

For each layer there is typically a one-to-one relationship between geographic features (point, line, or polygon) and records in a table

Name	FIPS	Pop90	Area	PopDn
Whatcom	53073	128	2170	59
Skagit	53057	80	1765	45
Clallam	53009	56	1779	32
Snohomish	53061	466	2102	222
Island	53029	60	231	261
Jefferson	53031	20	1773	11
Kitsap	53035	190	391	485
King	53033	1507	2164	696
Mason	53045	38	904	42
Gray Harbor	53027	64	1917	33
Pierce	53053	586	1651	355
Thurston	53067	161	698	231
Pacific	53049	19	945	20
Lewis	53041	59	2479	24

Database management system (DBMS)

- A specialized computer program for organizing and manipulating data.
- Stores the properties of geographic objects and the relationships among the objects.
- Efficient data storage, retrieval, indexing and reporting.
- · Database: An organized collection of data
- DBMS: data independency, multiple user view, centralized control and maintenance
- Cost: training and software

Forest Name | Forest-ID | Location Relational Nantahala N. Carolina 184,447 Cherokee N. Carolina **Database Model** Trails Characteristics Trail Name Forest-ID Trail Name Feature Difficulty Minimum row-Bryson's Knob Slickrock Falls Bryson's Knob Ogrth column structure North Fork Slickrock Falls Cade's Cove Slickrock Falls Wfall W Cade's Cove North Fork M Items/records Cade's Cove Ogrth Appalachian Appalachian Cade's Cove Wlife with specified Appalachian Wfall M.D Appalachian Ogrth M.D domains Recreational features Appalachian M,D Vista Appalachian Wlife Feature Description Activity1 Activity2 M.D (possible values) Waterfall Photography Swimming Appalachian Old-Growth Forest Photography Oarth Hiking Scenic Overlook Photography Viewing Wildlife Viewing Photography Advantages: Cmp Campina Camping Minimum structure, easy Disadvantages: programming, Relatively slow, a few restrictions flexible on attribute content

Relational Databases Are Most Common

- Flexible
- Relatively easy to create and maintain
- Computer speeds have overcome slow response in most applications
- Low training costs
- Inertia many tools are available for RDBMS, large personnel pool

Main Operations with Relational Tables

Query / Restrict
Conditional selection

Calculation and Assignment

Sort rank based on attributes

Relate/Join
Temporarily combine two tables by an index

Query / Restrict Operations with Relational Tables

Set Algebra
Uses operations less than (<), greater than
(>), equal to (=), and not equal to (<>).

Boolean Algebra uses the conditions OR, AND, and NOT to select features. Boolean expressions are evaluated by assigning an outcome, True or False, to each condition.

Query / Restrict Operations with Relational Tables

Each record is inspected and is added to the selected set if it meets one to several conditions

AND, OR and NOT may be applied alone or in combinations

AND typically decreases the number of records selected

OR typically increases the number of records selected

NOT Is the negation operation and is interpreted as meaning select those that do not meet the condition <u>following</u> the NOT.

Query / Restrict – simple, AND

Simple Selection: records with Area > 20.0

ID	Area	Landuse	Municip				
1	10.5	Urban	City				
2	330.3	Farm	County				
3	2.4	Suburban	Township				
4	96.0	Suburban	County				
5	22.1	Urban	City				
6	30.2	Farm	Township				
7	4.4	Urban	County				

AND Selection:
records with (Landuse = Urban) and
(Municip = City)

ID	Area	Landuse	Municip
1	10.5	Urban	City
2	330.3	Farm	County
3	2.4	Suburban	Township
4	96.0	Suburban	County
5	22.1	Urban	City
6	30.2	Farm	Township
7	4.4	Urban	County

Query / Restrict - OR, NOT

OR Selection:

records with Area > 20.0

or Municip = City

ID	Area	Landuse	Municip
1	10.5	Urban	City
2	330.3	Farm	County
3	2.4	Suburban	Township
4	96.0	Suburban	County
5	22.1	Urban	City
6	30.2	Farm	Township
7	4.4	Urban	County

NOT Selection: records with Landuse NOT Urban

ID	Area	Landuse	Municip						
1	10.5	Urban	City						
2	330.3	Farm	County						
3	2.4	Suburban	Township						
4	96.0	Suburban	County						
5	22.1	Urban	City						
6	30.2	Farm	Township						
7	4.4	Urban	County						

Operation Order is Important in Query

(D OR E) AND F may not be the same as D OR (E AND F)

NOT (A and B) may not be the same as [NOT (A) AND NOT (B)]

Typically need to clarify order with delimiters

NOT [(Landuse = Urban) AND (Municip = County)]

