

Universal Relay Driver

Features

- 10V to 450V Input Voltage Range
- · Energy-saving Hold Current Mode
- Adjustable Microcontroller Supply
- Low Supply Current <1 mA
- · Constant-current Coil Drive
- Programmable Pull-in Current, Pull-in Time and Hold Current

Applications

- · Industrial Controls
- · Relay Timers
- · Solenoid Drivers
- · Home Automation

General Description

The HV9901 universal relay driver provides high-efficiency driving for low-voltage relays with supply voltages as high as 450V. For example, a relay with a 5V coil can be driven directly from the rectified 120 VAC or 230 VAC line.

The IC includes two high-voltage linear regulators. The first one is for providing power to internal control circuitry. The second one has an adjustable output voltage and a 1 mA output current capability to support external circuitry, such as a microcontroller control circuit.

The pull-in current, pull-in time and hold current for the relay are individually programmable through two resistors and a capacitor. PWM switching can be synchronized with an external clock or with another HV9901 operating at a higher frequency.

The relay is operated through the enable input ENI. Logic polarity is under control of the polarity input POL. Audible noise coming from the relay can be suppressed by operating at a PWM frequency exceeding 20 kHz.

Package Type

WARNING

The HV9901 is suited for relay driving applications operating at hazardous voltage. Ensure that adequate safeguards are provided to protect the end user from electrical shock.

Functional Block Diagram

Typical Application Circuit

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings[†]

Input Voltage, V _{IN} 1	—0.5V to 470V
Input Voltage to any other Pin ¹	
Operating Junction Temperature Range	
Continuous Power Dissipation $(T_A = +25^{\circ}C)^2$	750 mW

† Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

- Note 1: All voltages are referenced to GND.
 - 2: For operation above 25°C ambient, derate linearly at 7.5 mW/°C.

ELECTRICAL CHARACTERISTICS

Electrical Specifications: T _A = 25°C unless otherwise noted.											
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions					
HIGH-VOLTAGE REGULATOR											
Input Voltage	V _{IN}	10	_	450	V	I _{CC} = 0 mA to 1 mA load					
Supply Current	I _{IN}	_	_	2	mA	No load at V_{DD} (Note 1) load at I_{CC} = 1 mA, C_{GT} = 500 pF, f_{OSC} = 25 kHz					
Internal Supply Voltage	V_{DD}	8.5	9	9.5	V	No load at V_{DD} (Note 1) C_{GT} = 500 pF, f_{OSC} = 25 kHz					
V _{DD} UVLO, On	UVLO _(ON)	7.8	8.2	8.5	V						
V _{DD} UVLO, Hysteresis	UVLO _(HYST)	_	0.5	_	V						
ADJUSTABLE REGULATOR	R										
Regulator Output Voltage Range	V _{CC}	2	_	5.5	V	I _{CC} = 1 mA load					
Regulator Output Current	I _{CC}	0	_	1	mA	No load at V _{DD} (Note 1)					
Feedback Voltage	V_{FB}	0	V_{REF}	V _{DD} -1V	V						
Input Bias Current	I _{FB}	_	25	100	nA	$V_{FB} = V_{REF}$					
REFERENCE						•					
Bandgap Reference Voltage	V_{REF}	1.2	1.25	1.3	V	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$					
Load Regulation		_	_	7	mV	0 mA < I _{REF} < 0.3 mA					
Line Regulation		_	10	15	mV	8.5V < V _{DD} < 9.5V					
Short Circuit Current	I _{REF(SHORT)}	_	_	1	mA						
Reference Voltage Sink Current	I _{REF(SINK)}	_	_	20	μΑ						

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: T _A = 25°C unless otherwise noted.										
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions				
OSCILLATOR										
PWM Oscillator Frequency	f _{OSC}	20	25	35	kHz	$R_T = 1 M\Omega$				
		80	100	140	kHz	R _T = 226 kΩ				
Temperature Coefficient	_	_	170	_	ppm/°C	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$				
Oscillator SYNC Frequency	f _{SYNC}	_	_	150	kHz					
SYNC Sourcing Current	I _{SYNC}	20	_	55	μΑ					
SYNC Sinking Current	I _{SYNC}	1	_	_	mA	V _{SYNC} = 0.1V				
SYNC Input Logic Low Voltage	V _{SYNC}	_	_	1	V					
PWM										
Maximum Duty Cycle	D _{MAX}	96.5	_	99.5	%	$R_T = 1 M\Omega$				
		86.5	_	97.5	%	R _T = 226 kΩ				
Blanking Time	t _{BLNK}	150	215	280	ns					
MOSFET DRIVER										
Gate Drive Output High	V_{GTH}	V _{DD} -0.3	_	_	V	I _{OUT} = 10 mA				
Gate Drive Output Low	V_{GTL}	_	_	0.3	V	I _{OUT} = -10 mA				
Rise Time	t _R	_	30	50	ns	C _{GT} = 500 pF				
Fall Time	t _F	_	30	50	ns					
CURRENT SENSE										
Current Sense Voltage, High Limit	V _{CS(HL)}	0.775	0.833	0.891	V					
Current Limit Delay to GT, High Limit	t _{DELAY(HL)}	_	200	250	ns	50 mV overdrive				
Input Bias Current	I _{CS}	_	25	1000	nA	POL = Low, ENI = Low				
Low Limit Comparator Input Offset Voltage	V _{OS}	_	_	±60	mV					
Current Limit Delay to GT, Low Limit	t _{DELAY(LL)}	_	200	250	ns	50 mV overdrive				
Hold/Delay Output Voltage	V _{HOLD/DEL}	V _{DD} -0.4	_	_	٧	I _{HOLD/DEL} (sourcing)–100 μA POL = Low, ENI = Low				
Hold/Delay Input Bias Current	I _{HOLD/DEL}	_	25	500	nA	POL = Low, ENI = Low				
Shutdown Delay	t _{ENI}	_	50	100	ns	2V < V _{CC} < 5.5V				
Enable Input Voltage - High	V _{ENI}	0.7 V _{CC}	_	V _{CC}	V					
Enable Input Voltage - Low		0	_	0.3 V _{CC}	V					
Enable Input Current - High	I _{ENI}	_	1	5	μA					
Enable Input Current - Low	=. "	-5	– 1	_	μA					
Polarity Voltage - High	V _{POL}	0.7 V _{CC}		V _{CC}	V					
Polarity Voltage - Low		0		0.3V _{CC}	V					
Polarity Current - High	I _{POL}	_	1	5	μA					
Polarity Current - Low		-5	– 1	_	μA					
Enable Output Voltage - High	V _{ENO}	0.9 V _{CC}	_	V _{CC}	V					
Enable Output Voltage - Low		0	_	0.1 V _{CC}	V					

Note 1: Maximum allowable load current limited by power dissipation and operating ambient temperature

TEMPERATURE SPECIFICATIONS

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions		
TEMPERATURE RANGE								
Operating Junction Temperature	T_J	-40	_	85	°C			
PACKAGE THERMAL RESISTANCE								
16-lead SOIC	θ_{JA}	_	83	_	°C/W			

1.1 Truth Table

ENABLE OUTPUT LOGIC TRUTH TABLE

POL	ENI	ENO	Gate Drive Output
Low	Low	High	V _{GT} = Oscillating output, duty cycle depends on inductive load
Low	High	Low	V _{GT} = Low, SYNC = High, oscillator shutdown
High	High	Low	V _{GT} = Oscillating output, duty cycle depends on inductive load
High	Low	High	V _{GT} = Low, SYNC = High, oscillator shutdown

2.0 PIN DESCRIPTION

The pin details of HV9901 are listed on Table 2-1. See Package Type for the location of the pins.

TABLE 2-1: PIN TABLE

Pin Number	Pin Name	Description
1	VIN	Input supply
2	_	Pin not present
3	_	Pin not present
4	GT	Gate driver output for driving the external switching MOSFET
5	CS	Current sense input
6	GND	Ground
7	SYNC	Open-drain input/output for synchronizing the internal PWM oscillator to other HV9901s or to an external clock
8	RT	A resistor from this pin to ground sets the PWM switching frequency.
9	POL	Input that determines the polarity of the ENI input. See Truth Table.
10	ENO	Enable output. It is the logical inversion of the ENI signal.
11	ENI	Enable input. Whether ENI is active low or active high is determined by the POL input.
12	VCC	Output of the auxiliary regulator. Output voltage is determined by the resistive divider connected to the FB pin.
13	FB	Feedback input for the auxiliary regulator.
14	H/D	HOLD/DELAY input. An RC network connected to this pin controls the pull-in time and the holding current. See equations on page 4.
15	VREF	Reference voltage. Bypass locally with a 10 nF capacitor.
16	VDD	Output of the internal supply regulator. Bypass locally with a 10 nF capacitor.

HV9901

3.0 APPLICATION INFORMATION

To calculate external component values, use the equations shown in Equation 3-1 to Equation 3-8 as well as Figure 3-1 and Figure 3-2.

EQUATION 3-1:

$$I_{CS(HI)} = 833 \text{mV}_{NOM}$$

EQUATION 3-2:

$$V_{DD} = 9V_{NOM}$$

EQUATION 3-3:

$$I_{PULL-IN} = \frac{V_{CS}}{R_{SENSE}}$$

EQUATION 3-4:

$$V_{\text{CS(LL)}} = \frac{V_{\text{DD}}}{1 + \frac{R_{\text{HDA}}}{R_{\text{HDB}}}}$$

EQUATION 3-5:

$$I_{\text{HOLD}} = \frac{V_{\text{CS(LL)}}}{R_{\text{SENSE}}}$$

EQUATION 3-6:

$$f_{\rm PWM} \approx 3.23\,\rm kHz + \frac{21.8\,\rm GHz \bullet \Omega}{R_{\rm OSC}}$$

valid for $f_{PWM} > 23 \text{ kHz}$

EQUATION 3-7:

$$V_{CC} = 1.25V \bullet \left(1 + \frac{R_{FBA}}{R_{FBB}}\right)$$

EQUATION 3-8:

$$t_{\mathrm{PULL-IN}} = (R_{\mathrm{HDA}} + R_{\mathrm{HDB}}) \bullet C_{\mathrm{HD}} \bullet \ln \left(1 - \frac{V_{\mathrm{CS(HI)}} - V_{\mathrm{DD}}}{V_{\mathrm{CS(LL)}} - V_{\mathrm{DD}}} \right)$$

FIGURE 3-1: Current vs. Time.

FIGURE 3-2: Typical Application Circuit.

4.0 PACKAGING INFORMATION

4.1 Package Marking Information

Legend: XX...X Product Code or Customer-specific information
Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code
Pb-free JEDEC® designator for Matte Tin (Sn)
This package is Pb-free. The Pb-free JEDEC designator (e3)
can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for product code or customer-specific information. Package may or

not include the corporate logo.

16-Lead SOIC (Narrow Body) Package Outline (NG) Pins #2 and #3 Trimmed

9.90x3.90mm body, 1.75mm height (max), 1.27mm pitch

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.

Note:

 This chamfer feature is optional. If it is not present, then a Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbo	ol	Α	A1	A2	b	D	Е	E1	е	h	L	L1	L2	θ	θ1
	MIN	1.35*	0.10	1.25	0.31	9.80*	5.80*	3.80*		0.25	0.40			0 °	5°
Dimension (mm)	NOM	-	-	-	-	9.90	6.00	3.90	1.27 BSC	-	-	1.04 REF	0.25 BSC	-	-
()	MAX	1.75	0.25	1.65*	0.51	10.00*	6.20*	4.00*	200	0.50	1.27			8°	15°

JEDEC Registration MS-012, Variation AC, Issue E, Sept. 2005.

Drawings are not to scale.

^{*} This dimension is not specified in the JEDEC drawing.

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (August 2016)

- Updated file to Microchip format.
- Converted Supertex Doc # DSFP-HV9901 to Microchip DS20005550A.
- · Minor text changes throughout.

PRODUCT IDENTIFICATION SYSTEM

 $\label{thm:condition} \mbox{To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales of fice.}$

PART NO. XX	- ұ - ұ	Ex	amples:	
Device Packa Optio	ige Environmental Media ns Type	a)	HV9901NG-G:	Universal Relay Driver, 16-lead SOIC Package, 45/Tube
		b)	HV9901NG-G-M901:	Universal Relay Driver, 16-lead SOIC
Device:	HV9901 = Universal Relay Driver			Package, 2600/Reel
	•	c)	HV9901NG-G-M934:	Universal Relay Driver, 16-lead SOIC
Package:	NG = 16-lead SOIC			Package, 2600/Reel
Environmental:	G = Lead (Pb)-free/RoHS-compliant Package			
Media Type:	(blank) = 45/Tube for an NG Package M901 = 2600/Reel for an NG Package M934 = 2600/Reel for an NG Package			
	M901 and M934, the base quantity for tape and reel was 2600/reel. Both options will result in delivery of the same reel.			

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- · Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0827-7

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 **Technical Support:**

http://www.microchip.com/ support

Web Address:

www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614

Fax: 678-957-1455 Austin, TX

Tel: 512-257-3370 **Boston**

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323

Fax: 317-773-5453

Los Angeles Mission Viejo, CA

Tel: 949-462-9523 Fax: 949-462-9608

New York NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway

Harbour City, Kowloon

Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

Fax: 852-2401-3431 China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355

Fax: 86-532-8502-7205 China - Shanghai Tel: 86-21-5407-5533

Fax: 86-21-5407-5066 China - Shenyang Tel: 86-24-2334-2829

Fax: 86-24-2334-2393 China - Shenzhen

Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

06/23/16