SDSC Summer Institute 2017 Supercomputing for the Long Tail of Science July 31 – August 4, 2017

SDSC Auditorium at UC San Diego

Lesson material repository: https://github.com/sdsc/sdsc-summer-institute-2017

MONDAY, July 31	
8:00 – 8:30AM	Registration, Coffee
8:30 - 8:45	Welcome
	Shawn Strande, Deputy Director, SDSC
8:45 – 9:30	Orientation
	Andrea Zonca, Director of the Summer Institute, SDSC
9:30 – 10:15	How do I launch and manage jobs on the system?
	Mahidhar Tatineni, User Services Manager, SDSC
10:15 - 10:45	Break
10:45 - 12:15	Launching and Managing Jobs
	Mahidhar Tatineni, User Services Manager, SDSC
12:15 – 1:30	Lunch at Café Ventanas
1:30 - 3:00	How do I manage my data on the file system?
	Manu Shantharam, Title, SDSC
3:00 - 3:30	Break
3:30 - 5:00	How do I know I'm making effective use of the machine?
	Bob Sinkovits, Director for Scientific Computing Applications, SDSC
5:30 - 8:30PM	Reception at Wayne Pfeiffer's home overlooking the Pacific
	Sweater or jacket recommended
	Shuttle provided from SDSC driveway

TUESDAY, August 1		
8:00 – 8:30AM	Coffee	
8:30 - 10:00	How do I automate my job pipeline to ensure reproducibility? [update with hands-on or	
	Data Science talk]	
	Ilkay Altintas, SDSC's Chief Data Science Officer, Director, Workflows for Data Science	
	(WorDS) Center of Excellence, SDSC	
10:00 - 10:15	Break	
10:15 - 12:15	How do I manage my software?	
	Andrea Zonca, HPC Applications Support Specialist, SDSC	
12:15 – 1:30	Lunch at Café Ventanas	
1:30 - 2:30	What are the benefits of using Science Gateways?	
	Amit Majumdar, Division Director, Data Enabled Scientific Computing, SDSC	
2:30 - 3:30	When can virtualization help HPC?	
	Trevor Cooper, High Performance Computing Systems Manager, SDSC	
3:30 - 3:45	Break	
3:45 – 4:15	SDSC Data Center Tour	
4:15 - 5:00PM	Hands-on practice continues with mentors available for questions	

	WEDNESDAY, August PARALLEL SESSIONS	
8:00 – 8:30AM	Coffee	
0.00 0.00,	Track 1	Track 2
	Auditorium	Synthesis Center E-B143
Session 1	GPU Computing and Programming	Spark for Scientific Computing
8:30 - 12:00	Andreas Goetz, Co-Director, CUDA Teaching	Andrea Zonca, HPC Applications Specialist
	Center, Co-Principal Investigator, Intel Parallel Computing Center, SDSC	Mahidhar Tatineni, User Services Manager, SDSC
	This session provides an introduction to massively parallel computing with graphics processing units (GPUs). The use of GPUs is becoming increasingly popular across all scientific domains since GPUs can significantly accelerate time to solution for many problems. Participants will be introduced to essential background of the GPU chip architecture and will learn how to program GPUs via the use of Libraries, OpenACC compiler directives, and CUDA programming. The session will incorporate hands-on exercises for participants to acquire the skills to use and develop GPU aware applications.	Apache Spark is a cluster computing framework extensively used in Industry to process large amount of data (up to 1PB) distributed across thousands of nodes. It has been designed as a successor of Hadoop focusing on performance and usability. It provides interface in Python, Scala and Java. This session will provide an overview of the capabilities of Spark and how they can be leveraged to solve problems in Scientific Computing. Next it will feature a hands-on introduction to Spark, from batch and interactive usage on Comet to running a sample map/reduce example in Python. The final part will be devoted to two key libraries in the Spark ecosystem: Spark SQL, a general purpose query engine that can interface to SQL databases or JSON files and Spark MLlib, a scalable Machine Learning library.
12:00 – 1:30	Lunch at Café Ventanas	indiary.
Session 2	Performance Optimization	Visualization
1:30 – 5:00PM	Bob Sinkovits, Director for Scientific Computing Applications, SDSC	Amit Chourasia, Senior Visualization Scientist, SDSC
	This session is targeted at attendees who both do their own code development and need their calculations to finish as quickly as possible. We'll cover the effective use of cache, loop-level optimizations, force reductions, optimizing compilers and their limitations, short-circuiting, time-space tradeoffs and more. Exercises will be done mostly in C, but emphasis will be on general techniques that can be applied in any language.	Visualization is largely understood and used as an excellent communication tool by researchers. This narrow view often keeps scientists from fully using and developing their visualization skillset. This tutorial will provide a "from the ground up" understanding of visualization and its utility in error diagnostic and exploration of data for scientific insight. When used effectively visualization can provide a complementary and effective toolset for data analysis, which is one of the most challenging problems in computational domains. In this tutorial we plan to bridge these gaps by providing end users with fundamental

	visualization concepts, execution tools, customization and usage examples. Finally, a short introduction to SeedMe.org will be provided where users will learn how to share their visualization results ubiquitously.
--	---

