

Encaminhamento em Redes com Comutação de Pacotes

Desempenho e Dimensionamento de Redes Prof. Amaro de Sousa (asou@ua.pt) DETI-UA, 2017/2018

Encaminhamento em redes com comutação de pacotes

Existem 2 tipos de redes com comutação de pacotes:

- redes de <u>circuitos virtuais</u>
- redes de <u>datagramas</u>

Considere-se o seguinte exemplo de uma rede de um ISP (*Internet Service Provider*)

Encaminhamento em redes com comutação de pacotes – <u>redes de circuitos virtuais</u>

- Os percursos são definidos na fase de estabelecimento dos circuitos virtuais.
- Após esta fase, os pacotes de cada circuito virtual são encaminhados pelo percurso definido.

Exemplo: redes IP/MPLS em que os circuitos virtuais se designam por LSPs (*Label Switched Paths*).

Encaminhamento em redes com comutação de pacotes – <u>redes de circuitos virtuais</u>

- Os percursos são definidos na fase de estabelecimento dos circuitos virtuais.
- Após esta fase, os pacotes de cada circuito virtual são encaminhados pelo percurso definido.

Exemplo: redes IP/MPLS em que os circuitos virtuais se designam por LSPs (*Label Switched Paths*).

Encaminhamento em redes com comutação de pacotes – <u>redes de datagramas</u>

- As decisões de encaminhamento são efetuadas pacote a pacote ou endereço destino a endereço destino.
- Dois pacotes do mesmo par origem-destino podem seguir percursos distintos na rede.

Exemplo: redes IP com o protocolo de encaminhamento RIP ou OSPF.

Nas redes IP, o encaminhamento é baseado em *percursos de custo mínimo* de cada nó (router) para cada destino

- No OSPF, é atribuído a cada ligação um número positivo designado por <u>custo</u> da ligação.
- No RIP, o custo é 1 para cada ligação.
- Cada percurso de um router para um destino tem um custo igual à soma dos custos das ligações que o compõem.
- Em cada router, cada pacote IP é encaminhado por um dos percursos de custo mínimo para o destino do pacote.

Encaminhamento em redes com comutação de pacotes – <u>redes de datagramas</u>

Cada pacote IP é encaminhado por um dos percursos de custo mínimo para o destino do pacote:

Método estático: o custo das ligações é fixo.

<u>Método dinâmico</u>: o custo das ligações varia ao longo do tempo em função do seu nível de utilização (exemplo: protocolos IGRP e EIGRP)

- o percurso de custo mínimo adapta-se a situações de sobrecarga obrigando os pacotes a evitarem as ligações mais utilizadas
- introduz um efeito de realimentação que pode levar a oscilações indesejáveis.

Quando existem múltiplos percursos de custo mínimo de um nó para um destino, é usada a técnica ECMP (*Equal Cost Multi-Path*):

 em cada nó, o tráfego é bifurcado em igual percentagem por todas as ligações de saída que proporcionam percursos de custo mínimo

Encaminhamento em redes IP com encaminhamento OSPF (I)

Neste exemplo, todos os custos OSPF estão configurados a 1.

Encaminhamento em redes IP com encaminhamento OSPF (II)

Pelo ECMP, o router A encaminha os pacotes IP com destino para um endereço IP da rede 193.145.128.0/20 em igual percentagem pelos percursos que passam por B e por C.

Encaminhamento em redes IP com encaminhamento OSPF (III)

Mudando o custo da ligação de A para B de 1 para 3, o router A encaminha os pacotes IP com destino para um endereço IP da rede 193.145.128.0/20 pelo único percurso de custo mínimo.

Redes de ligações ponto-a-ponto

Numa rede de ligações ponto-a-ponto os intervalos entre chegadas de pacotes tornam-se fortemente correlacionados com o comprimento dos pacotes, após passagem pela primeira fila de espera. Este facto dificulta a análise.

Exemplo: Considerem-se duas ligações ponto-a-ponto em cascata. Os pacotes chegam à 1^a fila de espera a uma taxa de Poisson e o comprimento dos pacotes é exponencialmente distribuído.

Redes de ligações ponto-a-ponto

Numa rede de ligações ponto-a-ponto os intervalos entre chegadas de pacotes tornam-se fortemente correlacionados com o comprimento dos pacotes, após passagem pela primeira fila de espera. Este facto dificulta a análise.

- a 1^a fila de espera é do tipo M/M/1
- no entanto, a 2ª fila de espera não é do tipo M/M/1:
 - o intervalo entre a chegada de dois pacotes consecutivos à 2ª fila de espera é sempre superior ou igual ao tempo de transmissão do segundo pacote na 1ª fila de espera;
 - assim, tipicamente pacotes maiores esperam menos tempo na 2ª fila de espera que pacotes mais pequenos.

