, d\psi$$

The triangles RPE and PP'F are similar and the angle PP'F = angle $PRE = \phi$, therefore

$$\tan \phi = \frac{-dx}{dy}.$$

Substituting the values of dx and dy, we have

$$\tan \phi = \frac{a \sin \psi}{b \cos \psi} = \frac{a}{b} \tan \psi$$

or

$$\tan \psi = \frac{b}{a} \tan \phi$$

The eccentricity of the ellipse, represented by e, is defined by the equation

$$e^2 = \frac{a^2 - b^2}{a^2} = 1 - \frac{b^2}{a^2}$$

or

$$\frac{b^2}{a^2} = 1 - e^2$$

and

$$\frac{b}{a} = \sqrt{1 - e^2}$$

Substituting this value, we have

$$\tan \psi = \sqrt{1 - e^2} \tan \phi$$

but

$$\sin \psi = \tan \psi \cos \psi = \frac{\tan \psi}{\sec \psi} = \frac{\tan \psi}{\sqrt{1 + \tan^2 \psi}} = \frac{\sqrt{1 - e^2 \tan \phi}}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin \psi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin \psi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin \psi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin \psi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin \psi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin \psi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin \psi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin \psi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin \psi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin \psi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin \psi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin \psi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin \psi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin \psi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin \psi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin \psi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin \psi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin \psi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin \psi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin \psi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin \psi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin \psi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin \psi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin \psi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin \psi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin \psi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin \psi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin \psi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin \psi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin^2 \phi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin^2 \phi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin^2 \phi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin^2 \phi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin^2 \phi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin^2 \phi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin^2 \phi}{\sqrt{1 + \tan^2 \phi} - e^2 \tan^2 \phi} = \frac{1 + \sin^2 \phi}{\sqrt{1 + \tan^2 \phi}} = \frac{1 +$$

$$\frac{\sqrt{1 - e^2} \frac{\sin \phi}{\cos \phi}}{\sqrt{1 + \frac{\sin^2 \phi}{\cos^2 \phi} - e^2 \frac{\sin^2 \phi}{\cos^2 \phi}}} = \frac{\frac{\sqrt{1 - e^2} \sin \phi}{\cos \phi}}{\frac{\sqrt{\cos^2 \phi + \sin^2 \phi - e^2 \sin^2 \phi}}{\cos \phi}} = \frac{\sqrt{1 - e^2} \sin \phi}{\sqrt{1 - e^2} \sin^2 \phi}$$

and

$$\cos \psi = \frac{\sin \psi}{\tan \psi} = \frac{1}{\sqrt{1 + \tan^2 \psi}} = \frac{1}{\sqrt{1 + \tan^2 \phi - e^2 \tan^2 \phi}} = \frac{1}{\sqrt{1 + \frac{\sin^2 \phi}{\cos^2 \phi} - e^2 \frac{\sin^2 \phi}{\cos^2 \phi}}} = \frac{1}{\sqrt{\cos^2 \phi + \sin^2 \phi - e^2 \sin^2 \phi}} = \frac{\cos \phi}{\sqrt{1 - e^2 \sin^2 \phi}}$$

Using the fundamental differential formula $d \tan x = \sec^2 x dx$, we have

$$\sec^2 \psi \ d\psi = d \tan \psi$$

Substituting the value of $\tan \psi$ and differentiating, we have

$$\sec^2 \psi \ d\psi = \sqrt{1 - e^2} \sec^2 \phi \ d\phi$$

or

$$d\psi = \frac{\sqrt{1 - e^2} \sec^2 \phi \, d\phi}{\sec^2 \psi} = \sqrt{1 - e^2} \sec^2 \phi \, d\phi \cos^2 \psi = \frac{\cos^2 \phi \, \sqrt{1 - e^2} \sec^2 \phi \, d\phi}{1 - e^2 \sin^2 \phi} = \frac{\sqrt{1 - e^2} \, d\phi}{1 - e^2 \sin^2 \phi}$$

Let ds denote the infinitely small meridional arc PP' of the generating ellipse; $\rho_m = PK$, the radius of curvature of the small arc; and $d\phi$ the angle PKP', expressed in circular measure, through which the end of the radius moves in generating the small arc. Then considering the infinitely small arc of the ellipse as an arc of a circle and using the relation arc=radius times generating angle, we get

$$\rho_{\rm m} d\phi = ds$$
.

But

$$ds = \sqrt{\overline{dx^2 + dy^2}} = \sqrt{a^2 \sin^2 \psi + b^2 \cos^2 \psi} d\psi =$$

$$\sqrt{a^2 \sin^2 \psi + a^2 (1 - e^2) \cos^2 \psi} d\psi = a \sqrt{\sin^2 \psi + \cos^2 \psi - e^2 \cos^2 \psi} d\psi =$$

a
$$\sqrt{1-e^2\cos^2\psi} d\psi$$

also

$$\sqrt{1 - e^2 \cos^2 \psi} = \sqrt{1 - e^2 \left(\frac{\cos^2 \phi}{1 - e^2 \sin^2 \phi}\right)} = \sqrt{\frac{1 - e^2 \sin^2 \phi - e^2 \cos^2 \phi}{1 - e^2 \sin^2 \phi}} = \sqrt{\frac{1 - e^2 (\sin^2 \phi + \cos^2 \phi)}{1 - e^2 \sin^2 \phi}} = \sqrt{\frac{1 - e^2 \sin^2 \phi - e^2 \cos^2 \phi}{1 - e^2 \sin^2 \phi}}$$

and

$$d\psi = \frac{\sqrt{1 - e^2} d\phi}{1 - e^2 \sin^2 \phi}$$

therefore

$$\sqrt{1 - e^2 \cos^2 \psi} \, d\psi = \frac{(1 - e^2) \, d\phi}{(1 - e^2 \sin^2 \phi)^{\frac{5}{2}}}$$

and

$$ds = \frac{a (1 - e^2) d\phi}{(1 - e^2 \sin^2 \phi)^{\frac{5}{2}}}$$

but

$$\rho_{\rm m} = \frac{ds}{d\phi}$$

therefore

$$\rho_{\mathbf{m}} = \frac{\mathbf{a} (1 - \mathbf{e}^2)}{(1 - \mathbf{e}^2 \sin^2 \phi)^{\frac{5}{2}}} - - - - - - [\mathbf{I}]$$

If we pass a plane through any point P on the ellipsoid, parallel to the equatorial plane of the ellipsoid, this plane intersects the ellipsoid in a circle which represents the parallel at the point P, and the normals to the surface of the ellipsoid at every point on this

parallel circle intersect in a point K' on the minor axis of the ellipsoid. If we pass a plane through the normals of any two contiguous points on the parallel circle and then let these normals approach each other until they coincide, we obtain a plane tangent to the given parallel and perpendicular to the meridian at the point of tangency. The radius of curvature in this plane corresponding to a small arc of the parallel is represented by PK', because the normals of each point on the arc intersect at K'. If we denote this radius by ρ_n we have in the triangle PK'E',

$$\cos \phi = \frac{X}{\rho_n}$$

Hence

$$\rho_{n} = \frac{x}{\cos \phi} = \frac{a \cos \psi}{\cos \phi} = \frac{\frac{a \cos \phi}{\sqrt{1 - e^{2} \sin^{2} \phi}}}{\cos \phi} = \frac{a}{(1 - e^{2} \sin^{2} \phi)^{\frac{1}{2}}} - ---- [II]$$

It is evident that ρ_n is always greater than ρ_m except when $\phi = \pm 90^\circ$; in that event $\rho_n = \rho_m$.

Logarithms of $\rho_{\rm m}$ and $\rho_{\rm n}$ in English feet are given in the Smithsonian Geographic Tables for each minute from 0° to 90° and in Geological Survey Bulletin 50 for each minute from 21° to 51°; to reduce these logarithms to logarithms of the radii expressed in American feet to correspond to the relation with the legal value of the meter in the United States, 47.7 in the last (7th) place must be subtracted. To reduce logarithms of American feet to logarithms of meters (United States legal value) the logarithm 9.48401583–10 should be added. Consequently the logarithms given in the Smithsonian Geographic Tables or in Geological Survey Bulletin 50 may be used for computations of formulas and tables given in the present publication by adding the logarithm 9.48401106–10.

However, in connection with geodetic computations the Coast and Geodetic Survey has adopted several factors based on the Clarke spheroid as expressed in meters (United States legal value), and it is more convenient to use two of these factors, log A and log B, than to use the values of $\rho_{\rm m}$ and $\rho_{\rm n}$ given in the Smithsonian Geographic Tables. The logarithms of these factors have been computed to the seventh place for each minute from 0° to 72° and are given in Geological Survey Bulletin 650 and in Coast and Geodetic Survey Special Publication 8. These factors are

$$\begin{split} A = & \frac{(1 - e^2 \sin^2 \phi)^{\frac{5}{2}}}{a \text{ arc } 1''} \\ B = & \frac{(1 - e^2 \sin^2 \phi)^{\frac{5}{2}}}{a(1 - e^2) \text{ arc } 1''} \end{split}$$

Introducing these factors into the formulas for ρ_m and ρ_n given above, we have

$$\rho_{\rm n} = \frac{1}{\text{A arc } 1''} - \text{[IV]}$$

In these factors are 1" is expressed in radians 1 and is 0.0000048481368 log are 1"=4.6855748668-10, which is the same as log sin 1" to the tenth decimal place.

Meridional arcs.—The length of an arc of a circle equals the length of its radius times the length of the arc expressed in radians. If a very short section of a meridional ellipse is considered as an arc of a circle, the length of this short section can be found by the use of simple formulas with sufficient exactness for use in ordinary large-scale map projections. But if it is desired to find the length of a long arc or to determine exactly the length of a short arc, it is necessary to take the summation of the lengths of the infinitely small arcs making up the arc whose length is desired, by the process of integrating between the limiting parallels the variable lengths of the small arcs corresponding to infinitely small uniform subdivisions of the difference of latitude.

The length of a short meridional arc lying between two given parallels of latitude can be computed by the simple formulas given below, in which

 ϕ_1 and ϕ_2 are the latitudes, expressed in degrees, minutes, and seconds, of the ends of the arc.

 $\phi = \frac{1}{2} (\phi_1 + \phi_2)$ and is the mean latitude of the arc.

 $\Delta \phi = \phi_2 - \phi_1$ and is here taken as the length of the arc expressed in radians.

 $\Delta \phi' = \phi_2 - \phi$ and is here taken as the length of the arc expressed in minutes.

Arc 1' = 0.0002908882 radian, or the length of an arc of 1' for a unit radius.

ΔM is the required length of the arc, or the meridional distance expressed in meters. Then, as the length of the arc equals the length of the radius times the arc expressed in radians,

$$\Delta M = \rho_{\rm m} \Delta \phi = \rho_{\rm m} \ {\rm arc} \ 1' \ \Delta \phi'$$

But

$$\rho_{\rm m} = \frac{1}{{\rm B~arc~1''}}$$

¹ A radian is an arc of a circle equal to its radius and is a unit arc in circular measure. Its value in degrees is $\frac{360}{2\pi}$, which equals 57°.29577951 or 3437'.746771 or 206264''.80625,

therefore

$$\Delta M = \frac{\text{arc } 1'\Delta\phi'}{\text{arc } 1''B} = \frac{60\Delta\phi'}{B}$$

Log 60 = 1.7781513. Log B for the mean latitude ϕ is given for each minute of latitude in Table 28, Geological Survey Bulletin 650, and in Coast and Geodetic Survey Special Publication 8. The approximate formula for ΔM should not be used for arcs of the meridian longer than 1°. The error will depend on the latitude but for 1° will be approximately +0.8 meter, for 30′ about +0.4 meter, for 15′ about +0.2 meter, and for $7\frac{1}{2}$ ′ about +0.1 meter. The latitude, the scale, and the size of the projection will control largely the selection of formulas.

For the computation of the length of a long meridional arc or the precise computation of a short arc, a formula must be used which will give the sum of the varying lengths corresponding to infinitely small subdivisions of the difference of latitude. In other words, the approximate formula $\Delta M = \rho_m \Delta \phi$ must be integrated between the limits of the latitudes of the ends of the arc. The expression will be integrated first in general form between latitude 0° and any latitude ϕ .

 $d\phi$ = an infinitely small difference in latitude, or the differential of the latitude.

M = the length of the arc in meters, from the Equator to latitude ϕ . Using the value of ρ_m given in [I], we have

$$M = \int_0^{\phi} \frac{a(1 - e^2) d\phi}{(1 - e^2 \sin^2 \phi)^{\frac{3}{2}}}$$

Expanding the binomial reciprocal of the denominator, we have

$$\begin{split} (1-\mathrm{e}^2\,\sin^2\,\phi)^{-\frac{3}{4}} &= 1 + \frac{3}{2}\,\mathrm{e}^2\,\sin^2\,\phi + \frac{15}{8}\,\mathrm{e}^4\,\sin^4\,\phi + \frac{35}{16}\,\mathrm{e}^6\,\sin^6\,\phi \\ &\quad + \frac{315}{128}\,\mathrm{e}^8\,\sin^8\,\phi + \cdot\cdot\cdot\cdot\cdot\end{split}$$

But,

$$\sin^{2} \phi = \frac{1}{2} (1 - \cos 2\phi) = \frac{1}{2} - \frac{1}{2} \cos 2\phi$$

$$\sin^{4} \phi = \frac{3}{8} - \frac{1}{2} \cos 2\phi + \frac{1}{8} \cos 4\phi$$

$$\sin^{6} \phi = \frac{5}{16} - \frac{15}{32} \cos 2\phi + \frac{3}{16} \cos 4\phi - \frac{1}{32} \cos 6\phi$$

$$\sin^{8} \phi = \frac{35}{128} - \frac{7}{16} \cos 2\phi + \frac{7}{32} \cos 4\phi - \frac{1}{16} \cos 6\phi + \frac{1}{128} \cos 8\phi$$

Substituting these values and arranging the terms as constants and as coefficients of $\cos 2\phi$, $\cos 4\phi$, etc., we have

$$(1 - e^{2} \sin^{2} \phi)^{-\frac{1}{2}} = \left(1 + \frac{3}{4} e^{2} + \frac{45}{64} e^{4} + \frac{175}{256} e^{6} + \frac{11025}{16384} e^{8} + \cdots\right)$$

$$B$$

$$-\left(\frac{3}{4} e^{2} + \frac{15}{16} e^{4} + \frac{525}{512} e^{6} + \frac{2205}{2048} e^{8} + \cdots\right) \cos 2\phi$$

$$+\left(\frac{C}{\frac{15}{64} e^{4} + \frac{105}{256} e^{6} + \frac{2205}{4096} e^{8} + \cdots\right) \cos 4\phi$$

$$D$$

$$-\left(\frac{315}{512} e^{6} + \frac{315}{2048} e^{8} + \cdots\right) \cos 6\phi$$

$$E$$

$$+\left(\frac{315}{16384} e^{8} + \cdots\right) \cos 8\phi$$

$$-\left(\cdots \right)$$

Then

$$M = \int_{0}^{\phi} a (1 - e^{2}) [A - B \cos 2\phi + C \cos 4\phi - D \cos 6\phi + E \cos 8\phi - \cdots] d\phi$$

But

$$\int mdx = mx + k$$
 and $\int m \cos nx \, dx = \frac{m}{n} \sin nx + k$

fundamental form u l a s in which m is a definite coefficient x is a variable quantity n is a coefficient of the variable k is a constant.

Therefore

$$f_{a} (1-e^{2}) A d\phi = a (1-e^{2}) A\phi + k$$

$$f_{a} (1-e^{2}) B \cos 2\phi d\phi = a (1-e^{2}) B \frac{1}{2} \sin 2\phi + k$$

$$f_{a} (1-e^{2}) C \cos 4\phi d\phi = a (1-e^{2}) C \frac{1}{4} \sin 4\phi + k$$

$$f_{a} (1-e^{2}) D \cos 6\phi d\phi = a (1-e^{2}) D \frac{1}{6} \sin 6\phi + k$$

$$f_{a} (1-e^{2}) E \cos 8\phi d\phi = a (1-e^{2}) E \frac{1}{8} \sin 8\phi + k.$$

$$6243^{\circ} - 29 - - 2$$

The value of M between the limits 0° and ϕ° is the difference between the integrals when $\phi = \phi^{\circ}$ and when $\phi = 0^{\circ}$. If $\phi = 0^{\circ}$, then $\sin 2\phi$, $\sin 4\phi$, etc., =0, and the integral of each of the five terms given above is equal to k. In the subtraction of integrals all the k's cancel. Therefore,

$$\begin{split} \mathbf{M} = \mathbf{a} (\mathbf{1} - \mathbf{e}^2) \bigg[\mathbf{A} \phi - \frac{1}{2} \mathbf{B} \sin 2\phi + \frac{1}{4} \mathbf{C} \sin 4\phi - \frac{1}{6} \mathbf{D} \sin 6\phi \\ + \frac{1}{8} \mathbf{E} \sin 8\phi - \cdot \cdot \cdot \cdot \bigg] \end{split}$$

Substituting the values of A, B, C, D, and E, we get

$$\begin{split} M &= a \, (1 - e^2) \bigg[\bigg(1 + \frac{3}{4} \, e^2 + \frac{45}{64} \, e^4 + \frac{175}{256} \, e^6 + \frac{11025}{16384} \, e^8 + \cdot \cdot \cdot \cdot \bigg) \phi \\ &\qquad \qquad - \frac{1}{2} \bigg(\frac{3}{4} \, e^2 + \frac{15}{16} \, e^4 + \frac{525}{512} \, e^6 + \frac{2205}{2048} \, e^8 + \cdot \cdot \cdot \bigg) \sin \, 2\phi \\ &\qquad \qquad + \frac{1}{4} \bigg(\frac{15}{64} \, e^4 + \frac{105}{256} \, e^6 + \frac{2205}{4096} \, e^8 + \cdot \cdot \cdot \bigg) \sin \, 4\phi \\ &\qquad \qquad - \frac{1}{6} \bigg(\frac{35}{512} \, e^6 + \frac{315}{2048} \, e^8 + \cdot \cdot \cdot \cdot \bigg) \sin \, 6\phi \\ &\qquad \qquad \qquad + \frac{1}{8} \bigg(\frac{315}{16384} \, e^8 + \cdot \cdot \cdot \cdot \bigg) \sin \, 8\phi \\ &\qquad \qquad - \cdot \cdot \cdot \cdot \cdot \bigg] \end{split}$$

Let

$$\begin{split} A_0 &= a(1-e^2) \bigg(1 + \frac{3}{4} e^2 + \frac{45}{64} e^4 + \frac{175}{256} e^6 + \frac{11025}{16384} e^8 + \cdots \bigg) \\ &= 6,367,399.6891 \text{ meters.} \\ A_2 &= a(1-e^2) \bigg(\frac{3}{4} e^2 + \frac{15}{16} e^4 + \frac{525}{512} e^6 + \frac{2205}{2048} e^8 + \cdots \bigg) \\ &= 32,433.8882 \text{ meters.} \\ A_4 &= \frac{1}{2} a \left(1 - e^2 \right) \bigg(\frac{15}{64} e^4 + \frac{105}{256} e^6 + \frac{2205}{4096} e^8 + \cdots \bigg) = 34.4187 \text{ meters.} \\ A_6 &= \frac{1}{3} a (1-e^2) \bigg(\frac{35}{512} e^6 + \frac{315}{2048} e^8 + \cdots \bigg) = 0.0454 \text{ meters.} \\ A_8 &= \frac{1}{4} a (1-e^2) \bigg(\frac{315}{16384} e^8 + \cdots \bigg) = 0.00006 \text{ meters.} \end{split}$$

Then

$$\mathbf{M} = \mathbf{A}_0 \phi - \frac{1}{2} \mathbf{A}_2 \sin 2\phi + \frac{1}{2} \mathbf{A}_4 \sin 4\phi - \frac{1}{2} \mathbf{A}_6 \sin 6\phi + \frac{1}{2} \mathbf{A}_8 \sin 8\phi - \cdots \quad [VI]$$
This expression in which the approximation of the second of the se

This expression, in which ϕ is expressed in radians, gives the length of the arc of the meridian (in meters, if a is taken in meters) from the

Equator to the parallel at latitude ϕ . The length of the arc of the meridian represented by the difference between two values of ϕ is found by taking the difference in the values of M for the two latitudes.

Let M_2 =length of the arc of the meridian from the Equator to latitude ϕ_2 .

 M_1 =length of the arc of the meridian from the Equator to latitude ϕ_1 .

 Δ M = M₂ - M₁ = length of the arc between latitudes ϕ_1 and ϕ_2 . $\phi = \frac{1}{2} (\phi_2 + \phi_1) = \text{mean latitude of the arc.}$

Then

 $\Delta \phi = \phi_2 - \phi_1$

$$\Delta M = A_0 (\phi_2 - \phi_1) - \frac{1}{2} A_2 (\sin 2\phi_2 - \sin 2\phi_1) + \frac{1}{2} A_4 (\sin 4\phi_2 - \sin 4\phi_1) - \frac{1}{2} A_6 (\sin 6\phi_2 - \sin 6\phi_1) + \frac{1}{2} A_8 (\sin 8\phi_2 - \sin 8\phi_1) - \cdots$$

But

$$\sin \alpha - \sin \beta = 2 \cos \frac{1}{2} (\alpha + \beta) \sin \frac{1}{2} (\alpha - \beta)$$

Substituting

 $2 \phi_2$, $4 \phi_2$, etc., for α and $2 \phi_1$, $4 \phi_1$, etc., for β , we have

$$\begin{split} \Delta \mathbf{M} = & \mathbf{A}_0 \; (\phi_2 - \phi_1) - \frac{1}{2} \, \mathbf{A}_2 \bigg[\; 2 \; \cos \frac{1}{2} \; (2 \phi_2 + 2 \phi_1) \; \sin \frac{1}{2} \; (2 \phi_2 - 2 \phi_1) \bigg] \\ & + \frac{1}{2} \, \mathbf{A}_4 \bigg[\; 2 \; \cos \frac{1}{2} \; (4 \phi_2 + 4 \phi_1) \; \sin \frac{1}{2} \; (4 \phi_2 - 4 \phi_1) \bigg] \\ & - \frac{1}{2} \, \mathbf{A}_6 \bigg[\; 2 \; \cos \frac{1}{2} \; (6 \phi_2 + 6 \phi_1) \; \sin \frac{1}{2} \; (6 \phi_2 - 6 \phi_1) \bigg] \\ & + \frac{1}{2} \, \mathbf{A}_8 \bigg[\; 2 \; \cos \frac{1}{2} \; (8 \phi_2 + 8 \phi_1) \; \sin \frac{1}{2} \; (8 \phi_2 - 8 \phi_1) \bigg] \end{split}$$

But,

$$\frac{1}{2}(2\phi_2+2\phi_1)=2\phi$$
, $\frac{1}{2}(4\phi_2+4\phi_1)=4\phi$, etc.

and

$$\frac{1}{2}(2\phi_2-2\phi_1)=\Delta\phi, \ \frac{1}{2}(4\phi_2-4\phi_1)=2 \ \Delta\phi, \text{ etc.}$$

therefore

$$\Delta M = A_0 \Delta \phi - A_2 \cos 2\phi \sin \Delta\phi + A_4 \cos 4\phi \sin 2\Delta\phi - A_6 \cos 6\phi \sin 3\Delta\phi + A_8 \cos 8\phi \sin 4\Delta\phi - \cdots$$
[VII]

In the first term of the formula given above, $\Delta \phi$ is expressed in radians, and the value of A_0 is 6,367,399.6891 meters. If it is desired to use

the formula with $\Delta \phi$ expressed in degrees, minutes, or seconds, values of A_0 must be taken as follows:

$$\begin{split} &A^{\circ}{}_{0} \!=\! \frac{2\pi}{360} A_{0} \!=\! 111,\! 132.0894 \; \mathrm{meters} & \log \!=\! 5.0458394793 \\ &A'{}_{0} \!=\! \frac{2\pi}{21600} A_{0} \!=\! 1,\! 852.2015 \; \mathrm{meters} & \log \!=\! 3.2676882316 \\ &A''{}_{0} \!=\! \frac{2\pi}{1296000} A_{0} \!=\! 30.8700 \; \; \mathrm{meters} & \log \!=\! 1.4895366 \end{split}$$

In computing lengths of arcs of the meridian for the projection tables given in this publication, in which the arcs are taken in terms of minutes, the following formula should be used, the last term containing A_8 being dropped:

$$\Delta M = 1,852.2015\Delta\phi' - 32,433.8882\cos 2\phi\sin \Delta\phi + 34.4187\cos 4\phi\sin 2\Delta\phi - 0.0454\cos 6\phi\sin 3\Delta\phi + \cdots$$
[VIII]

$$\log 1,852.2015 = 3.2676882316$$

$$32,433.8882 = 4.5109990154$$

$$34.4187 = 1.5367944629$$

$$0.0454 = 8.6570559 - 10$$

Arcs of the parallel.—For computations of the length of the arc of the parallel lying between two given meridians of longitude the formulas given below may be used, in which—

 ϕ is the latitude of the parallel, expressed in degrees, minutes, and seconds.

r is the length of the radius of the parallel, expressed in meters.

 ρ_n is the length of the radius of curvature of the section normal to the meridian, expressed in meters.

 λ_1 and λ_2 are the longitudes of the ends of the arc, expressed in degrees, minutes, and seconds.

 $\Delta\lambda = \lambda_2 - \lambda_1$ and is the arc of the parallel expressed in degrees or minutes or seconds, the unit depending on the formula used. If fractional parts of degrees or minutes or seconds are required they must be expressed decimally.

 ΔP is the required length of the arc expressed in meters.

The radius of any parallel is equal to the product of the radius of curvature of the normal section for the same latitude by the cosine of that latitude, as is seen in Figure 2 in the triangle PK'M, in which

$$\cos \phi = \frac{r}{\rho_n}$$
 Therefore

$$r = \rho_n \cos \phi$$

and the entire length of the parallel is

$$2\pi r = 2\pi \rho_n \cos \phi$$

Any arc of the parallel is equal to the entire length of the parallel divided by the number of units in the circumference and multiplied by the number of the same units in the arc. Therefore

$$\Delta P = \frac{2\pi\rho_n \cos \phi}{360} (\Delta \lambda \text{ in degrees})$$

But

$$\rho_{\rm n} = \frac{1}{\text{A arc 1''}}$$

therefore

$$\Delta P = \left(\frac{2\pi}{360 \text{ arc } 1''}\right) \left(\frac{\cos \phi}{A}\right) (\Delta \lambda \text{ in degrees})$$
$$= \left(\frac{20\pi}{\text{arc } 1^{\circ}}\right) \left(\frac{\cos \phi}{A}\right) (\Delta \lambda \text{ in degrees})$$

But

arc
$$1^{\circ} = \frac{\pi}{180}$$
 · and $\frac{20\pi}{\text{arc }1^{\circ}} = \frac{20\pi}{\frac{\pi}{180}} = 3600$

therefore

$$\Delta P \text{ (meters)} = 3600 \frac{\cos \phi}{A} \Delta \lambda \text{ (degrees)}$$

$$= 60 \frac{\cos \phi}{A} \Delta \lambda \text{ (minutes)}$$

$$= \frac{\cos \phi}{A} \Delta \lambda \text{ (seconds)}$$

Rectangular coordinates.—In the polyconic system of map projection each parallel of latitude represented on the map appears as the developed circumference of the base of a right cone tangent to the spheroid along that parallel. Thus the parallel PN (fig. 2) and the arc P_1P_2 (fig. 3) will appear in projection as the arc of a circle PP_1P_2N (fig. 4) whose radius $GP_1=l$ is equal to the slant height of the tangent cone PGN (fig. 2).

In constructing a map projection on this system the meridians and parallels are usually delineated by plotting and joining their points of intersection. The coordinates of these points may be expressed in the following manner (see figs. 3 and 4): For any parallel, as PP₁P₂N, take the origin P₁ at the intersection with the central meridian and let the rectangular axes of Y(P₁G) and of X(P₁Q) be respectively coincident with and perpendicular to this meridian.

Let $\Delta\lambda$ represent the difference of longitude between the central meridian and the next adjacent one; $\Delta P = P_1 P_2$ the arc of the parallel between the central meridian and the next adjacent one; θ the angle

at the apex of the developed tangent cone between the central meridian and the next adjacent one; ϕ the latitude of the parallel, which is also the angle at the apex of the tangent cone between a meridional element of the surface of the cone and its axis; I the slant height of the tangent cone and the radius of the developed parallel; r the radius of the parallel in the plane of the parallel; and ρ_n the radius of curvature at P1 of the cross section of the ellipsoid through the point P1 normal to the central meridian.

Then from Figure 4, in the triangle GP₂S, it is apparent that

$$x = l \sin \theta$$

and in the triangle P1P2S that

$$y = x \tan \frac{\theta}{2}$$

FIGURE 2.—Elements of ellipsoid and tangent

FIGURE 3.-Sector of tangent

Substituting the value of x and remembering that $\sin \theta = 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}$ we have

$$y = 2 l \sin^2 \frac{\theta}{2}$$

From Figure 3, in the triangle GP₁K', it is apparent that

$$l = \rho_n \cot \phi$$

The length of the arc ΔP (fig. 3) is measured by the length of the radius r of the parallel times the central angle $\Delta\lambda$ (in radians), and the same arc is also measured by the length l of the radius of the developed cone times the angle θ (in radians); therefore

$$l\theta = r\Delta\lambda$$

But from Figure 3, in the triangle $P_1K'M$, it is apparent that $r = \rho_n \cos \phi$; therefore

$$\theta = \frac{\rho_{\rm n} \Delta \lambda \cos \phi}{l}$$

Substituting in this the value of l given above, we have

$$\theta = \Delta \lambda \sin \phi$$

Then, substituting in the expressions for x and y the values of l and θ , we have

$$x = \rho_n \cot \phi \sin (\Delta \lambda \sin \phi) = \frac{\cot \phi \sin (\Delta \lambda \sin \phi)}{\Lambda \arctan (1'')}$$
____[X]

$$y=2\rho_n \cot \phi \sin^2 \frac{1}{2} (\Delta \lambda \sin \phi) = \frac{2 \cot \phi \sin^2 \frac{1}{2} (\Delta \lambda \sin \phi)}{A \text{ arc } 1''}$$
 [XI]

FIGURE 4.—Developed cone

In the two formulas given above the expression $\Delta\lambda$ sin ϕ is approximately the convergence of the meridian, and it will give an angle in the same units as are used for $\Delta\lambda$. For example, if $\Delta\lambda$ is taken in radians, degrees, or minutes the angle $(\Delta\lambda \sin \phi)$ will be in radians, degrees, or minutes, respectively. The expression $\sin \phi$ is really a coefficient of $\Delta\lambda$ just as if it were a quantity like 2 or 4.

Log A is given for each minute of latitude from 0° to 72° in Table 28, Geological Survey Bulletin 650, and in Coast and Geodetic Survey Special Publication 8.

Log arc 1'' = 4.6855749 - 10.

The formulas for x and y given above are exact expressions of the coordinates of the point P. But when $\Delta\lambda$ is small substitution for the quantities $\sin(\Delta\lambda \sin \phi)$ and $\sin^2 \frac{1}{2}(\Delta\lambda \sin \phi)$ of the first two

terms of their expansions will yield formulas more convenient to use and at the same time give satisfactory results. These expressions are

$$\sin (\Delta \lambda \sin \phi) = \Delta \lambda \sin \phi - \frac{1}{6} (\Delta \lambda \sin \phi)^3 + \cdots$$

$$\sin^2 \frac{1}{2} (\Delta \lambda \sin \phi) = \frac{1}{4} (\Delta \lambda \sin \phi)^2 - \frac{1}{48} (\Delta \lambda \sin \phi)^4 + \cdots$$

Substituting these values in the formulas for x and y, we have

$$x = \rho_n \cot \phi \ \Delta \lambda \sin \phi - \frac{1}{6} \ \rho_n \cot \phi \ (\Delta \lambda \sin \phi)^3 + \cdots$$

But $\cot \phi \sin \phi = \cos \phi$; therefore

$$x = \rho_n \Delta \lambda \cos \phi - \frac{1}{6} \rho_n \Delta \lambda \cos \phi (\Delta \lambda \sin \phi)^2 + \cdots$$

or

$$x = \rho_n \Delta \lambda \cos \phi \left[1 - \frac{1}{6} (\Delta \lambda \sin \phi)^2 + \cdots \right]$$

But

$$\rho_{\rm n} = \frac{1}{\text{A arc 1''}}$$

therefore

$$x = \frac{\Delta \lambda \cos \phi}{A \operatorname{arc} 1''} \left[1 - \frac{1}{6} (\Delta \lambda \sin \phi)^2 + \cdots \right] - \dots [XII]$$

also

$$y = 2\rho_{n} \cot \phi \frac{1}{4} (\Delta \lambda \sin \phi)^{2} - 2\rho_{n} \cot \phi \frac{1}{48} (\Delta \lambda \sin \phi)^{4} + \cdots$$

$$= \frac{1}{2} \rho_{n} \Delta \lambda^{2} \sin \phi \cos \phi - \frac{1}{24} \rho_{n} \Delta \lambda^{2} \sin \phi \cos \phi (\Delta \lambda \sin \phi)^{2} + \cdots$$

$$= \frac{1}{2} \rho_{n} \Delta \lambda^{2} \sin \phi \cos \phi \left[1 - \frac{1}{12} (\Delta \lambda \sin \phi)^{2} + \cdots \right]$$

But

$$\sin \phi \cos \phi = \frac{1}{2} \sin 2\phi$$
 and $\rho_n = \frac{1}{\text{A arc } 1''}$

therefore

$$y = \frac{\Delta \lambda^2 \sin 2\phi}{4 \text{A} \operatorname{arc} 1''} \left[1 - \frac{1}{12} (\Delta \lambda \sin \phi)^2 + \cdots \right]_{-----} [XIII]$$

In these two formulas for x and y $\Delta\lambda$ is expressed in radians. $\Delta\lambda$ may be taken in seconds, minutes, or degrees by using the following relations:

$$\Delta \lambda^{r} = \Delta \lambda^{\prime\prime} \text{ arc } 1^{\prime\prime}$$

$$\Delta \lambda^{r} = \Delta \lambda^{\prime} \text{ arc } 1^{\prime} = 60 \Delta \lambda^{\prime} \text{ arc } 1^{\prime\prime}$$

$$\Delta \lambda^{r} = \Delta \lambda^{\circ} \text{ arc } 1^{\circ} = 3600 \Delta \lambda^{\circ} \text{ arc } 1^{\prime\prime}$$

and the formulas may be written as follows by substituting in the coefficient the proper value of $\Delta\lambda$ expressed in terms of arc 1", so as to cancel the term arc 1" in the denominator, and by substituting in the series the proper value of $\Delta\lambda$ expressed in terms of arc 1", arc 1', or arco, as the case may require:

$$\begin{aligned} \mathbf{x} &= \frac{\Delta \lambda'' \cos \phi}{A} \left[1 - \frac{1}{6} (\Delta \lambda'' \text{ arc } 1'' \sin \phi)^2 + \cdots \right] \\ \mathbf{y} &= \frac{(\Delta \lambda'')^2 \operatorname{arc } 1'' \sin 2\phi}{4A} \left[1 - \frac{1}{12} (\Delta \lambda'' \operatorname{arc } 1'' \sin \phi)^2 + \cdots \right] \\ \mathbf{x} &= \frac{60\Delta \lambda' \cos \phi}{A} \left[1 - \frac{1}{6} (\Delta \lambda' \operatorname{arc } 1' \sin \phi)^2 + \cdots \right] \\ \mathbf{y} &= \frac{15(\Delta \lambda')^2 \operatorname{arc } 1' \sin 2\phi}{A} \left[1 - \frac{1}{12} (\Delta \lambda' \operatorname{arc } 1' \sin \phi)^2 + \cdots \right] \\ \mathbf{x} &= \frac{3600\Delta \lambda^{\circ} \cos \phi}{A} \left[1 - \frac{1}{6} (\Delta \lambda^{\circ} \operatorname{arc } 1^{\circ} \sin \phi)^2 + \cdots \right] \\ \mathbf{y} &= \frac{900(\Delta \lambda^{\circ})^2 \operatorname{arc } 1^{\circ} \sin 2\phi}{A} \left[1 - \frac{1}{12} (\Delta \lambda^{\circ} \operatorname{arc } 1^{\circ} \sin \phi)^2 + \cdots \right] \\ \mathbf{The constants in these formulas with their logarithms are as follows:} \end{aligned}$$

The constants in these formulas with their logarithms are as follows:

are
$$1'' = 0.0000048481$$
 radian $\log = 4.6855749 - 10$
are $1' = 0.0002908882$ radian $\log = 6.4637262 - 10$
are $1^{\circ} = 0.0174532925$ radian $\log = 8.2418774 - 10$

This group of formulas seems more complex than the formulas for x and y given in X and XI, but the terms are so arranged that their use will be found more convenient in making a large number of computations, especially if the terms within the brackets can be dropped.

Analysis of formulas.—Analysis of the last group of formulas for x will show that for values of Δλ of 1° or less and for latitudes of 60° or less the terms within the brackets can be disregarded with a resulting maximum error of +2.2 meters in the abscissa of the developed parallel. The ordinate of the developed parallel of 45° has the greatest value for the same value of Δλ, and for values of Δλ of 1° or less the terms within the brackets in the formulas for y can be disregarded with a resulting maximum error of +0.007 meter. The following table gives an idea of the errors in the values of x and y resulting from the use of the first term only of these formulas:

	Latitude 25°				Latitude 50°			
Value of Δλ	60′	30′	15'	71/2'	60′	30'	15'	7½'
Errors in x, in meters Errors in y, in meters	+0.915 +.0017	+0.114 +.0001	+0.014 +.0000	+0.002 +.0000	+2. 121 +. 0071	+0. 267 +. 0004	+0.033 +.0000	+0.004 +.0000

Even the maximum error of 2.2 meters on the spheroid can not be plotted on any ordinary map projection; consequently where $\Delta\lambda$ does not exceed 60 minutes it is sufficient to use only the first term in the bracket in any one of the last group of formulas for x and y.

Analysis of the formula for ΔP and of the rigid formula for x shows that for short arcs of the parallel of 30' or less and for latitudes of 50° or less there is very little difference between the actual lengths of the arcs of the parallels and the abscissas of their development, and that either formula may be used for the other. The following table gives an idea of these differences:

Stelve of Al		Latitude 25°		Latitude 50°			
Value of Δλ	30′	15'	7½′	30'	15'	7½′	
Value of ΔP , in metersValue of x, in meters	50, 475. 93 50, 475. 82	25, 237. 96 25, 237. 95	12, 618. 98 12, 618. 98	35, 849. 06 35, 848. 79	17, 924. 53 17, 924. 50	8, 962. 26 8, 962. 26	

CONVERSION DATA

Values in meters on the spheroid can be transformed easily into measurements in inches on any map scale by reducing meters to inches and dividing the result by the scale relation. In the following table the two operations have been combined into one factor, and the table will be found convenient for use in conversion by logarithms or for use by direct multiplication in a computing machine. The tables are based on the United States legal value of 1 meter = 39.37 inches, $\log = 1.5951654$

Scale	Log to be added	Multiplication factor
1:5,000	7. 8966954-10	0, 0078740000
1:10,000	7. 5951654-10	, 0039370000
1:12,000	7. 5159842-10	.0032808333
1:20,000	7. 2941354-10	.0019685000
2 1 20, 000	1,2011001 10	* 0013000000
1:24,000	7, 2149542-10	. 0016404167
1:31,250	7, 1003154-10	. 0012598400
1:31,680	7, 0943802-10	. 0012427399
1:48,000	6. 9139242-10	.0008202083
,		
1:62,500	6. 7992854-10	. 0006299200
1:63,360	6.7933502-10	. 0006213699
1:96,000	6. 6128942-10	. 0004101042
1:125,000	6. 4982554-10	. 0003149600
1:192,000	6. 3118642-10	, 0002050521
1:250,000	6. 1972254-10	. 0001574800
1:500,000	5. 8961954-10	. 0000787400
1:750,000	5. 7201041-10	. 0000524933
1:1,000,000	5. 5951654-10	. 0000393700

Other interesting data concerning scale relations will be found in Tables 40 and 44, Geological Survey Bulletin 650.

CONSTRUCTION OF PROJECTIONS

Different methods of construction .- Polyconic projections may be constructed by hand, by using the instructions and tables published in Coast and Geodetic Survey Special Publication 5, which gives the required values in meters on the surface of the spheroid, or by using the instructions and tables given in this publication with measurements in inches on the map scale desired; or they may be constructed mechanically by means of a Bumstead projection plate. The practice of the Geological Survey indicates preference in the reverse order from that given above. Directions for constructing projections by hand can be given best by means of practical examples, but in general a central meridian is assumed upon which the intersections of the parallels are plotted to scale. Each parallel is then developed separately as an arc of a circle with its center lying in the extension of the central meridian. The arcs of the developed parallels are subdivided to scale, and the meridians are drawn through the corresponding subdivisions. However, in actual practice on projections of small quadrangles the parallels are not drawn as arcs of circles, but their intersections with the meridians are plotted from the computed x and y values, and the sections of the parallels between adjacent meridians are drawn as straight lines. On polyconic projections of quadrangles of 1° or smaller all meridians may be drawn as straight lines, and in large-scale projections of small quadrangles in low latitudes both meridians and parallels may be drawn as straight lines. For example, the curvature of the parallels of a projection of a 15' quadrangle in latitudes from 0° to 25° on a scale of 1:48,000 or for a 71/2' quadrangle in any latitude on a scale of 1:31,680 or larger is so small that it can not be plotted.

The meridional distances given in the tables apply to the central meridian of the projection, but for any standard quadrangle the difference in the curvature of the several parallels is so slight that the distances given for the central meridian can be taken for all other meridians.

Geological Survey method.—For making a polyconic projection by the Geological Survey method it is necessary to have a metal straightedge graduated in inches, with one inch at one end subdivided into hundredths of an inch, the scale being standardized and the straightedge being as long as the longest dimension of the projection; a good rigid-beam compass with micrometer movement; a hard chisel-point pencil; a plotting needle; and the tables in this publication.

To illustrate this method the construction of a polyconic projection on a scale of 1:48,000 of the 15-minute quadrangle lying between north latitudes 40° 15′ and 40° 30′ and between west longitudes 88° 00′ and 88° 15′ is described. (See fig. 5.) The projection will show each 5-minute meridian and parallel. The central meridian of the

projection will represent the meridian of longitude 88° 07½' and will be used for construction only. Likewise the perpendicular crossing the central meridian at latitude 40° 22½' will be used for construction only. The geometry of the construction given below is slightly different from previously established practice, owing principally to an effort to eliminate the plotting of the small ordinates of curvature, which is very difficult in a projection of a small quadrangle.

In Table 2 the group of ordinates and meridional distances computed for latitude 40° may safely be used for all latitudes between 39° 30′ and 40° 30′ without interpolation between the values given and those computed for latitudes 39° and 41°. The meridional distance

FIGURE 5.—Polyconic projection of 15-minute quadrangle

for $2\frac{1}{2}'$ of latitude is found to be 3.796 inches; for 5', 7.588 inches; for $7\frac{1}{2}'$ 11.383 inches; for 10', 15.179 inches; and for 15', 22.766 inches. In the part of the table headed "Abscissas of developed parallel" the x values for $2\frac{1}{2}'$ and $7\frac{1}{2}'$ of longitude in latitude 40° 15' are found to be 2.908 inches and 8.723 inches, respectively. The x values for latitude 40° 20', 40° 22 $\frac{1}{2}'$, 40° 25', and 40° 30' are shown in Figure 5. It should be noted that the measurements given here and on Figure 5 were taken from an old table, and some of them contain small errors in the third decimal place, which have been corrected in Table 2. In the group of ordinates of developed parallel the y value for $7\frac{1}{2}'$ of longitude is found to be 0.006 inch, and for $2\frac{1}{2}'$ of longitude 0.001 inch. These are all the measurements

needed to proceed with the constuction of the projection. It is impossible to plot the y value for 21/2' of longitude and difficult to make an individual plotting of the y value for 71/2' of longitude; but 0.006 can be added to or subtracted from any tabulated length of meridional arcs and the resultant distance measured on the metal scale, and this is done in the following description.

Draw the central construction meridian AB in vertical position near the center of the map; select the mid-point C as the center of the projection, and lay off from C the meridional distances for 21/2' and 7½' of latitude—CE (3.796 inches) and CB' (11.383 inches) above and CD (3.796 inches) and CA'(11.383 inches) below. The over-all distance A'B' (22.766 inches) for 15' of latitude should be used to check the plotting. At the mid-point C erect the perpendicular FG, using the points A' and B' as centers for long arcs and the points D and E as centers for short arcs. Lay off on the construction line FG the abscissas of the developed parallel for 21/2' and 71/2' of longitude for latitude 40° 221/2'—CH and CI (2.902 inches) and CF' and CG' (8.706 inches).

With the points F' and G' as centers and a radius equal to the meridional distance for 71/2' of latitude plus the ordinate for 71/2' of longitude (11.383+0.006=11.389 inches), strike arcs at J and K. Then with the same points as centers and a radius of 11.377 (11.383 - 0.006) strike arcs at L and M. In striking these arcs use the metal point of the beam compass rather than the pencil point, and either scratch the paper lightly or place under the metal point a small piece of carbon paper made by rubbing a piece of thin tracing paper with a hard pencil. This obviates the inaccuracy of using the pencil point of the beam compass to take an exact measurement from the scale.

With the points H and I as centers and a radius equal to the meridional distance for 7½' of latitude (11.383 inches), strike arcs at N and O above and P and Q below. The true meridional distance as here used is generally taken in constructing the inner meridional distance of 71/2' of latitude on a scale of 1:48,000 or larger, as it is impracticable to use the small ordinate for 21/2' of longitude. However, should the more rigid construction be required, it may be done in the following manner: With points H and I as centers and a radius equal to the meridional distance for 71/2' of latitude plus the ordinate for $2\frac{1}{2}$ of longitude (11.383 + 0.001 = 11.384 inches), strike arcs at N and O. Then with the same points as centers and a radius equal to the meridional distance minus the 21/2' ordinate (11.383-0.001 = 11.382 inches), strike arcs at P and Q.

With the points B' and A' as centers and radii equal to the proper abscissas, strike arcs at J, K, L, and M, and also at N, O, P, and Q. Check the length of the diagonals JM and KL, which should be exactly the same. Draw the straight lines JL and KM through the

intersections of the arcs at J, L, K, and M, and the straight lines NP and OQ through the intersections of the arcs at N, P, O, and Q. These lines represent the four meridians on the projection, and although theoretically they are curves concave to the central meridian, yet in practice they can be drawn only as straight lines. The four intersections at the top and the four at the bottom of the projection are the exact intersections of the four meridians with the limiting parallels.

With the beam compass set at the length of the meridional distance for 5' of latitude, plot along all four meridians down from J, N, O, and K and up from L, P, Q, and M, and check the middle 5' sections of the meridians, thus locating the intersections of the four meridians with the parallels 40° 20' and 40° 25'.

All the necessary intersections for the projection of this 15' quadrangle have now been plotted without trying to make an individual plotting of 0.006 inch from the points F' and G', which only the most skilled draftsmen can accomplish, and the same setting of the beam compass has been used for all equal measurements, thereby strengthening the construction.

Check the construction by measuring over-all distances and by testing corresponding diagonals of all combinations of projection blocks.

Although it is customary to show only the 5' intervals on a projection for a 15' quadrangle, it may be desired to develop the central parallel, which, in the projection under construction, would fall on latitude 40° 221/2'. If so, proceed in the following manner: With the beam compass set at the meridional distance for 71/2' and plotting along the meridians down from J and K and checking by plotting up from L and M, locate the points F" and G", which are the intersections of the limiting meridians with the central parallel at latitude 40° 221/2'. The points H and I already determined are the intersections of this parallel with the inner meridians, as no ordinates can be plotted at these intersections. Draw the parallels by drawing straight lines between the plotted intersections, as the curvature of the parallels of any standard quadrangle within the limits of the United States is too small to be drawn as a curve. Letter the latitude and longitude as shown in Figure 5, add the scale, the name of the quadrangle, and the initials or name of the person making the construction, and the projection is completed. It should, however, be checked carefully by another person.

In any projection where the ordinate of a developed parallel at the limiting meridians is less than 0.005 inch it is impracticable to plot the curvature, and the parallels should be represented as straight lines perpendicular to the central meridian. This will be true of projections of maps of standard 15' quadrangles between latitudes 0°

and 25° on the scale of 1:48,000 and of standard 7½' quadrangles in any latitude on scales of 1:31,680 and larger.

Interpolation for other scales.—This bulletin gives tables for all the standard field scales employed by the Geological Survey, but use of other projections may be required, and any table may, with certain limitations, be used for scales half as large or twice as large. abscissas of developed parallels and the meridional distances are both in direct proportion to the scales and practically in proportion to the latitude and longitude intervals, so that the abscissa for 2' of longitude at latitude 40° on the scale of 1:24,000 is the same for 1' of longitude at latitude 40° on the scale of 1:12,000. Likewise the meridional distance given for a latitude interval of 2' on the scale of 1:24,000 is the same for 1' on the scale of 1:12,000.

The ordinates of developed parallels are also directly proportional to the scales, but the ordinates are also proportional to the squares of the distances from the central meridian, which may lead to confusion in interpolation for a different scale. For example: For a longitude interval of 5' in latitude 40° on a scale of 1:24,000 the ordinate of developed parallel is 0.0054 inch. The ordinate is not the same for a longitude interval of $2\frac{1}{2}$ on a scale of 1:12,000 but is 0.027, or one-half as much.

The following rules may develop discrepancies in the third decimal place, but these will be too small to plot: To halve the scale (for example, to make a projection on a scale of 1:48,000 from tables for the scale of 1:24,000), use correct arguments for the scale desired and divide all values given in the table by 2. To double the scale (for example, to make a projection on a scale of 1:12,000 from tables for the scale of 1:24,000), use correct arguments for the scale desired and multiply all values given in the table by 2.

Polyconic projections on scales for which no convenient tables are given with data in inches are best constructed directly from the data given in Coast and Geodetic Survey Special Publication 5, the dimensions in meters on the spheroid being reduced to meters on the map scale and plotted by means of a metric scale. Instructions for making projections by this method are given in Special Publication 5 and also in Geological Survey Bulletin 788-E.

MODIFIED POLYCONIC PROJECTION OF MAP OF THE WORLD ON THE MILLIONTH SCALE

GENERAL SPECIFICATIONS

On November 22, 1909, the International Map Committee adopted uniform specifications for the sheets of the map of the world on a scale of 1:1,000,000. Each sheet of this series of maps covers an area of 4° of latitude by 6° of longitude and is designated by a letter and a number preceded by the word "North" for the northern hemisphere

and by the word "South" for the southern hemisphere. Reckoning from the Equator to the north or to the south, each 4° belt of latitude is designated by a letter—A for the belt from 0° to 4°, B for the belt from 4° to 8°, etc. Reckoning from the international date line at 180° longitude (east or west of Greenwich) each zone of 6° of longitude is designated by a number-1 for the zone from 180° to 174° west longitude, 2 for the zone 174° to 168°, etc., up to 60 for the zone 174° to 180° east longitude. Thus the Boston sheet, covering the area between north latitudes 40° and 44° and between west longitudes 66° and 72°, is designated "North K-19."

The projection adopted for the sheets of this series of maps is a modified polyconic projection so designed as to represent all the meridians as straight lines on the map and to make the average scale error as nearly zero as possible by bringing the top and bottom parallels of the ordinary American polyconic development closer together without alteration, so that the scale will be true along these two parallels and along the meridians 2° east and west of the central meridian. The result is that the scales along the other interior meridians are reduced and the scale along the limiting meridians is enlarged. This arrangement gives four instead of three lines of strength in which the scale is true, and the maximum error in any other line is much less than in the American polyconic projection.

The top and bottom parallels of each sheet are drawn in the usual way, as circles with centers lying in the prolongation of the central meridian, but are actually plotted from the rectangular coordinates of the intersections of the two parallels with the several meridians. These two parallels are therefore subdivided true to scale. Straight lines representing the meridians are then drawn connecting corresponding intersections on the top and bottom parallels.

In the resolutions of the International Map Committee it is not stated how the 4° lengths of the meridians are to be subdivided. United States Coast and Geodetic Survey Special Publication 68 states that "no doubt, an equal division of the central meridian was intended." Arthur R. Hinks, in his admirable treatise "Map projections," states, "it may be supposed that they are divided equally." Antoni Lomnicki, in a paper entitled "Projekcja Miedzynarodowej Mapy Swiata," published at Lwow in 1927, comments as follows: "It has been ascertained that these differences are so insignificant as to be a negligible quantity on a map drawn to a scale of 1/M, a fact which nevertheless should not be omitted in the instructions."

It has been the practice of the United States Geological Survey to compile the sheets in four quarters on the scale of 1:500,000 and to subdivide each meridian in proportion to the correct length of each 1° interval of latitude. Therefore, these new tables have been constructed on that basis.

JOINING OF SHEETS

Any 1° by 6° sheet will join exactly with the four sheets on its margins, but the corner sheets to complete a block of nine will not fit along their two adjacent edges simultaneously; they will fit on one edge, but there will be in theory on the other a small wedge-shaped gap, as is shown in Figure 6. In practice these gaps will be found to be very small, usually less than the average expansion or shrinkage of map paper. The map user will seldom desire to join together exactly more than nine sheets at once. Many objections have been made to the use of this projection because of this difficulty in joining corner sheets and because of distortions in scale, azimuth, and shapes near the east and west limits of the sheets, but there does not seem to be any other projection of sufficiently greater merit to offset the principal advantages of the modified polyconic projection, which are its ease of construction from simple tables and its adaptability to

FIGURE 6.—Junction of sheets of map of the world

small groups of sheets representing areas in any part of the world. Any errors in a single sheet are negligible in view of the limitations of drafting, engraving, and quality of map paper. For example, the maximum error in scale occurs along the east and west meridians of a sheet representing an area between latitudes 0° and 4° and is about 1/1300, or +0.076 per cent; on the scale of 1:1,000,000 this amounts to about one-third of a millimeter in the total height of the sheet. The substitution of the Lambert conformal projection or the Albers conical equal-area projection has been suggested. The writer has investigated the effect of the use of the Lambert conformal projection for the millionth-scale sheets of the area of the United States and finds that, in the area between latitudes 24° and 52°, the Lambert conformal projection would probably be based on two standard parallels at latitudes 29° and 47°. Such a projection would introduce scale errors averaging about +1 per cent in sheets representing areas adjacent to the limiting parallels (24° and 52°) and averaging

-1 per cent in sheets representing areas between latitudes 36° and 40°, although the scale would be correct in sheets for areas along the two standard parallels. Sheets on the modified polyconic projection representing areas between latitudes 24° and 28° introduce maximum scale errors of only 0.06 per cent, and between latitudes 48° and 52° of only 0.03 per cent, which are less than the usual distortion of map paper. Therefore for all practical purposes maps on the modified polyconic projection covering any area in the United States are as true to scale as maps on the Lambert conformal projection for areas along the standard parallels. Surely the necessity of correcting all distance measurements on a sheet by an amount as large as 1 per cent would be a distinct disadvantage. Of course it would be possible to select zones of lesser extent in latitude, even to the extreme case of considering each row of 4° by 6° areas a separate zone, with two standard parallels for each zone, but any of these selections would involve difficulty in joining sheets in adjacent zones, and much confusion would be caused if each country used one or more different

pairs of standard parallels.

The resolutions of the International Map Committee state that "north of latitude 60° N. and south of latitude 60° S. it shall be permissible to join two or more adjoining sheets of the same zone, so that the combined sheet covers 12°, 18°, etc., of longitude." United States Coast and Geodetic Survey Special Publication 68 comments on this statement as follows: "The provisions also fail to state whether, in the sheets covering 12° of longitude instead of 6°, the meridians of true length shall be 4° instead of 2° on each side of the central meridian; but such was no doubt the intention." A. R. Hinks makes a similar statement in his book on map projections. The writer doubts the correctness of this interpretation but thinks that the committee had in mind simply the assemblage of two or more independently constructed sheets in a single map so as to avoid a series of maps of very small width. In other words, he thinks that the committee had in mind a printing and distribution problem rather than a cartographic problem. A row of 4° by 12° sheets would fail to join a row of 4° by 6° sheets immediately to the south by wedges similar to those illustrated in Figure 6, whether the sheets were constructed with 4° or 8° between the standard meridians, but if the interval were 8° the maximum scale error in the northern row would be increased four The Geological Survey has not yet compiled any sheets of the millionth-scale series for areas north of latitude 60°, and it hopes that before it is required to do so the International Map Committee will decide the matter definitely.

DRAWING OF PARALLELS

There has been considerable discussion of the difficulty of drawing the arcs of circles representing the limiting parallels and the curves representing the three interior parallels, which Lomnicki calls shortened epicycloids. The maximum deviation of the curve representing a 1° arc of a parallel from the chord joining the ends of such a curve is in latitude approximately 45°, and on a scale of 1:1.000,000 the maximum ordinate from the mid-point of such a chord to the curve is 0.1 millimeter. It is practically impossible for a draftsman to draw such a curve, as the deviation from a straight line is only about the width of a finely inked line. It is equally impracticable to construct and use a compass bar long enough to draw the arcs of the parallels, requiring for the scale of 1:1,000,000 a radius of about 4 meters for the circle representing the parallel of 60°, one of about 8 meters for the parallel of 40°, and one of over 90 meters for the parallel of 4°. Therefore the United States Geological Survey constructs these parallels by drawing straight lines joining adjacent intersections of the parallels with meridians 1° apart. For arcs of parallels below 50° the deviation from true circles can not be detected even on an engraved copper plate, although theoretically such methods of construction introduce angles at the crossings of the meridians. Such errors on a printed map are less than the usual distortion of map paper. For short arcs of the parallels above 60° it may be practicable to use mechanically constructed curves. As a matter of fact, the Geological Survey compiles the millionth-scale sheets on a scale of 1:500,000 by plotting the intersection of each half degree meridian and parallel, but in publication the engraver constructs a new projection on the copper plate instead of copying photographically the results of the cartographer's compilation.

DESCRIPTION OF TABLES

Table 5 gives the length of each developed meridian and the x and v coordinates of the intersection of each meridian with each of the developed parallels, in meters on the natural scale. To convert these data into map distances on the scale of 1:1,000,000, move the decimal point three places to the left and plot in millimeters. For the scale of 1:500,000 follow the same rule and then double all the Table 6 gives the data in inches on the scale of measurements. 1:1,000,000. Each 1° length of the standard meridians (2° from the central meridian) and the x and y coordinates of the intersections of all three meridians east and west of the center meridian with the upper and lower developed parallels of each sheet (0°, 4°, 8°, 12°, etc.) were computed by the rigid formulas given hereafter in this naper. In making these computations the dimensions of the spheroid given in the proceedings of the International Map Committee at the meeting in London in November, 1909, were used, as follows:

Semimajor axis a = 6,378,240 meters Semiminor axis b = 6,356,560 meters

These dimensions differ slightly from those developed by Col. A. R. Clarke in 1880, which were—

a = 6,378,249 meters b = 6,356,515 meters

After the x and y coordinates of the intersections of each of the meridians with the upper and lower parallels were computed, each 4° length of the central meridian and of the meridians 1° and 3° from the central meridian were computed by simple formulas, as described hereafter in this paper. The length of the shortened central meridian could have been computed directly by the formulas given by M. Ch. Lallemand and the lengths of the other developed meridians could then be computed by applying the simple formulas for the magnification of meridians of the polyconic projection. Each 4° length of these three meridians was then divided into 1° lengths in direct proportion to the true 1° lengths of the meridian as represented by the 1° lengths of the standard meridians 2° from the center. These 4° meridional lengths could be divided into four equal parts, and the errors introduced would be small—for example, in the 1° meridional length between latitudes 43° and 44° the maximum error would be about 30 meters, or 0.03 millimeter on a scale of 1:1,000,000. This difference can not be plotted, but for the purpose of analysis and for large-scale compilations it seemed desirable to calculate the meridional lengths in their true relation. The x and v coordinates for the intersections of the meridians with the three inner parallels were then calculated by subdividing the 4° differences in the values of x and v into 1° units in the same proportion as the 4° lengths of the meridians were subdivided. It would have been sufficient for all practical purposes to divide by 4 the 4° differences in the values of x and y and then add one-fourth, one-half, and threefourths of these quantities to the x and y values for the proper limiting parallel. Moreover, the simple approximate formulas for x and y (with slight modifications) given by Lallemand could have been used without seriously affecting the accuracy of the results.

Lomnicki has suggested that tables for the modified polyconic projection should be computed on the basis of the Hayford spheroid, which probably represents the actual shape of the earth better than

¹ Paris Acad. Sci. Compt. Rend., vol. 153, p. 561, 1911.

any other spheroid yet developed. The dimensions of this spheroid were published by Hayford as follows:

a = 6,378,388 meters b = 6,356,909 meters

The writer has computed the lengths of each 1° meridional arc for the standard meridian 2° from the central meridian between latitudes 40° and 44°, based on the Hayford spheroid, and the table given below permits a comparison of these values with those based on the Clarke spheroid.

Lengths of meridian 2° from central meridian, in meters, natural scale

Latitude	Clarke spheroid, 1880	Hayford spheroid
40°-41° 41°-42° 42°-43° 43°-44° 40°-44°	111, 042, 2 111, 061, 8 111, 081, 5 111, 101, 3 444, 286, 8	111, 047. 4 111, 066. 8 111, 086. 3 111, 105. 9

The difference in the 4° length of the meridian is less than 20 meters on the spheroid, or 0.02 millimeter on a scale of 1:1,000,000. It is apparent that these small differences can not be plotted, but if for any reason the commission should desire to have these tables computed on the basis of the Hayford spheroid, the Geological Survey will be glad to do the work. However, before taking any such action it seems desirable to have comments and criticism on the tables presented herewith, particularly as to their general form. Moreover, it seems desirable to have the commission settle definitely the size of sheets and the arrangement of standard meridians to be used in latitudes above 60°.

METHOD OF CONSTRUCTION OF PROJECTION

If a map of a millionth-scale unit area is to be compiled in a single sheet on a scale of 1:1,000,000, it will not be necessary to plot the x and y coordinates of the interior intersections but only to plot the intersections of each meridian with the upper and lower parallels and then draw the meridians as straight lines and subdivide each one of them either into four equal parts or in proportion to their actual 1° lengths. If the map is to be compiled on a scale much larger than that of publication, it is advisable to plot the x and y coordinates of the intersection of each 1° meridian and parallel, and it may be desirable for the cartographer to construct the intersection of each half degree meridian and parallel.

It is often difficult to plot the small ordinates of the intersections, but it is practicable to add these values to or subtract them from the lengths of the meridional arcs and to construct the projection without making a single individual plotting of a small ordinate. This method involves the initial construction of the abscissa of the central parallel and permits the construction of each intersection, by coordinates, or only the intersections of the meridians with the limiting parallels, as may be desired. The difficulty of constructing abscissas at right angles to the central meridian near the upper and lower edges of the compilation sheet, together with the difficulty of making individual plottings of the small ordinates, seems to warrant the presentation of this method in this paper. In so doing the writer has taken the example of the construction of sheet K-18, embracing the area between latitudes 40° and 44° north and longitudes 72° and 78° west.

The following materials are required: A standard metal scale 1 meter long subdivided throughout in centimeters and with 1 centimeter length at one end subdivided into tenths of millimeters (scales used by the United States Geological Survey accomplish the graduation of millimeters into tenths by means of diagonal scales; see fig. 7); a good rigid-beam compass with micrometer movement; a hard chiselpoint pencil; a plotting needle; and a copy of United States Geological Survey Modified Polyconic Projection Tables.

Make a working diagram of the projection and enter on it from the tables all the dimensions that are needed. (See fig. 8.)

Draw the central meridian AB, representing the meridian of 75° west, near the center of the map sheet; select the middle point C as the center of the projection, and lay off from C the meridional distances for 2° of latitude on the central meridian above and below the central parallel of 42° north; CB' = 222.11 millimeters and CA' = 222.03 millimeters. Subdivide these into 1° lengths, as B'E=111.07 millimeters, CE=111.04 millimeters; check the over-all distance A'B' = 444.14 millimeters. If there is any material difference between the computed lengths of CA' and CB' (more than 0.1 millimeter) lay off for purposes of construction the points A and B about 1 centimeter below and above A' and B', respectively, and exactly equidistant from C. At the point C erect the perpendicular FG, using the points A' and B' (or A and B) as centers of long arcs and the points D and E as centers of short arcs. This line FG is the X axis of the parallel representing latitude 42°. Lay off on the line FG the abscissas (x values) of the developed parallel for 1°, 2°, and 3° of longitude from the central meridian; CJ = CK = 82.80 millimeters, CH = CI =165.59 millimeters, and CF'=CG'=248.36 millimeters.

