

MANUAL DE USUARIO

EXAMEN #2: PROBLEMA 1 Y 6

EIME. Curso: Electrónica 5

Inga. Ingrid Rodríguez de Loukota

Aux. Diana Gutiérrez

201700315 Alejandro Leonardo Yac Pérez

Guatemala, 19 de octubre de 2021

MANUAL DE USUARIO

PROBLEMA #1

Determine el área del triángulo, rectángulo, círculo y rombo, según lo escoja el usuario. Debe de preguntar el área de qué se desea, y luego ingresar los valores para calcular dicha área.

Solucion:

- 1. Primero debe descargar los archivos en "https://github.com/LeonardoYac/uVision5.git". En el encontrara un archivo llamado <examen.uvprojx> el cual se abre teniendo el programa Kiel µvision5 instalado.
- **2.** Se abrira la siguiente interfaz, donde en la parte izquierda se encuentran los proyectos realizados, y en el area central se encuentra el programa que da solucion al problema 1 con nombre de archivo (*uno.s*).

3. Para utilizar el programa debe ubicarse en la subrutina ID (línea 61). En el se ha simulado un menú para realizar los diferentes cálculos.

```
---- MUNU cálculo de áreas ---
1. TRIANGULO
2. RECTANGULO
3. CIRCULO
```

4. ROMBO

El valor debe ingresarse en la línea 64, reemplazando el valor 1 (por defecto) por el **valor** del menú elegido, Posteriormente debe ingresar los valores para realizar los cálculos correspondientes:

CALCULAR AREA DE	VALORES A INGRESAR
TRIANGULO	B [base]: línea 65, reemplazar el valor de "1" H [altura]: línea 66, reemplazar el valor de "1"
RECTANGULO	B [base]: línea 65, reemplazar el valor de "1" H [altura]: línea 66, reemplazar el valor de "1"
CIRCULO	R [radio]: línea 67, reemplazar el valor de "1"
ROMBO	DA [diagonal A]; línea 68, reemplazar el valor de "1" DB [diagonal B]: línea 69, reemplazar el valor de "1"

```
60
61 ID
                                 ;SUBRUTINA DONDE SE INGRESAN LOS VALORES PARA LOS CALCULOS
         VMOV.F32 S0, #0.5 ;1/2 Cargar valor a Registro
         ;--- MENU E INGRESO DE DATOS -----
63
         LDR RO, = 1 ; MENU: 1.TRIANGULO, 2.RECTANGULO, 3.CIRCULO, 4.ROMBO
VMOV F32 S1. #1 :B [RASE]
64
         VMOV.F32 S1, #1
65
         VMOV.F32 S1, #1 ;B [BASE]
VMOV.F32 S2, #1 ;H [ALTURA]
VMOV.F32 S3, #1 ;R [RADIO]
VMOV.F32 S4, #1 ;DA [DIAGONAL A]
                                 ;B [BASE]
66
67
68
69
         VMOV.F32 S5, #1
                                 ; DB [DIAGONAL B]
         BX LR
```

Si el valor elegido en el menú es incorrecto al ejecutar el programa dará como resultado todo '0'.

4. Antes de correr el programa debe de verificar si está utilizando el simulador correcto, luego debe presionar "build | f7", si todo esta correcto en la consola mostrara "0 Errores" y finalmente debe ubicarse en el icono de "start/stop | ctrl+f5" y presionarlo.

5. Luego debe presionar "Run | f5" y "Stop"

6. Finalmente se mostraran los resultados correspondientes en la parte izquierda, usualmente con un sombreado color azul.

----- Resultados -----

Core: [entrada]

R0: El valor del menu ingresado.

Float: [salidas]

S19: Resultado para el area del triangulo.S20: Resultado para el area del rectangulo.S21: Resultado para el area del circulo.

S22: Resultado para el area del rombo.

7. Para seleccionar otra opcion del menu primero debe detener el programa actual con "Start/Stop | Ctrl+f5" luego repetir desde el **paso 3.**

PROBLEMA #6

Escriba un programa que utilice la fórmula de Euler para cálculo de poliedro, debe encontrar el valor de por lo menos 3 diferentes (1 de ellos no debe ser convexo).

Tomando en cuenta que:

Un Poliedros Convexo: tiene angulos convexos ($<180^{\circ}$). Todas las caras se pueden apoyar sobre un plano y la relacion o formula de euler: C + V = A + 2; [caras + vertices = aristas +2]

Un Poliedro Concavo: tien algun angulo concavo (>180°), en ocaciones la figura cumple con la formula de euler.

Solucion:

- 1. Primero debe descargar los archivos en "https://github.com/LeonardoYac/uVision5.git". En el encontrara un archivo llamado <examen.uvprojx> el cual se abre teniendo el programa Kiel µvision5 instalado.
- **2.** Se abrira la siguiente interfaz, donde en la parte izquierda se encuentran los proyectos realizados, y en el area central se encuentra el programa que da solucion al problema 6 con nombre de archivo (*seis.s*).

3. Para utilizar el programa debe ubicarse en la subrutina ID (línea 24). En él se debe ingresar los valores para realizar la comprobación necesaria.

NOMBRE	VALORES A INGRESAR
CARAS	C [caras]: línea 26, reemplazar el valor de "1"
VERTICES	V [vértices]: línea 27, reemplazar el valor de "1"
ARISTAS	A [aristas]: línea 28, reemplazar el valor de "1"

```
seis.s
  23
  24
      ID
                           ; ACA SE INGRESAN LOS VALORES PARA LOS CALCULOS:
          ; valores encontrados; 6,8,12<CUBO> || 8,12,18<PRISMA EXAGONAL> || 7,10,15<NO CONVE
  25
                  RO, =1 ;C [CARAS]
                                           Cargar valor a registro
  26
                  R1, =1 ;V [VERTICES]
  27
          T.DR
                                           Cargar valor a Registro
  28
          LDR
                  R2, =1 ;A [ARISTAS]
                                           Cargar valor a Registro
          LDR
                  R3, =2
                          ;2
  29
                                           Cargar valor a Registro
  30
          BX
                  LR
```

4. Antes de correr el programa debe de verificar si está utilizando el simulador correcto, luego debe presionar "build | f7", si todo esta correcto en la consola mostrara "0 Errores" y finalmente debe ubicarse en el icono de "start/stop | ctrl+f5" y presionarlo.

5. Luego debe presionar "Run | f5" y "Stop"

6. Finalmente se mostraran los resultados correspondientes en la parte izquierda, usualmente con un sombreado color azul.

----- Resultados -----

Core: [entradas]

R0: El valor del numero de caras.R1: El valor del numero de vertices.

R2: El valor del numero de aristas.

Core: [salidas]

R6: Resultado del valor de caras + vertices [C+V].

R7: Resultado del valor de aristas + 2 [A+2].

R8: Resultado booleano "1" si cumple con euler o "0" si no cumple.

7. Para seleccionar otra combinacion, primero debe detener el programa actual con "Start/Stop | Ctrl+f5" luego repetir desde el **paso 3.**

Para el problema 6 se encontraros estos 3 resultados, cumplen con la fórmula de Euler para cálculo de poliedro.

1. POLIEDRO CONVEXO -CUBO-

CARAS: 6 VERTICE:8 ARISTA: 12

2. POLIEDRO CONVEXO -PRISMA HEXAGONAL-

CARAS: 8 VERTICE: 12 ARISTA: 18

3. POLIEDRO CONCAVO - $>180^{\circ}$ -

CARAS: 7 VERTICE: 10 ARISTA: 15