

Organization & Grading Applied Machine & Deep Learning (190.015)

Univ.-Prof. Dr. Elmar Rueckert

Telefon: +43 3842 402 - 1901

Email: teaching@ai-lab.science

Chair of Cyber-Physical-Systems

Outlook of this lecture

- Organization of the 1st week
- Dates & Locations
- Course Materials & Links
- Grading
- Some Remarks by Linus Nwankwo,
 M.Sc.

1st Week:

Legend

ì	Quizz on ML	Online Quizz using https://tweedback.de
	Course Content Presentation	Using google slides, etc.
	15 min Break	Breaks to recover or to continue programming
	Organisation & Instructions	Using google slides, etc.
	Practical Exercise	Using online tools, our JupyterHub, etc.
	Latest Research	State-of-the-art research

	MON	TUE	WED	THUR	FRI
	02.10.2023	03.10.2023	04.10.2023	05.10.2023	06.10.2023
Topic	Intro to ML Organisation	Neural Networks	Representation Learning	Robot Learning	AML Projects
9 ar :1 :3	5				
:4					
10 ar		Quizz on Neural Nets	Introduction to Deep		Quizz on AML
:3 :4	Introduction to MI	Introduction to Multi- Layer-Perceptrons	Representation Learning		Project Topic Presentations
11 ar		15 min Break	JupyterHub NB on		1 resentations
:1 :3 :4	Validation, Figures &	Handout on Neural Networks using playground.tensorflow	Rep. Learning 30 min Break		Team Ass., Git Repos & Wiki Instructions AML Summary
12 pr	n 30 min Lunch Break	30 min Lunch Break	Curiosity (MLPs), Imagination (Dreamer)	Quizz on Robotics	, and carminally
:3 :4	Course organication a	Introduction to CNNs	and Information (Empowerment)	Introduction to Robot Learning	
1 pr	m 15 min Break	15 min Break	Quizz Summary		
:1	1 yaloni rogramming	JupyterHub NB on MLPs CNNs		15 min Break Handout on Robot	
:4	5 Quizz Summary	Quizz Summary		Learning (Model	
2 pr				Learning & RL)	
:1	***			15 min Break	
:3				Introduction to Mobile Robotics & SLAM	
3 pr				JupyterHub NB on Path Planning	
:3	0			Quizz Summary	
:4	5				

Dates & Locations

- **Dates:** 02.10 06.10.2023
 - **Location:** HS 3 Studienzentrum, Montanuniversität, Leoben
 - Recordings of the lectures of of the 1st week will be put on Moodle.
 - Full link: https://moodle.unileoben.ac.at/course/view.php?id=3082

Dates & Locations

- **Dates:** 07.10 31.01.2024
 - Online Every Wednesday from 17:00 18:00 via Webex
 - Full link: https://unileoben.webex.com/unileoben/j.php?MTID=m5e17e864e5 784737dffd2fa1d27d161c
 - Meeting number (access code): 2789 858 4770
 - Meeting password: vTHYP5QMj77

Course Materials & Links

Resources:

- Everything is linked via course webpage:
- https://cps.unileoben.ac.at/190-015-applied-machine-and-deep-learning-5sh-il-ws/
- Jupyter Notebooks are hosted on our public git repository: Link will be added here on the 02.10.2023.

- Services:

- https://jupyter.cps.unileoben.ac.at
- https://studgit.cps.unileoben.ac.at (domain not yet activated)

Grading

Project Work				
Code*	0 - 30 pts			
Report*	0 - 40 pts			
Final Oral Presentation & Discussion (Dates will be assigned to the teams after the 31st of January 2024). Location is the office of Prof. Rueckert.	0 - 30 pts			
Total	100 pts			
Bonus Points on the Project Work				
Excellent Report using wiki repository	0 - 20 pts			
Excellent Algorithmic Implementation	0 - 20 pts			
Active Participation in the 1st Week				
Physical attendance	0 - 10 pts			

Grading

Cumulative Points	Final Grade	
0 - 49.9	5	
50 - 65.9	4	
66 - 79.9	3	
80 - 91.9	2	
92 - 100	1	

A minimum of 50 points need to be achieved to be positive. Git repositories with either not code or no documentation will result in a 5.

Some Remarks by Linus Nwankwo, M.Sc.

Teaching Assistant of the AML course: Linus Nwankwo, M.Sc.

Short Bio: Mr. Linus Nwankwo started as a PhD student at the Chair of Cyber-Physical-Systems (CPS) in August 2021. Prior to joining CPS, he worked as a research intern at the Department of Electrical and Computer Engineering, Technische Universität Kaiserslautern, Germany.

In 2020, he obtained his M.Sc. degree in Automation and Robotics, a speciality in control for Green Mechatronics (GreeM) at the University of Bourgogne Franche-Comté (UBFC), France. In his M.Sc. thesis, he implemented a stabilisation control for a mobile inverted pendulum robot and investigated the possibility of controlling and stabilising the robot via CANopen communication network.

Notes

- Course tutorials and materials will be posted on our <u>JupyterHub</u>.
- Online assistance will be limited, therefore, it is encouraged to attend the course in person so that you can get unlimited assistance to enable you finish or at least figure out how to finish the exercise before the due time.
- An account will be created for each group in our <u>JupyterHub</u> for submission of the exercise.
- The accounts will remain active till the end of the semester.
- The final project results will be presented in a written report in form of a git repository wiki page, and presented for a final 5 -10 mins.

