MAKALAH ANALISIS DERET WAKTU

"Perbandingan Peramalan dengan Metode ARIMA dan Metode *Double*Exponential Smoothing pada Data Harga Minyak Mentah WTI Berjangka di Indonesia"

Dosen Pengampu: Trianingsih Eni Lestari, S.Si, M.Si.

Disusun Oleh

Dery Ferdika Oktoriansah

(200312614062)

PROGRAM STUDI S-1 MATEMATIKA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

UNIVERSITAS NEGERI MALANG

2022

KATA PENGANTAR

Puji syukur kehadirat Allah SWT atas segala limpahan rahmat dan hidayah-Nya yang telah dilimpahkan kepada penulis. Dengan rahmat dan hidayah-Nya, penulis dapat menyelesaikan makalah ini dengan baik.

Penulis berusaha semaksimal mungkin menyelesaikan makalah dengan judul "Perbandingan Peramalan dengan Metode ARIMA dan Metode *Double Exponential Smoothing* pada Data Harga Minyak Mentah WTI Berjangka di Indonesia". Makalah ini sebagai salah satu penugasan mata kuliah Analisis Deret Waktu pada offering J, Program Studi Matematika, Universitas Negeri Malang.

Keberhasilan penulisan makalah ini tentu tidak lepas dari bantuan berbagai pihak. Dalam kesempatan ini penulis menyampaikan terima kasih kepada:

- 1. Bu Trianingsih Eni Lestari, S.Si, M,Si, selaku Dosen mata kuliah Analisis Deret Waktu.
- 2. Rekan-rekan mahasiswa offering J Angkatan 2020.
- 3. Dan semua pihak yang membantu penyelesaian makalah ini.

Penulis menyadari bahwa dalam penyusunan makalah ini masih banyak kekurangan, untuk itu penulis mengharapkan atas kritik dan saran yang membangun dari pembaca, terutama kepada Dosen pengampu mata kuliah Analisis Deret Waktu. Semoga makalah ini dapat bermanfaat untuk kita semua.

Penulis

DAFTAR ISI

BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	3
1.3 Tujuan Penulisan	3
BAB II PEMBAHASAN	4
2.1 Identifikasi Model Data Deret Waktu (Tentative Identification)	7
2.2 Estimasi dan Uji Signifikansi Parameter (Parameter Estimation)	17
2.3 Verifikasi model (Diagnostic Checking)	18
2.4 Peramalan (Forecasting)	20
2.5 Metode Smoothing dengan DES	21
2.6 Perbandingan Model ARIMA (2,1,1) dan DES	24
BAB III	26
PENUTUP	26
3.1 Kesimpulan	26
3.2 Saran	26

BAB I

PENDAHULUAN

1.1 Latar Belakang

Time Series atau deret waktu adalah urutan titik data untuk variable yang biasanya diukur pada waktu yang berturut-turut pada interval waktu yang seragam (Robinson & Sciences, 2020). Pengukuran, pengamatan, dan pencatatan data tersebut biasanya dilakukan tiap hari, tiap bulan, tiap tahun, tiap lima tahun, dan sebagainya. Jumlah data deret waktu sangat berpengaruh terhadap hasil dari peramlaan. Dalam melakukan peramalan atau *forecasting* yang baik maka dibutuhkan minimal data yang diperlukan untuk peramalan. Menurut Soejoeti dalam Dwitanto (2011), dalam analisis deret waktu memerlukan setidaknya minimal 50 data. Berdasarkan keterangan tersebut, dapat disimpulkan bahwa jika data kurang dari jumlah tersebut maka kemungkinan hasil peramalannya akan kurang baik.

Salah satu contoh data time series adalah data harga minyak mentah. Data minyak mentah dilaporkan secara berkala tiap tahun, bulan, minggu, hari, jam, menit, bahkan tiap detik karena data minyak mentah adalah data *real-time*. Arti dari data *real time* sendiri adalah sekelompok data yang terkumpul saat itu juga dengan delay yang sangat singkat. Dari data minyak mentah ini ada beberapa informasi seperti harga pembukaan, harga penutupan, harga tertinggi, dan harga terendah. Di makalah ini, peneliti menggunakan harga penutupan data harga minyak mentah sebagai bahan analisis data deret waktu.

