WHEN COMPUTER SCIENCE MEETS SOCIAL SCIENCE

-- USER STANCE PREDICTION VIA INFORMATION NETWORK MINING

Yizhou Sun

Department of Computer Science
University of California, Los Angeles
yzsun@cs.ucla.edu

November 8, 2019

Outline

Introduction

- Ideology Detection via Legislative Voting Network Mining
- Ideology Detection via Heterogeneous Types of Links
- User Stance Prediction via Joint Modeling of Text and Social Interactions
- The Co-Evolution Model for Social Network Evolving and Opinion Migration
- Summary

Motivating Examples

 What is the stance of Trump in the issue of military service?

- Whether a bill will be passed in congress?
- What is the average ideology of Twitter users in each state?
- By reading a news comment, can you infer the user's stance on that issue?
- Will a person's ideology migrate, and can you predict that?

GovTrack.us

Congress / Bills / H.R. 5404

H.R. 5404: Medical Device Guardians Act of 2016

Introduced: Jun 8, 2016

Status: Referred to Committee on Jun 8, 2016

This bill was assigned to a congressional committee on June 8, 2016, which will consider it before possibly sending it on to the House or Senate as a whole.

Sponsor:

Michael Fitzpatrick
Representative for Pennsylvania's 8th

congressional district

Republican

Text:

Read Text »

Last Updated: Jun 8, 2016

Length: 3 pages

Prognosis: 4% chance of being enacted (details)

Twitter

TRUMP

MAKE AMERICA GREAT AGAIN!

Donald J. Trump

The official Twitter profile for Donald Trump donaldjtrump.com youtube.com/DonaldTrump facebook.com/DonaldTrump

- O New York, NY
- @ donaldjtrump.com
- (Joined March 2009

News Comments

Black Caucus Leader: 'Minority Will Become the Majority'

The Fox Nationalist community reacts in their typical racist fashion to objectively true remarks by one of America's great civil rights heroes.

atticusgrinch

41 minutes ago

We need to take this nation back from the colordstain.

I'm not joking.

Sterilize them all at the very least. Or gas and burn them.

2 Like Reply

duffe

3 hours ago

Can Lewis explain how a minority becomes a majority? or any roach for that matter?

2 Like Reply

herbyette

50 minutes ago

Black women are nothing but welfare rat parasite breeders - turning out little welfare rat parasites faster than can be counted. Black poooooooosy is just a ka-ching machine. Babies and kids are a commodity - nothing more - that's why you have a Trayvon - and the ones who beat the Army vet to death - no better than animals.

2 Like Reply

gatorcnb

45 minutes ago

He needs to back on the plantation...Not fit for the public yet...

1 Like Reply

atticusgrinch

41 minutes ago

Real Americas are white and can prove it with papers!

Online Forums

Outline

- Introduction
- Ideology Detection via Legislative Voting Network Mining

- Ideology Detection via Heterogeneous Types of Links
- User Stance Prediction via Joint Modeling of Text and Social Interactions
- The Co-Evolution Model for Social Network Evolving and Opinion Migration
- Summary

 Topic-Factorized Ideal Point Estimation Model for Legislative Voting Network (Gu et al., KDD'14)

Background of Congress Roll Call Data

Legislative Voting Network

Problem Definition

Input: Legislative Network

Output:

 $oldsymbol{x}_u$: Ideal Points for Politician u

 a_d : Ideal Points for Bill d

Existing Work

- 1-dimensional ideal point model (Poole and Rosenthal, 1985; Gerrish and Blei, 2011)
- High-dimensional ideal point model (Poole and Rosenthal, 1997)
- Issue-adjusted ideal point model (Gerrish and Blei, 2012)

Motivation

Voters have different positions on different topics.

 Traditional matrix factorization method cannot give the meanings for each dimension.

 Topics of bills can influence politician's voting, and the voting behavior can better guide the topics of bills as well.

