Introduction to Bispectral Analysis and High Order Correlations

Jonas Meinel 10.12.2021

How to read Bispectra? What do they mean?

Average

$$\mu = \langle x \rangle = \frac{1}{n} \sum_{i} x_{i}$$

Variance

$$var(x) = \sigma^2 = \langle (x - \mu)^2 \rangle$$

Skewness

$$\tilde{\mu}_3 = \left\langle \left(\frac{x - \mu}{\sigma} \right)^3 \right\rangle$$

Kurtosis

Average

Variance

Skewness

$$\tilde{\mu}_3 = \left\langle \left(\frac{x - \mu}{\sigma} \right)^3 \right\rangle$$

Kurtosis

Average

$$\mu = \langle x \rangle = \frac{1}{n} \sum_{i} x_{i}$$

Variance

$$var(x) = \sigma^2 = \langle (x - \mu)^2 \rangle$$

Skewness

$$\tilde{\mu}_3 = \left\langle \left(\frac{x - \mu}{\sigma} \right)^3 \right\rangle$$

Kurtosis

$$\tilde{\mu}_4 = \left\langle \left(\frac{x - \mu}{\sigma} \right)^4 \right\rangle = \left\langle \operatorname{var} \left(\left(\frac{x - \mu}{\sigma} \right)^2 \right) \right\rangle + 1$$

Average

Variance

Skewness

$$\tilde{\mu}_4 = \left\langle \left(\frac{x - \mu}{\sigma} \right)^4 \right\rangle = \left\langle \operatorname{var} \left(\left(\frac{x - \mu}{\sigma} \right)^2 \right) \right\rangle + 1$$

Higher Order Correlations (HOC)

- 1st order
- 2nd order
- 3rd order

• 4th order

$$C_1 = \langle x(t) \rangle$$

$$C_2(\tau) = \langle x(t)x(t+\tau) \rangle$$

ler
$$C_3(au_1, au_2) = \langle x(t)x(t+ au_1)x(x+ au_2)
angle$$
 $C_4(au_1, au_2, au_3) = \langle x(t)x(t+ au_1)x(t+ au_2)x(t+ au_3)
angle$

HOC and Higher Order Spectra (HOS)

Power spectrum

$$S_{xx}(f) = \int_{-\infty}^{\infty} C_2(\tau) e^{-i2\pi f \tau} d\tau = \mathcal{F}_{C_2}(f),$$

Bispectrum

$$B_x(f_1, f_2) = \int \int d\tau_1 d\tau_2 C_3(\tau_1, \tau_2) e^{-i2\pi(f_1\tau_1 + f_2\tau_2)}.$$

- Trispectrum: ...
 - → Why Higher order Spectra are interesting?

Motivation of Bispectra

Very important identity of Bispectra

$$B_x(f_1, f_2) = \mathcal{F}_x(f_1) \mathcal{F}_x(f_2) \mathcal{F}_x^{-1}(f_1 + f_2),$$

- Sensitive to non-linear processes $y = ax^2 + bx$
- Conserving the relative phase of signals $\;B_x(f_1,f_2)\,\in\mathbb{C}^2$
- "Gaussian noise free" $C_{n>2}=0$

Motivation of Bispectra

Very important identity of Bispectrum

$$B_x(f_1, f_2) = \mathcal{F}_x(f_1) \mathcal{F}_x(f_2) \mathcal{F}_x^{-1}(f_1 + f_2),$$

- Sensitive to non-linear processes $y=ax^2+bx$ Conserving the relative phase of signals $B_x(f_1,f_2)\in\mathbb{C}^2$
 - "Gaussian noise free" $C_{n>2}=0$

Example 1: Non Linear Process

Original signal

Signal after non linear process

Power spectrum of the signal

Example 1: Non Linear Process

- Quadratic Phase coupled (QPC) component
 - → real peaks
- Let's compare to

 a signal not from a
 non linear process
 with the same PSD

QPC vs. accidental matched

Signal with same PSD,
 but 2f is phase shifted
 → accidentally matched

Top: QPC

Bottom: Accident

QPC vs. accidental matched - bispectrum

Top: QPC

Bottom: Accident

Example 2: Reconstructing a Filter for Arbitrary Signals

C.K. Kovach and M.A. Howard III / Signal Processing 165 (2019) 357-379

Example 2: Reconstructing a Filter for Arbitrary Signals

Example 2: Reconstructing a Filter for Bio Signals

Other Examples:

Summary of Bispectral analysis

Very important identity of Bispectrum

$$B_x(f_1, f_2) = \mathcal{F}_x(f_1) \mathcal{F}_x(f_2) \mathcal{F}_x^{-1}(f_1 + f_2),$$

- Sensitive to non-linear processes $y = ax^2 + bx$
- Conserving the relative phase of signals $\;B_x(f_1,f_2)\,\in\mathbb{C}^2$
- "Gaussian noise free" $C_{n>2}=0$

