第十章 Boosting 算法

AdaBoost 算法

• 一个弱学习算法能否被改造成一个强学习算法? — Michael Kearns

• Schapire 和 Freund 发明了 AdaBoost 算法 (Freund et al., 1999), 它可以对任一做分类的弱学习算法 A 的效果进行增强

- AdaBoost 的解决思路: 对训练集的每个样本用算法 A 产生一系列 分类结果, 然后巧妙地结合这些输出结果, 降低出错率
 - ► 每次产生新的分类结果时,AdaBoost 会调整训练集的样本权重: 提高前一轮分类错误的样本权重,降低前一轮分类正确的样本权重

AdaBoost 算法

- Notation
 - ▶ d_{t,i}: 第 t 轮样本 (x_i, y_i) 的权重
 - ▶ $h^{(t)}(\mathbf{x}_i)$: 第 t 轮算法 A 对样本 \mathbf{x}_i 的分类结果. 规定 y_i , $h^{(t)}(\mathbf{x}_i) \in \{-1,1\}$, $\forall i$
- AdaBoost 对 dt,i 的更新方式为:

$$\begin{split} d_{1,i} &= \frac{1}{n}, \ \forall i \\ d_{t+1,i} &= \frac{d_{t,i}}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } y_i = h^{(t)}(\textbf{\textit{x}}_i) \\ e^{\alpha_t} & \text{if } y_i \neq h^{(t)}(\textbf{\textit{x}}_i) \end{cases} = \frac{d_{t,i}}{Z_t} e^{-\alpha_t y_i h^{(t)}(\textbf{\textit{x}}_i)} \end{split}$$

其中

▶ Zt 是归—化常数

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right), \ \epsilon_t = P_{i \sim d_t} \left[h^{(t)}(\mathbf{x}_i) \neq y_i \right] = \sum_i d_{t,i} \mathbf{1}_{[h^{(t)}(\mathbf{x}_i) \neq y_i]}$$
(1)

假设每一轮算法 A 总可以保证 $\epsilon_t < 1/2$, 因此 $\alpha_t > 0$

• AdaBoost 最终输出的结果是每一轮分类结果的线性组合:

$$f(\mathbf{x}_i) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h^{(t)}(\mathbf{x}_i)\right)$$
 (2)

开始的时候所有样本权重相等

运行算法 A 将每个样本的分类结果 记为 $h_1(x_i)$

计算得 $\alpha_1 = 0.42$

增大错误分类的样本权重,减小正确分类的样本权重

将调整权重后的样本输入算法 A 得到新的分类结果 h_2

此时 $\alpha_2 = 0.66$

增大错误分类的样本权重,减小正确 分类的样本权重

将调整权重后的样本再次输入算法 A 得到新的分类结果 h₃

计算得 $\alpha_3 = 0.93$

AdaBoost 最终输出的结果是每一轮分类结果的线性组合:

- AdaBoost 最早由 Freund 和 Schapire 提出,之后有 5 个研究团队几 乎同时给出了 AdaBoost 的统计解释 (Breiman, 1997; Friedman et al., 2000; Rätsch et al., 2001; Duffy and Helmbold, 1999; Mason et al., 2000)
- 从统计角度理解 AdaBoost 会发现,它等价于用坐标下降法最小化 一个指数损失函数
- 假设有 p 个弱分类器 $\{h_j: h_j(x) \in \{-1,1\}\}_{j=1}^p$,考虑用这些弱分类器的线性组合构造一个新的分类算法

$$f(x) = \sum_{j=1}^{p} \lambda_j h_j(x)$$
 (3)

f 在训练集上的错误率定义为:

Mis. err
$$=\frac{1}{n}\sum_{i=1}^{n}\mathbf{1}_{[y_{i}f(x_{i})\leq0]}$$
 (4)

• 最小化(4)寻找最优的 f 比较困难,通常选择最小化(4)的一个凸上 界函数,比如指数损失函数:

$$\frac{1}{n}\sum_{i=1}^{n}e^{-y_{i}f(x_{i})}\tag{5}$$

- 如何选择(3)中的 $\lambda = (\lambda_1, \dots, \lambda_p)^{\top}$ 使 f 的指数损失函数(5)最小?
 - ▶ 定义 $n \times p$ 矩阵 M, 其元素为 $M_{ii} = y_i h_i(x_i)$

