VE311 FINAL RC - Single Stage Amplifier

Runxi Wang

UM-SJTU JI

wangrunxi@sjtu.edu.cn

December 9, 2021

Overview

Basics

DC $gm \& r_o \& gmb$ $Gm \& R_{out} \& R_{in} \& A_v$

Circuits and Formulas

Common Source Source Degradation Source Follower Common Gate

Tips

DC Calculation

Current (NMOS)

Non-saturation region:

$$\boxed{I_D = \mu_n C_{\text{ox}} \frac{W}{L_{\text{eff}}} \left[(V_{GS} - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^2 \right]}$$

Saturation region:

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L_{eff}} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$

where
$$V_{TH}=VTO$$
, $\frac{W}{L_{eff}}=\frac{W_{drawn}}{L_{drawn}-2LD}$, $C_{ox}=\frac{\epsilon_r\epsilon_0}{TOX}$, and $\mu_n=UO\times 10^{-4}$

gm & r_o & gmb

For NMOS,

$$gm = \frac{\partial I_D}{\partial V_{GS}} = \frac{2I_D}{V_{GS} - V_{TH}}$$

$$r_o = \frac{\partial V_{DS}}{\partial I_D} \approx \frac{1}{I_D \lambda}$$

$$gmb = \frac{\partial I_D}{\partial V_{SB}} = -\mu_n C_{ox} \frac{W}{L_{eff}} (V_{GS} - V_{TH}) \cdot \frac{\gamma}{2} \cdot \frac{1}{\sqrt{|2\phi_F + V_{SB}|}}$$

where $\lambda = LAMBDA$, $\gamma = GAMMA$, and $2\phi_F = PHI$.

Gm & Rout

How to calculate Gm?

- 1. Draw small signal model.
- 2. Connect port with V_{out} to ground.
- 3. Derive *i_{out}*.
- 4. Calculate $Gm = \frac{i_{out}}{v_{in}}$.

How to calculate R_{out}?

- 1. Draw small signal model.
- 2. Connect port with V_{in} to ground. Connect a test voltage v_t on port with V_{out} .
- 3. Derive i_t .
- 4. Calculate $R_{out} = \frac{v_t}{i_t}$.

 $R_{in} \& A_{v}$

How to calculate Rin?

- 1. Draw small signal model.
- 2. Connect port with V_{out} to ground. Connect a test voltage v_t on port with V_{in} .
- 3. Derive i_t .
- 4. Calculate $R_{in} = \frac{v_t}{i_t}$.

How to calculate A_{v} ?

$$A_v = GmR_{out}$$

Common Source with Resistive Load

- * What if R_D is replaced by a DC current source? (slide page 9)
- * What if M_1 is a PMOS?

Common Source with Diode-Connected Load

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} & \stackrel{}{\longrightarrow} \frac{1}{gm_2} || \frac{1}{gmb_2} || r_{o2} \\ \\ Gm = -gm_1 \\ \\ R_{out} = r_{o1} || \frac{1}{gm_2} || \frac{1}{gmb_2} || r_{o2} \\ \\ A_v = -gm_1 \left(r_{o1} || \frac{1}{gm_2} || \frac{1}{gmb_2} || r_{o2} \right) \end{array}$$

Common Source with Diode-Connected Load (Cont.)

$$V_{DD}$$
 $\Rightarrow \frac{1}{gm_2}||r_{o2}|$
 $Gm = -gm_1$
 $R_{out} = r_{o1}||\frac{1}{gm_2}||r_{o2}|$
 $A_v = -gm_1\left(r_{o1}||\frac{1}{gm_2}||r_{o2}\right)$

Common Source with Current-Source Load

$$V_b \longrightarrow V_{DD}$$

$$V_b \longrightarrow M_2 \Rightarrow r_{o2}$$

$$Gm = -gm_1$$

$$R_{out} = r_{o1}||r_{o2}$$

$$A_v = -gm_1(r_{o1}||r_{o2})$$

Common Source with Source Degradation

Basic Circuit $(\lambda, \gamma \neq 0)$

$$Gm = \frac{-gm_1r_{o1}}{R_S + r_{o1} + (gm_1 + gmb_1)r_{o1}R_S}$$

$$R_{out} = [R_S + r_{o1} + (gm_1 + gmb_1) r_{o1}R_S] ||R_D|$$

* What if M_1 is a PMOS?

Common Source with Source Degradation (Cont.)

$$\int_{\Xi} M_{2} \Rightarrow \frac{1}{gm_{2}} || \frac{1}{gmb_{2}} || r_{o2}$$

$$Gm = \frac{-gm_{1}r_{o1}}{R_{S} + r_{o1} + (gm_{1} + gmb_{1}) r_{o1}R_{1}}$$

$$R_{out} = [R_{S} + r_{o1} + (gm_{1} + gmb_{1}) r_{o1}R_{S}] || R_{D}$$
with R_{S} replaced by $\frac{1}{gm_{2}} || \frac{1}{gmb_{2}} || r_{o2}$

Source Follower

Basic Circuit $(\lambda, \gamma \neq 0)$

* What if M_1 is replaced by a PMOS?

Source Follower with Current Source

$$V_{b} \longrightarrow V_{DD}$$
 $\Rightarrow r_{o2}$
 $V_{in} \longrightarrow V_{in} \longrightarrow r_{o1} || \frac{1}{gm_{1}}$
 $R_{out} = r_{o}1 || \frac{1}{gm_{1}} || r_{o2}$
 $Gm = gm_{1}$

Common Gate

Basic Circuit $(\lambda, \gamma \neq 0)$

* What if M_1 is replaced by PMOS?

Complex Common Gate

$$(\lambda, \gamma \neq 0)$$

$$V_{DD}$$

$$R_{D}$$

$$V_{out}$$

$$V_{b} \leftarrow M_{2}$$

$$V_{in} \downarrow^{+}$$

For v_{in} , take it as a source follower with infinity source resistance. Then we get

$$\begin{array}{c} \begin{array}{c} \textbf{R}_{out} \\ \hline \\ \textbf{V}_{in} \textbf{G}_{m} \textbf{R}_{out} \end{array} \end{array} \quad \begin{cases} G_{m} = gm_{1} \\ \\ R_{out} = r_{o1} \parallel \frac{1}{gm_{1}} \parallel \frac{1}{gmb_{1}} \end{array}$$

Complex Common Gate (Cont.)

00

with

$$G_m = rac{(gm_2 + gmb_2)r_{o2} + 1}{r_{o2} + R_S + (gm_2 + gmb_2)r_{o2}R_S} \cdot gm_1 \left(r_{o1}||rac{1}{gm_1}||rac{1}{gmb_1}
ight) \ R_{out} = R_D \|\left[r_{o2} + R_S + (gm_2 + gmb_2)r_{o2}R_S
ight] \ ext{where } R_S = r_{o1} ||rac{1}{gm_1}||rac{1}{gmb_1}$$

Some Tips qwq

- Derive all the *Gm* and *Rout* yourself before the final.
- Small signal model!!!
- Small signal models, equations, and explanation do matter if you cannot guarantee your final result is correct.
- When plotting, please mark your diagram well!!!(peak values, period...).

Good Luck for Your FINAL!

