Statistical and computational methods for bioinformatics and social network analysis

or how did I learn to stop worrying and love the bomb

George G Vega Yon

University of Southern California, Department of Preventive Medicine

October 9, 2019

Statistical and computational methods for bioinformatics and social network analysis

- ► We live in a non-IID world.
- ► Some times, looking the whole helps understanding the parts.
- ► We have the computational tools to do such.

Contents

Paper 1: Exponential Random Graph Models for Small Networks

Paper 2: On the prediction of gene functions using phylogenetic trees

Things that are very interesting but I most probably won't have any time to discuss with the attendees

References

Contents

Paper 1: Exponential Random Graph Models for Small Networks

Paper 2: On the prediction of gene functions using phylogenetic trees

Things that are very interesting but I most probably won't have any time to discuss with the attendees

References

What are Exponential Random Graph Models

Exponential Family Random Graph Models, aka ERGMs are:

What are Exponential Random Graph Models

Exponential Family Random Graph Models, aka ERGMs are:

► Statistical models of (social) networks

What are Exponential Random Graph Models

Exponential Family Random Graph Models, aka ERGMs are:

- ► Statistical models of (social) networks
- ► In simple terms: statistical inference on what network patterns/structures/motifs govern the data-generating process

ERGMs (cont'd)

A vector of model parameters

A vector of sufficient statistics

$$\mathsf{Pr}\left(\mathbf{Y} = \mathbf{y} \mid \boldsymbol{\theta}, \mathbf{X}\right) = \frac{\exp\left\{\boldsymbol{\theta^t}s\left(\mathbf{y}, \mathbf{X}\right)\right\}}{\sum_{\mathbf{y'} \in \mathcal{Y}} \exp\left\{\boldsymbol{\theta^t}s\left(\mathbf{y'}, \mathbf{X}\right)\right\}}, \quad \forall \mathbf{y} \in \mathcal{Y}$$

$$\mathsf{All possible networks}$$

$$\mathsf{Constant}$$

more on terms

ERGMs (cont'd)

A vector of model parameters

A vector of sufficient statistics

$$\text{Pr}\left(\mathbf{Y} = \mathbf{y} \mid \boldsymbol{\theta}, \mathbf{X}\right) = \frac{\exp\left\{\boldsymbol{\theta^t}s\left(\mathbf{y}, \mathbf{X}\right)\right\}}{\sum_{\mathbf{y}' \in \mathcal{Y}} \exp\left\{\boldsymbol{\theta^t}s\left(\mathbf{y}', \mathbf{X}\right)\right\}}, \quad \forall \mathbf{y} \in \mathcal{Y}$$
 All possible networks constant

The normalizing constant has $2^{n(n-1)}$ terms!

▶ more on terms

Keck School of Medicine of USC

Medium-large (dozens to a couple of thousand vertices) networks

- ► Markov Chain Monte Carlo (MCMC) based approaches like MC-MLE or Robbins-Monro Stochastic Approximation.

 details
- ► Maximum Pseudo Likelihood (MPLE)

Medium-large (dozens to a couple of thousand vertices) networks

- ► Markov Chain Monte Carlo (MCMC) based approaches like MC-MLE or Robbins-Monro Stochastic Approximation.

 details
- ► Maximum Pseudo Likelihood (MPLE)

large-huge networks (up to the millions of vertices)

- ► Semi-parametric bootstrap
- Conditional joint estimation (like snowball sampling, a.k.a. divide and conquer)
- Equilibrium Expectation Algorithm (millions of vertices)

Medium-large (dozens to a couple of thousand vertices) networks

- ► Markov Chain Monte Carlo (MCMC) based approaches like MC-MLE or Robbins-Monro Stochastic Approximation.

 details
- ► Maximum Pseudo Likelihood (MPLE)

large-huge networks (up to the millions of vertices)

- ► Semi-parametric bootstrap
- Conditional joint estimation (like snowball sampling, a.k.a. divide and conquer)
- Equilibrium Expectation Algorithm (millions of vertices)

What about small networks?

Keck School of Medicine of USC

We see small networks everywhere

► Families and friends

- ► Families and friends
- ► Small teams

- ► Families and friends
- ► Small teams
- ► Egocentric networks

- ► Families and friends
- ► Small teams
- ► Egocentric networks
- ► Online networks (sometimes)

- ► Families and friends
- ► Small teams
- ► Egocentric networks
- ► Online networks (sometimes)
- ► etc.

- ► Families and friends
- ► Small teams
- ► Egocentric networks
- ► Online networks (sometimes)
- ► etc.

