最优化第四次作业

张晋 15091060

2021年5月2日

2.11 其单纯形表如下:

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	$oldsymbol{B}^{-1}oldsymbol{b}$
	1	3	0	1	1	0	0	4
	2	1	0	0	0	1	0	3
	0	1	4	1	0	0	1	3
$oldsymbol{r}^T$	-2	-4	-1	-1	0	0	0	0

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	$B^{-1}b$
	0	5/2	0	1	1	-1/2	0	5/2
		1/2						
	0	1	4	1	0	0	1	3
$m{r}^T$	0	-3	-1	-1	0	1	0	3

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	$B^{-1}b$
	0	1	0	2/5	2/5	-1/5	0	1
	1	0	0	-1/5	-1/5	3/5	0	1
	0	0	4	3/5	-2/5	1/5	1	2
$m{r}^T$	0	0	-1	1/5	6/5	2/5	0	6

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	$B^{-1}b$
	0	1	0	2/5	2/5	-1/5	0	1
	1	0	0	-1/5	1/5	3/5	0	1
	0	0	1	3/20	-1/10	1/20	1/4	1/2
$m{r}^T$	0	0	0	7/20	11/10	9/20	1/4	13/2

利用单纯形法求得最优解为 $x^* = (1, 1, 1/2, 0)^T$, 观察最后一张单纯形表的最后三列可得最优基 B 的逆:

$$\boldsymbol{B}^{-1} = \begin{bmatrix} 2/5 & -1/5 & 0 \\ -1/5 & 3/5 & 0 \\ -1/10 & 1/20 & 1/4 \end{bmatrix}$$

(a) 设 $\Delta \boldsymbol{b} = (\delta, 0, 0)^T$, 由于 $\Delta \boldsymbol{b}$ 的变化不影响 $\boldsymbol{c}_N^T \boldsymbol{N} - \boldsymbol{c}_B^T \boldsymbol{B}^{-1} \boldsymbol{N} \geq \boldsymbol{0}$, 所以只要满足 $\boldsymbol{B}^{-1} (\boldsymbol{b} + \Delta \boldsymbol{b}) \geq \boldsymbol{0}$ 即可, 即:

$$\begin{bmatrix} 1 \\ 1 \\ 1/2 \end{bmatrix} + \begin{bmatrix} 2/5 & -1/5 & 0 \\ -1/5 & 3/5 & 0 \\ -1/10 & 1/20 & 1/4 \end{bmatrix} \begin{bmatrix} \delta \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1+2/5\delta \\ 1-1/5\delta \\ 1/2-1/10\delta \end{bmatrix} \ge \mathbf{0}$$

解得 $\delta \in [-5/2, 5]$, $b_1 \in [3/2, 9]$.

(b) 若 c_1 发生变动,属于基变量系数改变,需要满足 $\boldsymbol{r}_N^T \geq \Delta \boldsymbol{c}_B^T \boldsymbol{B}^{-1} \boldsymbol{N}$,即

$$[7/20, 11/10, 9/20, 1/4] \ge [-1/5, -1/5, 3/5, 0]\Delta c_1$$

解得: $\Delta c_1 \in [-7/4, 3/4], \quad c_1 = 2 - \Delta c_1 \in [5/4, 15/4]$

若 c_4 发生变动,属于非基变量系数改变, 需要满足 ${m r}_N^T \ge -\Delta {m c}_N^T$, 即 $7/20 \ge -\Delta c_4$

解得: $\Delta c_4 \in [-7/20, \infty), \quad c_4 = 1 - \Delta c_4 \in (-\infty, 27/20]$

(c) 因为 $B^{-1}b > 0$, 故当 b 变化很微小时, 新的基本解为 $x' = x^* + B^{-1}\Delta b$ 仍可行且最优.

(d) 当 c 发生微小的改变时,原解依旧为可行解,若需要为最优,则需满足 $r_N^T \ge \Delta c_B^T B^{-1} N - \Delta c_N^T$ 故当 b 变化足够小时,原解满足最优性.

