Algorithms for Computational Logic

Summary

Contents

1	SA	Γ and Modeling with SAT	2
	1.1	Cardinality Constraints	2
		1.1.1 AtMost1	2
		1.1.2 General Cardinality Constraints	3
	1.2	SAT Algorithms	5
		1.2.1 DPLL Solvers	5
		1.2.2 CDCL Solvers	5
2	Opt	timization problems and SAT-Based Problem Solving	8
	2.1^{-2}	MaxSAT Algorithms	9
		2.1.1 Fu and Malik	9
		2.1.2 MSU3	9
	2.2	Minimal Unsatisfiable Subsets	9
		2.2.1 Algorithms	9
	2.3	Minimal Correction Subsets	11
		2.3.1 Algorithms	11
3	Sati	isfiability Modulo Theories	13
4	Ans	swer Set Programming	14

SAT and Modeling with SAT

1.1 Cardinality Constraints

In order to handle cardinality constraints we have two options: encode the cardinality constraints to CNF and use a SAT solver, or use a pseudo boolean (PB) solver.

1.1.1 AtMost1

- $\sum_{j=1}^{n} x_j = 1$ can be encoded with $\left(\sum_{j=1}^{n} x_j \leq 1\right) \wedge \left(\sum_{j=1}^{n} x_j \geq 1\right)$
- $\sum_{j=1}^{n} x_j \ge 1$ can be encoded with $(x_1 \lor x_2 \lor ... \lor x_n)$
- $\sum_{j=1}^{n} x_j \leq 1$ can be encoded with:
 - Pairwise encoding
 - Sequential counter encoding
 - Bitwise encoding

Sequential Counter

In order to realize this encoding, we need to add new variables s_i for the fact "there is a 1 on some position 1..i":

$$s_i$$
 is true if $\sum_{j=1}^i x_j \ge 1$

Encoding $\sum_{j=1}^{n} x_j \leq 1$ with sequential counter:

$$(\neg x_1 \lor s_1) \land (\neg x_i \lor s_i), i \in 2..n - 1 \land (\neg s_{i-1} \lor s_i), i \in 2..n - 1 \land (\neg x_i \lor \neg s_{i-1}), i \in 2..n$$

If $x_j = 1$, then all s_i variables are assigned and all other x variables must take value 0. There are $\mathcal{O}(n)$ clauses and $\mathcal{O}(n)$ auxiliary variables.

Bitwise Encoding

In bitwise encoding, we represent the constraint $\sum_{j=1}^{n} x_j \leq 1$ by encoding the index of the potential true variable in binary. For this, we add new auxiliary variables:

$$v_0, ... v_r - 1; r = \lceil \log n \rceil \text{ (with } n > 1)$$

Each variable x_j is assigned a unique binary number that represents its index. Then, for each variable x_j with binary index representation i, we create clauses that enforce the condition:

- If $x_j = 1$, assignment to v_i variables must encode j-1, and all other x variables must take value 0
- If all $x_j = 0$, any assignment to v_i variables is consistent

For example, $x_1 + x_2 + x_3 \le 1$:

$$\frac{j-1}{x_1} \quad \frac{v_1 v_0}{00} \qquad \qquad (\neg x_1 \lor \neg v_1) \land (\neg x_1 \lor \neg v_0) \\
x_2 \quad 1 \quad 01 \\
x_3 \quad 2 \quad 10$$

$$(\neg x_1 \lor \neg v_1) \land (\neg x_1 \lor \neg v_0) \\
(\neg x_2 \lor \neg v_1) \land (\neg x_2 \lor v_0) \qquad \text{There}$$

are $\mathcal{O}(n \log n)$ clauses and $\mathcal{O}(\log n)$ auxiliary variables

1.1.2 General Cardinality Constraints

Constraints of the form $\sum_{j=1}^{n} x_j \leq k$ or $\sum_{j=1}^{n} x_j \geq k$ can be added with:

- Sequential Counters
- BDDs
- Sorting Networks
- Cardinality Networks
- Totalizer

Sequential Counter Encoding

For each variable x_i , create k additional variables $s_{i,j}$ that are used as counters:

- $s_{i,j} = 1$ if at least j variables $\{x_1...x_i\}$ are assigned value 1
- $s_{i,j} = 0$ if at most j 1 variables $\{x_1...x_i\}$ are assigned value 1

Encoding:

Totalizer Encoding

In this encoding we count in unary how many of the n variables $(x_1...x_n)$ are assigned to 1. It can be visualized as a tree:

- Each node is (name : variable : sum)
- Root node has the output variables $(o_1...o_n)$ that count how many variables are assigned to 1
- Literals are at the leaves
- Each node counts in unary how many leaves are assigned to 1 in its subtree
- Example: if $b_2 = 1$, then at least 2 of the leaves (x_3, x_4, x_5) are assigned to 1

$$(O:o_1,o_2,o_3,o_4,o_5:5)$$
 $(A:a_1,a_2:2)$
 $(B:b_1,b_2,b_3:3)$
 $(C:x_1:1)$
 $(D:x_2:1)$
 $(E:x_3:1)$
 $(F:f_1,f_2:2)$
 $(G:x_4:1)$

