

CARL VON OSSIETZKY UNIVERSITÄT OLDENBURG

Power to the people: Distributive justice for agent-based load management in low-voltage grids

Supplementary information

submitted by

Michael Krah

Student number: 5559667

Examiners: Prof. Dr.-Ing. Astrid Nieße, Dr. Martin Tröschel

Oldenburg, 06.01.2025

Contents

1	Trai	sformer loading percentages	1
2	Bet	a regressions for each canon	1
	2.1	Effort	2
	2.2	Equality	4
	2.3	Needs	4
	2.4	Productivity	7
	2.5	Social utility	7
	2.6	Supply and demand	10
3	Nor	mative canon analysis	10
4	Vot	ng analysis	12

1 Transformer loading percentages

Figure 1.1: Transformer congestions per month.

Figure 1.2: Transformer congestions per hour.

2 Beta regressions for each canon

2.1 Effort

Dep. Variable:	$outcome_adjusted$		ed Log-	Likeliho	od: 5.	5.6580e + 05	
Model:	BetaModel		AIC	AIC:		-1.132e + 06	
Method:	Maximum Likelihood		od BIC :	:	-1	.132e+06	
Date:	Sun, 0	5 Jan 2025	5				
Time:	14	1:24:17					
No. Observations:	6	47018					
Df Residuals:	6	47011					
Df Model:	5						
	\mathbf{coef}	std err	${f z}$	$\mathbf{P} > \mathbf{z} $	[0.025]	0.975]	
const	-1.1339	0.005	-211.096	0.000	-1.144	-1.123	
household	-0.5028	0.004	-135.368	0.000	-0.510	-0.496	
$charging_station$	-0.3883	0.003	-111.899	0.000	-0.395	-0.382	
heatpump	-0.0956	0.002	-47.185	0.000	-0.100	-0.092	
PV	-0.4257	0.002	-265.433	0.000	-0.429	-0.423	
$lag_outcome$	4.0306	0.005	738.592	0.000	4.020	4.041	
precision	2.5615	0.002	1483.600	0.000	2.558	2.565	

Table 2.1: Effort: Regression results for demand shares according to the canon of effort.

	Variable	VIF
0	const	49.939606
1	household	1.692808
2	$charging_s tation$	1.637288
3	heatpump	1.045405
4	PV	1.074722
5	$lag_outcome$	1.030451

Table 2.2: Effort: Variance inflation factor to check for collinearity of predictors.

Durbin-Watson statistic for autocorrelation: 2.3970245265452776

Figure 2.1: Effort: Distribution of residuals vs. normal distribution.

Figure 2.2: Effort: Outliers.

2.2 Equality

Dep. Variable:	outcon	ne_adjuste	ed Log- :	Log-Likelihood:		1.3034e+06	
Model:	$\operatorname{BetaModel}$		AIC:		-2.	.607e + 06	
Method:	Maximu	m Likeliho	ood BIC:	BIC:		.607e + 06	
Date:	Sun, 05 Jan 2025		5				
Time:	14	4:54:36					
No. Observations:	6	47018					
Df Residuals:	647011						
Df Model:	5						
	\mathbf{coef}	std err	${f z}$	$\mathbf{P} > \mathbf{z} $	[0.025]	0.975]	
const	-3.4658	0.002	-1539.380	0.000	-3.470	-3.461	
household	-0.0186	0.001	-14.171	0.000	-0.021	-0.016	
$charging_station$	-0.0116	0.001	-9.450	0.000	-0.014	-0.009	
$\mathbf{heatpump}$	0.0001	0.001	0.161	0.872	-0.001	0.002	
PV	PV 0.0002 0.001		0.310	0.757	-0.001	0.001	
$lag_outcome$	$6.2634 \qquad 0.002$		2606.991	0.000	6.259	6.268	
precision	4.8522	0.002	2766.335	0.000	4.849	4.856	

Table 2.3: Equality: Regression results for demand shares according to the canon of equality.

