# SSD1362

# Advance Information

256 x 64, 16 Gray Scale Dot Matrix High Power **OLED/PLED Segment/Common Driver with Controller** 

This document contains information on a product under development. Solomon Systech reserves the right to change or discontinue this product without notice.



#### Appendix: IC Revision history of SSD1362 Specification

| Version | Change Items                    | Effective Date |
|---------|---------------------------------|----------------|
| 1.0     | Advance Information 1st Release | 17-Feb-15      |
|         |                                 |                |



 Solomon Systech
 Feb 2015
 P 2/62
 Rev 1.0
 SSD1362

# CONTENTS

| GENE             | RAL DESCRIPTION                                                                                                                                                                                                                                                        | 7                                        |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| FEAT             | URES                                                                                                                                                                                                                                                                   | 7                                        |
| ORDE             | RING INFORMATION                                                                                                                                                                                                                                                       | 7                                        |
|                  |                                                                                                                                                                                                                                                                        |                                          |
| BLUC             | A DIAGRAM                                                                                                                                                                                                                                                              | δ                                        |
| DIE PA           | AD FLOOR PLAN                                                                                                                                                                                                                                                          | 9                                        |
| PIN D            | ESCRIPTIONS                                                                                                                                                                                                                                                            | 12                                       |
| FUNC             | TIONAL BLOCK DESCRIPTIONS                                                                                                                                                                                                                                              | 15                                       |
| 7.1 MC           |                                                                                                                                                                                                                                                                        |                                          |
| 7.1.1            |                                                                                                                                                                                                                                                                        |                                          |
|                  |                                                                                                                                                                                                                                                                        |                                          |
|                  | MCU Serial Interface (4-wire SPI)                                                                                                                                                                                                                                      | 17                                       |
|                  | MCU Serial Interface (3-wire SPI)                                                                                                                                                                                                                                      | 18                                       |
|                  |                                                                                                                                                                                                                                                                        |                                          |
| 7.2 Coi          | illiand Decoder                                                                                                                                                                                                                                                        | 22                                       |
|                  |                                                                                                                                                                                                                                                                        |                                          |
|                  |                                                                                                                                                                                                                                                                        |                                          |
|                  |                                                                                                                                                                                                                                                                        |                                          |
| 7.7 Gra          | nphic Display Data RAM (GDDRAM)                                                                                                                                                                                                                                        | 28                                       |
| 7.8 Gra          | y Scale Decoder                                                                                                                                                                                                                                                        | 31                                       |
| 7.9 Pov          | wer ON and OFF sequence                                                                                                                                                                                                                                                | 32                                       |
| $7.10  V_{DI}$   | D Regulator                                                                                                                                                                                                                                                            | 33                                       |
|                  |                                                                                                                                                                                                                                                                        |                                          |
|                  |                                                                                                                                                                                                                                                                        |                                          |
| 8.1 Dat          | ta Read / Write                                                                                                                                                                                                                                                        | 39                                       |
| COMN             | MAND DESCRIPTIONS                                                                                                                                                                                                                                                      | 40                                       |
| 9.1 Fun          |                                                                                                                                                                                                                                                                        |                                          |
| 9.1.1            |                                                                                                                                                                                                                                                                        |                                          |
|                  |                                                                                                                                                                                                                                                                        |                                          |
|                  |                                                                                                                                                                                                                                                                        |                                          |
|                  |                                                                                                                                                                                                                                                                        |                                          |
|                  |                                                                                                                                                                                                                                                                        |                                          |
|                  |                                                                                                                                                                                                                                                                        |                                          |
|                  |                                                                                                                                                                                                                                                                        |                                          |
|                  | 1 2 '                                                                                                                                                                                                                                                                  |                                          |
|                  |                                                                                                                                                                                                                                                                        |                                          |
|                  |                                                                                                                                                                                                                                                                        |                                          |
|                  |                                                                                                                                                                                                                                                                        |                                          |
| 9.1.13           |                                                                                                                                                                                                                                                                        |                                          |
| 9.1.14           |                                                                                                                                                                                                                                                                        |                                          |
| 9.1.15           |                                                                                                                                                                                                                                                                        |                                          |
|                  | Set GI 10 (B3n)                                                                                                                                                                                                                                                        |                                          |
| 9.1.16           | Set Second Pre-charge period (B6h)                                                                                                                                                                                                                                     | 49                                       |
| 9.1.17           | Set Second Pre-charge period (B6h)<br>Set Gray Scale Table (B8h)                                                                                                                                                                                                       | 49<br>49                                 |
| 9.1.17<br>9.1.18 | Set Second Pre-charge period (B6h)<br>Set Gray Scale Table (B8h)<br>Select Default Linear Gray Scale Table (B9h)                                                                                                                                                       | 49<br>49                                 |
| 9.1.17           | Set Second Pre-charge period (B6h)<br>Set Gray Scale Table (B8h)                                                                                                                                                                                                       |                                          |
|                  | FEAT ORDE BLOC DIE P. PIN D. FUNC 7.1 MC 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.2 Con 7.3 Osc 7.4 FR 7.5 Seg 7.6 SE 7.7 Gra 7.8 Gra 7.9 Pox 7.10 Vp 7.11 Res COM 8.1 Dat COM 9.1 Fur 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 9.1.7 9.1.8 9.1.9 9.1.10 9.1.11 9.1.12 9.1.13 9.1.14 | 7.1.1 MCU Parallel 6800-series Interface |

| 9.           | 0.1.21 Set V <sub>COMH</sub> Voltage (BEh)  | 49 |
|--------------|---------------------------------------------|----|
|              | 2.1.22 Set Command Lock (FDh)               |    |
| 9.           | 2.1.23 Set Fade In / Out and Blinking (23h) | 50 |
| 10           | MAXIMUM RATINGS                             | 51 |
| 11           | DC CHARACTERISTICS                          | 52 |
| 12           | AC CHARACTERISTICS                          | 54 |
| 12.1         |                                             |    |
| 12.2         | 8                                           |    |
| 12.3<br>12.4 | 8                                           |    |
| 12.5         |                                             |    |
| 13           | APPLICATION EXAMPLE                         | 60 |
| 14           | PACKAGE INFORMATION                         | 61 |
| 14.1         | 1 SSD1362Z Die Tray Information             | 61 |
|              | PACKAGE INFORMATION                         |    |
|              |                                             |    |

 Solomon Systech
 Feb 2015
 P 4/62
 Rev 1.0
 SSD1362

#### **TABLES**

| Table 3-1: Ordering Information                                        | 7  |
|------------------------------------------------------------------------|----|
| TABLE 5-1: SSD1362 BUMP DIE PAD COORDINATES                            | 9  |
| TABLE 6-1: SSD1362 PIN DESCRIPTION                                     | 12 |
| TABLE 6-2: BUS INTERFACE SELECTION                                     | 13 |
| TABLE 7-1: MCU INTERFACE ASSIGNMENT UNDER DIFFERENT BUS INTERFACE MODE | 15 |
| TABLE 7-2: CONTROL PINS OF 6800 INTERFACE                              | 15 |
| TABLE 7-3: CONTROL PINS OF 8080 INTERFACE.                             | 17 |
| TABLE 7-4: CONTROL PINS OF 4-WIRE SERIAL INTERFACE                     | 17 |
| TABLE 7-5: CONTROL PINS OF 3-WIRE SERIAL INTERFACE                     | 18 |
| Table 7-6: GDDRAM address map 1                                        | 28 |
| TABLE 7-7: GDDRAM ADDRESS MAP 2                                        | 28 |
| TABLE 7-8: GDDRAM ADDRESS MAP 3                                        | 29 |
| Table 7-9: GDDRAM address map 4                                        | 29 |
| TABLE 7-10: GDDRAM ADDRESS MAP 5                                       | 30 |
| TABLE 7-11: IO REGULATOR PIN DESCRIPTION                               | 33 |
| Table 8-1: Command Table                                               | 34 |
| TABLE 8-2: ADDRESS INCREMENT TABLE (AUTOMATIC)                         | 39 |
| Table 9-1: SEG Pins Hardware Configuration                             |    |
| TABLE 10-1: MAXIMUM RATINGS                                            |    |
| Table 11-1: DC Characteristics                                         |    |
| TABLE 12-1: AC CHARACTERISTICS                                         |    |
| TABLE 12-2: 6800-SERIES MCU PARALLEL INTERFACE TIMING CHARACTERISTICS  | 55 |
| TABLE 12-3: 8080-SERIES MCU PARALLEL INTERFACE TIMING CHARACTERISTICS  | 56 |
| TABLE 12-4: SERIAL INTERFACE TIMING CHARACTERISTICS (4-WIRE SPI)       |    |
| TABLE 12-5: SERIAL INTERFACE TIMING CHARACTERISTICS (3-WIRE SPI)       | 58 |
| TABLE 10-1: MAXIMUM RATINGS TABLE 11-1: DC CHARACTERISTICS             |    |
|                                                                        |    |

**SSD1362** Rev 1.0 P 5/62 Feb 2015 **Solomon Systech** 

# **FIGURES**

| Figure 4-1: SSD1362 Block Diagram                                                                       | 8  |
|---------------------------------------------------------------------------------------------------------|----|
| Figure 5-1 – SSD1362Z Die drawing                                                                       | 9  |
| FIGURE 5-2: SSD1362Z ALIGNMENT MARK DIMENSION                                                           | 9  |
| FIGURE 7-1: DATA READ BACK PROCEDURE - INSERTION OF DUMMY READ                                          |    |
| FIGURE 7-2: EXAMPLE OF WRITE PROCEDURE IN 8080 PARALLEL INTERFACE MODE                                  | 16 |
| FIGURE 7-3: EXAMPLE OF READ PROCEDURE IN 8080 PARALLEL INTERFACE MODE                                   | 16 |
| FIGURE 7-4: DISPLAY DATA READ BACK PROCEDURE - INSERTION OF DUMMY READ                                  | 17 |
| FIGURE 7-5 : WRITE PROCEDURE IN 4-WIRE SERIAL INTERFACE MODE                                            |    |
| FIGURE 7-6: WRITE PROCEDURE IN 3-WIRE SERIAL INTERFACE MODE                                             | 18 |
| Figure 7-7 : I2C-bus data format                                                                        |    |
| FIGURE 7-8: DEFINITION OF THE START AND STOP CONDITION                                                  | 21 |
| FIGURE 7-9: DEFINITION OF THE ACKNOWLEDGEMENT CONDITION                                                 | 21 |
| FIGURE 7-10 : DEFINITION OF THE DATA TRANSFER CONDITION                                                 | 21 |
| Figure 7-11: Oscillator Circuit                                                                         |    |
| FIGURE 7-12: SEGMENT AND COMMON DRIVER BLOCK DIAGRAM                                                    | 24 |
| FIGURE 7-13 : SEGMENT AND COMMON DRIVER SIGNAL WAVEFORM                                                 | 25 |
| FIGURE 7-14: GRAY SCALE CONTROL BY PWM IN SEGMENT                                                       |    |
| FIGURE 7-15 : I <sub>ref</sub> Current Setting by Resistor Value                                        | 27 |
| FIGURE 7-16: RELATION BETWEEN GDDRAM CONTENT AND GRAY SCALE TABLE ENTRY (UNDER COMMAND B9H              |    |
| Enable Linear Gray Scale Table)                                                                         | 31 |
| FIGURE 7-17 : THE POWER ON SEQUENCE                                                                     |    |
| FIGURE 7-18: THE POWER OFF SEQUENCE                                                                     |    |
| FIGURE 9-1: EXAMPLE OF COLUMN AND ROW ADDRESS POINTER MOVEMENT                                          |    |
| FIGURE 9-2: ADDRESS POINTER MOVEMENT OF HORIZONTAL ADDRESS INCREMENT MODE                               |    |
| FIGURE 9-3: ADDRESS POINTER MOVEMENT OF VERTICAL ADDRESS INCREMENT MODE                                 |    |
| FIGURE 9-4: EXAMPLE OF SET DISPLAY START LINE WITH NO REMAPPING                                         |    |
| FIGURE 9-5: EXAMPLE OF SET DISPLAY OFFSET WITH NO REMAPPING                                             |    |
| FIGURE 9-6: EXAMPLE OF NORMAL DISPLAY                                                                   |    |
| FIGURE 9-7: EXAMPLE OF ENTIRE DISPLAY ON                                                                |    |
| FIGURE 9-8 : EXAMPLE OF ENTIRE DISPLAY OFF                                                              | 46 |
| FIGURE 9-9: EXAMPLE OF INVERSE DISPLAY                                                                  | 46 |
| FIGURE 9-10: DISPLAY ON SEQUENCE (WHEN INITIAL START)                                                   |    |
| Figure 9-11: Display OFF Sequence                                                                       |    |
| Figure 9-12: Display ON Sequence (During Sleep mode and internal $V_{\text{DD}}$ regulator is disabled) |    |
| FIGURE 9-13: EXAMPLE OF GAMMA CORRECTION BY GAMMA LOOK UP TABLE SETTING                                 |    |
| FIGURE 9-14: EXAMPLE OF FADE OUT MODE                                                                   |    |
| FIGURE 9-15 : EXAMPLE OF BLINKING MODE                                                                  |    |
| FIGURE 12-1: 6800-SERIES MCU PARALLEL INTERFACE CHARACTERISTICS                                         |    |
| FIGURE 12-2: 8080-SERIES MCU PARALLEL INTERFACE CHARACTERISTICS                                         |    |
| FIGURE 12-3 : SERIAL INTERFACE CHARACTERISTICS (4-WIRE SPI)                                             |    |
| FIGURE 12-4: SERIAL INTERFACE CHARACTERISTICS (3-WIRE SPI)                                              |    |
| FIGURE 12-5: I2C INTERFACE TIMING CHARACTERISTICS                                                       |    |
| FIGURE 13-1 : SSD1362Z APPLICATION EXAMPLE FOR 8-BIT 6800-PARALLEL INTERFACE MODE (INTERNAL REGULATE    |    |
| V <sub>DD</sub> )                                                                                       |    |
| Figure 14-1: SSD1362Z Die Tray Drawing                                                                  | 61 |

 Solomon Systech
 Feb 2015
 P 6/62
 Rev 1.0
 SSD1362

#### 1 GENERAL DESCRIPTION

SSD1362 is a single-chip CMOS OLED/PLED driver with controller for organic/polymer light emitting diode dot-matrix graphic display. It consists of 256 segments and 64 commons. This IC is designed for Common Cathode type OLED/PLED panel.

SSD1362 displays data directly from its internal 256 x 64 x 4 bits Graphic Display Data RAM (GDDRAM). Data/Commands are sent from general MCU through the hardware selectable I<sup>2</sup>C Interface, 6800-/8080-series compatible Parallel Interface or Serial Peripheral Interface.

The 256 steps contrast control and oscillator which embedded in SSD1362 reduces the number of external components. SSD1362 is suitable for portable applications requiring a compact size and high output brightness, such as set-top box, car audio, wearable electronics, etc.

#### 2 FEATURES

- Resolution: 256 x 64 dot matrix panel
- Power supply:
  - $\circ$   $V_{CC} = 10.0V 20.0V$

(Panel driving power supply)

o  $V_{DDIO} = 1.65V - V_{CI}$ 

(MCU interface logic level)

o  $V_{CI} = 1.65V - 3.5V$ 

(Low voltage power supply)

o  $V_{DD} = 1.65V - 2.6V$ 

(Core V<sub>DD</sub> power supply)

- o When  $V_{CI}$  is lower than 2.6V,  $V_{DD}$  should be tied to  $V_{CI}$  and supplied by external power source
- $\circ$  When  $V_{CI}$  is higher than 2.6V,  $V_{DD}$  is internally regulated and a stabilizing capacitor is needed
- Programmable Frame Rate and Multiplexing Ratio
- On-Chip Oscillator

- For matrix display
  - Segment maximum source current: 600uA
  - Common maximum sink current: 128mA
  - o 256 step contrast brightness current control, 16 step master current control
  - 16 gray scale level supported by embedded 256 x 64 x 4 bit SRAM display buffer
  - 8 bit programmable Gray Scale Look Up Table
  - Hardware selectable MCU Interfaces:
    - o 8-bit 6800/8080-series parallel interface
    - o 3 /4 wire Serial Peripheral Interface
    - o I<sup>2</sup>C Interface (Up to 400kbit/s)
  - Power on reset (POR)
  - Internal I<sub>REF</sub> or external I<sub>REF</sub>
  - Row Re-mapping and Column Re-mapping
  - Wide range of operating temperatures: -40°C to 85°C

#### 3 ORDERING INFORMATION

**Table 3-1: Ordering Information** 

| Ordering Part Number | SEG |    | Package<br>Form | Reference | Remark                                                                                                                                                                        |
|----------------------|-----|----|-----------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SSD1362Z             | 256 | 64 | COG             | Page 9    | <ul> <li>Min SEG pad pitch: 27um</li> <li>Min COM pad pitch: 45um</li> <li>Min I/O pad pitch: 60um</li> <li>Die thickness: 250um</li> <li>Bump height: nominal 9um</li> </ul> |

#### 4 BLOCK DIAGRAM

Figure 4-1: SSD1362 Block Diagram



 Solomon Systech
 Feb 2015 | P 8/62 | Rev 1.0 | SSD1362

#### 5 DIE PAD FLOOR PLAN

Pin 1 

Figure 5-1 – SSD1362Z Die drawing

| Die size          | 11.09 mm +/- 0.05mm x<br>0.98 mm+/- 0.05mm |  |
|-------------------|--------------------------------------------|--|
| Die thickness     | 250 +/- 15um                               |  |
| Min I/O pad pitch | 60um                                       |  |
| Min SEG pad pitch | 27um                                       |  |
| Min COM pad pitch | 45um                                       |  |
| Bump height       | Nominal 9 um                               |  |

| Bump size        |       |       |
|------------------|-------|-------|
| Pad#             | X[um] | Y[um] |
| 1-8, 141-148     | 100   | 15    |
| 9, 22            | 30    | 100   |
| 10-21            | 15    | 100   |
| 23-140           | 30    | 67    |
| 149-284, 357-492 | 12    | 125   |
| 285-356          | 30    | 60    |

| Alignment mark | Position           | Size        |
|----------------|--------------------|-------------|
| + shape        | (-3750, -150)      | 75um x 75um |
| T shape        | (3750, -150)       | 75um x 75um |
| SSL Logo       | (-3568.5, -144.35) | -           |

(For details dimension please see Figure 5-2)



