

PATENT ABSTRACTS OF JAPAN

(11)Publication number :

09-289247

(43)Date of publication of application : 04.11.1997

(51)Int.Cl.

H01L 21/768

H01L 21/28

H01L 21/285

H01L 21/285

(21)Application number : 08-098303

(71)Applicant : SONY CORP

(22)Date of filing : 19.04.1996

(72)Inventor : HAGA YUTAKA

(54) FORMATION METHOD OF CONTACT

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an improved method such that a blanket film is prevented from being exfoliated when an interlayer insulating film is formed by a high density plasma CVD method and a contact hole is buried with the blanket film.

SOLUTION: An interlayer insulating film 13 is formed on a wiring connection region or a wiring layer 12 with a high density plasma CVD method. Then, the interlayer insulating film is flattened with a CMP method. Then, a contact hole 14 is formed which passes through the interlayer insulating film and exposes the wiring connection region or the wiring layer. Then, in order to exclude gas particles encapsulated in the interlayer insulating film from the interlayer insulating film a heat treatment is performed in the temperature range of from 350° C to 450° C. Then, in order to fill the contact hole a contact layer is formed with a sputtering method or a CVD method, and then a blanket film is formed with a CVD method.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-289247

(43)公開日 平成9年(1997)11月4日

(51)Int.Cl.⁸
H 0 1 L 21/768
21/28
21/285

識別記号 庁内整理番号

F I
H 0 1 L 21/90
21/28
21/285

技術表示箇所
A
L
S
C

3 0 1

3 0 1 R

審査請求 未請求 請求項の数 5 O L (全 6 頁)

(21)出願番号 特願平8-98303

(22)出願日 平成8年(1996)4月19日

(71)出願人 000002185

ソニー株式会社

東京都品川区北品川6丁目7番35号

(72)発明者 芳賀 豊

東京都品川区北品川6丁目7番35号 ソニ
ー株式会社内

(74)代理人 弁理士 高橋 光男

(54)【発明の名称】 コンタクト形成方法

(57)【要約】

【課題】 高密度プラズマCVD法により層間絶縁膜を形成し、プランケット膜でコンタクトホールの埋め込みを行う際に、プランケット膜の剥離が生じないように改良された方法を提供する。

【解決手段】 本発明方法は、配線接続領域又は配線層12上に高密度プラズマCVD法をにより層間絶縁膜13を形成する層間絶縁膜形成工程と、層間絶縁膜13をCMF法によって平坦化する平坦化工程と、層間絶縁膜13貫通し、配線接続領域又は配線層12を露出させるコンタクトホール14を開口する開口工程と、層間絶縁膜13内に封入された気体粒子を層間絶縁膜13から排除するために350°Cから450°Cの範囲の温度で熱処理を行うアニール工程と、コンタクトホール14を埋め込むために、スパッタ法またはCVD法により密着層を形成し、次いで、プランケット膜をCVD法により形成する工程とを含む。

【特許請求の範囲】

【請求項1】 配線接続領域又は配線層上に高密度プラズマCVD法により層間絶縁膜を形成する層間絶縁膜形成工程と、
層間絶縁膜をCMP法によって平坦化する平坦化工程と、
層間絶縁膜を貫通し、配線接続領域又は配線層を露出させるコンタクトホールを開口する開口工程と、
層間絶縁膜内に封入された気体粒子を層間絶縁膜から排除するために350°Cから450°Cの範囲の温度で熱処理を行うアニール工程と、
コンタクトホールを埋め込むために、スパッタ法またはCVD法により密着層を形成し、次いで、プランケット膜をCVD法により形成する工程とを有することを特徴とするコンタクト形成方法。

【請求項2】 平坦化工程に次いで、アニール工程及び開口工程を順次実施することを特徴とする請求項1に記載のコンタクト形成方法。

【請求項3】 プランケット膜がタンゲステン膜であることを特徴とする請求項1又は2に記載のコンタクト形成方法。

【請求項4】 配線接続領域又は配線層上に高密度プラズマCVD法により層間絶縁膜を形成する層間絶縁膜形成工程と、
層間絶縁膜をCMP法によって平坦化する平坦化工程と、
層間絶縁膜上にCVD法によりガス不透過型絶縁膜を形成して、層間絶縁膜から水素、アルゴンを含む気体の脱ガスを抑制する工程と、
層間絶縁膜を貫通し、配線接続領域又は配線層を露出させるコンタクトホールを開口する開口工程と、
コンタクトホールを埋め込むために、スパッタ法またはCVD法により密着層を形成し、次いで、プランケット膜をCVD法により形成する工程とを有することを特徴とするコンタクト形成方法。

