《大学物理AI》

2019-2020 春季

期末模拟测试

授课教师: 郭老师

模块一 力学与热学(60分)

	填空题	选择题	计算1	计算 2	合计	复核人
得分						

模块二 波动与光学 (40分)

	填空题	选择题	计算1	计算 2	计算3	合计	复核人
得分							

可能用到的物理常数

模块一 力学与热学(60分)

- 一、填空题(共30分,将答案写在试卷指定的横线"____"上)
- 1.(3 分) 质点由静止开始做半径为 1 m 的圆周运动,运动方程为 θ =3+2 t^2 (SI 单位)。

则 t = 2 s 时刻,质点运动的法向加速度的大小为 ,切向加速

度的大小为_____。

2.(3 分)如图所示,质量为 M 的斜劈静止放置于光滑水平面上,斜面的倾角为 θ , 质量为 m 的滑块从静止开始沿斜面无摩擦地滑下。当滑块 滑到斜劈底端时(未脱离斜面),滑块相对于斜劈的速度大 小为 u,则此时斜劈在光滑水平面上的运动速度大小 ,在此过程中斜面对滑块的支持力

所做的功为

3.(4 分) 两个质量分别为 m_1 和 m_2 的小球位于如图所示的光滑水平面 xy 上,初始时 小球 m_2 静止于原点处、小球 m_1 以速率 v 沿 y 轴正方向朝着 m_2 运动并与小球 m_2 发生弹性碰撞,碰撞后小球 m_1 以 v/2 的 速率沿着x正方向被弹出,请用矢量形式(单位矢量以i、j表示)分别表示出碰撞后小球 m 2 的速度 v, ,以及碰撞后由两小球构成系统 的质心的运动速度为

4. (3分) 飞轮对其转轴的转动惯量为 J,在 t=0 时角速度为 ω_0 。此后飞轮经历制动过程。若阻力矩 M 的大小与角速度 ω 的平方成正比,比例系数为 k (k 为大于零的常量)。则当 $\omega=\omega_0/3$ 时,飞轮的角加速度 $\alpha=$ _____。从开始制动到 $\omega=\omega_0/3$ 所需的时间 t=_____。

5. (4分)由两条长度为 l、质量为 m 的匀质细木条组成如图所示的对称 T 形结构,并将其底端悬挂于与 T 形平面垂直的水平转轴 O 上,其可绕转轴无摩擦地转动,则该 T

6.(3分)氮气分子可视为刚性双原	更子分子,2 mol 氮气(视为理想)	气体,摩尔质量为 M)
处于平衡态,其分子按速率的分布:	遵从归一化的速率分布函数 f(v)。	。用 f(v) 分别表示出:
该氮气系统分子的平均速率为	,	该氮气系统的内能
为	_	

7.(4分)理想气体的准静态循环过程在p-V图上可表示为两条等温线(温度分别为 T_1 和 T_2 ,且 $T_1 > T_2$)和两条绝热线,循环过程可以在p-V图中分别按顺时针方向或逆时针方向运行,对比这两种按相反方向运行的循环过程,写出它们之间的两个主要区别:

(1) ______;

(2)

8. (3分) 2 mol 的氩气在 300 K 时	的体积为0.1 m³,如果经等压过程膨胀到0.3 m³,则
氩气从外界吸收的热量为	
吸收的热量为	•

9. (3 分) 将 1 kg 处于 0℃ 的冰与泡	温度为20℃恒温热源接触,	使冰全部熔化成0℃的水,
则水的熵变为	_,恒温热源的熵变为	。(冰的熔化热
为 334 kJ/kg)		

二、选择题(共9分,单选,每题3分,将答案写在试卷上指定的方括号"[]"内)

1. (3 分)如图所示,AB为一段不光滑路径,其中含有凹凸圆弧轨道,A、B 两端高度相同。若小木块以初速率 v_0 由 A 端经此路径滑向 B 端,到达 B 端时的速率减小为 v_B ;若小木块以相同初速率 v_0 由 B 端经此路径滑向 A 端,到达 A 端时的速度减小为 v_A (小木块沿不同方向运动时与轨道的摩擦系数相同)。比较 v_A 和 v_B 的大小,有

- (A) $v_A < v_B$
- (B) $v_A > v_B$
- (C) $v_A = v_B$
- (D) 无法确定

- -

2. (3 分) 人造地球卫星绕地球做椭圆轨道运动,卫星轨道近地点和远地点分别为A 和

B。用L和 E_k 分别表示卫星对地心的角动量及其动能的瞬时值,则应有

(A)
$$L_A < L_B$$
, $E_{kA} < E_{kB}$;

(B)
$$L_A > L_B$$
, $E_{kA} > E_{kB}$;

(C)
$$L_A = L_B$$
, $E_{kA} < E_{kB}$;

(D)
$$L_A = L_B$$
, $E_{kA} > E_{kB}$.

