BUNDESREPUBLIK DEUTSCHLAND

Offenlegungsschrift _® DE 198 30 838 A 1

(51) Int. Cl. 6: H 01 L 33/00

DEUTSCHES PATENT- UND MARKENAMT

(21) Aktenzeichen:

198 30 838.8

Anmeldetag: 9. 7.98

(43) Offenlegungstag:

14. 1.99

(38) Unionspriorität:

184851/1997

10.07.97 JP

(71) Anmelder:

Rohm Co. Ltd., Kyoto, JP

(74) Vertreter:

Tiedtke, Bühling, Kinne & Partner, 80336 München

(72) Erfinder:

Tsutsui, Tsuyoshi, Kyoto, JP

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (54) Halbleiter-Lichtemissionseinrichtung
- Es wird ein Halbleiterschichtabschnitt (10) bereitgestellt, bei dem auf Galliumnitrid basierende zusammengesetzte Halbleiterschichten, die eine n-Schicht (3) und eine p-Schicht (5) umfassen, zum Erzeugen einer emittierenden Schicht (4) auf einem Substrat.schichtweise angeordnet sind. Ferner sind eine n-seitige Elektrode (9) und eine p-seitige Elektrode (8) derart vorgesehen, daß diese elektrisch mit der n-Schicht (3) bzw. der p-Schicht (5) des Halbleiterschichtabschnitts (10) verbunden sind. Die n-Schicht (3) umfaßt wenigstens eine erste Schicht (3a) des Typs n und eine zweite Schicht (3b) des Typs n+, derart, daß die Ladungsträgerkonzentration des mit der n-seitigen Elektrode (9) zu versehenden Abschnitts höher ist als die Ladungsträgerkonzentration des Abschnitts, der in Kontakt mit der emittierenden Schicht (4) steht. Demzufolge werden die ohmschen Kontakteigenschaften der n-Schicht (3) und der n-seitigen Elektrode (9) dahingehend verbessert, daß eine vorwärts gerichtete Spannung verringert wird, welches zu einer Halbleiter-Lichtemissionseinrichtung mit hohem Lichtemissionswirkungsgrad führt.

Beschreibung

Die Erfindung betrifft eine Halbleiter-Lichtemissionseinrichtung, bei der eine auf Galliumnitrid basierende zusammengesetzte Halbleiterschicht auf ein Substrat laminiert ist. Insbesondere bezieht sich die Erfindung auf eine Halbleiter-Lichtemissionseinrichtung, die in der Lage ist, einen guten ohmschen Kontakt zwischen einer n-seitigen Elektrode und einer n-Schicht zu gewährleisten, um eine Vorwärts-Durchłaßspannung zu verringern.

Beispielsweise sind bei einer blaues Licht abstrahlenden Halbleiter-Lichtemissionseinrichtung gemäß einem vereinfachten Diagramm eines Beispiels deren Licht emittierenden Halbleiterplättchens bzw. -Chips (nachstehend in Kurzfarm als "LED-Chip" bezeichnet) nach Fig. 4 auf einem aus Saphir hergestellten isolierenden Substrat 21 schichtweise angeordnet bzw. laminiert: eine n-Schicht (Hüllschicht) 23. die durch epitaxiales Aufwachsen beispielsweise eine n-GaN-Schicht erhalten wird: eine aktive Schicht 24, die aus Material mit einer kleineren Bandlückenenergie als der der 20 Hüllschicht hergestellt ist, beispielsweise ein InGaN-basierter zusammengesetzter Halbleiter bzw. Verbundhalbleiter (wobei InGaN-basiert bedeutet, daß sich das Verhältnis von In zu Ga verschiedenariig ändern kann; dies soll im folgenden gelten); und eine p-Schicht (Hüllschicht) 25, die aus ei- 25 nem p-GaN hergestellt ist. Ferner ist auf der Oberfläche dieser Anordnung eine p-seitige Elektrode 28 derart angeordnet, daß diese über eine (nicht gezeigte) diffundierte Schicht aus Metall elektrisch mit der p-Schicht 25 verbunden ist. Eine n-seitige Elektrode 29 ist derart angeordnet, daß sie 30 elektrisch mit der n-Schicht 23, die durch Ätzen eines Teils der zusammengesetzten Halbleiterschichten freigelegt wurde, verbunden ist.

Hierdurch wird ein LED-Chip erzeugt.

Bei dieser Art einer Halbleiter-Lichtemissionseinrichtung 35 werden die Träger- oder Ladungsträgerkonzentrationen derart festgelegt, daß sie im Hinblick auf den Ladungsträger-Einschlußeffekt auf der aktiven Schicht 24 für die n-Schicht 23 und die p-Schicht 25, die die aktive Schicht 24 einschlie-Ben, optimiert werden. Beispielsweise wird die n-Schicht 23 40 mit einer konstanten Ladungsträgerkonzentration in der Größenordnung von 10¹⁸ cm⁻³ ausgebildet.