Figure 5-2: SSD1362Z alignment mark dimension



 SSD1362
 Rev 1.0
 P 9/62
 Feb 2015
 Solomon Systech

Table 5-1: SSD1362 Bump Die Pad Coordinates

| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Y<br>452.5<br>452.5<br>452.5<br>452.5<br>452.5<br>452.5<br>452.5<br>452.5<br>-410<br>-410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 V20 -5156 - 3 V20 -4956 - 4 V20 -4756 - 5 V20 -4566 - 6 V20 -4356 - 7 V20 -4156 - 8 V20 -3956 - 9 NC -3750 - 10 TR0 -3705 - 11 TR1 -3675 - 12 TR2 -3645 - 13 TR3 -3615 - 14 TR4 -3585                                                                                                                                                                                                                                                                                             | 452.5<br>452.5<br>452.5<br>452.5<br>452.5<br>452.5<br>452.5<br>452.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3 V20 -4956 - 4 V20 -4756 - 5 V20 -4556 - 6 V20 -4356 - 7 V20 -4156 - 8 V20 -3956 - 9 NC -3750 10 TR0 -3705 11 TR1 -3675 12 TR2 -3645 13 TR3 -3615 14 TR4 -3585                                                                                                                                                                                                                                                                                                                     | 452.5<br>452.5<br>452.5<br>452.5<br>452.5<br>452.5<br>452.5<br>-410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4 V20 -4756 - 5 V20 -4556 - 6 V20 -4356 - 7 V20 -4156 - 8 V20 -3956 - 9 NC -3750 10 TR0 -3705 11 TR1 -3675 12 TR2 -3645 13 TR3 -3615 14 TR4 -3585                                                                                                                                                                                                                                                                                                                                   | 452.5<br>452.5<br>452.5<br>452.5<br>452.5<br>-410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5 V20 -4556 - 6 V20 -4356 - 7 V20 -4156 - 8 V20 -3956 - 8 V20 -3956 - 9 NC -3750 - 10 TR0 -3705 - 11 TR1 -3675 - 12 TR2 -3645 - 13 TR3 -3615 - 14 TR4 -3585                                                                                                                                                                                                                                                                                                                         | 452.5<br>452.5<br>452.5<br>452.5<br>-410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6 V20 -4356 - 7 V20 -4156 - 8 V20 -3956 - 9 NC -3750 10 TR0 -3705 11 TR1 -3675 12 TR2 -3645 13 TR3 -3615 14 TR4 -3585                                                                                                                                                                                                                                                                                                                                                               | 452.5<br>452.5<br>452.5<br>-410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7 V20 -4156 - 8 V20 -3956 - 9 NC -3750 10 TR0 -3675 11 TR1 -3675 12 TR2 -3645 13 TR3 -3615 14 TR4 -3585                                                                                                                                                                                                                                                                                                                                                                             | 452.5<br>-410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8 V20 -3956 - 9 NC -3750 10 TR0 -3705 11 TR1 -3675 12 TR2 -3645 13 TR3 -3615 14 TR4 -3585                                                                                                                                                                                                                                                                                                                                                                                           | 452.5<br>-410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 9 NC -3750<br>10 TR0 -3705<br>11 TR1 -3675<br>12 TR2 -3645<br>13 TR3 -3615<br>14 TR4 -3585                                                                                                                                                                                                                                                                                                                                                                                          | -410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10 TR0 -3705<br>11 TR1 -3675<br>12 TR2 -3645<br>13 TR3 -3615<br>14 TR4 -3585                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11         TR1         -3675           12         TR2         -3645           13         TR3         -3615           14         TR4         -3585                                                                                                                                                                                                                                                                                                                                   | -410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12 TR2 -3645<br>13 TR3 -3615<br>14 TR4 -3585                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 13 TR3 -3615<br>14 TR4 -3585                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 14 TR4 -3585                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 15 TR5 -3555                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 16 VSS -3525                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 17 TR6 -3495                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 18 TR7 -3465                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 20 TR9 -3405                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 22 NC -3330                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 24 VCC -3210 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 30 VCOMH -2850 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 31 VCOMH -2790 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 32 VCOMH -2730 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 33 VCOMH -2670 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 37 VP -2430 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 38 VP -2370 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 426.5<br>426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 50 VSS -1650 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 426.5<br>426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 50 VSS -1650 -<br>51 VSS -1590 -                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 426.5<br>426.5<br>426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 50 VSS -1650 -<br>51 VSS -1590 -<br>52 VSS -1530 -                                                                                                                                                                                                                                                                                                                                                                                                                                  | 426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 50 VSS -1650 -<br>51 VSS -1590 -<br>52 VSS -1530 -<br>53 VSS -1470 -                                                                                                                                                                                                                                                                                                                                                                                                                | 426.5<br>426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 50 VSS -1650 - 51 VSS -1590 - 52 VSS -1530 - 53 VSS -1470 - 54 BGGND -14410 - 55 VDD -1350 -                                                                                                                                                                                                                                                                                                                                                                                        | 426.5<br>426.5<br>426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 50 VSS -1650 - 51 VSS -1590 - 52 VSS -1530 - 53 VSS -1470 - 54 BGGND -1410 - 55 VDD -1350 - 56 VDD -1290 -                                                                                                                                                                                                                                                                                                                                                                          | 426.5<br>426.5<br>426.5<br>426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 50 VSS -1650 - 51 VSS -1590 - 52 VSS -1530 - 53 VSS -1470 - 54 BGGND -1410 - 55 VDD -1350 - 56 VDD -1230 - 57 VDD -1230 -                                                                                                                                                                                                                                                                                                                                                           | 426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 50 VSS -1650 - 51 VSS -1590 - 52 VSS -1530 - 53 VSS -1470 - 54 BGGND -1410 - 55 VDD -1350 - 56 VDD -1290 - 57 VDD -1230 - 58 VCI -1170 -                                                                                                                                                                                                                                                                                                                                            | 426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 50 VSS -1650 - 51 VSS -1590 - 52 VSS -1530 - 53 VSS -1470 - 54 BGGND -1410 - 55 VDD -1350 - 56 VDD -1290 - 57 VDD -1230 - 58 VCI -1170 - 59 VCI -1110 -                                                                                                                                                                                                                                                                                                                             | 426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 50 VSS -1650 - 51 VSS -1590 - 52 VSS -1530 - 53 VSS -1470 - 54 BGGND -1410 - 55 VDD -1350 - 56 VDD -1290 - 57 VDD -1230 - 58 VCI -1170 - 59 VCI -1110 - 60 VCI -1050 -                                                                                                                                                                                                                                                                                                              | 426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 50 VSS -1650 - 51 VSS -1590 - 52 VSS -1530 - 53 VSS -1470 - 54 BGGND -1410 - 55 VDD -1350 - 56 VDD -1230 - 57 VDD -1230 - 58 VCI -1170 - 59 VCI -1110 - 60 VCI -1050 - 61 VDDIO -990 -                                                                                                                                                                                                                                                                                              | 426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 50 VSS -1650 - 51 VSS -1590 - 52 VSS -1530 - 53 VSS -1470 - 54 BGGND -1410 - 55 VDD -1350 - 56 VDD -1290 - 57 VDD -1230 - 58 VCI -1110 - 59 VCI -1110 - 60 VCI -1050 - 61 VDDIO -930 -                                                                                                                                                                                                                                                                                              | 426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 50 VSS -1650 - 51 VSS -1590 - 52 VSS -1530 - 53 VSS -1470 - 54 BGGND -1410 - 55 VDD -1350 - 56 VDD -1290 - 57 VDD -1230 - 58 VCI -1170 - 59 VCI -1110 - 60 VCI -1050 - 61 VDDIO -990 - 62 VDDIO -930 - 63 VDDIO -870 -                                                                                                                                                                                                                                                              | 426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 50 VSS -1650 - 51 VSS -1590 - 52 VSS -1530 - 53 VSS -1470 - 54 BGGND -1410 - 55 VDD -1350 - 56 VDD -1230 - 57 VDD -1230 - 58 VCI -1170 - 59 VCI -1110 - 60 VCI -1050 - 61 VDDIO -990 - 62 VDDIO -930 - 63 VDDIO -870 - 64 FR -810 -                                                                                                                                                                                                                                                 | 426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 50 VSS -1650 - 51 VSS -1590 - 52 VSS -1530 - 53 VSS -1470 - 54 BGGND -1410 - 55 VDD -1350 - 56 VDD -1290 - 57 VDD -1230 - 58 VCI -1110 - 59 VCI -1110 - 60 VCI -1050 - 61 VDDIO -930 - 62 VDDIO -930 - 63 VDDIO -870 - 64 FR -810 - 65 VLL -750 -                                                                                                                                                                                                                                   | 426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 50 VSS -1650 - 51 VSS -1590 - 52 VSS -1530 - 53 VSS -1470 - 54 BGGND -1410 - 55 VDD -1350 - 56 VDD -1290 - 57 VDD -1230 - 58 VCI -1170 - 59 VCI -1170 - 60 VCI -1050 - 61 VDDIO -990 - 62 VDDIO -930 - 63 VDDIO -870 - 64 FR -810 - 66 CS# -690 -                                                                                                                                                                                                                                   | 426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 50 VSS -1650 - 51 VSS -1530 - 52 VSS -1530 - 52 VSS -1530 - 53 VSS -1470 - 54 BGGND -1410 - 55 VDD -1350 - 56 VDD -1290 - 57 VDD -1230 - 58 VCI -1170 - 59 VCI -1110 - 60 VCI -1050 - 61 VDDIO -990 - 62 VDDIO -930 - 63 VDDIO -870 - 64 FR -810 - 65 VLL -750 - 66 CS# -690 -                                                                                                                                                                                                      | 426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 50 VSS -1650 - 51 VSS -1590 - 52 VSS -1530 - 53 VSS -1470 - 54 BGGND -1410 - 55 VDD -1350 - 56 VDD -1290 - 57 VDD -1230 - 58 VCI -1110 - 59 VCI -1110 - 60 VCI -1050 - 61 VDDIO -930 - 62 VDDIO -930 - 63 VDDIO -870 - 64 FR -810 - 65 VLL -750 - 66 CS# -690 - 67 RES# -630 - 68 DC# -570 -                                                                                                                                                                                        | 426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 50 VSS -1650 - 51 VSS -1590 - 52 VSS -1530 - 53 VSS -1470 - 54 BGGND -1410 - 55 VDD -1350 - 56 VDD -1290 - 57 VDD -1230 - 58 VCI -1170 - 59 VCI -1110 - 60 VCI -1050 - 61 VDDIO -990 - 62 VDDIO -930 - 63 VDDIO -870 - 64 FR -810 - 65 VLL -750 - 66 CS# -690 - 67 RES# -630 - 68 D/C# -570 - 69 VLL -510 -                                                                                                                                                                         | 426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 50 VSS -1650 - 51 VSS -1590 - 52 VSS -1530 - 53 VSS -1470 - 54 BGGND -1410 - 55 VDD -1350 - 56 VDD -1290 - 57 VDD -1230 - 58 VCI -1170 - 59 VCI -1110 - 60 VCI -1050 - 61 VDDIO -990 - 62 VDDIO -930 - 63 VDDIO -870 - 64 FR -810 - 65 VLL -750 - 66 CS# -690 - 67 RES# -630 - 68 D/C# -570 - 69 VLL -570 - 69 VLL -570 - 69 VLL -570 - 69 VLL -570 - 67 RES# -630 - 68 D/C# -570 - 69 VLL -510 - 70 R/W# (WR#) -450 -                                                              | 426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 50 VSS -1650 - 51 VSS -1590 - 52 VSS -1530 - 53 VSS -1470 - 54 BGGND -1410 - 55 VDD -1350 - 56 VDD -1290 - 57 VDD -1230 - 58 VCI -1110 - 59 VCI -1110 - 60 VCI -1050 - 61 VDDIO -930 - 62 VDDIO -930 - 63 VDDIO -870 - 64 FR -810 - 65 VLL -750 - 66 CS# -690 - 67 RES# -630 - 68 DC# -570 - 69 VLL -510 - 70 RW#(W##) -450 - 71 E(RD#) -390 -                                                                                                                                      | 426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 50 VSS -1650 - 51 VSS -1590 - 52 VSS -1530 - 53 VSS -1470 - 54 BGGND -1410 - 55 VDD -1350 - 56 VDD -1290 - 57 VDD -1230 - 58 VCI -1170 - 60 VCI -1170 - 60 VCI -1050 - 61 VDDIO -930 - 62 VDDIO -930 - 63 VDDIO -930 - 64 FR -810 - 65 VLL -750 - 66 CS# -690 - 67 RES# -630 - 68 D/C# -570 - 69 VLL -510 - 70 R/W# (WR#) -450 - 71 E (RD#) -330 - 72 DO -330 -                                                                                                                     | 426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 50 VSS -1650 - 51 VSS -1590 - 52 VSS -1530 - 53 VSS -1470 - 54 BGGND -1410 - 55 VDD -1350 - 56 VDD -1290 - 57 VDD -1230 - 58 VCI -1170 - 59 VCI -1110 - 60 VCI -1050 - 61 VDDIO -930 - 62 VDDIO -930 - 63 VDDIO -870 - 64 FR -810 - 65 VLL -750 - 66 CS# -690 - 67 RES# -630 - 68 DC# -570 - 69 VLL -510 - 70 RW# (WR#) -450 - 71 E(RD#) -390 - 72 D0 -330 - 73 D1 -270 -                                                                                                           | 426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5                                                                                                                                                                                                                                                                                                                                                                                                    |
| 50 VSS -1650 - 51 VSS -1590 - 52 VSS -1530 - 53 VSS -1470 - 54 BGGND -1410 - 55 VDD -1350 - 56 VDD -1290 - 57 VDD -1230 - 58 VCI -1110 - 59 VCI -1110 - 60 VCI -1050 - 61 VDDIO -930 - 62 VDDIO -930 - 63 VDDIO -870 - 64 FR -810 - 65 VLL -750 - 66 CS# -690 - 67 RES# -630 - 68 D'C# -570 - 69 VLL -510 - 70 RW# (WR#) -450 - 71 E (RD#) -390 - 72 DO -330 - 73 DI -270 - 74 D2 -210 -                                                                                            | 426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5                                                                                                                                                                                                                                                                                                                                                                         |
| 50 VSS -1650 - 51 VSS -1530 - 52 VSS -1530 - 52 VSS -1530 - 53 VSS -1470 - 54 BGGND -1410 - 55 VDD -1350 - 56 VDD -1290 - 57 VDD -1230 - 58 VCI -1170 - 59 VCI -1110 - 60 VCI -1050 - 61 VDDIO -990 - 62 VDDIO -930 - 63 VDDIO -870 - 64 FR -810 - 65 VLL -750 - 66 CS# -690 - 67 RES# -630 - 68 D/C# -570 - 68 D/C# -570 - 69 VLL -510 - 70 RVW# (W##) -450 - 71 E (RD#) -330 - 72 D0 -330 - 73 D1 -270 - 74 D2 -210 - 75 D3 -150 - 76 VLL -90 -                                   | 426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5                                                                                                                                                                                                       |
| 50 VSS -1650 - 51 VSS -1590 - 51 VSS -1590 - 52 VSS -1530 - 53 VSS -1470 - 54 BGGND -1410 - 55 VDD -1350 - 56 VDD -1290 - 57 VDD -1230 - 58 VCI -1170 - 59 VCI -1110 - 60 VCI -1050 - 61 VDDIO -930 - 62 VDDIO -930 - 63 VDDIO -870 - 64 FR -810 - 65 VLL -750 - 66 CS# -690 - 67 RES# -630 - 68 D'C# -570 - 69 VLL -510 - 70 RW# (WR#) -450 - 71 E (RD#) -390 - 72 DO -330 - 73 DI -270 - 74 D2 -210 - 75 D3 -150 - 76 VLL -90 - 77 D4 -30 -                                       | 426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5 |
| 50 VSS -1650 - 51 VSS -1590 - 52 VSS -1530 - 53 VSS -1470 - 54 BGGND -1410 - 55 VDD -1350 - 56 VDD -1290 - 57 VDD -1230 - 58 VCI -1110 - 59 VCI -1110 - 60 VCI -1050 - 61 VDDIO -930 - 62 VDDIO -930 - 63 VDDIO -870 - 64 FR -810 - 65 VLL -750 - 66 CS# -630 - 67 RES# -630 - 68 D/C# -570 - 69 VLL -510 - 70 R/W# (WR#) -450 - 71 E (RD#) -330 - 73 D1 -270 - 75 D3 -150 - 76 VLL -90 - 77 D4 -30 - 78 D5 30 - 78 D5 30 - 78 D5 30 - 78 D5 30 - 78 D5 -                           | 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 50 VSS -1650 - 51 VSS -1530 - 52 VSS -1530 - 52 VSS -1530 - 53 VSS -1470 - 54 BGGND -1410 - 55 VDD -1350 - 56 VDD -1290 - 57 VDD -1230 - 58 VCI -1170 - 59 VCI -1110 - 60 VCI -1050 - 61 VDDIO -930 - 62 VDDIO -930 - 63 VDDIO -870 - 64 FR -810 - 65 VLL -750 - 66 CS# -690 - 67 RES# -630 - 68 D/C# -570 - 68 D/C# -570 - 69 VLL -510 - 70 RVW# (W##) -450 - 71 E (RD#) -330 - 72 D0 -330 - 73 D1 -270 - 74 D2 -210 - 75 D3 -150 - 76 VLL -90 - 77 D4 -30 - 78 D6 30 - 79 D6 90 - | 426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5<br>426.5 |

|                                 |                                      | 02200                      |                         |
|---------------------------------|--------------------------------------|----------------------------|-------------------------|
| Pin number                      | Pin name                             | X                          | Y                       |
| 81<br>82                        | CL<br>VLL                            | 210<br>270                 | -426.5<br>-426.5        |
| 83                              | CLS                                  | 330                        | -426.5                  |
| 84                              | VLH                                  | 390                        | -426.5                  |
| 85                              | BS0                                  | 450                        | -426.5                  |
| 86                              | VLL                                  | 510                        | -426.5                  |
| 87                              | BS1                                  | 570                        | -426.5                  |
| 88                              | VLH                                  | 630                        | -426.5                  |
| 89                              | BS2                                  | 690                        | -426.5                  |
| 90                              | VLL                                  | 750                        | -426.5                  |
| 91                              | BGGND                                | 810                        | -426.5                  |
| 92                              | VSS                                  | 870                        | -426.5                  |
| 93<br>94                        | VSS                                  | 930<br>990                 | -426.5<br>-426.5        |
| 95                              | VSS                                  | 1050                       | -426.5                  |
| 96                              | VLSS                                 | 1110                       | -426.5                  |
| 97                              | VLSS                                 | 1170                       | -426.5                  |
| 98                              | VLSS                                 | 1230                       | -426.5                  |
| 99                              | VLSS                                 | 1290                       | -426.5                  |
| 100                             | VLSS                                 | 1350                       | -426.5                  |
| 101                             | VLSS                                 | 1410                       | -426.5                  |
| 102                             | VSL                                  | 1470                       | -426.5                  |
| 103                             | VSL                                  | 1530                       | -426.5                  |
| 104                             | VSL                                  | 1590                       | -426.5                  |
| 105<br>106                      | VBREF                                | 1650                       | -426.5<br>-426.5        |
| 106                             | VSS                                  | 1710<br>1770               | -426.5<br>-426.5        |
| 107                             | GPIO0                                | 1830                       | -426.5                  |
| 109                             | GPIO1                                | 1890                       | -426.5                  |
| 110                             | VDDIO                                | 1950                       | -426.5                  |
| 111                             | VDDIO                                | 2010                       | -426.5                  |
| 112                             | VCI                                  | 2070                       | -426.5                  |
| 113                             | VCI                                  | 2130                       | -426.5                  |
| 114                             | VDD                                  | 2190                       | -426.5                  |
| 115                             | VDD                                  | 2250                       | -426.5                  |
| 116                             | NC                                   | 2310                       | -426.5                  |
| 117                             | IREF                                 | 2370                       | -426.5                  |
| 118<br>119                      | VP<br>VP                             | 2430<br>2490               | -426.5<br>-426.5        |
| 120                             | VP<br>VP                             | 2550                       | -426.5                  |
| 121                             | VP                                   | 2610                       | -426.5                  |
| 122                             | VP                                   | 2670                       | -426.5                  |
| 123                             | VP                                   | 2730                       | -426.5                  |
| 124                             | VCOMH                                | 2790                       | -426.5                  |
| 125                             | VCOMH                                | 2850                       | -426.5                  |
| 126<br>127                      | VCOMH                                | 2910<br>2970               | -426.5<br>-426.5        |
| 128                             | VCOMH                                | 3030                       | -426.5                  |
| 129                             | VCOMH                                | 3090                       | -426.5                  |
| 130                             | VCC                                  | 3150                       | -426.5                  |
| 131                             | VCC                                  | 3210                       | -426.5                  |
| 132                             | VCC                                  | 3270                       | -426.5                  |
| 133                             | VCC                                  | 3330<br>3390               | -426.5<br>-426.5        |
| 135                             | VCC                                  | 3450                       | -426.5                  |
| 136                             | VCC1                                 | 3510                       | -426.5                  |
| 137                             | NC                                   | 3570                       | -426.5                  |
| 138                             | T0                                   | 3630                       | -426.5                  |
| 139                             | T1                                   | 3690                       | -426.5                  |
| 140                             | V20                                  | 3750<br>3956               | -426.5<br>-452.5        |
| 141                             | V20<br>V20                           | 4156                       | -452.5<br>-452.5        |
| 143                             | V20                                  | 4356                       | -452.5                  |
| 144                             | V20                                  | 4556                       | -452.5                  |
| 145                             | V20                                  | 4756                       | -452.5                  |
| 146                             | V20                                  | 4956                       | -452.5                  |
| 147<br>148                      | V20<br>V20                           | 5156<br>5356               | -452.5                  |
| 148                             | NC NC                                | 5341.5                     | -452.5<br>399.5         |
| 150                             | NC                                   | 5314.5                     | 399.5                   |
| 151                             | SEG127                               | 5287.5                     | 399.5                   |
| 152                             | SEG126                               | 5260.5                     | 399.5                   |
|                                 | SEG125                               | 5233.5                     | 399.5                   |
| 153                             |                                      | E200 E                     | 399.5                   |
| 153<br>154                      | SEG124                               | 5206.5                     |                         |
| 153<br>154<br>155               | SEG124<br>SEG123                     | 5179.5                     | 399.5                   |
| 153<br>154<br>155<br>156        | SEG124<br>SEG123<br>SEG122           | 5179.5<br>5152.5           | 399.5<br>399.5          |
| 153<br>154<br>155               | SEG124<br>SEG123                     | 5179.5                     | 399.5                   |
| 153<br>154<br>155<br>156<br>157 | SEG124<br>SEG123<br>SEG122<br>SEG121 | 5179.5<br>5152.5<br>5125.5 | 399.5<br>399.5<br>399.5 |

| ne rau     | COOL             | umai             | CB             |
|------------|------------------|------------------|----------------|
| Pin number | Pin name         | X                | Y              |
| 161<br>162 | SEG117<br>SEG116 | 5017.5<br>4990.5 | 399.5<br>399.5 |
| 163        | SEG115           | 4963.5           | 399.5          |
| 164        | SEG114           | 4936.5           | 399.5          |
| 165        | SEG113           | 4909.5           | 399.5          |
| 166        | SEG112           | 4882.5           | 399.5          |
| 167<br>168 | SEG111<br>SEG110 | 4855.5<br>4828.5 | 399.5<br>399.5 |
| 169        | SEG109           | 4801.5           | 399.5          |
| 170        | SEG108           | 4774.5           | 399.5          |
| 171        | SEG107           | 4747.5           | 399.5          |
| 172        | SEG106           | 4720.5           | 399.5          |
| 173<br>174 | SEG105<br>SEG104 | 4693.5<br>4666.5 | 399.5<br>399.5 |
| 175        | SEG103           | 4639.5           | 399.5          |
| 176        | SEG102           | 4612.5           | 399.5          |
| 177        | SEG101           | 4585.5           | 399.5          |
| 178<br>179 | SEG100<br>SEG99  | 4558.5<br>4531.5 | 399.5<br>399.5 |
| 180        | SEG98            | 4504.5           | 399.5          |
| 181        | SEG97            | 4477.5           | 399.5          |
| 182        | SEG96            | 4450.5           | 399.5          |
| 183<br>184 | SEG95<br>SEG94   | 4423.5<br>4396.5 | 399.5<br>399.5 |
| 185        | SEG94<br>SEG93   | 4369.5           | 399.5          |
| 186        | SEG92            | 4342.5           | 399.5          |
| 187        | SEG91            | 4315.5           | 399.5          |
| 188<br>189 | SEG90<br>SEG89   | 4288.5<br>4261.5 | 399.5<br>399.5 |
| 190        | SEG88            | 4234.5           | 399.5          |
| 191        | SEG87            | 4207.5           | 399.5          |
| 192        | SEG86            | 4180.5           | 399.5          |
| 193        | SEG85            | 4153.5           | 399.5          |
| 194<br>195 | SEG84<br>SEG83   | 4126.5<br>4099.5 | 399.5<br>399.5 |
| 196        | SEG82            | 4072.5           | 399.5          |
| 197        | SEG81            | 4045.5           | 399.5          |
| 198<br>199 | SEG80<br>SEG79   | 4018.5<br>3991.5 | 399.5<br>399.5 |
| 200        | SEG78            | 3964.5           | 399.5          |
| 201        | SEG77            | 3937.5           | 399.5          |
| 202        | SEG76<br>SEG75   | 3910.5<br>3883.5 | 399.5<br>399.5 |
| 204        | SEG74            | 3856.5           | 399.5          |
| 205        | SEG73<br>SEG72   | 3829.5           | 399.5          |
| 206        | SEG72<br>SEG71   | 3802.5<br>3775.5 | 399.5<br>399.5 |
| 208        | SEG70            | 3748.5           | 399.5          |
| 209        | SEG69            | 3721.5           | 399.5          |
| 210<br>211 | SEG68<br>SEG67   | 3694.5<br>3667.5 | 399.5<br>399.5 |
| 212        | SEG66            | 3640.5           | 399.5          |
| 213        | SEG65            | 3613.5           | 399.5          |
| 214<br>215 | SEG64<br>SEG63   | 3586.5<br>3559.5 | 399.5<br>399.5 |
| 216        | SEG62            | 3532.5           | 399.5          |
| 217<br>218 | SEG61<br>SEG60   | 3505.5<br>3478.5 | 399.5<br>399.5 |
| 218<br>219 | SEG59            | 3478.5           | 399.5<br>399.5 |
| 220        | SEG58            | 3424.5           | 399.5          |
| 221        | SEG57            | 3397.5           | 399.5          |
| 222<br>223 | SEG56<br>SEG55   | 3370.5<br>3343.5 | 399.5<br>399.5 |
| 224        | SEG54            | 3316.5           | 399.5          |
| 225        | SEG53            | 3289.5           | 399.5          |
| 226<br>227 | SEG52<br>SEG51   | 3262.5<br>3235.5 | 399.5<br>399.5 |
| 228        | SEG50            | 3208.5           | 399.5          |
| 229<br>230 | SEG49<br>SEG48   | 3181.5           | 399.5<br>399.5 |
| 230        | SEG48<br>SEG47   | 3154.5<br>3127.5 | 399.5<br>399.5 |
| 232        | SEG46            | 3100.5           | 399.5          |
| 233        | SEG45            | 3073.5           | 399.5          |
| 234<br>235 | SEG44<br>SEG43   | 3046.5<br>3019.5 | 399.5<br>399.5 |
| 236        | SEG42            | 2992.5           | 399.5          |
| 237        | SEG41            | 2965.5           | 399.5          |
| 238<br>239 | SEG40<br>SEG39   | 2938.5<br>2911.5 | 399.5<br>399.5 |
| 240        | SEG38            | 2884.5           | 399.5          |
|            |                  |                  |                |

