Contents

CONTENTS ii

	2.9.1	Creating and Binding Buffer Objects	35
		· · · · · · · · · · · · · · · · · · ·	
	2.9.2	Creating Buffer Object Data Stores	37
	2.9.3	Mapping and Unmapping Buffer Data	39
	2.9.4	Effects of Accessing Outside Buffer Bounds	43
	2.9.5	Copying Between Buffers	43
	2.9.6	Vertex Arrays in Buffer Objects	44
	2.9.7	Array Indices in Buffer Objects	45
	2.9.8	Buffer Object State	45
2.10	Vertex	Array Objects	46
		Shaders	47
	2.11.1	Shader Objects	47
		Program Objects	49
		Vertex Attributes	

CONTENTS iv

CONTENTS	Vİ

Ε	Profiles and the Deprecation Model	328

CONTENTS vii

1.3.11 Vertex Blend
I.3.12 Matrix Palette
I.3.13 T.0vcuoureixronmentix
I.3413 T.0vcuoureixronmentix
I.3513 T.0vcuoureixronmentix
I.3613 T.0vcuoureix
J.37.13 T.0vcuoureix
1.3813w(.)5321(.)-500
I.2013w(.)-25Rasterix
I.2.11w-Lev.0vcelix Vertex
I.2211w-Lev.0vcelix.78900(.)-5
.I.2413
I.2513
I.2613v.0vcelix Vertex.33500(.)-500(.
I.2913weri20(-Of-T)850woix T.0vcuoures1330700(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)-500(.)
$1.3.11 \\ w(.) \\ 7600(.) -500$
I.3.63-ointixT.0vcuoures1330700(.)-50
1.3.83-ointix feri 1333030(.) -500(.
I.3411-fferisx96530(.)-500(.)-
I.3433 Vertex
1.2443.78520(.) - 500(.) - 5
I.3413 T.0vcuoureix
I.3413 T.0vcuoureix

CONTENTS	viii

I.3.51	Uniform Buffer Objects	363
1.3.52	Restoration of features removed from OpenGL 3.0	363
1.3.53	Fast Buffer-to-Buffer Copies	364

List of Tables

2.1	GL command suffixes	14
2.2	GL data types	16
2.3	Summary of GL errors	19
2.4	Triangles generated by triangle strips with adjacency	26
2.5	Vertex array sizes (values per vertex) and data types	28

 $18] TJ \ 10 \ g \ 0 \ G \ 0 \ g \ 0 \ G \ 0 \ -13.-75.4949 \ Td \ [(2.6)-1350(GL)-25Pixte \ types \ (.)3820(.)-500(.)-500(.)-500(.)-1$

LIST OF TABLES xii

Chapter 1

Introduction

2

a GL context and associate it with the window. Once a GL context is allocated,

1.5 The Deprecation Model

GL features marked as *deprecated* in one version of the specification are expected to be removed in a future version, allowing applications time to transition away from use of deprecated features. The deprecation model is described in more detail, together with a summary of the commands and state deprecated from this version of the API, in appendix E.

1.6 Companion Documents

1.6.1 OpenGL Shading Language

This specification should be read together with a companion document titled *The OpenGL Shading Language*. The latter document (referred to as the OpenGL Shading Language Specification hereafter) defines the syntax and semantics of the programming language used to write vertex and fragment shaders (see sections 2.11 and 3.9). These sections may include references to concepts and terms (such as shading language variable types) defined in the companion document.

in one8ng(1.5)]T419 f8nganteedar86m [(in)-261(one8ng-253(86m002ned86m)]TJ 0 -138ng9 Td [(shad8se)

1.6. COMPANION DOCUMENTS

Chapter 2

OpenGL Operation

2.1 OpenGL Fundamentals

OpenGL (henceforth, the "GL") is concerned only with rendering into a frame-

Allocation and initialization of GL contexts is also done using these companion APIs. GL contexts can typically be associated with different default framebuffers,

2.1. OPENGL FUNDAMENTALS

2.1. OPENGL FUNDAMENTALS

2.2. GL STATE 12

Conversion from Floating-Point to Normalized Fixed-Point

```
void Uniform2i(int location, int v0, int v1);
void Uniform2f(int location, float v0, float v1);
void Uniform3i(int location, int v0, int v1, int v2);
void Uniform3f(int location, float v1, float v2,
    float v2);
void Uniform4i(int location, int v0, int v1, int v2,
    int v3);
void Uniform4f(int location, float v0, float v1,
    float v2, float v3);
```

Arguments whose type is fixed (i.e. not indicated by a suffix on the command) are of one of the GL data types summarized in table 2.2, or pointers to one of these types.

2.4 Basic GL Operation

Figure 2.1 shows a schematic diagram of the GL. Commands enter the GL on the left. Some commands specify geometric objects to be drawn while others control how the objects are handled by the various stages. Commands are effectively sent through a processing pipeline.

The first operates on primitives described vertices: points,

2.5. GL ERRORS

Error	Description	Offending command ignored?
I NVALI D_ENUM	enum argument out of range	Yes
I NVALI D_VALUE	Numeric argument out of range	Yes
I NVALI D_OPERATI ON	Operation illegal in current state	Yes
INVALID_FRAMEBUFFER_OPERATION	Framebuffer object is not com-	Yes
	plete	

21

coordinates and varying vertex shader outputs. In the case of line and polygon primitives, clipping may insert new vertices into the primitive. The vertices defin-

	Sizes and		
	Component	Integer	
Command	Ordering	Handling	Types
VertexAttribPointer	1, 2, 3, 4, BGRA	flag	byte

[1;1] as described in equations 2.1 and 2.2, respectively; converted directly to float, or left as integers. Data for an array specified by **VertexAttribPointer** will be converted to floating-point by normalizing if *normalized* is TRUE, and converted directly to floating-point otherwise. Data for an array specified by **VertexAttribl-Pointer** will always be left as integer values; such data are referred to as *pure* integers.

The one, two, three, or four values in an array that correspond to a single vertex comprise an array *eleninentasvalues inWhens*

```
and
```

```
voi d Disable( enum target);
with target PRI MI TI VE_RESTART. The command
```

voi d PrimitiveRestartIndex(ui nt index);

behaves identically to **DrawArrays** except that *primcount* separate ranges of elements accuspecified instead. It has the same effect as:

Dቮቼኒኒልናቄ መያቴ 49 ነ ዕር መለፈ F4110. 9091 Tf9. 076240 Td(to

2.8. VERTEX ARRAYS

The command

```
void DrawElementsInstanced(enum mode, sizei count, enum type, const void *indices, sizei primcount);
```

behaves identically to **DrawElements** except that *primcount* instances of the set of elements are executed, and the value of *instanceID* advances for each iteration. It has the same effect as:

```
if (mode, count, or type is invalid)
  generate appropriate error
el se f
  for (int i = 0; i < primcount; i++) f
    instancel D = i;
    DrawElements(mode, count, type, indices);
    g
    instancel D = 0;
g</pre>
```

The commands

```
voi d DrawElementsBaseVertex( enum mode, si zei count,
    enum type, voi d *indices, i nt basevertex);
voi d DrawRangeElementsBaseVertex( enum mode,
    ui nt start, ui nt end, si zei count, enum type,
    voi d *indices, i nt basevertex);
voi d DrawElementsInstancedBaseVertex( enum mode,
    si zei count, enum type, const void *indices,
    si zei primcount
```

voi d

2.9. BUFFER OBJECTS

Name Type Initial Value Legal Values

36

If the GL is unable to create a data store of the requested size, the error ${\tt OUT_-}$ ${\tt OF_MEMORY}$ is generated.

