1. SU(5) MFV

Here we adopt a modified minimal flavor violation, where the flavor group of our model is $\mathcal{G}_f = SU(3)_{10} \times SU(3)_{\overline{5}}$. Under this group the standard model particles and yukawas transform as follows:

$$u^c, q, e^c(3, 1)$$
 (1)

$$d^c, l(1,3) \tag{2}$$

$$Y_u(\bar{6},1) \tag{3}$$

$$Y_d, Y_e^T(\bar{3}, \bar{3}) \tag{4}$$

(5)

In the MFV spirit all higher dimensional standard model operators should be written with insertions of yukawa matrices to make these operators invariant under \mathcal{G}_f . The four dimension 6 baryon number violating operators can be made invariant to second order in the yukawas with the following wilson coefficients (each term individual term should appear with a coefficient c_i).

1.
$$C_{qqql}^{ijkl} = Y_u^{ij}Y_d^{kl} + Y_u^{ik}Y_d^{jl} + Y_u^{jk}Y_d^{il}$$

2.
$$C_{duql}^{ijkl} = \delta^{il}\delta^{jk} + (Y_d^{\dagger})^{ij}Y_u^{kl}$$

3.
$$C_{qque}^{ijkl} = \delta^{ik}\delta^{jl} + \delta^{jk}\delta^{il} + Y_u^{ij}(Y_u^{\dagger})^{kl}$$

4.
$$C_{duue}^{ijkl}=(Y_d^\dagger)^{ij}(Y_u^\dagger)^{kl}+(Y_d^\dagger)^{ik}(Y_u^\dagger)^{jl}$$

Note that \mathcal{O}_{duql} and \mathcal{O}_{qque} can be made into flavor singlets with no yukawa insertions. We choose a basis for the yukawas such that $Y_u = \operatorname{diag}(\lambda_u, \lambda_c, \lambda_t)$ and $Y_d = V_{\text{CKM}} \operatorname{diag}(\lambda_d, \lambda_s, \lambda_b)$. Only \mathcal{O}_{qqql} and \mathcal{O}_{duql} can contribute to $p \to K^+\bar{\nu}$. Inserting our choice for the yukawa basis, expanding out the flavor indices, and working to lowest order these two operators contribute to $p \to K^+\bar{\nu}$ as:

1.
$$\mathcal{O}_{duql}|_{p\to K^+\bar{\nu}} = -(\bar{s}_R^c u_R)(\bar{d}_L^c \nu_{\mu L})$$

2.
$$\mathcal{O}_{qqql}|_{p\to K^+\bar{\nu}} = V^{2l}\lambda_u\lambda_s(\bar{s}_L^cd_L)(\bar{u}_L^c\nu_{lL}) - V^{2l}\lambda_u\lambda_s(\bar{s}_L^cu_L)(\bar{d}_L^c\nu_{lL}) + V^{2l}\lambda_u\lambda_s(\bar{d}_L^cs_L)(\bar{u}_L^c\nu_{lL} - V^{2l}\lambda_u\lambda_s(\bar{d}_L^cu_L)(\bar{s}_L^c\nu_{lL})$$

where for \mathcal{O}_{qqql} the neutrino flavor is summed over. We see that \mathcal{O}_{duql} is unsuppressed by the small quark yukawas and CKM angles and will thus dominate over \mathcal{O}_{qqql} . With the above, we can compute the $p \to K^+ \bar{\nu}$ lifetime by running each of the wilson coefficients for each operator and the yukawa terms down to $\mu = 2 \text{GeV}$. There are 5 arbitrary wilson coefficients, and each operator is suppressed by a mass scale $\frac{1}{\Lambda^2}$ (Λ can be interpreted as the geometric mean of the SUSY breaking scale and the GUT scale). We write the lifetime as a function of these wilson coefficients at $\mu = M_z$ and multiply them by the appropriate long range renormalization factors. We extract the fermion masses at $\mu = 2 \text{GeV}$ from [1] and set $\lambda_i(2 \text{GeV}) = \frac{m_i(2 \text{GeV})}{2^{1/2}v}$, where v is the Higgs vev.

Below we plot the proton lifetime in this channel for $\mathcal{O}(1)$ wilson coefficients at $\mu = M_z$ vs Λ , and also as a function of the wilson coefficients at several different values of Λ .

^[1] Zhi-zhong Xing et al., "Impacts of the Higgs mass on vacuum stability, running fermion masses, and two-body Higgs decays", Phys. Rev. D 86, 013013 (2012).

^{*}Electronic address: nastein@umich.edu

Figure 1: $\tau_{p\to K^+\bar{\nu}}/\text{years}$ for $\mathcal{O}(1)$ wilson coefficients at $\mu=M_z$ vs Λ/GeV . The current lower limit on the lifetime of this channel is 6×10^{33} years, set by SuperK as of 2014.

Figure 2: $\tau_{p\to K^+\bar{\nu}}/\text{years}$ for $\Lambda=10^{14},10^{14.5},10^{15},10^{15.5}GeV$ vs wilson coefficients at $\mu=M_z$. The current lower limit on the lifetime of this channel is 6×10^{33} years, set by SuperK as of 2014.