# Abschlussbericht des Team $m^2$ zu dem Projektpraktikum Robotik und Automation: Künstliche Intelligenz

Marius Krusen und F. J. Michael Werner

Abstract-Brauchen wir ein Abstrakt?

# I. Aufgabenstellung

ZIEL des Projektpraktikums ist es, eine funktionsfähige Künstliche Intelligenz (KI) für das Spiel rAIcer zu entwickeln. In dem Spiel können bis zu drei Spieler jeweils eine Figur über mehrere Runden auf einer Rundstrecke steuern. Die Figuren werden nur durch "Kraftimpulse" in den Richtungen oben, unten, links und rechts gesteuert.

# II. LÖSUNGSANSATZ

Das Team  $m^2$  verwendet für die Entwicklung der KI den NeuroEvolution of Augmenting Topologies (NEAT)-Algorithmus. Weiterhin wird das gegebene Problem darauf reduziert, dass die KI eine Folge von Kontrollpunkten auf der Strecke abfahren muss. Für die Berechnung der Kontrollpunkte ist eine Streckenerkennung notwendig. Für die Eingabe, der durch den NEAT-Algorithmus generierten neuronalen Netze, werden Merkmale berechnet, die unter anderem auf den Kontrollpunkten und der Position der Figur basieren. Die einzelnen Elemente des Lösungsansatzes werden nachfolgen im Detail vorgestellt.

### A. NEAT

In Neuroevolution werden Neuronale Netze mit Hilfe von genetischen Algorithmen generiert. In [1] stellen Stanley et al. NEAT vor, der die Besonderheit hat, dass neben den Kantengewichten und Schwellenwerten, auch die Topologie des Netzes entwickelt wird. Die zentralen Bausteine des Algorithmus sind:

- Darstellung eines Netzes als Genom
- Verwendung von Historie-Markern
- Verwendung von Spezies
- Minimierung der Dimensionalität

In jeder Generation liegt eine Menge von Genomen (Population) vor. Durch eine Fitnessfunktion, wird die

Performance der einzelnen Genome bestimmt. Anschließend wird basierend auf den stärkeren Genomen mithilfe von Mutation neue Genome für die nächste Generation erzeugt.

- 1) Genetische Darstellung und Mutation:
- 2) Historie-Marker:
- *3) Spezies:*
- 4) Minimierung der Dimensionalität:
- B. Streckenerkennung und Kontrollpunkte
- C. Merkmalsberechnung

# III. ERGEBNISSE

### IV. ZUSAMMENFASSUNG

# REFERENCES

[1] K. O. Stanley and R. Miikkulainen, "Efficient evolution of neural network topologies," in *Proceedings of the Genetic and Evolutionary Computation Conference*, W. B. Langdon, E. Cantu-Paz, K. E. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, and A. C. Schultz, Eds. Piscataway, NJ: San Francisco, CA: Morgan Kaufmann, 2002, pp. 1757–1762. [Online]. Available: http://nn.cs.utexas.edu/?stanley:cec02

1