

JUL 28, 2023

OPEN ACCESS

DOI:

dx.doi.org/10.17504/protocol s.io.j8nlko5q5v5r/v1

Protocol Citation: YiChien Lee, Huei-Mien Ke, Isheng Jason Tsai 2023. Whole genome amplification and long read sequencing using ONT . **protocols.io** https://dx.doi.org/10.17504/protocols.io.j8nlko5q5v5r/v1

License: This is an open access protocol distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: Jun 26, 2023

Whole genome amplification and long read sequencing using ONT

Huei-Mien Isheng Jason

YiChien Lee¹, Ke², Tsai³

¹Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan;

²Department of Microbiology, Soochow University, Taipei, 111, Taiwan;

³Biodiversity Research Center, Academia Sinica Taiwan

Isheng Jason Tsai Biodiversity Research Center, Academia Sinica Taiwan

DISCLAIMER

DISCLAIMER – FOR INFORMATIONAL PURPOSES ONLY; USE AT YOUR OWN RISK

The protocol content here is for informational purposes only and does not constitute legal, medical, clinical, or safety advice, or otherwise; content added to protocols.io is not peer reviewed and may not have undergone a formal approval of any kind. Information presented in this protocol should not substitute for independent professional judgment, advice, diagnosis, or treatment. Any action you take or refrain from taking using or relying upon the information presented here is strictly at your own risk. You agree that neither the Company nor any of the authors, contributors, administrators, or anyone else associated with protocols.io, can be held responsible for your use of the information contained in or linked to this protocol or any of our Sites/Apps and Services.

Last Modified: Jul 28, 2023 ABSTRACT

PROTOCOL integer ID: 84001

A genome reference is a prerequisite for a complete understanding of the biology and evolution of a species. However, the major challenge remains to obtain high-quality DNA and RNA from the majority of organisms. Therefore, there is a need for having a protocol to bypassed the challenging stage of obtaining axenic cultures and limited the amount of DNA material from a limit individual. This protocol build on whole genome sequencing single nematode. With multiple displacement amplification (MDA) allows the genome from a single nematode to be amplified and can sequence with both long- and short-read sequencing. This protocol can be completed within two week including genome amplification and sequencing. Also, combines MDA and Oxford Nanopore sequencing and provides a cost- and labor-effective solution to generate complete assemblies in organisms with as little as 50 picograms of starting material and assemble a draft genome assembly.

MATERIALS

REAGENTS

22 gauge needle

0.2ml PCR tube

DNA LoBind Tubes, Eppendorf, #EP0030108078

- X PBS (Phosphate-buffered saline

- T7 Endonuclease I 1,250 units **New England Biolabs Catalog** #M0302L
- Qubit dsDNA HS Assay Kit Thermo Fisher Scientific Catalog #Q32854
- Ligation Sequencing Kit Oxford Nanopore Technologies Catalog #SQK-LSK109
- Flow Cell Priming Kit Oxford Nanopore Technologies Catalog #EXP-FLP002
- NEBNext Quick Ligation Module 100 rxns New England Biolabs Catalog #E6056L
- NEBNext FFPE DNA Repair Mix 96 rxns New England Biolabs Catalog
- NEBNext Ultra II End Repair/dA-Tailing Module 96 rxns **New England**Biolabs Catalog #E7546L

EQUIPMENT

Magnetic separator

Vortex mixer

Microfuge

Thermal cycler

Rotator mixer

Magnetic separator

Qubit

Gridion

[Optional] extraction and denature of genomic DNA

1 Prepare DLB Lysis buffer:

Δ 33 μL REPLI-g DLB buffer
Δ 3 μL 1M DTT

- 2 Add 4 µL PBS buffer in 0.2ml PCR tube.
- Transfer worm to the 0.2ml PCR tube with $\boxed{4 \mu L}$ PBS buffer.

Note

[Optional] You may cut the worm with 22 gauge needle. This may release the cells from the cuticles

- Add A 3 µL DLB Lysis buffer. Incubate sample on thermocycler at 65 °C fo
- 5 Add $\mathbb{Z}_{3 \mu L}$ of REPLI-g Stop Solution. Store the sample on ice.

Whole genome amplification

8h 38m 30s

10m

- **6** Prepare REPLI-g polymerase master mix
 - Δ 9 μL Nuclease-free water
 - A 29 µL REPLI-g Reaction Buffer
 - Δ 2 μL REPLI-g DNA Polymerase

Note

The difference of these kits is the final amount of expected amplified templates from the polymerase master mix (SC 40 μ g, midi 40 μ g, and mini 10 μ g with 10ng DNA). We initially started with SC, but were only able to obtain midi and mini kits during the COVID pandemic. We have inserted this explanation and option in the publicised protocol **(doi here)**.

Note

set heated lid temperature to [70 °C)

- Warm AMPure XP beads to Room temperature Resuspend the AMPure XP beads by vortexing.
- 11 Incubate the sample on a Tube Revolver for 00:10:00 at Room temperature

Keep the tube on the magnet until eluate is clear and colorless, and pipette off the supernatant.

Wash the beads with 200 µL of freshly prepared [M] 70 % (V/V) ethanol for 00:00:30 and remove the ethanol using a pipette and discard.

Spin down and place the tube back on the magnet. Pipette off any residual ethanol.

Allow to dry for 00:05:00

5m

10m

Note

Do not dry the pellet to the point of cracking.

Remove the tube from the magnetic rack and resuspend pellet in Δ 30 μL Nuclease-free water. Incubate for 00:20:00 at 8 Room temperature.

20m

- Spin down and place the tube back on the magnet until the eluate is clear and colorless. Remove and retain A 30 µL of eluate in a clean 1.5 ml Microtube.

T7 endo I digestion

1h 15m 30s

For each reaction, mix the reagents in the following order in a clean 0.2 ml PCR tube. Add nuclease-free water until final volume of $25 \,\mu$ L. Mix gently by flicking the tube, and spin down.

A	В
1.5 μg (ΧμΙ)	amplified DNA
3μΙ	NEBuffer 2
1.5µl	T7 Endonuclease I
25-ΧμΙ	Nuclease-free water

Incubate at \$\mathbb{E}\$ 20 °C for \cdots 00:30:00 and \$\mathbb{E}\$ 65 °C for \cdots 00:30:00 in thermal cycler.

- Resuspend the AMPure XP beads by vortexing.

 Add \bot 60 μ L of resuspended AMPure XP beads to the amplification reaction and thoroughly mixed. Incubate the sample on a Tube Revolver for \bigcirc 00:10:00 at \blacksquare Room temperature.
- 20 Keep the tube on the magnet until eluate is clear and colorless, and pipette off the supernatant.
- 22 Repeat step 21 again.
- Allow to dry for $\bigcirc 00:05:00$, but do not dry the pellet to the point of cracking.
- Remove the tube from the magnetic rack and resuspend pellet in A 49 µL Nuclease-free water. Incubate for 20 minutes at RT. Spin down and place the tube back on the magnet until the eluate is clear and colorless.
- 25 Remove and retain 49 μ l of eluate in a clean 1.5 ml microtubes.
- $\begin{tabular}{ll} \bf 26 & Take 2~\mu I ~purified ~DNA~for~quantification~with~Qubit~dsDNA~High~sensitivity~assay. \end{tabular}$

10m

30s

ONT library prep and ONT sequencing

27 ONT library prep were followed ONT Ligation sequencing gDNA (SQK-LSK109) protocol.