

TIZEN BASED REMOTE CONTROLLER CAR USING RASPBERRY PI2

Pintu Kumar (pintu.k@samsung.com, pintu_agarwal@yahoo.com)

Samsung Research India – Bangalore : Tizen Kernel/BSP Team

- INTRODUCTION
- RASPBERRY PI2 OVERVIEW
- TIZEN OVERVIEW
- HARDWARE & SOFTWARE REQUIREMENTS
- SOFTWARE CUSTOMIZATION
- SOFTWARE SETUP & INTERFACING
- HARDWARE INTERFACING & CONNECTIONS
- ROBOT CONTROL MECHANISM
- SOME RESULTS
- CONCLUSION
- REFERENCES

INTRODUCTION

- This talk is about designing a remote controller robot (toy car) using the raspberry pi2 hardware, pi2 Linux Kernel and Tizen OS as platform.
- In this presentation, first we will see how to replace and boot Tizen OS on Raspberry Pi using the pre-built Tizen images. Then we will see how to setup Bluetooth, Wi-Fi on Tizen and finally see how to control a robot remotely using Tizen smart phone application.

RASPBERRY PI2 - OVERVIEW

#ELC2016

Raspberry PI2 Features

- Broadcom BCM2836 900MHz Quad Core ARM Cortex-A7 CPU
- 1GB RAM
- 4 USB ports
- 40 GPIO pins
- Full HDMI port
- Ethernet port
- Combined 3.5mm audio jack and composite video
- Camera interface (CSI)
- Display interface (DSI)
- Micro SD card slot
- Video Core IV 3D graphics core

PI2 GPIO Pins

	Physical Pins				
GPIO#	2nd func	pin#	pin#	2nd func	GPIO#
N/A	+3V3	1	2	+5V	N/A
GPIO2	SDA1 (I2C)	3	4	+5V	N/A
GPIO3	SCL1 (I2C)	5	6	GND	N/A
GPIO4	GCLK	7	8	TXD0 (UART)	GPIO14
N/A	GND	9	10	RXD0 (UART)	GPIO15
GPIO17	GEN0	11	12	GEN1	GPIO18
GPIO27	GEN2	13	14	GND	N/A
GPIO22	GEN3	15	16	GEN4	GPIO23
N/A	+3V3	17	18	GEN5	GPIO24
GPIO10	MOSI (SPI)	19	20	GND	N/A
GPIO9	MISO (SPI)	21	22	GEN6	GPIO25
GPIO11	SCLK (SPI)	23	24	CEO_N (SPI)	GPIO8
N/A	GND	25	26	CE1_N (SPI)	GPIO7
EEPROM	ID_SD	27	28	ID_SC	EEPROM
GPIO5	N/A	29	30	GND	N/A
GPIO6	N/A	31	32	-	GPIO12
GPIO13	N/A	33	34	GND	N/A
GPIO19	N/A	35	36	N/A	GPIO16
GPIO26	N/A	37	38	N/A	GPIO20
N/A	GND	39	40	N/A	GPIO21

TIZEN OVERVIEW

#ELC2016

TIZEN Profiles

- TIZEN is the OS of everything.
- Tizen is a multi-device OS which can support many types of profiles.
- The current profile that are supported are:
 - Mobile
 - Wearable
 - IV
 - Common
- The new profiles can be easily derived using the minimal common profile.

TIZEN Features

- Tizen is truly open source. Almost all components are based on open source packages.
- Uses mainline Linux Kernel
- Uses systemd for booting
- Uses dbus for IPC communication
- Uses DRM/X11/Wayland for Display & Graphics
- Uses Gstreamer for multimedia framework
- Uses SMACK for platform security
- Uses EFL (Enlightenment Foundation Libraries) for UI framework
- Provides SDB (Smart Development Bridge) for developers.
- Uses HTML5 for WebApps development
- And many more....

