北京工业大学 2019—2020 学年第一学期 《 数字信号处理 II》 考试试卷 B 卷

考试说明:考试时间:95分钟 考试形式(半开卷): 闭卷

适用专业: 电子信息工程、通信工程

本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分条例》,承诺在考试过程中自觉遵守有关规定,服从监考教师管理,确保整个考试过程均在摄像头可视范围之内且监控不中断,不对试题进行截屏、拍照等,不通过手机、QQ等各种手段向他人寻求答案;若有违反,愿接受相应的处分。

阅读完毕后请将以下文字誊抄在答题纸首页,并做好答题准备。

本人已认真阅读以上要求,知晓相关规定并遵守执行,若有违反,愿接受相应的处分。

承诺人:	尝导 。	班号:
外佑八:		班 5:

注:本试卷共 __七_ 大题,共 _十_ 页,满分 100 分。并将答案写在答题纸上, 如因答案写在其他位置而造成的成绩缺失由考生自己负责。

卷 面 成 绩 汇 总 表 (阅卷教师填写)

题号	_	=	三	四	五.	六	七	总成绩
满分	10	10	24	20	10	12	14	
得分								

一、选择题(10分,每题2分)

1. 下列关系正确的为(

)。

A.
$$u(n) = \sum_{k=0}^{n} \delta(n-k)$$

$$u(n) = \sum_{k=-\infty}^{n} \delta(n-k)$$
C.

$$u(n) = \sum_{k=0}^{\infty} \delta(n-k)$$

$$u(n) = \sum_{k=-\infty}^{n} \delta(n-k)$$

B.
$$u(n) = \sum_{k=0}^{\infty} \delta(n-k)$$
D.
$$u(n) = \sum_{k=-\infty}^{\infty} \delta(n-k)$$

2. 余弦信号序列 $x(n) = \cos(\frac{3}{4}\pi n + \frac{\pi}{4})$,则该信号的周期 N= (

- A. 8
- B. 10
- C. 6
- D. 2

3. 设系统的单位抽样响应为 h(n),则系统因果的充要条件为(

A. 当 n>0 时, h(n)=0

B. 当 n>0 时, $h(n)\neq 0$

C. 当 n<0 时, h(n)=0

D. 当 n < 0 时, $h(n) \neq 0$

4.己知 x(n)=1, 其 N 点的 DFT [x(n)] = X(k), 则 X(0)=(

A.N

B. 1

C. 0

D. -N

5. 对于离散傅立叶变换而言,具信号的特点是()
A. 时域连续非周期, 频域连续非周期
B. 时域离散周期, 频域连续非周期
C. 时域离散非周期, 频域连续非周期
D. 时域离散周期, 频域离散周期
得分 二、判断题(10分,每空 2分) 1、按时间抽取的 FFT 算法的运算量小于按频率抽取的 FFT 算法的运算量。(
2 、序列的傅立叶变换是频率 ω 的周期函数,周期是 2π 。()
3、频率抽样型滤波器的结构不是 IIR 滤波器的基本结构。()
4、FIR DF 设计的窗函数法不可以设计高通滤波器。()
5、 $x(n)$, $y(n)$ 的循环卷积的长度与 $x(n)$, $y(n)$ 的长度有关; $x(n)$, $y(n)$ 的线性卷积的长
度与 $x(n)$, $y(n)$ 的长度无关。()

得分

三、名词解释及简答题(24分)

- (1) 时域采样定理
- (2) 频域采样定理
- (3) 连续信号抽样所得离散信号的频谱与原连续信号频谱间关系
- (4) 试论述用双线性变换法设计数字低通滤波器的基本步骤

资料由公众号【丁大喵】收集整理并免费分享

得 分

四、(20分) 计算题

- (1) 己知两个序列 $x(n) = \{1, 2, 2; n = 0, 1, 2\}$, $h(n) = \{2, 1, 1, 3; n = 0, 1, 2, 3\}$ 。
 - 试求: ① 线性卷积: $y_1(n) = x(n) * h(n)$;
 - ② 循环卷积: $y_2(n) = x(n) \otimes h(n)$, N=4。
- (2) 已知语音信号 x(n) 的长度为 N=1000,采样频率为 8kHz, x(n) 的 DFT 变换为 X(k), $k=0,1,\cdots,999$,则 k=200 对应的实际频率是多少?

得 分

五、计算题(10分)

已知 $x(n) = 2^n R_5(n)$, (1) 求其 z 变换 X(z) 及其频谱 $X(e^{j\omega})$

(2) 分别求其 5 点离散傅里叶变换 X(k)。

得 分

六、(12分)画图题

试画出 8 点按时间抽取的 FFT 算法流图。比较用定义直接计算 N 点序列的 DFT 和用基 2 FFT 算法计算 N 点序列的 DFT 的复数乘法次数。

得 分

七、(14分)为了提高语音通信的有效性,需要对语音信号进行编码处理,AMR-WB 是常用的语音编码器。16kHz 采样的语音信号要想选用

AMR-WB 宽带编码器进行编码处理,编码前需要进行截止频率为 4kHz 的低通滤波操作。请采用窗函数法设计一个满足编码需求的 FIR 低通数字滤波器,要求过渡带宽度为 $\pi/16$ rad,阻带最小衰减为 50dB。选取合适的窗函数,使所设计的滤波器阶数最低。

采用窗函数法设计 FIR 数字滤波器时,常用的几个窗函数及其特征如下表:

窗函数	旁瓣峰值 (dB)	阻带最小衰减(dB)	过渡带
矩形窗	-13	-21	$4\pi/N$
三角窗	-25	-25	$8\pi/N$
汉宁窗	-31	-44	$8\pi/N$
哈明窗 (海明窗)	-41	-53	8π/N