Theory of Elasticity

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering September 28, 2021

1

upcoming schedule

- Sep 28 Thermoelasticity
- Sep 30 Boundary Conditions
- Oct 1 Homework 3 Self-grade Due, Homework 4 Due
- Oct 5 Problem Formulation
- Oct 7 Solution Strategies
- Oct 8 Homework 4 Self-grade Due, Homework 5 Due
- (Oct 12) Fall Break (No Class)

outline

- elastic constants
- thermoelasticity
- material symmetries
- poisson's ratio
- group problems

elastic constants

$\lambda =$	$\mu = G =$	E=	ν	K=
λ, μ		$\frac{\mu(3\lambda+2\mu)}{\lambda+\mu}$	$\frac{\lambda}{2(\lambda+\mu)}$	$\frac{3\lambda+2\mu}{3}$
$G,E = \frac{G(2G-E)}{E-3G}$			E-2G 2G	<u>GE</u> 3(3G−E
$G, \nu \frac{2G\nu}{1-2\nu}$		$2G(1+\nu)$		$\frac{2\dot{G}(1+G)}{3(1-2G)}$
$E, \nu \frac{\nu E}{(1+\nu)(1-2\nu)}$	$\frac{E}{2(1+\nu)}$			$\frac{E}{3(1-2\nu)}$
$K,E \stackrel{3K(3K-E)}{9K-E}$	3EK 9K – E		<u>3K−E</u> 6K	
$\nu, K = \frac{3K\nu}{1+\nu}$	$\frac{3K(1-2\nu)}{2(1+\nu)}$	$3K(1-2\nu)$		

thermoelasticity

thermal expansion

- Thermal expansion/contraction is fairly well known
- Most materials shrink at colder temperatures, but this is not always the case
- Thermal deformations will alter the strain field
- We can decompose strain into mechanical and thermal components

$$\epsilon_{ij} = \epsilon^{M}_{ij} + \epsilon^{T}_{ij}$$

5

thermal expansion

 Thermal strains can be written in terms of a coefficient of thermal expansion tensor

$$\epsilon_{ij}^T = \alpha_{ij} (T - T_0)$$

• For isotropic materials, this relationship is simplified to

$$\epsilon_{ij}^{T} = \alpha (T - T_0) \delta_{ij}$$

thermal expansion

 We can combine the previous results with Hooke's law to find

$$\epsilon_{ij} = \frac{1+\nu}{E}\sigma_{ij} - \frac{\nu}{E}\sigma_{kk}\delta_{ij} + \alpha(T-T_0)\delta_{ij}$$

- We can also invert this relationship to find the stress
- · Written in terms of Lamé constants, we find

$$\sigma_{ij} = \lambda \epsilon_{kk} \delta_{ij} + 2\mu \epsilon_{ij} - (3\lambda + 2\mu)\alpha (T - T_0)\delta_{ij}$$

example

- A modern-day alchemist is trying to make diamonds from charcoal.
- He hypothesized that it is easier to build a rigid fixture, and then force the charcoal to expand via thermal expansion, than it is to apply the necessary pressure at room temperature.
- What temperature is needed to provide a stress of 1 GPa in the charcoal, which has

$$\alpha = 5 \times 10^{-6} / ^{\circ} \mathrm{C}$$

,
$$E = 5$$
 GPa, $\nu = 0.3$

Use stress equation

$$\sigma_{ij} = \lambda \epsilon_{kk} \delta_{ij} + 2\mu \epsilon_{ij} - (3\lambda + 2\mu)\alpha (T - T_0)\delta_{ij}$$

Convert material properties to Lamé constants

9

material symmetries

monoclinic symmetry

- Monoclinic symmetry means the material is symmetric about one axis
- This symmetry is common in many types of crystals
- e.g. the x'_i coordinate system is given by

$$\begin{split} \hat{e}_1 &= \langle 1,0,0 \rangle \\ \hat{e}_2 &= \langle 0,1,0 \rangle \\ \hat{e}_3 &= \langle 0,0,-1 \rangle \end{split}$$

10

monoclinic symmetry

This gives

$$Q_{ij} = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & -1 \end{bmatrix}$$

monoclinic symmetry

The transformed stress is given by

$$\sigma'_{ij} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & -\sigma_{13} \\ \sigma_{12} & \sigma_{22} & -\sigma_{23} \\ -\sigma_{13} & -\sigma_{23} & \sigma_{33} \end{bmatrix}$$

• Similarly we can transform the strain tensor

$$\epsilon'_{ij} = \begin{bmatrix} \epsilon_{11} & \epsilon_{12} & -\epsilon_{13} \\ \epsilon_{12} & \epsilon_{22} & -\epsilon_{23} \\ -\epsilon_{13} & -\epsilon_{23} & \epsilon_{33} \end{bmatrix}$$