Metode pemulusan eksponensial adalah suatu metode peramalan rata-rata bergerak yang melakukan penimbangan terhadap data masa lalu dengan cara eksponensial sehingga data paling akhir mempunyai bobot atau timbangan lebih besar dalam rata-rata bergerak. Pemulusan eksponensial dibagi menjadi tiga yaitu, pemulusan eksponensial orde satu (SES (Single Exponential Smoothing)), pemulusan eksponensial orde dua (DES (Double Exponential Smoothing)), dan pemulusan eksponensial orde tiga (Triple Exponential Smoothing) atau biasa disebut metode Winter-Holt.

Dari ketiga metode pemulusan tersebut, salah satu yang sering dipakai adalah metode DES atau Double Exponential Smoothing, di mana metode DES ini memuluskan suatu data jika data tersebut mengandung trend namun tidak mengandung musiman. Dari hasil pemulusan DES ini, maka akan didapat model peramalan, di mana jika galat ramalan (forecast error) adalah positif, maka nilai actual akan lebih tinggi daripada nilai ramalan sehingga pemulusan eksponensial akan cenderung meningkatkan ramalan, begitu juga sebaliknya.

Analisis pada data deret waktu atau yang disebut dengan *time series analysis* adalah suatu proses untuk memahami data deret waktu dan membuat nilai *forecasting* atau peramalan pada pola data tersebut (Robinson & Sciences, 2020). Peramalan adalah suatu kegiatan memprediksi kejadian di masa mendatang, sedangkan ramalan adalah suatu kondisi yang diprediksi akan terjadi di masa mendatang. Suatu peramalan data deret waktu diperoleh dari analisis deret waktu dalam bentuk pemodelan data.

Salah satu model yang dapat digunakan dalam menganalisis suatu deret waktu adalah ARIMA. Model ARIMA mampu mewakili deret waktu stasioner maupun non-stasioner. Model ini tidak mengikutkan variable bebas dalam modelnya (Kusmurtanto, 2007). Pada model ARIMA, data yang belum stasioner harus distasionerkan terlebih dahulu. Model ARIMA cocok digunakan untuk data deret waktu yang berjangka pendek dan kelebihan dari model ARIMA ini adalah tingkat keakurasiannya yang cukup tinggi.

Model ARIMA atau yang disebut *Box-Jenkins* ini menggunakan nilai sebelumnya dari suatu variabel dan atau nilai kesalahannya di masa lalu. Model ARIMA ini telah banyak digunakan dalam kasus peramalan seperti meramalkan indeks harga saham, harga minyak bumi, jumlah pemakaian listrik, dan sebagainya. Ada beberapa model yang biasanya digunakan yaitu model *Autoregressive* (AR), model *Moving Average* (MA), model *Autoregressive Moving Average* (ARMA), dan model *Autoregressive Integrated Moving Average* (ARIMA), di mana keempat model tersebut menggunakan asumsi bahwa data hasil peramalan harus bersifat stasioner dan residual memenuhi uji asumsi *white noise*.

Berdasarkan uraian di atas, maka peneliti akan membahas mengenai peramalan harga minyak mentah WTI berjangka selama bulan Juli sampai Oktober 2022 menggunakan model ARIMA dan metode *Double Exponential Smoothing*.

1.2 Rumusan Masalah

Berdasarkan latar belakang di atas, dapat diambil rumusan masalah yaitu:

- 1. Bagaimana analisis peramalan menggunakan metode ARIMA?
- 2. Bagaimana analisis peramalan menggunakan metode DES?
- 3. Apa hasil yang didapat dari proses forecasting pada pengamatan data deret waktu ini?

1.3 Tujuan Penulisan

Tujuan dari penulisan makalah ini yaitu:

- 1. Mengetahui proses analisis peramalan menggunakan metode ARIMA
- 2. Mengetahui proses analisis peramalan menggunakan metode DES
- 3. Mampu menjabarkan hasil dan kesimpulan dari proses *forecasting* pada pengamatan deret waktu.

BAB II

PEMBAHASAN

Teknik analisis data deret waktu diterapkan pada *time series* mengarah pada pemahaman mengenai data dan pola di dalamnya. Tujuan dari analisis deret waktu tersebut adalah sebagai berikut:

- 1. Melihat deskripsi utama data, biasanya melalui plotting data.
- 2. Menjelaskan isi data, hubungan variabel yang terbentuk.
- 3. Ramalan atau forecasting.

