SVD Factorization for Tall-and-fat Matrices on Map/Reduce Architectures

Burak Bayramlı

October 15, 2013

Abstract

We demonstrate an implementation for an approximate rank-k SVD factorization, combining well-known randomized projection techniques with previously implemented map/reduce solutions in order to compute steps of the random projection based SVD procedure, such QR and SVD. We structure the problem in a way that it reduces to Cholesky and SVD factorizations on $k \times k$ matrices computed on a single machine, greatly easing the computability of the problem.

1 Introduction

[1] presents many excellent techniques for utilizing map/reduce architectures to compute QR and SVD for the so-called tall-and-skinny matrices. The idea is based on the fact that QR factorization can be turned into an A^TA computation problem computer in parallel, en masse using map/reduce, and through this to a Cholesky decomposition performed on a single machine. Since

$$A^T A = (QR)^T (QR) = R^T Q^T QR = R^T R$$

and because Cholesky factorization of an $n \times n$ symmetric positive definite matrix is

$$A = LL^T$$

where L is an $n \times n$ lower triangular matrix, and R is upper triangular, we can conclude if we factorize A into L and L^T , this implies $LL^T = RR^T$, we have a method of calculating R of QR using Cholesky factorization on A^TA . The key observation here is A^TA computation results an $n \times n$ matrix and

if A is "skinny" then n is relatively small (in the thousands), and Cholesky decomposition can be executed on a small $n \times n$ matrix on a single computer. Q is computed simply as $Q = AR^{-1}$. This again is relatively cheap because R is $n \times n$, the inverse is computed locally, matrix multiplication with A can be performed through map/reduce.

SVD is an additional step. SVD decomposition is

$$A = U\Sigma V^T$$

If we expand it with A = QR

$$QR = U\Sigma V^T$$

$$R = Q^T U \Sigma V^T$$

Let's call $\tilde{U} = Q^T U$

$$R = \tilde{U}\Sigma V^T$$

This means if we run a local SVD on R (we just calculated above with Cholesky) which is an $n \times n$ matrix, we will have calculated \tilde{U} , the real Σ , and real V^T .

Now we have a map/reduce way of calculating QR and SVD on $m \times n$ matrices where n is small.

1.1 Approximate rank-k SVD

Switching gears, we look at another method for calculating SVD. The motivation is computing SVD if n is large, creating a "fat" matrix which might have columns in the billions would require reducing the dimensionality of the problem. According to [2], one way to achieve is through random projection. First we draw an $n \times k$ Gaussian random matrix Ω . Then we calculate

$$Y = A\Omega$$

We perform QR decomposition on Y

$$Y = QR$$

Then form $k \times n$ matrix

$$B = Q^T A$$

Then we can calculate SVD on this small matrix

$$B = \hat{U}\Sigma V^T$$

Then form the matrix

$$U=Q\hat{U}$$

The main idea is based on

$$A = QQ^T A$$

if replace Q which comes from random projection Y,

$$A \approx \tilde{Q}\tilde{Q}^T A$$

Q and R of the projection are close to that of A. In the multiplication above R is called B where $B = \tilde{Q}^T A$, and,

$$A \approx \tilde{Q}B$$

then, as in [1], we can take SVD of B and apply the same transition rules to obtain an approximate U of A.

This approximation works because of the fact that projecting points to a random subspace preserves distances between points, or in detail, projecting the n-point subset onto a random subspace of $O(\log n/\epsilon^2)$ dimensions only changes the interpoint distances by $(1 \pm \epsilon)$ with positive probability [3]. It is also said that Y is a good representation of the span of A.

1.2 Combining Both Methods

What if n is also very large? In this case local Cholesky or SVD computations would take a long time as well. Our idea was using approximate k-rank SVD where k << n, before map/reduce based QR and SVD methods presented in section 1, to reduce dimension before using map/reduce methods presented in Section 1, this way, we are again able to work with small matrices locally, $k \times k$ this time on which Cholesky, SVD can be performed. Below we outline each map/reduce job.