With the points F' and G' as centers and a radius equal to the

meridional distance between latitudes 42° and 44° along the meridian

3° from the central meridian plus the ordinate (y value) of the developed parallel for latitude 44° at the meridian 3° from the central meridian (222.28+4.36=226.64 millimeters), strike arcs at L and M. Then with the same points as centers and a radius equal to the meridional distance between latitudes 40° and 42° minus the ordinate for 40° (222.20-4.31=217.89 millimeters), strike arcs at N and O. In drawing these arcs use the metal point of the beam compass rather than the pencil point, and either scratch the paper lightly or place under the metal point a small piece of carbon paper made by rubbing a piece of thin tracing paper with a hard pencil. This eliminates the

FIGURE 8.—Construction of modified polyconic projection

inaccuracy of using the pencil point of the beam compass to take an exact measurement from the scale.

Then in a similar manner and with the points H and I and the points J and K as centers and with radii equal to the proper meridional distances plus or minus the corresponding ordinates, as the case may be, strike arcs at P, Q, R, and S and at T, U, V, and W. With the points B' and A' as centers and with radii equal to the proper abscissas strike arcs at L, M, N, and O, at P, Q, R, and S, and at T, U, V, and W. (Note that theoretically these radii should be the chords joining the ends of the developed parallel, but in the maximum curvature of the developed 3° parallel of 60° latitude the difference between the chord

and the abscissa on the scale of 1:1,000,000 is only +0.04 millimeter, which can not be plotted.)

Before proceeding further check the over-all diagonals of the projection LO=MN and if not exactly the same try the diagonals CL=CM and CN=CO so as to locate and correct any inaccuracy of the construction thus far. Draw the developed meridians as straight lines joining L and N, P and R, etc., and draw the developed limiting parallels as straight lines (or smooth curves) joining B' and T, A' and V, etc. This gives all of the projection except the three interior parallels.

With the beam compass set at the length of the developed meridional arc between 42° and 44° for each meridian, plot downward along the meridians from L and M, from P and Q, etc., locating the intersections F'', G'', H', I', etc. Then with the beam compass set at the length of the developed meridional arc between 40° and 42° for each pair of meridians plot upward along the meridians from N and O, from R and S, etc., thus checking the locations of the intersections along the central parallel. In a similar manner locate the intersections of the meridians with the parallels of 41° and 43° by plotting 1° lengths of developed meridian from the extreme parallels and checking from the central parallel. Construct the three central parallels by drawing straight lines between adjacent points of intersection with meridians or by drawing smooth curves through these points.

Add the latitude and longitude designations of each degree intersection along the limiting meridians and parallels. Add the name and number of the sheet, the scale, the type of projection, and the name of the man making the projection and the date on which it was made. These may seem to be matters of minor detail, but the writer has noticed failure to include these data so many times that he ventures to call attention to their importance.

The projection is now completed and has been constructed in an orderly manner, with a minimum number of settings of the beam compass and without making a single individual plotting of any of the small ordinates. The projection should be checked carefully by another cartographer.

THEORY OF THE MODIFIED POLYCONIC PROJECTION

Nomenclature.—The practical cartographer is often confused by the nomenclature relating to map projections, largely because cartographers and mathematicians of different countries use different symbols for the same thing. Except for one or two terms, the writer has used the nomenclature employed by the United States Coast and Geodetic Survey in its recent publications. The symbols used in

developing the theory of the polyconic projection, with their corresponding definitions, are as follows:

a = semimajor axis of the earth or spheroid.

b = semiminor axis of the earth or spheroid.

e = eccentricity of generating ellipse =
$$\sqrt{\frac{a^2 - b^2}{a^2}}$$

$$f = flattening of generating ellipse = \frac{a - b}{a}$$

$$n = constant = \frac{a - b}{a + b}$$

 $\rho_{\rm m}$ = radius of curvature of a meridional section.

 ρ_n = radius of curvature of a section normal to the meridian.

 ϕ = astronomic or geographic latitude of a point on the earth.

 Ψ = geocentric latitude of a point on the earth.

 $\Delta \phi = \text{difference of latitude between two points on the same meridian.}$

λ = longitude of a point on the earth with reference to Greenwich.

 $\Delta\lambda$ = difference of longitude between two points on the same parallel or the angle at the pole between the meridians passing through these points.

 $M = length of arc of a meridian from the Equator to latitude <math>\phi$.

 ΔM = length of arc of a meridian between two parallels.

L=length of an arc of a parallel from the meridian of Greenwich to longitude λ .

 ΔL = length of an arc of a parallel between two meridians.

 θ = angle at the apex of the developed tangent cone between the central meridian and another meridian.

l=slant height of the tangent cone or the radius of the developed parallel.

x = abscissa of any point on a developed parallel with reference to the central meridian.

y = ordinate of any point on a developed parallel with reference to the tangent to that parallel at the central meridian.

Dimensions of the spheroid.—In the modified polyconic projection dimensions of the spheroid differing only slightly from those developed by Clarke in 1880 have been used, as follows:

Radii of curvature.—It is not necessary to compute the radius of curvature of a meridional section, as the meridional arcs are too long to permit the computation of their length by the approximate formula $\Delta M = \rho_m \Delta \phi$. However, in case it is desired to find the values of $\rho_{\rm m}$ the following formula may be used:

$$\rho_{\rm m} = \frac{a(1-e^2)}{(1-e^2 {\sin}^2 \phi)^{\frac{3}{2}}}$$

Values of the radius of curvature of a section normal to the meridian (ρ_n) are needed in the computation of x and y and must be computed for each fourth degree of latitude, 0° , 4° , 8° , etc. Values of ρ_n are used in computing the lengths of the arcs of the parallel, but as the lengths of these arcs are not needed in constructing or checking the projection, it is not necessary to compute the values of ΔL . following formula is used for values of ρ_n :

$$\rho_{n} = \frac{a}{(1 - e^{2} \sin^{2} \phi)^{\frac{1}{2}}}$$

Values of ρ_n and their logarithms for each fourth degree of latitude from 0° to 60° are given in the following table:

Radii and logarithms of radii of curvature of section normal to meridian for each fourth degree of latitude from 0° to 60°

[Values of ρ_n in meters, based on Clarke spheroid of 1880]

Latitude	- ρα	Log pn
0		
0	6, 378, 240, 000	6. 8047008568
4	6, 378, 345, 318	6. 8047080207
8	6, 378, 659, 251	6, 8047294026
12	6, 379, 175, 780	6. 8047645694
16	6, 379, 884. 995.	6, 8048128504
20	6, 380, 773. 276	6, 8048733134
24	6, 381, 823. 547	6, 8049447921
28	6, 383, 015, 586	6, 8050259049
32	6, 384, 326. 402	6. 8051150824
36	6, 385, 730. 701	6. 8052105995
40	6, 387, 201. 280	6, 8053106023
44	6, 388, 709. 631	6. 8054131497
48	6, 390, 226, 444	6. 8055162481
52	6, 391, 722, 180	6, 8056178898 6, 8057160934
56	6, 393, 167, 653	6. 8058089413
60	6, 394, 534. 596	0.0000009413

Order of computations.—The procedure followed in computing the lengths of the meridional arcs and the values of the x and y coordinates is not as simple as for the American polyconic projection, because only the length of the standard meridians and the x and y values of intersections of the meridians with the upper and lower parallels can be computed by the formulas used for the American polyconic projection. Lomnicki, in the publication cited above, gives rigid formulas for computing the x and y coordinates of any point on the map, but these formulas are very intricate, and their

use is not advised. Lallemand, in the paper cited above, gives approximate formulas for the length of the central meridian and for the x and v coordinates of intersections of the meridians with the central parallel. These formulas in their general terms are intricate, and in simplifying them for application to the scale of 1:1,000,000 Lallemand has apparently used the Hayford spheroid rather than the Clarke spheroid of 1880. The writer has attempted to modify these simplified approximate formulas to apply to the Clarke spheroid of 1880 and has given them below, following the formulas used in computing these tables. Lallemand's formula for length of the central meridian (as modified) can be used without introducing serious errors, and the length of the other meridians can be computed with reasonable accuracy by applying simple factors of magnification. The writer has, however, further modified this approximate formula by giving a separate one for each meridian. Lallemand's formulas for x and y (as modified) can be used for the coordinates of the intersections of the meridians with any of the parallels without introducing serious errors on the scale of 1:1,000,000. Besides modifying these to conform to the Clarke spheroid of 1880, the writer has given a separate formula for x for each of the five parallels.

However, it seemed desirable to compute the tables presented herewith as follows: Compute the 1° lengths of the standard meridians 2° from the central meridian on the assumption that these lengths are exactly true to scale; compute the x and y coordinates of each meridian with the two standard (upper and lower) parallels; calculate the 4° meridional lengths for the central meridian and for the meridians 1° and 3° from the central meridian; subdivide these 4° meridional lengths into 1° lengths in the same proportion as the computed 1° lengths of the standard meridian bear to the 4° length of that meridian; and finally calculate the x and y coordinates of the points of intersections of the meridians with the three inner parallels. By orderly tabulation and use of computing machines the task was not difficult. The values were computed to tenths of a meter on the natural scale, which, while far beyond the needs of map projection on a scale of 1:1,000,000, may be useful in making computations on a larger scale.

Lengths of the meridians.—The length of the standard meridians 2° from the central meridian is true to scale, and each 1° length may be computed by the following formula for the American polyconic projection (see VII, p. 13), it being sufficient for all practical purposes to use the first three terms only:

$$\Delta M_2 = A_0 \Delta \phi - A_2 \cos 2\phi \sin \Delta \phi + A_4 \cos 4\phi \sin 2\Delta \phi$$
$$-A_6 \cos 6\phi \sin 3\Delta \phi + \dots$$
 [XVII]

in which

 ΔM_2 = length of arc of the standard meridian, expressed in meters. $\phi = \frac{1}{2}(\phi_2 + \phi_1) = \text{mean latitude of meridianal arc.}$

 $\Delta \phi = (\phi_2 - \phi_1) = \text{arc of standard meridian, expressed in degrees.}$

 $A_0 = 111,132.1753$ meters

 $\log = 5.0458398153$

 $A_2 = 32,519.9882$ meters.

 $\log = 4.5121503781$

 $A_4 = 34.6017$ meters

 $\log = 1.5390974$

 $A_6 = 0.0458$ meters

 $\log = 8.66108 - 10$

FIGURE 9.—Computation of modified polyconic projection tables

The formula given above may of course be used to compute either the 1° or the 4° length of the standard meridian, by using $\Delta \phi = 1$ ° or 4°, respectively.

After the x and y coordinates of the intersections of all the meridians with the upper and lower parallels are computed, the length of the central meridian and of the meridians 1° and 3° from the central meridian may be computed by formulas developed as follows (see fig. 9):

In the right triangle B P2° P2""

$$\Delta Y_2\!=\!\sqrt{(\Delta M_2)^2\!-\!(\Delta X_2)^2}\!=\!\Delta M_2\sqrt{1\!-\!\left(\!\frac{\Delta X_2}{\Delta M_2}\!\right)^2}$$

Expanding the radical as a binomial series into terms which can be handled conveniently, we have

$$\Delta Y_2 \!=\! \Delta M_2 \! \left[1 - \! \frac{1}{2} \! \left(\! \frac{\Delta X_2}{\Delta M_2} \! \right)^{\! 2} \! - \! \frac{1}{8} \! \left(\! \frac{\Delta X_2}{\Delta M_2} \! \right)^{\! 4} \! - \! \cdots \right]$$

but

$$\Delta M_0 = \Delta Y_2 - (y_2'''' - y_2^{\circ});$$

therefore

$$\Delta M_0 = \Delta M_2 \left[1 - \frac{1}{2} \left(\frac{\Delta X_2}{\Delta M_2} \right)^2 - \frac{1}{8} \left(\frac{\Delta X_2}{\Delta M_2} \right)^4 \right] - \left[y_2^{\prime\prime\prime\prime} - y_2^{\circ} \right] - \left[XVIII \right]$$

Similarly,

$$\Delta M_1\!=\!\sqrt{(\Delta Y_1)^2\!+(\Delta X_1)^2}\!=\!\Delta Y_1\sqrt{1\!+\!\!\left(\!\frac{\Delta X_1}{\Delta Y_1}\!\right)^2}$$

or

$$\Delta M_1 = \Delta Y_1 \left[1 + \frac{1}{2} \left(\frac{\Delta X_1}{\Delta Y_1} \right)^2 - \frac{1}{8} \left(\frac{\Delta X_1}{\Delta Y_1} \right)^4 + \cdots \right]_{----} [XIX]$$

This equation can be solved easily by using the relation

$$\Delta Y_1 = \Delta M y_0 + (y_1^{\prime\prime\prime\prime} - y_1^{\circ})$$

Similarly,

$$\Delta M_3\!=\!\sqrt{(\Delta Y_3)^2\!+(\Delta X_3)^2}\!=\!\Delta Y_3\sqrt{1\!+\!\left(\!\frac{\Delta X_3}{\Delta Y_3}\!\right)^{\!2}}$$

or

$$\Delta M_3 = \Delta Y_3 \left[1 + \frac{1}{2} \left(\frac{\Delta X_3}{\Delta Y_3} \right)^2 - \frac{1}{8} \left(\frac{\Delta X_3}{\Delta Y_3} \right)^4 + \cdots \right]_{\text{----}} [XX]$$

This equation can be solved easily by using the relation

$$\Delta Y_3 = \Delta M_0 + (y_3'''' - y_3^{\circ})$$

After the 4° lengths of each meridian are found they may be subdivided into 1° lengths as follows: Take the difference between the 4° length of the standard meridian and the 4° length of each of the other meridians, divide these differences by 4, and subtract the results from or add them to each 1° length of the standard meridian. If the 4° lengths of a meridian are divided into four equal parts, as is the practice of most cartographers, the errors introduced are small; for example, in the belt between latitudes 40° and 41° the maximum error is 30 meters on the spheroid, or 0.03 millimeter on the scale of 1:1,000,000. This difference can not be plotted, but if the sheets are compiled on a larger scale it may be advisable to subdivide the 4° lengths in true proportion.

The 4° lengths of these meridians can be computed in terms of millimeters on the scale of 1:1,000,000 without introducing serious errors by the use of Lallemand's approximate formulas, modified slightly to conform to the Clarke spheroid of 1880 and to the nomenclature used in this paper, as follows:

Length of central meridian.

 $\Delta M_0 = 444.40 \text{ mm.} - 2.35 \text{ mm. } \cos 2 \phi_{-}$ [XXI] Length of meridian 1° from center,

 $\Delta M_1 = 444.45 \text{ mm.} - 2.30 \text{ mm. } \cos 2 \phi_{-----}$ [XXII]

Length of meridian 2° from center.

 $\Delta M_2 = 444.50 \text{ mm.} - 2.25 \text{ mm.} \cos 2 \phi_{-----}$ [XXIII]

Length of meridian 3° from center,

 $\Delta M_2 = 444.70 \text{ mm.} - 2.10 \text{ mm.} \cos 2 \phi_{------}$ [XXIV]

Rectangular coordinates.—In the modified polyconic projection each of the parallels marking the boundaries of zones of 4° of latitude is represented as the base of a right cone tangent to the spheroid along that parallel. Each 4° developed parallel is a circle with center on the prolongation of the central meridian and with radius $l = \rho_n \cot \phi$. and the origin of the rectangular coordinates of each parallel is the point at which the developed parallel intersects the central meridian.

The rectangular coordinates of the intersections of the meridians with the upper and lower parallels are computed in the same way as for the American polyconic projection. The tables presented with this paper were computed by means of the following rigid formulas (see X and XI, p. 17):

$$x = \rho_n \cot \phi \sin (\Delta \lambda \sin \phi)$$
 [XXV]

$$y = 2\rho_n \cot \phi \sin^2 \frac{1}{2} (\Delta \lambda \sin \phi)$$
 [XXVI]

As each meridian on the modified polyconic projection is drawn as a straight line, whereas a true polyconic representation of each meridian except the central one would be a curve, owing to the constantly changing values of convergence, the usual formulas for the x and y coordinates can not be used for the intersections with the interior parallels. For all practical purposes it is sufficient to calculate the values of x and v for the intermediate intersections by dividing by 4 the differences of the x and v values of the intersections of each meridian with the upper and lower parallels, adding one-fourth, one-half, and three-fourths of the x difference to the x value for the upper parallel (or subtracting them from the x value for the lower parallel). and adding one-fourth, one-half, and three-fourths of the y difference to the v value for the lower parallel (or subtracting them from the v value for the upper parallel.) If more accuracy is desired the values of the 4° differences in x and y can be subdivided into 1° units in the same proportion as the 4° lengths of the meridians are subdivided. In this event it is sufficient to use the proportional parts of the standard meridian in subdividing the coordinates of all the meridians, and the following procedure may be used:

Divide each 1° length of the standard meridian by the 4° length of that meridian and multiply the differences of the x and y values of the ends of each of the other 4° meridians by the corresponding decimal fractions thus obtained. Subtract the resulting x increments for the lower 1° interval from the corresponding x values for the lower parallel; then subtract the x increments for the second 1° interval from the x values just obtained for the parallel 1° above the lower parallel, etc. Follow the same procedure with the y values, except that the increments should be added to the y values of the lower parallel. As the decimal fractions vary but slightly from 0.25, the calculations can be simplified by applying one-fourth of the 4° difference \mp the residual of the decimal fraction, as follows:

$$\begin{split} &\frac{\Delta M_2(40°-41°)}{\Delta M_2(40°-44°)} = \frac{111042.242}{444286.870} = 0.24993365 = \frac{1}{4} - 0.00006635 \\ &\frac{\Delta M_2(43°-44°)}{\Delta M_2(40°-44°)} = \frac{111101.271}{444286.870} = 0.25006652 = \frac{1}{4} + 0.00006652 \end{split}$$

In a map unit lying between latitudes 40° and 44° the maximum difference between subdivision of a 4° meridian into four equal parts and subdivision in true proportion is 1.38 meters in the x value and 0.01 meter in the y value of points along the meridian 3° from the central meridian. These differences can not be plotted on a scale of 1:1,000,000 or even on a scale of 1:500,000. However, in the tables presented with this paper the x values have been computed in direct proportion to the correct subdivision of the standard meridian.

Lallemand's approximate formulas for the rectangular coordinates were developed by him for the x and y coordinates of the central parallel of the projection. The writer has modified these formulas somewhat, and as given below they may be used for the x and y coordinates of any of the parallels on a scale of 1:1,000,000 without introducing serious errors. In these modified formulas for x the five coefficients of $\cos \phi$ apply to the five parallels of the projection, the upper coefficient applying to the upper parallel, etc. $\Delta\lambda$ is taken in degrees from the central meridian. Coordinates for $\frac{1}{2}^{\circ}$ intersections may be computed by taking values of $\Delta\lambda = \frac{1}{2}^{\circ}$, 1°, $1\frac{1}{2}^{\circ}$, etc. All values of x and y will be in millimeters on a scale of 1:1,000,000.

$$\mathbf{x}(\text{in millimeters}) = \Delta \lambda \begin{bmatrix} \begin{cases} 111.40 \\ 111.37 \\ 111.33 \\ 111.37 \\ 111.40 \end{bmatrix} \cos \phi - 0.08 \cos 3\phi \end{bmatrix} - [\mathbf{XXVII}]$$

y(in millimeters) = $\Delta \lambda^2 [0.49 \sin 2\phi]_{----} [XXVIII]$

Table 1.—Coordinates for the projection of maps, scale sattor

		Abscissas o	of develope	ed parallel		Ordinates of deve meridiona	loped para l distances	llel and
Latitude of parallel	, ,		ritude inte			Latitude and longi- tude intervals	Merid- ional distance	Ordinate of de- veloped
	5"	10'	15'	20'	30^		distance	parallel
0 00 10 15 20	Inches 3: 804 . 804 . 804 . 804	Inches 7. 609 . 609 . 609	Inches 11.413 .413 .413 .413	Inches 15. 218 . 218 . 218 . 218 . 217	Inches 22. 827 . 826 . 826 . 826	For latitude 0° $\begin{cases} 5\\10\\15\\20 \end{cases}$	Inches 3. 779 7. 557 11. 336 15. 115 18. 893	Inch 0.000 .000 .000 .000 .000
30 40 45 50	3. 804 . 804 . 804 . 804	7. 609 . 608 . 608	11. 413 . 413 . 412 . 412	.15. 217 . 217 . 216 . 216	22. 826 . 825 . 825 . 824	For latitude 0° (20 25 30	18. 893 22. 672 3. 779 7. 557	0.000
1 00 10 15 20	3. 804 . 804 . 804 . 803	7. 608 . 607 . 607 . 607	11, 412 , 411 , 411 , 410	15. 215 . 215 . 214 . 214	22. 823 . 822 . 821 . 820	For latitude 1° 10 15 20 25 30	7. 557 11. 336 15. 115 18. 893 22. 672	.000 .000 .001 .001 .002
30 40 45 50	3, 803 , 803 , 803 , 802	7. 606 . 606 . 605 . 605	11. 409 . 408 . 408 . 407	15. 213 . 211 . 211 . 210	22. 819 . 817 . 816 . 815	For latitude 2° $\begin{cases} 5\\10\\20\end{cases}$	3. 779 7. 557 11. 336	0.000
2 00 10 15 20	3.802 .802 .802 .801	7. 604 . 603 . 603 . 603	11. 407 . 405 . 405 . 404	15. 208 . 207 . 206 . 205	22. 813 . 810 . 809 . 808	20 25 30	15. 115 18. 894 22. 672	.002
30 40 45 50	3.801 .800 .800 .800	7. 602 . 601 . 600 . 600	11. 403 . 401 . 400 . 399	15. 203 . 201 . 200 . 199	22. 805 . 802 . 800 . 799	For latitude 3° { 10 15 20 25 30 }	3, 779 7, 558 11, 336 15, 115 18, 894	0.000 .001 .001 .002 .004
3 00 10 15 20	3. 799 . 799 . 798 . 798	7. 598 . 597 . 597 . 596	11. 398 . 396 . 395 . 394	15. 197 . 195 . 193 . 192	22. 795 . 792 . 790 . 788	[30]	22. 673 3. 779 7. 558	0.000
30 40 45 50	3. 797 . 797 . 796 . 796	7. 595 . 593 . 593 . 592	11. 392 . 390 . 389 . 388	15. 190 . 187 . 185 . 184	22. 784 . 780 . 778 . 776	For latitude 4° \(\begin{array}{c} 15 \\ 20 \\ 25 \\ 30 \end{array}	11. 337	. 002 . 003 . 005 . 007
4 00 10 15 20	3. 795 . 794 . 794 . 794	7. 590 . 589 . 588 . 587	11. 386 . 383 . 382 . 382	15. 181 . 178 . 176 . 174	22. 771 . 767 . 764 . 762	For latitude 5° $\begin{cases} 5\\10\\15\\20 \end{cases}$	11. 337	0,000 .001 .002 .004
30 40 45 50	3. 793 . 792 . 791 . 791	7. 586 . 584 . 583 . 582	11. 378 . 376 . 374 . 373	15. 171 . 168 . 166 . 164	22. 757 . 751 . 749 . 746	25 30	22. 674	.006
5 00 10 15 20	3. 790 . 789 . 789 . 788	7. 580 . 578 . 577 . 576	11. 370 . 367 . 366 . 364	15. 160 . 156 . 154 . 152	22.740 .734 .731 .728	For latitude 6° { 5 10 10 25 20 25 30	7. 558 11. 337 15. 116	0.000 .001 .003 .005 .007
30 40 45 50	3. 787 . 786 . 785 . 785	7. 574 . 572 . 571 . 570	11.361 .358 .356 .355	15. 148 . 144 . 142 . 139	22. 722 . 716 . 712 . 709	[5	3. 779 7. 559	0.000
6 00 10 15 20	3.784 .783 .782 .781	7. 567 . 565 . 564 . 563	11.351 .348 .346 .344	15. 135 . 130 . 128 . 125	22. 702 . 695 . 692 . 688	For latitude 7° { 15 20 25 30	15. 117 18. 896	
30 40 45 50	3. 780 . 779 . 778 . 778	7. 560 . 558 . 556 . 555	11. 340 . 337 . 335 . 333	15. 121 . 115 . 113 . 110	22. 681 . 673 . 669 . 665			
7 00	3. 776	7. 55 2	11. 329	15. 105	22. 658			

		A bscissas	of develop	ed parallel		Ordinates of deve	loped para I distances	llel and
Latitude of parallel		Long	gitude inte	rval		Latitude and longi-	Merid- ional	Ordinate of de-
	5'	10'	15'	20′	30'	tude intervals	distance	veloped parallel
7 00 10 15 20	Inches 3. 776 . 775 . 774 . 774	Inches 7. 552 . 550 . 548 . 547	Inches 11. 329 . 325 . 323 . 321	Inches 15, 105 . 100 . 097 . 094	Inches 22. 658 . 649 . 645	for latitude 7° 10 15 20 25	Inches 3, 779 7, 559 11, 338 15, 117 18, 896	Inch 0.000 .001 .003 .005
30 40 45 50	3. 772 . 771 . 770 . 769	7. 544 . 541 . 540 . 538	11.316 .312 .310 .307	15, 088 . 083 . 080 . 077	22. 633 . 624 . 619 . 615	[30	3. 779 7. 559	0. 000
8 00 10 15 20	3. 768 . 766 . 765 . 765	7. 535 . 532 . 531 . 529	11. 303 . 298 . 296 . 294	15. 071 . 064 . 061 . 058	22. 606 . 597 . 592 . 587	For latitude 8° 10 15 20 25 30	11. 338 15. 118 18. 897 22. 677	.001 .003 .006 .010
30 40 45 50	3. 763 . 761 . 760 . 760	7. 526 . 522 . 521 . 519	11. 289 . 284 . 281 . 279	15. 052 . 045 . 042 . 038	22. 577 . 568 . 563 . 558	5 10 15	3. 780 7. 559 11. 339	0.000 .002 .004
9 00 10 15 20	3. 758 . 756 . 755 . 754	7. 516 . 512 . 511 . 509	11. 274 . 268 . 266 . 263	15. 032 . 025 . 021 . 018	22. 547 . 537 . 532 . 526	For latitude 9° 13 20 25 30	15. 119 18. 898 22. 678	.007 .011 .015
30 40 45 50	3. 753 . 751 . 750 . 749	7. 505 . 502 . 500 . 498	11, 258 . 252 . 249 . 247	15. 010 . 003 . 14. 999 . 996	22. 516 . 505 . 499 . 493	For latitude 10° $\begin{cases} 5\\10\\15\\20\\25 \end{cases}$	3. 780 7. 560 11. 340 15. 119 18. 899	0.000 .002 .004 .008
10 00 10 15 20	3. 747 . 745 . 744 . 743	7. 494 . 490 . 488 . 486	11. 241 . 235 . 232 . 229	14. 988 . 980 . 976 . 973	22. 482 . 470 . 465 . 459	[30]	3. 780 7. 560	0. 001
30 40 45 50	3. 741 . 739 . 738 . 737	7. 482 . 478 . 476 . 474	11. 223 . 217 . 214 . 211	14.965 .956 .952 .948	22. 447 . 435 . 429 . 422	For latitude 11° 15 20 25 30	11. 340 15. 120 18. 901 22. 681	.002 .005 .008 .013
11 00 10 15 20	3. 735 . 733 . 732 . 731	7. 470 . 466 . 464 . 461	11. 205 . 199 . 195 . 192	14. 940 . 931 . 927 . 923	22. 410 . 397 . 391 . 384	For latitude 12° $\begin{cases} 5\\10\\10 \end{cases}$	3. 780 7. 561 11. 341	0.001 .002 .005
30 40 45 50	3. 729 . 726 . 725 . 724	7.457 .453 .450 .448	11. 186 . 179 . 176 . 172	14.914 .905 .901 .896	22. 371 . 358 . 351 . 345	20 25 30	15. 122 18. 902 22. 682	. 009 . 014 . 020
12 00 10 15 20	3. 722 . 720 . 718 . 717	7. 444 . 439 . 437 . 434	11. 165 . 159 . 155 . 152	14. 887 . 878 . 873 . 869	22, 331 . 317 . 310 . 303	For latitude 13° $\begin{bmatrix} 5 \\ 10 \\ 15 \\ 20 \\ 25 \end{bmatrix}$	3, 781 7, 561 11, 342 15, 123 18, 903	0, 001 . 002 . 005 . 010 . 015
30 40 45 50	3. 715 . 712 . 711 . 710	7. 430 . 425 . 422 . 420	11. 145 . 137 . 134 . 130	14. 859 . 850 . 845 . 840	22. 289 . 275 . 267 . 260	(30	22, 684 3, 781	0.001
13 00 10 15 20	3. 708 . 705 . 704 . 703	7.415 .410 .408 .405	11. 123 . 115 . 111 . 108	14. 830 . 820 . 815 . 810	22. 245 . 230 . 223 . 215	For latitude 14° 15 20 25 30	7. 562 11. 343 15. 124 18. 905 22. 686	. 003 . 006 . 010 . 016 . 028
30 40 45 50	3.700 .697 .696 .695	7. 400 . 395 . 392 . 390	11, 100 .092 .088 .084	14. 800 . 790 . 784 . 779	22. 200 . 184 . 177 . 169			1
14 00	3. 692	7. 384	11.077	14. 769	22, 153			

Table 1.—Coordinates for the projection of maps, scale 95000 —Continued

		Abscissas	of develop	ed paralle	L	Ordinates of deve	loped para d distances	allel and
Latitude of parallel	1 (1)	Lon	gitude inte	erval		Latitude and longi-	Merid-	Ordinate of de-
	5"	10′	15'	20′	30'	tude intervals	distance	veloped parallel
14 00 10 15 20	Inches 3, 692 689 688 . 687	Inches 7.384 .379 .376 .374	Inches 11. 077 . 068 . 064 . 060	Inches 14. 769 . 758 . 752 . 747	Inches 22, 153 . 137 . 129 . 121	For latitude 14° 20	Inches 3. 781 7. 562 11. 343 15. 124	Inch 0.001 .003 .006 .010
30 40 45 50	8. 684 . 681 . 680 . 678	7. 368 . 363 . 360 . 357	11. 052 . 044 . 040 . 035	14. 736 . 725 . 719 . 714	22. 104 . 088 . 079 . 071	25 30	18. 905 22. 686 3. 781	0.001
15 00 10 15 20	3. 676 . 673 . 671 . 670	7. 351 . 346 . 343 . 340	11. 027 . 018 . 014 . 010	14. 702 . 691 . 685 . 679	22, 054 . 037 . 028 . 019	For latitude 15° 10 15 20 25 30	7. 563 11. 344 15. 125 18. 907 22. 688	.003 .006 .011 .017 .025
30 40 45 50	3. 667 . 664 . 662 . 661	7. 334 . 328 . 325 . 322	11. 001 10. 992 . 987 . 983	14. 668 . 656 . 650 . 644	22. 002 21. 984 . 975 . 966	5 10 15 15 15 15 15 15 15 15 15 15 15 15 15	3. 782 7. 563 11. 345	0. 001 . 003 . 007
16 00 10 15 20	3. 658 . 655 . 653 . 652	7.316 .310 .307 .304	10. 974 . 965 . 960 . 956	14. 632 . 620 . 614 . 607	21, 948 . 930 . 920 . 911	For latitude 16° {20 25 30	15. 127 18. 908 22. 690	. 012 . 018 . 026
30 40 45 50	3. 649 . 646 . 644 . 642	7. 297 . 291 . 288 . 285	10. 946 . 937 . 932 . 927	14. 595 . 582 . 576 . 570	21, 893 . 874 . 864 . 855	For latitude 17° $\begin{cases} 5\\10\\15\\20\\25 \end{cases}$	3, 782 7, 564 11, 346 15, 128 18, 910	0.001 .003 .007 .012 .019
17 00 10 15 20	3. 639 . 636 . 634 . 633	7. 278 . 272 . 269 . 265	10, 918 . 908 . 903 . 898	14. 557 . 544 . 538 . 531	21. 835 . 816 . 806 . 796	(30	3. 782	0,001
30 40 45 50	3. 629 . 626 . 624 . 623	7. 259 . 252 . 249 . 246	10. 888 . 878 . 873 . 868	14. 518 . 505 . 498 . 491	21. 777 . 757 . 747 . 737	For latitude 18° \biggle{\biggle{15}} \biggle{15} 20 \\ 25 \\ 30 \end{array}	7. 565 11. 347 15. 130 18. 912 22. 694	. 003 . 007 . 013 . 020 . 029
18 00 10 15 20	3. 619 . 616 . 614 . 613	7. 239 . 232 . 228 . 225	10. 858 . 848 . 843 . 838	14. 478 . 464 . 457 . 450	21. 716 . 696 . 686 . 675	For latitude 19° $\begin{cases} 5\\10\\15\\20 \end{cases}$	3. 783 7. 566 11. 348	0, 001 . 003 . 008
30 40 45 50	3. 609 . 606 . 604 . 602	7. 218 . 211 . 208 . 204	10. 827 . 817 . 811 . 806	14. 436 . 422 . 415 . 408	21. 654 . 633 . 623 . 612	For latitude 19 20 25 30	15. 131 18. 914 22. 697	.014 .021 .031
19 00 10 15 20	3. 598 . 595 . 593 . 591	7. 197 . 190 . 186 . 182	10. 795 . 785 . 779 . 774	14. 394 . 379 . 372 . 365	21. 591 . 569 . 558 . 547	For latitude 20° $\begin{cases} 5\\10\\15\\20\\25 \end{cases}$	3, 783 7, 566 11, 350 15, 133 18, 916	0.001 .004 .008 .014 .022
30 40 45 50	3. 588 . 584 . 582 . 580	7. 175 . 168 . 164 . 160	10. 763 . 752 . 746 . 741	14. 350 . 335 . 328 . 321	21. 525 . 503 . 492 . 481	\[\begin{align*} \be	3. 784 7. 567	0. 001 . 004
20 00 • 10 • 15 20	3. 576 . 573 . 571 . 569	7. 153 . 145 . 141 . 138	10. 729 . 718 . 712 . 706	14. 306 . 290 . 283 . 275	21. 458 . 436 . 424 . 413	For latitude 21° { 15 20 25 30 }	11. 351 15. 135 18. 919 22. 702	. 008 . 015 . 023 . 033
30 40 45 50	3. 565 . 561 . 559 . 557	7. 130 . 122 . 118 . 114	10. 695 . 683 . 678 . 672	14. 260 . 244 . 237 . 229	21. 390 . 367 . 355 . 343	Company of the Compan		
21 00	3. 553	7. 107	10. 660	14. 213	21, 320			

Table 1.—Coordinates for the projection of maps, scale velocity—Continued

			Abscissas	of develope	ed parallel		Ordinates of de meridio		ped para distances	
Latitu of parall	- }		Lon	gitude inte	rval	,	Latitude and long		Merid- ional	Ordinat of de- veloped
		5'	10'	15'	20′	30′	V640 12100 F640	_	distance	parallel
° 21	, 00 10 15 20	Inches 3. 553 . 549 . 547 . 545	Inches 7. 107 . 099 . 095 . 091	Inches 10. 660 . 648 . 642 . 636	Inches 14. 213 . 197 . 189 . 181	Inches 21, 320 . 296 . 284 . 272	71 - 1 - 4/4 - 1 - 010	5 10 15 20 25	Inches 3. 784 7. 567 11. 351 15. 135 18. 919	Inch 0, 00 0, 00 0, 00 0, 00
	30 40 45 50	3. 541 . 537 . 535 . 533	7. 083 . 075 . 070 . 066	10. 624 . 612 . 606 . 600	14. 165 . 149 . 141 . 133	21. 248 . 224 . 211 . 199		5	3. 704	0.0
22	00 10 15 20	3. 529 . 525 . 523 . 521	7. 058 . 050 . 046 . 042	10. 587 . 575 . 569 . 562	14. 116 . 100 . 091 . 083	21. 174 . 150 . 137 . 125	For latitude 22°	10 15 20 25 30	7. 568 11. 352 15. 137 18. 921 22. 705	.0 .0 .0
	30 40 45 50	3. 517 . 512 . 510 . 508	7. 033 . 025 . 020 . 016	10. 550 . 537 . 531 . 524	14. 066 . 049 . 041 . 032	21. 099 . 074 . 061 . 049		5 10	3. 785 7. 569 11. 354	0.0
23	00 10 15 20	3. 504 . 499 . 497 . 495	7. 008 6. 999 . 995 . 990	10. 511 . 498 . 492 . 485	14. 015 13. 998 . 989 . 981	21. 023 20. 997 . 984 . 971	FOR latitude 25	20 25 30	15. 138 18. 923 22. 708	.0
	30 40 45 50	3, 491 . 486 . 484 . 482	6. 982 973 968 964	10. 472 . 459 . 452 . 446	13. 963 . 945 . 937 . 928	20. 945 . 918 . 905 . 892	For latitude 24°	5 10 15 20 25	3. 785 7. 570 11. 355 15. 140 18. 926	0.0
24	00 10 15 20	3. 477 . 473 . 471 . 468	6. 955 . 946 . 941 . 937	10. 432 . 419 . 412 . 405	13. 910 . 892 . 883 . 874	20. 865 . 838 . 824 . 811	. (8	5	3, 786	
	30 40 45 50	3. 464 . 459 . 457 . 455	6. 928 . 919 . 914 . 909	10. 392 . 378 . 371 . 364	13. 856 . 837 . 828 . 819	20. 783 . 756 . 742 . 728	For latitude 25°	10 15 20 25 30	7. 571 11. 357 15. 142 18. 928 22. 714	
25	00 10 15 20	3. 450 . 445 . 443 . 441	6. 900 . 891 . 886 . 881	10. 350 . 336 . 329 . 322	13. 800 . 782 . 772 . 763	20. 700 . 672 . 658 . 644	7 2 44 2 000 1	5 10 15	3. 786 7. 572 11. 358	0.0
	30 40 45 50	3. 436 . 431 . 429 . 426	6, 872 . 862 . 858 . 853	10, 308 . 294 . 286 . 279	13. 744 . 725 . 715 . 706	20. 616 . 587 . 573 . 559	1	20 25 30	15. 144 18. 930 22. 716	.0
26	00 10 15 20	3. 422 . 417 . 414 . 412	6. 843 . 834 . 829 . 824	10. 265 . 250 . 243 . 236	13. 686 . 667 . 657 . 648	20. 530 . 501 . 486 . 471	Wan ladden da 070	5 10 15 20 25 30	3. 787 7. 573 11. 360 15. 147	0.0
	30 40 45 50	3. 407 . 402 . 400 . 397	6. 814 . 804 . 799 . 794	10. 221 . 206 . 199 . 191	13. 628 . 608 . 598 . 588	20. 442 . 412 . 398 . 383		5	18. 934 22. 720 3. 787 7. 574	.0.0
27	00 10 15 20	3. 392 . 387 . 385 . 382	6. 784 . 774 . 769 . 764	10. 176 . 161 . 154 . 146	13. 569 . 548 . 538 . 528	20. 353 . 323 . 308 . 292	For latitude 28°	10 15 20 25 30	7. 574 11. 362 15. 149 18. 936 22. 724	0.0 0.0 0.0
	30 40 45 50	3. 377 . 372 . 369 . 367	6. 754 . 744 . 739 . 734	10, 131 . 116 . 108 . 100	13, 508 . 488 . 477 . 467	20. 262 . 231 . 216 . 201		T		
28	00	3 . 362	6. 723	10. 085	13. 446	20. 170				

Table 1.—Coordinates for the projection of maps, scale 36000—Continued

		Abscissas o	f develope	d parallel		Ordinates of development	loped para l distances	
Latitude of parallel	,	Long	itude inte	rval		Latitude and longi-	Merid- ional	Ordinate of de-
	5'	10'	15'	20'	30'	tude intervals	distance	veloped parallel
28 00 10 15 20	Inches 3. 362 . 356 . 354 . 351	Inches 6. 723 . 713 . 708 . 702	Inches 10. 085 . 069 . 061 . 054	Inches 13. 446 . 426 . 415 . 405	Inches 20, 170 , 139 , 123 , 107	For latitude 28° $\begin{cases} 5 \\ 10 \\ 15 \\ 20 \end{cases}$	Inches 3. 787 7. 574 11. 362 15. 149	Inch 0, 001 . 005 . 010 . 018
30 40 45 50	3. 346 . 341 . 338 . 335	6. 692 . 681 . 676 . 671	10. 038 . 022 . 014 10. 006	13. 384 . 363 . 352 . 342	20. 076 . 044 . 028 20. 012	25 30	18. 936 22. 724 3. 788	0. 001
29 00 10 15 20	3. 330 . 325 . 322 . 319	6. 660 . 649 . 644 . 639	9, 990 . 974 . 966 . 958	13. 320 . 299 . 288 . 277	19. 980 . 948 . 932 . 916	For latitude 29° 25 30	7. 576 11. 363 15. 151 18. 939 22. 727	. 005 . 011 . 019 . 029 . 042
30 40 45 50	3. 314 . 308 . 306 . 303	6. 628 . 617 . 611 . 606	9. 942 . 925 . 917 . 909	13. 256 . 234 . 223 . 212	19. 884 . 851 . 835 . 818	For latitude 30° $\begin{cases} 5\\10\\15\\20 \end{cases}$	3. 788 7. 577 11. 365	0. 001 . 008 . 011
30 00 10 15 20	3. 298 . 292 . 289 . 286	6. 595 . 584 . 578 . 573	9. 893 . 876 . 868 . 859	13. 190 . 168 . 157 . 146	19. 785 . 752 . 735 . 719	20 25 30	15. 154 18. 942 22. 781	.019
30 40 45 50	3. 281 . 275 . 272 . 270	6. 562 . 551 . 545 . 539	9. 843 . 826 . 817 . 809	13. 123 . 101 . 090 . 078	19. 685 . 652 . 635 . 618	For latitude 31° $\begin{bmatrix} 5 \\ 10 \\ 15 \\ 20 \\ 25 \end{bmatrix}$	3. 789 7. 578 11. 367 15. 156 18. 945	0.00 .00 .01 .02
31 00 10 15 20	3. 264 . 258 . 255 . 253	6. 528 . 517 . 511 . 505	9. 792 . 775 . 766 . 758	13. 056 . 033 . 022 13. 010	19. 584 . 550 . 532 . 515	[30]	3. 789 7. 579	0.00
30 40 45 50	3. 247 . 241 . 238 . 235	6. 494 . 482 . 476 . 470	9, 740 . 723 . 714 . 706	12. 987 . 964 . 953 . 941	19. 481 . 446 . 429 . 411	For latitude 32° \(\begin{pmatrix} 15 \\ 20 \\ 25 \\ 30 \end{pmatrix}	11. 369	.01
32 00 10 15 20	3. 229 . 224 . 221 . 218	6. 459 . 447 . 441 . 435	9. 688 - 671 - 662 - 653	12. 918 . 894 . 882 . 871	19. 376 . 341 . 324 . 307	For latitude 33° $\begin{cases} 5\\10\\15\\20 \end{cases}$	11. 370	0.00 .00 .01
30 40 45 50	3. 212 . 206 . 203 . 200	6. 424 . 412 . 406 . 400	9. 635 . 617 . 608 . 600	12.847 .823 .811 .799	19. 271 . 235 . 217 . 199	20 25 30	22.741	. 03
33 00 10 15 20	3: 194 . 188 . 185 . 182	6.388 .376 .370 .364	9. 582 . 564 . 554 . 545	12.775 .751 .739 .727	19. 163 . 127 . 109 . 091	For latitude 34° \(\begin{cases} 5 \\ 10 \\ 25 \\ 25 \\ 30 \end{cases} \]	7. 582 11. 372 15. 163	0.00
30 40 45 50	3. 176 . 170 . 167 . 164	6, 351 . 339 . 333 . 327	9. 527 . 509 . 500 . 491	12.703 .679 .666 .654	19. 054 19. 018 18. 999 . 981	[5	3. 791 7. 583	0.00
34 00 10 15 20	3. 157 . 151 . 148 . 145	6. 315 . 302 . 296 . 290	9. 472 . 453 . 444 . 435	12. 629 . 605 . 592 . 580	18. 944 . 907 . 888 870	For latitude 35° { 15 20 25 30	11. 374 15. 166 18. 957	.01
30 40 45 50	3. 139 , 132 , 129 , 126	6. 277 . 265 . 259 . 252	9. 416 . 397 . 388 . 379	12, 555 . 530 . 517 . 505	18. 832 . 795 . 776 . 757			
35 00	3. 120	6. 240	9. 360	12. 480	18. 719			

Table 1.—Coordinates for the projection of maps, scale 96000—Continued

		Abscissas	of develop	ed parallel		Ordinates of deve	loped para l distances	
Latitude of parallel		Lon	gitude inte	erval	1	Latitude and longi-	Merid- ional	Ordinate of de-
	5'	10′	15'	20'	30′	tude intervals	distance	veloped parallel
35 00 10 15 20	Inches 3. 120 . 114 . 110 . 107	Inches 6. 240 . 227 . 221 . 214	Inches 9.360 .341 .331 .321	Inches 12.480 .454 .441 .429	Inches 18. 719 . 681 . 662 . 643	For latitude 35° $\begin{cases} 5\\10\\15\\20\\20 \end{cases}$	Inches 3. 791 7. 583 11. 374 15. 166	Inch 0.001 .005 .012 .021
30 40 45 50	3. 101 . 094 . 091 . 088	6. 202 . 189 . 182 . 176	9. 302 . 283 . 273 . 264	12. 403 . 377 . 365 . 352	18. 605 . 566 . 547 . 528	25 30	18. 957 22. 749 3. 792 7. 584	0.001
36 00 10 15 20	3. 081 . 075 . 072 . 068	6. 163 . 150 . 143 . 137	9. 244 . 225 . 215 . 205	12. 326 . 300 . 287 . 274	18. 489 . 450 430 . 411	For latitude 36° { 10 15 20 25 30	7. 584 11. 376 15. 168 18. 961 22. 752	. 005 . 012 . 021 . 033 . 047
30 40 45 50	3. 062 . 055 . 052 . 049	6. 124 . 111 . 104 . 097	9. 186 . 166 . 156 . 146	12. 248 . 221 . 208 . 195	18. 371 . 332 . 312 . 292	5 10 15	3. 793 7. 585 11. 378	0. 001 . 005 . 012
37 00 10 15 20	3. 042 . 035 . 032 . 029	6. 084 . 071 . 064 . 057	9. 126 . 106 . 096 . 086	12. 168 . 142 . 128 . 115	18. 252 . 213 . 193 . 172	For latitude 37° { 10 20 25 30 }	15. 171 18. 964 22. 757	.021
30 40 45 50	3. 022 . 015 . 012 . 009	6. 044 . 031 . 024 . 017	9. 066 . 046 . 036 . 026	12. 088 . 061 . 048 . 034	18. 132 . 092 . 072 . 051	For latitude 38° { 5 10 15 20 25 }	3. 793 7. 587 11. 380 15. 173 18. 967	0.001 .005 .012 .021
38 00 10 15 20	3, 002 2, 995 , 992 , 988	6. 004 5. 990 . 983 . 976	9. 005 8. 985 . 975 . 964	12, 007 11, 980 . 996 . 953	18. 011 17. 970 . 949 . 929	(30.	22. 761 3. 794	0.001
30 40 45 50	2. 982 . 974 . 971 . 968	5. 963 . 949 . 942 . 935	8. 944 . 923 . 913 . 903	11. 925 . 898 . 884 . 870	17. 888 . 816 . 826 . 805	For latitude 39° 15 20 25 30	7. 588 11. 382 15. 176 18. 970 22. 765	. 005 . 012 . 022 . 034 . 049
39 00 10 15 20	2. 961 . 954 . 950 . 947	5. 921 . 907 . 900 . 893	8. 882 . 861 . 850 . 840	11. 842 . 814 . 800 . 786	17. 763 . 722 . 701 . 680	For latitude 400 15	3. 795 7. 589 11. 384	0. 001 . 005 . 012
30 40 45 50	2. 940 . 933 . 929 . 926	5. 879 . 865 . 858 . 851	8. 819 . 798 . 787 . 777	11. 758 . 730 . 716 . 702	17. 638 . 595 . 574 . 553	For latitude 40° 15 20 25 30	15. 179 18. 974 22. 768	. 022 . 034 . 049
40 00 10 15 20	2. 918 . 911 . 908 . 904	5.837 .823 .816 .808	8. 755 . 734 . 723 . 713	11. 674 . 645 . 631 . 617	17. 511 . 468 . 447 425	For latitude 41° { 5 10 15 20 25 30 }	3. 795 7. 591 11. 386 15. 181	. 0. 001 . 005 . 012 . 022
30 40 45 50	2. 897 . 890 . 886 . 883	5. 794 . 780 . 773 . 765	8. 691 . 670 . 659 . 648	11. 588 . 559 . 545 . 581	17. 382 . 339 . 318 . 296	1.5	18. 977 22. 772 3. 796	0.001
41 00 10 15 20	2. 875 . 868 . 864 . 861	5. 751 . 736 . 729 . 722	8. 626 . 605 . 594 . 583	11. 502 . 473 . 458 . 444	17. 253 . 209 . 187 . 165	For latitude 42° 15 20 25 30	7. 592 11. 388 15. 184 18. 980 22. 776	.005 .012 .022 .034 .050
30 40 45 50	2. 854 . 846 . 843 . 839	5. 707 . 692 . 685 . 678	8. 561 . 539 . 528 . 517	11. 414 . 385 . 370 . 356	17. 122 . 078 . 056 . 033	An and the second secon		
42 00	2. 832	5. 663	8. 495	11. 326	16. 989			

Table 1.—Coordinates for the projection of maps, scale 96000—Continued

		Abscissas o	of develope	ed parallel	ı' - ,	Ordinates of deve meridiona	loped para l distances	illel and
Latitude of parallel	11.2	Long	gitude inte	rval		Latitude and longi-	Merid-	Ordinate of de-
	5′	10'	15'	20′	30′	tude intervals	distance	veloped parallel
42 00 10 15 20	Inches 2. 832 . 824 . 820 . 817	Inches 5. 663 648 641 633	Inches 8. 495 . 472 . 461 . 450	Inches 11. 326 . 297 . 282 . 267	Inches 16. 989 . 945 . 923 . 900	For latitude 42° 15 20 25	Inches 3. 796 7. 592 11. 388 15. 184	Inch 0.001 .005 .012 .022
30 40 45 50	. 2, 809 . 802 . 798 . 794	5. 619 . 604 . 596 . 589	8. 428 . 405 . 394 . 383	11, 237 , 207 , 192 , 177	16. 856 . 811 . 788 . 766	(30	18. 980 22. 776 3. 797	.034
43 00 10 15 20	2. 787 . 779 . 775 . 772	5. 574 . 558 . 551 . 543	8. 360 . 338 . 326 . 315	11. 147 . 117 . 102 . 087	16. 721 . 675 . 653	For latitude 43° 10 15 20 25 30	7. 593 11. 390 15. 187 18. 984 22. 781	.006 .012 .022 .035 .050
30 40 45 50	2, 764 . 756 . 753 . 749	5. 528 . 513 . 505 . 498	8. 292 . 269 . 258 . 246	11. 056 . 026 11. 011 10. 995	16. 584 . 539 . 516 . 493	5 10 15	3, 797 7, 595 11, 392	0.001 .006 .012
44 00 10 15 20	2. 741 . 733 . 730 . 726	5. 482 . 467 . 459 . 452	8. 223 . 200 . 189 . 177	10. 965 . 334 . 918 . 903	16. 447 . 401 . 378 . 355	For latitude 44° \(\begin{pmatrix} 15 \\ 20 \\ 25 \\ 30 \end{pmatrix}	15. 189 18. 987 22. 785	. 022 . 035 . 050
30 40 45 50	2. 718 . 710 . 706 . 703	5. 436 . 421 . 413 . 405	8. 154 . 131 . 119 . 108	10. 872 . 841 . 826 . 810	16. 308 . 262 . 238 . 215	For latitude 45° $\begin{cases} 5\\10\\15\\20\\25 \end{cases}$	3. 798 7. 596 11. 394 15. 192 18. 990	0.001 .006 .012 .022 .035
45 00 10 15 20	2. 695 . 687 . 683 . 679	5.389 .374 .366 .358	8. 084 . 061 . 049 . 037	10.779 .747 .732 .716	16, 168 , 121 , 098 , 074	130	3. 799 7. 597	0.001
30 40 45 50	2. 671 . 663 . 659 . 655	5.342 .327 .319 .311	8. 014 7. 990 . 978 . 966	10. 685 . 653 . 637 . 621	16. 027 15. 980 . 956 . 932	For latitude 46° 15 20 25 30	11. 396 15. 195 18. 994 22. 793	. 006 . 012 . 022 . 035 . 050
46 00 10 15 20	2. 647 . 639 . 635 . 631	5. 295 . 279 . 271 . 263	7. 942 . 918 . 906 . 894	10, 590 . 558 . 542 . 526	15. 884 . 837 . 813 . 789	For latitude 47° $\begin{cases} 5\\10\\15\\20 \end{cases}$	3. 799 7. 599 11. 398	0.001 .006 .012
30 40 45 50	2. 623 . 615 . 611 . 607	5. 247 . 231 . 223 . 215	7. 870 . 846 . 834 . 822	10. 494 . 462 . 446 . 430	15, 741 . 693 . 669 . 644	20 25 30	15. 198 18. 997 22. 797	. 022 . 035 . 050
47 00 10 15 20	2, 599 . 591 . 587 . 583	5. 199 . 182 . 174 . 166	7. 798 . 774 . 762 . 749	10.397 .365 .349 .332	15. 596 . 547 . 523 . 499	For latitude 48° $\begin{bmatrix} 5\\10\\15\\20\\25 \end{bmatrix}$	3, 800 7, 600 11, 400 15, 200 19, 000	0.001 .005 .012 .022 .034
30 40 45 50	2. 575 . 567 . 563 . 559	5, 150 . 134 . 125 . 117	7. 725 . 700 . 688 . 676	10, 300 . 267 . 251 . 235	15. 450 . 401 . 376 . 352	[30]	3. 801 7. 601	0.001
48 00 10 15 20	2, 550 . 542 . 538 534	5. 101 . 084 . 076 . 068	7. 651 . 627 . 614 . 602	10. 202 . 169 . 152 . 136	15. 303 . 253 . 228 . 204	For latitude 49° 15 20 25 30	11. 402 15. 203 19. 004 22. 805	.012 .022 .034 .049
30 40 45 50	2. 526 . 517 . 513 . 509	5. 051 . 035 . 026 . 018	7. 577 . 552 . 540 . 527	10. 103 . 070 . 053 . 036	15. 154 . 104 . 079 . 055			1
49 00	2. 501	5, 001	7. 502	10. 003	15, 005			

Table 1.--Coordinates for the projection of maps, scale of doo-Continued

		Abscissas	of develop	ed parallel		Ordinates of deve meridiona	loped para l distances	allel and
Latitude of parallel		Lon	gitude inte	rval	,	Latitude and longi-	Merid-	Ordinate of de-
	5'	10'	15'	20′	30'	tude intervals	distance	veloped parallel
49 00 10 15 20	Inches 2, 501 492 488 484	Inches 5. 001 4. 985 . 976 . 968	Inches 7, 502 477 465 452	Inches 10, 003 9, 970 953 936	15. 005 14. 954 . 929 . 904	For latitude 49° 15 20 25	Inches 3. 801 7. 601 11. 402 15. 203 19. 004	Inch 0.001 .005 .012 .022 .034
30 40 45 50	2. 476 . 467 . 463 . 459	4. 951 . 934 . 926 . 918	7. 427 . 402 . 389 . 376	9, 902 869 852 835	14, 854 . 803 . 778 . 753	[30	22. 805 	0,049
50 00 10 15 20	2, 450 , 442 , 438 , 433	4. 901 . 884 . 875 . 867	7. 351 . 326 . 313 . 300	9. 801 . 767 . 750 . 733	14. 702 . 651 . 625 . 600	For latitude 50° 10 15 20 25 30	7. 603 11. 404 15. 206 19. 007 22, 809	.005 .012 .022 .034 .049
30 40 45 50	2. 425 . 416 . 412 . 408	4. 850 . 833 . 824 . 815	7. 274 . 249 . 236 . 223	9, 699 . 665 . 648 . 631	14. 549 . 498 . 472 . 446	For letitude 510 15	3. 802 7. 604 11. 406	0. 001 . 005 . 012
51 00 10 15 20	2, 399 . 391 . 386 . 382	4. 798 - 781 - 772 - 764	7. 197 . 172 . 159 . 146	9, 596 , 562 , 545 , 528	14. 395 . 343 . 317 . 291	For latitude 51° 15 20 25 30	15. 208 19. 011 22. 813	. 022 . 034 . 049
30 40 45 50	2. 373 . 365 . 360 . 356	4.746 .729 .720 .712	7. 120 . 094 . 081 . 068	9. 493 . 458 . 441 . 424	14. 239 . 187 . 161 . 135	For latitude 52° $\begin{cases} 5\\10\\15\\20\\25\\30 \end{cases}$	3. 803 7. 605 11. 408 15. 211 19. 014	0. 001 . 005 . 012 . 022 . 034
52 00 10 15 20	2. 347 . 338 . 334 . 330	4. 694 . 677 . 668 . 659	7. 042 . 015 7. 002 6. 989	9, 389 . 353 . 336 . 319	14. 083 . 031 14. 004 13. 978	. (5	22. 817 3. 803	0, 001
30 40 45 50	2. 321 . 312 . 308 . 303	4. 642 . 624 . 615 . 607	6. 963 . 936 . 923 . 910	9. 284 . 249 . 231 . 213	13. 926 . 873 . 846 . 820	For latitude 53° 15 20 25 30	7. 607 11. 410 15. 214 19. 017 22. 821	.005 .012 .021 .033 .048
53 00 10 15 20	2. 295 . 286 . 281 . 277	4. 589 . 571 . 562 . 554	6, 884 . 857 . 844 . 830	9, 178 . 143 . 125 . 107	13. 767 . 714 . 687 . 661	For latitude 54° (15/20)	3. 804 7. 608 11, 412	0.001 .005 .012
30 40 45 50	2. 268 . 259 . 255 . 250	4. 536 . 518 . 509 . 500	6. 804 . 777 . 764 . 750	9. 072 . 036 . 018 9. 000	13. 607 . 554 . 527 . 500	F or latitude 54 20 25 30	15, 216 19, 020 22, 824	. 021 . 033 . 047
54 00 10 15 20	2. 241 . 232 . 228 . 223	4. 482 . 464 . 455 . 446	6. 723 . 697 . 683 . 670	8. 965 . 929 . 911 . 893	13, 447 . 393 . 366 . 339	For latitude 55° { 5 10 15 20 25 30 }	3, 805 7, 609 11, 414 15, 219 19, 024	0.001 .005 .012 .021
30 40 45 50	2. 214 . 205 . 201 . 196	4. 428 . 410 . 401 . 392	6. 643 . 616 . 602 . 588	8. 857 . 821 . 803 . 785	13. 285 . 231 . 204 . 177	[30]	3, 805	0.001
55 00 10 15 20	2. 187 . 178 . 173 . 169	4, 374 . 356 . 347 . 338	6. 561 . 534 . 520 . 507	8.748 .712 .694 .676	13. 122 . 068 . 041 13. 013	For latitude 56° 15 20 25 30	7. 611 11. 416 15. 221 19. 027 22. 832	. 005 . 012 . 021 . 032 . 046
30 40 45 50	2. 160 . 151 . 146 . 142	4. 320 . 301 . 292 . 283	6. 479 • 452 • 438 • 425	8. 639 . 603 . 584 . 566	12. 959 . 904 . 877 . 849			
56 00	2. 132	4. 265	6. 397	8. 529	12. 794			

Table 2.—Coordinates for the projection of maps, scale 48000

Lati	itude		Abscissas	of develop	ed parallel		Ordinates of devel meridional	loped para distances	illel and
4	of callel		Lon	gitude inte	erval		Latitude and longi-	Merid- ional	Ordinate of devel-
		2½′	: 5'	71/2'	10′	15′	tude intervals	distance	oped parallel
0	00 05 07 ¹ / ₂ 10	Inches 3.804 .804 .804	Inches 7. 609 . 609 . 609	Inches 11, 413 . 413 . 413 . 413	Inches 15. 218 . 218 . 218 . 218	Inches 22, 827 . 827 . 826 . 826	For latitude 0° $\begin{cases} \frac{2!}{5} \\ \frac{7!}{7!} \\ \frac{10}{10} \end{cases}$	7. 557 11. 336 15. 115	Inch 0,000 .000 .000 .000
	15 20 22½ 25	3.804 .804 .804 .804	7.609 .609 .609	11. 413 . 413 . 413 . 413	15. 218 . 217 . 217 . 217	22. 826 . 826 . 826 . 826	[12]/2		0.000
	30 35 37½ 40	3.804 .804 .804 .804	7. 609 . 608 . 608	11. 413 .413 .413 .413	15. 217 . 217 . 217 . 217	22, 826 . 825 . 825 . 825	For latitude 1° 10 121/2 15	7. 557 11. 336 15. 115	.000 .000 .000 .001
	45 50 52½ 55	3.804 .804 .804 .804	7. 608 . 608 . 608	11. 412 . 412 . 412 . 412	15, 216 . 216 . 216 . 216	22. 825 . 824 . 824 . 824	For latitude 20 71/2	7. 557	0.000
1	$00 \\ 05 \\ 07\frac{1}{2} \\ 10$	3. 804 . 804 . 804 . 804	7. 608 . 608 . 607 . 607	11. 412 . 411 . 411 . 411	15. 215 . 215 . 215 . 215	22, 823 . 822 . 822 . 822	For latitude 2° { 10 12½ 10 12½ 15	15, 115	. 001 . 001 . 002
	15 20 22½ 25	3.804 .803 .803 .803	7.607 .607 .607 .607	11. 411 . 410 . 410 . 410	15, 214 . 214 . 213 . 213	22, 821 , 820 , 820 , 820	For latitude 3° \begin{cases} \begin{cases} 21/2 \\ 5 \\ 71/2 \\ 10 \\ 121/2 \end{cases}	11. 336 15. 115	. 0, 000 . 000 . 001 . 001
	30 35 37½ 40	3.803 .803 .803 .803	7. 606 . 606 . 606 . 606	11. 409 . 409 . 409 . 408	15. 213 . 212 . 212 . 212 . 211	22, 819 818 817 817	11572	22. 673	.002
	45 50 52½ 55	3.803 .802 .802 .802	7. 605 . 605 . 605 . 605	11. 408 . 407 . 407 . 407	15, 211 . 210 . 210 . 209	22. 816 . 815 . 814 . 814			
2	00 05 07½ 10	3. 802 . 802 . 802 . 802	7. 604 . 604 . 604 . 603	11. 407 . 406 . 405 . 405	15. 208 . 208 . 207 . 207	22, 813 . 812 . 811 . 810			
	15 20 22½ 25	3. 802 . 801 . 801 . 801	7. 603 . 603 . 602 . 602	11. 405 . 404 . 404 . 403	15, 206 205 205 204	22, 809 808 807 806			
	30 35 37½ 40	3.801 .801 .800 .800	7. 602 . 601 . 601 . 601	11. 403 . 402 . 401 . 401	15. 203 . 202 . 202 . 201	22, 805 . 803 . 803 . 802		<i>6</i>	
	45 50 52½ 55	3, 800 . 800 . 800 . 799	7. 600 . 600 . 599 . 599	11. 400 . 399 . 399 . 398	15. 200 . 199 . 199 . 198	22. 800 . 799 . 798 . 797			
3	00	3. 799	7. 598	11. 398	15, 197	22, 795			

