STATS 601 - Project code

Tim White

Due April 27th, 2023

Contents

Packages	1
Functions	2
Cross-validation for elastic net	2
Cross-validation for random forest	3
Cross-validation for kernel SVM	4
Plot distributions of predictors by class	5
Plot principal component scores	6
Plot ROC curves	7
Data preprocessing	8
Read in data	8
Remove and construct variables	9
Create balanced response with SMOTE and random undersampling	13
Exploratory plots	14
Dimension reduction	21
Logistic PCA	21
Examine loadings for first three principal components	22
Plot PC1 vs PC2	23
Plot PC1 vs PC3	24
Plot PC2 vs PC3	25
Construct new data set with principal components	26
Classification using original features	27
Split data into training set and test set	27
Naive Bayes	28
Elastic net	29
Random forest	30
AdaBoost	31
Kernel SVM	32
Summary of results	33
Classification using principal components	36
Split data into training set and test set	36
Naive Bayes	37
Quadratic discriminant analysis	38
Elastic net	39
Random forest	40
AdaBoost	41
Kernel SVM	42
Superior of popular	49

Packages

```
library(tidyverse)
library(performanceEstimation)
library(logisticPCA)
library(doParallel)
library(doRNG)
registerDoParallel()
library(caret)
library(glmnet)
library(ROCR)
library(naivebayes)
library(MASS)
library(randomForest)
library(adabag)
library(e1071)
```

Functions

Cross-validation for elastic net

```
cv_elastic_net = function(X, Y, alpha_seq, n_folds) {
  # Inputs:
  # X = predictor matrix
  # Y = response vector
  # alpha_seq = vector of candidate values for alpha
  \# n_folds = number of folds for cross-validation
  # Outputs:
  # alpha, lambda = optimal alpha and lambda selected by cross-validation
  # max_auc = maximum AUC attained at each value of alpha
  # Create balanced folds for cross-validation
  folds = createFolds(Y, k = n_folds, list = FALSE)
  # Create vector to store the lambda that maximizes AUC for each alpha
  best_lambda = numeric(length(alpha_seq))
  # Create another vector to store the maximum AUC for each alpha
  max_auc = numeric(length(alpha_seq))
  for (j in 1:length(alpha_seq)) {
    # For the jth value of alpha, run CV using AUC as metric
   mod = cv.glmnet(x = X, y = Y, intercept = FALSE,
                   family = "binomial", type.measure = "auc",
                   alpha = alpha_seq[j], foldid = folds, nfolds = 10)
   # Identify lambda that maximizes AUC for the jth value of alpha
   best_lambda[j] = mod$lambda.min
    # Identify maximum AUC for the jth value of alpha
   max_auc[j] = mod$cvm[which(mod$lambda == mod$lambda.min)]
  }
  # Select the value of alpha for which the maximum AUC was obtained
  alpha = alpha_seq[which.max(max_auc)]
  # Select the value of lambda for which the maximum AUC was obtained
  lambda = best_lambda[which.max(max_auc)]
  return(list(alpha = alpha, lambda = lambda, max_auc = max_auc))
```

Cross-validation for random forest

```
cv_random_forest = function(data, mtry_seq, n_folds) {
  # Inputs:
  # data = data frame with type1diabetes as first column
  # mtry_seq = vector of candidate values for mtry
    n_folds = number of folds for cross-validation
  # Outputs:
  # mtry = optimal mtry selected by cross-validation
  # mtry_average_AUC = average AUC across the folds for each value of mtry
  # Create balanced folds for 10-fold cross-validation
  folds = createFolds(data$type1diabetes, k = n_folds, list = FALSE)
  # Compute average AUC across folds for each value of mtry
  mtry average AUC = foreach(i = 1:length(mtry seq), .combine = c) %dorng%
                          sapply(1:n_folds,
                               function(j) {
                                 # Fit random forest on all but fold j
                                 mod = randomForest(type1diabetes ~ .,
                                                    data = data[folds != j,],
                                                    ntree = 500, mtry = mtry_seq[i])
                                 \# Compute AUC on fold j
                                 pred_prob_fold = predict(mod, data[folds == j,],
                                                          type = "prob")[,2]
                                 performance(
                                   prediction(pred_prob_fold,
                                              data[folds == j, "type1diabetes"]),
                                   "auc")@y.values[[1]]
                               }
                         )
  # Identify the value of mtry with the highest AUC
  mtry = mtry_seq[which.max(mtry_average_AUC)]
 return(list(mtry = mtry, mtry_average_AUC))
```

Cross-validation for kernel SVM

```
cv_ksvm = function(data, cost_seq, n_folds) {
  # Inputs:
  # data = data frame with type1diabetes as first column
     cost_seq = vector of candidate values for cost
    n_folds = number of folds for cross-validation
  # Outputs:
  # cost = optimal cost selected by cross-validation
      cost_average_AUC = average AUC across the folds for each value of cost
  # Create balanced folds for 10-fold cross-validation
  folds = createFolds(data$type1diabetes, k = n_folds, list = FALSE)
  # Compute average AUC across folds for each value of cost
  cost average AUC = foreach(i = 1:length(cost seq), .combine = c) %dorng%
                            sapply(1:n_folds,
                                 function(j) {
                                   # Fit kernel SVM on all but fold j
                                   mod = svm(type1diabetes ~ ., data = data[folds != j,],
                                             probability = TRUE, cost = cost_seq[i],
                                             tolerance = 0.1, kernel = "radial")
                                   # Compute classification error rate on fold j
                                   pred_prob_fold = attr(predict(mod, data[folds == j,],
                                                                 probability = TRUE),
                                                          "probabilities")[,2]
                                   performance(
                                     prediction(pred_prob_fold,
                                                data[folds == j, "type1diabetes"]),
                                     "auc")@y.values[[1]]
                                 }
                            )
                          )
  # Identify the value of cost with the highest AUC
  cost = cost_seq[which.max(cost_average_AUC)]
  return(list(cost = cost, cost_average_AUC = cost_average_AUC))
}
```

Plot distributions of predictors by class

```
exploratory_plot = function(dat, x_var, x_name, x_labels, legend = FALSE) {
  # Inputs:
  # dat = data frame with predictors and type1diabetes
  # x_var = predictor variable to be plotted
  \# x_name = x-axis label for predictor variable
  \# x_labels = vector of category names for predictor variable
  # legend = indicator for whether or not to include legend in plot
  dat %>%
  ggplot(aes(x = {{x_var}}, fill = ifelse(type1diabetes == "1",
                                                     ", "Type 2"))) +
                                         "Type 1
   geom_bar(position = "dodge") +
   labs(x = NULL, y = "Frequency", fill = NULL) +
   scale_x_discrete(labels = x_labels) +
   scale_fill_manual(values = c("darkorange2", "steelblue4")) +
   theme_classic() +
   theme(legend.text = element_text(face = "bold"),
         axis.title = element_text(face = "bold"),
         axis.text = element_text(face = "bold"),
         legend.background = element_rect(fill = "white",
                                          linetype = "solid", color = "gray10") ) +
      guides(color = guide_legend(override.aes = list(size = 3))) +
   theme(legend.position = ifelse(legend == TRUE, "top", "none"))
```

