МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Отчет по курсовой работе

по дисциплине «Численные методы» по теме:

решение краевой задачи в двумерной области методом конечных элементов

Работу выполнили студенты группы А-13б-20 Бегунов Никита Малышкин Павел Научный руководитель: Крымов Никита Евгеньевич

Задание

Рассматривается задачи Дирихле в области

$$-\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) = f, (x, y) \in G \tag{1}$$

$$u = g, (x, y) \in \partial G \tag{2}$$

Уравнение (1) описывает установившееся в какой-то бесконечно далекий момент времени, при неизменности внешней среды и внутренних физико-химических процессов, распределение температуры u в пластине G. Здесь f - плотность внутренних источников тепла, g - температура внешней среды. Область представляет собой квадрат $0 \le x \le 1, 0 \le y \le 1$. Уравнение (2) описывает температуру пластины на границе. Необходимо решить задачу методом конечных элементов.

Содержание

1	Вве	едение	4
2	2.1	год конечных элементов Вывод расчетных формул МКЭ для задачи Дирихле	5 5
3	2.2 Пос	Вычисление интегралов во всех случаях	7 11
	3.1	Реальные тестовые примеры 3.1.1 Первый тестовый пример 3.1.2 Второй тестовый пример 3.1.3 Третий тестовый пример Искусственные тестовые примеры 3.2.1 Четвертый тестовый пример 3.2.2 Пятый тестовый пример	11 12 12 13 13 13
4	Опи	исание алгоритма программы	15
5	Pen	пение программой тестовых примеров	16
6	Зак	лючение	19
7	Спи	исок использованных источников	20
8	Прі	иложение	21

1 Введение

Необходимо разработать алгоритм для нахождения методом конечных элементов распределения температуры и в пластине G в квадрате $0 \le x \le 1, 0 \le y \le 1$, описываемой задачей Дирихле, написать код на языке программирования Python, а также разработать тестовые примеры и проверить на них работоспособность полученной программы.

2 Метод конечных элементов

2.1 Вывод расчетных формул МКЭ для задачи Дирихле

Рассмотрим исходную задачу Дирихле для области:

$$-\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) = f$$

Раскроем скобки и домножим обе части на некоторую функцию φ , равную нулю на границе:

$$-rac{\partial^2 u}{\partial x^2}arphi-rac{\partial^2 u}{\partial y^2}arphi=farphi$$
, где $arphi(x,y)=0, (x,y)\in\partial G$

Рассмотрим функцию

$$\varphi(x,y) = \frac{1}{h} \begin{cases} 1 - (\frac{x}{h} - i); x_i \le x \le x_{i+1}, y_j \le y \le y_j + (x - x_i); (I) \\ 1 - (\frac{y}{h} - j); x_i \le x \le x_{i+1}, y_j + (x - x_i) \le y \le y_{j+1}; (II) \\ 1 + (\frac{x}{h} - i) - (\frac{y}{h} - j); x_{i-1} \le x \le x_i, y_j \le y \le y_j + (x - x_{i-1}); (III) \\ 1 + (\frac{x}{h} - i); x_{i-1} \le x \le x_i, y_{j-1} + (x - x_{i-1}) \le y \le y_j; (IV) \\ 1 + (\frac{y}{h} - j); x_{i-1} \le x \le x_i, y_{j-1} \le y \le y_{j-1} + (x - x_{i-1}); (V) \\ 1 - (\frac{x}{h} - i) + (\frac{y}{h} - j); x_i \le x \le x_{i+1}, y_{j-1} + (x - x_i) \le y \le y_j; (VI) \end{cases}$$

И добавим интегралы по области G в обе части равенства:

$$-\int_{G} \frac{\partial^{2} u}{\partial x^{2}} \varphi dx dy - \int_{G} \frac{\partial^{2} u}{\partial y^{2}} \varphi dx dy = \int_{G} f \varphi dx dy$$

Проинтегрируем по частям интегралы в левой части (так как функция $\varphi = 0$ на границе):

$$\int_{G} \frac{\partial^{2} u}{\partial x^{2}} \varphi dx dy = \int_{G} \frac{\partial u}{\partial x} \frac{\partial \varphi}{\partial x} dx dy$$

$$\int_{G} \frac{\partial^{2} u}{\partial y^{2}} \varphi dx dy = \int_{G} \frac{\partial u}{\partial y} \frac{\partial \varphi}{\partial y} dx dy$$

