班级数学与应用数学

学号 20[0114036 姓名 茅 奇 瑞

基本要求

- 1. 理解点电荷的概念; 理解电荷守恒定律和库仑定律。
- 2. 理解电力线、等势面、电通量的概念。
- 3. 深刻理解静电场中的电场强度和电势的概念以及电场强度、电势的叠加原理。熟练掌握计算场强和电势的方法。
- 4. 理解电场强度与电势的微分关系,对一些简单问题,能用此关系通过计算电势求电场强度。
- 5. 深刻理解静电场的高斯定理和环路定理。理解用高斯定理求场强的条件和方法,并能熟练 地用高斯定理计算一些特殊情况下的电场强度。

基本内容和主要公式

- 1. 电荷的基本特征: (1)分类:正电荷(同质子所带电荷),负电荷(同电子所带电荷)(2)量子化特性(3)是相对论性不变量(4)微观粒子所带电荷总是存在一种对称性
- 2. 电荷守恒定律:一个与外界没有电荷交换的孤立系统,无论发生什么变化,整个系统的电荷总量必定保持不变。
- 3. 点电荷: 点电荷是一个宏观范围的理想模型,在可忽略带电体自身的线度时才成立。
- 4. 库仑定律: 表示了两个电荷之间的静电相互作用,是电磁学的基本定律之一,是表示真

空中两个静止的点电荷之间相互作用的规律 $ar{F}_{12} = rac{1}{4\piarepsilon_0} rac{q_1q_2}{r_{12}^3} ar{r}_{12}$

5. 电场强度 : 是描述电场状况的最基本的物理量之一,反映了电场的基 $ec{E}=rac{ec{F}}{q_0}$

- 6. 电场强度的计算:
- (1)单个点电荷产生的电场强度,可直接利用库仑定律和电场强度的定义来求得
- (2) 带电体产生的电场强度,可以根据电场的叠加原理来求解

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^{n} \frac{q_i}{r_i^3} \vec{r}_i \qquad \vec{E} = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{r^3} \vec{r}$$

- (3) 具有一定对称性的带电体所产生的电场强度,可以根据高斯定理来求解
- (4) 根据电荷的分布求电势,然后通过电势与电场强度的关系求得电场强度
- 7. 电场线: 是一些虚构线,引入其目的是为了直观形象地表示电场强度的分布
 - (I) 电场线是这样的线: a. 曲线上每点的切线方向与该点的电场强度方向一致
 - b. 曲线分布的疏密对应着电场强度的强弱,即越密越强,越疏越弱。
- (2) 电场线的性质: a. 起于正电荷(或无穷远),止于负电荷(或无穷远)。b. 不闭合,也不在没电荷的地方中断。c. 两条电场线在没有电荷的地方不会相交
- 8. 电通量: $\phi_{\rm e} = \iint \bar{E} \cdot d\bar{S}$

(1) 电通量是一个抽象的概念,如果把它与电场线联系起来,可以把曲面 S 的电通量理解为穿过曲面的电场线的条数。(2) 电通量是标量,有正负之分。

- (1) 定理中的 \vec{E} 是由空间所有的电荷(包括高斯面内和面外的电荷)共同产生。(2) 任何闭合曲面 S 的电通量只决定于该闭合曲面所包围的电荷,而与 S 以外的电荷无关
- 10. 静电场属于保守力:静电场属于保守力的充分必要条件是,电荷在电场中移动,电场力所做的功只与该电荷的始末位置有关,而与其经历的路径无关。由此可得

$$\oint \vec{E} \cdot d\vec{l} = 0$$

- 11. 电势能、电势差和电势:
- (1) 电势能: 试探电荷 q_0 在电场强度为 \bar{E} 的电场中的 P 和 Q 两点的电势能差:

$$W_P - W_Q = \int_P^Q q_0 \vec{E} \cdot d\vec{1}$$

- (2) 电势差和电势:
 - a. 上面 P 点与 Q 点的电势差可以表示为 $V_P V_Q = \frac{W_P W_Q}{Q_0} = \int_P^Q \vec{E} \cdot d\vec{1}$

对应于把电荷从 P 点移到 Q 点电势的降低,地势的降低称为电势降落,也就是经常使用的电压的概念。

b. 电势差具有绝对意义,完全有电场自身的性质所决定,而电场中一点的电势只有相对意义,即相对于电势零点而言的。理论上,若电荷分布在有限空间内,可选择无限远处为电势零点。则电场中任一点 P 的电势可以表示为

$$V_P = V_P - V_{\infty} = \int_P^{\infty} \vec{E} \cdot d\vec{l}$$

- 12. 等势面:
 - (1) 电场中电势相等的点连成的曲面,就是等势面。它形象地表示了电场中电势的分布。
 - (2) 等势面的性质: a. 电荷沿等势面移动, 电场力不作功;

b. 等势面与电场线处处正交。

13. 电势与电场强度的关系:

$$E_1 = -\frac{\partial V}{\partial 1}$$
 $\vec{E} = -(\vec{i}\frac{\partial V}{\partial x} + \vec{j}\frac{\partial V}{\partial y} + \vec{k}\frac{\partial V}{\partial z}) = -\nabla V$

上式的负号说明电场强度与电势梯度的方向相反。

练习题

选择题

- 1. 若静电场由电荷Q所产生,试验电荷为q。当用电场强度的定义式 $\overrightarrow{E} = rac{F}{q}$ 确定 \overline{E} 时,对 电荷 Q和 q的要求是:
- A. Q和q都必须是点电荷;
- B. Q为任意电荷, q必须是点电荷;

$$r$$
 A. $r = \frac{\sqrt{2}a}{4}$ B. $r = \frac{\sqrt{2}a}{3}$ C. $r = \frac{\sqrt{2}a}{2}$ D. $qr = \sqrt{2}a$ OSO $= 2 \sqrt{(qr + Q^2)^3}$ OSO $= 2 \sqrt{$

- D. $\frac{q}{48\varepsilon_0}$
- 4. 如图所示,两个点电荷的电量都是+q,相距为2a,以左边点电荷所在处为球心,以a为

半径作一球形高斯面,在球面上取两块相等的小面积 S_1 和 S_2 ,设通过 S_1 和 S_2 的电通量分别

为 Φ_1 和 Φ_2 ,通过整个球面的电通量为 Φ ,则

A.
$$\Phi_1 > \Phi_2, \Phi = \frac{q}{\varepsilon_0}$$
 B. $\Phi_1 < \Phi_2, \Phi = \frac{2q}{\varepsilon_0}$

C.
$$\Phi_1 = \Phi_2, \Phi = \frac{q}{\varepsilon_0}$$
 D. $\Phi_1 < \Phi_2, \Phi = \frac{q}{\varepsilon_0}$

- E= 41 2 73 F
- 5. 在静电场中, 高斯定理告诉我们
 - A. 高斯面内不包围电荷,则高斯面上各点 \bar{E} 的量值处处相等;
 - B. 高斯面上各点 \overline{E} 只与面内电荷有关,与面外电荷无关;
 - C. 穿过高斯面的 \bar{E} 通量与面内电荷有关,但与面内电荷分布无关;

- 6. 某电场的电力线分布情况如图所示, 一负电荷从 M 点移到 N 点, 有人根据这个图作出下 列几点结论,其中哪点是正确的?
 - A. 电场强度 $E_n > E_n$ B. 电势 $U_n > U_n$

 - C. 电势能 $W_{-}>W_{-}$ D. 电场力的功 $A\leq 0$

 $= \overline{\bigcup_{X}} \overline{\bigcup_{X}$

A.
$$\frac{\dot{q}Q}{4\pi\varepsilon_0 R}$$
, $\frac{-qQ}{4\pi\varepsilon_0 R}$ B. $\frac{-qQ}{4\pi\varepsilon_0 R}$, $\frac{qQ}{4\pi\varepsilon_0 R}$

C.
$$\frac{qQ}{6\pi\varepsilon_0 R}$$
, $\frac{-qQ}{6\pi\varepsilon_0 R}$ D. $\frac{-qQ}{6\pi\varepsilon_0 R}$, $\frac{qQ}{6\pi\varepsilon_0 R}$

9. 沿x轴放置的"无限长"分段均匀带电直线,电荷线密度分别为 $+\lambda(x\leq 0)$ 和 $-\lambda(x>0)$,

如图所示,则 oxy 平面上点 (0,a) 的场强 \overline{E} 为 $\overline{E}_{+}=\frac{1}{4\pi\epsilon_{0}}\int_{0}^{0}\frac{\lambda dx}{\chi^{2}+\Omega^{3}}\frac{-xex+yey}{\sqrt{\chi^{2}+\Omega^{3}}}-\frac{1}{4\pi\epsilon_{0}}\int_{0}^{\infty}\frac{\lambda dx}{(\chi^{2}+\Omega^{3})^{2}}(xex+yey)$ $\overline{E}_{-}=\frac{1}{4\pi\epsilon_{0}}\int_{0}^{\infty}\frac{\lambda dx}{(\chi^{2}+\Omega^{3})^{2}}(xex-yey)$ $\overline{E}_{-}=\frac{1}{4\pi\epsilon_{0}}\int_{0}^{\infty}\frac{\lambda dx}{(\chi^{2}+\Omega^{3})^{2}}(xex-yey)$ [B] $\vec{E} = \frac{\sqrt{16x}}{2\pi \varepsilon_0} \int_0^{\infty} \frac{x \, dx}{(x^2 + \sigma^2)^{\frac{1}{2}}} \cdot \frac{\lambda}{4\pi \varepsilon_0 a} \vec{i} \qquad D. \frac{\lambda}{4\pi \varepsilon_0 a} (\vec{i} + \vec{j})$

 $=\frac{\lambda}{2\pi G_0 Q_0} \stackrel{\text{C}}{\text{20}}$. 图示为一具有球对称分布的静电场的 E-r 关系曲线,请指出该静电场是 A . $\iint \vec{E} \, d\vec{s} = \frac{q}{g_0}$ r > R 的 $\vec{E} = \frac{Q}{4\pi G_0 r}$ \vec{E}_r

$$| \langle RB \rangle = \frac{4\pi \gamma'}{E} = \frac{0}{60} \frac{1}{80}$$

$$| E \rangle = \frac{1}{2} \frac{1}{80} \frac{1}{80}$$

$$| E \rangle = \frac{1}{2} \frac{1}{80} \frac{1}{80}$$

$$| E \rangle = \frac{1}{2} \frac{4\pi \gamma'}{80} = \frac{1}{2} \frac{4\pi \gamma'}{80}$$

$$| E \rangle = \frac{1}{2} \frac{4\pi \gamma'}{80} = \frac{1}{2} \frac{4\pi \gamma'}{80}$$

$$| E \rangle = \frac{1}{2} \frac{4\pi \gamma'}{80} = \frac{1}{2} \frac{4\pi \gamma'}{80}$$

$$| E \rangle = \frac{1}{2} \frac{4\pi \gamma'}{80} = \frac{1}{2} \frac{4\pi \gamma'}{80}$$

$$| E \rangle = \frac{1}{2} \frac{4\pi \gamma'}{80} = \frac{1}{2} \frac{4\pi \gamma'}{80} = \frac{1}{2} \frac{1}{80}$$

Varian	
i=4780 J dq - 4780R	8. 两半径分别为 R 和 $2R$ 的同心均匀带电球面,内球带电荷 Q ,欲使内球电势为零,则外球面上电量 $q = \frac{Q}{4\pi \epsilon_0 R} + \frac{Q}{4\pi \epsilon_0 Q} = 0$ $Q'=1Q$
	9. 相距为 d 的两相互平行的"无限长"均匀带电直线 1 和 2 ,其线电荷密度分别为 λ 和 λ , λ 则场强等于零的点与直线 1 的距离为 $\Gamma = \frac{\lambda_1}{\lambda_1 + \lambda_2}$ $\Gamma_1 = \frac{\lambda_1}{2\pi \epsilon_0 \cdot \chi}$ $\Gamma_2 = \frac{\lambda_1}{2\pi \epsilon_0 \cdot \chi}$ $\Gamma_2 = \frac{\lambda_1}{2\pi \epsilon_0 \cdot \chi}$ $\Gamma_3 = \frac{\lambda_1}{\chi} = \frac{\lambda_1}{\zeta_1 - \chi}$
	如图所示。设无限远处为电势零点,则圆心 O 点处的电势 $U_o = \frac{Q}{\Delta \Gamma E_o \Gamma}$; 若将一带电量为 g 的点电荷从无限远处移到圆 $U_o = \frac{Q}{\Delta \Gamma E_o \Gamma}$; $U_o = \frac{Q}{\Delta \Gamma E_o \Gamma}$ 。
	11. 在电量为 q 的点电荷的静电场中,若选取与点电荷距离为 r_0 的一点为电势零点,则与点电荷距离为 r 处的电势 $U=\frac{Q}{4\pi \epsilon_0} \left(\frac{1}{r} - \frac{1}{r_0}\right)$
	$V = \int_{\gamma}^{r_0} \vec{E} d\vec{l} = \frac{q}{4\pi\epsilon_0} \left(\frac{1}{r} - \frac{1}{r_0}\right)$ 三、证明题 $\int_{\gamma}^{r_0} \frac{q}{4\pi\epsilon_0 r_2} dr = -\frac{1}{r_1} \int_{\gamma}^{r_0}$ 1. 如图所示,两根平行长直线的间距为 $2a$,一端用半圆形线连接起来,全线上均匀带电试证
L'E	明在國心 O 处的电场强度为零。 明:设半圆形线 CDA与半圆形线 ABC构成一個形。 电 指密度均为入,在角 O 处作角 d O ,在半圆形线 CDA (
	[= atan0
	区域内各点的电场强度都与该场点到 O 点的距离成反比,即有
	$E_1: E_2=r_2: r_1$ $\oint \vec{E} d\vec{l} = 0$ 由静电场外路定理。 $\vec{E}_1: \Delta \vec{l}_1 + \vec{l}_2: \Delta \vec{l}_2 = 0$ $\vec{E}_1: \Delta $
	$F_{1}Y_{1} = E_{2}Y_{2}$

四、计算题

 两个小球质量都是m,用两根长为l的细线悬挂于同一点,使它们带有相同的电量。当两 个小球处于平衡时,两根细线间的夹角为2 heta ,如图所示。设小球半径忽略不计,求小球所 带的电量q。

翰·小球在重办、绳的的张力、库仑为作用下达到平衡

$$\frac{\int -T\sin\theta=0}{T\cos\theta-mg=0}$$

$$\frac{\int -\frac{q^2}{4\pi\epsilon\sigma r^2} \qquad r=x}{B\beta\theta f_{0}}$$

$$\frac{\int -\frac{q^2}{4\pi\epsilon\sigma r^2} \qquad r=x}{4\pi\epsilon\sigma r^2}$$

$$\frac{\partial q}{\partial r} = \frac{q^2}{4\pi\epsilon\sigma r^2}$$

T=M9

r=215in0 => 12=413i $9=\sqrt{\frac{2\pi\epsilon_0 mgx^3}{U}}$ $r=2USINU \Rightarrow r=9U$ $\sqrt{\frac{mg+an\theta}{U}}$ $\sqrt{\frac{mg+an\theta}{U}}$

$$E = \frac{-\lambda}{4\pi\epsilon_0 R} \int_0^{\frac{\pi}{2}} \cos\theta \tilde{e}_y = -\frac{\lambda}{4\pi\epsilon_0 R}.$$

$$E = E + E = \frac{\lambda R}{4\pi\epsilon_0} \int_0^{\frac{\pi}{2}} \frac{\cos\theta \tilde{e}_y + \sin\theta \tilde{e}_x}{R^2} d\theta + \frac{-\lambda R}{4\pi\epsilon_0} \int_0^{\frac{\pi}{2}} \frac{\cos\theta \tilde{e}_y + \sin\theta \tilde{e}_x}{R^2} d\theta$$

3. 在半径为 R 的球体内, 电荷对称地分布, 其体密度为 $\rho = kr$ $(0 \le r \le R)$ 和

$$p=0$$
 $(r>R)$, k 为一常量,试用高斯定理求体内外空间的电场强度. $=-\frac{\lambda e_y}{2\pi \epsilon_0 R}\int_0^2 \cos d\theta$ 解: $dV=r^2\sin\theta d\theta d\phi dr$. $E=\frac{\int\int\int P dv}{4\pi \epsilon_0 V^2}$ $=-\frac{\lambda e_y}{2\pi \epsilon_0 R}=\frac{-9e_y}{\pi^2 \epsilon_0 R^2}$ $=\int_0^R k r^2 dr \cdot \int_0^\pi sin0 d\theta \cdot \int_0^{2\pi} d\phi$ $=\frac{1}{4}kR^4 \cdot 2 \cdot 2\pi = k\pi R^4$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi = k\pi R^{4}$$

$$= \frac{1}{4}kR^{4} \cdot 2 \cdot 2\pi R^{4}$$

$$= \frac{1}{4}kR^{4$$

4. 半径为 R 的无限长圆柱体均匀带电,电荷体密度为 p,求其电场强度分布,并画出 E-r 曲线.