Topic-Factorized IPM

Heterogeneous Voting Network

Entities:

- Politicians
- Bills
- Terms

<u>Links</u>:

- (P, B)
- \bullet (B,T)

Parameters to maximize the likelihood of generating two types of links:

- Ideal points for politicians
- Ideal points for bills
- Topic models

Text Part

Text Part

 We model the probability of each word in each document as a mixture of categorical distributions, as in PLSA (Hofmann, 1999) and LDA (Blei et al., 2003)

$$\mathbf{w}_{d} = (n(d, 1), n(d, 2), ..., n(d, N_{w}))$$

$$p(\mathbf{w}_{d} | \boldsymbol{\theta}, \boldsymbol{\beta}) \propto \prod_{w} (\sum_{k} \theta_{dk} \beta_{kw})^{n(d, w)}$$

$$p(\mathbf{W} | \boldsymbol{\theta}, \boldsymbol{\beta}) \propto \prod_{d} \prod_{w} (\sum_{k} \theta_{dk} \beta_{kw})^{n(d, w)}$$

Voting Part

Intuitions:

- The more similar of the ideal points of u and d, the higher probability of "YEA" link
- The higher portion a bill belongs to topic k, the higher weight of ideal points on topic k

Voting Part

Ideology embedding of Voter
$$u$$
 x_u x_{u1} x_{u2} x_{uk} x_{uk} x_{uk} $x_{uk} \in R$ Ideology embedding of Bill d a_d a_{d1} a_{d2} a_{dk} a_{dk} a_{dk} a_{dk} $a_{dk} \in R$ Topic Distribution of Bill d a_d a_{d1} a_{d2} a_{d2} a_{dk} a_{dk} a_{dk}

$$p(v_{ud} = 1) = \sigma(\sum_{k} \theta_{dk} x_{uk} a_{dk} + b_{d})$$

$$p(v_{ud} = -1) = 1 - \sigma(\sum_{k} \theta_{dk} x_{uk} a_{dk} + b_{d})$$

$$p(V|\theta, X, A, b) = \prod_{k=0}^{I} (p(v_{ud} = 1) \frac{1 + v_{ud}}{2} p(v_{ud} = -1) \frac{1 - v_{ud}}{2})$$

 $(u,d):v_{ud}\neq 0$

Grounded in social choice theory: Choose YEA or NAY?

Combining Two Parts Together

 The final objective function is a linear combination of the two average log-likelihood functions over the word links and voting links.

$$J(\boldsymbol{\theta}, \boldsymbol{\beta}, \boldsymbol{X}, \boldsymbol{A}, \boldsymbol{b}) = (1 - \lambda) \frac{\sum_{d,w} n(d,w) \log(\sum_{k} \theta_{dk} \beta_{kw})}{N_{F}} + \lambda \frac{\sum_{(u,d):v_{ud} \neq 0} (\frac{1 + v_{ud}}{2} \log p(v_{ud} = 1) + \frac{1 - v_{ud}}{2} \log p(v_{ud} = -1))}{N_{V}}$$
s.t.
$$0 \leq \theta_{dk} \leq 1, \qquad \sum_{k} \theta_{dk} = 1 \qquad \text{and} \qquad 0 \leq \beta_{kw} \leq 1, \qquad \sum_{w} \beta_{kw} = 1$$

• We also add an l_2 regularization term to A and X to reduce over-fitting.

$$J(\boldsymbol{\theta}, \boldsymbol{\beta}, \boldsymbol{X}, \boldsymbol{A}, \boldsymbol{b}) = (1 - \lambda) \frac{\sum_{d,w} n(d,w) \log(\sum_{k} \theta_{dk} \beta_{kw})}{N_{F}} + \lambda \frac{\sum_{(u,d): v_{ud} \neq 0} (\frac{1 + v_{ud}}{2} \log p(v_{ud} = 1) + \frac{1 - v_{ud}}{2} \log p(v_{ud} = -1))}{N_{V}}$$

$$-\frac{1}{2\sigma^{2}} (\sum_{u} \left| |x_{u}| \right|_{2}^{2} + \sum_{d} \left| |a_{d}| \right|_{2}^{2})$$

Data Description

• Dataset:

- U.S. House and Senate roll call data in the years between 1990 and 2013.*
 - 1,540 legislators
 - 7,162 bills
 - 2,780,453 votes (80% are "YEA")
- Keep the latest version of a bill if there are multiple versions.
- Randomly select 90% of the votes as training and 10% as testing.

