Контрольная работа по курсу «Сети ЭВМ и телекоммуникации

Студент Safronov Nikita Гр. 320207

Вариант 32

Часть I. Планирование адресного пространства IPv6

Задание 1.1:: Представить сокращенную запись адреса сети IPv6, который сформирован следующим образом:

- 1. Префикс глобальной маршрутизации установлен в соответствии с рекомендациями http://tools.ietf.org/html/rfc3849
- 2. Идентификатор подсети установлен в соответствии с номером Вашей учебной группы, который интерпретируется как десятичное число.
- 3. Старшие 5 байтов идентификатора интерфейса установлены кодами ASCII (http://ascii.org.ru/) первых пяти букв Вашего имени (в латинице).
- 4. Остальные позиции адреса установлены нулевыми значениями.

Решение 1.1 (макс. 20 баллов):

Сеть IPv6 | 2001:db8:0:4eef:4e69:6b69:7400:0/102

Задание 1.2: разбить сеть из п.1.1 на 125 одинаковых по размеру подсетей МАКСИМАЛЬНОЙ ДЛИНЫ и указать префиксы первой и последней подсетей.

Решение 1.2 (макс. 20 баллов):

Префикс $N_{ m C\'{\Gamma}C,}$	2001: db8: 0: 4 eef: 4e69: 6b69: 7400: 0/109
Префикс $N_{\text{С,,PëPS}}$	2001:db8:0:4eef:4e69:6b69:77e0:0/109

Часть II. Планирование адресного пространства IPv4

X0= целая часть (N*16)/256+10= целая часть (32*16)/256+10=12

 $X1 = {f octatok}$ от деления $(N*16)/256 = {f octatok}$ от деления (32*16)/256 = 0

Дано: Сеть 12.0.0.0/12

Задание 2.1.1: разбить сеть на 4096 подсетей, указать для первых 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	12	0	0	0
Адрес сети	00001100	00000000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Чтобы разбить адрес сети на нужное количество подсетей, необходимо заимствовать 4 бит из 3-го октета и 8 бит из 2-го октета.

3. Итого, получается, что сеть 12.0.0.0/12 мы разбили на 4096 подсети, в каждой из которых по 254 узлов, указываем первые 5 подсетей:

	12	0	0	0
Адрес сети дв.с	00001100	00000000	00000000	00000000
Маска дв.с	11111111	11111111	11111111	00000000
	255	255	255	0

200	200
Адрес сети $N_1/$ Префикс N_1	12.0.0.0/24
Адрес первого узла N_1	12.0.0.1
Адрес последнего узла N_1	12.0.0.254
Широковещательный адрес N_1	12.0.0.255
Адрес сети $N_2/$ Префикс N_2	12.0.1.0/24
Адрес первого узла N_2	12.0.1.1
Адрес последнего узла N_2	12.0.1.254
Широковещательный адрес N_2	12.0.1.255
Адрес сети $N_3/$ Префикс N_3	12.0.2.0/24
Адрес первого узла N_3	12.0.2.1
Адрес последнего узла N_3	12.0.2.254
Широковещательный адрес N_3	12.0.2.255
$oxed{f A}$ дрес сети $N_4/$ Префикс N_4	12.0.3.0/24
Адрес первого узла N_4	12.0.3.1
Адрес последнего узла N_4	12.0.3.254
Широковещательный адрес N_4	12.0.3.255
Адрес сети $N_5/$ Префикс N_5	12.0.4.0/24
Адрес первого узла N_5	12.0.4.1
Адрес последнего узла N_5	12.0.4.254
Широковещательный адрес N_5	12.0.4.255

Дано: Сеть 12.0.0.0/12

Задание 2.1.2: разбить сеть на 20000 подсетей, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

2. Чтобы разбить данную сеть на $(20000\leqslant 2^{15}=32768)$ подсетей необходимо заимствовать 4 бит из 3-го октета и 8 бит из 2-го октета, а также 3 бит из 1-го октета (получается, что сеть можно разбить на 32768 подсетей: $2^{15}=32768$; оставшиеся 5 бит идут под узлы: $2^5-2=30$ в каждой подсети).