▶ 则 f 在 λ 下的指数损失为

$$L(\lambda) = \frac{1}{n} \sum_{i=1}^{n} e^{-y_i f(x_i)} = \frac{1}{n} \sum_{i=1}^{n} e^{-(M\lambda)_i}$$
 (6)

使用 "坐标下降法" 最小化(6)的基本流程: 在每步迭代 t, 选择使 $L(\lambda_t)$ 下降最快的坐标方向 j_t , 沿该方向移动最优步长 α_t , 即只更新 λ_t 的第 j_t 分量

• 计算 $L(\lambda_t)$ 关于各分量的偏导数

$$\frac{\partial L(\boldsymbol{\lambda}_t)}{\partial \lambda_j} = -\frac{1}{n} \sum_{i=1}^n M_{ij} e^{-(M\boldsymbol{\lambda}_t)_i}, \ j = 1, \dots, p$$

• 选取坐标方向 j_t 使 $L(\lambda_t)$ 在该方向下降最快,即偏导数最小

$$j_t \in \operatorname{argmin}_j \frac{\partial L(\boldsymbol{\lambda}_t)}{\partial \lambda_j} \in \operatorname{argmax}_j \left[\frac{1}{n} \sum_{i=1}^n M_{ij} e^{-(M\boldsymbol{\lambda}_t)_i} \right]$$

▶ 为了计算方便,将样本;经过归一化的指数损失记为:

$$d_{t,i} = e^{-(M\lambda_t)_i}/Z_t, \ \mbox{$\not\equiv$} \ \mbox{\downarrow} \ \mbox{\downarrow} \ \mbox{\downarrow} \ \mbox{\downarrow} \ \mbox{\downarrow} \ \mbox{\downarrow} \mbox{\downarrow} \ \mbox{\downarrow} \mbox{\downarrow} \ \mbox{\downarrow} \ \mbox{\downarrow} \ \mbox{\downarrow} \ \mbox{\downarrow} \mbox{\downarrow} \mbox{\downarrow} \ \mbox{\downarrow} \ \mbox{\downarrow} \ \mbox{\downarrow} \$$

则有

$$j_t \in \operatorname{argmax}_j \left[\frac{Z_t}{n} \sum_{i=1}^n M_{ij} d_{t,i} \right] = \operatorname{argmax}_j \left(\mathbf{d}_t^\top M \right)_j$$
 (8)

- 选定方向 jt 后, 沿该方向移动的最优步长是多少?
 - ▶ 根据(6), $L(\lambda_t + \alpha e_{j_t})$ 是 α 的凸函数,因此只需找到使 $\frac{\partial L(\lambda_t + \alpha e_{j_t})}{\partial \alpha} = 0$ 对应的步长 α_t
 - ▶ 定义 $d_{+} \triangleq \sum_{i:M_{ii}=1} d_{t,i}, d_{-} \triangleq \sum_{i:M_{ii}=-1} d_{t,i},$ 解得

$$\alpha_t = \frac{1}{2} \ln \frac{d_+}{d_-} = \frac{1}{2} \ln \frac{1 - d_-}{d_-} \tag{9}$$

Algorithm 1 最小化指数损失函数 (6) 的坐标下降算法

$$egin{align*} m{\lambda}_1 &= \mathbf{0} \ d_{1,i} &= 1/n, \ i &= 1, \dots, n \ \mathbf{for} \ t &= 1: \ T \ \mathbf{do} \ j_t \in \mathrm{argmax}_j(m{d}_t^{ op} M)_j \ d_- &= \sum_{i:M_{ij_t} = -1} d_{t,i} \ & \alpha_t &= \frac{1}{2} \ln \left(\frac{1-d_-}{d_-}
ight) \ m{\lambda}_{t+1} &= m{\lambda}_t + \alpha_t m{e}_{j_t} \ d_{t+1,i} &= e^{-(Mm{\lambda}_{t+1})_i} / Z_{t+1}, \ \mbox{其中} \ Z_{t+1} &= \sum_{i=1}^n e^{-(Mm{\lambda}_{t+1})_i} \end{array}$$

