Lecture 11 - Deep generative models

DD2424

April 26, 2021

Outline

Generative Modelling

Variational Auto Encoders

Generative Adversarial Networks

Other methods

Outline

Generative Modeling

Variational Auto Encoders

Generative Adversarial Training

Other methods

Machine Learning as Input-Output

Machine Learning

Most Common Models

- Most common setup: Supervised Discriminative Learning
 - Supervised: Correct output (labels) are provided for a set of input examples
 - Discriminative: Directly model the correct output given the input
 - objects given image, pixel-level depth given image, sentiment given a text,
 - Most famous architectures are designed for a supervised discriminative task:
 AlexNet, Inception, ResNet, FCN, U-Net, LSTM, etc.

Goals

- Generate realistic samples (from the same distribution as training data, i.e., P(x))
 - latent variable models
 - fully-observable models

Assign likelihood to samples
 noise z
 Model

sample x

Goals

- Generate realistic samples a concrete case
- Assign likelihood to samples

Goals

- Generate realistic samples (from the same distribution as training data, i.e., P(x))
 - latent variable models
 - fully-observable models

Assign likelihood to samples

Goals

Generate realistic samples

Assign likelihood to samples (density Estimation)

Conditional Generative Models

Goals

Generate realistic samples

Assign likelihood to samples (Density Estimation)

- Machine learning techniques as probabilistic models:
 - Generative Models: $P(\mathbf{x})$ or $P(\mathbf{x}|y)$ or maybe $P(\mathbf{x},y)$
 - Discriminative models: $P(y|\mathbf{x})$
 - we can get $P(y|\mathbf{x}) = P(\mathbf{x}, y)/P(\mathbf{x})$ in generative models, especially if we are not interested in normalized probabilities: $P(y|\mathbf{x}) \propto P(\mathbf{x}, y) = P(\mathbf{x}|y)P(y)$

Generative Models of $P(y|\mathbf{x})$

• Pros:

- Out of distribution samples
- Missing data
- Missing dimensions
- Semi-supervised learning
- Synthetic sample generation
- •

- Number of data points
- Number of assumptions

Despite the dimensionality of the input space (\mathcal{X}) , why can we have a chance to train generative models in lack of enough data?

Generative Models – Latent Variable Models

 Underlying factors of variations, using simpler lower dimensional hidden variables, z

 $z^{(1)}$: horizontal location

 $z^{(2)}$: vertical location

 $\mathbf{z} \in \mathbb{R}^3$

 $z^{(3)}$: rotation

$$\mathbf{x} \in \mathbb{R}^{32*32}$$

P(z) and P(x|z)

and maybe $P(\mathbf{z}|\mathbf{x})$

•
$$P(\mathbf{x}) = \int P(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) P(\mathbf{z}|\boldsymbol{\theta}) d\mathbf{z}$$

4/25/2021 KTH - DD2412

Goals

Generate realistic samples

Assign likelihood to samples (Density Estimation)

- $P(\mathbf{z}|\mathbf{x})$: (Compressed) Representation Learning
 - Understanding underlying generative factors (e.g. similar to what PCA or matrix factorization do)
 - Data compression
 - Semi-supervised learning
 - •

Why are they called Generative models?

Sample from $P(\mathbf{x})$

Sample from $P(\mathbf{x}, y)$

- Sample y from P(y)
- Then sample **x** from $P(\mathbf{x}|y)$

That was the probabilistic approach, do all models do that though?

Implicit Generative Models

- Not always, sometimes:
 - Discriminative model: $\underset{y}{\operatorname{argm}} ax \ score(\mathbf{x}, y)$
 - Generative model: $g(\mathbf{z}) \to \hat{\mathbf{x}} \sim P(\mathbf{x})$ or $\hat{\mathbf{x}}, \hat{\mathbf{y}} \sim P(\mathbf{x}, \mathbf{y})$

Another way to look at generative models

Deep Generative Models

Outline

Generative Modelling

- Variational Auto Encoders
 - Auto Encoders
 - Steps to create Variational Auto Encoders
 - Some Discussions
- Autoregressive Models
- Normalizing Flow Models
- Energy-based Models

Bottleneck Auto-Encoder Networks

$$\mathbf{x}, \hat{\mathbf{x}} \in \mathbb{R}^d$$
 $\mathbf{z} \in \mathbb{R}^p$ $d \gg p$

Bottleneck Auto-Encoder Networks

Ŷ

Loss function

$$L = \sum ||\mathbf{x} - \hat{\mathbf{x}}||^2$$

$$\mathbf{z} \in \mathbb{R}^p$$

$$d \gg p$$

Have you seen that kind of bottleneck networks before?