解: 收柱面长为 l,选取包围圆柱体的圆柱面距中心轴为 r. 则在柱外: 即 E d s =
$$\mathbb{E} \cdot 2\pi r \cdot \mathbb{I} = \frac{P\pi r^2}{\epsilon_0} \cdot \mathbb{I}$$

则 E = $\frac{PR^2}{2\epsilon_0 r}$ $(r > R)$
在柱内: $0 \le r \le R$
 $\mathbb{E} = \frac{r^2 \mathbb{I} \cdot P}{2\epsilon_0} \cdot \mathbb{I} \cdot \mathbb{E} = \frac{\pi r^2 \mathbb{I} \cdot P}{\epsilon_0}$
 $\mathbb{E} = \frac{r^2}{2\epsilon_0} \cdot \mathbb{E} \cdot \mathbb$

5 如图所示,两个相等的点电荷 +q 相距 2d,一个接地导体球放在它们中间,球心在它们的连线上. (1) 如果要使这两个点电荷所受的作用力的矢量和都为零,求导体球的半径(设 r <<d); (2) 如果使导体球具有电势 φ , 球的半径同(1)中所求,问每个点电荷受力多少?

班级一数学与应用数学

学号 20/0 | 14036 第九次 静电场中的导体与电介质 (二) 基本要求 (① (一) (一) (一) (一) (201) 姓名郭奇瑞

- 1. 理解静电场中导体静电平衡的条件及电荷分布规律。
- 2. 深刻理解电容的定义及其物理意义,能计算几种典型电容器的电容。
- 3. 了解电介质的极化现象及其微观机理。
- 4. 深刻理解电介质中的高斯定理及各向同性电介质中 \bar{D} 与 \bar{E} 的关系与区别。
- 5. 理解电场能量、电场能量密度的概念,会计算简单情况下电场的能量。

基本内容和主要公式

1. 金属导体的静电平衡:

导体中自由电荷没有定向运动的状态, 称为静电平衡。此时导体具有下列性质:

- 整个导体是等势体,导体的表面是等势面 (1)
- (2) 导体表面附近的电场强度处处与表面垂直
- (3) 导体内部不存在净电荷, 所有过剩电荷都分布在导体表面上
- 2. 导体表面的电荷和电场:
 - (1) 对于孤立导体,表面凸出且曲率较大处,电荷密度较大;表面平坦处电荷面密度较 小:表面凹进处,电荷面密度更小,甚至为零。
 - (2) 导体表面附近的电场强度与该处面电荷密度有关。
- 3. 导体空腔:

导体空腔有如下性质:

- (1) 若空腔内无电荷,则空腔表面上不存在净电荷,所有净电荷只分布在外表面;若腔 内放置电荷,则腔内表面上存在与腔内电荷等量异号的净电荷;
- (2) 若腔内无电荷,则腔内无电场;若腔内放置电荷,并将空腔导体接地,则腔外空间 不受腔内电场的影响。
- 导体静电平衡性质的应用:
 - (1) 尖端放电现象的物理实质,是尖端处的强电场致使附近的空气分子电离,电离所产 生的带电粒子在电场的作用下急剧运动和相互碰撞,碰撞又使更多的空气分子电离。
 - (2) 静电屏蔽: 使导体空腔内部空间不受腔外电荷和电场的影响,或将导体空腔接地, 使腔外空间免受腔内电荷电场影响。

 $C = \frac{Q}{V}$

(1) 孤立导体的电容 5. 电容和电容的计算:

(2) 电容器
$$C = \frac{Q_A}{V_A - V_B}$$

- (3) 电容的计算:
 - a. 先假设两个极板分别带有+Q 和-Q 的电量, 计算极板间电场强度的分布, 在一般 情况下都可以计算高斯定理计算;
- b. 根据极板间电场强度的分布,求出两极板的电势差

- c. 将极板电量和两极板电势差带入电容器电容的定义式, 计算电容。
- 6. 电介质的极化: 电介质的表面或体内出现宏观电荷的现象
 - (1) 各向同性的电介质中,极化强度 \vec{P} 与电场强度 \vec{E} 之间有 $\vec{P}=\chi_{s}\varepsilon_{0}\vec{E}$
 - (2) 极化电荷与自由电荷的区别: 由于电介质极化而出现在电介质表面上的宏观 电荷,就是极化电荷,在外电场的作用下可以自由运动的宏观电荷,称为自由电荷
 - a. 极化电荷是束缚电荷的宏观表现,是束缚在晶格上的分子中的电子作微小位移,或整个分子作微小旋转所引起的,他的活动范围不能超出分子的线度;而自由电荷是由于原子或分子的电离或金属中的自由电子重新分布引起的,它的活动范围是整个物体,也可以在不同物体之间;
 - b. 极化电荷不能转移到其它物体,而自由电荷可以;
 - c. 极化电荷可以吸附导体中的自由电荷,但不能被中和,而自由电荷可以被中和。
- 7. 极化强度与极化电荷的关系:
 - (1) 极化强度 \bar{P} 与极化电荷面密度的关系为

$$\sigma' = P_n = \vec{P} \cdot \vec{n}$$

(2) 极化强度和极化电荷的关系

$$\iint_{S} \vec{P} \cdot d\vec{S} = -\sum_{cm} q'_{i}$$

对于各向同性的电介质,有 $\ddot{\mathbf{P}}=\chi_{\mathrm{e}} \pmb{\varepsilon}_{\mathrm{0}} \ddot{\mathbf{E}}$,此处 $\ddot{\pmb{E}}$ 等于外加电场 $\ddot{\mathbf{E}}_{\mathrm{0}}$ 与极化电荷产生的附加

电场强度 Ē'的矢量和。

8. 电介质存在时的高斯定理:

$$\iint_{S} \vec{D} \cdot d\vec{S} \, = \, \sum_{i} \, q_{oi}$$

其中电位移矢量 \vec{D} : $\vec{D} = \varepsilon_0 \vec{E} + \vec{P} = \varepsilon_0 (1 + \chi_e) \vec{E} = \varepsilon_0 \varepsilon_r \vec{E} = \varepsilon \vec{E}$

此式只适用于各向同性的电介质。

- 9. 边界条件:
 - (1) 用高斯定理可以得到在两种电介质的界面附近电位移矢量的法向分量连续,

$$D_{in} = D_{2n}$$

(2) 用静电场的环路定理可以得到在两种电介质的界面附近电场强度矢量的切向分量连

续,即.
$$E_{1t} = E_{2t}$$

10. 静电场的能量: (1) 电容器的储能
$$W_e = \frac{1}{2}QU = \frac{1}{2}CU^2 = \frac{1}{2}\frac{Q^2}{C}$$

(2) 电场能量密度 ω_c 和电场能量 W_c 的一般表示

$$\mathbf{W}_{\mathrm{e}} \; = \; \frac{1}{2} \; \vec{\mathbf{D}} \cdot \vec{\mathbf{E}} \; , \qquad \; \mathbf{W}_{\mathrm{e}} \; = \; \iiint_{r} \mathbf{W}_{\mathrm{e}} \mathrm{d} \, \tau \; = \; \frac{1}{2} \; \iiint_{r} \vec{\mathbf{D}} \cdot \vec{\mathbf{E}} \mathrm{d} \, \tau$$

、洗择题

练习题
$$G_R = \frac{Q_1}{4\Pi R^2} G_F = \frac{Q_2}{4\Pi Y^2}$$

$$U_R = \frac{Q_1}{4\Pi \epsilon_0 R} \quad U_r = \frac{Q_2}{4\Pi \epsilon_0 Y}$$

半径分别为 R 和 r 的两个金属球,相距很远,用

UR=Ur 带电,忽略导线的影响,则两球表面的电荷面密度之比 B. $\frac{R^2}{r^2}$; C. $\frac{r^2}{R^2}$;

- 2. 在静电场中,下列说法中哪一个是正确的?
- A. 带正电荷的导体, 其电势一定是正值
- B. 等势面上各点的场弧一定相等
- C. 场强为零处, 电势也一定为零
- D. 场强相等处, 电势梯度矢量一定相等
- 3. 有两个带电不等的金属球,直径相等,但一个是空心的,一个是实心的,现使它们互相接 触,则这两个金属球上的电荷
 - A. 不变化
- B. 平均分配 C. 空心球电量多

4. 一球形导体, 带电量 a, 置于一任意形状的空腔导体中, 如图所示, 当用

导线将两者连接后,与未连接前相比,系统的静电场能将

[8]

A. 增大

B. 减小

C. 不变

D. 如何变化不能确定

若使B板接地,A、B间的场强大小为:

 C_1 和 C_2 两空气电容器并联以后接电源充电,在电源保持连接的情况下,在 C_1 中插入

电介质板,如图所示,则关于 C_1 和 C_2 所带电量 Q_1 和 Q_2 有:

[C](=(1+(2

- A. Q_1 增加, Q_2 减少 B. Q_1 减少, Q_2 增加
- C. Q_1 增加, Q_2 不变 D. Q_1 减少, Q_2 不变

4× X-ナゾ v析 Jwer… ・・・・ 45を	
W_1 = $\frac{(2^* - 1)^2}{8\pi\epsilon R}$ = $\frac{1}{8\pi\epsilon R}$ = $\frac{1}{8\pi\epsilon R}$ = $\frac{1}{8\pi\epsilon R}$ = $\frac{1}{8\pi\epsilon R}$ = $\frac{1}{2}$ = \frac	
3. 若电量 Q 均匀地分布在半径为 R 的球体内,此时球内的静电能与球外的静电能之比为	
数为 ε, 的各向同性均匀电介质插入电容器中(填满空间), ————————————————————————————————————	
则此时电容器的电容为原来的 E_{r} 倍,电场能量为原来 E_{r} 6,电场能量为原来 E_{r} E	
后使该球壳与地接触一下,再将点电荷+ q 取走。此时,球壳的电量为 <u>$-q$</u> ,电场分布的范围是 <u></u> 与体动壳、从外区t或 W_1 = $\frac{1}{2}$ ε_0 E 2 Sx = $\frac{1}{2}$ ε_0 $\left(\frac{6}{5}\right)^2$ Sx	
6. 一空气平行板电容器,两极板相距为 d ,与一电池连接时两板之间的相互作用力大小为 F , Q A B A B A B A B	\$) ² SI
7. 如图所示,在一个带电量为 Q 的金属球中,挖一个任意形状的空腔,又在空腔中任意一点 P 处固定一个点电尚 q , Q 点为金属球的中心,则球外空间任意一 $Q+q$	
点 M 处的电场强度的大小 $E=41160$ P , $Z=41160$, $Z=411600$, $Z=4116000$, $Z=4116000$, $Z=41160000$, $Z=411600000000000000000000000000000000000$	
8. 真空中均匀带电的球面和球体,如果两者的半径和总电量都相等,则带电球面的电场能量	
W_1 和带电球体的电场能量 W_2 相比, W_1	
9. 两个完全相同的平行板电容器,极板面积为 S ,间距为 a ,面密度分别为 $+\sigma$ 和 $-\sigma$,现	Acres 1
在两板之间分别插入厚度均为 $b(b < a)$ 的金属板和介质板(相对电容率为 ε_r),则	99O.
(1) 插入金属板后,电容器两板之间的电势差为 $U = \frac{C}{E_0} (Q - b)$; (2) 插入介质板后,电容器两板之间的电势差为 $U = \frac{C}{E_0} (Q - b) + \frac{C}{E_0} (Q - b)$	
10. 如图所示,把一块原来不带电的金属板 B ,移近一块产带有正皂荷 Q 的金属板 A ,	
平行放置。设两板面积都是 S ,板间距离是 d 忽略边缘效应。当 B 板不接地时, Q 两板间电势差 $U=$ S	S
$V = \frac{8}{6}$	7

四、计算题

1. 一內外半径分别为 a 和 b 的金属球壳带有电量 Q,在球壳空腔内距离球心 r 处有一点电荷 q,设无限远处电势为零,求:(1)球壳内外表面上的电荷;(2)球心处由球壳内表面上的电荷产生的电势;(3)球心处的总电势

解:(1)由静电感应和高斯定理可知:

球壳内表面带电-9,外表面带电9+Q

(2) 球壳内表面上电荷分布不均,但距离球心的阻离均为半径0./ 由电势叠加原理,在球心处时壳内表面上的电荷, 2000 V= 5.9 dq = -9

(3)由电势叠加原理:点电荷+9.内表面电荷-9.外表面电荷长同产生战心处电路:

 $V = \frac{-9}{4\pi\epsilon_0} + \frac{9}{4\pi\epsilon_0} + \frac{9+Q}{4\pi\epsilon_0} = \frac{9}{4\pi\epsilon_0} \left(\frac{1}{Y} - \frac{1}{Q} + \frac{1}{D}\right) + \frac{Q}{4\pi\epsilon_0}$

2x10-2 m2

2. 如图所示,三块相互平行的金属板 A、B、C,面积都是 200cm^2 , A、B 相距 4.0 mm, A、C 相距 2.0 mm, B、C 两板都接地,如果 A 板带有 $3.0 \times 10^{-7} C$ 的正电荷,略去边缘效应,求:

3. 一平行板电容器两极板的面积均为S,相距为d,其间有一厚度为t、面积也是S的平行放置着的金属板,如图示。不计边缘效应(1)求平行板电容器电容C;(2)金属板离两极板的远近对电容C有无影响。

٩

- 4. 两同轴的圆柱面,长度均为 L,半径分别为 a、b (a<b, L》b),两圆柱面间充满相对电容 率为 ε ,的均匀电介质,当两圆柱面分别带等量异号电量+Q和-Q时,求
 - (1) 两圆柱面问的电场能量密度;
 - (2) 电介质储存的总能量,并由此计算此圆柱形电容器的电容。

解:(1)当两圆柱面分别带等量异号电量+Q和-Q时. 以同轴圆柱面的轴为轴;以下(a<r<b)为半径作圆柱形高 斯面,行两同轴圆柱面之间,由高斯定理可求得:

We =
$$\int dWe = \int_{\alpha}^{b} \frac{Q^{2}}{8\pi \varepsilon_{0}\varepsilon_{1}r^{2}L^{2}} \cdot 2\pi r L dr$$

$$= \frac{Q^{2}}{4\pi \varepsilon_{0}\varepsilon_{1}L^{2}} \int_{\alpha}^{b} \frac{1}{r} dr$$

$$= \frac{Q^{2}}{4\pi \varepsilon_{0}\varepsilon_{1}L^{2}} \cdot \ln \frac{b}{\alpha}$$

$$C = \frac{Q^2}{2We} = \frac{2\pi \epsilon_0 \epsilon_r L}{\ln \frac{b}{Q}}$$

学号 2010 ll 40 3b 第十次 恒定电流稳恒磁场

姓名 郭青瑞

基本要求

- 1. 理解电流强度、电流密度、电阻、电阻率和电导率的概念及欧姆定律的微分形式。
- 2. 理解电流的功和功率: 了解焦耳-楞次定律的微分形势。
- 3. 理解稳恒电流的形成条件和电动势的概念;了解闭合电路及一段含源电路的欧姆定律; 了解金属导电的经典电子理论。
- 4. 正确理解磁场、磁感应强度、磁力线、磁通量等物理概念:
- 5. 正确理解毕一萨定律、磁场高斯定理、安培环路定理、安培定律及洛伦兹力公式的物 理意义:
- 6. 掌握毕一萨定律、安培环路定理、安培定律及洛伦兹力公式的应用,掌握带电粒子在 电磁场中的运动规律及载流导线、载流线圈在磁场中所受到的作用

