CPSC 421 - Homework 8

Tristan Rice, q7w9a, 25886145

1. Consider a fixed language ...

1.a Does the same argument work for "Turing machines" replaced with "Turing machines with oracle L"?

No, it doesn't work for Turing machines with oracle L. The set of languages over Σ^* is uncountably infinite. Since an oracle L could accept all languages in Σ^* , the set of languages a Turing machine with oracle L is uncountably infinite.

1.b Give an L such that the set of languages accepted by Turing machines with oracle L is equal to set of languages accepted by Turing machines.

For the sets to be equal L must be computable by a Turing machine. Thus you can pick a simple language that's easily computable.

Thus, we can just do $L=\Sigma^*$ which means that the oracle will return true always since all inputs to the Turing machine must be $\in \Sigma^*$. Thus, it's trivially computable by a standard Turing machine and thus the set of languages accepted by Turing machine with oracle L is equal to the set of languages accepted by Turing machines.

1.c

Let L be the set of languages describing Turing machines that do not halt. Since halting is undecidable, a Turing machine can not accept L. A Turing machine with oracle L can accept L since an oracle can compute anything.

2. Exercise 6.4 of [Sip]

Let $A'_{TM}=\{\langle M,w\rangle|M$ is an oracle TM and $M^{A_{TM}}$ accepts $w\}.$ Show A'_{TM} is undecidable relative to A_{TM} . $A_{TM}=\{\langle M,w\rangle|M$ is a TM and M accepts $w\}.$

We must show that there does not exist a Turing machine with an oracle for A_{TM} that recognizes A_{TM}^{\prime} .

Let w be a definition of a Turing machine. A_{TM} cannot decide the halting problem. Thus, if we have A_{TM}' be a Turing machine that accepts if w halts and rejects if it doesn't, we know that A_{TM}' is undecidable relative to A_{TM} , since the halting problem is undecidable.

3. Prove the assertion regarding replacing $a_1 \vee ... \vee a_l$ by a 3CNF with l-2 clauses at the top of page 311 of Sip.

Proof by induction:

Base case l < 4:

This is trivially in 3CNF and doesn't need anything else.

Base case l=4:

We can replace

$$a_1 \vee a_2 \vee a_3 \vee a_4$$

with

$$(a_1 \lor a_2 \lor z) \land (\neg z \lor a_3 \lor a_4)$$

.

Since z can be anything that satisfies this, we can construct all the cases such that the statement is true.

$$(0 \lor 0 \lor 0) \land (\neg 0 \lor 0 \lor 0) = 0$$

$$(1 \lor 0 \lor 0) \land (\neg 0 \lor 0 \lor 0) = 1$$

$$(0 \lor 1 \lor 0) \land (\neg 0 \lor 0 \lor 0) = 1$$

$$(0 \lor 0 \lor 1) \land (\neg 1 \lor 1 \lor 0) = 1$$

$$(0 \lor 0 \lor 1) \land (\neg 1 \lor 1 \lor 0) = 1$$

$$(1 \lor 1 \lor 0) \land (\neg 0 \lor 0 \lor 0) = 1$$

$$(1 \lor 1 \lor 0) \land (\neg 0 \lor 0 \lor 0) = 1$$

$$(1 \lor 0 \lor 0) \land (\neg 0 \lor 1 \lor 0) = 1$$

$$(1 \lor 0 \lor 0) \land (\neg 0 \lor 1 \lor 0) = 1$$

$$(0 \lor 1 \lor 0) \land (\neg 0 \lor 1 \lor 0) = 1$$

$$(0 \lor 1 \lor 0) \land (\neg 0 \lor 1 \lor 0) = 1$$

$$(1 \lor 1 \lor 0) \land (\neg 0 \lor 1 \lor 1) = 1$$

$$(1 \lor 1 \lor 0) \land (\neg 0 \lor 1 \lor 1) = 1$$

$$(1 \lor 1 \lor 0) \land (\neg 0 \lor 1 \lor 1) = 1$$

$$(1 \lor 1 \lor 0) \land (\neg 0 \lor 1 \lor 1) = 1$$

$$(1 \lor 1 \lor 0) \land (\neg 0 \lor 1 \lor 1) = 1$$

$$(1 \lor 1 \lor 0) \land (\neg 0 \lor 1 \lor 1) = 1$$

This covers all 16 possible cases of the original statement.

Inductive step.

n > 4.

Assume we have statements in the form

$$\dots (\dots \lor z_r) \land (\neg z_r \lor a_{r-2} \lor z_{r+1}) \land (\neg z_{r+1} \lor \dots) \dots$$

If a_{r-2} is true, it doesn't matter what values of z there are for this clause to hold true.

If there are no true a values, it's possible for $z_r=1, z_{r+1}=0$ and this clause to be false as it should be.

If a_{r-2} is false, that means either $z_r=0 \lor z_{r+1}=1.$ If that holds, this clause is true.

If the true a value is to the right of this clause, $z_{r+1}=1, z_r=1$ and the inverse if it is to the right. That causes this clause to be true.

Thus by induction, all clauses on either sides of a a can be satisfied. If all values of a is false, there is no selection such that the entire statement is satisfied.

4. Consider a non-deterministic Turing machine ...

4.a

 $f(x_1)=x_1$ is accepted by M since f(true)=true. It is likewise accepted by M' since f(false)=false).

4.b

f is not accepted by M since no matter what you provide to f it returns false. It is accepted by M' since it will always return false.

4.c

f is accepted by M since no matter what input is provided it always returns true. It isn't accepted by M' since it will never return false.

4.d

Since UNSAT always returns false that means it's accepted by M', but not by M since M requires it to evaluate to true.