Rasterização de Curvas

Curvas

- Podem ser representadas por polilinhas
 - a) 3 segmentos
 - b) 6 segmentos
 - c) 20 segmentos
- Pode-se usar os algoritmos de rasterização de retas

Circunferência

- Pontos equidistam de um ponto central
- Caso o ponto central seja a origem:

$$r^2 = x^2 + y^2 \implies x^2 + y^2 - r^2 = 0$$

Circunferência

Considerando o centro em (x_c, y_c)

$$(x - x_c)^2 + (y - y_c)^2 = r^2$$

- Algoritmo baseado na equação da circunferência
 - Para cada x entre: $(x_c r) \le x \le (x_c + r)$ $y = y_c \pm \sqrt{r^2 - (x - x_c)^2}$

Circunferência

Algoritmo baseado na equação da circunferência

```
trinket Python3
                                        Run
                                                         Share
     main.py
                                                                                              Powered by mtrinket
    from PIL import Image, ImageDraw
    import math
    im = Image.new('L',(200, 200),255)
    draw = ImageDraw.Draw(im)
    r=20
    xc=80
    yc=80
11 - for x in range(-r,r):
     y=int(math.sqrt(r*r-x*x))
     draw.point((xc+x,yc+y),0)
     draw.point((xc+x,yc-y),0)
15
    im = im.resize((800,800))
    im.show()
    im.save("a.png")
```

Problemas

- Ineficiente
 - Multiplicações e cálculo de raiz quadrada
 - Desenho descontínuo

Octantes

- Melhorar descontinuidades
 - Utilizando simetrias

Variante do algoritmo de Bresenham

- A cada passo, determina o melhor pixel
 - Similar ao algoritmo de reta, usa parâmetro de decisão: p

-
$$p_k = (x_k + 1)^2 + (y_k - 1/2)^2 - r^2$$

- Se $p_k < 0$, escolher y_k
- Se $p_k \ge 0$, escolher yk+1
- $p_0 = 1 r$
- $p_{k+1} = p_k + 2x_{k+1} + 3$ (se $p_k < 0$)
- $p_{k+1} = p_k + 2x_{k+1} + 5 2y_{k+1}$ (se $p_k >= 0$)

- Escolhendo o segundo octante
 - Demais octantes por simetria

OCTANTE	X_n	Y_n
I	Y	X
п	X	Y
ш	-X	Y
IV	-Y	X
V	-Y	-X
VI	-X	-Y
VII	X	-Y
VIII	Y	-X

Exercício

• Usando os algoritmos de ponto médio para circunferências desenhe um cacho de uvas como na imagem a seguir:

