Complexity of Art Gallery Variants

Nathan Sheffield, Alek Westover

MIT

Computational Geometry

The Art Gallery Problem

Input: Polygon P, number of guards g.

Output: Is there a placement of g guards that can see all of P?

Figure: An Art Gallery

Polygon representation: P is represented as a list of n vertices which are pairs of B bit binary numbers in $\{i \cdot 2^{-B} \mid i \in [2^B]\}$.

Theorem (Chvatal)

 $\lfloor n/3 \rfloor$ vertex guards always suffice.

We can efficiently compute a set of $\lfloor n/3 \rfloor$ guards that suffice by triangulating P and 3-coloring the resulting graph.

Theorem (Chvatal)

 $\lfloor n/3 \rfloor$ vertex guards always suffice.

But, if we want to *minimize* the number of guards, it's useful to place guards off of vertices.

Theorem (Chvatal)

 $\lfloor n/3 \rfloor$ vertex guards always suffice.

Theorem (Chvatal)

 $\lfloor n/3 \rfloor$ vertex guards always suffice.

Theorem (Chvatal)

 $\lfloor n/3 \rfloor$ vertex guards always suffice.

Complexity of Art Gallery

Question: Is Art Gallery in NP?

Answer: Probably not.

Definition ($\exists \mathbb{R}$ formula)

 $\exists \mathbb{R}$ is the set of all true formulas

$$\exists X_1, X_2, \ldots, X_n \in \mathbb{R} \mid \Phi(X_1, \ldots, X_n)$$

where Φ is a well-formed sentence involving variables X_1, \ldots, X_n and symbols $\vee, \wedge, \neg, 0, 1, +, -, \cdot, (,), =, <, \leq$.

Example:

$$\exists (x,y) \mid x > 0 \land y > 0 \land x + y < 1.$$

Complexity of Art Gallery

Question: Is Art Gallery in NP?

Answer: Probably not.

Theorem (Abrahamsen, Adamaszek, Miltzow STOC'18)

Art Gallery is $\exists \mathbb{R}$ -Complete.

Conjecture

 $NP \subseteq \exists \mathbb{R}.$

Why is $\exists \mathbb{R}$ potentially larger than NP?

Problems in NP have short certificates, but the variables we quantify over can be real, seems hard to write down X_1, \ldots, X_n in a way that makes checking $\phi(X_1, \ldots, X_n)$ easy.

Art Gallery Variants

- **Line Guard**: is it possible to guard an art gallery with *g* line segments?
 - Requirement: every point in the art gallery can be seen by some point on some line.
- Shape Guard: is it possible to guard an art gallery with g (fixed) shapes (e.g., radius ε circles)?
 Requirement: every point in the art gallery can be seen by some point in some shape.
- 3D Line Guard: Line guard, but in 3D.
- Promise Point Shape Guard: Distinguish between two cases:
 - 1. P can be guarded by g point guards.
 - 2. P can't be guarded by g ε -radius circle guards.

Results

Theorem

Line Guard and Shape Guard are in $\exists \mathbb{R}$.

Theorem

Promise Point Shape Guard is in NP.

Conjecture (In Progress)

3D Line Guard is $\exists \mathbb{R}$ -hard.

$\mathsf{LineGuard} \in \exists \mathbb{R} \mathsf{\ Proof\ Sketch}$

Try 1:

 $\exists k$ line segments such that $\forall (x,y) \in P$, $\exists (x',y')$ a point on one of our line segments such that (x',y') can see (x,y).

Try 1:

 $\exists k$ line segments such that $\forall (x,y) \in P$, $\exists (x',y')$ a point on one of our line segments such that (x',y') can see (x,y).

Good: Checking if line segment contained in polygon is easy.

Try 1:

 $\exists k$ line segments such that $\forall (x,y) \in P$, $\exists (x',y')$ a point on one of our line segments such that (x',y') can see (x,y).

Good: Checking if line segment contained in polygon is easy.

Bad: \forall quantifiers not allowed in $\exists \mathbb{R}!$

Try 1:

 $\exists k$ line segments such that $\forall (x,y) \in P$, $\exists (x',y')$ a point on one of our line segments such that (x',y') can see (x,y).

Good: Checking if line segment contained in polygon is easy.

Bad: \forall quantifiers not allowed in $\exists \mathbb{R}!$

Try 2: Maybe there is a small set of points C such that if we can see all points in C then we can also see all points in P?

Try 1:

 $\exists k$ line segments such that $\forall (x,y) \in P$, $\exists (x',y')$ a point on one of our line segments such that (x',y') can see (x,y).

Good: Checking if line segment contained in polygon is easy.

Bad: \forall quantifiers not allowed in $\exists \mathbb{R}!$

Try 2: Maybe there is a small set of points C such that if we can see all points in C then we can also see all points in P?

Kind of...

Definition

$$X = \{ \text{corners of polygon} \} \cup \{ \text{guard segment endpoints} \}$$

$$\mathcal{L} = \{ \text{Lines joining points in } X \}$$

$$\mathcal{R} = \{ \text{regions in the arrangement defined by } \mathcal{L} \}$$

$$C = \{ \text{Centroids of regions in } R \}$$

Claim: If the guard segments can see all points in \mathcal{C} then they can see the entire polygon \mathcal{P} .

Note: C depends on the guard locations. This is to be expected, because we do not believe that LineGuard \in NP.

$\mathsf{LineGuard} \in \exists \mathbb{R} \mathsf{\ Proof\ Sketch}$

Lemma

If guard segment ℓ can see any point inside region $R \in \mathcal{R}$ then ℓ can see all of R.

Corollary

If the guard segments can all points in C then they can see all points in P.

Corollary

 $\mathsf{LineGuard} \in \exists \mathbb{R}.$

Lemma

If guard segment ℓ can see any point inside region $R \in \mathcal{R}$ then ℓ can see all of R.

Figure: Proof of Key Lemma: any segments in the middle of the cone would further subdivide it.