PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-178765

(43)Date of publication of application: 20.07.1993

(51)Int.Cl.

A61K 47/40 A61K 9/14 A61K 31/335 A61K 31/38 A61K 45/08 A61K 45/08 A61K 45/08 A61K 45/08 A61K 45/08 A61K 45/08

A61K 47/10

(21)Application number: 04-159246

(71)Applicant: TAKEDA CHEM IND LTD

(22)Date of filing:

18.06.1992

(72)Inventor: UDA YOSHIAKI

NISHIDA YOKO OGAWA TAIRYO

(30)Priority

Priority number: 40315050

Priority date: 21.06.1991

Priority country: JP

40323048

10.09.1991

JP

(54) SPARINGLY WATER-SOLUBLE MEDICINAL COMPOSITION IMPROVED IN SOLUBILITY (57)Abstract:

PURPOSE: To obtain a pharmaceutical for injection, containing a sparingly water- soluble medicine, cyclodextrin and a prescribed amount of a water-soluble organic solvent and excellent in water solubility and stability with low toxicity.

CONSTITUTION: The objective composition comprises (A) a sparingly water-soluble medicine selected from an antiinflammatory agent, an analgesic agent, a tranquilizer, a sedative, an antitumor agent, antifungal agent, antibiotic substance, an antihyperlipemic agent and a fumagillol derivative, (B) cyclodextrin such as dihydroxypropyl- β -cyclodextrin or maltosyl- β cyclodextrin [used in an amount of 1.2-2.5 times expressed in terms of molar ratio based on the ingredient (A)] and (C) 0.1-10wt.%, preferably 0.1-3wt.% water-soluble organic solvent such as ethanol.

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平5-178765

(43)公開日 平成5年(1993)7月20日

(51)Int.Cl. ⁵ A 6 1 K 47/40 9/14	識別記号 G L M E	庁内整理番号 7329-4C 7329-4C 7329-4C 7329-4C 7252-4C	F I	技術表示箇所
			審査請求 未請求	* 請求項の数10(全 9 頁) 最終頁に続く
(21)出願番号	特願平4-159246		(71)出願人	000002934 武田薬品工業株式会社
(22)出願日	平成 4年(1992) 6月	18日	(72)発明者	大阪府大阪市中央区道修町四丁目1番1号
(31)優先権主張番号	特顯平3-150507		(15)30378	兵庫県宝塚市仁川団地3番2-501号
(32)優先日	平3(1991)6月21日	3	(72)発明者	西田 陽子
(33)優先権主張国	日本(JP)			大阪府茨木市中津町 3番14号
(31)優先権主張番号	特顯平3-230489		(72)発明者	小川 泰亮
(32)優先日	平3(1991)9月10日	3		京都府乙訓郡大山崎町字大山崎小字谷田77
(33)優先権主張国	日本(JP)	•		番地の42
			(74)代理人	弁理士 青山 葆 (外1名)

(54) 【発明の名称 】 溶解性が向上した難水溶性薬物組成物

(57)【要約】

【目的】 難水溶性薬物の水溶性を高める。

【構成】 難水溶性薬物、シクロデキストリンおよび

0.1~10重量%の水溶性有機溶媒を含有する医薬用 組成物。

20

【特許請求の範囲】

【請求項1】 難水溶性薬物、シクロデキストリンおよびO.1~10重量%の水溶性有機溶媒を含有する医薬用組成物。

【請求項2】 粉末である請求項1記載の組成物。

【請求項3】 水溶性有機溶媒の量が0.1~3重量%である請求項1記載の組成物。

【請求項4】 難水溶性薬物が抗炎症剤、鎮痛剤、精神 安定剤、鎮静剤、抗腫瘍剤、抗真菌剤、抗生物質および 抗高脂血症剤から選ばれる請求項1記載の組成物。

【請求項5】 水溶性有機溶媒に溶解させた難水溶性薬物とシクロデキストリンとの複合体あるいはそれを含有する請求項1記載の組成物。

【請求項6】 難水溶性薬物がフマギロール誘導体である請求項1記載の組成物。

【請求項7】 シクロデキストリンがジヒドロキシプロ ピルー β ーシクロデキストリンまたはマルトシルー β ー シクロデキストリンである請求項1記載の組成物。

【請求項8】 注射剤である請求項2記載の組成物。

【請求項9】 フマギロール誘導体、水溶性有機溶媒、 シクロデキストリンおよび水の混合物またはその乾燥品 である請求項1記載の組成物。

【請求項10】 難水溶性薬物の水溶性有機溶媒溶液とシクロデキストリンおよび水とを混合することを特徴とする難水溶性薬物とシクロデキストリンとの複合体の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、シクロデキストリン組成物およびその製造方法に関する。より詳しくは、本発 30明においては、水溶性有機溶媒に溶解させた難水溶性薬物とシクロデキストリンとの複合体を形成し、難水溶性薬物の溶解性および安定性を高める。この複合体は医薬用組成物、特に注射用製剤に有用である。

[0002]

【従来の技術】難水溶性薬物のシクロデキストリンへの複合体または包接体を形成する従来の方法としては、薬物とシクロデキストリンの飽和水溶液を冷却し、複合体を沈澱させる方法、薬物とシクロデキストリンの水溶液を凍結乾燥する方法 [エム・クロズミ (M. Kurozumi)ら、Chem. Pharm. Bull. 、23、1421(1975)]、混合粉砕法 [ワイ・ナカイ (Y. Nakai)ら、Chem. Pharm. Bull. 、26、2419(1978)]などがある。しかし、これらの方法で得られる難水溶性薬物とシクロデキストリンとの複合体の溶解性はそれほど高いものではなく、注射剤に適用するには溶解性が不十分である。またときとして、薬物の安定性がかえってわるくなる場合がある。

