FIG. 1A

cagg	gato	ag ç	ggtto	ccag	ga ac	ctcaç	ggato	tg0	cagto	gagg	acca	agaca	acc .	actga	attgca	60
gga														tat Tyr		108
gac Asp																156
cct Pro																204
aga Arg																252
ggg Gly																300
cag Gln 80																348
gcc . Ala																396
ctt (Leu																444
Pro														gcc Ala		492
acc Thr									tag	ggag	gacas	gga a	aact	gcgti	:t	542
tago	ctt	gtg (cccc	caaa	cc aa	agcto	catco	tg(ctca	gggt	ctat	ggta	agg	caga	ataatg	602
tccc	ccga	aa 1	tatgt	cca	ca to	cctaa	atcco	e aag	gatet	gtg	cata	atgti	ac	cata	catgtc	662
caaa	gagg	gtt 1	tgca	aaat	gt ga	attat	tgtta	a agg	gatct	tga	aat	gagga	aga	caat	ctggg	722
ttat	cctt	gt g	gggct	cagi	t ta	aatca	acaaç	gaag	ggagg	gcag	gaag	gggag	gag	tcaga	agagag	782
aatg	gaag	gat a	accat	gcti	c ta	atti	ttgaa	a gat	ggag	gtga	ggg	gcctt	ga	gccaa	acaaat	842
gcag	gtgt	tt 1	ttaga	aggt	g ga	aaaa	gccaa	a ggg	gaac	ggat	tct	cctc	ag .	agtc	ccgga	902

FIG. 1B

aggaacacag ctcttgacac atggatttca gctcagtgac acccatttca gacttctgac 962 ctccacaact ataaaataat aaacttgtgt tattgtaaac ctctaaaaaa aaaaaaaa 1020

FIG. 2A

cagg	gato	ag g	ggtto	ccag	ga ac	ctcag	ggato	tg:	cagto	gagg	acca	agaca	acc a	actga	attgca	60
														tat Tyr		108
														gga Gly 30		156
														cct Pro		204
														cag Gln		252
														tcc Ser		300
														gaa Glu		348
														ttc Phe 110		396
														gca Ala		444
														gcc Ala		492
							agc Ser		tag	gga	gacas	gga a	aact	gegt	it	542
tago	ctt	gtg (cccc	caaa	cc aa	agct	catco	tg:	ctcag	gggt	ctai	ggt	agg (caga	ataatg	602
tccc	ccga	aa t	tatgi	cca	ca to	ccta	atcc	aa	gatct	gtg	cata	atgt	tac	cata	catgtc	662
caaa	ıgagg	gtt t	ttgc	aaat	gt ga	attai	tgtta	a ag	gatct	tga	aat	gagg	aga	caat	cctggg	722
ttat	cctt	gt	gggct	cag	tt ta	aatca	acaa	g aa	ggagg	gcag	gaag	ggga	gag	tcag	agagag	782
aatg	gaag	gat a	accat	tgct	tc ta	att	ttgaa	a ga	tggag	gtga	9999	geet	tga 🤄	gcca	acaaat	842
gcag	gtgt	tt 1	ttaga	aaggi	tg ga	aaaa	gccaa	a gg	gaac	ggat	tct	cctc	tag	agtc	ccgga	902

FIG. 2B

aggaacacag ctcttgacac atggatttca gctcagtgac acccatttca gacttctgac 962 ctccacaact ataaaataat aaacttgtgt tattgtaaac ctctaaaaaa aaaaaaaa 1020

FIG. 3

gct	cccg	cca ç	ggaga	aaag	ga ad	catto	tgag	999	gagto	ctac	acc	etgt	gga g	gctca	aag	57
atg Met 1	gtc Val	ctg Leu	agt Ser	ggg Gly 5	gcg Ala	ctg Leu	tgc Cys	ttc Phe	cgt Arg 10	gag Glu	gac Asp	cag Gln	aca Thr	cca Pro 15	ctg Leu	105
att Ile	gca Ala	gga Gly	atg Met 20	tgt Cys	tcc Ser	ctc Leu	ccc Pro	atg Met 25	gca Ala	aga Arg	tac Tyr	tac Tyr	ata Ile 30	att Ile	aaa Lys	153
tat Tyr	gca Ala	gac Asp 35	cag Gln	aag Lys	gct Ala	cta Leu	tac Tyr 40	aca Thr	aga Arg	gat Asp	ggc Gly	cag Gln 45	ctg Leu	ctg Leu	gtg Val	201
gga Gly	gat Asp 50	cct Pro	gtt Val	gca Ala	gac Asp	aac Asn 55	tgc Cys	tgt Cys	gca Ala	gag Glu	aag Lys 60	atc Ile	tgc Cys	ata Ile	ctt Leu	249
cct Pro 65	aac Asn	aga Arg	ggc Gly	ttg Leu	gcc Ala 70	cgc Arg	acc Thr	aag Lys	gtc Val	ccc Pro 75	att Ile	ttc Phe	ctg Leu	ggg Gly	atc Ile 80	297
cag Gln	gga Gly	999 Gly	agc Ser	cgc Arg 85	tgc Cys	ctg Leu	gca Ala	tgt Cys	gtg Val 90	gag Glu	aca Thr	gaa Glu	gag Glu	ggg Gly 95	cct Pro	345
tcc Ser	cta Leu	cag Gln	ctg Leu 100	gag Glu	gat Asp	gtg Val	aac Asn	att Ile 105	gag Glu	gaa Glu	ctg Leu	tac Tyr	aaa Lys 110	ggt Gly	ggt Gly	393
	gag Glu															441
ttc Phe	agg Arg 130	ctt Leu	gag Glu	gct Ala	gct Ala	gcc Ala 135	tgg Trp	cct Pro	ggc Gly	tgg Trp	ttc Phe 140	ctg Leu	tgt Cys	ggc Gly	ccg Pro	489
	gag Glu															537
	cgt Arg										tag	gga	gaca	gga		583
aac	tgcg	ttt	tagc	cttg	tg c	cccc	aaac	c aa	gctc	atcc	tgc	tcag	ggt	ctat	ggtagg	643
cag	aata	atg	tccc	ccga	aa t	atgt	ccac	a tc	ctaa	tccc	aag	atct	gtg	cata	tgttac	703
cat	acat	gtc	caaa	gagg	tt t	tgca	aatg	t ga	ttat	gtta	a					744