Подставим полученные интегралы:

$$\int_{G} \frac{\partial u}{\partial x} \frac{\partial \varphi}{\partial x} dx dy + \int_{G} \frac{\partial u}{\partial y} \frac{\partial \varphi}{\partial y} dx dy = \int_{G} f \varphi dx dy$$

Дискретизируем функцию φ как $\varphi_{i,j}, 1 \leq i \leq N, 1 \leq j \leq N$, каждая из $\varphi_{i,j} = 0$ на границе. Будем искать решение задачи в виде

$$\overline{u} = \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i,j} \varphi_{i,j}(x,y)$$

Используя \overline{u} вычислим значения частных производных для u:

$$\frac{\partial \overline{u}}{\partial x} = \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i,j} \frac{\partial \varphi_{i,j}}{\partial x}$$

$$\frac{\partial \overline{u}}{\partial y} = \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i,j} \frac{\partial \varphi_{i,j}}{\partial y}$$

И подставим полученное в равенство:

$$\int_{G} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i,j} \frac{\partial \varphi_{i,j}}{\partial x} \frac{\partial \varphi}{\partial x} dx dy + \int_{G} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i,j} \frac{\partial \varphi_{i,j}}{\partial y} \frac{\partial \varphi}{\partial y} dx dy = \int_{G} f \varphi dx dy$$

Поменяем местами знаки интегрирования и суммы:

$$\sum_{i=1}^{N} \sum_{j=1}^{N} \int_{G} \alpha_{i,j} \frac{\partial \varphi_{i,j}}{\partial x} \frac{\partial \varphi}{\partial x} dx dy + \sum_{i=1}^{N} \sum_{j=1}^{N} \int_{G} \alpha_{i,j} \frac{\partial \varphi_{i,j}}{\partial y} \frac{\partial \varphi}{\partial y} dx dy = \int_{G} f \varphi dx dy$$

Теперь вместо φ будем по очереди подставлять $\varphi_{k,l}, 1 \leq k \leq N, 1 \leq l \leq N$ и вынесем $\alpha_{i,j}$ за знак интеграла:

$$\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i,j} \int_{G} \frac{\partial \varphi_{i,j}}{\partial x} \frac{\partial \varphi_{k,l}}{\partial x} dx dy + \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i,j} \int_{G} \frac{\partial \varphi_{i,j}}{\partial y} \frac{\partial \varphi_{k,l}}{\partial y} dx dy = \int_{G} f \varphi_{k,l} dx dy$$

Вынесем знаки суммы и $\alpha_{i,j}$ за скобки:

$$\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i,j} \left(\int_{G} \frac{\partial \varphi_{i,j}}{\partial x} \frac{\partial \varphi_{k,l}}{\partial x} dx dy + \int_{G} \frac{\partial \varphi_{i,j}}{\partial y} \frac{\partial \varphi_{k,l}}{\partial y} dx dy \right) = \int_{G} f \varphi_{k,l} dx dy$$

В случае ненулевой границы:

$$\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i,j} \left(\int_{G} \frac{\partial \varphi_{i,j}}{\partial x} \frac{\partial \varphi_{k,l}}{\partial x} dx dy + \int_{G} \frac{\partial \varphi_{i,j}}{\partial y} \frac{\partial \varphi_{k,l}}{\partial y} dx dy \right) =$$

$$= \int_{G} f \varphi_{k,l} dx dy - g_{i,j} \left(\int_{G} \frac{\partial \varphi_{i,j}}{\partial x} \frac{\partial \varphi_{k,l}}{\partial x} dx dy + \int_{G} \frac{\partial \varphi_{i,j}}{\partial y} \frac{\partial \varphi_{k,l}}{\partial y} dx dy \right)$$
(3)

Где $g_{i,j}$ - известное значение функции на границе.

