WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

(11) International Publication Number:

WO 97/19921

C07D 209/52

A1

(43) International Publication Date:

5 June 1997 (05.06.97)

(21) International Application Number:

PCT/EP96/04782

(22) International Filing Date:

31 October 1996 (31.10.96)

(30) Priority Data:

9524466.1

30 November 1995 (30.11.95) GB

(71) Applicant (for GB only): PFIZER LIMITED [GB/GB]; Ramsgate Road, Sandwich, Kent CT13 9NJ (GB).

(71) Applicant (for JP only): PFIZER INC. [US/US]; 235 East 42nd Street, New York, NY 10017 (US).

(71) Applicant (for all designated States except GB JP US):
PFIZER RESEARCH AND DEVELOPMENT COM-PANY, N.V./S.A. [BE/IE]; La Touche House, International Financial Services Centre, Dublin 1 (IE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): RAY, Stephen, James [GB/GB]; Pfizer Limited, Ramsgate Road, Sandwich, Kent CT13 9NJ (GB). RUMPUS, John, Arthur [GB/GB]; Pfizer Limited, Ramsgate Road, Sandwich, Kent CT13 9NJ (GB).

(74) Agents: WOOD, D., J., et al.; Pfizer Limited, European Patent Dept., Ramsgate Road, Sandwich, Kent CT13 9NJ (GB).

(81) Designated States: AU, BG, BR, BY, CA, CN, CZ, HU, IL, IS, JP, KR, KZ, LK, LV, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TR, UA, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: PROCESS FOR PREPARING DIOXOAZABICYCLOHEXANES

(57) Abstract

A process for preparing a compound of formula (I) wherein R is C1-C6 alkyl, C₃-C₆ cycloalkyl or benzyl, and wherein the phenyl moiety of said benzyl group is optionally substituted by one or more substituents each independently selected from halo, nitro, C1-C6 alkyl, C1-C6 alkoxy, amino and trifluoromethyl, which comprises adding a solution comprising a compound of formula (II), a halonitromethane and an organic solvent selected from acetone,

dimethylformamide, dimethylacetamide, acetonitrile, dimethylsulfoxide, N-methylpyrrolidinone and dimethoxyethane. In formula (II), wherein R is as defined above, to a mixture comprising a base and an organic solvent, said organic solvent being as defined above and the said base being selected from potassium carbonate, sodium carbonate, cesium carbonate, trisodium phosphate, and potassium fluoride, so that a compound of formula (I) is produced, any excess base being eliminated from the reaction mixture prior to recovery of the product (I).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM '	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
ΑU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
ВJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	КР	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ.	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI .	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Моласо	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

WO 97/19921 PCT/EP96/04782

Process for preparing dioxoazabicyclohexanes.

This invention relates to a process for preparing an exo-compound of the formula (I):-

$$O_2N$$
 H
 O
 R
 O
 O

wherein R is C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl or benzyl, and wherein the phenyl moiety of said benzyl group is optionally substituted by one or more substituents each independently selected from halo, nitro, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, amino and trifluoromethyl.

Halo means fluoro, chloro, bromo or iodo.

The compounds (I) are useful as synthetic intermediates in the manufacture of the antibiotics of EP-B-0413455 as explained in WO-A-93/18001.

International patent application publication no. WO-A-93/18001 describes a process for preparing a compound of the formula (I) by reaction of a compound of the formula (II):-

with a halonitromethane in the presence of a base, R being as defined for formula (I).

Example 1 of that application describes the preparation of 1α , 5α , 6α -3-benzyl-6-nitro-2,4-dioxo-3-azabicyclo [3.1.0]hexane by adding the base DBU (1,8-diazabicyclo [5.4.0] undec-7-ene) in toluene dropwise to a mixture of N-benzylmaleimide and bromonitromethane in toluene. However the yield of the end product isolated was only 17%. In terms of grams of activity, the yield would have been less than 17%.

WO-A-95/19361 describes the use of 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine (DMTHP) as the base in that process and the isolated yield was 26.7% (less in terms of grams of activity).

We have now found that if certain specific bases and solvents are used, if the order of addition of the reactants is reversed [i.e., if the halonitromethane and maleimide (II) are added to the base in the solvent], and if any excess base is eliminated from the reaction mixture before recovery of the product (I), then very significant improvements in the yield of (I) are obtained.

Thus the present invention provides a process for preparing a compound of the formula (I):-

wherein R is C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl or benzyl, and wherein the phenyl moiety of said benzyl group is optionally substituted by one or more substituents each independently selected from halo, nitro, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, amino and trifluoromethyl,

which comprises adding a solution comprising a compound of the formula (II), a halonitromethane and an organic solvent selected from acetone, dimethylformamide, dimethylacetamide, acetonitrile, dimethylsulfoxide, N-methylpyrrolidinone and dimethoxyethane,

$$O \xrightarrow{N \\ R} H \qquad \cdots (II)$$

wherein R is as defined above,

to a mixture comprising a base and an organic solvent, said organic solvent being as defined above and said base being selected from potassium carbonate, sodium carbonate, cesium carbonate, trisodium phosphate, and potassium fluoride, so that a compound of the formula (I) is produced, any excess base being eliminated from the reaction mixture prior to recovery of the product (I).

In one aspect, the process comprises adding a solution of a compound of the formula (II) in a mixture of a halonitromethane and an organic solvent, said organic solvent being selected from acetone, dimethylformamide, dimethylacetamide, acetonitrile, dimethylsulfoxide, N-methylpyrrolidone and dimethoxyethane,

wherein R is defined for formula (I),

to a mixture of a base in an organic solvent, said organic solvent being as defined above and the base being selected from potassium carbonate, sodium carbonate, cesium carbonate, trisodium phosphate, and potassium fluoride, so that a compound of the formula (I) is produced, any excess base being eliminated from the reaction mixture prior to recovery of the product (I).

Preferably R is C₁-C₆ alkyl, C₃-C₆ cycloalkyl or benzyl, the phenyl moiety of the benzyl group being optionally substituted by 1 or 2 substituents as defined above.

Preferably, R is C₁-C₆ alkyl or benzyl.

Most preferably, R is benzyl.

Preferably, the halonitromethane is chloronitromethane or bromonitromethane, most preferably bromonitromethane.

Bromonitromethane is conveniently purchased as a solution in a stabilizing amount of an inert organic solvent, such as toluene, and preferably as a solution in from 25 to 50%w/w toluene. The presence of the inert solvent, such as toluene, does not significantly affect the yield of the compound (I), so that the solution of bromonitromethane in the inert solvent can be used as such in the process of the invention.

Mixtures of the stated organic solvents, and of the bases, may also be used.

Preferably, the ratio of the volume of the organic solvent in the mixture of the base and the organic solvent: the volume of the organic solvent in the solution of the compound (II) and bromonitromethane is from approximately 1:1 to 7:1, preferably from 1:1 to 4:1.

Preferably, the compound (II) and the halonitromethane are used in a molar ratio of from 1:1 to 1:1.25. Most preferably, the molar ratio is about 1:1.

Typically, the solution of the compound (II) in the mixture of the halonitromethane and organic solvent is slowly added to the base/solvent mixture, e.g. over a period of from 30 minutes to 4 hours.

Preferably, the mixture of the base and the organic solvent contains up to 5%, more preferably 1-3%, by volume water based on the total volume of the organic solvent(s).

In one preferred aspect, the organic solvent is dimethylformamide and the base is potassium carbonate.

In another preferred aspect, the organic solvent is dimethylsulfoxide and the base is potassium carbonate.

The process is preferably carried out at a temperature of from 5 to 50°C, preferably from 20°C to 30°C, and most preferably at ambient temperature.

Preferably, any excess base is eliminated from the reaction mixture by filtration, or by neutralisation with an acid. Most preferably, any excess base is removed by neutralisation with acetic or dilute hydrochloric acid.

Preferably, the particle size of the base is less than 75, more preferably less than 45, microns.

Whilst the process as described produces the exo compound (I) in good to excellent yield it is believed that a portion of (I) is produced via the epimerisation of the endo isomer (III), which is also produced in this process:-

R is as defined for formula (I).

The following Examples illustrate the high yields obtainable by the process of the present invention :gA=grams of activity.

Example 1

1α, 5α, 6α-3-Benzyl-6-nitro-2,4-dioxo-3-azabicyclo[3.1.0]hexane.

To a stirred slurry of potassium carbonate (7.5g;0.054 mole) in acetone (40 ml) and water (1 ml) at ambient temperature was added dropwise, over a period of about 2 hours, a solution of bromonitromethane (5 g - 4.48gA, 0.032 mole) and N-benzylmaleimide (5 g; 0.026 mole) in acetone (40 ml).

