Experiment: To study the Thevenin's Theorem

Objective: To verify the Thevenin's Theorem.

Apparatus: Virtual using Tinkercad (<u>www.tinkercad.com</u>)

Theory:

This circuit states that the current in any bilateral circuit element (R_L) in a network is the same as would be obtained if that circuit element (R_L) is supplied with a source Voltage in series with an equivalent resistance R_{th} being the open circuit voltage at the terminals from which R_L has been removed and R_{th} being the resistance that would be measured at these terminals after all sources have been replaced by their internal resistance respectively. According to this theorem, if resistance R_L be connected between two terminals in a linear bilateral network, then resulting steady state current through resistor will be $V_{th}/(R_L+R_{th})$, where V_{th} is the potential difference between points A and B after removing R_L such that for network shown in figure.

Fig. Circuit diagram for verification of Thevenin's Theorem

$$V_{th} = V*R_2/(R_1+R_2)$$

And Thevenin's resistance measured between terminals ab (with source removed and replaced by its internal resistance if any, otherwise replace by short circuit) is given by:

$$R_{th} = [R1*R2/R1+R2]+R3$$

Now external resistance R_L is connected between terminals ab such that Thvenin's equivalent circuit for the network will be as shown in figure. Current through R_L will be

$$I_l = V_{th} / (R_{th} + R_L)$$

Procedure:

- 1. Connect the circuit as shown in the circuit diagram on tinkercad workspace. Once the circuit is made take a snapshot and paste in the manual.
- **2.** To verify the theorem, measure Thevenin resistance by removing the load and deactivating the sources in the circuit.
- **3.** Remove R_L from the circuit and measure the open circuit voltage \mathbf{V}_{th} across the end points by a DC voltmeter.
- **4.** Once R_{th} and V_{th} are know, draw the Thevenin's equivalent circuit.
- 5. Now measure current I_L by selecting the load resistance of 25, 50 and 100 Ω respectively by the multimeter.
- **6.** Again find the Thevenin equivalent of the circuit theoretically and compare it with the simulation readings.

Observation table:

S. No.	Load resistance	Vth	Rth	IL	Theoritical I _L	% Error
1						
2						
3						

(Circuit	diagram	on Tin	kercad:

(paste	here)
--------	-------

Calculations:

Conclusion: