Analysis of Snail Data Using Statistical Learning Methods

STAT-387 Statistical Learning | 2025-06-05

Group 1: Nicco Martin & Cheng Qian

Outline Information

- 1. Background
- 2. Data Description and Summary
- 3. Project Objective
- 4. Exploratory Data Analysis (EDA)
- 5. Modeling Approach
- 6. Prediction and Confidence Intervals
- 7. Limitations and considerations
- 8. Conclusion

Background to Snail Dataset

Dataset Source:

- Dataset comes from a peer-reviewed study on Helicodiscus barri
- Published by Gladstone et al. (2019) in Subterranean Biology

Helicodiscus barri:

- Cave Dwelling snail
- Found only in isolated limestone caves (AL, TN, GA)

Why this species?

 Cave snails are excellent models for studying evolution in isolated systems

Snail Dataset Description: Variables & Observations

The dataset contains **7 variables** for **110 observations**, including the following:

- Shell Length (target variable)
- Shell Width, Aperture Height, Aperture Width
- **LU** (Length of the Umbilicus)
- **Lip Width** (Thickness of the edges)
- Shell Type with two levels: Type1 and Type2

Snail Dataset Description: Type 1 & Type 2 Snails

Type 1 (top image): Smaller, tightly coiled shells with even, compact whorls

Snail Dataset Summary: Response & Predictors

Variable	Туре	Units	Description
ShellType	Categorical Predictor	N/A	Type 1 = Tight Coil, Type 2 = Loose Coil
Length	Numerical Response	mm	Total Length of the Shell
Width	Numerical Predictor	mm	Maximum Width of the Shell
AperHt	Numerical Predictor	mm	Vertical Height of the Shell's Opening
AperWdt	Numerical Predictor	mm	Horizontal Width of the Shell's Opening
LU	Numerical Predictor	mm	Length of the Umbilicus (belly button)
LipWdt	Numerical Predictor	mm	Width of the Opening Outer to Inner Edge

Table 1: Snail Dataset

Project Objective

Our Target Is:

 To model and understand how snail shell physical features relate to shell length and to identify which features most effectively predict Length

Why It Matters:

- Helps identify which shell traits are most predictive of overall snail size
- Provides insight into how isolated environments may drive differences in growth and shape

Exploratory Data Analysis: Scatterplot Matrix

Key observations:

- LU shows strongest linear relationship with Length
- AperHt and AperWdt show moderate correlations with Length
- LU, AperWdt, and AperHt are moderately correlated
- LipWdt shows weak relationship with Length

Figure 1: Scatterplot Matrix of Raw Predictors

Exploratory Data Analysis: Correlation Matrix

Key observations:

- Confirms strong correlation between
 Length and LU (r = 0.95), supporting
 earlier visual trend
- AperHt and AperWdt also show substantial correlation with Length, supporting earlier visual trend
- LipWdt shows weak correlation, consistent with its poor visual trend

Figure 2: Correlation Matrix of Raw Predictors

Exploratory Data Analysis: Categorical Variable Boxplot

Key observations:

- Type 1 snails have longer
 shells on average than Type 2
- Type 1 snails show greater variability in Length
- Type 2 snails have one mild outlier and show a slightly left-skewed distribution

Figure 3: Length by ShellType Boxplot

Exploratory Data Analysis: T-test Results

- Type1 snails (14.48 mm) had a longer average shell length than
 Type2 snails (13.61 mm)
- T-test results confirmed that there is a difference between the two groups (i.e., p-value = 0.012)
- This supports that ShellType relates
 meaningfully to Length

Figure 4: Average Shell Length by Shell Type

Exploratory Data Analysis: Assumption & Transformation

- Untransformed model had equal variance
 (p = 0.62) but failed normality (p < 0.0001)
- 4 transformations (sqrt, square, log, inverse) to improve residuals and variance
- Log performed best. Residuals improved but still not normal (p = 0.0005).
- Box-Cox suggested $\lambda \approx 0.58$ as optimal
- Chose log for interpretability and because
 0 was within 95% CI
- Cook's Distance identified mild influential points (e.g., 42, 65, 90), no points were removed

Figure 5: QQplot and Residual vs. Fitted of Untransformed and Log

Figure 6: Boxcox Plot

Modeling Approach & Methodology

- 1. **Simple Linear Regression** Check individual predictor relationships
- 2. **Multiple Linear Regression** Fit full model with all predictors
- 3. **Best Subset Selection** Choose optimal variables by Adjusted R²
- 4. **Bagging (mtry = p)** Builds many trees using all predictors and averages them. **Lower bias**, but **higher variance** (can overfit).
- 5. Random Forest (mtry = √p) Builds trees using random subsets of predictors. Slightly higher bias, but lower variance (less overfitting).

