

OPT3101

SBAS883 - FEBRUARY 2018

OPT3101 ToF based Long Range Proximity and Distance Sensor AFE

1 Features

- Proximity Sensing and Distance Measurement
- Compatible With a Wide Variety of Photodiodes and Emitters
- 16-bit Distance Output at 15-m Unambiguous Range
- · Sample Rate up to 4 kHz
- 200-nA Full-Scale Signal Current
- 88-dB Signal Phase Dynamic Range at 1 kHz
- Supports DC Ambient up to 200 µA, 60-dB Rejection for Ambient at 1 kHz
- Object Reflectivity Independent Distance Measurement
- De-Aliasing to Extend the Distance Range up to 75 m
- Programmable Sequence Generator to Provide Timing Flexibility
- Adaptive HDR to Save Power and Extend the Distance Range
- Configurable Event Detection and Interrupt Output Mechanism
- I²C Interface for Control and Data
- Integrated Illumination Driver with Programmable Current Control up to 173.6 mA
- Integrated Temperature Sensor for Calibration
- Built-in Crosstalk Calibration
- I²C Host to Auto Load Register Settings From External EEPROM on Reset
- Typical Power: 25 mW at 100 Hz, Including Illumination Power
- 4 mm x 5 mm, 28-Pin VQFN Package
- Single 3.3-V or 1.8-V and 3.3-V Supply Operation
- Operating Temperature: -40 to +85°C

2 Applications

- Proximity Sensing
 - Kiosk Customer Presence and Behavior Detection
 - Automated Dispensing
 - Car Parking Meter
- Long Range Sensing
 - Obstacle Detection for Autonomous Vehicles
 - Industrial Object Counting
 - Range Finder

3 Description

The OPT3101 device is a high speed, high resolution AFE for continuous wave, time-of-flight based proximity sensing and range finding. The device integrates the complete depth processing pipeline that includes the ADC, timing sequencer, and the digital processing engine. The device also has a built-in illumination driver that covers most of the target applications.

Given the high ambient rejection ratio, the device can support very high ambient conditions, including full sunlight of 130 klux.

The timing sequencer is highly configurable to provide for application-specific trade-offs of power versus performance.

The device provides depth data that consists of phase, amplitude, and ambient measurements. The calibration subsystem supports phase data calibration for inaccuracies resulting from temperature and crosstalk

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
OPT3101	VQFN (28)	5 mm × 4 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Application Block Diagram

Table of Contents

1	Features	1	8	Application and Implementation	9
2	Applications	1		8.1 Application Information	94
3	Description			8.2 Typical Application	94
4	Revision History			8.3 Initialization Set Up	98
5	Pin Configuration and Functions		9	Power Supply Recommendations	99
6	Specifications			9.1 System With Off-Chip 1.8-V Regulator	99
	6.1 Absolute Maximum Ratings			9.2 System With On-Chip 1.8-V Regulator	99
	6.2 ESD Ratings		10	Layout	100
	6.3 Recommended Operating Conditions			10.1 Layout Guidelines	10
	6.4 Thermal Information			10.2 Layout Example	10
	6.5 Electrical Characteristics	-	11	Device and Documentation Support	103
	6.6 Timing Requirements			11.1 Receiving Notification of Documentation	40
	6.7 Typical Characteristics	8		Updates	
7	Detailed Description	12		11.2 Community Resources	
	7.1 Overview			11.3 Trademarks	10
				11.4 Electrostatic Discharge Caution	10
	7.2 Functional Block Diagram			11.5 Glossary	10
	7.3 Feature Description	12	12	Mechanical, Packaging, and Orderable	
	7.4 Programming	30		Information	10
	7.5 Register Maps	34			
				12.1 Package Option Addendum	104

4 Revision History

DATE	ATE REVISION NOTES	
February 2018	*	Advance Information.

5 Pin Configuration and Functions

Pin Functions

PIN	١		I/O			
NAME NO.		TYPE	VOLTAGE DOMAIN	DESCRIPTION		
A0	28	I	AVDD	I ² C slave LSB0 address bit		
A1	1	I	AVDD	I ² C slave LSB1 address bit		
A2	2	I	AVDD	I ² C slave LSB2 address bit		
AVDD	21	Power	_	1.8-V analog supply		
AVDD3	20	Power	_	3.3-V analog supply		
AVSS	23, 26, 27	_	_	Analog ground		
DVDD	19	Power	_	1.8-V digital supply		
GP1	11	0	IOVDD	General purpose output		
GP2	12	I/O	IOVDD	General purpose output, CLKREF input		
INM	24	Analog Input	AVDD	ADC negative input. Connect photodiode equivalent capacitance. Other end of the capacitor should be connected to ground AVSS.		
INP	25	Analog Input	AVDD	ADC positive input. Connect photodiode cathode. Anode of the photodiode should be connected to ground AVSS.		
IOVDD	9, 10	Power	_	Supply for I/O and illumination driver		
IOVSS	3, 8	_	_	Ground for digital and I/O		
NC	22		_			
REG_MODE	18	1	IOVDD	Mode to select internal regulator for 1.8-V supplies (AVDD, DVDD)		
RST_MS	17	1	IOVDD	Active low global reset, monoshot trigger.		
SCL_M	15	0	IOVDD	I^2C master clock. Connect with a 10-k Ω resistor to a 3.3-V supply.		
SCL_S	13	I	IOVDD	$\mbox{I}^2\mbox{C}$ slave clock. Connect with a 10-k Ω resistor to a 3.3-V supply.		
SDA_M	16	I/O	IOVDD	I^2C master data. Connect with a 10-k Ω resistor to a 3.3-V supply.		
SDA_S	14	I/O	IOVDD	I^2C slave data. Connect with a 10-k Ω resistor to a 3.3-V supply.		

Copyright © 2018, Texas Instruments Incorporated

Submit Documentation Feedback

Pin Functions (continued)

PIN NAME NO.			I/O	
		TYPE	VOLTAGE DOMAIN	DESCRIPTION
TX0	7	0	IOVDD	Illumination driver output. Connect to LED cathode. Anode should be connected to a supply.
TX1	5	0	IOVDD	Illumination driver output. Connect to LED cathode. Anode should be connected to a supply.
TX2	4	0	IOVDD	Illumination driver output. Connect to LED cathode. Anode should be connected to a supply.
VSSL	6	_	_	Illumination driver ground

Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

		N	IIN	MAX	UNIT
IOVDD	Digital I/O supply	_	0.3	4	V
AVDD3	Analog supply	_	0.3	4	V
AVDD	Analog supply	_	0.3	2.2	V
DVDD	Digital supply	_	0.3	2.2	V
V _I	Input voltage at input pins	_	0.3	VCC + 0.3 (2)	V
T J	Junction temperature	-	40	125	°C
T stg	Storage temperature		40	125	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

VCC refers to the I/O bank voltage.

6.2 ESD Ratings

			VALUE	UNIT
V	Clastrostatia disabarga	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	±1000	V
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	±250	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
IOVDD	Digital I/O supply	1.7	1.8 to 3.3	3.6	V
AVDD3	Analog supply	3	3.3	3.6	V
AVDD	Analog supply	1.7	1.8	1.9	V
DVDD	Digital supply	1.7	1.8	1.9	V
V _{DRV}	TX0, TX1, TX2 pin voltage	0.7		3.6	V
ТД	Ambient temperature	-40		85	°C

6.4 Thermal Information

		OPT3101	
	THERMAL METRIC (1)	RHF (QFN)	UNIT
		28 PINS	
R _{θJA}	Junction-to-ambient thermal resistance	32.9	°C/W
R _{θ JC(top)}	Junction-to-case (top) thermal resistance	21.6	°C/W
R _{θJC(bot)}	Junction-to-case (bottom) thermal resistance	1.6	°C/W
R _{θJB}	Junction-to-board thermal resistance	10.8	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	0.3	°C/W
Ψ JB	Junction-to-board characterization parameter	10.7	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.5 Electrical Characteristics

All specifications at T_A = 25°C, VAVDD = 1.8 V, VAVDD3 = 3.3 V, VDVDD = 1.8 V, VIOVDD = 3.3 V, IambMax = 20 μ A, Photodiode with a capacitance of 2 pF at AFE input unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
AFE			<u> </u>		
I _{ref}	Full scale signal current at F mod		200		nA
I _{noise}	AFE Input refered current noise		1.5 ⁽¹⁾		pA/√Hz
I _{ambMax}	Maximum ambient DC current at input	AVDD3 = 3.3V	200 (2)		μA
µ _{1000Hz}	Ambient attenuation at 1000 Hz		60		dB
V _R	Bias voltage at INM, INP		1		V
C in	Maximum external photodiode capacitance at input		6		pF
F _{mod}	Modulation frequency		10		MHz
sps	Sample rate			4000	Hz
tPU Deepsleep	Deep sleep recovery time	Monoshot mode Only	1		ms
tPU Standby	Standby recovery time (3)		50		μs
ILLUMIN	IATION DRIVER				
I _{DRV}	Maximum built-in illumination driver current		173.6		mA
POWER	(ACTIVE MODE AT MAXIMUM FRAME R	ATE)			
I _{AVDD}	1.8-V analog supply current		11.6		mA
I _{DVDD}	1.8-V digital supply current		5.7		mA
I _{AVDD3}	3.3-V analog supply current		0.5		mA
I _{IOVDD}	3.3-V I/O supply current		0.7		mA
POWER	(DEEP SLEEP MODE)				
I _{AVDD}	1.8-V analog supply current		1		μΑ
I _{DVDD}	1.8-V digital supply current		3		μΑ
I _{AVDD3}	3.3-V analog supply current		1		μΑ
I _{IOVDD}	3.3-V I/O current		2		μΑ
POWER	(ACTIVE MODE AT MAXIMUM FRAME R	ATE), INTERNAL LDO MODE	·		
I _{AVDD3}	3.3-V analog supply current	Internal LDO mode	17.9		mA
I _{IOVDD}	3.3-V I/O supply current	Internal LDO mode	0.7		mA
POWER	(DEEP SLEEP MODE), INTERNAL LDO	MODE	·		
I _{AVDD3}	3.3-V analog supply current	Internal LDO mode	80		μΑ
I _{IOVDD}	3.3-V I/O supply current	Internal LDO mode	2		μΑ
CMOS I/	Os		·		
V _{IH}	Input high-level threshold		0.7 × VCC		>
V _{IL}	Input low-level threshold			0.3 × VCC	V
V _{OH}	Output high level	$I_{OH} = -2 \text{ mA}$	VCC (4) – 0.45		٧
		I _{OH} = -8 mA	VCC (4) - 0.5		
V _{OL}	Output low level	I _{OL} = 2 mA	0.35		V
		I _{OL} = 8 mA	0.65		
L	Input pin leakage current	Pins with pullup, pulldown resistor	±50		μA
			(

Noise will be higher by 20% with a photodiode capacitance of 6pF at AFE input. I_{ambMax} is programmable through register setting IAMB_MAX_SEL. (1)

⁽²⁾

Reference, Oscillator, Ambient Cancellation are not powered down. (3)

⁽⁴⁾ VCC is equal to IOVDD or AVDD, based on the I/O bank listed in the Pin Functions table.

Electrical Characteristics (continued)

All specifications at T_A = 25°C, VAVDD = 1.8 V, VAVDD3 = 3.3 V, VDVDD = 1.8 V, VIOVDD = 3.3 V, IambMax = 20 μ A, Photodiode with a capacitance of 2 pF at AFE input unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		Pins without pullup, pulldown resistor			±10	
Cı	Input capacitance			5		pF
I _{OH}	Maximum Output current high level			10		mA
I _{OL}	Maximum Output current low level			10		mA

6.6 Timing Requirements

	3 - 1	MIN	NOM MAX	UNIT
RSTZ_MS I	Pin			
t PWMonoShot	Monoshot trigger pulse width	0.1	,	μs
t _{PWReset}	Reset pulse width	30		μs
I 2 C Slave				
f _{SCL}	I ² C slave SCL operating frequency		400	kHz

Submit Documentation Feedback

6.7 Typical Characteristics

All specifications at $T_A = 25$ °C, $V_{AVDD} = 1.8$ V, $V_{AVDD3} = 3.3$ V, $V_{DVDD} = 1.8$ V, $V_{IOVDD} = 3.3$ V, $I_{ambMax} = 20$ μA , Photodiode with a capacitance of 2 pF at INP/INM unless otherwise noted.

Figure 1. Distance Standard Deviation vs AFE Input Signal

Figure 2. AFE Thermal Noise vs Maximum Ambient Current Supported

Figure 3. Illumination Driver I-V Characteristics

6.7.1 Continuous Mode

(NUM_AVG_SUB_FRAMES + 1) / (NUM_SUB_FRAMES + 1)

Figure 5. Supply Current in Continuous Mode with Internal LDO

6.7.2 Monoshot Mode

Figure 7. DVDD Supply Current in Monoshot Mode

Submit Documentation Feedback

Monoshot Mode (continued)

Figure 8. AVDD3 Supply Current in Monoshot Mode

Figure 9. IOVDD Supply Current in Monoshot Mode

Figure 10. Illumination Supply Current in Monoshot Mode

10 Sub

Submit Documentation Feedback

6.7.3 Monoshot Mode With Internal LDO

Figure 11. AVDD3 Supply Current in Monoshot Mode with Internal LDO

Figure 12. IOVDD Supply Current in Monoshot Mode with Internal LDO

Figure 13. Illumination Supply Current in Monoshot Mode with Internal LDO

7 Detailed Description

7.1 Overview

The OPT3101 device is a fully integrated Analog Front End (AFE) based on Time-of-Flight (ToF) principle using active illumination. The OPT3101 AFE connects to an external illuminator (LED/VCSEL/LASER) to transmit modulated optical signals and reflected signals is received by external photodiode which connects to input of the AFE. The received signal is converted to amplitude, phase information by the AFE and depth engine. This output is stored in registers, which can be read out through the device I²C interface.

The OPT3101 AFE has the following blocks:

- Timing generator: generates the sequencing signals for the sensor, illumination, and depth processor
- ToF receiver AFE
- Illumination driver
- · Depth engine: calculates phase and amplitude
- I²C slave for configuration and output data interface of the device registers by the host processor
- I²C master for external temperature sensing, auto load registers from an external EEPROM

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Timing Generator

The timing generator (TG) generates the timing sequence for each frame. The TG has the following features:

- Frame rate control
- Sequencing

The following are various modes of operation:

- Continuous or mono-shot mode
- Non-HDR mode or auto HDR mode
- Single-LED or multi-LED mode

Feature Description (continued)

Different modes of operation are explained below.

Figure 14. Continuous and Mono-Shot Modes

7.3.1.1 Continuous Operating Mode

In this mode, the device runs continuously at the programmed sample rate. More details about the frame timing are described in Non-HDR Mode and Auto HDR Mode.

7.3.1.2 Mono-Shot Mode

Mono-shot mode is a low power mode. In this mode, the device will be in a deep sleep state and waits for an external trigger. The sample can be initiated by RST_MS pin (active low) trigger or the register trigger (MONOSHOT_BIT). On trigger, the device comes out of power down, waits for programmed delay (POWERUP_DELAY) to start frame, captures specified number of samples (MONOSHOT_NUMFRAME), then goes into deep sleep state to save power. A new interrupt will be serviced only after completing the current frame capture. Any interrupt during the capture of a frame will be discarded. Figure 15 shows the timing diagram of mono-shot mode with RST_MS pin trigger. From the trigger, the frame start can be delayed by setting the POWERUP_DELAY register. The delay between trigger and frame VD is (64 x POWERUP_DELAY + 2) x T_{CLK}. A minimum delay of 0.4 ms is required for the device to come out of deep sleep state. A maximum of 26.2 ms delay can be programmed. This mode can also be used for synchronized capture from an external host.

