Research Presentation Translating Naive Bayes

Patrick Martin

February 12, 2018

Motivation 1

- Imagine we've got a lot of documents, only some of which are interesting
- But we don't know which ones!
- We can have a human look at them, but there are really too many documents to look at all of them
- Can we learn what documents are interesting under these constraints?
- Current answer: kinda

Motivation 1

- Imagine we've got a lot of documents, only some of which are interesting
- But we don't know which ones!
- We can have a human look at them, but there are really too many documents to look at all of them
- Can we learn what documents are interesting under these constraints?
- Current answer: kinda

The Data

- Reddit comments from January March 2017 from Frenchand Spanish-speaking subreddits
- Our metric of "interesting" will be "controversiality"

	Spanish	French
# Comments	163,057	207,348
# Controversial	5,243	9,449

Bootstrapping

- Pick 5,000 comments at random, determine which are controversial
- Train classifiers on those comments, Naive Bayes (NB) and Logistic Regression (LR)
- Take the classifier that does the best, and run it over all the documents
- Pick the 5,000 documents deemed by the classifier to be most controversial, excluding any previously seen ones
- Repeat

Results - Spanish

				F-score	
	# Docs	# Yes (repeats)	# Yes (total)	NB	LR
Init	5000	172 (3.4%)	172	0	0.087
Round 1	5000	399 (8.0%)	437 (+265)	0	0.077
Round 2	5000	574 (11.5%)	683 (+246)	0	0.16
Round 3	5000	710 (14.2%)	928 (+245)	0	0.097

Results - French

				F-score	
	# Docs	# Yes (repeats)	# Yes (total)	NB	LR
Init	5000	216 (4.3%)	216	0	0.10
Round 1	5000	571 (11.4%)	621 (+405)	0.017	0.12
Round 2	5000	883 (17.7%)	1034 (+413)	0	0.17
Round 3	5000	1124 (22.5%)	1432 (+398)	0.007	0.16

Naive Bayes

- The signal is too sparse for Naive Bayes to positively identify anything
- If we restrict the training data to be 33% controversial messages, will that help?
- Turns out, yes

Results - Spanish

				F-score		
		# Docs	# Yes (repeats)	# Yes (total)	NB	LR
	Init	5000	173 (3.5%)	173	0.16	0.30
	R1	5000	381 (7.6%)	429 (+256)	0.36	0.43
İ	R2	5000	553 (11.1%)	702 (+273)	0.31	0.40
İ	R3	5000	724 (14.5%)	1000 (+298)	0.38	0.47

Results - French

				F-score	
	# Docs	# Yes (repeats)	# Yes (total)	NB	LR
Init	5000	243 (4.9%)	243	0.42	0.49
R1	5000	533 (10.7%)	637 (+394)	0.35	0.44
R2	5000	828 (16.6%)	1095 (+458)	0.36	0.44
R3	5000	1041 (20.8%)	1523 (+428)	0.38	0.44

Conclusion 1

 Restricting the training data does help Naive Bayes get on the scoreboard, but Logistic Regression still wins out

Motivation 2

- Now imagine we've got a fairly good classifier on the Spanish comments, but we don't have anything for the French
- Can we somehow translate our Spanish classifier to French?

The Plan

- Assume our good classifier is Naive Bayes with word tokenization
 - Ours will be about 30% accurate
- Take 500 words that strongly indicate either 'yes' or 'no' to controversiality in this classifier
 250 from each side
- Translate those words to French Google Translate for now...
- Build a new classifier from these words <— This is the hard part
- Evaluate the quality

The Most Controversial Words

Spanish	English	French
allende	Allende	allende
retorno	return	revenir
pib	?	pib
ingrediente	ingredient	ingrédient
imbecil	imbecile	imbécile
:	:	:
03	03	03
data	data	données
vayas	go	aller
súper	super	super
sorry	sorry	désolé

Building a Classifier

- Naive Bayes needs to know p(word|class) for each word.
- For the words we translated, this is pretty easy
 Just average the probabilities if the same word shows up
 multiple times
- But we can't make a classifier with only 500 words

Inferring Probabilities

- As mentioned before, this is the potentially interesting part
- First attempt will be to get word similarities from Word2Vec on all the French comments, and

$$p(class|word) \propto \sum_{w \in N_K(word)} p(class|w)sim(word, w)$$

where $N_k(word)$ represents the k-nearest "anchor" words

- For now, k = 5
- Use this to estimate probabilities for all words that occur at least 100 times (8,554)

Result - Translated Model

					F-score	
ĺ		# Docs	# Yes (repeats)	# Yes (total)	NB	LR
ľ	Init	5000	213 (4.3%)	213	0	0.05
	R1	5000	537 (10.7%)	599 (+386)	0.03	0.09
	R2	5000	803 (16.1%)	979 (+380)	0	0.14
	R3	5000	1069 (21.4%)	1383 (+404)	0.008	0.17

Initial Conclusions and Next Steps

- It doesn't not work
- Could improve translations:
 - Including the unaccented form of words when translating
 - Preserving English and other foreign words
- Could improve inference
 - Different corpus for Word2Vec?
 - Different formula for inference