Imię i nazwisko:	
Logik	a dla informatyków
Egzamin	końcowy (część licencjacka)
	29 stycznia 2007
rozwiązania otrzymuje się 0 punktów	zadań można otrzymać od -2 do 2 punktów. Za brak z, punkty ujemne otrzymuje się tylko za rozwiązania komzęść egzaminu (być dopuszczonym do części zasadniczej) tów. Egzamin trwa 60 minut.
Zadanie 1. Wpisz słowo "TAK" w W pozostałe prostokąty wpisz odpow	prostokąty obok tych par formuł, które są równoważne. wiednie kontrprzykłady.
(a) $p \Rightarrow (q \lor r)$ i $(p \Rightarrow q) \lor (p \Rightarrow r)$	
(b) $(p \lor q) \Rightarrow r i (p \Rightarrow r) \lor (q \Rightarrow r)$	
Zadanie 2. Wpisz w prostokąt obogdzie φ nie zawiera kwantyfikatorów	ok formuły równoważną formułę postaci $\forall x\ \varphi$ lub $\exists x\ \varphi,$.
(a) $(\forall x \ p(x) \lor q(x)) \Rightarrow \bot$	
(b) $\neg(\exists x (p(x) \lor q(x)) \Rightarrow r(x))$	
=	prostokąty obok tych równości, które zachodzą dla dotałe prostokąty wpisz odpowiednie kontrprzykłady.
(a) $A \div (B \cup C) = (A \div B) \cup (A - C)$	- C)
(b) $(A \cup B) \dot{-} (A \cup C) = (B \dot{-} C)$	$\setminus A$

symboli \cap, \cup .	
(a) $\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$	
(b) $\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$	
	'AK" w prostokąty obok tych równości, które zachodzą dla dodowolnych zbiorów $X\subseteq A$ i $Y\subseteq B.$ W pozostałe prostokąty kłady.
(a) $f^{-1}(f(X)) = X$	
(b) $f(f^{-1}(Y)) = Y$	
Zadanie 6. W zbiorze $\mathbb{N}^{\mathbb{N}}$ w	rszystkich funkcji z $\mathbb N$ w $\mathbb N$ definiujemy porządek wzorem
$f \preceq g \stackrel{\mathrm{df}}{\Leftrightarrow} f$:	$= g \lor (\exists n \forall k < n \ f(k) = g(k) \land f(n) < g(n)).$
	i i niech $X=\{f_i\mid i\in\mathbb{N}\}.$ Wpisz w prostokąty poniżej wzory powiednio kresem górnym i dolnym zbioru X lub słowo "NIE", ieje.
(a) $\sup X$	
(b) inf <i>X</i>	

Zadanie 4. Niech $A_n = \{i \in \mathbb{N} \mid i > n\} \cup \{i \in \mathbb{N} \mid i \leq 3 + (-1)^n\}$. Wylicz wartość poniższych zbiorów, tzn. wpisz w prostokąt obok wyrażenie oznaczające ten sam zbiór i nie zawierające

lefinicje jakichkolwiek bijekcji φ i ψ o podanej dziedzinie i rzedział otwarty a $[a,b)$ przedział lewostronnie domknięty
$[5,6)^{\mathbb{N}}$
vch zbiorów klauzul, które są sprzeczne, wpisz rezolucyjny W pozostałe prostokąty wpisz wartościowanie spełniające

Imię i nazwisko:

Zadanie 9. Wpisz słowo "TAK" w te kratki poniższej tabelki, które odpowiadają parom zbiorów równolicznych. Wpisz "NIE" w kratki odpowiadające parom zbiorów nierównolicznych.

	$[0,1)\times\mathbb{R}$	$\mathcal{P}(\mathbb{N}\times\{0,1\})$	$\{0,1,2\}^{\mathbb{N}}$	$\mathbb{Q}\setminus\{0,\frac{3}{7}\}$	$\mathbb{R}\setminus\{\pi\}$	$\{0,1\}^{\{0,1\}}$	$\mathbb{R} \times \mathbb{N}$
N							
\mathbb{R}							

Zadanie 10. Wykaż indukcyjnie, że dla wszystkich liczb naturalnych $n \geq 5$ zachodzi nierówność $n^2 < 2^n$.

Imię i nazwisko:	
Oddane zadania:	

Logika dla informatyków

Egzamin końcowy (część zasadnicza)

29 stycznia 2007

Za każde z poniższych zadań można otrzymać od -10 do 10 punktów. Osoba, która nie rozpoczęła rozwiązywać zadania otrzymuje za to zadanie 0 punktów. Mniej niż -2 punkty otrzymuje osoba, która umieszcza w swoim rozwiązaniu odpowiedzi kompromitująco fałszywe. Rozwiązania, w których nie ma odpowiedzi kompromitująco fałszywych, będą oceniane w skali od -2 do 10 punktów.

Zadanie 11. Jeśli φ jest formułą rachunku zdań to przez $V(\varphi)$ oznaczamy zbiór zmiennych zdaniowych występujących w φ . Niech $\varphi, \varphi_1, \dots, \varphi_n, \psi$ będą formułami rachunku zdań.