Plot principal component scores

```
plot_PCs = function(num1, num2, legend = FALSE) {
  # Inputs:
  # num1, num2 = principal components to be plotted
  # legend = indicator for whether or not to include legend in plot
  tibble(as.data.frame(lpca$PCs[,c(num1, num2)]),
         type1diabetes = ifelse(data2021$type1diabetes == 1,
                                "Type 1
                                          ", "Type 2")) %>%
    slice(c(seq(from = 1, to = nrow(lpca$PCs), by = 2),
            setdiff(seq(from = 1, to = nrow(lpca$PCs), by = 1),
                    seq(from = 1, to = nrow(lpca$PCs), by = 2)))) %>%
    ggplot(aes(x = V1, y = V2, col = type1diabetes)) +
      geom_point(alpha = 0.05, size = 3) +
      stat_ellipse(level = 0.8, geom = "polygon", alpha = 0, lwd = 4) +
      lims(y = c(-50, 50)) +
      labs(x = paste0("PC", num1), y = paste0("PC", num2), col = NULL) +
      scale_color_manual(values = c("darkorange2", "steelblue4")) +
      theme_classic() +
      theme(legend.text = element_text(face = "bold"),
            axis.title = element_text(face = "bold"),
            axis.text = element_text(face = "bold"),
            legend.background = element_rect(fill = "white", linetype = "solid",
                                            color = "gray10")) +
      guides(color = guide_legend(override.aes = list(size = 3))) +
    theme(legend.position = ifelse(legend == TRUE, "top", "none"))
}
```

Plot ROC curves

```
plot_ROCs = function(orig_perf, pc_perf, best_perf, legend = FALSE) {
  # Inputs:
  # oriq_perf = ROCR::performance() object for model fitted on original predictors
  # pc_perf = ROCR::performance() object for model fitted on principal components
    best_perf = ROCR::performance() object for random forest model fitted on
                  original predictors (this model achieves the best AUC)
      legend = indicator for whether or not to include legend in plot
  bind rows(
  tibble(predictors = "Original
      x = orig perf@x.values[[1]],
       y = orig_perf@y.values[[1]]),
  tibble(predictors = "PCs",
        x = pc_perf@x.values[[1]],
         y = pc_perf@y.values[[1]])
  ) %>%
  ggplot() +
   geom\_line(aes(x = x, y = y, col = predictors), lwd = 2) +
   geom_line(data = tibble(best_x = best_perf@x.values[[1]],
                           best_y = best_perf@y.values[[1]]),
              aes(x = best_x, y = best_y), lwd = 2, lty = "longdash") +
   theme_classic() + scale_color_manual(values = c("indianred4", "goldenrod3")) +
   labs(x = "False positive rate", y = "True positive rate", col = NULL) +
    theme(legend.text = element_text(face = "bold"),
          axis.title = element_text(face = "bold"),
          axis.text = element text(face = "bold"),
         legend.background = element_rect(fill = "white", linetype = "solid",
                                           color = "gray10")) +
    guides(color = guide_legend(override.aes = list(lwd = 3))) +
   theme(legend.position = ifelse(legend == TRUE, "top", "none"))
```

Data preprocessing

Read in data

```
# Identify column names, types, and widths in mort2021us.txt
col names 2021 = c("reserved1", "record type", "resident status", "reserved2",
                   "education", "education_reporting_flag", "month_of_death",
                   "reserved3", "sex", "detail_age", "age_substitution_flag",
                   "age_recode_52", "age_recode_27", "age_recode_12",
                   "infant_age_recode_22", "place_of_death", "marital_status",
                   "weekday_death", "reserved4", "current_data_year",
                   "injury_at_work", "manner_of_death", "method_of_disposition",
                   "autopsy", "reserved5", "activity_code", "place_of_injury",
                   "ICD_code", "ICD_code_358_recode", "reserved6",
                   "ICD_code_113_recode", "ICD_code_infant_130_recode",
                   "ICD_code_39_recode", "reserved7", "num_entity_axis_conditions",
                   paste0("entity_axis_condition_", seq(from = 1, to = 20, by = 1)),
                   "reserved8", "num_record_axis_conditions", "reserved9",
                   paste0("record_axis_condition_", seq(from = 1, to = 20, by = 1)),
                   "reserved10", "race_imputation_flag", "reserved11", "hispanic_origin",
                   "reserved12", "race_recode_40", "reserved13", "occupation_4_digit",
                   "occupation_2_digit", "industry_4_digit", "industry_2_digit")
col_types_2021 = cols(
  .default = col factor(),
 num_entity_axis_conditions = col_integer(),
 num_record_axis_conditions = col_integer()
col_widths_2021 = c(18, 1, 1, 42, 1, 1, 2, 2, 1, 4, 1, 2, 2, 2, 2, 1, 1, 1, 16,
                    4, 1, 1, 1, 1, 34, 1, 1, 4, 3, 1, 3, 3, 2, 1, 2, rep(7, 20),
                    36, 2, 1, rep(5, 20), 4, 1, 35, 3, 2, 2, 315, 4, 2, 4, 2)
data2021_orig = read_fwf(file = "mort2021us.txt",
                         col_positions = fwf_widths(widths = col_widths_2021,
                                                    col names = col names 2021),
                         col_types = col_types_2021)
```

