

JP63183623 Biblio Page 1 Drawing

METHOD FOR CONTACT MAGNETIC FIELD TRANSFER TO FLEXIBLE DISK

Patent Number:

JP63183623

Publication date:

1988-07-29

Inventor(s):

TAKAHASHI KAZUO

Applicant(s):

SONY CORP

Requested Patent:

JP63183623

Application Number: JP19870013608 19870123

Priority Number(s):

IPC Classification: G11B5/86

EC Classification:

Equivalents:

Abstract

PURPOSE:To permit mass reproduction in a short period by superposing a central arbor of a slave disk consisting of a flexible disk on a mother disk consisting of a magnetic disk having a recess of the diameter larger than the diameter of the arbor and impressing a bias magnetic field to magnetic layers while said layers are held in contact with each other.

CONSTITUTION: The slave disk 1 constituting a floppy disk which is an object to be transferred is formed of a flexible substrate 4 such as polyester and the arbor 3 is formed to the central part thereof. The magnetic layers 5 consisting of Co-gamma-Fe2O3 or the like are formed on one or both faces of the substrate 4. On the other hand, a rigid disk-shaped substrate 6 is used to the mother disk 2 for transfer and the magnetic layer 7 is provided on one face thereof, further, a recess or through-hole of the large diameter for housing the arbor 3 is provided to the central part thereof. The arbor 3 is thereafter fitted into the through-hole 8 and is tightened by an upper shaft 10A and a lower shaft 10B. The bias magnetic field is impressed to the magnetic layers 5 and 7 by electromagnets 17A and 17B sandwiching said layers to transfer the record of the disk 2 to the disk 1.

Data supplied from the esp@cenet database - 12

Japanese Unexamined Patenc Publication No. 63(1988)-183623

⑨日本国特許庁(JP)

① 特許出願公開

⑫ 公 開 特 許 公 報 (A)

昭63-183623

(3)Int Cl.4

識別記号

厅内整理番号

匈公開 昭和63年(1988)7月29日

G 11 B 5/86

101

B-7220-5K C-7220-5K

審査請求 未請求 発明の数 1 (全4頁)

49発明の名称

可撓性ディスクへの接触磁界転写方法

②特 願 昭62-13608

20出 願 昭62(1987)1月23日

迎発 明 者 高 橋

和夫

東京都品川区北品川6丁目7番35号 ソニー株式会社内

⑪出 願 人 ソニー株式会社

東京都品川区北品川6丁目7番35号

郊代 理 人 弁理士 伊藤 貞 外1名

明 細 曹

発明の名称

可提性ディスクへの接触磁界転写 方法

特許請求の範囲

中心に心金を有する可視性磁気ディスクよりな るスレーブディスクと、

上記心金よりも大なる径の凹部又は透孔を有する剛性磁気ディスクよりなるマザーディスクとを 共通の軸に保持して互いの磁性層を互いに接触 させた状態でパイアス磁界を印加することを特徴 とする可提性ディスクへの接触磁界転写方法。

発明の詳細な説明

[産業上の利用分野]

本発明は、可提性ディスク (所謂フロッピーディスク) の複製に係わるもので、特に可提性ディスクへの接触磁界転写方法に関する。

(発明の概要)

本発明は、可提性ディスクへの接触磁界転写方 法であって、中心に心金を有する可提性磁気ディ スクよりなるスレープディスクと、心金より大なる径の凹部又は透孔を育する剛性磁気ディスクよりなるマザーディスクとを共通の軸に保持して互いの磁性層を互いに接触させた状態でバイアス磁界を印加することによって、精度良く、且つ大量、安価に可視性ディスクの複製を行えるようにしたものである。

(従来の技術)

フロッピーディスクの複製、即ち例えば一般的なソフトの入っているフロッピーディスクのコピー又はトラッキング用のサーボ信号を予め記録 (プリフォーマット) する際には、磁気ヘッドにより記録している。

フロッピーディスクでは、3.5 インチフロッピーディスクのように中心に心金を有するものも提案されており、この場合も同様に磁気ヘッドにより複製される。

(発明が解決しようとする問題点)

