# Assignment Project Exam Help (Continuous) Gaussian Processes

https://powcoder.com

Add WeChat powcoder

#### Multivariate normal

# A standom vector $\vec{x}$ ( $\vec{x}$ $\vec{p}$ $\vec{r}$ $\vec{r}$ ) is (multipariate) normal $\vec{r}$ $\vec{r}$

The distribution of a (multivariate) normal vector can be specified by the postor and powers of the company of

A Gaussian process  $(X_t)_{t \in I}$  is a random process for which the finite-dimensional distributions are all multivariate normal, i.e.  $(X_{t_1}, Q, Q_{t_r})$  with aria  $t_1$  are  $t_2 < \cdots < t_r$  all in I. Typically I is  $[0, \infty)$  or [0, 1].

2

#### Continuous Gaussian processes

# We'll restrict our attention to Gaussian processes $(X_t)_{t \in I}$ that are Assignment obtain ject Exam Help

Recall that for continuous processes, the distribution of the process is determined by the finite-dimensional distributions.

For a dates Sroces De. W. Grout Valiate Calsa, determined by the mean vectors and covariance matrices.

It follows that the distribution of a continuous Gaussian process  $(X_t)_{t \notin A}$  is definitely be two fractions: DOWCOCET the mean function  $\mu(t) = \mathbb{E}[X_t]$  for  $t \in I$  and the covariance function  $\Sigma(s,t) = \mathrm{Cov}(X_s,X_t)$  for  $s \leq t$  both in I.

#### Brownian motion simulation



#### Brownian bridge



#### Brownian motion and Brownian bridge

Assignment Project Exam Help (standard) Brownian motion  $(W_t)_{t\geq 0}$  is a continuous Gaussian process with  $\mu(t)=0$  and  $\Sigma(s,t)=s$  for  $s\leq t$ .

(standard) Browniah bridge  $(B_t)$  continuous Gaussian process with  $\mu(t) \neq 0$  and  $\Sigma(s,t) = 0$  for  $\Sigma(t)$  for  $\Sigma(t)$ 

How do we know that such processes exist? We can construct them as limits of things that exist.

Add We Chat powcoder

Let  $(Z_q)_{q\in\mathbb{Q}\cap[0,1]}$  be i.i.d. standard normal random variables.

Define a sequence of random functions  $(W_t^{(n)})_{t\in[0,1]}$  for  $n\in\mathbb{N}$  by:

## Assignment Project Exam Help

i.e. set  $W_0^{(1)}=0$  and  $W_1^{(1)}=Z_1$ , and then linearly interpolate. Set  $W_0^{(1)}=0$  and  $W_1^{(1)}=Z_1$ , and then linearly interpolate.

$$\begin{array}{c} W_{1/2}^{(2)} = W_{1/2}^{(1)} + \frac{1}{\sqrt{2^2}} Z_{1/2}, \\ \text{and then linearly interpolate in between} \\ \end{array}$$

More generally define  $W^{(n+1)}$  to be equal to  $W^{(n)}$  at points  $2i/2^n$ , and define  $W^{(n+1)}$  at the points q of the form  $(2i+1)/2^n$  by adding some extra randomness  $\frac{1}{\sqrt{2^n}}Z_q$  to  $W_q^{(n)}$  and then linearly interpolating.

Assignment Project Exam Help https://powcoder.com.

Add WeChat powcoder

Assignment Project Exam Help https://powcoder.com Add WeChat powcoder

# Assignment Project Exam Help s://powcoder.com Add WeChat powcoder

## Assignment Project Exam Help

covariance functions if we restrict to times of the form  $i/2^n$ .

This equipment of (random) continuous functions converges (as  $n \to \infty$  (uniformly) to a random continuous function  $(W_t)_{t \in [0,1]}$ . This random function has the correct mean and covariance functions since it does at every dyadic rational point.

Add WeChat powcoder

#### Brownian motion (BM)

BM has independent increments:

If 
$$0 < s_1 < t_1 < s_2 < t_2, \ldots, < s_n < t_n$$
 then  $(W_{t_i} - W_{s_i})_{i \le n}$  are sindependent random veriables of each man which and Help

Definition of BM is equivalent to saying that  $(W_t)_{t>0}$  is continual powerful p

- (i)  $W_0 = 0$  and,
- (ii) with independent increments (if they are disjoint)
- (iii) and  $W_t W_s \sim \mathcal{N}(0, t-s)$  for every  $t > s \geq 0$ .

