SensorNIS2011 - Porter notes

- discussion Session 1
 - Need funding to coordinate not just data standards
 - definitions are still an issue: your calcium may not equal my calcium
 - did have a lot of work on coordination often separate
 - everyone was leading

many techological advances that make data sharing easier

- barrier is much more one of organizational structures multiple mandates for the federal agencies
- eg Data.gov
 - CUASHI went to USGS, EPA etc. to get them to share standard
- Universities can play role
 - to stabilize networks need to interpret the data show value
- at USGS have been working backwards from policy goals to measurements
 - did you get far enough to do 2-way flow
 - need to create bridge between scientists and information managers
 - but currently are 22 enclaves
 - need to link long term monitoring to research

for NE may want to look at what policy or management question that sensor network would allow us to make easier decisions

- did that at DOI, but never had enough interdisciplinary data to show value
- Yukon Basin may be good example
 - lots of scaling issues
 - logisitical issues
 - 3 years of methods development
 - based on science questions
 - policy questions maintaining villages as environment changes
 - also used to guide science
 - got method for mapping permafrost over wide areas
 - tracking carbon down rivers
 - permafrost carbon could be run-away train
 - also wanted to leave legacy program as model for other systems
- Bridging cultures not just agencies
- NEON may be foundation for national network
 - USGS planning to do additional monitoring
- want legacy of key locations
- long time frame develop

issue may be more creating good quality controlled data

- will talk more about barriers this afternoon
- what are barriers
 - institutions
 - technology

- money
- expertise
- funding model- need new idea, research
 - but we need products that work
- then drill down to nuts and bolts
- I think expertise and field deployment
- lots of sensors work well in lab, but not necessarily in the field are also opportunities
 - can crosswalk between standards
 - need some additional glue

some data are no-brainers

high frequency water quality data

barriers - complex environment of vendors and standards

- lots of site-specific approaches
 - tool sharing consortium would help
- data models and services layered on them
- but complexity is just moving up the food chain
 - some tools work for 20% of data
 - another tool works for another 20%
 - some data fits multiple models
 - eg. time series vs gridded
- may need to look at community level standards
 - soften barriers between stovepipes
 - bridge time series and gridded data
 - make tools for tranlation that do behind the scene
 - makes me sceptical about semantic approaches need to define things in ways scientists want them
- need to focus on interfaces between different system components data quality and assurance
 - sensors come and sensors go, sensors drift
 - most programs don't do a great job on calibration
 - exceptions: NOAA CRN
 - issues subtle changes in gain
 - NEON will be focusing on this
 - hard to do in short-term projects
 - not paid for by grants
 - some sensors are so new, we are not sure what they are telling us
 - e.g., aquatic sensors
 - I don't feel comfortable putting it out don't know what it means
 - data labeling may help
 - provisional
 - can QA against regional models
 - identify breaks in records
 - found lots of times instrument or location was changed
 - need to track calibration
 - don't have good tools for tracking

NEON has tried to address - and we have funding to do it! astrophysist view - we struggled with the same issues

- work on X-ray observatory
- about 30% of costs are related to QA
 - have a whole calibration team
 - can reprocess entire data stream
 - documentation of plan and details of calibration
- do a lot of cross calibration
- customers
 - Xray and radio folks want integrated data
 - but Xray folks won't be expert on radio and vis versa
 - need filter to get it out to the rest of the world
- need to know all the steps, calibrations etc. 5 years from now Need cultural change
 - NEON ahead of LTER which is ahead of other agencies on IM
 - USFS culture does not spend money on IM
 - barrier of finances
 - better data vs more data

also need way of testing data for homogeneity when detailed calibration record does not exist

uncertainty analysis users will use data, however bad....

- need to meet
 - documentation needed
 - requirements
 - operational
 - testing to see if meet requirements
 - users guide

cultural shift

- need to see what will work for graduate students learning by doing
- if people are expecting to use data off web, then proper documentation becomes more important

differences between data from well funded teams - and not!