FIG. 4A

	1				50
IL-1_alpha	MAEVPKLASE	MMAYYSGNED	DLFFEADGPK	QMKCSFQDLD	LCPLDGGIQI
IL-1_beta	~~~~~~~	~~~~~~~	~~~~~~	~~~~~~~	~~~~~~
IL-1RA	~~~~~~	~~~~~~~	~~~~~~	~~~~~~~	~~~~~~
IL-1_delta	~~~~~~~	~~~~~~~	~~~~~~~	~~~~~~~	~~~~~~
CS329	~~~~~~~	~~~~~~~	~~~~~~~	~~~~~~~~	~~~~~~
Tango-77	~~~~~~~	~~~~~~~	~~~~~~~	~~~~~~~	~~~~~~
Zilla4	~~~~~~~~	~~~~~~~	~~~~~~~		~~~~~~
IL-1 zeta	~~~~~~~	~~~~~~~	~~~~~~~	~~~~~~~	~~~~~~
IL-1RA beta	~~~~~~	~~~~~~~~	~~~~~~~	~~~~~~~	~~~~~~
Spoil II	~~~~~~~~	~~~~~~~	~~~~~~~	~~~~~~~	~~~~~~~
IL-1 epsilon	~~~~~~~	~~~~~~~~~	~~~~~~~	~~~~~~~~	~~~~~~~
IL-1 eta	~~~~~~~	~~~~~~~	~~~~~~~	~~~~~~	~~~~~~
_					
	51				100
IL-1 alpha	RISDHHYSKG	FRQAASVVVA	MDKLRKMLVP	${\tt CPQTFQENDL}$	STFFPFIFE
IL-1 beta	~~~~~~~		~~~~~~	~~~~~~~~~	~~~~~~~
TT1PA	~~~~~~~~	~~~~~~~	~~~~~~~~	~~~~MEIC	RGLRSHLITI
TI-1 delta	~~~~~~~	~~~~~~~	~~~~~~~	~~~~~~~	~~~~~~~
CS329	~~~~~~~	~~~~~~~	~~~~~~~	~~~~~~~	~~~~~~~
				KDEPQCCLED	
				KDEPQCCLED	
TI1 zeta	~~~~~~~~	~~~~~~~~	~~~~~~~		MSGCDRRETE
IL-1RA beta	~~~~~~~	MRGTPGDADG	GGRAVYOS		
Spoil II	~~~~~~~~	MRGTPGDADG	GGRAVYOSSE	SNAVGMGLWR	LRPSALTLS
IL-1 epsilon	~~~~~~~	~~~~~~~	~~~~~~~	~~~~~~~	~~~~~~~
TL-1 eta	~~~~~~~~	~~~~~~~	~~~~~~~~	~~~~~~~	~~~~~~
11 1_000					
	101				150
II1 alpha		FAYVHDAPVR	SLNCTLRDSO	QKSLVMSGPY	
II-1 beta	22222222	~~~~~APVR	SLNCTLRDSO	QKSLVMSGPY	ELKALHLOGO
TI.=1PA	LIFLEHSETT	CRESCRESSE	TOAFRIWDVN	QKTFYLRNN.	OLVAGYLOGE
				LKVLYLHNN.	
				QKALYTRDG.	
				HKVLVLDSG.	
				HKVLVLDSG.	
IL-1RA_beta	THOIGHOT HIGH	MCK	DITCTINDIN	OOVWILOGO	NI.VA VPRS
				QQVWTLQGQ.	
IL-1 epsilon					
TI1 eta		MNDORFAA	PKSYATRDSR	QMVWVLSGN.	SLIA APLS
111-1_000		THE QUELTE	I NO IIII DON	QI.T.T. DOGIT.	022111 1112 20
	151				200
TL-1 alpha		SEVOCEE	SMUKTOVALG	LKEKNLYLSC	
II-1_alpha	DMEQQVVFSM	SEVOGEE	SNDKIPVALG	LKEKNLYLSC	VI.KDDK PI
				IHGGKMCLSC	
TI1 delta	KVIKGERISV	VDNDWI.DASI.	SPVILG	VQGGSQCLSC	GVGOE PI
				IQGGSRCLAC	
				VSKGEFCLYC	
				VSKGEFCLYC	
				VSKGEFCLYC	
IL-1_zeta IL-1RA beta					
				IQNPEMCLYC	
IL-1 epsilon					
				TRGEDICTEC	

