Agenda

- 1. Presentations and proposals
- 2. Three-level models
- 3. Non-nested multilevel models

Presentations

Format

20 slides, automatically advancing every 20 seconds.
(Practice!)

Slot	Tue, April 9	Thu, April 11		
1	Yildirim, Irem	Moloney, Kate		
2	McCormack, Andrew	Hequet, Céline		
3	Traves, Samantha	Nossek, Sean		
4	Jutras, Kevin	Yang, Winnie		
5	Carter-Rau, Rohan	Lee, Martha		
6	Song, Sumin	Gounden Rock, Alyson		
7	Amsden, Ryan	Zhao, Qiao		
8	Jeong, Tay	Ng, Ka U		
9	Isaac, Maike	Zhou, Lingyu		
10	Moody, Alayne			

$$extit{Math}_{ij} \sim ext{MVNorm}(\mu_{ij}, \sigma)$$
 $\mu_{ij} = eta_{0j} + eta_{1j} Age_i$ $eta_{0j} = \gamma_{00} + \gamma_{01} Size_j + \eta_{0j}$

 $\beta_{1i} = \gamma_{10} + \gamma_{11} \text{Size}_i + \eta_{1i}$

$$Math_{ij} \sim \mathsf{MVNorm}(\mu_{ij}, \sigma)$$
 $\mu_{ij} = eta_{0j} + eta_{1j} Age_i$

$$eta_{0j} = \gamma_{00} + \gamma_{01} \text{Size}_j + \eta_{0j}$$
 $eta_{1j} = \gamma_{10} + \gamma_{11} \text{Size}_j + \eta_{1j}$

$$Math_{ijk} \sim \text{MVNorm}(\mu_{ijk}, \sigma)$$
 $\mu_{ijk} = \beta_{0jk} + \beta_{1jk}Age_i$
 $\beta_{0jk} = \gamma_{00k} + \gamma_{01k}Size_j + \eta_{0jk}$
 $\beta_{1jk} = \gamma_{10k} + \gamma_{11k}Size_j + \eta_{1jk}$
 $\gamma_{00k} = \alpha_{000} + \gamma_{00k}$
 $\gamma_{01k} = \alpha_{010} + \gamma_{01k}$
 $\gamma_{10k} = \alpha_{100} + \gamma_{10k}$
 $\gamma_{11k} = \alpha_{110} + \gamma_{11k}$

Math score for student *i* in class *j* in district *k*.

$$Math_{ijk} \sim \mathsf{MVNorm}(\mu_{ijk}, \sigma)$$
 $\mu_{ijk} = eta_{0jk} + eta_{1jk} \mathsf{Age}_i$

$$eta_{0jk} = \gamma_{00k} + \gamma_{01k} Size_j + \eta_{0jk}$$
 $eta_{1jk} = \gamma_{10k} + \gamma_{11k} Size_j + \eta_{1jk}$

$$\gamma_{00k} = \alpha_{000} + v_{00k}$$

$$\gamma_{01k} = \alpha_{010} + v_{01k}$$

$$\gamma_{10k} = \alpha_{100} + v_{10k}$$

$$\gamma_{11k} = \alpha_{110} + v_{11k}$$

$$Math_{ijk} \sim \mathsf{MVNorm}(\mu_{ijk}, \sigma)$$
 $\mu_{ijk} = eta_{0jk} + eta_{1jk} Age_i$

Each district has its own average score.

$$eta_{0jk} = \gamma_{00k} + \gamma_{01k} Size_j + \eta_{0jk}$$
 $eta_{1jk} = \gamma_{10k} + \gamma_{11k} Size_j + \eta_{1jk}$

The effect of age varies from district to district.

$$\gamma_{00k} = \alpha_{000} + v_{00k}$$

$$\gamma_{01k} = \alpha_{010} + v_{01k}$$

$$\gamma_{10k} = \alpha_{100} + v_{10k}$$

$$\gamma_{11k} = \alpha_{110} + v_{11k}$$

$$Math_{ijk} \sim \mathsf{MVNorm}(\mu_{ijk}, \sigma)$$
 $\mu_{ijk} = eta_{0jk} + eta_{1jk} Age_i$

