Оглавление

\mathbf{I}	Элементарные переобразования	9
1	Вычислить выражение	10
2	Упростить	11
3	Упростить	12
4	Упростить	13
5	Упростить	14
6	Решить уравнение	15
7	Решить уравнение	16
8	Упростить	17
9	Упростить	18
10	0 Упростить	19
II	Алгебра и теория чисел	20
13		21
12	2 НОД двух многочленов	22
13		
14		
15	5 Интерполяционный полином Лагранжа степени 3	26
16		
17	7 Разложение правильной рациональной дроби степени 3 на простейшие дроби 1	28
18	8 Разложение правильной рациональной дроби степени 3 на простейшие дроби 2	29
19	9 Разложение рациональной дроби степени 3 на простейшие дроби	30
Ш	Комплексные числа	32
20		
2		
22		
23		
24		38
25	Б Возведение комплексного числа в степень и нахождение корня 4-ой степени	39
IV	Линейная алгебра	43
26		44
2		
28		
29		48
30		50
31		
32		
33		

34	Произведение трёх матриц размера 3х3	56
35	Матричный многочлен размера 2x2	58
36	Матричный многочлен размера 3x3	59
37	Произведение матрицы на её транспонированную	61
38	След произведения матриц	62
39	Определитель 2x2	63
40	Определитель 3х3	64
41	Простой определитель 4х4	65
42	Определитель 4х4	66
43	Разность определителей	67
44	Система 2х2	68
45	Простая система 3х3	69
46	Система 3х3 в экономике	70
47	Система 3х3	71
48	Несовместная система 3х3	72
49	Неопределенная система 3х3	73
50	Однородная система 3х3 с бесконечным множеством решением	74
51	Однородная система 3х3 с нулевым решением	75
52	Фундаментальная система решений однородной системы	76
53	Система 4х3	77
54	Система 4х4 с единственным решением	78
55	Общее и частное решение системы, ранг 1	80
56	Общее и частное решение системы, ранг 2	
57	Общее и частное решение системы, ранг 3	
58	Общее и частное решение системы, ранг 4	92
59	Однородная система, ранг 2	96
60	Однородная система, ранг 3	
61	Однородная система, ранг 4	
62	Модель Леонтьева 2x2	
63	Модель Леонтьева 3х3	
64	Модель Леонтьева 4х4	
65	Простая обратная матрица 3х3	
66	Обратная матрица 2x2	
67	Обратная матрица 3х3	
68	Обратная матрица 4x4	
69	Обратная матрица 4х4 с помощью союзной	
70	Вычисление матричного многочлена	
71	Матричное уравнение 2x2 простое	
72	Матричное уравнение 2x2	
73	Матричное уравнение 3х3	
74	Ранг матрицы из 2 строк	
75	Ранг матрицы из 3 строк	
76	Ранг матрицы из 4 строк	
77	Проверка линейной зависимости векторов, 2 вектора	136
78	Проверка линейной зависимости векторов, 3 вектора	
79	Проверка линейной зависимости векторов, 4 вектора	
80	Определение линейной зависимости системы матриц 2x2	
81	Нахождение координат вектора в базисе, размерность 2х2	
82	Нахождение координат вектора в базисе, размерность 3х3	
83	Нахождение координат вектора в базисе, размерность 4х4	152
84	Матрица перехода и координаты вектора в базисе, размерность 2х2	154
85	Матрица перехода и координаты вектора в базисе, размерность 3х3	155

	86	Матрица перехода и координаты вектора в базисе, размерность 4х4	150
	87	Дополнение системы векторов до базиса, 3 вектора	158
	88	Поиск какого-то базиса и ранга системы векторов, размер 3	160
	89	Поиск ранга и какого-либо базиса системы многочленов, степень 3	. 164
	90	Базис ядра и базис образа линейного оператора	170
	91	Вычисление матрицы оператора в новом базисе, 2х2	172
	92	Вычисление матрицы оператора в новом базисе, 3х3	173
	93	Вычисление матрицы оператора в новом базисе, 4х4	176
	94	Приведение матрицы к диагональному виду, 2х2	180
	95	Приведение матрицы к диагональному виду, 3х3	183
	96	Приведение матрицы к диагональному виду, 4х4	186
	97	Жорданова нормальная форма, 2x2	190
	98	Жорданова нормальная форма, 3x3	191
	99	Жорданова нормальная форма, 4х4	194
	100	Собственные значения и векторы, 2х2	203
	101	Собственные значения и векторы, 3х3	206
	102	Собственные значения и векторы, 4х4	214
	103	Собственные значения 2х2	240
	104	Спектр матрицы 1	241
	105	Спектр матрицы 2	242
	106	Спектр комплексной матрицы 3х3	243
	107	Спектр матрицы 4х4	
	108	Собственные векторы матрицы 4х4	
	109	Собственные векторы матрицы	249
	110	Приведение квадратичной формы к каноническому виду	
	110	Приведение квадратичной формы к каноническому виду	
V			250
\mathbf{V}	П	Ірямая на плоскости	252 252
\mathbf{V}	П 111	Ірямая на плоскости _{Область}	252 253
\mathbf{V}	111 112	Ірямая на плоскости Область	252 253 254
\mathbf{V}	111 112 113	Ірямая на плоскости Область Уравнение прямой, проходящей через две точки Уравнение параллельной прямой через 3 точки	252 253 254 255
\mathbf{V}	111 112 113 114	Ірямая на плоскости Область Уравнение прямой, проходящей через две точки Уравнение параллельной прямой через 3 точки Уравнение перпендикулярной прямой через 3 точки	252 252 254 254 255 256
\mathbf{V}	111 112 113 114 115	Ірямая на плоскости Область Уравнение прямой, проходящей через две точки Уравнение параллельной прямой через 3 точки Уравнение перпендикулярной прямой через 3 точки Угол между двумя прямыми	252 252 254 254 255 256 256 256
\mathbf{V}	111 112 113 114 115 116	Ірямая на плоскости Область Уравнение прямой, проходящей через две точки Уравнение параллельной прямой через 3 точки Уравнение перпендикулярной прямой через 3 точки Угол между двумя прямыми Точка пересечения диагоналей четырёхугольника с плохим ответом	252 252 254 255 256 256 256 256 257
\mathbf{V}	111 112 113 114 115 116 117	Ірямая на плоскости Область Уравнение прямой, проходящей через две точки Уравнение параллельной прямой через 3 точки Уравнение перпендикулярной прямой через 3 точки Угол между двумя прямыми Точка пересечения диагоналей четырёхугольника с плохим ответом Точка пересечения диагоналей четырёхугольника	252 252 254 255 256 256 257 258 258
V	111 112 113 114 115 116 117 118	Ірямая на плоскости Область Уравнение прямой, проходящей через две точки Уравнение параллельной прямой через 3 точки Уравнение перпендикулярной прямой через 3 точки Угол между двумя прямыми Точка пересечения диагоналей четырёхугольника Высота в треугольнике	252 252 253 254 255 256 256 257 258 258 258
\mathbf{V}	111 112 113 114 115 116 117 118	Ірямая на плоскости Область . Уравнение прямой, проходящей через две точки . Уравнение параллельной прямой через 3 точки . Уравнение перпендикулярной прямой через 3 точки . Угол между двумя прямыми . Точка пересечения диагоналей четырёхугольника с плохим ответом . Точка пересечения диагоналей четырёхугольника . Высота в треугольнике . Прямая через точку .	252 252 254 255 256 256 257 258 258 258 260 261
V	111 112 113 114 115 116 117 118 119 120	Ірямая на плоскости Область Уравнение прямой, проходящей через две точки Уравнение параллельной прямой через 3 точки Уравнение перпендикулярной прямой через 3 точки Угол между двумя прямыми Точка пересечения диагоналей четырёхугольника с плохим ответом Точка пересечения диагоналей четырёхугольника Высота в треугольнике Прямая через точку Периметр и площадь треугольника по вершинам	252 252 254 255 256 256 256 256 256 256 266 266
V	111 112 113 114 115 116 117 118 119 120 121	Ірямая на плоскости Область Уравнение прямой, проходящей через две точки Уравнение параллельной прямой через 3 точки Уравнение перпендикулярной прямой через 3 точки Угол между двумя прямыми Точка пересечения диагоналей четырёхугольника с плохим ответом Точка пересечения диагоналей четырёхугольника Высота в треугольнике Прямая через точку Периметр и площадь треугольника по вершинам Уравнения сторон треугольника Уравнения сторон треугольника	252 252 254 255 256 256 257 258 258 260 261 261
V	111 112 113 114 115 116 117 118 119 120	Ірямая на плоскости Область Уравнение прямой, проходящей через две точки Уравнение параллельной прямой через 3 точки Уравнение перпендикулярной прямой через 3 точки Угол между двумя прямыми Точка пересечения диагоналей четырёхугольника с плохим ответом Точка пересечения диагоналей четырёхугольника Высота в треугольнике Прямая через точку Периметр и площадь треугольника по вершинам Уравнения сторон треугольника Внутренние углы треугольника	252 254 254 255 256 256 257 258 258 260 260 261 266 266
V	111 112 113 114 115 116 117 118 119 120 121 122	Ірямая на плоскости Область Уравнение прямой, проходящей через две точки Уравнение параллельной прямой через 3 точки Уравнение перпендикулярной прямой через 3 точки Угол между двумя прямыми Точка пересечения диагоналей четырёхугольника с плохим ответом Точка пересечения диагоналей четырёхугольника Высота в треугольнике Прямая через точку Периметр и площадь треугольника по вершинам Уравнения сторон треугольника Внутренние углы треугольника Периметр и площадь треугольника Периметр и площадь треугольника	252 254 255 256 256 257 258 258 258 260 261 266 266 266
V	111 112 113 114 115 116 117 118 119 120 121 122 123	Ірямая на плоскости Область Уравнение прямой, проходящей через две точки Уравнение параллельной прямой через 3 точки Уравнение перпендикулярной прямой через 3 точки Угол между двумя прямыми Точка пересечения диагоналей четырёхугольника с плохим ответом Точка пересечения диагоналей четырёхугольника Высота в треугольнике Прямая через точку Периметр и площадь треугольника по вершинам Уравнения сторон треугольника Внутренние углы треугольника Периметр и площадь треугольника Периметр и площадь треугольника по сторонам Уравнение биссектрисы в треугольнике	252 254 255 256 256 256 256 256 256 266 266 266
V	111 112 113 114 115 116 117 118 119 120 121 122 123 124	Ірямая на плоскости Область Уравнение прямой, проходящей через две точки Уравнение параллельной прямой через 3 точки Уравнение перпендикулярной прямой через 3 точки Угол между двумя прямыми Точка пересечения диагоналей четырёхугольника с плохим ответом Точка пересечения диагоналей четырёхугольника Высота в треугольнике Прямая через точку Периметр и площадь треугольника по вершинам Уравнения сторон треугольника Внутренние углы треугольника Периметр и площадь треугольника Периметр и площадь треугольника	252 252 254 255 256 256 257 258 258 260 261 262 263 264 265 266
V	111 112 113 114 115 116 117 118 119 120 121 122 123 124 125	Ірямая на плоскости Область Уравнение прямой, проходящей через две точки Уравнение параллельной прямой через 3 точки Уравнение перпендикулярной прямой через 3 точки Угол между двумя прямыми Точка пересечения диагоналей четырёхугольника с плохим ответом Точка пересечения диагоналей четырёхугольника Высота в треугольнике Прямая через точку Периметр и площадь треугольника по вершинам Уравнение углы треугольника Периметр и площадь треугольника по сторонам Уравнение биссектрисы в треугольнике Точка на прямой, равноудалённая от двух данных точек	252 252 254 255 256 256 256 256 266 266 266 266 266
V	111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126	Ірямая на плоскости Область Уравнение прямой, проходящей через две точки Уравнение параллельной прямой через 3 точки Уравнение перпендикулярной прямой через 3 точки Угол между двумя прямыми Точка пересечения диагоналей четырёхугольника Высота в треугольнике Прямая через точку Периметр и площадь треугольника по вершинам Уравнение сторон треугольника Периметр и площадь треугольника Периметр и площадь треугольника по сторонам Уравнение биссектрисы в треугольнике Точка на прямой, равноудалённая от двух данных точек Уравнение прямой, проходящей через точку и делящей отрезок в заданном соотношении	252 252 254 255 255 256 256 256 256 266 266 266 266
V	111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127	Ірямая на плоскости Область Уравнение прямой, проходящей через две точки Уравнение параллельной прямой через 3 точки Уравнение перпендикулярной прямой через 3 точки Угол между двумя прямыми Точка пересечения диагоналей четырёхугольника с плохим ответом Точка пересечения диагоналей четырёхугольника Высота в треугольнике Прямая через точку Периметр и площадь треугольника по вершинам Уравнения сторон треугольника Внутренние углы треугольника Периметр и площадь треугольника по сторонам Уравнение биссектрисы в треугольнике Точка на прямой, равноудалённая от двух данных точек Уравнение прямой, проходящей через точку и делящей отрезок в заданном соотношении Прямая, проходящая через точку и параллельная/перпендикулярная заданной прямой	252 252 254 255 256 256 257 258 258 266 266 266 266 266 267 268

\mathbf{VI}	Прямая и плоскость в пространстве	272
130	Уравнение плоскости Простая	273
131	Уравнение плоскости	274
132	Уравнение плоскости	275
133	Расстояние от точки до плоскости	276
134	Угол между плоскостями	277
135	Уравнение прямой	278
136	параллельность/ортогональность прямых	279
137	Проекция точки на плоскость	
3 / 1 1	D	001
\mathbf{VII}	Векторы	281
138	Коллинеарность/ортогональность векторов	
139	Значения параметров, обеспечивающие коллинеарность/ортогональность	
140	Нахождение коллинеарного вектора	
141	Нахождение ортогонального вектора	
142	Длина суммы двух вектров	
143	Нахождение вектора по его скалярным произведениям простая	287
144	Нахождение вектора по его скалярным произведениям	288
145	Работа силы	289
146	Момент равнодействующей	
147	Скалярное произведение	291
148	Угол между диагоналями параллелограмма	292
149	Площадь параллелограмма	293
150	Нахождение вектора по скалярному и векторному произведению	294
151	Смещанное произведение	295
152	Высота пирамиды	297
153	Координаты вектора в базисе	298
154	Базис и ранг системы векторов	299
VIII	Vountie propose vongvo	200
	Кривые второго порядка	300
155	Координаты центра и радиус окружности	
156	Определения вида кривой второго порядка	
157	Уравнение окружности с заданной касательной	
158	Уравнение эллипса	
159	Уравнение гиперболы	
160	Уравнение параболы	
161	Полуоси, фокусы, эксцентриситет	
162	Уравнение эллипса и окружности	
163	Уравнения эллипса гиперболы и параболы	
164	Площадь ромба	311
165	Прямые параллельные асимптотами	312
TV '	Тоория продолов	313
	Геория пределов	
166	Предел отношения полиномов при n к бесконечности	
167	Предел последовательности отношения полиномов	
168	Предел отношения корней при n к бесконечности	
169	Предел разности квадратных коней	
170	Предел разности кубических корней	
171	Предел отношения полиномов при х к бесконечности	320

172	Простой предел отношения полиномов степени 2	
173	Предел отношения полиномов	. 322
174	Предел отношения полиномов	. 323
175	Предел разность отношений полиномов	
176	Предел корня на полином степени 2	. 325
177	Простой второй замечательный предел	. 326
178	Второй замечательный предел	. 327
179	Простой первый замечательный предел	. 328
180	Первый замечательный предел	. 329
181	Эквивалентности простые	. 330
182	Эквивалентность с полиномом	. 331
183	Эквивалентности	
184	Непрерывность функции	
185	Непрерывность фунции 2	. 336
X T 186 187	Сеория дифференцирования Производная со степенями	
188	Производная произведения	
189	Производная частного. Простая	
190	Логарифмическое дифференцирование	
191	Производная произведения	
192	Производная частного	
193	Производная сложной функции	
194	Приближённые вычисления с помощью дифференциалов	
195	Угловой коэффициент	
196	Касательная	
197	Первая производная в точке	
198	Вторая производная в точке	
199	Третья производная в точке	
200	Правило Лопиталя. Простой пример	
201	Правило Лопиталя	
202	Монотонность	
203	Экстремум	
204	Сумма значений в точках экстремума	. 362
205	Интервалы монотонности и точки экстремума	
206	Монотонность, экстремум, выпуклость и точки перегиба	
207	Наибольшее и наименьшее значение функции на отрезке	
208	Экономическая задача на глобальный экстремум: общая	
209	Экономическая задача на глобальный экстремум	
210	Физическая задача на глобальный экстремум	
211	График	
	Неопределённый интеграл	370
212	Интеграл со степенями	
213	Непосредственное интегрирование	
214	Линейная замена переменных в неопределенном интеграле	
215	Интеграл от сложной функции	
216	Интеграл от сложной функции с обратными тригонометрическими	
217	Интегрирование по частям в неопределенном интеграле простой	. 376

218	Интегрирование по частям в неопределенном интеграле сложный	377
219	Неопределенный интеграл от рациональной функции	378
220	Неопределенный интеграл от рациональной функции	379
221	Неопределенные интегралы, содержащие тригонометрические функции	380
222	Интегралы на универсальную тригонометрическую подстановку	381
223	Интеграл от рациональной функции с одним корнем	382
224	Интеграл от рациональной функции с разными корнями	383
225	Интеграл от дробно-линейной иррациональности	384
3/11		900
XII	Определённый интеграл	386
226	Разные определённые интегралы	
227	Определённый интеграл на линейную замену	
228	Определённый интеграл от степеней тангенса	
229	Замена в определённом интеграле	
230	Определённый интеграл на разные замены	
231	Определённый интеграл по частям	
232	Определённый интеграл от правильной рациональной дроби	
233	Площадь фигуры, ограниченной параболой и прямой простая	
234	Площадь фигуры, ограниченной параболой и прямой	
235	Площадь фигуры, ограниченной двумя параболами	
236	Длина дуги кривой	
237	Объём тела вращения	
238	Сила давления на вертикальную пластину	
239	Сила давления на вертикальную пластину	
240	Несобственный интеграл первого рода	
241	Несобственный интеграл второго рода	407
XIII	Интегралы с параметром	408
	Применение эйлеровых интегралов для вычисления обычных интегралов	
212	inputotionic obsopoblik initot pastob Asia bis mostotian com misk initot pastob	100
XIV	Лиффоронцирование функций многих пороменных	410
243	Дифференцирование функций многих переменных	410
240	Линии уровня функции двух переменных	
244		411
	Линии уровня функции двух переменных	411
244	Линии уровня функции двух переменных	411 412 414
244 245	Линии уровня функции двух переменных	411 412 414 415
244245246	Линии уровня функции двух переменных	411 412 414 415
244 245 246 247	Линии уровня функции двух переменных	411 412 414 415 416
244 245 246 247 248	Линии уровня функции двух переменных	411 412 414 415 416 417
244 245 246 247 248 249	Линии уровня функции двух переменных Частные производные и область определения Частные производные Вторые производные Проверка того, что функция удовлетворяет ДУ в частных производных Производная сложной функции. Две переменные Касательная к неявно заданной кривой	411 412 414 415 416 417 418
244 245 246 247 248 249 250	Линии уровня функции двух переменных Частные производные и область определения Частные производные Вторые производные Проверка того, что функция удовлетворяет ДУ в частных производных Производная сложной функции. Две переменные Касательная к неявно заданной кривой Касательная плоскость к неявно заданной поверхности	411 412 414 415 416 417 418 420
244 245 246 247 248 249 250 251	Линии уровня функции двух переменных Частные производные и область определения Частные производные Вторые производные Проверка того, что функция удовлетворяет ДУ в частных производных Производная сложной функции. Две переменные Касательная к неявно заданной кривой Касательная плоскость к неявно заданной поверхности Третья производная в точке для неявно заданной функции	411 412 414 415 416 417 418 420 421
244 245 246 247 248 249 250 251 252	Линии уровня функции двух переменных Частные производные и область определения Частные производные Вторые производные Проверка того, что функция удовлетворяет ДУ в частных производных Производная сложной функции. Две переменные Касательная к неявно заданной кривой Касательная плоскость к неявно заданной поверхности Третья производная в точке для неявно заданной функции Исследование на экстремум функции 2 переменных простая	411 412 414 415 416 417 418 420 421
244 245 246 247 248 249 250 251 252 253	Линии уровня функции двух переменных Частные производные и область определения Частные производные Вторые производные Проверка того, что функция удовлетворяет ДУ в частных производных Производная сложной функции. Две переменные Касательная к неявно заданной кривой Касательная плоскость к неявно заданной поверхности Третья производная в точке для неявно заданной функции Исследование на экстремум функции 2 переменных простая Исследование на экстремум функции 2 переменных	411 412 414 415 416 417 418 420 421 423
244 245 246 247 248 249 250 251 252 253 254	Линии уровня функции двух переменных Частные производные и область определения Частные производные Вторые производные Проверка того, что функция удовлетворяет ДУ в частных производных Производная сложной функции. Две переменные Касательная к неявно заданной кривой Касательная плоскость к неявно заданной поверхности Третья производная в точке для неявно заданной функции Исследование на экстремум функции 2 переменных простая Исследование на экстремум функции 2 переменных Исследование на экстремум функции 2 переменных Исследование на экстремум полинома 3-й степени 2-х переменных	411 412 414 415 416 417 418 420 421 422 423
244 245 246 247 248 249 250 251 252 253 254 255	Линии уровня функции двух переменных Частные производные и область определения Частные производные Вторые производные Проверка того, что функция удовлетворяет ДУ в частных производных Производная сложной функции. Две переменные Касательная к неявно заданной кривой Касательная плоскость к неявно заданной поверхности Третья производная в точке для неявно заданной функции Исследование на экстремум функции 2 переменных простая Исследование на экстремум функции 2 переменных Исследование на экстремум полинома 3-й степени 2-х переменных Исследование на экстремум функции 2 переменных с логарифмом	411 412 414 415 416 417 418 420 421 423 424 425
244 245 246 247 248 249 250 251 252 253 254 255 256	Линии уровня функции двух переменных Частные производные и область определения Частные производные Вторые производные Проверка того, что функция удовлетворяет ДУ в частных производных Производная сложной функции. Две переменные Касательная к неявно заданной кривой Касательная плоскость к неявно заданной поверхности Третья производная в точке для неявно заданной функции Исследование на экстремум функции 2 переменных простая Исследование на экстремум функции 2 переменных Исследование на экстремум полинома 3-й степени 2-х переменных Исследование на экстремум функции 2 переменных с логарифмом Минимум и максимум в области. На условный экстремум	411 412 414 415 416 417 418 420 421 423 424 425 426

$\mathbf{X}\mathbf{V}$	Кратные интегралы	430
260	Двойной интеграл по прямоугольной области	431
261	Двойной интеграл по треугольнику	432
262	Двойной интеграл	433
263	Двойной интеграл в полярных координатах. Сложный	434
264	Нахождение площади с помощью двойного интеграла	435
265	Площадь через двойной интеграл в эллиптических координатах (надо доработать)	436
266	Центр масс фигуры, ограниченной параболой и прямой	437
267	Тройной интеграл в прямоугольной области	438
268	Вычисление объёма тела через тройной интеграл	439
269	Вычисление объёма тела через тройной интеграл. Сложный	440
270	Кри I по отрезку прямой	441
271	Кри II в пространственном потенциальном поле	443
272	Поверхностный интеграл II рода	445
VVII	D	1.10
XVI	Ряды	446
273	Сумма рядов	
274	Сравнение рядов	
275	Признаки Даламбера и Коши. Простые	
276	Признаки Даламбера и Коши	
277	Интегральный признак	
278	Знакопеременные ряды	
279	Сходимость функциональных рядов	
280	Радиус сходимости степенного ряда	
281	Область сходимости степенного ряда. Сложный	
282	Приближённых вычисления с помощью рядов Тейлора	462
XVII	Дифференциальные уравнения	46 4
	Уравнения с разделяющимися переменными	_
284	Линейное неоднородное ДУ	
285	Однородное ДУ I порядка	
286	Однородное уравнение первого порядка	
287	Линейное неоднородное ДУ	
288	Линейные дифференциальные уравнения1	
289	Линейные дифференциальные уравнения2	
290	Линейные дифференциальные уравненияЗ	
291	ДУ 2-го порядка 2 действительных корня	
292	ДУ 2-го порядка комплексные корни	
293	ДУ 2-го порядка кратный корень	
294	Неоднородное ДУ 2-го порядка I	
295	Неоднородное ДУ 2-го порядка II	
296	Неоднородное ДУ 2-го порядка III	
297	Неоднородное ДУ 2-го порядка IV	
298	Задача Коши для неоднородного ДУ 2-го порядка	
299	Дифференциальные уравнения второго порядка1	
300	Дифференциальные уравнения второго порядка?	
301	Дифференциальные уравнения в полных дифференциалах	
302	уравнение кривой, определяемое ДУ	
303	ДУ с «интегрирующим множителем»	
909	4. o sunterbubloman nuowatenens	+31

XVII	I Уравнения математической физики	492
304	Приведение к каноническому виду	. 493
305	Задача Коши для ур колеб струны	
306	Смешанная задача для ур колеб струны	. 495
XIX	Теория вероятностей	496
307	Элементарная вероятность	. 497
308	Элементарная вероятность	
309	Формула полной вероятности	. 499
310	Закон Пуассона	. 500
311	Дискретные случайные величины	. 501
312	Непрерывные случайные величины	. 502
313	Оценка параметров	. 503
314	Статистика	. 504
XX	ЭМММ	505
315	Потребитель и его поведение	
XXI	Экзаменационные вопросы	507
316	NCUT 1 I	. 508
317	ИСИТ 1 II	. 510
318	ИСИТ 4. Коллоквиум I	. 511
319	ИСИТ 4. Коллоквиум II	. 512
320	ИСИТ 4. Экзамен I	. 513
321	ИСИТ 4. Экзамен II	. 514
322	Физтех. Вероятность I	. 516
323	Dustey Reportmonth II	517

Часть I Элементарные переобразования

Вычислить выражение

1. Вычислить выражение.

1)
$$\frac{a+b+c}{d\cdot h+f\cdot k}\cdot l+m\cdot n$$

$$\sqrt{\frac{a+b+c}{dh+fk}}l+mn$$

$$\rightarrow a = 3 + \frac{1}{5}; \ 3 - \frac{1}{5}; \ 4 + \frac{1}{2}; \ 4 - \frac{1}{2}; \ 6 + \frac{1}{5}; \ 6 - \frac{1}{5}; \ 3 + \frac{1}{10}$$

$$\rightarrow b = 1 + \frac{7}{10}; 2 + \frac{1}{10}; 2 + \frac{1}{2}; 3 + \frac{9}{10}$$

$$\rightarrow c = \frac{3}{2}; \frac{1}{2}$$

$$\rightarrow d = \frac{29}{5}; \frac{16}{5}$$

$$\rightarrow f = 1; 2$$

$$\rightarrow h = \frac{1}{5}; \frac{2}{5}$$

$$\rightarrow k = 1 + \frac{13}{20}; 1 + \frac{6}{5}$$

$$\rightarrow l = 3 + \frac{1}{5}; 1 + \frac{1}{2}$$

$$\rightarrow m = 1 + \frac{1}{2}; 2 + \frac{1}{2}$$

$$\rightarrow n = \frac{11}{20}; 1 + \frac{1}{5}$$

1)
$$\sqrt[n]{y^{\frac{2n}{m-n}}} : \sqrt[m]{y^{\frac{(m-n)^2+4mn}{m^2-n^2}}}$$

$$\sqrt{}\sqrt{y}$$

$$\rightarrow m = 2; 4; 6; 8; 10; 12; 14; 16; 32; 34; 36$$

$$\rightarrow n = 3; 5; 7; 9; 11; 13; 15; 17; 19; 21; 23$$

1)
$$\sqrt{a+b+2\sqrt{ab}} + \sqrt{c+d-2\sqrt{cd}}$$

 $\sqrt{a+\sqrt{b}} + \sqrt{c} - \sqrt{d}$
 $\rightarrow a = 1; 2; 3; 4; 5$

$$\rightarrow b = 2; 5; 7; 9; 11$$

$$\rightarrow c = 10; 12; 14; 16; 32$$

$$\rightarrow$$
 d = 1; 2; 3; 4; 5; 6; 7; 8; 9

1)
$$\frac{(a^{\frac{1}{m}} - a^{\frac{1}{n}})^2 + 4a^{\frac{m+n}{mn}}}{(a^{\frac{2}{m}} - a^{\frac{2}{n}})(\sqrt[m]{a^{m+1}} + \sqrt[n]{a^{n+1}})}$$

$$\sqrt{\frac{1}{a(\sqrt[m]{a}-\sqrt[n]{a})}}$$

$$\rightarrow m = 2; 4; 6; 8; 10; 12; 14; 16; 18; 20; 22; 24$$

$$\rightarrow n = 3; 5; 7; 9; 11; 13; 15; 17; 19; 21; 23$$

1)
$$\frac{\left(x^{\frac{2}{m}} - 9x^{\frac{2}{n}}\right) \cdot \left(\sqrt[m]{x^{1-m}} - 3\sqrt[n]{x^{1-n}}\right)}{\left(x^{\frac{1}{m}} + 3x^{\frac{1}{n}}\right)^2 - 12x^{\frac{m+n}{mn}}}$$

$$\sqrt{\frac{x^{\frac{1}{m}} + 3x^{\frac{1}{n}}}{x}}$$

- $\rightarrow m = 2; 4; 6; 8; 10; 12; 14; 16; 18; 20; 22; 24$
- $\rightarrow n = 1; 3; 5; 7; 9; 11; 13; 15; 17; 19; 21; 23$

Решить уравнение

6. Решить уравнение.

1)
$$\frac{5(a+b)}{y+(a+b)} + \frac{4(a+b)}{y+2(a+b)} + \frac{3(a+b)}{y+3(a+b)} = 8$$

$$\sqrt{y_1} = 0, \ y_{2,3} = \frac{(a+b)}{4}(-9 \pm \sqrt{5})$$

$$\rightarrow a = 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13$$

$$\rightarrow$$
 b = 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13

Решить уравнение

7. Решить уравнение.

 $\rightarrow b = 1; 2; 3; 4; 5; 6; 7; 8; 9; 10$

1)
$$\frac{(x-a)\sqrt{x-a} + (x-b)\sqrt{x-b}}{\sqrt{x-a} + \sqrt{x-b}} = a-b$$

$$\sqrt{x_1 = a, x_2 = \frac{1}{4}(4a-b)}$$

$$\rightarrow a = 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22; 23; 24; 25$$

1)
$$a^{\frac{2}{\log_b a} + 1}b - 2a^{\log_a b}b^{\log_b a} + a \cdot b^{\frac{2}{\log_a b} + 1}$$

$$\sqrt{ab(a-b)^2}$$

$$\rightarrow a = 2; 4; 6; 8; 10; 12; 14; 16; 18; 20; 22; 24$$

$$\rightarrow$$
 b = 3; 5; 7; 9; 11; 13; 15; 17; 19; 21; 23

$$1) \quad \frac{1 - \log_a^3 b}{(\log_a b + \log_b a + 1) \cdot \log_a \frac{a}{b}}$$

$$\sqrt{\log_a b}$$

$$\rightarrow a = 2; 4; 6; 8; 10; 12; 14; 16; 18; 20; 22; 24$$

$$\rightarrow$$
 b = 3; 5; 7; 9; 11; 13; 15; 17; 19; 21; 23

1)
$$\frac{\log_a b - \log_{\sqrt{a}/b^3} \sqrt{b}}{\log_{a/b^4} b - \log_{a/b^6} b} : \log_b(a^3 b^{-12})$$

$$\sqrt{\log_a b}$$

- $\rightarrow a = 2; 4; 6; 8; 10; 12; 14; 16; 18; 20; 22$
- \rightarrow b = 3; 5; 7; 9; 11; 13; 15; 17; 19; 21; 23

Часть II Алгебра и теория чисел

НОД двух чисел

- **11.** Найдите d = HOД(a, b) и представте его в виде d = ak + bs, где $k, s \in Z$.
- 1) $a = r_5(q_1q_2q_3q_4q_5q_6 + q_1q_2q_5q_6 + q_1q_4q_5q_6 + q_1q_2q_3q_6 + q_1q_2q_3q_4 + q_1q_2 + q_1q_4 + q_1q_6 + q_3q_4q_5q_6 + q_5q_5q_6 + q_1q_2q_3q_4 + q_1q_2q_$
- $\sqrt{d} = r_5, \ k = 1 + q_2q_3 + q_2q_5 + q_4q_5 + q_2q_3q_4q_5, \ s = -(q_1 + q_3 + q_5 + q_1q_2q_3 + q_1q_2q_5 + q_1q_4q_5 + q_3q_4q_5)$
- $\rightarrow r_5 = 2; 3; 6; 13$
- $\rightarrow q_1 = 3; 2$
- $\rightarrow q_2 = 1; 2$
- $\rightarrow q_3 = 2; 3$
- $\rightarrow q_4 = 1; 3$
- $\rightarrow q_5 = 2; 1$
- $\rightarrow q_6 = 2; 3$

НОД двух многочленов

- **12.** Найдите НОД двух многочленов f(x) и g(x).
- 1) $f(x) = a_3 A_1 A_2 A_3 A_4 x^6 + (a_3 (A_1 A_2 A_3 B_4 + A_1 A_2 A_4 B_3 + A_1 A_3 A_4 B_2 + A_2 A_3 A_4 B_1) + b_3 A_1 A_2 A_3 A_4)$
- $\sqrt{d} = \text{HOД}(f(x), g(x)) = a_3x + b_3$
- $\rightarrow a_3 = 1; 2; 3; 4$
- $\rightarrow b_3 = 1; -1; 2; -3$
- $\rightarrow A_4 = 1; 2$
- $\rightarrow A_3 = 1; -3$
- $\rightarrow A_2 = 1; 2; -2$
- $\rightarrow A_1 = 0; 1; 2$
- $\rightarrow B_4 = 1; -2$
- $\rightarrow B_3 = 1; -3$
- $\rightarrow B_2 = 1; 2; -1$
- $\rightarrow B_1 = 1; -1; 2; -2$
- $\rightarrow C_1 = 1; 2; -1$

Рациональные корни многочленов

- **13.** Найдите рациональные корни многочлена f(x).
- 1) $f(x) = akmx^5 + (bmk alm akn)x^4 + (ckm blm bkn + aln)x^3 + (bln clm ckn + dkm)$
- $\sqrt{\quad x_1 = \frac{l}{k}, \, x_2 = \frac{n}{m}}$
- $\rightarrow a = 2; 3; 4$
- $\rightarrow b = 2; -3; -5$
- \rightarrow c = 2; 3; -2
- $\rightarrow d = -3; 2; 6$
- $\rightarrow k = 1; 7; 6$
- $\rightarrow l = 2; -3; 5$
- $\rightarrow m = 1; 7; 3$
- $\rightarrow n = 2; 5; 4$

Разложение на множители многочлена 4 степени

14. Разложить многочлен на неприводимые над полем $\mathbb R$ множители.

1)
$$x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$$

$$\sqrt{(x-a)(x-b)(x-c)(x-d)}$$

$$\rightarrow a_3 = -(a+b+c+d)$$

$$\rightarrow a_2 = ab + ac + ad + bc + bd + cd$$

$$\rightarrow a_1 = -(bcd + acd + abd + abc)$$

$$\rightarrow a_0 = abcd$$

$$\rightarrow d = c + 1; c + 2$$

$$\rightarrow c = b + 1; b + 2$$

$$\rightarrow b = a + 1; a + 2$$

$$\rightarrow a = -3; -2$$

2)
$$x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$$

$$\sqrt{(x-a)^2(x-b)(x-c)}$$

$$\rightarrow a_3 = -(a+b+c+d)$$

$$\rightarrow a_2 = ab + ac + ad + bc + bd + cd$$

$$\rightarrow a_1 = -(bcd + acd + abd + abc)$$

$$\rightarrow a_0 = abcd$$

$$\rightarrow$$
 $d = a$

$$\rightarrow c = b + 1; b + 2$$

$$\rightarrow b = a + 1; a + 2; a + 3$$

$$\rightarrow a = -3; -2$$

3)
$$x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$$

$$\sqrt{(x-a)^3(x-b)}$$

$$\rightarrow a_3 = -(a+b+c+d)$$

$$\rightarrow a_2 = ab + ac + ad + bc + bd + cd$$

$$\rightarrow a_1 = -(bcd + acd + abd + abc)$$

$$\rightarrow a_0 = abcd$$

$$\rightarrow$$
 $d = a$

$$\rightarrow$$
 $c = a$

$$\rightarrow b = -2; -1; 3$$

$$\rightarrow a = -3; 1; 2$$

4)
$$x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$$

$$\sqrt{(x-a)^2(x-b)^2}$$

$$\rightarrow a_3 = -(a+b+c+d)$$

$$\rightarrow a_2 = ab + ac + ad + bc + bd + cd$$

$$\rightarrow a_1 = -(bcd + acd + abd + abc)$$

$$\rightarrow a_0 = abcd$$

$$\rightarrow d = a$$

$$\rightarrow$$
 $c = b$

$$\rightarrow b = -2; -1; 3$$

$$\rightarrow a = -3; 1; 2$$

5)
$$x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$$

$$\sqrt{(x-a)(x-b)(x^2+cx+d)}$$

$$\rightarrow a_3 = c - a - b$$

$$\rightarrow a_2 = d + ab - ca - cb$$

$$\rightarrow a_1 = abc - da - db$$

$$\rightarrow a_0 = abd$$

$$\rightarrow b = -2; -1; 3$$

$$\rightarrow a = -3; 1; 2$$

$$\rightarrow d = c^2 + 1$$
; $c^2 + 2$; $c^2 + 3$; $c^2 + 4$

$$\rightarrow c = -2; -1; 0; 1; 2$$

6)
$$x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$$

$$\sqrt{(x-a)^2(x^2+cx+d)}$$

$$\rightarrow a_3 = c - a - b$$

$$\rightarrow a_2 = d + ab - ca - cb$$

$$\rightarrow a_1 = abc - da - db$$

$$\rightarrow a_0 = abd$$

$$\rightarrow$$
 $b = a$

$$\rightarrow a = -3; -2; -1; 1; 2; 3$$

$$\rightarrow d = c^2 + 1$$
; $c^2 + 2$; $c^2 + 3$; $c^2 + 4$

$$\rightarrow c = -2; -1; 0; 1; 2$$

15. Построить интерполяционный полином Лагранжа по данной таблице

$$\sqrt{ax^3 + bx^2 + cx + d}$$

$$\rightarrow f_1 = ax_1^3 + bx_1^2 + cx_1 + d$$

$$\to f_2 = ax_2^3 + bx_2^2 + cx_2 + d$$

$$\rightarrow f_3 = ax_3^3 + bx_3^2 + cx_3 + d$$

$$\rightarrow f_4 = ax_4^3 + bx_4^2 + cx_4 + d$$

$$\rightarrow a = -2; -1; 1; 2$$

$$\rightarrow b = -3; -2; -1; 0; 1; 2; 3$$

$$\rightarrow c = -4; -3; -2; -1; 1; 2; 3; 4$$

$$\rightarrow$$
 $d = -7$; -6 ; -5 ; -4 ; -3 ; -2 ; -1 ; 1; 2; 3; 4; 5; 6; 7

$$\rightarrow x_4 = x_3 + 1; x_3 + 2$$

$$\rightarrow x_3 = x_2 + 1; x_2 + 2$$

$$\rightarrow x_2 = x_1 + 1; x_1 + 2$$

$$\rightarrow x_1 = -3; -2$$

16. Построить интерполяционный полином наименьшей степени по данной таблице.

$$\sqrt{ax^4 + bx^3 + cx^2 + dx + e}$$

$$\rightarrow f_1 = ax_1^4 + bx_1^3 + cx_1^2 + dx_1 + e$$

$$\rightarrow f_2 = ax_2^4 + bx_2^3 + cx_2^2 + dx_2 + e$$

$$\rightarrow f_3 = ax_3^4 + bx_3^3 + cx_3^2 + dx_3 + e$$

$$\rightarrow f_4 = ax_4^4 + bx_4^3 + cx_4^2 + dx_4 + e$$

$$\rightarrow f_5 = ax_5^4 + bx_5^3 + cx_5^2 + dx_5 + e$$

$$\rightarrow a = -3; -2; -1; 1; 2; 3$$

$$\rightarrow b = -4; -3; -2; -1; 0; 1; 2; 3; 4$$

$$\rightarrow c = -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5$$

$$\rightarrow$$
 $d = -6$; -5 ; -4 ; -3 ; -2 ; -1 ; 0; 1; 2; 3; 4; 5; 6

$$\rightarrow e = -9; -8-7; -6; -5; -4; -3; -2; -1; 1; 2; 3; 4; 5; 6; 7; 8; 9$$

$$\rightarrow x_5 = 2$$

$$\rightarrow x_4 = 1$$

$$\rightarrow x_3 = 0$$

$$\rightarrow x_2 = -1$$

$$\rightarrow x_1 = -2$$

Разложение правильной рациональной дроби степени 3 на простейшие дроби

17. Представить правильную рациональную дробь в виде суммы простейших дробей.

$$\Rightarrow a = -1; 2; 3; -4$$

$$\Rightarrow$$
 $A = -3; -2; -1; 1; 2; 3; 4; 5$

$$\Rightarrow B = -3; -2; -1; 1; 2; 3; 4; 5$$

$$\Rightarrow$$
 $C = -3; -2; -1; 1; 2; 3; 4; 5$

1)
$$\frac{(A+B+C)x^2 - (A(b+c) + B(a+c) + C(a+b))x + (Abc + Bac + Cab)}{(x-a)(x-b)(x-c)}$$

$$\sqrt{\frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c}}$$

$$\rightarrow b = -2; -3; 5$$

$$\rightarrow c = 1; 4; -5$$

2)
$$\frac{(B+C)x^2 + (A-B(a+b)-2aC)x + (-Ab+Bab+Ca^2)}{(x-a)^2(x-b)}$$

$$\sqrt{\frac{A}{(x-a)^2} + \frac{B}{x-a} + \frac{C}{x-b}}$$

$$\rightarrow b = 1; 4; -2; -3; 5$$

3)
$$\frac{Ax^2 + (B - 2aA)x + (Aa^2 - Ba + C)}{(x - a)^3}$$

$$\sqrt{\frac{A}{x-a} + \frac{B}{(x-a)^2} + \frac{C}{(x-a)^3}}$$

4)
$$\frac{(B+A)x^2 + (C-Ba+2bA)x + (-Ca+Ac)}{(x-a)(x^2+2bx+c)}$$

$$\sqrt{\frac{A}{x-a} + \frac{Bx+C}{x^2+2bx+c}}$$

$$\rightarrow c = b^2 + 1$$
; $b^2 + 2$; $b^2 + 3$; $b^2 + 4$

$$\rightarrow b = 0; -1; 1; -2; 2$$

Разложение правильной рациональной дроби степени 3 на простейшие дроби 2

18. Представить правильную рациональную дробь в виде суммы простейших дробей.

$$\Rightarrow a = -1; 2; 3; -4$$

$$\Rightarrow$$
 $A = -3; -2; -1; 1; 2; 3; 4; 5$

$$\Rightarrow B = -3; -2; -1; 1; 2; 3; 4; 5$$

$$\Rightarrow$$
 $C = -3; -2; -1; 1; 2; 3; 4; 5$

1)
$$\frac{(A+B+C)x^2 - (A(b+c) + B(a+c) + C(a+b))x + (Abc + Bac + Cab)}{x^3 - (a+b+c)x^2 + (ab+ac+bc)x - abc}$$

$$\sqrt{\frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c}}$$

$$\rightarrow b = -2; -3; 5$$

$$\rightarrow c = 1; 4; -5$$

2)
$$\frac{(B+C)x^2 + (A-B(a+b) - 2aC)x + (-Ab + Bab + Ca^2)}{x^3 - (2a+b)x^2 + (2ab+a^2)x - a^2b}$$

$$\sqrt{\frac{A}{(x-a)^2} + \frac{B}{x-a} + \frac{C}{x-b}}$$

$$\rightarrow b = 1; 4; -2; -3; 5$$

3)
$$\frac{Ax^2 + (B - 2aA)x + (Aa^2 - Ba + C)}{x^3 - 3ax^2 + 3a^2x - a^3}$$

$$\sqrt{\frac{A}{x-a} + \frac{B}{(x-a)^2} + \frac{C}{(x-a)^3}}$$

4)
$$\frac{(B+A)x^2 + (C-Ba+2bA)x + (-Ca+Ac)}{x^3 + (2b-a)x^2 + (c-2ba)x - ac}$$

$$\sqrt{\frac{A}{x-a} + \frac{Bx + C}{x^2 + 2bx + c}}$$

$$\rightarrow c = b^2 + 1; b^2 + 2; b^2 + 3; b^2 + 4$$

$$\rightarrow b = 0; -1; 1; -2; 2$$

Разложение рациональной дроби степени 3 на простейшие дроби

19. Представить рациональную дробь в виде суммы простейших дробей.

$$\Rightarrow a = -1; 2; 3; -4$$

$$\Rightarrow$$
 $A = -3; -2; -1; 1; 2; 3; 4; 5$

$$\Rightarrow$$
 B = -3; -2; -1; 1; 2; 3; 4; 5

$$\Rightarrow$$
 $C = -3; -2; -1; 1; 2; 3; 4; 5$

$$\Rightarrow p = -1; 1; 2$$

$$\Rightarrow$$
 $q = -2; -1; 0; 1; 2; 3$

$$\Rightarrow r = -2; -1; 0; 1; 2; 3; 4$$

1)
$$\frac{px^5 + c_4x^4 + c_3x^3 + c_2x^2 + c_1x + c_0}{x^3 + b_2x^2 + b_1x + b_0}$$

$$\sqrt{px^2 + qx + r + \frac{A}{x - a} + \frac{B}{x - b} + \frac{C}{x - c}}$$

$$\rightarrow c_4 = q + b_2 p$$

$$\rightarrow c_3 = r + b_2 q + b_1 p$$

$$\rightarrow c_2 = a_2 + b_2 r + b_1 q + b_0 p$$

$$\rightarrow c_1 = a_1 + b_1 r + b_0 q$$

$$\rightarrow c_0 = a_0 + b_0 r$$

$$\rightarrow a_2 = A + B + C$$

$$\rightarrow a_1 = -A(b+c) - B(a+c) - C(a+b)$$

$$\rightarrow a_0 = Abc + Bac + Cab$$

$$\rightarrow b_2 = -a - b - c$$

$$\rightarrow b_1 = ab + ac + bc$$

$$\rightarrow b_0 = -abc$$

$$\rightarrow b = -2; -3; 5$$

$$\rightarrow c = 1; 4; -5$$

2)
$$\frac{px^5 + c_4x^4 + c_3x^3 + c_2x^2 + c_1x + c_0}{x^3 + b_2x^2 + b_1x + b_0}$$

$$\sqrt{px^2 + qx + r + \frac{A}{(x-a)^2} + \frac{B}{x-a} + \frac{C}{x-b}}$$

$$\rightarrow c_4 = q + b_2 p$$

$$\rightarrow c_3 = r + b_2 q + b_1 p$$

$$\rightarrow c_2 = a_2 + b_2 r + b_1 q + b_0 p$$

$$\rightarrow c_1 = a_1 + b_1 r + b_0 q$$

$$\rightarrow c_0 = a_0 + b_0 r$$

$$\rightarrow a_2 = B + C$$

$$\rightarrow a_1 = A - B(a+b) - 2aC$$

$$\rightarrow a_0 = -Ab + Bab + Ca^2$$

$$\rightarrow b_2 = -(2a+b)$$

$$\rightarrow b_1 = 2ab + a^2$$

$$\rightarrow b_0 = -a^2b$$

$$\rightarrow b = 1; 4; -2; -3; 5$$

3)
$$\frac{px^5 + c_4x^4 + c_3x^3 + c_2x^2 + c_1x + c_0}{x^3 + b_2x^2 + b_1x + b_0}$$

$$\sqrt{px^2 + qx + r + \frac{A}{x-a} + \frac{B}{(x-a)^2} + \frac{C}{(x-a)^3}}$$

$$\rightarrow c_4 = q + b_2 p$$

$$\rightarrow c_3 = r + b_2 q + b_1 p$$

$$\rightarrow c_2 = a_2 + b_2 r + b_1 q + b_0 p$$

$$\rightarrow c_1 = a_1 + b_1 r + b_0 q$$

$$\rightarrow c_0 = a_0 + b_0 r$$

$$\rightarrow a_2 = A$$

$$\rightarrow a_1 = B - 2aA$$

$$\rightarrow a_0 = Aa^2 - Ba + C$$

$$\rightarrow b_2 = -3a$$

$$\rightarrow b_1 = 3a^2$$

$$\rightarrow b_0 = -a^3$$

4)
$$\frac{px^5 + c_4x^4 + c_3x^3 + c_2x^2 + c_1x + c_0}{x^3 + b_2x^2 + b_1x + b_0}$$

$$\sqrt{px^2 + qx + r + \frac{A}{r - a} + \frac{Bx + C}{r^2 + 2br + c}}$$

$$\rightarrow c_4 = q + b_2 p$$

$$\rightarrow c_3 = r + b_2 q + b_1 p$$

$$\rightarrow c_2 = a_2 + b_2 r + b_1 q + b_0 p$$

$$\rightarrow c_1 = a_1 + b_1 r + b_0 q$$

$$\rightarrow c_0 = a_0 + b_0 r$$

$$\rightarrow a_2 = B + A$$

$$\rightarrow a_1 = C - Ba + 2bA$$

$$\rightarrow a_0 = -Ca + Ac$$

$$\rightarrow b_2 = 2b - a$$

$$\rightarrow b_1 = c - 2ba$$

$$\rightarrow b_0 = -ac$$

$$\rightarrow c = b^2 + 1$$
; $b^2 + 2$; $b^2 + 3$; $b^2 + 4$

$$\rightarrow b = 0; -1; 1; -2; 2$$

Часть III Комплексные числа

Вычисление комплексного выражения

20. Вычислить $\frac{z_1(z_2+z_3)}{z_2}$.

1)
$$z_1 = a_1 + ib_1$$
, $z_2 = a_2 + ib_2$, $z_3 = a_3a_2 - b_3b_2 + i(a_3b_2 + b_3a_2)$

$$\sqrt{a_1 + a_1a_3 - b_1b_3 + i(b_1 + a_1b_3 + b_1a_3)}$$

$$\rightarrow a_1 = -3; -2; -1; 1; 2; 3; 4$$

$$\rightarrow b_1 = -3; -2; -1; 1; 2; 3; 4$$

$$\rightarrow a_2 = -4; -3; -2; -1; 1; 2; 3; 4; 5$$

$$\rightarrow b_2 = -4; -3; -2; -1; 1; 2; 3; 4; 5$$

$$\rightarrow a_3 = -3; -2; -1; 1; 2; 3; 4$$

$$\rightarrow b_3 = -3; -2; -1; 1; 2; 3; 4$$

- **21.** Найти произведение и частное z_1z_2 и z_1/z_2 в алгебраической форме. Затем записать комплексные числа в тригонометрической форме и проверить полученный результат.
- \Rightarrow a = 1; 2; 3; 4; 5; 6; 7
- \Rightarrow b = 1; 2; 3; 4; 5; 6; 7
- 1) $z_1 = a + ai$, $z_2 = b + bi$ $z_1 z_2 = 2abi$, $\frac{z_1}{z_2} = \frac{a}{b}$,
- $\sqrt{z_1 = a\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)}$
- $z_2 = b\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$
- 2) $z_1 = a ai$, $z_2 = b + bi$

$$z_1 z_2 = 2ab, \quad \frac{z_1}{z_2} = -\frac{a}{b}i,$$

 $\sqrt{z_1 = a\sqrt{2}\left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right)}$

$$z_2 = b\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$

3) $z_1 = -a + ai$, $z_2 = b + bi$

$$z_1 z_2 = -2ab, \quad \frac{z_1}{z_2} = 2\frac{a}{b}i,$$

 $\sqrt{z_1 = a\sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)}$

$$z_2 = b\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$

4) $z_1 = -a - ai$, $z_2 = b + bi$

$$z_1 z_2 = -2abi, \quad \frac{z_1}{z_2} = -\frac{a}{b},$$

 $\sqrt{z_1 = a\sqrt{2}\left(\cos\left(-\frac{3\pi}{4}\right) + i\sin\left(-\frac{3\pi}{4}\right)\right)}$

$$z_2 = b\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$

5) $z_1 = a - ai$, $z_2 = -b - bi$

$$z_1 z_2 = -2ab, \quad \frac{z_1}{z_2} = \frac{a}{b}i,$$

$$\sqrt{z_1 = a\sqrt{2}\left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right)}$$

$$z_2 = b\sqrt{2}\left(\cos\left(-\frac{3\pi}{4}\right) + i\sin\left(-\frac{3\pi}{4}\right)\right)$$

22. Построить на комплексной плоскости следующие множества точек

$$\Rightarrow$$
 $a = 1; 2; 3; 4; 5; 6; 7; 8$

1)
$$|z|^2 + 2a\Re z < a^2$$

$$\sqrt{(x+a)^2 + y^2} \le 2a^2$$
 внутренность круга с центром в т. $(-a;0)$, $R = a\sqrt{2}$

2)
$$\Im z^2 = 2a, \ z = x + iy$$

$$\sqrt{y} = \frac{a}{x}$$
, ветви в I и III четвертях гиперболы

3)
$$\Re z^2 = 2a$$
, $z = x + iy$

$$\sqrt{-\frac{x^2}{2a}-\frac{y^2}{2a}}=1$$
 , гипербола равнобокая

$$4) \quad \Im\frac{1}{z} = \frac{1}{2a}$$

$$\sqrt{x^2 + (y-a)^2} = a^2$$
 окружность с центром в т. $(0;a), R = a$

5)
$$\Re \frac{1}{z} = \frac{1}{2a}$$

$$\sqrt{(x-2)^2+y^2=a^2}$$
 окружность с центром в т. $(a;0)$, $R=a$

6)
$$\Im \frac{z-a}{z+a} \leq 0$$

$$\sqrt{-y} \leq 0$$
 нижняя полуокружность, включая действительную полуось

$$7) \Re \frac{z-a}{z+a} > 0$$

$$\sqrt{x^2 + y^2} > a^2$$
 внешность круга с центром в т. $(0;0), R = a$

8)
$$\left| \frac{z-a}{z+a} \right| \leq 1$$

$$\sqrt{-x} \ge 0$$
 правая полуокружность, включая мнимую ось

9)
$$|z| = \Re(a+z)$$

$$\sqrt{y^2} = 2a\left(x + \frac{a}{2}\right)$$
 парабола, ветви вправо, с вершиной в т. $\left(-\frac{a}{2};0\right)$

$$10) |\bar{z}| = \Im(a+z)$$

$$\sqrt{x^2 = 2a\left(y + \frac{a}{2}\right)}$$
 парабола, ветви вверх, с вершиной в т. $\left(0; -\frac{a}{2}\right)$

11)
$$0 \le \Re ai\bar{z} \le a$$

$$\sqrt{0} \le y \le a$$
 полоса, ограниченная прямыми $y = 0, y = 1$

- 12) $0 \le \Im ai\bar{z} \le 1$
- $\surd \quad 0 \leq x \leq 1$ полоса, ограниченная прямыми x=0, x=1

23. Решить уравнение

$$\Rightarrow a = 2; 3; 4; 5; 6$$

$$1) |z| - z = a + ai$$

$$\sqrt{z=-ai}$$

$$2) |z| + z = a + ai$$

$$\sqrt{z=ai}$$

$$3) |z| - z = a + a\sqrt{3}i$$

$$\sqrt{z} = a - \sqrt{3}ai$$

$$4) |z| + z = a + a\sqrt{3}i$$

$$\sqrt{z = -a + \sqrt{3}ai}$$

5)
$$|z| - az = -\sqrt{a^2 - 1}i$$

$$\sqrt{z = \pm 1 - \sqrt{a^2 - 1}i}$$

24. Возвести комплексное число в 200 степень и найти корень 3-ей степени. Построить корни на комплексной плоскости.

$$\Rightarrow$$
 a = 1; 2; 3; 4; 5; 6; 7; 8; 9; 10

1)
$$z = ai$$

$$z^{200} = a^{200}$$

$$\sqrt[3]{z} = \sqrt[3]{a} \left(\cos \frac{\pi/2 + 2\pi k}{3} + i \sin \frac{\pi/2 + 2\pi k}{3} \right), k = \overline{0, 2}$$

$$\alpha_0 = \sqrt[3]{a} \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right) = \sqrt[3]{a} \left(\frac{\sqrt{3}}{2} + \frac{i}{2} \right)$$

$$\alpha_1 = \sqrt[3]{a} \left(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6} \right) = \sqrt[3]{a} \left(-\frac{\sqrt{3}}{2} + \frac{i}{2} \right)$$

$$\alpha_2 = \sqrt[3]{a} \left(\cos \frac{9\pi}{6} + i \sin \frac{9\pi}{6} \right) = \sqrt[3]{a} \left(\cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2} \right) = -i \sqrt[3]{a}$$

$$2) \quad z = -ai$$

$$z^{200} = a^{200}$$

$$\sqrt[3]{z} = \sqrt[3]{a} \left(\cos \frac{-\pi/2 + 2\pi k}{3} + i \sin \frac{-\pi/2 + 2\pi k}{3} \right), k = \overline{0,2}$$

$$\alpha_0 = \sqrt[3]{a} \left(\cos \left(-\frac{\pi}{6} \right) + i \sin \left(-\frac{\pi}{6} \right) \right) = \sqrt[3]{a} \left(\frac{\sqrt{3}}{2} - \frac{i}{2} \right)$$

$$\alpha_1 = \sqrt[3]{a} \left(\cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2} \right) = \sqrt[3]{a}i$$

$$\alpha_2 = \sqrt[3]{a} \left(\cos \frac{7\pi}{6} + i \sin \frac{7\pi}{6} \right) = \sqrt[3]{a} \left(-\frac{\sqrt{3}}{2} - \frac{i}{2} \right)$$

25. Возвести комплексное число в 200 степень и найти корни 4-ой степени.

$$\Rightarrow$$
 $a = 1; 2; 3; 4; 5; 6; 7; 8; 9; 10$

1)
$$z = a + ai$$

 $z^{200} = a^{200}2^{100}$
 $\sqrt[4]{z} = \sqrt[4]{a}\sqrt[8]{2} \left(\cos\frac{\pi/4 + 2\pi k}{4} + i\sin\frac{\pi/4 + 2\pi k}{4}\right), k = \overline{0,3}$
 $\alpha_0 = \sqrt[4]{a}\sqrt[8]{2} \left(\cos\frac{\pi}{16} + i\sin\frac{\pi}{16}\right)$
 $\alpha_1 = \sqrt[4]{a}\sqrt[8]{2} \left(\cos\frac{9\pi}{16} + i\sin\frac{9\pi}{16}\right)$
 $\sqrt[4]{a} = \sqrt[4]{a}\sqrt[8]{2} \left(\cos\frac{17\pi}{16} + i\sin\frac{17\pi}{16}\right) = \frac{\sqrt[4]{a}\sqrt[8]{2}}{2} \left(\cos\left(-\frac{15\pi}{16}\right) + i\sin\left(-\frac{15\pi}{16}\right)\right)$
 $\alpha_3 = \sqrt[4]{a}\sqrt[8]{2} \left(\cos\left(-\frac{25\pi}{16}\right) + i\sin\frac{25\pi}{16}\right) = \frac{\sqrt[4]{a}\sqrt[8]{2}}{2} \left(\cos\left(-\frac{7\pi}{16}\right) + i\sin\left(-\frac{7\pi}{16}\right)\right)$

2)
$$z = a - ai$$

 $z^{200} = a^{200}2^{100}$
 $\sqrt[4]{z} = \sqrt[4]{a}\sqrt[8]{2} \left(\cos\frac{-\pi/4 + 2\pi k}{4} + i\sin\frac{-\pi/4 + 2\pi k}{4}\right), k = \overline{0,3}$
 $\alpha_0 = \sqrt[4]{a}\sqrt[8]{2} \left(\cos\left(-\frac{\pi}{16}\right) + i\sin\left(-\frac{\pi}{16}\right)\right)$
 $\sqrt[4]{a} = \sqrt[4]{a}\sqrt[8]{2} \left(\cos\frac{7\pi}{16} + i\sin\frac{7\pi}{16}\right)$
 $\alpha_2 = \sqrt[4]{a}\sqrt[8]{2} \left(\cos\frac{15\pi}{16} + i\sin\frac{15\pi}{16}\right)$
 $\alpha_3 = \sqrt[4]{a}\sqrt[8]{2} \left(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}\right) = \sqrt[4]{a}\sqrt[8]{2}i$

3)
$$z = -a + ai$$

$$z^{200} = a^{200}2^{100}$$

$$\sqrt[4]{z} = \sqrt[4]{a}\sqrt[8]{2} \left(\cos\frac{3\pi/4 + 2\pi k}{4} + i\sin\frac{3\pi/4 + 2\pi k}{4}\right), k = \overline{0,3}$$

$$\alpha_0 = \sqrt[4]{a}\sqrt[8]{2} \left(\cos\frac{3\pi}{16} + i\sin\frac{3\pi}{16}\right)$$

$$\alpha_1 = \sqrt[4]{a}\sqrt[8]{2} \left(\cos\frac{11\pi}{16} + i\sin\frac{11\pi}{16}\right)$$

$$\alpha_1 = \sqrt[4]{a}\sqrt[8]{2} \left(\cos \frac{11\pi}{16} + i \sin \frac{11\pi}{16} \right)$$

$$\alpha_{2} = \sqrt[4]{a} \sqrt[8]{2} \left(\cos \frac{19\pi}{16} + i \sin \frac{19\pi}{16} \right) =$$

$$= \sqrt[4]{a} \sqrt[8]{2} \left(\cos \left(-\frac{13\pi}{16} \right) + i \sin \left(-\frac{13\pi}{16} \right) \right)$$

$$\alpha_{3} = \sqrt[4]{a} \sqrt[8]{2} \left(\cos \frac{27\pi}{16} + i \sin \frac{27\pi}{16} \right) =$$

$$= \sqrt[4]{a} \sqrt[8]{2} \left(\cos \left(-\frac{5\pi}{16} \right) + i \sin \left(-\frac{5\pi}{16} \right) \right)$$

$$4) \quad z = -a - ai$$

$$z^{200} = a^{200}2^{100}$$

$$\sqrt[4]{z} = \sqrt[4]{a}\sqrt[8]{2} \left(\cos \frac{-3\pi/4 + 2\pi k}{4} + i \sin \frac{-3\pi/4 + 2\pi k}{4} \right), k = \overline{0,3}$$

$$\cos = \sqrt[4]{a}\sqrt[8]{2} \left(\cos \left(-\frac{3\pi}{4} \right) + i \sin \left(-\frac{3\pi}{4} \right) \right)$$

$$\alpha_0 = \sqrt[4]{a} \sqrt[8]{2} \left(\cos \left(-\frac{3\pi}{16} \right) + i \sin \left(-\frac{3\pi}{16} \right) \right)$$

$$\sqrt{\alpha_1 = \sqrt[4]{a}\sqrt[8]{2} \left(\cos\frac{5\pi}{16} + i\sin\frac{5\pi}{16}\right)}$$

$$\alpha_2 = \sqrt[4]{a} \sqrt[8]{2} \left(\cos \frac{15\pi}{16} + i \sin \frac{15\pi}{16} \right)$$

$$\alpha_3 = \sqrt[4]{a} \sqrt[8]{2} \left(\cos \frac{21\pi}{16} + i \sin \frac{21\pi}{16} \right) =$$

$$= \sqrt[4]{a} \sqrt[8]{2} \left(\cos \left(-\frac{11\pi}{16} \right) + i \sin \left(-\frac{11\pi}{16} \right) \right)$$

$$5) \quad z = a + i\sqrt{3}a$$

$$z^{200} = 2a^{200} \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2} \right)$$

$$\sqrt[4]{z} = \sqrt[4]{2a} \left(\cos \frac{\pi/3 + 2\pi k}{4} + i \sin \frac{\pi/3 + 2\pi k}{4} \right), k = \overline{0, 3}$$

$$\alpha_0 = \sqrt[4]{2a} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right)$$

$$\alpha_1 = \sqrt[4]{2a} \left(\cos \frac{7\pi}{12} + i \sin \frac{7\pi}{12} \right)$$

$$\alpha_2 = \sqrt[4]{2a} \left(\cos \frac{13\pi}{12} + i \sin \frac{13\pi}{12} \right) = \sqrt[4]{2a} \left(\cos \left(-\frac{11\pi}{12} \right) + i \sin \left(-\frac{11\pi}{12} \right) \right)$$

$$\alpha_3 = \sqrt[4]{2a} \left(\cos \frac{19\pi}{12} + i \sin \frac{19\pi}{12} \right) = \sqrt[4]{2a} \left(\cos \left(-\frac{5\pi}{12} \right) + i \sin \left(-\frac{5\pi}{12} \right) \right)$$

$$6) \quad z = a - i\sqrt{3}a$$

$$z^{200} = 2a^{200} \left(-\frac{1}{2} - i\frac{\sqrt{3}}{2} \right)$$

$$\sqrt[4]{z} = \sqrt[4]{2a} \left(\cos \frac{-\pi/3 + 2\pi k}{4} + i \sin \frac{-\pi/3 + 2\pi k}{4} \right), k = \overline{0,3}$$

$$\alpha_0 = \sqrt[4]{2a} \left(\cos \left(-\frac{\pi}{12} \right) + i \sin \left(-\frac{\pi}{12} \right) \right)$$

$$\alpha_1 = \sqrt[4]{2a} \left(\cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \right)$$

$$\alpha_2 = \sqrt[4]{2a} \left(\cos \frac{11\pi}{12} + i \sin \frac{11\pi}{12} \right)$$

$$\alpha_3 = \sqrt[4]{2a} \left(\cos \frac{17\pi}{12} + i \sin \frac{17\pi}{12} \right) = \sqrt[4]{2a} \left(\cos \left(-\frac{7\pi}{12} \right) + i \sin \left(-\frac{7\pi}{12} \right) \right)$$

$$7) \quad z = -a + i\sqrt{3}a$$

7)
$$z = -a + i\sqrt{3}a$$

$$z^{200} = (2a)^{200} \left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)$$

$$\sqrt[4]{z} = \sqrt[4]{2a} \left(\cos\frac{2\pi/3 + 2\pi k}{4} + i\sin\frac{2\pi/3 + 2\pi k}{4}\right), k = \overline{0,3}$$

$$\alpha_0 = \sqrt[4]{2a} \left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) = \sqrt[4]{2a} \left(\frac{\sqrt{3}}{2} + i\frac{1}{2}\right)$$

$$\alpha_1 = \sqrt[4]{2a} \left(\cos\frac{8\pi}{12} + i\sin\frac{8\pi}{12}\right) = \sqrt[4]{2a} \left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) =$$

$$= \sqrt[4]{2a} \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)$$

$$\alpha_2 = \sqrt[4]{2a} \left(\cos\frac{14\pi}{12} + i\sin\frac{14\pi}{12}\right) = \sqrt[4]{2a} \left(\cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}\right) =$$

$$= \sqrt[4]{2a} \left(-\frac{\sqrt{3}}{2} - i\frac{1}{2}\right)$$

$$\alpha_3 = \sqrt[4]{2a} \left(\cos\frac{20\pi}{12} + i\sin\frac{20\pi}{12}\right) = \sqrt[4]{2a} \left(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\right) =$$

$$= \sqrt[4]{2a} \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)$$

$$8) \quad z = -a - i\sqrt{3}a$$

$$z^{200} = (2a)^{200} \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2} \right)$$

$$\sqrt[4]{z} = \sqrt[4]{2a} \left(\cos \frac{-2\pi/3 + 2\pi k}{4} + i\sin \frac{-2\pi/3 + 2\pi k}{4} \right), k = \overline{0,3}$$

$$\alpha_0 = \sqrt[4]{2a} \left(\cos \left(-\frac{\pi}{6} \right) + i\sin \left(-\frac{\pi}{6} \right) \right) = \sqrt[4]{2a} \left(\frac{\sqrt{3}}{2} - i\frac{1}{2} \right)$$

$$\alpha_1 = \sqrt[4]{2a} \left(\cos \frac{\pi}{3} + i\sin \frac{\pi}{3} \right) = \sqrt[4]{2a} \left(\frac{1}{2} + i\frac{\sqrt{3}}{2} \right)$$

$$\alpha_1 = \sqrt[4]{2a} \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right) = \sqrt[4]{2a} \left(\frac{1}{2} + i \frac{\sqrt{3}}{2} \right)$$

$$\alpha_2 = \sqrt[4]{2a} \left(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6} \right) = \sqrt[4]{2a} \left(\frac{\sqrt{3}}{2} + i \frac{1}{2} \right)$$

$$\alpha_3 = \sqrt[4]{2a} \left(\cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3} \right) = \sqrt[4]{2a} \left(-\frac{1}{2} - i \frac{\sqrt{3}}{2} \right)$$

Часть IV Линейная алгебра

26. Найти линейные комбинации заданных матриц:

$$\Rightarrow k = -2; -3; 2; 5$$

$$\Rightarrow l = -5; -4; 3; 4$$

$$\Rightarrow a_{11} = -7; -4; -1; 2; 5$$

$$\Rightarrow a_{12} = -6; -3; 0; 3; 6$$

$$\Rightarrow a_{21} = -5; -2; 1; 4; 7$$

$$\Rightarrow a_{22} = -4; -3; -2; -1; 0; 1; 2; 3; 4$$

$$\Rightarrow$$
 $b_{11} = -7$; -4 ; -1 ; 2; 5

$$\Rightarrow b_{12} = -6; -3; 0; 3; 6$$

$$\Rightarrow b_{21} = -5; -2; 1; 4; 7$$

$$\Rightarrow b_{22} = -4; -3; -2; -1; 0; 1; 2; 3; 4$$

1)
$$kA + lB$$
, $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}$, $B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix}$

$$\sqrt{\begin{array}{cccc}
ka_{11} + lb_{11} & ka_{12} + lb_{12} \\
ka_{21} + lb_{21} & ka_{22} + lb_{22} \\
ka_{31} + lb_{31} & ka_{32} + lb_{32}
\end{array}}$$

$$\rightarrow a_{31} = -5; -2; 1; 4; 7$$

$$\rightarrow a_{32} = -4; -3; -2; -1; 0; 1; 2; 3; 4$$

$$\rightarrow b_{31} = -5; -2; 1; 4; 7$$

$$\rightarrow b_{32} = -4; -3; -2; -1; 0; 1; 2; 3; 4$$

2)
$$kA + lB$$
, $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$, $B = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{pmatrix}$

$$\sqrt{\begin{array}{cccc} ka_{11} + lb_{11} & ka_{12} + lb_{12} & ka_{13} + lb_{13} \\ ka_{21} + lb_{21} & ka_{22} + lb_{22} & ka_{23} + lb_{23} \end{array}}$$

$$\rightarrow a_{13} = -5; -2; 1; 4;$$

$$\rightarrow a_{23} = -4; -3; -2; -1; 0; 1; 2; 3; 4$$

$$\rightarrow b_{13} = -5; -2; 1; 4; 7$$

$$\rightarrow b_{23} = -4; -3; -2; -1; 0; 1; 2; 3; 4$$

3)
$$kA + lB$$
, $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$, $B = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix}$

$$\rightarrow a_{13} = -5; -2; 1; 4; 7$$

$$\rightarrow a_{23} = -4; -3; -2; -1; 0; 1; 2; 3; 4$$

$$\rightarrow b_{13} = -5; -2; 1; 4; 7$$

- $\rightarrow b_{23} = -4; -3; -2; -1; 0; 1; 2; 3; 4$
- $\rightarrow a_{31} = -5; -2; 1; 4; 7$
- $\rightarrow a_{32} = -4; -3; -2; -1; 0; 1; 2; 3; 4$
- $\rightarrow b_{31} = -5; -2; 1; 4; 7$
- $\rightarrow b_{32} = -4; -3; -2; -1; 0; 1; 2; 3; 4$
- $\rightarrow a_{33} = -4; -3; -2; -1; 0; 1; 2; 3; 4$
- $\rightarrow b_{33} = -5; -2; 1; 4; 7$

Произведение матриц 2х2, 2х1 и 1х2

27. Вычислить произведение

$$1) \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e \\ f \end{pmatrix} \begin{pmatrix} m & n \end{pmatrix}$$

$$\sqrt{\begin{array}{cc} m(ae+bf) & n(ae+bf) \\ m(ce+df) & n(ce+df) \end{array}}$$

- $\rightarrow a = 2; 4$
- -b = -5; 0
- \rightarrow c = -3; 2
- \rightarrow d=1; 3
- $\rightarrow e = 0; -2$
- $\rightarrow f = -1; 1$
- $\rightarrow m = -4; 4$
- $\rightarrow n = -1; 3$

Разность матриц 2х2 и 2х2

28. Вычислить

1)
$$\begin{pmatrix} 1+la & a \\ k+l+lka & 1+ka \end{pmatrix}^{-1} - \begin{pmatrix} e & f \\ g & h \end{pmatrix}^{T}$$

$$\sqrt{ \begin{pmatrix} 1+ka-e & -a-g \\ -k-l-lka-f & 1+la-h \end{pmatrix}}$$

- $\rightarrow a = 1; 2; 3$
- $\rightarrow k = -5; 1$
- $\rightarrow l = -3; 2$
- $\rightarrow e = 0; 6$
- $\rightarrow f = -1; 1$
- $\rightarrow g = -4; 5$
- $\rightarrow h = -1; 2$

Произведение матриц

29. Найти произведение AB.

$$\Rightarrow a_{11} = -3; 0; 2$$

$$\Rightarrow a_{12} = -5; 3; 4$$

$$\Rightarrow a_{13} = -4; 1; 3$$

$$\Rightarrow a_{21} = -2; 0; 5$$

$$\Rightarrow a_{22} = -1; 2; 3; 4$$

$$\Rightarrow a_{23} = -2; -3; -4; 1; 5$$

$$\Rightarrow b_{11} = -3; 0; 2$$

$$\Rightarrow b_{12} = -5; 3; 4$$

$$\Rightarrow$$
 $b_{21} = -4$; 1; 3

$$\Rightarrow b_{22} = -2; 0; 5$$

$$\Rightarrow b_{31} = -1; 2; 3; 4$$

$$\Rightarrow b_{32} = -2; -3; -4; 1; 5$$

1)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}, B = \begin{pmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \\ b_{31} & b_{32} & b_{33} & b_{34} \end{pmatrix}$$

$$\sqrt{\begin{array}{ccccc}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24}
\end{array}}$$

$$\rightarrow p_{11} = a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31}$$

$$\rightarrow p_{12} = a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32}$$

$$\rightarrow p_{13} = a_{11}b_{13} + a_{12}b_{23} + a_{13}b_{33}$$

$$\rightarrow p_{14} = a_{11}b_{14} + a_{12}b_{24} + a_{13}b_{34}$$

$$\rightarrow p_{21} = a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31}$$

$$\rightarrow p_{22} = a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32}$$

$$\rightarrow p_{23} = a_{21}b_{13} + a_{22}b_{23} + a_{23}b_{33}$$

$$\rightarrow p_{24} = a_{21}b_{14} + a_{22}b_{24} + a_{23}b_{34}$$

$$\rightarrow$$
 $b_{13} = -5$; -4 ; -3 ; -2 ; -1 ; 0 ; 1 ; 2 ; 3 ; 4 ; 5

$$\rightarrow b_{14} = -5; -4; -2; 3; 4; 5$$

$$\rightarrow b_{23} = -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5$$

$$\rightarrow b_{24} = -3; -1; 0; 1; 2$$

$$\rightarrow b_{33} = -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5$$

$$\rightarrow b_{34} = -5; -4; -2; 3; 4; 5$$

2)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}, B = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix}$$

$$\sqrt{\begin{array}{cccc}
p_{11} & p_{12} & p_{13} \\
p_{21} & p_{22} & p_{23} \\
p_{31} & p_{32} & p_{33}
\end{array}}$$

$$\rightarrow p_{11} = a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31}$$

$$\rightarrow p_{12} = a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32}$$

$$\rightarrow p_{13} = a_{11}b_{13} + a_{12}b_{23} + a_{13}b_{33}$$

$$\rightarrow p_{21} = a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31}$$

$$\rightarrow p_{22} = a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32}$$

$$\rightarrow p_{23} = a_{21}b_{13} + a_{22}b_{23} + a_{23}b_{33}$$

$$\rightarrow p_{31} = a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31}$$

$$\rightarrow p_{32} = a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32}$$

$$\rightarrow p_{33} = a_{31}b_{13} + a_{32}b_{23} + a_{33}b_{33}$$

$$\rightarrow a_{31} = -3; -1; 0; 1; 2$$

$$\rightarrow a_{32} = -5; -4; -2; 3; 4; 5$$

$$\rightarrow a_{33} = -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5$$

$$\rightarrow b_{13} = -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5$$

$$\rightarrow b_{23} = -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5$$

$$\rightarrow b_{33} = -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5$$

3)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}, B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix}$$

$$\sqrt{\begin{array}{ccc}
p_{11} & p_{12} \\
p_{21} & p_{22} \\
p_{31} & p_{32}
\end{array}}$$

$$\rightarrow p_{11} = a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31}$$

$$\rightarrow p_{12} = a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32}$$

$$\rightarrow p_{21} = a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31}$$

$$\rightarrow p_{22} = a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32}$$

$$\rightarrow p_{31} = a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31}$$

$$\rightarrow p_{32} = a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32}$$

$$\rightarrow a_{31} = -3; -1; 0; 1; 2$$

$$\rightarrow a_{32} = -5; -4; -2; 3; 4; 5$$

$$\rightarrow a_{33} = -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5$$

Произведение матрицы и вектора

30. Найти *AB*.

$$\Rightarrow a_{11} = -3; 0; 2$$

$$\Rightarrow a_{12} = -5; 3; 4$$

$$\Rightarrow a_{13} = -4; 1; 3$$

$$\Rightarrow a_{21} = -2; 0; 5$$

$$\Rightarrow a_{22} = -1; 2; 3; 4$$

$$\Rightarrow a_{23} = -2; -3; -4; 1; 5$$

1)
$$A = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix}$$
, $B = \begin{pmatrix} b_1 & b_2 & b_3 & b_4 \end{pmatrix}$

$$\checkmark \begin{pmatrix}
a_1b_1 & a_1b_2 & a_1b_3 & a_1b_4 \\
a_2b_1 & a_2b_2 & a_2b_3 & a_2b_4 \\
a_3b_1 & a_3b_2 & a_3b_3 & a_3b_4 \\
a_4b_1 & a_4b_2 & a_4b_3 & a_4b_4
\end{pmatrix}$$

$$\rightarrow a_1 = -3; 0; 2$$

$$\rightarrow a_2 = -5; 3; 4$$

$$\rightarrow a_3 = -4; 1; 3$$

$$\rightarrow a_4 = -2; 0; 5$$

$$\rightarrow b_1 = -1; 2; 3; 4$$

$$\rightarrow b_2 = -2; -3; -4; 1; 5$$

$$\rightarrow b_3 = -5; 3; 4$$

$$\rightarrow b_4 = -2; 0; 5$$

2)
$$A = \begin{pmatrix} a_1 & a_2 & a_3 & a_4 \end{pmatrix}, \quad B = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix}$$

$$\sqrt{(a_1b_1+a_2b_2+a_3b_3+a_4b_4)}$$

$$\rightarrow a_1 = -3; 0; 2$$

$$\rightarrow a_2 = -5; 3; 4$$

$$\rightarrow a_3 = -4; 1; 3$$

$$\rightarrow a_4 = -2; 0; 5$$

$$\rightarrow b_1 = -1; 2; 3; 4$$

$$\rightarrow b_2 = -2; -3; -4; 1; 5$$

$$\rightarrow b_3 = -5; 3; 4$$

$$\rightarrow b_4 = -2; 0; 5$$

3)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$$
, $B = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$

$$\sqrt{ \begin{pmatrix} a_{11}b_1 + a_{12}b_2 + a_{13}b_3 \\ a_{21}b_1 + a_{22}b_2 + a_{23}b_3 \end{pmatrix}}$$

$$\rightarrow a_{11} = -3; 0; 2$$

$$\rightarrow a_{12} = -5; 3; 4$$

$$\rightarrow a_{13} = -4; 1; 3$$

$$\rightarrow a_{21} = -2; 0; 5$$

$$\rightarrow a_{22} = -5; 3; 4$$

$$\rightarrow a_{23} = -4; 1; 3$$

$$\rightarrow b_1 = -1; 2; 3; 4$$

$$\rightarrow b_2 = -2; -3; -4; 1; 5$$

$$\rightarrow b_3 = -5; 3; 4$$

4)
$$A = \begin{pmatrix} a_1 & a_2 \end{pmatrix}, \quad B = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{pmatrix}$$

$$\sqrt{(a_1b_{11}+a_2b_{21} \ a_1b_{12}+a_2b_{22} \ a_1b_{13}+a_2b_{23})}$$

$$\rightarrow a_1 = -3; 0; 2$$

$$\rightarrow a_2 = -5; 3; 4$$

$$\rightarrow b_{11} = -4; 1; 3$$

$$\rightarrow b_{12} = -2; 0; 5$$

$$\rightarrow b_{13} = -1; 2; 3; 4$$

$$\rightarrow b_{21} = -2; -3; -4; 1; 5$$

$$\rightarrow b_{22} = -5; 3; 4$$

$$\rightarrow b_{23} = -2; 0; 5$$

Произведения матриц АВ и ВА, размер 2х2

31. Найти AB и BA.

1)
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
, $B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$
 $\checkmark AB = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix}$, $BA = \begin{pmatrix} b_{11}a_{11} + b_{12}a_{21} & b_{11}a_{12} + b_{12}a_{22} \\ b_{21}a_{11} + b_{22}a_{21} & b_{21}a_{12} + b_{22}a_{22} \end{pmatrix}$

$$\Rightarrow a_{11} = -9; -6; -4; -2; -1; 3; 4; 5; 7; 9$$

$$\Rightarrow a_{22} = -8; -7; -5; -3; -2; -1; 1; 2; 3; 6; 8$$

$$\Rightarrow b_{22} = -9; -6; -4; -2; -1; 3; 4; 5; 7; 9$$

$$\Rightarrow b_{11} = -8; -7; -5; -3; -2; -1; 1; 2; 3; 6; 8$$

$$\Rightarrow a_{12} = -3; 0; 1; 4$$

$$\Rightarrow a_{21} = -2; -1; 0; 2$$

$$\Rightarrow b_{21} = -3; 0; 1; 4$$

$$\Rightarrow b_{12} = -2; -1; 0; 2$$

Произведения матриц AB и BA, размер 3х3

. Найти AB и BA.

$$\Rightarrow a_{11} = -4; -1; 3$$

$$\Rightarrow a_{12} = -5; 0; 2$$

$$\Rightarrow a_{13} = -3; 0; 1$$

$$\Rightarrow a_{21} = -2; 0; 3$$

$$\Rightarrow a_{22} = -3; 1; 4$$

$$\Rightarrow a_{23} = -1; 0; 2$$

$$\Rightarrow a_{31} = -4; 0; 3$$

$$\Rightarrow a_{32} = -2; 0; 1$$

$$\Rightarrow a_{33} = -2; 1; 5$$

$$\Rightarrow b_{11} = -4; -1; 3$$

$$\Rightarrow b_{12} = -5; 0; 2$$

$$\Rightarrow b_{13} = -3; 0; 1$$

$$\Rightarrow b_{21} = -2; 0; 3$$

$$\Rightarrow b_{22} = -3; 1; 4$$

$$\Rightarrow b_{23} = -1; 0; 2$$

$$\Rightarrow b_{31} = -4; 0; 3$$

$$\Rightarrow b_{32} = -2; 0; 1$$

$$\Rightarrow b_{33} = -2; 1; 5$$

1)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
, $B = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix}$

$$\sqrt{AB} = \begin{pmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{pmatrix}, \quad BA = \begin{pmatrix} q_{11} & q_{12} & q_{13} \\ q_{21} & q_{22} & q_{23} \\ q_{31} & q_{32} & q_{33} \end{pmatrix}$$

$$\rightarrow p_{11} = a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31}$$

$$\rightarrow p_{12} = a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32}$$

$$\rightarrow p_{13} = a_{11}b_{13} + a_{12}b_{23} + a_{13}b_{33}$$

$$\rightarrow p_{21} = a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31}$$

$$\rightarrow p_{22} = a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32}$$

$$\rightarrow p_{23} = a_{21}b_{13} + a_{22}b_{23} + a_{23}b_{33}$$

$$\rightarrow p_{31} = a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31}$$

$$\rightarrow p_{32} = a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32}$$

$$\rightarrow p_{33} = a_{31}b_{13} + a_{32}b_{23} + a_{33}b_{33}$$

$$\rightarrow q_{11} = b_{11}a_{11} + b_{12}a_{21} + b_{13}a_{31}$$

$$\rightarrow q_{12} = b_{11}a_{12} + b_{12}a_{22} + b_{13}a_{32}$$

$$\rightarrow q_{13} = b_{11}a_{13} + b_{12}a_{23} + b_{13}a_{33}$$

- $\rightarrow q_{21} = b_{21}a_{11} + b_{22}a_{21} + b_{23}a_{31}$
- $\rightarrow q_{22} = b_{21}a_{12} + b_{22}a_{22} + b_{23}a_{32}$
- $\rightarrow q_{23} = b_{21}a_{13} + b_{22}a_{23} + b_{23}a_{33}$
- $\rightarrow q_{31} = b_{31}a_{11} + b_{32}a_{21} + b_{33}a_{31}$
- $\rightarrow q_{32} = b_{31}a_{12} + b_{32}a_{22} + b_{33}a_{32}$
- $\rightarrow q_{33} = b_{31}a_{13} + b_{32}a_{23} + b_{33}a_{33}$

Произведение трёх матриц размера 2х2

33. Найти произведение трёх матриц.

$$\Rightarrow a_{11} = -4; -2; -1; 3; 4; 5$$

$$\Rightarrow a_{22} = -5; -3; -2; -1; 1; 2; 3$$

$$\Rightarrow a_{12} = -3; 0; 1; 4$$

$$\Rightarrow a_{21} = -2; -1; 0; 2$$

$$\Rightarrow b_{22} = -4; -2; -1; 3; 4; 5$$

$$\Rightarrow b_{11} = -5; -3; -2; -1; 1; 2; 3$$

$$\Rightarrow b_{21} = -3; 0; 1; 4$$

$$\Rightarrow b_{12} = -2; -1; 0; 2$$

$$\Rightarrow$$
 $c_{11} = -4$; -2 ; -1 ; 3 ; 4 ; 5

$$\Rightarrow c_{22} = -5; -3; -2; -1; 1; 2; 3$$

$$\Rightarrow$$
 $c_{12} = -3$; 0; 1; 4

$$\Rightarrow$$
 $c_{21} = -2$; -1 ; 0; 2

1)
$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$

$$\sqrt{\begin{array}{cc} q_{11} & q_{12} \\ q_{21} & q_{22} \end{array}}$$

$$\rightarrow q_{11} = p_{11}c_{11} + p_{12}c_{21}$$

$$\rightarrow q_{12} = p_{11}c_{12} + p_{12}c_{22}$$

$$\rightarrow q_{21} = p_{21}c_{11} + p_{22}c_{21}$$

$$\rightarrow q_{22} = p_{21}c_{12} + p_{22}c_{22}$$

$$\rightarrow p_{11} = a_{11}b_{11} + a_{12}b_{21}$$

$$\rightarrow p_{12} = a_{11}b_{12} + a_{12}b_{22}$$

$$\rightarrow p_{21} = a_{21}b_{11} + a_{22}b_{21}$$

$$\rightarrow p_{22} = a_{21}b_{12} + a_{22}b_{22}$$

Произведение трёх матриц размера 3х3

34. Найти произведение трёх матриц.

$$\Rightarrow a_{11} = -4; -1; 3$$

$$\Rightarrow a_{12} = -5; 0; 2$$

$$\Rightarrow a_{13} = -3; 0; 1$$

$$\Rightarrow a_{21} = -2; 0; 3$$

$$\Rightarrow a_{22} = -3; 1; 4$$

$$\Rightarrow a_{23} = -1; 0; 2$$

$$\Rightarrow a_{31} = -4; 0; 3$$

$$\Rightarrow a_{32} = -2; 0; 1$$

$$\Rightarrow a_{33} = -2; 1; 5$$

$$\Rightarrow$$
 $b_{11} = -4$; -1 ; 3

$$\Rightarrow b_{12} = -5; 0; 2$$

$$\Rightarrow b_{13} = -3; 0; 1$$

$$\Rightarrow b_{21} = -2; 0; 3$$

$$\Rightarrow b_{22} = -3; 1; 4$$

$$\Rightarrow b_{23} = -1; 0; 2$$

$$\Rightarrow b_{31} = -4; 0; 3$$

$$\Rightarrow b_{32} = -2; 0; 1$$

$$\Rightarrow b_{33} = -2; 1; 5$$

$$\Rightarrow c_{11} = -4; -1; 3$$

$$\Rightarrow c_{12} = -5; 0; 2$$

$$\Rightarrow c_{13} = -3; 0; 1$$

$$\Rightarrow c_{21} = -2; 0; 3$$

$$\Rightarrow$$
 $c_{22} = -3$; 1; 4

$$\Rightarrow$$
 $c_{23} = -1; 0; 2$

$$\Rightarrow c_{31} = -4; 0; 3$$

$$\Rightarrow c_{32} = -2; 0; 1$$

$$\Rightarrow$$
 $c_{33} = -2$; 1; 5

1)
$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix}$$

$$\sqrt{\begin{array}{cccc}
q_{11} & q_{12} & q_{13} \\
q_{21} & q_{22} & q_{23} \\
q_{31} & q_{32} & q_{33}
\end{array}}$$

$$\rightarrow q_{11} = p_{11}c_{11} + p_{12}c_{21} + p_{13}c_{31}$$

$$\rightarrow q_{12} = p_{11}c_{12} + p_{12}c_{22} + p_{13}c_{32}$$

$$\rightarrow q_{13} = p_{11}c_{13} + p_{12}c_{23} + p_{13}c_{33}$$

$$\rightarrow q_{21} = p_{21}c_{11} + p_{22}c_{21} + p_{23}c_{31}$$

- $\rightarrow q_{22} = p_{21}c_{12} + p_{22}c_{22} + p_{23}c_{32}$
- $\rightarrow q_{23} = p_{21}c_{13} + p_{22}c_{23} + p_{23}c_{33}$
- $\rightarrow q_{31} = p_{31}c_{11} + p_{32}c_{21} + p_{33}c_{31}$
- $\rightarrow q_{32} = p_{31}c_{12} + p_{32}c_{22} + p_{33}c_{32}$
- $\rightarrow q_{33} = p_{31}c_{13} + p_{32}c_{23} + p_{33}c_{33}$
- $\rightarrow p_{11} = a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31}$
- $\rightarrow p_{12} = a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32}$
- $\rightarrow p_{13} = a_{11}b_{13} + a_{12}b_{23} + a_{13}b_{33}$
- $\rightarrow p_{21} = a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31}$
- $\rightarrow p_{22} = a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32}$
- $\rightarrow p_{23} = a_{21}b_{13} + a_{22}b_{23} + a_{23}b_{33}$
- $\rightarrow p_{31} = a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31}$
- $\rightarrow p_{32} = a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32}$
- $\rightarrow p_{33} = a_{31}b_{13} + a_{32}b_{23} + a_{33}b_{33}$

Матричный многочлен размера 2х2

35. Найти f(A), если:

$$\Rightarrow a_{11} = -4; -2; -1; 3; 4; 5$$

$$\Rightarrow a_{22} = -5; -3; -2; -1; 1; 2; 3$$

$$\Rightarrow a_{12} = -3; 0; 1; 4$$

$$\Rightarrow a_{21} = -2; -1; 0; 2$$

$$\Rightarrow a = -1; 0; 1; 2$$

$$\Rightarrow b = -2; 1; 3; 4$$

$$\Rightarrow$$
 $c = -5$; -4 ; -3 ; -1 ; 3 ; 4 ; 5

$$\Rightarrow$$
 $d = -7$; -6 ; -5 ; -4 ; -3 ; -1 ; 0 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9

1)
$$f(x) = ax^3 + bx^2 + cx + d$$
, $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$

$$\sqrt{\begin{array}{cc} \left(\begin{matrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{matrix}\right)}$$

$$\rightarrow x_{11} = aq_{11} + bp_{11} + ca_{11} + de_{11}$$

$$\rightarrow x_{12} = aq_{12} + bp_{12} + ca_{12} + de_{12}$$

$$\rightarrow x_{21} = aq_{21} + bp_{21} + ca_{21} + de_{21}$$

$$\rightarrow x_{22} = aq_{22} + bp_{22} + ca_{22} + de_{22}$$

$$\rightarrow q_{11} = p_{11}a_{11} + p_{12}a_{21}$$

$$\rightarrow q_{12} = p_{11}a_{12} + p_{12}a_{22}$$

$$\rightarrow q_{21} = p_{21}a_{11} + p_{22}a_{21}$$

$$\rightarrow q_{22} = p_{21}a_{12} + p_{22}a_{22}$$

$$\rightarrow p_{11} = a_{11}a_{11} + a_{12}a_{21}$$

$$\rightarrow p_{12} = a_{11}a_{12} + a_{12}a_{22}$$

$$\rightarrow p_{21} = a_{21}a_{11} + a_{22}a_{21}$$

$$\rightarrow p_{22} = a_{21}a_{12} + a_{22}a_{22}$$

$$\rightarrow e_{11} = 1$$

$$\rightarrow e_{12} = 0$$

$$\rightarrow e_{21} = 0$$

$$\rightarrow e_{22} = 1$$

Матричный многочлен размера ЗхЗ

36. Найти f(A), если:

$$\Rightarrow a_{11} = -4; -1; 3$$

$$\Rightarrow a_{12} = -5; 0; 2$$

$$\Rightarrow a_{13} = -3; 0; 1$$

$$\Rightarrow a_{21} = -2; 0; 3$$

$$\Rightarrow a_{22} = -3; 1; 4$$

$$\Rightarrow a_{23} = -1; 0; 2$$

$$\Rightarrow a_{31} = -4; 0; 3$$

$$\Rightarrow a_{32} = -2; 0; 1$$

$$\Rightarrow a_{33} = -2; 1; 5$$

$$\Rightarrow a = -1; 0; 1; 2$$

$$\Rightarrow b = -2; 1; 3; 4$$

$$\Rightarrow$$
 $c = -5; -4; -3; -1; 3; 4; 5$

$$\Rightarrow$$
 $d = -7$; -6 ; -5 ; -4 ; -3 ; -1 ; 0 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9

$$\Rightarrow e_{11} = 1$$

$$\Rightarrow e_{12} = 0$$

$$\Rightarrow e_{13} = 0$$

$$\Rightarrow e_{21} = 0$$

$$\Rightarrow e_{22} = 1$$

$$\Rightarrow e_{23} = 0$$

$$\Rightarrow e_{31} = 0$$

$$\Rightarrow e_{32} = 0$$

$$\Rightarrow e_{33} = 1$$

1)
$$f(x) = ax^3 + bx^2 + cx + d$$
, $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$

$$\sqrt{\begin{array}{cccc}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}}$$

$$\rightarrow x_{11} = aq_{11} + bp_{11} + ca_{11} + de_{11}$$

$$\rightarrow x_{12} = aq_{12} + bp_{12} + ca_{12} + de_{12}$$

$$\rightarrow x_{13} = aq_{13} + bp_{13} + ca_{13} + de_{13}$$

$$\rightarrow x_{21} = aq_{21} + bp_{21} + ca_{21} + de_{21}$$

$$\rightarrow x_{22} = aq_{22} + bp_{22} + ca_{22} + de_{22}$$

$$\rightarrow x_{23} = aq_{23} + bp_{23} + ca_{23} + de_{23}$$

$$\rightarrow x_{31} = aq_{31} + bp_{31} + ca_{31} + de_{31}$$

$$\rightarrow x_{32} = aq_{32} + bp_{32} + ca_{32} + de_{32}$$

- $\rightarrow x_{33} = aq_{33} + bp_{33} + ca_{33} + de_{33}$
- $\rightarrow q_{11} = p_{11}a_{11} + p_{12}a_{21} + p_{13}a_{31}$
- $\rightarrow q_{12} = p_{11}a_{12} + p_{12}a_{22} + p_{13}a_{32}$
- $\rightarrow q_{13} = p_{11}a_{13} + p_{12}a_{23} + p_{13}a_{33}$
- $\rightarrow q_{21} = p_{21}a_{11} + p_{22}a_{21} + p_{23}a_{31}$
- $\rightarrow q_{22} = p_{21}a_{12} + p_{22}a_{22} + p_{23}a_{32}$
- $\rightarrow q_{23} = p_{21}a_{13} + p_{22}a_{23} + p_{23}a_{33}$
- $\rightarrow q_{31} = p_{31}a_{11} + p_{32}a_{21} + p_{33}a_{31}$
- $\rightarrow q_{32} = p_{31}a_{12} + p_{32}a_{22} + p_{33}a_{32}$
- $\rightarrow q_{33} = p_{31}a_{13} + p_{32}a_{23} + p_{33}a_{33}$
- $\rightarrow p_{11} = a_{11}a_{11} + a_{12}a_{21} + a_{13}a_{31}$
- $\rightarrow p_{12} = a_{11}a_{12} + a_{12}a_{22} + a_{13}a_{32}$
- $\rightarrow p_{13} = a_{11}a_{13} + a_{12}a_{23} + a_{13}a_{33}$
- $\rightarrow p_{21} = a_{21}a_{11} + a_{22}a_{21} + a_{23}a_{31}$
- $\rightarrow p_{22} = a_{21}a_{12} + a_{22}a_{22} + a_{23}a_{32}$
- $\rightarrow p_{23} = a_{21}a_{13} + a_{22}a_{23} + a_{23}a_{33}$
- $\rightarrow p_{31} = a_{31}a_{11} + a_{32}a_{21} + a_{33}a_{31}$
- $\rightarrow p_{32} = a_{31}a_{12} + a_{32}a_{22} + a_{33}a_{32}$
- $\rightarrow p_{33} = a_{31}a_{13} + a_{32}a_{23} + a_{33}a_{33}$

Произведение матрицы на её транспонированнук

37. Вычислить произведения AA^T и A^TA , если:

1)
$$A = (a_1 \ a_2 \ a_3 \ a_4 \ a_5)$$

$$\sqrt{AA^{T}} = (a_{1}^{2} + a_{2}^{2} + a_{3}^{2} + a_{4}^{2} + a_{5}^{2}), \quad A^{T}A = \begin{pmatrix} a_{1}a_{1} & a_{1}a_{2} & a_{1}a_{3} & a_{1}a_{4} & a_{1}a_{5} \\ a_{2}a_{1} & a_{2}a_{2} & a_{2}a_{3} & a_{2}a_{4} & a_{2}a_{5} \\ a_{3}a_{1} & a_{3}a_{2} & a_{3}a_{3} & a_{3}a_{4} & a_{3}a_{5} \\ a_{4}a_{1} & a_{4}a_{2} & a_{4}a_{3} & a_{4}a_{4} & a_{4}a_{5} \\ a_{5}a_{1} & a_{5}a_{2} & a_{5}a_{3} & a_{5}a_{4} & a_{5}a_{5} \end{pmatrix}$$

$$\rightarrow a_1 = -4; -1; 3$$

$$\rightarrow a_2 = -5; -2; 2$$

$$\rightarrow a_3 = -3; 4; 1$$

$$\rightarrow a_4 = -2; 0; 3$$

$$\rightarrow a_5 = -3; 1; 4$$

2)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \end{pmatrix}$$

$$\sqrt{AA^{T}} = \begin{pmatrix} a_{11}a_{11} + a_{12}a_{12} + a_{13}a_{13} + a_{14}a_{14} & a_{11}a_{21} + a_{12}a_{22} + a_{13}a_{23} + a_{14}a_{24} \\ a_{21}a_{11} + a_{22}a_{12} + a_{23}a_{13} + a_{24}a_{14} & a_{21}a_{21} + a_{22}a_{22} + a_{23}a_{23} + a_{24}a_{24} \end{pmatrix}, \quad A^{T}A = \begin{pmatrix} a_{11}a_{11} + a_{12}a_{12} + a_{13}a_{13} + a_{14}a_{14} & a_{11}a_{21} + a_{22}a_{22} + a_{23}a_{23} + a_{24}a_{24} \\ a_{13}a_{11} + a_{22}a_{12} + a_{23}a_{13} + a_{24}a_{14} & a_{21}a_{21} + a_{22}a_{22} + a_{23}a_{23} + a_{24}a_{24} \end{pmatrix}, \quad A^{T}A = \begin{pmatrix} a_{11}a_{11} + a_{12}a_{12} + a_{13}a_{13} + a_{14}a_{14} & a_{11}a_{21} + a_{22}a_{22} + a_{23}a_{23} + a_{24}a_{24} \\ a_{13}a_{11} + a_{22}a_{12} + a_{23}a_{13} + a_{24}a_{14} & a_{21}a_{21} + a_{22}a_{22} + a_{23}a_{23} + a_{24}a_{24} \end{pmatrix}, \quad A^{T}A = \begin{pmatrix} a_{11}a_{11} + a_{12}a_{12} + a_{13}a_{13} + a_{14}a_{14} & a_{11}a_{21} + a_{22}a_{22} + a_{23}a_{23} + a_{24}a_{24} \\ a_{13}a_{11} + a_{22}a_{12} + a_{23}a_{13} + a_{24}a_{14} & a_{21}a_{21} + a_{22}a_{22} + a_{23}a_{23} + a_{24}a_{24} \end{pmatrix}, \quad A^{T}A = \begin{pmatrix} a_{11}a_{11} + a_{12}a_{12} + a_{13}a_{13} + a_{14}a_{14} & a_{11}a_{21} + a_{22}a_{22} + a_{23}a_{23} + a_{24}a_{24} \\ a_{13}a_{11} + a_{22}a_{22} + a_{23}a_{23} + a_{24}a_{24} \end{pmatrix}, \quad A^{T}A = \begin{pmatrix} a_{11}a_{11} + a_{12}a_{12} + a_{13}a_{13} + a_{14}a_{14} & a_{11}a_{21} + a_{22}a_{22} + a_{23}a_{23} + a_{24}a_{24} \end{pmatrix},$$

$$\rightarrow a_{11} = -4; -1; 3$$

$$\rightarrow a_{12} = -5; 0; 2$$

$$\rightarrow a_{13} = -3; 3; 1$$

$$\rightarrow a_{14} = -2; -1; 3$$

$$\rightarrow a_{21} = -3; 1; 4$$

$$\rightarrow a_{22} = -5; -1; 2$$

$$\rightarrow a_{23} = -3; 2; 1$$

$$\rightarrow a_{24} = -2; 0; 3$$

3)
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}$$

$$\sqrt{AA^{T}} = \begin{pmatrix} a_{11}a_{11} + a_{12}a_{12} & a_{11}a_{21} + a_{12}a_{22} & a_{11}a_{31} + a_{12}a_{32} \\ a_{21}a_{11} + a_{22}a_{12} & a_{21}a_{21} + a_{22}a_{22} & a_{21}a_{31} + a_{22}a_{32} \\ a_{31}a_{11} + a_{32}a_{12} & a_{31}a_{21} + a_{32}a_{22} & a_{31}a_{31} + a_{32}a_{32} \end{pmatrix}, \quad A^{T}A = \begin{pmatrix} a_{11}a_{11} + a_{21}a_{21} + a_{31}a_{31} \\ a_{12}a_{11} + a_{22}a_{21} + a_{32}a_{31} \end{pmatrix}$$

$$\rightarrow a_{11} = -4; -1; 3$$

$$\rightarrow a_{12} = -5; 0; 2$$

$$\rightarrow a_{21} = -3; 1; 4$$

$$\rightarrow a_{22} = -5; -1; 2$$

$$\rightarrow a_{31} = -3; 3; 1$$

$$\rightarrow a_{32} = -2; -1; 3$$

След произведения матриц

38. Найти след матриц AB и BA (сумму диагональных элементов), если

1)
$$A = \begin{pmatrix} 1 & b & 2 \\ a & c & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} b & 1 \\ 0 & c \\ -1 & 0 \end{pmatrix}$

$$\sqrt{tr(AB)} = tr(BA) = b + a + c^2 - 2$$

- $\rightarrow a = 2; 3; 4$
- $\rightarrow b = 2; 3; 4$
- $\rightarrow c = 2; 3; 4$

Определитель 2х2

39. Вычислить определитель.

