SEQUENCE LISTING

<110> MOUGIN, Bruno LAAYOUN, Ali

<120> METHOD FOR AMPLIFYING AT LEAST ONE SPECIFIC NUCLEOTIDE SEQUENCE, AND PRIMERS USED

<130> 107976

<140> US 09/701,243

<141> 2000-12-28

<150> PCT/FR99/01247

<151> 1999-05-27

<150> FR 98/06866

<151> 1998-05-27

<160> 29

<170> PatentIn version 3.1

<210> 1

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> Blocking primer

<400> 1 atccttcgtg tccccacagc acg

```
<210> 2
<211> 19
<212> DNA
<213> artificial sequence
<220>
<223> Blocking primer
<400> 2
                                                                    19-
tcgccgctgc actgtgaag
<210> 3
<211> 24
<212> DNA
<213> artificial sequence
<220>
<223>
      Blocking primer
<220>
<221> particular characteristic
<222> (24)..(24)
<223> modification by the C6-NH2 group
<400> 3
                                                                    24
cccccagca cgtttcttgg agct
<210> 4
<211> 24
<212> DNA
<213> artificial sequence
<220>
```

<223> Blocking primer

<220>						
<221>	particular characteristic					
<222>	(1)(1)					
<223>	modification by the acridine group					
<220>						
<221>	particular characteristic					
<222>	(24)(24)					
<223>	modification by H					
<400>	4 agca cgtttcttgg agct 24					
ceecce	agea egettettyg aget 24					
<210>	5					
<211>	26					
<212>	DNA					
<213>	artificial sequence					
<220>						
<223>	Blocking primer					
<220>						
<221>	misc_feature					
<222>	(24)(24)					
<223>	n = inosine					
<220>						
<221>	particular characteristic					
<222>	(26)(26)					
<223>	modification by the C6-NH2 group					

<400> 5 . cccacagcac gtttcttgga gcangc

```
<210> 6
<211> 21
<212> DNA
<213> artificial sequence
<220>
<223> Blocking primer
<400> 6
cccagcacgt ttcttggagc t
<210> 7
<211> 24
<212> DNA
<213> artificial sequence
<220>
<223> Blocking primer
<400> 7
cccccagca cgtttcttgg agct
<210> 8
<211> 24
<212> DNA
<213> artificial sequence
<220>
<223> Blocking primer
<220>
<221> misc_feature
```

<222> (23)..(23)

 $\langle 223 \rangle$ n = inosine

21 24 <400> 8 24 cccccagca cgtttcttgg agnt <210> 9 <211> 24 <212> DNA <213> artificial sequence <220> <223> Blocking primer <220> <221> misc_feature <222> (22)..(22) $\langle 223 \rangle$ n = inosine <220> <221> misc_feature <222> (23)..(23) $\langle 223 \rangle$ n = inosine <400> 9 24 catttcctca atgggacgga gnna <210> 10 <211> 26 <212> DNA <213> artificial sequence <220> <223> Blocking primer

<220>

```
<221> misc_feature
<222> (24)..(24)
\langle 223 \rangle n = inosine
<400> 10
                                                                         26
ccccagcac gtttcttgga gcangc
<210> 11
<211> 26
<212> DNA
<213> artificial sequence
<220>
<223> Blocking primer
<220>
<221> misc_feature
<222> (24)..(24)
\langle 223 \rangle n = inosine
<400> 11
cccacagcac gtttcttgga gcangc
                                                                         26
<210> 12
<211> 19
<212> DNA
<213> artificial sequence
<220>
<223> Blocking primer
<400> 12
                                                                         19
cacgtttctt gcagcagga
<210> 13
```

```
<211> 22
<212> DNA
<213> artificial sequence
<220>
<223> Blocking primer
<400> 13
                                                                       22
cagcacgttt cttgcagcag ga
<210> 14
<211> 19
<212> DNA
<213> artificial sequence
<220>
<223> Blocking primer
<220>
<221> misc_feature
<222> (3)..(3)
\langle 223 \rangle n = inosine
<400> 14
                                                                       19
cangtttctt gcagcagga
<210> 15
<211> 22
<212> DNA
<213> artificial sequence
<220>
<223> Blocking primer
```