	Variable	VIF
0	const	72.175634
1	household	1.690134
2	$charging_s tation$	1.626748
3	heatpump	1.024041
4	PV	1.073379
5	$lag_outcome$	1.000000

Table 2.4: Equality: Variance inflation factor to check for collinearity of predictors.

Durbin-Watson statistic for autocorrelation: 0.23918120007709764

2.3 Needs

Durbin-Watson statistic for autocorrelation: 2.0162657283185323

Figure 2.3: Equality: Distribution of residuals vs. normal distribution.

Figure 2.4: Equality: Outliers.

Figure 2.5: Needs: Distribution of residuals vs. normal distribution.

Figure 2.6: Needs: Outliers.

Dep. Variable:	outcome_adjusted		d Log-	-Likeliho	od: 6	.0138e + 05
Model:	$\operatorname{BetaModel}$		AIC	: :	- [1.203e + 06
Method:	Maximur	n Likeliho	od BIC	: :	-[1.203e + 06
Date:	Sun, 05	5 Jan 2025				
Time:	14	:30:56				
No. Observations:	64	17018				
Df Residuals:	647011					
Df Model:		5				
	coef	std err	${f z}$	$\mathbf{P}> \mathbf{z} $	[0.025	0.975]
const	0.5131	0.009	57.884	0.000	0.496	0.530
household	0.7496	0.007	112.355	0.000	0.737	0.763
$charging_station$	0.6194	0.006	98.574	0.000	0.607	0.632
${f heatpump}$	-0.0207	0.004	-5.415	0.000	-0.028	-0.013
PV	-0.2733	0.003	-93.972	0.000	-0.279	-0.268
$lag_outcome$	0.2796	0.006	46.576	0.000	0.268	0.291
precision	0.7186	0.002	406.188	0.000	0.715	0.722

Table 2.5: Needs: Regression results for demand shares according to the canon of needs.

	Variable	VIF
0	const	41.810614
1	household	1.701861
2	$charging_s tation$	1.645004
3	heatpump	1.163640
4	PV	1.088349
5	$lag_outcome$	1.175762

Table 2.6: Needs: Variance inflation factor to check for collinearity of predictors.

2.4 Productivity

Durbin-Watson statistic for autocorrelation: 2.0162657283185323

2.5 Social utility

Durbin-Watson statistic for autocorrelation: 2.063690331689273

Figure 2.7: Productivity: Distribution of residuals vs. normal distribution.

Figure 2.8: Productivity: Outliers.

Figure 2.9: Social utility: Distribution of residuals vs. normal distribution.

Figure 2.10: Social utility: Outliers.

Dep. Variable:	$outcome_adjusted$		d Log-	Log-Likelihood:		1399e + 06
Model:	$\operatorname{BetaModel}$		AIC	:	-2	2.280e + 06
Method:	d: Maximum		od BIC	:	-2	2.280e + 06
Date:	Sun, 0	5 Jan 2025	5			
Time:	14	1:44:28				
No. Observations:	6	47018				
Df Residuals:	647011					
Df Model:	5					
	coef	std err	\mathbf{z}	$\mathbf{P} > \mathbf{z} $	[0.025]	0.975]
const	-2.6012	0.008	-332.299	0.000	-2.617	-2.586
household	0.8658	0.007	120.812	0.000	0.852	0.880
charging_station	0.2524	0.006	41.074	0.000	0.240	0.264
heatpump	-0.0443	0.004	-12.179	0.000	-0.051	-0.037
PV	2.9282 0.004		740.111	0.000	2.920	2.936
$lag_outcome$	tcome 0.1507 0.003		48.740	0.000	0.145	0.157
precision	0.3325	0.002	178.929	0.000	0.329	0.336

Table 2.7: Productivity: Regression results for demand shares according to the canon of productivity.

