(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-205923 (P2003-205923A)

(43)公開日 平成15年7月22日(2003.7.22)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考)

B 6 5 C 9/32

B 6 5 C 9/32

3E095

審査請求 未請求 請求項の数7 OL (全 8 頁)

(21)出願番号 特願2002-7597(P2002-7597)

(22)出願日 平成14年1月16日(2002.1.16) (71)出願人 599056437

スリーエム イノベイティブ プロパティ

ズ カンパニー

アメリカ合衆国、ミネソタ 55144-1000、

セント ポール, スリーエム センター

(72)発明者 藤原 大輔

静岡県駿東郡小山町棚頭323 住友スリー

エム株式会社内

(74)代理人 100077517

弁理士 石田 敬 (外4名)

Fターム(参考) 3E095 AA06 BA03 CA05 DA22 DA45

DA48 FA12 FA18

(54) 【発明の名称】 粘着テープの貼付治具

(57)【要約】

【課題】 途中で幅広となる粘着テープを被着体に安定 かつ確実に、連続して貼付することができる粘着テープ の貼付治具を提供すること。

【解決手段】 貼付治具に粘着テープを受け入れかつ保 持するテープ保持部と、テープ保持部から案内されてき た粘着テープを被着体のテープ被着面に圧着して貼付す るテープ貼付部と、貼付治具を被着体に沿って連続して 案内する治具ガイド部とを組み合わせて含んでなるとと もに、テープ保持部、テープ貼付部及び冶具ガイド部 が、それぞれ、可動機構をさらに有しているように構成 する。

1

【特許請求の範囲】

【請求項1】 長尺の被着体にその被着体の形状及び (又は)サイズに合わせて粘着テープを連続して貼付す るための貼付治具であって、

該貼付治具に前記粘着テープを受け入れかつ保持するテ ープ保持部と、

前記テープ保持部から案内されてきた粘着テープを前記 被着体のテープ被着面に圧着して貼付するテープ貼付部 と、

前記貼付治具を前記被着体に沿って連続して案内する治 10 具ガイド部とを組み合わせて含んでなるとともに、 前記テープ保持部、前記テープ貼付部及び前記冶具ガイ ド部が、それぞれ、可動機構をさらに有していることを

【請求項2】 前記テープ保持部の可動機構と前記テー プ貼付部の可動機構が共通していることを特徴とする請 求項1に記載の粘着テープの貼付治具。

特徴とする粘着テープの貼付治具。

【請求項3】 前記テープ貼付部が、該テープ貼付部と 前記被着体との位置関係を調整可能な可動機構をさらに 有していることを特徴とする請求項1又は2に記載の粘 20 着テープの貼付治具。

【請求項4】 前記可動機構が、付勢手段を備えたスラ イド機構からなることを特徴とする請求項1~3のいず れか1項に記載の粘着テープの貼付治具。

【請求項5】 前記テープ貼付部が、円筒形部材からな る少なくとも1個の貼付ヘッドを有することを特徴とす る請求項1~4のいずれか1項に記載の粘着テープの貼 付治具。

【請求項6】 前記被着体が、長手方向に延在するとと もに、その途中でテープ貼付面の形状及び(又は)サイ ズが変動した長尺の被着体であることを特徴とする請求 項1~5のいずれか1項に記載の粘着テープの貼付治 具。

【請求項7】 自動車のサッシュフレーム等に粘着フィ ルムを貼付する際に使用されることを特徴とする請求項 1~6のいずれか1項に記載の粘着テープの貼付治具。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、粘着テープの貼付 治具に関し、さらに詳しく述べると、被着体に粘着テー 40 プを貼付する際に、被着体や粘着テープに形状変化等が あっても、それに見合った粘着テープを連続して安定に 貼付可能な粘着テープの貼付治具に関する。

[0002]

【従来の技術】従来、自動車のサッシュフレームのよう な被着体に粘着テープを貼り付ける場合、貼付作業の効 率化のために貼付治具を使用して行うのが一般的であ る。これは、被着体の所定の部位に粘着テープを、皺が よらないようにまたエア噛みが発生しないように注意し ながら手作業で圧着し貼付したのでは、テープの貼付作 50 シフトさせうる可動機構、好ましくは緩衝作用をもった

