Motor de Passo

Introdução

Os motores de passo preenchem um nicho único no mundo dos motores controlados. Estes motores são usualmente empregados em aplicações de medição e de controle.

Aplicações

Aplicações destes motores são encontrados em impressoras de jato de tinta, máquinas com controle numérico (CNC) e bombas volumétricas.

Características

- 1. **Inexistência de escovas** os motores de passo não possuem escovas. Os comutadores e escovas dos motores convencionais são os componentes que apresentam a maioria das falhas e ainda podem criar arcos que são indesejáveis e perigosos em alguns ambientes.
- 2. **Independência da carga** os motores de passo giram com um uma dada velocidade independentemente da carga, desde que a carga não exceda o torque do motor.

- 3. **Posicionamento em malha aberta** Os motores de passo se movem com incrementos ou passos que podem ser quantificados. Desde que o motor funcione com o torque especificado, a posição do eixo é conhecida a todo tempo sem necessidade de um mecanismo de realimentação.
- 4. **Torque Estacionário** Os motores de passo são capazes de manter o eixo estacionário, desde que o seu torque seja respeitado.
 - 5. Excelente resposta a partida, parada e a reversão de movimento.

Tipos de Motores de Passo

Há três tipos básicos de motores de passo: imã permanente, relutância variável e híbrido. Estes tipos de motores serão descritos a seguir.

1) Os motores de imã permanente

Os motores de imã permanente possuem um rotor magnetizado ou de imã permanente Fig.1

Fig. 1 – Motor de imã permanente de duas fases

Tipos de Motores de Passo

Este tipo de motor tem um ímã permanente em um eixo liso, gerando uma mecânica mais simples e barata. A vantagem desse tipo de motor é o fato dele ter um campo magnético permanente que se soma ao campo magnético das bobinas, dando uma potência, ou torque, maior na partida. A desvantagem desse tipo de motor é o fato deles terem um passo maior, com menor precisão.

Quando uma bobina do estator é ativada, o eixo se alinha com o campo magnético até o estator ser desligado e o estator seguinte ligado Fig.2.

Fig. 2 Princípio de Funcionamento do Motor de Passo com Imã Permanente

A resolução do motor de passo com imã permanente pode ser aumentada através do aumento do número de polos no rotor ou aumento do número de fases Fig. 3.

Fig. 3 Métodos para aumentar a resolução do motor de passo.

2) Motor de Relutância Variável

Os motores de relutância variável (também chamado de motores de relutância variável chaveada) possuem de 3 a 5 bobinas conectadas a um terminal comum. A Fig. 4 mostra um corte de um motor com 2 bobinas, com 90 graus por passo.

Motor de Passo de Relutância Variável com duas fases

AA' e BB' são duas fases

Núcleo do motor em metal doce

Corpo do motor

Repare que os dentes do rotor são concebidos de forma que quando estão alinhados a uma fase, eles ficam desalinhados para a outra

Fig. 4 Motor de Relutância Variável.

O eixo do motor é feito de ferro, e não contém um ímã, onde o campo magnético é formado pela energização das bobinas para alinhar o eixo. A grande diferença desse tipo de motor é fato de não haver um campo magnético permanente fazendo ele ter um torque, ou força, menor na saída.

Os dentes do eixo são alinhados com os dentes de um estator e desalinhados com relação ao outro, em seguida, o próximo grupos de bobinas é ligado alinhado o eixo ao outro estator e desalinhando do estator anterior, fazendo o eixo girar em passos Fig.5.

Fig. 5 Princípio de Funcionamento do Motor de Relutância Variável.

A resolução do motor de passo de relutância variável pode ser aumentado através do aumento dos dentes no rotor e através do aumento do número de fases Fig. 6.

Fig. 6 Aumento de Resolução de um Motor de Relutância Variável.

3) Motor Híbrido

Este tipo de motor mistura a mecânica mais sofisticada do motor de Relutância Variável com a potência do ímã permanente no eixo, dando um torque maior com maior precisão nos passos, que podem variar entre 3,6° e 0,9° graus, contra 7,5° a 15° graus para o de ímã permanente Fig.7.

Fig. 7 Motor Híbrido.

O eixo do motor é construído com dois grupos de dentes, um com o POLO SUL saliente e o outro com o POLO NORTE, de modo que os dentes fiquem alternados Fig.8.

Fig. 8 Eixo de um Motor Híbrido.

De forma semelhante aos tipos anteriores, as bobinas devem ser ligadas em sequência para o eixo poder girar Fig. 9.

Fig. 9 Funcionamento de um Motor Híbrido.

