Cahier de calcul

— pratique et entraı̂nement —

Plimpton 322, tablette d'argile babylonienne (1 800 av. JC)

Cette tablette, vieille de près de 4 000 ans, donne une liste de triplets pythagoriciens, c'est-à-dire de triplets (a,b,c) de nombres entiers vérifiant $a^2+b^2=c^2$.

Ce cahier de calcul a été écrit collectivement.

Coordination

Colas Bardavid

Équipe des participants

Vincent Bayle, Romain Basson, Olivier Bertrand, Ménard Bourgade, Julien Bureaux, Alain Camanes, Mathieu Charlot, Mathilde Colin de Verdière, Keven Commault, Miguel Concy, Rémy Eupherte, Hélène Gros, Audrey Hechner, Florian Hechner, Marie Hézard, Nicolas Laillet, Valérie Le Blanc, Thierry Limoges, Quang-Thai Ngo, Xavier Pellegrin, Fabien Pellegrini, Jean-Louis Pourtier, Valérie Robert, Jean-Pierre Técourt, Guillaume Tomasini, Marc Tenti

Le pictogramme • de l'horloge a été créé par Ralf SCHMITZER (The Noun Project). La photographie de la couverture vient de Wikipedia.

Version 7 — 25 décembre 2021

Sommaire

Ш	1.	Fractions	. 1
	2.	Puissances	. 3
	3.	Calcul littéral	. 4
	4.	Racines carrées	. 6
	5.	Expressions algébriques	. 8
	6.	Équations du second degré	10
	7.	Exponentielle et Logarithme	13
	8.	Trigonométrie	16
	9.	Dérivation	18
	10.	Primitives	21
	11.	Calcul d'intégrales	24
	12.	Intégration par parties	26
	13.	Changements de variable	28
	14.	Intégration des fractions rationnelles	30
	15.	Systèmes linéaires	33
	16.	Nombres complexes	35
	17.	Trigonométrie et nombres complexes	36
	18.	Sommes et produits	38
	19.	Coefficients binomiaux	41
	20.	Manipulation des fonctions usuelles	43
	21.	Suites numériques	46
	22.	Développements limités	48
	23.	Arithmétique	50
	24.	Polynômes	52
	25.	Décomposition en éléments simples	54
	26.	Calcul matriciel	57
	27.	Algèbre linéaire	61
	28.	Équations différentielles	64
	29.	Séries numériques	66
	30.	Structures euclidiennes	68
	31.	Groupes symétriques	70
	32.	Déterminants	72
П	33.	Fonctions de deux variables	74

Présentation et mode d'emploi

Qu'est-ce que ce cahier?

Ce cahier est un cahier de calcul, basé sur le programme de mathématiques collège/lycée ainsi que sur le programme de première année de Post-Bac. Il ne se substitue en aucun cas aux TD donnés par votre professeur de maths mais est un outil pour vous aider à vous améliorer en calcul.

À quoi sert-il?

En mathématiques, la technique et le calcul sont fondamentaux.

Sans technique, il est impossible de correctement appréhender une question mathématique. De même que l'on doit faire des gammes et beaucoup pratiquer lorsque l'on apprend un instrument, on doit calculer régulièrement lorsque l'on pratique les mathématiques, notamment en CPGE et dans les études Post-Bac.

Comment est-il organisé?

Ce cahier comporte plusieurs parties :

- Un sommaire vous permettant d'avoir d'un seul coup d'œil les différentes fiches de ce cahier de calcul, et de noter celles que vous avez déjà faites ou pas.
- Une partie de calculs élémentaires, faisables dès le début de la première année, et centrée sur les calculs « de base » : développement, factorisation, racines carrées, fractions, etc. Cela peut vous paraître simple, mais sachez que ce type d'erreur de calcul est toujours fréquent, même en spé, même sur les copies de concours. Travailler les techniques élémentaires de calcul vous facilitera grandement la vie!
- Une partie liée au programme de première année : sont indiqués précisément les chapitres nécessaires pour pouvoir aborder chaque fiche de calculs.
- Les réponses brutes ainsi que les corrigés détaillés sont dans un second cahier dédié, diffusé selon le choix de votre professeur.

Chaque fiche de calculs est organisée ainsi :

- Une présentation du thème de la fiche et des prérequis (notamment, pour des techniques propres à certaines filières, on précise de quelle filière il s'agit)
- Vous êtes invité à écrire directement les réponses dans les cadres prévus à cet effet.

Comment l'utiliser?

Un travail personnalisé.

Ce cahier de calcul est prévu pour être utilisé en autonomie.

Choisissez les calculs que vous faites en fonction des difficultés que vous rencontrez et des chapitres que vous étudiez, ou bien en fonction des conseils de votre professeur de mathématiques.

Pensez aussi à l'utiliser à l'issue d'un DS ou d'une colle, lorsque vous vous êtes rendu compte que certains points de calcul étaient mal maîtrisés.

Enfin, ne cherchez pas à faire linéairement ce cahier : les fiches ne sont pas à faire dans l'ordre, mais en fonction des points que vous souhaitez travailler.

Un travail régulier.

Essayez de pratiquer les calculs à un rythme régulier : **une quinzaine de minutes par jour** par exemple. Privilégiez un travail régulier sur le long terme plutôt qu'un objectif du type « faire 10 fiches par jour pendant les vacances » .

Point important : pour réussir à calculer, il faut répéter. C'est pour cela que nous avons mis plusieurs exemples illustrant chaque technique de calcul.

Il peut être utile de parfois refaire certains calculs : n'hésitez pas à cacher les réponses déjà écrites dans les cadres, ou à écrire vos réponses dans les cadres au crayon à papier.

Un travail efficace.

Attention à l'utilisation des réponses et des corrigés : il est important de chercher suffisamment par soimême avant de regarder les réponses et/ou les corrigés. Il faut vraiment **faire les calculs** afin que le corrigé vous soit profitable.

N'hésitez pas à ne faire qu'en partie une feuille de calculs : il peut être utile de revenir plusieurs fois à une même feuille, afin de voir à quel point telle technique a bien été assimilée.

La progression

Avoir une solide technique de calcul s'acquiert sur le long terme, mais si vous étudiez sérieusement les fiches de ce cahier, vous verrez assez rapidement des progrès apparaître, en colle, en DS, etc. Une bonne connaissance du cours combinée à une plus grande aisance en calcul, c'est un très beau tremplin vers la réussite en prépa ou dans vos études!

Une erreur? Une remarque?

Si jamais vous voyez une erreur d'énoncé ou de corrigé, ou bien si vous avez une remarque à faire, n'hésitez pas à écrire à l'adresse cahierdecalcul@gmail.com. Si vous pensez avoir décelé une erreur, merci de donner aussi l'identifiant de la fiche, écrit en gris clair en haut à droite de la fiche.

Fractions

Prérequis

Règles de calcul sur les fractions.

Calculs dans l'ensemble des rationnels

Calcul 1.1 — Simplification de fractions.

0000

Simplifier les fractions suivantes (la lettre k désigne un entier naturel non nul).

a)
$$\frac{32}{40}$$

c)
$$\frac{27^{-1} \times 4^2}{3^{-4} \times 2^4}$$

b)
$$8^3 \times \frac{1}{4^2}$$

d)
$$\frac{(-2)^{2k+1} \times 3^{2k-1}}{4^k \times 3^{-k+1}} \dots$$

Calcul 1.2 — Sommes, produits, quotients, puissances.

0000

Écrire les nombres suivants sous forme d'une fraction irréductible.

a)
$$\frac{2}{4} - \frac{1}{3}$$

c)
$$\frac{36}{25} \times \frac{15}{12} \times 5$$

b)
$$\frac{2}{3} - 0.2$$

d)
$$-\frac{2}{15} \div (-\frac{6}{5})$$

Calcul 1.3

Écrire les nombres suivants sous forme d'une fraction irréductible.

a)
$$(2 \times 3 \times 5 \times 7)(\frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7})$$

b)
$$\left(\frac{136}{15} - \frac{28}{5} + \frac{62}{10}\right) \times \frac{21}{24}$$

c)
$$\frac{5^{10} \times 7^3 - 25^5 \times 49^2}{(125 \times 7)^3 + 5^9 \times 14^3} \dots$$

d)
$$\frac{1\ 978 \times 1\ 979 + 1\ 980 \times 21 + 1958}{1\ 980 \times 1\ 979 - 1\ 978 \times 1\ 979} \dots$$

Calcul 1.4 — Un petit calcul.

0000

Écrire
$$\frac{0.5 - \frac{3}{17} + \frac{3}{37}}{\frac{5}{6} - \frac{5}{17} + \frac{5}{37}} + \frac{0.5 - \frac{1}{3} + \frac{1}{4} - 0.2}{\frac{7}{5} - \frac{7}{4} + \frac{7}{3} - 3.5}$$
 sous forme d'une fraction irréductible.

Calcul 1.5 — Le calcul littéral à la rescousse.

0000

En utilisant les identités remarquables et le calcul littéral, calculer les nombres suivants.

a)
$$\frac{2\ 022}{(-2\ 022)^2 + (-2\ 021)(2\ 023)}$$
 ..

c)
$$\frac{1\ 235 \times 2\ 469 - 1\ 234}{1\ 234 \times 2\ 469 + 1\ 235}$$

b)
$$\frac{2\ 021^2}{2\ 020^2 + 2\ 022^2 - 2}$$

d)
$$\frac{4\ 002}{1\ 000 \times 1\ 002 - 999 \times 1\ 001} \dots$$

Calcul 1.6 — Les fractions et le calcul littéral.

0000

Mettre sous la forme d'une seule fraction, qu'on écrira sous la forme la plus simple possible.

a)
$$\frac{1}{(n+1)^2} + \frac{1}{n+1} - \frac{1}{n}$$
 pour $n \in \mathbb{N}^*$

c)
$$\frac{\frac{6(n+1)}{n(n-1)(2n-2)}}{\frac{2n+2}{n^2(n-1)^2}}$$
 pour $n \in \mathbb{N}^* \setminus \{1,2\}$

Calcul 1.7 — Le quotient de deux sommes de Gauss.

Simplifier $\frac{\sum\limits_{k=0}^{n}k}{\sum\limits_{k}k}$ pour tout $n\in\mathbb{N}^*$, en utilisant la formule $1+2+\cdots+p=\frac{p(p+1)}{2}$

Calcul 1.8 — Décomposition en somme d'une partie entière et d'une partie décimale. 0000

Soit $k \in \mathbb{R} \setminus \{1\}$ et $x \in \mathbb{R} \setminus \{2\}$. Écrire les fractions suivantes sous la forme $a + \frac{b}{c}$ avec b < c.

a) $\frac{29}{6}$ b) $\frac{k}{k-1}$... c) $\frac{3x-1}{x-2}$..

a)
$$\frac{29}{6}$$

b)
$$\frac{k}{k-1}$$
 ...

c)
$$\frac{3x-1}{x-2}$$
 ..

Calcul 1.9 — Un produit de fractions.

Soit $t \in \mathbb{R} \setminus \{-1\}$. On donne $A = \frac{1}{1+t^2} - \frac{1}{(1+t)^2}$ et $B = (1+t^2)(1+t)^2$.

Comparaison

Calcul 1.10 — Règles de comparaison.

Comparer les fractions suivantes avec le signe « > », « < » ou « = ».

a)
$$\frac{3}{5} \dots \frac{5}{9} \dots$$

a)
$$\frac{3}{5} \dots \frac{5}{9} \dots$$
 b) $\frac{12}{11} \dots \frac{10}{12} \dots$ c) $\frac{125}{25} \dots \frac{105}{21}$

c)
$$\frac{125}{25} \dots \frac{105}{21} \dots$$

Calcul 1.11 — Produit en croix.

Calcul 1.12 — Produit en croix.

On pose
$$A = \frac{100\ 001}{1\ 000\ 001}$$
 et $B = \frac{1\ 000\ 001}{10\ 000\ 001}$: a-t-on $A > B, A = B$ ou $A < B$?

Puissances

Prérequis

Opérations sur les puissances (produits, quotients), décompostion en facteurs premiers, sommes d'expressions fractionnaires (même dénominateur), identités remarquables, factorisations et développements simples.

Calcul 2.1

0000

Dans chaque cas, donner le résultat sous la forme d'une puissance de 10.

a)
$$10^5 \cdot 10^3$$

c)
$$\frac{10^5}{10^3}$$

e)
$$\frac{(10^5 \cdot 10^{-3})^5}{(10^{-5} \cdot 10^3)^{-3}} \dots$$

b)
$$(10^5)^3$$

d)
$$\frac{10^{-5}}{10^{-3}}$$

f)
$$\frac{(10^3)^{-5} \cdot 10^5}{10^3 \cdot 10^{-5}} \dots$$

Calcul 2.2

0000

Dans chaque cas, donner le résultat sous la forme sous la forme a^n avec a et n deux entiers relatifs.

a)
$$3^4 \cdot 5^4$$

c)
$$\frac{2^5}{2^{-2}}$$

e)
$$\frac{6^5}{2^5}$$

b)
$$(5^3)^{-2}$$

d)
$$(-7)^3 \cdot (-7)^{-5} \dots$$

f)
$$\frac{(30^4)^7}{2^{28} \cdot 5^{28}} \dots$$

Calcul 2.3

0000

Dans chaque cas, donner le résultat sous la forme $2^n \cdot 3^p$, où n et p sont deux entiers relatifs.

a)
$$\frac{2^3 \cdot 3^2}{3^4 \cdot 2^8 \cdot 6^{-1}}$$

c)
$$\frac{3^{22} + 3^{21}}{3^{22} - 3^{21}}$$

b)
$$2^{21} + 2^{22}$$

d)
$$\frac{\left(3^2 \cdot (-2)^4\right)^8}{\left((-3)^5 \cdot 2^3\right)^{-2}}$$

Calcul 2.4

0000

Dans chaque cas, simplifier au maximum.

b)
$$\frac{55^2 \cdot 121^{-2} \cdot 125^2}{275 \cdot 605^{-2} \cdot 25^4}$$

d)
$$\frac{36^3 \cdot 70^5 \cdot 10^2}{14^3 \cdot 28^2 \cdot 15^6}$$

Calcul 2.5

0000

Dans chaque cas, simplifier au maximum l'expression en fonction du réel x.

a)
$$\frac{x}{x-1} - \frac{2}{x+1} - \frac{2}{x^2-1}$$

c)
$$\frac{x^2}{x^2 - x} + \frac{x^3}{x^3 + x^2} - \frac{2x^2}{x^3 - x} \dots$$

b)
$$\frac{2}{x+2} - \frac{1}{x-2} + \frac{8}{x^2-4}$$

d)
$$\frac{1}{x} + \frac{x+2}{x^2-4} + \frac{2}{x^2-2x}$$

Calcul littéral

Prérequis

Les identités remarquables!

Développer, réduire et ordonner

Dans cette section, on tâchera de mener les calculs avec le minimum d'étapes. Idéalement, on écrira directement le résultat. La variable x représente un nombre réel (ou complexe).

Calcul 3.1

Développer, réduire et ordonner les expressions suivantes selon les puissances décroissantes de x.

a)
$$\left(2x - \frac{1}{2}\right)^3$$

d)
$$(x+1)^2(x-1)(x^2+x+1)$$

b)
$$(x-1)^3(x^2+x+1)$$

e)
$$(x-1)^2(x+1)(x^2+x+1)$$

c)
$$(x+1)^2(x-1)(x^2-x+1)$$

f)
$$(x^2 + x + 1)(x^2 - x + 1) \dots$$

Calcul 3.2

Développer, réduire et ordonner les expressions polynomiales suivantes selon les puissances croissantes de x.

a)
$$(x-2)^2(-x^2+3x-1)-(2x-1)(x^3+2)$$

b)
$$(2x+3)(5x-8) - (2x-4)(5x-1)$$

c)
$$((x+1)^2(x-1)(x^2-x+1)+1)x-x^6-x^5+2$$

d)
$$(x+1)(x-1)^2 - 2(x^2+x+1)$$

e)
$$(x^2 + \sqrt{2}x + 1)(1 - \sqrt{2}x + x^2)$$

f) $(x^2 + x + 1)^2$

Factoriser

Calcul 3.3 — Petite mise en jambe.

