京东消费者行为数据分析

一、问题界定

1. What: 用户的购买趋势如何?

2. Why: 影响用户购买行为的因素有哪些?

3. How: 京东的业务部门如何采取措施才能提升订单量?

二、数据收集与评估

1. 数据维度整合

类别	字段	重命名
	customer_id	用户 ID
	age_range	年龄分段
田白始帝	gender	性别
用户维度	customer_register_date	用户注册日期
	customer_level	会员级别
	city_level	会员城市级别
	action_date	用户行为日期
购买行为维度	action_id	用户行为 ID
	type	用户行为类别
	brand	产品品牌
	product_id	产品 ID
	category	产品类别
	product_market_date	产品上市日期
	vender_id	商家 ID
产品/店铺维度	fans_number	粉丝数
	vip_number	会员数
	shop_register_date	开店日期
	shop_category	店铺主营类别
	shop_score	店铺评分
	shop_id	店铺 ID

经过初步观察,表中一共有183828行数据,20个字段,总体上可分为三大维度,即用户、购买行为以及产品/店铺维度。

2. 缺失值分析

字段	缺失值数目	所占比例
年龄分段	83	0.05%
会员城市级别	125	0.07%
开店日期	71354	38.8%

由于 tableau 中数据的可视化操作可自行排除掉缺失值,因此这部分分析只用于后面利用 python 进行数据模型的构建,需要对缺失值进行处理。

通过简单的数据探索不难发现,最小的数据颗粒度为用户 ID (customer_id 字段),因此后续统计各个购买行为的用户数可基于此变量进行。

三、数据的整理和清洗

在使用 tableau 进行数据可视化前,我们需要将各个字段重命名(如表格所示),同时检查数据类型是否准确,如 ID 应为字符串,日期的话精确到天即可。此外,根据需要创建几个新的计算字段:

(1) 用户注册时间(以年计)

用户注册时间	
(YEAR([用户行为日期])-YEA	IR([用户注册日期]))+(MONTH([用户行为日期])-MONTH([用户注册日期]))/12+(DAY([用户行为日期])-DAY([用户注册日期]))/360
	(2) 产品上市时间(以年计)
产品上市时间	
(YEAR(<mark>[用户行为日期])</mark> -YE	AR([产品上市日期]))+(MONTH([用户行为日期])-MONTH([产品上市日期]))/12+(DAY([用户行为日期])-DAY([产品上市日期]))/360
(3) 店铺年龄	(以年计)
店铺年龄	
(YEAR([用户行为日期])-Y	EAR([开店日期]))+(MONTH([用户行为日期])-MONTH([开店日期]))/12+(DAY([用户行为日期])-DAY([开店日期]))/360
(4) 转化率(%): 用于漏斗分析
转化率	
	了。尚未设置用于绝对 LOOKUP 的值。 [D]))-LOOKUP(ZN(COUNT([用户ID]))))/ABS(LOOKUP(ZN(COUNT([用户ID]))))+1
(5) Order	
	Order

IF([用户行为类别]=='Order') then 1 ELSE 0 END

其余对于缺失值的清洗, 在数据模型部分详细阐述。

四、数据探索与可视化

此部分主要利用 tableau 进行探索和可视化,用以回答 what 和 why 的问题。

1. 用户购买趋势

1.1 变量选择

用户购买行为: 用户行为类型 type 里的 Order 或直接用 Order 字段时间维度: 用户行为日期 action date

1.2 呈现关系

呈现随时间的趋势变化

1.3 图表选择

使用折线图和漏斗分析图

1.4 业务结论

- (1)基于2018年2月、3月和4月的数据可以看出,用户购买行为在2月上旬呈现明显的下降趋势,而后逐渐回升并趋于平稳;
- (2)通过漏斗分析这三个月不同用户行为间的转化率(基于浏览页总量计算), 2月和3月用户浏览页面的操作很多,但是没有转化为加入购物车的行为,少数 用户直接下单购买,而2月用户购买行为的转化率在三个月里最低;4月用户浏 览量虽总量不高(这是因为4月只有前一周的数据,但几乎达到3月浏览量的50%),但购买、评论、转粉的行为转化率得到提高。
- 2. 影响用户购买行为的因素

2.1 用户维度

2.1.1 变量选择

- (1) 年龄: 年龄分段 age range 字段(1, 2, 3, 4, 5, 6 六个等级)
- (2) 性别: 性别 gender 字段(男、女、未知)
- (3) 会员等级: 会员级别 customer level 字段(1, 2, 3, 4, 5, 6, 7 七个等级)
- (4) 会员所在城市: 会员城市级别 city level 字段(1, 2, 3, 4, 5, 6 六个等级)
- (5) 用户注册时长: 创建数据桶, 2年为一组, 共8组
- (6) 用户购买行为: 用户行为类型 type 里的 Order 或直接用 Order 字段