Tipos de Polos

Motores de passo, geralmente têm duas fases e podem ser **unipolar** ou **bipolar**.

Nos motores de passo unipolares são usados dois enrolamentos por fase e costumam ter um contato em comum, resultando em cinco, seis ou oito conexões. Nos modelos onde a conexão comum dos dois pólos é separada, são seis conexões externas e nos modelos onde a conexão comum é soldada internamente, são cinco conexões externas. Os de oito conexões externas contêm a conexão em comum dos dois pólos separada e facilitam a ligação em série ou paralela das bobinas. Eles são chamados de unipolares e facilitam o projeto por não necessitar de ligação reversa nos pólos. Os modelos com cinco ou seis conexões têm as bobinas ligadas em série e necessitam da capacidade de reverter as ligações entre as bobinas Fig.10.

Fig. 10 Motor de Passo Unipolar.

Ligação reversa é um tipo de ligação muito comum entre motores onde os polos A e B da bobinas podem ser ligados ao positivo e negativo respectivamente, ou invertida, negativo e positivo respectivamente.

Os **Motor de Passo Bipolar** usam uma ligação por pólo e necessitam que o circuito de controle possa reverter o sentido da corrente para acionar as bobinas de forma correta Fig.11.

Fig. 11 Motor de Passo Bipolar

Tipos de Ligações

Wave Drive - Liga uma bobina por vez, com menor consumo de energia, porém, com menor torque.

Full Drive - Liga duas bobinas por vez, com maior consumo de energia e maior torque.

Half Drive - Alterna a ligação de uma e duas bobinas por vez, dobrando a quantidade de passos necessários para o motor girar 360°, porém, é menos veloz.

Ressonância

Os motores de passo possuem uma frequência de ressonância natural uma vez que pode ser modelado como um conjunto massa-mola. Quando se acionamento está próximo desta frequência pode ocorrer uma mundaça audível no seu ruído bem como um aumento na sua vibração. Este ponto de ressonância varia com a aplicação e a carga, mas ocorre entre 70 a 120 passo por segundo. Em casos severos o motor pode perder passos nesta frequência. A forma de evitar este problema é evitar esta faixa de frequência. O acionamento por meio passo (half stepping) e micro passos reduzem este tipo de problema. Em aceleração da velocidade, a zona de ressonância deve ser ultrapassada o mais rapidamente possível.

Características do Torque Estático

onde n é o número de dentes no rotor e θ é o ângulo do rotor

O torque do motor é dado por

$$T = -T_0 \sin n\theta$$

Se uma carga com torque T_L é aplicada ao motor então o rotor irá ser deslocado por um ângulo θ_e onde:

$$T_L = -T_0 \sin n\theta$$

$$\theta_{e} = \frac{\sin^{-1}(-T_{L}/T_{0})}{n}$$

Esta fórmula é válida se |TL |<To

Se |T∟ | excede To então a sincronização é perdida.

O estator fica aproximadamente saturado com a corrente nominal i_o, de modo que ao dobrar a corrente, o torque não é dobrado.

Excitando dois enrolamentos do estator, o torque aumenta de au_0 para $\sqrt{2} au_0$

Característica de Torque e Velocidade

Pull-out torque é o torque que o motor pode gerar a uma dada velocidade de passos: se o torque da carga exceder este limite então o motor perde a sincronização

Um passo: Resposta Dinâmica (1)

A figura mostra a posição do rotor após o acionamento de A+ para B+ (1 passo).

Um passo: Resposta Dinâmica (2)

Na ausência de torque de carga tem-se:

$$J_r \frac{d^2 \theta}{dt^2} + D_r \frac{d \theta}{dt} = -T_0 \sin n\theta$$

onde Jr é a inércia do motor e Dr é o coeficiente viscoso de amortecimento.

Para pequenos deslocamentos em torno do ponto de equilíbrio tem-se

$$J_r \frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} + D_r \frac{\mathrm{d}\theta}{\mathrm{d}t} \cong -T_0 n\theta$$

Esta é a equação de um movimento simples amortecido com Frequência de ressonância dada por:

$$f_0 = \frac{1}{2\pi} \sqrt{nT_0/J_r}$$

Um passo: Resposta Dinâmica (3)

Para um motor de passo com os seguintes parâmetros

Number of rotor poles: $N_r = 50$

Rotor inertia: $J_r' = 1.16 \times 10^{-5} \text{ kg m}^2$ Peak torque: $T_0 = 0.242 \text{ N m}$

$$f_0 = 1/2\pi \sqrt{nT_0/J_r}$$

= 162 Hz

Na frequência de ressonância mais de um passo podem causar a perda da sincronização.

