ST2334 AY23/24 Sem 2 Midterms Cheat Sheet

Chapter 1: Probability

Chapter 1. Proba	biity
Sample Space	The sample space, denoted by S, is the set of ALL possible outcomes of a statistical experiment. The sample space depends on the problem of interest. An event is a subset of a sample space.
Notation	For a finite set A, A denotes the number of elements in A.
Equally Likely Probability	If S is a finite sample space in which all outcomes are equally likely and E is an event in S, then the probability of E, denoted $P(E)$, is $P(E) = \frac{The\ number\ of\ outcomes\ in\ E}{The\ total\ number\ of\ outcomes\ in\ S} = \frac{ E }{ S }$
Statistical Experiment	A Statistical Experiment is any procedure that produces data/ observations.
Sample Point	A sample point is an outcome (element) in the sample space
Event	An event is a subset of the sample space.

- . The sample space is itself an event, and is called a sure event
- An event that contains NO ELEMENTS is the empty set, denoted by Ø,

Event Operation & Relationship Laws

event operation a nerationship caws		
Basic		Distributive Law
$A \cap A' = \emptyset$	$A \cap \emptyset = \emptyset$	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
$A \cup A' = S$	(A')' = A	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
Set Union Law with Complement		Absorption Law
$A \cup B = A \cup (B \cap A')$		$A = (A \cap B) \cup (A \cup B')$
De Morgan's Law		
	$\cup \cup A_N)' =$	$(A_1 \cap A_2 \cap \cap A_N)' =$
	$1'_2 \cap \cap A'_N$	$A'_1 \cup A'_2 \cup \cup A'_N$
Note: $(A \cup B)' =$	$A' \cap B$	Note: $(A \cap B)' = A' \cup B$

	Order Matters	Order Does Not Matter
Repetition Is Allowed	n^k	$\binom{k+n-1}{k}$
Repetition Is Not Allowed	P(n,k)	$\binom{n}{k}$

$$P(n,r) = \frac{n!}{(n-r)!} = n(n-1)(n-2)...(n-r+1)$$

Probability Axioms

Let S be a sample space. A probability function P from the set of all events in S to the set of real numbers satisfies the following axioms: For all events A and B in S,

- 1. $0 \le P(A) \le 1$
- P(∅) = 0 and P(S) = 1
- 3. If A and B are disjoint events (A \cap B = \emptyset), then (i.e A & B are mutually exclusive events) $P(A \cup B) = P(A) + P(B)$

Basic Properties of Probabilities

Proposition 1:

The probability of the empty set \emptyset is $P(\emptyset) = 0$

If A_1, A_2, \ldots, A_N are mutually exclusive events, that is $A_i \cap A_i = 0$ for any $i \neq j$, then

$P(A_1 \cup A_2 \cup \cup A_N) = P(A_1) + P(A_2) + + P(A_N)$		
Proposition 3: Complement Rule	Proposition 4:	
For any event A, we have:	For any 2 events A & B,	
P(A') = 1 - P(A)	$P(A) = P(A \cap B) + P(A \cap B')$	
Proposition 5: General Union of	Proposition 6:	
2 Events	If $A \subset B$, then $P(A) \leq P(B)$	
For any events A & B,		

$P(A \cup B) = P(A) + P(B) - P(A \cap B)$

maependence, Mutual Exclusivity	
ME	2 events CANNOT occur at the same time
IVIE	• $A, B $ mutually exclusive $\Leftrightarrow P(A \cap B) = \emptyset$
Independent Indep $\Rightarrow \bot$ dep $\Rightarrow \mathscr{L}$	$P(A) = \frac{P(A \cap B)}{P(B)} \Rightarrow P(A) \times P(B) = P(A \cap B)$ • A, B independent $\Leftrightarrow P(A \cap B) = P(A)P(B)$ • If independent $\& P(A) \times 0 \Rightarrow P(B A) = P(B)$
	 If independent & P(B) ≠0 → P(A B) = P(A)
Complement	P(A') = 1 - P(A)
Expected Value	$\sum_{k=1}^{n} a_k p_k = a_1 p_1 + a_2 p_2 + a_3 p_3 + \dots + a_n p_n$