[0003]

【問題を解決しようとする課題】難水溶性薬物の溶解性 50

をより高め、さらには安定性をも向上させることによって、注射用製剤に適用可能な組成物を開発することにある。

[0004]

【問題を解決するための手段】このような事情に鑑み、 本発明者らは難水溶性薬物の水に対する溶解性を上げる ために鋭意研究を行った。その結果、難水溶性の薬物を 水溶性有機溶媒に溶解し、一方、シクロデキストリンを 水に溶解して、この水溶性有機溶媒の溶液にシクロデキ ストリン水溶液を徐々に添加すると、時として水溶液添 加中に一度は白濁するが、なおも水溶液を添加すると澄 明な溶液となることが判明した。この液から水溶性有機 溶媒および水を気化させ留去することによって粉末状の 組成物を得ることができる。この得られた組成物は多く の場合、シクロデキストリンとの包接体を形成してい る。この組成物の水に対する溶解度は非常に高く、従来 の技術で得られる組成物と比較すると3~50倍も高い こと、また溶解速度も速いこと、さらに、特定のシクロ デキストリンを選択すると不安定な薬物を安定化できる ことを見いだしこの発明を完成した。

【0005】すなわち、本発明は、難水溶性薬物、シクロデキストリンおよび水溶性有機溶媒からなる医薬用組成物を提供するものである。本発明の組成物は、難水溶性薬物、シクロデキストリンおよび0.1~10重量%、好ましくは0.1~3重量%の水溶性有機溶媒からなる粉末状の医薬用組成物の形態であってもよい。さらに、本発明は、難水溶性薬物を水溶性有機溶媒に溶解し、これをシクロデキストリンの水溶液と混合し、所望により水溶性有機溶媒および水を留去することを特徴とする、難水溶性薬物とシクロデキストリンの粉末状複合体の製造方法を提供する。本発明の医薬用組成物または複合体は、注射用製剤に適用することができる。

【0006】本発明で用いる難水溶性薬物とは水または 緩衝液に対する溶解度が1%(w/v)以下の薬物を意味 し、それらの一般に製剤化に用いられる塩でもよい。また、水溶性有機溶媒には1%(w/v)以上の溶解度をもつことが望ましい。例えば、抗炎症剤、鎮痛剤、精神安定剤、鎮静剤、抗腫瘍剤、抗真菌剤、抗生物質、抗高脂血症剤等が挙げられる。抗腫瘍剤としては血管新生抑制作用を有するフマギロール誘導体が本発明の適用には適当である。フマギロール誘導体としては一般式

[0007]

【化1】

40

【0008】[式中、R¹は水素を、R²はハロゲン、N $(O)mR^5R^6$, $N^+R^5R^6R^7 \cdot X^-$, $S(O)nR^5$ $\equiv t$ +R⁵R⁶・X⁻(式中、R⁵、R⁶およびR⁷はそれぞれ置換 基を有していてもよい炭化水素基もしくは複素環基を、 X-はカウンターアニオンを、mはOまたは1を、nはO ないし2の整数を示す。またR5とR6とは隣接する窒素 原子もしくは硫黄原子と共に縮環していてもよい含窒素 または含硫黄異項環を形成していてもよく、これらの縮 環していてもよい含窒素または含硫黄異項環は置換基を 有していてもよい。)を示すか、またはR1とR2とで結 合手を示し、R3は2ーメチルー1ープロペニル基また はイソブチル基を示し、AはOまたはNR⁸(式中、R⁸ は水素または置換基を有していてもよい低級アルキルも しくはアリール基を示す。)を示し、R4は水素、置換基 を有していてもよい炭化水素基または置換基を有してい てもよいアシル基を示す。]で表されるフマギリン誘導 体またはその塩等がある。

【0009】上記一般式(I)中、R 2 で示されるハロゲンとしては、フッ素、塩素、臭素、ヨウ素が挙げられる。またR 1 とR 2 とで結合手を示すときはエポキシ環を 20形成する。

【0010】R⁵、R⁶またはR⁷で示される置換基を有 していてもよい炭化水素基の炭化水素基としては、直鎖 状もしくは分枝状の炭素数1~6のアルキル基(例、メ チル、エチル、プロピル、イソプロピル、ブチル、イソ ブチル、Secーブチル、ペンチル、イソペンチル、ヘキ シルなど)、炭素数2~6のアルケニル基(例、ビニル、 アリル、2 - ブテニル、メチルアリル、3 - ブテニル、 2ーペンテニル、4ーペンテニル、5ーヘキセニルな ど)、炭素数2~6のアルキニル基(例、エチニル、プロ 30 パルギル、2ーブチンー1ーイル、3ーブチン-2ーイ ル、1-ペンチン-3-イル、3-ペンチン-1-イ ル、4ーペンチンー2ーイル、3ーヘキシン-1ーイル など)、炭素数3~6のシクロアルキル基(例、シクロプ ロピル、シクロブチル、シクロペンチル、シクロヘキシ ルなど)、炭素数3~6のシクロアルケニル基(例、シク ロブテニル、シクロペンテニル、シクロヘキセニル、シ クロヘキサジエニルなど)、炭素数7~13のアラルキ ル基(例、ペンジル、1-フェネチル、2-フェネチル など)、炭素数6~10のアリール基(例、フェニル、ナ 40 フチルなど) などが挙げられる。

