

FP F44 - Zeemaneffekt

Patrick Nisble, David Bubeck

Outline

- 1. Einleitung
- 2. Bohr'sches Magneton
- 3. Wellenlänge
- 4. Zusammenfassung

Outline - Einleitung

- 1. Einleitung
 - 1.1 Grundlagen
 - 1.2 Auswahlregeln
 - 1.3 Lummer Gehrcke Platte
 - 1.4 Czerny Turner Spektrometer
- 2. Bohr'sches Magnetor
- Wellenlänge
- 4. Zusammenfassung

Grundlagen

Beschreibung des Zeeman - Effekt in einer Näherung:

- $\vec{l} = \vec{r} \times \vec{p} = m_e \cdot v \cdot \vec{n}$
- Elektron kann mit einem Strom I und magnetischen Moment μ_l beschrieben werden.
- Interaktion mit externen Magnetfeld und dem magnetischen Moment ergibt sich Änderung der potentiellen Energie
- mit \vec{l} und $\vec{B} \parallel \vec{l}$ erhält man

$$\Delta E_{pot} = \frac{e \cdot \hbar}{2m_e} \cdot m_l \cdot B = \mu_B \cdot m_l \cdot B$$

 $\mu_{\it B}$: Bohr'sche Magneton

Grundlagen

Atome mit mehreren Elektronen:

- $\vec{L}\vec{S}$ Kopplungsnäherung
- Gesamtdrehimpuls $\vec{J} = \vec{L} + \vec{S}$

wobei:

$$-\vec{L} = \sum_i \vec{I}_i$$

$$-\vec{S} = \sum_{i} \vec{s}_{i}$$

- $\Delta E_{pot} = \mu_B \cdot B \cdot M_J \cdot g_J$
 - g, Landé Faktor

$$S = 0$$
 und $g_J = 1 \rightarrow$ **normaler** Zeeman - Effekt
ansonsten \rightarrow **anomaler** Zeeman - Effekt

Grundlagen

Outline - Bohr'sches Magneton

- 1. Einleitung
- 2. Bohr'sches Magneton
 - 2.1 Hysterese Effekt
 - 2.2 Polarisation
 - 2.3 Bestimmung der Wellenlängenverschiebung
 - 2.4 Bestimmung des Bohr'schen Magneton
- Wellenlänge
- 4. Zusammenfassung

Hysterese Effekt

- Magnetfeldmessung bei 6 Stromstärken zwischen 8 und 13A
- für fallende und steigende Stromstärke
- Ermittlung des Zusammenhangs zwischen Stromstärke und Magnetfeld

Resultat:

$$m_u = (39.461 \pm 2.198) \frac{\text{mT}}{\text{A}}$$
 (1)
 $m_d = (38.874 \pm 2.192) \frac{\text{mT}}{\text{A}}$ (2)

$$m_d = (38.874 \pm 2.192) \frac{\text{mT}}{\text{A}}$$
 (2)

 \Rightarrow Abweichung: < 1 σ

Polarisation - longitudinal

- mit und ohne linearem Polarisationsfilter: 2 Linien pro Beugungsordnung
- → zirkulär polarisiert

- mit $\lambda/4$ -Filter in linear polarisiertes umwandeln
- jetzt erhält man eine Linie pro Beugungsordnung, nach linearem Polarisationsfilter
- → Rotation des Linearfilters um 90° wechselt zwischen beiden Linien

Polarisation - transversal

- Beobachtung von 3 Linien
- \rightarrow Rotation des Linearfilters um 90° wechselt zwischen den σ -Linien und der π -Linie
- → linear polarisiert

Bestimmung der Wellenlängenverschiebung - Positionsbestimmung

- Bestimmung der px-Position von σ und π -Linien
- 5 Ordungen
- Fit der Peaks für Position und Fehler

Bestimmung der Wellenlängenverschiebung - Ordnungsverschiebung

Zuordung

• (theoretische) ganzzahligen Ordnung $\mapsto \pi$ -linien

• kontinuierliche Polynomfitfkt $\mapsto \sigma$ -Linien

beobachtete Verschiebung der Beugungsordnung zwischen drei Peaks

Bestimmung der Wellenlängenverschiebung - Wellenlängenverschiebung

für kleine Verschiebungen gilt:

$$\delta\lambda = \frac{\delta a}{\Delta a} \cdot \Delta\lambda \approx \delta k \cdot \lambda k, \qquad \Delta\lambda = \frac{\lambda^2}{2d \cdot \sqrt{n^2 - 1}} \tag{3}$$

(4)

$$(n = 1.4567, d=4.04 \cdot 10^{-3} m)$$

Outline - Wellenlänge

- 1. Einleitung
- 2. Bohr'sches Magneton
- 3. Wellenlänge
 - 3.1 Cadmium-Linie
 - 3.2 unbekannte Linie
- 4. Zusammenfassung

Outline - Zusammenfassung

- 1. Einleitung
- 2. Bohr'sches Magneton
- 3. Wellenlänge
- 4. Zusammenfassung