Timers (Part-2)

Lecture 5

Bilal Habib DCSE, UET

Outline for today

- Review of how delays are created using Timers
- How to use 'Auto Reload' mode of Timers
- How to use timers in counter mode

PIN DESCRIPTION

Port 3

- Port 3 can be used as input or output
 - Port 3 does not need any pull-up resistors
- Port 3 has the additional function of providing some extremely important signals

			_	
P3 Bit	Function	Pin		Serial
P3.0	RxD	10	1/	communications
P3.1	TxD	11		External
P3.2	INT0	12	\/	interrupts
P3.3	INT1	13		
P3.4	T0	14	l/	Timers
P3.5	T1	15	5	Dand/Write signals
P3.6	WR	16		Read/Write signals of external memories
P3.7	RD	17		

TMOD Register

- Both timers 0 and 1 use the same register, called TMOD (timer mode), to set the various timer operation modes
- TMOD is a 8-bit register
 - > The lower 4 bits are for Timer 0
 - The upper 4 bits are for Timer 1
 - In each case,
 - The lower 2 bits are used to set the timer mode
 - The upper 2 bits to specify the operation

TMOD (cont')

Register

Gating control wher Timer/counter is enal only while the INTx high and the TRx cor pin is set

When cleared, the time enabled whenever the TRx control bit is set

(MSB)								(LSB)	
GATE	C/T		M1	М0,	GATE	C/T	M1	M0	
	Timer1					Timer0			
\top									1
1		M	1 /M0	Mode		Operat	ting Mo	de	
		0	0	0	13-bit time 8-bit timer prescaler		Hx with T	Lx as 5-bit	ţ
		0	1	1	16-bit time 16-bit time cascaded;	er/counter		Lx are	
n set. Ible pin is		1	0	2	8-bit auto 8-bit auto value whic it overfolw	reload time		THx holds	
ntrol		1	1	3	Split time	r mode			
imer is	L	-	Timer	or cou	nter selec	ted			

Cleared for timer operation (input from internal system clock)

Set for counter operation (input from Tx input pin)

- Timers can also be used as counters counting events happening outside the 8051
 - When it is used as a counter, it is a pulse outside of the 8051 that increments the TH, TL registers
 - TMOD and TH, TL registers are the same as for the timer discussed previously
- Programming the timer in the last section also applies to programming it as a counter
 - Except the source of the frequency

- Example:
- Assume that fclk = 12 MHz. What value do we need to load the timer's register if we want to have a time delay of 5 ms (milliseconds)? Show the program for timer 0 to create a pulse width of 5 ms.
- Fclk = 12 MHz,
 - Ftimer = (1/12)*fclk = 1MHz
 - Tp (Timer period of a timer)= 1usec
 - 5msec= 5000 usec=> 5000 cycles of timer clock

- Example 9-10:
- Assume that fclk = 12 MHz. What value do we need to load the timer's register if we want to have a time delay of 5 ms (milliseconds)? Show the program for timer 0 to create a pulse width of 5 ms.

• Sol:

Timer frequency $F_{timer} = (1/12) * fclk = 1 MHz$

Cycle time of a Timer = $1/F_{timer} = 1$ usec

5msec = 5000 usec = 5000 cycles

Max = 0xFFFF (Mode1 or 16bit mode)

Difference = $0xFFFF_{hex} - 5000_{decimal} = EC77_{hex}$

TH0 = 0xEC, TL0 = 0x77

Auto-Reload Mode (Mode-2)

Mode 2 Programming

- The following are the characteristics and operations of mode 2:
 - 1. It is an 8-bit timer; therefore, it allows only values of 00 to FFH to be loaded into the timer's register TH
 - 2. After TH is loaded with the 8-bit value, the 8051 gives a copy of it to TL
 - Then the timer must be started
 - This is done by the instruction SETB TRO for timer 0 and SETB TR1 for timer 1
 - 3. After the timer is started, it starts to count up by incrementing the TL register
 - It counts up until it reaches its limit of FFH
 - When it rolls over from FFH to 00, it sets high the TF (timer flag)

Mode 2 Programming (cont')

- 4. When the TL register rolls from FFH to 0 and TF is set to 1, TL is reloaded automatically with the original value kept by the TH register
 - To repeat the process, we must simply clear
 TF and let it go without any need by the programmer to reload the original value
 - This makes mode 2 an auto-reload, in contrast with mode 1 in which the programmer has to reload TH and TL

Mode 2 Programming

Steps to Mode 2 Program

To generate a time delay

- Load the TMOD value register indicating which timer (timer 0 or timer 1) is to be used, and the timer mode (mode 2) is selected
- Load the TH registers with the initial count value
- 3. Start timer
- 4. Keep monitoring the timer flag (TF) with the JNB TFx, target instruction to see whether it is raised
 - Get out of the loop when TF goes high
- 5. Clear the TF flag
- Go back to Step4, since mode 2 is autoreload

Mode-2 of Timer Auto-Reload Mode

```
19 XTAL1
                             P0.1/AD1
P0.2/AD2
                              P0.3/AD3
      XTAL2
                             P0.4/AD4
                              P0.5/AD5
                             P0.6/AD6
                              P0.7/AD7
                               P2.0/A8
                              P2.2/A10
      PSEN
                              P2.3/A11
                              P2.4/A12
                              P2.5/A13
                              P2.6/A14
                              P2.7/A15
                             P3.0/RXD
                             P3.1/TXD
P3.2/INT0
                             P3.3/INT1
                               P3.4/T0
                              P3.6/WR
                               P3.7/RD
```

```
#include <stdio.h>
sbit pin = P1^1;
void start timer(void)
   TR0 = 1;
void timer0 ISR(void) interrupt 1
    pin^=1;
void init timer(void)
   TMOD = 0 \times 02; // 8-bit Auto Reload mode, Timer0
   THO = 0x38; // Always load 55d in TLO.
   IE = 0x82;
void main(void)
    init timer();
    start timer();
    while (1)
          //Do nothing
                                     200.00 uS
```

Counter Mode

- Timers can also be used as counters counting events happening outside the 8051
 - When it is used as a counter, it is a pulse outside of the 8051 that increments the TH, TL registers
 - TMOD and TH, TL registers are the same as for the timer discussed previously
- Programming the timer in the last section also applies to programming it as a counter
 - Except the source of the frequency

C/T Bit in TMOD Register

- The C/T bit in the TMOD registers decides the source of the clock for the timer
 - When C/T = 1, the timer is used as a counter and gets its pulses from outside the 8051
 - The counter counts up as pulses are fed from pins 14 and 15, these pins are called T0 (timer 0 input) and T1 (timer 1 input)

Port 3 pins used for Timers 0 and 1

Pin	Port Pin	Function	Description
14	P3.4	T0	Timer/counter 0 external input
15	P3.5	T1	Timer/counter 1 external input

C/T Bit in TMOD Register (cont')

Timer with external input (Mode 1)

Timer with external input (Mode 2)

TCON Register TCON (timer control) register is an 8bit register

Using Timer for counting


```
#include <reg51.h>
#include <stdio.h>
sbit input_pin = P3^4;
void start timer(void)
   TR0 = 1;
void init timer(void)
   TMOD = 0 \times 06; // Timer0 as counter (8-bit auto-reload mode)
   THO = 0;
   input pin = 1; // Make P3.4 as input
void main(void)
    init timer();
    start timer();
    while (1)
      P1 = TL0;
```