# ASSOCIATION RULE MINING

**BEIYU LIN** 

#### **RULE GENERATION**

 $A \subseteq B \ (F) \ \delta(B) \geqslant min \delta$   $A \subseteq C \ (F) \subseteq$ 

ABC 
$$\rightarrow$$
D, ABD  $\rightarrow$ C, ACD  $\rightarrow$ B, BCD  $\rightarrow$ A,  $AB \rightarrow$ BCD, B  $\rightarrow$ ACD, C  $\rightarrow$ ABD, D  $\rightarrow$ ABC AB  $\rightarrow$ CD, AC  $\rightarrow$  BD, AD  $\rightarrow$  BC, BC  $\rightarrow$ AD, BD  $\rightarrow$ AC, CD  $\rightarrow$ AB, AD  $\rightarrow$  BC, BC  $\rightarrow$ AD, BD  $\rightarrow$ AC, CD  $\rightarrow$ AB,

■ If |L| = k, then there are  $2^k - 2$  candidate association rules (ignoring  $L \to \emptyset$  and  $\emptyset \to L$ )

#### **RULE GENERATION**

In general, confidence does not have an anti-monotone property

$$c(ABC \rightarrow D)$$
 can be larger or smaller than  $c(AB \rightarrow D)$ 

general, confidence does not have an anti-monotone property
$$c(ABC \rightarrow D) \text{ can be larger or smaller than } c(AB \rightarrow D) \qquad c(ABC \rightarrow D) = \frac{6(ABCD)}{6(ABC)} \qquad c(ABC \rightarrow D) = \frac{6(ABCD)}{6(ABC)}$$

- But confidence of rules generated from the same itemset has an anti-monotone property
  - E.g., Suppose {A,B,C,D} is a frequent 4-itemset:

pose 
$$\{A,B,C,D\}$$
 is a frequent 4-itemset:  $(ABC \rightarrow D) = C(ABC \rightarrow D) \geq c(AB \rightarrow CD) \geq c(A \rightarrow BCD)$ 

$$C(x\rightarrow x) = \frac{e(x \circ x)}{e(x \circ x)}$$

Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

# RULE GENERATION FOR APRIORI ALGORITHM



## ASSOCIATION ANALYSIS: BASIC CONCEPTS

Algorithms and Complexity

- Choice of minimum support threshold
- Dimensionality (number of items) of the data set
- Size of database
- Average transaction width

- Choice of minimum support threshold
  - lowering support threshold results in more frequent itemsets
  - this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set

Size of database

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Mills              |
| 2   | Beer, Bread, Diaper, Eggs |
| 3   | Beer, Coke, Diaper, Milk  |
| 4   | Beer, Bread, Diaper, Milk |
| 5   | Bread, Coke, Diaper, Milk |

Average transaction width

#### IMPACT OF SUPPORT BASED PRUNING

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Beer, Bread, Diaper, Eggs |
| 3   | Beer, Coke, Diaper, Milk  |
| 4   | Beer, Bread, Diaper, Milk |
| 5   | Bread, Coke, Diaper, Milk |





| Item   | Count 6    |
|--------|------------|
| Bread  | <b>V</b> 4 |
| Coke   | 2          |
| Milk   | <b>V</b> 4 |
| Beer   | <b>J</b> 3 |
| Diaper | 4          |
| Eggs   | 1          |

#### Minimum Support = 3

If every subset is considered,  

$${}^6C_1 + {}^6C_2 + {}^6C_3$$
  
 $6 + 15 + 20 = 41$   
With support-based pruning,  
 $6 + 6 + 4 = 16$ 

Minimum Support = 2

If every subset is considered,  ${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3} + {}^{6}C_{4}$ 6 + 15 + 20 + 15 = 56

- Choice of minimum support threshold
  - lowering support threshold results in more frequent itemsets
  - this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
  - More space is needed to store support count of itemsets
  - if number of frequent itemsets also increases, both computation and I/O costs may also increase
    TID Ife
- Size of database
- Average transaction width

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Beer, Bread, Diaper, Eggs |
| 3   | Beer, Coke, Diaper, Milk  |
| 4   | Beer, Bread, Diaper, Milk |
| 5   | Bread, Coke, Diaper, Milk |

- Choice of minimum support threshold
  - lowering support threshold results in more frequent itemsets
  - this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
  - More space is needed to store support count of itemsets
  - if number of frequent itemsets also increases, both computation and I/O

costs may also increase

- Size of database
  - run time of algorithm increases with number of transactions
- Average transaction width