<220>

22

26

<221> misc_feature <222> (6)..(6) $\langle 223 \rangle$ n = inosine <400> 15 cagcangttt cttgcagcag ga <210> 16 <211> 26 <212> DNA <213> artificial sequence <220> <223> Blocking primer <220> <221> misc_feature <222> (10)..(10) $\langle 223 \rangle$ n = inosine <400> 16 ccccagcan gtttcttgca gcagga <210> 17 <211> 26 <212> DNA <213> artificial sequence <220> <223> Blocking primer <220> <221> misc_feature

<222> (10)..(10)

 $\langle 223 \rangle$ n = inosine

26

26

<400> 17 cccacagcan gtttcttgca gcagga <210> 18 <211> 26 <212> DNA <213> artificial sequence <220> <223> Blocking primer <220> <221> misc_feature <222> (10)..(10) $\langle 223 \rangle$ n = inosine <220> <221> misc_feature <222> (25)..(25) $\langle 223 \rangle$ n = inosine <400> 18 cccacagcan gtttcttgca gcagna <210> 19 <211> 26 <212> DNA <213> artificial sequence <220>

<223> Blocking primer

<220>

<221>	misc_feature	
<222>	(10)(10)	
<223>	n = inosine	
	·	
<220>		
<221>	misc_feature	
<222>	(25)(25)	
<223>	n = inosine	
<400> cccca	19 gcan gtttcttgca gcagna	26
<210>	20	
<211>	33	
<212>	DNA	
<213>	human	
<400> cctgat	20 gccg agtactggaa cagccagaag gac	33
<210>	21	
<211>	33	
<212>	DNA	
<213>	human	
<400> cctgtc		33
<210>	22	
<211>	33	
<212>	DNA	
<213>		

<400> 22

cctgwyg	ccg	agtmctggaa	cagccagaag	gac			33
<210>	23						
<211>	33						
<212>	DNA						
<213>	huma	an					
	23 eggc	tcakgacctt	gtcggtcttc	ctg			33
<210>	24						
<211>	33				•		
<212>	DNA						
<213>	huma	an					
<400>	24 caac	tcatgacctt	gtcggtcttc	ctg			33
99-00-	- 9 9 -		3 3 3				
<210>	25						
<211>	57						
<212>	DNA						
<213>	huma	an					
<400> agaggc	25 atct	ataaccaaga	ggagaacgtg	cgcttcgaca	gcgacgtggg	ggagtac	57
<210>	26						
<211>	57						
<212>	DNA						
<213>	hum	an ·					
<400> agatac	26 atct	ataaccaaga	ggagtacgcg	cgctacaaca	gtgacctggg	ggagtac	57
2010 5	07						
<210>	27						

<211>	57					
	3.					
<212>	DNA					
<213>	human					
						•
<400>	27 atct ataaccaaga	agagwacgyg	cgctwcraca	gygacstggg	ggagtac	57
aganio	2000	55-5 515				
<210>	28	·				
	E 7					1 () () () () () () () () () (
<211>	57					
<212>	DNA					4
<213>	human					
<400>	28 taga tattggttct	cctcwtgcrc	acaawaytat	crctgsaccc	cctcatq	57
cccmyg	caga caccagaccoc	000003020				
<210>	29					
<211>	. 57			. ·		•
<212>	DNA					
<213>	human					
			•			
		·	•			
<400>	29	act at t acas	acassactat	cactacaccc	cctcatc	57
fcfccd.	taga tattggttct	Colollydac	gegaagetet	cyclycaddd	cccacy	3,