To modify some or all of the data contained in a buffer object's data store, the client may use the command

voi d

bool ean **UnmapBuffer(** enum *target*

voi d *CopyBufferSubData(

subtracting a null pointer from the pointer value, where both pointers are treated as

2.10 Vertex Array Objects

The buffer objects that are to be used by the vertex stage of the GL are collected together to form a vertex array object. All state related to the definition of data used by the vertex processor is encapsulated in a vertex array object.

The command

```
voi d GenVertexArrays( si zei n, ui nt *arrays);
```

returns *n* previous unused vertex array object names in *arrays*. These names are marked as used, for the purposes of **GenVertexArrays** only, but they acquire array state only when they are first bound.

Vertex array objects are deleted by calling

```
void DeleteVertexArrays(sizei n, const uint *arrays);
```

arrays contains n names of vertex array objects to be deleted. Once a vertex array

2.11 Vertex Shaders

Vertex shaders describe the operations that occur on vertex values and their associated data.

A vertex shader is an array of strings containing source code for the operations that are meant to occur on each vertex that is processed. The language used for vertex shaders is described in the OpenGL Shading Language Specification.

To use a vertex shader, shader source code is first loaded into a *shader object* and then *compiled*. One or more vertex shader objects are then attached to a *program object*. A program object is then *linked*, which generates executable

Shader objects can be deleted with the command

voi d **DeleteShader(** ui nt

voi d LinkProgram(

A generic attribute variable is considered *active* if it is determined by the compiler and linker that the attribute may be accessed when the shader is executed. Attribute variables that are declared in a vertex shader but never used will not count against the limit. In cases where the compiler and linker cannot make a conclusive

The values of generic attributes sent to generic attribute index *i* are part of current state. If a new program object has been made active, then these values will be tracked by the GL in such a way that the same values will be observed by attributes in the new program object that are also bound to index *i*.

It is possible for an application to bind more than one attribute name to the same location. This is referred to as *aliasing*. This will only work if only one of the aliased attributes is active in the executable program, or if no path through the shader consumes more than one attribute of a set of attributes aliased to the same

If pname is UNI FORM_BLOCK_NAME_LENGTH

voi d **GetActiveUniformName(** ui nt *program*, ui nt *uniformIndex*, si zei *bufSize*, si zei **length*, char **uniformName*);

program

program is the name of a program object for which the command **LinkProgram** has been issued in the past. It is not necessary for *program* to have been linked successfully. The link could have failed because the number of active uniforms exceeded the limit.

These commands provide information about the uniform or uniforms selected by *index* or *uniformIndices*, respectively. In **GetActiveUniform**, an

2.11. VERTEX SHADERS

For **GetActiveUniformsiv**, *uniformCount* indicates both the number of elements in the array of indices *uniformIndices* and the number of parameters written to *params* upon successful return. *pname* identifies a property of each uniformIndices that should be written into the corresponding element of *params*. If an error occurs, nothing will be written to *params*.

If pname is UNI FORM_TYPE, then an array identifying the types of the up forms specified by the corresponding array of uniformIndices is real.

using Xthen

- 8. If the member is an array of *S* row-major matrices with *C* columns and *R* rows, the matrix is stored identically to a row of *S R* row vectors with *C* components each, according to rule (4).
- 9. If the member is a structure, the base alignment of the structure is *N*, where *N* is the largest base alignment value of any of its members, and rounded up to the base alignment of a vec4. The individual members of this substructure are then assigned offsets by applying this set of rules recursively, where the base offset of the first member of the sub-structure is equal to the aligned offset of the structure. The structure may have padding at the end; the base offset of the member following the sub-structure is rounded up to the next multiple of the base alignment of the structure.
- 10. If the member is an array of R

Each program object can specify a set of one or more vertex or geometry shader output variables to be recorded in transform feedback mode (see section 2.16). When a geometry shader is active (see section 2.12), transform feedback records the values of the selected geometry shader output variables from the emitted vertices. Otherwise, the values of the selected vertex shader output variables are recorded. The values to record are specified with the command

```
voi d TransformFeedbackVaryings( ui nt program,
    si zei count, const char **varyings, enum bufferMode);
```

program specifies the program e0 T2 0 T8ograF44 102591 Tf 35.454 0 Td [am

To determine the set of varying variables in a linked program object that will

2.11. VERTEX SHADERS

the computed level of detail is not the texture's base level and the texture's

Texture Access

Shaders have the ability to do a lookup into a texture map. The maximum number of texture image units available to vertex, geometry, or fragment shaders are respectively the values of the implementation-dependent constants MAX_-VERTEX_TEXTURE_I MAGE_UNITS, MAX_GEOMETRY_TEXTURE_I MAGE_UNITS, and MAX_TEXTURE_I MAGE_UNITS

2.11. VERTEX 92₽ADERS

2.12. GEOMETRY SHADERS

after geometry shader execution. The inputs available to a geometry shader are the

2.12. GEOMETRY SHADERS

as described in section 2.12.4. If the number of vertices emitted by the geometry

2.12.4 Geometry Shader Execution Environment

If a successfully linked program object that contains a geometry shader is made current by calling **UseProgram**, the executable version of the geometry shader is used to process primitives resulting from the primitive assembly stage.

The following operations are applied to the primitives that are the result of executing a geometry shader:

Perspective division on clip coordinates (section 2.13).

Viewport mfrom 2.12d to process primitives resulting

2.12. GEOMETRY SHADERS

Geometry Shader Outputs

A geometry shader is limited in the numb

When a program is linked, all components of any varying and special variable written by a geometry shader will count against this limit. A program whose geometry shader writes more than the value of MAX_GEOMETRY_OUTPUT_COMPONENTS components worth of varying variables may fail to link, unless device-dependent optimizations are able to make the program fit within available hardware resources.

Layered Rendering

2.13 Coordinate Transformations

 ${\it Clip\ coordinates}$ for a vertex result from vertex or, if active, geometry shader execution, which yields a vertex coordinate

where x and y give the x and y window coordinates of the viewport's lower left corner and w and h give the viewport's width and height, respectively. The viewport parameters shown in the above equations are found from these values as

$$O_X = X +$$

Each type of query supported by the GL has an active query object name. If the active query object name for a query type is non-zero, the GL is currently tracking the information corresponding to that query type and the query results

2.16. TRANSFORM FEEDBACK

2.17. PRIMITIVE QUERIES

2.19. PRIMITIVE CLIPPING

For vertex shader varying variables specified to be interpolated without perspective correction (using the noperspective qualifier), the value of

3.3 Antialiasing

In some implementations, varying degrees of antialiasing quality may be obtained by providing GL hints (section 5.3), allowing a user to make an image quality versus speed tradeoff.

3.3.1 Multisampling

floating point values in val[0] and val[1], each between 0 and 1, corresponding to the x and y locations respectively in GL pixel space of that sample. (0:5;0:5) thus corresponds to the pixel center. The error I NVALI D_VALUE is generated if index is greater than or equal to the value of SAMPLES. If the multisample mode does not core(v)15(alue)-ng-305Lvv 19vi0(E)-262(20e)15(el)-248(19)fragme-261(v)1vv19el1(x)]TJ5Lvha

3.4. POINTS 105

3.4 Points

A point is drawn by generating a set of fragments in the shape of a square or circle centered around the vertex of the point. Each vertex has an associated point size that controls the size of that square or circle.

If point size mode is enabled, then the derived point size is taken from the (potentially clipped) shader built-in <code>gl_PointSize</code> written by the geometry shader, or written by the vertex shader if no geometry shader is active, and clamped to the implementation-dependent point size range. If the value written to <code>gl_PointSize</code> is less than or equal to zero, results are undefined. If point size mode is disabled, then the derived point size is specified with the command

voi d PointSize(fl oat size);

size specifies the requested size of a point. The default value is 1.0. A value less than or equal to zero results in the error I NVALID_VALUE. Program point size mode is enabled and disabled by calling **Enable** or **Disable** with the symbolic value PROGRAM_POI NT_SI ZE.

