

BT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶: C07C

A2

(11) International Publication Number:

WO 97/07081

(43) International Publication Date:

27 February 1997 (27.02.97)

(21) International Application Number:

PCT/IB96/00987

(22) International Filing Date:

9 August 1996 (09.08.96)

(30) Priority Data:

60/002,164

11 August 1995 (11.08.95)

US

(71) Applicant (for all designated States except US): YALE UNI-VERSITY [US/US]; Yale Station, New Haven, CT 06520 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): WOOD, John, L. [US/US]; 72 Pickwick Road, Hamden, CT 06517 (US). STOLTZ, Brian, M. [US/US]; Apartment No. 1, 7 Cottage Street, New Haven, CT 06510 (US). DIETRICH, Hans-Jürgen [DE/DE]; Breslauer Strasse 31, D-47829 Krefeld-Gartenstadt (DE). PFLUM, Derek, A. [US/US]; 69 Pearl Street, New Haven, CT 06510 (US).
- (74) Agent: KRINSKY, Mary, M.; St. Onge Steward Johnston & Reens, 986 Bedford Street, Stamford, CT 06905 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: GLYCOSYLATED INDOLOCARBAZOLE SYNTHESIS

(57) Abstract

Tertiary alcohols containing the structural features illustrated in 3 or 4 (Scheme I) are prepared by reacting at least one diazo carbonyl compound, (e.g., 1 in Scheme I) and at least one allylic alcohol (e.g., 2 in Scheme I) in a coupling reaction run under conditions that produce carbene or carbenoid intermediates from the diazo-containing substrate such as transition metal catalysis or either thermal or photochemical decomposition. In some preferred embodiments, Rh2(OAc)4 is employed to catalyze the coupling reaction. In Scheme I R represents a substituent comprised of any number and combination of the elements H, C, N, S, Si, O,

Scheme I

Scheme II

Cl, Br, I, and F. Indolocarbazoles (e.g., 7 in Scheme II) are prepared by coupling of diazo carbonyl compounds (e.g., 5 Scheme II) and biindoles (e.g., 6 in Scheme II). Indolocarbazoles are furanosylated (e.g., 7 in Scheme II) with acetals (e.g., 8 in Scheme II) or their open chain congeners (e.g., 9 in Scheme II) under conditions known to promote acetal exchange or formation, such as protic or Lewis acids. Furanosylated indolocarbazoles (e.g., 10 in Scheme II) are also prepared via ring contraction of pyranosylated indolocarbazoles (e.g., 11 in Scheme II) under conditions know to effect oxidation and benzylic acid type rearrangements, and pyranosylated indolocarbazoles (e.g., 11 in Scheme II) are prepared via ring expansion of the furanosylated congeners (e.g., 10 in Scheme II).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
ΑÜ	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	TE.	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil .	KE	Kenya	RO	Romania
BY	Belanis	KG	Kyrgystan	RU	Russian Rederation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	u	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czochoslovakia	LT	Lithumia	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Larvia	LT.	Tajikistan
DK .	Denmark	MC	Monaco	TT	Trinidad and Tobago
ER	Estonia	MD	Republic of Moldova	UA	Ukraine
E8	Spain	MG	Madagascar	UG	Uganda
FI	Finland	MIL	Mali	US	United States of America
FR	France	MN	Mongolia	UZ.	Uzbekistan
GA	Gabon	MR	Maurinenia	VN	Vict Nam

GLYCOSYLATED INDOLOCARBAZOLE SYNTHESIS

Relat d Application Data

This is a continuation-in-part of U.S. provisional application serial number 60/002,164 filed August 11, 1995, which is incorporated herein by reference.

5 Technical Field

10

15

20

25

This invention relates to the synthesis of tertiary alcohols by coupling of diazo carbonyl compounds with allylic alcohols under conditions that produce carbene or carbenoid intermediates. Both furanosylated and pyranosylated indolocarbazoles are prepared, including naturally occurring compounds as well as a range of structurally diverse analogues.

Background of the Invention

Originally discovered in the course of screening for microbial alkaloids, staurosporine and structurally related compounds have been the object of considerable investigation for various biomedical purposes for the past twenty years (for a review, see Omura, et al.). It has been recently reported that staurosporine and its derivatives, for example, inhibit smooth muscle contraction, platelet aggregation, neurotrophic activity, and, most importantly, protein kinases in vitro and in vivo (ibid.).

Disruption of cellular signal transduction via kinase malfunction has been related to the onset of several disease states, including rhematoid arthritis, systemic lupus erythematosis, diabetes metillus and Alzheimer's disease. For example, the clinical severity of Alzheimer's disease correlates well with the formation of amyloid plaques and neurofibrillary tangles; both manifest paired helical filaments (PHF) that possess an overphosphorylated microtubule associated protein (M.A.P., also known as t-protein). It has be n suggested that overphosphorylation may lead to

25

30

conformational changes that inhibit τ binding to microtubules. Recently, a bovine τ -kinase denominated PK40 (molecular weight 40,000) has been isolated and shown to induce a gel mobility shift of PHF- τ . PK40 is not closely associated with the cytoskeleton and appears to be a member of the extracellular regulated kinases. Specific inhibition of enzymes like PK40 by small, orally bioavailable compounds, promise to be a highly successful means of treating Alzheimer's disease.

Unfortunately, the structural homology shared by the many kinase isozymes has impeded the development of selective and therapeutically useful inhibitors. It would be desirable to have others.

Summary of the Invention

It is a specific object of the invention to provide a synthesis for (+)-and (-)- K252a, analogues of K252a, staurosporine and its congeners, and the like.

It is another and more general object of the invention to provide for the synthesis of furanosylated and pyranosylated indolocarbzoles, particularly the interconversion of furanosylated indolocarbazoles to the corresponding pyranosylated derivatives.

It is a further object of the invention to provide an efficient approach to the synthesis of enantioenriched tertiary alcohols.

These and other objects are accomplished by the present invention, which provides a process for the preparation of tertiary alcohols containing the structural features illustrated in 3 or 4 below (Scheme I). The process utilizes at least one carbonyl compound, e.g., 1 in Scheme I) and at least one allylic alcohol (e.g., 2 in Scheme I) in a coupling reaction that is run under conditions that produce carbene or carbenoid intermediates from the diazocontaining substrate. These conditions include transition metal catalysis or either thermal or photochemical decomposition. In some preferred embodiments illustrated hereafter, Rh₂(OAc)₄ is employed to catalyze the coupling reaction.

The invention more specifically provides a process for the construction of indolocarbazoles (e.g., 7 below) from the coupling of diazo carbonyl compounds (e.g., 5) and biindoles (e.g., 6). The invention also provides a process for the stereoselective preparation of glycosylated indolocarbazoles like but not limited to 10 and 11 via furanosylation of indolocarbozoles (e.g., 7) with acetals (e.g., 8) or their open chain congeners (e.g., 9) under conditions known to promote acetal exchange or formation, such as protic or Lewis acids.

Scheme II

5

10

15

20

As illustrated in Scheme II above, processes of the invention also provide furanosylated indolocarbazoles (e.g., 10) via ring contraction of pyranosylated indolocarbazoles (e.g., 12) under conditions know to effect oxidation and benzylic acid type rearrangements. The invention correspondingly provides processes for the construction of pyranosylated indolocarbazoles (e.g., 12) via ring expansion of the furanosylated congeners (e.g., 10).

10

15

20

Detailed Description of the Invention

This invention is based upon several new processes that when combined in-total or in-part can lead to the enantioselective syntheses of various indolocarbazoles.

As summarized above, in a practice of the invention at least one diazo carbonyl compound and at least one allylic alcohol of structures 1 and 2, respectively (Scheme III), are combined to produce tertiary alcohols of structures 3 and/or 4 in Scheme III. A preferred embodiment employs but is not limited to the use of transition metal catalysts in the form of ligated Rh(II) complexes, for example Rh₂(OAc)₄, to produce 3 and a Lewis acid like but not limited to BF₃°Et₂O to convert 3 to 4. In alternative embodiments the decomposition of the diazo substrate to the corresponding carbene or carbenoid involves catalysis by complexes of: Cu(II), Mn(II), Fe(II), Co(II), Ni(0), Ni(II), Zn(II), Mo(II), Ru(III), Ru(III), Bronsted and Lewis acids, thermolysis, and/or photolysis. The derived tertiary alcohols of structure 4 are further manipulated by standard chemical procedures to produce acetals of structure 8 and the corresponding open chain congeners of structure 9. The later are utilized in the furanosylation process and total syntheses described below.

Scheme III

(R represents a substituent comprised of any number and combination of the elements H, C, N, S, Si, O, Ci, Br, I, F) (X represents a substituent comprised of any number and combination of the elements N, S, Si, O, Ci, Br, I, F)

10

20

25

The invention also provid s a process for coupling at 1 ast on diazo carbonyl compound and at least one biindole, of structures 5 and 6 respectively (Scheme IV), to produce indolocarbazoles of structure 7. A preferred embodiment employs but is not limited to the use of transition metal catalysts in the form of ligated Rh(II) complexes, for example Rh₂(OAc)₄, in a solvent capable of solvating the substrates such as CH₂Cl₂, pinacolone, and/or CH₃CN. The reaction is carried out under conditions such that products are formed at a convenient rate such as for example about 20-30 minutes at reflux. In alternative embodiments initiating the process via decomposition of the diazo substrate to the corresponding carbene or carbenoid involves catalysis by complexes of: Cu(II), Mn(II), Fe(II), Co(II), Ni(0), Ni(II), Zn(II), Mo(II), Ru(III), Ru(III), Bronsted and Lewis acids, thermolysis, and/or photolysis.

15 Scheme IV

(R represents a substituent comprised of any number and combination of the elements H, C, N, S, Si, O, Cl, Br, I, F)

The invention also provides a process for the stereoselective furanosylation of indolocarbazoles of a structure 10 or 11 with acetals and/or their open chain congeners, of structures 8 and 9 respectively in Scheme V, under conditions that promote acetal exchange or formation, such as but not limited to Bronstead or Lewis acids such as CSA, PTSA, or BF₃•Et₂O (McCombie et al.). A preferred embodiment employs but is not limited to the use of camphor sulfonic acid (CSA) as the catalyst and the dichloroethane as the solvent in a coupling reaction that stereoselectively produces the regioisomeric furanosylated indolocarbazoles 10 and 11 in about 80% yield. The derived indolocarbazoles of structure 10 are manipulated by standard chemical procedures to produce 14 (K252a).

10

Sch m V

As illustrated in Scheme VI, the invention also provides a process for the ring contraction of pyranosylated indolocarbazoles of structure 15 and/or 16 to furanosylated indolocarbazoles of structure 10 and/or 11 under conditions that in single- or two-step fashion can effect oxidation and benzylic acid type rearrangement (Fredenhagen et al.). A preferred embodiment employs but is not limited to a single-step procedure wherein CuCl is used as both the oxidant and rearrangement promoter and methanol is used as the solvent.

WO 97/07081 PCT/IB96/00987

-7-

Scheme VI

(Fi represents a substituent comprised of any number and combination of the elements H, C, N, S, Si, O, Ci, Br, I, F)

The invention correspondingly provides a process for the ring expansion of furanosylated indolocarbazoles of structure 10 and/or 11 to the pyranosylated congeners of structure 15 and/or 16 illustrated in Scheme VII below (OOtsuka et al.). A preferred embodiment employs but is not limited to a multistep procedure wherein 10 and/or 11 is first reduced with LiBH₄ and then the derived diol is oxidized. The resulting intermediate compound is then subjected to BF₃•Et₂O to promote the ring expansion.

10 Scheme VII

5

15

combination of the elements H, C, N, S, Si, O, Ci, Br, I, F)

It is an advantage of the invention that the combined processes provide efficient access to useful indolocarbazoles such as (+)- and (-)-K252a, (+)- and (-)-RK-286c, (+)- and (-)-MLR-52, (+)- and (-)-staurosporine, and the like depicted below.

Examples

5

10

The following are presented to further illustrate and explain the present invention and should not be taken as limiting in any regard. Unless otherwise indicated, all parts and percentages are by weight and are based on the weight of the components at the indicated stage of processing. Rotations on indolocarbazole were obtained on methanol solutions. Compound structural assignments were in accord with infrared and high-field ¹H (500 MHz) and ¹³C (125 or 62.5 MHz) NMR spectra, as well as appropriate parent identification by high-resolution mass spectrometry.

Example 1 Enantioselective Preparation of Tertiary Alcohols

This example describes a novel rhodium-catalyzed C-C bond forming reaction that allows asymmetric access to 21 (95% ee) and 22 (93% ee) in only two and three steps from methyl acetoacetate (18) (Scheme VIII). In this scenario α-keto ester 21 was produced from the rhodium-catalyzed decomposition of 19 in the presence of S-(+)-1-buten-3-ol (20) (Wood et al.). In the event, complete consumption of 19 was observed after only 20

10

20

25

minutes to reflux in benz ne. Proton NMR analysis of the crude reaction indicated the clean

formation of a product similar to 19; however, the characteristic methyl ketone singlet had shifted from 2.2 to 1.5 ppm. Clearly the allyloxy or allyloxonium ylide intermediate had undergone [3,3] sigmatropic rearrangement to alcohol (+)-21 (66% yield) (Pirrung et al.). Completion of the tandem rearrangement protocol was achieved by exposing (+)-21 to BF₃•Et₂O which promoted a clean [1,2]-allyl migration to furnish (-)-22 in 74% yield. In subsequent studies, improved yields were obtained by conducting the tandem rearrangement in one pot. Thus, introducing an equivalent of BF₃•Et₂O into the cooled [3,3] reaction allows isolation of (-)-22 in an overall yield of 75%.

Scheme VIII

With an approach firmly established, a chemical correlation study was initiated to confirm both the sense and degree of asymmetric induction for the tandem rearrangement. Analysis of the purified products from both the [3,3] (i.e.,(+)-21) and [1,2] (i.e., (-)-22) rearrangements via proton NMR in the presence of Eu(hfc)₄ gave the first indication that each step was proceeding with a high degree of stereoselectivity. Conversion of (+)-21 to 23 as outlined in Scheme IX, followed by comparison of the derived bis Mosher ester (24) to samples prepared from S-(+)- and R-(-)-citramalic acid, established that S-(+)-20 (98% ee) had furnished R-(+)-21 (95% ee). Stereoselectivity in the [1,2] shift was established by degradation of (-)-22 to R-(-)-25 followed by DIBAL reduction and proton NMR analysis of the corresponding bis Mosher ester. While the Mosher ester analysis established an ee of 92%, the observation of R-(-)-25 in the degradation proved th absolute stereochemistry in 22 as S.

