UNIVERSIDADE FEDERAL DE VIÇOSA – UFV CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS – CCE DEPARTAMENTO DE ENGENHARIA ELÉTRICA - DEL

ELT330 – SISTEMAS DE CONTROLE I Prof. Tarcísio Pizziolo

4ª Lista de Exercícios

Variáveis de Estado

1 — Considere o sistema mecânico de vibração abaixo. São aplicadas duas forças \mathbf{u}_1 e \mathbf{u}_2 nos blocos de massas \mathbf{m}_1 e \mathbf{m}_2 respectivamente. As molas possuem constantes de elasticidade \mathbf{k}_1 , \mathbf{k}_2 e \mathbf{k}_3 e não existe atrito entre os blocos e o solo. Ao serem aplicadas as forças \mathbf{u}_1 e \mathbf{u}_2 nos blocos de massas \mathbf{m}_1 e \mathbf{m}_2 estes apresentam deslocamentos \mathbf{y}_1 e \mathbf{y}_2 respectivamente. Determinar as Equações de Espaço de Estados para o sistema dado.

2 - Considere o sistema mecânico de translação dado a seguir com coeficiente de atrito $\mathbf{b} > \mathbf{0}$, massas $\mathbf{m_a}$ e $\mathbf{m_b} > \mathbf{0}$, constantes de mola $\mathbf{k_A}$ e $\mathbf{k_B} > \mathbf{0}$ e forças $\mathbf{f_A}$ e $\mathbf{f_B}$ aplicadas às respectivas massas.

Detemine a modelagem do sistema no espaço de estados, sabendo que as posições y_A e y_B são medidas individualmente.

3 - Determine as Equações de Espaço de Estados para o sistema hidráulico de controle de nível a seguir.

4 - O pouso suave de uma nave na lua pode ser modelado como mostra o esquema a seguir.

O empuxo gerado pelo propulsor é proporcional a m, onde m é a massa do módulo lunar. A dinâmica do sistema pode ser representada por my = -km - mg, onde g é a constante gravitacional da superfície lunar. Definindo os estados $x_1 = y$, $x_2 = y$, $x_3 = m$ e a entrada u = m, encontre uma equação no espaço de estados para o sistema.

5 - Considere o sistema mecânico abaixo.

A barra de densidade uniforme e massa $\mathbf{m_1}$ pode girar um ângulo $\boldsymbol{\theta}$ ao redor $\overline{\mathbf{de}}$ seu ponto de fixação. A barra possui momento de inércia $\mathbf{I} = \frac{\mathbf{m_1} \mathbf{l}_2^2}{3}$ e recebe a aplicação de uma força \mathbf{u} em sua extremidade. O deslocamento vertical da massa $\mathbf{m_2}$ a partir do equilíbrio é \mathbf{y} . Para pequenos deslocamento angulares de $\boldsymbol{\theta}$ pede-se a modelagem no espaço de estados do sistema e sua Função de Transferência $\mathbf{G}(\mathbf{s}) = \frac{\mathbf{Y}(\mathbf{s})}{\mathbf{U}(\mathbf{s})}$.

6 - Obtenha uma modelagem no espaço de estados para o circuito elétrico representado abaixo com as entradas **u**₁ (tensão), **u**₂ (corrente) e saídas em tensão **y**₁ e em corrente **y**₂.

7 – Escreva as Equações de Espaço de Estados do circuito abaixo empregando i_L e v_C como variáveis de estado. Determine sua equação característica e suas raízes. Identifique qual o tipo de comportamento que o circuito apresenta: sub-amortecido, super-amortecido ou criticamente amortecido.

 $\bf 8$ - Escreva as Equações de Espaço de Estados do circuito abaixo empregando $\bf i_L$, $\bf v_C$ e $\bf v_x$ como variáveis de estado. Determine sua equação característica e suas raízes.

9 - Escreva as Equações de Espaço de Estados para os circuitos abaixo empregando as variáveis de estados especificados abaixo de cada um deles. Determine sua equação característica e suas raízes.

10 - A Figura 1 ilustra um sistema hidráulico que representa dois reservatórios de líquidos com interação.

Figura 1

Considerando as condições iniciais nulas e que as seções retas dos reservatórios são constantes com $r_1 = 0,5642$ m e $r_2 = 0,7978$ m e $R_{h1} = R_{h2} = 1$ s/m²; resolva as questões a seguir.

- 1. Modelar o sistema através de um circuito análogo elétrico (qualitativo).
- 2. Escrever as **Equações de Espaço de Estados** para se observar as variações dos níveis de líquido **h**₁(**t**) e **h**₂(**t**).
- 3. Efetuar a discretização nas Equações de Espaço de Estados que descrevem o sistema.
- 4. Utilizando a **discretização** feita no item anterior, **plotar os gráficos** de saída **h**₁(t) e **h**₂(t) para uma variação de **0,1 m³/s** nas entradas **q**_{i1} e **q**_{i2} a partir de **0,5 m³/s** até **1,0 m³/s** simultaneamente até que o sistema atinja o estado permanente. Construa uma tabela indicando os valores finais de **h**₁(t) e **h**₂(t) para cada entrada de **q**_{i1} e de **q**_{i2} utilizada.
- 5. Assumindo os valores das entradas $q_{i1} = 0.5 \text{ m}^3/\text{s}$ e $q_{i2} = 1 \text{ m}^3/\text{s}$, plotar os gráficos de saída $h_1(t)$ e $h_2(t)$ até que o sistema atinja o estado permanente. Quais os valores finais de $h_1(t)$ e $h_2(t)$ para esta situação?
- 6. Mantendo-se os valores de $q_{i1} = q_{i2} = 1$ m^3/s e variando o valor de R_{h1} para $R_{h1} = 2$ s/m^2 mantendo-se o valor de $R_{h2} = 1$ s/m^2 , plotar os gráficos de saída $h_1(t)$ e $h_2(t)$ até que o sistema atinja o estado permanente. Quais os valores finais de $h_1(t)$ e $h_2(t)$ para esta situação?
- 7. Mantendo-se os valores de $q_{i1} = q_{i2} = 1$ m³/s e variando o valor de $R_{h2} = 2$ s/m² mantendo-se o valor de $R_{h1} = 1$ s/m², plotar os gráficos de saída $h_1(t)$ e $h_2(t)$ até que o sistema atinja o estado permanente. Quais os valores finais de $h_1(t)$ e $h_2(t)$ para esta situação?
- 8. Se os reservatórios tivessem **h**_{1max} e **h**_{2max} igual a **4 m**, em quais situações dos itens anteriores haveria **transbordamento de líquido**?