The effect of class size varies from district to district.

$$eta_{0jk} = \gamma_{00k} + \gamma_{01k}$$
Size $_j + \eta_{0jk}$
 $eta_{1jk} = \gamma_{10k} + \gamma_{11k}$ Size $_j + \eta_{1jk}$

 $\gamma_{00k} = \alpha_{000} + v_{00k}$ $\gamma_{01k} = \alpha_{010} + v_{01k}$ $\gamma_{10k} = \alpha_{100} + v_{10k}$

 $\gamma_{11k} = \alpha_{110} + \nu_{11k}$

The interaction between age and class size *also* varies by district.

$$Math_{ijk} \sim ext{MVNorm}(\mu_{ijk}, \sigma)$$
 $\mu_{ijk} = eta_{0jk} + eta_{1jk} Age_i$
 $eta_{0jk} = \gamma_{00k} + \gamma_{01k} Size_j + \eta_{0jk}$ Teacher-level random effects.
 $eta_{1jk} = \gamma_{10k} + \gamma_{11k} Size_j + \eta_{1jk}$
 $\gamma_{00k} = lpha_{000} + v_{00k}$
 $\gamma_{01k} = lpha_{010} + v_{01k}$ District-level random effects.
 $\gamma_{10k} = lpha_{100} + v_{10k}$
 $\gamma_{11k} = lpha_{110} + v_{11k}$

$$Math_{ijk} \sim \text{MVNorm}(\mu_{ijk}, \sigma)$$
 $\mu_{ijk} = \beta_{0jk} + \beta_{1jk}Age_i$
 $eta_{0jk} = \gamma_{00k} + \gamma_{01k}Size_j + \eta_{0jk}$
 $eta_{1jk} = \gamma_{10k} + \gamma_{11k}Size_j + \eta_{1jk}$
 $\gamma_{00k} = \alpha_{000} + \gamma_{00k}$
 $\gamma_{01k} = \alpha_{010} + \gamma_{01k}$
 $\gamma_{10k} = \alpha_{100} + \gamma_{10k}$
 $\gamma_{11k} = \alpha_{110} + \gamma_{11k}$

$$Math_{ijk} = a_{000} + a_{010}Size_j + a_{100}Age_i + a_{110}Size_jAge_i$$
 $v_{00k} + v_{01k}Size_j + v_{10k}Age_i + v_{11k}Size_jAge_i +$
 $\eta_{0jk} + \eta_{1jk}Age_i + \varepsilon_{ijk}$

Three-level models in R

$$Math_{ijk} = a_{000} + a_{010}Size_j + a_{100}Age_i + a_{110}Size_jAge_i$$
 $v_{00k} + v_{01k}Size_j + v_{10k}Age_i + v_{11k}Size_jAge_i +$
 $\eta_{0jk} + \eta_{1jk}Age_i + \varepsilon_{ijk}$

R formula

```
student_math_score ~
    student_age_s*class_size_c +
    (1 + student_age_s | teacher_id:district_id) +
    (1 + class_size*student_age_s | district_id)
```

Three-level models in R

<i>Math_{ijk}</i> ~	- MVN	$MVNorm(\mu_{\mathit{ijk}}, \sigma$		
$\mu_{ijk} =$	$= oldsymbol{eta}_{0jk}$	$+ \beta_{1jk}Age_i$		

$$eta_{0jk} = \gamma_{00k} + \gamma_{01k} Size_j + \eta_{0jk}$$
 $eta_{1jk} = \gamma_{10k} + \gamma_{11k} Size_j + \eta_{1jk}$

$$\gamma_{00k} = \alpha_{000} + v_{00k}$$
 $\gamma_{01k} = \alpha_{010} + v_{01k}$
 $\gamma_{10k} = \alpha_{100} + v_{10k}$
 $\gamma_{11k} = \alpha_{110} + v_{11k}$