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Beer, Bread, Diaper, Eggs |
| 3   | Beer, Coke, Diaper, Milk  |
| 4   | Beer, Bread, Diaper, Milk |
| 5   | Bread, Coke, Diaper, Milk |

- Choice of minimum support threshold
  - lowering support threshold results in more frequent itemsets
  - this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
  - More space is needed to store support count of itemsets
  - if number of frequent itemsets also increases, both computation and I/O costs may also increase
- Size of database
  - run time of algorithm increases with number of transactions
- Average transaction width
  - transaction width increases the max length of frequent itemsets
  - number of subsets in a transaction increases with its width, increasing computation time for support counting



(a) Number of candidate itemsets.



(b) Number of frequent itemsets.

Figure 6.13. Effect of support threshold on the number of candidate and frequent itemsets.



(a) Number of candidate itemsets.



(b) Number of Frequent Itemsets.

Figure 6.14. Effect of average transaction width on the number of candidate and frequent itemsets.

## COMPACT REPRESENTATION OF FREQUENT ITEMSETS

Some frequent itemsets are redundant because their supersets are also frequent

Consider the following data set. Assume support threshold =5

| TID | (A) | A2 | <b>A3</b> | <b>A4</b> | <b>A5</b> | <b>A6</b> | <b>A7</b> | <b>A8</b> | <b>A9</b> | A1( | B, | B2 | <b>B3</b> | B4 | <b>B5</b> | <b>B6</b> | B7 | <b>B8</b> | B9 | B10 | Cì | C2 | C3 | C4 | <b>C5</b> | C6 | <b>C7</b> | C8 | C9 | C10 |
|-----|-----|----|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----|----|----|-----------|----|-----------|-----------|----|-----------|----|-----|----|----|----|----|-----------|----|-----------|----|----|-----|
| 1   | 1   | 1  | 1         | 1         | 1         | 1         | 1         | 1         | 1         | 1   | 0  | 0  | 0         | 0  | 0         | 0         | 0  | 0         | 0  | 0   | 0  | 0  | 0  | 0  | 0         | 0  | 0         | 0  | 0  | 0   |
| 2   | 1   | 1  | 1         | 1         | 1         | 1         | 1         | 1         | 1         | 1   | 0  | 0  | 0         | 0  | 0         | 0         | 0  | 0         | 0  | 0   | 0  | 0  | 0  | 0  | 0         | 0  | 0         | 0  | 0  | 0   |
| 3   | 1   | 1  | 1         | 1         | 1         | 1         | 1         | 1         | 1         | 1   | 0  | 0  | 0         | 0  | 0         | 0         | 0  | 0         | 0  | 0   | 0  | 0  | 0  | 0  | 0         | 0  | 0         | 0  | 0  | 0   |
| 4   | 1   | 1  | 1         | 1         | 1         | 1         | 1         | 1         | 1         | 1   | 0  | 0  | 0         | 0  | 0         | 0         | 0  | 0         | 0  | 0   | 0  | 0  | 0  | 0  | 0         | 0  | 0         | 0  | 0  | 0   |
| 5   | 1   | 1  | 1         | 1         | 1         | 1         | 1         | 1         | 1         | 1   | 0  | 0  | 0         | 0  | 0         | 0         | 0  | 0         | 0  | 0   | 0  | 0  | 0  | 0  | 0         | 0  | 0         | 0  | 0  | 0   |
| 6   | 0   | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 1  | 1  | 1         | 1  | 1         | 1         | 1  | 1         | 1  | 1   | 0  | 0  | 0  | 0  | 0         | 0  | 0         | 0  | 0  | 0   |
| 7   | 0   | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 1  | 1  | 1         | 1  | 1         | 1         | 1  | 1         | 1  | 1   | 0  | 0  | 0  | 0  | 0         | 0  | 0         | 0  | 0  | 0   |
| 8   | 0   | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 1  | 1  | 1         | 1  | 1         | 1         | 1  | 1         | 1  | 1   | 0  | 0  | 0  | 0  | 0         | 0  | 0         | 0  | 0  | 0   |
| 9   | 0   | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 1  | 1  | 1         | 1  | 1         | 1         | 1  | 1         | 1  | 1   | 0  | 0  | 0  | 0  | 0         | 0  | 0         | 0  | 0  | 0   |
| 10  | 0   | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 1  | 1  | 1         | 1  | 1         | 1         | 1  | 1         | 1  | 1   | 0  | 0  | 0  | 0  | 0         | 0  | 0         | 0  | 0  | 0   |
| 11  | 0   | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 0  | 0  | 0         | 0  | 0         | 0         | 0  | 0         | 0  | 0   | 1  | 1  | 1  | 1  | 1         | 1  | 1         | 1  | 1  | 1   |
| 12  | 0   | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 0  | 0  | 0         | 0  | 0         | 0         | 0  | 0         | 0  | 0   | 1  | 1  | 1  | 1  | 1         | 1  | 1         | 1  | 1  | 1   |
| 13  | 0   | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 0  | 0  | 0         | 0  | 0         | 0         | 0  | 0         | 0  | 0   | 1  | 1  | 1  | 1  | 1         | 1  | 1         | 1  | 1  | 1   |
| 14  | 0   | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 0  | 0  | 0         | 0  | 0         | 0         | 0  | 0         | 0  | 0   | 1  | 1  | 1  | 1  | 1         | 1  | 1         | 1  | 1  | 1   |
| 15  | 0   | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 0  | 0  | 0         | 0  | 0         | 0         | 0  | 0         | 0  | 0   | 1  | 1  | 1  | 1  | 1         | 1  | 1         | 1  | 1  | 1   |
|     |     |    |           |           |           |           |           |           |           |     |    |    |           |    |           | /         | _  |           |    |     |    |    |    |    |           |    |           |    |    |     |

