

Análise Exploratória de Dados

- Aula 10 -Coleta, Preparação e Análise de Dados

Prof. Me. Lucas R. C. Pessutto

Slides adaptados do material do Prof. Lucas Silveira Kupssinskü e do Prof. Luan Fonseca Garcia

Análise de Dados

- Para conduzir uma mineração ou análise de dados de sucesso é *essencial* que conheçamos nossos dados.
 - Quais tipos de atributos ou campos?
 - Que tipos de valores cada atributo tem?
 - Como esses valores estão distribuídos?
 - Como podemos medir a similaridade entre determinados dados em relação a outros?
- Este tipo de insight facilita a análise subsequente dos dados!

Descrição Estatística de Dados

Descrição Estatística

- Precisamos estar familiarizados com os dados para poder realizar um pré-processamento efetivo.
- Descrições estatísticas permitem identificar propriedades dos dados e destacar quais valores devem ser tratados como ruído ou outliers.
 - Qual a tendência central dos meus dados?
 - Como está a dispersão dos meus dados? (Como eles estão espalhados?)
 - Qual a correlação entre eles?
 - Como visualizar isso?

Tendência Central - Média

• Medida mais simples (e efetiva) para calcularmos o centro de um conjunto de dados é a média aritmética.

Média simples:
$$\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N} = \frac{x_1 + x_2 + \dots + x_N}{N}$$

• Podemos associar a cada valor um peso que reflete sua importância, frequência, etc.

Média ponderada:
$$\bar{x} = \frac{\displaystyle\sum_{i=1}^{N} w_i x_i}{\displaystyle\sum_{i=1}^{N} w_i} = \frac{w_1 x_1 + w_2 x_2 + \dots + w_N x_N}{w_1 + w_2 + \dots + w_N}$$

Tendência Central - Média

- Problema: sensível a outliers. Um pequeno número de outliers extremos podem "corromper" a média.
 - Em uma turma onde 5 alunos tiraram 9 na prova e dois alunos tiraram 0 a média da turma seria 6.42
- Possível solução: eliminar valores extremos.
 - Ordenar os dados e descartar 2% dos valores mais altos e mais baixos antes de calcular a média.
- Chamada de média truncada.

Tendência Central - Mediana

- Em conjuntos de dados desbalanceados a média pode não ser uma boa métrica.
- Conjunto desbalanceado é aquele em que temos um conjunto de dados assimétrico, ou seja, não temos uma distribuição igualitária dos diferentes tipos de classes nos nossos dados.
- Nestes casos, uma métrica mais informativa é a mediana.
 - Valor que separa o conjunto de dados "ao meio".

Tendência Central - Mediana

- Ordenando nossos dados, é o valor que divide o conjunto de dados em duas metades de mesmo tamanho.
- Para um conjunto de tamanho ímpar, é o exato valor central.
- Para um conjunto de tamanho par, pode ser qualquer um dos dois valores centrais ou a média deles.
- Ex: Notas dos alunos ordenadas:
 - 0, 0, 9, 9, 9, 9, 9. Mediana

Tendência Central - Moda

 Tanto média quanto mediana só podem ser calculadas para atributos numéricos.

- A moda de um conjunto é o valor que ocorre com a maior frequência em um conjunto.
 - Pode ser um atributo qualitativo ou quantitativo!
- Notas de alunos:
 - {A, A, B, B, B, C, A, B, B, C, C, C}
 - B ocorre 5 vezes, B é a moda deste conjunto.

Dados Balanceados vs Não-Balancados

 Média, mediana e moda de dados balanceados e positivamente ou negativamente desbalanceados

Dispersão dos dados

Dispersão

 Medidas de dispersão ajudam a compreender a variabilidade dos nossos dados.

- Um conjunto de medidas bastante útil para identificar *outliers* é o chamado **resumo dos cinco números** (five-number summary).
 - Intervalo (range)
 - Quartis
 - Intervalo interquartis

Intervalo (Range) e Quantis

• Intervalo:

• É a diferença entre o maior valor e o menor valor de um conjunto de dados.