RST_MS pin is used for dual purpose for reset and mono-shot trigger. For reset, give a pulse width that is > 30 μ s. For mono-shot trigger, give a pulse width that is < 1 μ s and > 100 ns.

Figure 15. Timing for Pin Triggered Mono-Shot Mode With RST_MS

For register triggered mono-shot mode, the host writes 1 to the interrupt register (MONOSHOT_BIT) to initiate sample capture. Once the data ready of Nth sample is available, the device automatically clears the interrupt register bit and goes into deep sleep state.

Feature Description (continued)

Figure 16. Timing for Register (MONOSHOT_BIT) Triggered Mono-Shot Mode,

Table 1. Mono-shot Mode Register Settings

PARAMETER	Address	Description
MONOSHOT_MODE	27h[1:0]	00 – Continuous mode 11 – Mono-shot mode
MONOSHOT_NUMFRAME	27h[7:2]	Number of frames to be captured for every trigger.
POWERUP_DELAY	26h[23:10]	Register to program the delay from the external trigger to start of frame (FRAME_VD). Delay = (64 × POWERUP_DELAY + 2) × Tclk, Tclk = 25 ns
MONOSHOT_BIT	0h[23]	Mono-shot trigger register. Write 1 to start sample capture. Bit will be auto cleared after capture completion.

7.3.1.3 Non-HDR Mode

In this mode a fixed LED current is used for the Illumination driver. Figure 17 shows the frame timing. Each frame is divided into multiple sub-frames, which can be varied from 1 to 2^{12} . Each sub-frame is 10,000 clocks of 40 MHz, which is equal to a 4-kHz sub-frame rate. In each sub-frame, 8192 clocks is the photodiode signal integration time and the remainder of the time is used for processing the signal and computing amplitude phase. The device can be operated at the highest frame rate of 4 kHz by setting the number of sub-frames to 1 (NUM_SUB_FRAMES = 0) in a frame.

sample rate =
$$\frac{4000}{1 + \text{NUM_SUB_FRAMES}}$$
 (1)

Table 2. Sample Rate Configuration Registers

PARAMETER	Address	Description
NUM_SUB_FRAMES	9Fh[11:0]	Total number of sub-frames in a frame. Each sub-frame is 0.25 ms. Number of sub frames in a frame = NUM_SUB_FRAMES + 1. This number must be equal or greater than NUM_AVG_SUB_FRAMES.
NUM_AVG_SUB_FRAMES	9Fh[23:12]	Specifies the number of sub-frames to be averaged in a frame. Averaging sub-frames = NUM_AVG_SUB_FRAMES + 1.

- (1) $N_1 = 10,000$; number of 40-MHz clocks in a sub-frame.
- (2) $N_2 = NUM_SUB_FRAMES + 1$ is the number of sub-frames in a frame, programmable in the range of 1 to 2^{12} .

Figure 17. Frame Timing Diagram

7.3.1.4 Auto HDR Mode

In this mode, the sequencer switches between two illumination driver currents to extend the dynamic range, depending on the signal saturation and lower amplitude threshold. The principle of operation is explained in Figure 18. When the illumination driver current is high, it switches to a lower current if the amplitude exceeds the saturation threshold, HDR_THR_HIGH. When the illumination driver current is low, it switches to higher current if the measured amplitude is below the lower threshold, HDR_THR_LOW.

Figure 18. Auto HDR Mode: State Diagram

Figure 19 shows the frame timing diagram for HDR mode. In this mode, the first sub-frame information is used to make a decision about the validity of the output. If the first sub-frame output is valid the same illumination DAC will be used for the rest of the frame, otherwise the illumination driver will be switched to second illumination DAC current.

(1) The illumination driver DAC switching is shown for a particular scenario.

Figure 19. Auto HDR Mode Frame Timing Diagram

Amplitude thresholds for HDR mode should be chosen according to Equation 2. Choice of the two illumination driver DAC currents depends on the end application.

$$\frac{\text{HDR_THR_HIGH}}{\text{HDR_THR_LOW}} > \frac{\text{ILLUM_DAC_H}}{\text{ILLUM_DAC_L}}$$
(2)

HDR_THR_HIGH is the saturation threshold for the HDR switching, it should be set slightly below the actual saturation amplitude (HDR should trigger before the AFE analog path saturates). HDR_THR_LOW is the accuracy threshold, amplitude below which the distance accuracy will be poor. Figure 20 shows an illustration of the HDR operation with distance. At a distance close to the sensor lower illumination DAC current will be used. As the object moves away from the sensor, ILLUM_DAC switches to a higher value once the amplitude falls below the lower threshold (HDR_THR_LOW). At the switching point, non-saturation is ensured by choosing the DAC currents according to Equation 2. As the object moves towards the sensor, ILLUM_DAC switches to a lower value once the amplitude reaches saturation level (HDR_THR_HIGH). At this transition, the amplitude with ILLUM_DAC_L will be above HDR_THR_LOW.

Figure 20. HDR Mode Operation With Distance

ISTRUMENTS

Table 3. HDR Mode Configuration Registers

PARAMETER	Address	Description
EN_ADAPTIVE_HDR	2Ah[15]	Enable adaptive HDR mode. Minimum number of sub-frames in a frame in this mode is 2 (NUM_SUB_FRAMES = 1)
SEL_HDR_MODE	2Ah[16]	Choses which current to use when EN_ADAPTIVE_HDR = 0. 0 - ILLUM_DAC_L 1 - ILLUM_DAC_H
HDR_THR_HIGH	2Bh[15:0]	Saturation amplitude threshold of the auto HDR for high DAC current (ILLUM_DAC_H) Write a value of 27000
HDR_THR_LOW	2Ch[15:0]	Accuracy threshold of the auto HDR for low DAC current (ILLUM_DAC_L) = HDR_THR_HIGH × (ILLUM_DAC_L / ILLUM_DAC_H) × (1 / 1.2)
ILLUM_DAC_L_TX0	29h[4:0]	ILLUM_DAC_L of TX0 Channel
ILLUM_DAC_H_TX0	29h[9:5]	ILLUM_DAC_H of TX0 Channel
ILLUM_DAC_L_TX1	29h[14:10]	ILLUM_DAC_L of TX1 Channel
ILLUM_DAC_H_TX1	29h[19:15]	ILLUM_DAC_H of TX1 Channel
ILLUM_DAC_L_TX2	29h[23:20], 2Ah[23]	ILLUM_DAC_L of TX2 Channel
ILLUM_DAC_H_TX2	2Ah[22:18]	ILLUM_DAC_H of TX2 Channel

7.3.1.5 Multi Channel Mode

The OPT3101 AFE supports up to three separate illumination channels. Only one illumination channel can be activated at a given point of time. In multi channel mode, the illumination driver switches current between different pins (TX0, TX1, and TX2) across samples. The sequence of switching is programmable (TX_SEQ_REG). In single channel mode, the channel to be used can be selected through SEL_TX_CH. Each Illumination channel has separate current programmability, listed in Table 3. This mode can be combined with continuous mode, mono-shot mode, non-HDR mode, or auto HDR mode.

Table 4. Multi LED Configuration Registers

Register	Address	Description
EN_TX_SWITCH	2Ah[0]	Enable switching between Illumination channels TX0, TX1, TX2.
SEL_TX_CH	2Ah[2:1]	Selects the ILLUM channels when switching is disabled.
TX_SEQ_REG	2Ah[14:3]	Stores the sequence of ILLUM channel switching in this register. For example, register value: 2-1-0-2-1-0. The sequence will be 0-1-2-0-1-2

Separate calibration registers are provided for each illumination channel to support different currents for each channel in the same system.

7.3.2 AFE

The diode current is capacitively coupled to the AFE as shown in Figure 21. AFE processes the input signal and produces digitized in-phase and quadrature-phase components of the input signal. The AFE has a full scale current of 200 nA peak-to-peak and supports a photodiode capacitance up to 6 pF.

Figure 21. AFE, Photodiode Interface

The signal-to-noise ratio (SNR) for a given signal current and sample rate can be calculated from the following equation.

$$SNR = \frac{I_{SIG_AFE}}{I_{noise} \times \sqrt{BW}} = \frac{I_{SIG_AFE}}{94.8pA / \sqrt{(NUM_AVG_SUB_FRAMES + 1)}}$$

where

- I_{sig} afe = signal current entering the AFE
- I_{noise} = Input referred current noise floor of the AFE

$$\sigma_{phase} = \frac{1}{SNR}$$
 radians

where

- σ_{phase}= Phase standard deviation in radians
- SNR is calculated from Equation 3

• SNR is calculated from Equation 3 (4)
$$\sigma_{\text{distance}} = \frac{c/(2f_{\text{MOD}})}{2\pi} \times \frac{1}{\text{SNR}} \text{ meters}$$

where

- σ_{distance} = Distance standard deviation in meters
- c = Speed of light

For example, with an AFE signal current of 20 nA peak-to-peak (-20 dBFS), frame rate of 125 Hz (NUM_AVG_SUB_FRAMES = 31), SNR = 1193 = 61.5 dB. Depth noise standard deviation for this scenario is $\sigma_{\text{distance}} = 15 \text{ m} / (2\pi) / 1193 = 2 \text{ mm}.$

7.3.3 Ambient Cancellation

Ambient cancellation circuit provides the DC and low-frequency diode current while biasing the diode at 1 V. Figure 22 shows the frequency response of the ambient cancellation circuit. The diode current with frequencies below f_{c2} will see second order rejection. The corner frequency f_{c2} is designed to be at 50 kHz for IAMB_MAX_SEL = 0 (20 uA ambient current support). Below frequency fc1 (approximately at 10 Hz), attenuation will become first order. So for a frequency of 1 kHz, the rejection would be (50 kHz / 1 kHz) × 2 = 2500 = 68 dB.

Submit Documentation Feedback

www.ti.com

Figure 22. Ambient Cancellation Circuit Frequency Response

The maximum ambient current supported is programmable from 10 µA to 200 uA, listed in Table 5. Noise contribution from ambient cancellation block increases with increase in ambient current support, shown in Figure 2. For low ambient systems, the lower value of maximum ambient support should be used to reduce the noise contribution from the ambient cancellation. Ambient current is also converted to digital using an ADC (AMB_DATA) at the output of the ambient cancellation block. Ambient ADC resolution is 0.104 µA / LSB with 20µA support. Ambient ADC resolution scales linearly with maximum ambient current supported. Ambient current can be calculated from the AMB_DATA using Equation 6.

$$I_{AMB} = \frac{AMB_DATA - AMB_CALIB}{192} \times I_{AMB_MAX}$$

where

- I_{AMB MAX}= Maximum ambient current supported. Listed in Table 5
- AMB CALIB = ambient ADC output in Dark. Typical value is 64, could vary by few codes from device to device.

Table 5. Ambient Cancellation Register Settings

PARAMETER	ADDRESS	DESCRIPTION
IAMB_MAX_SEL	72h[7:4]	Selects the value of maximum ambient current support 0: 20 μA 5: 10 μA 10: 33 μA 11: 50 μA 12: 100 μA 14: 200 μA

7.3.4 Oscillator

The system clock is generated using an on-chip oscillator with high stability across temperature. This oscillator is trimmed to a nominal frequency of 80 MHz within ±3%. For accurate distance conversion, this frequency is trimmed digitally to 10-bit accuracy. Additionally, the device can accept external reference clock and correct for the on-chip oscillator variations for continuous background frequency calibration.

7.3.5 CLKGEN

CLKGEN takes the clock from the oscillator and generates clocks required for various blocks. CLKGEN generates a 10-MHz clock for the illumination driver. The phase of the illumination CLK can be changed in 16 steps. This feature is useful for phase non-linearity correction resulting from square wave modulation. Phase non-linearity from ideal square wave demodulation is approximately ±4 degrees. OPT3101 has a filter to reject the higher order harmonics of square wave and the resulting non-linearity is small ±0.5 degrees. For de-aliasing, CLKGEN also generates an additional frequency of 10 x (6 / 7) MHz or 10 x (6 / 5) MHz for illumination clock.

Table 6. Register Settings to Change the Phase of Illumination

PARAMETER	ADDRESS	DESCRIPTION
SHIFT_ILLUM_PHASE	71h[6:3]	Mode to generate different Illumination clock phases. Illumination clock phase = SHIFT_ILLUM_PHASE × 22.5 degrees

7.3.6 Illumination Driver

Figure 23 shows the illumination driver block diagram. The illumination driver supports three illumination channels. Same current source is multiplexed onto three channels. Only one channel can be used at any given time

Figure 23. Illumination Driver Block Diagram

Illumination driver current can be programmed using a 5-bit DAC, listed in Table 7. Step size of the DAC can also be scaled from 1.4 mA to 5.6 mA using ILLUM_SCALE. DC bias current option is also provided. DC bias is useful if the system requires very small switching illumination current. This DC bias can be programmed in the range of 0.5 mA to 7.5 mA in steps of 0.5 mA using ILLUM_DC_CURR_DAC.

