EXHAUST GAS RECIRCULATING DEVICE

Publication number: JP9217659 (A)

Publication date: 1997-08-19

Inventor(s):

NITTA SHINICHI; HAGIO HIROFUMI

Applicant(s):

DENSO CORP

Classification: - international:

F02M25/07; F16K31/126; F02M25/07; F16K31/126

(IRC1-7): F02M25/07; F16K31/126

- European:

Application number: JP19960025698 19960213 Priority number(s): JP19960025698 19960213

er - conservation regularly for low translations.

Abstract of JP 9217659 (A)

PROBLEM TO BE SOLVED: To increase a flow rate of EGR gas flowing into an intake passage from a recirculating passage without lowering the flow rate of the intake passage. SOLUTION: A head end 61 of an exhaust gas recirculating pipe member 6 is made a valve seat 71 of a valve body 7 by projecting the exhaust gas circulating pipe member 6 on an intermediate portion of an intake passage 21 formed on a housing 2, a shaft 72 of the valve element 7 is provided by passing it through the intake passage 21, and a driving part 8 of the shaft 72 is provided on the outside of the housing 2 facing against the exhaust gas recirculating pipe member 6.; A sectional area of an opening surface 62 is secured by setting length in the flowing direction of the opening surface 62 of the exhaust gas recirculating pipe member 6 to the intake passage 21 and the valve element 7 larger than length in the sectional direction of the intake passage 21. As the valve element 7, etc., do not become resistance against the flow in the inside of the intake passage 21, an intake air flow rate is not lowered, and it is possible to increase a flow rate of EGR gas at the time of totally opening the valve element 7. It is possible to increase the flow rate of EGR gas without increasing physical constitution and weight of the housing 2.

Data supplied from the esp@cenet database — Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-217659

(43)公開日 平成9年(1997)8月19日

(51) Int.Cl.4	識別記号	庁内整理番号	FI		技術表示箇所
F02M 25/07	580		F 0 2 M 25/07	580F	
F16K 31/126			F 1 6 K 31/126		

審査請求 未請求 請求項の数2 OL (全 4 頁)

(21)出願番号	特顧平8-25698	(71)出頭人 000004260
		株式会社デンソー
(22) 出額日	平成8年(1996)2月13日	愛知県刈谷市昭和町1丁目1番地
		(72) 発明者 新田 真一
		愛知県刈谷市昭和町1丁目1番地 日本電
		装株式会社内
		(72)発明者 萩尾 弘文
		愛知県刈谷市昭和町1丁目1番地 日本電
		装株式会社内
		(74)代理人 弁理士 石黒 健二
		1 ,

(54)【発明の名称】 排出ガス退液装置

(57)【要約】

【課題】 吸気通路の流量を低下させることなく、浸流 通路から吸気通路へ流入するEGRガスの流量を増や す。

【解決手段】 ハウジング2に形成された吸気通路21の中途部位に排出ガス週流管部材6を突出させて、その先端61を弁体7の弁座71とし、吸気通路21を横断させて弁体7のシャフト72を設けて、排出ガス週流管部材6に対向するハウジング2の外側にシャフト72の駆動部8を設ける。吸気通路21への排出ガス週流管部材6の開口面62および弁体7を、吸気通路21の断面方向の長さより流れ方向の長さを大きぐ設定して、開口の流れの抵抗にならないため、吸気流量が低下せず、弁体7の全開時のEGRガスの流量を増やすことができる。ハウジング2の体格や重量を増加させることなく、EGRガスの流量を増やすことができる。

【特許請求の範囲】

【請求項1】 吸入空気通路配管の途中に配設され、 両端に第1の開口部と第2の開口部を有して吸気通路を 形成し、

前記第1の開口部を空気の吸入側に、前記第2の開口部側を空気と排出ガスとの混合気の排出側にそれぞれ接続してなる排出ガス漫流装置であって。

前記第1の開口部と前記第2の開口部との間の前記吸気 通路の中途部位に排出ガス還流管部材が突出して配設されるハウジングと、

前記排出ガス週流管部材の前記吸気通路側の先端部を弁 座とし、該吸気通路を横断して作動するシャフトの先端 に配設される弁体と、

前記吸気通路に対して前記排出ガス湿流管部材の反対側 に前記シャフトと前記弁体を作動させる駆動部を一体的 に配設するとともに、

前記弁座と前記弁体の形状を、前記吸気通路の断面方向 の長さに対して、前記吸気通路の流体の流れ方向の長さ を長く設定し、前記排出ガス週流管部材の前記吸気通路 への開口部の断面積を確保したことを特徴とする排出ガ ス週流装置。

