Technische Universität München

Mathematik-Vorkurs

2022w

Dr. Michael Luttenberger – Jeremias Bohn – Julian Geheeb

Blatt 3

Aufgaben

3.1 Relationen mit Eigenschaften

Geben Sie für die Menge

$$M = \{x, y, z\}$$

jeweils eine Relation an, die folgende Eigenschaften erfüllt:

- (a) Reflexiv, aber nicht symmetrisch
- (b) Weder symmetrisch noch antisymmetrisch
- (c) Antisymmetrisch, aber nicht asymmetrisch
- (d) Nicht transitiv, aber jedes Element steht mit jedem anderen in Relation
- (e) Symmetrisch und jedes Element steht mit jedem anderen in Relation
- (f) Reflexiv und asymmetrisch

3.2 Eigenschaften von Relationen

Welche Eigenschaften erfüllen jeweils die folgenden Relationen?

3.3 Partielle Ordnungen

Gegeben seien die Mengen

$$M = \{x, y\}, \quad N = \{x, y, z\}$$

- (a) Stellen Sie alle partiellen Ordnungen auf der Menge M graphisch dar.
- (b) Welche dieser partiellen Ordnungen lassen sich durch Umbenennen der Elemente ineinander überführen?

(c) Stellen Sie alle partiellen Ordnungen auf der Menge N bis auf solche, die sich durch Umbenennung der Elemente aus einer anderen Ordnung ergeben, graphisch dar. Sie können auf Kanten, die sich aus Reflexivität und Transitivität automatisch ergeben, verzichten.

Beispiel:

$$R = \{(x, x), (x, y), (x, z), (y, y), (y, z), (z, z)\}$$

darf vereinfacht auf die Kanten (x, y), (y, z) gezeichnet werden.

3.4 Transponierte Ordnung

Geben Sie eine partielle Ordnung R an, sodass diese zwei maximale Elemente, R^{T} aber nur eines besitzt.

3.5 Vereinigung von Relationen

Sei

$$Z = \{2^k \mid k \in \mathbb{N}_0\}$$

die Menge der 2er-Potenzen. Die binäre Relation

auf

N sei definiert durch

$$\Box := \{(2, 2^k), (2^{k-1}, 2^k) \mid k \ge 2\} \cup \{(n+1, n) \mid n \notin Z\}$$

- (a) Stellen Sie ⊏ eingeschränkt auf [16] dar.
- (b) Begründen Sie kurz, ob ⊏ reflexiv/transitiv/symmetrisch/antisymmetrisch/asymmetrisch ist.
- (c) Mit □* wird die kleinste Relation bezeichnet, die □ enthält und gleichzeitig transitiv und reflexiv ist. Man kann zeigen, dass □* eine partielle Ordnung ist. Beschreiben Sie die maximalen und minimalen Elemente von □*.

3.6 Ordnungen auf Tupeln

Sei \leq eine totale Ordnung auf der Menge A.

- (a) Sei $k \in \mathbb{N}$ fest. Wir definieren die Relation \leq auf A^k durch $(a_1, \ldots, a_k) \leq (b_1, \ldots, b_k)$, falls $a_i \leq b_i$ für alle $i \in [k]$ gilt. Zeigen Sie, dass \leq eine partielle Ordnung auf A^k ist, aber im Allgemeinen keine totale Ordnung mehr.
- (b) Sei $A^* = \bigcup_{k \in \mathbb{N}_0} A^k$ die Menge alle endlicher Tupel mit Einträgen aus A (inkl. dem leeren Tupel).

Das Tupel $(a_1, \ldots, a_k) \in A^k$ ist ein $Pr\ddot{a}fix$ des Tupels $(b_1, \ldots, b_l) \in A^l$, falls sowohl $k \leq l$ als auch für alle $i \in [k]$ gilt $a_i = b_i$.

Zeigen Sie, dass "ist Präfix" eine partielle Ordnung auf A^* ist.

- (c) Wir definieren eine letzte Relation \subseteq auf A wie folgt.
 - Für $(a_1, ..., a_k), (b_1, ..., b_l) \in A^*$ soll $(a_1, ..., a_k) \subseteq (b_1, ..., b_l)$, falls:
 - (a_1, \ldots, a_k) ein Präfix von (b_1, \ldots, b_l) ist, oder
 - es ein $i_0 < \min(k, l)$ gibt, so dass $a_j = b_j$ für alle $j \in [i_0 1]$, aber $a_{i_0} < b_{i_0}$ gilt. D.h. i_0 ist die erste Komponente von links, in der sich die beiden Tupel unterscheiden.
 - (i) Sei $A = \{a, b, c, \dots, z\}$ die Menge der Kleinbuchstaben mit der üblichen Ordnung $a < b < c < \dots < z$. Ordnen sie die folgenden Tupel bzgl. \sqsubseteq :

$$(a,a,a,a,a,a), (a,a,a,b,a,a), (a,b), (b,a), (c,b,a), (c,b,a,a)$$

(ii) Zeigen Sie, dass \subseteq eine totale Ordnung auf A^* ist.