Quantil:

- Pontos entre intervalos regulares em uma distribuição de dados que dividem o conjunto em vários subconjuntos de mesmo tamanho.
- 2-Quantil: divide o conjunto em 2 (mediana)
- Quartil: Divide o conjunto em 4.
- Percentil: Divide o conjunto em 100.

Quartil

- Três valores que dividem o dataset em 4 subconjuntos de mesmo tamanho.
- Os quartis nos dão uma indicação do centro, da variabilidade e da forma de uma distribuição.
 - O primeiro quartil (Q1), corta a distribuição nos 25% menores valores, o segundo (Q2) em 50% e o terceiro (Q3) em 75%.
 - Q1 = 25-percentil. Q3 = 75-percentil...

Intervalo inter-quartis

• O intervalo inter-quartis (interquartile range – IQR) é a distância entre o terceiro quartil (Q3) e o primeiro quartil (Q1).

$$IQR = Q3 - Q1$$

Resumo dos cinco números

- Analisar estas medidas por si só é pouco informativas.
 - Analisando só o Q2 (a mediana), não sabemos se temos dados muito variados.
 - Analisando apenas o intervalo, não sabemos se os dados são balanceados ou não.
 - Analisando apenas os quartis (Q1, Q2 e Q3), não conhecemos as "pontas" da nossa distribuição.

- O mais comum é analisarmos todos estes número em conjunto.
 - Utilizamos box plots para isso!

Boxplot

- Forma gráfica de representar uma distribuição.
- As extremidades do retângulo são os quartis Q1 e Q2.
- A linha dentro do retângulo é a mediana (Q2).
- As duas linhas fora do retângulo (whiskers) são os valores mínimo e máximo.

Boxplot e a Distribuição Normal

Boxplot

Variância e Desvio Padrão

- Também são medidas de dispersão, porém em torno da média, e não da mediana.
- Seja μ a média aritmética de um conjunto

Variância σ^2 : expectativa para uma variável aleatória do desvio quadrado da média

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} (x_{i} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{n} x_{i}^{2} - \mu^{2}$$

Desvio padrão σ : expectativa do desvio de uma variável aleatória

$$\sigma = \sqrt{\sigma^2}$$

O que podemos medir em atributos?

Momento

momento_k
$$(x_j) = \frac{\sum_{i=1}^{N} (x_j^{(i)} - \bar{x}_j)^k}{(N-1)}$$

O que podemos medir em atributos?

momento_k
$$(x_j) = \frac{\sum_{i=1}^{N} (x_j^{(i)} - \bar{x}_j)^k}{(N-1)}$$

quando k=2, tem-se a variância, que é o segundo momento central; quando k=3, tem-se a obliquidade, que é o terceiro momento central; quando k=4, tem-se a curtose, que é o quarto momento central.

Análise Multivariada de dados

Medidas de mais de um atributo

• Covariância

$$cov(\mathbf{x}_j, \mathbf{x}_k) = \frac{1}{N-1} \sum_{i=1}^{N} (x_j^{(i)} - \bar{x}_j)(x_k^{(i)} - \bar{x}_k)$$

Covariância

- Se Cov(A,B) > 0, dizemos que temos uma covariância positiva e ambas variáveis se movem juntas.
- Se Cov(A,B) < 0, dizemos que temos uma covariância negativa e ambas variáveis se movem em posições opostas.
- Duas variáveis independentes entre si possuem Cov(A,B) = 0

• Variância é um caso especial da covariância onde temos Cov(A,A).

Exemplo covariância

- Suponha que duas ações (X_1, X_2) tenham os seguintes valores em uma semana:
 - (2, 5), (3, 8), (5, 10), (4, 11), (6, 14)
- Se as ações forem afetadas pelas mesmas tendências, os preços subirão ou cairão juntos?

$$\overline{X_1} = \frac{20}{5} = 4$$
 $\overline{X_2} = \frac{48}{5} = 9.6$ $\text{cov}(\mathbf{x}_j, \mathbf{x}_k) = \frac{1}{N-1} \sum_{i=1}^{N} (x_j^{(i)} - \bar{x}_j)(x_k^{(i)} - \bar{x}_k)$

$$cov(X_1, X_2)$$
=\frac{1}{5-1}[(2-4)(5-9,6) + (3-4)(8-9,6) + (5-4)(10-9,6) + (4-4)(11-9,6) + (6-4)(14-9,6)]
=\frac{1}{4}[9,2+1,6+0,4+0+8,8] = 5