基本内容和主要公式

电流强度和电流密度 电流强度:单位时间内通过导体截面的电荷量 (电流强度 是标量,可正可负); 电流密度: 电流密度是矢量, 其方向决定于该点的场强 E的方向 (正电荷流动的方向), 其大小等于通过该点并垂直于电流的单位截面的电流强度 $I = \frac{dQ}{dt}$, $\vec{j} = \frac{dI}{dS}\vec{e}$, $I = \iint_S \vec{j} \cdot d\vec{S}$

电流的连续性方程和恒定电流条件 电流的连续性方程:流出闭合曲面的电流等于 单位时间闭合曲面内电量增量的负值(其实质是电荷守恒定律) $\iint \vec{j} \cdot d\vec{S} = -\frac{dq}{dt}$,

$$(\nabla \cdot \vec{j} = -\frac{\partial \rho}{\partial t}); \qquad \text{恒定电流条件:} \qquad \iint \vec{j} \cdot d\vec{S} = 0 \ , \qquad (\nabla \cdot \vec{j} = 0)$$

3. 欧姆定律及其微分形式: $I = \frac{U}{R}$, $\vec{j} = \sigma \vec{E}$, ,

焦耳定律及其微分形式: $Q = A = I^2 Rt$ $p = \sigma E^2$

电动势的定义:单位正电荷沿闭合电路运行一周非静电力所作的功

$$\varepsilon = \frac{A}{q} = \int_{-}^{+} \vec{K} \cdot d\vec{l} \quad , \qquad \varepsilon = \oint \vec{K} \cdot d\vec{l}$$

5. 磁感应强度: 是描述磁场的物理量, 是矢量, 其大小为 $B = \frac{F}{q_0 v \sin \theta}$, 式中 F 是运

动电荷 q_0 所受洛伦兹力,其方向由 $\vec{F} = q_0 \vec{v} \times \vec{B}$ 决定

磁感应线:为了形象地表示磁场在空间的分布,引入一族曲线,曲线的切向表示磁场的方向,密度是磁感应强度的大小;磁通量: $\phi = \iint_{s} \vec{B} \cdot d\vec{S}$ (可形象地看成是穿过曲面磁感应线的条数)

6. 毕奥一萨伐尔定律:
$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{l} \times \vec{r}}{r^3} \qquad \vec{B} = \frac{\mu_0}{4\pi} \int_L \frac{Id\vec{l} \times \vec{r}}{r^3}$$

7. 磁场的高斯定理和安培环路定理

磁场的高斯定理: $\iint_S \vec{B} \cdot d\vec{S} = 0$ 、 ($\nabla \cdot \vec{B} = 0$) (表明磁场是无源场)

安培环路定理: $\oint_L \vec{B} \cdot d\vec{l} = \mu_0 \sum_i I_i$ 、 $\oint_L \vec{B} \cdot d\vec{l} = \iint_S \vec{j} \cdot d\vec{S}$ 、 $(\nabla \times \vec{B} = \mu_0 \vec{j})$

3.

电

5.

半彳

(安培环路定理表明磁场是有旋场)

8. 安培定律:
$$d\vec{F} = Id\vec{l} \times \vec{B}$$
 、 $\vec{F} = \int_{L} Id\vec{l} \times \vec{B}$

磁场对载流线圈的作用: $\vec{M} = \vec{m} \times \vec{B}$ (\vec{m} 是载流线圈的磁矩 $\vec{m} = \vec{IS}$)

9. 洛伦兹力:运动电荷所受磁场的作用力称为洛伦兹力 $\vec{f} = q\vec{v} \times \vec{B}$ 带电粒子在匀强磁场中的运动:运动电荷在匀强磁场中作螺旋运动,运动半径为

$$R = \frac{mv_{\perp}}{qB}$$
 、周期为 $T = \frac{2\pi m}{qB}$ 、螺距为 $h = v_{\parallel}T = \frac{2\pi mv_{\parallel}}{qB}$

霍尔效应: $V_1 - V_2 = K_H \frac{IB}{h}$ 式中 K_H 称为霍尔系数,可正可负,为正时表明正电荷

导电,为负时表明负电荷导电 $K_H = \frac{1}{nq}$

10. 磁化强度 磁场强度 磁化电流 磁介质中的安培环路定理

$$\vec{M} = \frac{\sum \vec{m}}{\Delta \tau} , \qquad \oint_L \vec{M} \cdot d\vec{l} = \sum_{L \nmid 1} I' , \qquad \vec{i}' = \vec{M} \times \vec{e}_n \quad \vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M} , \qquad \vec{M} = \chi_m \vec{H} ,$$

$$\vec{B} = \mu_0 (1 + \chi_m) \quad \vec{H} = \mu_0 \mu_r \vec{H} = \mu \vec{H} , \qquad \oint_L \vec{H} \cdot d\vec{l} = \sum_i I_{0i} , \qquad \oint_L \vec{H} \cdot d\vec{l} = \iint_S \vec{J} \cdot d\vec{S}$$

练习题

选择题

Va=VA+E-IY-IR

1. 如图所示电路, 已知电流流向, 则 A、B两点电热关系为

A. $U_{\scriptscriptstyle A}$ 一定大于 $U_{\scriptscriptstyle R}$ B. 不确定,要由 ε ,I,R,r等值决定

C. U_A 一定小于 U_B D. U_A 等于 U_B 1=6E=1F

2. 把截面相同的直铜丝和钨丝串联接在一直流电路中,铜、

A.
$$j_1 = j_2$$
, $E_1 < E_2$ B. $j_1 = j_2$, $E_1 = E_2$

$$. \quad j_1 = j_2 \,, \quad E_1 = E_2$$

C.
$$j_1 = j_2$$
, $E_1 > E_2$ D. $j_1 < j_2$, $E_1 < E_2$

D.
$$j_1 < j_2$$
, $E_1 < E$

3. 一电流元位于直角坐标系原点 $\sqrt{2}$ 电流沿z轴正向,空间一点P(x,y,z)的磁感应强度沿

x轴的分量是

量是
$$A. \frac{\mu_0}{4\pi (x^2 + y^2 + z^2)}$$
B.
$$\frac{\mu_0}{4\pi (x^2 + y^2 + z^2)}$$
B.
$$\frac{\mu_0}{4\pi (x^2 + y^2 + z^2)^{\frac{3}{2}}}$$

C.
$$-\frac{\mu_0}{4\pi} \frac{xIdl}{(x^2+y^2+z^2)^{\frac{3}{2}}}$$
 D. 0

4. 四条相互平行的载流长直导线电流强度均为 1, 分对

电流方向如图所示,则中心 O 点处的磁感应强度大小为

A.
$$B = \frac{2\mu_0 I}{\pi a}$$
 B. $B = \frac{\sqrt{2}\mu_0 I}{\pi a}$

$$C. B=0$$

D.
$$B = \frac{\mu_0 I}{\pi a}$$

5. 电流强度为I的无限长载流导线弯成如图所示形状,其中四分之三圆周的圆心在 \emptyset 点。

半径为R。下列关于O点磁感应强度 \bar{B} 大小的结论中,正确的为

許

6. 在一半径为R的无限长半圆柱形金属薄片中,通以均匀电流I,方向如

A. 环路上各点的磁感应强度 \bar{B} 仅由环路所包围的电流产生,与环路外电流无关

- B. 若环路所包围的电流 $\sum I=0$,则磁感应强度 \overline{B} 在环路上各点必处处为零
- C. 对于无对称分布的电流系统,安培定律虽然成立,但却不易求解

A.
$$\int_{L_1} \vec{B} \cdot d\vec{l} = 2\mu_0 I$$
 B.
$$\int_{L_2} \vec{B} \cdot d\vec{l} = \mu_0 I$$
 C.
$$\int_{L_2} \vec{B} \cdot d\vec{l} = -\mu_0 I$$
 D.
$$\int_{L_1} \vec{B} \cdot d\vec{l} = \mu_0 I$$

IB

- 9. 一根无限长圆形铜导线,半径为R,载有电流I,在导线内部通过圆柱中心轴作/平面
- S,如图所示,则通过S面单位长度面积上的磁通量 ϕ_m 为

3

42

1

C

10. 如图所示,一电量为q(>0),质量为m的质点,以速度 \overline{V} 沿x轴射入磁感应强度为 \overline{B} 的均匀磁场中,磁场方向垂直纸面向里,其范围从 x=0 延伸到无限远。 若质点在x=0和y=0处进入磁场,则它将以速度 $-\overline{v}$ 从磁场的某 点再穿出,这一点的坐标是x=0和 A. $y = \frac{mv}{Ba}$ B. $y = \frac{2mv}{Ba}$ C. $y = -\frac{2mv}{Ba}$ D. $y = -\frac{mv}{Ba}$

11. 如图所示,均匀磁场中有一圆形闭合载流导线, $a \setminus b \setminus c$ 分别是其上长度相等的电

流元,位置如图,则其所受安培力大小之关系为

A. $F_a > F_b > F_c$ B. $F_a < F_b < F_c$

C. $F_b > F_c > F_a$ D. $F_a > F_c > F_b$

填空题

F= J, IdlxB

1. 电动势的定义为:单位正电荷沿闭冷电路运行一周非静电加折的的功。

2. 两段均匀导体组成的电路,其电导率分别为 γ_1 和 γ_2 ,长度分别为 L_1 和 L_2 ,导体的截面 $R = \frac{L}{\sqrt{L}}$ U = IR U = EL $= \frac{U}{L} = \frac{1}{L}$ 积均为S,通过导体的电流强度为I,则:(1)两段导体的电场 E_1 和 E_2 的比值 $E_1:E_2=\frac{\sqrt{1}}{\sqrt{1}}$.(2)导体 1 两端的电势差 $U_1=\frac{1}{\sqrt{1}}$.(3)导体 2 两端的电势差 $U_2=\frac{1}{\sqrt{1}}$.

3. 如图所示,电缆的芯线是一根半径为 r_1 的铜线,铜线外面包一层同轴的绝缘层,绝缘层 $r_2 = \frac{r_1}{2\pi t}$ $r_2 = \frac{r_2}{2\pi t}$ $r_3 = \frac{r_4}{2\pi t}$ 的半径为 r_2 ,电阻率为p,在绝缘层外面又用铅层保护起来,则:

(1) 长度为L的这种电缆沿径向的电阻 $R_r = \frac{P_r}{2\pi L} \frac{R_r}{\ln R_r}$ (2) 当芯

线与铅层间电压为U时,电缆中沿径向的电流 $I_r = \frac{1}{P_1}$ 影。

4. 如图所示,两根相互平行的长直导线 a、b 相距为 d ,载有大 小相等、方向相反的电流 I, 点 P在二者垂直平分线上, 到两根导

$$B = \frac{100 \text{ AT/}^2}{4 \text{ Tr}^2} \qquad \alpha = 90^{\circ} \qquad \alpha = 90^{\circ} \qquad \alpha = 0$$

$$B = \int dB = \int \frac{\text{Mol d} L}{4 \text{ Tr}^2} = \frac{\text{Mol d}}{2 \text{ Tr}} \qquad B' = 2 B \cos \theta = \frac{\text{Mol d}}{2 \text{ Tr}} \left(\frac{10 \text{ Mol d}}{4 \text{ Tr}} \right)$$

īE.

定

方

12

将

化

13

磁

垂

方

电

Ξ

丰

线垂直连线之距离为 R。由此给出 P 点磁感应强度的方向为治 O L 垂直子分 Mold ____ 大小为_178(尺十04) R 5. 将半径为R的无限长导体管壁(厚度忽略),沿轴线方向割去一宽度 为 $a(a \ll R)$ 、无限长直窄条后,再沿轴线方向均匀地通以电流,设单 如图所示。则轴线上任一点磁感应强度大小 运长海的电流 三流 6. 如图所示,长直载流导线电流右侧有 S_1 、 S_2 ,两个矩形回 路平行放置,紧密相接,并与直导线共面,且有一边与长直 导线平行、则通过 S_1 、 S_2 磁通量的大小之比 $O_2 = \{\{B, d\}\}$ $= \int_{1}^{2} \frac{\mu_{01}}{4\pi R} \int_{1}^{2} dR = \frac{\mu_{01} l}{4\pi} \int_{1}^{2} \frac{1}{R} dR = \frac{\mu_{01} l}{4\pi} \ln 2$ DE cli = 从中 如图所示,无限长直圆柱表面载有横向均匀电流,设电流线 为沿轴线由板站 1= 1, idl 8. 电子、质子同时进入等大均匀磁场中绕磁感应线作螺旋线运动,设二者进入磁场时的 _的螺矩大(填"电子"或"质子"); h= 27mV" qB "电子"或"质子")。 9. 将一待测的半导体薄片置于均匀磁场中, \bar{B} 和I的方向如图 所示,测得霍尔电压为正,则待测样品是 N型 (填 "n \overline{B} 型"或"p型")半导体。 10. 如图所示,将载流直导线弯成半径为 R 的 1/4 圆弧,置于磁感 应强度为 \overline{B} 的均匀磁场中,则图中ab 段弧线部分所受磁场力的大 小为、瓦时 方向为 11. 如图所示,在磁感应强度为 \bar{B} 的均匀磁场中,放置一均匀带 $\vec{M} = \vec{m} \times \vec{B} = LS\vec{e}_n \times \vec{B}$ = RUINTR B = NWR L=mxB=mBey=BISey=BTR3AW

K=WonI

ᅫ

= Mei.

き的

正电的圆环。设其半径为R,所带电荷线密度为 λ ,圆环可绕通过中心、且与环面垂直的 定轴旋转,当角速度为 ω 时,圆环受到磁场力矩的大小为 ω λ π R 3 B 坚首向上.

12. 一个匝数 N=100 的圆形线圈,其有效半径 R=5cm,通过的电流强度为 I=0.1A.

将其放入匀强外磁场 B=1.5T 中,设线圈的位置由磁矩方向与磁场方向夹角为 $\theta=0^\circ$ 变

化到位置 $\theta=180^\circ$,则计算此过程磁场对线圈所作的功为A=

13. 如图所示,带电量为q(<0)的带电粒子,以速度 \bar{v} 垂直

磁感应强度 \bar{B} 的方向在x=0处射入匀强磁场中,磁场方向

垂直纸面向里, 欲使带电粒子作匀速直线运动,

方向上加一电场强度大小为

W= JO Mdo = J180° nI. TR2. B 57X2500 X 11 X 1.0X 00] =

证明题

电场。

力的

(填

1. 内外半径分别为 R和 R的同心球面之间,填满电阻率为 p的材料,当在两球面之间加上

电势差 U后,试证明两球面之间的电流密度为:

证明: 流半径为1处取-薄球壳

$$R = \int_{R_{1}}^{R_{2}} P \frac{dr}{4\pi r^{2}} = \frac{P}{4\pi} \left(\frac{1}{R_{1}} + \frac{1}{R_{2}} \right)$$

$$I = \frac{V}{R} = \frac{4\pi V R_{1} R_{2}}{P(R_{2} - R_{1})}$$

$$I = \frac{1}{4\pi V R_{2}} = \frac{V R_{1} R_{2}}{P(R_{2} - R_{2}) R_{2}}$$

2. 质谱仪的结构如图所示,粒子源S产生质量为M、电量为q的带电粒子,其速度很小, 可视为静止。带电粒子经电压为V的静电场加速后,进入磁感应强度为 \bar{B} 的均匀磁场、 并沿着半个圆周运动达到记录底片上的P点。设实验测得P点到入口处的距离x已知。

求证此带电粒子的质量满足 $M = \frac{qB^2x^2}{9V}$

证明:带电影子经电压为V的静电场加速后、其速度为Vo

qVoB=mVo 其中民美 则 $m = \frac{BQR}{Vo} = \frac{BQ \times V}{\sqrt{29V}}$ 解得 $m = \frac{B^3 \times V}{RV}$ 计算题

1. 把大地看作均匀的导电介质,电阻率为ho,一半径为 r_0 的半球形电极与大地表面相接,

如图所示。电极本身的电阻可以忽略,试求此电极的接地电阻。 解在距半球球心下处沿电流为向取微元长度 dr,导电截面为2TT2,则此微元长度电阻为

2. 如图所示,电流为I的均匀电流,通过宽度为2a的无限长平面导体薄板,过板的中线 并与板面垂直的平面上有一点P,与板的垂直距离为x。求P点磁感应强度 \overline{B} 的大小和方 向。解:建立坐标系并选取无限长元电流 dl=元dy 如图,它在点P

3. 行

腔

12

上式第一项是y的奇函数在Ea.a.k.积分为零,故 B= JdByj=2Jaua xdy j= lloI arctg Qj.

