thertia polesio Pra cio

Departamento de Matemática, Universidade de Aveiro

Cálculo II — Exame de Recorrência

17 de Junho de 2005

C11	c ~	
(Taggr	ficação:	
	neuçuo.	

Duração: 2 horas

20 Pontos Considere a região do plano

$$D = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1, \ -\sqrt{1 - x^2} \le y \le (x - 1)^2\}.$$

- (a) Represente geometricamente a região D.
- (b) Indique um integral cujo valor é a área da região D (não calcule o integral).

40 Pontos 3. Considere a função f definida por $f(x)=\frac{1}{x+3},$ $x\in]0,+\infty[.$

(a) Estude a natureza do integral $\int_1^{+\infty} f(x) \, dx$.

7. (a) Considere uma equação diferencial linear $y'' + a_1y' + a_2y = 0$, com $a_1, a_2 \in \mathbb{R}$. Determine os coeficientes a_1 e a_2 sabendo que as raízes da sua equação característica são r = -1 e r = -3.

(b) Considere a equação diferencial linear completa

$$y'' + a_1y' + a_2y = x$$
, em que a_1, a_2 foram obtidos na alínea (a).

Nota: Se não respondeu à alínea (a), faça
$$a_1=6$$
 e $a_2=8$.

- Encontre a solução geral da equação homogénea associada à equação.
- ii. Determine uma solução particular, y_p , da equação diferencial linear completa, sabendo que é da forma $y_p(x) = A_0x + A_1$.
- iii. Determine a solução geral da equação diferencial linear completa.

Cálculo III - Teste 2

Departamento de Matemática da Universidade de Aveiro

Novembro de 2005

2. Calcule a área da região plana $D=\{(x,y)\in\mathbb{R}^2:\ x^2+y^2\leq 1,\ x^2+(y-1)^2\leq 1\}.$ (Sugestão: tenha em conta a simetria da região).

2. Calcule a área da região plana D limitada pelas curvas de equação $y=x^2+1$ e $y=3-x^2$.							

2. Calcule a área da região plana $D=\{(x,y)\in\mathbb{R}^2: |x|\leq y,\ x^2+y^2\leq 9\}.$

Justifique todas as respostas e indique os cálculos efectuados.

30 Pontos 2. Estude a convergência do integral impróprio $\int_1^{+\infty} \frac{1}{\sqrt{x-1}} \, dx$.

100 Pontos 3. Considere a seguinte EDO:

$$y''' + 2y'' + 2y' = 3e^{-x}.$$

- (a) Verifique se a função $y=e^{-x}$ $(x\in\mathbb{R})$ é solução da equação dada.
- (b) Determine a sua solução geral.

40 Pontos 4. Determine a solução geral da equação diferencial

$$(x^2+1)y' - \frac{1}{\operatorname{arctg} y} = 0.$$

 (5 valores) Diga, justificando, se os seguintes integrais impróprios convergem ou divergem e, no caso de convergência, se são simplesmente ou absolutamente convergentes:

(a)
$$\int_0^{+\infty} \frac{1}{x} dx$$
; (b) $\int_1^{+\infty} \frac{x^2 + 1}{x^4 + 2} dx$; (c) $\int_0^1 \frac{\sin x}{\sqrt{x}} dx$; (d) $\int_1^{+\infty} \left(\frac{1}{x^2} + \frac{1}{\sqrt{x}}\right) dx$.

Departamento de Matemática da Universidade de Aveiro

CÁLCULO II - Agrup. 1

13/06/2018

Teste 2 - avaliação discreta

Duração: 1h30 + 15 min de tolerância

Os resultados usados devem ser enunciados com precisão e rigor. A qualidade e cuidado na redação da resposta são elementos importantes para a avaliação. Dúvidas na interpretação das questões devem ser explicitadas na prova.

5,0 val. 1. Determine a solução da seguinte equação com derivadas ordinárias

$$1 + y^2 - xy' = 0$$

que satisfaz a condição inicial y(1) = 1.

6,0 val. 2. Determine a solução da seguinte equação com derivadas ordinárias

$$(1 - x^2)y' - xy = xy^2$$

que satisfaz a condição inicial y(0) = 0, 5.

6,0 val. 3. Determine a solução geral da seguinte equação com derivadas ordinárias

$$y'' + 4y = x^2 + 5\cos x.$$

3,0 val. 4. Sabendo a fórmula $\mathcal{L}\{\int_0^t f(t-\tau)g(\tau)d\tau\}(s) = \mathcal{L}\{f(t)\}(s)\mathcal{L}\{g(t)\}(s)$ determine uma solução y(t) da equação

$$y(t) + \int_0^t \sin(t - \tau)y(\tau)d\tau = 1.$$

Departamento de Matemática, Universidade de Aveiro

Cálculo II (Agrupamento 1) — Exame Final

8 de Julho de 2015 Duração: **2h30m**

Classificação: ______

[30 pt.] 1. Determine, usando a transformada de Laplace, a solução do problema de Cauchy $\left\{\begin{array}{l} 12\,y+4\,y'=5\,e^{-3\,t}\\ y(0)=5 \end{array}\right.$

[20 pt.]

2. Considere a equação diferencial $y'=-\frac{x}{y}$. Determine o seu integral geral e esboce a solução que satisfaz a condição inicial y(0)=1.

[20 pt.]

3. Resolva a equação diferencial $y' = -\frac{2xy}{x^2 - 5} - 7x + 6$ utilizando o método do fator integrante.

[30 pt.]

4. Determine, justificando, a EDO linear de coeficientes constantes cuja solução geral é dada por

$$y = c_1 e^x \cos(2x) + c_2 e^x \sin(2x) + \frac{e^{-2x}}{6}.$$

Departamento de Matemática, Universidade de Aveiro

Cálculo II - Semestre Extraordinário — Exame de Recurso 25 de Janeiro de 2010

Duração: 2 horas e 30 minutos

Questão	1	2	3	4	5 (a)	5 (b)	6	7	8 (a)	8 (b)	9 (a)	9 (b)
Cotação	20	30	20	15	20	20	10	15	10	15	15	10

2. Determine a solução geral da equação y''' + y'' + y' = x - 3 .

3. Determine a solução do problema de Cauchy $\left\{ \begin{array}{l} y''-y=e^t\\ y(0)=0\\ y'(0)=1 \end{array} \right..$

4. Determine a solução geral da equação $y' = \left(\frac{2y+13}{x-1}\right)^3$.