Interview Questions: Analysis of Algorithms (ungraded)

3/3 points (100%)

Practice Quiz, 3 questions

✓ Congratulations! You passed!

Next Item

1 / 1 points

1.

3-SUM in quadratic time. Design an algorithm for the 3-SUM problem that takes time proportional to n^2 in the worst case. You may assume that you can sort the n integers in time proportional to n^2 or better.

Note: these interview questions are ungraded and purely for your own enrichment. To get a hint, submit a solution.

no			
'''			

Your answer cannot be more than 10000 characters.

Thank you for your response.

Hint: given an integer \mathbf{x} and a sorted array $\mathbf{a}[]$ of n distinct integers, design a linear-time algorithm to determine if there exists two distinct indices \mathbf{i} and \mathbf{j} such that $\mathbf{a}[\mathbf{i}] + \mathbf{a}[\mathbf{j}] == \mathbf{x}$.

Interview Questions: Analysis of Algorithms (ungraded)

3/3 points (100%)

Search in a bitonic array. An array is *bitonic* if it is comprised of Practice Quiz, 3 questian Increasing sequence of integers followed immediately by a decreasing sequence of integers. Write a program that, given a bitonic array of n distinct integer values, determines whether a given integer is in the array.

- Standard version: Use $\sim 3\lg n$ compares in the worst case.
- Signing bonus: Use $\sim 2\lg n$ compares in the worst case (and prove that no algorithm can guarantee to perform fewer than $\sim 2 \lg n$ compares in the worst case).

no		

Your answer cannot be more than 10000 characters.

Thank you for your response.

Hints. Standard version. First, find the maximum integer using $\sim 1 \lg n$ compares—this divides the array into the increasing and decreasing pieces.

Signing bonus. Do it without finding the maximum integer.

points

3.

Egg drop. Suppose that you have an n -story building (with floors 1 through n) and plenty of eggs. An egg breaks if it is dropped from floor T or higher and does not break otherwise. Your goal is to devise a strategy to determine the value of T given the following limitations on the number of eggs and tosses:

• Version 0: 1 egg, $\leq T$ tosses.

Interview Questions: Analysis of Algorithms (ungraded) • Version 2: $\sim \lg T$ eggs and $\sim 2 \lg T$ tosses.

3/3 points (100%)

Practice Quiz, 3 question 3: 2 eggs and $\sim 2\sqrt{n}$ tosses.

- Version 4: 2 eggs and $\leq c\sqrt{T}$ tosses for some fixed constant c .

no

Your answer cannot be more than 10000 characters.

Thank you for your response.

Hints:

- · Version 0: sequential search.
- · Version 1: binary search.
- Version 2: find an interval containing T of size $\leq 2T$, then do binary search.
- Version 3: find an interval of size \sqrt{n} , then do sequential search. Note: can be improved to $\sim \sqrt{2n}$ tosses.
- Version 4: $1+2+3+\ldots+t \, \sim \, \frac{1}{2} \, t^2$. Aim for $c=2\sqrt{2}$.

Interview Questions: Analysis of Algorithms (ungraded)

3/3 points (100%)

Practice Quiz, 3 questions