Class Tutorial 9

1. Approximate Greedy Policy

In previous tutorial we analyzed a TD(0) policy-evaluation scheme. Generally, we would like to perform an improvement relatively to the evaluated policy value. Prove the following proposition (which is a more basic version of Theorem 11.1 from lecture notes).

a. <u>Proposition</u>: Let v^* be the value of the optimal policy, \hat{v}^* be an estimator of its value s.t $|v^*-\hat{v}^*|_\infty \leq \epsilon$. Then, the Greedy policy w.r.t. \hat{v}^* , π_G , satisfies

$$|v^{\pi_G} - v^*|_{\infty} \le \frac{2\gamma\epsilon}{1 - \gamma}$$

Solution

a. We use the fixed point properties of v^* , the fact that $T^{\pi_G}\hat{v}^* = T\hat{v}^*$, and the fact that T^{π} , T are γ contractions in the max norm (all discussed in lectures).

$$|v^{\pi_{G}} - v^{*}|_{\infty} \leq |v^{\pi_{G}} - T\hat{v}^{*}|_{\infty} + |T\hat{v}^{*} - v^{*}|_{\infty}$$

$$= |T^{\pi_{G}}v^{\pi_{G}} - T^{\pi_{G}}\hat{v}^{*}|_{\infty} + |T\hat{v}^{*} - Tv^{*}|_{\infty}$$

$$\leq \gamma |v^{\pi_{G}} - \hat{v}^{*}|_{\infty} + \gamma |\hat{v}^{*} - v^{*}|_{\infty}$$

$$\leq \gamma |v^{\pi_{G}} - v^{*}|_{\infty} + \gamma |v^{*} - \hat{v}^{*}|_{\infty} + \gamma |\hat{v}^{*} - v^{*}|_{\infty}$$

$$\leq \gamma |v^{\pi_{G}} - v^{*}|_{\infty} + 2\gamma \epsilon$$

By moving the first term in the RHS to the LHS and dividing by $1 - \gamma$ we conclude the proof.

2. Least Squares Temporal Difference (LSTD)

In the previous tutorial we have seen that the online TD(0) converges to a solution of the linear equation

$$Aw = b$$
.

Now we will propose a **batch** algorithm that find a solution to the same equation. We are given a sequence of N state pairs $\{s_i, s_i'\}_{i=1}^N$, where $s_i \sim d$, and $s_i' \sim P^\pi(s \mid s_i)$.

- a. Suggest estimators for A and b from the data $\{s_i, s_i^{\ \ \ }\}_{i=1}^N$.
- b. Suggest a batch algorithm for finding w.

Solution

a. Recall that

$$b = \Phi^{\top} Dr = \sum_{s} d(s) r(s) \phi(s) \approx \sum_{i=1}^{N} r(s_i) \phi(s_i)$$

And

$$A = \gamma \Phi^{\top} D P \Phi - \Phi^{\top} D \Phi$$

Therefore we similarly have

$$\Phi^{\top}D\Phi = \sum_{s} d(s)\phi(s)\phi^{\top}(s) \approx \sum_{i=1}^{N} \phi(s_i)\phi^{\top}(s_i)$$

And

$$\Phi^{\top} DP \Phi = \sum_{s,s'} d(s) P^{\pi}(s'|s) \phi(s) \phi(s')^{\top} \approx \sum_{i=1}^{N} \phi(s_i) \phi^{\top}(s_i')$$

b. Given the data, we first form the estimates \hat{A}, \hat{b} using the estimators described above:

$$\hat{A} = \sum_{i=1}^{N} \phi(s_i) \left(\gamma \phi^{\top}(s_i') - \phi^{\top}(s_i) \right)$$

$$\hat{b} = \sum_{i=1}^{N} r(s_i) \phi(s_i)$$

We then solve the linear equation:

$$w = \hat{A}^{-1}\hat{b}$$

3. Least Squares Policy Iteration (LSPI)

In the previous question we explored batch policy evaluation with function approximation. We now propose a batch algorithm for **policy improvement** with function approximation.

Similar to evaluating the value function $V^{\pi}(s)$, we can also evaluate the state-action value function $Q^{\pi}(s,a)$. We approximate $Q^{\pi}(s)$ using linear function approximation, i.e.,

$$\tilde{Q}^{\pi}(s,a) = \phi(s,a)^{\top} w$$

where $\phi(s,a)$ are **state-action** features. We assume that the data is a sequence of N state-action-next state pairs $\{s_i,a_i,s_i^{\ }\}_{i=1}^N$.

- a. For a **known** policy π , extend the LSTD algorithm to evaluating the weights for $\tilde{Q}^\pi(s,a)$.
- b. For a given weight vector w , what is the greedy policy w.r.t. $\tilde{Q}^{\pi}(s,a) = \phi(s,a)^{\top}w$?

- c. Show that LSTD can be used to evaluate the weights for $\tilde{Q}^{\pi_{\mathrm{greedy}}}(s,a)$ of the **greedy** policy w.r.t. some w .
- d. Suggest an algorithm that interleaves the policy evaluation of LSTD and policy improvement using the greedy policy.

Solution

a. Note that we can define an 'augmented' state space $\overline{s} = \{s, a\}$, and perform LSTD on the augmented space:

$$\hat{A} = \sum_{i=1}^{N} \phi(s_i, a_i) \left(\gamma \phi^{\top}(s_i', \pi(s_i')) - \phi^{\top}(s_i, a_i) \right)$$

$$\hat{b} = \sum_{i=1}^{N} r(s_i, a_i) \phi(s_i, a_i)$$

$$w = \hat{A}^{-1}\hat{b}$$

b. The greedy policy is given by

$$\pi_{\text{greedy}}(s; w) = \arg\max_{a} \phi(s, a)^{\top} w$$

c. The only change we need to make is:

$$\hat{A} = \sum_{i=1}^{N} \phi(s_i, a_i) \Big(\gamma \phi^{\top}(s_i', \pi_{\text{greedy}}(s_i'; w)) - \phi^{\top}(s_i, a_i) \Big)$$

d. The Least-Squares Policy Iteration (LSPI) works iteratively, as follows:

start with some arbitrary w_0

for i = 0, 1, 2, ...

$$\hat{A} = \sum_{i=1}^{N} \phi(s_i, a_i) \left(\gamma \phi^{\top}(s_i', \pi_{\text{greedy}}(s_i'; w_i)) - \phi^{\top}(s_i, a_i) \right)$$

$$\hat{b} = \sum_{i=1}^{N} r(s_i, a_i) \phi(s_i, a_i)$$

$$w_{i,i,1} = \hat{A}^{-1} \hat{b}$$