Number of frequent itemsets 
$$= 3 \times \sum_{k=1}^{10} {10 \choose k}$$

Need a compact representation

# ILLUSTRATING APRIORI PRINCIPLE



# MAXIMAL FREQUENT ITEMSET

An itemset is maximal frequent if it is frequent and none of its immediate supersets is frequent



## WHAT ARE THE MAXIMAL FREQUENT ITEMSETS IN THIS DATA?

| TID | <b>A1</b> | A2 | <b>A3</b> | <b>A4</b> | <b>A5</b> | <b>A6</b> | <b>A7</b> | <b>A8</b> | <b>A9</b> | A10 | B1 | B2 | В3 | B4 | <b>B</b> 5 | B6 | B7 | B8 | B9 | B10 | <b>C1</b> | C2 | C3 | C4 | C5 | C6 | <b>C7</b> | C8 | C9 | C10 |
|-----|-----------|----|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----|----|----|----|----|------------|----|----|----|----|-----|-----------|----|----|----|----|----|-----------|----|----|-----|
| 1   | 1         | 1  | 1         | 1         | 1         | 1         | 1         | 1         | 1         | 1   | 0  | 0  | 0  | 0  | 0          | 0  | 0  | 0  | 0  | 0   | 0         | 0  | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0   |
| 2   | 1         | 1  | 1         | 1         | 1         | 1         | 1         | 1         | 1         | 1   | 0  | 0  | 0  | 0  | 0          | 0  | 0  | 0  | 0  | 0   | 0         | 0  | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0   |
| 3   | 1         | 1  | 1         | 1         | 1         | 1         | 1         | 1         | 1         | 1   | 0  | 0  | 0  | 0  | 0          | 0  | 0  | 0  | 0  | 0   | 0         | 0  | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0   |
| 4   | 1         | 1  | 1         | 1         | 1         | 1         | 1         | 1         | 1         | 1   | 0  | 0  | 0  | 0  | 0          | 0  | 0  | 0  | 0  | 0   | 0         | 0  | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0   |
| 5   | 1         | 1  | 1         | 1         | 1         | 1         | 1         | 1         | 1         | 1   | 0  | 0  | 0  | 0  | 0          | 0  | 0  | 0  | 0  | 0   | 0         | 0  | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0   |
| 6   | 0         | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 1  | 1  | 1  | 1  | 1          | 1  | 1  | 1  | 1  | 1   | 0         | 0  | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0   |
| 7   | 0         | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 1  | 1  | 1  | 1  | 1          | 1  | 1  | 1  | 1  | 1   | 0         | 0  | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0   |
| 8   | 0         | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 1  | 1  | 1  | 1  | 1          | 1  | 1  | 1  | 1  | 1   | 0         | 0  | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0   |
| 9   | 0         | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 1  | 1  | 1  | 1  | 1          | 1  | 1  | 1  | 1  | 1   | 0         | 0  | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0   |
| 10  | 0         | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 1  | 1  | 1  | 1  | 1          | 1  | 1  | 1  | 1  | 1   | 0         | 0  | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0   |
| 11  | 0         | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 0  | 0  | 0  | 0  | 0          | 0  | 0  | 0  | 0  | 0   | 1         | 1  | 1  | 1  | 1  | 1  | 1         | 1  | 1  | 1   |
| 12  | 0         | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 0  | 0  | 0  | 0  | 0          | 0  | 0  | 0  | 0  | 0   | 1         | 1  | 1  | 1  | 1  | 1  | 1         | 1  | 1  | 1   |
| 13  | 0         | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 0  | 0  | 0  | 0  | 0          | 0  | 0  | 0  | 0  | 0   | 1         | 1  | 1  | 1  | 1  | 1  | 1         | 1  | 1  | 1   |
| 14  | 0         | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 0  | 0  | 0  | 0  | 0          | 0  | 0  | 0  | 0  | 0   | 1         | 1  | 1  | 1  | 1  | 1  | 1         | 1  | 1  | 1   |
| 15  | 0         | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 0  | 0  | 0  | 0  | 0          | 0  | 0  | 0  | 0  | 0   | 1         | 1  | 1  | 1  | 1  | 1  | 1         | 1  | 1  | 1   |