- flux data- no overall quality control
 - data in same form is shared
 - but students have no idea that some sites have problems
 - leads to spurious results
- software package for doing QA could be used by others
- e.g. R open source
 - developed jointly
 - not tied to individual companies
- still does some changing some parts not as mature as other parts need to make it politically relevant...... and confident in quality of delivery from network
 - chicken and egg problem

- Boose questions
 - what about storing code vs data versions
- afternoon discussion
 - o how to balance new science, new sensors, more sensors, processing effort
 - o maximize analysis
 - see Corrina's PPT notes
- Sensor Tech. & Software
 - success stories
 - USGS
 - weather service
 - challenge often hard to find streaming data
 - usually raw
 - use at your own risk
 - need to be confident in data
 - had to go to multiple sites
 - data turbine
 - levels might help
 - huntington forest
 - stage height, climate
 - not sure what LEVEL it is
 - discussion of levels
 - mandate for making data public and available
 - priority
 - QA QC should not just be on the data
 - hardware, software also included
 - PI driven projects vs large projects
 - PI product-driven
 - vs customer driven (NEON)
 - no naked data, every step documented
 - o focus on steps
 - collection
 - NTL has buoys
 - lots of parameters
 - issues with freezing
 - often use off the shelf
 - identifying the right sensors
 - level of precision
 - choices are there
 - we all have our own sensor suite....
 - loggers
 - who makes decisions on the types of sensors to use or to collect data
 - often recommendations move upwards
 - used blog for techs to chatter
 - budgets are also a consideration
 - should be science driven

- don't trust vendor specs in house calibration
- but does that happen or is it vendor driven
- often a variety of needs and capabilities
- mostly COTS
- needs
 - should have mandate for data sharing
 - low cost sensors that we can distribute in space
 - motes
 - what do you sacrifice to get low cost?
 - gap between motes and traditional loggers in terms of spacing between stations and cost
- streaming
 - information sharing is key static and interactive
 - what are barriers to doing this?
 - depends on domain
 - marine has different issues
 - sometimes permitting issues
 - no towers
 - satellite can be expensive
 - successes David Hughes Wireless Biology Project
 - best practices outline would help
 - need something on site to buffer
 - radio
 - also wired
 - NB485
 - bandwidth needs
 - range
 - terrain
 - commercial service availablitity
 - costs
 - serial vs multilplex (ethernet)
 - power
 - line power (ideal)
 - wind power
 - solar power
 - fuel cells
 - microwave power
 - issue hard to calculate
 - issues inefficiency
 - can do nested hybrid
- Data Access
 - unfettered access to raw data?
 - can share as raw
 - need to document events in data
 - cleaning wiers etc.
 - issue of priorities would be a huge documentation task

- can be in lots of different formats
- EPA IMPACT wanted to do real time streaming
 - EPA nixed
- real time data would be useful
- need to identify users and their needs
- would like to develop standards for levels of data quality
 - NEON is similar to NASA
- what is controlled by grants, contracts, deliverables?
 - users
 - stakeholders
 - sometimes mission-driven
- mechanisms for customer feedback?
 - issues of privacy and intrusion
 - email of IM is available field questions
 - finding papers using data
 - often papers don't say which data they used
 - fund source is listened to
- real-time many users are outreach users
 - station manager uses
 - quick-look
- o opportunities
 - ways to share information on instruments
 - some are well understood
 - others are newer and less well characterized

.

- what kind of forum would work?
 - individual contacts
 - EFR techs mailing list
- metadata often lacks details on instrumentation
 - and solutions
- want to build community of practice
 - meetings
 - VTCs
 - listserv
 - needs to have archive
 - WIKI
 - effective, efficient and non bureaucratic
 - term community is very important
 - FaceBook
 - CampbellSci has list that can be useful
 - geochem listserv
 - big community
 - lots of topics NOT of interest
 - they have someone responsible for maintaining moderating
- issue -often things die on the vine

- needs to be critical mass
- funding might help develop social networking
- surveys of what is being used would help

•

- stratify discussions by research topics and user communities
 - within group some sensors are well known
 - sensors are group specific
 - communication within meetings
 - blogs can also help with sensor selection
 - grad students can help research
- seek funding for developing social networking tools to share experiences
- develop best practices for wireless
- best practices on how to share data
 - granularity
 - single large files
 - lots of annual or station files
 - query based
 - how to keep from bogging down
 - database design issues
 - best practices for database development
 - can do both
 - one form doesn't fit all.....
- QAQC working group 3
 - o real time data
 - range checks
 - missing value codes
 - minimum could be nothing
 - o issue: is it responsible to release unapproved data?
 - end users
 - technical and logistical use
 - can watermark graphs and not release data
 - people can pick numbers off scans
 - but we can't be responsible for how people might misuse data
 - our responsibilities are to tell them what we did to check
 - they are responsible for their use
 - o good practice
 - varies depending on scale/number of measurements
 - some common ones
 - range/min/max
 - definition is subjective
 - can get from sensor manual
 - that deals with impossible, not unlikely
 - easy to use tools may help
 - o levels?
 - work in context of individual systems but do not necessarily apply across systems

