STEVENS INSTITUTE OF TECHNOLOGY

SYS-601 Practice Exam #1

1.1 Data Types and Terminology

(a)	Consider the airquality data set which gives daily air quality measurements in New
	York from May to September 1973. It includes 154 observations of 4 variables:

Ozone Ozone concentration (parts per billion)
Solar.R Solar radiation (Langleys: 1 Langley = 41840 joules per square meter)
Wind Average wind speed (miles per hour)
Temp Maximum daily temperature (degrees Fahrenheit)

Select the best corresponding data type for each variable.

- (i) Ozone
 - (A) Nominal (B) Ordinal (C) Interval (D) Ratio
- (ii) Solar.R
 - (A) Nominal (B) Ordinal (C) Interval (D) Ratio
- (iii) Wind
 - (A) Nominal (B) Ordinal (C) Interval (D) Ratio
- (iv) Temp
 - (A) Nominal (B) Ordinal (C) Interval (D) Ratio
- (b) Select the relationship known to exist between events X and Y if:
 - (i) $P(X \cup Y) = P(X) + P(Y)$
 - (A) Collectively Exhaustive (C) Independent
 - (B) Equally Likely (D) Mutually Exclusive
 - (ii) P(X) + P(Y) = 1
 - (A) Collectively Exhaustive (C) Independent
 - (B) Equally Likely (D) Mutually Exclusive

- (iii) $P(X \cap Y) = P(X) \cdot P(Y)$
 - (A) Collectively Exhaustive
- (C) Independent

(B) Equally Likely

(D) Mutually Exclusive

- (iv) P(X) = P(Y)
 - (A) Collectively Exhaustive
- (C) Independent

(B) Equally Likely

(D) Mutually Exclusive

- (v) $P(X \cap Y) = 0$
 - (A) Collectively Exhaustive
- (C) Independent

(B) Equally Likely

(D) Mutually Exclusive

- (vi) P(X|Y) = P(X)
 - (A) Collectively Exhaustive
- (C) Independent

(B) Equally Likely

(D) Mutually Exclusive

1.2 Descriptive Statistics

Consider the warpbreaks data set included which gives the number of warp breaks per loom, where a loom corresponds to a fixed length of yarn. It includes 54 observations of 3 variables:

brea woo tens	l	The ty	mber of breape of wool (xel of tension	A or B)	, medium M	, high H)		
(a)	Sele	ct the b	est correspo	nding da	ata type for	each var	iable:		
	(i)	breaks							
		(A)	Nominal	(B)	Ordinal	(C)	Interval	(D)	Ratio
	(ii)	wool							
		(A)	Nominal	(B)	Ordinal	(C)	Interval	(D)	Ratio
	(iii)	tension	ı						
		(A)	Nominal	(B)	Ordinal	(C)	Interval	(D)	Ratio
(b)	(b) Create a histogram showing the frequency of warp breaks in each loom (use the entire data set). Choose an appropriate bin size and label the x- and y-axes.							ase the entire	
	Upl	oad you	r plot to the	e online	exam page.				
(c)	Wha	at is the	mean numb	er of wa	arp breaks?				
(d)	Wha	at is the	median nur	nber of v	warp breaks:	?			
(e)	Wha	at is the	sample star	ndard de	viation for n	umber o	of warp break	ks?	
(f)	Wha	nt is the	inter-quarti	le range	for number	of warp	breaks?		

1.3 Probability Theory

Assume more than 20 warp breaks causes a quality control check to fail. The following frequency matrix shows the number of failed (F) and passed (P) tests for wool types A and B under low (L), medium (M), and high (H) tensions.

	I	4	В		
	F	P	F	P	
L	9	0	6	3	
M	5	4	7	2	
Н	6	3	3	6	

(a) Match each probability expression with the best corresponding description:

P(F)

(A) Conditional

P(F|A) (ii)

(i)

(B) Complement

 $P(A \cap M)$ (iii)

(C) Joint

 $P(L \cup M)$ (iv)

(D) Marginal

(E) Union

- (b) What is the overall probability of failing a quality control test: P(F)?
- (c) What is the probability of failing a quality control test given type A wool: P(F|A)?
- (d) What is the probability of failing a quality control test given type B wool: P(F|B)?
- (e) What is the probability of failing a quality control test given type A wool at medium tension: $P(F|A \cap M)$?
- (f) What is the probability of failing a quality control test given type B wool at medium tension: $P(F|B \cap M)$?

1.4 Discrete Random Variables

The espresso machine at Café Java sometimes breaks down, requiring maintenance. There have been 3 such incidents over the past 2 years. Assume failures do not influence each other and the average failure rate is generally constant over time and consistent with prior observations.

	he rando	m variable X counts the number o	of espresso	o machine breakdowns in one year.
(a)	Select th	ne discrete distribution which best	models t	he random variable X :
	(A)	Binomial	(C)	Poisson
	(B)	Negative Binomial	(D)	Uniform
(b)	Why mi applicat		this distri	bution not be suitable for real-life
(c)		the PMF equation $P\{X = x\}$ = te values for any required paramet		r the distribution selected above?
(d)	over a o	ne year period. Label the x- and y	-axes.	alues between 0 and 6 breakdowns
	_	your plot to the online exam page		
(e)	What is	the probability there will be more	e than one	. 1 1 . 1
		·		e breakdown over the next year:
(f)			t week a	nd was just repaired, what is the
(f)	probabil	ng the espresso machine failed lassity there will be no additional breatenance.	t week a	nd was just repaired, what is the
, ,	probabil Which of	ng the espresso machine failed lassity there will be no additional breatenance.	t week a	nd was just repaired, what is the over the next year?

1.5 Continuous Random Variables

The random variable Y measures the amount of time (in minutes) to prepare an espresso order at Café Java. Consider the following probability density function (PDF) f(y):

- (a) Using the definition of probability, what is the numerical value of h?
- (b) What is the PDF equation f(y) for the region $0.5 \le y < 1.0$?
- (c) What is the expected value of Y?
- (d) What is the probability Y is greater than 1 minute: $P\{Y > 1.0\}$?
- (e) What is the probability Y is between 1 minute and 1.25 minutes: $P\{1.0 \le Y < 1.25\}$?
- (f) What is the probability Y is between 1 and 1.25 minutes assuming Y is greater than 1 minute: $P\{1.0 \le Y < 1.25 | Y > 1.0\}$?