2.1.2 呈现关系

不同类别的比较关系

2.1.3 图表选择

- (1) 年龄分段与购买行为: 条形图
- (2) 性别与购买行为: 饼图
- (3) 会员级别与购买行为: 条形图
- (4) 会员城市级别与购买行为: 条形图
- (5) 用户注册时长与购买行为: 条形图

2.1.4 业务结论

- (1)年龄在第5、6分段的用户购买力较强于其他组,而第3年龄段用户几乎没有下单购买,只停留在页面浏览阶段,说明中老年人是购买主力军,而对中青年吸引力不够;
- (2) 男性用户购买能力略高于女性用户,男性用户在食物、美妆、衣服等店铺消费巨多,而女性用户则青睐美妆、家用电器和食物类店铺;
- (3)等级为1、5、6、7的会员购买行为占主导,而2、3、4等级的用户几乎不消费,说明新用户和老用户具有更高的消费潜力;
- (4)等级为 2、6 的城市购买力不足,其他等级占主导,说明用户的购买行为有地域差别:
- (5) 用户注册时长越短,购买行为数越多,说明用户的粘度随着时间的增加而降低。

2.2 店铺/产品维度

2.2.1 变量选择

- (1) 商家评分: 店铺评分 shop score 字段
- (2) 商家开店时长:店铺年龄字段,以年计
- (3) 商家粉丝数: 粉丝数 fans number 字段
- (4) 商家会员数: 会员数 vip number 字段
- (5) 商家类别:店铺主营类别 shop category 字段
- (6) 产品上市时间: 以年计
- (7) 产品品牌: 产品品牌 brand 字段
- (8) 产品类别:产品类别 category 字段
- (9) 用户购买行为: 用户行为类型 type 里的 Order 或直接用 Order 字段

2.2.2 呈现关系

不同类别的比较关系

2.2.3 图表选择

(1) 商家评分与购买行为:条形图

- (2) 商家开店时长与购买行为:条形图
- (3) 商家粉丝数与购买行为: 条形图
- (4) 商家会员数与购买行为: 条形图
- (5) 商家类别与购买行为: 树地图/气泡图/词云图
- (6) 产品上市时间与购买行为:条形图
- (7) 产品品牌与购买行为: 树地图/气泡图/词云图
- (8) 产品类别与购买行为: 树地图/气泡图/词云图

2.2.4 业务结论

- (1) 商家的普遍评分在 8.5-10 之间波动,且用户购买行为与店铺评分无明显相关性:
- (2)店铺的店龄在 0-6 年之间波动,而用户下单量主要集中在新店铺 (<3 年),而 5 年以上的老店铺订单量不多:
- (3) 用户倾向于在粉丝数多的店铺购买产品:
- (4) 同样,店铺会员数越多,订单量也越多;
- (5) 成交量最多的店铺类别 Top5 为美妆类、食品类、衣服类、家用电器类、珠宝首饰类:
- (6) 用户普遍倾向于新上市的产品,上市超过3年的产品订单数明显下降;
- (7) 用户更倾向于购买其他品牌,可以侧面反映出,用户不再过分追求"大牌";
- (8)用户购买最多的产品类别为大衣、茶叶、面霜、精华、项链、基础化妆品等。

五、数据分析模型

此部分用来回答 how 的问题,使用 tableau 和 python 共同完成。

- 1. 问题拆解与模型选择
- (1) 京东的用户画像和特征-->聚类分析
- (2) 识别更容易产生购买行为的用户-->逻辑回归

2. 聚类分析

此处简单用 tableau 的聚类分析来建立模型。

2.1 变量选择

首先要用两个度量变量将各个用户以散点的形式定位在坐标系里,还要尽可能的分散,这里选用用户注册时长和产品上市时间两个度量,筛选出产生购买行为的用户,同时基于前几部分的分析添加其他变量(如年龄分段、产品类别、产品品牌、店铺评分、店铺会员数、店铺粉丝数),通过自带的聚类分析功能,将购买用户分成3个群体,群体特征如下:

中心								最常见	
群集	项数	平均值 产品上市时间	平均值 用户注册时间	平均值 会员数	平均值 粉丝数	平均值 店铺评分	年龄分段	产品类别	产品品牌
群集1	5850	0.87211	1.641	1.8831e+05	1.0035e+05	9.3738	3	Xbox	Kisses
群集 2	1883	3.4724	2.7759	2.443e+05	1.0388e+05	9.4406	4	Phone	Calbee
群集 3	2953	1.145	5.8335	2.0759e+05	1.2563e+05	9.4219	4	Skirt	Nike
未建立群集	0								

2.2 模型解读

- (1) 群集 1: 注册时间短的新用户,较为年轻,追求新产品,热爱电子产品,不在意店铺评分以及粉丝数;
- (2) 群集 2: 注册时间适中, 较为年长, 不过分追求新产品, 关注店铺评分;
- (3) 群集 3: 注册时间较长,较为年长,但喜欢新产品,购买衣物较多,偏好运动品牌。

3. 逻辑回归模型

使用 Python 的 sklearn 库来建立模型。

3.1 数据概览

In [3]:

	e.frame.DataFrame'> 8 entries, 0 to 183827
Data columns (tota	
customer_id	183828 non-null int64
product_id	183828 non-null int64
action_date	183828 non-null datetime64[ns]
action_id	183828 non-null int64
type	183828 non-null object
age_range	183745 non-null float64
gender	183828 non-null object
customer_register_	date 183828 non-null datetime64[ns]
customer_level	
city_level	183703 non-null float64
brand	183828 non-null object
shop_id	183828 non-null int64
category	183828 non-null object
product_market_da	ate 183828 non-null datetime64[ns]
vender_id	183828 non-null int64
fans_number	183828 non-null int64
vip_number	183828 non-null int64
shop register date	e 112474 non-null datetime64[ns]
shop_category	183828 non-null object
	183828 non-null float64

字段 type、gender、brand、category、shop_category 属于类别变量,需要特殊处理,尤其是 type,要将 order 分出来;字段 age_range、city_level 和 shop_register_date 有缺失值,需要清洗,为方便,将包含缺失值的行去掉。同时增加 is male, customer register duration, shop age, product launch duration字

段(同tableau中的计算)。

<class 'pandas.core.frame.DataFrame'>
Int64Index: 112384 entries, 0 to 183824

Data columns (total 25 columns):

customer_id 112384 non-null int64 product_id 112384 non-null int64

action_date 112384 non-null datetime64[ns]

action_id 112384 non-null int64 type 112384 non-null object age_range 112384 non-null float64 gender 112384 non-null object

customer_register_date 112384 non-null datetime64[ns]

customer_level 112384 non-null int64
city_level 112384 non-null float64
brand 112384 non-null object
shop_id 112384 non-null int64
category 112384 non-null object

product_market_date 112384 non-null datetime64[ns]

vender_id 112384 non-null int64 fans_number 112384 non-null int64 vip_number 112384 non-null int64

shop_register_date 112384 non-null datetime64[ns]

shop_category 112384 non-null object shop_score 112384 non-null float64

Order 112384 non-null uint8 is_male 112384 non-null uint8 customer_register_duration 112384 non-null float64 shop_age 112384 non-null float64 product_launch_duration 112384 non-null float64

dtypes: datetime64[ns](4), float64(6), int64(8), object(5), uint8(2)

memory usage: 25.8+ MB

3.2 单变量分析

3.2.1 数字型变量

对数字型变量进行简单的描述指标评估:

	age_range	customer_level	city_level	fans_number	vip_number	shop_score	Order	is_male	customer_register_duration	shop_age	product_launch_duration
count	112384.000000	112384.000000	112384.000000	1.123840e+05	1.123840e+05	112384.000000	112384.000000	112384.000000	112384.000000	112384.000000	112384.000000
mean	4.614260	4.790264	3.300007	1.131981e+05	1.654101e+05	9.342639	0.095058	0.648767	3.450409	2.319193	1.428339
std	1.579324	2.371815	1.424654	3.050072e+05	3.225609e+05	1.228837	0.293296	0.477358	2.428765	1.476927	1.225100
min	1.000000	1.000000	1.000000	0.000000e+00	0.000000e+00	-1.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	4.000000	1.000000	3.000000	7.762000e+03	1.970000e+04	9.360763	0.000000	0.000000	1.419178	1.005479	0.504110
50%	5.000000	5.000000	4.000000	3.098900e+04	6.538050e+04	9.490974	0.000000	1.000000	3.063014	2.183562	1.063014
75%	6.000000	7.000000	4.000000	1.135410e+05	1.889352e+05	9.617728	0.000000	1.000000	5.342466	3.276712	1.989726
max	6.000000	7.000000	6.000000	9.293487e+06	1.384168e+07	10.000000	1.000000	1.000000	14.750685	7.008219	7.347945