Table 2.—Coordinates for the projection of maps, scale 48000—Continued

			Abscissas o	of develope	d parallel		Ordinates of merid	devel lional	oped para distances	llel and
C	tude of allel		Long	itude inte	rval		Latitude and lo		Merid- ional	Ordinate of devel- oped
		21/2"	5'	71/2'	10′	15'	tude interval	18	distance	parallel
3	00 05 07½ 10	Inches 3. 799 . 799 . 799 . 799	Inches 7. 598 . 598 . 598 . 597	Inches 11, 398 . 397 . 396 . 396	Inches 15. 197 . 196 . 195 . 195	Inches 22, 795 . 794 . 793 . 792	For latitude 3°	$ \begin{cases} 2^{\frac{1}{2}} \\ 5 \\ 7^{\frac{1}{2}} \\ 10 \\ 12^{\frac{1}{2}} \end{cases} $	Inches 3, 779 7, 558 11, 336 15, 115 18, 894	Inch 0, 000 .000 .001 .001 .002
	15 20 22½ 25	3. 798 . 798 . 798 . 798	7. 597 . 596 . 596 . 595	11. 395 . 394 . 394 . 393	15, 193 . 192 . 191 . 191	22, 790 . 788 . 787 . 786		$\begin{bmatrix} 2^{1/2} \\ 5 \end{bmatrix}$	22, 673 3, 779	0.000
	30 35 37½ 40	3. 797 . 797 . 797 . 797	7. 595 . 594 . 594 . 593	11. 392 . 391 . 391 . 390	15. 190 . 188 . 187 . 187	22. 784 . 782 . 781 . 780	For latitude 4°	$\begin{bmatrix} 5 \\ 7\frac{1}{2} \\ 10 \\ 12\frac{1}{2} \\ 15 \end{bmatrix}$	11. 337 15. 115	.000 .001 .002 .002 .003
	45 50 52½ 55	3. 796 . 796 . 796 . 796	7. 593 . 592 . 592 . 591	11. 389 . 388 . 387 . 387	15. 185 . 184 . 183 . 182	22.778 .776 .775 .774	For latitude 5°	$ \begin{cases} 2\frac{1}{2} \\ 5 \\ 7\frac{1}{2} \end{cases} $	7. 558 11. 337	0, 000 . 000 . 001
4	00 05 07½ 10	3. 795 . 795 . 795 . 794	7. 590 . 590 . 589 . 589	11. 386 . 385 . 384 . 383	15. 181 . 179 . 179 . 178	22.771 .769 .768 .767	For latitude 5	10 12½ 15	15. 116	. 002 . 003 . 004
	15 20 22½ 25	3. 794 . 794 . 793 . 793	7. 588 . 587 . 587 . 586	11, 382 . 382 . 380 . 380	15. 176 . 174 . 174 . 173	22. 764 . 762 . 760 . 759	For latitude 6°	$ \left\{ \begin{array}{l} 2\frac{1}{2} \\ 5 \\ 7\frac{1}{2} \\ 10 \\ 12\frac{1}{2} \end{array} \right. $	11. 337 15. 116	0, 000 . 001 . 001 . 002 . 004
	30 35 37½ 40	3. 793 . 792 . 792 . 792	7. 586 . 585 . 584 . 584	11. 378 . 377 . 376 . 376	15, 171 . 169 . 168 . 168	22. 757 . 754 . 573 . 751	,	(15	22. 675	. 005
	45 50 52½ 55	3. 791 . 791 . 791 . 791	7. 583 . 582 . 582 . 581	11. 374 . 373 . 372 . 372	15. 166 . 164 . 163 . 162	22. 749 . 746 . 745 . 743				
5	00 05 07½ 10	3. 790 . 790 . 789 . 789	7. 580 . 579 . 579 . 578	11. 370 . 369 . 368 . 367	15. 160 . 158 . 157 . 156	22.740 .737 .736 .734				
	15 20 22½ 25	3. 789 . 788 . 788 . 788	7. 577 . 576 . 576 . 575	11, 366 . 364 . 363 . 363	15. 154 . 152 . 151 . 150	22. 731 . 728 . 727 . 725				
	30 35 37½ 40	3. 787 . 786 . 786 . 786	7. 574 . 573 . 572 . 572	11. 361 . 359 . 359 . 358	15. 148 . 146 . 145 . 144	22. 722 . 719 . 717 . 716				
	45 50 52½ 55	3. 785 . 785 . 785 . 784	7. 571 . 570 . 570 . 569	11.356 .355 .354 .353	15. 142 . 139 . 138 . 137	22. 712 . 709 . 707 . 706				
6	00	3.784	7. 567	11. 351	15. 135	22. 702				

Table 2.—Coordinates for the projection of maps, scale 48000—Continued

Latitu	ide		Abscissas o	of develope	ed parallel		Ordinates of de meridio	veloped parantes	
of parallel			Long	gitude inte	rval		Latitude and longi- Merid-		Ordinate of devel-
		2½′	5′	7½′	10'	15′	tude intervals	distance	oped parallel
6 0 0 0	00 05 07½ 10	Inches 3. 784 . 783 . 783 . 783	Inches 7. 567 . 566 . 566 . 565	Inches 11. 351 . 349 . 349 . 348	Inches 15. 135 . 133 . 131 . 130	Inches 22. 702 . 699 . 697 . 695	For latitude 6° {1	Inches 2½ 3.779 5 7.558 7½ 11.337 0 15.116 2½ 18.896	Inch 0.000 .001 .001 .002 .004
2 2	15 20 22½ 25	3. 782 . 781 . 781 . 781	7. 564 . 563 . 562 . 561	11. 346 . 344 . 343 . 342	15. 128 . 125 . 124 . 123	22. 692 . 688 . 686 . 685	[1	5 22. 675 2½ 3. 779	0.000
3	30 35 37½ 40	3. 780 . 779 . 779 . 779	7. 560 . 559 . 558 . 558	11. 340 . 338 . 338 . 337	15. 121 . 118 . 117 . 115	22. 681 . 677 . 675 . 673	For latitude 7° 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$. 001 . 001 . 003 . 004 . 006
5 5	15 50 52½ 55	3.778 .778 .777 .777	7. 556 • 555 • 554 • 554	11. 335 . 333 . 332 . 331	15. 113 . 110 . 109 . 108	22. 669 • 665 • 664 • 662	For letitude 00	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.000 .001 .002
0	00 05 07 ¹ / ₂ 10	3. 776 . 776 . 775 . 775	7. 552 . 551 . 550 . 550	11. 329 . 327 . 326 . 325	15. 105 102 101 100	22. 658	1 01 14114440 0	$ \begin{array}{c cc} 0 & 15.118 \\ 2\frac{1}{2} & 18.897 \end{array} $. 003 . 005 . 007
2 2	15 20 22½ 25	3. 774 . 774 . 773 . 773	7. 548 . 547 . 546 . 546	11. 323 . 321 . 319 . 318	15. 097 . 094 . 093 . 091	22. 645 . 641 . 639 . 637	For latitude 9°	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.000 .001 .002 .003
3	30 35 37½ 10	3. 772 . 771 . 771 . 771	7. 544 . 543 . 542 . 541	11, 316 . 314 . 313 . 312	15. 088 . 085 . 084 . 083	22. 633 . 628 . 626 . 624	Į (i	5 22, 678	008
5 5	50 52½ 55	3.770 .769 .769 .768	7. 540 . 538 . 538 . 537	11.310 .307 .306 .305	15. 080 . 077 . 075 . 074	22. 619 . 615 . 613 . 610			
0	00 05 07 ¹ / ₂	3. 768 . 767 . 766 . 766	7. 535 . 534 . 533 . 532	11, 303 . 301 . 299 . 298	15. 071 . 068 . 066 . 064	22. 606 . 601 . 599 . 597			
2 2	5 20 22 ¹ / ₂ 25	3. 765 . 765 . 764 . 764	7. 531 . 529 . 528 . 527	11. 296 . 294 . 292 . 291	15. 061 . 058 . 056 . 055	22, 592 587 . 585 . 582			
3	10 15 17 ¹ / ₂	3.763 .762 .762 .761	7. 526 . 524 . 523 . 522	11. 289 . 286 . 285 . 284	15. 052 . 048 . 047 . 045	22. 577 . 573 . 570 . 568			
4 5 5 5	$\begin{vmatrix} 0 \\ 2^{1/2} \end{vmatrix}$	3. 760 . 760 . 759 . 758	7. 521 . 519 . 518 . 517	11. 281 . 279 . 277 . 276	15. 042 . 038 . 037 . 035	22. 563 . 558 . 555 . 553			
9 0	0	3, 758	7. 516	11. 274	15. 032	22. 547			

Table 2.—Coordinates for the projection of maps, scale 48000—Continued

			Abscissas	of develop	ed parallel		Ordinates of dev meridion	reloped para al distances	allel and
(tude of allei		Long	gitude inte	orval	,	Latitude and long	Merid- ional	Ordinate of devel-
		21/2'	5′	7½′	10′	15'	tude intervals	distance	oped parallel
9	00 05 07½ 10	Inches 3. 758 . 757 . 757 . 756	Inches 7. 516 . 514 . 513 . 512	Inches 11. 274 . 271 . 270 . 268	Inches 15, 032 . 028 . 026 . 025	Inches 22, 547 . 542 . 540 . 537	For latitude 9° { 7	11. 339 15. 118	Inch 0.00 .00 .00
	15 20 $22\frac{1}{2}$ 25	3. 755 . 754 . 754 . 753	7. 511 . 509 . 508 . 507	11. 266 . 263 . 262 . 260	15. 021 . 018 . 016 . 014	22. 532 . 526 . 524 . 521		1/2 18. 898 22. 678 1/2 3. 780	0,00
	30 35 37½ 40	3. 753 . 752 . 751 . 751	7. 505 . 503 . 502 . 502	11, 258 . 255 . 254 . 252	15, 010 . 007 . 005 . 003	22, 516 . 510 . 507 . 505	For latitude 10° $\begin{cases} 57 \\ 70 \end{cases}$	7. 560 11. 340 15. 119 18. 899	000000000000000000000000000000000000000
	45 50 52½ 55	3. 750 . 749 . 748 . 748	7. 500 . 498 . 497 . 496	11. 249 . 247 . 245 . 244	14.999 .996 .994 .992	22. 499 . 493 . 491 . 488	For latitude 11° $\begin{cases} 2\\5\\7\\10 \end{cases}$	3. 780 7. 560 1½ 11. 340	0.000
10	$00 \\ 05 \\ 07\frac{1}{2} \\ 10$	3. 747 . 746 . 746 . 745	7. 494 . 492 . 491 . 490	11, 241 . 238 . 237 . 235	14. 988 . 984 . 982 . 980	22. 482 . 476 . 473 . 470	10 12111111 11 110 112 115	15. 120 18. 901 22. 681	.00
	15 20 22½ 25	3. 744 . 743 . 743 . 742	7. 488 . 486 . 485 . 484	11. 232 . 229 . 228 . 226	14. 976 . 973 . 971 . 969	22. 465 . 459 . 456 . 453	For latitude 12° $\begin{cases} 2\\5\\7\\10\\12 \end{cases}$	3. 780 7. 561 1½ 11. 341 15. 121 1½ 18. 902	0, 000 - 00 - 000 - 000 - 000
	30 35 37½ 40	3. 741 . 740 . 740 . 739	7. 482 . 480 . 479 . 478	11. 223 . 220 . 219 . 217	14. 965 . 961 . 959 . 956	22. 447 . 441 . 438 . 435	15	11. 682	.010
	45 50 52½ 55	3. 738 . 737 . 737 . 736	7. 476 . 474 . 473 . 472	11. 214 . 211 . 210 . 208	14. 952 . 948 . 946 . 944	22, 429 . 422 . 419 . 416			
11	$00 \\ 05 \\ 07\frac{1}{2} \\ 10$	3. 735 . 734 . 733 . 733	7. 470 . 468 . 467 . 466	11. 205 . 202 . 200 . 199	14. 940 . 936 . 934 . 931	22. 410 . 404 . 400 . 397			
	15 20 22½ 25	3. 732 . 731 . 730 . 730	7. 464 . 461 . 460 . 459	11. 195 . 192 . 191 . 189	14. 927 . 923 . 921 . 919	22. 391 . 384 . 381 . 378			
	30 35 37½ 40	3. 729 . 727 . 727 . 726	7. 457 . 455 . 454 . 453	11. 186 . 182 . 181 . 179	14. 914 . 910 . 908 . 905	22, 371 . 365 . 361 . 358			
	45 50 52½ 55	3. 725 . 724 . 724 . 723	7. 450 . 448 . 447 . 446	11. 176 . 172 . 171 . 169	14, 901 . 896 . 894 . 892	22, 351 . 345 . 341 . 338			
12	00	3. 722	7. 444	11, 165	14, 887	22, 331			

Table 2.—Coordinates for the projection of maps, scale 48000—Continued

Latitude		Abscissas	of develop	ed parallel		Ordinates of devel meridional	oped para distances	allel and
of parallel		Lon	gitude inte	erval		Latitude and longi-	Merid- ional	Ordinate of devel-
	2½'	5′	71/2'	10'	15'	tude intervals	distance	oped parallel
0 / 12 00 05 07½ 10	Inches 3, 722 721 720 720	Inches 7. 444 . 441 . 440 . 439	Inches 11. 165 . 162 . 160 . 159	Inches 14. 887 . 883 . 880 . 878	Inches 22. 331 . 324 . 321 . 317	For latitude 12° $\begin{pmatrix} 2^{1}/2 \\ 5^{7}/1/2 \\ 10 \end{pmatrix}$	Inches 3. 780 7. 561 11. 341 15. 121	Inch 0.000 .001 .003 .005
15 20 22½ 25	3. 718 . 717 . 717 . 716	7, 437 . 434 . 433 . 432	11, 155 . 152 . 150 . 148	14, 873 . 869 . 866 . 864	22, 310 . 303 . 300 . 296	121/2	18. 902 22. 682	.007
30 35 37½ 40	3. 715 . 714 . 713 . 712	7. 430 . 427 . 426 . 425	11. 145 . 141 . 139 . 137	14. 859 . 855 . 852 . 850	22, 289 . 282 . 278 . 275	For latitude 13° $\begin{cases} 2^{1/2} \\ 5 \\ 7^{1/2} \\ 10 \\ 12^{1/2} \\ 15 \end{cases}$	3, 781 7, 561 11, 342 15, 123 18, 903 22, 684	0,000 .001 .003 .005 .008
45 50 52½ 55	3. 711 . 710 . 709 . 709	7. 422 . 420 . 419 . 418	11. 134 . 130 . 128 . 126	14. 845 . 840 . 838 . 835	22. 267 . 260 . 256 . 253	For latitude 14° $\begin{pmatrix} 2\frac{1}{2} \\ 5\\ 7\frac{1}{2} \end{pmatrix}$	3. 781 7. 562 11. 343	0.000
13 00 05 07 ¹ / ₂ 10	3. 708 . 706 . 706 . 705	7. 415 . 413 . 411 . 410	11. 123 . 119 . 117 . 115	14. 830 . 825 . 823 . 820	22. 245 . 238 . 234 . 230	10 121/2 121/2 15	15, 124 18, 905 22, 686	.005 .008 .012
$\begin{array}{c} 15 \\ 20 \\ 22\frac{1}{2} \\ 25 \end{array}$	3. 704 . 703 . 702 . 701	7. 408 . 405 . 404 . 403	11.111 .108 .106 .104	14. 815 . 810 . 808 . 805	22. 223 . 215 . 211 . 208	For latitude 15° $\begin{cases} 2^{1/2} \\ 7^{1/2} \\ 10 \\ 12^{1/2} \end{cases}$	3. 781 7. 562 11. 344 15. 125 18. 907	0.000 .001 .003 .006
30 35 37½ 40	3. 700 . 699 . 698 . 697	7.400 .397 .396 .395	11. 100 . 096 . 094 . 092	14. 800 . 795 . 792 . 790	22. 200 . 192 . 188 . 184	[15]	22. 688	.012
45 50 52½ 55	3. 696 . 695 . 694 . 693	7. 392 . 390 . 388 . 387	11. 088 . 084 . 082 . 080	14. 784 . 779 . 777 . 774	22. 177 . 169 . 165 . 161			
14 00 05 07½ 10	3. 692 . 691 . 690 . 689	7. 384 . 382 . 380 . 379	11. 077 . 072 . 070 . 068	14. 769 . 763 . 761 . 758	22. 153 . 145 . 141 . 137			
15 20 22½ 25	3. 688 . 687 . 686 . 685	7. 376 . 374 . 372 . 371	11. 064 . 060 . 058 . 056	14. 752 . 747 . 744 . 742	22, 129 121 . 116 . 112			
30 35 37½ 40	3. 684 . 683 . 682 . 681	7. 368 . 365 . 364 . 363	11. 052 . 048 . 046 . 044	14. 736 . 731 . 728 . 725	22. 104 . 096 . 092 . 088			
45 50 52½ 55	3. 680 . 678 . 670 . 677	7. 360 . 357 . 356 . 354	11. 040 . 035 . 033 . 031	14. 719 . 714 . 711 . 708	22. 079 . 071 . 066 . 062			
15 00	3. 676	7. 351	11. 027	14. 702	22. 054			

Table 2.—Coordinates for the projection of maps, scale 48000—Continued

r _ A.S	4		Abscissas	of develope	ed parallel		Ordinates of d meridi		oped para distances	allel and
(tude of allel	,	Long	gitude inte	rval		Latitude and lor		Merid-	Ordinate of devel-
		2½′	5'	71/2"	10′	15'	tude intervals	5	distance	oped parallel
1.5	00 05 07½ 10	Inches 3. 676 674 673 673	Inches 7, 351 348 347 346	Inches 11. 027 . 023 . 020 . 018	Inches 14, 702 . 697 . 694 . 691	Inches 22, 054 . 045 . 041 . 037		2½ 5 7½ 10	Inches 3. 781 7. 562 11. 344 15. 125	Inch 0.000 .001 .003 .006
	15 20 22½ 25	3. 671 . 670 . 669 . 668	7. 343 340 .338 .337	11, 014 . 010 . 007 . 005	14. 685 . 679 . 677 . 674	22. 028 . 019 . 015 . 010		12½ 15 2½	18. 907 22. 688 3. 782	0,000
	30 35 37½ 40	3.667 .665 .664	7. 334 . 331 . 329 . 328	11. 001 10. 996 . 994 . 992	14. 668 . 662 . 659 . 656	22, 002 21, 993 . 988 . 984		$ \begin{array}{c} 5 \\ 7^{1}/2 \\ 10 \\ 12^{1}/2 \\ 15 \end{array} $	7. 563 11, 345 15, 126 18, 908 22, 690	. 001 . 003 . 006 . 009 . 013
	45 50 52½ 55	3. 662 . 661 . 660 . 659	7. 325 . 322 . 320 . 319	10. 987 . 983 . 981 . 978	14. 650 . 644 . 641 . 638	21, 975 . 966 . 962 . 957		2½ 5 7½	3. 782 7. 564 11. 346	0, 000 , 002 , 003
16	00 05 07½ 10	3. 658 . 656 . 656 . 655	7. 316 . 313 . 311 . 310	10, 974 . 969 . 967 . 965	14, 632 . 626 . 623 . 620	21. 948 . 939 . 934 . 930		10 12½ 12½ 15	15. 128 18. 910 22. 692	.006
	15 20 $22\frac{1}{2}$ 25	3. 653 . 652 . 651 . 650	7, 307 304 302 301	10. 960 . 956 . 953 . 951	14. 614 . 607 . 604 . 601	21, 920 . 911 . 907 . 902	For latitude 18°	2½ 5 7½ 10	3. 782 7. 565 11. 347 15. 129	0.000 .002 .004
	30 35 37½ 40	3. 649 . 647 . 646 . 646	7. 297 . 294 . 293 . 291	10. 946 . 942 . 939 . 937	14. 595 . 589 . 586 . 582	21, 893 . 883 . 878 . 874		12½ 15	18, 912 22, 694	.010
	45 50 52½ 55	3. 644 . 642 . 642 . 641	7. 288 . 285 . 283 . 282	10. 932 . 927 . 925 . 922	14. 576 . 570 . 567 . 563	21. 864 . 855 . 850 . 845				
17	00 05 07½ 10	3, 639 - 638 - 637 - 636	7. 278 . 275 . 274 . 272	10, 918 . 913 . 910 . 908	14. 557 . 551 . 547 . 544	21, 835 , 826 , 821 , 816				
	15 20 22½ 25	3. 634 . 633 . 632 . 631	7. 269 • 265 • 264 • 262	10. 903 . 898 . 896 . 893	14. 538 . 531 . 528 . 524	21, 806 . 796 . 792 . 787				
	30 35 37½ 40	3. 629 . 628 . 627 . 626	7. 259 . 256 . 254 . 252	10. 888 . 883 . 881 . 878	14. 518 . 511 . 508 . 505	21. 777 . 767 . 762 . 757				
	45 50 52½ 55	3, 624 . 623 . 622 . 621	7. 249 . 246 . 244 . 242	10, 873 . 868 . 866 . 863	14. 498 . 491 . 488 . 484	21, 747 . 737 . 732 . 727				
18	00	3. 619	7. 239	10, 858	14. 478	21.716				

Table 2.—Coordinates for the projection of maps, scale 48000—Continued

_		ſ					1 7 40000		
T.of	itude		Abscissas	of develop	ed parallel		Ordinates of devel meridional	oped para distances	allel and
	of rallel		Lon	gitude inte	rval		Latitude and longi-	Merid-	Ordinate
		21/2'	5′	71/2'	10′	15′	tude intervals	ional distance	of devel- oped parallel
18		Inches 3. 619 618 617 616	Inches 7. 239 235 234 232	Inches 10. 858 . 853 . 850 . 848	Inches 14, 478 . 471 . 467 . 464	Inches 21. 716 . 706 . 701 . 696	For latitude 18° (2½)	7. 565 11. 347 15. 129	Inch 0.000 .002 .004 .006
	15 20 22½ 25	3. 614 . 613 . 612 . 611	7. 228 . 225 . 223 . 222	10. 843 . 838 . 835 . 832	14. 457 . 450 . 447 . 443	21, 686 . 675 . 670 . 665	121/2	22. 694	.010
	30 35 37½ 40	3, 609	7. 218 . 215 . 213 . 211	10. 827 . 822 . 819 . 817	14. 436 . 429 . 426 . 422	21. 654 . 644 . 639 . 633	For latitude 19° $\begin{cases} \frac{21/2}{5} \\ 7/2 \\ 10 \\ 121/2 \\ 15 \end{cases}$	7. 566 11. 348 15. 131	0.000 .002 .004 .007 .011 .015
	45 50 52½ 55	. 600	7. 208 . 204 . 202 . 200	10.811 .806 .803 .801	14. 415 . 408 . 404 . 401	21. 623 . 612 . 607 . 601	For latitude 20° $\begin{cases} \frac{21/2}{5} \\ 77/2 \\ 10 \end{cases}$	11. 350	0.000 .002 .004
19	00 05 07½ 10	3. 598 597 . 596 . 595	7. 197 . 193 . 192 . 190	10. 795 . 790 . 787 . 785	14. 394 . 387 . 383 . 379	21. 591 . 580 . 574 . 569	10 121/2 15	15. 133 18. 916 22. 699	.007
	15 20 22½ 25	3. 593 . 591 . 590 . 589	7. 186 • 182 • 181 • 179	10. 779 . 774 . 771 . 768	14. 372 . 365 . 361 . 358	21. 558 . 547 . 542 . 536	For latitude 21° $\begin{cases} \frac{2^{1/2}}{5} \\ 7^{1/2} \\ 10 \\ 12^{1/2} \end{cases}$	7. 567 11. 351 15. 135	0.000 .002 .004 .007 .012
	30 35 37½ 40	3. 588 . 586 . 585 . 584	7. 175 . 171 . 170 . 168	10. 763 - 757 - 754 - 752	14. 350 . 343 . 339 . 335	21. 525 . 514 . 509 . 503	15	22. 702	
	45 50 52½ 55	3. 582 . 580 . 579 . 578	7. 164 . 160 . 158 . 157	10. 746 . 741 . 738 . 735	14. 328 . 321 . 317 . 313	21. 492 . 481 . 475 . 470			
20	00 05 07½ 10	3. 576 . 575 . 574 . 573	7. 153 . 149 . 147 . 145	10. 729 . 724 . 721 . 718	14. 306 . 298 . 294 . 290	21. 458 . 447 . 441 . 436			
	15 20 22½ 25	3. 571 . 569 . 568 . 567	7. 141 . 138 . 136 . 134	10. 712 . 706 . 704 . 701	14. 283 . 275 . 271 . 268	21. 424 . 413 . 407 . 401			
	30 35 37½ 40	3. 565 . 563 . 562 . 561	7. 130 . 126 . 124 . 122	10. 695 . 689 . 686 . 683	14. 260 . 252 . 248 . 244	21. 390 . 378 . 372 . 367			
	45 50 52½ 55	3. 559 . 557 . 556 . 555	7. 118 . 114 . 112 . 110	10. 678 . 672 . 669 . 666	14. 237 . 229 . 225 . 221	21. 355 . 343 . 337 . 331			
21	00	3. 553	7. 107	10. 660	14. 213	21. 320			

Table 2.—Coordinates for the projection of maps, scale 48000—Continued

			Abscissas o	f develope	d parallel		Ordinates of deve meridions	loped para l distances	allel and
atitude of parallel			Long	itude inter	val		Latitude and longi- tude intervals	Merid- ional	Ordinate of developed
		21/2'	5'	7½'	10′	15"	titue mier saie	distance	parallel
0	00 05 07 ¹ / ₂	Inches 3.553 .551 .550 .549	Inches 7, 107 , 103 , 101 , 099	Inches 10.660 .654 .651 .648	Inches 14. 213 . 205 . 201 . 197	Inches 21, 320 . 308 . 302 . 296	For latitude 21° { 2! 5 7! 10 12!	7. 567 11. 351 15. 135	Inch 0, 000 . 002 . 004 . 007
2 2	15 20 22 ¹ / ₂ 25	3. 547 . 545 . 544 . 543	7. 095 . 091 . 089 . 087	10. 642 . 636 . 633 . 630	14. 189 . 181 . 177 . 173	21. 284 . 272 . 266 . 260	(15)	22. 702	0.000
3	30 35 37½ 40	3. 541 . 539 . 538 . 537	7. 083 . 079 . 077 . 075	10. 624 . 618 . 615 . 612	14. 165 . 157 . 153 . 149	21. 248 . 236 . 230 . 224	For latitude 22° $\begin{cases} 5\\7\\10\\12\\15 \end{cases}$	2 11. 352 15, 136	. 002 . 004 . 008 . 012 . 017
į	45 50 52½ 55	3. 535 . 533 . 532 . 531	7. 670 . 066 . 064 . 062	10, 606 . 600 . 596 . 593	14. 141 . 133 . 129 . 125	21, 211 . 199 . 193 . 187	For latitude 23° { 27 77 77 77 77 77 77 77 77 77 77 77 77	7. 569 11. 354	0.000 .002 .004
(00 05 07½ 10	3. 529 . 527 . 526 . 525	7. 058 . 054 . 052 . 050	10, 587 , 581 , 578 , 575	14. 116 . 108 . 104 . 100	21. 174 . 162 . 156 . 150	10 10 12 15 15 16 17 17 17 17 17 17 17	15. 138 18. 923 22. 708	.008 .012 .018
	15 20 22½ 25	3. 523 . 521 . 520 . 519	7. 046 . 042 . 039 . 037	10. 569	14. 091 . 083 . 079 . 075	21. 137 . 125 . 118 . 112	For latitude 24° $\begin{cases} 25 \\ 57 \\ 10 \\ 12 \end{cases}$	7. 570 11. 355 15. 140	0.001 .002 .005 .008
	30 35 3 7½ 40	3. 517 . 514 . 513 . 512	7. 033 . 029 . 027 . 025	10. 550 . 543 . 540 . 537	14. 066 . 058 . 054 . 049	21. 099 . 087 . 080 . 074	(15	22.711	. 019
	45 50 52½ 55	3. 510 . 508 . 507 . 506	7. 020 .016 .014 .012	10. 531 . 524 . 521 . 518	14. 041 . 032 . 028 . 024	21. 061 . 049 . 042 . 036			
	00 05 07½ 10	3. 504 . 502 . 501 . 499	7. 008 . 003 . 001 6. 999	10. 511 . 505 . 502 . 498	14. 015 . 007 . 002 13. 998	21. 023 . 010 . 003 20. 997			
	15 20 22½ 25	3. 497 . 495 . 494 . 493	6. 995 . 990 . 988 . 986	10. 492 . 485 . 482 . 479	13. 989 . 981 . 976 . 972	20. 984 . 971 . 964 . 958			
	30 35 37½ 40	3. 491 . 489 . 487 . 486	6. 982 . 977 . 975 . 973	10. 472 . 466 . 462 . 459	13. 963 . 954 . 950 . 945	20. 945 . 931 . 925 . 918			
	45 50 52½ 55	3. 484 . 482 . 481 . 480	6, 968 . 964 . 962 . 959	10. 452 • 446 • 442 • 439	13. 937 . 928 . 923 . 919	20. 905 . 892 . 885 . 878			
24	00	3. 477	6. 955	10, 432	13. 910	20, 865			

Table 2.—Coordinates for the projection of maps, scale 48000—Continued

Latitude		Abscissas	of develop	ed paralle	1	Ordinates of devel meridional	oped para distances	allel and
of parallel		Lor	ngitude inte	erval		Latitude and longi-	Merid-	Ordinate of devel-
	2½′	5′	71/2'	10'	15'	tude intervals	ional distance	oped parallel
24 00 05 07 ¹ / ₂ 10	Inches 3. 477 . 475 . 474 . 473	Inches 6. 955 . 950 . 948 . 946	Inches 10.432 .426 .422 .419	Inches 13. 910 . 900 . 896 . 892	Inches 20. 865 . 851 . 845 . 838	For latitude 24° $\begin{bmatrix} 2\frac{1}{2} \\ 5\\ 7\frac{1}{10} \end{bmatrix}$	7. 570 11. 355 15. 140	Inch 0.00 .00 .00 .00
15 20 22 ¹ / ₂ 25	3. 471 . 468 . 467 . 466	6.941 .937 .935 .932	10. 412 . 405 . 402 . 398	13.883 .874 .869 .865	20. 824 . 811 . 804 . 797	12½	18. 926 22. 711	.018
30 35 37½ 40	3. 464 . 462 . 460 . 459	6. 928 . 923 . 921 . 919	10. 392 . 385 . 381 . 378	13. 856 . 846 . 842 . 837	20. 783 . 770 . 763 . 756	For latitude 25° $\begin{cases} 2\frac{1}{5} \\ 7\frac{7}{2} \\ 10 \\ 12\frac{1}{2} \\ 15 \end{cases}$	3. 786 7. 571 11. 357 15. 142 18. 928 22. 714	0.001 .002 .005 .008 .013
45 50 52½ 55	3. 457 . 455 . 454 . 452	6. 914 . 909 . 907 . 905	10. 371 . 364 . 361 . 357	13. 828 . 819 . 814 . 810	20. 742 . 728 . 721 . 714	F-1-1-1-1-200 71/2	3. 786 7. 572 11. 358	0. 001 . 002 . 005
25 00 05 07½ 10	3. 450 . 448 . 447 . 445	6. 900 895 893 891	10. 350 . 343 . 340 . 336	13. 800 . 791 . 786 . 782	20. 700 . 686 . 679 . 672	For latitude 26° \ \ \begin{pmatrix} 7\\ 10 \\ 12\\ 15 \\ 15 \\ 15 \\ \\ 15 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	15. 144 18. 931 22. 717	.009
15 20 22 ¹ / ₂ 25	3. 443 . 441 . 440 . 438	6. 886 . 881 . 879 . 877	10. 329 . 322 . 318 . 315	13. 772 . 763 . 758 . 753	20, 658 . 644 . 637 . 630	For latitude 27° $\begin{cases} 2\frac{1}{2} \\ 5 \\ 7\frac{1}{2} \\ 10 \end{cases}$	3. 787 7. 573 11. 360 15. 147	0.001 .002 .005 .009
30 35 37½ 40	3. 436 . 434 . 432 . 431	6. 872 . 867 . 865 . 862	10. 308 . 301 . 297 . 294	13. 744 . 734 . 730 . 725	20. 616 602 594 587	121/2	18. 934 22. 720	. 014
45 50 52½ 55	3. 429 . 426 . 425 . 424	6. 858	10. 286 . 279 . 276 . 272	13. 715 - 706 - 701 - 696	20. 573 . 559 . 551 . 544			
26 00 05 07 ¹ / ₂ 10	3. 422 . 419 . 418 . 417	6. 843 . 838 . 836 . 834	10. 265 . 258 . 254 . 250	13. 686 . 677 . 672 . 667	20. 530 . 515 . 508 . 501			
15 20 22 ¹ / ₂ 25	3. 414 . 412 . 411 . 409	6. 829 . 824 . 821 . 819	10. 243 . 236 . 232 . 228	13. 657 . 648 . 643 . 638	20. 486 . 471 . 464 . 457			
30 35 37½ 40	3. 407 . 405 . 403 . 402	6. 814 . 809 . 807 . 804	10. 221 . 214 . 210 . 206	13. 628 . 618 . 613 . 608	20. 442 . 427 . 420 . 412			
45 50 52½ 55	3. 400 . 397 . 396 . 395	6. 799 . 794 . 792 . 789	10. 199 . 191 . 188 . 184	13. 598 . 588 . 584 . 579	20. 398 . 383 . 375 . 368			
7 00	3. 392	6. 784	10. 176	13. 569	20. 353			

Table 2.—Coordinates for the projection of maps, scale 48000—Continued

			Abscissas o	of develope	d parallel		Ordinates of deve meridiona	loped para l distances	illel and
Latit o: para	1		Long	itude inte	rval		Latitude and longitude intervals		
		21/2'	5'	71/2'	10'	15'	tude intervals	distance	oped parallel
	00 05 07½ 10	Inches 3, 392 . 390 . 388 . 387	Inches 6. 784 . 779 . 777 . 774	Inches 10. 176 . 169 . 165 . 161	Inches 13. 569 559 . 553 . 548	Inches 20. 353 . 338 . 330 . 323	For latitude 27° (25) 71/10 123	11, 360 15, 147	Inch 0,001 002 003 003
	15 20 22½ 25	3.385 .382 .381 .380	6. 769 . 764 . 762 . 759	10. 154 . 146 . 142 . 139	13. 538 . 528 . 523 . 518	20, 308 . 292 . 285 . 277	\[\left[\frac{15}{5}\]	22, 720	0.001
	30 35 37½ 40	3.377 .374 .373 .372	6.754 .749 .740 .744	10. 131 . 123 ./120 . 116	13. 508 . 498 . 493 . 488	20. 262 . 247 . 239 . 231	For latitude 28° \(\begin{pmatrix} 5 \\ 71 \\ 10 \\ 121 \\ 15 \end{pmatrix} \]	11. 362 15. 149	. 002 . 005 . 009 . 014 . 021
	45 50 52 ¹ / ₂ 55	3. 369 . 367 . 365 . 364	6. 739 . 734 . 731 . 728	10. 108 . 100 . 096 . 093	13. 477 . 467 . 462 . 457	20. 216 . 201 . 193 . 185	For latitude 29° $\begin{cases} 2^1 \\ 5 \\ 7^1 \\ 10 \end{cases}$	2 11, 363	0.001
28	00 05 07½ 10	3.362 .359 .358 .356	6, 723 . 718 . 715 . 713	10. 085 . 077 . 073 . 069	13, 446 . 436 . 431 . 426	20, 170 . 154 . 146 . 139	10 1121 115	15. 151 18. 939 22. 727	008
	15 20 22½ 25	3. 354 . 351 . 350 . 349	6. 708 . 702 . 700 . 697	10. 061 . 054 . 050 . 046	13. 415 . 405 . 400 . 394	20. 123 . 107 . 099 . 092	For latitude 30° { 21 5 71 10 121 }	11. 365 15. 153	0.001 .002 .003
	30 35 37½ 40	3.346 .343 .342 .341	6. 692 . 687 . 684 . 681	10. 038 . 030 . 026 . 022	13.384 .373 .368 .363	20. 076 . 060 . 052 . 044	115	22. 730	.02
	45 50 52½ 55	3. 338 . 335 . 334 . 333	6. 676 . 671 . 668 . 666	10. 014 . 006 . 002 9. 998	13. 352 . 342 . 336 . 331	20. 028 . 012 . 004 19. 996			
29	00 05 07½ 10	3. 330 . 327 . 326 . 325	6.660 .655 .652 .649	9. 990 . 982 . 978 . 974	13.320 .310 .304 .299	19. 980 . 964 . 956 . 948			
	15 20 $22\frac{1}{2}$ 25	3. 322 . 319 . 318 . 317	6. 644 . 639 . 636 . 633	9. 966 . 958 . 954 . 950	13. 288 . 277 . 272 . 267	19. 932 . 916 . 908 . 900			
	30 35 37½ 40	3.314 .311 .310 .308	6. 628 . 622 . 620 . 617	9. 942 . 934 . 929 . 925	13. 256 . 245 . 239 . 234	19. 884 . 867 . 859 . 851			
	45 50 52½ 55	3.306 .303 .302 .300	6.611 .606 .603 .601	9. 917 . 909 . 905 . 901	13. 223 . 212 . 207 . 201	19.835 .818 .810 .802			
30	00	3. 298	6, 595	9. 893	13, 190	19. 785			

Table 2.—Coordinates for the projection of maps, scale $\frac{1}{48000}$ —Continued

T		Abscissas	of develop	ed paralle		Ordinates of deve	loped para l distances	allel and
Latitude of parallel		Lon	gitude inte	erval		I Letitude and longi. William of		Ordinate of devel-
	2½′	5'	7½′	10'	15'	tude intervals	ional distance	oped parallel
30 00 05 07½ 10	Inches 3. 298 . 295 . 293 . 292	Inches 6. 595 . 589 . 587 . 584	Inches 9. 893 . 884 . 880 . 876	Inches 13. 190 . 179 . 174 . 168	Inches 19. 785 . 769 . 760 . 752	For latitude 30° $\begin{cases} 21/2 \\ 5 \\ 71/2 \end{cases}$	7. 577 11. 365 15. 153	Inch 0.001 .002 .005 .010
$15 \\ 20 \\ 22\frac{1}{2} \\ 25$	3. 289 . 286 . 285 . 284	6. 578 . 573 . 570 . 567	9. 868 . 859 . 855 . 851	13. 157 . 146 . 140 . 135	19. 735 . 719 . 710 . 702	121/2	22, 730	0.001
30 35 37½ 40	3. 281 . 278 . 277 . 275	6, 562 . 556 . 553 . 551	9, 843 834 830 826	13. 123 . 112 . 107 . 101	19. 685 . 668 . 660 . 652	For latitude 31° 12½ 15° 12½	7 578	. 001 . 002 . 005 . 010 . 015 . 022
45 50 52½ 55	3. 272 . 270 . 268 . 267	6. 545 . 539 . 536 . 534	9, 817 . 809 . 805 . 800	13. 090 . 078 . 073 . 067	19. 635 . 618 . 609 . 601	For latitude 32°	3. 789 7. 579 11. 369	0.001 .002 .006
31 00 05 07½ 10	3. 264 . 261 . 260 . 258	6. 528 . 522 . 519 . 517	9. 792 . 783 . 779 . 775	13. 056 . 044 . 039 . 033	19. 584 . 567 . 558 . 550	For latitude 32 10 121/2 15	15, 158 18, 948 22, 737	. 010 . 016 . 022
15 20 22½ 25	3. 255 . 253 . 251 . 250	6. 511 . 505 . 502 . 499	9. 766 . 758 . 753 . 749	13. 022 . 010 . 004 12. 999	19. 532 . 515 . 507 . 498	For latitude 33° $\begin{pmatrix} 2\frac{1}{5} \\ 7\frac{1}{20} \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $	3. 790 7. 580 11. 370 15. 161	0.001 .003 .006 .010
30 35 37½ 40	3. 247 . 244 . 242 . 241	6. 494 . 488 . 485 . 482	9. 740 . 732 . 727 . 723	12. 987 . 976 . 970 . 964	19. 481 . 464 . 455 . 446	12½ 15	18. 951 22, 741	.016
45 50 52½ 55	3. 238 . 235 . 234 . 232	6. 476 . 470 . 468 . 465	9. 714 . 706 . 701 . 697	12. 953 . 941 . 935 . 929	19. 429 . 411 . 403 . 394			
32 00 05 07½ 10	3. 229 . 226 . 225 . 224	6. 459 . 453 . 450 . 447	9. 688 . 679 . 675 . 671	12. 918 . 906 . 900 . 894	19. 376 . 359 . 350 . 341			
$15 \ 20 \ 22\frac{1}{2}$ 25	3. 221 . 218 . 216 . 215	6. 441 . 435 . 432 . 429	9. 662 . 653 . 649 . 644	12. 882 . 871 . 865 . 859	19. 324 . 307 . 297 . 288			
30 35 37½ 40	3. 212 . 209 . 207 . 206	6. 424 . 418 . 415 . 412	9. 635 . 626 . 622 . 617	12.847 .835 .829 .823	19. 271 . 253 . 244 . 235			
45 50 52½ 55	3. 203 . 200 . 198 . 197	6. 406 . 400 . 397 . 394	9. 608 . 600 . 595 . 591	12. 811 . 799 . 793 . 787	19. 217 . 199 . 190 . 181			
33 00	3. 194	6. 388	9. 582	12.775	19. 163			

Table 2.—Coordinates for the projection of maps, scale 48000—Continued

0.00	nd.		Abscissas o	of develope	ed parallel		Ordinates of devel meridional		allel and
Latitu of paral			Long	gitude inte	rval		Latitude and longi-	Merid- ional	Ordinate of devel-
		2½′	5'	71/2'	10′	15'	tude intervals	distance	oped parallel
33	00 05 07½ 10	Inches 3, 194 . 191 . 189 . 188	Inches 6.388 .382 .379 .376	Inches 9. 582 . 573 . 568 . 564	Inches 12. 775 . 763 . 757 . 751	Inches 19.163 .145 .136 .127	For latitude 33° $\begin{cases} 2\frac{1}{2} \\ 5 \\ 7\frac{1}{2} \\ 10 \\ 12\frac{1}{2} \end{cases}$	Inches 3, 790 7, 580 11, 370 15, 161 18, 951	Inch 0. 00 . 00 . 00 . 01 . 01
	15 20 22½ 25	3. 185 - 182 - 180 - 179	6. 370 . 364 . 361 . 358	9. 554 . 545 . 541 . 536	12. 739 . 727 . 721 . 715	19. 109 . 091 . 082 . 073	(15)	22. 741 3. 791	0, 00
;	30 35 37½ 40	3. 176 . 173 . 171 . 170	6.351 .345 .342 .339	9. 527 . 518 . 513 . 509	12. 703 . 691 . 685 . 679	19. 054 . 036 . 027 . 018	For latitude 34° 10' 121' 15' 15' 15' 15' 15' 15' 15' 15' 15' 1	7. 581 11. 372 15. 163 18. 954 22. 745	. 003 . 000 . 010 . 010
	45 50 52½ 55	3. 167 . 164 . 162 . 160	6. 333 . 327 . 324 . 321	9.500 .491 .486 .481	12.666 .654 .648 .642	18, 999 . 981 . 972 . 963	For latitude 35° $\begin{pmatrix} 2^{1/2} \\ 5 \\ 7^{1/2} \end{pmatrix}$	11. 374	0. 001 . 003
	$00 \\ 05 \\ 07\frac{1}{2} \\ 10$	3. 157 . 154 . 153 . 151	6.315 .309 .305 .302	9, 472 , 463 , 458 , 453	12. 629 . 617 . 611 . 605	18, 944 . 926 . 916 . 907	10 121/ ₂ 15	15. 166 18. 957 22. 748	.010
	15 20 $22\frac{1}{2}$ 25	3. 148 . 145 . 143 . 142	6. 296 . 290 . 287 . 284	9. 444 . 435 . 430 . 426	12, 592 , 580 , 574 , 567	18, 888 . 870 . 860 . 851	For latitude 36° $\begin{cases} \frac{21}{5} \\ 71/2 \\ 10 \\ 121/2 \end{cases}$	3. 792 7. 584 11. 376 15. 168 18. 961	0, 001 - 006 - 016 - 016
	30 35 37½ 40	3. 139 . 136 . 134 . 132	6. 277 . 271 . 268 . 265	9. 416 . 407 . 402 . 397	12. 555 . 542 . 536 . 530	18. 832 . 814 . 804 . 795	(15)2	22, 752	.024
	45 50 52½ 55	3. 129 . 126 . 125 . 123	6. 259 . 252 . 249 . 246	9.388 .379 .374 .369	12, 517 , 505 , 498 , 492	18. 776 . 757 . 748 . 738			
	00 05 07½ 10	3. 120 . 117 . 115 . 114	6. 240 . 233 . 230 . 227	9. 360 . 350 . 345 . 341	12. 480 • 467 • 460 • 454	18. 719 . 700 . 691 . 681			
	15 20 22½ 25	3.110 .107 .106 .104	6. 221 . 214 . 211 . 208	9.331 .321 .317 .312	12. 441 . 429 . 422 . 416	18, 662 . 643 . 633 . 624			
	30 35 37½ 40	3. 101 . 098 . 096 . 094	6. 202 . 195 . 192 . 189	9. 302 . 293 . 288 . 283	12. 403 . 390 . 384 . 377	18. 605 . 585 . 576 . 566			
	45 50 52 ¹ / ₂ 55	3. 091 . 088 . 086 . 085	6. 182 . 176 . 173 . 169	9. 273 • 264 • 259 • 254	12, 365 . 352 . 345 . 339	18. 547 . 528 . 518 . 508			
36	00	3. 081	6, 163	9. 244	12. 326	18. 489			

Table 2.—Coordinates for the projection of maps, scale 48 100 6 — Continued

Lati	tude		Abscissas	of develop	ed parallel		Ordinates of devel meridional	oped paral distances	llel and
(of allel		Long	gitude inte	erval		Latitude and longi-	Merid-	Ordinate of devel-
		2½′	5′	7½′	10′	15'	tude intervals	ional distance	oped parallel
° 36	00 05 07½ 10	Inches 3. 081 . 078 . 077 . 075	Inches 6. 163 . 156 . 153 . 150	Inches 9. 244 . 235 . 230 . 225	Inches 12, 326 .313 .306 .300	Inches 18. 489 . 469 . 459 . 450	For latitude 36° $\begin{cases} 2^{1/2} \\ 5 \\ 7^{1/2} \\ 10 \\ 10 \end{cases}$	Inches 3. 792 7. 584 11. 376 15. 168	Inch 0.001 .003 .006
	15 20 22½ 25	3. 072 . 068 . 067 . 065	6. 143 . 137 . 134 . 130	9. 215 . 205 . 200 . 195	12. 287 . 274 . 267 . 261	18. 430 . 411 . 401 . 391	12½	18. 961 22. 752	.016
	30 35 37½ 40	3. 062 . 059 . 057 055	6. 124 . 117 . 114 . 111	9. 186 . 176 . 171 . 166	12. 248 . 234 . 228 . 221	.371 .352 .342 .332	For latitude 37° $\begin{cases} 2\frac{1}{5} \\ 5 \\ 7\frac{1}{2} \\ 10 \\ 12\frac{1}{2} \\ 15 \end{cases}$	3. 793 7. 585 11. 378 15. 171 18. 964 22. 756	0.001 .003 .006 .011 .017
	45 50 52½ 55	3. 052 . 049 . 047 . 045	6. 104 . 097 . 094 . 091	9. 156 . 146 . 141 . 136	12. 208 . 195 . 188 . 182	18. 312 . 292 . 282 . 272	For latitude 38° $\begin{cases} 2^{1/2} \\ 5 \\ 7^{1/2} \end{cases}$	3. 793 7. 587 11. 380	0. 001 . 003 . 006
37	00 05 07½ 10	3. 042 . 039 . 037 . 035	6. 084 . 077 . 074 . 071	9. 126 . 116 . 111 . 106	12. 168 . 155 . 148 . 142	18, 252 , 233 , 223 , 213	10 121111111 55 110 121/2 15	15. 173 18. 967 22. 760	.011 .017 .024
	$\begin{array}{c c} 15 \\ 20 \\ 221/2 \\ 25 \end{array}$	3. 032 . 029 . 027 . 025	6. 064 . 057 . 054 . 051	9. 096 . 086 . 081 . 076	12, 128 . 115 . 108 . 102	18. 193 . 172 . 162 . 152	For latitude 39° $\begin{cases} 2\frac{1}{2} \\ 5 \\ 7\frac{1}{2} \\ 10 \\ 10 \end{cases}$	3. 794 7. 588 11. 382 15. 176	0, 001 , 003 , 006 , 011
	30 35 37½ 40	3. 022 . 019 . 017 . 015	6. 044 . 037 . 034 . 031	9. 066 . 056 . 051 . 046	12. 088 . 075 . 068 . 061	18. 132 . 112 . 102 . 092	121/2 115	18. 970 22. 764	.017
	45 50 52½ 55	3. 012 . 009 . 007 . 005	6. 024 . 017 . 014 . 010	9. 036 . 026 . 021 . 015	12. 048 . 034 . 027 . 021	18. 072 . 051 . 041 . 031			
	00 05 07½ 10	3. 002 2. 998 . 997 . 995	6. 004 5. 997 . 993 . 990	9. 005 8. 995 . 990 . 985	12. 007 11. 994 . 987 . 980	18. 011 17. 990 . 980 . 970			
	15 20 22½ 25	2. 992 . 988 . 986 . 985	5. 983 . 976 . 973 . 969	8. 975 . 964 . 959 . 954	11. 966 . 953 . 946 . 939	17, 949 929 919 908			
	30 35 37½ 40	2. 982 . 978 . 976 . 974	5. 963 . 956 . 952 . 949	8. 944 . 934 . 928 . 923	11. 925 . 911 . 905 . 898	17. 888 . 867 . 857 . 846			
	45 50 52½ 55	2. 971 . 968 . 966 . 964	5. 942 . 935 . 932 . 928	8. 913 . 903 . 897 . 892	11. 884 . 870 . 863 . 856	17. 826 . 805 . 795 . 784			
39 (00	2. 961	5. 921	8. 882	11. 842	17. 763			

Table 2.—Coordinates for the projection of maps, scale 488000—Continued

			Abscissas	of develope	ed parallel		Ordinates of deve	loped para al distances	llel and
Latiti of para			Lon	gitude inte	rval		Latitude and longi-	Merid- ional	Ordinate of devel-
		21/2'	5′	7½'	10'	15'	tude intervals	distance	oped parallel
1	00 05 07 ¹ / ₂	Inches 2. 961 . 957 . 955 . 954	Inches 5. 921 . 914 . 911 . 907	Inches 8, 882 .871 .866 .861	Inches 11.842 .828 .821 .814	Inches 17. 763 . 743 . 732 . 722	For latitude 39° $\begin{cases} 29 \\ 5 \\ 71 \\ 10 \end{cases}$	2 3. 794 7. 588 11. 382 15. 176	Inch 0.001 .003 .006
:	15 20 22½ 25	2. 950 . 947 . 945 . 943	5.900 .893 .890	8.850 .840 .835 .829	11.800 .786 .779 .772	17. 701 . 680 . 669 . 659	[12]	22. 764	0,001
	30 35 37½ 40	2. 940 . 936 . 934 . 933	5. 879 . 872 . 869 . 865	8.819 .808 .803 .798	11.758 .744 .737 .730	17. 638 . 617 . 606 . 595	For latitude 40° 122	7. 589 11. 384 15. 179	.000 .000 .011 .017
	45 50 52½ 55	2. 929 . 926 . 924 . 922	5. 858 . 851 . 848 . 844	8. 787 . 777 . 771 . 766	11.716 .702 .695 .688	17. 574 . 553 . 543 . 532	For latitude 41° $\begin{cases} \frac{21}{57} \\ 71 \\ 1 \end{cases}$	7. 591 11. 386	0. 001 . 003
	00 05 07 ¹ / ₂ 10	2.918 .915 .913 .911	5. 837 . 830 . 826 . 823	8. 755 . 745 . 739 . 734	11. 674 . 660 . 652 . 645	17. 511 489 479 468	10 121 115	15. 181 18. 977 22. 772	.017
	15 20 22½ 25	2. 908 . 904 . 902 . 901	5. 816 . 808 . 805 . 801	8. 723 . 713 . 707 . 702	11.631 .617 .610 .603	17. 447 . 425 . 414 . 404	For latitude 42° $\begin{cases} 2! \\ 5! \\ 17! \\ 10! \\ 12! \end{cases}$	2 11. 388 15. 184	0.00 .00 .00 .01
	30 35 37½ 40	2.897 .893 .892 .890	5. 794 . 787 . 783 . 780	8. 691 . 680 . 675 . 670	11. 588 . 574 . 567 . 559	17. 382 . 361 . 350 . 339	(15)	22. 776	023
	45 50 52½ 55	2. 886 . 883 . 881 . 879	5. 773 . 765 . 762 . 758	8. 659 . 648 . 643 . 637	11. 545 . 531 . 523 . 516	17. 318 • 296 • 285 • 274			
	00 05 07½ 10	2. 875 . 872 . 870 . 868	5. 751 . 744 . 740 . 736	8. 626 . 615 . 610 . 605	11.502 .487 .480 .473	17. 253 . 231 . 220 . 209			
	15 20 22½ 25	2. 864 . 861 . 859 . 857	5. 729 . 722 . 718 . 714	8. 594 . 583 . 577 . 572	11. 458 • 444 • 436 • 429	17. 187 . 165 . 154 . 143			
	30 35 37½ 40	2.854 .850 .848 .846	5.707 .700 .696 .692	8. 561 . 550 . 544 . 539	11.414 .400 .392 .385	17. 122 . 100 . 089 . 078			
	45 50 52½ 55	2. 843 . 839 . 837 . 835	5. 685 - 678 - 674 - 670	8. 528 . 517 . 511 . 506	11.370 .356 .348 .341	17. 056 . 033 . 022 . 011			
42	00	2.832	5. 663	8. 495	11.326	16, 989			

Table 2.—Coordinates for the projection of maps, scale 45000—Continued

Latitude		Abscissas	of develor	ed paralle	1	Ordinates of devel	oped para distances	allel and
of parallel		Lon	gitude int	erval		Latitude and longi-	Merid-	Ordinate
	2½′	5′	71/2'	10'	15'	tude intervals	ional distance	of devel oped parallel
0 7 42 00 05 07 ¹ ⁄ ₂ 10	Inches 2. 832 . 828 . 826 . 824	Inches 5. 663 656 652 648	Inches 8, 495 483 478 472	Inches 11. 326 .311 .304 .297	Inches 16. 989 . 967 . 956 . 945	For latitude 42° $\begin{cases} \frac{2!}{5}, \\ \frac{7!}{2} \end{cases}$	Inches 3, 796 7, 592 11, 388 15, 184	Inch 0.001 .003 .006 .011
$15 \ 20 \ 22\frac{1}{2}$	2. 820 . 817 . 815 . 813	5, 641 . 633 . 630 . 626	8. 461 . 450 . 445 . 439	11. 282 . 267 . 259 . 252	16. 923 . 900 . 889 . 878	121/ ₂ 1/ ₂ 15		.017
30 35 37½ 40	2.809 .806 .804 :.802	5. 619 . 611 607 . 604	8. 428 . 417 . 411 . 405	11, 237 , 222 , 215 , 207	16. 856 . 833 . 822 . 811	For latitude 43° $\begin{cases} 2\frac{1}{5} \\ 5\\ 7\frac{7}{2} \\ 10\\ 12\frac{1}{2} \\ 15 \end{cases}$	3, 797 -7, 593 11, 390 15, 187 18, 984 22, 780	0.001 .003 .006 .011 .017
45 50 52½ 55	2. 798 . 794 . 792 . 791	5. 596 . 589 . 585 . 581	8. 394 . 383 . 377 . 372	11. 192 . 177 . 170 . 162	16. 788 . 766 . 754 . 743	For latitude 44° $\begin{cases} 2\frac{1}{2} \\ 57^{\frac{1}{2}} \\ 10 \end{cases}$	3. 797 7. 595 11. 392	0.001 .003 .006
43 00 05 07 ¹ / ₂ 10	2. 787 . 783 . 781 . 779	5. 574 . 566 . 562 . 558	8. 360 . 349 . 343 . 338	11. 147 . 132 . 124 . 117	16. 721 . 698 . 687 . 675	10 121/2 121/2	15. 189 18. 987 • 22. 784	.011 .017 .025
15 20 22½ 25	2.775 .772 .770 .768	5, 551	8. 326 . 315 . 309 . 304	11. 102 . 087 . 079 . 071	16. 653 . 630 . 619 . 607	For latitude 45° { \begin{aligned} \cdot 21/2 \\ 5 \\ 71/2 \\ 10 \\ 121/4 \end{aligned} \end{aligned}	3. 798 7. 596 11. 394 15. 192	0.001 .003 .006 .011
30 35 37½ 40	2. 764 . 760 . 758 . 756	5. 528 . 520 . 517 . 513	8. 292 . 281 . 275 . 269	11. 056 . 041 . 033 . 026	16. 584 . 562 . 550 . 539	12½	18. 990 22. 788	.017
45 50 52½ 55	2. 753 . 749 . 747 . 745	5. 505 . 498 . 494 . 490	8. 258 . 246 . 241 . 235	11. 011 10. 995 . 988 . 980	16. 516 . 493 . 481 . 470			
44 00 05 07½ 10	2. 741 . 737 . 735 . 733	5. 482 . 475 . 471 . 467	8. 223 . 212 . 206 . 200	10. 965 . 949 . 942 . 934	16. 447 . 424 . 412 . 401			
$15 \\ 20 \\ 221/2 \\ 25$	2. 730 . 726 . 724 . 722	5. 459 . 452 . 448 . 444	8. 189 . 177 . 171 . 166	10.918 .903 .895 .888	16. 378 . 355 . 343 . 331			
30 35 37½ 40	2. 718 . 714 . 712 . 710	5. 436 . 428 . 424 . 421	8. 154 . 142 . 137 . 131	10. 872 . 857 . 849 . 841	16. 308 . 285 . 273 . 262			
45 50 52½ 55	2. 706 . 703 . 701 . 699	5. 413 . 405 . 401 . 397	8.119 .108 .102 .096	10. 826 . 810 . 802 . 794	16. 238 . 215 . 203 . 192			
45 00	2. 695	5, 389	8.084	10.779	16. 168			

Table 2.—Coordinates for the projection of maps, scale 48000—Continued

		Abscissas o	f develope	d parallel		Ordinates of devel meridional	oped para distances	ilel and
Latitude of parallel		Long	itude inter	val		Latitude and longi- tude intervals	Merid- ional	Ordinate of devel- oped
	2½′	5'	7½'	10'	15'	patto intoi vans	distance	parallel
45 00 05 071 10	Inches 2, 695 . 691 . 689 . 687	Inches 5. 389 . 382 . 378 . 374	Inches 8. 084 . 072 . 066 . 061	Inches 10, 779 . 763 . 755 . 747	Inches 16. 168 . 145 . 133 . 121	For latitude 45° { 21/2 5 7 1/2 10 121/2	7. 596 11, 394 15. 192 18. 990	Inch 0.001 .003 .006 .011 .017
15 20 22½ 25	2. 683 . 679 . 877 . 675	5. 368 . 358 . 354 . 350	8. 049 . 037 . 031 . 025	10. 732 . 716 . 708 . 700	16. 098 . 074 . 062 . 051	{ 2½	22. 788 3. 799	0.001
30 35 371 40	2. 671 . 667 . 665 . 663	5. 342 . 334 . 330 . 327	8. 014 . 002 7. 996 . 990	10. 685 . 669 . 661 . 653	16. 027 . 003 15. 991 . 980	For latitude 46° \(\begin{array}{c} 5 \\ 7\\ 10 \\ 12\\ 15 \end{array} \]	15, 195	. 003 . 006 . 011 . 017 . 025
45 50 52 ¹ 55	2. 659 . 655 . 653 . 651	5. 319 . 311 . 307 . 303	7. 978 . 966 . 960 . 954	10. 637 . 621 . 613 . 606	15. 956 . 932 . 920 . 908	For latitude 47°	11, 398	0. 001 . 003 . 006
46 00 05 071 10	2. 647 . 643 . 641 . 639	5, 295 , 287 , 283 , 279	7. 942 . 930 . 924 . 918	10. 590 . 574 . 566 . 558	15. 884 . 861 . 849 . 837	For latitude 47 (10 121/2) 15	15. 197 18. 997 22. 796	.011 .017 .025
15 20 22) 25	2. 635 . 631 . 629 . 627	5. 271 . 263 . 259 . 255	7. 906 . 894 . S88 . 882	10. 542 . 526 . 518 . 510	15. 813 . 789 . 777 . 765	For latitude 48° $\begin{cases} \frac{2^{1/2}}{5} \\ 7^{1/2} \\ 10 \\ 12^{1/2} \end{cases}$	7. 600 11. 400 15. 200	0.001 .003 .006 .011
30 35 37 40	2. 623 . 619 . 617 . 615	5. 247 . 239 . 235 . 231	7. 870 . 858 . 852 . 846	10. 494 . 478 . 470 . 462	15. 741 . 717 . 705 . 693	(15'	22. 800	. 025
45 50 52 55	2. 611 . 607 . 605 . 603	5. 223 . 215 . 211 . 207	7. 834 . 822 . 816 . 810	10. 446 . 430 . 422 . 413	15. 669 . 644 . 632 . 620			
47 00 05 07 10	. 593	5, 199 . 191 . 187 . 182	7. 798 . 786 . 780 . 774	10, 397 . 381 . 373 . 365	15, 596 . 572 . 560 . 547			
15 20 22 25	. 583	5. 174 . 166 . 162 . 158	7. 762 . 749 . 743 . 737	10.349 .332 .324 .316	15. 523 . 499 . 486 . 474			
30 35 37 40	. 571 . 569	5. 150 . 142 . 138 . 134	7. 725 . 713 . 707 . 700	10. 300 . 284 . 275 . 267	15. 450 . 425 . 413 . 401			
45 50 52 55	. 559	5. 125 . 117 . 113 . 109	7. 688 . 676 . 670 . 664	10, 251 . 235 . 226 . 218	15. 376 . 352 . 339 . 327			
48 00	2. 550	5. 101	7. 651	10. 202	15. 303			

Table 2.—Coordinates for the projection of maps, scale 48000—Continued

		1	Abscissas o	f develope	d parallel		Ordinates of devel meridional	oped para distances	llel and
Latit of para	f		Long	itude inter	val		Latitude and longi- tude intervals	Merid- ional	Ordinate of devel- oped
		2½'	5′	71/2'	10′	15′	tudo inter vans	distance	parallel
• 48	00 05 07½ 10	Inches 2, 550 546 544 544	Inches 5. 101 . 093 . 088 . 084	Inches 7. 651 639 633 627	Inches 10, 202 . 185 . 177 . 169	Inches 15, 303 278 266 253	For latitude 48° $\begin{cases} 21/2 \\ 57 \\ 71/2 \\ 10 \\ 121/2 \end{cases}$	7. 600 11. 400 15. 200	Inch 0.001 .003 .006 .011 .017
	15 20 $22\frac{1}{2}$ 25	2, 538 . 534 . 532 . 530	5. 076 - 068 - 064 - 060	7. 614 . 602 . 596 . 589	10. 152 . 136 . 128 . 119	15. 228 . 204 . 191 . 179	(15 °)	22. 800	0.001
	30 35 37½ 40	2. 526 . 522 . 519 . 517	5, 051 . 043 . 039 . 035	7. 577 . 565 . 558 . 552	10. 103 . 086 . 078 . 070	15. 154 . 129 . 117 . 104	For latitude 49° 10 121.	11, 402 15, 203	.006 .011 .017 .025
	45 50 52½ 55	2. 513 . 509 . 507 . 505	5. 026 . 018 . 014 . 010	7. 540 . 527 . 521 . 515	10. 053 , 036 , 028 , 020	15. 079 . 055 . 042 . 030	For latitude 50° $\begin{cases} 2^{1} \\ 5 \\ 7^{1} \\ 10 \end{cases}$	7. 603 11. 404	0.001 .003 .006
49	00 05 07½ 10	2. 501 . 497 . 494 . 492	5, 001 4, 993 , 989 , 985	7. 502 . 490 . 483 . 477	10. 003 9. 986 . 978 . 970	15. 005 14. 979 . 967 . 954	For latitude 50° 10′ 121′ 15′	15. 205 19. 007 22. 808	.011 .017 .025
	15 20 22½ 25	2. 488 . 484 . 482 . 480	4. 976 . 968 . 964 . 960	7. 465 . 452 . 446 . 439	9, 953 . 936 . 928 . 919	14. 929 . 904 . 892 . 879	For latitude 51° $\begin{cases} 21\\ 5\\ 71\\ 10\\ 121 \end{cases}$	7. 604 11. 406 15, 208 2 19, 011	0.001 .003 .006 .011 .017
Þ	30 35 37½ 40	2. 476 . 471 . 469 . 467	4. 951 . 943 . 939 . 934	7. 427 . 414 . 408 . 402	9. 902 . 886 . 877 . 869	14. 854 . 829 . 816 . 803	(15	22. 812	. 024
	45 50 52½ 55	2. 463 . 459 . 457 . 455	4. 926 . 918 . 913 . 909	7. 389 . 376 . 370 . 364	9, 852 .835 .827 .818	14. 778 . 753 . 740 . 727			
50	00 05 07½ 10	2. 450 . 446 . 444 . 442	4, 901 .892 .888 .884	7. 351 . 338 . 332 . 326	9.801 .784 .776 .767	14.702 .676 .664 .651			
	15 20 22½ 25	2. 438 . 433 . 431 . 429	4, 875 . 867 . 862 . 858	7. 313 . 300 . 294 . 287	9.750 .733 .725 .716	14. 625 . 600 . 587 . 574			
	30 35 37½ 40	2. 425 . 421 . 418 . 416	4. 850 . 841 . 837 . 833	7. 274 . 262 . 255 . 249	9. 699 . 682 . 674 . 665	14. 549 . 523 . 510 . 498	i		
	45 50 521 55	2. 412 . 408 . 406 . 403	4. 824 .815 .811 .807	7. 236 . 223 . 217 . 210	9. 648 . 631 . 622 . 614	14. 472 . 446 . 433 . 420			
51	. 00	2, 399	4. 798	7. 197	9, 596	14. 395			

