Assignment 5 of MATP6610/4820

(Due on March-27-2020 in LMS)

Bonus for using LaTex: you can earn up to 10% extra credit if you use LaTex to type your solutions and include code and all test results. A template of LaTex is included.

Problem 1

- 1. Let $f(x) = x^2 + 4\cos x$, $x \in \mathbb{R}$. Start from $x^{(0)} = 1.5$ and do 4 iterations of the Newton's method to find an approximate minimizer of f(x) by hand (calculator is allowed).
- 2. Let $f(x_1, x_2) = 100(x_2 x_1^2)^2 + (1 x_1)^2$. Write the gradient $\nabla f(x_1, x_2)$ and the Hessian matrix $\nabla^2 f(x_1, x_2)$ at any point (x_1, x_2) . Program the Newton's algorithm to minimize $f(x_1, x_2)$. Run the algorithm to 10 iterations and report the norm of gradient at each iteration. For the initial point, first use (1.2, 1.2) and then (-1.2, 1.0).

Problem 2

Consider the unconstrained quadratic minimization problem:

$$\underset{\mathbf{x}}{\text{minimize}} f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} - \mathbf{b}^{\top} \mathbf{x}$$
 (QuadMin)

where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix, and $\mathbf{b} \in \mathbb{R}^n$.

Write a solver for (QuadMin) by the DFP method. Use the instructor's provided file $\mathtt{quadMin_DFP.m}$ to write a Matlab function $\mathtt{quadMin_DFP}$ with input \mathbf{A} , \mathbf{b} , initial vector $\mathbf{x}0$, and tolerance \mathtt{tol} , and with stopping condition $\|\nabla f(\mathbf{x}^k)\| \leq \mathrm{tol}$. Also test your function by running the provided test file $\mathtt{test_DFP.m}$ and compare to the instructor's function. Print your code and the results you get, and print the figures you get.

Problem 3 [bonus question]

In the DFP method for solving the problem $\min_{\mathbf{x}} f(\mathbf{x})$, we denoted $\mathbf{s}^{(k)} = \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}$ and $\mathbf{y}^{(k)} = \nabla f(\mathbf{x}^{(k+1)}) - \nabla f(\mathbf{x}^{(k)})$. At every update $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha_k \mathbf{B}_k^{-1} \nabla f(\mathbf{x}^{(k)})$, we choose $\alpha_k > 0$ such that the Wolfe's conditions hold. Prove that $(\mathbf{s}^{(k)})^{\mathsf{T}} \mathbf{y}^{(k)} > 0$ if $\nabla f(\mathbf{x}^{(k)}) \neq \mathbf{0}$. [Recall that we used this result to show positive definiteness of \mathbf{B}_{k+1} .]