

Dashboard > Courses > School Of Engineering & Applied Sciences > B.Tech. > B.Tech. Cohort 2020-2024 > Semester-I Cohort 2020-24 > EMAT101L-Odd 2020 > 15 January - 21 January > Group 2 Quiz Test 5

Started on Monday, 25 January 2021, 2:05 PM

State Finished

Completed on Monday, 25 January 2021, 2:20 PM

Time taken 15 mins 1 sec

Grade 6.00 out of 10.00 (**60**%)

Question 1

Correct

Mark 2.00 out of

2.00

Compute
$$\int_0^2 \frac{dx}{x-1}$$
.

Select one:

- a. 2
- b. diverges
- o. 0
- od. 1

Your answer is correct.

The correct answer is: diverges

Question 2

Incorrect

Mark 0.00 out of

2.00

Compute the integral $\int_{-3}^{3} \frac{dx}{(x+2)^3}$.

Select one:

- a. divergent.
- \bullet b. $\frac{12}{25}$

- c. $-\frac{12}{25}$
- od. $\frac{24}{25}$

Your answer is incorrect.

The correct answer is: divergent.

Question 3

Correct

Mark 2.00 out of

2.00

Consider the following two integrals.

$$I_1 = \int_{-1}^1 rac{dx}{x^2}, \qquad I_2 = \int_{-1}^1 rac{dx}{1+x}$$

Which among the following statements is true?

Select one:

- igcup a. I_1 is divergent and I_2 is convergent.
- igcup b. Both I_1 and I_2 are convergent.

Your answer is correct.

The correct answer is: Both I_1 and I_2 are divergent.

${\tt Question}\, 4$

Correct

Mark 2.00 out of

2.00

The improper integral $\displaystyle \int_0^\infty rac{dx}{x^2+9}$

Select one:

- \bigcirc a. diverges to $-\infty$.
- b. converges to $\frac{\pi}{2}$.
- \circ c. diverges to ∞
- od. converges to $\frac{\pi}{6}$.

√

Your answer is correct.

The correct answer is: converges to $\frac{\pi}{6}$.

Question **5**

Incorrect

Mark 0.00 out of

2.00

The integral $\int_{\pi}^{\infty} \frac{\sin x}{x} dx$:

Select one:

- a. diverges.
- b. is not an improper integral.
- c. converges absolutely. X
- d. converges conditionally.

Your answer is incorrect.

The correct answer is: converges conditionally.