| Pin number   Pin name   X   Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 242         SEG36         2830.5         399.           243         SEG36         2803.5         399.           244         SEG33         2749.5         399.           246         SEG32         2722.5         399.           246         SEG32         2722.5         399.           247         SEG31         2695.5         399.           248         SEG31         2695.5         399.           249         SEG29         2641.5         399.           250         SEG28         2614.5         399.           251         SEG27         2587.5         399.           252         SEG26         2633.5         399.           253         SEG25         2533.5         399.           254         SEG24         2506.5         399.           255         SEG23         2479.5         399.           256         SEG23         2479.5         399.           257         SEG21         2425.5         399.           258         SEG20         2398.5         399.           259         SEG18         2344.5         399.           261         SEG17         2371.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                       |
| 243         SEG35         2803.5         399.           244         SEG34         2776.5         399.           246         SEG32         2722.5         399.           246         SEG32         2722.5         399.           247         SEG31         2696.5         399.           248         SEG30         2668.5         399.           250         SEG28         2641.5         399.           251         SEG27         2587.5         399.           251         SEG26         2660.5         399.           253         SEG25         2560.5         399.           253         SEG22         2560.5         399.           254         SEG24         2506.5         399.           255         SEG23         2479.5         399.           256         SEG22         2452.5         399.           256         SEG22         2452.5         399.           257         SEG19         2371.5         399.           258         SEG30         2398.5         399.           259         SEG19         2371.5         399.           261         SEG11         2290.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |
| 244         SEG34         2776.5         399.           245         SEG33         2749.5         399.           246         SEG33         2749.5         399.           247         SEG31         2696.5         399.           248         SEG30         2668.5         399.           249         SEG28         2641.5         399.           250         SEG28         2641.5         399.           251         SEG27         2587.5         399.           252         SEG26         2560.5         399.           253         SEG25         2533.5         399.           254         SEG26         2560.5         399.           255         SEG22         2452.5         399.           256         SEG22         2452.5         399.           257         SEG21         2425.5         399.           258         SEG20         2398.5         399.           259         SEG18         2341.5         399.           260         SEG18         2341.5         399.           261         SEG17         2371.5         399.           262         SEG18         2345.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |
| 245 SEG33 2749.5 399. 246 SEG32 2722.5 399. 247 SEG31 2695.5 399. 248 SEG30 2668.5 399. 249 SEG29 2641.5 399. 250 SEG28 2614.5 399. 251 SEG27 2587.5 399. 252 SEG26 2580.5 399. 253 SEG25 2533.5 399. 254 SEG26 24 2506.5 399. 255 SEG26 24 2506.5 399. 256 SEG22 2452.5 399. 257 SEG21 2425.5 399. 258 SEG20 2398.5 399. 259 SEG19 2371.5 399. 260 SEG18 2344.5 399. 261 SEG17 2317.5 399. 262 SEG16 2290.5 399. 263 SEG15 2263.5 399. 264 SEG16 2290.5 399. 265 SEG19 245.5 399. 266 SEG17 2317.5 399. 267 SEG11 2155.5 399. 268 SEG19 2182.5 399. 267 SEG11 2155.5 399. 268 SEG10 2182.5 399. 267 SEG11 2155.5 399. 268 SEG10 2182.5 399. 269 SEG9 2101.5 399. 271 SEG7 2047.5 399. 272 SEG6 2020.5 399. 273 SEG6 309. 274 SEG3 399. 275 SEG3 399. 276 SEG3 399. 277 SEG3 399. 277 SEG3 399. 278 SEG6 399. 279 SEG8 3074.5 399. 279 SEG8 3074.5 399. 277 SEG3 1993.5 399. 278 SEG6 399. 277 SEG3 1993.5 399. 278 SEG6 399. 279 VCC 1831.5 399. 279 VCC 1831.5 399. 280 VCC 1775.5 399. 281 VCC 1777.5 399. 282 VCC 1775.5 399. 283 VCOMH 1507.5 383. 284 VCOMH 1507.5 383. 285 VCOMH 1507.5 383. 286 VCOMH 1557.5 383. 287 VCOMH 1507.5 383. 288 VCOMH 1507.5 383. 289 COMM 1372.5 383. 299 COMM 1372.5 383. 299 COMM 1372.5 383. 299 COMM 1372.5 383. 299 COMM 1372.5 383.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |
| 247 SEG31 2695.5 399. 248 SEG30 2668.5 399. 249 SEG29 2641.5 399. 250 SEG28 2614.5 399. 251 SEG27 2587.5 399. 252 SEG26 2560.5 399. 253 SEG28 2612.5 339. 254 SEG26 2560.5 399. 255 SEG28 2612.5 339. 256 SEG22 2452.5 399. 257 SEG21 2425.5 399. 258 SEG29 2398.5 399. 259 SEG19 2371.5 399. 260 SEG18 2344.5 399. 261 SEG17 2317.5 399. 262 SEG16 2290.5 399. 263 SEG18 2344.5 399. 264 SEG14 2236.5 399. 265 SEG18 2347.5 399. 266 SEG18 2347.5 399. 267 SEG11 2182.5 399. 268 SEG19 290.5 399. 269 SEG19 290.5 399. 260 SEG18 2398.5 399. 261 SEG17 2317.5 399. 262 SEG16 2290.5 399. 263 SEG15 2263.5 399. 264 SEG14 236.5 399. 265 SEG13 2209.5 399. 266 SEG14 236.5 399. 267 SEG11 2182.5 399. 268 SEG10 2128.5 399. 269 SEG9 2101.5 399. 270 SEG8 2074.5 399. 271 SEG7 2047.5 399. 271 SEG7 2047.5 399. 272 SEG6 1993.5 399. 273 SEG5 1993.5 399. 274 SEG4 1966.5 399. 275 SEG3 1939.5 399. 276 SEG3 1939.5 399. 277 SEG1 1885.5 399. 278 SEG0 1858.5 399. 279 VCC 1804.5 399. 279 VCC 1804.5 399. 279 VCC 1804.5 399. 281 VCC 1777.5 399. 282 VCC 1775.5 399. 283 VCC 1772.5 399. 284 VCC 1775.5 399. 285 VCOMH 1507.5 383. 286 VCOMH 1507.5 383. 287 VCOMH 1507.5 383. 289 COMM 1475.5 383. 289 COMM 1572.5 383. 299 COMM 1372.5 383. 299 COMM 1372.5 383. 299 COMM 1372.5 383. 299 COMM 1372.5 383.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |
| 248 SEG30 2668.5 399. 249 SEG29 2641.5 399. 250 SEG28 2614.5 399. 251 SEG27 2587.5 399. 252 SEG26 2560.5 399. 253 SEG25 2533.5 399. 254 SEG26 2560.5 399. 255 SEG22 2479.5 399. 256 SEG22 2479.5 399. 256 SEG22 2479.5 399. 257 SEG21 2425.5 399. 258 SEG20 2398.5 399. 259 SEG19 2371.5 399. 260 SEG18 2344.5 399. 261 SEG17 2317.5 399. 262 SEG16 2290.5 399. 263 SEG15 2263.5 399. 264 SEG16 2290.5 399. 265 SEG19 2182.5 399. 266 SEG12 249.5 399. 271 SEG14 2236.5 399. 272 SEG6 SEG14 2398.5 399. 273 SEG19 2182.5 399. 274 SEG11 2185.5 399. 277 SEG11 2185.5 399. 278 SEG9 2101.5 399. 279 SEG8 2074.5 399. 270 SEG8 2074.5 399. 271 SEG7 2047.5 399. 272 SEG6 2020.5 399. 273 SEG5 1993.5 399. 274 SEG4 1966.5 399. 275 SEG3 1939.5 399. 276 SEG3 1939.5 399. 277 SEG4 1986.5 399. 278 SEG4 1986.5 399. 279 SEG8 2074.5 399. 279 SEG8 2074.5 399. 271 SEG7 2047.5 399. 272 SEG6 2020.5 399. 273 SEG5 1993.5 399. 274 SEG4 1986.5 399. 275 SEG3 1939.5 399. 276 SEG3 1939.5 399. 277 SEG1 1885.5 399. 278 SEG4 1986.5 399. 279 VCC 1831.5 399. 280 VCC 1775.5 399. 281 VCC 1777.5 399. 282 VCC 1775.5 399. 283 VCC 1775.5 383.2 284 VCC 1775.5 383.2 287 VCOMH 1507.5 383.2 288 VCOMH 1507.5 383.2 289 COMM 1372.5 383.2 299 COMM 1372.5 383.2 299 COMM 1372.5 383.2 299 COMM 1372.5 383.2 299 COMM 1327.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |
| 248 SEG30 2668.5 399. 249 SEG29 2641.5 399. 250 SEG28 2641.5 399. 251 SEG26 2560.5 399. 252 SEG26 2560.5 399. 253 SEG25 2533.5 399. 254 SEG24 2506.5 399. 255 SEG22 2452.5 399. 256 SEG22 2452.5 399. 257 SEG21 2425.5 399. 258 SEG20 2385.3 399. 259 SEG19 2371.5 399. 260 SEG18 2371.5 399. 260 SEG18 2371.5 399. 261 SEG17 2371.5 399. 262 SEG16 2290.5 399. 263 SEG19 2290.5 399. 264 SEG14 2290.5 399. 265 SEG18 240.5 399. 267 SEG11 2155.5 399. 268 SEG10 218.5 399. 269 SEG19 290.5 399. 271 SEG1 210.5 399. 272 SEG6 SEG10 309. 273 SEG3 399. 274 SEG3 399. 275 SEG3 399. 277 SEG3 399. 277 SEG3 399. 277 SEG3 399. 278 SEG3 399. 279 SEG8 2074.5 399. 279 SEG8 2074.5 399. 270 SEG8 2075.5 399. 271 SEG7 2047.5 399. 272 SEG6 399. 273 SEG5 1993.5 399. 274 SEG3 1993.5 399. 275 SEG3 1993.5 399. 276 SEG3 1993.5 399. 277 SEG1 1885.5 399. 278 SEG3 1993.5 399. 279 SEG8 1993.5 399. 279 SEG8 1993.5 399. 279 SEG3 1993.5 399. 270 SEG8 1993.5 399. 271 SEG1 1885.5 399. 272 SEG6 1986.5 399. 273 SEG3 1993.5 399. 274 SEG3 1993.5 399. 275 SEG3 1993.5 399. 276 SEG3 1993.5 399. 277 SEG1 1885.5 399. 278 SEG3 1993.5 399. 279 VCC 1804.5 399. 280 VCC 1770.5 399. 281 VCC 1777.5 399. 282 VCC 1770.5 399. 283 VCC 1770.5 399. 284 VCC 1770.5 399. 285 VCOMH 1507.5 383.2 289 VCOMH 1507.5 383.2 289 VCOMH 1507.5 383.2 299 COMM 1372.5 383.2 299 COMM 1372.5 383.2 299 COMM 1372.5 383.2 299 COMM 1237.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |
| 249         SEG29         2641.5         399.           250         SEG28         2614.5         399.           251         SEG27         2587.5         399.           252         SEG26         2560.5         399.           253         SEG25         2533.5         399.           255         SEG24         2506.5         399.           256         SEG23         2479.5         399.           256         SEG20         2452.5         399.           257         SEG21         2425.5         399.           258         SEG20         2398.5         399.           260         SEG18         2344.5         399.           261         SEG17         2317.5         399.           261         SEG18         2344.5         399.           261         SEG17         2317.5         399.           262         SEG16         2290.5         399.           263         SEG18         2209.5         399.           264         SEG14         2236.5         399.           265         SEG13         2209.5         399.           266         SEG11         2155.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |
| 250 SEG28 2614.5 399. 251 SEG27 2587.5 399. 252 SEG26 2560.5 399. 253 SEG26 2560.5 399. 253 SEG26 2533.5 399. 254 SEG24 2506.5 399. 255 SEG23 2479.5 399. 256 SEG22 2452.5 399. 257 SEG21 2425.5 399. 258 SEG20 2398.5 399. 259 SEG19 2371.5 399. 260 SEG18 2344.5 399. 261 SEG17 2317.5 399. 262 SEG16 2290.5 399. 263 SEG16 2290.5 399. 264 SEG16 2290.5 399. 265 SEG18 2290.5 399. 266 SEG11 2212.5 399. 267 SEG11 2155.5 399. 268 SEG10 2128.5 399. 269 SEG9 2101.5 399. 270 SEG8 SEG10 2128.5 399. 271 SEG7 2047.5 399. 272 SEG6 2020.5 399. 273 SEG5 399. 274 SEG7 399. 275 SEG3 1935.5 399. 276 SEG2 1912.5 399. 277 SEG1 185.5 399. 278 SEG3 1939.5 399. 279 VCC 1831.5 399. 278 SEG3 1939.5 399. 279 VCC 1831.5 399. 279 VCC 1831.5 399. 281 VCC 1777.5 399. 282 VCC 1770.5 399. 283 VCC 1777.5 399. 284 VCC 1696.5 399. 285 VCOMH 1597.5 383. 286 VCOMH 1557.5 383. 287 VCOMH 1507.5 383. 288 VCOMH 1557.5 383. 289 COMM 1475.5 383. 299 COMM 1372.5 383. 299 COMM 1237.5 383.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |
| 251 SEG27 2587.5 399. 252 SEG26 2560.5 399. 253 SEG25 2533.5 399. 254 SEG26 2560.5 399. 255 SEG23 2479.5 399. 255 SEG23 2479.5 399. 256 SEG22 2452.5 399. 257 SEG21 2425.5 399. 258 SEG20 2398.5 399. 259 SEG19 2371.5 399. 260 SEG18 2374.5 399. 261 SEG17 2417.5 399. 262 SEG16 2290.5 399. 263 SEG16 2290.5 399. 264 SEG17 2417.5 399. 265 SEG18 2245.5 399. 266 SEG18 2245.5 399. 267 SEG11 2182.5 399. 268 SEG10 2128.5 399. 268 SEG10 2128.5 399. 269 SEG9 2101.5 399. 270 SEG8 2074.5 399. 271 SEG7 2047.5 399. 272 SEG6 2020.5 399. 273 SEG5 1993.5 399. 274 SEG4 196.5 399. 275 SEG3 193.5 399. 276 SEG3 274 SEG5 399. 277 SEG6 399. 278 SEG6 399.5 399. 279 SEG8 2074.5 399. 279 SEG8 2074.5 399. 270 SEG8 2074.5 399. 271 SEG7 2047.5 399. 272 SEG6 2020.5 399. 273 SEG5 1993.5 399. 274 SEG4 1966.5 399. 275 SEG3 193.5 399. 276 SEG2 1912.5 399. 277 SEG1 185.5 399. 278 SEG3 193.5 399. 279 VCC 1831.5 399. 280 VCC 1770.5 399. 281 VCC 1777.5 399. 282 VCC 1775.5 399. 283 VCC 1775.5 399. 284 VCC 1696.5 399. 285 VCOMH 1597.5 383.2 286 VCOMH 1597.5 383.2 287 VCOMH 1507.5 383.2 289 COMM 1471.5 383.2 299 COMM 1372.5 383.2 299 COMM 1372.5 383.2 299 COMM 1372.5 383.2 299 COMM 1372.5 383.2 299 COMM 1237.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55                  |
| 252 SEG26 2560.5 399. 253 SEG25 2533.5 399. 254 SEG26 2563.5 399. 255 SEG23 2479.5 399. 256 SEG22 2452.5 399. 257 SEG21 2425.5 399. 258 SEG29 2398.5 399. 259 SEG19 2371.5 399. 260 SEG18 2341.5 399. 261 SEG17 2317.5 399. 262 SEG16 2290.5 399. 263 SEG18 2344.5 399. 264 SEG18 2290.5 399. 265 SEG18 2290.5 399. 266 SEG18 2290.5 399. 267 SEG11 2182.5 399. 268 SEG14 2236.5 399. 267 SEG11 2182.5 399. 268 SEG10 2128.5 399. 269 SEG9 2101.5 399. 270 SEG8 2074.5 399. 271 SEG7 2047.5 399. 272 SEG6 2020.5 399. 273 SEG5 1993.5 399. 274 SEG4 1966.5 399. 275 SEG3 1939.5 399. 276 SEG3 1939.5 399. 277 SEG1 1885.5 399. 278 SEG3 1939.5 399. 279 VCC 1801.5 399. 279 VCC 1801.5 399. 279 VCC 1801.5 399. 279 VCC 1806.5 399. 280 VCC 1777.5 399. 281 VCC 1777.5 399. 282 VCC 1775.5 399. 283 VCC 1772.5 399. 284 VCC 1775.5 399. 285 VCOMH 1507.5 383. 287 VCOMH 1507.5 383. 289 COMM 1552.5 383. 299 COMM 1372.5 383. 299 COMM 1572.5 383. 299 COMM 1527.5 383. 299 COMM 1372.5 383. 299 COMM 1372.5 383. 299 COMM 1372.5 383. 299 COMM 1282.5 383.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |
| 253 SEG25 253.5 399. 254 SEG24 2506.5 399. 255 SEG23 2479.5 399. 256 SEG22 2452.5 399. 257 SEG21 2425.5 399. 258 SEG20 2398.5 399. 259 SEG19 2371.5 399. 260 SEG18 2344.5 399. 261 SEG17 2317.5 399. 262 SEG16 2290.5 399. 263 SEG16 2290.5 399. 264 SEG16 2290.5 399. 265 SEG19 2182.5 399. 266 SEG12 2182.5 399. 267 SEG11 2155.5 399. 268 SEG14 2236.5 399. 269 SEG19 2182.5 399. 270 SEG8 2074.5 399. 271 SEG7 2047.5 399. 271 SEG7 2047.5 399. 272 SEG6 2020.5 399. 273 SEG5 1993.5 399. 274 SEG4 1966.5 399. 275 SEG3 1939.5 399. 276 SEG3 1939.5 399. 277 SEG1 1885.5 399. 278 SEG4 1966.5 399. 279 VCC 1831.5 399. 279 VCC 1831.5 399. 280 VCC 1775.5 399. 281 VCC 1777.5 399. 282 VCC 1775.5 399. 283 VCC 1775.5 399. 284 VCC 1696.5 399. 285 VCOMH 1507.5 383. 286 VCOMH 1507.5 383. 287 VCOMH 1507.5 383. 288 VCOMH 1507.5 383. 299 COMM 1372.5 383.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |
| 254 SEG24 2506.5 399. 255 SEG23 2479.5 399. 256 SEG22 2452.5 399. 257 SEG21 2425.5 399. 258 SEG20 2398.5 399. 258 SEG30 2398.5 399. 259 SEG19 2371.5 399. 260 SEG18 2341.5 399. 261 SEG17 2317.5 399. 262 SEG16 2290.5 399. 263 SEG16 2290.5 399. 264 SEG16 2290.5 399. 265 SEG11 2125.5 399. 266 SEG11 2125.5 399. 267 SEG11 2155.5 399. 268 SEG10 2128.5 399. 270 SEG8 2074.5 399. 271 SEG7 2047.5 399. 272 SEG6 2020.5 399. 273 SEG5 1993.5 399. 274 SEG7 2047.5 399. 275 SEG3 1993.5 399. 276 SEG2 1912.5 399. 277 SEG1 1885.5 399. 278 SEG0 1912.5 399. 279 VCC 1831.5 399. 278 SEG0 1858.5 399. 278 SEG0 1858.5 399. 279 VCC 1831.5 399. 280 VCC 1750.5 399. 281 VCC 1777.5 399. 282 VCC 1777.5 399. 283 VCC 1777.5 399. 284 VCC 1696.5 399. 285 VCOMH 1507.5 383. 286 VCOMH 1507.5 383. 287 VCOMH 1507.5 383. 288 VCOMH 1507.5 383. 299 COMM 1372.5 383. 299 COMM 12327.5 383.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |
| 255 SEG23 2479.5 399. 256 SEG22 2452.5 399. 257 SEG21 2425.5 399. 258 SEG20 2398.5 399. 259 SEG19 2371.5 399. 260 SEG18 2344.5 399. 261 SEG17 2317.5 399. 262 SEG16 2290.5 399. 263 SEG15 2263.5 399. 264 SEG16 2290.5 399. 265 SEG18 2242.5 399. 266 SEG12 2182.5 399. 266 SEG12 2182.5 399. 267 SEG11 2155.5 399. 268 SEG10 2128.5 399. 270 SEG8 2074.5 399. 271 SEG7 2047.5 399. 272 SEG6 2020.5 399. 273 SEG5 1993.5 399. 274 SEG4 1966.5 399. 275 SEG3 1993.5 399. 276 SEG3 1993.5 399. 277 SEG1 1885.5 399. 278 SEG0 1912.5 399. 279 VCC 1831.5 399. 279 VCC 1831.5 399. 281 VCC 1777.5 399. 282 VCC 1750.5 399. 283 VCC 1777.5 399. 284 VCC 1775.5 399. 285 VCOMH 1507.5 399. 286 VCOMH 1507.5 399. 287 VCC 1804.5 399. 288 VCOMH 1550.5 399. 288 VCOMH 1550.5 399. 289 COMM 1550.5 383. 289 COMM 1550.5 383. 299 COMM 1575.5 383. 299 COMM 1372.5 383. 299 COMM 1282.5 383.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |
| 256 SEG22 2452.5 399. 257 SEG21 2425.5 399. 258 SEG20 2398.5 399. 258 SEG30 2398.5 399. 259 SEG31 2371.5 399. 260 SEG18 2344.5 399. 261 SEG17 2317.5 399. 262 SEG16 2290.5 399. 263 SEG15 2263.5 399. 264 SEG16 2290.5 399. 265 SEG11 2182.5 399. 266 SEG12 2182.5 399. 267 SEG11 2152.5 399. 268 SEG10 2128.5 399. 270 SEG8 2074.5 399. 271 SEG7 2047.5 399. 272 SEG6 2020.5 399. 273 SEG5 1993.5 399. 274 SEG4 1966.5 399. 275 SEG3 1939.5 399. 276 SEG3 1939.5 399. 277 SEG1 1885.5 399. 278 SEG3 1939.5 399. 279 SEG4 1966.5 399. 276 SEG3 1939.5 399. 277 SEG1 1885.6 399. 278 SEG3 1939.5 399. 279 VCC 1801.5 399. 270 SEG8 2074.5 399. 271 SEG1 1885.5 399. 272 SEG6 1965.5 399. 273 SEG5 1956.5 399. 274 SEG4 1966.5 399. 275 SEG3 1939.5 399. 276 SEG3 1939.5 399. 277 SEG1 1885.6 399. 278 SEG0 1856.5 399. 279 VCC 1804.5 399. 280 VCC 1777.5 399. 281 VCC 1777.5 399. 282 VCC 1775.5 399. 283 VCC 1772.5 399. 284 VCC 1775.5 399. 285 VCOMH 1507.5 383.2 287 VCOMH 1507.5 383.2 289 COMM 1552.5 383.2 299 COMM 1372.5 383.2 299 COMM 1372.5 383.2 299 COMM 1372.5 383.2 299 COMM 1372.5 383.2 299 COMM 1282.5 383.2 299 COMM 1282.5 383.2 299 COMM 1282.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |
| 257 SEG21 2425.5 399. 258 SEG20 2398.5 399. 259 SEG19 2371.5 399. 260 SEG18 2344.5 399. 261 SEG17 2317.5 399. 262 SEG16 2290.5 399. 263 SEG16 2290.5 399. 264 SEG17 226.5 399. 265 SEG18 2209.5 399. 266 SEG18 2209.5 399. 267 SEG11 2155.5 399. 268 SEG10 2128.5 399. 269 SEG9 2101.5 399. 270 SEG8 2074.5 399. 271 SEG7 2047.5 399. 272 SEG6 2020.5 399. 273 SEG5 1993.5 399. 274 SEG4 369. 275 SEG3 1939.5 399. 276 SEG2 1912.5 399. 277 SEG1 1885.5 399. 278 SEG3 1939.5 399. 279 VCC 1831.5 399. 278 SEG0 1858.5 399. 279 VCC 1831.5 399. 280 VCC 1777.5 399. 281 VCC 1777.5 399. 282 VCC 1750.5 399. 283 VCC 1777.5 399. 284 VCC 1696.5 399. 285 VCOMH 1597.5 383. 286 VCOMH 1552.5 399. 287 VCOMH 1552.5 399. 288 VCOMH 1552.5 399. 288 VCOMH 1552.5 399. 288 VCOMH 1552.5 383. 289 COMM 1372.5 383. 299 COMM 1372.5 383. 299 COMM 1372.5 383. 299 COMM 1372.5 383. 299 COMM 1372.5 383.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |
| 258         SEG20         2398.5         399.           259         SEG19         2371.5         399.           260         SEG18         2374.5         399.           261         SEG17         2317.5         399.           262         SEG16         2290.5         399.           263         SEG15         2263.5         399.           264         SEG14         2236.5         399.           265         SEG13         2209.5         399.           266         SEG12         2182.5         399.           267         SEG11         2128.5         399.           268         SEG10         2128.5         399.           269         SEG9         2101.5         399.           270         SEG8         2074.5         399.           271         SEG7         2047.5         399.           272         SEG6         2020.5         399.           273         SEG6         1993.5         399.           274         SEG3         1939.5         399.           275         SEG3         1939.5         399.           276         SEG2         1912.5         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                   |
| 259   SEG19   2371.5   399.   260   SEG18   2344.5   399.   261   SEG17   2317.5   399.   262   SEG16   2290.5   399.   263   SEG15   2263.5   399.   264   SEG14   2236.5   399.   265   SEG18   229.5   399.   266   SEG12   2182.5   399.   266   SEG12   2182.5   399.   267   SEG11   2155.5   399.   268   SEG10   2128.5   399.   269   SEG9   2101.5   399.   270   SEG8   2074.5   399.   271   SEG7   2047.5   399.   272   SEG8   2020.5   399.   273   SEG6   2020.5   399.   274   SEG7   2047.5   399.   275   SEG3   1939.5   399.   276   SEG3   1939.5   399.   277   SEG1   1885.5   399.   278   SEG0   1912.5   399.   279   VCC   1804.5   399.   279   VCC   1804.5   399.   281   VCC   1777.5   399.   282   VCC   1770.5   399.   284   VCC   1770.5   399.   285   VCOMH   1507.5   389.   286   VCOMH   1507.5   389.   287   VCOMH   1507.5   389.   288   VCOMH   1507.5   389.   289   COMM   1507.5   383.   290   COMM   1372.5   383.   291   COMM   1372.5   383.   292   COMM   1327.5   383.   293   COMM   1237.5   383.   294   COMM   1237.5   383.   295   COMM   1237.5   383.   296   COMM   1237.5   383.   297   COMM   1237.5   383.   298   COMM   1237.5   383.   299   COMM   1237.5   383.   290   COMM   1237.5   383.   291   COMM   1237.5   383.   293   COMM   1237.5   383.   294   COMM   1237.5   383.                                                                | 5<br>5<br>5<br>5<br>5<br>5                                                                  |
| 261         SEG17         2317.5         399.           262         SEG16         2290.5         399.           263         SEG15         2263.5         399.           264         SEG14         2236.5         399.           265         SEG13         2209.5         399.           266         SEG12         2182.5         399.           267         SEG11         2155.5         399.           268         SEG10         2128.5         399.           269         SEG9         2101.5         399.           270         SEG8         2074.5         399.           271         SEG6         2020.5         399.           272         SEG6         2020.5         399.           273         SEG6         1993.5         399.           276         SEG2         1912.5         399.           276         SEG2         1912.5         399.           276         SEG2         1912.5         399.           277         SEG1         188.5         399.           278         SEG0         1858.5         399.           278         SEG2         1912.5         399.<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5<br>5<br>5<br>5                                                                            |
| 262         SEG16         2290.5         399.           263         SEG15         2263.5         399.           264         SEG14         2263.5         399.           265         SEG13         2209.5         399.           266         SEG12         2182.5         399.           267         SEG11         2155.5         399.           268         SEG10         2128.5         399.           269         SEG9         2101.5         399.           270         SEG8         2074.5         399.           271         SEG7         2047.5         399.           272         SEG6         2020.5         399.           273         SEG6         2020.5         399.           274         SEG4         1966.5         399.           275         SEG3         1939.5         399.           276         SEG2         1912.5         399.           277         SEG1         1885.5         399.           278         SEG0         1858.5         399.           281         VCC         1770.5         399.           281         VCC         1770.5         399. <td>5<br/>5<br/>5<br/>5</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5<br>5<br>5<br>5                                                                            |
| 263 SEG15 2263.5 399. 264 SEG14 2236.5 399. 265 SEG13 2209.5 399. 266 SEG12 2182.5 399. 267 SEG11 2155.5 399. 267 SEG11 2155.5 399. 268 SEG10 2128.5 399. 270 SEG8 2074.5 399. 271 SEG7 2047.5 399. 272 SEG6 2020.5 399. 273 SEG5 1993.5 399. 274 SEG4 1966.5 399. 275 SEG3 1939.5 399. 276 SEG3 1939.5 399. 277 SEG1 1885.5 399. 278 SEG0 1858.5 399. 279 VCC 1804.5 399. 281 VCC 1777.5 399. 281 VCC 1777.5 399. 282 VCC 1775.5 399. 284 VCC 1775.5 399. 285 VCOMH 1507.5 399. 286 VCOMH 1507.5 399. 287 VCOMH 1507.5 383. 287 VCOMH 1507.5 383. 288 VCOMH 1507.5 383. 289 COMM 1475.5 383. 299 COMM 1372.5 383. 299 COMM 1372.5 383. 299 COMM 1372.5 383. 299 COMM 1372.5 383. 299 COMM 1282.5 383.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5<br>5<br>5                                                                                 |
| 264         SEG14         2236.5         399.           265         SEG13         2209.5         399.           266         SEG12         2218.2         399.           267         SEG11         2155.5         399.           268         SEG10         2128.5         399.           269         SEG9         2101.5         399.           270         SEG8         2074.5         399.           271         SEG7         2047.5         399.           272         SEG6         2020.5         399.           273         SEG5         1993.5         399.           276         SEG2         1912.5         399.           276         SEG2         1912.5         399.           277         SEG1         198.5         399.           277         SEG1         198.5         399.           278         SEG2         1912.5         399.           279         VCC         1831.5         399.           280         VCC         1804.5         399.           281         VCC         1777.5         399.           283         VCC         1775.5         399.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5<br>5<br>5                                                                                 |
| 265 SEG13 2209.5 399. 266 SEG12 2182.5 399. 267 SEG11 2155.5 399. 268 SEG10 2128.5 399. 268 SEG10 2128.5 399. 269 SEG9 2101.5 399. 270 SEG8 2074.5 399. 271 SEG7 2047.5 399. 272 SEG6 2020.5 399. 273 SEG6 1993.5 399. 274 SEG4 1912.5 399. 275 SEG3 1939.5 399. 276 SEG2 1912.5 399. 277 SEG1 1885.5 399. 278 SEG0 1858.5 399. 279 VCC 1831.5 399. 280 VCC 1777.5 399. 281 VCC 1777.5 399. 282 VCC 1775.5 399. 283 VCC 1775.5 399. 284 VCC 1696.5 399. 285 VCOMH 1597.5 383. 286 VCOMH 1597.5 383. 287 VCOMH 1507.5 383. 288 VCOMH 1507.5 383. 289 COMM 1417.5 383. 290 COMI 1372.5 383. 291 COMM 1372.5 383. 291 COMM 1372.5 383. 292 COMM 1372.5 383. 293 COMM 12327.5 383. 293 COMM 12327.5 383.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5<br>5                                                                                      |
| 266         SEG12         2182.5         399.           267         SEG11         2155.5         399.           268         SEG10         2128.5         399.           269         SEG9         2101.5         399.           270         SEG8         2074.5         399.           271         SEG7         2047.5         399.           272         SEG6         2020.5         399.           273         SEG6         2020.5         399.           274         SEG4         1966.5         399.           275         SEG3         1939.5         399.           276         SEG2         1912.5         399.           277         SEG1         1885.5         399.           278         SEG0         1858.5         399.           279         VCC         1831.5         399.           281         VCC         1775.5         399.           281         VCC         1775.5         399.           284         VCC         1696.5         399.           285         VCOMH         1507.5         383.           286         VCOMH         1507.5         383.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5<br>5                                                                                      |
| 267 SEG11 2155.5 399. 268 SEG10 2128.5 399. 269 SEG9 2101.5 399. 270 SEG8 2074.5 399. 271 SEG7 2047.5 399. 272 SEG6 2020.5 399. 273 SEG6 1993.5 399. 274 SEG5 1993.5 399. 275 SEG3 1939.5 399. 276 SEG2 1912.5 399. 277 SEG1 1885.5 399. 278 SEG0 1858.5 399. 279 VCC 1831.5 399. 280 VCC 1777.5 399. 281 VCC 1777.5 399. 282 VCC 1775.5 399. 283 VCC 1775.5 399. 284 VCC 1696.5 399. 285 VCOMH 1507.5 383. 286 VCOMH 1552.5 383. 287 VCOMH 1507.5 383. 288 VCOMH 1552.5 383. 289 COMM 1475.5 383. 290 COMM 1372.5 383. 291 COMM 1372.5 383. 291 COMM 1372.5 383. 292 COMM 1372.5 383. 293 COMM 1282.5 383. 293 COMM 1282.5 383. 293 COMM 1282.5 383. 293 COMM 1282.5 383.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                           |
| 268 SEG10 2128.5 399. 269 SEG9 2101.5 399. 270 SEG8 2074.5 399. 271 SEG7 2047.5 399. 272 SEG6 2020.5 399. 273 SEG6 1993.5 399. 274 SEG4 1966.5 399. 275 SEG3 1939.5 399. 276 SEG2 1912.5 399. 277 SEG1 1885.5 399. 277 SEG1 1885.5 399. 278 SEG0 1812.5 399. 279 VCC 1831.5 399. 280 VCC 1770.5 399. 281 VCC 1777.5 399. 282 VCC 1770.5 399. 283 VCC 1775.5 399. 284 VCC 1760.5 399. 285 VCOMH 1597.5 383.2 286 VCOMH 1507.5 383.2 287 VCOMH 1507.5 383.2 288 VCOMH 1507.5 383.2 289 COM 1417.5 383.2 290 COMI 1372.5 383.2 291 COMZ 1327.5 383.2 291 COMZ 1327.5 383.2 292 COMZ 1327.5 383.2 293 COMM 12327.5 383.2 293 COMM 12327.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
| 269 SEG9 2101.5 399. 270 SEG8 2074.5 399. 271 SEG7 2047.5 399. 272 SEG6 2020.5 399. 273 SEG6 2020.5 399. 274 SEG4 1966.5 399. 275 SEG3 1939.5 399. 276 SEG3 1939.5 399. 277 SEG1 1885.5 399. 277 SEG1 1885.5 399. 278 SEG0 1858.5 399. 279 VCC 1804.5 399. 280 VCC 1777.5 399. 281 VCC 1777.5 399. 282 VCC 1750.5 399. 284 VCC 1772.5 399. 285 VCOMH 1507.5 383. 286 VCOMH 1557.5 383. 287 VCOMH 1507.5 383. 288 VCOMH 1507.5 383. 290 COMI 1372.5 383. 291 COMZ 1327.5 383. 291 COMZ 1327.5 383. 292 COMZ 1327.5 383. 293 COMZ 1282.5 383. 293 COMZ 1282.5 383. 293 COMZ 1282.5 383. 299 COMZ 1282.5 383.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                           |
| 270         SEG8         2074.5         399.           271         SEG7         2047.5         399.           272         SEG6         2020.5         399.           273         SEG6         1993.5         399.           274         SEG4         1966.5         399.           275         SEG3         1939.5         399.           276         SEG2         1912.5         399.           277         SEG1         1885.5         399.           278         SEG0         1858.5         399.           280         VCC         1804.5         399.           281         VCC         1777.5         399.           281         VCC         1775.5         399.           282         VCC         1775.5         399.           284         VCC         1696.5         399.           285         VCOMH         1507.5         383.2           287         VCOMH         1507.5         383.2           288         VCOMH         1475.5         383.2           289         COM         1417.5         383.2           290         COMI         1327.5         383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                                                                           |
| 271         SEG7         2047.5         399.           272         SE66         2020.5         399.           273         SEG5         1993.5         399.           274         SEG4         1966.5         399.           275         SEG3         1939.5         399.           276         SEG2         1912.5         399.           277         SEG1         188.5         399.           278         SEG0         1886.5         399.           280         VCC         1804.5         399.           281         VCC         1777.5         399.           282         VCC         1750.5         399.           284         VCC         1696.5         399.           284         VCC         1696.5         399.           285         VCOMH         1597.5         383.2           287         VCOMH         1507.5         383.2           289         COMM         1417.5         383.2           290         COMM         1327.5         383.2           291         COMZ         1327.5         383.2           293         COMM         1282.5         383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |
| 272         SEG6         2020.5         399.           273         SEG6         1993.5         399.           274         SEG4         1966.5         399.           276         SEG2         1912.5         399.           276         SEG2         1912.5         399.           277         SEG1         1885.5         399.           278         SEG0         1858.5         399.           280         VCC         1831.5         399.           281         VCC         1775.5         399.           281         VCC         1775.5         399.           283         VCC         1723.5         399.           284         VCC         1696.5         399.           285         VCOMH         1597.5         383.2           286         VCOMH         1597.5         383.2           287         VCOMH         1507.5         383.2           289         COMD         1417.5         383.2           290         COMI         1372.5         383.2           291         COM2         1327.5         383.2           293         COM4         1282.5         383.2 <td>5</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                           |
| 273         SEG5         1993.5         399.           274         SEG4         1966.5         399.           275         SEG3         1939.5         399.           276         SEG2         1912.5         399.           277         SEG1         1885.5         399.           278         SEG0         1858.5         399.           280         VCC         1831.5         399.           281         VCC         1777.5         399.           282         VCC         1750.5         399.           283         VCC         1723.5         399.           284         VCC         1696.5         399.           285         VCOMH         1597.5         383.           286         VCOMH         1507.5         383.           287         VCOMH         1507.5         383.           289         COMD         1417.5         383.           290         COMI         1372.5         383.           291         COME         1327.5         383.           292         COMB         1282.5         383.           293         COM4         1282.5         383.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                           |
| 274 SEG4 1966.5 399. 276 SEG3 1939.5 399. 276 SEG3 1939.5 399. 277 SEG1 1885.5 399. 278 SEG0 1858.5 399. 278 SEG0 1858.5 399. 279 VCC 1804.5 399. 280 VCC 1777.5 399. 281 VCC 1777.5 399. 282 VCC 1775.5 399. 284 VCC 1723.5 399. 284 VCC 1696.5 399. 285 VCOMH 1507.5 383.2 286 VCOMH 1507.5 383.2 287 VCOMH 1507.5 383.2 287 VCOMH 1507.5 383.2 289 COMM 1475.5 383.2 290 COMM 1372.5 383.2 291 COMM 1327.5 383.2 292 COMM 1327.5 383.2 293 COMM 1282.5 383.2 293 COMM 1282.5 383.2 293 COMM 1282.5 383.2 293 COMM 1282.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                           |
| 275 SEG3 1939.5 399. 276 SEG2 1912.5 399. 277 SEG1 1885.5 399. 278 SEG0 1858.5 399. 278 SEG0 1858.5 399. 280 VCC 1831.5 399. 280 VCC 1904.5 399. 281 VCC 1777.5 399. 282 VCC 1776.5 399. 283 VCC 1723.5 399. 284 VCC 1696.5 399. 285 VCOMH 1597.5 383. 286 VCOMH 1552.5 383. 287 VCOMH 1552.5 383. 288 VCOMH 1552.5 383. 289 VCOMH 1462.5 383. 289 VCOMH 147.5 383. 290 COM 1372.5 383. 291 COMZ 1327.5 383. 292 COMZ 1327.5 383. 293 COMZ 1327.5 383. 293 COMZ 1327.5 383.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                           |
| 276   SEG2   1912.5   399.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| 277   SEG1   1885.5   399.     278   SEG0   1858.5   399.     279   VCC   1831.5   399.     280   VCC   1804.5   399.     281   VCC   1777.5   399.     282   VCC   1775.5   399.     283   VCC   1723.5   399.     284   VCC   1996.5   399.     285   VCOMH   1597.5   383.2     286   VCOMH   1597.5   383.2     287   VCOMH   1507.5   383.2     288   VCOMH   1462.5   383.2     290   COMM   1372.5   383.2     291   COMM   1327.5   383.3     292   COMM   1282.5   383.3     293   COMM   1237.5   383.3     294   COMM   1237.5   383.3     295   COMM   1237.5   383.3     296   COMM   1237.5   383.3     297   COMM   1237.5   383.3     298   COMM   1237.5   383.3     299   COMM   1237.5   383.3     290   COMM   1237.5   383.3     291   COMM   1237.5   383.3     292   COMM   1237.5   383.3     293   COMM   1237.5   383.3     294   COMM   1237.5   383.3     295   COMM   1237.5   383.3     296   COMM   1237.5   383.3     297   COMM   1237.5   383.3     298   COMM   1237.5   383.3     299   COMM   1237.5   383.3     290   COMM   1237.5   383.3     290 |                                                                                             |
| 278   SEG0   1858.5   399.     279   VCC   1831.5   399.     280   VCC   1804.5   399.     281   VCC   1777.5   399.     282   VCC   1775.5   399.     283   VCC   1723.5   399.     284   VCC   1696.5   399.     285   VCOMH   1597.5   383.     286   VCOMH   1552.5   383.     287   VCOMH   1507.5   383.     288   VCOMH   1462.5   383.     289   COMM   1417.5   383.     290   COMM   1327.5   383.     291   COMM   1327.5   383.     293   COMM   1237.5   383.     294   COMM   1237.5   383.     295   COMM   1237.5   383.     296   COMM   1237.5   383.     297   COMM   1237.5   383.     298   COMM   1237.5   383.     299   COMM   1237.5   383.     290   COMM   1237.5   383.     291   COMM   1237.5   383.     292   COMM   1237.5   383.     293   COMM   1237.5   383.     294   COMM   1237.5   383.     295   COMM   1237.5   383.     297   COMM   1237.5   383.     298   COMM   1237.5   383.     298   COMM   1237.5   383.     299   COMM   1237.5   383.     290   COMM   1237.5   383.                                                                 | _                                                                                           |
| 279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                             |
| 280 VCC 1804.5 399. 281 VCC 1777.5 399. 282 VCC 1750.5 399. 283 VCC 1723.5 399. 284 VCC 1966.5 399. 285 VCOMH 1597.5 383.2 286 VCOMH 1552.5 383.2 287 VCOMH 1507.5 383.2 288 VCOMH 1462.5 383.2 289 COMD 1417.5 383.2 290 COMI 1372.5 383.2 291 COMZ 1327.5 383.2 292 COMZ 1327.5 383.2 293 COMM 1282.5 383.2 293 COMM 1282.5 383.2 293 COMM 1282.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             |
| 281 VCC 1777.5 399. 282 VCC 1750.5 399. 283 VCC 1723.5 399. 284 VCC 1696.5 399. 285 VCOMH 1597.5 383. 286 VCOMH 1552.5 383. 287 VCOMH 1552.5 383. 288 VCOMH 1507.5 383. 289 VCOMH 1462.5 383. 289 COMD 1417.5 383. 290 COM1 1372.5 383. 291 COM2 1327.5 383. 292 COM3 1282.5 383. 293 COM4 1237.5 383.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |
| 282 VCC 1750.5 399. 283 VCC 1723.5 399. 284 VCC 1696.5 399. 285 VCOMH 1597.5 383. 286 VCOMH 1597.5 383. 287 VCOMH 1507.5 383. 288 VCOMH 1462.5 383. 289 CCM0 1417.5 383. 290 COM1 1372.5 383. 291 COM2 1327.5 383. 292 COM3 1282.5 383. 293 COM4 1237.5 383.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |
| 284 VCC 1696.5 399. 285 VCOMH 1597.5 383.2 286 VCOMH 1552.5 383.2 287 VCOMH 1562.5 383.2 287 VCOMH 1507.5 383.2 288 VCOMH 1462.5 383.2 289 COMD 1417.5 383.3 290 COMI 1372.5 383.2 291 COMZ 1327.5 383.2 292 COMZ 1327.5 383.2 293 COMZ 1327.5 383.2 293 COMZ 1282.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| 285 VCOMH 1597.5 383.2 286 VCOMH 1552.5 383.3 287 VCOMH 1507.5 383.2 287 VCOMH 1507.5 383.2 288 VCOMH 1462.5 383.3 289 COM0 1417.5 383.2 290 COM1 1372.5 383.3 291 COM2 1327.5 383.3 292 COM3 1282.5 383.3 293 COM4 1237.5 383.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                           |
| 286 VCOMH 1552.5 383.2 287 VCOMH 1507.5 383.2 288 VCOMH 1462.5 383.3 289 COMD 1417.5 383.2 290 COMI 1372.5 383.2 291 COMZ 1327.5 383.2 292 COM3 1282.5 383.3 293 COM4 1237.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                           |
| 287 VCOMH 1507.5 383.2 288 VCOMH 1462.5 383.2 289 COMD 1417.5 383.2 290 COMI 1372.5 383.2 291 COMZ 1327.5 383.2 292 COMZ 1327.5 383.2 293 COMM 1237.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
| 288         VCOMH         1462.5         383.2           289         COMD         1417.5         383.2           290         COMI         1372.5         383.2           291         COM2         1327.5         383.2           292         COM3         1282.5         383.2           293         COM4         1237.5         383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |
| 289         COM0         1417.5         383.2           290         COM1         1372.5         383.2           291         COM2         1327.5         383.2           292         COM3         1282.5         383.4           293         COM4         1237.5         383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             |
| 290         COM1         1372.5         383.2           291         COM2         1327.5         383.2           292         COM3         1282.5         383.2           293         COM4         1237.5         383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |
| 291 COM2 1327.5 383.2<br>292 COM3 1282.5 383.2<br>293 COM4 1237.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             |
| 292 COM3 1282.5 383.2<br>293 COM4 1237.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |
| 293 COM4 1237.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                             |
| 295 COM6 1147.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21                                                                                          |
| 296 COM7 1102.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |
| 297 COM8 1057.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |
| 298 COM9 1012.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |
| 299 COM10 967.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |
| 300 COM11 922.5 383.2<br>301 COM12 877.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                           |
| 302 COM13 832.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |
| 303 COM14 787.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |
| 304 COM15 742.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |
| 305 COM16 697.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |
| 306 COM17 652.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |
| 307 COM18 607.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                           |
| 308 COM19 562.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21                                                                                          |
| 309 COM20 517.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21<br>21                                                                                    |
| 310 COM21 472.5 383.2<br>311 COM22 427.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21<br>21<br>21                                                                              |
| 311 COM22 427.5 383.2<br>312 COM23 382.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21<br>21<br>21<br>21                                                                        |
| 312 COW23 382.5 383.2<br>313 COW24 337.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ?1<br>?1<br>?1<br>?1                                                                        |
| 314 COM25 292.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21<br>21<br>21<br>21<br>21                                                                  |
| 315 COM26 247.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21<br>21<br>21<br>21<br>21<br>21                                                            |
| 316 COM27 202.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21<br>21<br>21<br>21<br>21<br>21<br>21                                                      |
| 317 COM28 157.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21<br>21<br>21<br>21<br>21<br>21<br>21                                                      |
| 318 COM29 112.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21                                          |
| 319 COM30 67.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21                                          |
| 320 COM31 22.5 383.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21                                    |