 $d\overrightarrow{B} = \frac{\mu_0(\overrightarrow{a})dl}{2\pi(l^2+\cancel{Y}^2)^{1/2}} \frac{(\cancel{Xex} - ley)}{(l^2+\cancel{Y}^2)^{1/2}}$ $B = \frac{\mu_0 1}{4\pi\alpha} \int_{-\alpha}^{\alpha} \frac{\cancel{Xex} - ley}{\cancel{Y^2 + l^2}} dl = \frac{\mu_0 1}{4\pi\alpha} e^{\cancel{X}} \int_{\alpha}^{\alpha} \frac{\cancel{X} + l^2}{\cancel{X} + l^2} dl = \frac{\mu_0 1 e^{\cancel{X}}}{2\pi\alpha} \text{ arctog}$ 3. 在半径为 R 的无限长金属圆柱体内挖去一半径为 r 的无限长圆柱体,两柱体的轴线平

行,相距为d,如图所示,导体中有电流I沿轴向流过,并均匀地分布在横截面上,求空

腔内磁感应强度的分布

解: 了= 1(12-172)

利用补偿法,过空腔内P点从O点为圆心作圆周回路,有 ∮LBidī=jīrtiMo

 $B_{i} = \frac{\mu_{0}}{2\pi r_{i}} j\pi r_{i}^{2} = \frac{\mu_{0}j}{2} r_{i}$ $B_{i} = \frac{\mu_{0}}{2} j \times r_{i}$

设空腔内有一了电流,同理得∮Lz Bid【= jīrs llo

$$B_{2} = \frac{M_{0}}{2\pi r_{1}}, j\pi r_{2}^{2} = \frac{M_{0}j}{2}r_{2}$$

$$B_{1} = \frac{M_{0}}{2\pi r_{1}}, j\pi r_{2}^{2} = \frac{M_{0}j}{2}r_{2}$$

$$B_{2} = \frac{M_{0}}{2\pi r_{2}}, j\pi r_{2}^{2} = \frac{M_{0}j}{2}r_{2}$$

$$B_{3} = \frac{M_{0}j}{2\pi r_{2}} \times (r_{1} - r_{2}) = \frac{M_{0}j}{2\pi r_{2}} \times 0$$

$$B_{3} = \frac{M_{0}j}{2\pi r_{2}} \times 0$$

4. 一长直空心柱形导体的横截面如图所示,内、外半径分别为r和R,载有轴向电流

I,设电流在其横截面上均匀分布,P为空间任意一点,并且到轴线的距离为d。求: (1) _

d < r、(2) r < d < R (3) d > R 处的磁感应强度 \bar{B} 的大小。

解: 磁场分布有对称性,由安培环路定理:

作同心圆形闭合路径如图示:

 $\oint \vec{B} \cdot d\vec{l} = M_0 \sum \vec{I}$ $d < r = \hat{J}$, $\oint \vec{B} \cdot d\vec{l} = 2\pi dB$, $\sum \vec{I} = 0$ 故 B = 0 $r < d < R = \hat{J}$, $\oint \vec{B} \cdot d\vec{l} = 2\pi dB$, $\sum \vec{I} = \frac{d^2r^2}{R^2 - k^2}\vec{I}$ 故 $B = \frac{M_0 \vec{I} (d^2 - r^2)}{2\pi d (R^2 - r^2)}$

d>RBJ, $\phi \vec{B} \cdot d\vec{t} = 2\pi dB$, $\Sigma I = I$, $B = \frac{MoI}{2\pi d}$

- 5. 如图所示,一半径为R、电流强度为I的平面载流线圈,处于磁感应强度为 \bar{B} 的均匀磁场中。求:(1)线圈受到的安培力;(2)对y轴的磁力矩。
 - (3) 若线圈由图示位置转动到其平面与磁场垂直的状态,磁场力做功多少?

则 My=-TIR'IB 负号表示力矩为向与坐标轴正向相反

13)
$$A=BInR^2$$
 $dA=\int Ld\theta = \int_{\frac{\pi}{2}}^{\infty} mBsin\theta d\theta = ImB$

6. 无限长直导线通以电流 I_1 ,其旁放有电流为 I_2 的一直角三角形线圈,线圈与长直导线共面,所给尺寸如图所示,求 bc 、 ca 两段导线分别受到的安培力。

$$\widehat{H}: dbc \rightarrow l = d+l$$

$$B = \underbrace{\frac{Hol_1}{2\Pi(d+l)}}$$

$$Fbc = B_1 l_2 l = \underbrace{\frac{Hol_1 l_1}{2\Pi(d+l)}}$$

$$Fbc = -B_2 l_2 l_2 - \underbrace{\frac{Hol_1 l_1}{2\Pi(d+l)}}$$

$$Fca = \int_{\alpha}^{C} B_3 dl_1 \left(\underbrace{\frac{e_x \cdot e_y}{N\Sigma}}_{N\Sigma} \right) = \left(\underbrace{\frac{e_x \cdot e_y}{N\Sigma}}_{N\Sigma} \right) \int_{0}^{l_1} \underbrace{\frac{Hol_1 l_1}{2\Pi(d+l)}}_{2\Pi(d+l)} J_2 N_2 dx$$

$$= \underbrace{\frac{Hol_1 l_2}{2\Pi(d+l)}}_{0} \left(\underbrace{e_x \cdot e_y}_{N\Sigma} \right) \left| \underbrace{\frac{Hd}{d}}_{N\Sigma} \right| \underbrace{\frac{Hd}{d}}_{N\Sigma}$$

$$Fab = \underbrace{\int_{0}^{l_1} \underbrace{\frac{Hol_1 l_1}{2\Pi(d+l)}}_{N\Sigma} dx \cdot \underbrace{e_y}_{N\Sigma} - \underbrace{\frac{Hol_1 l_1}{2\Pi(d+l)}}_{N\Sigma} \underbrace{e_x}_{N\Sigma} \right| \underbrace{\frac{Hd}{NL}}_{N\Sigma}$$

班级数学与应用数学

基本要求

Nov.14 2011

- 1. 深刻理解法拉第电磁感应定律和楞次定律,熟练地计算感应电动势的大小,会判别感应电动势的方向;
- 2. 理解动生电动势, 能够用动生电动势的公式计算简单几何形状的导体在勾强磁场或对称分布的非勾强磁场中运动时的动生电动势;
- 3. 理解感生电动势、感生电场的概念,能够计算简单的感生电场强度及感生电动势,并会 判断感生电场的方向;
- 4. 理解自感系数、互感系数的定义及物理意义,会计算自感系数、互感系数;
- 5. 理解磁场能量和磁场能量密度的概念,能计算一些简单情况下的磁场能量。
- 6. 理解位移电流和麦克斯韦方程组

基本内容和主要公式

1. 法拉第电磁感应定律和楞次定律

法拉第电磁感应定律:
$$\varepsilon=-\frac{d\Phi}{dt}$$
 , $\varepsilon=-\frac{d\Psi}{dt}=-N\frac{d\phi}{dt}$ (多匝线圈)

楞次定律:感应电流的效果总是反抗引起感应电流的原因。

(楞次定律是能量守恒定律在电磁感应现象中的具体表现)

- 2. 动生电动势和感生电动势
- (1) 动生电动势: 导体在磁场中作切割磁力线运动所产生的感应电动势称为动生电动势; 产生动生电动势的非静电力是洛伦兹力

$$\varepsilon_D = \int (\vec{v} \times \vec{B}) \cdot d\vec{l}$$
 (一段导体运动)、 $\varepsilon_D = \int (\vec{v} \times \vec{B}) \cdot d\vec{l}$ (整个回路运动)

(2) 感生电动势:由变化磁场所产生的感应电动势称为感生电动势;产生感生电动势的

非静电力是有旋电场
$$\vec{E}_{w}$$
 。 $\varepsilon_{w} = \int_{L} \vec{E}_{w} \cdot d\vec{l} = -\frac{d\Phi}{dt} = -\frac{d}{dt} \iint_{S} \vec{B} \cdot d\vec{S} = -\iint_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S}$

(式中 S 是以 L 为边界的任意曲面)

3. 电场由两部分构成一部分是电荷产生的有源场 \vec{E}_0 : $\vec{Q} \cdot \vec{E}_0 \cdot d\vec{l} = 0$; 另一部分是变

化磁场所激励的有旋场
$$\vec{E}_w$$
: $\int_L \vec{E}_w \cdot d\vec{l} = -\iint_S \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S}$

$$\vec{E} = \vec{E}_0 + \vec{E}_w \quad , \qquad \oint_L \vec{E} \cdot d\vec{l} = -\iint_S \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S} \quad , \qquad \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

- 4. 自感现象和互感现象
- (1) 自感现象:由回路中电流变化而在回路自身所产生的电磁感应现象叫做自感现象; 所产生的电动势叫做自感电动势; $\Phi=LI$ 、 $\varepsilon_L=-L\frac{dI}{dt}$ 式中 L 叫做自感系数
- (2)互感现象:由一回路中电流变化而在另一回路中产生的电磁感应现象叫做互感现象; 所产生的电动势叫做互感电动势; $\Phi_{12}=M_{12}I_1$ 、 $\Phi_{21}=M_{21}I_2$ 、 $\varepsilon_{M}=-M\frac{dI}{dt}$ 、

$$M_{12} = M_{21} = M$$

式中M 叫做互感系数

5. 磁场能量

磁场能量密度:
$$w_m = \frac{1}{2}\vec{B}\cdot\vec{H}$$
 , 一般情况下可写为 $w_m = \frac{1}{2}BH = \frac{1}{2}\frac{B^2}{\mu}$

磁场能量:
$$W_m = \iiint_V w_m dV = \iiint_V \frac{1}{2} \vec{B} \cdot \vec{H} dV$$
 、 $W_m = \frac{1}{2} LI^2$

- 6. 位移电流和麦克斯韦方程组
 - (1) 位移电流密度: $\vec{j}_D = \frac{\partial \vec{D}}{\partial t}$ 其实质是变化的电场

(2) 位移电流:
$$I_D = \iint_{S} \vec{j}_D \cdot d\vec{S} = \iint_{S} \frac{\partial \vec{D}}{\partial t} \cdot d\vec{S} = \frac{d}{dt} \iint_{S} \vec{D} \cdot d\vec{S} = \frac{d\Phi_D}{dt} .$$

$$\vec{j} = \vec{j}_0 + \frac{\partial \vec{D}}{\partial t}$$
 称为全电流密度;

$$\oint_{S} (\vec{j}_0 + \frac{\partial D}{\partial t}) \cdot d\vec{S} = 0$$
 此式表明全电流在任何情况下都是连续的

$$\vec{B} = \mu_0 \mu_r \vec{H} , \quad \vec{D} = \varepsilon_0 \varepsilon_r \vec{E} \qquad \oiint_S \vec{B} \cdot d\vec{S} = 0 , \qquad \circlearrowleft_L \vec{H} \cdot d\vec{l} = \oiint_S (\vec{j}_0 + \frac{\partial \vec{D}}{\partial t}) \cdot d\vec{S} ,$$

$$\nabla \cdot \vec{D} = \rho_0 \; , \quad \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \; , \quad \nabla \cdot \vec{B} = 0 \; , \; \nabla \times \vec{H} = \vec{j}_0 + \frac{\partial \vec{D}}{\partial t} \; \; , \quad \vec{j}_0 = \sigma \vec{E}$$

练习题

选择题

1. 如图,长为l的直导线ab在均匀磁场中以速度 \bar{v} 垂直于导线运动。则直导线ab中的动

 $\varepsilon_D = \int_{-\infty}^{\infty} E_D \cdot dl = \int_{-\infty}^{\infty} (V \times B) \cdot dl$ 生电动势的大小为

- A. Blv
- B. $Blv\sin\alpha$
- C. $Blv\cos\alpha$

2. 一圆形线圈的一半放在分布于方形区域内的匀强磁场B中, 图所示。欲使圆线圈中产生逆时针方向的感生电流,应使 \vec{B}

- A. 线圈向右平移 B. 线圈向上平移

- A. $\omega L^2 B \cos(\omega t + \theta)$ B. $\frac{1}{2}\omega L^2 B \cos \omega t$
- C. $\frac{1}{2}\omega L^2 B$
- D. $\omega L^2 B$

4. 如图所示,在圆柱形空间内有一磁感应强度为 \bar{B} 的均匀磁场,其变化率为 $\frac{dB}{dt}$

中a,b两点间放置一直导线 \overline{ab} 和弯曲导线 \overline{ab} ,下列说法中正确的是

- A. 电动势只在ab 中产生
- Ew= Dr Ew. dl = do
- B. 电动势只在 $a\bar{b}$ 中产生
- = 1/s # ds.

D. \overline{ab} 中的电动势小于 \overline{ab} 中的电动势

5. 在感应电场中,电磁感应定律可写成: $\oint_{\mathcal{L}} \vec{E}_k \cdot d\vec{l} = -\frac{d\Phi_m}{dt}$, 式中 \vec{E}_k 为感应电场的电 =- 【器成.

场强度,此式表明:

- A. 闭合曲线 L 上 $ec{E}_{\mathbf{k}}$ 处处相等
- 太. 感应电场是保守力场
- 感应电场的电场线不是闭合曲线
- 应申场中不能像静电场中那样引入电势的概念
- 6. 一块铜板放在磁感应强度正在增大的磁场中时,铜板中出现涡流(感应电流),则涡流 (据太定律) $[\S]$
 - A. 加速铜板中磁场的增加
- B. 减缓铜板中磁场的增加
- C. 对磁场不起作用
- D. 使铜板中磁场反向

- D. 1/2
- 8. 一个电阻为 R,自感系数为 L 的线圈,将它接在一个电动势为 $\varepsilon(t)$ 的交变电源上,设

线圈的自感电动势为 ε_{l} ,则流过线圈的电流为

A.
$$\frac{\varepsilon(t)}{R}$$

B.
$$\frac{\left[\varepsilon(t)-\varepsilon_L\right]}{R}$$

C.
$$\frac{\left[\varepsilon(t) + \varepsilon_L\right]}{R}$$

D.
$$\frac{\varepsilon_L}{R}$$

真空中一根无限长盲导线上通有电流强度为I的电流,则距导线垂直距离为a的空

$$W_{m} = \frac{1}{2}BH = \frac{1}{2}\frac{B^{2}}{Mo}$$

A.
$$\frac{1}{2}\mu_0(\frac{\mu_0 I}{2\pi a})^2$$

B.
$$\frac{1}{2\mu_0}(\frac{\mu_0 I}{2\pi a})^2$$

C.
$$\frac{1}{2}(\frac{\mu_0 I}{2\pi a})^2$$

A.
$$\frac{1}{2}\mu_0(\frac{\mu_0I}{2\pi a})^2$$
 B. $\frac{1}{2\mu_0}(\frac{\mu_0I}{2\pi a})^2$ C. $\frac{1}{2}(\frac{\mu_0I}{2\pi a})^2$ D. $\frac{1}{2\mu_0}(\frac{\mu_0I}{2a})^2$

- 10. 一薄金属圆盘放在均匀磁场中,磁场的方向垂直盘面向下,如图所
- 示。当盘以恒定的角速度 α 绕通过盘心O且与盘面垂直的轴逆时针旋转

时,则

- B. 盘心的电势高于其它位置的电 A. 整个金属盘仍然是个等势体
- C. 盘心的电势低于其它位置的电势
- D. 整个圆盘电势为零

$$dR = \frac{1}{6} \frac{dr}{2\pi r} \qquad R = \frac{1}{2\pi \sigma r} \ln \frac{R}{0}.$$

11. 两个通有电流的平面圆线圈相距不远,如果要使其互感系数近似为零, 的取向使:

- B. 两线圈平面都垂直于两圆心连线
- C. 两线圈中电流的流向相反
- D. 一个线圈平面平行于两圆心连线,另一个线圈平面垂直于两圆心连线
- 12. 对位移电流有下列四种说法, 正确的是

- A. 位移电流是由变化电场产生的
- C. 位移电流是由变化磁场产生的 D. 位移电流的磁效应不服从安培环路定理

填空题

1. 如图所示,一边长为I的等边三角形金属框置于磁感应强度为 $ar{B}$ 的均

勺磁场中,且ab边与 \bar{B} 平行,当金属框绕ab边以角速度 α 转动时,则 bc 边的电动势为 $\frac{3}{8}$ BWV², ca 边的电动势为 $-\frac{3}{8}$ BWV³, 回路 abca 的电

动势为 0 。(设电动势治 abcd 绕何为正)

2. 金属杆 AB 以匀速v=2m/s 平行于长直载流导线运动, 导线与 AB 共 面且相互垂直,如图 13-7 所示,已知 I=40A,则此金属杆中的电动势

3. 如图所示,半径为R的圆弧abc在磁感应强度为 \bar{B} 的均匀磁场中沿x轴向右移动,已知 $\angle aox = \angle cox = 150^\circ$,若移动速度为 \overline{v} ,则在圆弧abc

4. 一面积为S的平面导线回路,置于载流长直螺

 $= BVR \int_{T}^{L} COSD df = BVR$ 螺线管轴线平行,设螺线管单位长度上的匝数为n,通过电流 $I = I_m \sin \omega \lambda$,其中J

为常数,t为时间变量,则该回路中感生电动势的表达式为 $- \mathcal{U}_{o} n S \omega \mathcal{U}_{m} \cos \omega t$.

