

TREES

- DA, B, care children of Root.
- 2) C is the parent of DLE.
- 3) Dh & are siblings as they children of the same parent.
- 4) G, F, D, E are at same level.
- 5) Nodes having no child are lead nudes.

Height of a nucle: length of the longest path starting from that nucle to any leaf node. We will go only to higher levels. Length is calculated using edges traversed.

Depth of node: The length of the path from that node to the root.

Types of Izees:	
Dn-asy tree:	nodes can have any number of children.
2) Binary Tree:	nodes can have at mar 2 children.
A mode can have	or 2 children
Which one is a Bino	asy tree
n)	B) O =
<i>c</i>)	d) 2

clase Tree Node L.

int val;

Tree node left;

Tree node right;

Tree node (int val) L.

His. val;

Unit null;

His. val: val;

His. left = null:

His. 29 ht = null:

B: left child of A

C: Fight child

Recussion will be used a lot to Solve problems of trees because of the structure.

Possible ways of traversing.

	LST RST RST LST Root Root	
--	---------------------------------	--

LST will always be troversed before 25T!

Root Root LST L LST Root R RST RST R	ST RST RST ST LST Root Sout Root LST
--------------------------------------	--

Parordex

Inorder

Pre-order

Ð

Root LST RST

1,2,4,5,3,6

LST, Root, RST Inorder 4,2,5,1,6,3,7 Post order: Lst, Rst, Root 4,5,2,6,7,3,1

SC: O(n): Woast Car.

Un Find the number of nodes in after You will be given the rood. int count-nodes (Node 800+) L if (root = = null) return count-nodes (ruot. lef-1) Count-nodes (root right) Tc: 0(n) Sc: 0(n)

 $\frac{2}{4}$ $\frac{2}{5}$ $\frac{2}{5}$ $\frac{2}{5}$

int count-nodes (Node 800+) &

if (root == null)

between 0

Oz Find the som of all nodes in a tree.

return count-nodes (root. lef-1)

+

count-nodes (root. right)

+

root.vcl;

_3

Is Find height of a the tree ToDO

(pheight (root)!

Handle Base Car properly!

Os Given the inorder and postorder traversal of a tree, construct the binary tree. All values are distinct.

$$in[] = [6 + 7 2 5 1 10 3 12 11 13]$$

pos+[] = [6 7 4 5 2 10 12 13 11 3 1]

In # LST, Root, RST Post # LST, RST, Root

10 11
12 13

Dest Element of Post-order traversel will be root.


```
Pseudo Code 1
    In [], post []; map /in1, in+> mp:
   Node construct Tree (int S, inte, int pas) of
      int root-vol = post [pos]
     Node root = new Node (root-val);
     int index = mp [root-val].
   Yout left = Construct Tree (S, index -1, pos-(c-index));
   rood. gight = Construct Tree (index+1, e, pos-1);
  redusa goot;
Base Coe: il (S==e) L
                 Node 700+ = new Node (In[s])
             if (S>e)
Jetvan null;
```

in 7 4 3 2 1 post => 4 3 2-1 Construct (0,3,3) (0)2(m+ (H,3)