9 - Métabolisme de protéines

9.1 – Teste de protéolyse

- 1. Hydrolyse de la gélatine
- 2. Hydrolyse de la caséine

9.2 – Dégradation des acides aminés

- 1. Dégradation de la lysine
- 2. Dégradation de la Phénylalanine
- 3. Tryptophane
- 4. Acides aminés soufrés

9.3 - Dégradation de l'Urée

9.1 – Teste de protéolyse

a - Hydrolyse de la gélatine

Principe : La gélatine qui est une grosse protéine, est hydrolysée sous l'action de la gélatinase en molécules plus petites

la dégradation de la gélatine se traduit visuellement par la disparition de la structure contenant les particules noires (charbon ou nitrate d'argent)

9.1 – Teste de protéolyse

b - Hydrolyse de la caséine

On met en évidence, grâce à la teinture de tournesol

- 1. Virage de la teinture de tournesol au <u>rose</u>, avec souvent coagulation: acidification donc fermentation du lactose.
- 2. Décoloration: réduction de la teinture de tournesol (débutant dans le fond du tube)
- Réductase
- 3 et 4. Eclaircissement du lait non coagulé, partiel ou total ou Virage de la teinture de tournesol au bleu: alcalinisation due à la protéolyse de la caséine

9.1 – Teste de protéolyse

b - Hydrolyse de la caséine

GELOSE AU LAIT

9.2 - Dégradation des acides aminés

a) Dégradation de la lysine

$$H_{2N}$$
 OH

Principe:

a) <u>Dégradation de la lysine</u>

KLIGLER

la LDC libère de la cadavérine à partir de la lysine. La lecture n'est pas directe Après extraction de la cadavérine par le chloroforme en milieu alcalin, on la révèle par une réaction colorée (violette) à la ninhydrine.

4 binômes voient la démonstration de extraction de la cadavérine par le chloroforme

a) Dégradation de la lysine

MILIEU LYSINE-FER

b) Acides aminés soufrés

Lecture du culot du milieu Kligler et du milieu Lysine-Fer

9.3. Dégradation du Tryptophane et de l'urée

a) Dégradation du Trytophane

Principe: Recherche 2 enzymes

Tryptophane désaminase (TDA)

formation d'un précipité marron

Tryptophanase

formation un composé coloré en rouge

a) Dégradation du Trytophane

MISE EN EVIDENCE DE LA TRYPTOPHANE-DESAMINASE (TDA)

MISE EN EVIDENCE DE LA TRYPTOPHANASE:

b) Dégradation de l'Urée

10 - METABOLISME DES LIPIDES

10.1. MISE EN EVIDENCE DE L'ESTERASE

10 - METABOLISME DES LIPIDES

10.2. MISE EN EVIDENCE DE LA LIPASE

TRIBUTYRINE: également nommé tributyrate glycérol

Lipase

Tributyrate de glycérol + 3 H2O → glycérol + 3 acides butanoïques

détecté grâce à un indicateur de pH (rouge de phénol)

l'hydrolyse de la tributyrine entraine un virage au jaune du milieu autour de la strie

10 - METABOLISME DES LIPIDES

10.3. MISE EN EVIDENCE DE LA LECITHINASE

La lipoprotéinase: lipoprotéiques augmentent la solubilité des phospholipides contenus dans ces complexes, provoque un éclaircissement du milieu autour de la strie