Resolução de equações não-lineares por métodos iterativos

Professor: Wemerson D. Parreira.

parreira@univali.br

Universidade do Vale do Itajaí Escola Politécnica

2023

Introdução

Dada uma função real f definida e contínua em um intervalo aberto I , chama-se de **zero desta função em** I , a todo $\alpha \in I$, tal que $f(\alpha) = 0$.

- ightharpoonup Note que na figura acima, f(x) possui 3 zeros reais (raízes reais) no intervalo [a,b].
- Como determinar essas raízes numericamente?

Processo iterativo:

É um processo que calcula uma sequência de aproximações x_1 , x_2 , x_3 , ... da solução desejada. O cálculo de uma nova aproximação é feito utilizando aproximações anteriores.

 \Rightarrow Dizemos que a sequência x_1 , x_2 , x_3 , ... converge para α , se dado $\epsilon>0$, $\exists N\in\mathbb{N}$, tal que qualquer que seja n>N , $|x_n-x|<\epsilon$. Neste caso tem-se que

$$\lim_{n\to\infty} x_n = \alpha$$

o que também poderá ser indicado por,

$$x_n \to \alpha$$

Metodologia:

Nos **processos iterativos** que estudaremos, a determinação das raízes de uma função real de variável real será feita em duas etapas:

- ① Isolar cada zero que se deseja determinar da função f em um intervalo $[a,\,b]$.
 - \Rightarrow Sendo que cada intervalo deverá conter uma e somente uma raiz da função f .
- Cálculo dos zeros aproximados utilizando um método iterativo.
 - ➡ Pode ter uma precisão prefixada.

Isolando Raízes Reais

ightharpoonup Para verificar se existe uma raiz real em um intervalo [a, b] usamos o seguinte teorema:

Teorema (existência de raiz real): Seja $f : \mathbb{R} \to \mathbb{R}$ contínua num intervalo [a, b].

$$f(a).f(b) < 0 \Rightarrow \exists \, \xi \in [a, \, b] \,\, {\sf tal \,\, que} \,\, f(\xi) = 0$$

Teorema (unicidade da raiz real): Seja $f : \mathbb{R} \to \mathbb{R}$ contínua num intervalo [a, b] e ainda existe a derivada, f'(x), no intervalo (a, b)

$$f'(x) > 0$$
 (ou $f'(x) < 0$) $\forall x \in (a, b) \Rightarrow \exists ! \xi \in [a, b]$ tal que $f(\xi) = 0$.

Quando a derivada preserva o sinal dentro de um intervalo (a, b) significa que a função e estritamente crescente ou estritamente decrescente em (a, b), portanto a raiz é única.

Isolando Raízes Reais

ightharpoonup Para verificar se existe uma raiz real em um intervalo [a, b] usamos o seguinte teorema:

Teorema (existência de raiz real): Seja $f : \mathbb{R} \to \mathbb{R}$ contínua num intervalo [a, b].

$$f(a).f(b) < 0 \Rightarrow \exists \, \xi \in [a, \, b] \,\, {\sf tal \,\, que} \,\, f(\xi) = 0$$

Teorema (unicidade da raiz real): Seja $f : \mathbb{R} \to \mathbb{R}$ contínua num intervalo [a, b] e ainda existe a derivada, f'(x), no intervalo (a, b)

$$f'(x) > 0$$
 (ou $f'(x) < 0$) $\forall x \in (a, b) \Rightarrow \exists ! \xi \in [a, b]$ tal que $f(\xi) = 0$.

Quando a derivada preserva o sinal dentro de um intervalo (a, b) significa que a função e estritamente crescente ou estritamente decrescente em (a, b), portanto a raiz é única.

Exercício 1: Isole os zeros da função $f(x) = x^3 - 9x + 3$

X	-4	-3	-2	-1	0	1	2	3
f(x)								

X	-4	-3	-2	-1	0	1	2	3
f'(x)								

Representação gráfica da função de $f(x)=x^3-9x+3$

Solução alternativa g(x) = -h(x).

Representação gráfica da função de $g(x)=x^3$ e h(x)=9x-3

Análise da função derivada.

Representação gráfica da função de $f'(x) = 3x^2 - 9x$

Exercício 2: Isole os zeros da função $f(x) = x \ln x - 3, 2$

X	1	2	3	4
f(x)				

×	1	2	3	4
f'(x)				

Exercício 3: Isole os zeros da função $f(x) = 5 \log x - 2 + 0, 4x$

X	1	2	თ	4
f(x)				

×	1	2	3	4
f'(x)				

Método da Bissecção ou Método da Bisseção

- Este método é comumente usado para diminuir o intervalo que contém a raiz da função para aplicação de outro método.
 - O esforço computacional cresce demasiadamente quando se aumenta a precisão exigida (convergência lenta se o intervalo inicial for grande).
- O processo é simples e consiste em dividir o intervalo que contém o zero ao meio e por aplicação do Teorema que garante a existência de uma raiz real nos subintervalos resultantes para determinar qual deles contém o zero:

$$\left[a, \frac{a+b}{2}\right], \left[\frac{a+b}{2}, b\right].$$

- O processo é repetido para o novo subintervalo até que se obtenha uma precisão prefixada.
 - Em cada iteração a raiz da função é aproximada pelo ponto médio de cada subintervalo que o contém.