FIG. 4B

	201				250
IL-1 alpha	LOLESVDPKN	YPKKKMEK	RFVFNKIEIN	NKLEFESAQF	PNWYISTSQA
IL-1 beta	LOLESVDPKN	YPKKKMEK	RFVFNKIEIN	NKLEFESAQF	PNWYISTSQA
TL-1RA	LOLEAVNITD	LSENRKQDKR	.FAFIRSDSG	PTTSFESAAC	PGWFLCTAME
TL-1 delta	LTLEPVNIME	LYLGAKESKS	.FTFYRRDMG	LTSSFESAAY	PGWFLCTVPE
	LOLEDVNIEE	LYKGGEEATR	.FTFFQSSSG	SAFRLEAAAW	PGWFLCGPAE
Tango-77	LOLKKEKLMK	LAAQKESARR	PFIFYRAQVG	SWNMLESAAH	PGWFICTSCN
Zilla4	LOLKKEKLMK	LAAQKESARR	PFIFYRAQVG	SWNMLESAAH	PGWFICTSCN
IL-1 zeta	LQLKKEKLMK	LAAQKESARR	PFIFYRAQVG	SWNMLESAAH	PGWFICTSCN
IL-1RA beta	LOLKEQKIMD	LYGQPEPV.K	PFLFYRAKTG	RTSTLESVAF	PDWFIA.SSK
Spoil II	LOLKEOKIMD	LYGOPEPV.K	PFLFYRAKTG	RTSTLESVAF	PDWFIA.SSK
IL-1 ensilon	LOLKEKDIMD	LYNOPEPV.K	SFLFYHSQSG	RNSTFESVAF	PGWFIAVSSE
IL-1 eta	LOLKEKNIMD	LYVEKKAQ.K	PFLFFHNKEG	STSVFQSVSY	PGWFIATSTT
_					
	251			290)
IL-1 alpha	ENMPVFL	.GGTKGGQDI	TDFTMQFVSS	~~~~~~~	
IL-1 beta	ENMPVFL	.GGTKGGQDI	TDFTMQFVSS	~~~~~~~	
IL-1RA	ADQPVSLTNM	PDEGVMV	TKFYFQEDE~	~~~~~~~	
IL-1 delta	ADQPVRLTQL	PENGGWNAPI	TDFYFQQCD~	~~~~~~~	
_CS329	PQQPVQLTKE	SEPSAR	TKFYFEQSW~	~~~~~~~	
Tango-77	CNEPVGVTDK	FENRKH		AEMSPSEVSD	
		FENRKH			
IL-1 zeta	CNEPVGVTDK	FENRKH	IEFSFQPVCK	AEMSPSEVSD	
IL-1RA beta	RDOPIILTSE	LGKSYN	TAFELNIND~	~~~~~~	
Spoil II	RDOPIILTSE	LGKSYN	TAFELNIND~	~~~~~~~	
IL-1 epsilon	GGCPLILTQE	LGKANT	TDFGLTMLF~	~~~~~~~~	
TT 1 0#0	SGQPIFLTKE	DOTTININ	TNEVLDSVE-		
IL-I CLA	POOLITITION	TOT IIII	INI I LLDOVE		

FIG. 7

	tgc Cys								48
	aag Lys								96
	tca Ser								144
	cta Leu 50								192
	tgc Cys								240
	gag Glu								288
	cgt Arg								336
	gct Ala								384
	cag Gln 130								432
	ttc Phe				taa				459

FIG. 8

	MCSLPMARYYIIKYADQKALYTRDGQLLVGDPVADNCCABKICTLPNRGL	
1	MCSLPMARYYIIKDAHQKALYTRNGQLLLGDPDSDNYSPEKVCILPNRGL	50
51	DRTKVPIFLGIQGGSRCLACVETEEGPSLQLEDVNIEELYKGGEEATRFT	100
51	DRSKVPIFLGMQGGSCCLACVKTREGPLLQLEDVNIEDLYKGGEQTTRFT	100
101	FFQSSSGSAFRLEAAAWPGWFLCGPAEPQQPVQLTKESEPSARTKFYFEQ	150
	- 11 î.	
101	FFORSLGSAFRLEAAACPGWFLCGPAEPQQPVQLTKESEPSTHTEFYFEM	150
151	SW 152	
131		
151	SR 152	

