TD 25 : corrigé de trois exercices

Exercice 25.11:

• Pour tout
$$j \in \mathbb{N}_n$$
, $\sum_{i=1}^n a_{i,j}^2 = 1$, donc (1) : $\sum_{\substack{1 \le i \le n \\ 1 \le i \le n}} a_{i,j}^2 = n$.

Soit
$$(i,j) \in \mathbb{N}_n^2$$
. $a_{i,j}^2 \le \sum_{i'=1}^n a_{i',j}^2 = 1$, donc $|a_{i,j}| \le 1$ et $|a_{i,j}| \ge a_{i,j}^2$.

On déduit alors de (1) que $\sum_{\substack{1 \leq i \leq n \\ 1 \leq i \leq n}} |a_{i,j}| \geq n$.

• Notons u l'endomorphisme canoniquement associé à $A = (a_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq i \leq n}}$

Posons
$$e = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \in \mathbb{R}^n$$
. Alors $u(e) = (\sum_{j=1}^n a_{i,j})_{1 \le j \le n}$ et $\sum_{\substack{1 \le i \le n \\ 1 \le j \le n}} a_{i,j} = \langle u(e), e \rangle$.

L'inégalité de Cauchy-Schwarz montre que $|\langle u(e), e \rangle| \leq ||u(e)|| ||e||$, mais A étant orthogonale, u est un automorphisme orthogonal, donc ||u(e)|| = ||e||.

On en déduit que $|\sum_{i,j} a_{i,j}| \le ||e||^2 = n$.

Exercice 25.12:

1°)

 \diamond M est une matrice orthogonale si et seulement si ses colonnes constituent une base orthonormée de \mathbb{R}^3 , donc si et seulement si $\sigma = 0$ et $a^2 + b^2 + c^2 = 1$.

Or
$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc$$
, donc $a^2 + b^2 + c^2 = S^2 - 2\sigma$.

Ainsi, M est orthogonale si et seulement si $\sigma = 0$ et $S^2 - 2\sigma = 1$, donc si et seulement si $\sigma = 0$ et $S \in \{-1, 1\}$.

♦ [Lorsqu'on sait déjà qu'une matrice est orthogonale, elle est directe si et seulement si son déterminant est égal à 1.]

Pour calculer le déterminant de M, effectuons l'opération

$$C_1 \longleftarrow C_1 + C_2 + C_3. \text{ Ainsi, } det(M) = S \begin{vmatrix} 1 & c & b \\ 1 & a & c \\ 1 & b & a \end{vmatrix}.$$

D'après la règle de Sarrus, $det(M) = S(a^2 + b^2 + c^2 - ab - cb - ac) = S((S^2 - 2\sigma) - \sigma),$

ainsi $det(M) = S^3 - 3S\sigma$.

Ceci prouve que M est une matrice de rotation si et seulement si $\sigma = 0, S \in \{-1, 1\}$ et $S^3 - 3S\sigma = 1$, ce qui est équivalent à $\sigma = 0$ et S = 1.

- 2°) \diamond D'après les relations entre coefficients et racines d'un polynôme, M est une matrice de rotation si et seulement si (a, b, c) est un système de racines réelles d'un
- polynôme de la forme $X^3 X^2 + k$ où $k \in \mathbb{R}$. \Leftrightarrow Soit $k \in \mathbb{R}$. Notons $f: \mathbb{R} \longrightarrow \mathbb{R}$ $t \longmapsto t^3 t^2 + k$. $f'(t) = 3t^2 2t = t(3t 2)$. Ainsi f est croissante sur \mathbb{R}_- , décroissante entre 0 et $\frac{2}{3}$, puis croissante sur $\left[\frac{2}{3}, +\infty\right]$. Ainsi, f admet exactement trois racines réelles comptées

avec multiplicité si et seulement si $f(0) \ge 0$ et $f(\frac{2}{3}) \le 0$, or f(0) = k et $f(\frac{2}{3}) = \frac{8}{27} - \frac{4}{9} + k = \frac{8 - 4 \times 3 + 27k}{27} = \frac{27k - 4}{27}$, donc f admet exactement trois racines réelles comptées avec multiplicité si et seulement

si $k \in [0, \frac{4}{27}].$

3°) On a 1 = a + b + c = a + 2b et $0 = ab + ac + bc = 2ab + b^2$, or $b \neq 0$, donc 2a + b = 0. Ainsi b=-2a et la première égalité donne 1=a-4a, donc $a=-\frac{1}{3}$ et $b=\frac{2}{3}$.

Ainsi $M = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2\\ 2 & -1 & 2\\ 2 & 2 & -1 \end{pmatrix}$.

C'est à la fois une matrice de rotation et une matrice symétrique, donc f est une symétrie orthogonale et une rotation : il s'agit d'un retournement dont l'axe est l'en-

semble des vecteurs invariants par f. On vérifie que $\begin{pmatrix} 1\\1 \end{pmatrix}$ est invariant par M donc il dirige l'axe.

Exercice 25.16:

1°) A est symétrique, donc il existe $P \in O(p)$ et une matrice diagonale $D = diag(\lambda_1, \dots, \lambda_n)$ telles que $A = PDP^{-1} = PD^tP$.

