FTML Exercices 1

Pour le 15 mars 2024

TABLE DES MATIÈRES

1	Pro	pabilités et statistiques	1
	1.1	P1	1
		1.1.1 Enoncé	1
	1.2	P2	1
		1.2.1 Enoncé	1
	1.3	P ₃	2
		1.3.1 Enoncé	2
	1.4	P4	
		1.4.1 Enoncé	2
2	Cal	rul différentiel	2
	2.1	C1	2
		2.1.1 Enoncé	2

1 PROBABILITÉS ET STATISTIQUES

1.1 P1

1.1.1 Enoncé

Calculer l'espérance et la variance des variables aléatoires réelles suivantes.

- X_1 de loi uniforme sur [0, 1].
- X_2 de loi uniforme sur [-1, 1].

Le théorème de transfert est souvent utilisé pour réaliser ce type de calcul. https://en.wikipedia.org/wiki/Law_of_the_unconscious_statistician

1.2 P2

1.2.1 Enoncé

Calculer l'espérance et la matrice de variance-covariance du vecteur aléatoire suivant

$$Y = (Y_1, Y_2) \tag{1}$$

оù

- Y₁ suit une loi de Bernoulli de paramètre p
- Y_2 suit une loi normale $\mathcal{N}(\mu, \sigma)$.
- On suppose Y₁ et Y₂ indépendantes.

1.3.1 Enoncé

Calculer l'espérance et la matrice de variance-covariance du vecteur aléatoire suivant

$$Z = (Z_1, Z_2) \tag{2}$$

où

- Z_1 suit une loi uniforme sur [1,2]
- $Z_2 = Z_1^2$.

1.4 P4

1.4.1 Enoncé

Le système musical occidental contient 12 notes. Un mode heptatonique contient 7 notes. Si je joue nombre n de notes au hasard, et de façon indépendante et équiprobable, au bout de combien de notes ai-je joué au moins une note hors du mode avec une probabilité supérieure à 0.9?

2 CALCUL DIFFÉRENTIEL

Nous ferons des rappels en cours sur les différentielles et les gradients d'applications, mais voici quelques exercices pour s'habituer à les manipuler. Vous pouvez trouver la définition du gradient à la section 1.3 de lecture_notes.pdf ou utiliser d'autres sources qui vous conviennent.

```
https://fr.wikipedia.org/wiki/Gradient
https://fr.wikipedia.org/wiki/Diff%C3%A9rentielle
```

2.1 C1

2.1.1 Enoncé

Calculer le gradient en tout point des applications suivantes.

$$f_{1} = \begin{cases} \mathbb{R}^{2} \to \mathbb{R} \\ (x,y) \mapsto 3 \end{cases}$$

$$f_{2} = \begin{cases} \mathbb{R}^{2} \to \mathbb{R} \\ (x,y) \mapsto x^{3} + \sin y \end{cases}$$

$$f_{3} = \begin{cases} \mathbb{R}^{2} \to \mathbb{R} \\ (x,y) \mapsto x^{3} \sin y \end{cases}$$

$$f_{4} = \begin{cases} \mathbb{R}^{d} \to \mathbb{R} \\ x \mapsto ||x||_{2}^{2} \end{cases}$$

où $\|.\|_2$ est la norme euclidienne dans \mathbb{R}^d .