3. Указываем первую и последнюю подсети:

Адрес сети $N_1/$ Префикс N_1	12.0.0.0/27
Адрес первого узла N_1	12.0.0.1
Адрес последнего узла N_1	12.0.0.30
Широковещательный адрес N_1	12.0.0.31

$oxedsymbol{A}$ дрес сети $N_2/$ Префикс N_2	12.9.195.224/27
Λ дрес первого узла N_2	12.9.195.225
Адрес последнего узла N_2	12.9.195.254
Широковещательный адрес N_2	12.9.195.255

Задание 2.2.1: разбить сеть на подсети, чтобы в каждой было по 32768 узла (с учетом адресов сети и directed broadcast), указать для ПОСЛЕДНИХ 5 подсетей:

• адрес подсети;

- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	12	0	0	0
Адрес сети	00001100	00000000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=15, т.к. $2^{15}-2=32766$. Т.е. нужно выбрать такую маску, которря выделит ровно 15 бит для адресов узлов. Таким образом, исходную сеть мы сможем разбить на $2^5=64$ подсетей по 32766 узла(08) в каждой.

3. Указываем последние 5 подсетей:

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	12.13.128.0/17
Адрес первого узла N_1	12.13.128.1
Адрес последнего узла N_1	12.13.255.254
Широковещательный адрес N_1	12.13.255.255
$oxedsymbol{A}$ дрес сети $N_2/$ Префикс N_2	12.14.0.0/17
Адрес первого узла N_2	12.14.0.1
Адрес последнего узла N_2	12.14.127.254
Широковещательный адрес N_2	12.14.127.255
$oxed{A}$ дрес сети $N_3/$ Префикс N_3	12.14.128.0/17
Λ дрес первого узла N_3	12.14.128.1
Адрес последнего узла N_3	12.14.255.254
Широковещательный адрес N_3	12.14.255.255

Λ дрес сети $N_4/$ Префикс N_4	$oxed{12.15.0.0/17}$
${ m A}$ дрес первого узла N_4	12.15.0.1
${ m A}$ дрес последнего узла N_4	12.15.127.254
Широковещательный адрес N_4	12.15.127.255
Адрес сети $N_5/$ Префикс N_5	12.15.128.0/17
Λ дрес первого узла N_5	12.15.128.1
Tapes hepbers jesta 1.5	12.10.120.1
Адрес последнего узла N_5	12.15.255.254

Задание 2.2.2: разбить сеть на подсети, чтобы в каждой было не менее 10000 АКТИВНЫХ узлов, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	12	0	0	0
Адрес сети	00001100	00000000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=14, т.к. $2^{14}-2=16382\geqslant 10000$.

	12	U	U	U
Адрес сети дв.с	00001100	00000000	00000000	00000000
Маска дв.с	11111111	11111111	11000000	00000000
	255	255	192	0

3. Указываем первую и последнюю подсети

Адрес сети $N_1/$ Префикс N_1	12.0.0.0/18
Адрес первого узла N_1	12.0.0.1
Адрес последнего узла N_1	12.0.63.254
Широковещательный адрес N_1	12.0.63.255

Адрес сети $N_2/$ Префикс N_2	12.15.192.0/18
Адрес первого узла N_2	12.15.192.1
Адрес последнего узла N_2	12.15.255.254
Широковещательный адрес N_2	12.15.255.255

Задание 2.2.3: разбить сеть на подсети, чтобы в каждой было не менее 1000 АКТИВНЫХ узлов, указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- \bullet широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.3 (макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	12	0	0	0
Адрес сети	00001100	00000000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n- кол-во «узловых» бит. В нашем случае n=10, т.к. $2^{10}-2=1022$.

	12	0	0	0
Адрес сети дв.с	00001100	00000000	00000000	00000000
Маска дв.с	11111111	11111111	11111100	00000000
	255	255	252	0

3. Указываем последние 5 подсетей:

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	$\fbox{12.15.236.0/22}$
${ m A}$ дрес первого узла N_1	12.15.236.1
${ m A}$ дрес последнего узла N_1	12.15.239.254
Широковещательный адрес N_1	12.15.239.255
Λ дрес сети $N_2/$ Префикс N_2	12.15.240.0/22
${ m A}$ дрес первого узла N_2	12.15.240.1
${ m A}$ дрес последнего узла N_2	12.15.243.254
Широковещательный адрес N_2	12.15.243.255

Λ дрес сети $N_3/$ Префикс N_3	12.15.244.0/22
Λ дрес первого узла N_3	12.15.244.1
Адрес последнего узла N_3	12.15.247.254
Широковещательный адрес N_3	12.15.247.255
$oxedsymbol{A}$ дрес сети $N_4/$ Префикс N_4	12.15.248.0/22
Адрес первого узла N_4	12.15.248.1
Адрес последнего узла N_4	12.15.251.254
Широковещательный адрес N_4	12.15.251.255
$oxedsymbol{A}$ дрес сети $N_5/$ Префикс N_5	12.15.252.0/22
Адрес первого узла N_5	12.15.252.1
Адрес последнего узла N_5	12.15.255.254
Широковещательный адрес N_5	12.15.255.255