4/25/2021 KTH - DD2412 [SegNet]

What can AEs be used for?

Dimensionality Reduction

Pretraining

Denoising AutoEncoder

Item imputation

• What can AEs be used for?

Dimensionality Reduction

Pretraining

Denoising AutoEncoder

Item imputation

What can AEs be used for?

Dimensionality Reduction

Pretraining

Denoising AutoEncoder

Item imputation

[source: Kirill Eremenko]

What can AEs be used for?

Dimensionality Reduction

Pretraining

Denoising AutoEncoder

• Item imputation (e.g. Image Inpainting)

Are Auto-Encoders generative models?

not in principle!

Bengio, Yao, Alain, Vincent, "Generalized Denoising Auto-Encoders as Generative Models", NIPS 2013

We can make it probabilistic and truly generative!

 While the outcome is deceivingly simple, several steps are needed to understand every choice!

Kingma, Welling "Auto-Encoding Variational Bayes", ICLR 2013

Variational AutoEncoder

implementation perspective

AutoEncoder - Variational Inference

$$\max_{\boldsymbol{\omega} = \{\boldsymbol{\omega}_i\}_{i=1:n}} \mathcal{L}_{VAE} = \sum_{i=1}^{n} \left(\mathbb{E}_{Q_{\boldsymbol{\omega}_i}(\mathbf{z}|\mathbf{x}_i)} \log P(\mathbf{x}_i|\mathbf{z}) - D_{KL}(Q_{\boldsymbol{\omega}_i}(\mathbf{z}|\mathbf{x}_i)||P(\mathbf{z})) \right)$$

Variational AutoEncoder

VAE training implementation

$$\max_{\theta_f, \theta_g} \frac{1}{s} \sum_{i=1}^n \sum_{k=1}^s \left(\log \mathcal{N}(\mathbf{x}_i; \{\boldsymbol{\mu}, \boldsymbol{\Sigma}\} = g(\widehat{\mathbf{z}_i^k})) - D_{KL}(\mathcal{N}(\widehat{\mathbf{z}_i^k}; \{\boldsymbol{\mu}, \boldsymbol{\Sigma}\} = f(\mathbf{x}_i)) \mid \mid \mathcal{N}(\boldsymbol{\mu} = \mathbf{0}, \boldsymbol{\Sigma} = \mathbb{I}) \right) \right)$$

$$\left\{ \widehat{\mathbf{z}_i^k} \right\}_{k:1..s} \sim \mathcal{N}(\mathbf{z}; \{\boldsymbol{\mu}, \boldsymbol{\Sigma}\} = f(\mathbf{x}_i))$$

- Common case in practice
 - $P(\mathbf{z}) = \mathcal{N}(\boldsymbol{\mu} = \mathbf{0}, \boldsymbol{\Sigma} = \mathbb{I})$
 - $P(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{z}; \{\boldsymbol{\mu}_{\mathbf{x}} = g(\mathbf{z}), \mathbb{I}\}$
 - $Q(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{x}; \{\boldsymbol{\mu}_{\mathbf{z}}, \boldsymbol{\sigma}_{\mathbf{z}}\mathbb{I}\} = f(\mathbf{x}))$
 - Single-sample monte carlo estimation (s = 1)

$$\min_{\theta_f, \theta_g} \mathcal{L}(\theta_f, \theta_g, X) \triangleq \sum_{i=1}^n \sum_{j=1}^p \left(\frac{\left(\mu_{\mathbf{x}, j} - x_{i, j}\right)^2}{2} + \log \sigma_{\mathbf{z}, j} + \frac{\sigma_{\mathbf{z}, j}^2 + \mu_{\mathbf{z}, j}^2}{2} \right)$$

How to sample from $P(\mathbf{x})$ using the trained VAE?