B=Uol=Nolmsinut

Ew= dnBs = MonSwlmaswt

$\mathcal{E} = \frac{1}{t} \int_{0}^{t} \mathcal{E}(t') dt' = \frac{1}{t} \int_{0}^{t} -L \frac{dt}{dt'} dt' = \frac{1}{t} \int_{0}^{t} M = \frac{L1}{t}$ 6 西北大学基础物理学习题集——电磁感应和麦克斯韦电磁理论

5. 在自感系数 L=0.05 mH 的线圈中,流过 I=0.8 A 的电流,如在切断电路后经过 t=100 μs 的时间,电流强度近似变为零,则:回路中产生的平均自感电动势

11. 真空中,两相距为2a的平行长直导线,通以方向相同、大小相等的电流I。设O,P两点与导线在同一平面内,与导线的距离如图所示。则O点的磁能密度 $w_m = \frac{2 \text{Mol}^2}{2 \text{Tr} \Omega} + \frac{2 \text{Mol}}{2 \text{Tr} \Omega} = \frac{2 \text{Mol}^2}{3 \text{Tr} \Omega}$ 的磁能密度 $w_m = \frac{2 \text{Mol}^2}{9 \text{Tr}^2 \Omega^2}$ 。

12. 如图所示,两根彼此紧靠的绝缘导线绕成一个线圈,其 A 端用焊锡将两根导线焊接在一起,另一端 B 点处作为连接外电

路的两个输入端,则整个线圈的自感系数为

14. 在没有自由电荷与传导电流的变化电磁场中

$$= \iint_{S} \frac{\partial V}{\partial t} dS ; \quad \int_{L} \bar{E} \cdot \bar{d}l = -\iint_{S} \frac{\partial R}{\partial t} dS .$$

三、证明题

1. 证明: 如图所示, 一电量为 q 的点电荷, 以角速度 ω 作圆周运动, 圆周的半径为 R, 设 t=0 时 q 所在点的坐标为 $x_0=R$, $y_0=0$, 则圆心处 0 点的位移电流密度为

$$\frac{q\omega}{4\pi R^2}(\sin\omega t\vec{i}-\cos\omega t\vec{j})$$

证明: t=0时· 9在 0总产生的电场 E为 $E = \frac{9}{4\pi \epsilon_0 c_0} \left[-\cos(\omega t) - \sin(\omega t) \right]$ $D = \epsilon_0 E = \frac{9}{4\pi \epsilon_0 c_0} \left[-\cos(\omega t) - \sin(\omega t) \right]$ $J_0 = \frac{\partial D}{\partial t} = \frac{9\omega}{4\pi c_0} \left[\sin(\omega t) - \cos(\omega t) \right]$

$$\vec{F} = R \left(\cos \omega t \, \vec{e}_x + \sin \omega t \, \vec{e}_y \right).$$

$$\vec{D} = \frac{-Q}{4\pi R^2} \vec{r}$$

$$= \frac{-Q}{4\pi R^2} \left(\cos \omega t \, \vec{e}_x + \sin \omega t \, \vec{e}_y \right)$$

$$\vec{J}_p = \frac{\partial Q}{\partial t} = \frac{-Q \omega}{4\pi R^2} \left[-\sin \omega t \, \vec{e}_x + \cos \omega t \, \vec{e}_y \right]$$

四、计算题

1. 如图所示,在均匀磁场 B 中放一很长的良导体线框,其电阻可忽略。今在此线框上横跨一长度为 l、质量为 m、电阻为 R 的导体棒,现让其以初速度 \bar{v}_0 运动起来,并忽略棒

与线框之间的摩擦, 试求棒的运动规律。

伸:导体棒以初速度Vo运动起来,棒在磁场中运动。 产生感应电动势.

$$dE_0 = (\vec{v} \times \vec{B}) dl$$
 $E_D = \int_0^1 v B dl = BvL$. 初始电动势 $E_0 = Bv dl$
整个回路的电流 $l = \frac{E_0}{R} = \frac{Bv d}{R}$
导体棒所复安塔为: $F = BIL = \frac{B^2 v d^2}{R}$
导体棒在这种进程中. 的力速度 $\alpha = \frac{E_0}{MR}$

因此导体棒将做加速度越来越小的减速直线运动,直至最后全静止.

$$\frac{dv}{dt} = \Omega = -\frac{B^3 t^3 v}{MR}$$

$$\int_{v_0}^{v} \frac{dv}{v} = -\frac{B^3 t^3}{MR} \int_{0}^{t} dt$$

$$\int_{v_0}^{v} \frac{dv}{v} = -\frac{B^3 t^3}{MR} \int_{0}^{t} dt$$

$$\int_{v_0}^{v} \frac{dv}{v} = -\frac{B^3 t^3}{MR} \int_{0}^{t} dt$$

$$\int_{v_0}^{v} \frac{dv}{v} = -\frac{B^3 t^3}{MR} \int_{0}^{t} dt$$
2. 如图所示,均匀磁场中一金属框架 $aoba$ 的 ab 边可无摩擦自由滑动,已知 $\angle aob = \theta$,

2. 如图所示,均匀磁场中一金属框架 aoba 的 ab 边可无摩擦自由滑动,已知 $\angle aob = \theta$, $ab \perp ox$,磁场随时间变化的规律为 $B_t = t^2/2$ 。若 t = 0 时,ab 边由 x = 0 以速率 v 沿 x 轴正向垂直于 ab 匀速滑动,试求任意时刻 t 金属框中感应电动势的大小和方向。

解: 减场随时间变化将产生感生电动势, ob远在磁场中的速循环将产生动生电动势,则 $|E| = \frac{dP}{dt} = \frac{d(BS)}{dt} = B \frac{dE}{dt} + S \frac{dB}{dt}$ $= B \frac{d}{dt} (\frac{1}{2}X) + \frac{1}{2}(X \cdot t)$ $L = X \cdot tan \theta = V \cdot tan \theta$ $= V^2 \cdot tan \theta$ $= V^2 \cdot tan \theta$

名向为逆时针名向.

3. 如图所示,无限长直导线中载有交变电流 $i=I_0\sin\omega t$,与其共面的长方形线圈 ABCD长为l ,宽为(b-a) 。试求: (1) 穿过 ABCD 面积的磁通量 Φ ;

4. 在无限长螺线管中,均匀分布变化的磁场 $\vec{B}(t)$ 。设 \vec{B} 以速率 $\frac{dB}{dt} = h$ 变化(k > 0,

且为常量),方向与螺线管轴线平行,如图所示。现在其中放置一直角形导线abc。若已知螺线管截面半径为R,ab=l,试求:(1)螺线管中的感应电场 \bar{E}_v ;(2)ab,bc 两段导线中的感生电动势。

解:11) 取圆心为0, 羟为r(r<R)的圆周,根据感生电场与变化磁场之间的关系。 少, Ew.dl=-de=-Jls器ds

$$\mathbb{P} = \frac{1}{2} \cdot \frac{dR}{dt} = -\pi r^2 h$$

$$\mathbb{P} = \frac{1}{2} \cdot h \quad (r < R)$$

x

12) 连接0a, ob, o C. 在回路OabO中. Ø= BS=\frac{1}{2}Bl;\n R=1/4 则 E₁=-\frac{do}{dt}=-\frac{1}{2}lh\n R=1/4

(P3-194 则 Ens=-主lh,1P3-194 负债补充为进的针须 当向由占指向C. ightharpoonup 5. 设一同轴电缆由半径分别为 R_1 和 R_2 的两个同轴薄壁长直圆筒组成,两长圆筒通有等值反向电流 I ,在横截面上电流均匀分布。 两筒间介质的相对磁导率 $\mu_r=1.2$ 。

求: (1) 同轴电缆单位长度的自感系数;

(2) 同轴电缆单位长度上储存的磁能。

班级数学与应用数学

20/0/1/403b 第十二次 波动光学 郭奇瑞

- 1. 理解光的相干性、相干条件、相干长度和光程的概念以及光程差与相位差的关系: 理解 分波振面法干涉,熟练掌握双缝干涉的明暗条纹条件
- 2. 理解分振幅法干涉,熟练掌握薄膜干涉,等厚干涉(劈尖干涉、牛顿环等);
- 3. 理解惠更斯一菲涅耳原理:
- 4. 理解菲涅耳半波带法,掌握单缝夫琅和费衍射的条纹分布规律;
- 5. 理解光栅夫琅和费衍射原理,熟练掌握光栅衍射公式;
- 6. 了解圆孔夫琅和费衍射,理解光学仪器的分辩本领的概念;了解 x 射线的衍射现象。
- 7. 理解自然光和偏振光的概念,掌握马吕斯定律;
- 8. 理解反射光和折射光的偏振性,掌握布儒斯特定律:了解双折射现象;

基本内容和主要公式

- 1. 惠更斯-菲涅耳原理: 液面上各点都看作是子波波源,它们发出的子波在空间相遇时,其 强度分布是子波相干叠加的结果。
- 光波的叠加 两相干光在空间一点 P 相遇, P 点的光强为: 相干叠加 $I=I_1+I_2+2\sqrt{I_1I_2}\cos\Delta\varphi$ 非相干叠加 $I=I_1+I_2$
- 3. 光的干涉
 - (1) 光程: $l=\sum_{i}n_{i}r_{i}$ (r_{i} 指光在真空中传播的距离, n_{i} 指介质的折射率).

(2) 光干涉的一般条件:
$$\delta = n_2 r_2 - n_1 r_1 = \begin{cases} \pm 2k \frac{\lambda}{2} & (干涉加强) \\ \pm (2k+1) \frac{\lambda}{2} & (干涉削弱) \end{cases}$$

 $\delta = n(r_2 - r_1) \approx d \sin \theta \approx d \operatorname{tg} \theta = d \cdot \frac{x}{D}$ (3) 杨氏双缝干涉: 明暗条纹距屏幕中心的位置分布为:

$$x_{k} = \begin{cases} \pm k \frac{D}{d} \lambda, k = 0, 1, 2....(明纹) \\ \pm (2k+1) \frac{D}{d} \frac{\lambda}{2}, k = 0, 1, 2....(暗纹) \end{cases}$$

相邻的两条明纹(或暗纹)间距

$$\Delta x = x_{k+1} - x_k = \frac{D\lambda}{d}$$

(4) 薄膜干涉: 等倾干涉 a. 光程差

$$\delta = 2e\sqrt{n^2 - n'^2 \sin^2 i} + \frac{\lambda}{2} = \delta(i)$$

b. 干涉条件

$$\delta(i) = \begin{cases} 2k\frac{\lambda}{2}, & k = 1, 2, \dots \\ (2k+1)\frac{\lambda}{2}, & k = 0, 1, 2, \dots \text{ if } \end{cases}$$

等厚干涉 a. 劈尖干涉: 光程差(垂直入射)
$$\delta \approx 2ne + \frac{\lambda}{2}$$
 亮纹厚度 $e = (2k+1)\frac{\lambda}{4n}, \quad k = 0,1,2,\cdots$ 暗纹厚度 $e = 2k\frac{\lambda}{4n}, \quad k = 1,2,\cdots$ b. 牛顿环 $\delta = 2ne + \frac{\lambda}{2}$ 明环 $r_k = \sqrt{\frac{(2k-1)R\lambda}{2n}} \quad k = 1,2,3,\dots$ 暗环 $r_k = \sqrt{kR\lambda/n} \quad k = 0,1,2,\dots$

(5) 迈克尔逊干涉仪

$$\Delta d = d_1 - d_2 = N \cdot \frac{\lambda}{2}$$

4. 光的衍射

(1) 单缝夫琅和费衍射:暗纹
$$a\sin\theta=\pm k\lambda,\ k=1,2,3\cdots$$
 明纹 $a\sin\theta=\pm(2k'+1)\frac{\lambda}{2},\ k'=1,2,3\cdots$

(2) 圆孔夫琅和费衍射: 第一暗环所对的衍射角(最小分辨角):

$$\delta\theta \approx \sin\theta_1 = 1.22 \frac{\lambda}{D}$$

分辨本领:
$$R \equiv \frac{1}{\delta\theta} = \frac{D}{1.22\lambda}$$

垂直入射 干涉明纹位置主极大 (3) 光栅衍射:

 $d\sin\theta = \pm k\lambda$, $k = 0,1,2,\cdots$

新聞館
$$a\sin\theta'=\pm k'\lambda$$
, $k'=1,2,3,\cdots$
敏级 $\theta=\theta'$, $\frac{d}{a}=\frac{k}{k'}$ $k=\frac{d}{a}k'$
光强 $I_{\rho}=I_{0\phi}\left(\frac{\sin\alpha}{\alpha}\right)^2\cdot\left(\frac{\sin N\beta}{\sin\beta}\right)^2$
斜入射 $d(\sin\theta\pm\sin i)=\pm k\lambda$

布拉格公式

$$2d \cdot \sin \Phi = k\lambda$$
, $k = 1, 2, 3..$ 加强

5. 光的偏振 偏振光:线偏振光,部分偏振光,圆偏振光和椭圆偏振光,偏振光的获得

马吕斯定律
$$I = I_0 \cos^2 \alpha$$
 ; 布鲁斯特 $\operatorname{tg} i_0 = \frac{n_2}{n_1} = n_{21}$

晶体的双折射 双折射现象

选择题

- 1.根据惠一菲原理, 若已知光在某时刻的波阵面为 S, 则 S 前方某点 P 的光强决定于波阵面 上所有面光源发出的子波各自传到 P点的 S=Vt= - ・セ
 - A. 振动振幅之和
- B. 相干叠加
- C. 振动振幅之和的平方
- D. 光强之和
- 2. 在相同时间内,一束波长为 λ 的单色光在空气中和玻璃中:

- A. 传播的路程相等, 光程相等
 - B. 传播的路程相等, 光程却不相等
- C. 传播的路程不相等, 光程相等 D. 传播的路程不相等, 光程亦不相等
- 3. 在杨氏双缝干涉实验中, 若将整个装置放在水中, 则 A. 干涉条纹间距减小:
 - B.干涉条纹间距增大:
 - C. 干涉图样不变.
- D.明条纹变暗纹, 暗纹变明纹。
- 4. 用劈尖干涉法可检测工件表面的缺陷, 当波长为 λ 的单色平行光
- 垂直入射时,若观察到的干涉条纹如图所示,每一条纹弯曲部分的定 点恰好于其左边条纹的直线部分相切,则工件表面于条纹弯曲处对 应部分