- usually
 - level 0 raw
 - level 1 calibrated
 - level 2 gap filled
- can put things in metadata detailing
- lots of domain choices
- o running averages lengths
 - specific to datasets
 - can calibrate on existing data
- o redundant sensors would help
 - can use nearby stations
 - multiple loggers also help
 - 3 is ideal number
 - increases costs
 - don't all need to be of equal quality/resolution
 - also increases reliability
 - multiple sensors of different types
- seven tests are pretty good but don't apply to everything
 - how conservative should you be?
 - may cause more harm than good if strip out interesting points
 - ultimately you are responsible for your choices
- o are methods for doing GENERIC QA but no easy to use tools
- o tools?
 - lots of candidates
 - Matlab/GCE toolbox
 - Could have some R libraries
 - statistical languages/programming languages
 - code can be put in metadata
 - kepler
 - can share agents
 - web service-based approaches
 - proprietary software
 - Campbell RTMC VistaVision
 - and other graphical software
 - LabView
 - good to have toolkit that can be customized for data
- o education and training
 - need training workshops
- gap filling
 - is it nobler to gap fill?
 - very useful but also dangerous
 - need to make clear what was done
 - use of nearby stations
 - lots of other potential models
 - from internal temp sensor could regress to main
 - also weir to wier

- snow models
- sometimes with boundary techniques
- backfilling may be a SCIENCE problem not a IM question
- Borer ESA Bulletin paper
- what would you want from a gap filling model
 - lots of tools lots of approaches
 - if anything too many tools
- documentation critical
 - should report level of uncertainty
 - can create "fake" gaps to test fit
 - also regression reports
- o clearinghouse for tools and approaches would help
- o will we ever be able to get away from provisional data?
 - even NEON will use human eyes as last test
 - timing depends on availability of human
 - maximizing automation can help
 - automated QC can AID human guide human vision
 - human won't work for 20,000 datasets
- o would be good to see some tools widely used.....
 - test them on exemplar datasets
 - take good data and corrupt it
 - would also be useful for testing
 - seven criteria are a good start
 - could be used with educational material in training using different tools
 - also exemplar data documentation
- Action items
 - what should go in best practices document?
 - QA procedures applied must be documented -esp. if NONE
 - Tools people are eager to use
 - I'd like to see some comparisons and then workshops to select
 - getting a list of on pager on tools
 - can do survey once you have short list
 - articles in DataBIts
 - example analyses in different tools
 - gap filling tools
 - proof is in pudding test exemplar datasets using different methods
 - what is criteria for which is best
 - want UNCERTAINTY confidence intervals
 - Mean square error
 - could be a publication comparing methods
 - ameriflux network might be resource they have done alot
 - they use "gold standard" dataset
 - they published in agricultural meteorology
- Working Group Reports
 - NERC web site
 - educational materials

- middleware
- link NE sites common data display
- o LTER
 - one page descriptions knowledgebase
 - coding schemes for data flags
 - databits articles for 2012 ASM meeting
 - versioning model issues for streaming data
 - Campbell Paper
 - sensor management system tracking sensors and history
- Software & Tech Outlook
 - Martin
 - success stories
 - USGS, Weather Service
 - Agency level efforts mandated and funded
 - not so for PI systems
 - limited funding, need to coordinate collections
 - some individual sites
 - Example David Hughes wireless biology
 - needs
 - COTS is primary solution
 - mostly challenges seemed to be met....
 - mechanism for SHARING information
 - sharing info on customized solutions
 - blogs, listserves etc.
 - require work to keep working
 - needs to be source for EXPERTS as well so they keep communicating
 - best practices would help
 - static documents
 - ongoing communication
 - Campbell
 - Success stories
 - homegrown programs
 - Campbell Sci solutions
 - most sites
 - Matlab
 - common themes
 - use different data loggers
 - Campbell
 - Hobo
 - interest in NEON GRAPE data logger
 - lots of neat software tools
 - outbox
 - flot graphing tools
 - approaches