Conditional Probability

$$P(B|A) = \frac{P(A \cap B)}{P(A)} - (1)$$

	P(A)
Multiplying both sides of (1) by P(A)	Dividing both sides of (2) by P(B A)
$P(A \cap B) = P(B A) \cdot P(A) - (2)$	$P(A) = \frac{P(A \cap B)}{P(B A)} - (3)$

Multiplication Rule		Inverse Proba	ability Formula
$P(A \cap B) = P(B A) \cdot P(A), if P(A) \neq 0$ $P(A \cap B) = P(A B) \cdot P(B), if P(B) \neq 0$		P(B A) =	$= \frac{P(A \cap B)}{P(A)}$
		Then inverse: $P(A B) = \frac{1}{2}$	$\frac{P(A)P(B A)}{P(B)}$
False	False	Sensitivity	Specificity
Positive	Negative		
P(+'ve D ^c)	P(-'ve D)	P(+'ve D)	P(-'ve D ^c)

Mutually Exclusive Events Non-Mutually Exclusive Events P(A or B) = P(A) + P(B) P(A or B) = P(A) + P(B) - P(A and B)

Partition, Law of Total Probability

For any events A & B, we have:

P(B) = P(A)P(B|A) + P(A')P(B|A')

Rayes Theorems

Buyes meere	
K variables	$P(B_k A) = \frac{P(A B_k) \cdot P(A_k)}{\sum_{i=1}^n P(B_i)P(A B_i)}$ $P(B_k A) = P(A B_k) \cdot P(B_k)$ $P(A B_k) \cdot P(B_k) + P(A B_k) \cdot P(B_k) + \dots + P(A B_k) \cdot P(B_k)$
2 variables	$P(A B_1) \cdot P(B_1) + P(A B_2) \cdot P(B_2) + \dots + P(A B_n) \cdot P(B_n)$ $P(B A) = \frac{P(A B) \cdot P(B)}{P(A)} \cdot P(B)$ $= \frac{P(A B) \cdot P(B)}{P(A B) \cdot P(B)} + \frac{P(A B) \cdot P(B)}{P(A)} = \frac{P(A \cap B)}{P(A)}$

Pairwise Independent/ Mutually Independent

- Events are mutually independent IFF 4 conditions are satisfied:
- 1. $P(A \cap B) = P(A) \cdot P(B)$
- $P(A \cap C) = P(A) \cdot P(C)$
- 3. $P(B \cap C) = P(B) \cdot P(C)$
- 4. $P(A \cap B \cap C) = P(A) \cdot P(B) \cdot P(C)$
- Events can be pairwise independent without satisfying the condition $P(A \cap B \cap C) = P(A) \cdot P(B) \cdot P(C)$
- Conversely, they can satisfy the condition $P(A \cap B \cap C) = P(A)$ $P(B) \cdot P(C)$ without being pairwise independent.

Mutually Independent:

$$P(A_1 \cap A_2 \cap ... \cap A_n) = P(A_1) \cdot P(A_2) \cdot ... \cdot P(A_n)$$

Chapter 2: Random Variables

Probability Mass Function (PMF)	$f(x) = \begin{cases} P(X = x) & for \ x \in R_X \\ for \ x \notin R_X \end{cases}$ Properties of PMF: The pmf, $f(x)$ of a discrete random variable MUST satisfy these conditions: $1) \qquad f(x_i) \geq 0 \text{ for all } x_i \in R_X \\ 2) \qquad f(x_i) = 0 \text{ for all } x_i \notin R_X \\ 3) \qquad \sum_{i=1}^m f(x_i) = 1 \text{ ORO } N_{x_i \in R_X} f(x_i) = 1$ For any set $B \subset \mathbb{R}$, we have: $P(X \in B) = \sum_{x_i \in BBR_X} f(x_i)$
Probability Density Function (PDF)	1) $f(x) \geq 0 \text{ for all } x \in R_X; f(x) = 0 \text{ for } x \notin R_X$ 2) $\int_{R_X} f(x) dx = 1$ This is equivalent to: $\int_{-\infty}^{\infty} f(x) \ dx = 1 \text{ Since } f(x) = 0 \text{ for } x \notin R_X$ 3) For any a and b such that $a \leq b$: $P(a \leq X \leq b) = \int_a^b f(x) \ dx$ Note: $P(a < X < b) = P(a < X \leq b) = P(a \leq x \leq b) = P(a $