Passo Múltiplos: Resposta Dinâmica (1)

A figura mostra 4 passos na frequência de 40 passos/s.

Passo Múltiplos: Resposta Dinâmica (2)

Esta figura mostra a perda da sincronização como resultado de 4 passos na frequência de 132 passos/s (próxima da frequência de ressonância.

Passo Múltiplos: Resposta Dinâmica (3)

Esta figura mostra a perda da sincronização como resultado de 4 passo a frequência de 66 passos/s (metade da frequência de ressonância)

Passo Múltiplos: Resposta Dinâmica (4)

Esta figura mostra 4 passos para a frequência de 200 passos/s (acima da frequência de ressonância.

Micro-passos (Micro-stepping) (1)

Micro-passos envolve uma interpolação entre as posições de passo completo e meio passo.

Isto é obtido através do controle linear das correntes de acionamento dos estatores.

Micro-passos prove grande precisão e operação suave em baixas velocidades e diminuem as possibilidades de ressonância

Micro-passos requerem acionamentos lineares complexos com conversores digitais-analógicos para determinação das correntes nos enrolamentos.

Micro-passos (Micro-stepping) (2)

Micro-passos com correntes senoidais e cossenoidais nos enrolamentos dos estatores A e B são dados por

$$i_a = i_0 \sin \alpha$$

 $i_b = i_0 \cos \alpha$

onde ao se variar α de 0 a $\pi/2$ move a posição do rotor de um passo.

Em princípio não há limites para o número de micro-passos, no entanto em termos práticos não se utiliza mais que 256 micro-passos por passo completo.

Micro-passos (Micro-stepping) (3)

Micro-passos (Micro-stepping) (4)

A precisão aparente dos micro-passos acontece na prática quando não fricção de Coulomb e torque de carga.

A forma real da curva de torque não é exatamente senoidal, resultando na necessidade de micro-passos não uniformemente espaçados.

A quantização do conversor digital-analógico também resulta em espaçamentos não uniformes dos micro-passos.

São necessários razões de passos muito altas para obter uma velocidade de rotação normal.

Operação de Início e Parada (1)

A característica torque pull-out versus velocidade pode se estender Por 10000 ou 20000 passos por segundo.

Pull-out torque é o torque que o motor pode gerar a uma dada velocidade de passos: se o torque da carga exceder este limite então o motor perde a sincronização

Entretanto, o motor não pode começar ou parar a partir destas velocidades.

Operação de Início e Parada (2)

Para mover-se com um grande número de passos rapidamente o motor precisa iniciar com baixa velocidade e então acelerar até atingir uma alta velocidade. O inverso também é verdadeiro.

A faixa de torques de carga e velocidades na qual o motor começa e para sem perda de sincronização é conhecida como **característica** *pull-in*.

A máxima velocidade pull-in ocorre quando o torque da carga é zero e todo torque do motor é disponibilizado para aceleração:

$$J_r \frac{d^2 \theta}{dt^2} = T_{avg} = \frac{2T_0 \sqrt{2}}{\pi}$$

$$\theta = \frac{1}{2} \frac{2T_0 \sqrt{2}}{\pi J_r} t^2 \ge \frac{1}{2} \cdot \frac{2\pi}{4n}$$

$$t \ge \sqrt{\frac{\pi^2 J_r}{4nT_0 \sqrt{2}}}$$

 $1 \ge \sqrt{4nT_0\sqrt{2}}$

Integrando

A velocidade máxima de pull-in dada em termos de frequência é

$$f_{\text{max}} = \frac{2}{\pi} \sqrt{\frac{nT_0\sqrt{2}}{J_r}}$$

Operação de Início e Parada (3)

Para um motor de passo com os seguintes parâmetros

Number of rotor poles: $N_r = 50$ Rotor inertia: $J_r = 1.16 \times 10^{-5} \text{ kg m}^2$ Peak torque: $T_0 = 0.242 \text{ N m}$

A velocidade máxima de pull-in da em termos de frequência é

$$f_{\text{max}} = \frac{2}{\pi} \sqrt{\frac{nT_0\sqrt{2}}{J_r}}$$
$$= 773 \text{ step/s}$$

Em geral fmax está relacionada com a frequência de ressonância fo:

$$f_{\text{max}} = \frac{2}{\pi} \sqrt{\frac{nT_0\sqrt{2}}{J_r}} = 4\sqrt[4]{2}f_0 = 4.8f_0$$

Operação de Início e Parada (4)

Modelo do Motor de Passo (1)

No enrolamento A do motor

onde va é a tensão aplicada no enrolamento; ia é corrente no enrolamento; e ea é a tensão induzida no enrolamento

$$v_a = Ri_a + L \frac{di_a}{dt} + e_a$$

No enrolamento B do motor

$$v_b = Ri_b + L\frac{di_b}{dt} + e_b$$

Modelo do Motor de Passo (2)

 Ψa e Ψb são os fluxos magnéticos nos enrolamentos A e B sendo:

$$\Psi_a = \Psi_m \cos n\theta$$

$$\Psi_b = \Psi_m \sin n\theta$$

e Ψm é o fluxo máximo no estator .