1)
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

$$\sqrt{a_{11}a_{22}-a_{21}a_{12}}$$

$$\rightarrow a_{11} = -7; -5; -3; -2; -1; 2; 3; 5; 8$$

$$\rightarrow a_{12} = -8; -6; -5; -3; 0; 1; 4; 5; 7$$

$$\rightarrow a_{21} = -7; -5; -4; -3; -1; 2; 5; 6$$

$$\rightarrow a_{22} = -5; -3; -2; -1; 1; 3; 4; 7$$

Определитель 3х3

40. Вычислить определитель.

 $\rightarrow a_{33} = -5; -3; -2; 3; 4$

1)
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\sqrt{a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}}$$

$$\rightarrow a_{11} = -5; -3; -2; -1; 2; 3; 5$$

$$\rightarrow a_{12} = -3; 0; 1; 4$$

$$\rightarrow a_{13} = -5; -4; -1; 1; 3; 4$$

$$\rightarrow a_{21} = -3; -1; 0; 1; 4; 5$$

$$\rightarrow a_{22} = -3; -2; 1; 4$$

$$\rightarrow a_{23} = -4; -1; 2; 3$$

$$\rightarrow a_{31} = -4; -3; -1; 3; 5$$

$$\rightarrow a_{32} = -3; -2; 1; 4$$

Простой определитель 4х4

41. Вычислить определитель.

1)
$$\begin{vmatrix} ap + d & a & ar + B & as + dk + e \\ amp + bp + dm + C & am + b & amr + br + Bm & ams + bs + dkm + em + Ck \\ Ap & A & Ar & As \\ anp + cp + dn + f & an + c & anr + cr + Bn & ans + cs + dkn + en + fk + D \end{vmatrix}$$

\sqrt{ABCD}

$$\rightarrow A = -3; 4; 2; 3; -2$$

$$\rightarrow B = 1; -1; 3; -2$$

$$\rightarrow C = 2; 4; -2$$

$$\rightarrow D = 5; -3$$

$$\rightarrow a = -2; -1; 0; 1; 2$$

$$\rightarrow b = 3; 4$$

$$\rightarrow c = -2; 5$$

$$\rightarrow$$
 $d=7$

$$\rightarrow e = 3$$

$$\rightarrow f = -2$$

$$\rightarrow k = -3; -2; -1; 2; 5$$

$$\rightarrow m = 2$$

$$\rightarrow n = -3$$

$$\rightarrow p = 2$$

$$\rightarrow r = -2$$

$$\rightarrow$$
 $s = 5$

Определитель 4х4

42. Вычислить определитель.

$$1) \begin{vmatrix} a & b & c & d \\ e & f & g & h \\ k & l & m & n \\ o & p & q & r \end{vmatrix}$$

$$\sqrt{aA-bB+cC-dD}$$

$$\rightarrow A = f(mr - nq) - g(lr - pn) + h(lq - pm)$$

$$\rightarrow B = e(mr - nq) - g(kr - on) + h(kq - om)$$

$$\rightarrow C = e(lr - pn) - f(kr - on) + h(kp - ol)$$

$$\rightarrow$$
 $D = e(lq - pm) - f(kq - om) + g(kp - ol)$

$$\rightarrow a = -2; 1$$

$$\rightarrow b = 0; 2; 3$$

$$c = -2; -1$$

$$\rightarrow d = -3; 2; 1$$

$$\rightarrow e = -2; 4$$

$$\rightarrow f = -1; 0; 3$$

$$\rightarrow g = -2; 1; 2$$

$$→ h = -1; 3$$

$$\rightarrow k = -2; 0; 3$$

$$- l = -2; 1$$

$$\rightarrow m = 0; 1; 2$$

$$n = -2; 3$$

$$\rightarrow o = -1; 2$$

$$\rightarrow p = -3; 0; 1$$

$$\rightarrow q = 1; 2; 3$$

$$\rightarrow r = -2; -1$$

Разность определителей

43. Вычислить $\det A - \det B$, если

1)
$$A = \begin{pmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{pmatrix}$

- $\sqrt{0}$
- $\rightarrow a = 2; 3; 4; 5$
- $\rightarrow b = 2; 3; 4; 5$
- $\rightarrow c = 2; 3; 4; 5$

44. Решить систему уравнений

1)
$$\begin{cases} ax + by = aX + bY, \\ cx + dy = cX + dY \end{cases}$$

$$\sqrt{x=X}; y=Y$$

$$\rightarrow X = -3; -2; -1; 1; 2; 3; 4; 5$$

$$\rightarrow Y = -5; -3; -2; -1; 1; 2; 3$$

$$\rightarrow a = k_b k_c$$

$$\rightarrow b = k_b l_b$$

$$\rightarrow c = k_c l_c$$

$$\rightarrow d = k + l_b l_c$$

$$\rightarrow k = -1; 1; -2; 2; -3; 3; -4; 4; -5; 5$$

$$\rightarrow k_b = -3; -2; -1; 1; 2; 3$$

$$\rightarrow l_b = -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5$$

$$\rightarrow k_c = -3; -2; -1; 1; 2; 3$$

$$\rightarrow l_c = -5; -4-3; -2; -1; 1; 2; 3; 4; 5$$

Простая система 3х3

45. Решить систему уравнений.

1)
$$\begin{cases} ax + by + cz = aX + bY + cZ, \\ amx + (bm + e)y + (cm + f)z = amX + (bm + e)Y + (cm + f)Z, \\ anx + (bn + le)y + (cn + fl + h)z = anX + (bn + le)Y + (cn + fl + h)Z \end{cases}$$

$$\checkmark x = X; y = Y; z = Z$$

$$\Rightarrow a = -1; 2; 1$$

$$\Rightarrow e = -1; 1$$

$$\Rightarrow h = -1; 1; 2$$

$$\Rightarrow X = -2; -1; 1; 2; 3; 4$$

$$\Rightarrow Y = -2; -1; 0; 1; 2; 3; 4$$

$$\Rightarrow Z = -1; 1; 2; 3; 4$$

$$\Rightarrow m = -2; -1; 1; 2$$

$$\Rightarrow n = -2; -1; 1; 2$$

$$\Rightarrow l = -1; 1$$

$$\Rightarrow b = -3; -2; 2; 3$$

$$\Rightarrow c = -2; -1; 1; 2$$

$$\Rightarrow f = -3; -2; 0; 2; 3$$

Система ЗхЗ в экономике

46.

$$\Rightarrow a_{11} = a$$

$$\Rightarrow a_{12} = b$$

$$\Rightarrow a_{13} = c$$

$$\Rightarrow$$
 $b_1 = aX + bY + cZ$

$$\Rightarrow a_{21} = am$$

$$\Rightarrow a_{22} = bm + e$$

$$\Rightarrow a_{23} = cm + f$$

$$\Rightarrow$$
 $b_2 = amX + (bm + e)Y + (cm + f)Z$

$$\Rightarrow a_{31} = an$$

$$\Rightarrow a_{32} = bn + le$$

$$\Rightarrow a_{33} = cn + fl + h$$

$$\Rightarrow$$
 $b_3 = anX + (bn + le)Y + (cn + fl + h)Z$

$$\Rightarrow a = 2; 1; 3; 4$$

$$\Rightarrow e = 1; 2; 3$$

$$\Rightarrow h = 1; 2; 3$$

$$\Rightarrow X = 200; 250; 300; 350; 400; 450; 500$$

$$\Rightarrow Y = 200; 250; 300; 350; 400; 450; 500$$

$$\Rightarrow$$
 Z = 200; 250; 300; 350; 400; 450; 500

$$\Rightarrow$$
 $m=1$; 2; 3

$$\Rightarrow$$
 $n = 1; 2; 3$

$$\Rightarrow l = 1; 2; 3$$

$$\Rightarrow$$
 b = 2; 3; 4; 5

$$\Rightarrow c = 1; 2; 3$$

$$\Rightarrow$$
 $f = 2; 3$

	Вид сырья	Расход сырья по видам			Расход сырья
1)		продукции, усл. ед.			за 1 день, усл. ед
		1	2	3	
1)	1	a_{11}	a_{12}	a_{13}	b_1
	2	a_{21}	a_{22}	a_{23}	b_2
	3	a_{31}	a_{32}	a_{33}	b_3

$$\sqrt{X,Y,Z}$$

Система 3х3

47. Решить систему уравнений.

1)
$$\begin{cases} (a+en)x + fny + (b+gn)z = (a+en)X + fnY + (b+gn)Z, \\ (c+em)x + fmy + (d+gm)z = (c+em)X + fmY + (d+gm)Z, \\ ex + fy + gz = eX + fY + gZ \end{cases}$$

- $\sqrt{x=X}; y=Y; z=Z$
- $\rightarrow n = -2; 3$
- $\rightarrow m = -1; 5$
- $\rightarrow X = -1; 1; 0$
- → Y = -2; 1
- \rightarrow Z=0; -1
- $\rightarrow a = 2; -2; 1; -1$
- $\rightarrow b = 2; -2$
- $\rightarrow c = 3; -3$
- \rightarrow d = -4; 4
- $\rightarrow e = -4; 2; 3$
- $\rightarrow f = 3; -2$
- $\rightarrow g = -2; 1; 0$

48. Решить систему уравнений

1)
$$\begin{cases} ax + by + cz = A, \\ ex + fy + gz = B, \\ (an + el)x + (bn + fl)y + (cn + gl)z = An + Bl + C \end{cases}$$

- **√** Ø
- $\rightarrow a = -1; 2; 1$
- $\rightarrow b = -3; 2$
- $\rightarrow c = 2; 3$
- $\rightarrow e = 1; 2$
- $\rightarrow f = -1; -2; 0$
- $\rightarrow g = -3; 1$
- $\rightarrow n = 1; -3$
- $\rightarrow l = 2; 3$
- $\rightarrow A = 3; -2$
- → B = -1; -3
- \rightarrow C = -1; -2; 1; 2; 3

Неопределенная система 3х3

49. Решить систему уравнений

1)
$$\begin{cases} ax + by + (-aA_1 - bA_2)z = aB_1 + bB_2, \\ ex + fy + (-eA_1 - fA_2)z = eB_1 + fB_2, \\ (ka + le)x + (kb + lf)y + (k(-aA_1 - bA_2) + l(-eA_1 - fA_2))z = k(aB_1 + bB_2) + l(eB_1 + fB_2) \end{cases}$$

$$\sqrt{x} = A_1\alpha + B_1, \ y = A_2\alpha + B_2, \ z = \alpha$$

- $\rightarrow a = -1; 2; 1$
- → b = -3; 2
- $\rightarrow e = 1; 2$
- $\rightarrow f = -1; 0$
- $\rightarrow k = 1; -3$
- $\rightarrow l = 2; 3$
- $\rightarrow A_1 = 3; -2$
- $\rightarrow A_2 = 2; -1$
- $\rightarrow B_1 = -1; -3$
- $\rightarrow B_2 = 1; 1$

50. Решить систему уравнений

1)
$$\begin{cases} ax + by + cz = 0, \\ ex + fy + gz = 0, \\ (an + el)x + (bn + fl)y + (cn + gl)z = 0 \end{cases}$$

$$aa + cbe - cfa \qquad aa$$

$$\sqrt{x} = -\frac{ag + cbe - cfa}{abe - afa}z, y = \frac{ag}{be - fa}z, z \in \mathbb{R}$$

$$\rightarrow n = -2; 3$$

$$\rightarrow a = -1; 2; 1$$

→
$$b = -3$$
; 2

$$\rightarrow c = 2; 3$$

$$\rightarrow e = 1; 2$$

$$\rightarrow f = -1; 0$$

$$\rightarrow g = -3; 1$$

$$\rightarrow n = 1; -3$$

$$\rightarrow l = 2; 3$$

Однородная система 3х3 с нулевым решением

51. Решить систему уравнений

1)
$$\begin{cases} ax + by + cz = 0, \\ ex + fy + gz = 0, \\ (an + el)x + (bn + fl)y + cnz = 0 \end{cases}$$

- $\sqrt{ \{(0,0,0)\}}$
- $\rightarrow a = -1; 2; 1$
- $\rightarrow b = -3; 2$
- $\rightarrow c = 2; 3$
- $\rightarrow e = 1; 2$
- $\rightarrow f = -1; 0$
- $\rightarrow g = -3; 1$
- $\rightarrow n = 1; -3$
- $\rightarrow l = 2; 3$

Рундаментальная система решений однородной системы

52. Найти фундаментальную систему решений однородной системы ЛАУ

1)
$$\begin{cases} ax_1 + bx_2 + ax_3 + 2ax_4 = 0\\ cx_1 + \frac{1+bc}{2}x_2 + gx_3 + hx_4 = 0 \end{cases}$$

$$\sqrt{\frac{(b(g-c)-1;a(c-g);1;0);}{(b(h-2c)-2;a(2c-h);0;1)}}$$

$$\rightarrow a = 2; -2; 4; -4$$

$$\rightarrow b = 1; -1; 3; -3$$

$$\rightarrow c = 1; -1; 3; -3$$

$$\rightarrow g = 2; 4$$

$$\rightarrow h = 1; 3$$

Система 4х3

53. Решить систему уравнений.

1)
$$\begin{cases} (a+en)x + fny + (b+gn)z = (a+en)X + fnY + (b+gn)Z, \\ Ax + By + Cz = AX + BY + CZ, \\ (c+em)x + fmy + (d+gm)z = (c+em)X + fmY + (d+gm)Z, \\ ex + fy + gz = eX + fY + gZ \end{cases}$$

- $\sqrt{x=X}; y=Y; z=Z$
- $\rightarrow n = -2; 3$
- $\rightarrow m = -1; 2$
- $\to X = 1; 0; 3$
- $\rightarrow Y = 1; -2; -3$
- $\rightarrow Z = -3; -1; 0; 1$
- $\rightarrow a = 2; -2; 4; -4$
- $\rightarrow b = 7; -7$
- $\rightarrow c = 3; -3$
- $\rightarrow d = -5; 5$
- $\rightarrow e = -4; 2; 3$
- $\rightarrow f = 3; -2; 5$
- $\rightarrow g = -2; 1; 0$
- $\rightarrow A = -5; 2$
- → B = 7; -5
- \rightarrow C = 3: -2

Система 4х4 с единственным решением

54. Решить систему уравнений.

$$\Rightarrow b_{44} = a_{44} + k_{34}a_{34} + k_{24}a_{24} + k_{14}a_{14}$$

$$\Rightarrow b_{43} = k_{34}a_{33} + k_{24}a_{23} + k_{14}a_{13}$$

$$\Rightarrow b_{42} = k_{24}a_{22} + k_{14}a_{12}$$

$$\Rightarrow b_{41} = k_{14}a_{11}$$

$$\Rightarrow b_{34} = a_{34} + k_{23}a_{24} + k_{13}a_{14}$$

$$\Rightarrow b_{33} = a_{33} + k_{23}a_{23} + k_{13}a_{13}$$

$$\Rightarrow b_{32} = k_{23}a_{22} + k_{13}a_{12}$$

$$\Rightarrow b_{31} = k_{13}a_{11}$$

$$\Rightarrow b_{24} = a_{24} + k_{12}a_{14}$$

$$\Rightarrow b_{23} = a_{23} + k_{12}a_{13}$$

$$\Rightarrow b_{22} = a_{22} + k_{12}a_{12}$$

$$\Rightarrow b_{21} = k_{12}a_{11}$$

$$\Rightarrow b_{14} = a_{14}$$

$$\Rightarrow b_{13} = a_{13}$$

$$\Rightarrow b_{12} = a_{12}$$

$$\Rightarrow b_{11} = a_{11}$$

$$\Rightarrow k_{14} = -2; -1; 0; 1$$

$$\Rightarrow k_{24} = -1; 0; 1; 2$$

$$\Rightarrow k_{34} = -2; -1; 1; 2$$

$$\Rightarrow k_{13} = -1; 0; 1; 2$$

$$\Rightarrow k_{23} = -2; -1; 1; 2$$

$$\Rightarrow k_{12} = -3; -2; -1; 1; 2; 3$$

$$\Rightarrow a_{11} = -3; -2; -1; 1; 2; 3$$

$$\Rightarrow a_{22} = -2; -1; 1; 2$$

$$\Rightarrow a_{33} = -2; -1; 1; 2$$

$$\Rightarrow a_{44} = -1; 1$$

$$\Rightarrow a_{12} = -1; 0; 1; 2$$

$$\Rightarrow a_{13} = -2; -1; 1$$

$$\Rightarrow a_{14} = -2; -1; 0; 1$$

$$\Rightarrow a_{23} = -1; 1; 2$$

$$\Rightarrow a_{24} = -1; 0; 1; 2$$

$$\Rightarrow a_{34} = -2; -1; 1$$

$$\Rightarrow X_1 = -3; -2; -1; 1; 2; 3$$

$$\Rightarrow X_2 = -1; 1; 2; 3; 4; 5$$

$$\Rightarrow X_3 = -5; -3; -2; -1; 1; 2$$

$$\Rightarrow X_4 = -2; -1; 1; 2; 3; 4$$

1)
$$\begin{cases} b_{11}x_1 + b_{12}x_2 + b_{13}x_3 + b_{14}x_4 = b_{11}X_1 + b_{12}X_2 + b_{13}X_3 + b_{14}X_4, \\ b_{21}x_1 + b_{22}x_2 + b_{23}x_3 + b_{24}x_4 = b_{21}X_1 + b_{22}X_2 + b_{23}X_3 + b_{24}X_4, \\ b_{31}x_1 + b_{32}x_2 + b_{33}x_3 + b_{34}x_4 = b_{31}X_1 + b_{32}X_2 + b_{33}X_3 + b_{34}X_4, \\ b_{41}x_1 + b_{42}x_2 + b_{43}x_3 + b_{44}x_4 = b_{41}X_1 + b_{42}X_2 + b_{43}X_3 + b_{44}X_4 \end{cases}$$

$$\sqrt{x_1 = X_1}$$
; $x_2 = X_2$; $x_3 = X_3$; $x_4 = X_4$

2)
$$\begin{cases} b_{23}x_1 + b_{24}x_2 + b_{21}x_3 + b_{22}x_4 = b_{23}X_1 + b_{24}X_2 + b_{21}X_3 + b_{22}X_4, \\ b_{43}x_1 + b_{44}x_2 + b_{41}x_3 + b_{42}x_4 = b_{43}X_1 + b_{44}X_2 + b_{41}X_3 + b_{42}X_4, \\ b_{33}x_1 + b_{34}x_2 + b_{31}x_3 + b_{32}x_4 = b_{33}X_1 + b_{34}X_2 + b_{31}X_3 + b_{32}X_4, \\ b_{13}x_1 + b_{14}x_2 + b_{11}x_3 + b_{12}x_4 = b_{13}X_1 + b_{14}X_2 + b_{11}X_3 + b_{12}X_4 \end{cases}$$

$$\sqrt{x_1 = X_1}$$
; $x_2 = X_2$; $x_3 = X_3$; $x_4 = X_4$

3)
$$\begin{cases} b_{24}x_1 + b_{22}x_2 + b_{23}x_3 + b_{21}x_4 = b_{24}X_1 + b_{22}X_2 + b_{23}X_3 + b_{21}X_4, \\ b_{34}x_1 + b_{32}x_2 + b_{33}x_3 + b_{31}x_4 = b_{34}X_1 + b_{32}X_2 + b_{33}X_3 + b_{31}X_4, \\ b_{14}x_1 + b_{12}x_2 + b_{13}x_3 + b_{11}x_4 = b_{14}X_1 + b_{12}X_2 + b_{13}X_3 + b_{11}X_4, \\ b_{44}x_1 + b_{42}x_2 + b_{43}x_3 + b_{41}x_4 = b_{44}X_1 + b_{42}X_2 + b_{43}X_3 + b_{41}X_4 \end{cases}$$

$$\sqrt{x_1 = X_1}; \ x_2 = X_2; \ x_3 = X_3; \ x_4 = X_4$$

55. Исследовать на совместность и найти общее решение и одно частное решение системы уравнений:

1)
$$\begin{cases} a_{11}x_1 + a_{12}x_2 = A_1, \\ a_{21}x_1 + a_{22}x_2 = A_2 \end{cases}$$

- $\sqrt{}$ общее решение: $x_1 = X_1 + z_{11}\alpha$, $x_2 = \alpha$, частное решение: $x_1 = X_1$, $x_2 = 0$
- $\rightarrow a_{21} = ka_{11}$
- $\rightarrow a_{22} = ka_{12}$
- $\rightarrow A_2 = kA_1$
- $\rightarrow k = -2; -1; 2; 3$
- $\rightarrow A_1 = a_{11}X_1$
- $\rightarrow X_1 = -3; -2; -1; 1; 2; 3; 4; 5$
- $\rightarrow a_{12} = -a_{11}z_{11}$
- $\rightarrow z_{11} = -2; -1; 1; 2; 3$
- $\rightarrow a_{11} = -1; 1$

2)
$$\begin{cases} a_{21}x_1 + a_{22}x_2 = A_2, \\ a_{11}x_1 + a_{12}x_2 = A_1 \end{cases}$$

- √ система несовместна
- $\rightarrow a_{21} = ka_{11}$
- $\rightarrow a_{22} = ka_{12}$
- $\rightarrow A_2 = kA_1 + d$
- $\rightarrow d = -3; -1; 1; 5$
- $\rightarrow k = -2; -1; 2; 3$
- $\rightarrow A_1 = a_{11}X_1$
- $\rightarrow X_1 = -3; -2; -1; 1; 2; 3; 4; 5$
- $\rightarrow a_{12} = -a_{11}z_{11}$
- $\rightarrow z_{11} = -2; -1; 1; 2; 3$
- $\rightarrow a_{11} = -1; 1$

3)
$$\begin{cases} a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = A_2, \\ a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = A_1 \end{cases}$$

- $\sqrt{}$ общее решение: $x_1 = X_1 + z_{11}\alpha + z_{21}\beta$, $x_2 = \alpha$, $x_3 = \beta$, частное решение: $x_1 = X_1$, $x_2 = 0$, $x_3 = \beta$
- $\rightarrow a_{21} = ka_{11}$
- $\rightarrow a_{22} = ka_{12}$
- $\rightarrow a_{23} = ka_{13}$
- $\rightarrow A_2 = kA_1$
- $\rightarrow k = -2; -1; 2; 3$

- $\rightarrow A_1 = a_{11}X_1$
- $\rightarrow X_1 = -3; -2; -1; 1; 2; 3; 4; 5$
- $\rightarrow a_{13} = -a_{11}z_{21}$
- $\rightarrow z_{21} = -2; -1; 1; 2; 3$
- $\rightarrow a_{12} = -a_{11}z_{11}$
- $\rightarrow z_{11} = -2; -1; 1; 2; 3$
- $\rightarrow a_{11} = -1; 1$
- 4) $\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = A_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = A_2 \end{cases}$
- √ система несовместна
- $\rightarrow a_{21} = ka_{11}$
- $\rightarrow a_{22} = ka_{12}$
- $\rightarrow a_{23} = ka_{13}$
- $\rightarrow A_2 = kA_1 + d$
- $\rightarrow d = -3; -1; 1; 5$
- $\rightarrow k = -2; -1; 2; 3$
- $\rightarrow A_1 = a_{11}X_1$
- $\rightarrow X_1 = -3; -2; -1; 1; 2; 3; 4; 5$
- $\rightarrow a_{13} = -a_{11}z_{21}$
- $\rightarrow z_{21} = -2; -1; 1; 2; 3$
- $\rightarrow a_{12} = -a_{11}z_{11}$
- $\rightarrow z_{11} = -2; -1; 1; 2; 3$
- $\rightarrow a_{11} = -1; 1$

- **56.** Исследовать на совместность и найти общее решение и одно частное решение системы уравнений:
- $\Rightarrow A_1 = a_{11}X_1 + a_{12}X_2$
- $\Rightarrow A_2 = a_{21}X_1 + a_{22}X_2$
- $\Rightarrow X_1 = -3; -2; -1; 1; 2; 3; 4; 5$
- $\Rightarrow X_2 = -3; -2; -1; 1; 2; 3; 4; 5$
- $\Rightarrow a_{11} = -3; -1; 1; 3; 5; 7$
- $\Rightarrow a_{12} = -4; -3; -2; -1; 0; 1; 2; 3; 4; 5$
- $\Rightarrow a_{21} = -4; -2; 2; 4; 6$
- $\Rightarrow a_{22} = -5; -3; -1; 1; 3; 5$
- 1) $\begin{cases} a_{11}x_1 + a_{12}x_2 = A_1, \\ a_{21}x_1 + a_{22}x_2 = A_2 \end{cases}$
- $\sqrt{\ }$ система имеет единственное решение: $x_1 = X_1, \ x_2 = X_2$
- 2) $\begin{cases} a_{13}x_1 + a_{12}x_2 + a_{11}x_3 = A_1, \\ a_{23}x_1 + a_{22}x_2 + a_{21}x_3 = A_2 \end{cases}$
- $\sqrt{}$ общее решение: $x_1 = \alpha$, $x_2 = X_2 + z_{12}\alpha$, $x_3 = X_1 + z_{11}\alpha$, частное решение: $x_1 = 0$, $x_2 = X_2$, $x_3 = X_1 + z_{11}\alpha$, частное решение: $x_1 = 0$, $x_2 = X_2$, $x_3 = X_3 + z_{11}\alpha$, частное решение: $x_1 = 0$, $x_2 = X_2$, $x_3 = X_3 + z_{11}\alpha$, частное решение: $x_1 = 0$, $x_2 = X_3 + z_{12}\alpha$, $x_3 = X_3 + z_{11}\alpha$, частное решение: $x_1 = 0$, $x_2 = X_3 + z_{12}\alpha$, $x_3 = X_3 + z_{11}\alpha$, частное решение: $x_1 = 0$, $x_2 = X_3 + z_{12}\alpha$, $x_3 = X_3 + z_{11}\alpha$, частное решение: $x_1 = 0$, $x_2 = X_3 + z_{12}\alpha$, $x_3 = X_3 + z_{11}\alpha$, частное решение: $x_1 = 0$, $x_2 = X_3 + z_{12}\alpha$, $x_3 = X_3 + z_{11}\alpha$, частное решение: $x_1 = 0$, $x_2 = X_3 + z_{12}\alpha$, $x_3 = X_3 + z_$
- $\rightarrow a_{13} = -a_{11}z_{11} a_{12}z_{12}$
- $\rightarrow a_{23} = -a_{21}z_{11} a_{22}z_{12}$
- $\rightarrow z_{11} = -2; -1; 1; 2; 3$
- $\rightarrow z_{12} = -2; -1; 1; 2; 3$
- 3) $\begin{cases} a_{12}x_1 + a_{14}x_2 + a_{11}x_3 + a_{13}x_4 = A_1, \\ a_{22}x_1 + a_{24}x_2 + a_{21}x_3 + a_{23}x_4 = A_2 \end{cases}$
- $\sqrt{}$ общее решение: $x_1 = X_2 + z_{12}\alpha + z_{22}\beta$, $x_2 = \beta$, $x_3 = X_1 + z_{11}\alpha + z_{21}\beta$, $x_4 = \alpha$, частное решение
- $\rightarrow a_{13} = -a_{11}z_{11} a_{12}z_{12}$
- $\rightarrow a_{23} = -a_{21}z_{11} a_{22}z_{12}$
- $\rightarrow a_{14} = -a_{11}z_{21} a_{12}z_{22}$
- $\rightarrow a_{24} = -a_{21}z_{21} a_{22}z_{22}$
- $\rightarrow z_{11} = -2; -1; 1; 2; 3$
- $\rightarrow z_{12} = -2; -1; 1; 2; 3$
- $\rightarrow z_{21} = -2; -1; 1; 2; 3$
- $\rightarrow z_{22} = -2; -1; 1; 2; 3$
- 4) $\begin{cases} a_{14}x_1 + a_{15}x_2 + a_{11}x_3 + a_{13}x_4 + a_{12}x_5 = A_1, \\ a_{24}x_1 + a_{25}x_2 + a_{21}x_3 + a_{23}x_4 + a_{22}x_5 = A_2 \end{cases}$
- $\sqrt{}$ общее решение: $x_1=\beta,\ x_2=\gamma,\ x_3=X_1+z_{11}\alpha+z_{21}\beta+z_{31}\gamma,\ x_4=\alpha,\ x_5=X_2+z_{12}\alpha+z_{22}\beta+z_{31}\gamma$
- $\rightarrow a_{15} = -a_{11}z_{31} a_{12}z_{32}$

$$\rightarrow a_{25} = -a_{21}z_{31} - a_{22}z_{32}$$

$$\rightarrow z_{31} = -2; -1; 1; 2; 3$$

$$\rightarrow z_{32} = -2; -1; 1; 2; 3$$

$$\rightarrow a_{14} = -a_{11}z_{21} - a_{12}z_{22}$$

$$\rightarrow a_{24} = -a_{21}z_{21} - a_{22}z_{22}$$

$$\rightarrow z_{21} = -2; -1; 1; 2; 3$$

$$\rightarrow z_{22} = -2; -1; 1; 2; 3$$

$$\rightarrow a_{13} = -a_{11}z_{11} - a_{12}z_{12}$$

$$\rightarrow a_{23} = -a_{21}z_{11} - a_{22}z_{12}$$

$$\rightarrow z_{11} = -2; -1; 1; 2; 3$$

$$\rightarrow z_{12} = -2; -1; 1; 2; 3$$

5)
$$\begin{cases} a_{31}x_1 + a_{32}x_2 = A_3, \\ a_{11}x_1 + a_{12}x_2 = A_1, \\ a_{21}x_1 + a_{22}x_2 = A_2 \end{cases}$$

$$\sqrt{\ }$$
 система имеет единственное решение: $x_1 = X_1, \ x_2 = X_2$

$$\rightarrow a_{31} = ka_{11} + la_{21}$$

$$\rightarrow a_{32} = ka_{12} + la_{22}$$

$$\rightarrow A_3 = kA_1 + lA_2$$

$$\rightarrow k = -2; -1; 2; 3$$

$$\rightarrow l = -2; -1; 2; 3$$

6)
$$\begin{cases} a_{11}x_1 + a_{12}x_2 = A_1, \\ a_{31}x_1 + a_{32}x_2 = A_3, \\ a_{21}x_1 + a_{22}x_2 = A_2 \end{cases}$$

$$\rightarrow a_{31} = ka_{11} + la_{21}$$

$$\rightarrow a_{32} = ka_{12} + la_{22}$$

$$\rightarrow A_3 = kA_1 + lA_2 + d$$

$$\rightarrow$$
 $d = -3; -1; 1; 5$

$$\rightarrow k = -2; -1; 2; 3$$

$$\rightarrow l = -2; -1; 2; 3$$

7)
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = A_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = A_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = A_3 \end{cases}$$

$$\sqrt{}$$
 общее решение: $x_1 = X_1 + z_{11}\alpha$, $x_2 = X_2 + z_{12}\alpha$, $x_3 = \alpha$, частное решение: $x_1 = X_1$, $x_2 = X_2$,

$$\rightarrow a_{31} = ka_{11} + la_{21}$$

$$\rightarrow a_{32} = ka_{12} + la_{22}$$

$$\rightarrow a_{33} = ka_{13} + la_{23}$$

$$\rightarrow A_3 = kA_1 + lA_2$$

$$\rightarrow k = -2; -1; 2; 3$$

$$\rightarrow l = -2; -1; 2; 3$$

$$\rightarrow a_{13} = -a_{11}z_{11} - a_{12}z_{12}$$

$$\rightarrow a_{23} = -a_{21}z_{11} - a_{22}z_{12}$$

$$\rightarrow z_{11} = -2; -1; 1; 2; 3$$

$$\rightarrow z_{12} = -2; -1; 1; 2; 3$$

8)
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = A_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = A_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = A_3 \end{cases}$$

$$\rightarrow a_{31} = ka_{11} + la_{21}$$

$$\rightarrow a_{32} = ka_{12} + la_{22}$$

$$\rightarrow a_{33} = ka_{13} + la_{23}$$

$$\rightarrow A_3 = kA_1 + lA_2 + d$$

$$\rightarrow$$
 $d = -3; -1; 1; 5$

$$\rightarrow k = -2: -1: 2: 3$$

$$\rightarrow l = -2; -1; 2; 3$$

$$\rightarrow a_{13} = -a_{11}z_{11} - a_{12}z_{12}$$

$$\rightarrow a_{23} = -a_{21}z_{11} - a_{22}z_{12}$$

$$\rightarrow z_{11} = -2; -1; 1; 2; 3$$

$$\rightarrow z_{12} = -2; -1; 1; 2; 3$$

9)
$$\begin{cases} a_{11}x_1 + a_{13}x_2 + a_{12}x_3 + a_{14}x_4 = A_1, \\ a_{21}x_1 + a_{23}x_2 + a_{22}x_3 + a_{24}x_4 = A_2, \\ a_{31}x_1 + a_{33}x_2 + a_{32}x_3 + a_{34}x_4 = A_3 \end{cases}$$

$$\sqrt{}$$
 общее решение: $x_1 = X_1 + z_{11}\alpha + z_{21}\beta$, $x_2 = \alpha$, $x_3 = X_2 + z_{12}\alpha + z_{22}\beta$, $x_4 = \beta$, частное решение

$$\rightarrow a_{31} = ka_{11} + la_{21}$$

$$\rightarrow a_{32} = ka_{12} + la_{22}$$

$$\rightarrow a_{33} = ka_{13} + la_{23}$$

$$\rightarrow a_{34} = ka_{14} + la_{24}$$

$$\rightarrow A_3 = kA_1 + lA_2$$

$$\rightarrow k = -2; -1; 2; 3$$

$$\rightarrow l = -2; -1; 2; 3$$

$$\rightarrow a_{13} = -a_{11}z_{11} - a_{12}z_{12}$$

$$\rightarrow a_{23} = -a_{21}z_{11} - a_{22}z_{12}$$

$$\rightarrow a_{14} = -a_{11}z_{21} - a_{12}z_{22}$$

$$\rightarrow a_{24} = -a_{21}z_{21} - a_{22}z_{22}$$

$$\rightarrow z_{11} = -2; -1; 1; 2; 3$$

$$\rightarrow z_{12} = -2; -1; 1; 2; 3$$

$$\rightarrow z_{21} = -2; -1; 1; 2; 3$$

$$\rightarrow z_{22} = -2; -1; 1; 2; 3$$

10)
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 = A_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 = A_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + a_{34}x_4 = A_3 \end{cases}$$

$$\rightarrow a_{31} = ka_{11} + la_{21}$$

$$\rightarrow a_{32} = ka_{12} + la_{22}$$

$$\rightarrow a_{33} = ka_{13} + la_{23}$$

$$\rightarrow a_{34} = ka_{14} + la_{24}$$

$$\rightarrow A_3 = kA_1 + lA_2 + d$$

$$\rightarrow$$
 $d = -3; -1; 1; 5$

$$\rightarrow k = -2; -1; 2; 3$$

$$\rightarrow l = -2; -1; 2; 3$$

$$\rightarrow a_{13} = -a_{11}z_{11} - a_{12}z_{12}$$

$$\rightarrow a_{23} = -a_{21}z_{11} - a_{22}z_{12}$$

$$\rightarrow a_{14} = -a_{11}z_{21} - a_{12}z_{22}$$

$$\rightarrow a_{24} = -a_{21}z_{21} - a_{22}z_{22}$$

$$\rightarrow z_{11} = -2; -1; 1; 2; 3$$

$$\rightarrow z_{12} = -2; -1; 1; 2; 3$$

$$\rightarrow z_{21} = -2; -1; 1; 2; 3$$

$$\rightarrow z_{22} = -2; -1; 1; 2; 3$$

11)
$$\begin{cases} a_{11}x_1 + a_{14}x_2 + a_{13}x_3 + a_{15}x_4 + a_{12}x_5 = A_1, \\ a_{21}x_1 + a_{24}x_2 + a_{23}x_3 + a_{25}x_4 + a_{22}x_5 = A_2, \\ a_{31}x_1 + a_{34}x_2 + a_{33}x_3 + a_{35}x_4 + a_{32}x_5 = A_3 \end{cases}$$

$$\sqrt{}$$
 общее решение: $x_1=X_1+z_{11}\alpha+z_{21}\beta+z_{31}\gamma,\ x_2=\beta,\ x_3=\alpha,\ x_4=\gamma,\ x_5=X_2+z_{12}\alpha+z_{22}\beta+z_{32}\beta+z_{33}\gamma$

$$\rightarrow a_{31} = ka_{11} + la_{21}$$

$$\rightarrow a_{32} = ka_{12} + la_{22}$$

$$\rightarrow a_{33} = ka_{13} + la_{23}$$

$$\rightarrow a_{34} = ka_{14} + la_{24}$$

$$\rightarrow a_{35} = ka_{15} + la_{25}$$

$$\rightarrow A_3 = kA_1 + lA_2$$

$$\rightarrow k = -2; -1; 2; 3$$

$$\rightarrow l = -2; -1; 2; 3$$

$$\rightarrow a_{15} = -a_{11}z_{31} - a_{12}z_{32}$$

- $\rightarrow a_{25} = -a_{21}z_{31} a_{22}z_{32}$
- $\rightarrow z_{31} = -2; -1; 1; 2; 3$
- $\rightarrow z_{32} = -2; -1; 1; 2; 3$
- $\rightarrow a_{14} = -a_{11}z_{21} a_{12}z_{22}$
- $\rightarrow a_{24} = -a_{21}z_{21} a_{22}z_{22}$
- $\rightarrow z_{21} = -2; -1; 1; 2; 3$
- $\rightarrow z_{22} = -2; -1; 1; 2; 3$
- $\rightarrow a_{13} = -a_{11}z_{11} a_{12}z_{12}$
- $\rightarrow a_{23} = -a_{21}z_{11} a_{22}z_{12}$
- $\rightarrow z_{11} = -2; -1; 1; 2; 3$
- $\rightarrow z_{12} = -2; -1; 1; 2; 3$

12)
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 + a_{15}x_5 = A_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 + a_{25}x_5 = A_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + a_{34}x_4 + a_{35}x_5 = A_3 \end{cases}$$

- √ система несовместна
- $\rightarrow a_{31} = ka_{11} + la_{21}$
- $\rightarrow a_{32} = ka_{12} + la_{22}$
- $\rightarrow a_{33} = ka_{13} + la_{23}$
- $\rightarrow a_{34} = ka_{14} + la_{24}$
- $\rightarrow a_{35} = ka_{15} + la_{25}$
- $\rightarrow A_3 = kA_1 + lA_2 + d$
- \rightarrow d = -3; -1; 1; 5
- $\rightarrow k = -2; -1; 2; 3$
- $\rightarrow l = -2; -1; 2; 3$
- $\rightarrow a_{15} = -a_{11}z_{31} a_{12}z_{32}$
- $\rightarrow a_{25} = -a_{21}z_{31} a_{22}z_{32}$
- $\rightarrow z_{31} = -2; -1; 1; 2; 3$
- $\rightarrow z_{32} = -2; -1; 1; 2; 3$
- $\rightarrow a_{14} = -a_{11}z_{21} a_{12}z_{22}$
- $\rightarrow a_{24} = -a_{21}z_{21} a_{22}z_{22}$
- $\rightarrow z_{21} = -2; -1; 1; 2; 3$
- $\rightarrow z_{22} = -2; -1; 1; 2; 3$
- $\rightarrow a_{13} = -a_{11}z_{11} a_{12}z_{12}$
- $\rightarrow a_{23} = -a_{21}z_{11} a_{22}z_{12}$
- $\rightarrow z_{11} = -2; -1; 1; 2; 3$
- $\rightarrow z_{12} = -2; -1; 1; 2; 3$

- **57.** Исследовать на совместность и найти общее решение и одно частное решение системы уравнений:
- $\Rightarrow A_1 = a_{11}X_1 + a_{12}X_2 + a_{13}X_3$
- $\Rightarrow A_2 = a_{21}X_1 + a_{22}X_2 + a_{23}X_3$
- $\Rightarrow A_3 = a_{31}X_1 + a_{32}X_2 + a_{33}X_3$
- $\Rightarrow X_1 = -3; -2; -1; 1; 2; 3; 4; 5$
- $\Rightarrow X_2 = -3; -2; -1; 1; 2; 3; 4; 5$
- \Rightarrow $X_3 = -3; -2; -1; 1; 2; 3; 4; 5$
- $\Rightarrow a_{11}, a_{12}, a_{13}, a_{21}, a_{22}, a_{23}, a_{31}, a_{32}, a_{33} =$
 - b_{11} , b_{12} , b_{13} , b_{21} , b_{22} , b_{23} , b_{31} , b_{32} , b_{33} ;
 - b_{22} , b_{21} , b_{23} , b_{12} , b_{11} , b_{13} , b_{32} , b_{31} , b_{33} ;
 - b_{32} , b_{31} , b_{33} , b_{12} , b_{11} , b_{13} , b_{22} , b_{21} , b_{23}
- \Rightarrow $b_{33} = c_{33} + k_{23}c_{23} + k_{13}c_{13}$
- $\Rightarrow b_{32} = k_{23}c_{22} + k_{13}c_{12}$
- $\Rightarrow b_{31} = k_{13}c_{11}$
- $\Rightarrow b_{23} = c_{23} + k_{12}c_{13}$
- $\Rightarrow b_{22} = c_{22} + k_{12}c_{12}$
- $\Rightarrow b_{21} = k_{12}c_{11}$
- $\Rightarrow b_{13} = c_{13}$
- $\Rightarrow b_{12} = c_{12}$
- $\Rightarrow b_{11} = c_{11}$
- $\Rightarrow k_{13} = -1; 0; 1; 2$
- $\Rightarrow k_{23} = -2; -1; 1; 2$
- $\Rightarrow k_{12} = -3; -2; -1; 1; 2; 3$
- \Rightarrow $c_{11} = -3$; -2; -1; 1; 2; 3
- \Rightarrow $c_{22} = -2$; -1; 1; 2
- \Rightarrow $c_{33} = -2$; -1; 1; 2
- \Rightarrow $c_{12} = -1$; 0; 1; 2
- \Rightarrow $c_{13} = -2$; -1; 1
- \Rightarrow $c_{23} = -1$; 1; 2

1)
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = A_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = A_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = A_3 \end{cases}$$

 $\sqrt{}$ система имеет единственное решение: $x_1 = X_1, \ x_2 = X_2, \ x_3 = X_3$

```
2) \begin{cases} a_{14}x_1 + a_{12}x_2 + a_{13}x_3 + a_{11}x_4 = A_1, \\ a_{24}x_1 + a_{22}x_2 + a_{23}x_3 + a_{21}x_4 = A_2, \\ a_{34}x_1 + a_{32}x_2 + a_{33}x_3 + a_{31}x_4 = A_3 \end{cases}
\sqrt{\phantom{a}} общее решение: x_1 = \alpha, x_2 = X_2 + z_{12}\alpha, x_3 = X_3 + z_{13}\alpha, x_4 = X_1 + z_{11}\alpha, частное решение: x_1
\rightarrow a_{14} = -a_{11}z_{11} - a_{12}z_{12} - a_{13}z_{13}
\rightarrow a_{24} = -a_{21}z_{11} - a_{22}z_{12} - a_{23}z_{13}
\rightarrow a_{34} = -a_{31}z_{11} - a_{32}z_{12} - a_{33}z_{13}
\rightarrow z_{11} = -2; -1; 1; 2; 3
\rightarrow z_{12} = -2; -1; 1; 2; 3
\rightarrow z_{13} = -2; -1; 1; 2; 3
3) \begin{cases} a_{11}x_1 + a_{12}x_2 + a_{14}x_3 + a_{15}x_4 + a_{13}x_5 = A_1, \\ a_{21}x_1 + a_{22}x_2 + a_{24}x_3 + a_{25}x_4 + a_{23}x_5 = A_2, \\ a_{31}x_1 + a_{32}x_2 + a_{34}x_3 + a_{35}x_4 + a_{33}x_5 = A_3 \end{cases}
\sqrt{\phantom{a}} общее решение: x_1 = X_1 + z_{11}\alpha + z_{21}\beta, x_2 = X_2 + z_{12}\alpha + z_{22}\beta, x_3 = \alpha, x_4 = \beta, x_5 = X_3 + z_{13}\alpha
\rightarrow a_{15} = -a_{11}z_{21} - a_{12}z_{22} - a_{13}z_{23}
\rightarrow a_{25} = -a_{21}z_{21} - a_{22}z_{22} - a_{23}z_{23}
\rightarrow a_{35} = -a_{31}z_{21} - a_{32}z_{22} - a_{33}z_{23}
\rightarrow z_{21} = -2; -1; 1; 2; 3
\rightarrow z_{22} = -2; -1; 1; 2; 3
\rightarrow z_{23} = -2; -1; 1; 2; 3
\rightarrow a_{14} = -a_{11}z_{11} - a_{12}z_{12} - a_{13}z_{13}
\rightarrow a_{24} = -a_{21}z_{11} - a_{22}z_{12} - a_{23}z_{13}
\rightarrow a_{34} = -a_{31}z_{11} - a_{32}z_{12} - a_{33}z_{13}
\rightarrow z_{11} = -2; -1; 1; 2; 3
\rightarrow z_{12} = -2; -1; 1; 2; 3
\rightarrow z_{13} = -2; -1; 1; 2; 3
      \begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = A_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = A_2, \\ a_{41}x_1 + a_{42}x_2 + a_{43}x_3 = A_4, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_2 = A_3 \end{cases}
\sqrt{\phantom{a}} система имеет единственное решение: x_1=X_1,\ x_2=X_2,\ x_3=X_3
\rightarrow a_{41} = ka_{11} + la_{21} + ma_{31}
\rightarrow a_{42} = ka_{12} + la_{22} + ma_{32}
\rightarrow a_{43} = ka_{13} + la_{23} + ma_{33}
\rightarrow A_4 = kA_1 + lA_2 + mA_3
\rightarrow k = -2; -1; 1; 2
\rightarrow l = -2; -1; 1; 2
```

 $\rightarrow m = -2; -1; 1; 2$

$$\begin{cases} a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} = A_{1}, \\ a_{21}x_{1} + a_{22}x_{2} + a_{23}x_{3} = A_{2}, \\ a_{31}x_{1} + a_{23}x_{2} + a_{33}x_{3} = A_{3}, \\ a_{41}x_{1} + a_{23}x_{2} + a_{33}x_{3} = A_{4} \end{cases}$$

$$\checkmark \text{ системи песопместии}$$

$$\Rightarrow a_{41} = ka_{21} + la_{21} + ma_{31}$$

$$\Rightarrow a_{42} = ka_{12} + la_{22} + ma_{32}$$

$$\Rightarrow a_{43} = ka_{13} + la_{23} + ma_{33}$$

$$\Rightarrow A_{4} = kA_{1} + lA_{2} + mA_{3} + d$$

$$\Rightarrow d = -3, -1; 1; 5$$

$$\Rightarrow k = -2; -1; 1; 2$$

$$\Rightarrow m = 2; -1; 1; 2$$

$$\Rightarrow m = -2; -1; 1; 2$$

$$\Rightarrow a_{14} = -a_{11}x_{1} - a_{22}x_{12} - a_{23}x_{13}$$

$$\Rightarrow a_{24} = -a_{21}x_{11} - a_{22}x_{22} - a_{23}x_{13}$$

$$\Rightarrow a_{24} = -a_{21}x_{11} - a_{22}x_{22} - a_{23}x_{13}$$

$$\Rightarrow a_{21} = -2; -1; 1; 2; 3$$

$$\Rightarrow a_{31} + a_{32}x_{2} + a_{34}x_{3} + a_{34}x_{4} = A_{4}, a_{31}x_{1} + a_{42}x_{2} + a_{34}x_{3} + a_{34}x_{4} = A_{4}, a_{31}x_{1} + a_{42}x_{2} + a_{34}x_{3} + a_{34}x_{4} = A_{4}, a_{31}x_{1} + a_{42}x_{2} + a_{34}x_{3} + a_{34}x_{4} = A_{4}, a_{31}x_{1} + a_{32}x_{2} + a_{34}x_{3} + a_$$

✓ система несовместна

$$\rightarrow a_{41} = ka_{11} + la_{21} + ma_{31}$$

$$\rightarrow a_{42} = ka_{12} + la_{22} + ma_{32}$$

$$\rightarrow a_{43} = ka_{13} + la_{23} + ma_{33}$$

$$\rightarrow a_{44} = ka_{14} + la_{24} + ma_{34}$$

$$\rightarrow A_4 = kA_1 + lA_2 + mA_3 + d$$

$$\rightarrow$$
 $d = -3; -1; 1; 5$

$$\rightarrow k = -2; -1; 1; 2$$

$$\rightarrow l = -2; -1; 1; 2$$

$$\rightarrow m = -2; -1; 1; 2$$

$$\rightarrow a_{14} = -a_{11}z_{11} - a_{12}z_{12} - a_{13}z_{13}$$

$$\rightarrow a_{24} = -a_{21}z_{11} - a_{22}z_{12} - a_{23}z_{13}$$

$$\rightarrow a_{34} = -a_{31}z_{11} - a_{32}z_{12} - a_{33}z_{13}$$

$$\rightarrow z_{11} = -2; -1; 1; 2; 3$$

$$\rightarrow z_{12} = -2; -1; 1; 2; 3$$

$$\rightarrow z_{13} = -2; -1; 1; 2; 3$$

8)
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 + a_{15}x_5 = A_1, \\ a_{41}x_1 + a_{42}x_2 + a_{43}x_3 + a_{44}x_4 + a_{45}x_5 = A_4, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 + a_{25}x_5 = A_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + a_{34}x_4 + a_{35}x_5 = A_3 \end{cases}$$

$$\sqrt{}$$
 общее решение: $x_1 = X_1 + z_{11}\alpha + z_{21}\beta$, $x_2 = X_2 + z_{12}\alpha + z_{22}\beta$, $x_3 = X_3 + z_{13}\alpha + z_{23}\beta$, $x_4 = \alpha$,

$$\rightarrow a_{41} = ka_{11} + la_{21} + ma_{31}$$

$$\rightarrow a_{42} = ka_{12} + la_{22} + ma_{32}$$

$$\rightarrow a_{43} = ka_{13} + la_{23} + ma_{33}$$

$$\rightarrow a_{44} = ka_{14} + la_{24} + ma_{34}$$

$$\rightarrow a_{45} = ka_{15} + la_{25} + ma_{35}$$

$$\rightarrow A_4 = kA_1 + lA_2 + mA_3$$

$$\rightarrow k = -2; -1; 1; 2$$

$$\rightarrow l = -2; -1; 1; 2$$

$$\rightarrow m = -2; -1; 1; 2$$

$$\rightarrow a_{15} = -a_{11}z_{21} - a_{12}z_{22} - a_{13}z_{23}$$

$$\rightarrow a_{25} = -a_{21}z_{21} - a_{22}z_{22} - a_{23}z_{23}$$

$$\rightarrow a_{35} = -a_{31}z_{21} - a_{32}z_{22} - a_{33}z_{23}$$

$$\rightarrow z_{21} = -2; -1; 1; 2; 3$$

$$\rightarrow z_{22} = -2; -1; 1; 2; 3$$

$$\rightarrow z_{23} = -2; -1; 1; 2; 3$$

$$\rightarrow a_{14} = -a_{11}z_{11} - a_{12}z_{12} - a_{13}z_{13}$$

$$\rightarrow a_{24} = -a_{21}z_{11} - a_{22}z_{12} - a_{23}z_{13}$$

$$\rightarrow a_{34} = -a_{31}z_{11} - a_{32}z_{12} - a_{33}z_{13}$$

- $\rightarrow z_{11} = -2; -1; 1; 2; 3$
- $\rightarrow z_{12} = -2; -1; 1; 2; 3$
- $\rightarrow z_{13} = -2; -1; 1; 2; 3$

9)
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 + a_{15}x_5 = A_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 + a_{25}x_5 = A_2, \\ a_{41}x_1 + a_{42}x_2 + a_{43}x_3 + a_{44}x_4 + a_{45}x_5 = A_4, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + a_{34}x_4 + a_{35}x_5 = A_3 \end{cases}$$

√ система несовместна

- $\rightarrow a_{41} = ka_{11} + la_{21} + ma_{31}$
- $\rightarrow a_{42} = ka_{12} + la_{22} + ma_{32}$
- $\rightarrow a_{43} = ka_{13} + la_{23} + ma_{33}$
- $\rightarrow a_{44} = ka_{14} + la_{24} + ma_{34}$
- $\rightarrow a_{45} = ka_{15} + la_{25} + ma_{35}$
- $\rightarrow A_4 = kA_1 + lA_2 + mA_3 + d$
- \rightarrow d = -3; -1; 1; 5
- $\rightarrow k = -2; -1; 1; 2$
- $\rightarrow l = -2; -1; 1; 2$
- $\rightarrow m = -2; -1; 1; 2$
- $\rightarrow a_{15} = -a_{11}z_{21} a_{12}z_{22} a_{13}z_{23}$
- $\rightarrow a_{25} = -a_{21}z_{21} a_{22}z_{22} a_{23}z_{23}$
- $\rightarrow a_{35} = -a_{31}z_{21} a_{32}z_{22} a_{33}z_{23}$
- $\rightarrow z_{21} = -2; -1; 1; 2; 3$
- $\rightarrow z_{22} = -2; -1; 1; 2; 3$
- $\rightarrow z_{23} = -2; -1; 1; 2; 3$
- $\rightarrow a_{14} = -a_{11}z_{11} a_{12}z_{12} a_{13}z_{13}$
- $\rightarrow a_{24} = -a_{21}z_{11} a_{22}z_{12} a_{23}z_{13}$
- $\rightarrow a_{34} = -a_{31}z_{11} a_{32}z_{12} a_{33}z_{13}$
- $\rightarrow z_{11} = -2; -1; 1; 2; 3$
- $\rightarrow z_{12} = -2; -1; 1; 2; 3$
- $\rightarrow z_{13} = -2; -1; 1; 2; 3$

Общее и частное решение системы, ранг 4

58. Исследовать на совместность и найти общее решение и одно частное решение системы уравнений:

$$\Rightarrow A_1 = a_{11}X_1 + a_{12}X_2 + a_{13}X_3 + a_{14}X_4$$

$$\Rightarrow A_2 = a_{21}X_1 + a_{22}X_2 + a_{23}X_3 + a_{24}X_4$$

$$\Rightarrow A_3 = a_{31}X_1 + a_{32}X_2 + a_{33}X_3 + a_{34}X_4$$

$$\Rightarrow A_4 = a_{41}X_1 + a_{42}X_2 + a_{43}X_3 + a_{44}X_4$$

$$\Rightarrow X_1 = -2; -1; 1; 2; 3$$

$$\Rightarrow X_2 = -2; -1; 1; 2; 3$$

$$\Rightarrow X_3 = -2; -1; 1; 2; 3$$

$$\Rightarrow X_4 = -2; -1; 1; 2; 3$$

$$\Rightarrow a_{11}, a_{12}, a_{13}, a_{14}, a_{21}, a_{22}, a_{23}, a_{24}, a_{31}, a_{32}, a_{33}, a_{34}, a_{41}, a_{42}, a_{43}, a_{44} =$$

•
$$b_{11}$$
, b_{12} , b_{13} , b_{14} , b_{21} , b_{22} , b_{23} , b_{24} , b_{31} , b_{32} , b_{33} , b_{34} , b_{41} , b_{42} , b_{43} , b_{44} ;

•
$$b_{32}$$
, b_{31} , b_{34} , b_{33} , b_{12} , b_{11} , b_{14} , b_{13} , b_{22} , b_{21} , b_{24} , b_{23} , b_{42} , b_{41} , b_{44} , b_{43} ;

•
$$b_{43}$$
, b_{42} , b_{41} , b_{44} , b_{13} , b_{12} , b_{11} , b_{14} , b_{33} , b_{32} , b_{31} , b_{34} , b_{23} , b_{22} , b_{21} , b_{24}

$$\Rightarrow b_{44} = c_{44} + k_{34}c_{34} + k_{24}c_{24} + k_{14}c_{14}$$

$$\Rightarrow b_{43} = k_{34}c_{33} + k_{24}c_{23} + k_{14}c_{13}$$

$$\Rightarrow b_{42} = k_{24}c_{22} + k_{14}c_{12}$$

$$\Rightarrow b_{41} = k_{14}c_{11}$$

$$\Rightarrow$$
 $b_{34} = c_{34} + k_{23}c_{24} + k_{13}c_{14}$

$$\Rightarrow b_{33} = c_{33} + k_{23}c_{23} + k_{13}c_{13}$$

$$\Rightarrow b_{32} = k_{23}c_{22} + k_{13}c_{12}$$

$$\Rightarrow b_{31} = k_{13}c_{11}$$

$$\Rightarrow b_{24} = c_{24} + k_{12}c_{14}$$

$$\Rightarrow b_{23} = c_{23} + k_{12}c_{13}$$

$$\Rightarrow b_{22} = c_{22} + k_{12}c_{12}$$

$$\Rightarrow b_{21} = k_{12}c_{11}$$

$$\Rightarrow b_{14} = c_{14}$$

$$\Rightarrow b_{13} = c_{13}$$

$$\Rightarrow b_{12} = c_{12}$$

$$\Rightarrow b_{11} = c_{11}$$

$$\Rightarrow k_{14} = -2; -1; 0; 1$$

$$\Rightarrow k_{24} = -1; 0; 1; 2$$

$$\Rightarrow k_{34} = -2; -1; 1; 2$$

$$\Rightarrow k_{13} = -1; 0; 1; 2$$

```
\Rightarrow k_{23} = -2; -1; 1; 2
\Rightarrow k_{12} = -3; -2; -1; 1; 2; 3
\Rightarrow c_{11} = -3; -2; -1; 1; 2; 3
\Rightarrow c_{22} = -2; -1; 1; 2
\Rightarrow c_{33} = -2; -1; 1; 2
\Rightarrow c_{44} = -1; 1
\Rightarrow c_{12} = -1; 0; 1; 2
\Rightarrow c_{13} = -2; -1; 1
\Rightarrow c_{14} = -2; -1; 0; 1
\Rightarrow c_{23} = -1; 1; 2
\Rightarrow c_{24} = -1; 0; 1; 2
\Rightarrow c_{34} = -2; -1; 1
 1) \begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 = A_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 = A_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + a_{34}x_4 = A_3, \\ a_{41}x_1 + a_{42}x_2 + a_{43}x_3 + a_{44}x_4 = A_4 \end{cases}
\sqrt{\phantom{a}} система имеет единственное решение: x_1 = X_1, \ x_2 = X_2, \ x_3 = X_3, \ x_4 = X_3
        \begin{cases} a_{11}x_1 + a_{12}x_2 + a_{15}x_3 + a_{14}x_4 + a_{13}x_5 = A_1, \\ a_{21}x_1 + a_{22}x_2 + a_{25}x_3 + a_{24}x_4 + a_{23}x_5 = A_2, \\ a_{31}x_1 + a_{32}x_2 + a_{35}x_3 + a_{34}x_4 + a_{33}x_5 = A_3, \\ a_{41}x_1 + a_{42}x_2 + a_{45}x_3 + a_{44}x_4 + a_{43}x_5 = A_4 \end{cases}
\sqrt{\phantom{a}} общее решение: x_1=X_1+z_{11}\alpha,\ x_2=X_2+z_{12}\alpha,\ x_3=\alpha,\ x_4=X_4+z_{14}\alpha,\ x_5=X_3+z_{13}\alpha, част
\rightarrow a_{15} = -a_{11}z_{11} - a_{12}z_{12} - a_{13}z_{13} - a_{14}z_{14}
\rightarrow a_{25} = -a_{21}z_{11} - a_{22}z_{12} - a_{23}z_{13} - a_{24}z_{14}
\rightarrow a_{35} = -a_{31}z_{11} - a_{32}z_{12} - a_{33}z_{13} - a_{34}z_{14}
\rightarrow a_{45} = -a_{41}z_{11} - a_{42}z_{12} - a_{43}z_{13} - a_{44}z_{14}
\rightarrow z_{11} = -2; -1; 1; 2
\rightarrow z_{12} = -2; -1; 1; 2
\rightarrow z_{13} = -2; -1; 1; 2
\rightarrow z_{14} = -2; -1; 1; 2
3) \begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 = A_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 = A_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + a_{34}x_4 = A_3, \\ a_{41}x_1 + a_{42}x_2 + a_{43}x_3 + a_{44}x_4 = A_4, \\ a_{51}x_1 + a_{52}x_2 + a_{53}x_3 + a_{54}x_4 = A_5 \end{cases}
\sqrt{\phantom{a}} система имеет единственное решение: x_1 = X_1, \ x_2 = X_2, \ x_3 = X_3, \ x_4 = X_3
\rightarrow a_{51} = ka_{11} + la_{21} + ma_{31} + na_{41}
```

```
\rightarrow a_{52} = ka_{12} + la_{22} + ma_{32} + na_{42}
\rightarrow a_{53} = ka_{13} + la_{23} + ma_{33} + na_{43}
\rightarrow a_{54} = ka_{14} + la_{24} + ma_{34} + na_{44}
\rightarrow A_5 = kA_1 + lA_2 + mA_3 + nA_4
\rightarrow k = -1; 1
\rightarrow l = -1; 1
\rightarrow m = -1; 1
\rightarrow n = -1; 1
4) \begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 = A_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 = A_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + a_{34}x_4 = A_3, \\ a_{41}x_1 + a_{42}x_2 + a_{43}x_3 + a_{44}x_4 = A_4, \\ a_{51}x_1 + a_{52}x_2 + a_{53}x_3 + a_{54}x_4 = A_5 \end{cases}
√ система несовместна
\rightarrow a_{51} = ka_{11} + la_{21} + ma_{31} + na_{41}
\rightarrow a_{52} = ka_{12} + la_{22} + ma_{32} + na_{42}
\rightarrow a_{53} = ka_{13} + la_{23} + ma_{33} + na_{43}
\rightarrow a_{54} = ka_{14} + la_{24} + ma_{34} + na_{44}
\rightarrow A_5 = kA_1 + lA_2 + mA_3 + nA_4 + d
\rightarrow d = -3; -1; 1; 5
\rightarrow k = -1: 1
\rightarrow l = -1; 1
\rightarrow m = -1; 1
\rightarrow n=-1; 1
5) \begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 + a_{15}x_5 = A_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 + a_{25}x_5 = A_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + a_{34}x_4 + a_{35}x_5 = A_3, \\ a_{41}x_1 + a_{42}x_2 + a_{43}x_3 + a_{44}x_4 + a_{45}x_5 = A_4, \\ a_{51}x_1 + a_{52}x_2 + a_{53}x_3 + a_{54}x_4 + a_{55}x_5 = A_5 \end{cases}
\sqrt{\phantom{a}} общее решение: x_1=X_1+z_{11}\alpha,\ x_2=X_2+z_{12}\alpha,\ x_3=X_3+z_{13}\alpha,\ x_4=X_4+z_{14}\alpha,\ x_5=\alpha, част
\rightarrow a_{51} = ka_{11} + la_{21} + ma_{31} + na_{41}
\rightarrow a_{52} = ka_{12} + la_{22} + ma_{32} + na_{42}
\rightarrow a_{53} = ka_{13} + la_{23} + ma_{33} + na_{43}
\rightarrow a_{54} = ka_{14} + la_{24} + ma_{34} + na_{44}
\rightarrow a_{55} = ka_{15} + la_{25} + ma_{35} + na_{45}
\rightarrow A_5 = kA_1 + lA_2 + mA_3 + nA_4
```

 $\rightarrow k = -1; 1$

$$\rightarrow l = -1; 1$$

$$\rightarrow m = -1; 1$$

$$\rightarrow n = -1; 1$$

$$\rightarrow a_{15} = -a_{11}z_{11} - a_{12}z_{12} - a_{13}z_{13} - a_{14}z_{14}$$

$$\rightarrow a_{25} = -a_{21}z_{11} - a_{22}z_{12} - a_{23}z_{13} - a_{24}z_{14}$$

$$\rightarrow a_{35} = -a_{31}z_{11} - a_{32}z_{12} - a_{33}z_{13} - a_{34}z_{14}$$

$$\rightarrow a_{45} = -a_{41}z_{11} - a_{42}z_{12} - a_{43}z_{13} - a_{44}z_{14}$$

$$\rightarrow z_{11} = -2; -1; 1; 2$$

$$\rightarrow z_{12} = -2; -1; 1; 2$$

$$\rightarrow z_{13} = -2; -1; 1; 2$$

$$\rightarrow z_{14} = -2; -1; 1; 2$$

6)
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 + a_{15}x_5 = A_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 + a_{25}x_5 = A_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + a_{34}x_4 + a_{35}x_5 = A_3, \\ a_{41}x_1 + a_{42}x_2 + a_{43}x_3 + a_{44}x_4 + a_{45}x_5 = A_4, \\ a_{51}x_1 + a_{52}x_2 + a_{53}x_3 + a_{54}x_4 + a_{55}x_5 = A_5 \end{cases}$$

√ система несовместна

$$\rightarrow a_{51} = ka_{11} + la_{21} + ma_{31} + na_{41}$$

$$\rightarrow a_{52} = ka_{12} + la_{22} + ma_{32} + na_{42}$$

$$\rightarrow a_{53} = ka_{13} + la_{23} + ma_{33} + na_{43}$$

$$\rightarrow a_{54} = ka_{14} + la_{24} + ma_{34} + na_{44}$$

$$\rightarrow a_{55} = ka_{15} + la_{25} + ma_{35} + na_{45}$$

$$\rightarrow A_5 = kA_1 + lA_2 + mA_3 + nA_4 + d$$

$$\rightarrow$$
 $d = -3; -1; 1; 5$

$$\rightarrow k = -1; 1$$

$$\rightarrow l = -1; 1$$

$$\rightarrow m = -1; 1$$

$$\rightarrow n = -1; 1$$

$$\rightarrow a_{15} = -a_{11}z_{11} - a_{12}z_{12} - a_{13}z_{13} - a_{14}z_{14}$$

$$\rightarrow a_{25} = -a_{21}z_{11} - a_{22}z_{12} - a_{23}z_{13} - a_{24}z_{14}$$

$$\rightarrow a_{35} = -a_{31}z_{11} - a_{32}z_{12} - a_{33}z_{13} - a_{34}z_{14}$$

$$\rightarrow a_{45} = -a_{41}z_{11} - a_{42}z_{12} - a_{43}z_{13} - a_{44}z_{14}$$

$$\rightarrow z_{11} = -2; -1; 1; 2$$

$$\rightarrow z_{12} = -2; -1; 1; 2$$

$$\rightarrow z_{13} = -2; -1; 1; 2$$

$$\rightarrow z_{14} = -2; -1; 1; 2$$

59. Найти общее решение и фундаментальную систему решений для систем уравнений:

$$\Rightarrow a_{11} = -3; -1; 1; 3; 5; 7$$

$$\Rightarrow a_{12} = -4; -3; -2; -1; 0; 1; 2; 3; 4; 5$$

$$\Rightarrow a_{21} = -4; -2; 2; 4; 6$$

$$\Rightarrow a_{22} = -5; -3; -1; 1; 3; 5$$

1)
$$\begin{cases} a_{12}x_1 + a_{14}x_2 + a_{11}x_3 + a_{13}x_4 = 0, \\ a_{22}x_1 + a_{24}x_2 + a_{21}x_3 + a_{23}x_4 = 0 \end{cases}$$

$$\sqrt{}$$
 общее решение: $x_1 = z_{12}\alpha + z_{22}\beta$, $x_2 = \beta$, $x_3 = z_{11}\alpha + z_{21}\beta$, $x_4 = \alpha$, базис подпространства рег

$$\rightarrow a_{13} = -a_{11}z_{11} - a_{12}z_{12}$$

$$\rightarrow a_{23} = -a_{21}z_{11} - a_{22}z_{12}$$

$$\rightarrow a_{14} = -a_{11}z_{21} - a_{12}z_{22}$$

$$\rightarrow a_{24} = -a_{21}z_{21} - a_{22}z_{22}$$

$$\rightarrow z_{11} = -2; -1; 1; 2; 3$$

$$\rightarrow z_{12} = -2; -1; 1; 2; 3$$

$$\rightarrow z_{21} = -2; -1; 1; 2; 3$$

$$\rightarrow z_{22} = -2; -1; 1; 2; 3$$

2)
$$\begin{cases} a_{14}x_1 + a_{15}x_2 + a_{11}x_3 + a_{13}x_4 + a_{12}x_5 = 0, \\ a_{24}x_1 + a_{25}x_2 + a_{21}x_3 + a_{23}x_4 + a_{22}x_5 = 0 \end{cases}$$

$$\sqrt{}$$
 общее решение: $x_1=\beta,\ x_2=\gamma,\ x_3=z_{11}\alpha+z_{21}\beta+z_{31}\gamma,\ x_4=\alpha,\ x_5=z_{12}\alpha+z_{22}\beta+z_{32}\gamma,$ базис

$$\rightarrow a_{15} = -a_{11}z_{31} - a_{12}z_{32}$$

$$\rightarrow a_{25} = -a_{21}z_{31} - a_{22}z_{32}$$

$$\rightarrow z_{31} = -2; -1; 1; 2; 3$$

$$\rightarrow z_{32} = -2; -1; 1; 2; 3$$

$$\rightarrow a_{14} = -a_{11}z_{21} - a_{12}z_{22}$$

$$\rightarrow a_{24} = -a_{21}z_{21} - a_{22}z_{22}$$

$$\rightarrow z_{21} = -2; -1; 1; 2; 3$$

$$\rightarrow z_{22} = -2; -1; 1; 2; 3$$

$$\rightarrow a_{13} = -a_{11}z_{11} - a_{12}z_{12}$$

$$\rightarrow a_{23} = -a_{21}z_{11} - a_{22}z_{12}$$

$$\rightarrow z_{11} = -2; -1; 1; 2; 3$$

$$\rightarrow z_{12} = -2; -1; 1; 2; 3$$

3)
$$\begin{cases} a_{11}x_1 + a_{13}x_2 + a_{12}x_3 + a_{14}x_4 = 0, \\ a_{21}x_1 + a_{23}x_2 + a_{22}x_3 + a_{24}x_4 = 0, \\ a_{31}x_1 + a_{33}x_2 + a_{32}x_3 + a_{34}x_4 = 0 \end{cases}$$

$$\sqrt{}$$
 общее решение: $x_1 = z_{11}\alpha + z_{21}\beta$, $x_2 = \alpha$, $x_3 = z_{12}\alpha + z_{22}\beta$, $x_4 = \beta$, базис подпространства рег

$$\rightarrow a_{31} = ka_{11} + la_{21}$$

$$\rightarrow a_{32} = ka_{12} + la_{22}$$

$$\rightarrow a_{33} = ka_{13} + la_{23}$$

$$\rightarrow a_{34} = ka_{14} + la_{24}$$

$$\rightarrow k = -2; -1; 2; 3$$

$$\rightarrow l = -2; -1; 2; 3$$

$$\rightarrow a_{13} = -a_{11}z_{11} - a_{12}z_{12}$$

$$\rightarrow a_{23} = -a_{21}z_{11} - a_{22}z_{12}$$

$$\rightarrow a_{14} = -a_{11}z_{21} - a_{12}z_{22}$$

$$\rightarrow a_{24} = -a_{21}z_{21} - a_{22}z_{22}$$

$$\rightarrow z_{11} = -2; -1; 1; 2; 3$$

$$\rightarrow z_{12} = -2; -1; 1; 2; 3$$

$$\rightarrow z_{21} = -2; -1; 1; 2; 3$$

$$\rightarrow z_{22} = -2; -1; 1; 2; 3$$

4)
$$\begin{cases} a_{11}x_1 + a_{14}x_2 + a_{13}x_3 + a_{15}x_4 + a_{12}x_5 = 0, \\ a_{21}x_1 + a_{24}x_2 + a_{23}x_3 + a_{25}x_4 + a_{22}x_5 = 0, \\ a_{31}x_1 + a_{34}x_2 + a_{33}x_3 + a_{35}x_4 + a_{32}x_5 = 0 \end{cases}$$

$$\sqrt{}$$
 общее решение: $x_1=z_{11}\alpha+z_{21}\beta+z_{31}\gamma,\ x_2=\beta,\ x_3=\alpha,\ x_4=\gamma,\ x_5=z_{12}\alpha+z_{22}\beta+z_{32}\gamma,$ базис

$$\rightarrow a_{31} = ka_{11} + la_{21}$$

$$\rightarrow a_{32} = ka_{12} + la_{22}$$

$$\rightarrow a_{33} = ka_{13} + la_{23}$$

$$\rightarrow a_{34} = ka_{14} + la_{24}$$

$$\rightarrow a_{35} = ka_{15} + la_{25}$$

$$\rightarrow k = -2; -1; 2; 3$$

$$\rightarrow l = -2; -1; 2; 3$$

$$\rightarrow a_{15} = -a_{11}z_{31} - a_{12}z_{32}$$

$$\rightarrow a_{25} = -a_{21}z_{31} - a_{22}z_{32}$$

$$\rightarrow z_{31} = -2; -1; 1; 2; 3$$

$$\rightarrow z_{32} = -2; -1; 1; 2; 3$$

$$\rightarrow a_{14} = -a_{11}z_{21} - a_{12}z_{22}$$

$$\rightarrow a_{24} = -a_{21}z_{21} - a_{22}z_{22}$$

$$\rightarrow z_{21} = -2; -1; 1; 2; 3$$

$$\rightarrow z_{22} = -2; -1; 1; 2; 3$$

$$\rightarrow a_{13} = -a_{11}z_{11} - a_{12}z_{12}$$

$$\rightarrow a_{23} = -a_{21}z_{11} - a_{22}z_{12}$$

$$\rightarrow z_{11} = -2; -1; 1; 2; 3$$

$$\rightarrow z_{12} = -2; -1; 1; 2; 3$$

$$\begin{cases} a_{41}x_1 + a_{43}x_2 + a_{42}x_3 + a_{44}x_4 = 0, \\ a_{11}x_1 + a_{13}x_2 + a_{12}x_3 + a_{14}x_4 = 0, \\ a_{21}x_1 + a_{23}x_2 + a_{22}x_3 + a_{24}x_4 = 0, \\ a_{31}x_1 + a_{33}x_2 + a_{22}x_3 + a_{24}x_4 = 0 \end{cases}$$

$$\checkmark \text{ об mee pememe: } x_1 = z_{11}\alpha + z_{21}\beta, \ x_2 = \alpha, \ x_3 = z_{12}\alpha + z_{22}\beta, \ x_4 = \beta, \text{ базие подпространства рег}$$

$$\Rightarrow a_{41} = Ka_{11} + La_{21}$$

$$\Rightarrow a_{42} = Ka_{12} + La_{22}$$

$$\Rightarrow a_{43} = Ka_{13} + La_{23}$$

$$\Rightarrow a_{44} = Ka_{14} + La_{24}$$

$$\Rightarrow a_{31} = ka_{11} + la_{21}$$

$$\Rightarrow a_{32} = ka_{12} + la_{22}$$

$$\Rightarrow a_{33} = ka_{13} + la_{23}$$

$$\Rightarrow a_{44} = ka_{14} + la_{24}$$

$$\Rightarrow k = -2; \ 1; \ 3$$

$$\Rightarrow l = -1; \ 2$$

$$\Rightarrow L = -2; \ 1; \ 3$$

$$\Rightarrow K = -1; \ 2$$

$$\Rightarrow a_{13} = -a_{11}z_{11} - a_{12}z_{12}$$

$$\Rightarrow a_{24} = -a_{21}z_{11} - a_{22}z_{12}$$

$$\Rightarrow a_{14} = -a_{11}z_{21} - a_{22}z_{22}$$

$$\Rightarrow a_{14} = -a_{11}z_{21} - a_{22}z_{22}$$

$$\Rightarrow a_{14} = -a_{21}z_{11} - a_{22}z_{22}$$

$$\Rightarrow a_{24} = -a_{21}z_{11} - a_{22}z_{22}$$

$$\Rightarrow a_{21} = -2; \ -1; \ 1; \ 2; \ 3$$

$$\Rightarrow z_{22} = -2; \ -1; \ 1; \ 2; \ 3$$

$$\Rightarrow z_{21} = -2; \ -1; \ 1; \ 2; \ 3$$

$$\Rightarrow z_{21} = -2; \ -1; \ 1; \ 2; \ 3$$

$$\Rightarrow z_{21} = -2; \ -1; \ 1; \ 2; \ 3$$

$$\Rightarrow z_{21} = -2; \ -1; \ 1; \ 2; \ 3$$

$$\Rightarrow z_{21} = -2; \ -1; \ 1; \ 2; \ 3$$

$$\Rightarrow z_{21} = -2; \ -1; \ 1; \ 2; \ 3$$

$$\Rightarrow z_{21} = -2; \ -1; \ 1; \ 2; \ 3$$

$$\Rightarrow z_{21} = -2; \ -1; \ 1; \ 2; \ 3$$

$$\Rightarrow z_{21} = -2; \ -1; \ 1; \ 2; \ 3$$

$$\Rightarrow z_{21} = -2; \ -1; \ 1; \ 2; \ 3$$

$$\Rightarrow z_{21} = -2; \ -1; \ 1; \ 2; \ 3$$

$$\Rightarrow z_{21} = -2; \ -1; \ 1; \ 2; \ 3$$

$$\Rightarrow z_{21} = -2; \ -1; \ 1; \ 2; \ 3$$

$$\Rightarrow z_{21} = -2; \ -1; \ 1; \ 2; \ 3$$

$$\Rightarrow z_{21} = -2; \ -1; \ 1; \ 2; \ 3$$

$$\Rightarrow z_{21} = -2; \ -1; \ 1; \ 2; \ 3$$

$$\Rightarrow z_{21} = -2; \ -1; \ 1; \ 2; \ 3$$

$$\Rightarrow z_{21} = -2; \ -1; \ 1; \ 2; \ 3$$

$$\Rightarrow z_{21} = -2; \ -1; \ 1; \ 2; \ 3$$

$$\Rightarrow z_{21} = -2; \ -1; \ 1; \ 2; \ 3$$

$$\Rightarrow z_{21} = -2; \ -1; \ 1; \ 2; \ 3$$

$$\Rightarrow z_{21} = -2; \ -1; \ 1; \ 2; \ 3$$

$$\Rightarrow z_{21} = -2; \ -1; \ 1; \ 2; \ 3$$

$$\Rightarrow z_{21} = -2; \ -1; \ 1; \ 2; \ 3$$

$$\Rightarrow z_{21} = -2; \ -1; \ 1; \ 2; \ 3$$

$$\Rightarrow z_{21} = -2; \ -1; \ 1; \ 2; \ 3$$

$$\Rightarrow z_{21} = -2; \ -1; \ 1; \ 2; \ 3$$

$$\Rightarrow z_{21} = -2; \ -1; \ 1; \ 2; \ 3$$

$$\Rightarrow z_{21} = -2; \$$

$$\rightarrow a_{32} = ka_{12} + la_{22}$$

 $\rightarrow a_{31} = ka_{11} + la_{21}$

 $\rightarrow a_{44} = Ka_{14} + La_{24}$

 $\rightarrow a_{45} = Ka_{15} + La_{25}$

- $\rightarrow a_{33} = ka_{13} + la_{23}$
- $\rightarrow a_{34} = ka_{14} + la_{24}$
- $\rightarrow a_{35} = ka_{15} + la_{25}$
- k = -2; 1; 3
- $\rightarrow l = -1; 2$
- L = -2; 1; 3
- K = -1; 2
- $\rightarrow a_{15} = -a_{11}z_{31} a_{12}z_{32}$
- $\rightarrow a_{25} = -a_{21}z_{31} a_{22}z_{32}$
- $\rightarrow z_{31} = -2; -1; 1; 2; 3$
- $\rightarrow z_{32} = -2; -1; 1; 2; 3$
- $\rightarrow a_{14} = -a_{11}z_{21} a_{12}z_{22}$
- $\rightarrow a_{24} = -a_{21}z_{21} a_{22}z_{22}$
- $\rightarrow z_{21} = -2; -1; 1; 2; 3$
- $\rightarrow z_{22} = -2; -1; 1; 2; 3$
- $\rightarrow a_{13} = -a_{11}z_{11} a_{12}z_{12}$
- $\rightarrow a_{23} = -a_{21}z_{11} a_{22}z_{12}$
- $\rightarrow z_{11} = -2; -1; 1; 2; 3$
- $\rightarrow z_{12} = -2; -1; 1; 2; 3$

60. Найти общее решение и фундаментальную систему решений для систем уравнений:

$$\Rightarrow a_{11}, a_{12}, a_{13}, a_{21}, a_{22}, a_{23}, a_{31}, a_{32}, a_{33} =$$

•
$$b_{11}$$
, b_{12} , b_{13} , b_{21} , b_{22} , b_{23} , b_{31} , b_{32} , b_{33} ;

•
$$b_{22}$$
, b_{21} , b_{23} , b_{12} , b_{11} , b_{13} , b_{32} , b_{31} , b_{33} ;

•
$$b_{32}$$
, b_{31} , b_{33} , b_{12} , b_{11} , b_{13} , b_{22} , b_{21} , b_{23}

$$\Rightarrow$$
 $b_{33} = c_{33} + k_{23}c_{23} + k_{13}c_{13}$

$$\Rightarrow b_{32} = k_{23}c_{22} + k_{13}c_{12}$$

$$\Rightarrow b_{31} = k_{13}c_{11}$$

$$\Rightarrow b_{23} = c_{23} + k_{12}c_{13}$$

$$\Rightarrow b_{22} = c_{22} + k_{12}c_{12}$$

$$\Rightarrow b_{21} = k_{12}c_{11}$$

$$\Rightarrow b_{13} = c_{13}$$

$$\Rightarrow$$
 $b_{12} = c_{12}$

$$\Rightarrow b_{11} = c_{11}$$

$$\Rightarrow k_{13} = -1; 0; 1; 2$$

$$\Rightarrow k_{23} = -2; -1; 1; 2$$

$$\Rightarrow k_{12} = -3; -2; -1; 1; 2; 3$$

$$\Rightarrow$$
 $c_{11} = -3$; -2 ; -1 ; 1; 2; 3

$$\Rightarrow$$
 $c_{22} = -2$; -1 ; 1; 2

$$\Rightarrow$$
 $c_{33} = -2$; -1 ; 1 ; 2

$$\Rightarrow$$
 $c_{12} = -1$; 0; 1; 2

$$\Rightarrow$$
 $c_{13} = -2$; -1 ; 1

$$\Rightarrow c_{23} = -1; 1; 2$$

1)
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{14}x_3 + a_{15}x_4 + a_{13}x_5 = 0, \\ a_{21}x_1 + a_{22}x_2 + a_{24}x_3 + a_{25}x_4 + a_{23}x_5 = 0, \\ a_{31}x_1 + a_{32}x_2 + a_{34}x_3 + a_{35}x_4 + a_{33}x_5 = 0 \end{cases}$$

$$\sqrt{}$$
 общее решение: $x_1=z_{11}\alpha+z_{21}\beta,\ x_2=z_{12}\alpha+z_{22}\beta,\ x_3=\alpha,\ x_4=\beta,\ x_5=z_{13}\alpha+z_{23}\beta,$ базис по

$$\rightarrow a_{15} = -a_{11}z_{21} - a_{12}z_{22} - a_{13}z_{23}$$

$$\rightarrow a_{25} = -a_{21}z_{21} - a_{22}z_{22} - a_{23}z_{23}$$

$$\rightarrow a_{35} = -a_{31}z_{21} - a_{32}z_{22} - a_{33}z_{23}$$

$$\rightarrow z_{21} = -2; -1; 1; 2; 3$$

$$\rightarrow z_{22} = -2; -1; 1; 2; 3$$

$$\rightarrow z_{23} = -2; -1; 1; 2; 3$$

$$\rightarrow a_{14} = -a_{11}z_{11} - a_{12}z_{12} - a_{13}z_{13}$$

$$\rightarrow a_{24} = -a_{21}z_{11} - a_{22}z_{12} - a_{23}z_{13}$$

$$\rightarrow a_{34} = -a_{31}z_{11} - a_{32}z_{12} - a_{33}z_{13}$$

$$\rightarrow z_{11} = -2; -1; 1; 2; 3$$

```
\rightarrow z_{12} = -2; -1; 1; 2; 3
\rightarrow z_{13} = -2; -1; 1; 2; 3
         \begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 + a_{15}x_5 = 0, \\ a_{41}x_1 + a_{42}x_2 + a_{43}x_3 + a_{44}x_4 + a_{45}x_5 = 0, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 + a_{25}x_5 = 0, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + a_{34}x_4 + a_{35}x_5 = 0 \end{cases}
\sqrt{\phantom{a}} общее решение: x_1 = z_{11}\alpha + z_{21}\beta, x_2 = z_{12}\alpha + z_{22}\beta, x_3 = z_{13}\alpha + z_{23}\beta, x_4 = \alpha, x_5 = \beta, базис по
\rightarrow a_{41} = ka_{11} + la_{21} + ma_{31}
\rightarrow a_{42} = ka_{12} + la_{22} + ma_{32}
\rightarrow a_{43} = ka_{13} + la_{23} + ma_{33}
\rightarrow a_{44} = ka_{14} + la_{24} + ma_{34}
\rightarrow a_{45} = ka_{15} + la_{25} + ma_{35}
\rightarrow k = -2; -1; 1; 2
\rightarrow l = -2; -1; 1; 2
\rightarrow m = -2; -1; 1; 2
\rightarrow a_{15} = -a_{11}z_{21} - a_{12}z_{22} - a_{13}z_{23}
\rightarrow a_{25} = -a_{21}z_{21} - a_{22}z_{22} - a_{23}z_{23}
\rightarrow a_{35} = -a_{31}z_{21} - a_{32}z_{22} - a_{33}z_{23}
\rightarrow z_{21} = -2; -1; 1; 2; 3
\rightarrow z_{22} = -2; -1; 1; 2; 3
\rightarrow z_{23} = -2; -1; 1; 2; 3
\rightarrow a_{14} = -a_{11}z_{11} - a_{12}z_{12} - a_{13}z_{13}
\rightarrow a_{24} = -a_{21}z_{11} - a_{22}z_{12} - a_{23}z_{13}
\rightarrow a_{34} = -a_{31}z_{11} - a_{32}z_{12} - a_{33}z_{13}
\rightarrow z_{11} = -2; -1; 1; 2; 3
\rightarrow z_{12} = -2; -1; 1; 2; 3
\rightarrow z_{13} = -2; -1; 1; 2; 3
         \begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 + a_{15}x_5 = 0, \\ a_{41}x_1 + a_{42}x_2 + a_{43}x_3 + a_{44}x_4 + a_{45}x_5 = 0, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 + a_{25}x_5 = 0, \\ a_{51}x_1 + a_{52}x_2 + a_{53}x_3 + a_{54}x_4 + a_{55}x_5 = 0, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + a_{34}x_4 + a_{35}x_5 = 0 \end{cases}
\sqrt{\phantom{a}} общее решение: x_1=z_{11}\alpha+z_{21}\beta,\ x_2=z_{12}\alpha+z_{22}\beta,\ x_3=z_{13}\alpha+z_{23}\beta,\ x_4=\alpha,\ x_5=\beta, базис по
\rightarrow a_{51} = Ka_{11} + La_{21} + Ma_{31}
\rightarrow a_{52} = Ka_{12} + La_{22} + Ma_{32}
\rightarrow a_{53} = Ka_{13} + La_{23} + Ma_{33}
\rightarrow a_{54} = Ka_{14} + La_{24} + Ma_{34}
```

- $\rightarrow a_{55} = Ka_{15} + La_{25} + Ma_{35}$
- $\rightarrow a_{41} = ka_{11} + la_{21} + ma_{31}$
- $\rightarrow a_{42} = ka_{12} + la_{22} + ma_{32}$
- $\rightarrow a_{43} = ka_{13} + la_{23} + ma_{33}$
- $\rightarrow a_{44} = ka_{14} + la_{24} + ma_{34}$
- $\rightarrow a_{45} = ka_{15} + la_{25} + ma_{35}$
- $\rightarrow k = -2; 1$
- $\rightarrow l = -1; 1$
- $\rightarrow m = -1; 2$
- $\rightarrow K = 2; -1$
- $\rightarrow L = -2$; 2
- $\rightarrow M = -2; 1$
- $\rightarrow a_{15} = -a_{11}z_{21} a_{12}z_{22} a_{13}z_{23}$
- $\rightarrow a_{25} = -a_{21}z_{21} a_{22}z_{22} a_{23}z_{23}$
- $\rightarrow a_{35} = -a_{31}z_{21} a_{32}z_{22} a_{33}z_{23}$
- $\rightarrow z_{21} = -2; -1; 1; 2; 3$
- $\rightarrow z_{22} = -2; -1; 1; 2; 3$
- $\rightarrow z_{23} = -2; -1; 1; 2; 3$
- $\rightarrow a_{14} = -a_{11}z_{11} a_{12}z_{12} a_{13}z_{13}$
- $\rightarrow a_{24} = -a_{21}z_{11} a_{22}z_{12} a_{23}z_{13}$
- $\rightarrow a_{34} = -a_{31}z_{11} a_{32}z_{12} a_{33}z_{13}$
- $\rightarrow z_{11} = -2; -1; 1; 2; 3$
- $\rightarrow z_{12} = -2; -1; 1; 2; 3$
- $\rightarrow z_{13} = -2; -1; 1; 2; 3$

Однородная система, ранг 4

61. Найти общее решение и фундаментальную систему решений для систем уравнений:

- $\Rightarrow a_{11}, a_{12}, a_{13}, a_{14}, a_{21}, a_{22}, a_{23}, a_{24}, a_{31}, a_{32}, a_{33}, a_{34}, a_{41}, a_{42}, a_{43}, a_{44} =$
 - b_{11} , b_{12} , b_{13} , b_{14} , b_{21} , b_{22} , b_{23} , b_{24} , b_{31} , b_{32} , b_{33} , b_{34} , b_{41} , b_{42} , b_{43} , b_{44} ;
 - b_{32} , b_{31} , b_{34} , b_{33} , b_{12} , b_{11} , b_{14} , b_{13} , b_{22} , b_{21} , b_{24} , b_{23} , b_{42} , b_{41} , b_{44} , b_{43} ;
 - b_{43} , b_{42} , b_{41} , b_{44} , b_{13} , b_{12} , b_{11} , b_{14} , b_{33} , b_{32} , b_{31} , b_{34} , b_{23} , b_{22} , b_{21} , b_{24}
- $\Rightarrow b_{44} = c_{44} + k_{34}c_{34} + k_{24}c_{24} + k_{14}c_{14}$
- $\Rightarrow b_{43} = k_{34}c_{33} + k_{24}c_{23} + k_{14}c_{13}$
- $\Rightarrow b_{42} = k_{24}c_{22} + k_{14}c_{12}$
- $\Rightarrow b_{41} = k_{14}c_{11}$
- \Rightarrow $b_{34} = c_{34} + k_{23}c_{24} + k_{13}c_{14}$
- $\Rightarrow b_{33} = c_{33} + k_{23}c_{23} + k_{13}c_{13}$
- $\Rightarrow b_{32} = k_{23}c_{22} + k_{13}c_{12}$
- $\Rightarrow b_{31} = k_{13}c_{11}$
- $\Rightarrow b_{24} = c_{24} + k_{12}c_{14}$
- $\Rightarrow b_{23} = c_{23} + k_{12}c_{13}$
- $\Rightarrow b_{22} = c_{22} + k_{12}c_{12}$
- $\Rightarrow b_{21} = k_{12}c_{11}$
- $\Rightarrow b_{14} = c_{14}$
- $\Rightarrow b_{13} = c_{13}$
- $\Rightarrow b_{12} = c_{12}$
- $\Rightarrow b_{11} = c_{11}$
- $\Rightarrow k_{14} = -2; -1; 0; 1$
- $\Rightarrow k_{24} = -1; 0; 1; 2$
- $\Rightarrow k_{34} = -2; -1; 1; 2$
- $\Rightarrow k_{13} = -1; 0; 1; 2$
- $\Rightarrow k_{23} = -2; -1; 1; 2$
- $\Rightarrow k_{12} = -3; -2; -1; 1; 2; 3$
- \Rightarrow $c_{11} = -3$; -2; -1; 1; 2; 3
- $\Rightarrow c_{22} = -2; -1; 1; 2$
- \Rightarrow $c_{33} = -2$; -1; 1; 2
- $\Rightarrow c_{44} = -1; 1$
- \Rightarrow $c_{12} = -1$; 0; 1; 2
- \Rightarrow $c_{13} = -2$; -1; 1
- \Rightarrow $c_{14} = -2$; -1; 0; 1

```
\Rightarrow c_{23} = -1; 1; 2
\Rightarrow c_{24} = -1; 0; 1; 2
\Rightarrow c_{34} = -2; -1; 1
       \begin{cases} a_{11}x_1 + a_{12}x_2 + a_{15}x_3 + a_{14}x_4 + a_{13}x_5 = 0, \\ a_{21}x_1 + a_{22}x_2 + a_{25}x_3 + a_{24}x_4 + a_{23}x_5 = 0, \\ a_{31}x_1 + a_{32}x_2 + a_{35}x_3 + a_{34}x_4 + a_{33}x_5 = 0, \\ a_{41}x_1 + a_{42}x_2 + a_{45}x_3 + a_{44}x_4 + a_{43}x_5 = 0 \end{cases}
\sqrt{\phantom{a}} общее решение: x_1=z_{11}\alpha,\ x_2=z_{12}\alpha,\ x_3=\alpha,\ x_4=z_{14}\alpha,\ x_5=z_{13}\alpha, базис подпространства рег
\rightarrow a_{15} = -a_{11}z_{11} - a_{12}z_{12} - a_{13}z_{13} - a_{14}z_{14}
\rightarrow a_{25} = -a_{21}z_{11} - a_{22}z_{12} - a_{23}z_{13} - a_{24}z_{14}
\rightarrow a_{35} = -a_{31}z_{11} - a_{32}z_{12} - a_{33}z_{13} - a_{34}z_{14}
\rightarrow a_{45} = -a_{41}z_{11} - a_{42}z_{12} - a_{43}z_{13} - a_{44}z_{14}
\rightarrow z_{11} = -2; -1; 1; 2
\rightarrow z_{12} = -2; -1; 1; 2
\rightarrow z_{13} = -2; -1; 1; 2
\rightarrow z_{14} = -2; -1; 1; 2
2) \begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 + a_{15}x_5 = 0, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 + a_{25}x_5 = 0, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + a_{34}x_4 + a_{35}x_5 = 0, \\ a_{41}x_1 + a_{42}x_2 + a_{43}x_3 + a_{44}x_4 + a_{45}x_5 = 0, \\ a_{51}x_1 + a_{52}x_2 + a_{53}x_3 + a_{54}x_4 + a_{55}x_5 = 0 \end{cases}
\sqrt{\phantom{a}} общее решение: x_1=z_{11}\alpha,\ x_2=z_{12}\alpha,\ x_3=z_{13}\alpha,\ x_4=z_{14}\alpha,\ x_5=\alpha, базис подпространства рег
\rightarrow a_{51} = ka_{11} + la_{21} + ma_{31} + na_{41}
\rightarrow a_{52} = ka_{12} + la_{22} + ma_{32} + na_{42}
\rightarrow a_{53} = ka_{13} + la_{23} + ma_{33} + na_{43}
\rightarrow a_{54} = ka_{14} + la_{24} + ma_{34} + na_{44}
\rightarrow a_{55} = ka_{15} + la_{25} + ma_{35} + na_{45}
\rightarrow k = -1; 1
\rightarrow l = -1; 1
\rightarrow m=-1; 1
\rightarrow n=-1; 1
\rightarrow a_{15} = -a_{11}z_{11} - a_{12}z_{12} - a_{13}z_{13} - a_{14}z_{14}
\rightarrow a_{25} = -a_{21}z_{11} - a_{22}z_{12} - a_{23}z_{13} - a_{24}z_{14}
\rightarrow a_{35} = -a_{31}z_{11} - a_{32}z_{12} - a_{33}z_{13} - a_{34}z_{14}
\rightarrow a_{45} = -a_{41}z_{11} - a_{42}z_{12} - a_{43}z_{13} - a_{44}z_{14}
\rightarrow z_{11} = -2; -1; 1; 2
\rightarrow z_{12} = -2; -1; 1; 2
\rightarrow z_{13} = -2; -1; 1; 2
```

$$\rightarrow z_{14} = -2; -1; 1; 2$$

Модель Леонтьева 2х2

62. Определите вектор X валового выпуска продукции двух отраслей, если известны матрица прямых затрат A и вектор конечного продукта Y.

1)
$$A = \begin{pmatrix} \frac{a_{11}}{100} & \frac{a_{12}}{100} \\ \frac{a_{21}}{100} & \frac{a_{22}}{100} \end{pmatrix}$$
, $Y = \begin{pmatrix} 100x_1 - a_{11}x_1 - a_{12}x_2 \\ 100x_2 - a_{21}x_1 - a_{22}x_2 \end{pmatrix}$
 $\checkmark X = (100x_1, 100x_2)$
 $\rightarrow x_1 = 4; 5; 6; 7; 8; 9$
 $\rightarrow x_2 = 5; 6; 7; 8$
 $\rightarrow x_3 = 5; 6; 7; 8$
 $\rightarrow a_{11} = 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13$
 $\rightarrow a_{12} = 3; 5; 6; 7; 9; 10; 11; 12; 15; 16; 17; 18; 19; 20; 21; 23; 25$
 $\rightarrow a_{21} = 3; 4; 5; 7; 8; 10; 11; 12; 14; 15; 16; 17; 18; 19; 20$
 $\rightarrow a_{22} = 3; 4; 6; 7; 8; 11; 12; 13; 15; 16; 17$

63. Определите вектор X валового выпуска продукции трёх отраслей, если известны матрица прямых затрат A и вектор конечного продукта Y.

1)
$$A = \begin{pmatrix} \frac{a_{11}}{a_{21}} & \frac{a_{12}}{a_{22}} & \frac{a_{13}}{a_{22}} \\ \frac{a_{21}}{100} & \frac{a_{22}}{100} & \frac{a_{23}}{100} \\ \frac{a_{21}}{100} & \frac{a_{22}}{100} & \frac{a_{23}}{100} \end{pmatrix}, \quad Y = \begin{pmatrix} 100x_1 - a_{11}x_1 - a_{12}x_2 - a_{13}x_3 \\ 100x_2 - a_{21}x_1 - a_{22}x_2 - a_{23}x_3 \\ 100x_3 - a_{31}x_1 - a_{32}x_2 - a_{33}x_3 \end{pmatrix}$$

$$\sqrt{X} = (100x_1, 100x_2, 100x_3)$$

$$\rightarrow x_1 = 4; \quad 5; \quad 6; \quad 7; \quad 8; \quad 9$$

$$\rightarrow x_2 = 5; \quad 6; \quad 7; \quad 8$$

$$\rightarrow x_3 = 5; \quad 6; \quad 7; \quad 8$$

$$\rightarrow a_{11} = 3; \quad 4; \quad 5; \quad 6; \quad 7; \quad 8; \quad 9$$

$$\rightarrow a_{12} = 3; \quad 5; \quad 6; \quad 7; \quad 9; \quad 10; \quad 11; \quad 12; \quad 15; \quad 16; \quad 17; \quad 18; \quad 19; \quad 20$$

$$\rightarrow a_{13} = 4; \quad 5; \quad 7; \quad 8; \quad 9; \quad 11; \quad 12; \quad 14$$

$$\rightarrow a_{21} = 3; \quad 4; \quad 5; \quad 7; \quad 8; \quad 10; \quad 11; \quad 12; \quad 14; \quad 15; \quad 16; \quad 17; \quad 18; \quad 19; \quad 20$$

$$\rightarrow a_{22} = 3; \quad 4; \quad 6; \quad 7; \quad 8$$

$$\rightarrow a_{23} = 5; \quad 6; \quad 7; \quad 9; \quad 10; \quad 11; \quad 13; \quad 14$$

$$\rightarrow a_{31} = 3; \quad 4; \quad 5; \quad 6; \quad 7; \quad 8; \quad 9; \quad 10; \quad 11; \quad 12; \quad 13; \quad 16; \quad 17; \quad 18$$

 $\rightarrow a_{32} = 7$; 8; 9; 10; 11; 12; 13; 14; 15

 $\rightarrow a_{33} = 4$; 5; 6; 8; 10; 11

64. Определите вектор X валового выпуска продукции четырёх отраслей, если известны матрица прямых затрат A и вектор конечного продукта Y.

1)
$$A = \begin{pmatrix} \frac{a_{11}}{100} & \frac{a_{10}}{100} & \frac{a_{10}}{100} & \frac{a_{10}}{100} \\ \frac{a_{11}}{100} & \frac{a_{10}}{100} & \frac{a_{10}}{100} & \frac{a_{10}}{100} \\ \frac{a_{11}}{100} & \frac{a_{10}}{100} & \frac{a_{10}}{100} & \frac{a_{10}}{100} \\ \frac{a_{11}}{100} & \frac{a_{12}}{100} & \frac{a_{13}}{100} & \frac{a_{13}}{100} \\ \frac{a_{11}}{100} & \frac{a_{11}}{100} & \frac{a_{11}}{100} & \frac{a_{11}}{100} \\ \frac{a_{11}}{100} & \frac{a_{11}}{100} & \frac{a_{11}}{100} & \frac{a_{11}}{10$$

Простая обратная матрица 3х3

65. Найти матрицу, обратную данной.