2.2 Вычисление интегралов во всех случаях

Вычислим для функции φ частные производные:

$$\frac{\partial \varphi_{i,j}}{\partial x} = \frac{1}{h} \begin{cases} -\frac{1}{h}; x_i \leq x \leq x_{i+1}, y_j \leq y \leq y_j + (x - x_i); (I) \\ 0; x_i \leq x \leq x_{i+1}, y_j + (x - x_i) \leq y \leq y_{j+1}; (II) \\ \frac{1}{h}; x_{i-1} \leq x \leq x_i, y_j \leq y \leq y_j + (x - x_{i-1}); (III) \\ \frac{1}{h}; x_{i-1} \leq x \leq x_i, y_{j-1} + (x - x_{i-1}) \leq y \leq y_j; (IV) \\ 0; x_{i-1} \leq x \leq x_i, y_{j-1} \leq y \leq y_{j-1} + (x - x_{i-1}); (V) \\ -\frac{1}{h}; x_i \leq x \leq x_{i+1}, y_{j+1} + (x - x_i) \leq y \leq y_j; (VI) \end{cases}$$

$$\frac{\partial \varphi_{i,j}}{\partial y} = \frac{1}{h} \begin{cases} 0; x_i \leq x \leq x_{i+1}, y_j \leq y \leq y_j + (x - x_i); (I) \\ -\frac{1}{h}; x_i \leq x \leq x_{i+1}, y_j + (x - x_i) \leq y \leq y_{j+1}; (II) \\ -\frac{1}{h}; x_{i-1} \leq x \leq x_i, y_j \leq y \leq y_j + (x - x_{i-1}); (III) \\ 0; x_{i-1} \leq x \leq x_i, y_{j-1} + (x - x_{i-1}) \leq y \leq y_j; (IV) \\ \frac{1}{h}; x_{i-1} \leq x \leq x_i, y_{j-1} \leq y \leq y_{j-1} + (x - x_{i-1}); (V) \\ \frac{1}{h}; x_i \leq x \leq x_{i+1}, y_{j+1} + (x - x_i) \leq y \leq y_j; (VI) \end{cases}$$

А теперь вычислим сумму интегралов $\int_G \frac{\partial \varphi_{i,j}}{\partial x} \frac{\partial \varphi_{k,l}}{\partial x} dx dy + \int_G \frac{\partial \varphi_{i,j}}{\partial y} \frac{\partial \varphi_{k,l}}{\partial y} dx dy$ при всех взаимных расположениях, то есть при і и ј относительно k и l: 1. Совпадают: i = k, j = l

$$\int_{G} \frac{\partial \varphi_{i,j}}{\partial x} \frac{\partial \varphi_{i,j}}{\partial x} dx dy = \int_{G} \left(\frac{\partial \varphi_{i,j}}{\partial x}\right)^{2} dx dy = \int_{I} \left(\frac{\partial \varphi_{i,j}}{\partial x}\right)^{2} dx dy + \int_{II} \left(\frac{\partial \varphi_{i,j}}{\partial x}\right)^{2} dx dy + \int_{II} \left(\frac{\partial \varphi_{i,j}}{\partial x}\right)^{2} dx dy + \int_{II} \left(\frac{\partial \varphi_{i,j}}{\partial x}\right)^{2} dx dy = 4\frac{1}{2h^{2}} = \frac{2}{h^{2}}$$

$$\int_{G} \frac{\partial \varphi_{i,j}}{\partial y} \frac{\partial \varphi_{i,j}}{\partial y} dx dy = \int_{G} \left(\frac{\partial \varphi_{i,j}}{\partial y}\right)^{2} dx dy = \int_{I} \left(\frac{\partial \varphi_{i,j}}{\partial y}\right)^{2} dx dy + \int_{II} \left(\frac{\partial \varphi_{i,j}}{\partial y}\right)^{2} dx dy dy + \int_{II} \left(\frac{\partial \varphi_{i,j}}{\partial y}\right)^{2} dx dy dy + \int_{II} \left(\frac{\partial \varphi_{i,j}}{\partial$$

2. Смещение вправо на 1: i = k + 1, j = l

$$\int_{G} \frac{\partial \varphi_{i+1,j}}{\partial x} \frac{\partial \varphi_{i,j}}{\partial x} dx dy = -\frac{1}{h^{2}}$$

$$\int_{G} \frac{\partial \varphi_{i+1,j}}{\partial y} \frac{\partial \varphi_{i,j}}{\partial y} dx dy = 0$$

$$\int_{G} \frac{\partial \varphi_{i+1,j}}{\partial x} \frac{\partial \varphi_{i,j}}{\partial x} dx dy + \int_{G} \frac{\partial \varphi_{i+1,j}}{\partial y} \frac{\partial \varphi_{i,j}}{\partial y} dx dy = -\frac{1}{h^{2}}$$