^{*} Downloaded from http://thomas.loc.gov/home/rollcallvotes.html

Experimental Results: Voting Result Prediction

Case Studies

• Ronald Paul (R), Barack Obama (D)

Case Studies

Scatter plots over selected dimensions: (Republican, Democrat)

Outline

- Introduction
- Ideology Detection via Legislative Voting Network Mining
- Ideology Detection via Heterogeneous Types of Links

- User Stance Prediction via Joint Modeling of Text and Social Interactions
- The Co-Evolution Model for Social Network Evolving and Opinion Migration
- Summary

Ideology Detection for Twitter Users [Gu et al., SBP-BRIMS 2017]

Challenges

- How to model behavior links using ideology?
 - A link generative model with ideology as latent variable
 - Another social choice problem: to follow or not?
- How to combine different types of behaviors?
 - Heterogeneous network mining

Ideology Detection via Single Type of Links

Assumptions

• People tend to *follow, mention, or retweet* others who share similar ideology score

 One's true ideology score is different from one's public image ideology score

Model: Take Follow Link Type as an Example

- Consider a follow link: $i \rightarrow j$
 - p_i : true ideology of user i
 - q_i : image ideology of user j
 - b_i : bias term of user j, indicating the popularity of user j
 - The probability of the link:
 - $p(i \rightarrow j) = \sigma(\mathbf{p}_i'\mathbf{q}_j + b_j)$ (σ is the sigmoid function)
 - Connection to utility function:
 - The utility function of user i choose to follow j is higher than the one of user i choose to not follow j.

Objective Function

 Maximize the likelihood of observed positive links and sample negative links

$$l(G) = \sum_{(i,j)\in S_{+}} e_{ij}^{+} \cdot \log \sigma_{ij} + \sum_{(i,j)\in S_{-}} e_{ij}^{-} \cdot \log(1 - \sigma_{ij})$$

Ideology Detection via Multiple Types of Links

- Consider a link of type r: $i \stackrel{r}{\rightarrow} j$
 - p_i : true ideology of user i
 - $q_j^{(r)}$: image ideology of user j for link type r
 - $b_j^{(r)}$: bias term of user j for link type r, indicating the popularity of user j in link type r
 - The probability of the link:
 - $p\left(i \stackrel{r}{\rightarrow} j\right) = \sigma(p_i' q_j^{(r)} + b_j^{(r)})$ (σ is the sigmoid function)

Objective Function

 Maximize the weighted sum of the likelihood function for each link type

$$l(\boldsymbol{G}|\boldsymbol{P},\boldsymbol{Q},\boldsymbol{B}) = \sum_{r=1}^{R} w_r \cdot \frac{\sum_{(i,j) \in S_{+}^{(r)}} e_{r,ij}^{+} \log \sigma_{r,ij} + \sum_{(i,j) \in S_{-}^{(r)}} e_{r,ij}^{-} \log (1 - \sigma_{r,ij})}{\sum_{(i,j) \in S_{+}^{(r)}} e_{r,ij}^{+} + \sum_{(i,j) \in S_{-}^{(r)}} e_{r,ij}^{-}}$$

Importance of r_{th} link type

Constraints on
$$w_r$$
: $w_r > 0$ and $\prod_r w_r = 1$

Geometric mean =1

Data Collection

Step 1: Seed users collection

• Manually collect 487 politicians from Twitter

Step 2: expand from seeds

• 5000 followers and followees for each seed

Step 3: filtering

- User set I (heavily political related): users with more than 20 followers or followees in the seed set
- User set II (less political related): users with 3-5 followers or followees in the seed set, random sample 10,000

Relation	follow	mention	retweet
Number of links	1,764,956	2,395,813	718,124
Total number of users	46,477	34,775	30,990

Results on Ranking and Classification

Method	Ranking Accuracy	Classification AUC
AVER (follow)	0.427	0.523
AVER (mention)	0.446	0.558
AVER (retweet)	0.474	0.587
B-IPM (follow)	0.443 ± 0.102	0.868 ± 0.021
B-IPM (mention)	0.433 ± 0.183	0.558 ± 0.064
B-IPM (retweet)	0.501 ± 0.127	0.561 ± 0.066
SL-IPM (follow)	0.626 ± 0.011	0.953 ± 0.015
SL-IPM (mention)	0.623 ± 0.027	0.951 ± 0.018
SL-IPM (retweet)	0.637 ± 0.005	0.958 ± 0.005
ML-IPM-fixed	0.655 ± 0.008	0.930 ± 0.035
ML-IPM	0.663 ± 0.007	0.986 ± 0.013

Retweet Link Prediction

Using ideology to predict retweet link

Case Study 1

The ideology map of U.S.