Keck School of Medicine of USC

- ► Families and friends
- ► Small teams
- ► Egocentric networks
- ► Online networks (sometimes)
- ► etc.

From the methodological point of view, current methods are great, but:

From the methodological point of view, current methods are great, but:

► Possible accuracy issues (error rates)

From the methodological point of view, current methods are great, but:

- ► Possible accuracy issues (error rates)
- ► Prone to degeneracy problems (sampling and existance of MLE)

From the methodological point of view, current methods are great, but:

- ► Possible accuracy issues (error rates)
- ▶ Prone to degeneracy problems (sampling and existance of MLE)
- ► It is not MLE...

Keck School of Medicine of USC

Keck School of Medicine of USC

▶ In the case of small-enough networks, computation of the likelihood becomes computationally feasible.

- ▶ In the case of small-enough networks, computation of the likelihood becomes computationally feasible.
- ► For example, a network with 5 nodes has 1,048,576 unique configurations.

- ▶ In the case of small-enough networks, computation of the likelihood becomes computationally feasible.
- ► For example, a network with 5 nodes has 1,048,576 unique configurations.
- ► This allow us to directly compute **the normalizing constant**.

- ▶ In the case of small-enough networks, computation of the likelihood becomes computationally feasible.
- ► For example, a network with 5 nodes has 1,048,576 unique configurations.
- This allow us to directly compute the normalizing constant.
- ▶ Using the exact likelihood opens a huge window of methodological-possibilities.

- ▶ In the case of small-enough networks, computation of the likelihood becomes computationally feasible.
- ► For example, a network with 5 nodes has 1,048,576 unique configurations.
- ► This allow us to directly compute **the normalizing constant**.
- ▶ Using the exact likelihood opens a huge window of methodological-possibilities.

Figure 1 Random sample of 5 networks simulated using a negative

ergmito example

Figure 1 Random sample of 5 networks simulated using a negative

		OI	000
	Edgecount	Full model	
Edgecount	-0.69*	-1.70**	
	(0.27)	(0.54)	
Homophily (on Gender)	1.59*	
		(0.64)	
AIC	78.38	73.34	
BIC	80.48	77.53	
Log Likelihood	-38.19	-34.67	
Num. networks	5	5	

Standard errors in parenthesis. *** p < 0.001, ** p < 0.01, * p < 0.05

Table 1 Fitted ERGMitos using the fivenets dataset.

ergmito example

Figure 1 Random sample of 5 networks simulated using a negative

		OI C	
	Edgecount	Full model	
Edgecount	-0.69*	-1.70**	
	(0.27)	(0.54)	
Homophily (on Gender)		1.59*	
		(0.64)	
AIC	78.38	73.34	
BIC	80.48	77.53	
Log Likelihood	-38.19	-34.67	
Num. networks	5	5	

Standard errors in parenthesis. *** p < 0.001, ** p < 0.01, * p < 0.05

Table 1 Fitted ERGMitos using the fivenets dataset.

We performed a large simulation study comparing MC-MLE (ergm) with MLE (ergmito).

GGVY Stat. Comp. Bioinf & SocNets. 10 / 37

Paper 1 Simulation Studies: Empirical Type I error

		P(Type I error)		
Sample size	N. Simulations	MC-MLE	MLE	chi2
5	2,189	0.084	0.057	11.71 ***
10	2,330	0.070	0.045	12.46 ***
15	2,395	0.084	0.066	5.55 *
20	2,430	0.074	0.060	3.58
30	2,460	0.057	0.052	0.67
50	2,495	0.046	0.044	0.17
100	2,499	0.048	0.048	0.00

Table 2 Empirical Type I error rates. The χ^2 statistic is from a 2-sample test for equality of proportions, and the significance levels are given by *** p < 0.001, ** p < 0.01, and * p < 0.05. The lack of fitted samples in some levels is due to failure of the estimation method.

GGVY Stat. Comp. Bioinf & SocNets. 11 / 37

Paper 1 Simulation Studies: Elapsed time

▶ more results

Key takeaways

▶ New extension of ERGMs using exact statistics for small networks (families, teams, ego-centered, etc.)

Key takeaways

- ► New extension of ERGMs using exact statistics for small networks (families, teams, ego-centered, etc.)
- ▶ Performance: Same (un)bias, Lower Type I error rates, (way) faster.

GGVY Stat. Comp. Bioinf & SocNets. 13 / 37

Key takeaways

- ► New extension of ERGMs using exact statistics for small networks (families, teams, ego-centered, etc.)
- ▶ Performance: Same (un)bias, Lower Type I error rates, (way) faster.
- ► Opens the door the new methods.