FIG. 9A

actagtetee catagacaac agetgaatgt acgaggteag aageaaggee tgeeccagaa 60

ccattgcaag ccaggtgctg tcttgattgt agcctcataa aaaactgatg cagaattgcc 120 ccaccaacat gctccagatt cctgctccac agaaaccctg tgaactaacc atgttgcttt 180 tagattetge agtaagttga taatetgeag taaataacat tegatgaaag agaaacatgt 240 qtaqttactt tattatqatc aaaactttat ttctccactc tttccatttt ccttctcaga 300 attgacacca gcctttcact aacccaaata gcctatttaa atgctgatca tacttctctt 360 gttaactgtt acctgttccc aaaaggtaca attccctttc gaccatagct gcatctccca 420 cctqcacacc aggatqtttc tcatatttct acctaaaaca ttqqqqacta caaqtqaaaq 480 caaaagaggg ggtccatatc agaaccccag gtatttagct gtaaaactca cttgtcaggc 540 caqcttqaca qqtttacaqt ttqtaqaaqq accagaaaqa agqtaqccaa gacagaagag 600 qcaacctctq cttqtcctaq aaccttcaqt ccatatacat ctaaqctccc caqcaccatt 660 totaccacag acctotoaga gttcctgagg atgcagacco caggacactg acctoagttt 720 ccaqqcaqqq tttctqcaca ccccttcac actgcctgac tgggagttag tctcatggtg 780 caacactact ttgggacact gtacccatcc cctcgaccta cagaaaccat tcacttttca 840 aggtcacctc ctataggaag tatttgaaaa gatgagagtc atggtcattt gctatgataa 900 tattctqtgc ttatctccct qtaaaaagtt ggcttggggt ctctggcatg catctgacct 960 taaggttgga gctgcaccaa tatgttttta agcacccggc ataatgcttc gcaaaatttc 1020 agaacatggt ttgtacagaa tgtactttcc tccactcata caaacccttg taaaagagta 1080 qtttqaatcc caactcattc ttgaaggcca ccttttgtag ggtgacagaa tttaaaaata 1140 caqaatttaa aaatacttta tcccaqqqaa qctcacactt ctaaatccaq aatqaaaqaa 1200 gaaatagaaa cacacttgtg gtggcggtgg tggtggtgat ggtggtcgtg gtggtggtgg 1260 tqqtqqtqqt qqtqatqqtq gtqgtgqtgq tqqtqqtqgt ggtcqtgqtg gtqtaatgat 1320 cacagtaaag tgaggcatca tggcctgaga gagtcaggca tcacagctat tcaagtgaaa 1380 actacctact actgatttta gagttctata attttagtag cagccacagg cctggggcct 1440 qqqcctatat tttcagaqaq gaaatgttca caqcaqgtca actqcaqaca qtqaaqatca 1500 qaaatqtttc ataatcaqqt catcaqaqaa aaqqcaaaqq aqctqatqqa ctttatcctq 1560 aaaaagcaaa atccaaccca cctcatgctt aatgcattca aaggtctgcg ggcagaagaa 1620

FIG. 9B

tacattttgc tttttattat tataaattac ctggagaata tttttgtctg aattatctcc 1680

caaatattaa ccataaaaat aaaaaattcc atqtqtqctt ctcccaqqqq ctataaagcc 1740 cctggtctta gagttgttgg ggcaaaacct gacctttgaa gtagttactt ttgaagatgc 1800 cataccatac atttggccac ttggagagag tctaatgtca catctaaagg gttactctga 1860 tgctctgttt tctcatatgc ccttggctta cagctaacta tggctccagc taaactataa 1920 agtteettag caacagagat gatacqetat qtqtetttga cacagcagaa taaatgetta 1980 gtgaacatta ctgattgcct gacaggacac ctcacacttt ggtactttca acagagggat 2040 gtaaacttat gaagaacaat gaagaatgaa tattggcaat aaaagcaaaa attggttaac 2100 ccaattctag ctctgaaatc atttttaggt agtgggaagt ctttttgttt tgtttattca 2160 ctttacatcc caattgctgt cctccctcca agttccccac caccaccaca gtcctttttc 2220 cctccccttc tcctctgaga gaatggagaa ccctcctgga tattccccca tcatgaaaca 2280 trangictet graggetag acaetterer ragtgagger agtragggra gerragetag 2340 aaaaaqcata toocacaqac aqacaacaqc ttttqqqata qooccgttoc agttgtttag 2400 gatccacatg aaggctgagc tgcacatctg ctacatatga atgaggaggc ctaggtccag 2460 cctqtqtatq ttctttgqtt ggtggttcag actctgagag ccccaagggt ccaggtcagt 2520 tgactctqtt qqtcttcctq tqqacaccct qtccccttcc agcccacaat Ccttccccta 2580 atcettetee tteteaette cataaqaqtq tqaqqaqtet ttaaaaaacat gaagcatttt 2640 atctccccag ggcaacacat ggaaatgaaa gattgtgaaa agtaatttaa agaaaaagaa 2700 aaaaaaattt aacaaqqaat aaqaatcttg tttctctgaa aatgcttaag agtgtggaaa 2760 acataaactg gattctaata gaatgcaatt ggattgtaat gaaaacctat caaagttatg 2820 aaataqcttt cactaccttg cacaaaatct cttggcatgt gtgttgttgg caaattttct 2880 tqttaqttta aaaccacaac aataacaaca aaataqcaaa aattggqtct cagcctcatt 2940 cattttttct catttcttqc tctqtqatcq tctqqqtctt aaqctqacac ctcaccaatt 3000 cctcatcaaq acctttqtqq aaatttqcaa atgtcccaaa aaggagaatt acaataagtc 3060 agagaacqtt ctqtccaatt ctttatccct aqtqatqqat qaqtaaaqqa tqtataaqag 3120 atggataaat ggactgatgt acagataaat gaaggaatat gtacatggtt aggtggatag 3180 atqacttact caacaqatqa qtaqaaqqat qagaaataqa tgqacagctg gactgaggca 3240

