Московский Государственный Технический Университет им. Н.Э. Баумана

Отчет по лабораторной работе №1 по курсу Технологии Машинного Обучения

Выполнила:
Костян Алина
ИУ5-53
Проверил:
Гапанюк Ю.Е.

Лабораторная работа № 1

Подключим библиотеки

```
In [ ]:
```

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
```

Загружаем данные

```
In [9]:
```

```
data = pd.read_csv('Admission_Predict.csv', sep=",")
```

Этот набор данных предназначен для прогнозирования перспективы приема студентов из Индии.

Набор данных содержит несколько параметров, которые считаются важными при подаче заявки на магистерские программы. Параметры включают в себя:

- 1. GRE баллов (из 340)
- 2. TOEFL баллов (из 120)
- 3. Университетский рейтинг (из 5)
- 4. Заявление о цели и рекомендательное письмо сила (из 5)
- 5. Бакалавриат Средний балл (из 10)
- 6. Опыт исследования (0 или 1)
- 7. Вероятность поступления (от 0 до 1)

Основные характерисики набора данных

Первые 5 строк датасета

```
In [11]:
```

```
data.head()
```

Out[11]:

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
0	1	337	118	4	4.5	4.5	9.65	1	0.92
1	2	324	107	4	4.0	4.5	8.87	1	0.76
2	3	316	104	3	3.0	3.5	8.00	1	0.72
3	4	322	110	3	3.5	2.5	8.67	1	0.80
4	5	314	103	2	2.0	3.0	8.21	0	0.65

Размер датасета

```
In [13]:
```

```
data.shape
```

Out[13]:

(400, 9)

В этом датасете 400 строк и 9 столбцов

Список столбцов

```
In [14]:
```

```
data.columns
```

Out[14]:

Типы данных

In [15]:

```
data.dtypes
```

Out[15]:

Serial No. int64 GRE Score int64 TOEFL Score int64 University Rating int64 SOP float64 LOR float64 **CGPA** float64 Research int64 Chance of Admit float64

dtype: object

Проверим все строки на наличие пустых записей

In [18]:

```
for col in data.columns:
  null_count = data[data[col].isnull()].shape[0]
  print('{} - {}'.format(col, null_count))
```

```
Serial No. - 0
GRE Score - 0
TOEFL Score - 0
University Rating - 0
SOP - 0
LOR - 0
CGPA - 0
Research - 0
Chance of Admit - 0
```

Пустых записей нет

Основные статистические характеристки набора данных

In [20]:

```
data.describe()
```

Out[20]:

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA
count	400.000000	400.000000	400.000000	400.000000	400.000000	400.000000	400.000000
mean	200.500000	316.807500	107.410000	3.087500	3.400000	3.452500	8.598925
std	115.614301	11.473646	6.069514	1.143728	1.006869	0.898478	0.596317
min	1.000000	290.000000	92.000000	1.000000	1.000000	1.000000	6.800000
25%	100.750000	308.000000	103.000000	2.000000	2.500000	3.000000	8.170000
50%	200.500000	317.000000	107.000000	3.000000	3.500000	3.500000	8.610000
75%	300.250000	325.000000	112.000000	4.000000	4.000000	4.000000	9.062500
max	400.000000	340.000000	120.000000	5.000000	5.000000	5.000000	9.920000
4							•

Основные статистические характеристки набора данных

In [27]:

```
print(data['Chance of Admit '].unique())
```

[0.92 0.76 0.72 0.8 0.65 0.9 0.75 0.68 0.5 0.45 0.52 0.84 0.78 0.62 0.61 0.54 0.66 0.63 0.64 0.7 0.94 0.95 0.97 0.44 0.46 0.74 0.91 0.88 0.58 0.48 0.49 0.53 0.87 0.86 0.89 0.82 0.56 0.36 0.42 0.47 0.55 0.57 0.96 0.93 0.38 0.34 0.79 0.71 0.69 0.59 0.85 0.77 0.81 0.83 0.67 0.73 0.6 0.43 0.51 0.39]

Целевой признак содержит значения в интервале от 0 до 1

Визуальное исследование датасета

Построим диаграмму рассеивания

In [28]:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='GRE Score', y='University Rating', data=data)
```

Out[28]:

<matplotlib.axes._subplots.AxesSubplot at 0xe28a70>

Можно видеть, что несмотря на разброс значений, между количеством GRE баллов и Рейтингом университета есть почти что линейная зависимость. Чем лчше университет, тем больше баллов получит судент.

Посмотрим насколько на эту зависимость влияет целевой признак.

In [30]:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='GRE Score', y='University Rating', data=data, hue='Chance of
Admit ')
```

Out[30]:

<matplotlib.axes._subplots.AxesSubplot at 0xb1c95b0>

Видно, что шанс поступления гораздо выше, если у ВУЗа хороший рейтинг и хорошо сдан GRE

Гистограмма

Определим плотность распределения данных

In [31]:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.distplot(data['GRE Score'])
```

Out[31]:

<matplotlib.axes._subplots.AxesSubplot at 0xb3ab210>

Jointplot

Комбинация гистограмм и диаграмм рассеивания.

In [32]:

sns.jointplot(x='GRE Score', y='University Rating', data=data)

Out[32]:

<seaborn.axisgrid.JointGrid at 0xd222e50>

In [34]:

sns.jointplot(x='GRE Score', y='University Rating', data=data, kind="hex")

Out[34]:

<seaborn.axisgrid.JointGrid at 0xb72b0b0>

In [35]:

sns.jointplot(x='GRE Score', y='University Rating', data=data, kind="kde")

Out[35]:

<seaborn.axisgrid.JointGrid at 0xb721050>

"Парные диаграммы"

Построим диаграммы и гистаграммы для всего набора данных

In [42]:

sns.pairplot(data)

Out[42]:

<seaborn.axisgrid.PairGrid at 0x16a20370>

Ящик с усами

Отображает одномерное распределение вероятности.

In [46]:

sns.boxplot(x=data['GRE Score'])

Out[46]:

<matplotlib.axes._subplots.AxesSubplot at 0x15a13190>

In [47]:

sns.boxplot(y=data['GRE Score'])

Out[47]:

<matplotlib.axes._subplots.AxesSubplot at 0x169d4890>

In [51]:

sns.boxplot(x=data['GRE Score'], y=data['Chance of Admit '], data=data)

Out[51]:

<matplotlib.axes._subplots.AxesSubplot at 0x14862b10>

Violin Plot

In [49]:

sns.violinplot(x=data['GRE Score'])

Out[49]:

<matplotlib.axes._subplots.AxesSubplot at 0x16aa6bf0>

In [52]:

```
sns.violinplot(x=data['GRE Score'], y=data['Chance of Admit'], data=data)
```

Out[52]:

<matplotlib.axes._subplots.AxesSubplot at 0x15a724d0>

In [55]:

sns.violinplot(x=data['GRE Score'], y=data['Chance of Admit '], data=data, kind="violi
n", split=True)

Out[55]:

<matplotlib.axes._subplots.AxesSubplot at 0x148a3850>

Корреляция

In [58]:

data.corr()

Out[58]:

	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
GRE Score	1.000000	0.835977	0.668976	0.612831	0.557555	0.833060	0.580391	0.802610
TOEFL Score	0.835977	1.000000	0.695590	0.657981	0.567721	0.828417	0.489858	0.791594
University Rating	0.668976	0.695590	1.000000	0.734523	0.660123	0.746479	0.447783	0.711250
SOP	0.612831	0.657981	0.734523	1.000000	0.729593	0.718144	0.444029	0.675732
LOR	0.557555	0.567721	0.660123	0.729593	1.000000	0.670211	0.396859	0.669889
CGPA	0.833060	0.828417	0.746479	0.718144	0.670211	1.000000	0.521654	0.873289
Research	0.580391	0.489858	0.447783	0.444029	0.396859	0.521654	1.000000	0.553202
Chance of Admit	0.802610	0.791594	0.711250	0.675732	0.669889	0.873289	0.553202	1.000000
4								•

Целевой признак наиболее сильно коррелирует с CGPA (0.87) и GRE (0.8). Эти признаки обязательно следует оставить в модели. Целевой признак отчасти коррелирует со всеми признаками из них нечего удалить.