Cumulative Distribution Function (CDF)

 $F(x) = P(X \le x)$ $F(x) = \sum_{i=1}^{n} f(t) = \sum_{i=1}^{n} P(X = t)$ The cumulative distribution function of a DRV is a step function. For any 2 numbers a < b, we have: $P(a \le X \le b) = P(X \le b) - P(X < a) = F(b) - F(a-)$ $F(a -) = \lim_{x \to a} F(x)$ Continuous $F(x) = \int f(t) dt$ And $f(x) = \frac{1}{2}$

- Discrete → Summation; Continuous → Integrate
- The ranges of F(x) and f(x) satisfy the following conditions:
- 1. $0 \le F(x) \le 1$
- 2. For discrete distributions, $0 \le f(x) < 1$
- 3. For continuous distributions, $0 \le f(x)$, but NOT NECESSARILY that

 $P(a \le X \le b) = P(a < X < b) = F(b) - F(a)$

Expectation & Variance **expectation = mean

Expectation for DRV	Expectation for CRV	
$\mu x = E(X) = \sum_{x_i \in R_X} x_i f(x_i)$ $= \sum_{x_i \in R_X} x_i P(X = x) = \frac{\sum f(x)}{\sum f}$	$\mu x = E(X) = \int_{-\infty}^{\infty} x f(x) dx$ $= \int_{x \in R_X} x f(x) dx$	
Let g(◆) be an arbitrary function		
$E[g(X)] = \sum_{x \in R_X} g(x)f(x)$	$E[g(X)] = \int_{R_X} g(x)f(x) dx$	

Variance

$$\sigma_{_{\!X}}^2 = V(X) = E(X - \mu_{_{\!X}})^2 = E(X^2) - [E(X)]^2$$

Note:

- $V(X) \ge 0$ for any X.
- Equality holds iff P(X = E(X)) = 1, that is when X is a constant
- The positive root of the variance = standard deviation of X

$$\sigma_X = \sqrt{V(X)}$$

Variance

Variance for DRV	Variance for CRV	
$V(X) = \sum_{x \in R_X} (x - \mu_x)^2 f(x)$	$V(X) = \int_{-\infty}^{\infty} (x - \mu_X)^2 f(x) dx$	

Basic Properties of Expectations & Variance

Expectation	Variance
a) $E(a) = a$ b) $E(aX) = aE(X)$ c) $E(aX \pm b) = aE(X) \pm b$ d) $E(aX \pm bY) = aE(X) \pm bE(Y)$ e) $E(x_1 + x_2 + \dots + x_n) = nE(X)$	a) $V(a) = 0$ b) $V(aX) = a^2V(X)$ c) $V(aX \pm b) = a^2V(X)$ d) $V(aX \pm bY) = a^2V(X) \pm b^2V(Y)$ e) $V(x_1 + x_2 + \dots + x_n) = nV(X)$
$E(a_1X_1 + \ldots + a_kX_k)$ = $a_1E(X_1) + \ldots + a_kE(X_k)$	

Chapter 3: Joint Distributions

Definition 2: 2D Random Vector

Let E be an experiment and S be a corresponding sample space. Suppose X and Y are two functions each assigning a real number to each $s \in S$. We call (X,Y) a two-dimensional random vector, or a two-dimensional random

variable.			
2D Discrete	(X, Y) is a discrete 2D random variable if the number of possible values of $(X(s), Y(s))$ are finite/countable. That is, the possible values of $(X(s), Y(s))$ may be represented by:		
	$(x_i, y_i), i = 1,2,3,; j = 1,2,3$		
2D Continuous	(X,Y) is a continuous 2D random variable if the possible values of $(X(s),Y(s))$ can assume any value in some region of the Euclidean space \mathbb{R}^2 .		

