

# UNIVERSIDAD DEL BIO-BIO VICERRECTORIA ACADEMICA – DIRECCION DE DOCENCIA

ASIGNATURA : ARQUITECTURA DE COMPUTADORES

CÓDIGO : 634077

## I. IDENTIFICACIÓN

1.1 CAMPUS : CHILLÁN

1.2 FACULTAD : CIENCIAS EMPRESARIALES

1.3 UNIDAD : CIENCIAS DE LA INFORMACIÓN Y

TECNOLOGÍAS DE LA INFORMACIÓN

1.4 CARRERA : INGENIERÍA CIVIL EN INFORMÁTICA

1.5 N° CRÉDITOS : 5

1.6 TOTAL DE HORAS : 7 HT: 3 HP: 2 HL: 2

1.7 PREQUISITOS DE LA ASIGNATURA :

1.7.1 SISTEMAS DIGITALES, 412010

### II. DESCRIPCIÓN

Curso teórico-práctico orientado a la evaluación y análisis de diferentes arquitecturas de computadores, desde sistemas monoprocesadores hasta arquitecturas paralelas.

### III. OBJETIVOS

## a) Generales:

Analizar los elementos del hardware de un computador y presentar algunas arquitecturas típicas.

# b) Específicos

- Evaluar diferentes alternativas de configuración de sistemas computacionales.
- Comprender el funcionamiento físico y lógico de los diferentes componentes de una arquitectura computacional.
- Configurar física y lógicamente un sistema computacional según requerimientos.
- Discutir las diferentes alternativas de configuración propuestas.
- Utilizar diferentes fuentes de información de manera adecuada.

## IV. UNIDADES PROGRAMÁTICAS

| UNIDADES                                           | HORAS |
|----------------------------------------------------|-------|
| Unidad 1: Introducción a los computadores modernos | 7     |
| Unidad 2: El procesador                            | 35    |
| Unidad 3: Sistemas de memoria                      | 28    |
| Unidad 4: Interfaces y comunicaciones              | 14    |
| Unidad 5: Sistemas Multiprocesadores               | 7     |
| Unidad 6: Arquitecturas avanzadas                  | 21    |
| Total                                              | 112   |

## V. CONTENIDO UNIDADES PROGRAMÁTICAS

| UNIDADES                                           | CONTENIDO                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unidad 1: Introducción a los computadores modernos | <ul> <li>Concepto de arquitectura, organización y máquinas virtuales, clasificación, tecnologías RISC/CISC</li> <li>Evolución histórica de los computadores</li> <li>Niveles en el diseño de un computador</li> <li>Álgebra booleana, mapas de Karnaugh</li> <li>Diseño modular de circuitos</li> </ul> |
| Unidad 2: El procesador                            | <ul> <li>Arquitectura lógica de un computador</li> <li>Representación de números enteros y punto flotante</li> <li>Conjunto de instrucciones</li> <li>Arquitectura física de un computador</li> <li>Unidad Aritmética y Lógica (ALU)</li> </ul>                                                         |

|                                         | <ul> <li>Banco de registros</li> <li>Interfaz con el bus</li> <li>Unidad de Control</li> <li>Lenguaje Ensamblador</li> </ul>                                                                                                                          |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unidad 3: Sistemas de memoria           | Memorias     Concepto lógico     Estructura y Organización     Mapa de memoria     RAM, ROM, Caché, memoria de video                                                                                                                                  |
| Unidad 4: Interfaces y comunicaciones   | <ul> <li>E/S mapeada en memoria (busy-waiting, visores, controladores de E/S)</li> <li>Interfaces de comunicación (puertas paralelas, puertas seriales)</li> <li>Mecanismos avanzados de E/S (interrupciones, DMA, Bus ISA, Bus PCI, SATA)</li> </ul> |
| Unidad 5: Sistemas<br>Multiprocesadores | <ul> <li>Tecnologías SIMD y MIMD.</li> <li>Coherencia de caché</li> <li>Topologías de red</li> </ul>                                                                                                                                                  |
| Unidad 6: Arquitecturas avanzadas       | Memoria caché (asociatividad, write through y write back)                                                                                                                                                                                             |

## VI. METODOLOGÍA

Los temas de la asignatura serán abordados con enfoque teórico y práctico.

La teoría será desarrollada mediante clases expositivas del profesor y trabajos de investigación elaborados por los alumnos para profundizar algunos temas. Esto permitirá construir una base de conocimientos sobre la cual realizar sesiones prácticas de laboratorio.

### MATERIALES UTILIZADOS EN LA ASIGNATURA

- Proyector
- Herramientas hardware (como protoboards, componentes electrónicos, partes y piezas de computador)
- Simuladores de circuitos digitales
- Compilador de lenguaje ensamblador
- Plataforma web del curso que cada alumno debe visitar periódicamente.

## VII. TIPOS DE EVALUACIÓN (PROCESO Y PRODUCTO)

Se contempla la realización de evaluaciones:

- escritas
- tareas individuales
- trabajos en grupo consistentes en resolución de problemas prácticos y de investigación
- sesiones de laboratorio

## VIII. BIBLIOGRAFÍA:

#### Básica

- WILLIAM STALLING; Computer organization and architecture; designing for performance, séptima edición, Pretince Hall. 2006
- ANDREW TANENBAUM;. Organización de Computadoras, Un enfoque estructurado. Pretince Hall, cuarta edición. 2000
- DAVID A. PATTERSON Y JOHN L. HENNESSY;. Organización y Diseño de Computadores. San Mateo, California Morgan Kaifmann. 1998

## Complementaria

- JOSÉ Mª ANGULO. Estructura de Computadores. Parainfo. 1996
- Mª ISABEL GARCÍA, RAFAEL MÉNDEZ, Mª LUISA CÓRDOBA;. Estructura de Computadores, Problemas y Soluciones. Ra-Ma. 1999
- HAMACHER, C., VRANESIC, Z. Y ZAKY, S.,. Computer organization; McGraw Hill, 2000
- M. MORRIS MANO Y CHARLES R. KIME;. Fundamento de Diseño Lógico y Computadoras. Pretince Hall. 1998
- Material entregado por el profesor