Dave Tompkins's Awesome CPSC 121 Handout. Version 7 (2013.01.22)

and	or	not
\wedge	V	~
	4	

p	٠ ١	q	$p \wedge q$	$p \lor q$	$\sim p$	$p \oplus q$
T	` '	Γ	T	T	F	F
T	']	F	F	T	F	T
F	' '	Γ	F	T	T	T
F	']	F	F	F	T	F

Logical Equivalence (\equiv) Laws: (and accepted [SHORT] name)

Commutative: [COM] $p \wedge q \equiv q \wedge p$ $p \lor q \equiv q \lor p$ Associative: [ASS] $(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$ $(p \lor q) \lor r \equiv p \lor (q \lor r)$ Distributive: [DIST] $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ Identity: [I] $p \vee F \equiv p$ $p \wedge T \equiv p$ Negation: [NEG] $p \lor (\sim p) \equiv T$ $p \wedge (\sim p) \equiv F$ Double Negation: [DNEG] $\sim (\sim p) \equiv p$ Idempotent: [ID] $p \wedge p \equiv p$ $p \lor p \equiv p$ Universal bound: [UB] $p \vee T \equiv T$ $p \wedge F \equiv F$ De Morgan's: [DM] $\sim (p \land q) \equiv (\sim p) \lor (\sim q)$ $\sim (p \lor q) \equiv (\sim p) \land (\sim q)$ Absorption: [ABS] $p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$ Negations of T and F: [NTF] $\sim T \equiv F$ $\sim F \equiv T$

Prove $P \equiv Q$: LHS $\equiv P$ $\equiv \dots$ (Equivalence Law) $\equiv Q$ (Equivalence Law) $\equiv RHS$ $\therefore P \equiv Q$

Implication: [IMP]

 $\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline p \to q \equiv \sim p \lor q & \text{if } p \text{ then } q & p \text{ implies } q & p \text{ is sufficient for } q & q \text{ is necessary for } p \\ \hline \hline \textit{contrapositive: } \sim q \to \sim p \equiv p \to q & \textit{converse: } q \to p \not\equiv p \to q & \textit{inverse: } \sim p \to \sim q \not\equiv p \to q \\ \hline \hline p \leftrightarrow q \equiv (p \to q) \land (q \to p) \equiv \sim (p \oplus q) & p \text{ if and only if } q & p \text{ is sufficient and necessary for } q \\ \hline \end{array}$

Exclusive Or [XOR]: $p \oplus q \equiv (p \lor q) \land \sim (p \land q) \mid p \oplus q \equiv (p \land \sim q) \lor (\sim p \land q)$

Multiplexer [MUX]: s is a when c is false, b when c is true $s \equiv (a \land \neg c) \lor (b \land c)$

Powers of 2:

2^{0}	2^1	2^2	2^3	2^{4}	2^{5}	2^{6}	2^{7}	2^{8}	2^{9}	2^{10}	2^{11}	2^{12}	2^{13}	2^{14}	2^{15}	2^{16}
1	2	4	8	16	32	64	128	256	512	1,024	2,048	4,096	8,192	16,384	32,768	65,536

Binary Representation:

x_3	x_2	x_1	x_0	HEX	unsigned	signed	x_3	x_2	x_1	x_0	HEX	unsigned	signed
0	0	0	0	0	0	0	1	0	0	0	8	8	-8
0	0	0	1	1	1	1 1	1	0	0	1	9	9	-7
0	0	1	0	2	2	2	1	0	1	0	A	10	-6
0	0	1	1	3	3	3	1	0	1	1	В	11	-5
0	1	0	0	4	4	4	1	1	0	0	C	12	-4
0	1	0	1	5	5	5	1	1	0	1	D	13	-3
0	1	1	0	6	6	6	1	1	1	0	Е	14	-2
0	1	1	1	7	7	7	1	1	1	1	F	15	-1

Arguments:

_				
	Premises:	\overline{w}	The	e argument is valid iff:
		x	w	$\land x \land y] \to z$
		y	is a	tautology
	Conclusion:	$\overline{ : z}$		

Rules of Inference:

Rules of Interence:			
Modus Ponens: [M.PON]	$p \to q$	Modus Tollens: [M.TOL]	$p \to q$
	p		$\sim q$
	$\therefore q$		$\therefore \sim p$
Generalization: [GEN]	p	Specialization: [SPEC]	$p \wedge q$
	$\therefore p \lor q$		$\therefore p$
Conjunction: [CONJ]	p	Elimination: [ELIM]	$p \lor q$
	q		$\sim q$
	$\therefore p \wedge q$		$\therefore p$
Transitivity: [TRANS]	$p \to q$	Proof by cases: [CASE]	$p \to r$
	$q \rightarrow r$		$q \rightarrow r$
	$p \to r$		$\therefore (p \lor q) \to r$
Resolution: [RES]	$p \lor q$		
	$\sim p \vee r$		
	$\therefore (q \vee r)$		

Alternate Implication (\rightarrow) Forms:

Generalization: $[GEN \rightarrow]$	p	p	Resolution: $[RES \rightarrow]$	$p \rightarrow q$
	$\therefore \sim p \to q$	$\therefore q \to p$		$\sim p \to r$
				$\overline{\therefore (q \vee r)}$

Domains:

_	CILLO	1110.				
	\mathbb{Z}	Integers	$\{\ldots, -1, 0, 1, +2, \ldots\}$	\mathbb{N}_0	Natural Numbers	$\{0, 1, 2, \ldots\}$
	\mathbb{Q}	Rational Numbers	$\left\{ \ldots, \frac{-1}{3}, 0, \frac{1}{2}, 1, \ldots \right\}$	\mathbb{Z}^+	Positive Integers	$ \{ x \in \mathbb{Z} \mid x > 0 \} $
	\mathbb{R}	Real Numbers	$\left \left\{ \dots, \frac{-1}{2}, 0, \sqrt{2}, \pi, \dots \right\} \right $	$\overline{\mathbb{Q}}$	Irrational	$\{x \in \mathbb{R} \mid x \notin \mathbb{Q}\}$