Algorithm 1: Random Projection Job

```
input : A
output: Y
function MAP(key, value)

| Tokenize value and pick out id value pairs
| result \leftarrow zeros(1,k)
| for each \ j^{th} \ token \in value \ do
| Initialize seed with j
| r \leftarrow generate k random numbers
| result \leftarrow result + r \cdot token[j]
| end
| emit key, result

function REDUCE(key, value)
| noop
```

Each value of A will arrive to the algorithm as a key and value pair. Key is line number or other identifier per row of A. Value is a collection of id value pairs where id is column id this time, and value is the value for that column. Sparsity is handled through this format, if an id for a column does not appear in a row of A, it is assumed to be zero. The resulting Y matrix has dimensions $m \times k$.

```
Algorithm 2: A^TA Cholesky Job
```

```
\begin{array}{l} \textbf{input} \ : \ \textbf{Y} \\ \textbf{output:} \ \textbf{R} \\ \textbf{function} \ MAP(key \ k, \ val \ a) \\ & | \ \textbf{for} \ i, row \ in \ enumerate(a^Ta) \ \textbf{do} \\ & | \ \textbf{emit} \ i, row \\ & | \ \textbf{end} \\ \textbf{function} \ REDUCE(key, \ value) \\ & | \ \textbf{emit} \ (k, \text{sum}(< v_j^k >) \\ \textbf{function} \ FINAL \ LOCAL \ REDUCE \ (key, \ value) \\ & | \ \textbf{result} \leftarrow \textbf{Cholesky}(A_{sum}) \\ & | \ \textbf{emit} \ (\text{result}) \\ \end{array}
```

The FINAL_LOCAL_REDUCE step is a function provided in most map/reduce frameworks, it is a central point that collects the output of all reducers, naturally a single machine which makes it ideal to execute the final Cholesky call on a $k \times k$ matrix. The output is R.

Algorithm 3: Q Job input: Y,Routput: Qfunction INIT() $| R_{inv} = R^{-1}$ function MAP(key, value) $| \text{for } row \ in \ Y \ \text{do}$ $| \text{emit } (key, row \cdot R_{inv})$

There is no reducer in the Q Job, it is a very simple job, it merely computes multiplication between row of Y and a local matrix R. Matrix R is very small, $k \times k$, hence it can be kept locally in every node. The INIT function is used to store the inverse of R locally, once the mapper is initialized, it will always use the same R^{-1} for every multiplication.

end

```
Algorithm 4: A^TQ Job
 input : A,Q
 output: B^T
 function REDUCE (key, value)
     for row in value do
        if row is from A then
         left = row
        end
        if row is from Q then
           right = row
        end
     end
     for nonzero j^{th} cell in left do
     emit j, left[j] \cdot right
     end
 function REDUCESUM (key, value)
     result \leftarrow zeros(1,k)
     for row in value do
     | result \leftarrow result + row |
     end
     emit key, result
```

The job above takes A and Q matrices at the same time. Both of these matrices are based on the same key (line number, of preexisting id) and we need to join them first. If a mapper is a pass-through mapper, in other words if it does not exist, it is assumed to simply re-emit the key and value,

which will, indirectly force matching rows with the same id from A and Q to be sent to the first reducer. Then for each unique id, the first reducer gets exactly two rows. This is an indirect way of performing a join in map/reduce environment.

Then in the reducer we deduce if the row is a Q row or an A row. We need this information because we will iterate cells of A one by one, which is assumed to be sparse. In this iteration for each j^{th} non-zero cell of A, we multiply the cell's value with the row from Q and emit the multiplication result with key j.

References

- [1] Gleich, Benson, Demmel, Direct QR factorizations for tall-and-skinny matrices in MapReduce architectures
- [2] N. Halko, Randomized methods for computing low-rank approximations of matrices
- [3] S. Dangupta, A. Gupta An Elementary Proof of a Theorem of Johnson and Lindenstrauss