

Universidade Estadual de Campinas Instituto de Computação

Laura Viglioni

The Dissertation or Thesis Title in English

Título da Dissertação ou Tese em Português

Laura Viglioni

The Dissertation or Thesis Title in English

Título da Dissertação ou Tese em Português

Dissertação apresentada ao Instituto de Computação da Universidade Estadual de Campinas como parte dos requisitos para a obtenção do título de Mestra em Ciência da Computação.

Dissertation presented to the Institute of Computing of the University of Campinas in partial fulfillment of the requirements for the degree of Master in Computer Science.

Supervisor/Orientador: Prof. Dr. Ricardo Dahab

Este exemplar corresponde à versão da Dissertação entregue à banca antes da defesa.

Na versão final esta página será substituída pela ficha catalográfica.

De acordo com o padrão da CCPG: "Quando se tratar de Teses e Dissertações financiadas por agências de fomento, os beneficiados deverão fazer referência ao apoio recebido e inserir esta informação na ficha catalográfica, além do nome da agência, o número do processo pelo qual recebeu o auxílio."

e

"caso a tese de doutorado seja feita em Cotutela, será necessário informar na ficha catalográfica o fato, a Universidade convenente, o país e o nome do orientador."

Na versão final, esta página será substituída por outra informando a composição da banca e que a ata de defesa está arquivada pela Unicamp.		

Resumo

 ${\cal O}$ resumo deve ter no máximo 500 palavras e deve ocupar uma única página.

Abstract

The abstract must have at most 500 words and must fit in a single page.

Contents

1	Introduction	8
2	Mathematical Background 2.1 Groups	9 10
3	Hypothesis	11
4	Results	12
5	Conclusions	13

Introduction

Mathematical Background

2.1 Groups

Definition 2.1.1 A group is a set G closed under a binary operation \cdot defined on G such that:

- Associativity: $\forall a, b, c \in G, \ a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- Identity element: $\exists e \in G \; ; \; \forall a \in G, \; a \cdot e = e \cdot a = a$
- Inverse element: $\forall a \in G, \exists b \in G ; a \cdot b = b \cdot a = e$

And it is denoted by $\langle G, \cdot \rangle$, or simply G if the operation is implied.

Definition 2.1.2 A group is sait to be **commutative** or **abelian** if $\forall a, b \in G$, $a \cdot b = b \cdot a$

A group is called **additive** or **multiplicative** if its operation is addition or multiplication, respectively.

Definition 2.1.3 A subset H of G is a **subgroup** of $\langle G, \cdot \rangle$ if it is closed under \cdot induced by $\langle G, \cdot \rangle$.

Definition 2.1.4 The order of a group $\langle G, \cdot \rangle$ is the cardinality of the set G.

Definition 2.1.5 A subgroup H of G can be used to decompose G in uniform sized and disjoints subsets called **cosets**. Given an element $g \in G$:

- A left coset is defined by $gH := \{g \cdot h ; h \in H\}$
- A right coset is defined by $Hg := \{h \cdot g ; h \in H\}$

2.2 Rings and Fields

Definition 2.2.1 A ring is a set together with two binary operations, we will note by + and * and call it addition and multiplication, respectively, such that:

- $\langle R, + \rangle$ is an abelian group.
- * is associative
- \bullet * is distributive over +

And it is denoted by $\langle R, +, * \rangle$, or simply G if the operations are implied.

Definition 2.2.2 A ring is said to be **commutative** if its * operation is commutative.

Definition 2.2.3 A ring is said to be with unity if * has a identity element. We shall note it by 1 and it is called unity.

Definition 2.2.4 A division ring is a ring R where $\forall r \in R, \exists s \in R ; r * s = 1.$

Definition 2.2.5 A field is a commutative division ring.

2.3 Lattices

Definition 2.3.1 A Lattice $\Lambda \subset \mathbb{R}^n$ is a subgroup of the additive group \mathbb{R}^n

In other words, given m linear independent vectors in \mathbb{R}^n , the set $\{v_1, v_2, ..., v_m\}$ is called a **basis** for Λ and the Lattice may defined by:

Definition 2.3.2

$$\Lambda := \left\{ x = \sum_{i=1}^{m} \lambda_i v_i \in \mathbb{R}^n \mid \lambda_i \in \mathbb{Z} \right\}$$
 (2.1)

2.4 Number Fields

Definition 2.4.1 Let K and L be two fields, L is said to be a **field extension** of K if $L \subseteq K$ and we denote by L/K

Note that in a field extension L/K, L has a structure of a vector space over K, where vector addition is in L and scalar multiplication $a \in K$, $v \in L \implies av \in L$. The dimention of L as a vector space is called **degree** and it is denoted by [L:K].

Definition 2.4.2 A field extension is called **number field** when it is over \mathbb{Q} .

Hypothesis

Results

Conclusions