Lab1_KNN_Classifier Report

a) What is fraud detection, and why is it important?
Fraud detection is the process of identifying fraudulent activities — such as unauthorized transactions, identity theft, insurance scams, etc. — using data and statistical or machine learning techniques.

As per the dataset Class column: 0 = non-fraud and 1 = fraud

Why is it important?

- Prevent **financial losses**
- Protect user trust and brand reputation
- Comply with **regulatory requirements**
- **b)** If you change the training and testing split to 70% training and 30% testing, how does the model's performance change?

When I change training data from 60% to 70%, the model performance on the test data shows:

- Slight improvement in ROC AUC (0.9186 → 0.9287), meaning the model discriminates
 better between fraud and non-fraud and has a better balance between TPR and FPR.
- **Precision** stays high (0.97), indicating good positive predictions.
- Slight drop in recall and F1-score, likely because of fewer fraud cases in the test set (137

 → 107).

Metric	40% Test (60% Training)	30% Test (70% Training)	
ROC AUC	0.9186	0.9287	Slightly better (high)
Precision	0.97	0.97	same
Recall	0.80	0.79	Slightly drop
F1-Score	0.88	0.87	Slightly drop
Accuracy	1.00	1.00	same

c) Keeping the test size fixed at 40%, try changing the number of neighbors (in **KNN**). How does the model's performance vary with different **K** values?

Which value gives the best result, and how do you define what makes it the "best"?

As per the result, K= 1 to 11, the best result gave K=3 or 5, because it has the best **F1-Score**, **Recall** for fraud class(**better balance between precision & recall**). I will choose K=5 it has slightly higher AUC then K=3.

K Value	Precision(fraud)	Recall(fraud)	F1-Score(fraud)	ROC AUC(fraud)
1	0.84	0.82	0.83	0.9075
3	0.97	0.80	0.88	0.9153
5	0.97	0.80	0.88	0.9186
7	0.97	0.79	0.87	0.9256
9	0.97	0.77	0.86	0.9252
11	0.97	0.77	0.86	0.9249

Precision is lower at K=1 (0.84) __ more false positives at this point, but K=3 to 11 stays high nearly (0.97)

Recall is highest at K = 1 (0.82), decreases slightly when k in increases. This means that model detect frauds less likely as K increases.

F1-Score(Balance of Precision and Recall) is lower at K=1(0.83) due to low precision, peaks at K=3 and K=5 (0.88) and slightly drops for K=7(0.87), K=9, K=10 (0.86)

ROC AUC Score improves from K=1 (0.90) to K=7 (0.92) and slightly drops at K=9 and K=10, best AUC is K=7.