Úloha A

Máme dané vektory y, x_1, x_2, \ldots, x_k . Chceme nájsť parametre $\beta_0, \beta_1, \ldots, \beta_k$ také, aby pre vektor $\hat{y} = \beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k$, boli normy $||y - \hat{y}||_1$ a $||y - \hat{y}||_\infty$ minimálne. Chceme teda riešiť úlohy $min||y - \hat{y}||_1$ a $min||y - \hat{y}||_{infty}$, pre k+1-rozmerný vektor parametrov β .

Minimalizovanie L^1 normy

Prevedieme problém zo zadania do tvaru:

$$\min c^T x$$
$$Ax \le b$$

Zaveď me si nový vektor premenných t, ktorým ohraničíme normu $||y-\hat{y}||_1$.

$$y - \hat{y} \le t$$
$$y - \hat{y} \ge -t$$

Pre prvé ohraničenie, odseparujme premenné od konštánt a preveďme do maticového tvaru.

$$-(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k) - t \le -y$$

$$\begin{pmatrix} | & | & | & | & | & | \\ \mathbf{1}_n & x_1 & x_2 & \dots & x_k & \mathbb{I}_n \\ | & | & | & | & | & | \end{pmatrix} \begin{pmatrix} | & | & | & | \\ \beta & | & | & | & | \\ \vdots & | & | & | & | \\ t & | & | & | \end{pmatrix}$$