Evaluating the efficacy of autumn-winter emission controls in the Beijing-Tianjin-Hebei region

Gongda Lu¹ (gxl642@bham.ac.uk), Eloïse A. Marais², Tuan Vu³, Zongbo Shi¹, Dongsheng Ji⁴, James Lee⁵, Qiang Zhang⁶, Lu Shen⁷, Gan Luo⁸ and Fangqun Yu⁸

¹University of Birmingham, Birmingham, UK; ²University College London, UK; ³Imperial College London, London, UK; ⁴Chinese Academy of Sciences, Beijing, China; ⁵University of York, York, UK; ⁶Tsinghua University, Beijing, China; ⁷Harvard University, Cambridge, USA; ⁸University at Albany, Albany, USA

Introduction

The Beijing-Tianjin-Hebei (BTH) region experiences severely degraded air quality in autumn-winter due to anthropogenic emissions from various sources. Strict emission reductions were imposed in 28 ("2+26") cities in autumn-winter 2017-2018 (AW2017) to meet a 10-25% PM_{2.5} reduction target relative to autumn-winter 2017-2016 (AW2016).

Here we use surface observations of air pollutants from surface air quality monitoring networks in China and the GEOS-Chem model to assess the efficacy of these short-term pollution controls.

Validation of Surface Air Quality Monitoring Networks in China

Comparisons of hourly measurements from APHH field campaign and the closest (~ 2.5 km) surface air quality monitoring network sites

Hourly observations of NO₂, SO₂, CO and PM_{2.5} from China National Environmental Monitoring Network (CNEMN) and Beijing Municipal Environmental Monitoring Network (BJMEMN) are consistent with independent measurements from the Atmospheric Pollution & Human Health (APHH) China programme in November-December 2016 (r > 0.7 for gaseous air pollutants; r > 0.95 for PM_{2.5}).

GEOS-Chem Simulated Surface Air Pollutions

Comparisons of GEOS-Chem with surface observations in BTH and its surrounding areas in AW2017

Inset text: domain mean from GEOS-Chem model

GEOS-Chem version: 12.0.0 (with updated wet scavenging scheme) Meteorology: MERRA-2 (0.5° × 0.625° resolution with 47-layers) **Emission inventory: MEIC (up to end of 2017)**

Time: AW2016 (Oct 2016 - Mar 2017) & AW2017 (Oct 2017 - Mar 2018)

GEOS-Chem is used to estimate PM_{2.5} precursor emissions in AW2016 and AW2017. The model (grids) well reproduced observed surface PM_{2.5} (circles) in BTH and its surrounding area in AW2016 (slope = 1.22, intercept = -6.04 μ g m⁻³, r = 0.68, NMB = 15%). But it overestimates the spatial variations of PM_{2.5} in AW2017 while underestimating the background $PM_{2.5}$ (intercept = -32.9 µg m⁻³).

Relative Changes in Observed and Simulated Surface Air Quality

Relative changes in surface air pollution in AW2017 compared to AW2016

The surface monitoring sites (circles) observes a domain mean decrease in NO₂ of 3.0%, in SO₂ of 28.5%, in CO of 17.4% and in PM_{2.5} of 14.9% in AW2017. The GEOS-Chem model (grids) also shows reductions of air pollutants in the domain. But it underestimates the magnitudes of reductions in $PM_{2.5}$ (slope = 0.62) while it well reproduces observed PM_{2.5} in AW2016.

Anthropogenic emissions from MEIC

Total anthropogenic emissions of NO, SO₂, CO, NH₃, BC, OC and **NMVOCs in North China Plain in AW2016**

Scale factors are applied to MEIC emissions based on the discrepancies in surface concentrations from the measurements and the model with the original MEIC inventory. These include a uniform scale factor of 1.5 applied to MEIC NO emissions and of 2.4 to MEIC CO emissions across the domain. Spatially varying scale factors are applied to MEIC SO₂, as just 7 grids in the model are responsible for a 41% underestimate in modelled SO₂ concentrations.

NEXT STEPS:

- Adjust scale factors for components of primary PM_{2.5} emissions (OC and BC) in AW2017.
- Conduct model experiments to investigate sensitivity of PM_{2.5} to emissions of precursors in BTH in AW2017.

Data Sources

Surface data from CNEMN and BJMEMN: https://beijingair.sinaapp.com/ **APHH** campaign measurements:

https://catalogue.ceda.ac.uk/uuid/648246d2bdc7460b8159a8f9daee7844