• Sendo assim, X_1 e X_2 subirão ou cairão juntas porque $Cov_{1,2} > 0$ (positivo)

Medidas de mais de um atributo

Correlação

$$corr(\mathbf{x}_j, \mathbf{x}_k) = \frac{cov(\mathbf{x}_j, \mathbf{x}_k)}{\sigma_{\mathbf{x}_j} \sigma_{\mathbf{x}_k}}$$

Visualizando diferentes coeficientes de correlação

- Intervalo do coeficiente: [-1, 1]
- Vários scatter plots mostrando conjunto de pontos e o coeficiente de correlação entre eles mudando de -1 até 1

Outras visualizações

Histogramas

- Visualização gráfica em barras de um conjunto de dados tabulado e dividido em classes.
 - Dados são divididos em subconjuntos consecutivos (bins), cada barra representa a frequência da ocorrência em um subconjunto.
- Histogramas são **diferentes** de gráficos de barra (bar chart)!
 - Histogramas são quantitativos, gráficos de barra qualitativos.
 - A ordem das barras é relevante no histograma, no outro não é.

Histogramas e Boxplots

- Em geral histogramas são mais informativos que boxplots.
- Os dois histogramas na esquerda podem ter o mesmo boxplot.
 - Mesmo valores para min, Q1, mediana, Q3 e max.
- São distribuições bem diferentes!

Scatter plot (Gráfico de dispersão)

- Primeira visualização em dados bivariados para olhar clusters, outliers, etc.
- Cada par de valores é tratado como um par de coordenadas e plotado como pontos no plano.

Visualizando correlações: Gráfico de Scatter Plot

Correlações Positivas e Negativas

Dados não correlacionados

Medidas de Similaridade e Distância

Medidas de Proximidade

- Matriz de Dados vs Matriz de Dissimilaridade
- Medidas de proximidade para atributos:
 - Numéricos
 - Binários Simétricos e Assimétricos
 - Nominais
 - Ordinais
- Medidas de proximidade para objetos com atributos mistos.
- Outras medidas de similaridade
 - Cosseno
 - Informação Mútua

Similaridade, Dissimilaridade e Proximidade

Medida ou função de similaridade

- Função que quantifica a similaridade entre dois objetos
- Mede o quanto dois objetos são parecidos: quanto maior o valor, mais similares
- Geralmente no intervalo [0,1]: 0: não similar; 1: completamente similar
- Medida ou função de dissimilaridade (ou distância)
 - Medida do quão diferente são dois objetos de dados
 - "Inverso" da similaridade: Quanto maior o valor, mais distantes dois objetos
 - Intervalo [0, 1] ou [0, ∞), dependendo da medida
- Proximidade se a qualquer um dos dois tipos de medidas
- Em geral é mais comum calcular a distância e considerar que sim(a,b) = 1 d(a,b)

Matriz de Dados e Matriz de Dissimilaridade

- Matriz de dados
 - Uma matriz de *n* objetos com *l* dimensões

- Matriz de dissimilaridade (ou distância)
 - n objetos, mas só registra distância d(i,j) (por que distância é tipicamente simétrica)
 - Funções de distância são diferentes para atributos de tipos diferentes (nominais, ordinais, binários, numéricos etc.)

$$\begin{pmatrix}
0 \\
d(2,1) & 0 \\
\vdots & \vdots & \ddots \\
d(n,1) & d(n,2) & \dots & 0
\end{pmatrix}$$

Exemplo

Matriz de Dados

point	attribute1	attribute2
<i>x1</i>	1	2
<i>x2</i>	3	5
<i>x3</i>	2	0
<i>x4</i>	4	5

Matriz de distância (Euclidiana)

	<i>x1</i>	<i>x</i> 2	<i>x3</i>	<i>x4</i>
<i>x1</i>	0			
<i>x</i> 2	3.61	0		
<i>x3</i>	2.24	5.1	0	
<i>x4</i>	4.24	1	5.39	0