 Solomon Systech
 Feb 2015
 P 10/62
 Rev 1.0
 SSD1362

| Pin number | Pin name         | Х                  | Υ                |
|------------|------------------|--------------------|------------------|
| 321        | COM32            | -22.5              | 383.21           |
| 322        | COM33            | -67.5              | 383.21           |
| 323        | COM34            | -112.5             | 383.21           |
| 324        | COM35            | -157.5             | 383.21           |
| 325        | COM36            | -202.5             | 383.21           |
| 326        | COM37            | -247.5             | 383.21           |
| 327        | COM38            | -292.5             | 383.21           |
| 328        | COM39            | -337.5             | 383.21           |
| 329        | COM40<br>COM41   | -382.5             | 383.21<br>383.21 |
| 330<br>331 | COM42            | -427.5<br>-472.5   | 383.21           |
| 332        | COM43            | -517.5             | 383.21           |
| 333        | COM44            | -562.5             | 383.21           |
| 334        | COM45            | -607.5             | 383.21           |
| 335        | COM46            | -652.5             | 383.21           |
| 336        | COM47            | -697.5             | 383.21           |
| 337        | COM48            | -742.5             | 383.21           |
| 338        | COM49            | -787.5             | 383.21           |
| 339        | COM50            | -832.5             | 383.21           |
| 340<br>341 | COM51<br>COM52   | -877.5<br>-922.5   | 383.21<br>383.21 |
| 342        | COM53            | -967.5             | 383.21           |
| 343        | COM54            | -1012.5            | 383.21           |
| 344        | COM55            | -1057.5            | 383.21           |
| 345        | COM56            | -1102.5            | 383.21           |
| 346        | COM57            | -1147.5            | 383.21           |
| 347        | COM58            | -1192.5            | 383.21           |
| 348        | COM59            | -1237.5            | 383.21           |
| 349        | COM60            | -1282.5            | 383.21           |
| 350        | COM61            | -1327.5            | 383.21<br>383.21 |
| 351<br>352 | COM62<br>COM63   | -1372.5<br>-1417.5 | 383.21           |
| 353        | VCOMH            | -1462.5            | 383.21           |
| 354        | VCOMH            | -1507.5            | 383.21           |
| 355        | VCOMH            | -1552.5            | 383.21           |
| 356        | VCOMH            | -1597.5            | 383.21           |
| 357        | VCC              | -1696.5            | 399.5            |
| 358<br>359 | VCC              | -1723.5<br>-1750.5 | 399.5<br>399.5   |
| 360        | VCC              | -1777.5            | 399.5            |
| 361        | VCC              | -1804.5            | 399.5            |
| 362        | VCC              | -1831.5            | 399.5            |
| 363        | SEG128           | -1858.5            | 399.5            |
| 364        | SEG129           | -1885.5            | 399.5            |
| 365<br>366 | SEG130<br>SEG131 | -1912.5<br>-1939.5 | 399.5<br>399.5   |
| 367        | SEG132           | -1966.5            | 399.5            |
| 368        | SEG133           | -1993.5            | 399.5            |
| 369        | SEG134           | -2020.5            | 399.5            |
| 370<br>371 | SEG135           | -2047.5<br>-2074.5 | 399.5<br>399.5   |
| 372        | SEG136<br>SEG137 | -2074.5            | 399.5            |
| 373        | SEG138           | -2128.5            | 399.5            |
| 374        | SEG139           | -2155.5            | 399.5            |
| 375        | SEG140           | -2182.5            | 399.5            |
| 376        | SEG141<br>SEG142 | -2209.5<br>-2236.5 | 399.5<br>399.5   |
| 377<br>378 | SEG142<br>SEG143 | -2263.5            | 399.5            |
| 379        | SEG144           | -2290.5            | 399.5            |
| 380        | SEG145           | -2317.5            | 399.5            |
| 381        | SEG146           | -2344.5            | 399.5            |
| 382        | SEG147           | -2371.5            | 399.5            |
| 383<br>384 | SEG148<br>SEG149 | -2398.5<br>-2425.5 | 399.5<br>399.5   |
| 385        | SEG150           | -2452.5            | 399.5            |
| 386        | SEG151           | -2479.5            | 399.5            |
| 387        | SEG152           | -2506.5            | 399.5            |
| 388        | SEG153           | -2533.5            | 399.5            |
| 389<br>390 | SEG154           | -2560.5            | 399.5<br>399.5   |
| 390        | SEG155<br>SEG156 | -2587.5<br>-2614.5 | 399.5            |
| 392        | SEG156           | -2614.5            | 399.5            |
| 393        | SEG158           | -2668.5            | 399.5            |
| 394        | SEG159           | -2695.5            | 399.5            |
| 395        | SEG160           | -2722.5            | 399.5            |
|            |                  | -2749.5            | 399.5            |
| 396        | SEG161           |                    |                  |
|            | SEG162           | -2776.5            | 399.5            |
| 396<br>397 |                  |                    |                  |

| Pin number | Pin name         | Х                  | Y              | Pin number | Pin name | Х       | Y     | т       |
|------------|------------------|--------------------|----------------|------------|----------|---------|-------|---------|
| 401        | SEG166           | -2884.5            | 399.5          | 481        | SEG246   | -5044.5 | 399.5 | 1       |
| 402        | SEG167           | -2911.5            | 399.5          | 482        | SEG247   | -5071.5 | 399.5 | i       |
| 403        | SEG168           | -2938.5            | 399.5          | 483        | SEG248   | -5098.5 | 399.5 |         |
| 404        | SEG169           | -2965.5            | 399.5          | 484        | SEG249   | -5125.5 | 399.5 |         |
| 405        | SEG170           | -2992.5            | 399.5          | 485        | SEG250   | -5152.5 | 399.5 |         |
| 406        | SEG171           | -3019.5            | 399.5          | 486        | SEG251   | -5179.5 | 399.5 |         |
| 407        | SEG172           | -3046.5            | 399.5          | 487        | SEG252   | -5206.5 | 399.5 |         |
| 408        | SEG173           | -3073.5            | 399.5          | 488        | SEG253   | -5233.5 | 399.5 |         |
| 409        | SEG174           | -3100.5            | 399.5          | 489        | SEG254   | -5260.5 | 399.5 |         |
| 410        | SEG175           | -3127.5            | 399.5          | 490        | SEG255   | -5287.5 | 399.5 |         |
| 411        | SEG176           | -3154.5            | 399.5          | 491        | NC       | -5314.5 | 399.5 |         |
| 412        | SEG177           | -3181.5            | 399.5          | 492        | NC       | -5341.5 | 399.5 | l       |
| 413<br>414 | SEG178<br>SEG179 | -3208.5<br>-3235.5 | 399.5<br>399.5 |            |          |         |       |         |
|            |                  |                    |                |            |          |         |       |         |
| 415<br>416 | SEG180<br>SEG181 | -3262.5<br>-3289.5 | 399.5<br>399.5 |            |          |         |       |         |
| 417        |                  | -3269.5            |                |            |          |         |       |         |
| 418        | SEG182<br>SEG183 | -3343.5            | 399.5<br>399.5 |            |          |         |       |         |
| 419        | SEG184           | -3370.5            | 399.5          |            |          |         |       |         |
| 420        | SEG185           | -3397.5            | 399.5          |            |          |         |       |         |
| 421        | SEG186           | -3424.5            | 399.5          |            |          |         |       |         |
| 422        | SEG187           | -3451.5            | 399.5          |            |          |         |       |         |
| 423        | SEG188           | -3478.5            | 399.5          |            |          |         |       |         |
| 424        | SEG189           | -3505.5            | 399.5          |            |          |         |       |         |
| 425        | SEG190           | -3532.5            | 399.5          |            |          |         |       |         |
| 426<br>427 | SEG191<br>SEG192 | -3559.5<br>-3586.5 | 399.5<br>399.5 |            |          |         |       |         |
| 428        | SEG192           | -3613.5            | 399.5          |            |          |         |       |         |
| 429        | SEG193           | -3640.5            | 399.5          |            |          |         |       |         |
| 430        | SEG195           | -3667.5            | 399.5          |            |          |         |       |         |
| 431        | SEG196           | -3694.5            | 399.5          |            |          |         |       |         |
| 432        | SEG197           | -3721.5            | 399.5          |            |          |         |       |         |
| 433        | SEG198           | -3748.5            | 399.5          |            |          |         |       |         |
| 434        | SEG199           | -3775.5            | 399.5          |            |          |         |       |         |
| 435        | SEG200           | -3802.5            | 399.5          |            |          |         |       |         |
| 436        | SEG201           | -3829.5            | 399.5          |            |          |         |       |         |
| 437        | SEG202           | -3856.5            | 399.5          |            |          |         |       |         |
| 438<br>439 | SEG203<br>SEG204 | -3883.5<br>-3910.5 | 399.5<br>399.5 |            |          |         |       | 4.00    |
| 440        | SEG204           | -3937.5            | 399.5          |            |          | 40      |       |         |
| 441        | SEG206           | -3964.5            | 399.5          |            |          |         |       |         |
| 442        | SEG207           | -3991.5            | 399.5          |            |          |         | An I  |         |
| 443        | SEG208           | -4018.5            | 399.5          |            |          |         |       |         |
| 444        | SEG209           | -4045.5            | 399.5          |            |          | - 44    |       |         |
| 445<br>446 | SEG210<br>SEG211 | -4072.5<br>-4099.5 | 399.5<br>399.5 |            |          |         |       |         |
| 447        | SEG212           | -4126.5            | 399.5          |            |          |         |       |         |
| 448        | SEG213           | -4153.5            | 399.5          |            |          |         |       |         |
| 449        | SEG214           | -4180.5            | 399.5          | 0.6        |          |         |       | or Inc. |
| 450        | SEG215           | -4207.5            | 399.5          |            |          |         |       |         |
| 451        | SEG216           | -4234.5            | 399.5          |            |          |         |       |         |
| 452<br>453 | SEG217<br>SEG218 | -4261.5<br>-4288.5 | 399.5<br>399.5 |            |          |         |       |         |
| 454        | SEG219           | -4315.5            | 399.5          |            |          |         |       |         |
| 455        | SEG220           | -4342.5            | 399.5          |            |          |         |       |         |
| 456        | SEG221           | -4369.5            | 399.5          |            |          |         |       |         |
| 457        | SEG222           | -4396.5            | 399.5          |            |          |         |       |         |
| 458        | SEG224           | -4423.5<br>-4450.5 | 399.5          |            |          |         |       |         |
| 459<br>460 | SEG224<br>SEG225 | -4450.5<br>-4477.5 | 399.5<br>399.5 |            |          |         |       |         |
| 461        | SEG226           | -4504.5            | 399.5          |            |          |         |       |         |
| 462        | SEG227           | -4531.5            | 399.5          |            |          |         |       |         |
| 463        | SEG228           | -4558.5            | 399.5          |            |          |         |       |         |
| 464        | SEG229           | -4585.5            | 399.5          |            |          |         |       |         |
| 465        | SEG230           | -4612.5            | 399.5          |            |          |         |       |         |
| 466<br>467 | SEG231<br>SEG232 | -4639.5<br>-4666.5 | 399.5<br>399.5 |            |          |         |       |         |
| 468        | SEG232<br>SEG233 | -4693.5            | 399.5          |            |          |         |       |         |
| 469        | SEG234           | -4720.5            | 399.5          |            |          |         |       |         |
| 470        | SEG235           | -4747.5            | 399.5          |            |          |         |       |         |
| 471        | SEG236           | -4774.5            | 399.5          |            |          |         |       |         |
| 472        | SEG237           | -4801.5            | 399.5          |            |          |         |       |         |
| 473        | SEG238           | -4828.5            | 399.5          |            |          |         |       |         |
| 474<br>475 | SEG239<br>SEG240 | -4855.5<br>-4882.5 | 399.5<br>399.5 |            |          |         |       |         |
| 475        | SEG240<br>SEG241 | -4882.5<br>-4909.5 | 399.5          |            |          |         |       |         |
| 477        | SEG242           | -4936.5            | 399.5          |            |          |         |       |         |
| 478        | SEG243           | -4963.5            | 399.5          |            |          |         |       |         |
| 479        | SEG244           | -4990.5            | 399.5          |            |          |         |       |         |
| 480        | SEG245           | -5017.5            | 399.5          |            |          |         |       |         |
|            | _                |                    | _              |            |          |         |       |         |

| Pin number | Pin name | X       | Υ     |
|------------|----------|---------|-------|
| 481        | SEG246   | -5044.5 | 399.5 |
| 482        | SEG247   | -5071.5 | 399.5 |
| 483        | SEG248   | -5098.5 | 399.5 |
| 484        | SEG249   | -5125.5 | 399.5 |
| 485        | SEG250   | -5152.5 | 399.5 |
| 486        | SEG251   | -5179.5 | 399.5 |
| 487        | SEG252   | -5206.5 | 399.5 |
| 488        | SEG253   | -5233.5 | 399.5 |
| 489        | SEG254   | -5260.5 | 399.5 |
| 490        | SEG255   | -5287.5 | 399.5 |
| 491        | NC       | -5314.5 | 399.5 |
| 492        | NC       | -5341.5 | 399.5 |

SSD1362 Rev 1.0 P 11/62 Feb 2015 Solomon Systech

# 6 PIN DESCRIPTIONS

# **Key:**

| I = Input                           | NC = Not Connected                      |
|-------------------------------------|-----------------------------------------|
| O =Output                           | Pull LOW= connect to Ground             |
| I/O = Bi-directional (input/output) | Pull HIGH= connect to V <sub>DDIO</sub> |
| P = Power pin                       |                                         |