HARDWARE COMPONENTS

#ELC2016

- Raspberry pi 2 hardware
- Linux PC Ubuntu 14.04
- Micro SD Card (8 GB)
- Robot Chassis platform (with 2 DC motors, 2 wheels, 1 Castor wheels)
- L293D Driver Board (1 number)
- USB Power Bank (1 number)
- AA size batteries (8 numbers, 12V)
- Battery holder/case (1 number)
- Wi-Fi USB Dongle (1 number)
- Bluetooth USB dongle (1 number)
- USB Web Cam (1 number)
- A Monitor Screen (for Display purpose)
- HDMI Cable (1 number)
- USB keyboard & mouse
- A Tizen Smart Phone with Tizen 2.4
- Screws, Blots, Spacer, jumper wires etc.

SOFTWARE COMPONENTS

- Raspberry Pi NOOBS image
- Tizen 3.0 common pre-built images (alternatively Tizen pi2 pre-built image).
- Raspberry Pi Linux Kernel 4.1.16
- GCC ARM tool chain (arm-linux-gnueabi-gcc)
- Tizen Yocto setup (Or, Tizen GBS Build setup)
- Tizen 2.4 SDK software
- Ubuntu 14.04

Raspberry PI Download

- Download Raspberry pi software from:
 - https://www.raspberrypi.org/downloads/
- Extract it and install it on the SD card.
- Boot the raspberry pi using this SD card.
- Install the Raspbian OS and boot it till desktop.
- At this time verify that all functionalities are working fine on Raspberry pi image.

TIZEN Images Download

- Download Tizen images from:
 - https://download.tizen.org/
- Choose any one type of image from the below repo.

Name	Last modified	Size	Description
docker/	2015-09-11 04:36	_	
<u>iris/</u>	2014-09-03 03:31	_	
lecture/	2015-07-19 23:02	_	
live/	2015-04-13 13:33	_	
misc/	2015-03-04 14:35	_	
prerelease/	2014-07-02 13:31	_	
releases/	2015-10-28 01:19	_	
sdk/	2016-02-03 09:12	_	
services/	2015-04-29 11:41	_	
snapshots/	2015-11-26 22:22	_	
tct/	2015-10-28 05:35	_	
tools/	2015-09-02 06:48	-	

- If you want to try latest release mobile profile, you can use this:
 - https://download.tizen.org/releases/2.4/2.4-mobile/tizen-2.4-mobile_20151030.1/images/
- If you want to use common profile, you can use this:
 - https://download.tizen.org/snapshots/tizen/common/latest/images/

TIZEN PI2 Images

- Tizen raspberry pi 2 pre-built images:
 - https://files.s-osg.org/tizen-on-rpi2/

Index of /tizen-on-rpi2

	<u>Name</u>	Last modifie	<u>ed</u>	Size
4	Parent Directory			_
	README.txt	12-Aug-2015	10:42	1.2K
	bblayers.conf	18-Aug-2015	02:24	1.3K
2	ex.tizen.rpi-sdimg.2015-07-15	15-Jul-2015	13:18	704M
	<u>local.conf</u>	06-Aug-2015	15:41	4.5K
	<pre>local.conf.3d_accel_vc</pre>	03-Sep-2015	07:10	3.3K
	md5sum.txt	12-Aug-2015	10:58	57
	rpm/	14-Aug-2015	10:24	-
? ?	tizen-common-core-image-crosswalk-dev-raspberrypi2-20150806223520.rootfs.rpi-sdimg	06-Aug-2015	18:18	1.26
	tizen-common-core-image-crosswalk-dev-raspberrypi2-20150811204400.rootfs.rpi-sdimg	11-Aug-2015	14:15	1.26
2	tizen-common-core-image-crosswalk-dev-raspberrypi2.rpi-sdimg-2015-08-06	06-Aug-2015	18:18	1.26
~ ~	tizen-common-core-image-crosswalk-dev-raspberrypi2.rpi-sdimg-2015-08-11	11-Aug-2015	14:15	1.26
	tizen-common-core-image-crosswalk-dev-raspberrypi2.rpi-sdimg-2015-08-14	14-Aug-2015	10:25	1.4G
?	tizen-common-core-image-crosswalk-dev.sdimg-2015-08-06	06-Aug-2015	16:33	1.2G
2	tizen.rpi-sdimg.2015-04-22	22-Apr-2015	14:18	596M
2	tizen.rpi-sdimg.2015-07-14	14-Jul-2015	08:13	620M
?	tizen.rpi-sdimg.2015-08-04	04-Aug-2015	08:22	856M
	tizen.rpi-sdimg.2015-08-12	12-Aug-2015	10:35	728M
	tizen.rpi-sdimg.EXPERIMENTAL	15-Jul-2015	13:18	704M
	tizen.rpi-sdimg.LATEST	12-Aug-2015	10:35	728M