	Mean	90% credible interval		
a_{000}	538.9	533.6	544.3	
	330.9	333.0	<u> </u>	
a 010	-1.38	-1.95	-0.79	
a 100	-2.52	-4.05	-1.02	
a 110	0.05	-0.21	0.32	
$\phi_{\eta 0}$	17.01	15.36	18.88	
$\phi_{\eta 1}$	1.40	0.06	3.23	
\$\Phi_{\nu00}	13.62	6.18	19.46	
φ ν01	0.28	0.01	0.68	
φ ν10	1.86	0.08	4.27	
φ ν11	0.09	0.01	0.19	

Predicting inter-state migration

Predicting inter-state migration

Standard linear regression

$$\log(Flow_{ij}) \sim \text{Norm}(\mu_{ij}, \sigma)$$

$$\mu_{ij} = \beta_0 + \beta_1 A dj_{ij} + \beta_2 \log(SPop_i) + \beta_3 \log(SPop_j)$$

Flowij Number of people that moved from state i to state j, 2015–16

Adjij Indicator: state i shares a border with state j

SPopi Number of people that remained in state i, 2015–16

Attractive states

Two-level model can identify popular states to move to.

$$\log(Flow_{ij}) \sim \mathrm{Norm}(\mu_{ij}, \sigma)$$
 $\mu_{ij} = eta_{0j} + eta_1 Adj_{ij} + eta_2 \log(SPop_i)$ $eta_{0j} = \gamma_{00} + \gamma_{01} \log(SPop_j) + \eta_{0j}$

 η_{0j} Unexplained attractiveness of state j as a destination

Non-nested model identifies popular states to move into and to move out of.

$$\log(Flow_{ij}) \sim \text{Norm}(\mu_{ij}, \sigma)$$
 $\mu_{ij} = \beta_0 + \alpha_i + \omega_j + \beta_2 Adj_{ij}$

$$a_i = \gamma_{a1} \log(SPop_i) + \eta_{ai}$$

$$\omega_j = \gamma_{\omega 1} \log(SPop_j) + \eta_{\omega j}$$

- β_0 Overall intercept (average log migration)
- **a**_i Effects specific to source state
- ω_i Effects specific to destination state
- η_{ai} Unexplained attractiveness of state i as a place to leave
- $\eta_{\omega j}$ Unexplained attractiveness of state j as a destination

$$\log(Flow_{ij}) \sim \text{Norm}(\mu_{ij}, \sigma)$$
 $\mu_{ij} = \beta_0 + \alpha_i + \omega_j + \beta_2 Adj_{ij}$

Second-level equations for α_i and ω_j have no intercept.

$$\Rightarrow a_i = \gamma_{a1} \log(SPop_i) + \eta_{ai}$$

$$ightharpoonup \omega_j = \gamma_{\omega 1} \log(SPop_j) + \eta_{\omega j}$$

- β_0 Overall intercept (average log migration)
- **a**i Effects specific to source state
- ω_i Effects specific to destination state
- η_{ai} Unexplained attractiveness of state i as a place to leave
- $\eta_{\omega j}$ Unexplained attractiveness of state j as a destination

$$\log(Flow_{ij}) \sim \text{Norm}(\mu_{ij}, \sigma)$$
 $\mu_{ij} = \beta_0 + \alpha_i + \omega_j + \beta_2 Adj_{ij}$

$$a_i = \gamma_{a1} \log(SPop_i) + \eta_{ai}$$

$$\omega_j = \gamma_{\omega 1} \log(SPop_j) + \eta_{\omega j}$$

source state				Source log pop	Dest. log pop
AL	AK	0	5.3	14.3	12.5
AL	CA	0	7.3	14.3	16.4
AL	FL	1	8.8	14.3	15.8
AK	AL	0	5.4	12.5	14.3
AK	CA	0	7.3	12.5	16.4
AK	FL	0	6.7	12.5	15.8
CA	AL	0	7.4	16.4	12.5
	• • •	• • •	• • •	• • •	• • •

R formula

State migration factors

Multi-cohort panels of students

Each outcome (test score, e.g.) is associated with one student and one teacher. Students have multiple teachers and teachers have multiple classes.

Journal publications

Authors can contribute to multiple articles and multiple journals.

Multi-factor experiments

Research subjects exposed to multiple stimuli in multiple contexts.

Simple networked data

International trade, friendship nominations, Twitter mentions, bullying, ...