#### Exercises

## Assignment Project Exam Help

- (a) If s > 0 and  $X_t = W_{t+s} W_s$  then  $(X_t)_{t>0}$  is a BM (and in
- fact it is independent of  $(W_u)_{u \le s}$ . (b)  $P(W_u)_{u \le s}$ .  $P(W_u)_{u \le s}$ . BM.
- (c) If c > 0 and  $X_t = W_{ct}/\sqrt{c}$  then  $(X_t)_{t \ge 0}$  is a BM.
- $\overset{\text{(d)}}{A} \overset{\text{If}}{a} \overset{\text{W}_t}{W} \overset{\text{tWr}}{W} \overset{\text{then}}{C} \overset{(X_t)_{t \in [0,1]}}{N} \overset{\text{is a Brownian Bridge.}}{N} \overset{\text{Brownian Bridge.}}{N}$

#### Path properties of BM

Brownian motion is *recurrent*: for every t > 0 there exists T > t such that  $W_T = 0$ .

Sketch proof: Note that Pyroff resct and war has seel p greater than 2. Thus either  $|W_N| > 1$  or  $|W_{N-1}| > 1$ . Since W is continuous this shows that  $T_1 = \inf\{t : |W_t| = 1\}$  is finite. Similation Signification Similation Similation Significant Control of the Control One can show that  $(S_i)_{i \in \mathbb{Z}_+}$  defined by  $S_0 = 0$  and  $S_j = W_{T_i}$  for  $j \ge 1$  is a simple (unbiased) random walk. This simple random walk visits 1 infinitely often.... In fact, something stronger is true, e.g. in any interval of time (0, 2) where 20, BM visits 0 infinitely often.

Since this simple random walk also visits every integer infinitely often this shows that BM visits every point in  $\mathbb R$  infinitely often as well.

#### Properties of BM

# Assignment Project Exam Help Martingale. Help

Brow high motion is not differentiable at any point. E.g.  $\frac{W_h}{h}$  for small h is like  $tW_{1/t}$  for large t, which as a function of t has the same law as  $(W_t)_{t>0}$  so it oscillates (does not converge) as  $t \to \infty$ . Chat powcoder

#### Functional CLT

# Assignment Project Example 1p $Z_{t}^{(n)} = \frac{\sum_{i=1}^{\lfloor nt \rfloor} X_{i}}{\sqrt{n}}.$ Then $\{z_{t}, y_{t}\}_{0}$ wooder.com

(If  $Z^{(n)}$ , Z are random objects taking values in some space E we write  $A^n$  if V (E ) F A Z F A A bounded continuous function  $f: E \to \mathbb{R}$ )

#### Brownian bridge

## Assignment Project Exam Help

Brownian bridge does not have independent increments.

E.g. 
$$B_1 - B_{1/2} = -(B_{1/2} - B_0)$$
.  
**Exercise Specific ( $B_t$ )**  $Y_t \in [0,1]$  **Quantific Constitution**  $Y_t \in [0,1]$  **Quantific Constitution**  $Y_t \in [0,1]$  **Quantific Constitution**  $Y_t \in [0,1]$  Then  $X_t = B_t + tZ$  is a BM on  $[0,1]$ .

### Add WeChat powcoder

#### FCLT for empirical processes

# Assignment Project $\mathbb{Z}^{\frac{1}{n}}$ $\mathbb{F}^{n}$ $\mathbb{F}^{$

Note hat  $F_0 = \emptyset$  is condefined. If  $X_i \sim U(0,1)$  then  $B_{F(t)} = B_t$ .

**Exercise:** Compute the mean of the left hand side at the point x. Calculate the Govavance of the left hand side at the point x points x and y where  $x \le y$ .

#### More amazing facts

## Assignment Project Exam Help oscillates unboundedly (see the Law of the Iterated

Logarithm ps://powcoder.com (There is a similar result for simple random walk: as  $n \to \infty$  the

distribution of  $n^{-1/2}S_n$  converges to  $\mathcal{N}(0,1)$  but as a random

sequence  $n^{-1/2}S_n$  we converge.) powcoder Let  $(W_t^{[1]})_{t\geq 0}$  be independent BM for  $t\in \mathbb{N}$ . Then  $((W_t^{[1]},W_t^{[2]}))_{t\geq 0}$  is a 2-dimensional BM,  $((W_t^{[1]},W_t^{[2]},W_t^{[3]}))_{t\geq 0}$ 

is a 3-dimensional BM, etc.

#### 2-dimensional BM



#### More amazing facts

## Assignment Parson to Take are (render)

- for 2-dimensional BM, for every k∈ Z+ there are (random) points in R² visited exactly k times. Every neighbourhood of the type into is visited infinitely often components.
   for 3-dimensional BM there are (random) points visited
- for 3-dimensional BM there are (random) points visited exactly twice, and no point in  $\mathbb{R}^3$  is visited 3 or more times,
- ► for a das to a chart power coderce.