If multisampling is enabled, an implementation may optionally fade the point alpha (see section 3.11) instead of allowing the point width to go below a given

3.4. POINTS 106

a bit for the point sprite texture coordinate origin, and a floating-point value specifying the point fade threshold size.

3.4.3 Point Multisample Rasterization

If MULTI SAMPLE

the following rules:

1. The coordinates of a fragment produced by the algorithm may not deviate by more than one unit in either x or y

3.6.1 Basic Polygon Rasterization

The first step of polygon rasterization is to determine if the polygon is *back-facing* or *frmolyg45(stting)]TJ/F41 10.9091 Tf -30751.63Td [(bac)60(PO1)-2244(333ermine)-2n 33*

we require that if two polygons lie on either side of a common edge (with identical endpoints) on which a fragment center lies, then exactly one of the polygons results in the production of the fragment during rasterization.

As for the data associated with each fragment produced by rasterizing a polygon, we begin by specifying how these values are produced for fragments in a triangle. Define *barycentric coordinates* for a triangle. Barycentric coordinates are a set of three numbers, a, b, and c, each in the range [0;1], with a+b+c=1. These coordinates uniquely specify any point

be rasterized as line segments. FILL is the default mode of polygon rasteriza-

spanned by the primitive. If n is the number of bits in the floating-point mantissa, the minimum resolvable difference, r, for the given primitive is defined as

$$r = 2^e n$$

When using a vertex shader, the noperspective and flat qualifiers affect

Format Name	Element Meaning and Order	Target Buffer

Element Size	Default Bit Ordering	Modified Bit Ordering
8 bit	[7::0]	[7::0]
16 bit	[15::0]	[7::0][15::8]
32 bit	[31::0]	[7::0][15::8][23::16][31::24]

Table 3.4: Bit u371 606.(3.4:)-438(Bit)-314grd 0 J 1s5 606.(3.4:)-438(Bit)-314grd 0 J 1s5 606.(3.4:)-438(Bit)-

3.7. PIXEL RECTANGLES

3.7. PIXEL RECTANGLES

UNSI GNED_I NT_8_8_8_8:

FLOAT_32_UNSI GNED_I NT_24_8_REV:

Table 3.9: FLOAT_UNSI GNED_I NT formats

cial two-dimensional and two-dimensional array textures, respectively, containing multiple samples in each texel. Cube maps are special two-dimensional array textures with six layers that represent the faces of a cube. When accessing a cube map, the texture coordinates are projected onto one of the six faces of the cube. Rectangular textures are special two-dimensional textures consisting of only a single image and accessed using unnormalized coordinates. Buffer textures are special one-dimensional textures whose texel arrays are stored in separate buffer objects.

Implementations must support texturing using multiple images. The following

is used to specify a three-dimensional texture image. *target* must be one of TEXTURE_3D for a three-dimensional texture or TEXTURE_2D_ARRAY for an two-dimensional array texture. Additionally, *target* may be either PROXY_TEXTURE_-3D for a three-dimensional proxy texture, or PROXY_TEXTURE_2D_ARRAY for a two-dimensional proxy array texture, as discussed in section 3.8.13. *format*, *type*, and *data* specify the format of the image data, the type of those data, and a reference to the image data in the currently bound pixel unpack buffer or client memory,

Base Internal Format	RGBA, Depth, and Stencil Values	Internal Components
DEPTH_COMPONENT	Depth	D
DEPTH_STENCI L	Depth,Stencil	D,S

Texture and renderbuffer color formats (see section 4.4.2).

 $red_{c} = max(0; min(sharedexp_{max}))$

Sized internal color formats continued from previous page						
Sized Base R G B A Shar						Shared
Internal Format	Internal Format	bits	bits	bits	bits	bits
RGBA32F	RGBA	f32	f32	f32	f32	
R11F_G11F_B10F	RGB	f11	f11	f10		
RGB9 E5	RGB					

Sized	Base	D	S
Internal Format	Internal Format	bits	BB9

image: let

int internalformat, sizei width, int border, enum format, enum type, void *data);

is used to specify a one-dimensional texture image. *target* must be either TEXTURE_1D, or PROXY_TEXTURE_1D in the special case discussed in section 3.8.13.

For the purposes of decoding the texture image, **TexImage1D** is equivalent to calling **TexImage2D** with corresponding arguments and *height* of 1.

The image indicated to the GL by the image pointer is decoded and copied into the GL's internal memory.

We shall refer to the decoded image as the *texel array*. A three-dimensional

defines a two-dimensional texel array in exactly the manner of <code>TexImage2D</code>, except that the image data are taken from the framebuffer rather than from client memory. Currently, target must be one of <code>TEXTURE_2D</code>, <code>TEXTURE_1D_ARRAY</code>, <code>TEXTURE_RECTANGLE</code>, <code>TEXTURE_CUBE_MAP_POSITIVE_X</code>, <code>TEXTURE_CUBE_MAP_POSITIVE_-Y</code>, <code>TEXTURE_CUBE_MAP_POSITIVE_-Y</code>, <code>TEXTURE_CUBE_MAP_POSITIVE_Z</code>

defines a one-dimensional texel array in exactly the manner of TexImage1D

less than zero or greater than the base 2 logarithm of the maximum texture width, height, or depth, the error I NVALI D_VALUE

$$x < b_S$$

 $x + w > w_S$ b_S

Counting from zero, the *n*th pixel group is assigned to the texel with internal integer coordinates [/], where

$$i = x + (n \mod w)$$

Texture images with compressed internal formats may be stored in such a way that it is not possible to modify an image with subimage commands without having

Calling CopyTexSubImage3D, CopyTexImage2D, CopyTexSubImage2D, CopyTexImage1D, or CopyTexSubImage1D will result in an INVALID_-FRAMEBUFFER_OPERATION error if the object bound to READ_FRAMEBUFFER_-BINDING is not framebuffer complete (see section 4.4.4).

Texture Copying Feedback Loops

Calling CopyTexSubImage3D, CopyTexImage2D, CopyTexSubImage2D, CopyTexImage1D, or CopyTexSubImage1D will result in undefined behavior if

If the target parameter to any of the CompressedTexImagenD commands is TEXTURE_RECTANGLE or PROXY_TEXTURE_RECTANGLE, the error I NVALI D_-ENUM is generated.

 ${\it internal format} \ {\it must be a supported specific compressed internal format.} \ {\it An INVALID_ENUM}$

but also to any other properly encoded compressed texture image of the same size and format.

If internalformat is one of the specific amage C. 1(\$\vec{E}JOgOG-[()-2180eTe)-3181(RGTC]3180ee)15(xture)-2180eor

The image pointed to by *data* and the *imageSize* parameter are interpreted as though they were provided to **CompressedTexImage1D**, **CompressedTexImage2D**, and **CompressedTexImage3D**. These commands do not provide for image format conversion, so an INVALID_OPERATION error results if *format*

154

TEXTURE_DEPTH

establish the data storage, format, dimensions, and number of samples of a multisample texture's image. For

type, component count, normalized component information, and mapping of data store elements to texture components is specified in table 3.15.

In addition to attaching buffer objects to textures, buffer objects can be bound to the buffer object target named <code>TEXTURE_BUFFER</code>, in order to specify, modify, or read the buffer object's data store. The buffer object bound to <code>TEXTURE_BUFFER</code> has no effect on rendering. A buffer object is bound to <code>TEXTURE_BUFFER</code> by calling <code>BindBuffer</code> with <code>target</code> set to <code>TEXTURE_BUFFER</code>, as described in section 2.9.