3. Смещение вправо-вверх на 1: i = k + 1; j = l + 1

$$\int_{G} \frac{\partial \varphi_{i+1,j+1}}{\partial x} \frac{\partial \varphi_{i,j}}{\partial x} dx dy = 0$$

$$\int_{G} \frac{\partial \varphi_{i+1,j+1}}{\partial y} \frac{\partial \varphi_{i,j}}{\partial y} dx dy = 0$$

$$\int_{G} \frac{\partial \varphi_{i+1,j+1}}{\partial x} \frac{\partial \varphi_{i,j}}{\partial x} dx dy + \int_{G} \frac{\partial \varphi_{i+1,j+1}}{\partial y} \frac{\partial \varphi_{i,j}}{\partial y} dx dy = 0$$

4. Смещение вверх на 1: i = k; j = l + 1

$$\int_{G} \frac{\partial \varphi_{i+1,j+1}}{\partial x} \frac{\partial \varphi_{i,j}}{\partial x} dx dy = 0$$

$$\int_{G} \frac{\partial \varphi_{i+1,j+1}}{\partial y} \frac{\partial \varphi_{i,j}}{\partial y} dx dy = -\frac{1}{h^2}$$

$$\int_{G} \frac{\partial \varphi_{i+1,j+1}}{\partial x} \frac{\partial \varphi_{i,j}}{\partial x} dx dy + \int_{G} \frac{\partial \varphi_{i+1,j+1}}{\partial y} \frac{\partial \varphi_{i,j}}{\partial y} dx dy = -\frac{1}{h^2}$$

5. Смещение влево на 1: i=k - 1; j=l

$$\int_{G} \frac{\partial \varphi_{i-1,j}}{\partial x} \frac{\partial \varphi_{i,j}}{\partial x} dx dy = -\frac{1}{h^{2}}$$

$$\int_{G} \frac{\partial \varphi_{i-1,j}}{\partial y} \frac{\partial \varphi_{i,j}}{\partial y} dx dy = 0$$

$$\int_{G} \frac{\partial \varphi_{i-1,j}}{\partial x} \frac{\partial \varphi_{i,j}}{\partial x} dx dy + \int_{G} \frac{\partial \varphi_{i-1,j}}{\partial y} \frac{\partial \varphi_{i,j}}{\partial y} dx dy = -\frac{1}{h^{2}}$$

6. Смещение влево-вниз на 1: i=k - 1; j=l - 1

$$\int_{G} \frac{\partial \varphi_{i-1,j-1}}{\partial x} \frac{\partial \varphi_{i,j}}{\partial x} dx dy = 0$$

$$\int_{G} \frac{\partial \varphi_{i-1,j-1}}{\partial y} \frac{\partial \varphi_{i,j}}{\partial y} dx dy = 0$$

$$\int_{G} \frac{\partial \varphi_{i-1,j-1}}{\partial x} \frac{\partial \varphi_{i,j}}{\partial x} dx dy + \int_{G} \frac{\partial \varphi_{i-1,j-1}}{\partial y} \frac{\partial \varphi_{i,j}}{\partial y} dx dy = 0$$

7. Смещение вниз на 1: i = k; j = l - 1

$$\int_{G} \frac{\partial \varphi_{i,j-1}}{\partial x} \frac{\partial \varphi_{i,j}}{\partial x} dx dy = 0$$

$$\int_{G} \frac{\partial \varphi_{i,j-1}}{\partial y} \frac{\partial \varphi_{i,j}}{\partial y} dx dy = -\frac{1}{h^{2}}$$

$$\int_{G} \frac{\partial \varphi_{i,j-1}}{\partial x} \frac{\partial \varphi_{i,j}}{\partial x} dx dy + \int_{G} \frac{\partial \varphi_{i,j-1}}{\partial y} \frac{\partial \varphi_{i,j}}{\partial y} dx dy = -\frac{1}{h^{2}}$$

