图论作业3

2025年6月3日

1 填空题

1. 完全图 K_{2n} 共有 个不同的完美匹配。
解答. $(2n-1)!!$ 注记. 完全偶图 $K_{n,n}$ 共有 $n!$ 个不同的完美匹配。
2. 超方体 Q_6 的最小覆盖包含的点数为。
解答 . $\frac{2^6}{2} = 32$ 注记 . 推论: 若 $G \neq k$ 正则偶图 $(k>0)$,则 G 有完美匹配。 n 方体是 n 正则二部图, 有完美匹配,且完美匹配的边数为顶点数的一半.

解答. m

3. 图 $K_{m,n}(m \le n)$ 的最小覆盖包含的点数为 _

1 填空题 2

4. 完全图 K_{60} 能分解为 ______ 个边不重的 1-因子之并。

解答. 59

注记. 定理 完全图 K_{2n} 是 1-可因子化的。

 K_{2n} 可以分解为 2n-1 个边不重的 1-因子之并。

有没有,能不能,数一数

5. 完全图 K_{61} 能分解为 ______ 个边不重的 2-因子之并。

解答. 30

注记. 定理: K_{2n+1} 是2 – 可因子化的,且为n个H圈的并。

若一个2-因子是连通的,则它是一个H圈。

6. 假设 G 是具有 n 个点、m 条边、k 个连通分支的无圈图,则 G 的荫度为

解答. 1

注记. 无环图 G 分解为边不重的生成森林的最少数目,称为图 G 的荫度,记为 $\sigma(G)$ 。

7. 设图 $G 与 K_5$ 同胚,则至少从 G 中删掉 ______ 条边才可能使其成为可平面图。

解答. 1

注记. 如果在不可平面图 G 中任意删去一条边所得的图为可平面图,则称 G 为极小不可平面图,比如 K_5 和 $K_{3,3}$ 。

1 填空题 3

8. 设连通平面图 G 具有 5 个顶点,9 条边,则其面数为 _____。

解答.
$$\varphi = 6, (5 - 9 + \varphi = 2)$$

注记. 欧拉公式:

连通平面图: $n-m+\varphi=2$

k 个分支的平面图: $n-m+\varphi=k+1$

9. 若图 G = 10 阶极大平面图,则其面数等于 _________。

解答. 16

注记. 极大平面图:m = 3n - 6, $\varphi = 2n - 4$ 、、极大外平面图:m = 2n - 3, n - 2个外部面

10. 若图 G 是 10 阶极大外平面图, 其内部面共有 ______ 个。

解答. 8

11. 请判断右图是否为可平面 (请填是或否)_____。

解答. 否

删去图中蓝色的边后,收缩 2 度顶点(即黄点),可得 $K_{3,3}$

1 填空题 4

注记. 考虑: 依次删除一些边。这些边满足去掉原图依旧非平面的边。直到所有的边都尝试过。我们将保留的非平面的边构成我们想要的子图。

定理 (库拉托夫斯基定理):图 G 是可平面的当且仅当 G 不含与 K_5 或 $K_{3,3}$ 同胚的子图。

定理 (瓦格纳定理): 简单图 G 是可平面图当且仅当 G 不含与 K_5 或 $K_{3,3}$ 同构的初等收缩子图。

图 G 的初等收缩子图是对 G 进行一系列的删点、删边或者边收缩运算得到的图。

2025.5.30 考: 判断该图是否是平面图。

2 不定项选择题

- 1. 关于非平凡树T,下面说法错误的是()
- (A) T 至少包含一个完美匹配;
- (B) T 至多包含一个完美匹配;
- (C) T 的荫度可能大于 1;
- (D) T 是只有一个面的平面图;
- (E) T 的对偶图可能是简单图。

解答. ACE

- (A)(B) 非平凡树 T 至多包含一个完美匹配。(C) 树的荫度是 1
- (D)(E) 树只有外部面,它的对偶图肯定有自环。
- 2. 下列说法正确的是()
- (A) 三正则的偶图一定存在完美匹配;
- (B) 三正则的哈密尔顿图一定存在完美匹配;
- (C) 无割边的三正则图一定存在完美匹配;
- (D) 有割边的三正则图一定没有完美匹配;
- (E) 存在完美匹配的三正则图的边数一定是3的倍数。