Table 6-1: SSD1362 Pin Description

| D |                                                                                                                                                                                                                                                                  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P | Power supply for core logic operation.                                                                                                                                                                                                                           |
|   | $V_{DD}$ can be supplied externally (within the range of 1.65V to 2.6V) or regulated internally from $V_{CI}$ when $V_{CI}$ is $>$ 2.6V. A capacitor should be connected between $V_{DD}$ and $V_{SS}$ under all circumstances.                                  |
| P | Power supply for interface logic level. It should match with the MCU interface voltage level and must be connected to external source.                                                                                                                           |
| Р | Low voltage power supply. $V_{\text{CI}}$ must always be equal to or higher than $V_{\text{DD}}$ and $V_{\text{DDIO}}$ .                                                                                                                                         |
| Р | Power supply for panel driving voltage. This is also the most positive power voltage supply pin. It is supplied by external high voltage source.                                                                                                                 |
| P | Clean power supply for high voltage circuit. It must be connected to $V_{\text{CC}}$ externally.                                                                                                                                                                 |
| P | Ground pin. It must be connected to external ground.                                                                                                                                                                                                             |
| P | Analog system ground pin. It must be connected to external ground.                                                                                                                                                                                               |
| P | Reserved pin. It should be connected to ground.                                                                                                                                                                                                                  |
| P | Logic high (same voltage level as $V_{DDIO}$ ) for internal connection of input and I/O pins. No need to connect to external power source.                                                                                                                       |
| P | Logic low (same voltage level as V <sub>SS</sub> ) for internal connection of input and I/O pins. No need to connect to external ground.                                                                                                                         |
| P | COM signal deselected voltage level.                                                                                                                                                                                                                             |
|   | A capacitor should be connected between this pin and $V_{\rm SS}$ . No external power supply is allowed to connect to this pin.                                                                                                                                  |
| P | This pin is the segment pre-charge voltage reference pin.                                                                                                                                                                                                        |
|   | A capacitor should be connected between this pin and $V_{\rm SS}$ . No external power supply is allowed to connect to this pin.                                                                                                                                  |
| I | This pin is the segment output current reference pin.                                                                                                                                                                                                            |
|   | When external $I_{REF}$ is used, a resistor should be connected between this pin and $V_{SS}$ to maintain current of around 18.75uA. Please refer to section 7.6 for the formula of resistor value. When internal $I_{REF}$ is used, this pin should be kept NC. |
|   | P P P P P P P                                                                                                                                                                                                                                                    |

 Solomon Systech
 Feb 2015
 P 12/62
 Rev 1.0
 SSD1362

| Pin Name | Pin Type | Description                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
|----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| $V_{20}$ | P        | This is a reserved pin. It should be kept NC.                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
| GPIO0    | I/O      | This is a reserved pin. It should be kept NC.                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
| GPIO1    | I/O      | This is a reserved pin. It should be kept NC.                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
| BS[2:0]  | I        | MCU bus interface selection pins. Select appropriate logic setting as described in the following table. BS2 and BS1, BS0 are pin select.                                                                                        |  |  |  |  |  |  |  |  |
|          |          | Table 6-2 : Bus Interface selection                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
|          |          | BS[2:0] Interface                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
|          |          | 000 4 line SPI                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
|          |          | 001 3 line SPI                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
|          |          | 110 8-bit 8080 parallel                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
|          |          | 100 8-bit 6800 parallel                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
|          |          | 010 I <sup>2</sup> C                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
|          |          |                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
|          |          | Note                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
|          |          | $^{(1)}$ 0 is connected to $V_{SS}$                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
|          |          | $^{(2)}$ 1 is connected to $V_{DDIO}$                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
| VSL      | P        | This is a reserved pin. It should be connected to $V_{LSS}$ externally.                                                                                                                                                         |  |  |  |  |  |  |  |  |
| CL       | I        | External clock input pin.                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
|          |          | When internal clock is enable (i.e. pull HIGH in CLS pin), this pin is not used and should be connected to Ground.  When internal clock is disable (i.e. pull LOW in CLS pin), this pin is the external clock source input pin. |  |  |  |  |  |  |  |  |
| CLS      | I        | Internal clock selection pin.                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
|          |          | When this pin is pulled HIGH, internal oscillator is enabled (normal operation). When this pin is pulled LOW, an external clock signal should be connected to CL.                                                               |  |  |  |  |  |  |  |  |
| CS#      | I        | This pin is the chip select input connecting to the MCU.                                                                                                                                                                        |  |  |  |  |  |  |  |  |
|          |          | The chip is enabled for MCU communication only when CS# is pulled LOW (active LOW). In $\rm I^2C$ mode, this pin must be connected to $\rm V_{SS}$ .                                                                            |  |  |  |  |  |  |  |  |
| RES#     | I        | This pin is reset signal input.                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
|          |          | When the pin is pulled LOW, initialization of the chip is executed. Keep this pin pull HIGH during normal operation.                                                                                                            |  |  |  |  |  |  |  |  |
| D/C#     | I        | This pin is Data/Command control pin connecting to the MCU.                                                                                                                                                                     |  |  |  |  |  |  |  |  |
|          |          | When the pin is pulled HIGH, the data at D[7:0] will be interpreted as data. When the pin is pulled LOW, the data at D[7:0] will be transferred to a command register.                                                          |  |  |  |  |  |  |  |  |
|          |          | In $I^2C$ mode, this pin acts as SA0 for slave address selection. When 3-wire serial interface is selected, this pin must be connected to $V_{SS}$ .                                                                            |  |  |  |  |  |  |  |  |
|          |          |                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |

**SSD1362** Rev 1.0 P 13/62 Feb 2015 **Solomon Systech** 

| Pin Name         | Pin Type | Description                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R/W#             | I        | This pin is read / write control input pin connecting to the MCU interface.                                                                                                                                                                                                                                                                                                                                                                       |
| (WR#)            |          | When 6800 interface mode is selected, this pin will be used as Read/Write (R/W#) selection input. Read mode will be carried out when this pin is pulled HIGH and write mode when LOW. When 8080 interface mode is selected, this pin will be the Write (WR#) input. Data write operation is initiated when this pin is pulled LOW and the chip is selected. When serial or $I^2C$ interface is selected, this pin must be connected to $V_{SS}$ . |
| E (RD#)          | I        | This pin is MCU interface input.                                                                                                                                                                                                                                                                                                                                                                                                                  |
| L (RD#)          | 1        | When 6800 interface mode is selected, this pin will be used as the Enable (E) signal. Read/write operation is initiated when this pin is pulled HIGH and the chip is selected. When 8080 interface mode is selected, this pin receives the Read (RD#) signal. Read operation is initiated when this pin is pulled LOW and the chip is selected. When serial or I²C interface is selected, this pin must be connected to V <sub>SS</sub> .         |
| D[7:0]           | I/O      | These pins are bi-directional data bus connecting to the MCU data bus. Unused pins are recommended to tie LOW.                                                                                                                                                                                                                                                                                                                                    |
|                  |          | When serial interface mode is selected, D0 will be the serial clock input: SCLK; D1 will be the serial data input: SID.  When I <sup>2</sup> C mode is selected, D2, D1 should be tied together and serve as SDA <sub>out</sub> , SDA <sub>in</sub> in application and D0 is the serial clock input, SCL.                                                                                                                                         |
| T0               | I/O      | This is a reserved pin. It should be kept NC.                                                                                                                                                                                                                                                                                                                                                                                                     |
| T1               | I/O      | This is a reserved pin. It should be kept NC.                                                                                                                                                                                                                                                                                                                                                                                                     |
| FR               | 0        | This pin outputs RAM write synchronization signal. Proper timing between MCU data writing and frame display timing can be achieved to prevent tearing effect. It should be kept NC if it is not used. Refer to Section 7.4 for details.                                                                                                                                                                                                           |
| VBREF            | 0        | This is a reserved pin. It should be kept NC.                                                                                                                                                                                                                                                                                                                                                                                                     |
| SEG0 ~<br>SEG255 | 0        | These pins provide the OLED segment driving signals. These pins are $V_{SS}$ state when display is OFF.                                                                                                                                                                                                                                                                                                                                           |
| COM0 ~<br>COM63  | О        | These pins provide the Common switch signals to the OLED panel. These pins are in high impedance state when display is OFF.                                                                                                                                                                                                                                                                                                                       |
| TR0~TR10         | I/O      | These pins are reserved. Nothing should be connected to these pins, nor are they connected together.                                                                                                                                                                                                                                                                                                                                              |
| NC               | -        | These pins are reserved. Nothing should be connected to these pins, nor are they connected together.                                                                                                                                                                                                                                                                                                                                              |

 Solomon Systech
 Feb 2015
 P 14/62
 Rev 1.0
 SSD1362

#### 7 FUNCTIONAL BLOCK DESCRIPTIONS

#### 7.1 MCU Interface selection

SSD1362 has four kinds of interface type with MCU: I<sup>2</sup>C, 3-wire or 4-wire SPI, 8-bit 6800 parallel and 8-bit 8080 parallel bus. Different MCU modes can be set by hardware selection on BS[2:0] pins; refer to Table 6-2 for BS[2:0] setting. This chip MCU interface consists of 8 data pins and 5 control pins. The pin assignment at different interface mode is summarized in Table 7-1.

Table 7-1: MCU interface assignment under different bus interface mode

| Pin Name   | Data/C       | Oata/Command Interface |           |    |    |                    |            |      |       | Control Signal |     |         |      |  |
|------------|--------------|------------------------|-----------|----|----|--------------------|------------|------|-------|----------------|-----|---------|------|--|
| Bus        |              |                        |           |    |    |                    |            |      |       |                |     |         |      |  |
| Interface  | <b>D7</b>    | <b>D6</b>              | <b>D5</b> | D4 | D3 | D2                 | D1         | D0   | E     | R/W#           | CS# | D/C#    | RES# |  |
| 8-bit 8080 |              | D[7:0]                 |           |    |    |                    |            |      | RD#   | WR#            | CS# | D/C#    | RES# |  |
| 8-bit 6800 |              | D[7:0]                 |           |    |    |                    |            |      | Е     | R/W#           | CS# | D/C#    | RES# |  |
| 3-wire SPI | Tie LO       | Tie LOW SDIN SCLK      |           |    |    |                    |            | SCLK | Tie L | OW             | CS# | Tie LOW | RES# |  |
| 4-wire SPI | Tie LOW SDIN |                        |           |    |    |                    | SDIN       | SCLK | Tie L | OW             | CS# | D/C#    | RES# |  |
| $I^2C$     | Tie LO       | W                      |           |    |    | SDA <sub>OUT</sub> | $SDA_{IN}$ | SCL  | Tie L | OW             |     | SA0     | RES# |  |

#### 7.1.1 MCU Parallel 6800-series Interface

The parallel interface consists of 8 bi-directional data pins (D[7:0]), R/W#, D/C#, E and CS#.

A LOW in R/W# indicates WRITE operation and HIGH in R/W# indicates READ operation. A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write. The E input serves as data latch signal while CS# is LOW. Data is latched at the falling edge of E signal.

Table 7-2: Control pins of 6800 interface

| Function      | E        | R/W# | CS# | D/C# |
|---------------|----------|------|-----|------|
| Write command | <b>↓</b> | L    | L   | L    |
| Read status   | <b>1</b> | Н    | L   | L    |
| Write data    | <b>1</b> | L    | L   | Н    |
| Read data     | <b>1</b> | Н    | L   | Н    |

#### Note

(1) ↓ stands for falling edge of signal H stands for HIGH in signal L stands for LOW in signal

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 7-1.

Figure 7-1: Data read back procedure - insertion of dummy read



#### 7.1.2 MCU Parallel 8080-series Interface

The parallel interface consists of 8 bi-directional data pins (D[7:0]), RD#, WR#, D/C# and CS#.

A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write. A rising edge of RD# input serves as a data READ latch signal while CS# is kept LOW. A rising edge of WR# input serves as a data/command WRITE latch signal while CS# is kept LOW.

Figure 7-2: Example of Write procedure in 8080 parallel interface mode



Figure 7-3: Example of Read procedure in 8080 parallel interface mode



Solomon Systech Feb 2015 | P 16/62 | Rev 1.0 | SSD1362

Table 7-3: Control pins of 8080 interface

| Function      | RD# | WR#      | CS# | D/C# |
|---------------|-----|----------|-----|------|
| Write command | Н   | <b>↑</b> | L   | L    |
| Read status   | 1   | Н        | L   | L    |
| Write data    | Н   | <b>↑</b> | L   | Н    |
| Read data     | 1   | Н        | L   | Н    |

#### Note

- (1) ↑ stands for rising edge of signal
- (2) H stands for HIGH in signal
- (3) L stands for LOW in signal

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 7-4.

Figure 7-4: Display data read back procedure - insertion of dummy read



#### 7.1.3 MCU Serial Interface (4-wire SPI)

The serial interface consists of serial clock SCLK, serial data SDIN, D/C#, CS#. In SPI mode, D0 acts as SCLK, D1 acts as SDIN. For the unused data pins from D2 to D7, E and R/W# can be connected to an external ground.

Table 7-4: Control pins of 4-wire Serial interface

| Function      | E(RD#)  | R/W#(WR#) | CS# | D/C# | D0 |
|---------------|---------|-----------|-----|------|----|
| Write command | Tie LOW | Tie LOW   | L   | L    | 1  |
| Write data    | Tie LOW | Tie LOW   | L   | Н    | 1  |

#### Note

(1) H stands for HIGH in signal

SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6, ... D0. D/C# is sampled on every eighth clock and the data byte in the shift register is written to the Graphic Display Data RAM (GDDRAM) or command register in the same clock.

Under serial mode, only write operations are allowed.

**SSD1362** | Rev 1.0 | P 17/62 | Feb 2015 | **Solomon Systech** 

<sup>(2)</sup> L stands for LOW in signal

Figure 7-5 : Write procedure in 4-wire Serial interface mode



#### 7.1.4 MCU Serial Interface (3-wire SPI)

The 3-wire serial interface consists of serial clock SCLK, serial data SDIN and CS#. In 3-wire SPI mode, D0 acts as SCLK, D1 acts as SDIN. For the unused data pins from D3 to D7, R/W# (WR#), E(RD#) and D/C# can be connected to an external ground.

The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0). Under serial mode, only write operations are allowed.

Table 7-5: Control pins of 3-wire Serial interface

| Function      | E(RD#)  | R/W#(WR#) | CS# | D/C#    | D0       |                                |
|---------------|---------|-----------|-----|---------|----------|--------------------------------|
| Write command | Tie LOW | Tie LOW   | L   | Tie LOW | <b>↑</b> | Note                           |
| Write data    | Tie LOW | Tie LOW   | L   | Tie LOW | 1        | (1) L stands for LOW in signal |

Figure 7-6: Write procedure in 3-wire Serial interface mode



Solomon Systech Feb 2015 | P 18/62 | Rev 1.0 | SSD1362

#### 7.1.5 MCU I<sup>2</sup>C Interface

The  $I^2C$  communication interface consists of slave address bit SA0,  $I^2C$ -bus data signal SDA (SDA<sub>OUT</sub>/D<sub>2</sub> for output and SDA<sub>IN</sub>/D<sub>1</sub> for input) and  $I^2C$ -bus clock signal SCL (D<sub>0</sub>). Both the data and clock signals must be connected to pull-up resistors. RES# is used for the initialization of device.

#### a) Slave address bit (SA0)

SSD1362 has to recognize the slave address before transmitting or receiving any information by the I<sup>2</sup>C-bus. The device will respond to the slave address following by the slave address bit ("SA0" bit) and the read/write select bit ("R/W#" bit) with the following byte format,

b<sub>7</sub> b<sub>6</sub> b<sub>5</sub> b<sub>4</sub> b<sub>3</sub> b<sub>2</sub> b<sub>1</sub> b<sub>0</sub> 0 1 1 1 1 0 SA0 R/W#

"SA0" bit provides an extension bit for the slave address. Either "0111100" or "0111101", can be selected as the slave address of SSD1362. D/C# pin acts as SA0 for slave address selection. "R/W#" bit is used to determine the operation mode of the I<sup>2</sup>C-bus interface. R/W#=1, it is in read mode. R/W#=0, it is in write mode.

#### b) I<sup>2</sup>C-bus data signal (SDA)

SDA acts as a communication channel between the transmitter and the receiver. The data and the acknowledgement are sent through the SDA.

It should be noticed that the ITO track resistance and the pulled-up resistance at "SDA" pin becomes a voltage potential divider. As a result, the acknowledgement would not be possible to attain a valid logic 0 level in "SDA".

"SDA<sub>IN</sub>" and "SDA<sub>OUT</sub>" are tied together and serve as SDA. The "SDA<sub>IN</sub>" pin must be connected to act as SDA. The "SDA<sub>OUT</sub>" pin may be disconnected. When "SDA<sub>OUT</sub>" pin is disconnected, the acknowledgement signal will be ignored in the  $I^2$ C-bus.

#### c) I<sup>2</sup>C-bus clock signal (SCL)

The transmission of information in the I<sup>2</sup>C-bus is following a clock signal, SCL. Each transmission of data bit is taken place during a single clock period of SCL.

**SSD1362** | Rev 1.0 | P 19/62 | Feb 2015 | **Solomon Systech** 

#### 7.1.5.1 $I^2$ C-bus Write data

The I<sup>2</sup>C-bus interface gives access to write data and command into the device. Please refer to Figure 7-7 for the write mode of I<sup>2</sup>C-bus in chronological order.

Note: Co - Continuation bit D/C# - Data / Command Selection bit ACK - Acknowledgement SA0 - Slave address bit R/W# - Read / Write Selection bit S – Start Condition / P – Stop Condition Write mode Control byte 1 byte Slave Address  $n \ge 0$  bytes  $m \ge 0$  words MSB .....LSB comidential to SSD1362 Slave Address Control byte

Figure 7-7: I2C-bus data format

#### 7.1.5.2 Write mode for $I^2C$

- 1) The master device initiates the data communication by a start condition. The definition of the start condition is shown in Figure 7-8. The start condition is established by pulling the SDA from HIGH to LOW while the SCL stays HIGH.
- 2) The slave address is following the start condition for recognition use. For the SSD1362, the slave address is either "b0111100" or "b0111101" by changing the SA0 to LOW or HIGH (D/C pin acts as
- 3) The write mode is established by setting the R/W# bit to logic "0".
- 4) An acknowledgement signal will be generated after receiving one byte of data, including the slave address and the R/W# bit. Please refer to the Figure 7-9 for the graphical representation of the acknowledge signal. The acknowledge bit is defined as the SDA line is pulled down during the HIGH period of the acknowledgement related clock pulse.
- 5) After the transmission of the slave address, either the control byte or the data byte may be sent across the SDA. A control byte mainly consists of Co and D/C# bits following by six "0"'s.
  - a. If the Co bit is set as logic "0", the transmission of the following information will contain data bytes only.
  - The D/C# bit determines the next data byte is acted as a command or a data. If the D/C# bit is set to logic "0", it defines the following data byte as a command. If the D/C# bit is set to logic "1", it defines the following data byte as a data which will be stored at the GDDRAM. The GDDRAM column address pointer will be increased by one automatically after each data
- 6) Acknowledge bit will be generated after receiving each control byte or data byte.
- 7) The write mode will be finished when a stop condition is applied. The stop condition is also defined in Figure 7-8. The stop condition is established by pulling the "SDA in" from LOW to HIGH while the "SCL" stays HIGH.

Solomon Systech Feb 2015 | P 20/62 Rev 1.0 SSD1362

Figure 7-8: Definition of the Start and Stop Condition



Figure 7-9: Definition of the acknowledgement condition



Please be noted that the transmission of the data bit has some limitations.

- 1. The data bit, which is transmitted during each SCL pulse, must keep at a stable state within the "HIGH" period of the clock pulse. Please refer to the Figure 7-10 for graphical representations. Except in start or stop conditions, the data line can be switched only when the SCL is LOW.
- 2. Both the data line (SDA) and the clock line (SCL) should be pulled up by external resistors.

SDA
SCL
Data line is Change stable of data

Figure 7-10: Definition of the data transfer condition

**SSD1362** | Rev 1.0 | P 21/62 | Feb 2015 | **Solomon Systech** 

#### 7.2 **Command Decoder**

This module determines whether the input data is interpreted as data or command. Data is interpreted based upon the input of the D/C# pin.

If D/C# pin is HIGH, the input D[7:0] is written to Graphic Display Data RAM (GDDRAM). If it is LOW, the input D[7:0] is interpreted as a command which will be decoded and be written to the corresponding command register.

#### 7.3 Oscillator Circuit and Display Time Generator

This module is an On-Chip low power RC oscillator circuitry (Figure 7-11). The operation clock (CLK) can be generated either from internal oscillator or external source CL pin. This selection is done by CLS pin. If CLS pin is HIGH, internal oscillator is chosen and CL should be pulled to LOW. If CLS pin is LOW, external clock from CL pin will be used for CLK for proper operation. The frequency of internal oscillator F<sub>OSC</sub> can be programmed by command B3h.

Internal Oscillator Fosc CLK DCLK M Divider U CL Display Clock

Figure 7-11: Oscillator Circuit

The display clock (DCLK) for the Display Timing Generator is derived from CLK. The division factor "D" can be programmed from 1 to 256 by command B3h.

$$DCLK = F_{OSC} / D$$

The frame frequency of display is determined by the following formula:

$$F_{FRM} = \frac{F_{osc}}{D \times K \times No. \text{ of Mux}}$$

Where

- D stands for clock divide ratio. It is set by command B3h A[3:0]. The divide ratio has the range from 1 to
- K is the number of display clocks per row. The value is derived by K = Phase 1 period + Phase 2 period + X

= 4 + 16 + 195 = 215 at power on reset

Default X = GS15 + 15 = 180 + 15 = 195

- Number of multiplex ratio is set by command A8h. The reset value is 63 (i.e. 64MUX).
- F<sub>osc</sub> is the oscillator frequency. It can be changed by command B3h A[7:4]. The higher the register setting results in higher frequency.

If the frame frequency is set too low, flickering may occur. On the other hand, higher frame frequency leads to higher power consumption on the whole system.

Solomon Systech Feb 2015 | P 22/62 | Rev 1.0 SSD1362

#### 7.4 FR synchronization

FR synchronization signal can be used to prevent tearing effect.



The starting time to write a new image to OLED driver is depended on the MCU writing speed. If MCU can finish writing a frame image within one frame period, it is classified as fast write MCU. For MCU needs longer writing time to complete (more than one frame but within two frames), it is a slow write one.

**For fast write MCU:** MCU should start to write new frame of ram data just after rising edge of FR pulse and should be finished well before the rising edge of the next FR pulse.

**For slow write MCU**: MCU should start to write new frame ram data after the falling edge of the 1<sup>st</sup> FR pulse and must be finished before the rising edge of the 3<sup>rd</sup> FR pulse.

**SSD1362** Rev 1.0 P 23/62 Feb 2015 **Solomon Systech** 

#### 7.5 Segment Drivers / Common Drivers

Segment drivers deliver 256 current sources to drive the OLED panel. The driving current can be adjusted up to 600uA by altering the registers of the contrast setting command (81h). Common drivers generate voltage-scanning pulses. The block diagrams and waveforms of the segment and common driver are shown as follow.



Figure 7-12: Segment and Common Driver Block Diagram

The commons are scanned sequentially, row by row. If a row is not selected, all the pixels on the row are in reverse bias by driving those commons to voltage  $V_{\text{COMH}}$  as shown in Figure 7-13.

In the scanned row, the pixels on the row will be turned ON or OFF by sending the corresponding data signal to the segment pins. If the pixel is turned OFF, the segment current is kept at 0. On the other hand, the segment drives to  $I_{SEG}$  when the pixel is turned ON.

Solomon Systech Feb 2015 | P 24/62 | Rev 1.0 | SSD1362

Figure 7-13: Segment and Common Driver Signal Waveform



There are four phases to driving an OLED a pixel. In phase 1, the pixel is reset by the segment driver to  $V_{LSS}$  in order to discharge the previous data charge stored in the parasitic capacitance along the segment electrode. The period of phase 1 can be programmed by command B1h A[3:0]. An OLED panel with larger capacitance requires a longer period for discharging.

**SSD1362** | Rev 1.0 | P 25/62 | Feb 2015 | **Solomon Systech** 

In phase 2, first pre-charge is performed. The pixel is driven to attain the corresponding voltage level  $V_P$  from  $V_{LSS}$ . The amplitude of  $V_P$  can be programmed by the command BCh. The period of phase 2 can be programmed by command B1h A[7:4]. If the capacitance value of the pixel of OLED panel is larger, a longer period is required to charge up the capacitor to reach the desired voltage.

In phase 3, the OLED pixel is driven to the targeted driving voltage through second pre-charge. The second pre-charge can control the speed of the charging process. The period of phase 3 can be programmed by command B6h.

Last phase (phase 4) is current drive stage. The current source in the segment driver delivers constant current to the pixel. The driver IC employs PWM (Pulse Width Modulation) method to control the gray scale of each pixel individually. The gray scale can be programmed into different Gamma settings by command B8h/B9h. The bigger gamma setting (the wider pulse widths) in the current drive stage results in brighter pixels and vice versa. This is shown in the following figure.



Figure 7-14: Gray Scale Control by PWM in Segment

After finishing phase 4, the driver IC will go back to phase 1 to display the next row image data. This four-step cycle is run continuously to refresh image display on OLED panel.

The length of phase 4 is defined by command B8h or B9h. In the table, the gray scale is defined in incremental way, with reference to the length of previous table entry.

Solomon Systech Feb 2015 | P 26/62 | Rev 1.0 | SSD1362

#### 7.6 SEG/COM Driving block

This block is used to derive the incoming power sources into the different levels of internal use voltage and current.

- V<sub>CC</sub> is the most positive voltage supply.
- V<sub>COMH</sub> is the Common deselected level. It is internally regulated.
- V<sub>LSS</sub> is the ground path of the analog and panel current.
- I<sub>REF</sub> is a reference current source for segment current drivers I<sub>SEG</sub>. The relationship between reference current and segment current of a color is:

```
I_{SEG} = Contrast / 256 * I_{REF} * scale factor
```

In which

the contrast  $(1\sim255)$  is set by Set Contrast command (81h); and the scale factor is 32.

When internal I<sub>REF</sub> is used, the I<sub>REF</sub> pin should be kept NC.

Bit A[4] of command ADh is used to select external or internal I<sub>REF</sub>:

A[4] = '0' Select external  $I_{REF}$  [Reset]

A[4] = '1' Enable internal  $I_{REF}$  during display ON

When external  $I_{REF}$  is used, the magnitude of  $I_{REF}$  is controlled by the value of resistor, which is connected between  $I_{REF}$  pin and  $V_{SS}$  as shown in Figure 7-15. It is recommended to set  $I_{REF}$  to 18.75  $\pm 2uA$  so as to achieve  $I_{SEG} \approx 600uA$  at maximum contrast 255.

Figure 7-15: IREF Current Setting by Resistor Value



Since the voltage at  $I_{REF}$  pin is  $V_{CC} - 2.4V$ , the value of resistor R1 can be found as below:

For 
$$I_{REF} = 18.75uA$$
,  $V_{CC} = 18V$ :

R1 = (Voltage at 
$$I_{REF} - V_{SS}$$
) /  $I_{REF}$   
 $\approx (18 - 2.4)$  /  $18.75uA$   
=  $832k\Omega$ 

#### 7.7 **Graphic Display Data RAM (GDDRAM)**

The GDDRAM is a bit mapped static RAM holding the bit pattern to be displayed. The size of the RAM is 256x64x4 bits. For mechanical flexibility, re-mapping on both Segment and Common outputs can be selected by software. The GDDRAM address maps in Table 7-6 to Table 7-10 show some examples on using the command "Set Re-map" A0h to re-map the GDDRAM. In the following tables, the lower nibble and higher nibble of D0, D1, D2 ... D8189, D8190, D8191 represent the 256x64 data bytes in the GDDRAM.

