CMR TECHNICAL CAMPUS

UGC AUTONOMOUS

B. Tech I Sem Regular & Supply End Examinations, January-2024 Matrices & Calculus

Common to ECE, AIML, CSC, CSM, CSD, CSE, IT, CSIT

Time: 3 Hours

Max. Marks: 60

Note

i. This Question paper contains Part- A and Part- B.

ii. All the Questions in Part A are to be answered compulsorily.

iii. All Questions from Part B are to be answered with internal choice among them.

	PART-A			
		$10 \times 01 = 10 \text{ Marks}$		
		Marks	CO	BL
1. a	Г1 2 3]			
	Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$ by echelon form	1M	CO1	L2
b	Write Gauss -Seidel Iteration Method	1M	CO1	L1
d d	Write any two properties of Eigen values State Cayley – Hamilton Theorem	1M 1M	CO2 CO2	L1 L1
(f)	State Lagrange's mean value theorem. Define Gamma function	1M 1M	CO3 CO3	L1 L1
(E)	Find the first order partial derivative of $log(x^2 + y^2)$ Write the necessary conditions for maxima and minima	1M 1M	CO4	L2 L1
i	Evaluate $\int_{0}^{2} \int_{0}^{x} y dy dx$	1 M	CO5	L5
j	Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} (x+y+z) dz dy dx$	1 M	CO5	L5
	PART- B	\$ 3.00 kg		
		5 X 10 = 50 Marks		
		Marks	CO	BL
2. a	Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 1 & 0 \\ -2 & 4 & 3 & 0 \\ 1 & 0 & 2 & -8 \end{bmatrix}$ by using echelon form	5M	CO1	L3
h		The sales have		

7.1	Find the rank of the matrix $A=$	1	2		_
		-2	4	3	0
		1	0	2	-8
i jan dise	by using echelon form				Tringings.
р	Vi. 2		$\lceil 1 \rceil$	3	3]
	Find the inverse of the matrix	1_	1	1	_

1 3 4 by using Gauss-Jordon method

5M CO₁ L3

OR OR
Solve the system of equations $x + y + 2z = 4$, $2x - y + 3z = 9$, $3x - y - z = 2$ using Gauss elimination method.
Solve the system of equations $8x + 3y + 2z = 13$, $x + 5y + z = 7$ 2x + y + 6z = 9 using Gauss Seidel iteration method
Verify Cayley – Hamilton Theorem for the matrix $A = \begin{bmatrix} 3 & 4 & 1 \\ 2 & 1 & 6 \\ -1 & 4 & 7 \end{bmatrix}$ and hence find A ⁻¹ and A ⁴
OR
Reduce the quadratic for $3x^2 - 2y^2 - z^2 - 4xy + 8xz + 12yz$ to canonical form by an orthogonal transformation.
Verify Rolle's theorem for the $f(x) = e^{-x} \sin x$ in $(0, \pi)$ Verify Cauchy's mean value theorem for the function $f(x) = x^2$ and $g(x) = x^3$ in [1,2]
7 a Obtain Taylor's series expansion for the function $f(x) = \cos x$
in powers of $(x-\frac{\pi}{4})$
b Show that $\Gamma(\frac{1}{2}) = \sqrt{\pi}$
If $u = f(y-z, z-x, x-y)$ then find $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}$ If $u = x^2 - 2y, v = x + y + z$ and $w = x - 2y + 3z$, find $\frac{\partial (u, v, w)}{\partial (x, y, z)}$
If $u=x^2-2y$, $v=x+y+z$ and $w=x-2y+3z$, find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$
OR
Find the volume of the largest parallelopiped that can be
inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$
10 a Evaluate $\int \int dx dy$ by change of order of integration.
b Find the area of the cardiod $r = a(1 - \cos \theta)$
OR
Find the volume of the sphere $x^2 + y^2 + z^2 = a^2$

5M

5M

10M

10M

5M

5M

5M

5M

5M

5M

10M

5M

5M

10M

: Course Outcomes BL : Bloom's Taxonomy Levels L 1: Remembering CO

L2: Understanding L3: Applying L 5 : Evaluating L 6 : Crea L4: Analysing