

Network Layer

Mochamad Teguh Kurniawan

STT TERPADU NURUL FIKRI
TEKNIK INFORMATIKA & SISTEM INFORMASI
2018

Introduction

Background

Network Layer

Assignment

Renungan Ayat Hari ini

42. Asy Syuura

فَإِنَّ أَعُرَضُواْ فَمَا أَرُسَلُنَكَ عَلَيْهِمْ حَفِيظًا إِنَّ عَلَيْكَ إِلَّا ٱلْبَلَكِغُّ وَإِنَّا إِذَا أَذَقُنَا ٱلْإِنسَنَ مِنَّا رَحُمَةً فَرِحَ بِهَا وَإِن تُصِبُهُمُ سَيِّئَةٌ بِمَا قَدَّمَتُ أَيُدِيهِمُ

48. Jika mereka berpaling maka Kami tidak mengutus kamu sebagai pengawas bagi mereka. Kewajibanmu tidak lain hanyalah menyampaikan (risalah). Sesungguhnya apabila Kami merasakan kepada manusia sesuatu rahmat dari Kami dia bergembira ria karena rahmat itu. Dan jika mereka ditimpa kesusahan disebabkan perbuatan tangan mereka sendiri (niscaya mereka ingkar) karena sesungguhnya manusia itu amat ingkar (kepada nikmat).

Layer dalam Protokol Komunikasi

Ringkasan Fungsi Masing-Masing Layer

Layer	Fungsi
Application	Menghubungkan aplikasi yang membutuhkan pengiriman data dengan sumber daya jaringan
Presentation	Menerjemahkan, mengurus enkripsi dan kompresi data
Session	Membuat, mengelola, dan menutup sesi
Transport	Menjamin proses pengiriman yang dapat diandalkan
Network	Menyampaikan paket-paket dari sumber ke tujuan
Datalink	Mengelompokkan bit dalam frame untuk proses pengiriman dari hop/node ke hop/node
Physical	Mengirim bit melalui media

Interkoneksi Link Layer

- Frame dalam data link layer tidak membawa informasi routing
- Bagaimana S1 mengetahui bahwa data seharusnya dikirimkan melalui interface f3?

Fungsi Network Layer dalam Internetworking

Network layer bertanggung-jawab untuk proses delivery host-to-host dan untuk melakukan routing paket

Ilustrasi Proses Pengiriman Data di Jaringan

Proses di Network Layer

b. Network layer at destination

IPv4 Datagram

IPv6 Datagram

			32-bits —			
4-bit version	4-bit priority		Flow label			
16-bit payload length Next header Hop limit						
128-bit source IP address						
	128-bit destination IP address					
Data (variable length)						

IPv4 vs IPv6 Header

Lab Chapter

Gunakan packet tracer

Perangkat Jaringan

straight-Through

Perbandingan Antara Switch Dan Router

Switch

- Layer 2 (OSI Model)
- Menghubungan Perangkat di dalam network yang sama
- MAC Address
- Forwarding paket berdasarakan MAC address
- Frame
- Dedicated bandwidth
- Memiliki tabel MAC address
- Tidak Support NAT

Router

- Layer 3 (OSI Model)
- Menghubungan Perangkat di dalam network yang berbeda
- IP Address
- Forwarding paket berdasarkan IP Address
- Packet
- Dynamic bandwidth sharing
- Memiliki Tabel Routing
- Support NAT

IP Addressing & Subnetting

Pengalamatan IP

- Setiap perangkat memiliki 2 pengalamatan:
 - MAC address → phisik
 - IP Address → logika
 - IP address → pengalamatan secara logika yang diberikan kepada perangkat komputer atau jaringan yang menggunakan protokol TCP/IP.
 - Jenis pengalamatan pada IPv4:
 - Unicast
 - Broadcast
 - Multicast

