

Introduction to graph differences

Time series analysis

Time series analysis

- How some number changes as a function of time
 - Is there an upward or downward trend?
- Rate of change of things over a sliding window of time
- Examples:
 - Tracking weight over time
 - Tracking stock investment portfolio value over time

Evolving graphs

- Graphs that change over time: communication networks
- Assumptions:
 - Edge changes over time; assume nodes stay constant
 - Both edges and nodes change over time

Graph differences

- Graphs are comprised of:
 - A node set
 - An edge set
- If a node set doesn't change:
 - Changing only the edge set will result in a change in the graph

Graph differences

Analogy: set differences

```
set(c1, c2, c3).difference(set(c2, c3, c4)) = set(c1)
set(c2, c3, c4).difference(set(c1, c2, c3)) = set(c4)
```

- In NetworkX: .difference(G1, G2) function
 - Assumes G1 and G2 have equal node sets

Graph differences in Python

```
In [1]: G1.edges()
Out[1]: [('cust1', 'cust2'), ('cust3', 'cust2')]
In [2]: G2.edges()
Out[2]: [('cust1', 'cust3'), ('cust3', 'cust2')]
In [3]: G2minusG1 = nx.difference(G2, G1)
In [4]: G1minusG2 = nx.difference(G1, G2)
```


Let's practice!

- Graph summary statistics:
 - Number of nodes
 - Number of edges
 - Degree distribution
 - Centrality distributions

- For simple metrics, use edgelist data
- For graph theoretic metrics, use graph object

Cumulative distribution

Compact way of representing the distribution of values

Histogram

Cumulative Dist.

Let's practice!

Zooming in & zooming out: Overall graph summary

Graph exploration at scales

- Exploration at global and local scales
- Global: Centrality distributions
- Local: Connectivity and structures

Zooming on nodes

- Isolate a given node or set of nodes
- Plot node statistic over time

Summarizing evolving node statistics

- Customer-product dataset
 - Investigate how purchasing patterns have changed over time
- 'customer1' node of interest

Summarizing evolving node statistics

```
In [1]: Gs = [...]
In [2]: noi = 'customer1'
In [3]: degs = []
In [4]: for g in Gs:
     # Get the degree of the node
           degs.append(len(g.neighbors(noi)))
In [5]: plt.plot(degs)
In [6]: plt.show()
```


Summarizing evolving node statistics

Default dictionaries

```
In [7]: from collections import defaultdict
In [8]: d = defaultdict(list)
In [9]: d['heathrow'].append(0.31)
In [10]: d['heathrow'].append(0.84)
In [11]: d
Out[11]: defaultdict(list, {'heathrow': [0.31, 0.84]})
```


Default dictionaries

Let's practice!