Math 523H–Homework 7

- 1. Show that $f(x) = x^2$ is integrable on [0, 2] and compute $\int_0^2 f(x) dx$ using the definition with upper and lower Darboux sum. *Hint:* What is $1 + 2^2 + 3^2 + \cdots + n^2$?
- 2. In numerical analysis to compute the integral $\int_a^b f(x)dx$ one divide the interval into N subinterval of equal length h = (b-a)/N that is we have $x_i = a + i(b-a)/N$ and use approximations. For example the trapezoidal rule is

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n-1} \frac{h}{2} \left(f(x_i) + f(x_{i+1}) \right). \tag{1}$$

It means that one approximates the area under the graph between x_{i-1} and x_i be the trapezoidal area $\frac{h}{2}(f(x_i) + f(x_{i+1}))$. Prove that as $N \to \infty$ the trapezoidal rule converge to the value of $\int_a^b f(x)dx$ by rewriting it as a suitable Riemann sum.

3. (a) Suppose a < b < c and $f : [a, c] \to \mathbb{R}$ is integrable. Show that f is integrable on [a, b] and [b, c] and

$$\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx.$$

- (b) A function $f:[a,b]\to\mathbb{R}$ is called piecewise continuous if there exists a division $D=\{x_0,x_1,\cdots,x_n\}$ such that $f:(x_{i-1},x_i)\to\mathbb{R}$ is uniformly continuous. Show that if f is piecewise continuous then f is integrable.
- 4. (a) Prove that if f is integrable on [a, b] then |f| is integrable on [a, b].
 - (b) Prove that if f(x) and g(x) are integrable on [a,b] then $h(x)=\max\{f(x),g(x)\}$ is integrable on [a,b]
- 5. Suppose that f(x) = 1 if $x = 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots$ and f(x) = x otherwise. Prove that f(x) is integrable on [0, 1]. *Hint:* Consider the intervals $[0, \epsilon]$ and $[\epsilon, 1]$ separately.
- 6. Show that the function $f(x) = \sin(\frac{1}{x})$ is integrable on [0,1].
- 7. Suppose $f:[a,b]\to\mathbb{R}$ is (a) continuous, (b) non-negative, that is $f(x_0)\geq 0$ for all x, and (c) there exists x_0 such that $f(x_0)>0$. Show that $\int_a^b f(x)dx>0$. Show that all three assumptions are necessary.
- 8. Suppose f and g are two continuous function on [a,b] such that $\int_a^b f(x)dx = \int_a^b g(x)dx$. Show that that there exists an $x \in [a,b]$ such that f(x) = g(x).