8. Во всех остальных случаях

$$\int_{G} \frac{\partial \varphi_{i,j}}{\partial x} \frac{\partial \varphi_{k,l}}{\partial x} dx dy = 0$$

$$\int_{G} \frac{\partial \varphi_{i,j}}{\partial y} \frac{\partial \varphi_{k,l}}{\partial y} dx dy = 0$$

$$\int_{G} \frac{\partial \varphi_{i,j}}{\partial x} \frac{\partial \varphi_{k,l}}{\partial x} dx dy + \int_{G} \frac{\partial \varphi_{i,j}}{\partial y} \frac{\partial \varphi_{k,l}}{\partial y} dx dy = 0$$

Таким образом, решение уравнения (3) сводится к решению СЛАУ Ax = b, где матрица A - пятидиагональная, на главное диагонали находится значение $\frac{4}{h^2}$, справа и слева от нее находятся значения $-\frac{1}{h^2}$, а также слева и справа на удалении N находятся значения $-\frac{1}{h^2}$, за исключением тех мест,

где k или l доходят до границы. Пример матрицы A при шаге h = 0.25:

$$A = \begin{pmatrix} 64 & -16 & 0 & -16 & 0 & 0 & 0 & 0 & 0 \\ -16 & 64 & -16 & 0 & -16 & 0 & 0 & 0 & 0 & 0 \\ 0 & -16 & 64 & 0 & 0 & -16 & 0 & 0 & 0 & 0 \\ -16 & 0 & 0 & 64 & -16 & 0 & -16 & 0 & 0 & 0 \\ 0 & -16 & 0 & -16 & 64 & -16 & 0 & -16 & 0 & 0 \\ 0 & 0 & -16 & 0 & -16 & 64 & 0 & 0 & -16 & 0 \\ 0 & 0 & 0 & 0 & -16 & 0 & -16 & 64 & -16 & 0 \\ 0 & 0 & 0 & 0 & 0 & -16 & 0 & -16 & 64 & -16 \\ 0 & 0 & 0 & 0 & 0 & -16 & 0 & -16 & 64 & \end{pmatrix}$$

Вектор b вычисляется с помощью двойных интегралов, значения которых зависят от i и j:

$$b = \begin{pmatrix} \int_{G} f\varphi_{1,1} dx dy + u_{0,1} * \frac{1}{h^{2}} + u_{1,0} * \frac{1}{h^{2}} \\ \vdots \\ \int_{G} f\varphi_{N,N} dx dy + u_{N,N+1} * \frac{1}{h^{2}} + u_{N+1,N} * \frac{1}{h^{2}} \end{pmatrix}$$

3 Построение тестовых примеров

3.1 Реальные тестовые примеры

3.1.1 Первый тестовый пример

Рассмотрим функию $u=sin(\pi x)cos(2y+\frac{\pi}{2})$, равную нулю на границе. Найдем для нее частные производные и вычислим функцию f:

$$\frac{\partial^2 u}{\partial x^2} = -\pi^2 sin(\pi x)cos(2\pi y + \frac{\pi}{2})$$
$$\frac{\partial^2 u}{\partial y^2} = -4\pi^2 cos(2\pi y + \frac{\pi}{2})sin(\pi x)$$
$$f = 5\pi^2 cos(2\pi y + \frac{\pi}{2})sin(\pi x)$$

На границе функция равна нулю:

$$u(0, y) = 0, \ 0 \le y \le 1$$

 $u(1, y) = 0, \ 0 \le y \le 1$
 $u(x, 0) = 0, \ 0 \le x \le 1$
 $u(x, 1) = 0, \ 0 \le x \le 1$

В результате работы программы мы должны получить такой результат (с шагом h=0.001):

Рис. 1: Ожидаемый результат работы первого тестового примера

3.1.2 Второй тестовый пример

Далее рассмотрим простую функцию u = x, которая на границе уже не равна нулю. Для нее проделаем те же операции, что и с первой функцией:

$$\frac{\partial^2 u}{\partial x^2} = 0$$
$$\frac{\partial^2 u}{\partial y^2} = 0$$
$$f = 0$$