Minimum support threshold = 5

(AI-AI0)

(BI-BI0)

(CI-CI0)



Support threshold (by count): 5

Frequent itemsets: ? Maximal itemsets: ?





Support threshold (by count): 5

Frequent itemsets: {F}
Maximal itemsets: {F}

Support threshold (by count): 4

Frequent itemsets: ? Maximal itemsets: ?



Support threshold (by count): 5

Frequent itemsets: {F} Maximal itemsets: {F}

Support threshold (by count): 4

Frequent itemsets: {E}, {F}, {E,F}, {J}

Maximal itemsets: {E,F}, {J}

Support threshold (by count): 3

Frequent itemsets: ?
Maximal itemsets: ?

#### Items



#### Support threshold (by count): 5

Frequent itemsets: {F} Maximal itemsets: {F}

#### Support threshold (by count): 4

Frequent itemsets: {E}, {F}, {E,F}, {J}

Maximal itemsets: {E,F}, {J}

#### Support threshold (by count): 3

Frequent itemsets:

All subsets of {C,D,E,F} + {J}

Maximal itemsets:

{C,D,E,F}, {J}

## **CLOSED ITEMSET**

- An itemset X is closed if none of its immediate supersets has the same support as the itemset X.
- X is not closed if at least one of its immediate supersets has support count as X.

# WEKA – ASSOCIATE RULE

## **CLOSED ITEMSET**

- An itemset X is closed if none of its immediate supersets has the same support as the itemset X.
- X is not closed if at least one of its immediate supersets has support count as X.



| VC      | Itemset                 | Support |
|---------|-------------------------|---------|
| , , , , | → {A}                   | 4       |
| (=      | (B)                     | 5       |
|         | {C}                     | 3       |
|         | {D}                     | 4       |
|         | <b>√</b> {A,B} <b>√</b> | 4       |
|         | (A,C)                   | 2       |
| k=2     | {A,D}                   | 3       |
| 1 2     | {B,C} <b>∨</b>          | 3       |
|         | {B,D} <b>∨</b>          | 4       |
|         | {C,D}                   | 3       |

| [3] | chosed | (AB) |
|-----|--------|------|
|-----|--------|------|

|       | Support | Itemset     |
|-------|---------|-------------|
|       | 2       | {A,B,C}     |
| 1223  | 3       | $\{A,B,D\}$ |
|       | 2       | $\{A,C,D\}$ |
| le =4 | 2       | {B,C,D}     |
|       | 2       | {A,B,C,D}   |

# MAXIMAL VS CLOSED ITEMSETS

| Titon .      | + |       |
|--------------|---|-------|
| Fiteme       |   | Items |
| 5/5          | 1 | ABC   |
| C(X+)Y)<br>_ | 2 | ABCD  |
| = Q(X)       | 3 | BCE   |
|              | 4 | ACDE  |
| T= 3         | 5 | DE    |

F: 1A? -- (E? LAG? [BG] M. [AG? (BG)