Atributos numéricos: Minkowski Distance

Minkowski distance: Medida popular de distância

$$d(i,j) = \sqrt[p]{|x_{i1} - x_{j1}|^p + |x_{i2} - x_{j2}|^p + \dots + |x_{il} - x_{jl}|^p}$$

onde $i = (x_{i1}, x_{i2}, ..., x_{il})$ e $j = (x_{j1}, x_{j2}, ..., x_{jl})$ são dois objetos com l dimensões, e p é o grau (também chamada de L-p norm)

- Propriedades interessantes:
 - d(i, j) > 0 se $i \neq j$, e d(i, i) = 0 (Sempre positiva)
 - d(i, j) = d(j, i) (Simétrica)
 - $d(i, j) \le d(i, k) + d(k, j)$ (Desigualdade triangular)
- Qualquer função de distância que respeite essas propriedades é uma métrica

Casos especiais da distância de Minkowski

• p = 1: (L₁ norm) Distância de Manhattan (ou city block)

$$d(i, j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{il} - x_{jl}|$$

• p = 2: (L₂ norm) Distância Euclidiana

$$d(i,j) = \sqrt{|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{il} - x_{jl}|^2}$$

- $p \to \infty$: (L_{max} norm, L_{\infty} norm) Distância de Chebyshev
 - A diferença máxima entre todos os pares de atributos

$$d(i,j) = \lim_{p \to \infty} \sqrt[p]{|x_{i1} - x_{j1}|^p + |x_{i2} - x_{j2}|^p + \dots + |x_{il} - x_{jl}|^p} = \max_{f=1}^l |x_{if} - x_{jf}|$$

Exemplo:

point	attribute 1	attribute 2
x1	1	2
x2	3	5
x 3	2	0
x4	4	5

Manhattan (L₁)

L	x1	x2	х3	x4
x1	0			
x2	5	0		
x 3	3	6	0	
x4	6	1	7	0

Euclidiana (L₂)

L2	x1	x2	х3	x4
x1	0			
x2	3.61	0		
x 3	2.24	5.1	0	
x4	4.24	1	5.39	0

Chebyshev (L_{∞})

L_{∞}	x1	x2	х3	x4
x1	0			
x2	3	0		
x 3	2	5	0	
x4	3	1	5	0

Medidas para atributos binários

Matriz de contigência para atributos binários

	Objeto <i>j</i>			
		1	0	sum
Objeto <i>i</i>	1	q	r	q+r
Objeto /	0	s	t	s+t
	sum	q + s	r+t	p

• Distância para variáveis binárias simétricas:

$$d(i,j) = \frac{r+s}{q+r+s+t}$$

• Distância para variáveis binárias assimétricas:

$$d(i,j) = \frac{r+s}{q+r+s}$$

• Coeficiente de Jaccard (medida de similaridade para variáveis assimétricas)

$$sim_{Jaccard}(i, j) = \frac{q}{q + r + s}$$

Exemplo: Dissimilaridade entre variáveis assimétricas

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gênero não é considerado (é simétrico)
- Todos outros atributos são assimétricos
- Considerando Y e P = 1, e N = 0

• Distância:
$$d(i, j) = \frac{r+s}{q+r+s}$$

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$
$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$
$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

			Mary	
		1	0	Σ_{row}
Jack	1	2	0	2
Jack	0	1	3	4
	\sum_{col}	3	3	6

		Jin	1	
		1	0	Σ_{row}
	1	1	1	2
Jack	0	1	3	4
	\sum_{col}	2	4	6

		N	lary	
		1	0	\sum_{row}
	1	1	1	2
Jim	0	2	2	4
	\sum_{col}	3	3	6

Medidas para atributos nomimais

- Example: Cor (red, yellow, blue, green), profissão, etc.
- <u>Método 1</u>: Simple matching $d(i,j) = \frac{p-m}{p}$
 - m: # de matches, p: # total de variáveis
- <u>Método 2</u>: Converter atributo nominal para vários atributos binários e calcular como distância binária
 - Cor_vermelha: 0 ou 1
 - Cor_amarela: 0 ou 1
 - Cor azul: 0 ou 1
 - Cor_verde: 0 ou 1

