



# DATA SHEET

# SEN6A39 80-COLUMN driver for dot-matrix STN LCD

To improve design and/or performance, Avant Electronics may make changes to its products. Please contact Avant Electronics for the latest versions of its products

data sheet (v3) 2005 Oct 20

# 80-COLUMN driver for dot-matrix STN

#### 1 GENERAL

#### 1.1 Description

The SEN6A39 is an 80-COLUMN (SEGMENT) driver for dot-matrix STN LCD. It is desinged to be paired with the SEN6A40 68-ROW (COMMON) driver.

#### 1.2 Features

- 80-output COLUMN driver for dot-matrix STN LCD module.
- Display duty: up to 1/240.
- Data transfer with a controller: 1, 2, 4-bits, bi-directional.
- Data transfer clock: 6.0 MHz, when V<sub>DD</sub>= 5 volts.
- Can be cascaded to expand column number.
- · External LCD bias voltage.
- Operating voltage range (control logic): 2.7 ~ 5.5 volts.
- Operating voltage range (LCD bias, V<sub>DD</sub>-V5): 8 ~ 30 volts.
- Operating temperature range: -20 to +75 °C.
- Storage temperature range: -55 to +125 °C.

## 1.3 Ordering information

Table 1 Ordering information

| TYPE NUMBER   | DESCRIPTION            |
|---------------|------------------------|
| SEN6A39-LQFPG | LQFP100 Green package. |
| SEN6A39-QFPG  | QFP100 Green package.  |
| SEN6A39-LQFP  | LQFP100 package.       |
| SEN6A39-QFP   | QFP100 package.        |

# 80-COLUMN driver for dot-matrix STN

## 2 FUNCTIONAL BLOCK DIAGRAM AND DESCRIPTION

#### 2.1 Funtional block diagram



# 80-COLUMN driver for dot-matrix STN

#### 3 PINNING INFORMATION

### 3.1 Pinning diagram



# 80-COLUMN driver for dot-matrix STN

## 3.2 Signal description

Table 2 Pin signal description.

To avoid a latch-up effect at power-on:  $V_{SS}$  – 0.5 V < voltage at any pin at any time <  $V_{DD}$  + 0.5 V .

| Pin<br>number | SYMBOL          | I/O    |                                                                                                                                                                                                                                                     |                                                                       | D               | ESCRIP    | TION           |                          |
|---------------|-----------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------|-----------|----------------|--------------------------|
| 1~3,          | O78~O80,        |        | Column (segment) driver output.                                                                                                                                                                                                                     |                                                                       |                 |           |                |                          |
| 24~100        | 01~077          | Output | Please refe                                                                                                                                                                                                                                         | r to Table 4                                                          | for output vo   | oltage le | vel.           |                          |
|               |                 |        | ENABLE in                                                                                                                                                                                                                                           | put/output fo                                                         | or cascading    | applica   | tion.          |                          |
|               |                 |        | The function the following                                                                                                                                                                                                                          |                                                                       | se two input    | s are de  | cided by Dl    | JAL and DIR, as shown in |
| 4, 21         | EIO1, EIO2      | I/O    | DUAL                                                                                                                                                                                                                                                | DIR                                                                   | EIO1            | EIC       | D2             | ]                        |
|               |                 |        | L                                                                                                                                                                                                                                                   | L                                                                     | input           | out       | put            |                          |
|               |                 |        | L                                                                                                                                                                                                                                                   | Н                                                                     | output          | inp       | ut             |                          |
|               |                 |        | Н                                                                                                                                                                                                                                                   | don't care                                                            | input           | out       | put            | ]                        |
| 5             | SCP             | Input  | Input data s                                                                                                                                                                                                                                        | shift clock, fo                                                       | or shifting bit | data.     |                |                          |
|               |                 | 1      | Frame sign                                                                                                                                                                                                                                          | al, indicatino                                                        | g a display fi  | rame.     |                |                          |
| 6             | FR              | Input  | This signal                                                                                                                                                                                                                                         | is used to g                                                          | enerate alte    | rnating L | _CD bias vo    | ltage.                   |
| 7             | LP              | Input  | Line pulse,                                                                                                                                                                                                                                         | used as late                                                          | ch clock for i  | nternal 8 | 30-bit shift r | egister.                 |
|               |                 |        | Data Format selection.  These two inputs are used to select bit number of data transfer between a controller (such as the SAP1024B, for example) and the SEN6A39. The data transfer can be 1-bit, 2-bit, or 4-bit, as shown in the following table. |                                                                       |                 |           |                | e SEN6A39. The data      |
| 8, 9          | DF1, DF2        | Input  | DF1                                                                                                                                                                                                                                                 | DF2                                                                   | BITS            |           |                |                          |
|               |                 |        | L                                                                                                                                                                                                                                                   | L                                                                     | 1-bit           |           |                |                          |
|               |                 |        | Н                                                                                                                                                                                                                                                   | L                                                                     | 2-bit           |           |                |                          |
|               |                 |        | don't care                                                                                                                                                                                                                                          | Н                                                                     | 4-bit           |           |                |                          |
| 10            | V <sub>SS</sub> | Input  | Ground terr                                                                                                                                                                                                                                         | minal                                                                 |                 |           |                |                          |
| 11            | DUAL            | Input  |                                                                                                                                                                                                                                                     |                                                                       | mode or sing    | ale_innut | t mode         |                          |
| 12            | DIR             | Input  |                                                                                                                                                                                                                                                     |                                                                       | of input dat    | •         | i illoue.      |                          |
| 13            | V <sub>DD</sub> | input  | - U                                                                                                                                                                                                                                                 |                                                                       |                 |           |                |                          |
| 14~17         | DI4 ~ DI1       | Input  |                                                                                                                                                                                                                                                     | Positive power supply for control logic.                              |                 |           |                |                          |
| 18,19,        | V2, V3, V5      | Input  |                                                                                                                                                                                                                                                     | 4-bit parallel data bus for display data.  External LCD bias voltage. |                 |           |                |                          |
| 22, 23        | NC              |        | No Connec                                                                                                                                                                                                                                           | tion.                                                                 |                 |           |                |                          |
| 22, 23        | INC             |        | Leave these                                                                                                                                                                                                                                         | e two pins u                                                          | nconnected      | in applic | cation.        |                          |

