Algorytmów Kwantowych

Wojciech Kubiak

8 kwietnia 2019

Spis treści

1	\mathbf{Liczb}	y zespolone
	1.1 H	Postać Algebraiczna
	1.2 I	Postać trygonometryczna
2	Bram	nki logiczne dla układów kwantowych
	2.1 I	Bramka Hadamarda (H)
	2.2 I	Bramka Pauliego-X
	2.3 I	Bramka Pauliego-Y
	2.4 I	Bramka Pauliego-Z
	2.5 H	Bramka S
	2.6 I	Bramka Fazy (T)

1 Liczby zespolone

Zbiór liczb zespolonych oznaczamy C

1.1 Postać Algebraiczna

• Podstawowe informacje:

$$\alpha=a+bi$$
, a, b $\in \mathbb{R}$, i $=\sqrt{-1}$
 $\mathrm{Re}(\alpha)=$ a - część rzeczywist
 $\mathrm{Im}(\alpha)=$ b - część urojona

• Operacje ($\mathbb{C}, +, -, *, /$):

$$\alpha = a + bi \qquad \beta = c + di$$

$$- (+) \alpha + \beta = (a + bi) + (c + di) = (a + c) + (b + d)i$$

$$- (-) \alpha - \beta = (a + bi) - (c + di) = (a - c) + (b - d)i$$

$$- (*) \alpha * \beta = (a + bi) * (c + di) = ac + adi + cbi + bdi^{2} = ac + adi + abi - bd = (ac - bd) + (ad + cb)i$$

$$- (/) \frac{\alpha}{\beta} = \frac{(a+bi)(c-di)}{(c+di)(c-di)} = \frac{ac-adi+abi+bd}{c^{2}+b^{2}} = (\frac{ac+bd}{c^{2}+b^{2}}) + (\frac{bc-ad}{c^{2}+b^{2}})i$$

1.2 Postać trygonometryczna

• Podstawowe informacje:

Bramki logiczne dla układów kwantowych 2

Bramka Hadamarda (H) 2.1

$$\begin{array}{l} |0\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}} \\ |1\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}} \end{array}$$

$$|1\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

2.2Bramka Pauliego-X

Czasem nazywana "bit-flip"

$$|0\rangle = |1\rangle$$

$$|1\rangle = |0\rangle$$

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

2.3 Bramka Pauliego-Y

$$|0\rangle = i|1\rangle$$

$$|1\rangle = -i|0\rangle$$

$$Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

Bramka Pauliego-Z 2.4

$$|0\rangle = |0\rangle$$

$$|1\rangle = -|1\rangle$$

$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

2.5 Bramka S

$$|0\rangle = |0\rangle$$

$$|1\rangle = i|1\rangle$$

$$S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$$

Bramka Fazy (T) 2.6

$$|0\rangle = |0\rangle$$

$$|0\rangle = |0\rangle |1\rangle = e^{i\frac{\pi}{4}}|1\rangle$$

$$T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\frac{\pi}{4}} \end{bmatrix}$$