- We can view X and Y separately to JUDGE whether (X, Y) is discrete or
- If both X and Y are discrete random variables → (X, Y) is discrete.
- If both X and Y are continuous random variables \rightarrow (X, Y) is continuous

Definition 3: n-Dimensional Random Vector

Let $X_1, X_2, ..., X_n$ be n functions each assigning a real number to all outcome $s \in S$. We call $(X_1, X_2, ..., X_n)$ a n-dimensional random vector, or a n-dimensional random

Discrete Joint Probability Function				
	$f_{x,y}(x,y) = P(X = x, Y = y), for (x,y) \in R_{X,Y}$			
Prop	erties of Discrete Joint Probability Function			
1.	$f_{x,y}(x,y) \ge 0$ for any $(x,y) \in R_{x,Y}$ $f_{x,y}(x,y) = 0$ for any $(x,y) \notin R_{x,Y}$			
2.	$f_{x,y}(x,y) = 0$ for any $(x,y) \notin R_{x,y}$			
3.				
	$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} f_{x,y}(x_i, y_j) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} P(X = x_i, Y = y_j) = 1$			
	$\sum \sum_{(x,y) \in R_{X,Y}} f(x,y) = 1$			
4.	Let A be any subset of $R_{X,Y}$, then:			
	$P((X,Y) \in A) = \sum_{(x,y) \in A} f_{X,Y}(x,y)$			

ntinuous Joint Probability Function

$$P((X,Y) \in D) = \iint_{(x,y) \in D} f_{x,y}(x,y) \, dy dx$$

For any $D \subseteq \mathbb{R}^2$, more specifically:

$$P(a \le X \le b, c \le Y \le d) = \int_{a}^{b} \int_{a}^{d} f_{x,y}(x,y) \, dy dx$$

Properties of Continuous Joint Probability Function

- $f_{x,y}(x,y) \ge 0$ for any $(x,y) \in R_{X,Y}$ $f_{x,y}(x,y) = 0$ for any $(x,y) \notin R_{X,Y}$
 - $f_{x,y}(x,y) dydx = 1$ $f_{x,y}(x,y) dydx = 1$

Marginal Probability Distribution

Y is DRV	For any x:
(Discrete)	$f_X(x) = \sum_{y} f_{X,Y}(x,y)$
Y is CRV	For any x:
(Continuous)	$f_{x}(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$

- Marginal distribution is like a "projection" of the 2D function $f_{X,Y}(x,y)$ onto the 1D function.
- The marginal distribution of X is the individual distribution of X ignoring the values of Y.
- f_x(x) is a probability function; so it satisfies all the properties of the probability function

	Baseball	Basketball	Football	Total	
Male	13	15	20	48	Marginal distribution
Female	23	16	13	52	of gender
Total	36	31	33	100	

Conditional Distribution

Given $f_{\nu}(\nu) > 0$, cond prob fn: Given $f_x(x) > 0$, cond prob fn: $f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_{X,Y}(x,y)}$ $f_{Y|X}(y|x) =$ $f_X(x)$

If $f_X(x) > 0$, $f_{X,Y}(x,y) = f_X(x)f_{Y|X}(y|x)$, If $f_Y(y) > 0$, $f_{X,Y}(x,y) = f_Y(y)f_{X|Y}(x|y)$ P(Y = v|X = x) =Continuous $f_{Y|X}(y|x) dy$ $y f_{Y|X}(y|x) dy$

> ioint density $conditional\ distribution =$ marginal distribution

Independent Random Variables

- Random variables X and Y are independent IFF for any x and y: $f_{X,Y}(x,y) = f_x(x)f_Y(y)$
- Random variables X_1, X_2, \dots, X_n are independent IFF for any

$$f_{X_1,X_2,\dots,X_n}(x_1,x_2,\dots,x_n) = f_{X_1}(x_1)f_{X_2}(x_2)\dots f_{X_n}(x_n)$$

- Just check if their joint probability = product of their individual
- If R_{X,Y} is NOT a product space → X and Y are NOT independent

Properties of Independent Random Variables

Suppose X, Y are independent random variables:

1. If A and B are arbitrary subsets of \mathbb{R} , the events $X \in A$ and $Y \in B$ are independent events in S. As such:

$$P(X \in A; Y \in B) = P(X \in A)P(Y \in B)$$

For any real numbers x, y:

$$P(X \le x; Y \le y) = P(X \le x)P(Y \le y)$$

- 2. For arbitrary functions $g_1(\bullet)$ and $g_2(\bullet),g_1(X)$ and $g_2(Y)$ are independent. For
 - X^2 and Y are independent.
 - sin(X) and cos(Y) are independent.
 - e^X and log(Y) are independent.
- 3. Independence is connected with conditional distribution.
- If $f_X(x) > 0$, then $f_{Y|X}(y|x) = f_Y(y)$
- If $f_Y(y) > 0$, then $f_{X|Y}(x|y) = f_X(x)$

CHECKING INDEPENDENCE

We have a handy way to check independence.