1)
$$\begin{pmatrix} a+bk & A & b \\ Bk+am+bkm & Am & B+bm \\ C+ck+an+bkn & An & c+bn \end{pmatrix}$$

$$\sqrt{\frac{1}{ABC}} \begin{pmatrix} Amc - AnB & -Ac & AB \\ -amc + BC + bmC + Ban & ac - bC & -aB \\ BkAn - CAm - ckAm & AC + Ack & -ABk \end{pmatrix}$$

- $\rightarrow A = 2; 3; -3; -2$
- $\rightarrow B = -1; 1; 2$
- $\rightarrow C = -2; 1; 3$
- $\rightarrow a = 3; -1$
- \rightarrow b=2; 2
- $\rightarrow c = -2; 3$
- $\rightarrow k = -2; 4$
- $\rightarrow m = 1; 3$
- $\rightarrow n = -3; 1$

66. Найти матрицу, обратную данной

1)
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$\sqrt{ \begin{pmatrix} A & B \\ C & D \end{pmatrix}}$$

$$\rightarrow A = \frac{d}{\Delta}$$

$$\rightarrow B = -\frac{b}{\Delta}$$

$$\rightarrow C = -\frac{c}{\Lambda}$$

$$\rightarrow D = \frac{a}{\Delta}$$

$$\rightarrow \Delta = ka$$

$$\rightarrow a = k_b k_c$$

$$\rightarrow b = k_b l_b$$

$$\rightarrow c = k_c l_c$$

$$\rightarrow d = k + l_b l_c$$

$$\rightarrow k = -1; 1; -2; 2; -3; 3; -4; 4; -5; 5$$

$$\rightarrow k_b = -3; -2; -1; 1; 2; 3$$

$$\rightarrow l_b = -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5$$

$$\rightarrow k_c = -3; -2; -1; 1; 2; 3$$

$$\rightarrow l_c = -5; -4-3; -2; -1; 1; 2; 3; 4; 5$$

67. Найти матрицу, обратную данной

$$\Rightarrow B_{11} = A_{11} - k_{31}B_{13} - k_{21}B_{12}$$

$$\Rightarrow B_{21} = -k_{31}B_{23} - k_{21}B_{22}$$

$$\Rightarrow B_{31} = -k_{31}B_{33} - k_{21}B_{32}$$

$$\Rightarrow B_{12} = A_{12} - k_{32}B_{13}$$

$$\Rightarrow B_{22} = A_{22} - k_{32}B_{23}$$

$$\Rightarrow B_{32} = -k_{32}B_{33}$$

$$\Rightarrow$$
 $B_{13} = A_{13}$

$$\Rightarrow$$
 $B_{23} = A_{23}$

$$\Rightarrow$$
 $B_{33} = A_{33}$

$$\Rightarrow A_{13} = -k_{13}A_{11}$$

$$\Rightarrow A_{23} = -k_{23}A_{22}$$

$$\Rightarrow A_{12} = -k_{12}A_{11}$$

$$\Rightarrow A_{11} = \frac{D}{a_{11}}$$

$$\Rightarrow A_{22} = \frac{D}{a_{22}}$$

$$\Rightarrow A_{33} = \frac{D}{a_{33}}$$

$$\Rightarrow b_{33} = a_{33} + k_{32}a_{23} + k_{31}a_{13}$$

$$\Rightarrow b_{32} = k_{32}a_{22} + k_{31}a_{12}$$

$$\Rightarrow b_{31} = k_{31}a_{11}$$

$$\Rightarrow b_{23} = a_{23} + k_{21}a_{13}$$

$$\Rightarrow b_{22} = a_{22} + k_{21}a_{12}$$

$$\Rightarrow b_{21} = k_{21}a_{11}$$

$$\Rightarrow b_{11} = a_{11}$$

$$\Rightarrow b_{12} = a_{12}$$

$$\Rightarrow b_{13} = a_{13}$$

$$\Rightarrow a_{13} = k_{13}a_{33} + k_{12}a_{23}$$

$$\Rightarrow a_{12} = k_{12}a_{22}$$

$$\Rightarrow a_{23} = k_{23}a_{33}$$

$$\Rightarrow a_{11} = d_1 s_1$$

$$\Rightarrow a_{22} = d_2s_2$$

$$\Rightarrow$$
 $a_{33} = d_3 s_3$

$$\Rightarrow s_1 = -1; 1$$

$$\Rightarrow s_2 = -1; 1$$

$$\Rightarrow s_3 = -1; 1$$

$$\Rightarrow$$
 d_1 , d_2 , d_3 , $D =$

- 1, 1, 1, 1;
- 1, 2, 1, 2;
- 1, 1, 3, 3;
- 3, 1, 2, 6;
- 3, 2, 2, 6;
- 1, 4, 1, 4;
- 1, 4, 2, 4;
- 1, 1, 5, 5;
- 2, 5, 2, 10;
- 5, 3, 3, 15;
- 7, 1, 1, 7

$$\Rightarrow k_{12} = -2; -1; 0; 1; 2$$

$$\Rightarrow k_{13} = -4; -3; -2; -1; 1; 2; 3; 4$$

$$\Rightarrow k_{23} = -2; -1; 0; 1; 2$$

$$\Rightarrow k_{31} = -4; -3; -2; -1; 1; 2; 3; 4$$

$$\Rightarrow k_{32} = -2; -1; 0; 1; 2$$

$$\Rightarrow k_{21} = -2; -1; 0; 1; 2$$

1)
$$\begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix}$$

$$\sqrt{\frac{1}{D}} \begin{pmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \\ B_{31} & B_{32} & B_{33} \end{pmatrix}$$

$$\sqrt{\frac{1}{D} \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix}}$$

68. Найти матрицу, обратную данной

$$\Rightarrow B_{11} = -k_{41}B_{14} - k_{31}B_{13} - k_{21}B_{12} + A_{11}$$

$$\Rightarrow B_{21} = -k_{41}B_{24} - k_{31}B_{23} - k_{21}B_{22}$$

$$\Rightarrow B_{31} = -k_{41}B_{34} - k_{31}B_{33} - k_{21}B_{32}$$

$$\Rightarrow B_{41} = -k_{41}B_{44} - k_{31}B_{43} - k_{21}B_{42}$$

$$\Rightarrow B_{12} = -k_{42}B_{14} - k_{32}B_{13} + A_{12}$$

$$\Rightarrow B_{22} = -k_{42}B_{24} - k_{32}B_{23} + A_{22}$$

$$\Rightarrow B_{32} = -k_{42}B_{34} - k_{32}B_{33}$$

$$\Rightarrow B_{42} = -k_{42}B_{44} - k_{32}B_{43}$$

$$\Rightarrow B_{13} = -k_{43}B_{14} + A_{13}$$

$$\Rightarrow B_{23} = -k_{43}B_{24} + A_{23}$$

$$\Rightarrow B_{33} = -k_{43}B_{34} + A_{33}$$

$$\Rightarrow B_{43} = -k_{43}B_{44}$$

$$\Rightarrow B_{14} = A_{14}$$

$$\Rightarrow B_{24} = A_{24}$$

$$\Rightarrow B_{34} = A_{34}$$

$$\Rightarrow B_{44} = A_{44}$$

$$\Rightarrow A_{14} = -k_{14}A_{11}$$

$$\Rightarrow A_{24} = -k_{24}A_{22}$$

$$\Rightarrow A_{34} = -k_{34}A_{33}$$

$$\Rightarrow A_{13} = -k_{13}A_{11}$$

$$\Rightarrow A_{23} = -k_{23}A_{22}$$

$$\Rightarrow A_{12} = -k_{12}A_{11}$$

$$\Rightarrow A_{11} = \frac{D}{a_{11}}$$

$$\Rightarrow A_{22} = \frac{D}{a_{22}}$$

$$\Rightarrow A_{33} = \frac{D}{a_{33}}$$

$$\Rightarrow A_{44} = \frac{D}{a_{44}}$$

$$\Rightarrow b_{44} = k_{41}a_{14} + k_{42}a_{24} + k_{43}a_{34} + a_{44}$$

$$\Rightarrow b_{43} = k_{41}a_{13} + k_{42}a_{23} + k_{43}a_{33}$$

$$\Rightarrow b_{42} = k_{41}a_{12} + k_{42}a_{22}$$

$$\Rightarrow b_{41} = k_{41}a_{11}$$

$$\Rightarrow b_{34} = k_{31}a_{14} + k_{32}a_{24} + a_{34}$$

$$\Rightarrow$$
 $b_{33} = k_{31}a_{13} + k_{32}a_{23} + a_{33}$

$$\Rightarrow b_{32} = k_{31}a_{12} + k_{32}a_{22}$$

- $\Rightarrow b_{31} = k_{31}a_{11}$
- $\Rightarrow b_{24} = k_{21}a_{14} + a_{24}$
- \Rightarrow $b_{23} = k_{21}a_{13} + a_{23}$
- $\Rightarrow b_{22} = k_{21}a_{12} + a_{22}$
- $\Rightarrow b_{21} = k_{21}a_{11}$
- $\Rightarrow b_{11} = a_{11}$
- $\Rightarrow b_{12} = a_{12}$
- $\Rightarrow b_{13} = a_{13}$
- $\Rightarrow b_{14} = a_{14}$
- $\Rightarrow a_{14} = k_{12}a_{24} + k_{13}a_{34} + k_{14}a_{44}$
- $\Rightarrow a_{13} = k_{12}a_{23} + k_{13}a_{33}$
- $\Rightarrow a_{12} = k_{12}a_{22}$
- $\Rightarrow a_{24} = k_{23}a_{34} + k_{24}a_{44}$
- $\Rightarrow a_{23} = k_{23}a_{33}$
- $\Rightarrow a_{34} = k_{34}a_{44}$
- $\Rightarrow a_{11} = d_1 s_1$
- $\Rightarrow a_{22} = d_2 s_2$
- $\Rightarrow a_{33} = d_3 s_3$
- $\Rightarrow a_{44} = d_4 s_4$
- $\Rightarrow s_1 = -1; 1$
- $\Rightarrow s_2 = -1; 1$
- $\Rightarrow s_3 = -1; 1$
- $\Rightarrow s_4 = -1; 1$
- \Rightarrow d_1 , d_2 , d_3 , d_4 , D =
 - 1, 1, 1, 1;
 - 1, 2, 1, 1, 2;
 - 2, 1, 1, 2, 2;
 - 1, 1, 3, 1, 3;
 - 1, 3, 3, 1, 3;
 - 1, 1, 1, 4, 4;
 - 1, 4, 4, 1, 4;
 - 1, 4, 2, 1, 4;
 - 2, 4, 2, 1, 4;
 - 1, 1, 1, 5, 5;
 - 1, 5, 5, 1, 5;
 - 2, 2, 3, 2, 6;
 - 3, 2, 2, 3, 6
- $\Rightarrow k_{12} = -1; 0; 1$

$$\Rightarrow k_{13} = -2; -1; 1; 2$$

$$\Rightarrow k_{14} = -2; -1; 1; 2; 3$$

$$\Rightarrow k_{23} = -1; 0; 1$$

$$\Rightarrow k_{24} = -2; -1; 1; 2$$

$$\Rightarrow k_{34} = -1; 0; 1$$

$$\Rightarrow k_{21} = -1; 0; 1$$

$$\Rightarrow k_{31} = -2; -1; 1; 2$$

$$\Rightarrow k_{41} = -3; -2; -1; 1; 2$$

$$\Rightarrow k_{32} = -1; 0; 1$$

$$\Rightarrow k_{42} = -2; -1; 1; 2$$

$$\Rightarrow k_{43} = -1; 0; 1$$

1)
$$\begin{pmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \\ b_{31} & b_{32} & b_{33} & b_{34} \\ b_{41} & b_{42} & b_{43} & b_{44} \end{pmatrix}$$

$$\sqrt{\frac{1}{D}} \begin{pmatrix} B_{11} & B_{12} & B_{13} & B_{14} \\ B_{21} & B_{22} & B_{23} & B_{24} \\ B_{31} & B_{32} & B_{33} & B_{34} \\ B_{41} & B_{42} & B_{43} & B_{44} \end{pmatrix}$$

$$2) \quad \begin{pmatrix} B_{11} & B_{12} & B_{13} & B_{14} \\ B_{21} & B_{22} & B_{23} & B_{24} \\ B_{31} & B_{32} & B_{33} & B_{34} \\ B_{41} & B_{42} & B_{43} & B_{44} \end{pmatrix}$$

$$\sqrt{\frac{1}{D}} \begin{pmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \\ b_{31} & b_{32} & b_{33} & b_{34} \\ b_{41} & b_{42} & b_{43} & b_{44} \end{pmatrix}$$

69. Найти матрицу, обратную данной.

1)
$$\begin{pmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \\ b_{31} & b_{32} & b_{33} & b_{34} \\ b_{41} & b_{42} & b_{43} & b_{44} \end{pmatrix}$$

$$\sqrt{\frac{1}{a_{11}a_{22}a_{33}a_{44}}} \begin{pmatrix} s_{11} & s_{21} & s_{31} & s_{41} \\ s_{12} & s_{22} & s_{32} & s_{42} \\ s_{13} & s_{23} & s_{33} & s_{43} \\ s_{14} & s_{24} & s_{34} & s_{44} \end{pmatrix}$$

$$\rightarrow s_{11} = +b_{22}(b_{33}b_{44} - b_{34}b_{43}) - b_{23}(b_{32}b_{44} - b_{34}b_{42}) + b_{24}(b_{32}b_{43} - b_{33}b_{42})$$

$$\rightarrow s_{12} = -b_{21}(b_{33}b_{44} - b_{34}b_{43}) + b_{23}(b_{31}b_{44} - b_{34}b_{41}) - b_{24}(b_{31}b_{43} - b_{33}b_{41})$$

$$\rightarrow s_{13} = +b_{21}(b_{32}b_{44} - b_{34}b_{42}) - b_{22}(b_{31}b_{44} - b_{34}b_{41}) + b_{24}(b_{31}b_{42} - b_{32}b_{41})$$

$$\rightarrow s_{14} = -b_{21}(b_{32}b_{43} - b_{33}b_{42}) + b_{22}(b_{31}b_{43} - b_{33}b_{41}) - b_{23}(b_{31}b_{42} - b_{32}b_{41})$$

$$\rightarrow s_{21} = -b_{12}(b_{33}b_{44} - b_{34}b_{43}) + b_{13}(b_{32}b_{44} - b_{34}b_{42}) - b_{14}(b_{32}b_{43} - b_{33}b_{42})$$

$$\rightarrow s_{22} = +b_{11}(b_{33}b_{44} - b_{34}b_{43}) - b_{13}(b_{31}b_{44} - b_{34}b_{41}) + b_{14}(b_{31}b_{43} - b_{33}b_{41})$$

$$\rightarrow s_{23} = -b_{11}(b_{32}b_{44} - b_{34}b_{42}) + b_{12}(b_{31}b_{44} - b_{34}b_{41}) - b_{14}(b_{31}b_{42} - b_{32}b_{41})$$

$$\rightarrow s_{24} = +b_{11}(b_{32}b_{43} - b_{33}b_{42}) - b_{12}(b_{31}b_{43} - b_{33}b_{41}) + b_{13}(b_{31}b_{42} - b_{32}b_{41})$$

$$\rightarrow s_{31} = +b_{12}(b_{23}b_{44} - b_{24}b_{43}) - b_{13}(b_{22}b_{44} - b_{24}b_{42}) + b_{14}(b_{22}b_{43} - b_{23}b_{42})$$

$$\rightarrow s_{32} = -b_{11}(b_{23}b_{44} - b_{24}b_{43}) + b_{13}(b_{21}b_{44} - b_{24}b_{41}) - b_{14}(b_{21}b_{43} - b_{23}b_{41})$$

$$\rightarrow s_{33} = +b_{11}(b_{22}b_{44} - b_{24}b_{42}) - b_{12}(b_{21}b_{44} - b_{24}b_{41}) + b_{14}(b_{21}b_{42} - b_{22}b_{41})$$

$$\rightarrow s_{34} = -b_{11}(b_{22}b_{43} - b_{23}b_{42}) + b_{12}(b_{21}b_{43} - b_{23}b_{41}) - b_{13}(b_{21}b_{42} - b_{22}b_{41})$$

$$\rightarrow s_{41} = -b_{12}(b_{23}b_{34} - b_{24}b_{33}) + b_{13}(b_{22}b_{34} - b_{24}b_{32}) - b_{14}(b_{22}b_{33} - b_{23}b_{32})$$

$$\rightarrow s_{42} = +b_{11}(b_{23}b_{34} - b_{24}b_{33}) - b_{13}(b_{21}b_{34} - b_{24}b_{31}) + b_{14}(b_{21}b_{33} - b_{23}b_{31})$$

$$\rightarrow s_{43} = -b_{11}(b_{22}b_{34} - b_{24}b_{32}) + b_{12}(b_{21}b_{34} - b_{24}b_{31}) - b_{14}(b_{21}b_{32} - b_{22}b_{31})$$

$$\rightarrow s_{44} = +b_{11}(b_{22}b_{33} - b_{23}b_{32}) - b_{12}(b_{21}b_{33} - b_{23}b_{31}) + b_{13}(b_{21}b_{32} - b_{22}b_{31})$$

$$\rightarrow b_{44} = a_{44} + k_{34}a_{34} + k_{24}a_{24} + k_{14}a_{14}$$

$$\rightarrow b_{43} = k_{34}a_{33} + k_{24}a_{23} + k_{14}a_{13}$$

$$\rightarrow b_{42} = k_{24}a_{22} + k_{14}a_{12}$$

$$\rightarrow b_{41} = k_{14}a_{11}$$

$$\rightarrow b_{34} = a_{34} + k_{23}a_{24} + k_{13}a_{14}$$

$$\rightarrow b_{33} = a_{33} + k_{23}a_{23} + k_{13}a_{13}$$

$$\rightarrow b_{32} = k_{23}a_{22} + k_{13}a_{12}$$

$$\rightarrow b_{31} = k_{13}a_{11}$$

$$\rightarrow b_{24} = a_{24} + k_{12}a_{14}$$

$$\rightarrow b_{23} = a_{23} + k_{12}a_{13}$$

$$\rightarrow b_{22} = a_{22} + k_{12}a_{12}$$

$$\rightarrow b_{21} = k_{12}a_{11}$$

- $\rightarrow b_{14} = a_{14}$
- $\rightarrow b_{13} = a_{13}$
- $\rightarrow b_{12} = a_{12}$
- $\rightarrow b_{11} = a_{11}$
- $\rightarrow k_{14} = -2; -1; 0; 1$
- $\rightarrow k_{24} = -1; 0; 1; 2$
- $\rightarrow k_{34} = -2; -1; 1; 2$
- $\rightarrow k_{13} = -1; 0; 1; 2$
- $\rightarrow k_{23} = -2; -1; 1; 2$
- $\rightarrow k_{12} = -3; -2; -1; 1; 2; 3$
- $\rightarrow a_{11} = -3; -2; -1; 1; 2; 3$
- $\rightarrow a_{22} = -2; -1; 1; 2$
- $\rightarrow a_{33} = -2; -1; 1; 2$
- $\rightarrow a_{44} = -1; 1$
- $\rightarrow a_{12} = -1; 0; 1; 2$
- $\rightarrow a_{13} = -2; -1; 1$
- $\rightarrow a_{14} = -2; -1; 0; 1$
- $\rightarrow a_{23} = -1; 1; 2$
- $\rightarrow a_{24} = -1; 0; 1; 2$
- $\rightarrow a_{34} = -2; -1; 1$

ычисление матричного многочлен

70. Найти значение матричного многочлена f(A).

$$\Rightarrow K = 1; 2; 3; 4; 5$$

$$\Rightarrow$$
 B = 1; 2; 3; 4; 5

$$\Rightarrow$$
 $D = 1; 2; 3; 4; 5$

$$f(x) = Kx^3 - Bx^2 + D;$$

$$f(x) = Kx^{3} - Bx^{2} + D;$$

$$1) \qquad A = \begin{pmatrix} n & m \\ l & 0 \end{pmatrix}$$

$$\sqrt{f(A)} = \begin{pmatrix} n^2(Kn - B) + ml(2Kn - B) + D & m(Kn^2 + Klm - Bn) \\ l(Kn^2 + Kml - Bn) & lm(Kn - B) + D \end{pmatrix}$$

$$\rightarrow n = -3; -2; 1; 2; 3; 4; 5$$

$$\rightarrow m = -3; -2; 1; 2; 3; 4; 5$$

$$\rightarrow l = -3; -2; 1; 2; 3; 4; 5$$

$$f(x) = Kx^3 - Bx^2 + D;$$

$$A = \begin{pmatrix} a & 0 & b \\ c & d & 0 \\ 0 & 0 & f \end{pmatrix}$$

$$\sqrt{f(A)} = \begin{pmatrix}
a^2(Ka - B) + D & 0 & b(Ka^2 + Kaf + Kf^2 - Ba - Bf) \\
c(Ka^2 + Kad + Kd^2 - Ba - Bd) & d^2(Kd - B) + D & bc(Ka + Kf + Kd - B) \\
0 & 0 & f^2(Kf - B) + D
\end{pmatrix}$$

$$\rightarrow a = -3; -2; 1; 2; 3; 4; 5$$

$$\rightarrow b = -3; -2; 1; 2; 3; 4; 5$$

$$\rightarrow c = -3; -2; 1; 2; 3; 4; 5$$

$$\rightarrow$$
 $d = -3; -2; 1; 2; 3; 4; 5$

$$\rightarrow f = -3; -2; 1; 2; 3; 4; 5$$

Матричное уравнение 2х2 простое

71. Решить матричное уравнение.

- $\Rightarrow u = -3; -2; 0; 1; 2; 3; 4$
- $\Rightarrow v = -2; 0; 1; 2; 3; 4; 5$
- $\Rightarrow x = -2; 0; 1; 2; 3$
- $\Rightarrow y = -3; -2; 0; 1; 2; 3$
- $\Rightarrow a = -1; 1; 3; 5$
- \Rightarrow d = -3; -1; 1; 3
- $\Rightarrow b = -2; 0; 2; 4$
- \Rightarrow c = -3; -2; 0; 1; 2; 3
- 1) $\begin{pmatrix} a & b \\ c & d \end{pmatrix} X = \begin{pmatrix} au + bx & av + by \\ cu + dx & cv + dy \end{pmatrix}$
- $\sqrt{X} = \begin{pmatrix} u & v \\ x & y \end{pmatrix}$
- 2) $X \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} ua + vc & ub + vd \\ xa + yc & xb + yd \end{pmatrix}$
- $\sqrt{X} = \begin{pmatrix} u & v \\ x & y \end{pmatrix}$

Матричное уравнение 2х2

72. Решить матричное уравнение.

1)
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} X \begin{pmatrix} p & q \\ r & s \end{pmatrix} = \begin{pmatrix} p(au+bx) + r(av+by) & q(au+bx) + s(av+by) \\ p(cu+dx) + r(cv+dy) & q(cu+dx) + s(cv+dy) \end{pmatrix}$$

$$\sqrt{X} = \begin{pmatrix} u & v \\ x & y \end{pmatrix}$$

- $\rightarrow u = -3; -2; 0; 1; 2; 3; 4$
- $\rightarrow v = -2; 0; 1; 2; 3; 4; 5$
- $\rightarrow x = -2; 0; 1; 2; 3$
- $\rightarrow y = -3; -2; 0; 1; 2; 3$
- $\rightarrow a = -1; 1; 3; 5$
- $\rightarrow d = -3; -1; 1; 3$
- $\rightarrow b = -2; 0; 2; 4$
- $\rightarrow c = -3; -2; 0; 1; 2; 3$
- $\rightarrow r = -3; -1; 1; 3$
- $\rightarrow q = -1; 1; 3; 5$
- $\rightarrow p = -2; 0; 2; 4$
- $\rightarrow s = -2; 0; 1; 2; 3; 4$

73. Решить матричное уравнение.

- $\Rightarrow x_{11} = -2; 1; 2; 3$
- $\Rightarrow x_{12} = -1; 0; 1; 2; 3$
- $\Rightarrow x_{13} = -2; 1; 2; 3; 4$
- $\Rightarrow x_{21} = -2; 1; 2; 3$
- $\Rightarrow x_{22} = -3; -2; 0; 1; 2$
- $\Rightarrow x_{23} = -3; -2; 1; 2$
- $\Rightarrow x_{31} = -2; 1; 2; 3$
- $\Rightarrow x_{32} = -2; 0; 1; 2; 3$
- $\Rightarrow x_{33} = -3; -2; 1; 2$
- \Rightarrow $b_{33} = a_{33} + k_{32}a_{23} + k_{31}a_{13}$
- $\Rightarrow b_{32} = k_{32}a_{22} + k_{31}a_{12}$
- $\Rightarrow b_{31} = k_{31}a_{11}$
- $\Rightarrow b_{23} = a_{23} + k_{21}a_{13}$
- $\Rightarrow b_{22} = a_{22} + k_{21}a_{12}$
- $\Rightarrow b_{21} = k_{21}a_{11}$
- $\Rightarrow b_{11} = a_{11}$
- $\Rightarrow b_{12} = a_{12}$
- $\Rightarrow b_{13} = a_{13}$
- $\Rightarrow a_{13} = k_{13}a_{33} + k_{12}a_{23}$
- $\Rightarrow a_{12} = k_{12}a_{22}$
- $\Rightarrow a_{23} = k_{23}a_{33}$
- $\Rightarrow a_{11} = d_1 s_1$
- $\Rightarrow a_{22} = d_2 s_2$
- \Rightarrow $a_{33} = d_3 s_3$
- $\Rightarrow s_1 = -1; 1$
- $\Rightarrow s_2 = -1; 1$
- $\Rightarrow s_3 = -1; 1$

$$\Rightarrow d_1, d_2, d_3, D =$$

$$\Rightarrow k_{12} = -1; 0; 1; 2$$

$$\Rightarrow k_{13} = -2; -1; 1; 2; 3$$

$$\Rightarrow k_{23} = -2; -1; 0; 1$$

$$\Rightarrow k_{31} = -3; -2; -1; 1; 2$$

$$\Rightarrow k_{32} = -1; 0; 1; 2$$

$$\Rightarrow k_{21} = -2; -1; 0; 1$$

1)
$$\begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} X = \begin{pmatrix} y_{11} & y_{12} & y_{13} \\ y_{21} & y_{22} & y_{23} \\ y_{31} & y_{32} & y_{33} \end{pmatrix}$$

$$\sqrt{X} = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix}$$

$$\rightarrow y_{11} = b_{11}x_{11} + b_{12}x_{21} + b_{13}x_{31}$$

$$\rightarrow y_{12} = b_{11}x_{12} + b_{12}x_{22} + b_{13}x_{32}$$

$$\rightarrow y_{13} = b_{11}x_{13} + b_{12}x_{23} + b_{13}x_{33}$$

$$\rightarrow y_{21} = b_{21}x_{11} + b_{22}x_{21} + b_{23}x_{31}$$

$$\rightarrow y_{22} = b_{21}x_{12} + b_{22}x_{22} + b_{23}x_{32}$$

$$\rightarrow y_{23} = b_{21}x_{13} + b_{22}x_{23} + b_{23}x_{33}$$

$$\rightarrow y_{31} = b_{31}x_{11} + b_{32}x_{21} + b_{33}x_{31}$$

$$\rightarrow y_{32} = b_{31}x_{12} + b_{32}x_{22} + b_{33}x_{32}$$

$$\rightarrow y_{33} = b_{31}x_{13} + b_{32}x_{23} + b_{33}x_{33}$$

2)
$$X \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} = \begin{pmatrix} y_{11} & y_{12} & y_{13} \\ y_{21} & y_{22} & y_{23} \\ y_{31} & y_{32} & y_{33} \end{pmatrix}$$

$$\sqrt{X} = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix}$$

$$\rightarrow y_{11} = x_{11}b_{11} + x_{12}b_{21} + x_{13}b_{31}$$

$$\rightarrow y_{12} = x_{11}b_{12} + x_{12}b_{22} + x_{13}b_{32}$$

- $\rightarrow y_{13} = x_{11}b_{13} + x_{12}b_{23} + x_{13}b_{33}$
- $\rightarrow y_{21} = x_{21}b_{11} + x_{22}b_{21} + x_{23}b_{31}$
- $\rightarrow y_{22} = x_{21}b_{12} + x_{22}b_{22} + x_{23}b_{32}$
- $\rightarrow y_{23} = x_{21}b_{13} + x_{22}b_{23} + x_{23}b_{33}$
- $\rightarrow y_{31} = x_{31}b_{11} + x_{32}b_{21} + x_{33}b_{31}$
- $\rightarrow y_{32} = x_{31}b_{12} + x_{32}b_{22} + x_{33}b_{32}$
- $\rightarrow y_{33} = x_{31}b_{13} + x_{32}b_{23} + x_{33}b_{33}$

Ранг матрицы из 2 стро

74. Найти ранг матрицы.

74. Найти ранг матрицы.

1)
$$\begin{pmatrix} a_{12} & a_{11} \\ a_{22} & a_{21} \end{pmatrix}$$
 $\sqrt{1}$
 $\rightarrow a_{21} = ka_{11}$
 $\rightarrow a_{22} = ka_{12}$
 $\rightarrow a_{11} = -3; -2; -1; 1; 2; 3; 4; 5$
 $\rightarrow a_{12} = -4; -3; -2; -1; 0; 1; 2; 3; 4; 5$
 $\rightarrow k = -2; -1; 2; 3$

2) $\begin{pmatrix} a_{22} & a_{21} & a_{23} \\ a_{12} & a_{11} & a_{13} \end{pmatrix}$
 $\sqrt{1}$
 $\rightarrow a_{21} = ka_{11}$
 $\rightarrow a_{22} = ka_{12}$
 $\rightarrow a_{23} = ka_{13}$
 $\rightarrow a_{11} = -3; -2; -1; 1; 2; 3; 4; 5$
 $\rightarrow a_{12} = -4; -3; -2; -1; 0; 1; 2; 3; 4; 5$
 $\rightarrow a_{13} = -5; -3; -2; -1; 1; 2; 3$
 $\rightarrow k = -2; -1; 2; 3$

3) $\begin{pmatrix} a_{12} & a_{14} & a_{13} & a_{11} \\ a_{22} & a_{24} & a_{23} & a_{21} \end{pmatrix}$
 $\sqrt{1}$
 $\rightarrow a_{21} = ka_{11}$
 $\rightarrow a_{21} = ka_{11}$
 $\rightarrow a_{22} = ka_{12}$
 $\rightarrow a_{23} = ka_{13}$
 $\rightarrow a_{24} = ka_{14}$
 $\rightarrow a_{11} = -3; -2; -1; 1; 2; 3; 4; 5$
 $\rightarrow a_{12} = -4; -3; -2; -1; 0; 1; 2; 3; 4; 5$
 $\rightarrow a_{13} = -5; -3; -2; -1; 1; 2; 3; 4; 5$
 $\rightarrow a_{13} = -5; -3; -2; -1; 1; 2; 3; 5$
 $\rightarrow k = -2; -1; 2; 3$

4) $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$
 $\sqrt{2}$

 $\rightarrow a_{11} = -3; -1; 1; 3; 5; 7$

 $\rightarrow a_{12} = -4; -3; -2; -1; 0; 1; 2; 3; 4; 5$

- $\rightarrow a_{21} = -4; -2; 2; 4; 6$
- $\rightarrow a_{22} = -5; -3; -1; 1; 3; 5$
- $5) \quad \begin{pmatrix} a_{22} & a_{23} & a_{21} \\ a_{12} & a_{13} & a_{11} \end{pmatrix}$
- 1/ 2
- $\rightarrow a_{11} = -3; -1; 1; 3; 5; 7$
- $\rightarrow a_{12} = -4; -3; -2; -1; 0; 1; 2; 3; 4; 5$
- $\rightarrow a_{21} = -4; -2; 2; 4; 6$
- $\rightarrow a_{22} = -5; -3; -1; 1; 3; 5$
- $\rightarrow a_{13} = -5; -3; -2; -1; 1; 2; 3$
- $\rightarrow a_{23} = -5; -3; -2; -1; 1; 2; 3$
- $6) \quad \begin{pmatrix} a_{21} & a_{22} & a_{23} & a_{24} \\ a_{11} & a_{12} & a_{13} & a_{14} \end{pmatrix}$
- $\sqrt{2}$
- $\rightarrow a_{11} = -3; -1; 1; 3; 5; 7$
- $\rightarrow a_{12} = -4; -3; -2; -1; 0; 1; 2; 3; 4; 5$
- $\rightarrow a_{21} = -4; -2; 2; 4; 6$
- $\rightarrow a_{22} = -5; -3; -1; 1; 3; 5$
- $\rightarrow a_{13} = -5; -3; -2; -1; 1; 2; 3$
- $\rightarrow a_{14} = -4; -3; -2; -1; 1; 2; 3; 5$
- $\rightarrow a_{23} = -5; -3; -2; -1; 1; 2; 3$
- $\rightarrow a_{24} = -4; -3; -2; -1; 1; 2; 3; 5$

Ранг матрицы из 3 стро

75. Найти ранг матрицы.

1)
$$\begin{pmatrix} a_{22} & a_{21} & a_{23} \\ a_{12} & a_{11} & a_{13} \\ a_{32} & a_{31} & a_{33} \end{pmatrix}$$

$$\sqrt{2}$$

$$\sqrt{2}$$

$$\rightarrow a_{31} = ka_{11} + la_{21}$$

$$\rightarrow a_{32} = ka_{12} + la_{22}$$

$$\rightarrow a_{33} = ka_{13} + la_{23}$$

$$\rightarrow a_{11} = -3; -1; 1; 3; 5; 7$$

$$\rightarrow a_{12} = -4; -3; -2; -1; 0; 1; 2; 3; 4; 5$$

$$\rightarrow a_{21} = -4; -2; 2; 4; 6$$

$$\rightarrow a_{22} = -5; -3; -1; 1; 3; 5$$

$$\rightarrow a_{13} = -5; -3; -2; -1; 1; 2; 3$$

$$\rightarrow a_{23} = -5; -3; -2; -1; 1; 2; 3$$

$$\rightarrow k = -2; -1; 2; 3$$

$$\rightarrow l = -2; -1; 2; 3$$

$$\sqrt{2}$$

$$\rightarrow a_{31} = ka_{11} + la_{21}$$

$$\rightarrow a_{32} = ka_{12} + la_{22}$$

$$\rightarrow a_{33} = ka_{13} + la_{23}$$

$$\rightarrow a_{34} = ka_{14} + la_{24}$$

$$\rightarrow a_{11} = -3; -1; 1; 3; 5; 7$$

$$\rightarrow a_{12} = -4; -3; -2; -1; 0; 1; 2; 3; 4; 5$$

$$\rightarrow a_{21} = -4; -2; 2; 4; 6$$

$$\rightarrow a_{22} = -5; -3; -1; 1; 3; 5$$

$$\rightarrow a_{13} = -5; -3; -2; -1; 1; 2; 3$$

$$\rightarrow a_{14} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{23} = -5; -3; -2; -1; 1; 2; 3$$

$$\rightarrow a_{24} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow k = -2; -1; 2; 3$$

$$\rightarrow l = -2; -1; 2; 3$$

3)
$$\begin{pmatrix} a_{12} & a_{14} & a_{13} & a_{11} & a_{15} \\ a_{22} & a_{24} & a_{23} & a_{21} & a_{25} \\ a_{32} & a_{34} & a_{33} & a_{31} & a_{35} \end{pmatrix}$$

$$\sqrt{2}$$

$$\rightarrow a_{31} = ka_{11} + la_{21}$$

$$\rightarrow a_{32} = ka_{12} + la_{22}$$

$$\rightarrow a_{33} = ka_{13} + la_{23}$$

$$\rightarrow a_{34} = ka_{14} + la_{24}$$

$$\rightarrow a_{35} = ka_{15} + la_{25}$$

$$\rightarrow a_{11} = -3; -1; 1; 3; 5; 7$$

$$\rightarrow a_{12} = -4; -3; -2; -1; 0; 1; 2; 3; 4; 5$$

$$\rightarrow a_{21} = -4; -2; 2; 4; 6$$

$$\rightarrow a_{22} = -5; -3; -1; 1; 3; 5$$

$$\rightarrow a_{13} = -5; -3; -2; -1; 1; 2; 3$$

$$\rightarrow a_{14} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{15} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{23} = -5; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{24} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{25} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow k = -2; -1; 2; 3$$

$$\rightarrow l = -2; -1; 2; 3$$

$$4) \begin{pmatrix} a_{22} & a_{21} & a_{23} \\ a_{32} & a_{31} & a_{33} \\ a_{12} & a_{11} & a_{13} \end{pmatrix}$$

$$\sqrt{3}$$

$$\rightarrow a_{33} = b_{33} + k_{23}b_{23} + k_{13}b_{13}$$

$$\rightarrow a_{32} = k_{23}b_{22} + k_{13}b_{12}$$

$$\rightarrow a_{31} = k_{13}b_{11}$$

$$\rightarrow a_{23} = b_{23} + k_{12}b_{13}$$

$$\rightarrow a_{21} = k_{12}b_{11}$$

 $\rightarrow b_{11} = -3; -2; -1; 1; 2; 3$

$$\rightarrow b_{22} = -2; -1; 1; 2$$

$$\rightarrow b_{33} = -2; -1; 1; 2$$

$$\rightarrow b_{12} = -1; 0; 1; 2$$

$$\rightarrow b_{13} = -2; -1; 1$$

$$\rightarrow b_{23} = -1; 1; 2$$

$$5) \quad \begin{pmatrix} a_{11} & a_{13} & a_{14} & a_{12} \\ a_{31} & a_{33} & a_{34} & a_{32} \\ a_{21} & a_{23} & a_{24} & a_{22} \end{pmatrix}$$

$$\sqrt{3}$$

$$\rightarrow a_{14} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{24} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{34} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{33} = b_{33} + k_{23}b_{23} + k_{13}b_{13}$$

$$\rightarrow a_{32} = k_{23}b_{22} + k_{13}b_{12}$$

$$\rightarrow a_{31} = k_{13}b_{11}$$

$$\rightarrow a_{23} = b_{23} + k_{12}b_{13}$$

$$\rightarrow a_{22} = b_{22} + k_{12}b_{12}$$

$$\rightarrow a_{21} = k_{12}b_{11}$$

$$\rightarrow a_{13} = b_{13}$$

$$\rightarrow a_{12} = b_{12}$$

$$\rightarrow a_{11} = b_{11}$$

$$\rightarrow k_{13} = -1; 0; 1; 2$$

$$\rightarrow k_{23} = -2; -1; 1; 2$$

$$\rightarrow k_{12} = -3; -2; -1; 1; 2; 3$$

$$\rightarrow b_{11} = -3; -2; -1; 1; 2; 3$$

$$\rightarrow b_{22} = -2; -1; 1; 2$$

$$\rightarrow b_{33} = -2; -1; 1; 2$$

$$\rightarrow b_{12} = -1; 0; 1; 2$$

$$\rightarrow b_{13} = -2; -1; 1$$

$$\rightarrow b_{23} = -1; 1; 2$$

$$\rightarrow a_{14} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{15} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{24} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{25} = -4; -3; -2; -1; 1; 2; 3; 5$$

- $\rightarrow a_{34} = -4; -3; -2; -1; 1; 2; 3; 5$
- $\rightarrow a_{35} = -4; -3; -2; -1; 1; 2; 3; 5$
- $\rightarrow a_{33} = b_{33} + k_{23}b_{23} + k_{13}b_{13}$
- $\rightarrow a_{32} = k_{23}b_{22} + k_{13}b_{12}$
- $\rightarrow a_{31} = k_{13}b_{11}$
- $\rightarrow a_{23} = b_{23} + k_{12}b_{13}$
- $\rightarrow a_{22} = b_{22} + k_{12}b_{12}$
- $\rightarrow a_{21} = k_{12}b_{11}$
- $\rightarrow a_{13} = b_{13}$
- $\rightarrow a_{12} = b_{12}$
- $\rightarrow a_{11} = b_{11}$
- $\rightarrow k_{13} = -1; 0; 1; 2$
- $\rightarrow k_{23} = -2; -1; 1; 2$
- $\rightarrow k_{12} = -3; -2; -1; 1; 2; 3$
- $\rightarrow b_{11} = -3; -2; -1; 1; 2; 3$
- $\rightarrow b_{22} = -2; -1; 1; 2$
- $\rightarrow b_{33} = -2; -1; 1; 2$
- $\rightarrow b_{12} = -1; 0; 1; 2$
- $\rightarrow b_{13} = -2; -1; 1$
- $\rightarrow b_{23} = -1; 1; 2$

76. Найти ранг матрицы.

$$1) \quad \begin{pmatrix} a_{22} & a_{21} & a_{23} & a_{24} \\ a_{32} & a_{31} & a_{33} & a_{34} \\ a_{12} & a_{11} & a_{13} & a_{14} \\ a_{42} & a_{41} & a_{43} & a_{44} \end{pmatrix}$$

$$\sqrt{2}$$

$$\rightarrow a_{31} = k_3 a_{11} + l_3 a_{21}$$

$$\rightarrow a_{32} = k_3 a_{12} + l_3 a_{22}$$

$$\rightarrow a_{33} = k_3 a_{13} + l_3 a_{23}$$

$$\rightarrow a_{34} = k_3 a_{14} + l_3 a_{24}$$

$$\rightarrow a_{41} = k_4 a_{11} + l_4 a_{21}$$

$$\rightarrow a_{42} = k_4 a_{12} + l_4 a_{22}$$

$$\rightarrow a_{43} = k_4 a_{13} + l_4 a_{23}$$

$$\rightarrow a_{44} = k_4 a_{14} + l_4 a_{24}$$

$$\rightarrow a_{11} = -3; -1; 1; 3; 5; 7$$

$$\rightarrow a_{12} = -4; -3; -2; -1; 0; 1; 2; 3; 4; 5$$

$$\rightarrow a_{21} = -4; -2; 2; 4; 6$$

$$\rightarrow a_{22} = -5; -3; -1; 1; 3; 5$$

$$\rightarrow a_{13} = -5; -3; -2; -1; 1; 2; 3$$

$$\rightarrow a_{14} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{23} = -5; -3; -2; -1; 1; 2; 3$$

$$\rightarrow a_{24} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow k_3 = -2; -1; 2; 3$$

$$\rightarrow l_3 = -2; -1; 2; 3$$

$$\rightarrow k_4 = -2; -1; 2; 3$$

$$\rightarrow l_4 = -2; -1; 2; 3$$

$$2) \quad \begin{pmatrix} a_{11} & a_{13} & a_{14} & a_{15} & a_{12} \\ a_{31} & a_{33} & a_{34} & a_{35} & a_{32} \\ a_{41} & a_{43} & a_{44} & a_{45} & a_{42} \\ a_{21} & a_{23} & a_{24} & a_{25} & a_{22} \end{pmatrix}$$

$$\sqrt{2}$$

$$\rightarrow a_{31} = k_3 a_{11} + l_3 a_{21}$$

$$\rightarrow a_{32} = k_3 a_{12} + l_3 a_{22}$$

$$\rightarrow a_{33} = k_3 a_{13} + l_3 a_{23}$$

$$\rightarrow a_{34} = k_3 a_{14} + l_3 a_{24}$$

$$\rightarrow a_{35} = k_3 a_{15} + l_3 a_{25}$$

$$\rightarrow a_{41} = k_4 a_{11} + l_4 a_{21}$$

$$\rightarrow a_{42} = k_4 a_{12} + l_4 a_{22}$$

$$\rightarrow a_{43} = k_4 a_{13} + l_4 a_{23}$$

$$\rightarrow a_{44} = k_4 a_{14} + l_4 a_{24}$$

$$\rightarrow a_{45} = k_4 a_{15} + l_4 a_{25}$$

$$\rightarrow a_{11} = -3; -1; 1; 3; 5; 7$$

$$\rightarrow a_{12} = -4; -3; -2; -1; 0; 1; 2; 3; 4; 5$$

$$\rightarrow a_{21} = -4; -2; 2; 4; 6$$

$$\rightarrow a_{22} = -5; -3; -1; 1; 3; 5$$

$$\rightarrow a_{13} = -5; -3; -2; -1; 1; 2; 3$$

$$\rightarrow a_{14} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{15} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{23} = -5; -3; -2; -1; 1; 2; 3$$

$$\rightarrow a_{24} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{25} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow k_3 = -2; -1; 2; 3$$

$$\rightarrow l_3 = -2; -1; 2; 3$$

$$\rightarrow k_4 = -2; -1; 2; 3$$

$$\rightarrow l_4 = -2; -1; 2; 3$$

$$3) \quad \begin{pmatrix} a_{21} & a_{23} & a_{24} & a_{22} \\ a_{41} & a_{43} & a_{44} & a_{42} \\ a_{31} & a_{33} & a_{34} & a_{32} \\ a_{11} & a_{13} & a_{14} & a_{12} \end{pmatrix}$$

$$\sqrt{3}$$

$$\rightarrow a_{41} = ka_{11} + la_{21} + ma_{31}$$

$$\rightarrow a_{42} = ka_{12} + la_{22} + ma_{32}$$

$$\rightarrow a_{43} = ka_{13} + la_{23} + ma_{33}$$

$$\rightarrow a_{44} = ka_{14} + la_{24} + ma_{34}$$

$$\rightarrow k = -2; -1; 2; 3$$

$$\rightarrow l = -2; -1; 2; 3$$

$$\rightarrow m = -2; -1; 2; 3$$

$$\rightarrow a_{14} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{24} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{34} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{33} = b_{33} + k_{23}b_{23} + k_{13}b_{13}$$

$$\rightarrow a_{32} = k_{23}b_{22} + k_{13}b_{12}$$

$$\rightarrow a_{31} = k_{13}b_{11}$$

$$\rightarrow a_{23} = b_{23} + k_{12}b_{13}$$

$$\rightarrow a_{22} = b_{22} + k_{12}b_{12}$$

$$\rightarrow a_{21} = k_{12}b_{11}$$

$$\rightarrow a_{13} = b_{13}$$

$$\rightarrow a_{12} = b_{12}$$

$$\rightarrow a_{11} = b_{11}$$

$$\rightarrow k_{13} = -1; 0; 1; 2$$

$$\rightarrow k_{23} = -2; -1; 1; 2$$

$$\rightarrow k_{12} = -3; -2; -1; 1; 2; 3$$

$$\rightarrow b_{11} = -3; -2; -1; 1; 2; 3$$

$$\rightarrow b_{22} = -2; -1; 1; 2$$

$$\rightarrow b_{33} = -2; -1; 1; 2$$

$$\rightarrow b_{12} = -1; 0; 1; 2$$

$$\rightarrow b_{13} = -2; -1; 1$$

$$\rightarrow b_{23} = -1; 1; 2$$

4)
$$\begin{pmatrix} a_{31} & a_{34} & a_{35} & a_{32} & a_{33} \\ a_{21} & a_{24} & a_{25} & a_{22} & a_{23} \\ a_{11} & a_{14} & a_{15} & a_{12} & a_{13} \\ a_{41} & a_{44} & a_{45} & a_{42} & a_{43} \end{pmatrix}$$

$$\sqrt{3}$$

$$\rightarrow a_{41} = ka_{11} + la_{21} + ma_{31}$$

$$\rightarrow a_{42} = ka_{12} + la_{22} + ma_{32}$$

$$\rightarrow a_{43} = ka_{13} + la_{23} + ma_{33}$$

$$\rightarrow a_{44} = ka_{14} + la_{24} + ma_{34}$$

$$\rightarrow a_{45} = ka_{15} + la_{25} + ma_{35}$$

$$\rightarrow k = -2; -1; 2; 3$$

$$\rightarrow l = -2; -1; 2; 3$$

$$\rightarrow m = -2; -1; 2; 3$$

$$\rightarrow a_{14} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{15} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{24} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{25} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{34} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{35} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{33} = b_{33} + k_{23}b_{23} + k_{13}b_{13}$$

$$\rightarrow a_{32} = k_{23}b_{22} + k_{13}b_{12}$$

$$\rightarrow a_{31} = k_{13}b_{11}$$

$$\rightarrow a_{23} = b_{23} + k_{12}b_{13}$$

$$\rightarrow a_{22} = b_{22} + k_{12}b_{12}$$

$$\rightarrow a_{21} = k_{12}b_{11}$$

$$\rightarrow a_{13} = b_{13}$$

$$\rightarrow a_{12} = b_{12}$$

$$\rightarrow a_{11} = b_{11}$$

$$\rightarrow k_{13} = -1; 0; 1; 2$$

$$\rightarrow k_{23} = -2; -1; 1; 2$$

$$\rightarrow k_{12} = -3; -2; -1; 1; 2; 3$$

$$\rightarrow b_{11} = -3; -2; -1; 1; 2; 3$$

$$\rightarrow b_{22} = -2; -1; 1; 2$$

$$\rightarrow b_{33} = -2; -1; 1; 2$$

$$\rightarrow b_{12} = -1; 0; 1; 2$$

$$\rightarrow b_{13} = -2; -1; 1$$

$$\rightarrow b_{23} = -1; 1; 2$$

$$5) \quad \begin{pmatrix} a_{42} & a_{43} & a_{41} & a_{44} \\ a_{22} & a_{23} & a_{21} & a_{24} \\ a_{12} & a_{13} & a_{11} & a_{14} \\ a_{32} & a_{33} & a_{31} & a_{34} \end{pmatrix}$$

$$\sqrt{4}$$

$$\rightarrow a_{44} = b_{44} + k_{34}b_{34} + k_{24}b_{24} + k_{14}b_{14}$$

$$\rightarrow a_{43} = k_{34}b_{33} + k_{24}b_{23} + k_{14}b_{13}$$

$$\rightarrow a_{42} = k_{24}b_{22} + k_{14}b_{12}$$

$$\rightarrow a_{41} = k_{14}b_{11}$$

$$\rightarrow a_{34} = b_{34} + k_{23}b_{24} + k_{13}b_{14}$$

$$\rightarrow a_{33} = b_{33} + k_{23}b_{23} + k_{13}b_{13}$$

$$\rightarrow a_{32} = k_{23}b_{22} + k_{13}b_{12}$$

$$\rightarrow a_{31} = k_{13}b_{11}$$

$$\rightarrow a_{24} = b_{24} + k_{12}b_{14}$$

$$\rightarrow a_{23} = b_{23} + k_{12}b_{13}$$

$$\rightarrow a_{22} = b_{22} + k_{12}b_{12}$$

$$\rightarrow a_{21} = k_{12}b_{11}$$

$$\rightarrow a_{14} = b_{14}$$

$$\rightarrow a_{13} = b_{13}$$

$$\rightarrow a_{12} = b_{12}$$

$$\rightarrow a_{11} = b_{11}$$

$$\rightarrow k_{14} = -2; -1; 0; 1$$

$$\rightarrow k_{24} = -1; 0; 1; 2$$

$$\rightarrow k_{34} = -2; -1; 1; 2$$

$$\rightarrow k_{13} = -1; 0; 1; 2$$

$$\rightarrow k_{23} = -2; -1; 1; 2$$

- $\rightarrow k_{12} = -3; -2; -1; 1; 2; 3$
- $\rightarrow b_{11} = -3; -2; -1; 1; 2; 3$
- $\rightarrow b_{22} = -2; -1; 1; 2$
- $\rightarrow b_{33} = -2; -1; 1; 2$
- $\rightarrow b_{44} = -1; 1$
- $\rightarrow b_{12} = -1; 0; 1; 2$
- $\rightarrow b_{13} = -2; -1; 1$
- $\rightarrow b_{14} = -2; -1; 0; 1$
- $\rightarrow b_{23} = -1; 1; 2$
- $\rightarrow b_{24} = -1; 0; 1; 2$
- $\rightarrow b_{34} = -2; -1; 1$

$$6) \quad \begin{pmatrix} a_{31} & a_{33} & a_{34} & a_{35} & a_{32} \\ a_{21} & a_{23} & a_{24} & a_{25} & a_{22} \\ a_{41} & a_{43} & a_{44} & a_{45} & a_{42} \\ a_{11} & a_{13} & a_{14} & a_{15} & a_{12} \end{pmatrix}$$

- $\sqrt{4}$
- $\rightarrow a_{15} = -4; -3; -2; -1; 1; 2; 3; 5$
- $\rightarrow a_{25} = -4; -3; -2; -1; 1; 2; 3; 5$
- $\rightarrow a_{35} = -4; -3; -2; -1; 1; 2; 3; 5$
- $\rightarrow a_{45} = -4; -3; -2; -1; 1; 2; 3; 5$
- $\rightarrow a_{44} = b_{44} + k_{34}b_{34} + k_{24}b_{24} + k_{14}b_{14}$
- $\rightarrow a_{43} = k_{34}b_{33} + k_{24}b_{23} + k_{14}b_{13}$
- $\rightarrow a_{42} = k_{24}b_{22} + k_{14}b_{12}$
- $\rightarrow a_{41} = k_{14}b_{11}$
- $\rightarrow a_{34} = b_{34} + k_{23}b_{24} + k_{13}b_{14}$
- $\rightarrow a_{33} = b_{33} + k_{23}b_{23} + k_{13}b_{13}$
- $\rightarrow a_{32} = k_{23}b_{22} + k_{13}b_{12}$
- $\rightarrow a_{31} = k_{13}b_{11}$
- $\rightarrow a_{24} = b_{24} + k_{12}b_{14}$
- $\rightarrow a_{23} = b_{23} + k_{12}b_{13}$
- $\rightarrow a_{22} = b_{22} + k_{12}b_{12}$
- $\rightarrow a_{21} = k_{12}b_{11}$
- $\rightarrow a_{14} = b_{14}$
- $\rightarrow a_{13} = b_{13}$
- $\rightarrow a_{12} = b_{12}$
- $\rightarrow a_{11} = b_{11}$
- $\rightarrow k_{14} = -2; -1; 0; 1$
- $\rightarrow k_{24} = -1; 0; 1; 2$

- $\rightarrow k_{34} = -2; -1; 1; 2$
- $\rightarrow k_{13} = -1; 0; 1; 2$
- $\rightarrow k_{23} = -2; -1; 1; 2$
- $\rightarrow k_{12} = -3; -2; -1; 1; 2; 3$
- $\rightarrow b_{11} = -3; -2; -1; 1; 2; 3$
- $\rightarrow b_{22} = -2; -1; 1; 2$
- $\rightarrow b_{33} = -2; -1; 1; 2$
- $\rightarrow b_{44} = -1; 1$
- $\rightarrow b_{12} = -1; 0; 1; 2$
- $\rightarrow b_{13} = -2; -1; 1$
- $\rightarrow b_{14} = -2; -1; 0; 1$
- $\rightarrow b_{23} = -1; 1; 2$
- $\rightarrow b_{24} = -1; 0; 1; 2$
- $\rightarrow b_{34} = -2; -1; 1$

77. Выяснить, являются ли следующие системы векторов арифметических пространств линейно зависимыми.

```
1) (a_{12}, a_{11}), (a_{22}, a_{21})
√ да
\rightarrow a_{21} = ka_{11}
\rightarrow a_{22} = ka_{12}
\rightarrow a_{11} = -3; -2; -1; 1; 2; 3; 4; 5
\rightarrow a_{12} = -4; -3; -2; -1; 0; 1; 2; 3; 4; 5
\rightarrow k = -2; -1; 2; 3
2) (a_{22}, a_{21}, a_{23}), (a_{12}, a_{11}, a_{13})
√ да
\rightarrow a_{21} = ka_{11}
\rightarrow a_{22} = ka_{12}
\rightarrow a_{23} = ka_{13}
\rightarrow a_{11} = -3; -2; -1; 1; 2; 3; 4; 5
\rightarrow a_{12} = -4; -3; -2; -1; 0; 1; 2; 3; 4; 5
\rightarrow a_{13} = -5; -3; -2; -1; 1; 2; 3
\rightarrow k = -2; -1; 2; 3
3) (a_{12}, a_{14}, a_{13}, a_{11}), (a_{22}, a_{24}, a_{23}, a_{21})
√ да
\rightarrow a_{21} = ka_{11}
\rightarrow a_{22} = ka_{12}
\rightarrow a_{23} = ka_{13}
\rightarrow a_{24} = ka_{14}
\rightarrow a_{11} = -3; -2; -1; 1; 2; 3; 4; 5
\rightarrow a_{12} = -4; -3; -2; -1; 0; 1; 2; 3; 4; 5
\rightarrow a_{13} = -5; -3; -2; -1; 1; 2; 3
\rightarrow a_{14} = -4; -3; -2; -1; 1; 2; 3; 5
\rightarrow k = -2; -1; 2; 3
4) (a_{11}, a_{12}), (a_{21}, a_{22})
√ нет
\rightarrow a_{11} = -3; -1; 1; 3; 5; 7
\rightarrow a_{12} = -4; -3; -2; -1; 0; 1; 2; 3; 4; 5
\rightarrow a_{21} = -4; -2; 2; 4; 6
\rightarrow a_{22} = -5; -3; -1; 1; 3; 5
```

```
5) (a_{22}, a_{23}, a_{21}), (a_{12}, a_{13}, a_{11})

\checkmark HeT

\rightarrow a_{11} = -3; -1; 1; 3; 5; 7

\rightarrow a_{12} = -4; -3; -2; -1; 0; 1; 2; 3; 4; 5

\rightarrow a_{21} = -4; -2; 2; 4; 6

\rightarrow a_{22} = -5; -3; -1; 1; 3; 5

\rightarrow a_{13} = -5; -3; -2; -1; 1; 2; 3

\rightarrow a_{23} = -5; -3; -2; -1; 1; 2; 3

6) (a_{21}, a_{22}, a_{23}, a_{24}), (a_{11}, a_{12}, a_{13}, a_{14})

\checkmark HeT

\rightarrow a_{11} = -3; -1; 1; 3; 5; 7

\rightarrow a_{12} = -4; -3; -2; -1; 0; 1; 2; 3; 4; 5

\rightarrow a_{21} = -4; -2; 2; 4; 6

\rightarrow a_{22} = -5; -3; -1; 1; 3; 5
```

 $\rightarrow a_{13} = -5; -3; -2; -1; 1; 2; 3$

 $\rightarrow a_{23} = -5; -3; -2; -1; 1; 2; 3$

 $\rightarrow a_{14} = -4; -3; -2; -1; 1; 2; 3; 5$

 $\rightarrow a_{24} = -4; -3; -2; -1; 1; 2; 3; 5$

78. Выяснить, являются ли следующие системы векторов арифметических пространств линейно зависимыми.

```
1) (a_{22}, a_{21}, a_{23}), (a_{12}, a_{11}, a_{13}), (a_{32}, a_{31}, a_{33})
√ да
\rightarrow a_{31} = ka_{11} + la_{21}
\rightarrow a_{32} = ka_{12} + la_{22}
\rightarrow a_{33} = ka_{13} + la_{23}
\rightarrow a_{11} = -3; -1; 1; 3; 5; 7
\rightarrow a_{12} = -4; -3; -2; -1; 0; 1; 2; 3; 4; 5
\rightarrow a_{21} = -4; -2; 2; 4; 6
\rightarrow a_{22} = -5; -3; -1; 1; 3; 5
\rightarrow a_{13} = -5; -3; -2; -1; 1; 2; 3
\rightarrow a_{23} = -5; -3; -2; -1; 1; 2; 3
\rightarrow k = -2; -1; 2; 3
\rightarrow l = -2 : -1 : 2 : 3
2) (a_{31}, a_{33}, a_{34}, a_{32}), (a_{11}, a_{13}, a_{14}, a_{12}), (a_{21}, a_{23}, a_{24}, a_{22})
√ да
\rightarrow a_{31} = ka_{11} + la_{21}
\rightarrow a_{32} = ka_{12} + la_{22}
\rightarrow a_{33} = ka_{13} + la_{23}
\rightarrow a_{34} = ka_{14} + la_{24}
\rightarrow a_{11} = -3; -1; 1; 3; 5; 7
\rightarrow a_{12} = -4; -3; -2; -1; 0; 1; 2; 3; 4; 5
\rightarrow a_{21} = -4; -2; 2; 4; 6
\rightarrow a_{22} = -5; -3; -1; 1; 3; 5
\rightarrow a_{13} = -5; -3; -2; -1; 1; 2; 3
\rightarrow a_{14} = -4; -3; -2; -1; 1; 2; 3; 5
\rightarrow a_{23} = -5; -3; -2; -1; 1; 2; 3
\rightarrow a_{24} = -4; -3; -2; -1; 1; 2; 3; 5
\rightarrow k = -2; -1; 2; 3
\rightarrow l = -2; -1; 2; 3
3) (a_{22}, a_{21}, a_{23}), (a_{32}, a_{31}, a_{33}), (a_{12}, a_{11}, a_{13})
\rightarrow a_{33} = b_{33} + k_{23}b_{23} + k_{13}b_{13}
\rightarrow a_{32} = k_{23}b_{22} + k_{13}b_{12}
```

- $\rightarrow a_{31} = k_{13}b_{11}$
- $\rightarrow a_{23} = b_{23} + k_{12}b_{13}$
- $\rightarrow a_{22} = b_{22} + k_{12}b_{12}$
- $\rightarrow a_{21} = k_{12}b_{11}$
- $\rightarrow a_{13} = b_{13}$
- $\rightarrow a_{12} = b_{12}$
- $\rightarrow a_{11} = b_{11}$
- $\rightarrow k_{13} = -1; 0; 1; 2$
- $\rightarrow k_{23} = -2; -1; 1; 2$
- $\rightarrow k_{12} = -3; -2; -1; 1; 2; 3$
- $\rightarrow b_{11} = -3; -2; -1; 1; 2; 3$
- $\rightarrow b_{22} = -2; -1; 1; 2$
- $\rightarrow b_{33} = -2; -1; 1; 2$
- $\rightarrow b_{12} = -1; 0; 1; 2$
- $\rightarrow b_{13} = -2; -1; 1$
- $\rightarrow b_{23} = -1; 1; 2$
- 4) $(a_{11}, a_{13}, a_{14}, a_{12}), (a_{31}, a_{33}, a_{34}, a_{32}), (a_{21}, a_{23}, a_{24}, a_{22})$
- √ HeT
- $\rightarrow a_{14} = -4; -3; -2; -1; 1; 2; 3; 5$
- $\rightarrow a_{24} = -4; -3; -2; -1; 1; 2; 3; 5$
- $\rightarrow a_{34} = -4; -3; -2; -1; 1; 2; 3; 5$
- $\rightarrow a_{33} = b_{33} + k_{23}b_{23} + k_{13}b_{13}$
- $\rightarrow a_{32} = k_{23}b_{22} + k_{13}b_{12}$
- $\rightarrow a_{31} = k_{13}b_{11}$
- $\rightarrow a_{23} = b_{23} + k_{12}b_{13}$
- $\rightarrow a_{22} = b_{22} + k_{12}b_{12}$
- $\rightarrow a_{21} = k_{12}b_{11}$
- $\rightarrow a_{13} = b_{13}$
- $\rightarrow a_{12} = b_{12}$
- $\rightarrow a_{11} = b_{11}$
- $\rightarrow k_{13} = -1; 0; 1; 2$
- $\rightarrow k_{23} = -2; -1; 1; 2$
- $\rightarrow k_{12} = -3; -2; -1; 1; 2; 3$
- $\rightarrow b_{11} = -3; -2; -1; 1; 2; 3$
- $\rightarrow b_{22} = -2; -1; 1; 2$
- $\rightarrow b_{33} = -2; -1; 1; 2$
- $\rightarrow b_{12} = -1; 0; 1; 2$

- $\rightarrow b_{13} = -2; -1; 1$
- $\rightarrow b_{23} = -1; 1; 2$

- **79.** Выяснить, являются ли следующие системы векторов арифметических пространств линейно зависимыми.
- 1) $(a_{11}, a_{12}, a_{13}), (a_{21}, a_{22}, a_{23}), (a_{31}, a_{32}, a_{33}), (a_{41}, a_{42}, a_{43})$ √ да $\rightarrow a_{11} = -4; -3; -2; -1; 1; 2; 3; 5$ $\rightarrow a_{12} = -4; -3; -2; -1; 1; 2; 3; 5$ $\rightarrow a_{13} = -4; -3; -2; -1; 1; 2; 3; 5$ $\rightarrow a_{21} = -4; -3; -2; -1; 1; 2; 3; 5$ $\rightarrow a_{22} = -4$; -3; -2; -1; 1; 2; 3; 5 $\rightarrow a_{23} = -4; -3; -2; -1; 1; 2; 3; 5$ $\rightarrow a_{31} = -4; -3; -2; -1; 1; 2; 3; 5$ $\rightarrow a_{32} = -4; -3; -2; -1; 1; 2; 3; 5$ $\rightarrow a_{33} = -4; -3; -2; -1; 1; 2; 3; 5$ $\rightarrow a_{41} = -4; -3; -2; -1; 1; 2; 3; 5$ $\rightarrow a_{42} = -4; -3; -2; -1; 1; 2; 3; 5$ $\rightarrow a_{43} = -4; -3; -2; -1; 1; 2; 3; 5$ 2) $(a_{21}, a_{23}, a_{24}, a_{22}), (a_{41}, a_{43}, a_{44}, a_{42}), (a_{31}, a_{33}, a_{34}, a_{32}), (a_{11}, a_{13}, a_{14}, a_{12})$ √ да $\rightarrow a_{41} = ka_{11} + la_{21} + ma_{31}$ $\rightarrow a_{42} = ka_{12} + la_{22} + ma_{32}$ $\rightarrow a_{43} = ka_{13} + la_{23} + ma_{33}$ $\rightarrow a_{44} = ka_{14} + la_{24} + ma_{34}$ $\rightarrow k = -2; -1; 2; 3$ $\rightarrow l = -2; -1; 2; 3$ $\rightarrow m = -2; -1; 2; 3$ $\rightarrow a_{14} = -4; -3; -2; -1; 1; 2; 3; 5$ $\rightarrow a_{24} = -4; -3; -2; -1; 1; 2; 3; 5$ $\rightarrow a_{34} = -4; -3; -2; -1; 1; 2; 3; 5$ $\rightarrow a_{33} = b_{33} + k_{23}b_{23} + k_{13}b_{13}$ $\rightarrow a_{32} = k_{23}b_{22} + k_{13}b_{12}$ $\rightarrow a_{31} = k_{13}b_{11}$ $\rightarrow a_{23} = b_{23} + k_{12}b_{13}$ $\rightarrow a_{22} = b_{22} + k_{12}b_{12}$ $\rightarrow a_{21} = k_{12}b_{11}$

 $\rightarrow a_{13} = b_{13}$

 $\rightarrow a_{12} = b_{12}$

```
\rightarrow a_{11} = b_{11}
\rightarrow k_{13} = -1; 0; 1; 2
\rightarrow k_{23} = -2; -1; 1; 2
\rightarrow k_{12} = -3; -2; -1; 1; 2; 3
\rightarrow b_{11} = -3; -2; -1; 1; 2; 3
\rightarrow b_{22} = -2; -1; 1; 2
\rightarrow b_{33} = -2; -1; 1; 2
\rightarrow b_{12} = -1; 0; 1; 2
\rightarrow b_{13} = -2; -1; 1
\rightarrow b_{23} = -1; 1; 2
3) (a_{31}, a_{34}, a_{35}, a_{32}, a_{33}), (a_{21}, a_{24}, a_{25}, a_{22}, a_{23}), (a_{11}, a_{14}, a_{15}, a_{12}, a_{13}), (a_{41}, a_{44}, a_{45}, a_{42}, a_{43})
√ да
\rightarrow a_{41} = ka_{11} + la_{21} + ma_{31}
\rightarrow a_{42} = ka_{12} + la_{22} + ma_{32}
\rightarrow a_{43} = ka_{13} + la_{23} + ma_{33}
\rightarrow a_{44} = ka_{14} + la_{24} + ma_{34}
\rightarrow a_{45} = ka_{15} + la_{25} + ma_{35}
\rightarrow k = -2; -1; 2; 3
\rightarrow l = -2; -1; 2; 3
\rightarrow m = -2; -1; 2; 3
\rightarrow a_{14} = -4; -3; -2; -1; 1; 2; 3; 5
\rightarrow a_{15} = -4; -3; -2; -1; 1; 2; 3; 5
\rightarrow a_{24} = -4; -3; -2; -1; 1; 2; 3; 5
\rightarrow a_{25} = -4; -3; -2; -1; 1; 2; 3; 5
\rightarrow a_{34} = -4; -3; -2; -1; 1; 2; 3; 5
\rightarrow a_{35} = -4; -3; -2; -1; 1; 2; 3; 5
\rightarrow a_{33} = b_{33} + k_{23}b_{23} + k_{13}b_{13}
\rightarrow a_{32} = k_{23}b_{22} + k_{13}b_{12}
\rightarrow a_{31} = k_{13}b_{11}
\rightarrow a_{23} = b_{23} + k_{12}b_{13}
\rightarrow a_{22} = b_{22} + k_{12}b_{12}
\rightarrow a_{21} = k_{12}b_{11}
\rightarrow a_{13} = b_{13}
\rightarrow a_{12} = b_{12}
\rightarrow a_{11} = b_{11}
\rightarrow k_{13} = -1; 0; 1; 2
\rightarrow k_{23} = -2; -1; 1; 2
```

```
\rightarrow k_{12} = -3; -2; -1; 1; 2; 3
\rightarrow b_{11} = -3; -2; -1; 1; 2; 3
\rightarrow b_{22} = -2; -1; 1; 2
\rightarrow b_{33} = -2; -1; 1; 2
\rightarrow b_{12} = -1; 0; 1; 2
\rightarrow b_{13} = -2; -1; 1
\rightarrow b_{23} = -1; 1; 2
4) (a_{42}, a_{43}, a_{41}, a_{44}), (a_{22}, a_{23}, a_{21}, a_{24}), (a_{12}, a_{13}, a_{11}, a_{14}), (a_{32}, a_{33}, a_{31}, a_{34})
√ HeT
\rightarrow a_{44} = b_{44} + k_{34}b_{34} + k_{24}b_{24} + k_{14}b_{14}
\rightarrow a_{43} = k_{34}b_{33} + k_{24}b_{23} + k_{14}b_{13}
\rightarrow a_{42} = k_{24}b_{22} + k_{14}b_{12}
\rightarrow a_{41} = k_{14}b_{11}
\rightarrow a_{34} = b_{34} + k_{23}b_{24} + k_{13}b_{14}
\rightarrow a_{33} = b_{33} + k_{23}b_{23} + k_{13}b_{13}
\rightarrow a_{32} = k_{23}b_{22} + k_{13}b_{12}
\rightarrow a_{31} = k_{13}b_{11}
\rightarrow a_{24} = b_{24} + k_{12}b_{14}
\rightarrow a_{23} = b_{23} + k_{12}b_{13}
\rightarrow a_{22} = b_{22} + k_{12}b_{12}
\rightarrow a_{21} = k_{12}b_{11}
\rightarrow a_{14} = b_{14}
\rightarrow a_{13} = b_{13}
\rightarrow a_{12} = b_{12}
\rightarrow a_{11} = b_{11}
\rightarrow k_{14} = -2; -1; 0; 1
\rightarrow k_{24} = -1; 0; 1; 2
\rightarrow k_{34} = -2; -1; 1; 2
\rightarrow k_{13} = -1; 0; 1; 2
\rightarrow k_{23} = -2; -1; 1; 2
\rightarrow k_{12} = -3; -2; -1; 1; 2; 3
\rightarrow b_{11} = -3; -2; -1; 1; 2; 3
\rightarrow b_{22} = -2; -1; 1; 2
\rightarrow b_{33} = -2; -1; 1; 2
\rightarrow b_{44} = -1; 1
\rightarrow b_{12} = -1; 0; 1; 2
```

 $\rightarrow b_{13} = -2; -1; 1$

```
\rightarrow b_{14} = -2; -1; 0; 1
\rightarrow b_{23} = -1; 1; 2
\rightarrow b_{24} = -1; 0; 1; 2
\rightarrow b_{34} = -2; -1; 1
5) (a_{31}, a_{33}, a_{34}, a_{35}, a_{32}), (a_{21}, a_{23}, a_{24}, a_{25}, a_{22}), (a_{41}, a_{43}, a_{44}, a_{45}, a_{42}), (a_{11}, a_{13}, a_{14}, a_{15}, a_{12})
\rightarrow a_{15} = -4; -3; -2; -1; 1; 2; 3; 5
\rightarrow a_{25} = -4; -3; -2; -1; 1; 2; 3; 5
\rightarrow a_{35} = -4; -3; -2; -1; 1; 2; 3; 5
\rightarrow a_{45} = -4; -3; -2; -1; 1; 2; 3; 5
\rightarrow a_{44} = b_{44} + k_{34}b_{34} + k_{24}b_{24} + k_{14}b_{14}
\rightarrow a_{43} = k_{34}b_{33} + k_{24}b_{23} + k_{14}b_{13}
\rightarrow a_{42} = k_{24}b_{22} + k_{14}b_{12}
\rightarrow a_{41} = k_{14}b_{11}
\rightarrow a_{34} = b_{34} + k_{23}b_{24} + k_{13}b_{14}
\rightarrow a_{33} = b_{33} + k_{23}b_{23} + k_{13}b_{13}
\rightarrow a_{32} = k_{23}b_{22} + k_{13}b_{12}
\rightarrow a_{31} = k_{13}b_{11}
\rightarrow a_{24} = b_{24} + k_{12}b_{14}
\rightarrow a_{23} = b_{23} + k_{12}b_{13}
\rightarrow a_{22} = b_{22} + k_{12}b_{12}
\rightarrow a_{21} = k_{12}b_{11}
\rightarrow a_{14} = b_{14}
\rightarrow a_{13} = b_{13}
\rightarrow a_{12} = b_{12}
\rightarrow a_{11} = b_{11}
\rightarrow k_{14} = -2; -1; 0; 1
\rightarrow k_{24} = -1; 0; 1; 2
\rightarrow k_{34} = -2; -1; 1; 2
\rightarrow k_{13} = -1; 0; 1; 2
\rightarrow k_{23} = -2; -1; 1; 2
\rightarrow k_{12} = -3; -2; -1; 1; 2; 3
\rightarrow b_{11} = -3; -2; -1; 1; 2; 3
\rightarrow b_{22} = -2; -1; 1; 2
\rightarrow b_{33} = -2; -1; 1; 2
\rightarrow b_{44} = -1; 1
```

 $\rightarrow b_{12} = -1; 0; 1; 2$

- $\rightarrow b_{13} = -2; -1; 1$
- $\rightarrow b_{14} = -2; -1; 0; 1$
- $\rightarrow b_{23} = -1; 1; 2$
- $\rightarrow b_{24} = -1; 0; 1; 2$
- $\rightarrow b_{34} = -2; -1; 1$

80. Выяснить, является ли линейно зависимой каждая из систем векторов в пространстве $\mathbb{R}_{n.m}$.

1)
$$\begin{pmatrix} a_{12} & a_{14} \\ a_{13} & a_{11} \end{pmatrix}$$
, $\begin{pmatrix} a_{22} & a_{24} \\ a_{23} & a_{21} \end{pmatrix}$

- √ да
- $\rightarrow a_{21} = ka_{11}$
- $\rightarrow a_{22} = ka_{12}$
- $\rightarrow a_{23} = ka_{13}$
- $\rightarrow a_{24} = ka_{14}$
- $\rightarrow a_{11} = -3; -2; -1; 1; 2; 3; 4; 5$
- $\rightarrow a_{12} = -4; -3; -2; -1; 0; 1; 2; 3; 4; 5$
- $\rightarrow a_{13} = -5; -3; -2; -1; 1; 2; 3$
- $\rightarrow a_{14} = -4; -3; -2; -1; 1; 2; 3; 5$
- $\rightarrow k = -2; -1; 2; 3$

$$2) \quad \begin{pmatrix} a_{21} & a_{22} \\ a_{23} & a_{24} \end{pmatrix}, \quad \begin{pmatrix} a_{11} & a_{12} \\ a_{13} & a_{14} \end{pmatrix}$$

- √ нет
- $\rightarrow a_{11} = -3; -1; 1; 3; 5; 7$
- $\rightarrow a_{12} = -4; -3; -2; -1; 0; 1; 2; 3; 4; 5$
- $\rightarrow a_{21} = -4; -2; 2; 4; 6$
- $\rightarrow a_{22} = -5; -3; -1; 1; 3; 5$
- $\rightarrow a_{13} = -5; -3; -2; -1; 1; 2; 3$
- $\rightarrow a_{14} = -4; -3; -2; -1; 1; 2; 3; 5$
- $\rightarrow a_{23} = -5; -3; -2; -1; 1; 2; 3$
- $\rightarrow a_{24} = -4; -3; -2; -1; 1; 2; 3; 5$

3)
$$\begin{pmatrix} a_{31} & a_{33} \\ a_{34} & a_{32} \end{pmatrix}$$
, $\begin{pmatrix} a_{11} & a_{13} \\ a_{14} & a_{12} \end{pmatrix}$, $\begin{pmatrix} a_{21} & a_{23} \\ a_{24} & a_{22} \end{pmatrix}$

- √ да
- $\rightarrow a_{31} = ka_{11} + la_{21}$
- $\rightarrow a_{32} = ka_{12} + la_{22}$
- $\rightarrow a_{33} = ka_{13} + la_{23}$
- $\rightarrow a_{34} = ka_{14} + la_{24}$
- $\rightarrow a_{11} = -3; -1; 1; 3; 5; 7$
- $\rightarrow a_{12} = -4; -3; -2; -1; 0; 1; 2; 3; 4; 5$
- $\rightarrow a_{21} = -4; -2; 2; 4; 6$
- $\rightarrow a_{22} = -5; -3; -1; 1; 3; 5$

$$\rightarrow a_{13} = -5; -3; -2; -1; 1; 2; 3$$

$$\rightarrow a_{14} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{23} = -5; -3; -2; -1; 1; 2; 3$$

$$\rightarrow a_{24} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow k = -2; -1; 2; 3$$

$$\rightarrow l = -2; -1; 2; 3$$

4)
$$\begin{pmatrix} a_{11} & a_{13} \\ a_{14} & a_{12} \end{pmatrix}$$
, $\begin{pmatrix} a_{31} & a_{33} \\ a_{34} & a_{32} \end{pmatrix}$, $\begin{pmatrix} a_{21} & a_{23} \\ a_{24} & a_{22} \end{pmatrix}$

$$\rightarrow a_{14} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{24} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{34} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{33} = b_{33} + k_{23}b_{23} + k_{13}b_{13}$$

$$\rightarrow a_{32} = k_{23}b_{22} + k_{13}b_{12}$$

$$\rightarrow a_{31} = k_{13}b_{11}$$

$$\rightarrow a_{23} = b_{23} + k_{12}b_{13}$$

$$\rightarrow a_{22} = b_{22} + k_{12}b_{12}$$

$$\rightarrow a_{21} = k_{12}b_{11}$$

$$\rightarrow a_{13} = b_{13}$$

$$\rightarrow a_{12} = b_{12}$$

$$\rightarrow a_{11} = b_{11}$$

$$\rightarrow k_{13} = -1; 0; 1; 2$$

$$\rightarrow k_{23} = -2; -1; 1; 2$$

$$\rightarrow k_{12} = -3; -2; -1; 1; 2; 3$$

$$\rightarrow$$
 $b_{11} = -3$; -2 ; -1 ; 1; 2; 3

$$\rightarrow b_{22} = -2; -1; 1; 2$$

$$\rightarrow b_{33} = -2; -1; 1; 2$$

$$\rightarrow b_{12} = -1; 0; 1; 2$$

$$\rightarrow b_{13} = -2; -1; 1$$

$$\rightarrow b_{23} = -1; 1; 2$$

5)
$$\begin{pmatrix} a_{21} & a_{23} \\ a_{24} & a_{22} \end{pmatrix}$$
, $\begin{pmatrix} a_{41} & a_{43} \\ a_{44} & a_{42} \end{pmatrix}$, $\begin{pmatrix} a_{31} & a_{33} \\ a_{34} & a_{32} \end{pmatrix}$, $\begin{pmatrix} a_{11} & a_{13} \\ a_{14} & a_{12} \end{pmatrix}$

$$\rightarrow a_{41} = ka_{11} + la_{21} + ma_{31}$$

$$\rightarrow a_{42} = ka_{12} + la_{22} + ma_{32}$$

$$\rightarrow a_{43} = ka_{13} + la_{23} + ma_{33}$$

$$\rightarrow a_{44} = ka_{14} + la_{24} + ma_{34}$$

$$\rightarrow k = -2; -1; 2; 3$$

$$\rightarrow l = -2; -1; 2; 3$$

$$\rightarrow m = -2; -1; 2; 3$$

$$\rightarrow a_{14} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{24} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{34} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{33} = b_{33} + k_{23}b_{23} + k_{13}b_{13}$$

$$\rightarrow a_{32} = k_{23}b_{22} + k_{13}b_{12}$$

$$\rightarrow a_{31} = k_{13}b_{11}$$

$$\rightarrow a_{23} = b_{23} + k_{12}b_{13}$$

$$\rightarrow a_{22} = b_{22} + k_{12}b_{12}$$

$$\rightarrow a_{21} = k_{12}b_{11}$$

$$\rightarrow a_{13} = b_{13}$$

$$\rightarrow a_{12} = b_{12}$$

$$\rightarrow a_{11} = b_{11}$$

$$\rightarrow k_{13} = -1; 0; 1; 2$$

$$\rightarrow k_{23} = -2; -1; 1; 2$$

$$\rightarrow k_{12} = -3; -2; -1; 1; 2; 3$$

$$\rightarrow b_{11} = -3; -2; -1; 1; 2; 3$$

$$\rightarrow b_{22} = -2; -1; 1; 2$$

$$\rightarrow b_{33} = -2; -1; 1; 2$$

$$\rightarrow b_{12} = -1; 0; 1; 2$$

$$\rightarrow b_{13} = -2; -1; 1$$

$$\rightarrow b_{23} = -1; 1; 2$$

6)
$$\begin{pmatrix} a_{42} & a_{43} \\ a_{41} & a_{44} \end{pmatrix}$$
, $\begin{pmatrix} a_{22} & a_{23} \\ a_{21} & a_{24} \end{pmatrix}$, $\begin{pmatrix} a_{12} & a_{13} \\ a_{11} & a_{14} \end{pmatrix}$, $\begin{pmatrix} a_{32} & a_{33} \\ a_{31} & a_{34} \end{pmatrix}$

$$\rightarrow a_{44} = b_{44} + k_{34}b_{34} + k_{24}b_{24} + k_{14}b_{14}$$

$$\rightarrow a_{43} = k_{34}b_{33} + k_{24}b_{23} + k_{14}b_{13}$$

$$\rightarrow a_{42} = k_{24}b_{22} + k_{14}b_{12}$$

$$\rightarrow a_{41} = k_{14}b_{11}$$

$$\rightarrow a_{34} = b_{34} + k_{23}b_{24} + k_{13}b_{14}$$

$$\rightarrow a_{33} = b_{33} + k_{23}b_{23} + k_{13}b_{13}$$

$$\rightarrow a_{32} = k_{23}b_{22} + k_{13}b_{12}$$

$$\rightarrow a_{31} = k_{13}b_{11}$$

$$\rightarrow a_{24} = b_{24} + k_{12}b_{14}$$

$$\rightarrow a_{23} = b_{23} + k_{12}b_{13}$$

- $\rightarrow a_{22} = b_{22} + k_{12}b_{12}$
- $\rightarrow a_{21} = k_{12}b_{11}$
- $\rightarrow a_{14} = b_{14}$
- $\rightarrow a_{13} = b_{13}$
- $\rightarrow a_{12} = b_{12}$
- $\rightarrow a_{11} = b_{11}$
- $\rightarrow k_{14} = -2; -1; 0; 1$
- $\rightarrow k_{24} = -1; 0; 1; 2$
- $\rightarrow k_{34} = -2; -1; 1; 2$
- $\rightarrow k_{13} = -1; 0; 1; 2$
- $\rightarrow k_{23} = -2; -1; 1; 2$
- $\rightarrow k_{12} = -3; -2; -1; 1; 2; 3$
- $\rightarrow b_{11} = -3; -2; -1; 1; 2; 3$
- $\rightarrow b_{22} = -2; -1; 1; 2$
- $\rightarrow b_{33} = -2; -1; 1; 2$
- $\rightarrow b_{44} = -1; 1$
- $\rightarrow b_{12} = -1; 0; 1; 2$
- $\rightarrow b_{13} = -2; -1; 1$
- $\rightarrow b_{14} = -2; -1; 0; 1$
- $\rightarrow b_{23} = -1; 1; 2$
- $\rightarrow b_{24} = -1; 0; 1; 2$
- $\rightarrow b_{34} = -2; -1; 1$

Нахождение координат вектора в базисе, размерность 2х2

81. В арифметическом векторном пространстве $\mathbb{R}_{1,2}$ заданы векторы $\mathbf{e_1}$, $\mathbf{e_2}$, \mathbf{x} . Показать, что $(\mathbf{e_1}, \mathbf{e_2})$ есть базис пространства $\mathbb{R}_{1,2}$ и найти координаты вектора \mathbf{x} в этом базисе, если:

```
\Rightarrow x_{1} = a_{11}y_{1} + a_{12}y_{2}
\Rightarrow x_{2} = a_{21}y_{1} + a_{22}y_{2}
\Rightarrow y_{1} = -2; -1; 1; 2; 3; 4; 5
\Rightarrow y_{2} = -3; -2; -1; 0; 1; 2; 3; 4; 5
\Rightarrow a_{11} = -3; -1; 1; 3; 5; 7
\Rightarrow a_{12} = -4; -3; -2; -1; 0; 1; 2; 3; 4; 5
\Rightarrow a_{21} = -4; -2; 2; 4; 6
\Rightarrow a_{22} = -5; -3; -1; 1; 3; 5
1) \mathbf{e_{1}} = (a_{11}, a_{21}), \mathbf{e_{2}} = (a_{12}, a_{22}), \mathbf{x} = (x_{1}, x_{2})
\sqrt{(y_{1}, y_{2})}
```

- **82.** В арифметическом векторном пространстве $\mathbb{R}_{1,3}$ заданы векторы $\mathbf{e_1}$, $\mathbf{e_2}$, $\mathbf{e_3}$, \mathbf{x} . Показать, что $(\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3})$ есть базис пространства $\mathbb{R}_{1,3}$ и найти координаты вектора \mathbf{x} в этом базисе, если:
- $\Rightarrow x_1 = a_{11}y_1 + a_{12}y_2 + a_{13}y_3$
- $\Rightarrow x_2 = a_{21}y_1 + a_{22}y_2 + a_{23}y_3$
- $\Rightarrow x_3 = a_{31}y_1 + a_{32}y_2 + a_{33}y_3$
- $\Rightarrow y_1 = -2; -1; 1; 2; 3; 4; 5$
- $\Rightarrow y_2 = -3; -2; -1; 0; 1; 2; 3; 4; 5$
- $\Rightarrow y_3 = -3; -2; -1; 1; 2; 3$
- $\Rightarrow a_{11}, a_{12}, a_{13}, a_{21}, a_{22}, a_{23}, a_{31}, a_{32}, a_{33} =$
 - b_{11} , b_{12} , b_{13} , b_{21} , b_{22} , b_{23} , b_{31} , b_{32} , b_{33} ;
 - b_{22} , b_{21} , b_{23} , b_{12} , b_{11} , b_{13} , b_{32} , b_{31} , b_{33} ;
 - b_{32} , b_{31} , b_{33} , b_{12} , b_{11} , b_{13} , b_{22} , b_{21} , b_{23}
- $\Rightarrow b_{33} = c_{33} + k_{23}c_{23} + k_{13}c_{13}$
- $\Rightarrow b_{32} = k_{23}c_{22} + k_{13}c_{12}$
- $\Rightarrow b_{31} = k_{13}c_{11}$
- $\Rightarrow b_{23} = c_{23} + k_{12}c_{13}$
- $\Rightarrow b_{22} = c_{22} + k_{12}c_{12}$
- $\Rightarrow b_{21} = k_{12}c_{11}$
- \Rightarrow $b_{13} = c_{13}$
- $\Rightarrow b_{12} = c_{12}$
- $\Rightarrow b_{11} = c_{11}$
- $\Rightarrow k_{13} = -1; 0; 1; 2$
- $\Rightarrow k_{23} = -2; -1; 1; 2$
- $\Rightarrow k_{12} = -3; -2; -1; 1; 2; 3$
- \Rightarrow $c_{11} = -3$; -2; -1; 1; 2; 3
- \Rightarrow $c_{22} = -2$; -1; 1; 2
- \Rightarrow $c_{33} = -2$; -1; 1; 2
- \Rightarrow $c_{12} = -1$; 0; 1; 2
- $\Rightarrow c_{13} = -2; -1; 1$
- \Rightarrow $c_{23} = -1$; 1; 2
- 1) $\mathbf{e_1} = (a_{11}, a_{21}, a_{31}), \ \mathbf{e_2} = (a_{12}, a_{22}, a_{32}), \ \mathbf{e_3} = (a_{13}, a_{23}, a_{33}), \ \mathbf{x} = (x_1, x_2, x_3)$
- $\sqrt{(y_1,y_2,y_3)}$

- **83.** В арифметическом векторном пространстве $\mathbb{R}_{1,4}$ заданы векторы $\mathbf{e_1}$, $\mathbf{e_2}$, $\mathbf{e_3}$, $\mathbf{e_4}$, \mathbf{x} . Показать, что $(\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}, \mathbf{e_3})$ есть базис пространства $\mathbb{R}_{1,4}$ и найти координаты вектора \mathbf{x} в этом базисе, если:
- $\Rightarrow x_1 = a_{11}y_1 + a_{12}y_2 + a_{13}y_3 + a_{14}y_4$
- $\Rightarrow x_2 = a_{21}y_1 + a_{22}y_2 + a_{23}y_3 + a_{24}y_4$
- $\Rightarrow x_3 = a_{31}y_1 + a_{32}y_2 + a_{33}y_3 + a_{34}y_4$
- $\Rightarrow x_4 = a_{41}y_1 + a_{42}y_2 + a_{43}y_3 + a_{44}y_4$
- $\Rightarrow y_1 = -2; -1; 1; 2; 3; 4; 5$
- $\Rightarrow y_2 = -3; -2; -1; 0; 1; 2; 3; 4; 5$
- $\Rightarrow y_3 = -3; -2; -1; 1; 2; 3$
- $\Rightarrow y_4 = -4; -3; -2; -1; 1; 2; 3$
- $\Rightarrow a_{11}, a_{12}, a_{13}, a_{14}, a_{21}, a_{22}, a_{23}, a_{24}, a_{31}, a_{32}, a_{33}, a_{34}, a_{41}, a_{42}, a_{43}, a_{44} =$
 - b_{11} , b_{12} , b_{13} , b_{14} , b_{21} , b_{22} , b_{23} , b_{24} , b_{31} , b_{32} , b_{33} , b_{34} , b_{41} , b_{42} , b_{43} , b_{44} ;
 - b_{32} , b_{31} , b_{34} , b_{33} , b_{12} , b_{11} , b_{14} , b_{13} , b_{22} , b_{21} , b_{24} , b_{23} , b_{42} , b_{41} , b_{44} , b_{43} ;
 - b_{43} , b_{42} , b_{41} , b_{44} , b_{13} , b_{12} , b_{11} , b_{14} , b_{33} , b_{32} , b_{31} , b_{34} , b_{23} , b_{22} , b_{21} , b_{24}
- $\Rightarrow b_{44} = c_{44} + k_{34}c_{34} + k_{24}c_{24} + k_{14}c_{14}$
- $\Rightarrow b_{43} = k_{34}c_{33} + k_{24}c_{23} + k_{14}c_{13}$
- $\Rightarrow b_{42} = k_{24}c_{22} + k_{14}c_{12}$
- $\Rightarrow b_{41} = k_{14}c_{11}$
- $\Rightarrow b_{34} = c_{34} + k_{23}c_{24} + k_{13}c_{14}$
- $\Rightarrow b_{33} = c_{33} + k_{23}c_{23} + k_{13}c_{13}$
- $\Rightarrow b_{32} = k_{23}c_{22} + k_{13}c_{12}$
- $\Rightarrow b_{31} = k_{13}c_{11}$
- $\Rightarrow b_{24} = c_{24} + k_{12}c_{14}$
- $\Rightarrow b_{23} = c_{23} + k_{12}c_{13}$
- $\Rightarrow b_{22} = c_{22} + k_{12}c_{12}$
- $\Rightarrow b_{21} = k_{12}c_{11}$
- $\Rightarrow b_{14} = c_{14}$
- $\Rightarrow b_{13} = c_{13}$
- $\Rightarrow b_{12} = c_{12}$
- $\Rightarrow b_{11} = c_{11}$
- $\Rightarrow k_{14} = -2; -1; 0; 1$
- $\Rightarrow k_{24} = -1; 0; 1; 2$
- $\Rightarrow k_{34} = -2; -1; 1; 2$

```
\Rightarrow k_{13} = -1; 0; 1; 2
\Rightarrow k_{23} = -2; -1; 1; 2
\Rightarrow k_{12} = -3; -2; -1; 1; 2; 3
\Rightarrow c_{11} = -3; -2; -1; 1; 2; 3
\Rightarrow c_{22} = -2; -1; 1; 2
\Rightarrow c_{33} = -2; -1; 1; 2
\Rightarrow c_{44} = -1; 1
\Rightarrow c_{12} = -1; 0; 1; 2
\Rightarrow c_{13} = -2; -1; 1
\Rightarrow c_{14} = -2; -1; 0; 1
\Rightarrow c_{23} = -1; 1; 2
\Rightarrow c_{24} = -1; 0; 1; 2
\Rightarrow c_{34} = -2; -1; 1
1) \mathbf{e}_{1} = (a_{11}, a_{21}, a_{31}, a_{41}), \mathbf{e}_{2} = (a_{12}, a_{22}, a_{32}, a_{42}), \mathbf{e}_{3} = (a_{13}, a_{23}, a_{33}, a_{43}), \mathbf{e}_{4} = (a_{14}, a_{24}, a_{34}, a_{44}), \mathbf{x} = \sqrt{(y_{1}, y_{2}, y_{3}, y_{4})}
```

Матрица перехода и координаты вектора в базисе, размерность 2x2

- **84.** Записать матрицу перехода от базиса $(\mathbf{e_1}, \mathbf{e_2})$ к базису $(\mathbf{e_1'}, \mathbf{e_2'})$ и найти координаты вектора \mathbf{x} в базисе $(\mathbf{e_1'}, \mathbf{e_2'})$, если:
- $\Rightarrow x_1 = a_{11}y_1 + a_{12}y_2$
- $\Rightarrow x_2 = a_{21}y_1 + a_{22}y_2$
- \Rightarrow $y_1 = -2; -1; 1; 2; 3; 4; 5$
- $\Rightarrow y_2 = -3; -2; -1; 0; 1; 2; 3; 4; 5$
- $\Rightarrow a_{11} = -3; -1; 1; 3; 5; 7$
- $\Rightarrow a_{12} = -4; -3; -2; -1; 0; 1; 2; 3; 4; 5$
- $\Rightarrow a_{21} = -4; -2; 2; 4; 6$
- $\Rightarrow a_{22} = -5; -3; -1; 1; 3; 5$
- 1) $\mathbf{e}'_{1} = a_{11}e_{1} + a_{21}e_{2}, \ \mathbf{e}'_{2} = a_{12}e_{1} + a_{22}e_{2}, \ \mathbf{x} = x_{1}e_{1} + x_{2}e_{2}$
- $\sqrt{ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}}, (y_1, y_2)$

85. Записать матрицу перехода от базиса

$$(\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}) = (1, x, x^2)$$

к базису $(\mathbf{e_1'},\mathbf{e_2'},\mathbf{e_3'})$ и найти координаты вектора \mathbf{a} в этих базисах если:

$$\Rightarrow x_1 = a_{11}y_1 + a_{12}y_2 + a_{13}y_3$$

$$\Rightarrow x_2 = a_{21}y_1 + a_{22}y_2 + a_{23}y_3$$

$$\Rightarrow x_3 = a_{31}y_1 + a_{32}y_2 + a_{33}y_3$$

$$\Rightarrow y_1 = -2; -1; 1; 2; 3; 4; 5$$

$$\Rightarrow y_2 = -3; -2; -1; 0; 1; 2; 3; 4; 5$$

$$\Rightarrow y_3 = -3; -2; -1; 1; 2; 3$$

$$\Rightarrow a_{11}, a_{12}, a_{13}, a_{21}, a_{22}, a_{23}, a_{31}, a_{32}, a_{33} =$$

•
$$b_{11}$$
, b_{12} , b_{13} , b_{21} , b_{22} , b_{23} , b_{31} , b_{32} , b_{33} ;

•
$$b_{22}$$
, b_{21} , b_{23} , b_{12} , b_{11} , b_{13} , b_{32} , b_{31} , b_{33} ;

•
$$b_{32}$$
, b_{31} , b_{33} , b_{12} , b_{11} , b_{13} , b_{22} , b_{21} , b_{23}

$$\Rightarrow b_{33} = c_{33} + k_{23}c_{23} + k_{13}c_{13}$$

$$\Rightarrow b_{32} = k_{23}c_{22} + k_{13}c_{12}$$

$$\Rightarrow b_{31} = k_{13}c_{11}$$

$$\Rightarrow b_{23} = c_{23} + k_{12}c_{13}$$

$$\Rightarrow b_{22} = c_{22} + k_{12}c_{12}$$

$$\Rightarrow b_{21} = k_{12}c_{11}$$

$$\Rightarrow b_{13} = c_{13}$$

$$\Rightarrow b_{12} = c_{12}$$

$$\Rightarrow b_{11} = c_{11}$$

$$\Rightarrow k_{13} = -1; 0; 1; 2$$

$$\Rightarrow k_{23} = -2; -1; 1; 2$$

$$\Rightarrow k_{12} = -3; -2; -1; 1; 2; 3$$

$$\Rightarrow$$
 $c_{11} = -3$; -2 ; -1 ; 1; 2; 3

$$\Rightarrow$$
 $c_{22} = -2$; -1 ; 1; 2

$$\Rightarrow$$
 $c_{33} = -2$; -1 ; 1; 2

$$\Rightarrow$$
 $c_{12} = -1$; 0; 1; 2

$$\Rightarrow c_{13} = -2; -1; 1$$

$$\Rightarrow$$
 $c_{23} = -1$; 1; 2

1)
$$\mathbf{e_1'} = a_{31}x^2 + a_{21}x + a_{11}$$
, $\mathbf{e_2'} = a_{32}x^2 + a_{22}x + a_{12}$, $\mathbf{e_3'} = a_{33}x^2 + a_{23}x + a_{13}$, $\mathbf{a} = x_3x^2 + x_2x + x_1$

$$\sqrt{\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}}, \mathbf{a} = x_1 e_1 + x_2 e_2 + x_3 e_3$$

$$\mathbf{a} = y_1 e'_1 + y_2 e'_2 + y_3 e'_3$$

86. Записать матрицу перехода от базиса

$$(e_1, e_2, e_3, e_4) = \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right)$$

к базису (e'_1, e'_2, e'_3, e'_4) и найти координаты вектора a в этих базисах если:

- $\Rightarrow x_1 = a_{11}y_1 + a_{12}y_2 + a_{13}y_3 + a_{14}y_4$
- $\Rightarrow x_2 = a_{21}y_1 + a_{22}y_2 + a_{23}y_3 + a_{24}y_4$
- $\Rightarrow x_3 = a_{31}y_1 + a_{32}y_2 + a_{33}y_3 + a_{34}y_4$
- $\Rightarrow x_4 = a_{41}y_1 + a_{42}y_2 + a_{43}y_3 + a_{44}y_4$
- $\Rightarrow y_1 = -2; -1; 1; 2; 3; 4; 5$
- $\Rightarrow y_2 = -3; -2; -1; 0; 1; 2; 3; 4; 5$
- $\Rightarrow y_3 = -3; -2; -1; 1; 2; 3$
- $\Rightarrow y_4 = -4; -3; -2; -1; 1; 2; 3$
- $\Rightarrow a_{11}, a_{12}, a_{13}, a_{14}, a_{21}, a_{22}, a_{23}, a_{24}, a_{31}, a_{32}, a_{33}, a_{34}, a_{41}, a_{42}, a_{43}, a_{44} =$
 - b_{11} , b_{12} , b_{13} , b_{14} , b_{21} , b_{22} , b_{23} , b_{24} , b_{31} , b_{32} , b_{33} , b_{34} , b_{41} , b_{42} , b_{43} , b_{44} ;
 - b_{32} , b_{31} , b_{34} , b_{33} , b_{12} , b_{11} , b_{14} , b_{13} , b_{22} , b_{21} , b_{24} , b_{23} , b_{42} , b_{41} , b_{44} , b_{43} ;
 - b_{43} , b_{42} , b_{41} , b_{44} , b_{13} , b_{12} , b_{11} , b_{14} , b_{33} , b_{32} , b_{31} , b_{34} , b_{23} , b_{22} , b_{21} , b_{24}
- $\Rightarrow b_{44} = c_{44} + k_{34}c_{34} + k_{24}c_{24} + k_{14}c_{14}$
- $\Rightarrow b_{43} = k_{34}c_{33} + k_{24}c_{23} + k_{14}c_{13}$
- $\Rightarrow b_{42} = k_{24}c_{22} + k_{14}c_{12}$
- $\Rightarrow b_{41} = k_{14}c_{11}$
- $\Rightarrow b_{34} = c_{34} + k_{23}c_{24} + k_{13}c_{14}$
- $\Rightarrow b_{33} = c_{33} + k_{23}c_{23} + k_{13}c_{13}$
- $\Rightarrow b_{32} = k_{23}c_{22} + k_{13}c_{12}$
- $\Rightarrow b_{31} = k_{13}c_{11}$
- $\Rightarrow b_{24} = c_{24} + k_{12}c_{14}$
- $\Rightarrow b_{23} = c_{23} + k_{12}c_{13}$
- $\Rightarrow b_{22} = c_{22} + k_{12}c_{12}$
- $\Rightarrow b_{21} = k_{12}c_{11}$
- $\Rightarrow b_{14} = c_{14}$
- $\Rightarrow b_{13} = c_{13}$
- $\Rightarrow b_{12} = c_{12}$
- $\Rightarrow b_{11} = c_{11}$
- $\Rightarrow k_{14} = -2; -1; 0; 1$

$$\Rightarrow k_{24} = -1; 0; 1; 2$$

$$\Rightarrow k_{34} = -2; -1; 1; 2$$

$$\Rightarrow k_{13} = -1; 0; 1; 2$$

$$\Rightarrow k_{23} = -2; -1; 1; 2$$

$$\Rightarrow k_{12} = -3; -2; -1; 1; 2; 3$$

$$\Rightarrow$$
 $c_{11} = -3; -2; -1; 1; 2; 3$

$$\Rightarrow$$
 $c_{22} = -2$; -1 ; 1; 2

$$\Rightarrow$$
 $c_{33} = -2$; -1 ; 1; 2

$$\Rightarrow c_{44} = -1; 1$$

$$\Rightarrow c_{12} = -1; 0; 1; 2$$

$$\Rightarrow$$
 $c_{13} = -2$; -1 ; 1

$$\Rightarrow c_{14} = -2; -1; 0; 1$$

$$\Rightarrow c_{23} = -1; 1; 2$$

$$\Rightarrow$$
 $c_{24} = -1; 0; 1; 2$

$$\Rightarrow c_{34} = -2; -1; 1$$

1)
$$e'_1 = \begin{pmatrix} a_{11} & a_{21} \\ a_{31} & a_{41} \end{pmatrix}$$
, $e'_2 = \begin{pmatrix} a_{12} & a_{22} \\ a_{32} & a_{42} \end{pmatrix}$, $e'_3 = \begin{pmatrix} a_{13} & a_{23} \\ a_{33} & a_{43} \end{pmatrix}$, $e'_4 = \begin{pmatrix} a_{14} & a_{24} \\ a_{34} & a_{44} \end{pmatrix}$, $a = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}$

$$\sqrt{ \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}}, \quad a = x_1 e_1 + x_2 e_2 + x_3 e_3 + x_4 e_4 , \quad a = y_1 e'_1 + y_2 e'_2 + y_3 e'_3 + y_4 e'_4$$

87. Показать что система векторов $(\mathbf{a_1}, \mathbf{a_2}, \mathbf{a_3})$ пространства $\mathbb{R}_{1,4}$ или $\mathbb{R}_{1,5}$ линейно независима, и дополнить ее до базиса всего пространства:

```
1) \mathbf{a_1} = (a_{11}, a_{13}, a_{14}, a_{12}), \ \mathbf{a_2} = (a_{31}, a_{33}, a_{34}, a_{32}), \ \mathbf{a_3} = (a_{21}, a_{23}, a_{24}, a_{22})
\mathbf{a_4} = (0, 0, 1, 0)
\rightarrow a_{14} = -4; -3; -2; -1; 1; 2; 3; 5
\rightarrow a_{24} = -4; -3; -2; -1; 1; 2; 3; 5
\rightarrow a_{34} = -4; -3; -2; -1; 1; 2; 3; 5
\rightarrow a_{33} = b_{33} + k_{23}b_{23} + k_{13}b_{13}
\rightarrow a_{32} = k_{23}b_{22} + k_{13}b_{12}
\rightarrow a_{31} = k_{13}b_{11}
\rightarrow a_{23} = b_{23} + k_{12}b_{13}
\rightarrow a_{22} = b_{22} + k_{12}b_{12}
\rightarrow a_{21} = k_{12}b_{11}
\rightarrow a_{13} = b_{13}
\rightarrow a_{12} = b_{12}
\rightarrow a_{11} = b_{11}
\rightarrow k_{13} = -1; 0; 1; 2
\rightarrow k_{23} = -2; -1; 1; 2
\rightarrow k_{12} = -3; -2; -1; 1; 2; 3
\rightarrow b_{11} = -3; -2; -1; 1; 2; 3
\rightarrow b_{22} = -2; -1; 1; 2
\rightarrow b_{33} = -2; -1; 1; 2
\rightarrow b_{12} = -1; 0; 1; 2
\rightarrow b_{13} = -2; -1; 1
\rightarrow b_{23} = -1; 1; 2
2) \mathbf{a_1} = (a_{24}, a_{21}, a_{25}, a_{22}, a_{23}), \ \mathbf{a_2} = (a_{24}, a_{31}, a_{35}, a_{32}, a_{33}), \ \mathbf{a_3} = (a_{14}, a_{11}, a_{15}, a_{12}, a_{13})
\sqrt{\mathbf{a_4}} = (1, 0, 0, 0, 0), \ \mathbf{a_5} = (0, 0, 1, 0, 0)
\rightarrow a_{14} = -4; -3; -2; -1; 1; 2; 3; 5
\rightarrow a_{15} = -4; -3; -2; -1; 1; 2; 3; 5
\rightarrow a_{24} = -4; -3; -2; -1; 1; 2; 3; 5
\rightarrow a_{25} = -4; -3; -2; -1; 1; 2; 3; 5
\rightarrow a_{34} = -4; -3; -2; -1; 1; 2; 3; 5
\rightarrow a_{35} = -4; -3; -2; -1; 1; 2; 3; 5
\rightarrow a_{33} = b_{33} + k_{23}b_{23} + k_{13}b_{13}
\rightarrow a_{32} = k_{23}b_{22} + k_{13}b_{12}
\rightarrow a_{31} = k_{13}b_{11}
```