10

15

20

Sch me IX

Having established the degree and sense of asymmetric induction the asymmetric synthesis of the requisite acetals 26 and 27 was begun. Thus, reductive ozonolysis of 22 followed by acetal formation provided a ternary mixture. Spectral identification of the isolated products indicated the presence of methyl ketone 26 and furanoses (+)-27a and (+)-27b (Scheme X).

Example 2

Preparation and Furanosylation of Indolocarbazoles The Synthesis of K252a

This example describes the coupling of diazolactams 28 and 2,2'-biindole 29 to produce an intermediate that undergoes cycloaromatization to furnish the indolocarbazoles 30. Application of this strategy allows efficient access to both the parent aglycone (30a) and the selectively protected derivatives (30b-c). Of the latter, 30c is employed in the total synthesis of K252a. Overall, preparation of the enanticenriched furancess 27 (described in Example 1 abov) and aglycon unit 30c and their

10

15

20

conversion to 14 require only eleven synthetic operations with a longest linear sequence of seven steps.

Sch m XI

The feasibility of the carbenoid approach to 30 was initially assessed by reaction of 28a (1.0 equiv) with indole (3.0 equiv) in the presence of catalytic Rh₂(OAc)₄ (0.01 equiv, Scheme XII). After only 12 h, TLC analysis indicated complete consumption of 28a and standard work-up and isolation procedures furnished 31 in 65% yield. Similar conditions proved ineffective for the coupling of 28a with 29, and it was only after considerable experimentation that a procedure was developed which provided satisfactory yields of 30a. The use of degassed pinacolone proved critical as this solvent was found to be both compatible with the carbenoid chemistry and capable of solvating the diindole substrate. Under these conditions the coupling of 28a and 29 proceeded directly to 30a (K252c) in 25% yield. Presumed intermediates 32 and 33 were not apparent by TLC or NMR analysis of the crude reaction mixture. In an attempt to complete the synthesis, the cycloglycosidation of 27 with 30a revealed a tendency of the latter to alkylate at the amide nitrogen; thus, selectively protected aglycones 30b-e were employed. Preparation of the corresponding diazolactams 28b-e, followed by reaction with 29 in the presence of Rh₂(OAc)₄ (0.1 equiv) established that several protecting groups can withstand the carbenoid conditions and that the best yields (50-62%) are obtained within the benzyl class (e.g., 28c,d,e→30c,d,e Scheme XII). To

provid th most flexibility in the eventual deprotection 3,4-dimethoxybenzyl protected aglycone 28 was employed.

Sch m XII

Having gained efficient access to 30c, attention was turned to the preparation of the furanose components (27). To this end, a novel tandem rearrangement protocol was developed that combines methyl 2-diazo-3-oxobutyrate (19) and S-(+)-1-buten-3-ol (20) to furnish (-)-22 in a single-pot (92% ee, 75% yield). Reductive ozonolysis of (-)-22 followed by acid promoted cyclization in methanol produced (+)-27a and (+)-27b in good yield.

Scheme XIII

5

10

With both (+)-27 and 30c in hand the cycloglycosidative coupling was investigated. Of several conditions reported by McCombie, et al., for related transformations, camphorsulfonic acid in 1,2-dichloroethane was found to be the catalyst and solvent of choice. In the vent, 30c and (+)-27a and

27b combined rapidly to form two regioisomeric pairs of open chain monoamino acetal diastereomers (34 and 35). Prolonged heating of the quaternary mixture induced cycloglycosidation to only two of the four possible diastereomers.

5 Scheme XIV

10

Preliminary assignment of structure was based on ¹H NMR analysis which indicated that the reaction had produced the regioisomeric products (-)-36 (55% yield) and (-)-37 (25% yield). The observed formation of (-)-14 upon deprotection of (-)-36 under standard conditions (TFA/CH₂Cl₂/thioanisole) established the cycloglycosidation as both regional stereoselective for the natural configuration. Comparison of synthetic

15

20

25

(-)-14 to material derived from natural sources established its identity as the unnatural enantiomer of K252a.

Total synthesis of the natural enantiomer (i.e., (+)-14) was effected in an analogous fashion using 28c and (-)-27a and (-)-27b as coupling partners (Scheme XV). The latter compound was prepared via the tandem [3,3]/[1,2] rearrangement protocol (described in Example 1 above) using R-(-)-1-nonen-3-ol (38) as the source of asymmetry.

Scheme XV

In summary, application of a novel carbenoid mediated synthesis of K252c coupled with a highly selective tandem (3,3)/(1,2) rearrangement protocol provides efficient access to both (+)- and (-)-K252a.

Example 3

Furanosylation of Alternative Indolocarbazoles and the Interconversion of Furanosylated and Pyranosylated Indolocarbazoles

This example reports results wherein an indolocarbazole simpler than that described Example 2 is subjected to furanosylation. The derived product 40 is further manipulated into a ring-expansion substrate 41 or 42 that undergoes conversion to the corresponding pyranosylated indolocarbazole 43 or 44, respectively (Stoltz et al. 1995). It is further demonstrated in this example that the α -hydroxy ketone congener 43 undergoes facile oxidative ring contraction to the furanosylated indolocarbazole upon exposure to CuCl in methanol (Stoltz et al. 1996).

For the furanosylation, indolo [2,3-a]carbazole (39) was coupled with 27a and 27b in a manner similar to that employed in the synthesis of

K252a desribed in Example 2. This coupling again proved highly stereoselective and produced 40 as the only isolable product in 85% yield.

Scheme XVI

5

10

15

20

Turning to the ring expansion, it was soon discovered that transformation of 40 into aldehyde 41 followed by treatment with BF₃•Et₂O results in a regio- and stereoselective rearrangement to the pyranosylated indolocarbazole 43. At this stage all that remained for the preparation of 44 was what appeared to be a trivial alkylation of the C(3') hydroxyl. Ketone 43 surprisingly proved quite resistant to methylation under numerous alkylation conditions. In addition, attempts to incorporate directly the methyl substituent by promoting the rearrangement with a source of Me+ (e.g., Meerweinis reagent, TMSOTi/TMSOMe, and MeOTi) also failed. Eventually, these difficulties led to the development of an alternative strategy that targeted dimethyl acetal 42 as the substrate for a ring expansion (Scheme XVII). Although 42 was readily produced under a variety of conditions, its instability to chromatographic purification required the employment of montmorillonite clay K-10 to promote acetal formation. Removal of the clay via filtration, solvent exchange with Et₂O, and subsequent treatment with BF₃•Et₂O resulted in the slow (72 h, 25 °C) conversion of 42 to 44 (50% yield).

Scheme XVII

Having rapidly assembled α -methoxy ketone 44, its conversion to the desamido pyranosylated indolocarbazoles was investigated. To this end, the analogs of RK-286c (46) and TAN-1030a (47) were readily prepared from 44 under standard conditions using NaBH₄ and H₂NOH•HCl, respectively (Scheme XVIII).

Scheme XVIII

5

While the above model investigations established the feasibility of a regio and stereoselective ring expansion, subsequent attempts to alkylate the derived α-hydroxy ketone 43 proved problematic. Of note is the propensity of 43 to undergo loss of the indolocarbazole nucleus as evidenced

by isolation of 39 as the major product in many of the alkylation attempts. In an effort to avoid this del terious ev nt att ntion was turned to methylation procedures that appeared to proceed under essentially neutral conditions. While these efforts failed to produce any of the desired α -methoxy ketone 44, the conditions comprising CuCl and DCC in MeOH were observed to cleanly convert 43 to 40, the functionalized K252a sugar moiety. Apparently these conditions induced either ring contractive α -ketol rearrangement and oxidation (i.e., $43 \rightarrow 41 \rightarrow 40$) or oxidation and ring contractive "benzilic" acid rearrangement (i.e., $43 \rightarrow 48 \rightarrow 40$). While not wishing to be bound to any theory, since α -hydroxy aldehyde 41 failed to undergo conversion to 40 under identical conditions, the latter of these two mechanistic possibilities appears most likely. In addition, subsequent investigations have revealed CuCl in MeOH without added DCC to be the optimal conditions for converting 43 to 40 (95% yield).

15

10

5

Scheme XIX

Example 4

The Synthesis of Staurosporine, RK-286c, MLR-52, and K252a

20

This example demonstrates that the tertiary alcohol and indolocarbazole syntheses, the indolocarbazole furanosylation, and the ring-expansion protocol described in the above Examples can be used to prepare pyranosylated indolocarbazoles that are suited for conversion to staurosporine (49) RK-286c (50), MLR-52 (51), and K252a (14) (Link et al.).

10

15

20

The synthesis of 49-51 began by converting the K252a precurs r (36, described above in Example 2) to the corresponding aldehyde via LiBH₄ reduction and then Moffatt oxidation (63% yield overall, Scheme XX). Guided by the α -ketol rearrangement results described above, 50 was exposed to BF₃•Et₂O and the reaction allowed to stir at room temperature for 3 h. Given that the proposed ring-expansion of 50 to 51 could proceed to a mixture of regio- and stereoisomeric products, treatment of (+)-50 with BF₃•OEt₂ in Et₂O (2.2 equiv, 25- 30 °C, 24h) surprisingly produces a single product, (+)-51, in 85% yield. The regio- and stereochemical outcome of this reaction, which were confirmed by spectral comparison to a closely related model and the conversion of (+)-51 to (+)-50 (vide infra).

Scheme XX

As expected from the data presented in Example 3, attempts to methylate 51 were unproductive and again led to the observation that exposure of (+)-51 to CuCl in MeOH results in a highly stereoselective oxidation/ring-contraction sequence that produces (+)-36 in 95% yield.

Turning from the potentially biomimetic synthesis of (+)-K252a to the synthesis of 49-51, it was discovered that (+)-51 undergoes selective conversion to (+)-54 upon sequential treatment with NaBH₄ and NaH/MeI. Having installed all of the functional groups common to (+)-50-51, the

approach diverged into the synthesis of (+)-RK286c and (+)-MLR-52. The former was completed via deprotection of (+)-54 (TFA/anisole) while the latter required a three-step sequence that was initiated by exposing (+)-54 to Martin's sulfurane. Oxidation of the derived olefin with OsO₄ followed by deprotection of the resultant diol (+)-55 produced (+)-51 (Scheme XXI).

Scheme XXI

The inability to prepare α-methoxy ketone 52 guided an approach to staurosporine along a route wherein the 4' nitrogen is introduced via conversion of (+)-51 to the corresponding oxime (-)-56 (H₂NOH•HCl, NaOAc, Scheme XXII). Crucial for the success of this approach is the fact that (-)-56, unlike ketone (+)-51, readily undergoes alkylation to the C(3') methyl ether (MeI, KOH, n-Bu₄NBr). Stereoselective reduction of the derived methoxy oxime (-)-57 (H₂, PtO₂) to the corresponding primary amine ((+)-58) followed by monomethylation (HCO₂COCH₃, BH₃•DMS) and deprotection (TFA) produced (+)-staurosporine (49).

In summary, efforts to devise an efficient synthesis of the pyranosylated indolocarbazoles via a common intermediate [i.e., (+)-36] were successful in delivering (+)-49 (19 steps), (+)-50 (17 steps), and (+)-51 (19 steps). In addition, these investigations have revealed both ring-expansion and -contraction reactivity that may play a central role in the biogenesis of both the furanosylated and pyranosylated members of this important class of natural products.

10

15

5

Example 5

Experimental Procedures for Selected Compounds in Examples 1-4

Preparation of 21. (R)-3-Hydroxy-3-methyl-2-oxo-5-heptenoicacidethylester 2.1323 g (15.00 mmol) 2-diazomethylacetoacetate are dissolved in 75 ml benzene (1 neck 100 ml flask). Under stirring 1.0816 g (15 mmol; 1.3 ml) (S)-(+)-butenol are added to the solution. After addition of 66.3 mg (0.15 mmol; 0.01 eq.) Rh2(OAc)4 the flask is immersed into a preheated (100-110 °C) oil bath. The mixture is heated under reflux for 30 minutes. After 1 minute vigouros nitrogen evolution starts and lasts for about 2 minutes. After cooling the mixtur—the solvent is evaporated and the residue is

flashed on silica (4.5 x 15 cm) using hexane/ethylacetate (20%). 1.66 g (59%) of the product are obtained. This relatively low yield (compared to the 74% obtained in the racemic series) must be due to same impurity (water?) in the butenol. b.p. 65-67°/0.35 mm Hg; IR (thin film/NaCl) 3521.0 (m), 3028.5 (w), 2981.5 (m), 2957.1 (m), 2937.9 (m), 2919.9 (m), 2857.4 (w), 1742.6 (s), 1726.1 (s), 1452.3 (m), 1437.5 (m), 1376.0 (w), 1361.2 (w), 1289.1 (m), 1250.1 (m), 1192.6 (w), 1145.8 (w), 1116.3 (w), 1081.5 (w), 1060.1 (w), 1032.1 (s), 971.9 (m), 920.3 (w), 861.6 (w), 844.7 (w), 814.4 (w), 722.7 (w), 663.1 (w) cm⁻¹; 1 H NMR (500 MHz, CDCl₃) δ 5.57 (m, 1H), 5.35 (m, 1H), 3.88 (s, 3H), 3.28 (br.s, 1H), 2.68 (dd, J=7.0, 14.0 Hz, 1H), 2.42 (dd, J=7.7, 14.0 Hz, 1H), 1.66 (d, J=6.42 Hz, 3H), 1.47 (s, 3H); 13 C NMR (125 MHz, CDCl₃) δ 198.58, 162.78, 130.97, 123.58, 78.30, 52.55, 42.26, 24.15, 17.82; HRMS (CI, isobutane) m/z calc'd for C9H₁₅O4 (M+H): 187.0970, found 187.0966; [α]D²² + 14.65° (c=1.08, CHCl₃).