GGVY Stat. Comp. Bioinf & SocNets. 13 / 37

Key takeaways

- ► New extension of ERGMs using exact statistics for small networks (families, teams, ego-centered, etc.)
- ▶ Performance: Same (un)bias, Lower Type I error rates, (way) faster.
- ► Opens the door the new methods.

GGVY Stat. Comp. Bioinf & SocNets. 13 / 37

Key takeaways

- ► New extension of ERGMs using exact statistics for small networks (families, teams, ego-centered, etc.)
- ▶ Performance: Same (un)bias, Lower Type I error rates, (way) faster.
- ▶ Opens the door the new methods.

Next steps

► Revisit measurment of goodness-of-fit.

Key takeaways

- ► New extension of ERGMs using exact statistics for small networks (families, teams, ego-centered, etc.)
- ▶ Performance: Same (un)bias, Lower Type I error rates, (way) faster.
- ▶ Opens the door the new methods.

Next steps

- ▶ Revisit measurment of goodness-of-fit.
- ► Explore extending this method for (very) large networks.

Contents

Paper 1: Exponential Random Graph Models for Small Networks

Paper 2: On the prediction of gene functions using phylogenetic trees

Things that are very interesting but I most probably won't have any time to discuss with the attendees

References

The Gene Ontology

▶ Three domains: Cellular component, molecular function, biological process.

The Gene Ontology

- ▶ Three domains: Cellular component, molecular function, biological process.
- \blacktriangleright Currently, the Gene Ontology Project has: 44,945 validated terms, \sim 6,400,000 annotations on \sim 1,150,000 species.

The Gene Ontology

- ▶ Three domains: Cellular component, molecular function, biological process.
- ▶ Currently, the Gene Ontology Project has: 44,945 validated terms, \sim 6,400,000 annotations on \sim 1,150,000 species.
- lacktriangle Of all annotations, about \sim 500,000 are on human genes.

The Gene Ontology

- ▶ Three domains: Cellular component, molecular function, biological process.
- ▶ Currently, the Gene Ontology Project has: 44,945 validated terms, \sim 6,400,000 annotations on \sim 1,150,000 species.
- ightharpoonup Of all annotations, about \sim 500,000 are on human genes.
- ► Knowledge about gene functions can accelerate bio-medical research.

Gene Functional Annotations: The Gene Ontology Project

Example of GO term

Accession	GO:0060047
Name	heart contraction
Ontology	biological_process
Synonyms	heart beating, cardiac contraction, hemolymph circulation
Alternate	IDs None
	The multicellular organismal process in which the heart decreases in
Definition	volume in a characteristic way to propel blood through the body.
	Source: GOC:dph

Table 3 Heart Contraction Function. source: amigo.geneontology.org

Gene Functional Annotations: The Gene Ontology Project

Example of GO term

Accession	GO:0060047
Name	heart contraction
Ontology	biological_process
Synonyms	heart beating, cardiac contraction, hemolymph circulation
Alternate	IDs None
	The multicellular organismal process in which the heart decreases in
Definition	volume in a characteristic way to propel blood through the body.
	Source: GOC:dph

Table 3 Heart Contraction Function. source: amigo.geneontology.org

You know what is interesting about this function?

These four species have a gene with that function...

pthr10037

pthr11521

pthr24356

These four species have a gene with that function... and two of these are part of the same evolutionary tree!

pthr10037

pthr11521

pthr11521

pthr24356

Keck School of Medicine of USC

GGVY Stat. Comp. Bioinf & SocNets. 18 / 3'

Keck School of Medicine of USC

► It can be very general: think of the tree of life

Keck School of Medicine of USC

- ► It can be very general: think of the tree of life
- ► Nowadays, thanks to gene-sequencing techniques, we are building trees at the gene level.

- ► It can be very general: think of the tree of life
- Nowadays, thanks to gene-sequencing techniques, we are building trees at the gene level.
- ► A single phylogenetic tree can host multiple species

Keck School of Medicine of USC

- ► It can be very general: think of the tree of life
- Nowadays, thanks to gene-sequencing techniques, we are building trees at the gene level.
- ► A single phylogenetic tree can host multiple species

Figure 2 Random annotated phylogenetic tree.

Keck School of Medicine of USC

- ► It can be very general: think of the tree of life
- Nowadays, thanks to gene-sequencing techniques, we are building trees at the gene level.
- ► A single phylogenetic tree can host multiple species

Figure 2 Random annotated phylogenetic tree.

We can use the evolutionary tree to infer presence/absence of gene functions!

GGVY Stat. Comp. Bioinf & SocNets. 18 / 37

An evolutionary model of gene functions

► Initial (spontaneous) gain of function.