DD2424 - Lecture 11 34

VAE as generative model

- Sample **z** from $\mathcal{N}(\mathbf{0}, \mathbf{1})$
- Then sample \mathbf{x} using from $P(\mathbf{x}|\mathbf{z})$

DD2424 - Lecture 11 35

VAE as generative model

DD2424 - Lecture 11 36

VAE (Example)

VAE (example)

VAE - β VAE

- Tries to disentangle the latent representations
- What does it mean?
 - Each factor $z^{(i)}$ is uncorrelated with other factors
- Why is this good?
 - Better interpretability of the latent space
- How to do this?
 - Remember the prior P(z) had a diagonal covariance
 - We can enforce that more strongly

$VAE - \beta VAE$

$$\max_{\boldsymbol{\omega}} \sum_{i=1}^{n} \left(\mathbb{E}_{Q_{\boldsymbol{\omega}_{i}}(\mathbf{z}|\mathbf{x}_{i})} \log P(\mathbf{x}_{i}|\mathbf{z}) - \boldsymbol{\beta} D_{KL}(Q_{\boldsymbol{\omega}_{i}}(\mathbf{z}|\mathbf{x}_{i})||P(\mathbf{z})) \right)$$

$VAE - \beta VAE$

Vanilla VAE – summary

- Probabilistic inference with simple interpretations, and simple and efficient implementation
- (Slightly) Blurry images
- Generally good for latent representation learning (dimensionality reduction)
- Many other notable works
 - Check out [Tschannen, Bachem, Lucic, "Recent Advances in Autoencoder-Based Representation Learning", NIPS 2018]

Hierarchical VAE

(a) Bidirectional Encoder (b) Generative Model

[vanuaι&κautz "NVAE: A Deep Hierarchical Variational Autoencoder" NeurIPS 2020]

Generative Modeling

Variational Auto Encoders

Generative Adversarial Training

Other methods

Generative Adversarial Networks

Issues with GANs

Some important GAN variants

Generative Adversarial Networks

Issues with GANs

Some important GAN variants

Generative Models

Remember the Goals of generative models

Generate realistic samples

Assign likelihood to samples (Density Estimation)

• (Compressed) Representation Learning

Generative Models

Goals (for GAN as an implicit generative model)

Generate realistic samples

Assign likelihood to samples (Density Estimation)

• (Compressed) Representation Learning

Generative Adversarial Networks

Generative Adversarial Networks (GAN)

Generative: we want to generate samples

Networks: we use deep networks for parametrization of our model

 Adversarial: Two adversary networks – one that generates (fake) samples, one that discriminates between fake and true samples

Adversarial:

• Key is end-to-end learning (backprop):

• Key is end-to-end learning (backprop):

Loss function

[openAI]

GAN objective

Let's see what objective we optimize in GANs

GAN objective

Let's see what objective we optimize in GANs

Training GAN

- Iterative Alternating Fashion
 - Let both discriminator and generator fiddle against a static version of their adversaries
 - For D: use SGD-like algorithm of choice (Adam) on two minibatches simultaneously:
 - A minibatch of training examples
 - A minibatch of generated samples
 - Loss: $-\mathbb{E}_{\mathbf{x}\sim P(\mathbf{x})}[\log D(\mathbf{x})] \mathbb{E}_{\mathbf{z}\sim P_{\mathbf{z}}(\mathbf{z})}\left[\log\left(1-D(G(\mathbf{z}))\right)\right]$
 - For G: use SGD-like algorithm of choice (Adam) on one minibatch
 - A minibatch of generated samples
 - Loss: $\mathbb{E}_{\mathbf{z} \sim P_{\mathbf{z}}(\mathbf{z})} [\log(1 D(G(\mathbf{z})))]$
 - Non-saturating Loss: $-\mathbb{E}_{\mathbf{z}\sim P_{\mathbf{z}}(\mathbf{z})} [\log(D(G(\mathbf{z})))]$
 - Optional: run *k* steps of one player for every step of the other player.

GANs achieve great results!

[StyleGAN v2]

GANs achieve great results

Source: Avinash Hindupur

Do GANs have problems though?

Ohhh, YES!

Likelihood-free modelling

Generative Adversarial Networks

Issues with GANs

Some important GAN variants

Training GAN

Issue #1: Balance of power

[Arjovsky and Bottou, 2017]

GAN – Mode collapse

Issue #2: Mode collapse

Generator only generates one or few samples/class of samples

GAN – Mode collapse

Why does this happen?