Preparation of 22. (S)-2-Hydroxy-2-allylmethylmethylacetoacetate 3.35 g 15 (18 mmol) (R)-3-hydroxy-3-methyl-2-oxo-5-heptenoicacidethyl-ester are dissoved in 180 ml dichloromethane and treated with 2.554 g (18 mmol; 2.21 ml) BF3 · OEt2. The reaction mixture is stirred 2 hours at 25 °C (TLC control). The solvent is evaporated and the residue flashed on silica (4.5 x 20 18 cm) using hexane/ethylacetate (20%). 2.368 g (71%) of the product are isolated. IR (thin film/NaCl) 3476.1 (m), 3031.2 (w), 3009.6 (w), 2956.2 (m). 2921.4 (w), 2857.5 (w), 1746.9 (s), 1721.9 (s), 1437.4 (m), 1357.9 (m), 1271.0 (m), 1224.2 (m), 1195.9 (m), 1183.2 (m), 1141.0 (m), 1108.5 (m), 1076.9 (w), 1052.8 (w), 994.6 (w), 972.4 (m), 861.8 (w), 816.7 (w), 798.3 (w) 25 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.60 (m, 1H), 5.32 (m, 1H), 4.17 (s, 1H), 3.80 (s, 3H), 2.77 (dd, J=6.6, 14.3 Hz, 1H), 2.63 (dd, J=7.6, 14.3 Hz, 1H), 2.28 (s, 3H), 1.65 (d, J=6.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 204.28, 170.85, 130.59, 122.91, 83.89, 53.16, 38.54, 24.76, 17.94; HRMS (CI, isobutane) m/z calc'd for C9H₁₅O₄ (M+H): 187.0970, found 187.0969; 30 $[\alpha]D^{22}$ 32.13° (c=1.08, CHCl₃). (S)-2-Hydroxy-2allylmethylmethylacetoacetate (1 pot procedure) 426.5 mg (3.00 mmol) 2diazomethylacetoacetate are dissolved in 15 ml benzene (1 neck 25 ml flask). Under stirring 237.9 mg (3.3 mmol; 0.286 ml; 1.1 eq.) (S)-(+)-butenol are added to the solution. After addition of 13.3 mg (0.03 mmol; 0.01 eq.) Rh2(OAc)4 the flask is immersed into a preheated (100-110 °C) oil bath. 35 The mixture is heated under reflux for 30 minutes. After 1 minute vigouros

10

15

20

25

30

35

nitrogen evolution starts and lasts for about 2 minutes. After cooling the reaction mixture 554.5 mg (3.75 mmol; 0.46 ml; 1.25 eq.) BF3 • OEt2 are added. The mixture is stirred for 2-3 hours (TLC control) at 25 °C. The reaction mixture is passed through silica (2.5 x 8 cm) using pentane/ether (20%) as solvent; 416.9 mg (75%) of the product are isolated.

Preparation of 27. (S)-(+)-Hydroxy furanose and (S)-(-)methylketonedimethylacetal 1.305 g (7.00 mmol) (S)-2-hydroxy-2allylmethylmethylacetoacetate and a trace of sudan red dye are dissolved in 45 ml methanol. After cooling to -78 °C the mixture is treated with O3 until the dye is completely discolored (about 3 minutes). The mixture is purged with argon for 10 Minutes at -78 °C and 20 ml dimethylsulfide are added at that temperature. The dry ice cold bath is replaced with an ice bath which is allowed to thaw (0-20 °C) over a period of 3 hours. The solvent is removed and the crude product dissoved in in 45 ml benzene. After addition of 20.0 mg (0.105 mmol; 0.015 eq.) p-toluenesulfonic acid and 12 mlmethanol the mixture is stirred at 25 °C for 17 hours (until the reaction is completed as judged by TLC). The solvent is evaporated and the product is flashed on silica (4.5 x 20 cm) using hexane/ethylacetate (20%) as solvent system. 1.69 g (80%) of a mixture (1:1:1) of two furanose diastereomers and the methylketonedimethylacetal is obtained. They can be separated using HPLC. In a first run (stationary phase: SiO2; mobile phase: hexane/dichloromethane/ethylacetate (2:2:1) a mixture of the furanose diastereomer I and the metyhylketone is eluated first followed by the second furanose diastereomer which can be isolated in its pure form. The two component mixture is separated using a different system (stationary phase: SiO2; mobile phase: hexane/i-propanol (10%)). The furanose diastereomer I is eluated as first fraction closely followed by the methylketonedimethyl acetal. Hydroxyfuranose mp 81-82 °C; IR (thin film/NaCl) 3495.1 (m), 2995.3 (m), 2953.2 (s), 2917.2 (s), 2848.3 (m), 1747.11 (s), 1463.77 (m), 1439.35 (m), 1379.1 (m), 1355.2 (w), 1263.5 (s), 1200.0 (s), 1182.1 (m), 1156.1 (m), 1121.86 (s), 1086.1 (s), 1043.7 (m), 1019.3 (m), 973.677 (m), 949.3 (m), 929.7 (m), 892.27 (m), 864.6 (w), 833.7 (m), 802.7 (m), 750.6 (m), 685.5 (m) cm⁻¹; 1 H NMR (500 MHz, CDCl₃) 8 5.07 (dd, J=0.6, 5.8 Hz, 1H), 3.79 (s, 3H), 3.42 (s, 3H), 3.38 (br. s, 1H), 3.25 (s, 3H), 3.03 (dd, J=5.8, 14.2 Hz, 1H), 2.06 (d, J=14.2 Hz, 1H), 1.54 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 170.50, 110.55, 103.86, 83.17, 55.56, 52.63,

30

35

49.28, 40.56, 15.82; $[\alpha]D^{20} + 112.13^{\circ}$ (c=1.06, CHCl3). Methylketone IR (thin film/NaCl) 3450.0 (m), 2988.3 (m), 2953.5 (s), 2915.0 (s), 2849.2 (s). 1746 (s), 1722.3 (s), 1457.5 (m), 1436.4 (m), 1386.7 (m), 1275.0 (m), 1245.2 (m), 1198.0 (m), 1178.1 (m), 1142.1 (s), 1121.0 (s), 1063.3 (s), 1014.2 (w), 5 998.1 (w), 974.4 (w), 907.4 (w), 830.6 (w), 755.1 (w) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.50 (s, 1H), 4.50 (dd, J=4.8, 6.7 Hz, 1H), 3.78 (s, 3H), 3.34 (s, 3H), 3.29 (s, 3H), 2.43 (dd, J=4.8, 14.5 Hz, 1H), 2.39 (dd, J=6.7, 14.5 Hz, 1H), 2.28 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 204.04, 170.87, 102.01. 81.80, 54.99, 53.84, 53.22, 38.40, 24.50; $[\alpha]D^{20}$ - 20.25° (c=0.97, CHCl₃). 10 Hydroxyfuranose mp 63-64 °C; IR (thin film/NaCl) 3480.7 (m), 2995.0 (w), 2953.3 (m), 2914.2 (w), 2835.1 (w), 1726.7 (s), 1443.2 (m), 1377.9 (m), 1348.2 (w), 1278.2 (s), 1239.0 (m), 1228.0 (m), 1200.4 (m), 1181.6 (w), 1165.1 (s), 1127.6 (s), 1114.3 (s), 1092.2 (m), 1084.5 (m), 979.6 (m), 957.5 (m), 948.7 (m), 927.8 (m), 901.5 (m), 871.9 (w), 840.9 (w), 802.9 (w), 755.5 (m), 673.0 (w) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.21 (app. t, J=5.7 Hz, 15 3H), 3.79 (s, 3H), 3.47 (s, 3H), 3.36 (d, J=1.6 Hz, 1H), 3.27 (s, 3H), 2.84 (ddd, J=1.6, 5.2, 14.3 Hz, 1H), 2.34 (dd, J=6.2, 14.3 Hz, 1H), 1.43 (s, 3H); 13 C NMR (125 MHz, CDCl₃) δ 172.10, 1089.84, 105.38, 84.46, 56.37, 52.82, 49.00, 40.44, 14.46; HRMS (CI, isobutane) m/z calc'd for C8H13O5 (M-CH₃OH+H): 189.0763, found 189.0764; $[\alpha]D^{22} + 9.66^{\circ}$ (c=1.03, 20 CHCl3).

Preparation of 38. (R)-2-Hydroxy-2-allylhexylmethylacetoacetate 426.5 mg (3.00 mmol) 2-diazomethylacetoacetate are dissolved in 15 ml benzene (1 neck 25 ml flask). Under stirring 469.3 mg (3.3 mmol; 1.1 eq.) (R)-(-)-nonenol are added to the solution. After addition of 13.3 mg (0.03 mmol; 0.01 eq.) Rh2(OAc)4 the flask is immersed into a preheated (100-110 °C) oil bath. The mixture is heated under reflux for 30 minutes. After 1 minute vigouros nitrogen evolution starts and lasts for about 2 minutes. After cooling the reaction mixture 554.5 mg (3.75 mmol; 0.46 ml; 1.25 eq.) BF3 · OEt2 are added. The mixture is stirred for 2-3 hours (TLC control) at 25 °C. The reaction mixture is passed through silica (2.5 x 8 cm) using pentane/ether (20%) as solvent; 510.9 mg (66%) of the product are isolated. R)-(-)-Hydroxy furanose and (R)-(+)-methylketonedimethylacetal The same procedure that was employed for the preparation of (S)-(+)-hydroxy furanose and (S)-(-)-methylketonedimethylacetal is used. 1.798 g (7.00 mmol) of (R)-2-hydroxy-2-allylhexylmethylacetoacetate are used as

starting material yielding 1.04 g (68%) of th 3 component mixture (1:1:1). Hydroxyfuranose mp 81-82 °C; IR (thin film/NaCl) 3496.4 (m), 2998.9 (m), 2953.3 (m), 2915.1 (m), 2836.9 (m), 1748.9 (s), 1732.9 (s), 1440.3 (m), 1379.3 (m), 1334.7 (w), 1261.7 (s), 1200.7 (s), 1182.7 (m), 1156.9 (s), 1122.5 (s), 1098.5 (s), 1086.5 (s), 1044.3 (m), 1021.1 (m), 975.9s, 94826 5 (m), 930.7 (m), 893.9 (m), 865.4 (m), 834.9 (m), 802.2 (m), 750.9 (m), 685.7 (m) cm⁻¹; 1 H NMR (500 MHz, CDCl₃) δ 5.07 (d, J=5.8 Hz, 1H), 3.78 (s, 3H), 3.42 (s, 3H), 3.25 (s, 3H), 3.03 (dd, J=5.8, 14.1 Hz, 1H), 2.05 (d, J=14.1 Hz, 1H), 1.54 (s, 3H); 13 C NMR (125 MHz, CDCl₃) δ 170.41, 110.46, 103.78, 83.08, 55.47, 52.52, 49.18, 40.49, 15.73; $[\alpha]D^{20} - 122.55^{\circ}$ (c=1.10, 10 CHCl3). Methylketone IR (thin film/NaCl) 3452.5 (m), 2993.2 (m), 2954.6 (m), 2934.2 (m), 2917.5 (m), 2848.4 (m), 2838.2 (m), 1748.7 (s), 1723.1 (s), 1437.8 (m), 1359.7 (m), 1275.8 (m), 1245.7 (m), 1198.5 (m), 1178.2 (m), 1144.7 (s), 1124.4 (s), 4065.4 (s), 1015.7 (m), 997.3 (m), 905.2 (m), 829.6 (w), 802.0 (w), 756.0 (w) cm⁻¹; 1 H NMR (500 MHz, CDCl₃) $^{\delta}$ 4.51 (br. s, 15 1H), 4.50 (dd, J=4.9, 6.6 Hz, 1H), 3.78 (s, 3H), 3.34 (s, 3H), 3.29 (s, 3H), 2.43 (dd, J=4.9, 14.6 Hz, 1H), 2.38 (dd, J=6.6, 14.6 Hz, 1H), 2.28 (s, 3H); 13C NMR (125 MHz, CDCl₃) δ 204.00, 170.84, 101.96, 81.76, 54.92, 53.79, 53.18, 38.37, 24.46; $[\alpha]D^{20} + 19.55^{\circ}$ (c=1.12, CHCl3). Hydroxyfuranose mp 63-64 °C; IR (thin film/NaCl) 3486.7 (m), 2994.8 (m), 2954.8 (m), 20 2918.0 (m), 2836.2 (m), 1732.7 (s), 1442.6 (m), 1378.3 (m), 1346.6 (w), 1276.5 (s), 1243.0 (m), 1229.7 (m), 1199.7 (m), 1183.0 (m), 1165.4 (s), 1126.7 (s), 1115.6 (s), 1086.6 (s), 1049.2 (s), 1020.2 (s), 980.1 (m), 956.6 (m), 626.1 (m), 902.6 (m), 870.2 (w), 840.2 (w), 803.0 (w), 754.6 (m), 673.3 (m) cm⁻¹; 1 H NMR (500 MHz, CDCl₃) δ 5.21 (app. t, J=5.7 Hz, 1H), 3.79 25 (s, 3H), 3.47 (s, 3H), 3.36 (br. s, 1H), 3.27 (s, 3H), 2.84 (dd, J=5.3, 14.3 Hz, 1H), 2.34 (dd, J=6.2, 14.3 Hz, 1H), 1.43 (s, 3H); ¹³C NMR (125 MHz, CDCl3) 8 172.11, 109.86, 105.40, 84.48, 56.39, 52.83, 49.02, 40.46, 14.48; $[\alpha]D^{20}$ -9.00° (c=1.16, CHCl₃).

30 General method for the preparation of 30a-d Dry N₂ is bubbled through a mixture of 2,2'-biindole (0.86 mmol), diazo compound 4 (2.2 mmol, 2.5 eq), Rh₂(OAc)₄ (0.086 mmol, 0.1 eq) and 8.6 mL pinacolone, in a 3-neck round bottom flask fitted with a reflux condenser for 2 h. The reaction mixture is then heated to reflux for 8 h. The mixture is allowed to cool to 25 °C, the solvent is evaporated, the residue is chromatographed (1:1 EtOAc:Hexanes) to provide (R= 3,4-DMB 0.25 g, 0.56 mmol, 65%; R=4-

10

30

PMB 0.22 g, 0.47 mmol, 55%; R=Bn 0.20 g, 0.5 mmol, 58%; R=t-Bu 0.13 g, 0.34 mmol, 40%).

