

SPEECH ENHANCEMENT WITH DEEP U-NET CONVOLUTIONAL NETWORK

Presented by: EL KHBIR Sara

Presentation Plan

- Introduction
- Problem definition
- Methodology
- Evaluation
- Conclusion and analysis

Introduction:

Goal: Get an estimation of a denoised audio signal from a noisy observation of the same signal.

Approach based on spectrograms

Problem definition:

s(n) the original 'clean' audio in the time domain u(n) the noise audio added to the original audio x(n) the noisy audio

Computing the STFT:

$$X(k,m) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x_m(n) e^{-j2\pi \frac{kn}{N}}.$$

Where a frame is defined for all $m \in \mathbb{Z}$ by:

$$x_m(n) = x(n+mH)w_a(n)$$

U-Net Architecture:

Given a training dataset \mathcal{D} of size I that comprises corresponding noisy speech and clean speech

$$\mathcal{D} = \left\{ (\mathbf{X}_i, \mathbf{S}_i) \right\}_{i=1}^I,$$

the optimization task is performed

$$\underset{\Theta}{\operatorname{arg\,min}} \left(\frac{1}{I} \sum_{i=1}^{I} L\left(\mathbf{S}_{i}, \hat{\mathbf{S}}_{i}\right) \right),$$

where the Huber loss function L is given by:

$$L\left(\mathbf{S}_{i}, \hat{\mathbf{S}}_{i}\right) = \begin{cases} \frac{1}{2} \left(\mathbf{S}_{i} - \hat{\mathbf{S}}_{i}\right)^{2} & \text{if } |\mathbf{S}_{i} - \hat{\mathbf{S}}_{i}| \leq \delta \\ \delta \left(|\mathbf{S}_{i} - \hat{\mathbf{S}}_{i}| - \frac{\delta}{2}\right) & \text{otherwise,} \end{cases}$$

Methodology - Creating dataset:

Noisy audio

STFT properties:

- Fs = 8000 Hz
- N_fft = 1024
- hop_length = 208

SNR = [0, 20 dB]

U-NET and Evaluation metrics:

Optimal U-Net architecture:

• Encoder:

- Composed of 5 Conv layers
- Each convolutional layer is followed by Batch Normalization
- Leaky Relu activation
- The number of filters in each layer increases (16, 32, 64, 128, 256)
- **<u>Decoder</u>**: Symmetric to the encoder

Optimization parameters:

- Adam optimizer (LR = 0.01)
- Huber loss
- Train set (2118,513,385), test set (792,513,385)
- Batch size = 50, epochs = 100

Evaluation metrics:

- Signal to Noise Ratio $SNR_{in} = 10 \log_{10} \frac{P_s}{P_{ii}}$
- Perceptual Evaluation of Speech Quality

$$PESQ = \frac{1}{N} \sum_{r=1}^{N} 4.5 + 0.5 \cdot \log_{10} \left(\frac{P_x}{P_e} \right) + 0.25 \cdot \log_{10} \left(\frac{P_x}{P_r} \right)$$

Short-Time Objective Intelligibility

$$\text{STOI} = \frac{\sum_{k=1}^{K} \text{Cov}(\mathbf{s}_k, \mathbf{x}_k)}{\sqrt{\sum_{k=1}^{K} \text{Var}(\mathbf{s}_k) \cdot \sum_{k=1}^{K} \text{Var}(\mathbf{x}_k)}}$$

Subjective Listening

Results:

Example denoising:

Clean audio

Noisy audio (SNR = 7.42 dB)

Predicted audio (SNR = 7.42 dB)

Conclusion

- U-net architecture is effective at speech enhancement
- The optimal number of levels of the proposed U-net architecture is 5
- Better PESQ scores were observed after denoising while simultaneously having lower STOI
- Subjectively, speech signals sound cleaner and perfectly understandable

Thank you for your attention