Factoriser les expressions polynomiales de la variable réelle \boldsymbol{x} suivantes.

a)
$$-(6x+7)(6x-1)+36x^2-49$$

b)
$$25 - (10x + 3)^2$$

c)
$$(6x-8)(4x-5)+36x^2-64$$

d)
$$(-9x-8)(8x+8)+64x^2-64$$

Fiche nº 3. Calcul littéral

Calcul 3.4 — À l'aide de la forme canonique.

Factoriser les polynômes de degré deux suivants en utilisant leur forme canonique. On rappelle que la forme canonique de $ax^2 + bx + c$ est $a\left[\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2}\right]$ (où $a \neq 0$).

a)
$$x^2 - 2x + 1$$

d)
$$3x^2 + 7x + 1$$

b)
$$x^2 + 4x + 4 \dots$$

e)
$$2x^2 + 3x - 28$$

c)
$$x^2 + 3x + 2$$

f)
$$-5x^2 + 6x - 1$$

Calcul 3.5 — Avec plusieurs variables.

Factoriser sur $\mathbb R$ les expressions polynomiales suivantes dont les variables représentent des nombres réels.

a)
$$(x+y)^2 - z^2$$

d)
$$xy - x - y + 1$$

b)
$$x^2 + 6xy + 9y^2 - 169x^2 \dots$$

e)
$$x^3 + x^2y + 2x^2 + 2xy + x + y$$
..

c)
$$xy + x + y + 1$$

f)
$$y^2(a^2+b^2)+16x^4(-a^2-b^2)$$
..

Calcul 3.6 — On passe au niveau supérieur.

Factoriser sur \mathbb{R} les expressions polynomiales suivantes dont les variables représentent des nombres réels.

a)
$$x^4 - 1$$

b)
$$(-9x^2+24)(8x^2+8)+64x^4-64$$

c)
$$x^4 + x^2 + 1$$

d)
$$(ac + bd)^2 + (ad - bc)^2$$

e)
$$(ap + bq + cr + ds)^2 + (aq - bp - cs + dr)^2 + (ar + bs - cp - dq)^2 + (as - br + cq - dp)^2$$
.

Racines carrées

Prérequis

Racines carrées. Méthode de la quantité conjuguée.

Premiers calculs

Calcul 4.1 — Définition de la racine carrée.

a)
$$\sqrt{(-5)^2}$$

d)
$$\sqrt{(2-\sqrt{7})^2}$$

b)
$$\sqrt{(\sqrt{3}-1)^2}$$

e)
$$\sqrt{(3-\pi)^2}$$

c)
$$\sqrt{(\sqrt{3}-2)^2}$$

f)
$$\sqrt{(3-a)^2}$$

Calcul 4.2 — Transformation d'écriture.

0000

0000

Écrire aussi simplement que possible les expressions suivantes.

a)
$$(2\sqrt{5})^2$$

e)
$$(3+\sqrt{7})^2-(3-\sqrt{7})^2$$

b)
$$(2+\sqrt{5})^2$$

f)
$$\left(\sqrt{2\sqrt{3}}\right)^4$$

c)
$$\sqrt{4+2\sqrt{3}}$$

g)
$$\left(\frac{5-\sqrt{2}}{\sqrt{3}}\right)^2$$

d)
$$\sqrt{11+6\sqrt{2}}$$

h)
$$(\sqrt{2} + \sqrt{3})^2 + (\sqrt{2} - \sqrt{3})^2 \dots$$

Avec la méthode de la quantité conjuguée

Calcul 4.3

0000

Rendre rationnels les dénominateurs des expressions suivantes.

a)
$$\frac{2-\sqrt{3}}{2+\sqrt{2}}$$

e)
$$\frac{1}{\sqrt{2}-\sqrt{3}}$$

b)
$$\frac{\sqrt{2}-1}{\sqrt{2}+1}$$

f)
$$\frac{\sqrt{2}+\sqrt{3}}{1-\sqrt{3}}$$

c)
$$\frac{\sqrt{2} + \sqrt{3} + \sqrt{5}}{\sqrt{2} + \sqrt{3}}$$

g)
$$\frac{5+2\sqrt{6}}{\sqrt{2}+\sqrt{3}} + \frac{5-2\sqrt{6}}{\sqrt{2}-\sqrt{3}} \dots$$

d)
$$\frac{\sqrt{5} - \sqrt{2}}{\sqrt{3} - \sqrt{2}}$$

h)
$$\left(\frac{5\sqrt{2}}{\sqrt{3}+1}\right)^2$$

Calcul 4.4

0000

Exprimer la quantité suivante sans racine carrée au dénominateur.

$$\frac{1}{1+\sqrt{2}+\sqrt{3}}$$

Calculs variés

Calcul 4.5 — Avec une variable.

On considère la fonction f qui à x > 1 associe $f(x) = \sqrt{x-1}$. Pour tout x > 1, calculer et simplifier les expressions suivantes.

a)
$$f(x) + \frac{1}{f(x)}$$

d)
$$\frac{f'(x)}{f(x)}$$

b)
$$\frac{f(x+2) - f(x)}{f(x+2) + f(x)}$$

e)
$$f(x) + 4f''(x)$$

c)
$$\sqrt{x+2f(x)}$$

f)
$$\frac{f(x)}{f''(x)}$$

Calcul 4.6 — Mettre au carré.

Élever les quantités suivantes au carré pour en donner une expression simplifiée.

a)
$$\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}$$

b)
$$\sqrt{3-2\sqrt{2}} + \sqrt{3+2\sqrt{2}}$$

Calcul 4.7 — Méli-mélo.

Donner une écriture simplifiée des réels suivants.

a)
$$\frac{3-\sqrt{5}}{2+\sqrt{5}}$$

d)
$$3e^{-\frac{1}{2}\ln 3}$$

e)
$$2\sqrt{\frac{3+\sqrt{5}}{2}}$$

c)
$$\sqrt{\frac{2+\sqrt{2}}{2-\sqrt{2}}}$$

Calcul 4.8

Simplifier
$$\sqrt[3]{3+\sqrt{9+\frac{125}{27}}} - \sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}$$
.

Expressions algébriques

Prérequis

Identités remarquables.

Équations polynomiales

Calcul 5.1 — Cubique.

0000

Soit a un nombre réel tel que $a^3 - a^2 + 1 = 0$.

Exprimer les quantités suivantes sous la forme $xa^2 + ya + z$ où x, y, z sont trois nombres rationnels.

a)
$$(a+2)^3$$

c)
$$a^{12}$$

b)
$$a^5 - a^6 \dots$$

d)
$$\frac{1}{a} + \frac{1}{a^2} \dots$$

Calcul 5.2 — Introduction aux nombres complexes.

Soit i un nombre tel que $i^2 = -1$.

Exprimer les quantités suivantes sous la forme x + iy où x, y sont deux réels.

a)
$$(3+i)^2$$

c)
$$(3-i)^3$$

b)
$$(3-i)^2$$

d)
$$(3-2i)^3$$

Calcul 5.3

0000

Même exercice.

a)
$$(4-5i)(6+3i)$$

c)
$$\left(-4+i\sqrt{5}\right)^3$$

b)
$$(2+3i)^3(2-3i)^3$$

d)
$$\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^3$$

Calcul 5.4 — Puissance cinquième.

Soit a un nombre distinct de 1 tel que $a^5 = 1$. Calculer les nombres suivants :

a)
$$a^7 - 3a^6 + 4a^5 - a^2 + 3a - 1$$

b)
$$a^{1234} \times a^{2341} \times a^{3412} \times a^{4123}$$

d)
$$1 + a + a^2 + a^3 + a^4$$

e)
$$\sum_{k=1}^{99} a^k$$

f)
$$\prod_{k=0}^{4} (2-a^k)$$

Expressions symétriques

Calcul 5.5 — Inverse.

Soit x un réel non nul. On pose $a = x - \frac{1}{x}$. Exprimer les quantités suivantes en fonction de a uniquement.

a)
$$x^2 + \frac{1}{r^2}$$

b)
$$x^3 - \frac{1}{x^3}$$
 c) $x^4 + \frac{1}{x^4}$

c)
$$x^4 + \frac{1}{x^4} \dots$$

Calcul 5.6 — Trois variables.

Soient x, y, z trois nombres deux à deux distincts. On pose

$$a = x + y + z,$$
 $b = xy + yz + zx$

et
$$c = xyz$$
.

Exprimer les quantités suivantes en fonction de a,b,c uniquement.

a)
$$x^2 + y^2 + z^2$$

b)
$$x^2(y+z) + y^2(z+x) + z^2(x+y)$$

c)
$$x^3 + y^3 + z^3$$

d)
$$(x+y)(y+z)(z+x)$$

e)
$$x^2yz + y^2zx + z^2xy$$

f)
$$x^2y^2 + y^2z^2 + z^2x^2$$

0000

Même exercice.

Calcul 5.7

a)
$$x^3(y+z) + y^3(z+x) + z^3(x+y)$$

b)
$$x^4 + y^4 + z^4$$

c)
$$\frac{x}{(x-y)(x-z)} + \frac{y}{(y-z)(y-x)} + \frac{z}{(z-x)(z-y)}$$

d)
$$\frac{x^2}{(x-y)(x-z)} + \frac{y^2}{(y-z)(y-x)} + \frac{z^2}{(z-x)(z-y)}$$

e)
$$\frac{x^3}{(x-y)(x-z)} + \frac{y^3}{(y-z)(y-x)} + \frac{z^3}{(z-x)(z-y)} \dots$$

Équations du second degré

Prérequis

Relations entre coefficients et racines.

Dans cette fiche:

- tous les trinômes considérés sont réels;
- on ne s'intéresse qu'à leurs éventuelles racines réelles;
- tous les paramètres sont choisis de telle sorte que l'équation considérée soit bien de degré 2.

Les formules donnant explicitement les racines d'une équation du second degré en fonction du discriminant ne servent nulle part dans cette fiche d'exercices!

Recherche de racines

Calcul 6.1 — Des racines vraiment évidentes.

Résoudre mentalement les équations suivantes. Les racines évidentes sont à chercher parmi 0, 1, -1, 2, -2 ainsi éventuellement que 3 et -3.

a)
$$x^2 - 6x + 9 = 0$$

f)
$$2x^2 + 3x = 0$$

b)
$$9x^2 + 6x + 1 = 0$$

g)
$$2x^2 + 3 = 0$$

c)
$$x^2 + 4x - 12 = 0$$

h)
$$x^2 + 4x - 5 = 0$$

d)
$$x^2 - 5x + 6 = 0$$

i)
$$3x^2 - 11x + 8 = 0$$

e)
$$x^2 - 5x = 0$$

j)
$$5x^2 + 24x + 19 = 0$$

Calcul 6.2 — Somme et produit.

Résoudre mentalement les équations suivantes.

a)
$$x^2 - 13x + 42 = 0$$

d)
$$x^2 - 8x - 33 = 0$$

b)
$$x^2 + 8x + 15 = 0$$

e)
$$x^2 - (a+b)x + ab = 0$$

c)
$$x^2 + 18x + 77 = 0$$

f)
$$x^2 - 2ax + a^2 - b^2 = 0$$

Calcul 6.3 — L'une grâce à l'autre.

Calculer la seconde racine des équations suivantes.

d)
$$(m+3)x^2 - (m^2 + 5m)x + 2m^2 = 0$$
 sachant que $x = m$ est racine

Calcul 6.4 — Racine évidente.

0000

Trouver une racine des équations suivantes et calculer l'autre en utilisant les relations entre les coefficients du trinôme et ses racines.

Seuls les deux derniers calculs ne se font pas de tête.

a)
$$(b-c)x^2 + (c-a)x + (a-b) = 0$$

b)
$$a(b-c)x^2 + b(c-a)x + c(a-b) = 0$$

c)
$$(x+a)(x+b) = (m+a)(m+b)$$

d)
$$(b-c)x^2 + (c-a)mx + (a-b)m^2 = 0$$

e)
$$\frac{x}{a} + \frac{b}{x} = \frac{m}{a} + \frac{b}{m}$$

f)
$$\frac{1}{x-a} + \frac{1}{x-b} = \frac{1}{a} + \frac{1}{b}$$

Recherche d'équations

Calcul 6.5 — À la recherche de l'équation.

En utilisant la somme et le produit des racines d'une équation du second degré, former l'équation du second degré admettant comme racines les nombres suivants.

c)
$$2 + \sqrt{3}$$
 et $2 - \sqrt{3}$

d)
$$m + \sqrt{m^2 - 3}$$
 et $m - \sqrt{m^2 - 3}$

e)
$$m+3$$
 et $\frac{2m-5}{2}$

f)
$$\frac{m+1}{m}$$
 et $\frac{m-2}{m}$

Calcul 6.6 — Avec le discriminant.

Déterminer la valeur à donner à m pour que les équations suivantes admettent une racine double, et préciser la valeur de la racine dans ce cas.

a)
$$x^2 - (2m+3)x + m^2 = 0$$

b)
$$(m+2)x^2 - 2(m-1)x + 4 = 0$$

c)
$$(m+3)x^2 + 2(3m+1)x + (m+3) = 0$$

Factorisations et signe

Calcul 6.7 — Factorisation à vue.

Déterminer de tête les valeurs des paramètres a et b pour que les égalités suivantes soient vraies pour tout x.

a)
$$2x^2 + 7x + 6 = (x+2)(ax+b)$$

b)
$$-4x^2 + 4x - 1 = (2x - 1)(ax + b)$$

c)
$$-3x^2 + 14x - 15 = (x - 3)(ax + b)$$

d)
$$\frac{1}{2}x^2 + \frac{11}{2}x - 40 = (x-5)(ax+b)$$

e)
$$x^2 + 2\sqrt{7}x - 21 = (x - \sqrt{7})(ax + b)$$

Calcul 6.8 — Signe d'un trinôme.

Déterminer l'ensemble des valeurs de x pour lesquelles les expressions suivantes sont positives ou nulles.

a)
$$x^2 - (\sqrt{2} + 1)x + \sqrt{2}$$

b)
$$-x^2 + 2x + 15$$

c)
$$(x+1)(3x-2)$$

d)
$$\frac{x-4}{2x+1}$$

Exponentielle et Logarithme

Prérequis

Exponentielle, logarithme.

Logarithmes

Calcul 7.1

0000

Calculer les nombres suivants en fonction de ln 2, ln 3 et ln 5.

d)
$$\frac{1}{8} \ln \frac{1}{4} - \frac{1}{4} \ln \frac{1}{8}$$

e)
$$\ln 72 - 2 \ln 3$$

Calcul 7.2

Calcul 7.3

0000

Calculer les nombres suivants en fonction de ln 2, ln 3 et ln 5.

a)
$$\ln \frac{1}{12}$$

b)
$$\ln(2,25)$$

e)
$$\ln \frac{16}{25}$$

c)
$$\ln 21 + 2 \ln 14 - 3 \ln(0.875) \dots$$

f)
$$\ln(6,25)$$

0000

Calculer les nombres suivants en fonction de $\ln 2$, $\ln 3$ et $\ln 5$.

$$\ln \frac{1}{2} + \ln \frac{2}{3} + \dots + \ln \frac{98}{99} + \ln \frac{99}{100}$$

Calcul 7.4 — Logarithme et radicaux.

0000

a) On pose
$$\alpha = \frac{7}{16} \ln(3 + 2\sqrt{2}) - 4 \ln(\sqrt{2} + 1)$$
. Calculer $(1 + \sqrt{2})^2$ et $\frac{1}{\sqrt{2} + 1}$.