Pengalamatan IP

- IPv4
 - Internet protocol versi 4 → IP
 - 32-bit addresses.
 - Memiliki 5 kelas pengalamatan
 - Menyediakan pelayanan pengiriman paket untuk TCP, UDP,ICMP, dan IGMP.
 - Contoh: 10.3.12.67
- IPv6
 - Internet protocol versi 6, dirancang pada pertengahan th. 90-an, untuk mengganti IPv4.
 - 128-bit addresses
 - Menyediakan pelayanan pengiriman paket untuk TCP, UDP, ICMPv6.
 - Contoh: 2001:0db8:582:ae33::29

- Kelas A.
 - Ciri: digit 1(bit 0), bernilai 0
 - Oktet ke-1→ Net ID (alamat jaringan).
 - Oktet ke-2, 3 & 4 → Host ID
 - 128 NetID & >4M host-ID per NetID.
- Kelas B
 - Ciri: digit 1 ditandai 1 & digit 2 ditandai 0.
 - Oktet ke-1 & 2 → Net ID.
 - Oktet ke-3 & 4 → Host ID.
 - 16K NetID & + 64K host-ID per NetID.
- Kelas C
 - Ciri: digit 1 & 2 ditandai 1 & digit 3 juga ditandai 0
 - Oktet 1,2,3 : Sebagai Net ID
 - Oktet 4 : Sebagai Host ID.
 - >2M NetID & + 256 host-ID per NetID.

- Kelas D
 - Ciri: digit 1, 2, 3 & 4 ditandai 1,1,1,0
 - Dipergunakan sebagai multicast.
- Kelas E
 - Ciri: digit 1, 2, 3 & 4 ditandai 1,1,1,1 & digit ke-5 dengan 0.
 - Dipergunakan untuk riset.

Konversi Decimal, Biner & Hex

1) 210.130.32.190

• Biner: 11010010.10000010.00100000.10111110

• Hex: D2.82.20.BE

2) DC.B7.7F.B2

• Biner: 11011100.10110111.11111111.10110010

• Dec: 220.183.127.178

Pengelompokkan IP Addressing (1/2)

- IP private
 - IP address yang digunakan untuk lingkup intranet & tidak dikenal di internet.
 - Host / server hanya dapat diakses oleh user intranet saja.
 - Digunakan pada jaringan LAN.
 - Untuk dapat berkomunikasi ke internet diperlukan adanya proxy atau NAT.
 - Kelompok IP address yang tidak pernah dipakai dalam global internet:

Kel	Awal	Akhir
Α	10.0.0.0	10.255.255.254
В	172.16.0.0	172.131.255.254
С	192.168.0.0	192.168.255.254

Pengelompokkan IP Addressing (2/2)

- IP public.
 - IP address yang digunakan untuk lingkup internet.
 - Host/server dapat diakses oleh seluruh user internet(langsung atau tidak langsung).
 - Dapat diakses dengan atau tanpa proxy / NAT.
 - Tidak bisa / bebas diganti
 - Contoh: ip yang dipergunakan oleh akses Speedy modem (125.126.0.160).

SISTEM BINER

KONVERSI BINER KE DESIMAL

Latihan Lagi...

27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2º
128	64	32	16	8	4	2	1
1	0	1	1	0	0	0	0

27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2º
128	64	32	16	8	4	2	1
1	1	1	1	1	1	1	1

konversi desimal ke biner latihan lagi....dan lagi....

IPv4 Subnet Mask porsi jaringan dan porsi host dalam alamat ipv4

- Untuk mendefinisikan porsi network dan host pada pengalamatan, sebuah perangkat menggunakan pembagian 32 bit yang disebut subnet mask
- Subnet mask bukan termasuk ke dalam porsi network atau host dalam IPv4, itu hanya memperlihatkan dimana porsi host dan dimana porsi network dalam IPv4