A <u>aproximação de Kleinrock</u> consiste em admitir que cada ligação pode ser modelada por um sistema M/M/1 (as filas de espera são de tamanho infinito).

Os fluxos de pacotes são unidirecionais e as ligações das redes de comutação de pacotes são bidirecionais. Assim, uma ligação de rede entre os nós de comutação i e j é representada pelos pares ordenados (i,j) e (j,i) que representam cada um dos seus sentidos.

Considere-se uma rede de ligações ponto-a-ponto, onde existem diversos fluxos de pacotes s = 1...S.

A cada fluxo s está associado um percurso único na rede (rede de circuitos virtuais com um circuito virtual por fluxo), formado por uma sequência de ligações (i,j) definida pelo conjunto R_s .

Seja λ_s , em pacotes/segundo, a taxa de chegada do fluxo s.

Então a taxa total de chegada à ligação ($\emph{i,j}$) é: $\lambda_{ij} = \sum_{s:(i,j) \in R_s} \lambda_s$

Considere-se agora o caso em que pode haver múltiplos percursos associados a cada fluxo de pacotes.

Seja $f_{ij}(s)$ a fração de pacotes do fluxo s que atravessa a ligação (i,j) e considere-se que nenhum pacote atravessa duas vezes a mesma ligação (i.e., não há ciclos de encaminhamento).

Neste caso, o conjunto R_s inclui todas as ligações (i,j) tais que $f_{ij}(s)>0$.

Então a taxa total de chegada à ligação (*i,j*) é: $\lambda_{ij} = \sum_{s:(i,j) \in R_s} f_{ij}(s) \lambda_s$

Considerando μ_{ij} a capacidade da ligação (i,j) em número médio de pacotes/segundo, o número médio de pacotes em todas as ligações é:

$$L = \sum_{(i,j)} \frac{\lambda_{ij}}{\mu_{ij} - \lambda_{ij}}$$

Usando o teorema de Little, o atraso médio por pacote é

$$W = \frac{1}{\gamma} \sum_{(i,j)} \frac{\lambda_{ij}}{\mu_{ij} - \lambda_{ij}} \qquad \gamma = \sum_{s} \lambda_{s}$$

Nos casos em que os atrasos de processamento dos pacotes nos nós de comutação e os atrasos de propagação nas ligações não são desprezáveis, o atraso médio por pacote passa a ser

$$W = \frac{1}{\gamma} \sum_{(i,j)} \left(\frac{\lambda_{ij}}{\mu_{ij} - \lambda_{ij}} + \lambda_{ij} d_{ij} \right)$$

em que d_{ij} é o atraso médio de processamento e propagação associado à ligação (i, j).

No caso em que a cada fluxo está associado um percurso único na rede, o atraso médio por pacote do fluxo de tráfego s é:

$$W_{S} = \sum_{(i,j) \in R_{S}} \left(\frac{1}{\mu_{ij} - \lambda_{ij}} + d_{ij} \right)$$

No caso em que há diferentes percursos associados a cada fluxo de pacotes, o atraso médio por pacote de cada fluxo é a média pesada dos atrasos de cada percurso (dados pela fórmula anterior) em que os pesos são as percentagens do tráfego total que são encaminhados por cada percurso.

- Nas redes com um percurso por fluxo, a maior fonte de erro associada à aproximação de Kleinrock deve-se à correlação entre os comprimentos dos pacotes e os intervalos entre chegadas.
- Nas redes com múltiplos percursos por fluxo, pode existir um fator adicional de erro, dependendo da forma como os fluxos são bifurcados nos nós.

Exemplo 1

Considere a rede IP da figura em que todas as ligações são bidirecionais de 10 Mbps. A esta rede são submetidos 4 fluxos de pacotes: de A para C com uma taxa de Poisson de 1000 pps; de A para D com uma taxa de Poisson de 250 pps; de B para D com uma taxa de Poisson de 1000 pps e de B para E com uma taxa de Poisson de 750 pps. O tamanho dos pacotes de todos os fluxos é exponencialmente distribuído com média de 500 bytes. O tempo de propagação das ligações é desprezável em todas as ligações exceto na ligação B-C que é de 10 milissegundos em cada sentido.

O protocolo de encaminhamento nos routers é o RIP. Utilizando a aproximação de Kleinrock, calcule:

- (a) O atraso médio por pacote de cada fluxo.
- (b) O atraso médio por pacote de todos os fluxos.
- (c) A utilização (em percentagem) de cada ligação em cada sentido.