将数据按 Order 分组后求均值,可以看出,是否购买产品的两组间 city_level、vip_number、customer_register_duration、shop_age、is_male 间均值有明显差别。

	age_range	customer_level	city_level	fans_number	vip_number	shop_score	is_male	customer_register_duration	shop_age	product_launch_duration	
Order											
0	4.611548	4.819717	3.299574	113747.035280	161409.890906	9.336739	0.658597	3.497562	2.332347	1.430638	
1	4.640082	4.509876	3.304128	107972.532154	203491.487129	9.398805	0.555181	3.001518	2.193964	1.406453	

3.2.2 类别型变量

对类别型变量,简单看下各自有多少个分类,占比如何,同时对 Order 进行

分组,查看组别间的差异。

(1) 性别

data1.gender.value_counts(1)

M 0.648767 W 0.348555 U 0.002678

Name: gender, dtype: float64

不同性别间, Order=1 没有明显差异。

(2) 年龄分段

data1.age_range.value_counts(1)

5.0 0.414232

6.0 0.324717

2.0 0.094844

1.0 0.086560

4.0 0.079611

3.0 0.000036

Name: age_range, dtype: float64

age_range=5 或 6 时,Order=1 明显高于其他组。

(3) 会员级别

data1.customer_level.value_counts(1)

- 7 0.337432
- 1 0.259957
- 5 0.244012
- 6 0.157211
- 4 0.000801
- 3 0.000578

0.000009

Name: customer_level, dtype: float64

customer_level=1, 5, 6, 7间 Order=1 无明显差别,但明显高于customer_level=2, 3, 4。

(4) 会员城市级别

data1.city_level.value_counts(1)

- 4.0 0.291536
- 3.0 0.244964
- 5.0 0.226785
- 1.0 0.220200
- 2.0 0.013561
- 6.0 0.002954

Name: city_level, dtype: float64

city_level=1, 3, 4, 5中 Order=1 明显高于 city_level=2, 6。

(5) 店铺营业类别

data1.shop_category.value_counts(1) Clothes 0.266675 Beauty Makeup 0.263320 0.223128 Food Household Eletric Appliance 0.091428 0.052160 Furniture Jewellery Accessories 0.044989 0.034258 **Outdoor Sports** Electronics 0.012030 Mother and Infant 0.012012 Name: shop_category, dtype: float64

(6) 产品类别和产品品牌

data1.category.	value_counts(1)	data1.brand.v	/alue_counts(1)
Coat	0.250516	Other	0.344017
Tea	0.089924	Lipton	0.089924
Face Cream	0.089924	Innisfree	0.036696
		Olay	0.030592
Foundation Mak		Kuka	0.025742
Facial Essence	0.038956	HLA	0.025262
Candy	0.035121	Li-Ning Midea	0.025173
Cookie	0.034258	Chando	0.024639 0.022815
Bed	0.026365	H&M	0.022574
Perfume	0.026000	LukFook	0.022374
Necklace	0.025137	UNIQLO	0.017093
Facial Moisturiz	er 0.021765	Estee Lauder	
Milk	0.021435	Haier	0.014842
Washing Machin		Quanyou	0.013623
Makerup Water	0.020519	Proya	0.013134
Eye Shadow	0.020403	Chow Tai Fo	ok 0.013089
		Lancome	0.013027
Lipstick	0.019140	Opple	0.012795
Air Conditioner	0.015821	LittleSwan	0.012502
Sunscreen Crea		LEDIN	0.012288
Bracelet	0.014993	Loreal	0.012235
Induction Cooke		illuma	0.012012
Facial Mask	0.013276	Konka	0.010562
Coffee	0.013125	Supor Ton Lion	0.010188
Refrigerator	0.013116	Gree	0.010082 0.009797
Sofa	0.013000	Jeans West	0.009757
Light	0.012795	Chow Taisen	
Milk Power	0.012012	Joyoung	0.008898
Football	0.011256	00,009	
Rice Cooker	0.010642	Chando	0.002669
Television	0.010108	CLINIQUE	0.002420
		Huawei	0.002322
Jeans	0.009717	Apple	0.002189
Nut	0.009681	KOPIKO	0.001966
Badminton	0.008569	Quaker	0.001922
Potatio Chips	0.007901	Kong	0.001797
Phone	0.007439	Nike	0.001726
Electric Kettle	0.006914	Danco	0.001655
Chocolate	0.005543	Redmi Sulwhasoo	0.001353
Basketball	0.005348		0.001335 0.001326
Ring	0.004858	Sumsung SK-II	0.001326
Sport Suit	0.004378	meiii	0.001272
Running Shoes	0.003630	Three Squirre	
Cake	0.003452	Kisses	0.001121
Oatmeal	0.002687	Vichy	0.001112
T Shirt	0.002007	DELL	0.001094
Notebook	0.002091	Danisa	0.001014
		Sony	0.000917
Sweater	0.001370	Vivo	0.000881
Skirt	0.001272	Oreo	0.000783
Tablet	0.001112	Calbee	0.000765
Other	0.001103	Microsoft	0.000561
Basketball Shoe	es 0.001077	HP	0.000356
Digital Camera	0.000934	Anta	0.000285
Pants	0.000605	Acer OPPO	0.000222
Xbox	0.000561	Lenovo	0.000151 0.000133
lpad	0.000178	Nikon	0.000133
	, dtype: float64	THIOTI	5.000010