TIZEN Build Setup

GBS Build System:

- https://source.tizen.org/es/documentation/referen ce/git-build-system?langredirect=1

YOCTO Build System:

- https://wiki.tizen.org/wiki/Build_Tizen_with_Yocto_Project
- https://wiki.tizen.org/wiki/Tizen_on_Yocto_Project

Tizen 3.0 common pre-built rpms:

https://download.tizen.org/snapshots/tizen/common/latest/repos/arm-wayland/packages/armv7l/

TIZEN Partition Creation

- Extract the Tizen common image on the Linux PC. It will contain 3 images:
 - rootfs.img (root file system)
 - system-data.img (system partition: /opt)
 - user.img (user partition: /opt/usr)
- Now, check the size of each image using the "du –h" command.
 - # du -h *.img
 - 864M rootfs.img
 - 49M system-data.img
 - 97M user.img

- Use Gparted on Ubuntu to create new partitions for Tizen images, on the SD card.
- First erase the raspberry pi OS root partition. Do not disturb the SETTINGS and boot partitions.
- Then create the new partitions as follows:

- Make sure to run resize2fs command to resize all the partitions.
 - sudo resize2fs /dev/sdb7 [rootfs partition]
 - sudo resize2fs /dev/sdb8 [system-data partition]
 - sudo resize2fs /dev/sdb9 [user partition]
- Now, use "dd" commands in Linux to write the actual
 Tizen images to the respective partitions on SD card.
 - sudo dd if=rootfs.img of=/dev/sdb7 bs=4M
 - sudo dd if=system-data.img of=/dev/sdb8 bs=4M
 - sudo dd if=user.img of=/dev/sdb9 bs=4M

- Then, remount the SD card on the Linux PC.
- Now, using the "df –h" command, we should be able to see all the partitions as follows:

```
/dev/sdb6 63M 20M 44M 32% /media/boot
/dev/sdb8 196M 17M 180M 9% /media/system-data
/dev/sdb5 31M 1.4M 28M 5% /media/SETTINGS
/dev/sdb9 5.0G 72M 4.9G 2% /media/user
/dev/sdb7 1009M 869M 132M 87% /media/rootfs
```

 Now, we need to make Tizen specific changes in raspberry pi kernel and Tizen platform to boot the image successfully on Pi2.

TIZEN Kernel Customization

- Download Raspberry Pi Kernel (4.1.16) repo from the following:
 - git clone --depth=1 git://github.com/raspberrypi/linux
- Build the kernel:
 - make ARCH=arm -j8 CROSS_COMPILE=arm-linux-gnueabibcm2709_defconfig
 - make ARCH=arm -j8 CROSS_COMPILE=arm-linux-gnueabi-
- Create a new defconfig for Tizen:
 - # cp —f .config arch/arm/configs/tizen_pi2_defconfig
- Enable Tizen specific kernel configurations (one by one), using:
 - make ARCH=arm menuconfig
- Each time you change the configuration, make sure to sync with the tizen_pi2_defconfig.

- Fortunately, in Raspberry Pi Kernel (bcm2709_defconfig), most of the Tizen configs are already enabled.
- However, we still need to enable few once as below:

```
CONFIG_SECURITYFS=y
CONFIG_SECURITY_SMACK=y
CONFIG_AUDIT=y
CONFIG_DRM=y
CONFIG_MEMCG=y
```

```
CONFIG_MEMCG_SWAP=y
CONFIG_ZRAM=y
CONFIG_CGROUP_DEBUG=y
CONFIG_PM_SLEEP=y
CONFIG_PM_AUTOSLEEP=y
```

 After enabling these configs, make sure to sync the .config with the default tizen_pi2_defconfig again.

