

Anomaly Detection on Stock Price Data using LSTM Autoencoder

Faiza Qayyum AD-20206810

Table of Content

- Introduction
- Dataset
- Implementation LSTM explanation
- Results

Project Source

https://github.com/alind-

<u>saxena/Anomaly_Detection/blob/main/Data%20Science/Anomaly%20Detection%20On%20Time%20Series%20Data%20-%20LSTM%20Autoencoder.ipynb</u>

Introduction

- Anomaly detection, also known as outlier detection is the process of identifying
 extreme points or observations that are significantly deviating from the remaining
 data.
- Usually, these extreme points do have some exciting story to tell, by analyzing them, one can understand the extreme working conditions of the system.
- Some of the anomalies could be banking fraud in terms of transactions, or a sudden increase in the failure rate of fintech transactions due to the new software upgrade or surprising increase in purchase.

Supervised Anomaly Detection:

• Supervised learning is the scenario in which the model is trained on the labeled data, and trained model will predict the unseen data

Unsupervised Anomaly Detection:

• Whereas in unsupervised learning, no labels are available

Semi-supervised Anomaly Detection:

Combination of supervised and unsupervised data

Steps to follow for Anomaly Detection

- 1. Construct an LSTM Autoencoder on the stock price data, assuming there are no anomalies.
- 2. Generate the error threshold on training dataset.
- 3. Detect Anomaly using the threshold on test dataset.

Data Set Overview

- Alphabet Inc. (Google) dataset.
- Stock prices on daily time interval
- The time period used is:

'2004-08-20', to '2020-12-24').

Date -	Open 🔻	High 💌	Low	Close 🔻	Adj Close 🔻	Volume ▼
4/13/2021	2261.469971	2277.20996	2256.090088	2267.27002	2267.27002	1165500
4/14/2021	2275.159912	2277.98999	2249.189941	2254.840088	2254.840088	1011000
4/15/2021	2276.97998	2306.59692	2266	2296.659912	2296.659912	1373600
4/16/2021	2303	2306.43994	2284.449951	2297.76001	2297.76001	1129800
4/19/2021	2291.97998	2318.44995	2287.844971	2302.399902	2302.399902	1234400
4/20/2021	2307.889893	2309.6001	2271.709961	2293.629883	2293.629883	1088700
4/21/2021	2285.25	2295.32007	2258.570068	2293.290039	2293.290039	1196500
4/22/2021	2293.22998	2303.76196	2256.449951	2267.919922	2267.919922	1054800
4/23/2021	2283.469971	2325.82007	2278.209961	2315.300049	2315.300049	1433500
4/26/2021	2319.929932	2341.26001	2313.840088	2326.73999	2326.73999	1041700
4/27/2021	2336	2337.44995	2304.27002	2307.120117	2307.120117	1598600
4/28/2021	2407.14502	2452.37793	2374.850098	2379.909912	2379.909912	2986400
4/29/2021	2410.330078	2436.52002	2402.280029	2429.889893	2429.889893	1977700
4/30/2021	2404.48999	2427.13989	2402.159912	2410.120117	2410.120117	1957100
5/3/2021	2402.719971	2419.69995	2384.5	2395.169922	2395.169922	1689400
5/4/2021	2369.73999	2379.26001	2311.699951	2354.25	2354.25	1756000
5/5/2021	2368.419922	2382.19995	2351.409912	2356.73999	2356.73999	1090300
5/6/2021	2350.639893	2382.70996	2342.337891	2381.350098	2381.350098	1030900
5/7/2021		2416.40991	2390	2398.689941	2398.689941	1163600
5/10/2021		2378	2334.72998	2341.659912	2341.659912	1300300
5/11/2021		2322	2283	2308.76001	2308.76001	1605500
5/12/2021			2230.050049	2239.080078	2239.080078	
5/13/2021		2276.60107	2242.719971	2261.969971	2261.969971	1333500
5/14/2021			2283.320068	2316.159912	2316.159912	
5/17/2021		2323.34009	2295	2321.409912	2321.409912	992100
5/18/2021		2343.1499	2303.159912	2303.429932	2303.429932	
5/19/2021			2263.52002	2308.709961	2308.709961	
5/20/2021			2321.090088	2356.090088	2356.090088	
5/21/2021		2369	2342.370117	2345.100098	2345.100098	
5/24/2021		2418.47998	2360.110107	2406.669922	2406.669922	
5/25/2021		2432.88989	2402.98999	2409.070068	2409.070068	
5/26/2021	2412.834961	2442.94409	2412.514893	2433.530029	2433.530029	1092800

Alphabet Inc. (Google)

Import Libraries

- 1. Construct an LSTM Autoencoder on the stock price data, assuming there are no anomalies.
- 2. Generate the error threshold on training dataset.
- 3. Detect Anomaly using the threshold on test dataset

Import Libraries

Kera's:

High-level neural networks library

TensorFlow:

High performance numerical computation based library for ML

applications

Numpy:

Fundamental scientific computations

Pandas:

Data preparation

Matplotlib:

Data visualization

```
from tensorflow import keras
from sklearn.preprocessing import StandardScaler
import numpy as np
import tensorflow as tf
import pandas as pd
import plotly.graph_objects as go
import matplotlib.pyplot as plt
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, LSTM, Dropout, RepeatVector, TimeDistributed
```

1

Load the Data

The time period used is ('2004-08-19', '2020-12-24').

```
df = pd.read_csv('GOOG.csv')
```

df.head()

	Date	Open	High	Low	Close	Adj Close	Volume
0	2004-08-19	49.813286	51.835709	47.800831	49.982655	49.982655	44871300
1	2004-08-20	50.316402	54.336334	50.062355	53.952770	53.952770	22942800
2	2004-08-23	55.168217	56.528118	54.321388	54.495735	54.495735	18342800
3	2004-08-24	55.412300	55.591629	51.591621	52.239193	52.239193	15319700
4	2004-08-25	52.284027	53.798351	51.746044	52.802086	52.802086	9232100

The project deals with the closing price for each day.

```
# Extract "Date" and "Close" feature colums from the dataframe.
df = df[['Date', 'Close']]
```

```
# Concise summary of a DataFrame
df.info()
```

3 Data Time Period

```
df['Date'].min(), df['Date'].max()
('2004-08-19', '2020-12-24')
```

4 Visualize the data

```
fig = go.Figure()
fig.add_trace(go.Scatter(x=df['Date'], y=df['Close'], name='Close price'))
fig.update_layout(showlegend=True, title='Apple Inc. Stock Price 2004-2020')
fig.show()
```


1 Train - test split

```
train = df.loc[df['Date'] <= '2017-12-24']
test = df.loc[df['Date'] > '2017-12-24']
train.shape, test.shape

((3362, 2), (756, 2))
```

2 Data Scaling

• StandardScaler- Standardize features by removing the mean and scaling to unit variance

```
scaler = StandardScaler()
scaler = scaler.fit(np.array(train['Close']).reshape(-1,1))
train['Close'] = scaler.transform(np.array(train['Close']).reshape(-1,1))
test['Close'] = scaler.transform(np.array(test['Close']).reshape(-1,1))
```

Visualize scaled data

```
# Visualize scaled data
plt.plot(train['Close'], label = 'scaled')
plt.legend()
plt.show()
        scaled
0
                1000
                       1500
                              2000
                                     2500
                                            3000
```

Long Short Term Memory (LSTM)

- It is very difficult to train RNNs to retain information over many time steps
- LSTM networks, add additional gating units in each memory cell.
- Forget gate
- Input gate
- Output gate
- Prevents vanishing/exploding gradient problem and allows network to retain state information over longer periods of time.

Autoencoder LSTM

- An autoencoder is an artificial neural network that applies backpropagation, to produce the output vector similar to the inputs.
- It compresses the input data into a lower-dimensional space, then reconstructs the original data again from this representation.
- The Autoencoder is considered an unsupervised learning technique since it does not require a separate label value to train.
- In practice, the autoencoder is composed of two phases:
- Encoder: reduces the dimensions of the input data X
- Decoder: trained to obtain the output data similar to the original space,

Create Sequences

- Create sequences combining TIME_STEPS contiguous data values from the training data.
- Number of timestamps to look back
- TIME_STEP is set 30 as we want our network to have memory of 30 days.

```
TIME STEPS=30
def create_sequences(X, y, time_steps=TIME STEPS):
    X out, y out = [], []
    for i in range(len(X)-time steps):
        X out.append(X.iloc[i:(i+time steps)].values)
        y out.append(y.iloc[i+time steps])
     return np.array(X out), np.array(y out)
X train, y train = create sequences(train[['Close']], train['Close'])
X test, y test = create sequences(test[['Close']], test['Close'])
 print("Training input shape: ", X train.shape)
 print("Testing input shape: ", X_test.shape)
Training input shape: (3332, 30, 1)
Testing input shape: (726, 30, 1)
```

Build a Model

- The model will take input of shape (batch_size, sequence_length, num_features) and return output of the same shape.
- In this case, sequence_length is 30 and num_features is 1.
- Dropout is used for regularization

```
model = Sequential()
model.add(LSTM(128, activation = 'tanh', input_shape=(X_train.shape[1], X_train.shape[2])))
model.add(Dropout(rate=0.2))
model.add(RepeatVector(X_train.shape[1]))
model.add(LSTM(128, activation = 'tanh', return_sequences=True))
model.add(Dropout(rate=0.2))
model.add(TimeDistributed(Dense(X_train.shape[2])))
model.compile(optimizer=keras.optimizers.Adam(learning_rate=0.001), loss="mse")
model.summary()
```

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y}_i)^2$$

Model: "sequential"						
Layer (type)	Output	Shape	Param #			
lstm (LSTM)	(None,	128)	66560			
dropout (Dropout)	(None,	128)	0			
repeat_vector (RepeatVector)	(None,	30, 128)	0			
lstm_1 (LSTM)	(None,	30, 128)	131584			
dropout_1 (Dropout)	(None,	30, 128)	0			
time_distributed (TimeDistri	(None,	30, 1)	129			
Total params: 198,273 Trainable params: 198,273 Non-trainable params: 0						

Train Model

EPOCHS:

• Epoch is when an ENTIRE dataset is passed forward and backward through the neural network only ONCE.