# 80-COLUMN driver for dot-matrix STN

#### 4 PAD DIAGRAM AND COORDINATES

### 4.1 Pad diagram



#### Note:

- For chip\_on\_board (COB) bonding, chip carrier should be connected to VDD or left open. Chip carrier is the metal pad to which die is attached.
- 2. The chip size is : (X-axis, Y-axis)= 2786  $\mu$ m x 3184  $\mu$ m.
- 3. The Chip ID is: 3006.

Fig.3 Pad locations.

# 80-COLUMN driver for dot-matrix STN

# 4.2 Pad description

 $\begin{tabular}{ll} \textbf{Table 3} & Pad signal names and coordinates \\ The unit for coordinates is $\mu m$. \\ \end{tabular}$ 

| PAD | PAD  | COORDINATES |         | PAD | PAD  | COORD   | INATES  | PAD | PAD  | COORD  | INATES  |
|-----|------|-------------|---------|-----|------|---------|---------|-----|------|--------|---------|
| NO. | NAME | Х           | Υ       | NO. | NAME | Х       | Υ       | NO. | NAME | Х      | Υ       |
| 1   | O80  | 98.70       | 108.60  | 35  | O46  | 800.10  | 3055.90 | 69  | O12  | 2657.5 | 1263.60 |
| 2   | O79  | 98.70       | 213.60  | 36  | O45  | 905.10  | 3055.90 | 70  | 011  | 2657.5 | 1158.60 |
| 3   | O78  | 98.70       | 318.60  | 37  | 044  | 1010.10 | 3055.90 | 71  | O10  | 2657.5 | 1053.60 |
| 4   | 077  | 98.70       | 423.60  | 38  | O43  | 1115.10 | 3055.90 | 72  | O9   | 2657.5 | 948.60  |
| 5   | O76  | 98.70       | 528.60  | 39  | O42  | 1220.10 | 3055.90 | 73  | O8   | 2657.5 | 843.60  |
| 6   | O75  | 98.70       | 633.60  | 40  | 041  | 1325.10 | 3055.90 | 74  | 07   | 2657.5 | 738.60  |
| 7   | 074  | 98.70       | 738.60  | 41  | O40  | 1430.10 | 3055.90 | 75  | O6   | 2657.5 | 633.60  |
| 8   | O73  | 98.70       | 843.60  | 42  | O39  | 1535.10 | 3055.90 | 76  | O5   | 2657.5 | 528.60  |
| 9   | 072  | 98.70       | 948.60  | 43  | O38  | 1640.10 | 3055.90 | 77  | 04   | 2657.5 | 423.60  |
| 10  | 071  | 98.70       | 1053.60 | 44  | O37  | 1745.10 | 3055.90 | 78  | О3   | 2657.5 | 318.6   |
| 11  | O70  | 98.70       | 1158.60 | 45  | O36  | 1850.10 | 3055.90 | 79  | O2   | 2657.5 | 213.60  |
| 12  | O69  | 98.70       | 1263.60 | 46  | O35  | 1955.10 | 3055.90 | 80  | 01   | 2657.5 | 107.50  |
| 13  | O68  | 98.70       | 1368.60 | 47  | O34  | 2060.10 | 3055.90 | 81  | EIO1 | 2436.0 | 117.10  |
| 14  | O67  | 98.70       | 1473.60 | 48  | O33  | 2165.10 | 3055.90 | 82  | V5   | 2293.0 | 117.10  |
