ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ВЫСШАЯ ШКОЛА ПЕЧАТИ И МЕДИАИНДУСТРИИ

Институт Принтмедиа и информационных технологий Кафедра Информатики и информационных технологий

направление подготовки 09.03.02 «Информационные системы и технологии»

ЛАБОРАТОРНАЯ РАБОТА № 4-5

Дисциплина: Основы алгоритмизации и программирования.

Тема: Алгоритм сортировки «пузырёк»

		Выполнила:	
	студентка группы 201-723		
		Круглова А.М.	
	19.10.20 (Дата)	(Подпись)	
	Проверил: преп.	Хуснулина Д.Р.	
	(Дата)	(Подпись)	
Замечания:			

Москва

2020

Оглавление

Цель:	3
Постановка задачи:	
Идея алгоритма:	
Словесное представление алгоритма:	4
Блок-схема с использованием элемента модификации:	5
Листинг программы с использованием параметрического цикла:	6
Результат работы программы:	7
Блок-схема без использования элемента модификации:	8
Листинг программы с использованием цикла с предусловием:	9
Результат работы программы:	. 10

Цель:

Получить практические навыки разработке алгоритмов и их программной реализации.

Постановка задачи:

Необходимо выполнить и оформить описание следующих пунктов:

- 1. Сформулировать идею алгоритма
- 2. Выполнить словесное представление алгоритма
- 3. Выполнить полнить представление алгоритма с помощью блок схем с использованием элемента модификации и без него.
- 4. Выполнить программную реализацию алгоритмов на языке С с использованием параметрического цикла и цикла с предусловием.

Идея алгоритма:

Алгоритм основан на повторяющихся проходах по сортируемому массиву. За каждый проход последовательно сравниваются соседние элементы. Если порядок в паре неверный, то происходит обмен значений элементов. При каждом проходе алгоритма по внутреннему циклу, очередной наибольший элемент массива ставится на своё место в конце массива рядом с предыдущим «наибольшим элементом», а наименьший элемент перемещается на одну позицию к началу массива («всплывает» до нужной позиции, как пузырёк в воде — отсюда и название алгоритма).

Проходы по массиву повторяются n-1 (где n- размер массива) раз или до тех пор, пока не будет перестановок, т.е. когда массив окажется отсортированным.

Словесное представление алгоритма:

arr – массив, n – длина массива

- 1. Начало алгоритма
- 2. Параметр i=0
- 3. Если i<10, то п.4, иначе п.6
- 4. Ввод с клавиатуры arr[i]
- 5. $i++, \pi.3$
- 6. Параметр внешнего цикла i = 0
- 7. Если i < n 1, то п.8, иначе п.14
- 8. Параметр внутреннего цикла j = n-1
- 9. Если j > i, то п.10, иначе п.13
- 10. Если arr[j-1] > arr[j], то п.11, иначе п.12
- 11. Обмен значениями arr[j-1] и arr[j]
- 12. ј--, п.4
- 13. i++, π .2
- 14. Параметр і=0
- 15. Если і<10, то п.16, иначе п.18
- 16. Вывод на экран arr[i]
- 17. i++, π .15
- 18. Конец алгоритма

Блок-схема с использованием элемента модификации:

Рисунок 1 — Блок-схема 1 программы

Листинг программы с использованием параметрического цикла:

Листинг 1 — Исходный код 1 программы

```
#include <iostream>
#include <stdlib.h>
int main()
    setlocale(LC_ALL, "Russian"); //установка русского языка
    int i, j;
    int arr[10]; // Объявляем массив из 10 элементов
    for (i = 0; i < 10; i++) // Вводим значения элементов массива через
клавиатуру
    {
        printf("[%d] = ", i);
        scanf s("%d", &arr[i]);
    int n = sizeof(arr) / sizeof(int); //размер массива
    for (i = 0; i < n - 1; i++) //начинаем внешний цикл
        for (j = n - 1; j > i; j--) //внутренний цикл
            if (arr[j - 1] > arr[j]) // условие, если текущий элемент меньше
предыдущего
            {
                int c = arr[j - 1]; // меняем их местами
                arr[j - 1] = arr[j];
                arr[j] = c;
            }
        }
    }
    // Выводим отсортированные элементы массива
   printf("Отсортированный массив:\n");
    for (i = 0; i < 10; i++)</pre>
       printf("%d ", arr[i]);
   printf("\n");
   system("pause");
    return 0;
}
```

Результат работы программы:

Рисунок 2 — Результат работы 1 программы

Блок-схема без использования элемента модификации:

Рисунок 3 — Блок-схема 2 программы

Листинг программы с использованием цикла с предусловием:

Листинг 2 — Исходный код 2 программы

```
#include <iostream>
#include <stdlib.h>
int main()
    setlocale(LC ALL, "Russian"); //установка русского языка
    int arr[10]; // Объявляем массив из 10 элементов
    int n = sizeof(arr) / sizeof(int); //размер массива
    for (int i = 0; i < 10; i++) // Вводим значения элементов массива через
клавиатуру
    {
        printf("[%d] = ", i);
        scanf_s("%d", &arr[i]);
    int i = 0, j = n-1; //начальное значение
    while (i < n - 1) //внешний цикл
        while (j > i) //внутренний цикл
            if (arr[j - 1] > arr[j]) // условие, если текущий элемент меньше
предыдущего
                int c = arr[j - 1]; // меняем их местами
                arr[j - 1] = arr[j];
                arr[j] = c;
            j--;
        }
        i++;
        j = n-1;
    // Выводим отсортированные элементы массива
    printf("Отсортированный массив:\n");
    for (i = 0; i < 10; i++)
        printf("%d ", arr[i]);
    printf("\n");
system("pause");
    return 0;
}
```

Результат работы программы:

Рисунок 4 — Результат работы 2 программы