Indolocarbazole **30a**. IR (thin film/NaCl) 3485.3 (brm), 3456.0 (brm), 3343.1 (brs), 3249.7 (brm), 2979.7 (m), 1654.4 (w), 1600.5 (s), 1578.2 (s), 1465.8 (w), 1446.5 (m), 1385.0 (s), 1364.0 (m), 1335.9 (w), 1225.3 (s) cm⁻¹; ¹H NMR (500 MHz, DMSO-d6) δ 11.45 (bs, 1H), 11.29 (bs, 1H), 9.24 (d, J=7.9 Hz, 1H), 8.09 (d, J=7.8 Hz, 1H), 7.77 (d, J=8.2 Hz, 1H), 7.70 (d, J=8.2 Hz, 1H), 7.47 (app.t, J=7.5 Hz, 1H), 7.41 (app.t, J=7.5 Hz, 1H), 7.30 (app.t, J=7.5 Hz, 1H), 7.21 (app.t, J=7.5 Hz, 1H), 5.13 (s, 2H), 1.65 (s, 9H); ¹³C NMR (62.5 MHz, DMSO-d6) δ 169.9, 139.2, 139.0, 129.9, 127.6, 125.4, 125.3, 124.9, 122.7, 122.4, 122.0, 121.2, 119.7, 118.8, 115.1, 113.6, 111.8, 111.2, 101.9, 53.6, 48.1, 27.8; HRMS (FAB) m/z calc'd for C24H22N3O (M+H): 368.1762, found 368.1764.

Indolocarbazole **30b**. IR (thin film/NaCl) 3487.5 (brs), 3352.0 (brs), 3232.0 (brs), 3022.3 (m), 1579.1 (s), 1571.2 (s), 1517.7 (s), 1462.9 (s), 1399.3 (m), 1262.7 (m), 1237.6 (s), 1142.0 (w), 1016.8 (w), 741.3 (s) cm⁻¹; ¹H NMR (500 MHz, DMSO-d6) δ 11.50 (bs, 1H), 11.35 (bs, 1H), 9.28 (d, *J*=7.9 Hz, 1H), 7.97 (d, *J*=7.8 Hz, 1H), 7.77 (d, *J*=8.1 Hz, 1H), 7.73 (d, *J*=8.1 Hz, 1H), 7.45 (app.t, *J*=6.9 Hz, 1H), 7.44 (app.t, *J*=7.1 Hz, 1H), 7.26 (app.t, *J*=7.1 Hz, 1H), 7.25 (app.t, *J*=7.1 Hz, 1H), 7.02 (s, 1H), 6.92 (s, 2H), 4.94 (s, 2H), 4.82 (s, 2H), 3.74 (s, 3H), 3.71 (s, 3H); ¹³C NMR (62.5 MHz, DMSO-d6) δ 169.2, 148.9, 148.1, 139.1, 139.0, 130.6, 130.0, 127.7, 125.3, 124.9, 124.9, 124.8, 122.6, 122.3, 120.7, 119.9, 119.7, 118.8, 118.2, 115.4, 113.8, 112.3, 112.1, 111.7, 111.1, 55.5, 49.3, 45.4; HRMS (FAB) *m/z* calc'd for C29H24N3O3 (M+H): 462.1817, found 462.1813.

Indolocarbazole **30c**. IR (thin film/NaCl) 3429.3 (brs), 3351.3 (brs), 2912.4 (m), 1609.7 (s), 1580.3 (s), 1512.0 (s), 1465.5 (s), 1402.1 (w), 1250.61 (s), 1238.4 (s), 1177.3 (m), 1030.8 (w), 748.9 (s) cm⁻¹; ¹H NMR (500 MHz, DMSO-d6) δ 11.53 (bs, 1H), 11.37 (bs, 1H), 9.28 (d, J=7.8 Hz, 1H), 7.99 (d, J=7.7 Hz, 1H), 7.78 (d, J=8.1 Hz, 1H), 7.75 (d, J=8.1 Hz, 1H), 7.47 (app.t, J=7.0 Hz, 1H), 7.45 (app.t, J=7.1 Hz, 1H), 7.36 (d, J=8.4 Hz, 2H), 7.28 (app.t, J=7.9 Hz, 1H), 7.26 (app.t, J=7.8 Hz, 1H), 6.94 (d, J=8.5 Hz, 2H), 4.94 (s, 2H), 4.83 (s, 2H), 3.72 (s, 3H); ¹³C NMR (62.5 MHz, DMSO-d6) δ 169.2, 158.4, 139.1, 139.0, 130.0, 129.9, 128.9, 127.7, 125.3, 124.9, 124.8,

122.6, 122.2, 120.7, 119.7, 118.8, 118.2, 115.4, 113.9, 113.8, 111.7, 111.1, 54.9, 49.2, 45.0; HRMS (FAB) m/z calc'd for C₂₈H₂₂N₃O₂ (M+H): 432.1712, found 432.1699.

(+)-N-3,4-Dimethoxybenzyl-K252a (36). Aglycone 30c (0.22 mmol) and (-)-2,5-dimethoxy sugar (0.87 mmol, 4.0 eq) were refluxed in dry 1,2dichloroethane (7.5 mL) in the presence of camphorsulfonic acid (0.022 mmol, 0.1 eq) for 48 h. The reaction mixture was allowed to cool to 25 °C, diluted with 5.0 mL CH₂Cl₂, and washed with 5.0 mL 10% NaHCO₃ sln. The organic layer was evaporated and purified by preparative tlc (1:60, MeOH:70% CH₂Cl₂/ hexanes, 3 elutions) giving (+)-36 (75.0 mg, 0.120 10 mmol, 55%) and (+)-37 (34.0 mg, 0.055 mmol, 25%). Indolocarbazole (+)-36. IR (thin film/NaCl) 3279.7 (brm), 3012.1 (m), 2952.1 (m), 2930.1 (m), 2850.1 (w), 1732.2 (m), 1646.2 (s), 1590.4 (m), 1513.7 (s), 1460.2 (s), 1260.3 (s), 1139.5 (s), 1028.1 (m), 744.5 (s) cm⁻¹; 1_H 15 NMR (500 MHz, DMSO-d6) δ 9.26 (d, J=7.9 Hz, 1H), 7.99 (d, J=7.7 Hz, 1H), 7.92 (app.t, J=8.0 Hz, 2H), 7.49 (app.t, J=7.7 Hz, 1H), 7.47 (app.t, J=7.8Hz, 1H), 7.32 (app.t, J=7.9 Hz, 1H), 7.30 (app.t, J=8.1 Hz, 1H), 7.15 (dd. J=5.2, 6.9 Hz, 1H), 7.02 (s, 1H), 6.94 (d, J=9.0 Hz, 1H), 6.92 (d, J=9.0 Hz, 1H), 6.35 (s, 1H), 5.0 (dd, J=17.8, 25.9 Hz, 2H), 4.84 (dd, J=15.5, 17.5 Hz, 20 2H), 3.92 (s, 3H), 3.74 (s, 3H), 3.71 (s, 3H), 3.39 (dd, J=7.3, 14.0 Hz, 1H), 2.13 (s, 3H), 2.00 (dd, J=4.7, 14.0 Hz, 1H); ¹³C NMR (62.5 MHz, DMSO-d6) δ 172.6, 168.6, 148.9, 148.2, 139.8, 136.7, 130.4, 130.0, 128.2, 125.3, 125.3, 124.8, 123.9, 123.8, 122.4, 120.9, 120.2, 119.8, 119.3, 118.9, 115.6, 114.6, 114.2, 112.3, 112.1, 108.8, 99.3, 84.8, 55.5, 52.4, 49.5, 45.4, 42.4, 22.6; HRMS (FAB) m/z calc'd for C36H32N3O7 (M+H): 618.2240, found 25 618.2240; $[\alpha]D^{20}$ (+)-15° (c=0.1, MeOH). Indolocarbazole (+)-37. IR (thin film/NaCl) 3462.3 (brm), 3014.0 (m), 2952.3 (m), 2925.1 (m), 2849.7 (m), 1730.8 (s), 1645.0 (m), 1514.7 (m), 1455.6 (s), 1403.9 (m), 1348.5 (m), 1312.6 (m), 1257.2 (s), 1235.0 (s), 1138.1 (s), 1068.8 (m), 1027.3 (m), 750.3 (s) cm⁻¹; ¹H NMR (500 MHz, 30 DMSO-d6) δ 9.54 (d, J=7.9 Hz, 1H), 8.01 (d, J=7.9 Hz, 1H), 7.94 (d, J=8.2 Hz, 1H), 7.89 (d, J=8.5 Hz, 1H), 7.50 (app.t, J=7.5 Hz, 1H), 7.45 (app.t, J=7.5 Hz, 1H), 7.30 (app.t, J=7.5 Hz, 1H), 7.29 (app.t, J=7.6 Hz, 1H), 7.14 (dd, J=5.0, 7.2 Hz, 1H), 7.01 (d, J=0.71 Hz, 1H), 6.92 (app.t, J=8.2 Hz, 1H),35 6.92 (dd, J=1.1, 8.4 Hz, 1H), 6.34 (bs, 1H), 4.97 (dd, J=17.9, 21.3 Hz, 2H),

4.83 (dd, J=15.1, 21.9 Hz, 2H), 3.92 (s, 3H), 3.74 (s, 3H), 3.71 (s, 3H), 3.40

10

(dd, J=7.5, 14.0 Hz, 1H), 2.14 (s, 3H), 2.05 (dd, J=4.8, 14.0 Hz, 1H); ¹³C NMR (62.5 MHz, DMSO-d6) δ 172.6, 168.9, 149.0, 148.2, 139.7, 136.8, 130.4, 126.2, 126.1, 125.4, 125.1, 124.9, 124.3, 122.0, 121.3, 120.2, 119.8, 119.2, 118.7, 116.3, 113.9, 113.8, 112.3, 112.1, 109.4, 99.3, 84.9, 84.8, 55.5, 52.4, 49.0, 45.4, 42.5, 22.8; HRMS (FAB) m/z calc'd for C36H32N3O7 (M+H): 618.2240, found 618.2240; $[\alpha]D^{20}$ (+)-13° (c=0.1, MeOH).

(+)-K252a (14). To a stirred solution of (+)-36 (17.0 mg, 0.028 mmol) in CH₂Cl₂(1.4 mL) at 25 °C was added thioanisole (0.16 mL, 1.4 mmol, 50 eq) followed by 2,2,2-trifluoroacetic acid (1.4 mL). The solution was stirred for 6 h, at which point 2.0 mL sat. NaHCO₃ sln. was added dropwise to neutralize the reaction mixture, the organic layer was separated, evaporated and purified via preparative tlc (1:40, MeOH:50% CH₂Cl₂/ hexanes, 3 elutions) giving (+)-K252a (10.8 mg, 0.023 mmol, 83%).

Preparation of desamido K252a (40) To a suspension of indolo[2.3a]carbazole (10) (1.0 g, 3.9 mmol) in 1,2-dichloroethane (130 mL) was added 15 furanose 9 (1.8 g, 8.2 mmol) followed by CSA (100 mg, 0.43 mmol). The suspension was heated at reflux for 48 h, following which the reaction was allowed to cool to room temperature and was diluted with CH2Cl2 (100mL). washed with 10% NaHCO3 (aq.), dried over Na2SO4 and chromatographed 20 on silica gel using 3:1 hexanes:ethyl acetate as eluent to afford indolocarbazole 40 (1.37 g, 85%) as a yellow foam. ¹H NMR (500 MHz, acetone-d₆): δ 8.18 (app.t, J=6.6 Hz, 1H), 8.18 (app.t, J=5.4 Hz, 1H), 8.00 (m, 2H), 7.89 (d, J=8.5 Hz, 1H), 7.75 (d, J=8.2 Hz, 1H), 7.44 (td, J=0.9, 7.6 Hz, 1H), 7.38 (td, J=1.0, 7.9 Hz, 1H), 7.26 (app.t, J=6.9 Hz, 1H), 7.25 25 (app.t, J=7.1 Hz, 1H), 7.10 (dd, J=4.9, 7.3 Hz, 1H), 5.18 (s, 1H), 3.99 (s, 3H), 3.44 (dd, J=7.5, 14.0 Hz, 1H), 2.21 (s, 3H), 2.19 (dd, J=4.9, 14.0 Hz, 1H). ¹³C NMR (125 MHz, acetone-d₆): δ 174.1, 140.8, 138.1, 127.7, 127.0, 125.6, 125.6, 125.5, 125.4, 121.6, 121.5, 121.2, 120.5, 120.4, 120.3, 115.0, 113.1, 112.8, 109.6, 99.9, 86.1, 86.0, 53.3, 43.2, 23.3. IR (thin film/NaCl): 3501.3 (brm), 3047.5 (m), 3006.7 (m), 2950.6 (m), 1729.4 (s), 1640.2 (m), 30 $1568.1 \text{ (m)}, 1441.1 \text{ (s)}, 1305.9 \text{ (s)}, 1230.3 \text{ (s)}, 1128.1 \text{ (s)}, 740.0 \text{ (s)} \text{ cm}^{-1}$. HRMS (EI) m/z Calc'd for C25H20N2O4: 412.1423. Found: 412.1419.