Build the final Kernel image:

- make ARCH=arm -j8 CROSS_COMPILE=arm-linux-gnueabitizen_pi2_defconfig
- make ARCH=arm -j8 CROSS_COMPILE=arm-linux-gnueabi-
- Generate the device tree image:
 - ./scripts/mkknlimg arch/arm/boot/zlmage kernel7.img
- Copy the kernel images to the SD card boot partition.
 - cp -f kernel7.img /media/boot/
 - cp -f arch/arm/boot/dts/bcm2709-rpi-2-b.dtb /media/boot/
 - cp -f arch/arm/boot/dts/overlays/*.dtb /media/boot/overlays/

Install the modules built by kernel:

- make ARCH=arm CROSS_COMPILE=arm-linux-gnueabi- -j8
 INSTALL_MOD_PATH=../modules modules_install
- Copy the modules & firmware to SD card rootfs folder:
 - sudo cp -rf modules/lib/modules/4.1.16-v7+ /media/rootfs/lib/modules/
 - sudo cp -rf modules/lib/firmware/* /media/rootfs/lib/firmware/
- Copy the original pi2 firmware from NOOBs root folder to the SD card Tizen rootfs folder:
 - sudo cp -rf <pi2 noobs root>/lib/firmware/* /media/rootfs/lib/firmware/

TIZEN Platform Customization

- Update rootfs device node under Kernel command line in SD card partition: /media/boot/cmdline.txt
 - dwc_otg.lpm_enable=0 console=ttyAMA0,115200
 console=tty1 root=/dev/mmcblk0p7 rootfstype=ext4
 elevator=deadline fsck.repair=yes rootwait
- Tizen uses systemd services for booting, so customize systemd services as per your needs, under:
 - /usr/lib/systemd/system/*
- For example to boot the system till command prompt, you can set the default.target to multi-user.target
- At this time, you can also perform the clean up of unnecessary services by simply deleting it and removing it dependencies.

- In Tizen, the getty and console services are disabled by default.
- We need to enable these services to get the login prompt on the terminal.
- To enable these services we need to modify the following file:
 - /media/rootfs/usr/lib/systemd/system-preset/90-systemd.preset
 - enable console-getty.service
 - enable console-shell.service
- To get login prompt on Virtual Terminal (tty1), we need to create tty1 service file:
 - cd /media/rootfs/usr/lib/systemd/system/multi-user.target.wants
 - sudo In -s <u>../getty@.service</u> getty@tty1.service

SETUP & INTERFACING

- Plug the SD card on the PI2 hardware.
- Plug other required peripherals as shown below and power on the raspberry pi.

- You will be able to see the console messages flowing on the monitor screen.
- If Tizen platform images are mounted successfully, you will be able to see the following on the terminal.

Detected architecture 'arm'.

Welcome to Tizen 3.0.0 (Tizen3/Common)!

No hostname configured. Set hostname to <localhost>.

localhost login:

Welcome to Tizen root@localhost:~#

User name: {root, guest}

Password: tizen

Note:

User name and password can be found from .ks file.

tizen-common 20160315.2 common-wayland-3parts-armv7l-odroidu3.ks

Camera Setup

- In raspberry pi, camera interfacing can be done in 2 ways:
 - Using CSI Camera Slot
 - Using the USB Web Cam
- CSI Camera:
 - In CSI camera slot we can directly plug a raspberry pi 5MP
 Camera module using the ribbon cable.
 - It is directly controlled by GPU and it is faster. But it requires around 128MB of system RAM reserved memory.
 - However, we can convert this memory to CMA if memory saving is important.
 - https://www.raspberrypi.org/documentation/usage/camera/ /README.md

USB Web Camera:

- In one of the USB slot plug a webcam (Logitech Webcam)
- It will create a node : /dev/video0 through which we can access it using V4L2 calls.
- It does not need any reserved memory but the processing could be little slower compared to CSI camera.
- Using USB you can connect any number of web cams.
- https://www.raspberrypi.org/documentation/usage/webcams/