12

monoclinic symmetry

• Symmetry requires that $\sigma_{ij} = \sigma'_{ii}$, therefore

$$\begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ C_{21} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ C_{31} & C_{32} & C_{33} & C_{34} & C_{35} & C_{36} \\ C_{41} & C_{42} & C_{43} & C_{44} & C_{45} & C_{46} \\ C_{51} & C_{52} & C_{53} & C_{54} & C_{55} & C_{56} \\ C_{61} & C_{62} & C_{63} & C_{64} & C_{65} & C_{66} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & -C_{14} & -C_{15} \\ C_{21} & C_{22} & C_{23} & -C_{24} & -C_{25} \\ C_{21} & C_{22} & C_{23} & -C_{24} & -C_{25} \\ C_{31} & C_{32} & C_{33} & -C_{34} & -C_{35} \\ -C_{41} & -C_{42} & -C_{43} & C_{44} & C_{45} \\ -C_{51} & -C_{52} & -C_{53} & C_{54} & C_{55} \\ C_{61} & C_{62} & C_{63} & -C_{64} & -C_{65} \end{bmatrix}$$

monoclinic symmetry

• The only way for this equation to be satisfied is if

$$C_{ij} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & C_{16} \\ C_{21} & C_{22} & C_{23} & 0 & 0 & C_{26} \\ C_{31} & C_{32} & C_{33} & 0 & 0 & C_{36} \\ 0 & 0 & 0 & C_{44} & C_{45} & 0 \\ 0 & 0 & 0 & C_{54} & C_{55} & 0 \\ C_{61} & C_{62} & C_{63} & 0 & 0 & C_{66} \end{bmatrix}$$

• This has only 13 independent terms

14

orthotropic symmetry

- Orthotropic symmetry is essentially monoclinic symmetry repeated about all three axes
- Composite materials are often treated as orthotropic, as are many crystals
- If we use the same method multiple times, we find that

$$C_{ij} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{21} & C_{22} & C_{23} & 0 & 0 & 0 \\ C_{31} & C_{32} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{bmatrix}$$

• Which has only 9 independent terms

16

transversely isotropic symmetry

- Transverse isotropy occurs when a material is monoclinic in one axis, and perfectly symmetric (isotropic) in the other plane
- For example, many micromechanical models of composites look at only one fiber surrounded by matrix
- In the fiber direction, the material is monoclinic
- Perpendicular to the fiber, the material is the same in any direction (isotropic)

• To satisfy these conditions, the stiffness must be

$$C_{ij} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{11} & C_{13} & 0 & 0 & 0 \\ C_{13} & C_{13} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2}(C_{11} - C_{12}) \end{bmatrix}$$

Here there are five independent material constants

18

isotropic symmetry

- An isotropic material has the same properties in any direction
- Therefore the stiffness matrix must be unchanged in any rotation

$$C_{ij} = \begin{bmatrix} C_{11} & C_{12} & C_{12} & 0 & 0 & 0 & 0 \\ C_{12} & C_{11} & C_{12} & 0 & 0 & 0 & 0 \\ C_{12} & C_{12} & C_{11} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2}(C_{11} - C_{12}) & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2}(C_{11} - C_{12}) & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2}(C_{11} - C_{12}) \end{bmatrix}$$

poisson's ratio

poisson's ratio

ullet Poisson's ratio, u, is defined as

$$\nu = -\frac{d\epsilon_{\textit{transverse}}}{d\epsilon_{\textit{axial}}}$$

poisson's ratio

- For isotropic materials, there is only one Poisson's ratio in the material
- For anisotropic materials (transversely isotropic, orthotropic, etc.) there are multiple
- The subscript notation for Poisson's ratios is ν_{ij} where extension is applied in direction i, with a resulting contraction in direction j

21

poisson's ratio

 In an orthotropic material, there are three independent Poisson's ratios, the others may be obtained from the following relationship

$$\frac{\nu_{21}}{E_2} = \frac{\nu_{12}}{E_1}$$

$$\frac{\nu_{31}}{E_3} = \frac{\nu_{13}}{E_1}$$

$$\frac{\nu_{32}}{E_3} = \frac{\nu_{23}}{E_2}$$

poisson's ratio

- In transversely isotropic materials, there are only two independent Poisson's ratios
- If the x-direction is monoclinic, then the Poisson's ratios are

$$\nu_{12} = \nu_{13}$$

$$\nu_{21} = \nu_{31}$$

$$\nu_{23} = \nu_{32}$$

$$\frac{\nu_{12}}{E_1} = \frac{\nu_{21}}{E_2}$$

23

poisson's ratio

- Physical considerations
- You will prove this in the homework, but if we require the moduli to be positive, we find that the Poisson's ratio must be

$$-1<\nu<\frac{1}{2}$$

group problems

group one

- Consider some arbitrary, isotropic material under uni-axial tension
- What occurs when $\nu = \frac{1}{2}$?
- What about when $\nu < 0$?

group two

- Consider a ±45° laminate (which has an in-plane poisson's ratio of 0.8) bonded on top of aluminum (which has an in-plane poisson's ratio of 0.3)
- What happens when this is loaded in tension? Why might this create problems in the adhesive joining the two?

26

group three

 Use the table provided in these notes (or in the text) to re-write Hooke's Law in terms of Young's Modulus, E and shear modulus G