解答. ABCE

- (B) 哈密尔顿图无割边,无割边的 3 正则图有完美匹配;或者,3 正则图有偶数个顶点,H 图有偶圈,隔一条边去一条边就是完美匹配,可以 1-因子分解。
- (E) 由 3n=2m 可得

注记. 推论 (Peterson): 每个没有割边的 3 正则图都有完美匹配。

推论: 若G是k正则偶图(k>0),则G有完美匹配。

无割边的三正则图一定存在完美匹配,但不一定可以1因子分解。 有割边的三正则图可能有完美匹配,但一定不可以1因子分解。

- 3. 下列说法正确的是()
- (A) 在偶图中, 最大匹配包含的边数等于最小覆盖包含的点数;
- (B) 任一非平凡正则偶图包含完美匹配;
- (C) 任一非平凡正则偶图可以 1-因子分解;
- (D) 偶度正则偶图可以 2-因子分解;
- (E) 任意 k-正则偶图 ($k \ge 2$) 一定不包含割边。

解答. ABCDE

(A)König 定理

注记.

- 4. 下列说法中错误的是()
- (A) 完全图 K_{101} 包含 1-因子;
- (B) 完全图 K_{101} 包含 2-因子;
- (C) 完全图 K_{102} 包含 1-因子;
- (D) 完全图 K₁₀₂ 包含 2-因子;
- (E) 图 G 的一个 1-因子对应 G 的一个完美匹配;
- (F) 图 G 的一个 2-因子对应 G 的一个哈密尔顿圈。

解答. AF

- (A) 图 G 存在完美匹配的一个必要条件是 G 的点数必然为偶数。
- (B) 定理 图 K_{2n+1} 是 2-可因子化的,且为 $n \cap H$ 圈的并。
- (C) 定理: 完全图 K_{2n} 是 1-可因子化的, 2n-1 个不同的 1-因子
- (E)1-因子的边集构成一个完美匹配。
- (F) 连通的 2-因子对应 H 圈

- 5. 下列说法正确的是()
- (A) 超立方体 Q_n 一定可以 1-因子分解;
- (B) 最大度小于 3 的偶数阶连通图一定可以 1-因子分解;
- (C) 三正则的哈密尔顿图一定可以 1-因子分解;
- (D) 无割边的 3 正则图一定可以 1-因子分解;
- (E) 有割边的 3 正则图一定不可以 1-因子分解。

解答. ACE

注记.

- (B) 非平凡树 T 至多包含一个完美匹配,不能 1-因子分解
- (C) 定理: 具有 Hamilton 圈的 3 正则图是 1-可因子化的。反之不成立
- 6. 下列说法正确的是()
- (A) 完全图 K_{2n} 是 2n-1 个完美匹配的并;
- (B) 完全图 K_{2n} 是 n 个哈密尔顿圈的并;
- (C) 完全图 K_{2n} 是 1 个完美匹配与 n-1 个哈密尔顿圈的并;
- (D) 若图 $G \in 2k$ 正则连通图,则 G 可以分解为 k 个 2-因子的并;
- (E) 无割边的 3 正则图可以分解为一个 1-因子与一个 2-因子的并。

解答. ACDE

(B) 完全图 K_{2n+1} 是 n 个哈密尔顿圈的并;

注记.

- 7. 下列说法正确的是()
- (A) 完全图 K_n 的荫度为 [n/2],符号 []代表向上取整;
- (B) 完全二部图 Ka, b 的荫度为 [ab/(a+b-1)], 符号 [] 代表向上取整;
- (C) 非平凡树的荫度为 1;
- (D) 具有 m 条边的 n 阶无环图可以分解为 m 个生成森林的并;
- (E) 假设 H 是图 G 的子图,则 $\sigma(H) \leq \sigma(G)$ 。

解答. ABCDE

- 8. 下列说法错误的是()
- (A) 任何平面图都只有一个外部面;
- (B) 简单平面图中一定有度数不超过5的顶点;
- (C) 平面图的各个面的次数之和可能为奇数;
- (D) 只有一个面的连通平面图一定是树;
- (E) 存在一种方法, 总可以把平面图的任意一个内部面转化为外部面。

