Design of BFSK Receivers and BER Analysis

Experiment - 2

1 Aim

To design a discrete time BFSK communication receiver, and analyze the BER performance.

2 Theory

Fig.1 Constellation Map

2.1 ML Rule

Let Y be the output at the receiver and X be the message at the transmitter. Let N be the noise introduced by the AWGN channel. Let E_b be the bit energy. Let $B_k \in X$ be the transmitted bit and $\hat{B} \in Y = [Y_{1k}, Y_{2k}]$ be the output at the receiver corresponding to B_k . Then the ML can be written as:

$$\begin{split} \hat{B} &= \begin{cases} 1, & \frac{f_Y(Y_k = y|B_k = 1)}{f_Y(Y_k = y|B_k = 0)} > 1\\ 0, & \frac{f_Y(Y_k = y|B_k = 1)}{f_Y(Y_k = y|B_k = 0)} < 1 \end{cases} \\ \hat{B} &= \begin{cases} 1, & \ln\left(\frac{f_Y(Y_k = y|B_k = 1)}{f_Y(Y_k = y|B_k = 0)}\right) > 0\\ 0, & \ln\left(\frac{f_Y(Y_k = y|B_k = 1)}{f_Y(Y_k = y|B_k = 0)}\right) < 0 \end{cases} \\ \hat{B} &= \begin{cases} 1, & \ln\left(\frac{1}{\frac{1}{\sigma\sqrt{2\pi}}}e^{-\frac{(Y_{1k} - \sqrt{E_h})^2}{2\sigma^2}}\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(Y_{2k} - 0)^2}{2\sigma^2}}\frac{1}{2\sigma^2}}\right) > 0\\ \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(Y_{1k} - \sqrt{E_h})^2}{2\sigma^2}}\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(Y_{2k} - \sqrt{E_h})^2}{2\sigma^2}}}\right) > 0\\ 0, & \ln\left(\frac{1}{\frac{1}{\sigma\sqrt{2\pi}}}e^{-\frac{(Y_{1k} - 0)^2}{2\sigma^2}}\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(Y_{2k} - \sqrt{E_h})^2}{2\sigma^2}}}\frac{1}{2\sigma^2}\right) > 0 \end{cases} \end{split}$$

$$\hat{B} = egin{cases} 1, & -2\sqrt{E_b}(Y_{1k} - Y_{2k}) > 0 \ 0, & -2\sqrt{E_b}(Y_{1k} - Y_{2k}) < 0 \end{cases}$$
 $\hat{B} = egin{cases} 1, & Y_{1k} > Y_{2k} \ 0, & Y_{1k} < Y_{2k} \end{cases}$

2.2 BER

Let E be the error bit. Then,

$$P(E=1) = P(\hat{B} \neq B)$$

$$= P(\hat{B} = 0 \mid B = 1)P(B = 1) + P(\hat{B} = 1 \mid B = 0)P(B = 0)$$

Since both bits are equally likely:

$$P(B = 1) = P(B = 0), P(\hat{B} = 0 \mid B = 1) = P(\hat{B} = 1 \mid B = 0)$$

$$\implies P(E = 1) = P(\hat{B} = 0 \mid B = 1)$$

$$= P(Y_{1k} - Y_{2k} > 0 \mid B = 0)$$

$$= P(\sqrt{E_b} + N_{1k} - N_{2k} > 0 \mid B = 0)$$

$$= P(N_{12} > \sqrt{E_b})$$

$$= P\left(\frac{N_k}{\sigma} > \sqrt{\frac{E_b}{2\sigma^2}}\right)$$

$$= Q\left(\sqrt{\frac{E_b}{N_0}}\right)$$

$$\therefore P_e = P(E = 1) = Q\left(\sqrt{\frac{E_b}{N_0}}\right)$$

3 Design

```
Input: NO_OF_BITS, EB_NO_DB
Output: BER

Xk = Bk(0 --> [1, 0], 1 --> [0, 1])
ML([bit1, bit2]) = (0 if bit2 - bit1 < 0; 1 if bit2 - bit1 > 0)

for EB_NO in EB_NO_DB
    Nk = AWGN(EB_NO, 2D)
    Yk = Xk + Nk
    bHat = ML(Yk)
    unchangedBits = count(bHat === Bk)
    BER = 1 - (unchangedBits/NO_OF_BITS)
```

The time complexity of the algorithm is $O(N^2)$.