Exemplo 2

Considere a rede IP da figura em que todas as ligações são bidirecionais de 10 Mbps. A esta rede são submetidos 4 fluxos de pacotes: de A para C com uma taxa de Poisson de 1000 pps; de A para D com uma taxa de Poisson de 250 pps; de B para D com uma taxa de Poisson de 1000 pps e de B para E com uma taxa de Poisson de 750 pps. O tamanho dos pacotes de todos os fluxos é exponencialmente distribuído com média de 500 bytes. O tempo de propagação das ligações é desprezável em todas as ligações exceto na ligação B-C que é de 10 milissegundos em cada sentido.

A

O protocolo de encaminhamento nos routers é o OSPF.

(a) Determine os custos OSPF que permitem minimizar a utilização da ligação mais carregada.

(b) Utilizando a aproximação de Kleinrock, determine o atraso médio por pacote de todos os fluxos na solução da alínea anterior.

B

E

Encaminhamento ótimo com bifurcação de fluxos (exemplo)

Na figura, o fluxo de pacotes λ (pacotes/seg) é bifurcado por duas ligações com capacidades C_1 e C_2 (ambas em pacotes/seg). Designemos os fluxos em cada ligação por x_1 e x_2 , respetivamente ($\lambda = x_1 + x_2$). O número médio de pacotes nesta rede é, pela aproximação de Kleinrock, dado por:

$$L = \frac{x_1}{C_1 - x_1} + \frac{x_2}{C_2 - x_2}$$

Os valores de x_1 e x_2 que minimizam o atraso médio por pacote são os que minimizam o número médio de pacotes na rede (teorema de Little: $L = \lambda W$). Assim, atendendo à restrição $\lambda = x_1 + x_2$ temos:

$$L = \frac{x_1}{C_1 - x_1} + \frac{\lambda - x_1}{C_2 - (\lambda - x_1)} \qquad \frac{\partial L}{\partial x_1} = \frac{C_1}{(C_1 - x_1)^2} - \frac{C_2}{(C_2 - (\lambda - x_1))^2}$$

Relembrar regra das derivadas: $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$

Encaminhamento ótimo com bifurcação de fluxos (exemplo)

Fazendo

$$\frac{\partial L}{\partial x_1} = \frac{C_1}{(C_1 - x_1)^2} - \frac{C_2}{(C_2 - (\lambda - x_1))^2} = 0$$

temos

$$x_{1}^{*} = \frac{\sqrt{C_{1}} \left[\lambda - \left(C_{2} - \sqrt{C_{1}C_{2}} \right) \right]}{\sqrt{C_{1}} + \sqrt{C_{2}}} \qquad x_{2}^{*} = \frac{\sqrt{C_{2}} \left[\lambda - \left(C_{1} - \sqrt{C_{1}C_{2}} \right) \right]}{\sqrt{C_{1}} + \sqrt{C_{2}}}$$

Assumindo que $C_1 \ge C_2$ temos dois casos possíveis:

$$\lambda > C_1 - \sqrt{C_1 C_2} \rightarrow 0 < x_1^* < \lambda$$
 , $0 < x_2^* < \lambda$ solução ótima: fluxo bifurcado por C_1 e C_2

$$\lambda < C_1 - \sqrt{C_1 C_2} \rightarrow x_1^* = \lambda , x_2^* = 0$$

solução ótima: fluxo encaminhado apenas por C_{1} 19

Encaminhamento ótimo - caso geral

No encaminhamento ótimo, os fluxos em cada percurso são definidos por forma a otimizar uma função de custo que representa o desempenho da rede:

$$\sum_{(i,j)} D_{ij} (F_{ij})$$

onde F_{ij} representa o fluxo na ligação (i, j) e a função D_{ij} é monótona crescente.

Uma função D_{ii} usada com frequência é

$$D_{ij}(F_{ij}) = \frac{F_{ij}}{C_{ij} - F_{ij}} + d_{ij}F_{ij}$$

onde C_{ij} é a capacidade da ligação (i,j) e d_{ij} o atraso de propagação e processamento na ligação (i,j).

Neste caso, a função de custo corresponde ao número médio de pacotes na rede, obtido com base na aproximação de Kleinrock.

Encaminhamento ótimo - caso geral

W - conjunto de todos os pares OD (origem - destino) w;

 λ_w - fluxo de entrada do par OD w;

 P_w - conjunto de todos os percursos dirigidos que ligam o nó origem ao nó destino do par OD w;

 x_p - fluxo no percurso p.

