EXPERIMENT - 2

Student Name: Prabhakar Kumar Jha UID: 23BCS12284

Branch: BE-CSE Section/Group: KRG_1-B

Semester: 5th Date of Performance: 29/07/2025

Subject Name: ADBMS Subject Code: 23CSP-333

1. AIM: Ques 1:- Organizational Hierarchy Explorer (medium)

You are a Database Engineer at TalentTree Inc., an enterprise HR analytics platform that stores employee data, including their reporting relationships. The company maintains a centralized Employee relation that holds:

Each employee's ID, name, department, and manager ID (who is also an employee in the same table).

Your task is to generate a report that maps employees to their respective managers, showing:

The employee's name and department

Their manager's name and department (if applicable)

This will help the HR department visualize the internal reporting hierarchy.

COMPUTER SCIENCE & ENGINEERING

EmplD	Ename	Department	ManagerID
1	Alice	HR	NULL
2	Bob	Finance	1
3	Charlie	IT	1
4	David	Finance	2
5	Eve	IT	3
6	Frank	HR	1

2. TOOLS USED:- MS SSMS & Microsoft SQL Server 3. SQL CODE:

```
CREATE TABLE Employee (
EmpID INT PRIMARY KEY,
EmpName VARCHAR(50) NOT NULL,
Department VARCHAR(50) NOT NULL,
ManagerID INT NULL
);
ALTER TABLE Employee
ADD CONSTRAINT FK_Manager FOREIGN KEY (ManagerID) REFERENCES Employee(EmpID);
INSERT INTO Employee (EmpID, EmpName, Department, ManagerID)
VALUES
(1, 'Alice', 'HR', NULL),
(2, 'Bob', 'Finance', 1),
```

(3, 'Charlie', 'IT', 1),

(4, 'David', 'Finance', 2),

(5, 'Eve', 'IT', 3),

(6, 'Frank', 'HR', 1);

SELECT

E.EmpName AS [EmployeeName],

E.Department AS [EmployeeDept],

M.EmpName AS [Manager Name],

M.Department AS [ManagerDept]

FROM Employee AS E

JOIN Employee AS M

ON E.ManagerId = M.EmpID;

4. OUTPUT:

	EmployeeName	EmployeeDept	Manager Name	ManagerDept
1	Bob	Finance	Alice	HR
2	Charlie	IT	Alice	HR
3	David	Finance	Bob	Finance
4	Eve	IT	Charlie	IT
5	Frank	HR	Alice	HR

5. Ques 2: -Financial Forecast Matching with Fallback Strategy (hard)

You are a Data Engineer at FinSight Corp, a company that models Net Present Value (NPV) projections for investment decisions. Your system maintains two key datasets:

1. Year tbl: Actual recorded NPV's of various financial instruments over different years:

ID: Unique Financial instrument identifier.

YEAR: Year of record

NPV: Net Present Value in that year

Queries_tbl: A list of instrument-year pairs for which stakeholders are requesting NPV values:

ID: Financial instrument identifier

YEAR: Year of interest.

Find the NPV of each query from the Queries table. Return the output order by ID and Year in the sorted form.

However, not all ID-YEAR combinations in the Queries table are present in the Year_tbl. If an NPV is missing for a requested combination, assume it to be 0 to maintain a consistent financial report.

ID	YEAR	NPV	ID	YEAR
1	2018	100	1	2019
7	2020	30	2	2008
13	2019	40	3	2009
1	2019	113	7	2018
2	2008	121		
3	2009	12	7	2019
11	2020	99	7	2020
7	2019	0	13	2019

Year Table

Queries Table

6. SQL CODE:-

```
CREATE TABLE YEARS_TBL(
ID INT,
YEAR INT,
NPV INT
)
INSERT INTO YEARS TBL(ID, YEAR, NPV)
VALUES
(1,2018,100), (7,2020,30),
(13,2019,40),
(1,2019,113),
(2,2008,121), (3,2002,12),
(11,2020,99),
(7,2019,0);
CREATE TABLE QUERIES TBL(
ID INT,
YEAR INT
```

CHANDIGARH COMPUTER SCIENCE & ENGINEERING

); INSERT INTO QUERIES_TBL(ID, YEAR) **VALUES** (1,2019), (2,2008), (3,2009), (7,2018), (7,2019),(7,2020), (13,2019); SELECT Q.*,ISNULL(Y.NPV,0) AS [NPV] FROM YEARS TBL AS Y **RIGHT OUTER JOIN** QUERIES_TBL AS Q ON Y.ID = Q.IDAND Y.YEAR = Q.YEAR

7. OUTPUT

	ID	YEAR	NPV
1	1	2019	113
2	2	2008	121
3	3	2009	0
4	7	2018	0
5	7	2019	0
6	7	2020	30
7	13	2019	40