| 15  | O66  | 98.70       | 1578.60 | 49  | O32  | 2270.10 | 3055.90 | 83  | V3   | 2183.6 | 117.10  |
| 16  | O65  | 98.70       | 1683.60 | 50  | O31  | 2375.10 | 3055.90 | 84  | V2   | 2071.0 | 117.10  |
| 17  | O64  | 98.70       | 1788.60 | 51  | O30  | 2480.10 | 3055.90 | 85  | DI1  | 1827.3 | 117.10  |
| 18  | O63  | 98.70       | 1893.60 | 52  | O29  | 2657.5  | 3048.60 | 86  | DI2  | 1721.0 | 117.10  |
| 19  | O62  | 98.70       | 1998.60 | 53  | O28  | 2657.5  | 2943.60 | 87  | DI3  | 1614.7 | 117.10  |
| 20  | O61  | 98.70       | 2103.60 | 54  | O27  | 2657.5  | 2838.60 | 88  | DI4  | 1058.4 | 117.10  |
| 21  | O60  | 98.70       | 2208.60 | 55  | O26  | 2657.5  | 2733.60 | 89  | VDD  | 1402.0 | 117.10  |
| 22  | O59  | 98.70       | 2313.60 | 56  | O25  | 2657.5  | 2628.60 | 90  | DIR  | 1295.8 | 117.10  |
| 23  | O58  | 98.70       | 2418.60 | 57  | O24  | 2657.5  | 2523.60 | 91  | DUAL | 1182.5 | 117.10  |
| 24  | O57  | 98.70       | 2523.60 | 58  | O23  | 2657.5  | 2418.60 | 92  | VSS  | 1071.5 | 117.10  |
| 25  | O56  | 98.70       | 2628.60 | 59  | 022  | 2657.5  | 2313.60 | 93  | DF2  | 965.2  | 117.10  |
| 26  | O55  | 98.70       | 2733.60 | 60  | 021  | 2657.5  | 2208.60 | 94  | DF1  | 858.80 | 117.10  |
| 27  | O54  | 98.70       | 2838.60 | 61  | O20  | 2657.5  | 2103.60 | 95  | LP   | 752.6  | 117.10  |
| 28  | O53  | 98.70       | 2943.60 | 62  | O19  | 2657.5  | 1998.60 | 96  | FR   | 646.3  | 117.10  |
| 29  | O52  | 98.70       | 3048.60 | 63  | O18  | 2657.5  | 1893.60 | 97  | SCP  | 540.0  | 117.10  |
| 30  | O51  | 275.10      | 3055.90 | 64  | 017  | 2657.5  | 1788.60 | 98  | EIO2 | 433.7  | 117.10  |
| 31  | O50  | 380.10      | 3055.90 | 65  | O16  | 2657.5  | 1683.60 |     |      |        |         |
| 32  | O49  | 485.10      | 3055.90 | 66  | O15  | 2657.5  | 1578.60 |     |      |        |         |
| 33  | O48  | 590.10      | 3055.90 | 67  | O14  | 2657.5  | 1473.60 |     |      |        |         |
| 34  | O47  | 695.10      | 3055.90 | 68  | O13  | 2657.5  | 1368.60 |     |      |        |         |

# 80-COLUMN driver for dot-matrix STN

#### 5 FUNCTIONAL DESCRIPTION

### 5.1 Segment output drive (O1~O80)

The voltage level of the outputs O1~O80 is determined by Input data (display data) and FR (frame signal), as given in the following table.