Wie vorstehend beschrieben, wird bei einer herkömmlichen Halbleiter-Lichtemissionseinrichtung, die einen auf Galliumnitrid basierenden zusammengesetzten Halbleiter 45 verwendet, die Ladungsträgerkonzentration der n-Schicht auf ein für Emissionseigenschaften optimales Niveau festgelegt, und wird die n-Schicht mit einer von oben nach unten gleichmäßigen Ladungsträgerkonzentration erzeugt. Dann wird eine n-seitige Elektrode bereitgestellt derart, daß 50 diese in Kontakt mit einem Teil der durch Ätzen freigelegten n-Schicht steht. Je größer jedoch die Ladungsträgerkonzentration der n-Schicht, auf der die n-seitige Elektrode bereitgestellt ist, ist, desto stärker ist ein Erzielen eines ohnischen Kontakts mit der Elektrode zu bevorzugen. Zu bevorzugen 55 sammengesetzte Halbleiter repräsentiert einen Halbleiter. ist hierbei eine Größenordnung von 1 × 1919 cm-3 oder höher. Daher kann, falls die Elektrode auf der Halbleiterschicht mit einer aufgrund der Emissionseigenschaften wie vorstehend begrenzten Ladungsträgerkonzentration erzeugt wird, ein ausreichender ohmscher Kontakt nicht erhalten 60 werden, welches in einem zu einem Anstieg der Vorwärtsspannung, d. h. der Durchlaßspannung bzw. der Spannung in Flußrichtung, beitragenden Faktor resultiert.

Bei einer herkömmlichen Halbleiter-Lichtemissionseinrichtung, die aus einem beispielsweise auf AlGaInP basie- 65 renden zusammengesetzten Halbleiter oder dergleichen hergestellt ist, wird ein Halbleiterschichtabschnitt derart bereitgestellt, daß eine emittierende Schicht auf einem Halbleiter-

substrat angeordnet ist. Demgemäß ist eine n-Schicht mit dem Halbleitersubstrat mit einer hohen Ladungsträgerkonzentration verbunden, um eine Elektrode auf dem Halbleitersubstrat bereitzustellen. Daher wird auch dann, wenn die n-Schicht in Übereinstimmung mit der für die Emissionseigenschaften optimalen Ladungsträgerkonzentration ausgebildet ist, kein Problem auftreten. Der auf Galliumnitrid basierende zusammengesetzte Halbleiter ist jedoch auf einem Substrat aus Saphir geschichtet, so daß daher die Elektrode 10 direkt auf der n-Schicht angeordnet ist. Dies führt zu einem Problem dahingehend, daß kein ausreichender ohmscher Kontakt erzielt werden kann. Ein weiterer Nachteil besteht darin, daß für eine Elektrode nur begrenzt Werkstoffe zur Verfügung stehen, und auch in dem Zustand, in dem es schwierig ist, einen guten ohmschen Kontakt zu erhalten. nur ein begrenzier Auswahlbereich aus denselben abgedeckt wird, um einen guten ohmschen Kontakt zu gewährleisten. Die Erfindung zielt darauf ab, derartige Nachteile zu überwinden.

Der Ersindung liegt daher die Aufgabe zugrunde, eine Halbleiter-Lichtentissionseinrichtung der eingangs genannten Art bereitzustellen, bei der der ohmsche Kontakt zwischen einer n-Schicht und einer n-seitigen Elektrode verbessert ist, um die Vorwärtsspannung zu verringern, während die optimale Ladungsträgerkonzentration für die Emissionseigenschaften in dem Bereich, der mit einer emittierenden Schicht in Kontakt steht, auch bei einer Halbleiter-Lichtemissionseinrichtung, bei der ein auf Galliumnitrid basierender zusammengesetzter Halbleiter auf ein isolierendes Substrat laminiert ist, aufrechterhalten wird und dadurch der Wirkungsgrad verbessert und der Bereich, aus dem Werkstoffe für eine Elektrode auswählbar sind, erweitert werden.

Die vorstehende Aufgabe wird erfindungsgemäß mit den Merkmalen des Patentanspruchs 1 gelöst.

In Übereinstimmung mit der Erfindung ist somit eine Halbleiter-Lichtemissionseinrichtung gekennzeichnet durch: ein Substrat; einen Halbleiterschichtabschnitt, bei dem auf Galliumnitrid basierende zusammengesetzte Halbleiterschichten, die eine n-Schicht und eine p-Schicht umfassen, zum Bilden einer emittierenden Schicht auf dem Substrat aufgeschichtet sind; und eine n-seitige Elektrode und eine p-seitige Elektrode, die derart vorgesehen sind, daß sie elektrisch mit der n-Schieht bzw. der p-Schieht des Halbleiterschichtabschnitts verbunden sind; wobei die n-Schicht derart ausgebildet ist, daß die Ladungsträgerkonzentration des mit der n-seitigen Elektrode versehenen Abschnitts höher ist als die Ladungsträgerkonzentration des Abschnitts. der in Kontakt mit der emittierenden Schicht steht.