- 3. (3分) 关于热力学定律,下列说法正确的是:
 - (A) 在一定条件下物体的温度可以降到0K;
 - (B) 吸收了热量的物体,其内能一定增加;
 - (C) 物体从单一热源吸收的热量可全部用于做功;
 - (D) 压缩气体一定能使气体的温度升高。

三、计算题(共21分,将答案写在试卷空白处)

1. $(10 \, f)$ 长为 l、质量为 m 的柔软绳子盘放在水平桌面上,用手将绳子的一端以恒定的速率 v 向上提起. 试求: (1) 将此柔软绳子从桌面以匀速 v 上提至高度为 x 时,提力 F 的大小; (2) 将绳子正好全部提离地面时(不考虑绳子的左右偏离,认为绳子各部分都是在同一位置先后被提起),提力 F 所做的功为多少?

2. (11 分)如图所示,容器被绝热、不漏气的活塞分成 A、B两个部分,容器左端导热,其它部分绝热。开始时左、右两侧分别有标准状态下的理想氢气,容积均为 36 L。从左端对 A 中气体加热,使活塞缓缓右移,直到 B 中气体变为 18 L。求: (1) A 中气体末态温度和压强; (2) 外界传给 A 中气体的热量。

模块二 波动与光学 (40分)

一、填空题(共りか	,将答案写在记	式卷指定的横线	""上)	
1.(3分)一弹簧振子	做简谐振动,振响	幅为 A = 0.2 m,	如果弹簧的劲	度系数为	k = 2.0 N/m
所系物体的质量为	m = 0.50 kg,	则当系统的动	的能是势能的	3 倍时,	振子的位移
为	; 振子从最为	大位移处运动到	小 动能等于势能	的 3 倍如	止所需的最短

时间为_____

2. (3 分)	在光栅衍射中,	单缝衍射	(组成光栅的每条缝对光的衍射)	对光栅衍射条纹
的影响有	(回答2条):			<u> </u>
				o

3. (3 分) 通过偏振片观察混在-	一起而又不相干的线偏振光和自然	光,将偏振片从透过
光强最大的位置开始旋转 90°角,	结果发现透过光强减少了50%,	则通过偏振片前的自
然光与线偏振光的光强之比为	<u> </u>	

二、选择题(共6分,单选,每题3分,将答案写在试卷上指定的方括号"[]"内)

1. (3分)如图所示为一沿x轴正向传播的平面简谐波在t=0时刻的波形。若振动以余弦函数表示,则A点处质元的振动初相为

- (A) 0;
- (B) $\pi/2$;
- (C) π :
- (D) $3\pi/2$.

2. (3分)测量单色光的波长时,下列方法中哪一种方法最为准确?

(A) 双缝干涉;

(B) 单缝衍射;

(C) 光栅衍射;

(D) 等倾干涉。

三、计算题(共25分,将答案写在试卷空白处)

1.(10 分)如图所示,有一平面简谐波在空气中沿x轴正方向传播,波速 u=3 m/s。已知 x=3 m 处质元P 的振动函数为 $y=6\times10^{-2}\cos(\pi t-\pi/2)$ (SI 单位)。求:(1) 该波的波函数;(2) 若 x=9.9 m 的 A 点处有一相对空气为波密的垂直反射壁,设反射时无能量损耗,求反射波的波函数;(3) 入射波和反射波相叠加形成驻波,试确定出现在 O 点和 A 点间的波节的位置。

- 2.(10分)如图所示,一块平板玻璃(折射率为 n_2 = 1.50)上有一层薄油膜(折射率为 n_1 = 1.20),油膜的上表面是半径为 R 的球面的一部分,其中心最厚处的厚度为 1.10 μ m。用 λ = 600 nm 的单色光垂直照射油膜,并观察油膜表面所形成的反射光干涉条纹,求:
- (1) 整个油膜上可观察到几条暗条纹?
- (2) 若离油膜中心最近的暗条纹环的半径为 0.3 cm,则油膜上表面球面的半径 R 为多少?

3. (5分)如图所示,一潜艇停在海平面下 100 m处,潜艇上所携声纳的喇叭对着前方发射声波(由于喇叭对波的衍射作用,发射出的声波有一定的覆盖范围,习惯上以第一级衍射极小所对应的张角为覆盖范围)。请你为潜艇的声纳设计一个喇叭,使该声纳在使用波长为 10 cm 的声波时,声波信号在水平方向的覆盖范围为 60° 张角(图中未表示出),且不让位于潜艇正前方 1000 m 内的水面敌舰收到信号,试给出该声纳的喇叭的大致形状和尺寸。

往年: 合影留念~

今年: 网上点名~