- $\rightarrow a_{23} = b_{23} + k_{12}b_{13}$
- $\rightarrow a_{22} = b_{22} + k_{12}b_{12}$
- $\rightarrow a_{21} = k_{12}b_{11}$
- $\rightarrow a_{13} = b_{13}$
- $\rightarrow a_{12} = b_{12}$
- $\rightarrow a_{11} = b_{11}$
- $\rightarrow k_{13} = -1; 0; 1; 2$
- $\rightarrow k_{23} = -2; -1; 1; 2$
- $\rightarrow k_{12} = -3; -2; -1; 1; 2; 3$
- $\rightarrow b_{11} = -3; -2; -1; 1; 2; 3$
- $\rightarrow b_{22} = -2; -1; 1; 2$
- $\rightarrow b_{33} = -2; -1; 1; 2$
- $\rightarrow b_{12} = -1; 0; 1; 2$
- $\rightarrow b_{13} = -2; -1; 1$
- $\rightarrow b_{23} = -1; 1; 2$

 $\sqrt{2, (a_1, a_2)}$

88. Найти ранг и какой-либо базис системы векторов:

1) $\mathbf{a_1} = (a_{22}, a_{12}, a_{32}), \ \mathbf{a_2} = (a_{21}, a_{11}, a_{31}), \ \mathbf{a_3} = (a_{23}, a_{13}, a_{33})$

```
\rightarrow a_{34} = ka_{14} + la_{24}
\rightarrow a_{35} = ka_{15} + la_{25}
\rightarrow a_{11} = -3; -1; 1; 3; 5; 7
\rightarrow a_{12} = -4; -3; -2; -1; 0; 1; 2; 3; 4; 5
\rightarrow a_{21} = -4; -2; 2; 4; 6
\rightarrow a_{22} = -5; -3; -1; 1; 3; 5
\rightarrow a_{13} = -5; -3; -2; -1; 1; 2; 3
\rightarrow a_{14} = -4; -3; -2; -1; 1; 2; 3; 5
\rightarrow a_{15} = -4; -3; -2; -1; 1; 2; 3; 5
\rightarrow a_{23} = -5; -3; -2; -1; 1; 2; 3
\rightarrow a_{24} = -4; -3; -2; -1; 1; 2; 3; 5
\rightarrow a_{25} = -4; -3; -2; -1; 1; 2; 3; 5
\rightarrow k = -2; -1; 2; 3
\rightarrow l = -2; -1; 2; 3
4) \mathbf{a_1} = (a_{22}, a_{32}, a_{12}), \ \mathbf{a_2} = (a_{21}, a_{31}, a_{11}), \ \mathbf{a_3} = (a_{23}, a_{33}, a_{13})
\sqrt{3}, (a_1, a_2, a_3)
\rightarrow a_{33} = b_{33} + k_{23}b_{23} + k_{13}b_{13}
\rightarrow a_{32} = k_{23}b_{22} + k_{13}b_{12}
\rightarrow a_{31} = k_{13}b_{11}
\rightarrow a_{23} = b_{23} + k_{12}b_{13}
\rightarrow a_{22} = b_{22} + k_{12}b_{12}
\rightarrow a_{21} = k_{12}b_{11}
\rightarrow a_{13} = b_{13}
\rightarrow a_{12} = b_{12}
\rightarrow a_{11} = b_{11}
\rightarrow k_{13} = -1; 0; 1; 2
\rightarrow k_{23} = -2; -1; 1; 2
\rightarrow k_{12} = -3; -2; -1; 1; 2; 3
\rightarrow b_{11} = -3; -2; -1; 1; 2; 3
\rightarrow b_{22} = -2; -1; 1; 2
\rightarrow b_{33} = -2; -1; 1; 2
\rightarrow b_{12} = -1; 0; 1; 2
\rightarrow b_{13} = -2; -1; 1
\rightarrow b_{23} = -1; 1; 2
5) \mathbf{a_1} = (a_{11}, a_{31}, a_{21}), \ \mathbf{a_2} = (a_{13}, a_{33}, a_{23}), \ \mathbf{a_3} = (a_{14}, a_{34}, a_{24}), \ \mathbf{a_4} = (a_{12}, a_{32}, a_{22}),
\sqrt{3}, (a_1, a_2, a_4)
\rightarrow a_{14} = -4; -3; -2; -1; 1; 2; 3; 5
```

- $\rightarrow a_{24} = -4; -3; -2; -1; 1; 2; 3; 5$
- $\rightarrow a_{34} = -4; -3; -2; -1; 1; 2; 3; 5$
- $\rightarrow a_{33} = b_{33} + k_{23}b_{23} + k_{13}b_{13}$
- $\rightarrow a_{32} = k_{23}b_{22} + k_{13}b_{12}$
- $\rightarrow a_{31} = k_{13}b_{11}$
- $\rightarrow a_{23} = b_{23} + k_{12}b_{13}$
- $\rightarrow a_{22} = b_{22} + k_{12}b_{12}$
- $\rightarrow a_{21} = k_{12}b_{11}$
- $\rightarrow a_{13} = b_{13}$
- $\rightarrow a_{12} = b_{12}$
- $\rightarrow a_{11} = b_{11}$
- $\rightarrow k_{13} = -1; 0; 1; 2$
- $\rightarrow k_{23} = -2; -1; 1; 2$
- $\rightarrow k_{12} = -3; -2; -1; 1; 2; 3$
- $\rightarrow b_{11} = -3; -2; -1; 1; 2; 3$
- $\rightarrow b_{22} = -2; -1; 1; 2$
- $\rightarrow b_{33} = -2; -1; 1; 2$
- $\rightarrow b_{12} = -1; 0; 1; 2$
- $\rightarrow b_{13} = -2; -1; 1$
- $\rightarrow b_{23} = -1; 1; 2$
- 6) $\mathbf{a_1} = (a_{24}, a_{34}, a_{14}), \ \mathbf{a_2} = (a_{21}, a_{31}, a_{11}), \ \mathbf{a_3} = (a_{25}, a_{35}, a_{15}), \ \mathbf{a_4} = (a_{22}, a_{32}, a_{12}), \ \mathbf{a_5} = (a_{23}, a_{33}, a_{13})$
- $\sqrt{3, (\mathbf{a_2}, \mathbf{a_4}, \mathbf{a_5})}$
- $\rightarrow a_{14} = -4; -3; -2; -1; 1; 2; 3; 5$
- $\rightarrow a_{15} = -4; -3; -2; -1; 1; 2; 3; 5$
- $\rightarrow a_{24} = -4; -3; -2; -1; 1; 2; 3; 5$
- $\rightarrow a_{25} = -4; -3; -2; -1; 1; 2; 3; 5$
- $\rightarrow a_{34} = -4; -3; -2; -1; 1; 2; 3; 5$
- $\rightarrow a_{35} = -4; -3; -2; -1; 1; 2; 3; 5$
- $\rightarrow a_{33} = b_{33} + k_{23}b_{23} + k_{13}b_{13}$
- $\rightarrow a_{32} = k_{23}b_{22} + k_{13}b_{12}$
- $\rightarrow a_{31} = k_{13}b_{11}$
- $\rightarrow a_{23} = b_{23} + k_{12}b_{13}$
- $\rightarrow a_{22} = b_{22} + k_{12}b_{12}$
- $\rightarrow a_{21} = k_{12}b_{11}$
- $\rightarrow a_{13} = b_{13}$
- $\rightarrow a_{12} = b_{12}$
- $\rightarrow a_{11} = b_{11}$

- $\rightarrow k_{13} = -1; 0; 1; 2$
- $\rightarrow k_{23} = -2; -1; 1; 2$
- $\rightarrow k_{12} = -3; -2; -1; 1; 2; 3$
- \rightarrow $b_{11} = -3$; -2; -1; 1; 2; 3
- $\rightarrow b_{22} = -2; -1; 1; 2$
- $\rightarrow b_{33} = -2; -1; 1; 2$
- $\rightarrow b_{12} = -1; 0; 1; 2$
- $\rightarrow b_{13} = -2; -1; 1$
- $\rightarrow b_{23} = -1; 1; 2$

89. Найти ранг и какой-либо базис системы векторов:

1)
$$f_1 = a_{22}x^3 + a_{33}x^2 + a_{12}x + a_{42}, \ f_2 = a_{21}x^3 + a_{31}x^2 + a_{11}x + a_{41}, \ f_3 = a_{23}x^3 + a_{33}x^2 + a_{13}x + a_{43},$$
 $\sqrt{2, (f_1, f_2)}$
 $\rightarrow a_{31} = k_3a_{11} + l_3a_{21}$
 $\rightarrow a_{32} = k_2a_{22} + l_3a_{22}$
 $\rightarrow a_{33} = k_3a_{13} + l_3a_{23}$
 $\rightarrow a_{44} = k_4a_{11} + l_4a_{21}$
 $\rightarrow a_{12} = k_1a_{12} + l_4a_{22}$
 $\rightarrow a_{43} = k_1a_{12} + l_4a_{23}$
 $\rightarrow a_{44} = k_4a_{14} + l_4a_{24}$
 $\rightarrow a_{11} = -3; -1; 1; 3; 5; 7$
 $\rightarrow a_{12} = -4; -3; -2; -1; 0; 1; 2; 3; 4; 5$
 $\rightarrow a_{21} = -4; -3; -2; -1; 0; 1; 2; 3; 4; 5$
 $\rightarrow a_{21} = -4; -3; -2; -1; 1; 2; 3; 5$
 $\rightarrow a_{13} = -5; -3; -2; -1; 1; 2; 3; 5$
 $\rightarrow a_{13} = -5; -3; -2; -1; 1; 2; 3; 5$
 $\rightarrow a_{14} = -4; -3; -2; -1; 1; 2; 3; 5$
 $\rightarrow a_{23} = -5; -3; -2; -1; 1; 2; 3; 5$
 $\rightarrow a_{34} = -4; -3; -2; -1; 1; 2; 3; 5$
 $\rightarrow a_{34} = -4; -3; -2; -1; 1; 2; 3; 5$
 $\rightarrow a_{34} = -4; -3; -2; -1; 1; 2; 3; 5$
 $\rightarrow a_{34} = -2; -1; 2; 3$
 $\rightarrow l_4 =$

 $\rightarrow a_{45} = k_4 a_{15} + l_4 a_{25}$

 $\rightarrow a_{11} = -3; -1; 1; 3; 5; 7$

```
\rightarrow a_{12} = -4; -3; -2; -1; 0; 1; 2; 3; 4; 5
\rightarrow a_{21} = -4; -2; 2; 4; 6
\rightarrow a_{22} = -5; -3; -1; 1; 3; 5
\rightarrow a_{13} = -5; -3; -2; -1; 1; 2; 3
\rightarrow a_{14} = -4; -3; -2; -1; 1; 2; 3; 5
\rightarrow a_{15} = -4; -3; -2; -1; 1; 2; 3; 5
\rightarrow a_{23} = -5; -3; -2; -1; 1; 2; 3
\rightarrow a_{24} = -4; -3; -2; -1; 1; 2; 3; 5
\rightarrow a_{25} = -4; -3; -2; -1; 1; 2; 3; 5
\rightarrow k_3 = -2; -1; 2; 3
\rightarrow l_3 = -2; -1; 2; 3
\rightarrow k_4 = -2; -1; 2; 3
\rightarrow l_4 = -2; -1; 2; 3
3) f_1 = a_{21}x^3 + a_{41}x^2 + a_{31}x + a_{11}, f_2 = a_{23}x^3 + a_{43}x^2 + a_{33}x + a_{13}, f_3 = a_{24}x^3 + a_{44}x^2 + a_{34}x + a_{14},
\sqrt{3}, (f_1, f_2, f_4)
\rightarrow a_{41} = ka_{11} + la_{21} + ma_{31}
\rightarrow a_{42} = ka_{12} + la_{22} + ma_{32}
\rightarrow a_{43} = ka_{13} + la_{23} + ma_{33}
\rightarrow a_{44} = ka_{14} + la_{24} + ma_{34}
\rightarrow k = -2; -1; 2; 3
\rightarrow l = -2; -1; 2; 3
\rightarrow m = -2; -1; 2; 3
\rightarrow a_{14} = -4; -3; -2; -1; 1; 2; 3; 5
\rightarrow a_{24} = -4; -3; -2; -1; 1; 2; 3; 5
\rightarrow a_{34} = -4; -3; -2; -1; 1; 2; 3; 5
\rightarrow a_{33} = b_{33} + k_{23}b_{23} + k_{13}b_{13}
\rightarrow a_{32} = k_{23}b_{22} + k_{13}b_{12}
\rightarrow a_{31} = k_{13}b_{11}
\rightarrow a_{23} = b_{23} + k_{12}b_{13}
\rightarrow a_{22} = b_{22} + k_{12}b_{12}
\rightarrow a_{21} = k_{12}b_{11}
\rightarrow a_{13} = b_{13}
\rightarrow a_{12} = b_{12}
\rightarrow a_{11} = b_{11}
\rightarrow k_{13} = -1; 0; 1; 2
\rightarrow k_{23} = -2; -1; 1; 2
```

 $\rightarrow k_{12} = -3; -2; -1; 1; 2; 3$

$$\rightarrow l = -2; -1; 2; 3$$

$$\rightarrow m = -2; -1; 2; 3$$

$$\rightarrow a_{14} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{15} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{24} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{25} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{34} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{35} = -4; -3; -2; -1; 1; 2; 3; 5$$

$$\rightarrow a_{33} = b_{33} + k_{23}b_{23} + k_{13}b_{13}$$

$$\rightarrow a_{32} = k_{23}b_{22} + k_{13}b_{12}$$

$$\rightarrow a_{31} = k_{13}b_{11}$$

$$\rightarrow a_{23} = b_{23} + k_{12}b_{13}$$

$$\rightarrow a_{22} = b_{22} + k_{12}b_{12}$$

$$\rightarrow a_{21} = k_{12}b_{11}$$

$$\rightarrow a_{13} = b_{13}$$

$$\rightarrow a_{12} = b_{12}$$

$$\rightarrow a_{11} = b_{11}$$

$$\rightarrow k_{13} = -1; 0; 1; 2$$

$$\rightarrow k_{23} = -2; -1; 1; 2$$

$$\rightarrow k_{12} = -3; -2; -1; 1; 2; 3$$

$$\rightarrow b_{11} = -3; -2; -1; 1; 2; 3$$

$$\rightarrow b_{22} = -2; -1; 1; 2$$

$$\rightarrow b_{33} = -2; -1; 1; 2$$

- $\rightarrow b_{12} = -1; 0; 1; 2$
- $\rightarrow b_{13} = -2; -1; 1$
- $\rightarrow b_{23} = -1; 1; 2$
- 5) $f_1 = a_{42}x^3 + a_{22}x^2 + a_{12}x + a_{32}$, $f_2 = a_{43}x^3 + a_{23}x^2 + a_{13}x + a_{33}$, $f_3 = a_{41}x^3 + a_{21}x^2 + a_{11}x + a_{31}$,
- $\sqrt{4,(f_1,f_2,f_3,f_4)}$
- $\rightarrow a_{44} = b_{44} + k_{34}b_{34} + k_{24}b_{24} + k_{14}b_{14}$
- $\rightarrow a_{43} = k_{34}b_{33} + k_{24}b_{23} + k_{14}b_{13}$
- $\rightarrow a_{42} = k_{24}b_{22} + k_{14}b_{12}$
- $\rightarrow a_{41} = k_{14}b_{11}$
- $\rightarrow a_{34} = b_{34} + k_{23}b_{24} + k_{13}b_{14}$
- $\rightarrow a_{33} = b_{33} + k_{23}b_{23} + k_{13}b_{13}$
- $\rightarrow a_{32} = k_{23}b_{22} + k_{13}b_{12}$
- $\rightarrow a_{31} = k_{13}b_{11}$
- $\rightarrow a_{24} = b_{24} + k_{12}b_{14}$
- $\rightarrow a_{23} = b_{23} + k_{12}b_{13}$
- $\rightarrow a_{22} = b_{22} + k_{12}b_{12}$
- $\rightarrow a_{21} = k_{12}b_{11}$
- $\rightarrow a_{14} = b_{14}$
- $\rightarrow a_{13} = b_{13}$
- $\rightarrow a_{12} = b_{12}$
- $\rightarrow a_{11} = b_{11}$
- $\rightarrow k_{14} = -2; -1; 0; 1$
- $\rightarrow k_{24} = -1; 0; 1; 2$
- $\rightarrow k_{34} = -2; -1; 1; 2$
- $\rightarrow k_{13} = -1; 0; 1; 2$
- $\rightarrow k_{23} = -2; -1; 1; 2$
- $\rightarrow k_{12} = -3; -2; -1; 1; 2; 3$
- $\rightarrow b_{11} = -3; -2; -1; 1; 2; 3$
- $\rightarrow b_{22} = -2; -1; 1; 2$
- $\rightarrow b_{33} = -2; -1; 1; 2$
- $\rightarrow b_{44} = -1; 1$
- $\rightarrow b_{12} = -1; 0; 1; 2$
- $\rightarrow b_{13} = -2; -1; 1$
- $\rightarrow b_{14} = -2; -1; 0; 1$
- $\rightarrow b_{23} = -1; 1; 2$
- $\rightarrow b_{24} = -1; 0; 1; 2$
- $\rightarrow b_{34} = -2; -1; 1$

- 6) $f_1 = a_{31}x^3 + a_{21}x^2 + a_{41}x + a_{11}$, $f_2 = a_{33}x^3 + a_{23}x^2 + a_{43}x + a_{13}$, $f_3 = a_{34}x^3 + a_{24}x^2 + a_{44}x + a_{14}$,
- $\sqrt{4,(f_1,f_2,f_3,f_5)}$
- $\rightarrow a_{15} = -4; -3; -2; -1; 1; 2; 3; 5$
- $\rightarrow a_{25} = -4; -3; -2; -1; 1; 2; 3; 5$
- $\rightarrow a_{35} = -4; -3; -2; -1; 1; 2; 3; 5$
- $\rightarrow a_{45} = -4; -3; -2; -1; 1; 2; 3; 5$
- $\rightarrow a_{44} = b_{44} + k_{34}b_{34} + k_{24}b_{24} + k_{14}b_{14}$
- $\rightarrow a_{43} = k_{34}b_{33} + k_{24}b_{23} + k_{14}b_{13}$
- $\rightarrow a_{42} = k_{24}b_{22} + k_{14}b_{12}$
- $\rightarrow a_{41} = k_{14}b_{11}$
- $\rightarrow a_{34} = b_{34} + k_{23}b_{24} + k_{13}b_{14}$
- $\rightarrow a_{33} = b_{33} + k_{23}b_{23} + k_{13}b_{13}$
- $\rightarrow a_{32} = k_{23}b_{22} + k_{13}b_{12}$
- $\rightarrow a_{31} = k_{13}b_{11}$
- $\rightarrow a_{24} = b_{24} + k_{12}b_{14}$
- $\rightarrow a_{23} = b_{23} + k_{12}b_{13}$
- $\rightarrow a_{22} = b_{22} + k_{12}b_{12}$
- $\rightarrow a_{21} = k_{12}b_{11}$
- $\rightarrow a_{14} = b_{14}$
- $\rightarrow a_{13} = b_{13}$
- $\rightarrow a_{12} = b_{12}$
- $\rightarrow a_{11} = b_{11}$
- $\rightarrow k_{14} = -2; -1; 0; 1$
- $\rightarrow k_{24} = -1; 0; 1; 2$
- $\rightarrow k_{34} = -2; -1; 1; 2$
- $\rightarrow k_{13} = -1; 0; 1; 2$
- $\rightarrow k_{23} = -2; -1; 1; 2$
- $\rightarrow k_{12} = -3; -2; -1; 1; 2; 3$
- $\rightarrow b_{11} = -3; -2; -1; 1; 2; 3$
- $\rightarrow b_{22} = -2; -1; 1; 2$
- $\rightarrow b_{33} = -2; -1; 1; 2$
- $\rightarrow b_{44} = -1; 1$
- $\rightarrow b_{12} = -1; 0; 1; 2$
- $\rightarrow b_{13} = -2; -1; 1$
- $\rightarrow b_{14} = -2; -1; 0; 1$
- $\rightarrow b_{23} = -1; 1; 2$
- $\rightarrow b_{24} = -1; 0; 1; 2$

$$\rightarrow b_{34} = -2; -1; 1$$

90. Найти базис ядра и базис образа линейного оператора, заданного матрицей A:

1)
$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\sqrt{}$$
 базис ядра: $\left(\begin{bmatrix} z_{11} \\ z_{12} \\ 1 \end{bmatrix}\right)$, базис образа: $\left(\begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix}, \begin{bmatrix} a_{12} \\ a_{22} \\ a_{32} \end{bmatrix}\right)$

$$\rightarrow a_{31} = ka_{11} + la_{21}$$

$$\rightarrow a_{32} = ka_{12} + la_{22}$$

$$\rightarrow a_{33} = ka_{13} + la_{23}$$

$$\rightarrow k = -2; -1; 2; 3$$

$$\rightarrow l = -2; -1; 2; 3$$

$$\rightarrow a_{13} = -a_{11}z_{11} - a_{12}z_{12}$$

$$\rightarrow a_{23} = -a_{21}z_{11} - a_{22}z_{12}$$

$$\rightarrow z_{11} = -2; -1; 1; 2; 3$$

$$\rightarrow z_{12} = -2; -1; 1; 2; 3$$

$$\rightarrow a_{11} = -3; -1; 1; 3; 5; 7$$

$$\rightarrow a_{12} = -4; -3; -2; -1; 0; 1; 2; 3; 4; 5$$

$$\rightarrow a_{21} = -4; -2; 2; 4; 6$$

$$\rightarrow a_{22} = -5; -3; -1; 1; 3; 5$$

$$\sqrt{}$$
 базис ядра: $\left(\begin{bmatrix} -l \\ k \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ m \\ -l \end{bmatrix}\right)$, базис образа: $\left(\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}\right)$

$$\rightarrow a_{11} = kb_1$$

$$\rightarrow a_{21} = kb_2$$

$$\rightarrow a_{31} = kb_3$$

$$\rightarrow a_{12} = lb_1$$

$$\rightarrow a_{22} = lb_2$$

$$\rightarrow a_{32} = lb_3$$

$$\rightarrow a_{13} = mb_1$$

$$\rightarrow a_{23} = mb_2$$

$$\rightarrow a_{33} = mb_3$$

$$\rightarrow k = -4; -2; 2; 4$$

$$\rightarrow l = -9; -3; 3; 9$$

$$\rightarrow m = -7; -5; 5; 7$$

- $\rightarrow b_1 = -2; -1; 4$
- $\rightarrow b_2 = -3; 1; 3$
- $\rightarrow b_3 = -5; 2; 3$

- **91.** Дана матрица A линейного оператора φ векторного пространства U_n в базисе (e_1, e_2, \ldots, e_n) . Найти матрицу этого оператора в базисе $(e'_1, e'_2, \ldots, e'_n)$:
 - $\Rightarrow c_{11} = Ab_{11} + Bb_{21}$
 - $\Rightarrow c_{12} = Ab_{12} + Bb_{22}$
- $\Rightarrow c_{21} = Cb_{11} + Db_{21}$
- $\Rightarrow c_{22} = Cb_{12} + Db_{22}$
- $\Rightarrow b_{11} = a_{11}a + a_{12}c$
- $\Rightarrow b_{12} = a_{11}b + a_{12}d$
- $\Rightarrow b_{21} = a_{21}a + a_{22}c$
- $\Rightarrow b_{22} = a_{21}b + a_{22}d$
- $\Rightarrow a_{11} = -2; -1; 1; 2$
- $\Rightarrow a_{12} = -3; -1; 1; 3$
- $\Rightarrow a_{21} = -2; -1; 1; 2$
- $\Rightarrow a_{22} = 3; -2; -1; 1; 2; 3$
- $\Rightarrow A = \frac{d}{\Delta}$
- $\Rightarrow B = -\frac{b}{\Delta}$
- $\Rightarrow C = -\frac{c}{\Lambda}$
- $\Rightarrow D = \frac{a}{\Lambda}$
- $\Rightarrow a = d(bc + \Delta)$
- $\Rightarrow \Delta = -1$; 1
- \Rightarrow d = -1; 1
- $\Rightarrow b = -3; -2; 2; 3$
- $\Rightarrow c = -2; -1; 1; 2$
- 1) $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \quad e'_1 = ae_1 + ce_2 \\ e'_2 = be_1 + de_2$
- $\sqrt{ \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}}$
- 2) $A = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$, $e_1 = ae'_1 + ce'_2$ $e_2 = be'_1 + de'_2$
- $\sqrt{\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}}$

- **92.** Дана матрица A линейного оператора φ векторного пространства U_n в базисе (e_1, e_2, \ldots, e_n) . Найти матрицу этого оператора в базисе $(e'_1, e'_2, \ldots, e'_n)$:
- $\Rightarrow c_{11} = S_{11}b_{11} + S_{12}b_{21} + S_{13}b_{31}$
- $\Rightarrow c_{12} = S_{11}b_{12} + S_{12}b_{22} + S_{13}b_{32}$
- $\Rightarrow c_{13} = S_{11}b_{13} + S_{12}b_{23} + S_{13}b_{33}$
- $\Rightarrow c_{21} = S_{21}b_{11} + S_{22}b_{21} + S_{23}b_{31}$
- $\Rightarrow c_{22} = S_{21}b_{12} + S_{22}b_{22} + S_{23}b_{32}$
- $\Rightarrow c_{23} = S_{21}b_{13} + S_{22}b_{23} + S_{23}b_{33}$
- $\Rightarrow c_{31} = S_{31}b_{11} + S_{32}b_{21} + S_{33}b_{31}$
- $\Rightarrow c_{32} = S_{31}b_{12} + S_{32}b_{22} + S_{33}b_{32}$
- $\Rightarrow c_{33} = S_{31}b_{13} + S_{32}b_{23} + S_{33}b_{33}$
- $\Rightarrow b_{11} = a_{11}s_{11} + a_{12}s_{21} + a_{13}s_{31}$
- $\Rightarrow b_{12} = a_{11}s_{12} + a_{12}s_{22} + a_{13}s_{32}$
- $\Rightarrow b_{13} = a_{11}s_{13} + a_{12}s_{23} + a_{13}s_{33}$
- $\Rightarrow b_{21} = a_{21}s_{11} + a_{22}s_{21} + a_{23}s_{31}$
- $\Rightarrow b_{22} = a_{21}s_{12} + a_{22}s_{22} + a_{23}s_{32}$
- $\Rightarrow b_{23} = a_{21}s_{13} + a_{22}s_{23} + a_{23}s_{33}$
- $\Rightarrow b_{31} = a_{31}s_{11} + a_{32}s_{21} + a_{33}s_{31}$
- $\Rightarrow b_{32} = a_{31}s_{12} + a_{32}s_{22} + a_{33}s_{32}$
- $\Rightarrow b_{33} = a_{31}s_{13} + a_{32}s_{23} + a_{33}s_{33}$
- $\Rightarrow a_{11} = -2; -1; 1; 2$
- $\Rightarrow a_{12} = -3; -1; 1; 3$
- $\Rightarrow a_{13} = -3; -1; 1; 3$
- $\Rightarrow a_{21} = -2; -1; 1; 2$
- $\Rightarrow a_{22} = 3; -2; -1; 1; 2; 3$
- $\Rightarrow a_{23} = -2; -1; 1; 2$
- $\Rightarrow a_{31} = -2; -1; 1; 2$
- $\Rightarrow a_{32} = -2; -1; 1; 2$
- $\Rightarrow a_{33} = -3; -1; 1; 3$
- \Rightarrow $S_{11} = R_{11} k_{31}S_{13} k_{21}S_{12}$
- \Rightarrow $S_{21} = -k_{31}S_{23} k_{21}S_{22}$
- $\Rightarrow S_{31} = -k_{31}S_{33} k_{21}S_{32}$
- $\Rightarrow S_{12} = R_{12} k_{32}S_{13}$
- \Rightarrow $S_{22} = R_{22} k_{32}S_{23}$
- $\Rightarrow S_{32} = -k_{32}S_{33}$
- $\Rightarrow S_{13} = R_{13}$
- \Rightarrow $S_{23} = R_{23}$

$$\Rightarrow$$
 $S_{33} = R_{33}$

$$\Rightarrow R_{13} = -k_{13}R_{11}$$

$$\Rightarrow R_{23} = -k_{23}R_{22}$$

$$\Rightarrow R_{12} = -k_{12}R_{11}$$

$$\Rightarrow R_{11} = \frac{1}{r_{11}}$$

$$\Rightarrow R_{22} = \frac{1}{r_{22}}$$

$$\Rightarrow R_{33} = \frac{1}{r_{33}}$$

$$\Rightarrow s_{33} = r_{33} + k_{32}r_{23} + k_{31}r_{13}$$

$$\Rightarrow s_{32} = k_{32}r_{22} + k_{31}r_{12}$$

$$\Rightarrow s_{31} = k_{31}r_{11}$$

$$\Rightarrow$$
 $s_{23} = r_{23} + k_{21}r_{13}$

$$\Rightarrow$$
 $s_{22} = r_{22} + k_{21}r_{12}$

$$\Rightarrow s_{21} = k_{21}r_{11}$$

$$\Rightarrow s_{11} = r_{11}$$

$$\Rightarrow s_{12} = r_{12}$$

$$\Rightarrow s_{13} = r_{13}$$

$$\Rightarrow r_{13} = k_{13}r_{33} + k_{12}r_{23}$$

$$\Rightarrow r_{12} = k_{12}r_{22}$$

$$\Rightarrow r_{23} = k_{23}r_{33}$$

$$\Rightarrow r_{11} = -1; 1$$

$$\Rightarrow r_{22} = -1; 1$$

$$\Rightarrow r_{33} = -1; 1$$

$$\Rightarrow k_{12} = -1; 1$$

$$\Rightarrow k_{13} = -2; -1; 0; 1; 2$$

$$\Rightarrow k_{23} = -2; -1; 1; 2$$

$$\Rightarrow k_{31} = -2; -1; 0; 1; 2$$

$$\Rightarrow k_{32} = -1; 1$$

$$\Rightarrow k_{21} = -1; 1$$

1)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
, $e'_1 = s_{11}e_1 + s_{21}e_2 + s_{31}e_3$
, $e'_2 = s_{12}e_1 + s_{22}e_2 + s_{32}e_3$
 $e'_3 = s_{13}e_1 + s_{23}e_2 + s_{33}e_3$

$$\sqrt{\begin{array}{cccc}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
c_{31} & c_{32} & c_{33}
\end{array}}$$

2)
$$A = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix}$$
, $e_{1} = s_{11}e'_{1} + s_{21}e'_{2} + s_{31}e'_{3}$
, $e_{2} = s_{12}e'_{1} + s_{22}e'_{2} + s_{32}e'_{3}$
, $e_{3} = s_{13}e'_{1} + s_{23}e'_{2} + s_{33}e'_{3}$
$$\sqrt{\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}}$$

- **93.** Дана матрица A линейного оператора φ векторного пространства U_n в базисе (e_1, e_2, \ldots, e_n) . Найти матрицу этого оператора в базисе $(e'_1, e'_2, \ldots, e'_n)$:
- $\Rightarrow c_{11} = S_{11}b_{11} + S_{12}b_{21} + S_{13}b_{31} + S_{14}b_{41}$
- $\Rightarrow c_{12} = S_{11}b_{12} + S_{12}b_{22} + S_{13}b_{32} + S_{14}b_{42}$
- $\Rightarrow c_{13} = S_{11}b_{13} + S_{12}b_{23} + S_{13}b_{33} + S_{14}b_{43}$
- $\Rightarrow c_{14} = S_{11}b_{14} + S_{12}b_{24} + S_{13}b_{34} + S_{14}b_{44}$
- $\Rightarrow c_{21} = S_{21}b_{11} + S_{22}b_{21} + S_{23}b_{31} + S_{24}b_{41}$
- $\Rightarrow c_{22} = S_{21}b_{12} + S_{22}b_{22} + S_{23}b_{32} + S_{24}b_{42}$
- $\Rightarrow c_{23} = S_{21}b_{13} + S_{22}b_{23} + S_{23}b_{33} + S_{24}b_{43}$
- $\Rightarrow c_{24} = S_{21}b_{14} + S_{22}b_{24} + S_{23}b_{34} + S_{24}b_{44}$
- $\Rightarrow c_{31} = S_{31}b_{11} + S_{32}b_{21} + S_{33}b_{31} + S_{34}b_{41}$
- $\Rightarrow c_{32} = S_{31}b_{12} + S_{32}b_{22} + S_{33}b_{32} + S_{34}b_{42}$
- $\Rightarrow c_{33} = S_{31}b_{13} + S_{32}b_{23} + S_{33}b_{33} + S_{34}b_{43}$
- $\Rightarrow c_{34} = S_{31}b_{14} + S_{32}b_{24} + S_{33}b_{34} + S_{34}b_{44}$
- $\Rightarrow c_{41} = S_{41}b_{11} + S_{42}b_{21} + S_{43}b_{31} + S_{44}b_{41}$
- $\Rightarrow c_{42} = S_{41}b_{12} + S_{42}b_{22} + S_{43}b_{32} + S_{44}b_{42}$
- $\Rightarrow c_{43} = S_{41}b_{13} + S_{42}b_{23} + S_{43}b_{33} + S_{44}b_{43}$
- $\Rightarrow c_{44} = S_{41}b_{14} + S_{42}b_{24} + S_{43}b_{34} + S_{44}b_{44}$
- $\Rightarrow b_{11} = a_{11}s_{11} + a_{12}s_{21} + a_{13}s_{31} + a_{14}s_{41}$
- $\Rightarrow b_{12} = a_{11}s_{12} + a_{12}s_{22} + a_{13}s_{32} + a_{14}s_{42}$
- $\Rightarrow b_{13} = a_{11}s_{13} + a_{12}s_{23} + a_{13}s_{33} + a_{14}s_{43}$
- $\Rightarrow b_{14} = a_{11}s_{14} + a_{12}s_{24} + a_{13}s_{34} + a_{14}s_{44}$
- $\Rightarrow b_{21} = a_{21}s_{11} + a_{22}s_{21} + a_{23}s_{31} + a_{24}s_{41}$
- $\Rightarrow b_{22} = a_{21}s_{12} + a_{22}s_{22} + a_{23}s_{32} + a_{24}s_{42}$
- $\Rightarrow b_{23} = a_{21}s_{13} + a_{22}s_{23} + a_{23}s_{33} + a_{24}s_{43}$
- $\Rightarrow b_{24} = a_{21}s_{14} + a_{22}s_{24} + a_{23}s_{34} + a_{24}s_{44}$
- $\Rightarrow b_{31} = a_{31}s_{11} + a_{32}s_{21} + a_{33}s_{31} + a_{34}s_{41}$
- $\Rightarrow b_{32} = a_{31}s_{12} + a_{32}s_{22} + a_{33}s_{32} + a_{34}s_{42}$
- $\Rightarrow b_{33} = a_{31}s_{13} + a_{32}s_{23} + a_{33}s_{33} + a_{34}s_{43}$
- $\Rightarrow b_{34} = a_{31}s_{14} + a_{32}s_{24} + a_{33}s_{34} + a_{34}s_{44}$
- $\Rightarrow b_{41} = a_{41}s_{11} + a_{42}s_{21} + a_{43}s_{31} + a_{44}s_{41}$
- $\Rightarrow b_{42} = a_{41}s_{12} + a_{42}s_{22} + a_{43}s_{32} + a_{44}s_{42}$
- $\Rightarrow b_{43} = a_{41}s_{13} + a_{42}s_{23} + a_{43}s_{33} + a_{44}s_{43}$
- $\Rightarrow b_{44} = a_{41}s_{14} + a_{42}s_{24} + a_{43}s_{34} + a_{44}s_{44}$
- $\Rightarrow a_{11} = 1; 2$
- $\Rightarrow a_{12} = -1; 3$
- $\Rightarrow a_{13} = -1; 1$

- $\Rightarrow a_{14} = -2; -1; 1$
- $\Rightarrow a_{21} = -2; -1; 1; 2$
- $\Rightarrow a_{22} = -5; -1; 0; 1$
- $\Rightarrow a_{23} = -1; 1; 2$
- $\Rightarrow a_{24} = -2; -1; 1$
- $\Rightarrow a_{31} = -3; -1; 1$
- $\Rightarrow a_{32} = -1; 1; 3$
- $\Rightarrow a_{33} = -3; -1; 1$
- $\Rightarrow a_{34} = -1; 1; 0; 5$
- $\Rightarrow a_{31} = -3; -1; 1$
- $\Rightarrow a_{32} = -2; 2$
- $\Rightarrow a_{33} = -4; -2; 0; 1$
- $\Rightarrow a_{34} = -1; 2; 4$
- $\Rightarrow a_{41} = -4; -1; 0; 2$
- $\Rightarrow a_{42} = -1; 1$
- $\Rightarrow a_{43} = -3; -2; 0; 1$
- $\Rightarrow a_{44} = -1; 2$
- $\Rightarrow S_{11} = -k_{41}S_{14} k_{31}S_{13} k_{21}S_{12} + R_{11}$
- $\Rightarrow S_{21} = -k_{41}S_{24} k_{31}S_{23} k_{21}S_{22}$
- $\Rightarrow S_{31} = -k_{41}S_{34} k_{31}S_{33} k_{21}S_{32}$
- $\Rightarrow S_{41} = -k_{41}S_{44} k_{31}S_{43} k_{21}S_{42}$
- \Rightarrow $S_{12} = -k_{42}S_{14} k_{32}S_{13} + R_{12}$
- $\Rightarrow S_{22} = -k_{42}S_{24} k_{32}S_{23} + R_{22}$
- $\Rightarrow S_{32} = -k_{42}S_{34} k_{32}S_{33}$
- $\Rightarrow S_{42} = -k_{42}S_{44} k_{32}S_{43}$
- $\Rightarrow S_{13} = -k_{43}S_{14} + R_{13}$
- $\Rightarrow S_{23} = -k_{43}S_{24} + R_{23}$
- $\Rightarrow S_{33} = -k_{43}S_{34} + R_{33}$
- $\Rightarrow S_{43} = -k_{43}S_{44}$
- $\Rightarrow S_{14} = R_{14}$
- $\Rightarrow S_{24} = R_{24}$
- $\Rightarrow S_{34} = R_{34}$
- $\Rightarrow S_{44} = R_{44}$
- $\Rightarrow R_{14} = -k_{14}R_{11}$
- $\Rightarrow R_{24} = -k_{24}R_{22}$
- $\Rightarrow R_{34} = -k_{34}R_{33}$
- $\Rightarrow R_{13} = -k_{13}R_{11}$
- $\Rightarrow R_{23} = -k_{23}R_{22}$

$$\Rightarrow R_{12} = -k_{12}R_{11}$$

$$\Rightarrow R_{11} = \frac{1}{r_{11}}$$

$$\Rightarrow R_{22} = \frac{1}{r_{22}}$$

$$\Rightarrow R_{33} = \frac{1}{r_{33}}$$

$$\Rightarrow R_{44} = \frac{1}{r_{44}}$$

$$\Rightarrow$$
 $s_{44} = k_{41}r_{14} + k_{42}r_{24} + k_{43}r_{34} + r_{44}$

$$\Rightarrow$$
 $s_{43} = k_{41}r_{13} + k_{42}r_{23} + k_{43}r_{33}$

$$\Rightarrow s_{42} = k_{41}r_{12} + k_{42}r_{22}$$

$$\Rightarrow s_{41} = k_{41}r_{11}$$

$$\Rightarrow$$
 $s_{34} = k_{31}r_{14} + k_{32}r_{24} + r_{34}$

$$\Rightarrow$$
 $s_{33} = k_{31}r_{13} + k_{32}r_{23} + r_{33}$

$$\Rightarrow s_{32} = k_{31}r_{12} + k_{32}r_{22}$$

$$\Rightarrow s_{31} = k_{31}r_{11}$$

$$\Rightarrow s_{24} = k_{21}r_{14} + r_{24}$$

$$\Rightarrow s_{23} = k_{21}r_{13} + r_{23}$$

$$\Rightarrow s_{22} = k_{21}r_{12} + r_{22}$$

$$\Rightarrow s_{21} = k_{21}r_{11}$$

$$\Rightarrow s_{11} = r_{11}$$

$$\Rightarrow s_{12} = r_{12}$$

$$\Rightarrow s_{13} = r_{13}$$

$$\Rightarrow s_{14} = r_{14}$$

$$\Rightarrow r_{14} = k_{12}r_{24} + k_{13}r_{34} + k_{14}r_{44}$$

$$\Rightarrow r_{13} = k_{12}r_{23} + k_{13}r_{33}$$

$$\Rightarrow r_{12} = k_{12}r_{22}$$

$$\Rightarrow r_{24} = k_{23}r_{34} + k_{24}r_{44}$$

$$\Rightarrow$$
 $r_{23} = k_{23}r_{33}$

$$\Rightarrow r_{34} = k_{34}r_{44}$$

$$\Rightarrow r_{11} = -1; 1$$

$$\Rightarrow r_{22} = -1; 1$$

$$\Rightarrow r_{33} = -1; 1$$

$$\Rightarrow r_{44} = -1; 1$$

$$\Rightarrow k_{12} = -1; 1$$

$$\Rightarrow k_{13} = -1; 1$$

$$\Rightarrow k_{14} = -1; 0; 1; 2$$

$$\Rightarrow k_{23} = -1; 1$$

$$\Rightarrow k_{24} = -1; 1$$

$$\Rightarrow k_{34} = -1; 1$$

$$\Rightarrow k_{21} = -1; 1$$

$$\Rightarrow k_{31} = -1; 1$$

$$\Rightarrow k_{41} = -2; -1; 0; 1$$

$$\Rightarrow k_{32} = -1; 1$$

$$\Rightarrow k_{42} = -1; 1$$

$$\Rightarrow k_{43} = -1; 1$$

1)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$
, $e'_1 = s_{11}e_1 + s_{21}e_2 + s_{31}e_3 + s_{41}e_4 \\ e'_2 = s_{12}e_1 + s_{22}e_2 + s_{32}e_3 + s_{42}e_4 \\ e'_3 = s_{13}e_1 + s_{23}e_2 + s_{33}e_3 + s_{43}e_4 \\ e'_4 = s_{14}e_1 + s_{24}e_2 + s_{34}e_3 + s_{44}e_4$

2)
$$A = \begin{pmatrix} c_{11} & c_{12} & c_{13} & c_{14} \\ c_{21} & c_{22} & c_{23} & c_{24} \\ c_{31} & c_{32} & c_{33} & c_{34} \\ c_{41} & c_{42} & c_{43} & c_{44} \end{pmatrix}, \quad \begin{aligned} e_1 &= s_{11}e'_1 + s_{21}e'_2 + s_{31}e'_3 + s_{41}e'_4 \\ e_2 &= s_{12}e'_1 + s_{22}e'_2 + s_{32}e'_3 + s_{42}e'_4 \\ e_3 &= s_{13}e'_1 + s_{23}e'_2 + s_{33}e'_3 + s_{43}e'_4 \\ e_4 &= s_{14}e'_1 + s_{24}e'_2 + s_{34}e'_3 + s_{44}e'_4 \end{aligned}$$

$$\checkmark \begin{pmatrix}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{pmatrix}$$

- **94.** Найти матрицу S, трансформирующую матрицу A к диагональному виду D, и найти этот вид:
- $\Rightarrow a_{11} = ab_{11} + bb_{21}$
- $\Rightarrow a_{12} = ab_{12} + bb_{22}$
- $\Rightarrow a_{21} = cb_{11} + db_{21}$
- $\Rightarrow a_{22} = cb_{12} + db_{22}$
- $\Rightarrow b_{11} = d_{11}A + d_{12}C$
- $\Rightarrow b_{12} = d_{11}B + d_{12}D$
- $\Rightarrow b_{21} = d_{21}A + d_{22}C$
- $\Rightarrow b_{22} = d_{21}B + d_{22}D$

$$\Rightarrow d_{11}, d_{22} =$$

- -5, -3;
- -5, -2;
- -5, -1;
- -5, 1;
- -5, 2;
- -5, 3;
- -5, 5;
- -3, -2;
- -3, -1;
- -3, 0;
- -3, 1;
- -3, 2;
- -3, 3;
- -3, 5;
- -2, -1;
- -2, 1;
- -2, 2;
- -2, 3;
- -2, 4;
- -2, 5;
- -1, 0;
- -1, 1;
- -1, 2;
- -1, 3;
- -1, 4;
- -1, 5;
- 0, 3;
- 0, 5;
- 1, 2;
- 1, 3;
- 1, 4;
- 1, 5;
- 2, 3;
- 2, 4;
- 2, 5;
- 3, 5
- \Rightarrow $d_{12} = 0$

$$\Rightarrow$$
 $d_{21} = 0$

$$\Rightarrow A = \frac{d}{\Delta}$$

$$\Rightarrow B = -\frac{b}{\Delta}$$

$$\Rightarrow C = -\frac{c}{\Delta}$$

$$\Rightarrow D = \frac{a}{\Delta}$$

$$\Rightarrow a = d(bc + \Delta)$$

$$\Rightarrow \Delta = -1; 1$$

$$\Rightarrow$$
 $d = -1; 1$

$$\Rightarrow b = -3; -2; 2; 3$$

$$\Rightarrow$$
 $c = -2; -1; 1; 2$

1)
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

$$\sqrt{S} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad D = \begin{pmatrix} d_{11} & 0 \\ 0 & d_{22} \end{pmatrix}$$

- **95.** Найти матрицу S, трансформирующую матрицу A к диагональному виду D, и найти этот вид:
- $\Rightarrow a_{11} = s_{11}b_{11} + s_{12}b_{21} + s_{13}b_{31}$
- $\Rightarrow a_{12} = s_{11}b_{12} + s_{12}b_{22} + s_{13}b_{32}$
- $\Rightarrow a_{13} = s_{11}b_{13} + s_{12}b_{23} + s_{13}b_{33}$
- $\Rightarrow a_{21} = s_{21}b_{11} + s_{22}b_{21} + s_{23}b_{31}$
- $\Rightarrow a_{22} = s_{21}b_{12} + s_{22}b_{22} + s_{23}b_{32}$
- $\Rightarrow a_{23} = s_{21}b_{13} + s_{22}b_{23} + s_{23}b_{33}$
- $\Rightarrow a_{31} = s_{31}b_{11} + s_{32}b_{21} + s_{33}b_{31}$
- $\Rightarrow a_{32} = s_{31}b_{12} + s_{32}b_{22} + s_{33}b_{32}$
- $\Rightarrow a_{33} = s_{31}b_{13} + s_{32}b_{23} + s_{33}b_{33}$
- $\Rightarrow b_{11} = d_{11}S_{11} + d_{12}S_{21} + d_{13}S_{31}$
- $\Rightarrow b_{12} = d_{11}S_{12} + d_{12}S_{22} + d_{13}S_{32}$
- $\Rightarrow b_{13} = d_{11}S_{13} + d_{12}S_{23} + d_{13}S_{33}$
- $\Rightarrow b_{21} = d_{21}S_{11} + d_{22}S_{21} + d_{23}S_{31}$
- $\Rightarrow b_{22} = d_{21}S_{12} + d_{22}S_{22} + d_{23}S_{32}$
- $\Rightarrow b_{23} = d_{21}S_{13} + d_{22}S_{23} + d_{23}S_{33}$
- $\Rightarrow b_{31} = d_{31}S_{11} + d_{32}S_{21} + d_{33}S_{31}$
- $\Rightarrow b_{32} = d_{31}S_{12} + d_{32}S_{22} + d_{33}S_{32}$
- $\Rightarrow b_{33} = d_{31}S_{13} + d_{32}S_{23} + d_{33}S_{33}$
- $\Rightarrow d_{33} = d_{22} + l$
- \Rightarrow $d_{22} = d_{11} + k$
- \Rightarrow $d_{11} = -3; -2; -1$
- $\Rightarrow k, l =$
 - 0, 1;
 - 0, 2;
 - 0, 3;
 - 1, 0;
 - 1, 1;
 - 1, 2;
 - 1, 3;
 - 2, 0;
 - 2, 1;
 - 2, 2;
 - 3, 0;
 - 3, 1
- $\Rightarrow d_{12} = 0$

$$\Rightarrow$$
 $d_{13} = 0$

$$\Rightarrow$$
 $d_{21} = 0$

$$\Rightarrow$$
 $d_{23} = 0$

$$\Rightarrow d_{31} = 0$$

$$\Rightarrow d_{32} = 0$$

$$\Rightarrow S_{11} = R_{11} - k_{31}S_{13} - k_{21}S_{12}$$

$$\Rightarrow S_{21} = -k_{31}S_{23} - k_{21}S_{22}$$

$$\Rightarrow S_{31} = -k_{31}S_{33} - k_{21}S_{32}$$

$$\Rightarrow S_{12} = R_{12} - k_{32}S_{13}$$

$$\Rightarrow S_{22} = R_{22} - k_{32}S_{23}$$

$$\Rightarrow S_{32} = -k_{32}S_{33}$$

$$\Rightarrow S_{13} = R_{13}$$

$$\Rightarrow$$
 $S_{23} = R_{23}$

$$\Rightarrow$$
 $S_{33} = R_{33}$

$$\Rightarrow R_{13} = -k_{13}R_{11}$$

$$\Rightarrow R_{23} = -k_{23}R_{22}$$

$$\Rightarrow R_{12} = -k_{12}R_{11}$$

$$\Rightarrow R_{11} = \frac{1}{r_{11}}$$

$$\Rightarrow R_{22} = \frac{1}{r_{22}}$$

$$\Rightarrow R_{33} = \frac{1}{r_{33}}$$

$$\Rightarrow$$
 $s_{33} = r_{33} + k_{32}r_{23} + k_{31}r_{13}$

$$\Rightarrow s_{32} = k_{32}r_{22} + k_{31}r_{12}$$

$$\Rightarrow s_{31} = k_{31}r_{11}$$

$$\Rightarrow$$
 $s_{23} = r_{23} + k_{21}r_{13}$

$$\Rightarrow s_{22} = r_{22} + k_{21}r_{12}$$

$$\Rightarrow s_{21} = k_{21}r_{11}$$

$$\Rightarrow s_{11} = r_{11}$$

$$\Rightarrow$$
 $s_{12} = r_{12}$

$$\Rightarrow s_{13} = r_{13}$$

$$\Rightarrow r_{13} = k_{13}r_{33} + k_{12}r_{23}$$

$$\Rightarrow r_{12} = k_{12}r_{22}$$

$$\Rightarrow r_{23} = k_{23}r_{33}$$

$$\Rightarrow r_{11} = -1; 1$$

$$\Rightarrow r_{22} = -1; 1$$

$$\Rightarrow r_{33} = -1; 1$$

$$\Rightarrow k_{12} = -1; 1$$

- $\Rightarrow k_{13} = -2; -1; 0; 1; 2$
- $\Rightarrow k_{23} = -2; -1; 1; 2$
- $\Rightarrow k_{31} = -2; -1; 0; 1; 2$
- $\Rightarrow k_{32} = -1; 1$
- $\Rightarrow k_{21} = -1; 1$

1)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\sqrt{S} = \begin{pmatrix} s_{11} & s_{12} & s_{13} \\ s_{21} & s_{22} & s_{23} \\ s_{31} & s_{32} & s_{33} \end{pmatrix}, \quad D = \begin{pmatrix} d_{11} & 0 & 0 \\ 0 & d_{22} & 0 \\ 0 & 0 & d_{33} \end{pmatrix}$$

- **96.** Найти матрицу S, трансформирующую матрицу A к диагональному виду D, и найти этот вид:
- $\Rightarrow a_{11} = s_{11}b_{11} + s_{12}b_{21} + s_{13}b_{31} + s_{14}b_{41}$
- $\Rightarrow a_{12} = s_{11}b_{12} + s_{12}b_{22} + s_{13}b_{32} + s_{14}b_{42}$
- $\Rightarrow a_{13} = s_{11}b_{13} + s_{12}b_{23} + s_{13}b_{33} + s_{14}b_{43}$
- $\Rightarrow a_{14} = s_{11}b_{14} + s_{12}b_{24} + s_{13}b_{34} + s_{14}b_{44}$
- $\Rightarrow a_{21} = s_{21}b_{11} + s_{22}b_{21} + s_{23}b_{31} + s_{24}b_{41}$
- $\Rightarrow a_{22} = s_{21}b_{12} + s_{22}b_{22} + s_{23}b_{32} + s_{24}b_{42}$
- $\Rightarrow a_{23} = s_{21}b_{13} + s_{22}b_{23} + s_{23}b_{33} + s_{24}b_{43}$
- $\Rightarrow a_{24} = s_{21}b_{14} + s_{22}b_{24} + s_{23}b_{34} + s_{24}b_{44}$
- $\Rightarrow a_{31} = s_{31}b_{11} + s_{32}b_{21} + s_{33}b_{31} + s_{34}b_{41}$
- $\Rightarrow a_{32} = s_{31}b_{12} + s_{32}b_{22} + s_{33}b_{32} + s_{34}b_{42}$
- $\Rightarrow a_{33} = s_{31}b_{13} + s_{32}b_{23} + s_{33}b_{33} + s_{34}b_{43}$
- $\Rightarrow a_{34} = s_{31}b_{14} + s_{32}b_{24} + s_{33}b_{34} + s_{34}b_{44}$
- $\Rightarrow a_{41} = s_{41}b_{11} + s_{42}b_{21} + s_{43}b_{31} + s_{44}b_{41}$
- $\Rightarrow a_{42} = s_{41}b_{12} + s_{42}b_{22} + s_{43}b_{32} + s_{44}b_{42}$
- $\Rightarrow a_{43} = s_{41}b_{13} + s_{42}b_{23} + s_{43}b_{33} + s_{44}b_{43}$
- $\Rightarrow a_{44} = s_{41}b_{14} + s_{42}b_{24} + s_{43}b_{34} + s_{44}b_{44}$
- $\Rightarrow b_{11} = d_{11}S_{11} + d_{12}S_{21} + d_{13}S_{31} + d_{14}S_{41}$
- $\Rightarrow b_{12} = d_{11}S_{12} + d_{12}S_{22} + d_{13}S_{32} + d_{14}S_{42}$
- $\Rightarrow b_{13} = d_{11}S_{13} + d_{12}S_{23} + d_{13}S_{33} + d_{14}S_{43}$
- $\Rightarrow b_{14} = d_{11}S_{14} + d_{12}S_{24} + d_{13}S_{34} + d_{14}S_{44}$
- $\Rightarrow b_{21} = d_{21}S_{11} + d_{22}S_{21} + d_{23}S_{31} + d_{24}S_{41}$
- $\Rightarrow b_{22} = d_{21}S_{12} + d_{22}S_{22} + d_{23}S_{32} + d_{24}S_{42}$
- $\Rightarrow b_{23} = d_{21}S_{13} + d_{22}S_{23} + d_{23}S_{33} + d_{24}S_{43}$
- $\Rightarrow b_{24} = d_{21}S_{14} + d_{22}S_{24} + d_{23}S_{34} + d_{24}S_{44}$
- $\Rightarrow b_{31} = d_{31}S_{11} + d_{32}S_{21} + d_{33}S_{31} + d_{34}S_{41}$
- $\Rightarrow b_{32} = d_{31}S_{12} + d_{32}S_{22} + d_{33}S_{32} + d_{34}S_{42}$
- $\Rightarrow b_{33} = d_{31}S_{13} + d_{32}S_{23} + d_{33}S_{33} + d_{34}S_{43}$
- $\Rightarrow b_{34} = d_{31}S_{14} + d_{32}S_{24} + d_{33}S_{34} + d_{34}S_{44}$
- $\Rightarrow b_{41} = d_{41}S_{11} + d_{42}S_{21} + d_{43}S_{31} + d_{44}S_{41}$
- $\Rightarrow b_{42} = d_{41}S_{12} + d_{42}S_{22} + d_{43}S_{32} + d_{44}S_{42}$
- $\Rightarrow b_{43} = d_{41}S_{13} + d_{42}S_{23} + d_{43}S_{33} + d_{44}S_{43}$
- $\Rightarrow b_{44} = d_{41}S_{14} + d_{42}S_{24} + d_{43}S_{34} + d_{44}S_{44}$

- $\Rightarrow d_{11}, d_{22}, d_{33}, d_{44} =$
 - -2, -1, 0, 1;
 - -2, -1, 0, 2;
 - -2, -1, 1, 2;
 - -2, 0, 1, 2;
 - \bullet -1, 0, 1, 2;
 - -1, -1, 2;
 - -2, 1, 1, 2;
 - \bullet -1, 0, 1, 1;
 - -1, -1, 1, 1;
 - 1, 1, 2, 2;
 - -1, -1, 2;
 - -2, 1, 1, 1
- \Rightarrow $d_{12} = 0$
- \Rightarrow $d_{13} = 0$
- $\Rightarrow d_{14} = 0$
- \Rightarrow $d_{21} = 0$
- $\Rightarrow d_{23} = 0$
- $\Rightarrow d_{24} = 0$
- $\Rightarrow d_{31} = 0$
- $\Rightarrow d_{32} = 0$
- $\Rightarrow d_{34} = 0$
- $\Rightarrow d_{41} = 0$
- $\Rightarrow d_{42} = 0$
- $\Rightarrow d_{43} = 0$
- $\Rightarrow S_{11} = -k_{41}S_{14} k_{31}S_{13} k_{21}S_{12} + R_{11}$
- $\Rightarrow S_{21} = -k_{41}S_{24} k_{31}S_{23} k_{21}S_{22}$
- $\Rightarrow S_{31} = -k_{41}S_{34} k_{31}S_{33} k_{21}S_{32}$
- $\Rightarrow S_{41} = -k_{41}S_{44} k_{31}S_{43} k_{21}S_{42}$
- $\Rightarrow S_{12} = -k_{42}S_{14} k_{32}S_{13} + R_{12}$
- $\Rightarrow S_{22} = -k_{42}S_{24} k_{32}S_{23} + R_{22}$
- $\Rightarrow S_{32} = -k_{42}S_{34} k_{32}S_{33}$
- $\Rightarrow S_{42} = -k_{42}S_{44} k_{32}S_{43}$
- $\Rightarrow S_{13} = -k_{43}S_{14} + R_{13}$
- $\Rightarrow S_{23} = -k_{43}S_{24} + R_{23}$
- $\Rightarrow S_{33} = -k_{43}S_{34} + R_{33}$
- $\Rightarrow S_{43} = -k_{43}S_{44}$
- $\Rightarrow S_{14} = R_{14}$

$$\Rightarrow$$
 $S_{24} = R_{24}$

$$\Rightarrow S_{34} = R_{34}$$

$$\Rightarrow$$
 $S_{44} = R_{44}$

$$\Rightarrow R_{14} = -k_{14}R_{11}$$

$$\Rightarrow R_{24} = -k_{24}R_{22}$$

$$\Rightarrow R_{34} = -k_{34}R_{33}$$

$$\Rightarrow R_{13} = -k_{13}R_{11}$$

$$\Rightarrow R_{23} = -k_{23}R_{22}$$

$$\Rightarrow R_{12} = -k_{12}R_{11}$$

$$\Rightarrow R_{11} = \frac{1}{r_{11}}$$

$$\Rightarrow R_{22} = \frac{1}{r_{22}}$$

$$\Rightarrow R_{33} = \frac{1}{r_{33}}$$

$$\Rightarrow R_{44} = \frac{1}{r_{44}}$$

$$\Rightarrow s_{44} = k_{41}r_{14} + k_{42}r_{24} + k_{43}r_{34} + r_{44}$$

$$\Rightarrow s_{43} = k_{41}r_{13} + k_{42}r_{23} + k_{43}r_{33}$$

$$\Rightarrow$$
 $s_{42} = k_{41}r_{12} + k_{42}r_{22}$

$$\Rightarrow s_{41} = k_{41}r_{11}$$

$$\Rightarrow s_{34} = k_{31}r_{14} + k_{32}r_{24} + r_{34}$$

$$\Rightarrow s_{33} = k_{31}r_{13} + k_{32}r_{23} + r_{33}$$

$$\Rightarrow s_{32} = k_{31}r_{12} + k_{32}r_{22}$$

$$\Rightarrow s_{31} = k_{31}r_{11}$$

$$\Rightarrow s_{24} = k_{21}r_{14} + r_{24}$$

$$\Rightarrow s_{23} = k_{21}r_{13} + r_{23}$$

$$\Rightarrow s_{22} = k_{21}r_{12} + r_{22}$$

$$\Rightarrow s_{21} = k_{21}r_{11}$$

$$\Rightarrow s_{11} = r_{11}$$

$$\Rightarrow s_{12} = r_{12}$$

$$\Rightarrow$$
 $s_{13} = r_{13}$

$$\Rightarrow s_{14} = r_{14}$$

$$\Rightarrow r_{14} = k_{12}r_{24} + k_{13}r_{34} + k_{14}r_{44}$$

$$\Rightarrow$$
 $r_{13} = k_{12}r_{23} + k_{13}r_{33}$

$$\Rightarrow r_{12} = k_{12}r_{22}$$

$$\Rightarrow r_{24} = k_{23}r_{34} + k_{24}r_{44}$$

$$\Rightarrow r_{23} = k_{23}r_{33}$$

$$\Rightarrow r_{34} = k_{34}r_{44}$$

$$\Rightarrow r_{11} = -1; 1$$

$$\Rightarrow r_{22} = -1; 1$$

$$\Rightarrow r_{33} = -1; 1$$

$$\Rightarrow r_{44} = -1; 1$$

$$\Rightarrow k_{12} = -1; 1$$

$$\Rightarrow k_{13} = -1; 1$$

$$\Rightarrow k_{14} = -1; 1$$

$$\Rightarrow k_{23} = -1; 1$$

$$\Rightarrow k_{24} = -1; 1$$

$$\Rightarrow k_{34} = -1; 1$$

$$\Rightarrow k_{21} = -1; 1$$

$$\Rightarrow k_{31} = -1; 1$$

$$\Rightarrow k_{41} = -1; 1$$

$$\Rightarrow k_{32} = -1; 1$$

$$\Rightarrow k_{42} = -1; 1$$

$$\Rightarrow k_{43} = -1; 1$$

1)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

$$\sqrt{S} = \begin{pmatrix} s_{11} & s_{12} & s_{13} & s_{14} \\ s_{21} & s_{22} & s_{23} & s_{24} \\ s_{31} & s_{32} & s_{33} & s_{34} \\ s_{41} & s_{42} & s_{43} & s_{44} \end{pmatrix}, \quad D = \begin{pmatrix} d_{11} & 0 & 0 & 0 \\ 0 & d_{22} & 0 & 0 \\ 0 & 0 & d_{33} & 0 \\ 0 & 0 & 0 & d_{44} \end{pmatrix}$$

- **97.** Найти матрицу S, трансформирующую матрицу A к жордановой нормальной форме J, и найти эту форму:
- $\Rightarrow a_{11} = ab_{11} + bb_{21}$
- $\Rightarrow a_{12} = ab_{12} + bb_{22}$
- $\Rightarrow a_{21} = cb_{11} + db_{21}$
- $\Rightarrow a_{22} = cb_{12} + db_{22}$
- $\Rightarrow b_{11} = d_{11}A + d_{12}C$
- $\Rightarrow b_{12} = d_{11}B + d_{12}D$
- $\Rightarrow b_{21} = d_{21}A + d_{22}C$
- $\Rightarrow b_{22} = d_{21}B + d_{22}D$
- \Rightarrow $d_{22} = d_{11}$
- \Rightarrow $d_{11} = -5$; -4; -3; -2; -1; 1; 2; 3; 4; 5
- \Rightarrow $d_{12} = 1$
- \Rightarrow $d_{21} = 0$
- $\Rightarrow A = \frac{d}{\Delta}$
- $\Rightarrow B = -\frac{b}{\Lambda}$
- $\Rightarrow C = -\frac{c}{\Lambda}$
- $\Rightarrow D = \frac{a}{\Lambda}$
- $\Rightarrow a = d(bc + \Delta)$
- \Rightarrow $\Delta = -1$; 1
- \Rightarrow d = -1; 1
- $\Rightarrow b = -3; -2; 2; 3$
- \Rightarrow c = -2; -1; 1; 2
- 1) $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$
- $\sqrt{S} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad J = \begin{pmatrix} d_{11} & 1 \\ 0 & d_{22} \end{pmatrix}$

- **98.** Найти матрицу S, трансформирующую матрицу A к жордановой нормальной форме J, и найти эту форму:
- $\Rightarrow S_{11} = R_{11} k_{31}S_{13} k_{21}S_{12}$
- \Rightarrow $S_{21} = -k_{31}S_{23} k_{21}S_{22}$
- \Rightarrow $S_{31} = -k_{31}S_{33} k_{21}S_{32}$
- \Rightarrow $S_{12} = R_{12} k_{32}S_{13}$
- $\Rightarrow S_{22} = R_{22} k_{32}S_{23}$
- $\Rightarrow S_{32} = -k_{32}S_{33}$
- $\Rightarrow S_{13} = R_{13}$
- \Rightarrow $S_{23} = R_{23}$
- \Rightarrow $S_{33} = R_{33}$
- $\Rightarrow R_{13} = -k_{13}R_{11}$
- $\Rightarrow R_{23} = -k_{23}R_{22}$
- $\Rightarrow R_{12} = -k_{12}R_{11}$
- $\Rightarrow R_{11} = \frac{1}{r_{11}}$
- $\Rightarrow R_{22} = \frac{1}{r_{22}}$
- $\Rightarrow R_{33} = \frac{1}{r_{33}}$
- $\Rightarrow s_{33} = r_{33} + k_{32}r_{23} + k_{31}r_{13}$
- \Rightarrow $s_{32} = k_{32}r_{22} + k_{31}r_{12}$
- $\Rightarrow s_{31} = k_{31}r_{11}$
- $\Rightarrow s_{23} = r_{23} + k_{21}r_{13}$
- $\Rightarrow s_{22} = r_{22} + k_{21}r_{12}$
- $\Rightarrow s_{21} = k_{21}r_{11}$
- \Rightarrow $s_{11} = r_{11}$
- \Rightarrow $s_{12} = r_{12}$
- \Rightarrow $s_{13} = r_{13}$
- $\Rightarrow r_{13} = k_{13}r_{33} + k_{12}r_{23}$
- $\Rightarrow r_{12} = k_{12}r_{22}$
- $\Rightarrow r_{23} = k_{23}r_{33}$
- $\Rightarrow r_{11} = -1; 1$
- $\Rightarrow r_{22} = -1; 1$
- $\Rightarrow r_{33} = -1; 1$
- $\Rightarrow k_{12} = -1; 1$
- $\Rightarrow k_{13} = -2; -1; 0; 1; 2$
- $\Rightarrow k_{23} = -2; -1; 1; 2$

$$\Rightarrow k_{31} = -2; -1; 0; 1; 2$$

$$\Rightarrow k_{32} = -1; 1$$

$$\Rightarrow k_{21} = -1; 1$$

1)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\sqrt{S} = \begin{pmatrix} s_{11} & s_{12} & s_{13} \\ s_{21} & s_{22} & s_{23} \\ s_{31} & s_{32} & s_{33} \end{pmatrix}, \quad J = \begin{pmatrix} d_{11} & 1 & 0 \\ 0 & d_{22} & 0 \\ 0 & 0 & d_{33} \end{pmatrix}$$

$$\rightarrow a_{11} = s_{11}b_{11} + s_{12}b_{21} + s_{13}b_{31}$$

$$\rightarrow a_{12} = s_{11}b_{12} + s_{12}b_{22} + s_{13}b_{32}$$

$$\rightarrow a_{13} = s_{11}b_{13} + s_{12}b_{23} + s_{13}b_{33}$$

$$\rightarrow a_{21} = s_{21}b_{11} + s_{22}b_{21} + s_{23}b_{31}$$

$$\rightarrow a_{22} = s_{21}b_{12} + s_{22}b_{22} + s_{23}b_{32}$$

$$\rightarrow a_{23} = s_{21}b_{13} + s_{22}b_{23} + s_{23}b_{33}$$

$$\rightarrow a_{31} = s_{31}b_{11} + s_{32}b_{21} + s_{33}b_{31}$$

$$\rightarrow a_{32} = s_{31}b_{12} + s_{32}b_{22} + s_{33}b_{32}$$

$$\rightarrow a_{33} = s_{31}b_{13} + s_{32}b_{23} + s_{33}b_{33}$$

$$\rightarrow b_{11} = d_{11}S_{11} + d_{12}S_{21} + d_{13}S_{31}$$

$$\rightarrow b_{12} = d_{11}S_{12} + d_{12}S_{22} + d_{13}S_{32}$$

$$\rightarrow b_{13} = d_{11}S_{13} + d_{12}S_{23} + d_{13}S_{33}$$

$$\rightarrow b_{21} = d_{21}S_{11} + d_{22}S_{21} + d_{23}S_{31}$$

$$\rightarrow b_{22} = d_{21}S_{12} + d_{22}S_{22} + d_{23}S_{32}$$

$$\rightarrow b_{23} = d_{21}S_{13} + d_{22}S_{23} + d_{23}S_{33}$$

$$\rightarrow b_{31} = d_{31}S_{11} + d_{32}S_{21} + d_{33}S_{31}$$

$$\rightarrow b_{32} = d_{31}S_{12} + d_{32}S_{22} + d_{33}S_{32}$$

$$\rightarrow b_{33} = d_{31}S_{13} + d_{32}S_{23} + d_{33}S_{33}$$

$$\rightarrow d_{33} = -3; -2; -1; 0; 1; 2; 3$$

$$\rightarrow d_{22} = d_{11}$$

$$\rightarrow$$
 $d_{11} = -3$; -2 ; -1 ; 0; 1; 2; 3

$$\rightarrow d_{12} = 1$$

$$\rightarrow d_{13} = 0$$

$$\rightarrow d_{21} = 0$$

$$\rightarrow$$
 $d_{23} = 0$

$$\rightarrow d_{31} = 0$$

$$\rightarrow d_{32} = 0$$

$$(2) A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\sqrt{S} = \begin{pmatrix} s_{11} & s_{12} & s_{13} \\ s_{21} & s_{22} & s_{23} \\ s_{31} & s_{32} & s_{33} \end{pmatrix}, \quad J = \begin{pmatrix} d_{11} & 1 & 0 \\ 0 & d_{22} & 1 \\ 0 & 0 & d_{33} \end{pmatrix}$$

$$\rightarrow a_{11} = s_{11}b_{11} + s_{12}b_{21} + s_{13}b_{31}$$

$$\rightarrow a_{12} = s_{11}b_{12} + s_{12}b_{22} + s_{13}b_{32}$$

$$\rightarrow a_{13} = s_{11}b_{13} + s_{12}b_{23} + s_{13}b_{33}$$

$$\rightarrow a_{21} = s_{21}b_{11} + s_{22}b_{21} + s_{23}b_{31}$$

$$\rightarrow a_{22} = s_{21}b_{12} + s_{22}b_{22} + s_{23}b_{32}$$

$$\rightarrow a_{23} = s_{21}b_{13} + s_{22}b_{23} + s_{23}b_{33}$$

$$\rightarrow a_{31} = s_{31}b_{11} + s_{32}b_{21} + s_{33}b_{31}$$

$$\rightarrow a_{32} = s_{31}b_{12} + s_{32}b_{22} + s_{33}b_{32}$$

$$\rightarrow a_{33} = s_{31}b_{13} + s_{32}b_{23} + s_{33}b_{33}$$

$$\rightarrow b_{11} = d_{11}S_{11} + d_{12}S_{21} + d_{13}S_{31}$$

$$\rightarrow b_{12} = d_{11}S_{12} + d_{12}S_{22} + d_{13}S_{32}$$

$$\rightarrow b_{13} = d_{11}S_{13} + d_{12}S_{23} + d_{13}S_{33}$$

$$\rightarrow b_{21} = d_{21}S_{11} + d_{22}S_{21} + d_{23}S_{31}$$

$$\rightarrow b_{22} = d_{21}S_{12} + d_{22}S_{22} + d_{23}S_{32}$$

$$\rightarrow b_{23} = d_{21}S_{13} + d_{22}S_{23} + d_{23}S_{33}$$

$$\rightarrow b_{31} = d_{31}S_{11} + d_{32}S_{21} + d_{33}S_{31}$$

$$\rightarrow b_{32} = d_{31}S_{12} + d_{32}S_{22} + d_{33}S_{32}$$

$$\rightarrow b_{33} = d_{31}S_{13} + d_{32}S_{23} + d_{33}S_{33}$$

$$\rightarrow d_{33} = d_{11}$$

$$\rightarrow d_{22} = d_{11}$$

$$\rightarrow$$
 $d_{11} = -3; -2; -1; 0; 1; 2; 3$

$$\rightarrow$$
 $d_{12} = 1$

$$\rightarrow$$
 $d_{13} = 0$

$$\rightarrow d_{21} = 0$$

$$\rightarrow d_{23} = 1$$

$$\rightarrow$$
 $d_{31} = 0$

$$\rightarrow$$
 $d_{32} = 0$

- **99.** Найти матрицу S, трансформирующую матрицу A к жордановой нормальной форме J, и найти эту форму:
- $\Rightarrow S_{11} = -k_{41}S_{14} k_{31}S_{13} k_{21}S_{12} + R_{11}$
- $\Rightarrow S_{21} = -k_{41}S_{24} k_{31}S_{23} k_{21}S_{22}$
- $\Rightarrow S_{31} = -k_{41}S_{34} k_{31}S_{33} k_{21}S_{32}$
- $\Rightarrow S_{41} = -k_{41}S_{44} k_{31}S_{43} k_{21}S_{42}$
- \Rightarrow $S_{12} = -k_{42}S_{14} k_{32}S_{13} + R_{12}$
- $\Rightarrow S_{22} = -k_{42}S_{24} k_{32}S_{23} + R_{22}$
- $\Rightarrow S_{32} = -k_{42}S_{34} k_{32}S_{33}$
- $\Rightarrow S_{42} = -k_{42}S_{44} k_{32}S_{43}$
- $\Rightarrow S_{13} = -k_{43}S_{14} + R_{13}$
- $\Rightarrow S_{23} = -k_{43}S_{24} + R_{23}$
- $\Rightarrow S_{33} = -k_{43}S_{34} + R_{33}$
- $\Rightarrow S_{43} = -k_{43}S_{44}$
- $\Rightarrow S_{14} = R_{14}$
- \Rightarrow $S_{24} = R_{24}$
- $\Rightarrow S_{34} = R_{34}$
- \Rightarrow $S_{44} = R_{44}$
- $\Rightarrow R_{14} = -k_{14}R_{11}$
- $\Rightarrow R_{24} = -k_{24}R_{22}$
- $\Rightarrow R_{34} = -k_{34}R_{33}$
- $\Rightarrow R_{13} = -k_{13}R_{11}$
- $\Rightarrow R_{23} = -k_{23}R_{22}$
- $\Rightarrow R_{12} = -k_{12}R_{11}$
- $\Rightarrow R_{11} = \frac{1}{r_{11}}$
- $\Rightarrow R_{22} = \frac{1}{r_{22}}$
- $\Rightarrow R_{33} = \frac{1}{r_{33}}$
- $\Rightarrow R_{44} = \frac{1}{r_{44}}$
- $\Rightarrow s_{44} = k_{41}r_{14} + k_{42}r_{24} + k_{43}r_{34} + r_{44}$
- $\Rightarrow s_{43} = k_{41}r_{13} + k_{42}r_{23} + k_{43}r_{33}$
- $\Rightarrow s_{42} = k_{41}r_{12} + k_{42}r_{22}$
- $\Rightarrow s_{41} = k_{41}r_{11}$
- $\Rightarrow s_{34} = k_{31}r_{14} + k_{32}r_{24} + r_{34}$
- $\Rightarrow s_{33} = k_{31}r_{13} + k_{32}r_{23} + r_{33}$

- \Rightarrow $s_{32} = k_{31}r_{12} + k_{32}r_{22}$
- $\Rightarrow s_{31} = k_{31}r_{11}$
- $\Rightarrow s_{24} = k_{21}r_{14} + r_{24}$
- $\Rightarrow s_{23} = k_{21}r_{13} + r_{23}$
- $\Rightarrow s_{22} = k_{21}r_{12} + r_{22}$
- $\Rightarrow s_{21} = k_{21}r_{11}$
- $\Rightarrow s_{11} = r_{11}$
- \Rightarrow $s_{12} = r_{12}$
- $\Rightarrow s_{13} = r_{13}$
- $\Rightarrow s_{14} = r_{14}$
- $\Rightarrow r_{14} = k_{12}r_{24} + k_{13}r_{34} + k_{14}r_{44}$
- $\Rightarrow r_{13} = k_{12}r_{23} + k_{13}r_{33}$
- $\Rightarrow r_{12} = k_{12}r_{22}$
- $\Rightarrow r_{24} = k_{23}r_{34} + k_{24}r_{44}$
- $\Rightarrow r_{23} = k_{23}r_{33}$
- $\Rightarrow r_{34} = k_{34}r_{44}$
- $\Rightarrow r_{11} = -1; 1$
- $\Rightarrow r_{22} = -1; 1$
- $\Rightarrow r_{33} = -1; 1$
- $\Rightarrow r_{44} = -1; 1$
- $\Rightarrow k_{12} = -1; 1$
- $\Rightarrow k_{13} = -1; 1$
- $\Rightarrow k_{14} = -1; 1$
- $\Rightarrow k_{23} = -1; 1$
- $\Rightarrow k_{24} = -1; 1$
- $\Rightarrow k_{34} = -1; 1$
- $\Rightarrow k_{21} = -1; 1$
- $\Rightarrow k_{31} = -1; 1$
- $\Rightarrow k_{41} = -1; 1$
- $\Rightarrow k_{32} = -1; 1$
- $\Rightarrow k_{42} = -1; 1$
- $\Rightarrow k_{43} = -1; 1$

1)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

$$\sqrt{S} = \begin{pmatrix} s_{11} & s_{12} & s_{13} & s_{14} \\ s_{21} & s_{22} & s_{23} & s_{24} \\ s_{31} & s_{32} & s_{33} & s_{34} \\ s_{41} & s_{42} & s_{43} & s_{44} \end{pmatrix}, \quad J = \begin{pmatrix} d_{11} & 1 & 0 & 0 \\ 0 & d_{22} & 0 & 0 \\ 0 & 0 & d_{33} & 0 \\ 0 & 0 & 0 & d_{44} \end{pmatrix}$$

$$\rightarrow a_{11} = s_{11}b_{11} + s_{12}b_{21} + s_{13}b_{31} + s_{14}b_{41}$$

$$\rightarrow a_{12} = s_{11}b_{12} + s_{12}b_{22} + s_{13}b_{32} + s_{14}b_{42}$$

$$\rightarrow a_{13} = s_{11}b_{13} + s_{12}b_{23} + s_{13}b_{33} + s_{14}b_{43}$$

$$\rightarrow a_{14} = s_{11}b_{14} + s_{12}b_{24} + s_{13}b_{34} + s_{14}b_{44}$$

$$\rightarrow a_{21} = s_{21}b_{11} + s_{22}b_{21} + s_{23}b_{31} + s_{24}b_{41}$$

$$\rightarrow a_{22} = s_{21}b_{12} + s_{22}b_{22} + s_{23}b_{32} + s_{24}b_{42}$$

$$\rightarrow a_{23} = s_{21}b_{13} + s_{22}b_{23} + s_{23}b_{33} + s_{24}b_{43}$$

$$\rightarrow a_{24} = s_{21}b_{14} + s_{22}b_{24} + s_{23}b_{34} + s_{24}b_{44}$$

$$\rightarrow a_{31} = s_{31}b_{11} + s_{32}b_{21} + s_{33}b_{31} + s_{34}b_{41}$$

$$\rightarrow a_{32} = s_{31}b_{12} + s_{32}b_{22} + s_{33}b_{32} + s_{34}b_{42}$$

$$\rightarrow a_{33} = s_{31}b_{13} + s_{32}b_{23} + s_{33}b_{33} + s_{34}b_{43}$$

$$\rightarrow a_{34} = s_{31}b_{14} + s_{32}b_{24} + s_{33}b_{34} + s_{34}b_{44}$$

$$\rightarrow a_{41} = s_{41}b_{11} + s_{42}b_{21} + s_{43}b_{31} + s_{44}b_{41}$$

$$\rightarrow a_{42} = s_{41}b_{12} + s_{42}b_{22} + s_{43}b_{32} + s_{44}b_{42}$$

$$\rightarrow a_{43} = s_{41}b_{13} + s_{42}b_{23} + s_{43}b_{33} + s_{44}b_{43}$$

$$\rightarrow a_{44} = s_{41}b_{14} + s_{42}b_{24} + s_{43}b_{34} + s_{44}b_{44}$$

$$\rightarrow b_{11} = d_{11}S_{11} + d_{12}S_{21} + d_{13}S_{31} + d_{14}S_{41}$$

$$\rightarrow b_{12} = d_{11}S_{12} + d_{12}S_{22} + d_{13}S_{32} + d_{14}S_{42}$$

$$\rightarrow b_{13} = d_{11}S_{13} + d_{12}S_{23} + d_{13}S_{33} + d_{14}S_{43}$$

$$\rightarrow b_{14} = d_{11}S_{14} + d_{12}S_{24} + d_{13}S_{34} + d_{14}S_{44}$$

$$\rightarrow b_{21} = d_{21}S_{11} + d_{22}S_{21} + d_{23}S_{31} + d_{24}S_{41}$$

$$\rightarrow b_{22} = d_{21}S_{12} + d_{22}S_{22} + d_{23}S_{32} + d_{24}S_{42}$$

$$\rightarrow b_{23} = d_{21}S_{13} + d_{22}S_{23} + d_{23}S_{33} + d_{24}S_{43}$$

$$\rightarrow b_{24} = d_{21}S_{14} + d_{22}S_{24} + d_{23}S_{34} + d_{24}S_{44}$$

$$\rightarrow b_{31} = d_{31}S_{11} + d_{32}S_{21} + d_{33}S_{31} + d_{34}S_{41}$$

$$\rightarrow b_{32} = d_{31}S_{12} + d_{32}S_{22} + d_{33}S_{32} + d_{34}S_{42}$$

$$\rightarrow b_{33} = d_{31}S_{13} + d_{32}S_{23} + d_{33}S_{33} + d_{34}S_{43}$$

$$\rightarrow b_{34} = d_{31}S_{14} + d_{32}S_{24} + d_{33}S_{34} + d_{34}S_{44}$$

$$\rightarrow b_{41} = d_{41}S_{11} + d_{42}S_{21} + d_{43}S_{31} + d_{44}S_{41}$$

$$\rightarrow b_{42} = d_{41}S_{12} + d_{42}S_{22} + d_{43}S_{32} + d_{44}S_{42}$$

$$\rightarrow b_{43} = d_{41}S_{13} + d_{42}S_{23} + d_{43}S_{33} + d_{44}S_{43}$$

$$\rightarrow b_{44} = d_{41}S_{14} + d_{42}S_{24} + d_{43}S_{34} + d_{44}S_{44}$$

$$\rightarrow d_{33}, d_{44} =$$

•
$$-2$$
, -2 ;

•
$$-2$$
, -1 ;

•
$$-2$$
, 0;

•
$$-2$$
, 1;

•
$$-2$$
, 2 ;

•
$$-1$$
, -1 ;

•
$$-1$$
, 0;

•
$$-1$$
, 1;

•
$$-1$$
, 2;

$$\rightarrow$$
 $d_{22} = d_{11}$

$$\rightarrow$$
 $d_{11} = -2$; -1 ; 0 ; 1 ; 2

$$\rightarrow$$
 $d_{12} = 1$

$$\rightarrow$$
 $d_{13} = 0$

$$\rightarrow$$
 $d_{14} = 0$

$$\rightarrow$$
 $d_{21} = 0$

$$\rightarrow$$
 $d_{23} = 0$

$$\rightarrow$$
 $d_{24} = 0$

$$\rightarrow$$
 $d_{31} = 0$

$$\rightarrow$$
 $d_{32} = 0$

$$\rightarrow$$
 $d_{34} = 0$

$$\rightarrow$$
 $d_{41} = 0$

$$\rightarrow$$
 $d_{42} = 0$

$$\rightarrow d_{43} = 0$$

$$2) A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

$$\sqrt{S} = \begin{pmatrix} s_{11} & s_{12} & s_{13} & s_{14} \\ s_{21} & s_{22} & s_{23} & s_{24} \\ s_{31} & s_{32} & s_{33} & s_{34} \\ s_{41} & s_{42} & s_{43} & s_{44} \end{pmatrix}, \quad J = \begin{pmatrix} d_{11} & 1 & 0 & 0 \\ 0 & d_{22} & 0 & 0 \\ 0 & 0 & d_{33} & 1 \\ 0 & 0 & 0 & d_{44} \end{pmatrix}$$

$$\rightarrow a_{11} = s_{11}b_{11} + s_{12}b_{21} + s_{13}b_{31} + s_{14}b_{41}$$

- $\rightarrow a_{12} = s_{11}b_{12} + s_{12}b_{22} + s_{13}b_{32} + s_{14}b_{42}$
- $\rightarrow a_{13} = s_{11}b_{13} + s_{12}b_{23} + s_{13}b_{33} + s_{14}b_{43}$
- $\rightarrow a_{14} = s_{11}b_{14} + s_{12}b_{24} + s_{13}b_{34} + s_{14}b_{44}$
- $\rightarrow a_{21} = s_{21}b_{11} + s_{22}b_{21} + s_{23}b_{31} + s_{24}b_{41}$
- $\rightarrow a_{22} = s_{21}b_{12} + s_{22}b_{22} + s_{23}b_{32} + s_{24}b_{42}$
- $\rightarrow a_{23} = s_{21}b_{13} + s_{22}b_{23} + s_{23}b_{33} + s_{24}b_{43}$
- $\rightarrow a_{24} = s_{21}b_{14} + s_{22}b_{24} + s_{23}b_{34} + s_{24}b_{44}$
- $\rightarrow a_{31} = s_{31}b_{11} + s_{32}b_{21} + s_{33}b_{31} + s_{34}b_{41}$
- $\rightarrow a_{32} = s_{31}b_{12} + s_{32}b_{22} + s_{33}b_{32} + s_{34}b_{42}$
- $\rightarrow a_{33} = s_{31}b_{13} + s_{32}b_{23} + s_{33}b_{33} + s_{34}b_{43}$
- $\rightarrow a_{34} = s_{31}b_{14} + s_{32}b_{24} + s_{33}b_{34} + s_{34}b_{44}$
- $\rightarrow a_{41} = s_{41}b_{11} + s_{42}b_{21} + s_{43}b_{31} + s_{44}b_{41}$
- $\rightarrow a_{42} = s_{41}b_{12} + s_{42}b_{22} + s_{43}b_{32} + s_{44}b_{42}$
- $\rightarrow a_{43} = s_{41}b_{13} + s_{42}b_{23} + s_{43}b_{33} + s_{44}b_{43}$
- $\rightarrow a_{44} = s_{41}b_{14} + s_{42}b_{24} + s_{43}b_{34} + s_{44}b_{44}$
- $\rightarrow b_{11} = d_{11}S_{11} + d_{12}S_{21} + d_{13}S_{31} + d_{14}S_{41}$
- $\rightarrow b_{12} = d_{11}S_{12} + d_{12}S_{22} + d_{13}S_{32} + d_{14}S_{42}$
- $\rightarrow b_{13} = d_{11}S_{13} + d_{12}S_{23} + d_{13}S_{33} + d_{14}S_{43}$
- $\rightarrow b_{14} = d_{11}S_{14} + d_{12}S_{24} + d_{13}S_{34} + d_{14}S_{44}$
- $\rightarrow b_{21} = d_{21}S_{11} + d_{22}S_{21} + d_{23}S_{31} + d_{24}S_{41}$
- $\rightarrow b_{22} = d_{21}S_{12} + d_{22}S_{22} + d_{23}S_{32} + d_{24}S_{42}$
- $\rightarrow b_{23} = d_{21}S_{13} + d_{22}S_{23} + d_{23}S_{33} + d_{24}S_{43}$
- $\rightarrow b_{24} = d_{21}S_{14} + d_{22}S_{24} + d_{23}S_{34} + d_{24}S_{44}$
- $\rightarrow b_{31} = d_{31}S_{11} + d_{32}S_{21} + d_{33}S_{31} + d_{34}S_{41}$
- $\rightarrow b_{32} = d_{31}S_{12} + d_{32}S_{22} + d_{33}S_{32} + d_{34}S_{42}$
- $\rightarrow b_{33} = d_{31}S_{13} + d_{32}S_{23} + d_{33}S_{33} + d_{34}S_{43}$
- $\rightarrow b_{34} = d_{31}S_{14} + d_{32}S_{24} + d_{33}S_{34} + d_{34}S_{44}$
- $\rightarrow b_{41} = d_{41}S_{11} + d_{42}S_{21} + d_{43}S_{31} + d_{44}S_{41}$
- $\rightarrow b_{42} = d_{41}S_{12} + d_{42}S_{22} + d_{43}S_{32} + d_{44}S_{42}$
- $\rightarrow b_{43} = d_{41}S_{13} + d_{42}S_{23} + d_{43}S_{33} + d_{44}S_{43}$
- $\rightarrow b_{44} = d_{41}S_{14} + d_{42}S_{24} + d_{43}S_{34} + d_{44}S_{44}$
- $\rightarrow d_{44} = d_{33}$
- $\rightarrow d_{22} = d_{11}$

$$\rightarrow d_{11}, d_{33} =$$

•
$$-2$$
, -2 ;

•
$$-2$$
, -1 ;

•
$$-2$$
, 0;

•
$$-2$$
, 1;

•
$$-2$$
. 2:

•
$$-1$$
, -1 ;

•
$$-1$$
, 0;

•
$$-1$$
, 1;

•
$$-1$$
, 2;

$$\rightarrow$$
 $d_{12} = 1$

$$\rightarrow$$
 $d_{13} = 0$

$$\rightarrow$$
 $d_{14} = 0$

$$\rightarrow$$
 $d_{21} = 0$

$$\rightarrow$$
 $d_{23} = 0$

$$\rightarrow d_{24} = 0$$

$$\rightarrow$$
 $d_{31} = 0$

$$\rightarrow$$
 $d_{32} = 0$

$$\rightarrow$$
 $d_{34} = 1$

$$\rightarrow$$
 $d_{41} = 0$

$$\rightarrow$$
 $d_{42} = 0$

$$\rightarrow$$
 $d_{43} = 0$

3)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

$$\sqrt{S} = \begin{pmatrix} s_{11} & s_{12} & s_{13} & s_{14} \\ s_{21} & s_{22} & s_{23} & s_{24} \\ s_{31} & s_{32} & s_{33} & s_{34} \\ s_{41} & s_{42} & s_{43} & s_{44} \end{pmatrix}, \quad J = \begin{pmatrix} d_{11} & 1 & 0 & 0 \\ 0 & d_{22} & 1 & 0 \\ 0 & 0 & d_{33} & 0 \\ 0 & 0 & 0 & d_{44} \end{pmatrix}$$

$$\rightarrow a_{11} = s_{11}b_{11} + s_{12}b_{21} + s_{13}b_{31} + s_{14}b_{41}$$

$$\rightarrow a_{12} = s_{11}b_{12} + s_{12}b_{22} + s_{13}b_{32} + s_{14}b_{42}$$

$$\rightarrow a_{13} = s_{11}b_{13} + s_{12}b_{23} + s_{13}b_{33} + s_{14}b_{43}$$

- $\rightarrow a_{14} = s_{11}b_{14} + s_{12}b_{24} + s_{13}b_{34} + s_{14}b_{44}$
- $\rightarrow a_{21} = s_{21}b_{11} + s_{22}b_{21} + s_{23}b_{31} + s_{24}b_{41}$
- $\rightarrow a_{22} = s_{21}b_{12} + s_{22}b_{22} + s_{23}b_{32} + s_{24}b_{42}$
- $\rightarrow a_{23} = s_{21}b_{13} + s_{22}b_{23} + s_{23}b_{33} + s_{24}b_{43}$
- $\rightarrow a_{24} = s_{21}b_{14} + s_{22}b_{24} + s_{23}b_{34} + s_{24}b_{44}$
- $\rightarrow a_{31} = s_{31}b_{11} + s_{32}b_{21} + s_{33}b_{31} + s_{34}b_{41}$
- $\rightarrow a_{32} = s_{31}b_{12} + s_{32}b_{22} + s_{33}b_{32} + s_{34}b_{42}$
- $\rightarrow a_{33} = s_{31}b_{13} + s_{32}b_{23} + s_{33}b_{33} + s_{34}b_{43}$
- $\rightarrow a_{34} = s_{31}b_{14} + s_{32}b_{24} + s_{33}b_{34} + s_{34}b_{44}$
- $\rightarrow a_{41} = s_{41}b_{11} + s_{42}b_{21} + s_{43}b_{31} + s_{44}b_{41}$
- $\rightarrow a_{42} = s_{41}b_{12} + s_{42}b_{22} + s_{43}b_{32} + s_{44}b_{42}$
- $\rightarrow a_{43} = s_{41}b_{13} + s_{42}b_{23} + s_{43}b_{33} + s_{44}b_{43}$
- $\rightarrow a_{44} = s_{41}b_{14} + s_{42}b_{24} + s_{43}b_{34} + s_{44}b_{44}$
- $\rightarrow b_{11} = d_{11}S_{11} + d_{12}S_{21} + d_{13}S_{31} + d_{14}S_{41}$
- $\rightarrow b_{12} = d_{11}S_{12} + d_{12}S_{22} + d_{13}S_{32} + d_{14}S_{42}$
- $\rightarrow b_{13} = d_{11}S_{13} + d_{12}S_{23} + d_{13}S_{33} + d_{14}S_{43}$
- $\rightarrow b_{14} = d_{11}S_{14} + d_{12}S_{24} + d_{13}S_{34} + d_{14}S_{44}$
- $\rightarrow b_{21} = d_{21}S_{11} + d_{22}S_{21} + d_{23}S_{31} + d_{24}S_{41}$
- $\rightarrow b_{22} = d_{21}S_{12} + d_{22}S_{22} + d_{23}S_{32} + d_{24}S_{42}$
- $\rightarrow b_{23} = d_{21}S_{13} + d_{22}S_{23} + d_{23}S_{33} + d_{24}S_{43}$
- $\rightarrow b_{24} = d_{21}S_{14} + d_{22}S_{24} + d_{23}S_{34} + d_{24}S_{44}$
- $\rightarrow b_{31} = d_{31}S_{11} + d_{32}S_{21} + d_{33}S_{31} + d_{34}S_{41}$
- $\rightarrow b_{32} = d_{31}S_{12} + d_{32}S_{22} + d_{33}S_{32} + d_{34}S_{42}$
- $\rightarrow b_{33} = d_{31}S_{13} + d_{32}S_{23} + d_{33}S_{33} + d_{34}S_{43}$
- $\rightarrow b_{34} = d_{31}S_{14} + d_{32}S_{24} + d_{33}S_{34} + d_{34}S_{44}$
- $\rightarrow b_{41} = d_{41}S_{11} + d_{42}S_{21} + d_{43}S_{31} + d_{44}S_{41}$
- $\rightarrow b_{42} = d_{41}S_{12} + d_{42}S_{22} + d_{43}S_{32} + d_{44}S_{42}$
- $\rightarrow b_{43} = d_{41}S_{13} + d_{42}S_{23} + d_{43}S_{33} + d_{44}S_{43}$
- $\rightarrow b_{44} = d_{41}S_{14} + d_{42}S_{24} + d_{43}S_{34} + d_{44}S_{44}$
- $\rightarrow d_{44} = -2; -1; 0; 1; 2$
- $\rightarrow d_{33} = d_{11}$
- $\rightarrow d_{22} = d_{11}$
- $\rightarrow d_{11} = -2; -1; 0; 1; 2$
- $\rightarrow d_{12} = 1$
- $\rightarrow d_{13} = 0$
- $\rightarrow d_{14} = 0$
- \rightarrow $d_{21} = 0$
- $\rightarrow d_{23} = 1$

$$\rightarrow$$
 $d_{24} = 0$

$$\rightarrow d_{31} = 0$$

$$\rightarrow$$
 $d_{32} = 0$

$$\rightarrow d_{34} = 0$$

$$\rightarrow d_{41} = 0$$

$$\rightarrow d_{42} = 0$$

$$\rightarrow$$
 $d_{43} = 0$

4)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

$$\sqrt{S} = \begin{pmatrix}
s_{11} & s_{12} & s_{13} & s_{14} \\
s_{21} & s_{22} & s_{23} & s_{24} \\
s_{31} & s_{32} & s_{33} & s_{34} \\
s_{41} & s_{42} & s_{43} & s_{44}
\end{pmatrix},
J = \begin{pmatrix}
d_{11} & 1 & 0 & 0 \\
0 & d_{22} & 1 & 0 \\
0 & 0 & d_{33} & 1 \\
0 & 0 & 0 & d_{44}
\end{pmatrix}$$

$$\rightarrow a_{11} = s_{11}b_{11} + s_{12}b_{21} + s_{13}b_{31} + s_{14}b_{41}$$

$$\rightarrow a_{12} = s_{11}b_{12} + s_{12}b_{22} + s_{13}b_{32} + s_{14}b_{42}$$

$$\rightarrow a_{13} = s_{11}b_{13} + s_{12}b_{23} + s_{13}b_{33} + s_{14}b_{43}$$

$$\rightarrow a_{14} = s_{11}b_{14} + s_{12}b_{24} + s_{13}b_{34} + s_{14}b_{44}$$

$$\rightarrow a_{21} = s_{21}b_{11} + s_{22}b_{21} + s_{23}b_{31} + s_{24}b_{41}$$

$$\rightarrow a_{22} = s_{21}b_{12} + s_{22}b_{22} + s_{23}b_{32} + s_{24}b_{42}$$

$$\rightarrow a_{23} = s_{21}b_{13} + s_{22}b_{23} + s_{23}b_{33} + s_{24}b_{43}$$

$$\rightarrow a_{24} = s_{21}b_{14} + s_{22}b_{24} + s_{23}b_{34} + s_{24}b_{44}$$

$$\rightarrow a_{31} = s_{31}b_{11} + s_{32}b_{21} + s_{33}b_{31} + s_{34}b_{41}$$

$$\rightarrow a_{32} = s_{31}b_{12} + s_{32}b_{22} + s_{33}b_{32} + s_{34}b_{42}$$

$$\rightarrow a_{33} = s_{31}b_{13} + s_{32}b_{23} + s_{33}b_{33} + s_{34}b_{43}$$

$$\rightarrow a_{34} = s_{31}b_{14} + s_{32}b_{24} + s_{33}b_{34} + s_{34}b_{44}$$

$$\rightarrow a_{41} = s_{41}b_{11} + s_{42}b_{21} + s_{43}b_{31} + s_{44}b_{41}$$

$$\rightarrow a_{42} = s_{41}b_{12} + s_{42}b_{22} + s_{43}b_{32} + s_{44}b_{42}$$

$$\rightarrow a_{43} = s_{41}b_{13} + s_{42}b_{23} + s_{43}b_{33} + s_{44}b_{43}$$

$$\rightarrow a_{44} = s_{41}b_{14} + s_{42}b_{24} + s_{43}b_{34} + s_{44}b_{44}$$

$$\rightarrow b_{11} = d_{11}S_{11} + d_{12}S_{21} + d_{13}S_{31} + d_{14}S_{41}$$

$$\rightarrow b_{12} = d_{11}S_{12} + d_{12}S_{22} + d_{13}S_{32} + d_{14}S_{42}$$

$$\rightarrow b_{13} = d_{11}S_{13} + d_{12}S_{23} + d_{13}S_{33} + d_{14}S_{43}$$

$$7 \quad 013 = \alpha_{11} \beta_{13} + \alpha_{12} \beta_{23} + \alpha_{13} \beta_{33} + \alpha_{14} \beta_{43}$$

$$\rightarrow b_{14} = d_{11}S_{14} + d_{12}S_{24} + d_{13}S_{34} + d_{14}S_{44}$$

$$\rightarrow b_{21} = d_{21}S_{11} + d_{22}S_{21} + d_{23}S_{31} + d_{24}S_{41}$$

$$\rightarrow b_{22} = d_{21}S_{12} + d_{22}S_{22} + d_{23}S_{32} + d_{24}S_{42}$$

$$\rightarrow b_{23} = d_{21}S_{13} + d_{22}S_{23} + d_{23}S_{33} + d_{24}S_{43}$$

$$\rightarrow b_{24} = d_{21}S_{14} + d_{22}S_{24} + d_{23}S_{34} + d_{24}S_{44}$$

- $\rightarrow b_{31} = d_{31}S_{11} + d_{32}S_{21} + d_{33}S_{31} + d_{34}S_{41}$
- $\rightarrow b_{32} = d_{31}S_{12} + d_{32}S_{22} + d_{33}S_{32} + d_{34}S_{42}$
- $\rightarrow b_{33} = d_{31}S_{13} + d_{32}S_{23} + d_{33}S_{33} + d_{34}S_{43}$
- $\rightarrow b_{34} = d_{31}S_{14} + d_{32}S_{24} + d_{33}S_{34} + d_{34}S_{44}$
- $\rightarrow b_{41} = d_{41}S_{11} + d_{42}S_{21} + d_{43}S_{31} + d_{44}S_{41}$
- $\rightarrow b_{42} = d_{41}S_{12} + d_{42}S_{22} + d_{43}S_{32} + d_{44}S_{42}$
- $\rightarrow b_{43} = d_{41}S_{13} + d_{42}S_{23} + d_{43}S_{33} + d_{44}S_{43}$
- $\rightarrow b_{44} = d_{41}S_{14} + d_{42}S_{24} + d_{43}S_{34} + d_{44}S_{44}$
- $\rightarrow d_{44} = d_{11}$
- $\rightarrow d_{33} = d_{11}$
- $\rightarrow d_{22} = d_{11}$
- \rightarrow $d_{11} = -2$; -1; 0; 1; 2
- \rightarrow $d_{12} = 1$
- \rightarrow $d_{13} = 0$
- \rightarrow $d_{14} = 0$
- \rightarrow $d_{21} = 0$
- \rightarrow $d_{23} = 1$
- \rightarrow $d_{24} = 0$
- $\rightarrow d_{31} = 0$
- $\rightarrow d_{32} = 0$
- \rightarrow $d_{34} = 1$
- $\rightarrow d_{41} = 0$
- \rightarrow $d_{42} = 0$
- $\rightarrow d_{43} = 0$