3.7 Äquivalenzrelationen

- (a) Stellen Sie alle Äquivalenzrelationen auf der Menge $\{x, y, z\}$ graphisch dar.
- (b) Sei nun A die Menge aller Äquivalenzrelationen auf $\{x, y, z\}$. Stellen Sie die Teilmengenrelation \subseteq auf A graphisch dar.
- (c) Bestimmen Sie alle Äquivalenzrelationen auf $\{1, 2, 3, 4, 5\}$ mit genau 2 Äquivalenzklassen.

3.8 Modulorelationen

Stellen Sie \equiv_3 , \equiv_5 und \equiv_{15} eingeschränkt auf $\{0,1,\ldots,44\}$ jeweils einzeln graphisch dar, indem Sie äquivalenten Zahlen mit derselben "Farbe" markieren.

Beschreiben Sie, wie die Äquivalenzklassen von \equiv_{15} aus den Äquivalenzklassen von \equiv_{3} und \equiv_{5} hervorgehen.

3.9 Äquivalenzrelationen auf Tupeln von \mathbb{N}_0

Wir definieren $Z := \mathbb{N}_0 \times \mathbb{N}_0$ und die Relation \equiv auf Z wie folgt: $(a,b) \equiv (c,d)$, falls a+d=c+b in den natürlichen Zahlen \mathbb{N}_0 gilt.

- (a) Zeigen Sie, dass \equiv eine Äquivalenzrelation auf Z ist.
- (b) Bestimmen Sie die Äquivalenzklasse $[(1,0)]_{=}$ von (1,0).
- (c) Zeigen Sie, dass $[(1,0)]_{\equiv} \neq [(0,1)]_{\equiv}$ gilt.
- (d) Wir definieren auf dem Quotienten $\{[(a,b)]_{\equiv} \mid (a,b) \in Z\}$ eine Addition und Multiplikation:

$$[(a,b)]_{\equiv} + [(c,d)]_{\equiv} := [(a+c,b+d)]_{\equiv} \qquad [(a,b)]_{\equiv} \cdot [(c,d)]_{\equiv} := [(ac+bd,ad+bc)]_{\equiv} := [(ab+bd,ad+bc)]_{\equiv} := [(ab+bd,ad+bc$$

Zeigen Sie: Falls $(a, b) \equiv (a', b')$ und $(c, d) \equiv (c', d')$, dann gilt auch

- (i) $[(a,b)]_{\equiv} + [(c,d)]_{\equiv} = [(a',b')]_{\equiv} + [(c',d')]_{\equiv}$
- (ii) $[(a,b)]_{\underline{=}} \cdot [(c,d)]_{\underline{=}} = [(a',b')]_{\underline{=}} \cdot [(c',d')]_{\underline{=}}$
- (e) Nat verhält sich zu \mathbb{N}_0 wie $\{[(a,b)]_{\equiv} \mid (a,b) \in Z\}$ zu _____. Wie kann man "kleiner-gleich" auf $\{[(a,b)]_{\equiv} \mid (a,b) \in Z\}$ mittels "kleiner-gleich" auf \mathbb{N}_0 definieren?

3.10 Äquivalenzrelationen auf Tupeln von $\mathbb Z$

Wir definieren $Q := \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ und die Relation \equiv auf Q wie folgt: $(a,b) \equiv (c,d)$, falls $a \cdot d = c \cdot b$ in den ganzen Zahlen \mathbb{Z} gilt.