Remove and construct variables

```
data2021_clean = data2021_orig %>%
                  # Remove reserved variables, entity axis conditions, variables
                  # with >95% missing, education flag, detailed occupation and
                  # industry, and week/month/year
                  dplyr::select(-contains("reserved"), -contains("entity"),
                                -where(function(col) {mean(is.na(col)) > 0.95}),
                                -education_reporting_flag,
                                -occupation_4_digit, -industry_4_digit,
                                -weekday death, -month of death, -current data year) %>%
                  # Filter out unknown ages and construct age variable
                  filter(age_recode_27 != "27") %>%
                  mutate(
                    age = fct_collapse(age_recode_27,
                                       underthirty = c("01", "02", "03", "04", "05", "06",
                                                        "07", "08", "09", "10", "11"),
                                       thirties = c("12", "13"),
                                       forties = c("14", "15"),
                                       fifties = c("16", "17"),
                                       sixties = c("18", "19"),
                                       seventies = c("20", "21"),
                                       eighties = c("22", "23"),
                                       overninety = c("24", "25", "26")
                          )
                  ) %>%
                  mutate(age = fct drop(age)) %>%
                  mutate(age = fct_relevel(age,
                                           c("underthirty", "thirties", "forties",
                                             "fifties", "sixties", "seventies",
                                             "eighties", "overninety"))) %>%
                  # Filter to cause of death = type 1 or type 2 diabetes
                  filter(ICD_code %in% c("E100", "E101", "E102", "E103", "E104",
                                         "E105", "E106", "E107", "E108", "E109",
                                         "E110", "E111", "E112", "E113", "E114",
                                         "E115", "E116", "E117", "E118", "E119")) %>%
                  # Construct diabetes indicator variable (1 = type 1; 0 = type 2)
                  mutate(
                    type1diabetes = fct(case_when(
                                          ICD_code %in% c("E110", "E111", "E112", "E113",
                                                           "E114", "E115", "E116", "E117",
                                                           "E118", "E119") ~ "0",
                                          ICD_code %in% c("E100", "E101", "E102", "E103",
                                                           "E104", "E105", "E106", "E107",
                                                           "E108", "E109") ~ "1"
                    ))
                  ) %>%
                  mutate(type1diabetes = fct_relevel(type1diabetes, c("0", "1"))) %>%
```

```
# Construct race variable
mutate(
  race recode 5 = fct collapse(race recode 40,
                               white = c("01"),
                               black = c("02"),
                               americanindian = c("03"),
                               asian = c("04", "05", "06", "07", "08", "09",
                                         "10", "11", "12", "13", "14"),
                               other level = "mixed"
 )
) %>%
mutate(
 race = fct(case_when(
          race_recode_5 == "white" & hispanic_origin == "100" ~ "white",
          race_recode_5 == "white" & hispanic_origin != "100" ~ "hispanic",
          race_recode_5 == "black" & hispanic_origin == "100" ~ "black",
          race_recode_5 == "black" & hispanic_origin != "100" ~ "mixed",
          race_recode_5 == "americanindian" &
           hispanic_origin == "100" ~ "americanindian",
          race_recode_5 == "americanindian" &
            hispanic_origin != "100" ~ "mixed",
          race_recode_5 == "asian" & hispanic_origin == "100" ~ "asian",
          race_recode_5 == "asian" & hispanic_origin != "100" ~ "mixed",
          race_recode_5 == "mixed" ~ "mixed"
 ))
) %>%
# Filter out unknown education and rename education levels
filter(education != "9") %>%
mutate(
  education = fct_collapse(education,
                           nodegree = c("1", "2"),
                           highschool = c("3"),
                           some_college = c("4"),
                           undergraduate = c("5", "6"),
                           graduate = c("7", "8")
              )
) %>%
mutate(education = fct_drop(education)) %>%
mutate(education = fct_relevel(education,
                               c("nodegree", "highschool", "some_college",
                                 "undergraduate", "graduate"))) %>%
# Filter out unknown marital status and rename marital status levels
filter(marital_status != "U") %>%
mutate(
  marital_status = fct_recode(marital_status,
                              single = "S",
                              married = "M",
                              widowed = "W",
                              divorced = "D")
) %>%
mutate(marital_status = fct_drop(marital_status)) %>%
```

```
mutate(marital_status = fct_relevel(marital_status,
                                      c("single", "married",
                                        "divorced", "widowed"))) %>%
# Filter out unknown place of death and recode levels
filter(!(place_of_death == "9")) %>%
mutate(
  place_of_death = fct_collapse(place_of_death,
                    hospital = c("1", "2", "3"),
                    home = c("4"),
                    nursinghome = c("5", "6"),
                    other = c("7")
  )
) %>%
mutate(place_of_death = fct_drop(place_of_death)) %>%
mutate(place_of_death = fct_relevel(place_of_death,
                                     c("hospital", "home",
                                        "nursinghome", "other"))) %>%
# Rename sex levels
mutate(
  sex = fct_recode(sex,
                   female = "F",
                   male = "M")
) %>%
# Construct obesity indicator variable (1 = obesity; 0 = no)
mutate(
  obesity = fct(ifelse(if_any())
                        c(record_axis_condition_2:record_axis_condition_7),
                        ~ str_detect(., "E66") & !is.na(.)),
                      "1", "0"
                )
            )
) %>%
# Construct hypertension indicator variable (1 = hypertension; 0 = no)
mutate(
  hypertension = fct(ifelse(if_any(
                            c(record_axis_condition_2:record_axis_condition_7),
                            ~ str_detect(., "I1") & !is.na(.)),
                      "1", "0"
                )
            )
) %>%
# Construct high cholesterol indicator variable (1 = high cholesterol; 0 = no)
mutate(
  cholesterol = fct(ifelse(if_any()))
                           c(record_axis_condition_2:record_axis_condition_7),
                           ~ str_detect(., "E78") & !is.na(.)),
                     "1", "0"
                )
```

Create balanced response with SMOTE and random undersampling

Exploratory plots

Sex
exploratory_plot(data2021, sex, "Sex", c("Female", "Male"), legend = TRUE)

Dimension reduction

Logistic PCA

Examine loadings for first three principal components

	U1		U2		U3
place_of_deathother	0.415	marital_statusmarried	0.497	place_of_deathnursinghor	me0.443
place_of_deathnursinghor	me0.387	sexmale	0.486	sexmale	0.152
hypertension1	0.232	hypertension1	0.188	agethirties	0.097
educationgraduate	0.208	educationgraduate	0.174	$marital_statusmarried$	0.082
marital_statuswidowed	0.189	raceasian	0.114	educationhighschool	0.074
$place_of_deathhome$	-0.508	$marital_statuswidowed$	-0.395	hypertension1	-0.750
educationhighschool	-0.335	$marital_status divorced$	-0.360	cholesterol1	-0.324
sexmale	-0.318	educationhighschool	-0.304	$place_of_deathhome$	-0.241
ageforties	-0.155	place_of_deathhome	-0.072	$marital_statuswidowed$	-0.115
agethirties	-0.105	ageseventies	-0.058	ageseventies	-0.064

Plot PC1 vs PC2

plot_PCs(1, 2)

Plot PC1 vs PC3

Plot PC2 vs PC3

plot_PCs(2, 3)

Construct new data set with principal components

Classification using original features

Split data into training set and test set

```
set.seed(601)

# Split data2021 into training set (80%) and test set (20%)
train_index = sample(1:nrow(data2021), 0.8*nrow(data2021))
train = data2021[train_index,]
test = data2021[-train_index,]
```

