PROCESAMIENTO DE IMÁGENES DIGITALES

DPTO. MATEMÁTICA APLICADA I

Tema 4: MORFOLOGÍA BINARIA

Operaciones de teoría de conjuntos:

- Imágenes binarias \rightarrow subconjuntos de Z^2
- Imágenes en escala de grises \rightarrow subconjuntos de Z^3 .

Objetivos:

- Supresión de ruidos, detección de esquinas o pequeños detalles con cierta forma, etc.
- Destacar la estructura de los objetos: extraer el esqueleto, extraer el borde, rellenado de regiones, etc.

Operaciones de teoría de conjuntos:

Operaciones de teoría de conjuntos:

Traslación de B por z:

$$B_z = \{x \mid x = b + z, b \in B\}$$

Reflexión de B:

$$\widehat{B} = \{x \mid x = -b, b \in B\}$$

• Elementos estructurales:

Conjuntos pequeños o subimágenes usadas para para aplicar las operaciones morfológicas.

DILATACIÓN:

Dada una imagen binaria, sea A el conjunto de píxeles de la imagen que forman el objeto sobre un fondo. Dado un elemento estructural B, la **dilatación de A por B** se define como:

$$A \oplus B = \{x \mid (\widehat{B})_x \cap A \neq \emptyset\}$$

Tengamos en cuenta que, para la intersección sólo consideramos los píxeles del objeto A y B.

En general, la dilatación significa un engrosamiento del objeto en una forma que dependerá del elemento estructural B.

DILATACIÓN, definición alternativa:

Dada una imagen binaria, sea A el conjunto de píxeles de la imagen que forman el objeto sobre un fondo. Dado un elemento estructural B, la **dilatación de A por B** se define como:

$$A \oplus B = \bigcup_{b \in B} A_b = \{a + b | a \in A, b \in B\}$$

En general, la dilatación significa un engrosamiento del objeto en una forma que dependerá del elemento estructural B.

DILATACIÓN:

$$A \oplus B = \bigcup_{b \in B} A_b$$

Observación: Es importante tener en cuenta que el sistema de coordenadas que se considera aquí es (fila, columna).

También es importante saber **sobre qué píxeles estamos trabajando, blancos o negros.**

DILATACIÓN:

$$A \oplus B = \bigcup_{b \in B} A_b$$

DILATACIÓN: Idea geométrica

DILATACIÓN: Idea geométrica

DILATACIÓN: Ejemplo de aplicación

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000. Imagen original

DILATACIÓN:

Practica:

- Usa la función de OpenCV dilate() para hacer dilataciones de una imagen.
- Define antes el elemento estructural. Averigua las opciones que da OpenCV para definirlo.
- Averigua qué ocurre si lo aplicas a una imagen en escala de grises.

EROSIÓN:

Dada una imagen binaria, sea A el conjunto de píxeles de la imagen que forman el objeto (1) sobre un fondo (0). Dado un elemento estructural B, la **erosión de A por B** se define como:

$$A \ominus B = \{x \mid B_x \subseteq A\}$$

Tengamos en cuenta que sólo consideramos los pixeles del objeto de A y B.

La erosión es la propiedad morfológica dual a la dilatación.

La erosión se concibe usualmente como una reducción de la imagen original.

■ EROSIÓN: $A \ominus B = \{x \mid B_x \subseteq A\}$

Α

 $A\ominus B$

■ EROSIÓN: $A \ominus B = \{x \mid B_x \subseteq A\}$

Α

 $A\ominus B$

■ EROSIÓN: Interpretación geométrica

■ EROSIÓN: Interpretación geométrica

EROSIÓN:

Practica:

- Usa la función de OpenCV erode() para hacer erosiones de una imagen.
- Define antes el elemento estructural. Averigua las opciones que da OpenCV para definirlo.
- Averigua qué ocurre si lo aplicas a una imagen en escala de grises.

Ejemplo:

Imagen con cuadrado de tamaños 1, 3, 5, 7, 9 y 15.

Erosión con un elemento estructural cuadrado de tamaño 13 x 13.

Ejemplo:

Imagen con cuadrado de tamaños 1, 3, 5, 7, 9 y 15.

Erosión con un elemento estructural cuadrado de tamaño 13 x 13.

Los cuadrados de lados menor que 15 desaparecen mientras que el de lado 15 pasa a ser de lado 3.

Ejemplo:

Imagen con cuadrado de tamaños 1, 3, 5, 7, 9 y 15.

Erosión con un elemento estructural cuadrado de tamaño 13 x 13.

Dilatación de la imagen central con el mismo elemento estructural.

Tema 5: Morfología Binaria

Ejemplo:

Imagen con cuadrado de tamaños 1, 3, 5, 7, 9 y 15.

Erosión con un elemento estructural cuadrado de 1s de tamaño 13 x 13.

Dilatación de la imagen central con el mismo elemento estructural.

Los cuadrados vuelven a ser de tamaño 15.

Ojo, aquí estamos trabajando sobre píxeles blancos.

Aplicación 1: EXTRACCIÓN DE FRONTERAS

 La frontera de un conjunto A se puede obtener primero erosionando A por un elemento estructural apropiado, B, y realizando posteriormente la diferencia entre A y su erosión.

$$F(A) = A - (A \ominus B)$$

 El elemento estructural B usado más frecuentemente es el cuadrado 3 x 3. Usando otros tamaños, por ejemplo 5 x 5, se ampliaría el grosor de la frontera a dos o tres píxeles.

■ Aplicación 1: EXTRACCIÓN DE FRONTERAS

Aplicación 1: EXTRACCIÓN DE FRONTERAS

Aplicación 1: EXTRACCIÓN DE FRONTERAS

Aplicación 2: RELLENADO DE REGIONES

 Partimos del borde 8-conexo de una región A y de un punto p del interior de A. El siguiente procedimiento rellena el interior de A:

donde B es el siguiente elemento estructural:

 \circ El algoritmo termina en la iteración k si $X_k = X_{k+1}$.

Aplicación 2: RELLENADO DE REGIONES

Aplicación 2: RELLENADO DE REGIONES

Aplicación 2: RELLENADO DE REGIONES

Aplicación 3: EXTRACCIÓN DE COMPONENTES CONEXAS

 Supongamos que Y representa una componente conexa contenida en un conjunto A y supongamos que conocemos un punto p que pertenece a dicha región. Entonces, el siguiente procedimiento puede utilizarse para extraer Y:

$$\begin{cases} X_0 = p \\ X_k = (X_{k-1} \oplus B) \cap A, & k = 1, 2, 3, ... \end{cases}$$

donde B es el siguiente elemento estructural:

• El algoritmo termina en la iteración k si $X_{k-1} = X_k$. Con Y = X_k .

Aplicación 3: EXTRACCIÓN DE COMPONENTES CONEXAS

Aplicación 3: EXTRACCIÓN DE COMPONENTES CONEXAS

- Como hemos visto hasta ahora, cuando el elemento estructural contiene al origen, la dilatación expande la imagen mientras que la erosión la reduce.
- **APERTURA:** Generalmente, suaviza los contornos de una imagen y elimina pequeños salientes. También puede eliminar franjas o zonas de un objeto que sean "más estrechas" que el elemento estructural.
- CLAUSURA: Generalmente, elimina pequeños huecos (rellenándolos) y une componentes conexas cercanas.
- •Los conceptos "estrecho", "pequeño" son en relación al tamaño del elemento estructural.

APERTURA:

 La apertura de A por un elemento estructural K se define como la erosión de A por K, seguido de la dilatación del resultado por K:

$$A \circ K = (A \ominus K) \oplus K$$

 Si A no cambia al realizarle una apertura con K, diremos que A es abierto respecto a K.

APERTURA: Interpretación geométrica

 Si tomamos un disco como elemento estructural, la apertura suaviza contornos, rompe uniones estrechas entre partes de conjuntos y elimina salientes estrechos.

 APERTURA: Ejemplo. Aquí se ilustra cómo podemos usar la apertura para descomponer objetos.

■ APERTURA: Ejemplo. Aquí se ilustra cómo podemos usar la apertura para descomponer objetos.

APERTURA: Propiedades

- 1. La apertura es antiextensiva: $A \circ K \subseteq A$
- 2. La apertura es idempotente: $X \circ B = (X \circ B) \circ B$
- 3. Si tomamos un disco como elemento estructural, la apertura suaviza contornos, rompe uniones estrechas entre partes de conjuntos y elimina salientes estrechos.

Practica:

- Usa la función de OpenCV morphologyEx() con el argumento cv.MORPH_OPEN para hacer apertura de una imagen.
- Define antes el elemento estructural. Averigua las opciones que da OpenCV para definirlo.
- Averigua qué ocurre si lo aplicas a una imagen en escala de grises.

CLAUSURA:

 La clausura de A por un elemento estructural B se define como la dilatación de A por K, seguido de la erosión del resultado por K:

$$A \bullet K = (A \oplus K) \ominus K$$

 Si A no cambia con la clausura por K, diremos que A es cerrado respecto a K.

CLAUSURA: Interpretación geométrica

 Si tomamos un disco como elemento estructural, la clausura tiende a suavizar las secciones de contornos pero en sentido inverso: une separaciones estrechas, elimina golfos estrechos y elimina huecos.

CLAUSURA: Propiedades

- 1. La clausura es extensiva: $A \subseteq A \bullet K$
- 2. La clausura es idempotente: $X \bullet B = (X \bullet B) \bullet B$
- 3. Si tomamos un disco como elemento estructural, la clausura tiende a suavizar las secciones de contornos pero en sentido inverso: une separaciones estrechas, elimina golfos estrechos y elimina huecos.

Practica:

- Usa la función de OpenCV morphologyEx() con el argumento cv.MORPH_CLOSE para hacer clausura de una imagen.
- Define antes el elemento estructural. Averigua las opciones que da OpenCV para definirlo.
- Averigua qué ocurre si lo aplicas a una imagen en escala de grises.

APERTURA Y CLAUSURA: Ejemplo

APERTURA Y CLAUSURA: Ejemplo

APERTURA Y CLAUSURA: Ejemplo

La apertura suaviza los contornos, rompe uniones estrechas entre partes de conjuntos y elimina salientes estrechos.

La clausura tiende a suavizar las secciones de contornos pero en sentido inverso: une separaciones estrechas, elimina golfos estrechos y elimina huecos.

Aplicación: FILTRO MORFOLÓGICO

Filtro morfológico para la eliminación de ruido sal y pimienta:

$$(A \circ B) \bullet B$$

 El elemento de estructural B debe ser físicamente mayor que todos los elementos de ruido.

FIGURE 9.11

- (a) Noisy image.
- (b) Structuring element.
- (c) Eroded image.
- (d) Opening of A.
- (e) Dilation of the opening.
- (f) Closing of the opening.
 (Original image courtesy of the

courtesy of the National Institute of Standards and Technology.)

- (+) El ruido del fondo se ha eliminado completamente al erosionar.
- (-) El ruido contenido en las huella dactilar (puntos negros) aumenta de tamaño al erosionar.

- (+) Reducimos o incluso eliminamos el ruido de la huella aplicando una dilatación a la imagen erosionada (apertura).
- (-) Nuevas separaciones en las huellas dactilares han sido creadas.

U SE

- (+) Los cortes de las huellas se han restaurado.
- (-) Engrosamiento.

(+) Adelgazamos la huella con la erosión de la dilatación (clausura).

Bibliografía básica:

R.C. González, R.E. Woods, Digital Image Processing, Pearson, 2018

Tutorial OpenCV. Operaciones morfológicas.

https://docs.opencv.org/4.x/d9/d61/tutorial_py_morphological_ops.html

Documentación de Matlab sobre Operaciones morfológicas https://es.mathworks.com/help/images/morphological-dilation-and-erosion.html