FIG. 9C

tqcaaaqtca actqqaqaac tqaqtctctt gaccatgcac tqtccagggt ctcatattcc 3300 ctagagteca gggeceatgg etectgtgce atceccatge aaatetaagg ttaatacgtt 3360 ctacaqctqa qtttccttac atatgtgtct cagtaagttt gtatcaacta attaaatctg 3420 aaaggagtto ottotgatot toocaaacag agccacacto gtgatgaagt cagccotgot 3480 tcattqtgqt tctctggatg catctggctt ccatcagcat aatctttcta ttcttgatcc 3540 ttccaacctc ttcaggtctc agacagaacc ccatggagca tcaaagaggt ttgaccccag 3600 cattetttat etagetecaa aaccactaat aacacaetca ateacaetae ctacaeaac 3660 ageaggteag tgtctggcct ctgtcaaggc tttatgagtg actetctccc cttcccgcaa 3720 atactcatta atctccccac ctccttatta tttqqactqt qttqaaqata ttatqaaatc 3780 totgggotot tottocogga totagagoca attacagatt otgtaggttt gacccaccot 3840 qaccaqacat tataaacaca qtqctqqtqc cctqaaqaaa acaqttqqaq actccaqqca 3900 ttagaatcca ggcaccagga actacaggtc agtggtgaca gtcggtctct ctgtgtatct 3960 cttacacaca cacacataca cacacacaac acaacataca cacacataca acacacaaca 4020 catacacata caacacatac acacacaca cacttttctg taatgtctcc aaaattctca 4080 gqctctaggg aagaagaaat gtcttttaga gaatgcggtg tgatgttcta taagtctagg 4140 aatacttqat aqaatttaat qaqaaqtata gattaggtca aagcaagggt actacatatt 4200 tggaaccaca gagttttgaa agtcatctca aaagaaatta tttaggccag agatgttcaa 4260 aaaatgtttt gtttgtgaca tatggaagct cccatggaga cattctgtga ttctcatcaa 4320 tagacagtag ggatgccacc aaggtgctaa cgtcttcatc accccatcat ctatcataca 4380 tccaaatqqt ttctttqaaa acaatctcct tqtqaaactt aaaqtaqcct tqaaaatata 4440 ataatcttgt ccagcctctc atttcaatgg gaatagattg aaggcctaag gaccaaaaca 4500 taagttattt ttagaatcca gcctttcagt caaagcttga ttcatgcata tctgtgttct 4620 gatcttaagg tgctgtgtct gtcagttgta tagttggata gaggtacaga tgagctatat 4680 acatcatqct tcaaqatttc aqqatcttat aacttttata aaqcaaataa tttgtcttaa 4740 tgcacactaa taaacaatat agcaaagttt gacaggagtt cagagtactg ttagagaagt 4800 gaagggaaga attttgttat gatagtaaag gggaaaatca aattttgagt catggaatca 4860

