

Least Square Regression

CE282: Linear Algebra

Computer Engineering Department Sharif University of Technology

Hamid R. Rabiee

Maryam Ramezani

Least Squares Regression

Note

□ Remember the regression model (affine function):

$$\hat{f}(x) = x^T \beta + v$$

 \square The prediction error for example i is:

$$r^{(i)} = y^{(i)} - \hat{f}(x^{(i)})$$

= $y^{(i)} - (x^{(i)})^T \beta - v$

☐ The MSE is:

$$\frac{1}{N} \sum_{i=1}^{N} (r^{(i)})^2 = \frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - (x^{(i)})^T \beta - v)^2$$

Least Squares Regression

 \Box choose the model parameters v, β that minimize the MSE

$$\frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - (x^{(i)})^{T} \beta - v)^{2}$$

this is the least square problem: minimize $||A\theta - y^d||^2$ with

$$A = \begin{bmatrix} 1 & \left(x^{(1)}\right)^T \\ 1 & \left(x^{(2)}\right)^T \\ \vdots & \vdots \\ 1 & \left(x^{(N)}\right)^T \end{bmatrix}, \qquad \theta = \begin{bmatrix} v \\ \beta \end{bmatrix}, \qquad y^d = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(N)} \end{bmatrix}$$

we write the solution as $\hat{\theta} = (\hat{v}, \hat{\beta})$

Least Squares Regression

Example

$$\hat{f}(x) = \theta_1 + \theta_2 x + \theta_3 x^2 + \dots + \theta_p x^{p-1}$$

- a linear-in-parameters model with basis functions......
- least squares model fitting in matrix notation?

Generalization And Validation

important

- ☐ Generalization ability: ability of model to predict outcomes for new, unseen data
- ☐ Model validation: to access generalization ability,
 - divide data in two sets: training set and test (or validation) set
 - use training set to fit model
 - use test set to get an idea of generalization ability
 - this is also called out-of-sample validation
- Over-fit model
 - model with low prediction error on training set, bad generalization ability
 - prediction error on training set is much smaller than on test set

Over-fitting

☐ Polynomial of degree 20 on training and test set

over-fitting is evident at the left end of the interval

Cross-validating

important

- ☐ an extension of out-of-sample validation
 - divide data in K sets (folds); typical values are K = 5, K = 10
 - for i = 1 to K, fit model i using fold i as test and other data as training set
 - compare parameters and train/test RMS errors for the *K* models
- \square Remember the house price problem (data set of N = 774 house sales)

House price model with 5 folds (155 or 154 examples each)

		Model parameters								RMS error	
Fold	v	β_1	β_2	β_3	eta_4	eta_5	eta_6	β_7	Train	Test	
1	122.5	166.9	-39.3	-16.3	-24.0	-100.4	-106.7	-26.0	67.3	72.8	
2	101.0	186.7	-55.8	-18.7	-14.8	-99.1	-109.6	-17.9	67.8	70.8	
3	133.6	167.2	-23.6	-18.7	-14.7	-109.3	-114.4	-28.5	69.7	63.8	
4	108.4	171.2	-41.3	-15.4	-17.7	-94.2	-103.6	-29.8	65.6	78.9	
5	114.5	185.7	-52.7	-20.9	-23.3	-102.8	-110.5	-23.4	70.7	58.3	

Boolean (two-way) classification

problem

• a data fitting problem where the outcome y can take 2 values +1, -1 values of y represent two categories (true/false, spam/not spam,) Model $\hat{y} = \hat{f}(x)$ is called a *Boolean classification*

Least squares classifier

- use least squares to fit model $\tilde{f}(x)$ to training set $(x^{(1)}, y^{(1)}), ..., (x^{(N)}, y^{(N)})$
- $\tilde{f}(x)$ can be a regression model $\tilde{f}(x) = x^T \beta + v$ or linear in parameters

$$\tilde{f}(x) = \theta_1 f_1(x) + \dots + \theta_p f_p(x)$$

• Take sign of $\tilde{f}(x)$ to get a Boolean classifier

$$\hat{f}(x) = sign(\tilde{f}(x)) = \begin{cases} +1, & \text{if } \tilde{f}(x) \ge 0 \\ -1, & \text{if } \tilde{f}(x) < 0 \end{cases}$$

Multi-class classification

problem

- a data fitting problem where the outcome y can takes values 1, ..., K
- values of *y* represent *K* labels or categories
- multi-class classifier $\hat{y} = \hat{f}(x)$ maps x to an element of $\{1, 2, ..., K\}$

