Chapter 9 Structural Empirical Analysis of Vertical Contracting

Presented by Siyuan (Bruce) Jin and Yangfan Sun

Hong Kong University of Science and Technology

March 2025

Outline - Theory

Introduction

Basics

Non-cooperative bargaining models
The offer game
The bidding game

Nash-in-Nash bargaining

Introduction

Basics

Setting

- A upstream seller U and a downstream buyer D agree on a contract $\mathcal C$ from some feasible set.
- The contract $C = \{y, t\}$, y includes other provisions and t is a lump-sum transfer.
- Firms' payoffs: $\Pi_U(\mathcal{C}) \equiv \pi_U(y) + t$; $\Pi_D(\mathcal{C}) \equiv \pi_D(y) t$
- Pareto efficient contract
 - $y^* \in argmax_{(y,t) \in \mathcal{Y} \times \mathcal{R}} \pi_U(y) + \pi_D(y)$
 - Bilateral contracting principle: complete information and lump-sum transfers.

Basics - example: successive monopoly setting

- A monopolist manufacturer sells a product to a monopolist retailer.
 - Vertically integrated: $p^m(c) \equiv argmax(p-c)D(p)$, $p^m(c_M+c_R)$ maximizes the bilateral surplus.
 - Price unilaterally: $p^m(w+c_R)$ maximizes the retailer's profit.
 - $p^m(w + c_R) > p^m(c_M + c_R)$: double marginalization problem.

Basics - example: negotiation by Nash bargaining

•
$$\max_{C \in \mathcal{C}^+} \left[\Pi_D(C) - \overline{\Pi}_D \right]^b \cdot \left[\Pi_U(C) - \overline{\Pi}_U \right]^{1-b}$$

The offer game

The bidding game

Nash-in-Nash bargaining

Conclusion