業に手間、時間、そして熟練度を必要とするからであ

【0003】現在一般的に使用されている粘着テープの 貼付治具の多くは、粘着テープを被着体に貼付するため のテープ貼付部と、被着体と貼付治具の距離及び位置を 一定に保つための冶具ガイド部と、粘着テープを保持 し、テープ貼付部に送り込むためのテープ保持部とをも って構成されている。

【0004】ところで、被着体に粘着テープを貼付する 場合、被着体の端部に貼付治具を取り付けてその位置か ら粘着テープを貼り始めるが、貼付治具の冶具ガイド部 とテープ貼付部をその都度使用する被着体に合わせて特 定の位置関係で配置することが難しいという問題があ る。また、貼付作業を開始してまもなく、被着体に大き な湾曲部や屈曲部があると、そのまま継続して粘着テー プを貼り続けることが困難である。貼付作業の途中で貼 付治具を取り外したり取り付けたりする作業は煩雑であ り、また、作業工数への負担となる。この問題を解決す るために、貼付冶具にガイド装置を併用して貼付作業を 円滑にすることも考えられるが、貼付作業がより煩雑に なり、ガイド装置使用の熟練度も必要になってくる。

【0005】さらに、被着体のテープ貼付面に大きな変 化があっても、貼付治具の使用に問題が発生する。すな わち、例えば被着体の幅が大きく変化したような場合、 テープ貼付時の圧着むらが生じて、エア噛みやしわの発 生などの貼付不良が発生したり、貼付治具の進行そのも のが妨げられたりすることがある。

【0006】さらにまた、粘着テープの幅に大きな変化 があったような場合には、貼付治具のテープ保持部が予 め定められたテープ保持幅で設定されているので、貼付 治具を一旦取り外し、幅広部分の貼付を手作業で行う必 要がある。

[0007]

【発明が解決しようとする課題】本発明の目的は、長尺 でその途中に湾曲部や屈曲部があるような被着体あるい はテープ貼付面の途中に幅広部分があるような被着体に 粘着テープを貼付する際に、作業者の熟練度によらずに 手早く、安定かつ確実に貼付作業を行うことができ、そ の貼付作業の途中で、貼付治具を被着体から取り外して 手作業で作業を行ったりガイド装置を併用したりする必 要がない、粘着テープの連続的な貼付のための改良され た貼付治具を提供することにある。

【0008】

【課題を解決するための手段】本発明者は、上述のよう な問題点を解決するために鋭意研究した結果、テープ保 持部と、テープ貼付部と、冶具ガイド部とをもって構成 される粘着テープの貼付治具において、テープ保持部、 テープ貼付部及び冶具ガイド部のそれぞれに、被着体や 粘着テープの形状、サイズ等の変化に応じて部材位置を

40

4

3 付勢手段を備えたスライド機構を取り付けるのが有効で あるという知見を得、本発明を完成するに至った。

【0009】したがって、本発明は、長尺の被着体にその被着体の形状及び(又は)サイズに合わせて粘着テープを連続して貼付するための貼付治具であって、該貼付治具に前記粘着テープを受け入れかつ保持するテープ保持部と、前記テープ保持部から案内されてきた粘着テープを前記被着体のテープ被着面に圧着して貼付するテープ貼付部と、前記貼付治具を前記被着体に沿って連続して案内する治具ガイド部とを組み合わせて含んでなるとともに、前記テープ保持部、前記テープ貼付部及び前記治具ガイド部が、それぞれ、可動機構をさらに有していることを特徴とする粘着テープの貼付治具にある。

【0010】本発明の貼付治具において、テープ保持部に含まれる可動機構は、粘着テープのサイズの変化に応じてテープ保持部のテープ受け入れ/保持幅を変更する働きなどを奏することができ、テープ貼付部に含まれる可動機構は、被着体の形状及び(又は)サイズの変化に応じてテープ貼付ヘッドのテープ貼付幅を変更する働きなどを奏することができ、また、治具ガイド部に含まれ 20る可動機構は、被着体の形状及び(又は)サイズの変化に応じて貼付治具を被着体に沿って安定に案内する働きなどを奏することができる。

[0011]