FIG. 9D

tacatagttt gacatagaaa gaaccttggc aaccacataa totaatgcat gagcccaaga 4920 actggcctgt gtttttaaga tctcattctc agctgttatg taactgaaca gacaagatac 4980 taagcccaag tatagtgaag ccatgtccag tgatcttaat aggagtgaca ggaatggttg 5040 qtqatgaaga ggggtggatt ttgagcagga ataccaaaag caatgctgac tgtgcccttg 5100 gagagaatta gcatgagtcc ttgagagaaa aatgagatgc tattgcacaa gcaacctagg 5160 qccaqatggt gtcaagatag gtggccatcg tggactttag aaccaggcag gaatgtgatc 5220 agagatgtac tttatgtagg ttaggtttga ttcagaaacc aggagggtta gcatgtttac 5280 aatggtgact aaaaacaagc acaaggttat actttaaaga aataatctct gaaaagaagg 5340 gaggtatatt ttcagtgccg gaaagaggaa tattacaaaa gtgagaggag tagatttgag 5400 aaagagaagt ggattgtgga ggagcagatg ctcaccacgc ccttacactc acttgaactg 5460 acacccaaag atgaaggtgt gctgtggact gctgaagctc agcctgtggc tgggaagcag 5520 taaacaaaat tgctcatcac agctgtacaa gatattccat agcatataaa aataaaagtg 5580 cttaggctat tetettacaa eteteageet tatgaatgae eeggaaggaa aagaacteta 5640 caatgtgcct gtgtctgttc ttacttcctc tgccacaagc aaaagagcct tgggaattgg 5700 ctcagaggga acgtcatcaa acaggctggc cttgaggctg ggctgttatt cgtctacctg 5760 ggatagagga attogotatt ottttataat ocaagtgtgg ootggggaco agcagcatta 5820 ttaagacctg gttgcatgtt tgaaatgcag tctcagattt catcccagac ctaaagagta 5880 acactgtttt catgaggata caagattaag aaatatgcat tagagagtaa ttggctaaat 5940 gggtaaatgt catgcaagca ggaggatctg attgactccc caggacccac acagttccca 6000 tgccgtagag cacatctgta atcacagtag gcgtatgatg aaatgggagg tgaatcaaga 6060 gaatototag cagotacggg otggocagoo toccatgoac agcactaaat aaggoaagga 6120 ccaatacctg aagttgtccc attaccttca catatacacc acggcatgtg tgtacttgta 6180 ctcacacata caaacaaata cacacgtgca cacatacaaa actcagagat taaggacaat 6240 tggcctgaca tatcagttcc taagcctggc tcattgcttg taacactaca agcagtatta 6300 aataaggata ggcgagagaa cagttaccga atggttcaga agtggggcca tgcctgtgac 6360 tttaaacaaa tgtttcatat ttttaaataa taacacttag attacaaaat aaatttacta 6420 caggaaaatg ttaagaacta tcaacaacca ttgactatcc tgtcggccac aaatgagtgt 6480

FIG. 9E

tataacaage accageegte ettgtecaca tgtgtgtgtg tetacacage tatgaattta 6540 attgggataa taatgtgcac attctttacq gcctgcagtt tttacttcat qtatttgaaa 6600 tgtttgtgcc acaaatgtca tctttaagga gcatatcctt atttcctgga tttatcattc 6660 cctttcagcc gactggacat tgacagcatt tccaactttt caaccttgta aaaataacta 6720 attgaactat tttataacta agcatttggg caatcaatta cctctgcctg gaatgggggc 6780 aacaacacat gcaatcatgg gaaagccagg atgctgctgt ctgatcccta gccctqgcat 6840 togtgoagaa cotcactoto atotgtgooo tgatatoott cactotcaag tottttooca 6900 gtgactttta aaggcaacag aatcatatag ccaataatga aagctacttg gtctacagtt 6960 gtgtggcgtt ttttatagat attttcttca tttacatttc aaatgctatc ccaaaagtcc 7020 cetataccet eccecacet getecectae ecacteacte ceaettettg geeetggett 7080 tcccccttac tggggcatat aaagtttgct agaccaaggg gcctctcttc ccaatgatgg 7140 ccaactaggc cattttctgc tacatatgca gctagagaca ccagttctgg ggttactggt 7200 tagttcatat tgttgttcta cctatggggt tgcagacccc ttcagctctt gagtactttc 7260 tctagctcct ccattgggag ccctgtgttc catcctatag atgactgtga gcatccactt 7320 ctgtatttgc caggcactgg catatgaaat agtatctgca tttggtggct gattatggga 7380 tggacccccg ggtggggcag tetetggatg gtccateett teatettage tecaaacttt 7440 gtototgcaa ottottocat ggatatttta gtocotaato tagggagaaa tgaagtatoo 7500 acaagttgat cttccttctt gattttctta tgttttagaa gttgtatctt ggatattcta 7560 ggtttctggg ctaatatcca cttatcagtg agtacatatc aagtgaattc ttttgtgatt 7620 aggttacctc actcaagatg atattctcca ctatgttcat agcagcccta tttatagtag 7680 ccagaagetg gaaagaacce agtccctcaa cagaggaatg gatacagaaa atgtggcaca 7740 tttatgcaat ggagtaccac tcagatatta aaaacaacga atttatgaaa ttctcgggca 7800 aaaccctatc taaagaccag gaataaggaa aagatggact gcctgcctgc agctgggaga 7860 gctggggaga cctttgtgga ttctgtaata cttaggggta cggaacagct tgtggctgga 7920 taattctgag ctccagcatg tctgcccccc aaaaaacatt ctgtttttct gaaagccttt 7980 ttettetttg ceteagtgaa gaccagacae teecaactge agga <u>atq tgc tee ett</u> 8036 ccc atq qca aqa tac tac at gtaagtaa tettaacgat egeteaatca 8084