Table 4 output voltage level of O1~O80

| FR | Data | SEN6A39 O1~O80 outputs | SEN6A40 O1~O68 outputs |
|----|------|------------------------|------------------------|
| L  | L    | V2                     | V1                     |
| L  | Н    | VDD                    | V5                     |
| Н  | L    | V3                     | V4                     |
| Н  | Н    | V5                     | VDD                    |

## 5.2 Display Data Inputs (DI1~DI4)

The SEN6A39 has a 4-bit parallel data bus (DI1~DI4) to interface with a controller. A logic HIGH bit represents an ON cell (black pixel on the LCD screen).

Table 5 Data bits

| Display data | LCD drive output          | LCD display |
|--------------|---------------------------|-------------|
| Н            | Selected level (VDD, V5)  | ON          |
| L            | Unselected level (V2, V3) | OFF         |

2005 Oct 20

## 5.3 Data input format

Data input format is given in the following table.

| DF1 | DF2 | DUAL | DIR | bits   |           | Data | input |     |                 | Data f          | ormat           |                 |
|-----|-----|------|-----|--------|-----------|------|-------|-----|-----------------|-----------------|-----------------|-----------------|
| DET | DFZ | DUAL | DIK | DILS   | DI1       | DI2  | DI3   | DI4 | DI1             | DI2             | DI3             | DI4             |
| L   | L   | L    | L   |        |           |      |       | IN  |                 |                 |                 | O80,O79,O2,O1   |
| L   | L   | L    | Н   | 1-bit  | IN        |      |       |     | O1,O2,O79,O80   |                 |                 |                 |
| L   | L   | Н    | L   | 1-DIL  |           |      |       | IN  |                 |                 |                 | O80,O79O42,O41  |
| L   | L   | Н    | Н   |        | IN        |      |       | IN  | O1,O2,O39,O40   |                 |                 | O80,O79,O42,O41 |
| Н   | L   | L    | L   |        |           |      | IN    | IN  |                 |                 | 079,077,03,01   | O80,O78,O4,O2   |
| Н   | L   | L    | Н   | 2-bits | IN        | IN   |       |     | 01,03,077,079   | O2,O4,O78,O80   |                 |                 |
| Н   | L   | Н    | L   | 2-0115 |           |      | IN    | IN  |                 |                 | O79,O77,O43,O41 | O80,O78,O44,O42 |
| Н   | L   | Н    | Н   |        | IN        | IN   | IN    | IN  | O1,O3,O37,O39   | O2,O4,O38,O40   | O79,O77,O43,O41 | O80,O78,O44,O42 |
| *   | Н   | L    | L   |        | IN        | IN   | IN    | IN  | 077,073,05,01   | O78,O74,O6,O2   | O79,O75,O7,O3   | O80,O76,O8,O4   |
| *   | Н   | L    | Н   | 4-bits | IN        | IN   | IN    | IN  | O1,O5,O73,O77   | O2,O6,O74,O78   | O3,O7,O75,O79   | O4,O8,O76,O80   |
| *   | Н   | Н    | L   |        | IN        | IN   | IN    | IN  | O77,O73,O45,O41 | O78,O74,O46,O42 | O79,O75O47,O43  | O80,O76O48,O44  |
| *   | Н   | Н    | Н   |        | don't use |      |       |     |                 |                 |                 |                 |

#### Note:

- 1. When DF1=DF2=DUAL=DIR="L", 1-bit data transfer between the SEN6A39 and controller is selected, DI4 is used as input, and the first bit sent by the controller goes to O1; the last bit goes to O80.
- 2. When DF1=DF2=DUAL="L" and DIR="H", 1-bit data transfer between the SEN6A39 and controller is selected, DI1 is used as input, and the first bit sent by the controller goes to O80; the last bit goes to O1.