- (a) Zeigen Sie, dass \equiv eine Äquivalenzrelation auf Q ist.
- (b) Bestimmen Sie die Äquivalenzklasse $[(2,1)]_{=}$ von (2,1).
- (c) Zeigen Sie, dass $[(2,1)]_{\equiv} \neq [(1,2)]_{\equiv}$ gilt.
- (d) Wir definieren auf dem Quotienten $\{[(a,b)]_{\equiv} \mid (a,b) \in Q\}$ eine Addition und Multiplikation:

$$[(a,b)]_{=} + [(c,d)]_{=} := [(ad+cb,bd)]_{=}$$
 $[(a,b)]_{=} \cdot [(c,d)]_{=} := [(ac,bd)]_{=}$

Zeigen Sie: Falls $(a, b) \equiv (a', b')$ und $(c, d) \equiv (c', d')$, dann gilt auch

(i)
$$[(a,b)]_{=} + [(c,d)]_{=} = [(a',b')]_{=} + [(c',d')]_{=}$$

(ii)
$$[(a,b)]_{\equiv} \cdot [(c,d)]_{\equiv} = [(a',b')]_{\equiv} \cdot [(c',d')]_{\equiv}$$

(e) Nat verhält sich zu \mathbb{N}_0 wie $\{[(a,b)]_{\equiv} \mid (a,b) \in Q\}$ zu ______. Wie kann man "kleiner-gleich" auf $\{[(a,b)]_{\equiv} \mid (a,b) \in Q\}$ mittels "kleiner-gleich" auf \mathbb{Z} definieren?

3.11 Äquivalenzklassen

Für ein festes $m \in \mathbb{N}$ definieren wir auf \mathbb{Z} die Relation \equiv_m wie folgt: $a \equiv_m b$ falls a - b ein ganzzahliges Vielfaches von m ist (kurz: m | (a - b)).

- (a) Zeigen Sie, dass \equiv_m eine Äquivalenzrelation auf \mathbb{Z} ist.
- (b) Wir schreiben kurz $[a]_m$ für die Äquivalenzklasse $[a]_{\equiv_m}$ von a bzgl. \equiv_m .
 - (i) Bestimmen Sie die Äquivalenzklasse $[3]_9$ von 3 bzgl. $\equiv_9.$
 - (ii) Bestimmen Sie die Äquivalenzklasse $[3]_{11}$ von 3 bzgl. 11.
- (c) Wir definieren auf dem Quotienten $\{[a]_m \mid a \in \mathbb{Z}\}$ eine Addition und Multiplikation durch

$$[a]_m + [b]_m := [a+b]_m \qquad [a]_m \cdot [b]_m := [ab]_m$$

Tabellieren Sie für m = 3 und m = 6 die Addition und Multiplikation.

(d) Zeigen Sie: Falls $a \equiv_m a'$ und $b \equiv_m b'$, dann gilt auch

(i)
$$[a]_m + [b]_m = [a']_m + [b']_m$$

(ii)
$$[a]_m \cdot [b]_m = [a']_m \cdot [b']_m$$

3.12 Weder injektiv noch surjektiv?

Existieren Abbildungen, die weder injektiv noch surjektiv sind? Geben Sie gegebenenfalls solche Funktionen an und veranschaulichen Sie sie mit einer Skizze.

3.13 Injektivität und Surjektivität

Überprüfen Sie die folgenden Funktionen auf Injektivität und Surjektivität:

(a)
$$f: \mathbb{Z} \to \mathbb{N}_0$$
; $x \mapsto x^2$

(b)
$$f: \mathbb{N}_0 \to \mathbb{N}_0; \ x \mapsto x^2$$

(c)
$$f: \mathbb{N} \to \mathbb{N}; x \mapsto \begin{cases} 1 & \text{falls } x = 1 \\ x - 1 & \text{sonst} \end{cases}$$

(d)
$$f: \mathbb{Z} \to \mathbb{Z}; x \mapsto x-1$$

3.14 Äquivalenzrelationen auf Urbildmengen

Sei $f: A \to B$ eine Funktion. Überprüfen Sie, dass dann durch \equiv_f , definiert als

$$a \equiv_f a'$$
 falls $f(a) = f(a')$

eine Äquivalenzrelation auf A definiert ist.

Bestimmen Sie speziell für $f: \mathbb{R} \to \mathbb{R}; \ x \mapsto x^2$ den Quotienten von \mathbb{R} bzgl. \equiv_f .

3.15 Eigenschaften von Funktionen

Prüfen Sie folgende Eigenschaften für beliebige Funktionen f,g nach:

- (a) Ist f injektiv, dann ist $g: A \to f(A)$; $a \mapsto f(a)$ bijektiv.
- (b) Ist $f: A \to A$ injektiv und A endlich, dann ist f bijektiv.
- (c) Ist $f: A \to A$ surjektiv und A endlich, dann ist f bijektiv.
- (d) Sind $f: A \to B$ und $g: B \to C$ injektiv/surjektiv, dann auch $(g \circ f)$.
- (e) Ist $(g \circ f)$ surjektiv, dann auch g.
- (f) Ist $(g \circ f)$ injektiv, dann auch f.
- (g) $\tilde{f}: A/\equiv_f \to B$; $[a]_f \mapsto f(a)$ ist bijektiv, falls f surjektiv.
- (h) $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$ und $f^{-1}(X \cap Y) = f^{-1}(X) \cap f^{-1}(Y)$.
- (i) $f(X \cup Y) = f(X) \cup f(Y)$, aber $f(X \cap Y) \subseteq f(X) \cap f(Y)$. f ist genau dann injektiv, wenn stets $f(X \cap Y) = f(X) \cap f(Y)$.

