Identifying the Opponent's Strategy by Behavioural Analysis in Repeated 2x2 Games

Joris Teunisse Supervisors: Mehdi Dastani and Bas Testerink

Utrecht University

August 19, 2020

Outline

- Introduction
- Research questions
- Experiment framework
- Agent implementation
- Results
- Discussion

Introduction - Fundamental concepts

- ▶ This thesis studies how *agents* interact with each other.
- Specifically, we study interactions for which the agents have a specific goal in mind.
- ► Each agent applies a *strategy* that selects which actions should be taken.
- ► This type of interaction can be studied systematically by using the matrix game framework.

Introduction - Matrix games (1/2)

- ► How does a matrix game model an interaction?
 - Agents can take a finite number of actions.
 - These actions are taken simultaneously: this is called a joint action.
 - Rewards quantify the progress towards an agent's goal.

		2
	α	ρ
а	3, 3	0, 5
b	5,0	1, 1

Table 1: A matrix game.

Introduction - Matrix games (2/2)

- Two related concepts are of importance to this thesis.
 - In Nash equilibria, no agent could have improved its reward independently.
 - In Pareto optima, no joint action would have lead to an improved or equal reward for all agents.

	α	β
а	3, 3	0, 5
b	5,0	1, 1

Table 1: A matrix game.

Introduction - Repeated games

- ▶ Repeated games extend the functionality of matrix games.
 - ▶ Playing multiple iterations of a *stage game* allows the agents to adapt to their opponents' behaviour.
- ► We specifically chose repeated 2x2 games, as they possess the minimal properties required for this research.

Introduction - Motivation

- ► In the context of repeated 2x2 games, agents generally aim to achieve the highest possible reward over time.
- ➤ To this end, some agents approximate the actions of their opponent.
- We were interested in an agent whose initial aim is to find out exactly which strategy its opponent applies, in order to exploit this information afterwards.

Research questions - Definitions

- ► A candidate set is a finite collection of strategies that an agent could be applying.
- An agent's strategy has been *identified* if the strategy was successfully derived from the agent's behaviour.
- A strategy's distinguishability represents how well it can be differentiated from its peers.

Research questions - Declarations

- ▶ How can an agent's strategy be identified efficiently from a set of candidate strategies, based upon the agent's behaviour in repeated 2x2 games?
 - What are properties of strategies and stage games that contribute to distinguishability?
 - What is the influence of the stage game's properties on the efficiency of identification?
 - What is the influence of the candidate set on the efficiency of identification?
 - Which methods for behavioural analysis are appropriate for which combinations of candidate sets and stage games?

Research questions - Hypotheses

- ▶ Distinguishability will be higher in stage games that provide many strategic options.
- ► Complex strategies will be harder to identify than simple ones.
- Both the stage game and the candidate set will influence the distinguishability of a strategy.
- Applying a strategy that specifically targets efficient identification will lead to improved results.

Experiment framework - Strategies (1/3)

- We selected strategies of varied complexity.
 - ▶ Static strategies: Pure 0, Pure 1, Random, Nash.
 - **D**ynamic strategies (non-learning): TFT, ϵ -FP, Relative FP.
 - Dynamic strategies (learning): ε-greedy Q, Boltz-Q.
- We will briefly discuss one strategy per category.

Experiment framework - Strategies (2/3)

- ▶ Pure 0: Take the first action.
- ▶ Pure 1: Take the second action.
- Random: Take either action with equal probabilities.
- Nash: Take the action which represents your part of a random NE.
- ▶ **TFT:** Initially take the action which represents your part of a random Pareto optimum. Afterwards, mimic the action of your opponent: take the first action if your opponent has taken the first action in the previous iteration, and the second action otherwise.