Naive Bayes

```
# Fit Naive Bayes model on training set
nb_mod = naive_bayes(type1diabetes ~ ., data = train)
# Compute accuracy, error, sensitivity, and specificity on training set
nb train predprob = predict(nb mod, type = "prob")[,2]
nb_train_predclass = predict(nb_mod, type = "class")
nb_train_accuracy = mean(nb_train_predclass == train$type1diabetes)
nb_train_error = mean(nb_train_predclass != train$type1diabetes)
nb_train_sensitivity = sensitivity(nb_train_predclass, train$type1diabetes, positive = "1")
nb_train_specificity = specificity(nb_train_predclass, train$type1diabetes, negative = "0")
# Compute accuracy, error, sensitivity, and specificity on test set
nb_test_predprob = predict(nb_mod, test[,-1], type = "prob")[,2]
nb_test_predclass = predict(nb_mod, test[,-1], type = "class")
nb_test_accuracy = mean(nb_test_predclass == test$type1diabetes)
nb_test_error = mean(nb_test_predclass != test$type1diabetes)
nb_test_sensitivity = sensitivity(nb_test_predclass, test$type1diabetes, positive = "1")
nb_test_specificity = specificity(nb_test_predclass, test$type1diabetes, negative = "0")
# Compute AUC and Brier score on training set
nb train pred = prediction(nb train predprob, train$type1diabetes)
nb_train_perf = performance(nb_train_pred, "tpr", "fpr")
nb train auc = performance(nb train pred, "auc")@y.values[[1]]
nb_train_brier = mean((nb_train_predprob - ifelse(train$type1diabetes == "1", 1, 0))^2)
# Compute AUC and Brier score on test set
nb test pred = prediction(nb test predprob, test$type1diabetes)
nb_test_perf = performance(nb_test_pred, "tpr", "fpr")
nb_test_auc = performance(nb_test_pred, "auc")@y.values[[1]]
nb_test_brier = mean((nb_test_predprob - ifelse(test$type1diabetes == "1", 1, 0))^2)
```

Elastic net

```
set.seed(601)
# Use 10-fold cross-validation to select alpha and lambda
enet_cv = cv_elastic_net(X = model.matrix(type1diabetes ~ ., data = train)[,-1],
                         Y = train$type1diabetes,
                         alpha_seq = seq(from = 0.1, to = 0.9, length.out = 9),
                         n_folds = 10
# Fit elastic net model on training set using alpha and lambda from enet cu
enet_mod = glmnet(x = model.matrix(type1diabetes ~ ., data = train)[,-1],
                  y = train$type1diabetes, intercept = FALSE,
                  family = "binomial", alpha = enet_cv$alpha, lambda = enet_cv$lambda)
# Compute accuracy, error, sensitivity, and specificity on training set
enet train predprob = predict(enet mod, model.matrix(type1diabetes ~ ., data = train)[,-1],
                              type = "response")
enet_train_predclass = predict(enet_mod, model.matrix(type1diabetes ~ ., data = train)[,-1],
                               type = "class")
enet_train_accuracy = mean(enet_train_predclass == train$type1diabetes)
enet_train_error = mean(enet_train_predclass != train$type1diabetes)
enet_train_sensitivity = sensitivity(as.factor(enet_train_predclass),
                                     train$type1diabetes, positive = "1")
enet_train_specificity = specificity(as.factor(enet_train_predclass),
                                     train$type1diabetes, negative = "0")
# Compute accuracy, error, sensitivity, and specificity on test set
enet_test_predprob = predict(enet_mod, model.matrix(type1diabetes ~ ., data = test)[,-1],
                             type = "response")
enet_test_predclass = predict(enet_mod, model.matrix(type1diabetes ~ ., data = test)[,-1],
                              type = "class")
enet_test_accuracy = mean(enet_test_predclass == test$type1diabetes)
enet test error = mean(enet test predclass != test$type1diabetes)
enet_test_sensitivity = sensitivity(as.factor(enet_test_predclass),
                                     test$type1diabetes, positive = "1")
enet_test_specificity = specificity(as.factor(enet_test_predclass),
                                     test$type1diabetes, negative = "0")
# Compute AUC and Brier score on training set
enet_train_pred = prediction(enet_train_predprob, train$type1diabetes)
enet_train_perf = performance(enet_train_pred, "tpr", "fpr")
enet_train_auc = performance(enet_train_pred, "auc")@y.values[[1]]
enet_train_brier = mean((enet_train_predprob - ifelse(train$type1diabetes == "1", 1, 0))^2)
# Compute AUC and Brier score on test set
enet_test_pred = prediction(enet_test_predprob, test$type1diabetes)
enet_test_perf = performance(enet_test_pred, "tpr", "fpr")
enet_test_auc = performance(enet_test_pred, "auc")@y.values[[1]]
enet_test_brier = mean((enet_test_predprob - ifelse(test$type1diabetes == "1", 1, 0))^2)
```

Random forest

```
set.seed(601)
# Use 10-fold cross-validation to select mtry
rf_cv = cv_random_forest(data = train, mtry_seq = seq(from = 3, to = 9, by = 2), n_folds = 10)
# Fit random forest on training set using mtry_star
rf_mod = randomForest(type1diabetes ~ ., data = train, mtry = rf_cv$mtry, ntree = 500)
# Compute accuracy, error, sensitivity, and specificity on training set
rf_train_predprob = predict(rf_mod, type = "prob")[,2]
rf_train_predclass = predict(rf_mod, type = "response")
rf_train_accuracy = mean(rf_train_predclass == train$type1diabetes)
rf train error = mean(rf train predclass != train$type1diabetes)
rf_train_sensitivity = sensitivity(rf_train_predclass, train$type1diabetes, positive = "1")
rf_train_specificity = specificity(rf_train_predclass, train$type1diabetes, negative = "0")
# Compute accuracy, error, sensitivity, and specificity on test set
rf_test_predprob = predict(rf_mod, test, type = "prob")[,2]
rf_test_predclass = predict(rf_mod, test, type = "response")
rf_test_accuracy = mean(rf_test_predclass == test$type1diabetes)
rf_test_error = mean(rf_test_predclass != test$type1diabetes)
rf_test_sensitivity = sensitivity(rf_test_predclass, test$type1diabetes, positive = "1")
rf_test_specificity = specificity(rf_test_predclass, test$type1diabetes, negative = "0")
# Compute AUC and Brier score on training set
rf train pred = prediction(rf train predprob, train$type1diabetes)
rf_train_perf = performance(rf_train_pred, "tpr", "fpr")
rf_train_auc = performance(rf_train_pred, "auc")@y.values[[1]]
rf_train_brier = mean((rf_train_predprob - ifelse(train$type1diabetes == "1", 1, 0))^2)
# Compute AUC and Brier score on test set
rf_test_pred = prediction(rf_test_predprob, test$type1diabetes)
rf_test_perf = performance(rf_test_pred, "tpr", "fpr")
rf_test_auc = performance(rf_test_pred, "auc")@y.values[[1]]
rf_test_brier = mean((rf_test_predprob - ifelse(test$type1diabetes == "1", 1, 0))^2)
```

AdaBoost

```
set.seed(601)
# Run AdaBoost on training set for 200 rounds
ab_mod = boosting(type1diabetes ~ ., data = as.data.frame(train),
                  boos = FALSE, mfinal = 200, control = rpart.control(cp = 1e-6))
# Compute accuracy, error, sensitivity, and specificity on training set
ab_train_predprob = ab_mod$prob[,2]
ab train predclass = ab mod$class
ab_train_accuracy = mean(ab_train_predclass == train$type1diabetes)
ab train error = mean(ab train predclass != train$type1diabetes)
ab_train_sensitivity = sensitivity(as.factor(ab_train_predclass),
                                   train$type1diabetes, positive = "1")
ab_train_specificity = specificity(as.factor(ab_train_predclass),
                                   train$type1diabetes, negative = "0")
# Compute accuracy, error, sensitivity, and specificity on test set
ab_test_predict = predict(ab_mod, as.data.frame(test))
ab_test_predprob = ab_test_predict$prob[,2]
ab_test_predclass = ab_test_predict$class
ab_test_accuracy = mean(ab_test_predclass == test$type1diabetes)
ab_test_error = mean(ab_test_predclass != test$type1diabetes)
ab_test_sensitivity = sensitivity(as.factor(ab_test_predclass),
                                   test$type1diabetes, positive = "1")
ab_test_specificity = specificity(as.factor(ab_test_predclass),
                                   test$type1diabetes, negative = "0")
# Compute AUC and Brier score on training set
ab_train_pred = prediction(ab_train_predprob, train$type1diabetes)
ab_train_perf = performance(ab_train_pred, "tpr", "fpr")
ab_train_auc = performance(ab_train_pred, "auc")@y.values[[1]]
ab_train_brier = mean((ab_train_predprob - ifelse(train$type1diabetes == "1", 1, 0))^2)
# Compute AUC and Brier score on test set
ab_test_pred = prediction(ab_test_predprob, test$type1diabetes)
ab_test_perf = performance(ab_test_pred, "tpr", "fpr")
ab_test_auc = performance(ab_test_pred, "auc")@y.values[[1]]
ab_test_brier = mean((ab_test_predprob - ifelse(test$type1diabetes == "1", 1, 0))^2)
```

Kernel SVM

```
set.seed(601)
# Use 10-fold cross-validation to select cost
ksvm_cv = cv_ksvm(train, cost_seq = c(0.1, 1, 10, 100), n_folds = 10)
# Fit kernel SVM on training set
ksvm_mod = svm(type1diabetes ~ ., data = train, probability = TRUE,
              kernel = "radial", cost = ksvm_cv$cost)
# Compute accuracy, error, sensitivity, and specificity on training set
ksvm train predprob = attr(predict(ksvm mod, train, probability = TRUE),
                           "probabilities")[,2]
ksvm_train_predclass = predict(ksvm_mod, train)
ksvm train accuracy = mean(ksvm train predclass == train$type1diabetes)
ksvm train error = mean(ksvm train predclass != train$type1diabetes)
ksvm_train_sensitivity = sensitivity(ksvm_train_predclass, train$type1diabetes, positive = "1")
ksvm_train_specificity = specificity(ksvm_train_predclass, train$type1diabetes, negative = "0")
# Compute accuracy, error, sensitivity, and specificity on test set
ksvm_test_predprob = attr(predict(ksvm_mod, test, probability = TRUE),
                           "probabilities")[,2]
ksvm_test_predclass = predict(ksvm_mod, test)
ksvm_test_accuracy = mean(ksvm_test_predclass == test$type1diabetes)
ksvm_test_error = mean(ksvm_test_predclass != test$type1diabetes)
ksvm_test_sensitivity = sensitivity(ksvm_test_predclass, test$type1diabetes, positive = "1")
ksvm test specificity = specificity(ksvm test predclass, test$type1diabetes, negative = "0")
# Compute AUC and Brier score on training set
ksvm_train_pred = prediction(ksvm_train_predprob, train$type1diabetes)
ksvm_train_perf = performance(ksvm_train_pred, "tpr", "fpr")
ksvm_train_auc = performance(ksvm_train_pred, "auc")@y.values[[1]]
ksvm_train_brier = mean((ksvm_train_predprob - ifelse(train$type1diabetes == "1", 1, 0))^2)
# Compute AUC and Brier score on test set
ksvm_test_pred = prediction(ksvm_test_predprob, test$type1diabetes)
ksvm_test_perf = performance(ksvm_test_pred, "tpr", "fpr")
ksvm_test_auc = performance(ksvm_test_pred, "auc")@y.values[[1]]
ksvm_test_brier = mean((ksvm_test_predprob - ifelse(test$type1diabetes == "1", 1, 0))^2)
```

Summary of results

Test accuracy, sensitivity, specificity, AUC, and Brier score

```
results = data.frame(method = c("Naive Bayes", "Elastic net", "Random forest",
                                "AdaBoost", "Kernel SVM"),
                     accuracy = round(c(nb_test_accuracy, enet_test_accuracy, rf_test_accuracy,
                                        ab_test_accuracy, ksvm_test_accuracy),
                     sensitivity = round(c(nb_test_sensitivity, enet_test_sensitivity,
                                           rf_test_sensitivity, ab_test_sensitivity,
                                           ksvm_test_sensitivity),
                                      3),
                     specificity = round(c(nb_test_specificity, enet_test_specificity,
                                           rf_test_specificity, ab_test_specificity,
                                           ksvm_test_specificity),
                                      3),
                     auc = round(c(nb_test_auc, enet_test_auc, rf_test_auc,
                                   ab_test_auc, ksvm_test_auc),
                                 3),
                     brier = round(c(nb_test_brier, enet_test_brier, rf_test_brier,
                                     ab test brier, ksvm test brier),
knitr::kable(results, align = "c", col.names = c("Method", "Accuracy", "Sensitivity",
                                                 "Specificity", "AUC", "Brier"))
```

Method	Accuracy	Sensitivity	Specificity	AUC	Brier
Naive Bayes	0.672	0.640	0.704	0.745	0.206
Elastic net	0.688	0.646	0.729	0.750	0.201
Random forest	0.709	0.674	0.743	0.784	0.202
AdaBoost	0.695	0.705	0.686	0.769	0.201
Kernel SVM	0.703	0.641	0.762	0.766	0.198

Variable importance

```
# Random forest
rf_var_importance = tibble(predictor = rownames(rf_mod$importance),
                           mean_decrease_gini = as.numeric(rf_mod$importance)) %>%
                      mutate(rf importance = round(100*mean decrease gini/
                                                  sum(mean_decrease_gini), 1)) %>%
                      dplyr::select(-mean decrease gini) %>%
                      arrange(desc(rf_importance))
# AdaBoost
ab var importance = tibble(predictor = names(ab mod$importance),
                           ab importance = round(ab mod$importance, 1)) %>%
                      arrange(desc(ab_importance))
# Plot
rf_var_importance %>%
  inner_join(ab_var_importance, by = "predictor") %>%
  pivot_longer(!predictor, names_to = "model",
               names_pattern = "(..)_importance", values_to = "importance") %>%
  mutate(predictor = fct_recode(predictor,
    "Age" = "age", "Education" = "education", "Marital status" = "marital_status",
    "Race" = "race", "Place of death" = "place of death", "Sex" = "sex",
    "Hypertension" = "hypertension", "Obesity" = "obesity",
    "Cholesterol" = "cholesterol", "COVID" = "covid"
  )) %>%
  mutate(model = ifelse(model == "rf", "Random forest", "AdaBoost")) %>%
  ggplot(aes(x = fct_reorder(predictor, importance, mean), y = importance, fill = model)) +
   geom col(position = "dodge") +
    coord_flip() + scale_fill_manual(values = c("wheat3", "olivedrab4")) +
   theme_classic() +
   labs(x = NULL, y = "Relative importance", fill = NULL) +
   theme(legend.position = "right",
          legend.text = element_text(face = "bold"),
          axis.title = element_text(face = "bold"),
         axis.text = element_text(face = "bold"),
         legend.background = element_rect(fill = "white", linetype = "solid", color = "gray10"))
```


Classification using principal components

Split data into training set and test set

```
set.seed(601)

# Split pc_data2021 into training set (80%) and test set (20%)
pc_train_index = sample(1:nrow(pc_data2021), 0.8*nrow(pc_data2021))
pc_train = pc_data2021[pc_train_index,]
pc_test = pc_data2021[-pc_train_index,]
```

Naive Bayes

```
# Fit (Gaussian) Naive Bayes model on training set
pc_nb_mod = gaussian_naive_bayes(x = as.matrix(pc_train[,-1]), y = pc_train$type1diabetes)
# Compute accuracy, error, sensitivity, and specificity on training set
pc_nb_train_predprob = predict(pc_nb_mod, type = "prob")[,2]
pc_nb_train_predclass = predict(pc_nb_mod, type = "class")
pc_nb_train_accuracy = mean(pc_nb_train_predclass == pc_train$type1diabetes)
pc_nb_train_error = mean(pc_nb_train_predclass != pc_train$type1diabetes)
pc_nb_train_sensitivity = sensitivity(pc_nb_train_predclass,
                                      pc_train$type1diabetes, positive = "1")
pc_nb_train_specificity = specificity(pc_nb_train_predclass,
                                      pc_train$type1diabetes, negative = "0")
# Compute accuracy, error, sensitivity, and specificity on test set
pc nb test predprob = predict(pc nb mod, as.matrix(pc test[,-1]), type = "prob")[,2]
pc_nb_test_predclass = predict(pc_nb_mod, as.matrix(pc_test[,-1]), type = "class")
pc_nb_test_accuracy = mean(pc_nb_test_predclass == pc_test$type1diabetes)
pc_nb_test_error = mean(pc_nb_test_predclass != pc_test$type1diabetes)
pc_nb_test_sensitivity = sensitivity(pc_nb_test_predclass,
                                      pc_test$type1diabetes, positive = "1")
pc_nb_test_specificity = specificity(pc_nb_test_predclass,
                                      pc_test$type1diabetes, negative = "0")
# Compute AUC and Brier score on training set
pc_nb_train_pred = prediction(pc_nb_train_predprob, pc_train$type1diabetes)
pc nb train perf = performance(pc nb train pred, "tpr", "fpr")
pc nb train auc = performance(pc nb train pred, "auc")@y.values[[1]]
pc_nb_train_brier = mean((pc_nb_train_predprob - ifelse(pc_train$type1diabetes == "1", 1, 0))^2)
# Compute AUC and Brier score on test set
pc_nb_test_pred = prediction(pc_nb_test_predprob, pc_test$type1diabetes)
pc_nb_test_perf = performance(pc_nb_test_pred, "tpr", "fpr")
pc_nb_test_auc = performance(pc_nb_test_pred, "auc")@y.values[[1]]
pc_nb_test_brier = mean((pc_nb_test_predprob - ifelse(pc_test$type1diabetes == "1", 1, 0))^2)
```

Quadratic discriminant analysis

```
# Fit QDA model on training set
pc_qda_mod = qda(type1diabetes ~ ., data = pc_train)
# Compute accuracy, error, sensitivity, and specificity on training set
pc_qda_train_predprob = predict(pc_qda_mod)$posterior[,2]
pc_qda_train_predclass = predict(pc_qda_mod)$class
pc_qda_train_accuracy = mean(pc_qda_train_predclass == pc_train$type1diabetes)
pc_qda_train_error = mean(pc_qda_train_predclass != pc_train$type1diabetes)
pc_qda_train_sensitivity = sensitivity(pc_qda_train_predclass,
                                      pc_train$type1diabetes, positive = "1")
pc_qda_train_specificity = specificity(pc_qda_train_predclass,
                                      pc_train$type1diabetes, negative = "0")
# Compute accuracy, error, sensitivity, and specificity on test set
pc_qda_test_predprob = predict(pc_qda_mod, pc_test)$posterior[,2]
pc_qda_test_predclass = predict(pc_qda_mod, pc_test)$class
pc_qda_test_accuracy = mean(pc_qda_test_predclass == pc_test$type1diabetes)
pc_qda_test_error = mean(pc_qda_test_predclass != pc_test$type1diabetes)
pc_qda_test_sensitivity = sensitivity(pc_qda_test_predclass,
                                      pc_test$type1diabetes, positive = "1")
pc_qda_test_specificity = specificity(pc_qda_test_predclass,
                                      pc_test$type1diabetes, negative = "0")
# Compute AUC and Brier score on training set
pc_qda_train_pred = prediction(pc_qda_train_predprob, pc_train$type1diabetes)
pc_qda_train_perf = performance(pc_qda_train_pred, "tpr", "fpr")
pc_qda_train_auc = performance(pc_qda_train_pred, "auc")@y.values[[1]]
pc_qda_train_brier = mean((pc_qda_train_predprob - ifelse(pc_train$type1diabetes == "1", 1, 0))^2)
# Compute AUC and Brier score on test set
pc_qda_test_pred = prediction(pc_qda_test_predprob, pc_test$type1diabetes)
pc_qda_test_perf = performance(pc_qda_test_pred, "tpr", "fpr")
pc_qda_test_auc = performance(pc_qda_test_pred, "auc")@y.values[[1]]
pc_qda_test_brier = mean((pc_qda_test_predprob - ifelse(pc_test$type1diabetes == "1", 1, 0))^2)
```

