Table 3.3.2 Properties of the Laplace transform.

x(t)		$X(s) = \int_0^\infty f(t)e^{-st} dt$
1.	af(t) + bg(t)	aF(s) + bG(s)
2.	$\frac{dx}{dt}$	sX(s)-x(0)
3.	$\frac{d^2x}{dt^2}$	$s^2X(s) - sx(0) - \dot{x}(0)$
4.	$\frac{d^nx}{dt^n}$	$s^n X(s) - \sum_{k=1}^n s^{n-k} g_{k-1}$
		$g_{k-1} = \left. \frac{d^{k-1}x}{dt^{k-1}} \right _{t=0}$
5.	$\int_0^t x(t) dt$	$\frac{X(s)}{s} + \frac{g(0)}{s}$
6.	$x(t) = \begin{cases} 0 & t < D \\ g(t - D) & t \ge D \end{cases}$	$g(0) = \left. \int x(t) dt \right _{t=0}$
	$= u_s(t-D)g(t-D)$	$X(s) = e^{-sD}G(s)$
7.	$e^{-at}x(t)$	X(s+a)
8.	tx(t)	$-\frac{dX(s)}{ds}$
9.	$x(\infty) = \lim_{s \to 0} s X(s)$	
	$x(0+) = \lim_{s \to \infty} sX(s)$	