X and Y are independent if and only if both of the following hold:

(a) R_{XY} , the range where the probability function is positive, is a product space.

(b) For any $(x,y) \in R_{X,Y}$, we have

$f_{XY}(x,y) = C \times g_1(x) \times g_2(y).$

That is, $f_{X,Y}(x,y)$ can be "factorized" as the product of two functions g_1 and g_2 , where g_1 depends on x only, g_2 depends on y only, and C is a constant not depending on both x and y.

Note: $g_1(x)$ and $g_2(y)$ on their own NEED NOT be probability functions.

Expectation & Covariance

Consider any 2-variable function $g(x, y)$				
If (x, y) is DRV (Discrete)	$E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) f_{X,Y}(x,y)$			
f (x, y) is CRV (Continuous)	$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dy dx$			
Note: If we let				
g(X, Y)	$Y(Y) = (X - E(X))(Y - E(Y)) = (X - \mu_x)(Y - \mu_y)$			

Definition 10: Covariance

The covariance of A and F is defined to be:			
cov(X,Y) = E[(X - E(X))(Y - E(Y))]			
If X and Y are	1		
DRV	$cov(X,Y) = \sum \sum (x - \mu_x)(y - \mu_y)f_{X,Y}(x,y)$		
(Discrete) $\frac{\sum_{x}\sum_{y}}{y}$			
If X and Y are	C∞ C∞		
CRV	$cov(X,Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_x)(y - \mu_y) f_{X,Y}(x,y) dy dx$		
(Continuous)	$J_{-\infty}J_{-\infty}$		

Properties of the Covariance

(Continuous)

- 1. cov(X,Y) = E(XY) E(X)E(Y)
- 2. If X and Y are independent, then cov(X,Y) = 0
- However, cov(X,Y) = 0 does not imply independence (1 way relation). i.e:
- i) $X \perp Y \Rightarrow cov(X, Y) = 0$ (X &Y independent \rightarrow cov = 0)
- Since $E(XY) = E(X)E(Y) \rightarrow cov(X,Y) = 0$ ii) $cov(X,Y) = 0 \Rightarrow X \perp Y$ (cov = 0 does not imply independence)
- 3. $cov(aX + b, cY + d) = ac \cdot cov(X, Y)$
- i) cov(X,Y) = cov(Y,X)
- ii) cov(X + b, Y) = cov(X, Y)
- iii) $cov(aX, Y) = a \cdot cov(X, Y)$
- 4. $V(aX + bY) = a^2V(X) + b^2V(Y) + 2ab \cdot cov(X, Y)$
- i) $V(aX) = a^2V(X)$
- ii) V(X + Y) = V(X) + V(Y) + 2cov(X, Y)

Properties of Variance and Covariance

Using V(X + Y) = V(X) + V(Y) + 2cov(X, Y), we can derive the following:

1. For random variables \boldsymbol{X} and \boldsymbol{Y} that are independent, we have:

$$V(X \pm Y) = V(X) \pm V(Y)$$

2. For random variables X_1, X_2, \dots, X_n , we have: (Not independent)

$$V(X_1 + X_2 + \dots + X_n) = V(X_1) + V(X_2) + \dots + V(X_n) + 2 \sum_{i > l} cov(X_i, X_j)$$

3. For random variables X_1, X_2, \dots, X_n that are independent, we have: $V(X_1 \pm X_2 \pm ... \pm X_n) = V(X_1) \pm V(X_2) \pm ... \pm V(X_n)$

$$VAR(X) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - E(X))^2$$
(6)

$$COV(X, Y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - E(X))(y_i - E(Y))$$
(2)

$$COR(X, Y) = \frac{COV(X, Y)}{\sqrt{VAR(X)VAR(Y)}}$$
(3)

$$\mathbf{R}^{2} = 1 - \frac{\mathbf{VAR}(\mathbf{X}, \mathbf{Y})_{FiltedLine}}{\mathbf{VAR}(\mathbf{X}, \mathbf{Y})_{Mean}}$$
(4)

