ECEN325 Ref Sheet © Josh Wright March 20, 2017

Metric Prefixes			
peta	Р	10^{15}	1 000 000 000 000 000
tera	Т	10^{12}	1 000 000 000 000
giga	G	10^{9}	1 000 000 000
mega	Μ	10^{6}	1 000 000
kilo	k	10^{3}	1 000
hecto	h	10^{2}	100
deca	da	10^{1}	10
one		10^{0}	1
deci	d	10^{-1}	0.1
centi	$^{\mathrm{c}}$	10^{-2}	0.01
milli	m	10^{-3}	0.001
micro	μ	10^{-6}	0.000 001
nano	n	10^{-9}	0.000 000 001
pico	p	10^{-12}	0.000 000 000 001
femto	f	10^{-15}	0.000 000 000 000 001

Ohm's Law V = IR, $I = \frac{V}{R}$, $R = \frac{V}{I}$ Complex Numbers

- $\bullet \frac{1}{i} = -i$
- $\sqrt[n]{z} = \sqrt[n]{r}e^{\frac{\theta}{n} + \frac{2k\pi}{n}}$ for $n \in N^*$ (ints ≥ 0) $e^{j\theta} = \cos(\theta) + j\sin(\theta)$

- $\bullet e^{-j\theta} = \cos(\theta) j\sin(\theta)$ $\bullet \cos(\theta) = \frac{1}{2}(e^{j\theta} + e^{-j\theta})$ $\bullet \sin(\theta) = \frac{1}{2j}(e^{j\theta} e^{-j\theta})$
- normalized: $sinc(t) = \frac{\sin(\pi t)}{\pi t}$
- $\bullet \left| \frac{a}{b} \right| = \frac{|a|}{|b|} \\
 \bullet \angle \frac{a}{b} = \angle a \angle b$

Trig

- $\bullet \cos^2(a) + \sin^2(a) = 1$
- $\cos(2a) = \cos^2(a) \sin^2(a) = 2\cos^2(a) 1 = 1 2\sin^2(a)$
- $\bullet \sin(2a) = 2\sin(a)\cos(a)$
- $\bullet \cos^2(a) = \frac{1}{2}(1 + \cos(2a))$
- $\bullet \sin^2(a) = \frac{1}{2}(1 \cos(2a))$

RC Filter

- Transmission Function: $T(s) = \frac{V_o(s)}{V_i(s)}$
- Corner frequency: frequency s at which $T(s) = \frac{1}{\sqrt{2}}$
- for simple circuit: ground \rightarrow source $\rightarrow R \rightarrow C \rightarrow$ ground
- $*T(s) = \frac{1}{1+RCs}$ $|T(j\omega)| = \frac{1}{\sqrt{1+R^2C^2s^2}}$ $|\angle T(j\omega)| = \frac{1}{\sqrt{1+R^2C^2s^2}}$
- low pass

- *corner frequency: $s = \frac{1}{RC}$ (also pole)
- * pole: $\frac{1}{RC}$
- high pass

- $*T(s) = \frac{V_o}{V_i} = \frac{RCs}{1 + RCs}$
- *zero: s=0, pole: $s=\frac{1}{RC}$

Bode Plots

- magnitude is plotted in dB: $|T(j\omega)|_{dB} = 20\log_{10}|T(j\omega)|$
- starts on y-axis at DC offset with slope 0
- just add together the bode plots of each individual pole, zero, and the DC offset
- poles always slope down, zeros slope up (applies for both magnitude and phase)
- dec=decade, e.g. from 10^0 to 10^1
- magnitude:
- *Pole/Zero at origin: constant slope $\pm 20db/dec$ for all ω ; 0dB at $\omega = 10^0 = 1$
- *Pole/Zero at ω_0 :

- $\begin{array}{l} 0 \text{ for } \omega < \omega_0 \\ \text{slope } \pm 20 \frac{db}{dec} \text{ after} \\ * \text{Constant } C \text{: constant line at } 20 \log_{10}(|C|) \end{array}$
- * Pole at origin: constant $-\frac{\pi}{2}$ or -90°
- *Zero at origin: constant $+\frac{\pi}{2}$ or $+90^{\circ}$
- *Pole/Zero at ω_0 :
- 0 for $\omega < \frac{\omega_0}{10}$
- slope linearly $(\pm 45^{\circ}/dec)$ until $10\omega_0$
- 0 slope for $\omega > 10\omega_0$
- *Constant C: no effect (0 for all ω)
- Prof wants us to actually show the -3dB drop curve, not just a straight intersection

Solving systems with Op Amps

- step 0: if the op amp is ideal, write out ideal properties:
- $V_{+} = V_{-}$ $V_{+} = V_{-}$ $V_{-} = 0, I_{+} = 0$
- $*A \approx \infty$
- avoid doing KCL/KVL directly on the output node of the op amp
- ignore resistors from a point at 0V to ground