A tensão ea e eb que são induzidas nos enrolamentos do estador são dadas por:

$$\mathbf{e}_{a} = m \frac{d\Psi_{a}}{dt} = -mn\Psi_{m} \sin n\theta. \frac{d\theta}{dt} = -K_{c}\omega \sin n\theta$$

$$\mathbf{e}_{b} = m \frac{d\Psi_{b}}{dt} = -mn\Psi_{m} \cos n\theta. \frac{d\theta}{dt} = K_{c}\omega \cos n\theta$$

onde m é o número de espiras no enrolamento dos estator.

Modelo do Motor de Passo (3)

Pela conservação de energia: potência mecânica na saída = potência elétrica na entrada:

$$\omega T_a = i_a e_a e_b \omega T_b = i_b e_b$$

tal que

$$T_a = -i_a K_c \sin n\theta$$
 e $T_b = i_b K_c \cos n\theta$

Modelo completo:

$$J_{r} \frac{d^{2}\theta}{dt^{2}} + D_{r} \frac{d\theta}{dt} = T + T_{a} + T_{b}$$

$$= T - i_{a}K_{c} \sin n\theta + i_{b}K_{c} \cos n\theta$$

$$V_{a} = Ri_{a} + L \frac{di_{a}}{dt} - \omega K_{c} \sin n\theta$$

$$V_{b} = Ri_{b} + L \frac{di_{b}}{dt} + \omega K_{c} \cos n\theta$$

Circuitos de Controle Básicos

Nesta seção serão apresentados os circuitos básicos necessários para acionar os diversos tipos de motores de passo.

Relutância Variável

Os motores de relutância variável tem múltiplas bobinas, tipicamente de 3 a 5, que possuindo um terminal comum. As bobinas são acionadas uma de cada vez em uma determinada sequência para girar o motor.

A Fig. 12 mostra o circuito básico para acionar um motor de relutância variável. Note os diodos nos terminais da bobina. Como elas são cargas indutivas, necessitam de um caminho para a corrente quando são chaveadas. O diodo protege o transistor MOSFET.

Figura 12: Circuito de Controle de um motor de relutância variável

Unipolar

O circuito de controle básico de um motor unipolar , mostrado na Fig.13, é similar ao do motor de relutância variável. Note diodos extras para cada MOSFET. Isto é necessário porque a bobina possui derivação central nos motores unipolares. Quando uma extremidade da bobina é aterrada a outra é colocada na tensão alta e vice versa. Estes diodos previnem que a tensão através dos MOSFETS caiam abaixo da tensão de terra.

Figura 13: Circuito de Controle de um Motor unipolar

Bipolar

O circuito básico para acionar as bobinas do motor de passo bipolar é a ponte H mostrada na Fig. 14. A ponte H pode ser configurada para permitir o fluxo de corrente em uma outra direção na bobina. Considerando a Fig. 14, a corrente fluirá da esquerda para direita na bobina 1 quando os MOSFETs Q1 e Q4 estiverem acionados e os transistores Q2 e Q3 cortados. A corrente fluirá da direita para esquerda quando Q2 e Q3 estiverem conduzindo e Q1 e Q4 cortados.

As pontes H possuem um perigo inerente que deve ser mencionado. Sob nenhuma condição os transistores de um mesmo lado da ponte devem ser ligados ao mesmo tempo. Isto causará um curto-circuito que poderá danificar o circuito de controle. Um cuidado especial deve ser tomado no chaveamento dos MOSFETs.

Figura 14: Circuito de Controle do Motor bipolar

Referência

AN907 Stepping Motors Fundamentals – Applications Note – Microchip, http://ww1.microchip.com/downloads/en/AppNotes/00907a.pdf acessado em 11/03/2013.

Parte do material foi obtido do sseguintes site:s http://www.engineersgarage.com/articles/stepper-motors?page=1

http://www.personal.rdg.ac.uk/~stsgrimb/teaching/stepping_motors.pdf