

## VICERRECTORÍA ACADEMICA INSTITUTO DE MATEMÁTICAS, FÍSICA Y ESTADÍSTICA ÁREA DE MATEMÁTICA-CICLO INICIAL

# CÁTEDRA 2 CÁLCULO DIFERENCIAL E INTEGRAL (MAT-333) Tiempo: 90 minutos

NOTA

| NOMBRE:  | Marw Godoy V | NRC:     |
|----------|--------------|----------|
| RUN:     |              | FECHA:   |
| CARRERA: |              | SECCIÓN: |
|          |              |          |

## Indicaciones

- Complete los datos solicitados en la prueba.
- Puntaje ideal de la prueba 60 puntos.
- Nota final=Puntaje\_obtenido+1,0
- No se aceptan consultas una vez iniciada la prueba. Salvo que sean de enunciado.
- Sólo podrá salir de la sala después de 30 min de iniciada la prueba.
- Puede utilizar para sus cálculos calculadora pero no su celular ni otros artículos tecnológicos.
- Deberá devolver todas las hojas de la prueba. La ausencia de alguna de ellas desvalidará la evaluación.
- Si requiere hojas adicionales solicitarlas al profesor.

"Declaro haber revisado y recibir conforme la prueba y la nota indicada arriba"

| <u> </u> |  |
|----------|--|
| Firma:   |  |

| Puntaje |  |
|---------|--|
|         |  |
|         |  |
|         |  |
|         |  |
|         |  |
|         |  |
|         |  |

Profesor: Instituto de Matemática, Física y Estadística

# Resultados de Aprendizaje

| lodelar problemas contextualizados qui ariables sujeta a una restricción. | ue conduzcan a la | a clasificación de extremos | do una función en dos |
|---------------------------------------------------------------------------|-------------------|-----------------------------|-----------------------|
|                                                                           |                   |                             | de una funcion en dos |
|                                                                           |                   |                             |                       |
|                                                                           |                   |                             |                       |
|                                                                           |                   |                             |                       |
|                                                                           |                   |                             |                       |
|                                                                           |                   |                             |                       |

## **Problemas**

Nombre del alumno: .....

NOTA

Prob. 1 (10 ptos.) Para la función  $f(x,y) = 5x^4y + 3x^3y^2 - 6x^2y^2 - 9xy^3 + x^2 + y^2$ , demuestre que se cumple la igualdad  $f_{xy} = f_{yx}$ .

Desarrollo:



$$f_y = 51x^4 + 6x^3y - 12x^2y - 27xy^2 + 2y$$

$$\int_{XX} = 20x^3 + 18x^2y - 24xy - 27y^2$$

Efectivamente se cumple la ignaldad

fxy = fyx

**Prob. 2** (15 ptos.) La función de demanda de un consumidor respecto a dos productos A y B, está dada por  $D(x,y)=10-x^2y$ , donde x,y son las cantidades de producto que se adquiere. Si en cierto instante el consumidor consume (x,y)=(1,10), entonces determine la demanda marginal respecto a los productos A y B para el nivel de consumo indicado.

Desarrollo:



**Prob. 3 (20 ptos.)** Cierto yacimiento del norte de Chile, extrae principalmente dos tipos de minerales, Cobre y Cinc. La producción mensual, de x unidades de Cobre e y unidades de Cinc, medidas en cientos de toneladas, está dado por:

$$P(x,y) = 0.54x^2 - 0.02x^3 + 1.89y^2 - 0.09y^3$$

#### Determine:

- a. La cantidad de cada mineral para que la producción sea máxima
- b. Determine e interprete la producción máxima generada por la empresa.

## Desarrollo:



la producción máxima de la empresa se genera cuando se extraen 18 unidades de Cobre y 14 unidades de Cinc.

La producción máxima es P(18,14) = 181.8.



Prob. 4 (15 ptos.) Un comerciante tiene 600 dólares para invertir en dos tipos de artículos. El artículo A cuesta 10 dólares la unidad y el artículo B cuesta 30 dólares la unidad. Suponga que la utilidad obtenida por la venta de x unidades del artículo A e y unidades de B, está dado por

$$U(x,y) = 10x^{3/5}y^{2/5}$$

Determine cuántas unidades de cada artículo deben venderse para maximizar la utilidad.

Desarrollo:



Ignalando queda: 
$$-\frac{2}{5} \times \frac{2}{5} = -\frac{2}{5} \times \frac{3}{5} = -\frac{3}{5} \times \frac{3}{5}$$
Reordenando: 
$$\boxed{9 \text{ y} = 2 \times 3}$$

Des pejarnos y de la igualdad qy = 2x y reemplatamos en la tercera conación:  $\sqrt{y = \frac{2}{q} x}$  $0 = 10 \times +30y -600 = 10 \times +30 \left(\frac{2 \times 1}{9}\right) -600$  $= 10 \times +\frac{20}{3} \times -600$ = 50x - 600Despejando x  $x = \frac{1800}{50} = \frac{180}{5} = 36$ Evaluando x = 36 en la emaron  $y = \frac{2}{9}x$ 7 = 2.36 = 8 En resumen, deben venderse 36 anticulos de tipo A y 8 acticulos de tipo B para maximitar. la utilidad.