Case Study 2

Ideology for selected accounts

Ideology of Presidential Candidates

Outline

- Introduction
- Ideology Detection via Legislative Voting Network Mining
- Ideology Detection via Heterogeneous Types of Links
- User Stance Prediction via Joint Modeling of Text and Social Interactions

- The Co-Evolution Model for Social Network Evolving and Opinion Migration
- Summary

Weakly-Guided User Stance Prediction via Joint Modeling of Content and Social Interaction (Dong et al., CIKM'17)

User1: Why don't you people stay in your bedrooms and quit flaunting your illicit pro **gay sex** sin agenda in public?

User2: I didn't know your church had its own... it is about living our lives with the person we love with full rights and benefits under the law ... value of your union except in your own head.

User3: It has been proven a dozen times over on ... Gay Couples are denied the right for p.rotection **under the law** ... Denying **same sex couples** the right to marry is creating **second class** citizens ... Do your homework!!!!

User4: Yes, marriage IS a civil right ... But the Loving case was about a **man and woman** getting together, not same-gender people. Of course the ... that doesn't mean what gay people are doing is a civil right.

Stance1
under the law
same sex couples
my son
gays and lesbians
quite frankly
inter racial marriage
partner and i
second class
legitimate state interest
equal marriage

stance2
gay sex
word of god
sodom and gomorrah
my friend
gay pride
man and woman
president bush
redefine marriage
deviant sex
these forums

Intuitions to the Solution

- With different stances, words are used differently even for the same issue
 - E.g., "same-sex marriage" vs. "gay marriage"
- User interaction will contribute to the learn the right contrasting view points for each issue
 - E.g., a reply indicating "disagree" implies the opposite signs of the related two users

Case Study from CNN News Comments

Bowe Bergdahl

Gaza Israel

Stance 1	Stance 2	Stance 1	Stance 2
republicans	obama	hamas	jew
gop	liberal	muslim	jews
the gop	deserter	free palestine from arad terror	netanyahu
conservatives	liberals	egypt	isreal
allegedly	a deserter	yawn	israeli
Exu republican	arabs	hitler	conservatives
reagan	traitor	hamass	aipac
conservative	he deserted	syria	part of this genocide
fox news	obama is	hamas_is	cut all aid to israel
right wing	susan rice	muslims	zionists

Immigrant

MH17

Stance 1	Stance 2	Stance 1	Stance 2
republicans	obama	putin	usa
the gop	liberals	russian	kiev
gop	democrats	russians	ukrainian
boehner	illegals	the russians	iraq
republican	liberal	kremlin	americans
conservatives	the illegals	russia	american
congress	illegal aliens	vodka	cia
perry	obama is	comrade	poroshenko
the republicans	dems	russian troll	com watch
conservative	citizens	huh	youtube

Outline

- Introduction
- Ideology Detection via Legislative Voting Network Mining
- Ideology Detection via Heterogeneous Types of Links
- User Stance Prediction via Joint Modeling of Text and Social Interactions
- The Co-Evolution Model for Social Network Evolving and Opinion Migration

Summary

 The Co-Evolution Model for Social Network Evolving and Opinion Migration (Gu et al., KDD'17)

Network Generation

People with similar ideology tends to link together

• How to define similarity?

Dot product-based similarity

Euclidean distance-based similarity

Gravity-based Score Function

Observations

- Opinion leader have more connections
 - Model opinion leaders explicitly: b_i for actor i
- Opinion leaders tend to have a non-extreme ideology
 - Choose Euclidean distance-based score
- The score function: extending Gaussian Kernel

$$p_{ij} = \exp(-\frac{1}{\epsilon^2} \cdot \frac{||\mathbf{x}_i - \mathbf{x}_j||^2}{b_i \cdot b_j})$$

- Link Generation:
 - $G_{ij} = 1$, if $p_{ij} > d$, where d is the system parameter controlling how easy to form a link

Opinion Migration

Actors are influenced by their neighbors

- What are influenced?
 - Position or moving direction?