## MAXIMAL FREQUENT VS CLOSED FREQUENT ITEMSETS



| TID | A1 | A2 | <b>A3</b> | <b>A4</b> | <b>A5</b> | <b>A6</b> | <b>A7</b> | <b>A8</b> | <b>A9</b> | A10 | B1 | B2 | <b>B</b> 3 | B4 | <b>B</b> 5 | <b>B6</b> | B7 | B8 | B9 | B10 | C1 | C2 | C3 | C4 | C5 | C6 | <b>C7</b> | C8 | C9 | C10 |
|-----|----|----|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----|----|----|------------|----|------------|-----------|----|----|----|-----|----|----|----|----|----|----|-----------|----|----|-----|
| 1   | 1  | 1  | 1         | 1         | 1         | 1         | 1         | 1         | 1         | 1   | 0  | 0  | 0          | 0  | 0          | 0         | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0   |
| 2   | 1  | 1  | 1         | 1         | 1         | 1         | 1         | 1         | 1         | 1   | 0  | 0  | 0          | 0  | 0          | 0         | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0   |
| 3   | 1  | 1  | 1         | 1         | 1         | 1         | 1         | 1         | 1         | 1   | 0  | 0  | 0          | 0  | 0          | 0         | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0   |
| 4   | 1  | 1  | 1         | 1         | 1         | 1         | 1         | 1         | 1         | 1   | 0  | 0  | 0          | 0  | 0          | 0         | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0   |
| 5   | 1  | 1  | 1         | 1         | 1         | 1         | 1         | 1         | 1         | 1   | 0  | 0  | 0          | 0  | 0          | 0         | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0   |
| 6   | 0  | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 1  | 1  | 1          | 1  | 1          | 1         | 1  | 1  | 1  | 1   | 0  | 0  | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0   |
| 7   | 0  | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 1  | 1  | 1          | 1  | 1          | 1         | 1  | 1  | 1  | 1   | 0  | 0  | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0   |
| 8   | 0  | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 1  | 1  | 1          | 1  | 1          | 1         | 1  | 1  | 1  | 1   | 0  | 0  | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0   |
| 9   | 0  | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 1  | 1  | 1          | 1  | 1          | 1         | 1  | 1  | 1  | 1   | 0  | 0  | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0   |
| 10  | 0  | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 1  | 1  | 1          | 1  | 1          | 1         | 1  | 1  | 1  | 1   | 0  | 0  | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0   |
| 11  | 0  | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 0  | 0  | 0          | 0  | 0          | 0         | 0  | 0  | 0  | 0   | 1  | 1  | 1  | 1  | 1  | 1  | 1         | 1  | 1  | 1   |
| 12  | 0  | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 0  | 0  | 0          | 0  | 0          | 0         | 0  | 0  | 0  | 0   | 1  | 1  | 1  | 1  | 1  | 1  | 1         | 1  | 1  | 1   |
| 13  | 0  | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 0  | 0  | 0          | 0  | 0          | 0         | 0  | 0  | 0  | 0   | 1  | 1  | 1  | 1  | 1  | 1  | 1         | 1  | 1  | 1   |
| 14  | 0  | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 0  | 0  | 0          | 0  | 0          | 0         | 0  | 0  | 0  | 0   | 1  | 1  | 1  | 1  | 1  | 1  | 1         | 1  | 1  | 1   |
| 15  | 0  | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 0  | 0  | 0          | 0  | 0          | 0         | 0  | 0  | 0  | 0   | 1  | 1  | 1  | 1  | 1  | 1  | 1         | 1  | 1  | 1   |

WITH A TABLE CE POLD IT LIBETO IN THIS DATE.

(AI-AI0) (BI-BI0) (CI-CI0)

# **EXAMPLE I**

|              |    | A | В | С | D | E | F | G | Н | 1 | J |
|--------------|----|---|---|---|---|---|---|---|---|---|---|
|              | I  |   |   |   |   |   |   |   |   |   |   |
| Transactions | 2  |   |   |   |   |   |   |   |   |   |   |
|              | 3  |   |   |   |   |   |   |   |   |   |   |
|              | 4  |   |   |   |   |   |   |   |   |   |   |
|              | 5  |   |   |   |   |   |   |   |   |   |   |
| Trar         | 6  |   |   |   |   |   |   |   |   |   |   |
|              | 7  |   |   |   |   |   |   |   |   |   |   |
|              | 8  |   |   |   |   |   |   |   |   |   |   |
|              | 9  |   |   |   |   |   |   |   |   |   |   |
|              | 10 |   |   |   |   |   |   |   |   |   |   |

| Itemsets | Support<br>(counts) | Closed itemsets |
|----------|---------------------|-----------------|
| {C}      | 3 .                 | <b>V</b> ,      |
| {D}      | 2                   | $\times$        |
| {C,D}    | 2                   | <b>V</b>        |

