UNIVERSIDADE FEDERAL DE VIÇOSA – UFV DEPARTAMENTO DE ENGENHARIA ELÉTRICA - DEL CURSO DE ENGENHARIA ELÉTRICA

(Prof. Tarcísio Pizziolo)

6ª Lista de Exercícios - ELT221 - Circuitos Elétricos II

Respostas de Circuitos a Entradas não Senoidais

1) Encontre a tensão $v_0(t)$ no circuito abaixo sendo $v_s(t)$ igual a:

$$v_s(t) = \frac{1}{2} + \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{1}{n} sen(n\pi t)$$
; $n = (2k - 1)$

2) Para a fonte $v_s(t) = f(t)$ dada pelo gráfico, determinar a resposta $v_0(t)$ no circuito.

3) Determine a corrente $i_0(t)$ dado que a tensão v(t) é dada por:

$$v(t) = 1 + \sum_{n=1}^{\infty} \frac{2(-1)^n}{1 + n^2} (\cos nt - n \sin nt)$$

$$\downarrow i(t) \qquad 4\Omega \qquad 2\Omega$$

$$\downarrow i_o(t) \qquad \downarrow i_o(t)$$

$$\downarrow 2H \qquad \qquad 2\Omega$$

4) Se a fonte de tensão v(t) for

$$v(t) = \frac{1}{3} + \frac{1}{\pi^2} \sum_{n=1}^{\infty} \left(\frac{1}{n^2} \cos nt - \frac{\pi}{n} \sin nt \right)$$
V

encontre a corrente $i_0(t)$ no circuito.

5) A tensão e a corrente nos terminais de um circuito são, respectivamente:

$$v(t) = 80 + 120\cos 120\pi t + 60\cos(360\pi t - 30^{\circ})$$

$$i(t) = 5\cos(120\pi t - 10^{\circ}) + 2\cos(360\pi t - 60^{\circ})$$

Encontre a potência média dissipada nos terminais do circuito.

6) Seja o circuito:

A fonte de corrente é dada por

$$i(t) = 20 + 16\cos(10t + 45^{\circ}) + 12\cos(20t - 60^{\circ}) \text{ mA}$$

- a) Encontre a tensão v(t).
- b) Calcule a potência média dissipada no resistor.
- 7) Uma tensão senoidal retificada de onda completa $v_{in}(t)$ é aplicada no filtro passa baixas dado pelo circuito a seguir.

Obter a tensão de saída $v_0(t)$ no filtro.

8) Encontre i(t) no circuito considerando que i_s(t) é dada por:

$$i_s(t) = 1 + \sum_{n=1}^{\infty} \frac{1}{n^2} \cos 3nt \text{ A}$$

