Wykład piąty

Pochodne wyższych rzędów

Zał. f' jest określona w pewnym otoczeniu punktu x_0 .

Definicja 1. Granicę właściwą $\lim_{\Delta x \to 0} \frac{f'(x_0 + \Delta x) - f'(x_0)}{\Delta x}$ nazywamy pochodną drugiego rzędu funkcji f w punkcie x_0 i oznaczamy przez $f''(x_0)$.

f'' – funkcja drugiej pochodnej funkcji f.

Ogólnie określamy pochodną n – tego rzędu funkcji f jako:

$$f^{(n)}(x) \stackrel{df}{=} (f^{(n-1)}(x))', n = 2, 3, \dots$$

Uwaga 1. Jeżeli funkcja f ma pochodną n–tego rzędu, to ma pochodne wszystkich niższych rzędów.

Twierdzenie 1. (Rolle'a). Jeżeli funkcja f jest ciągła w $\langle a;b\rangle$, f' istnieje w (a;b) oraz f(a)=f(b), to istnieje $c\in(a;b)$ taki, że f'(c)=0.

Twierdzenie 2. Lagrange'a (o przyrostach). Jeżeli funkcja f jest ciągła w przedziale domkniętym o końcach x i x_0 oraz posiada pochodną f' wewnątrz tego przedziału, to istnieje punkt c z wnętrza tego przedziału taki, że

$$f(x) - f(x_0) = f'(c)(x - x_0).$$

Wnioski z twierdzenia Lagrange'a

- 1. Jeżeli f'(x) = 0 dla każdego $x \in (a; b)$, to funkcja f jest stała w tym przedziale.
- 2. Jeżeli f'(x) = g'(x) dla każdego $x \in (a; b)$, to funkcje f i g różnią się na tym przedziale o stałą.
- 3. Jeżeli f'(x) > 0 dla każdego $x \in (a; b)$, to funkcja f jest rosnąca na tym przedziale.
- 4. Jeżeli f'(x) < 0 dla każdego $x \in (a; b)$, to funkcja f jest malejąca na tym przedziale.

Powyższe wnioski pozostają prawdziwe dla przedziałów $(-\infty; a), (a; +\infty)$ i $(-\infty; +\infty)$.

Zastosowania rachunku różniczkowego w wyznaczaniu ekstremów

Twierdzenie 3. (WK istnienia ekstremum) Jeżeli funkcja f ma w punkcie x_0 ekstremum i $f'(x_0)$ istnieje, to $f'(x_0) = 0$.

Uwaga 2. Funkcja f może mieć ekstremum tylko w tych punktach, w których pochodna nie istnieje lub jest równa 0.

Twierdzenie 4. (I WW istnienia ekstremum) Jeżeli funkcja f jest ciągła w punkcie x_0^2 oraz posiada pochodną f' na pewnym sąsiedztwie $(x_0 - \delta; x_0) \cup (x_0 : x_0 + \delta)$ oraz f'(x) > 0 dla $x \in (x_0 - \delta; x_0)$ i f'(x) < 0 dla $x \in (x_0 + \delta)$ lub na odwrót, to funkcja f ma ekstremum właściwe w punkcie x_0 .

Różniczka funkcji

Jeżeli funkcja f jest określona w pewnym otoczeniu punktu x_0 oraz istnieje $f'(x_0)$ (właściwa),

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \Leftrightarrow \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0) - f'(x_0) \cdot \Delta x}{\Delta x} = 0.$$

Wyrażenie $f'(x_0) \cdot \Delta x$ nazywamy różniczką funkcji f w punkcie x_0 . Zastępując $x_0 := x$ otrzymujemy różniczkę funkcji f, którą oznaczamy przez df (lub dy, jeśli y = f(x)), tzn. $df = f'(x) \cdot \Delta x$.

Różniczkę zmiennej niezależnej x oznaczamy przez dx. Ponieważ $dx=(x)'\cdot \Delta x=1\cdot \Delta x=\Delta x$, więc ostatecznie df=f'(x)dx, co uzasadnia spotykany zapis na pochodną: $f'(x)=\frac{df}{dx}=\frac{dy}{dx}$. (przy ustalonym dx różniczka df jest funkcją zmiennej x)

