Notes on Weil Conjectures

D. Zack Garza

January 20, 2020

Contents

2 Actual Paper 2

1

Reference: Andre Weil, Numbers of Solutions of Equations in Finite Fields

1 External Background

External Background

Here we fix a prime p and a system of polynomials $S = \{f_i\}$ of degree n, take the variety V(S) and let

- a_1 be its number of points of \mathbb{F}_p
- a_2 be its number of points of \mathbb{F}_{p^2}
- $\cdots a_n$ be its number of points of \mathbb{F}_{p^n}

Idea: assemble them into a generating function.

For unknown reasons, we put them in a zeta function instead: $\zeta(x) = \exp\left(\sum \frac{a_n x^n}{n}\right)$.

Conjectures:

- 1. $\zeta(x) = \frac{P(x)}{Q(x)}$ is a rational function.
- 2. There is an explicit formula $P(x) = \prod_{i \text{ odd}}^{2n-1} P_i(x)$ and $Q(x) = \prod_i i \text{ even } P_i(x)$ with each $P_i \in \mathbb{Z}[x]$.
- For every root r of every P_i , $\frac{1}{r}$ is algebraic
- (Riemann Hypothesis) Every root has modulus equal to $p^{-i/2}$ (???)
- 3. (Functional Equation) The function $z \mapsto \frac{1}{p^n z}$ interchanges roots of P_i with roots of P_{2n-i} .
- 4. (Under some conditions) deg $P_i = \beta_i(V)$, the *i*th Betti number of *i*.

Relation to fixed points: In \mathbb{F}_{p^m} , every point is a fixed point of the Frobenius Φ_{p^m} . So for any field $F \supset \mathbb{F}_{p^m}$, the points in \mathbb{F}_{p^m} are precisely the fixed points of $\Phi_{p^m} : F \to F$ (because enlarging the field can not add more solutions).

Claim: If $S \subset F^d$ is any subset defined by polynomial equations and $x = (x_1, x_2, \dots, x_n) \in S$ is a point, then $\Phi_{p^m}(x) = (\Phi_{p^m}(x_1), \dots) \in S$. Moreover, the fixed points of Φ_{p^m} restricted to S are precisely $S \cap \mathbb{F}_{p^m}^d$.

Compare 2b above: Riemann says roots are along critical strip $\Re(z) = \frac{1}{2}$; this says roots of P_i are on a circle of radius $p^{i/2}$ about the origin. (Note: there is a (conformal?) map that takes the circle to the line, so we can send the roots of P_i to the line $\Re(z) = \frac{1}{2}$but not for all i at once.)

Consequences: Riemann-Zeta: error estimates in the prime number theorem agree with probabilistic models Weil: error estimates in Ramanujan's τ is as small as hoped.

Proofs: Grothendieck: 1,3, and 4 with etale cohomology. Notably not Weil 2. Deligne: Weil 2, The Riemann Hypothesis

Cohomology of Complex Grassmannian: Schubert cells exhibit structure as a CW complex with only even-dimensional cells, and $H^{2d}(Gr(k,\mathbb{C}^{n+k})) \cong \mathbb{Z}^{\ell}$ where ℓ is the number partitions of

[d], i.e. solutions to $\sum_{j=1}^{k} x_j = d$ with x_j weakly increasing, i.e. $x_1 \leq x_2 \leq \cdots x_k$. The ring

structure is isomorphic to the ring of symmetric polynomials and is generated by Chern classes. I.e. $H^*(Gr(k, \mathbb{C}^{\infty})) \cong \mathbb{C}[a_1, \dots, a_k]$ (with a_k Chern classes) which is invariant under the obvious action of the symmetric group S_k .

Example from end of paper: The number of rational points on $Gr(m, r, \mathbb{P}_{\mathbb{F}_q})$

$$F(x) = \frac{(x^{m+1} - 1)(x^{m+1} - x)\cdots(x^{m+1} - x^r)}{(x^{r+1} - 1)(x^{r+1} - x)\cdots(x^{r+1} - x^r)}$$

and so the Poincare polynomial for $\mathrm{Gr}(m,r,\mathbb{P}_{\mathbb{C}})$ is $F(X^2)$.

2 Actual Paper

Considers equations of the form $\sum_{i=1}^{r} a_i x_i^{n_i} = b$.

Examples:

- $ax^3 by^3 = 1$ in \mathbb{F}_p . (p = 3n + 1, Gauss, when studying "Gaussian sums"/ "cyclotomic periods")
- periods") • $ax^4 - by^4$ in \mathbb{F}_p (p = 4n + 1, Gauss)

Can consider corresponding variety V over \mathbb{C} , want to relate numbers of solutions to topological properties of V.

Fix a finite field k with q elements, $a_i \in k \setminus 0$, $n_i \in \mathbb{Z}_{>0}$, and first discuss b = 0.

Definitions:

$$f: k[x_0, \dots, x_r] \to k$$

 $f(x_0, \dots, x_r) = a_0 x_0^{n_0} + \dots + a_r x_r^{n_r}.$

Only monomials appearing?