	Variable	VIF
0	const	25.094197
1	household	1.693167
2	$charging_s tation$	1.628072
3	heatpump	1.026517
4	PV	1.073610
5	$lag_outcome$	1.004889

Table 2.8: Needs: Variance inflation factor to check for collinearity of predictors.

2.6 Supply and demand

Durbin-Watson statistic for autocorrelation: 1.4676094718163968

Figure 2.11: Supply and demand: Distribution of residuals vs. normal distribution.

Figure 2.12: Supply and demand: Outliers.

Dep. Variable:	$outcome_adjusted$		Log	-Likeliho	od: 1	1.9566e + 05	
Model:	Bet	aModel	AIC	: :	-;	3.913e + 05	
Method:	Maximur	n Likeliho	od BIC	BIC:		3.912e + 05	
Date:	Date: Sun, 05 J						
Time:	14	:38:34					
No. Observations:	64	47018					
Df Residuals:	647011						
Df Model:		5					
	coef	std err	Z	$\mathbf{P}> \mathbf{z} $	[0.025]	0.975]	
const	0.7630	0.008	94.578	0.000	0.747	0.779	
household	-0.1666	0.006	-27.836	0.000	-0.178	-0.155	
$charging_station$	-0.2729	0.006	-47.250	0.000	-0.284	-0.262	
$\mathbf{heatpump}$	-0.0096	0.004	-2.736	0.006	-0.017	-0.003	
\mathbf{PV}	-0.1374 0.003 -4		-49.006	0.000	-0.143	-0.132	
$lag_outcome$	0.4802	0.006	83.852	0.000	0.469	0.491	
precision	0.8495	0.002	531.985	0.000	0.846	0.853	

Table 2.9: Social utility: Regression results for demand shares according to the canon of social utility.

	Variable	VIF
0	const	39.769136
1	household	1.718670
2	$charging_s tation$	1.721934
3	heatpump	1.068725
4	PV	1.073726
5	$lag_outcome$	1.105709

Table 2.10: Social utility: Variance inflation factor to check for collinearity of predictors.

3 Normative canon analysis

Dep. Variable:	$outcome_adjusted$		d Log-	Log-Likelihood:		0154e + 06
Model:	Bet	aModel	AIC	:	-2	2.031e + 06
Method:	Maximu	m Likeliho	od BIC	BIC:		2.031e + 06
Date:	$\mathrm{Sun},05\mathrm{Jan}2025$		õ			
Time:	14:49:37					
No. Observations:	6	47018				
Df Residuals:	647011					
Df Model:		5				
	coef	std err	\mathbf{z}	$\mathbf{P}> \mathbf{z} $	[0.025]	0.975]
const	-2.5211	0.008	-319.711	0.000	-2.537	-2.506
household	1.0326	0.007	142.431	0.000	1.018	1.047
$charging_station$	0.2317	0.006	36.938	0.000	0.219	0.244
heatpump	-0.0703	0.004	-19.342	0.000	-0.077	-0.063
PV	2.9668	0.004	753.588	0.000	2.959	2.975
$lag_outcome$	0.2242	0.003	73.163	0.000	0.218	0.230
precision			186.920	0.000	0.338	0.345

Table 2.11: Supply and demand: Regression results for demand shares according to the canon of supply and demand.

	Variable	VIF
0	const	25.359748
1	household	1.692577
2	$charging_s tation$	1.627919
3	heatpump	1.025920
4	PV	1.073388
5	$lag_outcome$	1.003825

Table 2.12: Supply and demand: Variance inflation factor to check for collinearity of predictors.

4 Voting analysis

Figure 3.1: Baseline: Development of Euclidean distances between the share of demand according to each canon and the share of demand according to the baseline condition.

Figure 3.2: No voting: Development of Euclidean distances between the share of demand according to each canon and the share of demand according to the no voting condition.

Figure 4.1: Narrow self-interest: Development of canon weights over time.

Figure 4.2: Mixed motivations: Development of canon weights over time.

Figure 4.3: Narrow self-interest vs. mixed motivations: Development of canon weights over time.