- On Tizen, we can perform camera capture using the following:
 - Using the standard Gstreamer commands
 - Using a simple V4L2 application
 - Using the mm_test_suite for the Tizen source code repo.
 - Using launch_cam.sh (only for web cam) [For Tizen 3.0]
- Gstreamer command for single frame capture:
 - gst-launch-1.0 v4l2src num-buffers=1! video/x-raw, format=I420, width=640, height=480, framerate=30/1! filesink location=/opt/usr/media/file.yuv
- Other sample applications are available under Tizen source:
 - https://review.tizen.org/git/?p=platform/core/api/camera.git;a=tree
- MM Camcoder test suite is available under:
 - https://review.tizen.org/git/?p=framework/multimedia/libmmcamcorder.git;a=tree;f=test;h=49ee5fc53d4fcb99e37a1cd5c554f0c95974f3 65;hb=HEAD

Display/Graphics Setup

- Tizen uses DRM (Direct Rendering Manager) & X11/Wayland based display system.
- Both DSI display connector or HDMI display interface can be used.
- The DRM support for Raspberry Pi graphics controller
 VC4 is already available from Linux Kernel 4.1.16.
 - Linux/driver/gpu/drm/vc4/...
- Tizen graphics port for Raspberry Pi is already available as part of Tizen Yocto project repo for PI2.
 - https://blogs.s-osg.org/tizen-rpi2-now-supporting-3dacceleration/

Bluetooth Setup

- To setup Bluetooth on Tizen, insert the Bluetooth USB Dongle and perform the following steps:
 - a) root@localhost:~# hciconfig hci0 up
 - b) root@localhost:~# bluetoothctl
 - c) [bluetooth]# power on
 - d) [bluetooth]# agent on
 - e) [bluetooth]# scan on
 - f) [bluetooth]# pair <scanned device MAC_ID>
 - g) [bluetooth]# connect <MAC_ID>
 - h) [bluetooth]# exit

For more information please visit:

https://wiki.tizen.org/wiki/Connecting to a Smartphone with Bluetooth and Making Phone Calls

Wi-Fi Setup

- In Tizen 3.0, we can configure Wi-Fi from the command prompt using the following steps:
- a) root@localhost:~# ifconfig wlan0 up
- b) root@localhost:~# wpa_supplicant -u -t -B -d -Dwext f/var/log/wpa_supplicant.log
- c) root@localhost:~# connmanctl
- d) connmanctl> enable wifi
- e) connmanctl> agent on
- f) connmanctl> services
 - o wifi_<wlan0_MAC_ID>_<XXXXX>_managed_psk
- g) connmanctl> connect wifi_<XXXXX>_managed_psk
 [Enter the passphrase here] xxxxxxxx
- h) connmanctl> exit