REGISTER	ADDRESS	DESCRIPTION
EN_LED_DRV	79h[0]	Enable Illumination Driver
ILLUM_DAC_L_TX0	29h[4:0]	Illumination driver current DAC register, ILLUM_DAC_L of TX0 Channel. Illumination current = ILLUM_DAC_L_TX0 × DAC Step
ILLUM_DAC_H_TX0	29h[9:5]	Illumination driver current DAC register, ILLUM_DAC_H of TX0 Channel. Illumination current = ILLUM_DAC_L_TX0 × DAC Step
ILLUM_SCALE_L_TX0	2Bh[18:16]	Scale illumination current DAC step size for ILLUM_DAC_L_TX0 000 - 5.6 mA 001 - 4.2 mA 010 - 2.8 mA 011 - 1.4 mA
ILLUM_SCALE_H_TX0	2Bh[21:19]	Scale illumination current DAC step size for ILLUM_DAC_H_TX0 000 - 5.6 mA 001 - 4.2 mA 010 - 2.8 mA 011 - 1.4 mA
ILLUM_DC_CURR_DAC	79h[11:8]	Program Illumination driver DC bias current DC Current = 0.5 mA* ILLUM_DC_CURR_DAC

7.3.7 Depth Engine

The depth engine computes the phase and amplitude from in-phase and quadrature-phase components of the received signal. Depth engine also performs following calibrations:

- Phase Offset
- Phase Correction with Temperature
- Crosstalk
- Frequency
- Square Wave Non-linearity
- Phase Correction with Ambient

For detailed calibration procedure, refer to OPT3101 Distance Sensor System Calibration

Table 8. Phase Offset Correction Registers

PARAMETER	ADDRESS	DESCRIPTION
EN_PHASE_CORR	43h [0]	Enables phase offset correction
PHASE_OFFSET_HDR0_TX0	42h[15:0]	Phase offset for TX0 illumination channel with current of ILLUM_DAC_L_TX0
PHASE_OFFSET_HDR1_TX0	51h[15:0]	Phase offset for TX0 illumination channel with current of ILLUM_DAC_H_TX0

Table 8. Phase Offset Correction Registers (continued)

PARAMETER	ADDRESS	DESCRIPTION
PHASE_OFFSET_HDR0_TX1	52h[15:0]	Phase offset for TX1 illumination channel with current of ILLUM_DAC_L_TX1
PHASE_OFFSET_HDR1_TX1	53h[15:0]	Phase offset for TX1 illumination channel with current of ILLUM_DAC_H_TX1
PHASE_OFFSET_HDR0_TX2	54h[15:0]	Phase offset for TX2 illumination channel with current of ILLUM_DAC_L_TX2
PHASE_OFFSET_HDR1_TX2	55h[15:0]	Phase offset for TX2 illumination channel with current of ILLUM_DAC_H_TX2

Table 9. Phase Temperature Coefficient Registers

PARAMETER	ADDRESS	DESCRIPTION
EN_TEMP_CORR	43h[1]	Enable temperature correction
SCALE_PHASE_TEMP_COEFF	43h[8:6]	Adjust scale factor for temperature coefficient
TMAIN_CALIB_HDR0_TX0	47h[11:0]	Calibration temperature for sensor offset for TX0 illumination channel with current of ILLUM_DAC_L_TX0
TEMP_COEFF_MAIN_HDR0_TX0	45h[11:0]	Phase temperature coefficient for sensor temperature for TX0 illumination channel with current of ILLUM_DAC_L_TX0
TMAIN_CALIB_HDR1_TX0	48h[11:0]	Calibration temperature for sensor offset for TX0 illumination channel with current of ILLUM_DAC_H_TX0
TEMP_COEFF_MAIN_HDR1_TX0	2Dh[11:0]	Phase temperature coefficient for sensor temperature for TX0 illumination channel with current of ILLUM_DAC_H_TX0
TMAIN_CALIB_HDR0_TX1	49h[11:0]	Calibration temperature for sensor offset for TX1 illumination channel with current of ILLUM_DAC_L_TX1
TEMP_COEFF_MAIN_HDR0_TX1	2Dh[23:12]	Phase temperature coefficient for sensor temperature for TX1 illumination channel with current of ILLUM_DAC_L_TX1
TMAIN_CALIB_HDR1_TX1	41h[23:12]	Calibration temperature for sensor offset for TX1 illumination channel with current of ILLUM_DAC_H_TX1
TEMP_COEFF_MAIN_HDR1_TX1	2Fh[23:16], 30h[23:20]	Phase temperature coefficient for sensor temperature for TX1 illumination channel with current of ILLUM_DAC_H_TX1
TMAIN_CALIB_HDR0_TX2	3Fh[11:0]	Calibration temperature for sensor offset for TX2 illumination channel with current of ILLUM_DAC_L_TX2
TEMP_COEFF_MAIN_HDR0_TX2	31h[23:16], 32h[23:20]	Phase temperature coefficient for sensor temperature for TX2 illumination channel with current of ILLUM_DAC_L_TX2
TMAIN_CALIB_HDR1_TX2	45h[23:12]	Calibration temperature for sensor offset for TX2 illumination channel with current of ILLUM_DAC_H_TX2
TEMP_COEFF_MAIN_HDR1_TX2	33h[23:16], 34h[23:20]	Phase temperature coefficient for sensor temperature for TX2 illumination channel with current of ILLUM_DAC_H_TX2

Table 10. Phase Temperature Coefficient Registers for External Temperature Sensor

PARAMETER	ADDRESS	DESCRIPTION
TILLUM_CALIB_HDR0_TX0	47h[23:12]	Calibration temperature of external temperature sensor
TEMP_COEFF_ILLUM_HDR0_TX0	46h[11:0]	Phase temperature coefficient for illumination using external temperature sensor.
TILLUM_CALIB_HDR1_TX0	48h[23:12]	Calibration temperature of external temperature sensor
TEMP_COEFF_ILLUM_HDR1_TX0	51h[23:16], 52h[23:20]	Phase temperature coefficient for illumination using external temperature sensor.
TILLUM_CALIB_HDR0_TX1	49h[23:12]	Calibration temperature of external temperature sensor
TEMP_COEFF_ILLUM_HDR0_TX1	53h[23:16], 54h[23:20]	Phase temperature coefficient for illumination using external temperature sensor.
TILLUM_CALIB_HDR1_TX1	43h[23:12]	Calibration temperature of external temperature sensor
TEMP_COEFF_ILLUM_HDR1_TX1	55h[23:16], 56h[23:20]	Phase temperature coefficient for illumination using external temperature sensor.
TILLUM_CALIB_HDR0_TX2	3Fh[23:12]	Calibration temperature of external temperature sensor
TEMP_COEFF_ILLUM_HDR0_TX2	57h[23:16], 58h[23:20]	Phase temperature coefficient for illumination using external temperature sensor.
TILLUM_CALIB_HDR1_TX2	46h[23:12]	Calibration temperature of external temperature sensor

Table 10. Phase Temperature Coefficient Registers for External Temperature Sensor (continued)

PARAMETER	ADDRESS	DESCRIPTION
TEMP_COEFF_ILLUM_HDR1_TX2	59h[23:16], 5Ah[23:20]	Phase temperature coefficient for illumination using external temperature sensor.

Table 11. Ambient dependent Phase Correction Registers

Register	Address	Description						
AMB_PHASE_CORR_PWL_X0	B8h[9:0]	First knee point of PWL phase correction with ambient						
AMB_PHASE_CORR_PWL_X1	B9h[19:10]	Second knee point of PWL phase correction with ambient						
AMB_PHASE_CORR_PWL_X2	B9h[9:0]	Third knee point of PWL phase correction with ambient						
AMB_PHASE_CORR_PWL_COEFF0	0Ch[23:16]	Slope of first segment for PWL phase correction with ambient						
AMB_PHASE_CORR_PWL_COEFF1	B4h[7:0]	Slope of second segment for PWL phase correction with ambient						
AMB_PHASE_CORR_PWL_COEFF2	B4h[15:8]	Slope of third segment for PWL phase correction with ambient						
AMB_PHASE_CORR_PWL_COEFF3	B4h[23:16]	Slope of fourth segment for PWL phase correction with ambient						
SCALE_AMB_PHASE_CORR_COEFF	B5h[2:0]	Scaling factor for ambient based PWL phase correction.						

Table 12. Internal Crosstalk Correction Registers

REGISTER	ADDRESS	DESCRIPTION					
INT_XTALK_CALIB	2Eh[4]	The device initializes the internal electrical crosstalk measurement upon setting this bit. Use following sequence: INT_XTALK_CALIB = 1 delay (at least 5 x 2 ^{XTALK_FILT_TIME_CONST} frames) INT_XTALK_CALIB = 0					
XTALK_FILT_TIME_CONST	2Eh[23:20]	Time constant for crosstalk filtering. Time constant $\tau = 2^{XTALK_FILT_TIME_CONST}$ frames. At least 5τ should be allowed for settling of crosstalk measurement.					
USE_XTALK_FILT_INT	2Eh[5]	Select filter or direct sampling for internal crosstalk measurement. 0 – Direct sampling, 1 – Filter					
USE_XTALK_REG_INT	2Eh[6]	Select register value or internally calibrated value for internal crosstalk 0 – Calibration value, 1 – Register value					
IPHASE_XTALK_INT_REG	3D[15:0]	Register for in-phase component of internal crosstalk					
QPHASE_XTALK_INT_REG	3E[15:0]	Register for quad-phase component of internal crosstalk					
IPHASE_XTALK	3Bh[23:0]	Read-only register. In-phase component. Different values can be selected to be readout with IQ_READ_DATA_SEL					
QPHASE_XTALK	3Ch[23:0]	Read-only register. Quadrature phase component. Different values can be selected to be readout with IQ_READ_DATA_SEL					
IQ_READ_DATA_SEL	2Eh[11:9]	Mux select for IPHASE_XTALK, QPHASE_XTALK 000 – Internal Crosstalk 001 – Illum Crosstalk 010 – Raw I, Q 011 – 16-bit frame counter					
INT_XTALK_REG_SCALE	2E[16:14]	Scale factor for internal crosstalk register (IPHASE_XTALK_INT_REG, QPHASE_XTALK_INT_REG). Scale = 2 ^{INT_XTALK_REG_SCALE}					

Table 13. Illumination Crosstalk Correction Registers

REGISTER	ADDRESS DESCRIPTION							
ILLUM_XTALK_CALIB	2Eh[12]	The device initializes the Illumination crosstalk measurement upon setting this bit. This measurement should be done with the photodiode masked such that no modulated light is received. Use following sequence: ILLUM_XTALK_CALIB = 1 delay(at least 5 × 2 ^{XTALK_FILT_TIME_CONST} frame) ILLUM_XTALK_CALIB = 0						
USE_XTALK_FILT_ILLUM	2Eh[7]	Select filter or direct sampling for Illumination crosstalk measurement. 0 – Direct sampling, 1 – Filter						
USE_XTALK_REG_ ILLUM	2Eh[8]	Select register value or internally calibrated value for illumination crosstalk correction. 0 - Calibration value, 1 - Register value						

Table 13. Illumination Crosstalk Correction Registers (continued)

REGISTER	ADDRESS	DESCRIPTION				
ILLUM_XTALK_REG_SCALE	2E[19-17]	Scale factor for Illumination crosstalk register (IPHASE_XTALK_REG_HDR <i>_TX<j>, QPHASE_XTALK_REG_HDR<i>_TX<j>, i=0,1, j=0,1,2). Scale = 2INT_XTALK_REG_SCALE</j></i></j></i>				
IPHASE_XTALK_REG_HDR0_TX0	2Fh[15:0]	Register for illumination crosstalk in-phase component for TX0 channel with ILLUM_DAC_L_TX0 current				
QPHASE_XTALK_REG_HDR0_TX0	30h[15:0]	Register for illumination crosstalk quad-phase component for TX0 channel with ILLUM_DAC_L_TX0 current				
IPHASE_XTALK_REG_HDR1_TX0	31h[15:0]	Register for illumination crosstalk in-phase component for TX0 channel with ILLUM_DAC_H_TX0 current				
QPHASE_XTALK_REG_HDR1_TX0	32h[15:0]	Register for illumination crosstalk quad -phase component for TX0 channel with ILLUM_DAC_H_TX0 current				
IPHASE_XTALK_REG_HDR0_TX1	33h[15:0]	Register for illumination crosstalk in-phase component for TX1 channel with ILLUM_DAC_L_TX1 current				
QPHASE_XTALK_REG_HDR0_TX1	34h[15:0]	Register for illumination crosstalk in quad-phase component for TX1 channel with ILLUM_DAC_L_TX1 current				
IPHASE_XTALK_REG_HDR1_TX1	35h[15:0]	Register for illumination crosstalk in-phase component for TX1 channel with ILLUM_DAC_H_TX1 current				
QPHASE_XTALK_REG_HDR1_TX1	36h[15:0]	Register for illumination crosstalk quad-phase component for TX1 channel with ILLUM_DAC_H_TX1 current				
IPHASE_XTALK_REG_HDR0_TX2	37h[15:0]	Register for illumination crosstalk in-phase component for TX2 channel with ILLUM_DAC_L_TX2 current				
QPHASE_XTALK_REG_HDR0_TX2	38h[15:0]	Register for illumination crosstalk quad -phase component for TX2 channel with ILLUM_DAC_L_TX2 current				
IPHASE_XTALK_REG_HDR1_TX2	39h[15:0]	Register for illumination crosstalk in-phase component for TX2 channel with ILLUM_DAC_H_TX2 current				
QPHASE_XTALK_REG_HDR1_TX2	3Ah[15:0]	Register for illumination crosstalk quad -phase component for TX2 channel with ILLUM_DAC_H_TX2 current				

Table 14. Frequency Correction Registers

REGISTER	ADDRESS	DESCRIPTION
EN_AUTO_FREQ_COUNT	0Fh[21]	Determines which value to be used for frequency correction 0 – Trimmed value 1 – Measured value from frequency calibration
EN_FLOOP	0Fh[22]	Enables the frequency calibration block.
EN_FREQ_CORR	0Fh[23]	Enable frequency correction for the phase output
REF_COUNT_LIMIT	0Fh[14:0]	This sets the limit for ref-clock count. Write this register with value = (40e6 / 2 ^{SYS_CLK_DIVIDER}) / f _{EXT}
SYS_CLK_DIVIDER	0Fh[20:17]	Programs system clock divider for frequency calibration. This should be adjusted to get it closer to the external reference frequency. The default is 10, system clock = 40 MHz / 2 ¹⁰ = 39.0625 kHz to bring close to 32.768 kHz.
EN_CONT_FCALIB	10h[15]	Enables continuous frequency calibration. 0 – Frequency is measured only when START_FREQ_CALIB = 1 1 – Frequency is continuously measured.
FREQ_COUNT_READ_REG	10h[14:0]	Read register which holds the value of freq_loop.
START_FREQ_CALIB	0Fh[16]	starts the freq_calib

Table 15. Phase Non-Linearity Correction Registers

REGISTER	ADDRESS	DESCRIPTION
EN_NL_CORR	4Ah[0]	Enables square wave non-linearity correction
SCALE_NL_CORR_COEFF	4Ah[19:18]	Scaling factor for non linearity correction coefficients (A*_COEFF_HDR*_TX*)
A0_COEFF_HDR0_TX0	4Ah[17:2]	0th order coefficient for square wave non-linearity correction
A1_COEFF_HDR0_TX0	4Bh[15:0]	1st order coefficient for square wave non-linearity correction
A2_COEFF_HDR0_TX0	4Ch[15:0]	2nd order coefficient for square wave non-linearity correction

(7)

Table 15. Phase Non-Linearity Correction Registers (continued)

REGISTER	ADDRESS	DESCRIPTION
A3_COEFF_HDR0_TX0	4D[15:0]	3rd order coefficient for square wave non-linearity correction
A4_COEFF_HDR0_TX0	4Eh[15:0]	4th order coefficient for square wave non-linearity correction
A0_COEFF_HDR1_TX0	A2[15:0]	Oth order coefficient for square wave non-linearity correction
A1_COEFF_HDR1_TX0	A7[15:0]	1st order coefficient for square wave non-linearity correction
A2_COEFF_HDR1_TX0	AC[15:0]	2nd order coefficient for square wave non-linearity correction
A3_COEFF_HDR1_TX0	B1[15:0]	3rd order coefficient for square wave non-linearity correction
A4_COEFF_HDR1_TX0	AA[23:16], AB[23:16]	4th order coefficient for square wave non-linearity correction

7.3.8 Output Data

Phase and amplitude information is stored in registers which can be readout using I^2C interface. Device gives data ready after computation of depth information on general purpose I/O (GP1/GP2) which can be used trigger the host to read the data from the device. Distance can be calculated from the phase using Equation 7. 1 code of PHASE OUT is 0.2287mm.

$$distance = \frac{PHASE_OUT}{2^{16}} \times \frac{c}{2f_{MOD}} meters$$

where

- c = Speed of light
- f_{MOD} =10 MHz, modulation frequency

Along with phase and amplitude of the signal, ambient ADC output and temperature sensor output are also stored in the registers. All the output data is stored in contiguous registers 8, 9, and 10.

