Initial Network

Layer (type)	Output Shape	Param #
rescaling (Rescaling)	(None, 150, 150, 3)	0
conv2d (Conv2D)	(None, 150, 150, 4)	112
max_pooling2d (MaxPooling2D)	(None, 75, 75, 4)	0
conv2d_1 (Conv2D)	(None, 75, 75, 8)	296
max_pooling2d_1 (MaxPooling2D)	(None, 37, 37, 8)	0
conv2d_2 (Conv2D)	(None, 37, 37, 16)	1,168
max_pooling2d_2 (MaxPooling2D)	(None, 18, 18, 16)	0
flatten (Flatten)	(None, 5184)	0
dense (Dense)	(None, 16)	82,960
dense_1 (Dense)	(None, 3)	51

Total params: 84,587 (330.42 KB) Trainable params: 84,587 (330.42 KB) Non-trainable params: 0 (0.00 B)

Epoch 12/12

32/32 ———— 5s 158ms/step - accuracy: 0.7138 -

loss: 0.6485 - val_accuracy: 0.6770 - val_loss: 0.7534

* Evaluating basic_model

loss: 0.6871

Originally, I had added dropouts to experiment with the data, along with lowering and increasing the epoch, but each time I experimented with the hyperparameters, I wasn't able to get a better result than my original model. I tried two dropouts with 0.2 each, 0.5 and 0.2, 0.5 each, 0.4 and 0.6, and I've tried a single dropout with 0.2 and 0.5. It only ended with worse results and overfitting happening much earlier than the original model.