When reaction was complete (in situ yield 61%), powdered molecular sieves (10 g) were added and the solvent exchanged with toluene by constant volume distillation. The resulting slurry was filtered to remove unreacted potassium carbonate/sieves/tar and the filter cake washed with toluene.

The combined toluene filtrates were washed with dilute hydrochloric acid (2M), then concentrated under reduced pressure to approximately 20 ml then cooled to 0-5°C. The desired product was subsequently isolated by filtration and dried in vacuo to yield the title compound (3.03gA, 46%) as a white to pale yellow crystalline solid, m.p. 115°C. NMR (CDCl₃): δ 3.34 (s,2H), 4.46 (s,1H), 4.53 (s, 2H), 7.3 (s, 5H).

Example 2

1α, 5α, 6α-3-Benzyl-6-nitro-2,4-dioxo-3-azabicyclo [3.1.0]hexane.

To a stirred slurry of potassium carbonate (7.5 g, 0.054 mole) in dimethylformamide (40 ml) and water (1 ml) at ambient temperature was added dropwise, over a period of about 2 hours, a solution of bromonitromethane (5 g - 4.48gA, 0.032 mole) and N-benzylmaleimide (5 g; 0.026 mole) in dimethylformamide (40 ml).

When the reaction was complete (in situ 72%), the excess potassium carbonate was neutralised by the addition of acetic acid (4.68 g, 0.078 mole) and then water (160 ml) was added. The resulting precipitate was isolated by filtration and dried in vacuo to yield the title compound (4.2 gA, 66%) as an

off-white/light brown solid, m.p. 114°C. NMR (CDCl₃) : δ 3.34 (s, 2H), 4.46 (s, 1H), 4.53 (s, 2H), 7.3 (s, 5H).

Example 3

1α, 5α, 6α-3-Benzyl-6-nitro-2,4-dioxo-3-azabicyclo [3.1.0] hexane.

To a stirred slurry of potassium carbonate (7.5 g, 0.054 mole) in dimethylformamide (40 ml) and water (1 ml) at ambient temperature was added dropwise, over a period of about 2 hours, a solution of bromonitromethane (5 g - 4.48gA, 0.032 mole) and N-benzylmaleimide (5 g; 0.026 mole) in dimethylformamide (40 ml).

When the reaction was complete, the excess potassium carbonate was removed by filtration and then water (160 ml) was added.. The resulting precipitate was isolated by filtration and dried in vacuo to yield the title compound (3.5gA, 54%) as a light brown solid, m.p. 116-117°C. NMR (CDCl₃): δ 3.34 (s, 2H), 4.46 (s, 1H), 4.53 (s, 2H), 7.3 (s, 5H).

Examples 4-17

 1α , 5α , 6α -3-Benzyl-6-nitro-2,4-dioxo-3-azabicyclo [3.1.0] hexane was prepared similarly to the procedure of Example 1 using N-benzylmaleimide and bromonitromethane in the presence of water and using the stated base/solvent combinations. Although the title compound was not actually isolated in these Examples, the <u>in situ</u> yields of it were measured using hplc following the end of reaction. The isolated yields will be about 5 -15% lower than the <u>in situ</u> yields.

	1	, 			· .
Example	Base		Molar	Water (by vol. based on the	la Cit.
No		Solvent	Ratio		In Situ
140	• .	Solvent		total vol.of the	Yield
			NBM:BNM	organic solvent)	
4	Pot.Carbonate	Acetonitrile	1:1.25	1.25%	60%
5	Pot.Carbonate	DMSO	1:1.25	1.25%	69%
6	Pot.Carbonate	DMF	1:1	1.25%	74%
7	Pot. Carbonate	DMF	1:1	1.25%	75%
8	Pot.Carbonate	DMAC	1:1:25	1.25%	66%
9	Pot.Carbonate	NMP	1:1.25	1.25%	68%
10	Pot.Carbonate	DME	1:1.25	1.25%	54%
11	Cesium	Acetone	1:1.25	0.5%	63%
·	Carbonate				
12	Cesium	DMF	1:1.25	1.25%	78%
	Carbonate			·	·
13	Sodium	DMF	1:1.25	1.25%	61%
	Carbonate		<u> </u>		
14	Trisodium	DMF	1:1	1.25%	58%
	Phosphate				
15	Pot. Fluoride	Acetonitrile	1:1.25	1.25%	47%
16	Pot. Fluoride	Acetone	1:1.25	1%	54%
17	Pot. Fluoride	DMF	1:1.25	1.25%	68%

Hplc Method:

Column:

Waters "Novapak" C18 15 cm x 3.9 mm i.d.

