Fundamentos de los Sistemas Operativos (FSO)

Departamento de Informática de Sistemas y Computadoras (DISCA) *Universitat Politècnica de València*

Part 4: Memory management

Seminar 11
Virtual memory exercises

- Exercise 1. Paging whitout virtual memory
- Exercise 2. Paging with virtual memory
- Exercise 3. Replacement algorithms
- Exercise 4. Replacement scope

Exercise 1. Paging without virtual memory

A processor has **16-bit logical addresses** managed by paging. It is made in three versions with page sizes **of 256, 1024 y 4096 bytes**, respectively. A given executable file contains 2800 bytes of instructions from address 0x1000, 1198 bytes of data from address 0x3000 and reserves initially 2048 bytes for the stack from address 0x9000.

a) Compute the number of page table entries and the initial number of pages in use for every processor model

Page size (bytes)	Number of page table entries	Initial number of pages	
256			
1024			
4096			

Exercises 1: Paging without virtual memory

region	size (bytes)	Base address
code	2800	0x1000
data	1198	0x3000
stack	2048	0x9000

Page size (bytes)	Number of page table entries	Initial number of pages
256	28 = 256	
1024	2 ⁶ = 64	
4096	24 = 16	

Exercises 1: Paging without virtual memory

region	size (bytes)	Base address
code	2800	0x1000
data	1198	0x3000
stack	2048	0x9000

Page size (bytes)	Number of page table entries	Initial number of pages
256	2 ⁸ = 256	ceil(2800/256) + ceil(1198/256) +ceil(2048/256) = 24
1024	2 ⁶ = 64	ceil(2800/1024) + ceil(1198/1024) +ceil(2048/1024) = 7
4096	24 = 16	ceil(2800/4096) + ceil(1198/4096) +ceil(2048/4096) = 3

Exercise 1 (cont.)

Region	Size (bytes)	Base (hex)	
Code	2800	1000	
Variables	1198	3000	
Stack	2048	9000	

b) Build *in binary* the initial process page table when the program is executed with a **page size of 4096 bytes**.

Consider that physical memory size is 64 KBytes and when the process is loaded only the upper frames are allocated. The OS allocates frames in ascending order of physical addresses. It allocates first the code, then variables and finally the stack.

Page descriptors have the following content:

If a page is not in use it has to be indicated by r=w=x=0

why.

c) Compute, if possible, the physical addresses that the MMU generates for every of the following accesses. If the translation is not possible, tell

Region	Size (bytes)	Base (hex)	
Code	2800	1000	
Variables	1198	3000	
Stack	2048	9000	

Access type	Logical address	Physical address	Legal access? (yes/no)
Instruction read	1000		
Instruction read	1004		
Instruction read	2000		
Instruction read	3000		
Variable read	3010		
Variable read	9010		
Variable write	1000		
Variable write	5000		

c) Compute, if possible, the physical addresses that the MMU generates for every of the following accesses. If the translation is not possible, tell why.

Region	Size (bytes)	Base (hex)	
Code	2800	1000	
Variables	1198	3000	
Stack	2048	9000	

Access type	Logical address	Physical address	Legal access? (yes/no)
Instruction read	0x1000	0x0000	Legal
Instruction read	0x1004	0x0004	Legal
Instruction read	0x2000		Page 2 does not exist
Instruction read	0x3000		Page 3. Data not exec
Data read	0x3010	0x1010	Legal
Data read	0x9010	0x2010	Legal
Data write	0x1000		Ilegal. Code. Write not allowed
Data write	0x5000		Page 5 does not exist

Exercise 2. Paging with virtual memory

fSO

Consider the processor from exercise 1 with 4-KByte pages, and an OS with virtual memory. The process starts without any frame allocated and the OS allocates free frames in the following order: frame 0, frame 1, frame 2, etc.

Region	Size (bytes)	Base (hex)	
Code	2800	1000	
Data	1198	3000	
Stack	2048	9000	

a) Complete the next table considering that logical addresses are emitted following the "Logical address" column order.

Access type	Logical address (hex)	Physical address (hex)	Page fault?	Legal access?
Instruction read	0x1000			
Instruction read	0x1004			
Variable read	0x97FC			
Instruction read	0x1008			
Variable write	0x97F8			
Instruction read	0x5000			

¿How many frames has the process allocated after the fifth access? ¿Can the process continue after the last access?