Example: Take $k = \mathbb{Z}_2$ and $g: k[x,y] \to k$ where $g(x,y) = x^2 + y^2$.

Non-example: $h(x,y) = x^2 + y^2 + xy$.

Let $N := |x \in k| f(x) = 0$ the number of solutions over k.

Note: shouldn't this be the number of solutions in k^{r+1} , since a "solution" is an (r+1)-tuple?

Example: For g above, (x,y)=(0,0), (1,1) are the only two solutions, so here N=2

Define $d_i := \gcd(n_i, q - 1)$

Example: For \mathbb{Z}_2 , q = 1 so $d_1 = \gcd(2, 1) = 1$ and $d_2 = \gcd(2, 1)$.

For an arbitrary $u \in k$, define

$$N_i(u) = \left| \left\{ x \in k \mid x^{n_i} = u \right\} \right|,$$

i.e. the number of solutions to $x^{n_i} = u$ in k, i.e. the number of d_i th roots of u.

This is equal to:

- 1 if u = 0,
- d_i if $u \neq 0$ is a d_i th power in k
- 0 otherwise

Not entirely clear why case 2 holds. Try for an example in the case $n_i = 2$ to compare to quadratic residues?

Define

$$L: k^{r+1} \to k$$

$$L(u) = L(u_0, \dots, u_r) = \sum_{i=0}^{r} a_i u_i.$$

We'll consider the variety V(L) defined by L.

This yields a decomposition

$$N = \sum_{u \in k^{r+1}} |N_0(u_0) \cdots N_r(u_r)$$

$$= \sum_{u \in V(L)} \prod_{i=0}^r N_i(u_i),$$

i.e. any solutions to f=0 over k^{r+1} can be found by first choosing a point $u=(u_0,\cdots,u_r)$ in the variety cut out by L, so $L(u)=\sum a_iu_i=0$, then picking an n_i the root $s_i\in k$ of each u_i to obtain

some $s = (s_0, \dots, s_r) \in k^{r+1}$. Then $u_i = s_i^{n_i}$ implies that $0 = \sum a_i u_i = \sum a_i s_i^{n_i}$, so s is a solution to f.

Definition: Let G be a group and V a vector space over a field F, then a representation is morphism of groups $\rho: G \to \operatorname{GL}(V)$. For V finite-dimensional, a character of ρ is the function $\chi_{\rho}: G \to F$ where $g \mapsto \operatorname{Tr}(\rho(g))$. (Recall that the trace can be defined by choosing a basis for V and taking the trace of the image of g, and is basis-independent.) A character is irreducible iff?

Lemma: Let $G = \mathbb{Z}/n\mathbb{Z}$ and define $\lambda : G \to \mathbb{C}^{\times}$ where $1 \mapsto \zeta_n$ a primitive nth root of unity, then $\left\{\lambda^i \mid 0 \le i \le n-1\right\}$ is a complete set of irreducible characters.

Aside, maybe not useful: The irreducible characters span the space of class functions C(G), so we can define a surjective map

$$\Phi: \mathbb{C}[x] \to \mathcal{C}(G)$$
$$f \mapsto f(\lambda)$$

and since $\lambda^n = \mathrm{id}_{\mathbb{C}}$, we have $\ker \Phi = (x^n - 1)$, so $\mathcal{C}(G) \cong \mathbb{C}[x]/(x^n - 1)$ is a polynomial algebra.

Let $G = k^{\times} \cong \mathbb{Z}/(q-1)\mathbb{Z}$, and let $\chi : G \to \mathbb{C}$ be any character.

Note: are the representations actually taking values in $\mathbb C$ here?

Since G is cyclic, let ω by any generator; then χ is fully determined by $\chi(\omega)$.

For $\alpha \in \mathbb{Q}$ any rational such that $(q-1)\alpha \in \mathbb{Z}$, define a character

$$\chi_{\alpha}: k^{\times} \to \mathbb{C}$$

$$\omega \mapsto e^{2\pi i \alpha}.$$

We extend this to a character on k by setting $\chi_{\alpha}(0) = 1 \iff \alpha \in \mathbb{Z}$ and 0 otherwise.

Let $S_i = \{ \alpha \in \mathbb{Q} \cap [0,1) \mid d_i \alpha \in \mathbb{Z} \}$. We can then write

$$N_i(u) = \sum_{\alpha \in S_i} \chi_{\alpha}(u).$$

Note: no clue why!

A priori, this is a countable infinite sum. The claim is that it can in fact be reduced to a finite sum. (?)

We can then let $\zeta = \chi_{\frac{1}{d_i}}(u)$, which is d_i th root of unity. Then $\zeta = 1 \iff u$ is a d_i th power in k^{\times} . Since both sides equal 1 if u = 0, we can rewrite this as

$$N_i(u) = \sum_{j=1}^{d_i - 1} \zeta^j,$$

and thus

$$N = \sum_{u \in V(L)} \chi_{\alpha_0}(u_0) \cdots \chi_{\alpha_r}(u_r) \quad \text{where } \alpha_i \in [0, 1), \ d_i \alpha_i \in ZZ.$$

Definitely countable due to the previous equation, hence the i index. But where did the ζ s go?