Artificial Intelligence

CS4365 --- Fall 2022 Local Search

Instructor: Yunhui Guo

Search Algorithms

•BFS, DFS, UCS, A* etc

Explore the state-space systemantically to the goal

state

Need to reconstruct the path

Local Search Methods

 The search spaces for some real-world problems is enormously big

How many combinations can 500 processes be assigned to 100

computers? 100⁵⁰⁰ states

There are 3³⁶¹ states in Go board

- A completely different kind of method is called for:
 - Local Search Methods

Local Search Methods

- Applicable when we're interested in the Goal State -- not in how to get there
 - E.g. N-Queens, Course Scheduling Problem or Job-shop Scheduling
- Basic idea:
 - use a single current state
 - don't save paths followed
 - generally move only to sucessors/neighbors of that state
 - find the best state according to an objective function or cost function

Local Search Methods

Advantages:

- Use very little memory
- Can be applied to problems with a large number of states
- Can be applied to problems with changing state spaces

Disadvantages:

- Cannot recover the path
- The solution may not be optimal

State-Space Landscape

 Local Search Methods rely on an objective function or a cost function to compute the state-space landscape

Local search algorithms explore this landscape

Hill Climbing Search

Move in the direction of increasing value

 $current \leftarrow neighbor$

 Terminate when it reaches a "peak" where no neighbor has a higher value.

function Hill-Climbing(problem) returns a state that is a local maximum $current \leftarrow Make-Node(problem.Initial-State)$ loop do $neighbor \leftarrow$ a highest-valued successor of currentif neighbor. Value ≤ current. Value then return current. State

Hill Climbing Search

Hill Climbing Search

 Only need to record the state and the value of the objective function or cost function

 Similar to greedy algorithm, only check the value of the immediate neighbors

Rely on complete-state formulation instead of incremental formulation

Complete-State Formulation vs. Incremental Formulation

- Complete-State Formulation
 - All queens are in the board. Move any queen in the same column
 - Why used in local search?
- Incremental Formulation
 - Add each queen to the board one by one (used in many search algorithms we covered before)

Hill Climbing Search Can Get Stuck

- Local maxima
 - A peak that is higher than all its neighbors but lower than the global maximum.

Hill Climbing Search Can Get Stuck

- Ridges
 - A sequence of local maxima

Hill Climbing Search Can Get Stuck

- Plateaux or shoudlers
 - The objective function is constant

Example: 8-queen problem

 Put n queens on an n x n board with no two queens on the same row, column, or diagonal

- What is the state-space of this problem?
- How is this problem different from the 8-puzzle problem?

Example: 8-queen problem

 Heuristic cost function: the number of pairs of queens that are attacking each other, either directly or indirectly

$$h = 17$$

 Each time we can move the queen to another square in the same column

Example: 8-queen problem

 Heuristic cost function: the number of pairs of queens that are attacking each other, either directly or indirectly

Local minumum with h =1

Example: Satisfiability

Propositional logic:

Literals (True or False)

Logical connectives

• And: ∧ Or: ∨ Not: ¬

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$
false	false	true	false	false
false	true	true	false	true
true	false	false	false	true
true	true	false	true	true

Clause: a disjunction of literals

$$l_1 \vee ... \vee l_n$$

Conjunctive normal form:

$$(A \lor B \lor C) \land (\neg B \lor C \lor D) \land (A \lor \neg C \lor D)$$

Example: Satisfiability

 A wide variety of key CS problems can be translated into a propositional logical formalization

e.g.,
$$(A \lor B \lor C) \land (\neg B \lor C \lor D) \land (A \lor \neg C \lor D)$$

- Solved by finding a truth assignment to the propositional variables (A, B, C, ...) that makes it true, i.e., a model.
- If a formula has a model, we say that it is "satisfiable"

- Best-known method: Davis-Putnam Procedure (1960)
- Backtrack search (DFS) through the space of truth assignments

 Assigning values to variables one by one and simplifying at each step

Cannot be satisfied

$$A \wedge \neg A$$

Best-known method: Davis-Putnam Procedure (1960)

$$(A \lor C) \land (\neg A \lor C) \land (B \lor \neg C) \land (A \lor \neg B)$$

Best-known method: Davis-Putnam Procedure (1960)

$$(A \lor C) \land (\neg A \lor C) \land (B \lor \neg C) \land (A \lor \neg B)$$

Best-known method: Davis-Putnam Procedure (1960)

$$(A \lor C) \land (\neg A \lor C) \land (B \lor \neg C) \land (A \lor \neg B)$$

$$C \wedge (B \vee \neg C) \wedge \neg B$$

$$C \wedge (B \vee \neg C)$$

Best-known method: Davis-Putnam Procedure (1960)

$$(A \lor C) \land (\neg A \lor C) \land (B \lor \neg C) \land (A \lor \neg B)$$

$$C \wedge (B \vee \neg C) \wedge \neg B$$

$$F$$
 B
 T

$$C \wedge \neg C$$
 ×

$$C \wedge (B \vee \neg C)$$

•

•

•

 To date, Davis-Putnam Procedure is still the fastest sound and complete method.

