Non regolarità

a.a. 2020-2021

Corso di Fondamenti di Informatica - 1 modulo Corso di Laurea in Informatica Università di Roma "Tor Vergata"

Prof. Giorgio Gambosi

Pumping lemma

Ogni stringa sufficientemente lunga appartenente ad un linguaggio regolare presenta delle regolarità: in particolare, contiene una sottostringa che può essere ripetuta quanto si vuole, ottenendo sempre stringhe del linguaggio.

Più precisamente:

sia L un linguaggio regolare : allora $\exists n > 0$ tale che per ogni $\forall z \in L : \mid z \mid \geq n$ possiamo scrivere z = uvw, con $\mid uv \mid \leq n$, $\mid v \mid \geq 1$ e ottenere che $\forall i \geq 0$, $uv^iw \in L$.

Pumping lemma: interpretazione come gioco a due

Se *L* è regolare, Alice vince sempre questo gioco con Bob:

- 1. Alice fissa un intero n > 0 opportuno
- 2. Bob sceglie una stringa $z \in L$ con |z| > n
- 3. Alice divide z in tre parti uvw con $|uv| \le n$ e $|v| \ge 1$
- 4. Bob sceglie un intero $i \ge 0$
- 5. Alice mostra a Bob che $uv^iw \in L$

Se L è regolare, sia \mathcal{A} l'ASFD che lo decide e che ha il minimo numero n di stati.

Una stringa $z \in L$ di lunghezza $m \ge n$ in input a $\mathfrak A$ gli fa eseguire m transizioni e quindi attraversare m+1>n stati, quindi esiste almeno uno stato che viene attraversato più volte.

Indichiamo con $q_{i_0}, q_{i_1}, \ldots, q_{i_{m+1}}$ la sequenza di stati, non tutti distinti, attraversati (chiaramente, $q_{i_0} = q_0$ e $q_{i_{m+1}} \in F$) e con q_{i_j} il primo stato della sequenza che ricompare in seguito, ad esempio come q_{i_k} .

Sia u il prefisso (eventualmente nullo) di z tale che $\overline{\delta}(q_0,u)=q_{i_j}$ e sia z=ux, per cui $\overline{\delta}(q_{i_j},x)=q_{i_{m+1}}$.

 \mathcal{A} quindi esegue una sotto-computazione $q_{i_j}, q_{i_{j+1}}, \ldots, q_{i_k}$ di una computazione di accettazione (di z) che inizia e termina nello stesso stato. Si noti che la sotto-sequenza deve prevedere almeno due stati, per cui $q_{i_k} - q_{i_j} > 1$. Si noti inoltre che non possono essere stati attraversati più di n stati prima di arrivare a q_{i_k} , perché altrimenti questo non sarebbe il primo stato a comparire di nuovo.

Sia v il prefisso di x tale che $\overline{\delta}(q_{i_j},v)=q_{i_k}$ e sia x=vw: da quanto detto, | uv | $\leq n$ e $\overline{\delta}(q_{i_j},w)=q_{i_{|z|}}$

Una computazione in cui questa sotto-sequenza è eseguita più volte è ancora una computazione di accettazione.

Per ogni $i \ge 0$ abbiamo infatti

$$\begin{split} \overline{\delta}(q_{0}, uv^{i}w) &= \overline{\delta}\left(\overline{\delta}(q_{0}, u), v^{i}w\right) = \overline{\delta}\left(q_{i_{j}}, v^{i}w\right) = \overline{\delta}\left(\overline{\delta}(q_{i_{j}}, v), v^{i-1}w\right) \\ &= \overline{\delta}\left(q_{i_{j}}, v^{i-1}w\right) = \dots = \overline{\delta}(q_{i_{j}}, w) = q_{i_{m+1}} \in F \end{split}$$

il che mostra che ogni stringa del tipo uv^iw appartiene ad L.

Pumping lemma

Evidenzia il fatto che gli automi finiti: non possono contare. Il numero di situazioni diverse che possono memorizzare è finito.

Fornisce soltanto una condizione necessaria perché un linguaggio sia regolare: non può essere utilizzato per mostrare la regolarità di un linguaggio, ma solo per dimostrarne la non regolarità.

L regolare \implies pumping lemma verificato pumping lemma non verificato $\implies L$ non regolare

Pumping lemma

Sia L un linguaggio e supponiamo che $\forall n > 0$ si abbia che $\exists z \in L : \mid z \mid \geq n$ tale che comunque dividiamo z in z = uvw, con $\mid uv \mid \leq n, \mid v \mid \geq 1, \exists i \geq 0$ tale che $uv^iw \notin L$. Allora, L non è regolare.

Pumping lemma: interpretazione come gioco a due

Se *L* non è regolare, Alice vince sempre questo gioco con Bob:

- 1. Bob fissa un intero n > 0
- 2. Alice sceglie una stringa opportuna $z \in L$, con |z| > n
- 3. Bob divide z in tre parti uvw con $|uv| \le n$ e $|v| \ge 1$
- 4. Alice sceglie un intero $i \ge 0$ e mostra a Bob che $uv^i w \notin L$

Esempio

Consideriamo il linguaggio $L = a^k b^k$, k > 0: per mostrare che L non è regolare, interpretiamo il ruolo di Alice nel gioco.

- 1. Bob fissa un intero n > 0
- 2. Scegliamo la stringa $z = a^n b^n$
- 3. Bob divide z in tre parti uvw con $|uv| \le n$ e $|v| \ge 1$: per la struttura di z, necessariamente $uv = a^h$, con o $< h \le n$. Quindi, $v = a^l$, per o < l < h, e corrispondentemente $u = a^{h-l}$; inoltre, $w = a^{n-h}b^n$.
- 4. Scegliamo l'intero 2 e mostriamo a Bob che

$$uv^2w = a^{h-l}a^la^la^{n-h}b^n = a^{n+l}b^n \notin L$$

Esempio

Si consideri il linguaggio $L=\{w\tilde{w}\mid w\in\{a,b\}^*\}$, ove si è indicata con \tilde{w} la stringa ottenuta invertendo i caratteri presenti in w.

Dimostrare, utilizzando il pumping lemma, che tale linguaggio non è regolare.

Esempio

Interpretiamo il ruolo di Alice nel gioco.

- 1. Bob fissa un intero n > 0
- 2. Scegliamo la stringa $z = a^n b b a^n$
- 3. Bob divide z in tre parti uvw con $|uv| \le n$ e $|v| \ge 1$: per la struttura di z, necessariamente $uv = a^h$, con $o < h \le n$. Quindi, $v = a^l$, per o < l < h, e corrispondentemente $u = a^{h-l}$; inoltre, $w = a^{n-h}bba^n$.
- 4. Scegliamo l'intero 2 e mostriamo a Bob che

$$uv^2w = a^{h-l}a^la^la^{n-h}bba^n = a^{n+l}bba^n \notin L$$