【請求項2】 前記排出ガス遺流管部材の前記吸気通路への前記開口部において、

前記吸気通路の流体の流れ方向に沿った直線部を形成したことを特徴とする請求項1記載の排出ガス週流装置。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】 木発明は、内燃機関の吸気管に排気再循環ガス (EGRガス) を導く排出ガス還流通路管を接続した排出ガス還流装置に関し、特に、吸気管内に排出ガス還流通路管からのEGRガスを制御する弁機構を近接一体化して配設したものに係わる。 、

[0002]

【従来の技術】従来では、内燃機関の吸気管に排気再循環ガス(EGRガス)を導く排出ガス還流管を接続した排出ガス還流装置として、例えば、実開昭60-243359号公報のものがある。この技術では、吸気通路を形成する報管に退流通路を形成する管部材が連結されている。還流通路の管部材は、吸気通路に対して円形の開口部を有する。この開口部を弁座とする弁体と弁体を移動させるシャフトとが吸気通路内に位置し、開口部に対向する解管の外側の駆動部によりシャフトが駆動される。EGRガスを吸気通路へ流入させる場合には、シャフトの調節移動によりEGRガスが吸気通路内に入り、吸入空気と混合して内燃機関へ流入する。

[0003]

【発明が解決しようとする課題】上述の従来の排出ガス 園流装置においては、図4に示すように、吸気通路への 園流通路の開口部の径に応じてEGFガスの流量が多く なるため、吸気通路内へ流入するEGRガスの流量を多くするためには、吸気通路への遠流通路の開口部の径を大きくする必要がある。しかし、弁座を形成する開口部の径を大きくすると、EGR弁の弁体自体の直径も大きくなり、弁体が吸気通路の一部を塞ぐ状態となるため、吸気通路の流れ方向の断面積が弁体によって小さくなる。この結果、吸気通路を流れる吸気が弁体等の抵抗を受け、吸気流量が低下するという問題がある。

【0004】本発明は、吸気通路の流量を低下させることなく、湿流通路から吸気通路へ流入するEGRガスの流量を増やすことを目的とする。

[0005]

【課題を解決するための手段】本発明は、吸入空気適略配管としてのハウジングの中途部位に排出ガス週流管部材が突出して配設されており、排出ガス週流管部材の吸気通路側の先端部を弁座とし、吸気通路を横断して作動するシャフトの先端に非体が配設され、吸気通路に対して排出ガス週流管部材の反対側にシャフトと弁体を作動させる駆動部がハウジングと一体的に配設されている。吸気通路を吸気が通過する際に、駆動部が作動してシャフトの先端の配設された弁体を弁座から縫すと、弁座と弁体との隙間から排出ガスが流入して混合する。

【0006】ここで、弁座と弁体の形状は、吸気通路の 断面方向の長さに対して、吸気通路の流体の流体の流れ方向の 長さが長く設定されていて、弁体等が吸気通路の抵抗と なることがなく排出ガス遠渡管部材の吸気通路への開口 部の断面積が確保されているため、吸気流量を増やさな くても排出ガスの還流流量を増やすことができる。また、排出ガスの湿流流量を増やすために吸気通路を形成 するハウジングの内径等の体格および重量を大きくする 必要がないため、小型、軽量で週流流量の大きな排出ガス ス週流装置とすることができる。

[0007]

【発明の実施の形態】次に本発明を図に示す実施例に基づいて説明する。図1は、本発明に係わる排出ガス週流装置1である。図1において、2はハウジングであって、エアクリーナ(図示なし)から内燃機関(図示なし)への吸気通路21を形成する。エアクリーナ側となるハウジング2の上流部には、スロットル弁(図示なし)が配されており、スロットル弁は、回動して吸気通路21の開度を変更する。

【0008】6は、内燃機関の排気通路と連通された排出ガス週流通路の末端となる排出ガス週流管部材で、ハウジング2に形成された管受け部22内に挿入され、排出ガス週流管部材6は、管受け部22から脱落しないように抜け止めピン23により管受け部22に固定されており、排出ガス週流管部材6は、管受け部22で、排気通路から延設された排出ガス週流通路の週流管(図示なし)とパッキングを介して接続される。