Table 3.—Coordinates for the projection of maps, scale 31880

			Absci	ssas of dev	veloped p	arallel		Ordinates of de meridio			el and
Lati tude parall	of			Longitud	e interval			Latitude and lor		Merid- ional	Ordi- nate of de-
		1'	11/4'	2½′	33/4'	5'	7½'	tude intervals	3	distance	veloped parallel
08	0 2½ 3¾	Inches 2, 306 306 306 306 306 306	Inches 2. 882 . 882 . 882 . 882 . 882	Inches 5. 764 . 764 . 764 . 764 . 764	Inches 8. 646 646 646 646 646	Inches 11. 529 . 529 . 529 . 529 . 529 . 529	Inches 17. 293 . 293 . 293 . 293 . 293	For latitude 0°	$ \begin{array}{c} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \end{array} $	11, 450	Inch 0, 000 . 000 . 000 . 000 . 000
12 14 17	0 1½ 2½ 5 7½ 8¾	2.306 .306 .306 .306 .306 .306	2. 882 . 882 . 882 . 882 . 882 . 882	5. 764 . 764 . 764 . 764 . 764 . 764	8. 646 . 646 . 646 . 646 . 646	11. 529 • 528 • 528 • 528 • 528 • 528	17. 293 . 293 . 293 . 293 . 293 . 293		10 12½ 15	22. 901 28. 626 34. 352	.000
26 25 28 28		2. 306 . 306 . 306 . 306 . 306	2. 882 . 882 . 882 . 882	5. 764 . 764 . 764 . 764 . 764	8. 646 . 646 . 646 . 646	11, 528 . 528 . 528 . 528 . 528	17. 293 . 293 . 292 . 292 . 292	For latitude 1°	$ \begin{array}{c} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \\ 12\frac{1}{2} \end{array} $	11. 451 14. 313 17. 176 22. 901	0.000 .000 .000 .000 .000 .000
38	$2\frac{1}{2}$ $3\frac{3}{4}$	2, 306 . 306 . 306 . 306 . 306	2, 882 .882 .882 .882 .882	5.764 .764 .764 .764	8. 646 . 646 . 646 . 646	11. 528 . 528 . 528 . 528 . 528	17. 292 . 292 . 292 . 292 . 292		15	34. 352	0.000
4: 4: 4:	0 1½ 2½	2. 306 . 306 . 306 . 306 . 305 . 305	2. 882 . 882 . 882 . 882 . 882 . 882	5. 764 . 764 . 764 . 764 . 764 . 764	8. 646 . 646 . 646 . 646 . 646 . 646	11. 528 . 528 . 528 . 528 . 527 . 527	17. 292 . 292 . 291 . 291 . 291 . 291	For latitude 2°	$ \begin{pmatrix} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \\ 12\frac{1}{2} \\ 15 \end{pmatrix} $	11. 451 14. 313 17. 176 22. 901	. 000 . 000 . 000 . 001 . 001 . 002
5	21/2	2.305 .305 .305 .305 .305	2. 882 . 882 . 882 . 882 . 882	5. 764 . 764 . 764 . 763 . 763	8. 645	11. 527 . 527 . 527 . 527 . 527	17. 291 . 291 . 291 . 290 . 290				
0.	12½ 13¾	2. 305 . 305 . 305 . 305 . 305	2. 882 . 882 . 882 . 882 . 882	5.763 .763 .763 .763 .763	8. 645 . 645 . 645 . 645	11. 527 . 527 . 527 . 527 . 526	17. 290 . 290 . 290 . 290 . 290				
1 1 1	0 $1^{1}4$ $2^{1}/2$ 5 $7^{1}/2$ $8^{8}4$	2. 305 . 305 . 305 . 305 . 305 . 305	2. 882 . 882 . 881 . 881 . 881	5. 763 . 763 . 763 . 763 . 763 . 763	8. 645 . 645 . 644 . 644 . 644	11. 526 . 526 . 526 . 526 . 526 . 526	17. 289 . 289 . 289 . 289 . 288 . 288				
2 2 2 2	20 22½ 25 26¼ 27½	2. 305 . 305 . 305 . 305 . 305	2. 881 . 881 . 881 . 881 . 881	5. 763 . 763 . 763 . 762 . 762	8. 644 . 644 . 644 . 644	11. 525 . 525 . 525 . 525 . 525	17. 288 . 288 . 288 . 287 . 287	-			
3 3 3	$ \begin{array}{c} 30 \\ 32\frac{1}{2} \\ 33\frac{3}{4} \\ 35 \\ 37\frac{1}{2} \end{array} $	2, 305 . 305 . 305 . 305 . 305	2, 881 .881 .881 .881 .881	5. 762 . 762 . 762 . 762 . 762	8. 643 . 643 . 643 . 643	11. 525 . 524 . 524 . 524 . 524	17. 287 • 287 • 286 • 286 • 286				
4 4 4 4	10 11½ 12½ 15 17½ 18¾	2. 305 . 305 . 305 . 305 . 305 . 305	2. 881 . 881 . 881 . 881 . 881 . 881	5. 762 . 762 . 762 . 762 . 761 . 761	8. 643 . 643 . 642 . 642 . 642	11. 524 . 524 . 523 . 523 . 523 . 523 . 523	17. 286 • 285 • 285 • 285 • 284 • 284				
5 5 5 5	50 52½ 55 56¼ 57½	2.305 .304 .304 .304 .304	2.881 .881 .881 .881 .880	5, 761 . 761 . 761 . 761 . 761	8. 642 . 642 . 642 . 642 . 641	11, 523 . 522 . 522 . 522 . 522 . 522	17. 284 . 284 . 283 . 283 . 283				
	00	2. 304	2.880	5. 761	8. 641	11, 522	17. 282				

Table 3.—Coordinates for the projection of maps, scale 3 1 6 8 0 — Continued

		Absci	ssas of dev	veloped pa	arallel		Ordinates of develo meridional		el and
Lati- tude of parallel			Longitud	e interval			Latitude and longi-	Merid-	Ordi- nate of de-
	1′	11/4'	2½'	33/4' . ;	5′	7½'	tude intervals	distance	veloped parallel
00 02 ¹ / ₂ 03 ³ / ₄ 05 07 ¹ / ₂	Inches 2, 304 304 304 304 304	Inches 2, 880 880 880 880 880	Inches 5. 761 . 761 . 761 . 760 . 760	Inches 8. 641 . 641 . 641 . 641 . 640	Inches 11. 522 . 521 . 521 . 521 . 521	Inches 17, 282 282 282 281 281	, , , , , , , , , , , , , , , , , , ,	11. 451 14. 313	Inch 0.000 .000 .000 .000 .000 .000 .000
$ \begin{array}{c} 10 \\ 11\frac{1}{4} \\ 12\frac{1}{2} \\ 15 \\ 17\frac{1}{2} \\ 18\frac{3}{4} \end{array} $	2. 304 . 304 . 304 . 304 . 304	2. 880 . 880 . 880 . 880 . 880 . 880	5. 760 . 760 . 760 . 760 . 760 . 760	8. 640 . 640 . 640 . 640 . 639	11. 520 . 520 . 520 . 520 . 519 . 519	17. 281 . 280 . 280 . 280 . 279 . 279	10 12 ¹ 15	22, 901 28, 627 .34, 352	.001
20 22½ 25 26¼ 27½	2. 304 . 304 . 304 . 304 . 304	2, 880 . 880 . 880 . 880	5. 760 . 759 . 759 . 759 . 759	8. 639 . 639 . 639 . 639 . 639	11. 519 . 519 . 518 . 518 . 518	17. 279 . 278 . 278 . 277 . 277	For latitude 3° (6) 71 10 123	11. 451 14. 314 17. 176 22. 902	0.000 .000 .000 .000 .001 .001 .002
30 $32\frac{1}{2}$ $33\frac{3}{4}$ 35 $37\frac{1}{2}$	2. 304 . 303 . 303 . 303 . 303	2.879 .879 .879 .879 .879	5. 759 . 759 . 759 . 758 . 758	8, 638 . 638 . 638 . 637	11. 518 . 517 . 517 . 517 . 516	17. 276 . 276 . 276 . 275 . 275	(15)	34. 353	0.000
40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	2. 303 . 303 . 303 . 303 . 303 . 303	2. 879 . 879 . 879 . 879 . 879 . 879	5. 758 . 758 . 758 . 758 . 757 . 757	8. 637 . 637 . 637 . 637 . 636	11.516 .516 .516 .515 .515	17. 274 . 274 . 274 . 273 . 272 . 272	For latitude 4° 61 71 10 121 15	8. 588 11. 451 14. 314 17. 177 22. 902	. 000 . 001 . 001 . 001 . 002 . 004 . 005
50 52½ 55 56¼ 56¼ 57½	2. 303 . 303 . 303 . 303 . 303	2. 879 . 879 . 878 . 878 . 878	5. 757 . 757 . 757 . 757 . 757	8. 636 . 636 . 635 . 635	11. 515 . 514 . 514 . 513 . 513	17. 272 . 271 . 271 . 270 . 270		1	
3 00 02½ 03¾ 05 07½	2. 303 . 302 . 302 . 302 . 302	2. 878 . 878 . 878 . 878 . 878	5. 756 . 756 . 756 . 756 . 756	8. 635 . 634 . 634 . 634	11. 513 . 512 . 512 . 512 . 512	17, 269 . 269 . 268 . 268 . 267			
$ \begin{array}{c} 10 \\ 11\frac{1}{4} \\ 12\frac{1}{2} \\ 15 \\ 17\frac{1}{2} \\ 18\frac{3}{4} \end{array} $	2.302 .302 .302 .302 .302 .302	2.878 .878 .878 .878 .877	5. 756 . 755 . 755 . 755 . 755 . 755	8. 633 . 633 . 633 . 632 . 632	11.511 .511 .511 .510 .510 .509	17. 267 . 266 . 266 . 265 . 264 . 264			
20 22½ 25 26¼ 27½	2.302 .302 .302 .302 .302	2.877 .877 .877 .877	5. 755 . 754 . 754 . 754 . 754	8. 632 . 632 . 631 . 631 . 631	11, 509 . 509 . 508 . 508 . 508	17. 264 . 263 . 262 . 262 . 262			
30 32½ 33¾ 35 37½	2. 301 . 301 . 301 . 301 . 301	2. 877 . 877 . 877 . 877 . 876	5. 754 . 753 . 753 . 753 . 753	8. 630 . 630 . 630 . 630 . 629	11, 507 . 507 . 506 . 506 . 506	17. 261 . 260 . 260 . 259 . 258			
40 41½ 42½ 45 47½ 48¾	2.301 .301 .301 .301 .301 .301	2. 876 . 876 . 876 . 876 . 876 . 876	5. 753 . 752 . 752 . 752 . 752 . 752	8. 629 . 629 . 628 . 628 . 628 . 627	11. 505 . 505 . 505 . 504 . 503 . 503	17. 258 . 257 . 257 . 256 . 255 . 255 . 255	•		
50 52½ 55 56¼ 57½ 4 00	2.301 .300 .300 .300 .300	2. 876 . 876 . 875 . 875 . 875	5. 751 . 751 . 751 . 751 . 751 . 5. 750	8. 627 . 627 . 626 . 626 . 626 8. 625	11. 503 . 502 . 502 . 502 . 501 11. 501	17. 254 . 254 . 253 . 252 . 252 . 252 17. 251			

Table 3.—Coordinates for the projection of maps, scale 3.1630—Continued

		Absci	ssas of de	veloped p	parallel		Ordinates of develor meridional		lel and
Lati- tude of parallel			Longitud	le interva	1		Latitude and longi-	Merid- ional	Ordi- nate of de-
	1'	11/4'	2½'	33/4'	5′	71/2'	tude intervals	distance	
4 00 02½ 03¾ 05 07½	Inches 2, 300 . 300 . 300 . 300 . 300 . 300	Inches 2. 875 . 875 . 875 . 875 . 875	Inches 5, 750 . 750 . 750 . 750 . 750 . 749	Inches 8. 625 . 625 . 625 . 625 . 624	Inches 11, 501 . 500 . 500 . 500 . 499	Inches 17, 251 . 250 . 250 . 249 . 248	For latitude 4° 64,71	1 11.451	Inch 0.000 .000 .000 .001 .001
$ \begin{array}{c} 10 \\ 11\frac{1}{4} \\ 12\frac{1}{2} \\ 15 \\ 17\frac{1}{2} \\ 18\frac{3}{4} \end{array} $	2, 300 . 300 . 300 . 299 . 299 . 299	2. 875 . 875 . 874 . 874	5. 749 . 749 . 749 . 749 . 748	8. 624 . 624 . 623 . 623 . 622	11. 498 . 498 . 498 . 497 . 496	17. 247 . 247 . 247 . 246 . 245	10 121 15	22, 902 28, 628 34, 353	.002
20 22½ 25 26¼ 27½	2. 299 . 299 . 299 . 299 . 299	. 874 . 874 . 874 . 874 . 874 . 873	5. 748 5. 748 . 748 . 747 . 747 . 747	8. 622 8. 622 621 621 621 620	. 496 11, 496 . 495 . 495 . 494 . 494	. 244 17. 244 . 243 . 242 . 241 . 241	For latitude 5° (1½, 2½), 5' (7½, 10, 12).	11. 451 14. 314 17. 177 22. 903	0.000 .000 .000 .001 .001 .002 .003
30 32½ 33¾ 35	2, 299 . 299 . 298	2, 873 . 873 . 873 . 873	5. 747 . 746 . 746 . 746	8. 620 . 619 . 619	11. 493 . 493 . 492 . 492	17. 240 . 239 . 238 . 238	121/15		.005
37½ 40 41¼ 42½ 45 47½ 48¾	298 2. 298 298 298 298 298 298	. 873 2. 873 . 873 . 872 . 872 . 872 . 872	. 746 5. 745 . 745 . 745 . 745 . 744 . 744	8. 618 . 618 . 617 . 617 . 616 . 616	. 491 11. 491 . 490 . 490 . 489 . 489 . 488	. 237 17. 236 . 235 . 235 . 234 . 233 . 232	For latitude 6° 6½, 71, 10 123.	11, 452 14, 315 17, 178 22, 904 28, 630	0.000 .000 .000 .001 .001 .002 .003
50 52½ 55 56¼ 57½	2. 298 . 297 . 297 . 297 . 297	2. 872 . 872 . 872 . 872 . 872	5. 744 . 744 . 743 . 743 . 743	8. 616 . 615 . 615 . 615	11. 488 . 487 . 486 . 486	17. 232 . 231 . 230 . 229 . 229	(15-	34. 356	.008
5 00 02½ 03¾ 05 07½	2. 297 . 297 . 297 . 297 . 297	2. 871 . 871 . 871 . 871 . 871	5. 742 . 742 . 742 . 742 . 741	8. 614 . 613 . 613 . 613 . 612	11. 485 . 484 . 484 . 484 . 483	17. 227 . 226 . 226 . 225 . 224			
10 11 ¹ / ₄ 12 ¹ / ₂ 15 17 ¹ / ₂ 18 ³ / ₄	2, 296 , 296 , 296 , 296 , 296 , 296	2. 871 . 870 . 870 . 870 . 870 . 870	5. 741 . 741 . 741 . 740 . 740 . 740	8. 612 . 611 . 611 . 610 . 610	11. 482 . 482 . 481 . 480 . 480 . 479	17. 223 . 222 . 222 . 221 . 220 . 219			
$\begin{array}{c} 20 \\ 221/2 \\ 25 \\ 261/4 \\ 271/2 \end{array}$	2. 296 . 296 . 295 . 295 . 295	2. 870 . 870 . 869 . 869 . 869	5. 739 . 739 . 739 . 738 . 738	8. 609 . 609 . 608 . 608 . 607	11. 479 . 478 . 477 . 477 . 477	17. 218 . 217 . 216 . 215 . 215			
30 32½ 33¾ 35 37½	2. 295 . 295 . 295 . 295 . 295	2, 869 , 869 , 869 , 868	5. 738 . 738 . 737 . 737 . 737	8. 607 . 606 . 606 . 606	11. 476 . 475 . 475 . 474 . 473	17. 214 . 213 . 212 . 211 . 210			
40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ⁸ / ₄	2. 294 . 294 . 294 . 294 . 294 . 294	2. 868 . 868 . 868 . 868 . 868 . 868	5. 736 . 736 . 736 2. 735 . 735 . 735	8. 604 . 604 . 603 . 603 . 603	11. 473 . 472 . 472 . 471 . 470 . 470	17. 209 . 208 . 208 . 206 . 205 . 204			
50 52½ 55 56¼ 57½	2. 294 . 294 . 293 . 293 . 293	2. 867 . 867 . 867 . 867 . 867	5. 735 . 734 . 734 . 734 . 733	8. 602 . 601 . 601 . 600 . 600	11. 469 . 468 . 468 . 467 . 467	17. 204 . 203 . 201 . 201 . 200			
6 00	2. 293	2. 866	5. 733	8. 599	11. 466	17. 199			

Table 3.—Coordinates for the projection of maps, scale 31680—Continued

Lati- tude of		Absci	ssas of de	veloped p	arallel		Ordinates of de	veloj onal d	ped parall	el and
		ı	Longitud	e interval	l		Latitude and lo		Merid-	Ordi- nate of de-
	1'	11/4'	2½′	3¾′	57	7½′	tude interval	S	distance	veloped parallel
6 00 02½ 03¾ 05 07½	Inches 2, 293 293 293 293 293 293	Inches 2. 866 . 866 . 866 . 866 . 866	Inches 5, 733 . 732 . 732 . 732 . 732 . 732	Inches 8. 599 . 599 . 598 . 598 . 597	Inches 11, 466 . 465 . 464 . 464 . 463	Inches 17. 199 . 197 . 197 . 196 . 195	For latitude 6°	$ \begin{cases} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \end{cases} $	Inches 2, 863 5, 726 8, 589 11, 452 14, 315 17, 178	Inch 0.000 .000 .000 .001 .001
$ \begin{array}{c c} 10 \\ 11\frac{1}{4} \\ 12\frac{1}{2} \\ 15 \\ 17\frac{1}{2} \\ 18\frac{3}{4} \end{array} $	2. 292 . 292 . 292 . 292 . 292 . 292	2, 866 . 865 . 865 . 865 . 865	5. 731 . 731 . 731 . 730 . 730 . 730	8, 597 . 596 . 596 . 595 . 595	11. 462 . 462 . 461 . 460 . 460 . 459	17. 193 . 193 . 192 . 191 . 189 . 189		10 12½ 15	22. 904	.003
$\begin{array}{c} 20 \\ 22\frac{1}{2} \\ 25 \\ 26\frac{1}{4} \\ 27\frac{1}{2} \end{array}$	2. 292 . 292 . 291 . 291 . 291	2. 865 . 864 . 864 . 864 . 864	5. 729 . 729 . 728 . 728 . 728	8, 594 . 593 . 593 . 592 . 592	11. 459 . 458 . 457 . 456 . 466	17. 188 . 187 . 185 . 185 . 184	For latitude 7°	$ \begin{bmatrix} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \end{bmatrix} $	2. 863 5. 726 8. 589 11. 452 14. 315 17. 179 22. 905	0.000 ,000 .001 .001 .002 .002
30 32½ 33¾ 35	2. 291 . 291 . 291 . 291	2, 864 . 863 . 863	5. 727 . 727 . 727 . 727	8. 591 . 590 . 590 . 590	11. 455 . 454 . 453 . 453	17. 182 . 181 . 180 . 180	-	1121/2	28. 631 34. 357 2. 863	0,000
37½ 40 41¼ 42½ 45 47½ 48¾	2. 290 . 290 . 290 . 290 . 290 . 290 . 290	2. 863 . 863 . 863 . 862 . 862 . 862	5, 726 . 725 . 725 . 725 . 725 . 724 . 724	. 589 8, 588 . 588 . 588 . 587 . 586 . 586	. 452 11. 451 . 451 . 450 . 449 . 448 . 448	.178 17.177 .176 .175 .174 .172 .172	For latitude 8°	2½ 3¾ 5 6¼ 7½ 10 12½ 15	5. 726 8. 590 11. 453 14. 316 17. 179 22. 906 28. 632 34. 359	. 000 . 000 . 001 . 001 . 002 . 003 . 005 . 007
50 52½ 55 56¼ 57½	2. 289 . 289 . 289 . 289 . 289	2.862 .862 .861 .861 .861	5. 724 . 723 . 723 . 722 . 722	8, 585 , 585 , 584 , 583 , 583	11. 447 . 446 . 445 . 445 . 444	17. 171 . 169 . 168 . 167 . 166			01.000	
7 00 02½ 03¾ 05 07½	2. 289 . 288 . 288 . 288 . 288	2. 861 . 861 . 860 . 860 . 860	5. 722 . 721 . 721 . 721 . 720	8, 582 . 582 . 581 . 581 . 580	11. 443 . 442 . 442 . 441 . 440	17. 165 . 163 . 162 . 162 . 160				
10 1114 1212 15 1712 1834	2. 288 . 288 . 288 . 287 . 287 . 287	2. 860 . 860 . 859 . 859 . 859 . 859	5. 720 . 719 . 719 . 718 . 718 . 718	8. 579 . 579 . 578 . 578 . 577 . 577	11. 439 . 439 . 438 . 437 . 436 . 435	17. 159 . 158 . 157 . 156 . 154 . 153				
20 22½ 25 26¼ 27½	2. 287 . 287 . 287 . 286 . 286	2, 859 . 858 . 858 . 858 . 858	5. 717 . 717 . 716 . 716 . 716	8. 576 . 575 . 575 . 574 . 574	11, 435 , 434 , 433 , 432 , 432	17. 152 . 151 . 149 . 148 . 147				
30 32½ 33¾ 35 37½	2. 286 . 286 . 286 . 286 . 285	2. 858 . 857 . 857 . 857 . 857	5. 715 .715 .714 .714 .714	8. 573 . 572 . 572 . 571 . 570	11. 431 . 429 . 429 . 428 . 427	17. 146 . 144 . 143 . 143 . 141				
40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	2. 285 . 285 . 285 . 285 . 285 . 284	2. 857 . 856 . 856 . 856 . 856 . 856	5. 713 . 713 . 713 . 712 . 711 . 711	8. 570 . 569 . 569 . 568 . 567 . 567	11. 426 . 426 . 425 . 424 . 423 . 422	17. 139 . 138 . 138 . 136 . 134 . 133				
50 52½ 55 56¼ 57½	2. 284 . 284 . 284 . 284 . 284	2. 855 . 855 . 855 . 855 . 855	5. 711 . 710 . 710 . 709 . 709	8. 566 . 565 . 564 . 564	11. 422 . 421 . 419 . 419 . 418	17. 133 . 131 . 129 . 128 . 127				
8 00	2. 284	2. 854	5. 709	8, 563	11. 417	17. 126				

Table 3.—Coordinates for the projection of maps, scale 31680—Continued

			Abseis	ssas of dev	veloped pa	arallel		Ordinates of de meridio		oed parall istances	el and
La tud para	e of		,	Longitud	e interval			Latitude and lo	ngi-	Merid-	Ordi- nate
		1′	11/4'	2½′	3¾′	5′	71/2'	tude intervals		ional distance	of de- veloped parallel
	00 02½ 03¾ 05 07½	Inches 2, 284 283 283 283 283 283	Inches 2. 854 . 854 . 854 . 854 . 854	Inches 5, 709 , 708 , 708 , 707 , 707	Inches 8. 563 . 562 . 561 . 561 . 560	Inches 11, 417 . 416 . 415 . 415 . 414	Inches 17. 126 . 124 . 123 . 122 . 120	For latitude 8°	11/4 21/2 33/4 5 61/4 71/2	Inches 2, 863 5, 726 8, 590 11, 453 14, 316 17, 179	Inch 0,000 .000 .001 .001 .002 .003
	10 11½ 12½ 15 17½ 18¾	2, 283 . 282 . 282 . 282 . 282 . 282	2, 853 .853 .853 .853 .852 .852	5. 706 . 706 . 706 . 705 . 704 . 704	8, 559 , 559 , 558 , 558 , 557 , 556	11. 412 . 412 . 411 . 410 . 409 . 408	17. 119 .118 .117 .115 .113 .112		7½ 10 12½ 15	28. 632 34. 359	.005
	20 22½ 25 26¼ 27½	2. 282 . 282 . 282 . 282 . 282 . 282	2. 852 . 852 . 851 . 851 . 851	5. 704 . 703 . 703 . 702 . 702	8. 556 . 555 . 554 . 553 . 553	11. 408 . 406 . 405 . 405 . 404	17. 111 . 110 . 108 . 107 . 106	For latitude 9°	11/4 21/2 33/4 5 61/4 71/2	2. 863 5. 727 8. 590 11. 453 14. 317 17. 180 22. 907	0.000 .000 .001 .001 .002 .003
	30 32½ 33¾ 35 37½	2. 281 . 280 . 280 . 280 . 280	2. 851 . 850 . 850 . 850 . 850	5. 701 . 701 . 700 . 700 . 699	8. 552 . 551 . 551 . 550 . 549	11. 403 . 402 . 401 . 400 . 399	17. 104 . 102 . 101 . 100 . 099		12½	28. 634 34, 360 2, 864	0,000
	40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	2. 280 . 279 . 279 . 279 . 279 . 279	2. 849 . 849 . 849 . 849 . 848 . 848	5. 699 . 699 . 698 . 698 . 697	8. 548 . 548 . 547 . 546 . 545 . 545	11. 398 . 397 . 397 . 395 . 394 . 393	17. 097 . 096 . 095 . 093 . 091 . 090	For latitude 10°	11/4 21/2 33/4 5 61/4 71/2 10 121/2 15	5. 727 8. 591 11. 454 14. 318 17. 181 22. 908 28. 635 34, 362	.000 .001 .001 .002 .003 .006 .009
	50 52½ 55 56¼ 57½	2. 279 . 278 . 278 . 278 . 278 . 278	2, 848 . 848 . 848 . 847 . 847	5, 696 . 696 . 695 . 695 . 694	8. 545 . 544 . 543 . 542 . 542	11. 393 . 391 . 390 . 389 . 389	17, 089 . 087 . 085 . 084 . 083			01,002	
	00 02½ 03¾ 05 07½ 10 11¼ 12½ 15 17½ 18¾	2. 278 .277 .277 .277 .277 .277 .276 .276 .276	2.847 .846 .846 .846 .846 .845 .845 .845 .845	5. 694 693 693 692 692 5. 691 691 690 689 689	8. 541 . 540 . 539 . 538 . 537 . 536 . 536 . 535 . 534	11, 388 . 386 . 386 . 385 . 384 11, 382 . 381 . 380 . 378	17. 081 . 079 . 078 . 077 . 075 17. 073 . 072 . 071 . 069 . 069				
	20 22½ 25 26¼ 27½	2. 275 . 275 . 275 . 275 . 275 . 275	2, 844 . 844 . 844 . 843 . 843	5, 688 . 688 . 687 . 687 . 686	. 533 8. 533 . 532 . 531 . 530 . 530	. 378 11. 377 . 376 . 374 . 373 . 373	. 066 17. 065 . 063 . 061 . 060 . 059				
	30 32½ 33¾ 35 37½	2. 274 . 274 . 274 . 274 . 273	2. 843 . 843 . 842 . 842 . 842	5. 686 . 685 . 685 . 684 . 684	8. 529 . 528 . 527 . 527 . 526	11. 371 . 370 . 369 . 369 . 367	17. 057 . 055 . 054 . 053 . 051				
	40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	2. 273 . 273 . 273 . 273 . 273 . 272 . 272	2. 841 . 841 . 841 . 840 . 840	5. 683 . 683 . 682 . 682 . 681 . 680	8, 524 , 524 , 523 , 522 , 521 , 521	11. 366 . 365 . 365 . 363 . 362 . 361	17. 049 . 048 . 047 . 045 . 043 . 041				
	50 52½ 55 56¼ 57½	2, 272 . 272 . 271 . 271 . 271	2. 840 . 840 . 839 . 839 . 839	5. 680 . 679 . 679 . 678 . 678	8, 520 , 519 , 518 , 518 , 517	11. 360 . 359 . 357 . 357 . 356	17. 040 . 038 . 036 . 035 . 034				
10	00	2, 271	2, 839	5. 677	8, 516	11. 355	17. 032				

Table 3.—Coordinates for the projection of maps, scale 31630—Continued

			Absci	ssas of de	veloped p	arallel		Ordinates of develo	ped parall	el and
tı	Lati- ide of arallel			Longitud	le interva	1		Latitude and longi-	Merid-	Ordi- nate
_		1'	11/4′	2½′	33/4'	5′	7½'	tude intervals	ional distance	of de- veloped parallel
10	00 02½ 03¾ 05 07½	Inches 2. 271 . 271 . 270 . 270 . 270	Inches 2, 839 . 838 . 838 . 838	Inches 5. 677 677 676 676	Inches 8. 516 . 515 . 514 . 514 . 513	Inches 11, 355 . 353 . 353 . 352 . 350	Inches 17. 032 .030 .029 .027 .025	(114 22 33 35 5 5 6 44 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8, 591 11, 454 14, 318	Inch 0.000 .000 .001 .001
	10 11 ¹ / ₄ 12 ¹ / ₂ 15 17 ¹ / ₂ 18 ³ / ₄	2. 270 . 270 . 269 . 269 . 269 . 269	2. 837 .837 .837 .836 .836	5. 674 . 674 . 674 . 673 . 672 . 672	8. 512 . 511 . 510 . 509 . 508 . 508	11. 349 . 348 . 347 . 346 . 344 . 344	17. 023 . 022 . 021 . 019 . 016 . 115	773 10 12½ 15	28. 635 34. 362	. 003 . 006 . 009 . 013
	20 22½ 25 26¼ 27½	2. 269 . 268 . 268 . 268 . 268	2. 836 . 835 . 835 . 835 . 835	5. 671 . 671 . 670 . 670 . 669	8. 507 . 506 . 505 . 504 . 504	11. 343 . 341 . 340 . 339 . 338	17. 014 . 012 . 010 . 009 . 007	For latitude 11° { 114 22/5 33/4 5 6 1 6 1 7/2 10 10 10 11 6 11 6 1 10 10 10 10 10 10 10 10 10 10 10 10 1	11. 455 14. 319 17. 182 22. 910	0.000 .000 .001 .002 .002 .004 .006
	30 32½ 33¾ 35 37½	2. 267 . 267 . 267 . 267 . 266	2. 834 . 834 . 834 . 833 . 233	5. 668 . 668 . 667 . 667	8. 503 , 501 . 501 . 500	11. 337 . 335 . 334 . 334	17. 005 . 003 . 002 . 001	(12)/215	34. 365	0.000
	40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	2. 266 . 266 . 266 . 266 . 265 . 265	2. 833 . 832 . 832 . 832 . 832 . 832 . 831	. 666 5. 665 . 665 . 665 . 664 . 663 . 663	8. 498 . 497 . 497 . 496 . 495 . 494	. 332 11. 331 . 330 . 329 . 328 . 326 . 325	16, 998 16, 996 . 995 . 994 . 991 . 989 . 988	For latitude 12° 614 772 10 122′2	11. 456 14. 320 17. 183 22. 911 28. 639	.000 .001 .002 .003 .004 .007
	50 52½ 55 56¼ 57½	2. 265 . 265 . 264 . 264 . 264	2. 831 . 831 . 830 . 830 . 830	5. 662 . 661 . 661 . 660 . 660	8. 493 . 492 . 491 . 490 . 490	11. 324 . 323 . 321 . 320 . 320	16. 987 . 984 . 982 . 981 . 980	(15	34, 367	.015
11	$00 \\ 02\frac{1}{2} \\ 03\frac{3}{4} \\ 05 \\ 07\frac{1}{2}$	2. 264 . 263 . 263 . 263 . 263	2, 830 . 829 . 829 . 829 . 828	5. 659 . 658 . 658 . 657 . 657	8. 489 . 487 . 487 . 486 . 485	11. 318 .317 .316 .315 .313	16. 977 . 975 . 974 . 972 . 970			
	10 11 ¹ / ₄ 12 ¹ / ₂ 15 17 ¹ / ₂ 18 ³ / ₄	2. 262 . 262 . 262 . 262 . 261 . 261	2. 828 . 828 . 828 . 827 . 827 . 827	5. 656 . 655 . 655 . 654 . 653 . 653	8. 484 . 483 . 483 . 481 . 480 . 480	11.312 .311 .310 .308 .307 .306	16. 968 . 966 . 965 . 963 . 960 . 959			
	20 22½ 25 26¼ 27½	2. 261 . 261 . 260 . 260 . 260	2. 826 . 826 . 825 . 825 . 825	5. 653 . 652 . 651 . 651 . 650	8. 479 . 478 . 476 . 476 . 475	11. 305 . 304 . 302 . 301 . 300	16. 958 . 955 . 953 . 952 . 950			
	30 32½ 33¾ 35 37½	2. 260 . 259 . 259 . 259 . 259	2. 825 . 824 . 824 . 824 . 823	5. 649 . 648 . 648 . 648 . 647	8. 474 . 473 . 472 . 471 . 470	11, 299 . 297 . 296 . 295 . 294	16. 948 . 945 . 944 . 943 . 940			
	40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	2. 258 . 258 . 258 . 258 . 257 . 257	2. 823 . 823 . 823 . 822 . 822 . 822	5. 646 . 645 . 644 . 643 . 643	8. 469 . 468 . 468 . 466 . 465 . 465	11. 292 . 291 . 290 . 289 . 287 . 286	16. 938 . 937 . 935 . 933 . 930 . 929			
	50 52½ 55 56¼ 57½	2. 257 . 257 . 256 . 256 . 256	2. 821 . 821 . 820 . 820 . 820	5. 643 . 642 . 641 . 640 . 640	8. 464 . 463 . 461 . 461 . 460	11. 285 . 283 . 282 . 281 . 280	16. 928 . 925 . 923 . 921 . 920			
12	00	2, 256	2, 820	5. 639	8. 459	11, 278	16. 917			

Table 3.—Coordinates for the projection of maps, scale 31680—Continued

			Absci	ssas of de	veloped p	arallel		Ordinates of de meridio		ed parall istances	el and
tuc	ati- le of allel			Longitud	e interval			Latitude and lo	ngi-	Merid- ional	Ordi- nate
		1′	11/4'	2½′	33/4'	5'	71/2'	tude intervals		dis- tance	of de- veloped parallel
o 12	00 02½ 03¾ 05 07½	Inches 2. 256 255 . 255 . 255 . 255	Inches 2. 820 . 819 . 819 . 819 . 818	Inches 5, 639 638 638 637 637	Inches 8, 459 . 457 . 457 . 456 . 455	Inches 11, 278 , 276 , 276 , 275 , 273	Inches 16, 917 . 915 . 913 . 912 . 910	For latitude 12°	11/4 21/2 33/4 5 61/4 71/2	Inches 2, 864 5, 728 8, 592 11, 456 14, 320 17, 183	Inch 0.00 .00 .00 .00 .00
	$ \begin{array}{c} 10 \\ 11\frac{1}{4} \\ 12\frac{1}{2} \\ 15 \\ 17\frac{1}{2} \\ 18\frac{3}{4} \end{array} $	2. 254 . 254 . 254 . 254 . 253 . 253	2. 818 . 818 . 817 . 817 . 816 . 816	5, 636 , 635 , 635 , 634 , 633	8. 453 . 453 . 452 . 451 . 449 . 449	11. 271 . 270 . 270 . 268 . 266 . 265	16. 907 . 906 . 904 . 902 . 899 . 898		10 12½ 15	22. 911 28, 639 34. 367	.00
	20 22½ 25 26¼ 27½	2. 253 . 252 . 252 . 252 . 252 . 252	2. 816 . 816 . 815 . 815 . 815	5. 632 . 631 . 630 . 630 . 629	8. 448 . 447 . 445 . 445 . 444	11, 264 , 262 , 261 , 260 , 259	16, 896 . 894 . 891 . 890 . 888	For latitude 13°	7½ 10	2. 864 5. 728 8. 592 11. 456 14. 321 17. 185 22. 913	0,00
	30 32½ 33¾ 35 37½	2. 251 . 251 . 251 . 251 . 250	2.814 .814 .814 .813 .813	5, 629 , 628 , 627 , 627 , 626	8, 443 . 441 . 441 . 440 . 439	11. 257 . 255 . 254 . 253 . 252	16. 886 . 883 . 881 . 880 . 877		$ \begin{array}{c} 12\frac{1}{2} \\ 15 \end{array} $	28. 641 34. 370 2. 864	0, 00
	40 41½ 42½ 45 47½ 48¾	2. 250 . 250 . 250 . 249 . 249 . 249	2. 812 . 812 . 812 . 812 . 811 . 811	5, 625 . 624 . 624 . 623 . 622 . 622	8. 437 . 437 . 436 . 435 . 433 . 433	11, 250 . 249 . 248 . 248 . 244 . 244 . 243	16. 875 . 873 . 872 . 869 . 866 . 865	For latitude 14°	5	5, 729 8, 593 11, 457 14, 322 17, 186 22, 915 28, 644 34, 372	. 00 . 00 . 00 . 00 . 00 . 01 . 01
	50 52½ 55 56¼ 57½	2, 248 . 248 . 248 . 248 . 247	2, 811 . 810 . 810 . 809 . 809	5. 621 . 620 . 619 . 619 . 618	8. 432 . 430 . 429 . 428 . 428	11. 242 . 241 . 239 . 238 . 237	16. 864 . 861 . 858 . 857 . 855		(10	01.012	
13	$00 \\ 02\frac{1}{2} \\ 03\frac{3}{4} \\ 05 \\ 07\frac{1}{2}$	2. 247 . 247 . 246 . 246 . 246	2. 809 . 808 . 808 . 808 . 807	5. 618 . 617 . 616 . 616	8. 426 . 425 . 424 . 423 . 422	11, 235 . 233 . 232 . 231 . 229	16. 852 . 850 . 848 . 847 . 844				
	10 11 ¹ / ₄ 12 ¹ / ₂ 15 17 ¹ / ₂ 18 ³ / ₄	2. 246 . 245 . 245 . 245 . 244 . 244	2.807 .807 .806 .806 .805	5, 614 . 613 . 613 . 612 . 611 . 610	8. 421 . 420 . 419 . 418 . 416	11, 227 . 226 . 226 . 224 . 222 . 221	16. 841 . 840 . 838 . 835 . 833 . 831				
	$\begin{array}{c} 20 \\ 22\frac{1}{2} \\ 25 \\ 26\frac{1}{4} \\ 27\frac{1}{2} \end{array}$	2. 244 . 244 . 243 . 243 . 243	2, 805 . 804 . 804 . 804 . 804	5, 610 . 609 . 608 . 608 . 607	8, 415 . 413 . 412 . 411 . 411	11, 220 . 218 . 216 . 215 . 214	16, 830 .827 .824 .823 .821				
	30 32½ 33¾ 35 37½	2, 242 , 242 , 242 , 242 , 241	2. 803 . 803 . 802 . 802 . 802	5, 606 . 605 . 605 . 604 . 603	8, 409 , 408 , 407 , 406 , 405	11. 212 . 210 . 209 . 208 . 206	16. 818 . 815 . 814 . 812 . 809				
	40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	2. 241 . 241 . 240 . 240 . 240 . 239	2. 801 . 801 . 801 . 800 . 800 . 799	5, 602 , 602 , 601 , 600 , 599 , 599	8, 403 , 402 , 402 , 400 , 399 , 398	11, 204 . 203 . 202 . 200 . 198 . 197	16. 806 . 805 . 803 . 800 . 797 . 796	1			
	50 52½ 55 56¼ 57½	2. 239 . 239 . 238 . 238 . 238	2. 799 . 799 . 798 . 798 . 798	5, 598 . 597 . 596 . 596 . 595	8. 397 . 396 . 394 . 394 . 393	11, 196 . 194 . 192 . 191 . 190	16, 795 . 792 . 789 . 787 . 786				
14	00	2, 238	2. 797	5, 594	8, 391	11, 188	16. 782				

Table 3.—Coordinates for the projection of maps, scale 1 Continued

	ABLE O.						ordinates of do		ontinue	
		Abscis	sas of dev	reloped pa	arallel		Ordinates of demeridio		listances	er and
Lati- tude of parallel		1	Longitude	interval		:	Latitude and lo		Merid- ional	Ordi- nate of de-
	1"	11/4'	2½′	33/4′	5'	73 %	tude intervals		distance	veloped parallel
0 / 14 00 02½ 03¾ 05 07½	Inches 2, 238 237 237 237 236	Inches 2, 797 . 797 . 796 . 796 . 796	Inches 5, 594 , 593 , 593 , 592 , 591	Inches 8, 391 . 390 . 389 . 388 . 387	Inches 11. 188 . 186 . 185 . 184 . 182	Inches 16. 782 . 780 . 778 . 776 . 773	For latitude 14°	11/4 21/2 38/4 5 61/4 71/2	11. 457 14. 322 17. 186	Inch 0.000 .000 .001 .002 .003 .004
$ \begin{array}{c} 10 \\ 11\frac{1}{4} \\ 12\frac{1}{2} \\ 15 \\ 17\frac{1}{2} \\ 18\frac{3}{4} \end{array} $	236 235 235	2. 795 . 795 . 795 . 794 . 794 . 793	5. 590 . 590 . 589 . 588 . 587 . 587	8, 385 , 384 , 384 , 382 , 381 , 380	11. 180 . 179 . 178 . 176 . 174 . 173	16. 770 . 769 . 767 . 764 . 761 . 760		10 12½ 15	22, 915 28, 644 34, 372	. 008 . 012 . 018
20 22 ¹ / ₂ 25 26 ¹ / ₄ 27 ¹ / ₂	2. 234 . 234 . 234 . 233 . 233	2. 793 . 792 . 792 . 792 . 791	5. 586 . 585 . 584 . 583 . 583	8 379 .377 .376 .375 .374	11. 172 . 170 . 168 . 167 . 166	16. 758 . 755 . 752 . 750 . 749	For latitude 15%	$ \begin{pmatrix} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \\ 12\frac{1}{2} \end{pmatrix} $	11. 458 14. 323 17. 188 22. 917	. 001 . 001 . 002 . 003 . 005 . 008
30 32½ 33¾ 35 37½	. 232	2. 791 . 790 . 790 . 790 . 789	5. 582 . 581 . 580 . 580 . 579	8. 373 . 371 . 370 . 370 . 368 8. 366	11. 164 . 162 . 161 . 160 . 157	16. 745 . 742 . 741 . 739 . 736 16. 733		$ \begin{bmatrix} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \end{bmatrix} $	34.375	0.000
40 41¼ 42½ 45 47½ 48¾	. 230	2. 789 . 789 . 788 . 788 . 787 . 787	5. 578 . 577 . 577 . 576 . 574 . 574	. 366 . 365 . 363 . 362 . 361	. 154 . 153 . 151 . 149 . 148	.731 .730 .727 .723 .722	For latitude 16°	$ \begin{array}{c c} 5 \\ 6 \frac{1}{4} \\ 7 \frac{1}{2} \\ 10 \\ 12 \frac{1}{2} \\ \end{array} $	11. 459 14. 325 17. 189 22. 919 28. 649	.001 .002 .003 .005 .009
50 52½ 55 56½ 57½	. 229	2. 787 . 786 . 786 . 785 . 785	5. 573 . 572 . 571 . 571 . 570	8. 360 . 359 . 357 . 356 . 355	11. 147 . 145 . 143 . 141 . 140	16. 720 .717 .714 .712 .711		(15	34. 379	.020
15 00 02½ 03¾ 05 07½	227	2. 785 . 784 . 784 . 783 . 783	5. 569 . 568 . 568 . 567 . 566	8. 354 . 352 . 351 . 350 . 349	11. 138 . 136 . 135 . 134 . 132	16.707 .704 .703 .701 .698				
10 11½ 12½ 15 17½ 18¾	. 225	2. 782 . 782 . 782 . 781 . 781 . 780	5. 565 . 564 . 564 . 563 . 562 . 561	8. 347 . 346 . 346 . 344 . 342 . 341	11, 130 . 129 . 127 . 125 . 123 . 122	16. 694 . 693 . 691 . 688 . 685 . 683				
20 22½ 25 26½ 27½	2. 224 . 224 . 224	2. 780 . 780 . 779 . 779 . 779	5. 560 . 559 . 558 . 558 . 557	8. 341 . 339 . 337 . 336 . 336	11. 121 . 119 . 116 . 115 . 114	16. 681 . 678 . 675 . 673 . 671				
30 32½ 33¾ 35 37½	$\begin{bmatrix} & .222 \\ .222 \\ .221 \end{bmatrix}$	2. 778 . 777 . 777 . 777 . 776	5. 556 . 555 . 554 . 554 . 553	8. 334 . 332 . 331 . 331 . 329	11. 112 . 110 . 109 . 107 . 105	16.668 .665 .663 .661 .658				
40 41½ 42½ 45 47½ 48¾	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2, 776 . 775 . 775 . 775 . 774 . 774	5. 552 . 551 . 550 . 549 . 548 . 548	8. 327 . 326 . 326 . 324 . 322 . 321	11. 103 . 102 . 101 . 098 . 096 . 095	16. 654 . 653 . 651 . 648 . 644 . 643				
50 521 55 561 571	2. 219 . 218 . 218 . 218	2.773 .773 .772 .772 .772	5. 547 . 546 . 545 . 544 . 544	8. 320 . 319 . 317 . 316 . 315	11. 094 . 092 . 089 . 088 . 087	16. 641 . 637 . 634 . 632 . 631				
16 00	2. 217	2.771	5. 542	8. 314	11.085	16, 627				

Table 3.—Coordinates for the projection of maps, scale $\frac{1}{31680}$ —Continued

			Absci	ssas of dev	veloped pa	arallel		Ordinates of de meridio	velor nal d	ed parall istances	el and
tu	ati- de of allel			Longitud	e interval			Latitude and lo		Merid- ional	Ordi- nate of de-
		1'	1½′	2½'	334′	5′	7½'	tude intervals	·	distance	veloped parallel
° 16	00 02½ 03¾ 05 07½	Inches 2. 217 . 216 . 216 . 216 . 216 . 216	Inches 2. 771 .771 .770 .770 .769	Inches 5. 542 541 541 541 540 539	Inches 8. 314 . 312 . 311 . 310 . 308	Inches 11. 085 . 083 . 081 . 080 . 078	Inches 16. 627 . 624 . 622 . 620 . 617	For latitude 16°	11/4 21/2 33/4 5 61/4 71/2	Inches 2. 865 5. 730 8. 595 11. 459 14. 325 17. 189	Inch 0.000 .001 .001 .002 .003 .005
	10 11 ¹ / ₄ 12 ¹ / ₂ 15 17 ¹ / ₂ 18 ³ / ₄	2. 215 . 215 . 215 . 214 . 214 . 213	2. 769 . 769 . 768 . 768 . 767 . 767	5. 538 . 537 . 537 . 535 . 534 . 534	8. 307 . 306 . 305 . 303 . 301 . 301	11. 076 . 074 . 073 . 071 . 069 . 067	16. 613 . 612 . 610 . 606 . 603 . 601		10 12½ 15	22. 919 28. 649 34. 379	. 009 . 014 . 020
	20 22½ 25 26¼ 27½	2. 213 . 213 . 212 . 212 . 212	2. 767 . 766 . 765 . 765 . 765	5. 533 . 532 . 531 . 530 . 530	8. 300 . 298 . 296 . 295 . 294	11.066 .064 .062 .060 .059	16. 599 . 596 . 592 . 590 . 589	For latitude 17°	$ \begin{array}{c} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \end{array} $	11. 461 14. 326 17. 191 22. 921	.001 .001 .002 .004 .005
	30 32½ 33¾ 35 37½	2. 211 . 211 . 211 . 210 . 210	2. 764 . 764 . 763 . 763 . 762	5. 528 . 527 . 527 . 526 . 525	8. 293 . 291 . 290 . 289 . 287	11. 057 . 054 . 053 . 052 . 050	16. 585 . 582 . 580 . 578 . 575		$ \begin{array}{c c} 12\frac{1}{2} \\ 15 \end{array} $ $ \begin{array}{c c} 1\frac{1}{4} \\ 2\frac{1}{2} \end{array} $	28. 652 34. 382 2. 865 5. 731	0. 000 . 001
	40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	2. 209 . 209 . 209 . 208 . 208 . 208	2. 762 . 762 . 761 . 761 . 760 . 760	5. 524 . 523 . 522 . 521 . 520 . 519	8. 286 . 285 . 284 . 282 . 280 . 279	11. 047 . 046 . 045 . 043 . 040 . 039	16. 571 . 569 . 567 . 564 . 560 . 558	For latitude 18°	21/2 33/4 5 61/4 71/2 10 121/2 15	11. 462 14. 327 17. 193 22. 923	. 001 . 002 . 004 . 006 . 010 . 015
	50 52½ 55 56¼ 57½	2. 208 . 207 . 207 . 206 . 206	2. 759 . 759 . 758 . 758 . 758	5. 519 .518 .516 .516	8. 278 . 276 . 275 . 274 . 273	11. 038 . 035 . 033 . 032 . 030	16. 557 • 553 • 549 • 547 • 546				
17	00 02½ 03¾ 05 07½	. 205	2. 757 . 756 . 756 . 756 . 755	5. 514 . 513 . 512 . 512 . 510	8. 271 . 269 . 268 . 267 . 266	11. 028 . 026 . 024 . 023 . 021	16. 542 . 538 . 536 . 535 . 531				
	10 11 ¹ / ₄ 12 ¹ / ₂ 15 17 ¹ / ₂ 18 ³ / ₄	. 203	2. 755 . 754 . 754 . 753 . 753 . 752	5. 509 . 509 . 508 . 507 . 505	8. 264 . 263 . 262 . 260 . 258 . 257	11. 018 . 017 . 016 . 013 . 011 . 010	16. 527 . 526 . 524 . 520 . 516				
	$ \begin{array}{c} 20 \\ 22\frac{1}{2} \\ 25 \\ 26\frac{1}{4} \\ 27\frac{1}{2} \end{array} $	2. 202 . 201 . 201 . 200	2. 752 . 751 . 751 . 751 . 750	5. 504 . 503 . 502 . 501 . 500	8. 256 . 254 . 253 . 252 . 251	11. 008 . 006 . 003 . 002 . 001	16. 512 . 509 . 505 . 503 . 501				
	30 32½ 33¾ 35 37½	. 199 . 199 . 198	2. 750 . 749 . 749 . 748 . 748	5. 499 . 498 . 497 . 497 . 495	8. 249 . 247 . 246 . 245 . 243	10. 998 . 996 . 995 . 993 . 991	16. 498 . 494 . 492 . 490 . 486				
	40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	. 197	2. 747 . 747 . 746 . 746 . 745 . 745	5. 494 . 494 . 493 . 492 . 490 . 490	8. 241 . 240 . 239 . 237 . 235 . 235	10. 988 . 987 . 986 . 983 . 981 . 979	16. 482 . 481 . 479 . 475 . 471 . 469				
	50 52½ 55 56¼ 57½	2. 196 . 195 . 195 . 194	2. 745 . 744 . 743 . 743 . 743	5. 489 . 488 . 486 . 486 . 485	8. 234 . 232 . 230 . 229 . 228	10. 978 . 976 . 973 . 972 . 970	16. 467 . 463 . 459 . 458 . 456				
18	00	2. 194	2.742	5. 484	8, 226	10.968	16. 452				

Table 3.—Coordinates for the projection of maps, scale 3 To Continued

-							70 05 7700	1		
			Abscis	ssas of dev	veloped p	arallel		Ordinates of develomeridional	ped parall listances	er and
tu	ati- de of rallel		1	Longitud	e interval			Latitude and longi-	Merid- ional	Ordi- nate of de-
•		1'	11/4"	2½′	33/4'	5′	7½′	tude intervals	distance	veloped parallel
• 18	00 02½ 03¾ 05 07½	Inches 2, 194 , 193 , 193 , 193 , 193	Inches 2. 742 . 741 . 741 . 740	Inches 5. 484 . 483 . 482 . 481 . 480	Inches 8. 226 . 224 . 223 . 222 . 220	Inches 10. 968 . 965 . 964 . 963 . 960	Inches 16. 452 . 448 . 446 . 444 . 440	For latitude 18° 61,	11. 462	Inch 0.000 001 001 .002 .004 .006
	10 11 ¹ / ₄ 12 ¹ / ₂ 15 17 ¹ / ₂ 18 ³ / ₄	2. 191 . 191 . 191 . 190 . 190 . 190	2. 739 . 739 . 739 . 738 . 737 . 737	5. 479 . 478 . 477 . 476 . 475 . 474	8. 218 . 217 . 216 . 214 . 212 . 211	10. 958 . 956 . 955 . 952 . 950 . 948	16. 436 . 434 . 432 . 428 . 424 . 423	77. 10 121. 15	28. 654 34. 385	0.000
	20 22½ 25 26¼ 27½	2. 189 . 189 . 188 . 188 . 188	2. 737 . 736 . 735 . 735 . 735	5. 474 . 472 . 471 . 470 . 470	8. 210 . 208 . 206 . 205 . 204	10. 947 . 944 . 942 . 941 . 939	16. 421 . 417 . 413 . 411 . 409	For latitude 19° 64, 7, 10 12½	11. 463 14. 329 17. 194 22. 926	. 001 . 001 . 003 . 004 . 006 . 010
	30 32½ 33¾ 35 37½	2. 187 . 187 . 187 . 186 . 186	2. 734 . 733 . 733 . 733 . 732	5. 468 . 467 . 466 . 466 . 464	8. 202 . 200 . 199 . 198 . 196	10. 937 . 934 . 933 . 931 . 929	16. 405 . 401 . 399 . 397 . 393	115 115 114 121 217 33	34. 389	0.000
	40 411/4 421/2 45 471/2 483/4	2. 185 . 185 . 185 . 184 . 184 . 183	2. 731 . 731 . 731 . 730 . 729 . 729	5. 463 . 462 . 462 . 460 . 459 . 458	8. 194 . 193 . 192 . 190 . 188 . 187	10. 926 . 925 . 923 . 921 . 918 . 917	16. 389 . 387 . 385 . 381 . 377 . 375	For latitude 20° 61, 71, 10 121, 15	11. 464 14. 330 17. 196 22. 929	.002 .003 .004 .006 .011 .017
	50 52½ 55 56¼ 57½	2. 183 . 183 . 182 . 182 . 181	2. 729 . 728 . 727 . 727 . 727	5. 458 . 456 . 455 . 454 . 454	8. 186 . 184 . 182 . 181 . 180	10. 915 . 913 . 910 . 908 . 907	16. 373 . 369 . 365 . 363 . 361		1	1
19	00 02½ 03¾ 05 07½	2. 181 . 180 . 180 . 180 . 179	2. 726 . 725 . 725 . 725 . 724	5. 452 . 451 . 450 . 449 . 448	8. 178 . 176 . 175 . 174 . 172	10. 904 . 902 . 900 . 899 . 896	16. 357 . 353 . 350 . 348 . 344			
	$ \begin{array}{c} 10 \\ 11\frac{1}{4} \\ 12\frac{1}{2} \\ 15 \\ 17\frac{1}{2} \\ 18\frac{3}{4} \end{array} $	2. 179 . 178 . 178 . 178 . 178 . 177 . 177	2. 723 . 723 . 723 . 722 . 721 . 721	5. 447 . 446 . 445 . 444 . 443 . 442	8. 170 . 169 . 168 . 166 . 164 . 163	10. 893 . 892 . 891 . 888 . 885 . 884	16. 340 . 338 . 336 . 332 . 328 . 326			
	20 22½ 25 26¼ 27½	2. 177 . 176 . 175 . 175 . 175	2. 721 . 720 . 719 . 719 . 719	5. 441 . 440 . 438 . 438 . 437	8. 162 . 160 . 158 . 157 . 156	10. 883 . 880 . 877 . 876 . 874	16. 324 . 320 . 315 . 313 . 311			
	30 32½ 33¾ 35 37½	2. 174 . 174 . 173 . 173 . 173	2. 718 . 717 . 717 . 716 . 716	5. 436 . 434 . 434 . 433 . 431	8. 154 . 151 . 150 . 149 . 147	10. 871 . 869 . 867 . 866 . 863	16. 307 . 303 . 301 . 299 . 294			
	40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	2. 172 . 172 . 172 . 171 . 170 . 170	2. 715 . 715 . 714 . 714 . 713 . 713	5. 430 . 429 . 429 . 427 . 426 . 425	8. 145 . 144 . 143 . 141 . 139 . 138	10. 860 . 859 . 857 . 855 . 852 . 850	16. 290 . 288 . 286 . 282 . 278 . 276			
	50 52½ 55 56¼ 57½	2. 170 . 169 . 169 . 168 . 168	2. 712 . 712 . 711 . 710 . 710	5. 424 . 423 . 422 . 421 . 420	8. 137 . 135 . 132 . 131 . 130	10. 849 . 846 . 843 . 842 . 840	16. 273 . 269 . 265 . 263 . 261			
20	00	2. 167	2. 709	5. 419	8. 128	10. 838	16. 256			

Table 3.—Coordinates for the projection of maps, scale 31880—Continued

		Absci	ssas of de	veloped p	arallel		Ordinates of de meridio		ped parall distances	el and
Lati- tude of parallel			Longitud	e interval			Latitude and lo	noi-	Merid-	Ordi- nate
	1'	11/4'	2½′	33/4'	5'	71/2'	tude interval		ional distance	of de- velope paralle
00 00 02½ 03¾ 05 07½	Inches 2. 167 . 167 . 166 . 166	Inches 2, 709 . 709 . 708 . 708 . 707	Inches 5. 419 . 417 . 417 . 416 . 414	Inches 8. 128 . 126 . 125 . 124 . 122	Inches 10. 838 . 835 . 833 . 832 . 829	Inches 16. 256 . 252 . 250 . 248 . 243	For latitude 20°	$ \begin{array}{c} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \end{array} $	Inches 2.866 5.732 8.598 11.464 14.330 17.196	Inch 0.00 .00 .00 .00
10 11½ 12½ 15 17½ 18¾	2. 165 . 165 . 165 . 164 . 163 . 163	2, 707 . 706 . 706 . 705 . 704	5. 413 . 412 . 412 . 410 . 409 . 408	8. 120 .119 .117 .115 .113 .112	10. 826 . 825 . 823 . 820 . 817 . 816	16. 239 . 237 . 235 . 231 . 226 . 224		10 12½ 15	22, 929 28, 661 34, 393	.01
20 22½ 25 26¼ 27½	2. 163 . 162 . 162 . 161 . 161	. 704 2. 704 . 703 . 702 . 702 . 701	5. 407 . 406 . 404 . 404 . 403	8, 111 . 109 . 107 . 105 . 104	10. 815 . 812 . 809 . 807 . 806	16. 222 . 217 . 213 . 211 . 209	For latitude 21%	7½ 10	2. 866 5. 733 8. 599 11. 466 14. 332 17. 198 22. 931	0, 00 . 00 . 00 . 00 . 00 . 01
30 $32^{1}/2$ $33^{3}/4$ 35 $37^{1}/2$	2. 161 . 160 . 160 . 159 . 159	2. 701 . 700 . 700 . 699 . 699	5. 401 . 400 . 399 . 399 . 397	8, 102 . 100 . 099 . 098 . 096	10. 803 . 800 . 799 . 797 . 794	16. 204 . 200 . 198 . 196 . 191	-	12½	28. 664 34. 397 2. 867	0.00
40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ⁸ / ₄	2. 158 . 158 . 158 . 157 . 156 . 156	2, 698 , 697 , 697 , 696 , 696 , 695	5. 396 . 395 . 394 . 393 . 391 . 390	8. 093 . 092 . 091 . 089 . 087 . 086	10, 791 . 790 . 788 . 785 . 782 . 781	16. 187 . 185 . 182 . 178 . 174 . 171	For latitude 22°	2 ¹ / ₂ 384 5 6 ¹ / ₄ 7 ¹ / ₂ 10 12 ¹ / ₂ 15	22, 934	. 00 . 00 . 00 . 00 . 01 . 01
50 52½ 55 56¼ 57½	2. 156 . 155 . 155 . 154 . 154	2. 695 . 694 . 693 . 693 . 693	5. 390 . 388 . 387 . 386 . 385	8. 085 . 082 . 080 . 079 . 079	10. 779 . 776 . 773 . 772 . 770	16. 169 . 165 . 160 . 158 . 156			02, 101	. 02
00 02½ 03¾ 05 07½	2. 154 . 153 . 153 . 152 . 152	2. 692 . 691 . 691 . 690 . 690	5. 384 . 382 . 382 . 381 . 379	8. 076 . 073 . 072 . 071 . 069	10. 768 . 764 . 763 . 762 . 759	16. 151 . 147 . 145 . 142 . 138				
$ \begin{array}{c} 10 \\ 11 \frac{1}{4} \\ 12 \frac{1}{2} \\ 15 \\ 17 \frac{1}{2} \\ 18 \frac{3}{4} \end{array} $	2. 151 . 151 . 150 . 150 . 149 . 149	2. 689 . 688 . 688 . 687 . 687	5. 378 . 377 . 376 . 375 . 373 . 372	8. 067 . 066 . 064 . 062 . 060 . 059	10. 756 . 754 . 752 . 749 . 746 . 745	16. 133 . 131 . 129 . 124 . 120 . 117				
20 22½ 25 26¼ 27½	2. 149 . 148 . 147 . 147 . 147	2. 686 . 685 . 684 . 684	5, 372 . 370 . 369 . 368 . 367	8. 058 . 055 . 053 . 052 . 051	10. 743 . 740 . 737 . 736 . 734	16. 115 .111 .106 .104 .102				•
30 $32\frac{1}{2}$ $33\frac{3}{4}$ 35 $37\frac{1}{2}$	2. 146 . 146 . 145 . 145 . 144	2. 683 . 682 . 682 . 681 . 681	5. 366 . 364 . 363 . 363 . 361	8. 048 . 046 . 045 . 044 . 042	10. 731 . 728 . 727 . 725 . 722	16. 097 . 092 . 090 . 088 . 083				
40 41½ 42½ 45 47½ 48¾	2. 144 . 144 . 143 . 143 . 142 . 142	2. 680 . 679 . 679 . 678 . 677	5, 359 . 359 . 358 . 356 . 355 . 354	8. 039 . 038 . 037 . 035 . 032 . 031	10. 719 . 717 . 716 . 713 . 710 . 708	16. 078 . 076 . 074 . 069 . 065 . 062				
50 52½ 55 56¼ 57½	2. 141 . 141 . 140 . 140 . 140	2. 677 . 678 . 675 . 675 . 674	5, 353 . 352 . 350 . 349 . 349	8. 030 , 028 . 025 . 024 . 023	10. 707 . 703 . 700 . 699 . 697	16. 060 . 055 . 051 . 048 . 046				
22 00	2. 139	2. 674	5, 347	8. 021	10. 694	16. 041				