Получается, что в данном тестовом примере проверяется функция с правой частью равной нулю. Найдем для нее так же значения на границе:

$$u(0, y) = 0, \ 0 \le y \le 1$$

 $u(1, y) = 1, \ 0 \le y \le 1$
 $u(x, 0) = x, \ 0 \le x \le 1$
 $u(x, 1) = x, \ 0 \le x \le 1$

В результате работы программы мы должны получить такой результат (с шагом h=0.001):

Рис. 2: Ожидаемый результат работы второго тестового примера

3.1.3 Третий тестовый пример

Рассмотрим третий уже более сложный пример с $u = (x - 0.5)^2 + (y - 0.5)^3$ с правой частью не равной нулю и ненулевой границей. Аналогично вычислим значения частных производных и найдем функцию f:

$$\frac{\partial^2 u}{\partial x^2} = 2$$
$$\frac{\partial^2 u}{\partial y^2} = 6y - 3$$
$$f = 1 - 6y$$

Найдем ее значения на границе:

$$u(0,y) = (y - 0.5)^3 + 0.25, \ 0 \le y \le 1$$

$$u(1,y) = (y - 0.5)^3 + 0.25, \ 0 \le y \le 1$$

$$u(x,0) = (x - 0.5)^2 - 0.125, \ 0 \le x \le 1$$

$$u(x,1) = (x - 0.5)^2 + 0.125, \ 0 \le x \le 1$$

В результате работы программы мы должны получить такой результат (с шагом h=0.001):

Рис. 3: Ожидаемый результат работы третьего тестового примера

3.2 Искусственные тестовые примеры

3.2.1 Четвертый тестовый пример

Создадим тестовый пример для проверки работоспрособности программы при малой области функции f. Для этого зададим функцию f:

$$f(x) = \begin{cases} 1, & (x, y) \in (x - 0.3)^2 + (y - 0.5)^2 = (0.01)^2 \\ 0, & \text{иначе} \end{cases}$$

Данный тестовый пример равен нулю на границе:

$$u(0, y) = 0, \ 0 \le y \le 1$$

 $u(1, y) = 0, \ 0 \le y \le 1$
 $u(x, 0) = 0, \ 0 \le x \le 1$
 $u(x, 1) = 0, \ 0 \le x \le 1$

3.2.2 Пятый тестовый пример

Создадим тестовый пример для проверки работоспрособности программы при малой области на границе. Функция f в данном тестовом примере

будет равна нулю:

$$f = 0$$

Зададим малый участок $x \in [0.1, \ 0.101]$ на нижней и верхней границах:

$$u(0,y) = \begin{cases} 1, & \mathbf{x} \in [0.1, 0.101] \\ 0, & \text{иначе} \end{cases}, \ 0 \le y \le 1$$

$$u(1,y) = \begin{cases} 1, & \mathbf{x} \in [0.1, 0.101] \\ 0, & \text{иначе} \end{cases}, \ 0 \le y \le 1$$

$$u(x,0) = 0, \ 0 \le x \le 1$$

$$u(x,1) = 0, \ 0 \le x \le 1$$

4 Описание алгоритма программы

Для решения поставленной задачи создадим фунцию Calculate, принимающую в качестве аргументов шаг вычисления h, функцию f и границу Border. Функция будет проходить последовательно снизу вверх и слева направо по области с шагом h и заполнять матрицу левой части в зависимости от расположения «домиков». Вектор правой части вычисляется с помощью функции вычисления двойных интегралов из пакета scipy. Полученная СЛАУ Ax = b решается с помощью функции решения СЛАУ так же из пакета scipy с точностью 10^{-10} . Математические операции производятся с помощью пакета numpy. Для построения тепловой карты преобразуется размер полученного решения в двумерный массив, инвертируется ось у и преобразуется в DataFrame из пакета pandas. Для построения полученной тепловой карты используется функция heatmap из пакета seaborn.

