UNIT 1

Lecture 9 EER Model

Extended E R Model

- 1. Specialization
- 2. Generalization
- 3. Attribute Inheritance
- 4. Aggregation

Specialization

- The process of designating sub-groupings or dividing a higher level entity set into a number of lower level entity set on the basis of specific features is known as specialization.
- It is an **Top Down** approach.

Generalization

- The process of grouping or joining two or more lower level entity sets to make a higher level entity set on the basis of their common features is known as generalization.
- It is an **Bottom Up** approach.

Specialization/ Generalization

- In terms of an E-R diagram, specialization is depicted by a *triangle* component labeled **ISA**.
- The ISA relationship may also be referred to as a **superclass-subclass** relationship.
- Higher and lower-level entity sets are depicted as regular entity sets i.e., as rectangles containing the name of the entity set.

Generalization/Specialization

Generalization/Specialization

Generalization/Specialization

Difference

No.	Specialization	Generalization
1	It is a Top Down approach.	It is a Bottom Up approach.
2	Specialization stems from a single entity set;	Generalization proceeds from the recognition
	it emphasizes differences among entities	that a number of entity sets share some
	within the set by creating distinct lower-	common features (namely, they are described
	level entity sets.	by the same attributes and participate in the
		same relationship sets).
3	The process of designating sub-groupings	The process of designating groupings from
	within an entity set is called specialization .	various entity sets is called generalization .
4	Specialization is a result of taking a subset	Generalization is a result of taking the union of
	of higher level entity set to form a lower-	two or more disjoint (lower-level) entity sets to
	level entity set.	produce a higher-level entity set.

Attribute Inheritance

- A crucial property of the higher and lower-level entities created by specialization and generalization is attribute inheritance.
- The attributes of the higher-level entity sets are said to be **inherited** by the lower-level entity sets.

Constraints on Specialization/ Generalization

- Condition-defined. In condition-defined lower-level entity sets, membership is evaluated on the basis of whether or not an entity satisfies an explicit condition or predicate.
- **User-defined**. User-defined lower-level entity sets are not constrained by a membership condition; rather, the database user assigns entities to a given entity set.

Condition - Defined

Dinesh Kumar Bhawnani, BIT DURG

Constraints on Specialization/ Generalization

- A second type of constraint relates to whether or not entities may belong to more than one lower-level entity set within a single generalization. The lower-level entity sets may be one of the following:
- **Disjoint**. A *disjoint-ness constraint* requires that an entity belong to no more than one lower-level entity set.
- Overlapping. In overlapping generalizations, the same entity may belong to more than one lower-level entity set within a single generalization.
- Lower-level entity overlap is the default case; a disjoint-ness constraint must be placed explicitly on a generalization (or specialization). We can note a disjointedness constraint in an E-R diagram by adding the word *disjoint* next to the triangle symbol.

Disjoint Constraint

Dinesh Kumar Bhawnani, BIT DURG

Constraints on Specialization/ Generalization

- A final constraint, the **completeness constraint** on a generalization or specialization, specifies whether or not an entity in the higher-level entity set must belong to at least one of the lower-level entity sets within the generalization/specialization. This constraint may be one of the following:
- **Total generalization** or **specialization**. Each higher-level entity must belong to a lower-level entity set.
- Partial generalization or specialization. Some higher-level entities may not belong to any lower-level entity set.
- Partial generalization is the default.
- We can specify **total generalization** in an E-R diagram by using a **double line** to connect the box representing the higher-level entity set to the triangle symbol.

Total Specialization/ Generaliztion

Dinesh Kumar Bhawnani, BIT DURG

Aggregation

- One limitation of the E-R model is that it cannot express relationships among relationships.
- Aggregation is an abstraction through which relationships are treated as higher level entities.

ER Diagram with redundant relationships

ER diagram with Aggregation

Draw the ER diagram for a banking enterprise

Dinesh Kumar Bhawnani, BIT DURG

E R Diagram Notations

University Questions

- 1. Write short notes on
 - 1. Generalization
 - 2. Specialization
 - 3. Disjoint and overlapping constraints
 - 4. Condition defined and user defined constraints
 - 5. Total and partial generalization
- 2. Explain the constraints based on generalization and specialization.
- 3. Differentiate between specialization and generalization.
- 4. Explain aggregation with example.
- 5. Explain enhanced entity set model with examples.

For Video lecture on this topic please subscribe to my youtube channel.

The link for my youtube channel is

https://www.youtube.com/channel/UCRWGtE76JlTp1iim6aOTRuw?sub confirmation=1