Dalam penelitian ini, penulis menggunakan aplikasi bantuan untuk menganalisis data deret waktu, diantaranya adalah Minitab 19 dan EViews.

Tahapan analisis data deret waktu menggunakan model ARIMA adalah sebagai berikut:

- 1. Identifikasi model time series (Tentative Identification)
- 2. Estimasi dan uji signifikansi parameter (Parameter Estimation)
- 3. Verifikasi model (Diagnostic Checking)
- 4. Peramalan (Forecasting)

Sample data deret waktu yang akan digunakan oleh peneliti adalah data harga minyak mentah WTI dalam jangka waktu Juli 2022 – Oktober 2022 seperti pada tabel berikut:

TI	Hanna
Tanggal	Harga
31/10/2022	86.53
28/10/2022	87.9
27/10/2022	89.08
26/10/2022	87.91
25/10/2022	85.32
24/10/2022	84.58
21/10/2022	85.05
20/10/2022	85.98
19/10/2022	85.55
18/10/2022	82.82
17/10/2022	85.46

14/10/2022	85.61
13/10/2022	89.11
12/10/2022	87.27
11/10/2022	89.35
10/10/2022	91.13
7/10/2022	92.64
6/10/2022	88.45
5/10/2022	87.76
4/10/2022	86.52
3/10/2022	83.63
30/09/2022	79.49
29/09/2022	81.23
28/09/2022	82.15
27/09/2022	78.5
26/09/2022	76.71
23/09/2022	78.74
22/09/2022	83.49
21/09/2022	82.94
20/09/2022	84.45
19/09/2022	85.73
16/09/2022	85.11
15/09/2022	85.1
14/09/2022	88.48
13/09/2022	87.31
12/9/2022	87.78
9/9/2022	86.79
8/9/2022	83.54
7/9/2022	81.94
6/9/2022	86.88
5/9/2022	88.96
4/9/2022	88.25
2/9/2022	86.87

1/9/2022	86.61
31/08/2022	89.55
30/08/2022	91.64
29/08/2022	97.01
26/08/2022	93.06
25/08/2022	92.52
24/08/2022	94.89
23/08/2022	93.74
22/08/2022	90.23
19/08/2022	90.77
18/08/2022	90.5
17/08/2022	88.11
16/08/2022	86.53
15/08/2022	89.41
12/8/2022	92.09
11/8/2022	94.34
10/8/2022	91.93
9/8/2022	90.5
8/8/2022	90.76
5/8/2022	89.01
4/8/2022	88.54
3/8/2022	90.66
2/8/2022	94.42
1/8/2022	93.89
29/07/2022	98.62
28/07/2022	96.42
27/07/2022	97.26
26/07/2022	94.98
25/07/2022	96.7
22/07/2022	94.7
21/07/2022	96.35
20/07/2022	102.26

19/07/2022	104.22
18/07/2022	102.6
15/07/2022	97.59
14/07/2022	95.78
13/07/2022	96.3
12/7/2022	95.84
11/7/2022	104.09
8/7/2022	104.79
7/7/2022	102.73
6/7/2022	98.53
5/7/2022	99.5
4/7/2022	110.4
3/7/2022	108.19
1/7/2022	108.43

Data minyak mentah WTI ini adalah tipe data *real-time* yang artinya data diperbarui tiap tahun, bulan, hari, jam, menit, bahkan detik.

2.1 Identifikasi Model Data Deret Waktu (Tentative Identification)

Tahap pertama dalam menganalisis data deret waktu dengan model ARIMA adalah identifikasi jenis data deret waktu menggunakan *plotting*. Pola data deret waktu ada empat macam yaitu pola data horizontal, pola data trend, pola data musiman, dan pola data siklis. Dalam pengamatan ini, peneliti menggunakan aplikasi Minitab untuk mem-*plotting* data.

Gambar 1. Plot data minyak mentah WTI dari bulan Juli 2022 sampai dengan Oktober 2022

Gambar 2. Trend Analysis data minyak mentah WTI dari bulan Juli 2022 sampai dengan Oktober 2022

Dari gambar grafik *plotting* data di atas, terlihat bahwa data minyak mentah WTI masih belum stasioner dalam varian maupun rata-rata, terlihat dari adanya trend serta data masih membangun pola melebar, sehingga model data harus distasionerkan terlebih dahulu.

