

上海市精品课程系列

生物化学

第九章 脂代谢

胆固醇是一把双刃剑

肥胖与脂代谢

- 许多疾病由基因引起,但能够真正从基因治疗的角度来解决疾病的还少之又少。
- ■基因主要是通过饮食影响肥胖。
- ■生活习惯对于肥胖的形成起着很大的作用。

第九章 脂代谢

- 9.1 概论
- 9.2 脂类的消化、吸收、运输和贮存
- 9.3 脂肪的分解代谢
- 9.4 脂肪酸及脂类的合成代谢
- 9.5 脂质代谢在工业上的应用

9.1 概论

- ᄤ脂肪是生物体能量贮存的的主要形式。
 - ᄤ脂肪的热值最高
 - ■脂肪是高度浓缩的代谢燃料分子
- ■脂肪是生物体处于特定环境时的主要能量来源。
- ■类脂是构成机体的组织结构成份、被称为结构脂质。
- ■脂肪氧化分解的许多中间产物可转化为糖类和氨 基酸。

(一) 脂类的消化

小肠上段是主要的消化场所

脂类(TG、PL、Ch等)

胆汁酸盐乳化

微团

胰脂肪酶、磷脂酶等水解

甘油一脂、溶血磷脂、 长链脂肪酸、胆固醇等

混合微团

乳化

(二) 脂类的吸收 在十二指肠下段及空肠上段吸收

门静脉 ———— 肝脏

(三) 脂类的转运和脂蛋白的作用

乳糜微粒(CM)

极低密度脂蛋白VLDL

低密度脂蛋白LDL

高密度脂蛋白HDL

脂蛋白的种类

(按密度大小分)

载脂蛋白

◆脂类物质是疏水的,在血液中不能运输

脂质(疏水) + 栽脂蛋白(亲水) + 磷脂和胆固醇(两亲) 血浆脂蛋白(亲水)

- ◆血浆脂蛋白种类
 - ① CM(乳糜微粒),小肠合成,转运外源性脂肪(小肠→体内)
 - ② VLDL(极低密度脂蛋白),肝脏合成,特 运内源性脂肪(肝→肝外组织)
 - ③ LDL(低密度脂蛋白),血管中由VLDL朊脂肪形成,转运胆固醇和磷脂至肝外
 - ④ HDL(高密度脂蛋白),最初在肝脏合成, 收集肝外胆固醇和磷脂至肝

血浆脂蛋白的组成、性质及功能

	CM	VLDL	IDL	LDL	HDL
蛋白质	1~2	10	18	25	50
脂肪	84~85	50	30	5	3
胆固醇脂	4	14	22	40	17
胆固醇	2	8	8	9	3
磷脂	8	18	22	21	27
合成部位	小肠粘膜	肝细胞	血浆、肝	肝、小肠	肝细胞
功能	转运外源	转运内源	转运内源	转运内源	逆向转运
	甘油三脂	甘油三脂	胆固醇	胆固醇酯	胆固醇

什么是好的脂蛋白?

- ■正常人空腹血浆中不易检测CM与VLDL。
- ■LDL由VLDL转变而成,是空腹血浆的主要脂蛋白,其胆 固醇含量相对较高,血浆中LDL高者易患动脉粥样硬化。
- ■HDL能将肝外组织衰老与死亡细胞膜上的胆固醇经血液逆向运回肝,转变成胆汁酸盐等排泄,一般认为它有防止动脉粥样硬化的作用。

脂肪食物摄取

胆囊 小肠

①胆汁酸盐在小肠中将食 物中的大脂肪滴氧化成 小脂肪滴(物理消化)

②肠内的脂肪酶消化三脂 酰甘油形成脂肪酸和甘 油(化学消化)

③脂肪酸和其他消化产物 被小肠黏膜细胞吸收并 再次合成为三脂酰甘油 ⑧脂肪酸作为燃料氧化或 者再合成为脂肪贮存

> 肌肉细胞或 /脂肪细胞

⑦脂肪酸进入细胞、甘油 转运至肝脏和肾脏

脂蛋白脂肪酶

- ⑥在组织毛细管中的脂蛋 白脂肪酶催化脂肪形成 脂肪酸和甘油
- ⑤乳糜微粒通过淋巴系统 和血流运输至组织

乳糜凝粒 (CM)

④三脂酰甘油与胆固醇、磷脂和数 脂蛋白混合成乳糜微粒 (CM)

