Computational Homework 4 Cover Page

Name	(Print):	
	()	

This assignment contains 2 problems. Write your name in the space above and put your initials on the top of every page, in case the pages become separated.

- Email me your code (persebastian.skardal@trincoll.edu) in a single .zip-file named lastname#.zip with the subject line lastname homework##. (Replace ## with the assignment number, e.g., 02 for the second assignment.). Your code should be neatly written and well commented. Organize your code appropriately into different .m-files for different problems.
- If a written portion is required, complete it NEATLY on 8.5 x 11 white paper. Assignments completed on lined paper will not be accepted.
- If multiple sheets of paper are necessary, staple your assignment before coming to class. Unstapled assignments will not be accepted.
- Include this cover page at the front of your assignment. Assignments missing this cover page will not be accepted.
- If plots or figures are requires, print and include them in this packet. Assignments missing the required plots and figures will be considered incomplete.
- Organize your assignment in the proper order. Assignments in the wrong order will not be accepted.
- Late homework will not be accepted.

Do not write in the space below.

Problem	1	2(a)	2(b)	2(c)	2(d)	Total
Points						
Score						

- 1. Write a MATLAB function called PowerMethod.m that implements the power method to calculate the eigenvector, eigenvalue pair v_{max} , λ_{max} of a square matrix A. Your code should take as an input the matrix A, an initial vector x_0 to start the power method, and the number of iterations k. Your code should output the eigenvector v_{max} and the eigenvalue λ_{max} .
- 2. Now you will calculate the PageRank centrality of a set of N=1000 webpages on the Notre Dame server:
 - (a) On the course website is a dataset given in NotreDame.txt. This file represents a list of links in the network. For example, the top line, 1—870, says that a link exists from node 1 to node 870. Write a MATLAB function called Adjacency.m that takes as an input this 8732×2 matrix representing the list of link in the network and outputs the 1000×1000 adjacency matrix A. Recall that the entries of A are defined as

$$A_{ij} = \begin{cases} 1 & \text{if } j \to i \\ 0 & \text{otherwise.} \end{cases}$$

- (b) Next, write a MATLAB function called Transition.m that takes as an input the adjacency matrix A from above, as well as a teleportation parameter α , and outputs a transition matrix Π associated PageRank.
- (c) Finally, write a MATLAB *script* called PageRank.m that imports the dataset, uses the functions Adjacency.m and Transition.m to build the transition matrix Π , then uses your function PowerMethod.m to compute the PageRank vector p^{∞} .
 - Using a teleportation parameter of $\alpha = 0.1$, calculate the PageRank vector and find the five top-ranked webpages. What are their indices? What are their respective values (i.e., their respective entries in p^{∞})?
 - Note: To find the top ranked webpages, consider using the built-in max function in MAT-LAB. For instance, the command [val,ind] = max(p); will calculate the maximum entry of p, save it in the variable val, then save its index in the variable ind.
- (d) Do the same for a teleportation parameter of $\alpha = 0.05$ and $\alpha = 0.2$. How does the ranking of the top five webpages change?