Setelah mengetahui hasil *plotting* dari data, maka tahap selanjutnya adalah mengecek apakah data sudah stasioner dalam rata-rata (mean) dan variansi (penyimpangan data terhadap mean). Jika data belum stasioner dalam rata-rata, maka dapat dilakukan differencing dan jika data belum stasioner dalam varian, maka data dapat ditransformasi melalui Box-Cox Transformation. Data dikatakan stasioner dalam varian jika nilai rounded value atau lamda (λ) sama dengan 1.

Didapat hasil differencing adalah seperti tabel di bawah.

-0.24
2.21
-10.9
-0.97
4.2
2.06
-0.7
-8.25
0.46
-0.52
1.81
5.01
1.62
-1.96
-5.91
-1.65
2
-1.72
2.28
-0.84
2.2
-4.73
0.53
-3.76
-2.12
0.47
1.75
-0.26
1.43

2.41	
-2.25	
-2.68	
-2.88	
1.58	
2.39	
0.27	
-0.54	
3.51	
1.15	
-2.37	
0.54	
3.95	
-5.37	
-2.09	
-2.94	
0.26	
1.38	
0.71	
-2.08	
-4.94	
1.6	
3.25	
0.99	
-0.47	
1.17	
-3.38	
0.01	
0.62	
-1.28	
-1.51	

0.55
-4.75
-2.03
1.79
3.65
-0.92
-1.74
4.14
2.89
1.24
0.69
4.19
-1.51
-1.78
-2.08
1.84
-3.5
-0.15
-2.64
2.73
0.43
-0.93
-0.47
0.74
2.59
1.17
-1.18
-1.37

Karena masih ada nilai yang negatif, maka cari nilai negative yang terkecil yaitu -10.9, maka tambahkan hasil differencing dengan 12, didapat hasil differencing seperti tabel di bawah

10.76
13.21
0.1
10.03
15.2
13.06
10.3
2.75
11.46
10.48
12.81
16.01
12.62
9.04
5.09
9.35
13
9.28
13.28
10.16
13.2
6.27
11.53
7.24
8.88
11.47
12.75
10.74
12.43
13.41
8.75

8.32
8.12
12.58
13.39
11.27
10.46
14.51
12.15
8.63
11.54
14.95
5.63
8.91
8.06
11.26
12.38
11.71
8.92
6.06
12.6
14.25
11.99
10.53
12.17
7.62
11.01
11.62
9.72
9.49
11.55
6.25

8.97
12.79
14.65
10.08
9.26
15.14
13.89
12.24
11.69
15.19
9.49
9.22
8.92
12.84
12.84 7.5
12.84 7.5 10.85
12.84 7.5 10.85 8.36
12.84 7.5 10.85
12.84 7.5 10.85 8.36 13.73 11.43
12.84 7.5 10.85 8.36 13.73 11.43
12.84 7.5 10.85 8.36 13.73 11.43
12.84 7.5 10.85 8.36 13.73 11.43 10.07 10.53
12.84 7.5 10.85 8.36 13.73 11.43 10.07
12.84 7.5 10.85 8.36 13.73 11.43 10.07 10.53
12.84 7.5 10.85 8.36 13.73 11.43 10.07 10.53 11.74 13.59

Tahap selanjutnya yaitu cek kestasioneritas rata-rata dengan trend analysis, ACF, dan PACF

Gambar 3. Trend analysis dari differencing 1 kali pada data minyak mentah WTI

Gambar 4. Hasil uji ADF menggunakan aplikasi EViews

Terlihat bahwa data sudah stasioner dalam rata-rata jika menggunakan trend analysis karena dengan pengecekan melalui uji ADF nilainya adalah 0.000 yaitu lebih kecil dari 0.05. Selanjutnya akan dicek stasioner secara varians.

Gambar 5. Box-Cox plot dari hasil differencing 1 kali pada minyak mentah WTI

Dari hasil Box-Cox plot, didapat bahwa rounded value yang didapat bernilai 1, artinya data sudah stasioner dalam varians.

Setelah data sudah stasioner dalam rata-rata dan varians, selanjutnya akan dicek ACF-PACF untuk menentukan model sementara

Gambar 6. ACF dari data baru setelah stasioner mean dan varian

Dari ACF data baru tersebut, terlihat bahwa ada 2 lag yang menembus batas signifikansi, jadi *Moving Average* (orde q) berorde 2.