4 JavaScript Code

BFSK.js

```
import SimulationHelpers from '../helpers/SimulationHelpers.js';
const S = new SimulationHelpers();
```

```
export default function BFSK(EB_NO_DB, NO_OF_BITS) {
    const BER = new Array(EB_N0_DB.length);
    const BER_THEORETICAL = S.getTheoreticalBerBfsk(EB_N0_DB);
    const Bk = S.randi([0, 1], NO_OF_BITS); // message
    const Xk = Bk.map((bit) \Rightarrow (bit === 0 ? [1, 0] : [0, 1])); // modulation
    for (let i = 0; i < EB_NO_DB.length; i += 1) {</pre>
        const Nk = S.getAWGN(EB_N0_DB[i], [NO_OF_BITS, 2]); // AWGN noise
        const Yk = new Array(NO_OF_BITS).fill(0).map((_, j) => S.sum(Xk[j], Nk[j]));
        const bHat = Yk.map(([bit1, bit2]) => {
            if (bit2 - bit1 <= 0) return 0;</pre>
            return 1;
        }); // ML decision rule
        const unchangedBits = bHat.reduce((acc, bit, j) => {
            // eslint-disable-next-line no-param-reassign
            if (bit === Bk[j]) acc += 1;
            return acc;
        }, 0);
        BER[i] = 1 - (unchangedBits / NO_OF_BITS);
   return [BER, BER_THEORETICAL];
}
```

SimulationHelpers.js

```
const { jStat } = window;
export default class SimulationHelpers {
    constructor() {
        this.sum = (arr1, arr2) \Rightarrow arr1.map((num, i) \Rightarrow num + arr2[i]);
        this.linspace = (start, stop, diff) => {
            const entries = [];
            let entry = start;
            while (entry <= stop) {</pre>
                entries.push(entry);
                entry += diff;
            return entries;
        };
        this.qfunc = (arg) => 0.5 * jStat.erfc(arg / Math.SQRT2);
        this.getTheoreticalBerBpsk = (EB_N0_DB) => EB_N0_DB
            .map((EB_N0) => this.qfunc(Math.sqrt(2 * (10 ** (EB_N0 / 10)))));
        this.getTheoreticalSerQpsk = (SB N0 DB) => SB N0 DB
            .map((SB_N0) => 2 * this.qfunc(Math.sqrt(10 ** (SB_N0 / 10)))
                - this.qfunc(Math.sqrt(10 ** (SB_N0 / 10))) ** 2);
        this.getTheoreticalBerBfsk = (EB_N0_DB) => EB_N0_DB
            .map((EB_N0) => this.qfunc(Math.sqrt(10 ** (EB_N0 / 10))));
        this.getTheoreticalSerQam8 = (SB_N0_DB, Es) => SB_N0_DB
            .map((SB_N0) \Rightarrow 2.5 * this.qfunc(Math.sqrt(((10 ** (SB_N0 / 10)) * Es) / 3))
                - 1.5 * (this.qfunc(Math.sqrt(((10 ** (SB_N0 / 10)) * Es) / 3))) ** 2);
        this.getTheoreticalSerMpsk = (SB_N0_DB, M) => SB_N0_DB
            .map((SB_N0) \Rightarrow 2 * this
                .qfunc(Math.sqrt(2 * 10 ** (SB_N0 / 10)) * Math.sin(Math.PI / M)));
        this.randi = ([min, max], count) => {
            const integers = [];
            // eslint-disable-next-line no-plusplus, no-param-reassign
            while (count--) {
                integers.push(Math.floor(min + ((max - min + 1) * Math.random())));
```

```
return integers;
       };
       this.randn = (count) => new Array(count).fill(0).map(() => jStat.normal.sample(0, 1));
       this.getAWGN = (SB_N0_DB, [rows, cols]) => {
           const awgn = this.randn(rows * cols)
                .map((N) => N / Math.sqrt(2 * (10 ** (SB_N0_DB / 10))));
            if (cols === 1) return awgn;
            return awgn.reduce((acc, N, j) => {
               if (j % cols === 0) {
                   const noise = [N];
                   acc.push(noise);
                } else {
                    acc[acc.length - 1].push(N);
                return acc;
            }, []);
       };
       this.dec2bin = (number, length) => {
           let binaryString = '';
            for (let i = 0; i < length - 1; i += 1) binaryString += '0';</pre>
            binaryString += number.toString(2);
            return binaryString.slice(-length);
       };
   }
}
```

5 Results and Inference

Fig.2 Simulation result with 10^3 bits

Fig.3 Simulation result with 10⁴ bits

Fig.4 Simulation result with 10^5 bits

Fig.5 Simulation result with 10^6 bits

From the above figures, it can be seen that simulated P_e and theoretical P_e match better with increase in the number of bits. This is because, to get confidence in the simulated results, there must be sufficient number of bit errors. For example in figure (5), to get a bit error rate of 10^{-5} , one needs to send at least 10^6 bits. Similar conclusions can be drawn from the other figures shown above. Also, it can be seen that the P_e reduces gradually with increase in $\frac{E_b}{N_0}$, the SNR per bit. This is due to the fact that as the SNR per bit increases, the signal becomes less affected by the presence of noise, thus reducing errors in ML detection. Finally, another important thing to be noted is that the simulated curve is not only affected by the symbol errors, but is also affected by floating point errors.