Exercise 2. Paging with virtual memory

fSO

Consider the processor from exercise 1 with 4-KByte pages, and an OS with virtual memory. The process starts without any frame allocated and the OS allocates free frames in the following order: frame 0, frame 1, frame 2, etc.

Region	Size (bytes)	Base (hex)
Code	2800	1000
Data	1198	3000
Stack	2048	9000

a) Complete the next table considering that logical addresses are emitted following the "Logical address" column order.

Access type	Logical address (hex)	Physical address (hex)	Page fault?	Legal access?
Instruction read	0x1000	0x0000	Yes. Frame 0	Yes
Instruction read	0x1004			
Variable read	0x97FC			
Instruction read	0x1008			
Variable write	0x97F8			
Instruction read	0x5000			

¿How many frames has the process allocated after the fifth access? ¿Can the process continue after the last access?

Exercise 2. Paging with virtual memory

fSO

Consider the processor from exercise 1 with 4-KByte pages, and an OS with virtual memory. The process starts without any frame allocated and the OS allocates free frames in the following order: frame 0, frame 1, frame 2, etc.

Region	Size (bytes)	Base (hex)
Code	2800	1000
Data	1198	3000
Stack	2048	9000

a) Complete the next table considering that logical addresses are emitted following the "Logical address" column order.

Access type	Logical address (hex)	Physical address (hex)	Page fault?	Legal access?
Instruction read	0x1000	0x0000	Yes. Frame 0	Yes
Instruction read	0x1004	0x0004	No	Yes
Variable read	0x97FC	0x17FC	Yes. Frame 1	Yes
Instruction read	0x1008	0x0008	No	Yes
Variable write	0x97F8	0x17F8	No	Yes
Instruction read	0x5000		YES	NO

¿How many frames has the process allocated after the fifth access? 2 frames ¿Can the process continue after the last access? No. It produces an exception and finishes

Pág. 13

Exercise 2 (cont.)

b) Describe *in hexadecimal* the evolution of the process page table.

Consider that physical memory size is 64 KBytes and with the process is loaded only the upper frames are allocated. The OS allocates frames in ascending order of physical addresses.

Page descriptors are 16-bit and have the following content:

If a page is not in use it has to be indicated by r=w=x=0

Initial state

		Read	Read	Read	Read	Write
		0x1000	0x1004	0x97FC	0x1008	0x97F8
	0					
	1					
	2					
38	3					
₩ Vdr	4					
ETSINF-UPV	5					
	6					
ativo	7					
pera	8					
-undamentos de los Sistemas Operativos	9					
stem	Α					
S Sis	В					
de lo	С					
itos (D					
mer	Ε					
ında	F					
F	'					

Exercise 3. Replacement algorithms

In a computer with 32 MB of main memory, with a memory management policy of paging with 4KB page size, the OS assigns to process A 4 main memory frames (from 0 to 3), that are initially empty.

Answer the following items:

- a) Describe the physical memory address format.
- **b)** If process A generates the following logical address sequence (shown in hexadecimal):

0x02D4B8, 0x02D4B9, 0x02D4EB, 0x02D4EB, 0x02D86F, 0xF0B621, 0xF0B815, 0xF05963, 0xF0B832, 0xF0BA23, 0xD946C3, 0xD9B1A7, 0xD9B1A1, 0xF0BA25, 0x02D4C7, 0x628A31, 0xF0B328, 0xD9B325, 0xD73425

Obtain, for **FIFO and LRU algorithms, how many page faults are** generated and the final main memory state, telling the page allocated in every frame assigned to the process.

Exercise 3. Replacement algorithms

In a computer with **32 MB of main memory, with a memory** management policy of **paging with 4KB page size, the OS** assigns to process A **4 main memory frames (from 0 to 3)**, that are initially empty.

Answer the following items:

a) Describe the **physical memory address format. Memory = 32MB => 25 bits**

Frame size = 4K => 12 bits

Frame 13 bits

Offset 12 bits

Page	Offset	L. Address	Page	Offset	
0x02D	0x4B8	0xD946C3	0xD94	0x6C3	
0x02D	0x4B9	0xD9B1A7	0xD9B	0x1A7	
0x02D	0x4EB	0xD9B1A1	0xD9B	0x1A1	
0x02D	0x4EB	0xF0BA25	0xF0B	0xA25	
0x02D	0x86F	0x02D4C7	0x02D	0x4C7	
0xF0B	0x621	0x628A31	0x628	0xA31	
0xF0B	0x815	0xF0B328	0xF0B	0x328	
0xF05	0x963	0xD9B325	0xD9B	0x325	
0xF0B	0x832	0xD73425	0xD73	0x425	
0xF0B	0xA23				
	0x02D 0x02D 0x02D 0x02D 0x02D 0xF0B 0xF0B 0xF0B	0x02D 0x4B8 0x02D 0x4B9 0x02D 0x4EB 0x02D 0x4EB 0x02D 0x86F 0xF0B 0x621 0xF0B 0x963 0xF0B 0x832	0x02D 0x4B8 0xD946C3 0x02D 0x4B9 0xD9B1A7 0x02D 0x4EB 0xD9B1A1 0x02D 0x4EB 0xF0BA25 0x02D 0x86F 0x02D4C7 0xF0B 0x621 0x628A31 0xF0B 0x815 0xF0B328 0xF05 0x963 0xD9B325 0xF0B 0x832 0xD73425	0x02D 0x4B8 0xD946C3 0xD94 0x02D 0x4B9 0xD9B1A7 0xD9B 0x02D 0x4EB 0xD9B1A1 0xD9B 0x02D 0x4EB 0xF0BA25 0xF0B 0x02D 0x86F 0x02D4C7 0x02D 0xF0B 0x621 0x628A31 0x628 0xF0B 0x815 0xF0B328 0xF0B 0xF05 0x963 0xD9B325 0xD9B 0xF0B 0x832 0xD73425 0xD73	0x02D 0x4B8 0xD946C3 0xD94 0x6C3 0x02D 0x4B9 0xD9B1A7 0xD9B 0x1A7 0x02D 0x4EB 0xD9B1A1 0xD9B 0x1A1 0x02D 0x4EB 0xF0BA25 0xF0B 0xA25 0x02D 0x86F 0x02D4C7 0x02D 0x4C7 0xF0B 0x621 0x628A31 0x628 0xA31 0xF0B 0x815 0xF0B328 0xF0B 0x328 0xF05 0x963 0xD9B325 0xD9B 0x325 0xF0B 0x832 0xD73425 0xD73 0x425

Exercise 3. Replacement algorithms

Page 13 bits

Offset 12 bits

Page size = 4K => 12 bits

Secuencia de referencias a páginas: 02D, F0B, F05, F0B, D94, D9B, F0B, 02D, 628, F0B, D9B, D73

FIFO

Frame	02D	F0B	F05	FOB	D94	D9B	FOB	02D	628	FOB	D9B	D73
0												
1												
2												
3												

LRU

undamentos de los Sistemas Operativos etsinf-upv 间部

Frame	02D	FOB	F05	FOB	D94	D9B	FOB	02D	628	FOB	D9B	D73
0												
1												
2												
3												

Page 13 bits

Offset 12 bits

Page size = 4K => 12 bits

Secuencia de referencias a páginas: 02D, F0B, F05, F0B, D94, D9B, F0B, 02D, 628, F0B, D9B, D73

FIFO

Frame	02D	FOB	F05	F0B	D94	D9B	F0B	02D	628	F0B	D9B	D73
0	02D	02D	02D	02D	02D	D9B	D9B	D9B	D9B	D9B	<u>D9B</u>	D73
1		FOB	FOB	<u>F0B</u>	FOB	FOB	<u>F0B</u>	02D	02D	02D	02D	02D
2			F05	F05	F05	F05	F05	F05	628	628	628	628
3					D94	D94	D94	D94	D94	FOB	FOB	FOB

LRU

undamentos de los Sistemas Operativos EtsinF-UPV 即部

U	Frame	02D	FOB	F05	FOB	D94	D9B	FOB	02D	628	FOB	D9B	D73
	0	02D	02D	02D	02D	02D	D9B	D9B	D9B	D9B	D9B	<u>D9B</u>	D9B
	1		FOB	FOB	<u>F0B</u>	FOB	FOB	<u>F0B</u>	FOB	FOB	<u>F0B</u>	FOB	FOB
	2			F05	F05	F05	F05	F05	02D	02D	02D	02D	D73
	3					D94	D94	D94	D94	628	628	628	628
	head	02D	FOB	F05	FOB	D94	D9B	FOB	02D	628	FOB	D9B	D73
sta	rk [02D	FOB	F05	FOB	D94	D9B	FOB	02D	628	FOB	FOB
Sta				02D	02D	F05	FOB	D94	D9B	FOB	02D	628	628
	tail					02D	F05	F05	D94	D9B	D9B	02D	