Mit dieser Struktur kann ein guter ohmscher Kontakt zwischen der n-Schicht und der n-seitigen Elektrode gewährleistet werden, ohne die Emissionscharakteristiken nachteilig zu beeinflussen, und um die Vorwärtsspannung zu verringern.

Der hierin beschriebene, auf Galliumnitrid basierende zuder aus einem Verbund des Gruppe III-Elements Ga und des Gruppe V-Elements N hergestellt wird, oder einem solchen, der durch Substituieren eines Teils des Gruppe III-Elements Ga durch andere Gruppe III-Elemente wie beispielsweise Al und In erhalten wird, und/oder einem solchen, der durch Substituieren eines Teils des Gruppe V-Elements N durch andere Gruppe V-Elemente wie beispielsweise P und As erhalten wird. Ferner bezeichner die emittierende Schicht eine aktive Schicht mit einer Doppel-Hetero-Struktur, bei der die aktive Schicht zwischen einer n-Schicht und einer p-Schicht eingeschlossen bzw. geschichtet angeordnet ist, während sie einen emittierenden Bereich in der Nühe eines pn-Übergangs in einer pn-Übergangsstruktur bezeichnet.

Die n-seitige Elektrode ist auf der n-Schicht des Bereichs mit einer hohen Ladungsträgerkonzentration, der durch Ätzen eines Teils der laminierten Halbleiterschichten über der mittierenden Schicht freigelegt wird, angeordnet. Alternativ ist die n-seitige Elektrode auf der n-Schicht eines Bereichs mit hoher Ladungsträgerkonzentration, der durch Ätzen wenigstens eines Teils des Substrats, auf dem der Halbleiterschichtabschnitt ausgebildet ist, freigelegt wird, angeordnet. Wenn das Substrat entfernt wird, wird in dem Fall, in dem eine Pufferschicht mit einer kleinen Ladungsträgerkonzen- 10 tration auf dem Substrat vorhanden ist, auch die Pufferschicht durch Atzen entfernt.

Die n-Schicht ist derart ausgebildet, daß die Ladungsträgerkonzentration der Emissionsschichtseite der n-Schicht in beispielsweise dem Bereich zwischen 1×10^{18} und 9×10^{18} cm⁻³ und bevorzugt in dem Bereich zwischen 1×10^{18} und 3 × 10¹⁸ cm⁻³ liegt, während die Ladungsträgerkonzentration der n-Schicht, die mit der n-seitigen Elektrode zu versehen ist, beispielsweise in dem Bereich zwischen 1×10^{19} und 5×10^{19} 10¹⁹ cm₋₃ liegt.

Es kann auch eine Struktur eingesetzt werden, bei der ein Substrat aus Metall derart vorgesehen ist, daß es elektrisch mit der Seite der p-Schicht des Halbleiterschichtabschnitts verbunden ist, um die p-seitige Elektrode zu bilden, während die gesamte Fläche der n-Schicht mit der höheren La- 25 dungsträgerkonzentration freiliegt und auf dieser die n-seitige Elektrode angeordnet ist.

Die Erfindung wird nachstehend anhand bevorzugter Ausführungsbeispiele unter Bezugnahme auf die beigefügte Zeichnung näher beschrieben. Es zeigen:

Fig. 1 einen Querschnitt, der einen LED-Chip gemäß einem Ausführungsbeispiel einer Halbleiter-Lichtemissionseinrichtung veranschaulicht;

Fig. 2 einen Querschnitt, der einen LED-Chip eines modifizierten Ausführungsbeispiels der Halbleiter-Lichtemissionseinrichtung gemäß Fig. 1 veranschaulicht:

Fig. 3 einen Querschnitt, der einen LED-Chip eines weiteren modifizierten Ausführungsbeispiels der Halbleiter-Lichtemissionseinrichtung gemäß Fig. 1 veranschaulicht:

Fig. 4 eine perspektivische Ansicht, die einen LED-Chip einer herkömmlichen Halbleiter-Lichtemissionseinrichtung veranschaulicht.