In [59]:

data.corr(method='pearson')

Out[59]:

	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Char of Adı	
GRE Score	1.000000	0.835977	0.668976	0.612831	0.557555	0.833060	0.580391	0.8026	
TOEFL Score	0.835977	1.000000	0.695590	0.657981	0.567721	0.828417	0.489858	0.7915	
University Rating	0.668976	0.695590	1.000000	0.734523	0.660123	0.746479	0.447783	0.7112	
SOP	0.612831	0.657981	0.734523	1.000000	0.729593	0.718144	0.444029	0.6757	
LOR	0.557555	0.567721	0.660123	0.729593	1.000000	0.670211	0.396859	0.6698	
CGPA	0.833060	0.828417	0.746479	0.718144	0.670211	1.000000	0.521654	0.8732	
Research	0.580391	0.489858	0.447783	0.444029	0.396859	0.521654	1.000000	0.5532	
Chance of Admit	0.802610	0.791594	0.711250	0.675732	0.669889	0.873289	0.553202	1.0000	~
4								-	

In [60]:

data.corr(method='kendall')

Out[60]:

	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
GRE Score	1.000000	0.667509	0.544494	0.467137	0.414973	0.659007	0.492727	0.639933
TOEFL Score	0.667509	1.000000	0.567294	0.514420	0.424169	0.653665	0.421512	0.625485
University Rating	0.544494	0.567294	1.000000	0.638358	0.547389	0.611896	0.411914	0.599076
SOP	0.467137	0.514420	0.638358	1.000000	0.600787	0.565253	0.385807	0.545497
LOR	0.414973	0.424169	0.547389	0.600787	1.000000	0.510758	0.350789	0.518433
CGPA	0.659007	0.653665	0.611896	0.565253	0.510758	1.000000	0.434767	0.720655
Research	0.492727	0.421512	0.411914	0.385807	0.350789	0.434767	1.000000	0.480270
Chance of Admit	0.639933	0.625485	0.599076	0.545497	0.518433	0.720655	0.480270	1.000000
4								•

In [61]:

data.corr(method='spearman')

Out[61]:

	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Char of Adı	
GRE Score	1.000000	0.831860	0.676265	0.613743	0.547786	0.831848	0.595911	0.8153	
TOEFL Score	0.831860	1.000000	0.696868	0.652922	0.549405	0.825720	0.504322	0.7955	
University Rating	0.676265	0.696868	1.000000	0.740387	0.653256	0.750562	0.454131	0.7319	
SOP	0.613743	0.652922	0.740387	1.000000	0.727178	0.724348	0.443648	0.6947	
LOR	0.547786	0.549405	0.653256	0.727178	1.000000	0.666012	0.400385	0.6705	
CGPA	0.831848	0.825720	0.750562	0.724348	0.666012	1.000000	0.530265	0.8784	
Research	0.595911	0.504322	0.454131	0.443648	0.400385	0.530265	1.000000	0.5817	
Chance of Admit	0.815352	0.795573	0.731977	0.694715	0.670562	0.878403	0.581742	1.0000	_
4								•	

In [62]:

sns.heatmap(data.corr())

Out[62]:

<matplotlib.axes._subplots.AxesSubplot at 0x1379e050>

In [63]:

sns.heatmap(data.corr(), annot=True, fmt='.3f')

Out[63]:

<matplotlib.axes._subplots.AxesSubplot at 0x14747030>

In [65]:

```
sns.heatmap(data.corr(), cmap='YlGnBu', annot=True, fmt='.3f')
```

Out[65]:

<matplotlib.axes._subplots.AxesSubplot at 0x158cfbd0>

In [71]:

```
mask = np.zeros_like(data.corr(), dtype=np.bool)
mask[np.triu_indices_from(mask)] = True
sns.heatmap(data.corr(), mask=mask, cmap='YlGnBu', annot=True, fmt='.3f')
```

Out[71]:

<matplotlib.axes._subplots.AxesSubplot at 0x1543d0d0>

In [72]:

```
fig, ax = plt.subplots(1, 3, sharex='col', sharey='row', figsize=(15,5)) sns.heatmap(data.corr(method='pearson'), ax=ax[0], annot=True, fmt='.2f') sns.heatmap(data.corr(method='kendall'), ax=ax[1], annot=True, fmt='.2f') sns.heatmap(data.corr(method='spearman'), ax=ax[2], annot=True, fmt='.2f') fig.suptitle('Корреляционные матрицы, построенные различными методами') ax[0].title.set_text('Pearson') ax[1].title.set_text('Kendall') ax[2].title.set_text('Spearman')
```