Table 3.—Coordinates for the projection of maps, scale and Continued

			Abscis	ssas of dev	veloped pa	arallel		Ordinates of de meridio	velop nal d	ed parallistances	el and
tud	ati- le of allel]	Longitude	interval	1		Latitude and lo	ngi-	Merid-	Ordi- nate
		1"	11/4'	2½′	33/4'	5′	7½'	tude interval	S	ional distance	of de- veloped parallel
	00 02½ 03¾ 05 07½	Inches 2, 139 138 138 138 138 137	Inches 2. 674 . 673 . 672 . 672 . 671	Inches 5. 347 . 346 . 345 . 344 . 342	Inches 8. 021 . 018 . 017 . 016 . 014	Inches 10. 694 . 691 . 690 . 688 . 685	Inches 16. 041 . 037 . 034 . 032 . 027	For latitude 22°	$ \begin{cases} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \end{cases} $	Inches 2. 867 5. 733 8. 600 11. 467 14. 334 17. 201	Inch 0.000 .001 .002 .003 .005
	10 11½ 12½ 15 17½ 18¾	2. 136 . 136 . 136 . 135 . 134 . 134	2. 670 . 670 . 670 . 669 . 668 . 668	5. 341 . 340 . 339 . 338 . 336 . 335	8. 011 . 010 . 009 . 006 . 004 . 003	10. 682 . 680 . 678 . 675 . 672 . 671	16. 022 . 020 . 018 . 013 . 008 . 006		10 12½ 15	22, 934 28, 668 34, 401	.007 .012 .018 .026
	20 22½ 25 26¼ 27½	2. 134 .133 .133 .132 .132	2. 667 . 666 . 665 . 665	5. 334 . 333 . 331 . 331 . 330	8. 002 7. 999 . 997 . 996 . 995	10. 669 . 666 . 663 . 661 . 659	16.003 15.999 .994 .992 .989	For latitude 23°	$ \begin{cases} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \end{cases} $	2. 867 5. 734 8. 601 11. 468 14. 336 17. 203 22. 937	0.000 .001 .002 .003 .005 .007
	30 32½ 33¾ 35 37½	2. 131 . 131 . 130 . 130 . 129	2. 664 . 663 . 662 . 662	5. 328 . 327 . 326 . 325 . 323	7. 992 . 990 . 989 . 987 . 985	10. 656 . 653 . 652 . 650 . 647	15. 984 . 980 . 977 . 975 . 970		1121/2 15 114 21/2	34, 405	0.000
	40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	2. 129 . 128 . 128 . 127 . 127 . 126	2. 661 . 660 . 660 . 659 . 658 . 658	5. 322 . 321 . 320 . 319 . 317 . 316	7. 983 . 981 . 980 . 978 . 975 . 974	10. 643 . 642 . 640 . 637 . 634 . 632	15. 965 . 963 . 960 . 956 . 951 . 948	For latitude 24°	$ \begin{array}{c c} & 272 \\ & 334 \\ & 5 \\ & 614 \\ & 712 \\ & 10 \\ & 1212 \\ & 15 \end{array} $	8. 602 11. 470 14. 338 17. 205 22. 940	. 001 . 002 . 003 . 005 . 007 . 012 . 019 . 028
	50 52½ 55 56¼ 57½	2. 126 . 125 . 125 . 124 . 124	2. 658 . 657 . 656 . 656 . 655	5. 315 . 314 . 312 . 311 . 310	7. 973 . 970 . 968 . 967 . 966	10. 631 . 627 . 624 . 622 . 621	15. 946 . 941 . 936 . 934 . 931				
23	00 02 ¹ / ₂ 03 ³ / ₄ 05 07 ¹ / ₂ 10 11 ¹ / ₄ 12 ¹ / ₂ 15 17 ¹ / ₂ 18 ³ / ₄	2. 123 . 123 . 123 . 122 . 122 . 122 2. 121 . 121 . 120 . 120 . 119 . 119	2. 654 . 654 . 653 . 653 . 652 2. 651 . 650 . 649 . 649	5. 309 . 307 . 306 . 306 . 304 5. 302 . 301 . 301 . 299 . 297	7. 963 . 961 . 960 . 958 . 956 7. 953 . 952 . 951 . 948 . 946	10. 618 .614 .613 .611 .608 10. 605 .603 .601 .598 .595 .595	15. 926 . 921 . 919 . 917 . 912 15. 907 . 904 . 902 . 897 . 892 . 890				
	20 22½ 25 26¼ 27½	2. 118 . 118 . 117 . 117 . 116	2. 648 . 647 . 646 . 646 . 645	5. 296 . 294 . 292 . 292 . 292 . 291	7. 944 . 941 . 939 . 937 . 936	10. 591 . 588 . 585 . 583 . 581	15. 887 . 882 . 877 . 875 . 872				
	30 32½ 33¾ 35 37½	2, 116 .115 .115 .114 .114	2. 645 . 644 . 643 . 643 . 642	5. 289 . 287 . 287 . 286 . 284	7. 934 . 931 . 930 . 929 . 926	10. 578 . 575 . 573 . 571 . 568	15. 867 . 862 . 860 . 857 . 852				
	40 41¼ 42½ 45 47½ 48¾	2, 113 .113 .112 .112 .111 .111	2. 641 . 641 . 640 . 640 . 639 . 638	5. 282 . 282 . 281 . 279 . 277 . 277	7. 924 . 922 . 921 . 919 . 916 . 915	10. 565 . 563 . 561 . 558 . 555 . 553	15.847 .845 .842 .837 .832 .830				
	50 52½ 55 56¼ 57½	2. 110 .110 .109 .109 .109	2. 638 . 637 . 636 . 636 . 635	5. 276 . 274 . 272 . 271 . 271	7. 913 . 911 . 908 . 907 . 906	10. 551 . 548 . 545 . 543 . 541	15. 827 . 822 . 817 . 814 . 812				
24	00	2, 108	2, 634	5. 269	7. 903	10, 538	15. 807				

Table 3.—Coordinates for the projection of maps, scale 31680—Continued

		Absci	ssas of de	veloped p	arallel		Ordinates of de meridie		ped parall listances	el and
Lati- tude of parallel	1'	11/4'	Longitud	e interval	5′	7½′	Latitude and lo		Merid- ional distance	Ordi- nate of de- veloped parallel
0 / 24 00 02½ 03¾ 05 07½	Inches 2. 108 107 107 106 105	Inches 2. 634 634 633 633 633	Inches 5. 269 267 266 . 265 . 264	Inches 7, 903 , 901 , 899 , 898 , 896	Inches 10. 538 . 534 . 533 . 531 . 527	Inches 15. 807 . 802 . 799 . 796 . 791	For latitude 24°	$ \begin{cases} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \end{cases} $	11. 470 14. 338	Inch 0,000 001 002 003 005
$ \begin{array}{c} 10 \\ 11 \\ 12 \\ 15 \\ 17 \\ 18 \\ 34 \end{array} $	2. 105 . 104 . 104 . 103 . 103 . 102	2. 631 . 631 . 630 . 629 . 629 . 628	5. 262 . 261 . 260 . 259 . 257 . 256	7. 893 . 892 . 891 . 888 . 885	10. 524 . 522 . 521 . 517 . 514 . 512	15. 786 . 784 . 781 . 776 . 771 . 768		10 12½ 15	22. 940 28. 675 34. 410 2. 868	. 012 . 019 . 028
20 $22\frac{1}{2}$ 25 $26\frac{1}{4}$ $27\frac{1}{2}$	2. 102 .101 .101 .100 .100	2. 628 . 628 . 626 . 625 . 625	5. 255 . 254 . 252 . 251 . 250	7. 883 . 880 . 878 . 876 . 875	10. 510 . 507 . 504 . 502 . 500	15. 766 . 760 . 755 . 753 . 750	For latitude 25°	11/4 21/2 33/4 5 61/4 71/2	5. 736 8. 604 11. 471 14. 340 17. 207 22. 943	. 001 . 002 . 003 . 005 . 007
30 32½ 33¾ 35 37½	2. 099 . 099 . 098 . 098 . 097	2. 624 . 623 . 623 . 622 . 622	5. 248 . 247 . 246 . 245 . 243	7. 872 . 870 . 869 . 867 . 865	10. 497 . 493 . 491 . 490 . 486	15. 745 . 740 . 737 . 735 . 729		$ \begin{array}{c c} 12\frac{1}{2} \\ 15 \end{array} $	28. 679 34. 415 2. 868 5. 736	0. 000 0.000
40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	2. 097 . 096 . 096 . 095 . 095 . 094	2. 621 . 620 . 620 . 619 . 618 . 618	5. 241 . 241 . 240 . 238 . 236 . 235	7. 862 . 861 . 859 . 857 . 854 . 853	10. 483 . 481 . 479 . 476 . 472 . 471	15. 724 . 722 . 719 . 714 . 708 . 706	For latitude 26°	3 ³ 4 5 6 ¹ 4 7 ¹ 2 10 12 ¹ / ₂ 15	8. 605 11. 473 14. 342 17. 210 22. 946 28. 683 34. 419	. 002 . 003 . 005 . 007 . 018 . 021
50 52½ 55 56¼ 57½	2. 094 . 093 . 092 . 092 . 092	2. 617 . 616 . 615 . 615 . 615	5, 234 . 233 . 231 . 230 . 229	7. 852 . 849 . 846 . 845 . 844	10. 469 . 465 . 462 . 460 . 458	15. 703 . 690 . 693 . 690 . 687				
25 00 02½ 03¾ 05 07½	2. 091 . 090 . 090 . 090 . 089	2. 614 .613 .612 .612 .611	5. 227 . 226 . 225 . 224 . 222	7. 841 .838 .837 .836 .833	10. 455 . 451 . 449 . 448 . 444	15. 682 . 677 . 674 . 672 . 666				
10 11 ¹ / ₄ 12 ¹ / ₂ 15 17 ¹ / ₂ 18 ³ / ₄	2. 088 . 088 . 087 . 087 . 086 . 086	2. 610 . 610 . 609 . 608 . 608 . 607	5. 220 . 219 . 219 . 217 . 215 . 214	7. 830 . 829 . 828 . 825 . 822 . 821	10. 441 . 439 . 437 . 433 . 430 . 428	15. 661 . 658 . 656 . 650 . 645 . 642				
20 $22\frac{1}{2}$ 25 $26\frac{1}{4}$ $27\frac{1}{2}$	2. 085 . 085 . 084 . 083 . 083	2.607 .606 .605 .604 .604	5. 213 . 211 . 210 . 209 . 208	7. 820 .817 .814 .813 .812	10. 426 . 423 . 419 . 417 . 416	15. 640 . 634 . 629 . 626 . 623				
30 32½ 33¾ 35 37½ 40	2. 082 . 082 . 081 . 081 . 080 2. 079	2. 603 . 602 . 602 . 601 . 600 2. 599	5. 206 . 204 . 203 . 202 . 201 5. 199	7. 809 . 806 . 805 . 804 . 801	10. 412 . 408 . 407 . 405 . 401	15. 618 . 613 . 610 . 607 . 602				
41½ 42½ 45 47½ 48¾	. 079 . 079 . 078 . 077 . 077	. 599 . 598 . 598 . 597 . 596	. 198 . 197 . 195 . 193 . 192	7. 798 . 797 . 795 . 793 . 790 . 789	10. 398 . 396 . 394 . 390 . 387 . 385	15. 596 . 594 . 591 . 585 . 580 . 577				
50 52½ 55 56¼ 57½	2. 077 . 076 . 075 . 075 . 074	2, 596 . 595 . 594 . 593 . 593	5. 192 . 190 . 188 . 187 . 186	7. 787 . 785 . 782 . 781 . 779	10. 383 . 379 . 376 . 374 . 372	15. 575 . 569 . 564 . 561 . 558				
26 CO	2. 074	2. 592	5. 184	7.776	10.369	15. 553				

Table 3.—Coordinates for the projection of maps, scale 31888—Continued

								1			
			Abscis	ssas of dev	veloped pa	arallel		Ordinates of de meridio		ed parall listances	el and
tu	ati- le of allel			Longitude	e interval			Latitude and lo		Merid- ional	Ordi- nate of de-
		1'	11/4'	2½′	33/4′	5'	7½'	tude interval	S	distance	veloped parallel
° 26	00 02½ 03¾ 05 07½	Inches 2, 074 .073 .073 .072 .072	Inches 2, 592 591 591 590 589	Inches 5. 184 . 182 . 182 . 181 . 179	Inches 7, 776 774 772 771 768	Inches 10. 369 . 365 . 363 . 361 . 358	Inches 15, 553 . 547 . 545 . 542 . 536	For latitude 26°	$ \begin{array}{c} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \end{array} $	Inches 2. 868 5. 736 8. 605 11. 473 14. 342 17. 210	Inch 0.000 .001 .002 .003 .005
	10 11½ 12½ 15 17½ 18¾	2. 071 . 070 . 070 . 069 . 069 . 068	2, 588 . 588 . 588 . 587 . 586 . 585	5. 177 . 176 . 175 . 173 . 171 . 170	7. 765 - 764 - 763 - 760 - 757 - 756	10. 354 . 352 . 350 . 346 . 343 . 341	15. 531 . 528 . 525 . 520 . 514 . 511		$10 \\ 12\frac{1}{2} \\ 15$	22. 946 28. 683 34. 419	. 013 . 021 . 030
	20 22½ 25 26¼ 27½	2. 068 . 067 . 066 . 066 . 066	2. 585 . 584 . 583 . 582 . 582	5. 170 . 168 . 166 . 165 . 164	7. 754 . 752 . 749 . 747 . 746	10. 339 . 335 . 332 . 330 . 328	15. 509 . 503 . 498 . 495 . 492	For latitude 27°	11/4 21/2 33/4 5 61/4 71/2 10	11. 475 14. 344 17. 212 22. 949	.001 .002 .003 .005 .008
	30 $32\frac{1}{2}$ $33\frac{3}{4}$ 35 $37\frac{1}{2}$	2. 065 . 064 . 064 . 063 . 063	2. 581 . 580 . 580 . 579 . 578	5. 162 . 160 . 159 . 158 . 157	7.743 .740 .739 .738 .735	10.324 .321 .319 .317 .313	15. 486 . 481 . 478 . 475 . 470		$ \begin{bmatrix} 12\frac{1}{2} \\ 15 \end{bmatrix} $ $ \begin{bmatrix} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \end{bmatrix} $	34. 424	0.000
	40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	2. 062 . 061 . 061 . 060 . 060 . 059	2. 577 . 577 . 576 . 575 . 575 . 574	5. 155 154 153 151 149 148	7. 732 . 731 . 729 . 726 . 724 . 722	10.309 .307 .306 .302 .298 .296	15. 464 . 461 . 458 . 453 . 447 . 444	For latitude 28°	5	11, 476 14, 346 17, 215 22, 953	.002 .003 .005 .008 .014 .022
	50 52½ 55 56¼ 57½	2. 059 . 058 . 058 . 057 . 057	2. 574 . 573 . 572 . 571 . 571	5. 147 . 145 . 143 . 142 . 141	7.721 .718 .715 .714 .712	10. 294 . 291 . 287 . 285 . 283	15. 441 . 436 . 430 . 427 . 424				
27	00 02½ 03¾ 05 07½	2. 056 . 055 . 055 . 054 . 054	2. 570 . 569 . 568 . 568 . 567	5. 140 . 138 . 137 . 136 . 134	7.709 .707 .705 .704 .701	10. 279 . 275 . 274 . 272 . 268	15, 419 . 413 . 410 . 407 . 402				
	10 11½ 12½ 15 17½ 18¾	2. 053 . 052 . 052 . 051 . 051 . 050	2. 566 . 566 . 565 . 564 . 563 . 563	5, 132 .131 .130 .128 .126 .125	7. 698 . 697 . 695 . 692 . 689 . 688	10. 264 . 262 . 260 . 256 . 253 . 251	15. 396 . 393 . 390 . 385 . 379 . 376				
	20 $22^{1}/2$ 25 $26^{1}/4$ $27^{1}/2$	2. 050 . 049 . 048 . 048 . 047	2. 562 . 561 . 560 . 560 . 559	5. 124 . 122 . 121 . 120 . 119	7. 687 . 684 . 681 . 679 . 678	10. 249 . 245 . 241 . 239 . 237	15. 373 . 367 . 362 . 359 . 356				
	30 32 ¹ / ₂ 33 ³ / ₄ 35 37 ¹ / ₂	2. 047 . 046 . 046 . 045 . 044	2. 558 . 557 . 557 . 556 . 555	5. 117 . 115 . 114 . 113 . 111	7. 675 . 672 . 671 . 669 . 666	10. 233 . 229 . 228 . 226 . 222	15. 350 . 344 . 341 . 338 . 333				
	40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	2. 044 . 043 . 043 . 042 . 041 . 041	2. 554 . 554 . 553 . 553 . 552 . 551	5. 109 . 108 . 107 . 105 . 103 . 102	7. 663 . 662 . 660 . 658 . 655 . 653	10. 218 . 216 . 214 . 210 . 206 . 204	15. 327 . 324 . 321 . 315 . 309 . 306				
	50 52 ¹ / ₂ 55 56 ¹ / ₄ 57 ¹ / ₂	2. 041 . 040 . 039 . 039 . 038	2. 551 . 550 . 549 . 548 . 548	5. 101 . 100 . 097 . 096 . 095	7. 652 . 649 . 646 . 644 . 643	10. 202 . 198 . 195 . 193 . 191	15. 304 . 298 . 292 . 289 . 286				
28	00	2, 037	2, 547	5, 093	7. 640	10. 187	15. 280				

Table 3.—Coordinates for the projection of maps, scale 31880—Continued

			Abscis	ssas of dev	reloped pa	arallel		Ordinates of de meridio		ped parallesistances	el and
tud	ti- le of allel			Longitude	e interval			Latitude and lo		Merid- ional	Ordi- nate of de-
		1'	11/4"	21/2'	33/4'	5'	7½'	tude interval		distance	velope
0 28	00 02½ 03¾ 05 07½	Inches 2. 037 . 037 . 036 . 036 . 035	Inches 2. 547 . 546 . 545 . 545 . 544	Inches 5, 093 , 091 , 090 , 089 , 088	Inches 7. 640 . 637 . 636 . 634 . 631	Inches 10. 187 . 183 . 181 . 179 . 175	Inches 15, 280 . 274 . 271 . 268 . 262	For latitude 28°	11/4 21/2 38/4 5 61/4 71/2	Inches 2. 869 5. 738 8. 607 11. 476 14. 346 17. 215	Inch 0.00 .00 .00 .00
	10 11½ 12½ 15 17½ 18¾	2. 034 . 034 . 033 . 033 . 032 . 031	2. 543 . 542 . 542 . 541 . 540 . 539	5, 085 . 085 . 084 . 082 . 080 . 079	7. 628 . 627 . 625 . 622 . 619 . 618	10. 171 . 169 . 167 . 163 . 159 . 157	15. 256 . 254 . 251 . 245 . 239 . 236		10 12½ 15	22, 953 28, 691 34, 429	0.00
	20 22½ 25 26¼ 27½	2. 031 . 030 . 029 . 029 . 029	2, 539 . 538 . 537 . 536 . 536	5. 078 . 076 . 074 . 073 . 072	7. 616 .613 .610 .609 .607	10. 155 . 151 . 147 . 145 . 143	15. 233 . 227 . 221 . 218 . 215	For latitude 29°	$ \begin{bmatrix} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \end{bmatrix} $	11. 478 14. 348 17. 217 22. 956	.00
	30 32½ 33¾ 35 37½	2. 028 . 027 . 027 . 026 . 025	2, 535 . 534 . 533 . 533 . 532	5, 070 . 068 . 067 . 066 . 064	7. 604 . 601 . 600 . 598 . 596	10, 139 . 135 . 133 . 131 . 127	15. 209 . 203 . 200 . 197 . 191		$ \begin{bmatrix} 121/2 \\ 15 \end{bmatrix} $ $ \begin{bmatrix} 11/4 \\ 21/2 \\ 33/4 \end{bmatrix} $	34, 434	0.0
	40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	2, 025 , 024	2. 531 . 530 . 530 . 529 . 528 . 527	5. 062 . 061 . 060 . 058 . 056 . 055	7. 593 . 591 . 590 . 586 . 583 . 582	10. 123 . 121 . 119 . 115 . 111 . 109	15. 185 . 182 . 179 . 173 . 167 . 164	For latitude 30°	33/4 5 61/4 71/2 10 121/2 15	11. 480 14. 350 17. 220 22. 960	0.00
	50 52½ 55 56¼ 57½	.020	2. 527 . 526 . 525 . 524 . 524	5, 054 . 052 . 050 . 049 . 048	7. 580 . 577 . 574 . 573 . 571	10. 107 . 103 . 099 . 097 . 095	15, 161 . 155 . 149 . 146 . 143		Ī		1
29	00 02½ 03¾ 05 07½	. 017	2. 523 . 522 . 521 . 521 . 520	5, 046 . 044 . 043 . 042 . 039	7. 568 . 565 . 564 . 562 . 559	10. 091 . 087 . 085 . 083 . 079	15, 137 . 131 . 127 . 125 . 118				
	10 11 ¹ / ₄ 12 ¹ / ₂ 15 17 ¹ / ₂ 18 ³ / ₄	.014	2. 519 . 518 . 518 . 517 . 516 . 515	5. 037 . 036 . 035 . 033 . 031 . 030	7. 556 . 555 . 553 . 550 . 547 . 545	10. 075 . 073 . 071 . 067 . 063 . 061	15, 112 . 109 . 106 . 100 . 094 . 091				
	20 22½ 25 26¼ 27½	2. 012 . 011 . 010 . 010	2. 515 . 514 . 513 . 512 . 512	5. 029 . 027 . 025 . 024 . 023	7. 544 . 541 . 538 . 536 . 535	10, 059 . 055 . 050 . 048 . 046	15. 088 . 082 . 076 . 073 . 069				
	30 32½ 33¾ 35 37½	,007	2, 511 . 509 . 509 . 508 . 507	5. 021 . 019 . 018 . 017 . 015	7. 532 . 529 . 527 . 525 . 522	10. 042 . 038 . 036 . 034 . 030	15. 063 . 057 . 054 . 051 . 045				
	40 41½ 42½ 45 47½ 48%	.004	2, 506 , 506 , 505 , 504 , 503 , 503	5. 013 . 012 . 011 . 009 . 007 . 006	7. 519 . 518 . 516 . 513 . 510 . 508	10. 026 . 024 . 022 . 017 . 013 . 011	15. 039 . 035 . 032 . 026 . 020 . 017				
	50- 521/ 55 561/ 571/	2, 002 . 001 . 000 . 000	2, 502 , 501 , 500 , 500 , 499	5. 005 . 003 . 000 4, 999	7. 507 . 504 . 501 . 499 . 497	10. 009 . 005 . 001 9. 999 . 997	15. 014 . 007 . 001				
30		1, 998	2. 498		7. 494	1	1	17			

Table 3.—Coordinates for the projection of maps, scale 31880—Continued

			Absci	ssas of de	veloped p	arallel		Ordinates of de meridio	velor onal c	ed parall listances	el and
tue	ati- ie of allel			Longitud	e interval			Latitude and lo		Merid-	Ordi- nate
_		1'	11/4'	2½'	33/4'	5′	71/2'	tude interval	s	distance	of de- veloped parallel
30	00 02½ 03¾ 05 07½	Inches 1, 998 998 997 997 996	Inches 2, 498 497 497 496 495	Inches 4, 996 994 993 992 990	Inches 7, 494 491 490 488 485	Inches 9, 992 , 988 , 986 , 984 , 980	Inches 14. 989 . 982 . 979 . 976 . 970	For latitude 30°	$ \begin{cases} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \end{cases} $	11. 480 14. 350 17. 220	Inch 0.000 .001 .002 .004 .006
	10 11½ 12½ 15 17½ 18¾	1. 995 . 995 . 994 . 993 . 993	2. 494 . 493 . 493 . 492 . 491 . 490	4. 988 . 987 . 986 . 984 . 982 . 981	7. 482 . 480 . 479 . 476 . 472 . 471	9. 976 . 974 . 971 . 967 . 963 . 961	14. 964 . 960 . 957 . 951 . 945 . 942		121/2	28. 700 34. 440	0,000
	20 22½ 25 26¼ 27½	1. 992 . 991 . 990 . 990 . 989	2.490 .489 .488 .487 .487	4. 979 . 977 . 975 . 974 . 973	7.469 .466 .463 .461 .460	9. 959 . 955 . 950 . 948 . 946	14. 938 . 932 . 926 . 923 . 919	For latitude 31°	$\begin{bmatrix} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \end{bmatrix}$	8. 611 11. 482 14. 352 17. 223 22. 963	.001 .002 .004 .006 .008
	30 32½ 33¾ 35 37½	1. 988 . 988 . 987 . 987 . 986	2. 486 . 484 . 484 . 483 . 482	4.971 .969 .968 .967 .965	7. 457 . 453 . 452 . 450 . 447	9. 942 . 938 . 936 . 934 . 929	14. 913 . 907 . 903 . 900 . 894		$ \begin{bmatrix} 12\frac{1}{2} \\ 15 \end{bmatrix} $ $ \begin{bmatrix} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \end{bmatrix} $	34. 445	0.000 .001
	40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ⁸ / ₄	1. 985 . 985 . 984 . 983 . 982 . 982	2. 481 . 481 . 480 . 479 . 478	4. 963 . 961 . 960 . 958 . 956 . 955	7. 444 . 442 . 441 . 437 . 434 . 433	9. 925 . 923 . 921 . 916 . 912 . 910	14. 888 . 884 . 881 . 875 . 868 . 865	For latitude 32°	$\begin{bmatrix} 33/4 \\ 5 \\ 61/4 \\ 71/2 \\ 10 \\ 121/2 \\ 15 \end{bmatrix}$	11. 483 14. 355 17. 225 22. 967	. 002 . 004 . 006 . 008 . 015 . 024 . 034
	50 52½ 55 56¼ 57½	1. 982 . 981 . 980 . 979 . 979	2. 477 . 476 . 475 . 474 . 474	4. 954 . 952 . 950 . 949 . 948	7. 431 . 428 . 425 . 423 . 421	9. 908 . 904 . 899 . 897 . 895	14. 862 . 856 . 849 . 846 . 843			<u> </u>	<u> </u>
31	00 02½ 03¾ 05 07½	1. 978 . 977 . 977 . 976 . 976	2. 473 . 472 . 471 . 471 . 469	4. 945 . 943 . 942 . 941 . 939	7. 418 . 415 . 413 . 412 . 408	9.891 .886 .884 .882 .878	14. 836 . 830 . 827 . 823 . 817				
	10 11½ 12½ 15 17½ 18¾	1. 975 . 974 . 974 . 973 . 972 . 972	2. 468 . 468 . 467 . 466 . 465 . 465	4. 937 . 936 . 935 . 932 . 930 . 929	7. 405 . 403 . 402 . 399 . 395 . 394	9.874 .871 .869 .865 .861 .858	14. 810 . 807 . 804 . 797 . 791 . 787				
	20 22½ 25 26¼ 27½	1. 971 . 970 . 969 . 969 . 969	2, 464 . 463 . 462 . 461 . 461	4. 928 . 926 . 924 . 923 . 921	7. 392 . 389 . 386 . 384 . 382	9. 856 . 852 . 848 . 845 . 843	14. 784 . 778 . 771 . 768 . 765				
	30 32½ 33¾ 35 37½	1. 968 . 967 . 967 . 966 . 965	2. 460 . 459 . 458 . 458 . 456	4, 919 .917 .916 .915 .913	7. 379 . 376 . 374 . 373 . 369	9. 839 . 834 . 832 . 830 . 826	14. 758 . 752 . 748 . 745 . 739			•	
	40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	1. 964 . 964 . 963 . 963 . 962 . 961	2. 455 . 455 . 454 . 453 . 452 . 451	4. 911 . 910 . 908 . 906 . 904 . 903	7. 366 . 364 . 363 . 359 . 356 . 354	9. 821 .819 .817 .813 .808 .806	14. 732 . 729 . 725 . 719 . 712 . 709				
	50 52½ 55 56¼ 57½	1. 961 . 960 . 959 . 959 . 958	2. 451 . 450 . 449 . 448 . 448	4. 902 . 900 . 897 . 896 . 895	7. 353 . 349 . 346 . 345 . 343	9. 804 . 799 . 795 . 793 . 790	14. 706 . 699 . 692 . 689 . 686				
32	00	1. 957	2. 447	4. 893	7.340	9.786	14.679				

Table 3.—Coordinates for the projection of maps, scale 31888 —Continued

		Absci	ssas of de	veloped p	arallel		Ordinates of de meridio		ped parall listances	el and
Lati- tude of parallel			Longitud	le interval			Latitude and lo	ngi-	Merid-	Ordi- nate
	1′	11/4'	2½'	33/4'	5'	71/2'	tude interval	S	ional distance	of de- velope paralle
00 02½ 03¾ 05 07½	Inches 1. 957 . 956 . 956 . 955 . 955	Inches 2, 447 . 445 . 445 . 444 . 443	Inches 4, 893 .891 .890 .889 .886	Inches 7. 340 . 336 . 335 . 333 . 330	Inches 9. 786 . 782 . 779 . 777 . 773	Inches 14. 679 . 672 . 669 . 666 . 659	For latitude 32°	$ \begin{array}{c} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \end{array} $	Inches 2, 871 5, 742 8, 613 11, 483 14, 355 17, 225	Inch 0.00 .00 .00 .00 .00
$ \begin{array}{c} 10 \\ 11 \frac{1}{4} \\ 12 \frac{1}{2} \\ 15 \\ 17 \frac{1}{2} \\ 18 \frac{3}{4} \end{array} $	1. 954 . 953 . 953 . 952 . 951	2. 442 . 441 . 441 . 440 . 439 . 438	4. 884 . 883 . 882 . 880 . 877	7. 326 . 325 . 323 . 320 . 316 . 315	9. 768 . 766 . 764 . 759 . 755 . 753	44. 652 . 649 . 646 . 639 . 632 . 629		10 12½ 15	22. 967 28. 709 34, 450	.01
20 22½ 25 26¼ 27½	1. 950 . 949 . 948 . 948 . 947	2, 438 . 437 . 435 . 435	. 876 4. 875 . 873 . 871 . 870 . 869	7. 313 . 310 . 306 . 305 . 303	9. 751 . 746 . 742 . 739 . 737	14. 626 . 619 . 612 . 609 . 606	For latitude 33°	$ \begin{array}{c} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \end{array} $	2. 871 5. 743 8. 614 11. 485 14. 357 17. 228 22. 971	0.00 .00 .00 .00 .00
30 32½ 33¾ 35 37½	1. 947 . 946 . 945 . 945 . 944	2. 433 . 432 . 431 . 431 . 430	4. 866 . 864 . 863 . 862 . 860	7. 299 295 . 294 . 293 . 289	9. 733 . 728 . 726 . 724 . 719	14. 599 . 592 . 589 . 585 . 579		121/2	28. 714 34. 456 2. 872	0.00 0.00
40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	1. 943 . 942 . 942 . 941 . 940 . 940	2, 429 . 428 . 428 . 426 . 425 . 425	4. 857 . 856 . 855 . 853 . 851 . 849	7. 286 . 284 . 283 . 279 . 276 . 274	9, 715 . 712 . 710 . 706 . 701 . 699	14. 572 . 569 . 565 . 558 . 551 . 548	For latitude 34°	21/2 33/4 5 61/4 7/2 10 121/2 15	5, 744 8, 615 11, 487 14, 359 17, 231 22, 974 28, 718 34, 462	.00 .00 .00 .00 .00 .01
50 52½ 55 56¼ 57½	1. 939 . 938 . 937 . 937 . 937	2. 424 . 423 . 422 . 421 . 421	4. 848 . 846 . 844 . 843 . 841	7. 272 . 269 . 266 . 264 . 262	9. 697 . 692 . 687 . 685 . 683	14. 545 . 538 . 531 . 528 . 524			01.102	. 00
33 00 02½ 03¾ 05 07½	1. 936 . 935 . 934 . 934 . 933	2. 420 . 418 . 418 . 417 . 416	4, 839 . 837 . 836 . 835 . 832	7. 259 . 255 . 254 . 252 . 249	9. 678 . 674 . 671 . 669 . 665	14. 518 . 511 . 507 . 504 . 497				
10 11½ 12½ 15 17½ 18¾	1. 932 . 932 . 931 . 930 . 929 . 929	2. 415 . 415 . 414 . 413 . 412 . 411	4, 830 . 829 . 828 . 825 . 823 . 822	7. 245 . 243 . 242 . 238 . 235 . 233	9. 660 . 658 . 656 . 651 . 646 . 644	14. 490 . 487 . 483 . 476 . 470 . 466				
20 $22\frac{1}{2}$ 25 $26\frac{1}{4}$ $27\frac{1}{2}$	1. 928 . 927 . 926 . 926 . 926	2. 410 . 409 . 408 . 408 . 407	4. 821 . 819 . 816 . 815 . 814	7. 231 . 228 . 224 . 223 . 221	9. 642 . 637 . 633 . 630 . 628	14. 463 . 456 . 449 . 445 . 442				
30 32½ 33¾ 35 37½	1. 925 . 924 . 923 . 923 . 922	2. 406 . 405 . 404 . 404 . 402	4, 812 . 809 . 808 . 807 . 805	7. 218 . 214 . 212 . 211 . 207	9. 623 . 619 . 617 . 614 . 610	14. 435 . 428 . 425 . 421 . 414				
40 411/4 421/2 45 471/2 488/4	1. 921 . 921 . 920 . 919 . 918 . 918	2. 401 . 401 . 400 . 399 . 398 . 397	4.802 .801 .800 .798 .795 .794	7. 204 . 202 . 200 . 197 . 193 . 191	9. 605 . 603 . 600 . 596 . 591 . 589	14. 407 . 404 . 400 . 394 . 387 . 383				
50 52½ 55 56¼ 57½	1. 917 . 916 . 915 . 915 . 915	2. 397 . 395 . 394 . 394 . 393	4. 793 . 791 . 789 . 787 . 786	7. 190 . 186 . 183 . 181 . 179	9. 586 . 582 . 577 . 575 . 572	14. 380 . 373 . 366 . 362 . 358				
34 00	1.914	2, 392	4. 784	7. 176	9. 558	14. 352				

Table 3.—Coordinates for the projection of maps, scale 31880—Continued

Ī			Absei	ssas of de	veloped p	arallel		Ordinates of de meridio		oed parall listances	el and
tu	ati- de of rallel			Longitud	e interval			Latitude and lo		Merid- ional	Ordi- nate of de-
		1′	. 11/4'	2½′	33/4"	5'	7½′			distance	veloped parallel
34	00 02½ 03¾ 05 07½	Inches 1. 914 . 913 . 912 . 912 . 911	Inches 2. 392 391 390 390 388	Inches 4. 784 . 782 . 780 . 779 . 777	Inches 7. 176 . 172 . 171 . 169 . 165	Inches 9, 568 563 561 558 554	Inches 14. 352 345 341 338 331	For latitude 34°	$ \begin{bmatrix} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \end{bmatrix} $	14, 359	Inch 0,000 .001 .002 .004 .006
	10 11 ¹ / ₄ 12 ¹ / ₂ 15 17 ¹ / ₂ 18 ³ / ₄	. 907	2, 387 .387 .386 .385 .384	4.775 .773 .772 .770 .767	7. 162 .160 .158 .155	9. 549 . 547 . 544 . 540 . 535	14. 324 . 320 . 316 . 309 . 302		10 12½ 15	22. 974 28. 718 34. 462	.016 .024 .035
	20 22½ 25 26¼ 27½	. 906 1. 906 . 905 . 904 . 904 . 903	2. 383 . 381 . 380 . 380 . 379	.766 4.765 .763 .760 .759 .758	7. 148 .144 .141 .139 .137	9. 530 . 525 . 521 . 518 . 516	. 299 14. 295 . 288 . 281 . 278 . 273	For latitude 35%	7½ 10	11. 489 14. 362 17. 234 22. 978	0.000 .001 .002 .004 .006 .009
	30 32½ 33¾ 35 37½	1.902 .901 .901 .900	2.378 .377 .376 .375	4. 756 . 753 . 752 . 751 . 749	7. 133 . 130 . 128 . 126 . 123	9. 511 . 507 . 504 . 502 . 497	14. 267 . 260 . 256 . 253 . 246		121/2	34, 467	0.000
	40 41½ 42½ 45 47½ 48¾	1. 898 . 398 . 397 . 897 . 896 . 895	2. 373 . 373 . 372 . 371 . 370 . 369	4. 746 . 745 . 744 . 741 . 729 . 738	7. 119 .117 .116 .112 .109 .107	9. 492 . 490 . 488 . 483 . 478 . 476	14. 239 . 235 . 231 . 224 . 217 . 213	For latitude 36°	$\begin{pmatrix} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \\ 12\frac{1}{2} \\ 15 \end{pmatrix}$	11. 491 14. 364 17. 237 22. 982	.001 .002 .004 .006 .009 .016 .025
	50 52½ 55 56¼ 57½	1.895 .894 .893 .892 .892	2.368 .367 .366 .365	4. 737 . 734 . 732 . 731 . 729	7. 105 . 101 . 098 . 095 . 094	9. 473 . 468 . 464 . 461 . 459	14. 210 . 203 . 196 . 192 . 188				
3 5	00 02½ 03¾ 05 07½	1.891 .890 .889 .889	2. 364 . 362 . 362 . 361 . 360	4.727 .725 .724 .722 .720	7. 091 . 087 . 085 . 083 . 079	9. 454 . 449 . 447 . 445 . 439	14. 181 . 174 . 170 . 167 . 160				
	10 11 ¹ / ₄ 12 ¹ / ₂ 15 17 ¹ / ₂ 18 ³ / ₄	1.887 .886 .886 .885 .884	2. 359 . 358 . 357 . 356 . 355 . 354	4, 717 .716 .715 .713 .710 .709	7. 076 . 074 . 073 . 069 . 065 . 064	9. 435 . 433 . 430 . 425 . 420 . 418	14. 152 . 149 . 145 . 138 . 131 . 127				
	20 22½ 25 26¼ 27½	1. 883 . 882 . 881 . 881 . 880	2. 354 . 353 . 352 . 351 . 350	4. 708 . 705 . 703 . 702 . 701	7. 062 . 058 . 054 . 053 . 051	9. 416 . 411 . 406 . 404 . 401	14. 124 . 116 . 109 . 105 . 102				
	30 32½ 33¾ 35 37½	1. 879 . 878 . 878 . 877 . 876	2. 349 . 348 . 347 . 347 . 345	4. 698 . 696 . 694 . 693 . 691	7. 047 . 044 . 042 . 040 . 036	9.396 .391 .389 .387 .382	14. 094 . 087 . 083 . 080 . 073				
	40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	1.875 .875 .874 .873 .872 .872	2. 344 . 344 . 343 . 342 . 341 . 340	4. 688 . 687 . 686 . 684 . 681 . 680	7. 033 .031 .029 .025 .022 .020	9. 377 . 374 . 372 . 367 . 362 . 360	14. 065 . 062 . 058 . 051 . 043 . 040				
	50 52½ 55 56¼ 57½	1. 871 . 870 . 869 . 869 . 869	2, 339 . 338 . 337 . 336 . 336	4. 679 . 676 . 674 . 673 . 671	7. 018 . 014 . 011 . 009 . 007	9. 357 . 352 . 348 . 345 . 343	14. 036 . 029 . 021 . 018 . 014				
36	00	1.868	2. 334	4. 669	7. 003	9, 338	14.007				

Table 3.—Coordinates for the projection of maps, scale 3 16 80 —Continued

			Abscis	ssas of dev	veloped pa	arallel		Ordinates of de meridio	velor nal d	oed parall listances	el and
La tud para				Longitud			-1.//	Latitude and lor		Merid- ional distance	Ordi- nate of de- veloped parallel
		1'	11/4'	2½′	33/4'	5′	7½′				paraner
	00 02½ 03¾ 05 07½	Inches 1, 868 , 867 , 866 , 866 , 865	Inches 2, 334 , 333 , 332 , 331	Inches 4. 669 . 666 . 665 . 664 . 661	Inches 7, 003 , 000 6, 998 , 996 , 992	Inches 9. 338 . 333 . 330 . 328 . 323	Inches 14, 007 13, 999 . 996 . 992 . 984	For latitude 36°	$ \begin{array}{c} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \end{array} $	11. 491 14. 364 17. 237	Inch 0.000 .001 .002 .004 .006
	10 11½ 12½ 15 17½ 18¾	1. 864 . 863 . 863 . 862 . 861	2. 330 329 328 327 326 326	4. 659 . 658 . 657 . 654 652 . 650	6. 989 . 987 . 985 . 981 . 977 . 976	9. 318 . 316 . 313 . 308 . 303 . 301	13. 977 . 973 . 970 . 962 . 955 . 951		10 12½ 15	22. 982 28. 728 34. 473	.016
	20 22½ 25 26¼ 27½	. 860 1. 860 . 859 . 858 . 857 . 857	2. 325 . 323 . 322 . 321 . 321	4. 649 . 647 . 644 . 643 . 642	6. 974 . 970 . 966 . 964 . 963	9, 298 . 293 . 288 . 286 . 283	13. 947 . 940 . 933 . 929 . 925	For latitude 37°	11/4 21/2 33/4 5 61/4 71/2 10	11. 493 14. 366 17. 240 22. 986	0.000 .001 .002 .004 .006 .009
	30 32½ 33¾ 35 37½	1. 856 . 855 . 854 . 854 . 853	2, 320 .318 .318 .317 .316	4. 639 . 637 . 635 . 634 . 632	6. 959 . 955 . 953 . 951 . 948	9, 278 . 273 . 271 . 268 . 264	13. 918 . 910 . 906 . 903 . 895		$12\frac{1}{2}$ 15 $1\frac{1}{4}$ $2\frac{1}{2}$	34, 479	0.000
	40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	1. 852 . 851 . 851 . 850 . 849 . 848	2. 315 .314 .313 .312 .311 .310	4. 629 . 628 . 627 . 624 . 622 . 621	6. 944 . 942 . 940 . 936 . 933 . 931	9. 259 . 256 . 254 . 249 . 243 . 241	13. 888 . 884 . 880 . 873 . 865 . 862	For latitude 38°	33/4 5 61/4 71/2 10 121/2	8. 621 11. 495 14. 369 17. 242 22. 990	. 001 . 002 . 006 . 009 . 016 . 025
	50 52½ 55 56¼ 57½	1. 848 . 847 . 846 . 845 . 845	2. 310 . 308 . 307 . 306 . 306	4. 619 . 617 . 614 . 613 . 612	6. 929 . 925 . 921 . 919 . 918	9. 238 . 233 . 228 . 226 . 223	13. 858 . 850 . 843 . 839 . 835				
37	00 02½ 03¾ 05 07½	1. 844 . 843 . 842 . 842 . 841	2. 305 . 303 . 303 . 302 . 301	4. 609 . 607 . 605 . 604 . 602	6. 914 . 910 . 908 . 906 . 902	9, 218 , 213 , 211 , 208 , 203	13. 828 . 820 . 816 . 813 . 805				
	$ \begin{array}{c} 10 \\ 11\frac{1}{4} \\ 12\frac{1}{2} \\ 15 \\ 17\frac{1}{2} \\ 18\frac{3}{4} \end{array} $	1. 840 . 839 . 839 . 838 . 837 . 836	2, 300 , 299 , 298 , 297 , 296 , 295	4. 599 . 598 . 597 . 594 . 592 . 590	6. 899 . 897 . 895 . 891 . 887 . 885	9. 198 . 196 . 193 . 188 . 183 . 181	13. 797 . 794 . 790 . 782 . 775 . 771				
	20 22½ 25 26¼ 27½	1. 836 . 835 . 834 . 833 . 833	2, 295 , 293 , 292 , 291 , 291	4. 589 . 587 . 584 . 583 . 581	6. 884 . 880 . 876 . 874 . 872	9, 178 , 173 , 168 , 165 , 163	13, 767 . 759 . 752 . 748 . 744				
	30 32½ 33¾ 35 37½	1. 832 . 831 . 830 . 830 . 829	2, 289 , 288 , 288 , 287 , 286	4. 579 . 576 . 575 . 574 . 571	6. 868 . 864 . 863 . 861 . 857	9. 158 . 153 . 150 . 148 . 142	13. 737 . 729 . 725 . 721 . 714				
	40 411/4 421/2 45 471/2 483/4	825	2. 284 . 284 . 283 . 282 . 280 . 280	4. 569 . 567 . 566 . 564 . 561 . 560	6, 853 , 851 , 849 , 845 , 841 , 840	9. 137 . 135 . 132 . 127 . 122 . 119	13, 706 . 702 . 698 . 691 . 683 . 679				
	50 52½ 55 56¼ 57½	1.823 .822 .821 .821	2, 279 . 278 . 277 . 276 . 275	4. 558 . 556 . 553 . 552 . 551	6. 838 . 834 . 830 . 828 . 826	9. 117 . 112 . 107 . 104 . 101	13. 675 . 668 . 660 . 656 . 652				
38	00	1, 819	. 2. 274	4. 548	6. 822	9.096	13. 644				

Table 3.—Coordinates for the projection of maps, scale 31680—Continued

_			Absei	ssas of de	veloped p	arallel		Ordinates of de meridio	veloj nal d	oed parall	el and
tu	Lati- ide of rallel			Longitud	le interval	l		Latitude and lo	ngi-	Merid-	Ordi- nate
		1′	1½′	2½′	384′	5′	71/2'	tude interval	S	ional distance	of de- veloped parallel
38	00 02½ 03¾ 05 07½	Inches 1, 819 . 818 . 818 . 817 . 816	Inches 2, 274 . 273 . 272 . 272 . 270	Inches 4, 548 546 544 543 540	Inches 6, 822 , 818 , 816 , 814 , 811	Inches 9, 096 . 091 . 089 . 086 . 081	Inches 13. 644 . 636 . 633 . 629 . 621	For latitude 38°	$ \begin{cases} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 6\frac{1}{4} \\ 7\frac{1}{2} \end{cases} $	11, 495	Inch 0,000 .001 .002 .004 .006
	10 11 ¹ / ₄ 12 ¹ / ₂ 15 17 ¹ / ₂ 18 ⁸ / ₄	1. 815 .815 .814 .813 .812 .812	2, 269 . 268 . 268 . 266 . 265 . 264	4. 538 . 537 . 535 . 533 . 530 . 529	6. 807 . 805 . 803 . 799 . 795 . 793	9. 076 . 073 . 071 . 065 . 060 . 058	13. 614 . 610 . 606 . 598 . 590 . 586		$10 \\ 12\frac{1}{2} \\ 15$	22, 990 28, 738 34, 485	.016
	20 22½ 25 26¼ 27½	1, 811 .810 .809 .808 .808	2, 264 . 262 . 261 . 260 . 260	4. 527 . 525 . 522 . 521 . 520	6. 791 . 787 . 783 . 781 . 780	9. 055 . 050 . 045 . 042 . 039	13. 582 . 575 . 567 . 563 . 559	For latitude 39°	$ \begin{array}{c c} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \end{array} $	11. 497 14. 371 17. 245 22. 994	0.000 .001 .002 .004 .006 .009
	30 32½ 33¾ 35 37½	1. 807 806 805 805 805 804	2. 259 . 257 . 257 . 256 . 255	4, 517 . 515 . 513 . 512 . 509	6. 776 . 772 . 770 . 768 . 764	9. 034 . 029 . 026 . 024 . 019	13, 551 . 544 . 540 . 536 . 528		$\begin{bmatrix} 12\frac{1}{2} \\ 15 \end{bmatrix}$	28. 743 34. 491 2. 875 5. 749	0.000 0.000
	40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	1. 803 . 802 . 802 . 801 . 800 . 799	2, 253 , 253 , 252 , 251 , 249 , 249	4. 507 . 505 . 504 . 501 . 499 . 498	6. 760 . 758 . 756 . 752 . 748 . 746	9, 013 . 011 . 008 . 003 8, 998 . 995	13. 520 . 516 . 513 . 504 . 497 . 493	For latitude 40°	$ \begin{array}{c} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \\ 12\frac{1}{2} \\ 15 \end{array} $	8. 624 11. 499 14. 374 17. 248 22. 998 28. 748 34. 497	. 002 . 004 . 006 . 009 . 017 . 026 . 037
	50 52½ 55 56¼ 57½	1. 798 . 797 . 796 . 796 . 795	2. 248 . 247 . 245 . 245 . 244	4. 496 . 494 . 491 . 490 . 488	6. 744 . 740 . 736 . 734 . 732	8, 992 987 982 979 977	13. 489 . 481 . 473 . 469 . 465				
39	00 02½ 03¾ 05 07½	1. 794 . 793 . 793 . 792 . 791	2. 243 . 242 . 241 . 240 . 239	4. 486 . 483 . 482 . 480 . 478	6, 729 , 725 , 723 , 721 , 717	8, 971 . 966 . 964 . 961 . 956	13. 457 . 449 . 445 . 441 . 433				
	10 11 ¹ / ₄ 12 ¹ / ₂ 15 17 ¹ / ₂ 18 ⁸ / ₄	1. 790 . 790 . 789 . 788 . 787 . 786	2. 238 . 237 . 236 . 235 . 234 . 233	4. 475 . 474 . 473 . 470 . 467 . 466	6. 713 . 711 . 709 . 705 . 701 . 699	8. 950 . 948 . 945 . 940 . 934 . 932	13. 425 . 422 . 418 . 410 . 402 . 398				
	20 $22\frac{1}{2}$ 25 $26\frac{1}{4}$ $27\frac{1}{2}$	1. 786 . 785 . 784 . 783 . 783	2, 232 . 231 . 230 . 229 . 228	4. 465 . 462 . 459 . 458 . 457	6. 697 . 693 . 689 . 687 . 685	8. 929 . 924 . 919 . 916 . 913	13. 394 . 386 . 378 . 374 . 370				
	30 32½ 33¾ 35 37½	1. 782 . 781 . 780 . 779 . 778	2. 227 . 226 . 225 . 224 . 223	4. 454 . 451 . 450 . 449 . 446	6. 681 . 677 . 675 . 673 . 669	8. 908 . 903 . 900 . 897 . 892	13. 362 . 354 . 350 . 346 . 338	•	•		
	40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	1. 777 . 777 . 776 . 775 . 774 . 774	2. 222 . 221 . 220 . 219 . 218 . 217	4. 443 . 442 . 441 . 438 . 435 . 434	6. 665 . 663 . 661 . 657 . 653 . 651	8. 887 . 884 . 881 . 876 . 871 . 868	13. 330 . 326 . 322 . 314 . 306 . 302				
	50 52½ 55 56¼ 57½	1. 773 . 772 . 771 . 770 . 770	2. 216 . 215 . 214 . 213 . 212	4, 433 , 430 , 427 , 426 , 425	6. 649 . 645 . 641 . 639 . 637	8. 865 . 860 . 855 . 852 . 849	13, 298 . 290 . 282 . 278 . 274				
40	00	1. 769	2, 211	4, 422	6. 633	8. 844	13. 266				

Table 3.—Coordinates for the projection of maps, scale 31630—Continued

			Absci	ssas of de	veloped p	arallel		Ordinates of develor meridional		el and
tu	ati- de of l rallel			Longitud	e interval		,	Latitude and longi-	Merid-	Ordi- nate
		1'	11/4'	21/2'	3¾′	5'	7½"	tude intervals	ional distance	of de- veloped parallel
40	00 02½ 03¾ 05 07½	Inches 1, 769 . 768 . 767 . 767 . 765	Inches 2. 211 . 210 . 209 . 208 . 207	Inches 4. 422 . 419 . 418 . 416 . 414	Inches 6. 633 . 629 . 627 . 625 . 621	Inches 8.844 .838 .836 .833 .828	Inches 13, 266 , 258 , 254 , 250 , 241	For latitude 40° 61, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79	5. 749 8. 624 11. 499 14. 374	Inch 0.000 .001 .002 .004 .006 .009
	10 11 ¹ / ₄ 12 ¹ / ₂ 15 17 ¹ / ₂	1. 764 . 764 . 763 . 762 . 761	2. 206 . 205 . 204 . 203 . 202	4. 411 . 410 . 408 . 406 . 403 . 402	6. 617 . 615 . 612 . 609 . 605	8. 822 .819 .817 .811 .806 .803	13. 233 . 229 . 224 . 217 . 209 . 205	10 121/15	22. 998 28. 748 34. 497	. 017 . 026 . 037
	18¾ 20 22½ 25 26¼ 27½	. 761 1. 760 . 759 . 758 . 757 . 757	2. 200 . 199 . 197 . 197 . 196	4, 400 . 398 . 395 . 394 . 392	6. 600 . 596 . 592 . 590 . 588	8. 801 . 795 . 790 . 787 . 784	13. 201 . 193 . 185 . 181 . 177	For latitude 41° 614 714 10	5. 750 8. 626 11. 501 14. 376 17. 252 23. 002	0.000 .001 .002 .004 .006 .009
	30 32½ 33¾ 35 37½	1.756 .755 .754 .754 .753	2. 195 . 193 . 193 . 192 . 191	4. 389 . 387 . 385 . 384 . 381	6. 584 . 580 . 578 . 576 . 572	8.779 .773 .771 .768 .763	13. 168 . 160 . 156 . 152 . 144	[12] ₄ [15]	34. 503	0. 000
	40 411/4 421/2 45 471/2 488/4	1. 751 . 751 . 750 . 749 . 748 . 748	2. 189 . 189 . 188 . 186 . 185 . 184	4. 379 . 377 . 376 . 373 . 370 . 369	6. 568 . 566 . 564 . 560 . 556 . 554	8.757 .754 .752 .746 .741 .738	13. 136 . 132 . 128 . 119 . 111 . 107	For latitude 42° 61, 71, 10, 121, 15	11. 503 14. 379 17. 255 23. 006	. 001 . 002 . 004 . 007 . 009 . 017 . 026 . 038
	50 52½ 55 56¾ 57½	1.747 .746 .745 .744 .744	2. 184 . 182 . 181 . 180 . 180	4. 368 . 365 . 362 . 361 . 360	6. 551 . 547 . 543 . 541 . 539	8. 735 . 730 . 724 . 722 . 719	13. 103 . 095 . 087 . 083 . 078			
41	00 02½ 03¾ 05 07½	1. 743 . 742 . 741 . 740 . 739	2. 178 . 177 . 176 . 176 . 174	4. 357 . 354 . 353 . 351 . 348	6. 535 . 531 . 529 . 527 . 523	8. 713 . 708 . 705 . 702 . 697	13. 070 . 062 . 058 . 054 . 045			
	10 11½ 12½ 15 17½ 18¾	1. 738 . 738 . 737 . 736 . 735 . 734	2. 173 . 172 . 171 . 170 . 169 . 168	4. 346 . 344 . 343 . 340 . 337 . 336	6. 519 . 517 . 514 . 510 . 506 . 504	8. 691 . 689 . 686 . 680 . 675 . 672	13. 037 . 033 . 029 . 021 . 012 . 008			
	20 22½ 25 26¼ 27½	1. 734 . 733 . 732 . 731 . 731	2. 167 . 166 . 165 . 164 . 163	4. 335 . 332 . 329 . 328 . 326	6. 502 . 498 . 494 . 492 . 490	8. 669 . 664 . 658 . 656 . 653	13. 004 12. 996 . 987 . 983 . 979			
	30 32½ 33¾ 35 37½	1. 729 . 728 . 728 . 727 . 726	2, 162 . 160 . 160 . 159 . 158	4, 324 . 321 . 319 . 318 . 315	6. 485 . 481 . 479 . 477 . 473	8. 647 . 642 . 639 . 636 . 631	12. 971 . 963 . 958 . 954 . 946			
	40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	1. 725 . 724 . 724 . 723 . 722 . 721	2. 156 . 156 . 155 . 153 . 152 . 151	4. 313 . 311 . 310 . 307 . 304 . 303	6. 469 . 467 . 465 . 460 . 456 . 454	8. 625 . 622 . 619 . 614 . 608 . 606	12. 938 . 933 . 929 . 921 . 913 . 908			
	50 52½ 55 56¼ 57½	1. 721 . 719 . 718 . 718 . 717	2. 151 . 149 . 148 . 147 . 146	4. 301 . 297 . 296 . 294 . 293	6. 452 . 448 . 444 . 442 . 439	8. 603 . 597 . 592 . 589 . 586	12. 904 . 896 . 887 . 883 . 879			
42	00	1.716	2. 145	4, 290	6. 435	8. 580	12.871			

Table 3.—Coordinates for the projection of maps, scale stass —Continued

		Absci	ssas of de	veloped p	arallel .	42 24	Ordinates of deve meridiona	loped parall l distances	el and
Lati- tude of parallel	1		Longitud	le interval	1	1	Latitude and long	Merid-	Ordi- nate
	1 200	11/4"	2½′	33/4'	5'	71/2"	tude intervals	ional distance	of de- veloped parallel
42 00 02½ 03¾ 03¾ 05 07½	Inches 1.716 .715 .714 .714 .713	Inches 2. 145 .144 .143 .142 .141	Inches 4, 290 . 287 . 286 . 285 . 282	Inches 6. 435 . 431 . 429 . 427 . 423	Inches 8, 580 . 575 . 572 . 569 . 564	Inches 12, 871 . 862 . 858 . 854 . 845	For latitude 42°	14.379	Inch 0.000 .001 .002 .004
$ \begin{array}{c} 10 \\ 11\frac{1}{4} \\ 12\frac{1}{2} \\ 15 \\ 17\frac{1}{2} \\ 18\frac{3}{4} \end{array} $	1. 712 .711 .711 .709 .708 .708	2. 140 . 139 . 138 . 137 . 135 . 135	4. 279 . 278 . 276 . 273 . 271 . 269	6. 418 . 416 . 414 . 410 . 406 . 404	8, 558 . 555 . 552 . 547 . 541 . 538	12. 837 .833 .829 .820 .812 .807	100	28, 758 34, 509	.009
20 22½ 25 26¼ 27½	1.707 .706 .705 .704 .704	2. 134 . 132 . 131 . 130 . 130	4. 268 . 265 . 262 . 261 . 259	6. 402 .397 .393 .391 .388	8. 535 .530 .524 .521 .519	12. 803 .795 .786 .782 .778	For latitude 43° 6	14. 382 17. 258 23. 010	0.000 .001 .002 .004 .007 .009
30 $32\frac{1}{2}$ $33\frac{3}{4}$ 35 $37\frac{1}{2}$	1. 703 . 701 . 701 . 700 . 699	2. 128 .127 .126 .125 .124	4. 256 . 254 . 252 . 251 . 248	6. 385 . 380 . 378 . 376 . 372	8. 513 . 507 . 504 . 502 . 496	12. 769 . 761 . 757 . 752 . 744	(15	-	0.000
40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	1. 698 . 697 . 697 . 696 . 695 . 694	2. 123 .122 .121 .120 .118 .118	4. 245 . 244 . 242 . 239 . 237 . 235	6. 368 . 366 . 363 . 359 . 355	8. 490 . 487 . 485 . 479 . 473 . 470	12. 735 . 731 . 727 . 718 . 710 . 706	For latitude 44° 5	1/2 28. 768	. 001 . 002 . 004 . 007 . 009 . 017 . 026 . 038
50 52½ 55 56¼ 57½	1. 693 . 692 . 691 . 691 . 690	2. 117 .115 .114 .113 .113	4. 234 . 231 . 228 . 227 . 225	6.351 .346 .342 .340 .338	8. 468 . 462 . 456 . 453 . 450	12. 701 . 693 . 684 . 680 . 676			
43 00 02½ 03¾ 05 07½	1. 689 . 688 . 687 . 686	2. 111 . 110 . 109 . 108 . 107	4. 222 . 220 . 218 . 217 . 214	6. 334 . 329 . 327 . 325 . 321	8.445 .439 .436 .433 .428	12.667 .659 .654 .650 .641			
10 1114 1212 15 1712 1834	1. 684 . 684 . 683 . 682 . 681 . 680	2. 105 . 105 . 104 . 103 . 101 . 100	4. 211 . 210 . 208 . 205 . 202 . 201	6. 316 - 314 - 312 - 308 - 303 - 301	8, 422 .419 .416 .410 .405 .402	12. 633 . 629 . 624 . 616 . 607 . 603			
20 $22\frac{1}{2}$ 25 $26\frac{1}{4}$ $27\frac{1}{2}$	1. 680 . 679 . 677 . 677 . 676	2. 100 . 098 . 097 . 096 . 095	4. 199 . 197 . 194 . 192 . 191	6. 299 . 295 . 291 . 289 . 286	8.399 .393 .387 .385 .382	12. 598 . 590 . 581 . 577 . 573			
30 32½ 33¾ 35 37½	1. 675 . 674 . 673 . 673 . 672	2. 094 . 093 . 092 . 091 . 090	4. 188 . 185 . 184 . 182 . 179	6. 282 . 278 . 275 . 273 . 269	8. 376 . 370 . 367 . 364 . 359	12. 564 . 555 . 551 . 547 . 538			
40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	1. 671 . 670 . 669 . 668 . 667 . 666	2. 088 . 087 . 087 . 085 . 084 . 083	4. 176 . 175 . 173 . 171 . 168 . 166	6. 265 . 262 . 260 . 256 . 252 . 249	8. 353 . 350 . 347 . 341 . 336 . 333	12. 529 . 525 . 521 . 512 . 503 . 499			
50 52½ 55 56¼ 57½	1. 666 . 665 . 664 . 663 . 662	2. 082 . 081 . 080 . 079 . 078	4. 165 . 162 . 159 . 158 . 156	6. 247 . 243 . 239 . 236 . 234	8.330 .324 .318 .315 .312	12. 495 • 486 • 477 • 473 • 468			
44 00	1. 661	2. 077	4. 153	6. 230	8, 307	12. 460			