[Metz, Poole, Pfau, Dickstein, "Unrolled Generative Adversarial Networks", ICLR 2017

GANs: (Almost) Disjoint support

Issue #3: Low-dimensional support of both $P(\mathbf{x})$ and $\hat{P}_{\theta}(\mathbf{x})$

D can discriminate all the time!

[Arjovsky&Bottou "TOWARDS PRINCIPLED METHODS FOR TRAINING GENERATIVE ADVERSARIAL NETWORKS"]

GAN: No latent representation

"issue" #4: no latent representation

Vanilla GAN does not have a standard way of steering the generated samples, or producing latent representations for an input x.

Likelihood-free modelling

Generative Adversarial Networks

Issues with GANs

Some important GAN variants

BiGAN

- How to encode using GAN?
 - Naïve: One can take the middle representations from the Discriminator

- BiGAN
 - we have an encoder network $E: \mathbf{x} \to \mathbf{z}$
 - Discriminator (x, E(x)) vs (G(z), z)

[Jeff Donahue, Philipp Krähenbühl, Trevor Darrell, "Adversarial Feature Learning", ICLR 2017] But also many other works: InfoGAN, VAEGAN, ...

Conditional GAN

Conditional GAN

Conditional GAN

Conditional Generative Models

- Generative Modeling
- Variational Auto Encoders
 - AutoEncoders
 - Variational Approximation
 - Examples
- Generative Adversarial Training
- Other methods

Now let's look at a fully-observable case

Autoregressive Generative Models

Autoregressive Generative Models

Simple and general idea

- Take the desired $P(\mathbf{x})$ (with \mathbf{x} a discrete random variable)
- Factorize it using chain rule over dimensions of x

•
$$P(\mathbf{x}) = P(\mathbf{x}^{(1)})P(\mathbf{x}^{(2)}|\mathbf{x}^{(1)})P(\mathbf{x}^{(3)}|\mathbf{x}^{(2)},\mathbf{x}^{(1)}) \dots P(\mathbf{x}^{(d)}|\mathbf{x}^{(d-1)},\dots,\mathbf{x}^{(1)})$$

Parametrized and learn each of the conditionals

In general, this still needs exponential number of parameters in d to model $P(\mathbf{x})$!

Autoregressive Generative Models

RNN can be used as an autoregressive generator!

Autoregressive - RNN

RNN can be used as an autoregressive generator!

Pros

- ✓ Sequence of arbitrary length
- ✓ Can cast any generation process and increase the modeling capacity as we like

Cons

- Slow training due to sequential likelihood evaluation
- Vanishing/exploding gradients (but one can use LSTM/GRU)

Autoregressive deep models

[source: DeepMind: https://deepmind.com/blog/wavenet-generative-model-raw-audio/]

Autoregressive - Applications

- WaveNet
 - https://deepmind.com/blog/wavenet-generative-model-raw-audio/

Autoregressive - PixelCNN

Results

data imputation (ImageNet 32x32)

Autoregressive Generative Models

Summary

- Simple generation process
- Exact and simple density estimation
- Very good for data imputation
- No encoding
- Slow training, sample generation, and density estimation (due to the sequential nature)

There is yet another important class of deep generative models

Normalizing Flow Models

Normalizing Flow

Key idea

- Start from simple distributions that are easy to generate sample from and enable simple density estimation
- Transform the distribution gradually complexify using change of variables.

Normalizing Flows

Results

Normalizing Flow

A general use-case

- Approximating posterior distributions are often too simplistic (e.g. Multivariate Gaussian with diagonal covariance)
 - This is usually to make the inference or ML training tractable
- Normalizing flow is a simple technique to enable modeling more complex approximate distributions

Normalizing Flows

A general use-case: e.g. VAE

$$f(\mathbf{z}) = \mathbf{z} + \mathbf{u} \, \sigma(\mathbf{v}^{\mathrm{T}}\mathbf{z} + b)$$

Normalizing Flow

[Kingma, Dhariwal, "Glow: Better Reversible Generative Models", NIPS 2018]

A recent trend

Cloze-test Image Transformers

[https://jalammar.github.io/illustrated-transformer/]

Encoder Decoder

[https://jalammar.github.io/illustrated-transformer/]

Self-Attention

[https://jalammar.github.io/illustrated-transformer/]

[Chen et al., "Generative Pretraining from Pixels", ICML 2020]

[https://openai.com/blog/image-gpt/]