第四章 中值定理及导数的应用

- 一、选择题(选择正确的选项)
- **1.** 设 f(x) 在 [-2,2] 上可导, 且 f'(x) > f(x) > 0, 则 ().

(A)
$$\frac{f(-2)}{f(-1)} > 1$$

(B)
$$\frac{f(0)}{f(-1)} > e$$

(C)
$$\frac{f(1)}{f(-1)} < e^2$$

(A)
$$\frac{f(-2)}{f(-1)} > 1$$
 (B) $\frac{f(0)}{f(-1)} > e$ (C) $\frac{f(1)}{f(-1)} < e^2$ (D) $\frac{f(-2)}{f(-1)} > e^3$

2. 当 $x \rightarrow 0$ 时, 下列无穷小量

$$1 \sqrt{1 + \tan x} - \sqrt{1 + \sin x}$$

$$(2)\sqrt{1+2x}-\sqrt[3]{1+3x}$$

(1)
$$\sqrt{1 + \tan x} - \sqrt{1 + \sin x}$$
 (2) $\sqrt{1 + 2x} - \sqrt[3]{1 + 3x}$ (3) $x - \left(\frac{4}{3} - \frac{1}{3}\cos x\right)\sin x$

(A)
$$(1)(2)(3)(4)$$
 (B) $(3)(1)(2)(4)$ (C) $(4)(3)(2)(1)$ (D) $(4)(2)(1)(3)$

3. 下列函数在给定区间上满足罗尔定理条件的是().

(A)
$$f(x) = \begin{cases} e^{x-1}, & 0 < x \le 2 \\ e, & x = 0 \end{cases}$$
, $[0,2]$ (B) $f(x) = x^2 - 2x - 3$, $[-1,3]$

(B)
$$f(x) = x^2 - 2x - 3$$
, [-1,3]

(C)
$$f(x) = \frac{1}{(x-1)^4}$$
, [0,2]

(D)
$$f(x) = |x|, [-1, 1]$$

- **4.** 设函数 f(x) 满足关系式 $f''(x) + [f'(x)]^2 = -e^x$, 且 f'(0) = 0, 则 ().
 - (A) f(0) 是 f(x) 的极大值
 - (B) f(0) 是 f(x) 的极小值
 - (C) 点 (0, f(0)) 是曲线 y = f(x) 的拐点
 - (D) f(0) 不是 f(x) 的极值,点 (0, f(0)) 也不是曲线 y = f(x) 的拐点
- **5.** 设函数 f(x) 在点 x_0 的 δ 邻域 $(x_0 \delta, x_0 + \delta)(\delta > 0)$ 内三阶导数 f'''(x) > 0, 且二 阶导数值 $f''(x_0) = 0$, 则曲线 y = f(x) ().
 - (A) 在 $(x_0 \delta, x_0)$ 内是凹弧, 在 $(x_0, x_0 + \delta)$ 内是凸弧
 - (B) 在 $(x_0 \delta, x_0 + \delta)$ 内是凸弧
 - (C) 在 $(x_0 \delta, x_0)$ 内是凸弧, 在 $(x_0, x_0 + \delta)$ 内是凹弧
 - (D) 在 $(x_0 \delta, x_0 + \delta)$ 内是凹弧