Table 16. Output Data Registers

		Table 101 Calput Data 110gloto10									•			•										
Register	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
REG 8	FRAME_COUNT0	AMB_OVL_FLAG	MOD_FREQ	FRAME_STATUS			HDR_MODE	PHASE_OVER_FLOW			PHA	SE_C)UT [1	5:8]					PHA	\SE_(] TUC	7:0]		
REG 9	DEA	ALIAS	s_BIN	[3:0]	PHASE_OVER FLOW_F2	SIG_O VL_FL AG	EBAME COLINT		AMP_OUT[15:8]							ΑI	MP_O	·UT[7:	0]					
REG 10				ΓΜΑΙΙ	N[11:4	ij				TMAII	N[3:0]		AM	B_D/	ATA[9	:6]		A۱	/IB_D/	ATA[5	5:0]		FRA COL	

Table 17. Output Data Registers Description

FIELD	BIT	DESCRIPTION
PHASE_OUT	08h[15:0]	Final calibrated phase.
PHASE_OVERFLOW	08h[16]	Phase overflow during frequency correction.
AMP_OUT	09h[15:0]	Amplitude of the signal.

Table 17. Output Data Registers Description (continued)

FIELD	BIT	DESCRIPTION							
SIG_OVL_FLAG	09h[18]	Overload flag to indicate signal saturation							
AMB_OVL_FLAG	08h[22]	Overload flag to indicate ambient saturation							
HDR_MODE	08h[17]	Indicates the illumination driver DAC current used. 0: ILLUM_DAC_L 1: ILLUM_DAC_H							
TX_CHANNEL	08h[19:18]	Indicates which Illumination channel of TX0/TX1/TX2 is used.							
FRAME_STATUS	08h[20]	0= Invalid frame 1= Valid frame. Frame can be invalid during crosstalk measurement.							
MOD_FREQ	08h[21]	Indicates the frequency used. 0: 10 MHz 1: de-alias frequency (10 MHz \times 6 / 7 or 10 MHz \times 6 / 5)							
FRAME_COUNT0	08h[23]	Frame counter LSB Bit [0]							
FRAME_COUNT1	09h[17:16]	Frame counter Bits [2:1]							
FRAME_COUNT2	0Ah[1:0]	Frame counter Bits [4:3]. Frame Counter = FRAME_COUNT2 * 8 + FRAME_COUNT1 * 2 + FRAME_COUNT0							
DEALIAS_BIN	09h[23:20]	Distance bin in de-alias mode							
PHASE_OVER_FLOW_F2	09h[19]	Phase overflow of second modulation frequency during frequency correction.							
AMB_DATA	0Ah[11:2]	Ambient ADC output. Indicates the ambient light. In no ambient light condition AMB_DATA will be 64 typically.							
TMAIN	0Ah[23:12]	Temperature sensor output temperature (°C)= TMAIN / 8 – 256							

7.3.9 General Purpose I/O

There are two general purpose I/Os which can be used to bring out various digital signals like DATA_RDY, FRAME_VD, ILLUM_CLK, ILLUM_EN. GP2 can also be used as an input pin for external clock reference for device on-chip oscillator frequency calibration.

Table 18. GPIO Configuration Registers

REGISTER	ADDRESS	DESCRIPTION					
GPO1_MUX_SEL	78h[8:6]	0: DVSS 2: DIG_GPO_0 3: DIG_GPO_1 7: ILLUM_CLK					
GPIO1_OBUF_EN	78h[12]	Enable output buffer of GP1 pin					
GPIO2_IBUF_EN	78h[16]	Enable input buffer of GP2 pin. External reference clock should be connected to this pin for frequency calibration.					
GPIO2_OBUF_EN	78h[15]	Enable output buffer of GP2 pin					
GPO2_MUX_SEL	78h[11:9]	0: DVSS 2: DIG_GPO_0 3: DIG_GPO_1 7: ILLUM_EN_TX0					
DIG_GPO_SEL0	0Bh[3:0]	Mux selection bits for digital signal dig_gpo_0 which can be brought out on GP1/GP2 0: FRAME VD 1: SUB-VD 4: SEQUENCER INTERRUPT 8: COMP_STATUS 9: DATA_RDY 10: FRAME_COUNTER_LSB					
DIG_GPO_SEL1	0Bh[7:4]	Mux selection bits for digital signal dig_gpo_1 which can be brought out on GP2/GP2 0: FRAME VD 1: SUB-VD 4: SEQUENCER INTERRUPT 8: COMP_STATUS 9: DATA_RDY 10: FRAME_COUNTER_LSB					

7.3.10 Temperature Sensor

The device has an internal temperature sensor to monitor the temperature of the sensor core. The temperature sensor has a range of -25°C to +125°C. The output of this temperature sensor is accessible from a register TMAIN. It can be used for phase temperature compensation.

7.3.11 On-Chip Regulator

AFE has an internal regulator for generating 1.8-V supplies (AVDD, DVDD) from AVDD3 supply. In this mode only one 3.3 V is sufficient for the device operation. Since the power is drawn from 3.3V supply for AVDD, DVDD, power consumption will be higher. REG_MODE pin controls the regulator. Connect this pin to IOVDD to enable regulator mode. In non-regulator mode REG_MODE pin should be connected to IOVSS. Figure 177 show the block diagram of the regulator. Minimum decoupling capacitor of 100 nF should be connected at the pins AVDD, DVDD. Decoupling capacitor on AVDD should be referred to AVSS, while decoupling capacitor on DVDD should be referred to IOVSS.

7.3.12 Sequencer

AFE has an on chip sequencer which can be used to perform various operations. Sequencer commands are tabulated in Table 19. Each instruction is 12 bits with the first four MSB bits as the opcode and next eight bit as operand. Sequencer can perform comparison of amplitude or phase with register thresholds COMPARE_REG1, COMPARE_REG2 and generate a signal COMP_STATUS, which can be observed on GP1 with DIG_GPO_SEL0 = 8, gpo1_mux_sel = 2 settings. Comparison input type can be selected using COMP_IN_SEL. Sequencer execute one command per sample. The sequencer interrupt to execute a command can be positioned either at the beginning of the sample or at the end of the sample after data is ready and before next sample starts. Sequencer interrupt can be programmed with TG_SEQ_INT_START, TG_SEQ_INT_END, TG_SEQ_INT_MASK_START, TG_SEQ_INT_MASK_END registers. TG_SEQ_INT_START and TG_SEQ_INT_END defines the position of the interrupt pulse with in a sub-frame. TG_SEQ_INT_MASK_START and TG_SEQ_INT_MASK_END define the sub-frame during which the pulse is enabled.

Some of the use cases of the sequencer are

- Switching of transmitter channels
- Generate interrupt based on phase or amplitude comparison with a defined thresholds
- · Generate interrupt based on phase or amplitude comparison with hysteresis
- Extending the dynamic range using four illumination driver currents
- De-alias operation to extend the distance range from 15 m to 75 m.

Table 19. Sequencer Commands

OPCODE	FUNCTION	DESCRIPTION	
0000	NOP	The operand indicates the number of cycles for which NOP should be executed. 0 means 1 cycle, 1 means 2 cycle, and so on. For example 0000-00001111 indicates next 16 cycles sequencer will not do anything	
0001	WRITE	This command writes the operand to STATUS_OUT register. For example 0001-01100110 make the values of STATUS_OUT port as 011001100. The STATUS_OUT is mapped to certain key registers listed in Table 20. STATUS_OUT will be applied only if EN PROCESSOR VALUES = 1	
0010	GOTO	Programe Counter (PC) goes to the line indicated by the operand. This command is useful for looping. Next command is executed on next frame VD. For example 0010-00000000 sets the PC to the first line of the program memory so that the instructions are executed in a loop.	
0011	DGOTO	In this instruction PC goes to the line indicated by the operand only if STATUS_IN_REG bit is '1'. If not the PC stays in the same command till the STATUS_IN_REG register value becomes 1. Next command is executed on next frame VD. For example 0011-00000000 suspends the program until a register STATUS_IN_REG is set to '1'. Once it is set the loop is restarted.	
0100	DrGOTO	In this PC goes to the line indicated by operand without any delay. This executes next instruction as well. Next command is executed on the same frame VD.	
0101	COMP0	In this command, the CPU compares COMP_IN and COMPARE_REG1. If COMP_IN ≤ COMPARE_REG1, program counter stays where it is and COMP_STATUS port will be 0. If the comparison fails the program counter moves to the line indicated by the operand and COMP_STATUS becomes 1.	
0110	COMP0_INV	Similar to COMP but the comparison used is: COMP_IN ≥ COMPARE_REG2	
0111	COMP_WINDOW	In this command PC stays there forever. If (COMP_IN ≥ COMPARE_REG1) and (COMP_IN ≤ COMPARE_REG2) then COMP_STATUS becomes 1 else COMP_STATUS = 0.	

Table 19. Sequencer Commands (continued)

OPCODE	FUNCTION	DESCRIPTION
1000	COMP2	If (COMP_IN ≥ COMPARE_REG1) and (COMP_IN ≤ COMPARE_REG2) then COMP_STATUS becomes 1 else COMP_STATUS = 0. If the condition is True the program counter stays there else moves to the line indicated by the operand.
1001	COMP3	Similar to COMP2. The difference is whatever be the comparison result the program counter moves to the instruction pointed to by the operand. If comparison is met COMP_STATUS is set 1 else 0.
1010	COMP_HYST	In this command PC stays there forever. There is hysteresis in the comparison. If (COMP_IN ≤ COMPARE_REG1) then COMP_STATUS = 0 elsif (COMP_IN ≥ COMPARE_REG2) then COMP_STATUS = 1.
1011	COMP1	In this command, the CPU compares COMP_IN and COMPARE_REG1. If COMP_IN ≤ COMPARE_REG1, program counter stays where it is and COMP_STATUS port will be 0. If the comparison fails the program counter moves to the line indicated by the operand and COMP_STATUS becomes 1.
1100	COMP1_INV	Similar to COMP1 but the comparison used is COMP_IN ≥ COMPARE_REG2
1101–1111	Not Valid	

Table 20. Sequencer STATUS_OUT Register Mapping

STATUS_OUT	REGISTER MAPPING	
[0]	INT_XTALK_CALIB	
[1]	EN_DEALIAS_MEAS	
[2]	START_FREQ_CALIB	
[4:3]	SEL_TX_CH	
[5]	SEL_HDR_MODE	
[7:6]	Invalid	

Table 21. Sequencer Registers

REGISTER	ADDRESS	DESCRIPTION
COMP_IN_SEL	13h[2:0]	Select the value used for comp_in. 0 = AMP_OUT 1 = DEALIAS_BIN 2 = Dealias Phase 3 = PHASE_OUT
COMPARE_REG1	13h[18:3]	Sequencer comparison threshold1
COMPARE_REG2	14h[15:0]	Sequencer comparison threshold2
EN_SEQUENCER	14h[16]	Enable the sequencer.
EN_PROCESSOR_VALUES	14h[17]	Uses processor values instead of register values.
STATUS_IN_REG	14h[18]	the register is used to control the program flow in CPU
DIS_INTERRUPT	14h[19]	Disables the interrupt which triggers sequencer.
COMMAND0 to COMMAND19	15h[11:0] to 1Eh[23:12]	Sequencer command registers. Total 20 command registers are available.

7.3.12.1 Interrupt Output

Sequencer supports various interrupt output modes using comparison commands listed in Table 19. Register setting to use the sequencer for generating interrupt output using COMP_WINDOW are listed in Table 22 and the corresponding interrupt output is shown in Figure 24. To use a comparison with hysteresis (COMP_HYST) use COMMAND0 = 0xA00 and rest all settings will remain same as COMP_WINDOW.

Figure 24. Interrupt Output using different Comparison Commands

Table 22. Register Settings to use Sequencer for Generating Interrupt Output

PARAMETER	VALUE	DESCRIPTION			
Sequencer Interrupt Signal					
TG_SEQ_INT_START	9850				
TG_SEQ_INT_END	9858				
TG_SEQ_INT_MASK_START	NUM_AVG_SUB_FR AMES	Set the sequencer interrupt at the end of the last averaged sub- frame after data ready is available			
TG_SEQ_INT_MASK_END	NUM_AVG_SUB_FR AMES				
Sequencer Commands					
COMMAND0	0x700	COMP_WINDOW. COMP_STATUS=1 when distance is between the lower (COMPARE_REG1) and upper (COMPARE_REG2) limits else COMP_STATUS=0			
Get COMP_STATUS on GP1					
GPIO1_OBUF_EN	1	Enable GP1 Output Buffer.			
GPO1_MUX_SEL	3	select DIG_GPO_1 on GP1			
GPO_SEL1	8	Select COMP_STATUS on DIG_GPO_1			
Comparison Settings					
COMP_IN_SEL	1	Select amplitude PHASE_OUT for comparison input COMP_IN			
COMPARE_REG1	PHASE1	Phase corresponding to a lower distance (phase) Threshold			
COMPARE_REG2	PHASE2	Phase corresponding to a upper distance (phase) Threshold			
Sequencer Enable					
EN_SEQUENCER	1	Enable the sequencer. Sequencer Enable should be only be changed while TG_EN = 0. Before changing this register disable TG (TG_EN = 0), modify this register and then enable TG (TG_EN = 1)			
EN_PROCESSOR_VALUES	1	Enable processor values to control the STATUS_OUT register bits.			

7.3.12.2 Super-HDR mode using Sequencer

On chip sequencer can be used to extend the dynamic range using four illumination currents. Figure 25 show the state diagram of the super-HDR mode implemented using sequencer. For this example, illumination driver currents should be programmed in the following order: $I_{ILLUM_H_TX1} > I_{ILLUM_L_TX1} > I_{ILLUM_L_T$

- HDR_THR_HIGH x ILLUM_DAC_L_TX0/ILLUM_DAC_H_TX0
- HDR_THR_HIGH × ILLUM_DAC_L_TX1/ILLUM_DAC_H_TX1

OPT3101 Sequencer controlled Switching

Figure 25. Super-HDR mode using Sequencer: State Diagram

Table 23. Register Settings to use Sequencer for Super HDR Mode

PARAMETER	VALUE	DESCRIPTION		
Sequencer Interrupt Signal				
TG_SEQ_INT_START 9850				
TG_SEQ_INT_END	9858	Set the sequencer interrupt at the end of the last averaged sub- frame after data ready is available		
TG_SEQ_INT_MASK_START	NUM_AVG_SUB_FR AMES			
TG_SEQ_INT_MASK_END	NUM_AVG_SUB_FR AMES			
Sequencer Commands				
COMMAND0	0x108	Set Illumination to Channel TX1		
COMMAND1	0xB02	COMP1 command. If COMP_IN > COMPARE_REG1 move to Command2		
COMMAND2	0x100	Set Illumination to Channel TX0		
COMMAND3	0xC00	COMP1_INV command. If COMP_IN < COMPARE_REG2 move to Command2		
Comparison Settings				
COMP_IN_SEL	0	Select amplitude AMP_OUT for COMP_IN		
COMPARE_REG1	HDR_THR_HIGH + 500	should be greater than the hdr High threshold: HDR_THR_HIGH		
COMPARE_REG2	HDR_THR_LOW - 500	should be less than the hdr low threshold HDR_THR_LOW.		
Sequencer Enable				
EN_SEQUENCER	1	Enable the sequencer. Sequencer Enable should be only be changed while TG_EN = 0. Before changing this register disable TG (TG_EN = 0), modify this register and then enable TG (TG_EN = 1)		
EN_PROCESSOR_VALUES	1	Enable processor values to control the STATUS_OUT register bits.		

7.4 Programming

OPT3101 supports I²C interface for register read and write access. Device also has an I²C host which can be used to interface with external temperature sensor or external EEPROM.