【請求項5】 ガス不透過型絶縁膜が減圧CVD法により形成したSi₃N₄膜であり、密着層がTi/TiN膜又はTiN膜であり、プランケット膜がタンゲステン膜であることを特徴とする請求項4に記載のコンタクト形成方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は、コンタクト形成方法、例えば層間絶縁膜を貫通しているコンタクトホールをタンゲステン膜により埋め込み、コンタクトを形成する方法に関し、更に詳細には、高密度プラズマCVD法、例えばBias·ECR·CVD法により成膜した層間絶縁膜を開口したコンタクトホールをタンゲステン膜等のプランケット膜で埋め込む際に、プランケット膜が剥離し難いように改良した方法に関するものである。

【0002】

【従来の技術】 デバイスの高集積化及び多層配線化に伴い、良好な埋め込み特性を備え、かつ層間平坦化が容易な層間絶縁膜が必要になっている。このような良好な特性を備えた層間絶縁膜を成膜する方法として、化学的機械研磨法(CMP)と組み合わせて、ローカル・グローバル平坦性に優れた層間絶縁膜を少ない工程数で実現できる、高密度プラズマCVD法、特にBias·ECR·CVD法が注目されている。一方、コンタクトホールの微細化及び高アスペクト比化に伴い、コンタクトホール埋込み技術として、プランケット・タンゲステン法が広く使用されている。プランケット・タンゲステン法は、コンタクトホールが貫通している層間絶縁膜上にプランケット膜としてタンゲステン膜(以下、プランケット・タンゲステン膜を簡単にBLK-W膜と言う)をCVD法により成膜し、次いでコンタクトホール以外の領域のBLK-W膜をエッチバックしてコンタクトホールを埋め込むようにした方法である。

【0003】

【発明が解決しようとする課題】 ところで、Bias·ECR·CVD法を用いて層間絶縁膜を形成し、コンタクトホールを開口し、次いで、BLK-W法によりコンタクトホールの埋め込みを行った場合、図5(a)及び(b)に示すように、層間絶縁膜からBLK-W膜が剥離して不良品が発生することが多かった。図5(a)ではTiNからなる密着層とBLK-W膜の双方が層間絶縁膜から剥離し、図5(b)ではBLK-W膜のみが剥離している。このBLK-W膜の剥離問題は、Bias·ECR·CVD法により層間絶縁膜を形成した場合に特に顕著であるが、他の高密度プラズマCVD法により層間絶縁膜を形成した場合にも、大なり少なり、剥離問題が生じている。上述の例では、コンタクトホールを埋め込むプランケット膜としてタンゲステン膜を例にしているが、他の膜でも同様の剥離問題がある。

【0004】 そこで、本発明の目的は、高密度プラズマCVD法により層間絶縁膜を形成し、プランケット膜でコンタクトホールの埋め込みを行う際に、プランケット膜の剥離が生じないように改良された方法を提供することである。

【0005】

【課題を解決するための手段】 本発明者は、従来の方法によりBLK-W膜を成膜した際に生じるBLK-W膜の剥離問題を研究した結果、次のことが判った。即ち、高密度プラズマCVD法、特にBias·ECR·CVD法の場合、基板にRFバイアス電圧を印加し、成膜ガスにSiH₄/O₂/Arを用いていることから、他の方法により形成された層間絶縁膜と比べて、より多くの量の水素、アルゴン等の気体が気泡粒となって層間絶縁膜中に閉じ込められる。その結果、BLK-W膜を形成する際、BLK-W膜の成膜温度、例えば400°C程

度の温度で、層間絶縁膜中の水素、アルゴン等の気体が脱ガスする。その結果、脱ガスする際のガスに押されて、B L K - W 膜が基板から剥離するということである。そこで、本発明者は、B L K - W 膜を成膜する前に気体を意図的に層間絶縁膜から脱ガスさせるか、又は層間絶縁膜から気体が脱ガスしないように層間絶縁膜上にガス不透過型膜を積層することにより、B L K - W 膜形成時の脱ガス現象を抑制し、B L K - W 膜の剥離を防止することに着眼し、本発明を完成するに至った。

