Technical Appendix An Online Incremental Learning Approach for Configuring Multi-arm Bandits Algorithms

Mohammad Essa Alsomalia,*, Roberto Rodrigues-Filhob, Leandro Soriano Marcolinoa and Barry Portera

^aSchool of Computing and Communications, Lancaster University, United Kingdom ^bDepartment of Computing, Federal University of Santa Catarina, Brazil

Table 1: Computational Efficiency (s)

Method	80	100	120	140	160	
Update_BO	937	868	854	953	907	
Discard_BO	345	371	362	384	392	
DBO_MAB	439	470	441	466	490	
BO MAB	400	428	416	489	482	

- (a) Average performance of the learning agent
- (b) Probability of selecting the best action

Figure 1: Comparison of the proposed method against parameter-free strategies and UCB1 with c default value, across an average workload range of 75-100.

- (a) Average performance (lower is better) of the learning agent
- (b) Probability (higher is better) of selecting the best action

Figure 2: Comparing best-performing agent across multiple actions for dynamic high average workload between 60-100.

- (a) Average performance (lower is better) of the learning agent
- (b) Probability (higher is better) of selecting the best action

Figure 3: Comparing best-performing agent across multiple actions for dynamic high average workload between 60-100 by applying DBO-MAB method.

- (a) Average performance of i = 160.
- (b) Average performance of the learning agent for dynamic work-load

Figure 4: Performance analysis of DBO-MAB (and its variant) against ablation methods for a dynamic workload (0-0.1).

- (a) Average performance (lower is better) of the learning agent
- (b) Probability (higher is better) of selecting the best action

Figure 5: Comparing best-performing agent across multiple actions for dynamic high average workload between 60-100.

- (a) Sudden environmental changes
- (b) Sudden environmental changes

Figure 6: Scalability of MAB algorithms under sudden environmental changes. The graph shows mean response time for 160 actions for optimized and non-optimized versions of MAB.

- (a) Incremental environmental
- (b) Incremental environmenta changes

Figure 7: Scalability of MAB algorithms under incremental environmental changes. The graph shows mean response time for 160 actions for optimized and non-optimized versions of MAB.

Table 2: SW-UCB-BO

Component	Sampling Range
c	[0.0, 1.0]
windowsize	[10.0, 500.0]

Table 3: Dis-UCB-BO

Table 3. Dis CCD DO					
Component	Sampling Range				
c	[0.0, 1.0]				
γ	[0.95, 0.99]				

Table 4: Mean d-sw TS-BO

Component	Details/values
windowsize	[10.0, 500.0]
γ	[0.95, 0.99]
α	[0.0, 1.0]
β	[0.0, 1.0]