Table 7-6 shows the GDDRAM map under the following condition:

Command "Set Re-map" A0h is set to:

Disable Column Address Re-map (A[0]=0)Disable Nibble Re-map (A[1]=0)Enable Horizontal Address Increment (A[2]=0)Disable COM Re-map (A[4]=0)

Display Start Line=00h

Data byte sequence: D0, D1, D2 ... D8191

Table 7-6: GDDRAM address map 1



Nibble re-map A[1]=0

SEG Outputs

Column Address

(HEX)

Table 7-7 shows the GDDRAM map under the following condition:

Command "Set Re-map" A0h is set to:

Disable Column Address Re-map (A[0]=0)Disable Nibble Re-map (A[1]=0)Enable Vertical Address Increment (A[2]=1) Disable COM Re-map (A[4]=0)

Display Start Line=00h

Data byte sequence: D0, D1, D2 ... D8191

Table 7-7: GDDRAM address map 2

SEG0 SEG1 SEG2 SEG3 SEG252 SEG253 SEG254 SEG255 **SEG Outputs** 01 Column Address D64[7:4] СОМО 00 D0[3:0] D0[7:4] D64[3:0] (HEX) COM1 01 D1[3:0] D1[7:4] D65[3:0] D65[7:4] D62[3:0] D62[7:4] D126[3:0] D126[7:4 D8126[3:0] D8126[7:4] D8190[3:0] D8190[7:4] COM62 3E D63 [3:0] D8191[3:0] D8191[7:4] D63[7:4] D127[3:0] D127[7:4 D8127[3:0] D8127[7:4] COM63 3F Row COM Address Outputs (HEX) (Display Startline=0)

Nibble re-map A[1]=0

Solomon Systech Feb 2015 P 28/62 Rev 1.0 SSD1362 Table 7-8 shows the GDDRAM map under the following condition:

• Command "Set Re-map" A0h is set to:

Enable Column Address Re-map (A[0]=1) Enable Nibble Re-map (A[1]=1) Enable Horizontal Address Increment (A[2]=0) Disable COM Re-map (A[4]=0)

Display Start Line=00h

• Data byte sequence: D0, D1, D2 ... D8191

Table 7-8: GDDRAM address map 3



Table 7-9 shows the example in which the display start line register is set to 78h with the following condition:

• Command "Set Re-map" A0h is set to:

Disable Column Address Re-map (A[0]=0)
Disable Nibble Re-map (A[1]=0)
Enable Horizontal Address Increment (A[2]=0)
Enable COM Re-map (A[4]=1)

- Display Start Line=38h (corresponds to COM55)
- Data byte sequence: D0, D1, D2 ... D8191

Table 7-9: GDDRAM address map 4



**SSD1362** | Rev 1.0 | P 29/62 | Feb 2015 | **Solomon Systech** 

Table 7-10 shows the GDDRAM map under the following condition:

Command "Set Re-map" A0h is set to:

Disable Column Address Re-map (A[0]=0)Disable Nibble Re-map (A[1]=0)Enable Horizontal Address Increment (A[2]=0)Disable COM Re-map (A[4]=0)

- Display Start Line=00h
- Column Start Address=01h
- Column End Address=7Eh
- Row Start Address=01h
- Row End Address=3Eh
- Data byte sequence: D0, D1, D2 ... D7811

Table 7-10: GDDRAM address map 5



#### **Notes:**

- (1] Please refer to Command Table for the details of setting command "Set Re-map" A0h.
- (2) The "Display Start Line" is set by the command "Set Display Start Line" A1h.
- (3) The "Column Start/End Address" is set by the command "Set Column Address" 15h.
- (4) The "Row Start/End Address" is set by the command "Set Row Address" 75h.

Rev 1.0 | **SSD1362** Solomon Systech Feb 2015 | P 30/62 |

#### 7.8 **Gray Scale Decoder**

The gray scale effect is generated by controlling the pulse width (PW) of current drive phase, except GS0 there is no pre-charge (phase 2, 3) and current drive (phase 4). The driving period is controlled by the gray scale settings (setting 0 ~ setting 255). The larger the setting, the brighter the pixel will be. The Gray Scale Table stores the corresponding gray scale setting of the 16 gray scale levels (GS0~GS15) through the software commands B8h or B9h.

As shown in Figure 7-16, GDDRAM data has 4 bits, represent the 16 gray scale levels from GS0 to GS15. Note that the frame frequency is affected by GS15 setting.

Figure 7-16: Relation between GDDRAM content and Gray Scale table entry (under command B9h Enable Linear Gray Scale Table)

| GDDRAM data (4 bits) | Gray Scale Table | Default Gamma Setting<br>(Command B9h) |  |  |  |
|----------------------|------------------|----------------------------------------|--|--|--|
| 0000                 | GS0 (1)          | Setting 0                              |  |  |  |
| 0001                 | GS1              | Setting 12                             |  |  |  |
| 0010                 | GS2              | Setting 24                             |  |  |  |
| 0011                 | GS3              | Setting 36                             |  |  |  |
| :                    | ••               |                                        |  |  |  |
| :                    | ••               |                                        |  |  |  |
| 1101                 | GS13             | Setting 156                            |  |  |  |
| 1110                 | GS14             | Setting 168                            |  |  |  |
| 1111                 | GS15             | Setting 180                            |  |  |  |

#### Note:

P 31/62 SSD1362 Rev 1.0 Feb 2015 Solomon Systech

<sup>...</sup>rent drive (phas (1) GS0 has no pre-charge (phase 2, 3) and current drive (phase 4).

#### 7.9 Power ON and OFF sequence

The following figures illustrate the recommended power ON and power OFF sequence of SSD1362 (assume  $V_{CI}$  and  $V_{DDIO}$  are at the same voltage level and internal  $V_{DD}$  is used).

#### Power ON sequence:

- 1. Power ON V<sub>CI</sub>, V<sub>DDIO</sub>.
- 2. After  $V_{CI}$ ,  $V_{DDIO}$  becomes stable, set wait time at least 1ms ( $t_0$ ) for internal  $V_{DD}$  become stable. Then set RES# pin LOW (logic low) for at least 100us ( $t_1$ ) (4) and then HIGH (logic high).
- 3. After set RES# pin LOW (logic low), wait for at least 100us (t<sub>2</sub>). Then Power ON V<sub>CC</sub>.
- 4. After  $V_{CC}$  become stable, send command AFh for display ON. SEG/COM will be ON after 200ms ( $t_{AF}$ ).
- 5. After  $V_{CI}$ ,  $V_{DDIO}$  become stable, wait for at least 50ms to send command.



Figure 7-17: The Power ON sequence.

Power OFF sequence:

- 1. Send command AEh for display OFF.
- 2. Power OFF V<sub>CC.</sub><sup>(1), (2)</sup>
- 3. Wait for toff. Power OFF V<sub>CI.</sub> (Typical toff=100ms<sup>(4)</sup>)



Figure 7-18: The Power OFF sequence

#### Note:

(1) V<sub>CC</sub> should be kept float (disable) when it is OFF.

 $^{(4)}\,V_{CI}$  and  $V_{DDIO}$  should not be Power OFF before  $V_{CC}$  Power OFF.

Solomon Systech Feb 2015 | P 32/62 | Rev 1.0 | SSD1362

 $<sup>^{(2)}</sup>$  Power pins (V $_{\text{CI}}$ , V $_{\text{DDIO}}$ , V $_{\text{CC}}$ ) can never be pulled to ground under any circumstance.

 $<sup>^{(3)}</sup>$  The register values are reset after  $t_1$ .

#### 7.10 V<sub>DD</sub> Regulator

In SSD1362, the power supply pin for core logic operation,  $V_{DD}$ , can be supplied by external source or internally regulated through the  $V_{DD}$  regulator.

The internal  $V_{DD}$  regulator is enabled by setting bit A[0] to 1b in command ABh "Function Selection".  $V_{CI}$  should be larger than 2.6V when using the internal  $V_{DD}$  regulator. It should be noticed that, no matter  $V_{DD}$  is supplied by external source or internally regulated;  $V_{CI}$  must always be set equivalent to or higher than  $V_{DD}$ .

Table 7-11 summarizes the input / output connection of V<sub>CI</sub>, V<sub>DDIO</sub> and V<sub>DD</sub>.

Pin Name V<sub>CI</sub>≤2.6V Application V<sub>CI</sub>>2.6V Application  $V_{CI}$ 1.65V - 2.6V2.6V - 3.5V $V_{DDIO}$  $1.65V-V_{CI}\\$  $1.65V-V_{\rm CI}$ NC with stabilizing capacitor  $V_{\text{DD}}$  $1.65V - V_{CI}$ It is internally regulated V<sub>CI</sub>>2.6V, V<sub>DD</sub> Regulator Enable, V<sub>DD</sub> Regulator Disable, Command: ABh A[0]=0b. Command: ABh A[0]=1b.  $V_{\text{CI}}$  $V_{CI}$  $V_{DD}$  $V_{DD}$ Pin connection scheme  $V_{CI}$ **GND**  $V_{\text{CI}}$ 

Table 7-11: IO regulator pin description

No RAM access through MCU interface when there is no external / internal  $V_{\text{DD}}$ .

#### 7.11 Reset Circuit

When RES# input is LOW, the chip is initialized with the following status:

- 1. Display is OFF
- 2. 256 x 64 Display Mode
- 3. Normal segment and display data column address and row address mapping (SEG0 mapped to address 00h and COM0 mapped to address 00h)
- 4. Shift register data clear in serial interface
- 5. Display start line is set at display RAM address 0
- 6. Column address counter is set at 0
- 7. Normal scan direction of the COM outputs
- 8. Contrast control register is set at 7Fh
- 9. Normal display mode (Equivalent to A4h command)

#### 8 COMMAND TABLE

**Table 8-1: Command Table** 

(R/W# (WR#) = 0, E(RD#) = 1 unless specific setting is stated)

| 1. Fundamental Command Table |        |                |       |                       |                |                |                |                |       |                   |                                                                               |
|------------------------------|--------|----------------|-------|-----------------------|----------------|----------------|----------------|----------------|-------|-------------------|-------------------------------------------------------------------------------|
| D/C#                         | Hex    | D7             | D6    | D5                    | D4             | D3             | D2             | D1             | D0    | Command           | Description                                                                   |
| 0                            | 15     | 0              | 0     | 0                     | 1              | 0              | 1              | 0              | 1     | Set Column        | Setup Column start and end address                                            |
| 0                            | A[6:0] | *              | $A_6$ | $A_5$                 | $A_4$          | $A_3$          | $A_2$          | $A_1$          | $A_0$ | Address           | A[6:0]: Start Address, range:00h~7Fh,                                         |
| 0                            | B[6:0] | *              | $B_6$ | <b>B</b> <sub>5</sub> | $B_4$          | $\mathbf{B}_3$ | $B_2$          | $\mathbf{B}_1$ | $B_0$ |                   | (RESET = 00h)                                                                 |
|                              |        |                |       |                       |                |                |                |                |       |                   | B[6:0]: End Address, range:00h~7Fh, (RESET = 7Fh)                             |
| 0                            | 75     | 0              | 1     | 1                     | 1              | 0              | 1              | 0              | 1     | Set Row Address   | Setup Row start and end address                                               |
| 0                            | A[5:0] | *              | *     | $A_5$                 | $A_4$          | $A_3$          | $A_2$          | $A_1$          | $A_0$ |                   | A[5:0]: Start Address, range:00h~3Fh,                                         |
| 0                            | B[5:0] | *              | *     | $B_5$                 | $\mathbf{B}_4$ | $\mathbf{B}_3$ | $\mathbf{B}_2$ | $\mathbf{B}_1$ | $B_0$ |                   | (RESET = 00h)                                                                 |
|                              |        |                |       |                       |                |                |                |                |       |                   | B[5:0]: End Address, range:00h~3Fh, (RESET = 3Fh)                             |
| 0                            | 81     | 1              | 0     | 0                     | 0              | 0              | 0              | 0              | 1     | Set Contrast      | Double byte command to select one of the                                      |
| 0                            | A[7:0] | $A_7$          | $A_6$ | $A_5$                 | $A_4$          | $A_3$          | $A_2$          | $A_1$          | $A_0$ | Control           | contrast steps. Contrast increases as the value                               |
|                              |        |                |       |                       |                |                |                |                |       |                   | increases.<br>(RESET = 7Fh)                                                   |
|                              |        |                |       |                       |                |                |                |                |       | 1.16              | (RESET = /FII)                                                                |
|                              |        |                |       |                       |                |                |                | 10             |       |                   |                                                                               |
| 00                           | A0     | 1              | 0     | 1                     | 0              | 0              | 0              | 0              | 0     | Set Re-map        | Re-map setting in Graphic Display Data RAM                                    |
| 0                            | A[7:0] | A <sub>7</sub> | $A_6$ | 0                     | $A_4$          | 0              | $A_2$          | $A_1$          | $A_0$ |                   | (GDDRAM)                                                                      |
|                              |        |                |       |                       |                |                |                |                |       |                   | A[0] = 0b, Disable Column Address Re-map                                      |
|                              |        |                |       |                       |                |                |                |                |       |                   | (RESET)                                                                       |
|                              |        |                |       |                       |                |                |                |                |       |                   | A[0] = 1b, Enable Column Address Re-map                                       |
|                              |        |                |       |                       |                |                |                |                |       |                   | A[1] = 0b, Disable Nibble Re-map (RESET)                                      |
|                              |        |                |       | 16                    |                |                |                |                |       |                   | A[1] = 00, Disable Nibble Re-map                                              |
|                              |        |                |       |                       |                |                |                |                |       |                   | 11, 10, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,                                |
|                              |        |                |       |                       |                |                |                |                |       |                   | A[2] = 0b, Enable Horizontal Address                                          |
|                              |        |                |       |                       |                |                |                |                |       |                   | Increment (RESET)                                                             |
|                              |        |                |       |                       |                |                |                |                |       |                   | A[2] = 1b, Enable Vertical Address Increment                                  |
|                              |        |                |       |                       |                |                |                |                |       |                   | A[4] = 0b, Disable COM Re-map (RESET)                                         |
|                              |        |                |       |                       |                |                |                |                |       |                   | A[4] = 1b, Enable COM Re-map                                                  |
|                              |        |                |       |                       |                |                |                |                |       |                   | A.C. 01 D. 11 0EC 0 1. 011E                                                   |
|                              |        |                |       |                       |                |                |                |                |       |                   | A[6] = 0b, Disable SEG Split Odd Even<br>A[6] = 1b, Enable SEG Split Odd Even |
|                              |        |                |       |                       |                |                |                |                |       |                   | (RESET)                                                                       |
|                              |        |                |       |                       |                |                |                |                |       |                   |                                                                               |
|                              |        |                |       |                       |                |                |                |                |       |                   | A[7] = 0b, Disable SEG left/right remap                                       |
|                              |        |                |       |                       |                |                |                |                |       |                   | (RESET)                                                                       |
|                              |        |                |       |                       |                |                |                |                |       |                   | A[7] = 1b, Enable SEG left/right remap                                        |
| 0                            | A1     | 1              | 0     | 1                     | 0              | 0              | 0              | 0              | 1     | Set Display Start | A[5:0]: Vertical shift by setting the starting                                |
| 0                            | A[5:0] | *              | *     | $A_5$                 | $A_4$          | $A_3$          | $A_2$          | $A_1$          | $A_0$ | Line              | address of display RAM from 0 ~ 63                                            |
|                              |        |                |       |                       |                |                |                |                |       |                   | (RESET = 00h)                                                                 |
|                              |        |                |       |                       |                |                |                |                |       |                   |                                                                               |
|                              |        | 1              | I     | I                     | I              | I              | I              |                | l     | 1                 |                                                                               |

 Solomon Systech
 Feb 2015
 P 34/62
 Rev 1.0
 SSD1362

| 1. Fui       | ndamental Con          | nman  | d Tabl                   | le                                    |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                       |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------|------------------------|-------|--------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>D/C</b> # | Hex                    | D7    | <b>D6</b>                | D5                                    | D4                                    | D3                                    | D2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D1                                    | D0                                    | Command                     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0            | A2<br>A[5:0]           | 1 *   | 0 *                      | 1<br>A <sub>5</sub>                   | 0<br>A <sub>4</sub>                   | 0<br>A <sub>3</sub>                   | 0<br>A <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1<br>A <sub>1</sub>                   | 0<br>A <sub>0</sub>                   | Set Display<br>Offset       | A[5:0]: Set vertical offset by COM from 0 ~ 63 (RESET = 00h)                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                        |       |                          |                                       |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                       |                             | e.g. Set A[5:0] to 010000b to move COM16 towards COM0 direction for 16 row                                                                                                                                                                                                                                                                                                                                                                                        |
| 0 0 0        | A3<br>A[5:0]<br>B[6:0] | 1 * * | 0<br>*<br>B <sub>6</sub> | 1<br>A <sub>5</sub><br>B <sub>5</sub> | 0<br>A <sub>4</sub><br>B <sub>4</sub> | 0<br>A <sub>3</sub><br>B <sub>3</sub> | 0<br>A <sub>2</sub><br>B <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1<br>A <sub>1</sub><br>B <sub>1</sub> | 1<br>A <sub>0</sub><br>B <sub>0</sub> | Set Vertical<br>Scroll Area | A[5:0]: Number of rows in top fixed area. The No. of rows in top fixed area is referenced to the top of the GDDRAM (i.e. row 0). (RESET = 00h)  B[6:0]: Number of rows in the scroll area.  This is the number of rows to be used for vertical scrolling. The scroll area starts in the first row below the top fixed area. (RESET = 40h)  Note  (1) A[5:0]+B[6:0] <= MUX ratio                                                                                   |
|              |                        |       |                          |                                       |                                       |                                       | afilia de la companya | 30                                    | กซี                                   | al to                       | <ul> <li>(2) B[6:0] &lt;= MUX ratio</li> <li>(3) Set Display Start Line (A[5:0] in A1h) &lt;         B[6:0]</li> <li>(4) The last row of the scroll area shifts to the first row of the scroll area.</li> <li>(5) For 64d MUX display         A[5:0] = 0, B[5:0] = 64: whole area scrolls         A[5:0] = 0, B[5:0] &lt; 64: top area scrolls         A[5:0] + B[5:0] &lt; 64: central area scrolls         A[5:0] + B[5:0] = 64: bottom area scrolls</li> </ul> |
| 0            | A4 ~ A7                | 1     | 0                        | 1                                     | 0                                     | 0                                     | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Xı                                    | $X_0$                                 | Set Display<br>Mode         | A4h = Normal display (RESET)  A5h = All ON (All pixels have gray scale of 15, GS15)                                                                                                                                                                                                                                                                                                                                                                               |
|              |                        |       | 18                       | 15                                    | 30                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                       |                             | A6h = All OFF (All pixels have gray scale of 0, GS0)                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                        |       |                          |                                       |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                       |                             | A7h = Inverse Display (GS0 $\rightarrow$ GS15, GS1<br>$\rightarrow$ GS14, GS2 $\rightarrow$ GS13,)                                                                                                                                                                                                                                                                                                                                                                |
| 0 0          | A8<br>A[5:0]           | 1 *   | 0 *                      | 1<br>A <sub>5</sub>                   | 0<br>A <sub>4</sub>                   | 1<br>A <sub>3</sub>                   | 0<br>A <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>A <sub>1</sub>                   | 0<br>A <sub>0</sub>                   |                             | A[5:0]: Set MUX ratio from 4MUX ~ 64MUX: A[5:0] = 3 represents 4MUX A[5:0] = 4 represents 5MUX : A[5:0] = 62 represents 63MUX A[5:0] = 63 represents 64MUX (RESET)  It should be noted that A[5:0]=0~2 is not allowed                                                                                                                                                                                                                                             |
| 0 0          | AB<br>A[0]             | 1 0   | 0 0                      | 1 0                                   | 0 0                                   | 1 0                                   | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 0                                   | 1<br>A <sub>0</sub>                   | Function<br>Selection A     | $A[0]=0b$ , Select external $V_{DD}$ (i.e. Disable internal $V_{DD}$ regulator) $A[0]=1b$ , Enable internal $V_{DD}$ regulator (RESET)                                                                                                                                                                                                                                                                                                                            |

**SSD1362** Rev 1.0 P 35/62 Feb 2015 **Solomon Systech** 

| 1. Fur | 1. Fundamental Command Table |       |       |       |       |       |       |       |            |                           |                                                            |
|--------|------------------------------|-------|-------|-------|-------|-------|-------|-------|------------|---------------------------|------------------------------------------------------------|
| D/C#   |                              | D7    | D6    | D5    | D4    | D3    | D2    | D1    | <b>D</b> 0 | Command                   | Description                                                |
| 0      | AD                           | 1     | 0     | 1     | 0     | 1     | 1     | 0     | 1          |                           | Select external or internal I <sub>REF</sub> :             |
| 0      | A[4]                         | 1     | 0     | 0     | $A_4$ | 1     | 1     | 1     | 0          | Internal I <sub>REF</sub> | $A[4] = '0'$ Select external $I_{REF}$ (RESET)             |
|        | . ,                          |       |       |       |       |       |       |       |            | Selection                 | A[4] = '1' Enable internal I <sub>REF</sub> during display |
|        |                              |       |       |       |       |       |       |       |            |                           | ON                                                         |
|        |                              |       |       |       |       |       |       |       |            |                           |                                                            |
| 0      | AE / AF                      | 1     | 0     | 1     | 0     | 1     | 1     | 1     | $X_0$      |                           | AEh = Display OFF (sleep mode) (RESET)                     |
|        |                              |       |       |       |       |       |       |       |            | ON/OFF                    | AFh = Display ON in normal mode                            |
|        |                              |       |       |       |       |       |       |       |            |                           |                                                            |
| 0      | B1                           | 1     | 0     | 1     | 1     | 0     | 0     | 0     | 1          | Set Phase Length          | A[3:0]: Phase 1 period of 2~30 DCLK's                      |
| 0      | A[7:0]                       | $A_7$ | $A_6$ | $A_5$ | $A_4$ | $A_3$ | $A_2$ | $A_1$ | $A_0$      | ~                         | (i.e. 2, 4, 6, 830)                                        |
|        | []                           | ,     |       |       |       |       | _     | -     |            |                           | (RESET = 0010b)                                            |
|        |                              |       |       |       |       |       |       |       |            |                           | , , , ,                                                    |
|        |                              |       |       |       |       |       |       |       |            |                           | A[7:4]: Phase 2 period of 2~30 DCLK's                      |
|        |                              |       |       |       |       |       |       |       |            |                           | (i.e. 2, 4, 6, 830)                                        |
|        |                              |       |       |       |       |       |       |       |            |                           | (RESET = 1000b)                                            |
|        |                              |       |       |       |       |       |       |       |            |                           |                                                            |
|        |                              |       |       |       |       |       |       |       |            |                           | Note                                                       |
|        |                              |       |       |       |       |       |       |       |            |                           | (1) GS15 level pulse width must be set larger              |
|        |                              |       |       |       |       |       |       |       |            |                           | than the period of phase 1 + phase 2                       |
|        | D.2                          |       | 0     | 4     | 1     | 0     | 0     | -     | -          | G · F · Gl · 1            | 452 01 D G 41 11 41 (D) G 11 1                             |
| 0      | B3                           | 1     | 0     | 1     | 1     | 0     | 0     | 1     | 1          | Divider                   | A[3:0]: Define divide ratio (D) of display                 |
| 0      | A[7:0]                       | $A_7$ | $A_6$ | $A_5$ | $A_4$ | $A_3$ | $A_2$ | $A_1$ | $A_0$      | /Oscillator               | clock (DCLK)<br>(i.e. 1, 2, 4, 8256)                       |
|        |                              |       |       |       |       |       |       |       |            | Frequency                 | (RESET is 0001b, i.e. divide ratio = 2)                    |
|        |                              |       |       |       |       |       |       |       |            | Trequency                 | (RESET is 00010, i.e. divide fatio = 2)                    |
|        |                              |       |       |       |       |       |       |       |            | 1.6                       | A[7:4]: Set the Oscillator Frequency, F <sub>OSC</sub> .   |
|        |                              |       |       |       |       |       |       | 10    |            |                           | Oscillator Frequency increases with                        |
|        |                              |       |       |       |       |       |       |       |            |                           | the value of A[7:4] and vice versa.                        |
|        |                              |       |       |       |       |       |       |       | 1          |                           | (Range:0000b~1111b)                                        |
|        |                              |       |       |       |       | 20    |       |       |            |                           | (RESET = 1010b)                                            |
|        |                              |       |       |       |       |       | 6     | (3)   |            |                           | , , ,                                                      |
|        |                              |       |       |       |       |       |       |       |            |                           |                                                            |
| 0      | B5                           | 1     | 0     | 1     | 1     | 0     | 1     | 0     | 1          | GPIO                      | A[1:0] = 00b represents GPIO0 pin HiZ,                     |
| 0      | A[3:0]                       | 0     | 0     | 0     | 0     | $A_3$ | $A_2$ | $A_1$ | $A_0$      |                           | input disable (always read as low)                         |
|        |                              |       |       | 40    |       |       |       |       |            |                           | A[1:0] = 01b represents GPIO0 pin HiZ,                     |
|        |                              |       |       |       |       |       |       |       |            |                           | input enable                                               |
|        |                              |       |       |       |       |       |       |       |            |                           | A[1:0] = 10b represents GPIO0 pin output                   |
|        |                              |       |       |       |       |       |       |       |            |                           | Low (RESET)                                                |
|        |                              |       |       |       |       |       |       |       |            |                           | A[1:0] = 11b represents GPIO0 pin output<br>High           |
|        |                              |       |       |       |       |       |       |       |            |                           | A[3:2] = 00b represents GPIO1 pin HiZ,                     |
|        |                              |       |       |       |       |       |       |       |            |                           | input disable (always read as low)                         |
|        |                              |       |       |       |       |       |       |       |            |                           | A[3:2] = 01b represents GPIO1 pin HiZ,                     |
|        |                              |       |       |       |       |       |       |       |            |                           | input enable                                               |
|        |                              |       |       |       |       |       |       |       |            |                           | A[3:2] = 10b represents GPIO1 pin output                   |
|        |                              |       |       |       |       |       |       |       |            |                           | Low (RESET)                                                |
|        |                              |       |       |       |       |       |       |       |            |                           | A[3:2] = 11b represents GPIO1 pin output                   |
|        |                              |       |       |       |       |       |       |       |            |                           | High                                                       |
|        |                              |       |       |       |       |       |       |       |            |                           |                                                            |
|        |                              |       | _     |       |       |       |       |       |            |                           |                                                            |
| 0      | B6                           | 1     | 0     | 1     | 1     | 0     | 1     | 1     | 0          |                           | A[3:0]: Second Pre-charge period of 1~15                   |
| 0      | A[3:0]                       | *     | *     | *     | *     | $A_3$ | $A_2$ | $A_1$ | $A_0$      | charge Period             | DCLK's                                                     |
|        |                              |       |       |       |       |       |       |       |            |                           | e.g. A[3:0] = 1111b, 15 DCLK                               |
|        |                              |       |       |       |       |       |       |       |            |                           | Clock<br>(RESET = 0100b)                                   |
|        |                              |       |       |       |       |       |       |       |            |                           | (NESE1 - 01000)                                            |
|        |                              |       |       |       |       |       |       |       |            |                           |                                                            |
|        |                              |       | 1     | 1     |       | i     | 1     | L     | ı          | <u> </u>                  | <u> </u>                                                   |