Area	Landuse	Municip	
10.5	Urban	City	
330.3	Farm	County	
2.4	Suburban	Township	
96.0	Suburban	County	
22.1	Urban	City	
30.2	Farm	Township	
4.4	Urban	County	
	10.5 330.3 2.4 96.0 22.1 30.2	10.5 Urban 330.3 Farm 2.4 Suburban 96.0 Suburban 22.1 Urban 30.2 Farm	

[NOT (Landuse = Urban)] AND [NOT (Municip = County)]

ID	Area	Landuse	Municip
1	10.5	Urban	City
2	330.3	Farm	County
3	2.4	Suburban	Township
4	96.0	Suburban	County
5	22.1	Urban	City
6	30.2	Farm	Township
7	4.4	Urban	County

Structured Query Language (SQL)

A standard system for query syntax

Uniformly interpreted set of operations, e.g., CREATE INSERT SELECT

Anybody can (and it appear everybody has) create a database "engine" that fits under SQL – then we can switch vendors and upgrade whenever we want....in theory.

Main Operations with Relational Tables

Query / Selection
Conditional selection

Calculation and Assignment

Sort rank based on attributes

Relate/Join
Temporarily combine two tables by an index

Calculation and Assignment

Slope = "steep"

Aspect = 45.2

Cost = [M * U + cos (distance)] / (F - P/R*T)

Main Operations with Relational Tables

Query / Selection
Conditional selection

Calculation and Assignment

Sort rank based on attributes

Relate/Join
Temporarily combine two tables by an index

Sort – ordering by attribute values

Simple sort – ascending AREA

Name	AREA	class	Туре
Emily, Lake	52,222.6	1	Limnetic zone
Emily, Lake	58,662.2	1	Limnetic zone
11500	60,826.6	2	Shallow lakes
11 10 100	64,588.5	2	Shallow lakes
1/2	70,590.3	2	Shallow lakes
Long Lake	88,259.5	1	Limnetic zone
11	143,285.3	2	Littoral zone
Sleepy Eye Lake	170,797.1	2	Littoral zone
Mud Lake	193,318.5	2	Shallow lakes
Goldsmith Lake	201,127.1	2	Littoral zone
Emily, Lake	336,343.2	2	Littoral zone
	349,528.7	1	Limnetic zone
	384,160.1	2	Littoral zone
Emily, Lake	420,798.4	1	Limnetic zone
Savidge Lake	479,709.7	2	Littoral zone
Emily, Lake	545,381.8	1	Limnetic zone
Dog Lake	635,537.0	2	Littoral zone
Duck Lake	1,126,331.9	1	Limnetic zone
Wita Lake	1,354,583.2	2	Littoral zone
1/2-12	1,418,133.3	1	Limnetic zone
Ballantyne Lake	1,428,331.5	1	Limnetic zone
Washington, Lake	1,914,835.3	1	Limnetic zone
196	1,937,698.6	1	Limnetic zone
- 3	4,040,675.7	1	Limnetic zone

Compound sort – ascending Type, then descending AREA within Type

No. or a	ADEA	.1	T	1
Name	AREA	class	Туре	ı
	4,040,675.7	1	Limnetic zone	ı
1/20	1,937,698.6	1	Limnetic zone	
Washington, Lake	1,914,835.3	1	Limnetic zone	
Ballantyne Lake	1,428,331.5	1	Limnetic zone	
1990-1990	1,418,133.3	1	Limnetic zone	
Duck Lake	1,126,331.9	1	Limnetic zone	ı
Emily, Lake	545,381.8	1	Limnetic zone	l
Emily, Lake	420,798.4	1	Limnetic zone	ı
	349,528.7	1	Limnetic zone	ı
Long Lake	88,259.5	1	Limnetic zone	ı
Emily, Lake	58,662.2	1	Limnetic zone	ı
Emily, Lake	52,222.6	1	Limnetic zone	ı
Dog Lake	635,537.0	2	Littoral zone	ı
Wita Lake	1,354,583.2	2	Littoral zone	ı
Savidge Lake	479,709.7	2	Littoral zone	ı
	384,160.1	2	Littoral zone	ı
Emily, Lake	336,343.2	2	Littoral zone	ı
Goldsmith Lake	201,127.1	2	Littoral zone	ı
Sleepy Eye Lake	170,797.1	2	Littoral zone	ı
V. T.	143,285.3	2	Littoral zone	ı
Mud Lake	193,318.5	2	Shallow lakes	I
700	70,590.3	2	Shallow lakes	I
	64,588.5	2	Shallow lakes	I
	60,826.6	2	Shallow lakes	ı

Main Operations with Relational Tables

Query / Selection
Conditional selection

Calculation and Assignment

Sort rank based on attributes

Relate/Join *Temporarily combine two tables by an index*

Tables in GIS

Attribute tables are often huge

We have to maintain our tables (change values, remove, add records or items)

Different people/applications are interested in different subsets of attributes (columns)

We often break our tables up into pieces (many tables), and use relational joins as needed to combine them back together

Relational Tables

Relational tables have many advantages, but

If improperly structured, table may suffer from:

Poor performance Inconsistency Redundancy Difficult maintenance

This is common because most users do not understand the concepts <u>Normal Forms</u> in relational tables.

