The spontaneous emergence of discrete and compositional messages

Anonymous ACL submission

Abstract

blah blah blah

1 Introduction

In a signalling game, artificial agents communicate to achieve a common goal: a sender sees some piece of information and produces a message, this message is then sent to a receiver that must take some action. If the action is appropriate, the whole communication stream, and in particular the choice of the message, is reinforced. For instance, in a referential game, sender and receiver see a set of objects, and the sender must send a message to the receiver, so that the receiver can pick up the right object, as determined in advance for the sender, but unbeknownst to the receiver.

2 Function Games

We here introduce a general communication game setting, which we call Function Games. Our games contain three basic components: (i) a set of contexts C, (i) a set of actions A, (ii) a family of functions F, from contexts to actions. One play of a Function Game game runs as follows:

- 1. Nature chooses $f \in F$ and a context $c \in C$.
- 2. Sender sees the context c and f(c). I like f(c) here, but f is a bit more appropriate. What do you all think?
- 3. Sender sends a message m to Receiver.
- 4. Receiver sees a possibly different context c' and the message m and chooses an action a'.
- 5. Both are 'rewarded' iff a' = f(c').

Two concrete interpretations will be helpful in illustrating the various components.

Generalized referential games. A reference game is one in which Sender tries to get Receiver

to pick the correct object out of a given set (Skyrms, 2010; Lazaridou et al., 2017, 2018; Havrylov and Titov, 2017; Chaabouni et al., 2019). Here, contexts are sets of objects (i.e. an $m \times n$ matrix, with m objects represented by n features). Normally (though we will drop this assumption later), $c' = \mathtt{shuffled}(c)$: Sender and Receiver see the same objects, but in a different arrangement. Actions are the objects, and the functions $f \in F$ are choice functions: $f(c) \in c$ for every context c.

Belief update games. Contexts can represent possible belief states for the agents. Letting A=C, the functions will then be 'belief update' functions, representing e.g. how to update an agent's beliefs in the light of learning a new piece of information.

What should we cite here? Something from dynamic semantics?

3 Experiment

3.1 Model

3.2 Game Parameters

- strict vs. non-strict context
 - num objects for non-strict
- equal vs. not equal
- object size (num properties)
- latent space (msg) dimension [didn't vary this]

4 Results

- 4.1 Communicative success
- 4.2 Discrete signals
- 4.3 Compositionality
- 5 Discussion

6 Conclusion

(Steinert-Threlkeld, 2019)

100	References
101	Rahma Chaabouni, Eugene Kharitonov, Emmanuel
102	Dupoux, and Marco Baroni. 2019. Anti-efficient encoding in emergent communication. In <i>Proceedings</i> of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019).
103	
104	
105	
106	Serhii Havrylov and Ivan Titov. 2017. Emergence
107	of Language with Multi-agent Games: Learning to
108	Communicate with Sequences of Symbols. In <i>Proceedings of the 31st Conference on Neural Information Processing Systems (NeurIPS 2017).</i>
109	
110	
111	Angeliki Lazaridou, Karl Moritz Hermann, Karl Tuyls, and Stephen Clark. 2018. Emergence of Linguistic
112	Communication from Referential Games with Sym-
113	bolic and Pixel Input. In International Conference of Learning Representations (ICLR 2018).
114	
	Angeliki Lazaridou, Alexander Peysakhovich, and Marco Baroni. 2017. Multi-Agent Cooperation and the Emergence of (Natural) Language. In <i>International Conference of Learning Representations</i>
115	
116	
117	
118	(ICLR2017).
119	Brian Skyrms. 2010. <i>Signals: Evolution, Learning, and Information</i> . Oxford University Press.
120	
121	Shane Steinert-Threlkeld. 2019. Paying Attention
122	to Function Words. In Emergent Communication
123	Workshop @ NeurIPS 2018.
124	
125	
126	
127	
128	
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	
140	
141	
142	
142	
144	
145	
146	
147	
148	