	6. 函数 $f(x) = \frac{\sin(x+1)}{x^2 - 3x - 4}$, 下列说法错误的是(). (A) 有渐近线 $y = 0, x = 4$ (B) $x = 4$ 为无穷间断点 (C) 在区间 $(1,4)$ 上有界 (D) 若补充定义 $f(-1) = -\frac{1}{5}$, 则 $f(x)$ 在点 $x = -1$ 处连续				
7 .	函数 $f(x) = \arctan x + \operatorname{arccot} x = ($).				
	(A) 0	(B) 2 <i>x</i>	(C) $\frac{\pi}{2}$	(D) π	
8.	8. 曲线 $y = e^{-\frac{1}{x}}$, 则下列说法正确的是 ().				
	(A) 在 (-∞,0), (0,+	∞) 内单调减少	(B) 没有极值		
	(C) 在 $(-\infty, \frac{1}{2})$ 内图	形是下凹的	(D) 没有拐点		
9. 函数 $y = f(x)$ 在点 $x = x_0$ 处连续且取得极小值,则 $f(x)$ 在 x_0 处必有 ().					
	(A) $f'(x_0) = 0$		(B) $f''(x_0) > 0$		
	(C) $f'(x_0) = 0 \perp f''(x_0)$	$(x_0) > 0$	(D) $f'(x_0) = 0$ 或不	存在	
10 . 设函数 $f(x)$ 在 $[a,b]$ 上有定义, 在开区间 (a,b) 内可导,则().					
	(A) 当 $f(a)f(b) < 0$ 时, 存在 $x_0 \in (a,b)$, 使得 $f(x_0) = 0$ (B) 对任何 $x_0 \in (a,b)$, 有 $\lim_{x \to x_0} [f(x) - f(x_0)] = 0$				
	(C) 当 $f(a) = f(b)$ 时, 存在 $x_0 \in (a, b)$, 使得 $f'(x_0) = 0$ (D) 存在 $x_0 \in (a, b)$, 使得 $f(b) - f(a) = f'(x_0)(b - a)$				
11. 函数 $y = x^3 + 12x + 1$ 在定义域内().					
	(A) 图形是凸的	(B) 图形是凹的	(C) 单调减少	(D) 单调增加	
12. 下列函数在给定的区间上满足罗尔定理条件的是().					
	(A) $f(x) = x^2 - 5x$	+6, [2,3]	(B) $f(x) = \sin x$,	$\left[\frac{\pi}{6}, \frac{7\pi}{6}\right]$	
	$(C) f(x) = \sqrt{x^2} e^{x^2},$	[-1,1]	$(D) f(x) = \begin{cases} x+1, \\ 1, \end{cases}$	_	
13.	13. 下列函数在给定区间上满足罗尔定理条件的是()				
	(A) $f(x) = \begin{cases} e^{x-1}, \\ e, \end{cases}$	$0 < x \le 2$ $x = 0$	(B) $f(x) = x , [-$	1,1]	
	(C) $f(x) = \frac{1}{(x-1)^4}$, [0,2]	$(D) f(x) = x^2 - 2x$	-3, [-1,3]	

- **14.** 若 (0,1) 是曲线 $y = x^3 + (b-1)x^2 + c$ 的拐点,则有 ()

 - (A) b = 1, c = 1 (B) b = -1, c = -1 (C) b = 1, c = -1 (D) b = -1, c = 1
- 15. 下列函数在给定的区间上满足罗尔定理的是(
 - (A) $f(x) = \frac{1}{\sqrt[3]{(x-1)^2}}$, [0,2]
- (B) $f(x) = \sin x$, $\left[\frac{\pi}{6}, \frac{5\pi}{6}\right]$
- (C) $f(x) = xe^x [0,1]$

- (D) $f(x) = \begin{cases} x+1, & x < 5 \\ 1, & x \ge 5, \end{cases}$, [0,5]
- 二、填空题 (请将答案写在横线上)
- **1.** 极限 $\lim_{x\to 0} \frac{e^x(e^x-2)+1}{x^2} = \underline{\hspace{1cm}}$.
- **2.** 函数 $y = x^{2x}$ 在 (0,1] 上的最小值 _____.
- 3. $\lim_{x\to 0} \frac{e^x e^{-x}}{\sin x} = \underline{\hspace{1cm}}$.
- **4.** 设 f'(0) = 2, 则 $\lim_{x \to 0} \frac{f(x) f(\frac{1}{2}x)}{x} = \underline{\hspace{1cm}}$.
- **5.** 函数 $y = x \ln(1 + x)$ 在区间 ______ 内单调减少.
- **6.** 已知点 (1,1) 是曲线 $y = x^2 + a \ln x$ 的拐点,则 a =
- 7. $\lim_{x\to 0} \frac{x^2 \cos \frac{2}{x}}{\arcsin x} =$ ______.
- 8. 设 f'(0) = 1, 则 $\lim_{h \to 0} \frac{f(2h) f(-h)}{h} = \underline{\hspace{1cm}}$.
- **9.** 设 $f(x) = \ln \sin x, x \in [\frac{\pi}{6}, \frac{5\pi}{6}]$, 则满足罗尔中值定理中的数值 $\xi =$ ______
- **10.** 为使函数 $f(x) = (1-x)^{\frac{2}{x}}$ 在点 x = 0 处连续, 应定义 f(0) =______
- 11. $\lim_{x\to 0} \frac{e^x e^{-x}}{\sin x} = \underline{\hspace{1cm}}$.
- **12.** 函数 $y = x^2 \frac{16}{x}(x < 0)$ 的最小值是 ______.