Mobile Phase:

60:40 0.02 M aqueous sodium dihydrogen

phosphate:acetonitrile.

Flow rate:

1.0 ml. min ⁻¹l.

UV detection at 220 nm

Approx. retention times:

N-Benzylmaleimide 3.47 minutes.

Bromonitromethane 1.88 minutes.

Title compound

4.59 minutes.

DMSO = Dimethylsulfoxide. DMF = dimethylformamide.

DMAC = dimethylacetamide. NMP = N-methylpyrrolidinone.

DME = dimethoxyethane.

NBM = N-benzylmaleimide. BNM = Bromonitromethane. Pot. = potassium.

Example 18

To a stirred slurry of potassium carbonate (30g, 0.2136 mole) in DMF (140 ml) and water (4 ml) at ambient temperature was added dropwise, over a period of about 2 hours, a solution of bromonitromethane [36.2g of a 47.5% w/w solution in toluene (about 20 ml), equivalent to 17.19 gA, 0.123 mole] and N-benzylmaleimide (20g, 0.1068 mole) in DMF (20 ml). When the reaction was complete (in situ yield 75%) the excess potassium carbonate was neutralised via the addition of acetic acid (19.4 ml, 20.35 g, 0.34 mole) and then water (160 ml) was added.

The resulting precipitate was isolated by filtration, washed with water (3 x 40 ml) and then isopropanol (3 x 20 ml) to give the title compound (17.54 gA, 66.7%).

<u>NMR</u> (CDCl₃): δ 3.34 (s,2H), 4.46 (s,1H), 4.53 (s,2H), 7.3 (s,5H).

In the above Examples, the particle size of the bases used was less than 75 microns.

CLAIMS

1. A process for preparing a compound of the formula (I):-

wherein R is C₁-C₆ alkyl, C₃-C₆ cycloalkyl or benzyl, and wherein the phenyl moiety of said benzyl group is optionally substituted by one or more substituents each independently selected from halo, nitro, C₁-C₆ alkyl, C₁-C₆ alkoxy, amino and trifluoromethyl.

which comprises adding a solution comprising a compound of the formula (II), a halonitromethane and an organic solvent selected from acetone, dimethylformamide, dimethylacetamide, acetonitrile, dimethylsulfoxide, N-methylpyrrolidinone and dimethoxyethane,

wherein R is as defined above,

to a mixture comprising a base and an organic solvent, said organic solvent being as defined above and said base being selected from potassium carbonate, sodium carbonate, cesium carbonate, trisodium phosphate, and potassium fluoride, so that a compound of the formula (I) is produced, any excess base being eliminated from the reaction mixture prior to recovery of the product (I).

2. A process according to claim 1, which comprises adding a solution of a compound of the formula (II) as defined in claim 1 in a mixture of a halonitromethane and an organic solvent, said organic solvent being selected from acetone, dimethylformamide, dimethylacetamide, acetonitrile,

dimethylsulfoxide, N-methylpyrrolidone and dimethoxyethan, to a mixture of a base in an organic solvent, said organic solvent being as defined above and the base being selected from potassium carbonate, sodium carbonate, cesium carbonate, trisodium phosphate, and potassium fluoride, so that a compound of the formula (I) is produced, any excess base being eliminated from the reaction mixture prior to recovery of the product (I).

- A process according to claim 1 or 2, wherein R is C₁-C₆ alkyl or benzyl..
- A process according to claim 3, wherein R is benzyl.
- 5. A process according to any one of the preceding claims, wherein the halonitromethane is chloronitromethane or bromonitromethane.
- 6. A process according to claim 5, wherein the halonitromethane is bromonitromethane.
- A process according to claim 6, where the bromonitromethane is used as a solution in a stabilising amount of an inert organic solvent.
- 8. A process according to claim 7, wherein the bromonitromethane is used as a solution containing from 25 to 50% w/w toluene.
- 9. A process according to any one of the preceding claims, wherein the compound (II) and the halonitromethane are used in a molar ratio of from 1:1 to 1:1.25.
- 10. A process according to claim 8, wherein the molar ratio is about 1:1.
- 11. A process according to any one of the preceding claims, wherein the mixture of the base and the organic solvent contains up to 5% by volume water based on the total volume of the organic solvent(s).
- 12. A process according to claim 10, wherein the mixture contains from 1-3% by volume water.
- 13. A process according to any one of the preceding claims, wherein the organic solvent is dimethylformamide and the base is potassium carbonate.
- 14. A process according to any one of claims 1 to 12, wherein the organic solvent is dimethylsulfoxide and the base is potassium carbonate.
- 15. A process according to any one of the preceding claims, which is carried out at a temperature of from 5 to 50°C.