En déduire une écriture simplifiée de α en fonction de $\ln(\sqrt{2}-1)$

b) Calculer
$$\beta$$
 sachant que $\ln \beta = \ln(7 + 5\sqrt{2}) + 8\ln(\sqrt{2} + 1) + 7\ln(\sqrt{2} - 1)$

c) Simplifier
$$\gamma = \ln((2+\sqrt{3})^{20}) + \ln((2-\sqrt{3})^{20})$$

d) Simplifier
$$\delta = \ln\left(\frac{\sqrt{5}+1}{2}\right) + \ln\left(\frac{\sqrt{5}-1}{2}\right)$$
.

Exponentielles

Calcul 7.5

Écrire les nombres suivants le plus simplement possible.

d)
$$e^{-2 \ln 3}$$

b)
$$\ln(\sqrt{e})$$

e)
$$\ln(e^{-\frac{1}{2}})$$

c)
$$\ln(e^{\frac{1}{3}})$$

f)
$$e^{\ln 3 - \ln 2}$$

Calcul 7.6

Écrire les nombres suivants le plus simplement possible.

a)
$$-e^{-\ln \frac{1}{2}}$$

d)
$$\ln(\sqrt{e^4}) - \ln(\sqrt{e^2})$$

b)
$$e^{-\ln \ln 2}$$

e)
$$\ln\left(\sqrt{\exp(-\ln e^2)}\right)$$

c)
$$\ln\left(\frac{1}{e^{17}}\right)$$

f)
$$\exp\left(-\frac{1}{3}\ln(e^{-3})\right)$$

Études de fonctions

Calcul 7.7 — Parité.

Étudier la parité des fonctions suivantes.

a)
$$f_1: x \longmapsto \ln \frac{2021+x}{2021-x}$$

b)
$$f_2: x \longmapsto \ln(x + \sqrt{x^2 + 1})$$

c)
$$f_3: x \longmapsto \frac{e^{2x} - 1}{e^{2x} + 1}$$

d)
$$f_4: x \longmapsto \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Calcul 7.8 — Étude d'une fonction.

Soit
$$f: x \longmapsto \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
.

b) Montrer que pour tous réels
$$a$$
 et b on a $f(a+b) = \frac{f(a) + f(b)}{1 + f(a)f(b)}$

d) Déterminer la limite de
$$f$$
 en $-\infty$.

On considère l'application

$$f: \left\{ \begin{array}{c} \mathbb{R}_+^* \longrightarrow \mathbb{R} \\ x \longmapsto \ln(1+x) \end{array} \right.$$

Calculer et simplifier les expressions suivantes pour tout $x \in \mathbb{R}$ pour lequel elles sont définies.

a)
$$f(2e^x - 1)$$

d)
$$xf'(x) - 1$$

b)
$$e^{x-\frac{1}{2}f(x)}$$

e)
$$e^{\frac{f(x)}{f'(x-1)}}$$

c)
$$\frac{1}{2}f(x^2 - 2x)$$

Équations, inéquations

Calcul 7.10

Résoudre les équations ou inéquations suivantes.

a)
$$e^{3x-5} \ge 12$$

b)
$$1 \le e^{-x^2 + x}$$

c)
$$e^{1+\ln x} \ge 2$$

d)
$$e^{-6x} \leqslant \sqrt{e}$$

e)
$$\ln(-x-5) = \ln(x-61) - \ln(x+7)$$

Trigonométrie

Prérequis

Relation $\cos^2 + \sin^2 = 1$. Symétrie et périodicité de sin et cos. Formules d'addition et de duplication. Fonction tangente.

Dans toute cette fiche, x désigne une quantité réelle.

Valeurs remarquables de cosinus et sinus

Calcul 8.1

Simplifier:

a)
$$\cos \frac{\pi}{4} + \cos \frac{3\pi}{4} + \cos \frac{5\pi}{4} + \cos \frac{7\pi}{4}$$
.

c)
$$\tan \frac{2\pi}{3} + \tan \frac{3\pi}{4} + \tan \frac{5\pi}{6} + \tan \frac{7\pi}{6}$$

b)
$$\sin \frac{5\pi}{6} + \sin \frac{7\pi}{6}$$

d)
$$\cos^2 \frac{4\pi}{3} - \sin^2 \frac{4\pi}{3}$$

Propriétés remarquables de cosinus et sinus

Calcul 8.2

Simplifier:

a)
$$\sin(\pi - x) + \cos\left(\frac{\pi}{2} + x\right)$$

c)
$$\sin\left(\frac{\pi}{2} - x\right) + \sin\left(\frac{\pi}{2} + x\right) \dots$$

b)
$$\sin(-x) + \cos(\pi + x) + \sin\left(\frac{\pi}{2} - x\right)$$

d)
$$\cos(x-\pi) + \sin(-\frac{\pi}{2} - x)$$

Formules d'addition

Calcul 8.3

Calculer les quantités suivantes.

a)
$$\cos \frac{5\pi}{12}$$
 (on a $\frac{\pi}{6} + \frac{\pi}{4} = \frac{5\pi}{12}$)

c)
$$\sin \frac{\pi}{12}$$

b)
$$\cos \frac{\pi}{12}$$

d)
$$\tan \frac{\pi}{12}$$

Calcul 8.4

a) Simplifier:
$$\sin(4x)\cos(5x) - \sin(5x)\cos(4x)$$

c) Simplifier:
$$\cos x + \cos \left(x + \frac{2\pi}{3}\right) + \cos \left(x + \frac{4\pi}{3}\right)$$

d) Expliciter
$$\cos(3x)$$
 en fonction de $\cos x$

Formules de duplication

Calcul 8.5

0000

En remarquant qu'on a
$$\frac{\pi}{4} = 2 \times \frac{\pi}{8}$$
, calculer :
a) $\cos \frac{\pi}{8}$

b)
$$\sin \frac{\pi}{8}$$

Calcul 8.6

a) Simplifier:
$$\frac{1-\cos(2x)}{\sin(2x)}$$
 (avec $x \in \left]0, \frac{\pi}{2}\right[$)

b) Simplifier:
$$\frac{\sin 3x}{\sin x} - \frac{\cos 3x}{\cos x}$$
 (pour $x \in \left]0, \frac{\pi}{2}\right[$)

Équations trigonométriques

Calcul 8.7

Résoudre dans $[0,2\pi]$, dans $[-\pi,\pi]$, puis dans $\mathbb R$ les équations suivantes :

a)
$$\cos x = \frac{1}{2} \dots$$

f)
$$|\tan x| = \frac{1}{\sqrt{3}} \dots$$

b)
$$\sin x = -\frac{\sqrt{3}}{2} \dots$$

$$g) \quad \cos(2x) = \frac{\sqrt{3}}{2} \quad \dots$$

c)
$$\sin x = \cos \frac{2\pi}{3} \dots$$

$$h) 2\sin^2 x + \sin x - 1 = 0$$

d)
$$\tan x = -1$$

i)
$$\cos x = \cos \frac{\pi}{7} \dots$$

e)
$$\cos^2 x = \frac{1}{2}$$

$$j) \quad \sin x = \cos \frac{\pi}{7} \quad \dots$$

Inéquations trigonométriques

Calcul 8.8

Résoudre dans $[0, 2\pi]$, puis dans $[-\pi, \pi]$, les inéquations suivantes :

a)
$$\cos x \geqslant -\frac{\sqrt{2}}{2}$$

e)
$$\tan x \geqslant 1$$

b)
$$\cos x \leqslant \cos \frac{\pi}{3}$$

f)
$$|\tan x| \geqslant 1$$

c)
$$\sin x \leqslant \frac{1}{2}$$

g)
$$\cos\left(x - \frac{\pi}{4}\right) \geqslant 0 \dots$$

$$d) |\sin x| \leqslant \frac{1}{2} \dots$$

h)
$$\cos\left(2x - \frac{\pi}{4}\right) \geqslant 0 \dots$$

Dérivation

Prérequis

Dérivées des fonctions usuelles. Formules de dérivation.

Application des formules usuelles

Calcul 9.1 — Avec des produits.

0000

Déterminer l'expression de f'(x) pour f définie par :

a)
$$x \in \mathbb{R}$$
 et $f(x) = (x^2 + 3x + 2)(2x - 5)$

b)
$$x \in \mathbb{R} \text{ et } f(x) = (x^3 + 3x + 2)(x^2 - 5). \dots$$

c)
$$x \in \mathbb{R} \text{ et } f(x) = (x^2 - 2x + 6) \exp(2x)$$
.....

d)
$$x \in]2, +\infty[$$
 et $f(x) = (3x^2 - x) \ln(x - 2)$

Calcul 9.2 — Avec des puissances.

0000

Déterminer l'expression de f'(x) pour f définie par :

b)
$$x \in \mathbb{R} \text{ et } f(x) = (2x^3 + 4x - 1)^2$$
.

c)
$$x \in \mathbb{R} \text{ et } f(x) = (\sin(x) + 2\cos(x))^2$$
.....

d)
$$x \in \mathbb{R} \text{ et } f(x) = (3\cos(x) - \sin(x))^3$$
.....

Calcul 9.3 — Avec des fonctions composées.

0000

Déterminer l'expression de f'(x) pour f définie par :

a)
$$x \in \mathbb{R} \text{ et } f(x) = \ln(x^2 + 1)$$
.....

c)
$$x \in \mathbb{R} \text{ et } f(x) = (2-x) \exp(x^2 + x)$$
.

d)
$$x \in \mathbb{R}$$
 et $f(x) = \exp(3\sin(2x))$

Calcul 9.4 — Avec des fonctions composées — bis.

0000

Déterminer l'expression de f'(x) pour f définie par :

a)
$$x \in \mathbb{R} \text{ et } f(x) = \sin\left(\frac{2x^2 - 1}{x^2 + 1}\right)$$
.

b)
$$x \in \mathbb{R} \text{ et } f(x) = \cos\left(\frac{2x+1}{x^2+4}\right)$$
.....

Calcul 9.5 — Avec des quotients.

0000

Déterminer l'expression de f'(x) pour f définie par :

a)
$$x \in \mathbb{R} \text{ et } f(x) = \frac{x^2 + 3x}{2\sin(x) + 3}$$
....

c)
$$x \in \mathbb{R} \text{ et } f(x) = \frac{\cos(2x+1)}{x^2+1}$$
.

d)
$$x \in]1, +\infty[$$
 et $f(x) = \frac{2x^2 + 3x}{\ln(x)}$

Opérations et fonctions composées

Calcul 9.6

Déterminer l'expression de f'(x) pour f définie par :

a)
$$x \in \mathbb{R}^*$$
 et $f(x) = x^2 \sin\left(\frac{1}{x}\right)$

c)
$$x \in]1, +\infty[$$
 et $f(x) = \ln\left(\sqrt{\frac{x+1}{x-1}}\right)$

d)
$$x \in]0, \pi[$$
 et $f(x) = \ln\left(\frac{\sin x}{x}\right)$.

Dériver pour étudier une fonction

Calcul 9.7

Calculer f'(x) et écrire le résultat sous forme factorisée.

a)
$$x \in \mathbb{R} \setminus 3, -2 \text{ et } f(x) = \frac{1}{3-x} + \frac{1}{2+x}.$$

Primitives

Prérequis

Intégration de Terminale. Dérivée d'une fonction composée. Trigonométrie directe et réciproque. Trigonométrie hyperbolique.

Pour chaque fonction à intégrer on pourra commencer par chercher les domaines où elle admet des primitives.

Calculs directs

Calcul 10.1

Déterminer directement une primitive des expressions suivantes.

Calcul 10.2

Même exercice.

Utilisation des formulaires

Calcul 10.3 — Dérivée d'une fonction composée.

Déterminer une primitive des expressions suivantes en reconnaissant la dérivée d'une fonction composée.

b)
$$t\sqrt{1+2t^2}$$

Calcul 10.4 — Dérivée d'une fonction composée – bis.

0000

Calcul 10.5 — Trigonométrie.

Déterminer une primitive des expressions suivantes en reconnaissant la dérivée d'une fonction composée.

a)
$$\cos^2 t \sin t \dots$$

g)
$$\tan^2 t \dots$$

$$1) \quad \frac{\cos t}{(1-\sin t)^3} \dots$$

b)
$$\cos(t)e^{\sin t}$$
.....

h)
$$\tan^3 t$$

m)
$$\frac{1}{1+4t^2}$$
.....

i)
$$\frac{\tan^3 t}{\cos^2 t}$$
.....

$$n) \frac{e^t}{1 + e^{2t}} \dots \dots$$

d)
$$\frac{\cos t}{1-\sin t}$$

$$j) \ \frac{1}{\cos^2(t)\sqrt{\tan t}} \dots$$

o)
$$\frac{\operatorname{Arcsin}(t)}{\sqrt{1-t^2}}\dots$$

e)
$$\frac{\sin\sqrt{t}}{\sqrt{t}}$$
....

$$k) \frac{1 + \tan^2 t}{\tan^2 t} \dots$$

p)
$$\frac{1}{\sqrt{1-t^2}\operatorname{Arcsin}(t)}$$

f) $\frac{\cos(\pi \ln t)}{t}$

Calcul 10.6 — Trigonométrie – bis.

Déterminer une primitive des expressions suivantes en utilisant d'abord le formulaire de trigonométrie.

a)
$$\cos^2 t$$
.....

$$d) \frac{\sin(2t)}{1+\sin^2 t} \dots$$

f)
$$\frac{1}{\sin^2(t)\cos^2(t)}\dots$$

b)
$$\cos(t)\sin(3t)\dots$$

e)
$$\frac{1}{\sin t \cos t}$$
.....

g)
$$\frac{1}{\sin(4t)}$$
.....

c)
$$\sin^3 t$$
.....

Calcul 10.7 — Fractions rationnelles.

Déterminer une primitive des expressions suivantes après quelques manipulations algébriques simples.

a)
$$\frac{t^2+t+1}{t^2}\dots$$

d)
$$\frac{t^3+1}{t+1}$$
.....

g)
$$\frac{t-1}{t^2+1}$$
.....

b)
$$\frac{t^2+1}{t^3}$$
.....

e)
$$\frac{t-1}{t+1}$$
.....

h)
$$\frac{t}{(t+1)^2}$$
.....

c)
$$\frac{1-t^6}{1-t^2}$$
.....

f)
$$\frac{t^3}{t+1}$$
.....

Dériver puis intégrer, intégrer puis dériver

Calcul 10.8

Pour chacune des expressions suivantes :

- dériver puis factoriser l'expression;
- intégrer l'expression.

a)
$$t^2 - 2t + 5$$

e)
$$e^{2t} + e^{-3t}$$

b)
$$\frac{1}{t^2} + \frac{1}{t}$$

f)
$$e^{3t-2}$$

c)
$$\sqrt{t} - \frac{1}{t^3}$$

g)
$$\frac{t^2}{t^3 - 1}$$

$$d) \frac{1}{t^4} + \frac{1}{t\sqrt{t}} \dots$$

h)
$$\frac{3t-1}{t^2+1}$$

i) $\sin(t)\cos^2(t)$...

o) $\frac{\sin 2t}{1+\cos^2 t}$

j) $\sinh(t)\cosh(t)$...

p) te^{-t^2}

 $k) \quad \frac{1}{t^2} \sin \frac{1}{t} \quad \dots \dots$

 $\mathbf{q}) \ \frac{1 - \ln t}{t} \ \dots \dots$

 $1) \quad \frac{e^t}{2 + e^t} \quad \dots \quad \dots$

r) $\frac{1}{t \ln t}$

 $m) \frac{\sin t}{2 + 3\cos t} \dots$

s) $\frac{\sin(\ln t)}{t}$

n) $\frac{t}{\sqrt{1-t^2}}$

t) $\frac{e^t}{1+e^{2t}}$

Calcul $10.9 - Bis \ repetita$.

Reprendre l'exercice précédent en commençant par intégrer puis en dérivant et factorisant.

Calcul d'intégrales

Prérequis

Primitives usuelles, composées simples.

Intégrales et aires algébriques

On rappelle que $\int_a^b f(x) dx$ est l'aire algébrique entre la courbe représentative de f et l'axe des abscisses du repère lorsque les bornes sont « dans le bon sens ».

