Deep learning of normal form autoencoders for universal, parameter-dependent dynamics

Manu Kalia Joint work with: Christoph Brune, Hil Meijer (UT), Steven Brunton, J. Nathan Kutz (UW)

SIAM Conference on Applications of Dynamical Systems, 2021

May 26, 2021

Contact: m.kalia@utwente.nl

UNIVERSITY OF TWENTE.

2 Our approach

3 Results: 1D spatio temporal systems

4 Outlook

Consider a spatiotemporal system u(x,t), parameterized by α . Different choices of α produce different patterns.

Consider a spatiotemporal system, parameterized by α . Different choices of α produce different patterns.

Can we construct underlying low-dimensional models that capture α -dependence?

Mathematically, we would like to find Φ, g such that

$$\dot{m{u}} = f(m{u}; lpha), \quad ext{(Original dynamics)} \\ \dot{z} = g(z; eta), \quad ext{(Low dim. model)}$$

and $(z, \beta) = \Phi(\boldsymbol{u}, \alpha)$.

State of the art for data-driven methods

¹ Berkooz et al. Annual review of fluid mechanics (1993); Tu et al. Journal of Computational Dynamics (2014)

State of the art

² Brunton et al. PNAS (2016)

Our approach

Key idea: Use normal forms as reduced order models.

Coupled autoencoders for learning normal form coordinates

- Separate autoencoders for state and parameter.
- Latent space constrained by normal form.
- Existence of non-unique, feasible solutions guaranteed by center manifold theorems.
- $(u, \alpha) \mapsto (z, \beta)$ interpretable as center manifold restriction.
- Trained with simulations u(t) for different α .

Loss function terms

- Simplify!!
- AE loss:

$$||u - \psi_1 \varphi_1 u||_2^2 + ||\alpha - \psi_2 \varphi_2 \alpha||_2^2$$

- Consistency loss terms:
 - $\|(\nabla_u \varphi_1)\dot{u} g(\varphi_1 u, \varphi_2 \alpha)\|_2^2$ • $\|\dot{u} - (\nabla_z \psi_2) g(\varphi_1 u, \varphi_2 \alpha)\|_2^2$
- Orientation loss terms:
- $\|\operatorname{sgn}(\varphi_2\alpha) \alpha\|_1$
 - $\|\varphi_1(0)\|_1 (0 \mapsto 0)$

 - $\|\mathbb{E}_t u\|$ (Hopf)

Loss function terms

- Simplify!!
- AE loss:

$$||u - \psi_1 \varphi_1 u||_2^2 + ||\alpha - \psi_2 \varphi_2 \alpha||_2^2$$

- Consistency loss terms:
 - $\|(\nabla_u \varphi_1)\dot{u} g(\varphi_1 u, \varphi_2 \alpha)\|_2^2$
 - $\|\dot{u} (\nabla_z \psi_2) q(\varphi_1 u, \varphi_2 \alpha)\|_2^2$
- Orientation loss terms:
 - $\|\operatorname{sgn}(\varphi_2\alpha) \alpha\|_1$
 - $\|\varphi_1(0)\|_1 \ (0 \mapsto 0)$

 - $\|\mathbb{E}_t u\|$ (Hopf)

Loss function terms

- Simplify!!
- AE loss:

$$||u - \psi_1 \varphi_1 u||_2^2 + ||\alpha - \psi_2 \varphi_2 \alpha||_2^2$$

- Consistency loss terms:
 - $\|(\nabla_u \varphi_1)\dot{u} g(\varphi_1 u, \varphi_2 \alpha)\|_2^2$
 - $\bullet \|\dot{u} (\nabla_z \psi_2) g(\varphi_1 u, \varphi_2 \alpha)\|_2^2$
- Orientation loss terms:
 - $\|\operatorname{sgn}(\varphi_2\alpha) \alpha\|_1$
 - $\|\varphi_1(0)\|_1 (0 \mapsto 0)$
 - $\|\mathbb{E}_t u\|$ (Hopf)

Results: Hopf bifurcations in 1D spatio temporal systems

Treating higher dimensional problems: Navier Stokes

- Fully connected MLP neural networks present curse of dimensionality
- POD reduces dimension → computationally cheap
- Discover parameterization in low dimensional space $\lambda(t)$
- Reconstruction using 4 modes reconstructs vortices successfully!

Outlook

- Implemented a reduced order modeling framework for parameter-varying data.
- ullet Low-dimensional parameter-dependent models o normal forms.
- High to low dimension: learn the restriction to a *center manifold* with neural networks.
- The restriction exists theoretically!
- **Future work:** global bifurcations, use normal forms as building blocks for model discovery.

Relevant work

- Champion, K. et al. Data-driven discovery of coordinates and governing equations. *Proc. Natl. Acad. Sci. U.S.A.* **116** (2019).
- Yair, O. et al. Reconstruction of normal forms by learning informed observation geometries from data. *Proc. Natl. Acad. Sci. U.S.A.* **114** (2017).
- Brunton, S. L. *et al.* Discovering governing equations from data by sparse identification of nonlinear dynamical systems. *Proc. Natl. Acad. Sci. U.S.A.* **113** (2016).
- Tu, J. H. *et al.* On dynamic mode decomposition: Theory and applications. *J. Comput. Dyn.* **1** (2014).
- Berkooz, G. et al. The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25 (1993).