手.细管

小肠黏膜细胞

ApoC-II

9.3 脂肪的分解代谢

- + 甘油的代谢
- + 脂肪酸的代谢

$$CH_3$$
- $(CH_2)_n$ - CH_2 - CH_2 - $COOH$

+ β-氧化作用
+ α-氧化作用
+ ω-氧化作用

┿ 酮体的代谢

甘油的代谢

β-氧化作用

- → 脂肪酸β-氧化作用的发现
- + 饱和偶数脂肪酸的β-氧化作用
- + 脂肪酸β-氧化作用的生理意义

脂肪酸β-氧化作用的发现

₩β-氧化作用的概念

♣ 脂肪酸体内氧化时在羧基端的β-碳原子上进行氧化,碳链逐次断裂,每次断下一个二碳单位,既乙酰CoA,该过程称作β-氧化。

₩β-氧化作用的试验证据

- ▲1904年F.Knoop用: 1、苯甲酸和苯乙酸饲喂狗
 - 2、苯环标记的脂肪酸饲喂狗
- **↓**证明了脂肪酸分解是每次二个碳单位。

脂肪酸β-氧化作用的发现

₩ 脂肪酸β-氧化作用学说

奇数碳原子: (CH₂-(CH₂)_{2n+1}-COOH → 马尿酸

饱和偶数脂肪酸的β-氧化作用

- ₩ 脂肪酸活化
- ♣ 脂酰~SCoA进入线粒体
- 4 β-氧化反应过程
- ♣ 乙酰~SCoA的彻底氧化
- ♣ β-氧化的生化历程

脂肪酸活化成脂酰~SCoA

→位于内质网和线粒体外膜的脂酰CoA合成酶催化脂肪酸与CoA-SH生成活化的脂酰CoA。

脂酰CoA进入线粒体

→脂肪酸氧化的酶系存在线粒体基质内,但胞浆中活化的长链脂酰CoA(12C以上)却不能直接透过线粒体内膜,必须与肉碱(carnitine)结合成脂酰肉碱才能进入线粒体基质。

反应由肉碱脂酰转移酶(CAT-I和CAT-II)催化:

肉碱转运脂酰CoA进入线粒体

→此过程为脂肪酸β-氧化的限速步骤, CAT-I是限速酶, 丙二酸单酰CoA是强烈的竞争性抑制剂。

脂肪燃烧因子——左旋肉碱

- → 左旋肉旋能促进脂肪酸进入线粒体进行氧化分解。
- →随着年龄的增长,体内左旋肉碱含量水平在逐渐降低, 所谓"干金难买老来瘦"。
- → 左旋肉碱在脂肪燃烧中发挥着巨大的作用,是促进脂肪 "燃烧"的减肥药。

β-氧化反应过程

β-氧化反应过程

乙酰~SCoA的彻底氧化

- →脂肪酸β-氧化产生乙酰~SCoA,可与来自糖代谢中丙酮酸氧化脱羧生成的乙酰~SCoA一样进入三羧酸循环,可彻底被氧化生成CO₂,同时产生NADH+H+和FADH₂。
- →在β-氧化生成乙酰~SCoA过程中产生的NADH+H+和FADH₂,与三羧酸循环中乙酰基氧化产生的NADH+H+和FADH₂一样,都能经氧化呼吸链将氢原子传递给氧,通过呼吸链氧化与磷酸化偶联产生ATP。

脂肪酸β-氧化作用的生理意义

- → β-氧化作用能为机体提供大量的能量。
- →β-氧化作用能提供乙酰~SCoA作为合成脂肪酸、糖和 某些氨基酸的原料。
- → β-氧化作用产生大量的水可提供陆生动物对水的需要。

脂肪酸β-氧化作用的能量生成

→1分子软脂酸(16C)活化生成的软脂酰 CoA 经7次β-氧化.总反应式如下:

→1分子软脂酸彻底氧化共生成:

$$(1.5\times7) + (2.5\times7) + (10\times8) = 108分子ATP$$

→减去脂肪酸活化时消耗 ATP 的 2 个高能磷酸键净生成 106 分子ATP。

不饱和脂肪酸的氧化

顺反异构酶

体内不饱和脂肪酸约占脂肪酸总量的一半以上。 也在线粒体中进行β-氧化。由于不饱和脂肪酸的双 键处于顺式构型,所以需要另一个特异性的酶:

Δ3-顺, Δ2-反烯酰CoA异构酶催化:

不饱和脂肪酸的氧化

差向异构酶

当双键处于偶数位时,不饱和脂肪酸经几次β-氧化后的产物为D(-)β-羟脂酰~SCoA。这个产物不能被β-羟脂酰~SCoA脱氢酶所催化,因为它要求L型异构体的底物。这时需要β-羟脂酰~SCoA差向异构酶的作用,使之转变为L(+)β-羟脂酰~SCoA,使之能继续进行β-氧化反应

奇数碳脂肪酸的氧化

奇数碳脂肪酸经β-氧化可产生n-1个乙酰~SCoA和一个丙酰~SCoA:

脂肪酸的α-氧化作用

脂肪酸氧 化作用发生在 α-碳原子上, 分解出CO2, 生成比原来少 一个碳原子的 脂肪酸,这种 氧化作用称为 α-氧化作用。

脂肪酸的ω氧化作用

脂肪酸的ω-氧化指脂肪酸的 末端甲基 (ω-端) 经氧化转变成羟 基,继而再氧化 成羧基,从而形 成α,ω-二羧酸 的过程。

酮体的代谢

● 酮体的生成

脂肪酸在肝脏中不完全氧化的中间产物,是β-羟丁酸(约占总量70%)、乙酰乙酸(约占30%) 和丙酮 (含量极微) 的统称。

乙酰CoA是酮体生成的原料。

- 酮体的利用
- 酮体生成的生理意义

酮体的生成

酮体的利用

- → 肝脏细胞的线粒体中含有生成酮体的酶体系,故肝脏是生成酮体的器官,但缺乏氧化酮体的酶,因此不能利用酮体,肝脏产生的酮体必须经血液被运输到肝外组织进一步氧化分解。
- → 肝外组织(如心肌、骨骼肌、肾、肾上腺、脑组织等)有 活性很强的利用酮体的酶,所以可利用酮体供能。

酮体的利用

酮体生成的生理意义

- → 酮体具水溶性,能透过血脑屏障及毛细血管壁,是输出 脂肪能源的一种形式。
- →长期饥饿时,酮体供给脑组织50~70%的能量。
- →禁食、应激及糖尿病时,心、肾、骨骼肌摄取酮体代替葡萄糖供能,节省葡萄糖以供脑和红细胞所需,并可防止肌肉蛋白的过多消耗。

9.4 脂肪酸及脂类的合成代谢

- □ 脂肪酸的合成代谢
- □脂肪酸碳链的延长
- □脂肪的合成
- □ 脂类的合成代谢

→脂肪酸合成部位

在肝、肾、脑、肺、乳腺及脂肪等多种组织的胞浆中均含有脂肪酸合成酶系,肝脏是人体合成脂肪酸的主要部位,其合成能力最强,约比脂肪组织大8~9倍。

→脂肪酸合成的原料

碳源:糖氧化分解、β-氧化和氨基酸氧化分解产生的乙酰 CoA,它们都存在于线粒体中。线粒体中的乙酰CoA,需 通过柠檬酸穿梭系统运到胞浆,才能供脂肪酸合成所需。

→脂肪酸合成的原料

ATP、NADPH、HCO₃-(二氧化碳)及Mn²⁺等

其中NADPH在肝脏细胞和哺乳动物乳腺中主要来自胞浆中的磷酸戊糖途径,在脂肪细胞中,主要来自苹果酸酶催化反应产生的NADPH:

苹果酸+NADP+ ── 丙酮酸+CO2+NADPH+H+

→脂肪酸合成酶系

动物细胞脂肪酸合成酶系包括7种不同功能的酶和酰基载体蛋白(ACP),都存在于一条肽链上的七个功能区(结构域),由一个基因编码;酵母细胞中该酶系包含六个酶和ACP,定位于两条肽链上;大肠杆菌的该酶系含六个酶及ACP共七条肽链。

→脂肪酸合成酶系结构模式

中央巯基SH

- ①乙酰CoA羧化酶
- ③β-酮脂酰-ACP合成酶
- ⑤β-羟脂酰-ACP脱水酶

- ②ACP 丙二酰转移酶
- ④ β-酮脂酰-ACP还原酶
- ⑥ 烯脂酰-ACP还原酶

→CoA-SH与ACP-SH的比较

辅基: 4-磷酸泛酰巯基乙胺

CoA分子中也有4-磷酸泛酰巯基乙胺

脂肪酸生物合成的反应历程

CH₃COC₀A

→ 软脂酸合成的总反应

乙酰CoA + 7丙二酸单酰CoA + 14NADPH + 14H⁺ + H₂O

脂肪酸合成酶系 (7次循环)