3.8.6 Texture Parameters

Various parameters control how the texel array is treated when specified or changed, and when applied to a fragment. Each parameter is set by calling

```
voi d TexParameter fifg( enum target, enum pname, T param);
voi d TexParameter fifgv( enum target, enum pname,
    T *params);
voi d TexParameter I fi ui gv( enum target, enum pname,
    T *params);
```

target is the target, either TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_-1D_ARRAY, TEXTURE_2D_ARRAY. TEXTURE_RECTANGLE, or TEXTURE_CUBE_-MAP. params

$$t = \frac{1}{2} \quad \frac{t_c}{jm_a j} + 1$$

analogously. Let

$$u(x;y) = \begin{cases} s(x;y) + u; & \text{rectangular texture} \\ w_t \quad s(x;y) + u; & \text{otherwise} \end{cases}$$

$$v(x;y) = \begin{cases} t(x;y) + v; & \text{rectangular texture} \\ h_t \quad t(x;y) + v; & \text{otherwise} \end{cases}$$

$$w(x;y) = d_t \quad r(x;y) + w \qquad (3.20)$$

where w_t , h_t , and d_t are as defined by equation 3.16 with w_s , h_s , and d_s

where j is the texel at location i in the one-dimensional texture. For one-

affects the texture image attached to

3.8.12 Texture Completeness

A texture is said to be *complete* if all the image arrays and texture parameters

Effects of Completeness on Texture Application

Texture lookup and texture fetch operations performed in vertex, geometry, and fragment shaders are affected by completeness of the texture being sampled as described in sections

are supported. Likewise, if the specified PROXY_TEXTURE_CUBE_MAP is not supported, none of the six cube map 2D images are supported.

Texture Comparison Function	Com	puted r	esult <i>r</i>	
I FOUAL	r_	1:0;	D _{ref}	D_t
LEQUAL	/ =	0:0;	D _{ref} >	> D

$$red = red_s 2^{exp_{shared}} B$$
 $green = green_s 2^{exp_{shared}} B$
 $blue = blue_s 2^{exp_{shared}} B$

3.9 Fragment Shaders

The sequence of operations that are applied to fragments that result from rasterizing a point, line segment, or polygon are described using a *fragment shader*(t0(de338ig501338iare)-250(de338iin,

180

Texture Base	Texture source color		
Internal Format	C_{S}	A_{s}	
RED	$(R_t; 0; 0)$	1	
RG	$(R_t; G_t; 0)$	1	
RGB	$(R_t; G_t; B_t)$	1	
RGBA	$(R_t; G_t; B_t)$		

3.9. FRAGMENT SHADERS

181

as follows:

$$X_f = \begin{pmatrix} X_W & \frac{1}{2} \end{pmatrix}$$

3.9. FRAGMENT SHADERS

Chapter 4

4.1. PER-FRAGMENT OPERATIONS

	<u> </u>
I .	

188

void Scissor(int left, int bottom, sizei width,
 sizei height);

If $left x_W < left + width$ and $bottom y_W < bottom + height$, then the scissor test passes. Otherwise, the test fails and the fragment is discarded. The test is enabled or disabled using **Enable** or **Disable** using the constant SCI SSOR_TEST. When disabled, it is as if the scissor test always passes. If either width or height is less than zero, then the error I NVALID_VALUE is generated. The state required consists of four integer values and a bit indicating whether the test is enabled or disabled. In the initial state, left = bottom = 0. width and height are

the depth value stored at the location given by the incoming fragment's (x_w, y_w) coordinates.

If depth clamping (see section 2.19) is enabled, before the incoming fragment's z_W is compared z_W is clamped to the range [min(n; f); max(n; f)], where n and f are the current near and far depth range values (see section 2.13.1)

If the depth buffer test fails, the incoming fragment is discarded. The stencil value at the fragment's (x_W, y_W) coordinates is updated according to the function currently in effect for depth buffer test failure. Otherwise, the fragment continues to the next operation and the value of the depth buffer at the fragment's (x_W, y_W) location is set to the fragment's z_W value. In this case the stencil value is updated according to the function currently in effect for depth buffer test success.

The necessary state is an eight-valued integer and a single bit indicating whether depth buffering is enabled or disabled. In TJ 7.61974(TJ 7.63(TJ 7.bw)]TJ/F41 10he)-297(alu-1.636)

193

4.1.7 Blending

Blending combines the incoming *source* fragment's R, G, B, and A values with the *destination*

194

voi d BlendEquationSeparate(

Mode	RGB Components	Alpha Component
FUNC_ADD	$R = R_s S_r + R_d D_r$	$A = A_S S_a + A_d D_a$
	$G = G_S S_g + G_d D_g$ $B = B_S S_b + B_d D_b$	
	$B = B_s S_b + B_d D_b$	
FUNC_SUBTRACT	$R = R_s S_r R_d D_r$	$A = A_S S_a A_d D_a$
		•

Function	RGB Blend Factors	Alpha Blend Factor
	$(S_r; S_g; S_b)$ or $(D_r; D_g; D_b)$	S_a or D_a
ZERO	(0;0;0)	0
ONE	(1;1;1)	1
SRC_COLOR	$(R_s;G_s;B_s)$	A_S
ONE_MI NUS_SRC_COLOR	$(1/1/1)$ $(R_s/G_s/B_s)$	1 <i>A</i> _s
DST_COLOR	$(R_d; G_d; B_d)$	A_d
ONE_MI NUS_DST_COLOR	$(1;1;1)$ $(R_d;G_d;B_d)$	1 <i>A</i> _d
CDC ALDUACOmO1071		

SRC_ALPHA00m01071

4.1. PER-FRAGMENT OPERATIONS

4.2. WHOLE FRAMEBUFFER OPERATIONS

the whole framebuffer.

4.2.1 Selecting a Buffer for Writing

The first such operation is controlling the color buffers into which each of the fragment color values is written. This is accomplished with either **DrawBuffer** or **DrawBuffers**.

The command

voi d DrawBuffer(enum buf);

defines the set of color buffers to which fragment color zero is written. buf must be one of the values from tables 4.4 or 4.5. In addition, acceptable for the framework on whether the GL is using the default framebuffer (i.e., DRAW_FRAMEBUFFER_BINDING is zero), or a framebuffer object (i.e., DRAW_-

to by bufs. Specifying a buffer more then once will result in the error I NVALI D_-

calling **GetIntegerv** with the symbolic constant DRAW_BUFFER*i*. DRAW_BUFFER is equivalent to DRAW_BUFFERO.

4.2.2 Fine Control of Buffer Updates

Writing of bits to each of the logical framebuffers after all per-fragment operations have been performed may be *masked*. The commands

```
voi d ColorMask( bool ean r, bool ean g, bool ean b,
bool ean a);
voi d ColorMaski( ui nt buf, bool ean r, bool ean g,
bool ean b, bool ean a);
```

control writes to the active draw buffers.

ColorMask and **ColorMaski** are used to mask the writing of R, G, B and A values to the draw buffer or buffers. **ColorMaski** sets the mask for a particular draw buffer. The mask for DRAW_BUFFERi is modified by passing i as the parameter buf. r, g, b, and a indicate whether R, G, B, or A values, respectively, are written or not (a value of TRUE means that the corresponding value is written). The mask specified by r, g, b, and a is applied to the color buffer associated with DRAW_BUFFERi. If DRAW_BUFFERi is one of FRONT, BACK, LEFT, RI GHT, or FRONT_AND_BACK (specifying multiple color buffers) then the mask is applied to all of the buffers.

