Discrete Structures – Chapter 5: Induction and Recursion

Jeremy Evert and SWOSU Computer Science

October 23, 2025

Contents

4 CONTENTS

Chapter 1

Induction and Recursion

[12pt]article amsmath, amssymb, amsthm multicol enumitem tikz xcolor lip-sum

Chapter 5.1: Mathematical Induction – The Infinite Ladder of Logic SWOSU Discrete Structures

Introduction: Climbing the Infinite Ladder

Suppose we have an **infinite ladder**. You're standing at the bottom, holding your coffee in one hand and your sense of dread in the other. You know two things:

- 1. You can reach the first rung. (Victory!)
- 2. If you can reach any rung k, then you can also reach the next rung k+1.

By pure logic (and maybe caffeine), you can conclude that you'll eventually reach every rung of that ladder. This, my friend, is the essence of mathematical induction.

Student Challenge

Prove that for all positive integers n:

$$1+2+3+\cdots+n = \frac{n(n+1)}{2}$$

Hint: Think of this as a staircase to mathematical greatness. Start small (the base case), then prove you can keep going (the inductive step).

[label=)] **Base Case:** Prove it works for n = 1. (You can do this in your sleep.) **Inductive Step:** Assume it works for some k, and show it must work for k + 1. **Victory Lap:** Conclude that it works for all n. Then treat yourself to a cookie.

Example: Inductive Thinking in the Wild

Let's prove that $n^3 - n$ is divisible by 3 for all positive integers n. Try it yourself: test n = 1, 2, 3 — see the pattern? Now imagine the induction domino effect at work — if it's true for one, it's true for the next, and so on.

Reflect

Where in life have you ever used an "inductive" idea — believing something is true because it's true in small cases and keeps working? (*Hint:* "My coffee cup always empties itself if I keep drinking" counts.)