QHCC

Generated by Doxygen 1.12.0

Namespace Index	1
1.1 Package List	1
2 File Index	3
2.1 File List	3
2.77.10 2.50	Ū
B Namespace Documentation	5
3.1 demo_QHCC_XGBoost Namespace Reference	5
3.1.1 Detailed Description	5
3.1.2 Function Documentation	5
3.1.2.1 auto_feature_select()	5
3.1.2.2 experiment_redcap_lab()	6
3.1.2.3 experiment_redcap_lab_radiomics()	6
3.1.2.4 main()	7
3.2 extract_QHCC_radiomics_features Namespace Reference	7
3.2.1 Detailed Description	8
3.2.2 Variable Documentation	8
3.2.2.1 extractor	8
3.2.2.2 feature_row	8
3.2.2.3 features	8
3.2.2.4 flat_features	8
3.2.2.5 image	8
3.2.2.6 index	8
3.2.2.7 mask	9
3.2.2.8 mask dir	9
3.2.2.9 mask files	9
3.2.2.10 mask_path	9
3.2.2.11 mri dir	9
3.2.2.12 mri_files	9
3.2.2.13 mri_path	9
3.2.2.14 output_path	9
3.2.2.15 radiomics_data	9
3.2.2.16 temp_mri_path	9
1 File Documentation	11
4.1 demo_QHCC_XGBoost.py File Reference	11
	11
4.2 oxtraot_arroo_radioffiles_leatures.py r lie releiefflee	

Namespace Index

1.1 Package List

Here are the packages with brief descriptions (if available):

demo_QHCC_XGBoost	
The demo file for doing classification on QHCC datasets	5
extract_QHCC_radiomics_features	
Extracting radiomics features from medical images with given masks	7

2 Namespace Index

File Index

2.1 File List

Here is a list of all files with brief descriptions:

demo_QHCC_XGBoost.py	1
extract QHCC radiomics features.py	1

File Index

Namespace Documentation

3.1 demo_QHCC_XGBoost Namespace Reference

The demo file for doing classification on QHCC datasets.

Functions

```
• auto_feature_select (X0, y0, k=1)
```

Feature selection to select the top k features with the highest mutual information values Input:

• experiment redcap lab (df, seed)

Experiments on prediction with tabular data Input:

experiment_redcap_lab_radiomics (df, df_1, df_2, ids_train=None, ids_test=None, seed=100)

Experiments on prediction with both tabular data and radiomics features Input:

• main ()

The main function for performing experiments and printing out cross validation results.

3.1.1 Detailed Description

The demo file for doing classification on QHCC datasets.

Version

v1.0

3.1.2 Function Documentation

3.1.2.1 auto_feature_select()

```
demo_QHCC_XGBoost.auto_feature_select ( x0, y0, k = 1)
```

Feature selection to select the top k features with the highest mutual information values Input:

Parameters

X0	dataframe, the tabular data	
y0	dataframe, the label data	
k	k integer, the number of feature elements to be selected Output:	

Returns

selected_features: the indexes of the selected features

3.1.2.2 experiment_redcap_lab()

Experiments on prediction with tabular data Input:

Parameters

df	dataframe, the tabular data
seed	random seed Output:

Returns

model: the trained model

ids_train: the patient IDs for the training data ids_test: the patient IDs for the test data

acc: accuracy

auc: AUC (area under the curve) score

3.1.2.3 experiment_redcap_lab_radiomics()

Experiments on prediction with both tabular data and radiomics features Input:

Parameters

df	dataframe, the tabular data
df_1	dataframe, the radiomics features extracted from MRI images
df_2	dataframe, the radiomics features extracted from CT images
ids_train	the patient IDs for the training data
ids_test	the patient IDs for the test data
seed	random seed Output:

Returns

```
model: the trained model ids_train: the patient IDs for the training data ids_test: the patient IDs for the test data acc: accuracy auc: AUC (area under the curve) score
```

3.1.2.4 main()

```
demo_QHCC_XGBoost.main ()
```

The main function for performing experiments and printing out cross validation results.

3.2 extract_QHCC_radiomics_features Namespace Reference

Extracting radiomics features from medical images with given masks.

Variables

```
• extractor = featureextractor.RadiomicsFeatureExtractor()
     Initialize the PyRadiomics feature extractor.
• str mri dir = "./data/L1 files"
      File paths: MRI image and Mask file directories.
• str mask dir = "./data/L1 files mask"

    mri_files = sorted([f for f in os.listdir(mri_dir) if f.endswith(".nii")])

      Get lists of MRI and Mask files default file format: ".nii".

    mask_files = sorted([f for f in os.listdir(mask_dir) if f.endswith(".nii")])

radiomics_data = pd.DataFrame()
      Initialize a DataFrame to store the features.
• mri_path = os.path.join(mri_dir, mri_file)
     Batch processing.
mask_path = os.path.join(mask_dir, mask_file)

    image = sitk.ReadImage(mri path)

     Load MRI image and Mask.
• mask = sitk.ReadImage(mask_path)
• temp_mri_path = os.path.join(mri_dir, f"temp_{mri_file}")
      Save the adjusted MRI image.
features = extractor.execute(temp_mri_path, mask_path)
     Extract features.

    dict flat features = {key: value for key, value in features.items()}

      Flatten features and convert them to a DataFrame row
      Use the filename as the ID.
feature_row = pd.DataFrame([flat_features], index=[mri_file.split('.')[0]])
• str output_path = "radiomics_features.csv"
      Save Radiomics features to CSV.

    index
```

3.2.1 Detailed Description

Extracting radiomics features from medical images with given masks.