Simple Derivation & Integration Formulas

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

$h \to 0$ h					
Function	Derivative	Function	Derivative		
	tary Functions	Elementary Functions			
x^n	nx^{n-1}	$(f(n))^n$	$nf'(x) (f(n))^{n-1}$		
e ^x	e ^x	$e^{f(x)}$	$f'(x)e^{f(x)}$		
ln (x)	$\frac{1}{x}$	$\ln (f(x))$	$\frac{f'(x)}{f(x)}$		
Trigonor	netric Functions	Trig	onometric Functions		
cos (x)	-sin (x)	$\cos(f(x))$	$-f'(x)\sin(f(x))$		
sin(x)	cos (x)	$\sin(f(x))$	$f'(x)\cos(f(x))$		
tan (x)	sec ² (x)	tan(f(x))	$f'(x)sec^2(f(x))$		
sec (x)	sec(x) tan(x)	sec(f(x))	$f'(x) \sec(f(x)) \tan(f(x))$		
csc (x)	$-\csc(x)\tan(x)$	$\csc(f(x))$	$-f'(x)\csc(f(x))\tan(f(x))$		
cot(x)	$-csc^{2}(x)$	$\cot(f(x))$	$-f'(x)csc^2(f(x))$		
Inverse Trigonometric Functions		Inverse Trigonometric Functions			
$sin^{-1}(x)$	$\frac{1}{\sqrt{1-x^2}}$	$sin^{-1}(f(x))$	$\frac{f'(x)}{\sqrt{1-f(x)^2}}$		
$cos^{-1}(x)$	$-\frac{1}{\sqrt{1-x^2}}$	$cos^{-1}(f(x))$	$-\frac{f'(x)}{\sqrt{1-f(x)^2}}$		
$tan^{-1}(x)$	$\frac{1}{1+x^2}$	$tan^{-1}(f(x))$	$\frac{f'(x)}{1+f(x)^2}$		
$cot^{-1}(x)$	$-\frac{1}{1+x^2}$	$cot^{-1}(f(x))$	$-\frac{f'(x)}{1+f(x)^2}$		
$sec^{-1}(x)$	$\frac{1}{ x \sqrt{x^2-1}}, x $ > 1	$sec^{-1}(f(x))$	$\frac{f'(x)}{ f(x) \sqrt{f(x)^2 - 1}}, f(x) > 1$		
$csc^{-1}(x)$	$-\frac{1}{ x \sqrt{x^2-1}}, x $ > 1	$csc^{-1}(f(x))$	$-\frac{f'(x)}{ f(x) \sqrt{f(x)^2 - 1}}, f(x) > 1$		
			della firmatiana a firmanal a		

Rules of Differentiation: Let u and v be differentiable functions of x and cbe a constant

Constant Rule	$\frac{d}{dx}(c) = 0$	Sum Rule	$\frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx}$
Constant Multiple	$\frac{d}{dx}(cu) = c\frac{du}{dx}$	Product Rule	$\frac{d}{dx}(uv) = \frac{du}{dx}v + u\frac{dv}{dx}$
Quotient Rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{\frac{du}{dx}v - u\frac{dv}{dx}}{v^2}$	Chain Rule	$\frac{d}{dx}(f(g(x)))$ = $f'(g(x)) \cdot g'(x)$

Implicit Differentiation:

- Differentiate both sides wrt x and solving the resultant equation for $\frac{dy}{dx}$
- Obtain $\frac{dy}{dx}$ by differentiating every term by x
- When differentiating a function in y wrt x: $\frac{d}{dx}g(y) = g'(y) \times \frac{dy}{dx}$