- (a) Udowodnij, że $(\bigvee_{i=1}^n \varphi_i) \to \psi$ jest tautologią wtedy i tylko wtedy, gdy $\varphi_i \to \psi$ są tautologiami dla wszystkich $i \in \{1, \dots, n\}$.
- (b) Niech p będzie zmienną zdaniową nie występującą w φ ani w ψ . Udowodnij, że $\varphi \wedge p \to \psi$ jest tautologią wtedy i tylko wtedy, gdy $\varphi \to \psi$ jest tautologią.
- (c) Udowodnij, że jeśli $\varphi \to \psi$ jest tautologią, to istnieje taka formuła rachunku zdań ρ , że $V(\rho) = V(\varphi) \cap V(\psi)$ oraz $\varphi \to \rho$ i $\rho \to \psi$ są tautologiami.

Zadanie 12. Rozważmy zbiór $\mathbb{N}^{\mathbb{N}}$ wszystkich funkcji z \mathbb{N} w \mathbb{N} . Dla danej funkcji f niech $R_f = \{n \in \mathbb{N} \mid \exists m \in \mathbb{N} \mid f(m) = n\}$ oznacza zbiór wartości przyjmowanych przez tę funkcję. W $\mathbb{N}^{\mathbb{N}}$ definiujemy relację \sim wzorem

$$f \sim g \stackrel{\mathrm{df}}{\Leftrightarrow} R_f = R_g.$$

Oczywiście \sim jest relacją równoważności.

- (a) Udowodnij, że każda klasa abstrakcji relacji \sim jest albo jednoelementowa, albo ma moc continuum.
- (b) Udowodnij, że zbiór ilorazowy (czyli zbiór wszystkich klas abstrakcji) relacji \sim ma moc continuum.
- (c) Podaj przykład podziału zbioru $\mathbb{N}^{\mathbb{N}}$ na continuum rozłacznych zbiorów mocy continuum.

Zadanie 13. Niech A będzie dowolnym zbiorem. Multizbiorem nad A nazywamy dowolną funkcję $S:A\to\mathbb{N}$ (mówimy wtedy, że S(x) jest liczbą wystąpień elementu x w multizbiorze S). Rodzinę wszystkich multizbiorów nad A oznaczamy $\mathcal{M}(A)$. Jeśli S_1 i S_2 są multizbiorami, to ich przekrój $S_1\cap S_2$, sumę $S_1\cup S_2$ i różnicę $S_1\setminus S_2$ definiujemy wzorami

$$(S_1 \cap S_2)(x) = \min(S_1(x), S_2(x))$$

 $(S_1 \cup S_2)(x) = S_1(x) + S_2(x)$
 $(S_1 \setminus S_2)(x) = \max(S_1(x) - S_2(x), 0).$

Mówimy, że S_1 jest podzbiorem S_2 i piszemy $S_1\subseteq S_2$, jeśli istnieje taki multizbiór X, że $S_1\cup X=S_2$.

(a) Czy dla dowolnych multizbiorów X,Y,Z nad zbiorem A zachodzi równość

$$X \setminus (Y \cup Z) = (X \setminus Y) \setminus Z$$
?

(b) Czy dla dowolnych multizbiorów X,Y,Z nad zbiorem A zachodzi równość

$$X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$$
?

(c) Czy $\langle \mathcal{M}(A), \subseteq \rangle$ jest porządkiem? Czy jest to porządek zupełny?

Wszystkie odpowiedzi należy uzasadnić.

Zadanie 14. Niech $\langle A, \leq \rangle$ będzie zbiorem dobrze uporządkowanym (czyli zbiorem liniowo uporządkowanym, w którym każdy niepusty podzbiór ma element najmniejszy). W zbiorze $A \times A$ porządek leksykograficzny jest zdefiniowany wzorem

$$\langle x_1, x_2 \rangle \leq_{lex} \langle y_1, y_2 \rangle \stackrel{\text{df}}{\Leftrightarrow} (x_1 \leq y_1 \land x_1 \neq y_1) \lor (x_1 = y_1 \land x_2 \leq y_2).$$

W zbiorze $X = (\mathbb{N} \setminus \{0\}) \times (\mathbb{N} \setminus \{0\})$ definiujemy porządek \leq wzorem

$$\langle x_1, x_2 \rangle \preceq \langle y_1, y_2 \rangle \stackrel{\text{df}}{\Leftrightarrow} \frac{x_1}{x_2} < \frac{y_1}{y_2} \lor (\frac{x_1}{x_2} = \frac{y_1}{y_2} \land x_1 \le y_1).$$

- (a) Udowodnij, że $\langle A \times A, \leq_{lex} \rangle$ jest zbiorem dobrze uporządkowanym (nie trzeba dowodzić, że relacja \leq_{lex} jest porządkiem, ani że jest to porządek liniowy).
- (b) Czy $\langle X, \preceq \rangle$ jest izomorficzny z $\langle \mathbb{Q}, \leq \rangle$?
- (c) Czy $\langle X, \preceq \rangle$ jest izomorficzny z $\langle \mathbb{N} \times \mathbb{N}, \leq_{lex} \rangle$?

Uzasadnij odpowiedzi.