Preparation of aldehyde 41 To a stirred solution of ester 11 (1.0 g, 2.43 mmol) in THF (24.3mL), was added LiBH4 (106 mg, 4.85 mmol) at room

temperature. After 20 min the solvent was removed in vacuo. To the white residue was added 50 mL 1.0 N HCl on an ice bath. The aqueous phase was extracted with CH2Cl2 (3x 50mL). The combined organic phases were dried with Na2SO4 and chromatographed on silica gel using 1:1 hexanes:ethyl acetate as eluent to afford a diol (815 mg, 87%) as a white 5 solid. ¹H NMR (500 MHz, acetone-d6): δ 8.18 (d, J=7.6 Hz, 1H), 8.15 (d, J=7.8 Hz, 1H), 7.96 (s, 2H), 7.89 (d, J=8.5 Hz, 1H), 7.65 (d, J=8.1 Hz, 1H), 7.42 (app.t, J=7.6 Hz, 1H), 7.36 (app.t, J=8.2 Hz, 1H), 7.25 (app.t, J=7.6 Hz, 1H), 7.23 (app.t, J=7.4 Hz, 1H), 6.91 (dd, J=5.2, 7.4 Hz, 1H), 4.57 (s, 1H), 4.18 (app.t, J=5.9 Hz, 1H), 4.06 (dd, J=5.4, 11.1 Hz, 1H), 3.90 (dd, 10 J=7.1, 11.1 Hz, 1H), 3.30 (dd, J=7.6, 13.8 Hz, 1H), 2.23 (dd, J=5.1, 13.8 Hz, 1H), 2.22 (s, 3H). 13 C NMR (125 MHz, acetone-d6): δ 140.2, 137.4, 127.6, 126.3, 125.4, 125.0, 124.6, 124.6, 120.7, 120.6, 119.9, 119.5, 114.6, 112.2, 112.0, 108.8, 100.1, 84.2, 83.8, 65.5, 40.6, 21.5. IR (thin film/NaCl): 3416.8 (brs), 3052.9 (m), 3010.5 (m), 2955.4 (w), 1732.7 (w), 1640.9 (m), 1568.5 15 (m), 1492.6 (m), 1459.0 (s), 1441.4 (s), 1309.0 (s), 1233.1 (s), 1031.9 (s), 741.0 (s) cm⁻¹. HRMS (EI) m/z Calc'd for C₂₄H₂₀N₂O₃: 384.1474. Found: 384.1472. To a stirred solution of the diol (500 mg, 1.3 mmol) in 1:1 benzene:DMSO (8.7 mL) was added pyridinium trifluoroacetate (250 mg. 20 1.3 mmol) followed by 1,3-dicyclohexylcarbodiimide (810 mg, 3.9 mmol). The flask was then quickly sealed with a septum, evacuated, and flushed with N2 (3x). The heterogeneous mixture was stirred for 7h until reaction was complete as indicated by TLC. Benzene (15 mL) was added to the mixture and the 1,3-dicyclohexylurea (DCU) precipitate was filtered. The filtrate was washed with H2O (3x20 mL), and the combined aqueous layers 25 were back extracted with CH2Cl2 (3x30mL). All organic layers were combined, dried with Na2SO4, and evaporated to an oily residue. A minimum amount of acetone (2 mL) was added to precipitate the remaining DCU. Filtration and evaporation to a yellow oil, which was puified by 30 MPLC (3:1 hexanes:ethyl acetate) gave aldehyde 41 (375 mg, 73%, 63% 2 steps) as a yellow powder. ¹H NMR (500 MHz, CDCl₃): δ 9.70 (s, 1H), 7.99 (app.t, J=7.3 Hz, 2H), 7.78 (s, 2H), 8.02 (d, J=8.4 Hz, 1H), 7.29 (app.t, J=7.4 Hz, 1H), 7.24 (app.t, J=7.2 Hz, 1H), 7.22 (d, J=8.4 Hz, 1H), 7.17 (app.t, J=7.9 Hz, 1H), 7.15 (app.t, J=7.2 Hz, 1H), 6.59 (dd, J=5.0, 7.4 Hz, 35 1H), 3.08 (s, 1H), 2.76 (dd, J=7.6, 14.6 Hz, 1H), 1.99 (s, 3H), 1.83 (dd, J=5.0, 14.7 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 199.4, 139.3, 136.9, 126.3, 126.3, 125.1, 124.7, 124.1, 121.2, 121.1, 120.8, 120.3, 120.3, 119.9, 113.1,

10

15

20

25

30

35

112.9, 112.2, 108.0, 97.7, 87.7, 84.0, 39.7, 23.0. IR (thin film/NaCl): 3486.7 (brm), 3054.6 (m), 3007.7 (m), 2945.3 (m), 2843.4 (w), 1723.9 (m), 1641.8 (m), 1568.6 (m), 1458.7 (m), 1441.1 (s), 1309.2 (s), 1232.5 (s), 1128.8 (m), 1004.2 (m), 741.7 (s) cm⁻¹.HRMS (EI) m/z Calc'd for C24H₁₈N₂O₃: 382.1317. Found: 382.1319.

Preparation of hydroxy ketone 43 To a suspension of aldehyde 12 (75 mg. 0.196 mmol) in Et2O (5.0 mL) was added BF3 • OEt2 (27 µL, 0.216 mmol) and the mixture stirred vigorously for 6h. CH2Cl2 (25 mL) was added to solubilize the suspension and the resulting solution was evaporated onto SiO₂ (100mg) and chromatographed using 2:1 hexanes:ethyl acetate as eluent to provide ketone 43 (47 mg, 60%) as a white powder. H NMR (500 MHz, CDCl₃): δ 8.15 (d, J=7.7 Hz, 1H), 8.10 (d, J=7.7 Hz, 1H), 7.97 (d, J=8.5 Hz, 1H), 7.92 (d, J=8.2 Hz, 1H), 7.90 (d, J=8.2 Hz, 1H), 7.43 (app.t. J=7.7 Hz, 1H), 7.39 (app.t, J=7.8 Hz, 1H), 7.32 (app.t, J=7.4 Hz, 1H), 7.28 (app.t., J=7.5 Hz, 1H), 7.25 (d, J=8.1 Hz, 1H), 7.06 (d, J=7.3 Hz, 1H), 4.89 (d, J=6.0 Hz, 1H), 3.55 (dd, J=7.5, 14.3 Hz, 1H), 3.49 (d, J=6.5 Hz, 1H), 2.99 (d, J=14.4 Hz, 1H), 2.54 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 199.8, 140.2, 136.3, 126.4, 125.7, 125.4, 125.1, 124.8, 124.6, 121.4, 120.8, 120.4, 120.2, 119.8, 115.2, 112.7, 112.4, 112.1, 107.9, 100.3, 84.03, 81.6, 44.7, 29.5. IR (thin film/NaCl): 3328.6 (brm), 3048.0 (w), 2923.7 (m), 2852.1 (w), 1731.4 (s), 1637.4 (m), 1441.5 (s), 1395.3 (m), 1312.0 (s), 1130.1 (m), 740.8 (s) cm⁻ ¹. HRMS (EI) m/z Calc'd for C₂₄H₁₈N₂O₃: 382.1317. Found: 382.1315.

Preparation of methoxy ketone 44 Montmorillonite Clay K-10 (1.2 g) was premixed with trimethylorthoformate (1.78 mL, 16.3 mmol) and immediately transfer to a stirred solution of aldehyde 12 (414 mg, 1.1 mmol) in CHCl3 (11 mL) aided by an additional 3 mL CHCl3. The reaction was monitored by TLC (3:1 hexanes:ethyl acetate) and after approximately 0.5 h formation of the dimethyl acetal 16 was complete. The reaction mixture was filtered, and the filtrate evaporated in vacuo. The residue was dissolved in diethyl ether (110 mL) under an inert atmosphere, followed by addition of BF3 • OEt2 (2.85 mL, 23.1 mmol). The mixture was stirred for 4 d at 25 °C, following which triethyl amine (6.1 mL) and CH2Cl2 (100 mL) were added, the solution was evaporated under reduced pressure and chromatographed on silica gel using 2:1 hexanes:ethyl acetate as eluent to afford methoxy ketone 44 (214 mg, 50%) as a yellow foam. ¹H NMR (500

MHz, DMSO-d6): δ 8.21 (d, J=7.7 Hz, 1H), 8.16 (d, J=7.8 Hz, 1H), 7.97 (d, J=8.2 Hz, 1H), 7.95 (d, J=8.2 Hz, 1H), 7.88 (d, J=8.6 Hz, 1H), 7.68 (d, J=8.1 Hz, 1H), 7.46 (td, J=1.0, 7.4 Hz, 1H), 7.37 (td, J=1.1, 7.7 Hz, 1H), 7.36 (d, J=7.2 Hz, 1H), 7.30 (app.t, J=7.6 Hz, 1H), 7.23 (app.t, J=7.4 Hz, 1H), 5.02 (s, 1H), 3.94 (dd, J=7.2, 13.7 Hz, 1H), 3.39 (s, 3H), 2.62 (d, J=13.9 Hz, 1H), 2.52 (s, 3H). ¹³C NMR (125 MHz, DMSO-d6): δ 199.8, 139.4, 135.7, 125.0, 124.8, 124.5, 124.1, 124.0, 120.0, 119.8, 119.4, 119.2, 114.9, 112.1, 111.3, 109.2, 99.0, 88.2, 84.4, 58.9, 45.4, 29.2. IR (thin film/NaCl): 3046.6 (brm), 3003.8 (brw), 2927.9 (m), 2835.6 (m), 1736.6 (s), 1640.5 (m), 1565.8 (m), 1492.7 (m), 1442.9 (s), 1311.5 (s), 1144.3 (m), 1126.1 (s), 740.2 (s) cm⁻¹. HRMS (EI) m/z Calc'd for C25H20N2O3: 396.1474. Found: 396.1474.

Preparation of desamido TAN-1030a (47) A suspension of ketone 15 (30 mg, 0.08 mmol), hydroxylamine hydrochloride (17 mg, 0.24 mmol), and NaOAc (20 mg, 0.24 mmol) in 50% aqueous EtOH (2.0 mL) was heated 15 gently to reflux for 30 min. Following cooling to room temperature, sovent was removed in vacuo, and the residue purified by MPLC (2:1 hexanes:ethyl acetate) to provide oxime 47 (26 mg, 85%) as a yellow powder. 1H NMR (500 MHz, DMSO-d6): δ 10.43 (s, 1H), 8.17 (d, J=7.8 Hz, 1H), 8.13 (d, J=7.4 Hz, 1H), 7.91 (d, J=8.4 Hz, 1H), 7.89 (d, J=8.4 Hz, 1H), 7.88 (d, J=8.4 Hz, 20 1H), 7.67 (d, J=8.2 Hz, 1H), 7.44 (app.t, J=7.6 Hz, 1H), 7.34 (app.t, J=7.7 Hz, 1H), 7.27 (app.t, J=7.5 Hz, 1H), 7.20 (app.t, J=7.4 Hz, 1H), 6.98 (d. J=5.5 Hz, 1H), 4.70 (s, 1H), 3.61 (d, J=14.1 Hz, 1H), 3.42 (s, 3H), 2.97 (dd, J=5.7, 14.3 Hz, 1H), 2.42 (s, 3H). 13 C NMR (125 MHz, DMSO-d6): δ 145.3, 139.3, 135.9, 126.0, 125.1, 124.9, 124.6, 124.2, 124.0, 120.0, 119.6, 25 119.4, 119.1, 119.1, 115.0, 111.8, 111.0, 109.1, 95.9, 83.7, 82.2, 58.3, 29.7, 28.4. IR (thin film/NaCl): 3249.5 (brm), 2918.3 (s), 2848.4 (s), 1728.1 (m), 1640.2 (m), 1443.1 (s), 1398.1 (m), 1312.0 (m), 1124.5 (s), 740.7 (s) cm⁻¹. HRMS (EI) m/z Calc'd for C25H21N3O3: 411.1583. Found: 411.1582.

Preparation of desamido RK-286c (46) To a stirred solution of ketone 15 (12 mg, 0.03 mmol) in 1:1 MeOH: CH2Cl2 (1.0 mL) was added NaBH4 (3 mg, 0.08 mmol) at room temperature. After 5 minutes solvent was removed under reduced pressure. To the white residue was added 1 mL 1.0 N HCl on an ice bath. The mixture was stirred for 15 min at 25 °C and extracted with CH2Cl2 (3x 1mL). The combined organic phases were dried with Na2SO4 and chromatographed on silica gel using 2:1 hexanes:ethyl

acetate as eluent to afford alcohol 46 (12 mg, 95%) as a white solid. 1 H NMR (500 MHz, CDCl₃): δ 8.14 (d, J=7.7 Hz, 1H), 8.11 (d, J=7.7 Hz, 1H), 7.90 (d, J=8.2 Hz, 1H), 7.85 (d, J=8.2 Hz, 1H), 7.81 (d, J=8.5 Hz, 1H), 7.39 (td, J=1.0, 8.1 Hz, 1H), 7.35 (ddd, J=.14, 7.1, 8.4 Hz, 1H), 7.25 (m, 3H), 6.54 (d, J=5.6 Hz, 1H), 4.34 (m, 1H), 3.66 (d, J=3.0 Hz, 1H), 3.53 (s, 3H), 2.71.dd (3.5, J=14.9 Hz, 1H), 2.45 (m, 1H), 2.30 (s, 3H), 1.66 (bs, 1H). 13 C NMR (125 MHz, CDCl₃): δ 139.6, 136.6, 128.3, 127.2, 126.5, 126.2, 124.8, 124.4, 123.9, 120.5, 120.3, 119.6, 119.3, 114.9, 112.1, 110.9, 107.6, 90.6, 83.1, 79.7, 60.5, 57.4, 33.7, 29.9. IR (thin film/NaCl): 3528.3 (brm), 3048.1 (m), 3000.2 (m), 2928.4 (m), 1643.7 (m), 1564.8 (m), 1493.3 (m), 1445.1 (s), 1344.4 (m), 1311.6 (s), 1231.2 (s), 1109.5 (brs) cm⁻¹. HRMS (EI) m/z Calc'd for C25H22N2O3: 398.1630. Found: 398.1633.