Bei einer Halbleiter-Lichtemissionseinrichtung gemäß einem Ausführungsbeispiel, wie beispielsweise in Fig. 1 gezeigt, ist ein laminierter Halbleiterabschnitt bzw. ein Halbleiterschichtabschnitt 10 zum Erzeugen einer emittierenden Schicht auf der Oberfläche eines aus Saphir (Al₂O₃-Einkristall) oder dergleichen hergestellten isolierenden Substrats 1 ausgebildet. Mit einer p-Schicht 5 auf der Oberflächenseite 50 ist eine p-seitige Elektrode 8 über eine (nicht gezeigte) diffundierte Schicht aus Metall elektrisch verbunden. Eine nseitige Elektrode 9 ist derart ausgebildet, daß sie elektrisch mit einer n-Schicht 3 verbunden ist, die durch Entfernen eines Teils des Halbleiterschichtabschnitts 10 freigelegt 55 die eine Hüllschicht bildet, ist aus einem auf n-GaN und/ wurde. Die Halbleiter-Lichtemissionseinrichtung ist derart angeordnet, daß, wie beispielsweise in Fig. 1 gezeigt, die n-Schicht 3 aus einer ersten Schicht 3a des Typs n mit einer Ladungsträgerkonzentration, die für die Emissionseigenschaften geeignet ist und in Kontakt mit einer aktiven 60 Schicht 4 steht; einer zweiten Schicht 3b des Typs n* mit einer hohen Ladungsträgerkonzentration, die zur Herstellung eines ohmschen Kontakts geeignet ist; und einer dritten Schicht 3c des Typs n mit gegebenen Ladungsträgerkonzentrationen hergestellt ist, und daß die n-seitige Elektrode 9 65 auf der zweiten Schicht 36 des Typs n* mit einer höheren Ladungsträgerkonzentration als derjenigen der ersten Schicht 3a des Typs n. die in Kontakt mit der aktiven

Schicht 4 (der emittierenden Schicht) steht, vorgesehen ist. Die Regulierung der Mengen von Dotierstoften, die bei dem epitaxialen Wachstum der n-Schicht 3 zuzuführen sind, führt zu der Bildung der n-Schicht 3. Wenn beispielsweise die Laminierung bzw. der Schichtaufbau der Halbleiterschichten mittels einem MOCVD-Verfahren erfolgt, kann eine Erhöhung der Flußrate eines dotierenden Gases, das mit einem Prozeßgas zum Erzielen einer gewünschten Halbleiterschicht zuzuleiten ist, wie beispielsweise SiH4, die Ladungsträgerkonzentration erhöhen, während eine Verringerung der Flußrate von SiH4 die Ladungsträgerkonzentration senken kann. Daher können die gewünschten Halbleiterschichten auf die nachstehende Art und Weise erhalten werden. Auf eine Pufferschicht 2 wird die dritte Schicht 3c des Typs n epitaxial mit einer Dicke in der Größenordnung von 1 bis 2 µm so aufgewachsen, daß die Ladungsträgerkonzentration beispielsweise eine Größenordnung von 1×10^{17} cm⁻³ erreicht. Nachfolgend wird, um das Wachstum weiter fortzusetzen, die Flußrate des Dotiergases SiH4 so erhöht, daß die zweite Schicht 3b des Typs n* mit einer Ladungsträgerkonzentration in der Größenordnung von 1×10^{19} bis $5 \times$ 10¹⁹ cm⁻³ mit einer Dicke in der Größenordnung von 2 bis 3 µm aufgewachsen wird. Sodann wird, um das Wachstum fortzusetzen, die Flußrate des Dotiergases SiH4 so verringert, daß die erste Schicht 3a des Typs n mit einer Ladungsträgerkonzentration in der Größenordnung von 1×10^{18} bis 9×10^{18} cm⁻³, bevorzugt von 1×10^{18} bis 3×10^{18} cm⁻³, mit einer Dicke in der Größenordnung von 1 bis 2 um aufgewachsen wird.

Es ist ausreichend, daß die Dicke der ersten Schicht 3a des Typs n in einem solchen Umfang bereitgestellt wird, daß eine Ladungsträger-Einschlußfunktion entsteht, so daß eine Dicke in der Größenordnung von wenigstens 0.5 µm ausreichend sein wird. Die zweite Schicht 3b des Typs n* muß mit einer Elektrode auf der durch Ätzen freigelegten Oberfläche versehen werden, um einen ohmschen Kontakt zu erhalten, so daß diese daher bevorzugt mit einer Dicke in der Größenordnung von 2 µm oder mehr bereitgestellt wird. Die dritte Schicht 3c des Typs n kann entweder eine hohe oder eine niedrige Ladungsträgerkonzentration aufweisen; selbst eine Nichtdatierung ist zulässig. Demgemäß ist es auch dann. wenn die dritte Schicht 3c des Typs n fehlt und nur die erste Schicht 3a des Typs n und die zweite Schicht 3b des Typs n+ vorhanden sind, ausreichend, wenn eine Struktur bereitgestellt wird, bei der die erste Schicht 3a des Typs n in Kontakt mit der aktiven Schicht 4 steht und die zweite Schicht 3b des Typs n⁺ mit der n-seitigen Elektrode 9 versehen ist.

