# Predicting complex diseases: performance and robustness

Florian Privé, Hugues Aschard, Michael G.B. Blum

RECOMB-Genetics 2018

# Introduction

## Disease architectures



Source: 10.1126/science.338.6110.1016

How to predict common diseases based on common variants with small effects?

# Interest in prediction: polygenic risk scores (PRS)

- Wray, Naomi R., Michael E. Goddard, and Peter M. Visscher. "**Prediction of individual genetic risk** to disease from genome-wide association studies." Genome research 17.10 (**2007**): 1520-1528.
- Evans, David M., Peter M. Visscher, and Naomi R. Wray. "Harnessing the information contained within genome-wide association studies to improve **individual prediction of complex disease risk**." Human molecular genetics 18.18 (**2009**): 3525-3531.
- Wray, Naomi R., et al. "Pitfalls of **predicting complex traits** from SNPs." Nature Reviews Genetics 14.7 (**2013**): 507.
- Dudbridge, Frank. "Power and **predictive accuracy of polygenic risk scores**." PLoS genetics 9.3 (**2013**): e1003348.
- Chatterjee, Nilanjan, Jianxin Shi, and Montserrat García-Closas.
   "Developing and evaluating polygenic risk prediction models for stratified disease prevention." Nature Reviews Genetics 17.7 (2016): 392.
- Martin, Alicia R., et al. "Human demographic history impacts **genetic risk prediction** across diverse populations." The American Journal of Human Genetics 100.4 (2017): 635-649.

# Genome-wide association studies (GWAS)

In case-control studies, a GWAS test each single-nucleotide polymorphism (SNP) **independently**, computing an **effect size**  $\beta$  and a **p-value** p.



Then, we can **combine these effects in a polygenic risk score (PRS)** of disease.

## Widely-used method to compute PRS

**GWAS + Clumping + Thresholding ("C+T" or just "PRS")** (Chatterjee et al. 2013; Dudbridge 2013; Wray et al. 2007)

$$PRS_i = \sum_{\substack{j \in S_{ ext{clumping}} \ p_j < p_T}} eta_j \cdot G_{i,j}$$



Weights learned independently and heuristics for correlation and regularization.

# A more optimal approach to computing PRS?

#### Statistical learning

- joint models of all SNPs at once
- use regularization to account for correlated and null effects
- already proved useful in the litterature (Abraham et al. 2013; Okser et al. 2014; Spiliopoulou et al. 2015)

#### Our contribution

- a memory- and computation-efficient implementation to be used for biobank-scale data
- an automatic choice of the regularization hyper-parameter
- a comprehensive comparison for different disease architectures

# Methods

# Penalized Logistic Regression

$$rg \min_{eta_0,\,eta}(\lambda,lpha) \left\{ \underbrace{-\sum_{i=1}^n \left(y_i \log(p_i) + (1-y_i) \log(1-p_i)
ight)}_{ ext{Loss function}} + \underbrace{\lambda\left((1-lpha)rac{1}{2}\|eta\|_2^2 + lpha\|eta\|_1
ight)}_{ ext{Penalization}} 
ight\}$$

- $ullet \ p_i = 1/\left(1+\exp\left(-(eta_0+x_i^Teta)
  ight)
  ight)$
- x is denoting the genotypes and covariables (e.g. principal components),
- y is the disease status we want to predict,
- $\lambda$  is a regularization parameter that needs to be determined and
- $\alpha$  determines relative parts of the regularization  $0 \le \alpha \le 1$ .

#### Efficient algorithm

- Sequential strong rules for discarding predictors in lasso-type problems (Tibshirani et al., 2012)
- implemented in R package {biglasso} (Zeng et al., 2017)
- reimplemented in R package {bigstatsr} (Privé et al., 2018) with Cross-Model Selection and Averaging (CMSA)

Efficient analysis of large-scale genome-wide data with two R packages: bigstatsr and bigsnpr 3

Florian Privé X, Hugues Aschard, Andrey Ziyatdinov, Michael G B Blum X

Bioinformatics, bty185, https://doi.org/10.1093/bioinformatics/bty185

Package {bigstatsr} and {bigsnpr} use memory-mapping to matrices stored on risk to handle biobank-scale data.