【0011】R⁵、R⁶またはR⁷で示される置換基を有していてもよい複素環基の複素環基としては、ヘテロ原子(例、窒素、酸素、硫黄など)を1~4個含む5または6員複素環基(例、2ーフリル、2ーチエニル、4ーチアゾリル、4ーイミダゾリル、4ーピリジル、1、3、4ーチアジアゾールー2ーイル、テトラゾリルなど)などが挙げられる。該複素環基は、炭素原子の他に1~3個のヘテロ原子(例、窒素、酸素、硫黄など)を含んでいてもよい5または6員環(例、ベンゼン、ピリジン、シ

クロヘキサンなど)と縮合して2環性縮合環基(例、8-キノリル、8-プリニルなど)などを形成していてもよい。

【0012】R5とR6とが隣接する窒素原子と共に形成していてもよい合窒素異項環としては、窒素原子の他に1~3個のヘテロ原子(例、窒素、酸素、硫黄など)を含んでいてもよい4~7員環の合窒素異項環(例、ピロリジンー1ーイル、ピペラジノ、モルホリノ、ピペラジンー1ーイルなど)などが挙げられる。R5とR6とが隣接する硫黄原子と共に形成していてもよい合硫黄異項環としては、硫黄原子の他に1~3個のヘテロ原子(例、窒素、酸素、硫黄など)を含んでいてもよい4~7員環の含硫黄異項環(例、テトラヒドロチオフェンー1ーイル、1、4ーチオキサンー1ーイルなど)などが挙げられる。

【0013】R⁵とR⁶とが隣接する窒素原子または硫黄原子と共に形成していてもよい含窒素または含硫黄異項環は5または6員環(例、ベンゼン、ピリジン、ピラジン、ピリダジン、シクロヘキサンなど)と縮環(縮合)して2環性縮合環基(例、イソインドリンー2ーイル、2ーイソキノリル、1,3ージヒドロベンゾ[c]チオフェンー2ーイル、3,4ージヒドロー1Hー2ーベンゾピランー2ーイル、3,4ージヒドロー2Hー1ーベンゾピランー1ーイル、1,2,4,5ーテトラヒドロー3ーベンゾチエピンー3ーイル、1,3ージヒドロチエノ[3,4ーc]ピリジンー2ーイル、5,7ージヒドロチエノ[3,4ーb]ピラジンー6ーイル、5,7ージヒドロチエノ[3,4ーd]ピリダジンー6ーイルなど)などを形成していてもよい。

【OO14】R8で示される置換基を有していてもよい 低級アルキル基の低級アルキル基としては、炭素数1~ 6のアルキル基(例、メチル、エチル、プロピル、イソ プロピル、ブチル、イソブチル、secーブチル、ペンチ ル、イソペンチル、ヘキシルなど)などが挙げられる。 R⁸で示される置換基を有していてもよいアリール基の アリール基としては、炭素数6~10のアリール基 (例、フェニル、ナフチルなど)などが挙げられる。 【OO15】R4で示される置換基を有していてもよい 炭化水素基としては、上記したR5、R6およびR7で示 される置換基を有していてもよい炭化水素基で鮮配した もの等が挙げられる。なお、R4で表される炭化水素基 がアルケニル基のときは無置換ものが好ましい。R4で 示される置換基を有していてもよいアシル基としては、 置換基を有していてもよいカルボン酸アシル、スルホン 酸アシル、カルバモイル、チオカルバモイル、スルファ モイルなどの酸の残基(該当する酸より導かれるアシル 基) などが挙げられ、例えば、それぞれ置換基を有して いてもよいアルカノイル、アロイル、複素環カルポニ 50 ル、カルバモイル、チオカルバモイル、アリールスルホ

ニル、アルキルスルホニル、スルファモイル、アルコキ シカルボニル、アリールオキシカルボニルなどが挙げら

【0016】上記した置換基を有していてもよいアルカ ノイル基のアルカノイル基としては、炭素数1~6のア ルカノイル基(例、ホルミル、アセチル、プロピオニ ル、イソプロピオニル、ブチリル、ペンタノイル、ヘキ サノイルなど)などが挙げられる。置換基を有していて もよいアロイル基のアロイル基としては、炭素数7~1 1のアロイル基(例、ペンゾイル、1ーナフトイル、2 ーナフトイルなど) などが挙げられる。置換基を有して いてもよい複素環カルボニル基における複素環カルボニ ル基としては、ヘテロ原子(例、窒素、酸素、硫黄など) を1~4個含む5または6員複素環カルボニル基(例、 2-フロイル、2-テノイル、ニコチニル、イソニコチ ニルなど)などが挙げられる。置換基を有していてもよ いアリールスルホニル基のアリールスルホニル基として は、炭素数6~10のアリールスルホニル基(例、ベン ゼンスルホニル、1ーナフチルスルホニル、2ーナフチ ルスルホニルなど) などが挙げられる。

【0017】置換基を有していてもよいアルキルスルホ ニル基のアルキルスルホニル基としては、炭素数1~6 のアルキルスルホニル基(例、メチルスルホニル、エチ ルスルホニルなど) などが挙げられる。置換基を有して いてもよいアルコキシカルボニル基のアルコキシカルボ ニル基としては、炭素数2~7のアルコキシカルボニル 基(例、メトキシカルボニル、エトキシカルボニル、イ ソブトキシカルボニルなど) などが挙げられる。置換基 を有していてもよいアリールオキシカルボニル基のアリ ールオキシカルボニル基としては、炭素数7~11のア 30 リールオキシカルボニル基(例、フェノキシカルボニ ル、1ーナフチルオキシカルボニル、2ーナフチルオキ シカルボニルなど) などが挙げられる。