FIG. 9F aggggcctgg agatcacatg agaagggaaa aggctgagtc aaagggacaa agctccctct 8144

agccacagaa atctcaaaca ctgaataatt gatcttcatc tttgtcaatc acaacagccc 8204 tctttcctgg tgacagaatg gaacaactgt aagagtggta ttgcttagtc cattttacag 8264 acceggaaac tcaacctcca cgaggttata caattttcct catgtcatgc aattacccaa 8324 aagcagagag tgggatcgga ctctctgttc tctaaactga tgtagctagt tcttagaaag 8384 ctcaaacaat cttgagtccc aaggacagca cctttatggt cacctggatt gatacctata 8444 tcaaaaaaaa aaaaaggtot cactagatag cootggotac cotgaaacto tcactgtgta 8504 catttaggtg accacgaact cacagagatc tgccttccaa gtgctgggat taaagtatgt 8564 accaccacac etgeatettt gacaataact gagtggtate taaattette cagtggetaa 8624 acagttaagt cccagttccc aaagtctgag aaaaatgcca ggtggtgaaa tctgtacaga 8684 cctttgttct taatgtacaa gtgagcctgc tttaaaaaaca atacgcaagc tgtttttgct 8744 attgctaagt gttgcagaga cagaaaaggc tcccagaagt ggtaactttg gtccagaggt 8804 totgttotca aactcattgt gagototgaa agcaactgat gggcagotot gaaatcagot 8864 gggcaattag gctaataaca ggcataattt taatgtttca cacgcatgac agttcctccc 8924 cagetgeect agtacatact taccetecta ggeaegteat tagacecata ggtataacca 8984 gtgactaatc aggccctggt ctaattctaa gttggcctcc tatataagtg ccactcagag 9044 tgtacctcat catggctgta gtgggcccag agtctaggga catagacttt tctattgtcc 9104 atcaaqctca qaaacatcat qqataqqqtt cattqtatct ccagggtacc tgagcttcaa 9284 agcaactcct cagacagcca tgaaaacatc ctcaattacc tcatgagaag acactattgt 9344 catttctqqa qcctctqata atcctgagcc taggcagctt tgggatgaaa caatttctac 9404 ccttattgga acagtgtccc tctcctgtct ggaaacaatt caccaaaggc tccatgtggt 9464 tgtccagtaa ggtggtatgg ggacagaaat ggacaatgat ccctgagggc agtgatccat 9524 taacettgee etectattte ag a ate aag gat gea eat caa aag get ttg tae 9577 aca cgg aat ggc cag ctc ctg ctg gga gac cct gat tca gac aat tat 9625 agt cca g gtgatcttc cggtggtggg ggtgggggag tggaggggag ggtgtggggg 9681

FIG. 9G

gggctctctt ccagaagttg cttagtgtcc atctgccaca aggccttgat tctttccttc	9741
aattgtgtct ctagagacat gagaatattg tcacagtgat aaggagaaga ggtaggggca	9801
gtttcttcct gtaaaaaatg aattccattt accctgcagt ctccatacag aaacaggcca	9861
gagggggca gacccagtaa cttctagctg agccctacct tgcttaaaac ctgccatctg	9921
tggtcccctc actgtctgaa ttgcattctg tcttacctcc cag ag aag gtc tgt atc	9978
ctt cct aac cga ggc cta gac cgc tcc aag gtc ccc atc ttc ctg ggg	10026
atg cag gga gga agt tgc tgc ctg gcg tgt gta aag aca aga gag gga	10074
cct ctc ctg cag ctg gag gtgagacacc cctcctcatt gcagtcagta	10122
ctgccactgg aacatagtga catctttgaa cccacatgtc ccctctcttg tttcccatct	10182
atctctcttt gcctccagct gagggactct agcctttggg gatgtacaga aagaacatgg	10242
cttcggaaaa ctcttcccta ttgagtcctt ctttggccaa gcctctgagg cactaagggc	10302
tgacgtccca accaaacact catttcatct cacagctgtc tccctttccc cacag gat	10360
gtg aac atc gag gac cta tac aag gga ggt gaa caa acc acc cgt ttc	10408
ace ttt tte eag aga age ttg gga tet gee tte agg ett gag get get	10456
gee tge eet gge tgg ttt ete tgt gge eea get gag eee eag eag eea	10504
gtg cag etc ace aaa gag agt gaa eee tec ace cat act gaa tte tae	10552
ttt gag atg agt cgg taa agagacataa ggctggggcc togtctagtg	10600
ccccagtct gagatcttct tgctcagcat ctctggaaag cagaataagg aagataccaa	10660
agatgtttgg gtcttaatcc ccagaatctg tgaccgtgtt acattaaatg gcaaagggat	10720
ttttttttttc cttcatggtc catttgggcc cattggaatc atctgaggcc tcatgaggag	10780
aaggaagagg tcagagggag actggggcaa actttggtac taaaagtaac aatggagaca	10840
gggaccataa gctgatgggt aacagtggtt totagaaacc ggaaatgatg agagctctcc	10900
tgacacaggt tetggatttt tetggaetga agaatggtga aataatacag etecattatt	10960
ttaagccact gagtttgaga tcattcaatg aagctgtcat aataaaacct gtgcttcaca	11020
tacaattcaa tattggtagg caccccggtg atttcttgga aagacatcta gggattctcc	11080
tggatgctga ttccagggtc cagtggagtc cctgggttga agagatttca caacccagaa	11140
catcaggete gactetteta aaagteegte gttgcaccce ttgcetgaga gcattagcaa	11200

