Jimmy loves playing with strings. He thinks string A is similar to string B if the following conditions are satisfied:

- Both strings have the same length (i.e., $A=a_0a_1\ldots a_{n-1}$ and $B=b_0b_1\ldots b_{n-1}$).
- For each valid pair of indices, (i,j), in the strings, $[a_i=a_j \text{ and } b_i=b_i]$ or $[a_i \neq a_j \text{ and } b_i \neq b_i]$.

For example, string a= "adba" and b= "bcgb" are similar as for i=0,j=3, a[0]==a[3] and b[0] == b[3] and for all other i, j pairs $a[i] \neq a[j]$ as well as $b[i] \neq b[j]$.

He has a string, S, of size n and gives you q queries to answer where each query is in the form of a pair of integers (l_i, r_i) . For each substring $S[l_i, r_i]$, find the number of substrings S[x, y] where substring $S[l_i, r_i]$ is similar to substring S[x, y] and print this number on a new line.

Note: Substring S[x,y] is the contiguous sequence of characters from index $oldsymbol{x}$ to index $oldsymbol{y}$. For example, if S =abcdefgh, then S[3, 6] =cdef.

Input Format

The first line contains two space-separated integers describing the respective values of n and q. The second line contains string S.

Each line i of the q subsequent lines contains two space-separated integers describing the respective values of l_i and r_i for query i.

Constraints

- $egin{aligned} \bullet & 1 \leq n, q \leq 5 imes 10^4 \ \bullet & 1 \leq L_i \leq R_i \leq n \ \bullet & s_i \in \{a, b, c, d, e, f, g, h, i, j\} \end{aligned}$

Output Format

For each guery, print the number of similar substrings on a new line.

Sample Input

1 3

Sample Output

8 6 2

Explanation

We perform the following sequence of gueries:

- 1. Strings with length **1** are all similar, so our answer is **8**.
- 2. gi, ig, ga, ab, ba, and aj are similar, so our answer is $\mathbf{6}$.
- 3. gig and aba are similar, so our answer is 2.
- 4. igg has no similar string, so our answer is 1.