- A. 凸起,且高度为 λ /4:
- B. 凸起、且高度为 \/2:
- C. 凹陷,且高度为 λ/2; D. 凹陷,且高度为 λ/4。
- 5. 只有当透明薄膜的厚度和光波波长相差不多时,才能观察到薄膜干涉条纹,当薄膜的厚度 远远超过光波波长时(如窗玻璃),我们将观察不到干涉条纹的可能原因是
 - A. 由于干涉纹太密集,人眼无法分辩; B. 折射光被媒质吸收;
 - C. 干涉明纹和暗纹对比度太小,不易分辩; D. 光程差大于相干长度,不能相互干涉。
- 6.如图所示的三种透明材料构成的牛顿环装置中,用单色光垂直照射,

在反射光中观察干涉条纹,则在接触点 P 处形成的圆斑为

A. 全明:

B. 全暗:

- C. 右半部明,左半部暗:
- D. 右半部暗,左半部明。
- 7. 在夫琅和费单缝衍射中,若用白色平行光垂直照射,则衍射图样
 - A. 不会出现, 因为白光为复色光:
 - 中央亮纹为白色, 两边对称分布着由紫到红的彩色光谱;
 - C. 中央亮纹为白色, 两边对称分布着由红到紫的彩色光谱;

D. 中央亮纹为白色,两边对称分布着黑白相间的衍射条纹.
D=2r
5000Å,则在透镜平面上呈现的爱里斑的半径为 $\gamma = 1.22 \frac{\lambda f}{b}$ [β]
A. 0.10cm B. 0.15cm C. 0.20cm D. 0.25cm
9. 一束平行单色光垂直入射在光栅上, 当光栅常数 (a+b) 为下列哪种情况时
$(a$ 代表每条缝的宽度), $k=3$, 6 , 9 等级次的主极大均不出现? $k=\frac{0+b}{\alpha}$ k'
A. $a+b=2a$ B. $a+b=3a$ C. $a+b=4a$ D. $a+b=6a$
0 . 波长为 0 . 2 nm 的 X 射线以 $\varphi=30$ ° 的角度折射到晶体表面时,恰好能得到第一级衍射极
大,则该晶体的晶格常数为 $2d\sin\theta = 8\lambda$ []
大,则该晶体的晶格常数为 $2cd\sin\theta = 6\lambda$ [] A. $\sqrt{2}$ B. $\sqrt{3}$ C. 2 D. 3
11. 光的偏振现象证实了:
A. 光具有波粒二向性; B. 光是横波; C. 光是电磁波; D. 光是纵波
12. 光强为 L 的自然光依次通过两个偏振片 P_1 和 P_2 ,若 P_1 和 P_2 的偏振化方向的夹角为 $\alpha=$
30°,则该透射偏振光的强度 / 是: []]
A. $\frac{1}{4}I_0$ B. $\frac{\sqrt{2}}{2}I_0$ C. $\frac{1}{8}I_0$ D. $\frac{3}{8}I_0$
13. 自然光以 60°的入射角照射到不知其折射率的某一透明介质表面时,反射光为线偏振
光,则知 [👸]
A. 折射光为线偏振光, 折射角为 30° B. 折射光为部分偏振光, 折射角为 30°
C. 折射光为线偏振光, 折射角不能确定 D. 折射光为部分偏振光, 折射角不能确定
二、填空题
1. 光的干涉和衍射现象反映了光的 <u>设立</u> 性质,光的偏振现象说明光波是大量波。相干光应满足的条件是恢率相同、存在5相平行的振动分量,相位差恒定
2. 惠更斯引入 <u>了浪行。</u> 的概念提出了惠更斯原理,菲涅耳再用 <u>相干管加</u> 的思想补充了惠更斯原理,发展成了惠更斯-菲涅耳原理。

3. 若在双缝干涉中,两个缝分别被折射率为 n_1 和 n_2 的两块厚度均为e的透明介质所遮盖,此时由双缝到屏上原中央极大处的两束光的光程差 $\delta = \underbrace{e(n_1-n_1)}_{e}$ 。

12. 一束光是自然光和平面偏振光的混合, 当它垂直通过一偏振片后, 发现透射光的强度与

偏振片的偏振化方向有关,其透射的最大光强是最小光强的5倍,则入射光中自然光和引

$$\frac{5A+1}{\pm A} = 5 \Rightarrow l=2A$$

$$\frac{A}{\pm A} = \frac{1}{2}$$

三、计算题

1. 如图,有一双缝被波长为 λ =6000 Å 的平行单色光照射,入 射角为 $\theta = \frac{\pi}{6}$, 双缝平面与屏幕之间距离为D=1.00m, 两缝 间为 d=0.2mm, 求: (1)中央明条纹落在屏上什么位置?

(2) 若在一缝上盖一折射率为 n=1.5 的云母片, 恰好又使中央 明纹落在 0 点,则此云母片应盖在哪条缝上,其厚度应为多少?

h=15d.

辞:
$$X_{2}^{2} = D^{2} + (X + \frac{d}{2})^{2}$$

 $X_{1}^{2} = D^{2} + (X - \frac{d}{2})^{2}$
 $X_{2} - X_{1} = idsin\theta$ $X_{1} + X_{2} = \frac{3 \times d}{dsin\theta} = \frac{2 \times d}{sin\theta}$
 $X_{2}^{2} - X_{1}^{2} = 2 \times d$ $-$
 $X_{2}^{2} + X_{2}^{2} = 4 \left[D^{2} + X_{1}^{2} + 4 \right]$ $4 \left(D^{2} + \Omega^{2} \right) - \left(m \right) I^{2} = X^{2} \left(\frac{1bO^{2}}{m^{2}X^{2}} - 4 \right)$
 $= d^{2} sin^{2} \Theta + \frac{4 x^{2}}{sin^{2}}$ $\times \sqrt{\frac{4D^{2} - m^{2}X^{2}}{m^{2}X^{2}} - 4}$ 由等框像件: $dsin\Theta = (n-1) \frac{1}{cv^{2}\Theta}$.

 $Y_2-Y_1 = \frac{xd}{\sqrt{p_1^2+x_2^2+4x_2^2}} = \frac{d}{x^2} \times \frac{x^2-xd}{k\lambda} = \frac{(r_2+r_1)(r_2-r_1)}{(r_2-r_1)^2} \times \frac{xd}{(r_2-r_1)^2} = 2xd = \frac{(r_2+r_1)(r_2-r_1)}{(r_2-r_1)^2}$

2. 折射率为 1.50 的玻璃上, 有一折射率为 1.40 的一层油膜, 当以波长 λ =560nm 的光垂直照 射时,反射光恰好干涉相消,问油膜的最小厚度是多少?若同一厚度的油膜处于折射率均为 1.50 的两玻璃片之间,当用白光垂直照射时, 那一种波长的可见光会被强烈反射?

 $,2h_0e=(m+\frac{1}{2})\lambda_0$, $e\pm h$,取 $\frac{\lambda_0}{4n_0}$,即光在油中波长的十.

反射对应于干净相长,考虑到半波损失

$$2NP = (2k+1)\frac{\lambda}{2}$$

$$P = \frac{2k+1}{4n}$$

$$k\Delta + \bar{n} = \frac{kr}{\bar{\chi}} + \frac{\lambda_0}{2} + \frac{kr}{2} + \frac{kr}{2}$$

3. 如图所示,牛顿环装置的平凸透镜与平板玻璃间有一小缝隙 e₀. 现用波长为 λ 的单色光垂 直照射,已知平凸透镜的曲率半径为 R,求反射光形成的牛顿环的各暗环半径.

$$2(1+l_0) + \frac{\lambda}{2} = m\lambda + \frac{\lambda}{2}$$

 $1+l_0 = \frac{m}{2}\lambda$.
 $Y = \sqrt{2R(1 - l_0)}$

由于海条件 Δ=2(l+e0)+以2=kハ+以2.=(2k+1)立 因的 l= 些-e0.

由几何关系 R'=r'+(R-L)2·得 L= 元

$$\frac{k\lambda}{2} - e_0 = \frac{r^2}{2R} \Rightarrow \gamma = \sqrt{R1k\lambda \cdot 2e_0}$$

4. 在单缝夫琅和费衍射实验中,垂直入射的光有两种波长, $\lambda_1 = 4000 \text{Å}$, $\lambda_2 = 7600 \text{Å}$, 已知单缝宽度 $a=1.0\times10^{-2} \text{cm}$,透镜焦距 f=50 cm .求:(1)两种光第一级衍射明纹中心之间的距离.(2)若用光栅常数 $d=1.0\times10^{-3} \text{cm}$ 的光栅替换单缝,其它条件不变,求两种光第一级主极大之间的距离. 2010 .

根据行射明条纹关系 ash 4=kx+X/2

-级衍射角 $\phi=\arcsin\frac{3}{2}$. 估计 $\frac{3}{2}=\frac{3\times lo \times lo^{-1}}{2\times lo^{-1}}$ 很小 因此 $\phi \approx \frac{3}{2}$ 条络距离 $\chi=\Delta \phi = 2 \times lo^{-3}$ mm.

对子化和 ,由为相为程 $d\sin\varphi=k\lambda$, $\sin\varphi=\frac{k\lambda}{d}<\frac{10^{\circ}}{10^{\circ}}=0.1$,因此 $\chi=\int (\psi_1-\psi_1)=\int (\arcsin\frac{\lambda_1}{10^{\circ}}-\arcsin\frac{\lambda_1}{10^{\circ}})\approx 0.5\times0.036$ cm =1.8cm

$$\begin{array}{l}
(a+b)\sin\varphi = k\lambda \\
\sin\varphi = \frac{k\lambda}{d}
\end{array}$$

- 5. 波长为 600nm 的单色平行光垂直照射到一光栅上,第 2、第 3 级条纹分别出现在 $\sin \phi_2$ = 0.20、 $\sin \phi_3$ = 0.30 处,第 4 级缺级,试求:
 - (1) 光栅常数;
 - (2) 光栅狭缝 a 可能的最小宽度;
 - (3) 按上述选定的 a、b 值, 求出光屏上实际呈现的全部级数。

由光栅方程 $d\sin(\phi=m\lambda)$ $d=lo\lambda$. $k=\frac{a+b}{a}$ k' 第四级缺失,由 $\frac{m'}{m}=\frac{d}{a}$ $\alpha=\frac{md}{4}=\frac{d}{4}$. $b=\frac{2d}{4}$. 由光栅方程 $\sin(\phi=m\lambda)$,故共有2/下壳级,减去缺失 24 , 28 . 剩余 1/ 壳级.

$$\frac{\partial \sin(t\frac{\pi}{2}) = k\lambda}{\partial \sin(t\frac{\pi}{2}) = k\lambda}$$

$$d\sin(t\frac{\pi}{2}) = k\lambda$$

$$k = |\cos(t\frac{\pi}{2})| = \pm 10$$

6.三块偏振片 P_1 、 P_2 、 P_3 平行地放置如图所示, P_1 、 P_3 的偏振化方向垂直,一束光强为 I_0 的平行单色自然光垂直地设到偏振片 P_2 上,忽略偏振片的吸收,求旋转偏振片 P_2 时(保持其平面方向不变),通过偏振片 P_3 的最大光强?

班级					
	公 上	一 炒油	414加工田 1	#: T .ili	A CONTRACTOR
学号		三 次近	1人的/王2	医外山	何分
Ad. H				i de Carlos de la como de la como La como de la como de	
姓名		even, finis Links is			

基本内容和主要公式

- 1. 黑体辐射
- (1) 黑体: 在任何温度下都能把照射在其上所有频率的辐射全部吸收的物体。
- (2) 斯特藩一玻尔兹曼定律: $M_o(T) = \sigma T^4$
- (3) 维恩位移定律: 1_mT=b
- 2. 普朗克能量量子化假设
- (1) 普朗克能量子假设: 电磁辐射的能量是由一份一份组成的, 每一份的能量是: $\varepsilon=h\nu$ 其中h为普朗克常数,其值为 $h=6.63\times10^{-34}J\cdot s$
 - . (2) 普朗克黑体辐射公式: $M(\lambda, T) = \frac{2\pi hc^2}{\lambda^5} \left(\frac{1}{e^{h/2kt}-1}\right)$
 - 3. 光电效应和光的波粒二象性
 - (1) 遏止电压 U_a 和光电子最大初动能的关系为: $\frac{1}{2}mu^2 = eU_a$
 - (2) 光电效应方程: $hv = \frac{1}{2}mu^2 + A$
 - (3) 红限频率:恰能产生光电效应的入射光频率: $u_0 = \frac{V_0}{K} = \frac{A}{h}$
- (4) 光的波粒二象性 (爱因斯坦光子理论): $\varepsilon = mc^2 = hv$; $p = mc = \frac{h}{\lambda}$; $m_0 = 0$ 其中 m_0 为光子的静止质量,m 为光子的动质量。
 - 4. 康普顿效应: $\Delta \lambda = \lambda \lambda_0 = \frac{h}{m_0 c} (1 \cos \theta)$

其中 θ 为散射角, m_0 为光子的静止质量, $\lambda_0 = \frac{h}{m_0 c} = 2.426 \times 10^{-12} m$, λ_0 为康普顿波长。

- 5. 氢原子光谱和玻尔的量子论:
- (1) 里德伯公式: $\tilde{v} = \frac{1}{\lambda} = R_H (\frac{1}{m^2} \frac{1}{n^2}) = T(m) T(n), (n > m)$
- (2) 频率条件: $v_{kn} = \frac{\left|E_k E_n\right|}{h}$

(3) 角动量量子化条件: $L = m_e v r = n\hbar$, n = 1, 2, 3...

其中 $\hbar = \frac{h}{2\pi}$, 称为约化普朗克常量, n为主量子数。

(4) 氢原子能量量子化公式:
$$E_n = -\frac{E_1}{n^2} = -\frac{13.6eV}{n^2}$$

6. 实物粒子的波粒二象性和不确定关系

(1) 德布罗意关系式:
$$\lambda = \frac{h}{p} = \frac{h}{\mu u}$$

(2) 不确定关系:
$$\Delta x \Delta p \ge \frac{\hbar}{2}$$
; $\Delta E \Delta t \ge \frac{\hbar}{2}$

7. 波函数和薛定谔方程

(1) 波函数 ψ 应满足的标准化条件: 单值、有限、连续。

(2) 波函数的归一化条件:
$$\int_{\nu} \psi^{*}(\bar{r},t)\psi(\bar{r},t)d\tau = 1$$

(3) 波函数的态叠加原理:
$$\psi(\vec{r},t) = c_1 \psi_1(\vec{r},t) + c_2 \psi_2(\vec{r},t) + ... = \sum_i c_i \psi_i(\vec{r},t)$$

(4) 薛定谔方程:
$$i\hbar \frac{\partial}{\partial t} \psi(\bar{r},t) = \left[-\frac{\hbar^2}{2\mu} \nabla^2 + U(\bar{r}) \right] \psi(\bar{r},t)$$

8. 电子自旋和原子的壳层结构

(1) 电子自旋:
$$S = \sqrt{s(s+1)}\hbar$$
, $s = \frac{1}{2}$; $S_z = m_s \hbar$, $m_s = \pm \frac{1}{2}$

注: 自旋是一切微观粒子的基本属性.