FIG. 9H

ctgatttagt qaqqqtqaq ctgctqqcac ttttttqtqt caccagtqtc ttaagcagtg 11320 atggaggaca aaagatettt actgagaaga tggccatgaa getetggeta gacaccaaga 11380 atatqatata aqcaqaqcta caqcacaaqa tqaqccaatg aggaaagcca ttcagggagg 11440 ctaagcccag cttcccaaag ggacagctaa ccctggactc aaatgaatag gggttttcct 11500 qqcaqaqaac ataqqtcaaq cattctagqt agaatcagca attcagaaag gtgtgagaga 11560 qqcatqqaqa qctccaqqca tqtctqqqct atqqtqtqtc attcttqtqq caaqaatcca 11620 acqtctgtgq ttaaggagtt gctgaaaatt aaaataggaa aatgggtaga gtctaattgt 11680 qaatqacttq caaaqqaqtt taqcccataa qtqqqqaqct cagaqqaqtc atctaaqqat 11740 tgcaagcagg ggccctgtga tcattgctgg accagcctag gtgctacaga gcctaccttc 11800 aqctctqcat cctcactcac atccaggtac cttcagaggt caatttctgt gctctggttc 11860 tatqqqtaqc ctqaccctqt ttcatcttct tqtataactt aqqcacataa qcttaggqac 11920 tggtagagtt tacttgagtg attggtgaat caggcagcac caaactacaa gttgttcagg 11980 gctttaccaa gggggcactg attggagaat tggaatgagg gtggttagaa tgcattcaga 12040 aaacaagggg aagaaaaatt tgattgctta aagtggaaag tcccaactta aatgttagtc 12100 aqtaqtttct aattacttga gtctctaatt agaggttagt tggcagtttc tggttagtta 12160 atctaagttt cattttctta qqctatqacc attctctqaq tcqcatqtta qcaatqcaqt 12220 aagaactcaa gacccagaat agcctctgtt aattatttta gcaatgatca ctcatttctg 12280 ttqcctccta ttqaqatctq ttcccatqqa ccacccaqqc acatcaqqcc tcctagtacc 12340 aacataataa tgattgctgc acagacaaaa tatttttttt cagtatctgg tatttgctac 12400 atttccatta qtqctqqagq qaaqqctaca acqaccatga aggcatggcc cctgccttct 12460 aaqqacttac aatqtaataq qaqccctqac attataaaqt qqqtcacctt qtttcaaact 12520 gagccaaact gaggctgagg gcttagatta gtggtaggtc actttccaga catgttcagt 12580 gctaaqaaaa acacattctg gggttagtta gatgttttag ttcatttgat aagaagccca 12640 atgattggac tttcaacttc tggaacccat gtggtggaag agagaaccaa cttctgacca 12700 tttqqqtcat qqcacatccc ctaccatcac aaqaactcac caaaataaat taqaaaaatc 12760 aaqaaaaact catatcctat agacctctgg tagaattagc agaacgctgc tgtggcactt 12820

FIG. 9I

gggatttgaa actcaaaaat ggaagaagct acttgtgacc gttcaagact ccagggagc 12880
tcctctgaca catcccacga ctcaggctta aattccttct tctccctaga aggccacgcc 12940
atcttctcaa ccaggccaca gatgctataa ttatgtaaat gtgtgggaga ggcacactt 13000
agatcttatc cactagt 13017

FIG. 12

Spleen

	CD4+	CD8+	CD4+ CD8+	CD3+	NK1.1+	CD3+ NK1.1+
control mice	20.18	3.72	1.67	24.07	3.06	1.4
CS329 mice	15.89	3.99	0.37	22.9	2.08	1:1
Difference:	4.29	0.27	-1.3	-1.17	-0.98	-0.3

Bone Marrow

	CD4+	CD8+	CD4+ CD8+	CD3+	NK1.1+	CD3+ / NK1.1+
control mice	2.62	2.54	0.49	3.88	1.26	0.49
CS329 mice	2.46	2.35	0.41	4.42	1.53	0.57
Difference:	0.16	0.19	0.08	0.54	0.27	0.08

FIG. 13A

FIG. 13B

FIG. 15

