Algorithm 2 Local Training

```
Input: Encrypted global weight [W^{(t)}], local training
        data D_i (i \in [1, n]).
```

Output: Encrypted local gradients $[g_i^{(t)}]$.

```
1 if U_i \notin U^* then
```

2 | /*Benign training*/
3 | U_i trains $W^{(t)}$ on local data, and obtains local gradients g_i ;

```
4 /* Gradient normalization*/
```

 \mathcal{U}_i normalizes individual gradients $g_i^{(t)}$ before sending them to S_1 :

6 else

7 /*Model poisoning*/
8 U_i launches model poisoning, and yields poisonous gradients $g_i^{*(t)}$;

9 **return** Encrypted local gradients $[g_i^{(t)}]$ or $[g_i^{*(t)}]$.