$S == \iiint \left(\mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau \left(\Delta + \mathcal{K} \right)_{\alpha\beta} - 2 \, r_{3} \left(\partial_{\beta} \mathcal{A}_{, \theta}^{\ \theta} \, \partial^{i} \mathcal{A}^{\alpha\beta}_{\alpha} + \partial_{i} \mathcal{A}_{\beta}^{\ \theta} \, \partial^{i} \mathcal{A}^{\alpha\beta}_{\alpha} + \partial_{\alpha} \mathcal{A}^{\alpha\beta}{}^{i} \, \partial_{\theta} \mathcal{A}_{\beta}^{\ \theta} \, - 2 \, \partial^{i} \mathcal{A}^{\alpha\beta}_{\alpha} \, \partial_{\theta} \mathcal{A}_{\beta}^{\ \theta} \, + \\ \partial_{\alpha} \mathcal{A}^{\alpha\beta_{i}} \, \partial_{\theta} \mathcal{A}_{, \beta}^{\ \theta} - 2 \, \partial^{i} \mathcal{A}^{\alpha\beta}_{\alpha} \, \partial_{\theta} \mathcal{A}_{, \beta}^{\ \theta} + 2 \, \partial_{\beta} \mathcal{A}_{, \theta\alpha} \, \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} \right) + \frac{2}{3} \, r_{1} \left(3 \, \partial_{\beta} \mathcal{A}_{, \theta}^{\ \theta} \, \partial^{i} \mathcal{A}^{\alpha\beta}_{\alpha} + 3 \, \partial_{i} \mathcal{A}_{\beta}^{\ \theta} \, \partial^{i} \mathcal{A}^{\alpha\beta}_{\alpha} + \\ 3 \, \partial_{\alpha} \mathcal{A}^{\alpha\beta_{i}} \, \partial_{\theta} \mathcal{A}_{\beta}^{\ \theta} - 6 \, \partial^{i} \mathcal{A}^{\alpha\beta}_{\alpha} \, \partial_{\theta} \mathcal{A}_{\beta}^{\ \theta} + 3 \, \partial_{\alpha} \mathcal{A}^{\alpha\beta_{i}} \, \partial_{\theta} \mathcal{A}_{, \beta}^{\ \theta} - 6 \, \partial^{i} \mathcal{A}^{\alpha\beta}_{\alpha} \, \partial_{\theta} \mathcal{A}_{, \beta}^{\ \theta} - 2 \, \partial_{\beta} \mathcal{A}_{\alpha, \theta}^{\ \theta} \, \partial^{i} \mathcal{A}^{\alpha\beta_{i}} + \\ \partial_{\beta} \mathcal{A}_{\alpha\theta_{i}} \, \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} + 2 \, \partial_{\beta} \mathcal{A}_{, \theta\alpha}^{\ \theta} \, \partial^{i} \mathcal{A}^{\alpha\beta_{i}} - \partial_{i} \mathcal{A}_{\alpha\beta\theta}^{\ \theta} \, \partial^{i} \mathcal{A}^{\alpha\beta_{i}} + \partial_{\theta} \mathcal{A}_{\alpha\beta_{i}}^{\ \theta} \, \partial^{i} \mathcal{A}^{\alpha\beta_{i}} + \partial_{\theta} \mathcal{A}_{\alpha_{i}\beta}^{\ \theta} \, \partial^{i} \mathcal{A}^{\alpha\beta_{i}} \right) + \\ r_{5} \left(\partial_{i} \mathcal{A}_{\beta}^{\ \kappa}_{\kappa} \, \partial^{\theta} \mathcal{A}^{\alpha_{i}}_{\alpha} - \partial_{\theta} \mathcal{A}_{, \kappa}^{\ \kappa}_{\kappa} \, \partial^{\theta} \mathcal{A}^{\alpha_{i}}_{\alpha} - \left(\partial_{\alpha} \mathcal{A}^{\alpha_{i}\theta} - 2 \, \partial^{\theta} \mathcal{A}^{\alpha_{i}}_{\alpha} \right) \left(\partial_{\kappa} \mathcal{A}_{, \theta}^{\ \kappa}_{\theta} - \partial_{\kappa} \mathcal{A}_{\theta}^{\ \kappa}_{i} \right) \right) \right] [t, \, x, \, y, \, z] \, dz \, dy \, dx \, dt$