BATCH SIZE:

• Since one epoch is too big to feed to the computer at once we divide it in several smaller batches.

Callback:

- An object that performs actions at various stages of training **Monitor**:
- Quantity to be monitored.

Patience:

 Number of epochs with no improvement after which training will be stopped.

Mode:

In min mode, training will stop when the quantity monitored has stopped decreasing

```
Epoch 1/100
94/94 [============ ] - 7s 79ms/step - loss: 0.0765 - val loss: 0.1750
94/94 [============ ] - 6s 66ms/step - loss: 0.0189 - val loss: 0.2433
Epoch 3/100
94/94 [============== - 9s 101ms/step - loss: 0.0112 - val loss: 0.0660
Epoch 5/100
94/94 [============ ] - 7s 74ms/step - loss: 0.0224 - val loss: 0.0258
94/94 [============ ] - 7s 74ms/step - loss: 0.0126 - val loss: 0.0328
Epoch 7/100
94/94 [============= ] - 6s 68ms/step - loss: 0.0109 - val loss: 0.0332
94/94 [============== ] - 6s 67ms/step - loss: 0.0101 - val loss: 0.0115
Epoch 9/100
94/94 [============= ] - 6s 68ms/step - loss: 0.0121 - val loss: 0.0264
94/94 [============= ] - 6s 68ms/step - loss: 0.0139 - val loss: 0.0214
Epoch 11/100
94/94 [============= ] - 6s 68ms/step - loss: 0.0155 - val loss: 0.0877
Epoch 13/100
94/94 [============ ] - 7s 70ms/step - loss: 0.0152 - val_loss: 0.0072
94/94 [============= ] - 7s 73ms/step - loss: 0.0140 - val loss: 0.0066
Epoch 15/100
94/94 [============== ] - 6s 68ms/step - loss: 0.0112 - val loss: 0.0072
94/94 [============= ] - 6s 68ms/step - loss: 0.0094 - val loss: 0.0046
```

Plot Training - Validation loss

- The training loss indicates how well the model is fitting the training data,
- The validation loss indicates how well the model fits new data

```
plt.plot(history.history['loss'], label='Training loss')
plt.plot(history.history['val_loss'], label='Validation loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend();
```


Mean Absolute Error Loss

```
# Mean Absolute Error loss
X_train_pred = model.predict(X_train)
train_mae_loss = np.mean(np.abs(X_train_pred - X_train), axis=1)

plt.hist(train_mae_loss, bins=50)
plt.xlabel('Train MAE loss')
plt.ylabel('Number of Samples');

# Set reconstruction error threshold
threshold = np.max(train_mae_loss)

print('Reconstruction error threshold:',threshold)
```


Reconstruction Error

- The main goal of the autoencoder is to make the output vector similar to the original space, by minimizing the reconstruction error between them
- The reconstruction error can be obtained using a cross-entropy function or sum of squared errors (SSE)

$$SSE = \sum_{i=1}^{n} (\mathbf{X}_{i}' - \mathbf{X}_{i})^{2}$$

Reconstruction error threshold: 0.48992275269204094

Predict Anomalies on test data using threshold

Results

```
anomaly_df = pd.DataFrame(test[TIME_STEPS:])
anomaly_df['loss'] = test_mae_loss
anomaly_df['threshold'] = threshold
anomaly_df['anomaly'] = anomaly_df['loss'] > anomaly_df['threshold']
```

anomaly_df.head()

	Date	Close	loss	threshold	anomaly
3391	2018-02-08	2.600211	0.298949	0.469175	False
3392	2018-02-09	2.754443	0.390377	0.469175	False
3393	2018-02-12	2.814672	0.407962	0.469175	False
3394	2018-02-13	2.815352	0.400946	0.469175	False
3395	2018-02-14	2.890214	0.394943	0.469175	False

Results

anomalies = anomaly_df.loc[anomaly_df['anomaly'] == True]
anomalies.head()

	Date	Close	loss	threshold	anomaly
3708	2019-05-15	3.292211	0.471546	0.469175	True
3721	2019-06-04	2.819393	0.510124	0.469175	True
3722	2019-06-05	2.773328	0.527452	0.469175	True
3723	2019-06-06	2.782345	0.538017	0.469175	True
3724	2019-06-07	2.874646	0.532241	0.469175	True


```
fig = go.Figure()
fig.add_trace(go.Scatter(x=anomaly_df['Date'], y=scaler.inverse_transform(anomaly_df['Close']), name='Close price'))
fig.add_trace(go.Scatter(x=anomalies['Date'], y=scaler.inverse_transform(anomalies['Close']), mode='markers', name='Anomaly'))
fig.update_layout(showlegend=True, title='Detected anomalies')
fig.show()
```

Thanks!