Химический состав и

влияние на организм напитков

Загфуранова Елена Викторовна 9 класс, МАОУ «Школа № 103» Научный руководитель Е. Л. Кокорева, учитель химии, Школа № 103, Нижний Новгород

Предметом исследования являются сладкие газированные напитки. В ходе работы изучены химические свойства и состав популярных напитков. Во время эксперимента с использованием качественных цветных реакций без использования количественных методов обнаружены несоответствия состава на этикетке, касающиеся следующих веществ: ортофосфорной кислоты и витамина В5.

Проведение анализа составов популярных напитков, показало, что напитки содержат полезные вещества, такие как вода, ниацин, аскорбиновая кислота, адермин, таурин; нейтральные: сахарозаменители без побочных эффектов, экстракт гуараны и «вредные» - сахар и некоторые сахарозаменители, кофеин.

Опыт № 1. Определение рН среды напитков.

На рис. 1 показаны чашки с напитками, расположенными слева направо: энерготоник ("Cola Energy"), "Coca-cola Orange" и холодный чай "Lipton". На рис. 2 представлена индикаторная бумага.

Рис.1. Опыт № 1

Рис.2. Индикатор

В опытах 2-3 определяли тоже наличие аскорбиновой и фосфорной кислот в напитках.

Рис. 3. Опыт №2

Рис. 4. Опыт №2

Рис. 5. Опыт №2

Рис. 6. Опыт №3.

Рис.7 Опыт №3

Самая большая кислотность наблюдается у энерготоника (рис. 3). Самая маленькая – у холодного чая (рис. 5).

Опыт №2 Определение аскорбиновой кислоты.

Для определения аскорбиновой кислоты пользовались следующими неконцентрированными растворами: гексацианоферрат(III) калия, гидроксид натрия, соляная кислота, хлорид железа(III). Аскорбиновая кислота в щелочной среде (у нас NaOH) восстанавливает красную кровяную соль до железистосинеродистого калия, который далее при взаимодействии с FeCl₃ в кислой среде образует нерастворимую в воде соль 3-х валентного железа-берлинскую лазурь

Энерготоник "Solar" окрасился в синий цвет, что свидетельствует о наличии С₆Н₈О₆. Остальные напитки, не содержащие аскорбиновую кислоту, окрасились в зеленый цвет (рис. 3-5).

Опыт №3. Определение ортофосфорной кислоты.

После добавления нитрата серебра не наблюдается выпадения осадка, при добавлении хлорида бария раствор немного мутнеет, возможно из-за содержания в напитках сульфатов.

При реакции с фосфорной кислотой должны быть следующие реакции:

 $3AgNO_3 + H_3PO --> Ag_3PO_4 + HNO_3$ и

 $3BaCl_2 + 2H_3PO_4 --> 6HCl + Ba_3(PO_4)_2$.

Фосфат серебра и фосфат бария нерастворимы в воде(имеют маленький коэффициент растворимости) поэтому должны были выпасть в осадок. Скорее всего произошла следующая реакция:

 $BaCl_2 + Me_x(SO_4)_y --> MeCl_x + BaSO_4$.

Сульфат бария также нерастворим в воде. Это значит, что в напитках нет ортофосфорной кислоты, хотя она заявлена в составе (рис. 6-7).

Опыты 4-6 демонстрируют наличие других компонентов в напитках.

Опыт № 4. Определение кофеина. К энерготоникам добавили концентрированную азотную кислоту. Далее выпарили. Наблюдалось небольшое оранжевато-желтое окрашивание, затем кофейный цвет. В результате окисления образуется амалиновая кислота желтого цвета. Скорее всего желтого цвета получилось мало, т.к. выпаривали недостаточно долго. Но самих предполагаемых кристаллов кофеина было выпарено достаточно много.

В ходе реакции азотной кислоты с другими компонентами напитков не должно было произойти серьезных изменений, так что наблюдалась только одна видимая реакция: $C_6H_{10}N_4O_2 + HNO_3 --> C_8H_9N_4O_2 + H_2O + NO_2$.

Рис. 8. Рис.9. Опыт №4 Опыт №4

Опыт № 5. Подтверждение альдегидной группы глюкозы.

