Lista 9: Niezależne zmienne

Zadania na ćwiczenia: 2025-04-28

Lista zadań w formacie PDF

Zadania do samodzielnego rozwiązania

1. Załóżmy, że ξ_1,\ldots,ξ_n są niezależnymi zmiennymi losowymi Bernoulliego, dla których

$$\mathbb{P}(\xi_k = 1) = p$$
, $\mathbb{P}(\xi_k = 0) = 1 - p$, dla $1 \le k \le n$.

Wyznacz prawdopodobieństwo warunkowe, że pierwsza jedynka ("sukces") pojawi się w m-tym kroku, pod warunkiem, że w ciągu n kroków sukces wystąpił dokładnie raz. Odpowiedź

1/n

- 2. Zmienne X i Y są niezależne. X ma rozkład jednostajny na przedziale [0,1], a Y ma rozkład zadany przez $\mathbb{P}[Y=-1]=1/3$, $\mathbb{P}[Y=2]=2/3$.
 - a. Oblicz $\mathbb{P}[3X < Y]$.
 - b. Wyznacz rozkład zmiennej XY. Odpowiedź a 4/9, b jednostajny na [-1,2]
- 3. Zmienne losowe X i Y są niezależne i mają rozkłady wykładnicze z parametrami odpowiednio λ i μ . Znajdź rozkład zmiennej losowej X+Y. Odpowiedź
 - Jeżeli $\mu \neq \lambda$, to jest to rozkład o gęstości $\mu \lambda (e^{-\mu x} e^{-\lambda x}) \mathbf{1}_{[0,+\infty)}(x)/(\lambda \mu)$ Jeżeli $\mu = \lambda$, to jest to rozkład o gęstości $\lambda^2 x e^{-\lambda x} \mathbf{1}_{[0,+\infty)}(x)$.
- 4. Podaj przykład dwóch zależnych zmiennych losowych Xi Y,dla których X^2 i Y^2 są niezależne. Odpowiedź

$$X = Y$$
 takie, że $\mathbb{P}[X = 1 = \mathbb{P}[X = -1] = 1/2$.

5. Załóżmy, że ξ_1, \ldots, ξ_n są niezależnymi i identycznie rozłożonymi zmiennymi losowymi, dla których:

$$\mathbb{P}\{\xi_i = 1\} = p, \quad \mathbb{P}\{\xi_i = 0\} = 1 - p,$$

dla pewnego $0 . Niech <math>S_k = \xi_1 + \ldots + \xi_k$, gdzie $k \le n$. Udowodnij, że dla $1 \le m \le n$ zachodzi:

$$\mathbb{P}(S_m = k \mid S_n = l) = \frac{\binom{m}{k} \binom{n-m}{l-k}}{\binom{n}{l}}.$$

Odpowiedź

Zauważmy, że $S_n - S_m = \xi_{m+1} + \ldots + \xi_n$. Wobec tego zmienne S_m oraz $S_n - S_m$ są niezależne i mają rozkłady odpowiednio Bin(m,p) oraz Bin(n-m,p). Mamy więc

$$\mathbb{P}[S_m = k, S_n = l] = \mathbb{P}[S_m = k, S_n - S_m = l - k]$$

$$= \binom{m}{k} p^k (1 - p)^{m-k} \binom{n-m}{l-k} p^{l-k} (1 - p)^{n-m-l+k}$$

Podstawiając powyższe wyliczenie do wzoru na prawdopodobieństwo całkowite otrzymujemy teze.

Zadania na ćwiczenia

6. Niech X będzie zmienną losową posiadającą wartość oczekiwaną. Pokaż, że dla zdarzenia A o dodatnim prawdopodobieństwie

$$\mathbb{E}[X|A] = \frac{1}{\mathbb{P}[A]} \mathbb{E}[X\mathbf{1}_A].$$

7. Niech $\vec{X} = (X_1, \dots, X_n)$, gdzie zmienne X_1, \dots, X_n są niezależne z gęstościami odpowiednio f_1, \dots, f_n . Pokaż, że X_1, \dots, X_n są niezależne wtedy i tylko wtedy, gdy wektor losowy \vec{X} ma rozkład o gęstości

