WHAT IS CLAIMED IS:

1. A method of inhibiting or treating heart damage induced by a cardiotoxic medicament in a mammal ,said method comprising administering to said mammal an effective cardioprotective amount of a compound corresponding to Formula I

wherein

R¹ is a phenyl lower-alkyl group which may optionally be substituted in the phenyl ring by lower alkyl, lower alkoxy or halogen, or for a naphthyl lower-alkyl group,

R² is hydrogen or a group forming a biolabile ester, and

R³ is hydrogen or a group forming a biolabile ester, or a physiologically compatible salt thereof.

- 2. A method according to claim 1, wherein said medicament is a cytostatic agent.
- 3. A method according to claim 2, wherein said cytostatic agent is a cytostatic antibiotic.
 - 4. A method according to claim 1, wherein said mammal is a human.
- 5. A method according to claim 1, wherein said mammal has suffered myocardial damage.
- 6. A method according to claim 1, wherein at least one of R² and R³ is a group forming a biolabile ester.
- 7. A method according to claim 6, wherein the group which forms a biolabile ester is a lower alkyl group, or a phenyl or phenyl lower-alkyl group which is optionally substituted in the phenyl ring by lower alkyl or by a lower alkylene chain bonded to 2 adjacent carbon atoms.

- 8. A method according to claim 7, wherein the compound is (3S,2'R)-3-{1-[2'-(ethoxycarbonyl)-4'-phenyl-butyl]-cyclopentane-1-carbonylamino}-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-acetic acid or a physiologically compatible salt thereof.
- 9. A method according to claim 7, wherein the group which forms a biolabile ester is a phenyl, benzyl or indanyl group or a dioxolanylmethyl group, optionally substituted in the dioxolane ring by lower alkyl.
- 10. A method according to claim 9, wherein the group which forms a biolabile ester is a (2,2-dimethyl-1,3-dioxolan-4-yl)methyl group or a C_2-C_6 -alkanoyloxymethyl group, optionally substituted at the oxymethyl group by lower alkyl.
- 11. A method according to claim 1, wherein R² is a group forming a biolabile ester and R³ is hydrogen.
- 12. In the therapeutic administration to a mammal of a substance having oxidative-cytotoxic side effects, the improvement comprising administering to said mammal an effective oxidative-cytotoxic side effect inhibiting amount of a compound corresponding to Formula I

wherein

- R¹ is a phenyl lower-alkyl group which may optionally be substituted in the phenyl ring by lower alkyl, lower alkoxy or halogen, or for a naphthyl lower-alkyl group,
- R² is hydrogen or a group forming a biolabile ester, and
- R³ is hydrogen or a group forming a biolabile ester, or a physiologically compatible salt thereof.
 - 13. The improvement of claim 12, wherein said mammal is a human.
- 14. The improvement of claim 12, wherein said compound inhibits oxidative-cardiotoxic, side-effects.

- 15. The improvement of claim 12, wherein said compound or physiologically compatible salt thereof is co-administered simultaneously with said substance.
- 16. The improvement according to claim 12, wherein at least one of R² and R³ is a group forming a biolabile ester.
- 17. The improvement according to claim 12, wherein the group which forms a biolabile ester is a lower alkyl group, or a phenyl or phenyl lower-alkyl group which is optionally substituted in the phenyl ring by lower alkyl or by a lower alkylene chain bonded to 2 adjacent carbon atoms.
- 18. The improvement according to claim 17, wherein the compound is (3S,2'R)-3-{1-[2'-(ethoxycarbonyl)-4'-phenyl-butyl]-cyclopentane-1-carbonylamino}-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-acetic acid or a physiologically compatible salt thereof.
- 19. The improvement according to claim 17, wherein the group which forms a biolabile ester is a phenyl, benzyl or indanyl group or a dioxolanylmethyl group, optionally substituted in the dioxolane ring by lower alkyl.
- 20. The improvement according to claim 19, wherein the group which forms a biolabile ester is a (2,2-dimethyl-1,3-dioxolan-4-yl) methyl group or a C_2-C_6 -alkanoyl-oxymethyl group, optionally substituted at the oxymethyl group by lower alkyl.
- 21. The improvement according to claim 12, wherein R^2 is a group forming a biolabile ester and R^3 is hydrogen.
- 22. The improvement according to claim 12, wherein said substance is selected from the group consisting of the anthracyclines, mitoxantrone and prodrugs thereof.
- 23. A pharmaceutical composition according to claim 22, wherein said medicament is an anthracycline selected from the group consisting of daunorubicin, doxorubicin (adriamycin), epirubicin, and prodrugs thereof.

