The Reducibility Method for Call-By-Value Simply Typed Lambda Calculus

Reorganized by Peng Fu

Last revised: March 28,2010

1 Descriptions

1.1 Types

$$T ::= b| T_1 \rightarrow T_2$$

1.2 Terms.

$$t ::= x \mid (t_1 \ t_2) \mid \lambda x.t$$

1.3 Type assignment rules.

$$\frac{\Gamma(x) = T}{\Gamma \vdash x : T} \ T _Var$$

$$\frac{\Gamma \vdash t_1: T_2 \rightarrow T_1 \quad \Gamma \vdash t_2: T_2}{\Gamma \vdash t_1 \ t_2: T_1} \ T_App$$

$$\frac{\Gamma, x: T_1 \ \vdash t: T_2}{\Gamma \vdash \lambda x.t: T_1 \rightarrow T_2} \ \textit{T_Lam}$$

1.4 Reduction rules.

Left-to-right, call-by-value reduction.

Contexts.

$$C \ ::= *|\ v\ C\ |\ C\ t$$

Values.

$$v ::= \lambda x.t$$

Reduction.

$$C[(\lambda x.t\ v)] \leadsto C[[v/x]t]$$

2 Reducibility

2.1 Properties of Reduciblity sets

Definition Let N be the set of terms which have a normal form under our reduction setting. We define sets RED_T by induction on T

- 1. $t \in RED_b$ iff $t \in N$ and closed.
- 2. $t \in RED_{T_1 \to T_2}$ iff $\forall u \ (u \in RED_{T_1} \Rightarrow (t \ u) \in RED_{T_2})$.
- **CR** 1 If $t \in RED_T$, then $t \in N$ and closed.
- **CR 2** If $t \in RED_T$ and $t \rightsquigarrow t'$, then $t' \in RED_T$.
- **CR 3** If t is a closed term, $t \rightsquigarrow t'$ and $t' \in RED_T$, then $t \in RED_T$.
- **CR** 4 RED_T is a non-empty set.

Proof We will do the induction on the structure of T:

Base Case: T = b

(CR 1) is a tautology.

- (CR 2) By definition of RED_b , if $t \in RED_b$, then $t \in N$ and closed. Since reduction is deterministic, $t \sim t'$ and $t \in N$ implies $t' \in N$. Also, the reduction cannot introduce new free variable, so t closed implies t' closed. So $t' \in RED_b$.
 - (CR 3) By definition of $N, t \rightsquigarrow t', t' \in N$ implies $t \in N$. Since t is closed by assumption, $t \in RED_b$.
 - (CR 4) Obvious.

Step Case: $T = T_1 \rightarrow T_2$

(CR 1) Assume $t \in RED_{T_1 \to T_2}$. By IH(CR 4), RED_{T_1} is non-empty. So let u be an arbitrary element of RED_{T_1} . Now by the definition of $RED_{T_1 \to T_2}$, $(t \ u) \in RED_{T_2}$. By IH(CR 1), $u \in N$ and closed, $(t \ u) \in N$ and closed, which implies t is also closed. We need to show $t \in N$. Let $\nu(t \ u)$ denoted the length of the reduction from $(t \ u)$ to its normal form, the proof is by induction on $\nu(t \ u)$:

Base Case: $\nu(t \ u) = 0$, but this case cannot arise, since $\nu(t \ u) = 0$ implies t is a variable, but we know t is closed.

Step Case: $(t \ u)$ can be further reduced, if the call-by-value redex is in t, then $(t \ u) \rightsquigarrow (t' \ u)$, and by IH, $t' \in N$, so $t \in N$. If the redex is in u, that means t contain no call-by-value redex, so $t \in N$. If the whole $(t \ u)$ is a redex, then t must be a lambda term, which is a normal form under the call-by-value reduction, so $t \in N$.

So $t \in N$ and closed.

- (CR 2) Assume $t \in RED_{T_1 \to T_2}$. Let u be an arbitrary element of RED_{T_1} . Now by definition of $RED_{T_1 \to T_2}$, we have $(t \ u) \in RED_{T_2}$. And since $t \leadsto t'$, by definition of left-to-right, call-by-value reduction, we have the reduction: $(t \ u) \leadsto (t' \ u)$. By IH(CR 2), we have $(t' \ u) \in RED_{T_2}$, so according to the definition of $RED_{T_1 \to T_2}$, $t' \in RED_{T_1 \to T_2}$.
- (CR 3) Suppose t is closed and $t \sim t'$, and $t' \in RED_{T_1 \to T_2}$. Let u be an arbitrary element of RED_{T_1} . By definition of $RED_{T_1 \to T_2}$, $(t' \ u) \in RED_{T_2}$. Now let's consider $(t \ u)$. By definition of left-to-right, call-by-value, the only reduction it can have is $(t \ u) \sim (t' \ u)$, and we already know $(t' \ u) \in RED_{T_2}$. Also

 $(t\ u)$ is closed by assumption and IH(CR 1). By IH(CR 3), we have $(t\ u)\in RED_{T_2}$. Then by definition of $RED_{T_1\to T_2}$, we have $t\in RED_{T_1\to T_2}$.

