МКЭ Подлесов Егор

0.1 Постановка задачи

В области $\Omega = [0,1]^2$ решается двумерная задача Дирихле для двумерного стационарного оператора диффузии:

$$\begin{cases} (-\mathbb{D}u) = f, x \in \Omega, \\ u|_{\delta\Omega} = g, \end{cases}$$

где $\mathbb{D}=diag(d_x,d_y)$. Для решения используется Метод конечных элементов на треугольной сетке $w_h=ih,jh,$ где $h=\frac{1}{N}.$

0.2 Результаты экспериментов

Рассмотрим задачи с известным аналитическим решением и построим для них графики C-нормы и L_2 -нормы при измельчении сетки:

1.
$$f = \sin(\pi x)\sin(\pi y)$$
$$d_x = 1, d_y = 1$$
$$u = \frac{\sin(\pi x)\sin(\pi y)}{2\pi^2}$$

Рис. 1: $f = sin(\pi x)sin(\pi y)$

2.
$$f = \sin(4x)\sin(4y)$$

 $d_x = 5, d_y = 1$
 $u = \frac{\sin(4x)\sin(4y)}{16(d_x + d_y)}$

Рис. 2: f = sin(4x)sin(4y)