

F/G

cycles

Figure 2

FIG. 4.

II ATGGCACCGGMMAGATCTCTCTGCACGCCTCTCCCAACCCCAACAAAAAGCDMAGTAATGTCTCGCTACGAGCTCAACAGCT aggngangtrofficatgagofficgnapcaaggrgaaccaagdaacgacaapaarcccpsipsoffitigsofficigaaagstaaapaapctgi TCAGCATGAGC|FTCGT|CCAAGGTGAAGTCTAAACGACAA|SATCCC|ABT|IBC|AFT|AGC|CTGAAAGAGAA|GAA|JCTGT ATGGFTPCCGAPFCGGFCAGCTGCACTACEGTCTGCGTGACGAACAGCAGAAAAAGCCD Σ

Gcoppandangangganggangcoprincenggingancanganggapagngan <mark>cogaagaacaaba</mark>arggaaagcgrттсөл<u>b</u>тлумасадбалүүса<u>бс</u>ынуна M GACCCTCCAM

II cchhachganhcaighadhchgcaagcaadhhhhiscciadhrichdgacaahlacadaadacaanaalaadaaanhhisaanaarric . TANCAACTCCGGTCAGGATATCATCGACTTC м ссбраствотом страстина поста в сервания в страните страните страните страните страните страните страните стр

FIG. 5A.

USSN 10/623,036 Filed: July 18, 2003 Docket No: 0100.227US

7/15

FIG. 5B.

☑ RABBIT

F/G. 8.

11/15

CELL	Tet COLONIES	Amp COLONIES	COLONY PCR			
TG-I	131	21	3/3 AT I KB			
JC8679	123	31	4/4 AT 1 KB			
VECTOR CONTROL	51	0				

FIG. 9.

CELL	Tet COLONIES	Amp COLONIES	COLONY PCR			
TG-I	28	54	7/7 AT 1 KB			
JC8679	149	117	3/3 AT 1 KB			
VECTOR CONTROL	51	0	. ·			

FIG. 10.

					•				*		-									
													_				13/	15	,	
	COMMENT	EFFICIENT INSERTION BY	HOMOLOGOUS RECOMBINATION	WITH CO-ELECTROPORATED VECTOR	100x LESS EFFICIENT THAN	1 FRAGMENT		HOMOLOGOUS INSERTION	DEPENDS ON FREE ENDS		IF VECTOR IS IN CELLS ALREADY,	HIGH EFFICIENCY OCCURS EVEN	THROUGH VECTOR IS UNCUT		-CONTROL: NON-HOMOLOGOUS	INSERTION INTO CHROMOSOME		-CONTROL: NO AMP BACKGROUND		
% HOMOLOGOUS	RECOMBINATION	100% (N=14)			100% (N=2)						70% (N=7)									ソナ ツゴ
AMP TET	COLONIES	1,500			16			0			10,000			0		-	0			
AMP	COLONIES	4,000			2,000			16			5,000		i-Sfi	2,000			N.D.		٠.	
	APPROACH	1-CUT VECTOR	1 INSERT	JC8679	2-CUT VECTOR	2 INSERTS	. JC8679	3-UNCUT VECTOR	1 INSERT	JC8679	4-NO VECTOR	1 INSERT	JC8679::pUCSfi-Sfi	5-NO VECTOR	1 INSERT	JC8679	6-CUT VECTOR	NO INSERT	JC8679	,

FIG. 11A.

HOMOLOGOUS RECOMBINATION COLONY PCR:

2480

FIG. 11B.

FIG. 12.

15/15

	ORIS		DRUGR		PROMOTERS	
A	ORI-PUC	.в в		D_	LACO LACP	_E·
A	ORI- PUC	ВЕ	AMPICILLIN ^R C	D_	LACI LACO LACP -	<u>-</u> E
A	ORI-PBR	.B B	TETRACYCLINER	D_	LACIO LACP _	<u>-</u> E
A	ORI-PBR	B E		D_	LACP	<u>-</u> E
A	ORI - PAT	B B		D	LACUVS.	_ _E
A	ORI- PAT	B B		D_	PHOA P-	_ _E
		В		D.	TACP-	E
		8	KANAMYCIN ^R C	D	ARABAD ARAP	<u>.</u> E
	•		STREPTOMYCINR C	D_	TRPP	_E
		8	STREPTOMYCIN ^R	D.	λPR—	_E
				D_	CI ⁸⁵⁷ λPL —	_E
	TERMINATORS		SINGLE PEPTIDES	•		 .
F _	M13	• -	E <u>OMPF</u> F	D	CI APL -	E
E	0X174	G	E <u>PHOA</u> F			_
F	P2200P	_G	E <u>OMPA</u> F	D	λPL —	E
F _	TRP	G	EF			
F	S10	_G	E <u>PELB</u> F			
	SS DNA ORI	_	E BLA F			
_	MI3	_				

FIG. 13.