# EXAMPLE I

|              |    | A | В | С | D | E | F | G | Н | I | J |
|--------------|----|---|---|---|---|---|---|---|---|---|---|
|              | 1  |   |   |   |   |   |   |   |   |   |   |
|              | 2  |   |   |   |   |   |   |   |   |   |   |
| Transactions | 3  |   |   |   |   |   |   |   |   |   |   |
|              | 4  |   |   |   |   |   |   |   |   |   |   |
|              | 5  |   |   |   |   |   |   |   |   |   |   |
| Trar         | 6  |   |   |   |   |   |   |   |   |   |   |
|              | 7  |   |   |   |   |   |   |   |   |   |   |
|              | 8  |   |   |   |   |   |   |   |   |   |   |
|              | 9  |   |   |   |   |   |   |   |   |   |   |
|              | 10 |   |   |   |   |   |   |   |   |   |   |

| Itemsets | Support (counts) | Closed itemsets |
|----------|------------------|-----------------|
| {C}      | 3                | ✓               |
| {D}      | 2                |                 |
| {C,D}    | 2                | ✓               |

|         |    | A | В | С | D | Е | F | G | Н | I | J |
|---------|----|---|---|---|---|---|---|---|---|---|---|
|         | I  |   |   |   |   |   |   |   |   |   |   |
|         | 2  |   |   |   |   |   |   |   |   |   |   |
|         | 3  |   |   |   |   |   |   |   |   |   |   |
| nsactic | 4  |   |   |   |   |   |   |   |   |   |   |
|         | 5  |   |   |   |   |   |   |   |   |   |   |
|         | 6  |   |   |   |   |   |   |   |   |   |   |
|         | 7  |   |   |   |   |   |   |   |   |   |   |
|         | 8  |   |   |   |   |   |   |   |   |   |   |
|         | 9  |   |   |   |   |   |   |   |   |   |   |
|         | 10 |   |   |   |   |   |   |   |   |   |   |

| Itemsets | Support (counts) | Closed itemsets |
|----------|------------------|-----------------|
| {C}      | 3                |                 |
| {D}      | 2                |                 |
| (E)      | 2                | ×               |
| {C,D} _  | 2                | X               |
| {C,E}    | 2                |                 |
| {D,E}    | 2                |                 |
| (C,D,E}_ | 2                |                 |

|              |    | A | В | С | D | Е | F | G | Н | ı | J |
|--------------|----|---|---|---|---|---|---|---|---|---|---|
|              | I  |   |   |   |   |   |   |   |   |   |   |
|              | 2  |   |   |   |   |   |   |   |   |   |   |
|              | 3  |   |   |   |   |   |   |   |   |   |   |
| ions         | 4  |   |   |   |   |   |   |   |   |   |   |
| Transactions | 5  |   |   |   |   |   |   |   |   |   |   |
| Trar         | 6  |   |   |   |   |   |   |   |   |   |   |
|              | 7  |   |   |   |   |   |   |   |   |   |   |
|              | 8  |   |   |   |   |   |   |   |   |   |   |
|              | 9  |   |   |   |   |   |   |   |   |   |   |
|              | 10 |   |   |   |   |   |   |   |   |   |   |

| Itemsets  | Support (counts) | Closed itemsets |
|-----------|------------------|-----------------|
| {C}       | 3                | ✓               |
| {D}       | 2                |                 |
| {E}       | 2                |                 |
| $\{C,D\}$ | 2                |                 |
| $\{C,E\}$ | 2                |                 |
| {D,E}     | 2                |                 |
| {C,D,E}   | 2                | ✓               |