To encode $x_1 + x_2 + x_3 + x_4 + x_5 \le 3$ just set $o_4 = 0$ and $o_5 = 0$. Encoding:

$$\bigwedge_{\substack{0 \leq \alpha \leq n_2 \\ 0 \leq \beta \leq n_3 \\ 0 \leq \sigma \leq n_1 \\ \alpha + \beta = \sigma}} \neg q_\alpha \vee \neg r_\beta \vee p_\sigma \quad \text{where, } p_0 = q_0 = r_0 = 1$$

1.2 SAT Algorithms

1.2.1 DPLL Solvers

1.2.2 CDCL Solvers

CDCL solvers extend DPLL solvers with clause learning and non-chronological backtracking, search restarts, lazy data structures, conflict-guided branching, etc.

Clause Learning

And after backtracking:

Unique Implication Points

Clause Minimization

Optimization problems and SAT-Based Problem Solving

A set of constraints is overconstrained if it is inconsistent. In a given an unsatisfiable formula, there may be several explanations for its unsatisfiability. The goal of MaxSAT is to find largest subset of clauses that is satisfiable.

		Hard Clauses?		
		No	Yes	
Weights?	No	Plain	Partial	
	Yes	Weighted	Weighted Partial	

- Must satisfy hard clauses, if any
- Compute set of satisfied soft clauses with maximum cost
 - Without weights, cost of each falsified soft clause is 1
- Or, compute set of falsified soft clauses with minimum cost (s.t. hard & remaining soft clauses are satisfied)
- Note: goal is to compute set of satisfied (or falsified) clauses;
 not just the cost!

2.1 MaxSAT Algorithms

2.1.1 Fu and Malik

```
Join Soft and
\varphi_W \leftarrow \varphi
                                                                                                       Hard Constraints
while true do
                                                                                                          Relax all soft
       (\mathsf{st}, \varphi_C, \mathcal{A}) \leftarrow \mathsf{SAT}(\varphi_W)
       if st = UNSAT then
                                                                                                          clauses from
                                                                                                      unsatisfiable core
             V_R \leftarrow \emptyset
             foreach \omega \in \varphi_C \land Soft(\omega) do
                 \begin{array}{c} \omega_R \leftarrow \omega \cup \{r_i\} \\ \varphi_W \leftarrow \varphi_W \setminus \{\omega\} \cup \{\omega_R\} \\ V_R \leftarrow V_R \cup \{r_i\} \end{array} 
                                                                          // r_i is a new relaxation variable
                                                                                                           Relaxed soft
                                                                                                     clause remains soft
                                                                                                            Cardinality
             \varphi_W^- \leftarrow \varphi_W \cup \ \mathsf{CNF} \ (\sum_{r_i \in V_R} r_i \le 1)
                                                                                                      constraint is hard
                                                                                                      Return when for-
             return \mathcal{A}
                                                                                                     mula becomes SAT
```

2.1.2 MSU3

```
\begin{array}{l} V_R \leftarrow \emptyset \\ \varphi_W \leftarrow \varphi \\ LB \leftarrow 0 \\ \hline \text{while } true \text{ do} \\ \hline \qquad & (\text{st}, \varphi_C, \mathcal{A}) \leftarrow \text{ SAT } (\varphi_W \cup \text{ CNF } (\sum_{r_i \in V_R} r_i \leq LB)) \\ \text{if } \text{st} = UNSAT \text{ then} \\ \hline \qquad & \text{foreach } \omega_i \in \varphi_C \wedge \text{ Soft } (\omega_i) \text{ do} \\ \hline \qquad & \omega_R \leftarrow \omega_i \cup \{r_i\} & // \ r_i \text{ is a new relaxation variable} \\ \hline \qquad & \varphi_W \leftarrow \varphi_W \backslash \{\omega_i\} \cup \{\omega_R\} & // \ \omega_R \text{ is a hard clause} \\ \hline \qquad & LB \leftarrow LB + 1 \\ \hline \qquad & \text{else} \\ \hline \qquad & \text{return } \mathcal{A} \\ \hline \end{array}
```

2.2 Minimal Unsatisfiable Subsets

Given \mathcal{F} unsatisfiable, $\mathcal{M} \subseteq \mathcal{F}$ is a MUS iff \mathcal{M} is unsatisfiable and $\forall_{c \in \mathcal{M}}, \mathcal{M} \setminus \{c\}$ is satisfiable.

2.2.1 Algorithms

The following algorithms may be used to identify minimal unsatisfiable subsets.