【発明の実施の形態】本発明による粘着テープの貼付治 具は、少なくとも、貼付治具に粘着テープを受け入れか つ保持するテープ保持部と、テープ保持部から案内され てきた粘着テープを被着体のテープ被着面に圧着して貼 付するテープ貼付部と、貼付治具を前記被着体に沿って 連続して案内する治具ガイド部とを、任意に組み合わせ 30 て、構成員として有している。また、これらの構成員 は、相互に組み合わせるため、通常、支持フレームや支 持ブロックなどによって支持されている。

【0012】本発明の貼付治具では、粘着テープを被着体のテープ貼付面に押し付け、さらには強固に圧着するため、テープ貼付部が設けられる。テープ貼付部は、貼付治具の分野において一般的に採用されているいろいろな形態を有することができるけれども、好ましくは、テープ貼付ヘッドの形態である。テープ貼付ヘッドによって、被着体のテープ貼付部位に粘着テープを位置決めし、押し付け、そして確実に圧着することができる。テープ貼付ヘッドは、通常、適当な支持フレームに取り付けた形で用いられる。

【0013】テープ貼付ヘッドは、いろいろな形状、サイズ及び材料から形成することができる。例えば、テープ貼付ヘッドは円筒形部材や平板形部材などから構成することができる。特に円筒形部材は、被着体の上を回転可能に構成することができるので、高められた圧着効果を得ることができ、有利である。また、円筒形部材の1変形例として、上下の面が偏平な円筒形部材を使用して50

もよい。さらに、テープ貼付ヘッドのサイズは、貼付治 具の構成や各構成員のサイズなどに応じて任意に変更可 能である。

【0014】テープ貼付ヘッドは、被着体のテープ貼付 部位の上を摺動しつつそのテープ貼付部位に対して粘着 テープを順次押し付け、好ましくは徐々に押圧力を高め ながら押し付け、最終的にはテープ貼付部位に対して粘 着テープを密着させて貼付することを可能となすため、 少なくともその表面部分を、粘着テープの滑動促進層及 び緩衝層としての機能を有する表層から構成することが 好ましい。適当な表層材料としては、弾性材料、例え ば、天然及び合成ゴム、発泡プラスチック材料、例えば 発泡ポリウレタン、各種のフェルト材料などを挙げるこ とができる。また、弾性材料の表面に、強度の付与など のために薄いスキン層が被覆されていてもよい。さら に、このようなテープ貼付ヘッドの芯材は、例えば、金 属材料、プラスチック材料などからなる。軽量化や加工 性の面から、プラスチック材料を有利に使用することが できる。

0 【0015】また、テープ貼付部で用いられるテープ貼付へッドの数は、任意である。テープ貼付へッドの数は、通常1個で十分であるが、必要ならば、2個もしくはそれ以上であってもよい。複数個のテープ貼付へッドを使用する場合には、それぞれの貼付へッドは、同一であっても、異なっていてもよい。異なる種類の貼付へッドを組み合わせて使用することによって、より大きなテープ圧着効果を得ることができるであろう。

【0016】本発明の粘着テープの貼付治具では、そのテープ貼付部がさらに可動機構を有していることが特徴である。可動機構は、いろいろな構成を有することができるが、通常、スライド機構であるのが治具の構成などの面から有利であり、また、それに付勢手段を備えるのがさらに有利である。付勢手段としては、例えばバネ、スプリングなどを挙げることができる。本発明の実施で最も有利な可動機構は、シャフトと、それを囲うようにして取り付けられたバネやスプリングなどとからなる。このような可動機構をテープ貼付部に取り付けることによって、被着体の形状及び(又は)サイズの変化に応じてテープ貼付へッドのテープ貼付幅を任意に変更することができ、安定して連続的な貼付作業を行うことができる

【0017】テープ貼付部はまた、上述のような可動機構(以下、「第1の可動機構」と呼ぶ)に追加して、第2の可動機構を有していてもよい。この第2の可動機構は、粘着テープの被着体に対する圧着作用を適正にコントロールすることを意図している。すなわち、第2の可動機構を通じて、テープ貼付部と被着体との位置関係を適正に調整し、粘着テープの安定かつ強固な固着を達成することができる。

