Lycée Chateaubriand MPSI 3 • 2024 – 2025

William GREGORY

Colle 2 • INDICATIONS

Raisonnements, ensembles, nombres complexes

Exercice 2.1

1. Calculer
$$\frac{\sqrt{2}+i}{\sqrt{2}-i}+\frac{\sqrt{2}-i}{\sqrt{2}+i}.$$

2. Calculer
$$\frac{\sqrt{2}+i}{\sqrt{2}-i} - \frac{\sqrt{2}-i}{\sqrt{2}+i}$$
.

indication

Poser $z := \frac{\sqrt{2} + i}{\sqrt{2} - i}$ et remarquer qu'il s'agit de calculer

$$z + \overline{z}$$
 et $z - \overline{z}$.

résultat

$$\frac{\sqrt{2} + i}{\sqrt{2} - i} + \frac{\sqrt{2} - i}{\sqrt{2} + i} = \frac{2}{3} \quad \text{et} \quad \frac{\sqrt{2} + i}{\sqrt{2} - i} - \frac{\sqrt{2} - i}{\sqrt{2} + i} = \frac{4\sqrt{2}}{3}i.$$

Exercice 2.2

On pose

$$j \coloneqq -\frac{1}{2} + i \frac{\sqrt{3}}{2}.$$

- **1.** Calculer j^2 , $\frac{1}{j}$ et \bar{j} .
- **2.** Calculer j³.
- **3.** Calculer $1 + j + j^2$.

indication

On mettra j sous forme exponentielle.

— résultat –

$$j^2 = \frac{1}{i} = \bar{j} = -\frac{1}{2} - i\frac{\sqrt{3}}{2}.$$

$$j^3 = 1,$$
 $1 + j + j^2 = 0.$

1

Exercice 2.3

Pour $z \in \mathbb{C}^*$, on définit $f(z) := \frac{\overline{z}}{z}$.

1. Déterminer

$$\left\{z\in\mathbb{C}\quad\middle|\quad f(z)\in\mathbb{R}\right\}\quad {\rm et}\quad \left\{z\in\mathbb{C}\quad\middle|\quad f(z)\in\mathrm{i}\mathbb{R}\right\}.$$

2. Soit $z \in \mathbb{C}$. Déterminer $f(\overline{z})$.

— indication

- 1. Utiliser la forme algébrique et procéder par identification partie réelle partie imaginaire.
- 2. Utiliser les propriétés de la conjugaison.

résultat

1. En posant $x := \mathfrak{Re}(z)$ et $y := \mathfrak{Im}(z)$, on a

$$f(z) = \frac{x^2 - y^2}{x^2 + y^2} - i \frac{2xy}{x^2 + y^2}.$$

$$\left\{ z \in \mathbb{C} \mid f(z) \in \mathbb{R} \right\} = \left\{ z \in \mathbb{C} \mid \mathfrak{Re}(z) = 0 \text{ ou } \mathfrak{Im}(z) = 0 \right\}.$$

$$\left\{ z \in \mathbb{C} \mid f(z) \in i\mathbb{R} \right\} = \left\{ z \in \mathbb{C} \mid \mathfrak{Re}(z) = \pm \mathfrak{Im}(z) \right\}.$$

$$2. \ f(\overline{z}) = \overline{f(z)} = \frac{1}{f(z)}.$$

Exercice 2.4

À l'aide du nombre $z \coloneqq \frac{1 + i\sqrt{3}}{1 + i}$, déterminer

$$\cos\left(\frac{\pi}{12}\right)$$
 et $\sin\left(\frac{\pi}{12}\right)$.

indication -

On met z sous forme trigonométrique et sous forme algébrique, pour en déduire $\mathrm{e}^{\mathrm{i}\frac{\pi}{12}}=\cdots$

— résultat

On obtient l'égalité

$$\sqrt{2}e^{i\frac{\pi}{12}} = \frac{\sqrt{3}+1}{2} + i\frac{\sqrt{3}-1}{2}.$$

D'où

$$\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} + \sqrt{2}}{4}$$
 et $\sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} - \sqrt{2}}{4}$.

