

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS FÍSICO MATEMÁTICAS

Tópicos de Mécanica Cuántica Tarea 6

Dr. Carlos Luna Criado

Nombre: Matricula: Giovanni Gamaliel López Padilla 1837522

Razone si los siguientes pares tienen estructura de grupo o no:

- $(\mathbb{R}, +)$ Sean $a, b, c \in \mathbb{R}$, entonces:
 - Cerradura

Proponiendo la operación a+b, esto nos da como resultado un elemento, el cual esta dentro del conjunto $\mathbb R$

• Elemento neutro El elemento neutro en este conjunto con la operación + es el número 0, el cual es elemento del conjunto \mathbb{R}

• Elemento inverso El elemento inverso para cada número en este conjunto es el mismo múmero pero de signo opuesto, para obtener que a + (-a) = (-a) + a = 0

• Propiedad asociativa Se tiene que:

$$a + (b+c) = (a+b) + c$$

por todo lo anterior, se tiene que el conjunto $\mathbb R$ con la operación +, forman un grupo.

• (\mathbb{Z}, \times) Sea $a, b, c \in \mathbb{Z}$, entonces

- Cerradura Usando la operación \times , se tiene que $a \times b \in \mathbb{Z}$.
- Elemento neutro El elemento neutro de este conjunto con esta operación sería el 1, ya que $a \times 1 = 1 \times a = a$
- Elemento inverso El elemento inverso para este conjunto no existe, ya que para que esto sea necesario este deberia ser 1/a y al no estar dentro del conjunto \mathbb{Z} , no existe.

Por lo tanto, el conjunto \mathbb{Z} con la operación \times no es un grupo

- El conjunto de matrices de $n \times n$ construidas con los números reales y determinante no nulo, junto a la operación producto de matrices. Sean a, b, c elemento de $M_{n \times n}$, entonces
 - Cerradura Calculando el determinante de ab, se tiene que:

$$det(ab) = det(a)det(b)$$

como $det(a), det(b) \neq 0$ entonces $det(a)det(b) \neq 0$, por lo tanto $ab \in M_{n \times n}$

• Elemento neutro El elemento neutro en este conjunto sería la matriz identidad ya que: $a\mathbb{I} = \mathbb{I} a = a$, como $det(\mathbb{I}) = 1$, entonces $\mathbb{I} \in M_{n \times n}$

• Elemento inverso

El elemento inverso de cada elemento del conjunto sería a^{-1} , el cual contiene numeros reales en sus elementos y

$$det(a^{-1}) = 1/det(a) \neq 0,$$

es por ello que $a^{-1} \in M_{n \times n}$

• Propiedad asociativa Se tiene que se cumple que

$$a(bc) = (ab)c$$

por lo tanto el conjunto $M_{n\times n}$ es un conjunto con la operación de multiplicación.

- \bullet $(V, \cdot \text{ siendo } V \text{ el conjunto de vectores de un espacio vectorial } y \cdot \text{ el producto escalar o producto interno}$
 - Cerradura

Como la operación del producto interno nos llevaria al grupo de los reales, entonces no cumpliria la condición de cerradura, por lo tanto el conjunto V no es un grupo bajo el producto interno.

• (V, \times) siendo V el conjunto de vectores de un espacio vectorial y \times el produto vectorial.

Sea $a, b, c \in V$

• Propiedad asociativa

En este conjunto, la propiedad asociativa no se llega a cumplir ya que,

$$a \times (b \times c) = (a \times b) \times c$$
$$a \times \hat{d}|b||c|sin(\theta_d) = |a||b|sin(\theta_f)\hat{f} \times c$$
$$|a||b||c|sin(\theta_d)sin(\theta_g) = |a||b||c|sin(\theta_f)sin(\theta_h)$$

como los argumentos de las funciones seno no necesariamente son iguales, entonces las dos expresions son diferentes, es por esto que el conjunto V no forma un grupo con el producto vectorial.