Les asymptotes

Si $\lim_{x \to a\pm} f(x) = \pm \infty$ alors la droite d'équation x = a est asymptote à la courbe Cf.

a)Si $\lim_{x \to \pm \infty} f(x) = l$ (l réel fini) alors la droite D d'équation y = l est asymptote

b) Pour étudier la position relative entre l'asymptote D et la courbe $Cf\,,$

il suffit d'étudier le signe de f(x)-l:

-Si pour tout x d'un intervalle I, f(x)-1 > 0 alors Cf est au dessus de D sur I.

- Si pour tout x d'un intervalle I, f(x)-1 < 0 alors Cf est en dessous de D sur I.

a)Si $\lim_{x\to\pm\infty} (f(x) - (ax + b)) = 0$ alors la droite D d'équation y = ax + b est asymptote oblique à la courbe Cf.

b)Pour étudier la position relative entre l'asymptote D et la courbe Cf,

il suffit d'étudier le signe de f(x)—(ax+b):

-Si pour tout x d'un intervalle I, f(x)—(ax+b) > 0 alors Cf est au dessus de D sur I.

-Si pour tout x d'un intervalle I, f(x) – (ax+b) < 0 alors Cf est en dessous de D sur I

Les Branches

Si
$$\lim_{x \to \pm \infty} f(x) = \pm \infty$$
 et $\lim_{x \to \pm \infty} \frac{f(x)}{x} = \pm \infty$ alors la courbe Cf, admet au voisinage de

 $(\pm \infty)$ une branche parabolique de direction l'axe des ordonnées

Si
$$\lim_{x \to \pm \infty} f(x) = \pm \infty$$
 et $\lim_{x \to \pm \infty} \frac{f(x)}{x} = 0$ alors la courbe Cf, admet au voisinage de($\pm \infty$) une branche

parabolique de direction l'axe des abscisses

Tableau récapitulatif des opérations sur les fonctions dérivables :

Fonction	Fonction dérivée
f+g	f '+g'
αf	$\alpha f'$
fg	f 'g+fg'
f^2	2f 'f
f^n	$nf'f^{n-1}$
1	-f'
\overline{f}	$\overline{f^2}$
<u>f</u>	$\underline{f'g-fg'}$
g	g^2
\sqrt{f}	<u>f'</u>
	$2\sqrt{f}$
f(ax+b)	<i>af</i> '(<i>a</i> x+ <i>b</i>)
Cos(ax+b)	-asin ax+6)
sin ax+b)	acos (aχ+b)
tan x	$1+(tanx)^2$