IPv4 Subnet Mask Network Portion and Host Portion of an IPv4 Address

Valid Subnet Masks

Subnet Value
255
254
252
248
240
224
192
128
0

Bit V	Bit Value							
128	64	32	16	8	4	2	1	
1	1	1	1	1	1	1	1	
1	1	1	1	1	1	1	0	
1	1	1	1	1	1	0	0	
1	1	1	1	1	0	0	0	
1	1	1	1	0	0	0	0	
1	1	1	0	0	0	0	0	
1	1	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	

latihan panjang prefix

	Dotted Decimal	Significant bits	shown	in	binary
Network Address	10.1.1.0/24	10.1.1.00000000			
First Host Address	10.1.1.1	10.1.1.00000001			
Last Host Address	10.1.1.254	10.1.1.11111110			
Broadcast Address	10.1.1.255	10.1.1.11111111			
Number of hosts: 2^8	-2 = 254 hosts				
Network Address	10.1.1.0/25	10.1.1.00000000			
First Host Address	10.1.1.1	10.1.1.00000001			
Last Host Address	10.1.1.126	10.1.1.01111110			
Broadcast Address	10.1.1.127	10.1.1.01111111			
Number of hosts: 2^7	- 2 = 126 hosts				
Network Address	10.1.1.0/26	10.1.1.00000000			
First Host Address	•	10.1.1.00000001			
Last Host Address		10.1.1.00111110			
Broadcast Address		10.1.1.00111111			
Number of hosts: 2^6	-2 = 62 hosts				

IPv4 Network, Host, and Broadcast Address

10.1.1.0/24 Network

Alamat Pertama dan Alamat terakhir host

10.1.1.0/24 Network

	Network Portion	Host Portion		
10	1	1	1	FIRST HOST
00001010	0000001	0000001	0000001	All 0s and a 1 in the host portion
10	1	1	254	LAST HOST
00001010	0000001	0000001	11111110	All 1s and a 0 in the host portion

operasi nya

1 AND 1 = 1 1 AND 0 = 0 0 AND 1 = 0 0 AND 0 = 0

pengalamatan statik IPv4 pada komputer

LAN Interface Properties

Configuring a Static IPv4 Address

Pv4 Unicast, Broadcast, and Multicast pengalamatan dinamic ipv4

Verification

DHCP - preferred method of "leasing" IPv4 addresses to hosts on large networks, reduces the burden on network support staff and virtually eliminates entry errors

Pada jaringan IPv4, host dapat berkomunikasi dengan tiga cara yang berbeda

1. Unicast - proses pengiriman paket dari 1 host ke host lain secara private

IPv4 Unicast, Broadcast, and Multicast

transmisi broadcast

2. Broadcast - pengiriman paket dari 1 host ke semua host yang ada dalam 1 network

Directed broadcast

- Destination 172.16.4.255
- Hosts within the 172.16.4.0/24 network

transmisi multicast

- Multicast the process of sending a packet from one host to a selected group of hosts, possibly in different networks
- Reduces traffic
- Reserved for addressing multicast groups 224.0.0.0 to 239.255.255.255.
- Link local 224.0.0.0 to 224.0.0.255 (Example: routing information exchanged by routing protocols)
- Globally scoped addresses 224.0.1.0 to 238.255.255.255 (Example: 224.0.1.1 has been reserved for Network Time Protocol)

pengalamatan Public dan Private IPv4

Pengalamatan Private:

- Hosts that do not require access to the Internet can use private addresses
- 10.0.0.0 to 10.255.255.255 (10.0.0.0/8)
- 172.16.0.0 to 172.31.255.255 (172.16.0.0/12)
- 192.168.0.0 to 192.168.255.255 (192.168.0.0/16)

Shared address space addresses:

- Not globally routable
- Intended only for use in service provider networks
- Address block is 100.64.0.0/10

Special Use IPv4 Addresses

- Network and Broadcast addresses within each network the first and last addresses cannot be assigned to hosts
- Loopback address 127.0.0.1 a special address that hosts use to direct traffic to themselves (addresses 127.0.0.0 to 127.255.255.255 are reserved)
- Link-Local address 169.254.0.0 to 169.254.255.255 (169.254.0.0/16) addresses can be automatically assigned to the local host
- **TEST-NET addresses** 192.0.2.0 to 192.0.2.255 (192.0.2.0/24) set aside for teaching and learning purposes, used in documentation and network examples
- Experimental addresses 240.0.0.0 to 255.255.255.254 are listed as reserved