Exemplo para nominal

$$d(i,j) = \frac{p-m}{p}$$

m: # de matches, p: # total de variáveis

p = 1 (variável teste 1)

ID	Teste 1 (nominal)	Teste 2 (ordinal)	Teste 3 (numérico)
1	Código A	Excelente	45
2	Código B	Razoável	22
3	Código C	Bom	64
4	Código A	Excelente	28

$$\text{Matriz de Dissimilaridade} = \begin{bmatrix} 0 & & & & \\ d(2,1) & 0 & & & \\ d(3,1) & d(3,2) & 0 & & \\ d(4,1) & d(4,2) & d(4,3) & 0 \end{bmatrix} = \begin{bmatrix} 0 & & & \\ 1 & 0 & & \\ 1 & 1 & 0 & \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

Variáveis ordinais

- Ordenação é importante.
 - Podemos pensar na ordem como um ranqueamento (pequeno < médio < grande)
- Abordagem: substituir os valores de um atributo ordinal pelo valor do seu rank.
 - Ordenar os valores e atribuir um número para cada valor.
 - Ex: {pequeno, médio, grande} -> {1, 2, 3}

$$r_{if} \in \{1, ..., M_f\}$$

• Calcular distância como se fosse atributo numérico.

Problema:

- Quando temos vários atributos nominais, aquele que tiver mais rankings vai influenciar mais na medida.
- Solução: mapear todos atributos para um intervalo de [0, 1] e substituir pelos valores normalizados $r_{if}-1$

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

Exemplo para ordinal

- Ordenar valores de *f*:
 - {Razoável, Bom, Excelente}
- Atribuir um ranking $r_{if} \in \{1,...,M_f\}$
 - {1, 2, 3}
- Normalizar os rankings em [0,1]
 - {0,0.5,1}
- Substituir x_{if} pelo valor normalizado
- Calcular distância numérica
 - Distância Euclidiana:

L 0			٦
1.0	0		0
0.5	0.5	0	
$\begin{bmatrix} 0 \\ 1.0 \\ 0.5 \\ 0 \end{bmatrix}$	1.0	0.5	0

ID	Teste 1 (nominal)	Teste 2 (ordinal)	Teste 3 (numérico)
1	Código A	Excelente	45
2	Código B	Razoável	22
3	Código C	Bom	64
4	Código A	Excelente	28

Z_{if}	_	r _{if}	- 1
	_	$\overline{m{M}_f}$	-1

Teste 2 (ordinal)

1

C

0.5

1

Pares (1,2) e (4,2) são os mais dissimilares

Proximidade com atributos mistos

- Um mesmo dataset pode ter tipos diferentes de atributos
 - Nominal, binário (ass)simétrico, numérico e ordinal
- Como calcular a distância entre objetos com atributos diferentes?
- Abordagem simples: agrupar atributos do mesmo tipo e calcular proximidade entre eles.
 - Problema é que precisamos que as diferentes análises tenham resultados compatíveis, o que é pouco provável em dados reais.

 Outra abordagem: calculo único, utilizando uma média ponderada das distâncias específicas de cada tipo de atributo.

Proximidade com atributos mistos

 Média ponderada onde o valor do peso w depende do tipo de atributo f dos p atributos existentes:

$$d(i,j) = \frac{\sum_{f=1}^{p} w_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} w_{ij}^{(f)}}$$

- $w^{(f)} = 0$ se
 - x_{if} ou x_{if} estiverem faltando os valores (campo vazio)
 - $x_{if} = x_{jf} = 0$ e f for binário ou nominal.
- $w^{(f)} = 1$ para todos outros casos
 - Se f for ordinal, ordenar e normalizar os rankings e tratar como numérico
 - Se f for numérica, calcular a distância normalizada $d_{ij}^{(f)} = \frac{|x_{if} x_{jf}|}{max_f min_f}$

Exemplo misto

• Já calculamos para Testes 1 e 2, falta a distância normalizada para Teste 3.