Experiment framework - Strategies (3/3)

- ϵ -FP: Apply the Fictitious Play algorithm. If the difference between the expected rewards is smaller than ϵ , take either action with equal probabilities. If not, take the action with the highest expected reward.
- ▶ Relative FP: Apply the Fictitious Play algorithm. Normalise the expected rewards between 0 and 1: take either action with the resulting probabilities.
- ▶ ϵ -greedy **Q**: Apply the Q-learning algorithm: take either action according to the ϵ -greedy exploration method.
- ▶ Boltz-Q: Apply the Q-learning algorithm: take either action according to the Boltzmann exploration method, rather than ϵ -greedy.

Experiment framework - Stage games

0	α	β
а	3, 2	0,0
b	0,0	2, 3

1	α	β
а	0,0	-1, 1
b	1, -1	-9, -9

2	α	β
а	1, 1	0,0
b	0,0	0,0

3	α	β	
а	2, 2	0,0	
b	0,0	1, 1	

$$\begin{array}{c|cccc} 4 & \alpha & \beta \\ \hline a & 1,1 & 0,3 \\ b & 3,0 & 2,2 \\ \hline \end{array}$$

5	α	β
а	1, -1	-1, 1
b	-1, 1	1, -1

6	α	β
а	3, 3	0, 5
b	5,0	1, 1

7	α	β
а	4, 4	1,3
b	3, 1	2, 2

- Joint actions can be Nash equilibria, Pareto optima or both.
- ▶ Note that mixed Nash equilibria have not been visualised.

Agent implementation - Identification

- ► The goal of our Identification Agent (IA) is to identify the opponent's strategy as efficiently as possible.
- ► To this end, it calculates the probability of each candidate strategy given the history of joint actions.

Agent implementation - Look-ahead strategy

- In contrast to the strategies discussed thus far, the look-ahead strategy specifically targets efficient identification.
- By simulating the consequences of its actions, this strategy estimates which action leads to faster identification on average.
- ► This generally results in actions that would provoke different responses from each candidate strategy.

Results - Setup

- ▶ In each experiment, the IA attempted to identify the strategy of its opponent within 10 iterations.
- ▶ We researched *candidate pairs*: candidate sets of size 2.
- ► The IA's performance was judged by using two main statistics: its *accuracy* and the *mean iterations* it required.
- ▶ The statistics average over 100 individual experiments.

Results - All stage games

In general, distinguishability varies per candidate pair.

Results - Impact of look-ahead

The look-ahead strategy frequently lead to improved efficiency.

Results - Statistics per strategy

Strategy	Avg. accuracy	Avg. mean	Failures
TFT	1.00	2.84	0
Pure 0	0.94	2.75	1
Pure 1	0.87	2.67	2
ϵ -FP	0.85	3.64	1
Relative FP	0.76	4.41	5
Nash	0.75	3.27	6
Random	0.75	5.79	7
Boltz-Q	0.66	5.02	6
ϵ -greedy Q	0.65	5.50	0

- ▶ The TFT strategy was identified with perfect accuracy: presumably due to its unique behaviour.
- Both Nash and Random ranked lower than expected.

Results - Statistics per stage game

Stage game	Avg. accuracy	Avg. mean	Failures
Chicken	0.87	3.61	0
Coordination	0.87	3.76	1
Bach or Stravinsky	0.85	4.04	1
Coordinate First	0.85	4.08	3
Prisoner's Dilemma	0.77	3.90	1
Stag Hunt	0.75	4.20	1
Matching Pennies	0.75	4.30	6
Deadlock	0.70	3.48	1

- Coordinate First lead to high accuracy values despite offering few strategic options.
- ► The converse was true for Matching Pennies.

Discussion - Conclusions

- ▶ Both the stage game and the specific candidate set can have a large influence on distinguishability.
- The look-ahead strategy improved the efficiency of identification for all non-static candidate pairs.
- ➤ The stage games' strategic options do not seem to be as influential as we expected.
- Lastly, the distinguishability of a strategy does appear to be related to its complexity: however, unique behaviour also seems to be an important factor.

Discussion - Future work

- ► Future work could research the benefits of applying different strategies for the purpose of identification.
- Larger candidate sets could also be investigated.
- ► Finally, this research can be used as a baseline for an agent that applies a specific counter-strategy after identification.

The end

Thank you for listening!