 Solomon Systech
 Feb 2015
 P 36/62
 Rev 1.0
 SSD1362

| 1. Fur                                 | ndamental Cor | nman                                   | d Tabl    | le   |                                        |                     |                                           |                                                |                                           |                       |                                                      |
|----------------------------------------|---------------|----------------------------------------|-----------|------|----------------------------------------|---------------------|-------------------------------------------|------------------------------------------------|-------------------------------------------|-----------------------|------------------------------------------------------|
| D/C#                                   | Hex           | <b>D7</b>                              | <b>D6</b> | D5   | <b>D4</b>                              | D3                  | <b>D2</b>                                 | <b>D1</b>                                      | <b>D</b> 0                                | Command               | Description                                          |
| 0                                      | B8            | 1                                      | 0         | 1    | 1                                      | 1                   | 0                                         | 0                                              | 0                                         | Set Gray Scale        | The next 15 data bytes set the gray scale pulse      |
| 0                                      | A1[7:0]       | A17                                    | A16       | A15  | A14                                    | A1 <sub>3</sub>     | $A1_2$                                    | $A1_1$                                         | $A1_0$                                    | Table                 | width in unit of DCLK's.                             |
| 0                                      | A2[7:0]       | A27                                    | $A2_6$    | A25  | A2 <sub>4</sub>                        | $A2_3$              | $A2_2$                                    | A2 <sub>1</sub>                                | $A2_0$                                    |                       |                                                      |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           |                       | A1[7:0], value for GS1 level Pulse width             |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           |                       | A2[7:0], value for GS2 level Pulse width             |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           |                       |                                                      |
| 0                                      | A14[7:0]      | A147                                   | A146      | A145 | A14 <sub>4</sub>                       | A14 <sub>3</sub>    | A142                                      | A14 <sub>1</sub>                               | $A14_{0}$                                 |                       | A14[7:0], value for GS14 level Pulse width           |
| 0                                      | A15[7:0]      |                                        |           |      | 1                                      | A15 <sub>3</sub>    |                                           |                                                |                                           |                       | A15[7:0], value for GS15 level Pulse width           |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           |                       | Note                                                 |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           |                       | (1) The pulse width value of GS1, GS2,,              |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           |                       | GS15 should not be equal. i.e.                       |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           |                       | 0 <gs1<gs2 <gs15<="" td=""></gs1<gs2>                |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           |                       | (2) GS15 level pulse width must be set larger        |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           |                       | than the period of phase 1 + phase 2                 |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           |                       | (3) GS15 level must be set larger than 140 (ie. 8Ch) |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           |                       | (OCII)                                               |
| 0                                      | B9            | 1                                      | 0         | 1    | 1                                      | 1                   | 0                                         | 0                                              | 1                                         | Linear LUT            | The default Linear Gray Scale table is set in        |
|                                        | Β,            | 1                                      |           | 1    | 1                                      | •                   |                                           |                                                | 1                                         | Zincai Ze i           | unit of DCLK's as follow                             |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           |                       |                                                      |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           |                       | GS0 level pulse width $= 0$ ;                        |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           | 40                    | GS1 level pulse width = 12;                          |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           |                       | GS2 level pulse width =24;                           |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           |                       | GS3 level pulse width = 36;                          |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           | 3136                  | GS14 level pulse width = 168;                        |
|                                        |               |                                        |           |      |                                        |                     |                                           | AC                                             |                                           | 700                   | GS15 level pulse width = 180                         |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           | 0                     | •                                                    |
| 0                                      | BC            | 1                                      | 0         | 1    | 1                                      | 1                   | 1                                         | 0                                              | 0                                         | Set Pre-charge        | Set pre-charge voltage level.                        |
| 0                                      | A[4:0]        | 0                                      | 0         | 0    | $A_4$                                  | $A_3$               | $A_2$                                     | $A_1$                                          | $A_0$                                     | voltage               | A[4:0] Hex Pre-charge voltage                        |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           |                       | code                                                 |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           |                       | 00000 00h 0.10 x V <sub>CC</sub>                     |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           |                       | : : : : : : : : : : : : : : : : : : :                |
|                                        |               |                                        |           | 15   |                                        |                     |                                           |                                                |                                           |                       | 00100                                                |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           |                       | 11111 1Fh 0.51 x V <sub>CC</sub>                     |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           |                       |                                                      |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           |                       |                                                      |
| 0                                      | BD            | 1                                      | 0         | 1    | 1                                      | 1                   | 1                                         | 0                                              | 0                                         | Pre-charge            | A[0]=0b, Without external V <sub>P</sub> capacitor   |
| 0                                      | БD<br>A[0]    | 0                                      | 0         | 0    | 0                                      | 0                   | 0                                         | 0                                              | $A_0$                                     | voltage capacitor     |                                                      |
|                                        | По            |                                        |           |      |                                        | U                   | U                                         |                                                | 2 10                                      | Selection             | (RESET)                                              |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           |                       | A[0]=1b, With external V <sub>P</sub> capacitor      |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           | G . V                 |                                                      |
| $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ | BE<br>A[3:0]  | $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ | 0         | 1 0  | $\begin{vmatrix} 1 \\ 0 \end{vmatrix}$ | 1<br>A <sub>3</sub> | $\begin{array}{c c} 1 \\ A_2 \end{array}$ | $\begin{array}{ c c }\hline 1\\A_1\end{array}$ | $\begin{array}{c c} 0 \\ A_0 \end{array}$ | Set V <sub>COMH</sub> | Set COM deselect voltage level.                      |
|                                        | A[3.0]        |                                        |           |      |                                        | Α3                  | A2                                        | Λl                                             | Α0                                        |                       | A[3:0] Hex COMH Code                                 |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           |                       | 0000 00h 0.72 x V <sub>CC</sub>                      |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           |                       | : : :                                                |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           |                       | 0101 05h 0.82 x V <sub>CC</sub> (RESET)              |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           |                       | : : :                                                |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           |                       | 0111 07h 0.86 x V <sub>CC</sub>                      |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           |                       |                                                      |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           |                       |                                                      |
|                                        |               |                                        |           |      |                                        |                     |                                           |                                                |                                           |                       |                                                      |

**SSD1362** Rev 1.0 P 37/62 Feb 2015 **Solomon Systech** 

| 1. Fui | ndamental Con | nman | d Tab | le                  |           |           |                |                                          |     |                   |                                                  |
|--------|---------------|------|-------|---------------------|-----------|-----------|----------------|------------------------------------------|-----|-------------------|--------------------------------------------------|
| D/C#   |               | D7   | D6    | D5                  | D4        | D3        | D2             | D1                                       | D0  | Command           | Description                                      |
| 0      | FD            | 1    | 1     | 1                   | 1         | 1         | 1              | 0                                        | 1   | Set Command       | A[2]: MCU protection status.                     |
| 0      | A[2]          | 0    | 0     | 0                   | 1         | 0         | $A_2$          | 1                                        | 0   | Lock              |                                                  |
|        |               |      |       |                     |           |           |                |                                          |     |                   | A[2] = 0b, Unlock OLED driver IC MCU             |
|        |               |      |       |                     |           |           |                |                                          |     |                   | interface from entering command (RESET)          |
|        |               |      |       |                     |           |           |                |                                          |     |                   | A[2] = 1b, Lock OLED driver IC MCU               |
|        |               |      |       |                     |           |           |                |                                          |     |                   | interface from entering command                  |
|        |               |      |       |                     |           |           |                |                                          |     |                   | Note                                             |
|        |               |      |       |                     |           |           |                |                                          |     |                   | (1) The locked OLED driver IC MCU                |
|        |               |      |       |                     |           |           |                |                                          |     |                   | interface prohibits all commands and memory      |
|        |               |      |       |                     |           |           |                |                                          |     |                   | access except the FDh command                    |
|        | 22            | 0    | 0     | 1                   | 0         | 0         | 0              | 1                                        | 1   | Cat Eada In / Oat | A[5,4] OOL Disable fade made (DECET)             |
| 0      | 23<br>A[5:0]  | 0    | 0     | 1<br>A <sub>5</sub> | $0$ $A_4$ | $0$ $A_3$ | $0$ $A_2$      | $\begin{vmatrix} 1 \\ A_1 \end{vmatrix}$ |     | and Blinking      | A[5:4] = 00b, Disable fade mode (RESET)          |
| 0      | A[J.0]        |      |       | Λ5                  | Λ4        | Α3        | $\mathbf{A}_2$ | Al                                       | Λ() | and Dinking       | A[5:4] = 01b, Enable fade in mode, Once          |
|        |               |      |       |                     |           |           |                |                                          |     |                   | Fade In Mode is enabled, enter a new contrast    |
|        |               |      |       |                     |           |           |                |                                          |     |                   | setting by 81h command and contrast will         |
|        |               |      |       |                     |           |           |                |                                          |     |                   | increase gradually to the target contrast        |
|        |               |      |       |                     |           |           |                |                                          |     |                   | setting. Output follows the latest contrast      |
|        |               |      |       |                     |           |           |                |                                          |     |                   | setting when Fade mode is disabled.              |
|        |               |      |       |                     |           |           |                |                                          |     |                   | Note:                                            |
|        |               |      |       |                     |           |           |                |                                          |     |                   | (1) The new contrast setting must be larger      |
|        |               |      |       |                     |           |           |                |                                          |     | 1 40              | than the original contrast setting before Fade   |
|        |               |      |       |                     |           |           |                |                                          |     |                   | In Mode is enabled.                              |
|        |               |      |       |                     |           |           |                |                                          |     | 1110              |                                                  |
|        |               |      |       |                     |           |           |                | AC                                       |     | -00               | A[5:4] = 10b, Enable fade out mode, Once         |
|        |               |      |       |                     |           |           |                |                                          | 0.0 | 0,,               | Fade Out Mode is enabled, contrast decrease      |
|        |               |      |       |                     |           |           |                |                                          |     |                   | gradually to all pixels OFF. Output follows      |
|        |               |      |       |                     |           |           |                |                                          |     |                   | RAM content when Fade mode is disabled.          |
|        |               |      |       |                     |           |           |                |                                          |     |                   | A[5:4] = 11b Enable Blinking mode.               |
|        |               |      |       |                     |           |           | 7              |                                          |     |                   | Once Blinking Mode is enabled, contrast          |
|        |               |      |       |                     |           |           |                |                                          |     |                   | decrease gradually to all pixels OFF and then    |
|        |               |      |       | 16                  |           |           |                |                                          |     |                   | contrast increase gradually to normal display.   |
|        |               |      |       |                     |           |           |                |                                          |     |                   | This process loop continuously until the         |
|        |               |      |       |                     |           |           |                |                                          |     |                   | Blinking mode is disabled.                       |
|        |               |      |       |                     |           |           |                |                                          |     |                   |                                                  |
|        |               |      |       |                     |           |           |                |                                          |     |                   | A[3:0], Set the time interval for each fade step |
|        |               |      |       |                     |           |           |                |                                          |     |                   | A[3:0] Time interval / step                      |
|        |               |      |       |                     |           |           |                |                                          |     |                   | 0000 8 frames                                    |
|        |               |      |       |                     |           |           |                |                                          |     |                   | 0001 16 frames                                   |
|        |               |      |       |                     |           |           |                |                                          |     |                   | 0010 24 frames                                   |
|        |               |      |       |                     |           |           |                |                                          |     |                   | <br>1110 120 frames                              |
|        |               |      |       |                     |           |           |                |                                          |     |                   | 1110 120 frames<br>1111 128 frames               |
|        |               |      |       |                     |           |           |                |                                          |     |                   | 120 Hunes                                        |
|        |               |      |       |                     |           |           |                |                                          |     |                   |                                                  |

Note
(1) "\*" stands for "Don't care".

Feb 2015 | P 38/62 | Rev 1.0 | **SSD1362 Solomon Systech** 

#### 8.1 Data Read / Write

To read data from the GDDRAM, select HIGH for both the R/W# (WR#) pin and the D/C# pin for 6800series parallel mode and select LOW for the E (RD#) pin and HIGH for the D/C# pin for 8080-series parallel mode. No data read is provided in serial mode operation.

In normal data read mode the GDDRAM column address pointer will be increased automatically by one after each data read.

Also, a dummy read is required before the first data read.

To write data to the GDDRAM, select LOW for the R/W# (WR#) pin and HIGH for the D/C# pin for both 6800-series parallel mode and 8080-series parallel mode. The serial interface mode is always in write mode. The GDDRAM column address pointer will be increased automatically by one after each data write.

Table 8-2: Address increment table (Automatic)

SSD1362 P 39/62 Feb 2015 Rev 1.0 Solomon Systech

#### 9 COMMAND DESCRIPTIONS

## 9.1 Fundamental Command Description

#### 9.1.1 Set Column Address (15h)

This triple byte command specifies column start address and end address of the display data RAM. This command also sets the column address pointer to column start address. This pointer is used to define the current read/write column address in graphic display data RAM. If horizontal address increment mode is enabled by command A0h, after finishing read/write one column data, it is incremented automatically to the next column address. Whenever the column address pointer finishes accessing the end column address, it is reset back to start column address and the row address is incremented to the next row.

#### 9.1.2 Set Row Address (75h)

This triple byte command specifies row start address and end address of the display data RAM. This command also sets the row address pointer to row start address. This pointer is used to define the current read/write row address in graphic display data RAM. If vertical address increment mode is enabled by command A0h, after finishing read/write one row data, it is incremented automatically to the next row address. Whenever the row address pointer finishes accessing the end row address, it is reset back to start row address.

The diagram below shows the way of column and row address pointer movement through the example: column start address is set to 2 and column end address is set to 125, row start address is set to 1 and row end address is set to 62; horizontal address increment mode is enabled by command A0h. In this case, the graphic display data RAM column accessible range is from column 2 to column 125 and from row 1 to row 62 only. In addition, the column address pointer is set to 2 and row address pointer is set to 1. After finishing read/write one pixel of data, the column address is increased automatically by 1 to access the next RAM location for next read/write operation (*solid line in* Figure 9-1). Whenever the column address pointer finishes accessing the end column 125, it is reset back to column 2 and row address is automatically increased by 1 (*solid line in* Figure 9-1). While the end row 62 and end column 125 RAM location is accessed, the row address is reset back to 1 and the column address is reset back to 2 (*dotted line in* Figure 9-1).

Column address 0 2 125 126 127 SEG outputs SEG252 SEG253 SEG254 SEG251 SEG3 SEG4 SEG Row 0 : Row 1 Row 2 П Row 61 Row 62 Row 63

Figure 9-1: Example of Column and Row Address Pointer Movement

Solomon Systech Feb 2015 | P 40/62 | Rev 1.0 | SSD1362

#### 9.1.3 Set Contrast Current (81h)

This double byte command is used to set Contrast Setting of the display with a valid range from 01h to FFh. The segment output current  $I_{SEG}$  increases linearly with the contrast step, which results in brighter display.

#### 9.1.4 Set Re-map (A0h)

This double byte command has multiple configurations and each bit setting is described as follows:

## • Column Address Remapping (A[0])

This bit is made for increase the flexibility layout of segment signals in OLED module with segment arranged from left to right (when A[0] is set to 0) or from right to left (when A[0] is set to 1).

#### • Nibble Remapping (A[1])

When A[1] is set to 1, the two nibbles of the data bus for RAM access are re-mapped, such that (D7, D6, D5, D4, D3, D2, D1, D0) acts like (D3, D2, D1, D0, D7, D6, D5, D4). If this feature works together with Column Address Re-map, it would produce an effect of flipping the outputs from SEG0~255 to SEG255~SEG0.

#### Address increment mode (A[2])

When A[2] is set to 0, the driver is set as horizontal address increment mode. After the display RAM is read / written, the column address pointer is increased automatically by 1. If the column address pointer reaches column end address, the column address pointer is reset to column start address and row address pointer is increased by 1. The sequence of movement of the row and column address point for horizontal address increment mode is shown in Figure 9-2.

Figure 9-2: Address Pointer Movement of Horizontal Address Increment Mode

When A[2] is set to 1, the driver is set to vertical address increment mode. After the display RAM is read / written, the row address pointer is increased automatically by 1. If the row address pointer reaches the row end address, the row address pointer is reset to row start address and column address pointer is increased by 1. The sequence of movement of the row and column address point for vertical address increment mode is shown in Figure 9-3.

Figure 9-3: Address Pointer Movement of Vertical Address Increment Mode



**SSD1362** | Rev 1.0 | P 41/62 | Feb 2015 | **Solomon Systech** 

#### • COM Remapping (A[4])

This bit defines the scanning direction of the common for flexible layout of common signals in OLED module either from up to down (when A[4] is set to 0) or from bottom to up (when A[4] is set to 1).

## • Splitting of Odd / Even SEG Signals (A[6])

This bit is made to match the SEG layout connection on the panel.

When A[6] is set to 0, no splitting odd / even of the SEG signal is performed.

When A[6] is set to 1, splitting odd / even of the SEG signal is performed.

## • SEG Left / Right Remapping (A[7])

This bit is made to enable left SEG and right SEG remapping.

When A[7] is set to 1, the remapping of left SEG and right SEG is enabled. Examples for the different combination use of SEG remap are shown as below.

**Table 9-1: SEG Pins Hardware Configuration** 

| Case no. | Oddeven (1) / Sequential (0) | SEG Remap | Nibble Remap | Left / Right Swap | Remark  |
|----------|------------------------------|-----------|--------------|-------------------|---------|
|          | A[6]                         | A[0]      | A[1]         | A[7]              |         |
| 1        | 0                            | 0         | 0            | 0                 |         |
| 2        | 0                            | 0         | 0            | 1                 |         |
| 3        | 0                            | 1         | 1            | 0                 |         |
| 4        | 0                            | 1         | i            | 1                 |         |
| 5        | 1                            | 0         | 0            | 0                 | Default |
| 6        | 1                            | 0         | 0            | 1                 |         |
| 7        | 1                            |           | 1            | 0                 |         |
| 8        | 1                            | 1         | 1            | 1                 |         |



Solomon Systech Feb 2015 | P 42/62 | Rev 1.0 | SSD1362



#### Note:

(1) The above eight figures are all with bump pads being faced up.

**SSD1362** Rev 1.0 P 43/62 Feb 2015 **Solomon Systech** 

## 9.1.5 Set Display Start Line (A1h)

This double byte command is to set Display Start Line register for determining the starting address of display RAM to be displayed by selecting a value from 0 to 63. Figure 9-4 shows an example using this command when MUX ratio= 64 and MUX ratio= 44 and Display Start Line = 20. In there, "ROW" means the graphic display data RAM row.

Figure 9-4: Example of Set Display Start Line with no Remapping

|                    | MUX ratio (A8h) = 64     | MUX  ratio  (A8h) = 64 | MUX ratio (A8h) = 44     | MUX ratio $(A8h) = 44$   |
|--------------------|--------------------------|------------------------|--------------------------|--------------------------|
| COM Pin            | Display Start Line (A1h) |                        | Display Start Line (A1h) | Display Start Line (A1h) |
|                    | =0                       | =20                    | = 0                      | =20                      |
| COM0               | ROW0                     | ROW20                  | ROW0                     | ROW20                    |
| COM1               | ROW1                     | ROW21                  | ROW1                     | ROW21                    |
| COM2               | ROW2                     | ROW22                  | ROW2                     | ROW22                    |
| COM3               | ROW3                     | ROW23                  | ROW3                     | :                        |
| •                  | •                        | :                      | •                        |                          |
| •                  | •                        | :                      | :                        |                          |
| COM21              | ROW21                    | ROW41                  | ROW21                    | ROW41                    |
| COM22              | ROW22                    | ROW42                  | ROW22                    | ROW42                    |
| COM23              | ROW23                    | ROW43                  | ROW23                    | ROW43                    |
| COM24              | ROW24                    | ROW44                  | ROW24                    | ROW43                    |
| COM25              | ROW25                    | ROW45                  | ROW25                    | ROW44                    |
| :                  | :                        |                        | 1 10                     | ROW45                    |
| :                  | :                        |                        | 21 40                    | :                        |
| COM41              | ROW41                    | ROW61                  | ROW41                    | ROW61                    |
| COM42              | ROW42                    | ROW62                  | ROW42                    | ROW62                    |
| COM43              | ROW43                    | ROW63                  | ROW43                    | ROW63                    |
| COM44              | ROW44                    | ROW0                   |                          | -                        |
| COM45              | ROW45                    | ROW1                   | -                        | -                        |
| :                  |                          | 68,1                   | :                        | :                        |
| :                  | :                        |                        | :                        | :                        |
| COM60              | ROW60                    | ROW16                  | -                        | -                        |
| COM61              | ROW61                    | ROW17                  | -                        | -                        |
| COM62              | ROW62                    | ROW18                  | -                        | -                        |
| COM63              | ROW63                    | ROW19                  | -                        | -                        |
| Display<br>Example | SOLOMON<br>SYSTECH       | SOLOMON                | COLOMON                  | SOLOMON                  |

 Solomon Systech
 Feb 2015
 P 44/62
 Rev 1.0
 SSD1362

## 9.1.6 Set Display Offset (A2h)

This double byte command specifies the mapping of display start line (it is assumed that COM0 is the display start line, display start line register equals to 0) to one of COM0~COM63.

Figure 9-5 shows an example using this command when MUX ratio= 64 and MUX ratio= 44 and Display Offset = 20. In there, "Row" means the graphic display data RAM row.

Figure 9-5: Example of Set Display Offset with no Remapping

|                    | MUX ratio $(A8h) = 64$ | MUX ratio (A8h) = 64    | MUX ratio $(A8h) = 44$ | MUX ratio (A8h) = 44    |
|--------------------|------------------------|-------------------------|------------------------|-------------------------|
| COM Dia            | Display Offset (A2h)=0 | Display Offset (A2h)=20 | Display Offset (A2h)=0 | Display Offset (A2h)=20 |
| COM PIII           | ROW0                   | ROW20                   | ROW0                   | ROW20                   |
|                    |                        |                         |                        |                         |
| COM1               | ROW1                   | ROW21                   | ROW1                   | ROW21                   |
| COM2               | ROW2                   | ROW22                   | ROW2                   | ROW22                   |
| COM3               | ROW3                   | ROW23                   | ROW3                   | ROW23                   |
| :                  | :                      | :                       | :                      |                         |
| :                  | :                      | :                       | :                      |                         |
|                    | ROW21                  | ROW41                   | ROW21                  | ROW41                   |
|                    | ROW22                  | ROW42                   | ROW22                  | ROW42                   |
|                    | ROW23                  | ROW43                   | ROW23                  | ROW43                   |
| COM24              | ROW24                  | ROW44                   | ROW24                  | - 6.4                   |
| COM25              | ROW25                  | ROW45                   | ROW25                  |                         |
| :                  | :                      |                         |                        |                         |
| :                  | :                      | :                       | 31 40                  | -                       |
| COM41              | ROW41                  | ROW61                   | ROW41                  | -                       |
| COM42              | ROW42                  | ROW62                   | ROW42                  | -                       |
| COM43              | ROW43                  | ROW63                   | ROW43                  | -                       |
| COM44              |                        | ROW0                    |                        | ROW0                    |
| COM45              | ROW45                  | ROW1                    | -                      | ROW1                    |
|                    | :                      | 60                      | :                      | :                       |
| :                  |                        |                         | :                      | :                       |
| COM60              | ROW60                  | ROW16                   | -                      | ROW16                   |
| COM61              | ROW61                  | ROW17                   | -                      | ROW17                   |
| COM62              | ROW62                  | ROW18                   | -                      | ROW18                   |
| COM63              | ROW63                  | ROW19                   | _                      | ROW19                   |
| Display<br>Example | SOLOMON<br>SYSTECH     | SOLOMON                 | SOLOMON.               | COLOMON                 |

**SSD1362** Rev 1.0 P 45/62 Feb 2015 **Solomon Systech** 

#### 9.1.7 Set Vertical Scroll area (A3h)

This triple byte command specifies the vertical scroll area. The number of rows for top fixed area plus scroll area should be smaller than or equating to the MUX ratio.

#### **9.1.8 Set Display Mode (A4h ~ A7h)**

These are single byte commands (A4h ~ A7h) and are used to set display status to Normal Display, Entire Display ON, Entire Display OFF or Inverse Display, respectively.

Normal Display (A4h)
Reset the "Entire Display ON, Entire Display OFF or Inverse Display" effects and turn the data to ON at the corresponding gray level. Figure 9-6 shows an example of Normal Display.

Figure 9-6: Example of Normal Display





Memory

• Set Entire Display ON (A5h)
Force the entire display to be at gray scale level GS15, regardless of the contents of the display data RAM, as shown on Figure 9-7.

Figure 9-7: Example of Entire Display ON







Display

• Set Entire Display OFF (A6h)
Force the entire display to be at gray scale level GS0, regardless of the contents of the display data RAM, as shown on Figure 9-8.

Figure 9-8: Example of Entire Display OFF







Display

• Inverse Display (A7h)
The gray scale level of display data are swapped such that "GS0" <-> "GS15", "GS1" <-> "GS14", etc. Figure 9-9 shows an example of inverse display.

Figure 9-9: Example of Inverse Display





Display

 Solomon Systech
 Feb 2015
 P 46/62
 Rev 1.0
 SSD1362

### 9.1.9 Set Multiplex Ratio (A8h)

This double byte command sets multiplex ratio (MUX ratio) from 4MUX to 64MUX. In RESET, multiplex ratio is 64MUX. Please refer to Figure 9-4 and Figure 9-5 for the example of setting different MUX ratio.

#### 9.1.10 Function Selection A (ABh)

This double byte command is used to enable or disable the  $V_{\text{DD}}$  regulator.

Internal  $V_{DD}$  regulator is enabled when the bit A[0] is set to 1b, while internal  $V_{DD}$  regulator is disabled when A[0] is set to 0b.

#### 9.1.11 External or Internal I<sub>REF</sub> Selection (ADh)

This double byte command is used to select external or internal IREF.

External  $I_{REF}$  is selected when the bit A[4] is set to 0b, while internal  $I_{REF}$  is selected when A[4] is set to 1b.

#### 9.1.12 Set Display ON/OFF (AEh / AFh)

These single byte commands are used to turn the OLED panel display ON or OFF.

When the display is OFF (command AEh), the segment pins are in  $V_{SS}$  state and common pins are in high impedance state.

Figure 9-10: Display ON Sequence (when initial start)



Figure 9-11: Display OFF Sequence



#### Note:

- (1) Please follow the power ON sequence as suggested
- $^{(2)}$  Internal  $V_{DD}$  regulator is ON as default
- (3) The RAM content is kept during display off at both sleep mode and the case that internal V<sub>DD</sub> regulator is disabled.
- $^{(4)}$  It is recommended to disable internal  $V_{DD}$  regulator during Sleep mode for power save.