Preparation of aldehyde (+)-50 To a stirred solution of ester (+)-36 (150 mg. 0.243mmol) in THF (2.5 mL) was added LiBH4 (12 mg, 0.535 mmol) at room temperature. After 20 min solvent was removed in vacuo. To the 15 white residue, 10.0 mL 1.0 N HCl was added on an ice bath. The aqueous phase was extracted with CH2Cl2 (3x 20 mL). The combined organic phases were dried with Na2SO4 and chromatographed on silica gel using 1:1 hexanes:ethyl acetate as eluent to afford a diol (124mg, 89%) as a white solid. ¹H NMR (500 MHz, DMSO-d₆): δ 9.25 (d, J=7.9 Hz, 1H), 7.97 (d, 20 J=7.2 Hz, 1H), 7.96 (d, J=8.1 Hz, 1H), 7.78 (d, J=8.3 Hz, 1H), 7.48 (app.t, J=7.6 Hz, 1H), 7.43 (app.t, J=7.8 Hz, 1H), 7.29 (app.t, J=7.1 Hz, 1H), 7.28 (app.t, J=7.2 Hz, 1H), 7.02 (s, 1H), 7.96 (dd, J=5.2, 7.2 Hz, 1H), 6.94 (s, 2H), 5.33 (s, 1H), 5.06 (t, J=5.6 Hz, 1H), 5.02 (d, J=17.7 Hz, 1H), 4.95 (d, J=17.6 25 Hz, 1H), 4.85 (d, J=15.9 Hz, 1H), 4.85 (d, J=15.7 Hz, 1H), 3.85-3.81 (m, 2H), 3.75 (s, 3H), 3.72 (s, 3H), 3.14 (dd, J=7.6, 13.7 Hz, 1H), 2.15 (s, 3H), 1.94 (dd, J=4.8, 13.7 Hz, 1H). ¹³C NMR (125 MHz, DMSO-d6): δ 168.9, 148.9, 148.1, 140.0, 136.7, 130.5, 130.2, 128.7, 125.4, 125.3, 124.6, 124.3, 123.8, 122.4, 120.9, 120.0, 119.8, 119.2, 118.5, 115.2, 114.9, 114.0, 112.1, 30 111.8, 108.7, 100.2, 83.5, 64.7, 55.5, 55.5, 49.6, 45.4, 40.2, 40.1, 21.3. IR (thin film/NaCl): 3343.8 (brm), 3001.5 (w), 2950.7 (m), 2926.1 (m), 1647.4 (s), 1588.0 (m), 1514.4 (m), 1459.7 (s), 1422.2 (m), 1399.6 (m), 1312.4 (m), 1138.0 (s), 744.7 (s) cm⁻¹. $[\alpha]D^{25} + 112^{\circ}$ (c=0.1, MeOH). To a stirred solution of the diol (395 mg, 0.67 mmol) in 1:1 benzene:DMSO (4.6 mL) was 35 added pyridinium trifluoroacetate (130 mg, 0.67 mmol) followed by 1,3dicyclohexylcarbodiimide (415 mg, 2.01 mmol). The flask was then quickly

15

20

sealed with a septum, evacuated, and flushed with N2 (3x). The heterogeneous mixture was stirred for 9h until reaction was complete as indicated by TLC. Benzene (5.0 mL) was added to the mixture and the 1,3dicyclohexylurea (DCU) precipitate was filtered. The filtrate was washed with H2O (3x 5.0 mL), and the combined aqueous layers were back extracted with CH2Cl2 (3x 10.0 mL). All organic layers were combined, dried with Na2SO4, and evaporated to an oily residue. A minimum amount of acetone (2 mL) was added to precipitate the remaining DCU. Filtration and evaporation to a yellow oil, which was puified by MPLC $(2:1\rightarrow1:1$ hexanes:ethyl acetate) gave aldehyde (+)-50 (280 mg, 71%, 63% 2 steps) as a yellow powder. ¹H NMR (500 MHz, DMSO-d6): δ 10.07 (s, 1H), 9.31 (d, J=7.9 Hz, 1H), 8.02 (d, J=8.5 Hz, 1H), 7.99 (d, J=7.7 Hz, 1H), 7.87 (d, J=8.2 Hz, 1H), 7.50 (app.t, J=8.1 Hz, 1H), 7.47 (app.t, J=8.2 Hz, 1H), 7.32 (app.t, J=8.1 Hz, 1H), 7.17 (dd, J=7.2, 4.8 Hz, 1H), 7.04 (s, 1H), 6.94 (d, J=9.6 Hz, 1H), 6.93 (d, J=8.1 Hz, 1H), 6.57 (bs, 1H), 5.02 (d, J=17.6 Hz, 1H), 4.98 (d, J=17.7 Hz, 1H), 4.87 (d, J=15.2 Hz, 1H), 4.83 (d, J=15.2 Hz, 1H), 3.76 (s, 3H), 3.73 (s, 3H), 3.24 (dd, J=7.6, 14.0 Hz, 1H), 2.22 (s, 3H), 2.00 (dd, J=4.5, 14.0 Hz, 1H). ¹³C NMR (125 MHz, DMSO-d6): δ 202.2, 168.7, 148.9, 148.1, 139.9, 136.9, 130.4, 130.2, 128.2, 125.5, 125.1, 123.9, 123.9, 122.5, 121.1, 120.4, 119.9, 119.6, 119.1, 115.8, 114.6, 114.4, 112.1, 111.8, 109.0, 98.7, 86.8, 84.3, 55.5, 55.5, 49.6, 45.5, 39.4, 22.7. IR (thin film/NaCl): 3253.9 (brm), 3010.7 (m), 2953.6 (m), 2934.0 (m), 2833.9 (s), 1734.0 (s), 1646.2 (s), 1614.7 (w), 1589.9 (m), 1514.1 (m), 1399.1 (s), 1275.7 (m), 1138.4 (s), 1024.8 (m), 745.1 (s) cm⁻¹. $[\alpha]D^{25} + 48^{\circ}$ (c=0.1, MeOH).

Preparation of hydroxy ketone (+)-51 To a suspension of aldehyde (+)-50 (100 mg, 0.170 mmol) in Et₂O (17.0 mL) was added BF₃•OEt₂ (23 μL, 0.187 mmol) and the mixture stirred vigorously for 12h at 25-30 °C, when again was treated with BF₃•OEt₂ (23 μL, 0.187 mmol) and stirred for an additional 12 h at the same temperature. The reaction mixture was filtered to provide ketone (+)-51 (85 mg, 85%) as a white powder. ¹H NMR (500 MHz, DMSO-d6, 310 K): δ 9.35 (d, J=7.9 Hz, 1H), 8.06 (d, J=8.6 Hz, 1H), 7.92 (d, J=7.7 Hz, 1H), 7.72 (d, J=8.2 Hz, 1H), 7.53 (app.t, J=7.6 Hz, 1H), 7.43 (app.t, J=8.1 Hz, 1H), 7.40 (d, J=6.6 Hz, 1H), 7.35 (app.t, J=7.5 Hz, 1H), 7.29 (app.t, J=7.4 Hz, 1H), 7.02 (s, 1H), 6.93 (s, 2H), 6.12 (d, J=5.1 Hz, 1H), 5.23 (d, J=4.5 Hz, 1H), 4.96 (s, 2H), 4.85 (d, J=15.1 Hz, 1H), 4.81 (d, J=15.1 Hz, 1H), 3.97 (dd, J=6.7, 14.1 Hz, 1H), 3.75 (s, 3H), 3.72 (s, 3H),

10

2.66 (d, J=14.1 Hz, 1H), 2.54 (s, 3H). 13 C NMR (500 MHz, DMSO-d6): δ 201.1, 168.6, 148.9, 148.1, 140.3, 136.0, 130.4, 129.8, 126.9, 125.6, 125.5, 124.9, 124.0, 123.6, 122.8, 120.7, 120.4, 119.9, 119.9, 118.8, 115.9, 115.1, 114.3, 112.1, 111.8, 109.2, 100.5, 84.4, 80.0, 55.5, 55.5, 49.6, 45.4, 44.9, 29.4. IR (thin film/NaCl): 3300.0 (brs), 2999.5 (brm), 2848.6 (m), 1728.9 (m), 1665.5 (s), 1503.3 (m), 1451.2 (s), 1406.8 (m), 1132.8 (s), 1021.9 (m), 750.6 (s) cm⁻¹. [α]D²⁵ +83° (c=0.1, DMSO).

Preparation of Ester (+)-35 To a solution of ketone (+)-51 (10 mg, 0.017 mmol) in 1:1 MeOH/CH₂Cl₂ (1.0 mL) was added Copper (I) chloride (30 mg, 0.30 mmol), and the mixture warmed to reflux for 15 min. Solvent was removed in vacuo and the resulting residue subjected to silica gel chromatography (1:1, hexanes:ethyl acetate) to afford (+)-36 (10 mg, 95%) as a colorless solid.

Preparation of diol (+)-53 To a stirred solution of ketone (+)-51 (85 mg, 0.15 mmol) in 1:1:2 MeOH:CH2Cl2:CHCl3 (20.0 mL), NaBH4 (20 mg, 0.53 15 mmol) was added at room temperature. After 5 minutes solvent was removed under reduced pressure. To the white residue, 10 mL 1.0 N HCl was added on an ice bath. The mixture was stirred for 15 min at 25 °C and extracted with CH2Cl2 (3x 20 mL). The combined organic phases were 20 dried with Na2SO4 and chromatographed on silica gel using 1:1 hexanes:ethyl acetate as eluent to afford alcohol (+)-53 (81 mg, 95%) as a white solid. ¹H NMR (500 MHz, acetone-d₆): δ 9.53 (d, J=7.9 Hz, 1H), 8.11 (d, J=8.5 Hz, 1H), 7.88 (d, J=7.7 Hz, 1H), 7.51 (d, J=8.2 Hz, 1H), 7.46 (app.t, J=7.2 Hz, 1H), 7.36 (app.t, J=7.9 Hz, 1H), 7.29 (app.t, J=7.4 Hz, 1H), 7.22 25 (app.t, J=7.4 Hz, 1H), 7.08 (s, 1H), 6.98 (d, J=8.3 Hz, 1H), 6.91 (d, J=8.2 Hz, 1H), 6.76 (d, J=5.1 Hz, 1H), 4.95 (d, J=17.1 Hz, 1H), 4.90 (d, J=71.1 Hz, 1H), 4.89 (d, J=15.2 Hz, 1H), 4.85 (d, J=15.2 Hz, 1H), 4.24 (d, J=.85 Hz, 1H), 4.23 (bs, 1H), 4.14 (d, J=8.6 Hz, 1H), 3.77 (s, 3H), 3.76 (s, 3H), 3.64 (bs, 1H), 2.76 (d, J=15.1 Hz, 1H), 2.65 (d, J=15.1 Hz, 1H), 2.35 (s, 3H). ¹³C 30 NMR (125 MHz, acetone-d6): δ 170.4, 150.6, 149.7, 141.2, 137.7, 132.0, 130.7, 130.4, 127.6, 127.1, 125.8, 125.3, 125.0, 124.3, 121.5, 121.0, 120.6, 120.0, 119.8, 116.6, 116.0, 115.0, 112.8, 108.9, 93.3, 80.6, 74.7, 65.4, 56.1, 50.4, 46.6, 35.4, 30.4. IR (thin film/NaCl): 3355.5 (brm), 2922.9 (m), 2847.8 (m), 1654.5 (s), 1501.5 (w), 1449.3 (s), 1254.5 (s), 1136.8 (s), 1025.7 (m), 747.1 (s) cm⁻¹. [α]D²⁵ +37° (c=0.1, MeOH). 35

15

20

Preparation of methyl ether (+)-54 To a stirred suspension of NaH (14 mg, 0.58 mmol) in THF (1.0 mL) was added a solution of alcohol (+)-53 (81 mg, 0.138 mmol) in THF (7 mL). The resulting mixture was stirred for 10 min with the visible evolution of gas, and for an additional 15 min thereafter. Addition of MeI (9.5 μ L, 0.15 mmol) produced a single product by TLC (2.5:1 hexanes:acetone). After approximately 50 min the reaction was quenched by addition of 1.0 mL 1.0N HCl followed by 2.0 mL H2O. Extraction of the solution with CH2Cl2 (3x 10 mL), drying over Na2SO4 and evaporation to a residue which could be purified by MPLC (2.5:1 hexanes:acetone) provided methyl ether (+)-54 (67 mg, 80%) as a yellow foam. ¹H NMR (500 MHz, CDCl₃): δ 9.54 (d, J=7.9 Hz, 1H), 7.90 (d, J=8.5 Hz, 1H), 7.81 (d, J=7.7 Hz, 1H), 7.48 (app.t, J=7.6 Hz, 1H), 7.41 (app.t, J=7.2 Hz, 1H), 7.38 (app.t, J=7.2 Hz, 1H), 7.28 (m, 2H), 6.97 (d, J=8.2 Hz, 1H), 6.95 (s, 1H), 6.86 (d, J=8.1 Hz, 1H), 6.60 (d, J=5.8 Hz, 1H), 4.96 (d, J=15.0 Hz, 1H), 4.89 (d, J=15.0 Hz, 1H), 4.84 (d, J=16.7 Hz, 1H), 4.79 (d, J=16.6 Hz, 1H), 4.38 (d, J=2.6 Hz, 1H), 3.88 (s, 3H), 3.85 (s, 3H), 3.71 (d, J=2.6 Hz, 1H), 3.57 (s, 3H), 2.76 (dd, J=3.1, 15.1 Hz, 1H), 2.50 (bd, J=14.7 Hz, 1H), 2.3 (s, 3H). 13C NMR (125 MHz, CDCl₃, 315 K): δ 170.3, 149.6, 148.7, 140.1, 136.8, 130.8, 129.4, 127.0, 126.4, 125.3, 124.8, 124.3, 123.7, 120.7, 120.4, 120.2, 120.0, 119.6, 116.0, 115.5, 114.5, 111.6, 111.5, 107.1, 90.7, 83.2, 79.5, 60.6, 57.4, 56.1, 56.0, 49.9, 46.5, 33.6, 30.1. IR (thin film/NaCl): 3423.7 (brm), 2923.2 (s), 2848.1 (m), 2636.2 (m), 1647.2 (s), 1514.3 (m), 1462.9 (s), 1258.0 (m), 1235.3 (m), 1136.9 (m), 1026.9 (w), 743.3 (s) cm⁻¹. $[\alpha]D^{25}$ $+48^{\circ}$ (c=0.1, MeOH).

Preparation of (+)-RK-286c (50) To a stirred solution of ether (+)-54 (10 mg, 0.017 mmol) in anisole or thioanisole (80 μL, ≈50 equiv) was added TFA (0.5 mL). The reaction was monitored by TLC, and after 24 h had proceeded to completion, whereupon 1.0 mL H₂O was added, followed by extraction with CH₂Cl₂ (3x 5mL). Combined organic layers were washed with saturated aqueous NaHCO₃ (5 mL), dried over Na₂SO₄, and evaporated to a residue, which was purified by preparative TLC (5% MeOH:CH₂Cl₂) to provide (+)-RK-286c (50, 6 mg, 75%). ¹H NMR (500 MHz, DMSO-d6): δ 9.27 (d, J=7.9 Hz, 1H), 8.47 (bs, 1H), 7.99 (d, J=8.5 Hz, 1H), 7.94 (d, J=7.7 Hz, 1H), 7.59 (d, J=8.2 Hz, 1H), 7.45 (app.t, J=7.4 Hz, 1H), 7.40 (app.t, J=7.5 Hz, 1H), 7.26 (app.t, J=7.5 Hz, 1H), 6.78 (d, J=5.3

Hz, 1H), 4.95 (d, J=17.6 Hz, 1H), 4.89 (d, J=17.7 Hz, 1H), 4.25 (bs, 1H), 4.17 (bs, 1H), 3.83 (d, J=2.7 Hz, 1H), 3.41 (s, 3H), 2.60 (ddd, J=3.2, 5.6, 14.8 Hz, 1H), 2.41 (dd, J=3.3, 14.8 Hz, 1H), 2.31 (s, 3H). 13 C NMR (125 MHz, DMSO-d6): δ 139.7, 136.1, 129.5, 125.5, 124.7, 124.1, 123.9, 122.6, 120.6, 119.5, 118.9, 118.6, 115.7, 108.6, 90.9, 82.3, 79.5, 58.8, 56.4, 45.3, 33.9, 29.9. IR (thin film/NaCl): 3354.0 (brm), 2920.4 (s), 2851.6 (m), 1677.2 (s), 1636.0 (m), 1585.3 (m), 1456.2 (s), 1352.8 (s), 1318.7 (s), 1231.7 (m), 1117.3 (m), 743.8 (s) cm⁻¹. [α]D²⁵ +41.1° (c=0.18, EtOAc); natural RK-286c [α]D²⁰ +45.3° (c=0.22, EtOAc).

