Causal inference is not just a statistics problem Lucy D'Agostino McGowan Wake Forest University

Causal Inference is not a statistics problem

Causal Inference is not just a statistics problem

The problem

We have measured variables, what should we adjust for?

What does the data say?


```
1 cor(exposure, covariate)
```

[1] 0.7

The exposure and measured factor are positively correlated

One unit increase in the exposure yields an average increase in the outcome of 1

To adjust or not adjust? That is the question.

Causal Quartet

Your turn 1

Load the quartets package

For each of the following 4 datasets, create a scatterplot looking at the relationship between exposure and outcome: causal_collider, causal_confounding, causal_mediator, causal_m_bias

For each of the above 4 datasets, look at the correlation between exposure and covariate

Stretch goal: For each of the above 4 datasets, fit a linear model to examine the relationship between the exposure and the outcome

06:00

Relationship between exposure and outcome

Relationship between exposure and covariate

Observed effects

	ATE			
Data generating	ATE not	adjusting for	Correlation of X	
mechanism	adjusting for Z	Z	and Z	
(1) Collider	1.00	0.55	0.70	
(2) Confounder	1.00	0.50	0.70	
(3) Mediator	1.00	0.00	0.70	
(4) M-Bias	1.00	0.88	0.70	

D'Agostino McGowan L, Gerke T, Barrett M (2023). Causal inference is not a statistical problem. Preprint arXiv:2304.02683v1.

The solution

Correct effects

Data generating mechanism	Correct causal model	Correct causal effect
(1) Collider	Y ~ X	1.0
(2) Confounder	$Y \sim X; Z$	0.5
(3) Mediator	Direct effect: Y ~ X ; Z Total Effect: Y ~ X	Direct effect: 0.0 Total effect: 1.0
(4) M-Bias	Y ~ X	1.0

D'Agostino McGowan L, Gerke T, Barrett M (2023). Causal inference is not a statistical problem. Preprint arXiv:2304.02683v1.

The partial solution

```
1 causal_collider_time
\# A tibble: 100 × 6
   exposure_baseline outcome_baseline covariate_baseline
               <dbl>
                                 <dbl>
                                                     <fdb>>
            -1.43
                                0.287
                                                   -0.0963
             0.0593
                               -0.978
                                                   -1.11
             0.370
                                0.348
                                                    0.647
             0.00471
                                0.851
                                                    0.755
             0.340
                                1.94
                                                    1.19
 5
 6
            -3.61
                               -0.235
                                                   -0.588
             1.44
                               -0.827
                                                   -1.13
             1.02
                                                   0.689
                               -0.0410
 9
            -2.43
                               -2.10
                                                   -1.49
10
            -1.26
                               -2.41
                                                   -2.78
# i 90 more rows
# i 3 more variables: exposure followup <dbl>,
    outcome followup <dbl>, covariate followup <dbl>
```

Time-varying data

Time-varying DAG

True causal effect: 1 Estimated causal effect: 0.55

Time-varying DAG

True causal effect: 1 Estimated causal effect: 1

Your turn 2

```
For each of the following 4 datasets, fit a linear
linear model examining the relationship between
outcome_followup and exposure_baseline
adjusting for covariate_baseline:
causal_collider_time,
causal confounding time,
causal_mediator_time, causal_m_bias_time
```

06:00

The partial solution

Data generating mechanism	ATE not adjusting for pre-exposure Z	ATE adjusting for pre- exposure Z	
(1) Collider	1.00	1.00	1.00
(2) Confounder	1.00	0.50	0.50
(3) Mediator	1.00	1.00	1.00
(4) M-Bias	1.00	0.88	1.00

D'Agostino McGowan L, Gerke T, Barrett M (2023). Causal inference is not a statistical problem. Preprint arXiv:2304.02683v1.

On M-Bias

- The relationship between Z and the unmeasured confounders needs to be really large (Liu et al 2012)
- "To obsess about the possibility of [M-bias] generates bad practical advice in all but the most unusual circumstances" (Rubin 2009)
- There are (almost) no true zeros (Gelman 2011)
- Asymptotic theory shows that induction of M-bias is quite sensitive to various deviations from the exact M-Structure (Ding and Miratrix 2014)