Gambar 7. PACF dari data baru setelah stasioner mean dan varian

Dari PACF data baru tersebut, terlihat bahwa ada 2 lag yang menembus batas signifikansi, jadi *Autoregressive* (orde p) berorde 2.

Maka model sementara yang didapat adalah ARIMA (2,1,2), ARIMA (2,1,1), ARIMA (2,1,0), ARIMA (1,1,2), ARIMA (1,1,1), ARIMA (1,1,0), ARIMA (0,1,2), ARIMA (0,1,1)

2.2 Estimasi dan Uji Signifikansi Parameter (Parameter Estimation)

Tahap estimasi digunakan untuk memperoleh estimasi koefisien-koefisien dan model yang diperoleh. Tahap signifikansi parameter digunakan untuk memperoleh model dengan MSE terkecil sehingga nantinya akan dipilih sebagai model terbaik untuk meramalkan data minyak mentah WTI ini.

No	Model Sementara	Parameter	P-Value	Uji Signifikansi	Kesimpulan
1	ARIMA (2,1,2)	AR (2)	0.002	Signifikan	Model tidak cocok
		AR (1)	0.000	Signifikan	
		MA (2)	0.074	Tidak Signifikan	
		MA (1)	0.003	Signifikan	
2	ARIMA (2,1,1)	AR (2)	0.038	Signifikan	Model cocok dan
		AR (1)	0.004	Signifikan	lanjut ke tahap
		MA (1)	0.002	Signifikan	selanjtnya
3	ARIMA (2,1,0)	AR (2)	0.059	Tidak Signifikan	Model tidak cocok

		AR (1)	0.665	Tidak Signifikan	
4	ARIMA (1,1,2)	AR (1)	0.079	Tidak Signifikan	Model tidak cocok
		MA (2)	0.099	Tidak Signifikan	
		MA (1)	0.066	Tidak Signifikan	
5	ARIMA (1,1,1)	AR (1)	0.802	Tidak Signifikan	Model tidak cocok
		MA (1)	0.748	Tidak Signifikan	
6	ARIMA (1,1,0)	AR (1)	0.721	Tidak Signifikan	Model tidak cocok
7	ARIMA (0,1,2)	MA (2)	0.044	Signifikan	Model tidak cocok
		MA (1)	0.633	Tidak Signifikan	
8	ARIMA (0,1,1)	MA (1)	0.576	Tidak Signifikan	Model tidak cocok

Dari kemungkinan 8 model tersebut, didapat bahwa hanya ada satu model yang cocok yaitu ARIMA (2,1,1). Setelah didapat model sementara, maka lanjut ke tahap verifikasi model

Final Estimates of Parameters

Тур	е	Coef S	E Coef	T-Value	P-Value
AR	1	0.670	0.224	3.00	0.004
AR	2	-0.238	0.113	-2.10	0.038
MΑ	1	0.674	0.216	3.12	0.002

2.3 Verifikasi model (Diagnostic Checking)

Dari uji signifikansi parameter dan estimasi, didapat model yang cocok untuk tahap selanjutnya adalah ARIMA (2,1,1). Untuk melakukan verifikasi model sementara sebelum lanjut ke peramalan, ada beberapa tahapan yang harus dilalui yaitu melihat nilai MSE, uji asumsi *white noise*, serta uji normalitas residual model. Uji asumsi *white noise* bertujuan untuk melihat apakah residualnya sudah saling bebas atau terdistribusi acak. Uji asumsi white noise dilihat dengan menggunakan p-value dari LJung-Box.

Residual Sums of Squares

Back forecasts excluded

Terlihat bahwa MSE dari model ARIMA (2,1,1) adalah sebesar 7.27823

Modified Box-Pierce (Ljung-Box) Chi-Square Statistic

Lag	12	24	36	48
Chi-Square	7.36	22.77	29.74	39.42
DF	9	21	33	45
P-Value	0.599	0.356	0.630	0.706

Suatu model dikatakan memenuhi asumsi *white noise* jika p-value dari lag bernilai lebih dari 0.05. Dari gambar di atas, semua p-value sudah di atas 0.05, artinya model ARIMA (2,1,1) sudah memenuhi asumsi *white noise*. Selain itu, dicek juga melalui uji normalitas residual.