最优值的变化为 $-\Delta \mathbf{c}^T \mathbf{x}^* = -\Delta \mathbf{c}_B^T \mathbf{x}_B^* = -\Delta c_1 - \Delta c_2 - \frac{1}{2} \Delta c_3$

2.12 (a) 单纯形表如下:

	x_1	x_2	x_3	x_4	x_5	x_6	$\boldsymbol{B}^{-1}\boldsymbol{b}$
	3	-1	2	1	0	0	7
	-2	4	0	0	1	0	12
	-4	3	3	0	0	1	14
$m{r}^T$	1	-3	-0.4	0	0	0	0

x_1	x_2	x_3	x_4	x_5	x_6	$\boldsymbol{B}^{-1}\boldsymbol{b}$
5/2	0	2	1	1/4	0	10
-1/	$\frac{1}{2}$ 1	0	0	1/4	0	3
-5/	4 0	3	0	-3/4	1	5
$m{r}^T$ $-1/$	2 0	-0.4	0	3/4	0	9

	x_1	x_2	x_3	x_4	x_5	x_6	$B^{-1}b$
	1	0	4/5	2/5	1/10	0	4
	0	1	2/5	1/5	3/10	0	5
	0	0	5	1	-1/2	1	15
$m{r}^T$	0	0	0	1/5	4/5	0	11

找到了一个最优解 $(4,5,0)^T$, 最优值为 -11

(b) 因为 r_3 , 故可令 x_3 进基, x_6 出基,得 此时得另一个最优解 $(8/5,19/5,3)^T$,最优值为 -11. 此时 r_N 中只有 $r_6=0$,若 x_6 进基则得原解,故最优解一共只有 2 个.

	x_1	x_2	x_3	x_4	x_5	x_6	$B^{-1}b$
	1	0	0	6/25	9/50	-4/25	8/5
	0	1	0	3/25	8/25	-2/25	19/5
	0	0	1	1/5	-1/10	1/5	3
$m{r}^T$	0	0	0	1/5	4/5	0	11

(c) 由最后一张单纯形表可得:

$$\boldsymbol{B}^{-1} = \begin{bmatrix} 2/5 & 1/10 & 0\\ 1/5 & 3/10 & 0\\ 1/5 & -1/2 & 1 \end{bmatrix}$$

$$r_4 = c_4 - \boldsymbol{c}_B^T \boldsymbol{B}^{-1} \boldsymbol{a}_4 = c_4 + \frac{1}{5} a_{14} + \frac{4}{5} a_{24} \ge 0$$

故新增一个既约系数为 0 的列向量, 单纯形表的最优值不变, 原解依旧为最优解.

2.16 引入人工变量 y_1, y_2, y_3, y_4 , 构造辅助问题:

$$min \quad y_1 + y_2 + y_3 + y_4$$
s.t.
$$x_1 + 2x_2 + x_4 + y_1 = 6$$

$$x_1 + 2x_2 + x_3 + x_4 + y_2 = 7$$

$$x_1 + 3x_2 - x_3 + 2x_4 + y_3 = 7$$

$$x_1 + x_2 + x_3 + y_4 = 5$$

$$x_i, y_i \ge 0 \quad (i = 1, 2, 3, 4)$$

$$(1)$$

	x_1	x_2	x_3	x_4	y_1	y_2	y_3	y_4	$B^{-1}b$
	1	2	0	1	1	0	0	0	6
	1	2	1	1	0	1	0	0	7
	1	3	-1	2	0	0	1	0	7
	1	1	1	0	0	0	0	1	5
$m{r}^T$	0	0	0	0	1	1	1	1	0

	x_1	x_2	x_3	x_4	y_1	y_2	y_3	y_4	$B^{-1}b$
	1	2	0	1	1	0	0	0	6
	1	2	1	1	0	1	0	0	7
	1	3	-1	2	0	0	1	0	7
	1	1	1	0	0	0	0	1	5
$m{r}^T$	-4	-8	-1	-4	0	0	0	0	-25