【0006】上記目的を達成するために、得た知見に基づき、本発明に係るコンタクト形成方法（以下、第1発明方法と言う）は、配線接続領域又は配線層上に高密度プラズマCVD法により層間絶縁膜を形成する層間絶縁膜形成工程と、層間絶縁膜をCMP法によって平坦化する平坦化工程と、層間絶縁膜を貫通し、配線接続領域又は配線層を露出させるコンタクトホールを開口する開口工程と、層間絶縁膜内に封入された気体粒子を層間絶縁膜から排除するために350°Cから450°Cの範囲の温度で熱処理を行うアニール工程と、コンタクトホールを埋め込むために、スパッタ法またはCVD法により密着層を形成し、次いで、プランケット膜をCVD法により形成する工程とを有することを特徴としている。

【0007】本発明方法は、層間絶縁膜を高密度プラズマCVD法、特にBias·ECR·CVD法により形成する場合に特に好適である。本発明方法の層間絶縁膜形成工程、平坦化工程、開口工程及びプランケット膜形成工程のプロセス条件は、従来と同様の条件である。アニール工程は、既知の熱処理炉を使用して行うことができ、その処理時間は10分から60分間程度である。本発明方法で形成する層間絶縁膜及び密着層は、既知の構成の膜で、プランケット膜の材料は、コンタクトホールを埋め込んでコンタクトを形成できる限り、特に制約はなく、例えばタンゲステン膜を使用することができる。本発明方法では、コンタクトホールの開口工程の後で、アニール工程を実施しても良く、また開口工程の前にアニール工程を実施しても良い。コンタクトホールを開口*

Bias·ECR·CVD条件

ガス	: SiH ₄ / O ₂ / Ar = 60 sccm / 66 sccm / 100 sccm
圧力	: 0.2 Pa
温度	: 200°C
マイクロ波出力	: 2000 W
R Fバイアス出力	: 2500 W

【0011】次に、図1(b)に示すように、以下の条件でHDP-CVD膜13を化学的機械研磨法(CM

CMP条件

研磨プレート回転数	: 20 rpm
ウェーハ保持台回転数	: 17 rpm
研磨圧力	: 500 gf/cm ²
研磨液	: シリカ粒子(14 wt%) + KOH水溶液
研磨厚さ	: 500 nm

*した後にアニール工程を行う方が、コンタクトホールの孔壁からも脱ガスするので、望ましい。

【0008】本発明に係る別のコンタクト形成方法（以下、第2発明方法と言う）は、配線接続領域又は配線層上に高密度プラズマCVD法により層間絶縁膜を形成する層間絶縁膜形成工程と、層間絶縁膜をCMP法によって平坦化する平坦化工程と、層間絶縁膜上にCVD法によりガス不透過型絶縁膜を形成して、層間絶縁膜から水素、アルゴンを含む気体の脱ガスを抑制する工程と、層間絶縁膜を貫通し、配線接続領域又は配線層を露出させるコンタクトホールを開口する開口工程と、コンタクトホールを埋め込むために、スパッタ法またはCVD法により密着層を形成し、次いで、プランケット膜をCVD法により形成する工程とを有することを特徴としている。

【0009】ガス不透過型絶縁膜は、水素、アルゴンを含む気体が透過できないような結晶構造が緻密な膜であって、例えばSi₃N₄膜がその例である。

【0010】

【0010】【発明の実施の形態】以下に、実施例を挙げ、添付図面を参照して、本発明方法の実施の形態を具体的かつ詳細に説明する。尚、実施例1及び2において示した数値は、本発明の理解を助けるための例示であって、これに限定されるものではない。

実施例1

実施例1は、第1発明方法の実施例であって、図1

(a)から(c)は、それぞれ実施例1の各工程毎での基板断面を示し、図2は図1(c)に続く工程での基板断面図である。本実施例では、先ず、図1(a)に示すように、微量のCu等の金属を含むAl合金、又はポリサイドからなる配線12を絶縁膜11上に形成し、次いで、配線12上に高密度プラズマCVD法（以下、HDP-プラズマCVD法）、本実施例ではBias·ECR·CVD法を使用して、層間絶縁膜として膜厚2000nmのHDP-CVD膜（シリコン酸化膜）13を以下の条件で形成した。

P)により研磨し、平坦化した。

5

【0012】次に、図1(c)に示すように、ホトリングラフィ法によりパターニングし、反応性イオンエッチング(RIE)法によりHDP-CVD膜13にコンタクトホール14を開口した。次いで、熱処理炉を使用し、HDP-CVD膜13中に含まれる水素、アルゴン等の気体の微細気泡を脱ガスさせるために以下の条件でアニール処理を行った。