Gambar 8. Uji Normalitas residual model ARIMA (2,1,1)

Suatu model sementara dianggap cocok untuk peramalan jika residualnya terdistribusi normal. Residual terdistribusi normal jika p-value lebih dari 0.05. Dari gambar di atas, terlihat bahwa p-value bernilai 0.052, artinya residual sudah terdistribusi normal. Selanjutnya akan dilakukan tahap peramalan.

2.4 Peramalan (Forecasting)

Setelah semua tahapan dilakukan mulai dari identifikasi model data (plotting, transformasi boxcox, trend analysis, ACF-PACF, uji ADF) lalu uji estimasi dan signifikansi parameter (model ARIMA sementara) kemudian verifikasi model (residual white noise dan normality test), maka tahap terakhir adalah meramalkan data atau *forecasting*. Dari model data ARIMA (2,1,1) maka didapat rumus ARIMAnya adalah:

$$(1 - 0.67B + 0.238B^2)(1 - B)^2Y_t = (1 - 0.674B)a_t$$

Di mana

$$\begin{split} \phi_p(B) &= \left(1 - \phi_1 B^1 - \phi_2 B^2 - \dots - \phi_p B^p\right), \\ \Phi_p(B) &= \left(1 - \Phi_1 B^1 - \Phi_2 B^2 - \dots - \Phi_p B^p\right), \\ Y_t &= data, \\ a_t &= error, \\ dan\ B\ adalah\ operasi\ backward\ shift. \end{split}$$

Sehingga didapat hasil forecast seperti gambar dan tabel di bawah.

Forecasts from period 89

95% Limits

		9370 1	LIIIIIUS	
Period	Forecast	Lower	Upper	Actual
90	86.3375	81.0487	91.6263	
91	86.5350	79.0720	93.9980	
92	86.7132	78.2507	95.1756	
93	86.7855	77.7592	95.8118	
94	86.7915	77.3183	96.2647	
95	86.7783	76.8712	96.6854	
96	86.7680	76.4225	97.1136	
97	86.7643	75.9849	97.5437	
98	86.7642	75.5643	97.9641	
99	86.7651	75.1606	98.3695	

Gambar 9. Hasil *forecasting* data minyak mentah menggunakan model ARIMA (2,1,1)

Didapat bahwa peramalan harga minyak ke depan akan berada di sekitar nilai 86.7 dengan nilai MS sebesar 7.27823.

2.5 Metode Smoothing dengan DES

Setelah menggunakan model ARIMA untuk *forecasting*, maka selanjutnya adalah memuluskan data. Metode yang akan digunakan adalah smoothing menggunakan DES (*Double Exponential Smoothing*). Metode DES digunakan untuk data yang hanya mengandung trend namun tidak mengandung musiman. Rumus dari metode DES secara umum adalah:

$$S''_t = \alpha S'_t + (1 - \alpha) S''_{t-1}$$

Dengan $S'_t = \alpha X_t + (1 - \alpha)S'_{t-1}$ adalah nilai dari SES.

Untuk nilai konstanta dari DES dapat ditentukan dengan persamaan

$$a_t = S'_t + (S'_t - S''_t) = 2S'_t - S''_t$$

Sedangkan untuk nilai trend dapat ditentukan dengan persamaan

$$b_t = \frac{\alpha}{1 - \alpha} (S'_t - S''_t)$$

Sehingga nilai peramalan dengan metode DES dapat ditentukan dengan persamaan

$$F_{t+m} = a_t + b_t m$$

Keterangan:

$$S'_t = nilai\,SES\,pada\,periode\,ke-t$$
 $a=Parameter\,exponential\,smoothing\,(0<\alpha<1)$ $X_t=data\,aktual\,pada\,periode\,t$ $S'_{t-1}=nilai\,SES\,periode\,ke\,t-1$ $S''_t=nilai\,DES\,periode\,ke\,t$ $S''_{t-1}=nilai\,DES\,periode\,ke\,t-1$ $a_t=nilai\,konstanta\,pada\,periode\,ke-t$ $b_t=nilai\,trend\,pada\,periode\,ke-t$ $m=periode\,ke\,depan\,yang\,akan\,diramalkan$ $F_{t+m}=nilai\,peramalan\,untuk\,m\,periode\,ke\,depan$

