北京林业大学_2014_学年期中考试试卷

	数理统计 A (A 卷)		
考试班级 _	学号	姓名	成绩
	1. 本次考试为 <u>闭</u> 卷考试。本试卷 2. 考试时间为 <u>100</u> 分钟,请掌 2题(共 21 分)		
1. 袋中有约	红球 4 只,黑球 3 只,不放回地。	从中任取 2 只,则这	2 只球的颜色不相同的概率
等于	•		
2. 若事件。	A 、 B 满足 $P(AB) = P(\overline{A} \cap \overline{B})$	且 $P(A) = 1/3$,则	P(B)=
	P(AB) = 0.6,则 $P(AB)$)≥, <i>I</i>	$P(A \cup B) \leq \underline{\hspace{1cm}},$
	$(X,Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2)$, r) , 如果 X	T 和 Y 独 立 , 那 么
	~ $N(2,3^2)$,则 $P(X <)=$	0.5 , $4X + 1 \sim N(9)$,) 。
6. 已知 2	K 的概率密度函数 $f_X(x)$	$=\frac{1}{2}e^{- x }$,则 $Y=$	= 3X 的概率密度函数
	= $_{}$ 。 区间 $[0,1]$ 上的均匀分布,则 $Y=$	· 2X -1 的概率密度函	6数为。
二、单项选排	^{绎题(每题3分,共6分)}		
		$\begin{bmatrix} 0 & x < 0 \end{bmatrix}$	
1. 设连续型	型随机变量 X 的分布函数 $F(x)$	$) = \begin{cases} kx + b &, & 0 \le x \\ 1 &, & x > \pi \end{cases} $	≤π,则以下正确的答案
是。			
A. $b = 1$	$1, k = \pi$; B. $b = 1/\pi, k = 0$;	C. $b = 0, k = 1/2$	π ; D. $b = \pi, k = 1$
2. 设 X ~ N	$(3, \sigma^2)$, $P\{3 < X < 4\} = 0.4$, $[3, \sigma^2]$		•
A. 0.1	; B. 0.2 ; C	0.3;	O. 0.9
3. 设 X 的方		, X 和 Y 相关系数 ,	$ olimits_{XY} = 0.6, 则 3X - 2Y$ 的方
差D(3	$3X-2Y) = \underline{\hspace{1cm}}$		
A. 40;	B. 24; C. 17	D. 25.6	
三. (12分)	(X,Y)的联合分布列如下,		

X	1	2	3	
1	0.2	0.1	0.1	
2	0.3	0.2	0.1	

- (1) 求X,Y各自的边际分布列,并判断两者是否独立。
- (2) 写出 X 的分布函数。 (3) 写出 X + Y 的分布列。

四、(12 分)设二维随机变量 (X, Y) 的分布律如下表所示。(1)求 X 和 Y 各自的边缘分布律;

- (2) 求 EX , EY , E(XY) , 以及 X 和 Y 的协方差 COV(X,Y) ,并且判断 X 和 Y 是否相关;
- (3) 求 X + Y 的分布律。

X	-1	0	1
0	0.1	0.3	0.2
1	0.2	0.1	0.1

五、(10 分) 设随机变量 X 的概率密度函数为 $f_X(x) = \begin{cases} Cx^2 \ , \ 0 \le x \le 1 \\ 0 \ \ \mbox{其它} \end{cases}$ 。

(1) 求常数 C ; (2) 求 X 的分布函数 F(x) ; (3) 求常数 m , 使 $P\{X > m\} = P\{X < m\}$ 。

六、 $(12 \, \mathcal{G})$ 设二维连续型随机变量(X,Y) 的联合密度函数为

 $f(x,y) = \begin{cases} 2, & 0 < x < 1, & 0 < y < x \\ 0, & 其它 \end{cases}$, (1) 求 X 和 Y 各自的边缘密度函数 $f_X(x), f_Y(y)$;

(2) 判断 X与Y 是否独立

七、(8分) 某保险公司多年的统计资料表明,在索赔户中被盗索赔户占 20%,随机抽查 100户。利用中心极限定理求被盗索赔户不少于 10户且不多于 30户的概率。 $(\Phi(2.5)=0.9938)$

八. (10 分) X 是连续型随机变量,密度函数为 $f(x) = \begin{cases} 4x^3, 0 < x < 1 \\ 0, 其它 \end{cases}$,求 E(X), $E(X^2)$, D(X), E(2X+1), D(2X+1)。

九. $(6\, \mathcal{G})$ 设 $X_i \sim B(1,\ 0.8), i=1...100$ 独立同分布,用中心极限定理计算 $\mathbf{P}\left\{\sum_{i=1}^{100} X_i \leq \mathbf{70}\right\}$ (用标准正态分布的分布函数 $\Phi(x)$ 表示结果)。