- ► Initial (spontaneous) gain of function.
- Loss/gain of offspring depends on the state of its' parents. (markov process)

- ► Initial (spontaneous) gain of function.
- Loss/gain of offspring depends on the state of its' parents. (markov process)
- ► There's a chance of error.

An evolutionary model of gene functions (cont'd)

► Gain and loss also depend on the type of the parent node speciation vs duplication

An evolutionary model of gene functions (cont'd)

- ► Gain and loss also depend on the type of the parent node speciation vs duplication

GGVY Stat. Comp. Bioinf & SocNets. 20 / 37

An evolutionary model of gene functions (cont'd)

- ► Gain and loss also depend on the type of the parent node (speciation vs duplication)

GGVY Stat. Comp. Bioinf & SocNets. 20 / 37

Prediction with real data

Keck School of Medicine of USC

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
ψ_0	0.00	0.00	0.23	0.25	0.00	0.00	0.21	0.25
ψ_1	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.01
μ_{d0}	0.01	0.01	0.97	0.96	1.00	0.01	1.00	0.98
μ_{d1}	0.01	0.02	0.52	0.58	0.25	0.02	0.51	0.58
μ_{s0}	0.00	0.00	0.05	0.06	0.07	0.00	0.05	0.06
μ_{s1}	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.02
π	0.81	0.91	0.78	0.45	0.82	0.91	0.83	0.49
Tree count	88	88	141	141	88	88	141	141
Method	МСМС	МСМС	мсмс	мсмс	MLE	MLE	MLE	MLE
Prior	Uniform	Beta	Uniform	Beta	Uniform	Beta	Uniform	Beta
Inferred	Yes	Yes	No	No	Yes	Yes	No	No
AUC	1.00	1.00	0.69	0.67	0.98	1.00	0.70	0.67
P. Score (obs)	1.00	1.00	0.81	0.81	0.92	1.00	0.81	0.81
P. Score (random)	0.71	0.71	0.61	0.61	0.71	0.71	0.61	0.61

 Table 4 Parameter estimates using different estimation methods, priors, and types of annotations.

GGVY Stat. Comp. Bioinf & SocNets. 21 / 37

Prediction with real data: Leave-one-out

Keck School of Medicine of USC

Annotated Phylogenetic Tree

Prediction with real data: Out-of-sample prediction

Keck School of Medicine of USC

Adenosine Deaminase (PTHR11409) AUCs:={0.80, 0.67, -}

Paper 2: On the prediction of gene functions using phylogenetic treschool of

Keck School of Medicine of USC

Key takeaways

► (Yet another) model for predicting gene functions using phylogenetics.

Paper 2: On the prediction of gene functions using phylogenetic treschool of

Key takeaways

- ► (Yet another) model for predicting gene functions using phylogenetics.
- ▶ Big difference... computationally scalable.

Paper 2: On the prediction of gene functions using phylogenetic tre School of

Key takeaways

- ▶ (Yet another) model for predicting gene functions using phylogenetics.
- ▶ Big difference... computationally scalable.
- ► Meaningful biological results.

Paper 2: On the prediction of gene functions using phylogenetic treschool of

Key takeaways

- ► (Yet another) model for predicting gene functions using phylogenetics.
- ▶ Big difference... computationally scalable.
- ► Meaningful biological results.
- ▶ Preliminary accuracy results comparable to state-of-the-art phylo-based models.

GGVY

Paper 2: On the prediction of gene functions using phylogenetic tre School of

Key takeaways

- ► (Yet another) model for predicting gene functions using phylogenetics.
- ▶ Big difference... computationally scalable.
- ► Meaningful biological results.
- ▶ Preliminary accuracy results comparable to state-of-the-art phylo-based models.

GGVY

Paper 2: On the prediction of gene functions using phylogenetic tre School of

Key takeaways

- ▶ (Yet another) model for predicting gene functions using phylogenetics.
- ▶ Big difference... computationally scalable.
- ► Meaningful biological results.
- ▶ Preliminary accuracy results comparable to state-of-the-art phylo-based models.

Next steps

▶ Adapt the model to incorporate joint estimation of functions using pseudo-likelihood.

$$P(a,b,c) \approx P(a,b)P(b,c)P(a,c)$$

Paper 2: On the prediction of gene functions using phylogenetic tre School of

Key takeaways

- ▶ (Yet another) model for predicting gene functions using phylogenetics.
- ▶ Big difference... computationally scalable.
- ► Meaningful biological results.
- ▶ Preliminary accuracy results comparable to state-of-the-art phylo-based models.