【0018】R5、R6またはR7で示されるそれぞれ置 換基を有していてもよい炭化水素基または複素環基、R 5とR6とが隣接する窒素原子または硫黄原子と共に形成 していてもよい縮環していてもよい含窒素または含硫黄 異項環基、R⁸で示されるそれぞれ置換基を有していて もよい低級アルキル基またはアリール基、およびR4で 示されるそれぞれ置換基を有していてもよい炭化水素基 40 または置換基を有していてもよいアシル基(アルカノイ ル基、アロイル基、複素環カルボニル基、カルバモイル ・基、チオカルパモイル基、アリールスルホニル基、アル キルスルホニル基、スルファモイル基、アルコキシカル ボニル基、またはアリールオキシカルボニル基) は可能 な位置に1~3個の置換基を有していてもよい。

【0019】眩置換基としては、例えばC1-6 アルキル 基(例、メチル、エチル、プロピル、イソプロピル、ブ チル、イソブチル、sec-ブチル、ペンチル、イソペン チル、ヘキシルなど)、C2-6 アルケニル基(例、ビニ

ル、アリル、2ープテニル、メチルアリル、3ープテニ ル、2ーペンテニル、4ーペンテニル、5ーヘキセニル など)、C2-6 アルキニル基(例、エチニル、プロパルギ ル、2-ブチン-1-イル、3-ブチン-2-イル、1 ーペンチルー3ーイル、3ーペンチルー1ーイル、4ー ペンチルー2ーイル、3ーヘキシンー1ーイルなど)、 C3-6 シクロアルキル基(例、シクロプロピル、シクロブ チル、シクロペンチル、シクロヘキシルなど)、C3-6 シ クロアルケニル基(例、シクロブテニル、シクロペンテ ニル、シクロヘキセニル、シクロヘキサジエニルな ど)、C6-10 アリール基(例、フェニル、ナフチルな ど)、アミノ、モノ C1-6 アルキルアミノ基(例、メチル アミノ、エチルアミノ、イソプロピルアミノなど)、ジ C1-6 アルキルアミノ基(例、ジメチルアミノ、ジエチル アミノなど)、アジド、ニトロ、ハロゲン(例、フッ素、 塩素、臭素、ヨウ素など)、ヒドロキシル、C1-4 アルコ キシ基(例、メトキシ、エトキシなど)、C6-10 アリール オキシ基(例、フェニノキシ、ナフチルオキシなど)、C 1-6 アルキルチオ基(例、メチルチオ、エチルチオ、プロ ピルチオなど)、 C6-10 アリールチオ基(例、フェニルチ オ、ナフチルチオなど)、シアノ、カルバモイル基、カ ルボキシル基、C1-4 アルコキシカルボニル基(例、メト キシカルボニル、エトキシカルボニルなど)、C7-11 ア リールオキシカルボニル基(例、フェノキシカルボニ ル、1ーナフチルオキシカルボニル、2ーナフチルオキ シカルボニルなど)、カルボキシー C1-4 アルコキシ基 (例、カルボキシメトキシ、2-カルボキシエトキシな ど)、C1-6 アルカノイル基(例、ホルミル、アセチル、 プロピオニル、イソプロピオニル、ブチリル、ペンタノ イル、ヘキサノイルなど)、C7-11 アロイル基(例、ベン ゾイル、1ーナフトイル、2ーナフトイルなど)、C 6-10 アリールスルホニル基(例、ベンゼンスルホニル、 1ーナフチルスルホニル、2ーナフチルスルホニルな ど)、C1-6 アルキルスルフィニル基(例、メチルスルフ ィニル、エチルスルフィニルなど)、C6-10 アリールス ルフィニル基(例、ペンゼンスルフィニル、1ーナフチ ルスルフィニル、2ーナフチルスルフィニルなど)、C 1-6 アルキルスルホニル基(例、メチルスルホニル、エチ ルスルホニルなど)、ヘテロ原子(例、窒素、酸素、硫黄 など)を1~4個含む5または6員複素環基(例、2-フ リル、2ーチエニル、4ーチアゾリル、4ーイミダゾリ ル、4ーピリジル、1,3,4ーチアジアゾールー2ーイ ル、1ーメチルー5ーテトラゾリルなど)、ヘテロ原子 (例、窒素、酸素、硫黄など)を1~4個含む5または6 員複素環カルポニル基(例、2-フロイル、2-テノイ ル、ニコチニル、イソニコチニルなど)、ヘテロ原子 (例、窒素、酸素、硫黄など)を1~4個含む5または6 員複素環チオ基(例、4ービリジルチオ、2ーピリミジ ルチオ、1,3,4ーチアジアゾールー2ーイルチオ、1 50 ーメチルー5ーテトラゾリルチオなど) などが挙げら

30

れ、さらに複素環チオ基はベンゼン環が縮合して2環性 縮合環チオ基(例、2ーペンゾチアゾリルチオ、8ーキ ノリルチオなど)を形成していてもよい。また、R4がそ れぞれジ置換のカルバモイル基、チオカルバモイル基、 もしくはスルファモイル基を示す場合、カルパモイル 基、チオカルパモイル基、もしくはスルファモイル基は その窒素原子とともに含窒素異項環 [例、ピロリジンー 1ーイル、ピペリジノ、モルフォリノ、ピペラジンー1 ーイル、4ーメチルピペラジン-1-イル、4-フェニ ルピペラジンー1ーイルなどのような、窒素原子の他に 10 1~3個のヘテロ原子(例、窒素、酸素、硫黄など)を 含んでいてもよい4~7員環含窒素異項環など]を形成 していてもよい。