ColorMask sets the mask for all draw buffers to the same values as specified by r, g, b, and a.

An INVALID_VALUE error is generated if index is greater than the value of MAX_DRAW_BUFFERS minus one.

In the initial state, all color values are enabled for writing for all draw buffers. The value of the color writemask for draw buffer *i* can be queried by calling **GetBooleani_v** with *target* COLOR_WRI TEMASK and *index i*. The value of the color writemask foralu36a

voi d StencilMaskSeparate(enum face, ui nt mask);

control the writing of particular bits into the stencil planes.

The least significant *s* bits of *mask*, where *s* is the number of bits in the stencil buffer, specify an integer mask. Where a 1 appears in this mask, the corresponding bit in the stencil buffer is written; where a 0 appears, the bit is not written. The *face* parameter of **StencilMaskSeparate** can be FRONT, BACK, or FRONT_AND_BACK and indicates whether the front or back stencil mask state is affected. **StencilMask**

buf is zero, no buffers are cleared. If buf contains any bits other than <code>COLOR_-BUFFER_BIT</code>, <code>DEPTH_BUFFER_BIT</code>, or <code>STENCIL_BUFFER_BIT</code>, then the error <code>INVALID_VALUE</code> is generated.

```
void ClearColor(clampf r, clampf g, clampf b, clampf a);
```

sets the clear value for fixed- and floating-point color buffers. The specified components are stored as floating-point values.

The command

voi d ClearDepth250(OPERA)111(TIONS)]1470 g 05h0 Td [(COLOR_-)]TJ -316.8-13.549 Td [(cl

ClearBuffer fif uigv generates an I NVALI D_ENUM error if buffer is not

4.3. READING AND COPYING PIXELS

211

Parameter Name	Type	Initial Value	Valid Range
PACK_SWAP_BYTES			

type Parameter	Inde	x Mask
UNSI GNED_BYTE	2 ⁸	1
BYTE	2 ⁷	1
UNSI GNED_SHORT	2 ¹⁶	1
SHORT	2 ¹⁵	1
UNSI GNED_I NT	2 ³²	1
INT	2 ³¹	1
UNSI GNED_I NT_24_8	2 ⁸	1
FLOAT_32_UNSI GNED_I NT_24_8_REV	2 ⁸	1

Table 4.8: Index masks used by **ReadPixels**. Floating point data are not masked.

3rd components of the UNSI GNED_I NT_10F_11F_11F_REV format as shown in table 3.8.

In the special case of calling ReadPixels with type of UNSI GNED_I NT_5_- 9_9_9_REV and format RGB, the conversion is performed as follows: the returned data are packed into a series of u250(391T01510. 9091TfD3(pa200mponentsLes. 3.) 91(Thane

type Parameter	GL Data Type	Component Conversion Formula
UNSI GNED_BYTE	ubyte	$c = (2^8 1) f$
BYTE	byte	$C = {}^{(2^8 \text{ ff})}$

4.3. READING AND COPYING PIXELS

LI NEAR filtering is allowed only for the color buffer; if $\it mask$ includes <code>DEPTH_-BUFFER_BIT</code> or <code>STENCIL_BUFFER_BIT</code>

Calling BlitFramebuffer will result in an I NVALI D_OPERATI ON error if mask includes <code>DEPTH_BUFFER_BIT</code> or <code>STENCIL_BUFFER_BIT</code>, and the source and destination depth and stencil buffer formats do not match.

Calling BlitFramebuffer will result in an I NVALI D_OPERATI ON error if filter

listed in table 6.23 for each attachment point of the framebuffer, set to the same initial values. There are MAX_COLOR_ATTACHMENTS

There are no visible color buffer bitplanes. This means there is no color buffer corresponding to the back, front, left, or right color bitplanes.

The only color buffer bitplanes are the ones defined by the frame-buffer attachment points named COLOR_ATTACHMENTO through COLOR_ATTACHMENTn.

The only depth buffer bitplanes are the ones defined by the framebuffer attachment point <code>DEPTH_ATTACHMENT</code>.

The only stencil buffer bitplanes are the ones defined by the framebuffer attachment point STENCI L_ATTACHMENT.

If the attachment sizes are not all identical, rendering will be limited to the largest area that can fit in all of the attachments (an intersection of rectangles having a lower left of (0:0) and an upper right of (width; height) for each

4.4.2 Attaching Images to Framebuffer Objects

Framebuffer-attachable images may be attached to, and detached from, framebuffer objects. In contrast, the image attachments of the default framebuffer may not be changed by the GL.

A single framebuffer-attachable image may be attached to multiple framebuffer objects, potentially avoiding some data copies, and possibly decreasing memory consumption.

For each logical buffer, a framebuffer object stores a set of state which defines the logical buffer's *attachment point*

void **BindRenderbuffer(** enum *target*, uint *renderbuffer*);

with target set to RENDERBUFFER and renderbuffer set to the renderbuffer object name. If

returns *n* previously unused renderbuffer object names in *renderbuffers*. These names are marked as used, for the purposes of **GenRenderbuffers** only, but they acquire renderbuffer state only when they are first bound.

The command

```
voi d RenderbufferStorageMultisample( enum target, si zei samples, enum internalformat, si zei width, si zei height);
```

establishes the data storage, format, dimensions, and number of samples of a renderbuffer toje tr's image arget in still enter blue (as defined in section 4.4.4).

renderbuffertarget must be RENDERBUFFER and renderbuffer should be set to the name of the renderbuffer object to be attached to the framebuffer. renderbuffer must be either zero or the name of an existing renderbuffer object of type renderbuffertarget, otherwise an I NVALI D_OPERATI ON error is generated. If renderbuffer

4.4. FRAMEBUFFER OBJECTS

227

Name	Λf	atta	chn	nent

COLOR_ATTACHMENT i (see caption)

DEPTH_ATTACHMENT

voi d **FramebufferTextureLayer(** enum *target*, enum *attachment*, ui nt

If FramebufferTextureLayer or FramebufferTexture3D is called, then

this conditions holds, texturing operations accessing that image will produce unde-

For the purpose of this discussion, it is $\emph{possible}$ to sample from the texture object

below. The rules of framebuffer completeness are dependent on the properties of the attached images, and on certain implementation-dependent restrictions.

The internal formats of the attached images can affect the completeness of the framebuffer, so it is useful to first define the relationship between the internal format of an image and the attachment points to which it can be attached.

The following base internal formats from table 3.11 are

fFRAMEBUFFER_I NCOMPLETE_READ_BUFFER g

Detaching an image from the framebuffer with **FramebufferTexture*** or **FramebufferRenderbuffer**.

Changing the internal format of a texture image that is attached to the frame-buffer by calling **CopyTexImage*** or **CompressedTexImage***.

Changing the internal format of a renderbuffer that is attached to the frame-buffer by calling **RenderbufferStorage**.

Deleting, with DeleteTextures or DeleteRenderbuffers, an object contain-

rules of framebuffer completeness that is violated. If the framebuffer is complete, then ${\sf FRAMEBUFFER_COMPLETE}$ is returned.