 If Wi-Fi is connected properly, an IP Address would be assigned to wlan0 interface:

```
root@localhost~:# ifconfig
wlan0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu
1500
  inet 192.168.43.91 hetmask 255.255.255.0 broadcast
192.168.43.255
    inet6 fe80::2c1:41ff:fe29:9c80 prefixlen 64 scopeid 0x20<link>
    ether 00:c1:41:29:9c:80 txqueuelen 1000 (Ethernet)
    RX packets 24 bytes 2789 (2.7 KiB)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 37 bytes 5470 (5.3 KiB)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

https://blogs.s-osg.org/setup-wifi-raspberry-pi-2-tizen/

HARDWARE INTERFACING

- Assemble the Robot DIY kit (that includes: chassis, DC motors, rubber wheels, castor wheels).
- Attach the Raspberry Pi2 to the chassis.
- Attach the power bank under the chassis and connect the USB cable to it (Do not connect to RPi2 now).
- Attach the L293D driver board to the chassis.
- Stick the battery case on the chassis (Do not put the battery).
- Connect the motor driver as shown in the next slide.
- Connect the Wi-Fi, Bluetooth, Webcam to the RPi2 USB slot.
- Temporarily connect the keyboard and monitor to do the initial configuration and setup (Remove it once done).
- Now, connect the power bank USB cable to the RPi2 (to power on and boot the Pi2).
- Finally, connect the battery to the battery case.

Motor Connection with P12

#ELC2016

Raspberry Pi 2 - > GPIO Pins

Full Model (Tizen Inside)

#ELC2016

ROBOT CONTROL MECHANISM

#ELC2016

Forward (F)

GPIO17:1

GPIO18: 0

GPIO22: 1

GPIO23:0

Back (B)

GPIO17:0

GPIO18: 1

GPIO22:0

GPIO23:1

Left (L)

GPIO17:0

GPIO18: 0

GPIO22: 1

GPIO23: 0

Right (R)

GPIO17:1

GPIO18: 0

GPIO22: 0

GPIO23: 0

Stop (S)

GPIO17:0

GPIO18: 0

GPIO22: 0

GPIO23:0

- The devices should be already paired and connected.
- Use Tizen Mobile 2.4 SDK to develop RFCOMM Client App.
 - Reference: https://developer.tizen.org/dev-guide/2.4/org.tizen.native.mobile.apireference/group_CAPI_NETWORK_BLUETOOTH_SOURCE_MODULE.html
- Use Tizen CAPI to develop RFCOMM server that runs as a Daemon to receives data from client and take action.
 - Reference:
 https://review.tizen.org/git/?p=framework/api/bluetooth.git;a=tree;f=test;h=e7732ccffdc8
 7b0ae64c55e5486581a4b5956653;hb=HEAD
- To control the motor, we can simple write {1,0} to the respective GPIOs as shown in the table, using the GPIO sysfs entries.
 - echo 1 > /sys/class/gpio/gpio17/value
 - echo 0 > /sys/class/gpio/gpio18/value
 - echo 1 > /sys/class/gpio/gpio22/value
 - echo 0 > /sys/class/gpio/gpio23/value

Forward

RAM Usage

 RAM memory usage just after boot-up with Wi-Fi, Bluetooth connected (without display)

free -tm

total used free shared buffers cached

Mem: 973 \ 137 \ 835 \ 12 \ 6 \ 75

-/+ buffers/cache: 56 916

Swap: 255 0 255

Total: 1229 137 1091

RAM: 1GB (1024 MB)

Reserved Memory: (1024 - 973) = 51 MB

Used during boot-up: 137 MB

Total Used: 51 + 137 = 188 MB

Swap (ZRAM) = 256 MB ($1/4^{th}$ for 1GB)

[Change zram size in:

/etc/resourced/swap.conf]

Note:

To get process wise memory usage, we can use a special command in Tizen:

memps -a

Reserved Memory Details

Kernel Code Size:

size -t vmlinux

text	data	bss	dec	hex	filename
8314042	690396	784004	9788442	955c1a	vmlinux
8314042	690396	784004	9788442	955c1a	(TOTALS)

du -h modules 48M modules

Kernel Reserved:

dmesg | grep –i memory

Memory: 988016K/1015808K available (6123K kernel code, 527K rwdata, 1688K

rodata, 448K init, 757K bss, 19600K reserved, 8192K cma-reserved)

Total RAM visible to Kernel = 1015808K = 992MB

Reserved for GPU = 16MB (cat /media/boot/config.txt : gpu_mem=16)

Reserved memory others = 16MB (????)

Kernel Reserved = 19600 = 19.14MB (includes kernel code & data structures)

- Kernel code size can be reduced below 5MB.
- Platform memory can be optimized further by analyzing memps report.

ROM Details

ROM memory details with Tizen common 3.0 profile.