Для этой цели применили известную реакцию:

 $C_6H_5O_6 + 2Cu(OH)_2 \rightarrow C_6H_{12}O_7 + Cu_2O + 2H_2O$.

В ходе данной реакции одновалентный оксид меди окрашивает смесь в оранжевый цвет и выделяется глюконовая кислота.

У энерготоника и холодного чая были похожие реакции, т.к. в них содержится глюкоза.

Подобной реакции не наблюдалось у Колы, т.к. в её состав входят сахарозаменители.

Рис. 10. Опыт №5.

Опыт № 6 Определение витамина В5

Для определения витамина B_5 использовалась диацетат меди. При реакции с пантотеновой кислотой наблюдается незначительное выпадение темно-синего осадка медной соли витамина B_5 (CuC₁₈H₃₂N₂O₁₀) только в энерготонике "Solar". Однако в составе этикетки содержание этого витамина вообще не указывается (рис.11). В остальных напитках пантотеновой кислоты не обнаружилось.

Опыт №7. Определение красителей.

В напитки добавили по 2 таблетки активированного угля. На рис.11 показаны напитки «Соса-cola», «Lipton» и «Соса-cola energy». Самый стойкий краситель наблюдается в популярном напитке «Соса-cola» (крайняя справа чашка). В энерготонике также присутствует краситель, но он менее стойкий. А в холодном чае «Lipton» краситель практически отсутствует. Активированный уголь по своей природе впитывает разные вещества, в том числе и краситель, и очищает напитки, происходит адсорбция.

Рис. 11. Рис.12. Опыт №7. Опыт №7.

Опыт №8. Влияние на ткани животного происхождения (рис 13-14).

Напиток	1 Красители	2 Кофеин С ₈ H ₁₀ N ₄ O ₂	3 Сахароза (глюкоза)	4 Сахарозамени тели	5 Витамины В ₅ и С	6 Ортофосфор- ная кислота
1. Coca- cola Orange	присутств ует	отсутствует	отсутствуе т	аспартам	отсутствуе т	отсутствует
2.Coca- cola Energy	присутств	присутствуе	присутств	отсутствует	отсутствуе т	отсутствует
3.Lipton (малина)	присутств	отсутствует	присутств	отсутствует	аскорбино вая кислота	отсутствует
4. Solar	присутств	присутствуе т	присутств	отсутствует	аскорбино вая и пантотено вая к-та	отсутствует
5.Байкал	присутств ует	отсутствует	присутств ует	отсутствует	отсутствуе т	отсутствует
6.Ваниль	отсутствуе т	отсутствует	присутств ует	отсутствует	отсутствуе т	отсутствует
7.Тархун	присутств ует	отсутствует	присутств ует	отсутствует	отсутствуе т	отсутствует
8.Smart	присутств ует	отсутствует	отсутствуе т	присутствует	отсутствуе т	отсутствует

В ходе опыта было выяснено, что в энерготонике "cola-energy" и напитке "Тархун" содержатся красители, т.к. скорлупа и колбаса окрасились в соответствующие цвета. Колбаса покрылась жирной пленкой, скорлупа стала хрупкой. Влияние в целом отрицательное.

Рис. 13. Рис. 14. Опыт №8. Опыт №8.

Вывод

В ходе работы мною было выяснено, что напитки имеют сложный и разнообразный химический состав. Опытным путем выявлено, что состав, указанный на этикетке напитков, не во всех случаях удается подтвердить качественными реакциями без применения количественных методов анализа и приборных аналитических методов. Например, в некоторых случаях не обнаружена заявленная ортофосфорная кислота, а в некоторых случаях найден витамин B_5 . В дальнейшем планируется получить более обоснованные данные с помощью приборов.

Литература

- 1) Заводник Л.Б., Будько Т.Н., Почебут О.Н. Практикум для лабораторных работ по «Общей биологической химии» (часть 1- статическая биохимия) Гродно: $\Gamma\Gamma$ АУ, 2011-70 с.
- 2) Реутов О.А., Курц А.Л., Бутин К.П. Органическая химия. М.: Лаборатория знаний, 2021.
- 3) Скурихин И.М., Нечаев А.П. Все о пище с точки зрения химика Высш. шк. 1991. -288 с.