Calcul 11.1 0000

Sans chercher à calculer les intégrales suivantes, donner leur signe.

a)
$$\int_{-2}^{3} x^2 + e^x dx$$
. b) $\int_{5}^{-3} |\sin 7x| dx$

b)
$$\int_{5}^{-3} |\sin 7x| \, \mathrm{d}x$$

c)
$$\int_0^{-1} \sin x \, \mathrm{d}x \, \dots$$

0000

En se ramenant à des aires, calculer de tête les intégrales suivantes.

a)
$$\int_{1}^{3} 7 \, \mathrm{d}x \, \dots$$

c)
$$\int_0^7 3x \, dx \dots$$

e)
$$\int_{-2}^{2} \sin x \, \mathrm{d}x \, \dots$$

b)
$$\int_{7}^{-3} -5 \, dx \, \dots$$
 d) $\int_{2}^{8} 1 - 2x \, dx \, \dots$

d)
$$\int_{2}^{8} 1 - 2x \, dx$$
 ..

f)
$$\int_{-2}^{1} |x| \, \mathrm{d}x \, \ldots$$

Calcul d'intégrales

On rappelle que si F est une primitive de f alors $\int_a^b f(x) dx = F(b) - F(a)$, que l'on note $\left[F(x) \right]_a^b$.

Calcul 11.3 — Polynômes.

Calculer les intégrales suivantes.

a)
$$\int_{-1}^{3} 2 \, dx$$

d)
$$\int_{-1}^{1} 3x^5 - 5x^3 dx$$

b)
$$\int_{1}^{3} 2x - 5 \, dx$$

e)
$$\int_0^1 x^5 - x^4 dx$$

c)
$$\int_{-2}^{0} x^2 + x + 1 \, dx \dots$$

f)
$$\int_{1}^{-1} x^{100} dx$$

Calcul 11.4 — Fonctions usuelles.

0000

Calculer.

a)
$$\int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \sin x \, \mathrm{d}x \dots$$

c)
$$\int_{1}^{2} \frac{\mathrm{d}x}{x^{2}} \dots$$

e)
$$\int_{-3}^{2} e^{x} dx \dots$$

b)
$$\int_{-\pi}^{\frac{\pi}{6}} \cos x \, \mathrm{d}x \, \dots$$

d)
$$\int_{1}^{100} \frac{1}{\sqrt{x}} dx \dots$$

$$f) \quad \int_{-3}^{-1} \frac{\mathrm{d}x}{x} \quad \dots \quad \Box$$

Calcul 11.5 — De la forme f(ax + b).

0000

Calculer les intégrales suivantes.

a)
$$\int_{-1}^{2} (2x+1)^3 dx$$

$$d) \int_{-\frac{\pi}{12}}^{\frac{\pi}{6}} \sin(3x) dx \dots$$

b)
$$\int_{-2}^{4} e^{\frac{1}{2}x+1} dx$$

e)
$$\int_0^{33} \frac{1}{\sqrt{3x+1}} \, dx \dots$$

c)
$$\int_0^1 \frac{\mathrm{d}x}{\pi x + 2} \dots$$

f)
$$\int_{-\pi}^{\frac{\pi}{2}} \cos\left(\frac{\pi}{3} - x\right) dx \dots$$

Calcul 11.6 — Fonctions composées.

0000

Calculer les intégrales suivantes.

a)
$$\int_{1}^{3} \frac{x-2}{x^2-4x+5} \, \mathrm{d}x \dots$$

d)
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{3}} \sin x (\cos x)^5 dx \dots$$

b)
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} x \sin(x^2 + 1) dx \dots$$

e)
$$\int_0^1 x e^{x^2 - 1} dx$$

c)
$$\int_0^{\frac{\pi}{6}} \tan x \, \mathrm{d}x \, \dots$$

f)
$$\int_0^1 \frac{x}{(x^2+1)^4} dx \dots$$

Calcul 11.7 — Divers.

0000

Calculer les intégrales suivantes.

a)
$$\int_0^1 \frac{e^x}{e^{2x} + 2e^x + 1} dx \dots$$

$$d) \int_{1}^{e} \frac{3x - 2\ln x}{x} dx \dots$$

b)
$$\int_{-2}^{3} |x+1| \, \mathrm{d}x \, \dots$$

e)
$$\int_0^{\frac{\pi}{2}} \cos(2x) \sin(x) dx \dots$$

c)
$$\int_{-1}^{2} \max(1, e^x) dx \dots$$

f)
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{4}} |\cos x \sin x| \, \mathrm{d}x \dots$$

Calcul 11.8 — Avec les nouvelles fonctions de référence.

a)
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \operatorname{Arcsin} x \, \mathrm{d}x \quad \dots$$

d)
$$\int_0^1 \operatorname{ch} x \, \mathrm{d}x$$

b)
$$\int_0^1 \frac{1}{1+x^2} dx$$

e)
$$\int_0^1 \sqrt{x} \, \mathrm{d}x \dots$$

c)
$$\int_0^2 10^x \, dx$$

f)
$$\int_0^{\frac{\sqrt{3}}{3}} \frac{2}{1+9x^2} dx$$

Intégration par parties

Prérequis

Primitives, dérivées, intégration par parties.

On rappelle le théorème d'intégration par parties. Si $(a,b) \in \mathbb{R}^2$, si $u \in \mathcal{C}^1([a,b],\mathbb{R})$ et si $v \in \mathcal{C}^1([a,b],\mathbb{R})$, alors

$$\int_a^b u'(t)v(t) dt = \left[u(t)v(t) \right]_a^b - \int_a^b u(t)v'(t) dt.$$

Intégrales

Calcul 12.1

Calculer:

a)
$$\int_0^{\frac{\pi}{2}} t \cos t \, dt \dots$$

g)
$$\int_0^1 \ln(1+t^2) dt$$

b)
$$\int_0^1 (2t+3) \sinh(2t) dt \dots$$

h)
$$\int_0^1 t \arctan t \, dt \dots$$

c)
$$\int_0^2 t e^{\frac{t}{2}} dt \dots$$

i)
$$\int_0^{\frac{1}{2}} \arcsin t \, \mathrm{d}t \dots$$

$$d) \int_1^{\ln 2} t 2^t dt \dots$$

$$j) \quad \int_0^1 \frac{t}{\sqrt{1+t}} \, \mathrm{d}t \quad \dots$$

e)
$$\int_1^e \ln t \, dt \dots$$

k)
$$\int_0^1 \sqrt{1+t} \ln(1+t) dt \dots$$

f)
$$\int_{1}^{2} t \ln t \, dt \dots$$

$$1) \quad \int_0^{\frac{\pi}{4}} t \tan^2 t \, \mathrm{d}t \, \dots \dots$$

Primitives

Calcul 12.2

Pour chaque fonction suivante, préciser sur quel ensemble elle est définie, puis en déterminer une primitive.

a)
$$x \longmapsto (-x+1)e^x \dots$$

c)
$$x \longmapsto \arctan(x) \dots$$

b)
$$x \longmapsto \frac{\ln x}{x^2} \dots$$

$$d) \quad x \longmapsto x \operatorname{ch}(x) \quad \dots$$

Intégrations par parties successives

Pour ces calculs de primitives et d'intégrales, on pourra réaliser plusieurs intégrations par parties successives.

Calcul 12.3 — Calcul d'intégrales.

a)
$$\int_0^1 (t^2 + 3t - 4)e^{2t} dt$$

b)
$$\int_0^{\frac{\pi}{2}} e^t \sin t \, dt \dots$$

Calcul 12.4 — Calcul de primitives.

Calculer des primitives des fonctions suivantes.

a)
$$x \mapsto \sin(x) \sinh(x) \dots$$

c)
$$x \longmapsto (x \ln x)^2$$

d) $x \longmapsto e^{\arccos(x)}$

b)
$$x \longmapsto \ln^2 x \dots$$

d)
$$x \mapsto e^{\arccos(x)} \dots$$

Changements de variable

Prérequis

Primitives, dérivées. Changements de variables. Intégration par parties.

Changements de variable

Calcul 13.1

0000

Effectuer le changement de variable indiqué et en déduire la valeur de l'intégrale.

a)
$$\int_{-1}^{1} \sqrt{1-t^2} \, dt$$

$$\overline{t^2} \, \mathrm{d}t$$
 avec $t = \sin \theta$

b)
$$\int_{1}^{3} \frac{1}{\sqrt{t} + \sqrt{t^3}} dt$$
 avec $u = \sqrt{t}$

c)
$$\int_0^1 \frac{1}{\operatorname{ch}t} dt$$
 avec $u = e^t$

d)
$$\int_0^{\frac{\pi}{2}} \sin^3 t \cos t \, dt \qquad \text{avec } u = \sin t \quad \dots$$

e)
$$\int_0^{\frac{\pi}{2}} \sin^3 t \cos^3 t \, dt \qquad \text{avec } u = \sin t \quad \dots$$

f)
$$\int_{1}^{4} \frac{1}{t + \sqrt{t}} dt$$
 avec $u = \sqrt{t}$

Calcul 13.2

0000

Même exercice.

a)
$$\int_0^{\pi} \frac{\sin t}{3 + \cos^2 t} dt$$
 avec $u = \cos t$

c)
$$\int_{2}^{4} \frac{1}{\sqrt{4t - t^{2}}} dt$$
 avec $u = \frac{t}{2} - 1$

d)
$$\int_0^1 \frac{1}{(1+t^2)^2} dt$$
 avec $t = \tan u$

e)
$$\int_{\sqrt{2}}^{2} \frac{1}{t\sqrt{t^2 - 1}} dt$$
 avec $u = \frac{1}{t}$

f)
$$\int_{e}^{e^2} \frac{\ln t}{t + t \ln^2 t} dt$$
 avec $u = \ln t$

Changements de variable et intégrations par parties

Calcul 13.3

Effectuer le changement de variable indiqué, continuer avec une intégration par parties et en déduire la valeur de l'intégrale.

Calculs de primitives par changement de variable

Calcul 13.4

Déterminer une primitive de f en utilisant le changement de variable donné.

a)
$$x \in \left]0, \frac{\pi}{2}\right[\longmapsto \frac{\cos x + \sin x}{\sin x \cos^2 x}$$
 avec $u = \tan x$

b)
$$x \in \mathbb{R} \longmapsto \frac{1}{1 + \operatorname{th}(x)}$$
 avec $u = e^x$

c)
$$x \in \mathbb{R}_+^* \longmapsto \frac{1}{\sqrt{e^x - 1}}$$
 avec $u = \sqrt{e^x - 1}$

d)
$$x \in \mathbb{R}_+^* \longmapsto \frac{1}{x + \sqrt[3]{x}}$$
 avec $u = \sqrt[3]{x}$

e)
$$x > 1 \longrightarrow \frac{1}{x\sqrt{x^2 - 1}}$$
 avec $u = \sqrt{x^2 - 1}$

Intégration des fractions rationnelles

Prérequis

Fonctions ln et arctan. Division euclidienne entre polynômes.

Petites décompositions en éléments simples.

Forme canonique d'un trinôme du second degré.

Changements de variable affines dans les intégrales.

Premier cas

Calcul 14.1

0000

Calculer les intégrales suivantes.

a)
$$\int_{1}^{2} \frac{1}{t+1} dt$$

b)
$$\int_{1}^{2} \frac{1}{2t+1} dt$$

Calcul 14.2

Soit $a \in \mathbb{R}_+^*$. Calculer les intégrales suivantes.

a)
$$\int_{\frac{1}{8}}^{\frac{1}{16}} \frac{1}{\frac{t}{2} + \frac{1}{4}} dt$$

b)
$$\int_0^{a^2} \frac{1}{t+a} dt$$

Deuxième cas

Calcul 14.3

Calculer les intégrales suivantes, en effectuant d'abord une division euclidienne entre le numérateur et le dénominateur des fractions en jeu.

a)
$$\int_{1}^{2} \frac{1+t+t^{2}}{1+t} dt$$

b)
$$\int_{\frac{1}{3}}^{\frac{1}{2}} \frac{1+2t+3t^2}{4t+5} dt \dots$$

Troisième cas

Dans ce troisième cas, il s'agit de reconnaître un expression du type $\frac{u'}{u}$.

Calcul 14.4

Calculer les intégrales suivantes.

a)
$$\int_{1}^{2} \frac{2t+1}{t^2+t+1} dt$$

b)
$$\int_{\frac{1}{3}}^{\frac{1}{2}} \frac{t}{\frac{t^2}{2} + \frac{1}{3}} dt$$

Calcul 14.5

Soit $a \in \mathbb{R}_+^*$. Calculer les intégrales suivantes.

a)
$$\int_{1}^{\sqrt{2}} \frac{t + \frac{1}{\sqrt{2}}}{t^2 + \sqrt{2}} dt$$

b)
$$\int_{\frac{1}{\sqrt{a}}}^{1} \frac{t}{at^2 + 1} dt \dots$$

Quatrième cas

Calcul 14.6 — Exemple détaillé d'un calcul d'intégrale.

- b) Trouver deux réels A et B tels que

pour tout $t \in \mathbb{R} \setminus \{1, 2\}$, on ait $\frac{1}{(t-1)(t-2)} = \frac{A}{t-1} + \frac{B}{t-2}$

c) Calculer $\int_3^4 \frac{2}{(t-1)(t-2)} dt$

Calcul 14.7 0000

Calculer les intégrales suivantes, en procédant comme ci-dessus.

Calcul 14.8 0000

Soit
$$a \in]0,1[$$
. Calculer $\int_0^a \frac{1}{t^2-a} dt$

Cinquième cas

Calcul 14.9 — Une primitive à retenir.

Soit $a \in \mathbb{R}^*$.

- a) Calculer la dérivée de $x \longmapsto \frac{1}{a} \arctan\left(\frac{x}{a}\right)$
- b) Donner une primitive de $x \mapsto \frac{1}{a^2 + x^2}$

Calculer les intégrales suivantes.

Calculer
$$\int_{-1}^{2} \frac{1}{t^2 + 2} dt \dots$$

Synthèse

Calcul 14.12 — Mise sous forme canonique.

0000

Soit $a \in \mathbb{R}^*$. Mettre sous forme canonique les expressions suivantes (où $x \in \mathbb{R}$).

a)
$$x^2 + x + 1$$

c)
$$\sqrt{2}x^2 + \frac{1}{\sqrt{2}}x + \sqrt{2}$$

b)
$$2x^2 - 3x + 1$$

d)
$$ax^2 + a^2x + a^3$$

Calcul 14.13

Calculer les intégrales suivantes.

a)
$$\int_0^1 \frac{1}{1+2t+t^2} dt \dots$$

c)
$$\int_0^1 \frac{1}{1-t+t^2} \, dt \dots$$

b)
$$\int_{-1}^{0} \frac{1}{1+t+t^2} dt \dots$$

d)
$$\int_0^{\frac{1}{4}} \frac{1}{6t^2 - 5t + 1} dt \dots$$

Calcul 14.14

Soit a > 1. Calculer les intégrales suivantes.

a)
$$\int_{-\frac{1}{3}}^{\frac{2}{3}} \frac{1}{3t^2 + 2t + \frac{4}{9}} dt$$

b)
$$\int_0^1 \frac{1}{t^2 - (2a+1)t + a^2 + a} dt$$

Un calcul plus difficile

Calcul 14.15

Calculer
$$\int_0^1 \frac{1}{1+t^3} dt$$

Systèmes linéaires

Prérequis

Résolution par substitution d'une variable, par combinaisons linéaires de lignes.

Systèmes de 2 équations à 2 inconnues

Calcul 15.1

0000

Résoudre dans \mathbb{R}^2

a)
$$\begin{cases} x - 2y = 1 \\ 3x + 4y = 13 \end{cases} \dots$$

c)
$$\begin{cases} 3x - 6y = -3 \\ 2x + 2y = 2 \end{cases} \dots$$

$$b) \begin{cases} 2x + y = 16 \\ x - y = 5 \end{cases}$$

d)
$$\begin{cases} 3x - 4y = -\sqrt{2} \\ 6x + 2y = 3\sqrt{2} \end{cases}$$

Calcul 15.2 — Systèmes avec paramètre.

