CS 581 – ADVANCED ARTIFICIAL INTELLIGENCE

TOPIC: SEARCH

http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

MOTIVATION

- AI is powered by search
- Consider multiple possibilities and find the "optimal" one
- Just a few examples
 - Travel from one location to another
 - Find the "optimal" route
 - Game playing
 - Find the "optimal" move
 - Machine learning
 - Find the "optimal" set of parameters
 - Machine translation
 - Find the "optimal" sequence of words
 - Constraint satisfaction
 - Find the "optimal" assignment

• . . .

WE WILL STUDY

- Hill climbing, A*, genetic algorithms, simulated annealing, ...
- Maximum likelihood estimation, Bayesian estimation, expectation maximization, gradient optimization, Lagrange multipliers, policy search,
- o Alpha-beta search, Monte-Carlo tree search, ...

TRAVEL - ABSTRACT REPRESENTATION

Given

- An initial state
- A goal state
- Available actions at each state
- A transition model
- The cost of each action

Find

• A sequence of actions that take you from the initial state to the goal state, where the total cost of the sequence is minimized

TRAVEL PROBLEM

- The world representation
 - In(City)
- Initial state
 - In(Madison, WI)
- Goal state
 - In(Detroit, MI)
- Actions
 - Travel to the neighboring city
- Transition model
 - If you are in city A and travel to city B, the state changes from In(A) to In(B)
- Cost
 - Distance traveled

TRAVELING SALESMAN PROBLEM

Given

- A list of N cities
- Distances between each pair of cities

Find

• A minimum-cost travel plan where the agent visits each city exactly once and returns to the city of origin

8 Puzzle

Start State

Goal State

8 QUEENS

8

OUTLINE

- Uniform cost search, greedy heuristic search, and A* search
 - E.g., travel problem, 3-puzzle problem
- Simulated annealing
 - E.g., traveling salesman problem
- Genetic algorithms
 - E.g., 8-queens problem

EXERCISE

- You are at an initial city D
- You are trying to reach to the city M
- The cities are not fully connected; you can travel from one city to only its neighbor cities
- You don't have access to the full map; you know only the parts you explored or discovered
- Each time you pick a city that you know and ask where you can go from there
- You want to find the shortest path from D to M, and you want to do it as fast as possible
- Notation:
 - c(n, n'): the cost of traveling from n to n'
 - h(n): the estimate of the distance from n to the goal
- Three settings:
 - Setting 1: You are given the *c* function but not *h*
 - Setting 2: You are given the *h* function but not *c*
 - Setting 3: You are given both *c* and *h* functions

Best-first Search Pseudocode

- Given
 - The initial state, goal state, available actions, action costs, and maybe a heuristic function
 - frontier a priority queue; explored: a set
- o Initialize frontier with the initial state
- While frontier is not empty
 - Pop the top node n in the frontier
 - Add n to explored
 - If n is the goal state, return the solution
 - For each child n' of n:
 - o If n' is not in explored
 - o If n' is not in frontier
 - Add it to frontier
 - Else if the new path to n' is better than the old path, replace the old n' with the new n' in the frontier
- Return failure // frontier is empty; goal was not found

BEST-FIRST SEARCH ALGORITHMS

- Define f(n) = h(n) + g(n)
 - h(n): Cost estimate from n to the goal
 - g(n): Cost from the initial state to n
- 1. Uniform-cost search
 - frontier is sorted using g(n)
- 2. Greedy heuristic search
 - frontier is sorted using h(n)
- 3. A* search
 - frontier is sorted using f(n)

A TRAVEL PROBLEM EXAMPLE

• See OneNote

OPTIMAL

- Assume the optimal path cost is p^*
- Uniform cost search is guaranteed to return the optimal path
 - Expands all nodes where $g(n) \le p^*$
- Greedy heuristic search is not optimal; ignores path costs
- A* is optimal only if h is admissible and consistent
 - Expands all nodes where $g(n) + h(n) \le p^*$

ADMISSIBLE? CONSISTENT?