证明: Algorithm 1与 AdaBoost 是等价的

• 注意到 Algorithm 1输出的 $\lambda_{T+1,j}$ 是在 j 方向上移动的总步长,即 $\lambda_{T+1,j} = \sum_{t=1}^{T} \alpha_t \mathbf{1}_{[it=j]}$,则有

$$f(x) = \sum_{j=1}^{p} \lambda_{T+1,j} h_j(x) = \sum_{t=1}^{T} \alpha_t h_{j_t}(x)$$
 (10)

如果 AdaBoost 中的 $h^{(t)}=h_{j_t}$ 且两者的 $\{\alpha_t\}$ 相同,则 AdaBoost 输出的 函数(2)与(10)等价

- 首先检查 AdaBoost 每轮使用的弱分类器 $h^{(t)}$ 与 Algorithm 1每步选择的 分类器 h_{it} 是否相同?
 - ▶ 一个合理的假设是 AdaBoost 每轮在 p 个弱分类器中选择使(1)中定义的出错率 ϵ_t 最小的分类器,即

$$j_t \in \operatorname{argmin}_j \sum_i d_{t,i} \mathbf{1}_{[h_j(x_i) \neq y_i]} = \operatorname{argmax}_j \left(\mathbf{d}_t^\top M \right)_j$$
 (11)

比较(8)和(11)发现,如果 AdaBoost 和 Algorithm 1每步使用的 dt 相同,则 AdaBoost 每步选择的分类器与 Algorithm 1相同

- 检查 AdaBoost 每步的权重向量 dt 与 Algorithm 1是否相同?
 - ▶ 当 AdaBoost 每步选择的分类器及使用的 α_t 与 Algorithm 1相同, AdaBoost 的权重向量 $\textbf{\textit{d}}_{t+1}$ 和 Algorithm 1的 $\textbf{\textit{d}}_{t+1}$ 是一样的
- 如果 AdaBoost 与 Algorithm 1每步选择的分类器和 d_t 都相同,那 Δ AdaBoost 每步使用的 α_t 与 Algorithm 1每步移动的步长 α_t 相等
- Adaboost 和 Algorithm 1每步迭代涉及三个要素:权重向量 d_t ,分类器 $h^{(t)}$ 和参数 α_t .以上我们证明了固定其中任意两个要素相等,则第三个要素在两个算法中也相等
 - ▶ 注意到两个算法使用的初始值 d_1 相同,由(11)得 $h^{(1)} = h_{j_1}$,则两个算法得到的 α_1 必然相等,因此权重向量 d_2 也相同,以此类推,两个算法每轮迭代的三要素都相同

定理

如果存在 $\gamma_A > 0$ 使得 AdaBoost 每轮出错样本的权重和

$$\epsilon_t = \sum_i d_{t,i} \mathbf{1}_{[h_{j_t}(x_i) \neq y_i]} = \frac{1}{2} - \gamma_t, \ \mathbf{\Xi} \gamma_t > \gamma_A, \forall t.$$
 (12)

则 AdaBoost 在训练集上的错误率(4)以指数速率下降:

$$\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{[y_i f(x_i) \le 0]} \le e^{-2\gamma_A^2 T}.$$
 (13)

证明:证明的思路是利用与 AdaBoost 等价的 Algorithm 1 找到指数损失函数 $L(\lambda_{t+1})$ 和 $L(\lambda_t)$ 的递归关系,即找出每步迭代减小的训练集误差,然后把这些误差累加起来得出总误差的上界

AdaBoost 概率解释

• 在一些分类问题中,我们不仅希望对 Y 做出准确预测,还希望计算 出条件概率 $P(Y=1\mid x)$

定理 (Friedman et al., 2000)

使指数损失函数的期望

$$E_Y\left[e^{-Yf(x)}\right]$$

最小的 f(x) 为

$$f(x) = \frac{1}{2} \ln \frac{P(Y=1 \mid x)}{P(Y=-1 \mid x)}.$$

• 根据上述定理,可以如下从 AdaBoost 输出的函数 f 中计算 $P(Y=1 \mid x)$

$$P(Y=1 \mid x) = \frac{e^{2f(x)}}{1 + e^{2f(x)}}$$