- top down vs bottom up
- top down
 - faster
 - more uniform
 - less flexible
- we are mostly bottom up
- adopting new solutions how to make decisions
 - relucatnce to invest in things that are not mature
- greatest needs
 - programming support
 - undergrads?
 - not all stable well documented software
 - training workshops
 - Webinars?
 - ways to share experience with tools and software
- action items
 - useful tools
 - perhaps Kepler
 - standardization
 - light handed, top down veneer
- Alene
 - action item
 - way of communcating collective knowledge
 - robust against staff turnover
 - best practices manual
 - format
 - online guide
 - divided into sections
 - links ot external resources
 - page manager assigned to update it
 - associated blog/comments used to drive page revisions
 - subsections
 - Managing sensors
 - sensor specific information
 - power sources
 - sensor audits to assess quality control
 - designated staff purson
 - sensors that could be temporarily co-deployed for comparisons
 - tracability of a particular sensor
 - GRAPE
 - android phone
 - bar codes

- network level desing
- streaming
 - review of software packages
 - commercial vs open source
 - custom built
 - telemetry and communications options
 - tools for design "landscape toolbox"
 - tools for predicting radio pattern
 - archiving
 - citable database
 - versioning issues
 - snapshots
 - annual editions
 - access
 - how to identify and access users
 - ID untapped user groups

- o QA/QC discussions
 - Sheldon
 - recommendations
 - NEON streaming data checks
 - complete but subject to interpretation
 - some dependency on sensors and phenomena
 - eg. Range
 - of sensor
 - of reasonable values
 - seasonally based?
 - still substantial complexity dependence on characteristics of sensor
 - need knowledgebase
 - tracking how long since last calibration
 - sensor management system
 - need to be clear what PURPOSE is of quality checks
 - and how it will feed into data cycle
 - MUST
 - outside range of sensor
 - timing consistencies
 - SHOULD
 - depends on sensors
 - knowledge-base
 - need expert advice

- only missing values (e.g., logger codes) should ever be REMOVED from the data stream
- Gap filling
 - controversial
 - approach can have major impacts on analyses
 - often needed for SUMMARY data
 - end users want clean, ready to analyze datasets
 - may be done later in the datacycle with expert attention
- qualifiers
 - many vocabularies available from federal systems
 - impractical to crosswalk
 - good to have a rich set of qualifiers
 - e.g., sensor higher than yesterday
 - for reports
 - but a SIMPLE set of flags for users
 - somethings may be better than qualifers
 - e.g. sensor ID column in data
- documentation
 - methods, thresholds, assumptions
 - MUST detail gap filling and flag modeled values
- Action items
 - best practices crouced sourcing
 - tiers of recommended flagging criteria for particular sensors
- Laney
 - basic QC Lev0 to level 1
 - data ranges staged by time of year from historical data
 - need to be careful of extreme events
 - removing vs flagging bad data
 - most prefer just to flag, but not remove
 - permanent vs temporary flagging
 - e.g., tag questionable for further examination
 - numeric vs character flags
 - mature vs new types of measurements
 - need descriptive flags if data are bad describes WHY the data are bad
 - Variance
 - increased variance can be used as indicator of sensor degrading
 - need to look at windows of time
 - standards of frequency of observations
 - standards for detecting outliers
 - cross-site standards difficult of establish
 - QC at different points in processing
 - level 0

- raw
- level 0.5
 - unit conversions etc.
- level 1
 - QC and QC flags
- level 2
 - longer time series may prompt further explaination
- gap filling
 - should missing time stamps be infilled
 - if so would you then flag the blank rows
 - or just flag start and end of gap
 - multiple algorithms
 - trust issues
- data qualifiers
 - dfferent at level of processing
 - subjective flags vs. quantifiable
 - good vs passed rangecheck
 - additional flags for if their is additional information
 - should the data be analyzed flag
 - gap filling, drift detection
- data documentation
 - Key tell how collected and processed
 - metadata requirements
 - maintenance log
 - configuration logs
 - links to other files related to data
- Dereszynski
 - minimum level of QC
 - can be NONE if we document it
 - what is needed for stakeholders
 - MUST document what has been done (or not)
 - good practices
 - based on NEON list
 - range checks
 - even this simple is challenging
 - running averages
 - specific to site, sensor type
 - sensor redundancy
 - ideally have replication of 3!
 - can use some lower resolution sensors as proxies
 - correlations between adjacent stations
 - help establish confidence in data
 - tools
 - GCE toolbox
 - Kepler
 - R

