IIT Jodhpur

Biological Vision and Applications Module 03-04: Bayesian Networks

Hiranmay Ghosh

Bayesian reasoning revisited

- Bayesian framework of reasoning
 - ightharpoonup Create a system model in terms of n stochastic (random) variables
 - $\mathcal{X} = \{X_1, X_2, X_3, \dots, X_n\}$
 - A variable X_i can have k_i states. $X_i : \{x_i^1, x_i^2, \dots x_i^{k_i}\}$
 - Some variables are observable, some are hidden (to be inferred)
 - ▶ Inference is a result of probability updates based on the observed data
- The joint probability distribution table will contain $\prod_i k_i 1$ independent entries
- A trivial system with 10 binary variables will have $2^{10} 1 = 1023$ entries
 - That is a big number!

Joint probability and conditional probability

Joint probabilities

Conditional probabilities

Conditional production		
$P(b_1 a_2)$		
$P(c_1 a_2, b_1)$		
$P(c_1 a_2, b_2)$		
$P(c_2 a_2, b_1)$		
$P(c_2 a_2, b_2)$		

Non-circular dependency between variables assumed

- Consider three variables
 - ightharpoonup A: $\{a_1, a_2\}$, B: $\{b_1, b_2\}$, C: $\{c_1, c_2, c_3\}$
- Joint probability table will have 11 independent entries
- Equivalently, they can be expressed with 11 conditional probabilities
- The joint probabilities can be computed from the conditional probabilities, e.g.

Conditional Independence

Variables A and B are conditionally independent of each other, iff $P(A,B) \equiv P(A), P(B)$

Variables A and B are conditionally independent of each other given C, iff $P(A.B \mid C) = P(A \mid C).P(B \mid C)$

Conditional probabilities

$P(a_1)$	
$P(b_1 a_1)$	$P(b_1 a_2)$
$P(c_1 b_1)$	$P(c_1 b_2)$
$P(c_2 b_1)$	$P(c_2 b_2)$

This topology assumes A and C are conditionally independent, given B

- Many of the variables in real world are conditionally independent of each other given the state of some other variables ©, e.g.,
 - Color of a fruit and its shape, given the fruit
- Conditional independence simplifies probability computations
 - Another reason to work with conditional probabilities

Probabilistic Graphical Models

- Graphical models exploit conditional independence
- The variables are depicted as nodes in the graph
- Only the variables that are not conditionally independent are connected with edges
- Generally a graph is sparse
 - Size of the CPT is much smaller than exhaustive joint distribution table
- There are many probabilistic graphical models
 - Markov Field, Hidden Markov Model, Bayesian Network, ...

See Koller. Probabilistic Graphical Models (book) / Cousera course

Bayesian Networks (BN)

Models a probabilistic reasoning problem with cause-effect relationship

- A Directed Acyclic Graph (DAG)
- Nodes represent events in a system
 - $X_i = (x_i^1, x_i^2, \dots, x_i^{k_i})$
 - ► Some nodes are observable
 - Others need to be inferred
- Edges represent causal relations between the events
- Conditional probabilities $P(X_i \mid Pa(X_i))$ are associated with every node
 - where Pa(X_i) represents the parent set of node X_i

Examples of BN

Naïve Bayesian
Network

Causal inference and Evidential inference

- Fruit is inferred from
 - ► Causal reasoning: Where you are, what is the season (contextual cues)
 - Evidential reasoning: It's color and shape (visual cues)
- Bayesian network supports both types of reasoning

Inferencing with Bayesian Networks

- Hand compute probabilities
 - There can be multiple (undirected) paths between a pair on nodes
 - Extremely complex
- Pearl's belief propagation algorithm
 - $ightharpoonup \pi$ and λ messages
 - Probabilities of neighboring nodes updated
 - Traverses recursively in the network
 - ► Till no more nodes left / blocked

Pearl's algorithm

Network topology and Belief propagation

D-Separation

A causes B. B causes C. State of B is unknown Belief flows between A and C

A causes B. B causes by C. State of B is known The path between A and C is blocked by B

B is the cause of A and C, state of B is unknown Belief flows between A and C

A and C are causes of B, state of B is known The path between A and C is blocked by B

A and C are causes of B, state of B is unknown A and C are conditionally independent

A and C are causes of B, state of B is known A explains away C, and vice-versa

- Belief flows between two nodes in a network if there is an unblocked path between them
- If there are no unblocked path between two nodes, they are said to be d-separated

Hierarchical organization in Bayesian Network

Example

Park & Aggarwal. A hierarchical Bayesian network for event recognition of human actions and interactions

Prior beliefs, Conditional probabilities and likelihoods

- We need to evaluate the two hypotheses
 - Fruit is either Banana or Apple
- From the given data, we can find the marginal probabilities (likelihoods)

$$\begin{array}{ll} \underline{Colors:} \\ P(Red) &= P(R \mid B) \times P(B) + P(R \mid A) \times P(A) = 0.25 \\ P(Green) &= 0.34 \\ P(Yellow) &= 0.41 \\ \hline Shapes: \\ \overline{P(Round)} &= 0.31 \\ P(Long) &= 0.69 \\ \end{array}$$

Posteriors

We see a fruit to be red

$$\begin{array}{ll} \underline{Fruits:} & \text{(un-normalized)} \\ P(Banana \mid Red) & = P(R \mid B) \times P(B) \\ & = 0.1 \times 0.7 = 0.07 \\ P(Apple \mid Red) & = 0.18 \end{array}$$

$$\begin{array}{ll} \underline{Fruits:} & \text{(normalized)} \\ P(Banana \mid Red) & = 0.28 \\ P(Apple \mid Red) & = 0.72 \end{array}$$

Posteriors (contd.)

 Change in probability of fruits changes posterior probability of shapes

$$\begin{array}{ll} \underline{Shapes:} \\ \overline{P(Round)} &= 0.60 \\ P(Long) &= 0.40 \end{array}$$

Posteriors (contd.)

Now we see the fruit to be long

Quiz 03-04

End of Module 03-04