0000

Résoudre dans \mathbb{R}^2 en fonction des valeurs du paramètre $a \in \mathbb{R}$.

a)
$$\begin{cases} 3x + 2y = 2 \\ 2x + 4y = a \end{cases}$$
b)
$$\begin{cases} x - ay = 3a + 2 \\ ax + y = 2a - 3 \end{cases}$$

c)
$$\begin{cases} 3x + 5y = a \\ 2x - y = a^2 \end{cases} \dots$$

b)
$$\begin{cases} x - ay = 3a + 2 \\ ax + y = 2a - 3 \end{cases}$$

d)
$$\begin{cases} x + 2y = 3a \\ 2x + 3y = 5a - a^2 \end{cases} \dots$$

Systèmes de 2 équations à 3 inconnues

Calcul 15.3

0000

Résoudre dans \mathbb{R}^3 .

a)
$$\begin{cases} x + 2y + z = 1 \\ 3x + y - 2z = 3 \end{cases}$$
b)
$$\begin{cases} 3x - 2y + z = 6 \\ x + 2y - z = -2 \end{cases}$$

c)
$$\begin{cases} x - y + 3z = 5/2 \\ x + 2y - z = 3/2 \end{cases}$$
 d)
$$\begin{cases} 5x + y + 2z = -5/2 \\ 2x - y + 2z = -5/3 \end{cases}$$

b)
$$\begin{cases} 3x - 2y + z = 6 \\ x + 2y - z = -2 \end{cases} \dots$$

d)
$$\begin{cases} 5x + y + 2z = -5/2 \\ 2x - y + 2z = -5/3 \end{cases} \dots$$

Systèmes de 3 équations à 3 inconnues

Calcul 15.4

0000

Résoudre dans \mathbb{R}^3

a)
$$\begin{cases} x + 2y - z = -3 \\ 2x - y + z = 8 \\ 3x + y + 2z = 11 \end{cases}$$
b)
$$\begin{cases} a - b - c = -7 \\ 3a + 2b - c = 3 \\ 4a + b + 2c = 4 \end{cases}$$

c)
$$\begin{cases} x + 3y + z = 1 \\ 2x - y + 2z = -1 \\ x + 10y + z = 0 \end{cases}$$
d)
$$\begin{cases} 3x + 2y + 3z = 0 \\ 2x - y + 2z = -1 \\ 4x + 5y + 4z = 1 \end{cases}$$

b)
$$\begin{cases} a-b-c = -7 \\ 3a+2b-c = 3 \\ 4a+b+2c = 4 \end{cases}$$
.....

d)
$$\begin{cases} 3x + 2y + 3z = 0 \\ 2x - y + 2z = -1 \\ 4x + 5y + 4z = 1 \end{cases}$$

Calcul 15.5

0000

On considère le système d'inconnues $(x, y, z) \in \mathbb{R}^3$ et de paramètre $a \in \mathbb{R}$:

$$\begin{cases} x+y-z=1\\ x+2y+az=2\\ 2x+ay+2z=3. \end{cases}$$

Résoudre ce système pour les valeurs de a proposées.

a)
$$a = 0$$

c)
$$a = 3$$

b)
$$a = -2$$

d)
$$a \in \mathbb{R} \setminus \{-2; 3\}$$
.

Calcul 15.6

On considère le système d'inconnues $(x,y,z)\in\mathbb{R}^3$ et de paramètres $(a,c)\in\mathbb{R}^2$:

$$\begin{cases} x - az = c \\ ax - y = c \\ ay - z = c. \end{cases}$$

Résoudre ce système pour les valeurs de a et c proposées.

a)
$$a = 2, c = 7 \dots$$

c)
$$a \in \mathbb{R} \setminus \{-1\}$$

b)
$$a = 1, c = 2$$

Calcul 15.7

On propose le système d'inconnues $(x, y, z) \in \mathbb{R}^3$ et de paramètre $\lambda \in \mathbb{R}$:

$$\left\{ \begin{array}{l} 4x+y+z=\lambda x\\ x+4y+z=\lambda y\\ x+y+4z=\lambda z. \end{array} \right.$$

Résoudre ce système pour les valeurs de λ proposées.

a)
$$\lambda = 1$$

c)
$$\lambda = 6$$

b)
$$\lambda = 3$$

Nombres complexes

Prérequis

Forme algébrique et forme exponentielle.

Pour s'échauffer

Calcul 16.1 — Écriture algébrique.

0000

Mettre les nombres complexes suivants sous forme algébrique.

a)
$$(2+6i)(5+i)$$

e)
$$(2-3i)^4$$

b)
$$(3-i)(4+i)$$

c)
$$(4-3i)^2$$

g)
$$\frac{2-3i}{5+2i}$$

d)
$$(1-2i)(1+2i)$$

h)
$$e^{-i\frac{\pi}{3}}$$

Calcul 16.2 — Forme exponentielle.

0000

Mettre les nombres complexes suivants sous forme exponentielle.

e)
$$-2e^{i\frac{3\pi}{5}}$$

c)
$$\sqrt{3}i$$

g)
$$-5 + 5i\sqrt{3}$$

h)
$$e^{i\frac{\pi}{3}} + e^{i\frac{\pi}{6}}$$

Un calcul plus dur

Calcul 16.3 — Une simplification.

On pose
$$z = \frac{1+\sqrt{2}+\mathrm{i}}{1+\sqrt{2}-\mathrm{i}}$$

a) Calculer
$$|z|$$

b) Mettre
$$z$$
 sous forme algébrique

c) Calculer
$$z^{2021}$$

Trigonométrie et nombres complexes

Prérequis

Nombres complexes, trigonométrie.

Dans toute cette fiche, x désigne une quantité réelle.

Linéarisation

Calcul 17.1

Linéariser :

a)
$$\cos^3(x)$$

d)
$$\cos(3x)\sin^3(2x)$$
 ...

b)
$$\cos(2x)\sin^2(x)$$

e)
$$\cos^3(2x)\cos(3x)$$
 ..

c)
$$\cos^2(2x)\sin^2(x)$$
 ...

f)
$$\sin^2(4x)\sin(3x)$$
 ...

Arc moitié, arc moyen

Calcul 17.2

Écrire sous forme trigonométrique (c'est-à-dire sous la forme $re^{i\theta}$, avec r>0):

a)
$$1 + e^{i\frac{\pi}{6}}$$

e)
$$-1 - e^{i\frac{\pi}{6}}$$

b)
$$1 + e^{i\frac{7\pi}{6}}$$

f)
$$1 - e^{i\frac{\pi}{12}}$$

c)
$$e^{-i\frac{\pi}{6}} - 1$$

g)
$$\frac{1 + e^{i\frac{\pi}{6}}}{1 - e^{i\frac{\pi}{12}}}$$

d)
$$1 + ie^{i\frac{\pi}{3}}$$

h)
$$(1 + e^{i\frac{\pi}{6}})^{27}$$

Calcul 17.3

Écrire sous forme trigonométrique (c'est-à-dire sous la forme $re^{\mathrm{i}\theta}$, avec r>0) :

a)
$$e^{i\frac{\pi}{3}} + e^{i\frac{\pi}{2}}$$

b)
$$e^{i\frac{\pi}{3}} - e^{i\frac{\pi}{2}}$$

Délinéarisation

Calcul 17.4

Exprimer en fonction des puissances de cos(x) et de sin(x):

a)
$$\cos(3x)$$

b)
$$\sin(4x)$$

Factorisation

Calcul 17.5

Factoriser:

a)
$$\cos(x) + \cos(3x)$$

c)
$$\cos(x) - \cos(3x)$$

b)
$$\sin(5x) - \sin(3x) \dots$$

d)
$$\sin(3x) + \sin(5x) \dots$$

Calcul 17.6

Factoriser:

a)
$$\sin(x) + \sin(2x) + \sin(3x)$$

b)
$$\cos(x) + \cos(3x) + \cos(5x) + \cos(7x)$$

c)
$$\cos(x) + \cos\left(x + \frac{2\pi}{3}\right) + \cos\left(x + \frac{4\pi}{3}\right)$$

Intégrales

Calcul 17.7

Calculer:

Sommes et produits

Prérequis

Factorielle. Identités remarquables. Décomposition en éléments simples. Fonctions usuelles (racine carrée, logarithme népérien).

Si q est un nombre réel et si $(m,n) \in \mathbb{N}^{*2}$ et $m \leq n$, on a

$$\bullet \sum_{k=m}^{n} k = \frac{(n-m+1)(m+n)}{2}$$

•
$$\sum_{k=m}^{n} k = \frac{(n-m+1)(m+n)}{2}$$
 • $\sum_{k=1}^{n} k^3 = \left(\sum_{k=1}^{n} k\right)^2 = \frac{n^2(n+1)^2}{4}$

•
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

•
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$
 • $\sum_{k=m}^{n} q^k = \begin{cases} q^m \frac{1-q^{n-m+1}}{1-q} & \text{si } q \neq 1\\ n-m+1 & \text{sinon.} \end{cases}$

Dans toute la suite, n désigne un entier naturel non nul.

Calculs de sommes simples

Calcul 18.1 Calculer les sommes suivantes.

a)
$$\sum_{k=1}^{n+2} n$$

c)
$$\sum_{k=1}^{n} (3k + n - 1)$$

b)
$$\sum_{k=2}^{n+2} 7k$$

$$d) \sum_{k=2}^{n-1} \left(\frac{k-4}{3}\right) \dots$$

Calcul 18.2

0000

Même exercice.

a)
$$\sum_{k=1}^{n} k(k+1)$$

d)
$$\sum_{k=0}^{n} 2^k 5^{n-k}$$

b)
$$\sum_{k=0}^{n} (4k(k^2+2))$$

e)
$$\sum_{k=1}^{n} (7^k + 4k - n + 2) \dots$$

c)
$$\sum_{k=2}^{n-1} 3^k$$

f)
$$\frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n}{n^2} \dots$$

Calcul 18.3 — Produits.

Calculer les produits suivants, où p et q sont des entiers naturels non nuls tel que $p \geqslant q$.

a)
$$\prod_{k=p}^{q} 2$$

c)
$$\prod_{k=1}^{n} 5\sqrt{k} \times k \dots$$

b)
$$\prod_{k=1}^{n} 3^{k}$$

d)
$$\prod_{k=-10}^{10} k$$

Changements d'indice

Calcul 18.4

0000

Calculer les sommes suivantes en effectuant le changement d'indice demandé.

a)
$$\sum_{k=1}^{n} n + 1 - k$$
 avec $j = n + 1 - k$

b)
$$\sum_{k=1}^{n} \frac{1}{k} - \frac{1}{n+1-k}$$
 avec $j = n+1-k$.

d)
$$\sum_{k=3}^{n+2} (k-2)^3$$
 avec $j = k-2$

Sommes télescopiques, produits télescopiques

Calcul 18.5 — Sommes télescopiques.

0000

Calculer les sommes suivantes.

a)
$$\sum_{k=2}^{n+2} (k+1)^3 - k^3 \dots$$

c)
$$\sum_{k=1}^{n} \frac{k}{(k+1)!}$$

b)
$$\sum_{k=1}^{n} \ln \left(1 + \frac{1}{k} \right) \dots$$

d)
$$\sum_{k=1}^{n} k \times k! \dots$$

Calcul 18.6 — Produits télescopiques.

Calculer les produits suivants.

a)
$$\prod_{k=1}^{n} \frac{k+1}{k} \dots$$

c)
$$\prod_{k=2}^{n} \left(1 - \frac{1}{k}\right) \dots$$

b)
$$\prod_{k=1}^{n} \frac{2k+1}{2k-1}$$

$$d) \quad \prod_{k=2}^{n} \left(1 - \frac{1}{k^2} \right) \dots$$

Décomposition en éléments simples

Calcul 18.7

Calculer les sommes suivantes.

a)
$$\sum_{k=1}^{n} \frac{1}{k(k+1)}$$

b)
$$\sum_{k=0}^{n} \frac{1}{(k+2)(k+3)}$$

Sommation par paquets

Calcul 18.8

Calculer les sommes suivantes.

a)
$$\sum_{k=0}^{2n} (-1)^k k^2$$

b)
$$\sum_{k=0}^{2n} \min(k, n)$$

Sommes doubles

Calcul 18.9

Calculer les sommes doubles suivantes.

a)
$$\sum_{1 \leqslant i,j \leqslant n} j$$

b)
$$\sum_{1 \leqslant i \leqslant j \leqslant n} \frac{i}{j} \dots$$

c)
$$\sum_{1 \leq i < j \leq n} (i+j) \dots$$

d)
$$\sum_{1 \leq i \leq j \leq n} (i+j)^2 \dots$$

e)
$$\sum_{1 \leq i,j \leq n} \ln(i^j) \dots$$

f)
$$\sum_{1 \leq i,j \leq n} \max(i,j) \dots$$

Coefficients binomiaux

Prérequis

Factorielles. Coefficients binomiaux. Formule du binôme de Newton.

La lettre n désigne un entier naturel non nul.

Manipulations de factorielles et coefficients binomiaux

Calcul 19.1 — Pour s'échauffer.

0000

Donner la valeur des expressions suivantes :

a)
$$\frac{101!}{99!}$$

d)
$$\binom{6}{2}$$

b)
$$\frac{10!}{7!}$$

e)
$$\binom{8}{3}$$

c)
$$\frac{1}{4!} - \frac{1}{5!}$$

f)
$$4 \times {7 \choose 4}$$

Calcul 19.2 — Pour s'échauffer – bis.

Écrire les expressions suivantes à l'aide de factorielles, coefficients binomiaux et le cas échéant à l'aide de puissances.

a)
$$6 \times 7 \times 8 \times 9$$

c)
$$2 \times 4 \times \cdots \times (2n) \dots$$

b)
$$\frac{6 \times 7 \times 8 \times 9}{2 \times 3 \times 4} \dots$$

d)
$$3 \times 5 \times \cdots \times (2n+1) \dots$$

Calcul 19.3 — Avec des paramètres.

0000

Simplifier les expressions ci-dessous. La lettre k désigne un entier naturel tel que k < n.

a)
$$\binom{n}{2}$$
 (pour $n \ge 2$)

d)
$$\frac{(n+2)!}{n!}$$

b)
$$\binom{n}{3}$$
 (pour $n \ge 3$)

e)
$$\frac{1}{n!} - \frac{n}{(n+1)!}$$

c)
$$\frac{\binom{n}{k}}{\binom{n}{k+1}}$$

f)
$$\frac{(n+1)!}{2^{2(n+1)}} - \frac{n!}{2^{2n}} \dots$$

Calcul 19.4 — Avec des paramètres - bis.

Simplifier les expressions ci-dessous. La lettre a désigne un nombre non nul.

a)
$$\frac{1}{n!} + \frac{1}{2n \times (n+1)!} + \frac{1}{2 \times (n+2)!}$$

b)
$$\frac{(3(n+1))!}{a^{3(n+1)} \times ((n+1)!)^3} \div \frac{(3n)!}{a^{3n} \times (n!)^3} \dots$$

Autour du binôme de Newton

Calcul 19.5 — Le binôme de Newton.

Calculer les sommes ci-dessous à l'aide de la formule du binôme de Newton.

a)
$$\sum_{k=0}^{n} 2^k \binom{n}{k} \dots$$

c)
$$\sum_{k=0}^{n} 2^{2n-k} \binom{n}{k} \dots$$

b)
$$\sum_{k=0}^{n} (-1)^{k+1} \binom{n}{k} \dots$$

d)
$$\sum_{k=0}^{n} 2^{k+2} \binom{n}{k} \times 3^{2n-k+1}$$

Calcul 19.6

a) Développer à l'aide de la formule du binôme de Newton $(1+1)^n + (1-1)^n \dots$

b) Calculer
$$\sum_{p=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n}{2p}$$

Calcul 19.7

En utilisant la fonction $x \longmapsto (1+x)^n$, ses dérivées d'ordre 1 et 2 et sa primitive s'annulant en 0, calculer

a)
$$\sum_{k=0}^{n} \binom{n}{k} \dots$$

c)
$$\sum_{k=0}^{n} \binom{n}{k} \times k^2 \dots$$

b)
$$\sum_{k=0}^{n} \binom{n}{k} \times k$$

d)
$$\sum_{k=0}^{n} \binom{n}{k} \times \frac{1}{k+1} \dots$$

Calcul 19.8

a) Donner le coefficient de x^n dans le développement de $(1+x)^{2n}$

b) Donner-en une autre expression en développant le produit $(1+x)^n(1+x)^n$

c) Calculer $\sum_{k=0}^{n} \binom{n}{k}^2$

Manipulation des fonctions usuelles

Prérequis

Dérivation, équations du second degré.