SEN6A39

# 80-COLUMN driver for dot-matrix STN

## **6 ABSOLUTE MAXIMUM RATING**

Table 6 Absolute maximum rating

 $V_{DD}$  = 5 V ±10%;  $V_{SS}$  = 0 V; all voltages with respect to  $V_{SS}$  unless otherwise specified;  $T_{amb}$  = 25±2°C.

| SYMBOL              | PARAMETER                            | MIN. | MAX.                  | UNIT |
|---------------------|--------------------------------------|------|-----------------------|------|
| $V_{DD}$            | Voltage on the V <sub>DD</sub> input | -0.3 | +7.0                  | V    |
| V <sub>DD</sub> -V5 | LCD bias voltage, note 1             | 0    | 30                    | V    |
| Vi(max)             | Maximum input voltage to input pins  | -0.3 | V <sub>DD</sub> + 0.3 | V    |
| T <sub>amb</sub>    | Operating ambient temperature range  | -20  | + 75                  | °C   |
| T <sub>stg</sub>    | Storage temperature range            | -55  | +125                  | °C   |

#### Note:

1. The condition  $V_{DD} \ge V2 > V3 > V5$  must always be met.

# 80-COLUMN driver for dot-matrix STN

#### 7 DC CHARACTERISTICS

Table 7 DC Characteristics

 $V_{DD}$  = 5 V ±10%;  $V_{SS}$  = 0 V; all voltages with respect to  $V_{SS}$  unless otherwise specified;  $T_{amb}$  = 25±2 °C.

| SYMBOL              | PARAMETER                                                                                          | CONDITIONS                                                  | MIN.                  | TYP. | MAX.               | UNIT |
|---------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------|------|--------------------|------|
| V <sub>DD</sub>     | Supply voltage for control logic                                                                   | Please refer to Fig. 8 for DC power-up sequence.            | 2.7                   | 5.0  | 5.5                | V    |
| V <sub>DD</sub> -V5 | LCD bias voltage                                                                                   | Note 1.                                                     | 12                    |      | 30                 |      |
| V <sub>IL</sub>     | Input LOW voltage of input pins                                                                    | DI1~DI4, SCP, DIR, EIO1,<br>EIO2, LP, FR, DUAL, DF1,<br>DF2 | 0                     |      | 0.2V <sub>DD</sub> | V    |
| V <sub>IH</sub>     | Inout HIGH voltage of input pins                                                                   | DI1~DI4, SCP, DIR, EIO1,<br>EIO2, LP, FR, DUAL, DF1,<br>DF2 | 0.8V <sub>DD</sub>    |      | V <sub>DD</sub>    | V    |
|                     | Input LOW leakage current of                                                                       | V <sub>IN</sub> =V <sub>SS</sub> ,                          |                       |      |                    |      |
| I <sub>IL</sub>     | input pins (i. e. Reverse leakage current of input ESD protection diode)                           | DI1~DI4, SCP, DIR, EIO1,<br>EIO2, LP, FR, DUAL, DF1,<br>DF2 |                       |      | 1                  | μА   |
|                     |                                                                                                    | V <sub>IN</sub> =V <sub>DD</sub> ,                          |                       |      |                    |      |
| I <sub>IH</sub>     | Input HIGH leakage current of input pins (i. e. Reverse leakage current of input protection diode) | DI1~DI4, SCP, DIR, EIO1,<br>EIO2, LP, FR, DUAL, DF1,<br>DF2 |                       |      | 1                  | μА   |
| V <sub>OL</sub>     | Output LOW voltage level of the EIO1 and EIO2 pins                                                 | I <sub>OL</sub> =400μA                                      | 0.0                   |      | 0.4                | V    |
| V <sub>OH</sub>     | Output HIGH voltage level of the EIO1 and EIO2 pins                                                | I <sub>OH</sub> =-400μA                                     | V <sub>DD</sub> - 0.4 |      | V <sub>DD</sub>    | V    |
| I <sub>STBY</sub>   | Standby current                                                                                    | Note 2.                                                     |                       |      | 200                | μА   |
| $I_{SS}$            | Operating current                                                                                  | Note 3.                                                     |                       |      | 4.0                | mA   |
| I <sub>EE</sub>     | Operating current                                                                                  | Note 4.                                                     |                       |      | 0.5                | mA   |
| Ci                  | Input capacitance of the SCP pin                                                                   | The SCP clock frequency is 6.0 MHz.                         |                       | 5.0  |                    | pF   |
| R <sub>ON1</sub>    | Driver ON resistance at V <sub>LCD</sub> = 30 V                                                    | Note 5.                                                     |                       | 1.5  | 3.0                | ΚΩ   |
| R <sub>ON2</sub>    | Driver ON resistance at V <sub>LCD</sub> = 20 V                                                    | Note 5.                                                     |                       | 2.0  | 3.5                | ΚΩ   |