ところで、磁気ヘッドによる複製の場合には次 のような問題点があった。

(i) 時間がかかりコスト高になる。(ii) 駆動 側のヘッド位置決精度で、その駆動特有の又はそ の時々のトラック位置誤差が大きい(現ドライブ ヘッド位置精度は±5μα~±20μα程度である)。 互いに位置ずれすることなく密着されて保持され (iii) 精度のよい効果なプリフォーマットするた めのフォーマッタを多数作る必要があり、メンテ ナンスも大変となる。

本発明は、上述の点に鑑み、精度良く、且つ大 置に安価に複製できるようにした可撓性ディスク への接触磁界転写方法を提供するものである。

(問題点を解決するための手段)

本発明は、中心に心金(3)を有する可撓性磁気デ ィスクよりなるスレープディスク(1)と、心金(3)よ りも大なる径の凹部又は透孔(8)を有する剛性磁気 ディスクよりなるマザーディスク②とを、共通の 軸 (10) に保持して互いの磁性層を互いに接触さ せた状態でパイアス磁界を印加して複製する。

材) (4)の両面又は片面、本例では両面に磁性層(5) が形成されて成る。 磁性層(5)はCo-r-Fe20 a や Baフェライトをパインダーとともに強布してなる もの、或いはCo, Co-Ni, Co-Cr等よりなる金属 磁性薄膜を蒸着又はスパッター等により形成して なるものを用い得る。

マザーディスク(2)は剛性のディスク状基体(6)の 一面に磁性層(1)を設けて成る所謂ハードディスク にて構成される。剛性の基体(6)は非磁性、非導電 体(バイアス磁界甲加時の発熱を避けるために非 導電体をとる)であり、かつ寸法安定性が要求さ れるため、非磁性のセラミック、ポリエーテルイ シド等の樹脂により形成される。マザーディスク (2)の磁性層(7)は、被転写体の可提性磁気ディスク の有する抗磁力Hc、残留磁束密度Br夫々の2.5 ~ 3 倍程度の抗磁力 Hc、残留磁束密度 Brが要求され るが、これはFe系の金属磁性粉をエポキシ樹脂等 のバインダーと共に塗布し焼きつけ硬化させるこ と、あるいはCoを主体とする金属磁性薄膜を蒸着 あるいはスパッタすることにより形成される。基

(作用)

マザーディスク(2)が所謂ハードディスク化され 且つその中心にスレーブディスク(1)の心金(3)より 大きい径の凹部又は透孔側が設けられることによ って、マザーディスク(2)とスレープディスク(1)は る。このため、トラックずれすることなく精度の よい所謂フロッピーディスクの複製が得られる。 しかも、接触による磁界転写法を行って複製する ため、短時間で大量の複製が可能である。

(実施例)

以下、第1図を参照して本発明による可提性デ ィスクへの接触磁界転写方法の実施例を説明する。 第1図において、(1)は被転写体すなわち可提性 磁気ディスク (フロッピーディスク) よりなるス レープディスク、(2) ((2A) 及び (2B)) は転写 すべき信号又は情報が記録されたマザーディスク を示す。スレーブディスク(1)は、中心に心金(3)を 有し可提性基材(例えばポリエステル樹脂等の基

体(6)の中心にはスレープディスク(1)の心金(3)より も大径の凹部もしくは透孔本例では透孔(8)が形成 されるとともに、必要に応じて後述の軸(10)と 嵌合する嵌合凸部又は嵌合凹部(9)を有してもよい (第3四参照)。

そして、スレーブディスク⑴の両面に互いの磁 性層(5)及び(7)を接触するようにしてマザーディス ク (2A), (2B) を配した状態でスレープディス .ク(1)、両マザーディスク (2A) (2B) が共通の軸 (10) に保持される。軸 (10) は互いに一体化さ れる上軸 (10A) と下軸 (10B) とから成る。下 軸 (108) の中央にはスレープディスク(1)の心金 (3)の中心孔 (3a) に嵌合する軸体 (11) が設けら. れ、上軸 (10A) 側にはこの軸体 (11) と係合す る係合部 (12) が設けられている。又、上軸 (10A) 及び下軸 (10B) に夫々マザーディスク (2A) 及 び (28) の夫々の透孔(8)、(8)に嵌合する嵌合部 (13a) , (13b) が設けられると共に、スレー プディスク(1)を両側から挟んだ状態のマザーディ スク (2A) , (2B) を押圧するための押圧部 (14a) , (14b) が設けられる。