Communication and Academic Integrity

- Office Hours: If you have any questions or need assistance, please come during the office hour. If you cannot make it to office hours, email me to schedule an appointment.
- **Emails:** It is extremely hard to discuss technical questions through emails. Therefore, we encourage you to come to the lab for such a discussion.
- **Discussions among teams**: Encouraged for a better understanding of course materials. However, each of you (or your team) should work on your code independently after the discussions.
- Lab safety: In case your chosen project requires a physical robot or other hardware in our lab, please seek permission from the technician or the person in charge of such hardware.
- Citation: Reference any website or academic material used in your project.

Prerequisites

- A laptop or tablet.
- Internet access. You could use the Uni. internet or eduroam.
- Basic Python programming. No worries if you do not have some experience, we will start with the basics.
- Basic background in statistics, e.g., probability, descriptive statistics (measures of central tendency and dispersion), visual representation of data (histograms, bar charts, pie charts, scatter plots, etc.).
- Recommended Prerequisites: Introduction to Machine Learning ("190.012" and "190.013").

The Project Workflow

Project Presentation

Welcome to the lecture Macrine Learning (190.012)

Date First S. Claus Rescond

Tubeloon +10 2040 400 1901

Proof barring@allabarance.

Grouping, Q & A

Reports and Code Submission

Exercise points and grading

Project/Task Presentation

- Introduction to the task: 06.10.2023
- Motivation & Objectives
- Research Questions & Related Work
- Problem & Dataset Description
- Approach & Methods
- Tutorial if required, Q & A

Q & A

- During the lecture & office hours
- If technical question(s) that involve hardware:
 - come to the lab
 - schedule an appointment

Report and Code

Report:

- All reports must be in the **Wiki repository** or **README.md** format.
- HANDWRITTEN report will not be accepted

Code:

- All the code must be written using Jupyter Notebook or Google Colab.
- Use our JupyterHub templates at the following repository:
 - Jupyter Notebook
 - Just open it and start filling it.
- Inline comments in the code are necessary, but not mandatory.
- The file must be in .ipynb format.

Alternative Submission Method

If there are hitches, or you are unable to work with our JupyterHub, then:

- Create a .zip file with the following contents:
 - .ipynb of your code
 - .md of the wiki report
- Name it m-number_firstname_lastname_task<#>.zip
 - For example: m123456789_john_smith_assign1.zip
 - Upload it to the cloud at <u>Direct Upload</u>
- Note: No submission will be accepted via email.

Projects Overview

For the course, we have five (5) projects to be worked on by the students (individual or group):

- Application and comparison of deep neural networks for steel quality prediction in continuous casting plants with data from the 'Stahl- und Walzwerk Marienhütte GmbH Graz'.
- Predictive maintenance of bearing shells using frequency analysis in decision trees and deep neural networks based on acoustic measurement data.
- Motion analysis and path planning for human-machine interaction in logistics tasks with mobile robots of the Chair of CPS.
- Autonomous navigation and mapping with RGB-D cameras of the four-legged robot Unitree
 Go1 for excavation inspection in mining.

Getting Started Tools

Necessary tools to get started:

- Linux: Basic commands are required.
- **Python:** You just need to have a basic idea about data structures, operators, functions, etc.
- ROS: ROS Wiki Documentation has all that you need to get started.
- Virtual Machines: If your OS is not Linux, do not worry, VMware will work on Windows and Mac.
- Git: To better manage your codes, we recommend Git.

Installing and using these tools in your project will be discussed in details in our next lab.

Project Objectives

At the end of this course, you should be able to:

- Implement or independently adapt modern machine learning methods, and in particular deep learning methods, in Python.
- Analyse data of complex industrial problems, process (filter) the data, and divide it into training- and test data sets such that a meaningful interpretation is possible.
- Define criteria and metrics to evaluate, predict, and generate statistical analysis of data.
- Develop, evaluate, and discuss meaningful real-world experiments.
- Identify and describe assumptions, problems, and ideas for improvement of practical learning problems.

Summary of Organization & Grading

- Organization of the 1st week
- Dates & Locations
- Course Materials & Links
- Grading
- Some Remarks by Linus Nwankwo,
 M.Sc.

Resources:

- Everything is linked via course webpage:
- https://cps.unileoben.ac.at/190-015-applied-machine-and-de-ep-learning-5sh-il-ws/
- Jupyter Notebooks are hosted on our public git repository: Link will be added here on the 02.10.2023.

Services:

- https://jupyter.cps.unileoben.ac.at
- <u>https://studgit.cps.unileoben.ac.at</u> (domain not yet activated)

Thank you for your attention!

Visit our Youtube Channel:

https://youtube.com/@CPSAustria

Phone: +43 3842 402 – **1901** (Sekretariat CPS)

Email: cps@unileoben.ac.at

Web: https://cps.unileoben.ac.at

Disclaimer: The lecture notes posted on this website are for personal use only. The material is intended for educational purposes only. Reproduction of the material for any purposes other than what is intended is prohibited. The content is to be used for educational and non-commercial purposes only and is not to be changed, altered, or used for any commercial endeavor without the express written permission of Professor Rueckert.