Interacting Peers Picture

Integer: 7

0

Integer: 1

4

Integer: 24

1

Integer: 3

3

Integer: 16

2

- Each process has an integer
 - Goal: disseminate max and min integers
- Approaches
 - Centralized: use coordinator
 - Symmetric: every process sends value to every other
 - Ring: form a circle; send values around
 - Tree: create a binary (in general, n-ary) tree

- Each process has an integer
 - Goal: disseminate max and min integers to each process
- Approaches
 - Centralized: use coordinator
 - 2 * (P-1) messages but a bottleneck
 - Symmetric: every process sends value to every other
 - P * (P-1) messages
 - Ring: form a circle; send values around
 - 2 * (P-1) messages; no bottleneck, but sequential
 - Tree: create a binary (in general, n-ary) tree
 - 2 * (P-1) messages; less bottleneck, but log(P) steps

- How to know which implementation to choose?
- Can use analytical models
 - LogP model most widely used model
 - L (latency), o (overhead), g (gap), P (number of cores)
 - Allows mostly architecture-independent analysis of parallel algorithms
 - Latency: time for a single byte to travel between endpoints
 - Overhead: time to copy a message from user address space to network
 - Gap: mandatory time between consecutive messages (represents the inverse of network bandwidth, bytes/second)

LogP Model applied to broadcast

Sent at time:

Message travels

Received at time: L+20 L+30 L+40 L+50 L+60

Broadcast completion time is L+60, assuming o > gMore accurate to say completion time is roughly L + 6 * max(o,g)

LogP Model applied to broadcast

(Assumes o > g)

Received at time: 2L+4o 2L+5o 2L+5o

Broadcast completion time is 2L+50 (compared to L+60 on previous slide). Which is better depends on the values of L and o.

What about a reduction (fan-in and fan-out)

- Let's use LogP to compare a two-level tree to symmetric
 - Two-level tree clearly takes L+60 for the fan-out (see previous slide; it's just a broadcast).
 - What about the fan-in? Is it just L+20, since P1 through P5 all send to P0?

LogP Model applied to fan-in

Fan-in completion time (when P_0 receives all messages) is not L+20

- -- would imply infinite bandwidth (imagine if a million processes sent to P_0)
- -- in reality, receives all messages at roughly L+6*max(o, g), just like fan-out

What about a reduction (fan-in and fan-out)

- Let's use LogP to compare a two-level tree to symmetric
 - Two-level tree clearly takes L+60 for the fan-out (see previous slide; it's just a broadcast).
 - What about the fan-in? Is it just L+20, since P1 through P5 all send to P0?
 - No, because overheads cannot be parallelized
 - In addition, the gap parameter represents finite bandwidth
 - Symmetric?
 - Seems like maybe L+60
 - But in reality, that is the minimum---much more complicated than this; involves sends and receives at each node

- Generalizations
 - Example: all-to-all
 - Implementations are not at all clear here
 - Must worry about contention
 - May want intelligent scheduling

For details, if interested, the LogP paper is at: https://dl.acm.org/doi/10.1145/155332.155333