## Cross-Model Selection and Averaging (CMSA)

#### Automatic choice of the regularization hyper-parameter, in turn



- dashed line:  $\lambda$  corresponding to model used
- dotted line: early stopping  $\lambda$

# Comprehensive simulations: varying many parameters

| Numero of<br>scenario | Dataset            | Size of<br>training set              | Causal SNPs<br>(number and location)                | Distribution<br>of effects | Heritability | Simulation<br>model | Methods                                 |
|-----------------------|--------------------|--------------------------------------|-----------------------------------------------------|----------------------------|--------------|---------------------|-----------------------------------------|
| 1                     | All 22 chromosomes | 6000                                 | 30 in HLA<br>30 in all<br>300 in all<br>3000 in all | Gaussian<br>Laplace        | 0.8<br>0.5   | simple<br>fancy     | PRS logit-simple logit-triple (T-Trees) |
| 2                     | Chromosome 6 only  | -                                    | -                                                   | -                          | -            | simple              | PRS<br>logit-simple                     |
| 3                     | All 22 chromosomes | 1000<br>2000<br>3000<br>4000<br>5000 | 300 in all                                          | 150                        |              | -                   | -                                       |

#### **Models**

- simple: only additive effects
- fancy: additive, dominant and interaction-type effects

#### **Methods**

- PRS: PRS-all (no p-value thresholding), PRS-stringent (GWAS threshold of significance) and PRS-max (best prediction for all thresholds, considered as an upper-bound)
- logit-simple: penalized logistic regression with  $\alpha=0.5$  and CMSA

# Predictive performance measures

AUC (Area Under the ROC Curve) is used.



$$\mathrm{AUC} = P(S_{\mathrm{case}} > S_{\mathrm{control}})$$

As a second measure, the **partial AUC** for specificities between 90% and 100% is also reported.

# Results

## Higher predictive performance with logit-simple



Penalized logistic regression provides higher predictive performance in the cases that matter, especially when there are correlated variables.

#### Predictive performance of C+T method varies with threshold



Recall that prediction of PRS-max is an upper-bound of the prediction provided by the C+T method.

## Prediction with logit-simple is improving faster



Performance of methods improve with larger sample size. Yet, penalized logistic regression is improving faster than the C+T method.

## Real data

#### Celiac disease

- intolerance to gluten
- only treatment: gluten-free diet
- heritability: 57-87% (Nisticò et al. 2006)
- prevalence: 1-6%

#### Case-control study for the celiac disease (Dubois et al. 2010)

- ~15,000 individuals
- ~280,000 SNPs
- ~30% cases

## Results: real Celiac phenotypes



| Method       | AUC              | pAUC              | # predictors | Execution time (s) |
|--------------|------------------|-------------------|--------------|--------------------|
| PRS-max      | 0.824 (0.000704) | 0.0286 (0.00016)  | 9850 (781)   | 148 (0.414)        |
| logit-simple | 0.888 (0.000468) | 0.0414 (0.000164) | 3220 (62)    | 83.8 (1.27)        |
| logit-triple | 0.892 (0.000488) | 0.0429 (0.000174) | 4470 (80.6)  | 141 (1.85)         |

# Discussion

#### Summary of our penalized regression as compared to the C+T method

- A more optimal approach for predicting complex diseases
- models that are linear and very sparse
- very fast
- automatic choice for the regularization parameter
- can be extended to capture also recessive and dominant effects

#### Prospects: future work with the UK Biobank

- use of external summary statistics to improve models
- generalization to external populations
- integration of clinical and environmental data

# Thanks!

Presentation: https://privefl.github.io/thesis-docs/recomb18.html

R package {bigstatsr}: https://github.com/privefl/bigstatsr

R package {bigsnpr}: https://github.com/privefl/bigsnpr



Slides created via the R package xaringan.

# Real genotype data

Use real data from a case-control study for the Celiac disease.



Keep only controls from the UK and not deviating from the robust Malahanobis distance.

# Simulate new phenotypes

## The liability-threshold model



#### Two models of liability

#### A "simple" model

$$y_i = \sum_{j \in S_{ ext{causal}}} w_j \cdot \widetilde{G_{i,j}} + \underbrace{\epsilon_i}_{ ext{environmental effect}}$$
 environmental effect

#### A "fancy" model

$$y_i = \sum_{\substack{j \in S_{ ext{causal}}^{(1)} \ ext{linear}}} w_j \cdot \widetilde{G_{i,j}} + \sum_{\substack{j \in S_{ ext{causal}}^{(2)} \ ext{dominant}}} w_j \cdot \widetilde{D_{i,j}} + \sum_{\substack{k=1 \ j_1 = e_k^{(3.1)} \ j_2 = e_k^{(3.2)}}} w_{j_1} \cdot \widetilde{G_{i,j_1}} \widetilde{G_{i,j_2}} + \epsilon_i$$

- $w_j$  are **weights** (generated with a Gaussian or a Laplace distribution)
- $G_{i,j}$  is the **allele count** of individual i for SNP j
- $ullet \ D_{i,j} = \mathbf{1}\left\{G_{i,j} 
  eq 0
  ight\}$

## Extension via feature engineering

We construct a separate dataset with, for each SNP variable, two more variables coding for recessive and dominant effects.



We call these two methods "logit-simple" and "logit-triple".

## Feature engineering improves prediction



## Prediction with logit-simple is improving faster

