Redução da dimensionalidade em bigdata

Lucca de Castro Machado

Prof. Dr. Anderson Borba

Motivação e Objetivo

Com o aumento constante da quantidade de dados gerados em diversas áreas mundialmente (Figura 1), a análise desses dados tornou-se um desafio cada vez maior, pois com mais dados gerados mais processamento será preciso para fazer a análise, tornando o tempo de processamento alto impactando entregas de projetos. A partir desse fato, motiva-se a redução da dimensionalidade em big data para lidar com esse desafio, permitindo a análise de grandes quantidades de dados de forma mais eficiente e precisa.

O objetivo deste projeto é explorar as técnicas de redução de dimensionalidade em big data, destacando suas vantagens e desvantagens, e mostrar na prática a diferença no tempo de processado e na taxa de acerto nas previsões, comparando entre uma mesma base de dados com a dimensionalidade reduzida e a outra normal. Assim podendo provar como elas podem ser aplicadas na prática para lidar com grandes conjuntos de dados.

Metodologia

O projeto busca entender a funcionalidade entre 3 algoritmos de redução de dimensionalidade, o Análise de Componentes Principais (PCA), Kernel PCA e o Análise Discriminante Linear (LDA). Nesta primeira etapa do projeto, os 3 algoritmos foram aplicados em uma base de dados classificação, onde contém 14 variáveis independente e 1 variável dependente, as 14 variáveis vão influenciar a previsão se um indivíduo ganha acima ou abaixo de 50 mil dólares no ano na nossa base de dados.

O objetivo da pesquisa é reduzir a dimensionalidade das variáveis independentes com PCA, Kernel PCA e LDA e fazer a comparação entre os algoritmos e uma base sem redução de dimensionalidade, a comparação ser a partir da precisão preditiva utilizando o Random Forest e o tempo de processamento utilizando a biblioteca time, para o resultado ficar mais assertivo, vão ser rodado 10 vezes a mesma rotina de código, e a cada vez rodada vão ser chamada de teste e em seguida o número ordinal de teste, como por exemplo teste 1, teste 2 e assim por diante, com os resultados de tempo obtido, calcular a média e a mediana.

A pesquisa foi realizada em um computador com processador AMD ryzen 7 5700g, 32gb de RAM, placa mãe B550M-Plus, fonte de 650W, SSD 512gb de Leitura 3100MBs e Gravação 1500MBs, placa de vídeo RTX 3070 Ti. O software utilizado foi o Jupyter Notebook 6.5.2 e Python 3.10.2 no sistema operacional Windows 11 Pro.

Figura 1 - Tamanho anual da esfera de dados global (Data Age 2025, sponsored by Seagate with data from IDC Global DataSphere, Nov 2018)

Resultados Preliminares

Com base na metodologia apresentada foram obtidos os seguintes resultados:

Precisão preditiva:

	Base sem Redução	PCA	Kernel PCA	LDA
Precisão	84.33%	83.73%	82.35%	73.34%
Tempo de	e processamen	to•		
i chipo di	e processamen	w.		
	Base sem redução	PCA	Kernel PCA	LDA
Média			Kernel PCA 0,08712	LDA 0,09148

Analisados os resultados obtidos, podemos observar que com a utilização de algoritmos de redução de dimensionalidade, pode ocasionar queda na precisão preditiva e um acréscimo de tempo de processamento em relação a uma base sem redução.

Conclusões e próximos passos

Concluindo-se, em relação a pesquisa realizada, base de dados de classificação não são muito eficaz utilizando os algoritmos de redução de dimensionalidade PCA, Kernel PCA e LDA.

Os próximos passos são analisar outras base de dados com características diferentes, como uma base de dados de regressão, uma base de dados com mais variáveis independentes e uma base de dados com maior número de registros. E usar outros métodos de redução de dimensionalidade e comparar com as utilizada na pesquisa inicial.

Referências

REINSEL, David; GANTZ, John; RYDNING, John. The Digitization of the World From Edge to Core. Framingham: Idc, 2018. 28 slides.