(CR 4) We need to show $RED_{T_1 \to T_2}$ is non-empty. By IH(CR 4), both RED_{T_1} and RED_{T_2} are non-empty. So it suffices to show $\lambda x.t \in RED_{T_1 \to T_2}$, where $t \in RED_{T_2}$. For arbitary $u \in RED_{T_1}$, by IH(CR 1), $u \in N$ and closed. By the definition of left-to-right, call-by-value reduction, we have $(\lambda x.t)$ $u \stackrel{*}{\sim} (\lambda x.t)$ $v \sim t$. Because $t \in RED_{T_2}$, and $(\lambda x.t)$ u is closed, by IH(CR 3), $(\lambda x.t)$ $u \in RED_{T_2}$. So by the definition of $RED_{T_1 \to T_2}$, $\lambda x.t \in RED_{T_1 \to T_2}$. So $RED_{T_1 \to T_2}$ is non-empty.

2.1.1 Reducibility and Type assignment

Definition We define the set $[\Gamma]$ of well-typed substitutions σ as follows:

$$\Phi \in [.]$$

$$\frac{\sigma \in [\Gamma] \quad t \in RED_T}{\sigma \cup \{(x,t)\} \in [\Gamma, x : T]}$$

Theorem If $\Gamma \vdash t : T$, then $\forall \sigma \in [\Gamma], \sigma \ t \in RED_T$.

Proof By induction on the typing derivation of $\Gamma \vdash t : T$

Base Case The typing derivation looks like:

$$\frac{\Gamma(x) = T}{\Gamma \vdash x : T}$$

By definition of σ , for any $\sigma \in [\Gamma]$, then $\{(x,t)\} \subseteq \sigma, t \in RED_T$, so $\sigma x = t \in RED_T$.

Application Case The typing derivation looks like:

$$\frac{\Gamma \vdash t_1: T_2 \rightarrow T_1 \quad \Gamma \vdash t_2: T_2}{\Gamma \vdash t_1 \ t_2: T_1}$$

We need to prove that $\sigma(t_1 \ t_2) \in RED_{T_1}$. By IH, for any $\sigma \in [\Gamma]$, $\sigma \ t_1 \in RED_{T_2 \to T_1}$ and $\sigma \ t_2 \in RED_{T_2}$. Then from defintion of $RED_{T_2 \to T_1}$, we have $(\sigma t_1)(\sigma t_2) = \sigma(t_1 \ t_2) \in RED_{T_1}$.

Lambda abstract Case The typing derivation look like:

$$\frac{\Gamma, x: T_1 \ \vdash t: T_2}{\Gamma \vdash \lambda x. t: T_1 \to T_2}$$

We need to show any $\sigma \in [\Gamma]$, we have $\sigma(\lambda x.t) = \lambda x.(\sigma t) \in RED_{T_1 \to T_2}$. By definition of $RED_{T_1 \to T_2}$, we need to show for arbitrary $u \in RED_{T_1}$, $(\lambda x.(\sigma t))$ $u \in RED_{T_2}$. Since u is closed by CR 1, the normal form of u must be a value, which means $u \stackrel{*}{\leadsto} v$. So we have $(\lambda x.(\sigma t))$ $u \stackrel{*}{\leadsto} (\lambda x.(\sigma t))$ v, and by CR 2, $v \in RED_{T_1}$. By definition of call-by-value reduction, $(\lambda x.(\sigma t))$ $v \leadsto \sigma[v/x]t$. Since $v \in RED_{T_1}, \sigma \cup \{(x,v)\} \in [\Gamma, x:T_1]$. By IH, $\sigma[v/x](t) \in RED_{T_2}$. Since $(\lambda x.(\sigma t))$ u is closed ,by CR 3, $(\lambda x.(\sigma t))$ $u \in RED_{T_2}$. So $\sigma(\lambda x.t) = \lambda x.(\sigma t) \in RED_{T_1 \to T_2}$.

3 Conclusion

So for any closed term t, if $\vdash t : T$, then $t \in RED_T$, and by CR $1,t \in N$.