【0020】また、R⁵、R⁶またはR⁷で示されるそれ ぞれ置換基を有していてもよい炭化水素基または複素環 基における置換基、R5とR6とが隣接する窒素原子また は硫黄原子と共に形成していてもよい縮環していてもよ い含窒素または含硫黄異項環基における置換基、R8で 示されるそれぞれ置換基を有していてもよい低級アルキ ル基またはアリール基における置換基、およびR4で示 されるそれぞれ置換基を有していてもよい炭化水素基お よびアシル基(例、アルカノイル基、アロイル基、複素 環カルボニル基、カルバモイル基、チオカルバモイル 基、アリールスルホニル基、アルキルスルホニル基、ス ルファモイル基、アルコキシカルボニル基またはアリー ルオキシカルボニル基)における置換基は、さらに置換 可能な位置に1~3個置換基を有していてもよい。

【0021】該置換基としては上述したごときC1-6ア ルキル基、C2-6 アルケニル基、C2-6 アルキニル基、C 3-6 シクロアルキル基、C3-6 シクロアルケニル基、C 6-10 アリール基、アミノ基、モノ C1-6 アルキルアミノ 基、ジC1-6 アルキルアミノ基、アジド基、ニトロ基、

·--···· はα結合を、 **──** はβ結合を、

【0025】場合を表す。化合物(1)が分子内に酸性置 換基(例、カルボキシルなど)あるいは塩基性置換基 (例、アミノ、モノ低級アルキルアミノ、ジ低級アルキ ルアミノ、含窒素異項環基など)を有する場合には、生 理学的に受容される塩として用いることもできる。生理 学的に受容される塩としては、無機塩基との塩、有機塩 基との塩、無機酸との塩、有機酸との塩、塩基性または 40 酸性アミノ酸との塩などが用いられる。これらの塩類を 生成させうる無機塩基としてはアルカリ金属(例、ナト リウム、カリウムなど)、アルカリ土類金属(例、カルシ ウム、マグネシウムなど)などが、有機塩基としては例 えばトリメチルアミン、トリエチルアミン、ピリジン、 ピコリン、N, Nージベンジルエチレンジアミン、エタ ノールアミン、ジェタノールアミン、トリスヒドロキシ メチルアミノメタン、ジシクロヘキシルアミンなどが、 無機酸としては例えば塩酸、臭化水素酸、硫酸、硝酸、 リン酸などが、有機酸としては例えばギ酸、酢酸、トリ 50 ルアンモニオ、N-メチルピリジニル、N-メチルピロ

ハロゲン、ヒドロキシル基、C1-4 アルコキシ基、C 6-10 アリールオキシ基、C1-6 アルキルチオ基、C6-10 アリールチオ基、シアノ基、カルパモイル基、カルボキ シル基、C1-4 アルコキシカルボニル基、C7-11 アリー ルオキシカルボニル基、カルボキシC1-4 アルコキシ 基、C1-6 アルカノイル基、C7-11 アロイル基、C6-10 アリールスルホニル基、C1-6 アルキルスルフィニル 基、C6-10 アリールスルフィニル基、C1-6 アルキルス ルホニル基、5または6員複素環基、5または6員複素 環カルポニル基、5または6員複素環チオ基等が用いら

【0022】X-で示されるカウンターアニオンとして は、例えばハロゲンイオン(例、ヨードイオン、ブロム イオン、クロルイオンなど)、硫黄イオン、リン酸イオ ン、硝酸イオン、過塩素酸イオン、テトラフルオロボレ ートイオン、メタンスルフェートイオン、pートリルス ルフェートイオン、ベンゼンスルフェートイオン、水酸 イオン、有機酸のカルボキシレートイオン(例、オキザ レートイオン、マレエートイオン、フマレートイオン、 サクシネートイオン、シトレートイオン、ラクテートー トイオン、トリフルオロアセテートイオン、ラクトビオ ネートイオン、アセテートイオン、プロピオネートイオ ン、タータレートイオン、エチルサクシネートイオンな ど)などが挙げられる。

【0023】化合物(1)は分子内に不斉中心をもち光学 活性を有するが、その絶対構造は原料のフマギロールに 基づくものであり、特に明示の場合はフマギロールの絶 対構造と一致するものを意味する。シクロヘキサン環上 の置換基の結合様式は、

[0024] 【化2】

- はα結合でもβ結合でもよい

フルオロ酢酸、シュウ酸、酒石酸、フマール酸、マレイ ン酸、メタンスルホン酸、ベンゼンスルホン酸、pート ルエンスルホン酸などが、塩酸性または酸性アミノ酸と しては例えばアルギニン、リジン、オルニチン、アスパ ラギン酸、グルタミン酸などが用いられる。これらの塩 のうち塩基との塩(すなわち無機塩基との塩、有機塩基 との塩、塩基性アミノ酸との塩)は化合物(1)の置換基 中のカルボキシル基と、また酸との塩(すなわち無機酸 との塩、有機酸との塩、酸性アミノ酸との塩) は化合物 (1)の置換基中のアミノ基、モノ低級アルキルアミノ 基、ジ低級アルキルアミノ基、含窒素異項環基などと形 成しうる塩を意味する。

【0026】また、化合物(1)が分子内にジ低級アルキ ルアミノ基、含窒素異項環基もしくは含窒素芳香族複素 環基などを有する場合にはこれらの基中の窒素原子がさ らにアルキル化されて4級アンモニオ基(例、トリメチ

20

リジン-1-イリウムなど)を形成していてもよく、カウンターアニオンとしては前記のX⁻で示したカウンターアニオンと同様のカウンターアニオンが挙げられる。化合物(1)においては、R¹とR²とで結合手を示すか、R¹が水素でR²がN(O)mR⁵R⁶、N⁺R⁵R⁶R⁷・X⁻、S(O)nR⁵またはS⁺R⁵R⁶・X⁻であることが好ましく、とりわけS⁺R⁵R⁶・X⁻であることが好ましく、とりわけS⁺R⁵R⁶・X⁻でである化合物が好ましい。AとしてOまたはNHが好ましく、R³として2ーメチルー1ープロペニルが好ましく、R⁴として置換基を有するカルパモイルまたはウレイドが好ましい。