【0009】排出ガス湿流管部材6の先端61は、吸気

通路21への排出ガス還流管部材6の開口面62の形状 は、図2に示すように、直線部62aを有する長円形と なっている。すなわち、開口面62は、吸気通路21の 流れ方向の長さEが、吸気通路21の断面方向の長さD に対して大きく設定されており、排出ガス還流管部材6 の開口面62の断面積Sbが同じである場合、本実施例 のように開口面62を長円形にした場合には、鎖線で示 した単純な円形とした場合に比べて 弁体7および弁座 71の吸気通路21の断面方向の長さDがd×2だけ小 さくなるため、図3に示すように、吸気通路21を流れ る吸気の抵抗になりにくく、吸気通路21の断面積Sa を大きくすることができる。なお、排出ガス還流管部材 6の先端61は、弁体7が着座するための弁座71を形 成している。

【0010】弁体7は、排ガス還流管部材6の延長上で 吸気通路21を横断したシャフト72の先端付近に固定 されており、シャフト72は吸気通路21の対向側のハ ウジング2の外側に設けられた駆動部8から延設され、 駆動部8の作動に応じて弁体7を駆動して弁座71を開

【0011】駆動部8は、ハウジング2の外側に形成さ れた隔壁部24の外側をダイヤフラム81で覆って大気 室82を形成するとともに、ダイヤフラム81の外側を ケーシング83で覆って負圧室84を形成し、ダイヤフ ラム81の中心を両側から2枚の押さえ板85で挟み込 んで、押さえ板85の中心に吸気通路21側へ向かった シャフト72を固定するとともに、シャフト72の反対 側には、ケーシング83との間に大気室82側へ押圧さ せるためのスプリング86を配している。ケーシング8 3には、負圧室84と負圧源(図示なし)とを接続する ための連通管接続部87が備えられている。

【0012】以上の構成により、排出ガス還流装置1 は、EGRガスバルブ付き吸気管を形成している。排出 ガス還流装置1では、内燃機関の作動により 吸気通路 21内をエアクリーナ側からの混合ガスが通過する。他 方、負圧が負圧室84内に導入され、負圧室84と大気 室82との圧力差がスプリング86の付勢力に打ち勝つ と、ダイヤフラム81が図示上方へ移動し、これに伴 い、押さえ板85を介してダイヤフラム81に連結され たシャフト72および弁体7が弁座71から解離する。 【0013】すると、内燃機関の排出ガスが、排出還流 ガス (EGRガス)として、排出ガス還流管部材6か ら、弁座71と弁体7との隙間から吸気通路21内へ流 入し、上流のエアクリーナ側からの吸入空気と混合され る。ここで、開口面62の形状は、長円形となってお り、吸気通路21の断面方向の長さDが流れ方向の長さ Eより小さくなっているため、弁体7および弁座71が 吸気通路21の抵抗になりにくく、吸気通路21を流れ る吸気の流量が同じ場合に、単純な円形の場合と比べて 排出ガスの還流流量を多くすることができる。また、開 口面62の吸気通路21の断面方向の長さDが同じ場合 には、吸気通路21の流れ方向の長さEが大きくなって いる分だけ、開口面62の断面積8bが大きくなるた め、還流ガスの流量を多くすることができる。

【0014】以上のとおり、本発明では、排出ガス還流 管部材の吸気通路への開口部の形状が、流れ方向に大き くしてあるため(例えば、長円形)、吸気通路の抵抗が 大きくなることなく、排出ガスの流量を増やすことがで きる, 本実施例では、排出ガス還流管部材の吸気通路へ の開口部の形状を長円形にしたが、流れ方向に長くなっ ていて弁休と弁座の気密性が確保できれば、楕円形や、 多角形などでもよい。

【図面の簡単な説明】

【図1】本発明に係る排出ガス還流装置の第1実施例を 示す吸気通路の流れ方向の断面図である。

【図2】図1のB-B断面図である。

【図3】図1のA-A断面図である。

【図4】EGR弁が全開状態における吸気通路への還流 通路の開口の径と吸気通路へ還流するEGRガスの流量 との関係を示す特性図である。

【符号の説明】

- 1 排出ガス還流装置
- 2 ハウジング
- 21 吸気通路
- 6 排出ガス還流管部材
- 61 先端
- 62 開口面(開口部)
- 62a 直線部
- 7 弁体 71 弁座
- 72 シャフト
- 8 駆動部

(4)

【図2】