(2) 原子中电子的壳层结构

①原子核外电子可用四个量子数 (n,l,m_l,m_s) 描述:

主量子数: n=0,1,2,3,... 它主要决定原子中电子的能量。

角量子数: l=0,1,2,...n-1 它决定电子轨道角动量。

磁量子数: $m_l = 0, \pm 1, \pm 2, \dots \pm l$ 它决定轨道角能量在外磁场方向上的分量。

自旋磁量子数: $m_s = \pm \frac{1}{2}$ 它决定电子自旋角动量在外磁场方向上的分量。

- ②在多电子原子中,决定电子所处状态的准则是泡利不相容原理和能量最低原理。
- 9. X射线的发射和发射谱
- (1) X 射线谱是由两部分构成的,即连续谱和线状谱(也称标识谱)。
- (2)连续谱是由高速电子受到靶的制动产生的韧致辐射;线状谱是由高速电子的轰击而使靶原子内层出现空位、外层电子向该空位跃迁所产生的辐射。

练习题

	选择题		
1	下列物体哪个是绝对黑体		[D]
	A. 不辐射可见光的物体	B. 不辐射任何光线的物体	2
ď.,	C. 不能反射可见光的物体	D. 不能反射任何光线的物体	112.
2	光电效应和康普顿效应都是光气	子和物质原子中的电子相互作用过程,其区	别何在?在
	下列几种理解中,正确的是	. Name and the Contraction	$[\]$
	A. 两种效应都属于光子和电子	的弹性碰撞过程:	1994
	B. 两种效应中电子和光子组成	的系统都遵从动量守恒定律和能量守恒定律)
	C. 光电效应是由于金属电子吸	收光子而形成光电子,康普顿效应是由于光	子和自由电
	子弹性碰撞而形成散射光子	和反冲电子;	
	D. 两种效应都属于电子吸收光	6子的过程。	
3.	金属的光电效应的遏止频率依赖	负于	[()]
	A. 入射光的频率	B. 入射光的强度	
	C. 金属的逸出功	D. 入射光的频率和金属的逸出功	
4	る 若入射光的波长从 4000 A 变到	0 3000 A 时,则从金属表面发射的光电子的	
	遏止电压将		[D]
	A. 减少 0. 56V	B. 增大 O. 165V	レ
	C. 减小 0. 34V	D. 增大 1. 035V	
	E. 减少 1. 035V		
5.	关于光子的性质,有以下说法		ΕβJ
	(1) 不论真空中或介质中的速度	译都是 c (2) 它的静止质量为零	
	(2) 5265=1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	/ A A A A A A A A A A A A A A A A A A A	
	(3) 它的动量为 hv/c	(4) 它的总能量就是它的动能	
	(5) 它有动量和能量,但没有原	贡量	
	其中正确的是	•	
	A. (1)(2)(3)	B. (2) (3) (4)	
	C. (3) (4) (5)	D. (3) (5)	
6.	卢瑟福散射实验证明了		[8]
	A. 能级的存在	B. 核的存在	
	C. 同位素的存在	D. 电子的存在	
7.		在 n=4 的轨道上运动的能量与在基态的轨	道上运动的
	能量之比为	- WALLES AND MARKET A TREADING	\sim
^	A. 1/4 B. 1/8		
8.	由氢原子理论可知, 当氢原子处	于 n=3 的激发态时,可发射	רו ד

A. 一种波长的光	B. 两种波长的光	
C. 三种波长的光 9. 根据德布罗意的假设	D. 各种波长的光	[R]
A. 辐射不能量子化, 但粒子具有似波的	约特性	
B. 粒子具有似波的特性		
C. 波长非常短的辐射有粒子性, 但长波	 收辐射却不然	4 · · · · · · · · · · · · · · · · · · ·
D. 波动可以量子化,但粒子绝不可能有	 	:
10. 关于不确定关系式 $\Delta x \Delta p_x \ge h$,有以下	几种理解	[]]
(1) 粒子的动量不可能确定, 但位置能准	達确确定	
(2) 粒子的位置不可能确定, 但动量能准	建确确定	
(3) 粒子的位置和动量不可能同时准确	确定	
(4) 不确定关系不仅适用于电子和光子	,也适用于其它粒子	
(5) 改进测量工具和方法,可以准确确	定粒子的位置和动量	
其中正确的是		
A. (1) (5) B. (2) ((4)	
C. (3) (4) D. (3) ((5)	•
11. 在量子态为 n=3, m=1/2 上所能容纳的晶	最多电子数:	[B]
A. 18 B. 9 C.	. 32 D. 不能确定	-
12. 电子的自旋和轨道的相互耦合作用是靠		[()]
A. 万有引力的作用	B. 弹性力的作用	
C. 磁相互作用	D. 静电相互作用	
13. 我们在x射线管上加上电压,做x射线	实验时,发现 x 射线的连续谱有一	确定的短波极
限,这个极限		$[C \wedge]$
A. 只取决于加在管子上的电压, 而与	靶的材料无关	, 1
B. 取决于加在管子上的电压, 也取决	于靶的材料	
C. 只取决于靶的材料, 而与加在管子	上的电压无关	
D. 取决于靶原子的电离势		r
二、填空题	A - A - herelowy	
二、填空题 1. 铯的逸出功为 1.9eV,则铯的光电效	文应阈频率为 · 如果	要得到能量为
1.5eV 的光电子, 必须使用波长为 316× 15 1m	的光照射?	
2. 今用波长 400 nm 的紫光照射金属表		s, 则光电子的
动能为,光电效应的阈频率为		
3. 光子能量为 0.5eV 的 X射线, 入射到		·反冲电子的
能量为 0. 1MeV,则散射光波长的改变量 Δ .		

4. 玻尔在总结了前人的测定原子结构特性的两种方法, 散射实验和光谱实验后, 提出

了原子的量子理论,该理论提出时是建立在
领率 法则 、 角动量量 3 化 .
三大假设的基础之上的。 5. 在玻尔氢原子理论中势能为负值,而且数值比动能大,所以总能量为 <u>负</u> 值。 这表示电子处于
6. 在气体放电管中,用能量为 12.5ev 的电子通过碰撞使氢原子激发,则氢原子最高能
激发到 n=
线。
8. 若钠黄光谱线($\lambda = 589nm$)的自然宽度为 $\Delta V_{\nu} = 1.6 \times 10^{-8}$,试问钠原子相应的 激发态的平均寿命约为 $\frac{18 \times 10^{-8}}{0}$ 。 9. 描述粒子运动的波函数 $\psi(\vec{r},t)$ 的物理意义是 空间下处 计时刻发现游马 经税还率密度 $\psi(\vec{r},t)$ 需要满足的标准化条件是 单值、连续、有限,其归一化条件是
$\int_{-\infty}^{\infty} \sqrt[4]{r} \psi dV = \int_{-\infty}^{\infty} \sqrt[4$
11. 说明电子有自旋的实验主要有不成金属 32线 片层,一盖拉赫实验,反常塞管移产。
12. 按质子一中子组成的原子核假设,质量数为 A,电荷数为 Z 的原子核,具有
1. 锂和汞的逸出功分别是 2.30eV 和 4.50eV,如果用波长为 300 nm 的光照射,试问哪种材料会出现光电效应,光电子的最大动能为多少?

2. 已知钠的逸出功为 2. 486eV,试求:(1)钠产生光电效应的红限波长;(2)用波长为 λ =400nm 的紫光照射钠时,钠所放出的光电子的最大初速度;(3)遏止电压。

3.	已经	印金属	钨的逸	出功为	4. 38 e	v, オ	告用波也	(为	429nm (的紫光原	照射其表i	面,	问能否产生
光电	子?	若在包	的表面	面涂敷-	-层铯,	其边	逸出功变	为:	2.61ev	, 结果)	又将如何?	若	能产生光电
子,	求光	:电子的	的最大社	刀功能。			. •						
													1.00 miles

4. 在康普顿效应中,入射光子的波长为 $3.0\times10^{-3}\,\mathrm{nm}$,反冲电子的速度为光速的 60%,求散射光子的波长及散射角。

5. 对处于第一激发态的氢原子,试求如果用可见光照射,能否使之电离?

6. 已知氢原子的电离能为 13. 6eV。设氢原子处在某一定态,从该定态移去一个电子所需要的能量为 0. 86eV 。试问从上述定态向激发态能为 10. 20eV 的另一定态跃迁时,所产生的谱线的波长是多少?属什么系线?

7. 一束单色光被一批处于基态的氢原子吸收,	在这些氢原子重回基态时,	观察到具有六
种不同波长谱线的光谱。求入射单色光的波长。		

8. 一电子具有的速率 200 m.s⁻¹, 动量的不确定范围为动量的 0.01% (这也是足够精确的了),则该电子的位置不确定范围有多大?

9. 一质量为 40g 的子弹以 1000m/s 的速率飞行。试求:(1) 其德布罗意波长;(2) 测量子弹位置的不确定量为 0. 1mm 时,速率的不确定量。

10. 求证:由量子数 n标志的一个壳层所能容纳的电子的最大数目为 2㎡。

四、思考题

1. 什么是热辐射? 什么是辐出度和单色辐出度? 两个温度相同的同样物体 A 和 B, 若物体 A 周围环境温度较 A 的高, 而物体 B 周围环境温度较 B 的低, 试问物体 A 和物体 B 的辐出度是否相等?

	15 (17)
2. 什么是黑体? 普朗克能量子假设的内容是什么? 它在物理学中的发展中身	有化の音
2. 并名是無件。自动无脑壁上放灰的目前是什么,它在物程于上的灰灰中头	TH TAKE
义?	
*	
	,
•	
3. 光电效应的主要实验规律是什么? 经典电磁波理论解释光电效应的困难?	现在哪些
	4-70 pt. 707 <u></u>
方面?	
•	
	N. William
4. 什么是爱因斯坦光量子假说,光子的能量和动量与什么因素有关?	E
1. 日本是及四州之九龍 1 欧州,九 1 时能是中州建为日本四条行大;	
•	
	,
·	
5. 什么是康普顿效应?可见光是否能用于观察和研究康普顿效应?为什么?)
And the second s	
6. α粒子散射实验对人类认识原子结构所起的关键作用是什么?原子的核式	、结构模型
与经典理论存在哪些矛盾?	
A Capan S. A. Capan S. A. Capan S. A. Capan S. A. Capan S. Capan S	,
•	
· ·	
7. 为什么说玻尔理论是半径典半量子的混合?它有什么局限性?	
)	
8. 什么是不确定关系?为什么说不确定关系指出了经典力学的适用范围?	

9. 确定氢原子中电子绕核运动状态需要哪几个量子数,取值范围如何?

班级

等号 第十一次 电磁感应和麦克斯韦电磁理论

基本内容和主要公式

1. 法拉第电磁感应定律和楞次定律

法拉第电磁感应定律: $\varepsilon = -\frac{d\Phi}{dt}$, $\varepsilon = -\frac{d\Psi}{dt} = -N\frac{d\phi}{dt}$ (多匝线圈)

楞次定律:感应电流的效果总是反抗引起感应电流的原因。

(楞次定律是能量守恒定律在电磁感应现象中的具体表现)

- 2. 动生电动势和感生电动势
 - (1) 动生电动势: 导体在磁场中作切割磁力线运动所产生的感应电动势称 为动生电动势

产生动生电动势的非静电力是洛伦兹力

$$\varepsilon_D = \int (\vec{v} \times \vec{B}) \cdot d\vec{l}$$
 (一段导体运动)、 $\varepsilon_D = \int (\vec{v} \times \vec{B}) \cdot d\vec{l}$ (整个回路运动)

(2) 感生电动势:由变化磁场所产生的感应电动势称为感生电动势

产生感生电动势的非静电力是有旋电场 尼加

$$\varepsilon_{\scriptscriptstyle W} = \int_L \vec{E}_{\scriptscriptstyle W} \cdot d\vec{l} = -\frac{d\Phi}{dt} = -\frac{d}{dt} \iint_S \vec{B} \cdot d\vec{S} = -\iint_S \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S}$$

(式中 S 是以 L 为边界的任意曲面)

3. 电场由两部分构成一部分是电荷产生的有源场 \vec{E}_0 : \vec{Q} $\vec{E}_0 \cdot d\vec{l} = 0$

另一部分是变化磁场所激励的有旋场 \vec{E}_w : $(\vec{E}_w \cdot d\vec{l} = -)$ $(\vec{E}_w \cdot d\vec{l} = -)$

$$\vec{E} = \vec{E}_0 + \vec{E}_W \quad , \qquad \qquad \bigcirc_L \vec{E} \cdot d\vec{l} = - \iint_S \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S} \quad , \qquad \nabla \times \vec{E} = - \frac{\partial \vec{B}}{\partial t}$$

- 4. 自感现象和互感现象
 - (1) 自感现象:由回路中电流变化而在回路自身所产生的电磁感应现象叫

做自感现象: 所产生的电动势叫做自感电动势

$$\Phi = LI$$
 、 $\varepsilon_L = -L \frac{dI}{dt}$ 式中 L 叫做自感系数

(2) 互感现象:由一回路中电流变化而在另一回路中产生的电磁感应现象 叫做互感现象:所产生的电动势叫做互感电动势

$$\Phi_{12}=M_{12}I_1 \ , \ \Phi_{21}=M_{21}I_2 \ , \ \varepsilon_M=-M\frac{dI}{dt} \ , \ M_{12}=M_{21}=M$$
 式中 M 叫做互感系数

5. 磁场能量

磁场能量密度:
$$w_m = \frac{1}{2} \vec{B} \cdot \vec{H}$$
 , 一般情况下可写为 $w_m = \frac{1}{2} B H = \frac{1}{2} \frac{B^2}{\mu}$ 磁场能量: $W_m = \iiint_V w_m dV = \iiint_V \frac{1}{2} \vec{B} \cdot \vec{H} dV$ 、 $W_m = \frac{1}{2} L I^2$

- 6. 位移电流和麦克斯韦方程组
 - (1) 位移电流密度: $\vec{j}_D = \frac{\partial \vec{D}}{\partial t}$ 其实质是变化的电场

(2) 位移电流:
$$I_D = \iint_{S} \vec{j}_D \cdot d\vec{S} = \iint_{S} \frac{\partial \vec{D}}{\partial t} \cdot d\vec{S} = \frac{d}{dt} \iint_{S} \vec{D} \cdot d\vec{S} = \frac{d\Phi_D}{dt} ,$$

$$\vec{j} = \vec{j}_0 + \frac{\partial \vec{D}}{\partial t}$$
 称为全电流密度;

$$\iint_{S} (\vec{j}_0 + \frac{\partial \vec{D}}{\partial t}) \cdot d\vec{S} = 0$$
 此式表明全电流在任何情况下都是连续的

(3) 麦克斯韦方程组:
$$\oint_{S} \vec{D} \cdot d\vec{S} = \iiint_{V} \rho_{0} dV \quad , \quad \oint_{L} \vec{E} \cdot d\vec{l} = -\iint_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S}$$

$$\vec{B} = \mu_0 \mu_r \vec{H} \;,\;\; \vec{D} = \varepsilon_0 \varepsilon_r \vec{E} \qquad \oiint_{S} \vec{B} \cdot d\vec{S} = 0 \;, \qquad \oiint_{L} \vec{H} \cdot d\vec{l} = \iiint_{S} (\vec{j}_0 + \frac{\partial \vec{D}}{\partial t}) \cdot d\vec{S} \;,$$

$$\nabla \cdot \vec{D} = \rho_0$$
, $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$, $\nabla \cdot \vec{B} = 0$, $\nabla \times \vec{H} = \vec{j}_0 + \frac{\partial \vec{D}}{\partial t}$, $\vec{j}_0 = \sigma \vec{E}$

练习题

、选择题

- 1. 如图 13-1,长为l的直导线 ab 在均匀磁场中以速度 \vec{v} 垂直于导线运动。则直导线 ab中的动生电动势的大小为
 - A. Blv
 - B. $Blv\sin\alpha$
 - C. $Blv\cos\alpha$

2. 一圆形线圈的一半放在分布于方形区域内的匀强磁场 \vec{B} 中, 另一半位于磁场之外,如图 13-2 所示。欲使圆线圈中产生逆时针 方向的感生电流,应使 [C]

C. 线圈向左平移 D. 磁场强度减弱

图13-2

3. 如图 13-3,一根长度为L 的铜棒,在均匀磁场 \overline{B} 中以匀角速

度 ω 旋转, \vec{B} 的方向垂直铜棒转动平面,设t=0时,铜棒与Ob成 θ 角,则在任一时刻,铜棒两端的感应电动势是

- A. $\omega L^2 B \cos(\omega t + \theta)$ B. $\frac{1}{2}\omega L^2 B \cos \omega t$
- C. $2\omega L^2 B \cos(\omega t + \theta)$ D. $\omega L^2 B$ E. $\frac{1}{2}\omega L^2 B$
- 4. 如图 13-4 所示,在圆柱形空间内有一磁感应强度为 \overline{B} 的均匀磁 场,其变化率为 $\frac{dB}{dt}$ 。若在图中a,b 两点间放置一直导线ab 和弯曲 导线 ab, 下列说法中正确的是 [D]