Tables in Non-normal Form

repeat columns, "dependent" data, empty cells by design

Land Records table, unnormalized form

parcel-ID	Alderman	Tship-ID	Tship_name	Thall-add	Own-ID	Own_name	Own_add
2303	Johnson	12	Birch	15W	122	Devlin	123_pine
618	DeSilva	14	Grant	35E	457	Suarez	453_highland
9473	Johnson	12	Birch	15W	337	Yamane	72_lotus

	Own-ID	Own_name	Own_add	Own-ID	Own_name	Own_add
	337	Yamane	72_lotus	890	Prestovic	12_clayton
_	890	Prestovic	12_clayton	231	Sherman	64_richmond
	-	-	-	-	-	-

Normal Forms Are Good Because:

It reduces total data storage

Changing values in the database is easier

It "insulates" information – it is easier to retain important data

Many operations are easier to code

1st Normal Forms in Relational Tables

Tables are in first normal form when there are no repeated columns

Land Records table, unnormalized form

Parcel-ID	Alderman	Tship-ID	Tship_name	Thall_add	Own-ID	Own_name	Own_add	Own-ID	Own_name	Own_add	Own-ID	Own_name	Own_add
2303	Johnson	12	Birch	15W	122	Devlin	123_pine	337	Yamane	72_lotus	890	Prestovic	12_clayton
618	DeSilva	14	Grant	35E	457	Suarez	453_highland	890	Prestovic	12_clayton	231	Sherman	64_richmond
9473	Johnson	12	Birch	15W	337	Yamane	72_lotus	-	-	-	-	-	

Land Records table, first normal form (1NF)

Parcel-ID	Alderman	Tship-ID	Tship_name	Thall_add	Own-ID	Own_name	Own_add
2303	Johnson	12	Birch	15W	122	Devlin	123_pine
2303	Johnson	12	Birch	15W	337	Yamane	72_lotus
2303	Johnson	12	Birch	15W	890	Prestovic	12_clayton
618	DeSilva	14	Grant	35E	457	Suarez	453_highland
618	DeSilva	14	Grant	35E	890	Prestovic	12_clayton
618	DeSilva	14	Grant	35E	231	Sherman	64_richmond
9473	Johnson	12	Birch	15W	337	Yamane	72_lotus

Advantages: easy to code queries (can look in only one column) Disadvantages: slow searches, excess storage, cumbersome maintenance

2nd Normal Forms in Relational Tables

2NF if: it is in 1NF and if every non-key attribute is functionally dependent on the **primary key**

What is a primary key?

An item or set of items that may be used to uniquely identify every row

What is functional dependency?

If you know an item (or items) for a row, then you automatically know a second set of items for the row – this means the second set of items is functionally dependent on the item (or items)

Primary keys

Item(s) that uniquely identify a row

I	STATE	REGION	SIZE	POPULATION
ı	arkansas	south	small	mid
	alaska	west	large	small
1	alabama	south	small	mid
	arizona	west	large	mid
	oregon	west	small	mid
	wyoming	west	large	small

STATE can be a key, but not REGION, SIZE, or POPULATION

Primary keys

Item(s) that uniquely identify a row

Land Records table, first normal form (1NF)

١.								
	Parcel-ID	Alderman	Tship-ID	Tship_name	Thall_add	Own-ID	Own_name	Own_add
	2303	Johnson	12	Birch	15W	122	Devlin	123_pine
	2303	Johnson	12	Birch	15W	337	Yamane	72_lotus
	2303	Johnson	12	Birch	15W	890	Prestovic	12_clayton
	618	DeSilva	14	Grant	35E	457	Suarez	453_highland
	618	DeSilva	14	Grant	35E	890	Prestovic	12_clayton
	618	DeSilva	14	Grant	35E	231	Sherman	64_richmond
	9473	Johnson	12	Birch	15W	337	Yamane	72_lotus

Sometimes we need >1 column to form a primary key, e.g., Parcel-ID and Own-ID together may form a primary key

Functional Dependency

Knowing the value of an item (or items) means you know the values of other items in the row

e.g., if we know the person's name, then we know the address

In our example, if we know the Parcel-ID, we know the Alderman, Township name, and other Township attributes:

Parcel-ID - > Alderman Parcel-ID - > Thall add

Parcel-ID - > Tship-ID

Parcel-ID - > Tship_name

Moving from First Normal Form (1NF to Second Normal Form (2NF), we need to:

Identify functional dependencies

Place in separate tables, one key per table

Land Records table, first normal form (1NF)

