Введение в структуры данных. Анализ сложности алгоритмов

О-символика

 \rightarrow f(n) = O(g(n))

Функция f(n) ограничена **сверху** функцией $c^*g(n)$ (c>0)

для всех $n \ge n_0$

О-символика

Пример нахождения с:

$$10x^2 + 5x + 7 = O(x^2)$$

 $10x^2 + 5x + 7 \le 10x^2 + 5x^2 + 7x^2 = 22x^2$
таким образом, c = 22, g(x) = x^2

Ω-символика и Θ-символика

 \rightarrow f(n) = $\Omega(g(n))$

Функция f(n) ограничена **снизу** функцией $c^*g(n)$ для всех $n \ge n_0$

 \rightarrow f(n) = $\Theta(g(n))$

Функция f(n) ограничена **сверху** функцией c1*g(n), а **снизу**

функцией c2*g(n) для всех $n \ge n_0$

$$f(n) = \Omega(g(n))$$

$$f(n) = \Theta(g(n))$$

Скорость роста функций

	logn	n	n log n	n^2	2^n	n!
10	0,003 мкс	0,01 мкс	0,033 мкс	0,1 мкс	1 мкс	3,63 мкс
20	0,004 мкс	0,02 мкс	0,086 мкс	0,4 мкс	1 мс	77,1 лет
50	0,006 мкс	0,05 мкс	0,282 мкс	2,5 мкс	13 дней	8,4 * 10 ¹⁵ лет
100	0,007 мкс	0,1 мкс	0,644 мкс	10 мкс	4 * 10 ¹³ лет	
1000	0,010 мкс	1,0 мкс	0,966 мкс	1 мс		
10 000	0,013 мкс	10 мкс	130 мкс	100 мс		
100 000	0,017 мкс	0,1 мс	1,67 мс	10 c		
1 000 000 000	0,03 мкс	1 c	29,90 с	31,7 лет		

Коллекции. Общие сведения

Коллекции - это специальные хранилища объектов.

Коллекции предоставляют множество методов для удобной работы:

- Добавление нового объекта в коллекцию
- Удаление объекта из коллекции
- Сортировка объектов в коллекции
- Обращение к объекту коллекции
- **>** ...

а также методы, специфичные для типа коллекции.

Работа с коллекциями

- ➤ Количество элементов: len()
- > Операторы in, not in
- Обход коллекции в цикле for
- min(), max() (элементы коллекции должны иметь возможность сравнения)
- > sorted()

Списки и массивы

- Массив это упорядоченная коллекция объектов одинакового типа.
- Список это упорядоченная коллекция объектов любого типа.
- Список в языке Python реализован на основе динамического массива указателей языка Си.

Массивы

Массив - это структура данных, которая хранит набор элементов одинакового типа, доступ к которым осуществляется по индексу.

Значение	2.5	3.5	1.7	0.9	10.03	6.45	33.2
Индекс	0	1	2	3	4	5	6

Массивы

	В начало	В середину	В конец
Вставка элемента	O(n)	O(n)	O(1)
Удаление элемента	O(n)	O(n)	O(1)

Связные списки

Связный список - структура данных, каждый из элементов которой содержит как собственные данные, так и некоторое количество ссылок на следующий и/или предыдущий узел списка.

Односвязные списки

	Начало	Середина	Конец
Вставка элемента	O(1)	O(n)	O(1) или O(n)
Удаление элемента	O(1)	O(n)	O(n)

Двусвязные списки

	В начало	В середину	В конец
Вставка элемента	O(1)	O(1) или O(n)	O(1) или O(n)
Удаление элемента	O(1)	O(1) или O(n)	O(1) или O(n)

Источники и полезные ссылки

- Курс на Stepik "Алгоритмы: теория и практика. Методы"
 https://stepik.org/course/217/syllabus
- Курс на Stepik "Алгоритмы: теория и практика. Структуры данных" <u>https://stepik.org/course/1547</u>
- Дональд Э. Кнут. Искусство программирования, том 1. Основные алгоритмы/Дональд Э. Кнут //Москва: Вильямс. 2000. Т. 712.
- Скиена С. Алгоритмы. Руководство по разработке //СПб.: БХВ-Петербург.– 2011. Т. 720.
- https://ru.wikipedia.org/wiki/Временная_сложность_алгоритма