There are two possible page replacement scopes:

Exercise 4. Replacement scope (intro)

– Local replacement:

- A process selects the victim between its own pages allocated into main memory frames, it can not take frames from another process.
- The number of process allocated frames doesn't change

- Global replacement:

- A process selects the victim between whole set of main memory frames
- The victim can belong to another process different from the one that produces the page fault

ETSINF-UPV INSCH undamentos de los Sistemas Operativos

Exercise 4. Replacement scope

On a virtual memory system, with 1024 byte page size, the OS has allocated 6 frames (from 0 to 5) to two processes A y B. At time t = 10, A and B page tables have the following content:

		Frame	Valid bit	Counter
<u>е</u>	0		i	
aþ	1		i	
ge t	2	2	V	10
page table	3	5	V	3
	4		i	
Process A	5	4	V	5
100	6		i	
٥	7		i	

<u>e</u>	
tabl	
•	
page	
B	
ocess	
100	
₫	

		Frame	Valid bit	Counter
	0		i	
	1		i	
	2		i	
	3	1	V	2
	4		i	
	5		i	
	6		i	
	7		i	

Then the processes emit the following logical address sequence. Consider that all the addresses are legal:

A,100; A,4000; B,100; A,7000; B,2100; B,1028; A,5800; A,100 Obtain what pages are allocated on every frame and the physical address translation of the first and the last access in the following situations:

- a) The replacement algorithm is **LRU** with **global scope**
- b) The replacement algorithm is **LRU** with **local scope**. Process A has 4 frames and process B has 2 frames

undamentos de los Sistemas Operativos etsinf-upv 间部

On a virtual memory system, with 1024 byte page size, the OS has allocated 6 frames (from 0 to 5) to two processes A y B. At time t = 10, A and B page tables have the following content:

,		Frame	Valid bit	Counter
table	0		i	
	1		i	
age	2	2	V	10
ğ V	3	5	V	3
Process A page	4		i	
	5	4	V	5
	6		i	
	7		i	

Exercise 4. Replacement scope

വ		Frame	Valid bit	Counter
de	0		i	
e ta	1		i	
page table	2		i	
Вр	3	1	V	2
SS	4		i	
Process	5		i	
P	6		i	
	7		i	

a) The replacement algorithm is LRU with global scope

	Α	Α	В	Α	В	В	Α	Α
L.Add	100	4000	100	7000	2100	1028	5800	100
Page	0	3	0	6	2	1	5	0
offset	100	928	100	856	52	4	680	100

frame	t = 10	11	12	13	14	15	16	17	18
0	free	A0, 11	A5, 17	A5, 17					
1	B3, 2	B3, 2	B3, 2	B3, 2	A6, 14				
2	A2, 10	B1, 16	B1, 16	B1, 16					
3	free	free	free	B0, 13					
4	A5, 5	B2, 15	B2, 15	B2, 15	B2, 15				
5	A3, 3	A3, 3	A3, 12	A0, 18					

Exercise 4. Replacement scope

On a virtual memory system, with 1024 byte page size, the OS has allocated 6 frames (from 0 to 5) to two processes A y B. At time t = 10, A and B page tables have the following content:

•		Frame	Valid bit	Counter	
table	0		i		
ta	1		i		
эgе	2	2	V	10	
bg 4	3	5	V	3	
Process A page	4		i		
	5	4	V	5	
	6		i		
	7		i		

<u>ه</u>		Frame	Valid bit	Counter
	0		i	
e Ç	1	Frame Valid bit Counter i i i 1 v 2 i i i i v 2		
page tab	2		i	
8	3	1	V	2
Process	4		i	
	5		i	
	6		i	
	7		i	

a) The replacement algorithm is LRU with global local

	Α	Α	В	Α	В	В	Α	Α
L.Add	100	4000	100	7000	2100	1028	5800	100
Page	0	3	0	6	2	1	5	0
offset	100	928	100	856	52	4	680	100

frame	t = 10	11	12	13	14	15	16	17	18
0	free	A0, 11	A0, 18						
1	B3, 2	B2, 15	B2, 15	B2, 15	B2, 15				
2	A2, 10	A5, 17	A5, 17						
3	free	free	free	B0, 13	B0, 13	B0, 13	B1, 16	B1, 16	B1, 16
4	A5, 5	A5, 5	A5, 5	A5, 5	A6, 14				
5	A3, 3	A3, 3	A3, 12						