30 A charged oil drop of mass m, with n excess electrons, is held stationary in the uniform electric field between two horizontal plates separated by a distance d.

The voltage between the plates is V, the elementary charge is e and the acceleration of free fall is g.

What is the value of *n*?

- A $\frac{eV}{mad}$
- $\mathbf{B} \quad \frac{mgd}{eV}$
- $\mathbf{C} = \frac{meV}{ad}$
- $\mathbf{D} \quad \frac{gd}{meV}$
- 31 When the current in a wire is 5.0 A, the average drift speed of the conduction electrons in the wire is $7.4 \times 10^{-4} \, \text{m s}^{-1}$.

Which row gives a possible cross-sectional area and number of conduction electrons per unit volume for this wire?

	cross-sectional area/m²	number of conduction electrons per unit volume/m ⁻³
Α	7.2×10^{-7}	1.2×10^{28}
В	7.2 × 10 ⁻⁷	5.9×10^{28}
С	2.3×10^{-6}	7.3×10^{26}
D	2.3×10^{-6}	3.7×10^{27}

32 A fixed resistor of resistance 12Ω is connected to a battery. There is a current of $0.20\,\mathrm{A}$ in the resistor. The current is now doubled.

What is the new power dissipated in the resistor?

- **A** 0.48 W
- **B** 0.96 W
- **C** 1.9W
- **D** 4.8 W
- **33** There is a current in a resistor for an unknown time.

Which two quantities can be used to calculate the energy dissipated by the resistor?

- A the current in the resistor and the potential difference across the resistor
- **B** the resistance of the resistor and the current in the resistor
- **C** the total charge passing through the resistor and the potential difference across the resistor
- **D** the total charge passing through the resistor and the resistance of the resistor