Preparation of Diol (+)-55 To a stirred solution of ether (+)-54 (112 mg. 10 0.186 mmol) in CDCl3 (2.0 mL) was added Martin's sulfurane (187 mg, 0.28 mmol). The reaction rapidly proceeded to a less polar product as monitored by TLC, and after 20 min was complete. Solvent was evaporated and the reidue subjected to silica gel chromatography (2:1 hexanes:ethyl acetate) to provide an olefin (96 mg, 88%) as a white solid. ¹H NMR (500 MHz, DMSO-15 d6, 315 K): δ 9.31 (d, J=7.9 Hz, 1H), 8.11 (d, J=8.6 Hz, 1H), 7.91 (d, J=7.7 Hz, 1H), 7.86 (d, J=8.2 Hz, 1H), 7.50 (td, J=1.0, 7.34 Hz, 1H), 7.43 (app.t. J=7.8 Hz, 1H), 7.31 (app.t, J=7.0 Hz, 1H), 7.28 (app.t, J=7.1 Hz, 1H), 7.13 (d, J=1.9 Hz, 1H), 7.02 (s, 1H), 6.93 (d, J=8.6 Hz, 1H), 6.92 (d, J=8.6 Hz, 20 1H), 6.09 (d, J=10.4 Hz, 1H), 5.77 (dt, J=2.3, 10.4 Hz, 1H), 4.95 (s. 2H), 4.85 (d, J=15.1 Hz, 1H), 4.81 (d, J=15.1 Hz, 1H), 4.48 (d, J=1.4 Hz, 1H), 3.74 (s, 3H), 3.71 (s, 3H), 3.57 (s, 3H), 2.20 (s, 3H). ¹³C NMR (125 MHz, acetone-d₆): δ 169.9, 150.5, 149.7, 141.3, 137.4, 131.8, 131.2, 130.5, 127.7, 127.1, 126.4, 126.2, 125.5, 125.3, 124.3, 121.5, 121.2, 121.1, 120.5, 120.4, 118.0, 117.1, 115.9, 112.8, 112.8, 109.1, 91.5, 80.8, 78.8, 57.7, 56.0, 56.0, 25 50.5, 46.5, 28.0. IR (thin film/NaCl): 2920.5 (s), 2851.5 (s), 1709.8 (m), 1674.3 (s), 1589.0 (m), 1513.7 (m), 1457.5 (s), 1222.9 (m), 1026.6 (m), 745.3 (m) cm⁻¹. $[\alpha]D^{25}$ +36° (c=0.1, MeOH). To a stirred solution of 4methylmorpholine N-oxide (6 mg, 0.05 mmol) and OsO4 (0.6 mL of a 2.5% 30 solution in t-BuOH, 0.05 mmol) in 4:1 acetone: H2O (2 mL) was added solution of the olefin (25 mg, 0.043 mmol) in acetone (1 mL). The reaction was monitored by TLC, and after 16 h had proceeded to completion, whereupon 100 mg NaHSO3 was added in 1.0 mL H2O, and the black solution was stirred for 20 min and filtered, followed by extraction with CH2Cl2 (3x 15mL). Combined organic layers were dried over Na2SO4, and 35 evaporated to a residue, which was purified by MPLC (1:1 hexanes:ethyl

acetate) to provide diol (+)-55 (23 mg, 84%) as a white powder. ¹H NMR (500 MHz, DMSO-d6): δ 9.36 (d, J=7.9 Hz, 1H), 7.95 (d, J=8.6 Hz, 1H), 7.94 (d, J=7.6 Hz, 1H), 7.64 (d, J=8.1 Hz, 1H), 7.55 (app.t, J=7.6 Hz, 1H), 7.45 (app.t, J=7.7 Hz, 1H), 7.35 (app.t, J=7.5 Hz, 1H), 7.29 (app.t, J=7.5 Hz, 1H), 7.02 (s, 1H), 6.94 (s, 2H), 6.59 (d, J=1.6 Hz, 1H), 6.13 (d, J=3.8 Hz, 5 1H), 5.07 (d, J=6.0 Hz, 1H), 4.99 (d, J=17.8 Hz, 1H), 4.95 (d, J=17.8 Hz, 1H), 4.83 (s, 2H), 4.12 (d, J=10.1 Hz, 1H), 4.12 (dd, J=2.3, 3.8 Hz, 1H), 3.74 (s, 3H), 3.72 (s, 3H), 3.62 (s, 3H), 3.55 (ddd, J=2.3, 6.1, 10.1 Hz, 1H), 2.37 (s, 3H). ¹³C NMR (125 MHz, DMSO-d6): δ 168.8, 148.9, 148.1, 140.3, 136.5, 130.4, 129.9, 127.8, 125.7, 125.0, 124.7, 123.5, 122.7, 120.8, 120.2, 119.9, 10 119.9, 118.7, 115.5, 114.8, 114.1, 112.0, 111.7, 108.8, 95.6, 87.3, 83.1, 71.7, 65.6, 61.6, 55.5, 55.5, 49.6, 45.5, 29.0. IR (thin film/NaCl): 3411.2 (brm), 2929.3 (m), 2849.4 (w), 2656.3 (m), 1590.0 (m), 1514.0 (m), 1461.2 (s), 1350.9 (m), 1273.6 (s), 1127.1 (s), 1025.0 (m), 743.3 (s) cm⁻¹. $[\alpha]D^{25} + 17^{\circ}$ (c=0.1, MeOH).15

Preparation of (+)-MLR-52 (51) To a stirred solution of diol (+)-55 (10 mg. 0.016 mmol) in anisole or thioanisole (80 μ L, \approx 50 equiv) was added TFA (0.5 mL). The reaction was monitored by TLC, and after 16 h had proceeded to completion, whereupon 1.0 mL H₂O was added, followed by extraction with 20 CH2Cl2 (3x 5mL). Combined organic layers were washed with saturated aqueous NaHCO3 (5 mL), dried over Na2SO4, and evaporated to a residue, which was purified by preparative TLC (5% MeOH:CH2Cl2) to provide (+)-MLR-52 (51, 6 mg, 77%). ¹H NMR (500 MHz, DMSO-d6): δ 9.31 (d, J=7.9 Hz, 1H), 8.61 (bs, 1H), 7.99 (d, J=7.7 Hz, 1H), 7.96 (d, J=8.7 Hz, 1H), 7.62 25 (d, J=8.2 Hz, 1H), 7.53 (app.t, J=7.5 Hz, 1H), 7.45 (td, J=0.8, 7.7 Hz, 1H), 7.32 (app.t, J=7.4 Hz, 1H), 7.32 (app.t, J=7.4 Hz, 1H), 6.58 (d, J=1.6 Hz, 1H), 6.12 (d, J=4.0 Hz, 1H), 5.06 (d, J=5.9 Hz, 1H), 4.99 (d, J=17.6 Hz, 1H), 4.95 (d, J=17.5 Hz, 1H), 4.13 (d, J=10.3 Hz, 1H), 4.12 (dd, J=1.6, 2.6 Hz, 1H), 3.62 (s, 3H), 3.56 (ddd, J=2.6, 6.2, 10.3 Hz, 1H). ¹³C NMR (125 MHz, 30 DMSO-d6): δ 171.8, 140.2, 136.4, 132.6, 127.8, 125.8, 125.5, 124.8, 124.6, 123.6, 122.7, 120.9, 120.1, 119.7, 119.3, 115.4, 114.9, 114.3, 108.7, 95.6, 87.2, 83.1, 71.7, 65.6, 61.6, 45.4, 29.0. IR (thin film/NaCl): 3348.5 (brm), 2922.9 (s), 2851.9 (m), 1638.2 (s), 1586.6 (m), 1455.5 (s), 1373.5 (m), 1336.6 (m), 1320.8 (m), 1275.0 (m), 1224.7 (m), 1200.3 (w), 1119.5 (s), 740.8 (s,) cm⁻¹. [α]D²⁵ +65° (c=0.1, MeOH); natural MLR-52 [α]D +68° 35 (c=0.093, MeOH).

15

20

30

35

Preparation of oxime (-)-56 A suspension of ketone (+)-51 (100 mg, 0.17 mmol), hydroxylamine hydrochloride (165 mg, 2.38 mmol), and NaOAc (167 mg, 2.04 mmol) in 80% aqueous EtOH (35.0 mL) was heated gently to reflux for 30 min. Following cooling to room temperature, sovent was removed in vacuo, and the residue purified by MPLC (1:1 hexanes:ethyl acetate) to provide oxime (-)-56 (98 mg, 95%) as a yellow powder. ¹H NMR (500 MHz, DMSO-d6): 8 10.3 (s, 1H), 9.34 (d, J=7.9 Hz, 1H), 8.08 (d, J=8.6 Hz, 1H), 7.90 (d, J=7.6 Hz, 1H), 7.71 (d, J=8.3 Hz, 1H), 7.51 (app.t, J=7.6 Hz, 1H), 7.42 (app.t, J=7.9 Hz, 1H), 7.32 (app.t, J=7.7 Hz, 1H), 7.28 (app.t, J=7.4 Hz, 1H), 7.04 (d, J=6.3 Hz, 1H), 7.03 (s, 1H), 6.95 (d, J=8.4 Hz, 1H), 6.93 (d, J=8.2 Hz, 1H), 5.56 (m, 2H), 4.97 (d, J=18.1 Hz, 1H), 4.93 (d, J=16.9 Hz, 1H), 4.85 (d, J=15.0 Hz, 1H), 4.45 (d, $J=15.0 \text{ Hz}, 1\overline{H}$), 3.75 (s, 3H), 3.72 (s, 3H), 3.61 (d, J=13.9 Hz, 1H), 3.01 (dd, J=5.8, 14.3 Hz, 1H), 2.46 (s, 3H). ¹³C NMR (125 MHz, DMSO-d6): δ 168.8, 148.9, 148.1, 147.4, 140.2, 136.1, 130.5, 129.6, 128.1, 125.4, 125.3, 124.7, 124.6, 123.6, 122.8, 120.5, 120.1, 119.9, 119.6, 118.5, 116.0, 114.8, 113.9, 112.1, 111.9, 108.9, 97.4, 82.0, 74.9, 55.5, 55.5, 49.5, 45.5, 29.6, 28.6. IR (thin film/NaCl): 3324.0 (brm), 2995.0 (w), 2911.3 (m), 1660.0 (s), 1589.7 (m), 1513.5 (s), 1461.1 (s), 1417.9 (m), 1399.0 (m), 1349.2 (s), 1315.5 (m), 1260.0 (s), 1234.6 (m), 1124.4 (m), 1027.2 (m), 741.7 (s) cm⁻¹. $[\alpha]D^{20}$ -18° (c=0.1, CH₂Cl₂).

Preparation of methoxy oxime (-)-57 To a mixture of oxime (-)-56 (90 mg, 0.15 mmol), MeI (88μL, 1.42 mmol), and powdered KOH (88 mg, 1.58 mmol) was added n-Bu4NBr (10 mg, 0.03 mmol). The mixture was stirred under N2 for 30 min, solvent was removed in vacuo, and the residue was subjected to silica gel chromatography (1:1 hexanes:ethyl acetate) to provide methoxime (-)-57 (85 mg, 90%) as a yellow powder. ¹H NMR (500 MHz, DMSO-d6, 345 K): δ 9.36 (d, J=8.0 Hz, 1H), 7.99 (d, J=8.6 Hz, 1H), 7.93 (d, J=7.8 Hz, 1H), 7.68 (d, J=8.3 Hz, 1H), 7.51 (app.t, J=7.6 Hz, 1H), 7.44 (app.t, J=7.8 Hz, 1H), 7.33 (app.t, J=7.2 Hz, 1H), 7.30 (app.t, J=7.1 Hz, 1H), 7.04 (s, 1H), 7.02 (d, J=5.6 Hz, 1H), 6.97 (d, J=9.4 Hz, 1H), 6.94 (d, J=8.1 Hz, 1H), 4.97 (s, 2H), 4.86 (d, J=15.5 Hz, 1H), 4.85 (d, J=15.7 Hz, 1H), 4.76 (s, 1H), 3.76 (s, 3H), 3.74 (s, 3H), 3.54 (d, J=14.4 Hz, 1H), 3.45 (s, 3H), 3.16 (dd, J=5.9, 14.4 Hz, 1H), 3.14 (s, 3H), 2.46 (s, 3H). ¹³C NMR (125 MHz, DMSO-d6): δ 168.7, 148.9, 148.1, 147.3, 139.8, 136.1, 130.4,

10

15

20

25

30

35

129.5, 128.0, 125.4, 125.3, 124.7, 124.6, 123.6, 122.7, 120.6, 120.2, 119.9, 119.6, 118.6, 115.5, 114.9, 113.8, 112.2, 112.0, 108.9, 96.1, 83.3, 82.0, 60.8, 58.4, 55.5, 55.5, 49.5, 45.4, 30.4, 28.5. IR (thin film/NaCl): 2998.0 (w), 2926.3 (m), 1674.1 (s), 1590.0 (m), 1513.7 (s), 1460.9 (s), 1418.2 (m), 1397.9 (s), 1349.4 (s), 1316.2 (s), 1262.1 (m), 1225.6 (m), 1044.3 (m), 743.5 (m) cm⁻¹. [\alpha]D²⁵ -22° (c=0.1, CH₂Cl₂).

