Imperial College London

COMP70058 Computer Vision

Lecture 12 – Object Recognition

Stamatia (Matina) Giannarou, PhD The Hamlyn Centre for Robotic Surgery

stamatia.giannarou@imperial.ac.uk

Object Recognition

- Object Recognition
- Bag of Features
 - Origins
 - Representing the Visual Vocabulary
 - Classification
- Other Object Recognition Techniques

The Problem of Object Recognition

Verification: Is it a Car?

Detection: Are There Cars?

Identification: Is this a New York taxi?

Object Categorisation

Scene and Context Categorisation

Street? Beach? Jungle? Room? Night-time?

Challenges in Object Recognition

- Variability within objects
 - View point changes (camera position)
 - Illumination
 - Occlusions
 - Internal camera parameters
 - Scale
 - Deformation
- Variability within class
 - The example of dogs on the previous slide
 - Too many classes

Challenges in Object Recognition

Object Recognition

- Any computer vision method for object recognition must address the following properties:
 - Representation
 - o How will an object category be presented?
 - What classification scheme will be used?
 - Learning
 - o How will the classifier be learned?
 - (assuming there's training data)
 - Recognition
 - How will the classifier be used on new data?

We'll present one such method – Bag of Words/Bag of Features

Origins: Texture Recognition

- As we've seen before, textures are made up of repeating basic elements (or textons)
- For stochastic textures, the identity of the textons matters and not their spatial arrangement

Texture Recognition

Origins: Bag of Words

- Text is represented as an unordered collection of words
- The frequency of occurrence of each word is treated as a feature for training a classifier
- If we had the following documents:

3	lemon
pelican	
chicker	n
oven	
	roast

We can examine the histograms of these words:

chicken	4	6	5
roast	0	1	4
farm	1	7	1
bird	6	1	2

Bag of Words for Document Classification

- What results is a histogram of words
- Classification can be performed on the histogram
- For the example on the previous slide, it may be possible to classify the documents as about:
 - 1. Birds
 - 2. Farms
 - 3. Recipes
- The method has been applied successfully for email filtering
 - Is it spam or is it ham?

Bag of Features for Image Classification

- 1. Extract features
- 2. Learn the 'visual vocabulary' (i.e. The 'dictionary')
- 3. Quantise the features using the visual vocabulary
- 4. Represent images by frequencies of 'visual words'

Bicycle Violin Christmas Tree

Bag of Features for Image Classification

- 1. Extract features
- 2. Learn the 'visual vocabulary' (i.e. The 'dictionary')
- 3. Quantise the features using the visual vocabulary
- 4. Represent images by frequencies of 'visual words'

Feature Detection and Representation

- You saw in a previous lecture (Image Sequence Processing, Part 1) how to extract corner or SIFT features
- Other methods include:
 - Regular grid dividing the image using a regular grid
 - Interest point detectors
 - Random sampling
 - Segmentation-based patches

Feature Detection and Representation

- You saw in a previous lecture (Image Sequence Processing, Part 1) how to extract corner or SIFT features
- Other methods include:
 - Regular grid dividing the image using a regular grid
 - Interest point detectors
 - Random sampling
 - Segmentation-based patches

Learning the Visual Vocabulary

- Like Bag of Words, we need a histogram of 'words'
- Each descriptor needs to be converted into a 'word'

 One method to define 'words' is by using a clustering algorithm such as kmeans

K-Means Clustering

- One method for performing data clustering
 - K is the number of clusters required and is a user input
 - Minimise the sum of squared Euclidean distances between the points x_i and their nearest cluster centres m_k

$$D(X,M) = \sum_{k} \sum_{i} (x_i - m_k)^2$$

- 1. The data points are assigned randomly into k groups and the cluster centroids are calculated
 - The initial cluster centroids may also be user defined

K-Means Clustering

- The points are reclassified by minimising the distance between each point and the previous cluster centroids
 - This is the minimum distance algorithm
- 3. Recalculate the new class means

K-Means Clustering

 Repeat steps 2 and 3 (reclassifying and recalculating cluster centroids) until there is no further change in cluster centroids

This is the visual vocabulary. Each final cluster centroid is a 'word' in feature space.