	THURSDAY, August 3 PARALLEL SESSIONS	
8:00 – 8:30AM	Coffee	
8.00 - 8.30AW	Track 1	Track 2
	Auditorium	Synthesis Center E-B143
Session 3	Parallel Computing using MPI & Open MP	Machine Learning Overview – AM
8:30 - 12:00	Pietro Cicotti, Senior Computational Scientist,	Session
	SDSC	Mai Nguyen, Data Scientist, SDSC
		Paul Rodriguez, Research Analyst, SDSC
	This session is targeted at attendees who are	Nicole Wolters, Programmer Analyst III,
	looking for a hands-on introduction to parallel	SDSC
	computing using MPI and Open MP	
	programming. The session will start with an	Machine learning is an interdisciplinary
	introduction and basic information for getting	field focused on the study and
	started with MPI. An overview of the common	construction of computer systems that
	MPI routines that are useful for beginner MPI	can learn from data without being
	programmers, including MPI environment set up, point-to-point communications, and	explicitly programmed. This track provides an introduction to the machine
	collective communications routines will be	learning algorithms and techniques used
	provided. Simple examples illustrating	to explore, analyze, and leverage data to
	distributed memory computing, with the use	construct data-driven solutions applicable
	of common MPI routines, will be covered. The	to any domain.
	OpenMP section will provide an overview of	
	constructs and directives for specifying	The morning session will cover the
	parallel regions, work sharing, synchronization	machine learning process, R/RStudio, data
	and data scope. Simple examples will be used	exploration, and data preparation. The
	to illustrate the use of OpenMP	afternoon session will cover classification,
	shared-memory programming model, and	cluster analysis, and tools and procedures
	important run time environment variables	to scale up machine learning techniques
	Hands on exercises for both MPI and OpenMP	on Comet. Hands on
	will be done in C and FORTRAN.	exercises/demonstrations will be done in
12:00 – 1:30	Lunch at Café Ventanas	R, and Python with Spark.
Session 4	Python for HPC	Scalable Machine Learning
1:30 – 5:00PM	Andrea Zonca, HPC Applications Specialist,	Mai Nguyen, Data Scientist, SDSC
1.30 3.001 1	SDSC	Paul Rodriguez, Research Analyst, SDSC
	Bob Sinkovits, Director for Scientific	Nicole Wolters, Programmer Analyst III,
	Computing Applications, SDSC	SDSC
	Python is rapidly becoming more widely adopted	Machine learning is an interdisciplinary
	in the High Performance Computing world. In this	field focused on the study and
	session, we will introduce four key technologies in the Python ecosystem that provide significant	construction of computer systems that
	the rython ecosystem that provide significant	can learn from data without being

	benefits for scientific applications run in supercomputing environments. Previous Python experience is not required. (1) IPython Notebook allows users to execute code on a single compute node or cluster and export the Python web interface to the local browser for interactive data exploration and visualization. IPython Notebook supports live Python code, explanatory text, LaTeX equations and plots in the same document. (2) IPython Parallel provides a simple, flexible and scalable way of running thousands of Python serial jobs by spawning IPython kernels (namely engines) on any HPC batch scheduler. It also allows interactive control of the engines from an IPython Notebook session along with the ability to submit more Python tasks to the engines. (3) Numba makes it possible to run pure Python code on GPUs simply by decorating functions with the data types of the input and output arguments. Pure Python prototype code can be gradually optimized by pushing the most computationally intensive functions to the GPU without the need to implement code in CUDA or	explicitly programmed. This track provides an introduction to the machine learning algorithms and techniques used to explore, analyze, and leverage data to construct data-driven solutions applicable to any domain. The morning session will cover the machine learning process, R/RStudio, data exploration, and data preparation. The afternoon session will cover classification, cluster analysis, and tools and procedures to scale up machine learning techniques on Comet. Hands on exercises/demonstrations will be done in R, and Python with Spark.
	IPython Notebook session along with the ability to submit more Python tasks to the engines. (3) Numba makes it possible to run pure Python code on GPUs simply by decorating functions with the data types of the input and output arguments. Pure Python prototype code can be gradually optimized by pushing the most	exercises/demonstrations will be done in
	high level interface for transparently dealing with complex MPI point-to-point communication strategies for operations involving both dense and sparse matrices and vectors whose data are distributed across an arbitrary number of nodes.	
5:30 – 9:00PM	Beach BBQ Dinner at La Jolla Shores Hotel, swe 8110 Camino Del Oro, La Jolla, CA 92037 Shuttle provided from SDSC driveway	ater or jacket recommended

FRIDAY, August 4	
8:00 - 8:30	Coffee
8:30 - 9:30	Emerging Technologies in HPC
	Pietro Cicotti, Senior Computational Scientist, SDSC [or Shawn]
9:30 - 11:00	Lightning Rounds
11:00 - 11:30	Wrap up
11:30AM	Adjourn
	Thank you for attending we hope you enjoyed the week!
	(To-go box lunches will be available)