	x_1	x_2	x_3	x_4	y_1	y_2	y_3	y_4	$oldsymbol{B}^{-1}oldsymbol{b}$
	1/3	0	2/3	-1/3	1	0	-2/3	0	4/3
	1/3	0	5/3	-1/3	0	1	-2/3	0	7/3
	1/3	1	$\overline{-1/3}$	2/3	0	0	1/3	0	7/3
	2/3	0	4/3	-2/3	0	0	-1/3	1	8/3
$m{r}^T$	-4/3	0	-11/3	4/3	0	0	8/3	0	-19/3

	x_1	x_2	x_3	x_4	y_1	y_2	y_3	y_4	$B^{-1}b$
	1/5	0	0	-1/5	1	-2/5	-2/5	0	2/5
	1/5	0	1	-1/5	0	3/5	-2/5	0	7/5
	2/5	1	0	3/5	0	1/5	1/5	0	14/5
	2/5	0	0	-2/5	0	-4/5	1/5	1	4/5
$m{r}^T$	-3/5	0	0	3/5	0	11/5	6/5	0	-6/5

	x_1	x_2	x_3	x_4	y_1	y_2	y_3	y_4	$oldsymbol{B}^{-1}oldsymbol{b}$
	1	0	0	-1	5	-2	-2	0	2
	0	0	1	0	-1	1	0	0	1
	0	1	0	1	-2	1	1	0	2
	0	0	0	0	-2	0	1	1	0
$m{r}^T$	0	0	0	0	3	1	0	0	0

将以上求得的解作为初始解开始迭代:

	x_1	x_2	x_3	x_4	$B^{-1}b$
	1	0	0	-1	2
	0	0	1	0	1
	0	1	0	1	2
$oldsymbol{r}^T$	2	6	1	1	0

	x_1	x_2	x_3	x_4	$oldsymbol{B}^{-1}oldsymbol{b}$
	1	0	0	-1	2
	0	0	1	0	1
	0	1	0	1	2
$m{r}^T$	0	0	0	-3	-17

	x_1	x_2	x_3	x_4	$B^{-1}b$
	1	1	0	0	4
	0	0	1	0	1
	0	1	0	1	2
$m{r}^T$	0	3	0	0	-11

此时求得最优解 $(4,0,1,2)^T$, 最优值为 11.

2.19 (a) 下一个转轴元为第 2 行第 3 列的 3 l

$$B = (B^{-1})^{-1} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

$$b = By_0 = \begin{bmatrix} 10 \\ 6 \\ 4 \end{bmatrix}$$

$$N = B[y_2, y_3, y_5] = \begin{bmatrix} 1 & 3 & 2 \\ 0 & -2 & 2 \\ -3 & 1 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & -1 & 3 & 1 & 2 & 0 \\ 1 & 0 & -2 & 0 & 2 & 1 \\ 0 & -3 & 1 & 1 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} c_2 \\ c_3 \\ c_5 \end{bmatrix} = c_N^T = r_N^T + c_B^T B^{-1} N = \begin{bmatrix} 25/3 \\ -22 \\ 8/3 \end{bmatrix}$$

$$c = \begin{bmatrix} -1 \\ 25/3 \\ -22 \\ -3 \\ 8/3 \end{bmatrix}$$

在 mathematica 输入如下代码:

$$\begin{aligned} \text{Show} & \begin{bmatrix} \operatorname{RegionPlot}[x+y \geq -6 \land x + 2y \geq -8, \{x, -4, 0\}, \{y, -3, 0\}, \\ \operatorname{PlotLegends} \to \operatorname{Expressions}], \\ \operatorname{Plot}\left[\left\{-\frac{2x}{3} - \frac{14}{3}\right\}, \{x, -4, 0\}, \operatorname{PlotLegends} \to \operatorname{Expressions}, \operatorname{PlotStyle} \to \left\{\operatorname{Red}\right\}\right], \\ \operatorname{Plot}\left[\left\{-\frac{2x}{3} - 3\right\}, \{x, -4, 0\}, \operatorname{PlotLegends} \to \operatorname{Expressions}, \operatorname{PlotStyle} \to \left\{\operatorname{Green}\right\}\right] \end{aligned}$$

后面内容丢失了。。。