解答. C

- (B) 定理: 若 G 是简单平面图,则 $\delta(G) \leq 5$
- (C) 定理: 设 G 是具有 m 条边的平面图,则 $\sum_{f\in\Phi}\deg(f)=2m$.
- (D) 只有一个面的连通平面图一定无圈, 因为圈有内部和外部
- (E) 通过球极射影可将平面图的内部面转换为外部面。
- 9. 下列说法正确的是()
- (A) 若无环图 G 是 2 连通的平面图,则其一定不包含割点;

- (B) 若无环图 G 是 2 连通的平面图,则其一定不包含割边;
- (C) 若无环图 G 是 2 连通的平面图,则其一定不包含只属于一个面的边;
- (D) 若无环图 G 是 2 连通的平面图,则其每个面的边界均为圈;
- (E) 若无环图 G 是 2 连通的平面图,则其任意两个点在同一个圈上;
- (F) 若无环图 G 是 2 连通的平面图,则其任意两条边在同一个圈上。

解答. ABCDEF

(B)2 连通一定是 2 边连通的

10. 下列说法错误的是()

- (A) 若 (n, m) 图 G 是极大平面图且 n > 3,则 m = 3n-6;
- (B) 若 (n, m) 图 G 是极大外平面图且 n > 3, 则 m = 2n-3;
- (C) 阶数至少为 3 的极大平面图的每个面均是三角形;
- (D) 阶数至少为 3 的极大外平面图的每个面均是三角形;
- (E) 阶数至少为3的极大外平面图一定是哈密尔顿图。

解答. D

注记. (A) 极大平面图: $n = 3n - 6, \varphi = 2n - 4$

- (B) 极大外平面图: m = 2n 3, fan 2个内部面
- (C)"极大平面图的三角形特征",即每个面的边界是三角形。
- (D) 定理: 设 G 是一个至少有 3 个点且所有点均在外部面上的外平面图,则 G 是极大外平面图当且仅当其外部面的边界是哈密尔顿圈,内部面是三角形。

11. 关于平面图 G 和其对偶图 G^* 的关系,下列说法中错误的是()

- (A) *G** 是连通平面图;
- (B) G^* 的顶点数等于 G 的面数;
- (C) G^* 的边数等于 G 的边数;
- (D) G^* 的面数等于 G 的点数;
- (E) $(G^*)^* \cong G$;
- (F) 若 $G_1 \cong G_2$, 则 $G_1^* \cong G_2^*$ 。

解答. DEF

- (D)(E) 要求连通
- (F) 同构的平面图可有不同构的对偶图

3 解答题

1. 设 $G \neq 2k$ 阶简单图并且最小度 $\delta(G) \geq k \geq 1$ 。证明: G 存在完美匹配。

解答.

证:

k=1 时,G 是 2 阶简单图,只有一条边,则该边即为完美匹配;

k=2 时, $\delta(G)\geq 2$ 由 Dirac 空理,G 是哈密尔顿图,有哈密尔顿圈,在圈上隔一条边去一条边可取出完美匹配。

2. G 是一个偶数阶简单连通图且 $\Delta(G) = 2$,则 G 一定包含完美匹配。

解答.

 $1 \le \delta(G) \le \Delta(G) = 2$

- $\delta(G)=1$ 时,图 G 是路
- $\delta(G)=2$ 时,图 G 是偶圈

3. 由于在考试中获得好成绩, 6 名学生将获得下列书籍的奖励, 分别是: 代数学 (a)、微积分 (c)、微分方程 (d)、几何学 (g)、数学史 (h)、规划学 (p)、拓扑学 (t)。每门科目只有 1 本书, 而每名学生对书的喜好是: A: d, h, t; B: h, t; C: c, d, g, p; D: d, h; E: d, t; F: a, c, d。每名学生是否都可以得到他喜欢的书?为什么?(用图论方法求解)

解答.

考点: 定理 60 (Hall 1935): 设 G 为具有二分类 (X,Y) 的偶图,则 G 包含饱和 X 的每个顶点的匹配当且仅当 $|N(S)| \geq |S|$ 对所有 $S \subseteq X$ 成立

解:以学生和书籍作为顶点,两个顶点之间连一条边当且仅当该名学生喜欢这本书,得到图记为 G,图 G 显然是一个二部图

原问题转换成判断图 G 中是否存在可以饱和学生顶点集的最大匹配

在学生顶点集中可以找到 4 个顶点 $S = \{A, B, D, E\}$,其邻集为 $N(S) = \{d, h, t\}$,满足 |N(S)| < |S|

由 Hall 定理知,图 G 中不存在可以饱和学生集合的最大匹配

因此,每名学生不都可以得到他喜欢的书

4. 假定 G 是具有 m 条边的简单二部图,顶点的最大度为 Δ 。证明: G 包含一个至少有 m/Δ 条边的匹配。

解答. 证:

因为顶点的最大度为 Δ ,所以一个顶点最多可以覆盖 Δ 条边

由于图 G 有 m 条边,所以最少需要 m/Δ 个顶点才能覆盖所有的边 所以最小覆盖中的点数一定大于等于 m/Δ 根据 König 定理,最大匹配中至 少有 m/Δ 条边

5. 有一个街区如下图所示,其中所有街道都是直线段。为了在巷战中能控制所有的街道,需要在街口处修筑碉堡,其中一个碉堡可以控制与其关联的所有街道。问最少需要多少个碉堡?并给出一种具体修建的位置。(用图论方法解答)

解答.

考点: 定理 62 (König 1931): 在偶图中,最大匹配中的边数等于最小覆盖中的点数

显然,上图是二部图

可以很容易找到一个匹配 {24,35,68,79},大小为 4 也可以很容易找到一个覆盖 {2,5,6,9},大小为 4

定理 61: 设 M 是匹配,K 的覆盖,若 |M| = |K|,则 M 是最大匹配,且 K 是最小覆盖

所以该覆盖是最小覆盖

故原问题最少需要 4 个碉堡, 分别修在 {2,5,6,9} 处即可

6. 假设 G 是阶数至少为 3 的简单连通图。若 G 包含割边,则 G 一定不能 1-因子分解。

解答.

若G可以 1-因子分解, G 可表示为K 个边不重的 1-因子的并, 即 $M_1 \cup M_2 \cup \cdots \cup M_k$;

假设割边 e 在 M_1 中,因为 M_1 和 M_2 边不重,可以看为 1 个 2-因子,而 2-因子的每个连通分支是圈,与 e 是割边矛盾。

注记.

7. 证明: 完全图 K_{6n-2} 可以 3-因子分解。

解答. 证:

 K_{2n} 可以分解为 2n-1 个边不重个 1-可因子的并。

 K_{6n-2} 可以分解为 6n-3 个边不重个 1-可因子的并。

每 3 个边不重的 1-因子可以看为 1 个 3-因子,则 K_{6n-2} 可以分解为 2n-1 个 3 因子的并。

8. 有8名研究生同学喜欢外出散步,他们每人每天都和一位同学外出散步。试给出一种安排使得每名研究生在一个星期内都和不同的同学出行。 (用图论方法解答)

解答. 以 8 名同学为顶点,每两人连一条边,得到的图为完全图 K_8 ,则问题转化为求 K_8 的完美匹配

{18	27	36	45}
{28	31	47	56}
{38	42	51	67}
{48	53	62	71}
{58	64	73	12}
{68	75	14	23}
{78	16	25	34}

9. 设简单图 G 有 10 个 4 度顶点和 8 个 5 度顶点,其余顶点度数均为 7。求 7 度顶点的最大数目,使得 G 保持其可平面性。

解答.
$$m \le 3n - 6$$

 $m = \frac{10 \times 4 + 8 \times 5 + (n - 10 - 8) \times 7}{2}$
 $n \le 34$, $34 - 10 - 8 = 16$

10. 设 G^* 是具有 $k(k \ge 2)$ 个连通分支的平面图 G 的对偶图,已知 G 的边数为 10,面数为 3,求 G^* 的面数。

解答. 因为图 G 的边数为 m,面数为 φ ,所以对偶图点数为 φ ,边数为 m 又因为对偶图一定是连通的,根据欧拉公式: $n-m+\varphi=2$ 得: $\varphi^*=9$

11. 经报道,近年发现了一种由硼和氮元素构成的化学分子,其分子结构呈球状。该分子中每个原子均有3个相邻的原子并以化学单键相连,且分子结构中仅有4长圈和6长圈。试计算该分子中有多少个4长圈?(用图论

方法求解)

解答. 设 4 次面、6 次面个数分别为 f_4, f_6 $n-m+f=2, f=f_4+f_6$ $4f_4+6f_6=2m$ 由握手定理 3n=2m 所以 $f_4=6$