Least squares multi-class classifier

• for k = 1, ..., K, compute Boolean classifier to distinguish class k from not k

$$\hat{f}_k(x) = \operatorname{sign}(\tilde{f}_k(x))$$

• define multi-class classifier as

$$\hat{f}_k(x) = \underset{k=1,\dots,K}{\operatorname{argmax}} \tilde{f}_k(x)$$

Multi-objective least squares

Important

we have several objectives

$$J_1 = ||A_1x - b_1||^2, ..., J_k = ||A_kx - b_k||^2$$

- A_i is an $m_i \times n$ matrix, b_i is an m_i -vector
- we seek one *x* that makes all *k* objectives small
- usually there is a trade-off: no single *x* minimizes all objectives simultaneously

Weighted least squares formulation: find x that minimizes

$$\lambda_1 ||A_1x - b_1||^2 + \dots + \lambda_k ||A_kx - b_k||^2$$

- coefficients $\lambda_1, ..., \lambda_k$ are positive weights
- weights λ_i express relative importance of different objectives
- without loss of generality, we can choose $\lambda_1 = 1$

Regularized data fitting

Theorem

consider linear-in-parameters model

$$\hat{f}(x) = \theta_1 f_1(x) + \dots + \theta_p f_p(x)$$

we assume $f_1(x)$ is the constant function 1

 \square keeping $\theta_2, ..., \theta_p$ small helps avoid over-fitting

$$J_1(\theta) = \sum_{k=1}^{N} (\hat{f}(x^{(k)}) - y^{(k)})^2, \qquad J_2(\theta) = \sum_{j=2}^{p} \theta_j^2$$

minimize
$$J_1(\theta) + \lambda J_2(\theta) = \sum_{k=1}^{N} (\hat{f}(x^{(k)}) - y^{(k)})^2 + \lambda \sum_{j=2}^{p} \theta_j^2$$

Solution for Weighted least squares

Example

minimize
$$J_1(\theta) + \lambda J_2(\theta) = \sum_{k=1}^{N} (\hat{f}(x^{(k)}) - y^{(k)})^2 + \lambda \sum_{j=2}^{p} \theta_j^2$$

- λ is positive regularization parameter
- equivalent to least squares problem: minimize

with
$$y^d = (y^{(1)}, ..., y^{(N)}),$$

$$A_1 = \begin{bmatrix} 1 & f_2(x^{(1)}) & \cdots & f_p(x^{(1)}) \\ 1 & f_2(x^{(2)}) & \cdots & f_p(x^{(2)}) \\ \vdots & \vdots & & \vdots \\ 1 & f_2(x^{(N)}) & \cdots & f_p(x^{(N)}) \end{bmatrix}, \quad A_2 = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

- stacked matrix has linearly independent columns (for positive λ)
- value of λ can be chosen by out-of-sample validation or cross-validation

Nonlinear least squares

note

 \Box find \hat{x} that minimizes

$$||f(x)||^2 = f_1(x)^2 + \dots + f_m(x)^2$$

optimality condition: $\nabla \|f(\hat{X})\|^2 = 0$ any optimal point satisfies this points can satisfy this and not be optimal

can be expressed as $2Df(\hat{X})^T f(\hat{X}) = 0$

 $Df(\hat{X})$ is the $m \times n$ derivative or Jacobian matrix,

$$Df(\widehat{X})_{ij} = \frac{\partial f_i}{\partial x_j}(\widehat{x}), \qquad i = 1, ..., m, \qquad j = 1, ..., n$$

optimality condition reduces to normal equations when f is affine

SVD and Least Squares

- \square Solving Ax = b by least squares
- \square x=pseudoinverse(A) times **b**
- Compute pseudoinverse using SVD
 - Lets you see if data is singular
 - Even if not singular, ratio of max to min singular values tells you how stable the solution will be
 - Set $1/\sum_{i}$ to 0 if \sum_{i} is small (even if not exactly 0)

SVD and Least Squares

Theorem

 \square If **A** is a $n \times n$ square matrix and we want to solve **A** X = b, we can use the SVD for **A** such that

$$U \sum v^T x = b$$

$$\sum v^T x = U^T b$$

solve

 $\sum y = U^T b$ (diagonal matrix, easy to solve!)

Evaluate: x = Vy

Cost of solve: $O(n^2)$

Cost of decomposition $O(n^3)$ (recall that SVD and LU have the same cost asymptotic behavior,

however the number of operations – constant factor before n^3 - for the SVD is larger than LU)

Class activity

Class Activity

Given the actual values [2, 4, 6, 8] and the predicted values [3, 5, 7, 9], what is the Mean Squared Error (MSE)?

References

References

- ☐ Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares, Stephen Boyd Lieven Vandenberghe
- ☐ Linear Algebra and Its Applications, David C. Lay