CPU Architecture

LAB4 assignment

FPGA based Digital Design Hanan Ribo

23.05.2022

Table of contents

1. Aim of the Laboratory	3
2. Assignment definition	3
Performance Test Case	3
Hardware Test Case	4
3. Requirements	6
4. Grading Policy	7
5. References	7
List of Figures	
Figure 1 : First Test Case	
Figure 2 : Hardware Test Case	
List of Tables Table 1 : Grading	
Table 1 . Grading	

1. Aim of the Laboratory

- Understanding of digital system synthesis.
- FPGA design as a target HW.

2. Assignment definition

In this laboratory you will have to synthesize a Synchronous Digital System based on *LAB1 assignment* for the Cyclone II FPGA with impact on performance and logic usage.

Performance Test Case

In this test case you have to test the performance, area and functionality of a **digital system**. Generally, in order Quartus can evaluate design timing (as explained in detail in guidance files on Moodle). In order to perform timing analysis to digital system, the design must contain registers which confine the logic paths (explained in guidance files).

Note: in synchronous digital system this requirement is obeyed inherently. In case of pure logic system as ALU, in order to perform timing analysis, we need to confine the ALU DUT between two synchronous registers (DFF based) operating from the same clock as described in the diagram below to estimate performance (DUT of LAB1 assignment for example).

Figure 1: Test Case in case of pure logic system as ALU

You have to do the following tasks:

- ModelSim Simulation with maximal coverage (done in LAB1 assignment).
- Quartus Compilation without pin assignments and design loading to check the design synthesis performance.
- Find the maximal operating clock f_{max} , set the clock constrain to the possible maximum value.
- Analyze the logic usage (*based on the compilation report*).
- Analyze the critical path and its location in system. Show the longest (critical) and the shortest paths and explain why.
- Find the frequency limiting operation and explain why it is happening.

The following must be presented in the report:

- RTL Viewer results *for each logic block* (of the level underneath top).
- Logic usage for each block (Combinational and Flip-Flops) based on Logic usage report from Quartus II.
- Critical path for each logic block and overall system critical path.
- Optimizations that you have done on the code for the FPGA.

Hardware Test Case

In the hardware test case you will have to test an **8bit counter based digital system** at the FPGA board.

- Board ten switches (SW9-SW0) and push four debounced push-buttons (KEY3-KEY0) will be used as Input interface.
- Board ten red LEDs (LEDR9-LEDR0), eight green LEDs (LEDG7-LEDG0) and four 7-segment displays used as Output interface.

Whole system must be connected to the Altera board interfaces according to the following diagram:

Figure 3: Digital system with I/O interface

3. Requirements

- 1. The report file (task4.pdf) content should be with page numbers.
- 2. Images and tables will be numbered. The caption of an images and tables below the images or tables. The top level design must be structural; all other modules can be structural/ behavioral or mixed modeling (structural and behavioral).
- 3. The behavioral parts of the design (except the test bench) must be synthesizable, pay attention on the logic that you are describing.
- 4. <u>Block diagrams for the behavioral parts of the design</u> that describes the logic behind the behavioral code, can be taken from Quartus RTL Viewer
- 5. The design must be well commented.
- 6. Elaborated analysis and wave forms:
 - Remove irrelevant signals.
 - Zoom on regions of interest.
 - Draw clouds on the waveform with explanations of what is happening.
 - Change the waveform colors in ModelSim for clear documentation (*Tools->Edit Preferences->Wave Windows*).
 - Resource Usage from Quartus.
 - Maximal Frequency and critical paths from Timing Analyzer
 - Proof of work using Signal Tap is mandatory.
- 7. Conclusions
- 8. A ZIP file in the form of **id1_id2.zip** (where id1 and id2 are the identification number of the submitters, and id1 < id2) *must be upload to Moodle only by student with id1* (any of these rules violation disqualifies the task submission).
- 9. The **ZIP** file will contain the next five subdirectories (*only the exact next sub folders*):

Directory	Contains	Comments
VHDL	Project VHDL files	Only VHDL files, excluding test bench
		Note: your project files must be well compiled
		(in ModelSim and Quartus separately) without
		errors as a basic condition before submission
TB	VHDL files that are used for test bench	Only one tb.vhd for the overall DUT
SIM	ModelSim DO files	Only for tb.vhd of the overall DUT
DOC	Project documentation	Readme.txt and Lab4.pdf report file
Quartus	Signal Tap files used in project	Do not place files that are not relevant for
	verification (for one Arithmetic and	compilation or is a result of compilation
	one Shift operations)	
	Project SOF file	
	Project SDC file	

Table 1: Directory Structure

4. Grading Policy

Weight	Task	Description
10%	Documentation	The "clear" way in which you presented the requirements and the analysis and conclusions on the work you have done.
90%	Analysis and Test	The correct analysis of the system (under the requirements)

Table 1: Grading

Under the above policy, you will be also evaluated using common sense:

- Your files will be compiled and checked, the system must work.
- Your design and architecture must be intelligent, minimal, effective and well organized.

5. References

- [1] Altera Cyclone II data book on http://www.altera.com./literature/lit-cyc2.jsp
- [2] Quartus II manuals: http://www.altera.com/support/software/sof-quartus.html
- [3] DE1 User Manual on http://hl2.bgu.ac.il Course Library=>FPGA
- [4] Cyclone II Technical information http://www.altera.com./literature/lit-cyc2.jsp