1 Exponentiation by squaring

Problem 1. Input:

Given associative operator \cdot , element a and positive integer n. Output: Find a^n , where $a^n=a\cdot a^{n-1}$.

The general method to solve the problem is exponentiation by squaring. It is originally used for integer exponentiation, but any associate operator can be used in it's place. Here is a theorem stated in algebraic flavor.

Theorem 1.1. For any semigroup (S, \cdot) , $x \in S$ and $n \in \mathbb{N}$, x^n can be computed with $O(\log n)$ applications of \cdot .

```
Proof. import Data. Digits exponentiation By Squaring:: Integral a \Rightarrow (b \rightarrow b \rightarrow b) \rightarrow b \rightarrow a \rightarrow b exponentiation By Squaring op a n = foldr1 op snd \circ unzip filter(\lambda(x, \_), x \not\equiv 0) (zip binary two Pow) where two Pow = a : zip With op two Pow two Pow binary = digits Rev 2 n
```

One can analyze the number of times the operator is used. The twoPow is the infinite list $[a, a^2, \ldots, a^{2^i}, \ldots]$. It takes k operations to generate the first k+1 elements. At most k additional operations are required to combine the result with the operator. Therefore the operator is used $O(\log n)$ times.