【0018】第2の可動機構も、第1の可動機構と同様

共通とした場合、構造の簡素化や製造コストの低減を図 ることができる。

6

に、例えばスプリングなどの付勢手段を備えたスライド 機構から有利に形成することができる。これらの可動機 構は、例えば、テープ貼付ヘッドを支持するシャフトや ブロックの治具の作用に直接的に関与しない部分に開口 等の空きスペースを設け、そこに取り付けることなど が、省スペースの面から有利である。

【0019】本発明の粘着テープの貼付治具では、上述 のテープ貼付部に粘着テープを送り込むため、テープ保 持部が備えられる。テープ保持部を設けることによって テープ保持部とテープ貼付部の間に一定間隔の、通常は 10 スリット状のテープ案内空間が形成され、粘着テープを テープ貼付部へ順次送り込む作業が容易になるばかり か、外部から粘着テープを安定に受け入れかつ保持する ことができる。実際に、このようなテープ案内空間があ ると、粘着テープを所定の張力で、ブラツキや走行路か らの離脱を伴わないで、確実にテープ貼付部へ走行させ ることができる。

【0020】テープ保持部は、通常、テープ案内空間の 形成に必要な複数個のテープ保持部材でもって構成され る。テープ保持部材は、通常、その主たる面が粘着テー 20 プの走行面にほぼ平行に延在するように、テープ貼付部 の支持フレームあるいはその他の支持フレームなどに固 定して、あるいは回動可能に又は開閉可能に、取り付け

【0021】テープ保持部材は、それが粘着テープの走 行に悪影響を及ぼさない限り、任意の形状、サイズ及び 材料で形成することができる。例えば、テープ保持部材 の形状は、細い円柱状又は角柱状のロッド、細長い又は 幅広いプレートなどであることができる。必要ならば、 より一層のテープ案内効果を得るため、テープガイドブ ロックなどを併用してもよい。また、テープ保持部材の サイズは、粘着テープのサイズなどに応じて任意に変更 することができる。テープ保持部材は、金属材料、プラ スチック材料などから形成することができるが、プラス チック材料の成形品が有用である。

【0022】本発明の粘着テープの貼付治具では、その テープ保持部がさらに可動機構を有していることが特徴 である。可動機構は、前記したテープ貼付部の場合と同 様、いろいろな構成を有することができる。可動機構 は、通常、スライド機構であるのが治具の構成などの面 40 から有利であり、また、それに付勢手段を備えるのがさ らに有利である。付勢手段としては、例えばバネ、スプ リングなどを挙げることができる。本発明の実施で最も 有利な可動機構は、シャフトと、それを囲うようにして 取り付けられたバネやスプリングなどとからなる。この ような可動機構をテープ保持部に取り付けることによっ て、粘着テープの形状やサイズ(幅)の変化に応じてテ ープ案内空間の大きさを任意に変更することができ、安 定したテープ送りと保持を達成することができる。な お、この可動機構は、テープ貼付部の第1の可動機構と 50 は軟質のプラスチック材料から回転ローラの形で形成す

【0023】テープ保持部は、また、特に貼付治具に対 する粘着テープの装着を容易かつ安定にし、あわせて走 行中の粘着テープの治具からの脱離を防止して安定な走 行を保証するため、構造上の改良を施すことが好まし い。例えば、ロッド状やプレート状のテープ保持部材の 末端部を自由端として構成するとともに、テープ貼付部 の対応部分とともにスリット状の開口、すなわち、粘着 テープの装着口を開けるのが好ましい。

【0024】本発明の粘着テープの貼付治具では、その 治具を被着体に沿って連続して案内するために治具ガイ ド部が備えられる。治具ガイド部は、被着体と貼付治具 の距離及び位置を一定に保って、粘着テープの貼付時、 被着体の形状に沿って治具の移動方向を一定にし、治具 の移動をスムーズにし、あわせてテープ貼付部の適正移 動を図るものであり、したがって、被着体の予め定めら れた位置に当接せしめられる。治具ガイド部は、好まし くは、テープ貼付部と組み合わさって被着体を挟持可能 である。

【0025】治具ガイド部は、任意に変更可能であると いうものの、通常、治具ガイドと、それを固定したかも しくは可動に取り付けた支持フレームあるいはそれに類 似の部材、例えば支持ブロックやホルダーなどとから構 成される。治具ガイドの形状、サイズ及び材料は、それ ぞれ、治具のスムーズな移動とテープ貼付部の適正移動 という所期の作用を達成し得る限りにおいて特に限定さ れるものではない。例えば治具ガイドは、ローラ、平板 などの任意の案内部材からなることができる。治具ガイ ドは、好ましくはガイドローラからなる。ガイドローラ は、1個だけからなっていてもよく、より良好な案内効 果を得るため、2個以上の互いに異なるガイドローラを 一緒に使用してもよい。なお、ガイドローラは、必要な らば、少なくとも2個の並置された回転ローラから構成 してもよい。治具ガイドのサイズは、治具全体とのバラ ンスによって任意に変更可能である。

【0026】治具ガイド部は、通常、その支持フレーム 等を治具本体に固定した状態で用いられるが、被着体に 対する治具の装着作業などが円滑に行えるように、ある いは貼付治具が被着体に対して適当な押圧力の下で当接 できるように、可動に取り付けることが推奨される。例 えば、支持フレーム等をその基部のヒンジなどで折り曲 げられるように構成するのが好ましい。また、その際、 適当な付勢手段(例えばスプリング)を併用することに よって、最適な押圧力を得ることができる。

【0027】治具ガイド部において、その治具ガイド は、各種の摺動性を具えた金属材料、プラスチック材料 などから成形等により回転ローラあるいはその他の適当 な形態に形成することができ、好ましくは、硬質もしく

ることができる。また、回転ローラは、本発明の範囲内 においていろいろな形態を有することができ、硬質もし くは軟質のプラスチック材料だけからなっていてもよ く、さもなければ、少なくとも表面部分が弾性材料から 形成された回転ローラからなっていてもよい。弾性材料 は、例えば、天然及び合成ゴム、発泡プラスチック材 料、例えば発泡ポリウレタン、各種のフェルト材料など

である。 【0028】本発明の貼付治具では、上述の治具ガイド (以下、「第1の治具ガイド」と呼ぶ)と組み合わせて 追加の治具ガイド(第2の治具ガイド)を使用してもよ い。第2の治具ガイドは、第1の治具ガイドの働きを補 助し、高める機能を有している。すわなち、第2の治具 ガイドを使用すると、被着体に対する貼付治具の位置を 一定にし、第1の治具ガイドとともに被着体を挟持し、 かつ治具を姿勢制御する作業をより効率よく行うことが できる。この第2の治具ガイドは、第1の治具ガイドと ともに被着体を挟持することができればいかなる形状及 びサイズを有していてもよいが、治具の小型化のため、 なるべくコンパクトに構成することが好ましい。基本的 20 には、この第2の治具ガイドも、前記した第1の治具ガ イドと同様な形状及びサイズを有することができる。第 2の治具ガイドは、好ましくは、プラスチック製の回転 ローラからなり、また、回転ローラは、1個だけで使用 してもよく、あるいは、2個もしくはそれ以上の同一も しくは異なる形状及びサイズの回転ローラを組み合わせ て使用してもよい。複数の回転ローラを使用する場合に は、それらのローラを並置して使用するのが好ましい。 【0029】本発明の粘着テープの貼付治具では、その 治具ガイド部がさらに可動機構を有していることが特徴 30 である。可動機構は、前記したテープ貼付部やテープ保 持部の場合と同様、いろいろな構成を有することができ る。可動機構は、通常、スライド機構であるのが治具の 構成などの面から有利であり、また、それに付勢手段を 備えるのがさらに有利である。付勢手段としては、例え ばバネ、スプリングなどを挙げることができる。本発明 の実施で最も有利な可動機構は、シャフトと、それを囲 うようにして取り付けられたバネやスプリングなどとか らなる。このような可動機構を治具ガイド部に取り付け ることによって、被着体の形状及び(又は)サイズの変 40 更に応じて貼付治具を、被着体に沿って安定に案内し、 よって、安定したテープ貼付作業を行うことができる。 【0030】本発明の貼付治具では、上記したように、 治具の構成員のそれぞれを通常支持部材、例えば支持フ レームや支持ブロックなどによって支承する。それぞれ の構成員は、専用の支持フレーム等によって支承しても よく、必要に応じて、共通の支持フレーム等によって支 承してもよい。また、2個もしくはそれ以上の支持フレ ーム等をボルト・ナット、接着剤等の接合手段を使用し て一体的に結合してもよい。支持フレーム等のサイズ及 50 発生することもなければ、貼付治具が動かなくなること