Quantifiers:

$\forall x \in \mathbb{U}, P(x)$	$P(x)$ is true for <i>all</i> (every) x in \mathbb{U}	$\sim \forall x \in D, P(x) \equiv \exists x \in D, \sim P(x)$
$\exists x \in \mathbb{U}, P(x)$	$P(x)$ is true for at least one x in \mathbb{U}	$\sim \exists x \in D, P(x) \equiv \forall x \in D, \sim P(x)$

Equivalent Domain Representation:

1
$D = \{ x \in \mathbb{U} \mid P(x) \}$
$\forall x \in D, Q(x) \equiv \forall x \in \mathbb{U}, P(x) \to Q(x)$
$\exists x \in D, Q(x) \equiv \exists x \in \mathbb{U}, P(x) \land Q(x)$

Handy Predicates:

<i>3</i>	
Even $(x) \Leftrightarrow \exists k \in \mathbb{Z}, x = 2k$	$x \in \mathbb{Q} \Leftrightarrow \exists a, b \in \mathbb{Z}, (x = \frac{a}{b}) \land (b \neq 0)$
$Odd(x) \Leftrightarrow \exists k \in \mathbb{Z}, x = 2k + 1$	$ \text{ Prime}(x) \Leftrightarrow \forall k, m \in \mathbb{Z}, (x = km) \to [(m = x) \lor (m = 1)] $

Divisibility:

$a \mid b \Leftrightarrow a \text{ divides } b$	b is divisible by a	b is a multiple of a	$b/a \in \mathbb{Z} \text{ (or } a = b = 0)$	$\exists k \in \mathbb{Z}, b = ak$

Proof Methods:

Proof Methods:			
Universal	$\forall x, P(x) \to Q(x)$	Universal	$\forall x, P(x) \to Q(x)$
Modus Ponens:	P(a)	Modus Tollens:	$\sim Q(a)$
	Q(a)		P(a)
Direct Proof	$a \in D$	Direct Proof	$a \in D$
(Existential):	P(a)	(Counterexample):	$\sim P(a)$
	$\exists x \in D, P(x)$	· · · · · · · · · · · · · · · · · · ·	$\therefore \sim (\forall x \in D, P(x))$
Direct Proof	$D = \{a, b, c\}$	Direct Proof	$P(x)$ for arbitrary $x \in D$
(Exhaustive):	P(a)	(Generalization):	$\exists x \forall x \in D, P(x)$
	P(b)		
	P(c)	Direct Proof	$D = \{x \mid (x \in E) \lor (x \in F)\}$
	$\exists x \in D, P(x)$	(by cases):	$\forall x \in E, P(x)$
			$\forall x \in F, P(x)$
Indirect Proof	assume $\sim P(x)$		$\therefore \forall x \in D, P(x)$
(Contradiction):	<u>∴ a</u>		
	$\therefore \sim a$		$\forall x \in D, \sim Q(x) \rightarrow \sim P(x)$
	T: P(x)	(Contraposition):	$\therefore \forall x \in D, P(x) \to Q(x)$
Induction:	P(1)	Strong Induction:	P(1)
	$P(k) \to P(k+1)$		$P(1) \wedge \ldots \wedge P(k) \to P(k+1)$
	$\therefore \forall n \in \mathbb{Z}^+, P(n)$		$\therefore \ \forall n \in \mathbb{Z}^+, P(n)$

Sets:

ocis.	
$A \subseteq B \Leftrightarrow \forall x \in \mathbb{U}, (x \in A) \to (x \in B)$	$A = B \Leftrightarrow (A \subseteq B) \land (B \subseteq A)$
$A \cup B = \{x \in \mathbb{U} \mid (x \in A) \lor (x \in B)\}$	$A \cap B = \{x \in \mathbb{U} \mid (x \in A) \land (x \in B)\}$
$A - B = \{x \in \mathbb{U} \mid (x \in A) \land (x \notin B)\}$	$A^C = \{ x \in \mathbb{U} \mid (x \notin A) \}$
$\mathcal{P}(A) = \{ X \in \mathbb{U} \mid X \subseteq A \}$	$A \times B = \{(a, b) \mid (a \in A) \land (b \in B)\}$

F	Functions:			
	$f:X\to Y$	X is the domain of f	Y is the co-domain of f	
		range of $f = \{y \in Y \mid$	$\exists x \in X, f(x) = y\}$	
	f is one-to-o	ne (injective)	$\forall r, r_0 \in X$	$(f(x_1) - f(x_2)) \rightarrow$

f is one-to-one (injective)	$\Leftrightarrow \forall x_1, x_2 \in X, (f(x_1) = f(x_2)) \to (x_1 = x_2)$
f is onto (surjective)	$\Leftrightarrow \forall y \in Y, \exists x \in X, f(x) = y$
f is a one-to-one correspondence (bijection)	\Leftrightarrow (f is one-to-one) \land (f is onto)

Regular Expressions:

1108 with 211 prosions.				
Matches any character				
Matches one character from those listed				
Matches one character from the range of characters listed				
y] Matches one character from those not listed				
Matches one element from those separated by pipes				
* Matches the previous element 0 or more times				
Matches the previous element 1 or more times				
Matches the previous element 0 or 1 time				
$\{n,n\}$ matches the preceding element from m to n times				
\s matches a whitespace character				
\d matches a digit, same as [0-9]				
matches an alphanumeric character, including "_"				