Fundamentals of Information Theory Homework Three

Problem 1 Solutions:

(a) The stationary distribution $\pi=(\pi_0,\pi_1)$ satisfies the equation $\pi P=\pi$ and the condition $\pi_0+\pi_1=1.$

$$\begin{bmatrix} \pi_0 & \pi_1 \end{bmatrix} \begin{bmatrix} 1 - p_{01} & p_{01} \\ p_{10} & 1 - p_{10} \end{bmatrix} = \begin{bmatrix} \pi_0 & \pi_1 \end{bmatrix}$$

Thus, $\pi_0 = \frac{p_{10}}{p_{10} + p_{01}}$ and $\pi_1 = \frac{p_{01}}{p_{10} + p_{01}}$. By $H = -\sum_i \pi_i \sum_j P_{ij} \log P_{ij}$, we have

$$H(\mathcal{X}) = -\left[\frac{p_{10}\log(1-p_{01}) + p_{01}\log(1-p_{10}) + p_{10}p_{01}(\log p_{01} + \log p_{10})}{p_{01} + p_{10}}\right]$$

- (b) The entropy rate is maximized when the transitions are as uncertain as possible, which corresponds to $p_{01} = p_{10} = 0.5$. So $H(\mathcal{X}) = 1$.
- (c) In the former question, let $p=p_{01}, 1=p_{10}$, we can get this situation. So it is $H(\mathcal{X})=-\frac{1}{1+p}\left[(1-p)\log(1-p)+p\log p\right]$.
 - (d) From Lagrange multiplier method,

$$\max_{H(\mathcal{X})} L(p,\lambda) = H(\mathcal{X}) + \lambda \cdot (0.5 - p), \quad p \le 0.5$$

So
$$\lambda = \frac{2}{3}$$
, and $H(\mathcal{X})_{max} = 1$.

Problem 2 Solutions:

- (a) Not necessarily. For compact code, the overhead is at most 1 bit, but for shanon code, let me explain with an extreme example, if we let one of these probabilities approach infinitesimal, then you will see the overhead goes to infinity.
 - (b) Look at my answer to Problem 3, they are the same.

Problem 3 Solutions:

(a)
$$l_i = \lceil \log \frac{1}{p(x_i)} \rceil$$
,

$$H(x) = \sum_{i} p(x) \log \frac{1}{p(x_i)} < L = \sum_{i} p(x) l_i = \sum_{i} p(x) \lceil \log \frac{1}{p(x_i)} \rceil < H(x) + 1$$

Assuming that x_p is a prefix of x_{p+q} , so we have $F_{p+q}-F_p<2^{-l_p}$ because they are the same in the former p bits. And then $\sum_{p}^{p+q-1}p_i<2^{-l_p}$, obviously, $p_k<2^{-l_p}$. However, $l_p=\lceil\log\frac{1}{p(x_p)}\rceil\geq\log\frac{1}{p(x_p)}$, so $2^{-l_p}\geq p_k$. So this contradicts our hypothesis, therefore the Shannon code is prefix-code.

(b)

i	p_{i}	$l_i = \lceil \log \frac{1}{p(x_i)} \rceil$	F_i	Codeword	
1	0.5	1	0	0	
2	0.25	2	0.5	10	
3	0.125	3	0.75	110	
4	0.125	3	0.875	111	

Problem 4 Solutions:

(a)

X	1	2	3	4	5	6	7
Codeword	0	10	110	1110	11110	111110	111111

(b)

$$L = \sum_{i=0}^{6} p_i \cdot l_i = 0.49 \times 1 + 0.26 \times 2 + 0.12 \times 3 + 0.04 \times 4 + 0.04 \times 5 + 0.03 \times 6 + 0.02 \times 6 = 2.03$$

(c)

X	1	2	3	4	5	6	7
Codeword	0	1	20	22	212	211	210

Problem 5 Solutions:

(a)

$$\sum_{i=1}^{6} p_i \cdot l_i = 1 \times \frac{8}{23} + 2 \times \frac{6}{23} + 3 \times \frac{4}{23} + 4 \times \frac{2}{23} + 5 \times \frac{2}{23} + 5 \times \frac{1}{23} = \frac{55}{23} \approx 2.39$$

- (b) The one with probability $\frac{8}{23}$.
- (c) Huffman coding.

$$\sum_{i=1}^{6} p_i \cdot l_i = 2 \times \frac{8}{23} + 2 \times \frac{6}{23} + 2 \times \frac{4}{23} + 3 \times \frac{2}{23} + 4 \times \frac{2}{23} + 4 \times \frac{1}{23} = \frac{55}{23} \approx 2.35$$

(d) Mixture of the first two bottles.