图13-4

- B. 电动势只在 ab 中产生
- C. ab 和 ab 中都产生电动势,且大小相等
- D. \overline{ab} 中的电动势小于 \overline{ab} 中的电动势

- 5. 若以 \vec{E} 和 \vec{E}_B 分别表示静电场和感生电场的场强,则下述表示中正确的是
 - A. $\oint_{\vec{r}} \vec{E} \cdot d\vec{l} \neq 0$ B. $\oint_{\vec{r}} \vec{E}_B \cdot d\vec{l} = 0$
 - C. $\oint \vec{E} \cdot d\vec{S} = 0$ D. $\oint \vec{E}_B \cdot d\vec{l} \neq 0$
- 6. 一块铜板放在磁感应强度正在增大的磁场中时,铜板中出现涡流(感应电流),则涡 流将 **B**]
 - A. 加速铜板中磁场的增加
 - B. 减缓铜板中磁场的增加
 - C. 对磁场不起作用
 - D. 使铜板中磁场反向
- 7. 如图 13-5 所示,两个线圈 P 和 Q 并联地接到一电动势恒定的

电源上,线圈P的自感和电阻分别是Q的两倍,当达到稳定状态后,

线圈 P 的磁场能量与 Q 的磁场能量的比值是

[D]

- A. 4
- B. 2
- C. 1
- D. 1/2
- 8. 一个电阻为 R, 自感系数为 L 的线圈, 将它接在一个电动势为 $\varepsilon(t)$ 的交变电源上,

设线圈的自感电动势为 ε_L ,则流过线圈的电流为

[C]

A.
$$\frac{\varepsilon(t)}{R}$$

B.
$$\frac{\left[\varepsilon(t)-\varepsilon_L\right]}{R}$$

C.
$$\frac{\left[\varepsilon(t) + \varepsilon_L\right]}{R}$$
 D. $\frac{\varepsilon_L}{R}$

D.
$$\frac{\varepsilon_L}{R}$$

- 9. 真空中一根无限长直导线上通有电流强度为 / 的电流,则距导线垂直距离为 a 的空 间某点处的磁能密度为 [B]
 - A. $\frac{1}{2}\mu_0(\frac{\mu_0 I}{2\pi a})^2$ B. $\frac{1}{2\mu_0}(\frac{\mu_0 I}{2\pi a})^2$
 - C. $\frac{1}{2} (\frac{\mu_0 I}{2\pi a})^2$ D. $\frac{1}{2\mu_0} (\frac{\mu_0 I}{2a})^2$

- 10. 一薄金属圆盘放在均匀磁场中,磁场的方向垂直盘面向下,如图 13-20 所示。当盘以恒定的角速度 ω 绕通过盘心O且与盘面垂直的轴逆时针旋转时,则
 - A. 整个金属盘仍然是个等势体
 - B. 盘心的电势高于其它位置的电势
 - C. 盘心的电势低于其它位置的电势
 - D. 整个圆盘电势为零

11. 自感为0.25H 的线圈中,当电流在 $\frac{1}{16}s$ 内由2A均匀减少到零时,线圈中自感电动势的大小为

Г **С** 1

- A. $7.8 \times 10^{-3} V$
- B. 2.0V
- C. 8.0V
- D. $3.1 \times 10^{-2} V$
- 12. 对位移电流有下列四种说法,正确的是

[A]

- A. 位移电流是由变化电场产生的
- B. 位移电流是由变化磁场产生的
- C. 位移电流的热效应服从焦耳—楞次定律
- D. 位移电流的磁效应不服从安培环路定理

二、填空题

1. 如图 13-6 所示,一边长为l 的等边三角形金属框置于磁感应强度为 \vec{B} 的均匀磁场中,且ab 边与 \vec{B} 平行,当金属框绕ab 边以角速度 ω 转动时,则bc 边的电动势为 $3B\omega l^2/8$ ___,ca 边的电动势为 $-3B\omega l^2/8$ __,回路abca 的电动势为___0_。(设电动势沿abca 绕向为正)

- 2. 金属杆 AB 以匀速v=2m/s 平行于长直载流导线运动,导线与 AB 共面且相互垂直,如图 13-7 所示,已知 I=40A,则此金属杆中的电动势 $\varepsilon_1=_1.1\times10^{-5}V$ __; 电势较高端为__A端__。($\ln 2=0.69$)
- 3. 用导线制成一半径r=10cm 的闭合圆形线圈,其电阻 $R=10\Omega$,均匀磁场 \overline{B} 垂直于线圈平面。欲使电路中有一稳定感应电流i=0.01A , $\frac{dB}{dt}$ 应为 $_{-}$ 3.18×10 $^{2}T/s$ _____。

- 4. 一面积为S的平面导线回路,置于载流长直螺线管中,回路的法线与螺线管轴线平行,设螺线管单位长度上的匝数为n,通过电流 $I=I_m\sin\omega t$,其中 I_m 和 ω 为常数,t为时间变量,则该回路中感生电动势的表达式为 $_{-}-\mu_0 nS\omega\,I_m\cos\omega t$ ____。
- 5. 在直角坐标系中,无限长载流直导线沿 z 轴方向,另有一与其共面的短导体棒,若使导体棒沿某坐标方向平动产生动生电动势,则有可能是: (1)导体棒平行 x 轴放置,其速度方向沿____X__Y___轴。
- 6. 半径为a 的无限长密绕螺线管,单位长度上的匝数为n,通以交变电流 $i=I_m\sin\omega t$,则管外半径为r 的同轴圆形回路上感生电动势的表达式为 $-\mu_0n\pi\,a^2\omega I_m\cos\omega t$ __。
- 7. 一薄壁纸筒长30cm,截面直径为3cm,筒上绕有500匝线圈,其内充满 $\mu_r=500$ 的铁芯。求得此线圈的自感系数为 $_0.37H$ $_$ 。
- 8. 当符合 $\underline{l}>> R$ 和 细导线均匀密绕 的条件时,位于空气中长为 l 、横截面半径为 R 、用 N 匝导线绕成的直螺线管,其自感系数可表示为 $L=\mu_0(\frac{N}{L})^2V$,其中 V 是螺线管的体积。
- 9. 有两个长度相同、匝数相同、截面积不同的长直螺线管,通以大小相同的电流,现将小螺线管完全放入大螺线管内,使轴线重合,且两者所产生的磁场方向一致。则小螺线管内的磁能密度是原来的______4___倍;若使两螺线管所产生的磁场方向相反,则小螺线管内的磁能密度为______。
- 10. 如图 13-8 所示,长直导线近旁有一矩形平面线圈与长直导线共面,设线圈共有 N 匝,其边长分别为 a,b,线圈的一边与长直导线平行,相距为 d。则线圈与导线的互感系数为

$$\frac{\mu_0 aN}{2\pi} \ln \frac{d+b}{d} - \cdots$$

图13-8

11. 真空中,两相距为2a的平行长直导线,通以方向相同、大小相等的电流I。设O,P两点与导线在同一平面内,与导线

的距离如图
$$13-9$$
 所示。则 O 点的磁能密度 $w_m = 0$

$$\begin{array}{c|c}
P & O \\
\downarrow a & \downarrow a
\end{array}$$

P 点的磁能密度 $w_m = 2\mu_0 I^2 / (9\pi^2 a^2)$ ___.

12. 如图 13-10 所示,两根彼此紧靠的绝缘导线绕成一个线圈,其A端用焊锡将两根导线焊接在一起,另一端B 点处作为连接外电路的两个输入端,则整个线圈的自感系数为

13. 麦克斯韦电磁场理论两个基本假设是:

14. 在没有自由电荷与传导电流的变化电磁场中

$$\oint_L \vec{H} \cdot \vec{dl} = \int_S \frac{\partial \vec{D}}{\partial t} \cdot d\vec{S} \; ; \; \oint_L \vec{E} \cdot \vec{dl} = -\int_S \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S} \; .$$

三、证明题

0 .

1. 证明: 如图所示, 一电量为 q 的点电荷, 以角速度 ω 作圆周运动, 圆周的半径为 R, 设 t=0 时 q 所在点的坐标为 $x_0=R$, $y_0=0$, 则圆心处 0 点的位移电流密度为

$$\frac{q\omega}{4\pi R^2}(\sin\omega t\vec{i}-\cos\omega t\vec{j})$$

证: t 时刻 q 在 o 点产生的电场 \vec{E} 为:

$$\vec{E} = \frac{q}{4\pi\varepsilon_0 R^2} (-\cos\omega t \vec{i} - \sin\omega t \vec{j})$$

$$\vec{j}_D = \frac{\partial \vec{D}}{\partial t} = \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$

得:
$$\vec{j}_D = \varepsilon_0 \frac{\partial \vec{E}}{\partial t} = \frac{q\omega}{4\pi\varepsilon R^2} (\sin \omega t \vec{i} - \cos \omega t \vec{j})$$

四、计算题

1.无限长直导线载有 5.0A 稳恒电流,旁边有一个与其共面的矩形线圈 ABCD,已知 l=20cm,a=10cm,b=20cm,线圈匝数 N=1000。今使线圈以速率v=3.0m/s 离开直导线平动,如图 13-11 所示。试求线圈内感应电动势的大小和方向。

解: 选取如图坐标系,在t时刻取面积元dS = ldx,距长直导线的距离为x,则该面积元处B的大小为: $B = \frac{\mu_0 I}{2\pi x}$

通过该面积元的磁通量为:

$$d\Phi = BdS = \frac{\mu_0 I}{2\pi x} ldx$$

干是通过线圈的磁通量为:

$$\Phi(t) = \int d\Phi = \int_{a+vt}^{b+vt} \frac{\mu_0 I}{2\pi x} l dx = \frac{\mu_0 I}{2\pi} \int_{a+vt}^{b+vt} \frac{l dx}{x} = \frac{\mu_0 Il}{2\pi} \ln \frac{b+vt}{a+bt}$$
由法拉第电磁感应定律可知, N 匝线圈内的感应电动势为:

$$\varepsilon = -N \frac{d\Phi}{dt} = -\frac{\mu_0 lIN}{2\pi} \frac{(a+vt)v - (b+vt)v}{(b+vt)(a+vt)}$$

令t=0,并代入数据,则得线圈刚离开直导线时的感生电动势

$$\varepsilon = -N \frac{d\Phi}{dt} \Big|_{t=0} = -\frac{\mu_0 lINv(b-a)}{2\pi ab}$$

$$= \frac{4\pi \times 10^{-7} \times 10^3 \times 0.2 \times 5.0 \times 3.0 \times (0.2-0.1)}{2\pi \times 0.1 \times 0.2} = 3.0 \times 10^{-3} (V)$$

接楞次定律可知 ε 的方向为顺时针方向。

解:由法拉第电磁感应定律可知, t 时刻金属框中感生电动势的大小为

$$\begin{split} \left| \varepsilon \right| &= \frac{d\Phi}{dt} = \frac{d(BS)}{dt} = B\frac{dS}{dt} + S\frac{dB}{dt} \\ &= B\frac{d}{dt}(\frac{1}{2}lx) + \frac{1}{2}lx\frac{d}{dt}(\frac{1}{2}t^2) \\ &= \varepsilon_{\overline{z}b} + \varepsilon_{\underline{z}B} \end{split}$$

图13-11

图13-12

 $arepsilon_{3}$ 的方向从b指向a, $arepsilon_{8}$ 的方向为逆时针方向。

将x = vt, $l = x \tan \theta = vt \tan \theta$ 代入上式,则

$$\left|\varepsilon_{i}\right| = \frac{1}{2}t^{2}\frac{d}{dt}\left(\frac{1}{2}v^{2}t^{2}\tan\theta\right) + \frac{1}{2}v^{2}t^{2}\tan\theta\frac{d}{dt}\left(\frac{1}{2}t^{2}\right) = v^{2}t^{3}\tan\theta$$

 ε , 的方向为逆时针方向。

3. 如图 13-13 所示,无限长直导线中载有交变电流 $i=I_0\sin\omega t$,与其共面的长方形线

圈 ABCD 长为l, 宽为(b-a)。 试求:

- (1) 穿过 ABCD 面积的磁通量 Φ ;
- (2)回路 ABCD 中的感应电动势 ε 。

解: (1) 在距导线r处, 磁感应强度

$$B = \frac{\mu_0 i}{2\pi r} = \frac{\mu_0 I_0}{2\pi r} \sin \omega t$$

取面元 Idr, 穿过该面元的磁通量为

$$d\Phi = BdS = \frac{\mu_0 I_0}{2\pi r} \sin \omega t \cdot ldr$$

在t时刻穿过回路 ABCD 的磁通量为

$$\Phi = \int d\Phi = \int_{a}^{b} \frac{\mu_0 I_0}{2\pi r} \sin \omega t \cdot l dr = \frac{\mu_0 l}{2\pi} (\ln \frac{b}{a}) I_0 \sin \omega t$$

(2)根据法拉第电磁感应定律,将 Φ 对时间t求导数,得回路 ABCD 中的感应电动势

$$\varepsilon = -\frac{d\Phi}{dt} = -\frac{\mu_0 l\omega}{2\pi} (\ln \frac{b}{a}) I_0 \cos \omega t$$

其方向作周期形变化, 顺时针为正。

- 4. 在无限长螺线管中,均匀分布变化的磁场 $\bar{B}(t)$ 。设 \bar{B} 以速率 $\frac{dB}{dt} = k$ 变化(k > 0,且为常量),方向与螺线管轴线平行,如图 13-16 所示。现在其中放置一直角形导线 abc。若已知螺线管截面半径为 R,ab=l,试求:
 - (1) 螺线管中的感应电场 \bar{E}_{ν} ;
 - (2) \overline{ab} , \overline{bc} 两段导线中的感生电动势。

解: (1) 考虑对称性,取圆心为O,半径为r(r < R)的圆周,根据感生电场与变化磁

由楞次定律可以判定感生电场为逆时针方向。

(2) 连接Oa,Ob 和Oc,在回路OabO中,穿过回路所围面积的磁通量为

$$\Phi = BS = \frac{1}{2}Blh = \frac{1}{2}Bl(R^2 - \frac{l^2}{4})^{1/2}$$
则
$$\varepsilon_1 = -\frac{d\Phi}{dt} = -\frac{1}{2}l(R^2 - \frac{l^2}{4})^{1/2}\frac{dB}{dt} = -\frac{1}{2}l(R^2 - \frac{l^2}{4})^{1/2}k$$
而
$$\varepsilon_1 = \varepsilon_{ab} + \varepsilon_{bo} + \varepsilon_{oa} = \varepsilon_{ab}$$
所以
$$\varepsilon_{ab} = \varepsilon_1 = -\frac{1}{2}lk(R^2 - \frac{l^2}{4})^{1/2}$$
 负号表明 ε_1 沿逆时针方向
$$\varepsilon_{ab}$$
 方向由 α 指向 b 。

同理可得 $\varepsilon_{bc} = \frac{1}{2}lk(R^2 - \frac{l^2}{4})^{1/2}$

方向由b 指向c。

5. 两同轴无限长的导体薄壁圆筒,内筒半径为 R_1 ,外筒半径为 R_2 ,两筒上均匀地流过方向相反的电流,电流强度皆为I。试求两筒单位长度上的自感系数。

解:二筒上的电流等值反向,构成一个电流回路。磁场仅分布在二筒之间,磁感应强度 u.J

的大小为
$$B = \frac{\mu_0 I}{2\pi r}$$

穿过长度为l的二简间的磁通量为 $\Phi = \int_{R_1}^{R_2} Bldr = \int_{R_1}^{R_2} \frac{\mu_0 I}{2\pi r} ldr = \frac{\mu_0 Il}{2\pi} \ln \frac{R_2}{R_1}$

根据自感系数的定义式,二简单位长度上的自感系数为

$$L = \frac{1}{l} \cdot \frac{\Phi}{I} = \frac{\mu_0}{2\pi} \ln \frac{R_2}{R_1}$$

另用磁场能量
$$W_m = \frac{1}{2}LI^2$$
; $W_m = \int_V w_m dV = \int_V \frac{B^2}{2\mu_0} dV \int_{R_1}^{R_2} \frac{B^2}{2\mu_0} 2\pi r dr$

可得
$$L = \frac{2W_m}{I^2} = \frac{\mu_0}{2\pi} \ln \frac{R_2}{R_1}$$