【0027】一般式(I)で表される化合物またはその塩は、微生物の生産するフマギリン(fumagillin)の加水分解産物フマギロール(fumagillol)[ターベル、ディー・エス(Tarbell. D. S.)ら、ジャーナル オブ アメリカン ケミカル ソサイエティ(J. Am. Chem. Soc.)83、3096(1961)]を出発物質として用いることによって製造できる。その製造法、物理化学的および生物学的性質は、欧州特許出願第359,036号、欧州特許出願第357,061号、欧州特許出願第354,787号などに詳細に記載されている。この様な化合物(I)の好ましいものとしては、特に、600(N-クロロアセチルカルバモイル)フマギロール、6 α -(N'-クロロアセチルウレイド)-6-デソキシフマギロール、4-(N-クロロアセチルカルバモイルオキ

シ) - 2 - (1, 2 - エポキシ- 1, 5 - メチル- 4 - ヘキセニル) - 1 - (1, 3 - ジヒドベンゾ(C) チオフェン-2 - イリオ) - 3 - メトキシシクロヘキサノールクロリド等が挙げられる。

【0028】精神安定剤としては、ジアゼパム、ロラゼパム、オキサゼパム等が挙げられる。抗真菌剤としては、グリセオフルビン、ランカシジン類 [J. Antibio tics, 38,877-885(1985)]、フルクナゾール等が挙げられる。抗生物質としては、セフォチアムへキセチルなどが挙げられる。抗高脂血症剤としては、クロフィブレート、AL-294 [Chem. Pharm. Bull.、38、2792-2796(1990)] などが挙げられる。難水溶性薬物のその他の例としては、ピロキシカム、ダイアセリン、ジルチアゼム、メゲストロール酢酸、ニフェジピン、ニセロゴリン、ケトプロフェン、プロスタグランジン類などが挙げられる。

【0029】本発明で用いるシクロデキストリンとは6~12個のグルコース単位からなる環状オリゴ糖およびそのグルコースの2、3、6位の水酸基の一部あるいはすべてを他の官能基を置換した化合物をいう。酸シクロデキストリン(以下CyDと略記することもある)の例としては、一般式

[0030]

【化3】

【0031】[式中、xは6~12を満足する整数を、R 9 、R 10 およびR 11 は個々の繰り返し単位中で同一または異なって、それぞれ水素、アルキル基、モノヒドロキシアルキル基、ジヒドロキシアルキル基、カルボキシアルキル基あるいは糖残基を示す。]で表される化合物が挙げられ、より具体的には α -CyD(x=6)、 β -CyD(x=7)、 γ -CyD(x=8)、 δ -CyD(x=9)等およびこれらの水酸基のエーテル誘導体である。

【0032】R⁹~R¹¹で示されるアルキル基としては、例えばメチル、エチル、プロピル等のC1-4 アルキル基が、モノヒドロキシアルキル基としては、例えばヒドロキシメチル、2-ヒドロキシプロピル等のモノヒドロキシーC1-4 アルキル基が、ジヒドロキシアルキル基としては、例えばジヒドロキシメチル、2,2-ジヒドロキシエチル、ジヒドロキシプロピル等のジヒドロキシーC1-4 アルキル基が、カルボキシアルキル基としては、例えばカルボキシメチル、2 50

ーカルボキシエチル等のカルボキシーCi→ アルキル基が、糖残基としてはグルコシル基、マルトシル基、パノシル基などが用いられる。

【0033】これらのシクロデキストリンは1種類でもよく、また、2種類以上混合して使用してもよい。なかでも水に対する溶解度の高いシクロデキストリンが好まれて用いられる。とりわけジヒドロキシプロピル誘導体、およびマルトシル誘導体が好ましく用いられる。シクロデキストリンの使用量は難水溶性薬物に対してモル比で1~5倍モルが好ましい。1.2~2.5倍モルがより好ましく用いられる。本発明の組成物の形態としてはり好ましく用いられる。本発明の組成物の形態としては一般に、薬物は個体状態の方が安定であり、共存するエチルアルコールおよび水を留去させ粉末とするのが好ましい。留去する方法としては凍結乾燥、あるいは減圧乾燥、時としては常圧での気化が挙げられる。薬物の安定化のためには凍結後乾燥する凍結乾燥あるいは凍結減圧乾燥が適当である。

【0034】本発明で用いられる水溶性有機溶媒として は、例えば注射用投与製剤を目的とした品質のものが使 用される。粉末化した組成物中の水溶性有機溶媒の含量 は少ないほど好ましいが、本発明の組成物中では完全に 留去するのは困難であり、組成物中10%(重量)以下が 好ましく、より好ましくは0.1~5%であり、さらに より好ましくは 0.5~3%の範囲である。注射用製剤 とするためには水溶性有機溶媒としてエチルアルコール が繁用されるが、必ずしもエチルアルコールに限定する 必要はなく、水に混和する有機性の溶媒で難水溶性薬物 10 を高濃度に溶解できる溶媒であればよい。エチルアルコ 一ルの他に、例えば、メチルアルコール、イソプロピル アルコール等のアルコール類、アセトン等のケトン類、 アセトニトリル等のニトリル類、ジメチルスルフォキシ ド等のスルフォキシド類、ジメチルフォルムアミド等の アミド類等が水溶性有機溶媒として用いられる。これら の溶媒を用いた場合注射用に使用可能な量までに十分に 留去すれば注射剤として使用することもできる。さら に、注射用以外の適用であればこれらの溶媒の留去が不 十分でも使用が可能である。