Legacy Classful Addressing

IP Address Classes

Address Class	1st octet range (decimal)	1st octet bits (green bits do not change)	Network(N) and Host(H) parts of address	Default subnet mask (decimal and binary)	Number of possible networks and hosts per network
A	1-127**	00000000- 01111111	N.H.H.H	255.0.0.0	128 nets (2^7) 16,777,214 hosts per net (2^24-2)
В	128-191	10000000- 10111111	N.N.H.H	255.255.0.0	16,384 nets (2^14) 65,534 hosts per net (2^16-2)
С	192-223	11000000- 11011111	N.N.N.H	255.255.255.0	2,097,150 nets (2^21) 254 hosts per net (2^8-2)
D	224-239	11100000- 11101111	NA (multicast)		
E	240-255	11110000- 11111111	NA (experimental)		

Legacy Classful Addressing

Classless Addressing

- Formal name is Classless Inter-Domain Routing (CIDR, pronounced "cider")
- Created a new set of standards that allowed service providers to allocate IPv4
 addresses on any address bit boundary (prefix length) instead of only by a class A, B, or
 C address

Assignment of IP Addresses

Regional Internet Registries (RIRs) The major registries are:

Assignment of IP Addresses

JARINGAN KOMPUTER_MTK

Subnetting

llustrasi

Subnetting

- Teknik membagi atau memecah network menjadi beberapa sub-network yang lebih kecil.
- Akan ada network tambahan, tetapi mengurangi jumlah maksimum host pada setiap network tersebut.
- Hanya diperuntukan untuk kelas A, B & C.
- Selain pengalamatan secara logik, diperlukan juga netmask atau sub-netmask.
- Membedakan NetID & HostID.
- Subnet mask bukanlah suatu alamat IP.
- Memiliki nilai 32 bits addresses.

Subnetting

- Tujuan:
 - Mengefisienkan alokasi IP address dalam suatu network.
 - Memaksimalkan penggunaan IP address.
 - Faktor IT security
 - Mengurangi terjadi kongesti dalam suatu network
- Subnet mask yang menggunakan bit sebagai network identifier dapat direpsentasikan dalam bentuk network
 - prefix → Classless Inter-Domain Routing (CIDR)

Kelas Almt	Subnet mask (biner)	Subnet mask (des)	Panjang prefix
Α	1111111.00000000.00000000.00000000	255.0.0.0	/8
В	111111111111111110000000000000000000000	255.255.0.0	/16
С	11111111.11111111111111111.00000000	255.255.255.0	/24

Tabel nilai CIDR

Subnet Mask	Nilai CIDR
255.0.0.0	/8
255.128.0.0	/9
255.192.0.0	/10
255.224.0.0	/11
255.240.0.0	/12
255.248.0.0	/13
255.252.0.0	/14
255.254.0.0	/15

Subnet Mask	Nilai CIDR
255.255.0.0	/16
255.255.128.0	/17
255.255.192.0	/18
255.255.224.0	/19
255.255.240.0	/20
255.255.248.0	/21
255.255.252.0	/22
255.255.254.0	/23

Subnet Mask	Nilai CIDR
255.255.255.0	/24
255.255.255.128	/25
255.255.255.192	/26
255.255.255.224	/27
255.255.255.240	/28
255.255.255.248	/29
255.255.255.252	/30

KELAS IP

CLASS	OKTET PERTAMA	SUBNET MASK DEFAULT	PRIVATE ADDRESS
Α	1-127	255.0.0.0	10.0.0.0-10.255.255.255
В	128-191	255.255.0.0	172.16.0.0-172.31.255.255
С	192-223	255.255.255.0	192.168.0.0-192.168.255.255

Penulisan IP address umumnya adalah dengan 192.168.1.2 atau 192.168.1.2/26

Apa Artinya?