Filesystem	Size	Used	Avail	Use%	Mounted on
<mark>/dev/root</mark>	945M	806M	114M	88%	/
devtmpfs	483M	4.0K	483M	1%,	/dev
tmpfs	487M	4.0K	487M	1%,	/dev/shm
tmpfs	487M	13M	475M	3%,	/run
tmpfs	487M	0	487M	0%,	/sys/fs/cgroup
tmpfs	487M	8.0K	487M	1%,	/tmp
/dev/mmcblk0p8	180M	384K	175M	1%	/opt
/dev/mmcblk0p9	4.9G	14M	4.8G	1%	/opt/usr
tmpfs	487M	0	487M	0%,	opt/usr/share/crash/temp
tmpfs	98M	0	98M	0%,	/run/user/5001

- Rootfs size is less than 1GB. Further reduction is possible.
- Still we have lots of space in usr partition.
- For our use case, even 2GB storage should be enough.
- User files can be stored in /usr/share/media/ folders.

Loaded Modules (Ismod)

Module	Size	Used by
rfcomm	33992	
btusb	29353	
bnep	10479	-
btintel	1369	1 btusb
btbcm		1 btusb
xt connmark	1735	
iptable nat	1646	
nf_conntrack_ipv4	13237	
nf_defrag_ipv4	1321	1 nf_conntrack_ipv4
nf_nat_ipv4		1 iptable_nat
nf_nat	12207	1 nf_nat_ipv4
nf_conntrack	76946	4 nf_nat,nf_nat_ipv4,xt_connmark,nf_conntrack_ipv4
xt_mark	998	0
iptable_filter	1275	0
iptable_mangle	1379	1
ip_tables	11439	3 iptable_filter,iptable_mangle,iptable_nat
x_tables	13353	5 xt_mark,ip_tables,iptable_filter,xt_connmark,iptable_mangle
bluetooth	324803	26 bnep,btbcm,btusb,rfcomm,btintel
bcm2835_gpiomem	2973	0
bcm2835_rng	1770	0
arc4	1778	2
rt2800usb	17476	0
rt2800lib	71877	1 rt2800usb
crc_ccitt	1149	1 rt2800lib
rt2x00usb	8539	1 rt2800usb
rt2x00lib	36483	3 rt2x00usb,rt2800lib,rt2800usb
mac80211	523380	3 rt2x00lib,rt2x00usb,rt2800lib
snd_bcm2835	19620	
snd_pcm	74535	1 snd_bcm2835
snd_timer		1 snd_pcm
snd	52151	3 snd_bcm2835,snd_timer,snd_pcm
cfg80211	403784	2 mac80211,rt2x00lib
uio_pdrv_genirq	2997	
uio		1 uio_pdrv_genirq
rfkill		4 cfg80211,bluetooth
joydev	9213	0
evdev	10421	
sch_fq_codel	7858	
ipv6	341361	20

BENEFITS OF USING TIZEN

- Tizen is truly a open source platform. Every component used in Tizen is derived from open source. So we have huge flexibility to customize as per our needs.
- Tizen uses profile concept to support new devices. So new use case can be easily derived using one of the profile.
- As we have seen, it is very easy to create new profile to support future technologies.
- With Tizen is easy to create bare minimal functionalities with lesser foot prints.
- Because of it's multi-device capabilities it is possible to create device convergence and derive new communication mechanism.
- Finally, using the power of open h/w and open source OS, it is easy to perform various experiments before deriving actual products.

FUTURE WORK

- Perform various clean-ups and create a simple Robotics profile.
- Touch screen display bring-up using DSI connector.
- CSI camera bring-up.
- SDB bring-up and integration in Raspberry Pi Kernel.
- Various sensors interfacing with the robot.
- Power consumption analysis while robot is in operation.
- Setting up the web server and controlling robot using Wi-Fi.
- Getting camera preview remotely on smart phone.
- Contribute all the changes to upstream and update in Tizen wiki.
- Others who like to contribute can join:
 - https://wiki.tizen.org/wiki/How_to_contribute_to_Tizen_on_Yocto_Project
- Community:
 - https://www.tizen.org/community/mailing-lists

REFERENCES

- https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
- https://wiki.tizen.org/wiki/Porting_Guide#
- https://wiki.tizen.org/w/images/8/86/LinuxCon14_TizenCommon_20141015
 .pdf
- https://www.tizen.org/ko?langredirect=1
- https://review.tizen.org/git/
- https://wiki.tizen.org/wiki/Tizen_on_Yocto_Project
- http://blogs.s-osg.org/category/tizen/
- https://blogs.s-osg.org/tizen-on-rpi2/
- http://events.linuxfoundation.org/sites/events/files/slides/KLF2014-Dongkun.pdf
- http://www.krnet.or.kr/board/data/dprogram/1784/C1-2-KRnet2013.pdf
- https://people.csail.mit.edu/albert/bluez-intro/
- http://diyhacking.com/diy-projects/raspberry-pi-projects/
- http://diyhacking.com/raspberry-pi-robot/

THANKS