- **13.** 函数 $f(x) = x \ln x$ 的单调递减区间是______
- **14.** 函数 $f(x) = |x^2 3x + 2|$ 在区间 [-10,10] 上的最大值为 ______.
- **15.** 函数 $y = 2x^3 6x^2 18x$ 的极大值是 .
- **16.** 函数 $y = x^2 \frac{54}{x}$ 在区间 ($-\infty$, 0) 上的最小值是 ______.
- **17.** 设函数 f(x) = x(x-1)(x-2),则方程 f'(x) = 0 的实根个数为 .
- **18.** 函数 $y = 2x^3 6x^2 18x$ 在区间 [-2,2] 上的最大值是
- 三、计算题(请给出必要的步骤)
- **1.** 求极限 $\lim_{x\to 0} (\sin x + \cos x)^{\frac{1}{x}}$.
- **2.** 已知函数 $f(x) = \frac{x^3}{(x-1)^2}$, 求:
 - (1) 函数 f(x) 的增减区间及极值;
 - (2) 函数图形的凹凸区间及拐点;
 - (3) 函数图形的渐近线.
- 3. $\vec{x} \lim_{x\to 0} \left(3e^{\frac{x}{x-1}}-2\right)^{\frac{1}{x}}$.
- **4.** 求由方程 $y^5 + 2y = x + 3x^7$ 所确定的隐函数 y(x) 在点 (0,0) 处的切线方程并求 $\frac{d^2y}{dx^2}$.
- **5.** 求函数 $f(x) = xe^x e^x + 1$ 的单调区间与极值及凹凸区间与拐点.
- **6.** 求极限 $\lim_{x\to 0} (\cos x)^{\frac{1}{\ln(1+x^2)}}$.
- 7. 把一根长度为 *a* 的铁丝截成两段, 其中一段折成正方形框架, 另一段弯成圆周问当如何截取时, 可使围成的正方形和圆的面积之和达到最小?
- 8. 设 y = y(x) 是由方程 $y^2 + xy + x^2 + x = 0$ 所确定的满足 y(-1) = 1 的隐函数,求 y'(-1) 及 y''(-1),并计算极限 $\lim_{x \to -1} \frac{y(x) 1}{(x+1)^2}$.

9. (A 班) 计算极限 $\lim_{x\to 0} (e^x + x)^{\frac{2}{\sin x}}$.

计算极限
$$\lim_{x\to 0} \left(\frac{\ln(1+x)}{x^2} - \frac{1}{x}\right)$$
.

- **10.** (本题 10 分) 求 $y = (x-1)e^{\frac{\pi}{3} + \arctan x}$ 的单调区间和极值.
- **12.** 一房地产公司有 50 套公寓要出租, 当月租金定为 1000 元时, 公寓会全部租出去, 当月租金每增加 50 元时, 就会多一套公寓租不出去, 而租出去的公寓每月需花费 100 元的维修费. 问房租金定为多少时可获得最大收入?
 - (A 班) 需求函数为 $p = 10 \frac{Q}{5}$,
 - (1) 求当 Q = 20 时的边际收益, 并说明其经济意义;
 - (2) 求当 p=6 时的收益弹性,并说明其经济意义.
- **13.** 求极限 $\lim_{x\to 0} (x+e^x)^{\frac{1}{3x}}$.
- **14.** 求曲线 $y = xe^{-x}$ 的凹凸区间与拐点.
- **15.** (1) 求函数 $y = f(x) = 2x^3 9x^2 + 12x$ 的单调区间与极值;
 - (2) 设 a 为实数, 试讨论方程 f(x)=a 的不同实数解的个数.
- **16.** 求极限 $\lim_{x\to+\infty} x^{\frac{2}{\ln(1+3x)}}$.
- **17.** 求曲线 $y = x^4 2x^3 + 1$ 的凹凸区间及拐点.
- **18.** 求极限 $\lim_{x\to 1} x^{\frac{1}{1-x}}$.
- **19.** 问 a, b 为何值时, 点 A(1,3) 是曲线 $v = ax^3 + bx^2 + 1$ 的拐点?
- **20.** 某商场每年销售商品 a 件,分为 x 批采购进货. 已知每批采购费用为 b 元,而未销售商品的库存费用为 c 元/件·年. 设销售商品是均匀的,问分多少批进货时,才能使以上两种费用的总和为最省?
- **21.** 求极限 $\lim_{x\to 0} \frac{\sin x x \cos x}{x^2 \arcsin x}$.