【0035】本発明の組成物の製造方法は、難水溶性薬 ・物を水溶性有機溶媒(特にエチルアルコール)に常温付近 (10~35℃)で、必要に応じて60℃までに加温して 溶解する。使用する溶媒の量は該薬物1gに対して、通 常10~8 Oml、好ましくは20~4 Omlである。— 方、シクロデキストリンを水または緩衝液に溶解する。 緩衝液としては、例えばワルポール緩衝液、メンツェル 緩衝液などが挙げられる。使用する水または緩衝液の量 はシクロデキストリン1gに対して、通常1~50ml、 好ましくは5~15mlである。通常、この薬物の水溶性 30 有機溶媒溶液中にシクロデキストリン水溶液を撹拌しな がら徐々に添加する。シクロデキストリン水溶液を添加 した直後は液全体が白濁することがあるが、シクロデキ ストリン水溶液を加え続けると澄明な溶液となる。溶液 の添加順序を逆にすると澄明な液とならないことがあ る。得られた溶液を凍結乾燥あるいは減圧乾燥によって 粉末とする。

【0036】これらの操作に従って得られた粉末は多くの場合包接体であるか、静電的、疎水的な相互作用もしくは水素結合等によって複合体を形成している。また、粉末は包接体、複合体以外は難水溶性薬物または(および)シクロデキストリンを含有していてもよく、この様な粉末も本発明の組成物である。得られる粉末特性(バイアル瓶への充填性、比容積、静電防止等)の向上のた

めに通常注射剤に用いられる糖類、防腐剤、安定化剤、 静電防止剤を添加してもよい。この操作によって得られた粉末は注射剤蒸留水または塩化ナトリウム及び糖類 (グルコース、マンニトール、イノシトール等)で調製した等張水溶液に容易に溶解する。溶解後、難水溶性薬物をその対象疾病に対して有効な濃度を、注射用製剤として静脈内、筋肉内、皮下、臓器内、あるいは腫瘍等の病巣に投与することができる。また、本発明によって得られる粉末は常法に従って注射投与以外の投与剤、例えば、鼻、口腔、直腸、膣等の粘膜投与剤あるいは経皮投与剤、埋め込み剤とすることも可能である。

【0037】本発明の粉末は低毒性で強い薬理作用を示し、哺乳動物(サル、ウシ、イヌ、ヒトなど)の薬剤として有用である。本発明の粉末は、薬物の種類、活性の強さ等により異なるが、通常成人の患者の治療に用いる場合、一日当り本発明の粉末を通常1.0mg~5.0g、好ましくは50mg~2.0gを注射投与する。

[8800]

【実施例】以下に実施例、比較例、実験例を挙げて本発明をさらに具体的に説明するが、これは本発明を限定するものではない。

比較例 1

6-0-(N-クロロアセチルカルパモイル) フマギロー ル(以下、化合物Aという。) 100mgをエチルアルコ ール4mlに溶解し、この溶液とは別にマルトシルーβー シクロデキストリン(G2 B C D)の7 2 6mg(化合物A: G2 B CD=1:2(モル比))を水15mlに溶解した。エ チルアルコール溶液に水溶液を撹拌下添加混合した。得 られた溶液を凍結乾燥して粉末とした。粉末100mgに 水 1mlを加えて本発明の均一溶液を得た。一方、従来の 方法として、G2 β C D の 7 2 6 mg を 1 O m l の 水に溶解 し、これに化合物Aを100mg加え、25℃で撹拌し た。4時間後O.22μmのフィルターでろ過した。上 記、均一溶液とろ過後の溶液中の化合物AをHPLC (高速液体クロマトグラフィー)法で定量した。さらに、 同じモル比での化合物AとG2βCDの25℃における 混合粉末、および化合物Aのみの飽和溶解度をHPLC 法で測定した。その結果、表1に示す溶解濃度が得られ た。従来法の結果は飽和溶解度であるが、本発明の方法 では飽和溶解度ではなくより高濃度の溶解度が期待でき

【0039】 【表1】

溶解性の比較

本発明	4 2. Omg/ml
従来法	3.7
化合物 Α と G 2 β C D の混合粉末	2.3
化合物Aのみ	1, 7

【0040】比較例2

化合物Aの100mgをエチルアルコール4mlに溶解した。この溶液とは別に2ーヒドロキシプロピルー β ーシクロデキストリン(2ーHP $-\beta$ CD)の686mg(化合物A:2ーHP $-\beta$ CD=1:2(モル比))を水15mlに溶解した。エチルアルコール溶液に水溶液を撹拌下添加混合した。得られた溶液を凍結乾燥して粉末とした。粉末70mgに水1mlを加えて本発明の均一溶液を得た。一方、従来の方法として、2ーHP $-\beta$ CDの686mgを10mlの水に溶解し、これに化合物Aを100mgを加

え、25℃で撹拌した。4時間後 0.22μ mのフィルターでろ過した。上記、均一溶液とろ過後の溶液中の化合物 AをHPLC法で定量した。さらに、同じモル比での化合物 Aと2-HP- β CDの25℃における混合粉末、および化合物 Aのみの飽和溶解度をHPLC法で測定した。その結果、表2に示す溶解濃度が得られた。従来法の結果は飽和溶解度であるが、本発明の方法では飽和溶解度ではなくより高濃度の溶解度が期待できる。

[0041]