アニール条件

6

*ガス : N₂
温度 : 400°C
処理時間 : 60分間

【0013】次に、図2に示すように、BLK-W膜の密着層15としてTi/TiNまたはTiNをスパッタ法、またはCVD法により成膜した。続いて、以下の条件でBLK-W膜16をCVD法によって成膜した。

*

BLK-W膜の成膜条件

ガス : WF₆ / H₂ / Ar = 75 sccm / 500 sccm / 2800 sccm
圧力 : 10640 Pa
温度 : 450°C

【0014】実施例1の場合、BLK-W膜16の成膜前にアニール処理を行って、予め水素、アルゴン等のガスをHDP-CVD膜13から脱離させているので、BLK-W膜16の成膜時に熱によるガスの脱離が無い。よって、脱ガスに伴うBLK-W膜16の剥離が生じない。また、従来の方法では発生していたようなBLK-W膜成膜時の脱ガスによるコンタクトホール埋込み不良が発生しないので、コンタクト形成時の製品の歩留りを向上させることができる。本実施例では、コンタクトホール14の開口の後にアニール処理しているので、コンタクトホール14の側壁からも脱ガス効果が期待でき、埋め込み不良が一層効果的に防止される。

【0015】実施例1の改変例

本発明方法は、図3に示すように、下地がSi基板17である場合にも実施例1と同様にして適用できる。

【0016】実施例2

実施例2は、第2発明方法の実施例であって、図4は実施例2で得た基板断面を示す断面図である。本実施例では、先ず、実施例1と同様にして、絶縁膜11上に、順次、配線12及びHDP-CVD膜13を形成し、次いで、HDP-CVD膜13を化学的機械研磨法(CMP)により研磨し、平坦化した。次いで、図4に示すように、水素、アルゴン等の脱ガスを抑制するために、LPCVD法により以下の条件でSi₃N₄膜18を形成した。

Si₃N₄膜成膜条件

ガス : SiH₂Cl₂ / NH₃ / N₂ = 50 sccm / 200 sccm / 200 sccm
圧力 : 70 Pa
基板温度 : 760°C

【0017】次いで、実施例1と同様にして、コンタクトホールを開口し、CVD法により、それぞれ密着層及びBLK-W膜を成膜した。実施例2の場合、水素、アルゴン等のガスの脱離を抑制するSi₃N₄膜を形成することにより、BLK-W膜の成膜時、層間絶縁膜からの脱ガス現象が抑制されるので、実施例1と同様、BL

K-W膜の剥離が防止される。

【0018】

【発明の効果】第1発明方法によれば、プランケット膜の成膜前にアニール処理を行って、予め水素、アルゴン等のガスを層間絶縁膜から脱離させ、プランケット膜の成膜時に層間絶縁膜から熱によりガスが脱離しないようとしているので、従来の方法の場合に生じているような脱ガスに伴うプランケット膜の剥離が生じない。また、従来の方法の場合に生じていたようなプランケット膜成膜時の脱ガスによるコンタクトホール埋込み不良が発生しないので、コンタクト形成時の製品の歩留りを向上させることができる。また、コンタクトホール開口の後にアニール処理しているので、コンタクトホールの側壁からも脱ガス効果が期待でき、埋め込み不良が一層効果的に防止される。よって、本発明に係るコンタクト形成方法によれば、コンタクト形成時の製品歩留りを向上させることができる。第2発明方法によれば、水素、アルゴン等のガスの層間絶縁膜からの脱離を抑制するガス不透過型絶縁膜を層間絶縁膜上に積層することにより、プランケット膜の成膜時、層間絶縁膜からの脱ガス現象が抑制されるので、第1発明方法と同様の効果がある。

【図面の簡単な説明】

【図1】図1(a)から(c)は、それぞれ本発明方法の実施例1の各工程毎での基板断面を示す断面図である。

【図2】図2は図1(c)に続く工程での基板断面図である。

【図3】実施例1の改変例での基板断面図である。

【図4】実施例2での基板断面図である。

【図5】図5(a)及び(b)はBLK-W膜の剥離の状態を示す模式図である。

【符号の説明】

11……絶縁膜、12……配線、13……HDP-CVD膜(シリコン酸化膜)、14……コンタクトホール、15……密着層、16……BLK-W膜、17……Si基板、18……Si₃N₄膜。

【図1】

【図2】

【図3】

【図4】

【図5】

(a)

(b)