Next steps

▶ Adapt the model to incorporate joint estimation of functions using pseudo-likelihood.

$$P(a,b,c) \approx P(a,b)P(b,c)P(a,c)$$

▶ Make the model hierarchical when pooling trees: different mutation rates.

Statistical and computational methods for bioinformatics and social network analysis

or how did I learn to stop worrying and love the bomb

George G Vega Yon

University of Southern California, Department of Preventive Medicine

October 9, 2019

Thanks!

Here are some by-products of my research here at USC

- ► The slurmR R package
- ► The pruner C++ library
- ► The fmcmc R package

References I

Dodd, D. M. B. (1989). Reproductive isolation as a consequence of adaptive divergence in drosophila pseudoobscura. *Evolution*, 43(6), 1308–1311. Retrieved from http://www.jstor.org/stable/2409365

GGVY Stat. Comp. Bioinf & SocNets. 27 / 37

Sufficient statistics have various forms

Representation	Description
$\bigcirc \longleftrightarrow \bigcirc$	Mutual Ties (Reciprocity)
	$\sum_{i \neq j} y_{ij} y_{ji}$
\mathcal{A}	Transitive Triad (Balance)
→	$\sum_{i \neq j \neq k} y_{ij} y_{jk} y_{ik}$
	Homophily
	$\sum_{i\neq j} y_{ij} 1 (x_i = x_j)$
	Covariate Effect for Incoming Ties
	$\sum_{i\neq j} y_{ij} x_j$
\bigcirc	Four Cycle
*	$\sum_{i\neq i\neq k\neq l} y_{ij} y_{jk} y_{kl} y_{li}$
	∠17J≠K≠1 > 50 JN > NO "

ERGMs: The MC-MLE approach

One of the most popular methods for estimating ERGMs is the MC-MLE approach (citations here)

This consists on the folling steps

- 1. Start from a sensible guess on what should be the population parameters (usually done using pseudo-MLE esimtation)
- 2. While the algorithm doesn't converge, do:
 - 2.1 Simulate a stream of networks with the current state of the parameter, θ_t
 - 2.2 Using the law of large numbers, approximate the ratio of likelihoods based on the parameter θ_t , this is the objective function
 - 2.3 Update the parameter by a Newton-Raphson step
 - 2.4 Next iteration

The ergmito

- ► Implements estimation of ERGMs using exact statistics for small networks
- ▶ Metaprogramming allows specifying likelihood (and gradient) functions for joint models
- ▶ Includes tools for simulating, and postestimation checks
- Getting ready for CRAN!

We performed a simulation study with the following features:

▶ Draw 20,000 samples of groups of small networks

We performed a simulation study with the following features:

- ▶ Draw 20,000 samples of groups of small networks
- ► Each group had prescribed: (model parameters, number of networks, sizes of the networks)

◀ go back

We performed a simulation study with the following features:

- ▶ Draw 20,000 samples of groups of small networks
- Each group had prescribed: (model parameters, number of networks, sizes of the networks)
- ► Each group could have from 5 to 300 small networks

We performed a simulation study with the following features:

- Draw 20,000 samples of groups of small networks
- Each group had prescribed: (model parameters, number of networks, sizes of the networks)
- ► Each group could have from 5 to 300 small networks
- ▶ We estimated the models using MC-MLE and MLE.

Paper 1 Simulation Studies: Error rate

Paper 1 Simulation Studies: Empirical Bias

Keck School of Medicine of USC

An evolutionary model of gene functions (algorithmic view)

```
Keck
School of
Medicine
of USC
```

```
Data: A phylogenetic tree, \{\pi, \mu, \psi\} (Model probabilities)
Result: An annotated tree
for n \in PostOrder(N) do
   Nodes gain/loss function depending on their parent;
   switch class of n do
       case root node do
           Gain function with probability \pi:
       case interior node do
           if Parent has the function then Keep it with prob. (1 - \mu_1):
           else Gain it with prob. \mu_0;
   end
   Finally, we allow for mislabeling;
   if n is leaf then
       if has the function then Mislabel with prob. \psi_1;
       else Mislabel with prob. \psi_0:
end
```

▶ go back

Figure 3 Dodd (1989): After one year of isolation, flies showed a significant level or assortativity in mating (wikimedia)

Duplication

Figure 4 A key part of molecular innovation, gene duplication provides opportunity for new functions to emerge (wikimedia)

◀ go back

The aphylo

- ▶ Pruning algorithm implemeted in C++ using the pruner template library (implemeted in this project).
- ► The estimation is done using either Maximum Likelihood, Maximum A Posteriory, or MCMC.
- ► The MCMC estimation is done via the fmcmc R package using adaptive MCMC (also implemented as part of this project)

◀ go back