#### Notes:

- 1. The condition  $V_{DD} \ge V2 > V3 > V5$  must always be met.
- 2. EIO1=EIO2=V<sub>DD</sub>, V<sub>DD</sub>-V5=30 V, SCP=6.0MHz, Output unloaded; measured at the V<sub>SS</sub> pin.
- 3. Condition for the measurement: V<sub>LCD</sub>=V<sub>DD</sub>-V5=30 V, SCP=6.0 MHz, LP=14 KHz, FR=35 Hz. This is the current flowing from V<sub>DD</sub> to V<sub>SS</sub>, measured at the V<sub>SS</sub> pin.
- 4. Condition for the measurement:  $V_{LCD}=V_{DD}-V5=30 \text{ V}$ , SCP=6.0 MHz, LP=14 KHz, FR=35 Hz. This is the current flowing from  $V_{DD}$  to V5, measured at the V5 pin.
- 5. Condition for the measurment:  $V_{DD}$ -V5=30 V,  $|V_{DE}$ -V<sub>O</sub>|=0.5 V, where  $V_{DE}$ = one of  $V_{DD}$ , V2, V3, or V5.  $V_{DD}$ - $V_{DD$

# 80-COLUMN driver for dot-matrix STN

## **8 AC CHARACTERISTICS**



Table 8 AC Characteristics

 $V_{DD}$  = 5 V ±10%;  $V_{SS}$  = 0 V; all voltages with respect to  $V_{SS}$  unless otherwise specified;  $T_{amb}$  = 25 ±2 °C.

| SYMBOL                          | PARAMETER                           | CONDITIONS                                           | MIN. | MAX. | UNIT |
|---------------------------------|-------------------------------------|------------------------------------------------------|------|------|------|
| f <sub>SCP</sub>                | SCP clock frequency                 |                                                      |      | 6.0  | MHz  |
| T <sub>WCL</sub>                | SCP clock LOW pulse width           |                                                      | 50   |      | ns   |
| T <sub>WCH</sub>                | SCP clock HIGH pulse width          |                                                      | 50   |      | ns   |
| T <sub>r</sub> , T <sub>f</sub> | SCP clock rising/falling time       |                                                      |      | 30   | 30   |
| t <sub>DSU</sub>                | Input data setup time               | DI1~DI4 data to the falling edge of the CP clock.    | 20   |      | ns   |
| t <sub>DHD</sub>                | Input data hold time.               | Falling edge of the CP clock to DI1~DI4 data change. | 30   |      | ns   |
| t <sub>SL</sub>                 | SCP-rising-edge-to-LP-rising-edge   |                                                      | 10   |      | ns   |
| t <sub>LW</sub>                 | LP pulse width                      |                                                      | 40   |      | ns   |
| t <sub>LS</sub>                 | LP-falling-edge-to-SCP-falling-edge |                                                      | 10   |      | ns   |
| t <sub>LRP</sub>                | LP set-up time                      |                                                      | 20   |      | ns   |

# 80-COLUMN driver for dot-matrix STN

| SYMBOL            | PARAMETER                          | CONDITIONS                | MIN. | MAX. | UNIT |
|-------------------|------------------------------------|---------------------------|------|------|------|
| t <sub>LFP</sub>  | LP hold time                       |                           | 40   |      | ns   |
| t <sub>EIRP</sub> | EIO IN set-up time                 |                           | 20   |      | ns   |
| t <sub>EIFP</sub> | EIO IN hold time                   |                           | 40   |      | ns   |
| t <sub>EIW</sub>  | EIO IN pulse width                 |                           | 40   |      | ns   |
| t <sub>SE</sub>   | SCP-rising-edge-to-EIO-rising-edge | the EIO pin, load= 10 pF. | 10   |      | ns   |
| t <sub>ES</sub>   | Output delay time                  | the EIO pin, load= 10 pF. | 10   |      | ns   |
| t <sub>EOD</sub>  | EIO OUT data delay time            |                           |      | 100  | ns   |
| t <sub>EOH</sub>  | EIO OUT hols time                  |                           |      | 95   | ns   |