- web services
 - server-side QC
- require training and evaluation
 - annotated examples, shared experiences
 - webinars
- action items
 - series of 1 pagers on tool experiences
 - mix of expert and novice users
 - specific methods
 - performance
 - how well did it work
 - survey of reports in Databits,
- Gap filling
 - often a science question
 - lots of potential methods
 - emphasis on documentation
 - want clearinghouse for tools and approaches
 - action items
 - create test sets to evaluate gap filling
 - inject known modes of sensor failure
 - criteria for evaluating effectiveness of gap filling
 - uncertainty estimates
 - performance metrics
 - publication comparing methods across exemplar datasets
- Will we ever get away from provisional data
 - human likely to be part of process
 - focus tools on focusing human attention
- o discussion of working group reports
 - need for knowledge sharing
 - can produce guidelines for how community moves forward
 - minimum standards
 - a white paper won't cut it!!!!
 - need creative knowledge sharing
 - key that guides design process
 - best practices document
- o subgroups
 - creating knowledgebase web site
 - identifying some common data levels
 - sensor management systems
 - what needs to be tracked
 - how
 - products of the meeting
 - paper outline
 - best practice document
 - discussion

- one group (Alena) had detailed info. on best practices we can use their outline
- Sensor management
 - o goals
 - add to metadata for data interpretation
 - sensor relocation
 - track calibration events
 - needs to be done very efficiently
 - bar codes
 - history of the sensor
 - use to establish calibration
 - nagging system
 - preventive maintenance
 - flagging data failures in data
 - track
 - sensor swaps
 - calibration
 - sensor events
 - wasp nest
 - .
 - some will require free text
 - others are events that can be a checkbox
 - tie into photos
 - photos of entire station
 - deployment related things affect entire station
 - o + mobile phones with API can do app.
 - GPS, compass, camera
 - read bar codes
 - can launch activity
 - Mikhail can do
 - the hardest part is easy to use interface and database it connects to
 - perhaps web services interface
 - o sensorML standard covers station, deployment, sensor, parameter
 - can be really complex
 - a subset might be a better way to start
 - o could use simple date, object, action
 - with table of ids
 - good to dump to from field ap
 - dovetails well into QAQC
 - o best practices
 - tie into provisioning of sensors
 - capture sensor documentation when it comes in
 - good reference tool for building metadata
 - o lookup table for standard implementation parameters
 - sensor characteristics
 - o could be a centralized system or a standards-based system

- wiring diagram practices
 - labeling
 - photos
 - diagrams
- action items
 - closer look at SensorML
 - SWE comes with suite of tools and services
 - sensor web enablement
 - also transducerML
 - who is using it?
 - CSRIO in australia
 - also doing marineML
 - id existing utilities and tools
 - obvious choice
 - development of tools to feed off of sensorML
 - may want to develop relational database that feeds off of sensorML
 - notification services etc.
 - funding?
 - RCN -type proposal
 - supplements
 - LTER product-oriented working groups
 - bring in some outside folks
 - or release time
 - Android application development
 - Android app is easy
 - read ID bar code
 - action
 - sensor added
 - sensor removed
 - sensor calibrated
 - sensor cleaning
 - need time range for this
 - other text
 - add photo
 - way of recording time span where work is done.....
 - big issue is linking to system
 - a standard would make it easier
 - perhaps standard web service
 - where do you send it....
 - similar to things used in utility industry
 - could possibly add RFID scanner if desired
 - adds cost
 - possibly serial to bluetooth
 - use QR code
 - who
 - Wade and Derek will research sensorML

- set up email list
 - many hands make light work
- Wrapup reports
 - web site of best practices
 - flow what to think about at each step
 - Campbell Paper
 - reviewed outline
 - areas for future development
 - need good examples of problems with datasets
 - have clear vision of where we are going
 - John Campbell will coordinate
 - o data levels
 - agreed on levels 0, 1a, 1b etc.
 - provisional
 - level 2 gap filled
 - will write up for QA report
 - sensor management
 - see notes above
- closing remarks
 - o thanks for coming!
 - o very productive and fun
 - o thanks to Hubbard Brook Staff!
 - o esp. Krista
 - o organizers thanks
 - o people did a great job paying attention