Version

v1.0

3.2.2 Variable Documentation

3.2.2.1 extractor

```
extract_QHCC_radiomics_features.extractor = featureextractor.RadiomicsFeatureExtractor()
```

Initialize the PyRadiomics feature extractor.

3.2.2.2 feature_row

3.2.2.3 features

```
extract_QHCC_radiomics_features.features = extractor.execute(temp_mri_path, mask_path)
```

Extract features.

3.2.2.4 flat_features

```
dict extract_QHCC_radiomics_features.flat_features = {key: value for key, value in features.\leftarrow items()}
```

Flatten features and convert them to a DataFrame row Use the filename as the ID.

3.2.2.5 image

```
extract_QHCC_radiomics_features.image = sitk.ReadImage(mri_path)
```

Load MRI image and Mask.

3.2.2.6 index

```
\verb|extract_QHCC_radiomics_features.index| \\
```

3.2.2.7 mask

```
extract_QHCC_radiomics_features.mask = sitk.ReadImage(mask_path)
```

3.2.2.8 mask_dir

```
str extract_QHCC_radiomics_features.mask_dir = "./data/L1_files_mask"
```

3.2.2.9 mask files

3.2.2.10 mask_path

```
extract_QHCC_radiomics_features.mask_path = os.path.join(mask_dir, mask_file)
```

3.2.2.11 mri_dir

```
str extract_QHCC_radiomics_features.mri_dir = "./data/L1_files"
```

File paths: MRI image and Mask file directories.

3.2.2.12 mri_files

Get lists of MRI and Mask files default file format: ".nii".

3.2.2.13 mri_path

```
extract_QHCC_radiomics_features.mri_path = os.path.join(mri_dir, mri_file)
```

Batch processing.

3.2.2.14 output_path

```
extract_QHCC_radiomics_features.output_path = "radiomics_features.csv"
```

Save Radiomics features to CSV.

3.2.2.15 radiomics_data

```
extract_QHCC_radiomics_features.radiomics_data = pd.DataFrame()
```

Initialize a DataFrame to store the features.

Add to the main DataFrame.

3.2.2.16 temp_mri_path

```
extract_QHCC_radiomics_features.temp_mri_path = os.path.join(mri_dir, f"temp_{mri_file}")
```

Save the adjusted MRI image.

File Documentation

4.1 demo_QHCC_XGBoost.py File Reference

Namespaces

• namespace demo_QHCC_XGBoost

The demo file for doing classification on QHCC datasets.

Functions

• demo_QHCC_XGBoost.auto_feature_select (X0, y0, k=1)

Feature selection to select the top k features with the highest mutual information values Input:

demo_QHCC_XGBoost.experiment_redcap_lab (df, seed)

Experiments on prediction with tabular data Input:

demo_QHCC_XGBoost.experiment_redcap_lab_radiomics (df, df_1, df_2, ids_train=None, ids_test=None, seed=100)

Experiments on prediction with both tabular data and radiomics features Input:

• demo_QHCC_XGBoost.main ()

The main function for performing experiments and printing out cross validation results.

4.2 extract_QHCC_radiomics_features.py File Reference

Namespaces

• namespace extract_QHCC_radiomics_features

Extracting radiomics features from medical images with given masks.

12 **File Documentation**

Variables

 extract_QHCC_radiomics_features.extractor = featureextractor.RadiomicsFeatureExtractor() Initialize the PyRadiomics feature extractor. str extract_QHCC_radiomics_features.mri_dir = "./data/L1_files"

File paths: MRI image and Mask file directories.

- str extract_QHCC_radiomics_features.mask_dir = "./data/L1_files_mask"
- extract QHCC radiomics features.mri files = sorted([f for f in os.listdir(mri dir) if f.endswith(".nii")])

Get lists of MRI and Mask files default file format: ".nii".

- extract QHCC radiomics features.mask files = sorted([f for f in os.listdir(mask dir) if f.endswith(".nii")])
- extract_QHCC_radiomics_features.radiomics_data = pd.DataFrame()

Initialize a DataFrame to store the features.

• extract QHCC radiomics features.mri path = os.path.join(mri dir, mri file)

Batch processing.

- extract_QHCC_radiomics_features.mask_path = os.path.join(mask_dir, mask_file)
- extract QHCC radiomics features.image = sitk.ReadImage(mri_path)

Load MRI image and Mask.

- extract QHCC radiomics features.mask = sitk.ReadImage(mask path)
- extract_QHCC_radiomics_features.temp_mri_path = os.path.join(mri_dir, f"temp_{mri_file}")

Save the adjusted MRI image.

extract QHCC radiomics features.features = extractor.execute(temp mri path, mask path)

Extract features.

dict extract_QHCC_radiomics_features.flat_features = {key: value for key, value in features.items()}

Flatten features and convert them to a DataFrame row

Use the filename as the ID.

- extract_QHCC_radiomics_features.feature_row = pd.DataFrame([flat_features], index=[mri_file.split('.')[0]])
- str extract_QHCC_radiomics_features.output_path = "radiomics_features.csv"

Save Radiomics features to CSV.

· extract QHCC radiomics features.index