3.16 Funktionsdarstellungen

Sei $A = \{1, 2, 3\}.$

- (a) Wie viele Funktionen $f: A \to A$ gibt es? Wie viele bijektive Abbildungen $f: A \to A$ gibt es?
- (b) Eine Abbildung $f: A \to A$ kann man kompakt mittels der Zweizeilenform definieren, z.B.

$$f = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \quad g = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

bei der man in die obere Zeile die Urbilder und in die untere Zeile unter jedes Urbild das jeweilige Bild schreibt. So würde dann z.B.

$$f(1) = 2$$
, $f(2) = 3$, $f(3) = 1$

gelten.

- (i) Stellen Sie f und g graphisch dar: Einmal als Funktionen, indem Sie getrennte Knoten für Urbilder und Bilder verwenden und einmal als Relationen über A.
- (ii) Bestimmen Sie dann graphisch

$$f \circ g$$
, $g \circ f$, $f \circ f$, $f \circ f \circ f$, $g \circ g$, $g \circ g \circ g$

(iii) Überlegen Sie sich, warum für jede Bijektion $h: A \to A$ stets

$$(h \circ h \circ h \circ h \circ h \circ h)(a) = a$$

für alle $a \in A$ gelten muss.

3.17 Gruppen

Eine Menge G mit einem binären Operator $\odot: G \times G \to G$ wird als Gruppe bezeichnet, falls folgende Bedingungen erfüllt sind:

- Assoziativität: Für alle $a, b, c \in G$ gilt: $a \odot (b \odot c) = (a \odot b) \odot c$
- Neutrales Element: Es gibt ein $n \in G$, sodass $n \odot a = a = a \odot n$ für alle $a \in G$ gilt.
- Inverses Element: Für jedes $a \in G$ gibt es ein $b \in G$ mit $a \odot b = n = b \odot a$, wobei n ein (das) neutrale Element ist.

- (a) Zeigen Sie: Für jede Menge A ist die Menge $S_A := \{f : A \to A \mid f \text{ ist bijektiv}\}$ eine Gruppe bzgl. der Komposition \circ . Man nennt S_A die symmetrische Gruppe.
- (b) Zeigen Sie nur unter Verwendung der Definitionen von Assoziativität, neutralem Element und inversem Element,
 - (i) dass jede Gruppe genau ein neutrales Element hat, d.h. falls n und n' beide die Definition vom neutralen Element erfüllen, muss n = n' gelten.
 - (ii) entsprechend für jedes Element $a \in G$ genau ein inverses Element existiert (für das man dann auch a^{-1} schreiben darf).

3.18 Cantorsche Tupelfunktion

(a) Tabellieren Sie die Abbildung

$$f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}: (n,m) \mapsto \frac{1}{2}(m+n-1)(m+n-2) + m$$

für $1 \le n, m \le 3$.

- (b) Überlegen Sie sich, dass f tatsächlich nur Werte in \mathbb{N} annimmt.
- (c) Betrachten Sie f(m, k+1-m) für festes $k \ge 1$ und $1 \le m \le k$.
- (d) Zeigen Sie, dass f surjektiv ist.
- (e) Zeigen Sie, dass f injektiv ist: Nehmen Sie an, dass f(m,n) = f(r,s) und unterscheiden Sie dann danach, ob m + n = r + s oder $m + n \neq r + s$.

Optionale Aufgaben

3.1* Mengennomenklatur (Optionale Aufgabe)

Wir erinnern uns:

- Man identifiziert die natürliche Zahl n mit der Menge $\langle n \rangle$.
- $\bullet\,$ Für die Potenzmenge einer Menge M schreibt man auch $2^M.$
- Für die Menge der Funktionen von A nach B schreibt man B^A .
- Für die Menge der n-Tupel über Menge A schreibt man A^n .

Warum macht es Sinn, 2^M für die Potenzmenge und A^n für die Menge der n-Tupel zu schreiben?