GATE 2025: Homework #2

Based on Limits

Dr. Sachchidanand Prasad

Problem 2

Find an equation of the tangent line to the parabola $y = x^2$ at the point P(1, 1).

Problem 4

In the following problems find the average rate of change of the function over the given intervals.

- 1. $f(x) = x^3 + 1$
 - a. [2, 3]
- b. [-1, 1]
- 2. $g(x) = x^2 2x$ a. [1,3] b. [-2,4]
- 3. $h(t) = 2 + \cos t$
 - a. $[0, \pi]$
- b. $[-\pi, \pi]$

Problem 5

In the figures below, find the limit as x approacher to a, that is, $\lim_{x\to a}f(x)$.

In the figures below, find the following limits.

(i) $\lim_{x \to 2^-} f(x)$

(ii) $\lim_{x \to 2^+} f(x)$

(iii) $\lim_{x \to 2} f(x)$

(iv) $\lim_{x \to 4^-} f(x)$

(v) $\lim_{x \to 4^+} f(x)$

(vi) $\lim_{x\to 4} f(x)$

(vii) $\lim_{x \to 5^-} f(x)$

(viii) $\lim_{x \to 5^+} f(x)$

(ix) $\lim_{x\to 5} f(x)$

Problem 7

Consider the folloiwng graphs.

Sketch the graph of the function and use it to determine the values of a for which $\lim_{x\to a}f(x)$ exists.

$$f(x) = \begin{cases} 1 + x & \text{if,} \quad x < -1 \\ x^2 & \text{if,} \quad -1 \le x \le 1 \\ 2 - x & \text{if,} \quad x \ge 1. \end{cases}$$

Problem 10

Compute the following limits.

(i)
$$\lim_{t\to 0} \frac{\sqrt{t^2+9}-3}{t^2}$$
.

(ii)
$$\lim_{x \to 0} \frac{|x|}{x}$$
.

(iii)
$$\lim_{x\to 0} x^2 \sin\left(\frac{1}{x}\right)$$
.

(iv)
$$\lim_{x\to 0} \frac{t^2-9}{2t^2+7t+3}$$
.

(v)
$$\lim_{t\to 0} \left(\frac{1}{t} - \frac{1}{t^2 + t}\right)$$
.

(vi)
$$\lim_{t\to 0} \frac{\sqrt{1+t}-\sqrt{1-t}}{t}.$$

$$\text{(vii) } \lim_{x \to 0} \frac{x \tan 2x - 2x \tan x}{\left(1 - \cos 2x\right)^2}.$$

(viii)
$$\lim_{x \to 0} \frac{\tan x - \sin x}{x^3}.$$

(ix)
$$\lim_{x\to 0} f(x)$$
, where $f(x) = \begin{cases} \frac{\sin x}{x} + \cos x, & x\neq 0\\ 2, & x=0. \end{cases}$

(x)
$$\lim_{x\to 0} \frac{x\cos x - \log(1+x)}{x^2}.$$

(xi)
$$\lim_{x\to 0} \left(\frac{1}{x^2} - \frac{1}{\sin^2 x} \right)$$
.

(xii)
$$\lim_{x\to 0} x \cot x$$
.

Problem 11

Find the $\lim_{x\to 1} g(x)$, where

$$g(x) = \begin{cases} x+1 & \text{if } x \neq 1\\ \pi & \text{if } x = 1. \end{cases}$$

Find

$$\lim_{x\to 0}\frac{x(e^x-1)+2(\cos x-1)}{x(1-\cos x)}.$$

Problem 13

If

$$\alpha = \lim_{x \to 0} x \sin\left(\frac{1}{x}\right),$$

then find the value of 2024^{α} .

Problem 14

Compute

$$\lim_{x\to\infty} \left(\frac{1}{\sin x} - \frac{1}{\tan x}\right).$$

Problem 15

If

$$k = \lim_{\theta \to 0} \frac{\sin \theta}{\theta},$$

then what is the value of k^{2024} .

Problem 16

Find the limiting value of the ratio of the sum of square of n natural numbers to n natural numbers

Problem 17

Determine if the following limit exists. If yes, the find the value of the limit.

$$\lim_{x \to \infty} \frac{x^3 - \cos x}{x^2 + \sin^2 x}$$

Problem 18

Find the values of a and b such that

$$\lim_{x\to 0}\frac{x(1+a\cos x)-b\sin x}{x^3}=2.$$