Optimization-based Real-time Operating Paradigms for Electric Arc Steelmaking

Smriti Shyamal, Christopher L.E. Swartz

Department of Chemical Engineering, McMaster University

2018 Stats and Control Meeting, Hamilton

Outline

- Introduction
 - Electric Arc Furnace Model
- Real-time Dynamic Optimization Application Paradigms
- Real-time Advisory System
 - Multi-tiered Optimization
 - Multi-rate Moving Horizon Estimation
 - Case Study 1
- 4 Real-time Energy Management
 - Economic Model Predictive Control
 - Case Study 2
- 6 Conclusions and Future Work

Introduction

 $High\ energy\ intensive\ batch\ process, Low\ level\ of\ automation, Limited\ measurements$

Objectives

 Develop decision-support tool to determine economically optimal operating policies for EAF

Approach

- Develop dynamic model and rigorous optimization framework
- Collaborate with industrial partners for model validation, optimization problem formulation and in-plant evaluation

Dynamic First Principles Model of EAF¹

- Multi-zone System: Chemical equilibrium within slag-metal and gas zones (reactions limited by mass transfer)
- Mass and energy balances; diffusion and heat transfer relationships

Parameter estimation using plant data

Large scale DAE system: 28 differential & 518 algebraic variables

¹MacRosty, R. D. M. & Swartz, C. L. E. (2005). Ind.Eng.Chem.Res., 44, 8067-8083.

Dynamic Optimization Application Paradigms

Key ingredients

- Dynamic model
- Dynamic optimization

- State estimation
- Novel initialization scheme

Real-time Advisory System

- Model runs in parallel with the plant
- Multi-tiered optimization strategy handles end-point constraints

Economics-based Dynamic Optimization Formulation

Objective function

$$\begin{split} \Phi(t_f) := c_0 M_{\text{steel}}(t_f) - \left(c_1 \int_{t_i}^{t_f} P dt + c_2 \int_{t_i}^{t_f} F_{CH_4, brnr} dt + c_3 \int_{t_i}^{t_f} F_{C_{lance}} dt \right. \\ + c_4 \int_{t_i}^{t_f} F_{C_{charge}} dt + c_5 \int_{t_i}^{t_f} (F_{O_2, Jetbox1} + F_{O_2, Jetbox2} + F_{O_2, Jetbox3}) dt \\ + c_6 \int_{t_i}^{t_f} F_{CaO} dt + c_7 \int_{t_i}^{t_f} F_{Dolomite} dt + c_8 \int_{t_i}^{t_f} (F_{1stCharge} + F_{2ndCharge}) dt \bigg) \end{split}$$

Constraints

Model equations:
$$\dot{\mathbf{x}}(t) = \mathbf{f}_{x}(\mathbf{x}(t), \mathbf{z}(t), \mathbf{u}(t)), \quad \mathbf{0} = \mathbf{f}_{z}(\mathbf{x}(t), \mathbf{z}(t), \mathbf{u}(t))$$

$$\mathbf{y}(t) = \mathbf{h}(\mathbf{x}(t), \mathbf{z}(t), \mathbf{u}(t))$$

Input constraints:
$$P^{min}(t) \le P \le P^{max}(t)$$
, $F_k^{min}(t) \le F_k \le F_k^{max}(t)$

Path constraints:
$$T_{wall}(t) \leq T_{wall}^{max}$$
, $T_{roof}(t) \leq T_{roof}^{max}$

End-point constraints:
$$m_{ss}(t_f) \le \delta_{ss}$$
, $y_{carbon}(t_f) \le Y_c^{max}$

Multi-tiered Optimization

Multi-rate MHE^{2,3} (w/ Batch MHE)

$$\begin{aligned} \min_{\mathbf{x}_{i-N},\mathbf{w}_{k}} \ \sum_{k=i-N}^{i-1} & ||\mathbf{w}_{k}||_{Q^{-1}}^{2} + \sum_{k=i-N}^{i} & ||\mathbf{v}_{k}^{F}||_{(R^{F})^{-1}}^{2} \\ & + \sum_{k=i-N}^{i} & ||\mathbf{v}_{k}^{SF}||_{(R^{SF})^{-1}}^{2} + ||\mathbf{x}_{i-N} - \hat{\mathbf{x}}_{i-N}||_{S_{i}^{-1}}^{2} \\ & + \sum_{k=i-N}^{i} & ||\mathbf{v}_{k}^{SF}||_{(R^{SF})^{-1}}^{2} + ||\mathbf{x}_{i-N} - \hat{\mathbf{x}}_{i-N}||_{S_{i}^{-1}}^{2} \end{aligned}$$