び形状は、治具の作業性及び取扱い性などを考慮して、 それに適したものであることが望ましい。支持フレーム 等に適当な材料は、金属材料、例えば鉄、アルミニウム 又はその合金類、プラスチック材料、例えばポリプロピ レン樹脂、ポリエチレン樹脂、ポリアセタール樹脂、A BS樹脂、ナイロン樹脂、含フッ素樹脂、アクリル樹脂 など、その他である。このような材料のなかで、特に適 当な材料は、長時間の作業にもその重量が負担とならな いような軽量なプラスチック材料である。なお、本発明 の貼付治具では、その取扱い性などを改善するために以 下に説明するように把持具を併用することが好ましい が、支持フレーム等に把持具としての機能を持たせても

8

【0031】本発明の貼付治具は、さらに把持具を備え ていることが好ましい。把持具により、粘着テープの貼 付作業や付勢手段の伸縮を容易に行うことができるから である。把持具は、通常、ノブやグリップのような形態 であるが、プレート状のプラスチック部材などを支持フ レーム等に取り付けて使用してもよい。

【0032】本発明の実施において、被着体及びそれに 貼付する粘着テープは、特に限定されるものではなく、 この技術分野において一般的に使用されているものを、 そのまま、さもなければ、なんらかの適当な改良又は変 更を施した後で使用することができる。例えば、被着体 は、自動車等の車両、建築物、その他の構造物や、機械 類、家庭電化製品等、広範囲の物品である。しかし、長 尺で途中に1個所もしくは複数個所の湾曲部、屈曲部な どや幅広部があるような物品を被着体として使用した時 に、あるいは途中に幅広部があるような粘着テープを使 用した時に、本発明の貼付治具の作用効果を良好に発揮 させることができる。上述のような特定形状の被着体と しては、例えば、自動車のドア部分のフレーム、いわゆ るドアサッシュなどを挙げることができる。また、粘着 テープは、紙、プラスチック材料等の任意の基材上に粘 着剤層、例えばアクリル系接着剤、エポキシ系接着剤、 ウレタン系接着剤、シリコーン系接着剤、フェノール系 接着剤、塩化ビニル系接着剤、ホットメルト型接着剤な どの層を施し、さらにその上に、粘着剤層の保護のため に離型紙を施したものである。粘着テープの形状は、ロ ール状、シート状、フィルム状などであり、また、その サイズも、幅の狭いものから広いものまで、広範囲であ る。また、必要に応じて、被着体の形状にあわせて予め 裁断してある粘着テープを使用してもよい。

【0033】本発明の貼付治具を使用して粘着テープの 貼付作業を実施すると、皺やエア噛みが発生することも なければ、貼付後の粘着テープをさらにスキージで押し 付ける等の追加の作業も不要である。また、貼付作業の 途中で被着体の形状や粘着テープの幅が大きく変化した ような場合でも、圧着むらの発生に原因する貼付不良が

1.0

もない。さらに、貼付作業の途中で治具を取り外し、手 作業の貼付作業に切り替えるといった不都合も回避でき る。

[0034]

【実施例】以下、添付の図面を参照しながら本発明によ る粘着テープの貼付治具の好ましい実施例を説明する。 なお、本発明の貼付治具は下記の実施例に限定されるも のではないことを理解されたい。

【0035】図1は、本発明による粘着テープの貼付治 具の好ましい1実施形態を示した斜視図であり、また、 図2は、図1に示した貼付治具の正面図である。さら に、図3は、図示の貼付治具における粘着テープの動き を判りやすく説明した、図2に示した貼付治具の線分II I-IIIにそった断面図である。

【0036】粘着テープの貼付治具50は、図示される ように、(1)貼付治具50に粘着テープを受け入れか つ保持するためのものであって、テープガイド11及び テープ案内ピン12などで構成されるテープ保持部と、 (2) テープ保持部から案内されてきた粘着テープを被 着体のテープ被着面に圧着して貼付するためのものであ 20 って、貼付ローラ9などで構成されるテープ貼付部と、