Deletion-Based

```
\begin{array}{l} \textbf{Input} \ : \mathsf{Set} \ \mathcal{R} \\ \textbf{Output:} \ \mathsf{Minimal} \ \mathsf{subset} \ \mathcal{M} \\ \textbf{begin} \\ & \middle| \ \mathcal{M} \leftarrow \mathcal{R} \\ & \mathbf{foreach} \ c \in \mathcal{M} \ \mathbf{do} \\ & \middle| \ \mathbf{if} \ \neg \mathsf{SAT}(\mathcal{M} \setminus \{c\}) \ \mathbf{then} \\ & \middle| \ \ \mathcal{M} \leftarrow \mathcal{M} \setminus \{c\} \\ & \mathbf{return} \ \mathcal{M} \end{array} \qquad \begin{array}{l} // \ \ \mathsf{Remove} \ c \ \mathsf{from} \ \mathcal{M} \\ // \ \ \mathsf{Final} \ \mathcal{M} \ \mathsf{is} \ \mathsf{minimal} \ \mathsf{set} \\ & \mathbf{end} \end{array}
```

Insertion-Based

```
Input : Set \mathcal{R}
Output: Minimal subset \mathcal{M}
begin
       \mathcal{M} \leftarrow \emptyset
       while \mathcal{R} \neq \emptyset do
             \mathcal{S} \leftarrow \emptyset
                                                                                                           // Subset of \mathcal{R}
              c_r \leftarrow \emptyset
              while SAT(\mathcal{M} \cup \mathcal{S}) do
                    c_i \leftarrow \mathsf{SelectRemoveElement}(\mathcal{R})
                     \mathcal{S} \leftarrow \mathcal{S} \cup \{c_i\}
                  c_r \leftarrow c_i
              \overline{\mathcal{M}} \leftarrow \mathcal{M} \cup \{c_r\}
                                                                                   // c_r is transition element
              \mathcal{R} \leftarrow \mathcal{S} \setminus \{c_r\}
       return \mathcal{M}
                                                                                 // Final \mathcal{M} is minimal subset
end
```

Dichotomic

```
Input: Set \mathcal{R} = \{c_1, \dots, c_m\}
Output: Minimal subset M
begin
     \mathcal{M} \leftarrow \emptyset
     \max \leftarrow |\mathcal{R}|
           while min \neq max do
                 mid = \lfloor (min + max)/2 \rfloor
                                                                        // Execute binary search
                 \mathcal{S} \leftarrow \{c_1, \dots, c_{\mathsf{mid}}\}
                                                                 // Extract sub-sequence of \mathcal R
                 if SAT(\mathcal{M} \cup \mathcal{S}) then
                       \min \leftarrow \min + 1
                 else
               \bigsqcup max \leftarrow mid
           \mathcal{M} \leftarrow \mathcal{M} \cup \{c_{\mathsf{min}}\}
                                                                // c_{\min} is transition element
           \mathcal{R} \leftarrow \{c_1, \dots, c_{\mathsf{min}-1}\}
                                                                 // Final \mathcal{M} is minimal subset
     return \mathcal{M}
end
```

2.3 Minimal Correction Subsets

 $\mathcal{C} \subseteq \mathcal{F}$ is an MCS iff $\mathcal{F} \setminus \mathcal{C}$ is satisfiable and $\forall_{c \in \mathcal{C}}, \mathcal{F} \setminus (\mathcal{C} \setminus \{c\})$ is unsatisfiable.

2.3.1 Algorithms

The following algorithms may be used to identify minimal correction subsets.

Basic Linear Search

- Let $S \subseteq \mathcal{F}$, such that $S \nvDash \bot$, initially $S = \emptyset$
- Let $C \subseteq \mathcal{F}$, such that $\forall_{c \in C}, S \cup \{c\} \vDash \bot$, initially $C = \emptyset$
- At each iteration, analyze one clause of $c \in \mathcal{F} \setminus (\mathcal{S} \cup \mathcal{C})$:
 - If $S \cup \{c\} \vDash \bot$, then add c to C, i.e. c is part of MCS
 - If $S \cup \{c\} \nvDash \bot$, then add c to C, i.e. c is part of MCS

There are $\mathcal{O}(m)$ calls to the oracle. An example:

Clause D

- Pick an assignment and let $S \subseteq \mathcal{F}$ be the satisfied clauses and $\mathcal{U} \subseteq \mathcal{F}$ be the falsified clauses, with $\mathcal{F} = \mathcal{S} \cup \mathcal{U}$
- Repeat:
 - Create clause $D = \bigcup_{l \in c, c \in \mathcal{U}} l$
 - If $S \cup \{D\} \vDash \bot$, then U is MCS: Report MCS and terminate
 - If $S \cup \{D\} \nvDash \bot$, then add to S the satisfied clauses in U, remove from U the satisfied clauses and loop

There are $\mathcal{O}(m-r)$ calls to the oracle, where r is the size of the smallest MCS. An example:

Satisfiability Modulo Theories

Answer Set Programming