Subject to:
$$\mathbf{x}_{k+1} = \mathbf{f}(\mathbf{x}_k, \mathbf{u}_k) + \mathbf{w}_k,$$

 $\mathbf{y}_k^F = \mathbf{h}^F(\mathbf{x}_k) + \mathbf{v}_k^F, \quad k \in \mathbb{I}_F;$
 $\mathbf{x}^{LB} \leq \mathbf{x}_k \leq \mathbf{x}^{UB}, \quad \mathbf{w}_k \in W$
 $\mathbf{y}_k^{SF} = \mathbf{h}^{SF}(\mathbf{x}_k) + \mathbf{v}_k^{SF}, \quad k \in \mathbb{I}_{SF}$

Tuning matrices:

$$Q, R \text{ and } S_i \ \left(S_{i+1} = Q + A_i [S_i - S_i C_i^T (R + C_i S_i C_i^T)^{-1} C_i S_i] A_i^{-1} \right)$$

²Rao, C.V., Rawlings, J.B. and Lee, J.H., (2001). Automatica, 37(10), 1619-1628.

³Lopez-Negrete R. and Biegler, L.T., (2012). Journal of Process Control, 22(4), 677-688

Initialization and implementation

Case Study 1

- Length of batch process: 60 minutes
- Estimation horizon: 6 min
- Advisory system's ability demonstrated in presence of
 - ► Plant-model mismatch
 - Unknown initial conditions of states
 - ► Measurement noise
- Structure of slow and fast measurements:

Time (min)	042	43	44 46	47	4860
Number of measured variables	6	13	6	8	6

Off-gas compositions (CO, CO ₂ , O ₂ , H ₂), T_{roof} , T_{wall}	Every 1 min
Slag compositions (FeO, Al ₂ O ₃ , SiO ₂ , MgO, CaO)	t=43 min
Molten-metal temperature and carbon content	t=43 & 47 min

Case Study 1 Results

	Scenario 1	Scenario 2	Scenario 3	Scenario 4	
Times at which advisory system was called (min)	0	0,30	0, 30, 40	0, 30, 40, 50, 58	
Number of re- optimizations	0	1	2	4	
Economic objective function value (\$)	9,100	9,360	9,484	9,585	
Actual scrap left at 60th minute (kg)	2.8	2.5	2.3	1.0	

- Scenario 4 has 5.3% more profit compared to scenario 1.
- End point target achieved without extension when more reoptimizations carried out

Energy Management for Electric Arc Furnace

Real-Time Energy Management

Key idea: Offset high price electricity with chemical energy

Economic Model Predictive Control

Objective function (with time varying cost coefficients)

$$\max_{\mathbf{u}(t)} c_{0}M_{steel}(t_{f}) - \left(\int_{t_{i}}^{t_{f}} c_{1}(t)Pdt + c_{2} \int_{t_{i}}^{t_{f}} F_{CH_{4},brnr}dt + c_{3} \int_{t_{i}}^{t_{f}} (F_{O_{2},Jetbox1} + F_{O_{2},Jetbox2} + F_{O_{2},Jetbox3})dt \right)$$

Constraints

Model equations

Input constraints:

$$P^{min}(t) \le P \le P^{max}(t), \quad F_k^{min}(t) \le F_k \le F_k^{max}(t)$$

u: P (Electrical arc power), F_k (Flow rates of natural gas and oxygen)

Case Study 2

- Realistic electricity price data considered
- Real-Time market (price change every 1 hour)
- Ontario wholesale market

Compare two closed loop results:

- NMPC^{nominal}: Price profile not updated and forecast price continued to be used even after the change occurs
- NMPC^{update}: Price profile updated to reflect actual price obtained from wholesale market

Price Profiles for Case Studies

Case Study 1

Case Study 2

Case Study 4

Case Study 2

Peak price decrease with price change at 25th minute

Compare NMPC^{update} & NMPC^{nominal}:

Profit increase	4.6%
Decrease in electricity use	23%
Increase in other input use	1.6%
Reduction in peak electricity demand	45%

Average CPU time to solve (sec): 2.6 (novel initialization), 11.2 (nominal)

Conclusions and Future Work

- Introduced real-time dynamic optimization-based advisory system
- Real-time energy management strategy to reduce energy requirements
 - ▶ Optimal energy use while exploiting changing electricity price
- Case studies demonstrate major economic benefit for both the application paradigms

Average Solve Time

Current and Future Work

- Variable batch length problem
 - Explore possibility of contraction in batch duration
- Real-time energy management strategy for 5 and 15 minute market
 - Construct NMPC problem to minimize the peak demand

Acknowledgments

MCMASTER STEEL RESEARCH CENTRE

