Smart Farmer-IOT Enabled Smart FarmingApplication

SPRINT DELIVERY – 4

PROJECT	Smart Farmer-IOT Enabled Smart Farming Application
DOMAIN NAME	INTERNET OF THINGS
TEAM ID	PNT2022TMID35124
DATE	11 NOVEMBER 2022

Receiving commands from IBM cloud using Python program

```
import time import
sys
import ibmiotf.application
import ibmiotf.device import
random
#Provide your IBM Watson Device
Credentials
"orgId": "ck2tfo",
"typeId": "NodeMLIC",
"deviceId": "1234"
 "token": "87654321"
# Initialize GPIO
def myCommandCallback(cmd):
                             print("Command
received: %s" % cmd.data['command'])
status=cmd.data['command']
                            if status=="motoron":
print
("motor is off") else:
    print ("please send proper command")
try:
      deviceOptions = {"org": organization, "type": deviceType, "id": deviceId,
"auth-method": authMethod, "auth-token": authToken}
deviceCli = ibmiotf.device.Client(deviceOptions)
     #.....
```

```
except Exception as e:
      print("Caught exception connecting device: %s" %
str(e))sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an
event of type "greeting" 10 times deviceCli.connect()
while True:
    #Get Sensor Data from
DHT11
temp=random.randint(90,110)
Humid=random.randint(60,100)
Mois=random. Randint(20,120)
  data = { 'temp' : temp, 'Humid': Humid,
'Mois': Mois}
    #print data
                    def
myOnPublishCallback(
):
      print ("Published Temperature = %s C" % temp, "Humidity = %s %%"
%Humid, "Moisture =%s deg c" % Mois "to IBM Watson")
      success = deviceCli.publishEvent("IoTSensor", "json", data,
qos=0,on publish=myOnPublishCallback)
                                              if not success:
      print("Not connected to IoTF")
time.sleep(10)
    deviceCli.commandCallback = myCommandCallback #
Disconnect the device and application from the cloud
deviceCli.disconnect()
```

```
🗼 *SMARTFARMER.PY - C:\Users\Priya\AppData\Local\Programs\Python\Python311\SMARTFARMER.PY (3.11.0)*
File Edit Format Run Options Window Help
import time
import sys
import ibmio.application
import ibmiotf.device
import random
#provide your IBM Watson Device Credentials
organization = "ck2tfo"
deviceType = "NodeMLIC"
deviceID = "1234"
authMethod = "token"
authToken = "87654321"
#Initialize GPIO
def myCommandCallback(cmd):
   print("message received from IBM Iot Platform: %s" %cmd.data['command'])
    m=cmd.data['command']
    if (m == "motoron"):
        print("motor is switched on")
    elif(m=="motoroff"):
       print("motor is switched OFF")
    else :
print("please send proper command")
try:
    deviceoptions = ("org": organization, "type":deviceType, "id":deviceId, "auth-method":authmethod
   devicecli = ibmiotf.device.client(deviceoptions)
```


Flow Chart

Observations & Results

Temperature

Humidity

Moisture

Advantages & Disadvantages Advantages:

- Farms can be monitored and controlled remotely.
- Increase in convenience to farmers.
- Less labor cost.
- Better standards of living.

Disadvantages:

- Lack of internet/connectivity issues.
- Added cost of internet and internet gateway infrastructure.
- Farmers wanted to adapt the use of Mobile App.

Conclusion

Thus the objective of the project to implement an IOT system in order to help farmers to control and monitor their farms has been implemented successfully.