Table 3.—Coordinates for the projection of maps, scale 31630—Continued

		Absci	ssas of de	veloped p	arallel		Ordinates of de meridio		oed parall listances	el and
Lati- tude of parallel			Longitud	e interval			Latitude and lo		Merid- ional	Ordi- nate of de-
	1'	11/4'	2½′	384'	5′	71/2"	tude interval	3	distance	
0 , 44 00 02½ 03¾ 05 07½	Inches 1, 661 . 660 . 660 . 659 . 658	Inches 2. 077 . 075 . 074 . 074 . 072	Inches 4, 153 , 150 , 149 , 147 , 145	Inches 6. 230 . 226 . 223 . 221 . 217	Inches 8.307 .301 .298 .295 .289	Inches 12.460 .451 .447 .442 .434	For latitude 44°	11/4 21/2 33/4 5 61/4 71/2	Inches 2. 877 5. 753 8. 630 11. 507 14. 384 17. 261	Inch 0.000 .001 .002 .004 .007
$ \begin{array}{c} 10 \\ 11\frac{1}{4} \\ 12\frac{1}{2} \\ 15 \\ 17\frac{1}{2} \\ 18\frac{3}{4} \end{array} $	1. 657 . 656 . 656 . 654 . 653	2. 071 . 070 . 069 . 068 . 066	4. 142 . 140 . 139 . 136 . 133	6. 212 . 210 . 208 . 204 . 199 . 197	8. 283 . 280 . 277 . 272 . 266 . 263	12. 425 . 420 . 416 . 407 . 399 . 394		10 12½ 15	23. 014 28. 768 34. 521	.017
20 22½ 25 26¼ 27½	. 653 1. 652 . 651 . 650 . 649 . 648	. 066 2. 065 . 064 . 062 . 061 . 061	4. 130 . 127 . 124 . 123 . 121	6. 195 . 191 . 186 . 184 . 182	8. 260 . 254 . 248 . 245 . 242	12. 390 . 381 . 372 . 369 . 364	For latitude 45°	11/4 21/2 33/4 5 61/4 71/2 10	2. 877 5. 755 8. 632 11. 509 14. 387 17. 264 23. 018	0. 000 . 001 . 002 . 004 . 007 . 009 . 017
30 32½ 33¾ 35 37½	1. 647 . 646 . 645 . 645 . 644	2. 059 . 058 . 057 . 056 . 055	4. 118 . 115 . 114 . 112 . 109	6. 177 . 173 . 171 . 169 . 164	8. 236 . 231 . 228 . 225 . 219	12. 355 . 346 . 341 . 337 . 328		121/2	28. 773 34. 527 2. 878	0.000
40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	1. 643 . 642 . 641 . 640 . 639 . 639	2. 053 . 052 . 052 . 050 . 049 . 048	4. 106 . 105 . 104 . 101 . 098 . 096	6. 160 . 158 . 155 . 151 . 146 . 144	8. 213 . 210 . 207 . 201 . 195 . 192	12. 319 . 315 . 311 . 302 . 293 . 289	For latitude 46°	11/4 21/2 38/4 5 61/4 71/2 10 121/2 15	5. 756 8. 633 11. 511 14. 389 17. 267 23. 022 28. 778 34. 534	. 001 . 002 . 004 . 007 . 009 . 017 . 026 . 038
50 52½ 55 56¼ 57½	1. 638 . 637 . 636 . 635 . 634	2. 047 . 046 . 044 . 044 . 043	4. 095 . 092 . 089 . 087 . 086	6. 142 . 138 . 133 . 131 . 129	8. 189 . 184 . 178 . 175 . 172	12. 284 . 275 . 266 . 262 . 258				. 000
45 00 02½ 03¾ 05 07½	1. 633 . 632 . 631 . 631 . 630	2. 041 . 040 . 039 . 038 . 037	4. 083 . 080 . 078 . 077 . 074	6. 124 . 120 . 118 . 115 . 111	8. 166 . 160 . 157 . 154 . 148	12. 249 . 240 . 235 . 231 . 222				
10 11 ¹ / ₄ 12 ¹ / ₂ 15 17 ¹ / ₂ 18 ³ / ₄	1. 629 . 628 . 627 . 626 . 625 . 624	2. 036 . 035 . 034 . 033 . 031 . 030	4. 071 . 070 . 068 . 065 . 062 . 061	6. 107 . 105 . 102 . 098 . 093 . 091	8. 142 . 139 . 136 . 130 . 124 . 121	12. 213 . 209 . 204 . 195 . 186 . 182				
20 $22\frac{1}{2}$ 25 $26\frac{1}{4}$ $27\frac{1}{2}$	1. 624 . 622 . 621 . 621 . 620	2. 030 . 028 . 027 . 026 . 025	4. 059 . 056 . 053 . 052 . 050	6. 089 . 084 . 080 . 078 . 075	8, 118 . 112 . 106 . 103 . 100	12. 177 . 168 . 160 . 155 . 151				
30 32½ 33¾ 35 37½	1. 619 . 618 . 617 . 616 . 615	2. 024 . 022 . 021 . 021 . 019	4. 047 . 044 . 043 . 041 . 038	6. 071 . 066 . 064 . 062 . 057	8. 094 . 088 . 085 . 082 . 076	12. 142 . 133 . 128 . 124 . 115				
40 41¼ 42½ 45 47½ 48¾	1. 614 . 613 . 613 . 612 . 611 . 610	2. 018 . 017 . 016 . 015 . 013 . 012	4. 035 . 034 . 032 . 029 . 026 . 025	6. 053 . 051 . 048 044 . 039 . 037	8. 070 . 067 . 065 . 059 . 053 . 050	12. 106 . 101 . 097 . 088 . 079 . 074				
50 52½ 55 56¼ 57½	1. 609 . 608 . 607 . 606 . 606	2. 012 . 010 . 009 . 008 . 007	4. 023 . 020 . 017 . 016 . 014	6. 035 . 030 . 026 . 024 . 021	8. 047 . 040 . 034 . 031 . 028	12. 070 . 061 . 052 . 047 . 043				
46 00	1. 605	2. 006	4. 011	6. 017	8. 022	12. 034				

Table 3.—Coordinates for the projection of maps, scale stars —Continued

		Absci	ssas of de	veloped p	arallel		Ordinates of de meridio		oed parall listances	el and
Lati- tude of parallel			Longitud	e interval		,	Latitude and lo	noi.	Merid-	Ordi- nate
	1	11/4'	21/2'	33/4'	5′	71/2'	tude interval	S	ional distance	of de- veloped parallel
46 00 02½ 03¾ 05 07½	Inches 1. 605 - 603 - 603 - 602 - 601	Inches 2. 006 . 004 . 003 . 003 . 001	Inches 4. 011 . 008 . 007 . 005 . 002	Inches 6. 017 . 012 . 010 . 008 . 003	Inches 8. 022 . 016 . 013 . 010 . 004	Inches 12. 034 . 025 . 020 . 016 . 007	For latitude 46°	$ \left\{ \begin{array}{c} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \end{array} \right. $	11. 511	Inch 0,000 .001 .002 .004 .007
$ \begin{array}{r} 10 \\ 11\frac{1}{4} \\ 12\frac{1}{2} \\ 15 \\ 17\frac{1}{2} \\ 18\frac{3}{4} \end{array} $	1. 600 . 599 . 598 . 597 . 596 . 595	2. 000 1. 999 . 998 . 997 . 995 . 994	3. 999 . 998 . 996 . 993 . 990	5. 999 . 996 . 994 . 990 . 985	7. 998 . 995 . 992 . 986 . 980 . 977	11. 998 . 993 . 988 . 979 . 970		$\begin{vmatrix} 10 \\ 12\frac{1}{2} \\ 15 \end{vmatrix}$	23. 022 28. 778 34. 534	. 017 . 026 . 038
20 $22\frac{1}{2}$ 25 $26\frac{1}{4}$ $27\frac{1}{2}$	1. 595 . 594 . 592 . 592 . 591	1. 994 . 992 . 990 . 990 . 989	3. 987 . 984 . 981 . 979 . 978	5. 981 . 976 . 972 . 969 . 967	7. 974 . 968 . 962 . 959 . 956	11. 961 . 952 . 943 . 938 . 934	For latitude 47°	$\frac{7\frac{1}{2}}{10}$	23, 026	0. 000 . 001 . 002 . 004 . 007 . 009 . 017
$30 \\ 32\frac{1}{2} \\ 33\frac{3}{4} \\ 35 \\ 37\frac{1}{2} $	1. 590 . 589 . 588 . 588	1. 987 - 986 - 985 - 984 - 983	3. 975 . 972 . 970 . 969 . 966	5, 962 . 958 . 956 . 953 . 949	7. 950 . 944 . 941 . 938 . 932	11. 925 . 916 . 911 . 907 . 897		12½ 15	34. 540	0.000
40 41½ 42½ 45 47½ 48¾	1. 585 . 584 . 584 . 583 . 581 . 581	1. 981 . 981 . 980 . 978 . 977 . 976	3.963 .961 .960 .957 .954 .952	5. 944 . 942 . 940 . 935 . 930 . 928	7. 926 . 923 . 919 . 913 . 907 . 904	11. 888 . 884 . 879 . 870 . 861 . 856	For latitude 48°	$ \begin{pmatrix} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \\ 12\frac{1}{2} \end{pmatrix} $	11. 515 14. 394 17. 273 23. 030	, 001 . 002 . 004 . 007 . 009 . 017 . 026
50 52½ 55 56¼ 57½	1. 580 . 579 . 578 . 577 . 577	1, 975 . 974 . 972 . 971 . 971	3. 951 . 948 . 944 . 943 . 941	5. 926 . 921 . 917 . 914 . 912	7. 901 . 895 . 889 . 886 . 883	11. 852 . 843 . 853 . 829 . 824		15	34. 546	. 038
47 00 02½ 03¾ 05 07½	1. 575 . 574 . 574 . 573 . 572	1. 969 . 968 . 967 . 966 . 965	3. 938 . 935 . 934 . 932 . 929	5. 908 . 903 . 901 . 898 . 894	7.877 .871 .868 .864 .858	11. 815 . 806 . 801 . 797 . 788				
$ \begin{array}{c} 10 \\ 11\frac{1}{4} \\ 12\frac{1}{2} \\ 15 \\ 17\frac{1}{2} \\ 18\frac{3}{4} \end{array} $	1. 570 . 570 . 569 . 568 . 567 . 566	1. 963 . 962 . 962 . 960 . 958 . 958	3. 926 . 925 . 923 . 920 . 917 . 915	5. 889 . 887 . 885 . 880 . 875 . 873	7.852 .849 .846 .840 .834 .831	11. 778 . 774 . 769 . 760 . 751 . 746				
20 22½ 25 26¼ 27½	1. 565 . 564 . 563 . 562 . 562	1. 957 . 955 . 954 . 953 . 952	3. 914 . 911 . 908 . 906 . 905	5. 871 . 866 . 861 . 859 . 857	7. 828 . 821 . 815 . 812 . 809	11. 741 . 732 . 723 . 718 . 714				
30 $32\frac{1}{2}$ $33\frac{3}{4}$ 35 $37\frac{1}{2}$	1. 561 . 559 . 559 . 558 . 557	1. 951 . 949 . 948 . 948 . 946	3. 901 . 898 . 897 . 895 . 892	5, 852 , 848 , 845 , 843 , 838	7.803 .797 .794 .791 .784	11. 704 . 695 . 691 . 686 . 677				
40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	1. 556 . 555 . 554 . 553 . 552 . 551	1. 945 . 944 . 943 . 941 . 940 . 939	3, 889 , 888 , 886 , 883 , 880 , 878	5. 834 . 831 . 829 . 824 . 820 . 817	7. 778 . 775 . 772 . 766 . 760 . 757	11. 667 . 663 . 658 . 649 . 639 . 635				
50 52½ 55 56¼ 57½	1. 551 . 549 . 548 . 548 . 547	1. 938 . 937 . 935 . 934 . 934	3. 877 . 874 . 871 . 869 . 867	5. 815 . 810 . 806 . 803 . 801	7. 753 . 747 . 741 . 738 . 735	11. 630				
48 00	1. 546	1. 932	3. 864	5. 796	7. 729	11. 593				

Table 3.—Coordinates for the projection of maps, scale 311655—Continued

	1		Abscis	sas of dev	eloped pa	ırallel		Ordinates of der meridion	velor nal d	ed parall istances	el and
	e of			Longitude	interval					Merid-	Ordi- nate
para	allel -	1'	11/4'	21/2'	33/4'	5'	71/2'	Latitude and lor tude intervals	ngi-	ional distance	of de- veloped parallel
48	00 02½ 03¾ 05 07½	Inches 1. 546 . 544 . 544 . 543 . 542	Inches 1, 932 , 931 , 930 , 929 , 927	Inches 3.864 .861 .860 .858 .855	Inches 5, 796 , 792 , 789 , 787 , 782	Inches 7, 729 722 719 716 710	Inches 11. 593 . 583 . 579 . 574 . 565	For latitude 48°	11/4 21/2 38/4 5 61/4 71/2	Inches 2, 879 5, 758 8, 636 11, 515 14, 394 17, 273	Inch 0.000 .001 .002 .004 .007
	10 11 ¹ / ₄ 12 ¹ / ₂ 15 17 ¹ / ₂ 18 ³ / ₄	1. 541 . 540 . 540 . 538 . 537 . 536	1. 926 . 925 . 924 . 923 . 921 . 920	3. 852 . 850 . 849 . 846 . 842 . 841	5. 778 . 775 . 773 . 768 . 764 . 761	7. 704 . 701 . 697 . 691 . 685 . 682	11. 555 . 551 . 546 . 537 . 527 . 523		10 12½ 15	23, 030 28, 789 34, 546 2, 879	0.000
	20 22½ 25 26¼ 27½	1. 536 . 534 . 533 . 533 . 532	1. 920 . 918 . 917 . 916 . 915	3. 839 . 836 . 833 . 831 . 830	5. 759 . 754 . 750 . 747 . 745	7. 679 . 672 . 666 . 663 . 660	11. 518 . 509 . 499 . 494 . 490	For latitude 49°	$\frac{7\frac{1}{2}}{10}$	11. 517 14. 397 17. 276 23. 034	.00 .00 .00 .00
	30 32½ 33¾ 35 37½	1. 531 . 529 . 529 . 528 . 527	1. 913 . 912 . 911 . 910 . 909	3. 827 . 824 . 822 . 820 . 817	5. 740 . 735 . 733 . 731 . 726	7. 654 . 647 . 644 . 641 . 635	11. 480 . 471 . 466 . 462 . 452		$ \begin{array}{c c} 12\frac{1}{2} \\ 15 \end{array} $ $ \begin{array}{c c} 1\frac{1}{4} \\ 2\frac{1}{2} \end{array} $	2. 880 5. 760	0.00
	40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	1. 526 . 525 . 524 . 523 . 522 . 521	1. 907 . 906 . 905 . 904 . 902 . 902	3. 814 . 813 . 811 . 808 . 805 . 803	5. 721 . 719 . 717 . 712 . 707 . 705	7. 628 . 625 . 622 . 616 . 610	11. 443 . 438 . 433 . 424 . 414 . 410	For latitude 50°	33/4 5 61/4 71/2 10 121/2	11. 519 14. 399 17. 279 23. 039	.00
	50 52½ 55 56¼ 57½	1. 521 . 519 . 518 . 518	1. 901 . 899 . 898 . 897 . 896	3. 802 . 798 . 795 . 794 . 792	5, 702 . 698 . 693 . 691 . 688	7. 603 . 597 . 591 . 587 . 584	11. 405 . 395 . 386 . 381 . 376		(10	04.000	
49	00 02½ 03¾ 05 07½	.514	1, 894 . 893 . 892 . 891 . 890	3. 789 . 786 . 784 . 783 . 780	5. 684 . 679 . 676 . 674 . 669	7. 578 . 572 . 569 . 565 . 559	11, 367 . 358 . 353 . 348 . 339				
	$ \begin{array}{c} 10 \\ 11\frac{1}{4} \\ 12\frac{1}{2} \\ 15 \\ 17\frac{1}{2} \\ 18\frac{3}{4} \end{array} $. 509	1. 888 . 887 . 887 . 885 . 883 . 883	3. 776 . 775 . 773 . 770 . 767 . 765	5. 665 . 662 . 660 . 655 . 650 . 648	7. 553 . 550 . 546 . 540 . 534 . 531	11. 329 . 324 . 320 . 310 . 301 . 296				
	20 22½ 25 26¼ 27½	1. 505 . 504 . 503 . 502	1. 882 . 880 . 879 . 878 . 877	3.764 .760 .757 .756 .754	5. 646 . 641 . 636 . 634 . 631	7. 527 . 521 . 515 . 511 . 508	11. 291 . 281 . 272 . 267 . 262				
	30 32½ 33¾ 35 37½	. 498 . 498 . 497	1, 875 .874 .873 .872 .871	3. 751 . 748 . 746 . 745 . 741	5. 626 . 622 . 619 . 617 . 612		11. 253 . 243 . 238 . 234 . 224	1			
	40 411/4 421/4 45 471/4 483/4	494 . 493 . 492	1, 869 . 868 . 867 . 866 . 864 . 863	3. 738 . 737 . 735 . 732 . 729 . 727	5. 607 . 605 . 602 . 598 . 593 . 591	7. 476 . 473 . 470 . 464 . 457	11. 215 . 210 . 205 . 195 . 186 . 181				
	50 52½ 55 56½ 57½	1. 490 . 489 . 488 . 487	1. 863 . 861 . 860 . 859 . 858	3. 725 . 722 . 719	5. 588 . 583 . 578 . 576 . 574	7. 451 . 444 . 438 . 435 . 432	11. 176 . 167 . 157 . 152 . 147				
50		1. 485	1, 856	3. 713	5, 569	7. 425	11. 138				

Table 3.—Coordinates for the projection of maps, scale 31680—Continued

			Absci	ssas of de	veloped p	arallel		Ordinates of de meridio	velor nal	oed parall listances	el and
tude o				Longitud	e interval			Latitude and lo	ngi-	Merid-	Ordi- nate of de-
		1′	11/4'	2½*	3¾′	5'	7½'	tude intervals	3	distance	veloped parallel
60 00 02 03 05 07	1/2	Inches 1. 485 484 483 482 481	Inches 1, 856 . 855 . 854 . 853 . 851	Inches 3, 713 , 709 , 708 , 706 , 703	Inches 5. 569 564 562 559 554	Inches 7. 425 . 419 . 416 . 412 . 406	Inches 11, 138 128 123 118 109	For latitude 50°	$ \begin{cases} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \end{cases} $	1 11 514	Inch 0.000 .001 .002 .004 .006
10 11 12 15 17 18	1/4	1. 480 . 479 . 479 . 477 . 476	1, 850 . 849 . 848 . 847 845	3.700 .698 .697 .693 .690	5. 550 . 547 . 545 . 540 . 535	7. 399 . 396 . 393 . 387 . 380	11. 099 . 094 . 090 . 080 . 070		121/2	34. 558	. 017
20 22 25 26	121/2 151/4 11/2	. 475 1. 475 . 473 . 472 . 471 . 471	1. 843 . 842 . 840 . 839 . 839	3. 687 . 684 . 680 . 679 . 677	5. 533 5. 530 5. 525 521 518 516	. 377 7. 374 . 367 . 361 . 358 . 354	.065 11.061 .051 .041 .036	For latitude 51°	$ \begin{bmatrix} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \end{bmatrix} $	11, 521 14, 402 17, 282 23, 043	0. 000 001 002 004 006 009
35	3/4	1. 470 . 468 . 468 . 467	1. 837 . 835 . 835 . 834	3. 674 . 671 . 669 . 667 . 664	5. 511 . 506 . 504 . 501 . 496	7. 348 . 341 . 338 . 335 . 328	11. 022 . 012 . 007 . 002 10. 993		12½	28. 804	0.000
40	1/2	. 466 1. 464 . 463 . 462 . 461 . 460	. 832 1. 830 . 830 . 829 . 827 . 826 . 825	3. 661 . 659 . 658 . 655 . 651 . 650	5. 491 . 489 . 487 . 482 . 477 . 474	7. 322 .319 .316 .309 .303 .299	10. 983 . 978 . 973 . 964 . 954 . 949	For latitude 52°	$ \left\{ \begin{array}{c} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \\ 12\frac{1}{2} \\ 15 \end{array} \right. $	11. 523 14. 404 17. 285 23. 046	. 001 . 002 . 004 . 006 . 009 . 016 . 025
50 52 55		1. 459 . 458 . 457 . 456 . 455	1.824 .822 .821 .820 .819	3. 648 . 645 . 642 . 640 . 638	5. 472 . 467 . 462 . 460 . 457	7. 296 . 290 . 283 . 280 . 277	10, 944 . 934 . 925 . 920 . 915				
51 00 02 03 05	1	1. 454 . 453 . 452 . 451 . 450	1. 818 .816 .815 .814 .813	3. 635 . 632 . 630 . 628 . 625	5. 453 . 448 . 445 . 443 . 438	7. 270 . 264 . 260 . 257 . 250	10. 905 . 895 . 890 . 886 . 876				
10 11 12 15		1. 449 . 448 . 447 . 446 . 445 . 444	1.811 .810 .809 .808 .806 .805	3. 622 . 620 . 619 . 615 . 612 . 611	5. 433 . 431 . 428 . 423 . 418 . 416	7. 244 . 241 . 237 . 231 . 224 . 221	10. 866 . 861 . 856 . 846 . 837 . 832				
20 22 25 26	21/2	1. 444 . 442 . 441 . 440 . 440	1.804 .803 .801 .800	3. 609 . 606 . 602 . 601 . 599	5. 413 . 408 . 404 . 401 . 399	7. 218 . 211 . 205 . 201 . 198	10. 827 . 817 . 807 . 802 . 797				
35	1/2 3/4	1. 438 . 437 . 436 . 436 . 434	1. 798 . 796 . 795 . 795 . 793	3. 596 . 593 . 591 . 589 . 586	5. 394 . 389 . 386 . 384 . 379	7. 192 . 185 . 182 . 178 . 172	10. 787 . 778 . 773 . 768 . 758				
45	1/4	1. 433 . 432 . 432 . 430 . 429 . 428	1. 791 . 791 . 790 . 788 . 786 . 786	3. 583 . 581 . 579 . 576 . 573 . 571	5. 374 . 372 . 369 . 364 . 359 . 357	7. 165 . 162 . 159 . 152 . 146 . 142	10. 748 . 743 . 738 . 728 . 718 . 713				
50 52 55 56	1/2	1. 428 . 426 . 425 . 425 . 424	1. 745 . 783 . 781 . 781 . 780	3. 570 . 566 . 563 . 561 . 560	5. 354 . 349 . 344 . 342 . 339	7. 139 . 132 . 126 . 123 . 119	10. 709 . 699 . 689 . 684 . 679				
52 00		1. 423	1. 778	3. 556	5. 334	7. 113	10. 669				

Table 4.—Coordinates for the projection of maps, scale 24000

		Abscis	ssas of dev	reloped pa	arallel		Ordinates of d meridi		ped paral listances	leland
Lati- tude of parallel			Longitud	e interval			Latitude and lo		Merid- ional	Ordi- nate of de-
	1′	11/4'	2½′	3 %4′	5′	73/2'			distance	veloped parallel
0 00 02½ 03¾ 05 07½	Inches 3.043 .043 .043 .043 .043	Inches 3, 804 , 804 , 804 , 804 , 804	Inches 7, 609 . 609 . 609 . 609 . 609	Inches 11. 413 . 413 . 413 . 413 . 413 . 413	Inches 15, 217 . 217 . 217 . 217 . 217	Inches 22. 826 . 826 . 826 . 826 . 826	For latitude 0°	$ \begin{cases} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \end{cases} $	Inches 3, 779 7, 557 11, 336 15, 114 18, 893 22, 672	Inch 0.000 .000 .000 .000 .000 .000
$ \begin{array}{c} 10 \\ 11\frac{1}{4} \\ 12\frac{1}{2} \\ 15 \\ 17\frac{1}{2} \end{array} $	3, 043 . 043 . 043 . 043	3. 804 . 804 . 804 . 804 . 804	7. 609 . 609 . 609 . 609 . 609	11. 413 . 413 . 413 . 413 . 413 . 413	15. 217 . 217 . 217 . 217 . 217 . 217 . 217	22. 826 . 826 . 826 . 826 . 826 . 826		7½ 10 12½ 15	37. 786 45. 344	.000
18¾ 20 22½ 25 26¼ 27½	3. 043 . 043 . 043 . 043 . 043	3. 804 . 804 . 804 . 804 . 804	7. 609 . 609 . 609 . 609	11. 413 . 413 . 413 . 413 . 413	15. 217 . 217 . 217 . 217 . 217 . 217	22. 826 . 826 . 826 . 826 . 826	For latitude 1°	$ \begin{cases} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \end{cases} $	15, 115 18, 893 22, 672 30, 229	0.000 .000 .000 .000 .000
30 $32\frac{1}{2}$ $33\frac{3}{4}$ 35 $37\frac{1}{2}$	3. 043 . 043 . 043 . 043 . 043	3. 804 - 804 - 804 - 804 - 804	7. 609 . 608 . 608 . 608	11. 413 . 413 . 413 . 413 . 413	15. 217 . 217 . 217 . 217 . 217 . 217	22. 826 . 825 . 825 . 825 . 825		1121/2	45. 344	0.000
40 41½ 42½ 45 47½ 48¾	3, 043 , 043	3. 804 . 804 . 804 . 804 . 804	7. 608	11. 412 . 412 . 412 . 412 . 412 . 412	15, 217 , 216 , 216 , 216 , 216 , 216 , 216	22. 825 . 825 . 825 . 824 . 824 . 824	For latitude 2°	$\begin{pmatrix} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \\ 12\frac{1}{2} \\ 15 \end{pmatrix}$	15. 115 18. 893 22. 672 30. 229	. 000 . 000 . 000 . 001 . 001 . 001 . 002 . 003
50 52½ 55 56¼ 57½	. 043	3.804 .804 .804 .804	7. 608 . 608 . 608 . 608	11. 412 . 412 . 412 . 412 . 412	15. 216 . 216 . 216 . 215 . 215	22. 824 . 824 . 823 . 823 . 823				
1 00 02½ 03¾ 05 07½	. 043	3. 804 . 804 . 804 . 804	7. 608 . 608 . 607 . 607	11. 411 . 411 . 411 . 411 . 411	15. 215 . 215 . 215 . 215 . 215 . 215	22. 823 . 823 . 822 . 822 . 822				
10 11 ¹ / ₄ 12 ¹ / ₂ 15 17 ¹ / ₂ 18 ³ / ₄	3. 043 . 043 . 043 . 043	3. 804 . 804 . 803 . 803 . 803	7. 607 - 607 - 607 - 607 - 607	11. 411 . 411 . 411 . 410 . 410 . 410	15. 214 . 214 . 214 . 214 . 214 . 214 . 214	22. 822 . 821 . 821 . 821 . 820 . 820				
20 $22\frac{1}{2}$ 25 $26\frac{1}{4}$ $27\frac{1}{2}$	3, 043 . 043 . 043	3. 803 . 803 . 803 . 803 . 803	7. 607 - 607 - 606 - 606 - 606	11. 410 . 410 . 410 . 410 . 409	15. 213 . 213 . 213 . 213 . 213 . 213	22. 820 . 820 . 819 . 819 . 819				
30 32½ 33¾ 35 37½	. 042	3. 803 . 803 . 803 . 803 . 803	7. 606 . 606 . 606 . 606	11. 409 . 409 . 409 . 409 . 409	15. 212 . 212 212 . 212 . 211	22. 819 . 818 . 818 . 818 . 817				
40 41½ 42½ 45 47½ 48¾	. 042	3. 803 . 803 . 803 . 803 . 803 . 802	7. 606 . 605 . 605 . 605 . 605	11. 408 . 408 . 408 . 408 . 408 . 407	15. 211 . 211 . 211 . 210 . 210 . 210	22. 817 . 816 . 816 . 816 . 815 . 815				
50 52½ 55 56¼ 57½	3. 042 . 042 . 042 . 042	3. 802 . 802 . 802 . 802 . 802	7. 605 . 605 . 605 . 604 . 604	11. 407 . 407 . 407 . 407 . 407	15. 210 . 209 . 209 . 209 . 209	22. 815 . 814 . 814 . 813 . 813				
2 00	3.042	3. 802	7. 604	11.406	15. 208	22, 812				

Table 4.—Coordinates for the projection of maps, scale 24000—Continued

			Absei	issas of de	veloped	parallel		Ordinates of de meridic	velo nal	ped parall distances	lel and
te	Lati- ide of trallel			Longitu	de interv	al					Ordi -
		1′	11/4'	2½′	38/4'	5'	7½′	Latitude and lo	ngi- s	Merid- ional distance	nate of de- veloped paralle
2		.041	Inches 3.802 .802 .802 .802 .802	Inches 7. 604 . 604 . 604 . 604	Inches 11. 406 . 406 . 406 . 406 . 405	Inches 15. 208 . 208 . 208 . 207 . 207	Inches 22, 812 . 812 . 812 . 811 . 811	For latitude 2°c	$ \begin{array}{c} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \end{array} $	Inches 3, 779 7, 557 11, 336 15, 115 18, 893	Inch 0.000 .000 .000
	10 11½ 12½ 15 17½ 18¾	3. 041 . 041 . 041 . 041 . 041	3. 802 . 802 . 802 . 801 . 801	7. 603 . 603 . 603 . 603 . 603	11. 405 . 405 . 404 . 404 . 404	15. 207 . 206 . 206 . 206 . 205 . 205	22. 810 . 810 . 809 . 809 . 808 . 808		7½ 10 12½ 15	22. 672 30. 229 37. 787 45. 344	.00
	20 22½ 25 26¼ 27½	3. 041 . 041 . 041 . 041 . 041	3. 801 . 801 . 801 . 801	7. 602 . 602 . 602 . 602 . 602	11. 404 . 403 . 403 . 403 . 403	15. 205 . 205 . 204 . 204 . 204	22. 808 . 807 . 806 . 806 . 805	For latitude 3°	11/4 21/2 33/4 5 61/4 71/2 10	3. 779 7. 557 11. 336 15. 115 18. 894 22. 673 30. 230	0. 000 . 000 . 000 . 000 . 000
	30 32½ 33¾ 35	3. 041 . 041 . 041 . 040	3, 801 .801 .801	7. 602 . 601 . 601 . 601	11. 402 . 402 . 402 . 402	15. 203 . 203 . 202 . 202	22. 805 . 804 . 804 . 803		12½ 15	37. 788 45. 345	. 004
	37½ 40 41¼ 42½ 45 47½ 48¾	3. 040 . 040 . 040 . 040 . 040 . 040 . 040	3. 800 . 800 . 800 . 800 . 800 . 800	7. 601 . 600 . 600 . 600 . 600	. 401 11. 401 . 401 . 400 . 400 . 400 . 400	. 202 15. 201 . 201 . 201 . 200 . 200 . 199	. 802 22. 802 . 801 . 801 . 800 . 799 . 799	1	1½ 2½ 3¾ 5 6¼ 7½ 10 12½	3. 779 7. 558 11. 337 15. 115 18. 894 22. 673 30. 231 37. 788 45. 346	0. 000 . 000 . 001 . 001 . 002 . 003
	50 52½ 55 56¼ 57½	3. 040 . 040 . 039 . 039 . 039	3.800 .800 .799 .799	7. 600 . 599 . 599 . 599 . 599	11. 399 . 399 . 398 . 398 . 398	15. 199 . 198 . 198 . 198 . 197	22. 799 . 798 . 797 . 796 . 796		15	45. 346	.007
3	00 02½ 03¾ 05 07½	3. 039 . 039 . 039 . 039 . 039	3. 799 . 799 . 799 . 799 . 799	7. 598 . 598 . 598 . 598 . 598	11. 398 . 397 . 397 . 397 . 396	15. 197 . 196 . 196 . 196 . 195	22. 795 . 794 . 794 . 794 . 793				
	$ \begin{array}{c} 10 \\ 11\frac{1}{4} \\ 12\frac{1}{2} \\ 15 \\ 17\frac{1}{2} \\ 18\frac{3}{4} \end{array} $	3. 039 . 039 . 039 . 039 . 039 . 038	3. 799 . 799 . 798 . 798 . 798 . 798	7. 597 . 597 . 597 . 597 . 597 . 596 . 596	11. 396 . 396 . 395 . 395 . 394 . 394	15. 195 . 194 . 194 . 193 . 193 . 193	22. 792 . 791 . 791 . 790 . 789 . 788				
	20 $22\frac{1}{2}$ 25 $26\frac{1}{4}$ $27\frac{1}{2}$	3. 038 . 038 . 038 . 038 . 038	3. 798 . 798 . 798 . 798 . 798	7. 596 . 596 . 595 . 595 . 595	11. 394 . 393 . 393 . 393 . 393	15, 192 . 191 . 191 . 190 . 190	22. 788 . 787 . 786 . 786 . 785				
	30 32½ 33¾ 35 37½	3. 038 . 038 . 038 . 038 . 037	3. 797 . 797 . 797 . 797 . 797	7. 595 . 594 . 594 . 594 . 594	11, 392 . 391 . 391 . 391 . 390	15. 189 . 189 . 188 . 188 . 187	22, 784 . 783 . 782 . 782 . 781				
	40 4114 421/2 45 471/2 488/4	3. 037 . 037 . 037 . 037 . 037 . 037	3. 797 . 797 . 796 . 796 . 796 . 796	7. 593 . 593 . 593 . 592 . 592	11. 390 . 390 . 389 . 389 . 388 . 388	15. 187 . 186 . 186 . 185 . 184 . 184	22. 780 . 779 . 779 . 778 . 777 . 778				
	50 52½ 55 56¼ 57½	3. 037 . 037 . 036 . 036 . 036	3. 796 . 796 . 796 . 795 . 795	7. 592 . 591 . 591 . 591 . 591	11. 388 - 387 - 387 - 386 - 386	15. 184 . 183 . 182 . 182 . 181	22. 776 . 774 . 773 . 773 . 772				
	00	3, 036	3. 795	7. 590	11. 386	15. 181	22. 771				

Table 4.—Coordinates for the projection of maps, scale 24000—Continued

		Absci	ssas of de	veloped p	arallel		Ordinates of deve meridion	loped paral al distances	lel and
Lati- tude of parallel	1'	11//	Longitud		5′	71/2'	Latitude and long tude intervals	i- Merid- ional distance	Ordi- nate of de- veloped
	1	11/4'	2½′ 	33/4'					parallel
4 00 02½ 03¾ 05 07½	Inches 3. 036 . 036 . 036 . 036 . 036	Inches 3. 795 . 795 . 795 . 795 . 795	Inches 7, 590 , 590 , 590 , 590 , 590 , 589	Inches 11. 386 . 385 . 385 . 385 . 385 . 384	Inches 15. 181 . 180 . 180 . 179 . 178	Inches 22, 771 . 770 . 769 . 769 . 768	For latitude 4°	Inches 3. 779 7. 558 31. 337 15. 115 14. 18. 894 12. 673	Inch 0.000 .000 .000 .001 .001 .002
$ \begin{array}{c} 10 \\ 11\frac{1}{4} \\ 12\frac{1}{2} \\ 15 \\ 17\frac{1}{2} \\ 18\frac{3}{4} \end{array} $	3. 036 . 035 . 035 . 035 . 035 . 035	3.794 .794 .794 .794 .794 .794	7. 589 . 589 . 588 . 588 . 588 . 588	11. 383 . 383 . 383 . 382 . 381 . 381	15. 178 ' . 177 . 177 . 176 . 175	22. 766 . 766 . 765 . 764 . 763 . 762	110	30. 231 37. 788 45. 346	0.005 007 0.000
20 22½ 25 26¼ 27½	3. 035 . 035 . 035 . 034 . 034	3. 794 . 793 . 793 . 793 . 793	7. 587 . 587 . 586 . 586 . 586	11. 381 . 380 . 380 . 379 . 379	15. 174 . 174 . 173 . 172 . 172	22. 762 . 760 . 759 . 758 . 758	For latitude 5°	18, 894 22, 674 30, 231	. 000 . 001 . 001 . 001 . 002
30 $32\frac{1}{2}$ $33\frac{3}{4}$ 35 $37\frac{1}{2}$	3. 034 . 034 . 034 . 034	3. 793 . 793 . 792 . 792 . 792	7. 585 . 585 . 585 . 585 . 584	11. 378 . 378 . 377 . 377 . 376	15. 171 . 170 . 170 . 169 . 168	22. 756 . 755 . 755 . 754 . 753	11	45. 347	0.000
40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	3. 033 . 033 . 033 . 033 . 033 . 033	3. 792 . 792 . 792 . 791 . 791 . 791	7. 584 . 584 . 583 . 583 . 582 . 582	11. 376 . 375 . 375 . 374 . 374 . 373	15. 167 . 167 . 167 . 168 . 165 . 164	22. 751 . 751 . 750 . 748 . 747 . 746	For latitude 6°	18. 895 22. 674 30. 233 2½ 37. 791	. 000 . 001 . 001 . 002 . 003 . 005 . 007
50 52½ 55 56¼ 57½	3. 033 . 033 . 032 . 032 . 032	3. 791 . 791 . 790 . 790 . 790	7. 582 . 581 . 581 . 581 . 580	11. 373 . 372 . 371 . 371 . 371	15. 164 . 163 . 162 . 161 . 161	22. 746 . 744 . 743 . 742 . 741			
5 00 02½ 03¾ 05 07½	3. 032 . 032 . 032 . 032 . 031	3. 790 . 790 . 790 . 790 . 789	7. 580 . 580 . 579 . 579 . 579	11. 370 . 369 . 369 . 369 . 368	15, 160 . 159 . 159 . 158 . 157	22. 740 . 739 . 738 . 737 . 736			
$ \begin{array}{c} 10 \\ 11\frac{1}{4} \\ 12\frac{1}{2} \\ 15 \\ 17\frac{1}{2} \\ 18\frac{3}{4} \end{array} $	3. 031 . 031 . 031 . 031 . 031 . 031	3. 789 . 789 . 789 . 789 . 788 . 788	7. 578 . 578 . 578 . 577 . 577 . 576	11. 367 . 367 . 366 . 366 . 365 . 364	15. 157 . 156 . 155 . 154 . 153 . 153	22. 734 . 733 . 733 . 731 . 730 . 729			
20 $22\frac{1}{2}$ 25 $26\frac{1}{4}$ $27\frac{1}{2}$	3. 030 . 030 . 030 . 030 . 030	3. 788 . 788 . 787 . 787 . 787	7. 576 . 575 . 575 . 575 . 574	11. 364 . 363 . 362 . 362 . 362	15. 152 . 151 . 150 . 149 . 149	22, 728 . 726 . 725 . 724 . 723			
30 $32\frac{1}{2}$ $33\frac{3}{4}$ 35 $37\frac{1}{2}$	3. 030 . 029 . 029 . 029 . 029	3. 787 . 787 . 787 . 786 . 786	7. 574 . 573 . 573 . 573 . 572	11. 361 . 360 . 360 . 359 . 359	15. 148 . 147 . 146 . 146 . 145	22. 722 . 720 . 720 . 719 . 717			
40 411/4 421/2 45 471/2 483/4	3. 029 . 029 . 029 . 028 . 028 . 028	3. 786 . 786 . 786 . 785 . 785 . 785	7. 572 . 572 . 571 . 571 . 570 . 570	11. 358 . 357 . 357 . 356 . 355 . 355	15. 144 . 143 . 143 . 141 . 140 . 140	22. 716 . 715 . 714 . 712 . 710			
50 52½ 55 56¼ 57½	3. 028 . 028 . 027 . 027 . 027	3. 785 . 785 . 784 . 784 . 784	7. 570 . 569 . 568 . 568	11. 354 . 354 . 353 . 352 . 352	15. 139 . 138 . 137 . 136 . 136	.710 22.709 .707 .705 .705 .704			

Table 4.—Coordinates for the projection of maps, scale 24000—Continued

		Abscis	ssas of dev	veloped pa	arallel		Ordinates of deve meridiona		lel and
Lati- tude of parallel			Longitud	e interval			Latitude and long	- Merid-	Ordi- nate of de-
	1′	11/4'	2½′	38/4'	5'	7½′	tude intervals	distance	
6 00 02½ 03¾ 05 07½	Inches 3. 027 . 027 . 027 . 027 . 026	Inches 3. 784 . 783 . 783 . 783 . 783	Inches 7, 567 , 567 , 566 , 566 , 566	Inches 11. 351 . 350 . 350 . 349 . 348	Inches 15, 135 134 133 132 131	Inches 22, 702 . 700 . 699 . 699 . 697	For latitude 6%	Inches 3. 779 7. 558 11. 337 15. 116 14. 18. 895 12. 674	Inch 0,000 000 001 001 002 003
$ \begin{array}{c} 10 \\ 11\frac{1}{4} \\ 12\frac{1}{2} \\ 15 \\ 17\frac{1}{2} \\ 18\frac{3}{4} \end{array} $	3. 026 . 026 . 026 . 026 . 025 . 025	3, 783 . 782 . 782 . 782 . 782 . 781	7. 565 . 565 . 564 . 564 . 563	11, 348 . 347 . 347 . 346 . 345 . 344	15. 130 . 129 . 129 . 128 . 126 . 126	22. 695 . 694 . 693 . 691 . 690 . 689	10	30, 233 37, 791 45, 349	.005
20 22½ 25 26¼ 27½	3. 025 . 025 . 025 . 024 . 024	3. 781 . 781 . 781 . 781 . 780	7. 563 . 562 . 561 . 561 . 561	11. 344 . 343 . 342 . 342 . 341	15. 125 . 124 . 123 . 122 . 122	22. 688 . 686 . 684 . 683 . 682	For latitude 7°	18. 896 1/2 22. 675 30. 234	0.000 .000 .001 .001 .002 .003
30 32½ 33¾ 35 37½	3. 024 . 024 . 024 . 024 . 023	3. 780 . 780 . 780 . 779 . 779	7. 560 . 560 . 559 . 559 . 558	11. 340 . 339 . 339 . 338 . 337	15. 120 . 119 . 118 . 118 . 117	22. 681 . 679 . 678 . 677 . 675		1	0.000
40 411/4 421/2 45 471/2 488/4	3, 023 . 023 . 023 . 023 . 022 . 022	3. 779 . 779 . 778 . 778 . 778 . 778	7. 558 . 557 . 557 . 556 . 556 . 555	11. 336 . 336 . 335 . 335 . 334 . 333	15. 115 . 115 . 114 . 113 . 111 . 111	22. 673 . 672 . 671 . 669 . 667 . 666	For latitude 8°	18, 897 1½ 22, 676 30, 235 37, 794	. 000 . 001 . 001 . 002 . 003 . 006 . 010
50 52½ 55 56¼ 57½	3. 022 . 022 . 021 . 021 . 021	3. 778 . 777 . 777 . 777 . 777	7. 555 . 554 . 554 . 553 . 553	11. 333 . 332 . 331 . 330 . 330	15, 110 . 109 . 107 . 107 . 106	22. 665 . 663 . 661 . 660 . 659		1	
7 00 02½ 03¾ 05 07½	3. 021 . 021 . 021 . 020 . 020	3. 776 . 776 . 776 . 776 . 775	7. 552 . 552 . 551 . 551 . 550	11. 329 . 328 . 327 . 327 . 326	15, 105 . 103 . 103 . 102 . 101	22. 657 . 655 . 654 . 653 . 651			
$ \begin{array}{c} 10 \\ 11\frac{1}{4} \\ 12\frac{1}{2} \\ 15 \\ 17\frac{1}{2} \\ 18\frac{3}{4} \end{array} $	3. 020 . 020 . 020 . 019	3. 775 . 775 . 774 . 774 . 774 . 774	7. 550 . 549 . 549 . 548 . 548 . 547	11. 325 . 324 . 323 . 322 . 321 . 321	15, 099 . 099 . 098 . 097 . 095 . 095	22. 649 . 648 . 647 . 645 . 643 . 642			
20 22½ 25 26¼ 27½	3. 019 .019 .018 .018	3. 773 . 773 . 773 . 773 . 772	7. 547 . 546 . 546 . 545 . 545	11. 320 . 319 . 318 . 318 . 317	15. 094 . 093 . 091 . 090 . 090	22, 641 . 640 . 637 . 635 . 634			
30 32½ 33¾ 35 37½	3. 018 . 017 . 017 . 017 . 017	3. 772 . 772 . 771 . 771 . 771	7. 544 . 543 . 543 . 543 . 542	11. 316 . 315 . 315 . 314 . 313	15, 088 . 087 . 086 . 085 . 084	22. 632 . 630 . 629 . 628 . 626			
40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	3. 017 . 016 . 016 . 016 . 016 . 015	3. 771 . 770 . 770 . 770 . 769 . 769	7. 541 . 541 . 540 . 540 . 539 . 439	11, 312 .311 .311 .310 .308 .308	15. 082 . 082 . 081 . 079 . 078 . 077	22. 624 . 623 . 621 . 619 . 617 . 616			
50 52½ 55 56¾ 57½	3. 015 .015 .015 .015 .014	3. 769 . 769 . 768 . 768 . 768	7. 538 . 537 . 537 . 536 . 536	11, 307 . 306 . 305 . 305 . 304	15. 076 . 075 . 073 . 073 . 072	22, 615 . 612 . 610 . 609 . 608			
8 00	3, 014	3. 768	7. 535	11. 303	15. 070	22. 606			

Table 4.—Coordinates for the projection of maps, scale 24000—Continued

		Absci	ssas of de	veloped p	arallel		Ordinates of de meridio		ped parall listances	lel and
Lati- tude of parallel			Longitud	e interval	l		Latitude and lo	ngi-	Merid- ional	Ordi- nate of de-
	1′	11/4'	21/2′	37.47	5'	7½′	tude interval	S	distance	
8 00 02½ 03¾ 05 07½	.014	Inches 3. 768 . 767 . 767 . 767 . 766	Inches 7. 535 . 534 . 534 . 534 . 533	Inches 11, 303 . 302 . 301 . 300 . 299	Inches 15. 070 . 069 . 068 . 067 . 066	Inches 22, 606 . 603 . 602 . 601 . 599	For latitude 8°	$ \begin{pmatrix} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \end{pmatrix} $	Inches 3. 779 7. 559 11. 338 15. 118 18. 897 22. 676	Inch 0.000 .000 .001 .001 .002 .003
10 $11\frac{1}{4}$ $12\frac{1}{2}$ 15 $17\frac{1}{2}$ $18\frac{3}{4}$	013	3. 766 . 766 . 766 . 765 . 765 . 765	7. 532 . 532 . 531 . 531 . 530 . 529	11. 298 . 298 . 297 . 296 . 295 . 294	15. 064 . 063 . 063 . 061 . 059 . 059	22. 596 . 595 . 594 . 592 . 589 . 588		10 12½ 15	30. 235 37. 794 45. 353	. 006 . 010 . 014
$\begin{array}{c} 20 \\ 22\frac{1}{2} \\ 25 \\ 26\frac{1}{4} \\ 27\frac{1}{2} \end{array}$	3. 012 . 011 . 011 . 011	3.764 .764 .764 .763	7. 529 . 528 . 527 . 527 . 527	11. 293 . 292 . 291 . 290 . 290	15. 058 - 056 - 055 - 054 - 053	22. 587 . 585 . 582 . 581 . 580	For latitude 9°	7½ 10	3. 780 7. 559 11. 339 15. 118 18. 898 22. 678 30. 237 37. 796	. 000 . 001 . 002 . 003 . 004 . 007
30 32½ 33¾ 35 37½	. 010	3. 763 . 762 . 762 . 762 . 762	7. 526 . 525 . 525 . 524 . 523	11. 289 . 287 . 287 . 286 . 285	15. 051 1 050 1 049 1 048 1 047	22. 577 . 575 . 574 . 572 . 570		12½ 15	45. 356 3. 780	0.000
40 $41\frac{1}{4}$ $42\frac{1}{2}$ 45 $47\frac{1}{2}$ $48\frac{3}{4}$	3.009 .009 .009	3. 761 . 761 . 761 . 760 . 760 . 760	7. 522 . 522 . 522 . 521 . 520 . 520	11. 284 . 283 . 282 . 281 . 280 . 279	15. 045 . 044 . 043 . 042 . 040 . 039	22. 567 . 566 . 565 . 562 . 560 . 559	For latitude 10° (33,4 5 61,4 71,2 10 121,2 15	7, 560 11, 339 15, 119 18, 899 22, 679 30, 238 37, 798 45, 358	. 000 . 001 . 002 . 003 . 004 . 008 . 012 . 017
50 52½ 55 56¼ 57½	.007	3.760 .759 .759 .758 .758	7. 519 .518 .517 .517 .517	11. 279 . 277 . 276 . 275 . 275	15. 038 . 036 . 035 . 034 . 033	22, 557 . 555 . 552 . 551 . 550				
9 00 02½ 03¾ 05 07½	.006	3. 758 . 757 . 757 . 757 . 757	7. 516 . 515 . 514 . 514 . 513	11. 274 . 272 . 272 . 271 . 270	15. 031 . 030 . 029 . 028 . 026	22. 547 . 545 . 543 . 542 . 539				
$ \begin{array}{c} 10 \\ 11 \\ 12 \\ \hline{1} \\ 15 \\ 17 \\ 18 \\ \hline{4} \end{array} $	3.005 .005 .005 .004	3. 756 . 756 . 756 . 755 . 755 . 755	7. 512 .512 .511 .510 .510 .509	11, 268 . 268 . 267 . 266 . 264 . 264	15. 024 . 024 . 023 . 021 . 019 . 018	22, 537 . 535 . 534 . 531 . 529 . 527				
20 $22\frac{1}{2}$ 25 $26\frac{1}{4}$ $27\frac{1}{2}$.003	3. 754 . 754 . 753 . 753 . 753	7. 509 . 508 . 507 . 506 . 506	11. 263 . 262 . 260 . 260 . 259	15. 017 . 016 . 014 . 013 . 012	22. 526 . 523 . 521 . 519 . 518				
30 $32\frac{1}{2}$ $33\frac{3}{4}$ 35 $37\frac{1}{2}$.001	3. 753 . 752 . 752 . 752 . 751	7. 505 . 504 . 504 . 503 . 502	11. 258 . 256 . 256 . 255 . 254	15. 010 . 008 . 007 . 007 . 005	22. 515 . 513 . 511 . 510 . 507				
40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	.000	3. 751 . 750 . 750 . 750 . 749 . 749	7. 501 . 501 . 501 . 500 . 499 . 498	11. 252 . 251 . 251 . 249 . 248 . 247	15.003 .002 .001 14.999 .997 .996	22. 504 . 503 . 502 . 499 . 496 . 494				
50 52½ 55 56¼ 57½	2.999 .999 .998 .998	3. 749 . 748 . 748 . 748 . 748	7. 498 . 497 . 496 . 495 . 495	11. 247 . 245 . 244 243 . 242	14. 995 . 993 . 992 . 991 . 990	22. 493 . 490 . 487 . 486 . 485	•			
10 00	2, 998	3. 747	7. 494	11. 241	14. 988	22, 482				

Table 4.—Coordinates for the projection of maps, scale $_{24}\frac{1}{000}$ —Continued

		Absci	ssas of dev	veloped p	arallel		Ordinates of de meridio		ped parall listances	el and
Lati- tude of parallel			Longitud	e interva	l		Latitude and lo	nei	Merid-	Ordi- nate
	1′	11/4'	2½′	38/4'	5'	7½′	tude interval		ional distance	of de- veloped parallel
0 / 10 00 02½ 03¾ 05 07½	Inches 2, 998 . 997 . 997 . 997 . 996	Inches 3. 747 . 747 . 746 . 746 . 746	Inches 7. 494 . 493 . 493 . 492 . 491	Inches 11. 241 . 239 . 239 . 238 . 237	Inches 14. 988 - 986 - 985 - 984 - 982	Inches 22. 482 . 479 . 478 . 476 . 473	For latitude 10%	$ \begin{array}{c} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \end{array} $	11. 339 15. 119 18. 899	Inch 0.000 .000 .001 .002 .003
$ \begin{array}{c} 10 \\ 11\frac{1}{4} \\ 12\frac{1}{2} \\ 15 \\ 17\frac{1}{2} \\ 18\frac{3}{4} \end{array} $	2. 996 . 996 . 996 . 995 . 995	3.745 .745 .745 .744 .744	7. 490 . 490 . 489 . 488 . 487 . 487	11. 235 . 234 . 234 . 232 . 231 . 230	14. 980 . 979 . 978 . 976 . 974 . 973	22, 470 . 469 . 467 . 464 . 461 . 460		$ \begin{array}{c} 10 \\ 12^{1}/2 \\ 15 \end{array} $	30. 238 37. 798 45. 358	. 004 . 008 . 012 . 017
20 22½ 25 26¼ 27½	2. 995 . 994 . 994 . 994 . 993	3. 743 . 743 . 742 . 742 . 742	7. 486 . 485 . 484 . 484 . 483	11. 229 . 228 . 226 . 226 . 225	14. 972 . 970 . 968 . 967 . 966	22. 459 . 456 . 452 . 451 . 450	For latitude 11°	$\frac{7\frac{1}{2}}{10}$	15. 120 18. 900 22. 680 30. 240	0.000 .001 .001 .002 .003 .005
30 32½ 33¾ 35 37½	2. 993 . 993 . 992 . 992 . 992	3. 741 . 741 . 740 . 740 . 740	7. 482 . 481 . 481 . 480 . 479	11. 223 . 222 . 221 . 220 . 219	14. 964 . 962 . 961 . 960 . 958	22. 447 . 444 . 442 . 440 . 437		$\begin{bmatrix} 12\frac{1}{2} \\ 15 \end{bmatrix}$	45. 361	0.000
40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	2. 991 . 991 . 991 . 990 . 990	3. 739 . 739 . 739 . 738 . 738 . 737	7. 478 . 478 . 477 . 476 . 475 . 475	11. 217 . 216 . 216 . 214 . 213 . 212	14, 956 . 955 . 954 . 952 . 950 . 949	22. 435 . 433 . 431 . 428 . 425 . 424	For latitude 12°	$\begin{bmatrix} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \\ 12\frac{1}{2} \\ 15 \end{bmatrix}$	18. 902 22. 682 30. 243	. 001 . 001 . 002 . 004 . 005 . 009 . 014
50 52½ 55 56¼ 57½	2. 990 . 989 . 989 . 989 . 988	3.737 .737 .736 .736 .736	7. 474 . 473 . 472 . 471 . 471	11. 211 . 210 . 208 . 207 . 206	14. 948 . 946 . 944 . 943 . 942	22, 422 . 419 . 416 . 414 . 413			10.001	1
$ \begin{array}{ccc} 11 & 00 \\ 02\frac{1}{2} \\ 03\frac{3}{4} \\ 05 \\ 07\frac{1}{2} \end{array} $	2. 988 . 988 . 987 . 987 . 987	3.735 .734 .734 .734 .733	7. 470 . 469 . 468 . 468 . 467	11. 205 . 203 . 202 . 202 . 200	14. 940 . 938 . 937 . 936 . 933	22. 410 . 406 . 405 . 403 . 400				
$ \begin{array}{c} 10 \\ 11\frac{1}{4} \\ 12\frac{1}{2} \\ 15 \\ 17\frac{1}{2} \\ 18\frac{3}{4} \end{array} $	2. 986 . 986 . 986 . 985 . 985 . 985	3. 733 . 733 . 732 . 732 . 731 . 731	7. 466 . 465 . 465 . 463 . 462 . 462	11. 199 . 198 . 197 . 195 . 194 . 193	14. 931 . 930 . 929 . 927 . 925 . 924	22. 397 . 395 . 394 . 390 . 387 . 386				
20 $22\frac{1}{2}$ 25 $26\frac{1}{4}$ $27\frac{1}{2}$	2. 985 . 984 . 984 . 983 . 983	3. 731 . 730 . 730 . 729 . 729	7. 461 . 460 . 459 . 459 . 458	11. 192 . 190 . 189 . 188 . 187	14. 923 . 921 . 918 . 917 . 916	22. 384 . 381 . 378 . 376 . 374				
30 $32^{1}/2$ $33^{3}/4$ 35 $37^{1}/2$	2. 983 . 982 . 982 . 982 . 982	3. 728 . 728 . 728 . 727 . 727	7.457 .456 .455 .455 .454	11. 186 .184 .183 .182 .181	14, 914 . 912 . 911 . 910 . 907	22. 371 . 368 . 366 . 364 . 361				
40 41½ 42½ 45 47½ 48¾	2. 981 . 981 . 981 . 980 . 980 . 979	3. 726 . 726 . 726 . 725 . 725 . 724	7. 453 . 452 . 451 . 450 . 449 . 449	11. 179 . 178 . 177 . 176 . 174 . 173	14, 905 . 904 . 903 . 901 . 899 . 897	22. 358 . 356 . 354 . 351 . 348 . 346				
50 52½ 55 56¼ 57½	2. 979 . 979 . 978 . 978 . 978	3. 724 . 724 . 723 . 723 . 722	7. 448 . 447 . 446 . 445 . 445	11. 172 . 171 . 169 . 168 . 167	14. 896 . 894 . 892 . 891 . 889	22. 344 . 341 . 338 . 336 . 334				
12 00	2, 977	3.722	7. 444	11. 165	14, 887	22. 331				

Table 4.—Coordinates for the projection of maps, scale 24800—Continued

		Absci	ssas of de	veloped pa	arallel		Ordinates of and meric			
Lati- tude of parallel		1	Longitud	le interva	1	1	Latitude and lo		Merid- ional	Ordi- nate of de-
	1′	11/4'	2½′	33/4'	5'	71/2'	tude interval	S	distance	veloped parallel
0 / 12 00 02½ 03¾ 05 07½	Inches 2. 977 . 977 . 977 . 977 . 976	Inches 3, 722 . 721 . 721 . 721 . 720	Inches 7. 444 . 442 . 442 . 441 . 440	Inches 11. 165 164 . 163 . 162 . 160	Inches 14, 887 . 885 . 884 . 883 . 880	Inches 22, 331 . 327 . 326 . 324 . 320	For latitude 12°	$ \begin{pmatrix} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \end{pmatrix} $	Inches 3. 780 7. 561 11. 341 15. 121 18. 902 22. 682	Inch 0.000 .001 .001 .002 .004 .005
$ \begin{array}{r} 10 \\ 11\frac{1}{4} \\ 12\frac{1}{2} \\ 15 \\ 17\frac{1}{2} \\ 18\frac{3}{4} \end{array} $	2. 976 . 975 . 975 . 975 . 974 . 974	3. 719 . 719 . 719 . 718 . 718 . 717	7. 439 . 438 . 438 . 437 . 435 . 435	11. 158 . 158 . 157 . 155 . 153 . 152	14. 878 .877 .876 .873 .871 .870	22. 317 . 315 . 313 . 310 . 306 . 305		10 12½ 15	30. 243 37. 804 45. 364	.009 .014 .020
20 22½ 25 26¼ 27½	2. 974 . 973 . 973 . 973 . 972	3. 717 . 717 . 716 . 716 . 715	7. 434 . 433 . 432 . 431 . 431	11. 151 . 150 . 148 . 147 . 146	14. 869 . 866 . 864 . 863 . 862	22. 303 . 299 . 296 . 294 . 292	For latitude 13°	11/4 21/2 38/4 5 61/4 71/2 10	3. 781 7. 561 11. 342 15. 122 18. 903 22. 684 30. 245 37. 806	0.000 .001 .001 .002 .004 .005
30 $32\frac{1}{2}$ $33\frac{3}{4}$ 35 $37\frac{1}{2}$	2. 972 . 971 . 971 . 971 . 970	3.715 .714 .714 .714 .713	7. 430 . 428 . 428 . 427 . 426	11. 144 . 143 . 142 . 141 . 139	14. 859 . 857 . 856 . 854 . 852	22. 289 . 285 . 283 . 281 . 278		$ \begin{array}{c} 12\frac{1}{2} \\ 15 \end{array} $ $ \begin{array}{c} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \end{array} $	3. 781 7. 562	0. 000 . 001
40 41½ 42½ 45 47½ 48¾	2. 970 . 970 . 969 . 969 . 968 . 968	3. 712 . 712 . 712 . 711 . 711 . 710	7. 425 . 424 . 424 . 422 . 421 . 421	11. 137 . 136 . 135 . 134 . 132 . 131	14. 850 . 848 . 847 . 845 . 842 . 841	22, 274 . 273 . 271 . 267 . 264 . 262	For latitude 14°	33/4 5 61/4 71/2 10 121/2 15	11, 343 15, 124 18, 905 22, 686 30, 247 37, 809 45, 371	. 002 . 003 . 004 . 006 . 010 . 016 . 023
50 52½ 55 56¼ 57½	2, 968 . 967 . 967 . 967 . 966	3. 710 . 709 . 709 . 708 . 708	7. 420 . 419 . 417 . 417 . 416	11, 130 . 128 . 126 . 125 . 124	14. 840 . 837 . 835 . 834 . 832	22, 260 . 256 . 252 . 251 . 249				
13 00 02½ 03¾ 03 07½ 10 11¼ 12½ 15 17½	2. 966 . 965 . 965 . 965 . 965 . 964 . 964 . 964 . 963 . 963	3. 708 . 707 . 707 . 706 . 706 . 706 3. 705 . 705 . 704 . 704 . 703	7. 415 . 414 . 413 . 413 . 411 7. 410 . 409 . 409 . 408	11. 123 . 121 . 120 . 119 . 117 11. 115 . 114 . 113 . 111	14. 830 . 828 . 826 . 825 . 823 14. 820 . 819 . 818 . 815	22. 245 . 241 . 240 . 238 . 234 22. 230 . 228 . 226 . 223				
$ \begin{array}{c} 1772\\ 1834\\ 20\\ 221/2\\ 25\\ 261/4\\ 271/2 \end{array} $. 962 . 962 . 961 . 961 . 961 . 961	3. 703 3. 703 . 702 . 701 . 701 . 701	. 406 . 406 7. 405 . 404 . 402 . 402 . 401	. 109 . 108 11. 107 . 106 . 104 . 103 . 102	. 813 . 811 14. 810 . 807 . 805 . 804 . 802	. 219 . 217 22. 215 . 211 . 207 . 205 . 204				
$ \begin{array}{r} 30 \\ 32 \frac{1}{2} \\ 33 \frac{3}{4} \\ 35 \\ 37 \frac{1}{2} \end{array} $	2. 960 . 959 . 959 . 959 . 958	3. 700 . 699 . 699 . 699 . 698	7. 400 . 398 . 398 . 397 . 396	11. 100 . 098 . 097 . 096 . 094	14. 800 . 797 . 796 . 795 . 792	22. 200 . 196 . 194 . 192 . 188				
40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	2. 958 . 958 . 957 . 957 . 956 . 956	3. 697 . 697 . 697 . 696 . 695 . 695	7. 395 . 394 . 393 . 392 . 391 . 390	11. 092 . 091 . 090 . 088 . 086 . 085	14. 790 . 788 . 787 . 784 . 782 . 780	22. 184 . 182 . 180 . 176 . 172 . 170				
50 52½ 55 56¼ 57½ 14 00	2. 958 . 955 . 955 . 954 . 954	3. 695 . 694 . 693 . 693 . 693 3. 692	7. 390 . 388 . 387 . 386 . 386 . 7. 384	11. 084 . 082 . 080 . 079 . 078	14. 779 . 776 . 774 . 772 . 771 14. 769	22. 169 . 165 . 161 . 159 . 157 22. 153				

Table 4.—Coordinates for the projection of maps, scale 24000—Continued

				eveloped			Ordinates of d	evelo	ped paral listances	
Lati- tude o paralle	of		Longitu	de interv	aI		Latitude and lo	mai	Merid	Ordi- nate
	1'	11/4'	2½′	33/4'	5′	71/2'	tude interval		ional distance	of de-
9 / 14 00 02 03 05 07	1/2 . 95 3/4 . 95 . 95	3. 692 691 691 691	Inches 7. 384 . 383 . 382 . 381 . 380	.074 .073 .072	Inches 14, 769 . 766 . 764 . 763 . 760	. 149 . 147 . 145	For latitude 14°		15, 124	Inch 0.000 .001 .002 .003 .004
10 11) 12) 15 17) 18)	950	. 689 . 689 . 688 . 687	7. 379 . 378 . 378 . 376 . 375 . 374	11. 068 . 067 . 068 . 064 . 062 . 061	14. 758 . 756 . 755 . 752 . 750 . 748	. 135		7½ 10 12½ 15	30. 247 37. 809 45. 371	.006 .010 .016 .023
20 22! 25 26! 27!	2. 949 . 949 . 949	3. 687 . 686 . 685 . 685	7. 373 .372 .371 .370 .369	11. 060 . 058 . 056 . 055 . 054	14. 747 . 744 . 741 . 740 . 739	22. 120 . 116 . 112 . 110 . 108	For latitude 15°	7½ 10	3. 781 7. 562 11. 344 15. 125 18. 906 22. 687 30. 250 37. 813	0.000 .001 .002 .003 .005 .006
30 32 ¹ 33 ³ 35	2. 947 2. 947 4 946 . 946	. 683 . 683	7. 368 . 367 . 366 . 365	11. 052 . 050 . 049 . 048	14. 736 . 733 . 732 . 730 . 728	22, 104 . 100 . 098 . 096		12½	45. 375	.017
37} 40 41! 42! 45 47! 48%	2. 945 . 944 2 . 944 . 944	3. 681 . 681 . 680 . 679	7. 362 . 362 . 361 . 360 . 358 . 358	. 046 11. 044 . 043 . 042 . 039 . 037 . 036	.728 14.725 .723 .722 .719 .717 .715	.091 22.087 .085 .083 .079 .075		$ \begin{pmatrix} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \\ 12\frac{1}{2} \\ 15 \end{pmatrix} $	3. 781 7. 563 11. 245 15. 126 18. 908 22. 690 30. 253 37. 816 45. 379	0.000 .001 .002 .003 .005 .007 .012
50 521/ 55 561/ 571/	. 942	. 678	7. 357 . 355 . 354 . 353 . 353	11. 035 . 033 . 031 . 030 . 029	14. 714 . 711 . 708 . 707 . 705	22. 071 . 066 . 062 . 060 . 058		(10	20.579	. 026
15 00 02½ 03¾ 05 07½	.940	3. 676 . 675 . 675 . 674 . 673	7. 351 . 350 . 349 . 348 . 347	11. 027 . 025 . 024 . 023 . 020	14. 702 . 700 . 698 . 697 . 694	22. 054 . 049 . 047 . 045 . 041				
10 1114 1214 15 1714 1834	. 938	3. 673 . 672 . 672 . 671 . 671	7. 345 . 345 . 344 . 343 . 341 . 340	11. 018 . 017 . 016 . 014 . 012 . 011	14. 691 . 689 . 688 . 685 . 682 . 681	22. 036 . 034 . 032 . 028 . 023 . 021				
20 $22\frac{1}{2}$ 25 $26\frac{1}{4}$ $27\frac{1}{2}$	2. 936 . 935 . 935 . 934	3. 670 . 669 . 668 . 668 . 668	7. 340 . 338 . 337 . 336 . 335	11. 009 . 007 . 005 . 004 . 003	14. 679 . 676 . 673 . 672 . 670	22. 019 . 014 . 010 . 008 . 006				
30 $32\frac{1}{2}$ $33\frac{3}{4}$ 35 $37\frac{1}{2}$. 932	3. 667 . 666 . 665 . 665	7. 334 . 332 . 332 . 331 . 329	11. 001 10. 999 . 997 . 996 . 994	14. 668 . 665 . 663 . 662 . 659	22. 001 21. 997 . 995 . 993 . 988				
40 41½ 42½ 45 47½ 48¾	2. 931 . 931 . 931 . 930 . 929 . 929	3. 664 . 664 . 663 . 662 . 662 . 661	7. 328 . 327 . 326 . 325 . 323 . 322	10. 992 . 991 . 990 . 987 . 985 . 984	14. 656 . 654 . 653 . 650 . 647 . 645	21. 984 . 981 . 979 . 975 . 970 . 968				
50 52½ 55 56¼ 57½	2. 929 . 928 . 928 . 927 . 927	3. 661 . 660 . 659 . 659 . 659	7. 322 . 320 . 319 . 318 . 317	10. 983 . 981 . 978 . 977 . 976	14. 644 . 641 . 638 . 636 . 635	21. 966 . 961 . 957 . 954 . 952				
16 00	2, 926	3. 658	7. 316	10. 974	14. 632	21. 948				