Figure 9-12: Display ON Sequence (During Sleep mode and internal V<sub>DD</sub> regulator is disabled)



#### Note:

#### 9.1.13 Set Phase Length (B1h)

This double byte command sets the length of phase 1 and 2 of segment waveform of the driver.

- Phase 1 (A[3:0]): Set the period from 2 to 30 in the unit of DCLKs. A larger capacitance of the OLED pixel may require longer period to discharge the previous data charge completely.
- Phase 2 (A[7:4]): Set the period from 2 to 30 in the unit of DCLKs. A longer period is needed to charge up a larger capacitance of the OLED pixel to the target voltage V<sub>P</sub>.

#### 9.1.14 Set Front Clock Divider / Oscillator Frequency (B3h)

This double byte command consists of two functions:

- Front Clock Divide Ratio (A[3:0])
  Set the divide ratio to generate DCLK (Display Clock) from CLK. The divide ratio is from 1 to 256, with reset value = 0001b.
- Oscillator Frequency (A[7:4])
  Program the oscillator frequency Fosc which is the source of CLK if CLS pin is pulled HIGH. The 4-bit value results in 16 different frequency settings being available. The default setting is 1010b.

## 9.1.15 Set GPIO (B5h)

This double byte command is used to set the states of GPIO0 and GPIO1 pins. Refer to Table 8-1 for details.

Solomon Systech Feb 2015 | P 48/62 | Rev 1.0 | SSD1362

<sup>(1)</sup> The RAM content is kept during display off at sleep mode and internal V<sub>DD</sub> regulator is disabled.

#### 9.1.16 Set Second Pre-charge period (B6h)

This double byte command is used to set the phase 3 second pre-charge period. The period of phase 3 can be programmed by command B6h and it is ranged from 1 to 15 DCLK's.

#### 9.1.17 Set Gray Scale Table (B8h)

This command is used to set each individual gray scale level for the display. Except gray scale levels GS0 that has no pre-charge and current drive, each gray scale level is programmed in the length of current drive stage pulse width with unit of DCLK. The longer the length of the pulse width, the brighter the OLED pixel when it's turned ON. Following the command B8h, the user has to set the gray scale setting for GS1, GS2... GS14, GS15 one by one in sequence. Note that GS15 level must be set larger than 140 (ie. 8Ch).

The setting of gray scale table entry can perform gamma correction on OLED panel display. Since the perception of the brightness scale shall match the image data value in display data RAM, appropriate gray scale table setting like the example shown below (Figure 9-13) can compensate this effect.



Figure 9-13: Example of Gamma correction by Gamma Look Up table setting

#### 9.1.18 Select Default Linear Gray Scale Table (B9h)

This single byte command reloads the preset linear Gray Scale table as GS0 = Gamma Setting 0, GS1 = Gamma Setting 12, GS2 = Gamma Setting 24., GS14 = Gamma Setting 168, GS15 = Gamma Setting 180.

#### 9.1.19 Set Pre-charge Voltage (BCh)

This double byte command sets the first pre-charge voltage (phase 2) level of segment pins. The level of pre-charge voltage is programmed with reference to VCC. Refer to Table 8-1 for details.

## 9.1.20 Pre-charge Voltage Capacitor Selection (BDh)

This double byte command is used to select the pre-charge voltage capacitor.

 $V_P$  should be connected with an external capacitor when the bit A[0] is set to 1b, while there is no external capacitor for  $V_P$  when A[0] is set to 0b.

## 9.1.21 Set V<sub>COMH</sub> Voltage (BEh)

This double byte command sets the high voltage level of common pins,  $V_{\text{COMH}}$ . The level of  $V_{\text{COMH}}$  is programmed with reference to VCC. Refer to Table 8-1 for details.

**SSD1362** | Rev 1.0 | P 49/62 | Feb 2015 | **Solomon Systech** 

#### 9.1.22 Set Command Lock (FDh)

This double byte command is used to lock the OLED driver IC from accepting any command except itself. After entering FDh 16h (A[2]=1b), the OLED driver IC will not respond to any newly-entered command (except FDh 12h A[2]=0b) and there will be no memory access. This is call "Lock" state. That means the OLED driver IC ignore all the commands (except FDh 12h A[2]=0b) during the "Lock" state.

Entering FDh 12h (A[2]=0b) can unlock the OLED driver IC. That means the driver IC resume from the "Lock" state. And the driver IC will then respond to the command and memory access.

### 9.1.23 Set Fade In / Out and Blinking (23h)

This command allows to set the fade mode and adjust the time interval for each fade step. Below figures show the example of Fade Out mode and blinking mode.

Figure 9-14: Example of Fade Out mode





Feb 2015 | P 50/62 | Rev 1.0 | SSD1362 Solomon Systech

#### 10 MAXIMUM RATINGS

**Table 10-1: Maximum Ratings** 

(Voltage Reference to V<sub>SS</sub>)

| Symbol            | Parameter                 | Value                          | Unit |
|-------------------|---------------------------|--------------------------------|------|
| $V_{ m DD}$       |                           | -0.5 to 2.75                   | V    |
| $V_{CC}$          | Supply Voltage            | -0.5 to 21.0                   | V    |
| $V_{ m DDIO}$     | Supply Voltage            | -0.5 to 5.5                    | V    |
| $V_{\mathrm{CI}}$ |                           | -0.3 to 5.5                    | V    |
| $ m V_{SEG}$      | SEG output voltage        | $0$ to $V_{CC}$                | V    |
| $V_{COM}$         | COM output voltage        | 0 to 0.9*V <sub>CC</sub>       | V    |
| $V_{in}$          | Input voltage             | Vss-0.3 to $V_{\rm DDIO}$ +0.3 | V    |
| $T_{\mathrm{A}}$  | Operating Temperature     | -40 to +85                     | °C   |
| $T_{stg}$         | Storage Temperature Range | -65 to +150                    | °C   |

<sup>\*</sup>Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description.

P 51/62 SSD1362 Rev 1.0 Feb 2015 Solomon Systech

gight source during normal of the source during normal of \*This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

## 11 DC CHARACTERISTICS

## **Condition (Unless otherwise specified):**

Voltage referenced to  $V_{SS}$ ,  $V_{DDIO} = 1.65V$  to 3.5V  $T_A = 25^{\circ}C$ 

## **Table 11-1: DC Characteristics**

| Symbol                 | Parameter                            | <b>Test Condition</b>                                                                                                      |                                                                      | Min                        | Тур  | Max                        | Unit |
|------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------|------|----------------------------|------|
| $V_{CC}$               | Operating Voltage                    | -                                                                                                                          |                                                                      | 10                         | -    | 20                         | V    |
| $V_{\rm CI}$           | Low voltage power supply             | -                                                                                                                          |                                                                      | 1.65                       | -    | 3.5                        | V    |
| V <sub>DDIO</sub>      | Power supply for I/O pins            | -                                                                                                                          |                                                                      | 1.65                       | -    | $V_{\rm CI}$               | V    |
| $V_{\mathrm{DD}}$      | Logic Supply Voltage                 | -                                                                                                                          |                                                                      | 1.65                       | -    | 2.6                        | V    |
| V <sub>OH</sub>        | High Logic Output Level              | $I_{OUT} = 100uA, 3.3M$                                                                                                    | МНz                                                                  | 0.9 x<br>V <sub>DDIO</sub> | -    | -                          | V    |
| V <sub>OL</sub>        | Low Logic Output Level               | $I_{OUT} = 100uA, 3.3M$                                                                                                    | ИНz                                                                  | -                          | _    | 0.1 x<br>V <sub>DDIO</sub> | V    |
| $V_{IH}$               | High Logic Input Level               | -                                                                                                                          |                                                                      | $0.8 \text{ x}$ $V_{DDIO}$ | -    | -                          | V    |
| V <sub>IL</sub>        | Low Logic Input Level                | -                                                                                                                          |                                                                      | -                          | -    | 0.2 x<br>V <sub>DDIO</sub> | V    |
| I <sub>SLP_VDD</sub>   | V <sub>DD</sub> Sleep mode Current   | $V_{CI} = V_{DDIO} = 2.8 V_{DD}$ (external) = 2. No panel attached                                                         |                                                                      | tor                        | -    | 10                         | uA   |
| I <sub>SLP_VDDIO</sub> | V <sub>DDIO</sub> Sleep mode Current | $\begin{aligned} &V_{CI} = V_{DDIO} = 2.8V \\ &V_{DD} \text{ (external)} = 2. \\ &No \text{ panel attached} \end{aligned}$ |                                                                      | -                          | -    | 10                         | uA   |
|                        | G C                                  | $\begin{aligned} V_{CI} &= V_{DDIO} = 2.8V \\ V_{DD} \text{ (external)} &= 2. \\ No \text{ panel attached} \end{aligned}$  |                                                                      | -                          | -    | 10                         | uA   |
| $I_{\rm SLP~VCI}$      | V <sub>CI</sub> Sleep mode Current   | $V_{CI} = V_{DDIO} =$ 2.8V,                                                                                                | Enable Internal V <sub>DD</sub> during Sleep mode                    | -                          | -    | 60                         | uA   |
|                        |                                      | V <sub>CC</sub> =OFF<br>Display OFF,<br>No panel attached                                                                  | Disable Internal V <sub>DD</sub> during Sleep mode (Deep Sleep mode) | -                          | -    | 10                         | uA   |
| I <sub>SLP_VCC</sub>   | V <sub>CC</sub> Sleep mode Current   | $V_{CC} = 10\sim20V,$<br>$V_{CI} = V_{DDIO} = 2.8V$<br>Display OFF, No p                                                   |                                                                      | -                          | -    | 10                         | uA   |
| $I_{CC}$               | V <sub>CC</sub> Supply Current       | $V_{CI} = V_{DDIO} = 2.8^{\circ}$ $V_{CC} = 12V, Contra$ $I_{REF} = 18.75uA, No$ Display ON, All C                         | st = FFh,<br>o loading,                                              | -                          | 1500 | 2000                       | uA   |

 Solomon Systech
 Feb 2015
 P 52/62
 Rev 1.0
 SSD1362

| $V_{DDIO}$ Supply Current $V_{CI}$ Supply Current $V_{DD}$ Supply Current  Segment Output Current, | $\begin{split} &V_{CI} = V_{DDIO} = 2.8V, Internal\ V_{DD} \\ &V_{CC} = 12V, Contrast = FFh, \\ &I_{REF} = 18.75uA, No\ loading, \\ &Display\ ON, All\ ON \\ \\ &V_{CI} = V_{DDIO} = 2.8V, Internal\ V_{DD} \\ &V_{CC} = 12V, Contrast = FFh, \\ &I_{REF} = 18.75uA, No\ loading, \\ &Display\ ON, All\ ON \\ \\ &V_{CI} = V_{DDIO} = 2.8V, \\ &V_{DD}\ (external) = 2.5V, \\ &V_{CC} = 12V, Contrast = FFh, \\ &I_{REF} = 18.75uA, No\ loading, \\ &Display\ ON, All\ ON \\ \\ &Contrast = FFh \end{split}$ | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 250<br>230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | uA<br>uA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $V_{DD}$ Supply Current                                                                            | $\begin{split} &V_{CC} = 12\text{V, Contrast} = \text{FFh,} \\ &I_{REF} = 18.75\text{uA, No loading,} \\ &\text{Display ON, All ON} \\ &V_{CI} = V_{DDIO} = 2.8\text{V,} \\ &V_{DD} \text{ (external)} = 2.5\text{V,} \\ &V_{CC} = 12\text{V, Contrast} = \text{FFh,} \\ &I_{REF} = 18.75\text{uA, No loading,} \\ &\text{Display ON, All ON} \end{split}$                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                                    | $\begin{split} V_{DD} & (\text{external}) = 2.5 \text{V}, \\ V_{CC} &= 12 \text{V}, \text{Contrast} = \text{FFh}, \\ I_{REF} &= 18.75 \text{uA}, \text{No loading}, \\ \text{Display ON, All ON} \end{split}$                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | uA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Segment Output Current,                                                                            | Contrast=FFh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Segment Output Current,                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Segment Output Current,<br>$V_{CI} = V_{DDIO} = 2.8V$ ,                                            | Contrast=AFh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 412.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| $V_{CC} = 12V$ ,                                                                                   | Contrast=7Fh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | uA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                                                                                    | Contrast=3Fh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Display Of C                                                                                       | Contrast=0Fh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Commant Output Cumant                                                                              | Contrast=FFh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                                    | Contrast=AFh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>A C</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 192.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| $V_{CC} = 12V$ , Internal $I_{REF}$                                                                | Contrast=7Fh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | uA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                                                                                    | Contrast=3Fh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Display Of C                                                                                       | Contrast=0Fh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Segment output current uniformity                                                                  | $\begin{aligned} \text{Dev} &= (I_{SEG} - I_{MID})/I_{MID} \\ I_{MID} &= (I_{MAX} + I_{MIN})/2 \\ I_{SEG}[0:255] &= \text{Segment current} \\ \text{at contrast setting} &= FFh \end{aligned}$                                                                                                                                                                                                                                                                                                               | -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Adjacent pin output current uniformity (contrast setting = FFh)                                    | Adj Dev = (I[n]-I[n+1]) / (I[n]+I[n+1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                    | V <sub>CI</sub> = V <sub>DDIO</sub> = 2.8V, V <sub>CC</sub> = 12V, I <sub>REF</sub> (external) = 18.75uA, Display ON  Segment Output Current, V <sub>CI</sub> = V <sub>DDIO</sub> = 2.8V, V <sub>CC</sub> = 12V, Internal I <sub>REF</sub> (command ADh 9Eh), Display ON  Segment output current uniformity  Adjacent pin output current uniformity (contrast setting                                                                                                                                        | $V_{CI} = V_{DDIO} = 2.8V, \\ V_{CC} = 12V, \\ I_{REF} \text{ (external)} = 18.75\text{uA}, \\ Display ON \\ \hline \\ Contrast=3Fh \\ \hline \\ Contrast=0Fh \\ \hline \\ Contrast=FFh \\ \hline \\ Contrast=FFh \\ \hline \\ Contrast=AFh \\ \hline \\ Contrast=FFh \\ \hline \\ Contrast=AFh \\ \hline \\ Contrast=AFh \\ \hline \\ Contrast=AFh \\ \hline \\ Contrast=AFh \\ \hline \\ Contrast=7Fh \\ \hline \\ Contrast=7Fh \\ \hline \\ Contrast=7Fh \\ \hline \\ Contrast=3Fh \\ \hline \\ Contrast=3Fh \\ \hline \\ Contrast=3Fh \\ \hline \\ Contrast=0Fh \\ \hline \\ Contrast=3Fh \\ \hline \\ Contra$ | $\begin{array}{c} V_{CI} = V_{DDIO} = 2.8V, \\ V_{CC} = 12V, \\ I_{REF} \text{ (external)} = 18.75\text{uA,} \\ Display ON \\ \hline \\ Contrast = 3Fh \\ \hline \\ Contrast = 0Fh \\ \hline \\ Contrast = FFh \\ \hline \\ Contras$ | $\begin{array}{c} V_{CI} = V_{DDIO} = 2.8V, \\ V_{CC} = 12V, \\ I_{REF} \text{ (external)} = 18.75\text{uA,} \\ Display \text{ ON} \\ \\ \hline \\ Contrast = 3Fh \\ \hline \\ C$ | $\begin{array}{c} V_{CI} = V_{DDIO} = 2.8V, \\ V_{CC} = 12V, \\ I_{REF} \text{ (external)} = 18.75 \text{uA}, \\ Display \text{ ON} \\ \\ \hline \\ Contrast = 3Fh \\ \hline \\ $ |  |

**SSD1362** Rev 1.0 P 53/62 Feb 2015 **Solomon Systech** 

## 12 AC CHARACTERISTICS

#### 12.1 AC Characteristics

#### **Conditions:**

Voltage referenced to V<sub>SS</sub>  $V_{DDIO} = 1.65V$  to 3.5V  $T_A = 25^{\circ}C$ 

Table 12-1: AC Characteristics

| Symbol   | Parameter                                         | Test Condition                                                             | Min. | Тур.                                   | Max. | Unit |
|----------|---------------------------------------------------|----------------------------------------------------------------------------|------|----------------------------------------|------|------|
| Fosc (1) | Oscillation Frequency of Display Timing Generator | $V_{CI} = 2.8V$ , internal $V_{DD}$                                        | 1260 | 1400                                   | 1540 | kHz  |
| FFRM     | Frame Frequency for 64<br>MUX Mode                | 256x64 Graphic Display Mode,<br>Display ON, Internal Oscillator<br>Enabled | -    | Fosc * 1 / (D * K * 64) <sup>(2)</sup> | -    | Hz   |

value is measured when con  $^{(1)}$   $F_{OSC}$  stands for the frequency value of the internal oscillator and the value is measured when command B3h A[7:4] is in default value.

(2) D: divide ratio

K: Phase 1 period + Phase 2 period + X

X: DCLKs in current drive period.

Default K is 4 + 16 + 195 = 215

Feb 2015 | P 54/62 | Rev 1.0 | **SSD1362** Solomon Systech

## 12.2 6800-Series MCU Parallel Interface Timing Characteristics

**Table 12-2: 6800-Series MCU Parallel Interface Timing Characteristics** 

 $V_{CI}$  -  $V_{SS}$  = 1.65V to 3.5V ( $T_A$  = 25°C)

| Symbol             | Parameter                            | Min | Тур | Max | Unit |
|--------------------|--------------------------------------|-----|-----|-----|------|
| t <sub>cycle</sub> | Clock Cycle Time                     | 320 | -   | -   | ns   |
| $t_{AS}$           | Address Setup Time                   | 25  | -   | -   | ns   |
| $t_{AH}$           | Address Hold Time                    | 0   | -   | -   | ns   |
| $t_{DSW}$          | Write Data Setup Time                | 40  | -   | -   | ns   |
| $t_{\mathrm{DHW}}$ | Write Data Hold Time                 | 45  | -   | -   | ns   |
| $t_{\mathrm{DHR}}$ | Read Data Hold Time                  | 20  | -   | -   | ns   |
| t <sub>OH</sub>    | Output Disable Time                  | -   | -   | 70  | ns   |
| $t_{ACC}$          | Access Time                          | -   | -   | 250 | ns   |
| DW                 | Chip Select Low Pulse Width (read)   | 160 |     |     |      |
| $PW_{CSL}$         | Chip Select Low Pulse Width (write)  | 60  | -   | -   | ns   |
| $PW_{CSH}$         | Chip Select High Pulse Width (read)  | 60  |     |     | no   |
| r vv CSH           | Chip Select High Pulse Width (write) | 60  |     | -   | ns   |
| $t_R$              | Rise Time                            | -   | =   | 15  | ns   |
| $t_{\mathrm{F}}$   | Fall Time                            | -   | -   | 15  | ns   |



SSD1362 Rev 1.0 P 55/62 Feb 2015 Solomon Systech

## 12.3 8080-Series MCU Parallel Interface Timing Characteristics

**Table 12-3: 8080-Series MCU Parallel Interface Timing Characteristics** 

 $\underline{V_{CI}}$  -  $V_{SS}=1.65V$  to 3.5V  $(T_A=25^{\circ}C)$ 

| Symbol             | Parameter                            | Min | Тур | Max | Unit |
|--------------------|--------------------------------------|-----|-----|-----|------|
| t <sub>cycle</sub> | Clock Cycle Time                     | 300 | -   | -   | ns   |
| t <sub>AS</sub>    | Address Setup Time                   | 30  | -   | -   | ns   |
| t <sub>AH</sub>    | Address Hold Time                    | 0   | -   | -   | ns   |
| t <sub>DSW</sub>   | Write Data Setup Time                | 40  | -   | -   | ns   |
| t <sub>DHW</sub>   | Write Data Hold Time                 | 40  | -   | -   | ns   |
| t <sub>DHR</sub>   | Read Data Hold Time                  | 20  | -   | -   | ns   |
| t <sub>OH</sub>    | Output Disable Time                  | -   | -   | 70  | ns   |
| t <sub>ACC</sub>   | Access Time                          | -   | -   | 180 | ns   |
| $t_{PWLR}$         | Read Low Time                        | 150 | -   | -   | ns   |
| t <sub>PWLW</sub>  | Write Low Time                       | 60  | -   | -   | ns   |
| t <sub>PWHR</sub>  | Read High Time                       | 60  | -   | -64 | ns   |
| $t_{PWHW}$         | Write High Time                      | 60  | - 1 |     | ns   |
| $t_R$              | Rise Time                            | 1   | 10. | 15  | ns   |
| $t_{\rm F}$        | Fall Time                            |     |     | 15  | ns   |
| $t_{CS}$           | Chip select setup time               | 0   | -   | -   | ns   |
| t <sub>CSH</sub>   | Chip select hold time to read signal | 0   | -   | -   | ns   |
| $t_{CSF}$          | Chip select hold time                | 20  | -   | -   | ns   |

Figure 12-2: 8080-series MCU parallel interface characteristics



 Solomon Systech
 Feb 2015
 P 56/62
 Rev 1.0
 SSD1362

## 12.4 Serial Interface Timing Characteristics

Table 12-4 : Serial Interface Timing Characteristics (4-wire SPI)

 $\underline{V_{CI}}$  -  $V_{SS}=1.65V$  to 3.5V  $(T_A=25^{\circ}C)$ 

| Symbol             | Parameter              | Min | Тур | Max | Unit |
|--------------------|------------------------|-----|-----|-----|------|
| t <sub>cycle</sub> | Clock Cycle Time       | 100 | -   | 1   | ns   |
| $t_{AS}$           | Address Setup Time     | 15  | -   | ı   | ns   |
| $t_{AH}$           | Address Hold Time      | 40  | -   | ı   | ns   |
| t <sub>CSS</sub>   | Chip Select Setup Time | 20  | -   | ı   | ns   |
| t <sub>CSH</sub>   | Chip Select Hold Time  | 10  | -   | ı   | ns   |
| $t_{ m DSW}$       | Write Data Setup Time  | 15  | -   | ı   | ns   |
| $t_{ m DHW}$       | Write Data Hold Time   | 30  | -   | ı   | ns   |
| $t_{CLKL}$         | Clock Low Time         | 25  | -   | ı   | ns   |
| $t_{CLKH}$         | Clock High Time        | 20  | -   | ı   | ns   |
| $t_R$              | Rise Time              | -   | -   | 15  | ns   |
| $t_{\rm F}$        | Fall Time              | -   | -   | 15  | ns   |

Figure 12-3: Serial interface characteristics (4-wire SPI)





**SSD1362** Rev 1.0 P 57/62 Feb 2015 **Solomon Systech** 

Table 12-5: Serial Interface Timing Characteristics (3-wire SPI)

 $\underline{V_{CI}}$  -  $V_{SS}=1.65V$  to 3.5V  $(T_A=25^{\circ}C)$ 

| Symbol            | Parameter              | Min | Тур | Max | Unit |
|-------------------|------------------------|-----|-----|-----|------|
| $t_{cycle}$       | Clock Cycle Time       | 100 | -   | -   | ns   |
| tcss              | Chip Select Setup Time | 20  | -   | -   | ns   |
| t <sub>CSH</sub>  | Chip Select Hold Time  | 45  | -   | -   | ns   |
| $t_{DSW}$         | Write Data Setup Time  | 15  | -   | -   | ns   |
| $t_{\rm DHW}$     | Write Data Hold Time   | 30  | -   | -   | ns   |
| t <sub>CLKL</sub> | Clock Low Time         | 25  | -   | -   | ns   |
| t <sub>CLKH</sub> | Clock High Time        | 35  | -   | -   | ns   |
| $t_R$             | Rise Time              | -   | -   | 15  | ns   |
| $t_{\mathrm{F}}$  | Fall Time              | =   | =   | 15  | ns   |

Figure 12-4: Serial interface characteristics (3-wire SPI)



 Solomon Systech
 Feb 2015
 P 58/62
 Rev 1.0
 SSD1362

# 12.5 I<sup>2</sup>C Timing Characteristics

 $(V_{CI}$  -  $V_{SS}$  = 1.65V to 3.5V,  $T_A$  = 25°C)

| Symbol              | Parameter                                                                 | Min        | Тур | Max | Unit |
|---------------------|---------------------------------------------------------------------------|------------|-----|-----|------|
| t <sub>cycle</sub>  | Clock Cycle Time                                                          | 2.5        | -   | -   | us   |
| t <sub>HSTART</sub> | Start condition Hold Time                                                 | 0.6        | =   | -   | us   |
| $t_{ m HD}$         | Data Hold Time (for "SDA <sub>OUT</sub> " pin)                            | 0          | -   | -   | ns   |
|                     | Data Hold Time (for "SDA <sub>IN</sub> " pin)                             | 300        | -   | -   | ns   |
| $t_{\mathrm{SD}}$   | Data Setup Time                                                           | 100        | -   | -   | ns   |
| t <sub>SSTART</sub> | Start condition Setup Time (Only relevant for a repeated Start condition) | 0.6        | -   | -   | us   |
| tsstop              | Stop condition Setup Time                                                 | 0.6        | -   | -   | us   |
| $t_R$               | Rise Time for data and clock pin                                          | -          | -   | 300 | ns   |
| $t_{\mathrm{F}}$    | Fall Time for data and clock pin                                          | -          | -   | 300 | ns   |
| t <sub>IDLE</sub>   | Idle Time before a new transmission can start                             | 1.3        | -   | -   | us   |
|                     | Figure 12-5: I2C interface Timing o                                       | characteri | 40  | Inc | 1    |



SSD1362 Rev 1.0 P 59/62 Feb 2015 Solomon Systech

#### 13 APPLICATION EXAMPLE

Figure 13-1: SSD1362Z application example for 8-bit 6800-parallel interface mode (Internal regulated  $V_{DD}$ )



Solomon Systech Feb 2015 | P 60/62 | Rev 1.0 | SSD1362

## 14 PACKAGE INFORMATION

## 14.1 SSD1362Z Die Tray Information

Figure 14-1: SSD1362Z Die Tray Drawing



#### Remark

1. Depth of text: Max. 0.1mm

2. Tray material: ABS3. Tray color code: Black

4. Surface resistance  $10^9 \sim 10^{12} \Omega/\text{SQ}$ 

5. Tray Warpage: Max. +/- 0.1mm6. Pocket bottom: Rough Surface

**SSD1362** | Rev 1.0 | P 61/62 | Feb 2015 | **Solomon Systech** 



Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the part.

The product(s) listed in this datasheet comply with Directive 2011/65/EU of the European Parliament and of the council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment and People's Republic of China Electronic Industry Standard SJ/T 11363-2006 "Requirements for concentration limits for certain hazardous substances in electronic information products (电子信息产品 中有毒有害物质的限量要求)". Hazardous Substances test report is available upon request.

http://www.solomon-systech.com

Feb 2015 | P 62/62 | Rev 1.0 | SSD1362 Solomon Systech