Der Halbleiterschichtabschnitt 10 ist derart aufgebaut, daß die Niedrigtemperatur-Pufferschicht 2, die n-Schicht 3, die aktive Schicht 4 und die p-Schicht 5 (Hüllschicht) aufeinanderfolgend auf ein Substrat 1 laminiert bzw. geschichtet sind. Die Niedrigtemperatur-Pufferschicht 2 ist aus beispielsweise GaN hergestellt und weist eine Dicke in der Größenordnung von 0.01 bis 0.2 µm auf. Die n-Schicht 3. oder AlGaN basierenden zusammengesetzten Halbleiter hergestellt (wobei sich das Verhältnis von Al zu Ga verschiedenartig ändern kann; dies soll im folgenden gelten). und weist die vorstehend erwähnte Struktur auf, in der wenigstens die erste Schicht 3a des Typs n und die zweite Schicht 3b des Typs n* enthalten sind. Die aktive Schicht 4 ist aus einem Material mit einer kleineren Bandlückenenergie als die der Hüllschicht, beispielsweise einem auf InGaN basierenden zusammengesetzten Halbleiter, hergestellt und weist eine Dicke in der Größenordnung von ().05 bis 0.3 µm auf. Die p-Schicht (Hüllschicht) 5 ist aus einer auf p-AlGaN basierenden zusammengesetzten Halbleiterschicht und/oder einer GaN-Schicht hergestellt und weist eine Dicke in der

6

Größenordnung von 0.2 bis 1 µm auf. Es wird angemerkt. daß es einige Fälle gibt, in welchen der auf AlGaN basierende zusammengesetzte Halbleiter auf der Seite der aktiven Schicht 4 der n- und p-Hüllschichten angeordnet ist, um den Ladungsträger-Einschlußeffekt zu steigern. Es ist daher ebenfalls möglich, daß die erste Schicht 3a des Typs n aus einer auf AlGaN basierenden zusammengesetzten Halbleiterschicht hergestellt ist, während die zweite Schicht 3b des Typs n* aus einer GaN-Schicht hergestellt ist.

minierten Struktur aus Ti und Au hergestellt ist, ist derart bereitgestellt, daß sie über eine (nicht gezeigte) diffundierte Schicht aus Metall elektrisch mit der p-Schicht 5 des Halbleiterschichtabschnitts 10 verbunden ist, während die n-seitige Elektrode 9, die aus beispielsweise einer Schicht aus ei- 15 ner Ti-Al-Legierung hergestellt ist, auf der zweiten Schicht 3b des Typs n⁺, die durch Entfernen eines Teils des Halbleiterschichtabschnitts 10 mittels eines Ätzvorgangs, der in einen Chip eines Wafers hinein erfolgt, freigelegt wurde, bereitgestellt ist, woraus die Erzeugung eines LED-Chips ge- 20 mäß dem hierin beschriebenen Ausführungsbeispiel resultiert.

Diese Halbleiter-Lichtemissionseinrichtung wird auf die folgenden Art und Weise hergestellt. Beispielsweise mittels einem ein Verfahren zur chemischen metall-organischen 25 Abscheidung aus der Damptphase (metal-organic chemical vapor deposition method, MOCVD) werden Prozeßgase wie beispielsweise Trimethylgallium (TMG) und Ammoniak (nachstehend als NH3 bezeichnet) und SiH4 oder dergleichen als n-datierendes Gas zusammen mit einem H2-Träger- 30 gas zugeführt. Zunächst wird auf ein aus beispielsweise Saphir bestehendes Substrat 1 die aus einer GaN-Schicht hergestellte Niedrigtemperatur-Pufferschicht 2 mit einer Dicke in der Größenordnung von 0.01 bis 0.2 µm bei niedrigen dann wird die Flußrate des Dotiergases SiH4 auf die Größenordnung von 0 bis 1×10^{-4} Volumenprozent bezogen auf die Gesammenge der Gase festgelegt und die dritte Schicht 3c des Typs n mit derselben Zusammensetzung und einer Ladungsträgerkonzentration in der Größenordnung von 1 × 40 10¹⁷ cm⁻³ mit einer Dicke in der Größenordnung von 2 µm aufgewachsen. Sodann wird die Flußrate von SiH4 auf die Größenordnung von 1×10^{-2} Volumenprozent festgelegt und die zweite Schicht 3b des Typs n* mit einer Ladungsträgerkonzentration in der Größenordnung von $1 \times 10^{19} \, \mathrm{cm}^{-3}$ und einer Dicke in der Größenordnung von 3 µm aufgewachsen. Weiter wird die Flußrate von SiH4 auf die Größenordnung von 1×10^{-3} Volumenprozent festgelegt und die erste Schicht 3a des Typs n mit einer Ladungsträgerkonzentration in der Größenordnung von 1 × 10¹⁸ cm⁻³ und einer 50 Typs n⁺ freizulegen, so daß die n-seitige Elektrode 9 sub-Dicke in der Größenordnung von 2 um aufgewachsen. Dann wird Trimethylindium (TMIn) als Prozeßgas hinzugefügt. um die aktive Schicht 4, die aus einem auf InGaN basierenden zusammengesetzten Halbleiter hergestellt wird, mit einer Dicke in der Größenordnung von 0.05 bis 0.3 µm auszu- 55