Elastic net

```
set.seed(601)
# Use 10-fold cross-validation to select alpha and lambda
pc_enet_cv = cv_elastic_net(X = as.matrix(pc_train[,-1]), Y = pc_train$type1diabetes,
                            alpha_seq = seq(from = 0.1, to = 0.9, length.out = 9),
                            n \text{ folds} = 10)
# Fit elastic net model on training set using alpha and lambda from pc_enet_cv
pc_enet_mod = glmnet(x = as.matrix(pc_train[,-1]), y = pc_train$type1diabetes,
                     intercept = FALSE, family = "binomial",
                     alpha = pc_enet_cv$alpha, lambda = pc_enet_cv$lambda)
# Compute accuracy, error, sensitivity, and specificity on training set
pc_enet_train_predprob = predict(pc_enet_mod, as.matrix(pc_train[,-1]), type = "response")
pc_enet_train_predclass = predict(pc_enet_mod, as.matrix(pc_train[,-1]), type = "class")
pc_enet_train_accuracy = mean(pc_enet_train_predclass == pc_train$type1diabetes)
pc_enet_train_error = mean(pc_enet_train_predclass != pc_train$type1diabetes)
pc_enet_train_sensitivity = sensitivity(as.factor(pc_enet_train_predclass),
                                      pc_train$type1diabetes, positive = "1")
pc_enet_train_specificity = specificity(as.factor(pc_enet_train_predclass),
                                      pc_train$type1diabetes, negative = "0")
# Compute accuracy, error, sensitivity, and specificity on test set
pc_enet_test_predprob = predict(pc_enet_mod, as.matrix(pc_test[,-1]), type = "response")
pc_enet_test_predclass = predict(pc_enet_mod, as.matrix(pc_test[,-1]), type = "class")
pc enet test accuracy = mean(pc enet test predclass == pc test$type1diabetes)
pc_enet_test_error = mean(pc_enet_test_predclass != pc_test$type1diabetes)
pc_enet_test_sensitivity = sensitivity(as.factor(pc_enet_test_predclass),
                                      pc_test$type1diabetes, positive = "1")
pc_enet_test_specificity = specificity(as.factor(pc_enet_test_predclass),
                                      pc test$type1diabetes, negative = "0")
# Compute AUC and Brier score on training set
pc_enet_train_pred = prediction(pc_enet_train_predprob, pc_train$type1diabetes)
pc_enet_train_perf = performance(pc_enet_train_pred, "tpr", "fpr")
pc_enet_train_auc = performance(pc_enet_train_pred, "auc")@y.values[[1]]
pc_enet_train_brier = mean((pc_enet_train_predprob - ifelse(pc_train$type1diabetes == "1", 1, 0))^2)
# Compute AUC and Brier score on test set
pc_enet_test_pred = prediction(pc_enet_test_predprob, pc_test$type1diabetes)
pc_enet_test_perf = performance(pc_enet_test_pred, "tpr", "fpr")
pc enet test auc = performance(pc enet test pred, "auc")@y.values[[1]]
pc_enet_test_brier = mean((pc_enet_test_predprob - ifelse(pc_test$type1diabetes == "1", 1, 0))^2)
```

Random forest

```
set.seed(601)
# Use 10-fold cross-validation to select mtry
pc_rf_cv = cv_random_forest(data = pc_train, mtry_seq = seq(from = 3, to = 9, by = 2), n_folds = 10)
# Fit random forest on training set using mtry_star
pc_rf_mod = randomForest(type1diabetes ~ ., data = pc_train, mtry = pc_rf_cv$mtry, ntree = 500)
# Compute accuracy, error, sensitivity, and specificity on training set
pc_rf_train_predprob = predict(pc_rf_mod, type = "prob")[,2]
pc_rf_train_predclass = predict(pc_rf_mod, type = "response")
pc rf train accuracy = mean(pc rf train predclass == pc train$type1diabetes)
pc rf train error = mean(pc rf train predclass != pc train$type1diabetes)
pc_rf_train_sensitivity = sensitivity(pc_rf_train_predclass,
                                      pc_train$type1diabetes, positive = "1")
pc_rf_train_specificity = specificity(pc_rf_train_predclass,
                                      pc_train$type1diabetes, negative = "0")
# Compute accuracy, error, sensitivity, and specificity on test set
pc_rf_test_predprob = predict(pc_rf_mod, pc_test, type = "prob")[,2]
pc_rf_test_predclass = predict(pc_rf_mod, pc_test, type = "response")
pc_rf_test_accuracy = mean(pc_rf_test_predclass == pc_test$type1diabetes)
pc_rf_test_error = mean(pc_rf_test_predclass != pc_test$type1diabetes)
pc_rf_test_sensitivity = sensitivity(pc_rf_test_predclass,
                                      pc_test$type1diabetes, positive = "1")
pc_rf_test_specificity = specificity(pc_rf_test_predclass,
                                      pc_test$type1diabetes, negative = "0")
# Compute AUC and Brier score on training set
pc rf train pred = prediction(pc rf train predprob, pc train$type1diabetes)
pc_rf_train_perf = performance(pc_rf_train_pred, "tpr", "fpr")
pc_rf_train_auc = performance(pc_rf_train_pred, "auc")@y.values[[1]]
pc_rf_train_brier = mean((pc_rf_train_predprob - ifelse(pc_train$type1diabetes == "1", 1, 0))^2)
# Compute AUC and Brier score on test set
pc_rf_test_pred = prediction(pc_rf_test_predprob, pc_test$type1diabetes)
pc_rf_test_perf = performance(pc_rf_test_pred, "tpr", "fpr")
pc_rf_test_auc = performance(pc_rf_test_pred, "auc")@y.values[[1]]
pc_rf_test_brier = mean((pc_rf_test_predprob - ifelse(pc_test$type1diabetes == "1", 1, 0))^2)
```

AdaBoost

```
set.seed(601)
# Run AdaBoost on training set for 200 rounds
pc_ab_mod = boosting(type1diabetes ~ ., data = as.data.frame(pc_train),
                     boos = FALSE, mfinal = 200, control = rpart.control(cp = 1e-6))
# Compute accuracy, error, sensitivity, and specificity on training set
pc_ab_train_predprob = pc_ab_mod$prob[,2]
pc_ab_train_predclass = pc_ab_mod$class
pc_ab_train_accuracy = mean(pc_ab_train_predclass == pc_train$type1diabetes)
pc_ab_train_error = mean(pc_ab_train_predclass != pc_train$type1diabetes)
pc_ab_train_sensitivity = sensitivity(as.factor(pc_ab_train_predclass),
                                      pc_train$type1diabetes, positive = "1")
pc_ab_train_specificity = specificity(as.factor(pc_ab_train_predclass),
                                      pc_train$type1diabetes, negative = "0")
# Compute accuracy, error, sensitivity, and specificity on test set
pc_ab_test_predict = predict(pc_ab_mod, as.data.frame(pc_test))
pc_ab_test_predprob = pc_ab_test_predict$prob[,2]
pc_ab_test_predclass = pc_ab_test_predict$class
pc_ab_test_accuracy = mean(pc_ab_test_predclass == pc_test$type1diabetes)
pc_ab_test_error = mean(pc_ab_test_predclass != pc_test$type1diabetes)
pc_ab_test_sensitivity = sensitivity(as.factor(pc_ab_test_predclass),
                                      pc_test$type1diabetes, positive = "1")
pc_ab_test_specificity = specificity(as.factor(pc_ab_test_predclass),
                                      pc test$type1diabetes, negative = "0")
# Compute AUC and Brier score on training set
pc_ab_train_pred = prediction(pc_ab_train_predprob, pc_train$type1diabetes)
pc_ab_train_perf = performance(pc_ab_train_pred, "tpr", "fpr")
pc_ab_train_auc = performance(pc_ab_train_pred, "auc")@y.values[[1]]
pc_ab_train_brier = mean((pc_ab_train_predprob - ifelse(pc_train$type1diabetes == "1", 1, 0))^2)
# Compute AUC and Brier score on test set
pc_ab_test_pred = prediction(pc_ab_test_predprob, pc_test$type1diabetes)
pc_ab_test_perf = performance(pc_ab_test_pred, "tpr", "fpr")
pc_ab_test_auc = performance(pc_ab_test_pred, "auc")@y.values[[1]]
pc_ab_test_brier = mean((pc_ab_test_predprob - ifelse(pc_test$type1diabetes == "1", 1, 0))^2)
```