7.4.1 I²C Slave

The 2 C slave interface can be accessed with SDA_S and SLC_S device pins. The I^2 C interface supports speeds up to 400 KHz I^2 C bus speed. The slave address for this device is $1011A_2A_1A_0$. Using A_0 , A_1 , A_2 pins, address can be configured. By default A_0 , A_1 and A_2 are pulled to AVDD supply and the default address is 1011,111. To change the address connect these pins to either AVDD or AVSS supply. The register access can be single R/W or continuous R/W with auto-increment of register address.

Table 24. I²C Slave Configuration Registers

FIELD	BIT	DESCRIPTION
I2C_CONT_RW	00h[6]	Enable continuous read/write of registers using device I ² C slave

The individual registers are 24 bit length in this device. However, the register read/write is in chunks of eight bits. After every 8 bit transfer the slave expects an acknowledgement from the master in the case of read or gives out an acknowledgement in the case of write. Figure 26 shows the I²C timing for register write operation.

Figure 26. I²C Register Write Example

For example, to write 0x654321 to any register, the data should be split as three bytes and ordered as follows, 0x21, 0x43, 0x65. The same ordering is true for read mode. The first byte of data received corresponds to [7:0], followed by [15:8] and then followed by [23–16]. Figure 27 shows different read/write modes.

PC register write Start Slave Addr W A Reg Addr A Reg Data [7:0] A Reg Data [15:8] A Reg Data [23:16] A Stop PC register read

Start Slave Addr W A Reg Addr A Start Slave Addr R A Reg Data [7:0] A Reg Data [23:16] A Stop

F°C register write (continuous mode) Start Slave Addr W A Reg Addr A Reg [1] Data A ----- Reg [n] Data A Stop

Figure 27. I²C Slave Interface R/W Modes

7.4.2 I²C Master

OPT3101 also has an I^2C master, which will be used to read calibration and configuration registers from an external memory with I^2C interface (EEPROM with I^2C address of 1010000) during power up. It can also read temperature from an external off-chip temperature sensor with I^2C interface (default address of 1001000). Table 25 lists the register settings to configure I^2C Host.

Table 25. I²C Master Register Settings

PARAMETER	BIT	DESCRIPTION	
TSENS_SLAVE0	02h[6:0]	I ² C Slave Address. In multi-channel Illumination operation temperature sensor slave address is selected based on the channel being used for reading external temperature value (TX0: TSENS_SLAVE0, TX1: TSENS_SLAVE1, TX2: TSENS_SLAVE2)	
I2C_HOST_EN	01h[19]	Enable I ² C Host	
FRAME_VD_TRIG	01h[17]	Trigger I ² C host operation every frame VD	
I2C_TRIG_REG	01h[18]	Manual trigger of I ² C host by writing to this register	
I2C_NUM_TRAN	03h[17]	0: 1 transactions 1: 2 transactions	
I2C_RW	01h[21:20]	'0' – Write, '1' – Read LSB: First Transaction MSB: Second Transaction	
I2C_NUM_BYTES_TRAN1	07h[17:16]	00 – 1 byte, 01 – 2 bytes	
I2C_NUM_BYTES_TRAN2	05h[23:22]	00 – 1 byte, 01 – 2 bytes	
I2C_WRITE_DATA1	03h[16:9]	First byte of I ² C write transaction 8bit register address	
I2C_WRITE_DATA2	07h[7:0]	Second byte of I ² C write transaction 8bit register data to be written	
I2C_SEL_READ_BYTES	07h[19:18]	Selects the byte of read data. 00 – 7:0 01 – 15:8 10 – 23:16 11 – 31:24	
I2C_READ_DATA	03h[7:0]	I ² C host read data can be accessed through this register.	

7.4.2.1 External Temperature Sensor

Temperature sensor address can be configured through internal registers (TSENS SLAVE0, TSENS SLAVE1, TSENS_SLAVE2) . This sensor can be used for calibrating the system parameters with temperature changes. External temperature sensor is required if an external illumination driver is used. Typically on-die temperature sensor is sufficient if the internal illumination driver is used. The temperature readings are refreshed every frame. Device supports up to three temperature sensors to associate with three illumination channels. A single or two byte read operation is performed on each of the temperature sensors to read the corresponding temperature. TI's TMP102, 12-bit temperature sensor is suggested if accurate temperature correction with smaller jumps at the temperature code changes is required. TMP103, 8-bit temperature sensor can be used if the temperature correction accuracy requirement is less. For temperature calibration of phase, the value read from the temperature sensor is assumed to be linear with the actual temperature. Register settings to configure external temperature sensor read using I²C Host are listed in Table 26.

Table 26. Register Settings to Enable External Temperature Readout Using I²C master

PARAMETER	VALUE for TMP102	VALUE for TMP103A	DESCRIPTION
TSENS_SLAVE0	0x48	0x70	External temperature sensor I ² C slave address.
EN_TILLUM_READ	1	1	Enable reading of external temperature sensor using I ² C Master
TEMP_AVG_ILLUM	0	2	0: no averaging for TMP102, this is already 12bit data. Futher averaging not required. 2: 4 averages for TMP103A
I2C_HOST_EN	1	1	Enable I ² C master
I2C_NUM_TRAN	0	0	One read transaction
I2C_RW	1	1	Read transaction
I2C_NUM_BYTES_TRAN1	1	0	1: Two byte read for TMP102 0: One byte read for TMP103A
FRAME_VD_TRIG	1	1	Trigger temperature read for every frame
CONFIG_TILLUM_MSB	8	0	Mode to select the correct 12 bits from read 16 bits in two byte read for TMP102

Table 26. Register Settings to Enable External Temperature Readout Using I²C master (continued)

PARAMETER	VALUE for TMP102	VALUE for TMP103A	DESCRIPTION
EN_TILLUM_12B	1	0	Enable 12-bit mode to read 12-bit temperature sensor data from external temperature sensor.

7.4.2.2 External EEPROM

The I^2C host of the OPT3101 automatically loads all of the registers (256 bytes) from external EEPROM of 2kb (256 \times 8) to configure the device. Of these 256 bytes, 64 bytes are register address, and 192 bytes are data bytes. So from EEPROM, device can auto load up to any 64 device registers of 24 bits each (64 \times 24). EEPROM Data should be written in the following format. If only part of the memory is used, rest of the memory should be filled will all 0x00 or 0xFF.

Table 27. External EEPROM
Data Format

Address	Data [7:0]
0	Reg Address i
1	Reg Data i[7:0]
2	Reg Data i[15:8]
3	Reg Data i[23:16]
4	Reg Address j
5	Reg Data j[7:0]
6	Reg Data j[15:8]
7	Reg Data j[23:16]
255	Reg Data k[23:16]

During I²C host auto load, if external host writes to OPT3101 I²C slave, it will respond (acknowledge) but data transfer doesn't happen (write/read). Register address '0' of OPT3101 cannot be loaded from I²C host. It is always reserved for I²C slave. By writing to register bit 0[22] (FORCE_EN_SLAVE) of OPT3101, I²C slave can take control of register access from host auto load. If the device is to be used in Mono-shot mode, I²C host power down disable should be written first (DIS_GLB_PD_I2CHOST) before writing mono-shot mode enable (MONOSHOT_MODE) bit in the EEPROM.

7.4.2.3 External EEPROM Programming

To simplify the EEPROM programming in the end system, OPT3101 supports writing to EEPROM through the device I^2C slave . The device auto loads from EEPROM on reset. Before programming EEPROM, this auto load might corrupt the registers. First Erase the EEPROM and follow the flowchart shown in Figure 15. Register settings to write to external EEPROM on OPT3101 I^2C Host through OPT3101 I^2C slave are listed in Table 28.

NSTRUMENTS

Read OPT3101 register to be programmed to EEPROM

Append required bits in that register and write to EEPROM

Figure 28. EEPROM Programming Flow Chart

Table 28. Register Settings to Write External EEPROM Using I²C Master

PARAMETER	VALUE	DESCRIPTION
TSENS_SLAVE0	50h	EEPROM I ² C Address. EEPROM with this I ² C slave address should be used.
I2C_HOST_EN	1	
I2C_NUM_TRAN	0	Number of I ² C Master transactions = 1
I2C_RW	0	Write transaction
I2C_NUM_BYTES_TRAN1	1	2 byte trasaction (Register Address, Register Data)
I2C_WRITE_DATA1		EEPROM Register Address
I2C_WRITE_DATA2		Data to be written
I2C_TRIG_REG	1 → 0	Trigger the I ² C Host write by writing 1 to this register and make it 0

7.5 Register Maps

7.5.1 Serial Interface Register Map

Table 29. Default Register Map

											_		ivegio		•													
ADDRE SS (Hex)	D23	D22	D21	D20	D19	D18	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0				
00h	MONO SHOT_ BIT	FORCE _EN_S LAVE	FORCE _EN_B YPASS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	I2C_C ONT_R W	0	0	0	0	0	SOFT_ RST				
01h	EN_EE PROM_ READ	0	I2C_	_RW	I2C_EN	I2C_TR IG_RE G	FRAME _VD_T RIG			EEPROM_START_REG_ADDR ADDR_SLAVE_EEPROM RE									SWAP_ READ_ DATA	EEPRO M_REA D_TRI G								
02h		TEMP_AVG_ILLU MR EAD TSENS_SLAVE2 TSENS_SLAVE1 TSENS_SLAVE TSENS_SLAVE												VE0														
03h	TEMP_A	NVG_MAI	0	0	0	EN_TS ENS_R EAD_F VD	I2C_NU M_TRA N				I2C_WRIT	E_DATA1	I			INIT_L OAD_D ONE				I2C_RE/	AD_DATA)_DATA						
04h	TILLUM _UNSI GNED	_UNSI 0 TILLUM								LUM						0	0	0	1	0	1	1	1					
05h	I2C_NUI S_TF	M_BYTE RAN2	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
07h	С	ONFIG_TI	LLUM_MS	SB	I2C_SEL BY	_READ_ TES	I2C_NU S_TF	M_BYTE RAN1	0	0	0	0	0	0	0	0				I2C_WRI	TE_DATA:	2						
08h	FRAME _COUN T0	AMB_O VL_FL AG	MOD_F REQ	FRAME _STAT US	TX_CH	IANNEL	HDR_M ODE	PHASE _OVER FLOW								PHAS	E_OUT											
09h		DEALIA	AS_BIN		PHASE _OVER FLOW_ F2	SIG_O VL_FL AG	FRAME_	_COUNT								AMP _.	_OUT											
0Ah						TM	AIN										AMB_	_DATA					FRAME	_COUNT				
0Bh					AMB_	CALIB					DIG_GPO_SEL2 0 0							DIG_GP	O_SEL1			DIG_G	PO_SEL0					
0Ch		ı	AMB_PH	HASE_CC	DRR_PWL_	COEFF0	1	ı			AMB_XTALK_QPHASE_COEFF AMB_XTALK_IPHASE_COEFF									ı								
0Dh	EN_TIL LUM_1 2B	0	0	0	0	0	0					AMB_S	AT_THR					0	0	0	0	0	0	0				
0Fh	EN_FR EQ_CO RR	EN_FL OOP	EN_AU TO_FR EQ_CO UNT		SYS_CLK	_DIVIDER	! 	START _FREQ _CALIB	0	REF_COUNT_LIMIT																		
10h			AMF	PLITUDE_	_MIN_THR[15:8]			EN_CO NT_FC ALIB							FREQ_C	OUNT_RE	EAD_REG										

Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated

www.ti.com

ADVANCE INFORMATION

Table 29. Default Register Map (continued)

ADDRE																										
SS (Hex)	D23	D22	D21	D20	D19	D18	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	, D	2	D1	D0	
									DIS_O																	
11h			AMF	PLITUDE_	_MIN_THR	[7:0]			VL_GA TING				FREQ_COUNT_REG													
13h	0	0	0	0	0								COMPAR	RE_REG1									MUX_S	EL_CO	MPIN	
14h	0	0	0	0	DIS_IN TERRU PT	STATU S_IN_R EG	EN_PR OCESS OR_VA LUES	EN_SE QUEN CER								COMPAI	RE_REG2					·				
15h	COMMAND1																	COMI	MAND0							
16h	COMMAND3																	COM	MAND2							
17h	COMMAND5																	COM	MAND4							
18h	COMMAND7																	COM	MAND6							
19h	COMMAND9																	COM	MAND8							
1Ah	COMMAND11																	COMM	IAND10							
1Bh						COMM	AND13						COMMAND12													
1Ch							AND15						COMMAND14													
1Dh							AND17						COMMAND16													
1Eh						COMM	AND19						COMMAND18													
26h							POWERU	P_DELAY							0	0	0	0	0	0	1	1		1	1	
27h							MC	NOSHOT	_FZ_CLKC	NT			MONOSHOT_NUMFRAME MONOSHOT_MC DE													
29h	ILL	UM_DAC	_L_TX2[4:	:1]		ILLU	M_DAC_H	_TX1			ILLU	JM_DAC_L	_TX1	TX1 ILLUM_DAC_H_TX0 ILLU									C_L_T	X0		
DA	LUM_ PAC_L TX2[0]		ILLUN	M_DAC_F	H_TX2		0	SEL_H DR_M ODE	EN_AD APTIVE _HDR					TX_SEQ_REG										SEL_TX_CH		
2Bh	0	0	ILLUM	_SCALE_	H_TX0	ILLUN	_SCALE_	L_TX0								HDR_TI	HR_HIGH					ı			<u></u>	
2Ch	0	0	ILLUM	_SCALE_	H_TX1	ILLUN	_SCALE_	L_TX1					HDR_THR_LOW													
2Dh					TEMP	_COEFF_I	MAIN_HDF	RO_TX1									TEMP	_COEFF_	MAIN_HDF	R1_TX0						
2Eh	XTAL	_K_FILT_	TIME_COI	NST	ILLUM_>	KTALK_RE E	G_SCAL	INT_XT	ALK_REG __	_SCALE	0	ILLUM_ XTALK _CALIB	IQ_RE	EAD_DATA	_SEL	USE_X TALK_ REG_IL LUM	USE_X TALK_ FILT_IL LUM	USE_X TALK_ REG_I NT	USE_X TALK_ FILT_I NT	INT_XT ALK_C ALIB	DIS_ UTO CAL	_S F	ORCE.	_SCALE	≣_VAL	
2Fh			TEMP_CC	DEFF_MA	IN_HDR1_	_TX1[11:4]							IPHASE_XTALK_REG_HDR0_TX0													
30h	EMP_CC	DEFF_MA	NN_HDR1.	_TX1[3:0	0	0	0	0	QPHASE_XTALK_REG_HDR0_TX0																	
31h			TEMP_CC	DEFF_MA	IN_HDR0_	_TX2[11:4]							IPHASE_XTALK_REG_HDR1_TX0													
32h	EMP_CC	DEFF_MA	IN_HDR0.	_TX2[3:0	0	0	0	0		QPHASE_XTALK_REG_HDR1_TX0																
33h	TEMP_COEFF_MAIN_HDR1_TX2[11:4]												IPHASE_XTALK_REG_HDR0_TX1													
34h	TEMP_COEFF_MAIN_HDR1_TX2[3:0												QPHASE_XTALK_REG_HDR0_TX1													
35h	0	0	0	0	0	0	0	0							IPHAS	E_XTALK	_REG_HD	R1_TX1							-	
36h		TEMP	_COEFF_	ILLUM_X	TALK_IPH	ASE_HDR	0_TX0						QPHASE_XTALK_REG_HDR1_TX1													
37h		TEMP_	_COEFF_I	LLUM_XT	TALK_QPH	IASE_HDF	R0_TX0								IPHAS	E_XTALK	_REG_HD	R0_TX2								