Model Summary

	Harga			
Time		Smooth	Predict	Error
1	108.43	107.855	116.570	-8.1397
2	108.19 110.40	107.355 110.561	120.007	-11.8168 2.2799
4	99.50	98.719		-11.0488
5	98.53	98.533	98.491	0.0389
6	102.73	103.043	98.306	4.4244
7	104.79	104.923	102.902	1.8881
9	104.09	104.038	104.819	-0.7295
10	95.84 96.30	95.269 96.392	103.920 94.993	-8.0802 1.3071
11	95.78	95.754	96.142	-0.3620
12	97.59	97.738	95.497	2.0930
13	102.60	102.959	97.521	5.0787
14 15	104.22	104.317	102.841	1.3785
16	102.26 96.35	102.121 95.951	104.227 101.992	-1.9668 -5.6420
17	94.70	94.628	95.712	-1.0121
18	96.70	96.865	94.370	2.3304
19	94.98	94.862	96.651	-1.6714
20	97.26	97.447	94.616	2.6441
21 22	96.42 98.62	96.361 98.795	97.253 96.151	-0.8325 2.4695
23	93.89	93.555	98.632	-4.7421
24	94.42	94.499	93.300	1.1202
25	90.66	90.405	94.266	-3.6061
26	88.54	88.430	90.102	-1.5616
27	89.01 90.76	89.075	88.096 88.759	0.9143 2.0015
28 29	90.76	90.901 90.491	90.624	-0.1244
30	91.93	92.051	90.212	1.7183
31	94.34	94.519	91.806	2.5345
32	92.09	91.932	94.323	-2.2327
33	89.41	89.249	91.692	-2.2821
34 35	86.53 88.11	86.358 88.257	88.964 86.026	-2.4341 2.0841
36	90.50	90.679	87.966	2.5341
37	90.77	90.794	90.437	0.3328
38	90.23	90.207	90.558	-0.3280
39	93.74	94.007	89.965	3.7751
40	94.89	94.964	93.839	1.0514
41 42	92.52 93.06	92.358 93.123	94.817 92.165	-2.2966 0.8949
43	97.01	97.297	92.948	4.0618
44	91.64	91.247	97.201	-5.5613
45	89.55	89.444	91.043	-1.4926
46	86.61	86.426	89.211	-2.6011
47 48	86.87 88.25	86.921 88.363	86.142 86.651	0.7281 1.5985
49	88.96	89.019	88.124	0.8358
50	86.88	86.745	88.797	-1.9166
51	81.94	81.619	86.485	-4.5446
52	83.54	83.700	81.270	2.2698
53 54	86.79 87.78	87.030 87.850	83.396 86.792	3.3938 0.9882
55	87.31	87.287	87.631	-0.3211
56	88.48	88.580	87.062	1.4177
57	85.10	84.868	88.383	-3.2828
58	85.11	85.146	84.607	0.5035
59	85.73	85.789 84.372	84.894	0.8360
60 61	84.45 82.94	82.857	85.554 84.115	-1.1751
62	83.49			
63	78.74	78.418	83.293	-4.5526
64	76.71			-1.3574
65 66	78.50 82.15	78.660 82.420	76.237	2.2632 3.8231
67	81.23		78.327 82.162	-0.9317
68	79.49		80.887	-1.3975
69	83.63	83.951	79.087	4.5427
70	86.52	86.717	83.736	2.7842
71	87.76	87.845 88.502	86.556	1.2042 0.7424
72 73	88.45 92.64	92.941	87.708 88.379	4.2605
74	91.13		92.901	-1.7713
75	89.35	89.238	90.930	-1.5803
76	87.27	87.138		
77	89.11	89.259		
78 79	85.61 85.46	85.359 85.479	89.159 85.189	-3.5490 0.2705
80	82.82	82.644	85.315	-2.4948
81	85.55	85.771		
82	85.98		85.618	
83	85.05		85.860	-0.8104
84 85	84.58 85.32	84.562 85.385	84.832 84.396	-0.2518 0.9236
85 86	85.32 87.91			2.6725
87	89.08		88.003	1.0768
88	87.90		89.081	
89	86.53	86.446	87.719	-1.1888

Gambar 10. Metode DES pada data minyak mentah

2.6 Perbandingan Model ARIMA (2,1,1) dan DES

Dari hasil smoothing pada data minyak mentah, didapat nilai MAPE sebesar 3.2810, MAD sebesar 3.0086, dan MSD sebesar 14.0126.