Preparation of amine (+)-58 A mixture of oxime (+)-57 (85 mg, 0.13 mmol) and PtO₂ (28 mg) in a 60% aqueous acetic acid (15.0 mL) was treated with H2, and the reaction was monitored by TLC (1:1 hexanes:ethyl acetate). Upon completion, the mixture was filtered through celite and the filtrate was evaporated. The residue was dissolved in CH2Cl2 (40 mL) and washed with 8.0 mL 1.0N NaOH. The aqueous layer was then back-extracted with CH2Cl2 (2x 15 mL). The combined organic layers were dried over Na2SO4 and evaporated to a residue (79 mg), which was used in the next step without further purification. An analitical sample of primary amine (+)-58 could be obtained by preparative TLC of the above residue using 5% MeOH:CH₂Cl₂ as eluent. ¹H NMR (500 MHz, CDCl₃, 310 K): δ 9.55 (d, J=7.9 Hz, 1H), 7.95 (d, J=8.5 Hz, 1H), 7.83 (d, J=7.7 Hz, 1H), 7.51 (app.t, J=7.6 Hz, 1H), 7.42 (app.t, J=8.2 Hz, 1H), 7.40 (app.t, J=7.5 Hz, 1H), 7.30 (app.t, J=7.8 Hz, 2H), 6.99 (d, J=9.4 Hz, 2H), 6.87 (d, J=8.0 Hz, 1H), 6.59 (d, J=4.9 Hz, 1H), 4.98 (d, J=14.9 Hz, 1H), 4.92 (d, J=14.9 Hz, 1H), 4.87 (d, J=16.7 Hz, 1H), 4.82 (d, J=16.7 Hz, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.75 (m, 2H), 3.46 (s, 3H), 2.63 (m, 2H), 2.32 (s, 3H), 1.27 (bs, 2H). ¹³C NMR (125 MHz, CDCl₃, 315 K): δ 170.2, 149.6, 148.7, 140.1, 137.0, 130.8, 129.6, 129.5, 127.0, 126.2, 125.4, 124.7, 124.5, 123.8, 120.8, 120.5, 120.2, 120.2, 119.6, 116.0, 115.4, 114.6, 111.6, 111.6, 107.4, 91.3, 84.2, 80.2, 57.5, 56.1, 56.1, 49.9, 46.5, 42.6, 34.6, 30.0. IR (thin film/NaCl): 3414.7 (brw), 2920.8 (s), 2851.7 (s), 1733.7 (w), 1672.8 (s), 1636.0 (w), 1588.1 (m), 1513.5 (s), 1352.7 (s), 1259.3 (s), 1136.7 (m), 744.2 (m) cm⁻¹. $[\alpha]D^{25} + 14.3^{\circ}$ (c=0.14, CHCl3).

Preparation of (+)-staurosporine (49) Crude amine (+)-58 was dissolved in THF (2.0 mL) and treated with formic acetic anhydride in THF (1.3 μ L of a 1.3 M solution in THF, 0.17 mmol)(FAA prepared by treatment of 1.0 equiv acetic anhydride with 1.2 equiv formic acid followed by reflux for 2 h). TLC analysis showed rapid formation of a less polar substance. A stream of N2

10

15

20

25

30

35

was used to evaporate the solvent, followed by high vacuum for 15 min. THF (1.3 mL) was added to dissolv the residue, the reaction vessel was cooled to 0 °C, and BH3 • DMS (193 µL of a 2.0 N solution in toluene, 0.39 mmol) was introduced. The solution was heated to reflux for 2 h at which point it was again cooled to 0 °C. Methanolic HCl (1.0 mL) was added along with excess MeOH (1.3 mL) and the solution was refluxed for an additional hour. Following cooling, volitiles were removed in vacuo, and the solid residue was azeotroped with MeOH (5x 5.0 mL). To the remaining residue was added 7.0 mL CH2Cl2 followed by 1.0 N NaOH (5.0 mL), layers were separated, and the aqueous layer was extracted with CH2Cl2 (3x 7.0 mL). Combined organic layers were dried over Na₂SO₄, evaporated, and purified by MPLC (5% MeOH:CH2Cl2) to give a methyl amine (80 mg, 91% 2 steps from 14) as a yellow foam. ¹H NMR (500 MHz, CDCl₃, 320 °K): δ 9.55 (d. J=7.9 Hz, 1H), 7.89 (d, J=8.5 Hz, 1H), 7.82 (d, J=7.3 Hz, 1H), 7.48 (td, J=1.0, 7.5 Hz, 1H), 7.39 (td, J=1.0, 7.4 Hz, 1H), 7.38 (app.t, J=7.3 Hz, 1H), 7.27 (m, 2H), 7.01 (m, 2H), 6.88 (d, J=8.7 Hz, 1H), 6.57 (dd, J=1.4, 6.0 Hz, 1H), 4.98 (d, J=14.9 Hz, 1H), 4.91 (d, J=14.9 Hz, 1H), 4.84 (s, 2H), 3.92 (d, J=3.0 Hz, 1H), 3.88 (s, 3H), 3.87 (s, 3H), 3.37 (dd, J=3.8, 7.7 Hz, 1H), 3.33 (bs, 3H), 2.72 (ddd, J=1.3, 4.6, 14.5 Hz, 1H), 2.46 (m, 1H), 2.35 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 170.4, 149.3, 148.4, 139.6, 136.7, 130.6, 130.4, 129.3, 127.1, 126.6, 125.1, 124.5, 124.3, 123.5, 120.7, 120.4, 120.0, 119.8, 119.1, 115.5, 114.9, 114.0, 111.2, 111.2, 107.0, 91.2, 83.9, 80.2, 57.5, 56.0, 55.9, 50.7, 49.9, 46.4, 33.2, 30.1, 29.9. IR (thin film/NaCl): 2954.1 (m), 2915.1 (m), 1673.2 (s), 1635.8 (m), 1462.7 (s), 1399.0 (s), 1352.6 (s), 1258.7 (m), 1136.5 (m), 1026.9 (m), 745.2 (s) cm⁻¹. [α] $D^{25} + 22^{\circ}$ (c=0.1, MeOH). To a stirred solution of the amine (10 mg, 0.016 mmol) in anisole or thioanisole (80 µL, ≈50 equiv) was added TFA (0.5 mL). The sluggish reaction was monitored by TLC, and after 48 h had proceeded to completion, whereupon 1.0 mL H2O was added, and the solution was adjusted to pH10 with 5.0 N NaOH, followed by extraction with CH2Cl2 (3x 5mL). Combined organic layers were dried over Na₂SO₄, and evaporated to a residue, which was purified by preparative TLC (5% MeOH:CH2Cl2) to provide (+)-Staurosporine (49, 6 mg, 70%). ¹H NMR (500 MHz, CDCl₃): δ 9.43 (d, J=7.9 Hz, 1H), 7.94 (8.5, 1H), 7.90 (d, J=7.7 Hz, 1H), 7.49 (app.t, J=7.6 Hz, 1H), 7.43 (app.t, J=7.7 Hz, 1H), 7.37 (app.t, J=7.5 Hz, 1H), 7.33 (app.t, J=7.4 Hz, 1H), 7.30 (d, J=8.0 Hz, 1H), 6.57 (d, J=5.6 Hz, 1H), 6.33 (bs, 1H), 5.05 (d, J=15.8 Hz, 1H), 5.01 (d, J=15.8 Hz, 1H), 3.89 (bs, 1H),

3.42 (s, 3H), 3.37 (d, 3.2H), 2.76 (dd, J=3.9, 14.7 Hz, 1H), 2.41 (bd, J=15.4 Hz, 1H), 2.37 (s, 3H), 1.59 (bs, 1H), 1.57 (s, 3H). 13C NMR (125 MHz, CDCl3): δ 173.6, 139.8, 136.7, 132.2, 130.8, 126.6, 125.0, 124.6, 124.2, 123.4, 120.6, 120.0, 119.8, 115.3, 114.1, 106.9, 91.1, 84.2, 80.1, 57.2, 50.4, 45.9, 33.3, 30.3, 30.1. IR (thin film/NaCl): 3316.6 (m), 2925.0 (m), 2850.8 (m), 1678.7 (s), 1636.2 (m), 1584.2 (m), 1457.5 (s), 1352.2 (s), 1316.7 (s), 1281.3 (m), 1115.5 (m), 744.8 (s) cm⁻¹. [α]D²⁵ +35° (c=0.1, MeOH); natural staurosporine [α]D²⁵ +35° (c=1.0, MeOH).

The above description is for the purpose of teaching the person of ordinary skill in the art how to practice the present invention, and it is not intended to detail all those obvious modifications and variations of it which will become apparent to the skilled worker upon reading the description. It is intended, however, that all such obvious modifications and variations be included within the scope of the present invention, which is defined by the following claims. The claims are intended to cover the claimed components and steps in any sequence which is effective to meet the objectives there intended, unless the context specifically indicates the contrary.

Referenc s

Fredenhagen, A.; Peter, H.H. Tetrahedron 52: 1235 (1996).

Link, J.T., et al., J. Am. Chem. Soc. 115: 3782 (1993).

Ootsuka, Y. et al. . Jpn. Kokai Tokkyo Koho JP05247054, (1993).

Omura, S. et al. J. Antibiotics 48: 525 (1995).

McCombie, S.W., et al., Bioorg. Med. Chem. Lett. 3: 1537 (1993).

Pirrung, M.C., et al., J. Org. Chem. 60: 2112 (1995).

Stolz, B.M., and Wood, J.L., Tetrahedron Lett. 36: 8543-8544 (1995).

Stoltz, B.M., and Wood, J.L., Tetrahedron Lett. 37: 3929-3930 (1996).

Wood, J.L., et al., J. Amer. Chem. Soc. 117: 10413-10414 (1995).

Claims

1. A process for the preparation of furanosylated indolocarbazoles of the formula

by reacting an acetal selected from the group consisting of the formulae

and mixtures thereof, to produce a glycosylated product of the formula

wherein R is selected from the group consisting of H, C, N, S, O, Cl, Br, I, Si, F, and mixtures thereof.

2. A process according to claim 1 wherein said preparation is carried out under conditions that promote acetal exchange or formation.

- 3. A process according to claim 2 wherein said preparation is carried out in the presence of a Bronsted acid or a Lewis acid.
- 4. A process according to claim 1 wherein camphor sulfonic acid is used as a catalyst and dichloroethane is used as a solvent.
- 5. A process according to claims 1 to 4 wherein a furanose of the formula

is reacted with DMB-protected K252c to give two products of the formulae

- 6. A product prepared according to the process of claims 1 to 5.
- 7. A process for the stereoselective preparation of pyranosylated indolocarbazoles of the formula

by ring expansion of the corresponding furanosylated indolocarbazole of the formula

wherein R is selected from the group consisting of H, C, N, S, O, Cl, Br, I, Si, F, and mixtures thereof.

- 8. A process according to claim 7 wherein the ring expansion is carried out in the presence of a Bronsted acid or a Lewis acid.
- 9. A process according to claims 7 or 8 wherein the ring expansion is carried out in a multistep procedure wherein a compound of the formula

is first reduced with LiBH₄, the derived diol is oxidized, and the resulting intermediate compound is then subjected to BF₃•Et₂O.

- 10. A product produced by the process of claims 7, 8, or 9.
- 11. A compound selected from the group consisting of

wherein R^1 is selected from the group consisting of H, t-Bu, 3,4-dimethoxybenzyl, 4-methoxybenzyl, benzyl, and X and Y are selected from the group consisting of O and H.

12. A compound selected from the group consisting of

wh rein R^1 is selected from the group consisting of H, t-Bu, 3,4-dimethoxybenzyl, 4-methoxybenzyl, benzyl; R^2 is selected from the group consisting of, H and CH₃; R^3 is selected from the group consisting of O, NOH, and NOBn; R^4 is selected from the group consisting of H, CHO, and CH₃; and X and Y are selected from the group consisting of O and H.

13. A compound selected from the group consisting of

wherein R^1 is selected from the group consisting of, H, t-Bu, 3,4-dimethoxybenzyl, 4-methoxybenzyl, benzyl; R^2 is selected from the group consisting of H and CH₃; R^3 is selected from the group consisting of O, NOH, and NOBn; R^4 is selected from the group consisting of H, CHO, and CH₃; and X and Y are selected from the group consisting of O and H.

14. A compound s lected from the group consisting of

wherein R¹ is sel cted from the group consisting of H, CH₃; R² is s lected from the group consisting of O, NOH, and NOBn; and R³ is selected from the group consisting of H, CHO, and CH₃.

15. A process for preparing tertiary alcohols containing the structural features of compounds selected from the group consisting of

comprising reacting at least one diazo carbonyl compound of the formula

with an allylic alcohol of the formula,

wherein R is selected from the group consisting of H, C, N, S, O, Cl, Br, I, Si, F, and mixtures thereof,

under conditions that produce a carbene or carbenoid intermediate from the diazo compound and for a time sufficient to couple the compounds.

- 16. A process according to claim 15 wherein the reaction is promoted by thermolysis, photolysis, or a catalyst selected from the group consisting of transition metal catalysts, Bronsted acids, and Lewis acids.
- 17. A process according to claim 16 wherein the reaction is carried out in the presence of a transition metal catalyst.

- 18. A proc ss according to claim 17 wherein the catalyst is Rh2(OAc)4.
- 19. A product prepared according to the process of claims 15 to 18.
- 20. A process for the preparation of an indolocarbazole of the formula

comprising reacting a diazo compound of the formula

with a biindole of the formula

wherein R is selected from the group consisting of H, C, N, S, O, Cl, Br, I, Si, F, and mixtures thereof.

- 21. A process according to claim 20 wherein the reaction is carried out in the presence of a transition metal catalyst in a solvent capable of solvating the reactants.
- 22. A process according to claim 21 wherein the coupling reaction is carried out in the presence of a Rh₂(OAc)₄ catalyst.

- 23. A process according to claims 20 to 22 wherein the diazo compound is a diazolaactam and the biindole is a 2,2'-biindole.
- 24. A product prepared according to the process of claims 20 to 23.
- 25. A process for the stereoselective preparation of a furanosylated indolocarbazole of the formula

by ring contraction of the corresponding pyranosylated indolocarbazole of the formula

wherein R is selected from the group consisting of H, C, N, S, O, Cl, Br, I, Si, F, and mixtures thereof.

26. A process according to claim 25 wherein the ring contraction is carried out in the presence of a compound capable of oxidizing an alcohol to a ketone and a reagent capable of effecting a benzilic acid-type rearrangement.

- 27. A process according to claims 25 or 26 wherein the ring contraction is a single-step procedure employing CuCl as both the oxidant and th rearrangement promoter, and methan 1 is used as a solvent.
- 28. A product prepared according to the process of claims 25, 26, or 27.