- **22.** 求极限 $\lim_{x\to 0^+} x^{\sin x}$
- **23.** 某企业生产某种产品,固定成本 20000 元,每生产一单位产品,成本增加 100 元。已知总收益 R 是年产量 Q 的函数,即

$$R = R(Q) = \begin{cases} 400Q - \frac{1}{2}Q^2, & 0 \le Q \le 400\\ 80000, & Q > 400 \end{cases}$$

问每年生产多少产品时,总利润最大?最大利润是多少?

- **24.** 求极限 $\lim_{x\to 0^+} (\frac{1}{x})^{\sin x}$.
- **25.** 求曲线 $y = xe^{-x}$ 的出凸区间及拐点.
- **26.** 某企业生产产品 x 件时, 总成本函数为 $C(x) = ax^2 + bx + c$, 总收益函数为 $R(x) = px^2 + qx$, 其中 a, b, c, p, q > 0, a > p, b < q. 当企业按最大利润投产时, 对每件产品征收税额为多少才能使总税额最大?

四、证明题(请给出必要的步骤)

- **1.** 已知函数 f(x) 在 [0,1] 上连续, 在 (0,1) 内可导, 且 f(0)=0, f(1)=1, 证明:
 - (1) 存在 $\xi \in (0,1)$, 使得 $f(\xi) = 1 \xi$;
 - (2) 存在两个不同的点 η , $\zeta \in (0,1)$, 使得 $f'(\eta)f'(\zeta) = 1$.
- 2. 若 0 < a < 1, 则对于 x > 0, 证明 $x^a ax \le 1 a$.
- **3.** 当 0 < a < b < 1 时,证明不等式 $\frac{b-a}{\sqrt{1-a^2}} < \arcsin b \arcsin a < \frac{b-a}{\sqrt{1-b^2}}$.
- **4.** (A 班) 设函数 f(x) 在 $[0,\pi]$ 上连续,在 $(0,\pi)$ 内可导,证明: 至少存在一点 $\xi \in (0,\pi)$, 使得 $f'(\xi) = -f(\xi)\cot \xi$.

设函数 f(x) 在 $[0,\pi]$ 上连续, 在 $(0,\pi)$ 内可导, 且 $f(0) = f(\pi) = 0$. 证明: 至少存在一点 $\xi \in (0,\pi)$, 使得 $f'(\xi) = -f(\xi)$.

5. 证明: 当 $x \in (0, \frac{\pi}{2})$ 时, $\tan x > x + \frac{1}{3}x^3$.

(A 班) 设 f(x) 在 [a,b] 上可微, 且 f(a) = f(b) = 0, 试证明: 在 (a,b) 内至少存在一点 ξ , 使 $f'(\xi) = 3f(\xi)$.

- **6.** 已知 f(x) 在 [0,1] 上连续, 在 (0,1) 内可导, 且 f(1) = 0, 证明在区间 (0,1) 内至少有一点 c, 使得 f'(c) = $-\frac{f(c)}{c}$.
- **7.** 若函数 f(x) 在 $(-\infty, +\infty)$ 内满足关系式 f'(x) = f(x), 且 f(0) = 1, 则 $f(x) = e^x$.
- 8. 证明: 当 x > 0 时, $(1+x)\ln^2(1+x) < x^2$
- 9. 设函数 f(x) 在 [0,2] 上连续, 在 (0,2) 内可导, 且 f(2) = 4. 试证存在一点 $\xi \in (0.2)$, 使得 $2\xi f(\xi) + \xi^2 f'(\xi) = 8$.