Copyright © 2018, Texas Instruments Incorporated

Submit Documentation Feedback

35

36

Table 29. Default Register Map (continued)

Section Color Co														1			1										
Seb	ADDRE SS																										
Seale_ramp_coeff_xtalk_complexe_hero_txo Seale_ramp_xtalk_coe Seale_ramp_xtalk_coe Fill_		D23							D16	D15	D14	D13	D12														
SCALE AMB XTALK COE																											
SCALE AMB_YTALK_COE	39h		TE	MP_COE	FF_XTALK	_QPHASE	_HDR0_T	X0						IPHASE_XTALK_REG_HDR1_TX2													
Sch	3Ah	0	SCALE_		ALK_COE	SCALE_		DEFF_XT	MP_XT ALK_C		QPHASE_XTALK_REG_HDR1_TX2																
SDN	3Bh		1			1							IPHASE	_XTALK													
Seh	3Ch												QPHAS	E_XTALK													
SPE	3Dh	0	0	0	0	0	0	0	0		IPHASE_XTALK_INT_REG																
	3Eh													QPHASE_XTALK_INT_REG													
Aph	3Fh	TILLUM_CALIB_HDRO_TX2													TMAIN_CALIB_HDR0_TX2												
42h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40h	LTI_FR NCR_C BETA0_DEALIAS_SCALE										AL	PHA0_DE	ALIAS_SC	ALE		1	1	1	1	0	0	0	0	EN_DE ALIAS_ MEAS		
TILLUM_CALIB_HDR1_TX1	41h					TM	AIN_CALII	B_HDR1_	ΓX1						BE	TA1_DEA	ALIAS_SC	ALE			AL	PHA1_DE	ALIAS_SC	ALE			
A3h	42h	0 0 0 0 0 0 0												PHASE_OFFSET_HDR0_TX0													
A5h	43h					TILL	.UM_CALI	B_HDR1_	TX1										0	0	0	MP_CO	EN_PH ASE_C ORR				
46h	44h	0	0	0	0	0	0	0	0																		
A7h	45h	TMAIN_CALIB_HDR1_TX2 TEMP_COEFF_MAIN_HDR0_TX0																									
TILLUM_CALIB_HDR1_TX0	46h					TILL	UM_CALI	B_HDR1_	TX2																		
A9h	47h					TILL	UM_CALI	B_HDR0_	TX0																		
AAA	48h					TILL	UM_CALI	B_HDR1_	TX0					TMAIN_CALIB_HDR1_TX0													
4Ah 0 0 0 0 0 R_COEFF MA_COEFF_HDRO_TX0 4Bh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	49h		1		,			B_HDR0_	TX1									TM	AIN_CALI	B_HDR0_	TX1			1	ı		
4Ch 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						R_CC	DEFF		П	I				UCOR													
ADN O O O O O O O O O	4Bh		0	0	0	0	0	0								Д	1_COEFF	_HDR0_T	X0								
4Eh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4Ch				-																						
OVERR OVER					-																						
DE_CL 1 NODE_	4Eh	0		0	0	0	0	0	0			1	1	1		Δ	4_COEFF	_HDR0_T	X0	1	1	1	1	1	1		
52h TEMP_COEFF_ILLUM_HDR1_TX0[3: 0] 0 0 0 0 PHASE_OFFSET_HDR0_TX1 53h TEMP_COEFF_ILLUM_HDR0_TX1[1:4] PHASE_OFFSET_HDR1_TX1 54h TEMP_COEFF_ILLUM_HDR0_TX1[3: 0] 0 0 0 PHASE_OFFSET_HDR0_TX2	50h	0	IDE_CL KGEN_	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	MODE_ OFFSE	MODE_	MODE_	CLIP_ MODE_ FC		
52h 0] 0 0 0 0 PHASE_OFFSET_HDR0_TX1 53h TEMP_COEFF_ILLUM_HDR0_TX1[11:4] PHASE_OFFSET_HDR1_TX1 54h TEMP_COEFF_ILLUM_HDR0_TX1[3: 0] 0 0 0 0 PHASE_OFFSET_HDR0_TX2	51h			TEMP_C	OEFF_ILLU	JM_HDR1_	_TX0[11:4]									PHA	ASE_OFFS	ET_HDR1	_TX0								
54h TEMP_COEFF_ILLUM_HDR0_TX1[3: 0 0 0 0 PHASE_OFFSET_HDR0_TX2	52h	TEMP_0			R1_TX0[3:	0	0	0	0	PHASE_OFFSET_HDR0_TX1																	
54h 0] 0 0 0 0 PHASE_OFFSET_HDR0_TX2	53h			TEMP_C	OEFF_ILLU	JM_HDR0_	TX1[11:4]					-	-		-	PHA	SE_OFFS	ET_HDR1	_TX1	-	-		-				
55h TEMP COEFF ILLUM HDR1 TX1(11:4) PHASE OFFSET HDR1 TX2	54h	TEMP_0			R0_TX1[3:	0	0	0	0							PHA	SE_OFFS	SET_HDR0	_TX2								
	55h			TEMP_C	OEFF_ILLU	JM_HDR1_	TX1[11:4]				-	-		-		PHA	SE_OFFS	ET_HDR1	_TX2					-			

Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Table 29. Default Register Map (continued)

ADDRE SS																								
(Hex)	D23	D22	D21	D20	D19	D18	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
56h	TEMP_C	OEFF_ILL		R1_TX1[3:	0	0	0	0							PHAS	SE2_OFFS	SET_HDR1	1_TX0						
57h				DEFF_ILL	UM_HDR0_	TX2[11:4]	1								PHAS	SE2_OFFS	SET_HDR	D_TX1						
	TEMP_C	OEFF_ILL		0_TX2[3:											PHAS	SE2_OFFS	SET HDR1	1 TX1						
58h		C	•	SEEE III	UM_HDR1_	U TV2[11:4]	0	0								SE2_OFFS								
59h	TEMP C	OEFF_ILL				_17/2[11:4]																	
5Ah	12.00	0		17.12[0.	0	0	0	0							PHAS	SE2_OFFS	SET_HDR1	1_TX2						
5Bh		TEMP	_COEFF_	_ILLUM_X	TALK_IPHA	ASE_HDR	1_TX1			TEMP	_COEFF_	ILLUM_X	TALK_IPH	ASE_HDI	R0_TX1			TEMP	_COEFF_	ILLUM_X	TALK_IPH	ASE_HDR	1_TX0	
5Ch					TALK_QPH								TALK_IPH						_COEFF_					
5Dh					TALK_QPH								ALK_QPH						_COEFF_I					
5Eh 5Fh					K_IPHASE								<pre><_IPHASE</pre>						_COEFF_I					
60h					K_IPHASE K_QPHASE								<_IPHASE <_QPHASE						EMP_COE					
61h	0	0	0	0	0	0	0	0					_QPHASE						MP_COEF					
64h	PROG	OVLDET	REFM	PROG	S_OVLDET	REFP	0	0	0	0	0	- 0	0	0	0	0	0	0	0	- 0	0	0	0	0
	DIS_O	2.							_		_	_	_				_		_					_
65h	VLDET	0	0	0	0 EN_TE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6Eh	0	0	0	0	MP_CO NV	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
71h	0	0	0	0	0	0	UNMA SK_ILL UMEN_ INTXTA LK	EN_ILL UM_CL K_GPI O	ILLUM_ CLK_G PIO_M ODE	0	0	DIS_IL LUM_C LK_TX	INVER T_AFE _CLK	0	INVER T_TG_ CLK	SHUT_ CLOCK S	0	S	SHIFT_ILL	UM_PHAS	ξE	DEALIA S_FRE Q	DEALIA S_EN	0
72h	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		IAMB_M	IAX_SEL		0	0	0	0
76h	0	0	0	0	0	0	0	0	0	0	0	0	PDN_G LOBAL	0	DIS_GL B_PD_I 2CHOS T	DIS_GL B_PD_ OSC	DIS_GL B_PD_ TEST_ CURR	DIS_GL B_PD_ AMB_A DC	DIS_GL B_PD_ AMB_D AC	DIS_GL B_PD_ AFE_D AC	DIS_GL B_PD_ AFE	DIS_GL B_PD_I LLUM_ DRV	DIS_GL B_PD_ TEMP_ SENS	DIS_GL B_PD_ REFSY S
77h	0	0	0	0	0	0	0	0	0	0	0	0	0	0	EN_DY N_PD_I 2CHOS T_OSC	EN_DY N_PD_ OSC	EN_DY N_PD_ TEST_ CURR	EN_DY N_PD_ AMB_A DC	EN_DY N_PD_ AMB_D AC	EN_DY N_PD_ AFE_D AC	EN_DY N_PD_ AFE	EN_DY N_PD_ LED_D RV	EN_DY N_PD_ TEMP_ SENS	EN_DY N_PD_ REFSY S
78h	0	SEL_G P3_ON _SDAM	0	0	0	0	0	GPIO2 _IBUF_ EN	GPIO2 _OBUF _EN	0	GPIO1 _IBUF_ EN	GPIO1 _OBUF _EN	GP	O2_MUX	_SEL	GP	O1_MUX_	SEL	0	0	0	GP	O3_MUX_	SEL
79h	0	0	0	0	PDN_IL LUM_D RV	0	0	0	0	0	0	PDN_IL LUM_D C_CUR R	IL	LUM_DC	_CURR_D	AC	0	0	0	EN_TX _DC_C URR_A LL	SEL_IL LUM_T X0_ON _TX1	EN_TX _CLKZ	0	EN_TX _CLKB
7Ah	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		N_CONFI G		N_CONFI G		N_CONFI G
80h	DIS_T G_ACO NF	0	0	0	0	0	0								SUB_VD_	_CLK_CNT	-							TG_EN
83h	0	0	0	0	0	0	0	0							Т	G_AFE_F	ST_STAR	RT						1

Copyright © 2018, Texas Instruments Incorporated

Texas Instruments

Submit Documentation Feedback

37

ADVANCE INFORMATION

Table 29. Default Register Map (continued)

ADDRE																Ĺ								
SS (Hex)	D23	D22	D21	D20	D19	D18	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
84h	0	0	0	0	0	0	0	0	פוט	D14	סוט	DIZ	ווט	טוט			RST_END	-	סט	D4	D3	DZ	וט	DU
85h	0	0	0	0	0	0	0	0									NT_STAR							
86h	0	0	0	0	0	0	0	0									_INT_END							
87h	0	0	0	0	0	0	0	0									 JRE_STAR	T:						
88h	0	0	0	0	0	0	0	0									URE_END							-
89h	0	0	0	0	0	0	0	0							TG	_OVL_WIN	IDOW_ST	ART						
8Ah	0	0	0	0	0	0	0	0							TC	G_OVL_W	NDOW_EI	ND						
8Fh	0	0	0	0	0	0	0	0							7	ΓG_ILLUM	EN_STAR	Т						
90h	0	0	0	0	0	0	0	0								TG_ILLUI	MEN_END							
91h	0	0	0	0	0	0	0	0								TG_CAL	C_START							
92h	0	0	0	0	0	0	0	0								TG_CA	LC_END							
93h	0	0	0	0	0	0	0	0							-	TG_DYNP	DN_STAR	Т						
94h	0	0	0	0	0	0	0	0								TG_DYN	PDN_END							
97h					TG	_SEQ_INT	_MASK_E	ND		TG_SEQ_INT_MASK_START														
98h					TG_	_CAPTURI	E_MASK_I	END		TG_CAPTURE_MASK_START														
99h				TG_OVL_WINDOW_MASK_END													TG_OV	L_WINDO	W_MASK	_START				
9Ch			TG_ILLUMEN_MASK_END					ND									TG_I	LLUMEN_	_MASK_S	ΓART				
9Dh					Т	G_CALC_	MASK_EN	ID		TG_CALC_MASK_START														
9Eh					TG	_DYNPDN	I_MASK_E	ND		TG_DYNPDN_MASK_START														
9Fh					NU	M_AVG_S	SUB_FRAM	1ES		NUM_SUB_FRAMES														
A0h	0	0	0	0	0	0	0	0		CAPTURE_CLK_CNT														
A2h			A3_0	COEFF_H	DR0_TX1[[15:8]									Α	0_COEFF	_HDR1_T	(0						
A3h					IDR0_TX1										Α	0_COEFF	_HDR0_T	< 1						
A4h			A3_0	COEFF_H	DR1_TX1[[15:8]									Α	0_COEFF	_HDR1_T	K1						
A5h			A3_	COEFF_H	IDR1_TX1	[7:0]									Α	0_COEFF	_HDR0_T	⟨2						
A6h					DR0_TX2[_HDR1_T							
A7h					IDR0_TX2												_HDR1_T							
A8h					DR1_TX2[_HDR0_T>							
A9h					IDR1_TX2												_HDR1_T							
AAh					DR1_TX0[_HDR0_T>							
ABh		A4_COEFF_HDR1_TX0[7:0]						A1_COEFF_HDR1_TX2																
ACh		A4_COEFF_HDR0_TX1[15:8] A4_COEFF_HDR0_TX1[7:0]						A2_COEFF_HDR1_TX0 A2_COEFF_HDR0_TX1																
ADh																								
AEh					DR1_TX1[_HDR1_T							
AFh					IDR1_TX1												_HDR0_T							
B0h					DR0_TX2												_HDR1_T							
B1h	A4_COEFF_HDR0_TX2[7:0]													_HDR1_T										
B2h	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					0 A4_COEFF_HDR1_TX2 AMB_PHASE_CORR_PWL_COEFF2 AMB_PHASE_CORR_PWL_COEFF1																		
B4h			AMB_PF	IASE_CO	KK_PWL_	COEFF3					AMB_PI	HASE_CO	KK_PWL_	COEFF2					AMB_P	HASE_CO	KK_PWL_	COEFF1		

Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

38

Table 29. Default Register Map (continued)

ADDRE SS (Hex)	D23	D22	D21	D20	D19	D18	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
B5h	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		_AMB_PH RR_COEF	ASE_CO
B8h	0	0	0	GIVE_ DEALIA S_DAT A				AMB_	_PHASE_(CORR_PW	/L_X1							AMB_	_PHASE_(CORR_PW	L_X0			
B9h	ILLUM	_SCALE_	H_TX2	ILLUM	_SCALE_	L_TX2	AMB_AD		AMB_AD	DC_IN_T		DC_IN_T	EN_TX 2_ON_ TX0	EN_TX 1_ON_ TX0				AMB_	_PHASE_C	CORR_PW	'L_X2			

ADVA

Texas Instruments

7.5.1.1 Register Descriptions

7.5.1.1.1 Register 0h (Address = 0h) [reset = 0h]

Figure 29. Register 0h

23	22	21	20	19	18	17	16
MONOSHOT_B IT	FORCE_EN_S LAVE	FORCE_EN_B YPASS	0	0	0	0	0
15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0
7	6	5	4	3	2	1	0
0	I2C_CONT_R W	0	0	0	0	0	SOFT_RST

Table 30. Register 00 Field Descriptions

Bit	Field	Туре	Reset	Description
23	MONOSHOT_BIT	R/W	0h	Mono-Shot trigger register. Write this bit 1 to start sample capture in monoshot mode. This bit will be auto cleared after the sample capture completion.
22	FORCE_EN_SLAVE	R/W	0h	Force enable device I2C slave register access from device I ² C host for any address.
21	FORCE_EN_BYPASS	R/W	0h	When this bit is set to 1, disables the device I ² C host and shorts the I ² C host bus and I ² C slave bus.
6	I2C_CONT_RW	R/W	0h	Enable continuous read/write of registers using device I ² C slave
0	SOFT_RST	R/W	0h	Generates devices reset upon writing this bit and resets all the register settings to default values including this bit.