(3)貼付治具50を被着体に沿って連続して案内する ためのものであって、ガイドローラ6及び7などで構成 される治具ガイド部とを、コンパクトにまとめた形で組 み合わせて有しており、それぞれ、可動機構を有してい る。本例で使用されている可動機構は、以下で説明する ように、ステンレス鋼製のシャフトとスプリングとから なる。また、貼付治具50は、手持ち作業がし易いよう に、把持具としてのノブ13及びハンドル14を備えて いる。

【0037】テープ保持部は、それぞれアセタール樹脂 (POM) 製のテープガイド11及びテープ案内ピン1 2などで構成される。テープガイド11及びテープ案内 ピン12は、それぞれナイロン樹脂製の支持フレーム1 及び2にそれらのフレームを跨ぐようにして固定されて おり、図3に示すように、被着体45のテープ貼付面上 を貼付治具が矢印Aの方向に移動する間に、テープガイ ド11及びテープ案内ピン12などによって形成された テープ案内空間5の間を離型紙付きの粘着テープ40が 矢印方向に移動するように設計されている。離型紙付き の粘着テープ40は、被着体45に当接する前に粘着テ ープ41と離型紙42に分離せしめられ、粘着テープ4 1は、貼付ローラ9によって被着体45に圧着せしめら れる。

【0038】テープ保持部は、テープ案内空間5の規定 のため、支持フレーム2及びアセタール樹脂製のテープ ガイドブロック23も利用している。ここで、テープガ イドブロック23は、2本のテープガイド11及びガイ ドシャフト24上をスライド可能に取り付けられている ので、テープ案内ピン12に取り付けられた、付勢手段 50 テープ41をセットする。これは、テープガイド11と

として機能するスプリング26の働きと相まって、粘着 テープの幅に合わせてテープ案内空間5の幅を適正に調 整することができる。また、このテープガイドブロック 23は、以下に説明するように、貼付ローラ9の幅を粘 着テープや被着体の幅に合わせて適正に調整する働きも 有している。

【0039】テープ貼付部は、支持フレーム1及び2に 固定された貼付ローラ9を中心に構成される。貼付ロー ラ9は円筒形であり、その表面には貼付作業の円滑な実 施のために弾性ゴムが被覆されている。貼付ローラ9の 一端は支持フレーム2に接しており、その他端は、ガイ ドシャフト24上をスライド可能に取り付けられテープ ガイドブロック23に接している。テープガイドブロッ ク23は粘着テープや被着体の幅に合わせて可動である ので、それらの形状変化に合わせて安定した貼付作業を 行うことができる。

【0040】治具ガイド部は、ステンレス鋼製のガイド シャフト4を介してナイロン樹脂製のガイドホルダー3 に取り付けられたガイドローラ6及び7などで構成され る。ガイドシャフト4は、前後方向に移動可能であり、 また、ガイドシャフト4の周囲に案内溝及ぶ停止溝を掘 って、任意の位置で停止させることもできる。ガイドホ ルダー3は、ガイドローラ6及び7の部分をスプリング 31によって上方に移動可能であり、その移動操作のた め、ノブ13を利用できる。ガイドローラ6及び7の部 分を上方に移動できるので、被着体に対する貼付治具の 取り付けが容易に可能である。また、ノブ13は、ガイ ドシャフト4を前後方向に移動させる操作にも利用す る。なお、図示の例ではガイドローラ6及び7の部分を スプリング31によって上方に移動可能としているが、 スプリング31を省略して、単純に折り曲げ可能として もよい。

【0041】さらに、ガイドローラ6及び7には付勢機 構としてスプリング32が備わっているので、被着体の 形状変化に合わせて、被着体を適当な圧力で押し付けな がらガイドローラ6及び7を適正に移動させることがで きる。すなわち、スプリング32は、伸縮可能であり、 治具ガイド部とテープ貼付部の間の間隔を任意に調整可 能であるので、スプリング32を縮めて治具ガイド部と テープ貼付部の間の間隔を広げることで、治具ガイドと しての機能が発揮される。

【0042】図示の貼付治具50を使用して被着体45 に粘着テープ41を貼付する作業は、例えば、次のよう にして行うことができる。ここで、被着体45は、自動 車のサッシュフレームの部分であり、その途中に大きな 湾曲部と幅広部を有している。また、粘着テープ41 は、一般にブラックアウトと称されるもので、その粘着 剤層の保護のために離型紙42を有している。