5 Решение программой тестовых примеров

Для начала оценим работу программы на реальных примерах. Запустим программу на первом тестовом примере (с шагом h=0.01):

Рис. 4: Результат работы программы на первом тестовом примере $\label{eq:2.1}$ Запустим программу на втором тестовом примере (с шагом h=0.01):

Рис. 5: Результат работы программы на втором тестовом примере

Запустим программу на третьем тестовом примере (с шагом h = 0.01):

Рис. 6: Результат работы программы на третьем тестовом примере

Как видно, результаты, вычисленные с помощью программы, полностью совпадают с ожидаемыми, описанными в тестовых примерах. Теперь запустим программу на искуственных тестовых примерах. Четвертый тестовый пример (с шагом h=0.01):

Рис. 7: Результат работы программы на четвертом тестовом примере

Запустим программу на пятом тестовом примере (с шагом h=0.01):

Рис. 8: Результат работы программы на пятом тестовом примере

Как видно, искуственные тестовые примеры работают так же корректно и отображают участки на необходимых местах.

6 Заключение

В результате выполенения курсовой работы удалось построить метод для нахождения распределения температуры и в пластине G в квадрате $0 \le x \le 1, 0 \le y \le 1$, то есть решения краевой задачи, заданной задачей Дирихле, заданной уравнением Пуассона. Так же были составлены тестовые примеры для проверки работоспрособности программы и написан код для решения поставленной задачи на языке программирования Python. После проверки работоспособности программы получилось, что ожидаемые результаты совпали с полученными, то есть написанная программа работает полностью корректно.

7 Список использованных источников

- 1. Г.И. Марчук, В.И. Агошков. Введение в проекционно сеточные методы Москва «НАУКА» 1981
- 2. А.А. Амосов, Ю.А. Дубинский, Н.В. Копченова. Вычислительные методы для инженеров Москва «Высшая школа» 1994