7.5.1.1.2 Register 1h (Address = 1h) [reset = 120140h]

Figure 30. Register 1h

23	22	21	20	19	18	17	16
EN_EEPROM_ READ	0	I2C	_RW	I2C_EN	I2C_TRIG_RE G	FRAME_VD_T RIG	EEPROM_STA RT_REG_ADD R
R/W - 0h	R/W - 0h	R/W	/ - 1h	R/W - 0h	R/W - 0h	R/W - 1h	R/W - 0h
15	14	13	12	11	10	9	8
		EEPRO	OM_START_REG	_ADDR			ADDR_SLAVE _EEPROM
			R/W - 0h				R/W - 1h
7	6	5	4	3	2	1	0
		ADDR_SLA\	/E_EEPROM			SWAP_READ_ DATA	EEPROM_REA D_TRIG
		R/W	- 10h			R/W - 0h	R/W - 0h

Table 31. Register 01 Field Descriptions

Bit	Field	Туре	Reset	Description
23	EN_EEPROM_READ	R/W	0h	Enable the EEPROM read with EEPROM_READ_TRIG
21:20	I2C_RW	R/W	1h	Choses the R/W for I ² C host operation. 0 – Write, 1 – Read LSB: First Transaction, MSB: Second Transaction
19	I2C_EN	R/W	0h	Enables the I ² C host.
18	I2C_TRIG_REG	R/W	0h	The trigger register for I ² C transaction.
17	FRAME_VD_TRIG	R/W	1h	When this bit is 1, the I ² C host is triggered every frame vd. Else it is triggered based on the I2C_TRIG_REG.
16:9	EEPROM_START_REG_A DDR	R/W	0h	The first EEPROM register address while reading from the EEPROM.

Table 31. Register 01 Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
8:2	ADDR_SLAVE_EEPROM	R/W	50h	External EEPROM I ² C slave address.
1	SWAP_READ_DATA	R/W	0h	Swaps/reverse the data read by I ² C host.
0	EEPROM_READ_TRIG	R/W	0h	Trigger auto load from EEPROM

7.5.1.1.3 Register 2h (Address = 2h) [reset = 92A4C8h]

Figure 31. Register 2h

23	22	21	20	19	18	17	16
TEMP_A\	/G_ILLUM	EN_TILLUM_R EAD			TSENS_SLAVE2		
R/W	- 2h	R/W - 0h			R/W - 12h		
15	14	13	12	11	10	9	8
TSENS_	SLAVE2			TSENS_	SLAVE1		
R/W	- 2h			R/W	- 24h		
7	6	5	4	3	2	1	0
TSENS_SLAVE 1				TSENS_SLAVE0			
R/W - 1h				R/W - 48h			

Table 32. Register 02 Field Descriptions

Bit	Field	Туре	Reset	Description
23:22	TEMP_AVG_ILLUM	R/W	2h	Average external temperature sensor reading. 0: No average, 1: 2 sample average, 2: 4 sample average
21	EN_TILLUM_READ	R/W	0h	Enable I ² C read of appropriate external temperature sensor on I ² C host bus.
20:14	TSENS_SLAVE2	R/W	4Ah	Slave address of the external temperature sensor in proximity to TX2 Channel
13:7	TSENS_SLAVE1	R/W	49h	Slave address of the external temperature sensor in proximity to TX1 Channel
6:0	TSENS_SLAVE0	R/W	48h	Slave address of the external temperature sensor in proximity to TX0 Channel

7.5.1.1.4 Register 3h (Address = 3h) [reset = 800000h]

Figure 32. Register 3h

23	22	21	20	19	18	17	16
TEMP_A	VG_MAIN	0	0	0	EN_TSENS_R EAD_FVD	I2C_NUM_TRA N	I2C_WRITE_D ATA1
R/W	- 2h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h
15	14	13	12	11	10	9	8
		12	C_WRITE_DATA	.1			INIT_LOAD_D ONE
			R/W - 0h				R - 0h
7	6	5	4	3	2	1	0
			I2C_REA	D_DATA			
			R -	0h			·

Table 33. Register 03 Field Descriptions

Bit	Field	Туре	Reset	Description
23:22	TEMP_AVG_MAIN	R/W	0h	Average on chip temperature sensor reading. 0: No Average, 1: 2 sample average, 2: 4 sample average

Table 33. Register 03 Field Descriptions (continued)

Bit	Field	Туре	Reset	Description		
18	EN_TSENS_READ_FVD	R/W	0h	If this bit is set TMAIN temperature is read every frame.		
17	I2C_NUM_TRAN	R/W	0h	The number of I ² C host transactions. 0: 1, 1: 2.		
16:9	I2C_WRITE_DATA1	R/W	0h	The address where the read would start. Normally in temperature sensor read this is not required to be programmed.		
8	INIT_LOAD_DONE	R	0h	Can be used to check whether initial auto load from EEPROM is successful or not.		
7:0	I2C_READ_DATA	R	0h	The I ² C host read data.		

7.5.1.1.5 Register 4h (Address = 4h) [reset = 17h]

Figure 33. Register 4h

23	22	21	20	20 19		17	16
TILLUM_UNSI GNED	0	0	0	TILLUM			
R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h		R -	0h	
15	14	13	12	11 10		9	8
			TILI	LUM			
			R -	0h			
7	6	5	4	3	2	1	0
0	0	0	1	0	1	1	1
R/W - 0h	R/W - 0h	R/W - 0h	R/W - 1h	R/W - 0h	R/W - 1h	R/W - 0h	R/W - 1h

Table 34. Register 04 Field Descriptions

Bit	Field	Туре	Reset	Description
23	TILLUM_UNSIGNED	R/W	0h	Set this bit to 1 when temperature given by external temperature sensor is in unsigned format.
22:20	0	R/W	0h	Always read or write 0h.
19:8	TILLUM	R	0h	The temperature value of external temperature sensor.
7:0	23	R/W	17h	Always read or write 17h.

7.5.1.1.6 Register 5h (Address = 5h) [reset = 80000h]

Figure 34. Register 5h

23	22	21	20	19	18	17	16
I2C_NUM_B	YTES_TRAN2	0	0	1	0	0	0
R/V	V-0h	R/W-0h	R/W-0h	R/W-1h	R/W-0h	R/W-0h	R/W-0h
15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0
R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h
7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0
R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h

Table 35. Register 05 Field Descriptions

Bit	Field	Туре	Reset	Description
23:22	I2C_NUM_BYTES_TRAN2	R/W	0h	Number of bytes used in the transaction 2 of I^2C host transaction. $00-1$ byte, $01-2$ bytes
21:0	0	R/W	0h	Always read or write 0h.

7.5.1.1.7 Register 7h (Address = 7h) [reset = 0h]

Figure 35. Register 7h

23	22	21	20	19	18	17	16		
	CONFIG_TI	LLUM_MSB		I2C_SEL_READ_BYTES I2C_NUM_BYTES_TRAN1					
15	14	13	12	11	10	9	8		
0	0	0	0	0	0	0	0		
7	6	5	4	3	2	1	0		
	I2C_WRITE_DATA2								

Table 36. Register 07 Field Descriptions

Bit	Field	Туре	Reset	Description
23:20	CONFIG_TILLUM_MSB	R/W	0h	1000 – I ² C host read data[15:4], to support 12-bit external temperature sensor Also set EN_TILLUM_12B = 1
19:18	I2C_SEL_READ_BYTES	R/W	0h	Chooses which byte of I2C_READ register to be read on I2C_READ_DATA register 00 - 7:0 01 - 15:8 10 - 23:16 11 - 31:24
17:16	I2C_NUM_BYTES_TRAN1	R/W	0h	Number of bytes used in the transaction 1 of i2c host transaction. 00 – 1 byte, 01 – 2 bytes
7:0	I2C_WRITE_DATA2	R/W	0h	Second byte of I ² C write transaction. 8-bit register data to be written

7.5.1.1.8 Register 8h (Address = 8h) [reset = 0h]

Figure 36. Register 8h

23	22	21	20	19	18	17	16			
FRAME_COUN T0	AMB_OVL_FLA G	MOD_FREQ	FRAME_STAT US	TX_CH	HANNEL	HDR_MODE	PHASE_OVER _FLOW			
15	14	13	12	11	10	9	8			
			PHASE	_OUT						
7	6	5	4	3	2	1	0			
	PHASE_OUT									

Table 37. Register 08 Field Descriptions

Bit	Field	Туре	Reset	Description
23	FRAME_COUNT0	R	0h	Frame counter LSB bit.
22	AMB_OVL_FLAG	R	0h	Overload flag to indicate ambient saturation
21	MOD_FREQ	R	0h	Indicates the frequency used. 0 – 10 MHz, 1 – de-alias frequency (10 MHz \times 6 / 7 or 10 MHz \times 6 / 5)
20	FRAME_STATUS	R	0h	1 – valid frame; 0 – invalid frame. Frame can be invalid during crosstalk correction frame etc.
19:18	TX_CHANNEL	R	0h	Indicates which Illumination channel of TX0/TX1/TX2 is used.
17	HDR_MODE	R	0h	Indicates the illumination driver DAC current used. 0 = ILLUM_DAC_L, 1 = ILLUM_DAC_H
16	PHASE_OVER_FLOW	R	0h	PHASE_OUT overflow bit during frequency correction
15:0	PHASE_OUT	R	0h	Final calibrated phase.

7.5.1.1.9 Register 9h (Address = 9h) [reset = 0h]

Figure 37. Register 9h

23	22	21 20		19	18	17	16
	DEALIA	AS_BIN		PHASE_OVER _FLOW_F2	SIG_OVL_FLA G	FRAME_	COUNT1
15	14	13	12	11	10	9	8

Table 38. Register 09 Field Descriptions

Bit	Field	Туре	Reset	Description		
23:20	DEALIAS_BIN	R	0h Distance bin in de-alias mode.			
19	PHASE_OVERFLOW_F2	R	Phase overflow of second modulation frequency during frequency correction.			
18	SIG_OVL_FLAG	R	0h	Overload flag to indicate signal saturation		
17:16	FRAME_COUNT 1	R	0h	Frame Counter Bits [2:1]		
15:0	AMP_OUT	R	0h	Amplitude of the signal.		

7.5.1.1.10 Register Ah (Address = Ah) [reset = 0h]

Figure 38. Register Ah

23	22	21	20	19	18	17	16	
			TM	AIN				
15	14	13	12	11	10	9	8	
	TM	AIN		AMB_DATA				
7	6	5	4	3	2	1	0	
	AMB_DATA							

Table 39. Register 0A Field Descriptions

Bit	Field	Туре	Reset	Description
23:12	TMAIN	R	0h	On chip temperature sensor output temperature (°C)= TMAIN / 8 – 256
11:2	AMB_DATA	R	0h	Ambient ADC output. Indicates the ambient light.
1:0	FRAME_COUNT2	R	0h	Frame counter MSB Bits [4:3].

7.5.1.1.11 Register Bh (Address = Bh) [reset = FC009h]

Figure 39. Register Bh

23	22	21	20	19	18	17	16	
			AMB_0	CALIB				
			R/W -	· 0Fh				
15	14	13	12	11	10	9	8	
AMB_	CALIB		GPO_	SEL2		0	0	
R/W	/ - 3h		R/W	- 0h		R/W - 0h	R/W - 0h	
7	6	5	4	3	2	1	0	
	DIG_GP	O_SEL1		DIG_GPO_SEL0				
	R/W	- 0h			R/W	- 9h		

Table 40. Register 0B Field Descriptions

Bit	Field	Туре	Reset	Description
23:14	AMB_CALIB	R/W	3Fh	The ambient ADC value at which device is calibrated for phase offset
13:10	DIG_GPO_SEL2	R/W	0h	Mux selection bits for digital signal DIG_GPO_2 which can be brought out on GP3 (SDA_M)
9:8	0	R/W	0h	Always read or write 0h.
7:4	DIG_GPO_SEL1	R/W	0h	Mux selection bits for digital signal DIG_GPO_1 which can be brought out on GP1/GP2 0: FRAME VD 1: SUB-VD 4: SEQUENCER INTERRUPT 8: COMP_STATUS 9: DATA_RDY 10: FRAME_COUNTER_LSB

Product Folder Links: OPT3101

ISTRUMENTS

Table 40. Register 0B Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
3:0	DIG_GPO_SEL0	R/W	9h	Mux selection bits for digital signal DIG_GPO_0 which can be brought out on GP1/GP2 0: FRAME VD 1: SUB-VD 4: SEQUENCER INTERRUPT 8: COMP_STATUS 9: DATA_RDY 10: FRAME_COUNTER_LSB

7.5.1.1.12 Register Ch (Address = Ch) [reset = 0h]

Figure 40. Register Ch

23	22	21	20	19	18	17	16
		ı	AMB_PHASE_COF	RR_PWL_COEFF	0		
15	14	13	12	11	10	9	8
			AMB_XTALK_QI	PHASE_COEFF			
7	6	5	4	3	2	1	0
			AMB_XTALK_IF	PHASE_COEFF			

Table 41. Register 0C Field Descriptions

Bit	Field	Туре	Reset	Description
23:16	AMB_PHASE_CORR_PWL _COEFF0	R/W	0h	Coefficient 0 for PWL phase correction with ambient
15:8	AMB_XTALK_QPHASE_C OEFF	R/W	0h	Coefficient to correct for the crosstalk (Quadrature component) change with ambient.
7:0	AMB_XTALK_IPHASE_CO EFF	R/W	0h	Coefficient to correct for the crosstalk (Inpase component) change with ambient.

7.5.1.1.13 Register Dh (Address = Dh) [reset = 6000h]

Figure 41. Register Dh

23	22	21	20	19	18	17	16
EN_TILLUM_1 2B	0	0	0	0	0	0	AMB_SAT_TH R
R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h
15	14	13	12	11	10	9	8
			AMB_S	AT_THR			
			R/W	- 60h			
7	6	5	4	3	2	1	0
AMB_SAT_TH R	0	0	0	0	0	0	0
R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h

Table 42. Register 0D Field Descriptions

Bit	Field	Туре	Reset	Description
23	EN_TILLUM_12B	R/W	0h	Enables support for external temperature sensor with more than 8-bit resolution on I ² C host bus. Preferred 12-bit temperature sensor: TMP102:
22:17	0	R/W	0h	Always read or write 0h.
16:7	AMB_SAT_THR	R/W	C0h	Ambient threshold which is used to detect the ambient overload. AMB_DATA - AMB_CALIB is compared against this threshold value and AMB_OVL_FLAG is set to 1 if it exceeds the threshold.
6:0	0	R/W	0h	Always read or write 0h.