Non-Ideal Op Amps

- still assume that current at input terminals is 0
- $\bullet V_o = A(V_+ V_-)$
- *A: open-loop gain. Typically very large, 100,000 or
- open-loop gain dependent on frequency: $A(s) = \frac{A_0}{1-\frac{s}{s}}$
- *open-loop response drops off after ω_b (usually $2\pi \le \omega_b \le 2\pi 100$)
- $*A_0$: DC gain
- * ω_t : unity gain frequency: $dB(T(\omega_t)) = 1$ $\omega_t \approx A_o \omega_b$
- AKA gain bandwidth product
- *in this case, we still assume $I_{-} = I_{+} = 0$ and $V_{-} = V_{+}$?
- slew rate
- *max rate at which the output can change
- * for a sinusoidal signal: $(V_{pk}$: peak voltage) $SR > 2\pi f V_{pk}$ or $\bar{S}R > \omega V_{pk}$
- $\frac{dV_o}{dt}|_{MAX} < SR$

Op Amp Equations

• general form: $T(s) = \frac{K_0}{1 + \frac{s}{\omega_0}}$

 $*T(0) = K_0$: DC offset. For these simple ones, it's equal to ideal response

 $*\omega_0 = \frac{\omega_t}{1 + R_2/R_1}$ • inverting op amp:

*ideal: $T(s) = \frac{V_o}{V_i} = -\frac{R_2}{R_1}$

* non-ideal:
$$T(s) = \frac{V_i}{V_i} = \frac{R_1}{1 + \frac{1 + R_2/R_1}{A(s)}} = \frac{-R_2/R_1}{1 + \frac{s}{\sqrt{\frac{\omega_t}{1 + R_2/R_1}}}} = \frac{-R_2/R_1}{1 + \frac{s}{\omega_0}}$$

• non-inverting op-amp:

*ideal: $T(s) = \frac{V_o}{V_i} = 1 + \frac{R_2}{R_1}$

*non-ideal:
$$T(s) = \frac{V_o}{V_i} = \frac{1 + R_2/R_1}{1 + \frac{1 + R_2/R_1}{A(s)}} = \frac{1 + R_2/R_1}{1 + \frac{s}{(\frac{\omega_t}{1 + R_2/R_1})}} = \frac{1 + R_2/R_1}{1 + \frac{s}{\omega_0}}$$

integrating

*ideal:
$$V_o = -\int_0^t \frac{V_i}{RC} dt + C$$

= $C = V_o(t)$ at $t = 0$

differentiating

*ideal:
$$V_o = -RC\frac{dV_i}{dt}$$

• summing

*ideal:
$$V_o = -R_f \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} \right)$$

• differential (subtracting)

*ideal:
$$V_o = \frac{(R_f + R_1)R_g}{(R_g + R_2)R_1}V_2 - \frac{R_f}{R_1}V_1$$

Diodes

$$\bullet I_D = I_S \left(e^{\frac{V_D}{nV_T}} - 1 \right)$$

 $*I_S = 10^{-12} \text{A (saturation current)} *V_T = 25 \text{mV}$

• small signal resistance: $R_D = \frac{nV_T}{I_D}$

 $*I_D$: average (DC) current through diode (due to forward bias)

• bridge rectifier shape: all the diodes point toward the + end of the output (away from ground)

Design an (unregulated) AC adapter

• V_S : AC voltage input

• V_{S2} : output of transformer (still AC)

• V_p : peak DC output

 $*V_r$: peak-to-peak ripple voltage (maximum variation)

• $V_p = V_{S2}$ – (diode voltage)

*diode voltage = 0.7V for single wave rectifier or center-tapped transformer

*diode voltage = 1.4V for full-wave rectifier

• turns ratio = $n = \frac{V_S}{V_{S2}}$

• apparent load resistance: $R_L = \frac{V_o}{I_r}$

• ripple voltage: $V_r = \frac{J}{R_L C}$

* f: actual ripple frequency (double for full-wave rectifier)

*C: filter cap size

• Peak Inverse Voltage: $PIV = V_{S2} - 0.7V$

• avg diode current: $I_{Davg} = I_L \left(1 + \pi \sqrt{\frac{2}{V_r}} \right)$

• max diode current: $I_{Dmax} = I_L \left(1 + 2\pi \sqrt{\frac{2}{V_r}}\right)$ * only difference is $\pi \to 2\pi$

Transistors

• $V_T = 25 \text{mV}$ at room temperature (according to textbook)

• β : a physical constant of the transistor. Usually about 100 or 200

• $I_B + I_C = I_E$, $I_C = \beta I_B$, $I_E = (1 + \beta)I_B$

 $\bullet \alpha = \frac{\beta}{1+\beta}, I_C = \alpha I_E$

 $\bullet I_C = I_S(e^{\frac{V_{BE}}{nV_T}}),$