WEPAB378 Near-Infrared Laser System for Dielectric Laser Acceleration Experiments at SINBAD

Christoph Mahnke, Yi Hua, Yuxuan Ma, Sarper Salman, Caterina Vidoli, Thorsten Lamb, Sebastian Schulz, Uwe Grosse-Wortmann, Christian Mohr, Christoph M. Heyl, Jost Müller, Hüseyin Çankaya, Ingmar Hartl, Franz X. Kärtner

Deutsches Elektronen-Synchrotron (DESY)
Center for Free-Electron Laser Science (CFEL)
University of Hamburg

christoph.mahnke@desy.de

12th International Particle Accelerator Conference - IPAC'21 May 24-28, 2021.

DLA experiments @ SINBAD (DESY)

- SINBAD: Short Innovative Bunches and Accelerators at **DESY**
 - → dedicated facility for Accelerator Research & Development
- ARES (Accelerator Research Experiment at SINBAD) B. Marchetti et al., J. Phys.: Conf. Ser. 1596, p. 012036 (2020)
- DESY is part of the international **ACHIP** (Accelerator on a chip) collaboration, investigating **Dielectric Laser Acceleration (DLA)**

Electron acceleration on a DLA structure

- At SINBAD, laser acceleration on relativistic electrons
- We here report on the NIR laser system

J. Breuer et al., PRL, 111, 134803 (2013).

E. A. Peralta et al., Nature, 503, 91 (2013).

ACHIP experiment @ SINBAD

UV beamline

- Two laser systems used: UV Photoinjector + 2 μm IR laser for DLA experiments
- Why operating at 2 µm?
 - High damage threshold of dielectric materials
 - Less distortion on electron bunch energy distribution (compared e.g. to 800 nm)
 - Dielectric structures of suitable size can be produced

- Challenges:
 - Realize Laser system
 - Beam delivery
 - Synchronization + Timing

2050 nm Ho:fiber laser oscillator

- Constructed in-house for DLA-experiments
 - Holmium-doped gain fiber (emission at 2050 nm)
 - Synchronizable (control of repetition rate)
 - Nonlinar Amplifying Loop Mirror (NALM) used for mode-locking
- Features:
 - Long term stable
 - Optimized for seeding Ho:YLF amplifer

Repetition rate	41.6 MHz
Pulse energy	170 pJ
Pulse duration	1.3 ps
Wavelength	2050 nm
Spectral width	15 nm

Ho:YLF Regenerative Amplifier at 2050 nm

- Regenerative amplifier with subsequent single-stage amplifier → amplify pulses to mJ level
 - P. Kroetz et al., Appl. Phys. B, 123(2017)
- Intra-cavity gain shaping with etalon reduces the effect of gain-narrowing
 - K. Murari et al., OL 41, 1114 (2016)
- Allows ~ 2 ps pulses → high peak fluence on DLA structures

Limitation for field gradient: damage threshold of DLA

B.C. Stuart et al., Physical Review B, **53**, 1749 (1996).

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

	Original	Modified
Ep	2 mJ	2 mJ
\mathbf{f}_{rep}	1	1
τ_{p}	3.6 ps	2.2 ps
T _{TL}	2.2 ps	1.25 ps

Gain Shaping with Etalon

Beam transport

- Laser light delivery via vacuum beamline with 4f relay imaging system
- Distance from source to target is ~31 m.
- Active beam stabilization system

Synchronization

- Both lasers (UV + 2 μm) are locked to the machine RF
- RF to optical synchronization:
 - photodiode signal is filtered and mixed with reference
 - Digital phase-locked loop using digital IQ demodulation
 - Felber, et al., Proc. of IPAC 2012, p. WEPPD048.
 - Digital locking scheme allows time shift of laser pulses

2 µm oscillator locking performance

• In long-term operation jitter <50 fs (RMS)

UV beamline

Planned improvements

M.

- We identified pump laser intensity noise as major contribution to timing jitter → new low noise pump
- Optical synchronization: to improve the relative timing between electrons and the 2 µm laser, a balanced optical cross-correlator will be installed in Q2 2021

Summary and outlook

- We constructed/installed a synchronizable a 2 µm laser system for DLA experiments
 - Fiber oscillator
 - Regenerative Amplifier
 - Beam delivery over 30 m + active beam stabilization
- Synchronization to accelerator RF demonstrated
- First tests and integration into control system done
- Update to improve synchronization in progress (Q2/2021)
- DLA experiments are foreseen for Q3/2021

We acknowledge funding by