3.3 相关性分析

对所有数值变量与 Order 进行相关性分析并用热力图显示。

	Order
Order	1.000000
vip_number	0.038264
shop_score	0.014814
age_range	0.005299
city_level	0.000938
fans_number	-0.005553
product_launch_duration	-0.005790
shop_age	-0.027481
customer_level	-0.038315
customer_register_duration	-0.059902
is_male	-0.063541

可以看出,用户购买行为与店铺会员数、店铺评分、年龄层正相关,其余负相关,店铺会员数和店铺评分与用户购买行为的相关系数较高。

3.4 数据分析模型

处理后的数据, Order 中 1 占 10%左右, 适合训练模型。

data1.Order.value_counts()

0 101701

1 10683

Name: Order, dtype: int64

3.4.1 变量的选择

优先选取与用户购买行为相关性高的变量作为自变量,如 vip_number、shop_score、 fans_number、 customer_register_duration、 shop_age、 is_male、

customer level; 因变量为 Order。

3.4.2 训练集与测试集分割

调用 sklearn.model_selection 里面的 train_test_split 函数对自变量、因变量进行分割,比例为测试集:训练集=0.3:0.7。

3.4.3 数据标准化

首先要对数据进行标准化,选择 sklearn.preprocessing 里面的 scale 函数对自变量进行标准化处理,而后训练模型。

3.4.4 模型选择

调用 sklearn.linear model 里面的 LogisticRegression 模型,参数均为默认值。

3.4.5 模型评估

(1) 利用训练集和测试集给模型打分,即准确率 (accuracy)。

Ir.score(X_test, y_test)
0.9033100011863804
Ir.score(X_train, y_train)

0.9055270249656785

(2) 调用 sklearn.metrics 里面的 classification_report 计算查准率(precision)和 查全率(recall)。

precision recall f1-score support order=0 0.90 1.00 0.95 30459 0.20 3257 order=1 0.00 0.00 33716 avg / total 0.84 0.90 0.86

precision 表示为模型预测用户产生购买行为,预测准确的概率。 recall 表示为用户产生购买行为时,模型预测准确的概率。

可以发现,对于用户不产生购买行为的情况(order=0)查准率和查全率均很高,然而当用户产生购买行为时,模型不能完全查出真实用户购买情况,同时模型判断用户会发生购买行为,大约只有25%的准确度。因此该模型需要优化。

(3) 模型参数解读

print(lr.coef_, lr.intercept_)

由于各变量取值范围较大,因此不好评判自变量是如何具体影响因变量的; 正系数为正向影响,且系数越大,程度越大。

3.4.6 模型优化

(1) 增大测试集的比例至 50%

发现用户产生购买行为的查准率略有提高,但不明显;查全率仍没有提高。

precision recall f1-score support

order=0 0.91 1.00 0.95 50883
order=1 0.25 0.00 0.00 5309

avg / total 0.84 0.91 0.86 56192

训练集准确率下降而测试集准确率上升,但效果不明显。

Ir.score(X_test, y_test)
0.9054135820045558

Ir.score(X_train, y_train)

0.9042924259681093

(2) 修改自变量

经过反复测试,并没有很大提高,这可能与前期数据的特征工程这一部分没有做好有关,也可能本身数据集不够完善。

(3) 尝试 KNN 模型 (k=5)

经过试验,对于用户产生购买行为时,模型预测准确的概率升高,但是模型预测用户会购买的准确率稍有下降。

pr	ecision	recall f	support		
order=0 order=1	0.90 0.18			30459 3257	
avg / total	0.83	0.90	0.86	33716	