共通の軸(10)に保持された状態で、スレープ。 ディスク(1)はその心金(3)の中心孔 (3a) に軸体 (11) が嵌合され、またマザーディスク (2A) · (2B) は夫々上軸 (10A) 及び下軸 (10B) の嵌 合郎 (13a) 及び (13b) に嵌合されることによ り、スレープディスク(I)とマザビディスク (2A) , (28) との中心は正確に合う。この状態でマザー ディスク(2)の上下にコア (15) にコイル (16) を 券装した磁界印加用の電磁石 (17A), (17B) を配し、この電極石 (17A) 及び (17B) よりバ ィアス磁界を印加しながら上下軸 (10A) , (10B) スクに用いた場合にはマザーディスク自体の中心 と共にスレープディスク(1)及びマザーディスク(2) を一体に回転させて磁気転写を行うようになす。 このパイアス磁界は例えば50llz、1000 0e 程度で

かかる接触磁界転写法により、スレープディス ク(1)の両面の磁性層(5)に同時に所定の信号(例え ばトラッキング用サーポ信号)、あるいは情報が 磁気転写され、フロッピーディスクの複製が大量 に、早く行える。特に、マザーディスク(2)を所謂 ハードディスク化し、その中心にスレープディス ク(1)の心金(3)より大きい凹部又は透孔(8)を形成す るこにより、中心ずれ、或いは心金の高さ等によ るトラックずれは生ぜず精度よく複製できる。因 みに、スレーディスク(1)と同じ構成の心金(3)を有 するフロッピーディスクをマザーディスクに用い た場合には心金(3)の高さによりスレープディスク にマザーディスクを密着させようとするとマザー ディスクが変形し、トラックずれが大きくなる。 又、心金のないフロッピーディスクをマザーディ ずれ (トラックずれ) が大きくなる。しかし、本 発明によればそのような心配はなくなる。

また数少ないハードディスクによるマザーディ スク作成機のトラック位置精度さえ管理すれば、 棋差の少ない複製されたフロッピーディスクを供 給することができる。

また心金(3)を有した状態で複製ができるので、 パニシング及びミッシングパルス等の検査が終わ

ったフロッピーディスクを複製することができる。 又はその逆も可能である。

特に本発明は現在の心金を有する3.5 インチフ ロッピーディスクの複製に適用して好適である。

尚、上側では上下軸 (10A) · (10B) 、スレ ープディスク(I)、マザーディスク(2)を回転するよ うにしたが、その他、第2図に示すようにドーナ ツ状のコア (18) のまわりにコイル (19) を急装 した電磁石 (20A) . (20B) を用いて磁気転写 を行うようにしてもよい。

又、上側では両面用のスレーブディスクに適用 したが、片面用のスレープディスクの場合には一一 面側をマザーディスクとし、他面側を受け板とし てスレーブディスクを挟み加圧して転写磁界を印 加するようになせばよい。

(発明の効果)

本発明によれば、中心に心金を有する可提性磁 気ディスクよりなるスレープディスクと、心金よ りも大なる径の凹部又は透孔を有する剛性磁気デ

ィクスよりなるマザーディスクを共通軸に保持し て互いの磁性層を互いに接触させた状態でバイア ス磁界を印加して転写することにより、精度良く、 且つ大量に安価に可提性磁気ディスクの複製を行 うことができる。

図面の簡単な説明

第1回は本発明の接触磁界転写方法の一例を示 す構成図、第2図は本発明の接触磁界転写方法の 他の例を示す構成図、第3図はマザーディスクの 例を示す斜視図である。

(1)は可提性磁気ディスクよりなるスレープディ スク、(2) 〔(2A), (2B)) は剛性の磁気ディス クよりなるマザーディスク、 (10) は共通の軸、 (17A), (17B), (20A), (20B) は電磁 石である。

> 代 理 人 ដ

> > 松陽秀盛

マサーディスクの斜視図 第 3 図