O encaminhamento ótimo é dado pelo seguinte problema de otimização:

Minimizar:
$$D(x) = \sum_{(i,j)} D_{ij} \left(\sum_{\substack{todosos \ percursos p \ contendo(i,j)}} x_p \right)$$

Sujeito a:

$$\sum_{p \in P_{w}} x_{p} = \lambda_{w} , \forall w \in W$$

$$x_{p} \ge 0 , \forall p \in P_{w}, \forall w \in W$$

Solução para o encaminhamento ótimo

Define-se o *comprimento da primeira derivada* do percurso $p \in P_w$ dado por:

$$\frac{\partial D(x)}{\partial x_p} = \sum_{\substack{\text{todas as liga} \tilde{\varphi} \text{ es } (i,j)\\ \text{no percurso } p}} D'_{ij}$$

Prova-se que um vetor de fluxos $x^* = \{x_p^*, \forall p \in P_w\}$ para o par OD w é ótimo se e só se:

$$x_p^* > 0 \Rightarrow \frac{\partial D(x^*)}{\partial x_{p'}} \ge \frac{\partial D(x^*)}{\partial x_p} , \forall p' \in P_w$$

O fluxo ótimo é positivo apenas nos percursos $p \in P_w$ com um comprimento de primeira derivada mínimo.

Assim, os percursos usados no encaminhamento ótimo têm comprimento de primeira derivada igual.

Exemplo 3

Considere a rede com comutação de pacotes da figura. A rede suporta inicialmente um único fluxo de 12 pacotes/s no $r_{AC} = 48 \text{ pps}$ percurso direto AC. Admita que é oferecido um novo fluxo

Assuma que ambos os fluxos são caracterizados por intervalos entre chegadas e comprimentos de pacotes independentes e exponencialmente distribuídos, e que o comprimento médio dos pacotes é 125 bytes.

- (a) Calcule o atraso médio total dos pacotes (isto é, o atraso médio calculado sobre todos fluxos), quando o novo fluxo é encaminhado em igual percentagem pelos dois percursos possíveis.
- (b) Admitindo que o novo fluxo (e apenas o novo) pode ser bifurcado pelos dois percursos possíveis, calcule os fluxos ótimos que minimizam o atraso médio total dos pacotes e determine o atraso médio resultante.

Resposta ao Exemplo 3(a)

(a) Calcule o atraso médio total dos pacotes (isto é, o atraso médio calculado sobre todos fluxos), quando o novo fluxo é encaminhado em igual percentagem pelos dois percursos possíveis.

$$\mu_{AB} = \mu_{BC} = \frac{32000}{125 \times 8} = 32 \text{ pps}$$
 $\mu_{AC} = \frac{64000}{125 \times 8} = 64 \text{ pps}$

$$\mu_{AC} = \frac{64000}{125 \times 8} = 64 \text{ pps}$$

$$W = \frac{L}{\lambda} = \frac{L_{AB} + L_{BC} + L_{AC}}{\lambda} = \frac{\frac{24}{\mu_{AB} - 24} + \frac{24}{\mu_{BC} - 24} + \frac{24 + 12}{\mu_{AC} - (24 + 12)}}{48 + 12} = 0.121 \text{ seg.}$$

Resposta ao Exemplo 3(b)

(b) Admitindo que o novo fluxo (e apenas o novo) pode ser bifurcado pelos dois percursos possíveis, calcule os fluxos $r_{AC} = 48$ ótimos que minimizam o atraso médio total dos pacotes e determine o atraso médio resultante.

$$L = \frac{x_1}{32 - x_1} + \frac{x_1}{32 - x_1} + \frac{x_2 + 12}{64 - (x_2 + 12)}$$

$$\frac{\partial L}{\partial x_1} = \frac{32}{(32 - x_1)^2} + \frac{32}{(32 - x_1)^2} + 0 = \frac{64}{(32 - x_1)^2}$$

$$\frac{\partial L}{\partial x_2} = 0 + 0 + \frac{64}{(52 - x_2)^2} = \frac{64}{(52 - x_2)^2}$$

$$\begin{cases} \frac{\partial L}{\partial x_1} = \frac{\partial L}{\partial x_2} \\ x_1 + x_2 = 48 \end{cases} = \begin{cases} \frac{64}{(32 - x_1)^2} = \frac{64}{(52 - x_2)^2} = \begin{cases} \frac{8}{32 - x_1} = \frac{8}{52 - x_2} = \dots = \begin{cases} x_1 = 14 \text{ pps} \\ x_2 = 34 \text{ pps} \end{cases} \\ x_2 = 48 - x_1 \end{cases}$$

$$W = \frac{L}{\lambda} = \frac{\frac{14}{32 - 14} + \frac{14}{32 - 24} + \frac{34 + 12}{64 - (34 + 12)}}{48 + 12} = 0.069 \text{ seg.}$$