Integration of Elementary Functions					
1.	$\int (ax+b)^n dx$	$\frac{(ax+b)^{n+1}}{(n+1)a} + C (n \neq -1)$			
2.	$\int \frac{1}{ax+b} \ dx$	$\frac{1}{a}\ln ax+b +C$			
3.	$\int e^{ax+b} dx$	$\frac{1}{a}e^{ax+b} + C$			
	Integration of Trigonom	etric Functions			
4.	$\int \sin(ax+b) \ dx$	$-\frac{1}{a}\cos(ax+b)+C$			
5.	$\int \cos(ax+b)dx$	$\frac{1}{a}\sin(ax+b)+C$			
6.	$\int \tan(ax+b)dx$	$\frac{1}{a}\ln \sec(ax+b) + C$			
7.	$\int \sec(ax+b)dx$	$\frac{1}{a}\ln \sec(ax+b) + \tan(ax+b) + C$			
8.	$\int \csc(ax+b)dx$	$-\frac{1}{a}\ln \csc(ax+b) + \cot(ax+b) + C$			

Exponent Integral:
$$\int_{b}^{a} x^{n} e^{x^{n+1}} dx = \left[\frac{1}{n+1} e^{x^{n}} \right]_{b}^{a}$$

	J_b	$\lfloor n+1 \rfloor_b$			
9.	$\int \cot(ax+b)dx$	$-\frac{1}{a}\ln \csc(ax+b) + C$			
10.	$\int \sec^2(ax+b)dx$	$\frac{1}{a}\tan(ax+b)+C$			
11.	$\int \csc^2(ax+b)dx$	$-\frac{1}{a}\cot(ax+b)+C$			
12.	$\int \sec(ax+b)\tan(ax+b)dx$	$\frac{1}{a}\sec(ax+b)+C$			
13.	$\int \csc(ax+b)\cot(ax+b)dx$	$-\frac{1}{a}\csc(ax+b)+C$			
	Integration of Polynom	als (Partial Fractions)			
14.	$\int \frac{1}{a^2 + (x+b)^2} dx$	$\frac{1}{a} \tan^{-1} \left(\frac{x+b}{a} \right) + C$			
15.	$\int \frac{1}{\sqrt{a^2 - (x+b)^2}} dx$	$\sin^{-1}\left(\frac{x+b}{a}\right) + C$			
16.	$\int \frac{-1}{\sqrt{a^2 - (x+b)^2}} dx$	$\cos^{-1}\left(\frac{x+b}{a}\right) + C$			
17.	$\int \frac{1}{a^2 - (x+b)^2} dx$	$\frac{1}{2a} \ln \left \frac{x+b+a}{x+b-a} \right + C$			
18.	$\int \frac{1}{(x+b)^2 - a^2} dx$	$\frac{1}{2a}\ln\left \frac{x+b-a}{x+b+a}\right + C$			
19.	$\int \frac{1}{\sqrt{(x+b)^2 + a^2}} dx$	$\ln\left (x+b) + \sqrt{(x+b)^2 + a^2}\right + C$			
20.	$\int \frac{1}{\sqrt{(x+b)^2 - a^2}} dx$	$\ln\left (x+b) + \sqrt{(x+b)^2 - a^2}\right + C$			
21.	$\int \sqrt{a^2 - x^2} dx$	$\frac{x}{2}\sqrt{a^2-x^2} + \frac{a^2}{2}\sin^{-1}\left(\frac{x}{a}\right) + C$			
22.	$\int \sqrt{x^2 - a^2} dx$	$\frac{x}{2}\sqrt{x^2 - a^2}$ $-\frac{a^2}{2}\ln\left x + \sqrt{x^2 - a^2}\right + C$			
	Modu	ılus			
23.	$\int_{-a}^{a} bx^{n} dx$	$\left[\frac{x^{n+1}}{b(n+1)}\right]_0^a - \left[\frac{x^{n+1}}{b(n+1)}\right]_{-a}^0$			
	Result from tutorials (prob on	ly works with trigonometry)			
	c b	(f(b)			
24.	$\int_{a}^{a} f(x) dx$	$bf(b) - af(a) - \int_{f(a)}^{f(b)} f^{-1}(x) dx$			
25.	$\int_0^a f(x) dx$	$\int_0^a f(a-x)dx$			
	By Parts	By Substitution			
	$\int u \frac{dv}{dx} = uv - \int v \frac{du}{dx} dx$	u = f(x)			
	,				

		J		
f((x,y)	2	4	$f_Y(y)$
	1	0.10	0.15	0.25
y	3	0.20	0.30	0.50
	5	0.10	0.15	0.25
f_{λ}	(x)	0.40	0.60	1

- To test if X and Y are independent:
- Check $f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$ for all possible combinations.