

"5 Clustering II"

Dr. Zeyd Boukhers

@ZBoukhers

Institute for Web Science and Technologies
University of Koblenz-Landau

November 24, 2021

From previous lecture

- Evaluating clustering results
 - Dunn index
 - Rand index
 - Silhouette coefficient
 - Mutual information
- K-Means
- Expectation Maximization

Agenda

- Other clustering techniques:
 - DBSCAN
 - Agglomerative Hierarchical Clustering
- Clustering for high-dimensional datasets
 - Dimensionality reduction
 - Superspace clustering

DBSCAN

DBSCAN: Density-based spatial clustering of applications with hoise

- Parameters
 - q: Neighborhood size (e.g., 4)
 - ε : Neighborhood distance
- Properties
 - Density-based clustering
 - Non-parametric
 - Data does not require to fit a normal distribution.
 - O(n²)
 - Deterministic on core and noise points (not at border)
 - DBSCAN* treats reachable points at border as noise, making it fully deterministic

DBSCAN

- Given a dataset $X = \{(x_i)\}_{i=1}^N$, $V_{\varepsilon}(x_i)$ is an hypersphere centred at x_i with a radius ε .
 - ε is a user-defined parameter
- Let $N_{\varepsilon}(x_i)$ be the number of points of X lying in $V_{\varepsilon}(x_i)$.
- Let q is a user-defined parameter, such that :
- x_i is $\begin{cases} \text{an interior (core)} & \text{if } N_{\varepsilon}(x_i) \ge q \\ \text{noncore} & \text{Otherwise} \end{cases}$

Definitions I

- $\forall x_i, x_i \in X, i \neq j$
- x_i is directly density reachable from x_i if:
 - $x_i \in V_{\varepsilon}(x_i)$ and,
 - $N_{\varepsilon}(\mathbf{x}_i) \geq q$

- x_i is density reachable from x_i if:
 - $\exists X' = x'_1, x'_2, \cdots x'_p \in X$ and,
 - $x'_1 = x_i$ and,
 - $x'_p = x_j$ and,
 - $\forall x'_u \in X'$ x'_{u+1} is directly density reachable from x'_u
- Let " x_i is density reachable from x_i " be $x_i \leftarrow x_i$

Definitions II

- $\forall x_i, x_j \in X, i \neq j$
- x_i is density connected to x_i if $\exists x_u \in X$ such that:
 - $x_i \leftarrow x_u$ and,
 - $x_j \leftarrow x_u$
 - Let " x_i is density connected to x_i " be $x_i \leftrightarrow x_i$

- We can conclude that a cluster C is defined as non-empty subset of X such that:
 - If $x_i \in C$ and $x_j \leftarrow x_i \implies x_j \in C$
 - $\forall x_i, x_j \in C \implies x_j \leftrightarrow x_i$

Definitions III

- Let $C = \{C_1, \dots, C_k\} \subset X$ be the subset that contains all the points belonging to the k found clusters
- $\forall x_i \in X \mid x_i \notin C$
 - x_i is known as noise.

Algorithm

- Set $X_{un} = X$
- Set m = 0
- While $X_{nn} \neq \emptyset$ do
 - Arbitrary select $x_i \in X_{un}$
 - If x_i is a noncore point
 - Mark x_i as a noise point
 - $X_{un} = X_{un} \setminus \{x_i\}$
 - Else if x_i is a core point
 - *m*++
 - Determine all density-reachable points X' in X from x_i
 - Assign x_i and X' to C_m
 - ullet Assign border points that may have been marked as noise are assigned to \mathcal{C}_m
 - $X' = \emptyset$
 - $X_{un} = X_{un} \setminus C_m$
 - End if
- End while

Remarks

• The results are greatly influenced by the choice of the parameters arepsilon and q

• OPTIC (Ordering points to identify the clustering structure) is an extension of DBSCAN that can solve the problem of carefully choosing the parameters.

• It is not well suited for high-dimensional data.

• Not appropriate when the clusters exhibit significant differences in density.

Bonus

- DBSCAN implementation and visualization:
 - If you joined later and you did not submit one of the assignments.
 - Deadline: January 5 at 23:59
 - What to consider:
 - Implement DBSCAN (with basic libraries) for two-dimensional data and visualize the steps of the algorithm.

Agglomerative Hierarchical Clustering

Agglomerative Hierarchical Clustering (AHC)

Characteristics:

- "Bottom-up approach"
- Hierarchical clusters
- Quadratic runtime (at least!)
- Deterministic
- Provides more structural information about clusters

Parameters

- Criterion for merging cluster
- Distance Δ for clusters required

AHC: Algorithm

- Initialize *N* clusters, one per instance
- While $|\Omega| > 1$
 - Merge clusters ω_i and ω_j with minimal $\Delta(\omega_i, \omega_j)$

Single Link

Average Link

Ward Method

AHC: Single Link

$$\Delta(\omega_i, \omega_j) = \min_{a \in \omega_i, b \in \omega_j} d(a, b)$$

AHC: Complete Link

$$\Delta(\omega_i, \omega_j) = \max_{a \in \omega_i, b \in \omega_j} d(a, b)$$

AHC: Average Link

$$\Delta(\omega_i, \omega_j) = \frac{1}{|\omega_i| \cdot |\omega_j|} \sum_{a \in \omega_i, b \in \omega_j} d(a, b)$$

AHC: Ward Method

Recursive definition for N objects:

- 1. Start: $\Delta(\{a\}, \{b\}) = (a b)^2$
- 2a. Given distance for all pairs $\Delta(\omega_k, \omega_l)$, merge 2 closest clusters ω_i, ω_j with sizes n_i, n_j
- 2b. Recompute cluster distances to new cluster $\omega_i \cup \omega_j$, minimizes the total within-cluster variance

$$\Delta(\omega_i \cup \omega_j, \omega_k) = \frac{n_i + n_k}{N} \Delta(\omega_i, \omega_k) + \frac{n_j + n_k}{N} \Delta(\omega_j, \omega_k) - \frac{n_k}{N} \Delta(\omega_i, \omega_j)$$

Clustering for high-dimensional datasets

Clustering for high-dimensional datasets

 Most of the approaches discussed so far consider all dimensions of the features space simultaneously.

BUT

• In some applications such as bioinformatics and web mining, the dimensionality of the datasets can be as high as few thousands.

Problematic and not practical

Problems

- Fixed number of data points and an increasing featuredimensionality make the data points spread out in the space.
 - They become equidistant → the meaning of similarity and dissimilarity is lost.
- In very high dimensional spaces, often only a small fraction of the features contributes to the formation of the clusters.

- Solutions:
 - Dimensionality reduction
 - Superspace clustering

Dimensionality reduction

PCA: Principal Component Analysis

SVD: Singular Value Decomposition

Autoencoder

• Etc.

But it is not practical in all cases.

Superspace clustering

- This technique reveals the clusters and their superspaces (supposed to be different).
- There exist two algorithm categories:
 - Grid-based
 - 1. Identify the superspaces that are likely to contain clusters.
 - 2. Determine the clusters lying in each superspace.
 - 3. Obtain the result.
 - Point-based
 - The clusters as well as the superspaces are simultaneously determined.

Summary

- Clustering
 - DBSCAN
 - AHC
 - Clustering for high-dimensional datasets

Thank you!

Zeyd Boukhers

E-mail: Boukhers@uni-koblenz.de

Phone: +49 (0) 261 287-2765

Web: Zeyd.Boukhers.com

University of Koblenz-Landau Universitätsstr. 1 56070 Koblenz