ltems

|    | A                               | В                 | С                 | D                                                                                 | E                                                                 | F                                                                 | G                                                                 | Н                                                                                                   | I                                                                                 | J                                                                                 |
|----|---------------------------------|-------------------|-------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 1  |                                 |                   |                   |                                                                                   |                                                                   |                                                                   |                                                                   |                                                                                                     |                                                                                   |                                                                                   |
| 2  |                                 |                   |                   |                                                                                   |                                                                   |                                                                   |                                                                   |                                                                                                     |                                                                                   |                                                                                   |
| 3  |                                 |                   |                   |                                                                                   |                                                                   |                                                                   |                                                                   |                                                                                                     |                                                                                   |                                                                                   |
| 4  |                                 |                   |                   |                                                                                   |                                                                   |                                                                   |                                                                   |                                                                                                     |                                                                                   |                                                                                   |
| 5  |                                 |                   |                   |                                                                                   |                                                                   |                                                                   |                                                                   |                                                                                                     |                                                                                   |                                                                                   |
| 6  |                                 |                   |                   |                                                                                   |                                                                   |                                                                   |                                                                   |                                                                                                     |                                                                                   |                                                                                   |
| 7  |                                 |                   |                   |                                                                                   |                                                                   |                                                                   |                                                                   |                                                                                                     |                                                                                   |                                                                                   |
| 8  |                                 |                   |                   |                                                                                   |                                                                   |                                                                   |                                                                   |                                                                                                     |                                                                                   |                                                                                   |
| 9  |                                 |                   |                   |                                                                                   |                                                                   |                                                                   |                                                                   |                                                                                                     |                                                                                   |                                                                                   |
| 10 |                                 |                   |                   |                                                                                   |                                                                   |                                                                   |                                                                   |                                                                                                     |                                                                                   |                                                                                   |
|    | 2<br>3<br>4<br>5<br>6<br>7<br>8 | I 2 3 4 5 6 7 8 9 | I 2 3 4 5 6 7 8 9 | 1         2         3         4         5         6         7         8         9 | 1       2       3       4       5       6       7       8       9 | 1       2       3       4       5       6       7       8       9 | 1       2       3       4       5       6       7       8       9 | 1       2         3       3         4       4         5       6         7       8         9       9 | I         2         3         4         5         6         7         8         9 | I         2         3         4         5         6         7         8         9 |

Closed itemsets: {C,D,E,F}, {C,F}

What are closed }

MF = closed

Fit all sup IF

tems

|              |    | A | В | С | D | E | F | G | н | I | J |
|--------------|----|---|---|---|---|---|---|---|---|---|---|
| Transactions | ı  |   |   |   |   |   |   |   |   |   |   |
|              | 2  |   |   |   |   |   |   |   |   |   |   |
|              | 3  |   |   |   |   |   |   |   |   |   |   |
|              | 4  |   |   |   |   |   |   |   |   |   |   |
|              | 5  |   |   |   |   |   |   |   |   |   |   |
| Trar         | 6  |   |   |   |   |   |   |   |   |   |   |
|              | 7  |   |   |   |   |   |   |   |   |   |   |
|              | 8  |   |   |   |   |   |   |   |   |   |   |
|              | 9  |   |   |   |   |   |   |   |   |   |   |
|              | 10 |   |   |   |   |   |   |   |   |   |   |

Closed itemsets: {C,D,E,F}, {C}, {F}



Figure 5.18. Relationships among frequent, closed, closed frequent, and maximal frequent itemsets.

# **EXAMPLE QUESTION**



- frequent itemsets?
- Which dataset will produce the longest frequent itemset?
- Which dataset will produce frequent itemsets with highest maximum support?
- Which dataset will produce frequent itemsets containing items with widely varying support levels (i.e., itemsets containing items with mixed support, ranging from 20% to more than 70%)?
- What is the number of maximal frequent itemsets for each dataset? Which dataset will produce the most number of maximal frequent itemsets?
- What is the number of closed frequent itemsets for each dataset? Which dataset will produce the most number of closed frequent itemsets?

## **EXAMPLE QUESTION**

65 C FMF closed



- Given the following transaction data sets (dark cells indicate presence of an item in
  - a transaction) and a support threshold of 20%, answer the following questions
    - a. What is the number of frequent itemsets for each dataset? Which dataset will produce the most number of frequent itemsets?
    - b. Which dataset will produce the longest frequent itemset?
    - c. Which dataset will produce frequent itemsets with highest maximum support?
    - d. Which dataset will produce frequent itemsets containing items with widely varying support levels (i.e., itemsets containing items with mixed support, ranging from 20% to more than 70%)?
    - e. What is the number of maximal frequent itemsets for each dataset? Which dataset will produce the most number of maximal frequent itemsets?
    - f. What is the number of closed frequent itemsets for each dataset? Which dataset will produce the most number of closed frequent itemsets?