Calculs de valeurs

Calcul 20.1 — Fonctions circulaires réciproques.

Calculer les valeurs suivantes.

a)
$$\arcsin\left(\frac{1}{2}\right)$$

d)
$$\arctan\left(\frac{\sqrt{3}}{3}\right)$$

b)
$$\frac{\arcsin\left(\frac{\sqrt{3}}{2}\right)}{\arccos\left(\frac{\sqrt{3}}{2}\right)}$$

c)
$$\arccos\left(\frac{1}{\sqrt{2}}\right)$$

f)
$$\operatorname{arccos}\left(\frac{1}{3} + \frac{1}{6}\right)$$

Calcul 20.2 — Valeurs de fonctions hyperboliques.

0000

0000

Calculer les valeurs suivantes. On rappelle que, pour $x \in \mathbb{R}$, on pose $\operatorname{th}(x) = \operatorname{sh}(x)/\operatorname{ch}(x)$.

c)
$$\operatorname{ch}(\ln(2))$$

f)
$$\operatorname{th}(\ln(2))$$

Calcul 20.3 — Identités de trigonométrie hyperbolique.

0000

Soient x et y des réels.

Calculer en développant soigneusement, et en simplifiant au maximum, les expressions suivantes.

a)
$$\operatorname{ch}(x)\operatorname{sh}(y) + \operatorname{ch}(y)\operatorname{sh}(x)$$

b)
$$\operatorname{ch}(x)\operatorname{ch}(y) - \operatorname{sh}(x)\operatorname{sh}(y)$$

Résolution d'équations

Calcul 20.4 — Fonctions $x \mapsto a^x$.

Résoudre les équations suivantes, d'inconnue $x \in \mathbb{R}$.

a)
$$3^x = \frac{9^x}{2} \dots$$

c)
$$2^x = 3 \times 4^x \dots$$

b)
$$4^x = 2 \times 2^x \dots$$

d)
$$10^{2x} = 4 \times 5^x \times 9^{\frac{x}{2}} \dots$$

Calcul 20.5 — Fonctions $x \mapsto a^x$: plus difficile..

Résoudre les équations suivantes, d'inconnue $x \in \mathbb{R}$.

On pourra faire intervenir une équation de degré 2 en posant une nouvelle variable.

a)
$$2^x + 4^x = 4$$

b)
$$16^x - 3 \times 4^x + 2 = 0$$

c)
$$2 \times 9^x - 3^x - 3 = 0$$

d)
$$3^x + 3^{2x} - 1 = 0$$
.

Calcul 20.6 — Équations avec les fonctions circulaires réciproques.

0000

Résoudre les équations suivantes, d'inconnue $x \in [-1, 1]$ pour les deux premiers calculs, et $x \in \mathbb{R}$ pour les autres.

a)
$$\arcsin(x) = \frac{\pi}{2} \dots$$

d)
$$\arcsin(\sin(x)) = \frac{\pi}{3} \dots$$

b)
$$\cos(\arccos(x)) = 0 \dots$$

e)
$$\arcsin(\sin(x)) = \frac{1}{3} \dots$$

c)
$$\operatorname{arccos}(\cos(x)) = 0 \dots$$

f)
$$\tan(\arctan(x)) = 1 \dots$$

Calcul 20.7 — Équations avec des fonctions hyperboliques.

Résoudre les (in)équations suivantes d'inconnue $x \in \mathbb{R}$. On rappelle que, pour $x \in \mathbb{R}$, on pose $\operatorname{th}(x) = \operatorname{sh}(x)/\operatorname{ch}(x)$.

a)
$$ch(x) = \sqrt{5}$$

d)
$$\operatorname{ch}(x) \leqslant 4$$

b)
$$sh(x) = 1$$

e)
$$sh(x) \ge 3$$

c)
$$th(x) = \frac{1}{3}$$

f)
$$\operatorname{th}(x) \leqslant \frac{1}{2}$$

Dérivation

Calcul 20.8 — Quelques calculs de dérivées.

Dériver les fonctions suivantes.

a)
$$x \longmapsto 2^x + x^2 \dots$$

c)
$$x \longmapsto x^x \dots$$

b)
$$x \longmapsto \frac{3^x}{5^x + 1} \dots$$

d)
$$x \mapsto \frac{\arcsin(x)}{\arccos(x)} \dots$$

Calcul 20.9 — Quelques calculs de dérivées – bis.

Dériver les fonctions suivantes. On rappelle que, pour $x \in \mathbb{R}$, on pose $\operatorname{th}(x) = \operatorname{sh}(x)/\operatorname{ch}(x)$.

- a) $x \longmapsto \arcsin(x^2) \dots$
- c) $x \mapsto \arctan(\operatorname{th}(x))$..
- b) $x \longmapsto \operatorname{ch}(x)\operatorname{sh}(x) \ldots$
- d) $x \longmapsto \operatorname{sh}(\operatorname{ch}(x)) \ldots$

Calcul 20.10 — Deux dérivées importantes.

- a) $x \mapsto \arcsin(x) + \arccos(x)$
- b) $x \mapsto \arctan(x) + \arctan\left(\frac{1}{x}\right)$

Calcul 20.11 — Dérivées plus compliquées.

Dériver les fonctions suivantes. La fonction F est une primitive de $x \mapsto e^{-x^2}$.

- a) $x \mapsto F(x^x)$
- b) $x \mapsto F(\sqrt{\ln(\operatorname{ch}(x))})$
- c) $x \mapsto \sqrt{1-x^2} + x \arcsin(x)$
- d) $x \mapsto x \arctan(x) \frac{1}{2} \ln(x^2 + 1)$

Suites numériques

Prérequis

Suites récurrentes. Suites arithmétiques. Suites géométriques.

Calcul de termes

Calcul 21.1 — Suite explicite. Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $\forall n\in\mathbb{N},\ u_n=\frac{2n+3}{5}$	$\frac{3}{2} \times 2^{n+2}$. Calculer:	0000
a) u ₀	c) u_{n+1}	
b) u_1		
Calcul 21.2 — Suite récurrente.		0000
On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=1$ et $\forall n\in\mathbb{N},\ u_n$	$u_{n+1} = 2u_n + 3$. Calculer:	
a) son troisième terme	b) u_3	
Calcul 21.3 — Suite récurrente.		0000
On définit la suite $(v_n)_{n\geqslant 1}$ par $v_1=\sqrt{2}$ et $\forall n\geqslant 1,\ v$	$v_{n+1} = \sqrt{v_n}$. Calculer:	
a) v ₃	b) son sixième terme	
Calcul 21.4 — Suite récurrente.		0000
On définit la suite $(w_n)_{n\in\mathbb{N}}$ par $w_0=2$ et $\forall n\in\mathbb{N},\ w$	$v_{n+1} = \frac{1}{2}w_n^2$. Calculer:	
a) w_2	b) son centième terme	
Calcul 21.5 — Suite explicite.		0000
Soit la suite $(t_n)_{n\geqslant 1}$ définie par $\forall n\in\mathbb{N},\ t_n=\ln\left(\frac{n^n}{2^n}\right)$). Calculer, pour $n \in \mathbb{N}^*$:	
a) t_{2n}	$\left. \right $ b) t_{4n}	
Suites arithmétiques et géométri	ques	
Calcul 21.6 — Suite arithmétique. La suite $(a_n)_{n\in\mathbb{N}}$ est la suite arithmétique de premier	r terme 1 et de raison 2. Calculer :	0000
a) a_{10}	$\begin{bmatrix} & c \end{pmatrix} = \begin{bmatrix} a_1 & 000 & \dots & & & & & & & & & & & & & & &$	
b) $s_{100} = a_0 + a_1 + \ldots + a_{99} \ldots$	d) $s_{101} = a_0 + a_1 + \ldots + a_{100} \ldots$	

Calcul 21.7 — Suite arithmétique.	0000
La suite $(b_n)_{n\in\mathbb{N}}$ est une suite arithmétique de raison r vérifiant que $b_{101}=\frac{2}{3}$ et $b_{103}=\frac{3}{4}$. Calculer:	
a) b_{102}	
Calcul 21.8 — Suite géométrique.	0000
La suite $(g_n)_{n\in\mathbb{N}}$ est la suite géométrique de premier terme $g_0=3$ et de raison $\frac{1}{2}$. Calculer :	
a) Son dixième terme est :	
b) $\sigma_{10} = g_0 + g_1 + \ldots + g_9 \ldots$ d) $\sigma_{11} = g_0 + g_1 + \ldots + g_{10} \ldots$	
Calcul 21.9 — Suite géométrique.	0000
La suite $(h_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison q vérifiant que $h_{11}=\frac{5\pi}{11}$ et $h_{13}=\frac{11\pi}{25}$. Calcule	r:
a) h_{12}	
Suites récurrentes sur deux rangs	
Calcul 21.10	0000
Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par que $u_0=2,\ u_1=1$ et $\forall n\in\mathbb{N},\ u_{n+2}=u_{n+1}+6u_n$. Calculer :	
a) u_n	
Calcul 21.11	
	0000
Soit la suite $(v_n)_{n\in\mathbb{N}}$ définie par que $v_0=0,\ v_1=\sqrt{2}$ et $\forall n\in\mathbb{N},\ v_{n+2}=2v_{n+1}+v_n$. Calculer :	0000
	0000
Soit la suite $(v_n)_{n\in\mathbb{N}}$ définie par que $v_0=0,\ v_1=\sqrt{2}$ et $\forall n\in\mathbb{N},\ v_{n+2}=2v_{n+1}+v_n$. Calculer : a) v_n b) v_2	0000
Soit la suite $(v_n)_{n\in\mathbb{N}}$ définie par que $v_0=0,\ v_1=\sqrt{2}$ et $\forall n\in\mathbb{N},\ v_{n+2}=2v_{n+1}+v_n$. Calculer : a) v_n b) v_2	0000
Soit la suite $(v_n)_{n\in\mathbb{N}}$ définie par que $v_0=0,\ v_1=\sqrt{2}$ et $\forall n\in\mathbb{N},\ v_{n+2}=2v_{n+1}+v_n$. Calculer : a) v_n b) v_2	0000

f) $F_{n+1}^2 - 2(F_n - 1)^2$

c) $(F_{n-1}-1)^2+1$

Développements limités

Prérequis

Il est nécessaire de connaı̂tre les développements (en 0) des fonctions usuelles, ainsi que la formule de Taylor-Young!

Avertissement : Les développements limités peuvent se donner au « sens faible » (avec les petits $o(\cdot)$) ou « au sens fort » (avec les grands $O(\cdot)$). Volontairement, aucune de ces deux formes n'est imposée. Mais, pour des raisons de concision, une seule d'entre elles est donnée dans les éléments de correction de chaque question.

Développements limités

Calcul 22.1 — Développements limités d'une somme ou d'un produit de fonctions. Former le développement limité, à l'ordre indiqué et au voisinage de 0, de la fonction de la variable réelle définie par l'expression suivante :
a) À l'ordre 4: $f(x) = \sin(x) + 2\ln(1+x)$
b) À l'ordre 4 : $\frac{\ln(1+x)}{1+x}$
c) À l'ordre 6 : $\sin(x)(\cosh(x) - 1)$
d) À l'ordre 6 : $e^x \sin(x)$
Calcul 22.2 — Développements limités d'une fonction composée. Former le développement limité, à l'ordre et au voisinage indiqués, de la fonction de la variable réelle x défin par l'expression suivante :
a) À l'ordre 4, en 0 : $f(x) = (1+x)^{\frac{1}{x}}$
b) À l'ordre 6, en 0 : $\sqrt{\cos(x)}$
c) À l'ordre 3, en $0:=\mathrm{e}^{\mathrm{e}^{\mathrm{i}x}}$
d) À l'ordre 2, en 1 : $\frac{\ln(2-x)}{x^2}$
Calcul 22.3 — Développements limités d'une fonction composée. Former le développement limité, à l'ordre et au voisinage indiqués, de la fonction de la variable réelle x défin par l'expression suivante :
a) À l'ordre 2, en $\frac{\pi}{3}$: $\sin(\pi \cos(x))$
b) À l'ordre 3, en $\frac{\pi}{4}$: $\tan(x)$
c) À l'ordre 7, en $\frac{\pi}{\pi}$: $\cos(\pi \sin(x))$

Développements asymptotiques

Calcul 22.4

Former le développement asymptotique, à la précision et au voisinage indiqués, de la fonction de la variable réelle x définie par l'expression suivante :

- a) À la précision x^2 , en 0 : $\frac{1}{x(e^x 1)} \frac{1}{x^2}$
- b) À la précision $\frac{1}{x^5}$, en $+\infty$: $\frac{\sin(1/x)}{x+1}$
- c) À la précision $\frac{1}{x^3}$, en $+\infty$: $x \ln(x+1) (x+1) \ln(x)$
- d) À la précision $\frac{e^x}{x^2}$, $+\infty$: $\left(\frac{1}{x}+1\right)^{x^2}$

Arithmétique

Prérequis

Division euclidienne. Algorithme d'Euclide. Théorèmes de Gauss, de Bezout et de Fermat. Décomposition en facteurs premiers.

Division euclidienne

Calcul 23.1 — Variations sur le signe.
Effectuer la division euclidienne de a par b , on donnera le résultat sous la forme « (quotient, reste) ».
a) $a = 61$ et $b = 9$
b) $a = -61$ et $b = 9$
Calcul 23.2 — Diviseur et reste inconnus.
On divise 524 par un entier non nul inconnu, d . Le quotient vaut 26 et le reste r .
a) d vaut
Calcul 23.3 — Arithmétique modulaire.
On rappelle que deux entiers a et b sont congrus modulos n , ce qu'on note $a \equiv b \pmod{n}$, si et seulement s'ils ont même reste de division euclidienne par n .
a) Le reste de 5^{2021} par 3 vaut b) Le reste de 3^{2022} par 5 vaut
Calcul 23.4 — Encore des modulos. La notation a^{b^c} désigne le nombre a à la puissance « b puissance c ». À ne pas confondre avec $(a^b)^c = a^{b \times c}$
Le chiffre des unités de 2 $023^{2022^{2021}}$ est
PGCD et PPCM
Calcul 23.5 — Réduction de fractions. \blacksquare
On notera $a \wedge b$ le plus grand diviseur commun de a et b et $a \vee b$ leur plus petit multiple commun.
a) $10\ 010 \land 2\ 772\ \text{vaut}$
b) la forme irréductible de $\frac{10\ 010}{2\ 772}$ est d) $\frac{1}{360} - \frac{2}{729}$
Calcul 23.6 — Systèmes diophantiens.