	Parcel-ID	Alderman	Tship-ID	Tship_name	Thall_add	Own-ID	Own_name	Own_add
ſ	2303	Johnson	12	Birch	15W	122	Devlin	123_pine
ſ	2303	Johnson	12	Birch	15W	337	Yamane	72_lotus
I	2303	Johnson	12	Birch	15W	890	Prestovic	12_clayton
I	618	DeSilva	14	Grant	35E	457	Suarez	453_highland
I	618	De5ilva	14	Grant	35E	890	Prestovic	12_clayton
	618	DeSilva	14	Grant	35E	231	Sherman	64_richmond
	9473	Johnson	12	Birch	15W	337	Yamane	72_lotus

Given Functional Dependencies:

Parcel-ID → Alderman, Tship-ID

Tship-ID → Tship_name, Thall_add
Own-ID → Own_name, Own_add

Land Records, Second Normal Form

Lana Recoras, Secona Normai Foi

Land Records 1

Parcel-ID	Alderman	Tship-ID	Tship_name	Thall_add
2303	Johnson	12	Birch	15W
618	DeSilva	14	Grant	35E
9473	Johnson	12	Birch	15W

Land Records 2

	Dwn-ID	Own_name	Own_add
Г	122	Devlin	123_pine
	337	Yamane	72_lotus
Г	890	Prestovic	12_clayton
	457	Suarez	453_highland
	231	Sherman	64_richmond
Ш	231	Sher man	04_i ichinona

Land Records 3

Lunu Recorus 3				
Parcel-ID	Own-ID			
2303	122			
2303	337			
2303	890			
618	457			
618	890			
618	231			
9473	337			

3rd Normal Forms in Relational Tables

Remove transitive functional dependencies

A transitive functional dependency is when A -> B (if we know A, then we know B) and

 $B \rightarrow C$ (if we know B, then we know C) So

 $A \rightarrow C$ (if we know A, then we know C).

To be in 3NF, we must identify all transitive functional dependencies, and remove them, typically by splitting the table(s) that contain them

Land Records, Second Normal Form

Land Records 1

Parcel-ID	Alderman	Tship-ID	Tship_name	Thall_add
2303	Johnson	12	Birch	15W
618	DeSilva	14	Grant	35E
9473	Johnson	12	Birch	15W

Land Records 2

Own-ID	Own_name	Own_add
122	Devlin	123_pine
337	Yamane	72_lotus
890	Prestovic	12_clayton
457	Suarez	453_highland
231	Sherman	64_richmond

Land Records 3

Parcel-ID	Own-ID
2303	122
2303	337
2303	890
618	457
618	890
618	231
9473	337

In our example, one transitive functional dependency:

Parcel-ID -> Tship-ID, Alderman

Tship-ID -> Tship_name, Thall_add

Land Records 1

Parcel-ID	Alderman	Tship-ID	Tship_name	Thall_add
2303	Johnson	12	Birch	15W
618	DeSilva	14	Grant	35E
9473	Johnson	12	Birch	15W

Land Records, Third Normal Form

Land Records 1a

FD: Parcel-ID Alderman, Tship-ID

Parcel-ID	Alderman	Tship-ID
2303	Johnson	12
618	DeSilva	14
9473	Johnson	12

Land Records 2

FD: Own-ID Own_name, Own_add

Own-ID	Own_name	Own_add
122	Devlin	123_pine
337	Yamane	72_lotus
890	Prestovic	12_clayton
457	Suarez	453_highland
231	Sherman	64_richmond

Land Records 1b

FD: Tship-ID Tship name, Thall add

	, opa.,	
Tship-ID	Tship_name	Thall_add
12	Birch	15W
14	Grant	35E

Land Records 3

No Functional Dependencies

Parcel-ID	Own-ID
2303	122
2303	337
2303	890
618	457
618	890
618	231
9473	337

Bad Things in Relational Tables

Repeat (or similar) variables e.g., parcel #, owner 1, owner2, owner3, owner 4

Multiple dependencies per record e.g., owner name, house#, street, city, county, zipcode, state, country

Repeat records

Many blank cells

Normal Forms Summary

No repeat columns (create new records such that there are multiple records per entry)

Split the tables, so that all non-key attributes depend on a primary key.

Split tables further, if there are transitive functional dependencies. This results in tables with a single, primary key per table.

Normal Forms Are Good Because

It reduces total data storage

Changing values in the database is easier

It "insulates" information – it is easier to retain important data

Many operations are easier to code

Terminology

- •Database an organized collection of data
- •DBMS a specialized computer program
- •Table data organized in rows and columns
- •Attribute a variable or item
- •Record a collection of attributes
- •Domain the range of values an attribute may take
- •Index/key attribute(s) used to identify, organize, or order records in a database