

1- Os Elementos Orbitais

Com eles pode-se descrever as órbitas no espaço, ou seja, visualizando sua forma, tamanho e orientação. Assim também é possível determinar a posição do veículo espacial no espaço. Estes elementos são denominados de *ELEMENTOS ORBITAIS CLÁSSICOS*

Tamanho da órbita: Semieixo maior, a.

Forma da órbita: Excentricidade, e.

Orientação do plano orbital no espaço : Dado pela inclinação, i e pela longitude do nodo ascendente, Ω.

Orientação da órbita no plano: Argumento do perigeu, ω.

Localização do veículo espacial na órbita Anomalia verdadeira, θ .

Definindo os elementos orbitais clássicos

A INCLINAÇÃO descreve a orientação de uma órbita com respeito ao nosso sistema de coordenadas. Isto é o ângulo formado entre o plano de órbita e o plano fundamental. Uma outra representação é defini-lo como o ângulo formado entre o vetor momento angular específico e o vetor normal ao plano fundamental. A inclinação varia entre 0º a 180º

Inclinação (i)

TIPOS DE ORBITAS E SUAS INCLINAÇÕES

Inclinação	Tipo de órbita	
0º ou 180º	equatorial	
90^{0}	polar	i = 90°
$0^0 < i < 90^0$	Direta ou prograde (move-se na direção de rotação da Terra).	ascending
$90^0 < i < 180^0$	Indireta ou retrograda (move-se na direção oposta a rotação da Terra).	ascending

Ascensão Reta do Nodo Ascendente Ω e Argumento do perigeu ω

- Semieixo maior, a = 50 000 Km
- Excentricidade, e = 0,4
- •Inclinação, i = 45°
- Ascensão reta do nodo ascendente, Ω = 50°
- •Argumento do Perigeu, ω = 110°
- Anomalia Verdadeira, θ = 170°

Elementos Orbitais para várias missões:

Mission	Orbital Type	Semimajor Axis (Altitude)	Period	Inclination	Other
CommunicationEarly warningNuclear detection	Geostationary	42,158 km (35,780 km)	~24 hr	~0°	e≃0
Remote sensing	Sun-synchronous	~6500 - 7300 km (~150 - 900 km)	~90 min	~95°	e ≅ 0
- Weather	Geostationary	42,158 km (35,780 km)	~24 hr	~0°	e ≃ 0
NavigationGPS	Semi-synchronous	26,610 km (20,232 km)	12 hr	55°	e ≅ 0
Space Shuttle	Low-Earth orbit	~6700 km (~300 km)	~90 min	28.5°, 39°, 51°, or 57°	e ≅ 0
Communication/ intelligence	Molniya	26,571 km ($R_p = 7971$ km; $R_a = 45,170$ km)	12 hr	63.4°	$\omega = 270^{\circ}$ e = 0.7

Elementos orbitais alternativos:

Nem sempre podemos definir todos os elementos orbitais clássicos

Casos:

Órbita Circular: Não tem perigeu. Nesse caso argumento do perigeu (ω) ou anomalia verdadeira (θ) não estão definidos. Devido a que ambos usam o perigeu como referência.

Assim, DEFINIMOS o ARGUMENTO DA LATITUDE u medida na órbita desde o nodo ascendente a posição do veículo espacial, sendo medida na direção do movimento do veículo espacial.

Órbita Equatorial: Neste caso $i = 0^{\circ}$ ou 180° . Assim, o nodo ascendente não existe. Argumento do perigeu (ω) e ascensão do nodo (Ω) são indefinidos.

Assim, DEFINIMOS a LONGITUDE DO PERIGEU, π, ângulo medido desde a direção principal ao perigeu na direção do movimento do veículo espacial.

Variando entre 0º e 360º

Órbita Equatorial Circular: O argumento do perigeu (ω), a ascensão do nodo (Ω) e anomalia verdadeira (θ) são todos indefinidos.