2

Exercice 2.5

Soient $a, b \in \mathbb{R}$ tels que $a + b \notin \mathbb{Q}$.

Les nombres a et b peuvent-ils être rationnels?

indication -

Raisonner par l'absurde et écrire les définitions pour calculer a + b.

Exercice 2.6

Soit $a \in [0,1]$. Montrer que

$$\forall n \in \mathbb{N}^*, \quad a^n \leqslant n! \leqslant n^n.$$

indication

- Montrer séparément les deux inégalités.
- Pour « $a^n \leq n!$ », raisonner par récurrence en utilisant que (n+1)! = (n+1)n!.
- Pour « $n! \leq n^n$ », utiliser la définition de la factorielle.

Exercice 2.7

On définit la suite $(u_n)_{n\in\mathbb{N}}$ comme suit :

$$\begin{cases} u_0 = 0 \\ \forall n \in \mathbb{N}, \quad u_{n+1} = \sqrt{\frac{1 + u_n}{2}}. \end{cases}$$

Montrer que

$$\forall n \in \mathbb{N}^*, \quad \frac{1}{\sqrt{2}} \leqslant u_n \leqslant 1.$$

indication

- Raisonner par récurrence.
- Pour l'hérédité, on établira les inégalités en faisant la différence, i.e. pour montrer que

$$\frac{1}{\sqrt{2}}\leqslant u_{n+1}\leqslant 1,$$

on calculera d'abord $u_{n+1}-\frac{1}{\sqrt{2}}$ et $u_{n+1}-1$.

— Pour calculer la différence de deux racines, on utilise « la méthode du conjugué », i.e.

3

$$\forall (a,b) \in (\mathbb{R}_+)^2 \smallsetminus \{(0,0)\}, \quad \sqrt{a} - \sqrt{b} = \frac{a^2 - b^2}{\sqrt{a} + \sqrt{b}}.$$

Exercice 2.8

On note

$$\begin{split} A &:= \Big\{ (x,y) \in \mathbb{R}^2 \quad \Big| \quad y \geqslant \mathrm{e}^{-x} \Big\}, \\ B &:= \mathbb{R} \times \{0\} \,. \end{split}$$

Décrire l'ensemble

$$A+B:=\{a+b \quad ; \quad a\in A, b\in B\}.$$

indication

- Se montre moins difficilement que la réciproque.
- Une fois un élément $(x,y) \in \mathbb{R} \times \mathbb{R}_+^*$ introduit, on détermine d'abord y_A et y_B (tels que $(x_A,y_A) \in A$ et $(x_B,y_B) \in B$), puis l'on construit x_A en admettant que tout nombre réel strictement positif « s'écrit comme une exponentielle ». On pose enfin x_B et on peut conclure.

résultat

$$\{a+b \ ; \ a \in A, b \in B\} = \mathbb{R} \times \mathbb{R}_+^*.$$

Exercice 2.9

Soit E un ensemble. Soient $A, B \in \mathcal{P}(E)$.

Résoudre dans $\mathcal{P}(E)$ l'équation

$$A \cap X = B$$
.

indication

- Remarquer que, nécessairement, $B \subset A$.
- Dans le cas $B \subset A$, raisonner par analyse-synthèse, en décomposant X dans la partition (A, \overline{A}) pour exhiber un ensemble C.

– résultat –

$$S = \{X = B \cup C ; C \in \mathscr{P}(\overline{A})\}.$$

Exercice 2.10

Montrer que

$$B := \left\{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leqslant 1 \right\}$$

ne s'écrit pas comme un produit cartésien de deux ensembles.

indication -

Raisonner par l'absurde. Si B s'écrit comme un produit cartésien de deux ensembles, alors, avec les éléments (1,0) et (0,1), on montre que (1,1) est un élément de B.