Opinion Propagation Model

- Moving directions determine the position
 - Continuous form:

$$\frac{d}{dt}\mathbf{x}_n(t) = \upsilon \cdot (\cos \theta_n(t), \sin \theta_n(t))$$

• Discrete from:

$$\mathbf{x}_n^{\langle t+1 \rangle} = \mathbf{x}_n^{\langle t \rangle} + \upsilon \cdot (\cos \theta_n^{\langle t \rangle}, \sin \theta_n^{\langle t \rangle})$$

Moving directions are influence by social neighbors

$$\theta_n^{\langle t+1 \rangle} \sim \mathcal{N}(\langle \theta_n^{\langle t \rangle} \rangle, \sigma^2)$$

σ²: system level parameter controling the noise

Putting it together

The co-evolution model

Simulation

• System level parameters:

- Actor popularity: b
- Network sparsity: d
- Noise in propagation: σ^2

Discovery

System level parameters can control the behavior of evolution

Noise level σ	Sparsity parameter d	Result	
Small	Large (fewer neighbors)	Opinion divergence (emergence of clusters)	
Small	Small (more neighbors)	Opinion convergence	
Large -		Random	

Small noise, fewer friends

Communities appear, opinion divergence

Figure 5 : Small noise level ($\sigma = 0.5$). Large sparsity parameter ($d = \exp(-0.4)$).

Small noise, more friends

Opinion convergence

Figure 6 : Small noise level ($\sigma = 0.5$). Small sparsity parameter ($d = \exp(-2.0)$).

Big noise

Random

Figure 7: Large noise level ($\sigma = 2.0$). Large sparsity parameter ($d = \exp(-0.4)$).

Intervention

- How to alleviate opinion divergence?
 - Increase number of friends (diversity)
 - Strong opinion leaders

Figure 8: Intervention: under the same setting: $\sigma = 0.5$, $d = \exp(-0.4)$).

Application

- Dataset: Co-sponsorship between legislators, extracted from congress voting record
 - https://www.govtrack.us

Notation	Value	
Time period	1983-2016	
Time period	(98th-114th congress meeting)	
Number of time slices T	382 (month-based)	
Number of legislators N	2,180	
Number of co-sponsorship links	2.1 million	

Application 1: Identify Opinion Leaders

Learning popularity score: b

Rank	Name	Party-State	Time in Congress	
1	Paul Simon	Democrat-IL	1975-1997	
2	Jay Rockefeller	Republican-WV	1985-2015	
3	John Kerry	Democrat-MA	1985-2013	68th U.S. Secretary of State
4	Thomas Harkin	Democrat-IA	1975-2015	
5	James Terry Sanford	Democrat-NC	1986-1993	
6	Albert Gore	Democrat-TN	1983-1993	45th U.S. Vice President
7	Kent Conrad	Democrat-ND	1987-2013	
8	Edward Kennedy	Democrat-MA	1962-2009	
9	Mitch McConnell	Republican-KY	1985-presen	the majority leader of
10	Frank Annunzio	Democrat-IL	1965-1993	the Senate since 2015

Table 1: Popular legislators ranked by b in recent 34 years.

Application 2: Predicting Co-Sponsorship

 Learning system-level parameters, and then run simulation

Outline

- Introduction
- Ideology Detection via Legislative Voting Network Mining
- Ideology Detection via Heterogeneous Types of Links
- User Stance Prediction via Joint Modeling of Text and Social Interactions
- The Co-Evolution Model for Social Network Evolving and Opinion Migration
- Summary

Summary

Online behaviors are ubiquitous

- Content.
- Interaction with other entities
- Dynamic

User stance prediction solution

Content rich information network mining

Three case studies in this line

- Issue-based ideology detection for congress people
- Ideology detection for twitter users via heterogeneous network mining
- The co-evolution model that can explain and predict the dynamics

Q&A

THANK YOU!