The values of SAMPLE_BUFFERS and SAMPLES are derived from the attachments of the currently bound framebuffer object. If the current

 $(x_w;y_w)$ corresponds to a border texel if x_w,y_w , or layer is less than the border

Chapter 5

Special Functions

This chapter describes additional GL functionality that does not fit easily into any of the preceding chapters. This functionality consists of flushing and finishing

Sync objects have a status value with two possible states: *signaled* and *unsignaled*. Events are associated with a sync object. When a sync object is created, its status is set to unsignaled. When the associated event occurs, the sync

for *sync* to become signaled. *flags*

5.3. HINTS 246

Target	Hint description
LI NE_SMOOTH_HI NT	Line sampling quality
POLYGON_SMOOTH_HI NT	Polygon sampling quality
TEXTURE_COMPRESSI ON_HI NT	Quality and performance of
	texture image compression
FRAGMENT_SHADER_DERI VATI VE_HI NT	Derivative accuracy for fragment
	processing built-in functions
	dFdx, dFdy and fwi dth

Table 5.2: Hint targets and descriptions.

or unsignaled. The initial values of sync object state are defined as specified by ${\bf FenceSync}$

Chapter 6

6.1. QUERYING GL STATE

TEXPROXY_TURE_1D, MULPROXY_TURE_1D, TEXPROXY_TURE_1D, TEXPROXY_TURE_1D, MULPROXY_TURE_1D,

name corresponding to the *index*th supported extension should be returned. *index* may range from zero to the value of NUM_EXTENSI ONS minus one. There is no defined relationship between any particular extension name and the *index* values; an extension name may correspond to a different *index* in different GL contexts and/or implementations.

An INVALID_VALUE error is generated if index is outside the valid range for the indexed state name.

6.1.6 Asynchronous Queries

The command

bool ean IsQuery(uint

```
voi d GetQueryObjectiv( ui nt id, enum pname,
    i nt *params);
voi d GetQueryObjectuiv( ui nt id, enum pname,
    ui nt *params);
```

If *id* is not the name of a query object, or if the query object named by *id* is currently active, then an I NVALI D_OPERATI ON error is generated.

If *pname* is QUERY_RESULT, then the query object's result value is returned as a single integer in *params*. If the value is so large in magnitude that it cannot be represented with the requested type, then the nearest value representable using the requested type is returned. If the number of query counter bits for

If pname is SYNC_CONDITION, a single value representing the condition of the sync object is placed in values. The only condition supported is SYNC_GPU_-COMMANDS_COMPLETE.

If *pname* is SYNC_FLAGS, a single value representing the flags with which the sync object was created is placed in *values*. No flags are currently supported.

If sync is not the name of a sync object, an I NVALI D_VALUE error is generated. If pname

COMPILE_STATUS, TRUE is returned if the shader was last compiled successfully,

TRANSFORM_FEEDBACK_VARYI NG_MAX_LENGTH

STRI DE, VERTEX_ATTRI B_ARRAY_TYPE, VERTEX_ATTRI B_ARRAY_- NORMALI ZED, VERTEX_ATTRI B_ARRAY_I NTEGER, or CURRENT_VERTEX_- ATTRI B. Note that all the queries except CURRENT_VERTEX_ATTRI B return values stored in the currently bound vertex array object (the value of VERTEX_ARRAY_- BI NDI NG). If the zero object is bound, these values are client state. The error I NVALI D_VALUE is generated if *index* is greater than or equal to MAX_VERTEX_- ATTRI BS.

All but CURRENT_VERTEX_ATTRIB

If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is NONE, no framebuffer is bound to *target*. In this case querying *pname* FRAMEBUFFER_- ATTACHMENT_OBJECT_NAME will return zero, and all other queries will generate an I NVALI D_OPERATI ON error.

If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is not NONE, these queries apply to all other framebuffer types:

If pname is FRAMEBUFFER_ATTACHMENT_RED_SIZE, FRAMEBUFFER_ATTACHMENT_GREEN_SIZE

6.2. STATE TABLES

6.2. STATE TABLES

Sec.

Description

Initial Value

> Get Command

> > Get value

6.2. STATE	TABL	ES (TEXTURE)]TJETq10.r	
	Sec.	3.8 313.993 244.141 Td [
	Description	TEXTURE_BORDER_COLOR R GetTexParameter 0,0,0,0 Border color 3.8	
	Initial Value	0,0,0,0 5 T25265 252.60.398 w 0	
	Get Command	n C GetTexParameter 01 482.398 252.908 cm3 GET420 1 487 6 0 38ETq.8026	
	Type	GETq1 0 0 1 482.398 252.	
	Get value	TEXTURE_BORDER_COLOR #ESATURE EXAMPRES.962 0 Td [(C)]TJ0 g 0	

Sec.

Get Command

Type Get value

Description

Get Initial Description Sec.	IsEnabled FALSE Scissoring enabled 4.1.2	
Type	Δ	
Get value	SCISSOR_TEST	SCISSOR BOX

escription Sec.	
Initial Value De	0
Get Command	GetIntegerv
Type	+ Z
Get value	DRAW_FRAMEBUFFER_BINDING

Initial Description Sec.	Type Per image attached to framebuffer attachment point
Yali Val	NON
Get Command	GetFramebuffer- Attachment- Parameteriv
Type	Z
Get value	FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE

ment point

6.2. STATE TABLES

6.2. STATE TABLES

Sec.	2.11.2	
Description	Name of current program object	
Initial Value	0	
Get Command	GetIntegerv	GetProgramiv
Туре	+ Z	В
Get value	CURRENT_PROGRAM	DELETE_STATUS

	Sec.	2.7	3.4
	Description	Current generic vertex attribute values	Point size mode
Initial	Value	0.0,0.0,0.0,0.0	FALSE
cet	Command	R ⁴ GetVertexAttribfv	IsEnabled
	Type	16 R ⁴	В
	Get value	CURRENT_VERTEX_ATTRIB	PROGRAM_POINT_SIZE

Sec. Description Get value Type Command

		4	GetIntegerv	⁺ Z	SUBPIXEL_BITS
2.19	Maximum number of user clipping planes	8	GetIntegerv	+ Z	MAX-CLIP-DISTANCES
Sec.	Description	Minimum Value	Get Command	Туре	Get value

		Get	Minimum		
Get value	Type	Command	Value	Description	Sec.
MAX_VIEWPORT_DIMS	2 Z ⁺	2 Z ⁺ GetIntegerv	see 2.13.1	Maximum viewport 2.13.1	2.13.1
POINT_SIZE_RANGE	2 R ⁺	R+ GetFloatv	1,1	Range (lo to hi) of point sprite sizes	3.4
POINT_SIZE_GRANULARITY	+	GetFloatv	ı	Point sprite size granularity	3.4

Table 6.38. Implementation Dependent Values (cont.)

Get Command

Vpe

Get value

Sec.

Get Command

Get value

Description

Minimum Value

Type

	Sec.	
	Description	
Minimum	Value	
Get	Command	
	Type	
	Get value	

X

Appendix A

Invariance

The OpenGL specification is not pixel exact. It therefore does not guarantee an exact match between images produced by different GL implementations. However, the specification does specify exact matches, in some cases, for images produced

A.2 Multi-pass Algorithms

Invariance is necessary for a whole set of useful multi-pass algorithms. Such algorithms render multiple times, each time with a different GL mode vector, to eventually produce a result in the framebuffer. Examples of these algorithms include:

Writemasks (color, depth, stencil)
Clear values (color, depth, stencil)

Strongly suggested:

Stencil parameters (other than enable)

Depth test parameters (other than enable)

Blend parameters (other than enable)

Logical operation parameters (other than enable)

Pixel storage state

Polygon offset parameters (other than enables, and except as they affect the depth values of fragments)

Corollary 1 Fragment generation is invariant with respect to the state values marked with

that a subsequent command

Appendix B

Corollaries

Appendix C

Compressed Texture Image Formats

C.1 RGTC Compressed Texture Image Formats

Compressed texture images stored using the RGTC compressed image encodings are represented as a collection of

C.1.4 Format COMPRESSED_SI GNED_RG_RGTC2

Each 4 4 block of texels consists of 64 bits of compressed signed red image data followed by 64 bits of compressed signed green image data.

The first 64 bits of compressed red are decoded exactly like COMPRESSED_-SI GNED_RED_RGTC1 above.