【表2】

溶解性の比較

本発明	35.2mg/ml
従来法	2.6
化合物Aと2-HP-βCDの混合粉末	2.3
化合物Aのみ	1.7
	र् ग 。
た大祭明の松士とル今姉々のみの	[0042]

【0042】実験例1

比較例1および2で得た本発明の粉末と化合物Aのみの 安定性を40℃に2週間保存することで比較した。化合 物Aの残存量をHPLC法で定量した。結果を表3に示 20

[0043 [集3]

安定性

		_
	残存率	_
化合物 Α と G 2 β C D の混合粉末	100.6%	
化合物Aと2-HP-βCDの混合粉末	39.0	
化合物Aのみ	8 1 . 4	

上記の結果に示すように薬物とシクロデキストリンの種類の組合せによっては溶解性は向上するが、安定性は向上することも逆に低下することもある。

9. 30 [0045]

【0044】実験例2

G2 β C D および 2 − H P − β C D と化合物 A の比率を 溶解性 【表4】

混合モル比(化合物 A:シクロデキストリン)

	1:1	1:1.5	1:2
化合物AとG2 B C D	4.8	22.1	4 2. Omg/ml
化合物Aと2-HP- <i>B</i> CD	4.0	18.3	35.2

【0046】実験例3

比較例 1 および 2 と同様にして種々の混合比での粉末を 調製した。このとき、1:1.5 モル比では 25℃で 65 時間乾燥し、1:2 モル比では 25℃で 42 時間および 40 40℃で 72 時間乾燥した。それぞれの粉末中のエチル アルコール含量をGLC(ガスクロマトグラフィー)法で 測定した。結果を表5に示す。

種々変えて比較例1および2と同様にして凍結乾燥粉末

を調製した。得られた粉末の溶解性を測定し、表4に示

[0047]

【表 5 】

エチルアルコール含量

混合モル比(化合物A:シクロデキストリン)

	1:1.5	1:2	1:2	
	(25°C)	(25°C)	(40°C)	
化合物AとG2βCD	1.3%	1.4%	1.5%	
化合物 A と2-HP- R CD	0.6%	0.7%	_	

【0048】実験例4

難水溶性薬物としてジアゼパム、クロフィブレートを選定し、 $G2\beta$ CDを用いて比較例1と同様にして複合体 50

を作製し、薬物のみの場合と溶解度について比較した。 【0049】

【表6】

溶解度

(G2βCDとの混合モル比	溶解度		
	(薬物: G2 <u>βCD)</u>	複合体	薬物のみ	
ジアゼパム	1:10	>4. Omg/ml	47 μg/ml	
クロフィブレー	h 1:10	>4.3	3 6	

【0050】実施例1

化合物 A の 1 O Omgをエチルアルコール 4 mlに溶解し、この溶液とは別にβーシクロデキストリン(β C D)の 2 O Omgを水 1 5 mlに溶解した。エチルアルコール溶液に水溶液を撹拌下添加混合した。得られた溶液を凍結乾燥 10 して所望の粉末とした。

【0051】実施例2

化合物 Aの 100 mgをエチルアルコール 4mlに溶解し、この溶液とは別にマルトシルー β ーシクロデキストリン (G2 β CD)の726 mgを水15mlに溶解した。エチルアルコール溶液に水溶液を撹拌下添加混合して所望の組成物を得た。

【0052】実施例3

化合物 A の 1 O Omgをエチルアルコール 4 ml に溶解し、この溶液とは別にジヒドロキシプロピルーβーシクロデ 20 キストリン(D H P - β C D)の5 O Omgを水 1 5 ml に溶解した。エチルアルコール溶液に水溶液を撹拌下添加混合した。得られた溶液を凍結乾燥して所望の粉末とした。

【0053】実施例4

セフォチアムヘキセチル100mgをエチルアルコール4 mlに溶解し、この溶液とは別にαーシクロデキストリン (α C D)の200mgを水15mlに溶解した。エチルアルコール溶液に水溶液を撹拌下添加混合した。得られた溶液を凍結乾燥して所望の粉末とした。

【0054】実施例5

化合物 Aの 100 mgをアセトン4 mlに溶解し、この溶液 とは別にマルトシル β ーシクロデキストリン($G2\betaC$ D)の 726 mgを水 15 mlに溶解した。アセトン溶液に 水溶液を撹拌下添加混合した後、凍結乾燥し所望の粉末を得た。

【0055】実施例6

化合物 Aの 1 O Omgをアセトニトリル 4ml に溶解し、この溶液とは別にマルトシルー β ーシクロデキストリン (G2 β C D)の 7 2 6mgを水 1 5ml に溶解した。アセトニトリル溶液に水溶液を撹拌下添加混合した後、凍結乾燥し所望の粉末を得た。

【0056】実施例7

化合物Aの100mgをイソプロピルアルコール4mlに溶解し、この溶液とは別にマルトシルーβーシクロデキストリン(G2βCD)の726mgを水15mlに溶解した。イソプロピルアルコール溶液に水溶液を撹拌下添加混合した後、凍結乾燥し所望の粉末を得た。

【0057】実施例8

化合物Aの100mgをエチルアルコール4mlに溶解し、この溶液とは別にグルコシルー β ーシクロデキストリン(G1 β CD)の645mgを水15mlに溶解した。エチルアルコール溶液に水溶液を撹拌下添加混合して所望の組成物を得た。

フロントページの統き

(51) Int. CI. 5 A 6 1 K		識別 <mark>記号</mark>	庁内整理番号 7252-4C	FI		技術表示箇所
	45/08	AAE	•			
		AAH				
		ABE	8415-4C			
		ADN				
		ADU	٠.		•	
		ADZ				
	47/10	G	7329-4C			

30