	Notes
Multi-Rate Signal Processing	
Digital Signal Processing	
Contents	Notes
Introduction	
Decimation	
Interpolation	
Non-Integer Sample Rate Conversion	
Multistage Sample Rate Conversion	
What is a Multirate Digital Signal	
Processing?	Notes
 A digital signal processing system that uses signals with different sampling frequencies is probably performing 	
multirate digital signal processing. Multirate digital signal processing often uses sample rate	
conversion to convert from one sampling frequency to another sampling frequency.	
Sample rate conversion uses decimation to decrease the sampling rate,	
interpolation to increase the sampling rate.	

Sample Rate Conversion

Changing the sampling frequency in the analog domain requires:

- digital to analog conversion then
- analog to digital conversion at a different sampling frequency.

Both

- Digital to analog conversion
- Analog to digital conversion

introduce errors and noise into the signal.

Therefore **sample rate conversion** is done in **digital domain** and uses a combination of:

- Decimation,
- and Interpolation.

Decimation (for Downsampling)

- **Decimation** removes samples from a signal.
- Decimation can therefore only downsample the signal by an integer factor:

$$rac{f_{
m s}}{f_{
m s}^{
m new}} = D > 1 \quad ext{ so that } f_{
m s} > f_{
m s}^{
m new}$$

where D is an integer, $f_{\rm s}$ is the old sampling rate (number of samples per second) and $f_{\rm s}^{\rm new}$ is the new sampling rate.

Notes

Notes

Anti-aliasing for Decimation

Decimation decreases the sampling rate.

- The sampling theorem states that the highest frequency in a signal should be less than half the sampling frequency.
- A digital anti-aliasing filter has to be applied to remove frequencies higher than:

$$f_{\rm cf} = \frac{f_{\rm s}^{\rm new}}{2}$$

■ So in digital frequency the cut-off frequency is:

$$\Omega_{\rm cf} = \frac{\Omega_{\rm s}^{\rm new}}{2} = \frac{2\pi \frac{f_{\rm s}^{\rm new}}{f_{\rm s}}}{2} = \pi \frac{f_{\rm s}^{\rm new}}{f_{\rm s}} < \pi$$

as $f_{\rm s}^{
m new} < f_{\rm s}$.

Anti-aliasing for Decimation

This means that the signal has to be **filtered** in the **digital domain** before **decimation**:

Interpolation (for Upsampling)

■ Interpolation increases the sampling frequency by estimating the value of the signal between samples.

Notes

Notes

Interpolation

■ The new sampling frequency is greater than the old sampling frequency:

$$f_{\rm s}^{
m new} > f_{\rm s}$$

where $f_{\rm s}$ is the old sampling frequency and $f_{\rm s}^{\rm new}$ the new sampling frequency.

Also, the new sampling frequency has to be an integer multiple of the original sampling frequency:

$$\frac{f_{\rm s}^{\rm new}}{f} = D > 1$$

where \boldsymbol{D} is an integer.

Notes

Zero Filling Based Interpolation

A common interpolation approach is ${\bf zero}$ filling based ${\bf interpolation}.$

There are two stages:

- 1. zero filling
- 2. low pass filtering

x	0	$\rightarrow y[0]$ $\Rightarrow y[1]$
0 jil [©] x[1] —	——⊳/ /——⊳	> y[2] y[3]
x[2]	D D D D D D D D D D	
0	→ y[6] → y[7]	
x[3]	$\begin{array}{c c} & \searrow & y[8] \\ \hline & \searrow & y[9] \end{array}$	
/ /		

Notes			

Zero Filling Based Interpolation

Example: Interpolating by \times 3 (two zero samples are inserted between each original sample).

Notes			

Non-Integer Sample Rate Conversion

Both:

■ **Decimation** (for downsampling):

$$\frac{f_{\rm s}}{f_{\rm s}^{\rm new}} = D$$

■ and Interpolation (for upsampling):

$$\frac{f_{\rm s}^{\rm new}}{f} = D$$

where ${\cal D}$ is an integer, can only change the sampling frequency to an integer of the original frequency.

