

Universidade Tecnológica Federal do Paraná Departamento Acadêmico de Computação Bacharelado em Ciência da Computação

Sistemas Distribuídos

Sistemas de Arquivos Distribuídos

Prof. Rodrigo Campiolo

27/09/20

Tópicos

- Introdução
- Serviço de arquivos
- NFS
- Semânticas de compartilhamento
- Política de atualização de cache
- Considerações finais
- Atividades

Introdução

- Sistema de Arquivos Distribuídos (SAD)
 - Armazenar e acessar arquivos remotos como se estivessem locais.
 - Permite os usuários acessar arquivos de qualquer computador na intranet.
 - Exemplos:
 - NFS Sun Network File System
 - AFS Andrew File System
 - CODA

Requisitos SAD

Transparência

- Acesso: acesso a arquivos locais e remotos com um único conjunto de operações.
- Localização: espaço de nomes de arquivos uniformes, independente do deslocamento entre servidores.
- Mobilidade: clientes e servidores não precisam ser alterados quando arquivos são movidos.
- Desempenho: clientes devem operar satisfatoriamente mesmo quando a carga varia.
- Escala: serviço pode ser expandido para lidar com acessos e carga.
- Segurança e eficiência: controle de acesso e desempenho similar a sistemas de arquivos locais.

Requisitos SAD

- Atualizações concorrentes de arquivos: alterações realizadas por um cliente não devem interferir nas operações de outros que usam o mesmo arquivo simultaneamente.
- Replicação de arquivos: cópias de um arquivo em várias localizações, que implica em desempenho e disponibilidade.
- Heterogeneidade: interfaces para suportar diferentes plataformas.
- Tolerância a falhas: continuar funcionar no caso de falhas de clientes e servidores. Lidar com falhas na comunicação.
- Consistência: estratégia para manter o arquivo consistente quando há acessos concorrentes.

Serviço de arquivos

Serviço de arquivos

Read(FileId, i, n) → Data — gera BadPosition	Se $1 \le i \le Length(File)$: lê uma sequência de até n elementos de um arquivo, começando no elemento i , e a retorna em $Data$. Gera uma exceção se o valor i é inválido.
Write(Fileld, i, Data) — gera BadPosition	Se $1 \le i \le Length(File)+1$: grava uma sequência de <i>Data</i> em um arquivo, começando no elemento i , ampliando o arquivo, se necessário. Gera uma exceção se o valor i é inválido.
$create() \rightarrow Fileld$	Cria um novo arquivo de tamanho zero e gera um UFID para ele.
Delete(FileId)	Remove o arquivo.
$\textit{GetAttributes(FileId)} \rightarrow \textit{Attr}$	Retorna os atributos do arquivo.
SetAttributes(FileId, Attr)	Configura os atributos do arquivo (somente os atributos que não estão sombreados na Figura 12.3).

Figura 12.6 Operações do serviço de arquivos plano.

Serviço de diretórios

Lookup(Dir, Name) → FileId — gera NotFound	Localiza o nome textual no diretório e retorna o UFID relevante. Se <i>Name</i> não estiver no diretório, gera uma exceção.
AddName(Dir, Name, FileId) — gera NameDuplicate	Se <i>Name</i> não estiver no diretório, adiciona (<i>Name, File</i>) no diretório e atualiza o registro de atributos do arquivo. Se <i>Name</i> já estiver no diretório, gera uma exceção.
UnName(Dir, Name) — gera NotFound	Se <i>Name</i> estiver no diretório, a entrada contendo <i>Name</i> é removida do diretório. Se <i>Name</i> não estiver no diretório, gera uma exceção.
GetNames(Dir, Pattern) → NameSeq	Retorna todos os nomes textuais presentes no diretório que correspondam à expressão regular <i>Pattern</i> .

Figura 12.7 Operações do serviço de diretório.

NFS

Figura: Arquitetura do NFS.

NFS

Figura: Sistemas de arquivo local e remoto.

Semânticas de Compartilhamento

- One copy (UNIX)
 - Atualizações são escritas para uma única cópia e disponibilizadas imediatamente.
- Transações
 - Trava de arquivos (lock): compartilha para leitura e a escrita é exclusiva.
- Sessão
 - Cópia do arquivo ao abrir, trabalha localmente e escreve ao fechar.
- Imutável
 - Arquivo especificado como compartilhado, não pode ser modificado, ou seja, compartilhamento somente leitura.

Política de Atualização de Cache

- Write-through
 - Escreve para o disco tão logo que o dado é armazenado na cache.
- Delayed-write
 - Escreve modificações na cache e só mais tarde no servidor.
 - Variações:
 - Write on close
 - Update em intervalos regulares

Considerações Finais

- A escolha de um SAD depende das características e uso dos arquivos.
- Disponibilidade e desempenho podem ser obtidos com replicação e caching.
- Deve-se considerar desempenho, tolerância a falhas e segurança.
- Arquiteturas com servidores independentes ou aglomerados.
- Comunicação geralmente via RPC com TCP.

Atividades

 Realize uma pesquisa sobre GFS (Google File System) e faça um resumo que contenha a definição, arquitetura e principais características do GFS.

Referências

COULOURIS, George F; DOLLIMORE, Jean; KINDBERG, Tim; BLAIR, Gordon. **Sistemas distribuídos: conceitos e projeto**. 5. ed. Porto Alegre: Bookman, 2013.

THANH, Tran; et al. **A Taxonomy and Survey on Distributed File Systems**. Fourth International Conference on Networked Computing and Advanced Information Management, IEEE, 2008.

LEVY, Eliezer; SILBERSCHATZ, Abraham. **Distributed File Systems: Concepts and Examples**. ACM Computing Surveys, Vol. 22, No. 4, 1990.