The second 64 bits of compressed green are decoded exactly like COMPRESSED_SIGNED_RED_RGTC1 above except the decoded value R for this second block is considered the resulting green value G.

Since this image has a red-green format, the resulting RGBA value is (R;G;0;1).

D.2. SYNC OBJECTS AND MULTIPLE CONTEXTS

325

D.3 Propagating State Changes

Data is information the GL implementation does not have to inspect, and does not have an operational effect. Currently, data consists of:

Pixels in the framebuffer.

The contents of textures and renderbuffers.

The contents of buffer objects.

State

made in another context but not determined to have completed as described in section D.3.1, or after C

Appendix E

Profiles and the Deprecation Model

OpenGL 3.0 introduces a deprecation model in which certain features may be

E.1 Core and Compatibility Profiles

OpenGL 3.2 is the first version of OpenGL to define multiple profiles. The *core profile* builds on OpenGL 3.1 by adding features described in section H.1. The *compatibility profile* builds on the combination of OpenGL 3.1 with the special GL_ARB_compatibility extension defined together with OpenGL 3.1, adding the same new features and in some cases extending their definition to interact with existing features of OpenGL 3.1 only found in GL_ARB_compatibility.

It is not possible to implement both core and compatibility profiles in a single GL context, since the core profile mandates functional restrictions not present in the compatibility profile. Refer to the WGL_ARB_create_context_profile and GLX_ARB_create_context_profile extensions (see appendix I.3.68) for information on creating a context implementing a specific profile.

E.2 Deprecated and Remoand0(and)-250F46(f-250(ed)-21 10.9091 Tf 0 -24.84

Wide lines - LineWidth values greater than 1.0 will generate an I NVALI D_-VALUE error.

Global component limit query - the implementation-dependent values MAX_VARYI NG_COMPONENTS and MAX_VARYI NG_FLOATS.

E.2.2 Removed Features

Application-generated object names - the names of all object types, such as

Separate polygon draw mode - **PolygonMode** face values of FRONT and BACK; polygons are always drawn in the same mode, no matter which face is being rasterized.

Automatic mipmap generation - **TexParameter*** target GENERATE_-MI PMAP, and all associated state.

Fine control over mapping buffer subranges into client space and flushing modified data (GL_APPLE_fl ush_buffer_range).

Floating-point color and depth internal formats for textures and renderbuffers (GL_ARB_color_buffer_float, GL_NV_depth_buffer_float, GL_ARB_texture_float, GL_EXT_packed_float, and GL_EXT_texture_shared_exponent).

Framebuffer objects (GL EXT framebuffer object).

Half-float (16-bit) vertex array and pixel data formats ($GL_NV_half_float$ and $GL_ARB_half_float_pixel$).

Multisample stretch blit functionality (GL_EXT_framebuffer_multisample and GL_EXT_framebuffer_blit).

Non-normalized integer color internal formats for textures and renderbuffers (GL_EXT_texture_i nteger).

One- and two-dimensional layered texture targets (GL_EXT_texture_- array).

Packed depth/stencil internal formats for combined depth+stencil textures and renderbuffers (GL_EXT_packed_depth_stencil).

Per-color-attachment blend enables and color writemasks (GL_EXT_draw_-buffers2**)**.

RGTC specific internal compressed formats (GL_EXT_texture_compressi on_rgtc).

Single- and double-channel ($\mathbb R$ and $\mathbb R$ G) internal formats for textures and renderbuffers.

F.4. CHANGE LOG 338

Changed ClearBuffer* in section 4.2.3 to indirect through the draw buffer state by specifying the buffer type and draw buffer number, rather

F.5. CREDITS AND ACKNOWLEDGEMENTS

F.5. CREDITS AND ACKNOWLEDGEMENTS

Appendix G

Version 3.1

OpenGL version 3.1, released on March 24, 2009, is the ninth revision since the original version 1.0.

Unlike earlier versions of OpenGL, OpenGL 3.1 is not upward compatible with earlier versions. The commands and interfaces identified as *deprecated* in OpenGL 3.0 (see appendix F) have been **removed**

343

state has become server state, unlike the NV extension where it is client state. As a result, the numeric values assigned to PRI MI TI VE_RESTART and PRI MI TI VE_RESTART_I NDEX differ from the NV versions of those tokens.

Relax error conditions when specifying RGTC format texture images (section 3.8.2) and sub ima9 04050sec-ion

G.4. CREDITS AND A14**ey**IOWLEDGEMENS

The ARB gratefully acknowledges administrative support by the members of

348

BGRA vertex component ordering (GL_ARB_vertex_array_bgra).

Drawing commands allowing modification of the base vertex index (GL_-ARB_draw_el ements_base_vertex).

Shader fragment coordinate convention control (GL_ARB_fragment_coord_conventions**)**.

Provoking vertex control (GL_ARB_provoki ng_vertex).

New Token Name	Old Token Name		
PROGRAM_POINT_SIZE	VERTEX_PROGRAM_POINT_SIZE		

Table H.1: New token names and the old names they replace.

H.4 Change Log

Minor corrections to the OpenGL 3.2 Specification were made after its initial release in the update of December 7, 2009:

rrections to the Opertroid the Spetch 27/2generalize 03()2)]TJ50(of)-250(December) istd [79.9091 79.9bj9

350

Fix typo in second paragraph of section 3.8.6 (Bug 5625).

Simplify and clean up equations in the coordinate wrapping and mipmapping calculations of section 3.8.9, especially in the core profile where wrap mode CLAMP does not exist (Bug 5615).

Fix computation of u(x; y) and v(x; y) in scale factor calculations of section 3.8.9 for rectangular textures (Bug 5700).

Update sharing rule 4 in appendix D.3.3

Jeff Bolz, NVIDIA (multisample textures)

Jeff Juliano, NVIDIA

Jeremy Sandmel, Apple (Chair, ARB Nextgen (OpenGL 3.2) TSG)

John Kessenich, Intel (OpenGL Shading Language Specification Editor)

Jon Leech, Independent (OpenGL API Specification Editor, fence sync objects)

Marcus Steyer, NVIDIA

Mark Callow, HI Corp

Mark Kilgard, NVIDIA (Many extensions on which OpenGL 3.2 features were based, including depth clamp, fragment coordinate conventions, provoking vertex control, and BGRA attribute component ordering)

Mark Krenek, Aspyr

Michael Gold, NVIDIA

Neil Trevett, NVIDIA (President, Khronos Group)

Nicholas Vining, Destineer

Nick Haemel, AMD

Pat Brown, NVIDIA (Many extensions on which OpenGL 3.0 features were based; detailed specification review)

Patrick Doane, Blizzard

Paul Martz, Skew Matrix

Pierre Boudier, AMD

Rob Barris, Blizzard

Ryan Gordon, Destineer

Stefan Dosinger, CodeWeavers

Yanjun Zhang, S3 Graphics

Appendix I

Extension Registry, Header Files, and ARB Extensions

I.1 Extension Registry

Many extensions to the OpenGL API have been defined by vendors, groups of vendors, and the OpenGL ARB. In order not to compromise the readability of the GL Specification, such extensions are not integrated into the core language; instead, they are made available online in the *OpenGL Extension Registry*, together

obtained directly from the OpenGL Extension Registry (see section I.1). The combination of <GL/gl . h> and <GL/gl ext. h> always defines all APIs for all profiles of the latest OpenGL version, as well as for all extensions defined in the Registry.

<GL3/gI 3. h> defines APIs for the core profile of OpenGL 3.2, together with ARB extensions compatible with the core profile. It does not include APIs for features only in the compatibility profile or for other extensions.