 However, there are classes of formulas where the procudure scales badly.

Consider an imcomplete local search procudure

- Begin with a random truth assignment (assume CNF).
- Flip the value assignment to the variable that yields the greatest number of satisfied clauses. (Note: Flip even if there is no improvement.)
- Repeat until a model is found, or have performed a speficied maximum number of flips.
- If a model is still not found, repeat the entire process, starting from a different initial random assignment.

- Input: a conjunctive normal form α, MAX-FLIPS, MAX-TRIES
- Output: a satisfying truth assignment if found

- Input: a conjunctive normal form α, MAX-FLIPS, MAX-TRIES
- Output: a satisfying truth assignment if found
- For i = 1 to MAX-TRIES:

T := a randomly generated truth assignment

For j = 1 to MAX-FLIPS:

If T satisfies α , then return T

p := a propositional variable such that a change of its truth leads to the largest number of satisfied clauses

T := T with the truth value of p reversed

return "no satisfying assignment found"

$$(A \lor C) \land (\neg A \lor C) \land (B \lor \neg C)$$

• A: False B: False C: True

$$(A \lor C) \land (\neg A \lor C) \land (B \lor \neg C)$$

• A: False B: False C: True

A	B	C	$(A \lor C)$	\wedge	$(\neg A \vee C)$	\wedge	$(B \vee \neg C)$	Score
F	F	F	×		\checkmark		\checkmark	2
F	F	\mathbf{T}	\checkmark		\checkmark		×	2
F	\mathbf{T}	\mathbf{T}	\checkmark		\checkmark		\checkmark	3

How well does it work?

- First intuition: It wil get stuck in local minima, with a few unsatisfied clauses.
- Note we are not interested in almost satisfying assigments
 - E.g., a plan with one "magic" step is useless.
 - Contrast with optimization problems.
- GSAT is not complete.
- Surprise: It often finds global minimum!
 - i.e., finds satisfying assigments

How well does it work?

- Generate a large number of random formulas
 - Different number of propositional variables
 - Different number of clauses

$$(A \lor C) \land (\neg A \lor C) \land (B \lor \neg C)$$

 Run GSAT and Davis-Putnam Procedure on the generated formulas and measure the time to find the right assignment.

formulas		GSAT			DP		
vars	clauses	M-FLIPS	tries	$_{ m time}$	choices	depth	time
50	215	250	6.4	0.4s	77	11	1.4s
70	301	350	11.4	0.9s	42	15	15s
100	430	500	42.5	6s	84×10^{3}	19	$2.8 \mathrm{m}$
120	516	600	81.6	14s	0.5×10^{6}	22	18m
140	602	700	52.6	14s	2.2×10^{6}	27	4.7h
150	645	1500	100.5	45s	-8	20. 30 .	35
200	860	2000	248.5	$2.8 \mathrm{m}$		(3-2)	- 100 m
250	1062	2500	268.6	$4.1 \mathrm{m}$	<u>—3</u> 7	(4-4)	80
300	1275	6000	231.8	12m		-	39
400	1700	8000	440.9	$34 \mathrm{m}$		82 - 55	38-
500	2150	10000	995.8	1.6h		<u> </u>	

Limitations of GSAT

$$(A \vee \neg B \vee C) \wedge (A \vee \neg C \vee D) \wedge (A \vee \neg D \vee \neg B) \wedge (A \vee E \vee B) \wedge (A \vee \neg E \vee B)$$
$$... \wedge (\neg A \vee \neg X \vee Y) \wedge (\neg A \vee \neg Z \vee P)$$

- Can be satisfied only when A is True
- But GSAT prefers a negative assignment

Limitations of GSAT

$$(A \vee \neg B \vee C) \wedge (A \vee \neg C \vee D) \wedge (A \vee \neg D \vee \neg B) \wedge (A \vee E \vee B) \wedge (A \vee \neg E \vee B)$$

When A is False

$$(\neg B \lor C) \land (\neg C \lor D) \land (\neg D \lor \neg B) \land (E \lor B) \land (\neg E \lor B)$$

When B is True

$$C \wedge (\neg C \vee D) \wedge \neg D$$

Unsatisfied

When B is False

$$(\neg C \lor D) \land E \land \neg E$$

Unsatisfied