Na figura acima, temos:

$$m_1 = \frac{a+b}{2}$$
; $m_2 = \frac{a+m_1}{2}$, $m_3 = \frac{m_2+m_1}{2}$, ...

Assim, o maior erro que se pode cometer na:

•
$$1^a$$
 iteração (n = 1): $\frac{(b-a)}{2}$

- 2^a iteração (n = 2): $\frac{(b-a)}{2^2}$
- 3^a iteração (n = 3): $\frac{(b-a)}{2^3}$

•

•
$$n^a$$
 iteração (n = 1): $\frac{(b-a)}{2^n}$

Desta forma, se o problema exige que o erro cometido seja inferior a um determinado parâmetro $\epsilon_{\rm max}$, podemos determinar a quantidade n de interações usando a seguinte desigualdade:

$$n \ge \frac{\log(b-a) - \log \epsilon_{\max}}{\log 2}$$

Exercícios:

- ① Determinar um valor aproximado para $\sqrt{5}$, com erro inferior a 10^{-2} .
- ② Um tanque com comprimento L tem uma secção transversal no formato de uma semicírculo como raio r (como mostrado na figura abaixo). Quando cheio de água a uma distância h do topo, o volume V da água é

$$V = L \left[0, 5\pi r^2 - r^2 \mathrm{arcsen}\left(\frac{h}{r}\right) - h\sqrt{r^2 - h^2} \right].$$

Supondo que $L=10\ ft,\ r=1\ ft$ e $V=12,4\ ft^3$, encontre a profundidade da água no tanque com precisão de $0,01\ ft$.

Exercício 1 (Resolução):

Determinar $\sqrt{5}$ é equivalente a obter o zero positivo da função $f(x)=x^2-5$

n	а	×	b	f(a)	f(x)	f(b)	(b-a)/2
1							
2							
3							
4							
5							
6							
7							

Resposta: Assim $\sqrt{5}$ pode ser aproximado por com erro inferior a 10^{-2} .

Exercício 2 (Resolução): Primeiramente devemos obter f(h) e então construímos uma tabela de valores para f(h) e analisamos os sinais

h	-1	0	1
f(h)			

Para confirmar a unicidade da raiz calculamos a derivada de f(h) que é

$$f'(h) = \dots$$

e verificamos que a mesma preserva o sinal no intervalo

n	а	×	b	f(a)	f(x)	f(b)	(b-a)/2
1							
2							
3							
4							
5							
6							
7							

Resposta: Assim é uma aproximação para h com erro inferior a

Exercício 2 (Resolução): Primeiramente devemos obter f(h) e então construímos uma tabela de valores para f(h) e analisamos os sinais

h	-1	0	1
f(h)	19,01593	3,30796	-12,4

Para confirmar a unicidade da raiz calculamos a derivada de f(h) que é

$$f'(h) = -20\sqrt{1 - h^2}$$

e verificamos que a mesma preserva o sinal no intervalo [0,1].

n	а	m	b	f(a)	f(m)	f(b)	(b-a)/2
1	0	0,5	1	3,308	-6,2582	-12,4	5×10^{-1}
2	0	0,25	0,5	3,308	-1,6395	-6,2582	$2,5 \times 10^{-1}$
3	0	0,125	0,25	3,3080	0,8145	-1,6395	$1,25 \times 10^{-1}$
4	0,125	0,1875	0,25	0,8145	-0,4199	-1,6395	$6,25 \times 10^{-2}$
5	0,125	0,15625	0,1875	0,8145	0,1957	-0,4199	$3,13 \times 10^{-2}$
6	0,15625	0,171875	0,1875	0,1957	-0,1125	-0,4199	$1,56 \times 10^{-2}$
7	0,15625	0,164063	0,17188	0,1957	0,00415	-0,1125	$7,81 \times 10^{-3}$

Resposta: Assim 0,164063 é uma aproximação para h com erro inferior a $7,81 \times 10^{-3}$

Algoritmo da Bissecção:

Seja f(x) uma função contínua em um intervalo [a,b], como f(a).f(b)<0 e a raiz de f(x) isolada em [a,b].

Dados de entrada:

Pontos extremos a e b do intervalo; precisão ou tolerância ϵ_{max} e o número máximo de iterações itmax.