Kernel SVM

```
set.seed(601)
# Use 10-fold cross-validation to select cost
pc_ksvm_cv = cv_ksvm(pc_train, cost_seq = c(0.1, 1, 10, 100), n_folds = 10)
# Fit kernel SVM on training set
pc_ksvm_mod = svm(type1diabetes ~ ., data = pc_train, probability = TRUE,
                  kernel = "radial", cost = pc_ksvm_cv$cost)
# Compute accuracy, error, sensitivity, and specificity on training set
pc_ksvm_train_predprob = attr(predict(pc_ksvm_mod, pc_train, probability = TRUE),
                              "probabilities")[,2]
pc_ksvm_train_predclass = predict(pc_ksvm_mod, pc_train)
pc ksvm train accuracy = mean(pc ksvm train predclass == pc train$type1diabetes)
pc ksvm train error = mean(pc ksvm train predclass != pc train$type1diabetes)
pc_ksvm_train_sensitivity = sensitivity(pc_ksvm_train_predclass,
                                      pc_train$type1diabetes, positive = "1")
pc_ksvm_train_specificity = specificity(pc_ksvm_train_predclass,
                                      pc_train$type1diabetes, negative = "0")
# Compute accuracy, error, sensitivity, and specificity on test set
pc_ksvm_test_predprob = attr(predict(pc_ksvm_mod, pc_test, probability = TRUE),
                             "probabilities")[,2]
pc_ksvm_test_predclass = predict(pc_ksvm_mod, pc_test)
pc_ksvm_test_accuracy = mean(pc_ksvm_test_predclass == pc_test$type1diabetes)
pc ksvm test error = mean(pc ksvm test predclass != pc test$type1diabetes)
pc_ksvm_test_sensitivity = sensitivity(pc_ksvm_test_predclass,
                                      pc test$type1diabetes, positive = "1")
pc_ksvm_test_specificity = specificity(pc_ksvm_test_predclass,
                                      pc_test$type1diabetes, negative = "0")
# Compute AUC and Brier score on training set
pc_ksvm_train_pred = prediction(pc_ksvm_train_predprob, pc_train$type1diabetes)
pc_ksvm_train_perf = performance(pc_ksvm_train_pred, "tpr", "fpr")
pc_ksvm_train_auc = performance(pc_ksvm_train_pred, "auc")@y.values[[1]]
pc_ksvm_train_brier = mean((pc_ksvm_train_predprob - ifelse(pc_train$type1diabetes == "1", 1, 0))^2)
# Compute AUC and Brier score on test set
pc_ksvm_test_pred = prediction(pc_ksvm_test_predprob, pc_test$type1diabetes)
pc_ksvm_test_perf = performance(pc_ksvm_test_pred, "tpr", "fpr")
pc_ksvm_test_auc = performance(pc_ksvm_test_pred, "auc")@y.values[[1]]
pc_ksvm_test_brier = mean((pc_ksvm_test_predprob - ifelse(pc_test$type1diabetes == "1", 1, 0))^2)
```

Summary of results

Test accuracy, sensitivity, specificity, AUC, and Brier score

```
pc results = data.frame(method = c("Naive Bayes", "QDA", "Elastic net",
                                   "Random forest", "AdaBoost", "Kernel SVM"),
                        accuracy = round(c(pc_nb_test_accuracy, pc_qda_test_accuracy,
                                           pc_enet_test_accuracy, pc_rf_test_accuracy,
                                           pc_ab_test_accuracy, pc_ksvm_test_accuracy),
                                         3),
                        sensitivity = round(c(pc_nb_test_sensitivity, pc_qda_test_sensitivity,
                                           pc_enet_test_sensitivity, pc_rf_test_sensitivity,
                                           pc_ab_test_sensitivity, pc_ksvm_test_sensitivity),
                                         3),
                        specificity = round(c(pc_nb_test_specificity, pc_qda_test_specificity,
                                           pc_enet_test_specificity, pc_rf_test_specificity,
                                           pc_ab_test_specificity, pc_ksvm_test_specificity),
                        auc = round(c(pc_nb_test_auc, pc_qda_test_auc, pc_enet_test_auc,
                                      pc_rf_test_auc, pc_ab_test_auc, pc_ksvm_test_auc),
                                    3).
                        brier = round(c(pc nb test brier, pc qda test brier, pc enet test brier,
                                        pc_rf_test_brier, pc_ab_test_brier, pc_ksvm_test_brier),
knitr::kable(pc_results, align = "c", col.names = c("Method", "Accuracy", "Sensitivity",
                                                    "Specificity", "AUC", "Brier"))
```

Method	Accuracy	Sensitivity	Specificity	AUC	Brier
Naive Bayes	0.654	0.674	0.635	0.714	0.217
QDA	0.667	0.667	0.667	0.725	0.219
Elastic net	0.630	0.731	0.531	0.704	0.225
Random forest	0.697	0.686	0.707	0.761	0.221
AdaBoost	0.694	0.702	0.687	0.766	0.200
Kernel SVM	0.700	0.694	0.707	0.758	0.199

ROC curves to compare classification on original predictors vs. principal components

```
# Naive Bayes
plot_ROCs(nb_test_perf, pc_nb_test_perf, rf_test_perf)
```


QDA (only available for PCs) plot_ROCs(pc_qda_test_perf, pc_qda_test_perf, rf_test_perf, legend = TRUE)

Elastic net
plot_ROCs(enet_test_perf, pc_enet_test_perf, rf_test_perf)

Random forest plot_ROCs(rf_test_perf, pc_rf_test_perf, rf_test_perf)

AdaBoost
plot_ROCs(ab_test_perf, pc_ab_test_perf, rf_test_perf)

Kernel SVM
plot_ROCs(ksvm_test_perf, pc_ksvm_test_perf, rf_test_perf)

