

MSE Algorithms

L05: Ant Colony Optimization, Work on Santas Challenge

Samuel Beer

Course Overview

- 1. Introduction: Basic problems and algorithms
- 2. Constructive methods: Random building, Greedy
- 3. Local searches
- Randomized methods
- 5. Threshold accepting, Simulated Annealing
- 6. Decomposition methods: Large neighborhood search
- 7. Learning methods for solution improvement: Tabu search
- 8. Application: Santa's Challenge
- 9. Learning methods for solution building: Artificial ant systems
- 10. Methods with a population of solutions: Genetic algorithms
- 11. Work on Santa's Challenge
- 12. Final Lecture

Ant Colony Optimization (ACO)

Ant Systems are used to CONSTRUCT solutions

Ants can find Shortest Paths

- Ants leave a "pheromone trail" on their way from the nest to a target (e.g. food)
- The more pheromone on a segment, the more likely a next ant is to use this segment
- Experiments have shown that ants can find shortest path between source and target (2-bridge-experiment)
- Ant Colony Optimization simulates behaviour of ants to solve combinatorial problems

Meta-Heuristic: Ant Colony Optimization (ACO)

Set parameters
Initialize pheromone trails

Do

Let artificial Ants construct solutions

Apply Local Search (optional)

Update Pheromones

Keep best solution so far

While termination condition not met

Method is a Constructive solutions generates

Components of an ACO System

Memory

- Associate a value τ_e (pheromone trail) to each element e constituting a solution
- τ_e depends on the number of times e has been used and on the quality of solutions using e

Construct Ant Solutions (building phase)

- Let m artificial ants build solutions in parallel, starting from empty solutions
- For each partial solution, ants choose a feasible next element e with a probability proportional to $\tau_e^{\alpha} \cdot c(s, e)^{\beta}$, where c(s, e) is an incremental cost function that measures the quality of adding element e to partial solution s
- Parameters $\alpha \ge 0$ and $\beta \le 0$ balance the importance of learning versus greedy choice

Update Pheromones

- Evaporate: Multiply all $τ_e$ by 1 − ρ, where 0 ≤ ρ ≤ 1 is a parameter to simulate pheromone evaporation
- **Reinforcement:** For each element e belonging to a solution e at a given iteration, add Q / f(s) to τ_e , where Q is a parameter and e(s) the cost of solution es. This simulates the leaving of pheromone marks on trails by ants

Ant System for TSP

Data

```
Distance matrix D = (d_{ij}) between cities
Trace matrix T = (\tau_{ij})
Parameters \alpha, \beta, \rho, \tau_0, Q, m, max iter
```

Initialisation

$$\tau_{ij} = \tau_0$$
 for all i , j

```
Repeat for max\_iter iterations

R = (r_{ij}) = 0
```

For each
$$k = 1, ..., m$$

 $L = 0$

Choose a city i at random

Repeat, while all cities have not been visited

Choose a city j not yet visited with probability proportional to $au_{ij}^{lpha} \cdot d_{ij}^{eta}$

$$L = L + d_{ij}$$
$$i = i$$

For all arc (i, j) of the tour just built, set $r_{ij} = r_{ij} + Q/L$

The shorter a tour of ant k, the higher the reinforcement value r_{ii} for the edges on this tour.

// Edge reinforcement

// Current city : i

// Tour length

Note: $\beta \leq 0$

// Ant k build a new solution

$$T = (1-\rho)T + R$$
 // Update pheromone trail after having built m solutions

Return The best tour found

1. What is the effect if we set $\alpha = 0$.

2. Same for $\beta = 0$.

Ant Algorithm Variants

Algorithm	Authors	Year
Ant System (AS)	Dorigo et al.	1991
Elitist AS	Dorigo et al.	1992
Ant-Q	Gambardella & Dorigo	1995
Ant Colony System	Dorigo & Gambardella	1996
\mathcal{MAX} – \mathcal{MIN} AS	Stützle & Hoos	1996
Rank-based AS	Bullnheimer et al.	1997
ANTS	Maniezzo	1999
BWAS	Cordón et al.	2000
Hyper-cube AS	Blum et al.	2001

Source: Marco Dorigo et al, Ant Colony Optimization, 2006

Resources:

- Ant Colony Optimization Artificial Ants as a Computational Intelligence Technique by Marco Dorigo, Mauro Birattari, and Thomas Stützle, 2006.
- https://www.researchgate.net/publication/230660829 Ant Colony Optimization Artificial Ants as a Computational Intelligence Technique

META-HEURISTIC: MaxMin Ant System (MMAS)

MMAS is one of the most successful ACO variants

Changes in comparison to Classical ACO:

- Only the best ant is used to update the pheromone trails
- Maintains lower and upper bounds τ_{min} and τ_{max} for pheromone values τ_{e} . Updates to τ_{e} cannot exceed or fall below these boundaries.
- Pheromone is updated only for elements of the "best" solution found. "Best" solution could be smallest of solutions from current iteration, or "best-so-far", the best solution ever found.
- Update depends on the cost of the best solution (e.g. proportional to 1/f(s))

MMAS for TSP with Nearest Neighbors


```
Standard parameter settings
 \alpha = 1, \beta = -2, \rho = 0.98, Q = 1, b = 20, m = \text{problem size}
 \tau_{min} = ..., \tau_{max} = ..., max iter = ...
                                                                           // Problem dependent
Initialisation
   \tau_{ij} = \tau_{max} for all arc (i, j)
Repeat for max iter iterations
   For each ant k = 1, ..., m
       s_{\nu} = \emptyset
                                                                   // Solution built by ant k
       Choose a city i at random
                                                                            // Current city : i
       Repeat, while all cities have not been visited
          If there is a city i not yet visited among b nearest neighbours of i
              Choose a city j among them with probability proportional to 	au_{ij}^{lpha} \cdot d_{ii}^{eta}
          Else Choose a city j not yet visited with maximum \tau_{ij}^{\alpha} \cdot d_{ij}^{\rho}
          s_k = s_k + (i, j)
       Improve solution s_k with a local search
   For all arc (i, j) of the best tour s^* among s_1, s_2, ..., s_m
          \tau_{ij} = \max(\tau_{min}, \min(\tau_{max}, (1 - \rho)\tau_{ij} + Q/Length(s^*)))
```

Return The best tour found

MMAS for TSP: Pherome Update


```
For all arc (i, j) of the best tour s^* among s_1, s_2, ..., s_m \tau_{ij} = \max(\tau_{min}, \min(\tau_{max}, (1-\rho)\tau_{ij} + Q/Length(s^*))
```


Steiner Tree Problem

Definition: Steiner Tree Problem

Problem Definition:

Given a network G = (V, E, C) with

V set of vertices

E set of (undirected) edges

C a function that specifies the weights of the edges and a subset $D \subseteq V$,

find a tree of minimum weight that contains **all vertices of D** (and may include additional vertices of V not in D).

The optional nodes (which are not in D) are called Steiner nodes. The nodes in D are called terminals.

Which problem is "easier" to solve?

a) Minimum Spanning Tree

b) Steiner Tree

c) Both are equal

Steiner Tree vs. MST

Join at menti.com | use code 8283 7649

Mentimeter

Which problem is "easier" to solve?

0

Both are same

÷

MST

SOLUTION: Steiner Tree vs. MST

- If D = V in the Steiner Tree Problem, then we have an MST-Problem. Thus, in general if D ≠ V the Steiner Tree Problem is harder.
- In fact, the Steiner Tree Problem is NP-hard, while MST is solvable in linear time (Prim's algorithm, with respect to the edges).
- Remark: If |D|=2, then the Steiner Tree Problem is equivalent to the shortest path problem and thus solvable in linear time (Dijkstra's algorithm, with respect to the edges).

Steiner Tree Problem: Real World Applications

- Layout of electrical networks, water distribution networks, etc.: The
 edges of the input graph typically correspond to segments in the
 local street map, with vertices representing street intersections and
 the location of potential customers (terminals). The cost c
 associated with an edge is the cost of laying the pipe or cable on
 the corresponding street segment.
- Efficient point to multipoint transfers across multiple datacenters in cloud services (see e.g.
 - https://www.usenix.org/system/files/conference/hotcloud17/hotcloud17-paper-noormohammadpour.pdf)

Exercise

ACO for Steiner Tree Problem

Propose an ACO for the Minimum Steiner Tree problem. Describe how to choose the pheromone trails and how they are exploited.

SOLUTION: ACO for Steiner Tree

ACO for Steiner Tree Problem

- Element e of a partial solution = edge of a tree
- An edge can only be selected as next element if it does not create a cycle
- Probability to chose edge e depends on lengths of e (in the graph) and on pheromone trail on e
- Stop building as soon as all mandatory nodes are in the solution and solution is a tree

Exercise

ACO for Numerical Problems

In graph-based problems such as TSP or Steiner Tree Problem, it is usually obvious what a "step" of an ant is: Choosing an edge to the next city or node.

What about problems that are **not** graph-based, such as the Knapsack Problem? What would a "step" of an ant be here?

SOLUTION: ACO for Knapsack

ACO for Numerical Problems

For Knapsack Problem with items a₁, .. a_n:

- Start with empty solution.
- Partial solution is a selection of k items.
- Potential next steps are taking any of the items that are not yet in the knapsack and which still fit in.
- Options: Either use value or ratio of value/weight to select the next item.
- Probability to chose item a depends on value (or value/weight) of a and on pheromone trail on a.

Santa's Challenge