Sodann wird das Prozeßgas TMIn auf Trimethylaluminium (TMA) geändert und beispielsweise Dimethylzink (DMZn) als Dotiergas eingeleitet. Auf diese Art und Weise werden eine auf AlGaN basierende zusammengesetzte p- 60 Halbleiterschicht mit einer Ladungsträgerkonzentration in der Größenordnung von 1×10^{17} bis 1×10^{18} cm⁻³ und. unter Beenden der Zufuhr von TMA, eine GaN-p-Schicht mit jeweils einer Dicke in der Größenordnung von 0.1 bis 0.5 um laminiert, woraus die Erzeugung der p-Schicht 5 resultiert.

Danach werden beispielsweise Ni und Au aufgedampfi. gefolgt von einem Sintervorgang, um eine diffundierte

Schicht aus Metall mit einer Dicke in der Größenordnung von 2 bis 100 nm auszubilden. Nachfolgend wird ein Teil des stapelförmig aufgebauten Halbleiterschichtabschnitts 10 durch einen reaktiven Ionenätzvorgang mit einem Chlorgas oder dergleichen geätzt, um die zweite Schicht 3b des Typs n⁺ für die Ausbildung der n-seitigen Elektrode 9 freizulegen. Sodann wird ein Film aus Metall durch Verdampfen im Vakuum oder dergleichen aufgebracht, gefolgt von einem Sintervorgang, um die p-seitige Elektrode 8 und die n-seitige Die p-seitige Elektrode 8, die aus beispielsweise einer la- 10 Elektrode 9 auszubilden, wodurch ein Chip entsteht. Auf diese Art und Weise kann demzufolge die in Fig. 1 gezeigte Halbleiter-Lichtemissionseinrichtung erhalten werden.

> In Übereinstimmung mit der hierin beschriebenen Halbleiter-Lichtemissionseinrichtung wird, während die n-Schicht auf der Seite der emittierenden Schicht (der aktiven Schicht 4 in dem Beispiel gemäß Fig. 1) derart erzeugt wird. daß die erste Schicht 3a des Typs n eine optimale Ladungsträgerkonzentration für den Ladungsträger-Einschlußeffekt hat, der Abschnitt, der mit der n-seitigen Elektrode 9 zu versehen ist, derart erzeugt, daß die zweite Schicht 3b des Typs n* eine hohe Ladungsträgerkonzentration aufweist. Denigemäß kann die Elektrode so bereitgestellt werden, daß ein guter ohmscher Kontakt bei gleichzeitig außerordentlich guten Emissionseigenschaften gewährleistet ist. Es wird angemerkt, daß die p-seitige Elektrode über die diffundierte Schicht aus Metall bereitgestellt wird, so daß daher die Ladungsträgerkonzentration der p-Schicht für den ohmschen Kontaki glücklicherweise kein Problem darsielli. Als Folge hiervon werden der Kontaktwiderstand verringert und eine Halbleiter-Lichtemissionseinrichtung mit geringer Vorwärtsspannung V_t erhalten. Dies ermöglicht die Verbesserung des Lichtemissionswirkungsgrads und eine Verringerung der Leistungsversorgungsspannung.

In dem varstehend beschriebenen Beispiel wird die aus Temperaturen von etwa 400 bis 600°C aufgewachsen. So- 35 der Ti-Al-Legierung bestehende Schicht als n-seitige Elektrode 9 verwendet. Da jedoch der Abschnitt der n-Schicht 3, der mit der n-seitigen Elektrode 9 zu versehen ist, eine hohe Ladungsträgerkonzentration aufweist, die die ohmschen Kontakteigenschaften verbessert, können auch andere Legierungen wie beispielsweise Ti-Au, Ni-Au, Ti-Pt oder Au, Pt und dergleichen verwendet werden.

