Physics-Based Machine Learning for Image Segmentation

Jonas Actor

Rice University

26 February 2018

Dr. Béatrice Rivière Rice University Dr. David Fuentes MD Anderson Cancer Center

Motivation: Hepatocellular Carcinoma (HCC)

Segmented liver with HCC-type cancer (arrow)

- ullet ~ 1 million cases and deaths annually
- No curative treatments for roughly 80% of patients
- $\bullet \ \ \mathsf{Need} \ \ \mathsf{for} \ \ \mathsf{reliable} \ \ \mathsf{models} \ \ \mathsf{of} \ \ \mathsf{patient} \ \ \mathsf{response} \ \to \ \mathsf{segmentation}$

Step 1: Segmentation via Unrolling

Left: Olson, Naval Medical Center Portsmouth, 2010 Right: Fuentes, MD Anderson, 2018

Step 1: Segmentation via Unrolling

Unrolling: transforms regularized minimization problem into NN

- PDE informs NN architecture
- Training NN solves a PDE minimization problem

Left: Olson, Naval Medical Center Portsmouth, 2010

Right: Fuentes, MD Anderson, 2018

Step 2: Making Clinical Treatment Decisions

Translational Research

Use segmentation as a tool for clinical decision support in Healthcare and Clinical Informatics

Research Goals:

- Segment CT data via unrolling, combining NN + PDEs
- Evaluate performance using $\sim\!200$ labeled datasets from MD Anderson and elsewhere
- Perform machine learning on patient data obtained from segmentation to buld a comprehensive data-driven treatment assessment model

Interdisciplinary Mentoring Plan

Dr. Rivière (primary)

- Numerical solution of PDE's
- Numerical analysis
- Mathematical biology
- Resources from applied mathematics community

Dr. Fuentes (secondary)

- Medical image analysis
- Mathematical models for decision support
- Access to patients, clinic, data
- Resources from medical imaging community

My responsibilities:

- Meet with both mentors weekly
- Communicate research across medical imaging, clinical, applied mathematics, and machine learning communities

Practicum and Curriculum

Research Practicum:

- Enroll in CAAM 800 Independent Research
- Meet with surgeons and oncologists at MD Anderson
- Report on how segmentation data is used in clinical treatment decision support

	COMP E42	C T	F 10
Required	COMP 543	Graduate Tools and Models	F 18
	HI 5310	Foundations of Health Information Sciences I	S 19
	STAT 581	Mathematical Probability	F 17
Electives	BIOE 591	Fundamentals of Medical Imaging	F 18
	GS-SB-405	Computer-Aided Discovery Methods	S 20
Workshop		GCC Rigor and Reproducibility	F 18
RCR	UNIV 594	Responsible Conduct in Research	F 18
Keck Seminar	BIOS 592	Topics in Quantitative Biology	S 20

Physics-Based Machine Learning for Image Segmentation

Jonas Actor

Rice University

26 February 2018

Dr. Béatrice Rivière Rice University Dr. David Fuentes MD Anderson Cancer Center

Timeline

Spring 2018	Complete Master's Thesis
Summer 2018	Begin application to clinical data
Fall 2018	Begin theoretical analysis of unrolling
	Complete theoretical analysis of unrolling
Spring 2019	Implement unrolling segmentation methods
	Publication of theoretical analysis
Summer 2020	Develop efficient computational schemes
Fall 2020	PhD Proposal
Spring 2021	PhD Defense

Communication of Research

Some Conferences:

- AMIA Annual Symposium, November 2019
- SIAM Imaging Sciences, June 2020
- IEEE Conference on Computer Vision, Summer 2019
- SPIE Medical Imaging, February 2019, 2020

Some Journals:

- JAMIA
- IEEE Medical Imaging
- SIIMS
- NIPS

Unrolling

- First used for sparse compressive sensing
- Recasts iterative minimization as neural network (NN)

Unrolling: Compressive Sensing

$$\min_{z} \|Dz - x\|_{2}^{2} + \lambda \|z\|_{1}$$

- x: original signal
- z: reconstructed **sparse** signal
- D: Dictionary (maps sparse to full signal)

Unrolling: Compressive Sensing

$$\min_{z} \|Dz - x\|_{2}^{2} + \lambda \|z\|_{1}$$

Keeps our reconstructed signal Dz close to the true signal x

Unrolling: Compressive Sensing

$$\min_{z} \|Dz - x\|_{2}^{2} + \lambda \|z\|_{1}$$

Keeps our reconstruction z sparse

Image Analysis with PDE Functionals

Goal: Define an energy functional on an image, then minimize functional to obtain segmentation:

$$\widehat{u} = \min_{u \in V, \Gamma \subseteq \Omega} E[u, \Gamma | u_0]$$

- *u*₀: image
- *u*: desired approximation
- $\Gamma \subset \Omega$: segmented section
- E: energy functional
- V: approximation space

Mumford-Shah Functional

$$E[u,\Gamma|u_0] = \alpha \nu(\Gamma) + \frac{\beta}{2} \int_{\Omega \setminus \Gamma} |\nabla u|^2 dx + \frac{\lambda}{2} \int_{\Omega} (K[u] - u_0)^2 dx$$

- *u*₀: image
- *u*: desired approximation
- $\Gamma \subset \Omega$: segmented section
- E: energy functional

PDEs to Unrolling: Preserving Sparsity

Compressive Sensing:

$$F[z|x] = \frac{\lambda \|z\|_1}{\|z\|_1} + \|Dz - x\|_2^2$$

Image Analysis:

$$E[u,\Gamma|u_0] = \alpha \nu(\Gamma) + \frac{\beta}{2} \int_{\Omega \setminus \Gamma} |\nabla u|^2 dx + \frac{\lambda}{2} \int_{\Omega} (K[u] - u_0)^2 dx$$

PDEs to Unrolling: Matching Input and Output

Compressive Sensing:

$$F[z|x] = \lambda ||z||_1 + ||Dz - x||_2^2$$

Image Analysis:

$$E[u,\Gamma|u_0] = \alpha \nu(\Gamma) + \frac{\beta}{2} \int_{\Omega \setminus \Gamma} |\nabla u|^2 dx + \frac{\lambda}{2} \int_{\Omega} (K[u] - u_0)^2 dx$$