<GL3/gl 3ext. h> defines APIs for additional ARB, EXT, and vendor extensions compatible with the core profile, but not defined in <GL3/gl 3. h>. Most older extensions are not compatible with the core profile.

Applications using the OpenGL 3.2 compatibility profile (see appendices H and d1eTJ0 g 0 G [().)49655(shoul]TJ/F59 10.9091 Tf 20708 50 Td [(an#clude)-3J/F41 10.9091 Tf 7257.334 T

I.3. ARB EXTENSIONS

356

I.3.6 Texture Add Environment Mode

358

I.3.21 Low-Level Vertex Programming

Application-defined *vertex programs* may be specified in a new low-level programming language, replacing the standard fixed-function vertex transformation, lighting, and texture coordinate generation pipeline. Vertex programs enable many new effects and are an important first step towards future graphics pipelines that will be fully programmable in an unrestricted, high-level shading language.

The name string for low-level vertex programming is ${\sf GL_ARB_vertex_program}$

I.3. ARB EXTENSIONS

The name string for texture rectangles is $GL_ARB_texture_rectangle$. It was promoted to a core feature in OpenGL 3.1.

I.3.34 Floating-Point Color Buffers

Floating-point color buffers can represent values outside the normal [0;1] range

The name string for geometry shaders is GL_ARB_geometry_shader4.

I.3.43 Half-Precision Vertex Data

The name string for half-precision vertex data $GL_ARB_half_float_vertex$. This extension is equivalent to new core functionality introduced in OpenGL 3.0, based on the earlier $GL_NV_half_float$

364

I.3.53 Fast Buffer-to-Buffer Copies

The name string for cube map array textures is <code>GL_ARB_texture_cube_map_array</code>.

I.3.66 Texture Gather

Texture gather adds a new set of texture functions (textureGather) to the OpenGL Shading Language that determine the 2 2 footprint used for linear filter-

```
ClearBufferuiv, 208
ClearColor, 207, 208
ClearDepth, 207, 208
ClearStencil, 207, 208
CLIENT_ALL_ATTRIB_BITS, 334
CLIENT_ATTRIB_STACK_DEPTH,
       334
ClientActiveTexture, 330
ClientWaitSync, 242-245, 324
CLIP_DISTANCE i, 97, 273, 337
CLIP_DISTANCE0, 97
CLIP_PLANE i, 337
ClipPlane, 331
COLOR, 145, 208, 209
Color*, 330
COLOR_ATTACHMENTi, 201, 202,
       212, 227, 234
COLOR_ATTACHMENTm, 201, 204
COLOR_ATTACHMENTn, 221
COLOR_ATTACHMENTO, 201, 204,
       212, 221
COLOR_BUFFER
       ClearStencil,,
       612FDYT
```

```
COPY_WRITE_BUFFER, 35, 44, 312
                                    DEPTH, 145
CopyPixels, 333
CopyTexImage, 237, 333
CopyTexImage*, 226, 232, 236
CopyTexImage1D, 145-147, 150, 168
CopyTexImage2D, 143, 145-147, 150,
        168
CopyTexImage3D, 147
CopyTexSubImage, 237
CopyTexSubImage*, 149, 154, 226
CopyTexSubImage1D, 146–150
CopyTexSubImage2D, 146-150
CopyTexSubImage3D, 146, 147, 149,
        150
CreateProgram, 49
CreateShader, 48
CULL_FACE, 112, 276
CULL_FACE_MODE, 276
CullFace, 112, 116
CURRENT_PROGRAM, 293
CURRENT_QUERY, 255, 312
CURRENT_VERTEX_ATTRIB,
                              263,
        297
CW, 112
DECR, 190
DECR_WRAP, 190
DELETE_STATUS, 49, 259, 260, 292,
        293
DeleteBuffers, 34–36, 323
DeleteFramebuffers, 220, 221
DeleteLists, 333
DeleteProgram, 51
DeleteQueries, 90, 91
DeleteRenderbuffers, 223, 236, 323
DeleteShader, 49
DeleteSync, 243, 257
DeleteTextures, 174, 175, 236, 323
DeleteVertexArrays, 46
```

Disablei, 193
DisableVertexAttribArray, 29, 263
DITHER, 198, 284
DONT_

```
FLOAT_MAT2, 52, 61
FLOAT_MAT2x3, 52, 61
FLOAT_MAT2x4, 52, 61
FLOAT_MAT3, 52, 61
FLOAT_MAT3x2, 52, 61
FLOAT_MAT3x4, 52, 61
FLOAT_MAT4, 52, 61
FLOAT_MAT4x2, 52, 61
FLOAT_MAT4x3, 52, 61
FLOAT_VEC2, 52, 61
FLOAT_VEC3, 52, 61
FLOAT_VEC4, 52, 61
Flush, 241, 245, 317
FlushMappedBufferRange, 40, 42, 125
FOG, 333
Fog, 333
FOG_HINT, 334
FogCoord*, 330
FogCoordPointer, 330
FRAGMENT_SHADER, 178, 259
FRAGMENT_SHADER_DERIVA-
       TIVE_HINT, 246, 301
FRAMEBUFFER, 220, 225, 227, 228,
       236, 264
FRAMEBUFFER_ATTACHMENT x_{-}
       SIZE, 288
FRAMEBUFFER_ATTACHMENT /F41 10.9091 072F4DER 091 Tf 284.83 298.979 Td [(/F41 10.9091 072F4
```

ATTACHMENT

FRAMEBUFFER_

```
GetInteger64v, 244, 247, 248, 310
GetIntegeri_v, 189, 247, 258, 277, 295, 299
GetIntegerv, 32, 57, 66, 69, 103, 203, 205, 221,
```

```
gl_FragData[n], 182
gl_FragDepth, 182, 183, 315
gl_FrontFacing, 181
gl_in[], 84
gl_InstanceID, 32, 77
gl_Layer, 86, 87, 239
GL_NV_conditional_render, 335
GL_NV_depth_buffer_float, 336, 361
GL_NV_half_float, 336, 362
GL_NV_primitive_restart, 342
gl_PointCoord, 106
gl_PointSize, 77, 85, 86, 105
gl_Position, 71, 77, 85, 86, 88, 318
gl_PrimitiveID, 86, 181, 182
gl_PrimitiveIDIn, 85
gl_VertexID, 77, 182
GLX_ARB_create_context, 363
GLX_ARB_create_context_profile, 329,
        366
GLX_ARB_fbconfig_float, 360
GLX_ARB_framebuffer_sRGB, 361
GREATER, 159, 177, 190, 191
GREEN, 121, 212, 216, 281, 288
GREEN_
```

92, 93, 104, 105,

POLYGON, 331

POLYGON_OFFSET_FACTOR, 276

POLYGON_OFFSET_FILL, 116, 276

POLYGON_OFFSET_LINE, 116, 276

POLYGON_OFFSET_POINT, 116, 276

POLYGON_OFFSET_UNITS, 276

POLYGON_SMOOTH, 111, 116, 276

POLYGON_SMOOTH 216, 276 116, 276

POL

READ

```
samplerBuffer, 62
samplerCube, 61
samplerCubeShadow, 62
SAMPLES, 103, 104, 192, 218, 237,
```

280 TEXTURE386

173, 176, 280

TEXTURE

```
Uniform1iv, 65
Uniform2fif uig*, 65
Uniform2f, 15
Uniform2i, 15
Uniform3f, 15
Uniform3i, 15
Uniform4f, 13, 15
Uniform4f fvg, 65
Uniform4i fvg, 65
UNIFORM_ARRAY_STRIDE, 63, 67, 296
UNIFORM_BLOCK_ACTIVE_UNIFORM_BLOCK_BLOCK_
```

124, 127, 215

UNSIGNED_INT_10F_