Strogatz's model

Pablo Rodríguez-Sánchez 2019-08-07

Model

The function strogatz simulates Strogatz's model for sleep-wake dynamics. The dynamics have the following structure:

$$\dot{\theta}_1 = \omega_1 - C_1 \cdot \cos(2\pi(\theta_2 - \theta_1))\dot{\theta}_2 = \omega_2 + C_2 \cdot \cos(2\pi(\theta_2 - \theta_1))$$

Analysis

It is useful to note that, using the relative phase $\psi \equiv \theta_1 - \theta_2$, the system can be simplified to:

$$\dot{\psi} = \Omega - C\cos(2\pi\psi)$$

where $\Omega \equiv \omega_1 - \omega_2$ and $C \equiv C_1 + C_2$. The relative phase can be stabilized if and only if $\dot{\psi} = 0$, and this is only possible if:

$$|\frac{\Omega}{C}| \leq 1$$

Reference

Strogatz, S. H. (1987). Human sleep and circadian rhythms: a simple model based on two coupled oscillators. Journal of Mathematical Biology, 25(3), 327–347. http://doi.org/10.1007/BF00276440

Examples of usage

Getting the time series

With default parameters:

```
## Problem setting
y0 <- c(th1 = 0.1, th2 = 0.05) # Initial conditions

nDays <- 5
ts <- seq(0, nDays*24, length.out=nDays*24*20) # Times to simulate

# Simulate
sol <- strogatz(ts, y0)</pre>
```

With custom parameters:

```
## Problem setting
y0 <- c(th1 = 0.1, th2 = 0.05) # Initial conditions

nDays <- 5
ts <- seq(0, nDays*24, length.out=nDays*24*20) # Times to simulate
parms <- c(w1=1/24, w2=0.85/24, C1=0/24, C2=0.16/24) # Parameters

# Simulate
sol <- strogatz(ts, y0, parms)</pre>
```

The output looks like:

time	th1	th2	asleep
0.0000000	0.1000000	0.0500000	TRUE
0.0500208	0.1000000 0.1020842	0.0500000 0.0520887	TRUE
0.1000417	0.1041684	0.0541775	TRUE
0.1500625	0.1062526	0.0562662	TRUE
0.2000834	0.1083368	0.0583549	TRUE

where:

- time: the time (in h),
- th1: the phase of the circadian oscillator
- th2: the phase of the sleep-wake cycle
- asleep: the asleep/awake status (TRUE if asleep, FALSE if awake)

Plotting results

Raster / somnogram plot

```
plot(sol$time/24, sol$asleep, type = 'line', xlab = 'Time (d)', ylab = 'Asleep')
rasterPlot(sol)
```


 $\begin{tabular}{ll} \bf Results \\ \bf Entrained \ vs. \ non \ entrained \ case \\ \end{tabular}$

Entrained h