100. Найти собственные значения λ_i и соответствующие им базисы собственных векторов L_i линейного оператора, заданного в каноническом базисе пространства $\mathbb{R}_{3,1}$ матрицей A:

$$\Rightarrow A = \frac{d}{\Delta}$$

$$\Rightarrow B = -\frac{b}{\Delta}$$

$$\Rightarrow C = -\frac{c}{\Delta}$$

$$\Rightarrow D = \frac{a}{\Delta}$$

$$\Rightarrow a = d(bc + \Delta)$$

$$\Rightarrow \Delta = -1; 1$$

$$\Rightarrow$$
 $d = -1; 1$

$$\Rightarrow b = -3; -2; 2; 3$$

$$\Rightarrow$$
 $c = -2; -1; 1; 2$

1)
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

$$\sqrt{\lambda_1 = d_{11}}, \ L_1 = \left(\begin{bmatrix} a \\ c \end{bmatrix} \right), \quad \lambda_2 = d_{22}, \ L_2 = \left(\begin{bmatrix} b \\ d \end{bmatrix} \right)$$

$$\rightarrow a_{11} = ab_{11} + bb_{21}$$

$$\rightarrow a_{12} = ab_{12} + bb_{22}$$

$$\rightarrow a_{21} = cb_{11} + db_{21}$$

$$\rightarrow a_{22} = cb_{12} + db_{22}$$

$$\rightarrow b_{11} = d_{11}A + d_{12}C$$

$$\rightarrow b_{12} = d_{11}B + d_{12}D$$

$$\rightarrow b_{21} = d_{21}A + d_{22}C$$

$$\rightarrow b_{22} = d_{21}B + d_{22}D$$

- $\rightarrow d_{11}, d_{22} =$
 - -5, -3;
 - -5, -2;
 - -5, -1;
 - -5, 1;
 - -5, 2;
 - -5, 3;
 - -5, 5;
 - -3, -2;
 - -3, -1;
 - -3, 0;
 - -3, 1;
 - -3, 2;
 - -3, 3;
 - -3, 5;
 - -2, -1;
 - -2, 1;
 - -2, 2;
 - -2, 3;
 - -2, 4;
 - -2, 5;
 - -1, 0;
 - -1, 1;
 - -1, 2;
 - -1, 3;
 - -1, 4;
 - -1, 5;
 - 0, 3;
 - 0, 5;
 - 1, 2;
 - 1, 3;
 - 1, 4;
 - 1, 5;
 - 2, 3;
 - 2, 4;
 - 2, 5;
 - 3, 5
- \rightarrow $d_{12} = 0$

$$\rightarrow$$
 $d_{21} = 0$

$$2) \quad A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

$$\sqrt{} \lambda_1 = d_{11}, \,\, L_1 = \left(\left\lceil rac{a}{c}
ight
ceil
ight)$$

$$\rightarrow a_{11} = ab_{11} + bb_{21}$$

$$\rightarrow a_{12} = ab_{12} + bb_{22}$$

$$\rightarrow a_{21} = cb_{11} + db_{21}$$

$$\rightarrow a_{22} = cb_{12} + db_{22}$$

$$\rightarrow b_{11} = d_{11}A + d_{12}C$$

$$\rightarrow b_{12} = d_{11}B + d_{12}D$$

$$\rightarrow b_{21} = d_{21}A + d_{22}C$$

$$\rightarrow b_{22} = d_{21}B + d_{22}D$$

$$\rightarrow d_{22} = d_{11}$$

$$\rightarrow$$
 $d_{11} = -5$; -4 ; -3 ; -2 ; -1 ; 1 ; 2 ; 3 ; 4 ; 5

$$\rightarrow$$
 $d_{12} = 1$

$$\rightarrow$$
 $d_{21} = 0$

- **101.** Найти собственные значения λ_i и соответствующие им базисы собственных векторов L_i линейного оператора, заданного в каноническом базисе пространства $\mathbb{R}_{3,1}$ матрицей A:
 - $\Rightarrow S_{11} = R_{11} k_{31}S_{13} k_{21}S_{12}$
 - \Rightarrow $S_{21} = -k_{31}S_{23} k_{21}S_{22}$
 - $\Rightarrow S_{31} = -k_{31}S_{33} k_{21}S_{32}$
 - \Rightarrow $S_{12} = R_{12} k_{32}S_{13}$
 - $\Rightarrow S_{22} = R_{22} k_{32}S_{23}$
 - $\Rightarrow S_{32} = -k_{32}S_{33}$
 - $\Rightarrow S_{13} = R_{13}$
 - \Rightarrow $S_{23} = R_{23}$
 - \Rightarrow $S_{33} = R_{33}$
 - $\Rightarrow R_{13} = -k_{13}R_{11}$
 - $\Rightarrow R_{23} = -k_{23}R_{22}$
 - $\Rightarrow R_{12} = -k_{12}R_{11}$
 - $\Rightarrow R_{11} = \frac{1}{r_{11}}$
 - $\Rightarrow R_{22} = \frac{1}{r_{22}}$
 - $\Rightarrow R_{33} = \frac{1}{r_{33}}$
 - \Rightarrow $s_{33} = r_{33} + k_{32}r_{23} + k_{31}r_{13}$
 - $\Rightarrow s_{32} = k_{32}r_{22} + k_{31}r_{12}$
 - $\Rightarrow s_{31} = k_{31}r_{11}$
 - $\Rightarrow s_{23} = r_{23} + k_{21}r_{13}$
 - $\Rightarrow s_{22} = r_{22} + k_{21}r_{12}$
 - $\Rightarrow s_{21} = k_{21}r_{11}$
 - \Rightarrow $s_{11} = r_{11}$
 - \Rightarrow $s_{12} = r_{12}$
 - \Rightarrow $s_{13} = r_{13}$
 - $\Rightarrow r_{13} = k_{13}r_{33} + k_{12}r_{23}$
 - $\Rightarrow r_{12} = k_{12}r_{22}$
 - $\Rightarrow r_{23} = k_{23}r_{33}$
 - $\Rightarrow r_{11} = -1; 1$
 - $\Rightarrow r_{22} = -1; 1$
 - $\Rightarrow r_{33} = -1; 1$
 - $\Rightarrow k_{12} = -1; 1$
 - $\Rightarrow k_{13} = -2; -1; 0; 1; 2$
 - $\Rightarrow k_{23} = -2; -1; 1; 2$

$$\Rightarrow k_{31} = -2; -1; 0; 1; 2$$

$$\Rightarrow k_{32} = -1; 1$$

$$\Rightarrow k_{21} = -1; 1$$

1)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\sqrt{\lambda_1 = d_{11}, \ L_1 = \begin{pmatrix} s_{11} \\ s_{21} \\ s_{31} \end{pmatrix}, \quad \lambda_2 = d_{22}, \ L_2 = \begin{pmatrix} s_{12} \\ s_{22} \\ s_{32} \end{pmatrix}, \quad \lambda_3 = d_{33}, \ L_3 = \begin{pmatrix} s_{13} \\ s_{23} \\ s_{33} \end{pmatrix}}$$

$$\rightarrow a_{11} = s_{11}b_{11} + s_{12}b_{21} + s_{13}b_{31}$$

$$\rightarrow a_{12} = s_{11}b_{12} + s_{12}b_{22} + s_{13}b_{32}$$

$$\rightarrow a_{13} = s_{11}b_{13} + s_{12}b_{23} + s_{13}b_{33}$$

$$\rightarrow a_{21} = s_{21}b_{11} + s_{22}b_{21} + s_{23}b_{31}$$

$$\rightarrow a_{22} = s_{21}b_{12} + s_{22}b_{22} + s_{23}b_{32}$$

$$\rightarrow a_{23} = s_{21}b_{13} + s_{22}b_{23} + s_{23}b_{33}$$

$$\rightarrow a_{31} = s_{31}b_{11} + s_{32}b_{21} + s_{33}b_{31}$$

$$\rightarrow a_{32} = s_{31}b_{12} + s_{32}b_{22} + s_{33}b_{32}$$

$$\rightarrow a_{33} = s_{31}b_{13} + s_{32}b_{23} + s_{33}b_{33}$$

$$\rightarrow b_{11} = d_{11}S_{11} + d_{12}S_{21} + d_{13}S_{31}$$

$$\rightarrow b_{12} = d_{11}S_{12} + d_{12}S_{22} + d_{13}S_{32}$$

$$\rightarrow b_{13} = d_{11}S_{13} + d_{12}S_{23} + d_{13}S_{33}$$

$$\rightarrow b_{21} = d_{21}S_{11} + d_{22}S_{21} + d_{23}S_{31}$$

$$\rightarrow b_{22} = d_{21}S_{12} + d_{22}S_{22} + d_{23}S_{32}$$

$$\rightarrow b_{23} = d_{21}S_{13} + d_{22}S_{23} + d_{23}S_{33}$$

$$\rightarrow b_{31} = d_{31}S_{11} + d_{32}S_{21} + d_{33}S_{31}$$

$$\rightarrow b_{32} = d_{31}S_{12} + d_{32}S_{22} + d_{33}S_{32}$$

$$\rightarrow b_{33} = d_{31}S_{13} + d_{32}S_{23} + d_{33}S_{33}$$

$$\rightarrow d_{33} = d_{22} + l$$

$$\rightarrow d_{22} = d_{11} + k$$

$$\rightarrow k$$
, $l =$

$$\rightarrow d_{11} = -3; -2; -1$$

$$\rightarrow d_{12} = 0$$

$$\rightarrow$$
 $d_{13} = 0$

$$\rightarrow d_{21} = 0$$

$$\rightarrow$$
 $d_{23} = 0$

$$\rightarrow d_{31} = 0$$

$$\rightarrow d_{32} = 0$$

2)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\sqrt{\lambda_1 = d_{11}, \ L_1 = \left(\begin{bmatrix} s_{11} \\ s_{21} \\ s_{31} \end{bmatrix}, \begin{bmatrix} s_{12} \\ s_{22} \\ s_{32} \end{bmatrix} \right)}, \quad \lambda_2 = d_{33}, \ L_2 = \left(\begin{bmatrix} s_{13} \\ s_{23} \\ s_{33} \end{bmatrix} \right)$$

$$\rightarrow a_{11} = s_{11}b_{11} + s_{12}b_{21} + s_{13}b_{31}$$

$$\rightarrow a_{12} = s_{11}b_{12} + s_{12}b_{22} + s_{13}b_{32}$$

$$\rightarrow a_{13} = s_{11}b_{13} + s_{12}b_{23} + s_{13}b_{33}$$

$$\rightarrow a_{21} = s_{21}b_{11} + s_{22}b_{21} + s_{23}b_{31}$$

$$\rightarrow a_{22} = s_{21}b_{12} + s_{22}b_{22} + s_{23}b_{32}$$

$$\rightarrow a_{23} = s_{21}b_{13} + s_{22}b_{23} + s_{23}b_{33}$$

$$\rightarrow a_{31} = s_{31}b_{11} + s_{32}b_{21} + s_{33}b_{31}$$

$$\rightarrow a_{32} = s_{31}b_{12} + s_{32}b_{22} + s_{33}b_{32}$$

$$\rightarrow a_{33} = s_{31}b_{13} + s_{32}b_{23} + s_{33}b_{33}$$

$$\rightarrow b_{11} = d_{11}S_{11} + d_{12}S_{21} + d_{13}S_{31}$$

$$\rightarrow b_{12} = d_{11}S_{12} + d_{12}S_{22} + d_{13}S_{32}$$

$$\rightarrow b_{13} = d_{11}S_{13} + d_{12}S_{23} + d_{13}S_{33}$$

$$\rightarrow b_{21} = d_{21}S_{11} + d_{22}S_{21} + d_{23}S_{31}$$

$$\rightarrow b_{22} = d_{21}S_{12} + d_{22}S_{22} + d_{23}S_{32}$$

$$\rightarrow b_{23} = d_{21}S_{13} + d_{22}S_{23} + d_{23}S_{33}$$

$$\rightarrow b_{31} = d_{31}S_{11} + d_{32}S_{21} + d_{33}S_{31}$$

$$\rightarrow b_{32} = d_{31}S_{12} + d_{32}S_{22} + d_{33}S_{32}$$

$$\rightarrow b_{33} = d_{31}S_{13} + d_{32}S_{23} + d_{33}S_{33}$$

$$\rightarrow d_{22} = d_{11}$$

$$\rightarrow d_{11}, d_{33} =$$

•
$$-2$$
, -3 ;

•
$$-2$$
, -1 ;

•
$$-2$$
, 0;

•
$$-2$$
, 1;

•
$$-2$$
, 2;

•
$$-2$$
, 3;

•
$$-1$$
, -3 ;

•
$$-1$$
, -2 ;

•
$$-1$$
, 0;

•
$$-1$$
, 1;

•
$$-1$$
, 2;

•
$$-1$$
, 3;

•
$$1, -3;$$

• 1,
$$-2$$
;

• 1,
$$-1$$
;

•
$$2, -3;$$

•
$$2, -2;$$

•
$$2, -1;$$

•

$$\rightarrow$$
 $d_{12} = 0$

$$\rightarrow$$
 $d_{13} = 0$

$$\rightarrow$$
 $d_{21} = 0$

$$\rightarrow$$
 $d_{23} = 0$

$$\rightarrow$$
 $d_{31} = 0$

$$\rightarrow$$
 $d_{32} = 0$

3)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\sqrt{\lambda_1 = d_{11}, \ L_1 = \begin{pmatrix} s_{11} \\ s_{21} \\ s_{31} \end{pmatrix}}, \quad \lambda_2 = d_{33}, \ L_2 = \begin{pmatrix} s_{13} \\ s_{23} \\ s_{33} \end{pmatrix}$$

$$\rightarrow a_{11} = s_{11}b_{11} + s_{12}b_{21} + s_{13}b_{31}$$

- $\rightarrow a_{12} = s_{11}b_{12} + s_{12}b_{22} + s_{13}b_{32}$
- $\rightarrow a_{13} = s_{11}b_{13} + s_{12}b_{23} + s_{13}b_{33}$
- $\rightarrow a_{21} = s_{21}b_{11} + s_{22}b_{21} + s_{23}b_{31}$
- $\rightarrow a_{22} = s_{21}b_{12} + s_{22}b_{22} + s_{23}b_{32}$
- $\rightarrow a_{23} = s_{21}b_{13} + s_{22}b_{23} + s_{23}b_{33}$
- $\rightarrow a_{31} = s_{31}b_{11} + s_{32}b_{21} + s_{33}b_{31}$
- $\rightarrow a_{32} = s_{31}b_{12} + s_{32}b_{22} + s_{33}b_{32}$
- $\rightarrow a_{33} = s_{31}b_{13} + s_{32}b_{23} + s_{33}b_{33}$
- $\rightarrow b_{11} = d_{11}S_{11} + d_{12}S_{21} + d_{13}S_{31}$
- $\rightarrow b_{12} = d_{11}S_{12} + d_{12}S_{22} + d_{13}S_{32}$
- $\rightarrow b_{13} = d_{11}S_{13} + d_{12}S_{23} + d_{13}S_{33}$
- $\rightarrow b_{21} = d_{21}S_{11} + d_{22}S_{21} + d_{23}S_{31}$
- $\rightarrow b_{22} = d_{21}S_{12} + d_{22}S_{22} + d_{23}S_{32}$
- $\rightarrow b_{23} = d_{21}S_{13} + d_{22}S_{23} + d_{23}S_{33}$
- $\rightarrow b_{31} = d_{31}S_{11} + d_{32}S_{21} + d_{33}S_{31}$
- $\rightarrow b_{32} = d_{31}S_{12} + d_{32}S_{22} + d_{33}S_{32}$
- $\rightarrow b_{33} = d_{31}S_{13} + d_{32}S_{23} + d_{33}S_{33}$
- \rightarrow $d_{22} = d_{11}$

$$\rightarrow d_{11}, d_{33} =$$

•
$$-2$$
, -3 ;

•
$$-2$$
, -1 ;

•
$$-2$$
, 0;

•
$$-2$$
, 1;

•
$$-2$$
, 2;

•
$$-2$$
, 3;

$$-1, -3;$$

•
$$-1$$
, -2 ;

•
$$-1$$
, 0;

$$-1, 1;$$

•
$$-1$$
, 2;

•
$$-1$$
, 3;

•
$$1, -3;$$

• 1,
$$-2$$
;

• 1,
$$-1$$
;

•
$$2, -3;$$

•
$$2, -2;$$

•
$$2, -1;$$

$$\rightarrow$$
 $d_{12} = 1$

$$\rightarrow$$
 $d_{13} = 0$

$$\rightarrow$$
 $d_{21} = 0$

$$\rightarrow$$
 $d_{23} = 0$

$$\rightarrow$$
 $d_{31} = 0$

$$\rightarrow$$
 $d_{32} = 0$

4)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\sqrt{\lambda_1 = d_{11}, \ L_1 = \left(\begin{bmatrix} s_{11} \\ s_{21} \\ s_{31} \end{bmatrix}, \begin{bmatrix} s_{13} \\ s_{23} \\ s_{33} \end{bmatrix} \right)}$$

$$\rightarrow a_{11} = s_{11}b_{11} + s_{12}b_{21} + s_{13}b_{31}$$

$$\rightarrow a_{12} = s_{11}b_{12} + s_{12}b_{22} + s_{13}b_{32}$$

$$\rightarrow a_{13} = s_{11}b_{13} + s_{12}b_{23} + s_{13}b_{33}$$

$$\rightarrow a_{21} = s_{21}b_{11} + s_{22}b_{21} + s_{23}b_{31}$$

$$\rightarrow a_{22} = s_{21}b_{12} + s_{22}b_{22} + s_{23}b_{32}$$

$$\rightarrow a_{23} = s_{21}b_{13} + s_{22}b_{23} + s_{23}b_{33}$$

$$\rightarrow a_{31} = s_{31}b_{11} + s_{32}b_{21} + s_{33}b_{31}$$

$$\rightarrow a_{32} = s_{31}b_{12} + s_{32}b_{22} + s_{33}b_{32}$$

$$\rightarrow a_{33} = s_{31}b_{13} + s_{32}b_{23} + s_{33}b_{33}$$

$$\rightarrow b_{11} = d_{11}S_{11} + d_{12}S_{21} + d_{13}S_{31}$$

$$\rightarrow b_{12} = d_{11}S_{12} + d_{12}S_{22} + d_{13}S_{32}$$

$$\rightarrow b_{13} = d_{11}S_{13} + d_{12}S_{23} + d_{13}S_{33}$$

$$\rightarrow b_{21} = d_{21}S_{11} + d_{22}S_{21} + d_{23}S_{31}$$

$$\rightarrow b_{22} = d_{21}S_{12} + d_{22}S_{22} + d_{23}S_{32}$$

$$\rightarrow b_{23} = d_{21}S_{13} + d_{22}S_{23} + d_{23}S_{33}$$

$$\rightarrow b_{31} = d_{31}S_{11} + d_{32}S_{21} + d_{33}S_{31}$$

$$\rightarrow b_{32} = d_{31}S_{12} + d_{32}S_{22} + d_{33}S_{32}$$

$$\rightarrow b_{33} = d_{31}S_{13} + d_{32}S_{23} + d_{33}S_{33}$$

$$\rightarrow d_{33} = d_{11}$$

$$\rightarrow d_{22} = d_{11}$$

$$\rightarrow$$
 $d_{11} = -3$; -2 ; -1 ; 1 ; 2 ; 3

$$\rightarrow d_{12} = 1$$

$$\rightarrow d_{13} = 0$$

$$\rightarrow$$
 $d_{21} = 0$

$$\rightarrow d_{23} = 0$$

$$\rightarrow d_{31} = 0$$

$$\rightarrow d_{32} = 0$$

5)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\sqrt{\lambda_1} = d_{11}, \ L_1 = \left(\begin{bmatrix} s_{11} \\ s_{21} \\ s_{31} \end{bmatrix} \right)$$

$$\rightarrow a_{11} = s_{11}b_{11} + s_{12}b_{21} + s_{13}b_{31}$$

$$\rightarrow a_{12} = s_{11}b_{12} + s_{12}b_{22} + s_{13}b_{32}$$

$$\rightarrow a_{13} = s_{11}b_{13} + s_{12}b_{23} + s_{13}b_{33}$$

$$\rightarrow a_{21} = s_{21}b_{11} + s_{22}b_{21} + s_{23}b_{31}$$

$$\rightarrow a_{22} = s_{21}b_{12} + s_{22}b_{22} + s_{23}b_{32}$$

$$\rightarrow a_{23} = s_{21}b_{13} + s_{22}b_{23} + s_{23}b_{33}$$

$$\rightarrow a_{31} = s_{31}b_{11} + s_{32}b_{21} + s_{33}b_{31}$$

$$\rightarrow a_{32} = s_{31}b_{12} + s_{32}b_{22} + s_{33}b_{32}$$

- $\rightarrow a_{33} = s_{31}b_{13} + s_{32}b_{23} + s_{33}b_{33}$
- $\rightarrow b_{11} = d_{11}S_{11} + d_{12}S_{21} + d_{13}S_{31}$
- $\rightarrow b_{12} = d_{11}S_{12} + d_{12}S_{22} + d_{13}S_{32}$
- $\rightarrow b_{13} = d_{11}S_{13} + d_{12}S_{23} + d_{13}S_{33}$
- $\rightarrow b_{21} = d_{21}S_{11} + d_{22}S_{21} + d_{23}S_{31}$
- $\rightarrow b_{22} = d_{21}S_{12} + d_{22}S_{22} + d_{23}S_{32}$
- $\rightarrow b_{23} = d_{21}S_{13} + d_{22}S_{23} + d_{23}S_{33}$
- $\rightarrow b_{31} = d_{31}S_{11} + d_{32}S_{21} + d_{33}S_{31}$
- $\rightarrow b_{32} = d_{31}S_{12} + d_{32}S_{22} + d_{33}S_{32}$
- $\rightarrow b_{33} = d_{31}S_{13} + d_{32}S_{23} + d_{33}S_{33}$
- $\rightarrow d_{33} = d_{11}$
- $\rightarrow d_{22} = d_{11}$
- \rightarrow $d_{11} = -3; -2; -1; 1; 2; 3$
- \rightarrow $d_{12} = 1$
- \rightarrow $d_{13} = 0$
- \rightarrow $d_{21} = 0$
- \rightarrow $d_{23} = 1$
- \rightarrow $d_{31} = 0$
- \rightarrow $d_{32} = 0$

102. Найти собственные значения λ_i и соответствующие им базисы собственных векторов L_i линейного оператора, заданного в каноническом базисе пространства $\mathbb{R}_{3,1}$ матрицей A:

$$\Rightarrow S_{11} = -k_{41}S_{14} - k_{31}S_{13} - k_{21}S_{12} + R_{11}$$

$$\Rightarrow S_{21} = -k_{41}S_{24} - k_{31}S_{23} - k_{21}S_{22}$$

$$\Rightarrow S_{31} = -k_{41}S_{34} - k_{31}S_{33} - k_{21}S_{32}$$

$$\Rightarrow S_{41} = -k_{41}S_{44} - k_{31}S_{43} - k_{21}S_{42}$$

$$\Rightarrow S_{12} = -k_{42}S_{14} - k_{32}S_{13} + R_{12}$$

$$\Rightarrow S_{22} = -k_{42}S_{24} - k_{32}S_{23} + R_{22}$$

$$\Rightarrow S_{32} = -k_{42}S_{34} - k_{32}S_{33}$$

$$\Rightarrow S_{42} = -k_{42}S_{44} - k_{32}S_{43}$$

$$\Rightarrow S_{13} = -k_{43}S_{14} + R_{13}$$

$$\Rightarrow S_{23} = -k_{43}S_{24} + R_{23}$$

$$\Rightarrow S_{33} = -k_{43}S_{34} + R_{33}$$

$$\Rightarrow S_{43} = -k_{43}S_{44}$$

$$\Rightarrow S_{14} = R_{14}$$

$$\Rightarrow$$
 $S_{24} = R_{24}$

$$\Rightarrow S_{34} = R_{34}$$

$$\Rightarrow S_{44} = R_{44}$$

$$\Rightarrow R_{14} = -k_{14}R_{11}$$

$$\Rightarrow R_{24} = -k_{24}R_{22}$$

$$\Rightarrow R_{34} = -k_{34}R_{33}$$

$$\Rightarrow R_{13} = -k_{13}R_{11}$$

$$\Rightarrow R_{23} = -k_{23}R_{22}$$

$$\Rightarrow R_{12} = -k_{12}R_{11}$$

$$\Rightarrow R_{11} = \frac{1}{r_{11}}$$

$$\Rightarrow R_{22} = \frac{1}{r_{22}}$$

$$\Rightarrow R_{33} = \frac{1}{r_{33}}$$

$$\Rightarrow R_{44} = \frac{1}{r_{44}}$$

$$\Rightarrow$$
 $s_{44} = k_{41}r_{14} + k_{42}r_{24} + k_{43}r_{34} + r_{44}$

$$\Rightarrow s_{43} = k_{41}r_{13} + k_{42}r_{23} + k_{43}r_{33}$$

$$\Rightarrow s_{42} = k_{41}r_{12} + k_{42}r_{22}$$

$$\Rightarrow s_{41} = k_{41}r_{11}$$

$$\Rightarrow$$
 $s_{34} = k_{31}r_{14} + k_{32}r_{24} + r_{34}$

$$\Rightarrow s_{33} = k_{31}r_{13} + k_{32}r_{23} + r_{33}$$

- \Rightarrow $s_{32} = k_{31}r_{12} + k_{32}r_{22}$
- $\Rightarrow s_{31} = k_{31}r_{11}$
- $\Rightarrow s_{24} = k_{21}r_{14} + r_{24}$
- $\Rightarrow s_{23} = k_{21}r_{13} + r_{23}$
- $\Rightarrow s_{22} = k_{21}r_{12} + r_{22}$
- $\Rightarrow s_{21} = k_{21}r_{11}$
- $\Rightarrow s_{11} = r_{11}$
- \Rightarrow $s_{12} = r_{12}$
- $\Rightarrow s_{13} = r_{13}$
- $\Rightarrow s_{14} = r_{14}$
- $\Rightarrow r_{14} = k_{12}r_{24} + k_{13}r_{34} + k_{14}r_{44}$
- $\Rightarrow r_{13} = k_{12}r_{23} + k_{13}r_{33}$
- $\Rightarrow r_{12} = k_{12}r_{22}$
- $\Rightarrow r_{24} = k_{23}r_{34} + k_{24}r_{44}$
- $\Rightarrow r_{23} = k_{23}r_{33}$
- $\Rightarrow r_{34} = k_{34}r_{44}$
- $\Rightarrow r_{11} = -1; 1$
- $\Rightarrow r_{22} = -1; 1$
- $\Rightarrow r_{33} = -1; 1$
- $\Rightarrow r_{44} = -1; 1$
- $\Rightarrow k_{12} = -1; 1$
- $\Rightarrow k_{13} = -1; 1$
- $\Rightarrow k_{14} = -1; 1$
- $\Rightarrow k_{23} = -1; 1$
- $\Rightarrow k_{24} = -1; 1$
- $\Rightarrow k_{34} = -1; 1$
- $\Rightarrow k_{21} = -1; 1$
- $\Rightarrow k_{31} = -1; 1$
- $\Rightarrow k_{41} = -1; 1$
- $\Rightarrow k_{32} = -1; 1$
- $\Rightarrow k_{42} = -1; 1$
- $\Rightarrow k_{43} = -1; 1$

1)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

$$\sqrt{\quad \lambda_1 = d_{11}, \ L_1 = \left(\begin{bmatrix} s_{11} \\ s_{21} \\ s_{31} \\ s_{41} \end{bmatrix} \right)}, \quad \lambda_2 = d_{22}, \ L_2 = \left(\begin{bmatrix} s_{12} \\ s_{22} \\ s_{32} \\ s_{42} \end{bmatrix} \right), \quad \lambda_3 = d_{33}, \ L_3 = \left(\begin{bmatrix} s_{13} \\ s_{23} \\ s_{33} \\ s_{43} \end{bmatrix} \right), \quad \lambda_4 = d_{44},$$

$$\rightarrow a_{11} = s_{11}b_{11} + s_{12}b_{21} + s_{13}b_{31} + s_{14}b_{41}$$

$$\rightarrow a_{12} = s_{11}b_{12} + s_{12}b_{22} + s_{13}b_{32} + s_{14}b_{42}$$

$$\rightarrow a_{13} = s_{11}b_{13} + s_{12}b_{23} + s_{13}b_{33} + s_{14}b_{43}$$

$$\rightarrow a_{14} = s_{11}b_{14} + s_{12}b_{24} + s_{13}b_{34} + s_{14}b_{44}$$

$$\rightarrow a_{21} = s_{21}b_{11} + s_{22}b_{21} + s_{23}b_{31} + s_{24}b_{41}$$

$$\rightarrow a_{22} = s_{21}b_{12} + s_{22}b_{22} + s_{23}b_{32} + s_{24}b_{42}$$

$$\rightarrow a_{23} = s_{21}b_{13} + s_{22}b_{23} + s_{23}b_{33} + s_{24}b_{43}$$

$$\rightarrow a_{24} = s_{21}b_{14} + s_{22}b_{24} + s_{23}b_{34} + s_{24}b_{44}$$

$$\rightarrow a_{31} = s_{31}b_{11} + s_{32}b_{21} + s_{33}b_{31} + s_{34}b_{41}$$

$$\rightarrow a_{32} = s_{31}b_{12} + s_{32}b_{22} + s_{33}b_{32} + s_{34}b_{42}$$

$$\rightarrow a_{33} = s_{31}b_{13} + s_{32}b_{23} + s_{33}b_{33} + s_{34}b_{43}$$

$$\rightarrow a_{34} = s_{31}b_{14} + s_{32}b_{24} + s_{33}b_{34} + s_{34}b_{44}$$

$$\rightarrow a_{41} = s_{41}b_{11} + s_{42}b_{21} + s_{43}b_{31} + s_{44}b_{41}$$

$$\rightarrow a_{42} = s_{41}b_{12} + s_{42}b_{22} + s_{43}b_{32} + s_{44}b_{42}$$

$$\rightarrow a_{43} = s_{41}b_{13} + s_{42}b_{23} + s_{43}b_{33} + s_{44}b_{43}$$

$$\rightarrow a_{44} = s_{41}b_{14} + s_{42}b_{24} + s_{43}b_{34} + s_{44}b_{44}$$

$$\rightarrow b_{11} = d_{11}S_{11} + d_{12}S_{21} + d_{13}S_{31} + d_{14}S_{41}$$

$$\rightarrow b_{12} = d_{11}S_{12} + d_{12}S_{22} + d_{13}S_{32} + d_{14}S_{42}$$

$$\rightarrow b_{13} = d_{11}S_{13} + d_{12}S_{23} + d_{13}S_{33} + d_{14}S_{43}$$

$$\rightarrow b_{14} = d_{11}S_{14} + d_{12}S_{24} + d_{13}S_{34} + d_{14}S_{44}$$

$$\rightarrow b_{21} = d_{21}S_{11} + d_{22}S_{21} + d_{23}S_{31} + d_{24}S_{41}$$

$$\rightarrow b_{22} = d_{21}S_{12} + d_{22}S_{22} + d_{23}S_{32} + d_{24}S_{42}$$

$$\rightarrow b_{23} = d_{21}S_{13} + d_{22}S_{23} + d_{23}S_{33} + d_{24}S_{43}$$

$$\rightarrow b_{24} = d_{21}S_{14} + d_{22}S_{24} + d_{23}S_{34} + d_{24}S_{44}$$

$$\rightarrow b_{31} = d_{31}S_{11} + d_{32}S_{21} + d_{33}S_{31} + d_{34}S_{41}$$

$$\rightarrow b_{32} = d_{31}S_{12} + d_{32}S_{22} + d_{33}S_{32} + d_{34}S_{42}$$

$$\rightarrow b_{33} = d_{31}S_{13} + d_{32}S_{23} + d_{33}S_{33} + d_{34}S_{43}$$

$$\rightarrow b_{34} = d_{31}S_{14} + d_{32}S_{24} + d_{33}S_{34} + d_{34}S_{44}$$

$$\rightarrow b_{41} = d_{41}S_{11} + d_{42}S_{21} + d_{43}S_{31} + d_{44}S_{41}$$

$$\rightarrow b_{42} = d_{41}S_{12} + d_{42}S_{22} + d_{43}S_{32} + d_{44}S_{42}$$

$$\rightarrow b_{43} = d_{41}S_{13} + d_{42}S_{23} + d_{43}S_{33} + d_{44}S_{43}$$

$$\rightarrow b_{44} = d_{41}S_{14} + d_{42}S_{24} + d_{43}S_{34} + d_{44}S_{44}$$

$$\rightarrow d_{11}, d_{22}, d_{33}, d_{44} =$$

•
$$-2$$
, -1 , 0 , 1 ;

•
$$-2$$
, -1 , 0 , 2 ;

$$-2$$
, -1 , 1 , 2 ;

$$-2, 0, 1, 2;$$

$$\bullet$$
 -1, 0, 1, 2

$$\rightarrow d_{12} = 0$$

$$\rightarrow d_{13} = 0$$

$$\rightarrow d_{14} = 0$$

$$\rightarrow d_{21} = 0$$

$$\rightarrow d_{23} = 0$$

$$\rightarrow d_{24} = 0$$

$$\rightarrow d_{31} = 0$$

$$\rightarrow d_{32} = 0$$

$$\rightarrow$$
 $d_{34} = 0$

$$\rightarrow d_{41} = 0$$

$$\rightarrow d_{42} = 0$$

$$\rightarrow d_{43} = 0$$

2)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

$$\sqrt{\quad \lambda_1 = d_{11}, \ L_1 = \left(\begin{bmatrix} s_{11} \\ s_{21} \\ s_{31} \\ s_{41} \end{bmatrix}, \begin{bmatrix} s_{12} \\ s_{22} \\ s_{32} \\ s_{42} \end{bmatrix} \right)}, \quad \lambda_2 = d_{33}, \ L_2 = \left(\begin{bmatrix} s_{13} \\ s_{23} \\ s_{33} \\ s_{43} \end{bmatrix} \right), \quad \lambda_3 = d_{44}, \ L_3 = \left(\begin{bmatrix} s_{14} \\ s_{24} \\ s_{34} \\ s_{44} \end{bmatrix} \right)$$

$$\rightarrow a_{11} = s_{11}b_{11} + s_{12}b_{21} + s_{13}b_{31} + s_{14}b_{41}$$

$$\rightarrow a_{12} = s_{11}b_{12} + s_{12}b_{22} + s_{13}b_{32} + s_{14}b_{42}$$

$$\rightarrow a_{13} = s_{11}b_{13} + s_{12}b_{23} + s_{13}b_{33} + s_{14}b_{43}$$

$$\rightarrow a_{14} = s_{11}b_{14} + s_{12}b_{24} + s_{13}b_{34} + s_{14}b_{44}$$

$$\rightarrow a_{21} = s_{21}b_{11} + s_{22}b_{21} + s_{23}b_{31} + s_{24}b_{41}$$

$$\rightarrow a_{22} = s_{21}b_{12} + s_{22}b_{22} + s_{23}b_{32} + s_{24}b_{42}$$

$$\rightarrow a_{23} = s_{21}b_{13} + s_{22}b_{23} + s_{23}b_{33} + s_{24}b_{43}$$

$$\rightarrow a_{24} = s_{21}b_{14} + s_{22}b_{24} + s_{23}b_{34} + s_{24}b_{44}$$

$$\rightarrow a_{31} = s_{31}b_{11} + s_{32}b_{21} + s_{33}b_{31} + s_{34}b_{41}$$

$$\rightarrow a_{32} = s_{31}b_{12} + s_{32}b_{22} + s_{33}b_{32} + s_{34}b_{42}$$

$$\rightarrow a_{33} = s_{31}b_{13} + s_{32}b_{23} + s_{33}b_{33} + s_{34}b_{43}$$

$$\rightarrow a_{34} = s_{31}b_{14} + s_{32}b_{24} + s_{33}b_{34} + s_{34}b_{44}$$

$$\rightarrow a_{41} = s_{41}b_{11} + s_{42}b_{21} + s_{43}b_{31} + s_{44}b_{41}$$

- $\rightarrow a_{42} = s_{41}b_{12} + s_{42}b_{22} + s_{43}b_{32} + s_{44}b_{42}$
- $\rightarrow a_{43} = s_{41}b_{13} + s_{42}b_{23} + s_{43}b_{33} + s_{44}b_{43}$
- $\rightarrow a_{44} = s_{41}b_{14} + s_{42}b_{24} + s_{43}b_{34} + s_{44}b_{44}$
- $\rightarrow b_{11} = d_{11}S_{11} + d_{12}S_{21} + d_{13}S_{31} + d_{14}S_{41}$
- $\rightarrow b_{12} = d_{11}S_{12} + d_{12}S_{22} + d_{13}S_{32} + d_{14}S_{42}$
- $\rightarrow b_{13} = d_{11}S_{13} + d_{12}S_{23} + d_{13}S_{33} + d_{14}S_{43}$
- $\rightarrow b_{14} = d_{11}S_{14} + d_{12}S_{24} + d_{13}S_{34} + d_{14}S_{44}$
- $\rightarrow b_{21} = d_{21}S_{11} + d_{22}S_{21} + d_{23}S_{31} + d_{24}S_{41}$
- $\rightarrow b_{22} = d_{21}S_{12} + d_{22}S_{22} + d_{23}S_{32} + d_{24}S_{42}$
- $\rightarrow b_{23} = d_{21}S_{13} + d_{22}S_{23} + d_{23}S_{33} + d_{24}S_{43}$
- $\rightarrow b_{24} = d_{21}S_{14} + d_{22}S_{24} + d_{23}S_{34} + d_{24}S_{44}$
- $\rightarrow b_{31} = d_{31}S_{11} + d_{32}S_{21} + d_{33}S_{31} + d_{34}S_{41}$
- $\rightarrow b_{32} = d_{31}S_{12} + d_{32}S_{22} + d_{33}S_{32} + d_{34}S_{42}$
- $\rightarrow b_{33} = d_{31}S_{13} + d_{32}S_{23} + d_{33}S_{33} + d_{34}S_{43}$
- $\rightarrow b_{34} = d_{31}S_{14} + d_{32}S_{24} + d_{33}S_{34} + d_{34}S_{44}$
- $\rightarrow b_{41} = d_{41}S_{11} + d_{42}S_{21} + d_{43}S_{31} + d_{44}S_{41}$
- $\rightarrow b_{42} = d_{41}S_{12} + d_{42}S_{22} + d_{43}S_{32} + d_{44}S_{42}$
- $\rightarrow b_{43} = d_{41}S_{13} + d_{42}S_{23} + d_{43}S_{33} + d_{44}S_{43}$
- $\rightarrow b_{44} = d_{41}S_{14} + d_{42}S_{24} + d_{43}S_{34} + d_{44}S_{44}$
- \rightarrow $d_{22} = d_{11}$

- $\rightarrow d_{11}, d_{33}, d_{44} =$
 - -2, -1, 0;
 - -2, -1, 1;
 - -2, -1, 2;
 - -2, 0, 1;
 - -2, 0, 2;
 - -2, 1, 2;
 - -1, -2, 0;
 - -1, -2, 1;
 - -1, -2, 2;
 - -1, 0, 1;
 - -1, 0, 2;
 - -1, 1, 2;
 - 1, -2, -1;
 - 1, -2, 0;
 - 1, -2, 2;
 - 1, -1, 0;
 - 1, -1, 2;
 - 1, 0, 2;
 - 2, -2, -1;
 - 2, -2, 0;
 - 2, -2, 1;
 - 2, -1, 0;
 - 2, -1, 1;
 - 2, 0, 1
- \rightarrow $d_{12} = 0$
- \rightarrow $d_{13} = 0$
- \rightarrow $d_{14} = 0$
- \rightarrow $d_{21} = 0$
- \rightarrow $d_{23} = 0$
- \rightarrow $d_{24} = 0$
- \rightarrow $d_{31} = 0$
- \rightarrow $d_{32} = 0$
- $\rightarrow d_{34} = 0$
- \rightarrow $d_{41} = 0$
- \rightarrow $d_{42} = 0$
- \rightarrow $d_{43} = 0$

3)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

$$\sqrt{\lambda_1 = d_{11}, \ L_1 = \begin{pmatrix} \begin{bmatrix} s_{11} \\ s_{21} \\ s_{31} \\ s_{41} \end{bmatrix}, \begin{bmatrix} s_{12} \\ s_{22} \\ s_{32} \\ s_{42} \end{bmatrix}} \right), \quad \lambda_2 = d_{33}, \ L_2 = \begin{pmatrix} \begin{bmatrix} s_{13} \\ s_{23} \\ s_{33} \\ s_{43} \end{bmatrix}, \begin{bmatrix} s_{14} \\ s_{24} \\ s_{34} \\ s_{44} \end{bmatrix} \right)$$

$$\rightarrow a_{11} = s_{11}b_{11} + s_{12}b_{21} + s_{13}b_{31} + s_{14}b_{41}$$

$$\rightarrow a_{12} = s_{11}b_{12} + s_{12}b_{22} + s_{13}b_{32} + s_{14}b_{42}$$

$$\rightarrow a_{13} = s_{11}b_{13} + s_{12}b_{23} + s_{13}b_{33} + s_{14}b_{43}$$

$$\rightarrow a_{14} = s_{11}b_{14} + s_{12}b_{24} + s_{13}b_{34} + s_{14}b_{44}$$

$$\rightarrow a_{21} = s_{21}b_{11} + s_{22}b_{21} + s_{23}b_{31} + s_{24}b_{41}$$

$$\rightarrow a_{22} = s_{21}b_{12} + s_{22}b_{22} + s_{23}b_{32} + s_{24}b_{42}$$

$$\rightarrow a_{23} = s_{21}b_{13} + s_{22}b_{23} + s_{23}b_{33} + s_{24}b_{43}$$

$$\rightarrow a_{24} = s_{21}b_{14} + s_{22}b_{24} + s_{23}b_{34} + s_{24}b_{44}$$

$$\rightarrow a_{31} = s_{31}b_{11} + s_{32}b_{21} + s_{33}b_{31} + s_{34}b_{41}$$

$$\rightarrow a_{32} = s_{31}b_{12} + s_{32}b_{22} + s_{33}b_{32} + s_{34}b_{42}$$

$$\rightarrow a_{33} = s_{31}b_{13} + s_{32}b_{23} + s_{33}b_{33} + s_{34}b_{43}$$

$$\rightarrow a_{34} = s_{31}b_{14} + s_{32}b_{24} + s_{33}b_{34} + s_{34}b_{44}$$

$$\rightarrow a_{41} = s_{41}b_{11} + s_{42}b_{21} + s_{43}b_{31} + s_{44}b_{41}$$

$$\rightarrow a_{42} = s_{41}b_{12} + s_{42}b_{22} + s_{43}b_{32} + s_{44}b_{42}$$

$$\rightarrow a_{43} = s_{41}b_{13} + s_{42}b_{23} + s_{43}b_{33} + s_{44}b_{43}$$

$$\rightarrow a_{44} = s_{41}b_{14} + s_{42}b_{24} + s_{43}b_{34} + s_{44}b_{44}$$

$$\rightarrow b_{11} = d_{11}S_{11} + d_{12}S_{21} + d_{13}S_{31} + d_{14}S_{41}$$

$$\rightarrow b_{12} = d_{11}S_{12} + d_{12}S_{22} + d_{13}S_{32} + d_{14}S_{42}$$

$$b_{13} = d_{11}S_{13} + d_{12}S_{23} + d_{13}S_{33} + d_{14}S_{43}$$

$$b_{14} = d_{11}S_{14} + d_{12}S_{24} + d_{13}S_{34} + d_{14}S_{44}$$

$$\rightarrow b_{21} = d_{21}S_{11} + d_{22}S_{21} + d_{23}S_{31} + d_{24}S_{41}$$

$$\rightarrow b_{22} = d_{21}S_{12} + d_{22}S_{22} + d_{23}S_{32} + d_{24}S_{42}$$

$$\rightarrow b_{23} = d_{21}S_{13} + d_{22}S_{23} + d_{23}S_{33} + d_{24}S_{43}$$

$$\rightarrow b_{24} = d_{21}S_{14} + d_{22}S_{24} + d_{23}S_{34} + d_{24}S_{44}$$

$$\rightarrow b_{31} = d_{31}S_{11} + d_{32}S_{21} + d_{33}S_{31} + d_{34}S_{41}$$

$$\rightarrow b_{32} = d_{31}S_{12} + d_{32}S_{22} + d_{33}S_{32} + d_{34}S_{42}$$

$$\rightarrow b_{33} = d_{31}S_{13} + d_{32}S_{23} + d_{33}S_{33} + d_{34}S_{43}$$

$$\rightarrow b_{34} = d_{31}S_{14} + d_{32}S_{24} + d_{33}S_{34} + d_{34}S_{44}$$

$$\rightarrow b_{41} = d_{41}S_{11} + d_{42}S_{21} + d_{43}S_{31} + d_{44}S_{41}$$

$$\rightarrow b_{42} = d_{41}S_{12} + d_{42}S_{22} + d_{43}S_{32} + d_{44}S_{42}$$

$$\rightarrow b_{43} = d_{41}S_{13} + d_{42}S_{23} + d_{43}S_{33} + d_{44}S_{43}$$

$$\rightarrow b_{44} = d_{41}S_{14} + d_{42}S_{24} + d_{43}S_{34} + d_{44}S_{44}$$

$$\rightarrow d_{44} = d_{33}$$

$$\rightarrow d_{22} = d_{11}$$

$$\rightarrow d_{11}, d_{33} =$$

•
$$-2$$
, -1 ;

•
$$-2$$
, 0;

•
$$-2$$
, 1;

•
$$-2$$
, 2;

•
$$-1$$
, 0;

•
$$-1$$
, 1;

•
$$-1$$
, 2;

$$\rightarrow$$
 $d_{12} = 0$

$$\rightarrow$$
 $d_{13} = 0$

$$\rightarrow$$
 $d_{14} = 0$

$$\rightarrow$$
 $d_{21} = 0$

$$\rightarrow d_{23} = 0$$

$$\rightarrow d_{24} = 0$$

$$\rightarrow d_{31} = 0$$

$$\rightarrow d_{32} = 0$$

$$\rightarrow d_{34} = 0$$

$$\rightarrow d_{41} = 0$$

$$\rightarrow d_{42} = 0$$

$$\rightarrow$$
 $d_{43} = 0$

4)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

$$\sqrt{\lambda_1 = d_{11}, L_1 = \begin{pmatrix} \begin{bmatrix} s_{11} \\ s_{21} \\ s_{31} \\ s_{41} \end{bmatrix}, \begin{bmatrix} s_{12} \\ s_{22} \\ s_{32} \\ s_{42} \end{bmatrix}, \begin{bmatrix} s_{13} \\ s_{23} \\ s_{33} \\ s_{43} \end{bmatrix} \right), \quad \lambda_2 = d_{44}, L_2 = \begin{pmatrix} \begin{bmatrix} s_{14} \\ s_{24} \\ s_{34} \\ s_{44} \end{bmatrix} \right)}$$

$$\rightarrow a_{11} = s_{11}b_{11} + s_{12}b_{21} + s_{13}b_{31} + s_{14}b_{41}$$

$$\rightarrow a_{12} = s_{11}b_{12} + s_{12}b_{22} + s_{13}b_{32} + s_{14}b_{42}$$

$$\rightarrow a_{13} = s_{11}b_{13} + s_{12}b_{23} + s_{13}b_{33} + s_{14}b_{43}$$

$$\rightarrow a_{14} = s_{11}b_{14} + s_{12}b_{24} + s_{13}b_{34} + s_{14}b_{44}$$

$$\rightarrow a_{21} = s_{21}b_{11} + s_{22}b_{21} + s_{23}b_{31} + s_{24}b_{41}$$

$$\rightarrow a_{22} = s_{21}b_{12} + s_{22}b_{22} + s_{23}b_{32} + s_{24}b_{42}$$

- $\rightarrow a_{23} = s_{21}b_{13} + s_{22}b_{23} + s_{23}b_{33} + s_{24}b_{43}$
- $\rightarrow a_{24} = s_{21}b_{14} + s_{22}b_{24} + s_{23}b_{34} + s_{24}b_{44}$
- $\rightarrow a_{31} = s_{31}b_{11} + s_{32}b_{21} + s_{33}b_{31} + s_{34}b_{41}$
- $\rightarrow a_{32} = s_{31}b_{12} + s_{32}b_{22} + s_{33}b_{32} + s_{34}b_{42}$
- $\rightarrow a_{33} = s_{31}b_{13} + s_{32}b_{23} + s_{33}b_{33} + s_{34}b_{43}$
- $\rightarrow a_{34} = s_{31}b_{14} + s_{32}b_{24} + s_{33}b_{34} + s_{34}b_{44}$
- $\rightarrow a_{41} = s_{41}b_{11} + s_{42}b_{21} + s_{43}b_{31} + s_{44}b_{41}$
- $\rightarrow a_{42} = s_{41}b_{12} + s_{42}b_{22} + s_{43}b_{32} + s_{44}b_{42}$
- $\rightarrow a_{43} = s_{41}b_{13} + s_{42}b_{23} + s_{43}b_{33} + s_{44}b_{43}$
- $\rightarrow a_{44} = s_{41}b_{14} + s_{42}b_{24} + s_{43}b_{34} + s_{44}b_{44}$
- $\rightarrow b_{11} = d_{11}S_{11} + d_{12}S_{21} + d_{13}S_{31} + d_{14}S_{41}$
- $\rightarrow b_{12} = d_{11}S_{12} + d_{12}S_{22} + d_{13}S_{32} + d_{14}S_{42}$
- $\rightarrow b_{13} = d_{11}S_{13} + d_{12}S_{23} + d_{13}S_{33} + d_{14}S_{43}$
- $\rightarrow b_{14} = d_{11}S_{14} + d_{12}S_{24} + d_{13}S_{34} + d_{14}S_{44}$
- $\rightarrow b_{21} = d_{21}S_{11} + d_{22}S_{21} + d_{23}S_{31} + d_{24}S_{41}$
- $\rightarrow b_{22} = d_{21}S_{12} + d_{22}S_{22} + d_{23}S_{32} + d_{24}S_{42}$
- $\rightarrow b_{23} = d_{21}S_{13} + d_{22}S_{23} + d_{23}S_{33} + d_{24}S_{43}$
- $\rightarrow b_{24} = d_{21}S_{14} + d_{22}S_{24} + d_{23}S_{34} + d_{24}S_{44}$
- $\rightarrow b_{31} = d_{31}S_{11} + d_{32}S_{21} + d_{33}S_{31} + d_{34}S_{41}$
- $\rightarrow b_{32} = d_{31}S_{12} + d_{32}S_{22} + d_{33}S_{32} + d_{34}S_{42}$
- $\rightarrow b_{33} = d_{31}S_{13} + d_{32}S_{23} + d_{33}S_{33} + d_{34}S_{43}$
- $\rightarrow b_{34} = d_{31}S_{14} + d_{32}S_{24} + d_{33}S_{34} + d_{34}S_{44}$
- $\rightarrow b_{41} = d_{41}S_{11} + d_{42}S_{21} + d_{43}S_{31} + d_{44}S_{41}$
- $\rightarrow b_{42} = d_{41}S_{12} + d_{42}S_{22} + d_{43}S_{32} + d_{44}S_{42}$
- $\rightarrow b_{43} = d_{41}S_{13} + d_{42}S_{23} + d_{43}S_{33} + d_{44}S_{43}$
- $\rightarrow b_{44} = d_{41}S_{14} + d_{42}S_{24} + d_{43}S_{34} + d_{44}S_{44}$
- $\rightarrow d_{33} = d_{11}$
- $\rightarrow d_{22} = d_{11}$

- $\rightarrow d_{11}, d_{44} =$
 - -2, -1;
 - -2, 0;
 - -2, 1;
 - -2, 2;
 - -1, -2;
 - -1, 0;
 - -1, 1;
 - -1, 2;
 - 0, -2;
 - 0, -1;
 - 0, 1;
 - 0, 2;
 - 1, -2;
 - 1, -1;
 - 1, 0;
 - 1, 2;
 - 2, -2;
 - 2, -1;
 - 2, 0;
 - 2, 1
- $\rightarrow d_{12} = 0$
- \rightarrow $d_{13} = 0$
- \rightarrow $d_{14} = 0$
- $\rightarrow d_{21} = 0$
- $\rightarrow d_{23} = 0$
- \rightarrow $d_{24} = 0$
- $\rightarrow d_{31} = 0$
- \rightarrow $d_{32} = 0$
- \rightarrow $d_{34} = 0$
- \rightarrow $d_{41} = 0$
- $\rightarrow d_{42} = 0$
- \rightarrow $d_{43} = 0$

5)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

$$\sqrt{\quad \lambda_1 = d_{11}, \ L_1 = \left(\begin{bmatrix} s_{11} \\ s_{21} \\ s_{31} \\ s_{41} \end{bmatrix} \right)}, \quad \lambda_2 = d_{33}, \ L_2 = \left(\begin{bmatrix} s_{13} \\ s_{23} \\ s_{33} \\ s_{43} \end{bmatrix} \right), \quad \lambda_3 = d_{44}, \ L_3 = \left(\begin{bmatrix} s_{14} \\ s_{24} \\ s_{34} \\ s_{44} \end{bmatrix} \right)$$

$$\rightarrow a_{11} = s_{11}b_{11} + s_{12}b_{21} + s_{13}b_{31} + s_{14}b_{41}$$

$$\rightarrow a_{12} = s_{11}b_{12} + s_{12}b_{22} + s_{13}b_{32} + s_{14}b_{42}$$

$$\rightarrow a_{13} = s_{11}b_{13} + s_{12}b_{23} + s_{13}b_{33} + s_{14}b_{43}$$

$$\rightarrow a_{14} = s_{11}b_{14} + s_{12}b_{24} + s_{13}b_{34} + s_{14}b_{44}$$

$$\rightarrow a_{21} = s_{21}b_{11} + s_{22}b_{21} + s_{23}b_{31} + s_{24}b_{41}$$

$$\rightarrow a_{22} = s_{21}b_{12} + s_{22}b_{22} + s_{23}b_{32} + s_{24}b_{42}$$

$$\rightarrow a_{23} = s_{21}b_{13} + s_{22}b_{23} + s_{23}b_{33} + s_{24}b_{43}$$

$$\rightarrow a_{24} = s_{21}b_{14} + s_{22}b_{24} + s_{23}b_{34} + s_{24}b_{44}$$

$$\rightarrow a_{31} = s_{31}b_{11} + s_{32}b_{21} + s_{33}b_{31} + s_{34}b_{41}$$

$$\rightarrow a_{32} = s_{31}b_{12} + s_{32}b_{22} + s_{33}b_{32} + s_{34}b_{42}$$

$$\rightarrow a_{33} = s_{31}b_{13} + s_{32}b_{23} + s_{33}b_{33} + s_{34}b_{43}$$

$$\rightarrow a_{34} = s_{31}b_{14} + s_{32}b_{24} + s_{33}b_{34} + s_{34}b_{44}$$

$$\rightarrow a_{41} = s_{41}b_{11} + s_{42}b_{21} + s_{43}b_{31} + s_{44}b_{41}$$

$$\rightarrow a_{41} = s_{41}b_{11} + s_{42}b_{21} + s_{43}s_{31} + s_{44}s_{41}$$

$$\rightarrow a_{42} = s_{41}b_{12} + s_{42}b_{22} + s_{43}b_{32} + s_{44}b_{42}$$

$$\rightarrow a_{43} = s_{41}b_{13} + s_{42}b_{23} + s_{43}b_{33} + s_{44}b_{43}$$

$$\rightarrow a_{44} = s_{41}b_{14} + s_{42}b_{24} + s_{43}b_{34} + s_{44}b_{44}$$

$$\rightarrow b_{11} = d_{11}S_{11} + d_{12}S_{21} + d_{13}S_{31} + d_{14}S_{41}$$

$$\rightarrow b_{12} = d_{11}S_{12} + d_{12}S_{22} + d_{13}S_{32} + d_{14}S_{42}$$

$$\rightarrow b_{13} = d_{11}S_{13} + d_{12}S_{23} + d_{13}S_{33} + d_{14}S_{43}$$

$$\rightarrow b_{14} = d_{11}S_{14} + d_{12}S_{24} + d_{13}S_{34} + d_{14}S_{44}$$

$$\rightarrow b_{21} = d_{21}S_{11} + d_{22}S_{21} + d_{23}S_{31} + d_{24}S_{41}$$

$$\rightarrow b_{22} = d_{21}S_{12} + d_{22}S_{22} + d_{23}S_{32} + d_{24}S_{42}$$

$$\rightarrow b_{23} = d_{21}S_{13} + d_{22}S_{23} + d_{23}S_{33} + d_{24}S_{43}$$

$$\rightarrow b_{24} = d_{21}S_{14} + d_{22}S_{24} + d_{23}S_{34} + d_{24}S_{44}$$

$$\rightarrow b_{31} = d_{31}S_{11} + d_{32}S_{21} + d_{33}S_{31} + d_{34}S_{41}$$

$$\rightarrow b_{32} = d_{31}S_{12} + d_{32}S_{22} + d_{33}S_{32} + d_{34}S_{42}$$

$$\rightarrow b_{33} = d_{31}S_{13} + d_{32}S_{23} + d_{33}S_{33} + d_{34}S_{43}$$

$$\rightarrow b_{34} = d_{31}S_{14} + d_{32}S_{24} + d_{33}S_{34} + d_{34}S_{44}$$

$$\rightarrow b_{41} = d_{41}S_{11} + d_{42}S_{21} + d_{43}S_{31} + d_{44}S_{41}$$

$$\rightarrow b_{42} = d_{41}S_{12} + d_{42}S_{22} + d_{43}S_{32} + d_{44}S_{42}$$

$$\rightarrow b_{43} = d_{41}S_{13} + d_{42}S_{23} + d_{43}S_{33} + d_{44}S_{43}$$

$$\rightarrow b_{44} = d_{41}S_{14} + d_{42}S_{24} + d_{43}S_{34} + d_{44}S_{44}$$

- \rightarrow $d_{22} = d_{11}$
- $\rightarrow d_{11}, d_{33}, d_{44} =$
 - -2, -1, 0;
 - -2, -1, 1;
 - -2, -1, 2;
 - -2, 0, 1;
 - -2, 0, 2;
 - -2, 1, 2;
 - -1, -2, 0;
 - -1, -2, 1;
 - -1, -2, 2;
 - -1, 0, 1;
 - -1, 0, 2;
 - -1, 1, 2;
 - 1, -2, -1;
 - 1, -2, 0;
 - 1, -2, 2;
 - 1, -1, 0;
 - 1, -1, 2;
 - 1, 0, 2;
 - 2, -2, -1;
 - 2, -2, 0;
 - 2, -2, 1;
 - 2, -1, 0;
 - 2, -1, 1;
 - 2, 0, 1
- \rightarrow $d_{12} = 1$
- \rightarrow $d_{13} = 0$
- \rightarrow $d_{14} = 0$
- \rightarrow $d_{21} = 0$
- \rightarrow $d_{23} = 0$
- \rightarrow $d_{24} = 0$
- \rightarrow $d_{31} = 0$
- \rightarrow $d_{32} = 0$
- \rightarrow $d_{34} = 0$
- \rightarrow $d_{41} = 0$
- \rightarrow $d_{42} = 0$
- \rightarrow $d_{43} = 0$

6)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

$$\sqrt{ \quad \lambda_1 = d_{11}, \ L_1 = \left(\begin{bmatrix} s_{11} \\ s_{21} \\ s_{31} \\ s_{41} \end{bmatrix} \right), \quad \lambda_2 = d_{33}, \ L_2 = \left(\begin{bmatrix} s_{13} \\ s_{23} \\ s_{33} \\ s_{43} \end{bmatrix}, \begin{bmatrix} s_{14} \\ s_{24} \\ s_{34} \\ s_{44} \end{bmatrix} \right)$$

$$\rightarrow a_{11} = s_{11}b_{11} + s_{12}b_{21} + s_{13}b_{31} + s_{14}b_{41}$$

$$\rightarrow a_{12} = s_{11}b_{12} + s_{12}b_{22} + s_{13}b_{32} + s_{14}b_{42}$$

$$\rightarrow a_{13} = s_{11}b_{13} + s_{12}b_{23} + s_{13}b_{33} + s_{14}b_{43}$$

$$\rightarrow a_{14} = s_{11}b_{14} + s_{12}b_{24} + s_{13}b_{34} + s_{14}b_{44}$$

$$\rightarrow a_{21} = s_{21}b_{11} + s_{22}b_{21} + s_{23}b_{31} + s_{24}b_{41}$$

$$\rightarrow a_{22} = s_{21}b_{12} + s_{22}b_{22} + s_{23}b_{32} + s_{24}b_{42}$$

$$\rightarrow a_{23} = s_{21}b_{13} + s_{22}b_{23} + s_{23}b_{33} + s_{24}b_{43}$$

$$\rightarrow a_{24} = s_{21}b_{14} + s_{22}b_{24} + s_{23}b_{34} + s_{24}b_{44}$$

$$\rightarrow a_{31} = s_{31}b_{11} + s_{32}b_{21} + s_{33}b_{31} + s_{34}b_{41}$$

$$\rightarrow a_{32} = s_{31}b_{12} + s_{32}b_{22} + s_{33}b_{32} + s_{34}b_{42}$$

$$\rightarrow a_{33} = s_{31}b_{13} + s_{32}b_{23} + s_{33}b_{33} + s_{34}b_{43}$$

$$\rightarrow a_{34} = s_{31}b_{14} + s_{32}b_{24} + s_{33}b_{34} + s_{34}b_{44}$$

$$u_{34} - s_{31}v_{14} + s_{32}v_{24} + s_{33}v_{34} + s_{34}v_{44}$$

$$\rightarrow a_{41} = s_{41}b_{11} + s_{42}b_{21} + s_{43}b_{31} + s_{44}b_{41}$$

$$\rightarrow a_{42} = s_{41}b_{12} + s_{42}b_{22} + s_{43}b_{32} + s_{44}b_{42}$$

$$\rightarrow a_{43} = s_{41}b_{13} + s_{42}b_{23} + s_{43}b_{33} + s_{44}b_{43}$$

$$\rightarrow a_{44} = s_{41}b_{14} + s_{42}b_{24} + s_{43}b_{34} + s_{44}b_{44}$$

$$\rightarrow b_{11} = d_{11}S_{11} + d_{12}S_{21} + d_{13}S_{31} + d_{14}S_{41}$$

$$\rightarrow b_{12} = d_{11}S_{12} + d_{12}S_{22} + d_{13}S_{32} + d_{14}S_{42}$$

$$\rightarrow b_{13} = d_{11}S_{13} + d_{12}S_{23} + d_{13}S_{33} + d_{14}S_{43}$$

$$\rightarrow b_{14} = d_{11}S_{14} + d_{12}S_{24} + d_{13}S_{34} + d_{14}S_{44}$$

$$\rightarrow b_{21} = d_{21}S_{11} + d_{22}S_{21} + d_{23}S_{31} + d_{24}S_{41}$$

$$\rightarrow b_{22} = d_{21}S_{12} + d_{22}S_{22} + d_{23}S_{32} + d_{24}S_{42}$$

$$\rightarrow b_{23} = d_{21}S_{13} + d_{22}S_{23} + d_{23}S_{33} + d_{24}S_{43}$$

$$\rightarrow b_{24} = d_{21}S_{14} + d_{22}S_{24} + d_{23}S_{34} + d_{24}S_{44}$$

$$\rightarrow b_{31} = d_{31}S_{11} + d_{32}S_{21} + d_{33}S_{31} + d_{34}S_{41}$$

$$\rightarrow b_{32} = d_{31}S_{12} + d_{32}S_{22} + d_{33}S_{32} + d_{34}S_{42}$$

$$\rightarrow b_{33} = d_{31}S_{13} + d_{32}S_{23} + d_{33}S_{33} + d_{34}S_{43}$$

$$\rightarrow b_{34} = d_{31}S_{14} + d_{32}S_{24} + d_{33}S_{34} + d_{34}S_{44}$$

$$\rightarrow b_{41} = d_{41}S_{11} + d_{42}S_{21} + d_{43}S_{31} + d_{44}S_{41}$$

$$\rightarrow b_{42} = d_{41}S_{12} + d_{42}S_{22} + d_{43}S_{32} + d_{44}S_{42}$$

$$\rightarrow b_{43} = d_{41}S_{13} + d_{42}S_{23} + d_{43}S_{33} + d_{44}S_{43}$$

$$\rightarrow b_{44} = d_{41}S_{14} + d_{42}S_{24} + d_{43}S_{34} + d_{44}S_{44}$$

- $\rightarrow d_{44} = d_{33}$
- $\rightarrow d_{22} = d_{11}$
- $\rightarrow d_{11}, d_{33} =$
 - -2, -1;
 - -2, 0;
 - -2, 1;
 - -2, 2;
 - -1, -2;
 - -1, 0;
 - -1, 1;
 - -1, 2;
 - 0, -2;
 - 0, -1;
 - 0, 1;
 - 0, 2;
 - 1, -2;
 - 1, −1;
 - 1, 0;
 - 1, 2;
 - 2, -2;
 - 2, -1;
 - 2, 0;
 - 2, 1
- \rightarrow $d_{12} = 1$
- $\rightarrow d_{13} = 0$
- \rightarrow $d_{14} = 0$
- \rightarrow $d_{21} = 0$
- \rightarrow $d_{23} = 0$
- \rightarrow $d_{24} = 0$
- \rightarrow $d_{31} = 0$
- \rightarrow $d_{32} = 0$
- \rightarrow $d_{34} = 0$
- \rightarrow $d_{41} = 0$
- \rightarrow $d_{42} = 0$
- \rightarrow $d_{43} = 0$

7)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

$$\sqrt{\lambda_1 = d_{11}, \ L_1 = \begin{pmatrix} \begin{bmatrix} s_{11} \\ s_{21} \\ s_{31} \\ s_{41} \end{bmatrix}, \begin{bmatrix} s_{13} \\ s_{23} \\ s_{33} \\ s_{43} \end{bmatrix}}, \quad \lambda_2 = d_{44}, \ L_2 = \begin{pmatrix} \begin{bmatrix} s_{14} \\ s_{24} \\ s_{34} \\ s_{44} \end{bmatrix} \end{pmatrix}$$

$$\rightarrow a_{11} = s_{11}b_{11} + s_{12}b_{21} + s_{13}b_{31} + s_{14}b_{41}$$

$$\rightarrow a_{12} = s_{11}b_{12} + s_{12}b_{22} + s_{13}b_{32} + s_{14}b_{42}$$

$$\rightarrow a_{13} = s_{11}b_{13} + s_{12}b_{23} + s_{13}b_{33} + s_{14}b_{43}$$

$$\rightarrow a_{14} = s_{11}b_{14} + s_{12}b_{24} + s_{13}b_{34} + s_{14}b_{44}$$

$$\rightarrow a_{21} = s_{21}b_{11} + s_{22}b_{21} + s_{23}b_{31} + s_{24}b_{41}$$

$$\rightarrow a_{22} = s_{21}b_{12} + s_{22}b_{22} + s_{23}b_{32} + s_{24}b_{42}$$

$$\rightarrow a_{23} = s_{21}b_{13} + s_{22}b_{23} + s_{23}b_{33} + s_{24}b_{43}$$

$$\rightarrow a_{24} = s_{21}b_{14} + s_{22}b_{24} + s_{23}b_{34} + s_{24}b_{44}$$

$$\rightarrow a_{31} = s_{31}b_{11} + s_{32}b_{21} + s_{33}b_{31} + s_{34}b_{41}$$

$$\rightarrow a_{32} = s_{31}b_{12} + s_{32}b_{22} + s_{33}b_{32} + s_{34}b_{42}$$

$$\rightarrow a_{33} = s_{31}b_{13} + s_{32}b_{23} + s_{33}b_{33} + s_{34}b_{43}$$

$$\rightarrow a_{34} = s_{31}b_{14} + s_{32}b_{24} + s_{33}b_{34} + s_{34}b_{44}$$

$$\rightarrow a_{41} = s_{41}b_{11} + s_{42}b_{21} + s_{43}b_{31} + s_{44}b_{41}$$

$$\rightarrow a_{42} = s_{41}b_{12} + s_{42}b_{22} + s_{43}b_{32} + s_{44}b_{42}$$

$$\rightarrow a_{43} = s_{41}b_{13} + s_{42}b_{23} + s_{43}b_{33} + s_{44}b_{43}$$

$$\rightarrow a_{44} = s_{41}b_{14} + s_{42}b_{24} + s_{43}b_{34} + s_{44}b_{44}$$

$$\rightarrow b_{11} = d_{11}S_{11} + d_{12}S_{21} + d_{13}S_{31} + d_{14}S_{41}$$

$$\rightarrow b_{12} = d_{11}S_{12} + d_{12}S_{22} + d_{13}S_{32} + d_{14}S_{42}$$

$$\rightarrow b_{13} = d_{11}S_{13} + d_{12}S_{23} + d_{13}S_{33} + d_{14}S_{43}$$

$$\rightarrow b_{14} = d_{11}S_{14} + d_{12}S_{24} + d_{13}S_{34} + d_{14}S_{44}$$

$$\rightarrow b_{21} = d_{21}S_{11} + d_{22}S_{21} + d_{23}S_{31} + d_{24}S_{41}$$

$$\rightarrow b_{22} = d_{21}S_{12} + d_{22}S_{22} + d_{23}S_{32} + d_{24}S_{42}$$

$$\rightarrow b_{23} = d_{21}S_{13} + d_{22}S_{23} + d_{23}S_{33} + d_{24}S_{43}$$

$$\rightarrow b_{24} = d_{21}S_{14} + d_{22}S_{24} + d_{23}S_{34} + d_{24}S_{44}$$

$$\rightarrow b_{31} = d_{31}S_{11} + d_{32}S_{21} + d_{33}S_{31} + d_{34}S_{41}$$

$$\rightarrow b_{32} = d_{31}S_{12} + d_{32}S_{22} + d_{33}S_{32} + d_{34}S_{42}$$

$$\rightarrow b_{33} = d_{31}S_{13} + d_{32}S_{23} + d_{33}S_{33} + d_{34}S_{43}$$

$$\rightarrow b_{34} = d_{31}S_{14} + d_{32}S_{24} + d_{33}S_{34} + d_{34}S_{44}$$

$$\rightarrow b_{41} = d_{41}S_{11} + d_{42}S_{21} + d_{43}S_{31} + d_{44}S_{41}$$

$$\rightarrow b_{42} = d_{41}S_{12} + d_{42}S_{22} + d_{43}S_{32} + d_{44}S_{42}$$

$$\rightarrow b_{43} = d_{41}S_{13} + d_{42}S_{23} + d_{43}S_{33} + d_{44}S_{43}$$

$$\rightarrow b_{44} = d_{41}S_{14} + d_{42}S_{24} + d_{43}S_{34} + d_{44}S_{44}$$

- $\rightarrow d_{33} = d_{11}$
- $\rightarrow d_{22} = d_{11}$
- \rightarrow d_{11} , $d_{44} =$
 - -2, -1;
 - -2, 0;
 - -2, 1;
 - -2, 2;
 - -1, -2;
 - -1, 0;
 - -1, 1;
 - -1, 2;
 - 0, -2;
 - 0, -1;
 - 0, 1;
 - 0, 2;
 - 1, -2;
 - 1, −1;
 - 1, 0;
 - 1, 2;
 - 2, -2;
 - 2, -1;
 - 2, 0;
 - 2, 1
- \rightarrow $d_{12} = 1$
- $\rightarrow d_{13} = 0$
- \rightarrow $d_{14} = 0$
- \rightarrow $d_{21} = 0$
- \rightarrow $d_{23} = 0$
- \rightarrow $d_{24} = 0$
- \rightarrow $d_{31} = 0$
- \rightarrow $d_{32} = 0$
- \rightarrow $d_{34} = 0$
- \rightarrow $d_{41} = 0$
- \rightarrow $d_{42} = 0$
- \rightarrow $d_{43} = 0$

8)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

$$\sqrt{\lambda_1 = d_{11}, \ L_1 = \left(\begin{bmatrix} s_{11} \\ s_{21} \\ s_{31} \\ s_{41} \end{bmatrix}, \begin{bmatrix} s_{13} \\ s_{23} \\ s_{33} \\ s_{43} \end{bmatrix}, \begin{bmatrix} s_{14} \\ s_{24} \\ s_{34} \\ s_{44} \end{bmatrix} \right) }$$

$$\rightarrow a_{11} = s_{11}b_{11} + s_{12}b_{21} + s_{13}b_{31} + s_{14}b_{41}$$

$$\rightarrow a_{12} = s_{11}b_{12} + s_{12}b_{22} + s_{13}b_{32} + s_{14}b_{42}$$

$$\rightarrow a_{13} = s_{11}b_{13} + s_{12}b_{23} + s_{13}b_{33} + s_{14}b_{43}$$

$$\rightarrow a_{14} = s_{11}b_{14} + s_{12}b_{24} + s_{13}b_{34} + s_{14}b_{44}$$

$$\rightarrow a_{21} = s_{21}b_{11} + s_{22}b_{21} + s_{23}b_{31} + s_{24}b_{41}$$

$$\rightarrow a_{22} = s_{21}b_{12} + s_{22}b_{22} + s_{23}b_{32} + s_{24}b_{42}$$

$$\rightarrow a_{23} = s_{21}b_{13} + s_{22}b_{23} + s_{23}b_{33} + s_{24}b_{43}$$

$$\rightarrow a_{24} = s_{21}b_{14} + s_{22}b_{24} + s_{23}b_{34} + s_{24}b_{44}$$

$$\rightarrow a_{31} = s_{31}b_{11} + s_{32}b_{21} + s_{33}b_{31} + s_{34}b_{41}$$

$$\rightarrow a_{32} = s_{31}b_{12} + s_{32}b_{22} + s_{33}b_{32} + s_{34}b_{42}$$

$$\rightarrow a_{33} = s_{31}b_{13} + s_{32}b_{23} + s_{33}b_{33} + s_{34}b_{43}$$

$$\rightarrow a_{34} = s_{31}b_{14} + s_{32}b_{24} + s_{33}b_{34} + s_{34}b_{44}$$

$$\rightarrow a_{41} = s_{41}b_{11} + s_{42}b_{21} + s_{43}b_{31} + s_{44}b_{41}$$

$$\rightarrow a_{42} = s_{41}b_{12} + s_{42}b_{22} + s_{43}b_{32} + s_{44}b_{42}$$

$$\rightarrow a_{43} = s_{41}b_{13} + s_{42}b_{23} + s_{43}b_{33} + s_{44}b_{43}$$

$$\rightarrow a_{44} = s_{41}b_{14} + s_{42}b_{24} + s_{43}b_{34} + s_{44}b_{44}$$

$$\rightarrow b_{11} = d_{11}S_{11} + d_{12}S_{21} + d_{13}S_{31} + d_{14}S_{41}$$

$$\rightarrow b_{12} = d_{11}S_{12} + d_{12}S_{22} + d_{13}S_{32} + d_{14}S_{42}$$

$$b_{13} = d_{11}S_{13} + d_{12}S_{23} + d_{13}S_{33} + d_{14}S_{43}$$

$$b_{14} = d_{11}S_{14} + d_{12}S_{24} + d_{13}S_{34} + d_{14}S_{44}$$

$$\rightarrow b_{21} = d_{21}S_{11} + d_{22}S_{21} + d_{23}S_{31} + d_{24}S_{41}$$

$$\rightarrow b_{22} = d_{21}S_{12} + d_{22}S_{22} + d_{23}S_{32} + d_{24}S_{42}$$

$$\rightarrow b_{23} = d_{21}S_{13} + d_{22}S_{23} + d_{23}S_{33} + d_{24}S_{43}$$

$$\rightarrow b_{24} = d_{21}S_{14} + d_{22}S_{24} + d_{23}S_{34} + d_{24}S_{44}$$

$$\rightarrow b_{31} = d_{31}S_{11} + d_{32}S_{21} + d_{33}S_{31} + d_{34}S_{41}$$

$$\rightarrow b_{32} = d_{31}S_{12} + d_{32}S_{22} + d_{33}S_{32} + d_{34}S_{42}$$

$$\rightarrow b_{33} = d_{31}S_{13} + d_{32}S_{23} + d_{33}S_{33} + d_{34}S_{43}$$

$$\rightarrow b_{34} = d_{31}S_{14} + d_{32}S_{24} + d_{33}S_{34} + d_{34}S_{44}$$

$$\rightarrow b_{41} = d_{41}S_{11} + d_{42}S_{21} + d_{43}S_{31} + d_{44}S_{41}$$

$$\rightarrow b_{42} = d_{41}S_{12} + d_{42}S_{22} + d_{43}S_{32} + d_{44}S_{42}$$

$$\rightarrow b_{43} = d_{41}S_{13} + d_{42}S_{23} + d_{43}S_{33} + d_{44}S_{43}$$

$$\rightarrow b_{44} = d_{41}S_{14} + d_{42}S_{24} + d_{43}S_{34} + d_{44}S_{44}$$

$$\rightarrow d_{44} = d_{11}$$

$$\rightarrow$$
 $d_{33} = d_{11}$

$$\rightarrow d_{22} = d_{11}$$

$$\rightarrow d_{11}, d_{44} =$$

•
$$-2$$
;

•
$$-1$$
;

$$\rightarrow$$
 $d_{12} = 1$

$$\rightarrow d_{13} = 0$$

$$\rightarrow$$
 $d_{14} = 0$

$$\rightarrow d_{21} = 0$$

$$\rightarrow$$
 $d_{23} = 0$

$$\rightarrow d_{24} = 0$$

$$\rightarrow d_{31} = 0$$

$$\rightarrow d_{32} = 0$$

$$\rightarrow$$
 $d_{34} = 0$

$$\rightarrow d_{41} = 0$$

$$\rightarrow d_{42} = 0$$

$$\rightarrow d_{43} = 0$$

9)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

$$\sqrt{\lambda_1} = d_{11}, \ L_1 = \begin{pmatrix} \begin{bmatrix} s_{11} \\ s_{21} \\ s_{31} \\ s_{41} \end{bmatrix} \end{pmatrix}, \quad \lambda_2 = d_{33}, \ L_2 = \begin{pmatrix} \begin{bmatrix} s_{13} \\ s_{23} \\ s_{33} \\ s_{43} \end{bmatrix} \end{pmatrix}$$

$$\rightarrow a_{11} = s_{11}b_{11} + s_{12}b_{21} + s_{13}b_{31} + s_{14}b_{41}$$

$$\rightarrow a_{12} = s_{11}b_{12} + s_{12}b_{22} + s_{13}b_{32} + s_{14}b_{42}$$

$$\rightarrow a_{13} = s_{11}b_{13} + s_{12}b_{23} + s_{13}b_{33} + s_{14}b_{43}$$

$$\rightarrow a_{14} = s_{11}b_{14} + s_{12}b_{24} + s_{13}b_{34} + s_{14}b_{44}$$

$$\rightarrow a_{21} = s_{21}b_{11} + s_{22}b_{21} + s_{23}b_{31} + s_{24}b_{41}$$

$$\rightarrow a_{22} = s_{21}b_{12} + s_{22}b_{22} + s_{23}b_{32} + s_{24}b_{42}$$

$$\rightarrow a_{23} = s_{21}b_{13} + s_{22}b_{23} + s_{23}b_{33} + s_{24}b_{43}$$

$$\rightarrow a_{24} = s_{21}b_{14} + s_{22}b_{24} + s_{23}b_{34} + s_{24}b_{44}$$

$$\rightarrow a_{31} = s_{31}b_{11} + s_{32}b_{21} + s_{33}b_{31} + s_{34}b_{41}$$

$$\rightarrow a_{32} = s_{31}b_{12} + s_{32}b_{22} + s_{33}b_{32} + s_{34}b_{42}$$

- $\rightarrow a_{33} = s_{31}b_{13} + s_{32}b_{23} + s_{33}b_{33} + s_{34}b_{43}$
- $\rightarrow a_{34} = s_{31}b_{14} + s_{32}b_{24} + s_{33}b_{34} + s_{34}b_{44}$
- $\rightarrow a_{41} = s_{41}b_{11} + s_{42}b_{21} + s_{43}b_{31} + s_{44}b_{41}$
- $\rightarrow a_{42} = s_{41}b_{12} + s_{42}b_{22} + s_{43}b_{32} + s_{44}b_{42}$
- $\rightarrow a_{43} = s_{41}b_{13} + s_{42}b_{23} + s_{43}b_{33} + s_{44}b_{43}$
- $\rightarrow a_{44} = s_{41}b_{14} + s_{42}b_{24} + s_{43}b_{34} + s_{44}b_{44}$
- $\rightarrow b_{11} = d_{11}S_{11} + d_{12}S_{21} + d_{13}S_{31} + d_{14}S_{41}$
- $\rightarrow b_{12} = d_{11}S_{12} + d_{12}S_{22} + d_{13}S_{32} + d_{14}S_{42}$
- $\rightarrow b_{13} = d_{11}S_{13} + d_{12}S_{23} + d_{13}S_{33} + d_{14}S_{43}$
- $\rightarrow b_{14} = d_{11}S_{14} + d_{12}S_{24} + d_{13}S_{34} + d_{14}S_{44}$
- $\rightarrow b_{21} = d_{21}S_{11} + d_{22}S_{21} + d_{23}S_{31} + d_{24}S_{41}$
- $\rightarrow b_{22} = d_{21}S_{12} + d_{22}S_{22} + d_{23}S_{32} + d_{24}S_{42}$
- $\rightarrow b_{23} = d_{21}S_{13} + d_{22}S_{23} + d_{23}S_{33} + d_{24}S_{43}$
- $\rightarrow b_{24} = d_{21}S_{14} + d_{22}S_{24} + d_{23}S_{34} + d_{24}S_{44}$
- $\rightarrow b_{31} = d_{31}S_{11} + d_{32}S_{21} + d_{33}S_{31} + d_{34}S_{41}$
- $\rightarrow b_{32} = d_{31}S_{12} + d_{32}S_{22} + d_{33}S_{32} + d_{34}S_{42}$
- $\rightarrow b_{33} = d_{31}S_{13} + d_{32}S_{23} + d_{33}S_{33} + d_{34}S_{43}$
- $\rightarrow b_{34} = d_{31}S_{14} + d_{32}S_{24} + d_{33}S_{34} + d_{34}S_{44}$
- $\rightarrow b_{41} = d_{41}S_{11} + d_{42}S_{21} + d_{43}S_{31} + d_{44}S_{41}$
- $\rightarrow b_{42} = d_{41}S_{12} + d_{42}S_{22} + d_{43}S_{32} + d_{44}S_{42}$
- $\rightarrow b_{43} = d_{41}S_{13} + d_{42}S_{23} + d_{43}S_{33} + d_{44}S_{43}$
- $\rightarrow b_{44} = d_{41}S_{14} + d_{42}S_{24} + d_{43}S_{34} + d_{44}S_{44}$
- $\rightarrow d_{44} = d_{33}$
- \rightarrow $d_{22} = d_{11}$
- $\rightarrow d_{11}, d_{33} =$
 - -2, -1;
 - -2, 0;
 - -2, 1;
 - -2, 2;
 - -1, 0;
 - -1, 1;
 - -1, 2;
 - 0, 1;
 - 0, 2;
 - 1, 2
- $\rightarrow d_{12} = 1$
- \rightarrow $d_{13} = 0$
- \rightarrow $d_{14} = 0$

$$\rightarrow$$
 $d_{21} = 0$

$$\rightarrow$$
 $d_{23} = 0$

$$\rightarrow d_{24} = 0$$

$$\rightarrow$$
 $d_{31} = 0$

$$\rightarrow$$
 $d_{32} = 0$

$$\rightarrow d_{34} = 1$$

$$\rightarrow$$
 $d_{41} = 0$

$$\rightarrow$$
 $d_{42} = 0$

$$\rightarrow d_{43} = 0$$

10)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

$$\sqrt{\lambda_1} = d_{11}, \ L_1 = \left(\begin{bmatrix} s_{11} \\ s_{21} \\ s_{31} \\ s_{41} \end{bmatrix}, \begin{bmatrix} s_{13} \\ s_{23} \\ s_{33} \\ s_{43} \end{bmatrix} \right)$$

$$\rightarrow a_{11} = s_{11}b_{11} + s_{12}b_{21} + s_{13}b_{31} + s_{14}b_{41}$$

$$\rightarrow a_{12} = s_{11}b_{12} + s_{12}b_{22} + s_{13}b_{32} + s_{14}b_{42}$$

$$\rightarrow a_{13} = s_{11}b_{13} + s_{12}b_{23} + s_{13}b_{33} + s_{14}b_{43}$$

$$\rightarrow a_{14} = s_{11}b_{14} + s_{12}b_{24} + s_{13}b_{34} + s_{14}b_{44}$$

$$\rightarrow a_{21} = s_{21}b_{11} + s_{22}b_{21} + s_{23}b_{31} + s_{24}b_{41}$$

$$\rightarrow a_{22} = s_{21}b_{12} + s_{22}b_{22} + s_{23}b_{32} + s_{24}b_{42}$$

$$\rightarrow a_{23} = s_{21}b_{13} + s_{22}b_{23} + s_{23}b_{33} + s_{24}b_{43}$$

$$\rightarrow a_{24} = s_{21}b_{14} + s_{22}b_{24} + s_{23}b_{34} + s_{24}b_{44}$$

$$\rightarrow a_{31} = s_{31}b_{11} + s_{32}b_{21} + s_{33}b_{31} + s_{34}b_{41}$$

$$\rightarrow a_{32} = s_{31}b_{12} + s_{32}b_{22} + s_{33}b_{32} + s_{34}b_{42}$$

$$\rightarrow a_{33} = s_{31}b_{13} + s_{32}b_{23} + s_{33}b_{33} + s_{34}b_{43}$$

$$\rightarrow a_{34} = s_{31}b_{14} + s_{32}b_{24} + s_{33}b_{34} + s_{34}b_{44}$$

$$\rightarrow a_{41} = s_{41}b_{11} + s_{42}b_{21} + s_{43}b_{31} + s_{44}b_{41}$$

$$\rightarrow a_{42} = s_{41}b_{12} + s_{42}b_{22} + s_{43}b_{32} + s_{44}b_{42}$$

$$\rightarrow a_{43} = s_{41}b_{13} + s_{42}b_{23} + s_{43}b_{33} + s_{44}b_{43}$$

$$\rightarrow a_{44} = s_{41}b_{14} + s_{42}b_{24} + s_{43}b_{34} + s_{44}b_{44}$$

$$\rightarrow b_{11} = d_{11}S_{11} + d_{12}S_{21} + d_{13}S_{31} + d_{14}S_{41}$$

$$\rightarrow b_{12} = d_{11}S_{12} + d_{12}S_{22} + d_{13}S_{32} + d_{14}S_{42}$$

$$\rightarrow b_{13} = d_{11}S_{13} + d_{12}S_{23} + d_{13}S_{33} + d_{14}S_{43}$$

$$\rightarrow b_{14} = d_{11}S_{14} + d_{12}S_{24} + d_{13}S_{34} + d_{14}S_{44}$$

$$\rightarrow b_{21} = d_{21}S_{11} + d_{22}S_{21} + d_{23}S_{31} + d_{24}S_{41}$$

$$\rightarrow b_{22} = d_{21}S_{12} + d_{22}S_{22} + d_{23}S_{32} + d_{24}S_{42}$$

$$\rightarrow b_{23} = d_{21}S_{13} + d_{22}S_{23} + d_{23}S_{33} + d_{24}S_{43}$$

$$\rightarrow b_{24} = d_{21}S_{14} + d_{22}S_{24} + d_{23}S_{34} + d_{24}S_{44}$$

$$\rightarrow b_{31} = d_{31}S_{11} + d_{32}S_{21} + d_{33}S_{31} + d_{34}S_{41}$$

$$\rightarrow b_{32} = d_{31}S_{12} + d_{32}S_{22} + d_{33}S_{32} + d_{34}S_{42}$$

$$\rightarrow b_{33} = d_{31}S_{13} + d_{32}S_{23} + d_{33}S_{33} + d_{34}S_{43}$$

$$\rightarrow b_{34} = d_{31}S_{14} + d_{32}S_{24} + d_{33}S_{34} + d_{34}S_{44}$$

$$\rightarrow b_{41} = d_{41}S_{11} + d_{42}S_{21} + d_{43}S_{31} + d_{44}S_{41}$$

$$\rightarrow b_{42} = d_{41}S_{12} + d_{42}S_{22} + d_{43}S_{32} + d_{44}S_{42}$$

$$\rightarrow b_{43} = d_{41}S_{13} + d_{42}S_{23} + d_{43}S_{33} + d_{44}S_{43}$$

$$\rightarrow b_{44} = d_{41}S_{14} + d_{42}S_{24} + d_{43}S_{34} + d_{44}S_{44}$$

$$\rightarrow d_{44} = d_{11}$$

$$\rightarrow$$
 $d_{33} = d_{11}$

$$\rightarrow d_{22} = d_{11}$$

$$\rightarrow d_{11} = -2; -1; 0; 1; 2$$

$$\rightarrow d_{12} = 1$$

$$\rightarrow$$
 $d_{13} = 0$

$$\rightarrow d_{14} = 0$$

$$\rightarrow d_{21} = 0$$

$$\rightarrow d_{23} = 0$$

$$\rightarrow d_{24} = 0$$

$$\rightarrow d_{31} = 0$$

$$\rightarrow$$
 $d_{32} = 0$

$$\rightarrow d_{34} = 1$$

$$\rightarrow d_{41} = 0$$

$$\rightarrow d_{42} = 0$$

$$\rightarrow$$
 $d_{43} = 0$

11)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

$$\sqrt{\lambda_1 = d_{11}, \ L_1 = \begin{pmatrix} \begin{bmatrix} s_{11} \\ s_{21} \\ s_{31} \\ s_{41} \end{bmatrix}}, \quad \lambda_2 = d_{44}, \ L_2 = \begin{pmatrix} \begin{bmatrix} s_{14} \\ s_{24} \\ s_{34} \\ s_{44} \end{bmatrix}$$

$$\rightarrow a_{11} = s_{11}b_{11} + s_{12}b_{21} + s_{13}b_{31} + s_{14}b_{41}$$

$$\rightarrow a_{12} = s_{11}b_{12} + s_{12}b_{22} + s_{13}b_{32} + s_{14}b_{42}$$

$$\rightarrow a_{13} = s_{11}b_{13} + s_{12}b_{23} + s_{13}b_{33} + s_{14}b_{43}$$

$$\rightarrow a_{14} = s_{11}b_{14} + s_{12}b_{24} + s_{13}b_{34} + s_{14}b_{44}$$

$$\rightarrow a_{21} = s_{21}b_{11} + s_{22}b_{21} + s_{23}b_{31} + s_{24}b_{41}$$

- $\rightarrow a_{22} = s_{21}b_{12} + s_{22}b_{22} + s_{23}b_{32} + s_{24}b_{42}$
- $\rightarrow a_{23} = s_{21}b_{13} + s_{22}b_{23} + s_{23}b_{33} + s_{24}b_{43}$
- $\rightarrow a_{24} = s_{21}b_{14} + s_{22}b_{24} + s_{23}b_{34} + s_{24}b_{44}$
- $\rightarrow a_{31} = s_{31}b_{11} + s_{32}b_{21} + s_{33}b_{31} + s_{34}b_{41}$
- $\rightarrow a_{32} = s_{31}b_{12} + s_{32}b_{22} + s_{33}b_{32} + s_{34}b_{42}$
- $\rightarrow a_{33} = s_{31}b_{13} + s_{32}b_{23} + s_{33}b_{33} + s_{34}b_{43}$
- $\rightarrow a_{34} = s_{31}b_{14} + s_{32}b_{24} + s_{33}b_{34} + s_{34}b_{44}$
- $\rightarrow a_{41} = s_{41}b_{11} + s_{42}b_{21} + s_{43}b_{31} + s_{44}b_{41}$
- $\rightarrow a_{42} = s_{41}b_{12} + s_{42}b_{22} + s_{43}b_{32} + s_{44}b_{42}$
- $\rightarrow a_{43} = s_{41}b_{13} + s_{42}b_{23} + s_{43}b_{33} + s_{44}b_{43}$
- $\rightarrow a_{44} = s_{41}b_{14} + s_{42}b_{24} + s_{43}b_{34} + s_{44}b_{44}$
- $\rightarrow b_{11} = d_{11}S_{11} + d_{12}S_{21} + d_{13}S_{31} + d_{14}S_{41}$
- $\rightarrow b_{12} = d_{11}S_{12} + d_{12}S_{22} + d_{13}S_{32} + d_{14}S_{42}$
- $\rightarrow b_{13} = d_{11}S_{13} + d_{12}S_{23} + d_{13}S_{33} + d_{14}S_{43}$
- $\rightarrow b_{14} = d_{11}S_{14} + d_{12}S_{24} + d_{13}S_{34} + d_{14}S_{44}$
- $\rightarrow b_{21} = d_{21}S_{11} + d_{22}S_{21} + d_{23}S_{31} + d_{24}S_{41}$
- $\rightarrow b_{22} = d_{21}S_{12} + d_{22}S_{22} + d_{23}S_{32} + d_{24}S_{42}$
- $\rightarrow b_{23} = d_{21}S_{13} + d_{22}S_{23} + d_{23}S_{33} + d_{24}S_{43}$
- $\rightarrow b_{24} = d_{21}S_{14} + d_{22}S_{24} + d_{23}S_{34} + d_{24}S_{44}$
- $\rightarrow b_{31} = d_{31}S_{11} + d_{32}S_{21} + d_{33}S_{31} + d_{34}S_{41}$
- $\rightarrow b_{32} = d_{31}S_{12} + d_{32}S_{22} + d_{33}S_{32} + d_{34}S_{42}$
- $\rightarrow b_{33} = d_{31}S_{13} + d_{32}S_{23} + d_{33}S_{33} + d_{34}S_{43}$
- $\rightarrow b_{34} = d_{31}S_{14} + d_{32}S_{24} + d_{33}S_{34} + d_{34}S_{44}$
- $\rightarrow b_{41} = d_{41}S_{11} + d_{42}S_{21} + d_{43}S_{31} + d_{44}S_{41}$
- $\rightarrow b_{42} = d_{41}S_{12} + d_{42}S_{22} + d_{43}S_{32} + d_{44}S_{42}$
- $\rightarrow b_{43} = d_{41}S_{13} + d_{42}S_{23} + d_{43}S_{33} + d_{44}S_{43}$
- $\rightarrow b_{44} = d_{41}S_{14} + d_{42}S_{24} + d_{43}S_{34} + d_{44}S_{44}$
- $\rightarrow d_{33} = d_{11}$
- $\rightarrow d_{22} = d_{11}$

- $\rightarrow d_{11}, d_{44} =$
 - -2, -1;
 - -2, 0;
 - -2, 1;
 - -2, 2;
 - -1, -2;
 - -1, 0;
 - -1, 1;
 - -1, 2;
 - 0, -2;
 - 0, -1;
 - 0, 1;
 - 0, 2;
 - 1, -2;
 - 1, -1;
 - 1, 0;
 - 1, 2;
 - 2, -2;
 - 2, -1;
 - 2, 0;
 - 2, 1
- \rightarrow $d_{12} = 1$
- \rightarrow $d_{13} = 0$
- \rightarrow $d_{14} = 0$
- $\rightarrow d_{21} = 0$
- $\rightarrow d_{23} = 1$
- \rightarrow $d_{24} = 0$
- $\rightarrow d_{31} = 0$
- \rightarrow $d_{32} = 0$
- \rightarrow $d_{34} = 0$
- \rightarrow $d_{41} = 0$
- $\rightarrow d_{42} = 0$
- \rightarrow $d_{43} = 0$

12)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

$$\sqrt{\lambda_1 = d_{11}, \ L_1 = \left(\begin{bmatrix} s_{11} \\ s_{21} \\ s_{31} \\ s_{41} \end{bmatrix}, \begin{bmatrix} s_{14} \\ s_{24} \\ s_{34} \\ s_{44} \end{bmatrix} \right)}$$

$$\rightarrow a_{11} = s_{11}b_{11} + s_{12}b_{21} + s_{13}b_{31} + s_{14}b_{41}$$

$$\rightarrow a_{12} = s_{11}b_{12} + s_{12}b_{22} + s_{13}b_{32} + s_{14}b_{42}$$

$$\rightarrow a_{13} = s_{11}b_{13} + s_{12}b_{23} + s_{13}b_{33} + s_{14}b_{43}$$

$$\rightarrow a_{14} = s_{11}b_{14} + s_{12}b_{24} + s_{13}b_{34} + s_{14}b_{44}$$

$$\rightarrow a_{21} = s_{21}b_{11} + s_{22}b_{21} + s_{23}b_{31} + s_{24}b_{41}$$

$$\rightarrow a_{22} = s_{21}b_{12} + s_{22}b_{22} + s_{23}b_{32} + s_{24}b_{42}$$

$$\rightarrow a_{23} = s_{21}b_{13} + s_{22}b_{23} + s_{23}b_{33} + s_{24}b_{43}$$

$$\rightarrow a_{24} = s_{21}b_{14} + s_{22}b_{24} + s_{23}b_{34} + s_{24}b_{44}$$

$$\rightarrow a_{31} = s_{31}b_{11} + s_{32}b_{21} + s_{33}b_{31} + s_{34}b_{41}$$

$$\rightarrow a_{32} = s_{31}b_{12} + s_{32}b_{22} + s_{33}b_{32} + s_{34}b_{42}$$

$$\rightarrow a_{33} = s_{31}b_{13} + s_{32}b_{23} + s_{33}b_{33} + s_{34}b_{43}$$

$$\rightarrow a_{34} = s_{31}b_{14} + s_{32}b_{24} + s_{33}b_{34} + s_{34}b_{44}$$

$$\rightarrow a_{41} = s_{41}b_{11} + s_{42}b_{21} + s_{43}b_{31} + s_{44}b_{41}$$

$$\rightarrow a_{42} = s_{41}b_{12} + s_{42}b_{22} + s_{43}b_{32} + s_{44}b_{42}$$

$$\rightarrow a_{43} = s_{41}b_{13} + s_{42}b_{23} + s_{43}b_{33} + s_{44}b_{43}$$

$$\rightarrow a_{44} = s_{41}b_{14} + s_{42}b_{24} + s_{43}b_{34} + s_{44}b_{44}$$

$$\rightarrow b_{11} = d_{11}S_{11} + d_{12}S_{21} + d_{13}S_{31} + d_{14}S_{41}$$

$$\rightarrow b_{12} = d_{11}S_{12} + d_{12}S_{22} + d_{13}S_{32} + d_{14}S_{42}$$

$$\rightarrow b_{13} = d_{11}S_{13} + d_{12}S_{23} + d_{13}S_{33} + d_{14}S_{43}$$

$$\rightarrow b_{14} = d_{11}S_{14} + d_{12}S_{24} + d_{13}S_{34} + d_{14}S_{44}$$

$$\rightarrow b_{21} = d_{21}S_{11} + d_{22}S_{21} + d_{23}S_{31} + d_{24}S_{41}$$

$$\rightarrow b_{22} = d_{21}S_{12} + d_{22}S_{22} + d_{23}S_{32} + d_{24}S_{42}$$

$$\rightarrow b_{23} = d_{21}S_{13} + d_{22}S_{23} + d_{23}S_{33} + d_{24}S_{43}$$

$$\rightarrow b_{24} = d_{21}S_{14} + d_{22}S_{24} + d_{23}S_{34} + d_{24}S_{44}$$

$$\rightarrow b_{31} = d_{31}S_{11} + d_{32}S_{21} + d_{33}S_{31} + d_{34}S_{41}$$

$$\rightarrow b_{32} = d_{31}S_{12} + d_{32}S_{22} + d_{33}S_{32} + d_{34}S_{42}$$

$$\rightarrow b_{33} = d_{31}S_{13} + d_{32}S_{23} + d_{33}S_{33} + d_{34}S_{43}$$

$$\rightarrow b_{34} = d_{31}S_{14} + d_{32}S_{24} + d_{33}S_{34} + d_{34}S_{44}$$

$$\rightarrow b_{41} = d_{41}S_{11} + d_{42}S_{21} + d_{43}S_{31} + d_{44}S_{41}$$

$$\rightarrow b_{42} = d_{41}S_{12} + d_{42}S_{22} + d_{43}S_{32} + d_{44}S_{42}$$

$$\rightarrow b_{43} = d_{41}S_{13} + d_{42}S_{23} + d_{43}S_{33} + d_{44}S_{43}$$

$$\rightarrow b_{44} = d_{41}S_{14} + d_{42}S_{24} + d_{43}S_{34} + d_{44}S_{44}$$

$$\rightarrow d_{44} = d_{11}$$

$$\rightarrow d_{33} = d_{11}$$

$$\rightarrow d_{22} = d_{11}$$

$$\rightarrow d_{11} = -2; -1; 0; 1; 2$$

$$\rightarrow d_{12} = 1$$

$$\rightarrow$$
 $d_{13} = 0$

$$\rightarrow d_{14} = 0$$

$$\rightarrow d_{21} = 0$$

$$\rightarrow d_{23} = 1$$

$$\rightarrow d_{24} = 0$$

$$\rightarrow d_{31} = 0$$

$$\rightarrow d_{32} = 0$$

$$\rightarrow$$
 $d_{34} = 0$

$$\rightarrow d_{41} = 0$$

$$\rightarrow d_{42} = 0$$

$$\rightarrow$$
 $d_{43} = 0$

13)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

$$\sqrt{\lambda_1} = d_{11}, \ L_1 = \begin{pmatrix} \begin{bmatrix} s_{11} \\ s_{21} \\ s_{31} \\ s_{41} \end{bmatrix} \end{pmatrix}$$

$$\rightarrow a_{11} = s_{11}b_{11} + s_{12}b_{21} + s_{13}b_{31} + s_{14}b_{41}$$

$$\rightarrow a_{12} = s_{11}b_{12} + s_{12}b_{22} + s_{13}b_{32} + s_{14}b_{42}$$

$$\rightarrow a_{13} = s_{11}b_{13} + s_{12}b_{23} + s_{13}b_{33} + s_{14}b_{43}$$

$$\rightarrow a_{14} = s_{11}b_{14} + s_{12}b_{24} + s_{13}b_{34} + s_{14}b_{44}$$

$$\rightarrow a_{21} = s_{21}b_{11} + s_{22}b_{21} + s_{23}b_{31} + s_{24}b_{41}$$

$$\rightarrow a_{22} = s_{21}b_{12} + s_{22}b_{22} + s_{23}b_{32} + s_{24}b_{42}$$

$$\rightarrow a_{23} = s_{21}b_{13} + s_{22}b_{23} + s_{23}b_{33} + s_{24}b_{43}$$

$$\rightarrow a_{24} = s_{21}b_{14} + s_{22}b_{24} + s_{23}b_{34} + s_{24}b_{44}$$

$$\rightarrow a_{31} = s_{31}b_{11} + s_{32}b_{21} + s_{33}b_{31} + s_{34}b_{41}$$

$$\rightarrow a_{32} = s_{31}b_{12} + s_{32}b_{22} + s_{33}b_{32} + s_{34}b_{42}$$

$$\rightarrow a_{33} = s_{31}b_{13} + s_{32}b_{23} + s_{33}b_{33} + s_{34}b_{43}$$

$$\rightarrow a_{34} = s_{31}b_{14} + s_{32}b_{24} + s_{33}b_{34} + s_{34}b_{44}$$

$$\rightarrow a_{41} = s_{41}b_{11} + s_{42}b_{21} + s_{43}b_{31} + s_{44}b_{41}$$

$$\rightarrow a_{42} = s_{41}b_{12} + s_{42}b_{22} + s_{43}b_{32} + s_{44}b_{42}$$

$$\rightarrow a_{43} = s_{41}b_{13} + s_{42}b_{23} + s_{43}b_{33} + s_{44}b_{43}$$

- $\rightarrow a_{44} = s_{41}b_{14} + s_{42}b_{24} + s_{43}b_{34} + s_{44}b_{44}$
- $\rightarrow b_{11} = d_{11}S_{11} + d_{12}S_{21} + d_{13}S_{31} + d_{14}S_{41}$
- $\rightarrow b_{12} = d_{11}S_{12} + d_{12}S_{22} + d_{13}S_{32} + d_{14}S_{42}$
- $\rightarrow b_{13} = d_{11}S_{13} + d_{12}S_{23} + d_{13}S_{33} + d_{14}S_{43}$
- $\rightarrow b_{14} = d_{11}S_{14} + d_{12}S_{24} + d_{13}S_{34} + d_{14}S_{44}$
- $\rightarrow b_{21} = d_{21}S_{11} + d_{22}S_{21} + d_{23}S_{31} + d_{24}S_{41}$
- $\rightarrow b_{22} = d_{21}S_{12} + d_{22}S_{22} + d_{23}S_{32} + d_{24}S_{42}$
- $\rightarrow b_{23} = d_{21}S_{13} + d_{22}S_{23} + d_{23}S_{33} + d_{24}S_{43}$
- $\rightarrow b_{24} = d_{21}S_{14} + d_{22}S_{24} + d_{23}S_{34} + d_{24}S_{44}$
- $\rightarrow b_{31} = d_{31}S_{11} + d_{32}S_{21} + d_{33}S_{31} + d_{34}S_{41}$
- $\rightarrow b_{32} = d_{31}S_{12} + d_{32}S_{22} + d_{33}S_{32} + d_{34}S_{42}$
- $\rightarrow b_{33} = d_{31}S_{13} + d_{32}S_{23} + d_{33}S_{33} + d_{34}S_{43}$
- $\rightarrow b_{34} = d_{31}S_{14} + d_{32}S_{24} + d_{33}S_{34} + d_{34}S_{44}$
- $\rightarrow b_{41} = d_{41}S_{11} + d_{42}S_{21} + d_{43}S_{31} + d_{44}S_{41}$
- $\rightarrow b_{42} = d_{41}S_{12} + d_{42}S_{22} + d_{43}S_{32} + d_{44}S_{42}$
- $\rightarrow b_{43} = d_{41}S_{13} + d_{42}S_{23} + d_{43}S_{33} + d_{44}S_{43}$
- $\rightarrow b_{44} = d_{41}S_{14} + d_{42}S_{24} + d_{43}S_{34} + d_{44}S_{44}$
- $\rightarrow d_{44} = d_{11}$
- $\rightarrow d_{33} = d_{11}$
- $\rightarrow d_{22} = d_{11}$
- \rightarrow $d_{11} = -2$; -1; 0; 1; 2
- $\rightarrow d_{12} = 1$
- \rightarrow $d_{13} = 0$
- \rightarrow $d_{14} = 0$
- $\rightarrow d_{21} = 0$
- \rightarrow $d_{23} = 1$
- $\rightarrow d_{24} = 0$
- $\rightarrow d_{31} = 0$
- $\rightarrow d_{32} = 0$
- $\rightarrow d_{34} = 1$
- $\rightarrow d_{41} = 0$
- $\rightarrow d_{42} = 0$
- \rightarrow $d_{43} = 0$

Собственные значения 2х2

103. Найти собственные значения и собственные векторы матрицы. Привести матрицу к диагональному виду. Указать диагонализирующую матрицу.