Saída:

solução aproximada \boldsymbol{x} ou mensagem "solução não encontrada com a precisão exigida" (com a precisão desejada no número máximo de iterações)

- Passo 1 Faça i=1 e FA=f(a)
- Passo 2 Enquanto $i \leq itmax$ execute os passos 3 a 6
- Passo 3 Faça $x=\frac{(a+b)}{2}$ e FX=f(x)
- Passo 4 Se FX=0 ou $\frac{(b-a)}{2}<\epsilon_{\max}$, então Saída (x) [procedimento executado com sucesso!] FIM
- Passo 5 Faça i = i + 1
- Passo 6 Se FA.FX>0 então faça a=x e FA=FX Caso contrário faça b=x
- Passo 7 Saída (Solução não encontrada com a precisão exigida, redefina itmax ou ϵ_{max}) FIM

Método de Newton, Newton-Raphson ou Método das tangentes (MN)

Para o triângulo com vértices em $x_0, f(x_0), x_1$, e θ_0 ângulo do vértice x_1 , temos que

$$\tan \theta_0 = \frac{f(x_0)}{x_0 - x_1} = f'(x_0) \implies$$

$$f'(x_0)(x_0 - x_1) = f(x_0) \implies f'(x_0)x_0 - f'(x_0)x_1 = f(x_0)$$
$$-f'(x_0)x_1 = f(x_0) - f'(x_0)x_0 \implies x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Generalizando,

$$\tan \theta = f'(x_n) = \frac{f(x_n)}{x_n - x_{n+1}} \Longrightarrow x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Assim, o processo iterativo de Newton é definido por:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

com
$$n = 0, 1, 2,$$

Erro pode ser obtido analisando $|x_n - x_{n+1}|$.

Análise de convergência

Teorema da convergência do Método de Newton: Seja $f:[a,b] \to \mathbb{R}$, duas vezes diferenciável, com f''(x) contínua. Suponha que:

- i) f(a).f(b) < 0
- ii) $f'(x) \neq 0, \forall x \in [a, b]$
- iii) f''(x) não troca de sinal em [a,b]

Então, a sequência gerada pelas iterações do método de Newton-Raphson utilizando a função converge para o único zero α de

$$x_{n+1} = x_n - \frac{f(x)}{f'(x)}$$

converge para um único zero α de f(x), isolado em [a,b], se $x_0 \in [a,b]$ for escolhido convenientemente.

Para se escolher o ponto inicial x_0 , pode-se, por exemplo, fazer $x_0 = a$ se $x_1 \in [a,b]$ ou $x_0 = b$ caso contrário.

Exercício 5: Encontrar a solução para equação $x=\cos x$ com precisão de $\epsilon=10^{-6}$

$$f(0) = \dots$$
 e $f(\pi/2) = \dots$ $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = \dots$

n	x_n	x_{n+1}	$ x_{n+1} - x_n $
0			
1			
2			

Portando, pode ser usado como uma solução aproximada para solução da equação $x=\cos x$ de acordo com o método de Newton.

Algoritmo: Para encontrar uma solução para f(x) = 0, dada a derivada de f(x) e uma aproximação inicial p_0 .

- Dados de Entrada: Aproximação inicial p_0 , precisão ou tolerância (ϵ_{\max}) e o número máximo de iterações (ITMAX).
- Saída: Solução aproximada p ou mensagem de "solução não encontrada".

```
PASSO 1 Faça i=1
PASSO 2 Enquanto i \leq itmax, execute os passos 3 - 6
    PASSO 3 Faça p=p_0-f(p_0)/f'(p_0) (calcular p_i )
    PASSO 4 Se |p-p_0|<\epsilon_{\max} então
              Saída (p) (procedimento efetuado com sucesso)
              FIM
    PASSO 5 Faça i = i + 1
    PASSO 6 Faça p_0 = p (atualize p_0)
PASSO 7 Saída (solução não encontrada após itmax
iterações)
FIM.
                                       ◆□▶ ◆□▶ ◆ ■ ▶ ● ■ り९@
```

Comparação entre Métodos

Exercício 6: Determine uma aproximação para α tal que $f(\alpha)=0$, em que $\alpha\in(1,2)$ e $f(x)=e^{-x^2}-\cos x$. Use uma tolerância $\varepsilon=10^{-4}$.

- (a) Pelo método da Bissecção, tal que $(b-a)/2 < \varepsilon$.
- (b) Pelo método de Newton-Raphson, tal que $|f(x_n)|<\epsilon$ ou $|x_{n+1}-x_n|<\epsilon$. Utilize $x_0=1,5$.

Comente os resultados encontrados, destacando o número de iterações necessárias para convergência e o erro $|f(x_n)|$ obtido em cada um deles.

Comparação entre Métodos - Solução

Dada a função $f(x) = e^{-x^2} - \cos x$, é possível obter a derivada utilizando a regra da cadeia $f'(x) = g'(h(x)) \cdot h'(x)$ e a derivada do cosseno $\cos u = -u' \sin u$:

$$f'(x) = -2xe^{-x^2} + \sin x$$

O restante da resolução está no seguinte link: shorturl.at/xyIK2 (É necessário um email com domínio univali para abrir)

Lista de Exercícios: 2

Bibliografia: Chapra, S.C., "Métodos Numéricos Aplicados com Matlab para Engenheiros e Cientístas". Mc Graw Hill, 3a. ed.

Disponível na Biblioteca Online

Problemas: 5.1, 5.6, 5.7, 5.13, 6.1, 6.3 (a) e (b), 6.4 (a) e (b), 6.9, 6.11, 6.12, 6.27.

Páginas: 147 – 149 e 177 – 180.