Equivalent metrics

Anthony Catterwell

University of Edinburgh

March 19, 2019

Overview

- Metric spaces
 - What constitutes a metric space?
 - Some metrics of R²
 - Are they equivalent?
- 2 Equivalence
 - Definition
 - Other ways of expressing equivalence
 - Strong equivalence
- 3 Epilogue

What constitutes a metric space?

Definition

A set X with function $d: X \times X \to \mathbb{R}$ which $\forall x, y, z \in X$ satisfy

Positive Definite: $d(x, y) \ge 0$ and

$$d(x,y) = 0 \iff x = y$$

Symmetric: d(x, y) = d(y, x)

Triangle Inequality: $d(x, y) \le d(x, z) + d(z, y)$

Some metrics of R^2

Manhattan distance
$$d_1(\mathbf{x}, \mathbf{y}) := |x_1 - y_1| + |x_2 - y_2|$$

Euclidean distance $d_2(\mathbf{x}, \mathbf{y}) := \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$

Are they equivalent?

$$d_{1}(\mathbf{x}, \mathbf{y}) := |x_{1} - y_{1}| + |x_{2} - y_{2}|$$

$$d_{2}(\mathbf{x}, \mathbf{y}) := \sqrt{(x_{1} - y_{1})^{2} + (x_{2} - y_{2})^{2}}$$

$$O : (0, 0) \quad (4, 0) \quad (15, 18) \quad (57, 42) \quad (900, 600)$$

$$d_{1}(O, x) \quad 0 \quad 4 \quad 23 \quad 99 \quad 1500$$

$$d_{2}(O, x) \quad 0 \quad 4 \quad 33 \quad 71 \quad 1082$$

99

71

Are they equivalent?

 $d_1(O,x)$

 $d_2(O,x)$

$$d_1(\mathbf{x}, \mathbf{y}) := |x_1 - y_1| + |x_2 - y_2|$$

$$d_2(\mathbf{x}, \mathbf{y}) := \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$

$$O: (0, 0) \quad (4, 0) \quad (15, 18) \quad (57, 42) \quad (900, 600)$$

• d_1 and d_2 seem to increase proportionally with each other.

23

33

• Characteristic of equivalent metrics.

1500

1082

Definition

There are several ways to express metric equivalence.

Definition

 d_1 and d_2 in X are said to be *equivalent* if $orall \epsilon > 0$ such that

$$d_1(x,y) < \delta \implies d_2(x,y) < \epsilon$$

 $\forall x, y \in X$, and vice-versa.

Open balls

Definition

An open ball $B_r(x; d)$ in a metric space (X, d) is defined as

$$\{y \in X : d(x,y) < r\}$$

Open balls

Definition

An open ball $B_r(x; d)$ in a metric space (X, d) is defined as

$$\{y \in X : d(x,y) < r\}$$

Theorem

The metrics d_1 and d_2 on a set X are equivalent iff

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \ni \ B_{\delta}(x; d_1) \subseteq B_{\epsilon}(x; d_2)$$

in their corresponding metric spaces (X, d_1) and (X, d_2) . And vice-versa.

Balls (cont.)

Relating back to our example with Manhattan metric d_1 and Euclidean metric d_2 in \mathbb{R}^2 :

Balls (cont. 2)

Overlaying them, you can see how d_1 and d_2 could be equivalent.

Open sets

Definition

A set $V \subseteq X$ is said to be *open* if and only if

$$\forall x \in V \ \exists \epsilon > 0 \ \ni \ B_{\epsilon}(x) \subseteq V$$

Open sets

Definition

A set $V \subseteq X$ is said to be *open* if and only if

$$\forall x \in V \ \exists \epsilon > 0 \ \ni \ B_{\epsilon}(x) \subseteq V$$

$\mathsf{Theorem}$

Metrics d_1 and d_2 on a set X are equivalent if and only if

 $A \subseteq X$ is open under $d_1 \iff A$ is open under d_2 .

Strong equivalence

Strong equivalence is a *sufficient* condition for equivalence.

Definition

Two metrics d_1 and d_2 are said to be *strongly equivalent* if $\exists \alpha, \beta \in \mathbb{R}^+$ such that

$$d_1(x,y) \le \alpha \cdot d_2(x,y)$$
 and $d_2(x,y) \le \beta \cdot d_1(x,y)$

Somewhat analogous to continuity vs uniform continuity.

Manhattan and Euclidean distance are strongly equivalent

$$d_1(\mathbf{x}, \mathbf{y}) := |x_1 - y_1| + |x_2 - y_2|$$

$$d_2(\mathbf{x}, \mathbf{y}) := \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$

Proof.

Let $a, b = x_1 - y_1, x_2 - y_2$. Then

$$d_1(\mathbf{x}, \mathbf{y})^2 = a^2 + b^2$$
 and $d_2(\mathbf{x}, \mathbf{y})^2 = a^2 + b^2 + 2ab$
 $\implies d_1(\mathbf{x}, \mathbf{y}) \le 1 \cdot d_2(\mathbf{x}, \mathbf{y})$

Since we have $ab \leq \max(a, b)^2$

$$\implies 2ab \le 2(a^2 + b^2)$$

$$\implies a^2 + b^2 + 2ab \le 3(a^2 + b^2)$$

$$\implies d_2(\mathbf{x}, \mathbf{y}) \le \sqrt{3} \cdot d_1(\mathbf{x}, \mathbf{y})$$

Might be tempting to think that

If d_1 and d_2 are equivalent then $\forall a, b, c \in X$

$$d_1(a,b) \leq d_1(a,c) \implies d_2(a,b) \leq d_2(a,c)$$

Might be tempting to think that

If d_1 and d_2 are equivalent then $\forall a, b, c \in X$

$$d_1(a,b) \leq d_1(a,c) \implies d_2(a,b) \leq d_2(a,c)$$

Holds for the majority of cases, but not generally true!

Might be tempting to think that

If d_1 and d_2 are equivalent then $\forall a, b, c \in X$

$$d_1(a,b) \leq d_1(a,c) \implies d_2(a,b) \leq d_2(a,c)$$

Holds for the majority of cases, but not generally true!

Take (2,2) and (3,0) with Manhattan and Euclidean distance metrics d_1 and d_2 .

$$d_1(O,(3,0)) = 3 < d_1(O,(2,2)) = 4$$

Might be tempting to think that

If d_1 and d_2 are equivalent then $\forall a, b, c \in X$

$$d_1(a,b) \leq d_1(a,c) \implies d_2(a,b) \leq d_2(a,c)$$

Holds for the majority of cases, but not generally true!

Take (2,2) and (3,0) with Manhattan and Euclidean distance metrics d_1 and d_2 .

$$d_1(O,(3,0)) = 3 < d_1(O,(2,2)) = 4$$

but

$$d_2(O,(3,0)) = 3 > d_2(O(2,2)) = 2.8$$

Thanks!