Déterminer tous les couples d'entiers naturels (a,b) tels que :

 $\begin{cases} a^2 - b^2 = 9792 \\ a \wedge b = 24 \end{cases} \dots$

Fiche nº 23. Arithmétique

Coprimalité, relation de Bezout et théorème de Gauss

Calcul 23.7 — Inverse modulo 13. L'objectif de cet exercice est de résoudre l'équation de congruence $5x+4\equiv 7\pmod{13}$. Pour ce faire, on cherch un inverse pour 5 modulo 13, c'est-à-dire un reste noté inv ₁₃ (5) tel que $5\times \text{inv}_{13}(5)\equiv 1\pmod{13}$.	_
a) Donner une solution dans \mathbb{Z}^2 de l'équation diophantienne $5u+13v=1.$	
b) Déterminer l'inverse de 5 modulo 13.	
c) Résoudre l'équation $5x + 4 \equiv 7 \pmod{13}$ dans \mathbb{Z}	
Calcul 23.8 — Équation diophantienne. Soit N le nombre de couples d'entiers (x, y) solution de l'équation (E) : $19x-6y=1$ et vérifiant $1999 \le x \le 202$ et (x_0, y_0) celle de ces solutions qui maximise y . a) N vaut	
Décomposition en facteurs premiers et théorème de Fermat	
Calcul 23.9 — Décomposer pour décomposer.	0
Donner la décomposition en facteurs premiers des entiers suivants. Il s'agit ici d'appliquer au maximum le critères élémentaires de divisibilité (par 2, 3, 4, 5 et 9).	es
a) 2 022	
b) 2 023	
Calcul 23.10 — Diviseur et quotient inconnus.	0
On divise 477 par un entier non nul inconnu, n . Le quotient est q et le reste vaut 8.	
a) <i>n</i> vaut	
Calcul 23.11 — Arithmétique modulaire.	0
Déterminer, dans chaque cas, le reste de chaque puissance modulo l'entier proposé.	
a) $3^{24} = 3^{4 \times 6} \pmod{35}$	
b) $3^{72} \pmod{35}$	
c) $6^{75} \pmod{35}$	

Fiche n° 23. Arithmétique 51

Polynômes

Prérequis

Opérations sur les polynômes. Division Euclidienne. Évaluation. Racines.

Autour de la division euclidienne

Calcul 24.1 — Pour s'échauffer.

0000

Pour chacun des cas ci-dessous, calculer le quotient Q et le reste R de la division euclidienne de A par B:

a)
$$A = X^3 + X^2 - X + 1$$
, $B = X - 1$

b)
$$A = X^4 - 3X^3 + 4X^2 - 1$$
, $B = X^2 + X + 1$

c)
$$A = X^5 + X^4 - X^3 + X - 1$$
, $B = X^3 + X^2 + 2$

d)
$$A = 26X^4 + 12X^3 - 11X^2 - 2X + 1$$
, $B = 2X^3 - X^2 - X + 1$

Calcul 24.2 — Avec des degrés arbitraires.

0000

La lettre n désigne un entier naturel supérieur ou égal à 2.

Pour chacun des cas ci-dessous, calculer le reste R de la division euclidienne de A par B :

a)
$$A = X^n, B = X - 1$$

b)
$$A = X^{3n+2} + X^{3n+1} + X^{3n}, B = X^2 + X + 1$$

c)
$$A = (X-3)^{2n} + (X-2)^n - 2$$
, $B = (X-2)^2$

d)
$$A = X^{n+2} + X^{n+1} - X^n$$
, $B = X^3 - 2X + 1$

Calcul 24.3 — Avec des opérations.

Pour chacun des cas ci-dessous, calculer le reste R de la division euclidienne de P par X^4 :

a)
$$P = A + B$$
 où $A = X^5 + X - 2$ et $B = X^4 + X - 1$

b)
$$P = A \times B$$
 où $A = 2X^3 - 3X^2 - X + 1$ et $B = X^2 + X + 1$

c)
$$P = A \circ B$$
 où $A = X^2 - 3X + 1$ et $B = (X - 2)^2$

d)
$$P = A \circ B$$
 où $A = 2X^3 - 3X^2 - X + 1$ et $B = X^3 + X^2 - 2X + 1$

Calcul 24.4 — Pour évaluer en un point. Soit $P = X^6 - 2X^5 - 8X^4 - 22X^3 - 53X^2 - 56X - 20$.	0000
a) Calculer le reste de la division euclidienne de P par X^2+1	
b) Calculer $P(i)$	
Calcul 24.5 — Pour évaluer en un point – bis. Soit $P = X^6 - 2X^5 - 8X^4 - 22X^3 - 53X^2 - 56X - 20$.	0000
a) Calculer le reste de la division euclidienne de P par X^2-2	
b) Calculer $P(\sqrt{2})$	
Calcul 24.6 — Pour évaluer en un point – ter. Soit $P=X^6-2X^5-8X^4-22X^3-53X^2-56X-20$. En vous inspirant des deux exercices précédents, calculer :	0000
a) $P(\sqrt{2}-1)$	

b) P(i+1).....

53

Décomposition en éléments simples

Prérequis

Polynômes (factorisation, division euclidienne), primitives usuelles

Calculs de décompositions en éléments simples

Calcul 25.1 — Uniquement des pôles simples.

0000

Effectuer la décomposition en éléments simples (sur \mathbb{C}) des fractions rationnelles suivantes.

a)
$$\frac{X^4 - 2}{X(X+1)(X+2)}$$

b)
$$\frac{X^3+2}{(X-1)X(X+1)}$$

c)
$$\frac{X^2}{(X-\pi)(X+\pi)}$$

Calcul 25.2

0000

Même exercice.

a)
$$\frac{X+1}{(X+2)(X+e)}$$

b)
$$\frac{X^2 + X + 1}{(X - i)(X + i)(X - 1)} \dots$$

c)
$$\frac{X^2 + 2}{(X - \sqrt{2})(X + \sqrt{3})}$$

Calcul 25.3 — Avec des pôles multiples.

Effectuer la décomposition en éléments simples (sur \mathbb{C}) des fractions rationnelles suivantes.

a)
$$\frac{X+1}{(X-1)^2(X-2)(X-3)}$$
 ..

b)
$$\frac{2+X^2}{(X+1)X^2(X-1)^2}$$

c)
$$\frac{1-X}{X(X+\pi)^2} \dots$$

d)
$$\frac{1}{(X-i)^2(X-1-i)^2}$$

Calcul 25.4 - À vous de factoriser!.

Effectuer la décomposition en éléments simples (sur \mathbb{C}) des fractions rationnelles suivantes.

a)
$$\frac{X-3}{X^4-1}$$

b)
$$\frac{2X^3 + 1}{X^4 - 3X^2 + 2X}$$

Calcul 25.5 — Calculs de sommes.

Soit $n \in \mathbb{N}$ tel que $n \geqslant 2$.

Calculer les sommes suivantes, après avoir fait une décomposition en éléments simples de leur terme général.

a)
$$\sum_{k=2}^{n} \frac{1}{(k-1)k(k+1)} \dots$$

b)
$$\sum_{k=2}^{n} \frac{k^2 - 5k - 2}{(k-1)k(k+1)(k+2)} .$$

Calcul 25.6 — Calculs de sommes.

Effectuer la décomposition en éléments simples sur $\mathbb R$ des fractions rationnelles suivantes.

a)
$$\frac{2X+4}{(X+1)^2(X^2+1)}$$

b)
$$\frac{3}{(X-1)(X+1)(X^2+X+1)}$$

Calcul d'intégrales de fractions rationnelles

Calcul 25.7 — Pôles simples ou multiples.

0000

Calculer les intégrales suivantes

a)
$$\int_{-1/2}^{1/2} \frac{x^2 + 1}{(x - 1)(x + 1)} \, \mathrm{d}x \, \dots$$

d)
$$\int_{1}^{2} \frac{x}{(2x+1)(x+2)^{2}} dx \dots$$

b)
$$\int_0^1 \frac{x}{(x+1)(x+2)(x-2)} \, \mathrm{d}x$$

e)
$$\int_0^{1/2} \frac{1}{4x^2 + 1} \, \mathrm{d}x \dots$$

c)
$$\int_{1}^{2} \frac{1}{x^{2}(x+1)^{2}} dx \dots$$

f)
$$\int_2^3 \frac{x}{x^4 - 1} \, \mathrm{d}x \, \dots$$

Calcul 25.8 — Primitives.

Déterminer une primitive de chacune des fonctions suivantes.

a)
$$x \mapsto \frac{1}{x^2 - 1}$$

b)
$$x \longmapsto \frac{1}{(1-2x)^3}$$

c)
$$x \mapsto \frac{1}{x^2 + 2}$$

d)
$$x \mapsto \frac{1}{x^2 + x + 1}$$

e)
$$x \longmapsto \frac{x}{x^2 + 2x + 3}$$

f)
$$x \longmapsto \frac{x^4}{(x-1)(x-2)(x+1)}$$

g)
$$x \longmapsto \frac{x}{(x^2+2)(x+1)}$$

h)
$$x \mapsto \frac{x-2}{(x+1)^2(x-1)^2}$$

Calcul matriciel

Prérequis

Calculs algébriques (sommes), coefficients binomiaux.

Calcul matriciel

Calcul 26.1 — Calculs de produits matriciels.

Dans cet exercice, on note A, B, C, D, E les cinq matrices suivantes :

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 1 \\ 3 & -1 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 7 & -2 \end{pmatrix},$$

$$C = \begin{pmatrix} 2 & 1 & -1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, \quad E = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}.$$

Calculer les produits matriciels suivants.

a) A^2	d) $E \times B$	g) D^2	
b) A^3	e) $A \times E$	h) D>	$\prec C$
c) $B \times E$	f) $B \times A$	$i)$ $B^{ op}$	imes B

On note

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix}, \quad C = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}, \quad D = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & (1) & \vdots \\ 1 & \cdots & 1 \end{pmatrix},$$

la matrice D étant de taille $n \times n$ (où $n \in \mathbb{N}^*$), et où $\theta \in \mathbb{R}$.

Calculer le carré, le cube de chacune de ces matrices et utiliser ces calculs pour conjecturer leur puissance k-ième, pour $k \in \mathbb{N}$.

Calcul 26.3 — Calculs avec des sommes.

0000

Soit $n \in \mathbb{N}^*$. On note $A = (a_{ij})_{1 \leq i,j \leq n}$, $B = (b_{ij})_{1 \leq i,j \leq n}$ et $C = (c_{ij})_{1 \leq i,j \leq n}$ les matrices de termes généraux suivants :

$$a_{ij} = {i-1 \choose j-1}, \quad b_{ij} = 2^i 3^{j-i}, \quad c_{ij} = \delta_{i,j+1} + \delta_{i,j-1}.$$

Donner le coefficient d'indice (i, j) des matrices suivantes. On simplifiera au maximum le résultat obtenu et, notamment, on trouvera une expression sans le symbole \sum .

Calcul 26.4 — Deux calculs plus difficiles!.

Soient $n \in \mathbb{N}^*$ et $(i, j) \in [1, n]^2$.

En utilisant les matrices de l'exercice précédent, calculer les termes généraux suivants.

a)
$$[A^2]_{i,j}$$

b)
$$[C^2]_{i,j}$$

Inversion de matrices

Calcul 26.5 — Détermination d'inversibilité, calcul d'inverses.

Dans cet exercice, on note les matrices suivantes :

Déterminer, si elle existe, l'inverse de chacune des matrices. Si elle n'est pas inversible, indiquer dans la case « non inversible » .

Calcul 26.6 — Matrices dépendant d'un paramètre.

Soit λ un paramètre réel. On note A et B les deux matrices suivantes :

$$A = \begin{pmatrix} \lambda & 1 & 1 \\ -1 & -1 & 2 \\ \lambda & 1 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 1 & 1 \\ \lambda & 1 & \lambda - 1 \\ 1 & \lambda & 1 \end{pmatrix}$$

Pour chaque matrice, donner une condition nécessaire et suffisante (abrégée ci-dessous en CNS) sur λ pour que la matrice soit inversible et en donner, dans ce cas, l'inverse.

- a) CNS pour A ... inversible ...
- c) CNS pour B inversible

- b) Inverse de A ...
- d) Inverse de $B \dots$

Algèbre linéaire

Prérequis

Coordonnées, Applications linéaires, Matrices, Rang.

Vecteurs

Calcul 27.1

0000

Pour chacun des calculs suivants, déterminer les coordonnées du vecteur u dans la base \mathcal{B} .

a)
$$u = (1,1), \mathcal{B} = ((0,1), (-1,2)).$$

b)
$$u = (1,1), \mathcal{B} = ((-1,2),(0,1)).$$

c)
$$u = (3,4), \mathcal{B} = ((1,2),(12,13)).$$

d)
$$u = (1, 2, 1), \mathcal{B} = ((0, 1, 3), (4, 5, 6), (-1, 0, 1)). \dots$$

e)
$$u = (-1, 0, 1), \mathcal{B} = ((1, 0, 1), (1, 1, 1), (-1, -1, 3)).$$

f)
$$u = X^3 + X^2$$
, $\mathcal{B} = (1, X, X(X - 1), X(X - 1)(X - 2))$

g)
$$u: x \mapsto \cos\left(x + \frac{\pi}{3}\right), \ \mathcal{B} = (x \mapsto \cos(x), x \mapsto \sin(x))$$

Calculs de rangs

Calcul 27.2 — Sans calcul.

0000

Déterminer le rang des matrices suivantes :

Calcul 27.3

Déterminer le rang des matrices suivantes :

Matrices et Applications linéaires

Calcul 27.4 — Matrices d'endomorphismes.

Pour les applications linéaires f et les bases \mathcal{B} suivantes, déterminer la matrice de f dans la base \mathcal{B} .

a)
$$f:(x,y)\mapsto (x+y,3x-5y), \mathcal{B}=((1,0),(0,1)).$$

b)
$$f:(x,y)\mapsto (x+y,3x-5y), \mathcal{B}=((0,1),(1,0)).$$

c)
$$f:(x,y)\mapsto (2x+y,x-y), \mathcal{B}=((1,2),(3,4))$$

d)
$$f:(x,y,z)\mapsto (x+y,3x-z,y), \mathcal{B}=((1,0,0),(0,1,0),(1,1,1))$$

e)
$$f: P \mapsto P(X+2), \mathcal{B} = (1, X, X^2)$$

Calcul 27.5 — Matrices d'applications linéaires.

Pour les applications linéaires f et les bases \mathcal{B} , \mathcal{B}' suivantes, déterminer la matrice de f de la base \mathcal{B} dans la base \mathcal{B}' .

- a) $f:(x,y,z)\mapsto (x+y+z,x-y), \mathcal{B}=((0,1,3),(4,5,6),(-1,0,1)), \mathcal{B}'=((0,1),(1,0)).$
- b) $f: P \mapsto P', \mathcal{B} = (1, X, X^2), \mathcal{B}' = (1, X, X^2, X^3).$

Équations différentielles

Prérequis

Équations différentielles.

Équations d'ordre 1 à coefficients constants

Calcul 28.1

Déterminer les solutions des problèmes de Cauchy suivants :

a)
$$y' = 12y$$
 et $y(0) = 56$

b)
$$y' = y + 1$$
 et $y(0) = 5$

c)
$$y' = 3y + 5$$
 et $y(0) = 1$

d)
$$y' = 2y + 12$$
 et $y(0) = 3$

Calcul 28.2

Déterminer les solutions des problèmes de Cauchy suivants :

a)
$$5y' = -y$$
 et $y(1) = e$

b)
$$7y' + 2y = 2$$
 et $y(7) = -1$

c)
$$y' - \sqrt{5}y = 6$$
 et $y(0) = \pi$

d)
$$y' = \pi y + 2e$$
 et $y(\pi) = 12$

Équations d'ordre 2, homogènes, à coefficients constants

Calcul 28.3 — Une équation avec conditions initiales.

0000

Déterminer les solutions des problèmes de Cauchy suivants :

a)
$$y'' - 3y' + 2y = 0$$
 et $y(0) = 1$ et $y'(0) = 2$

b)
$$y'' - 3y' + 2y = 0$$
 et $y(0) = 1$ et $y'(0) = 1$

c)
$$y'' - 3y' + 2y = 0$$
 et $y(0) = 1$ et $y'(0) = 3$

d)
$$y'' - 3y' + 2y = 0$$
 et $y(0) = 1$ et $y'(0) = 3i$

Calcul 28.4 — Racines doubles, Racines simples.

0000

Déterminer les solutions des problèmes de Cauchy suivants :

b)
$$y'' + 3y' + 2y = 0$$
 et $y(0) = 2$ et $y'(0) = 3$

c)
$$y'' + y' - 2y = 0$$
 et $y(0) = 1$ et $y'(0) = 2$

d)
$$y'' - 2y' + y = 0$$
 et $y(0) = 2$ et $y'(0) = 1$

e)
$$y'' + 4y' + 4y = 0$$
 et $y(1) = 1$ et $y'(1) = -3$

Calcul 28.5 — Racines complexes.

