Multi-Grained Named Entity Recognition

Congying Xia^{1,5} Chenwei Zhang¹ Tao Yang² Yaliang Li³ Nan Du² Xian Wu² Wei Fan² Fenglong Ma⁴ Philip S. Yu^{1,5}

¹University of Illinois at Chicago ²Tencent Medical AI Lab ³Alibaba Group ⁴University of Baffulo ⁵Zhijiang Lab

BACKGROUND

- Named Entity Recognition is a fundamental task in NLP
 - Input: an utterance
 - Output: identified entities, such as person names, locations, and organizations
 - Applications: syntactic parsing, question answering, relation extraction
- Non-overlapping Named Entity Recognition

Beijing, previously known as Peking, is the capital city of China.

GPE GPE GPE

- Sequence Tagging models (LSTM/CNN + CRF)

- Fail to detect nested named entities which are embedded in longer entity mentions
- Nested Named Entity Recognition

Last night, at the Chinese embassy in France, there was a holiday atmosphere.

GPE

GPE

GPE

Facility Entity

- Nested NER models are designed explicitly for recognizing nested named entities
- Nested NER models usually do not perform well on non-overlapping entities

MGNER

- *Detector*: detect possible entities in various granularities
 - Word Processor: word embedding, postage embedding, character level embedding
 - Sentence Processor: sentence LSTM + Elmo embedding
 - Detection Network: generate all possible word segments and estimate the probability of each proposal as being an entity or not
- Classifier: detect entity positions in various granularities
 - Entity Processor: context-aware entity representation with self-attention
 - Classification Network: classify candidates into pre-defined categories

RESULTS

Nested NER task

) Code&Data

- Datasets: ACE-2004, ACE-2005

Non-overlapping NER task

MGNER

- Dataset: CoNLL-2003

MODEI	CoNLL-2003		
MODEL	DEV	TEST	
Lu and Roth (2015)	89.2	83.8	
Muis and Lu (2017)	_	84.3	
Xu et al. (2017)	_	90.85	
Wang and Lu (2018)	_	90.2	
Lample et al. (2016)	-	90.94	
Ma and Hovy (2016)	94.74	91.21	
Chiu and Nichols (2016)	94.03 ± 0.23	$91.62 \pm 0.$	
Peters et al. (2017)	_	$91.93 \pm 0.$	
Peters et al. (2018)	_	$92.22 \pm 0.$	
MGNER w/o context	95.21 ± 0.12	$92.23 \pm 0.$	
MGNER w/o attention	95.23 ± 0.06	$92.26 \pm 0.$	

 95.24 ± 0.13

 92.28 ± 0.12

- Performance on different types of sentences
- Split the test data in ACE-2005 into two portions: sentences with/without overlapping entities

			Detecting Overl	apping Entities	in ACE-2005		
		90					
		80					
		70					
		60		_			
		50					
		40					
		30					
		20					
		10					
	-	0 Precision		Recall	F1		
		■Lu and Roth (2015)	Muis and Lu (2017)	■ Wang et al. (2018)	Wang and Lu (2018)	MGNER	
Detecting Non-overlapping Entities in ACE-2005							
		90					

CONCLUSIONS

- MGNER: state-of-the-art performance on both Nested NER and Non-overlapping NER
 High modularity and each component in
- High modularity and each component in MGNER can adopt a wide range of neural networks