

Фильтрация в BGP

Фильтрация входящих BGP Update

- Не все маршруты нужно принимать от EBGP-пиров:
 - Некоторые префиксы провайдер в принципе не должен вам анонсировать
 - Ваше устройство, как правило, ограничено по ресурсам
- Что можно принять от провайдера, если вы предприятие?
 - Только маршрут по умолчанию
 - Маршрут по умолчанию и отдельные specific routes
 - Маршруты клиентов, подключенных к тому же провайдеру
 - Маршруты крупных контент-провайдеров для балансировки трафика
 - Вообще все маршруты в Интернете (>700000 префиксов)
 - Прекрасный способ выстрелить себе в ногу и бездарно потратить деньги на железо

Фильтрация исходящих BGP Update

- Не все маршруты нужно отправлять EBGP-пирам:
 - По сути, вашему провайдеру не нужно отправлять ничего, кроме ваших PI IP
 - Особенно плохая идея отправлять вообще все маршруты без разбора

BGP фильтрация в IOS

Механизмы фильтрации в Cisco IOS

- Networking For everyone
- Cisco IOS позволяет фильтровать маршруты BGP-пира с помощью:
 - distribute-list фильтрация на основе ACL
 - prefix-list фильтрация на основе prefix-list
 - filter-list фильтрация на основе AS-Path ACL
 - route map фильтрация на основе чего угодно плюс изменение атрибутов

Фильтрация с помощью ACL/Prefix List

• Фильтрация исходящих префиксов по ACL:

```
R1(config)#ip access-list standard ACL_PI_ADDRESSES
R1(config-std-nacl)#permit 203.0.113.0 0.0.0.255
R1(config-std-nacl)#router bgp 65001
R1(config-router)#neighbor 10.1.1.1 distribute-list ACL_PI_ADDRESSES out
```

• Фильтрация входящих префиксов по Prefix-list

```
R1(config)#ip prefix-list PL_DEFAULT_AND_8-24 permit 0.0.0.0/0
R1(config)#ip prefix-list PL_DEFAULT_AND_8-24 permit 0.0.0.0/0 ge 8 le 24
R1(config)#router bgp 65001
R1(config-router)#neighbor 10.1.1.1 prefix-list PL_DEFAULT_AND_8-24 in
```

Фильтрация с помощью AS-Path ACL

Networking For everyone

- AS-Path ACL используют фильтрацию на основе AS-Path
 - Строковое представление AS-Path анализируется регулярным выражением
 - AS-Path ACE состоят из вердикта и шаблона регулярного выражения
 - Вердикт выносится при соответствии части AS-Path шаблону регулярного выражения
- Удобные сценарии использования AS-Path

• Компании: ограничить исходящие Update своими PI-префиксами

• Провайдеру: ограничить входящие нта маршруты его PIпрефиксами

Символы регулярного выражения

Символы	Что попадает	
Строка из цифр	Указанная подстрока	
строка1 строка2	Любая из указанных подстрок	
[диапазон]	Любой символ из диапазона	
•	Любой символ, включая пробел	
٨	Начало строки	
\$	Конец строки	
_	Любой разделитель, включая пробел, начало и конец строки	
(строка)	Группировка символов в выражение	
* ? +	"Ноль или более", "ноль или один", "один или более"	
\1	Значение первого выражения	

Примеры совпадения

Regexp	AS-Path	Match
31	27 31 23 317 223 2316	27 31 23 31 7 223 2 31 6
21 31	213 317 2316 31 12	21 3 31 7 231 6 31 12
[1-3][45]	214 317 35 567	2 <mark>14</mark> 317 <mark>35</mark> 567
1.3	321 333 66 123	32 <mark>1 3</mark> 33 66 <mark>123</mark>
^12	123 123 123	12 3 123 123
31\$	131 31 310	no match
31	131 31 10 31	131 <mark>31</mark> 10 <mark>31</mark>
(213 218)_31	213 317 1218 316 31	213 317 1218 316 31
_23(_78)?_45_	213 23 45 345	213 23 45 345
_23(_78)+_45_	213 23 78 78 78 45 345	213 23 78 78 78 45 345

Некоторые удобные регулярки

Regexp	Смысл	-
100	AS-Path содержит AS 100	
^100\$	Маршрут импортирован в напрямую подключенной AS 100	
_100\$	Маршрут импортирован в BGP в AS 100	
^100_	Маршрут получен из AS 100	
^\$	Маршрут импортирован в BGP в локальной AS	
^[0-9]+\$	Маршрут получен из внешней AS	
^([0-9]+)(_\1)*_	Coceдняя AS выполнила AS Prepending	
*	Любой AS-Path	

Фильтрация с помощью AS-Path ACL

• Фильтрация исходящих префиксов:

```
R1(config)#ip as-path access-list 1 permit $^
R1(config)#router bgp 65001
R1(config-router)#neighbor 10.1.1.1 filter-list 1 out
```

• Вероятный AS-Path ACL со стороны провайдера:

```
ISP1(config)#ip as-path access-list 1 permit $65001^
ISP1(config)#router bgp 65500
ISP1(config-router)#neighbor 10.1.1.2 filter-list 1 in
```


BGP фильтрация в IOS-XR

Routing Policy Language

- IOS XR использует Routing Policy Language
- RPL всегда требуется для eBGP
 - В простейшем случае политика "pass"

Элементы RPL

Элементы RPL

- Networking For everyone
- К каждому Policy Object можно применить одно из нескольких регу действий:
 - Pass
 - Отловленный префикс будет пропущен без изменений
 - Set
 - К префиксу будут применены действия, указанные в ключевых словах
 - Done
 - Отловленный префикс будет пропущен без изменений
 - Drop
 - Отловленный префикс будет отброшен
 - В конце политики всегда стоит implicit drop

Пример RPL

• Попробуем вместе разобраться, что же здесь сказано?

```
route-policy myPolicy
if med eq 50 and destination in (10.0.0.0/8) then
set local-preference 50
else
pass
endif
end-policy
```

```
prefix-set siteBprefixes
  2001:db8:b:10::/64,
  2001:db8:b:11::/64
end-set
!
route-policy SiteA-in-R1
if destination in siteBprefixes then
  set local-preference 150
  pass
else
  set local-preference 200
  pass
endif
end-policy
```

Применение RPL в BGP

- С т.з BGP RPL применяются на конкретного соседа
 - Одна политика в каждом направлении In/Out

router bgp 64500
neighbor 10.1.1.1
remote-as 65000
address-family ipv4 unicast
route-policy myPolicy_in in
route-policy myPolicy_out out

Networking For everyone