De plus, A est définie positive, donc, pour tout $i \in \mathbb{N}_p$, $\lambda_i \in Sp(A) \subset \mathbb{R}_+^*$.

Posons $\Delta = diag(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_p})$ et $R(A) = P\Delta^t P = P\Delta P^{-1}$.

 ${}^{t}R(A) = P^{t}\Delta^{t}P = R(A)$, donc R(A) est symétrique.

De plus, $Sp(R(A)) = Sp(\Delta) = \{\sqrt{\lambda_1}, \dots, \sqrt{\lambda_p}\} \subset \mathbb{R}_+^*$, donc R(A) est définie positive. Enfin, $R(A)^2 = P\Delta^2 P^{-1} = A$.

tout $n \in \mathbb{N}$, u_n est correctement défini et appartient à \mathbb{R}_+^*

 \Leftrightarrow f est dérivable sur \mathbb{R}_+^* et, pour tout $x \in \mathbb{R}_+^*$, $f'(x) = \frac{1}{2}(1 - \frac{\lambda}{r^2})$, donc $f'(x) > 0 \iff x > \sqrt{\lambda}$. Traçons le tableau de variations de f.

$$\begin{array}{c|cccc} x & 0 & \sqrt{\lambda} & +\infty \\ \hline f'(x) & - & 0 & + \\ \hline f(x) & +\infty & \searrow & \sqrt{\lambda} & \nearrow & +\infty \\ \end{array}$$

Ainsi, pour tout $n \in \mathbb{N}^*$, $u_n \in [\sqrt{\lambda}, +\infty[$.

Soit $n \in \mathbb{N}^*$. $u_{n+1} - u_n = \frac{1}{2}(\frac{\lambda}{u_n} - u_n) = \frac{1}{2u_n}(\lambda - u_n^2) \le 0$. Ainsi, $(u_n)_{n \ge 1}$ est une suite décroissante, minorée par $\sqrt{\lambda}$. Elle converge donc vers un réel $l \in [\sqrt{\lambda}, +\infty[$. f étant continue en l, l = f(l), donc $0 = f(l) - l = \frac{1}{2l}(\lambda - l^2)$, donc $l = \sqrt{\lambda}$.

En conclusion, $(u_n)_{n\geq 1}$ est une suite décroissante qui tend vers $\sqrt{\lambda}$.

3°) [La suite $\Delta_n = P^{-1}X_nP$ vérifie les relations $\Delta_0 = I_p$ et $\Delta_{n+1} = \frac{1}{2}(\Delta_n + D\Delta_n^{-1})$, donc c'est une suite de matrices diagonales. Si l'on note $u_{i,n}$ le $i^{\text{ème}}$ coefficient diagonal de Δ_n , la suite $(u_{i,n})_{n\in\mathbb{N}}$ vérifie la relation de récurrence de la question précédente, donc elle tend vers $\sqrt{\lambda_i}$, ce qui permet de conclure.

Pour gérer correctement les problèmes d'existence de ces matrices, il est plus simple de commencer par construire les suites $(u_{i,n})$, puis de construire D_n et X_n .]

 \diamond Reprenons les notations de la première question. Pour tout $i \in \mathbb{N}_p$, notons $(u_{i,n})_{n \in \mathbb{N}}$ la suite de réels définie par les relations suivantes : $u_{i,0} = 1$ et, pour tout $n \in \mathbb{N}$,

(1) :
$$u_{i,n+1} = \frac{1}{2}(u_{i,n} + \frac{\lambda_i}{u_{i,n}}).$$

D'après la seconde question, $(u_{i,n})_{n\in\mathbb{N}^*}$ est correctement définie et elle converge vers $\sqrt{\lambda_i}$ lorsque n tend vers $+\infty$.

- $\forall \mathcal{M}_i$ forsque n tend vers $+\infty$. \Rightarrow Pour tout $n \in \mathbb{N}$, posons $\Delta_n = diag(u_{1,n}, \dots, u_{p,n})$ et $R_n = P\Delta_n P^{-1}$. La suite $(\Delta_n)_{n \in \mathbb{N}}$ tend vers Δ , or l'application $M_p(\mathbb{R}) \longrightarrow M_p(\mathbb{R})$ est continue (elle est linéaire en dimension finie), donc $R_n \longrightarrow P\Delta P^{-1} = R(A)$.
- ♦ Soit $n \in \mathbb{N}$. Pour tout $i \in \mathbb{N}_p$, $u_{i,n} > 0$, donc Δ_n est inversible et, d'après la relation (1), $\Delta_{n+1} = \frac{1}{2}(\Delta_n + D\Delta_n^{-1})$. En multipliant par P à gauche et par P^{-1} à droite, on en déduit que R_n est inversible et que $R_{n+1} = \frac{1}{2}(R_n + AR_n^{-1})$.

De plus $\Delta_0 = diag(1, \dots, 1) = I_p$, donc $R_0 \stackrel{\stackrel{?}{=}}{=} I_p$.

Ainsi, pour tout $n \in \mathbb{N}$, $R_n = X_n$, ce qui montre que la suite (X_n) de l'énoncé est correctement définie et qu'elle converge vers R(A).