• Admissible if

- h(n) never overestimates the optimal cost
- That is h(n) is always optimistic
- E.g., straight line distance between two cities

Consistent if

- If $h(n) \le c(n,n') + h(n')$
- *n* is the successor of *n*
- Triangle inequality
- If a heuristic is consistent, it is also admissible (the other way around is not guaranteed)

A* Optimality – Proof Sketch

- 1. If h(n) is consistent, then f(n) along any path is non-decreasing
- 2. When *n* is expanded, the optimal path to it has been found

UCS vs A*

- \circ A* = UCS if h(n) = 0 for all n
- UCS searches in circles whereas A* searches in ellipses
- Illustration in OneNote

8 Puzzle

Start State

Goal State

HEURISTICS

- How to design h(n)?
 - The answer is "depends on the domain" but some general principles exist
 - For example, relax the problem constraints a bit
- For travel problems
 - Flight distance
- For 8-Puzzle
 - Number of misplaced tiles
 - Manhattan distance

A 3-PUZZLE PROBLEM EXAMPLE

• See OneNote

OTHER SEARCH ALGORITHMS

- Depth-first search
- Breadth-first search
- Iterative deepening search
- Bidirectional search

COMPARING ALGORITHMS

- Time complexity
- Space complexity
- Completeness
 - If there is a solution, can it find it?
- Optimality
 - Is the found solution the optimal one?

COMPARING HEURISTICS

- $oldsymbol{o}$ h_i dominates h_i iff
 - $h_i(n) \ge h_j(n) \ \forall n$
- For the 8-Puzzles problem
 - Manhattan distance dominates # of misplaced tiles
- If you have multiple admissible heuristics where none dominates the other
 - Let $h(n) = \max(h_1(n), h_2(n), ..., h_m(n))$
 - h(n) is admissible and it dominates all $h_i(n)$
 - Of course, computing a heuristic is not free, and hence we need to consider the computational cost of h(n) compared to each $h_i(n)$

EFFECTIVE BRANCHING FACTOR

- If the total number of nodes generated is N and the solution depth is d, then
 - b* is the branching factor that a uniform tree of depth d would need to have in order to contain N+1 nodes
- $N+1 = 1 + b^* + (b^*)^2 + ... + (b^*)^d$
- o If A^* finds a solution at depth 4 using 40 nodes, what is b^* ?
 - ≈2.182
- A good heuristic function achieves $b^* \approx 1$

EMPIRICAL COMPARISONS

- Figure 3.26 in http://aima.cs.berkeley.edu/figures.pdf
- https://github.com/aimacode/aima-python/blob/master/search4e.ipynb

DISCRETE SPACES WITH COMPLETE-STATE FORMULATIONS

DISCRETE STATE SPACE SEARCH

- Each state
 - Is discrete
 - Represents a complete representation of a possible solution
 - Has a "desirability" score
 - Might have neighbors reachable through actions/moves
- The goal is to find the maximum/minimum scoring state
- Some examples
 - Bayesian network structure search
 - A state is a candidate structure; the score is BIC; actions are to "add/remove/reverse" an edge
 - 8-Queens
 - A state is placement of 8 queens on the board; the score is the number of pairs of queens attacking each other; the actions are to move a queen to another empty square
 - Traveling salesman
 - A state is a travel plan; the score is the cost of the plan; the actions are to swap the order of two neighboring cities
- The actions and state representations are not written on stone; you can define them in a different way
 - How you define the states and actions can have a profound impact on the shape of the search space

ONENOTE ILLUSTRATION

- You are at state A
- Actions are: Left or Right
- Every state has a value
- You want to find the state with the maximum value

HILL CLIMBING

```
function HILL-CLIMBING(problem) returns a state that is a local maximum current \leftarrow problem.INITIAL while true do
neighbor \leftarrow \text{a highest-valued successor state of } current
\textbf{if Value}(neighbor) \leq \text{Value}(current) \textbf{ then return } current
current \leftarrow neighbor
```

Figure 4.2 The hill-climbing search algorithm, which is the most basic local search technique. At each step the current node is replaced by the best neighbor.

Figure from http://aima.cs.berkeley.edu/algorithms.pdf

THE SEARCH LANDSCAPE

Figure 4.1 A one-dimensional state-space landscape in which elevation corresponds to the objective function. The aim is to find the global maximum.