Notes			

Non-Integer Sample Rate Conversion

Example:

- A CD player stores music at 44.1kHz.
- A professional music recording device processes audio at 48kHz
- Transfer of the music to or from the CD player and the professional audio device using:
 - decimation only or
 - interpolation only

are not possible because:

$$\frac{48\mathrm{e}3}{44.1\mathrm{e}3} = 1.0884$$

which is not an integer.

Notes			

Non-Integer Sample Rate Conversion

Solution!

Combine decimation and interpolation to get **non-integer** sample rate conversion.

Similar to finding a **common denominator** in fractions...

- 1. Find **common (integer) factor** of the two sample rates, L
- 2. Interpolate (upsample) by this common factor \boldsymbol{L}
- 3. Decimate (downsample) to the new sample rate $f_{
 m s}^{
 m new}$ by downsampling by an integer factor M.

The sample rate converison is then:

$$\frac{L}{M} = \frac{f_{\rm s}^{\rm new}}{f_{\rm s}}$$

Notes

Non-Integer Sample Rate Conversion *Example*

Example:

Get audio from 44.1kHz sampled source (CD player) and transfer to professional audio processor requiring 48kHz sample rate.

A. This process requires upsampling to 48kHz from 44.1kHz.

Notes			

Non-Integer Sample Rate Conversion

Example cont'd.

1. Worst case common factor: $L=48 \mathrm{kHz}$ to give $f_\mathrm{s} \times 48 \mathrm{kHz} = 2116.8 \mathrm{MHz}.$ Better alternative is L=160 to give

 $L\times44.1\mathrm{kHz}=7056\mathrm{kHz}$

- 2. So interpolate by factor L by inserting ${\bf 159}$ zeros for each sample in ${\bf 44.1kHz}$ CD player signal then low pass filtering.
- 3. Then **decimate** to 48kHz by **removing 146 samples** in every 147 (= $L \times 44.1\text{kHz}/48\text{kHz}$) from the **upsampled signal** (after applying anti-aliasing low pass filter).

The resulting sample rate conversion is:

$$\frac{L}{M} = \frac{160}{147} = 1.088$$

which is the same as

$$\frac{f_{\rm s}^{\rm new}}{f_{\rm s}} = \frac{48kHz}{44.1kHz} = 1.088.$$

Notes

Optimising Non-Integer Sample Rate Conversion

There are $\times 2$ low pass filters (low pass filtering and anti-aliasing filtering) for non-integer sample rate conversion:

Notes

Optimising Non-Integer Sample Rate

Conversion
The interpolation low pass filter and the anti-aliasing filter for the decimation stage can be combined

with a cut-off frequency equal to the lower of the two filters' cut-off frequencies.

Notes		

Multistage Sample Rate Conversion

Problem!

In real world applications sample rate conversion converts a sampling frequency to another sampling frequency that is:

- \blacksquare Very much greater $\left(f_{\rm s}^{\rm new}\gg f_{\rm s}\right)$ or
- lacksquare Very much smaller $(f_{
 m s}^{
 m new} \ll f_{
 m s})$

than the original signal sampling frequency.

But what is wrong with this?

This is best explained by an example.

Multistage Sample Rate Conversion: Problem

 ${\bf Q.}$ A signal x[n], sampled at 4.096kHz has to be decimated to 128Hz. There should be an antialiasing filter:

- that rejects frequencies above 64Hz,
- with a stopband ripple, $\delta_s \approx 0.001$,
- and a passband ripple of $\delta_n \approx 0.001$.
- The transition width should be $f_{tw} = 4$ Hz.
- so that frequencies below 60Hz are kept.

A. A Blackman window can achieve a stop band ripple 75dB and passband ripple of

This can be compared with the requirements of this antialiasing filter of $\delta_s \approx 0.001$, This can be compared with the requirements of this antialiasing filter of $o_s \approx 0.0$ which is $-20\log(0.001) = 60dB$ and a passband ripple $\delta_p \approx 0.001$, or $20\log(1+0.001) = 0.0087dB$. However, according to the low pass FIR filter design guidelines in [Van de Vegte, 2002]¹, the number of filter coefficients for a Blackman window will then be:

$$N = 5.98 \times \frac{f_{\rm s}}{f_{\rm tw}} = 5.98 \times 4096/4 = 6123.5$$

So the number of filter coefficients is very high.