Fig. 2 ist ein Diagramm, das den Querschnitt durch einen Chip einer Halbleiter-Lichtemissionseinrichtung gemäß einem modifizierten Austührungsbeispiel nach Fig. 1 zeigt. In diesem Beispiel wird die n-seitige Elektrode 9 nicht durch Entrernen eines Teils des Halbleiterschichtabschnitts 10 mittels Ätzen, um die zweite Schicht 3b des Typs n* freizulegen, bereitgestellt, sondern durch Entfernen eines Teils des Substrats 1 mittels Atzen, um die zweite Schicht 3b des stratseitig bereitgestellt wird. In diesem Fall ist es stärker zu bevorzugen, daß keine dritte Schicht 3c des Typs n vorhanden ist. In dem Fall jedoch, in dem die dritte Schicht 3c des Typs n mit einer niedrigen Ladungsträgerkonzentration vorgesehen ist, wird ein Atzvorgang für die dritte Schicht 3c des Typs n sowie auch für das Substrat 1 durchgeführt, um eine Kontaktöffnung 1a derart bereitzustellen, daß die zweite Schicht 3b des Typs n* freiliegt. Es wird angemerkt, daß Elemente, die gleich Elementen in Fig. 1 sind, mit denselben Bezugszeichen bezeichnet sind und daher eine Beschreibung derselben weggelassen wird.

Fig. 3 ist ein Diagramm, das ein weiteres modifiziertes Ausführungsbeispiel zeigt. In diesem Ausführungsbeispiel ist eine aus Al oder dergleichen hergestellte Metallplatte 11 auf der Seite der p-Schicht 5 vorgesehen, die als neues Substrat dient. Außerdem wird ein Saphir-Substrat beim stapelförmigen Anordnen der Halbleiterschichten durch Polieren oder dergleichen entfernt. Die durch das Entfernen freige7

legte zweite Schicht 3b des Typs n* ist mit der n-seitigen Elektrode 9 versehen. Auch bei der Halbleiter-Lichtemissionseinrichtung mit einer derartigen Struktur umfaßt die n-Schicht 3 die erste Schicht 3a des Typs n. die mit einer Ladungsträgerkonzentration in Übereinstimmung mit den Emissionseigenschaften auf der Seite der aktiven Schicht 4 ausgebildet ist, und die zweite Schicht 3b des Typs n* mit einer hohen Ladungsträgerkonzentration auf der Seite, die mit der p-seitigen Elektrode 9 zu versehen ist, wodurch dieselben Wirkungen wie vorstehend beschrieben erhalten werden. Es wird angemerkt, daß Elemente, die gleich Elementen in Fig. 1 sind, mit denselben Bezugszeichen bezeichnet sind und daher eine Beschreibung derselben weggelassen wird

In jedem der vorstehenden Ausführungsbeispiele liegt die 15 aktive Schicht 4 zwischen der n-Schicht 3 und der p-Schicht 5 und dient die aktive Schicht 4 als emittierende Schicht, so daß somit eine Doppel-Hetero-Struktur implementiert wird. Jedoch ist auch eine Halbleiter-Lichtemissionseinrichtung mit einer pn-Übergang-Struktur, bei der die n-Schicht in di- 20 rektem Kontakt mit der p-Schicht steht, auf dieselbe Art und Weise wie vorstehend beschrieben aufgebaut. In diesem Fall ist eine emittierende Schicht an dem Bereich des pn-Übergangs ausgebildet, und ist die n-Schicht derart aufgebaut, daß eine erste Schicht 3a des Typs n mit einer Ladungsträ- 25 gerkonzentration in Übereinstimmung mit den Emissionseigenschaften auf der Seite des pn-Übergangs ausgebildet wird, während der mit einer Elektrode zu versehende Abschnitt zu der zweiten Schicht 3b des Typs n* wird. Das Material für die in jedem der vorstehenden Ausführungsbei- 30 spiele laminierten Halbleiterschichten ist lediglich beispielhaft angegeben und in keiner Weise als beschränkend anzu-

In Übereinstimmung mit der Halbleiter-Lichtemissionseinrichtung gemäß den vorstehenden Ausführungsbeispielen wird unter Beibehaltung der Emissionseigenschaften bzw. -kennlinien der ohmsche Kontakt zwischen einer Elektrode und einer Halbleiterschicht verbessert, woraus sich eine Halbleiter-Lichtemissionseinrichtung mit geringer Betriebsspannung und exzellentem Lichtemissionswirkungsgrad ergibt. Darüber hinaus kann der gute ohmsche Kontakt auf einfache Art und Weise und damit leicht erhalten werden. Dies führt zu einer Wirkung dahingehend, daß die Beschränkung auf die Werkstoffe für das Metall der n-seitigen Elektrode verringert und dadurch der Bereich, aus dem das Metall für die Elektrode auswählbar ist, erweitert wird.