软脂酸 + 14NADP+ + 7CO2 + 7H2O + 8CoA-SH

脂肪酸从头合成与β-氧化比较

区别点	从头合成	β-氧化
细胞中发生部位	细胞质	线粒体
酰基载体	ACP-SH	CoA-SH
二碳片段的加入与裂解方式	丙二酰ACP	乙酰CoA
电子供体或受体	NADPH	FAD, NAD+
酶系	七种酶和一个蛋白质组成 复合物	四种酶
原料转运方式	柠檬酸转运系统	肉碱穿梭系统
羟脂酰化合物的中间构型	D-型	L-型
对二氧化碳和柠檬酸的需求	要求	不要求
能量变化	消耗7个ATP和 14NADPH	产生106个ATP

脂肪酸碳链的延长

→ 软脂酰CoA或软脂酸生成后,可在滑面内质网及线粒体 经脂肪酸碳链延长酶系的催化作用下,形成更长碳链的 饱和脂肪酸。

延长途径

线粒体延长途径:基本上是β-氧化的逆过程,只是NADPH2作为供氢体参与第二次还原反应。

滑面内质网延长途径:与从头合成类似,只是辅 酶A作为酰基载体,丙二酰辅酶A提供二碳单位。

脂肪的合成

脂类的合成代谢

- (一) 甘油磷脂的合成
- 合成部位: 全身各组织, 肝、肾、肠最活跃。
- ・合成原料:

甘油、脂肪酸、磷酸盐、胆碱、乙醇胺食物或脂肪分解 丝氨酸、食物CTP、ATP、丝氨酸、肌醇等

→ 合成过程:

乙醇胺和胆碱的活化

甘油磷脂的合成

脂类的合成代谢

(二) 胆固醇的合成

- 合成部位:全身各组织(特别是肝)的胞液及内质网。
- ・合成原料:

乙酰CoA(来自柠檬酸-丙酮酸循环)、NADPH+H+、ATP

・合成过程:

包括近30步反应,分3个主要阶段, HMG-CoA还原酶 是整个反应限速酶。

胆固醇合成的调节

1. 食物种类的影响

- ★ 高糖、高饱和脂肪膳食时,能诱导
 - 肝HMG-CoA还原酶合成。
- ★ 糖及脂肪代谢产生的乙酰CoA、
 - ATP、NADPH+H+等增多。
- ★ 过多的蛋白质,因丙氨酸及丝氨酸
- 等代谢提供了原料乙酰CoA。

饥饿、禁食则相反。

胆固醇合成的调节

2. 食物胆固醇的影响

- ★ 食物Ch有限地反馈抑制HMG-CoA合成(~25%)。
- ★ 无Ch摄入时解除此种抑制,故适量的Ch摄入有利于此 反馈抑制作用。

3. 激素的影响

- ★ 胰高血糖素
- ★ 胰岛素

胆固醇合成

胆固醇合成

@食品工业上的应用

- 1. 脂酶水解食品中的脂肪从而影响食品风味
 - ◎脂酶水解食品中的油脂产生游离脂肪酸,后者的氧化产物影响食品风味。
- 2. 脂酶催化酯交换反应
 - @如脂酶在非水相下催化类可可酯的合成。
- @脂肪酸发酵
 - @利用假丝酵母以C11-C15为原料生产脂肪酸。

®共轭亚油酸(CLA)及其制备

1. 概念

十八碳共轭二烯酸的多个位置异构体和几何异构体的混合物

2. 生理功能

⑩抗动脉硬化、抗血栓、降血压、降血脂等活性,此外,还表现出多种抗肿瘤活性,可作为保健食品。

3. CLA制备

@用特定的酶或微生物催化亚油酸转化成CLA。

⑩γ -亚麻酸(GLA)及其制备

- 1. γ-亚麻酸是十八碳三烯酸,为人体必需脂肪酸,是合成前列腺素的前体。
- 2. GLA的应用:防止冠心病和心绞痛、抗高血压、治疗糖尿病、降低胆固醇、抑制溃疡、肥胖症等。
- 3. 制备: 采用微生物发酵是获取GLA的重要途径。

@石油开采和处理石油污染

- 1. 将某些特殊微生物活细胞注入油井,利用其能分解烷烃、 石蜡的能力,来提高石油的采出率。
- 2. 新近从油浸土壤中分离出许多需氧细菌及其某些海面浮游 微生物具有ω-氧化途径,能将烃类和脂肪酸迅速降解成水溶性产物。这些微生物对清除海洋石油污染具有重大意义。