Mathématiques discrètes QCM nº 1

Durée : 15 minutes

Nom:
Prénom :
Groupe :

	Énoncé constitué de 5 question, zéro, une peuvent être correctes. les cases de	ou plusieurs option	ıs	Prénom : Groupe :		
Question 1 \clubsuit La relation d'ordre strict $(a < b)$ sur l'ensemble des entiers $\mathbb Z$ est-elle bien-fondée ? \square Oui \square Non						
Question 2 Soit f la fonction définie par $f(0)=0$, $f(1)=1$ et $f(n)=2f(n-1)+f(n-2)$ quand $n\geq 2$. On souhaite montrer par récurrence que $2\sqrt{2}f(n)=(1+\sqrt{2})^n-(1-\sqrt{2})^n$. Pour les cas de base, on a $(1+\sqrt{2})^0-(1-\sqrt{2})^0=1-1=0$ et $(1+\sqrt{2})^1-(1-\sqrt{2})^1=2\sqrt{2}$. Pour l'hérédité, on a						
$2\sqrt{2}f(n) \overset{(A)}{=} 2\sqrt{2}(2f(n-1)+f(n-2)) \overset{(B)}{=} 2((1+\sqrt{2})^{n-1}-(1-\sqrt{2})^{n-1})+(1+\sqrt{2})^{n-2}-(1-\sqrt{2})^{n-2}$						
	$a^{-2}(2(1+\sqrt{2})+1)-(1-\sqrt{2})$ e de la preuve utilise-t-on l'hy (B)					
Question 3 \clubsuit jours égaux à $A \cap B \cap C$ $A \cap B \cap C$ $A \cap B \cap C$ $A \cup (B \cap C)$	$A \cup C$) $A \cap C$)	es. Parmi les enser	nbles suiv	vants, lesquels sont tou-		
Question 4 \clubsuit Soit M_n le nombre de mots de longueur n dans un alphabet de cardinalité 3. Quelle est la relation de récurrence satisfaite par la suite M_n ? $M_0 = 1, M_{n+1} = (M_n)^3 \text{ pour } n \ge 1.$ $M_0 = 1, M_{n+1} = nM_3 \text{ pour } n \ge 1.$ $M_0 = 1, M_{n+1} = 3M_n \text{ pour } n \ge 1.$ $M_0 = 0, M_{n+1} = 3M_n \text{ pour } n \ge 1.$						
Question 5 \clubsuit B ? $ A = B $ Aucune de $ A \ge B $ $ A \le B $ $ A = B $	Soit f une fonction $f:A\to$ ces réponses	B. Que peut-on co	nclure su	r les cardinaux de A et		