Wie vorstehend beschrieben wurde, wird somit ein Halbleiterschichtabschnitt 10 bereitgestellt, bei dem auf Galliumnitrid basierende zusammengesetzte Halbleiterschichten. die eine n-Schicht 3 und eine p-Schicht 5 umfassen, zum Er- 50 zeugen einer emittierenden Schicht 4 auf einem Substrat schichtweise angeordnet sind. Ferner sind eine n-seitige Elektrode 9 und eine p-seitige Elektrode 8 derart vorgesehen, daß diese elektrisch mit der n-Schicht 3 bzw. der p-Schicht 5 des Halbleiterschichtabschnitts 10 verbunden 55 sind. Die n-Schicht 3 umfaßt wenigstens eine erste Schicht 3a des Typs n und eine zweite Schicht 3b des Typs n⁺ derart. daß die Ladungsträgerkonzentration des mit der n-seitigen Elektrode 9 zu versehenden Abschnitts höher ist als die Ladungsträgerkonzentration des Abschnitts, der in Kontakt mit 60 der emittierenden Schicht 4 steht. Demzufolge werden die ohmschen Kontakteigenschaften der n-Schicht 3 und der nseitigen Elektrode 9 dahingehend verbessert, daß eine vorwärts gerichtete Spannung verringert wird, welches zu einer Halbleiter-Lichtemissionseinrichtung mit hohem Lichtemis- 65 sionswirkungsgrad führt.

Patentansprüche

1. Halbleiter-Lichtemissionseinrichtung, gekennzeichnet durch:

ein Substrat (1);

einen Halbleiterschichtabschnitt (10), bei dem auf Galliumnitrid basierende zusammengesetzte Halbleiterschichten (3, 4, 5), die eine n-Schicht (3) und eine p-Schicht (5) umfassen, zum Erzeugen einer emittierenden Schicht (4) auf das Substrat (1) laminiert sind; und eine n-seitige Elektrode (9) und eine p-seitige Elektrode (8), die derart angeordnet sind, daß sie elektrisch mit der n-Schicht (3) bzw. der p-Schicht (5) des Halbleiterschichtabschnitts (10) verbunden sind; wobei die n-Schicht (3) derart ausgebildet ist, daß die Ladungsträgerkonzentration des mit der n-seitigen Elektrode (9) versehenen Abschnitts höher ist als die Ladungsträgerkonzentration des Abschnitts, der in Kontakt mit der emittierenden Schicht (4) steht.

- 2. Halbleiter-Lichtemissionseinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die n-seitige Elektrode (9) auf der n-Schicht (3) eines Bereichs mit einer hohen Ladungsträgerkonzentration, der durch Ätzen eines Teils des Halbleiterschichtabschnitts (10) über der emittierenden Schicht (4) freigelegt wurde, angeordnet ist.
- 3. Halbleiter-Lichtemissionseinrichtung nach Anspruch 1. dadurch gekennzeichnet, daß die n-seitige Elektrode (9) derart angeordnet ist, daß sie mit der n-Schicht (3) eines Bereichs mit hoher Ladungsträgerkonzentration, der durch Ätzen wenigstens eines Teils des Substrats (1), auf dem der Halbleiterschichtabschnitt (10) ausgebildet ist, freigelegt wurde, verbunden ist.
- 4. Halbleiter-Lichtemissionseinrichtung nach Anspruch 1. dadurch gekennzeichnet, daß die emissionsschichtseitige Ladungsträgerkonzentration der n-Schicht (3) in dem Bereich zwischen 1×10^{18} und 9×10^{18} cm⁻³ liegt, während die Ladungsträgerkonzentration der n-Schicht (3), die mit der n-seitigen Elektrode (9) versehen ist, in dem Bereich zwischen 1×10^{19} bis 5×10^{19} cm⁻³ liegt.
- 5. Halbleiter-Lichtemissionseinrichtung nach Anspruch 4, dadurch gekennzeichnet, daß die emissionsschichtseitige Ladungsträgerkonzentration der n-Schicht (3) in dem Bereich zwischen 1×10^{18} und 3×10^{18} cm⁻³ liegt.
- 6. Halbleiter-Lichtemissionseinrichtung nach Anspruch I, dadurch gekennzeichnet, daß ein Substrat aus Metall (11) derart angeordnet ist, daß es elektrisch mit der Seite der p-Schicht (5) des Halbleiterschichtabschnitts (10) verbunden ist, um die p-seitige Elektrode (8) zu bilden, während die gesamte Fläche der n-Schicht (3) mit der höheren Ladungsträgerkonzentration freiliegt und auf dieser die n-seitige Elektrode (9) angeordnet ist.

Hierzu 2 Seite(n) Zeichnungen

- Leerseite -

Nummer: Int. Cl.⁶; Offenlegungstag: **DE 198 30 838 A1 H 01 L 33/00**14. Januar 1999

FIG.1

FIG.2

Nummer: Int. Cl.⁶: Offenlegungstag: DE 198 30 838 A1 H 01 L 33/00 14. Januar 1999

FIG.3

FIG. 4
STAND DER TECHNIK

