Machine Learning Lecture 4

Outline

- Understanding optimization view of learning
 - large margin linear classification
 - regularization, generalization
- Optimization algorithms
 - preface: gradient descent optimization
 - stochastic gradient descent
 - quadratic program

Recall: learning as optimization

 Machine learning problems are often cast as optimization problems

objective function = average loss + regularization

 Large margin linear classification as optimization (Support Vector Machine)

$$J(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} \text{Loss}_h (y^{(i)}(\theta \cdot x^{(i)} + \theta_0)) + \frac{\lambda}{2} \|\theta\|^2$$

Recall: large margin classifier

distance from the 1 decision boundary to the margin boundary 0 0 neg margin pos margin boundary $\begin{cases} \theta \cdot x + \theta_0 = -1 \\ \theta \cdot x + \theta_0 = 0 \end{cases}$ decision boundary boundary $\theta \cdot x + \theta_0 = 1$

$$J(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} \text{Loss}_h (y^{(i)}(\theta \cdot x^{(i)} + \theta_0)) + \frac{\lambda}{2} \|\theta\|^2$$

Regularization, generalization

$$J(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} \text{Loss}_h \left(y^{(i)} (\theta \cdot x^{(i)} + \theta_0) \right) + \frac{\lambda}{2} \|\theta\|^2$$

Outline

- Understanding optimization view of learning
 - large margin linear classification
 - regularization, generalization
- Optimization algorithms
 - preface: gradient descent optimization
 - stochastic gradient descent
 - quadratic program

Preface: Gradient descent

Preface: Gradient descent

Stochastic gradient descent

$$J(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^n \text{Loss}_h (y^{(i)}(\theta \cdot x^{(i)} + \theta_0)) + \frac{\lambda}{2} \|\theta\|^2$$
$$= \frac{1}{n} \sum_{i=1}^n \left[\text{Loss}_h (y^{(i)}(\theta \cdot x^{(i)} + \theta_0)) + \frac{\lambda}{2} \|\theta\|^2 \right]$$

Stochastic gradient descent

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} \left[\text{Loss}_{h}(y^{(i)}\theta \cdot x^{(i)}) + \frac{\lambda}{2} \|\theta\|^{2} \right]$$

Stochastic gradient descent

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} \left[\text{Loss}_{h}(y^{(i)}\theta \cdot x^{(i)}) + \frac{\lambda}{2} \|\theta\|^{2} \right]$$

Select $i \in \{1, ..., n\}$ at random

$$\theta \leftarrow \theta - \eta_t \nabla_{\theta} \left[\operatorname{Loss}_h(y^{(i)}\theta \cdot x^{(i)}) + \frac{\lambda}{2} \|\theta\|^2 \right]$$

Support Vector Machine

- Support Vector Machine finds the maximum margin linear separator by solving the quadratic program that corresponds to $J(\theta,\theta_0)$
- In the realizable case, if we disallow any margin violations, the quadratic program we have to solve is

Find
$$\theta$$
, θ_0 that minimize $\frac{1}{2} \|\theta\|^2$ subject to
$$y^{(i)}(\theta \cdot x^{(i)} + \theta_0) \ge 1, \quad i = 1, \dots, n$$

Summary

- Learning problems can be formulated as optimization problems of the form: loss + regularization
- Linear, large margin classification, along with many other learning problems, can be solved with stochastic gradient descent algorithms
- Large margin linear classifier can be also obtained via solving a quadratic program (Support Vector Machine)