1)
$$A = \begin{pmatrix} a & b \\ a & 2b + \frac{a}{2} \end{pmatrix}$$

$$\sqrt{\sigma(A)} = \left\{ a + 2b; \frac{a}{2} \right\}; \ \vec{x}_1 = (x_1; 2x_1); \ \vec{x}_2 = \left(-\frac{2b}{a} x_2; x_2 \right)$$

$$\rightarrow a = 2; 4; 6; -2; -4; -6$$

$$\rightarrow b = 1; 2; 3; 4; -1; -2; -3; -4$$

Спектр матрицы 1

104. Найти спектр матрицы A

1)
$$A = \begin{pmatrix} a & 0 & c \\ 0 & a & b \\ b & -c & a \end{pmatrix}$$

$$\sqrt{\sigma(A)} = \{a; a; a\}$$

$$\rightarrow a = 1; 2; 3; 4; 5; -1; -2; -3; -4; -5$$

$$\rightarrow b = 6$$
; 7; 8; 9; 10; -6; -7; -8; -9; -10

$$\rightarrow c = 1; 2; 3; 4; 5; 6; 8; 9; 10; -1; -2; -3; -4; -5; -6; -8; -9; -10$$

$$2) \quad A = \begin{pmatrix} a & 0 & c \\ 0 & a & \frac{c}{2} \\ \frac{c}{2} & c & a \end{pmatrix}$$

$$\sqrt{\sigma(A)} = \{a; a-c; a+c\}$$

$$\rightarrow a = 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; -1; -2; -3; -4; -5; -6; -7; -8; -9; -10$$

$$\rightarrow c = 2; 4; 6; 8; 10; 12; 14; -2; -4; -6; -8; -10; -12; -14$$

3)
$$A = \begin{pmatrix} a & 0 & \frac{c}{2} \\ 0 & a & a \\ a & \frac{c}{2} & c \end{pmatrix}$$

$$\sqrt{\sigma(A)} = \{0; a; a+c\}$$

$$\rightarrow a = 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; -1; -2; -3; -4; -5; -6; -7; -8; -9; -10$$

$$\rightarrow c = 2; 4; 6; 8; 10; 12; 14; -2; -4; -6; -8; -10; -12; -14$$

105. Найти спектр матрицы A

1)
$$A = \begin{pmatrix} 3 & k & 0 \\ k & 4 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$

$$\sqrt{\sigma(A)} = \{s_1; s_2; s_3\}$$

$$\rightarrow k = \sqrt{K}; -\sqrt{K}$$

$$\rightarrow K$$
, s_1 , s_2 , $s_3 =$

•
$$20$$
, -1 , 5 , 8 ;

•
$$30$$
, -2 , 5 , 9 ;

•
$$42$$
, -3 , 5 , 10 ;

$$2) A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 5 & k \\ 0 & k & 4 \end{pmatrix}$$

$$\sqrt{\sigma(A)} = \{s_1; s_2; s_3\}$$

$$\rightarrow k = \sqrt{K}; -\sqrt{K}$$

$$\rightarrow K$$
, s_1 , s_2 , $s_3 =$

Спектр комплексной матрицы 3х3

106. Найти спектр матрицы.

1)
$$A = \begin{pmatrix} 0 & a - bi & 0 \\ a + bi & 0 & c + di \\ 0 & 0 & k + mi \end{pmatrix}$$

$$\sqrt{\sigma(A)} = \left\{k + mi; \sqrt{a^2 + b^2}; -\sqrt{a^2 + b^2}\right\}$$

$$\rightarrow b = 1; 2; 3; 4; 5$$

2)
$$A = \begin{pmatrix} 0 & a+bi & 0 \\ a+bi & 0 & c+di \\ 0 & 0 & k+mi \end{pmatrix}$$

$$\sqrt{\sigma(A)} = \{k + mi; a + bi; -a + bi\}$$

$$\rightarrow a = 1; 2; 3; 4; 5$$

$$\rightarrow$$
 d = 1; 2; 3; 4; 5

$$\rightarrow k = 1; 2; 3; 4; 5$$

$$\rightarrow m = 1; 2; 3; 4; 5$$

Спектр матрицы 4х4

107. Найти спектр матрицы A.

1)
$$A = \begin{pmatrix} 0 & 0 & a & c \\ n & 0 & k & m \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & b \end{pmatrix}$$

$$\sqrt{\sigma(A)} = \{0; 0; 0; b\}$$

$$\rightarrow a = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow b = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow c = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow m = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow n = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow k = 1; -1; 2; -2; 3; -3; 4; -4$$

$$2) \quad A = \begin{pmatrix} 0 & a & 0 & 0 \\ 0 & 0 & 0 & 0 \\ a & c & 0 & n \\ k & m & 0 & b \end{pmatrix}$$

$$\sqrt{\sigma(A)} = \{0; 0; 0; b\}$$

$$\rightarrow a = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow b = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow c = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow m = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow n = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow k = 1; -1; 2; -2; 3; -3; 4; -4$$

3)
$$A = \begin{pmatrix} a & 0 & 0 & 0 \\ m & 0 & n & k \\ k & 0 & 0 & c \\ 0 & 0 & 0 & b \end{pmatrix}$$

$$\checkmark \quad \sigma(A) = \{0; 0; \mathbf{a}; \mathbf{b}\}\$$

$$\rightarrow a = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow b = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow c = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow m = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow n = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow k = 1; -1; 2; -2; 3; -3; 4; -4$$

$$A = \begin{pmatrix} a & 0 & 0 & 0 \\ m & 0 & 0 & k \\ k & n & 0 & c \\ 0 & 0 & 0 & b \end{pmatrix}$$

$$\sqrt{\sigma(A)} = \{0; 0; a; b\}$$

$$\rightarrow a = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow b = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow c = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow m = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow n = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow k = 1; -1; 2; -2; 3; -3; 4; -4$$

$$5) \quad A = \begin{pmatrix} b & 0 & a & c \\ 0 & 0 & m & 0 \\ 0 & 0 & 0 & 0 \\ c & 0 & n & b \end{pmatrix}$$

$$\sqrt{\sigma(A)} = \{0; 0; b - c; b + c\}$$

$$\rightarrow a = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow b = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow c = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow m = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow n = 1; -1; 2; -2; 3; -3; 4; -4$$

$$A = \begin{pmatrix} b & 0 & 0 & c \\ 0 & 0 & 0 & 0 \\ a & m & 0 & n \\ c & 0 & 0 & b \end{pmatrix}$$

$$\sqrt{\sigma(A)} = \{0; 0; b - c; b + c\}$$

$$\rightarrow a = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow b = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow c = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow m = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow n = 1; -1; 2; -2; 3; -3; 4; -4$$

$$7) \quad A = \begin{pmatrix} 0 & b & 0 & 0 \\ 0 & 0 & b & 0 \\ 0 & 0 & 0 & b \\ b & 0 & 0 & 0 \end{pmatrix}$$

$$\sqrt{\sigma(A)} = \{bi; -bi; b; -b\}$$

$$\rightarrow b = 1; -1; 2; -2; 3; -3; 4; -4; 5; -5; 6; -6; 7; -7; 8; -8; 9; -9$$

108. Найти собственные векторы матрицы A.

1)
$$A = \begin{pmatrix} 0 & 0 & a & c \\ n & 0 & k & m \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & b \end{pmatrix}$$

$$\lambda = 0, \ (0; x_2; 0; 0), \ x$$

$$\lambda = 0, \ (0; x_2; 0; 0), \ x_2 \in \mathbb{R} \setminus \{0\}$$

$$\lambda = 0, \ (0; x_2; 0; 0), \ x_2 \in \mathbb{R} \setminus \{0\}$$

$$\lambda = b, \ \left(\frac{c}{b}x_4; \left(\frac{nc}{b^2} + \frac{m}{b}\right)x_4; 0; x_4\right), \ x_4 \in \mathbb{R} \setminus \{0\}$$

$$\rightarrow a = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow b = 1; -1; 2; -2$$

$$\rightarrow c = 2; -2; 4; -4$$

$$\rightarrow m = 2; -2; 4; -4$$

$$\rightarrow n = 2; -2; 4; -4$$

$$\rightarrow k = 1; -1; 2; -2; 3; -3; 4; -4$$

$$2) \quad A = \begin{pmatrix} 0 & a & 0 & 0 \\ 0 & 0 & 0 & 0 \\ a & c & 0 & n \\ k & m & 0 & b \end{pmatrix}$$

$$\lambda = 0, (0; 0; x_3; 0), x_3 \in \mathbb{R} \setminus \{0\}$$

$$\lambda = 0, \ (0; 0; x_3; 0), \ x_3 \in \mathbb{R} \setminus \{0\}$$

$$\lambda = b, \ \left(0; 0; \frac{n}{b} x_4; x_4\right), \ x_4 \in \mathbb{R} \setminus \{0\}$$

$$\rightarrow a = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow b = 1; -1; 2; -2$$

$$\rightarrow c = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow m = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow n = 2; -2; 4; -4$$

$$\rightarrow k = 1; -1; 2; -2; 3; -3; 4; -4$$

3)
$$A = \begin{pmatrix} 0 & 0 & 0 & 0 \\ m & -a & n & k \\ k & 0 & -a & c \\ 0 & 0 & 0 & b-a \end{pmatrix}$$

$$\lambda = 0, \ (0; x_2; 0; 0), \ x_2 \in \mathbb{R} \setminus \{0\}$$

$$\lambda = a, \left(\frac{a}{k}x_3; \left(\frac{m}{k} + \frac{n}{a}\right)x_3; x_3; 0\right), x_3 \in \mathbb{R} \setminus \{0\}$$

$$\lambda = b, \left(0; \left(\frac{nc}{b^2} + \frac{k}{b}\right) x_4; \frac{c}{b} x_4; x_4\right), x_4 \in \mathbb{R} \setminus \{0\}$$

$$\rightarrow a = 1; -1; 3; -3$$

$$\rightarrow b = 2; -2; 4; -4$$

$$\rightarrow c = 2; -2; 4; -4$$

$$\rightarrow m = 2; -2; 4; -4$$

$$\rightarrow n = 2; -2; 4; -4$$

$$\rightarrow k = 2; -2$$

$$A = \begin{pmatrix} a & 0 & 0 & 0 \\ m & 0 & 0 & k \\ k & n & 0 & c \\ 0 & 0 & 0 & b \end{pmatrix}$$

$$\lambda = 0, (0; 0; x_3; 0), x_3 \in \mathbb{R} \setminus \{0\}$$

$$\lambda = a, \left(\frac{a}{m}x_2; x_2; \left(\frac{k}{m} + \frac{n}{a}\right)x_2; 0\right), x_2 \in \mathbb{R} \setminus \{0\}$$

$$\lambda = b, \ \left(0; \frac{k}{b}x_4; \left(\frac{kn}{b^2} + \frac{c}{b}\right)x_4; x_4\right), \ x_4 \in \mathbb{R} \setminus \{0\}$$

$$\rightarrow a = 1; -1; 3; -3$$

$$\rightarrow b = 2; -2; 4; -4$$

$$\rightarrow c = 2; -2; 4; -4$$

$$\rightarrow m = 1; -1; 2; -2$$

$$\rightarrow n = 2; -2; 4; -4$$

$$\rightarrow k = 2; -2; 4; -4$$

$$5) \quad A = \begin{pmatrix} b & 0 & a & c \\ 0 & 0 & m & 0 \\ 0 & 0 & 0 & 0 \\ c & 0 & n & b \end{pmatrix}$$

$$\lambda = 0, \ (0; x_2; 0; 0), \ x_2 \in \mathbb{R} \setminus \{0\}$$

$$\sqrt{\lambda} = b - c, \ (-x_4; 0; 0; x_4), \ x_4 \in \mathbb{R} \setminus \{0\}$$

$$\lambda = b + c, \ (x_4; 0; 0; x_4), \ x_4 \in \mathbb{R} \setminus \{0\}$$

$$\rightarrow a = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow b = 1; -1; 3; -3$$

$$\rightarrow c = 2; -2; 4; -4$$

$$\rightarrow m = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow n = 1; -1; 2; -2; 3; -3; 4; -4$$

$$6) A = \begin{pmatrix} b & 0 & 0 & c \\ 0 & 0 & 0 & 0 \\ a & m & 0 & n \\ c & 0 & 0 & b \end{pmatrix}$$

$$\lambda = 0, \ (0; 0; x_3; 0), \ x_3 \in \mathbb{R} \setminus \{0\}$$

$$\lambda = b - c, \left(-x_4; 0; \frac{n - a}{b - c} x_4; x_4 \right), x_4 \in \mathbb{R} \setminus \{0\}$$

$$\lambda = b + c, \ \left(x_4; 0; \frac{a+n}{b+c} x_4; x_4 \right), \ x_4 \in \mathbb{R} \setminus \{0\}$$

$$\rightarrow a = 1; -1$$

$$\rightarrow b = c + 2; c - 2; c + 4$$

$$\rightarrow$$
 $c=2$; 4

$$\rightarrow m = 1; -1; 2; -2; 3; -3; 4; -4$$

$$\rightarrow n = 3; -3; 5; -5$$

$$7) \quad A = \begin{pmatrix} 0 & b & 0 & 0 \\ 0 & 0 & b & 0 \\ 0 & 0 & 0 & b \\ b & 0 & 0 & 0 \end{pmatrix}$$

$$\lambda = b, (x_4; x_4; x_4; x_4), x_4 \in \mathbb{R} \setminus \{0\}$$

$$\lambda = -b, \ (-x_4; x_4; -x_4; x_4), \ x_4 \in \mathbb{R} \setminus \{0\}$$

$$\lambda = bi, \ (-x_3; -ix_3; x_3; ix_3), \ x_3 \in \mathbb{R} \setminus \{0\}$$

$$\lambda = -bi$$
, $(-x_3; ix_3; x_3; -ix_3)$, $x_3 \in \mathbb{R} \setminus \{0\}$

$$\rightarrow b = 1; -1; 2; -2; 3; -3; 4; -4; 5; -5; 6; -6; 7; -7; 8; -8; 9; -9$$

109. Найти собственные векторы матрицы A

$$\Rightarrow$$
 b = 1; 2; 3; 4; 5; 6; 7; 8; 9; -5; -6; -7; -8; -9

$$\Rightarrow k = 1; 2; 3; 4$$

$$\Rightarrow c = 5; 6; 7; 8; -5; -6; -7; -8$$

$$\Rightarrow$$
 d = 1; 2; 3; 4; 5; 6; 7; 8; 9; -1; -2; -3; -4-5; -6; -7; -8; -9

1)
$$A = \begin{pmatrix} b+k & d & c \\ 0 & b & 0 \\ c & 0 & b+k \end{pmatrix}$$

$$\sqrt{\lambda_1 = b, \left(-\frac{k}{c}x_3; \frac{k^2 - c^2}{cd}x_3; x_3\right), x_3 \in \mathbb{R} \setminus \{0\};}$$

$$\lambda_2 = b + k - c, \ (-x_3; 0; x_3), \ x_3 \in \mathbb{R} \setminus \{0\};$$

$$\lambda_3 = b + k + c$$
, $(x_3; 0; x_3)$, $x_3 \in \mathbb{R} \setminus \{0\}$;

$$2) \quad A = \begin{pmatrix} b+k & 0 & c \\ 0 & b & 0 \\ c & d & b+k \end{pmatrix}$$

$$\sqrt{\lambda_1 = b, \left(-\frac{c}{k}x_3; \frac{c^2 - k^2}{kd}x_3; x_3\right), x_3 \in \mathbb{R} \setminus \{0\};}$$

$$\lambda_2 = b + k - c, \ (-x_3; 0; x_3), \ x_3 \in \mathbb{R} \setminus \{0\};$$

$$\lambda_3 = b + k + c$$
, $(x_3; 0; x_3)$, $x_3 \in \mathbb{R} \setminus \{0\}$;

110. Найти ортогональное преобразование, приводящее квадратичную форму к каноническому виду

1)
$$L(x_1, x_2, x_3) = ax_1^2 + bx_2^2 + ax_3^2 - 2ax_1x_2$$

$$S = \begin{bmatrix} 0 & 1/\sqrt{2} & -1/\sqrt{2} \\ 1 & 0 & 0 \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

$$L(y_1, y_2, y_3) = by_1^2 + 2ay_3^2$$

$$\rightarrow a = 1; 2; 3; 4; 6$$

$$\rightarrow b = 5; -5; 7; -7; 9; -9$$

2)
$$L(x_1, x_2, x_3) = bx_1^2 + ax_2^2 - 2ax_2x_3 + ax_3^2$$

$$S = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1/\sqrt{2} & -1/\sqrt{2} \\
0 & 1/\sqrt{2} & 1/\sqrt{2}
\end{bmatrix}$$

$$L(y_1, y_2, y_3) = by_1^2 + 2ay_3^2$$

$$\rightarrow a = 1; 2; 3; 4; 6$$

$$\rightarrow b = 5; -5; 7; -7; 9; -9$$

3)
$$L(x_1, x_2, x_3) = ax_1^2 + ax_2^2 + bx_3^2 - 2ax_1x_2$$

$$S = \begin{bmatrix} 0 & 1/\sqrt{2} & -1/\sqrt{2} \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} \\ 1 & 0 & 0 \end{bmatrix}$$

$$L(y_1, y_2, y_3) = by_1^2 + 2ay_3^2$$

$$\rightarrow a = 1; 2; 3; 4; 6$$

$$\rightarrow b = 5; -5; 7; -7; 9; -9$$

4)
$$L(x_1, x_2, x_3) = ax_1^2 + cx_2^2 + ax_3^2 - 2bx_1x_3$$

$$S = \begin{bmatrix} 0 & 1/\sqrt{2} & -1/\sqrt{2} \\ 1 & 0 & 0 \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

$$L(y_1, y_2, y_3) = cy_1^2 + (a - b)y_2^2 + (a + b)y_3^2$$

$$\rightarrow a = 3; 4; 5$$

→
$$b = 1$$
; 2

$$\rightarrow c = 8; 9; 10$$

5)
$$L(x_1, x_2, x_3) = cx_1^2 + ax_2^2 + ax_3^2 - 2bx_2x_3$$

$$S = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/\sqrt{2} & -1/\sqrt{2} \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

$$L(y_1, y_2, y_3) = cy_1^2 + (a - b)y_2^2 + (a + b)y_3^2$$

- $\rightarrow a = 3; 4; 5$
- $\rightarrow b = 1; 2$
- $\rightarrow c = 8; 9; 10$
- 6) $L(x_1, x_2, x_3) = ax_1^2 + ax_2^2 + cx_3^2 2bx_1x_2$

$$S = \begin{bmatrix} 0 & 1/\sqrt{2} & -1/\sqrt{2} \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} \\ 1 & 0 & 0 \end{bmatrix}$$

$$L(y_1, y_2, y_3) = cy_1^2 + (a - b)y_2^2 + (a + b)y_3^2$$

- $\rightarrow a = 3; 4; 5$
- $\rightarrow b = 1; 2$
- $\rightarrow c = 8; 9; 10$

Часть V Прямая на плоскости

Область

111. Построить облать решений следующих систем неравенств.

1)
$$\begin{cases} Bx - ay + aA \ge 0, \\ Cx + by \le aC + b(A + B), \\ (A + B - C)x + cy \le (a + b + c)(A + B - C), \\ x \ge 0, \\ y \ge 0 \end{cases}$$

$$\checkmark (0,0), (0,A), (a,A + B), (a + b,A + B - C), (a + b + c,0)$$

$$\rightarrow A = 3; 4; 5; 6; 7$$

$$\rightarrow B = 2; 3; 4; 5$$

$$\rightarrow C = 0; 1; 2; 3; 4$$

$$\rightarrow a = 1; 2; 3; 4; 5; 6$$

$$\rightarrow c = b - 1; b + 1; b + 2$$

$$\rightarrow b = 1; 2; 3$$

Уравнение прямой, проходящей через две точки

- 112. Написать уравнение прямой, проходящей через точки
 - 1) A(A, B), B(A + ka, B + kb)
 - $\sqrt{bx ay + aB bA} = 0$
 - $\rightarrow A = -3; 5; 7$
 - $\rightarrow B = -4; -2; 4$
 - $\rightarrow a = -5; -3; -1; 1; 3; 5$
 - $\rightarrow b = -2; -4; -1; 1; 2; 4$
 - $\rightarrow k = 1; -1; 3; -2$

Уравнение параллельной прямой через 3 точки

- **113.** Составить уравнение прямой, проходящей через точку A, и параллельной прямой, соединяющей точки M и N.
 - 1) A(A, B), M(C, D), N(C + kc, D + kd)
 - $\sqrt{dx cy + cB dA} = 0$
 - $\rightarrow c = -5; -3; -1; 1; 3; 5$
 - $\rightarrow d = -2; -4; -1; 1; 2; 4$
 - $\rightarrow A = -1; 2; 3$
 - $\rightarrow B = 1; 2; -3$
 - $\rightarrow C = -3; 5; 7$
 - $\rightarrow D = -4; -2; 4$
 - $\rightarrow k = 1; -1; 3; -2$

Уравнение перпендикулярной прямой через 3 точки

- **114.** Составить уравнение прямой, проходящей через точку A, и перпендикулярной прямой, соединяющей точки M и N.
 - 1) A(A, B), M(C, D), N(C + kc, D + kd)
 - $\sqrt{cx + dy cA dB} = 0$
 - $\rightarrow c = -5; -3; -1; 1; 3; 5$
 - $\rightarrow d = -2; -4; -1; 1; 2; 4$
 - $\rightarrow A = -1; 2; 3$
 - $\rightarrow B = 1; 2; -3$
 - $\rightarrow C = -3; 5; 7$
 - $\rightarrow D = -4; -2; 4$
 - $\rightarrow k = 1; -1; 3; -2$

Угол между двумя прямыми

115. Найти угол между прямыми:

1)
$$ax + by - aA - bB = 0$$
, $cx + dy - cC - dD = 0$

$$\sqrt{\arctan \left| \frac{ad - bc}{ac + bd} \right|}$$

$$\rightarrow a = -1; 1; 2; -2$$

$$\rightarrow b = 1; -1; 3; -3; 5; -5$$

$$\rightarrow c = 1; -1; 3; -3; 5; -5$$

$$\rightarrow d = 2; -2; 1; -1$$

$$\rightarrow A = 2; -3$$

$$\rightarrow B = 3; -4$$

$$\rightarrow$$
 $C = 1; -5$

→
$$D = 6$$
; -3

- **116.** Найти точку пересечения диагоналей четырёхугольника ABCD.
 - 1) A(a, A), B(b, B), C(c, C), D(d, D)

$$\sqrt{\left(\frac{lb-ka+A-B}{l-k}, k\frac{lb-la+A-B}{l-k}+A\right)}$$

$$\rightarrow k = \frac{C - A}{c - a}$$

$$\rightarrow l = \frac{D-B}{d-b}$$

$$\rightarrow a = -4; -5; -6; -7$$

$$\rightarrow b = 9; 10; 11; 12$$

$$\rightarrow c = 9; 10; 11; 12$$

$$\rightarrow d = -2; -1; 0; 1$$

$$\rightarrow A = 3; 4; 5; 6$$

$$\rightarrow B = 5; 6; 7; 8$$

$$\rightarrow C = -2; -1; 0; 1$$

$$\rightarrow D = -5; -4; -3; -2$$

Точка пересечения диагоналей четырёхугольника

117. Найти точку пересечения диагоналей четырёхугольника ABCD.

1)
$$A(A + ka, B + kb)$$
, $B(A + mc, B + md)$, $C(A + la, B + lb)$, $D(A + nc, B + nd)$

$$\sqrt{(A,B)}$$

$$\rightarrow A = -5; 3; -1$$

$$\rightarrow B = -2; 4; 6$$

$$\rightarrow a = 1; -1; 3; -3$$

$$\rightarrow b = 1; -1; 2; -2; 4; -4$$

$$\rightarrow c = 5; -5$$

$$\rightarrow d = 1; -1; 2; -2; 4; -4; 3; -3$$

$$\rightarrow k = 3; 5$$

$$- l = -2; -4$$

$$\rightarrow m = 3; 2$$

$$\rightarrow n = -1; -5$$

Высота в треугольнике

118. В треугольнике ABC найти длину высоты AD.

1)
$$A(A + cl, B + dl), B(A, B), C(A + ak, B + bk)$$

$$\sqrt{\left|\frac{-bcl + adl}{\sqrt{a^2 + b^2}}\right|}$$

$$\rightarrow a = 2; -3; 3; 4; -4$$

$$\rightarrow b = 1; -4; 4; 3; -3$$

$$\rightarrow$$
 $A = 3; -2$

$$\rightarrow B = -4; 5$$

$$\rightarrow c = 1; 2; -2; -3; 3$$

$$\rightarrow d = -5; 5$$

$$\rightarrow k = 1; 2; -3$$

→
$$l = 3$$
; -2

Прямая через точку

119.

1) Написать уравнения прямых, проходящих через точку M(a,b) и отсекающих на координатных осях отрезки равной длины.

```
\sqrt{\quad y=x-a+b}; \quad y=-x+a+b
```

- $\rightarrow a = 1; 2; 3; 4; 5$
- $\rightarrow b = 1; 2; 3; 4; 5$

Периметр и площадь треугольника по вершинам

120.

1) Дан треугольник с вершинами A(a,b), B(a+3,b+3), C(a+4,b-4). Найти его периметр и площадь.

$$\sqrt{P} = 12, S = 6$$

$$\rightarrow a = -5; -4; -3; -1; 1; 2; 3; 4; 5$$

$$\rightarrow b = -5; -4; -3; -1; 1; 2; 3; 4; 5$$

Уравнения сторон треугольника

121.

1) Дан треугольник с вершинами $A(a,b),\ B(a+3,b+3),\ C(a+4,b-4).$ Найти уравнения сторон.

$$AB: x - y - a + b = 0;$$

$$\sqrt{AC: x + y - a - b} = 0;$$

$$BC: 7x + y - b - 7a - 24 = 0$$

$$\rightarrow a = -5; -4; -3; -1; 1; 2; 3; 4; 5$$

$$\rightarrow b = -5; -4; -3; -1; 1; 2; 3; 4; 5$$

Внутренние углы треугольника

122.

1) Дан треугольник с вершинами A(a,b), B(a+3,b+3), C(a+4,b-4). Найти его внутренние углы.

$$\angle A = 90^{\circ},$$

 $\sqrt{ \angle C} = \operatorname{arctg} 3/4,$

$$\angle B = \operatorname{arctg} 4/3$$

- $\rightarrow a = -5; -4; -3; -1; 1; 2; 3; 4; 5$
- $\rightarrow b = -5; -4; -3; -1; 1; 2; 3; 4; 5$

123.

- 1) Известны уравнения сторон треугольника ABC: x-y-a+b=0 (AB), x+y-a-b=0 (AC), 7x+y-b-7a-24=0 (BC). Найти его периметр и площадь.
- $\sqrt{P} = 12, S = 6$
- $\rightarrow a = -5; -4; -3; -1; 1; 2; 3; 4; 5$
- $\rightarrow b = -5; -4; -3; -1; 1; 2; 3; 4; 5$

124.

1) Известны уравнения сторон треугольника ABC: x-y-a+b=0 (AB), x+y-a-b=0 (AC), 7x+y-b-7a-24=0 (BC). Составить уравнение биссектрисы, проведённой из вершины A и найти её длину.

$$\sqrt{y=b}, \ d=3\frac{3}{7}$$

$$\rightarrow a = -5; -4; -3; -1; 1; 2; 3; 4; 5$$

$$\rightarrow b = -5; -4; -3; -1; 1; 2; 3; 4; 5$$

Точка на прямой, равноудалённая от двух данных точек

125.

1) На прямой y-x-2c=0 найти точку, равноудалённую от точек A(a;a) и B(a+2b;a+2b).

$$\sqrt{M(a+b-c;a+b+c)}$$

$$\rightarrow a = -5; -4; -3; -1; 1; 2; 3; 4; 5$$

$$\rightarrow b = -5; -4; -3; -1; 1; 2; 3; 4; 5$$

$$\rightarrow c = 1; 2; 3; 4; 5$$

126.

1) Найти уравнение прямой, проходящей через точку пересечения прямых x+y-a-b=0 и 7x+y-b-7a-24=0 и делящей отрезок AB между точками A(a+5,b+1) и B(a+8,b-2) в отношении 2:1.

$$\sqrt{y=x-a+b-8}$$
 $\rightarrow a=-5; -4; -3; -1; 1; 2; 3; 4; 5$
 $\rightarrow b=-5; -4; -3; -1; 1; 2; 3; 4; 5$

Трямая, проходящая через точку и параллельная/перпендикулярная заданной прямой

127.

$$\Rightarrow a = -5; -4; -3; -1; 1; 2; 3; 4; 5$$

$$\Rightarrow b = -5; -4; -3; -1; 1; 2; 3; 4; 5$$

$$\Rightarrow C = -5; -4; -3; -1; 1; 2; 3; 4; 5$$

$$\Rightarrow k = 1; 2; 3; 4; 5; 6; 7; 8; 9$$

1) Написать уравнение прямой, проходящей через точку M(a;b) параллельно прямой y=kx+C.

$$\sqrt{y} = kx - ka + b$$

- 2) Написать уравнение прямой, проходящей через точку M(a;b) параллельно прямой kAx Ay + C = 0.
- $\sqrt{y} = kx ka + b$
- $\rightarrow A = 1; 2; 3; 4; 5; 6$
- 3) Написать уравнение прямой, проходящей через точку M(a;b) перпендикулярно прямой $y=-\frac{1}{k}x+C.$
- $\sqrt{y} = kx ka + b$
- 4) Написать уравнение прямой, проходящей через точку M(a;b) параллельно прямой Ax + Aky + C = 0.
- $\sqrt{y} = kx ka + b$
- \rightarrow A = 1; 2; 3; 4; 5; 6

128.

- 1) Найти площадь треугольника, отсекаемого прямой bx + ay ab = 0 от координатного угла.
- $\sqrt{\frac{1}{2}ab}$
- $\rightarrow a = 1; 2; 3; 4; 5; 6; 7$
- $\rightarrow b = 1; 2; 3; 4; 5$

129.

1) Найти расстояние от начала координат до прямой Ax - Ay + C = 0

$$\sqrt{d} = \frac{C}{A\sqrt{2}}$$

- \rightarrow A = -5; -4; -3; -1; 1; 2; 3; 4; 5
- \rightarrow C = 1; 2; 3; 4; 5; 6; 7; 8; 9

Часть VI

Прямая и плоскость в пространстве

Уравнение плоскости Простая

130. Составить уравнение плоскости.

$$\Rightarrow a = -3; -2; 0; 1; 2; 3$$

$$\Rightarrow b = -4; -2; 1; 3; 4$$

$$\Rightarrow c = -5; -1; 0; 2; 3; 7$$

$$\Rightarrow A = -3; -2; 1; 2; 3$$

$$\Rightarrow B = -4; -2; 1; 3$$

$$\Rightarrow$$
 $C = -5; -1; 2; 3$

1) Составить уравнение плоскости, которая проходит через точку $M_0(a;b;c)$ и имеет нормальныей вектор $\vec{N}=(A;B;C)$.

$$\sqrt{Ax + By + Cz - aA - bB - cC} = 0$$

2) Составить уравнение плоскости, которая проходит через точку $M_0(a;b;c)$ и параллельна плоскости Ax + By + Cz + D = 0.

$$\sqrt{Ax + By + Cz - aA - bB - cC} = 0$$

$$\rightarrow D = -11; -9; -7; 3; 5; 8$$

Уравнение плоскости

131. Составить уравнение плоскости.

$$\Rightarrow a = -3; -2; 0; 1; 2; 3$$

$$\Rightarrow$$
 $b = -4; -2; 1; 3; 4$

$$\Rightarrow$$
 $c = -5; -1; 0; 2; 3; 7$

$$\Rightarrow l_1 = -2; -1; 1; 2; 3; 4$$

$$\Rightarrow l_2 = -2; -1; 1; 2; 3; 4$$

$$\Rightarrow l_3 = -2; -1; 1; 2; 3; 4$$

$$\Rightarrow k_1 = 0; 1; 2$$

$$\Rightarrow k_2 = 1; 3$$

$$\Rightarrow k_3 = 0; 2$$

1) Написать уравнение плоскости, проходящей через точки $M_1(a;b;c)$, $M_2(a+l_1;b+l_2;c+l_3)$, и перпендикулярной плоскости $k_1l_1x+k_2l_2y+k_3l_3z+D=0$.

$$\sqrt{(k_3 - k_2)l_2l_3(x - a) + (k_1 - k_3)l_1l_3(y - b) + (k_2 - k_1)l_1l_2(z - c)} = 0$$

$$\rightarrow D = -11; -9; -7; 3; 5; 8$$

2) Написать уравнение плоскости, проходящей через три точки $M_1(a;b;c)$, $M_2(a+l_1;b+l_2;c+l_3)$, $M_3(a+k_1l_1;b+k_2l_2;c+k_3l_3)$.

$$\sqrt{(k_3-k_2)l_2l_3(x-a)+(k_1-k_3)l_1l_3(y-b)+(k_2-k_1)l_1l_2(z-c)}=0$$

132. Составить уравнение плоскости.

$$\Rightarrow a = -3; -2; 0; 1; 2; 3$$

$$\Rightarrow$$
 $b = -4; -2; 1; 3; 4$

1) Написать уравнение плоскости, проходящей через ось Ox и точку M(0; a; b).

$$\sqrt{by - az} = 0$$

2) Написать уравнение плоскости, проходящей через ось Oy и точку M(a; 0; b).

$$\sqrt{bx - az} = 0$$

3) Написать уравнение плоскости, проходящей через ось Oz и точку M(a;b;0).

$$\sqrt{bx - ay} = 0$$

4) Составить уравнение плоскости, проходящей через точку M(a;b;c) и отсекающей равные отрезки на осях координат.

$$\sqrt{x+y+z-a-b-c} = 0$$

$$\rightarrow c = -5; -1; 0; 2; 3; 7$$

5) Составить уравнение плоскости, проходящей через точку M(a; b; c) и отсекающей на осях Oy и Oz в k раз большие отрезки, чем на оси Ox.

$$\sqrt{kx + y + z - ka - b - c} = 0$$

$$\rightarrow c = -5; -1; 0; 2; 3; 7$$

$$\rightarrow k = 2$$
; 3

6) Составить уравнение плоскости, проходящей через точку M(a; b; c) и отсекающей на осях Ox и Oz в k раз большие отрезки, чем на оси Oy.

$$\sqrt{x+ky+z-a-kb-c}=0$$

$$\rightarrow c = -5; -1; 0; 2; 3; 7$$

$$\rightarrow k = 2; 3$$

7) Составить уравнение плоскости, проходящей через точку M(a; b; c) и отсекающей на осях Ox и Oy в k раз большие отрезки, чем на оси Oz.

$$\sqrt{x+y+kz-a-b-kc}=0$$

$$\rightarrow c = -5; -1; 0; 2; 3; 7$$

$$\rightarrow k = 2; 3$$

Расстояние от точки до плоскости

133. Найти расстояние.

$$\Rightarrow a = -3; -2; 0; 1; 2; 3$$

$$\Rightarrow b = -4; -2; 1; 3; 4$$

$$\Rightarrow c = -5; -1; 0; 2; 3; 7$$

$$\Rightarrow$$
 $A = -3; -2; 1; 2; 3$

$$\Rightarrow B = -4; -2; 1; 3$$

$$\Rightarrow C = -5; -1; 2; 3$$

$$\Rightarrow D = -11; -9; -7; 3; 5; 8$$

1) Найти расстояние от точки $M_0(a;b;c)$ до плоскости Ax + By + Cz + D = 0.

$$\sqrt{\frac{|Aa+Bb+Cc+D|}{\sqrt{A^2+B^2+C^2}}}$$

Угол между плоскостями

134. Найти угол между плоскостями.

$$\Rightarrow A_1 = -1; 1; 2$$

$$\Rightarrow B_1 = -1; 1; 2$$

$$\Rightarrow$$
 $C_1 = -1; 1; 2$

$$\Rightarrow D_1 = -6; -4; -2; 3; 5; 7$$

$$\Rightarrow D_2 = -5; -3; -1; 2; 4; 6$$

$$\Rightarrow k_1 = -2; -1; 1; 2$$

$$\Rightarrow k_2 = 1; 2$$

$$\Rightarrow k_3 = -2; -1$$

1)
$$A_1x + B_1y + C_1z + D_1 = 0$$
, $A_2x + B_2y + C_2z + D_2 = 0$

$$\sqrt{\cos\varphi} = \frac{A_1A_2 + B_1B_2 + C_1C_2}{\sqrt{((A_1)^2 + (B_1)^2 + (C_1)^2)((A_2)^2 + (B_2)^2 + (C_2)^2)}}$$

$$\rightarrow A_2 = k_1 A_1$$

$$\rightarrow B_2 = k_2 B_1$$

$$\rightarrow C_2 = k_3C_1$$

Уравнение прямой

135. Составить уравнение прямой.

$$\Rightarrow a = -3; -2; 0; 1; 2; 3$$

$$\Rightarrow$$
 b = -4; -2; 1; 3; 4

$$\Rightarrow$$
 $c = -5; -1; 0; 2; 3; 7$

$$\Rightarrow l_1 = -2; -1; 1; 2; 3; 4$$

$$\Rightarrow l_2 = -2; -1; 1; 2; 3; 4$$

$$\Rightarrow l_3 = -2; -1; 1; 2; 3; 4$$

1) Написать каноническое уравнение прямой, проходящей через точки $M_1(a;b;c)$, $M_2(a+l_1;b+l_2;c+l_3)$.

$$\sqrt{\frac{x-a}{l_1}} = \frac{y-b}{l_2} = \frac{z-c}{l_3}$$

2) Написать каноническое уравнение прямой, проходящей через точку M(a;b;c), параллельно прямой $\frac{x-a_2}{l_1}=\frac{y-b_2}{l_2}=\frac{z-c_2}{l_3}$.

$$\sqrt{\frac{x-a}{l_1}} = \frac{y-b}{l_2} = \frac{z-c}{l_3}$$

$$\rightarrow a_2 = -1; 4; 5$$

$$\rightarrow b_2 = -3; -1; 0; 2$$

$$\rightarrow c_2 = -4; -3; 1; 4; 5$$

- **136.** Проверить, будут ли прямые l_1 и l_2 параллельны, ортогональными либо не обладают ни одним из этих свойств.
 - $\Rightarrow A = -2; -1; 2; 4$
 - \Rightarrow B = -3; 1; 2; 5
 - \Rightarrow C = -2; -1; 2; 3
 - $\Rightarrow D_1 = -2; 1; 3; 4$
 - $\Rightarrow D_2 = -3; -1; 2; 5$
 - $\Rightarrow a = -2; -1; 0; 1; 2; 3; 4$
 - $\Rightarrow b = -2; -1; 0; 1; 2; 3; 4$
 - $\Rightarrow c = -2; -1; 0; 1; 2; 3; 4$
 - $\Rightarrow k_1 = 1; 2$
 - $\Rightarrow k_2 = -1; 0$
 - $\Rightarrow k_3 = -2; 3$

1)
$$l_1: \begin{cases} Ax + By + Cz + D_1 = 0; \\ k_1Ax + k_2By + k_3Cz + D_2 = 0; \\ y - b \end{cases} = \frac{y - b}{k(k_3 - k_2)BC} = \frac{z - c}{k(k_2 - k_1)AB}.$$

- √ коллинеарны
- $\rightarrow k = -1; 1; 2; 3$

2)
$$l_1: \begin{cases} Ax + By + Cz + D_1 = 0; \\ k_1Ax + k_2By + k_3Cz + D_2 = 0; \\ l_2: \frac{x-a}{k(k_2 - k_1)AB} = \frac{y-b}{0} = \frac{z-c}{k(k_2 - k_3)BC}. \end{cases}$$

- √ ортогональны
- $\rightarrow k = -1; 1; 2; 3$

3)
$$l_1: \begin{cases} Ax + By + Cz + D_1 = 0; \\ k_1Ax + k_2By + k_3Cz + D_2 = 0; \\ l_2: \frac{x-a}{l_1(k_3 - k_2)BC} = \frac{y-b}{l_2(k_1 - k_3)AC} = \frac{z-c}{l_3(k_2 - k_1)AB}. \end{cases}$$

- $\rightarrow l_1 = 1; 2$
- $\rightarrow l_2 = 1; 3$
- $\rightarrow l_3 = 2; 4$
- √ не обладают

Проекция точки на плоскость

137. Найти проекцию.

$$\Rightarrow a = -3; -2; 0; 1; 2; 3$$

$$\Rightarrow$$
 $b = -4; -2; 1; 3; 4$

$$\Rightarrow$$
 $c = -5; -1; 0; 2; 3; 7$

$$\Rightarrow$$
 $A = -3; -2; 1; 2; 3$

$$\Rightarrow B = -4; -2; 1; 3$$

$$\Rightarrow$$
 $C = 0; -1; 2; 3$

$$\Rightarrow D = -11; -9; -7; 3; 5; 8$$

1) Найти ортогональную проекцию точки $M_0(a;b;c)$ на плоскость Ax + By + Cz + D = 0.

$$\sqrt{\left(a - A\frac{Aa + Bb + Cc + D}{A^2 + B^2 + C^2}, b - B\frac{Aa + Bb + Cc + D}{A^2 + B^2 + C^2}, c - C\frac{Aa + Bb + Cc + D}{A^2 + B^2 + C^2}\right)}$$

Часть VII Векторы

- **138.** Проверить, будут ли векторы \overrightarrow{AB} и \overrightarrow{CD} коллинеарными, ортогональными либо не обладают ни одним из этих свойств.
 - $\Rightarrow a_1 = -2; -1; 0; 1; 2; 3; 4$
 - $\Rightarrow a_2 = -2; -1; 0; 1; 2; 3; 4$
 - $\Rightarrow a_3 = -2; -1; 0; 1; 2; 3; 4$
 - \Rightarrow $c_1 = -2; -1; 0; 1; 2; 3; 4$
 - \Rightarrow $c_2 = -2; -1; 0; 1; 2; 3; 4$
 - \Rightarrow $c_3 = -2; -1; 0; 1; 2; 3; 4$
 - $\Rightarrow l_1 = -2; -1; 1; 2; 3; 4$
 - $\Rightarrow l_2 = -2; -1; 1; 2; 3; 4$
 - $\Rightarrow l_3 = -2; -1; 1; 2; 3; 4$
 - 1) $A(a_1, a_2, a_3)$, $B(a_1 + l_1, a_2 + l_2, a_3 + l_3)$, $C(c_1, c_2, c_3)$, $D(c_1 + kl_1, c_2 + kl_2, c_3 + kl_3)$
 - √ коллинеарны
 - $\rightarrow k = -1; 1; 2; 3$
 - 2) $A(a_1, a_2, a_3)$, $B(a_1 + l_1, a_2 + l_2, a_3 + l_3)$, $C(c_1, c_2, c_3)$, $D(c_1 + kl_3, c_2, c_3 kl_1)$
 - √ ортогональны
 - $\rightarrow k = -1; 1; 2; 3$
 - 3) $A(a_1, a_2, a_3)$, $B(a_1 + l_1, a_2 + l_2, a_3 + l_3)$, $C(c_1, c_2, c_3)$, $D(c_1 + k_1 l_1, c_2 + k_2 l_2, c_3 + k_3 l_3)$
 - √ не обладают
 - $\rightarrow k_1 = 0; 1; 2$
 - $\rightarrow k_2 = 1; 3$
 - $\rightarrow k_3 = 0; 2$

- **139.** При каких значениях параметров α и β векторы коллинеарны/ортогональны
 - 1) Даны векторы

$$\vec{a} = n\vec{i} + \vec{j} + \alpha \vec{k}$$
$$\vec{b} = \vec{i} - \beta \vec{j} + m\vec{k}$$

При каких значениях α и β векторы \vec{a} и \vec{b} коллинеарны?

$$\sqrt{\beta} = -\frac{1}{n}, \ \alpha = m$$

$$\rightarrow n = -2; \ -1; \ 1; \ 2; \ 3; \ 4$$

$$\rightarrow m = -2; \ -1; \ 0; \ 1; \ 2; \ 3; \ 4$$

2) Даны векторы

$$\vec{a} = n\vec{i} + \alpha \vec{j} + \vec{k}$$

$$\vec{b} = \alpha \vec{i} + l\vec{j} + m\vec{k}$$

При каких значениях α они ортогональны?

$$\sqrt{\alpha} = -\frac{m}{n+l}$$

$$\rightarrow n = 1; 2; 3; 4$$

$$\rightarrow n = 1; 2; 3; 4$$

$$\rightarrow m = -2; -1; 0; 1; 2; 3; 4$$

Нахождение коллинеарного вектора

140. Решить задачу

- 1) Найти вектор \vec{b} , коллинеарный вектору $\vec{a}=(a_1;a_2;a_3)$ и удовлетворяющий условию $\vec{a}\cdot\vec{b}=k(a_1^2+a_2^2+a_3^2)$.
- $\sqrt{\vec{b}} = (ka_1; ka_2; ka_3)$
- $\rightarrow a_1 = -2; -1; 0; 1; 2; 3; 4$
- $\rightarrow a_2 = -2; -1; 1; 2; 3; 4$
- $\rightarrow a_3 = -2; -1; 0; 1; 2; 3; 4$
- $\rightarrow k = -2; -1; 2; 3; 4$

141. Решить задачу

1) Найти вектор \vec{c} , ортогональный векторам $\vec{a}=(3;-2;1)$ и $\vec{b}=(3b_3-1;b_2;b_3)$, если его длина равна $\sqrt{(b_2+2b_3)^2+1+(6b_3-2+3b_2)^2}$, а проекция вектора \vec{c} на ось OY положительна.

$$\sqrt{\vec{c}} = (b_2 + 2b_3; 1; -(6b_3 - 2 + 3b_2))$$

$$\rightarrow b_2 = -3; -2; -1; 1; 2; 3; 4$$

$$\rightarrow b_3 = -3; -2; -1; 1; 2; 3; 4$$

Длина суммы двух вектров

142.

- 1) Вычислить длину вектора $\vec{c}=k\vec{a}+n\vec{b}$, если $|\vec{a}|=n$, $|\vec{b}|=k$, $\varphi=120$, где $\varphi-$ угол между векторами \vec{a} и \vec{b} .
- $\sqrt{|\vec{c}| = kn}$
- $\rightarrow k = 2; 3; 4; 5; 6; 7$
- $\rightarrow n = 2; 3; 4; 5; 6; 7$

- 143. Найти вектор, удовлетворяющий условиям
 - \Rightarrow n = -2; -1; 1; 2; 3
 - $\Rightarrow l = -2; -1; 1; 2; 3$
 - $\Rightarrow m = -2; -1; 1; 2; 3$
 - $\Rightarrow f = -2; -1; 1; 2; 3$
 - \Rightarrow d = -2; -1; 1; 2; 3
 - 1) Найти вектор \vec{b} , ортогональный вектору $\vec{a}=n\vec{i}+l\vec{j}+m\vec{k}$ и удовлетворяющий условиям: $\vec{b}\cdot\vec{i}=fm$ и $\vec{b}\cdot\vec{j}=dm$.
 - $\sqrt{\vec{b}} = (mf; dm; -(nf + ld))$
 - 2) Найти вектор \vec{b} , удовлетворяющий условиям $\vec{b}\cdot\vec{i}=f,\,\vec{b}\cdot\vec{k}=d,\,\vec{a}\cdot\vec{b}=l,\,$ где $\vec{a}=n\vec{i}+\vec{j}+m\vec{k}.$
 - $\sqrt{\vec{b}} = (f; l nf md; d)$

144. Найти вектор \vec{q}

1) Даны три вектора

$$\vec{u} = (a+en)\vec{i} + fn\vec{j} + (b+gn)\vec{k};$$

$$\vec{v} = (c+em)\vec{i} + fm\vec{j} + (d+gm)\vec{k};$$

$$\vec{w} = e\vec{i} + f\vec{j} + g\vec{k}$$

Найти вектор \vec{q} , удовлетворяющий условиям $\vec{u} \cdot \vec{q} = (a+en)X + fnY + (b+gn)Z$, $\vec{v} \cdot \vec{q} = (c+em)X + fmY + (d+gm)Z$ и $\vec{w} \cdot \vec{q} = eX + fY + gZ$.

- $\sqrt{\vec{q}} = (X; Y; Z)$
- $\rightarrow n = -2; 3$
- $\rightarrow m = -1; 5$
- $\rightarrow X = 1; 7$
- \rightarrow Y = −2; −3
- $\rightarrow Z = 4; -1$
- $\rightarrow a = 2; -2; 4; -4$
- $\rightarrow b = 7; -7$
- \rightarrow c = 3; -3
- \rightarrow d=-5; 5
- $\rightarrow e = -4; 2; 3$
- $\rightarrow f = 3; -2; 5$
- $\rightarrow g = -2; 1; 0$

- **145.** Сила \vec{F} приложена к точке A. Вычислить
 - а) работу силы \vec{F} в случае, когда точка её приложения, двигаясь прямолинейно, перемещается из положения A в положение B;
 - б) модуль момента силы \vec{F} относительно точки B.

$$\Rightarrow f_1 = -2; -1; 1; 2; 3; 4$$

$$\Rightarrow f_2 = -2; -1; 1; 2; 3; 4$$

$$\Rightarrow f_3 = -2; -1; 1; 2; 3; 4$$

$$\Rightarrow a_1 = -2; -1; 0; 1; 2; 3; 4$$

$$\Rightarrow a_2 = -2; 0; 2; 4$$

$$\Rightarrow a_3 = -2; -1; 0; 1; 2; 3; 4$$

$$\Rightarrow b_1 = -2; -1; 0; 1; 2; 3; 4$$

$$\Rightarrow$$
 $b_2 = -1; 1; 3$

$$\Rightarrow$$
 $b_3 = -2; -1; 0; 1; 2; 3; 4$

1)
$$\vec{F} = (f_1, f_2, f_3), A(a_1, a_2, a_3), B(b_1, b_2, b_3),$$

$$\sqrt{A=A}, |\vec{M}|=V$$

$$\rightarrow A = f_1(b_1 - a_1) + f_2(b_2 - a_2) + f_3(b_3 - a_3)$$

$$\to V = \sqrt{(f_3(a_2 - b_2) - f_2(a_3 - b_3))^2 + (f_3(a_1 - b_1) - f_1(a_3 - b_3))^2 + (f_2(a_1 - b_1) - f_1(a_2 - b_2))^2}$$

- **146.** Даны три силы \vec{F} , \vec{P} и \vec{Q} , приложенные к точке C. Определить величину и направляющие косинусы момента равнодействующей этих сил относительно точки A.
 - $\Rightarrow f_1 = -2; -1; 1; 2$
 - $\Rightarrow f_2 = -2; -1; 1; 2$
 - $\Rightarrow f_3 = -2; -1; 1; 2$
 - $\Rightarrow p_1 = -2; -1; 1; 2$
 - $\Rightarrow p_2 = -2; -1; 1; 2$
 - $\Rightarrow p_3 = -2; -1; 1; 2$
 - \Rightarrow $q_1 = -2; -1; 1; 2$
 - \Rightarrow $q_2 = -2; -1; 1; 2$
 - $\Rightarrow q_3 = -2; -1; 1; 2$
 - $\Rightarrow a_1 = -2; -1; 0; 1; 2$
 - $\Rightarrow a_2 = -2; 0; 2$
 - $\Rightarrow a_3 = -2; -1; 0; 1; 2$
 - \Rightarrow $c_1 = -2; -1; 0; 1; 2$
 - $\Rightarrow c_2 = -1; 1$
 - \Rightarrow $c_3 = -2$; -1; 0; 1; 2
 - 1) $\vec{F} = (f_1, f_2, f_3), \ \vec{P} = (p_1, p_2, p_3), \ \vec{Q} = (q_1, q_2, q_3), \ A(a_1, a_2, a_3), \ C(c_1, c_2, c_3)$

$$\vec{M} = ni - lj + mk$$

- $\sqrt{\cos \alpha} = \frac{n}{M}, \cos \beta = \frac{l}{M}, \cos \gamma = \frac{m}{M},$
- $\rightarrow M = \sqrt{n^2 + l^2 + m^2}$
- $\rightarrow n = (c_2 a_2)(f_3 + p_3 + q_3) (c_3 a_3)(f_2 + p_2 + q_2)$
- $\rightarrow l = (c_1 a_1)(f_3 + p_3 + q_3) (c_3 a_3)(f_1 + p_1 + q_1)$
- $\rightarrow m = (c_1 a_1)(f_2 + p_2 + q_2) (c_2 a_2)(f_1 + p_1 + q_1)$

калярное произведени

- **147.** Даны векторы \vec{a} и \vec{b} . Найти $\vec{a} \cdot \vec{b}$.
 - $\Rightarrow k = -2; -1; 1; 2; 3; 4$
 - $\Rightarrow l = -2; -1; 1; 2; 3; 4$
 - $\Rightarrow p = -2; -1; 1; 2; 3; 4$
 - $\Rightarrow f = -2; -1; 1; 2; 3; 4$
 - \Rightarrow d = 1; 2; 3; 4
 - \Rightarrow q = 1; 2; 3; 4

 - $\vec{a} = k\vec{m} + l\vec{n}, \ \vec{b} = p\vec{m} + f\vec{n}$ $|\vec{m}| = 2d, \ |\vec{n}| = q, \ (\vec{m} \hat{\ }, \vec{n}) = \frac{2\pi}{3}$
 - $\sqrt{4kpd^2-(kf+lp)dq+lfq^2}$
 - 2) $\vec{a} = k\vec{m} + l\vec{n}, \ \vec{b} = p\vec{m} + f\vec{n}$ $|\vec{m}| = 2d, \ |\vec{n}| = q, \ (\vec{m}, \vec{n}) = \frac{\pi}{3}$
 - $\sqrt{4kpd^2 + (kf + lp)dq + lfq^2}$

- **148.** Найти угол между диагоналями параллелограмма, построенного на векторах \vec{a} и \vec{b} .
 - $\Rightarrow a_1 = -1; 1; 2$
 - $\Rightarrow a_2 = -1; 1; 2$
 - $\Rightarrow a_3 = -1; 1; 2$
 - $\Rightarrow k_1 = -2; -1; 1; 2$
 - $\Rightarrow k_2 = 1; 2$
 - $\Rightarrow k_3 = -2; -1$
 - 1) $\vec{a} = (a_1; a_2; a_3), \ \vec{b} = (b_1; b_2; b_3)$
 - $\sqrt{\cos\varphi} = \frac{a_1^2 b_1^2 + a_2^2 b_2^2 + a_3^2 b_3^2}{\sqrt{((a_1 + b_1)^2 + (a_2 + b_2)^2 + (a_3 + b_3)^2)((a_1 b_1)^2 + (a_2 b_2)^2 + (a_3 b_3)^2)}}$
 - $\rightarrow b_1 = k_1 a_1$
 - $\rightarrow b_2 = k_2 a_2$
 - $\rightarrow b_3 = k_3 a_3$

149. Найти площадь параллелограмма, построенного на векторах \vec{a} и \vec{b} .

- $\Rightarrow b_1 = k_1 a_1$
- $\Rightarrow b_2 = k_2 a_2$
- $\Rightarrow b_3 = k_3 a_3$
- $\Rightarrow a_1 = -1; 1; 2$
- $\Rightarrow a_2 = -1; 1; 2$
- $\Rightarrow a_3 = -1; 1; 2$
- $\Rightarrow k_1 = -2; -1; 1; 2$
- $\Rightarrow k_2 = 1; 2$
- $\Rightarrow k_3 = -2; -1$
- 1) $\vec{a} = (a_1; a_2; a_3), \ \vec{b} = (b_1; b_2; b_3)$
- $\sqrt{(a_2b_3-b_2a_3)^2+(a_1b_3-b_1a_3)^2+(a_1b_2-b_1a_2)^2}$

- **150.** Найти вектор \vec{x} , зная что
 - $\Rightarrow a = -2; -1; 1; 2; 3; 4$
 - \Rightarrow b = -2; -1; 1; 2; 3; 4
 - 1) $\vec{x} \cdot \vec{i} = a$, $\vec{x} \times \vec{i} = -b\vec{k}$
 - $\sqrt{\vec{x}} = (\mathbf{a}; \mathbf{b}; 0)$
 - 2) $\vec{x} \cdot \vec{k} = a$, $\vec{x} \times \vec{k} = b\vec{i}$
 - $\sqrt{\vec{x}} = (0; b; a)$
 - 3) $\vec{x} \cdot \vec{j} = a$, $\vec{x} \times \vec{j} = -b\vec{i}$
 - $\sqrt{\vec{x}} = (0; \boldsymbol{a}; \boldsymbol{b})$
 - 4) $\vec{x} \cdot \vec{k} = -a$, $\vec{x} \times \vec{k} = b\vec{j}$
 - $\sqrt{\vec{x} = (-b; 0; -a)}$

- 151. Решить задачу на тему «Смешанное произведение векторов»
 - 1) Вычислить смешанное произведение векторов $\vec{a} = (1; k; lm), \vec{b} = (1, l, km)$ и $\vec{c} = (1; m; kl)$.
 - $\sqrt{(l-k)(m-k)(m-l)}$
 - $\rightarrow l = -4; -1; 2; 4$
 - $\rightarrow k = -3; 1; 3$
 - $\rightarrow m = -5; -2; 5$
 - 2) Будут ли векторы $\vec{a} = (k + l; m; 1), \vec{b} = (l + m; k; 1)$ и $\vec{c} = (m + k; l; 1)$ компланарны?
 - √ да
 - $\rightarrow l = -4; -1; 2; 4$
 - k = -3; 1; 3
 - $\rightarrow m = -5; -2; 5$
 - 3) Лежат ли векторы $\vec{a}=(x_1;x_2;\alpha x_1+\beta x_2),\ \vec{b}=(y_1;y_2;\alpha y_1+\beta y_2)$ и $\vec{c}=(z_1;z_2;\alpha z_1+\beta z_2)$ в одной плоскости?
 - √ да
 - $\rightarrow x_1 = -2; -1; 1; 2; 3; 4$
 - $\rightarrow x_2 = 3; 4$
 - $\rightarrow y_1 = -2; -1; 1; 2; 3; 4$
 - $-y_2 = -2; -1$
 - $\rightarrow z_1 = -2; -1; 1; 2; 3; 4$
 - $\rightarrow z_2 = 1; 2$
 - $\rightarrow \alpha = -2; -1; 1; 2; 3; 4$
 - $\rightarrow \beta = -2; -1; 1; 2; 3; 4$
 - 4) Лежат ли точки $A(a_1;a_2;0),$ $B=(b_1;b_2;\alpha(b_1-a_1)+\beta(b_2-a_2)),$ $C=(c_1;c_2;\alpha(c_1-a_1)+\beta(c_2-a_2))$ и $D=(d_1;d_2;\alpha(d_1-a_1)+\beta(d_2-a_2))$ в одной плоскости?
 - √ да
 - $\rightarrow a_1 = 1; 2; 3; 4$
 - $\rightarrow a_2 = 1; 2; 3; 4$
 - $\rightarrow b_1 = 1; 2; 3; 4$
 - $\rightarrow b_2 = -2; -1$
 - $\rightarrow c_1 = -2; -1$
 - $\rightarrow c_2 = 1; 2; 3; 4$
 - $\rightarrow d_1 = -2; -1$
 - $-d_2 = -2$; -1
 - $\rightarrow \alpha = -2; -1; 1; 2; 3; 4$

- $\rightarrow \beta = -2; -1; 1; 2; 3; 4$
- 5) Вычислить объём треугольной пирамиды, построенной на векторах $\vec{a}=(x^2+36;6x;1),$ $\vec{b}=(y^2+36;6y;1)$ и $\vec{c}=(z^2+36;6z;1).$
- $\sqrt{|(x-y)(y-z)(x-z)|}$
- $\rightarrow x = -4; -1; 2; 4$
- -y = -3; 1; 3
- $\rightarrow z = -5; -2; 5$
- 6) Вычислить, правой или левой будет тройка векторов $\vec{a}=(1;x;x^2),\ \vec{b}=(1;y;y^2)$ и $\vec{c}=(1;z;z^2).$
- $\sqrt{\vec{a}\vec{b}\vec{c}} = (y-x)(z-x)(z-y)$
- $\rightarrow x = -4; -1; 2; 4$
- $\rightarrow y = -3; 1; 3$
- $\rightarrow z = -5; -2; 5$
- 7) Вычислить объём параллелепипеда, построенного на векторах $\vec{a}=(m+k;m-k;k), \vec{b}=(n+k;2n-k;k)$ и $\vec{c}=(k;-k;k).$
- $\sqrt{|kmn|}$
- $\rightarrow k = -2; -1; 1; 2; 3; 4$
- $\rightarrow m = -2; -1; 1; 2; 3; 4$
- $\rightarrow n = -2; -1; 1; 2; 3; 4$

Высота пирамиды

152. На векторах \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AS} построена треугольная пирамида. Найти длину высоты, опущенной из вершины S на грань ABC.

1)
$$\overrightarrow{AB} = \left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}; 1\right), \overrightarrow{AC} = \left(\frac{x_1 - x_2}{2}; \frac{y_1 - y_2}{2}; 1\right), \overrightarrow{AS} = (x_1; y_1; 1)$$

$$\sqrt{\frac{3|x_1y_2 - x_2y_1|}{\sqrt{y_2^2 + x_2^2 + \frac{(x_2y_1 - x_1y_2)^2}{4}}}}$$

- $\rightarrow x_2 = x_1 + a$
- $\rightarrow y_2 = y_1 + b$
- $\rightarrow x_1 = 0; 1; 2$
- $\rightarrow y_1 = 3; 4$
- $\rightarrow a = 4$; 6
- $\rightarrow b = 2; 4$

Координаты вектора в базисе

153. Доказать, что векторы \vec{u} , \vec{v} и \vec{w} образуют базис и найти координаты вектора \vec{q} в этом базисе, если

```
\vec{u} = (a + en; c + em; e)
     \vec{v} = (fn; fm; f)
     \vec{w} = (b + gn; d + gm; g)
     \vec{q} = ((a+en)X + fnY + (b+gn)Z; (c+em)X + fmY + (d+gm)Z; eX + fY + gZ)
\sqrt{\vec{q}} = (X; Y; Z)
\rightarrow n = -2; 3
\rightarrow m = -1; 5
\rightarrow X = 1; 7
\rightarrow Y = −2; −3
\rightarrow Z = 4; -1
\rightarrow a = 2; -2; 4; -4
\rightarrow b = 7; -7
\rightarrow c = 3; -3
\rightarrow d = -5; 5
\rightarrow e = -4; 2; 3
\rightarrow f = 3; -2; 5
\rightarrow g = -2; 1; 0
```

Базис и ранг системы векторов

154. Вычислить ранг системы векторов, найти какой-либо базис, выразить небазисные векторы через базис.

```
\vec{x}_1 = (a + en; c + em; e)
\vec{x}_2 = (fn; fm; f)
    \vec{x}_3 = (b + gn; d + gm; g)
     \vec{x}_4 = ((a+en)X + fnY + (b+gn)Z; (c+em)X + fmY + (d+gm)Z; eX + fY + gZ)
\sqrt{\vec{x}_4} = (X; Y; Z)
\rightarrow n = -2; 3
\rightarrow m = -1; 5
\rightarrow X = 1; 7
\to Y = -2; -3
→ Z = 4; -1
\rightarrow a = 2; -2; 4; -4
\rightarrow b = 7; -7
\rightarrow c = 3; -3
\rightarrow d = -5; 5
\rightarrow e = -4; 2; 3
\rightarrow f = 3; -2; 5
\rightarrow g = -2; 1; 0
```

Часть VIII Кривые второго порядка

Координаты центра и радиус окружности

155. Найти координаты центра и радиус окружности

1)
$$x^2 + y^2 + 2ax + 2by - 2ab = 0$$

$$\sqrt{O(-a;-b)}, \ R=a+b$$

$$\rightarrow a = 1; 2; 3; 4; 5; 6; 7$$

$$\rightarrow b = 1; 2; 3; 4; 5$$

Определения вида кривой второго порядка

156. Определить вид кривой второго порядка, привести к каноническому виду и изобразить.

$$\Rightarrow$$
 $n = 2; 3; 4; 5; 6$

$$\Rightarrow m = 2; 3; 4; 5; 6$$

$$\Rightarrow l = -5; -4; -3; -2; -1; 1; 2; 3; 4; 5$$

1)
$$nx^2 + my^2 + 2mnx + 2lmy + ml^2 = 0$$

$$\sqrt{$$
 Эллипс: $\frac{(x+m)^2}{m^2} + \frac{(y+l)^2}{mn} = 1, \ O(-m;-l)$

2)
$$nx^2 - my^2 + 2mnx - 2lmy - ml^2 = 0$$

$$\sqrt{\Gamma}$$
 Гипербола: $\frac{(x+m)^2}{m^2} - \frac{(y+l)^2}{mn} = 1, \ O(-m;-l)$

Уравнение окружности с заданной касательной

- **157.** Составить уравнение окружности с центром в начале координат, если прямая является касательной к окружности.
 - $1) \quad Ax Ay + 2C = 0$

$$\sqrt{x^2 + y^2} = 2\frac{C^2}{A^2}$$

$$\rightarrow A = 1; 3; 5; 7; 9$$

$$\rightarrow C = 1; 2; 3; 4; 5$$

158. Составить уравнение эллипса

1) Составить каноническое уравнение эллипса, фокусы которого лежат на оси абсцисс симметрично относительно начала координат, если расстояние между фокусами равно 2c и большая ось равна 2c+2.

$$\sqrt{\frac{x^2}{(c+1)^2} + \frac{y^2}{2c+1}} = 1$$

$$\rightarrow c = 1; 2; 3; 4; 5; 6$$

2) Составить каноническое уравнение эллипса, фокусы которого лежат на оси абсцисс симметрично относительно начала координат, если кривая проходит через точки $M_1(0;b)$ и $M_2(b-1;\frac{2b}{b+1}\sqrt{b})$.

$$\sqrt{\frac{x^2}{(b+1)^2} + \frac{y^2}{b^2}} = 1$$

$$\rightarrow b = 1; 2; 3; 5; 7$$

3) Составить каноническое уравнение эллипса, фокусы которого лежат на оси абсцисс симметрично относительно начала координат, если малая ось равна 2b и эксцентриситет равен $\varepsilon = \frac{\sqrt{2b+1}}{b+1}$.

$$\sqrt{\frac{x^2}{(b+1)^2} + \frac{y^2}{b^2}} = 1$$

$$\rightarrow b = 1; 2; 3; 4; 5$$

4) Найти длину хорды эллипса $b^2x^2 + a^2y^2 = a^2b^2$, лежащей на биссектрисе координатных углов.

$$\sqrt{\sqrt{\frac{8a^2b^2}{a^2+b^2}}}$$

$$\rightarrow a = 2; 3; 4; 5$$

$$\rightarrow b = 1; 2; 3; 4; 5$$

5) Найти эксцентриситет эллипса, если расстояние между фокусами в k раз больше расстояния между концами большой и малой полуосей.

$$\sqrt{\sqrt{\frac{2k^2}{4+k^2}}}$$

$$\rightarrow k = 2; 3; 4; 5; 6; 7; 8; 9; 10$$

6) Записать каноническое уравнение эллипса с центром симметрии в начале координат, у которого расстояния от одного из фокусов до концов большей оси равны k и m.

$$\sqrt{\frac{x^2}{\left(\frac{k+m}{2}\right)^2} + \frac{y^2}{km}} = 1$$

$$\rightarrow k = 1; 3; 5$$

$$\rightarrow m = 7; 9; 11$$

159. Составить уравнение гиперболы

1) Написать каноническое уравнение гиперболы, фокусы которой расположены на оси Ox симметрично относительно начала координат, если расстояние между фокусами равно 2c, а расстояние между вершинами равно 2c-2.

$$\sqrt{\frac{x^2}{(c-1)^2} - \frac{y^2}{2c-1}} = 1$$

$$\rightarrow c = 2; 3; 4; 5; 6$$

2) Написать каноническое уравнение гиперболы, фокусы которой расположены на оси Ox симметрично относительно начала координат, если кривая проходит через точки $M_1(b;0)$ и $M_2(\sqrt{2b^2+2b+1};b+1)$.

$$\sqrt{\frac{x^2}{b^2} - \frac{y^2}{b^2}} = 1$$

$$\rightarrow b = 1; 2; 3; 4; 5$$

3) Написать каноническое уравнение гиперболы, фокусы которой расположены на оси Ox симметрично относительно начала координат, если расстояние между фокусами равно 2c, а эксцентриситет равен $\varepsilon = \frac{c}{c-1}$.

$$\sqrt{\frac{x^2}{(c-1)^2} - \frac{y^2}{(2c-1)^2}} = 1$$

$$\rightarrow c = 2; 3; 4; 5; 6$$

4) Написать каноническое уравнение гиперболы, фокусы которой расположены на оси Ox симметрично относительно начала координат, если уравнения асимптот гиперболы $y = \pm \frac{b}{b+1} x$ и эксцентриситет равен $\varepsilon = \frac{\sqrt{2b^2 + 2b + 1}}{b+1}$.

$$\sqrt{\frac{x^2}{(b+1)^2} - \frac{y^2}{b^2}} = 1$$

$$\rightarrow b = 1; 2; 3; 4; 5$$

5) Фокусы гиперболы совпадают с фокусами эллипса $b^2x^2 + (b+1)^2y^2 = (b+1)^2b^2$. Составить уравнение гиперболы, если эксцентриситет $\varepsilon = \sqrt{2b+1}$.

$$\sqrt{x^2 - \frac{y^2}{2b}} = 1$$

$$\rightarrow b = 1; 2; 3; 4$$

6) Составить уравнение гиперболы, если известны уравнения её асимптот $y = \pm \frac{1}{m} x$, а расстояние между фокусами равно 2k.

$$\sqrt{\frac{x^2}{\frac{m^2k^2}{m^2+1}} - \frac{y^2}{\frac{k^2}{m^2+1}}} = 1$$

$$\rightarrow k = 1; 2; 3; 4; 5$$

$$\rightarrow m = 2; 3; 4; 5$$

7) Записать каноническое уравнение гиперболы с центром симметрии в начале координат, зная, что расстояния от одной из её вершин до фокусов равны k и m.

$$\sqrt{\frac{x^2}{\left(\frac{m-k}{2}\right)^2} - \frac{y^2}{mk}} = 1$$

- $\rightarrow k = 1; 3; 5$
- $\rightarrow m = 7; 9; 11$
- 8) Записать каноническое уравнение гиперболы, имеющей эксцентриситет $\sqrt{2}$, проходящей через точку $M(dk; k\sqrt{k^2-1})$ и симметричной относительно осей координат.

$$\sqrt{x^2 - y^2} = d^2$$

- $\rightarrow k = 2; 3; 4$
- $\rightarrow d = 1; 2; 3; 4$
- 9) Записать уравнение гиперболы, симметричной относительно начала координат, имеющей вершины в фокусах, а фокусы в вершинах эллипса $b^2x^2 + a^2y^2 = a^2b^2$

$$\sqrt{\frac{x^2}{a^2 - b^2} - \frac{y^2}{b^2}} = 1$$

- $\rightarrow a = 5; 6; 7$
- $\rightarrow b = 1; 2; 3; 4$
- 10) Фокусы гиперболы совпадают с фокусами эллипса $b^2x^2 + a^2y^2 = a^2b^2$. Составить каноническое уравнение гиперболы, если её эксцентриситет $\varepsilon = k$.

$$\sqrt{\frac{x^2}{\frac{a^2-b^2}{k^2}} - \frac{y^2}{\frac{(a^2-b^2)(k^2-1)}{k^2}} = 1$$

- $\rightarrow a = 4; 5; 6$
- $\rightarrow b = 1; 2; 3$
- $\rightarrow k = 2; 3$

160. Составить уравнение параболы

1) Составить каноническое уравнение параболы, вершина которой находится в начале координат, если кривая симметрична относительно оси Ox и проходит через точку $M(p; p\sqrt{2})$.

$$\sqrt{y^2 = 2px}$$

$$\rightarrow p = 1; 2; 3; 4; 5; 6; 7$$

2) Составить каноническое уравнение параболы, вершина которой находится в начале координат, а фокус в точке $A(\frac{p}{2};0)$.

$$\sqrt{y^2 = 2px}$$

$$\rightarrow p = -10; -8; -6; -4; -2; 2; 4; 6; 8; 10$$

3) Составить каноническое уравнение параболы, вершина которой находится в начале координат, а уравнение директрисы $x = \frac{p}{2}$.

$$\sqrt{y^2 = -2px}$$

$$\rightarrow p = -10; -8; -6; -4; -2; 2; 4; 6; 8; 10$$

4) Составить каноническое уравнение параболы, проходящей через точки пересечения прямой x+y=0 и окружности $x^2+y^2-2ax=0$, симметричной относительно оси Ox.

$$\sqrt{y^2} = ax$$

$$\rightarrow a = 1; 2; 3; 4; 5; 6; 7; 8; 9; 10$$

5) Составить каноническое уравнение параболы, проходящей через точки пересечения прямой x+y=0 и окружности $x^2+y^2-2ax=0$, симметричной относительно оси Oy.

$$\sqrt{x^2 = -ay}$$

$$\rightarrow a = 1; 2; 3; 4; 5; 6; 7; 8; 9; 10$$

Полуоси, фокусы, эксцентриситет

161. Решите задачу

1) Найти полуоси, фокусы, эксцентриситет эллипса $b^2x^2 + (b+k)^2y^2 = b^2(b+k)^2$ и изобразить его.

$$\sqrt{a=b+k}, c^2=2kb+k^2$$

$$\rightarrow b = 2; 3; 4; 5$$

$$\rightarrow k = 1; 2; 3$$

2) Найти полуоси, фокусы, эксцентриситет, уравнения асимптот гиперболы $b^2x^2-(b+k)^2y^2=b^2(b+k)^2$ и изобразить ее.

$$\sqrt{a=b+k}, c^2=2b^2+2kb+k^2$$

$$\rightarrow b = 2; 3; 4; 5$$

$$\rightarrow k = 1; 2; 3$$

162. Решить задачу

1) Составить уравнение геометрического места точек плоскости, для каждой из которых сумма расстояний до точек $F_1(-c;0)$ и $F_2(c;0)$ равна 2c+2.

$$\sqrt{\frac{x^2}{(c+1)^2} + \frac{y^2}{(2c+1)^2}} = 1$$

- $\rightarrow c = 1; 2; 3; 4; 5; 6$
- 2) Составить уравнение геометрического места точек плоскости, для каждой из которых сумма квадратов расстояний до точек A(-a;0) и B(a;0) равна $4a^2$.

$$\sqrt{x^2 + y^2} = a^2$$

$$\rightarrow a = 1; 2; 3; 4; 5$$

163. Решить задачу

$$\Rightarrow a = 2; 3; 4; 5$$

1) Дана точка A(1;0) и прямая x=a. Составить уравнение линии, каждая точка которой в a раз ближе к точке A, чем к данной прямой. Привести уравнение к каноническому виду и изобразить линию.

$$\sqrt{\frac{(x - \frac{a}{a+1})^2}{\frac{a^2}{(a+1)^2}} + \frac{y^2}{\frac{a-1}{a+1}} = 1}$$

2) Дана точка A(1;0) и прямая x=a. Составить уравнение линии, каждая точка которой в a раз дальше от точки A, чем от данной прямой. Привести уравнение к каноническому виду и изобразить линию.

$$\sqrt{\frac{(x - \frac{a^2 + a + 1}{a + 1})^2}{\frac{a^2}{(a + 1)^2}} - \frac{y^2}{\frac{a^2(a - 1)}{a + 1}} = 1}$$

3) Дана точка A(1;0) и прямая x=a. Составить уравнение линии, каждая точка которой равноудалена от точки A и от прямой. Привести уравнение к каноническому виду и изобразить линию.

$$\sqrt{y^2} = -2(a-1)\left(x - \frac{a+1}{2}\right)$$

Площадь ромба

164. Решите задачу

1) Вычислить площадь четырехугольника две вершины которого лежат в фокусах эллипса $x^2 + ay^2 = a(a-1)$, а две другие совпадают с концами его малой оси.

$$\sqrt{S} = 2(a-1)\sqrt{a-1}$$

$$\rightarrow a = 3; 4; 5; 6; 7$$

Прямые параллельные асимптотами

165. Решите задачу

1) Составить уравнения прямых, проходящих через точку M(2a;c) параллельно асимптотам гиперболы $b^2x^2-a^2y^2=a^2b^2$.

$$\sqrt{bx - ay + a(c - 2b)} = 0,$$

$$bx + ay - a(2b + c) = 0$$

- $\rightarrow a = -3; -2; -1; 1; 2; 3$
- $\rightarrow b = 1; 2; 3; 4$
- $\rightarrow c = 1; 2; 3; 4; 5$

Часть IX Теория пределов

Предел отношения полиномов при n к бесконечности

$$\Rightarrow$$
 $A = -5; -8; 1; -6; 3; 5; 6; 8; 12$

$$\Rightarrow$$
 $D = -3; -2; -1; 2; 3; 5$

$$\Rightarrow B = -9; -6; -2; 3; 5; 7$$

$$\Rightarrow C = -9; -6; -2; 3; 5; 7$$

$$\Rightarrow E = -9; -6; -2; 3; 5; 7$$

$$\Rightarrow F = -9; -6; -2; 3; 5; 7$$

1)
$$\lim_{n \to \infty} \frac{An^a + Bn + C}{Dn^a + En + F}$$

$$\sqrt{\frac{A}{D}}$$

$$\rightarrow a = 2; 3$$

$$2) \lim_{n \to \infty} \frac{An^a + Bn + C}{Dn^2 + En + F}$$

$$\sqrt{\infty}$$

$$\rightarrow a = 3; 4$$

3)
$$\lim_{n \to \infty} \frac{An^2 + Bn + C}{Dn^a + En + F}$$

$$\sqrt{}$$

$$\rightarrow a = 3; 4$$

- \Rightarrow a = 1; 2; 3; 4; 5; 6
- $\Rightarrow b = 1; 2; 3; 4; 5$
- $\Rightarrow m = 1; 2; 3; 4; 5$
- \Rightarrow c = 1; 2; 3; 4; 5; 6; 7; 8; 9
- 1) $\lim_{n\to\infty} \left(\frac{an^3}{bn^2-c} \frac{an^2}{bn+m} \right)$
- $\sqrt{\frac{am}{b^2}}$
- 2) $\lim_{n \to \infty} \left(\frac{(a+1)n^3}{bn^2 c} \frac{an^2}{bn + m} \right)$
- $\sqrt{\infty}$
- 3) $\lim_{n \to \infty} \left(\frac{an^3}{bn^2 + mn c} \frac{an^2}{bn + m} \right)$
- $\sqrt{0}$

Предел отношения корней при n к бесконечности

- \Rightarrow a = 1; 2; 3
- \Rightarrow b = 1; 2; 3; 4; 5; 6; 7; 8
- \Rightarrow c = 0; 1; 2; 3; 4; 5
- $\Rightarrow e = 1; 2; 3; 4; 5; 6$
- \Rightarrow f = 0; 1; 2; 3; 4; 5
- 1) $\lim_{n \to \infty} \frac{\sqrt{a^2 n^2 + bn + c}}{en + f}$
- $\sqrt{\frac{a}{e}}$
- 2) $\lim_{n \to \infty} \frac{en+f}{\sqrt[a+2]{n^{a+1}+bn+c}}$
- $\sqrt{\infty}$
- 3) $\lim_{n \to \infty} \frac{\sqrt[a+2]{n^{a+1} + bn + c}}{\sqrt[a+3]{n^{a+2} + en + f}}$
- $\sqrt{}$ 0

Предел разности квадратных коней

$$\Rightarrow a = 1; 2; 3; 4; 5; 6; 7$$

$$\Rightarrow$$
 b = 1; -1; 2; -2; 3; -3; 4; -4; 5; -5; 6; -6; 7; -7

1)
$$\lim_{n\to\infty} \left(\sqrt{n^2+2an+b}-n\right)$$

$$\sqrt{a}$$

$$2) \lim_{n \to \infty} \left(n - \sqrt{n^2 + 2an + b} \right)$$

$$\sqrt{-a}$$

3)
$$\lim_{n\to\infty} \left(\sqrt{b+a^2n^2}-an\right)$$

$$\sqrt{}$$
 0

4)
$$\lim_{n \to \infty} n^2 \left(an - \sqrt{a^2 n^2 + b} \right)$$

$$\sqrt{\infty}$$

5)
$$\lim_{n \to \infty} n \left(an - \sqrt{a^2 n^2 + b} \right)$$

$$\sqrt{-\frac{b}{2}}$$

6)
$$\lim_{n \to \infty} \left(\sqrt{n^2 + an + b} - \sqrt{n^2 - an + c} \right)$$

$$\sqrt{a}$$

$$\rightarrow c = 1; 2; 3; 4; 5; 6; 7; 8; 9; 10$$

7)
$$\lim_{n \to \infty} \left(\sqrt{n^2 + b} - \sqrt{n^2 - 2an + c} \right)$$

$$\sqrt{a}$$

$$\rightarrow c = 1; 2; 3; 4; 5; 6; 7; 8; 9; 10$$

8)
$$\lim_{n \to \infty} \left(\sqrt{(a+1)n+b} - \sqrt{an-c} \right)$$

$$\sqrt{\infty}$$

$$\rightarrow c = 1; 2; 3; 4; 5; 6; 7; 8; 9; 10$$

9)
$$\lim_{n\to\infty} \left(\sqrt{n^2+2an+b}-nc\right)$$

$$\sqrt{\infty}$$

$$\rightarrow c = 2; 3; 4$$

- 10) $\lim_{n \to \infty} \sqrt{an^2 + bn} \sqrt{an^2 + c}$
- $\sqrt{\frac{b}{2\sqrt{a}}}$
- $\rightarrow c = 1; 2; 3; 4; 5; 6; 7; 8$
- 11) $\lim_{n \to \infty} \sqrt{(a+1)n^2 + bn} \sqrt{an^2 + c}$
- $\sqrt{\infty}$
- $\rightarrow c = 1; 2; 3; 4; 5; 6; 7; 8$
- 12) $\lim_{n \to \infty} \sqrt{an^2 + bn} \sqrt{an^2 + bn + c}$
- $\sqrt{0}$
- $\rightarrow c = 1; 2; 3; 4; 5; 6; 7; 8$

Предел разности кубических корней

$$\Rightarrow a = 1; 2; 3$$

$$\Rightarrow$$
 b = 1; 2; 3; 4; 5; 6; 7; 8

$$\Rightarrow$$
 $c = 0; 1; 2; 3; 4; 5; 6; 7; 8$

1)
$$\lim_{n \to \infty} \left(\sqrt[3]{a^3 n^3 + bn^2 + c} - an \right)$$

$$\sqrt{\frac{b}{3a^2}}$$

2)
$$\lim_{n \to \infty} \left(\sqrt[3]{an^3 + bn^2} - \sqrt[3]{bn^2 - cn} \right)$$

$$\sqrt{}$$

3)
$$\lim_{n \to \infty} \left(\sqrt[3]{a^3 n^3 + bn^2 + c} - \sqrt[3]{a^3 n^3 - bn^2 - 2c} \right)$$

$$\sqrt{\frac{2b}{3a^2}}$$

$$\Rightarrow$$
 $A = -5; -8; 1; -6; 3; 5; 6; 8; 12$

$$\Rightarrow$$
 $D = -3; -2; -1; 2; 3; 5$

$$\Rightarrow B = -9; -6; -2; 3; 5; 7$$

$$\Rightarrow C = -9; -6; -2; 3; 5; 7$$

$$\Rightarrow E = -9; -6; -2; 3; 5; 7$$

$$\Rightarrow F = -9; -6; -2; 3; 5; 7$$

1)
$$\lim_{x \to \infty} \frac{Ax^a + Bx + C}{Dx^a + Ex + F}$$

$$\sqrt{\frac{A}{D}}$$

$$\rightarrow a = 2; 3$$

$$2) \lim_{x \to \infty} \frac{Ax^a + Bx + C}{Dx^2 + Ex + F}$$

$$\sqrt{\infty}$$

$$\rightarrow a = 3; 4$$

3)
$$\lim_{x \to \infty} \frac{Ax^2 + Bx + C}{Dx^a + Ex + F}$$

$$\sqrt{}$$

$$\rightarrow a = 3; 4$$

1)
$$\lim_{x \to a} \frac{x^2 - (a+b)x + ab}{x^2 - (a+c)x + ac}$$

$$\sqrt{\frac{a-b}{a-c}}$$

$$\rightarrow b = a+2; a-3; a-1; a+4; a-4$$

$$\rightarrow c = a+3; a-2; a+1; a+5; a-5$$

$$\rightarrow a = 2; 3; -3; -2; -1; 1; 4; 5; -4; -5$$

Предел отношения полиномов

$$\Rightarrow a = 2; 3; -3; -2; -1; 1; 4; 5; -4; -5$$

1)
$$\lim_{x \to a} \frac{cx^2 + (d - ac)x - ad}{ex^2 + (f - ae)x - af}$$

$$\sqrt{\frac{ac+d}{ae+f}}$$

$$\rightarrow c = -2; 2; -4; 4; -8; 8$$

$$\rightarrow e = -5; 5; -7; 7$$

$$\rightarrow d = -1; 1; -3; 3$$

$$\rightarrow f = -1; 1; -3; 3$$

2)
$$\lim_{x \to a} \frac{cx^2 + (d - ac)x - ad}{x^3 - a^3}$$

$$\sqrt{\frac{ac+d}{3a^2}}$$

$$\rightarrow c = -2; 2; -1; 1; -3; 3; -4; 4; -6; 6; -8; 8$$

$$\rightarrow d = -1; 1; -5; 5; -7; 7$$

Предел отношения полиномов

- $\Rightarrow a = 1; -1; 2; -2; 3; -3; 4; -4; 5; -5$
- \Rightarrow c = 2; -2; 4; -4; 5; -5; 6; -6
- \Rightarrow d = 1; -1; 3; -3; 7; -7
- 1) $\lim_{x \to a} \frac{x^3 a^3}{cx^2 + (d ac)x ad}$
- $\sqrt{\frac{3a^2}{ac+d}}$
- 2) $\lim_{x \to a} \frac{cx^2 + (d ac)x ad}{x^3 a^3}$
- $\sqrt{\frac{ac+d}{3a^2}}$

1)
$$\lim_{x \to a} \left(\frac{1}{x - a} - \frac{3a^2}{x^3 - a^3} \right)$$

$$\sqrt{\frac{1}{a}}$$

$$\rightarrow a = -6; -5; -4; -3; -2; -1; 1; 2; 3; 4; 5; 6$$

2)
$$\lim_{x \to a} \left(\frac{1}{x - a} - \frac{2a}{x^2 - a^2} \right)$$

$$\sqrt{\frac{1}{2a}}$$

$$\rightarrow a = -10; -9; -8; -7; -6; -5; -4; -3; -2; -1; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10$$

1)
$$\lim_{x \to a} \frac{\sqrt{bx + d - ab} - \sqrt{cx + d - ac}}{ex^2 - (f + ae)x + af}$$

$$\sqrt{\frac{b-c}{2(ea-f)\sqrt{d}}}$$

$$\times \quad \frac{b-c}{(ea-f)\sqrt{d}}$$

- × 0
- \times ∞
- $\rightarrow f = ae 1; ae + 1$
- $\rightarrow a = -2; 1; 3$
- $\rightarrow b = c 4; c 2; c + 1; c + 2$
- $\rightarrow c = 0; 1$
- $\rightarrow d = 2; 3; 4; 8; 9; 16; 5$
- $\rightarrow e = 1; 2$

Простой второй замечательный предел

1)
$$\lim_{x \to \infty} \left(\frac{ax + b + c}{ax + b} \right)^{kx + l}$$

$$\sqrt{e^{\frac{ck}{a}}}$$

$$\rightarrow a = 1; 2; 3; 4; 5; -1; -2; -3$$

$$\rightarrow b = 3; 4; 5; -1; -2; -3$$

$$\rightarrow c = 1; 2; 3; 5; -1; -2$$

$$\rightarrow k = 1; 3; 4; -2; -3$$

$$\rightarrow l = 4; 5; -1; -2$$

Второй замечательный предел

$$1) \lim_{x\to 0} (\cos ax)^{\frac{b}{f}}$$

$$\sqrt{e^{-\frac{ba^2}{2c^2}}}$$

$$\rightarrow f = \sin^2 cx$$
; $tg^2 cx$; $arcsin^2 cx$; $arctg^2 cx$

$$\rightarrow a = 1; 2; 3$$

$$\rightarrow b = 1; 2; 3$$

$$\rightarrow c = 1; 2; 3$$

2)
$$\lim_{x\to\infty} \left(\cos\frac{m}{x}\right)^{ax^2}$$

$$\sqrt{e^{-\frac{m^2a}{2}}}$$

$$\rightarrow a = 1; 2; 3$$

$$\rightarrow m = 1; 2; 3; 4; \frac{1}{2}; \frac{2}{3}; \frac{3}{2}$$

Простой первый замечательный предел

$$1) \lim_{x \to 0} \frac{\sin ax - \sin bx}{\operatorname{tg} cx}$$

$$\sqrt{\frac{a-b}{c}}$$

$$\rightarrow a = b+1; b+2; b+3; b+4; b+5; b-1; b-2; b+6; b+7$$

$$\rightarrow b = 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13$$

$$\rightarrow c = 1; 2; 3; 4; 5; 6; 7; 8; 9$$

$$2) \lim_{x \to 0} \frac{\cos ax - \cos^3 ax}{x^2}$$

$$\sqrt{a^2}$$

$$\rightarrow a = 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13$$

Первый замечательный предел

1)
$$\lim_{x \to 0} \frac{\frac{\pi n}{x^a}}{\operatorname{ctg}^a bx}$$

$$\sqrt{\pi nb^a}$$

$$\rightarrow a = 1; 2; 3$$

$$\rightarrow b = 1; 2; 3; \frac{1}{2}; \frac{1}{3}; \frac{2}{3}; \frac{3}{2}$$

$$2) \lim_{x\to 0} (1-\cos ax^k) \operatorname{ctg} bx^{2k}$$

$$\sqrt{\frac{a^2}{2b}}$$

$$\rightarrow a = 1; 2; 3; 4; 5$$

$$\rightarrow b = 1; 2; 3; 4; 5$$

$$\rightarrow k = 1; 2; 3$$

3)
$$\lim_{x \to 0} \frac{\cos ax - \cos bx}{cx \sin dx}$$

$$\sqrt{\frac{b^2-a^2}{2cd}}$$

$$\rightarrow a = b+1; b+2; b+3; b+4; b+5; b-1; b-2; b+6; b+7$$

$$\rightarrow$$
 b = 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13

$$\rightarrow c = 1; 2; 3$$

$$\rightarrow d = 1; 2; 3; 4; 5; 6; 7; 8; 9$$

4)
$$\lim_{x \to 0} \frac{\operatorname{tg} ax - \sin ax}{x^3}$$

$$\sqrt{\frac{a^3}{2}}$$

$$\rightarrow a = 1; 2; 3; 4; 5; 6; 8; 10$$

Эквивалентности простые

$$\Rightarrow a = 2; 3; 4; 5; 6; 7; 8$$

$$\Rightarrow$$
 b = 1; 2; 3; 4; -1; -2; -3; -4

$$1) \lim_{x \to 0} \frac{F}{\cos ax - \cos^3 ax}$$

$$\sqrt{\frac{b}{a^2}}$$

$$\rightarrow F = \ln(1+bx^2); e^{bx^2} - 1; \sqrt{1+2bx^2} - 1; \sqrt[3]{1+3bx^2} - 1$$

$$2) \lim_{x\to 0} \frac{1-\cos ax}{F}$$

$$\sqrt{\frac{a^2}{2b}}$$

$$\rightarrow F = \ln(1+bx^2); e^{bx^2} - 1; \sqrt{1+2bx^2} - 1; \sqrt[3]{1+3bx^2} - 1$$

$$3) \lim_{x \to 0} \frac{F}{1 - \cos ax}$$

$$\sqrt{\frac{2b}{a^2}}$$

$$\rightarrow F = \log_c(1 + bx^2) \ln c$$
; $\frac{1}{\ln c} (c^{bx^2} - 1)$

$$\rightarrow c = 2; 3; 4; 5$$

4)
$$\lim_{x \to 0} \frac{\cos ax - \cos^3 ax}{F}$$

$$\sqrt{\frac{a^2}{b}}$$

$$\rightarrow F = \log_c(1 + bx^2) \ln c$$
; $\frac{1}{\ln c} (c^{bx^2} - 1)$

$$\rightarrow c = 2; 3; 4; 5$$

Эквивалентность с полиномом

$$\Rightarrow a = 2; 3; -3; -2; -1; 1; 4; 5; -4; -5$$

$$\Rightarrow c = -2; 2; -4; 4; -8; 8$$

$$\Rightarrow$$
 $d = -1; 1; -3; 3$

1)
$$\lim_{x \to a} \frac{e^x - e^a}{cx^2 + (d - ac)x - ad}$$

$$\sqrt{\frac{e^a}{ac+d}}$$

Эквивалентности

1)
$$\lim_{x \to \infty} \left(a^{\frac{b}{x^k}} - 1 \right) x^k$$

$$\sqrt{b \ln a}$$

$$\rightarrow a = 2; 3; 4$$

$$\rightarrow b = 1; 2; 3; \frac{1}{2}; \frac{1}{3}; \frac{2}{3}; \frac{3}{2}$$

$$\rightarrow k = 1; 2$$

$$2) \lim_{x \to 0} \frac{a^{k\sqrt[n]{x}} - 1}{\sqrt[n]{\sin bx}}$$

$$\sqrt{\frac{k \ln a}{\sqrt[n]{\bar{b}}}}$$

$$\rightarrow a = 2; 3; 4$$

$$\rightarrow b = 1; 2$$

$$\rightarrow k = 1; 2$$

$$\rightarrow n = 2; 3; 4$$

3)
$$\lim_{x\to 0} (1-a^{bx^n}) \operatorname{ctg} cx^n$$

$$\sqrt{-\frac{b \ln a}{c}}$$

$$\rightarrow a = 2; 3; 4$$

$$\rightarrow b = 2; 3; 4$$

$$\rightarrow c = 2; 3; 4$$

$$\rightarrow n = 1; 2; 3; 4$$

4)
$$\lim_{x \to \frac{a}{b}} \arcsin^k \frac{bx - a}{a} \operatorname{ctg}^k(bx - a)$$

$$\sqrt{\frac{1}{a^k}}$$

$$\rightarrow a = 2; 4; 5; 8$$

$$\rightarrow b = 1; 3; 7$$

$$\rightarrow k = 2; 3$$

5)
$$\lim_{x \to 0} \frac{(1 - \cos ax)^b}{\operatorname{tg}^{2b-2} cx - \sin^{2b-2} cx}$$

$$\sqrt{\frac{a^{2b}}{2^bc^{2b}(b-1)}}$$

$$\rightarrow b = 2; 3; 4$$

$$\rightarrow a$$
, $c =$

- 1, 2;
- 2, 1;
- 2, 4;
- 3, 1;
- 3, 2;
- 3, 6;
- 4, 1;
- 4, 2;
- 4, 8;
- 6, 2;
- 6, 3;
- 6, 4;
- 8, 2;
- 8, 4;
- 9, 3;
- 9, 6

6)
$$\lim_{x \to 0} \frac{\sqrt{1 + ax \sin bx} - \sqrt{\cos 2bx}}{\operatorname{tg}^2 cx}$$

$$\sqrt{\frac{b(a+2b)}{2c^2}}$$

$$\rightarrow a = 8; 5; 7$$

$$\rightarrow b = \frac{1}{4}; \frac{1}{2}; 3; 4; 5$$

$$\rightarrow c = \frac{1}{5}; \frac{2}{5}; \frac{1}{4}; \frac{1}{2}$$

$$7) \lim_{x \to a} \frac{a^x - x^a}{x - a}$$

$$\sqrt{a^a(\ln a - 1)}$$

$$\rightarrow a = 2; 3; 4$$

184. Исследовать на непрерывность и нарисовать эскиз графика функции

1)
$$f(x) = \frac{a}{x - b}$$

 $\sqrt{x=b}$ — точка разрыва 2 рода

$$\rightarrow a = -7; -5; 2; 5; 7$$

$$\rightarrow b = -4; -3; -2; -1; 1; 2; 3; 4$$

2)
$$f(x) = \frac{a}{(x-b)^2}$$

$$\sqrt{x=b}$$
 — точка разрыва 2 рода

$$\rightarrow a = -7; -5; 2; 5; 7$$

$$\rightarrow b = -4; -3; -2; -1; 1; 2; 3; 4$$

3)
$$f(x) = \frac{a}{x^2 - b^2}$$

$$\sqrt{x=\pm b}$$
 — точки разрыва 2 рода

$$\rightarrow a = 2; 3; 4; 5$$

$$\rightarrow b = 1; 2; 3; 4$$

4)
$$f(x) = a^{\frac{1}{x-b}}$$

$$\sqrt{x=b}$$
 — точка разрыва 2 рода

$$\rightarrow a = 2; 3; 4; 5$$

$$\rightarrow b = -3; -2; -1; 1; 2; 3$$

5)
$$f(x) = \begin{cases} \frac{x^2 - a^2}{x - a}, & x \neq a, \\ 2a, & x = a. \end{cases}$$

$$\sqrt{}$$
 Функция непрерывна на \mathbb{R}

$$\rightarrow a = -4; -3; -2; -1; 1; 2; 3; 4$$

6)
$$f(x) = \begin{cases} \frac{x^3 - a^3}{x - a}, & x \neq a, \\ 3a^2, & x = a. \end{cases}$$

 $\sqrt{}$ Функция непрерывна на \mathbb{R}

$$\rightarrow a = -3; -2; -1; 1; 2; 3$$

7)
$$f(x) = \begin{cases} x^a, & x \le 1, \\ 2 - x, & x > 1. \end{cases}$$

√ Функция непрерывна на ℝ

$$\rightarrow a = 2; 3; 4; 5$$

8)
$$f(x) = \begin{cases} e^x, & x < 0, \\ ax + b, & x \ge 0. \end{cases}$$

$$\sqrt{x} = 0$$
 — точка разрыва 1 рода

$$\rightarrow a = -3; -2; -1; 1; 2; 3$$

$$\rightarrow b = -3; -2; -1; 2; 3$$

9)
$$f(x) = \begin{cases} \cos \frac{\pi x}{2}, & |x| \le 1, \\ |a - x|, & |x| > 1. \end{cases}$$

$$\sqrt{x=\pm 1}$$
 — точки разрыва 1 рода

$$\rightarrow a = 2; 3; 4; 5$$

10)
$$f(x) = \begin{cases} \sin\frac{\pi x}{2}, & x \le 1, \\ a(x-1), & x > 1. \end{cases}$$

$$\sqrt{x} = 1$$
 — точка разрыва 1 рода

$$\rightarrow a = 1; 2; 3; 4$$

185. Построить график функции, провести классификацию точек разрыва, указать, есть ли хотя бы односторонняя непрерывность функции в точках разрыва.

1)
$$f(x) = \begin{cases} F, & x < -1, \\ G, & -1 \le x \le 0, \\ E, & x > 0 \end{cases}$$

- $\rightarrow F = ax + b; ax^2 + b; \sqrt[3]{x}; c^x$
- $\rightarrow G = \arcsin x$; $\arccos x$; $\arctan x$; $\arctan x$

$$\rightarrow E = \frac{k}{x}; \frac{k}{x^2}; \log_c x$$

- $\rightarrow a = 0; 1; 2; -1; -2$
- $\rightarrow b = 1; 2; 3; -1; -2; -3$
- $\rightarrow k = 1; 2; 3; -1; -2; -3$

$$\rightarrow c = 2; \ 3; \ 4; \ 5; \ e; \ \frac{1}{2}; \ \frac{1}{3}; \ \frac{1}{4}; \ \frac{1}{5}$$

 $\sqrt{x} = -1$ точка разрыва первого рода, x = 0 точка разрыва второго рода

2)
$$f(x) = \begin{cases} F, & |x| < \pi, \\ G, & |x| \ge \pi \end{cases}$$

$$\rightarrow F = \operatorname{tg} x \; ; \; \operatorname{ctg} x \; ; \; \frac{k}{x} \; ; \; \frac{k}{x^2}$$

$$\rightarrow G = \sin x$$
; $\cos x$; $kx + b$; $x^2 + b$; $(x - \pi)^2 + b$; $(x + \pi)^2 + b$

$$\rightarrow k = 1; 2; 3; -1; -2; -3$$

$$\rightarrow b = 0; 1; 2; 3; 4; -1; -2; -3; -4$$

Часть X Теория дифференцирования

Производная со степенями

1)
$$Ax^a + \frac{B}{x^b} + C\sqrt[c]{x^d} + \frac{D}{\sqrt[c]{x^f}}$$

$$\rightarrow a = 2; 3; 4; 5$$

$$\rightarrow b = 2; 3; 4$$

$$\rightarrow c = d+1; d+2; d+3$$

$$\rightarrow d = 2; 3; 4$$

$$\rightarrow e = f + 1; f + 2; f + 3$$

$$\rightarrow f = 2; 3; 4$$

$$\rightarrow$$
 $A = -5; -4; -3; -2; -1; 1; 2; 3; 4; 5$

$$\rightarrow B = C; C-1; C+1$$

$$\rightarrow C = -3; -2; 2; 3; 4$$

$$\rightarrow D = -3; -2; 2; 3; 4$$

Производная произведения. Простая

187. Вычислить производную функции.

1) $(bx + c)^a \cdot g$ $\rightarrow g = \sin x; \cos x; \arcsin x; \arccos x; \operatorname{tg} x; \ln x$ $\rightarrow b = 2; 3; 4; 5; 6; 7$ $\rightarrow c = -3; -2; -1; 1; 2; 3; 4; 5; 6; 7$ $\rightarrow a = 4; 5; 6; 7; 8; 9; 10$

Производная произведения

188. Вычислить производную функции.

1) $(bx + c)^a \cdot g$ $\rightarrow g = \sin X; \cos X; \arcsin X; \arccos X; \operatorname{tg} X; \ln X$ $\rightarrow X = mx^k + n$ $\rightarrow b = 2; 3; 4; 5; 6; 7$ $\rightarrow c = -3; -2; -1; 1; 2; 3; 4; 5; 6; 7$ $\rightarrow a = 4; 5; 6; 7; 8; 9; 10$ $\rightarrow m = 2; 3; 4; 5; 6; 7$ $\rightarrow n = -3; -2; -1; 1; 2; 3; 4; 5; 6; 7$ $\rightarrow k = 2; 3; 4; 5$

Производная частного. Простая

1)
$$\frac{f}{g}$$

 $\rightarrow f = \sin X$; $\cos X$; $\arcsin X$; $\arccos X$; $\tan X$; $\ln X$
 $\rightarrow g = \sin x$; $\cos x$; $\arcsin x$; $\arccos x$; $\tan x$; $\ln x$
 $\rightarrow X = ax + b$
 $\rightarrow a = 2$; 3; 4; 5; 6; 7
 $\rightarrow b = -3$; -2 ; -1 ; 2; 3; 4; 5; 6; 7

Логарифмическое дифференцирование

190. Вычислить производную функции.