8 Приложение

```
import numpy as np
from pandas import DataFrame
from seaborn import heatmap
from scipy.integrate import dblquad as CalculateDoubleIntegral
from scipy.sparse.linalg import bicgstab as Solve
# Функция вычисления методом конечных элементов
def Calculate(h, F, Border):
    def RightPart(i, j, h, f, Border):
        def phi1(phiy, phix):
            return 1/h *(1 - phix/h + i) \setminus
                 * f(phix, phiy)
        def phi2(phiy, phix):
            return 1/h * (1 - phiy/h + j) \setminus
                 * f(phix, phiy)
        def phi3(phiy, phix):
            return 1/h \
                 * (1 + phix/h - i - phiy/h + j) \setminus
                 * f(phix, phiy)
        def phi4(phiy, phix):
            return 1/h * (1 + phix/h - i) \setminus
                 * f(phix, phiy)
        def phi5(phiy, phix):
            return 1/h * (1 + phiy/h - j) \setminus
                 * f(phix, phiy)
        def phi6(phiy, phix):
            return 1/h \
                 * (1 - phix/h + i + phiy/h - j) \setminus
                 * f(phix, phiy)
        xi = i*h
        yj = j*h
        res = 0
        res += CalculateDoubleIntegral(phi1, xi, xi+h, yj,
                                          lambda t: yj+t-xi)[0]
        res += CalculateDoubleIntegral(phi2, xi, xi+h,
                                          lambda t: yj+t-xi,
                                          yj+h)[0]
        res += CalculateDoubleIntegral(phi3, xi-h, xi, yj,
                                          lambda t: yj+t-(xi-h) [0]
        res += CalculateDoubleIntegral(phi4, xi-h, xi,
```

```
lambda t: yj-h+t-(xi-h),
                                    yj)[0]
    res += CalculateDoubleIntegral(phi5, xi-h, xi, yj-h,
                                    lambda t: yj-h+t-(xi-h) [0]
    res += CalculateDoubleIntegral(phi6, xi, xi+h,
                                    lambda t: yj-h+t-xi,
                                    yj)[0]
    res /= h
    if xi - h == 0 and yj - h == 0:
        res += Border(xi-h, yj) * 1/(h**2) \
            + Border(xi, yj-h) * 1/(h**2)
    elif xi + h == 1 and yj - h == 0:
        res += Border(xi+h, yj) * 1/(h**2) \
            + Border(xi, yj-h) * 1/(h**2)
    elif xi - h == 0 and yj + h == 1:
        res += Border(xi-h, yj) * 1/(h**2) \
            + Border(xi, yj+h) * 1/(h**2)
    elif xi + h == 1 and yj + h == 1:
        res += Border(xi+h, yj) * 1/(h**2) \
            + Border(xi, yj+h) * 1/(h**2)
    elif xi - h == 0:
        res += Border(xi-h, yj) * 1/(h**2)
    elif xi + h == 1:
        res += Border(xi+h, yj) * 1/(h**2)
    elif yj - h == 0:
        res += Border(xi, yj-h) * 1/(h**2)
    elif yj + h == 1:
        res += Border(xi, yj+h) * 1/(h**2)
    return res
n = int(1/h) - 1
h = 1/(n+1)
A = np.zeros((n**2, n**2))
rp = []
for j in range(n): #y
    for i in range(n): #x
        m = j*n + i
        A[m][m] = 4/(h**2)
        if (i > 0): #L
            A[m][m - 1] = -1/(h**2)
        if (i < n - 1): #R
```

```
A[m][m + 1] = -1/(h**2)
            if (j > 0): #D
                A[m][m - n] = -1/(h**2)
            if (j < n - 1): #U
                A[m][m + n] = -1/(h**2)
            rp.append(RightPart(i+1, j+1, h, F, Border))
    return Solve(A, rp, tol=10**(-10))[0], n
# Функция для вывода результата, вычисленного программой
def DrawPicture(result, n):
    result = result.reshape(n, n)
    # Инвертируем ось у для правильного построения тепловой карты
    resultInv = np.zeros((n, n))
    for i in range(len(result)):
        resultInv[n - 1 - i] = result[i].copy()
    resultheat = DataFrame(resultInv)
    heatmap(resultheat, square = True,
            xticklabels = False, yticklabels = False)
# Функция для вывода результата оригинальной функции
def DrawOriginal(u, h):
    n = int(1/h) + 1
    A = np.zeros((n, n), dtype = float)
    for i in range(n):
        for j in range(n):
            A[n-j-1][i] = u(i*h, j*h)
    resultheat = DataFrame(A)
    heatmap(resultheat, square = True,
            xticklabels = False, yticklabels = False)
# Получение ожидаемого результата от первого тестового примера
def u1(x, y):
    return np.sin(np.pi * x) * np.cos(2*np.pi*y+np.pi/2)
h = 0.001
DrawOriginal(u1, h)
# Получение ожидаемого результата от второго тестового примера
def u2(x, y):
    return x
```

```
h = 0.001
DrawOriginal(u2, h)
# Получение ожидаемого результата от третьего тестового примера
def u3(x, y):
    return (x-0.5)**2 + (y-0.5)**3
h = 0.001
DrawOriginal(u3, h)
# Проверка первого тестового примера
def f1(x, y):
    return 5 * np.pi**2 \
        * np.cos(2 * np.pi*y+ np.pi/2) \setminus
        * np.sin(np.pi*x)
def Border1(x, y):
    return 0
h = 0.01
result, n = Calculate(h, f1, Border1)
DrawPicture(result, n)
# Проверка второго тестового примера
def f2(x, y):
    return 0
def Border2(x, y):
    if x == 0:
        return 0
    elif x == 1:
        return 1
    elif y == 0:
        return x
    elif y == 1:
        return x
h = 0.01
result, n = Calculate(h, f2, Border2)
DrawPicture(result, n)
# Проверка третьего тестового примера
def f3(x, y):
```

```
return 1 - 6*y
def Border3(x, y):
    if x == 0:
        return (y - 0.5)**3 + 0.25
    elif x == 1:
        return (y - 0.5)**3 + 0.25
    elif y == 0:
        return (x - 0.5)**2 - 0.125
    elif y == 1:
        return (x - 0.5)**2 + 0.125
h = 0.01
result, n = Calculate(h, f3, Border3)
DrawPicture(result, n)
# Проверка четвертого тестового примера
def f4(x, y):
    if (x-0.3)**2 + (y-0.5)**2 \le 0.01**2:
        return 1
    else:
        return 0
def Border4(x, y):
    return 0
h = 0.01
result, n = Calculate(h, f4, Border4)
DrawPicture(result, n)
# Проверка пятого тестового примера
def f5(x, y):
    return 0
def Border5(x, y):
    if x \ge 0.1 and x \le 0.101:
        return 1
    else:
        return 0
h = 0.01
result, n = Calculate(h, f5, Border5)
DrawPicture(result, n)
```