d) Sea $B = \{v_1, \dots, v_n\}$ una base de V y $B^* = \{\varphi_1, \dots, \varphi_n\}$ su base dual. Calcula la matriz de $\varphi \otimes \psi$ en la base B relacionándola con las coordenadas de φ y ψ en la base B^* . Demuestra que $B' = \{\varphi_i \otimes \varphi_j / i, j = 1, \dots, n\}$ es una base de $\mathcal{B}(V)$. Describe la base B' cuando $V = \mathbb{R}^n$ y $B = B_u$.

$$\psi = e_1 \psi_1 + \dots + e_N \psi_N$$
 $\psi_1 = e_1 \psi_1 + \dots + e_N \psi_N$
 $\psi_{11} = (\psi \otimes \psi)(v_1, v_1) = \psi(v_1) \psi(v_1) = e_1 \psi_1(v_1) + e_1 \psi_1(v_1) +$

$$\mathcal{H}(\psi \otimes \psi , \mathcal{B}) = \begin{pmatrix} a_1 e_1 & a_1 e_2 & a_1 e_3 \\ a_2 e_1 & a_2 e_2 & a_2 e_3 \\ a_3 e_1 & a_3 e_2 & a_3 e_3 \end{pmatrix}$$