NETWORK ADDRESS **192.168.1.0/26** ?

Analisa: 192.168.1.0 berarti kelas C dengan Subnet Mask /26

berarti 11111111111111111111111111111000000

(255.255.255.192)

Jumlah Subnet = 2^x

x adalah banyaknya binari 1 pada oktet terakhir subnet mask Jadi Jumlah Subnet adalah 2² = 4 subnet

Jumlah Host per Subnet = $2^y - 2$

y adalah adalah kebalikan dari x yaitu banyaknya binari 0 pada oktet terakhir subnet

Jadi jumlah host per subnet adalah $2^6 - 2 = 62$ host

Subnet	192.168.1. 0	192.168.1. 64	192.168.1. 128	192.168.1. 192
Host Pertama	192.168.1. 1	192.168.1. 65	192.168.1. 129	192.168.1. 193
Host Terakhir	192.168.1. 62	192.168.1. 126	192.168.1. 190	192.168.1. 254
Broadcast	192.168.1. 63	192.168.1. 127	192.168.1. 191	192.168.1. 255

NETWORK ADDRESS **172.16.0.0/18**?

Analisa: 172.16.0.0 berarti kelas B, dengan Subnet Mask /18 berarti 11111111111111111111111000000.0000000 (255.255.192.0).

Jumlah Subnet = 2^x

x adalah banyaknya binari 1 pada 2 oktet terakhir. Jadi Jumlah Subnet adalah 2² = 4 subnet

Jumlah Host per Subnet = $2^y - 2$

y adalah adalah kebalikan dari x yaitu banyaknya binari 0 pada 2 oktet terakhir Jadi jumlah host per subnet adalah $2^{14} - 2 = 16.382$ host

Subnet	172.16. 0.0	172.16. 64.0	172.16. 128.0	172.16. 192.0
Host Pertama	172.16. 0.1	172.16. 64.1	172.16. 128.1	172.16. 192.1
Host Terakhir	172.16. 63.254	172.16. 127.254	172.16. 191.254	172.16. 255.254
Broadcast	172.16. 63.255	172.16. 127.255	172.16. 191.255	172.16. .255.255

Tugas 4 NETWORK ADDRESS **172.16.0.0/25**?

Jumlah Subnet = 2^9 = 512 subnet

Jumlah Host per Subnet = $2^7 - 2 = 126$ host

Blok Subnet = 256 - 128 = 128. Jadi lengkapnya adalah (0, 128)

y adalah adalah kebalikan dari x yaitu banyaknya binari 0 pada 2 oktet terakhir

Jadi jumlah host per subnet adalah $2^{14} - 2 = 16.382$ host

Subnet	172.16. 0.0	172.16. 0.128	172.16. 1.0	 172.16. 255.128
Host Pertama	172.16. 0.1	172.16. 0.129	172.16. 1.1	 172.16. 255.129
Host Terakhir	172.16. 0.126	172.16. 0.254	172.16. 1.126	 172.16. 255.254
Broadcast	172.16. 0.127	172.16. 0.255	172.16. 1.127	 172.16. 255.255

NETWORK ADDRESS **10.0.0.0/16**?

Jumlah Subnet = 2^8 = 256 subnet

Jumlah Host per Subnet = $2^{16} - 2 = 65534$ host

Blok Subnet = 256 - 255 = 1. Jadi subnet

lengkapnya: 0,1,2,3,4, etc.