1) f^g $\rightarrow f = \sin X$; $\cos X$; $\arcsin X$; $\arccos X$; $\tan X$; $\ln X$ $\rightarrow g = \sin x$; $\cos x$; $\arcsin x$; $\arccos x$; $\tan x$; $\ln x$ $\rightarrow X = ax + b$ $\rightarrow a = 2$; 3; 4; 5; 6; 7 $\rightarrow b = -3$; -2; -1; 2; 3; 4; 5; 6; 7

Производная произведения

```
1) f^a \cdot g

f = \sin x; \cos x; \arcsin x; \arccos x; \tan x; \ln x

g = \sin y; \cos y; \arcsin y; \arccos y; \tan y; \ln y

y = cx + d

a = 3; 4; 5; 6; 7

c = 2; 3; 4; 5; 6; 7

d = -3; d = -3;
```

Производная частного

1)
$$\frac{f}{g}$$
 $\rightarrow f = \sin X$; $\cos X$; $\arcsin X$; $\arccos X$; $\tan X$; $\ln X$
 $\rightarrow g = \sin y$; $\cos y$; $\arcsin y$; $\arccos y$; $\tan y$; $\ln y$
 $\rightarrow X = ax + b$
 $\rightarrow y = cx^{d}$
 $\rightarrow a = 2$; 3; 4; 5; 6; 7

 $\rightarrow b = -3$; -2 ; -1 ; 2; 3; 4; 5; 6; 7

 $\rightarrow c = 2$; 3; 4; 5; 6; 7

 $\rightarrow d = 2$; 3; 4; 5; 6; 7

Производная сложной функции

 $\rightarrow n = 3; 4; 5$

1)
$$\sqrt[n]{\frac{ax+b}{cx+d}}f$$

 $\rightarrow f = \log_m(ex+f)$; $\sin X$; $\cos X$; $\arcsin X$; $\arccos X$; $\tan X$; $\sin X$
 $\rightarrow X = mx^2 + ex + f$
 $\rightarrow a = 2$; 3; 4; 5; 6; 7
 $\rightarrow b = -3$; -2 ; -1 ; 2; 3; 4; 5; 6; 7
 $\rightarrow c = -3$; -2 ; -1 ; 2; 3; 4; 5; 6; 7
 $\rightarrow d = -3$; -2 ; -1 ; 2; 3; 4; 5; 6; 7
 $\rightarrow m = 2$; 3; 4; 5; 6; 7
 $\rightarrow e = 2$; 3; 4; 5; 6; 7
 $\rightarrow f = -3$; -2 ; -1 ; 2; 3; 4; 5; 6; 7

194. Вычислить приближённо

$$\Rightarrow k = 1; 2; 3; 4; -1; -2; -3$$

1)
$$\operatorname{arctg}\left(a + \frac{k}{100}\right)$$

$$\sqrt{A_1 \frac{k}{100} + A_0}$$

$$\rightarrow a$$
, A_0 , $A_1 =$

•
$$1, \frac{\pi}{4}, \frac{1}{2}$$

$$2) \ \operatorname{arctg} \sqrt{3 + \frac{k}{10}}$$

$$\sqrt{\frac{1}{8\sqrt{3}}\frac{k}{10} + \frac{\pi}{3}}$$

3)
$$\arcsin\left(\frac{k}{100}\right)$$

$$\sqrt{\frac{k}{100}}$$

4)
$$\lg\left(10 + \frac{k}{10}\right)$$

$$\sqrt{\frac{1}{10 \ln 10} \frac{k}{100} + 1}$$

5)
$$\sqrt[p]{a^p + \frac{k}{10}}$$

$$\sqrt{\frac{1}{pa^{p-1}}}\frac{k}{10} + a$$

$$\rightarrow a = 2; 3; 4; 5$$

$$\rightarrow p = 2; 3; 4$$

6)
$$\left(a + \frac{k}{100}\right)^b$$

$$\sqrt{ba^{b-1}}\frac{k}{100} + a^b$$

$$\rightarrow a = 2; 3; 4; 5$$

$$\rightarrow b = 3; 4; 5$$

7)
$$\sin(30 + k)^{\circ}$$

$$\sqrt{\frac{\sqrt{3}}{2}} \frac{\pi}{180} k + \frac{1}{2}$$

8)
$$tg(45 + k)^{\circ}$$

$$\sqrt{2\frac{\pi}{180}k + 1}$$

Угловой коэффициент

195. Найти угловой коэффициент касательной к графику функции y в точке $x=x_0$.

- $\Rightarrow X = -3; -2; -1; 1; 2; 3$
- $\Rightarrow a = 1; 2; 3; 5; 6$
- $\Rightarrow b = 1; 2; 3; 4$
- 1) $y = \frac{x^2 2ax + 2b}{ax b}$, $x_0 = X$
- $\sqrt{\frac{aX^2 2bX}{(aX b)^2}}$
- 2) $y = \frac{\sqrt{ax^2 + b^2}}{b^2x}$, $x_0 = X$
- $\sqrt{-\frac{1}{X^2\sqrt{aX^2+b^2}}}$
- 3) $y = \frac{x}{\sqrt{ax^2 + b^2}}, \ x_0 = X$
- $\sqrt{\frac{b^2}{\sqrt{(aX^2+b^2)^3}}}$

- 196. Решить задачу на тему «Касательная».
 - 1) К графику функции $y = b \sin ax$ в точке $x_0 = 0$ проведена касательная. Найти площадь треугольника, который отсекает эта касательная от координатного угла.

```
\sqrt{\frac{b^2}{2a}}

\rightarrow a = 2; 3; 4; 5; 6

\rightarrow b = -4; -3; -2; -1; 1; 2; 3; 4; 5
```

2) Найти тангенс угла между касательными, проведёнными к графикам функций $f_1(x) = ax^3 + bx + d + a + b - k$ и $f_2(x) = dx^2 + kx$ в точке их пересечения $x_0 = -1$.

```
\sqrt{\operatorname{tg}\varphi} = \frac{k - 2d - (3a + b)}{1 + (k - 2d)(3a + b)}

\rightarrow a = -3; -2; -1; 1; 2; 3; 4; 5; 6

\rightarrow b = -3; -2; -1; 1; 2; 3; 4; 5; 6

\rightarrow d = -3; -2; -1; 1; 2; 3; 4; 5; 6

\rightarrow k = -3; -2; -1; 1; 2; 3; 4; 5; 6
```

3) Найти точку графика функции $y_1 = ax^2 + bx + c$, в которой касательная параллельна (перпендикулярна) прямой $y_2 = kx + d$.

```
\sqrt{M_1 \left(\frac{k-b}{2a}; \frac{(k-b)^2}{4a} + \frac{b}{2a}(k-b) + c\right)}, \quad M_2 \left(-\frac{1+bk}{2ak}; \frac{(1+bk)^2}{4k^2a} - \frac{b}{2ka}(1+bk) + c\right)

\rightarrow a = -3; \quad -2; \quad -1; \quad 1; \quad 2; \quad 3; \quad 4; \quad 5; \quad 6

\rightarrow b = -3; \quad -2; \quad -1; \quad 1; \quad 2; \quad 3; \quad 4; \quad 5; \quad 6

\rightarrow c = -3; \quad -2; \quad -1; \quad 1; \quad 2; \quad 3; \quad 4; \quad 5; \quad 6

\rightarrow d = -3; \quad -2; \quad -1; \quad 1; \quad 2; \quad 3; \quad 4; \quad 5; \quad 6

\rightarrow k = -3; \quad -2; \quad -1; \quad 1; \quad 2; \quad 3; \quad 4; \quad 5; \quad 6
```

4) К графику функции $y = kx(ax^2 + bx + c)$ проведена касательная в точке с абсциссой $x_0 = f$. Найти ординату точки пересечения этой касательной с прямой x = d.

```
\sqrt{y = (akf^3 + bkf^2 + kcf) + (3akf^2 + 2bkf + ck)(d - f)}

\rightarrow a = -3; -2; -1; 1; 2; 3; 4; 5; 6

\rightarrow b = -3; -2; -1; 1; 2; 3; 4; 5; 6

\rightarrow c = -3; -2; -1; 1; 2; 3; 4; 5; 6

\rightarrow d = -3; -2; -1; 1; 2; 3; 4; 5; 6

\rightarrow k = -3; -2; -1; 1; 2; 3; 4; 5; 6

\rightarrow f = -3; -2; -1; 1; 2; 3; 4; 5; 6
```

5) Найти на графике функции $y=\frac{x-a}{x-b}$ все точки, касательные в которых параллельны прямой y=(a-b)x+c.

$$\sqrt{M_1(1+b;1+b-a)}, M_2(b-1;a+1-b)$$

```
\rightarrow a = 9; 10; 11; 12; 13; 14; 15
```

$$\rightarrow$$
 b = 1; 2; 3; 4; 5; 6

$$\rightarrow c = 1; 2; 3; 4; 5; -1; -2; -3; -4; -5$$

6) Найти на графике функции $y = \frac{x-a}{x-b}$ все точки, касательные в которых перпендикулярны прямой (a-b)y + x - c = 0.

$$\sqrt{M_1(1+b;1+b-a)}, M_2(b-1;a+1-b)$$

$$\rightarrow a = 9; 10; 11; 12; 13; 14; 15$$

$$\rightarrow b = 1; 2; 3; 4; 5; 6$$

$$\rightarrow c = 1; 2; 3; 4; 5; -1; -2; -3; -4; -5$$

7) Найти абсциссу точки графика функции $y = \frac{1}{b \ln a} a^{bx+c} + f$, если касательная, проведенная к графику данной функции в этой точке, образует с осью OX угол 45° .

$$\sqrt{x} = -\frac{c}{b}$$

$$\rightarrow a = 2; 3; 4; 5; 6; 7; 8; 9; e$$

$$\rightarrow b = 2; 3; 4; 5; 6; 7; 8; 9; -2; -3; -4; -5; -6; -7; -8; -9$$

$$\rightarrow c = 1; 2; 3; 4; 5; 6; 7; 8; 10$$

$$\rightarrow f = 1; 2; 3; 4; 5; 6; 7; 8; -1; -2; -3; -4; -5; -6; -7; -8$$

8) Найти абсциссу точки графика функции $y = \frac{1}{ax+b}$, если касательная, проведенная к графику данной функции в этой точке, проходит через начало координат.

$$\sqrt{x} = -\frac{b}{2a}$$

$$\rightarrow a = 2; 3; 4; 5; 6; 7; 8; 9; -2; -3; -4; -5; -6; -7; -8; -9$$

$$\rightarrow b = 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; -1; -2; -3; -4; -5; -6; -7; -8; -9; -10$$

9) Найти на графике функции $y = \frac{x^3}{3} - ax^2 - \frac{1}{3}a^3$ точку, касательная в которой параллельна прямой $y = -a^2x + b$.

$$\sqrt{M(a;-a^3)}$$

$$\rightarrow a = 1; 2; 3; 4; 5; -1; -2; -3; -4; -5$$

$$\rightarrow$$
 b = 1; 2; 3; 4; 5; 6; 7; 8; 9; 10

10) Найти на графике функции $y = \frac{x^3}{3} - ax^2 - \frac{1}{3}a^3$ точку, касательная в которой перпендикулярна прямой $b + x - a^2y = 0$.

$$\sqrt{M(a;-a^3)}$$

$$\rightarrow a = 1; 2; 3; 4; 5; -1; -2; -3; -4; -5$$

$$\rightarrow b = 1; 2; 3; 4; 5; 6; 7; 8; 9; 10$$

11) К графику функции $y = \frac{a^3}{x^2} + bx + c$ проведена касательная, составляющая с осью OX угол, равный $\arctan(b+2)$. Найти абсциссу точки пересечения этой касательной с осью OX.

```
 \sqrt{x = -3a - c} 
 \rightarrow a = 1; 2; 3; 4; 5; -1; -2; -3; -4; -5 
 \rightarrow b = 1; 2; 3; 4; 5; 6; 7; 8 
 \rightarrow c = 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; -1; -2; -3; -4; -5; -6; -7; -8; -9; -10
```

197. Вычислить $y'(x_0)$, если

1)
$$y = \ln \sqrt{(x-b)^a} + \frac{a}{k}(x-b)^k$$
,
 $x_0 = b+1$.

$$\sqrt{\frac{3a}{2}}$$

$$\rightarrow k = 2; 3; 4; 5$$

$$\rightarrow a = 3; 5; 7; 9$$

$$\rightarrow b = 1; 2; 3; 4; 5$$

2)
$$y = \sqrt[k]{b - (b-1)x^k} + a^x \frac{c}{\ln a}$$
, $x_0 = 1$.

$$\sqrt{1-b+ca}$$

$$\rightarrow a = 2; 3; 4$$

$$\rightarrow c = 1; 2; 3$$

$$\rightarrow b = 2; 3; 4; 5$$

$$\rightarrow k = 3; 4; 5; 6; 7$$

3)
$$y = \ln \sin ax + \frac{bx^2}{\pi} - \frac{b}{a}$$
$$x_0 = \frac{\pi}{2a}$$

$$\sqrt{\frac{b}{a}}$$

$$\rightarrow a = 3; 5; 7; 9$$

$$\rightarrow b = 2; 3; 4; 5; 6; -2; -3; -4; -5; -6$$

Вторая производная в точке

- **198.** Вычислить y''(0).
 - \Rightarrow a = 1; 2; 3; 4; 5; 6; 7
 - \Rightarrow b = -5; -4; -3; -2; -1; 1; 2; 3; 4; 5
 - $1) \quad y = e^{ax^2 + bx}$
 - $\sqrt{b^2+2a}$
 - $2) \quad y = \cos(ax^2 + bx)$
 - $\sqrt{-b^2}$
 - $3) \quad y = \sin(ax^2 + bx)$
 - $\sqrt{2a}$
 - 4) $y = (ax^2 + bx + c)^n$
 - $\sqrt{n(n-1)c^{n-2}b + 2anc^{n-1}}$
 - $\rightarrow n = 2; 3$
 - $\rightarrow c = 1; 2; 3$

Третья производная в точке

- **199.** Вычислить y'''(0).
 - \Rightarrow a = 1; 2; 3; 4; 5; 6; 7
 - \Rightarrow b = -5; -4; -3; -2; -1; 1; 2; 3; 4; 5
 - $1) \quad y = e^{ax^2 + bx}$
 - $\sqrt{6ab+b^3}$
 - $2) \quad y = \cos(ax^2 + bx)$
 - $\sqrt{-6ab}$
 - $3) \ y = \sin(ax^2 + bx)$
 - $\sqrt{-b^3}$

- 200. Найти предел, используя правило Лопиталя.
 - $\Rightarrow a = b+1; b+2; b+3$
 - $\Rightarrow b = 2; 3; 4; 5; 6; 7$
 - $1) \lim_{x \to 0} \frac{1 \cos ax}{1 \cos bx}$
 - $\sqrt{\frac{a^2}{b^2}}$
 - $2) \lim_{x \to 0} \frac{a^x 1}{b^x 1}$
 - $\sqrt{\log_b a}$
 - $3) \lim_{x \to 0} \frac{e^{ax} e^{bx}}{\sin x}$
 - $\sqrt{a-b}$
 - $4) \lim_{x \to 0} \frac{\arcsin ax}{1 b^x}$
 - $\sqrt{\frac{a}{-\ln b}}$

201. Найти предел, используя правило Лопиталя.

1)
$$\lim_{x \to \frac{x}{2k}} (\operatorname{tg} kx)^{2kx - \pi}$$

$$\sqrt{1}$$

$$\rightarrow k = 1; 2; 3; 4; 5$$

2)
$$\lim_{x\to 0} K^N$$

$$\sqrt{e^0} = 1$$

$$\rightarrow N = \operatorname{tg} bx$$
; $\sin bx$; $\arcsin bx$; $\operatorname{arctg} bx$

$$\rightarrow K = \operatorname{tg} ax$$
; $\sin ax$; $\arcsin ax$; $\arctan ax$

$$\rightarrow a = 1; 2; 3$$

$$\rightarrow b = 1; 2; 3$$

3)
$$\lim_{x \to \frac{b}{a}} (ax - b)^{ax - b}$$

$$\sqrt{\frac{1}{e}}$$
?(1)

$$\rightarrow a = 2; 3; 4; 6$$

$$\rightarrow b = 1; 5; 7$$

4)
$$\lim_{x \to \frac{\pi}{2k}} \frac{\operatorname{tg} kx}{\operatorname{tg}(1 + 4(n-1))kx}$$

$$\sqrt{\frac{1}{1+4(n-1)}}$$

$$\rightarrow k = 1; 2; 3$$

$$\rightarrow n = 2; 3; 4$$

5)
$$\lim_{x \to 0^+} \frac{\ln \sin mx}{\ln \sin nx}$$

$$\sqrt{}$$

$$\rightarrow m = 1; 2; 3; 4$$

$$\rightarrow n = 1; 2; 3; 4$$

$$6) \lim_{x \to a} \frac{x^m - a^m}{x^n - a^n}$$

$$\sqrt{\frac{m}{n}}a^{m-n}$$

$$\rightarrow a = 2; 3; 4$$

$$\rightarrow m = 3; 5; 7$$

$$\rightarrow n = 4; 6; 8$$

7)
$$\lim_{x \to 1} \frac{a^{\ln x} - x^k}{x^n - 1}$$

$$\sqrt{\frac{\ln a - k}{n}}$$

$$\rightarrow a = 2; 3; 4$$

$$\rightarrow k = 1; 2; 3$$

$$\rightarrow n = 1; 2; 3$$

8)
$$\lim_{x \to 1} \ln x \cdot \ln(x - 1)$$

$$\sqrt{}$$

9)
$$\lim_{x \to 0} \frac{e^{a\sqrt{x}} - 1}{\sqrt{\sin bx}}$$

$$\sqrt{\frac{a}{\sqrt{b}}}$$

$$\rightarrow a = b+1; b+2; b+3$$

$$\rightarrow b = 2; 3; 4; 5; 6; 7$$

10)
$$\lim_{x \to \infty} \frac{\log_a(kx+b)}{\sqrt[n]{cx+d}}$$

$$\sqrt{}$$

$$\rightarrow a = 2; 3; 4; 5; 6; 7$$

$$\rightarrow k = 2; 3; 4; 5; 6; 7$$

$$\rightarrow b = -3; -2; -1; 2; 3; 4; 5; 6; 7$$

$$\rightarrow n = 2; 3; 4; 5; 6; 7$$

$$\rightarrow c = 1; 2; 3; 4; 5; 6; 7$$

$$\rightarrow d = -3; -2; -1; 2; 3; 4; 5; 6; 7$$

$$11) \lim_{x \to 0} \frac{a^{kx} - b^{dx}}{\sin cx}$$

$$\sqrt{\frac{k \ln a - d \ln b}{c}}$$

$$\rightarrow a = 2; 3; 4; 5; 6; 7$$

$$\rightarrow b = 2; 3; 4; 5; 6; 7$$

$$\rightarrow c = 1; 2; 3; 4; 5; 6; 7$$

$$\rightarrow k = -3; -2; -1; 2; 3; 4; 5; 6; 7$$

$$\rightarrow d = -3; -2; -1; 2; 3; 4; 5; 6; 7$$

12)
$$\lim_{x \to 0} \frac{a^{kx} - b^{nx}}{x\sqrt{1 - dx^2}}$$

$$\sqrt{k \ln a - n \ln b}$$

$$\rightarrow a = 2; 3; 4; 5; 6; 7$$

$$\rightarrow b = 2; 3; 4; 5; 6; 7$$

$$\rightarrow k = -3; -2; -1; 2; 3; 4; 5; 6; 7$$

$$\rightarrow n = -3; -2; -1; 2; 3; 4; 5; 6; 7$$

$$\rightarrow$$
 $d = -3; -2; -1; 2; 3; 4; 5; 6; 7$

13)
$$\lim_{x \to 0} \frac{a^{kx} - \cos^n dx}{c^{bx} - \cos^m fx}$$

$$\sqrt{\frac{k \ln a}{b \ln c}}$$

$$\rightarrow a = 2; 3; 4; 5; 6; 7$$

$$\rightarrow c = 2; 3; 4; 5; 6; 7$$

$$\rightarrow n = 1; 2; 3; 4; 5; 6; 7$$

$$\rightarrow m = 1; 2; 3; 4; 5; 6; 7$$

$$\rightarrow$$
 d = 1; 2; 3; 4; 5; 6; 7

$$\rightarrow f = 1; 2; 3; 4; 5; 6; 7$$

$$\rightarrow k = -3; -2; -1; 2; 3; 4; 5; 6; 7$$

$$\rightarrow b = -3; -2; -1; 2; 3; 4; 5; 6; 7$$

14)
$$\lim_{x \to a} \left(1 - \frac{x}{a}\right)^k$$

$$\sqrt{1}$$

$$\rightarrow k = \operatorname{tg} b\pi(x-a)$$
; $\sin b\pi(x-a)$; $\operatorname{arctg} b\pi(a-x)$; $\operatorname{arcsin} b\pi(a-x)$

$$\rightarrow a = 1; 2; 3; 4; 5; 6; 7$$

$$\rightarrow b = 1; 2; 3; 4; 5; 6; 7$$

15)
$$\lim_{x \to \infty} \left(\cos \frac{m}{x} + \lambda \sin \frac{m}{x} \right)^{kx}$$

$$\sqrt{e^{k\lambda m}}$$

$$\rightarrow m = 1; 2; 3; 4; 5; 6; 7$$

$$\rightarrow \lambda = -3; -2; -1; 2; 3; 4; 5; 6; 7$$

$$\rightarrow k = -3; -2; -1; 2; 3; 4; 5; 6; 7$$

16)
$$\lim_{x \to \frac{ak}{2}} \left(2 - \frac{x}{a}\right)^{\operatorname{tg}\frac{\pi x}{ka}}$$

$$\sqrt{1}$$

$$\rightarrow a = 1; 2; 3; 4; 5; 6; 7$$

$$\rightarrow k = 1; 2; 3; 4; 5; 6; 7$$

17)
$$\lim_{x \to \infty} \left(\cos \frac{m}{\sqrt[k]{x}} \right)^{nx^a}$$

$$\sqrt{e^{-\frac{m^2}{ka}}}$$

$$\rightarrow a = 2 + \frac{2}{k}$$

$$\rightarrow m = 1; 2; 3; 4; 5; 6; 7$$

$$\rightarrow n = 1; 2; 3; 4; 5; 6; 7$$

$$\rightarrow k = 2; 3; 4; 5; 6; 7$$

18)
$$\lim_{x \to 0} \frac{1 - \cos ax^{3m}}{x^{2m} - \frac{1}{b}\sin bx^{2m}}$$

$$\sqrt{\frac{a^2m}{b^2}}$$

$$\rightarrow a = 1; 2; 3; 4; 5; 6; 7$$

$$\rightarrow b = 1; 2; 3; 4; 5; 6; 7$$

$$\rightarrow m = 1; 2; 3; 4; 5; 6; 7$$

$$19) \lim_{x\to 0} (\cos kx)^{\frac{a}{x^2}}$$

$$\sqrt{e^{-\frac{k^2a}{2}}}$$

$$\rightarrow k = 1; 2; 3; 4; 5; 6; 7$$

$$\rightarrow a = -3; -2; -1; 2; 3; 4; 5; 6; 7$$

Монотонность

202.

- 1) Найти длину интервала убывания функции $y = \frac{(x-a)^b}{x^b}$.
- $\sqrt{|a|}$
- $\rightarrow a = 1; 2; 3; 4; 5$
- $\rightarrow b = 2; 4; 6; 8$
- 2) Найти длину промежутка возрастания функции $y = \frac{x-a}{x^2+b}$.
- $\sqrt{2\sqrt{a^2+b}}$
- $\rightarrow b = a^2 1; \ a^2 2; \ a^2 3; \ a^2 4; \ a^2 5; \ a^2 6; \ a^2 7; \ a^2 8$
- $\rightarrow a = 3; 4; 5; 6; 7$

Экстремум

203. Найти сумму значений функции в точках экстремума

$$\Rightarrow$$
 $n=1$; 2

1)
$$y = (x^2 - a^2)^{2n+1}$$

$$\sqrt{y(0)} = (-a^2)^{2n+1}$$

$$\rightarrow a = 2; 3; 4; 5; 6; 7; 8; 9$$

2)
$$y = (x-a)^{2n+1}(x-b)^{2n+1}$$

$$\sqrt{y\left(\frac{a+b}{2}\right)} = -\left(\frac{a+b}{2}\right)^{4n+2}$$

$$\rightarrow a = 1; 3; 5; 7$$

$$\rightarrow b = 1; 3; 5; -1; -3; -5$$

Сумма значений в точках экстремума

204. Найти сумму значений функции y в точках экстремума.

$$\Rightarrow$$
 b = 1; 2; 3; 4; 5; 6; 7

$$\Rightarrow$$
 $c = -5; -4; -3; -2; -1; 1; 2; 3; 4; 5$

$$1) \quad y = x + \frac{b^2}{x+c}$$

$$\sqrt{-2c}$$

$$2) \quad y = kax^5 - kbx^3 + c$$

$$\sqrt{2c}$$

$$\rightarrow k = -1; 1$$

$$\rightarrow a = 1; 2; 3; 4; 5; 6; 7$$

205. Найти интервалы монотонности и точки экстремума функции

$$\Rightarrow F = ax^2 + bx + 2a$$

$$\Rightarrow a = 2; 3; 4; 5; 6; 7; 8; 9; 10$$

$$\Rightarrow$$
 b = 1; 2; 3; 4; 5

1)
$$y = \ln F$$

$$\sqrt{y'} = \frac{2ax+b}{ax^2+bx+2a}, \ x_{\min} = -\frac{b}{2a}$$

2)
$$y = \frac{1}{F}$$

$$\sqrt{y'} = -\frac{2ax+b}{(ax^2+bx+2a)^2}, \ x_{\text{max}} = -\frac{b}{2a}$$

$$3) \ \ y = \frac{ax+b}{F}$$

$$\sqrt{y'} = \frac{2a^2 - (ax+b)^2}{(ax^2 + bx + 2a)^2}, \ x_{\min} = \frac{-b - \sqrt{2}a}{a}, \ x_{\max} = \frac{\sqrt{2}a - b}{a},$$

4)
$$y = \sqrt{F}$$

$$\sqrt{y'} = \frac{2ax+b}{2\sqrt{ax^2+bx+2a}}, \ x_{\min} = -\frac{b}{2a}$$

206. Найти интервалы монотонности, точки экстремума, интервалы выпуклости (вогнутости) и точки перегиба функции

$$\Rightarrow F = a^2 + x^2$$

$$\Rightarrow$$
 a = 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12

1) $y = \ln F$

$$y'=rac{2x}{a^2+x^2},\,\,x_{
m min}=0;$$

$$\sqrt[4]{y''}=rac{2(a^2-x^2)}{(a^2+x^2)^2},\,\,x=\pm a\,\,$$
точки перегиба

 $2) \quad y = x - \ln F$

$$y'=rac{x^2-2x+a^2}{a^2+x^2},\ y'>0\ orall x;$$
 $y''=rac{2(x^2-a^2)}{(a^2+x^2)^2},\ x=\pm a$ точки перегиба

3) $y = \frac{1}{r}$

$$y'=rac{-2x}{(a^2+x^2)^2}, \ x_{
m max}=0;$$
 $y''=rac{2(3x^2-a^2)}{(a^2+x^2)^3}, \ x=\pmrac{a}{\sqrt{3}}$ точки перегиба
4) $y=rac{x}{D}$

4)
$$y = \frac{x}{F}$$

$$y'=rac{a^2-x^2}{(a^2+x^2)^2},\,\,x_{\min}=-a,\,\,x_{\max}=a;$$
 $\sqrt[4]{y''}=rac{2x(x^2-3a^2)}{(a^2+x^2)^3},\,\,x=0,\,\,x=\pm a\sqrt{3}$ точки перегиба

5)
$$y = \sqrt{F}$$

$$y' = \frac{x}{\sqrt{x^2 + a^2}}, \ x_{\min} = 0;$$

$$\sqrt{y''} = \frac{a^2}{(a^2 + x^2)^{3/2}}, \ y'' > 0 \ \forall x$$

Наибольшее и наименьшее значение функции на отрезке

207. Найти наибольшее и наименьшее значение функции на заданном отрезке.

$$\Rightarrow a = 1; 2; 3$$

$$\Rightarrow$$
 $b = 1; 2; 3; $\frac{1}{2}; \frac{1}{3}; \frac{1}{4}; \frac{2}{3}; \frac{3}{4}; \frac{3}{2}; \frac{4}{3}$$

1)
$$y = x^a \ln bx$$
, $\left[\frac{1}{3b}; \frac{1}{b}\right]$

$$\sqrt{y_{\min}} = -\frac{1}{b^a a e}; \ y_{\max} = 0$$

$$2) \ \ y = \frac{\ln bx}{x^a}, \quad \left[\frac{1}{b}; \frac{3}{b}\right]$$

$$\sqrt{y_{\min}} = 0; \ y_{\max} = \frac{b^a}{ae}$$

Экономическая задача на глобальный экстремум: общая

208. Издержки производства некоторого товара равны C, спрос на товар определяется функцией $P_{\rm cnp}$. Найти максимальное значение прибыли.

$$P_{\text{cmp}} = -Q^{2} + aQ + b,$$
1) $C = cQ + d,$

$$Q_{1} \leq Q \leq Q_{2}$$

$$\sqrt{4A^{3} + 3A^{2} + A}$$

$$\Rightarrow a = 3A + 2$$

$$\Rightarrow c = 2A + 1 + b$$

$$\Rightarrow b = 1; 2; 3; 4; 5; 6; 7; 8$$

$$\Rightarrow d = A^{2}$$

$$\Rightarrow Q_{2} = 2A + 1 + B$$

$$\Rightarrow q = 2A + 1$$

$$\Rightarrow Q_{1} = 2A$$

 $\rightarrow A = 1; 2; 3; 4; 5$

 $\rightarrow B = 1; 2; 3$

209.

1) Завод A отстоит от железной дороги, идущей с юга на север и проходящей через город B на a км (считается по кратчайшему расстоянию). Под каким углом φ к железной дороге следует построить подъездной путь, чтобы транспортировка грузов из A в B была наиболее экономичной, если стоимость провоза 1 т груза на расстояние 1 км составляет по подъездному пути p ден. ед., по железной дороге q ден. ед. и город B расположен на b км севернее завода A?

$$\sqrt{Q(\varphi)} = \frac{ap}{\cos\varphi} + (b - \operatorname{arctg}\varphi)q, \ \cos\varphi = \frac{q}{p}$$

- $\rightarrow q = k ; \sqrt{3}k ; \sqrt{2}k$
- $\rightarrow p = 2k$
- $\rightarrow k = 1; 2; 3; 4; 5$
- $\rightarrow a = 5; 6; 7; 8$
- $\rightarrow b = 15; 16; 17; 18$

210.

1) Известна зависимость суточных расходов $C=2kv_0^3+kv^3$ при плавании судна от скорости судна v, выраженной в километрах в час. При какой скорости плавание судна будет наиболее экономичным, если максимальная развиваемая им скорость составляет $70\,\mathrm{km/v}$.

```
\sqrt{v_0}

\rightarrow v_0 = 20; 24; 27; 29; 33; 36; 38; 41; 43; 47; 49

\rightarrow k = 10; 11; 12; 13; 14; 15; 16; 17; 18; 19
```

2) Турист идёт из пункта A на дороге, проходящей с севера на юг, в пункт B, расположенный на $kv_2 + d$ км южнее A и отстоящий от дороги, считая по кратчайшему расстоянию, на ku км. На каком расстоянии от пункта A туристу следует свернуть с дороги, чтобы в кратчайшее время прийти в пункт B, если скорость по дороге равна v_1 км/ч, а по бездорожью — v_2 км/ч.

```
\sqrt{d} 

    v_2 = \sqrt{v_1^2 - u^2} 

    v_1 = 5 

    k = 1; 2; 3; 4; 5; 6; 7 

    v_2 = \sqrt{v_1^2 - u^2} 

    v_3 = 5 

    d = 3; 4; 5; 6; 7; 8; 9
```

211. Провести полное исследование функции и построить её график

1)
$$y = \frac{(x-a)^2}{x-b}$$

$$\sqrt{x=b}$$
, $y=x+b-2a$, $x_{\max}=a$, $f_{\max}=0$, $x_{\min}=2b-a$, $f_{\min}=4(b-a)$

$$\rightarrow a = b-1; b-2; b-3; b-4; b-5; b-6; b-7; b-8$$

$$\rightarrow b = -3; -2; -1; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12$$

2)
$$y = a^2x + \frac{b^2}{x+c}$$

$$\sqrt{x} = -c, \ y = a^2x, \ x_{\text{max}} = \frac{-b - ac}{a}, \ f_{\text{max}} = -2ab - a^2c, \ x_{\text{min}} = \frac{b - ac}{a}, \ f_{\text{min}} = 2ab - a^2c, \ x_p = -c$$

$$\rightarrow a = 2; 3; 4$$

$$\rightarrow b = 5; 7; 9; 10$$

$$\rightarrow c = 1; 2; -1; -2$$

3)
$$y = \frac{2x^3 + a^3}{r^2}$$

$$\sqrt{x} = 0, \ y = 2x, \ x_{\min} = a, \ f_{\min} = 3a, \ f \uparrow, \ x \in (-\infty, 0) \cup (a, +\infty), \ f''(x) > 0$$

$$\rightarrow a = 1; 2; 3; 4; 5$$

Часть XI Неопределённый интеграл

Интеграл со степенями

1)
$$\int \frac{A^{a+b}\sqrt{x^b} + Bx^{a+b+1} + Cx^a}{x^{a+1}} dx$$

$$\sqrt{\frac{A(a+b)}{b-a^2 - ab}} \frac{1}{\frac{a+b}{\sqrt{x^{a^2 + ab - b}}}} + \frac{Bx^{b+1}}{b+1} + C\ln|x|$$

$$\rightarrow a = 1; 2; 3; 4; 5$$

$$\rightarrow b = 1; 2; 3; 4$$

$$\rightarrow A = -5; -4; -3; -2; -1; 1; 2; 3; 4; 5$$

$$\rightarrow B = C; C - 1; C + 1$$

$$\rightarrow C = -3; -2; 2; 3$$

$$\Rightarrow a = b-1; b+1; b+2; b+3; b+4$$

$$\Rightarrow b = 2; 3; 4; 5$$

1)
$$\int \frac{dx}{\sqrt{b-ax^2}}$$

$$\sqrt{\frac{1}{\sqrt{a}}} \arcsin \frac{ax}{\sqrt{ab}}$$

$$2) \int \frac{dx}{b+ax^2}$$

$$\sqrt{\frac{1}{\sqrt{ab}}} \operatorname{arctg} \frac{ax}{\sqrt{ab}}$$

$$3) \int \frac{dx}{ax^2 - b}$$

$$\sqrt{\frac{1}{2\sqrt{ab}}\ln\left|\frac{\sqrt{ax}-\sqrt{b}}{\sqrt{ax}+\sqrt{b}}\right|}$$

4)
$$\int \frac{dx}{\sqrt{ax^2+b}}$$

$$\sqrt{\frac{1}{\sqrt{a}}\ln\left(\sqrt{a}x + \sqrt{ax^2 + b}\right)}$$

$$\Rightarrow a = 2; 3; 4; 5; 6; 7$$

$$\Rightarrow$$
 $b = -3; -2; -1; 1; 2; 3; 4; 5; 6; 7$

$$1) \int (ax+b)^n dx$$

$$\sqrt{\frac{1}{a}\frac{(ax+b)^{n+1}}{n+1}}$$

$$\rightarrow n = 5; 6; 7; 8; 9; 10; 11$$

2)
$$\int \frac{dx}{ax+b}$$

$$\sqrt{\frac{1}{a}\ln|ax+b|}$$

3)
$$\int \cos(ax+b) \, dx$$

$$\sqrt{\frac{1}{a}}\sin(ax+b)$$

4)
$$\int \sin(ax+b) \, dx$$

$$\sqrt{-\frac{1}{a}\cos(ax+b)}$$

5)
$$\int e^{ax+b} dx$$

$$\sqrt{\frac{1}{a}}e^{ax+b}$$

$$\Rightarrow G, \quad g, \quad c =$$

- $ax^2 + b$, x, 2a;
- $ax^3 + b$, x^2 , 3a;
- $\sin ax + b$, $\cos ax$, a;
- $\cos ax + b$, $\sin ax$, -a

$$\Rightarrow$$
 $a = 1; 2; 3; 4; 5; 6; 7; 8; 9$

$$\Rightarrow$$
 $b = -5$; -4 ; -3 ; -2 ; -1 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9

1)
$$\int e^G g \, dx$$

$$\sqrt{\frac{1}{c}e^G}$$

$$2) \int \frac{g}{e^G} dx$$

$$\sqrt{-\frac{1}{c}e^{-G}}$$

3)
$$\int G^n g \, dx$$

$$\sqrt{\frac{1}{c}\frac{G^{n+1}}{n+1}}$$

$$\rightarrow n = 5; 6; 7; 8; 9$$

$$4) \int \frac{g}{G^n} \, dx$$

$$\sqrt{\frac{1}{c}\frac{G^{-n+1}}{-n+1}}$$

$$\rightarrow n = 5; 6; 7; 8; 9$$

5)
$$\int \sqrt[n]{G}g \, dx$$

$$\sqrt{\frac{1}{c} \frac{\sqrt[n]{G^{n+1}}}{\frac{1}{n}+1}}$$

$$\rightarrow n = 2; 3; 4; 5$$

6)
$$\int \frac{g}{G} dx$$

$$\sqrt{\frac{1}{c}\ln|G|}$$

$$\Rightarrow G, \quad g, \quad c =$$

- $\arcsin ax$, $\sqrt{1-a^2x^2}$, a;
- $\arccos ax$, $\sqrt{1-a^2x^2}$, -a;
- $\arctan ax$, $1+a^2x^2$, a;
- $\operatorname{arcctg} ax$, $1 + a^2x^2$, -a
- $\Rightarrow a = 1; 2; 3; 4; 5; 6; 7; 8; 9$
- 1) $\int \frac{e^G}{g} dx$
- $\sqrt{\frac{1}{c}}e^G$
- $2) \int \frac{dx}{e^G g}$
- $\sqrt{-\frac{1}{c}}e^{-G}$
- 3) $\int \frac{G^n}{g} dx$
- $\sqrt{\frac{1}{c}\frac{G^{n+1}}{n+1}}$
- $\rightarrow n = 5; 6; 7; 8; 9$
- $4) \int \frac{dx}{G^n g}$
- $\sqrt{\frac{1}{c}\frac{G^{-n+1}}{-n+1}}$
- $\rightarrow n = 5; 6; 7; 8; 9$
- $5) \int \frac{\sqrt[n]{G}}{g} \, dx$
- $\sqrt{\frac{1}{c} \frac{\sqrt[n]{G^{n+1}}}{\frac{1}{n} + 1}}$
- $\rightarrow n = 2; 3; 4; 5$
- $6) \int \frac{dx}{Gg}$
- $\sqrt{\frac{1}{c}\ln|G|}$

$$\Rightarrow$$
 b = 1; 2; 3; 4; 5

$$1) \int (x+a)e^{bx} dx$$

$$\sqrt{\left(\frac{x+a}{b}-\frac{1}{b^2}\right)e^{bx}}$$

$$\rightarrow a = -4; -3; -2; -1; 1; 2; 3; 4$$

$$2) \int (x+a)\sin bx \, dx$$

$$\sqrt{-\frac{x+a}{b}\cos bx + \frac{1}{b^2}\sin bx}$$

$$\rightarrow a = -4; -3; -2; -1; 1; 2; 3; 4$$

3)
$$\int (x+a)\cos bx \, dx$$

$$\sqrt{\frac{x+a}{b}}\sin bx + \frac{1}{b^2}\cos bx$$

$$\rightarrow a = -4; -3; -2; -1; 1; 2; 3; 4$$

4)
$$\int (x+a) \ln bx \, dx$$

$$\sqrt{\left(\frac{1}{2}x^2 + ax\right)\ln bx - \frac{1}{4}x^2 - ax}$$

$$\rightarrow a = -4; -3; -2; -1; 1; 2; 3; 4$$

5)
$$\int \operatorname{arctg} bx \, dx$$

$$\sqrt{-x \arctan bx - \frac{1}{2b} \ln |1 + b^2 x^2|}$$

6)
$$\int \operatorname{arcctg} bx \, dx$$

$$\sqrt{x}$$
 arcetg $bx + \frac{1}{2b} \ln|1 + b^2x^2|$

7)
$$\int \arcsin bx \, dx$$

$$\sqrt{x \arcsin bx + \frac{\sqrt{1 - b^2 x^2}}{b}}$$

8)
$$\int \arccos bx \, dx$$

$$\sqrt{x \arccos bx - \frac{\sqrt{1 - b^2 x^2}}{b}}$$

$$\Rightarrow a = 1; 2; 3; 4; 5$$

1)
$$\int (ax+b) \arctan x \, dx$$

$$\sqrt{\frac{(ax+b)^2}{2a}} \arctan x - \frac{a}{2}x - \frac{b}{2}\ln(1+x^2) + \frac{a^2-b^2}{2a} \arctan x$$

$$\rightarrow b = -7; -6; -5; 5; 6; 7$$

2)
$$\int (ax+b) \operatorname{arcctg} x \, dx$$

$$\sqrt{\frac{(ax+b)^2}{2a}} \operatorname{arcctg} x + \frac{a}{2}x + \frac{b}{2}\ln(1+x^2) + \frac{b^2 - a^2}{2a} \operatorname{arctg} x$$

$$\rightarrow b = -7; -6; -5; 5; 6; 7$$

$$3) \int \ln(a^2x^2 + b^2) \, dx$$

$$\sqrt{x \ln(a^2x^2+b^2)} - 2x + 2\frac{b}{a} \arctan \frac{ax}{b}$$

$$\rightarrow b = 1; 2; 3; 4; 5$$

1)
$$\int \frac{Mx^2 + Nx + K}{Df} dx$$

$$\sqrt{\frac{1}{D}F}$$

$$\rightarrow f$$
, F , M , N , $K =$

- (x-a)(x-b)(x-c), $A \ln |x-a| + B \ln |x-b| + C \ln |x-c|$, A+B+C, -A(b+c) B(a+c) C(a+b), Abc + Bac + Cab;
- $(x-a)^2(x-b)$, $\frac{-A}{x-a} + B \ln|x-a| + C \ln|x-b|$, B+C, A-B(a+b)-2aC, $-Ab+Bab+Ca^2$;
- $(x^2+2bx+c)(x-a)$, $\frac{B}{2}\ln(x^2+2bx+c)+A\ln|x-a|+\frac{C-bB}{\sqrt{c-b^2}}\arctan\frac{x+b}{\sqrt{c-b^2}}$, B+A, C-Ba+2bA, -Ca+Ac

$$\rightarrow D = 1; 2; 3$$

$$\rightarrow C = -3; -1; 1; 3$$

$$→$$
 $B = -2; 2$

$$\rightarrow$$
 $A = -2; -1; 1; 2$

$$\rightarrow c = b^2 + 1$$
; $b^2 + 2$

$$\rightarrow b = -2; -1; 1; 2$$

$$\rightarrow a = -4; -3; 3; 4$$

Неопределенный интеграл от рациональной функции

$$\Rightarrow a = -1; 2; 3; -4$$

$$\Rightarrow$$
 $C = -3$; -1 ; 1; 3

$$\Rightarrow$$
 $B = -2$; 2

$$\Rightarrow$$
 $A = -2; -1; 1; 2$

1)
$$\int \frac{(A+B+C)x^2 - (A(b+c) + B(a+c) + C(a+b))x + (Abc + Bac + Cab)}{(x-a)(x-b)(x-c)} dx$$

$$\sqrt{-A \ln |x-a| + B \ln |x-b| + C \ln |x-c|}$$

$$\rightarrow b = -2; -3; 5$$

$$\rightarrow c = 1; 4; -5$$

2)
$$\int \frac{(B+C)x^2 + (A-B(a+b)-2aC)x + (-Ab+Bab+Ca^2)}{(x-a)^2(x-b)} dx$$

$$\sqrt{\frac{-A}{x-a}} + B \ln|x-a| + C \ln|x-b|$$

$$\rightarrow b = 1; 4; -2; -3; 5$$

3)
$$\int \frac{(B+A)x^2 + (C-Ba+2bA)x + (-Ca+Ac)}{(x^2+2bx+c)(x-a)} dx$$

$$\sqrt{\frac{B}{2}\ln(x^2+2bx+c)} + A\ln|x-a| + \frac{C-bB}{\sqrt{c-b^2}} \arctan \frac{x+b}{\sqrt{c-b^2}}$$

$$\rightarrow c = b^2 + 1; b^2 + 4$$

$$\rightarrow b = 0; -1; 1; -2; 2$$

$$\Rightarrow a = b+1; b+2; b+3; b+4; b+5; b+6; b+7; b+8$$

$$\Rightarrow b = 1; 2; 3; 4; 5; 6; 7; 8; 9$$

$$1) \int \cos ax \cos bx \, dx$$

$$\sqrt{\frac{1}{2(a-b)}\sin(a-b)x + \frac{1}{2(a+b)}\sin(a+b)x}$$

$$2) \int \cos bx \sin ax \, dx$$

$$\sqrt{-\frac{1}{2(a-b)}\cos(a-b)x - \frac{1}{2(a+b)}\cos(a+b)x}$$

$$3) \int \sin ax \sin bx \, dx$$

$$\sqrt{\frac{1}{2(a-b)}\sin(a-b)x - \frac{1}{2(a+b)}\sin(a+b)x}$$

1)
$$\int \frac{dx}{a + b \sin x}$$

$$\sqrt{\frac{2}{\sqrt{a^2-b^2}}}$$
 arctg $\frac{a \operatorname{tg} \frac{x}{2} + b}{\sqrt{a^2-b^2}}$

$$\rightarrow a = 5; 6; 7; 8$$

$$\rightarrow b = 2; 3; 4; -2; -3; -4$$

$$2) \int \frac{dx}{a\sin x - (b+1)\cos x - b}$$

$$\sqrt{\frac{1}{\sqrt{a^2 + 2b + 1}}} \ln \left| \frac{\operatorname{tg} \frac{x}{2} + b - \sqrt{a^2 + 2b + 1}}{\operatorname{tg} \frac{x}{2} + b + \sqrt{a^2 + 2b + 1}} \right|$$

$$\rightarrow a$$
, $b =$

- 2, 0;
- 2, 2;
- 2, 5;
- 2, 22;
- 3, 0;
- 3, 3;
- 3, 13;
- 3, 27

3)
$$\int \frac{dx}{\frac{b(a^2+1)}{a^2-1} - b\cos x}$$

$$\sqrt{\frac{a^2-1}{ab}} \arctan\left(a \operatorname{tg} \frac{x}{2}\right)$$

$$\rightarrow a = 2; 3; 4; 5; 6$$

$$\rightarrow b = 1; 2; 3$$

$$\Rightarrow k = 1; 2; 3; 4$$

$$\Rightarrow a = 1; 2; 3; 4$$

$$\Rightarrow b = 1; 5; 6; 7$$

1)
$$\int \frac{dx}{k + \sqrt{ax + b}}$$

$$\sqrt{\frac{2}{a}\sqrt{ax+b}} - \frac{2k}{a}\ln\left|\sqrt{ax+b} + k\right|$$

$$2) \int \frac{dx}{k + \sqrt[3]{ax + b}}$$

$$\sqrt{\frac{3\left(\sqrt[3]{ax+b}-k\right)^2}{2a}+\frac{3k^2}{a}\ln\left|\sqrt[3]{ax+b}+k\right|}$$

$$3) \int \frac{dx}{k + \sqrt[4]{ax + b}}$$

$$\sqrt{\frac{4}{3a}}\sqrt[4]{(ax+b)^3} - \frac{2k}{a}\sqrt{ax+b} + \frac{4k^2}{a}\sqrt[4]{ax+b} - \frac{4k^3}{a}\ln\left|\sqrt[4]{ax+b} + k\right|$$

4)
$$\frac{\sqrt{ax+b}}{\sqrt{ax+b}+k} dx$$

$$\sqrt{\frac{\sqrt{ax+b}-k}{a}} + \frac{2k^2}{a} \ln \left| \sqrt{ax+b} + k \right|$$

$$5) \quad \frac{\sqrt[3]{ax+b}}{\sqrt[3]{ax+b}+k} \, dx$$

$$\sqrt{\frac{ax+b}{a} - \frac{3k}{2a}\sqrt[3]{(ax+b)^2} + \frac{3k^2}{a}\sqrt[3]{ax+b} - \frac{3k^3}{a}\ln\left|\sqrt[3]{ax+b} + k\right|}$$

$$6) \int \frac{\sqrt{ax+b^2}}{x} dx$$

$$\sqrt{2\sqrt{ax+b^2}+b\ln\left|\frac{\sqrt{ax+b^2}-b}{\sqrt{ax+b^2}+b}\right|}$$

1)
$$\int \frac{dx}{\sqrt{ax+b} + k\sqrt[4]{ax+b}}$$

$$\sqrt{\frac{2\left(\sqrt[4]{ax+b}-k\right)^2}{a}+\frac{4k^2}{a}\ln\left|\sqrt[4]{ax+b}+k\right|}$$

$$\rightarrow k = 1; 2; 3; 4$$

$$\rightarrow a = 1; 2; 3; 4$$

$$\rightarrow b = 1; 5; 6; 7$$

2)
$$\int \frac{dx}{\sqrt[3]{(ax+b)^2} - k\sqrt{ax+b}}$$

$$\sqrt{\frac{3\left(\sqrt[6]{ax+b}+k\right)^2}{a}+\frac{6k^2}{a}\ln\left|\sqrt[6]{ax+b}-k\right|}$$

$$\rightarrow k = 1; 2; 3; 4$$

$$\rightarrow a = 1; 2; 3; 4$$

$$\rightarrow b = 1; 5; 6; 7$$

3)
$$\int \frac{\sqrt{x+b}}{x-k^2\sqrt[3]{(x+b)^2}+b} dx$$

$$\sqrt{2\sqrt{x+b}+6k^2\sqrt[6]{x+b}+3k^2\ln\left|\frac{\sqrt[6]{x+b}-k}{\sqrt[6]{x+b}+k}\right|}$$

$$\rightarrow k = 1; 2; 3; 4$$

$$\rightarrow b = 1; -1; 2; -2; 3; -3; 4; -4$$

1)
$$\int \sqrt{\frac{ax}{c-ax}} \, dx$$

$$\sqrt{\frac{c}{a}}\left(\arctan\sqrt{\frac{ax}{c-ax}} - \sqrt{\frac{ax(c-ax)}{c^2}}\right)$$

$$\rightarrow a = 1; 2; 3; 4$$

$$\rightarrow c = 1; 2; 3; 4$$

$$2) \int \frac{\sqrt{\left(\frac{ax}{c-ax}\right)^3}}{ax + \sqrt{\frac{ax}{c-ax}}} dx$$

$$\sqrt{-\frac{2}{a}} \arctan t + \frac{c}{a} \ln |t^2 + ct + 1| + \frac{4 - 2c^2}{a\sqrt{4 - c^2}} \arctan \frac{2t + 1}{\sqrt{4 - c^2}}, \quad t = \sqrt{\frac{ax}{c - ax}}$$

$$\rightarrow a = 1; 2; 3; 4$$

$$\rightarrow c = \frac{6}{5}; \frac{8}{5}$$

3)
$$\int \frac{m}{(a+cx)^2} \sqrt[b]{\frac{a-cx}{a+cx}} dx$$

$$\sqrt{\frac{-mb}{2ac(b+1)}}\sqrt[b]{\left(\frac{a-cx}{a+cx}\right)^{b+1}}$$

$$\rightarrow m = 1; 2; 3; -1; -2; -3$$

$$\rightarrow a = 1; 2; 3; 4$$

$$\rightarrow b = 2; 3; 4; 5$$

$$\rightarrow c = 1; 2; 3; 4$$

4)
$$\frac{dx}{(a^2 - c^2x^2) + (a + cx)^2 \sqrt[3]{\left(\frac{a - cx}{a + cx}\right)^4}}$$

$$\sqrt{\frac{3}{2ac}} \ln \left| \sqrt[3]{\frac{a-cx}{a+cx}} + 1 \right|$$

$$\rightarrow c = 1; 2; 3; 4$$

$$\rightarrow a = 1; 2; 3; 4$$

$$\rightarrow b = 1; 2; 3; 4$$

$$5) \int \frac{a + \sqrt{\frac{a^2x - b}{x}}}{a - \sqrt{\frac{a^2x - b}{x}}}$$

$$\sqrt{\frac{-b}{4a^2}\ln|a^2-t^2|} - \frac{b}{2a(a-t)} + \frac{b}{2(a-t)^2}, \quad t = \sqrt{\frac{a^2x-b}{x}}$$

$$\rightarrow a = 1; 2; 3; 4; 5; 6$$

$$\rightarrow b = 1; 2; 3; 4; 5; 6$$

$$6) \int \sqrt{\frac{k^2cx+b}{cx+f}} \frac{dx}{cx+f}$$

$$\sqrt{-\frac{2}{c}}\sqrt{\frac{k^2cx+b}{cx+f}} - \frac{k}{c^2}\ln\left|\frac{\sqrt{\frac{k^2cx+b}{cx+f}} - k}{\sqrt{\frac{k^2cx+b}{cx+f}} + k}\right|$$

- $\rightarrow k = 1; 2; 3; 4$
- $\rightarrow f = 4; 5$
- \rightarrow b = 1; 2; 3
- \rightarrow c = 1; 2

Часть XII Определённый интеграл

$$1) \int_{0}^{\log_{ab} c} a^x \cdot b^x \, dx$$

$$\sqrt{\frac{c-1}{\ln ab}}$$

$$\rightarrow c = 2; 3; 4; 5; 6; 7; 8; 9$$

$$\rightarrow a = 2; 3; 4$$

$$\rightarrow b = 5; 6; 7$$

2)
$$\int_{-1}^{0} \frac{a^x - b^x}{(ab)^x} dx$$

$$\sqrt{\frac{1-a}{\ln a} + \frac{b-1}{\ln b}}$$

$$\rightarrow b = 2; 3; 4; 5$$

$$\rightarrow a = 6; 7; 8; 9$$

3)
$$\int_{\frac{1}{m}}^{\frac{e}{m}} \frac{\sin(\ln mx)}{x} dx$$

$$\sqrt{1-\cos 1}$$

$$\rightarrow m = 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12$$

$$4) \int_{\frac{1}{m}}^{\frac{e}{m}} \frac{\cos(\ln mx)}{x} \, dx$$

$$\sqrt{\sin 1}$$

$$\rightarrow m = 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12$$

5)
$$\int_{a}^{b} \operatorname{tg} mx \, dx$$

$$\sqrt{-\frac{1}{m}\ln\left|\frac{\cos b}{\cos a}\right|}$$

$$\rightarrow a = -\frac{\pi}{4m}; -\frac{\pi}{3m}$$

$$\rightarrow b = 0; \frac{\pi}{6m}; \frac{\pi}{3m}$$

$$\rightarrow m = 2; 3; 4; 5$$

6)
$$\int_{a}^{b} \operatorname{tg}^{2} mx \, dx$$

$$\sqrt{\frac{1}{m}}(\operatorname{tg} b - \operatorname{tg} a - b + a)$$

$$\rightarrow a = -\frac{\pi}{4m}; -\frac{\pi}{3m}$$

$$\rightarrow b = 0; \frac{\pi}{6m}; \frac{\pi}{3m}$$

$$\rightarrow m = 2; 3; 4; 5$$

1)
$$\int_{0}^{\frac{\pi}{2a}} \cos ax \, dx$$

$$\sqrt{\frac{1}{a}}$$

$$\rightarrow a = 2; 3; 4; 5; 6; 7; 8; 9; 10$$

$$2) \int_{0}^{\frac{\pi}{2a}} \sin ax \, dx$$

$$\sqrt{\frac{1}{a}}$$

$$\rightarrow a = 2; 3; 4; 5; 6; 7; 8; 9; 10$$

$$3) \int_{0}^{\frac{b}{a}} e^{ax+b} dx$$

$$\sqrt{\frac{c^b(c^b-1)}{a\ln a}}$$

$$\rightarrow a = 2; 4$$

$$\rightarrow b = 2; 4$$

$$\rightarrow c = 2; 3$$

$$4) \int\limits_{a}^{b} (cx+f)^k dx$$

$$\sqrt{\frac{1}{c(k+1)}\left((cb+f)^{k+1}-(ca+f)^{k+1}\right)}$$

$$\rightarrow a = 0; 1; -1; 2; -2; 3; -3$$

$$\rightarrow b = 4; 5$$

$$\rightarrow$$
 $c = 2; 3$

$$\rightarrow f = 1; 2; 3; -1; -2; -3$$

$$\rightarrow k = 2$$

$$5) \int_{a}^{b} \frac{dx}{(cx+f)^k}$$

$$\sqrt{\frac{1}{c(k-1)}\left(\frac{1}{(cb+f)^{k-1}} - \frac{1}{(ca+f)^{k-1}}\right)}$$

$$\rightarrow a = 0; 1; 2; 3$$

$$\rightarrow b = 4; 5$$

$$\rightarrow$$
 $c = 2$; 3

$$\rightarrow f = 1; 2; 3$$

$$\rightarrow k = 2$$

6)
$$\int_{a}^{b} \frac{dx}{cx+f}$$

$$\sqrt{\frac{1}{c}\ln\left|\frac{cb+f}{ac+f}\right|}$$

$$\rightarrow a = 0; 1; 2; 3$$

$$\rightarrow b = 4; 5; 6$$

$$\rightarrow c = 2; 3; 4; 5$$

$$\rightarrow f = 1; 2; 3$$

$$7) \int_{a}^{a+1} \sqrt{(x-a)^k} \, dx$$

$$\sqrt{\frac{2}{k+2}}$$

$$\rightarrow a = 1; 2; 3; 4; 5$$

$$\rightarrow k = 1; 3; 5; 7; 9; 11$$

8)
$$\int_{0}^{b} \frac{dx}{\sqrt{cx+f^2}}$$

$$\sqrt{\frac{2}{c}\left(\sqrt{cb+f^2}-f\right)}$$

$$\rightarrow b = 1; 2; 3; 4$$

$$\rightarrow c = 2; 3; 4; 5$$

$$\rightarrow f = 1; 2; 3; 4$$

9)
$$\int_{0}^{\frac{\pi}{4a}} \frac{dx}{\cos^2 ax}$$

$$\sqrt{\frac{1}{a}}$$

$$\rightarrow a = 2; 3; 4; 5; 6; 7; 8; 9; 10$$

$$10) \int_{\frac{\pi}{2a}}^{\frac{\pi}{2a}} \frac{dx}{\sin^2 ax}$$

$$\sqrt{\frac{1}{a}}$$

$$\rightarrow a = 2; 3; 4; 5; 6; 7; 8; 9; 10$$

$$\Rightarrow a = -\frac{\pi}{4}; -\frac{\pi}{3}; -\frac{3\pi}{4}; -\frac{2\pi}{3}$$

$$\Rightarrow b = 0; \frac{\pi}{6}$$

1)
$$\int_{a}^{b} \operatorname{tg}^{3} x \, dx$$

$$\sqrt{\frac{1}{2\cos^2 b} - \frac{1}{2\cos^2 a} + \ln\left|\frac{\cos b}{\cos a}\right|}$$

$$2) \int_{a}^{b} \operatorname{tg}^{4} x \, dx$$

$$\sqrt{\frac{\operatorname{tg}^3 b - \operatorname{tg}^3 a}{3} - \operatorname{tg} b - \operatorname{tg} a + b - a}$$

3)
$$\int_{a}^{b} \operatorname{tg}^{5} x \, dx$$

$$\sqrt{\frac{1}{4\cos^4 b} - \frac{1}{4\cos^4 a} - \frac{1}{\cos^2 b} + \frac{1}{\cos^2 a} - \ln\left|\frac{\cos a}{\cos b}\right|}$$

$$4) \int_{a}^{b} tg^{6} x dx$$

$$\sqrt{\frac{\tan^5 b - \tan^5 a}{5} - \frac{\tan^3 b - \tan^3 a}{3} + \tan b - \tan a - b + a}$$

5)
$$\int_{a}^{b} \operatorname{tg}^{8} x \, dx$$

$$\sqrt{\frac{\lg^7 b - \lg^7 a}{7} - \frac{\lg^5 b - \lg^5 a}{5} + \frac{\lg^3 b - \lg^3 a}{3} - \lg b + \lg a + b - a}$$

$$1) \int_{0}^{\frac{\pi}{4a}} \operatorname{tg} \, ax \, dx$$

$$\sqrt{\frac{1}{2a}\ln 2}$$

$$\rightarrow a = 2; 3; 4; 5; 6; 7; 8; 9; 10$$

$$2) \int_{\frac{\pi}{4\pi}}^{\frac{\pi}{2a}} \operatorname{ctg} ax \, dx$$

$$\sqrt{\frac{1}{2a}\ln 2}$$

$$\rightarrow a = 2; 3; 4; 5; 6; 7; 8; 9; 10$$

3)
$$\int_{1}^{e^{a}} \frac{(\ln x)^{b-1}}{x} \, dx$$

$$\sqrt{\frac{a^b}{b}}$$

$$\rightarrow a = 1; 2; 3; 4; 5$$

→
$$b = 2$$
; 3

$$4) \int_{0}^{\frac{\pi}{2}} \cos^b ax \sin ax \, dx$$

$$\sqrt{-\frac{1}{a(b+1)}}$$

$$\rightarrow a = 2; 3; 4; 5; 6; 7; 8; 9; 10$$

$$\rightarrow b = 2; 3; 4; 5; 6; 7$$

$$5) \int_{0}^{\frac{\pi}{2}} \sin^b ax \cos ax \, dx$$

$$\sqrt{\frac{1}{a(b+1)}}$$

$$\rightarrow a = 2; 3; 4; 5; 6; 7; 8; 9; 10$$

$$\rightarrow b = 2; 3; 4; 5; 6; 7$$

$$6) \int_{0}^{\frac{\pi a}{4}} \operatorname{tg}^{2} \frac{x}{a} \, dx$$

$$\sqrt{\frac{a(4-\pi)}{4}}$$

$$\rightarrow a = 2; 3; 4; 5; 6; 7; 8; 9; 10$$

7)
$$\int_{\frac{\pi}{4}a+\pi a}^{\frac{\pi}{2}a+\pi a} \operatorname{ctg}^{2} \frac{x}{a} dx$$

$$\sqrt{-\frac{a(4+\pi)}{4}}$$

$$\rightarrow a = 2; 3; 4; 5; 6; 7; 8; 9; 10$$

$$8) \int_{\frac{\pi}{2a}}^{\frac{\pi}{a}} \frac{dx}{1 - \cos ax}$$

$$\sqrt{\frac{1}{a}}$$

$$\rightarrow a = 2; 3; 4; 5; 6; 7; 8; 9; 10$$

9)
$$\int_{0}^{\frac{\pi}{2a}} \frac{dx}{1 + \cos ax}$$

$$\sqrt{\frac{1}{a}}$$

$$\rightarrow a = 2; 3; 4; 5; 6; 7; 8; 9; 10$$

$$10) \int_{-\frac{b}{2}}^{\frac{b}{2}} \sin^2\left(\frac{2\pi x}{b} + a\right) dx$$

$$\sqrt{\frac{b}{2}}$$

$$\rightarrow a = 1; -1; 2; -2; 3; -3; 4; -4; 5; -5; 6; -6$$

$$\rightarrow b = 2; 4; 6; 8; 10$$

11)
$$\int_{-1}^{0} a^2 x \sqrt[k]{1 + ax} \, dx$$

$$\sqrt{-\frac{1}{(k+2)(k+1)}}$$

$$\rightarrow a = 2; 3; 4; 5; 6; 7; 8; 9$$

$$\rightarrow k = 2; 3; 4; 5; 6$$

230. Вычислить определённый интеграл

$$1) \int_{0}^{\frac{k^2-b^2}{a}} \frac{x \, dx}{\sqrt{ax+b^2}}$$

$$\sqrt{\frac{2k(k^2-b^2)}{a^2}}$$

$$\rightarrow b = 1; 2; 3$$

$$\rightarrow k = 4; 5; 6$$

$$\rightarrow a = 1; 2; 3$$

2)
$$\int_{0}^{a} x^{2} \sqrt{a^{2}-x^{2}} dx$$

$$\sqrt{\frac{a^4}{16}\pi}$$

$$\rightarrow a = 1; 2; 3$$

3)
$$\int_{e^a}^{e^b} \frac{(\ln x)^{k-1} dx}{x (m + (\ln x)^k)}$$

$$\sqrt{\frac{1}{k}\ln\left|\frac{m+b^k}{m+a^k}\right|}$$

$$\rightarrow k = 2; 3; 4$$

$$\rightarrow a = 1; 2; 3$$

$$\rightarrow m = 1; 2; 3$$

$$\rightarrow b = 4; 5; 6$$

4)
$$\int_{0}^{\frac{\pi}{2k}} \frac{\cos kx \, dx}{\sqrt[3]{(m^3 + (a^3 - m^3)\sin kx)^2}}$$

$$\sqrt{\frac{3}{(a^2+am+m^2)k}}$$

$$\rightarrow m = 1; 2; 3; 4; 5$$

$$\rightarrow a = 6; 7$$

$$\rightarrow k = 1; 2; 3$$

5)
$$\int_{0}^{\frac{\pi}{4}} \frac{dx}{b^2 - 1 + \sin^2 x}$$

$$\sqrt{\frac{1}{b\sqrt{b^2-1}}}$$
 arctg $\frac{b}{\sqrt{b^2-1}}$

$$\rightarrow b = 2; 3; 4; 5; 6; 7$$

6)
$$\int_{\frac{\ln a}{k}}^{\frac{\ln(b^2+1)}{k}} \frac{e^{kx}\sqrt{e^{kx}-a}}{e^{kx}+b^2-a} dx$$

$$\sqrt{\frac{b}{k}\left(2-\frac{\pi}{2}\right)}$$

- $\rightarrow a = 2; 3; 4$
- $\rightarrow b = 2; 3$
- $\rightarrow k = 1; 2; 3; 4; 5$

231. Вычислить определённый интеграл

1)
$$\int_{-\frac{1}{k}}^{\frac{1}{k}} \arcsin kx \, dx$$

$$\sqrt{}$$

$$\rightarrow k = 2; 3; 4; 5; 6; 7; 8; 9; 10$$

$$2) \int_{-\frac{1}{t}}^{\frac{1}{k}} \operatorname{arctg} kx \, dx$$

$$\rightarrow k = 2; 3; 4; 5; 6; 7; 8; 9; 10$$

3)
$$\int_{-\frac{1}{k}}^{\frac{1}{k}} \arccos kx \, dx$$

$$\sqrt{\frac{\pi}{k}}$$

$$\rightarrow k = 2; 3; 4; 5; 6; 7; 8; 9; 10$$

4)
$$\int_{-\frac{1}{k}}^{\frac{1}{k}} \operatorname{arcctg} kx \, dx$$

$$\sqrt{\frac{\pi}{k}}$$

$$\rightarrow k = 2; 3; 4; 5; 6; 7; 8; 9; 10$$

$$5) \int_{0}^{\frac{\pi}{a^2}} \frac{x \, dx}{\cos^2 ax}$$

$$\sqrt{\frac{\pi}{a^3}} \operatorname{tg} \frac{\pi}{a} + \frac{1}{a^2} \ln \left| \cos \frac{\pi}{a} \right|$$

$$\rightarrow a = 3; 4; 6$$

$$6) \int_{\frac{\pi}{a^2}}^{\frac{\pi}{2a}} \frac{x \, dx}{\sin^2 ax}$$

$$\sqrt{\frac{\pi}{a^3}} \operatorname{ctg} \frac{\pi}{a} - \frac{1}{a^2} \ln \left| \sin \frac{\pi}{a} \right|$$

$$\rightarrow a = 3; 4; 6$$

$$7) \int_{0}^{a} \sqrt{a^2 - x^2} \, dx$$

$$\sqrt{\frac{a^2\pi}{4}}$$

$$\rightarrow a = 1; 2; 3; 4; 5$$

8)
$$\int_{0}^{\frac{\pi}{b}} e^{ax} \cos bx \, dx$$

$$\sqrt{\frac{b(e^{\frac{a\pi}{b}}+1)}{a^2+b^2}}$$

$$\rightarrow a = 1; 2; 3; 4; 5; 6; 7; 8$$

$$\rightarrow b = 1; 2; 3; 4; 5; 6; 7$$

9)
$$\int_{0}^{\ln b} x e^{-ax} dx$$

$$\sqrt{-\frac{\ln b}{ab^a} - \frac{1}{a^2b^a} + 1}$$

$$\rightarrow a = 1; 2$$

$$\rightarrow b = 2; 3; e; 4; 5$$

$$10) \int_{0}^{0} x \cos \frac{b\pi x}{a} \, dx$$

$$\sqrt{\frac{a^2}{\pi^2 b^2} \left(1 - (-1)^b\right)}$$

$$\rightarrow a = 1; 2; 3; 4; 5; 6; 7$$

$$\rightarrow b = 2; 3; 4; 5; 6; 7$$

11)
$$\int_{a}^{b} \ln(cx+f) dx$$

$$\sqrt{b\ln(cb+f)-a\ln(ca+f)-b+a+\frac{f}{c}\ln(cb+f)-\frac{f}{c}\ln(ca+f)}$$

$$\rightarrow a = 1; 2; 3; 4; 5$$

$$\rightarrow b = 6; 7; 8; 9$$

$$\rightarrow c = 2; 3; 4; 6$$

$$\rightarrow f = 12; 24; 36$$

232. Вычислить интеграл

1)
$$\int_{a+2}^{a+3} \frac{dx}{(x+a)(x-(a+1))}$$

$$\sqrt{\frac{1}{2a+1}} \ln \left| \frac{4(a+1)}{2a+3} \right|$$

$$\rightarrow a = 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10$$

$$2) \int_{a}^{b} \frac{dx}{x^2(x-c)}$$

$$\sqrt{-\frac{2}{c^2}\ln\frac{b}{a} + \frac{a-b}{abc} + \frac{1}{c^2}\ln\left|\frac{b-c}{a-c}\right|}$$

$$\rightarrow a = 3; 4; 5; 6; 7$$

$$\rightarrow b = 8; 9; 10; 11$$

$$\rightarrow c = 1; 2$$

3)
$$\int_{a}^{b} \frac{dx}{x(x^2+c)}$$

$$\sqrt{\frac{1}{c}} \ln \frac{b}{a} - \frac{1}{2c} \ln \frac{b^2 + c}{a^2 + c}$$

$$\rightarrow a = 1; 2$$

$$\rightarrow b = 3; 4; 5; 6; 7$$

$$\rightarrow c = 2; 3; 4; 5; 6; 7; 8; 9$$

4)
$$\int_{0}^{b} \frac{dx}{(x^2 + b^2) \left(x^2 + \frac{1 + ab^2}{a}\right)}$$

$$\sqrt{\frac{\sqrt{a\pi}}{4b}} - \frac{a}{\sqrt{1+ab^2}} \operatorname{arctg} \frac{\sqrt{ab}}{\sqrt{1+ab^2}}$$

$$\rightarrow a = 1; 2; 3; 4$$

$$\rightarrow b = 1; 2; 3$$

Площадь фигуры, ограниченной параболой и прямой простая

233. Найти площадь фигуры, ограниченной линиями.

1)
$$y = x^2,$$
$$y = (a+b)x - ab$$

$$\sqrt{\frac{1}{6}(b-a)^3}$$

$$\rightarrow b = a + 1; a + 2; a + 3$$

$$\rightarrow a = -3; -2; -1; 0$$

Площадь фигуры, ограниченной параболой и прямой

234. Найти площадь фигуры, ограниченной линиями.

1)
$$y = Bx^2 - 2aBx + Ba^2 + A,$$

 $y = B(d-c)x + B(-ad+ac+dc) + A$

$$\checkmark \left| \frac{B(c+d)^3}{6} \right|$$

$$\rightarrow a = -2; -1; 0; 1; 2$$

$$\rightarrow c = d-1; d; d+1; d+2$$

$$\rightarrow$$
 $d=1$; 2

$$\rightarrow A = B; B-1; B+1$$

$$\rightarrow B = -3; -2; -1; 1; 2; 3$$

Площадь фигуры, ограниченной двумя параболами

235. Найти площадь фигуры, ограниченной линиями.

1)
$$y = Bx^2 - 2B(a+b)x + B(a+b)^2 + A$$
,
 $y = -Bx^2 + 2B(a+2b)x - B(a+2b)^2 + A + 5Bb^2$
 $\sqrt{|9Bb^3|}$
 $\rightarrow A = -4; -3; -2; -1; 0; 1; 2; 3; 4$
 $\rightarrow B = -2; -1; 1; 2$
 $\rightarrow a = b-1; b-2; b-3$
 $\rightarrow b = 1; 2$

Длина дуги кривой

236. Найти длину дуги кривой.

1)
$$y = \frac{2}{3}\sqrt{\left(ax + \frac{c^2 - 1}{a^2}\right)^3}$$
, $0 \le x \le \frac{c^2}{a^3}$

$$\sqrt{\frac{1}{a^3}} \left(\sqrt{(a^3 + c^2)^3} - c^3 \right)$$

$$\rightarrow c = 2; 3; 4; 5$$

$$\rightarrow a = 1; 2; 3; 4$$

2)
$$y = ax^2 + b$$
, $0 \le x \le 1$

$$\sqrt{\frac{1}{2}\left(\sqrt{1+4a^2}+\frac{1}{2a}\ln\left|2a+\sqrt{1+4a^2}\right|\right)}$$

$$\rightarrow a = 1; \frac{1}{2}; \frac{1}{4}; -1; -\frac{1}{2}; -\frac{1}{4}$$

$$\rightarrow b = 2; 3; 4; 5; 6; 7; 8; 9; -2; -3; -4; -5; -6; -7; -8; -9$$

3)
$$y = \frac{2}{a}\sqrt{ax+b}$$
, $-\frac{1}{a} \le x \le 0$

$$\sqrt{ab}\sqrt{\frac{b+1}{b}} - \frac{1}{2a}\ln\left|\frac{\sqrt{\frac{b+1}{b}} - 1}{\sqrt{\frac{b+1}{b}} + 1}\right| - \sqrt{\frac{b}{b-1}} + \frac{1}{2a}\ln\left|\frac{\sqrt{\frac{b}{b-1}} - 1}{\sqrt{\frac{b}{b-1}} + 1}\right|$$

$$\rightarrow a = 3; 5; 7; 9; 11$$

$$\rightarrow b = 2; 3; 4$$

4)
$$y = a \ln(a^2 - x^2), -\frac{a}{2} \le x \le \frac{a}{2}$$

$$\sqrt{2a \ln 3 - a}$$

$$\rightarrow a = 2; 3; 4; 5; 6; 7; 8; 9; 10$$

5)
$$y = \frac{a}{2} \left(e^{\frac{x}{a}} + e^{-\frac{x}{a}} \right), \quad -a \le x \le a$$

$$\sqrt{a\left(e-\frac{1}{e}\right)}$$

$$\rightarrow a = 3; 5; 7; 9; 11; 13; 15$$

- **237.** Найти объём тела, образованного вращением вокруг указанной оси фигуры, ограниченной линиями.
 - 1) xy = a, x = 1, x = a, y = 0, Ox
 - $\sqrt{\pi a(a-1)}$
 - $\rightarrow a = 3; 4; 5; 6; 7; 8; 9; 10; 11$
 - 2) $y = a \frac{x^2}{a}$, x + y = a, Oy
 - $\sqrt{\frac{\pi a^3}{6}}$
 - $\rightarrow a = 2; 3; 4; 5; 6; 7; 8; 9; 10$
 - 3) $y = x^3$, x = 0, $y = a^3$, Oy
 - $\sqrt{\frac{3}{5}\pi a^5}$
 - $\rightarrow a = 1; 2; 3; 4; 5$
 - 4) $y^2 = a^2 x$, x = 0, Oy
 - $\sqrt{\frac{16}{15}}\pi a^5$
 - $\rightarrow a = 1; 2; 3; 4; 5$
 - 5) $y^2 = a x$, x = 0, Ox
 - $\sqrt{\frac{\pi a^2}{2}}$
 - $\rightarrow a = 2; 3; 4; 5; 6; 7; 8; 9; 10$
 - 6) $x^2 + y^2 = a^2$, x + y = a, Ox
 - $\sqrt{\frac{\pi a^3}{3}}$
 - $\rightarrow a = 1; 2; 3; 4; 5; 6; 7; 8; 9; 10$
 - 7) $y = \frac{1}{a} \arcsin \frac{x}{a}, \ y = \pm \frac{\pi}{2a}, \ x = 0, \quad Oy$
 - $\sqrt{\frac{\pi^2}{2a}}$
 - $\rightarrow a = 1; 2; 3; 4; 5; 6; 7; 8; 9; 10$
 - 8) $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, $y = \pm b$, Oy
 - $\sqrt{\frac{8}{3}\pi a^3b}$
 - $\rightarrow a = 1; 2; 3; 4; 5$
 - $\rightarrow b = 1; 2; 3$

- **238.** Вычислить силу, с которой вода давит на платину, имеющую форму равнобокой трапеции с нижним основанием a, верхним основанием b и высотой h.
 - 1) $a = \mathbf{a} \,\mathrm{M}, b = \mathbf{b} \,\mathrm{M}, h = \mathbf{h} \,\mathrm{M},$

$$\sqrt{-\frac{\rho g h^2}{1000} \left(\frac{a}{3} + \frac{b}{6}\right) \kappa H}$$

- $\rightarrow \rho = 1000$
- $\rightarrow g = 10$
- $\rightarrow h = 2; 3; 4; 5; 6; 7$
- $\rightarrow b = 6c 2a$
- $\rightarrow a = 3; 4; 5; 6; 7$
- $\rightarrow c = 4; 5$

Сила давления на вертикальную пластину

- 239. Задача по теме «Сила давления на вертикальную пластину».
 - 1) Вычислить силу, с которой вода давит на платину, имеющую форму равнобокой трапеции с нижним основанием a м, верхним основанием b м и высотой h м.

$$\sqrt{\frac{\rho g h^2}{1000} \left(\frac{a}{3} + \frac{b}{6}\right) \kappa H}$$

- $\rightarrow \rho = 1000$
- \rightarrow g = 10
- $\rightarrow h = 2; 3; 4; 5; 6; 7$
- $\rightarrow b = 6c 2a$
- $\rightarrow a = 3; 4; 5; 6; 7$
- $\rightarrow c = 4; 5$

240. Вычислить несобственный интеграл или доказать его расходимость

$$1) \int_{e^n}^{\infty} \frac{dx}{x \ln^k x}$$

$$\sqrt{\frac{1}{(k-1)n^{k-1}}}$$

$$\rightarrow k = 2; 3; 4$$

$$\rightarrow n = 1; 2; 3; 4; 5$$

$$2) \int_{a}^{\infty} \frac{dx}{x\sqrt[k]{\ln x}}$$

$$\sqrt{\infty}$$

$$\rightarrow k = 1; 2; 3; 4; 5; 6; 7; 8$$

$$\rightarrow a = 2; 3; 4; 5; 6; 7; 8$$

$$3) \int_{1}^{\infty} \frac{\ln x}{x^k} \, dx$$

$$\sqrt{\frac{1}{(k-1)^2}}$$

$$\rightarrow k = 2; 3; 4; 5; 6; 7; 8$$

$$4) \int_{a}^{\infty} \frac{\ln x}{\sqrt[k]{x}} \, dx$$

$$\sqrt{\infty}$$

$$\rightarrow k = 1; 2; 3; 4; 5; 6; 7; 8$$

$$\rightarrow a = 1; 2; 3; 4; 5; 6; 7; 8$$

Несобственный интеграл второго рода

241. Вычислить несобственный интеграл или установить его расходимость

$$\Rightarrow b = a+1; a+2; a+3; a+4; a+5; a+6; a+7$$

$$\Rightarrow a = -5; -4; -3; -2; -1; 0; 1; 2$$

1)
$$\int_{a}^{b} \frac{dx}{-x^2 + x(a+b) - ab}$$

$$\sqrt{\infty}$$

$$2) \int_{a}^{b} \frac{dx}{\sqrt{-x^2 + x(a+b) - ab}}$$

$$\sqrt{\pi}$$

Часть XIII Интегралы с параметром

242. С помощью эйлеровых интегралов вычислить следующие интегралы

$$1) \int_{0}^{a} \frac{dx}{\sqrt[n]{a^n - x^n}}$$

$$\sqrt{\frac{\pi}{n\sin\frac{\pi}{n}}}$$

$$\rightarrow a = 1; 2$$

$$\rightarrow n = 2; 3; 4; 5; 6$$

$$2) \int_{0}^{a} \left(\ln \frac{a}{x} \right)^{p} dx$$

$$\sqrt{a\Gamma(p+1)}$$

$$\rightarrow a = 1; 2; 3; 4; 5; 6; 7$$

$$\rightarrow p = 2; 3; 4; 5; 6; 7$$

Часть XIV

Дифференцирование функций многих переменных

243. Построить линии уровня функции

$$\Rightarrow a = 1; 2; 3; 4$$

$$\Rightarrow b = 1; 2; 3; 4$$

1)
$$z = \frac{1}{b^2 x^2 + a^2 y^2}$$
 при $c = \frac{1}{a^2 b^2}$

$$\sqrt{\frac{x^2}{a^2} + \frac{y^2}{b^2}} = 1$$

2)
$$z = \frac{1}{b^2 x^2 - a^2 y^2}$$
 при $c = \frac{1}{a^2 b^2}$

$$\sqrt{\frac{x^2}{a^2} - \frac{y^2}{b^2}} = 1$$

- **244.** Найти частные производные первого порядка и изобразить область определения функции двух переменных.
 - $\Rightarrow a = 2; 3; 4; 5; 6; 7$
 - $\Rightarrow b = 2; 3; 4; 5$
 - 1) z = F
 - \rightarrow $F = \arcsin(a x^2 y^2)$; $\arccos(a x^2 y^2)$
 - $\sqrt{}$ кольцо с внутренним радиусом $\sqrt{a-1},$ внешним: $\sqrt{a+1}$
 - 2) z = F
 - $\rightarrow F = \arcsin(ax + by); \ \arccos(ax + by)$
 - $\sqrt{}$ полоса, ограниченная параллельными прямыми ax+by+1=0 и ax+by-1=0
 - 3) z = F
 - $\rightarrow F = \log_b(a x^2 y^2); \frac{1}{\sqrt{a x^2 y^2}}$
 - $\sqrt{}$ внутренность круга с центром в начале координат, радиуса a
 - 4) z = F
 - $\rightarrow F = \log_b(ax by); \frac{1}{\sqrt{ax by}}$
 - $\sqrt{}$ множество точек плоскости над прямой $y=\frac{a}{b}x$
 - 5) $z = \sqrt{ax by}$
 - $\sqrt{y} \ge \frac{a}{b}x$
 - 6) z = F
 - $\to F = \log_b(x^2 ay + b); \frac{1}{\sqrt{x^2 ay + b}}$
 - $\sqrt{y} > \frac{1}{a}x^2 + \frac{b}{a}$
 - $7) \quad z = x^2 ay + b$
 - $\sqrt{y} \ge \frac{1}{a}x^2 + \frac{b}{a}$
 - 8) z = F
 - $\to F = \log_b(x^2 + y^2 + 2ax + 2by 2ab); \quad \frac{1}{\sqrt{x^2 + y^2 + 2ax + 2by 2ab}}$
 - $\sqrt{}$ внешность круга $(x+a)^2 + (y+b)^2 > (a+b)^2$

$$9) \ \ z = \frac{1}{ax + by}$$

$$\sqrt{y} \neq -\frac{a}{b}x$$

10)
$$z = \frac{1}{x^2 - ay + b}$$

$$\sqrt{y} \neq \frac{1}{a}x^2 + \frac{b}{a}$$

11)
$$z = \frac{1}{x^2 + y^2 + 2ax + 2by - 2ab}$$

 $\sqrt{}$ вся плоскость, из которой выброшена окружность $(x+a)^2+(y+b)^2=(a+b)^2$

12)
$$z = \frac{\sqrt{x}}{F}$$

$$\sqrt{y \neq G}, x > 0$$

$$\rightarrow F$$
, $G =$

•
$$ax + by$$
, $-\frac{a}{b}x$;

•
$$x^2 - ay + b$$
, $\frac{1}{a}x^2 + \frac{b}{a}$

13)
$$z = \frac{\sqrt{y}}{F}$$

$$\sqrt{y \neq G}, y > 0$$

$$\rightarrow F$$
, $G =$

•
$$ax + by$$
, $-\frac{a}{b}x$;

•
$$x^2 - ay + b$$
, $\frac{1}{a}x^2 + \frac{b}{a}$

Частные производные

245. Найти частные производные и выписать полный дифференциал данной функции.

$$\Rightarrow u = ax^n + y^k; ax^n y^k; \frac{ax^n}{y^{k+1}}$$

$$\Rightarrow a = -5; -4; -3; -2; -1; 1; 2; 3; 4; 5$$

$$\Rightarrow$$
 $n = 2; 3; 4; 5; 6; 7$

$$\Rightarrow k = 2; 3; 4; 5; 6; 7$$

- 1) $z = \operatorname{arctg} u$
- 2) $z = \arcsin u$
- 3) $z = \operatorname{tg} u$
- 4) $z = \operatorname{ctg} u$
- 5) $z = \cos u$
- 6) $z = \sin u$
- 7) $z = e^{\mathbf{u}}$

246. Найти вторые частные производные указанных функций. Убедиться в том, что $z''_{xy} = z''_{yx}$.

- 1) *F*
- $\rightarrow E = ax + by$
- $\rightarrow a = -2; -1; 1; 2; 3; 4; 5$
- $\rightarrow b = -2; -1; 1; 2; 3; 4; 5$

247. Удовлетворяет ли функция z = f(x, y) уравнению:

$$\Rightarrow a = 2; 3; 4; 5; 6; 7; 8; 9; 10$$

1)
$$z = \sin^2(x - ay)$$
, $a^2 \frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 z}{\partial y^2}$

2)
$$z = e^{-\cos(x+ay)}$$
, $a^2 \frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 z}{\partial y^2}$

3)
$$z = e^{-(x+ay)}\sin(x+ay)$$
, $a^2\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$

4)
$$z = \cos^2(ax + y)$$
, $\frac{\partial^2 z}{\partial x^2} = a^2 \frac{\partial^2 z}{\partial y^2}$

5)
$$z = \ln \frac{x}{y} + x^a - y^a$$
, $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = a(x^a - y^a)$

Производная сложной функции. Две переменные

248. Для заданных $z=f(x,y),\, x=x(u,v),\, y=y(u,v)$ найти $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}.$

1)
$$z = F$$
, $x = X$, $y = Y$

$$\sqrt{\frac{\partial z}{\partial u}} = F_x A_x X_u + F_x A_y Y_u$$

$$\sqrt{\frac{\partial z}{\partial z}} = F_x A_x X_u + F_x A_y Y_u$$

$$\frac{\partial z}{\partial v} = F_x A_x X_v + F_x A_y Y_v$$

$$\rightarrow F$$
, $F_x =$

- $\cos A$, $-\sin A$;
- $\sin A$, $\cos A$;

•
$$\sqrt{A}$$
, $\frac{1}{2\sqrt{A}}$;

•
$$A^2$$
, $2A$

$$\rightarrow A$$
, A_x , $A_y =$

- ax^ky^l , $akx^{k-1}y^l$, alx^ky^{l-1} ;
- $ax^k + y^l$, kax^{k-1} , ly^{l-1}

$$\rightarrow X$$
, X_u , $X_v =$

- uv, v, u;
- u^v , vu^{v-1} , $u^v \ln u$;
- ue^v , e^v , ue^v

$$\rightarrow Y$$
, Y_u , $Y_v =$

- $\frac{u}{v}$, $\frac{1}{v}$, $-\frac{u}{v^2}$;
 - $u \ln v$, $\ln v$, $\frac{u}{v}$;
 - $u\sin v$, $\sin v$, $u\cos v$

$$\rightarrow a = 1; 2; 3; 4; 5$$

$$\rightarrow k = 2; 3; 4; 5$$

$$\rightarrow l = 2; 3; 4; 5$$

Касательная к неявно заланной кривой

249. Составить уравнение касательной в точке M_0 к данной кривой.

1)
$$x^a + kx^b y^c + y^d + mx + ny = x_0^a + kx_0^b y_0^c + y_0^d + mx_0 + ny_0,$$

 $M_0(x_0, y_0)$

$$\sqrt{Ax + By - Ax_0 - By_0} = 0$$

$$\rightarrow m = A - ax_0^{a-1} - kbx_0^{b-1}y_0^c$$

$$\rightarrow n = B - dy_0^{d-1} - kcx_0^b y_0^{c-1}$$

$$\rightarrow A = 1; 3; 5$$

$$\rightarrow B = -2; -1; 1; 2; 4$$

$$\rightarrow a = 2; 3$$

$$\rightarrow$$
 $b=1$; 2

$$\rightarrow$$
 $c = 1; 2$

$$\rightarrow$$
 $d=2$; 3

$$\rightarrow k = -3; -2; -1; 1; 2; 3; 4; 5$$

$$\rightarrow x_0 = -1; 0; 1; 2$$

$$\rightarrow y_0 = -1; 1; 2$$

 $250.~{
m K}$ данной поверхности провести касательные плоскости, параллельные данной плоскости.

1)
$$ax^{2} + by^{2} + cz^{2} = ax_{0}^{2} + by_{0}^{2} + cz_{0}^{2};$$
$$Ax + By + Cz = 0$$

$$Ax + By + Cz - Ax_0 - By_0 - Cz_0 = 0;$$

$$Ax + By + Cz + Ax_0 + By_0 + Cz_0 = 0$$

- $\rightarrow x_0 = kk_a$
- $\rightarrow y_0 = kk_b$
- $\rightarrow z_0 = kk_c$
- $\rightarrow A = ak_a$
- $\rightarrow B = bk_b$
- $\rightarrow C = ck_c$
- $\rightarrow a = 1; 3; 5$
- $\rightarrow c = 1; 2; 4$
- $\rightarrow k_a = 1; 3$
- $\rightarrow k_c = 1; 2; 4$
- $\rightarrow b = 1; 2; 3; 4$
- $\rightarrow k_b = 1; 2; 3$
- $\rightarrow k = 1; 2$

Третья производная в точке для неявно заданной функции

251. Найти $y'(x_0)$, $y''(x_0)$ и $y'''(x_0)$ для неявно заданной функции y=y(x), если известно, что $y(x_0)=y_0$.

1)
$$ax^{2} + bxy + cy^{2} + dx + ey = ax_{0}^{2} + bx_{0}y_{0} + cy_{0}^{2} + dx_{0} + ey_{0};$$
$$x_{0} = x_{0}, \quad y_{0} = y_{0}$$

$$\sqrt{y'(x_0)} = y_1, \ y''(x_0) = 2ky_3, \ y'''(x_0) = y_3$$

$$\rightarrow d = -2ax_0 - by_0 - bx_0y_1 - 2cy_0y_1 - ey_1$$

$$\rightarrow e = -6kb - bx_0 - 12cy_1k - 2cy_0$$

$$\rightarrow b = -1; 1$$

$$\rightarrow$$
 $c = -1$; 1

$$\rightarrow x_0 = -2; -1; 0; 1; 2$$

$$\rightarrow y_0 = -1; 0; 1$$

$$\rightarrow y_1 = 2; -1; 0; 1; 2$$

$$-y_3 = -1; 1$$

$$\rightarrow k = -2; -1; 1; 2$$

Исследование на экстремум функции 2 переменных простая

252. Исследовать на экстремум функцию

$$\Rightarrow x_0 = -3; -2; -1; 0; 1; 2; 3; 4$$

$$\Rightarrow y_0 = -3; -2; -1; 0; 1; 2; 3; 4$$

$$\Rightarrow f = -3; -2; -1; 0; 1; 2; 3; 4$$

1)
$$z = ax^2 + by^2 - 2ax_0x - 2by_0y - f$$

$$\sqrt{z_{\min}(x_0, y_0)} = -ax_0^2 - by_0^2 - f$$

$$\rightarrow a = 1; 2; 3; 4; 5$$

$$\rightarrow b = 1; 2; 3; 4; 5$$

2)
$$z = ax^2 + by^2 - 2ax_0x - 2by_0y - f$$

$$\sqrt{z_{\text{max}}(x_0, y_0)} = -ax_0^2 - by_0^2 - f$$

$$\rightarrow a = -1; -2; -3; -4; -5$$

$$\rightarrow b = -1; -2; -3; -4; -5$$

Исследование на экстремум функции 2 переменных

253. Исследовать на экстремум функцию

$$\Rightarrow x_0 = -3; -2; -1; 0; 1; 2; 3; 4$$

$$\Rightarrow y_0 = -3; -2; -1; 0; 1; 2; 3; 4$$

1)
$$z = ax^2 + bxy + cy^2 - (2ax_0 + by_0)x - (2cy_0 + bx_0)y$$

$$\sqrt{z_{\min}(x_0, y_0)} = ax_0^2 + bx_0y_0 + cy_0^2 - (2ax_0 + by_0)x_0 - (2cy_0 + bx_0)y_0$$

$$\rightarrow a = 1; 2; 3$$

$$\rightarrow c = 2; 3$$

$$\rightarrow b = -2; -1; 1; 2$$

2)
$$z = ax^2 + bxy + cy^2 - (2ax_0 + by_0)x - (2cy_0 + bx_0)y$$

$$\sqrt{z_{\text{max}}(x_0, y_0) = ax_0^2 + bx_0y_0 + cy_0^2 - (2ax_0 + by_0)x_0 - (2cy_0 + bx_0)y_0}$$

$$\rightarrow a = -1; -2; -3$$

$$c = -2$$
; -3

$$\rightarrow b = -2; -1; 1; 2$$

3)
$$z = ax^2 + bxy + cy^2 - (2ax_0 + by_0)x - (2cy_0 + bx_0)y$$

$$\rightarrow a = 0; 1; 2$$

$$\rightarrow c = 0; -1; -2$$

$$\rightarrow b = -2; -1; 1; 2$$

254. Исследовать функцию двух переменных на экстремум

1)
$$z = x^2y - \frac{n^2 + 2b}{3}y^3 - x^2 + by^2$$

$$\sqrt{z_{\text{max}}(0,0)} = 0$$

$$\rightarrow n = 3; 4; 5; 6$$

$$\rightarrow b = -1; -2; -3; -\frac{1}{2}; -4; -\frac{3}{2}; -\frac{5}{2}$$

2)
$$z = ax^3 + xy^2 + \frac{n^2 + 3a}{2}x^2 + y^2$$

$$\sqrt{z_{\min}(0,0)} = 0$$

$$\rightarrow n = 4; 5; 6$$

$$\rightarrow a = -1; -2; -3; -4; -\frac{1}{3}; -\frac{2}{3}; -\frac{4}{3}$$

Исследование на экстремум функции 2 переменных с логарифмом

255. Исследовать на экстремум функцию

- $\Rightarrow x_0 = 1; 2; 3; 4; 5$
- $\Rightarrow y_0 = 1; 2; 3; 4; 5$
- 1) $z = ax^2 + by^2 2ax_0^2 \ln x 2by_0^2 \ln y$
- $\sqrt{z_{\min}(x_0, y_0)} = ax_0^2 + by_0^2 2ax_0^2 \ln x_0 2by_0^2 \ln y_0$
- $\rightarrow a = 1; 2; 3; 4; 5$
- $\rightarrow b = 1; 2; 3; 4; 5$

Минимум и максимум в области. На условный экстремум

256. Найти наибольшее и наименьшее значения функции z = f(x,y) в указанном круге.

1)
$$z = x^2 + y^2 + 2ax + 2by$$
, $x^2 + y^2 \le k^2(a^2 + b^2)$

$$\sqrt{z_{\min}} = z(-a, -b) = -a^2 - b^2, \ z_{\max} = z(ka, kb) = (a^2 + b^2)(k^2 + 2k)$$

$$\rightarrow a = -2; -1; 1; 2$$

$$\rightarrow b = -2; -1; 1; 2$$

$$\rightarrow k = 2; 3; 4$$

2)
$$z = -x^2 - y^2 - 2ax - 2by$$
, $x^2 + y^2 \le k^2(a^2 + b^2)$

$$\sqrt{z_{\min}} = z(ka, kb) = -(a^2 + b^2)(k^2 + 2k), \ z_{\max} = z(-a, -b) = a^2 + b^2$$

$$\rightarrow a = -2; -1; 1; 2$$

$$\rightarrow b = -2; -1; 1; 2$$

$$\rightarrow k = 2; 3; 4$$

257. Дана система точек, координаты которых указаны в таблице. По методу наименьших квадратов построить аппроксимирующую прямую.

1)
$$\begin{array}{|c|c|c|c|c|c|c|c|} \hline k & 1 & 2 & 3 & 4 & 5 \\ \hline x_k & x_1 & x_2 & x_3 & x_4 & x_5 \\ y_k & y_1 & y_2 & y_3 & y_4 & y_5 \\ \hline \end{array}$$

$$\sqrt{y} = ax + b$$

$$\rightarrow y_1 = Bx_2 - A$$

$$\rightarrow y_2 = A - Bx_1$$

$$\rightarrow A = aA_1 + bB_1 - x_3y_3 - x_4y_4 - x_5y_5$$

$$\rightarrow B = A_2a + bB_2 - y_3 - y_4 - y_5$$

$$\rightarrow A_2 = B_1$$

$$\rightarrow B_2 = 5$$

$$\rightarrow A_1 = x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2$$

$$\rightarrow B_1 = x_1 + x_2 + x_3 + x_4 + x_5$$

$$\rightarrow y_3 = ax_3 + b - 3; ax_3 + b - 2; ax_3 + b - 1$$

$$\rightarrow y_4 = ax_4 + b - 3; ax_4 + b - 2; ax_4 + b - 1; ax_4 + b + 1; ax_4 + b + 2; ax_4 + b + 3$$

$$\rightarrow y_5 = ax_5 + b + 1$$
; $ax_5 + b + 2$; $ax_5 + b + 3$

$$\rightarrow x_5 = x_4 + 1; x_4 + 2; x_4 + 3$$

$$\rightarrow x_4 = x_3 + 1; x_3 + 2; x_3 + 3$$

$$\rightarrow x_3 = x_2 + 1; x_2 + 2; x_2 + 3$$

$$\rightarrow x_2 = x_1 + 1$$

$$\rightarrow x_1 = -5; -4; -3; -2$$

$$\rightarrow a = 1; 2; -1; -2$$

$$\rightarrow$$
 b = -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5

258. В группе студентов-первокурсников у 12 студентов были измерены длина тела (h) и масса тела (m). С помощью метода наименьших квадратов построить линейную зависимость массы тела от длины тела.

	Номер	1	2	3	4	5	6	7	8	9	10	11	12
	h, cm	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}	x_{11}	x_{12}
	m, кг	y_1	y_2	y_3	y_4	y_5	y_6	y_7	y_8	y_9	y_{10}	y_{11}	y_{12}

$$\sqrt{m} = ah + b$$

$$\to a = \frac{C_1 B_2 - C_2 B_1}{A_1 B_2 - A_2 B_1}$$

$$\to b = \frac{A_1 C_2 - A_2 C_1}{A_1 B_2 - A_2 B_1}$$

$$\rightarrow A_1 = x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 + x_6^2 + x_7^2 + x_8^2 + x_9^2 + x_{10}^2 + x_{11}^2 + x_{12}^2$$

$$\rightarrow B_1 = A_2$$

$$\rightarrow A_2 = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_{10} + x_{11} + x_{12}$$

$$\rightarrow B_2 = 12$$

$$\rightarrow C_1 = x_1y_1 + x_2y_2 + x_3y_3 + x_4y_4 + x_5y_5 + x_6y_6 + x_7y_7 + x_8y_8 + x_9y_9 + x_{10}y_{10} + x_{11}y_{11} + x_{12}y_{12}$$

$$\rightarrow C_2 = y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7 + y_8 + y_9 + y_{10} + y_{11} + y_{12}$$

$$\rightarrow y_1 = kx_1 + d - 2$$
; $kx_1 + d - 1$; $kx_1 + d$; $kx_1 + d + 1$; $kx_1 + d + 2$

$$\rightarrow y_2 = kx_2 + d - 4$$
; $kx_2 + d - 3$; $kx_2 + d - 1$; $kx_2 + d + 4$; $kx_2 + d + 5$

$$\rightarrow y_3 = kx_3 + d - 3$$
; $kx_3 + d - 1$; $kx_3 + d$; $kx_3 + d + 2$; $kx_3 + d + 4$

$$\rightarrow y_4 = kx_4 + d - 2$$
; $kx_4 + d - 1$; $kx_4 + d$; $kx_4 + d + 1$; $kx_4 + d + 2$

$$\rightarrow y_5 = kx_5 + d - 2$$
; $kx_5 + d - 1$; $kx_5 + d$; $kx_5 + d + 1$; $kx_5 + d + 2$

$$\rightarrow y_6 = kx_6 + d - 5$$
; $kx_6 + d - 3$; $kx_6 + d + 1$; $kx_6 + d + 2$; $kx_6 + d + 3$

$$\rightarrow y_7 = kx_7 + d - 2$$
; $kx_7 + d - 1$; $kx_7 + d$; $kx_7 + d + 1$; $kx_7 + d + 2$

$$\rightarrow y_8 = kx_8 + d - 6$$
; $kx_8 + d - 3$; $kx_8 + d$; $kx_8 + d + 2$; $kx_8 + d + 7$

$$\rightarrow y_9 = kx_9 + d - 2$$
; $kx_9 + d - 1$; $kx_9 + d$; $kx_9 + d + 1$; $kx_9 + d + 2$

$$\rightarrow y_{10} = kx_{10} + d - 7$$
; $kx_{10} + d - 6$; $kx_{10} + d$; $kx_{10} + d + 5$; $kx_{10} + d + 10$

$$\rightarrow y_{11} = kx_{11} + d - 8$$
; $kx_{11} + d - 4$; $kx_{11} + d + 6$; $kx_{11} + d + 6$; $kx_{11} + d + 9$

$$\rightarrow y_{12} = kx_{12} + d - 9$$
; $kx_{12} + d - 5$; $kx_{12} + d$; $kx_{12} + d + 7$; $kx_{12} + d + 8$

- $\rightarrow x_{10}, x_{11}, x_{12} =$
 - 180, 184, 188;
 - 180, 186, 190;
 - 180, 182, 186;
 - 180, 182, 188;
 - 182, 184, 186;
 - 182, 184, 188;
 - 182, 186, 188;
 - 182, 186, 190
- $\rightarrow x_4, x_5, x_6, x_7, x_8, x_9 =$
 - 170, 172, 174, 176, 176, 178;
 - 170, 172, 174, 174, 176, 178;
 - 170, 172, 172, 174, 176, 178;
 - 170, 170, 172, 174, 176, 178;
 - 170, 172, 174, 176, 178, 178
- $\rightarrow x_1, x_2, x_3 =$
 - 160, 164, 168;
 - 160, 166, 168;
 - 160, 164, 166;
 - 162, 166, 168;
 - 164, 166, 168
- $\rightarrow k = \frac{1}{2}$
- \rightarrow d = -25

259. Решить задачу.

1) Найти максимальный объём вписанного в эллипсоид с полуосями $a=a,\,b=b$ и c=c прямоугольного параллелепипеда.

$$\sqrt{\frac{8abc}{3\sqrt{3}}}$$

- $\rightarrow a = 1; 2; 3; 4; 6$
- $\rightarrow b = 1; 2; 3; 4; 6$
- $\rightarrow c = 1; 2; 3; 4; 6$

Часть XV Кратные интегралы

260. Вычислить двойной интеграл

1)
$$\iint_{\substack{a \leqslant x \leqslant b \\ c \leqslant x \leqslant d}} \frac{dx \, dy}{(ex + fy + g)^2}$$

$$\sqrt{\frac{1}{ef}\ln\frac{(eb+fc+g)(ea+fd+g)}{(eb+fd+g)(ea+fc+g)}}$$

- $\rightarrow b = a + 1; a + 2$
- $\rightarrow a = A; A+1; A+2$
- $\rightarrow d = c+1; c+2$
- $\rightarrow c = A; A+1; A+2$
- $\rightarrow e = 1; 2; 3$
- $\rightarrow f = 1; 2; 3$
- $\rightarrow g = G; G+1; G+2$
- $\rightarrow A$, G =
 - 0, 1;
 - 1, 0

Двойной интеграл по треугольнику

261. Вычислить двойной интеграл.