Déterminer les solutions des problèmes de Cauchy suivants :

a)
$$y'' + y = 0$$
 et $y(0) = 1$ et $y'(0) = 2$

b)
$$y'' + y' + y = 0$$
 et $y(0) = 1$ et $y'(0) = -1$

c)
$$y'' + 2y' + 2y = 0$$
 et $y(0) = 0$ et $y'(0) = 1$

d)
$$y'' - 2y' + 5y = 0$$
 et $y(0) = i$ et $y'(0) = -i$

Séries numériques

Prérequis

Séries usuelles (convergence et sommes), décomposition en éléments simples.

Séries géométriques, exponentielles, de Riemann

Dans les calculs de cette section, reconnaître chacune des séries suivantes, dire si elle converge, et le cas échéant calculer sa somme.

Calcul 29.1 — Séries géométriques.

a)
$$\sum_{k\geqslant 0} 2^k \dots$$

$$d) \sum_{k\geq 10} \frac{1}{3^k} \dots$$

Calcul 29.2 — Séries exponentielles.

b) $\sum_{k>0} \frac{1}{2^k}$

c)
$$\sum_{k>0} \frac{1}{2^k \times k!} \dots$$

$$\sum_{k\geqslant 0} 2^k \times k!$$

Calcul 29.3 — Séries de Riemann.

a)
$$\sum_{k\geqslant 1} \frac{1}{k^2} \dots$$

$$d) \sum_{k\geqslant 3} \frac{\mathrm{i}^k}{7^{k-1}} \dots$$

b)
$$\sum_{k>3} \frac{1}{\sqrt{k}}$$

e)
$$\sum_{k>4} \frac{1}{\left(1 - i\sqrt{2}\right)^k} \dots \dots$$

c)
$$\sum_{k>6} \frac{1}{k}$$

Séries télescopiques

Calcul 29.4

Prouver la convergence et calculer la somme de chacune des séries suivantes :

a)
$$\sum_{k>1} \frac{1}{k^2 + k}$$
......

c)
$$\sum_{k\geqslant 2} \ln\left(\frac{k^2}{k^2-1}\right)$$

b)
$$\sum_{k>1} \frac{1}{k^3 + 3k^2 + 2k} \dots$$

d)
$$\sum_{k\geq 0} \arctan\left(\frac{(k+2)-(k+1)}{1+(k+2)(k+1)}\right) \dots$$

Séries géométriques dérivées

Prérequis

On pourra utiliser le fait que si $\alpha \in]-1,1[$, les séries

$$\sum_{k\geqslant 1} k\alpha^{k-1} \quad \text{et} \quad \sum_{k\geqslant 2} k(k-1)\alpha^{k-2},$$

appelées séries géométriques dérivées, convergent et ont pour somme

$$\sum_{k=1}^{+\infty} k \alpha^{k-1} = \frac{1}{(1-\alpha)^2} \quad \text{et} \quad \sum_{k=2}^{+\infty} k(k-1)\alpha^{k-2} = \frac{2}{(1-\alpha)^3}.$$

Calcul 29.5 — Séries géométriques dérivées.

b) $\sum_{k>1} e^{-(k-1)}$

c) $\sum_{k\geqslant 1} k2^k$

d) $\sum_{k \ge 0} k \frac{1}{2^{k-1}}$

Calcul 29.6 — Séries géométriques dérivées – bis.

Reconnaître chacune des séries suivantes, dire si elle converge, et le cas échéant calculer sa somme.

a) $\sum_{k\geqslant 1} k2^{-k}$

b) $\sum_{k>1} (3k+1)\frac{1}{3^k}$

c) $\sum_{k\geqslant 1} k(k-1) \frac{1}{2^{k-2}}$

d) $\sum_{k\geq 2} k(k-1)e^{-(k-2)}$

0000

0000

Structures euclidiennes

Prérequis

Produit scalaire, famille orthogonale, base orthonormée.

Calcul de produits scalaires

Calcul 30.1 — Des calculs de produits scalaires de fonctions.

Calculer les produits scalaires entre les vecteurs suivants dans l'espace vectoriel des fonctions continues sur [0,1] muni du produit scalaire défini par

$$\langle f, g \rangle = \int_0^1 f(t)g(t) dt.$$

On note $f_1, f_2, f_3, f_4, f_5, f_6$ les éléments de E suivants :

$$f_1: t \longmapsto \ln(1+t), \qquad f_2: t \longmapsto t^2, \qquad f_3: t \longmapsto \cos t,$$

 $f_4: t \longmapsto e^t, \qquad f_5: t \longmapsto 1+t, \qquad f_6: t \longmapsto 2.$

a)
$$\langle f_1, f_6 \rangle$$

c)
$$\langle f_3, f_5 \rangle$$

b)
$$\langle f_2, f_5 \rangle$$

d)
$$\langle f_4, f_4 \rangle$$

Calcul 30.2 — Des calculs de produits scalaires de matrices.

Calculer les produits scalaires suivants dans l'espace vectoriel $\mathcal{M}_2(\mathbb{R})$ muni du produit scalaire canonique.

On notera
$$A=\left(\begin{array}{cc} 1 & 2 \\ 3 & 0 \end{array}\right),\, B=\left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right)$$
 et $C=\left(\begin{array}{cc} 0 & 3 \\ -3 & 0 \end{array}\right).$

a)
$$\langle A, B \rangle$$

c)
$$\langle B, C \rangle$$

b)
$$\langle B, B \rangle$$

Distances euclidiennes

Calcul 30.3 — Des calculs de distances.

On se place dans $\mathbb{R}_3[X]$ muni du produit scalaire défini par $\langle P, Q \rangle = \int_0^1 P(t)Q(t) dt$.

c) Calculer la distance de
$$1+X^2$$
 à $\mathrm{Vect}(X,X^2)$

Orthonormalisation

Calcul 30.4 — Orthonormalisation de Gram-Schmidt.	0000
On se place dans $\mathbb{R}_2[X]$ muni du produit scalaire défini par $\langle P,Q\rangle=\int_0^1 P(t)Q(t)\mathrm{d}x$	
En appliquant le processus de Gram-Schmidt :	
a) calculer une base orthonormale de $\mathrm{Vect}(1,X)$	
b) calculer une base orthonormale de $\operatorname{Vect}(X, X^2 + 1)$	
Matrices de projections orthogonales et de symétries	${f s}$ orthogonales
Calcul 30.5 — Calculs de matrices.	0000
On se place dans \mathbb{R}^3 muni du produit scalaire canonique, qu'on munit d'une base ort On note x, y et z les coordonnées dans cette base.	chonormale $\mathcal{B} = (i, j, k)$.
Pour chacune des applications linéaires suivantes, écrire sa matrice dans la base \mathcal{B} .	
a) La projection orthogonale sur le plan P d'équation $x + y + z = 0$	
b) La projection orthogonale sur la droite D dirigée par $i+2k$	
c) La symétrie orthogonale par rapport au plan d'équation $x+3y-z=0$	

Groupes symétriques

Prérequis

Permutations, cycles, transpositions, décomposition en produit de cycles à supports disjoints, signature.

Opérations sur les permutations

Calcul 31.1 — Échauffement.

On considère les permutations suivantes de \mathfrak{S}_6

$$\rho = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 3 & 1 & 6 & 5 \end{pmatrix} \quad \text{et} \quad \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 5 & 6 & 3 & 2 \end{pmatrix}.$$

Expliciter les permutations suivantes.

a)
$$\rho^{-1}$$

b)
$$\sigma^{-1}$$

c)
$$\sigma^2$$

f)
$$\sigma \rho \sigma^{-1}$$

Calcul 31.2 — Opérations sur les cycles.

Calculer les puissances suivantes, où a, b et c désignent trois entiers naturels non nuls distincts.

a)
$$(a \ b)^{-1}$$

d)
$$(a \ b \ c)^2$$

b)
$$(a \ b \ c)^{-1}$$

c)
$$(1\ 3\ 5\ 2\ 7)^{-1}$$

Décomposition en produit de cycles à supports disjoints

Calcul 31.3 — Décomposition en produit de cycles à supports disjoints.

Décomposer les permutations suivantes en produit de cycles à supports disjoints.

b)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 2 & 10 & 1 & 7 & 4 & 5 & 9 & 8 & 6 \end{pmatrix}$$

Calcul 31.4 — Application aux calculs de puissance.

Expliciter les puissances suivantes sous la forme d'un produit de cycles à supports disjoints.

a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 3 & 1 & 6 & 5 \end{pmatrix}^{47}$$

b)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 7 & 4 & 3 & 1 & 5 & 2 \end{pmatrix}^{168}$$

c)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 5 & 2 & 4 & 1 & 3 & 7 \end{pmatrix}^{168}$$
.....

d)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 5 & 7 & 2 & 1 & 6 \end{pmatrix}^{227}$$
.....

Calculs de signature

Calcul 31.5 — Calculs de signature – niveau 1.

0000

Déterminer la signature des permutations suivantes.

e)
$$(1\ 3)(2\ 6\ 7)^{-1}(4\ 7\ 3\ 1\ 2)$$

c)
$$(1\ 5\ 3\ 2\ 4)^{-1}$$

Calcul 31.6 — Calculs de signature – niveau 2.

Déterminer la signature des permutations suivantes.

a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 7 & 6 & 9 & 1 & 3 & 8 & 4 & 10 & 5 & 2 \end{pmatrix} \dots$$

c)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 4 & 7 & 1 & 8 & 9 & 10 & 2 & 6 & 5 \end{pmatrix}$$

b)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 2 & 10 & 1 & 7 & 4 & 5 & 9 & 8 & 6 \end{pmatrix} \dots$$

d)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 7 & 1 & 6 & 10 & 5 & 9 & 2 & 3 & 8 & 4 \end{pmatrix} \dots$$

Déterminants

Prérequis

Nombres complexes.

Calculs en dimension deux

Calcul 32.1

0000

Soit a un nombre réel.

Calculer le déterminant de chacune des matrices suivantes.

a)
$$\begin{pmatrix} -a & a \\ a & a \end{pmatrix}$$

c)
$$\begin{pmatrix} i & 3 \\ -2i & 5i \end{pmatrix}$$

b)
$$\begin{pmatrix} 0 & 3 \\ -2 & 0 \end{pmatrix}$$

Calcul 32.2

Calculer le déterminant de chacune des matrices suivantes.

a)
$$\begin{pmatrix} 3/2 & 7/2 \\ 5/2 & 9/2 \end{pmatrix}$$

d)
$$\begin{pmatrix} 85 & 72 \\ 53 & 91 \end{pmatrix}$$

b)
$$\begin{pmatrix} \ln(2) & \ln(8) \\ -2 & \ln(e^3) \end{pmatrix}$$

e)
$$\begin{pmatrix} \sqrt{2} + 1 & 1 - \sqrt{32} \\ 2 + \sqrt{8} & 3 - \sqrt{8} \end{pmatrix}$$

c)
$$\begin{pmatrix} 1/2 & -3/7 \\ 5/9 & 7/8 \end{pmatrix}$$

Calculs en dimension trois

Calcul 32.3

Calculer le déterminant de chacune des matrices suivantes.

On rappelle que le nombre complexe j vérifie $j^3 = 1$.

b)
$$\begin{pmatrix} -1 & -2 & 3 \\ -2 & 0 & 5 \\ 4 & 0 & 0 \end{pmatrix}$$

c)
$$\begin{pmatrix} 1 & -j & j \\ j & -j^2 & 1 \\ -j^2 & 1 & j^2 \end{pmatrix}$$

Calcul 32.4

Calculer le déterminant de chacune des matrices suivantes.

b)
$$\begin{pmatrix} 1 & 2+i & -2+i \\ -i & 2i-1 & 1-2i \\ -1 & i & 2 \end{pmatrix} \dots$$

c)
$$\begin{pmatrix} \frac{1}{5} & \frac{2}{15} & -\frac{1}{3} \\ -\frac{1}{15} & 0 & -\frac{1}{5} \\ \frac{2}{5} & \frac{1}{3} & \frac{1}{15} \end{pmatrix}$$

Calcul 32.5

Soit x, y et z des nombres réels et a un nombre réel strictement positif.

Calculer le déterminant de chacune des matrices d'ordre trois suivantes.

a)
$$\begin{pmatrix} x & y & z \\ z & x & y \\ y & z & x \end{pmatrix}$$

b)
$$\begin{pmatrix} \ln(a) & \ln(a^2) & -2\ln(a) \\ \ln(\sqrt{a}) & -2\ln(a) & \ln(a^2) \\ -\ln(a^2) & \ln(a) & 2\ln(\sqrt{a}) \end{pmatrix}$$

c)
$$\begin{pmatrix} 1 & 1 & 1 \\ x & y & z \\ x^2 & y^2 & z^2 \end{pmatrix}$$

d)
$$\begin{pmatrix} x & x+1 & x+2 \\ x+1 & x+2 & x+3 \\ x+2 & x+3 & x+4 \end{pmatrix}$$

Fonctions de deux variables

Prérequis

Fonctions d'une variable réelle (limites, continuité, dérivabilité)

Les fondamentaux

Calcul 33.1 — Ensembles de définition.

0000

Déterminer le plus grand ensemble de définition possible de chacune des fonctions suivantes.

a)
$$(x,y) \longmapsto \arcsin |x-y| \dots$$

b)
$$(x,y) \mapsto \ln(x) + \sqrt{y}$$

c)
$$(x,y) \longmapsto \frac{x\sqrt{y}}{x^2 + y^2} \dots$$

d)
$$(x,y) \mapsto \sqrt{16 - x^2 - y^2} \ln(x^2 + y^2 - 16) \dots$$

Calcul 33.2 — Dérivation partielle.

Calculer les dérivées partielles des fonctions suivantes.

a)
$$f:(x,y) \mapsto x^2 + y^5 + xy + \pi$$

b)
$$f:(x,y)\longmapsto \sin(2xy-y)\dots$$

c)
$$f:(x,y) \longmapsto (x^2y, x^2 - y^2) \dots$$

d)
$$f:(x,y) \longmapsto \arctan(2x+y)$$

Calcul 33.3

Même exercice.

a)
$$f:(x,y)\longmapsto \cos(x-y)$$

b)
$$f:(x,y)\longmapsto x\cos(e^{xy})$$

c)
$$f:(x,y)\longmapsto x^y$$

d)
$$f:(x,y)\longmapsto \left\{\begin{array}{ll} \frac{xy^2}{x^2+y^2} & \text{si }(x,y)\neq(0,0)\\ 0 & \text{sinon} \end{array}\right.$$

Composition de fonctions

Calcul 33.4 — Règle de la chaîne.

On note w(t) = f(u(t), v(t)). Calculer w'(t) pour chacune des fonctions f, u, v définies ci-dessous.

a)
$$f(x,y) = 4x^2 + 3y^2$$
 avec
$$\begin{cases} u = \sin \\ v = \cos \end{cases}$$

b)
$$f(x,y) = \sqrt{x^2 - y^2}$$
 avec
$$\begin{cases} u(t) = e^{2t} \\ v(t) = e^{-t} \end{cases}$$

c)
$$f(x,y) = x^2 - 3xy + 2y^2$$
 avec
$$\begin{cases} u(t) = 3\sin(2t) \\ v(t) = 4\cos(2t) \end{cases}$$

Calcul 33.5 — Changements de variables.

Soient $f \in \mathcal{C}^1(\mathbb{R}^2, \mathbb{R})$ et $c \in \mathbb{R}^*$.

Exprimer les dérivées partielles de $f \circ \varphi$ selon celles de f pour les fonctions suivantes.

a)
$$\varphi:(u,v)\mapsto \left(\frac{u+v}{2},\frac{v-u}{2c}\right)\dots$$

b)
$$\varphi:(r,\theta)\mapsto (r\cos\theta,r\sin\theta)\dots$$