$$f_{\vec{X}}(x_1, x_2 \dots, x_n) = f_1(x_1) \cdot f_2(x_2) \cdots f_n(x_n).$$

- 8. Niech X_1, \ldots, X_n będą niezależnymi zmiennymi losowymi o rozkładzie wykładniczym z parametrem 1. Znajdź rozkład $Y=\min_{1\leq i\leq n}X_i$. Czy X_n i Y są niezależne?
- 9. Niech X i Y będą niezależnymi zmiennymi losowymi o wartościach całkowitych. Pokaż, że dla każdej wartości k zachodzi

$$\mathbb{P}[X+Y=k] = \sum_{j=-\infty}^{+\infty} \mathbb{P}[X=k-j]\mathbb{P}[Y=j].$$

- 10. Zmienne losowe X_1, \ldots, X_n są niezależne i mają rozkłady Poissona z parametrami λ_i . Pokaż, że $X_1 + \ldots + X_n$ ma rozkład Poissona z parametrem $\lambda_1 + \ldots + \lambda_n$.
- 11. Załóżmy, że X_1 i X_2 są niezależnymi zmiennymi losowymi o rozkładach odpowiednio $\mathcal{N}(m_1, \sigma_1)$ i $\mathcal{N}(m_2, \sigma_2)$. Znajdź rozkład zmiennej losowej $X_1 + X_2$.
- 12. Niech E_1 i E_2 będą niezaleznymi zmiennymi losowymi o rozkładach $\operatorname{Exp}(\lambda)$. Znajdź rozkład E_1 pod warunkiem $\{E_1 \leq t < E_1 + E_2\}$ dla t > 0.
- 13. Niech $\Omega \subseteq \mathbb{R}$ będzie kołem jednostkowym. Rozważmy $\mathcal{F} = \mathcal{B}or(\Omega)$ oraz \mathbb{P} jako unormowaną dwuwymiarową miarę Lebesgue'a. Rozważmy zmienne losowe $X(\omega) = \omega_1/\sqrt{\omega_1^2 + \omega_2^2}$, $Y(\omega) = \omega_2/\sqrt{\omega_1^2 + \omega_2^2}$ oraz $Z(\omega) = \omega_1^2 + \omega_2^2$ dla $\omega = (\omega_1, \omega_2) \in \Omega$.
 - a. Czy zmienne X i Y są niezależne?
 - b. Czy zmienne X i Z są niezależne?
- 14. Niech Z będzie zmienną losową o rozkładzie $\mathrm{Exp}(1)$. Niech $\{Z\}$ oznacza część ułamkową zmiennej Z, a [Z] jej część całkowitą.
 - a. Udowodnij, że $\{Z\}$ i [Z] są niezależne oraz wyznacz ich rozkłady jawnie.
 - b. Rozważmy dodatnią zmienną losową X, której rozkład jest absolutnie ciągły z gęstością φ taką, że $\{X\}$ i [X] są niezależne i $\{X\}$ ma rozkład jednostajny na [0,1]. Znajdź φ .

Zadania dodatkowe

- 15. Z odcinka [0,1] losujemy niezależnie w sposób jednostajny liczby X_1, X_2, \ldots Uzasadnij, że z prawdopodobieństwem 1, ciąg $\{X_n\}$ jest gęsty w odcinku [0,1].
- 16. Scharakteryzuj gęstości doodatnich zmiennych losowych X dla których [X] oraz $\{X\}$ są niezależne.
- 17. Niech $\Gamma \in \mathcal{F}$ i niech $\mathcal{G} \subseteq \mathcal{F}$ będzie σ -ciałem. Udowodnij, że następujące warunki są równoważne:
 - a. Γ jest niezależny od \mathcal{G} względem \mathbb{P} ,
 - b. dla każdego prawdopodobieństwa \mathbb{Q} na (Ω, \mathcal{F}) , równoważnego z \mathbb{P} , takiego że $\left(\frac{d\mathbb{Q}}{d\mathbb{P}}\right)$ jest \mathcal{G} -mierzalna, zachodzi $\mathbb{Q}(\Gamma) = \mathbb{P}(\Gamma)$.