The "One Hot" Method for FSM

Ethics in CS; Impact of CS

CS 64: Computer Organization and Design Logic
Lecture #16
Fall 2018

Ziad Matni, Ph.D.

Dept. of Computer Science, UCSB

Administrative

- Lab #9 Due Friday
- Lab #10 (issued today) Due Friday
- Practice Exam is online

Your final exam is on

Wednesday, Dec. 12th at 8:00 AM

- In this classroom
- Be ON TIME!

Lecture Outline

One-Hot Method for FSM

- Ethical Considerations in CS
- Code of Ethics in the Workplace
- CS's Impact on Society

Find "1101" Pattern FSM

Representing The States

 How many bits do I need to represent all the states in this "Detect 1101" Machine?

- There are 5 unique states (including "init")
 - So, 3 bits
- How many D-FFs should I have to build this machine?
 - 3 bits = 3 D-FFs

State	B2	B1	В0
Initial	0	0	0
Found "1"	0	0	1
Found "11"	0	1	0
Found "110"	0	1	1
Found "1101"	1	0	0

Designing the Circuit for the FSM

1. We start with a T.T.

Also called a "State Transition Table"

2. Make K-Maps and simplify

Usually give your answer as a "sum-of-products" form

3. Design the circuit

Have to use D-FFs to represent the state bits

The Truth Table (The State Transition Table)

	CUR	RENT S	TATE	INPUT(S)	NE	XT STAT	Έ	OUTPUT(S)	
State	B2	B1	В0	1	B2*	B1*	B0*	FOUND	
Initial	0	0	0	0	0	0	0	0	
				1	0	0	1	0	
Found "1"	0	0	1	0	0	0	0	0	
			1	0	1	0	0		
Found "11"	und "11" 0 1 0	0 1 0	0	0	1	1	0		
			1	0	1	0	0		
Found "110"	0 1	0	1	1	0	0	0	0	0
				1	1	0	0	0	
Found "1101"	Found "1101" 1 0 0	0	0	0	0	0	1		
				1	0	1	0	1	

2. K-Maps for B2* and B1*

- You need to do this for all 3 state outputs
- B2* = !B2.B1.B0.I
 - No further simplification

•	B1*	= !B2.!B1.B0.I
		+ B2.!B1.!B0.I
		+ !B2.B1.!B0

B2.B1 B0.I	00	01	11	10
00				
01				
11		1		
10				

B2.B1 B0.I	00	01	11	10
00		1		
01		1		1
11	1			
10				

2. K-Map for B0* Output FOUND

• B0* = !B2.!B1.!B0.I + !B2.B1.!B0.!I

B2.B1	00	01	11	10
B0.I				
00		1		
01	1			
11				
10				

- FOUND = B2.!B1.!B0
 - Note that FOUND does not need
 a K-Map. It is always "1" (i.e. True) when we are in state S4 (i.e. when B2=1, B1=0, B0=0)

3. Design the Circuit

Note that CLK is the input to ALL the D-FFs' clock inputs. This is a **synchronous machine**.

Note the use of labels (example: B2 or B0-bar) instead of routing wires all over the place!

Note that I issued both Bn and Bnbar from all the D-FFs – it makes it easier with the labeling and you won't have to use NOT gates!

Note that the sole output (FOUND) does **not** need a D-FF because it is **NOT A STATE BIT!**

The "One Hot" Method

- Most popularly used in building FSMs
- Give each state it's own D-FF output
 - # of FFs needed = # of states
 - You end up using MORE D-FFs, but the implementation is easier to automate
- Inputs to the D-FFs are combinatorial logic that can simplified into a "sum-of-products" type of Boolean expression
 - No need to go through T.T.s and K-Maps
- Current CAD software can do this automatically
- Implemented with FPGA integrated circuits ("chips")

Encoding our States

Per the last example ("1101 Detector"): We had 5 separate states, so we're going to need 5 bits (i.e. 5 DFFs) to describe the states:

NAME	" F	Regular" C	ode "One Hot" (Code OUTPUTS
Initial State	S0	000	00001	
"1"	S1	001	00010	
"11"	S2	010	00100	
"110"	S 3	011	01000	
"1101"	S4	100	10000	FOUND

- Advantage of this "One Hot" approach?
 - When we implement the machine with circuits, we can use a D-FF for every state (so, in this example, we'd use 5 of them)

Using the "One Hot" Code to Determine the Circuit Design

- Every state has 1 D-FF
- We can see that (follow the arrows!!):

Also, when S4 is True, FOUND is True, i.e. **FOUND = S4**

We have now described ALL the outputs of the machine as combinations of certain inputs WITHOUT needing to do T.T. & K-Maps!

Implementing the Circuit For "Detect 1101" FSM Using the "One Hot" Method

Ethics

- Moral principles that govern a person's behavior
- Attempts to answer questions like:
 "What is the best way people to do something?"
 "What actions are right or wrong"
- In CS, it's not just about the obvious questions, like:

 "Is it ok to copy someone else's code and use it?" NO

 "Can I take this mouse pad from work?"

 NO

"I mean, come ooooon, it's just a mouse pad..." NO!!!

Ethical Considerations in CS

- Our work in CS affects people (why do it otherwise?!)
 - Ourselves
 - Our work colleagues
 - Our professional community
 - Society at large

Ethics in CS notes the following:

- Our activities and choices affect other people in significant ways
- We have principles and guidelines that guide ethical action

Ethical Considerations in CS

- Act consistently with the public interest, your clients, your employer, your colleagues.
- Make your products/services meet the highest professional standards possible.
- Maintain integrity in your work. Maintain a good reputation for yourself and your profession
- If you're a manager, promote an ethical approach to your work and your team's work.
- Keep bettering yourself through education

Who Cares if you Aren't Ethical?

- Everyone does it's a "social contract"
- If you are not ethical, <u>at best the following can happen</u>...
 - ... your job will be at risk
 - ... your relationship with others will be at risk
 - ... you are likely to be negatively labeled as "unethical" in your professional circle
 - ... you will give "a bad name" to yourself, your company/employer, and to the field of CS in general
- At worst, you will have major financial/legal ramifications
 - Get fired (and possibly blacklisted)
 - Get sued
 - Get arrested

Professional Guidelines

 The IEEECS/ACM Joint Task Force on Software Engineering Ethics and Professional Practices

"Code of Ethics and Professional Practice"

Purpose:

- Documents the ethical and professional obligations of software engineers.
- Instructs us about the standards society expects CS professionals to meet.
- What to expect of one another.

Code of Ethics and Professional Practice

Lab 10 – Task 1

- Read the IEEE Computer Society's article
- Then read a collection of case studies on ethics
 - Both in the lab description
- Afterwards, go to an online form.
 You will choose which *clauses* from the code of ethics are more relevant to each case study.
 - Link in the lab description

The Impact of CS in the World

 What do YOU think Computer Science's impact in the world today is?...

The Impact of CS in the World

- Today more than ever before CS enables us to make tools that help people:
 - Connect
 - Visualize information
 - Understand the impacts of environmental, economic, energy happenings
 - Collaborate and work together

Google Talk at CSIT Conference

Lab 10 - Task 2

- View video of Megan Smith's talk at the 2010 Computer Science & Information Technology (CSIT) Conference about the Impact of CS Worldwide
 - Smith was a VP at Google and then the "U.S. CTO" and Assistant to President Obama
 - Link is in the lab description
- Afterwards, go to an online form.
 You will identify the impact of CS in a variety of areas.
 - Link is... ahhh... you know where...

Your To Dos

- Lab #9 and #10 due end of day Friday!
- Study for your final exams!

Take a breather and get enough sleep!