Table 4.—Coordinates for the projection of maps, scale 24000—Continued

			Absci	ssas of de	veloped p	arallel		Ordinates of dev meridion			el and
tuc	ati- de of alle1			Longitud	e interval	I		Latitude and lon		Merid- ional	Ordi- nate of de-
		1'	11/4'	2½'	38/4'	5′	71/2'	tude intervals	ć	distance	veloped parallel
0 16	00 02½ 03¾ 05 07½	Inches 2, 926 926 925 925 925	Inches 3. 658 657 657 656	Inches 7. 316 .314 .314 .313 .311	Inches 10. 974 . 972 . 970 . 969 . 967	Inches 14. 632 . 629 . 627 . 626 . 623	Inches 21. 948 . 943 . 941 . 938 . 934	For latitude 16°	1 ¹ / ₄ 2 ¹ / ₂ 3 ³ / ₄ 5 6 ¹ / ₄ 7 ¹ / ₂	Inches 3, 781 7, 563 11, 345 15, 126 18, 908 22, 690	Inch 0. 000 . 001 . 002 . 003 . 005 . 007
	10 11½ 12½ 15 17½ 18¾	2. 924 . 924 . 923 . 922 . 922 . 921	3. 655 . 655 . 654 . 653 . 653 . 652	7. 310 . 309 . 308 . 307 . 305 . 304	10. 965 . 964 . 962 . 960 . 958 . 957	14. 620 . 618 . 617 . 614 . 610 . 609	21. 929 . 927 . 925 . 920 . 916 . 913		10 12½ 15	30. 253 37. 816 45. 379	.012 .018 .026
	20 22½ 25 26¼ 27½	2. 921 . 921 . 920 . 920 . 920	3. 652 . 651 . 650 . 650 . 649	7. 304 . 302 . 300 . 300 . 299	10. 955 . 953 . 951 . 950 . 948	14. 607 . 604 . 601 . 599 . 598	21, 911 . 907 . 901 . 899 . 897	For latitude 17°	1½ 2½ 3¾ 5 6¼ 7½ 10	3. 782 7. 564 11. 346 15. 128 18. 910 22. 692 30. 256	0.000 .001 .002 .003 .005 .007
	30 32½ 33¾ 35	2. 919 . 918 . 918 . 918	3. 649 . 648 . 648	7. 297 . 296 . 295 . 294	10. 946 . 944 . 943 . 941	14, 595 . 592 . 590 . 589	21. 892 . 888 . 885 . 883	1	12½ 15	37. 820 45. 384 3. 782	0. 000
	37½ 40 41¼ 42½ 45 47½ 48¾	. 917 2. 916 . 916 . 916 . 915 . 915 . 914	3. 646 . 645 . 645 . 644 . 643 . 643	7. 291 . 290 . 290 . 288 . 286 . 286	. 939 10. 937 . 936 . 934 . 932 . 930 . 928	. 585 14. 582 . 581 . 579 . 576 . 573 . 571	. 878 21. 874 . 871 . 869 . 864 . 859 . 857		1½ 2½ 3¾ 5 6¼ 7½ 10 12½ 15	7. 565 11. 347 15. 129 18. 912 22. 694 30. 259 37. 824 45. 388	. 001 . 002 . 003 . 005 . 007 . 013 . 020 . 029
	50 52½ 55 56¼ 57½	2. 914 . 913 . 913 . 912 . 912	3. 642 . 642 . 641 . 640 . 640	7. 285 . 283 . 282 . 281 . 280	10. 927 . 925 . 922 . 921 . 920	14. 570 . 566 . 563 . 562 . 560	21. 855 . 850 . 845 . 842 . 840		1		
17	00 02½ 03¾ 05 07½	2. 911 . 911 . 910 . 910 . 909	3. 639 . 638 . 638 . 638 . 637	7. 278 . 277 . 276 . 275 . 274	10. 918 . 915 . 914 . 913 . 910	14. 557 . 554 . 552 . 550 . 547	21, 835 . 830 . 828 . 826 . 821				
	10 11½ 12½ 15 17½ 18¾	2. 909 . 908 . 908 . 907 . 907 . 906	3. 636 . 636 . 635 . 634 . 634	7. 272 . 271 . 270 . 269 . 267 . 266	10. 908 . 907 . 906 . 903 . 901	14. 544 . 542 . 541 . 537 . 534 . 532	21. 816 . 813 . 811 . 806 . 801 . 799				
	20 22½ 25 26¼ 27½	2, 906 . 905 . 905 . 904 . 904	3. 633 . 632 . 631 . 631 . 630	7. 265 . 264 . 262 . 261 . 260	10. 898 . 896 . 893 . 892 . 891	14. 531 . 528 . 524 . 523 . 521	21, 796 . 791 . 786 . 784 . 781				
	30 32½ 33¾ 35 37½	2. 904 . 903 . 903 . 902 . 902	3. 629 . 629 . 628 . 628 . 627	7. 259 . 257 . 256 . 255 . 254	10, 888 . 886 . 884 . 883 . 881	14. 518 . 514 . 513 . 511 . 508	21. 777 . 772 . 769 . 766 . 762				
	40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ⁸ / ₄	2. 901 . 901 . 900 . 900 . 899 . 899	3. 626 . 626 . 625 . 624 . 624 . 623	7. 252 . 251 . 251 . 249 . 247 . 246	10. 878 . 877 . 876 . 873 . 871 . 869	14. 504 . 503 . 501 . 498 . 494 . 493	21. 757 . 754 . 752 . 747 . 741 . 739				
	50 52½ 55 56¼ 57½	2. 898 . 898 . 897 . 896 . 896	3. 623 . 622 . 621 . 621 . 620	7. 245 . 244 . 242 . 241 . 240	10. 868 . 866 . 863 . 862 . 861	14. 491 . 488 . 484 . 483 . 481	21. 736 . 731 . 726 . 724 . 721				
18	00	2. 895	3, 619	7. 239	10.858	14. 477	21, 716				

Table 4.—Coordinates for the projection of maps, scale $\frac{1}{24000}$ —Continued

		Absci	ssas of de	veloped p	arallel		Ordinates of de- meridion			leland
Lati- tude of parallel	•		Longitud	le interva	1	I	Latitude and lon		Merid- ional	Ordi- nate of de-
	ì′ ·	11/4'	2½′	33/4'	5′	7½'	Lade Intel vals		distance	veloped paralle
0 , 18 00 02½ 03¾ 05 07½	Inches 2. 895 . 895 . 894 . 894 . 893	Inches 3. 619 618 618 618 617	Inches 7. 239 237 236 235 234	Inches 10. 858 . 855 . 854 . 853 . 850	Inches 14. 477 . 474 . 472 . 471 . 467	Inches 21. 716 . 711 . 708 . 706 . 701	For latitude 18°	11/4 21/2 33/4 5 61/4 71/2 10	15. 129 18. 912 22. 694	Inch 0.000 .000 .000 .000 .000 .000
10 11½ 12½ 15 17½ 18¾	2. 893 . 892 . 892 . 891 . 891	3. 616 . 616 . 615 . 614 . 613	7. 232 . 231 . 230 . 228 . 227	10. 848 847 . 845 . 843 . 840	14, 464 . 462 . 460 . 457 . 453	21. 696 . 693 . 690 . 685 . 680	ii l	12½ 15	30. 259 37. 824 45. 388	. 020
20 22½ 25 26¼ 27½	2. 890 889 . 889 . 888 . 888	3. 612 . 612 . 611 . 610	7. 225 . 223 . 222 . 221 . 220	. 839 10. 837 . 835 . 832 . 831 . 830	. 452 14. 450 . 447 . 443 . 441 . 440	. 678 21. 675 . 670 . 665 . 662 . 659	For latitude 19°	11/4 21/2 33/4 5 61/4 71/2 10	3. 783 7. 565 11. 348 15. 131 18. 914 22. 697 30. 262	0. 000 . 001 . 002 . 003 . 005 . 008
30 32½ 33¾ 35 37½	2. 887 . 887 . 886 . 886 . 885	3. 609 . 608 . 608 . 607 . 606	7. 218 . 216 . 215 . 215 . 213	10. 827 . 824 . 823 . 822 . 819	14. 436 . 433 . 431 . 429	21. 654 . 649 . 646 . 644		12½ 15	37. 828 45. 393 3. 783	0.000
40 411/4 421/2 45 471/2 483/4	2. 884 . 884 . 883 . 883 . 882 . 882	3. 606 . 605 . 604 . 603 . 602	7. 211 .210 .209 .208 .206 .205	10. 817 815 .814 .811 .809 .807	. 426 14. 422 . 420 . 419 . 415 . 411 . 410	. 638 21. 633 . 629 . 628 . 623 . 617 . 615		11/4 21/2 33/4 5 61/4 71/2 10 121/2 15	7. 566 11. 350 15. 133 18. 916 22. 699 30. 265 37. 832 45. 398	. 001 . 002 . 006 . 008 . 014 . 022
50 52½ 55 56¼ 57½	2. 882 . 881 . 880 . 880 . 879	3. 602 . 601 . 600 . 600 . 599	7. 204 . 202 . 200 . 199 . 199	10. 806 . 803 . 801 . 799 . 798	14. 408 . 404 . 401 . 399 . 397	21. 612 . 607 . 601 . 598 . 596		J		
19 00 02½ 03¾ 05 07½	2. 879 . 878 . 878 . 877 . 877	3. 598 . 598 . 597 . 597 . 596	7. 197 . 195 . 194 . 193 . 191	10. 795 . 793 . 791 . 790 . 787	14. 394 . 390 . 388 . 386 . 383	21. 591 . 585 . 582 . 580 . 574				
$ \begin{array}{c} 10 \\ 11\frac{1}{4} \\ 12\frac{1}{2} \\ 15 \\ 17\frac{1}{2} \\ 18\frac{3}{4} \end{array} $	2. 876 . 875 . 875 . 874 . 874 . 873	3. 595 . 594 . 594 . 593 . 592 . 592	7. 190 . 189 . 188 . 186 . 184 . 183	10. 784 - 783 - 782 - 779 - 776 - 775	14. 379 . 377 . 376 . 372 . 368 . 367	21. 569 . 566 . 563 . 558 . 553 . 550				
20 22½ 25 26¼ 27½	2. 873 . 872 . 872 . 871 . 871	3. 591 . 590 . 589 . 589 . 588	7. 182 . 181 . 179 . 178 . 177	10. 774 . 771 . 768 . 766 . 765	14. 365 . 361 . 357 . 356 . 354	21. 547 . 542 . 536 . 533 . 531				
30 32½ 33¾ 35 37½	2. 870 . 869 . 869 . 869 . 868	3. 588 . 587 . 586 . 586 . 585	7. 175 . 173 . 172 . 171 . 169	10. 763 . 760 . 758 . 757 . 754	14. 350 . 346 . 345 . 343 . 339	21. 525 . 520 . 517 . 514 . 508				
40 41 ¹ 4 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ⁸ / ₄	2. 867 . 866 . 866 . 865 . 865	3. 584 . 583 . 583 . 582 . 581 . 581	7. 168 .167 .166 .164 .162 .161	10. 751 . 750 . 749 . 746 . 743 . 742	14. 335 . 333 . 332 . 328 . 324 . 322	21. 503 . 500 . 497 . 492 . 486 . 484				
50 52½ 55 56¼ 57½	2. 864 . 863 . 863 . 862 . 862	3. 580 . 579 . 578 . 578 . 577	7. 160 . 158 . 156 . 156 . 155	10. 740 . 788 . 735 . 733 . 732	14. 321 . 317 . 313 . 311 . 309	21. 481 . 475 . 469 . 467 . 464				
0 00	2. 861	3. 576	7. 153	10. 729	14. 305	21. 458				

104 Tables for construction of polyconic projections

Table 4.—Coordinates for the projection of maps, scale 24000—Continued

			Abscis	ssas of dev	reloped pa	arallel		Ordinates of de meridio		ped parall listances	el and
tud	ati- le of allel			Longitud	e interval			Latitude and lo	ngi-	Merid- ional	Ordi- nate of de-
		1′	11/4'	2½′	33/4'	5′	7½′	tude interva	1	distance	veloped
20	00 02½ 03¾ 05 07½	Inches 2.861 .860 .860 .860 .859	Inches 3. 576 . 575 . 575 . 574 . 574	Inches 7. 153 . 151 . 150 . 149 . 147	Inches 10. 729 . 726 . 725 . 723 . 721	Inches 14. 305 . 302 . 300 . 298 . 294	Inches 21. 458 . 452 . 450 . 447 . 441	For latitude 20°	$ \begin{cases} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \end{cases} $	18. 916 22. 699	Inch 0.000 .000 .000 .000
	10 11½ 12½ 15 17½ 18¾	2. 858 . 858 . 857 . 857 . 856 . 855	3. 573 . 572 . 572 . 571 . 570 . 569	7. 145 . 144 . 143 . 141 . 139 . 139	10. 718 . 715 . 715 . 712 . 709 . 708	14. 290 . 288 . 287 . 283 . 279 . 277	21. 436 . 433 . 430 . 424 . 418 . 416		10 12½ 15	45, 398	0.000
	20 22½ 25 26¼ 27½	2. 855 . 854 . 853 . 853 . 853	3. 569 . 568 . 567 . 566 . 566	7. 138 . 136 . 134 . 133 . 132	10. 706 . 703 . 701 . 699 . 698	14. 275 . 271 . 267 . 265 . 264	21. 413 . 407 . 401 . 398 . 395	For latitude 21°	$\frac{7\frac{1}{2}}{10}$	15. 134 18. 918 22. 702 30. 269	. 00 . 00 . 00 . 00 . 00 . 01
	30 32½ 33¾ 35 37½	2, 852 . 851 . 851 . 850 . 850	3. 565 . 564 . 563 . 563 . 562	7, 130 . 128 . 127 . 126 . 124	10. 695 . 692 . 690 . 689 . 686	14. 260 . 256 . 254 . 252 . 248	21. 390 . 384 . 381 . 378 . 372		121/2	45. 403	0.00
	40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	2. 849 . 848 . 848 . 847 . 847 . 846	3. 561 . 561 . 560 . 559 . 558 . 558	7, 122 . 121 . 120 . 118 . 116 . 115	10. 683 . 682 . 680 . 677 . 674 . 673	14. 244 . 242 . 240 . 237 . 233 . 231	21. 366 . 363 . 361 . 355 . 349 . 346	For latitude 22°	2½ 3¾ 5 6¼ 7½ 10 12½ 15	15. 136 18. 921 22. 705 30, 272	. 00 . 00 . 00 . 00 . 01 . 02 . 03
	50 52½ 55 56¼ 57½	2. 846 . 845 . 844 . 844 . 843	3. 557 . 556 . 555 . 555 . 554	7. 114 . 112 . 110 . 110 . 108	10. 672 . 669 . 666 . 664 . 663	14. 229 . 225 . 221 . 219 . 217	21. 343 . 337 . 331 . 328 . 325				
21	00 02½ 03¾ 05 07½	2. 843 . 842 . 841 . 841 . 840	3. 553 . 552 . 552 . 551 . 550	7. 106 . 004 . 104 . 103 . 101	10. 660 . 657 . 655 . 654 . 651	14. 213 . 209 . 207 . 205 . 201	21. 319 . 313 . 311 . 308 . 302				
	10 11½ 12½ 15 17½ 18¾	2. 839 . 839 . 839 . 838 . 837 . 837	3. 549 . 549 . 548 . 547 . 546	7. 099 . 098 . 097 . 095 . 093 . 092	10. 648 . 648 . 645 . 642 . 639 . 637	14. 197 . 195 . 193 . 189 . 185 . 183	21. 296 . 294 . 290 . 284 . 278 . 275				
	20 $22\frac{1}{2}$ 25 $26\frac{1}{4}$ $27\frac{1}{2}$	2. 836 . 835 . 835 . 834 . 834	3. 545 . 544 . 543 . 543 . 542	7. 091 . 089 . 087 . 086 . 085	10. 636 . 633 . 630 . 628 . 627	14. 181 . 177 . 173 . 171 . 169	21, 272 . 266 . 260 . 257 . 254				
	30 32½ 33¾ 35 37½	2, 833 . 832 . 832 . 831 . 831	3, 541 . 540 . 540 . 539 . 538	7. 083 . 081 . 080 . 078 . 076	10. 624 . 621 . 619 . 618 . 615	14. 165 . 161 . 159 . 157 . 153	21. 248 . 242 . 239 . 235 . 229				
	40 41¼ 42½ 45 47½ 48¾	2. 830 . 829 . 829 . 828 . 827 . 827	3. 537 . 537 . 536 . 535 . 534 . 534	7. 074 . 073 . 072 . 070 . 068 . 067	10. 612 . 610 . 609 . 606 . 602 . 601	14. 149 . 147 . 145 . 141 . 137 . 135	21. 223 . 220 217 . 211 . 205 . 202				
	50 52½ 55 56¼ 57½	2. 827 . 826 . 825 . 825	3. 533 . 532 . 531 . 531 . 530	7. 066 . 064 . 062 . 061 . 060	10. 599 . 596 . 593 . 592 . 590	14. 133 . 128 . 124 . 122 . 120	21. 199 . 193 . 187 . 183 . 180				
22	00	2. 823	3. 529	7. 058	10. 587	14. 116	21. 174				

Table 4.—Coordinates for the projection of maps, scale 24 1000—Continued

			Abscis	ssas of dev	veloped pa	rallel		Ordinates of demeridion			el and
L	ati- de of			Longitud	e interval						Ordi-
	allel	1'	1¼′	2½′	33/4′	5′	7½′	Latitude and lot tude intervals		Merid- ional distance	nate of de- veloped parallel
22	00 02½ 03¾ 05 07½	Inches 2, 823 822 822 822 822 821	Inches 3, 529 528 527 527 527	Inches 7, 058 056 055 054 052	Inches 10, 587 . 584 . 582 . 581 . 578	Inches 14, 116 . 112 . 110 . 108 . 104	Inches 21, 174 . 168 . 165 . 162 . 156	For latitude 22°	$ \begin{array}{c} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \end{array} $	15, 136 18, 921	Inch 0.000 .001 .002 .004 .006
	10 11½ 12½ 15 17½ 18¾	2, 820 .819 .819 .818 .817	3, 525 . 524 . 524 . 523 . 522 . 521	7. 050 . 049 . 048 . 046 . 044 . 043	10. 575 . 573 . 572 . 568 . 565 . 564	14. 100 . 097 . 095 . 091 . 087 . 085	21. 149 . 146 . 143 . 137 . 131 . 128		10 12½ 15	30. 272 37. 841 45. 409	.015
	20 22½ 25 26¼ 27½	.817 2.817 .816 .815 .815	3. 521 . 520 . 519 . 518 . 518	7. 041 . 039 . 037 . 036 . 035	10, 562 . 559 . 556 . 554 . 553	14. 083 . 079 . 074 . 072 . 070	21. 124 . 118 . 112 . 109 . 105	For latitude 23°	$\begin{vmatrix} 7\frac{1}{2} \\ 10 \end{vmatrix}$	15. 138 18. 923 22. 707 30. 276	0.000 .001 .002 .004 .006 .009
	30 32½ 33¾ 35 37½	2, 813 . 812 . 812 . 811 . 811	3. 517 . 515 . 515 . 514 . 513	7. 033 . 031 . 030 . 029 . 027	10. 550 . 546 . 545 . 543 . 540	14. 066 . 062 . 060 . 058 . 053	21. 099 . 093 . 090 . 087 . 080		12½	37. 846 45, 415	0.000
	40 411/4 421/2 45 471/2 488/4	2, 810 , 809 , 809 , 808 , 807 , 807	3. 512 . 512 . 511 . 510 . 509 . 509	7. 025 . 024 . 022 . 020 . 019 . 017	10. 537 . 535 . 534 . 530 . 527 . 526	14. 049 . 047 . 045 . 041 . 036 . 034	21. 074 . 071 . 067 . 061 . 055 . 051	For latitude 24°	$ \begin{pmatrix} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \\ 12\frac{1}{2} \\ 15 \end{pmatrix} $	15. 140 18. 925 22. 710 30. 280	.001 .002 .004 .006 .009 .016 .026
	50 52½ 55 56¼ 57½	2. 806 . 806 . 805 . 804	3, 508 , 507 , 506 , 505 , 505	7. 016 . 014 . 012 . 011 . 010	10. 524 . 521 . 518 . 516 . 515	14. 032 . 028 . 024 . 021 . 019	21. 048 . 042 . 035 . 032 . 029				
23	00 02½ 03¾ 05 07½	2, 803 . 802 . 802 . 801 . 800	3. 504 . 503 . 502 . 502 . 501	7. 008 . 005 . 004 . 003 . 001	10. 511 . 508 . 506 . 505 . 502	14. 015 . 011 . 009 . 006 . 002	21. 023 . 016 . 013 . 010 . 003				
	$ \begin{array}{c} 10 \\ 11\frac{1}{4} \\ 12\frac{1}{2} \\ 15 \\ 17\frac{1}{2} \\ 18\frac{3}{4} \end{array} $	2, 800 . 799	3, 499 , 499 , 498 , 497 , 496 , 496	6, 999 . 998 . 997 . 995 . 992 . 991	10. 498 . 497 . 495 . 492 . 489 . 487	13. 998 . 996 . 994 . 989 . 985 . 983	20. 997 . 994 . 990 . 984 . 977 . 974				
	20 22½ 25 26¼ 27½	2. 796	3, 495 , 494 , 493 , 492 , 492	6. 990 . 988 . 986 . 985 . 984	10. 485 . 482 . 479 . 477 . 475	13. 980 . 976 . 972 . 969 . 967	20. 971 . 964 . 957 . 954 . 951				
	30 32½ 33¾ 35 37½	. 791 . 790	3. 491 . 490 . 489 . 489 . 487	6. 981 . 979 . 978 . 977 . 975	10, 472 . 469 . 467 . 466 . 462	13. 963 . 958 . 956 . 954 . 950	20. 944 . 938 . 934 . 931 . 925				
	40 411/4 421/2 45 471/2 483/4	2. 789 . 789 . 788 . 787 . 786 . 786	3. 486 . 486 . 485 . 484 . 483 . 482	6. 973 . 972 . 970 . 968 . 966 . 965	10. 459 . 457 456 . 452 . 449 . 447	13. 945 . 943 . 941 . 937 . 932 . 930	20. 918 . 915 . 911 . 905 . 898 . 895				
	50 52½ 55 56¼ 57½	2. 786 . 785 . 784 . 783 . 783	3. 482 . 481 . 480 . 479 . 479	6, 964 962 959 958 957	10. 446 . 442 . 439 . 437 . 436	13. 928 . 923 . 919 . 916 . 914	20. 891 . 885 . 878 . 875 . 871				
24	00	2. 782	3, 477	6. 955	10. 432	13, 910	20, 865				

Table 4.—Coordinates for the projection of maps, scale 24000—Continued

			Abscis	ssas of dev	reloped pa	arallel		Ordinates of de meridic		ped paral listances	lel and
tuo	ati- ie of allel			Longitud	e interval			Latitude and lo	ngi-	Merid- ional	Ordi- nate of de-
		1′	11/4'	2½′	334'	5′	7½′	tude interval	S	distance	veloped parallel
0 24	00 02½ 03¾ 05 07½	Inches 2. 782 . 781 . 781 . 780 . 779	Inches 3. 477 . 476 . 476 . 475 . 474	Inches 6, 955 , 953 , 952 , 950 , 948	Inches 10, 432 429 427 426 422	Inches 13. 910 . 905 . 903 . 901 . 896	Inches 20. 865 . 858 . 855 . 851 . 844	For latitude 24°	$ \begin{array}{c} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \end{array} $	15, 140	Inch 0.000 .001 .002 .004 .006
	10 11½ 12½ 15 17½ 18¾	2. 778 . 778 . 777 . 777 . 776 . 775	3. 473 . 472 . 472 . 471 . 470 . 469	6, 946 . 945 . 944 . 941 . 939 . 938	10. 419 . 417 . 415 . 412 . 409 . 407	13. 892 . 889 . 887 . 883 . 878 . 876	20. 838 . 834 . 831 . 824 . 817 . 814		10 12½ 15	30. 280 37. 851 45. 421	. 016 . 026 . 037
	20 22½ 25 26¼ 27½	2. 775 . 774 . 773 . 772 . 772	3. 468 . 467 . 466 . 466 . 465	6. 937 . 935 . 932 . 931 . 930	10. 405 . 402 . 398 . 397 . 395	13. 874 . 869 . 864 . 862 . 860	20, 811 . 804 . 797 . 793 . 790	For latitude 25°	11/4 21/2 38/4 5 61/4 71/2 10	15. 142 18. 928 22. 713 30. 284	.001 .002 .004 .007 .010 .017
	30 32½ 33¾ 35 37½	2. 771 . 770 . 770 . 769 . 768	3. 464 . 463 . 462 . 462 . 460	6. 928 . 925 . 924 . 923 . 921	10. 392 . 388 . 386 . 385 . 381	13. 855 . 851 . 849 . 846 . 842	20. 783 . 776 . 773 . 769 . 763		$ \begin{array}{c c} 12\frac{1}{2} \\ 15 \end{array} $ $ \begin{array}{c c} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \end{array} $	45. 426	0.000
	40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ⁸ / ₄	2. 767 . 767 . 766 . 766 . 765 . 764	3. 459 . 459 . 458 . 457 . 456 . 455	6. 919 . 917 . 916 . 914 . 912 . 911	10. 378 . 376 . 374 . 371 . 367 . 366	13. 837 . 835 . 833 . 828 . 823 . 821	20. 756 . 752 . 749 . 742 . 735 . 732	For latitude 26°	$ \begin{array}{c c} 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \\ 12\frac{1}{2} \\ 15 \end{array} $	15, 144 18, 931 22, 717 30, 289	. 002 . 004 . 007 . 010 . 017 . 027 . 039
	50 52½ 55 56¼ 57½	.762	3. 455 . 454 . 452 . 452 . 451	6. 909 . 907 . 905 . 904 . 902	10. 364 . 361 . 357 . 355 . 354	13. 819 . 814 . 809 . 807 . 805	20. 728 . 721 . 714 . 711 . 707				1
25	00 02½ 03¾ 05 07½	. 758	3. 450 . 449 . 448 . 448 . 447	6. 900 . 898 . 897 . 895 . 893	10. 350 . 347 . 345 . 343 . 340	13. 800 . 796 . 793 . 791 . 786	20, 700 . 693 . 690 . 686 . 679				
	$ \begin{array}{c} 10 \\ 11\frac{1}{4} \\ 12\frac{1}{2} \\ 15 \\ 17\frac{1}{2} \\ 18\frac{3}{4} \end{array} $	2. 756 . 756 . 755 . 754 . 753 . 753	3. 445 . 445 . 444 . 443 . 442 . 441	6. 891 . 890 . 888 . 886 . 884 . 882	10. 336 . 334 . 333 . 329 . 325 . 324	13. 781 . 779 . 777 . 772 . 767 . 765	20. 672 . 669 . 665 . 658 . 651 . 647				
	20 22½ 25 26¼ 27½	2, 753 . 752 . 751 . 750	3. 441 . 439 . 438 . 438 . 437	6. 881 . 879 . 877 . 875 . 874	10. 322 . 318 . 315 . 313 . 311	13. 763 . 758 . 753 . 751 . 748	20. 644 . 637 . 630 . 626 . 623				
	30 32½ 33¾ 35 37½	.747	3. 436 . 435 . 434 . 434 . 432	6. 872 . 870 . 868 . 867 . 865	10. 308 . 304 . 302 . 301 . 297	13. 744 . 739 . 737 . 734 . 729	20. 616 . 609 . 605 . 601 . 594				
	40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ⁸ / ₄	. 743	3, 431 . 431 . 430 . 429 . 428 . 427	6. 862 . 861 . 860 . 858 . 855 . 854	10. 294 . 292 . 290 . 286 . 283 . 281	13. 725 . 722 . 720 . 715 . 710 . 708	20. 587 . 583 . 580 . 573 . 565 . 562				
	50 52½ 55 56¼ 57½	2. 741 . 740 . 739 . 739	3. 426 . 425 . 424 . 423 . 423	6. 853 . 850 . 848 . 847 . 846	10. 279 . 276 . 272 . 270 . 268	13. 706 . 701 . 696 . 694 . 691	20. 558 . 551 . 544 . 540 . 537				
26	00	2. 737	3. 422	6. 843	10. 265	13. 686	20. 530				

Table 4.—Coordinates for the projection of maps, scale 241000—Continued

		Abscia	ssas of dev	veloped pa	arallel		Ordinates of de meridio			el and
Lati- tude of parallel			Longitud	e interval			Latitude and lo		Merid- ional	Ordi- nate of de-
	1′	11/4'	2½4	384'	5′	7½′	tude intervals		dis- tance	veloped parallel
26 00 02½ 03¾ 05 07½	Inches 2. 737 . 736 . 736 . 735 . 734	Inches 3, 422 420 420 419 418	Inches 6. 843 841 . 840 . 838 . 836	Inches 10, 265 261 259 258 256	Inches 13. 686 . 682 . 679 . 677 . 672	Inches 20, 530 522 519 515 508	For latitude 26°	$ \begin{array}{c} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \end{array} $	Inches 3, 786 7, 572 11, 358 15, 144 18, 931 22, 717	Inch 0.000 .001 .002 .004 .007
$ \begin{array}{c} 10 \\ 11\frac{1}{4} \\ 12\frac{1}{2} \\ 15 \\ 17\frac{1}{2} \end{array} $	2. 733 . 733 . 732 . 731 . 730	3. 417 . 416 . 416 . 414 . 413	6. 833 . 832 . 831 . 829 . 826 . 825	10. 250 . 248 . 247 . 243 . 239 . 237	13. 667 . 665 . 662 . 657 . 652	20. 500 . 497 . 493 . 486 . 478		$10 \\ 12\frac{1}{2} \\ 15$	30. 289 37. 861 45. 433	.017
18¾ 20 22½ 25 26¼ 27½ 30	2. 729 . 728 . 727 . 727 . 727 . 727 . 727	3. 412 . 411 . 409 . 409 . 408 3. 407	6. 824 . 821 . 819 . 818 . 816 6. 814	10. 236 . 232 . 228 . 226 . 225	. 650 13. 647 . 643 . 638 . 635 . 633 13. 628	. 475 20. 471 . 464 . 456 . 453 . 449 20. 442	For latitude 27%	$\begin{pmatrix} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \\ 12\frac{1}{2} \end{pmatrix}$		0.000 .001 .003 .004 .007 .010 .018
32½ 33¾ 35 37½ 40 41¼	. 725 . 724 . 724 . 723 2. 722	. 406 . 405 . 404 . 403 3. 402 . 401	.811 .810 .809 .807 6.804 .803	. 217 . 215 . 213 . 210 10. 206 . 204	. 623 . 620 . 618 . 613 13. 608 . 606	. 434 . 431 . 427 . 420 20. 412 . 408		$ \begin{array}{c c} & 1\frac{1}{4} \\ & 2\frac{1}{2} \\ & 3\frac{3}{4} \end{array} $	3. 787 7. 574 11. 362	0.000 .001 .003
42½ 45 47½ 48¾ 50	.721 .721 .720 .719 .718 2.718	. 401 . 400 . 398 . 398 . 398	. 802 . 799 . 797 . 795 6, 794	. 202 . 199 . 195 . 193	. 603 . 598 . 593 . 591	. 405 . 397 . 390 . 386 20. 383	For latitude 28°	$\begin{bmatrix} 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \\ 12\frac{1}{2} \\ 15 \end{bmatrix}$	15, 148 18, 936 22, 723 30, 297	. 005 . 007 . 010 . 018 . 029 . 041
52½ 55 56¼ 57½	.717 .716 .715 .715	. 396 . 395 . 394 . 393	. 792 . 789 . 788 . 787	. 188 . 184 . 182 . 180	. 583 . 578 . 576 . 573	. 375 . 368 . 364 . 360				
27 00 02½ 03¼ 05 07½	.712	3. 392 . 391 . 390 . 390 . 388	6. 784 . 782 . 780 . 779 . 777	10. 176 . 173 . 171 . 169 . 165	13, 568 . 563 . 561 . 558 . 553	20. 353 . 345 . 341 . 338 . 330				
10 11½ 12½ 15 17½ 18¾	708	3. 387 . 386 . 386 . 384 . 383	6. 774 . 773 . 772 . 769 . 767 . 765	10. 161 . 159 . 157 . 154 . 150 . 148	13. 548 . 546 . 543 . 538 . 533 . 531	20. 323 . 319 . 315 . 307 . 300 . 296				
20 22½ 25 26¼ 27½	2. 706	3. 382 . 381 . 380 . 379 . 378	6. 764 . 762 . 759 . 758 . 756	10. 146 . 142 . 139 . 137 . 135	13. 528 . 523 . 518 . 516 . 513	20. 292 . 285 . 277 273 . 269				
30 32½ 33¾ 35 37½	.700	3. 377 . 376 . 375 . 374 . 373	6. 754 . 751 . 750 . 749 . 746	10. 131 . 127 . 125 . 123 . 119	13. 508 . 503 . 500 . 498 . 493	20. 262 . 254 . 250 . 247 . 239				
40 41½ 42½ 45 47½ 48¾	2. 697 . 697 . 696 . 696 . 694 . 694	3. 372 . 371 . 371 . 369 . 368 . 367	6. 744 . 742 . 741 . 739 . 736 . 735	10. 116 . 114 . 112 . 108 . 104 . 102	13. 488 . 485 . 482 . 477 . 472 . 470	20. 231 . 227 . 224 . 216 . 208 . 204				
50 52½ 55 56¼ 57½	2. 693 . 692 . 691 . 691 . 690	3. 367 . 365 . 364 . 364 . 363	6. 734 . 731 . 728 . 727 . 726	10. 100 . 096 . 093 . 091 . 089	13. 467 . 462 . 457 . 454 . 452	20. 201 . 193 . 185 . 181 . 177				
28 00	2. 689	3, 362	6. 723	10.085	13. 446	20. 170				

Table 4.—Coordinates for the projection of maps, scale 24600—Continued

			Absei	ssas of de	veloped p	arallel		Ordinates of de meridio		ed parall listances	el and
tu	ati- de of rallel			Longitud	le interva	I	1	Latitude and lo		Merid- ional	Ordi- nate of de-
		1'	11/4'	2½′	3¾′	5'	7½'	tude intervals	3	dis- tance	veloped
° 28	00 02½ 03¾ 05 07½	Inches 2. 689 . 688 . 688 . 687 . 686	Inches 3.362 .360 .360 .359 .358	Inches 6. 723 . 721 . 719 . 718 . 715	Inches 10. 085 . 081 . 079 . 077 . 073	Inches 13. 446 . 441 . 439 . 436 . 431	Inches 20, 170 . 162 . 158 . 154 . 146	For latitude 28°	$ \begin{array}{c} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \end{array} $	Inches 3. 787 7. 574 11. 362 15. 148 18. 936 22. 723	Inch 0. 000 . 001 . 003 . 005 . 007 . 010
	10 $11\frac{1}{4}$ $12\frac{1}{2}$ 15 $17\frac{1}{2}$	2. 685 . 685 . 684 . 683 . 682	3. 356 . 356 . 355 . 354 . 353	6. 713 . 711 . 710 . 708 . 705	10. 069 . 067 . 065 . 061 . 057	13. 426 . 423 . 420 . 415 . 410	20. 138 . 134 . 131 . 123 . 115	7	10 12½ 15	30. 297 37. 872 45. 446	.018
	18 ³ / ₄ 20 22 ¹ / ₂ 25 26 ¹ / ₄ 27 ¹ / ₂	2. 681 . 680 . 679 . 678	3, 351 350 349 348 347	.704 6.702 .700 .697 .696 .694	. 055 10. 054 . 050 . 046 . 044 . 042	. 407 13. 405 . 399 . 394 . 392 . 389	.111 20.107 .099 .091 .086 .083	For latitude 29°	11/4 21/2 33/4 5 61/4 71/2 0	3. 788 7. 575 11. 363 15. 151 18. 939 22. 726 30. 302	0.000 .001 .003 .005 .007 .011
	30 32½ 33¾ 35 37½	2. 677 . 676 . 675 . 675 . 674	3. 346 . 345 . 344 . 343 . 342	6. 692 . 689 . 688 . 687 . 684	10. 038 . 034 . 032 . 030 . 026	13, 384 . 378 . 376 . 373 . 368	20. 076 . 068 . 064 . 060 . 052		12½ 15	37. 878 45. 453 3. 788	0. 000
	40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	2. 673 . 672 . 671 . 670 . 669	3. 341 . 340 . 339 . 338 . 337 . 336	6. 681 . 680 . 679 . 676 . 673 . 672	10. 022 . 020 . 018 . 014 . 010 . 008	13. 363 . 360 . 357 . 352 . 347 . 344	20. 044 . 040 . 036 . 028 . 020 . 016	For latitude 30°	2½ 3¾ 5 6¼ 7½ 10 12½ 15	7. 577 11. 365 15. 153 18. 942 22. 730 30. 306 37. 884 45. 460	. 001 . 003 . 005 . 007 . 011 . 019 . 030 . 043
	50 52½ 55 56¼ 57½	2. 668 . 667 . 666 . 666	3. 335 . 334 . 333 . 332 . 331	6. 671 . 668 . 665 . 664 . 663	10,006 .002 9,998 .996 .994	13. 342 . 336 . 331 . 328 . 326	20. 012 . 004 19. 996 . 992 . 988				
29	00 02½ 03¾ 05 07½	2, 664 . 663 . 662 . 662 . 661	3. 330 . 329 . 328 . 327 . 326	6. 660 . 657 . 656 . 655 . 652	9. 990 . 986 . 984 . 982 . 978	13. 320 . 315 . 312 . 309 . 304	19. 980 . 972 . 968 . 964 . 956				
	10 11 ¹ / ₄ 12 ¹ / ₂ 15 17 ¹ / ₂ 18 ³ / ₄	2. 660 . 659 . 659 . 658 . 657 . 656	3. 325 . 324 . 323 . 322 . 321 . 320	6. 649 . 648 . 647 . 644 . 641	9. 974 . 972 . 970 . 966 . 962 . 960	13. 299 . 296 . 293 . 288 . 283 . 280	19. 948 . 944 . 940 . 932 . 924 . 920				
	20 22½ 25 26¼ 27½	2. 655 . 654 . 653 . 653 . 652	3. 319 . 318 . 317 . 316 . 315	6. 639 . 636 . 633 . 632 . 630	9. 958 . 954 . 950 . 948 . 946	13. 277 . 272 . 266 . 264 . 261	19. 916 . 908 . 900 . 896 . 891				
	30 $32\frac{1}{2}$ $33\frac{3}{4}$ 35 $37\frac{1}{2}$	2. 651 . 650 . 649 . 649 . 648	3. 314 . 313 . 312 . 311 . 310	6. 628 . 625 . 624 . 622 . 620	9. 942 . 938 . 936 . 933 . 929	13. 256 . 250 . 247 . 245 . 239	19. 883 . 875 . 871 . 867 . 859				
	40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	2. 647 . 646 . 646 . 644 . 643 . 643	3. 308 . 308 . 307 . 306 . 304 . 304	6. 617 . 616 . 614 . 611 . 609 . 607	9. 925 . 923 . 921 . 917 . 913 . 911	13. 234 . 231 . 228 . 223 . 217 . 215	19. 851 . 847 . 842 . 834 . 826 . 822				
	50 52½ 55 56¼ 57½	2. 642 . 641 . 640 . 640 . 639	3. 303 . 302 . 300 . 300 . 299	6. 606 . 603 . 600 . 599 . 598	9. 909 . 905 . 901 . 899 . 897	13. 212 . 206 . 201 . 198 . 195	19. 818 . 810 . 801 . 797 . 793				
30	00	2. 638	3. 297	6. 595	9. 892	13. 190	19. 785				

Table 4.—Coordinates for the projection of maps, scale water Continued

_	1							ps, scare 24000		
			Abscia	ssas of der	veloped p	arallel		Ordinates of deve ineridiona	eloped parall distances	lel and
tu	ati- de of callel			Longitue	le interva	.1		Latitude and long	i- Merid-	Ordi- nate of de-
		1'	11/4'	2½′	33/4'	5'	7½′	tude intervals	distance	veloped parallel
° 30	00 02½ 03¾ 05 07½	Inches 2, 638 .637 .636 .636	Inches 3, 297 296 295 295 298	Inches 6, 595 . 592 . 591 . 589 . 587	Inches 9, 892 . 888 . 886 . 884 . 880	Inches 13, 190 . 184 . 182 . 179 . 173	Inches 19. 785 . 777 . 772 . 768 . 760	For latitude 30°(Inches 3, 788 7, 577 834 11, 365 5, 15, 153 18, 942 71/2, 22, 730	Inch 0.000 .001 .003 .005 .007
	10 11½ 12½ 15 17½ 18¾	2, 633 . 633 . 632 . 631 . 630	3. 292 . 291 . 291 . 289 . 288 . 287	6. 584 . 583 . 581 . 578 . 576	9. 876 . 874 . 872 . 867 . 863 . 861	13. 168 . 165 . 162 . 157 . 151 . 148	19. 752 . 748 . 743 . 735 . 727 . 723		30, 306 2½ 37, 884 45, 460	.019 .030 .043
	20 22½ 25 26¼ 27½	2. 629 . 628 . 627 . 626 . 626	3. 286 . 285 . 284 . 283 . 282	6. 573 . 570 . 567 . 566 . 564	9. 859 . 855 . 851 . 849 . 847	13. 146 . 140 . 135 . 132 . 129	19. 719 . 710 . 702 . 698 . 693	For latitude 31°	114 3. 789 214 7. 578 334 11. 367 15. 155 614 18. 945 712 22. 733 0 30. 311 214 37. 890	0,000 .001 .003 .005 .008 .011 .020
	30 32½ 33¾ 35 37½	2, 625 . 623 . 623 . 622 . 621	3. 281 . 279 . 278 . 278 . 277	6. 562 . 559 . 557 . 556 . 553	9. 843 . 838 . 836 . 834 . 830	13. 123 .118 .115 .112 .106	19. 685 . 677 . 672 . 668 . 660		45. 467	0.000
	40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	2. 620 . 620 . 619 . 618 . 617 . 616	3. 275 . 275 . 274 . 272 . 271 . 270	6. 550 . 549 . 548 . 545 . 542 . 541	9. 826 . 824 . 821 . 817 . 813 . 811	13. 101 . 098 . 095 . 090 . 084 . 081	19, 651 . 647 . 643 . 634 . 626 . 622	For latitude 32°	11/4 3. 789 21/2 7. 579 33/4 11. 369 15. 158 61/4 18. 948 77/2 22. 737 0 30. 316 21/2 37. 896 45. 474	. 001 . 003 . 005 . 008 . 011 . 020 . 031
	50 $52^{1}/_{2}$ 55 $56^{1}/_{4}$ $57^{1}/_{2}$	2. 616 . 615 . 613 . 613	3. 270 . 268 . 267 . 266 . 265	6. 539 . 536 . 534 . 532 . 531	9, 809 . 805 . 800 . 798 . 796	13. 078 . 073 . 067 . 064 . 061	19. 618 . 609 . 601 . 596 . 592			
31	00 02½ 03¾ 05 07½	2.611 .610 .609 .609	3. 264 . 263 . 262 . 261 . 260	6. 528 . 525 . 524 . 522 . 519	9. 792 . 788 . 785 . 783 . 779	13. 056 . 050 . 047 . 044 . 039	19. 584 . 575 . 571 . 566 . 558			
	10 $11\frac{1}{4}$ $12\frac{1}{2}$ 15 $17\frac{1}{2}$ $18\frac{3}{4}$	2. 607 . 606 . 605 . 604 . 603	3. 258 . 258 . 257 . 255 . 254 . 253	6. 516 . 515 . 514 . 511 . 508 . 506	9. 775 . 773 . 770 . 766 . 762 . 760	13. 033 . 030 . 027 . 021 . 016 . 013	19. 549 . 545 . 541 . 532 . 524 . 519			
	20 $22^{1}/2$ 25 $26^{1}/4$ $27^{1}/2$	2. 602 . 601 . 600 . 599 . 599	3. 253 . 251 . 250 . 249 . 248	6. 505 . 502 . 499 . 498 . 496	9. 757 . 753 . 749 . 747 . 745	13. 010 . 004 12. 999 . 996 . 993	19. 515 . 506 . 498 . 493 . 489			
	30 32½ 33¾ 35 37½	2, 597 . 596 . 596 . 595 . 594	3. 247 . 245 . 245 . 244 . 242	6. 494 . 491 . 489 . 488 . 485	9. 740 . 736 . 734 . 732 . 727	12. 987 . 981 . 978 . 976 . 970	19. 481 . 472 . 468 . 463 . 455			
	40 41½ 42½ 45 47½ 48¾	2, 593 . 592 . 592 . 591 . 589 . 589	3, 241 . 240 . 240 . 238 . 237 . 236	6. 482 . 481 . 479 . 476 . 473 . 472	9. 723 . 721 . 719 . 714 . 710 . 708	12. 964 . 961 . 958 . 952 . 947 . 944	19. 446 . 442 . 437 . 429 . 420 . 416			
	50 52½ 55 56¼ 57½	2. 588 . 587 . 586 . 585 . 585	3, 235 • 234 • 232 • 232 • 231	6, 470 • 467 • 465 • 463 • 462	9. 706 . 701 . 697 . 695 . 693	12. 941 . 935 . 929 . 926 . 923	19. 411 . 402 . 394 . 389 . 385			
32	00	2, 583	3. 229	6. 459	9, 688	12. 917	19. 376			

110 TABLES FOR CONSTRUCTION OF POLYCONIC PROJECTIONS

Table 4.—Coordinates for the projection of maps, scale 24000—Continued

			Abscis	sas of dev	reloped pa	rallel		Ordinates of de meridio	velor nal d	oed parall listances	el and
ud	ati- le of allel			Longitude	interval			Latitude and lot	ngi-	Merid- ional	Ordi- nate of de-
		1'	11/4'	21/2'	3¾′	5′	71/2'			distance	velope
2	00 02½ 03¾ 05 07½	Inches 2, 583 , 582 , 582 , 581 , 580	Inches 3, 229 , 228 , 227 , 226 , 225	Inches 6. 459 . 456 . 454 . 453 . 450	Inches 9. 688 . 684 . 681 . 679 . 675	Inches 12. 917 . 912 . 909 . 906 . 900	Inches 19. 376 . 367 . 363 . 359 . 351	For latitude 32°	11/4 21/2 38/4 5 61/4 71/2	Inches 3, 789 7, 579 11, 369 15, 158 18, 948 22, 737 30, 316 37, 896	Inch 0.00 .00 .00 .00 .01 .02 .03
	10 11 ¹ / ₄ 12 ¹ / ₂ 15 17 ¹ / ₂ 18 ⁸ / ₄	2. 579 . 578 . 578 . 576 . 575 . 575	3. 224 . 223 . 222 . 221 . 219 . 218	6. 447 . 445 . 444 . 441 . 438 . 437	9. 671 . 668 . 666 . 662 . 657 . 655	12. 894 . 891 . 888 . 882 . 876 . 873	19. 341 . 337 . 332 . 323 . 315 . 310		12½ 15	*0.474	0.00
	20 22½ 25 26¼ 27½	2. 574 . 573 . 572 . 571 . 571	3. 218 . 216 . 215 . 214 . 213	6. 435 . 432 . 429 . 428 . 426	9. 653 . 649 . 644 . 642 . 640	12. 871 . 865 . 859 . 856 . 853	19. 306 . 297 . 288 . 284 . 279	For latitude 33°	$ \begin{array}{c} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{8}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \\ 12\frac{1}{2} \end{array} $	15. 160 18. 951 22. 741 30. 321	.00 .00 .00 .01 .02
	30 32½ 33¾ 35 37½	2. 569 . 568 . 568 . 567 . 566	3. 212 . 210 . 209 . 209 . 207	6. 423 . 420 . 419 . 417 . 415	9. 635 . 631 . 628 . 626 . 622	12. 847 . 841 . 838 . 835 . 829	19. 270 . 261 . 257 . 252 . 244		11/4 21/2 31/4	20, 201	0.00
	40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ⁸ / ₄	2. 565 . 564 . 562 . 562 . 561 . 560	3. 206 . 205 . 204 . 203 . 201 . 201	6. 412 . 410 . 409 . 406 . 403 . 401	9. 617 . 615 . 613 . 608 . 604 . 602	12. 823 . 820 . 817 . 811 . 805 . 802	19. 235 . 230 . 226 . 217 . 208 . 203	For latitude 34°	ā	15. 162 18. 954 22. 744 30. 326	.00
	50 52½ 55 56¼ 57½	2. 560 . 559 . 557 . 557 . 556	3. 200 . 198 . 197 . 196 . 195	6. 400 . 397 . 394 . 392 . 391	9, 599 . 595 . 590 . 588 . 586	12. 799 . 793 . 787 . 784 . 781	19. 199 . 190 . 181 . 176 . 172				!
33	00 02½ 03¾ 05 07½	2, 555 . 554 . 553 . 553 . 551	3. 194 . 192 . 192 . 191 . 189	6. 388 . 385 . 383 . 382 . 379	9. 581 . 577 . 575 . 572 . 568	12. 775 . 769 . 766 . 763 . 757	19. 163 . 154 . 149 . 145 . 136				
	10 11½ 12½ 15 17½ 18¾	2. 550 . 550 . 549 . 548 . 547 . 546	3. 188 . 187 . 186 . 185 . 183 . 183	6. 376 . 374 . 373 . 370 . 367 . 365	9. 563 . 561 . 559 . 554 . 550 . 548	12. 751 . 748 . 745 . 739 . 733 . 730	19. 127 . 122 . 118 . 109 . 100 . 095				
	20 22½ 25 26¼ 27½	2, 545 . 544 . 543 . 542	3. 182 . 180 . 179 . 178 . 177	6. 364 . 360 . 357 . 356 . 354	9. 545 . 541 . 536 . 534 . 532	12. 727 . 721 . 715 . 712 . 709	19. 091 . 081 . 072 . 068 . 063				
	30 32½ 33¾ 35 37½	. 538	3, 176 . 174 . 173 . 173 . 171	6. 351 . 348 . 347 . 345 . 342	9. 527 . 523 . 520 . 518 . 513	12. 703 . 697 . 694 . 691 . 684	19, 054 . 045 . 040 . 036 . 027				
	40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	. 535	3. 170 . 169 . 168 . 167 . 165 . 164	6. 339 . 336 . 336 . 330 . 328	9. 509 . 506 . 504 . 500 . 495 . 493	12. 678 . 675 . 672 . 666 . 660 . 657	19. 017 . 013 . 008 18. 999 . 990 . 985				
	50 52½ 55 56¼ 57½	2. 531 . 530 . 528 . 528	3. 163 . 162 . 160 . 160 . 159	6. 327 . 324 . 321 . 319 . 318	9. 490 . 486 . 481 . 479 . 477	12. 654 . 648 . 642 . 638 . 635	18. 981 . 972 . 962 . 958 . 953				

Table 4.—Coordinates for the projection of maps, scale 24000—Continued

		Absci	ssas of de	veloped p	arallel		Ordinates of de meridic	veloj nal c	ped parall listances	el and
Lati- tude of parallel			Longitud	e interval			Latitude and lo	ngi-	Merid-	Ordi- nate
	1′	11/4"	2½′	3¾′	5'	71/2'	tude intervals		ional distance	of de- veloped paralle
34 00 02½ 03¾ 03 05 07½	Inches 2, 526 , 525 , 524 , 528 , 522	Inches 3, 157 156 155 154 153	Inches 6, 315 , 312 , 810 , 308 , 305	Inches 9, 472 , 467 , 463 , 463 , 458	Inches 12. 629 . 623 . 620 . 617 . 611	Inches 18. 944 . 938 . 930 . 925 . 916	For latitude 34°	11/4 21/2 33/4 5 61/4 71/2	1 15, 162	Inch 0, 000 . 001 . 003 . 008 . 008
10 1114 1214 15 1714 1834	2, 521 . 520 . 520 . 519 . 517 . 517	3. 151 . 150 . 150 . 148 . 146	6, 302 . 301 . 299 . 296 . 293 . 291	9. 453 . 451 . 449 . 444 . 439 . 437	12.605 .601 .598 .592 .586 .583	18. 907 . 902 . 898 . 888 . 879 . 874		10 12½ 15	30, 326 37, 908 45, 489	. 023
20 22½ 25 26¼ 27½	2. 518 . 515 . 513 . 513 . 512	3. 145 . 143 . 142 . 141 . 140	6. 290 . 287 . 284 . 282 . 281	9. 435 . 430 . 425 . 423 . 421	12. 580 . 574 . 567 . 564 . 561	18. 870 . 860 . 851 . 846 . 842	For latitude 35°	$ \begin{pmatrix} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \end{pmatrix} $	15. 165	0.00 .00 .00 .00 .00 .01 .02
30 3214 33% 35 3714	2, 511 . 510 . 509 . 508 . 507	8. 139 . 137 . 136 . 136 . 134	6. 277 . 274 . 273 . 271 . 268	9. 416 . 411 . 409 . 407 . 402	12. 555 . 549 . 545 . 542 . 536	18. 832 . 823 . 818 . 814 . 804		12½	37. 914 45. 496	0.00
40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	2. 506 . 505 . 505 . 503 . 502 . 502	3. 132 . 132 . 131 . 129 . 128 . 127	6. 265 . 263 . 262 . 259 . 255 . 254	9. 397 . 395 . 393 . 388 . 383 . 381	12, 530 . 527 . 523 . 517 . 511 . 508	18. 795 . 790 . 785 . 776 . 766 . 762	For latitude 36°	$ \begin{pmatrix} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \\ 12\frac{1}{2} \\ 15 \end{pmatrix} $	15, 168 18, 960 22, 752 30, 336	. 00 . 00 . 00 . 01 . 02 . 03 . 04
50 52½ 55 56¼ 57½	2. 501 . 500 . 498 . 498 . 497	3. 126 . 125 . 123 . 122 . 121	6. 252 . 249 . 246 . 244 . 243	9. 378 . 374 . 369 . 367 . 364	12.505 .498 .492 .489 .486	18. 757 . 747 . 738 . 733 . 728			10000	
35 00 02½ 03¾ 05 07½	2. 496 . 495 . 494 . 493 . 492	3. 120 .118 .117 .117 .115	6. 240 . 237 . 235 . 233 . 230	9. 359 . 355 . 352 . 350 . 345	12. 479 . 473 . 470 . 467 . 460	18, 719 . 710 . 705 . 700 . 691				
$ \begin{array}{c} 10 \\ 11\frac{1}{4} \\ 12\frac{1}{2} \\ 15 \\ 17\frac{1}{2} \\ 18\frac{3}{4} \end{array} $	2. 491 . 490 . 490 . 488 . 487 . 486	3. 113 . 113 . 112 . 110 . 109 . 108	6. 227 . 225 . 224 . 221 . 217 . 216	9. 341 . 338 . 336 . 331 . 326 . 324	12. 454 . 451 . 448 . 441 . 435 . 482	18. 681 . 676 . 672 . 662 . 652 . 648				
20 22½ 25 26¼ 27½	2. 486 . 484 . 483 . 482 . 482	3. 107 . 106 . 104 . 103 . 102	6. 214 . 211 . 208 . 206 . 205	9, 321 317 . 312 . 309 . 307	12. 428 . 422 . 416 . 413 . 409	18. 643 . 633 . 624 . 619 . 614				
$\begin{array}{r} 30 \\ 32\frac{1}{2} \\ 33\frac{3}{4} \\ 35 \\ 37\frac{1}{2} \end{array}$	2. 481 . 479 . 479 . 478 . 477	3. 101 . 099 . 098 . 098 . 096	6. 202 . 198 . 197 . 195 . 192	9. 302 . 297 . 295 . 293 . 288	12. 403 . 397 . 393 . 390 . 384	18. 605 . 595 . 590 . 585 . 576				
40 41¼ 42½ 45 47½ 48¾	2. 476 . 475 . 474 . 473 . 472 . 471	3. 094 093 . 093 . 091 . 089 . 089	6. 189 . 187 . 185 . 182 . 179 . 177	9, 283 . 281 . 278 . 273 . 268 . 266	12. 377 . 374 . 371 . 364 . 358 . 355	18. 566 . 561 . 556 . 547 . 537 . 532				
50 52½ 55 56¼ 57½	2. 470 . 469 . 468 . 467 . 466	3. 088 . 086 . 085 . 084 . 083	6. 176 . 172 . 169 . 168 . 166	9. 264 . 259 . 254 . 252 . 249	12. 352 . 345 . 339 . 335 . 332	18. 527 . 518 . 508 . 503 . 498				
36 00	2. 465	3. 081	6, 163	9. 244	12. 326	18, 488				

Table 4.—Coordinates for the projection of maps, scale 24000—Continued

		Absci	ssas of dev	veloped pa	aralle!		Ordinates of de meridio	nal d	ped parall listances	el and
Lati- tude of parallel			Longitud	e interval	1		Latitude and lor		Merid- ional	Ordi- nate of de-
	1'	11/4'	21/2'	3¾′	5'	7½′	tude interval	3	distance	veloped parallel
36 00 02½ 03¾ 05 07½	. 463	Inches 3. 081 . 080 . 079 . 078 . 077	Inches 6. 163 . 160 . 158 . 156 . 153	Inches 9, 244 , 239 , 237 , 234 , 230	Inches 12. 326 . 319 . 316 . 313 . 306	Inches 18, 488 479 474 469 459	For latitude 36°	$ \begin{array}{c} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \end{array} $	Inches 3, 792 7, 584 11, 376 15, 168 18, 960 22, 752	Inch 0,000 .001 .003 .005 .008
10 11½ 12½ 15 17½ 18¾	2. 460 . 459 . 459 . 457 . 456	- 3, 075 .074 .073 .072 .070	6. 150 .148 .147 .143 .140	9. 225 . 222 . 220 . 215 . 210	12. 300 . 296 . 293 . 287 . 280	18. 450 . 445 . 440 . 430 . 420		10 12½ 15	30. 336 37. 921 45. 504	. 021 . 033 . 047
20 22½ 25 26¼ 21½	2. 455 . 453 . 452 . 451	3, 068 . 067 . 065 . 064 . 063	6. 137 . 134 . 130 . 129 . 127	9. 205 . 200 . 195 . 193 . 190	. 277 12. 274 . 267 . 260 . 257 . 254	. 415 18. 410 . 401 . 391 . 386 . 381	For latitude 37°	11/4 21/2 33/4 5 61/4 71/2 10	15. 170 18. 964 22. 756 30. 341	0.000 .001 .003 .005 .008 .012
30 32½ 33¾ 35 37½	. 447	3. 062 . 060 . 059 . 059 . 057	6. 124 . 120 . 119 . 117 . 114	9. 186 . 181 . 178 . 176 . 171	12. 247 . 241 . 238 . 234 . 228	18. 371 . 361 . 356 . 351 . 342		$12\frac{1}{2}$ 15 $1\frac{1}{4}$ $2\frac{1}{2}$	45, 512 3, 793	0.000 .001
40 411/4 421/2 45 471/2 48 ³ /4	. 443	3. 055 . 054 . 054 . 052 . 050 . 050	6. 111 . 109 . 107 . 104 . 101 . 099	9. 166 . 163 . 161 . 156 . 151 . 149	12. 221 . 218 . 215 . 208 . 201 . 198	18. 332 , 327 , 322 , 312 , 302 , 297	For latitude 38°	334 5 614 71/2 10 121/2 15	11, 380 15, 173 18, 967 22, 760 30, 346	. 003 . 005 . 008 . 012 . 021 . 034 . 048
50 52½ 55 56¼ 57½	. 436	3. 049 . 047 . 045 . 045 . 044	6. 097 . 094 . 091 . 089 . 087	9. 146 . 141 . 136 . 134 . 131	12, 195 .188 .181 .178 .175	18, 292 . 282 . 272 . 267 . 262				
37 00 02½ 03¾ 05 07½	.432	3. 042 . 040 . 040 . 039 . 037	6. 084 . 081 . 079 . 077 . 074	9. 126 . 121 . 119 . 116 . 111	12. 168 . 162 . 158 . 155 . 148	18. 252 . 242 . 237 . 232 . 222				
10 11½ 12½ 15 17½ 18¾	427	3. 035 . 035 . 034 . 032 . 030 . 030	6. 071 . 069 . 067 . 064 . 061 . 059	9, 106 . 104 . 101 . 096 . 091 . 089	12, 142 . 138 . 135 . 128 . 121 . 118	18. 212 . 207 . 102 . 192 . 182 . 177				
20 22½ 25 26¼ 27½	2. 423 . 422 . 420	3, 029 . 027 . 025 . 025 . 024	6. 057 . 054 . 051 . 049 . 047	9. 086 . 081 . 076 . 074 . 071	12, 115 , 108 , 101 , 098 , 095	18. 172 . 162 . 152 . 147 . 142				
30 32½ 33¾ 35 37½	.415	3. 022 . 020 . 020 . 019 . 017	6. 044 . 041 . 039 . 037 . 034	9. 066 . 061 . 059 . 056 . 051	12, 088 . 081 . 078 . 075 . 068	18. 132 . 122 . 117 . 112 . 102				
40 411/4 421/2 45 471/2 483/4	.411 .410 .408	3. 015 . 014 . 014 . 012 . 010 . 009	6. 031 . 029 . 027 . 024 . 020 . 019	9. 046 . 043 . 041 . 036 . 031 . 028	12. 061 . 058 . 054 . 048 . 041 . 038	18. 092 . 087 . 082 . 071 . 061 . 056				
50 52½ 55 56¼ 57½	2, 407 405 404 403	3, 009 . 007 . 005 . 004 . 003	6. 017 . 014 . 010 . 009 . 007	9, 026 . 021 . 015 . 013 . 010	12, 034 . 027 . 021 . 017 . 014	18, 051 . 041 . 031 . 026 . 021				
38 00	2. 401	3, 002	6, 004	9.005	12.007	18, 011				