$$d_{ij}^{(f)} = \frac{|x_{if} - x_{jf}|}{\max_f - \min_f}$$

$$d_{ij}^{(teste\ 3)} = \begin{bmatrix} 0 \\ 0.55 & 0 \\ 0.45 & 1.00 & 0 \\ 0.40 & 0.14 & 0.86 & 0 \end{bmatrix}$$

$$d_{ij}^{(teste\ 1)} = d_{ij}^{(teste\ 3)} =$$

$$d_{ij}^{(teste\ 2)} = \begin{bmatrix} 0 \\ 1.0 & 0 \\ 0.5 & 0.5 & 0 \\ 0 & 1.0 & 0.5 & 0 \end{bmatrix}$$

d(i, j) =	$\sum_{f=1}^p w_{ij}^{(f)} d_{ij}^{(f)}$			
	$\sum_{f=1}^{p} W_{ij}^{(f)}$			

ID	Teste 1 (nominal)	Teste 2 (ordinal)	Teste 3 (numérico)
1	Código A	Excelente	45
2	Código B	Razoável	22
3	Código C	Bom	64
4	Código A	Excelente	28

Teste 1 Teste 2 Teste 3
$$d(3,1) = \frac{1(1) + 1(0.50) + 1(0.45)}{3} = 0.65$$

$$d_{ij} = \begin{bmatrix} 0 \\ 0.85 & 0 \\ 0.65 & 0.83 & 0 \\ 0.13 & 0.71 & 0.79 & 0 \end{bmatrix}$$

Outras medidas

- Existem diversas outras medidas, mas as que vimos já funcionam para grande parte dos casos.
- Uma medida que vale a pena conhecer é a similaridade do cosseno.
 - Tipicamente é utilizada em tarefas de PLN e bioinformática, onde dados são esparsos.
 - Calcula a similaridade entre dois vetores.

$$cos(d_1, d_2) = \frac{d_1 \bullet d_2}{\|d_1\| \times \|d_2\|}$$

• Onde x e y são vetores em um produto vetorial e ||x|| e ||y|| são a norma euclidiana de x e y.

Exemplo

Documentos representados como bag of terms:

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

• Similaridade entre documentos 1 e 2.

$$d_1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$$
 $d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$

$$d_1 \bullet d_2 = 5 \times 3 + 0 \times 0 + 3 \times 2 + 0 \times 0 + 2 \times 1 + 0 \times 1 + 0 \times 1 + 2 \times 1 + 0 \times 0 + 0 \times 1 = 25$$

$$||d_1|| = \sqrt{5 \times 5 + 0 \times 0 + 3 \times 3 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 0 \times 0} = 6.481$$

$$||d_2|| = \sqrt{3 \times 3 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 1 \times 1 + 1 \times 1 + 0 \times 0 + 1 \times 1 + 0 \times 0 + 1 \times 1} = 4.12$$

$$cos(d_1, d_2) = 25/(6.481 \times 4.12) = 0.94$$

Informação Mútua

- Medida de dependência mútua entre duas variáveis.
 - Quantifica a "quantidade de informação" que podemos obter sobre **uma** variável aleatório observando **outra** variável aleatória.
- Relacionada com o conceito de entropia (quantidade de informação observada em uma variável aleatória)
- Entropia da variável V com k valores: $H(V) = -\sum_k P(v_k) \log_2 P(v_k)$
- Informação Mutua = I(A,B) = H(A) + H(B) H(A,B)

Informação Mútua

• Entropia da variável *V* com *k* valores:

$$H(V) = -\sum_{k} P(v_k) \log_2 P(v_k)$$

$$H(A,B) = -\sum_{k} \sum_{i} P(A_k, B_i) \log_2 P(A_k, B_i)$$

$$P(k,i) = P(k) \times P(i)$$

• Informação Mútua = I(A,B) = H(A) + H(B) - H(A,B)

Resumo

- Tipos de atributos (ou features, ou dimensões)
 - Nominal, binário, ordinal, numérico, discreto vs. contínuo
- Estatísticas dos dados
 - Tendência central, dispersão, covariância e correlação, gráficos
- Similaridade/Dissimilaridade
 - Medidas para cada tipo de atributo e todos misturados
 - Cosseno para vetores esparsos
 - Informação mútua