# 80-COLUMN driver for dot-matrix STN

## 9 TIMING CHART (1/240 DUTY) AND BIAS CIRCUIT

# 9.1 1/240 duty timing chart



#### 9.2 Bias circuit



# 80-COLUMN driver for dot-matrix STN

## 10 APPLICATION CIRCUIT (64 X 160 DOTS)



# 80-COLUMN driver for dot-matrix STN

# 11 PIN CIRCUITS

 Table 9
 MOS-level schematics of all input, output, and I/O pins.

| SYMBOL                          | Input/<br>output                                | CIRCUIT                          | NOTES |
|---------------------------------|-------------------------------------------------|----------------------------------|-------|
| EIO1, EIO2                      | I/O                                             | Output Enable  Data out  Data in |       |
| SCP, DIR,<br>LP, DI1~DI4,<br>FR | Inputs                                          | VDD VDD VDD VDD VSS M            |       |
| O1~O80,<br>VDD, V2, V3,<br>V5   | Driver<br>outputs,<br>High<br>voltage<br>inputs | VDD                              |       |

# 80-COLUMN driver for dot-matrix STN

#### 12 APPLICATION NOTES

1. It is recommended that the following power-up sequence be followed to ensure reliable operation of your display system. As the ICs are fabricated in CMOS and there is intrinsic latch-up problem associated with any CMOS devices, proper power-up sequence can reduce the danger of triggering latch-up. When powering up the system, control logic power must be powered on first. When powering down the system, control logic must be shut off later than or at the same time with the LCD bias (V5).



80-COLUMN driver for dot-matrix STN

SEN6A39

2005 Oct 20

#### 13 PACKAGE INFORMATION



|   | اليے |
|---|------|
|   | d    |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
| _ |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |

| SYMBOLS | MIN.      | NOM.  | MAX. |
|---------|-----------|-------|------|
| А       |           |       | 1.60 |
| A1      | 0.05      |       | 0.15 |
| A2      | 1.35      | 1.40  | 1.45 |
| b       | 0.17      | 0.20  | 0.27 |
| С       | 0.09      | 0.127 | 0.20 |
| D       | 16.00 BSC |       |      |
| D1      | 14.00 BSC |       |      |
| E       | 16.00 BSC |       |      |
| E1      | 14.00 BSC |       |      |
| е       | 0.50 BSC  |       |      |
| Ĺ       | 0.45      | 0.60  | 0.75 |
| L1      | 1.00 REF  |       |      |

VARIATIONS (ALL DIMENSIONS SHOWN IN MM)



## NOTES:

1.JEDEC OUTLINE:MS-026 BED

2.DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.

3.DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE. DIMENSIONS D1 AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.



# SEN6A39 LQFP100 Package Outline Drawing

4.DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION.

## 80-COLUMN driver for dot-matrix STN

#### 14 SOLDERING

#### 14.1 Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used

This text gives a very brief insight to a complex technology. For more in-depth account of soldering ICs, please refer to dedicated reference materials.

#### 14.2 Reflow soldering

Reflow soldering techniques are suitable for all QFP packages.

The choice of heating method may be influenced by larger plastic QFP packages (44 leads, or more). If infrared or vapour phase heating is used and the large packages are not absolutely dry (less than 0.1% moisture content by weight), vaporization of the small amount of moisture in them can cause cracking of the plastic body. For more information, please contact Avant for drypack information.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.

#### 14.3 Wave soldering

Wave soldering is **not** recommended for QFP packages. This is because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices.

If wave soldering cannot be avoided, the following conditions must be observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The footprint must be at an angle of 45° to the board direction and must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

#### 14.4 Repairing soldered joints

Fix the component by first soldering two diagonally- opposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

STN LCD Driver data sheet (v3)

# 80-COLUMN driver for dot-matrix STN LCD

SEN6A39

#### 15 LIFE SUPPORT APPLICATIONS

This product is not designed for use in life support appliances, devices, or systems, where malfunction of this product can reasonably be expected to result in personal injury. Avant customers using or selling this product for use in such applications do so at their own risk and agree to fully indemnify Avant for any damages resulting from such improper use or sale.

2005 Oct 20 20