°.*# | 0°.*# | 0°.*#

Wave operator

PSALTer results panel

\circ^+_{σ} \circ^+_{τ} \circ^+_{τ} \circ^-_{τ}

Saturated propagator

$^{0^+}\tau^{\perp}$ †	0	0	0	0											
°- σ∥ †	0	0	Θ	0	$^{1^{+}}\sigma^{\parallel}_{\alpha\beta}$	$^{1^{+}}\sigma^{\perp}_{\alpha\beta}$	$1^{+}_{\bullet} \tau^{\parallel}_{\alpha\beta}$	$\left. \stackrel{1^{-}}{\cdot} \sigma \right _{\alpha}$	1 $^{-}$ σ^{\perp}_{α}	$ 1^{-}_{\bullet}\tau^{\parallel}_{\alpha}$	$^{1^{-}}\tau^{\perp}{}_{\alpha}$				
				$^{1^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	$\frac{1}{k^2 \left(2 r_3 + r_5\right)}$	0	0	0	0	0	0				
				$^{1^{+}}\sigma^{\perp}$ $^{+}$	Θ	0	0	0	Θ	0	Θ				
				$^{1^{+}}_{\bullet}\tau^{\parallel}$ † $^{\alpha\beta}$	0	0	Θ	0	0	0	Θ				
				$\dot{\cdot}^{\sigma^{\parallel}}$ †	0	0	0	$\frac{1}{k^2 \left(-r_1 + 2r_3 + r_5\right)}$	0	0	0				
				1 σ^{\perp} \dagger^{α}	0	0	0	0	0	0	0				
				$^{1^{-}}\tau^{\parallel}$ $^{\alpha}$	Θ	0	0	0	0	0	Θ				
				$^{1^{-}}\tau^{\perp}$ $^{\alpha}$	0	0	0	0	0	0	0	$2^{+}_{\bullet}\sigma^{\parallel}_{\alpha\beta}$	$2^{+}_{\bullet}\tau^{\parallel}_{\alpha\beta}$	$^{2^{-}}_{\bullet}\sigma^{\parallel}_{\alpha\beta\chi}$	
											$^{2^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	0	0	0	
											$^{2^{+}}\tau^{\parallel}\uparrow^{lphaeta}$	0	0	0	
										:	$2^{-}\sigma^{\parallel} + \alpha^{\beta}\chi$	0	0	$\frac{1}{k^2 r_{\cdot 1}}$	

Source constraints

Spin-parity form		Multiplicities
^{Θ−} σ == Θ	$\epsilon \eta_{\alpha\beta\chi\delta} \ \partial^{\delta}\sigma^{\alpha\beta\chi} == 0$	1
θ^+ $\tau^{\perp} == \Theta$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = 0$	1
Θ ⁺ τ == Θ	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha}$	1
1- _τ [⊥] α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}$	3
1 _τ α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha}$	3
1- _σ ^α == 0	$\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi} == 0$	3
$1^+_{\tau}\ ^{\alpha\beta}=0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}==\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
1 _• σ [⊥] αβ == 0	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} == \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3
2 ⁺ _• τ αβ == 0	$4\ \partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\chi\delta} + 2\ \partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\chi}_{\ \chi} + 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\ (\Delta+\mathcal{K})^{\alpha\beta} + 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\ (\Delta+\mathcal{K})^{\beta\alpha} +$	5
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau \left(\Delta + \mathcal{K} \right)^{\chi\delta} = 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\beta\chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\chi\beta} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta}_{\tau} (\Delta + \mathcal{K})^{\alpha \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta}_{\tau} (\Delta + \mathcal{K})^{\chi \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta}_{\tau} (\Delta + \mathcal{K})^{\chi}_{\chi}$	
2 _• σ αβ == 0	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\chi \beta \delta} + 3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\chi \alpha \delta} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \sigma^{\chi}_{\chi}^{\delta} = 2 \partial_{\delta} \partial^{\beta} \partial^{\alpha} \sigma^{\chi}_{\chi}^{\delta} + 3 \left(\partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \alpha \chi} \right)$	5
Total expected of	lauge generators:	28

Massive spectrum

(No particles)

Massless spectrum

Massless particle

Pole residue: $-\frac{3}{r_1} + \frac{3}{r_1^{-2}r_3^{-r_5}} + \frac{8}{2r_1+r_5} > 0$ Polarisations: 2

Unitarity conditions

 $r. \in \mathbb{R} \&\& \left(\left(r. < -2 \, r. \&\& \, 2 \, r. + r. < r. < 0 \right) \, || \, \left(r. > -2 \, r. \&\& \left(r. < 0 \, || \, r. > 2 \, r. + r. \right) \right) \right)$