Model	MAPE	MAD	MSE/MSD
ARIMA (2,1,1)	0.000243	1.932975	7.030113
DES	3.2810	3.0086	14.0126

Tabel Pengambilan Keputusan MAPE:

Range MAPE	Arti Nilai
< 10%	Kemampuan model peramalan sangat baik
10 - 20%	Kemampuan model peramalan baik
20 - 50 % Kemampuan model peramalan la	
>50% Kemampuan model peramalan	

Dari tabel di atas, nilai MAPE dari ARIMA (2,1,1) adalah 0.000243% artinya termasuk kemampuan model peramalan yang sangat baik.

Berdasarkan tabel di atas, nilai simpangan yang lebih rendah adalah metode ARIMA (2,1,1), maka metode yang paling cocok untuk meramalkan harga minyak mentah WTI ini selama 5 hari ke depan adalah metode ARIMA (2,1,1).

BAB III

PENUTUP

3.1 Kesimpulan

Dari proses peramalan menggunakan metode ARIMA di atas bahwa hasil ramalan harga minyak mentah WTI dalam 5 hari ke depan adalah cenderung di sekitar nilai 86.7 dengan MSE sebesar 7.030113 dan MAPE sebesar 0.000243. Sedangkan jika menggunakan metode smoothing dengan DES bahwa hasil ramalan harga minyak mentah WTI dalam 5 hari ke depan adalah menurun dengan MSD sebesar 14.0126 dan MAPE sebesar 3.2810. Sehingga dapat diambil kesimpulan bahwa peramalan menggunakan ARIMA (2,1,1) lebih cocok karena memiliki nilai residual/error yang lebih kecil daripada metode DES.

3.2 Saran

- (1) Sebaiknya menggunakan beberapa aplikasi yang lebih lengkap informasinya seperti SPSS, R, EViews, dan lain-lain untuk menambahkan informasi dalam menganalisis data.
- (2) Untuk pencarian data, jumlah banyak data yang digunakan bisa lebih banyak.
- (3) Untuk jenis data, bisa mencoba data seasonal untuk pengamatan.

Daftar Pustaka

- As, M., Setyo Wibowo, S., Sophia, E., Studi Teknik Informatika, P., Pradnya Paramita Malang, S., Studi Sistem Informasi, P., kunci -STMIK Pradnya Paramita, K., & Mahasiswa Baru, J. (2017). PERAMALAN JUMLAH MAHASISWA BARU DENGAN MODEL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA). *JIMP-Jurnal Informatika Merdeka Pasuruan*, 2.
- Ayu Rezaldi, D. (2021). PRISMA, Prosiding Seminar Nasional Matematika Peramalan Metode ARIMA Data Saham PT. Telekomunikasi Indonesia. *Peramalan Metode ARIMA Data Saham PT. Telekomunikasi Indonesia. PRISMA, Prosiding Seminar Nasional Matematika*, 4, 611–620. https://journal.unnes.ac.id/sju/index.php/prisma/
- Habsari, H. D. P., Purnamasari, I., & Yuniarti, D. (2020). FORECASTING USES DOUBLE EXPONENTIAL SMOOTHING METHOD AND FORECASTING VERIFICATION USES TRACKING SIGNAL CONTROL CHART (CASE STUDY: IHK DATA OF EAST KALIMANTAN PROVINCE). *BAREKENG: Jurnal Ilmu Matematika Dan Terapan*, 14(1), 013–022. https://doi.org/10.30598/barekengvol14iss1pp013-022
- Martha, S., & Si, S. (t.t.). MAKALAH PERAMALAN DATA TIME SERIES MENGGUNAKAN METODE BOX-JENKINS.
- Matematika-Fst, J., & Makassar, A. (2019). Peramalan Jumlah Penggunaan Kuota Internet Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA) Tasna Yunita. *JOMTA Journal of Mathematics: Theory and Applications*, 1(2).

Seminar Nasional Edusainstek. (2018).

Sri Rahayu, W., Tri Juwono, P., & Soetopo, W. (t.t.). ANALISIS PREDIKSI DEBIT SUNGAI AMPRONG DENGAN

MODEL ARIMA (AUTOREGRESSIVE INTEGRATED MOVING AVERAGE) SEBAGAI DASAR PENYUSUNAN

POLA TATA TANAM.