Notes

Notes

Multistage Sample Rate Conversion

Multiple stages for decimation (or interpolation) can reduce the number of filter coefficients in the filter specifications.

The signal can be decimated more than once, using

a gradual change in sampling frequency.

Conventional decimation:

$$x[n] \longrightarrow \begin{bmatrix} \text{Anti-Aliasing} \\ \text{Filter } h[n] \end{bmatrix} \longrightarrow \begin{bmatrix} \text{Decimation} \\ D \end{bmatrix} \longrightarrow y[n]$$

Decimation in mutliple stages (multistage):

Votes		

¹Van de Vegte, "Fundamentals of Digital Signal Processing" Prentice Hall, 2002.

Multistage Sample Rate Conversion

The multi-stage sample rate conversion decimation values, D_i :

$$\frac{f_{\mathrm{s}}}{f_{\mathrm{s}}^{\mathrm{new}}} = D = D_1 \times D_2 \times \ldots \times D_k = \prod_{i=1}^k D_i$$

where all D_i are integers. So for three stages, k=3 and

$$D = D_1 \times D_2 \times D_3.$$

Multistage Sample Rate Conversion Problem

 ${\bf Q}.$ The earlier problem can now be implemented using 2 decimation stages. Find out how many filter coefficients are necessary for a 2 stage decimation process.

A. The original sampling frequency $f_{\rm s}=4.096{\rm kHz}$ and the new (decimated signal) should have a sampling frequency of $f_{\rm s}^{\rm new}=128{\rm Hz}$. Multistage decimation with 2 stages requires that:

$$\frac{f_{\rm s}}{f_{\rm s}^{\rm new}} = D = \frac{4096}{128} = 32 = D_1 \times D_2.$$

The multistage decimation values can therefore be $D_1=8$ and $D_2=4$, creating an intermediate signal with sampling frequency: $f_{\rm s}^{(1)}=f_{\rm s}/8=512{\rm Hz}.$ The transition width can be longer with this higher sampling rate. We can keep the same passband frequency (60Hz). The transition width can go up to half the sampling rate

$$f_{\text{tw}}^{(1)} \le \frac{512Hz}{2} - 60Hz = 196Hz$$

The number of Blackman filter coefficients for this stage is:

$$N_1 = 5.98 imes rac{f_8^{(1)}}{f_1^{(1)}} = 5.98 imes rac{512}{196} = 16$$
, (rounded up to integer value).

Notes

Notes

Multistage Sample Rate Conversion Problem

2, $\underset{\text{So }N_1=8}{\operatorname{cont'}d}$ So $N_1=8$ filter coefficients are required for the first decimation stage. The intermediate signal sampled at 512Hz is to be decimated by a factor of 4 to 128Hz for the second stage:

$$f_{\rm s}^{
m new} = f_{\rm s}^{(2)} = \frac{512Hz}{4} = 128Hz.$$

The transition width for this (final) stage can then be:

$$f_{\rm tw}^{(2)} = \frac{128Hz}{2} - 60Hz = 4Hz$$

So that the number of Blackman filter coefficients for this stage is:

$$N_2 = 5.98 \times \frac{f_s^{(2)}}{f_{\text{tw}}^{(2)}} = 5.98 \times \frac{128}{4} = 192.$$

192 filter coefficients are required for this final stage. The combined filter coefficients for the two stages is:

$$N_1 + N_2 = 16 + 192 = 208,$$

which is considerably less than the original non-multistage decimation antialiasing filter requiring N=6124 coefficients.

Notes

Lecture Summary

This lecture has covered

- Decimation,
- Interpolation,
- Non-integer sample rate conversion,
- Multistage sample rate conversion.

There are *many more* to topics and techniques in *multirate digital signal processing* including:

- Implementation techniques, e.g. polyphase filters
- and Applications.

Notes			
NI .			
Notes			
Notas			
Notes			