24. A pharmaceutical composition comprising in combination a medicament having cardiotoxic, oxidative-cytotoxic or oxidative-cardiotoxic side-effects, and a compound corresponding to Formula I

wherein

R¹ is a phenyl lower-alkyl group which may optionally be substituted in the phenyl ring by lower alkyl, lower alkoxy or halogen, or for a naphthyl lower-alkyl group,

R² is hydrogen or a group forming a biolabile ester, and

R³ is hydrogen or a group forming a biolabile ester, or a physiologically compatible salt thereof.

- 25. A pharmaceutical composition according to claim 24, wherein said medicament is a cytostatic agent having cardiotoxic side-effects.
- 26. A pharmaceutical composition according to claim 24, wherein said medicament is a cytostatic antibiotic.
- 27. A pharmaceutical composition according to claim 24, wherein said medicament is selected from the group consisting of the anthracyclines, mitoxantrone and prodrugs thereof.
- 28. A pharmaceutical composition according to claim 27, wherein said medicament is an anthracycline selected from the group consisting of daunorubicin, doxorubicin (adriamycin), epirubicin, and prodrugs thereof.
- 29. A pharmaceutical composition according to claim 24, wherein at least one of R^2 and R^3 in said compound is a group forming a biolabile ester.
- 30. A pharmaceutical composition according to claim 29, wherein the group which forms a biolabile ester is a lower alkyl group, or a phenyl or phenyl lower-alkyl group

which is optionally substituted in the phenyl ring by lower alkyl or by a lower alkylene chain bonded to 2 adjacent carbon atoms.

- 31. A pharmaceutical composition according to claim 29, wherein the compound is (3S,2'R)-3-{1-[2'-(ethoxycarbonyl)-4'-phenyl-butyl]-cyclopentane-1-carbonylamino}-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-acetic acid or a physiologically compatible salt thereof.
- 32. A pharmaceutical composition according to claim 29, wherein the group which forms a biolabile ester is a phenyl, benzyl or indanyl group or a dioxolanylmethyl group, optionally substituted in the dioxolane ring by lower alkyl.
- 33. A pharmaceutical composition according to claim 32, wherein the group which forms a biolabile ester is a (2,2-dimethyl-1,3-dioxolan-4-yl)methyl group or a C₂-C₆-alkanoyloxymethyl group, optionally substituted at the oxymethyl group by lower alkyl.
- 34. A pharmaceutical composition according to claim 24, wherein R² in said compound is a group forming a biolabile ester and R³ is hydrogen.
- 35. A pharmaceutical package comprising at least one dosage unit of a medicament having cardiotoxic, oxidative-cytotoxic or oxidative-cardiotoxic side-effects, and at least one dosage unit of a compound corresponding to Formula I

wherein

R¹ is a phenyl lower-alkyl group which may optionally be substituted in the phenyl ring by lower alkyl, lower alkoxy or halogen, or for a naphthyl lower-alkyl group,

R² is hydrogen or a group forming a biolabile ester, and

R³ is hydrogen or a group forming a biolabile ester, or a physiologically compatible salt thereof.

- 36. A pharmaceutical package according to claim 35, wherein said medicament is a cytostatic agent having cardiotoxic side-effects.
- 37. A pharmaceutical package according to claim 35, wherein said medicament is a cytostatic antibiotic.
- 38. A pharmaceutical package according to claim 35, wherein said medicament is selected from the group consisting of the anthracyclines, mitoxantrone and prodrugs thereof.
- 39. A pharmaceutical package according to claim 38, wherein said medicament is an anthracycline selected from the group consisting of daunorubicin, doxorubicin (adriamycin), epirubicin, and prodrugs thereof.
- 40. A pharmaceutical package according to claim 35, wherein at least one of R² and R³ in said compound is a group forming a biolabile ester.
- 41. A pharmaceutical package according to claim 40, wherein the group which forms a biolabile ester is a lower alkyl group, or a phenyl or phenyl lower-alkyl group which is optionally substituted in the phenyl ring by lower alkyl or by a lower alkylene chain bonded to 2 adjacent carbon atoms.
- 42. A pharmaceutical package according to claim 40, wherein the compound is (3S,2'R)-3-{1-[2'-(ethoxycarbonyl)-4'-phenyl-butyl]-cyclopentane-1-carbonylamino}-2,3,4,5-tetrahydro-2-oxo-1H-1-benzazepin-1-acetic acid or a physiologically compatible salt thereof.
- 43. A pharmaceutical package according to claim 40, wherein the group which forms a biolabile ester is a phenyl, benzyl or indanyl group or a dioxolanylmethyl group, optionally substituted in the dioxolane ring by lower alkyl.
- 44. A pharmaceutical package according to claim 43, wherein the group which forms a biolabile ester is a (2,2-dimethyl-1,3-dioxolan-4-yl)methyl group or a C_2 - C_6 -alkanoyloxymethyl group, optionally substituted at the oxymethyl group by lower alkyl.

45. A pharmaceutical package according to claim 35, wherein R^2 in said compound is a group forming a biolabile ester and R^3 is hydrogen.