【0043】まず、貼付治具50のテープ保持部に粘着

テープ案内ピン12の間に図3に示すように離型紙42付きの粘着テープ41を手作業で通すことによって行う。粘着テープ41の端部の押圧力によってテープガイドブロック23が押し動かされ、粘着テープ41の幅にあった適正サイズのテープ案内空間5が形成される。

【0044】次いで、テープ貼付部の貼付ローラ9及び 治具ガイド部のガイドローラ6及び7を所定の位置に配 置し、貼付治具50を被着体45にセットする。その 後、ガイドローラ6及び7を被着体45に当接させた状 態で、テープ貼付部の貼付ローラ9をスライドさせて、 テープ貼付位置まで移動させる。引き続いて、貼付治具 50を矢印Aの方向に移動させて、粘着テープ41から 離型紙42を剥離除去しながら、被着体45のテープ貼 付面に粘着テープ41を貼付する。貼付治具50におい て、そのガイドローラ6及び7が被着体45の側面にか つ貼付ローラ9が被着体45のテープ貼付面に押し付け られた状態にあるので、貼付治具50のスムーズな走行 と粘着テープ41の強い圧着とが同時に可能である。こ のような貼付作業は、被着体45の途中に屈曲部などが あったりそのテープ貼付面が大きく変化したりしても、 何らのトラブルもなく、連続的にかつ安定して実施する ことができる。

【0045】図4は、図1及び図2に示した貼付治具50にさらに、追加の可動機構を取り付けた例を示している。テープ貼付部の貼付ローラ9は、前記したように、スプリング26の伸縮作用によってテープガイドブロック23を移動させることができ、よって、被着体の形状及び(又は)サイズの変化に応じてテープ貼付幅を変更し、安定に貼付作業を行うことができるが、支持フレーム2及びテープガイドブロック23の所定の位置に追加の可動機構を取り付けることによって、上記した作用効果に追加して、被着体に対して貼付ローラ9を適当な圧力で押し付け、より安定な貼付作業を行うことができる。なお、図示の例で使用した可動機構は、ステンレス鋼製のシャフトとそれを囲んで取り付けられたスプリング33とからなる。

[0046]

【発明の効果】以上に説明したように、本発明の貼付治 具を使用すると、長尺でその途中に屈曲部や湾曲部など を有する被着体に対して各種の粘着テープを貼付するに 40 際し、複数個の貼付治具を用意しないでも、1個の共通 の貼付治具で対応することができるばかりでなく、屈曲 部などで貼付治具を取り外して手作業でテープの貼付を 行うというような煩雑な作業を行わないで済み、かつ貼

付治具を被着体に沿って連続して走行することができるので、手早く、容易にかつ安定して粘着テープの貼付を行うことができる。また、これらの効果は、被着体の形状や粘着テープの形状が大きく変化したような場合にも、同様に得ることができる。

12

【0047】また、本発明の貼付治具を使用すると、作業者の熟練度によらず、特に形状の変化に伴い粘着テープの貼付方向(角度)が変化した場合であっても、その変化した角度を問わず、しかも貼り剥がしを行わずに、 10 容易にかつ正確に粘着テープを貼付することができる。

【図面の簡単な説明】

【図1】本発明による粘着テープの貼付治具の好ましい 1実施形態を示した斜視図である。

【図2】図1に示した貼付治具の正面図である。

【図3】図2に示した貼付治具の線分III-IIIにそった 断面図であり、粘着テープの動きを模式的に示してい る。

【図4】図1及び図2に示した貼付治具の1変形例を示した正面図である。

20 【符号の説明】

1…支持フレーム

2…支持フレーム

3…ガイドホルダー

4…ガイドシャフト

5…テープ案内空間

6…ガイドローラ

7…ガイドローラ

8…シャフト

9…貼付ローラ

30 11…テープガイド

12…テープ案内ピン

13…ノブ

14…グリップ

23…テープガイドブロック

26…スプリング

31…スプリング

32…スプリング

33…スプリング

40…離型紙付き粘着テープ

10 41…粘着テープ

4 2…離型紙

45…被着体

50…貼付治具