8-QUEENS EXAMPLE

(a) (b)

Figure 4.3 (a) The 8-queens problem: place 8 queens on a chess board so that no queen attacks another. (A queen attacks any piece in the same row, column, or diagonal.) This position is almost a solution, except for the two queens in the fourth and seventh columns that attack each other along the diagonal. (b) An 8-queens state with heuristic cost estimate h = 17. The board shows the value of h for each possible successor obtained by moving a queen within its column. There are 8 moves that are tied for best, with h = 12. The hill-climbing algorithm will pick one of these.

SIMULATED ANNEALING

- Optimization by Simulated Annealing
 - S. Kirkpatrick, C. D. Gelatt Jr., M. P. Vecchi
 - Science 13 May 1983:
 - Vol. 220, Issue 4598, pp. 671-680
 - https://science.sciencemag.org/content/220/4598/671

SIMULATED ANNEALING

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state  \begin{array}{l} current \leftarrow problem. \\ \text{INITIAL} \\ \text{for } t = 1 \text{ to } \infty \text{ do} \\ T \leftarrow schedule(t) \\ \text{if } T = 0 \text{ then return } current \\ next \leftarrow \\ \text{a randomly selected successor of } current \\ \Delta E \leftarrow \\ \text{VALUE}(current) - \\ \text{VALUE}(next) \\ \text{if } \Delta E > 0 \text{ then } current \leftarrow \\ next \\ \text{else } current \leftarrow \\ next \text{ only with probability } e^{-\Delta E/T} \\ \end{array}
```

Figure 4.4 The simulated annealing algorithm, a version of stochastic hill climbing where some downhill moves are allowed. The schedule input determines the value of the "temperature" T as a function of time.

SIMULATED ANNEALING EXAMPLE

GIF from https://en.wikipedia.org/wiki/Simulated_annealing

AN ASSIGNMENT IDEA

- Implement and test simulated annealing
 - Traveling salesman
 - Another problem of interest
- Study its behavior
 - Parameters
- Write a report

EVOLUTIONARY ALGORITHMS

- A population of states
- Each state has a "fitness" score
- Select candidate states from the population
- "Recombine" them to create an "offspring"
- o Optionally, mutate the "offspring"

EVOLUTIONARY ALGORITHMS — GENETIC ALGORITHM

```
function GENETIC-ALGORITHM(population, fitness) returns an individual
  repeat
      weights \leftarrow WEIGHTED-BY(population, fitness)
      population2 \leftarrow empty list
      for i = 1 to SIZE(population) do
          parent1, parent2 \leftarrow WEIGHTED-RANDOM-CHOICES(population, weights, 2)
          child \leftarrow Reproduce(parent1, parent2)
          if (small random probability) then child \leftarrow MUTATE(child)
          add child to population2
      population \leftarrow population 2
  until some individual is fit enough, or enough time has elapsed
  return the best individual in population, according to fitness
function REPRODUCE(parent1, parent2) returns an individual
  n \leftarrow \text{LENGTH}(parent1)
  c \leftarrow random number from 1 to n
  return APPEND(SUBSTRING(parent1, 1, c), SUBSTRING(parent2, c + 1, n))
```

Figure 4.7 A genetic algorithm. Within the function, *population* is an ordered list of individuals, *weights* is a list of corresponding fitness values for each individual, and *fitness* is a function to compute these values.

8-QUEENS EXAMPLE

Figure 4.5 A genetic algorithm, illustrated for digit strings representing 8-queens states. The initial population in (a) is ranked by a fitness function in (b) resulting in pairs for mating in (c). They produce offspring in (d), which are subject to mutation in (e).

8-QUEENS EXAMPLE

Figure 4.6 The 8-queens states corresponding to the first two parents in Figure ??(c) and the first offspring in Figure ??(d). The green columns are lost in the crossover step and the red columns are retained. (To interpret the numbers in Figure ??: row 1 is the bottom row, and 8 is the top row.)

SUMMARY

- Uniform cost search
- Greedy heuristic search
- A*
- Heuristics
- Simulated annealing
- Genetic algorithm