The Visual Vocabulary

- Each 'word' defined by the cluster centre is also known as a codevector
- The entire visual vocabulary (i.e. the set of 'words') is also known as a codebook
- The codebook can be learned on a separate training set
- The codebook is used for quantising features
 - A vector quantiser takes a feature vector and maps it to the index of the nearest codevector in a codebook

- How does one choose vocabulary size?
 - Too small Visual words are not representative of all patches
 - Too big Results in overfitting and quantisation artifacts

The Visual Vocabulary

Classification

- Now that we have the bag-of-features representations of images from different classes, how do you learn a model for distinguishing between them?
- There are two machine learning approaches:

Discriminative methods

- Learns a decision rule (classifier) assigning bag-of-features representations of images to different classes
- Examples include Nearest Neighbour, K-Nearest Neighbours, Support Vector Machines, AdaBoost

Generative learning methods

- Models the probability of a bag of features given a class
- Examples include the Naïve Bayes classifier or a hierarchical Bayesian models

Nearest Neighbour and K-Nearest Neighbours

- With the Nearest Neighbour classifier, assign the label of the nearest training data point to each test data point
- With K-Nearest Neighbours, find the k closest points from the training data
- The labels of the k points vote to classify

Nearest Neighbour and K-Nearest Neighbours

Two histograms can be compared using any of the following distances:

Cosine distance

$$D(x, y) = \frac{x \cdot y}{\|x\| \|y\|} = \frac{x_1 y_1 + \dots + x_n y_n}{\sqrt{\sum_{i=1}^n x_i^2} \sqrt{\sum_{i=1}^n y_i^2}}$$

x^2 distance

$$D(x, y) = \sum_{i=1}^{n} \frac{(x_i - y_i)^2}{x_i + y_i}$$

Quadratic distance

$$D(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^{n} |x_i - y_i|^2\right)$$

Support Vector Machines

Finds the hyperplane that maximises the margin between 2 classes (positive $y_i=1$ and negative $y_i=-1$)

The hyperplane is defined as the set of points **x** satisfying

 $\mathbf{w} \cdot \mathbf{x} - b = 0$

And the two hyperplanes defining the margin are

$$\mathbf{w} \cdot \mathbf{x} - b = 1$$
 and $\mathbf{w} \cdot \mathbf{x} - b = -1$

Where w is the normal vector to the hyperplane, $b/\|\mathbf{w}\|$ is the offset of the hyperplane from the origin along \mathbf{w} , and the distance between the two margin hyperplanes is $2/\|\mathbf{w}\|$. This margin should be maximised.

As well, all training data should be classified correctly

$$\mathbf{x}_i$$
 positive $(y_i = 1)$: $\mathbf{w} \cdot \mathbf{x} + b \ge 1$
 \mathbf{x}_i negative $(y_i = -1)$: $\mathbf{w} \cdot \mathbf{x} + b \le -1$

This is an optimisation problem

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2$$

subject to:

$$y_i(\mathbf{w} \cdot \mathbf{x}_i - b) \ge 1$$

Non Linear SVMs

 Sometimes, it's impossible to find a hyperplane that will separate the two groups

Mapping it to a higher-dimensional space might help with separation

This is the kernel trick. The kernel is defined as $K(x,y) = \varphi(x) \cdot \varphi(y)$, where $\varphi(x)$ is a transform. In the original feature space, the decision boundary will be nonlinear. Common kernels include a histogram intersection kernel, generalised Gaussian kernel, etc.

Multi-class SVMs

- As you'll already have spotted, SVMs only separate two possible classes
- What about >two classes?
- Most approaches reduce the single multiclass problem into multiple binary classification problems
 - One vs. Others
 - o Training: Learn a SVM for each class vs. the others
 - Testing: Apply each learned SVM to test example and assign to the class of the SVM that returns the highest decision value
 - One vs. One
 - Training: Learn a SVM for each pair of classes
 - Testing: Use each learned SVM to 'vote' for a class to assign to the test example

Image Representation and Classification

- So for new images:
 - Detect features
 - Classify each feature
 - Examine the frequency of each codeword (compare histograms)

Other Object Recognition Techniques

- Recognition by Parts
- Appearance-based Methods
 - Edge matching
 - Greyscale matching
 - Gradient matching
- Feature-based Methods
 - Interpretation trees
 - Uses a tree search to find a mapping of model features to image features which is geometrically consistent
 - □ Invariants
 - Compute 'global indices' that do not change over viewing conditions
- Many more...

Conclusion

- Object Recognition
- Bag of Features
 - Origins
 - Representing the Visual Vocabulary
 - Classification
- Other Object Recognition Techniques