Assim, DEFINIMOS a LONGITUDE VERDADEIRA, ℓ , ângulo medido desde o eixo principal a posição do veículo espacial na direção do movimento do veículo espacial. Variando entre $0^{\circ} \le \ell \le 360^{\circ}$

Element	Name	Description	Range of Values	When to Use
u	Argument of latitude	Angle from ascending node to the spacecraft's position	0°≤u <360°	Use when there is no perigee (e = 0)
П	Longitude of perigee	Angle from the principal direction to perigee	0°≤Π < 360°	Use when equatorial (i = 0 or 180°) because there is no ascending node
ĺ	True longitude	Angle from the principal direction to the spacecraft's position	0°≤ € < 360°	Use when there is no perigee and ascending node (e = 0 and i = 0 or 180°)

2.- Determinação dos Elementos Orbitais

Dados o VETOR POSIÇÃO E A VELOCIDADE de um veículo espacial, em um tempo particular, podemos determinar os ELEMENTOS ORBITAIS CLÁSSICOS.

Na prática através das estações de rastreio podemos determinar a velocidade e posição. Assim é possível converter os vetores posição e velocidade em ELEMENTOS CLÁSSICOS ORBITAIS

Determinação do semieixo maior (a):

$$\varepsilon = \frac{1}{2}V^2 - \frac{\mu}{R}$$

Determinação da excentricidade (e):

$$\vec{e} = \frac{1}{\mu} \left[\left(V^2 - \frac{\mu}{R} \right) \vec{R} - \left(\vec{R} \cdot \vec{V} \right) \vec{V} \right]$$

Vetor excentricidade aponta na direção do perigeu da órbita.

Algumas vezes é denominado de vetor perigeu.

Determinação da inclinação (i):

$$I = \cos^{-1} \left(\frac{\hat{K} \cdot \vec{h}}{h} \right)$$

Vetor unitário \widehat{K} aponta na direção do pólo norte e o vetor h é o momento angular especifico.

Se hk é a componente do vetor h na direção K.

$$h_k > 0 \Rightarrow 0 < i < 90^{\circ} \rightarrow movimento prógrado$$

 $h_k < 0 \Rightarrow 90^{\circ} < i < 180^{\circ} \rightarrow movimento retrógado$
 $h_k = 0 \Rightarrow i = 90^{\circ}$

Determinação da ascensão reta do nodo ascendente (Ω):

$$\vec{n} = \hat{K} \times \vec{h}$$

$$\Omega = \cos^{-1} \left(\frac{\hat{\mathbf{I}}.\vec{\mathbf{n}}}{\mathbf{n}} \right)$$

Se
$$n_J \ge 0 \rightarrow 0^0 \le \Omega \le 180^0$$

Se
$$n_J < 0 \rightarrow 180^0 < \Omega < 360^0$$

Vetor unitário \hat{I} aponta na direção do inercial OX e o vetor n é o vetor nodos ascendente.

Determinação do argumento do perigeu (ω):

$$\omega = \cos^{-1} \left(\frac{\vec{n}.\vec{e}}{e \ n} \right)$$

Se
$$e_K \ge 0 \rightarrow 0^0 \le \omega \le 180^0$$

Se
$$e_K < 0 \rightarrow 180^0 < \omega < 360^0$$

Determinação da anomalia verdadeira (θ):

$$v = \cos^{-1} \left(\frac{\vec{e} \cdot \vec{R}}{eR} \right)$$

Se
$$\vec{R}$$
 . $\vec{V} \ge 0$ $(\phi \ge 0) \rightarrow 0^0 \le v \le 180^0$
Se \vec{R} . $\vec{V} < 0$ $(\phi < 0) \rightarrow 180^0 < v < 360^0$

ELEMENTOS ALTERNATIVOS

Órbita circular Argumento da latitude, u

$$u = cos^{-1} \left[\frac{(\vec{r}.\vec{n})}{rn} \right]$$

Se
$$r_x > 0 \longrightarrow 0^o < u < 180^o$$

Se $r_x < 0 \longrightarrow 180^o < u < 360^o$

Órbita equatorial — Longitude do perigeu, П

$$\Pi = \cos^{-1}\left[\frac{(e_x)}{e}\right]$$

Se
$$e_y > 0$$
 $0^o < \Pi < 180^o$
Se $e_y < 0$ $180^o < \Pi < 360^o$

ELEMENTOS ALTERNATIVOS

Órbita circular e equatorial \longrightarrow Longitude verdadeira, l

$$l = cos^{-1} \left[\frac{(r_x)}{r} \right]$$

Se
$$r_y > 0$$
 $0^o < l < 180^o$
Se $r_y < 0$ $180^o < l < 360^o$

OBSERVÇÃO: Estes condicionais foram obtidos considerando movimentos diretos (inclinação menor que 90°). Para movimento retrógado os condicionais são todos invertidos.