Simple Linear Regression (log(Length vs Single Predictor)

- LU has the strongest linear relationship with log(Length)
- AperHt and Width show moderate relationships
- AperWdt and LipWdt are the weakest predictors
- Type1 snails have higher median log(Length) and more spread than Type2

Figure 7: Scatter Plots and Boxplot of Predictors on log(Length)

Multiple Linear Regression (Full Model with All Predictors)

LU was the only significant predictor

 AperHt and LU had moderate multicollinearity (VIF > 4)

 All other predictors had mild to no multicollinearity (VIF < 4)

 Full Model explained 91.92% of variability in log(Length)

```
Call:
lm(formula = logLength ~ Width + AperHt + AperWdt + LU + LipWdt +
   ShellType. data = data)
Residuals:
     Min
                10
                      Median
                                             Max
-0.115866 -0.018015 -0.001465 0.018899 0.142409
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept)
                          0.047275 35.122
               1.660371
                                             <2e-16 ***
Width
               0.010376
                          0.017585 0.590
                                            0.5565
              -0.027477
                          0.015752 -1.744
AperHt
                                             0.0841 .
                                             0.9140
              -0.001601
                          0.014777 -0.108
AperWdt
               0.061670
                          0.003327 18.537
                                             <2e-16 ***
LU
LipWdt
              -0.055073
                          0.052040 -1.058
                                             0.2924
ShellTypeType2 -0.006955
                          0.007722 - 0.901
                                             0.3698
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.03418 on 103 degrees of freedom
Multiple R-squared: 0.9192, Adjusted R-squared: 0.9145
F-statistic: 195.3 on 6 and 103 DF, p-value: < 2.2e-16
```

Table 2: Summary of Final Regression Model Coefficients

```
Width AperHt AperWdt LU LipWdt ShellType
2.566084 5.310064 2.361580 4.043276 1.602758 1.312473
```

Table 3: Variance Inflation Factor of Predictors

Model Selection & Simplification (Reduced Final Model)

- Used Best Subset Selection to determine top predictors
- Top predictors: LU, AperHt, ShellType, LipWdt
- Refined model by testing interactions
- ShellType × AperHt was statistically significant (p = 0.0095)
- Removed LipWdt due to non-significance and lack of added value
- Final Model's Variance Explained: ~92%
- Anova Test confirmed final model significantly improved fit (p = 0.0061) compared to simple model.

```
LU AperHt LipWdt ShellTypeType2 Width AperWdt
1.378838e-34 8.408059e-02 2.924059e-01 3.698396e-01 5.564624e-01 9.139515e-01
```

Table 4: P-value for Each Predictor

```
Call:
lm(formula = logLength ~ LU + AperHt + ShellType * AperHt, data = data)
Residuals:
      Min
                10
                      Median
                                             Max
-0.128684 - 0.016595
                    0.000605 0.017434 0.135306
Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
(Intercept)
                      1.744459
                                 0.040192 \quad 43.403 \quad < 2e-16 ***
LU
                      0.064678
                                 0.003137 20.621 < 2e-16 ***
AperHt
                     -0.061506
                                 0.017209 -3.574 0.000532 ***
ShellTypeType2
                     -0.139287
                                 0.051327 -2.714 0.007778 **
AperHt:ShellTypeType2 0.038513
                                 0.014587
                                            2.640 0.009548 **
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.03304 on 105 degrees of freedom
Multiple R-squared: 0.9231,
                               Adjusted R-squared: 0.9201
F-statistic: 314.9 on 4 and 105 DF, p-value: < 2.2e-16
```

Table 5: Summary of Reduced Final Model Coefficients

Predictive Inference Using The Final Regression Model

Final Equation: $log(Length) = \beta 0 + \beta 1 \cdot LU + \beta 2 \cdot AperHt + \beta 3 \cdot ShellType_Type2 + \beta 4 \cdot (AperHt \times ShellType_Type2)$

Shell Type	Predicted Length (mm)	95% Confidence Interval	95% Prediction Interval
Type 1	13.94	(13.79, 14.10)	(13.05, 14.90)
Type 2	13.84	(13.73, 13.95)	(12.96, 14.78)

Table 6: Predicted Mean Length with 95% Confidence and Prediction Intervals (Final Regression Model)

Interpretation:

- Residuals weren't perfectly normal, so intervals should be interpreted with caution.
- Type 1 snails are predicted to be slightly longer than Type 2 snails under average conditions.
- 95% confidence intervals for the mean are narrow, suggesting the difference is small but consistent.
- 95% prediction intervals are wider, reflecting individual variability in Length.

Model Evaluation With Bagging vs Random Forest

Method	Bagging	Random Forest
mtry	3	√3 ≈ 1
MSE	0.45	0.78
RSE	0.67	0.88

Table 7: Bagging vs Random Forest Performance

- Trained both models on the raw Length response using the base predictors from the final model and 1,000 trees.
- Bagging performed slightly better than
 Random Forest.

Figure 8: Bar chart comparing the Bagging vs Random Forest

Limitations & Considerations

- Residuals from models (including the final model) failed normality test (Shapiro p < 0.05),
 which may affect inference reliability
- Cook's distance identified several moderately influential points (e.g., 42, 53, 90, 101) of final model (Cook's distance values were below 0.3), no data points removed.
- Predictors only describe shell geometry and not external factors (e.g., habitat, age)
- Small sample size may limit generalization of Random Forest and Bagging results

Conclusions & Statistical Insights

- Key Takeaways:
 - LU (umbilicus length) was the strongest predictor of Length
 - Aperture Height's effect on shell length differed by Shell Type
- Final Model Summary:
 - Final model explained ~92% of the variance
 - Included LU, Aperture Height, Shell Type, and their interaction
- Prediction Insights:
 - Residuals of final model not normal, may influence confidence and prediction interval reliability
 - Type 1 snails are predicted to be slightly longer than Type 2 on average
- Model Comparison:
 - Bagging slightly outperformed Random Forest
 - On average, bagging predictions of snail shell length were off by ~0.67 millimeters.

Thank You for Your Attention

Please feel free to ask any questions!