- 16. A process according to claim 14, which is carried out at a temperature of from 20°C to 30°C.
- 17. A process as claimed in claim 16, which is carried out at ambient temperature.
- 18. A process according to any one of the preceding claims, wherein any excess base is eliminated from the reaction mixture either by filtration, or by neutralisation with an acid.
- 19. A process according to claim 18, wherein any excess base is removed by neutralisation with acetic or dilute hydrochloric acid.
- 20. A process according to any one of the preceding claims, wherein the particle size of the base is less than 75 microns.
- 21. A process according to any one of the preceding claims wherein the solution of the compound (II) in the mixture of the halonitromethane and organic solvent is slowly added to the base/solvent mixture.
- 22. A process according to any one of the preceding claims wherein the ratio of the volume of the organic solvent in the mixture of the base and organic solvent: the volume of the organic solvent in the solution of compound (II) and bromonitromethane is from approximately 1:1 to 7:1.

INTERNATIONAL SEARCH REPORT

Internal Application No PCT/FP 96/04782

A. CLASS IPC 6	IFICATION OF SUBJECT MATTER C07D209/52	
	to International Patent Classification (IPC) or to both national clas	sification and IPC
	S SEARCHED	ation numbers
IPC 6	documentation searched (classification system followed by classific CO7D	aton symbols)
Documenta	tion searched other than minimum documentation to the extent tha	t such documents are included in the fields searched
Electronic	data base consulted during the international search (name of data b	ase and, where practical, search terms used)
		•
C. DOCUN	MENTS CONSIDERED TO BE RELEVANT	relevant passares Relevant to claim No.
Category	Citation of document, with indication, where appropriate, of the	relevant w claim No.
A	WO 95 19361 A (PFIZER INC.) 20 Cited in the application see example 1	July 1995 1
A	WO 93 18001 A (PFIZER INC.) 16 5 1993 cited in the application see example 1	September 1
	·	
Fur	ther documents are listed in the continuation of box C.	X Patent family members are listed in annex.
* Special ca	alegories of cited documents:	"T" later document published after the international filing date
	nent defining the general state of the art which is not dered to be of particular relevance	or priority date and not in conflict with the application but cited to understand the principle or theory underlying the
"E" earlier filing	document but published on or after the international date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to
MODI CD	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another on or other special reason (as specified)	involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention
O. qocum	no or other special reason (as speciales) cent referring to an oral disclosure, use, exhibition or means	cannot be considered to involve an inventive step when the document is combined with one or more other such docu- ments, such combination being obvious to a person shilled
'P' docum	ent published prior to the international filing date but than the priority date claimed	in the art. '&' document member of the same patent family
	actual completion of the international search	Date of mailing of the international search report
2	4 January 1997	0 5. 02. 97
Name and	mailing address of the ISA	Authorized officer
	European Patrat Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijewijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl,	Now Billon II
	Face (+31-70) 340-3016	Van Bijlen, H

1

INTERNATIONAL SEARCH REPORT

information on patent family members

Inte anal Application No
PCT/EP 96/04782

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO-A-9519361		AU-A-	1075495	01-08-95
		CA~A-	2181351	20-07-95
		EP-A-	0740667	06-11-96
•	•	FI-A-	962880	17-07-96
		NO-A-	962990	17-07-96
	*	ZA-A-	9500340	17-07-96
WO-A-9318001	16-09-93	US-A-	5256791	26-10-93
NO // 3010001		AU-B-	667872	18-04-96
		CA-A-	2131160	16-09-93
		CN-A-	1076440	22-09-93
	· · · ·	EP-A-	0629189	21-12-94
•		FI-A-	944013	01-09-94
	•	HU-A-	70497	30-10-95
		JP-T-	7500349	12-01-95
	•	NO-A-	943243	01-09-94
		NZ-A-	246768	26-09-95
		US-A-	5298629	29-03-94
		ZA-A-	9301428	01-09-94