1)
$$\int_{\triangle ABC} \left(2xy + n\frac{y}{x}\right) dx dy,$$

$$A(0,0), B(a,y_0), C(a,y_0 + 2d).$$

$$\sqrt{d(y_0 + d)(a^2 + n)}$$

$$\rightarrow a = 1; 2; 3; 4$$

$$\rightarrow n = 1; 2; 3; 4; 5; -1; -2; -3; -4; -5; -6; -7; -8; -9$$

$$\rightarrow d = 1; 2; 3$$

$$\rightarrow y_0 = 1; 2; 3; 4$$

Двойной интеграл

262. Найти двойной интеграл по области D, ограниченной указанными линиями

1)
$$\iint_{D} \frac{x^{a}}{y^{2}} dx dy$$

$$D: y = kx, y = \frac{ks^{2}}{x}, x = X$$

$$\sqrt{\frac{X^{a+2}}{(a+2)ks^2} - \frac{X^a}{ak} - \frac{s^a}{(a+2)k} + \frac{s^a}{ak}}$$

$$\rightarrow X = s+1; s+2$$

$$\rightarrow s = 1; 2; 3$$

$$\rightarrow a = 1; 2$$

$$\rightarrow k = 1; 2; 3; 4$$

Двойной интеграл в полярных координатах. Сложный

263. Найти двойной интеграл по области D, ограниченной указанными линиями

1)
$$\iint_{D} \sqrt{A^{2} - x^{2} - y^{2}} xy dx dy$$
$$D: y = kx, y = lx, x^{2} + y^{2} = A^{2}$$

$$\sqrt{\frac{A^5}{15} \left(\frac{l^2}{1+l^2} - \frac{k^2}{1+k^2} \right)}$$

$$\rightarrow$$
 $A = 1; 2; a$

$$\rightarrow k = \frac{1}{2}; 1$$

$$\rightarrow l = \frac{3}{2}; 2; 3$$

Нахождение плошали с помошью двойного интеграда

264. Вычислить площадь фигуры, ограниченной линиями

1)
$$x^2 + y^2 = ax$$
, $x^2 + y^2 = bx$, $y \ge 0$, $y = kx$

$$\sqrt{\frac{b^2 - a^2}{4} \left(\operatorname{arctg} k + \frac{k}{1 + k^2} \right)}$$

$$\rightarrow k = \frac{1}{3}; \frac{1}{2}; \frac{2}{3}; 1; \frac{3}{2}; 2; 3$$

$$\rightarrow b = a+1; a+2; a+3$$

$$\rightarrow a = 1; 2; 3; 4; 5$$

265.

1) Найти площадь меньшей из частей, на которые делит правую половину линии

$$\left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right)^2 = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$

прямая y = kx.

$$\sqrt{\frac{ab}{4}\frac{(1-k)^2}{1+k^2}}$$

$$\rightarrow k = \frac{1}{2}; \frac{1}{3}; \frac{2}{3}; \frac{1}{4}; \frac{3}{4}; \frac{1}{5}; \frac{2}{5}; \frac{3}{5}; \frac{4}{5}$$

$$\rightarrow b = a - 1; a - 2; a - 3$$

$$\rightarrow a = 4; 5; 6; 7$$

Центр масс фигуры, ограниченной параболой и прямой

266. Найти центр масс фигуры, ограниченной линиями

1)
$$y = Bx^2 - 2aBx + Ba^2 + A,$$

 $y = B(d+c)x - B(d+c)a - Bdc + A.$

$$\sqrt{\left(a + \frac{d+c}{2}; A + \frac{B}{5} \left(2d^2 + dc + 2c^2\right)\right)}$$

- $\rightarrow a = -1; 0; 1$
- \rightarrow A = -3; -2; -1; 0; 1; 2; 3; 4; 5
- $\rightarrow B = -5; -2; -1; 1; 2; 5$
- $\rightarrow c$, d =
 - -2, -1;
 - -2, 0;
 - -2, 1;
 - -1, 0;
 - -1, 2;
 - 0, 1;
 - 0, 2;
 - 1, 2

Тройной интеграл в прямоугольной области

267. Найти тройной интеграл.

1)
$$\iiint_{\substack{a \le x \le b \\ c \le y \le d \\ e \le z \le f}} \left(k(m+1)y^m + l(n+1)(p+1)x^n z^p \right) dx dy dz$$

$$\sqrt{k(b-a)(f-e)(d^{m+1}-c^{m+1})} + l(d-c)(b^{n+1}-a^{n+1})(f^{p+1}-e^{p+1})$$

$$\rightarrow b = a+1; \ a+2$$

$$\rightarrow a = -1; \ 0$$

$$\rightarrow d = c+1; \ c+2$$

$$\rightarrow c = -1; \ 0$$

$$\rightarrow f = e+1; \ e+2$$

$$\rightarrow e = -1; \ 0$$

$$\rightarrow k = -2; \ -1; \ 1; \ 2; \ 3; \ 4$$

$$\rightarrow l = -2; \ -1; \ 1; \ 2; \ 3; \ 4$$

$$\rightarrow n = 1; \ 2$$

$$\rightarrow m = 1; \ 2$$

$$\rightarrow p = 1; \ 2$$

Вычисление объёма тела через тройной интеграл

268. Вычислить объём тела, ограниченного поверхностями

1)
$$(x^2 + y^2 + z^2)^2 \le 2az$$
,
 $x^2 + y^2 \le kz^2$

$$\sqrt{\frac{2ka\pi}{3(1+k)}}$$

$$\rightarrow a = 1; 2; 3; 4; 5; 6; 7$$

$$\rightarrow k = \frac{1}{3}; \frac{1}{2}; \frac{2}{3}; 1; \frac{3}{2}; 2; 3$$

2)
$$z = a - x^2 - y^2$$
,
 $z = 2b\sqrt{x^2 + y^2}$

$$\sqrt{\left(as^2 - \frac{s^4}{2} - \frac{4bs^3}{3}\right)\pi}$$

$$\rightarrow a = s(s+2b)$$

$$\rightarrow s = 1; 2; 3; 4$$

$$\rightarrow b = \frac{1}{2}; 1; \frac{3}{2}; 2; \frac{5}{2}; 3; 4$$

Вычисление объёма тела через тройной интеграл. Сложный

269. Вычислить объём тела, ограниченного поверхностями

1)
$$(x^2 + y^2 + z^2)^2 = a(x^2 + y^2 - z^2)$$

$$\sqrt{\frac{\pi^2}{8}}\sqrt{2a^3}$$

$$\rightarrow a = 1; 2; 3; 4; 5; 6; 7; 8$$

270. Вычислить криволинейный интеграл первого рода по отрезку прямой от точки A до точки B:

1)
$$\int_{AB} (I) dl$$
, $A(A_1, A_2, A_3)$, $B(A_1 + a_1, A_2 + a_2, A_3 + a_3)$.

$$\sqrt{d\left(l_0 + \frac{l_1}{2} + \frac{l_2}{3}\right)}$$

$$\rightarrow I = k_{11}x^2 + k_{22}y^2 + k_{33}z^2 + k_{12}xy + k_{13}xz + k_{23}yz + k_{1}x + k_{2}y + k_{3}z + k_{3}z$$

$$\to l_0 = k_{11}A_1^2 + k_{22}A_2^2 + k_{33}A_3^2 + k_{12}A_1A_2 + k_{13}A_1A_3 + k_{23}A_2A_3 + k_1A_1 + k_2A_2 + k_3A_3 + k_1A_1 + k_2A_2 + k_3A_2 + k_1A_1 + k_2A_2 + k_1A_1 + k_1A_2 + k_1A_1 + k_1A$$

$$\rightarrow l_1 = l_{11} + l_{12} + l_{13}$$

$$\rightarrow l_{11} = 2k_{11}a_1A_1 + 2k_{22}a_2A_2 + 2k_{33}a_3A_3$$

$$\rightarrow l_{12} = k_{12}(A_1a_2 + A_2a_1) + k_{13}(A_1a_3 + A_3a_1) + k_{23}(A_2a_3 + A_3a_2)$$

$$\rightarrow l_{13} = k_1 a_1 + k_2 a_2 + k_3 a_3$$

$$\rightarrow l_2 = k_{11}a_1^2 + k_{22}a_2^2 + k_{33}a_3^2 + k_{12}a_1a_2 + k_{13}a_1a_3 + k_{23}a_2a_3$$

$$\rightarrow$$
 $A_1 = -2; -1; 0; 1; 2$

$$\rightarrow$$
 $A_2 = -2$; -1 ; 0; 1; 2

$$\rightarrow A_3 = -2; -1; 0; 1; 2$$

$$\rightarrow a_1, a_2, a_3 =$$

•
$$s_1n_1$$
, s_3n_3 , s_2n_2 ;

•
$$s_2n_2$$
, s_1n_1 , s_3n_3 ;

•
$$s_2n_2$$
, s_3n_3 , s_1n_1

$$\rightarrow n_1, n_2, n_3, d =$$

$$\rightarrow s_1 = -1; 1$$

$$\rightarrow s_2 = -1; 1$$

$$\rightarrow s_3 = -1; 1$$

$$\rightarrow k_{11}, k_{22}, k_{33} =$$

- $\rightarrow k_{12}, k_{13}, k_{23} =$
 - K_1 , 0, 0;
 - $0, K_1, 0;$
 - $0, 0, K_1$
- $\rightarrow K_1 = -2; -1; 1; 2$
- $\rightarrow k_1, k_2, k_3 =$
 - K_2 , 0, 0;
 - $0, K_2, 0;$
 - $0, 0, K_2$
- $\rightarrow K_2 = -3; -2; -1; 1; 2; 3$
- $\rightarrow k = -4; -3; -2; -1; 0; 1; 2; 3; 4$

271. Доказать, что интеграл не зависит от пути интегрирования, и вычислить его:

1)
$$\int_{(x_1,y_1,z_1)}^{(x_2,y_2,z_2)} U_x \, dx + U_y \, dy + U_z \, dz$$

$$\sqrt{U_{1B}+U_{2B}+U_{3B}+U_{4B}-U_{1A}-U_{2A}-U_{3A}-U_{4A}}$$

$$\to U_y = 3a_{222}y^2 + a_{123}xz + 2a_{122}xy + 2a_{223}yz + a_{112}x^2 + a_{233}z^2 + 2a_{22}y + a_{12}x + a_{23}z + a_{23}$$

$$U_z = 3a_{333}z^2 + a_{123}xy + 2a_{133}xz + 2a_{233}yz + a_{113}x^2 + a_{223}y^2 + 2a_{33}z + a_{13}x + a_{23}y + a_{33}z + a_{13}x + a_{23}y + a_{23}y$$

$$\rightarrow U_{1A} = a_{111}x_1^3 + a_{222}y_1^3 + a_{333}z_1^3 + a_{123}x_1y_1z_1$$

$$\rightarrow U_{1B} = a_{111}x_2^3 + a_{222}y_2^3 + a_{333}z_2^3 + a_{123}x_2y_2z_2$$

$$\to U_{2A} = a_{112}x_1^2y_1 + a_{113}x_1^2z_1 + a_{122}x_1y_1^2 + a_{223}y_1^2z_1 + a_{133}x_1z_1^2 + a_{233}y_1z_1^2$$

$$\to U_{2B} = a_{112}x_2^2y_2 + a_{113}x_2^2z_2 + a_{122}x_2y_2^2 + a_{223}y_2^2z_2 + a_{133}x_2z_2^2 + a_{233}y_2z_2^2$$

$$\rightarrow U_{3A} = a_{11}x_1^2 + a_{22}y_1^2 + a_{33}z_1^2 + a_{12}x_1y_1 + a_{13}x_1z_1 + a_{23}y_1z_1$$

$$\rightarrow U_{4A} = a_1 x_1 + a_2 y_1 + a_3 z_1$$

$$\rightarrow U_{4B} = a_1x_2 + a_2y_2 + a_3z_2$$

$$\rightarrow a_{111}, a_{222}, a_{333}, a_{123} =$$

$$\rightarrow a_{112}$$
, a_{113} , a_{122} , a_{223} , a_{133} , $a_{233} =$

•
$$k_1$$
, 0, 0, 0, 0;

•
$$0$$
, k_1 , 0 , 0 , 0 ;

•
$$0$$
, 0 , k_1 , 0 , 0 , 0 ;

• 0, 0, 0,
$$k_1$$
, 0, 0;

•
$$0, 0, 0, 0, k_1, 0;$$

$$\bullet$$
 0, 0, 0, 0, k_1

$$\rightarrow k_1 = -2; -1; 1; 2$$

- $\rightarrow a_{11}, a_{22}, a_{33}, a_{12}, a_{13}, a_{23} =$
 - k_2 , 0, 0, 0, 0;
 - 0, k_2 , 0, 0, 0;
 - 0, 0, k_2 , 0, 0, 0;
 - 0, 0, k_2 , 0, 0;
 - \bullet 0, 0, 0, k_2 , 0;
 - \bullet 0, 0, 0, 0, k_2
- $\rightarrow k_2 = -3; -2; -1; 1; 2; 3$
- $\rightarrow a_1, a_2, a_3 =$
 - k_3 , 0, 0;
 - $0, k_3, 0;$
 - 0, 0, k_3
- $\rightarrow k_3 = -5; -4 3; -2; -1; 1; 2; 3; 4; 5$
- $\rightarrow x_1 = s_1 A_1$
- $\rightarrow x_2 = s_1(A_1 l_1)$
- $\rightarrow y_1 = s_2 A_2$
- $\rightarrow y_2 = s_2(A_2 l_2)$
- $\rightarrow z_1 = s_3 A_3$
- $\rightarrow z_2 = s_3(A_3 l_3)$
- $\rightarrow A_1 = 0; 1; 2; 3$
- $\rightarrow A_2 = 0; 1; 2; 3$
- $\rightarrow A_3 = 0; 1; 2; 3$
- $\rightarrow l_1 = 1; 2; 3$
- $l_2 = 1; 2; 3$
- $\rightarrow l_3 = 1; 2; 3$
- $\rightarrow s_1 = -1; 1$
- $\rightarrow s_2 = -1; 1$
- $\rightarrow s_3 = -1; 1$

Поверхностный интеграл II рода

272. Найти поток векторного поля \vec{F} через (незамкнутую) часть цилиндра $x^2+y^2=1$, расположенную между плоскостью z=0 и данной плоскостью, в направлении внешней нормали:

```
1) \vec{F}(a_1x + b_1y + c_1z + d_1, a_2x + b_2y + c_2z + d_2, a_3x + b_3y + c_3z + d_3),
     Ax + By + z = AB
\sqrt{(AB(a_1+b_2-Ac_1-Bc_2)-Ad_1-Bd_2)\pi}
\rightarrow A = 2; 3; 4
\rightarrow B = 2; 3; 5
\rightarrow a_1 = -2; -1; 0; 1; 2
\rightarrow b_1 = -7; -4; -3; 2; 5; 8
\rightarrow c_1 = -1; 0; 1
\rightarrow d_1 = -8; -5; -2; 0; 1; 3; 4; 7
\rightarrow a_2 = -8; -6; -1; 0; 1; 3; 7
\rightarrow b_2 = -2; -1; 0; 1; 2
\rightarrow c_2 = -1; 0; 1
\rightarrow d_2 = -7; -4; -3; -1; 0; 2; 5; 6; 9
\rightarrow a_3 = -5; -3; -2; 0; 1; 3; 4
\rightarrow b_3 = -6; -4; -1; 0; 2; 5; 7
\rightarrow c_3 = -4; -3; -2; -1; 1; 2; 3; 4; 5
```

 \rightarrow $d_3 = -5$; -4; -3; -2; -1; 1; 2; 3; 4; 5; 6; 7

Часть XVI Ряды

273. Исследовать сходимость ряда и найти его сумму.

$$1) \sum_{n=1}^{\infty} \frac{a^n - b^n}{(ab)^n}$$

$$\sqrt{\frac{a-b}{(b-1)(a-1)}}$$

$$\rightarrow a = 1; 3; 5; 7$$

$$\rightarrow b = 2; 4; 6; 8$$

$$2) \sum_{n=1}^{\infty} \frac{a^n + b^n}{(ab)^n}$$

$$\sqrt{\frac{a+b-2}{(b-1)(a-1)}}$$

$$\rightarrow a = 1; 3; 5; 7$$

$$\rightarrow b = 2; 4; 6; 8$$

3)
$$\sum_{n=1}^{\infty} \frac{1}{(kn+a)(kn+k+a)}$$

$$\sqrt{\frac{1}{k(k+a)}}$$

$$\rightarrow a = 0; 1; 2; 3; 4; 5$$

$$\rightarrow k = 1; 2; 3; 4$$

$$1) \sum_{n=1}^{\infty} \frac{an^k + b}{cn^l + d}$$

$$\sqrt{\frac{1}{n^{l-k}}}$$
 (Cp.)

$$\rightarrow a = 1; 3; 5; 7$$

$$\rightarrow c = 2; 4; 8$$

$$\rightarrow b = 1; 2; 3; 4; 5$$

$$\rightarrow d = 1; 2; 3; 4; 5$$

$$\rightarrow k = 1; 2$$

$$\rightarrow l = 1; 2; 3; 4; 5; 6; 7$$

$$2) \sum_{n=2}^{\infty} \frac{1}{\ln^k n}$$

$$\rightarrow k = 1; 2; 3; 4; 5$$

$$3) \sum_{n=2}^{\infty} \frac{\ln^k n}{n^m}$$

$$\rightarrow m = 2; 3; 4; 5$$

$$\rightarrow k = 1; 2; 3; 4; 5$$

$$4) \sum_{n=2}^{\infty} \frac{\ln^k n}{\sqrt[m]{n}}$$

$$\rightarrow m = 1; 2; 3; 4; 5$$

$$\rightarrow k = 1; 2; 3; 4; 5$$

$$5) \sum_{n=1}^{\infty} \frac{a^n + b}{c^n + d}$$

$$\sqrt{\left(\frac{a}{c}\right)^n}$$
 (Cp.)

$$\rightarrow a = 3; 5; 7$$

$$\rightarrow c = 2; 4; 6; 8; 9$$

$$\rightarrow b = 1; 2; 3; 4; 5$$

$$\rightarrow d = 1; 2; 3; 4; 5$$

$$1) \sum_{n=1}^{\infty} \frac{an^k + b}{n!}$$

$$\sqrt{D}=0$$

$$\rightarrow a = 1; 2; 3; 4; 5; 6; 7$$

$$\rightarrow b = 1; 2; 3; 4; 5; 6; 7$$

$$\rightarrow k = 1; 2; 3; 4; 5$$

$$2) \sum_{n=1}^{\infty} \frac{an^k + b}{c^n}$$

$$\sqrt{D} = \frac{1}{c}$$

$$\rightarrow a = 1; 2; 3; 4; 5; 6; 7$$

$$\rightarrow b = 1; 2; 3; 4; 5; 6; 7$$

$$\rightarrow k = 1; 2; 3; 4; 5$$

$$\rightarrow c = 2; 3; 4; 5; 6; 7$$

$$3) \sum_{n=1}^{\infty} \frac{c^n}{an^k + b}$$

$$\sqrt{D=c}$$

$$\rightarrow a = 1; 2; 3; 4; 5; 6; 7$$

$$\rightarrow b = 1; 2; 3; 4; 5; 6; 7$$

$$\rightarrow k = 1; 2; 3; 4; 5$$

$$\rightarrow c = 2; 3; 4; 5; 6; 7$$

4)
$$\sum_{n=1}^{\infty} \frac{n^k a^n}{n!}$$

$$\sqrt{D}=0$$

$$\rightarrow a = 2; 3; 4; 5; 6; 7$$

$$\rightarrow k = 2; 3; 4$$

$$5) \sum_{n=1}^{\infty} \frac{a^n}{n^k n!}$$

$$\sqrt{D}=0$$

$$\rightarrow a = 2; 3; 4; 5; 6; 7$$

$$\rightarrow k = 2; 3; 4$$

- $6) \sum_{n=1}^{\infty} \frac{n^k n!}{a^n}$
- $\sqrt{D} = \infty$
- $\rightarrow a = 2; 3; 4; 5; 6; 7$
- $\rightarrow k = 2; 3; 4$
- $7) \sum_{n=1}^{\infty} \frac{n!}{n^k a^n}$
- $\sqrt{D} = \infty$
- $\rightarrow a = 2; 3; 4; 5; 6; 7$
- $\rightarrow k = 2; 3; 4$
- $8) \sum_{n=1}^{\infty} \left(\frac{an^k + 1}{cn^k + d} \right)^n$
- $\sqrt{K} = \frac{a}{c}$
- $\rightarrow k = 1; 2; 3$
- $\rightarrow c = a-2; a-1; a+1; a+2; a+3; a+4$
- $\rightarrow a = 3; 4; 5; 6; 7$
- $\rightarrow d = 1; 2; 3; 4; 5; 6; 7$

$$1) \sum_{n=1}^{\infty} \frac{n^{kn}}{a^n(kn)!}$$

$$\sqrt{D} = \frac{e^k}{ak^k}$$

$$\rightarrow a = 2; 3; 4; 5$$

$$\rightarrow k = 1; 2$$

$$2) \sum_{n=1}^{\infty} \frac{n^{kn}a^n}{(kn)!}$$

$$\sqrt{D} = \frac{ae^k}{k^k}$$

$$\rightarrow a = 1; 2; 3; 4; 5; 6; 7; 8$$

$$\rightarrow k = 1; 2; 3; 4$$

3)
$$\sum_{n=1}^{\infty} \frac{a^n(kn)!}{n^{kn}}$$

$$\sqrt{D} = \frac{ak^k}{e^k}$$

$$\rightarrow a = 1; 2; 3; 4; 5$$

$$\rightarrow k = 1$$

$$4) \sum_{n=1}^{\infty} \frac{(kn)!}{n^{kn}a^n}$$

$$\sqrt{D} = \frac{k^k}{ae^k}$$

$$\rightarrow a = 1; 2; 3; 4; 5; 6; 7; 8$$

$$\rightarrow k = 1$$

5)
$$\sum_{n=1}^{\infty} \frac{(n!)^k}{(kn+1)!}$$

$$\sqrt{D} = \frac{1}{k^k}$$

$$\rightarrow k = 2; 3; 4; 5$$

$$6) \sum_{n=1}^{\infty} \frac{\sqrt[k]{n!}}{a^n}$$

$$\sqrt{D} = \infty$$

$$\rightarrow k = 2; 3; 4; 5; 6; 7$$

$$\rightarrow a = 2; 3; 4; 5; 6; 7$$

- $7) \sum_{n=1}^{\infty} \frac{a^n}{\sqrt[k]{n!}}$
- $\sqrt{D}=0$
- $\rightarrow k = 2; 3; 4; 5; 6; 7$
- $\rightarrow a = 2; 3; 4; 5; 6; 7$
- $8) \sum_{n=1}^{\infty} \left(\frac{an+b+ka}{an+b} \right)^{n^2}$
- $\sqrt{K} = e^k$
- $\rightarrow k = -1; -2; -3; -4; -5; 1; 2; 3; 4$
- $\rightarrow a = 1; 3; 5; 7$
- $\rightarrow b = 2; 4; 8$

$$1) \sum_{n=2}^{\infty} \frac{1}{n \ln^k n}$$

- √ Сходится
- $\rightarrow k = 2; 3; 4; 5; 6; 7; 8$
- $2) \sum_{n=2}^{\infty} \frac{1}{n\sqrt[k]{\ln n}}$
- √ Расходится
- $\rightarrow k = 1; 2; 3; 4; 5; 6; 7; 8$
- $3) \sum_{n=2}^{\infty} \frac{\ln n}{n^k}$
- √ Сходится
- $\rightarrow k = 2; 3; 4; 5; 6; 7; 8$
- $4) \sum_{n=2}^{\infty} \frac{\ln n}{\sqrt[k]{n}}$
- √ Расходится
- $\rightarrow k = 1; 2; 3; 4; 5; 6; 7; 8$

278. Исследовать знакопеременные ряды на абсолютную и условную сходимость

1)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(bn+c)a^n}$$

- √ Сходится абсолютно
- × Сходится условно
- × Расходится

$$\rightarrow a = 2; 3; 4; 5$$

$$\rightarrow b = 0; 1; 2$$

$$\rightarrow c = 1$$

2)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{an^k + b}$$

- √ Сходится абсолютно
- × Сходится условно
- × Расходится

$$\rightarrow a = 1; 2; 3; 4; 5$$

$$\rightarrow k = 2; 3; 4; 5$$

$$\rightarrow b = 0; 1; 2; 3; 4; 5$$

3)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{an^k + b}}$$

- √ Сходится абсолютно
- х Сходится условно
- × Расходится

$$\rightarrow a = 1; 2; 3; 4; 5$$

$$\rightarrow k = 3; 4; 5; 6$$

$$\rightarrow b = 1; 2; 3; 4; 5$$

4)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(n+k)!}$$

- √ Сходится абсолютно
- х Сходится условно
- × Расходится

$$\rightarrow k = 0; 1; 2; 3; 4; 5$$

- 5) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n \ln^k n}$
- √ Сходится абсолютно
- Сходится условно
- × Расходится
- $\rightarrow k = 2; 3; 4; 5; 6; 7$
- 6) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^n}$
- √ Сходится абсолютно
- × Сходится условно
- × Расходится

7)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{an+b}$$

- × Сходится абсолютно
- √ Сходится условно
- × Расходится

$$\rightarrow a = 1; 2; 3; 4; 5$$

$$\rightarrow b = 0; 1; 2; 3; 4; 5$$

8)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt[k+l]{an^k+b}}$$

- Сходится абсолютно
- √ Сходится условно
- × Расходится

$$\rightarrow a = 1; 2; 3; 4; 5$$

$$\rightarrow b = 1; 2; 3; 4; 5$$

$$\rightarrow k = 2; 3; 4; 5$$

$$\rightarrow l = 1; 2; 3; 4$$

9)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln^k n}$$

- × Сходится абсолютно
- √ Сходится условно
- × Расходится

$$\rightarrow k = 1; 2; 3; 4; 5$$

- 10) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{an^k + b}{cn^k + 1}$
- Сходится абсолютно
- × Сходится условно
- √ Расходится
- $\rightarrow k = 1; 2; 3; 4; 5$
- $\rightarrow a = 1; 2; 3; 4; 5$
- $\rightarrow c = 1; 2; 3; 4; 5$
- $\rightarrow b = 0; 1; 2; 3; 4; 5$
- 11) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{a^n}{n^a}$
- Сходится абсолютно
- × Сходится условно
- √ Расходится
- $\rightarrow a = 2; 3; 4; 5$

12)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \left(1 + \frac{a}{n}\right)^n$$

- Сходится абсолютно
- × Сходится условно
- √ Расходится
- $\rightarrow a = 1; 2; 3; 4; 5$

279. Найти область сходимости функционального ряда.

1)
$$\sum_{n=1}^{\infty} \frac{l}{(kn+m)(x+a)^n}$$

$$\sqrt{(-\infty; -a-1] \cup (-a+1; +\infty]}$$

$$\rightarrow l = 1; 3; 5$$

$$\rightarrow k = 1; 2; 3; 4; 5$$

$$\rightarrow m = 1; 2; 4$$

$$\rightarrow a = 1; 2; 3; 4; 5$$

$$2) \sum_{n=1}^{\infty} \log_a^n x$$

$$\sqrt{\left(\frac{1}{a};a\right)}$$

$$\rightarrow a = 2; 3; 4; 5; 6; 7$$

3)
$$\sum_{n=1}^{\infty} \frac{\log_a^n x}{n}$$

$$\sqrt{\left[\frac{1}{a};a\right)}$$

$$\rightarrow a = 2; 3; 4; 5; 6; 7$$

4)
$$\sum_{n=1}^{\infty} F$$

$$\sqrt{(-\infty;+\infty)}$$

$$\rightarrow F = \sin X$$
; $\operatorname{tg} X$; $\operatorname{arcsin} X$; $\operatorname{arctg} X$

$$\to X = \frac{b^n x}{(b+a)^n}$$

$$\rightarrow b = 2; 4; 5$$

$$\rightarrow a = 1; 3$$

$$5) \sum_{n=1}^{\infty} x^n F$$

$$\sqrt{(-b;b)}$$

$$\rightarrow F = \sin X$$
; $\operatorname{tg} X$; $\operatorname{arcsin} X$; $\operatorname{arctg} X$

$$\rightarrow X = \frac{x}{b^n}$$

$$\rightarrow b = 2; 3; 4; 5; 6; 7$$

- $6) \sum_{n=1}^{\infty} \frac{l}{x \log_a^n x}$
- $\sqrt{\left(0;\frac{1}{a}\right)}\cup\left(a;+\infty\right)$
- $\rightarrow a = 2; 3; 4; 10$
- $\rightarrow l = 1; 2; 3; 4; 5$

280. Найти радиус сходимости и область сходимости степенного ряда.

$$\Rightarrow x_0 = -3; -2; -1; 0; 1; 2; 3; 4; 5$$

$$\Rightarrow$$
 $a = 1; 2; 3; 4; 5; 6; 7$

1)
$$\sum_{n=1}^{\infty} \frac{(x-x_0)^n}{a^n}$$

$$\sqrt{R} = a; (x_0 - a; x_0 + a)$$

2)
$$\sum_{n=1}^{\infty} \frac{(x-x_0)^n}{(an+b)c^n}$$

$$\sqrt{R} = c; [x_0 - c; x_0 + c)$$

$$\rightarrow b = 0; 1; 2; 3; 4; 5$$

$$\rightarrow c = 2; 3; 4; 5$$

3)
$$\sum_{n=1}^{\infty} \frac{an+b}{c^n} (x-x_0)^n$$

$$\sqrt{R} = c; (x_0 - c; x_0 + c)$$

$$\rightarrow b = 0; 1; 2; 3; 4; 5$$

$$\rightarrow c = 2; 3; 4; 5$$

4)
$$\sum_{1}^{\infty} \frac{(x-x_0)^n}{an^k + bn}$$

$$\sqrt{R} = 1; [x_0 - 1; x_0 + 1]$$

$$\rightarrow b = 0; 1; 2; 3; 4; 5$$

$$\rightarrow k = 2; 3; 4; 5$$

5)
$$\sum_{n=1}^{\infty} \frac{c^n}{(an^k + b)(c+1)^n} (x - x_0)^n$$

$$\sqrt{R} = \frac{c+1}{c}; \left[x_0 - \frac{c+1}{c}; x_0 + \frac{c+1}{c} \right]$$

$$\rightarrow b = 1; 2; 3; 4; 5$$

$$\rightarrow k = 2; 3; 4; 5$$

$$\rightarrow c = 2; 3; 4; 5$$

6)
$$\sum_{n=1}^{\infty} \frac{(c+1)^n}{(an+b)c^n} (x-x_0)^n$$

$$\sqrt{R} = \frac{c}{c+1}; \left[x_0 - \frac{c}{c+1}; x_0 + \frac{c}{c+1} \right]$$

$$\rightarrow b = 0; 1; 2; 3; 4; 5$$

$$\rightarrow c = 2; 3; 4; 5$$

- 7) $\sum_{n=1}^{\infty} \frac{(x-x_0)^n}{(n+a)!}$
- $\sqrt{R} = \infty; (-\infty; +\infty)$
- 8) $\sum_{n=1}^{\infty} \frac{an^k + b}{n!} (x x_0)^n$
- $\sqrt{R} = \infty; (-\infty; +\infty)$
- $\rightarrow b = 1; 2; 3; 4; 5$
- $\rightarrow k = 1; 2; 3; 4; 5$
- 9) $\sum_{n=1}^{\infty} \frac{a^n}{n!} (x x_0)^n$
- $\sqrt{R} = \infty; (-\infty; +\infty)$

281. Найти область сходимости степенного ряда.

$$\Rightarrow$$
 $a = -3; -2; -1; 0; 1; 2; 3; 4; 5$

$$1) \sum_{n=1}^{\infty} (x-a)^n F$$

$$\sqrt{(a-b;a+b)}$$

$$\rightarrow F = \sin X$$
; $\operatorname{tg} X$; $\operatorname{arcsin} X$; $\operatorname{arctg} X$

$$\rightarrow X = \frac{\pi}{b^n}$$

$$\rightarrow b = 2; 3; 4; 5; 6; 7$$

$$2) \sum_{n=1}^{\infty} (x-a)^n F$$

$$\sqrt{[a-1;a+1]}$$

$$\rightarrow F = \sin X$$
; $\operatorname{tg} X$; $\operatorname{arcsin} X$; $\operatorname{arctg} X$

$$\rightarrow X = \frac{\pi}{\sqrt[m]{n^{m+1}}}$$

$$\rightarrow m = 2; 3; 4; 5; 6; 7$$

3)
$$\sum_{n=1}^{\infty} F(x-a)^n$$

$$\sqrt{(a-1;a+1]}$$

$$\to F = \frac{(-1)^n}{(n+m)\ln(n+1)}; \quad (-1)^n \frac{\sqrt[3]{n+m}}{n+1}; \quad \frac{(-1)^n}{\sqrt[m]{n+1}}$$

$$\rightarrow m = 2; 3; 4; 5; 6; 7$$

4)
$$\sum_{n=1}^{\infty} \frac{(x-a)^n}{b^n \ln(n+1)}$$

$$\sqrt{[a-b;a+b)}$$

$$\rightarrow b = 2; 3; 4; 5; 6; 7$$

5)
$$\sum_{n=1}^{\infty} \frac{b^n}{(n+1)\ln(n+1)} (x-a)^n$$

$$\sqrt{\left[a-\frac{1}{b};a+\frac{1}{b}\right]}$$

$$\rightarrow b = 2; 3; 4; 5; 6; 7$$

282. Вычислить a с точностью Δ .

1)
$$a = \sqrt[3]{e}$$
, $\Delta = 10^{-5}$

2)
$$a = \sqrt{e}, \ \Delta = 10^{-4}$$

$$\sqrt{1,6487}$$

3)
$$a = e, \ \Delta = 10^{-4}$$

4)
$$a = e^2$$
, $\Delta = 10^{-1}$

$$\sqrt{7,4}$$

5)
$$a = \sqrt[3]{e^2}$$
, $\Delta = 10^{-3}$

6)
$$a = \sqrt[3]{e^4}$$
, $\Delta = 10^{-2}$

7)
$$a = \sqrt[3]{e^5}$$
, $\Delta = 10^{-1}$

$$\sqrt{5,3}$$

8)
$$a = \sqrt{e^3}$$
, $\Delta = 10^{-1}$

$$\sqrt{4,5}$$

9)
$$a = \sin 1$$
, $\Delta = 10^{-6}$

$$\sqrt{0,841471}$$

10)
$$a = \sin 2$$
, $\Delta = 10^{-4}$

$$\sqrt{0,9093}$$

11)
$$a = \sin \frac{1}{2}$$
, $\Delta = 10^{-8}$

$$\sqrt{0,47942554}$$

12)
$$a = \sin \frac{3}{2}$$
, $\Delta = 10^{-5}$

$$\sqrt{0,99749}$$

13)
$$a = \cos 1$$
, $\Delta = 10^{-6}$

$$\sqrt{0,540302}$$

- 14) $a = \cos \frac{1}{2}$, $\Delta = 10^{-9}$
- $\sqrt{0,877582562}$
- 15) $a = \cos \frac{3}{2}$, $\Delta = 10^{-4}$
- √ 0,0707

Часть XVII Дифференциальные уравнения

283. Проинтегрировать уравнение.

1)
$$dx + \mathbf{f} q dy = 0$$

$$\sqrt{F+G}=C$$

$$\rightarrow f$$
, $F =$

•
$$\sqrt{b-ax^2}$$
, $\frac{1}{\sqrt{a}}\arcsin\frac{ax}{\sqrt{ab}}$;

•
$$b + ax^2$$
, $\frac{1}{\sqrt{ab}} \arctan \frac{ax}{\sqrt{ab}}$;

•
$$ax^2 - b$$
, $\frac{1}{2\sqrt{ab}} \ln \left| \frac{\sqrt{ax} - \sqrt{b}}{\sqrt{ax} + \sqrt{b}} \right|$;

•
$$\sqrt{ax^2 + b}$$
, $\frac{1}{\sqrt{a}} \ln \left(\sqrt{ax} + \sqrt{ax^2 + b} \right)$

$$\rightarrow g$$
, $G =$

•
$$\frac{1}{cy+d}$$
, $\frac{1}{c}\ln|cy+d|$;

•
$$\cos(cy+d)$$
, $\frac{1}{c}\sin(cy+d)$;

•
$$\sin(cy+d)$$
, $-\frac{1}{c}\cos(cy+d)$;

•
$$e^{cy+d}$$
, $\frac{1}{c}e^{cy+d}$

$$\rightarrow a = b-1; b+1; b+2; b+3; b+4$$

$$\rightarrow b = 2; 3; 4; 5$$

$$\rightarrow c = 2; 3; 4; 5; 6; 7$$

$$\rightarrow d = -3; -2; -1; 1; 2; 3; 4; 5; 6; 7$$

284. Решить уравнение.

$$\Rightarrow$$
 $a = 1; 2; 3; 4; 5$

1)
$$y' + ay = e^{bx}$$

$$\sqrt{y} = \frac{1}{a+b}e^{bx} + Ce^{-ax}$$

$$\rightarrow b = -a - 2; -a - 1; a + 1; a + 2$$

2)
$$y' + ay = bx + d$$

$$\sqrt{y} = \frac{bx+d}{a} - \frac{b}{a^2} + Ce^{-ax}$$

$$\rightarrow d = b-1; b-2; b; b+1; b+2$$

$$\rightarrow b = -3; -2; -1; 1; 2; 3$$

3)
$$y' + ay = bx^2 + d$$

$$\sqrt{y} = \frac{bx^2 + d}{a} - \frac{2bx}{a^2} + \frac{2b}{a^3} + Ce^{-ax}$$

$$\rightarrow d = b-1; b-2; b; b+1; b+2$$

$$\rightarrow b = -3; -2; -1; 1; 2; 3$$

4)
$$y' + ay = \frac{e^{-ax}}{b^2 + x^2}$$

$$\sqrt{y} = e^{-ax} \left(\frac{1}{b} \arctan \frac{x}{b} + C \right)$$

$$\rightarrow b = -a - 2; -a - 1; a + 1; a + 2$$

5)
$$y' + ay = \frac{e^{-ax}}{\sqrt{b^2 - x^2}}$$

$$\sqrt{y} = e^{-ax} \left(\arcsin \frac{x}{b} + C \right)$$

$$\rightarrow b = -a - 2; -a - 1; a + 1; a + 2$$

$$6) \quad y' + x^b y = ax^b$$

$$\sqrt{y} = a + Ce^{-\frac{x^{b+1}}{b+1}}$$

$$\rightarrow b = 2; 3; 4; 5; 6$$

$$7) xy' + y = e^{ax} + x^b$$

$$\sqrt{y} = \frac{e^{ax}}{ax} + \frac{x^b}{b+1} + \frac{C}{x}$$

$$\rightarrow b = -5; -2; 1; 2; 3$$

8)
$$y' + \frac{2kxy}{x^2 + a^2} = \frac{1}{(x^2 + a^2)^{k+1}}$$

$$\sqrt{y} = \frac{1}{a(x^2 + a^2)^k} \arctan \frac{x}{a} + \frac{C}{(x^2 + a^2)^k}$$

$$\rightarrow k = 1; 2; 3; 4; 5$$

Однородное ДУ І порядка

285. Решить уравнение.

$$\Rightarrow a = 1; 2; 3; 4; 5$$

$$1) \quad y' = \frac{ax + (b+1)y}{bx}$$

$$\sqrt{y = Cx^{\frac{1+b}{b}} - ax}$$

$$\rightarrow b = -5; -2; 1; 2; 3$$

2)
$$y' = \frac{a^2x^2 + byx + y^2}{bx^2}$$

$$\sqrt{\frac{1}{a}} \operatorname{arctg} \frac{y}{ax} = \frac{1}{b} \ln|x| + C$$

$$\rightarrow b = -5; -2; 1; 2; 3$$

Однородное уравнение первого порядка

286. Решить уравнение.

$$1) \quad y = xy' - xa^{k\frac{y}{x}}$$

$$\sqrt{\frac{1}{k}} \frac{a^{-k\frac{y}{x}}}{\ln a} = \ln|x| + C$$

$$\rightarrow a = 2; 3; 4; 5; 6; 7; 8; 9; e$$

$$\rightarrow k = 2; 3; 4; 5; 6; 7; 8; 9$$

$$2) \quad axy' = ay + bxF$$

$$\sqrt{G} = -\frac{b}{a} \ln|x| + H$$

$$\rightarrow F$$
, G , $H =$

•
$$\sin^2 k \frac{y}{x}$$
, $-\frac{1}{k} \operatorname{ctg} k \frac{y}{x}$, C ;

•
$$\cos^2 k \frac{y}{x}$$
, $\frac{1}{k} \operatorname{tg} k \frac{y}{x}$, C ;

•
$$\operatorname{tg} k \frac{y}{x}$$
, $\frac{1}{k} \ln \left| \sin k \frac{y}{x} \right|$, $\ln |C|$;

•
$$\operatorname{ctg} k \frac{y}{x}$$
, $-\frac{1}{k} \ln \left| \cos k \frac{y}{x} \right|$, $\ln |C|$;

•
$$\operatorname{tg}^2 k \frac{y}{x}$$
, $-\frac{1}{k} \operatorname{ctg} k \frac{y}{x} - \frac{y}{x}$, C ;

•
$$\operatorname{ctg}^2 k \frac{y}{x}$$
, $\frac{1}{k} \operatorname{tg} k \frac{y}{x} - \frac{y}{x}$, C

$$\rightarrow a = 2; 3; 4; 5; 6; 7; 8; 9$$

$$\rightarrow b = 1; 2; 3; 4; 5; -1; -2; -3; -4; -5$$

$$\rightarrow k = 2; 3; 4; 5; 6; 7; 8; 9$$

3)
$$yy' - ay + a^2x = 0$$

$$\sqrt{\frac{1}{2}\ln\left|\frac{y^2}{x^2} + a\frac{y}{x} + a^2\right|} + \frac{1}{\sqrt{3}}\operatorname{arctg}\frac{2y - ax}{a\sqrt{3}x} = \ln\left|\frac{C}{x}\right|$$

$$\rightarrow a = 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12$$

4)
$$y'F - \frac{y}{x}F + b = 0$$

$$\sqrt{G} = -b \ln|x| + C$$

$$\rightarrow F$$
, $G =$

- $\cos k \frac{y}{x}$, $\frac{1}{k} \sin k \frac{y}{x}$;
- $\sin k \frac{y}{x}$, $-\frac{1}{k} \cos k \frac{y}{x}$;
- $\operatorname{tg} k \frac{y}{x}$, $-\frac{1}{k} \ln \left| \cos k \frac{y}{x} \right|$;
- $\operatorname{ctg} k \frac{y}{x}$, $\frac{1}{k} \ln \left| \sin k \frac{y}{x} \right|$;
- $e^{k\frac{y}{x}}$, $\frac{1}{k}e^{k\frac{y}{x}}$;
- $(b+1)^{k\frac{y}{x}}$, $\frac{1}{k}\frac{(b+1)^{k\frac{y}{x}}}{\ln(b+1)}$;
- $\sin^2\frac{k}{2}\frac{y}{x}$, $\frac{1}{2}\frac{y}{x} \frac{1}{2k}\sin k\frac{y}{x}$
- $\rightarrow k = 2; 4; 6; 8; 10; 12; 14; 16$
- $\rightarrow b = 1; 2; 3; 4; 5; 6; 7; 8; 9$

287. Решить уравнение.

1)
$$y' - k \frac{y}{x} = (3 - k)x^2 + (2 - k)x + (1 - k)$$

$$\sqrt{y} = x^3 + x^2 + x + Cx^k$$

$$\rightarrow k = 4; 5; 6; 7$$

2)
$$y' + k \frac{y}{x} = \frac{3}{x^{k-2}} + \frac{2}{x^{k-1}}$$

$$\sqrt{y} = \frac{1}{x^{k-3}} + \frac{1}{x^{k-2}} + \frac{C}{x^k}$$

$$\rightarrow k = 4; 5; 6; 7$$

3)
$$y' + k \frac{y}{x} = (k+1)^2 \ln x$$

$$\sqrt{y} = (k+1)x \ln x - x + \frac{(k+1)C}{x^k}$$

$$\rightarrow k = 2; 3; 4; 5$$

4)
$$y' + k \frac{y}{x} = \frac{a^2 e^{ax+b}}{x^{k-1}}$$

$$\sqrt{y} = (axe^{ax+b} - e^{ax+b} + a^2C)x^{-k}$$

$$\rightarrow b = a-2; a-1; a; a+1; a+2$$

$$\rightarrow a = 1; 2; 3; 4; 5$$

$$\rightarrow k = 2; 3; 4; 5$$

5)
$$y' - k\frac{y}{x} = a^2 x^{k+1} \cos(ax+b)$$

$$\sqrt{y} = ax^{k+1}\sin(ax+b) + x^k\cos(ax+b) + a^2Cx^k$$

$$\rightarrow b = a-2; a-1; a; a+1; a+2$$

$$\rightarrow a = 1; 2; 3; 4; 5$$

$$\rightarrow k = 2; 3; 4; 5$$

6)
$$y' + k \frac{y}{x} = (k+1)e^{x^{k+1}}$$

$$\sqrt{y} = \frac{e^{x^{k+1}} + C}{x^k}$$

$$\rightarrow k = 1; 2; 3; 4; 5$$

7)
$$y' - k \frac{y}{x} = (a+1)x^{k-1} \ln^a x$$

$$\sqrt{y} = \left(\ln^{a+1} x + (a+1)C\right) x^k$$

$$\rightarrow a = 1; 2; 3; 4; 5$$

$$\rightarrow k = 2; 3; 4; 5$$

$$1) y' + py = fe^P$$

$$\sqrt{y(x)} = (F + C)e^{-P}$$

$$\rightarrow f$$
, $F =$

•
$$\frac{1}{\sqrt{a^2-x^2}}$$
, $\arcsin\frac{x}{a}$;

•
$$\frac{1}{a^2 + x^2}$$
, $\frac{1}{a} \arctan \frac{x}{a}$;

•
$$\frac{1}{\cos^2(x+a)}$$
, $\operatorname{tg}(x+a)$;

•
$$\frac{1}{\sin^2(x+a)}$$
, $-\operatorname{ctg}(x+a)$

$$\rightarrow p$$
, $P =$

•
$$\cos(x+b)$$
, $\sin(x+b)$;

•
$$\sin(x+b)$$
, $-\cos(x+b)$;

•
$$3(x+b)^2$$
, $(x+b)^3$;

•
$$4(x+b)^3$$
, $(x+b)^4$

$$\rightarrow a = 1; 2; 3; 4$$

$$\rightarrow b = -3; -2; -1; 0; 5; 6$$

1)
$$L = R$$

$$\sqrt{y=F}$$

$$\rightarrow L$$
, R , $F =$

•
$$y' + ay$$
, e^{bx} , $\frac{e^{bx}}{a+b} + Ce^{-ax}$;

•
$$y' + x^b y$$
, ax^b , $a + Ce^{-\frac{x^{b+1}}{b+1}}$;

•
$$xy' + y$$
, $e^{ax} + x^b$, $\frac{e^{ax}}{ax} + \frac{x^b}{b+1} + \frac{C}{x}$

$$\rightarrow a = -6; -5; -4; -1; 1; 3; 4$$

$$\rightarrow b = -5; -2; 1; 2; 3$$

290. Найти общее и частное решение, удовлетворяющее начальным условиям.

1)
$$L = 0$$
, $y(c) = C$

$$\sqrt{y} = F$$

$$\rightarrow L$$
, F , $c =$

•
$$x^a y' + x^{a-1} y + b$$
, $\frac{b}{(a-2)x^{a-1}} + \frac{C - \frac{b}{a-2}}{x}$, 1;

•
$$y' + ay \operatorname{tg} ax - \frac{b}{\cos ax}$$
, $\frac{b}{a} \sin ax - C \cos ax$, $\frac{\pi}{a}$;

•
$$y' - ay \operatorname{ctg} ax - \frac{b}{\sin ax}$$
, $\frac{b}{a} \cos ax + C \sin ax$, $\frac{\pi}{2a}$

$$\rightarrow a = 3; 4; 5$$

$$\rightarrow b = -3; -2; 2; 3$$

$$\rightarrow$$
 $C = -4; -3; -2; -1; 0; 1; 2; 3; 4$

ДУ 2-го порядка 2 действительных корня

1)
$$y'' + ay' + by = 0$$

$$\sqrt{F}$$

$$\rightarrow a$$
, b , $F =$

•
$$-k_1 - k_2$$
, $k_1 k_2$, $C_1 e^{k_1 x} + C_2 e^{k_2 x}$

$$\rightarrow k_1 = k_2 - 2; k_2 - 1; k_2 + 1; k_2 + 2$$

$$\rightarrow k_2 = -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5; 6$$

ДУ 2-го порядка комплексные корни

1)
$$y'' + ay' + by = 0$$

$$\sqrt{F}$$

$$\rightarrow a$$
, b , $F =$

•
$$-2k_1$$
, $k_1^2 + k_2^2$, $e^{k_1x} (C_1 \sin k_2 x + C_2 \cos k_2 x)$

$$\rightarrow k_1 = -4; -3; -2; -1; 0; 1; 2; 3; 4$$

$$\rightarrow k_2 = 1; 2; 3; 4; 5; 6; 7$$

ДУ 2-го порядка кратный корень

1)
$$y'' + ay' + by = 0$$

$$\sqrt{F}$$

$$\rightarrow a$$
, b , $F =$

•
$$-2k$$
, k^2 , $C_1e^{kx} + C_2xe^{kx}$

$$\rightarrow k = -8 - 7; -6; -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5; 6; 7; 8$$

Неоднородное ДУ 2-го порядка

- 294. Найти общеее решение дифференциального уравнения.
 - $\Rightarrow a = 1; 2; 3; 4$
 - 1) $y'' + a^2y = k(a^2 + m^2)e^{mx}$
 - $\sqrt{y} = C_1 \cos ax + C_2 \sin ax + ke^{mx}$
 - $\rightarrow m = -3; -2; -1; 1; 2; 3$
 - $\rightarrow k = 1; 2; 3$
 - 2) $y'' + a^2y = a^2kx^2 + a^2x + 2k$
 - $\sqrt{y} = C_1 \cos ax + C_2 \sin ax + kx^2 + x$
 - $\rightarrow k = 1; 2; 3$
 - 3) $y'' + a^2y = (k(a^2 + m^2)x + 2km)e^{mx}$
 - $\sqrt{y} = C_1 \cos ax + C_2 \sin ax + kxe^{mx}$
 - $\rightarrow m = -3; -2; -1; 1; 2; 3$
 - $\rightarrow k = 1; 2; 3$

Неоднородное ЛУ 2-го порядка II

295. Найти общеее решение дифференциального уравнения.

- $\Rightarrow a = 1; 2; 3; 4$
- 1) $y'' a^2y = k(m^2 a^2)e^{mx}$
- $\sqrt{y} = C_1 e^{ax} + C_2 e^{-ax} + k e^{mx}$
- $\rightarrow m = a+1; a+2$
- $\rightarrow k = 1; 2; 3$
- $2) \quad y'' a^2y = 4kae^{ax}$
- $\sqrt{y} = C_1 e^{ax} + C_2 e^{-ax} + 2k e^{ax}$
- $\rightarrow k = 1; 2; 3; 4$
- 3) $y'' a^2y = a^2kx^2 + a^2x 2k$
- $\sqrt{y} = C_1 e^{ax} + C_2 e^{-ax} kx^2 x$
- $\rightarrow k = 1; 2; 3; 4$

Неоднородное ДУ 2-го порядка III

296. Найти общеее решение дифференциального уравнения.

$$\Rightarrow a = 1; 2; 3; 4$$

1)
$$y'' + 2ay' + a^2y = \left(x + \frac{1}{x}\right)e^{-ax}$$

$$\sqrt{y} = C_1 e^{-ax} + C_2 x e^{-ax} + \frac{x^3}{6} e^{-ax} - x e^{-ax} + x e^{-ax} \ln|x|$$

2)
$$y'' + 2ay' + a^2y = xe^{ax} + \frac{1}{xe^{ax}}$$

$$\sqrt{y} = C_1 e^{-ax} + C_2 x e^{-ax} + \frac{x}{4a^2} e^{ax} - \frac{1}{4a^3} e^{ax} - x e^{-ax} + x e^{-ax} \ln|x|$$

3)
$$y'' + 2ay' + a^2y = \frac{e^{-ax}}{x}$$

$$\sqrt{y} = (-x + C_1)e^{-ax} + (\ln|x| + C_2)xe^{-ax}$$

4)
$$y'' + 2ay' + a^2y = \frac{e^{-ax}}{r^2}$$

$$\sqrt{y} = (-\ln|x| + C_1)e^{-ax} + \left(-\frac{1}{x} + C_2\right)xe^{-ax}$$

5)
$$y'' + 2ay' + a^2y = \frac{e^{-ax}}{x^k}$$

$$\sqrt{y} = \left(\frac{1}{(k-2)x^{k-2}} + C_1\right)e^{-ax} + \left(\frac{-1}{(k-1)x^{k-1}} + C_2\right)xe^{-ax}$$

$$\rightarrow k = 3; 4; 5$$

6)
$$y'' + 2ay' + a^2y = \frac{e^{-ax}}{\sqrt{b^2 - x^2}}$$

$$\sqrt{y} = \left(\sqrt{b^2 - x^2} + C_1\right)e^{-ax} + \left(\arcsin\frac{x}{b} + C_2\right)xe^{-ax}$$

$$\rightarrow b = 1; 2; 3; 4$$

7)
$$y'' + 2ay' + a^2y = \frac{e^{-ax}}{b^2 + x^2}$$

$$\sqrt{y} = \left(-\frac{1}{2}\ln|b^2 + x^2| + C_1\right)e^{-ax} + \left(\frac{1}{b}\arctan\frac{x}{b} + C_2\right)xe^{-ax}$$

$$\rightarrow b = 1; 2; 3; 4$$

8)
$$y'' + 2ay' + a^2y = e^{-ax} \ln|x|$$

$$\sqrt{y} = \left(C_1 + C_2 x + \frac{x^2}{2} \ln|x| - \frac{3}{4}x^2\right) e^{-ax}$$

9)
$$y'' + 2ay' + a^2y = \sqrt{x^k}e^{-ax}$$

$$\sqrt{y} = \left(-\frac{2}{k+4}\sqrt{x^{k+4}} + C_1\right)e^{-ax} + \left(\frac{2}{k+2}\sqrt{x^{k+2}} + C_2\right)xe^{-ax}$$

$$\rightarrow k = 1; 3; 5$$

10)
$$y'' + 2ay' + a^2y = \frac{e^{-ax}}{b^2 - x^2}$$

$$\sqrt{y} = \left(\frac{1}{2}\ln|b^2 - x^2| + C_1\right)e^{-ax} + \left(\frac{1}{2b}\ln\left|\frac{x+b}{x-b}\right| + C_2\right)xe^{-ax}$$

$$\rightarrow b = 1; 2; 3; 4$$

297. Найти общеее решение дифференциального уравнения.

$$\Rightarrow a = 1; 2; 3; 4; 5$$

1)
$$y'' + a^2 y = \frac{1}{\sin ax}$$

$$\sqrt{y} = \left(\frac{1}{a^2} \ln|\sin ax| + C_1\right) \cos ax + \left(-\frac{1}{a}x + C_2\right) \sin ax$$

$$2) y'' + a^2 y = \operatorname{ctg} ax$$

$$\sqrt{y} = C_1 \cos ax + C_2 \sin ax + \frac{1}{a^2} \sin ax \ln \left| \operatorname{tg} \frac{ax}{2} \right|$$

3)
$$y'' + a^2y = \frac{1}{\cos ax}$$

$$\sqrt{y} = \left(\frac{1}{a^2} \ln|\cos ax| + C_1\right) \cos ax + \left(\frac{1}{a}x + C_2\right) \sin ax$$

$$4) \quad y'' + a^2y = \operatorname{tg} ax$$

$$\sqrt{y} = C_1 \cos ax + C_2 \sin ax - \frac{1}{a^2} \cos ax \ln \left| \operatorname{tg} \left(\frac{ax}{2} + \frac{\pi}{4} \right) \right|$$

$$5) y'' + a^2 y = \operatorname{tg}^2 ax$$

$$\sqrt{y} = C_1 \cos ax + C_2 \sin ax - \frac{2}{a^2} + \frac{1}{a^2} \sin ax \ln \left| \lg \left(\frac{ax}{2} + \frac{\pi}{4} \right) \right|$$

$$6) \quad y'' + a^2y = -\operatorname{ctg}^2 ax$$

$$\sqrt{y} = C_1 \cos ax + C_2 \sin ax + \frac{2}{a^2} + \frac{1}{a^2} \sin ax \ln \left| \operatorname{tg} \frac{ax}{2} \right|$$

7)
$$y'' + a^2 y = \frac{1}{\sin^2 ax}$$

$$\sqrt{y} = \left(-\frac{1}{a^2 \sin ax} + C_1\right) \cos ax + \left(-\frac{1}{a^2} \ln\left| \operatorname{tg} \frac{ax}{2} \right| + C_2\right) \sin ax$$

8)
$$y'' + a^2 y = \frac{1}{\cos^2 ax}$$

$$\sqrt{y} = C_1 \cos ax + C_2 \sin ax - \frac{1}{a^2} + \frac{1}{a^2} \sin ax \ln \left| \operatorname{tg} \left(\frac{ax}{2} + \frac{\pi}{4} \right) \right|$$

9)
$$y'' + a^2 y = \frac{1}{\cos^3 ax}$$

$$\sqrt{y} = \left(-\frac{1}{2a^2\cos^2 ax} + C_1\right)\cos ax + \left(\frac{1}{a^2}\operatorname{tg} ax + C_2\right)\sin ax$$

10)
$$y'' + a^2 y = \frac{2 + \cos^3 ax}{\cos^2 ax}$$

$$\sqrt{y} = \left(-\frac{2}{a^2 \cos^2 ax} + \frac{\cos^2 ax}{2a^2} + C_1\right) \cos ax + \left(\frac{2}{a^2} \ln\left| \lg\left(\frac{ax}{2} + \frac{\pi}{4}\right) \right| + \frac{1}{2a}x + \frac{1}{4a^2} \sin 2ax + C_2\right) \sin ax + \left(\frac{2}{a^2} \ln\left| \lg\left(\frac{ax}{2} + \frac{\pi}{4}\right) \right| + \frac{1}{2a}x + \frac{1}{4a^2} \sin 2ax + C_2\right) \sin ax + \left(\frac{2}{a^2} \ln\left| \lg\left(\frac{ax}{2} + \frac{\pi}{4}\right) \right| + \frac{1}{2a}x + \frac{1}{4a^2} \sin 2ax + C_2\right) \sin ax + \left(\frac{2}{a^2} \ln\left| \lg\left(\frac{ax}{2} + \frac{\pi}{4}\right) \right| + \frac{1}{2a}x + \frac{1}{4a^2} \sin 2ax + C_2\right) \sin ax + \left(\frac{2}{a^2} \ln\left| \lg\left(\frac{ax}{2} + \frac{\pi}{4}\right) \right| + \frac{1}{2a}x + \frac{1}{4a^2} \sin 2ax + C_2\right) \sin ax + \left(\frac{2}{a^2} \ln\left| \lg\left(\frac{ax}{2} + \frac{\pi}{4}\right) \right| + \frac{1}{2a}x + \frac{1}{4a^2} \sin 2ax + C_2\right) \sin ax + \left(\frac{2}{a^2} \ln\left| \lg\left(\frac{ax}{2} + \frac{\pi}{4}\right) \right| + \frac{1}{2a}x + \frac{1}{4a^2} \sin 2ax + C_2\right) \sin ax + \left(\frac{2}{a^2} \ln\left| \lg\left(\frac{ax}{2} + \frac{\pi}{4}\right) \right| + \frac{1}{2a}x + \frac{1}{4a^2} \sin 2ax + C_2\right) \sin ax + C_2$$

11)
$$y'' + a^2 y = \frac{1}{\cos 2ax}$$

$$\sqrt{y} = \left(\frac{1}{4a^2} \ln \left| \frac{4\cos ax - 1}{4\cos ax + 1} \right| + C_1\right) \cos ax + \left(\frac{1}{4a^2} \ln \left| \frac{4\cos ax + 1}{4\cos ax - 1} \right| + C_2\right) \sin ax$$

12)
$$y'' + a^2 y = \frac{1}{\sqrt{\cos 2ax}}$$

$$\sqrt{y} = \left(\frac{1}{a^2\sqrt{2}}\ln\left|\cos ax + \sqrt{\cos^2 ax - \frac{1}{2}}\right| + C_1\right)\cos ax + \left(\frac{1}{a^2\sqrt{2}}\arcsin(\sqrt{2}\sin ax) + C_2\right)\sin ax$$

Задача Коши для неоднородного ДУ 2-го порядка

298. Найти решение дифференциального уравнения, удовлетворяющее начальным условиям

1)
$$y'' - k^2 y = e^{-kx}$$
, $y(0) = 1$, $y'(0) = \frac{2k^2 - 1}{2k}$.

$$\sqrt{y} = e^{kx} - \frac{x}{2k}e^{-kx}$$

$$\rightarrow k = 1; 2; 3; 4; 5; 6; 7$$

2)
$$y'' + k^2 y = 2k \sin kx$$
, $y\left(\frac{\pi}{2k}\right) = 1$, $y'\left(\frac{\pi}{2k}\right) = \frac{\pi}{2}$.

$$\sqrt{y} = \sin kx - x \cos kx$$

$$\rightarrow k = 1; 2; 3; 4; 5; 6; 7$$

3)
$$y'' + a^2y = 2a^2ke^{ax}$$
, $y(0) = -k$, $y'(0) = a$.

$$\sqrt{y} = -2k\cos ax + (1-k)\sin ax + ke^{ax}$$

$$\rightarrow a = 2; 3; 4; 5; 6$$

$$\rightarrow k = -1; -2; -3; 2; 3$$

4)
$$y'' + a^2y = 2a^3xe^{ax}$$
, $y(0) = m$, $y'(0) = ma$.

$$\sqrt{y} = (m+1)\cos ax + m\sin ax + (ax-1)e^{ax}$$

$$\rightarrow a = 2; 3; 4; 5; 6$$

$$\rightarrow m = 2; 3; 4; 5; 6$$

5)
$$y'' + a^2y = a^2kx^2 + a^2mx + 2k$$
, $y(0) = m$, $y'(0) = ka + m$.

$$\sqrt{y = m\cos ax + k\sin ax + kx^2 + mx}$$

$$\rightarrow a = 2; 3; 4$$

$$\rightarrow k = -1; -2; -3; 2; 3$$

$$\rightarrow m = -1; -2; -3; 1; 2; 3$$

6)
$$y'' + a^2y = (a^2 - m^2)k\cos mx + (a^2 - m^2)n\sin mx$$
, $y(0) = 2k$, $y'(0) = mn + ka$.

$$\sqrt{y = k\cos ax + k\sin ax + k\cos mx + n\sin mx}$$

$$\rightarrow a = 2; 3; 4; 5$$

$$\rightarrow k = -1; -2; -3; 2; 3$$

$$\rightarrow n = -1; -2; -3; 1; 2; 3$$

$$\rightarrow m = 1; 6; 7$$

7)
$$y'' + 2ky' + 2k^2y = 5k^2\sin kx$$
, $y(0) = 0$, $y'(0) = 0$.

$$\sqrt{y} = \sin kx \left(e^{-kx} + 1\right) + 2\cos kx \left(e^{-kx} - 1\right)$$

$$\rightarrow k = 1; 2; 3$$

8)
$$y'' - 2ky' + k^2y = \sin kx$$
, $y(0) = \frac{1}{2k^2}$, $y'(0) = 1$.

$$\sqrt{y} = xe^{kx} + \frac{\cos kx}{2k^2}$$

$$\rightarrow k = 1; 2; 3; 4; 5; 6; 7$$

9)
$$y'' - ky' = e^{kx}(2kx + k^2 + 2), \ y(0) = 0, \ y'(0) = 0.$$

$$\sqrt{y} = e^{kx}(x^2 + kx - 1) + 1$$

$$\rightarrow k = 1; 2; 3; 4; 5; 6$$

10)
$$y'' - ay' = 2akx + a^2 - 2k$$
, $y(0) = a + k$, $y'(0) = a^2$.

$$\sqrt{y} = (k-1) + (a+1)e^{ax} - kx^2 - ax$$

$$\rightarrow a = 2; 3; 4; 5$$

$$\rightarrow k = -1; -2; -3; 2; 3$$

11)
$$y'' - ay' = ame^{ax}$$
, $y(0) = m + 2$, $y'(0) = m + 2a$.

$$\sqrt{y=m+2e^{ax}+mxe^{ax}}$$

$$\rightarrow a = 2; 3; 4; 5; 6$$

$$\rightarrow m = -4; -2; -3; 2; 3; 4$$

12)
$$y'' - ay' = 4a^2x^3 + a^2 - \frac{24}{a}$$
, $y(0) = a + k$, $y'(0) = ka$.

$$\sqrt{y} = (a-1) + (k+1)e^{ax} - ax^4 - 4x^3 - \frac{12}{a}x^2 - ax$$

$$\rightarrow a = 2; 3; 4; 5$$

$$\rightarrow k = 1; -2; -3; 2; 3$$

13)
$$y'' - ay' = 3akx^2 + (2ma - 6k)x + (a^2 - 2m), \ y(0) = a + m, \ y'(0) = ma.$$

$$\sqrt{y} = (a-1) + (m+1)e^{ax} - kx^3 - mx^2 - ax$$

$$\rightarrow a = 2; 4; 5; 7$$

$$\rightarrow k = 1; 2; 3$$

$$\rightarrow m = 1; 3$$

Дифференциальные уравнения второго порядка1

1)
$$y'' + ay' + by = cx^2 + dx + e$$

$$\sqrt{F}$$

$$\rightarrow c = bC$$

$$\rightarrow d = 2aC + bD$$

$$\rightarrow e = 2C + aD + bE$$

$$\rightarrow a$$
, b , $F =$

•
$$-k_1-k_2$$
, k_1k_2 , $C_1e^{k_1x}+C_2e^{k_2x}+Cx^2+Dx+E$;

•
$$-2k_1$$
, $k_1^2 + k_2^2$, $e^{k_1x} (C_1 \sin k_2 x + C_2 \cos k_2 x) + Cx^2 + Dx + E$

$$\rightarrow k_1 = -2; -1; 1; 2$$

$$\rightarrow k_2 = 1; 2; 3$$

$$\rightarrow$$
 $C = -3; -1; 1; 3$

$$\rightarrow D = -4; -2; 0; 2; 4$$

$$\rightarrow E = -2; -1; 0; 1; 2$$

Дифференциальные уравнения второго порядка2

1)
$$y'' + ay' + by = cx^2 + dx + e$$

$$\sqrt{F}$$

$$\rightarrow c$$
, d , e , a , b , $F =$

•
$$bC$$
, $2aC + bD$, $2C + aD + bE$, $-2k$, k^2 , $C_1e^{kx} + C_2xe^{kx} + Cx^2 + Dx + E$;

•
$$3aC$$
, $6C + 2aD$, $2D + aE$, $-k$, 0 , $C_1 + C_2e^{kx} + Cx^2 + Dx + E$

$$\rightarrow k = -3; -2; -1; 1; 2; 3$$

$$\rightarrow$$
 $C = -3; -1; 1; 3$

$$\rightarrow D = -4; -2; 0; 2; 4$$

$$\rightarrow E = -2; -1; 0; 1; 2$$

Дифференциальные уравнения в полных дифференциалах

301. Решить дифференциальное уравнение.

1)
$$e^{-kx} dx + (a - kxe^{-ky}) dy = 0$$

$$\sqrt{xe^{-ky}+ax}=C$$

$$\rightarrow k = 1; 2; 3; 4; 5; 6; 7$$

$$\rightarrow a = 1; 2; 3; 4; 5; 6; 7; 8; 9; -1; -2; -3; -4; -5; -6; -7; -8; -9$$

2)
$$(x^{a-1}\cos ay - b) dx - x^a \sin ay dy = 0$$

$$\sqrt{\frac{x^a}{a}\cos ay - bx} = C$$

$$\rightarrow a = 2; 3; 4; 5; 6$$

$$\rightarrow b = 1; 2; 3; 4; 5; 6; 7; 8; 9; -1; -2; -3; -4; -5; -6; -7; -8; -9$$

3)
$$(2ax + ye^{xy}) dx + (b + xe^{xy}) dy = 0$$

$$\sqrt{ax^2 + e^{xy} + by} = C$$

$$\rightarrow a = 1; 2; 3; 4; 5; 6; 7; 8; 9; -1; -2; -3; -4; -5; -6; -7; -8; -9$$

4)
$$(x^a + bx^{b-1}y + f) dx + (x^b + y^a + d) dy = 0$$

$$\sqrt{x^{a+1} + (a+1)x^b y + (a+1)fx + y^{a+1} + (a+1)dy} = C$$

$$\rightarrow a = 1; 2; 3; 4; 5; 6$$

$$\rightarrow b = 3; 4; 5; 6; 7$$

$$\rightarrow f = 1; 2; 3; 4; 5; 6; 7; 8; 9; -1; -2; -3; -4; -5; -6; -7; -8; -9$$

$$\rightarrow d = 1; 2; 3; 4; 5; 6; 7; 8; 9; -1; -2; -3; -4; -5; -6; -7; -8; -9$$

5)
$$((b+1)x^b + ax^{a-1}\ln y) dx - ((m+1)y^m - \frac{x^a}{y}) dy = 0$$

$$\sqrt{x^{b+1} + x^a \ln y - y^{m+1}} = C$$

$$\rightarrow a = 3; 4; 5; 6$$

$$\rightarrow m = 2; 3; 4; 5$$

$$\rightarrow b = 2; 3; 4; 5$$

6)
$$(ax^{a-1}y + \sin mx) dx + (x^a - \cos ny) dy = 0$$

$$\sqrt{mnx^ay - n\cos mx - m\sin ny} = C$$

$$\rightarrow a = 2; 3; 4; 5; 6$$

- $\rightarrow m = 2; 3; 4; 5; 6; 7; 8; 9$
- $\rightarrow n = 2; 3; 4; 5; 6; 7; 8; 9$
- 7) $(f^{nx} + y^a + ky) dx + (ay^{a-1}x + kx + e^{by}) dy = 0$
- $\sqrt{bf^{nx} + nby^a x \ln f + nbky x \ln f + ne^{by} \ln f} = C$
- $\rightarrow f = 2; 3; 4; 5; 6; 7; 8; 9$
- $\rightarrow a = 2; 3; 4; 5$
- $\rightarrow k = 2; 3; 4; 5; 6; 7; 8; 9$
- $\rightarrow b = 2; 3; 4; 5; 6; 7; 8; 9$
- $\rightarrow n = 2; 3; 4; 5; 6; 7$

302. Составить уравнение кривой.

1) Записать уравнение кривой, проходящей через точку $M(a,a^{k+1})$, для которой угловой коэффициент касательной в любой точке в k раз больше углового коэффициента прямой, соединяющей эту точку с началом координат.

$$\sqrt{y'=k\frac{y}{x}};\ y=ax^k$$

$$\rightarrow a = 1; 2; 3; 4; 5$$

$$\rightarrow k = 2; 3; 4$$

2) Записать уравнение кривой, проходящей через точку M(a,b), для которой отрезок на оси ординат, отсекаемый любой касательной к кривой, в k раз больше абсциссы точки касания.

$$\sqrt{y'} = \frac{y - kx}{x}; \ y = \frac{ba^{k-1}}{x^{k-1}}$$

$$\rightarrow a = 1; 2; 3; 4; 5$$

$$\rightarrow b = 1; 2; 3; 4; 5; 6; -1; -2; -3; -4; -5; -6$$

$$\rightarrow k = 2; 3; 4$$

3) Записать уравнение кривой, проходящей через точку $M(0, \frac{k-1}{k})$, если угловой коэффициент в любой её точке в k раз больше суммы координат этой точки.

$$\sqrt{y'} = k(x+y); \ y = e^{kx} - x - \frac{1}{k}$$

$$\rightarrow k = 2; 3; 4; 5; 6; 7; 8; 9; 10$$

4) Записать уравнение кривой, проходящей через точку M(a, ma), касательная которой в произвольной её точке отсекает на оси ординат отрезок в k раз больший квадрата ординаты точки касания.

$$\sqrt{y'} = \frac{y - ky^2}{x}; \ y = \frac{mx}{1 - kma + mkx}$$

$$\rightarrow a = 1; 2; 3; 4; 5; -1; -2; -3; -4; -5$$

$$\rightarrow m = 2; 3; 4$$

$$\rightarrow k = 2; 3; 4; 5$$

5) Записать уравнение кривой, проходящей через точку M(a,b), для которой отрезок на оси ординат, отсекаемый любой касательной к кривой, в k раз больше ординаты точки касания.

$$\sqrt{y'} = \frac{y - ky}{x}; \ y = \frac{ba^{k-1}}{x^{k-1}}$$

$$\rightarrow a = 1; 2; 3; 4; 5$$

$$\rightarrow b = 1; 2; 3; 4; 5; 6; -1; -2; -3; -4; -5; -6$$

$$\rightarrow k = 2; 3; 4$$

ДУ с «интегрирующим множителем»

303. Решить дифференциальное уравнение.

1)
$$(x^a - (b-1)y) dx + (x^b y^d + x) dy = 0$$

$$\sqrt{\frac{x^{a-b+1}}{a-b+1} + \frac{y}{x^{b-1}} + \frac{y^{d+1}}{d+1}} = C, \quad \mu(x) = \frac{1}{x^b}$$

$$\rightarrow a = 8; 9; 10; 11; 12; 13$$

$$\rightarrow b = 3; 4; 5; 6$$

$$\rightarrow d = 2; 3; 4; 5; 6$$

2)
$$\left(e^{ay} - \frac{k}{a}\sin kx\right)dx - \cos kx \, dy = 0$$

$$\sqrt{x + \frac{1}{a}e^{-ay}\cos kx} = C, \quad \mu(y) = e^{-ay}$$

$$\rightarrow a = 2; 3; 4; 5; 6; 7; 8; 9; 10$$

$$\rightarrow k = 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14$$

3)
$$(x^a - kby) dx + bx dy = 0$$

$$\sqrt{\frac{x^{a-k}}{a-k} + \frac{by}{x^k}} = C, \quad \mu(x) = \frac{1}{x^{k+1}}$$

$$\rightarrow a = 6; 7; 8; 9; 10$$

$$\rightarrow k = 1; 2; 3; 4; 5$$

$$\rightarrow b = 2; 3; 4; 5; 6; 7; 8; 9; 10$$

4)
$$(ay + (x + b) \ln(x + b)) dx - a(x + b) dy = 0$$

$$\sqrt{\frac{-ay}{x+b}} + \ln^2(x+b) = C, \quad \mu(x) = \frac{1}{(x+b)^2}$$

$$\rightarrow a = 2; 3; 4; 5; 6; 7; 8; 9; 10$$

$$\rightarrow b = 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; -1; -2; -3; -4; -5; -6; -7; -8; -9; -10$$

5)
$$ay\sqrt{b-y^2} dx + \left(ax\sqrt{b-y^2} + y\right) dy = 0$$

$$\sqrt{axy - \sqrt{b - y^2}} = C, \quad \mu(y) = \frac{1}{\sqrt{b - y^2}}$$

$$\rightarrow a = 2; 3; 4; 5; 6; 7; 8; 9; 10; -2; -3; -4; -5; -6; -7; -8; -9;$$

$$\rightarrow b = 1; 2; 3; 4; 5; 6; 7; 8; 9; 10$$

6)
$$(x^a - \sin^2 ky) dx + x \sin 2ky dy = 0$$

$$\sqrt{\frac{x^{a-k}}{a-k} + \frac{\sin^2 ky}{kx^k}} = C, \quad \mu(x) = \frac{1}{x^{k+1}}$$

$$\rightarrow a = 6; 7; 8; 9; 10; 11; 12$$

$$\rightarrow k = 1; 2; 3; 4; 5$$

Часть XVIII

Уравнения математической физики

Приведение к каноническому виду

304. Привести к каноническому виду уравнение

$$\Rightarrow a = 1; 2; 3$$

$$\Rightarrow b = 4; 5; 6$$

$$\Rightarrow$$
 $c = -1; 7; -3$

$$\Rightarrow$$
 $d = 10; -2; 3$

1)
$$au_{xx} + a(k_1 + k_2)u_{xy} + ak_1k_2u_{yy} + bu_x + cu_y + du = 0$$

$$\sqrt{a(k_1 - k_2)^2 u_{\xi\eta}} = (c - bk_1)u_{\xi} + (c - bk_2)u_{\eta} + du, \xi = -k_1x + y, \eta = -k_2x + y$$

$$\rightarrow k_1 = k_2 - 2$$
; $k_2 - 1$; $k_2 + 1$; $k_2 + 2$

$$\rightarrow k_2 = -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5; 6$$

2)
$$au_{xx} - 2ak_1u_{xy} + a(k_1^2 + k_2^2)u_{yy} + bu_x + cu_y + du = 0$$

$$\sqrt{ak_2^2 u_{\xi\xi} + ak_2^2 u_{\eta\eta}} = (-c - bk_1)u_{\xi} - bk_2 u_{\eta} - du, \xi = k_1 x + y, \eta = k_2 x$$

$$\rightarrow k_1 = -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5; 6$$

$$\rightarrow k_2 = 1; 2; 3; 4; 5; 6$$

3)
$$au_{xx} - 2ak_1u_{xy} + ak_1^2u_{yy} + bu_x + cu_y + du = 0$$

$$\sqrt{au_{nn}} = (-c - bk_1)u_{\xi} - bu_n - du, \xi = k_1x + y, \eta = x$$

$$\rightarrow k_1 = -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5; 6$$

Задача Коши для ур колеб струны

305. Решить задачу Коши

1)
$$u_{tt} = a^2 u_{xx}$$
, $u|_{t=0} = F$, $u_t|_{t=0} = G$

$$\sqrt{}$$

$$\rightarrow$$
 $F = cx + b$; $cx^2 + b$; $\sin bx$; $\cos bx$

$$\rightarrow G = bx + c$$
; $cx^2 + bx$; $\sin bx$; $\cos bx$

$$\rightarrow a = 1; 2; 3$$

$$\rightarrow b = 1; 2; 3; 4; 5; 6$$

$$\rightarrow c = -3; -2; -1; 1; 2; 3$$

Смешанная задача для ур колеб струны

306. Решить смешанную задачу

- 1) $u_{tt} = a^2 u_{xx}$, $0 \le x \le l$, $u|_{t=0} = F$, $u_t|_{t=0} = G$, $u|_{x=0} = u|_{x=l} = 0$
- $\sqrt{}$
- $\rightarrow F = \sin \frac{k\pi x}{l}$
- $\rightarrow G = \sin \frac{m\pi x}{l}$
- $\rightarrow a = 1; 2; 3$
- $\rightarrow k = 1; 2; 3; 4$
- $\rightarrow m = 1; 2; 3; 4; 5; 6; 7$
- $\rightarrow l = 1; 2; 3; 4$

Часть XIX Теория вероятностей

Элементарная вероятность

307.

$$\Rightarrow p_1 = \frac{6}{10}; \frac{7}{10}; \frac{8}{10}; \frac{9}{10}$$

$$\Rightarrow p_2 = \frac{6}{10}; \frac{7}{10}; \frac{8}{10}; \frac{9}{10}$$

$$\Rightarrow p_3 = \frac{6}{10}; \frac{7}{10}; \frac{8}{10}; \frac{9}{10}$$

- 1) 3 студента сдают экзамен. Вероятность успешной сдачи для 1-го p_1 , для второго p_2 , для третьего p_3 . Найти вероятность того, что
 - а) все трое сдали экзамен;
 - б) двое сдали экзамен;
 - в) хотя бы 1 студент сдал экзамен.

$$\sqrt{a}$$
 a) $p_1p_2p_3$; 6) $p_1p_2(1-p_3)+p_1(1-p_2)p_3+(1-p_1)p_2p_3$; B) $1-(1-p_1)(1-p_2)(1-p_3)$

- 2) 3 стрелка стреляют в цель. Вероятность попадания для 1-го p_1 , для второго p_2 , для третьего p_3 . Найти вероятность того, что
 - а) все трое попали в цель;
 - б) двое попали в цель;
 - в) хотя бы 1 стрелок попал в цель.

$$\sqrt{}$$
 a) $p_1p_2p_3$; 6) $p_1p_2(1-p_3)+p_1(1-p_2)p_3+(1-p_1)p_2p_3$; B) $1-(1-p_1)(1-p_2)(1-p_3)$

- 3) 3 станка производят детали. Вероятность производства детали перового сорта для 1-го станка p_1 , для второго p_2 , для третьего p_3 . Найти вероятность того, что
 - а) произведены 3 детали первого сорта;
 - б) две детали первого сорта;
 - в) хотя бы 1 деталь первого сорта.

$$\sqrt{}$$
 a) $p_1p_2p_3$; b) $p_1p_2(1-p_3)+p_1(1-p_2)p_3+(1-p_1)p_2p_3$; b) $1-(1-p_1)(1-p_2)(1-p_3)$

Элементарная вероятность

308.

$$\Rightarrow p_1 = \frac{3}{5}; \frac{4}{5}; \frac{2}{3}; \frac{3}{4}$$

$$\Rightarrow p_2 = \frac{2}{5}; \frac{1}{2}; \frac{3}{5}; \frac{3}{4}; \frac{4}{5}$$

$$\Rightarrow p_3 = \frac{1}{2}; \frac{3}{5}; \frac{3}{4}$$

1) 3 студента сдают экзамен. Вероятность успешной сдачи для 1-го — p_1 , для второго — p_2 , для третьего — p_3 . Найти вероятность того, что двое сдали экзамен.

$$\sqrt{p_1p_2(1-p_3)+p_1(1-p_2)p_3+(1-p_1)p_2p_3}$$

2) 3 стрелка стреляют в цель. Вероятность попадания для 1-го — p_1 , для второго — p_2 , для третьего — p_3 . Найти вероятность того, что хотя бы 1 стрелок попал в цель.

$$\sqrt{1-(1-p_1)(1-p_2)(1-p_3)}$$

- 3) 3 станка производят детали. Вероятность производства детали перового сорта для 1-го станка p_1 , для второго p_2 , для третьего p_3 . Найти вероятность того, что произведены 3 детали первого сорта.
- $\sqrt{p_1p_2p_3}$

309. Решить задачу по теме «Формула полной вероятности».

```
\Rightarrow n_1 = 7; 10; 13; 16; 19
```

$$\Rightarrow$$
 $n_2 = 8$; 11; 14; 17; 20

$$\Rightarrow$$
 $n_3 = 9$; 12; 15; 18; 21

1) На сборочное предприятие поступили однотипные комплектующие с трех заводов в количестве: n_1 с первого завода, n_2 со второго, n_3 с третьего. Вероятность качественного изготовления изделий на первом заводе p_1 , на втором p_2 , на третьем p_3 . Какова вероятность того, что взятое случайным образом изделие будет качественным?

$$\sqrt{\frac{n_1p_1 + n_2p_2 + n_3p_3}{n_1 + n_2 + n_3}}$$

$$\rightarrow p_1 = \frac{6}{10}; \frac{7}{10}; \frac{8}{10}; \frac{9}{10}$$

$$\rightarrow p_2 = \frac{6}{10}; \frac{7}{10}; \frac{8}{10}; \frac{9}{10}$$

$$\rightarrow p_3 = \frac{6}{10}; \frac{7}{10}; \frac{8}{10}; \frac{9}{10}$$

2) Покупатель может приобрести нужный ему товар в одной из n_1 секций первого магазина, или в одной из n_2 секций второго, или в одной из n_3 секций третьего. Вероятность того, что к моменту прихода покупателя в секциях первого магазина в продаже имеется нужный товар равна p_1 , в секциях второго магазина p_2 , в секциях третьего магазина p_3 . Какова вероятность того, что в наугад выбранной секции имеется в продаже нужный товар?

$$\sqrt{\frac{n_1p_1 + n_2p_2 + n_3p_3}{n_1 + n_2 + n_3}}$$

$$\rightarrow p_1 = \frac{6}{10}; \frac{7}{10}; \frac{8}{10}; \frac{9}{10}$$

$$\rightarrow p_2 = \frac{4}{10}; \frac{5}{10}; \frac{8}{10}; \frac{9}{10}$$

$$\rightarrow p_3 = \frac{3}{10}; \frac{6}{10}; \frac{8}{10}; \frac{9}{10}$$

3) Трое рабочих изготвливают однотипные изделия. Первый рабочий изготовил n_1 изделий, второй $-n_2$, третий $-n_3$. Вероятность брака у первого рабочего p_1 , у второго $-p_2$, у третьего $-p_3$. Какова вероятность того, что взятое случайным образом изделие будет бракованным?

$$\sqrt{\frac{n_1p_1 + n_2p_2 + n_3p_3}{n_1 + n_2 + n_3}}$$

$$\rightarrow p_1 = \frac{1}{10}; \frac{2}{10}; \frac{3}{10}$$

$$\rightarrow p_2 = \frac{1}{10}; \frac{2}{10}; \frac{3}{10}$$

$$\rightarrow p_3 = \frac{1}{10}; \frac{2}{10}; \frac{3}{10}$$

- **310.** Решить задачу по теме «Закон Пуассона».
 - 1) Автоматическая телефонная станция получает в среднем за час 60a вызовов. Какова вероятность того, что за данную минуту она получает не более двух вызовов?

$$\sqrt{(1+a+\frac{a}{2})e^{-a}};$$

$$\rightarrow a = \frac{3}{2}; \frac{5}{2}; \frac{7}{2}; \frac{9}{2}; 2; 3; 4; 5; 6$$

2) Книга в n страниц имеет an опечаток. Какова вероятность того, что на случайно выбранной странице не более двух опечаток?

$$\sqrt{(1+a+\frac{a}{2})e^{-a}};$$

$$\rightarrow a = \frac{1}{10}; \frac{2}{10}; \frac{3}{10}$$

$$\rightarrow n = 50; 60; 70; 80; 90; 100$$

3) Среди семян ржи m% семян сорняков. Какова вероятность при случайном отборе n семян обнаружить не более двух семян сорняков?

$$\sqrt{(1+a+\frac{a}{2})e^{-a}};$$

$$\rightarrow a = \frac{mn}{100}$$

$$\rightarrow n = 100; 110; 120; 130; 140; 150$$

$$\rightarrow m = 1; 2; 3; 4; 5$$

- 311. Решить задачу по теме «Дискретные случайные величины».
 - 1) Устройство состоит из трех независимо работающих элементов. Верятность отказа каждого элемента в одном опыте равна p. Составить закон распределения дискретной случайной величины X числа отказавших элементов. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины X.

$$\sqrt{3p}$$
; $3p(1-p)$; $\sqrt{3p(1-p)}$;
 $\rightarrow p = \frac{1}{10}$; $\frac{2}{10}$; $\frac{3}{10}$; $\frac{4}{10}$; $\frac{5}{10}$; $\frac{6}{10}$

2) Баскетболист делает три штрафных броска. Верятность попадания при каждом броске равна p. Составить закон распределения дискретной случайной величины X — числа попаданий мяча в корзину. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины X.

$$\sqrt{3p}$$
; $3p(1-p)$; $\sqrt{3p(1-p)}$;
 $\rightarrow p = \frac{5}{10}$; $\frac{6}{10}$; $\frac{7}{10}$; $\frac{8}{10}$; $\frac{9}{10}$

3) Верятность сбоя в работе ATC равна p. Составить закон распределения дискретной случайной величины X — числа сбоев, если в данный момент поступило три вызова. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины X.

$$\sqrt{3p}$$
; $3p(1-p)$; $\sqrt{3p(1-p)}$;
 $\rightarrow p = \frac{1}{10}$; $\frac{2}{10}$; $\frac{3}{10}$; $\frac{4}{10}$; $\frac{5}{10}$

Непрерывные случайные величины

312. Случайная величина X задана функцией распределения вероятностей F(x). Найти плотность вероятностей, математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины X.

$$\Rightarrow a = -5; -4; -3; -2; -1; 1; 2; 3; 4; 5$$

1)
$$F(x) = \begin{cases} 0, & x < a, \\ (x-a)^2, & a < x \le a+1, \\ 1, & x > a+1. \end{cases}$$

$$\sqrt{a+\frac{2}{3}}; \frac{1}{18}; \frac{\sqrt{2}}{6}$$

2)
$$F(x) = \begin{cases} 0, & x < a, \\ \frac{x-a}{b}, & a < x \le a+b, \\ 1, & x > a+b. \end{cases}$$

$$\sqrt{a+\frac{b}{2}}; \frac{b^2}{12}; \frac{b\sqrt{3}}{6}$$

$$\rightarrow b = 1; 2; 3; 4; 5$$

- 313. Решить задачу по теме «Оценка параметров».
 - 1) Методом моментов по выборке $x_1, x_2, ..., x_n$ найти точечную оценку неизвестного параметра λ распределения случайной величины X, зная что плотность распределения вероятностей

$$f(x) = \lambda e^{-\lambda x}, (x \ge 0).$$

- $\sqrt{1/x_{\rm B}}$
- 2) Случайная величина X распределена по закону Пуассона

$$P_m(X = x_i) = \frac{\lambda^{x_i} e^{-\lambda}}{x_i!},$$

где m — число испытаний, произведенных в одном опыте; x_i — число появлений события в i-том опыте. Найти методом моментов по выборке $x_1, x_2, ..., x_n$ точечную оценку неизвестного параметра λ , определяющего распределение Пуассона.

- $\sqrt{x_{\rm B}}$
- 3) Найти методом моментов по выборке $x_1, x_2, ..., x_n$ точечную оценку неизвестного параметра p биномиального распределения

$$P_m(X = x_i) = C_m^{x_i} p^{x_i} (1 - p)^{m - x_i},$$

где x_i – число появлений события в i-м опыте $(i=1,2,\ldots,n), m$ – количество испытаний в одном опыте.

$$\sqrt{\frac{1}{nm}}\sum x_i$$

4) Найти методом наибольшего правдоподобия по выборке $x_1, x_2, ..., x_n$ точечную оценку неизвестного параметра λ показательного распределения, плотность которого

$$f(x) = \lambda e^{-\lambda x}, (x \ge 0).$$

- $\sqrt{1/x_{\rm B}}$
- 5) Методом наибольшего правдоподобия найти по выборке $x_1, x_2, ..., x_n$ точечную оценку неизвестного параметра p геометрического распределения

$$P(X = x_i) = (1 - p)^{x_i} p,$$

где p – вероятность появления события в отдельном испытании.

$$\sqrt{1/x_{\rm B}}$$

Статистика

314. Решить задачу по теме «Статистика».

⇒
$$a = 2$$
; 3; 4; 5
⇒ $x = 0$; 5; 10; 15
⇒ $n = 3$; 4; 5
⇒ $m = 9$; 10; 11
⇒ $k = 19$; 20; 21

1) Выборка задана интервальным вариационным рядом

i	$x_i; x_{i+1}$	n_i
1	x; x + a	n
2	x+a;x+2a	m
3	x+2a;x+3a	k
4	x+3a;x+4a	42 - k - m
5	x+4a;x+5a	8-n

Построить полигон частот. Найти выборочную среднюю и выборочную дисперсию.

$$\sqrt{-x_{\text{\tiny B}}} = x + \frac{a(183 - 4n - 2n - k)}{50}, \ D_{\text{\tiny B}} = \frac{a^2}{100}(1353 - 40n - 20m - 12k) - \frac{a^2}{2500}(183 - 4n - 2m - k)$$

2) Выборка задана интервальным вариационным рядом

i	$x_i; x_{i+1}$	n_i
1	x; x + a	n
2	x+a;x+2a	m
3	x+2a;x+3a	k
4	x + 3a; x + 4a	42-k-m
5	x + 4a; x + 5a	8-n

Построить гистограмму частот. Найти выборочную среднюю и выборочную дисперсию.

$$\sqrt{x_{\text{B}}} = x + \frac{a(183 - 4n - 2n - k)}{50}, \ D_{\text{B}} = \frac{a^2}{100}(1353 - 40n - 20m - 12k) - \frac{a^2}{2500}(183 - 4n - 2m - k)$$

3) Выборка задана интервальным вариационным рядом

i	$x_i; x_{i+1}$	n_i
1	x; x + a	n
2	x+a;x+2a	m
3	x + 2a; x + 3a	k
4	x + 3a; x + 4a	42-k-m
5	x + 4a; x + 5a	8-n

Построить график эмпирической функции распределения частот. Найти доверительные интервалы для математического ожидания и среднего квадратического отклонения при надежности $\gamma = 0,95$.

$$\sqrt{x_{\text{B}}} = x + \frac{a(183 - 4n - 2n - k)}{50}, \ D_{\text{B}} = \frac{a^2}{100}(1353 - 40n - 20m - 12k) - \frac{a^2}{2500}(183 - 4n - 2m - k)$$

Часть XX ЭМММ

315. Решить задачу

- 1) Для потребителя с функцией полезности $u(x_1, x_2) = ax_1 + bx_1x_2$
 - 1. Записать математическую модель оптимального выбора потребителя.
 - 2. Найти функции спроса на оба товара.
 - 3. Найти точку спроса для цен $P_0 = (P_1, P_2)$ и дохода $Q_0 = Q_0$ и дать содержательный ответ.
 - 4. Пусть цена на первый товар увеличится в k раз. Найти компенсацию дохода потребителя. Какой набор товаров является теперь оптимальным? Сколько нужно средств, чтобы купить старый оптимальный набор по новой цене? Сравнить потребительские наборы.
 - 5. Определить, на сколько процентов измениться спрос на первый товар, если цена на второй товар увеличится на 1%?

$$\sqrt{\qquad} x_1^* = \frac{bQ + ap_2}{2p_1b}; x_2^* = \frac{bQ - ap_2}{2p_2b};$$
 Точ. спроса $\left(\frac{bQ_0 + aP_2}{2P_1b}; \frac{bQ_0 - aP_2}{2P_2b}\right);$
$$dQ = Q_1;$$
 H. точ. спроса $\left(\frac{b(Q_0 + Q_1) + aP_2}{2kP_1b}; \frac{b(Q_0 + Q_1) - aP_2}{2P_2b}\right);$

Увелич. на 0.5%

Часть XXI Экзаменационные вопросы

исит 1 І

- 1) Числовые множества. Доказательство того, что нет рационального числа, квадрат которого равен 2.
- 2) Функции и их характеристики. Сложная функция. Обратная функция. Основные элементарные функции и их графики.
- 3) Числовая последовательность. Предел последовательности. Предельный переход в неравенствах.
- 4) Предел монотонной ограниченной последовательности. Число e.
- 5) Предел функции по Коши и по Гейне. Исследование существование предела функции $\frac{\sin x}{x}$.
- 6) Односторонние пределы. Предел при x стремящемся к бесконечности. ББВ.
- 7) Бесконечно малые функции
- 8) Пределы и арифметические операции.
- 9) Признаки существования пределов.
- 10) Первый замечательный предел.
- 11) Второй замечательный предел.
- 12) Сравнение бесконечно малых. Эквивалентные бесконечно малые функции.
- 13) Вывод важнейших эквивалентностей.
- 14) Непрерывность функций. Доказательство непрерывности косинуса. Точки разрыва и их классификация.
- 15) Теоремы о непрерывных функциях. Свойства функций, непрерывных на отрезке.
- 16) Производная функции. Геометрический и физический смысл. Уравнения касательной и нормали.
- 17) Связь между непрерывностью и дифференцируемостью. Производная суммы, произведения и частного.
- 18) Производная сложной и обратной функции.
- 19) Производные основных элементарных функций.
- 20) Дифференцирование неявных и параметрически заданных функций. Логарифмическое дифференцирование.
- 21) Производные высших порядков. Производные высших порядков от неявных и параметрически заданных функций.
- 22) Дифференциал функции. Основные теоремы. Инвариантность формы первого дифференциала.
- 23) Применение дифференциала. Дифференциалы высших порядков.

- 24) Теоремы Ферма и Роля.
- 25) Теоремы Лагранжа и Коши.
- 26) Правила Лопиталя.

ИСИТ 1 II

- 1) Вывод формулы Тейлора.
- 2) Формулы Тейлора и Маклорена. Разложение экспоненты.
- 3) Монотонность. Необходимое усовие экстремума. Минимум и максимум функции на отрезке.
- 4) Первое и второе достаточные условия экстремума.
- 5) Выпуклость и точки перегиба.
- 6) Вертикальные, горизонтальные и наклонные асимптоты.
- 7) Неопределённый интеграл. Свойства неопределённого интеграла.
- 8) Таблица основных неопределённых интегралов.
- 9) Основные методы интегрирования. Методы интегрирования заменой переменной и по частям.
- 10) Интегрирование рациональных функций.
- 11) Интегрирование тригонометрических функций.
- 12) Интегрирование иррациональных функций.
- 13) Определённый интеграл. Его геометрический и физический смысл.
- 14) Формула Ньютона-Лейбница.
- 15) Свойства определённого интеграла.
- 16) Вычисление определённого интеграла. Замена переменной. Интегрирование по частям.
- 17) Формула Валлиса.
- 18) Вычисление площадей плоских фигур.
- 19) Вычисление дуги плоской кривой. Вычисление объёма тела.
- 20) Работа переменной силы. Работа при выкачивании жидкостей. Путь, пройденный телом. Давление жидкости на вертикальную пластинку.
- 21) Формулы прямоуголоников и трапеций для приближённого вычисления определённого интеграла.
- 22) Формула парабол (Симпсона) для приближённого вычисления определённого интеграла.

- 1) Понятие Φ МП. Предел. Пример функции, у которой есть повторные пределы, но нет двойного.
- 2) Непрерывность. Открытые, замкнутые, ограниченные, неограниченные, связные, несвязные области. Свойства непрерывных функций.
- 3) Частные производные первого порядка, их геометрический смысл. Частные производные высших порядков. Теорема Шварца, пример её подтверждающий.
- 4) Дифференцируемость и полный дифференциал. Теорема о необходимом и достаточном условиях дифференцируемости. Применение к приближённым вычислениям.
- 5) Производная сложной функции. Полная производная. Пример, показывающий, что условие диффиренцируемости нельзя отбросить.
- 6) Дифференциалы высших порядков. Инвариантность формы первого дифференциала.
- 7) Дифференцирование неявной функции. Теорема существования неявной функции. Случай одной переменной.
- 8) Касательная плоскость и нормаль к поверхности.
- 9) Экстремум ФМП. Наибольшее и наименьшее значения ФМП в ограниченной замкнутой области.
- 10) Достаточные условия экстремума.
- 11) Эйлеров интеграл второго рода. Свойства.
- 12) Эйлеров интеграл первого рода. Свойства.
- 13) Определение двойного интеграла. Геометрический и физический смысл.
- 14) Свойства двойного интеграла.
- 15) Вычисление двойного интеграла в декартовых координатах.
- 16) Замена переменных в двойном интеграле. Якобиан. Вычисление двойного интеграла в полярных координатах.
- 17) Геометрические и физические приложения двойного интеграла.
- 18) Определение и свойства тройного интеграла.
- 19) Вычисление тройного интеграла в декартовых координатах.
- 20) Замена переменных в тройном интеграле. Вычисление тройного интеграла в цилиндрических и сферических координатах.
- 21) Геометрические и механические приложения тройного интеграла.

ИСИТ 4. Коллоквиум II

- 1) Доказательство необходимой части теоремы о необходимом и достаточном условиях дифференцируемости.
- 2) Доказательство теоремы о сложой функции.
- 3) Доказательство формулы для производной неявной функции.
- 4) Касательная плоскость и нормаль к поверхности. Вывод уравнений.
- 5) Доказательство необходимого условия экстремума ФМП.
- 6) Нахождение области определения эйлерова интеграла второго рода.
- 7) Вывод соотношения между гамма-функцией и факториалом.
- 8) Нахождение области определения эйлерова интеграла первого рода.
- 9) Вывод формулы для перехода от двойного интеграла к повторному.
- 10) Вычисление якобиана для циллиндрических и сферических координат.

ИСИТ 4. Экзамен 1

- 1) Несобственные интегралы первого рода. Примеры. Признаки сравнения. Интеграл Пуассона.
- 2) Несобственные интегралы второго рода. Примеры. Признаки сравнения.
- 3) Эйлеров интеграл второго рода. Нахождение области определения.
- 4) Свойства гамма-фукции. Вывод соотношения между гамма-функцией и факториалом. Вычисление интеграла Пуассона.
- 5) Эйлеров интеграл первого рода. Нахождение области определения.
- 6) Свойства бета-функции. Приложения при вычислении интегралов.
- 7) Определение двойного интеграла. Геометрический и физический смысл.
- 8) Свойства двойного интеграла.
- 9) Вычисление двойного интеграла в декартовых координатах. Вывод формулы для перехода от двойного интеграла к повторному. Пример.
- 10) Замена переменных в двойном интеграле. Якобиан. Вычисление двойного интеграла в полярных координатах.
- 11) Определение и свойства тройного интеграла.
- 12) Вычисление тройного интеграла в декартовых координатах. Пример.
- 13) Замена переменных в тройном интеграле. Вычисление тройного интеграла в цилиндрических координатах.
- 14) Вычисление тройного интеграла в сферических координатах.
- 15) Геометрические и механические приложения двойного и тройного интеграла.

ИСИТ 4. Экзамен II

- 1) Числовые ряды. Основные понятия. Геометрическая прогрессия.
- 2) Свойства числовых рядов.
- 3) Необходимый признак сходимости числового ряда. Гармонический ряд.
- 4) Первый и второй признаки сравнения рядов.
- 5) Признак Даламбера. Радикальный признак Коши.
- 6) Интрегральный признак Коши. Обобщённый гармонический ряд.
- 7) Знакочередующиеся ряды. Признак Лейбница. Примеры рядов лейбницевского типа. Оценка остатка ряда лейбницевского типа.
- 8) Достаточный признак сходимости знакопеременных рядов.
- 9) Абсолютная и условная сходимость. Свойства абсолютно сходящихся рядов. Теорема Римана. Пример условно сходящегося ряда.
- 10) Функциональные и степенные ряды. Теорема Абеля.
- 11) Интервал и радиус сходимости степенного ряда. Вывод двух формул для радиуса сходимости.
- 12) Свойства степенных рядов. Ряды Тейлора и Маклорена.
- 13) Достаточные условия сходимости рядов Тейлора и Маклорена. Пример Коши.
- 14) Алгоритм разложения функции в ряд Тейлора. Ряд Тейлора для экспоненты. Вычисление экспонент.
- 15) Разложение в ряд Тейлора синуса, косинуса, синуса гиперболического и косинуса гиперболического. Вычисление синусов и косинусов.
- 16) Биномиальный ряд. Основные частные случаи. Вычисление корней.
- 17) Разложение в ряд Тейлора логарифма. Вычисление логарифмов.
- 18) Разложение в ряд Тейлора арктангенса и арксинуса. Вычисление числа π .
- 19) Приближённое вычисление определённых интегралов. Пример.
- 20) Приближённое решение дифференциальных уравнений. Пример.
- 21) Ряды Фурье. Основные определения. Ортогональность тригонометрической системы.
- 22) Разложение в ряд Фурье 2π -периодических функций. Теорема Дирихле.
- 23) Разложение в ряд Фурье чётных и нечётных функций.
- 24) Разложение в ряд Фурье непериодических функций.
- 25) Ряд Фурье в комплексной форме.

26) Интеграл Фурье.

- 1) Классическая формула расчета вероятности.
- 2) Элементы комбинаторики. Формулы для расчета числа сочетаний, размещений и перестановок.
- 3) Геометрическая формула расчета вероятности.
- 4) Формула полной вероятности.
- 5) Формула Байеса.
- 6) Схема независимых испытаний Бернулли. Формула Бернулли.
- 7) Схема независимых испытаний Бернулли. Формула Пуассона.
- 8) Схема независимых испытаний Бернулли. Локальная формула Муавра-Лапласа.
- 9) Схема независимых испытаний Бернулли. Интегральная формула Муавра Лапласа.
- 10) Определение дискретной СВ.
- 11) Примеры дискретных СВ.
- 12) Функция распределения дискретной СВ.
- 13) Математическое ожидание, дисперсия, среднеквадратическое отклонение дискретной СВ.
- 14) Определение непрерывной СВ.
- 15) Примеры непрерывных СВ.
- 16) Функция распределения непрерывной СВ. Связь между функцией распределения и плотностью распределения непрерывной СВ.
- 17) Математическое ожидание, дисперсия, среднеквадратическое отклонение непрерывной СВ.
- 18) Определение коэффициента корреляции.
- 19) Определение характеристической функции.

- 1) Определение вариационного ряда. Дискретные и непрерывные ВР.
- 2) Графическое представление ВР. Гистограмма, полигон частот, кумулянта.
- 3) Числовые характеристики ВР.
- 4) Определения несмещенной, смещенной оценки.
- 5) Понятие вариации оценки.
- 6) Суть метода моментов.
- 7) Суть метода наименьших квадратов.
- 8) Суть метода максимального правдоподобия.
- 9) Примеры распределений, применяемых в статистике.
- 10) Постановка задачи проверки статистических гипотез. Простые и сложные гипотезы.
- 11) Понятие ошибок первого и второго рода, мощности критерия.
- 12) Проверка гипотезы о нормальном распределении по критерию.
- 13) Проверка гипотезы о распределении Пуассона по критерию.
- 14) Доверительный интервал для математического ожидания.
- 15) Доверительный интервал для дисперсии.
- 16) Критерий согласия Колмогорова.
- 17) Критерий согласия Колмогорова-Смирнова.
- 18) Постановка задачи регрессионного анализа.
- 19) Постановка задачи дисперсионного анализа.