Halbleitertechnik und Nanostrukturen Fachprüfung	Studienrichtung:	
	Matrikel-Nr.:	/ Seite 1/3
	Name:	
	Vorname:	

1. 12P 2.	 Ein 0,3 m³ großer Vakuumbehälter mit einem plötzlich auftretenden kleinen Leck steht bei Raumtemperatur zunächst unter Ultrahochvakuum bei P_e=10⁻¹⁰ mbar. Das Leck besteht aus einem kleinen Loch mit 0,3 μm Durchmesser. Außerhalb des Behälters befindet sich ein Gasgemisch aus Wasserstoff und Stickstoff mit den Partialdrücken P_{H2}=0,5 bar und P_{N2}=0,3 bar. a) Welche Leitwerte ergeben sich für die beiden Gase? b) Welche Leckraten ergeben sich für die Gase? c) Welchen Druck in mbar erwarten Sie im Behälter nach einer Leck-Zeit von 10 Minuten, wenn die Kammer nicht abgepumpt wird? d) Welchen Enddruck erwarten Sie, wenn die Kammer mit 2001/s abgepumpt wird? Eine Turbomolekularpumpe mit einem Saugvermögen von S=2001/s wird über ein Ventil 		
	mit dem Leitwert C=10 l/s und einen 5,0 m langen DN 50 (Durchmesser 50mm)		
8P	Wellschlauch mit einem Rezipenten verbunden.		
	 a) Welchen molekularen Leitwert hat die Rohrleitung für Stickstoff? Welcher Gesamtleitwert ergibt sich hieraus? b) Welches effektive Saugvermögen pumpt am Rezipienten? 		
3.	Betrachten Sie ein 4 m langes Edelstahlrohr (Leitung) mit einem Durchmesser von 15 mm		
107	(siehe Abb.). Durch diese Leitung wird ein Rezipient abgepumpt. Die Pumpe besitzt ein		
10P	Saugvermögen von 100 l/s. Aufgrund eines Gaseinlasses von Wasserstoffgas stellt sich im		
	Rezipienten ein Gleichgewichtsdruck von $P_r=10^{-3}$ mbar ein.		
	An den Messstellen 1 und 2 stellen sich die Drücke P_1 =300Pa und P_2 =250 Pa ein.		
	a) Schätzen Sie mit der Knudsenzahl ab um welche Art der Strömung es sich in der		
	Leitung handelt. Der L-P Wert für H_2 beträgt $lp = 79 \cdot 10^{-6} m \cdot mbar$		
	b) Welchen Leitwert hat ein Rohr für Wasserstoff (Viskosität n=0.0086 mPas) bei		
	Raumtemperatur (T=300K)? c) Welcher Gasstrom fließt durch die Leitung?		
	Rezipient P2		
	Gaseinlass Pumpe		
	3 m		
4.	Für einen Halbleiter lässt sich das Leitungsband darstellen als		

 $E(k) = E_0 + 9.13 \cdot 10^{-38} (k - k_0)^2$. (E(k) in J, k in 1/m, $k_0 = 3E10m^{-1}$).

Der Halbleiter hat ein Gap von $E_0=1,4eV$.

- a) Bestimmen Sie die effektive Masse des Halbleiters. Wie hoch ist die relative effektive Masse m^*/m_e
- b) Handelt es sich hierbei um einen direkten oder indirekten Halbleiter? Begründung anhand der Bandstruktur. Erstellen Sie eine kleine Bandstruktur-Skizze!
- c) Der Halbleiter ist n-dotiert mit n= 10^{17} cm⁻³. Wie hoch ist in diesem Fall der Abstand Leitungsbandkante-Fermi-Niveau (E_C - E_F)? Die effektive Zustandsdichte N_C beträgt N_C = $4.35\cdot10^{23}$ m⁻³.

Konstanten: $me = 9.1 \cdot 10^{-31} kg$, $\hbar = 1.054 \cdot 10^{-34} Js$

- 5. Betrachten Sie einen Metall-n-Halbleiter-Schottky-Kontakt aus Titan/n-GaAs. Der Halbleiter GaAs ist mit n_d=1,6·10¹⁶cm⁻³ dotiert. Die sich hierbei ausbildende Schottky-Barriere hat eine Höhe von 0,65 eV.
 - a) Zeichnen Sie qualitativ die Bandstruktur und bezeichnen Sie die Lage des Ferminiveaus, die Schottky-Barrier und die Bulit-in Spannung.
 - b) Wie hoch ist die Built-In-Spannung im Halbleiter, wenn der Abstand Leitungsbandkant und Ferminiveau im Halbleiterinnern 90 meV ist?
 - c) Wie hoch ist in diesem Fall die Ausdehnung der Raumladungszone? ϵ_{HL} =12,9, ϵ_{0} =8.85E-12,
 - d) Wie hoch ist in diesem Fall die flächenbezogene Kapazität C"?
- 6. Betrachten Sie das Ausgangskennlinienfeld eines MOSFET (siehe untere Abb.). Aus diesem MOSFET soll ein Inverter ausgelegt werden. Das heißt ein "high-Signal" z. B. U_i =5V wird am Ausgang U_{Low} und ein "low-Signal" am Eingang z. B. U_i =1V wird am Ausgang zu U_{high} .

Der Inverter besteht aus einem Lastwiderstand R_L . Sie können nun frei wählen, ob Sie einen Lastwiderstand R_L =10k Ω oder R_L =20k Ω einbauen. Die Batteriespannung beträgt 5,0V.

- a) Zeichnen Sie in das Diagramm die Arbeitsgeraden der Lastwiderstände ein.
- b) Geben Sie in den beiden Fällen jeweils an, wie die Ausgangssignale aussehen. D. h. vervollständigen Sie die Tabelle:

U_i	U_{out} bei R_L =10k	U_{out} bei R_L =20k
0		
5,0 V		

Fachprüfung Halbleitertechnik und Nanostrukturen