Table 4.—Coordinates for the projection of maps, scale 24000—Continued

							Ordinates of de		ontinu	
Lati-		ADSCI	ssas of de	verobed b	aranei		meridio	nai d	istances	The state of the s
tude of parallel	1'	11/4'	Longitud	le interva	5'	7½′	Latitude and lor tude interval	ngi-	Merid- ional distance	Ordi- nate of de- veloped
		-/*								parallel
38 00 02½ 03¾ 05 07½	. 399	Inches 3. 002 . 000 2. 999 . 998 . 997	Inches 6. 004 . 000 5. 998 . 997 . 993	Inches 9.005 .000 8.998 .995 .990	Inches 12. 007 . 000 11. 997 . 993 . 987	Inches 18. 011 . 000 17. 995 . 990 . 980	For latitude 38%	11/4 21/2 33/4 5 61/4 71/2	15. 173	Inch 0.000 .001 .003 .005 .008 .012
10 11½ 12½ 15 17½ 18¾	. 395	2. 995 . 994 . 993 . 992 . 990	5. 990 . 988 . 986 . 983 . 980	8. 985 . 982 . 980 . 975 . 969	11. 980 . 976 . 973 . 966 . 959	17. 970 . 965 . 959 . 949 . 939		7½ 10 12½ 15	37. 935 45. 520	.021
20 22½ 25 26¼ 27½	2. 391 . 389 . 388 . 387	. 989 2. 988 . 986 . 985 . 984 . 983	. 978 . 5. 976 . 973 . 969 . 968 . 966	. 967 8. 964 . 959 . 954 . 951 . 949	. 956 11. 952 . 946 . 939 . 935 . 932	. 934 17. 929 . 918 . 908 . 903 . 898	For latitude 39°	$ \begin{array}{c c} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \end{array} $	15, 176 18, 970 22, 764 30, 352	0.000 .001 .003 .005 .008 .012 .022
30 32½ 33¾ 35 37½	. 382	2. 981 . 980 . 979 . 978 . 976	5. 963 . 959 . 957 . 956 . 952	8. 944 . 939 . 936 . 933 . 928	11. 925 . 918 . 915 . 911 . 904	17. 888 . 877 . 872 . 867 . 857		$\begin{bmatrix} 12\frac{1}{2} \\ 15 \end{bmatrix}$	45, 527	0.000
40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	2. 380 . 379 . 378 . 377	2. 974 . 974 . 973 . 971 . 969 . 968	5. 949 . 947 . 945 . 942 . 938 . 937	8. 923 . 921 . 918 . 913 . 908 . 905	11. 897 . 894 . 891 . 884 . 877 . 873	17. 846 . 841 . 836 . 826 . 815 . 810	For latitude 40°	$\begin{pmatrix} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \\ 12\frac{1}{2} \\ 15 \end{pmatrix}$	15. 178 18. 973 22. 768 30. 357	.001 .003 .005 .009 .012 .022 .034 .049
50 $52\frac{1}{2}$ 55 $56\frac{1}{4}$ $57\frac{1}{2}$.371	2. 967 . 966 . 964 . 963 . 962	5. 935 . 931 . 928 . 926 . 924	8. 902 . 897 . 892 . 889 . 887	11. 870 . 863 . 856 . 852 . 849	17. 805 . 794 . 784 . 779 . 774			l	1
39 00 02½ 03¾ 05 07½	.366	2. 961 . 959 . 958 . 957 . 955	5. 921 . 918 . 916 . 914 . 911	8. 882 .876 .874 .871 .866	11.842 .835 .832 .828 .821	17. 763 . 753 . 748 . 742 . 732				
10 11 ¹ / ₄ 12 ¹ / ₂ 15 17 ¹ / ₂ 18 ³ / ₄	2. 363 . 362 . 361 . 360	2. 954 . 953 . 952 . 950 . 948 . 947	5. 907 . 905 . 904 . 900 . 897 . 895	8. 861 . 858 . 856 . 850 . 845 . 842	11. 814 . 811 . 807 . 800 . 793 . 790	17. 721 . 716 . 711 . 701 . 690 . 685				
20 22½ 25 26¼ 27½	2. 357 . 356 . 354 . 354	2, 947 . 945 . 943 . 942 . 941	5. 893 . 890 . 886 . 884 . 883	8. 840 .835 .829 .827 .824	11. 786 . 779 . 772 . 769 . 765	17. 680 . 669 . 658 . 653 . 648				
30 32½ 33¾ 35 37½	.350	2. 940 . 938 . 937 . 936 . 934	5. 879 . 876 . 874 . 872 . 869	8. 819 .813 .811 .808 .803	11. 758 . 751 . 748 . 744 . 737	17. 638 . 627 . 622 . 616 . 606				
40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	. 345	2. 933 . 932 . 931 . 929 . 927 . 926	5. 865 . 863 . 862 . 858 . 855 . 853	8. 798 . 795 . 792 . 787 . 782 . 779	11. 730 . 727 . 723 . 716 . 709 . 705	17. 595 . 590 . 585 . 574 . 564 . 558				
50 52½ 55 56¼ 57½	2. 340 . 339 . 338	2. 925 . 924 . 922 . 921 . 920	5. 851 . 847 . 844 . 842 . 840	8. 776 . 777 . 766 . 763 . 761	11. 702 . 695 . 688 . 684 . 681	17. 553 . 542 . 532 . 526 . 521				
40 00	2. 335	2. 918	5. 837	8. 755	11. 674	17. 510				

114 TABLES FOR CONSTRUCTION OF POLYCONIC PROJECTIONS

Table 4.—Coordinates for the projection of maps, scale 24000—Continued

			Abseis	ssas of dev	veloped pa	arallel		Ordinates of de meridio	velor nal d	ped parall listances	el and
Lati tude (parall	of			Longitud	e interval			Latitude and lo		Merid- ional	Ordi- nate of de-
		1'	11/4'	2½′	3¾′	5′	71/2'	page Interview		distance	velope paralle
03 05) 2 ¹ / ₂ 3 ³ / ₄	Inches 2. 335 . 333 . 333 . 332 . 330	Inches 2, 918 . 917 . 916 . 915 . 913	Inches 5, 837 833 831 830 826	Inches 8. 755 . 750 . 747 . 745 . 739	Inches 11, 674 667 663 659 652	Inches 17. 510 . 500 . 494 . 489 . 479	For latitude 40°	114 21/2 33/4 5 61/4 71/2	Inches 3. 795 7. 589 11. 384 15. 178 18. 973 22. 768	1nch 0.00 .00 .00 .00
12 15	21/2	2. 329 . 328 . 328 . 326 . 325 . 324	2. 911 . 910 . 910 . 908 . 906 . 905	5. 823 . 821 . 819 . 815 . 812 . 810	8. 734 . 731 . 729 . 723 . 718 . 715	11. 645 . 642 . 638 . 631 . 624 . 620	17. 468 . 462 . 457 . 446 . 436 . 430		10 12½ 15	30. 357 37. 947 45. 536	. 02
20 22 25 26	21/2	2. 323 . 322 . 321 . 320 . 319	2. 904 . 902 . 901 . 900 . 899	5. 808 . 805 . 801 . 799 . 798	8. 712 . 707 . 702 . 699 . 696	11. 617 . 610 . 602 . 599 . 595	17. 425 . 414 . 404 . 398 . 393	For latitude 41°	114 21/2 38/4 5 61/4 71/2	7. 590 11. 386 15. 181 18. 977 22. 772 30. 362	0.00 .00 .00 .00 .01
33 38	2½ 3¾	2, 318 . 316 . 315 . 315 . 313	2.897 .895 .894 .893 .892	5. 794 . 790 . 789 . 787 . 783	8, 691 , 686 , 683 , 680 , 675	11, 588 . 581 . 577 . 574 . 567	17. 382 . 371 . 366 . 361 . 350		12½ 15	37, 953 45, 544 3, 796	. 03 . 04
40 41 42 48 47	0 11/4 21/2	2. 312 . 311 . 310 . 309 . 308 . 307	2, 890 . 889 . 888 . 886 . 884 . 884	5. 780 . 778 . 776 . 772 . 769 . 767	8. 670 . 667 . 664 . 659 . 653 . 651	11. 559 . 556 . 552 . 545 . 538 . 534	17. 339 . 334 . 328 . 317 . 306 . 301	For latitude 42°	11/4 21/2 38/4 5 61/4 71/2 10 121/2 15	7. 592 11. 388 15. 184 18. 980 22. 776 30. 367 37. 960 45. 551	. 00 . 00 . 00 . 01 . 02 . 03
58 56	$2\frac{1}{2}$	2. 306 . 305 . 303 . 303 . 302	2. 883 . 881 . 879 . 878 . 877	5.765 .762 .758 .756 .754	8. 648 . 642 . 637 . 634 . 632	11. 531 . 523 . 516 . 512 . 509	17. 296 . 285 . 274 . 269 . 263			25.001	
03 08	2½ 3¾	2, 300 , 299 , 298 , 297 , 296	2. 875 . 874 . 873 . 872 . 870	5.751 .747 .745 .744 .740	8. 626 . 621 . 618 . 615 . 610	11. 502 . 494 . 491 . 487 . 480	17. 252 . 241 . 236 . 231 . 220				
10 11 12 18 17	0 11/4 21/2	2. 295 . 294 . 293 . 292 . 290 . 289	2. 868 . 867 . 866 . 864 . 863 . 862	5. 736 . 734 . 733 . 729 . 725 . 724	8. 604 . 602 . 599 . 594 . 588 . 585	11. 473 . 469 . 465 . 458 . 451 . 447	17. 209 . 203 . 198 . 187 . 176 . 171				
20 22 25 26	0 21/2	2, 289 . 287 . 286 . 285 . 284	2. 862 . 859 . 857 . 856 . 855	5. 722 .718 .714 .713 .711	8. 583 . 577 . 572 . 569 . 566	11. 443 . 436 . 429 . 425 . 422	17. 165 . 154 . 143 . 138 . 132				
33 38	$\frac{2^{1}/2}{3^{3}/4}$	2. 283 . 281 . 281 . 280 . 279	2.854 .852 .851 .850 .848	5. 707 . 703 . 702 . 700 . 696	8. 561 . 555 . 552 . 550 . 544	11. 414 . 407 . 403 . 400 . 392	17. 121 . 110 . 105 . 099 . 088				
41	$\frac{1\frac{1}{4}}{2\frac{1}{2}}$	2. 277 . 278 . 276 . 274 . 273 . 272	2.846 .845 .844 .843 .841 .840	5. 692 . 691 . 689 . 685 . 681 . 680	8. 539 . 536 . 533 . 528 . 522 . 519	11. 385 .381 .378 .370 .363 .359	17. 077 . 072 . 066 . 055 . 044 . 039				
50 52 50 50	0 2½ 5 6¼ 7½	2. 271 . 270 . 268 . 267 . 267	2. 839 . 837 . 835 . 834 . 833	5. 678 . 674 . 670 . 669 . 667	8. 517 . 511 . 506 . 503 . 500	11. 356 . 348 . 341 . 337 . 333	17. 033 . 022 . 011 . 006 . 000				
42 00	-	2. 265	2, 831	5. 663	8. 494	11, 326	16. 989	•			

Table 4.—Coordinates for the projection of maps, scale 24 000—Continued

			Abscis	ssas of dev	reloped pa	ırallel		Ordinates of de meridio		ped paral	lel and
tuc	ati- le of allel			Longitud	e interval			Latitude and lo		Merid-	Ordi- nate of de-
		1′	11/4'	2½′	33/4'	5	7½′	tude interval	\$	distance	veloped parallel
42	00 02½ 03¾ 05 07½	Inches 2. 265 264 263 262 261	Inches 2. 831 830 829 828 828	Inches 5. 663 659 657 656 652	Inches 8. 494 . 489 . 486 . 483 . 478	Inches 11. 326 . 319 . 315 . 311 . 304	Inches 16, 989 . 978 . 972 . 967 . 956	For latitude 42°	$ \begin{pmatrix} 1^{1} & 4 \\ 2^{1} & 2^{1} \\ 2^{1} & 2^{1} \\ 3^{3} & 4 \\ 5 & 6^{1} & 4 \\ 7^{1} & 2^{1} \end{pmatrix} $	1 15, 184	Inch 0.000 .001 .003 .006 .009
	10 11½ 12½ 15 17½ 18¾	2. 259 . 259 . 258 . 256 . 255 . 254	2, 824 . 823 . 822 . 820 . 819 . 818	5. 648	8. 472 . 470 . 467 . 462 . 456 . 453	11. 296 . 293 . 289 . 282 . 274 . 270	16. 945 . 939 . 933 . 922 . 911 . 906		$10 \\ 121/2 \\ 15$	30. 367 37. 960 45. 551	.022
	20 22½ 25 26¼ 27½		2, 817 . 815 . 813 . 812 . 811	5. 633 . 630 . 626 . 624 . 622	8. 450 . 444 . 439 . 436 . 433	11. 267 . 259 . 252 . 248 . 244	16, 900 . 889 . 878 . 872 . 867	For latitude 43°	$ \begin{array}{c c} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \\ 12\frac{1}{2} \end{array} $	30, 373	0.000 .001 .003 .006 .009 .012 .022 .035
	30 $32\frac{1}{2}$ $33\frac{3}{4}$ 35 $37\frac{1}{2}$	2. 247 . 246 . 245 . 244 . 243	2.809 .807 .807 .805 .804	5. 618 . 615 . 613 . 611 . 607	8. 428 . 422 . 419 . 416 . 411	11, 237 , 229 , 226 , 222 , 215	16. 855 . 844 . 839 . 833 . 822		$ \begin{bmatrix} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \end{bmatrix} $	45, 500	0.000
	40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	2. 241 . 241 . 240 . 238 . 237 . 236	2.802 .801 .800 .798 .796 .795	5. 604 . 602 . 600 . 596 . 592 . 590	8. 405 . 402 . 400 . 394 . 388 . 386	11. 207 . 203 . 200 . 192 . 184 . 181	16. 811 . 805 . 799 . 788 . 777 . 771	For latitude 44°	$\begin{bmatrix} 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \\ 12\frac{1}{2} \\ 15 \end{bmatrix}$	15. 189 18. 987 22. 784 30. 378	
	50 52½ 55 56¼ 57½	2. 235 . 234 . 232 . 232 . 231	2. 794 . 792 . 790 . 790 . 789	5. 589 . 585 . 581 . 579 . 577	8. 383 . 377 . 371 . 369 . 366	11. 177 . 169 . 162 . 158 . 154	16. 766 . 754 . 743 . 737 . 732				
43	00 02½ 03¾ 05 07½	2. 229 . 228 . 227 . 226 . 225	2. 787 . 785 . 784 . 783 . 781	5. 574 . 570 . 568 . 566 . 562	8. 360 . 355 . 352 . 349 . 343	11. 147 . 139 . 136 . 132 . 124	16. 721 . 709 . 704 . 698 . 687				
	10 $11\frac{1}{4}$ $12\frac{1}{2}$ 15 $17\frac{1}{2}$ $18\frac{3}{4}$	2. 223 . 223 . 222 . 220 . 219 . 218	2.779 .778 .777 .775 .774 .773	5. 558 . 557 . 555 . 551 . 547 . 545	8. 338 . 335 . 332 . 326 . 321 . 318	11. 117 . 113 . 109 . 102 . 094 . 090	16. 675 . 670 . 664 . 652 . 641 . 635				
	20 $22\frac{1}{2}$ 25 $26\frac{1}{4}$ $27\frac{1}{2}$	2. 217 . 216 . 214 . 213 . 213	2. 772 . 770 . 768 . 767 . 766	5. 543 . 539 . 536 . 534 . 532	8. 315 . 309 . 304 . 301 . 298	11. 086 . 079 . 071 . 068 . 064	16. 630 . 618 . 607 . 601 . 596				
	30 32½ 33¾ 35 37½	2. 211 . 210 . 209 . 208 . 207	2. 764 . 762 . 761 . 760 . 758	5. 528 . 524 . 522 . 520 . 517	8. 292 . 286 . 284 . 281 . 275	11. 056 . 049 . 045 . 041 . 033	16. 584 . 573 . 567 . 561 . 550				
	40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	2. 205 . 204 . 204 . 202 . 201 . 200	2. 756 . 755 . 754 . 753 . 751 . 750	5. 513 . 511 . 509 . 505 . 501 . 499	8. 269 . 266 . 263 . 258 . 252 . 249	11. 026 . 022 . 018 . 010 . 003 10. 999	16. 538 . 533 . 527 . 516 . 504				
	50 52½ 55 56¼ 57½	2. 199 . 197 . 196 . 195 . 194	2. 749 . 747 . 745 . 744 . 743	5. 498 . 494 . 490 . 488 . 486	8. 246 . 241 . 235 . 232 . 229	10. 995 . 987 . 980 . 976 . 972	16. 493 . 481 . 470 . 464 . 458				
44	00	2. 193	2. 741	5. 482	8. 223	10.964	16. 447				

Table 4.—Coordinates for the projection of maps, scale 241000—Continued

		Absci	ssas of de	veloped p	parallel		Ordinates of d meridi		ped paral listances	lel and
Lati- tude of parallel			Longitude	e interval			Latitude and	4	Merid-	Ordi- nate
	1′	11/4′	2½′	3¾′	5/	71/2'	longitude inter		ional distance	of de- veloped paralle
0 / 14 00 02 ¹ / ₂ 03 ³ / ₄ 05 07 ¹ / ₂	Inches 2, 193 191 191 190 188	Inches 2, 741 . 739 . 738 . 737 . 735	Inches 5, 482 . 478 . 476 . 475 . 471	Inches 8. 223 . 218 . 215 . 212 . 206	Inches 10, 964 . 957 . 953 . 949 . 941	Inches 16. 447 . 435 . 429 . 424 . 412	For latitude 44°	11/4 21/2 33/4 5 61/4	Inches 3. 797 7. 594 11. 392 15. 189 18, 987	Inch 0.00 .00 .00 .00
10 11½ 12½ 15 17½ 18¾	2. 187 . 186 . 185 . 184 . 182 . 181	2. 733 . 732 . 732 . 730 . 728 . 727	5. 467 . 465 . 463 . 459 . 455 . 453	8. 200 . 197 . 195 . 189 . 183 . 180	10. 934 . 930 . 926 . 918 . 911 . 907	16. 401 . 395 . 389 . 376 . 366 . 360		7½ 10 12½ 15	22, 784 30, 378 37, 974 45, 568	. 01: . 02: . 03: . 050
20 22½ 25 26¼ 27½	2. 181 . 179 . 177 . 177 . 176	2. 726 . 724 . 722 . 721 . 720	5. 451 . 448 . 444 . 442 . 440	8. 177 . 171 . 166 . 163 . 160	10. 903 . 895 . 887 . 884 . 880	16. 354 . 343 . 331 . 325 . 320	For latitude 45%	$ \begin{array}{c} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \end{array} $	3, 798 7, 596 11, 394 15, 192 18, 990 22, 788 30, 384	0. 000 . 001 . 003 . 006 . 009 . 012
30 32½ 33¾ 35 37½	2, 174 . 173 . 172 . 171	2. 718 . 716 . 715 . 714	5. 436 . 432 . 430 . 428	8. 154 . 148 . 145 . 142	10. 872 . 864 . 860 . 856	16. 308 . 296 . 291 . 285		121/2	37. 980 45. 576	. 035
40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	2. 168 . 167 . 167 . 165 . 164 . 163	. 712 2. 710 . 709 . 708 . 706 . 704 . 703	5. 420 . 419 . 417 . 413 . 409 . 407	8. 131 128 125 119 113	. 849 10. 841 . 837 . 833 . 825 . 818 . 814	. 273 16. 261 . 256 . 250 . 238 . 227 . 221	For latitude 46°	11/4 21/2 33/4 5 61/4 71/2 10 121/2	3, 799 7, 597 11, 396 15, 194 18, 994 22, 792 30, 389 37, 987	0. 000 . 001 . 003 . 006 . 009 . 012 . 022 . 035
50 52½ 55 56¼ 57½	2. 162 . 160 . 159 . 158 . 157	2, 702 . 701 . 699 . 698 . 697	5. 405 . 401 . 397 . 395 . 393	8, 107 . 102 . 096 . 093 . 090	10. 810 . 802 . 794 . 790 . 787	16. 215 . 203 . 191 . 186 . 180		,15	45. 584	. 050
5 00 02½ 03¾ 05 07½	2. 156 . 154 . 153 . 153 . 151	2. 695 . 693 . 692 . 691 . 689	5. 389 . 385 . 383 . 381 . 378	8. 084 . 078 . 075 . 072 . 066	10. 779 . 770 . 767 . 763 . 755	16. 168 . 156 . 150 . 144 . 133				
10 11 ¹ / ₄ 12 ¹ / ₂ 15 17 ¹ / ₂ 18 ³ / ₄	2. 149 . 149 . 148 . 146 . 145 . 144	2. 687 . 686 . 685 . 683 . 681 . 680	5, 374 . 372 . 370 . 366 . 362 . 360	8. 061 . 058 . 055 . 049 . 043 . 040	10. 747 . 743 . 740 . 732 . 724 . 720	16. 121 . 115 . 109 . 097 . 086 . 080				
20 22½ 25 26¼ 27½	2. 143 . 142 . 140 . 139 . 139	2. 679 . 677 . 675 . 674 . 673	5. 358 . 354 . 350 . 348 . 346	8. 037 . 031 . 025 . 022 . 019	10, 716 . 708 . 700 . 696 . 692	16, 074 . 062 . 050 . 045 . 039				
30 32½ 33¾ 35 37½	2. 137 . 135 . 134 . 134 . 132	2, 671 . 669 . 668 . 667 . 665	5, 342 . 338 . 336 . 334 . 330	8. 013 . 007 . 004 . 001 7. 996	10. 685 . 677 . 673 . 669 . 661	16. 027 . 015 . 009 . 003 15. 991				
40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ⁸ / ₄	2. 131 . 130 . 129 . 127 . 126 . 125	2. 663 . 662 . 661 . 659 . 657 . 656	5, 326 . 324 . 323 . 319 . 315 . 313	7. 990 . 987 . 984 . 978 . 972 . 969	10. 653 . 649 . 645 . 637 . 629 . 625	15. 979 . 973 . 968 . 956 . 944 . 938				
50 52½ 55 56¼ 57½	2. 124 . 123 . 121 . 120 . 119	2. 655 . 653 . 651 . 650 . 649	5, 311 . 307 . 303 . 301 . 299	7. 966 . 960 . 954 . 951 . 948	10. 621 . 613 . 605 . 601 . 597	15, 932 , 920 , 908 , 902 , 896				
00	2. 118	2. 647	5. 295	7. 942	10, 590	15, 884				

Table 4.—Coordinates for the projection of maps, scale 24600—Continued

			Abseis	ssas of de	veloped p	arallel		Ordinates of de meridio			lel and
tuc	ati- de of allel			Longitud	e interval			T		Merid-	Ordi- nate
		1'	11/4'	2½′	33/4'	5′	71/2'	Latitude and los tude intervals		ional distance	of de- veloped parallel
46	00 02½ 03¾ 05 07½	Inches 2. 118 . 116 . 116 . 115 . 113	Inches 2. 647 . 645 . 644 . 643 . 641	Inches 5, 295 291 289 287 283	Inches 7, 942 936 933 930 924	Inches 10, 590 . 582 . 578 . 574 . 566	Inches 15. 884 . 872 . 867 . 861 . 849	For latitude 46°	$ \begin{array}{c} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \end{array} $	Inches 3, 799 7, 597 11, 396 15, 194 18, 994 22, 792	Inch 0.000 .001 .003 .006 .009
	10 1114 121/2 15 171/2 183/4	2. 112 .111 .110 .108 .107 .106	2. 639 . 638 . 637 . 635 . 633 . 632	5. 279 . 277 . 275 . 271 . 267 . 265	7. 918 . 915 . 912 . 906 . 900 . 897	10. 558 . 554 . 550 . 542 . 534 . 530	15. 837 .831 .825 .813 .801 .795		10 12½ 15	30, 389 37, 987 45, 584	.022
	20 22½ 25 26¼ 27½	2. 105 . 104 . 102 . 101 . 100	2, 631 . 629 . 627 . 626 . 625	5. 263 . 259 . 255 . 253 . 251	7. 894 . 888 . 882 . 879 . 876	10. 526 . 518 . 510 . 506 . 502	15. 789 . 777 . 765 . 759 . 753	For latitude 47°	11/4 21/2 33/4 5 61/4 71/2 10	15. 197 18. 997 22. 796 30. 394	0.000 .001 .003 .006 .009 .012
	30 32½ 33¾ 35 37½	2. 099 . 097 . 096 . 096 . 094	2. 623 . 621 . 620 . 619 . 617	5. 247 . 243 . 241 . 239 . 235	7. 870 . 864 . 861 . 858 . 852	10. 494 . 486 . 482 . 478 . 470	15. 741 . 729 . 723 . 717 . 705		$ \begin{array}{c} 12\frac{1}{2} \\ 15 \end{array} $ $ \begin{array}{c} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \end{array} $	45. 592	0.000 001
	40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	2. 092 . 092 . 091 . 089 . 087 . 087	2. 615 . 614 . 613 . 611 . 609 . 608	5. 231 . 229 . 227 . 223 . 219 . 217	7. 846 . 843 . 840 . 834 . 828 . 825	10. 462 . 458 . 454 . 446 . 438 . 434	15. 692 . 686 . 680 . 668 . 656 . 650	For latitude 48°	33/4 5 61/4 71/2 10 121/2 15	15, 200 19, 000 22, 800 30, 400	. 003 . 006 . 009 . 012 . 021 . 035
	50 52½ 55 56¼ 57½	2. 086 . 084 . 083 . 082 . 081	2.607 .605 .603 .602 .601	5. 215 . 211 . 207 . 205 . 203	7. 822 . 816 . 810 . 807 . 804	10. 429 . 421 . 413 . 109 . 405	15. 644 . 632 . 620 . 614 . 608			<u> </u>	
47	00 02½ 03¾ 05 07½	2. 079 . 078 . 077 . 076 . 075	2. 599 . 597 . 596 . 595 . 593	5. 199 . 195 . 192 . 190 . 186	7. 798 . 792 . 789 . 786 . 780	10. 397 . 389 . 385 . 381 . 373	15. 596 . 584 . 577 . 571 . 559				
	10 11½ 12½ 15 17½ 18¾	2. 073 . 072 . 071 . 070 . 068 . 067	2. 591 . 590 . 589 . 587 . 585 . 584	5. 182 . 180 . 178 . 174 . 170 . 168	7. 774 . 771 . 768 . 763 . 755 . 752	10. 365 . 361 . 357 . 349 . 341 . 336	15. 547 . 541 . 535 . 523 . 511 . 505				
	20 22½ 25 26¼ 27½	2. 066 . 065 . 063 . 062 . 062	2, 583 . 581 . 579 . 578 . 577	5. 166 . 162 . 158 . 156 . 154	7. 749 . 743 . 737 . 734 . 731	10. 332 . 324 . 316 . 312 . 308	15. 499 . 486 . 474 . 468 . 462				
	30 32½ 33¾ 35 37½	2, 060 . 058 . 058 . 057 . 055	2. 575 . 573 . 572 . 571 . 569	5. 150 . 146 . 144 . 142 . 138	7. 725 . 719 . 716 . 713 . 706	10. 300 . 292 . 288 . 284 . 275	15. 450 . 437 . 431 . 425 . 413				
	40 411/4 421/2 45 471/2 483/4	2. 053 . 053 . 052 . 050 . 049 . 048	2. 566 . 566 . 565 . 563 . 561 . 560	5. 134 . 131 . 129 . 125 . 121 . 119	7.700 .697 .694 .688 .682 .679	10, 267 , 263 , 259 , 251 , 243 , 239	15. 401 . 394 . 388 . 376 . 364 . 358				
	50 52½ 55 56¼ 57½	2. 047 . 045 . 044 . 043 . 042	2. 559 . 557 . 555 . 553 . 552	5. 117 . 113 . 109 . 107 . 105	7. 676 . 670 . 664 . 660 . 657	10. 234 . 226 . 218 . 214 . 210	15. 352 . 339 . 327 . 321 . 315				
48	00	2. 040	2, 550	5. 101	7, 651	10. 202	15. 302				

Table 4.—Coordinates for the projection of maps, scale 24000—Continued

		Absci	ssas of de	veloped p	arallel		Ordinates of develo meridional	ped paral distances	lel and
Lati- tude of parallel			Longitud	e interva	l .		Latitude and longi-	Merid-	Ordi- nate
	1′	11/4'	2½′	3¾′	5′	71/2'	tude intervals	distance	of de- velope paralle
8 00 02½ 03¾ 05 07½	Inches 2. 040 . 039 . 038 . 037 . 035	Inches 2. 550 . 548 . 547 . 546 . 544	Inches 5. 101 . 097 . 095 . 093 . 088	Inches 7. 651 . 645 . 642 . 639 . 633	Inches 10, 202 . 193 . 189 . 185 . 177	Inches 15, 302 , 290 , 284 , 278 , 265	11, 23, 33, 5, 5, For latitude 48° 61, 7;	15. 200	Inch 0.00 .00 .00
10 11½ 12½ 15 17½ 18¾	2. 034 . 033 . 032 . 030 . 029 . 028	2. 542 . 541 . 540 . 538 . 536 . 535	5. 084 . 082 . 080 . 076 . 072 . 070	7. 626 . 623 . 620 . 614 . 608 . 605	10. 169 . 165 . 160 . 152 . 144 . 140	15. 253 . 247 . 241 . 228 . 216 . 210	10 121 15	20.000	. 01 . 02 . 03 . 05
20 22½ 25 26¼ 27½	2. 027 . 025 . 024	2, 534 . 532 . 530 . 529 . 528	5. 068 . 064 . 060 . 058 . 055	7. 602 . 596 . 589 . 586 . 583	10. 136 . 127 . 119 . 115 . 111	15. 204 . 191 . 179 . 173 . 166	For latitude 49° 64 70 100 100 100 100 100 100 100 100 100	15. 202 19. 004 2 22. 804 30. 405	.00 .00 .00 .01
30 32½ 33¾ 35 37½	2. 020 . 019 . 018 . 017 . 016	2. 526 . 524 . 523 . 521 . 519	5. 051 . 047 . 045 . 043 . 039	7. 577 . 571 . 568 . 564 . 558	10.103 .094 .090 .086 .078	15. 154 . 142 . 135 . 129 . 117	[12] 15 [15]	45. 608 3. 801	0.04
40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₂ 48 ³ / ₄	2. 014 . 013 . 012 . 011 . 009 . 008	2. 517 . 516 . 515 . 513 . 511 . 510	5. 035 . 033 . 031 . 027 . 022 . 020	7. 552 . 549 . 546 . 540 . 533 . 530	10. 069 . 065 . 061 . 053 . 045	15. 104 . 098 . 092 . 079 . 067 . 061	For latitude 50° 6 7 10 123 15 15	15. 205 19. 007 2 22. 808 30. 411	. 00 . 00 . 00 . 01 . 02 . 03
50 52½ 55 56¼ 57½	2,007 .006 .004 .003 .002	2, 509 . 507 . 505 . 504 . 503	5. 018 . 014 . 010 . 008 . 006	7. 527 . 521 . 515 . 512 . 508	10. 036 . 028 . 020 . 015 . 011	15. 054 . 042 . 029 . 023 . 017		40.017	. 0
9 00 02½ 03¾ 05 07½	2. 001 1. 999 . 998 . 997 . 996	2.501 .499 .498 .497 .494	5. 001 4. 997 . 995 . 993 . 989	7. 502 . 496 . 493 . 490 . 483	10, 003 9, 995 990 986 978	15. 004 14. 992 . 986 . 979 . 967			
$ \begin{array}{c} 10 \\ 11\frac{1}{4} \\ 12\frac{1}{2} \\ 15 \\ 17\frac{1}{2} \\ 18\frac{3}{4} \end{array} $	1, 994 . 993 . 992 . 991 . 989 . 988	2. 492 . 491 . 490 . 488 . 486 . 485	4. 985 . 983 . 981 . 976 . 972 . 970	7. 477 . 474 . 471 . 465 . 458	9, 970 , 965 , 961 , 953 , 944 , 940	14. 954 . 948 . 942 . 929 . 917 . 910			
20 22½ 25 26¼ 27½	1. 987 . 986 . 984 . 983 . 982	2. 484 . 482 . 480 . 479 . 478	4. 968 . 964 . 960 . 957 . 955	7. 452 . 446 . 439 . 436 . 433	9, 936 . 928 . 919 . 915 . 911	14. 904 . 891 . 879 . 872 . 866			
30 32½ 33¾ 35 37½	1. 980 . 979 . 978 . 977 . 975	2. 476 . 473 . 472 . 471 . 469	4. 951 . 947 . 945 . 943 . 939	7. 427 . 420 . 417 . 414 . 408	9. 902 . 894 . 890 . 886 . 877	14. 854 . 841 . 835 . 828 . 816			
40 41 ¹ / ₄ 42 ¹ / ₂ 45 47 ¹ / ₃ 48 ³ / ₄	1.974 .973 .972 .970 .969 .968	2, 467 , 466 , 465 , 463 , 461 , 460	4. 934 . 932 . 930 . 926 . 922 . 920	7. 401 . 398 . 395 . 389 . 383 . 379	9. 869 . 864 . 860 . 852 . 843 . 839	14. 803 . 797 . 790 . 778 . 765 . 759			
50 52½ 55 56¼ 57½	1. 967 . 965 . 964 . 963 . 962	2. 459 . 457 . 454 . 453 . 452	4. 918 . 913 . 909 . 907 . 905	7. 376 . 370 . 363 . 360 . 357	9. 835 . 826 . 818 . 814 . 810	14. 753 . 740 . 727 . 721 . 714			

Table 4.—Coordinates for the projection of maps, scale 241000—Continued

			Absci	ssas of de	veloped p	arallel		Ordinates of de meridio	evelo nal o	ped paral listances	lel and
Lati tude parall	of			Longitud	e interva	ı		T-414			Ordi-
paran	161	1′	11/4'	2½′	3¾′	5'	7½'	Latitude and lor tude intervals	ngi-	Merid- ional distance	nate of de- veloped parallel
03 05	0 2 ¹ / ₂ 3 ⁸ / ₄	Inches 1, 960 959 958 957 955	Inches 2, 450 , 448 , 447 , 446 , 444	Inches 4, 901 .896 .894 .892 .888	Inches 7, 351 .344 .341 .338 .332	Inches 9, 801 . 793 . 788 . 784 . 776	Inches 14, 702 . 689 . 683 . 676 . 664	For latitude 50°	11/4 21/2 33/4 5 61/4	15, 205	Inch 0, 000 . 001 . 003 . 005 . 009
12 18 17	$\frac{1\frac{1}{4}}{2^{\frac{1}{2}}}$	1, 953 . 953 . 952 . 950 . 948 . 948	2, 442 .441 .440 .438 .435 .434	4, 884 . 882 . 879 . 875 . 871 . 869	7. 325 .322 .319 .313 .306 .303	9.767 .763 .759 .750 .742 .737	14, 651 . 645 . 638 . 625 . 613 . 606		7½ 10 12½ 15	30, 411	. 012 . 022 . 034 . 049
20 22 28 26	- 1	1, 947 . 945 . 943 . 942 . 942	2. 433 . 431 . 429 . 428 . 427	4. 867 . 862 . 858 . 856 . 854	7. 300 . 293 . 287 . 284 . 281	9. 733 . 725 . 716 . 712 . 708	14, 600 . 587 . 574 . 568 . 561	For latitude 51°	$ \begin{array}{c} 1\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 5 \\ 6\frac{1}{4} \\ 7\frac{1}{2} \\ 10 \end{array} $	7. 604 11. 406 15. 208 19. 010 22. 812 30. 416	. 001 . 003 . 005 . 008 . 012 . 022
33 38	21/2	1, 940 . 938 . 937 . 936 . 935	2. 425 . 423 . 422 . 420 . 418	4, 850 . 845 . 843 . 841 . 837	7. 274 . 268 . 265 . 261 . 255	9, 699 . 691 . 686 . 682 . 674	14, 549 . 536 . 529 . 523 . 510		12½,15	38, 021 45, 625	. 034
42 48	$\frac{11/4}{21/2}$	1. 933 . 932 . 931 . 930 . 928 . 927	2. 416 . 415 . 414 . 412 . 410 . 409	4. 833 . 830 . 828 . 824 . 820 . 818	7. 249 . 246 . 242 . 236 . 229 . 226	9. 665 . 661 . 656 . 648 . 639 . 635	14, 498 . 491 . 485 . 472 . 459 . 453				
58 56	21/2	1, 926 . 924 . 923 . 922 . 921	2. 408 . 406 . 403 . 402 . 401	4, 815 .811 .807 .805 .802	7. 223 . 217 . 210 . 207 . 204	9. 631 . 622 . 614 . 609 . 605	14, 446 . 433 . 420 . 414 . 408				
03 08	21/ ₂ 33/ ₄	1. 919 . 918 . 917 . 916 . 914	2, 399 . 397 . 396 . 395 . 393	4. 798 . 794 . 792 . 790 . 785	7. 197 . 191 . 188 . 184 . 178	9, 596 , 588 , 583 , 579 , 571	14, 395 . 382 . 375 . 369 . 356				
12 18 17	$\frac{11/4}{21/2}$	1. 912 . 912 . 911 . 909 . 907 . 906	2, 390 . 389 . 388 . 386 . 384 . 383	4. 781 . 779 . 777 . 772 . 768 . 766	7. 171 . 168 . 165 . 159 . 152 . 149	9. 562 . 558 . 553 . 545 . 536 . 532	14, 343 , 336 , 330 , 317 , 304 , 298				
20 22 25 26	21/2	1. 906 . 904 . 902 . 901 . 900	2. 382 . 380 . 377 . 376 . 375	4. 764 . 759 . 755 . 753 . 751	7. 146 . 139 . 133 . 129 . 126	9. 528 . 519 . 510 . 506 . 501	14, 291 . 278 . 265 . 259 . 252				
33 35 37	21/2 38/4 5 71/2	1. 899 . 897 . 896 . 895 . 893	2, 373 .371 .370 .369 .367	4, 746 . 742 . 740 . 738 . 733	7. 120 .113 .110 .107 .100	9. 493 . 484 . 480 . 476 . 467	14. 239 . 226 . 220 . 213 . 200				
42 45 47	21/2	1. 892 . 891 . 890 . 888 . 886 . 885	2. 364 . 363 . 362 . 360 . 358 . 357	4, 729 . 727 . 725 . 720 . 716 . 714	7. 094 . 090 . 087 . 081 . 074 . 071	9. 458 . 454 . 450 . 441 . 432 . 428	14. 187 . 181 . 174 . 161 . 148 . 142				
55 56 57	21/2 5 61/4 71/2	1. 885 . 883 . 881 . 880 . 879	2. 356 . 354 . 352 . 350 . 349	4. 712 . 707 . 703 . 701 . 699	7. 068 . 061 . 055 . 051 . 048	9. 424 . 415 . 406 . 402 . 397	14. 135 . 122 . 109 . 103 . 096				
52 00)	1. 878	2, 347	4. 694	7. 042	9, 389	14. 083				

TABLE 5.—Coordinates of intersections of meridians and parallels and lengths of meridians for each degree of latitude, in meters

	meridian	Y (for lower latitude)	0.0 152.1 304.2 456.3		608.4 757.6 906.7 1,055.9		1, 205. 0 1, 348. 4 1, 491. 7 1, 635. 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,778.3 1,913.0 2,047.7 2,182.4	1	2, 317. 1 2, 440. 6 2, 564. 1 2, 687. 5	
	Meridian 3° from central meridian	(for lower latitude)	333, 963, 9 333, 761, 7 333, 559, 5 333, 357, 3	1	333, 155, 1 332, 549, 5 331, 943, 9 331, 338, 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	330, 732, 6 329, 726, 4 328, 720, 1 327, 713, 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	326, 707. 4 325, 305. 3 323, 903. 1 322, 500. 8		321, 098. 3 319, 306. 8 317, 515. 2 315, 723. 3	4 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9]	Meridian 3	Length of meridian	110, 650. 5 110, 651. 2 110, 652. 6 110, 654. 6	442, 608. 9	110, 656. 5 110, 660. 0 110, 664. 0 110, 668. 8	442, 649. 3	110, 672. 9 110, 678. 9 110, 685. 7 110, 693. 1	442, 730. 6	110, 698.3 110, 707.0 110, 716.2 110, 726.0	442, 847. 5	110, 733. 3 110, 744. 3 110, 755. 9 110, 768. 0	443, 001. 5
natural scale	meridian	Y (for lower latitude)	0.0 67.6 135.2 202.8	1 1 1 2 2 2 3 5 6	270.4 336.7 403.0 469.3	1 3 2 8 8 9 9	535. 6 599. 3 663. 0 726. 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	790.4 850.2 910.1 970.0	1 1 2 4 1 2 3 3 4 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1	1, 029. 8 1, 084. 7 1, 139. 6 1, 194. 5	1 0 0 0 0 0 0 0 0 0 0
of the world,	Meridian 2° from central meridian	X (for lower latitude)	222, 642. 6 222, 507. 9 222, 373. 1 222, 238. 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	222, 103. 7 221, 700. 1 221, 296. 6 220, 893. 0		220, 489. 5 219, 819. 0 219, 148. 5 218, 477. 9	000000000000000000000000000000000000000	217, 807. 3 216, 873. 0 215, 968. 7 215, 034. 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	214, 069. 7 212, 875. 9 211, 681. 9 210, 487. 9	
jection of map	Meridian 2	Length of meridian	110, 565. 9 110, 566. 6 110, 568. 0 110, 570. 0	442, 270. 5	110, 572. 8 110, 576. 2 110, 580. 2 110, 585. 0	442, 314. 2	110, 590. 4 110, 596. 4 110, 603. 2 110, 610. 6	442, 400. 6	110, 618. 6 110, 627. 2 110, 636. 4 110, 646. 2	442, 528. 4	110, 656. 7 110, 667. 7 110, 679. 2 110, 691. 4	442, 695. 0
olyconic pro	meridian	Y (for lower latitude)	0.0 16.9 33.8 50.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	67. 6 84. 2 100. 7 117. 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	133.9 149.8 165.7 181.7		197. 6 212. 6 227. 5 242. 5		257. 5 271. 2 284. 9 298. 6	
[For modified polyconic projection of map of the world, natural scale]	Meridian 1° from central meridian	X (for lower latitude)	111, 321. 3 111, 253. 9 111, 186. 6 111, 119. 3	5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	111, 051. 9 110, 850. 2 110, 648. 5 110, 446. 8		110, 245. 1 109, 909. 9 109, 574. 8 109, 239. 6		108, 904. 4 108, 437. 4 107, 970. 3 107, 503. 2		107, 036, 1 106, 439, 3 105, 842, 5 105, 245, 7	
	Meridian 1	Length of meridian	110, 515.2 110, 515.8 110, 517.2 110, 519.3	442, 067. 5	110, 522. 5 110, 525. 9 110, 530. 0 110, 534. 7	442, 113. 1	110, 540. 9 110, 546. 9 110, 553. 7 110, 561. 1	442, 202. 6	110, 570, 7 110, 579, 3 110, 588, 6 110, 598, 4	442, 337. 0	110, 610. 7 110, 621. 7 110, 633. 3 110, 645. 4	442, 511. 1
	Length	of central meridian	110, 498.2 110, 498.9 110, 500.3 110, 502.3	441, 999. 7	110, 505.7 110, 509.1 110, 513.2 110, 518.0	442, 046. 0	110, 524. 4 110, 530. 4 110, 537. 2 110, 544. 6	442, 136. 6	110, 554, 8 110, 563, 4 110, 572, 6 110, 582, 4	442, 273. 2	110, 595. 4 110, 606. 4 110, 617. 9 110, 630. 0	442, 449. 7
		Latitude (°)	9-1-4- 1-2-8-4	(0-4)	4.007	(4-8)	8-9 9-10 10-11 11-12	(8-12)	12-13 13-14 14-15 15-16	(12-16)	16-17 17-18 18-19 19-20	(16-20)

2, 811. 0 2, 920. 9 3, 030. 7 3, 140. 6	3, 250. 4 3, 344. 5 3, 438. 5 532. 6	3, 626. 7 3, 703. 2 3, 779. 7 3, 856. 1	3, 932. 6 3, 990. 0 4, 047. 4 4, 104. 8	4, 162. 2 4, 199. 3 4, 236. 5 4, 273. 6	4, 310.8 4, 327.0 4, 359.4 4, 359.4	4, 375. 6 4, 375. 6 4, 365. 4 860. 3
313, 931. 2 311, 758. 7 309, 585. 9 307, 412. 8	305, 239. 5 302, 696. 1 300, 152. 3 297, 608. 2	295, 063.7 292, 161.2 289, 258.4 286, 355.1	283, 451. 3 280, 203. 5 276, 955. 3 273, 706. 4	270, 457. 0 266, 879. 3 263, 300. 9 259, 721. 9	256, 142, 2 252, 251, 4 248, 359, 9 244, 467, 7	240, 574, 8 236, 380, 4 232, 203, 3 228, 016, 5
110, 776, 9 110, 790, 1 110, 803, 8 110, 817, 9	828. 843. 874.	110, 886. 2 110, 902. 9 110, 920. 0 110, 937. 4 443, 646. 5	110, 949.8 110, 967.9 110, 986.2 111, 004. 8	017. 036. 075.	111, 089. 1 111, 108. 7 111, 128. 4 111, 148. 2 444, 474. 4	111, 162.0 111, 181.8 111, 201.6 111, 221.4 444, 766.8
1, 249. 4 1, 298. 2 1, 347. 0 1, 395. 8	1, 444. 7 1, 486. 5 1, 528. 3 1, 570. 1	1, 611. 9 1, 645. 9 1, 679. 9 1, 713. 9	1, 747. 9 1, 773. 4 1, 798. 9 1, 824. 4	1, 849, 9 1, 883, 0 1, 899, 5	1, 916, 0 1, 923, 2 1, 930, 4 1, 937, 6	1, 944. 8 1, 942. 6 1, 940. 3 1, 938. 1
209, 293, 7 207, 845, 9 206, 398, 0 204, 949, 9	203, 501. 6 201, 806. 5 200, 111. 3 198, 415. 8	196, 720.1 194, 785.8 192, 851.2 190, 916.2	188, 981. 0 186, 816. 4 184, 651. 5 182, 486. 2	180, 320, 5 177, 935, 8 175, 550, 8 173, 165, 3	170, 779. 4 168, 186. 0 165, 592. 0 162, 997. 7	160, 402. 8 157, 612. 9 154, 822. 5 152, 031. 6
110, 704, 0 110, 717, 2 110, 730, 8 110, 745, 0	110, 759. 7 110, 774. 8 110, 790. 3 110, 806. 2	110, 822. 6 110, 839. 3 110, 856. 4 110, 873. 8 443, 392. 1	110, 891. 5 110, 909. 6 110, 927. 9 110, 946. 4	110, 965. 2 110, 984. 2 111, 003. 4 111, 022. 8	042. 061. 101.	603
312. 3 324. 5 336. 8 349. 0	361. 2 371. 6 382. 1 392. 5	403. 0 411. 5 420. 0 423. 5	437. 0 443. 4 449. 7 456. 1	462.5 466.6 470.8 474.9	479. 0 480. 8 482. 6 484. 4	486. 2 485. 7 485. 1 484. 5
104, 648, 7 103, 925, 0 103, 201, 2 102, 477, 3	101, 753. 3 100, 906. 0 100, 058. 6 99, 211. 0	98, 363, 4 97, 396, 4 96, 429, 2 95, 462, 0	94, 494. 5 93, 412. 4 92, 330. 1 91, 247. 7	90 165.0 88, 972.8 87, 780.4 86, 587.9	85, 395. 1 84, 098. 5 82, 801. 7 81, 504. 6	80, 207. 3 78, 812. 5 77, 417. 3 76, 022. 0
110, 660, 3 110, 673, 4 110, 687, 1 110, 701, 3	110, 718. 6 110, 733. 7 110, 749. 2 110, 765. 1	442, 966, 6 110, 784, 4 110, 801, 1 110, 818, 2 110, 835, 6 443, 239, 3	110, 856. 6 110, 874. 6 110, 892. 9 110, 911. 5	110, 933. 6 110, 952. 6 110, 971. 8 110, 991. 1	111, 014, 1 111, 033, 7 111, 053, 4 111, 073, 1 444, 174, 3	1116. 136. 504.
110, 645.7 110, 658.8 110, 672.5 110, 686.7	110, 704.9 110, 720.0 110, 735.5 110, 751.4	442, 911.8 110, 771.7 110, 788.4 110, 805.5 110, 822.9 443, 188.5	881. 899.	923.		088. 108. 147.
20-21 21-22 22-23 23-24 (90-24)	24-25 25-26 26-27 27-28	28-29 29-30 30-31 31-32 (28-32)	32-33 34-35 35-36 35-36	36-37 37-38 38-39 39-40	40-41 41-42 43-43 43-44	44 45 45 46 46 47 47 48 (44 48)

Table 5.—Coordinates of intersections of meridians and parallels and lengths of meridians for each degree of latitude, in meters—Con.

- us	ower 1de)	4, 355. 2 4, 329. 0 4, 302. 7 4, 276. 4	-	50.1 03.1 09.1		, 062. 1 , 995. 3 , 928. 5 , 861. 7	1	94.9
l meridi	(for lower latitude)	4444		4, 250. 1 4, 203. 1 4, 156. 1 4, 109. 1	1	 4.ట.ట.ట. 2000	1	3, 794.
Meridian 3° from central meridian	X (for lower latitude)	223, 828. 9 219, 369. 1 214, 908. 4 210, 447. 0		205, 984, 8 201, 272, 0 196, 558, 3 191, 843, 8		187, 128. 5 182, 185. 4 177, 241. 4 172, 296. 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	167, 351. 2
Meridian 3	Length of meridian	111, 235.3 111, 254.9 111, 274.4 111, 293.9	445, 058. 5	111, 307. 4 111, 326. 5 111, 345. 4 111, 364. 0	445, 343. 3	111, 377. 0 111, 395. 1 111, 413. 0 111, 430. 6	445, 615. 7	
meridian	(for lower latitude)	1, 935. 8 1, 924. 1 1, 912. 4 1, 900. 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,889.1 1,868.2 1,847.3 1,826.4	1 1 2 2 2 3	1,805.5 1,775.9 1,746.2 1,716.5	1	1, 686.8
Meridian 2º from central meridian	(for lower latitude)	149, 240. 2 146, 267. 1 143, 293. 6 140, 319. 5	**********	137, 344, 9 134, 203, 0 131, 060, 6 127, 917, 6	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	124, 774, 1 121, 478. 6 118, 182. 5 114, 885. 8	3 3 5 6 6 1 6	111, 588. 7
Meridian 2	Length of meridian	111, 200.2 111, 219.8 111, 239.4 111, 258.8	444, 918. 2	111, 278.0 111, 297.1 111, 316.0 111, 334.7	445, 225. 8	111, 353.1 111, 371.3 111, 389.1 111, 406.7	445, 520. 2	
meridian	Y (for lower latitude)	484.0 481.1 478.1 475.2		472.3 467.1 461.9 456.6	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	451.4 444.0 436.6 429.1		421.7
Meridian 1° from central meridian	X (for lower latitude)	74, 626.4 73, 139.9 71, 653.2 70, 166.2		68, 678. 9 67, 108. 0 65, 536. 8 63, 965. 3		62, 393. 6 60, 745. 8 59, 097. 7 57, 449. 3		55, 800. 7
Meridian 1	Length of meridian	111, 179, 1 111, 198, 8 111, 218, 3 111, 237, 7	444, 833. 9	111, 260.4 111, 279.5 111, 298.4 111, 317.0	445, 155. 3	111, 338. 8 111, 356. 9 111, 374. 8 111, 392. 4	445, 462. 9	
Length	of central meridian	111, 172, 1 111, 191, 7 111, 211, 3 111, 230, 7	444, 805, 8	111, 254, 5 111, 273, 6 111, 292, 5 111, 311, 2	445, 131. 8	111, 334.0 111, 352.2 111, 370.0 111, 387.6	445, 443. 8	
	Latitude (°)	48-49 49-50 50-51 51-52	(48-52)	52-53 53-54 54-55 55-56	(52-56)	56-57 57-58 58-59 59-60	(26-60)	09

Table 6.—Coordinates of intersections of meridians and parallels and lengths of meridians for each degree of latitude, in inches

[For modified polyconic projection of map of the world, scale 1:1,000,000]

		Meridian 1° from central meridian			Meridian 2° from central meridian			Meridian 3° from central meridian		
Latitude (°)	Length of central meridian	Length of meridian	X (for lower lati- tude)	Y (for lower latitude)	Length of meridian	X (for lower lati- tude)	Y (for lower lati- tude)	Length of meridian	X (for lower lati- tude)	(for lower latitude)
0-1 1-2 2-3 3-4	4, 350 4, 350 4, 350 4, 350	4, 351 4, 351 4, 351 4, 351	4. 383 4. 380 4. 377 4. 375	0.000 .001 .001 .002	4. 353 4. 353 4. 353 4. 353	8. 765 8. 760 8. 755 8. 750	0,000 .003 .005 .008	4. 356 4. 356 4. 356 4. 356	13. 148 13. 140 13. 132 13. 124	0.000 .006 .012 .018
(0-4)	17. 400	17. 404			17. 412			17. 424		
4-5 5-6 6-7 7-8	4. 351 4. 351 4. 351 4. 351	5, 351 4, 351 4, 352 4, 352	4. 372 4. 364 4. 356 4. 348	. 003 . 003 . 004 . 005	4, 353 4, 353 4, 354 4, 354	8. 744 8. 728 8. 712 8. 697	.011 .013 .016 .018	4. 357 4. 357 4. 357 4. 357	13. 116 13. 092 13. 069 13. 045	.024 .030 .036 .042
(4-8)	17. 404	17. 406			17. 414			17. 428		
8-9 9-10 10-11 11-12	4. 351 4. 352 4. 352 4. 352	4. 352 4. 352 4. 353 4. 353	4. 340 4. 327 4. 314 4. 301	.005 .006 .007 .007	4. 354 4. 354 4. 354 4. 355	8. 681 8. 654 8. 628 8. 601	. 021 . 024 . 026 . 029	4, 357 4, 357 4, 358 4, 358	13. 021 12. 981 12. 942 12. 902	. 047 . 053 . 059 . 064
(8–12)	17. 407	17. 410			17. 417			17. 430		
12-13 13-14 14-15 15-16	4, 353 4, 353 4, 353 4, 354	4, 353 4, 354 4, 354 4, 354	4. 288 4. 269 4. 251 4. 232	. 008 . 008 . 009 . 010	4. 355 4. 355 4. 356 4. 356	8. 575 8. 538 8. 503 8. 466	. 031 . 033 . 036 . 038	4, 358 4, 359 4, 359 4, 359	12. 862 12. 807 12. 752 12. 697	.070 .075 .081 .086
(12–16)	17, 413	17. 415			17. 422			17, 435		
16-17 17-18 18-19 19-20	4. 354 4. 355 4. 355 4. 356	4. 355 4. 355 4. 356 4. 356	4. 214 4. 191 4. 167 4. 144	.010 .011 .011 .012	4. 357 4. 357 4–357 4. 358	8, 428 8, 381 8, 334 8, 287	. 041 . 043 . 045 . 047	4, 360 4, 360 4, 360 4, 361	12. 642 12. 571 12. 501 12. 430	. 091 . 096 . 101 . 106
(16-20)	17. 420	17. 422	~~~~		17. 429			17. 441		
20-21 21-22 22-23 23-24	4, 356 4, 357 4, 357 4, 358	4. 357 4. 357 4. 358 4. 358	4. 120 4. 092 4. 063 4. 035	.012 .013 .013 .014	4. 358 4. 359 4. 359 4. 360	8, 240 8, 183 8, 126 8, 069	. 049 . 051 . 053 . 055	4, 361 4, 362 4, 362 4, 363	12, 359 12, 274 12, 188 12, 103	.111 .115 .119 .124
(20-24)	17. 428	17. 430			17. 436			17. 448		
24–25 25–26 26–27 27–28	4. 358 4. 359 4. 360 4. 360	4. 359 4. 360 4. 360 4. 361	4, 006 3, 973 3, 939 3, 906	.014 .015 .015 .015	4. 361 4. 361 4. 362 4. 362	8. 012 7. 945 7. 878 7. 812	. 057 . 059 . 060 . 062	4. 363 4. 364 4. 365 4. 365	12. 017 11. 917 11. 817 11. 717	. 128 . 132 . 135 . 139
(24-28)	17. 437	17. 440			17. 446			17. 457		
28-29 29-30 30-31 31-32	4, 361 4, 362 4, 362 4, 363	4, 362 4, 362 4, 363 4, 364	3. 873 3. 834 3. 796 3. 758	. 016 . 016 . 017 . 017	4. 363 4. 364 4. 364 4. 365	7. 745 7. 669 7. 593 7. 516	. 063 . 065 . 066 . 067	4. 366 4. 366 4. 367 4. 368	11, 617 11, 502 11, 388 11, 274	. 143 . 146 . 149 . 152
(28-32)	17. 448	17. 451			17. 456			17. 467		
32-33 33-34 34-35 35-36	4, 364 4, 365 4, 365 4, 366	4. 364 4. 365 4. 366 4. 367	3. 720 3. 678 3. 635 3. 592	.017 .017 .018 .018	4. 366 4. 367 4. 367 4. 368	7. 440 7. 355 7. 270 7. 184	. 069 . 070 . 071 . 072	4. 368 4. 369 4. 370 4. 370	11, 159 11, 032 10, 904 10, 776	. 155 . 157 . 159 . 162
(32–36)	17. 460	17. 462			17. 468			17. 477		
36-37 37-38 38-39 39-40	4. 367 4. 368 4. 369 4. 369	4. 367 4. 368 4. 369 4. 370	3. 550 3. 503 3. 456 3. 409	.018 .018 .019 .019	4. 369 4. 369 4. 370 4. 371	7. 099 7. 005 6. 911 6. 818	.073 .073 .074 .075	4. 371 4. 372 4. 372 4. 373	10. 648 10. 507 10. 366 10. 225	. 164 . 165 . 167 . 168
(36-40)	17. 473	17. 474			17. 479			17. 488		

124 TABLES FOR CONSTRUCTION OF POLYCONIC PROJECTIONS

Table 6.—Coordinates of intersections of meridians and parallels and lengths of meridians for each degree of latitude, in inches—Continued

	Length of central meridian	Meridian 1° from central meridian			Meridian 2º from central meridian			Meridian 3° from central meridian		
Latitude (°)			X (for lower lati- tude)	Y (for lower lati- tude)	Length of meridian	X (for lower lati- tude)	Y (for lower lati- tude)	Length of meridian	X (for lower lati- tude)	Y (for lower lati- tude)
40-41 41-42 42-43 43-44	4, 370 4, 371 4, 372 4, 373	4. 371 4. 371 4. 372 4. 373	3. 362 3. 311 3. 260 3. 209	0. 019 . 019 . 019 . 019	4. 372 4. 373 4. 373 4. 374	6. 724 6. 621 6. 519 6. 417	0. 075 . 076 . 076 . 076	4, 374 4, 374 4, 375 4, 376	10. 084 9. 931 9. 778 9. 625	0. 170 . 170 . 171 . 172
(40-44)	17. 486	17, 487			17. 492			17, 499		
44-45 45-46 46-47 47-48	4. 374 4. 374 4. 375 4. 376	4. 374 4. 375 4. 375 4. 376	3. 158 3. 103 3. 048 2. 993	.019 .019 .019 .019	4. 375 4. 376 4. 376 4. 377	6, 315 6, 205 6, 095 5, 985	.077 .076 .076 .076	4. 376 4. 377 4. 378 4. 379	9. 471 9. 307 9. 142 8. 977	.172 .172 .172 .172
(44-48)	17. 499	17. 500			17. 504			17. 510		
48-49 49-50 50-51 51-52	4. 377 4. 378 4. 378 4. 379	4, 377 4, 378 4, 379 4, 379	2. 938 2. 880 2. 821 2. 762	.019 .019 .019 .019	4, 378 4, 379 4, 379 4, 380	5. 876 5. 759 5. 641 5. 524	. 076 . 076 . 075 . 075	4. 379 4. 380 4. 381 4. 382	8, 812 8, 637 8, 461 8, 285	. 171 . 170 . 169 . 168
(48-52)	17. 512	17. 513			17. 516			17. 522		
52-53 53-54 54-55 55-56	4, 380 4, 381 4, 382 4, 382	4, 380 4, 381 4, 382 4, 383	2. 704 2. 642 2. 580 2. 518	.019 .018 .018 .018	4. 381 4. 382 4. 383 4. 383	5. 407 5. 284 5. 160 5. 036	. 074 . 074 . 073 . 072	4, 382 4, 383 4, 384 4, 384	8. 110 7. 924 7. 738 7. 553	.1(? .165 .164 .162
(52-56)	17. 525	17. 526			17. 529			17, 533		
56–57 57–58 58–59 59–60	4, 383 4, 384 4, 385 4, 385	4, 383 4, 384 4, 385 4, 386	2. 456 2. 392 2. 327 2. 262	.018 .017 .017 .017	4, 384 4, 385 4, 385 4, 386	4, 912 4, 783 4, 653 4, 523	.071 .070 .069 .068	4. 385 4. 386 4. 386 4. 387	7, 367 7, 173 6, 978 6, 783	. 160 . 157 . 155 . 152
(56-60)	17. 537	17. 538			17. 540			17. 544		
60			2, 197	. 017		4. 393	. 066		6. 589	. 149

INDEX

A	F
Page	Page
Advantages of polyconic projection	Factors, log A
Albers equal-area projection, suggested for	log B
use	Formulas for American polyconic projection,
Arc of meridian, approximate formula for	Δ M
length on spheroid10	Δ Ρ
	M
developed arc on modified polyconic pro-	ρ _m
jection38-41	ρ ₁ 8, 9
formulas for developed arcs on modified	x
polyconic projection 38, 40, 41	y
rigid formulas for length on spheroid 13, 14	Formulas for modified polyconic projection
Arc of parallel, computation of	Δ M ₀
formula for length of	Δ Μ ₁
radius of16	Δ M ₂
	Δ M ₃
C	ρ _m
	ρ _n
Characteristics of polyconic projection 2	x
Choice of projection	y 41, 42
Clarke, Col. A. R., reference to	_
Clarke spheroid of 1866, dimensions of 4	G
reference to 3, 4	Geological Survey bulletins, references to 3,
Clarke spheroid of 1880, comparison with	4, 8, 10, 17, 20, 25
Hayford spheroid	H
dimensions of 36	
references to 30, 31, 36, 38	Hassler, Ferdinand, polyconic projection
Coast and Geodetic Survey publications, ref-	devised by 2
erences to 2, 3, 4, 8, 10, 17, 21, 25, 26, 28	Hayford spheroid, comparison with Clarke
Constants, in formulas for meridional arcs_12, 14, 39	spheroid31
in formulas for x and y 19, 42	dimensions of 31
of generating ellipse4	references to
Construction of American polyconic projec-	Hinks, Arthur R., quoted 26, 28
tion, by Bumstead plate, refer-	
ence to	I
by Coast Survey method, reference to 21, 25	International Map Committee, reference
by Geological Survey method, description	to25, 26, 28, 30
of	International map sheets, above latitude 60°. 28
Construction of modified polyconic projection	junction of27
of map of world, description of 31-35	limits of25
Conversion of meters on spheroid to inches on	numbering of26
*	Interpolation of projection tables for other
map scale	scales25
	000100
Curved meridians	J
D	Joining of sheets2, 27
D	,
Disadvantages of polyconic projection 1	L
Disadvantages of polyconte projection	Lallemand, Charles, formulas of 30, 38, 40, 41, 42
E	Lambert conformal projection, reference to 27
£	Latitude, geocentric5
7	astronomical
Eccentricity of ellipse 6	Lomnicki, Antoni, suggestions by 26, 29, 30, 37
Elements of generating ellipse 5	Million, Alton, suggestions by 20, 29, 50, 51

rage	- Lago
M	Parallels, method of drawing, on American
	polyconic projection 24
Meridional arcs, approximate formula for	method of drawing, on modified polyconic
length on spheroid 10	projection29
computation of 9-14	Polyconic projection of 15' quadrangle 22
developed arc on modified polyconic	Projection scale, special type used by Geo-
projection38-41	logical Survey 32
formulas for developed arcs on modified	
polyconic projection 38, 40, 41	. B
rigid formulas for length on spheroid 13, 14	
Meter, legal value in the United States 4, 8, 20	Radian, value of 9
, ,	Radius of curvature, meridional section 4, 7, 9, 37
Modified polyconic projection of map of	normal section 4, 8, 9, 37
world, construction of 31-35	Rectangular coordinates for American poly-
description of tables for 29	conic projection 15-19
dimensions of spheroid used	analysis of formulas for x and y 19
drawing of developed parallels29	analysis of values of x and ΔP
general specifications	approximate formulas for x and y 18, 19
joining of sheets 27	rigid formulas for x and y
length of developed meridians 38-41	Rectangular coordinates for modified poly-
order of computations 37-38	
nomenclature used in formulas	conic projection 41-42
radii of curvature37	approximate formulas for x and y
rectangular coordinates 41-42	rigid formulas for x and y 41
spheroid used	
standard parallels and meridians	S
subdivision of meridians into 1° lengths. 40	
theory of 35-42	Smithsonian Geographic Tables, references
theory of 55-42	to
	Spheroid. See Clarke spheroid and Hayford
0	spheroid.
Ordinates of developed parallel, method of	T
plotting 23, 33	
	Tangent cone, elements of 16
Ρ ,	development of 17
Parallel, arc of, computation of 14-15	.W
arc of, formula for length of	
radius of 16	Woodward, R. S., reference to4
4	