Subnet	10. 0.0.0	10. 1.0.0	•••	10. 254.0.0	10. 255.0.0
Host Pertama	10. 0.0.1	10. 1.0.1		10. 254.0.1	10. 255.0.1
Host Terakhir	10. 0.255.254	10. 1.255.254	•••	10. 254.255.254	10. 255.255.254
Broadcast	10. 0.255.255	10. 1.255.255		10. 254.255.255	10. 255.255.255

Contoh jaringan menggunakan subnet

Contoh perhitungan subnetting

• Jika suatu perusahaan memiliki 150 komputer, baik PC atau server. Tanpa menggunakan subnetting,maka semua komputer(host) tersebut dapat dihubungkan ke dalam sebuah jaringan tunggal dengan (192.67.1.0)dengan subnet mask 255.255.255.0

KERJAKAN

Misal digunakan IP Address Private (192.67.1.88) dengan subnet mask 255.255.255.128, maka Network Perusahaan tersebut dengan perhitungannya:

- Kelas :
- Jumlah Subnet:
- Jumlah Host Per Subnet :
- Untuk masing-masing blok subnet tentukan :
 - Alamat Jaringan:
 - Host Pertama :
 - Host Terakhir :
 - Broadcast Address :

Misal digunakan IP Address Private kelas C (192.67.1.0)dengan subnet mask 255.255.25.0, maka Network Perusahaan tersebut:

• Alamat Jaringan: 192.67.1.0

• Host Pertama : 192.67.1.1

• Host Terakhir : 192.67.1.254

• Broadcast Address: 192.67.1.255

VLSM(Variable Length Subnet Mask)

Selamat

No Nama	Kelas	Nilai UTS
1 Muhammad Azhar Rasyad	TI-01	86
2 Farah Shofiyah	SI-01	71
3 Rahmawati Nurlaela	SI-01	63
4 Ayu Amalia	SI-01	59
5 Karina Sukmawati	SI-01	53.5
6 Muhammad Adil Nashrul Ha	aq TI-01	53
7 Nabilah Fajar Utami	TI-01	48.5
8 Herlina	TI-01	48
9 Raihan Sabiq Rabbani	TI-01	48
10 Deva Dirgantara	SI-01	47

Rata-rata Nilai TI-01	36.54762
Rata-rata Nilai SI-01	41.0625

Variable Length Subnet Mask

- Teknik kedua selain CIDR untuk memecah subnet dalam suatu jaringan komputer menjadi subnet-subnet yang lebih kecil.
- Tujuan VLSM:
 - untuk mengoptimalkan pemakaian IP address.
 - memperbaiki kekurangan dalam metoda konvensional subnetting.
 - menyesuaikan dengan kebutuhan IP address yang diinginkan

• Misal untuk Kelas C

Prefix	Mask	∑ Hosts	∑ subnet
/26	255.255.255		
/27	255.255.255		
/28	255.255.255		
/29	255.255.255		
/30	255.255.255		

- Diketahui suatu universitas meliliki 5 fakultas, yaitu FE, FK, FT, FB, FRI
- Akan membangun infrastutur jaringan dimana ip yang digunakan 200.210.220.0
- Berikut kebutuhan untuk masing2 fakultas FE = 15, FK = 29 kom, FT = 42 kom, FB = 8, FRI = 32 komputer
- Tentukan subnet untuk masing2 fakultas menggunakan VLSM

Resume IP Addressing

IP Address

- IPv4 32 bit
- Ditulis dalam format "dotted decimal", terdiri dari 4 group dan masing-masing grup terdiri dari 8 bit yang disebut oktet
- Konversi bilangan
- Network Address: IP pertama ayang ada di sebuah network
- Broadcast Address: IP terakhir dalam sebuah network
- IP Host: IP yang dapat digunakan oleh host
- Network Prefixes :
 - Prefix length yaitu jumlah bit didalam network portion sebuah address
 - Kalau dikonversi menjadi decimal menjadi subnet mask
 - Biasanya digunakan oleh dikombinasikan dengan network address

IP Address

- Tipe paket
 - Unicast : one to one
 - Multicast : one to many
 - Broadcast : one to all
- Special IPv4
 - Default route 0.0.0.0 (merutekan semua trafik ke "default gateway")
 - Loopback 127.0.0.1 (mengirim paket ke host sendiri)
 - Link-local 169.254.0.0 to 169.254.255.255