7.5.1.1.14 Register Fh (Address = Fh) [reset = 144C4Bh]

Figure 42. Register Fh

23	22	21	20	19	18	17	16
EN_FREQ_CO RR	EN_FLOOP	EN_AUTO_FR EQ_COUNT		SYS_CLK	_DIVIDER		START_FREQ _CALIB
R/W - 0h	R/W - 0h	R/W - 0h		R/W	- Ah		R/W - 0h
15	14	13	12	11	10	9	8
0			F	REF_COUNT_LIMI	IT		
R/W - 0h				R/W - 4Ch			
7	6	5	4	3	2	1	0
	REF_COUNT_LIMIT						
			R/W	- 4Bh			

Table 43. Register 0F Field Descriptions

Bit	Field	Туре	Reset	Description
23	EN_FREQ_CORR	R/W	0h	Enable frequency correction for the phase output
22	EN_FLOOP	R/W	Oh Enables the frequency calibration block.	
21	EN_AUTO_FREQ_COUNT	R/W	0h	Determines which value to be used for frequency correction. 0 – On hip trimmed value, 1 – Measured value from frequency calibration
20:17	SYS_CLK_DIVIDER	R/W	Ah	Programs system clock divider for frequency calibration. This should be adjusted to get it closer to the external reference frequency. The default is 10, system clock = 40 MHz / 2 ¹⁰ = 39.0625 kHz to bring close to 32.768 kHz.
16	START_FREQ_CALIB	R/W	0h	starts the frequency calibration.
14:0	REF_COUNT_LIMIT	R/W	4C4Bh	This sets the limit for ref-clock count. Write this register with value = $(40e6 / 2^{SYS_CLK_DIVIDER}) / f_{EXT}$

7.5.1.1.15 Register 10h (Address = 10h) [reset = 4000h]

Figure 43. Register 10h

23	22	21	20	19	18	17	16	
			AMPLITUDE_	MIN_THR[15:8]				
			R/V	V - 0h				
15	14	13	12	11	10	9	8	
EN_CONT_FC ALIB		FREQ_COUNT_READ_REG						
R/W - 0h				R/W - 40h				
7	6	5	4	3	2	1	0	
			FREQ_COUN	IT_READ_REG				
			R/V	V - 0h				

Table 44. Register 10 Field Descriptions

Bit	Field	Туре	Reset	Description
23:16	AMPLITUDE_MIN_THR[15: 8]	R/W	0h	MSB of minimum amplitude threshold below which phase is made FFFFh.
15	EN_CONT_FCALIB	R/W	0h	Enables continuous frequency calibration. 0 – Frequency is measured only when START_FREQ_CALIB = 1; 1 – Frequency is continuously measured.
14:0	FREQ_COUNT_READ_RE	R	4000h	Read register which holds the value of frequency correction when frequency calibration is enabled. This value will be used for frequency correction when EN_AUTO_FREQ_COUNT = 1.

Product Folder Links: OPT3101

Submit Documentation Feedback

7.5.1.1.16 Register 11h (Address = 11h) [reset = 0h]

Figure 44. Register 11h

23	22	21	20	19	18	17	16
			AMPLITUDE_	MIN_THR[7:0]			
15	14	13	12	11	10	9	8
DIS_OVL_GATI NG	0	0	0	0	0	0	0
7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0

Table 45. Register 11 Field Descriptions

Bit	Field	Type	Reset	Description
23:16	AMPLITUDE_MIN_THR[7:0	R/W	0h	LSB of minimum amplitude threshold below which phase is made FFFFh.
15	DIS_OVL_GATING	R/W	0h	Disable gating of phase output when SIG_OVL_FLAG becomes 1.
14:0	FREQ_COUNT_REG	R	0h	Digital frequency correction trim value. This value will be used for frequency correction when EN_AUTO_FREQ_COUNT = 0

7.5.1.1.17 Register 13h (Address = 13h) [reset = 0h]

Figure 45. Register 13h

23	22	21	20	19	18	17	16			
0	0	0	0	0		COMPARE_REG1				
15	14	13	12	11	10	9	8			
	COMPARE_REG1									
7 6 5 4 3 2 1 0										
	-	COMPARE_REG1	ı	//UX_SEL_COMP	IN					

Table 46. Register 13 Field Descriptions

Bit	Field	Туре	Reset	Description
18:3	COMPARE_REG1	R/W	0h	Sequencer comparison threshold1 register
2:0	MUX_SEL_COMPIN	R/W	0h	choses the value used for comparator input register of sequencer. 0 = amplitude 1 = de-alias bin 2 = de-alias distance 3 = phase

7.5.1.1.18 Register 14h (Address = 14h) [reset = 0h]

Figure 46. Register 14h

23	22	21	20	19	18	17	16			
0	0	0	0	DIS_INTERRU PT	STATUS_IN_R EG	EN_PROCESS OR_VALUES	EN_SEQUENC ER			
15	14	13	12	11	10	9	8			
			COMPAR	RE_REG2						
7	6	5	4	3	2	1	0			
	COMPARE_REG2									

Table 47. Register 14 Field Descriptions

Bit	Field	Туре	Reset	Description	
19	DIS_INTERRUPT	R/W	0h	Disables the interrupt which triggers sequencer.	
18	STATUS_IN_REG	R/W	0h	the register is used to control the program flow in CPU	
17	EN_PROCESSOR_VALUE S	R/W	0h	Uses processor values instead of register values.	
16	EN_SEQUENCER	R/W	0h	Enable the sequencer.	

Table 47. Register 14 Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
15:0]	COMPARE_REG2	R/W	0h	Sequencer comparison threshold2 register

7.5.1.1.19 Register 15h (Address = 15h) [reset = 101063h]

Figure 47. Register 15h

23	22	21	20	19	18	17	16			
COMMAND1										
	R/W - 10h									
15	14 13 12			11	10	9	8			
	COMM	IAND1			COMM	AND0				
	R/W	- 1h			R/W - 0h					
7	6	5	4	3	2	1	0			
COMMAND0										
	R/W - 63h									

Table 48. Register 15 Field Descriptions

Bit	Field	Туре	Reset	Description
23:12	COMMAND1	R/W	101h	Sequencer command 1.
11:0	COMMAND0	R/W	63h	Sequencer command 0.

7.5.1.1.20 Register 16h (Address = 16h) [reset = 400100h]

Figure 48. Register 16h

23	22	21	20	19	18	17	16			
	COMMAND3									
	R/W - 40h									
15	14	13	12	11	10	9	8			
	COMMAND3 COMMAND2									
	R/W	- 0h			R/W	- 1h				
7	6	5	4	3	2	1	0			
	COMMAND2									
	R/W - 00h									

Table 49. Register 16 Field Descriptions

Bit	Field	Туре	Reset	Description
23:12	COMMAND3	R/W	400h	Sequencer command 3.
11:0	COMMAND2	R/W	100h	Sequencer command 2.

7.5.1.1.21 Register 17h (Address = 17h) [reset = 0h]

Figure 49. Register 17h

23	22	21	20	19	18	17	16		
			COMM	IAND5					
15	14	13	12	11	10	9	8		
	COMM	IAND5		COMMAND4					
7	6	5	4	3	2	1	0		
	COMMAND4								

Table 50. Register 17 Field Descriptions

Bit	Field	Туре	Reset	Description
23:12	COMMAND5	R/W	0h	Sequencer command 5.
11:0	COMMAND4	R/W	0h	Sequencer command 4.

7.5.1.1.22 Register 18h (Address = 18h) [reset = 0h]

Figure 50. Register 18h

23	22	21	20	19	18	17	16			
COMMAND7										
15	14	13	12	11	10	9	8			
	COMM	IAND7		COMMAND6						
7	6	5	4	3	2	1	0			
	COMMAND6									

Table 51. Register 18 Field Descriptions

Bit Field		Туре	Reset	Description
23:12	COMMAND7	R/W	0h	Sequencer command 7.
11:0	COMMAND6	R/W	0h	Sequencer command 6.

7.5.1.1.23 Register 19h (Address = 19h) [reset = 0h]

Figure 51. Register 19h

23	22	21	20	19	18	17	16				
	COMMAND9										
15	14	13	12	11	10	9	8				
	COMM	IAND9		COMMAND8							
7	6	5	4	3	2	1	0				
	COMMAND8										

Table 52. Register 19 Field Descriptions

Bit	Field	Type Res		Description
23:12	COMMAND9	R/W	0h	Sequencer command 9.
11:0	COMMAND8	R/W	0h	Sequencer command 8.

7.5.1.1.24 Register 1Ah (Address = 1Ah) [reset = 0h]

Figure 52. Register 1Ah

23	22	21	20	19	18	17	16				
	COMMAND11										
15	14	13	12	11	10	9	8				
	COMM	AND11		COMMAND10							
7	6	5	4	3	2	1	0				
	COMMAND10										

Table 53. Register 1A Field Descriptions

Bit	Field	Туре	Reset	Description
23:12	COMMAND11	R/W	0h	Sequencer command 11.
11:0	COMMAND10	R/W	0h	Sequencer command 10.

7.5.1.1.25 Register 1Bh (Address = 1Bh) [reset = 0h]

Figure 53. Register 1Bh

23	22	21	20	19	18	17	16			
	COMMAND13									
15	14	13	12	11	10	9	8			
	COMM	AND13		COMMAND12						
7	6	5	4	3	2	1	0			
	COMMAND12									

Table 54. Register 1B Field Descriptions

Bit	Field	Туре	Reset	Description
23:12	COMMAND13	3 R/W 0h		Sequencer command 13.
11:0	COMMAND12	R/W	0h	Sequencer command 12.

7.5.1.1.26 Register 1Ch (Address = 1Ch) [reset = 0h]

Figure 54. Register 1Ch

23	22	21	20	19	18	17	16			
			COMM	IAND15						
15	14	13	12	11	10	9	8			
	COMM	AND15		COMMAND14						
7	6	5	4	3	2	1	0			
	COMMAND14									

Table 55. Register 1C Field Descriptions

Bit	Field	Туре	Reset	Description
23:12	COMMAND15	R/W	0h	Sequencer command 15.
11:0	COMMAND14	R/W	0h	Sequencer command 14.

7.5.1.1.27 Register 1Dh (Address = 1Dh) [reset = 0h]

Figure 55. Register 1Dh

23	22	21	20	19	18	17	16			
COMMAND17										
15	14	13	12	11	10	9	8			
	COMM	AND17		COMMAND16						
7	6	5	4	3	2	1	0			
	COMMAND16									

Table 56. Register 1D Field Descriptions

Bit	Field	Туре	Reset	Description
23:12	COMMAND17	R/W	0h	Sequencer command 17.
11:0	COMMAND16	R/W	0h	Sequencer command 16.

7.5.1.1.28 Register 1Eh (Address = 1Eh) [reset = 0h]

Figure 56. Register 1Eh

23	22	21	20	19	18	17	16			
			COMM	AND19						
15	14	13	12	11	10	9	8			
	AND18									
7 6 5 4 3 2 1 0										
	COMMAND18									

Table 57. Register 1E Field Descriptions

Bit	Field	Туре	Reset	Description
23:12	COMMAND19	R/W	0h	Sequencer command 19.
11:0	COMMAND18	R/W	0h	Sequencer command 18.

7.5.1.1.29 Register 26h (Address = 26h) [reset = 4000Fh]

Figure 57. Register 26h

23	22	21	20	19	18	17	16			
			POWERU	IP_DELAY						
	R/W - 04h									
15	15 14 13 12 11 10					9	8			
	POWERUP_DELAY									
		R/W	- 00h			R/W - 0h	R/W - 0h			
7	6	5	4	3	2	1	0			
0	0	1	1							
R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 1h	R/W - 1h	R/W - 1h	R/W - 1h			

Table 58. Register 26 Field Descriptions

Bit	Bit Field Type Reset		Reset	Description
23:10	POWERUP_DELAY	R/W	100h	Register to program the delay from the monoshot trigger to start of frame (FRAME_VD). Delay = (64 × POWERUP_DELAY + 2) × Tclk, Tclk = 25 ns.
9:0	15	R/W	Fh	Always read or write Fh.

7.5.1.1.30 Register 27h (Address = 27h) [reset = 26AC18h]

Figure 58. Register 27h

23	22	21	20	19	18	17	16				
	MONOSHOT_FZ_CLKCNT										
	R/W - 26h										
15	14	13	12	11	10	9	8				
	MONOSHOT_FZ_CLKCNT										
			R/W -	ACh							
7	6	5	4	3	2	1	0				
MONOSHOT_NUMFRAME MONOSHOT_NUMFRAME MONOSHOT_MODE											
			R/W - 0h								

Table 59. Register 27 Field Descriptions

Bit Field Type Res		Reset	Description		
23:8	MONOSHOT_FZ_CLKCNT	IOSHOT_FZ_CLKCNT R/W 26ACh The CLK count at which		The CLK count at which a monoshot operation freezes.	
7:2	:2 MONOSHOT_NUMFRAME R/W 6h		6h	The number of samples to be captured on every monoshot trigger event.	
1:0	MONOSHOT_MODE	R/W	0h	Select monoshot mode. 0 - Continuous Mode 3 - Monoshot Mode	

7.5.1.1.31 Register 29h (Address = 29h) [reset = 3F0FC3h]

Figure 59. Register 29h

23	22	21	20	19	18	17	16		
	ILLUM_DAC	_L_TX2[4:1]		ILLUM_DAC_H_TX1					
	R/W	- 3h		R/W - Fh					
15	15 14 13 12			11	10	9	8		
ILLUM_DAC_H _TX1			ILLUM_DAC_L_TX1			ILLUM_DA	AC_H_TX0		
R/W - 0h			R/W - 03h			R/W	/ - 3h		
7	6	5	4	3	2	1	0		
IL	LUM_DAC_H_TX	(0		ILLUM_DAC_L_TX0					
			R/W - 03h						

Table 60. Register 29 Field Descriptions

Bit	Field	Туре	Reset	Description
23:20	ILLUM_DAC_L_TX2[4:1]	LLUM_DAC_L_TX2[4:1] R/W 3h Illumination driver cur		Illumination driver current DAC register, ILLUM_DAC_L[4:1] of TX2 Channel
19:15	19:15 ILLUM_DAC_H_TX1 R/W 1Eh		1Eh	Illumination driver current DAC register, ILLUM_DAC_H of TX1 Channel
14:10	ILLUM_DAC_L_TX1	LLUM_DAC_L_TX1 R/W 3h		Illumination driver current DAC register, ILLUM_DAC_L of TX1 Channel
9:5	9:5 ILLUM_DAC_H_TX0 R/W 1Eh		1Eh	Illumination driver current DAC register, ILLUM_DAC_H of TX0 Channel
4:0	ILLUM_DAC_L_TX0	R/W	3h	Illumination driver current DAC register, ILLUM_DAC_L of TX0 Channel

7.5.1.1.32 Register 2Ah (Address = 2Ah) [reset = 784920h]

Figure 60. Register 2Ah

23	22	21	20	19	18	17	16	
ILLUM_DAC_L _TX2[0]		I	LLUM_DAC_H_T	(2		0	SEL_HDR_MO DE	
R/W - 0h			R/W - 1Eh			R/W - 0h	R/W - 0h	
15	14	13	12	11	10	9	8	
EN_ADAPTIVE _HDR				TX_SEQ_REG				
R/W - 0h				R/W - 49h				
7	6	5	4	3	2	1	0	
TX_SEQ_REG SEL_TX_CH								
		R/W	- 0h	R/W - 0h				

Table 61. Register 2A Field Descriptions

Bit	Field	Туре	Reset	Description	
23	ILLUM_DAC_L_TX2[0]	R/W	1h	Illumination driver current DAC register, ILLUM_DAC_L[0] of TX2 Channel	
22:18]	ILLUM_DAC_H_TX2	ILLUM_DAC_H_TX2 R/W 1Eh Illumination driver current DAC register, ILLUM_			
16	SEL_HDR_MODE	MODE R/W 0h Selects which current to use when EN_ADAPTIVE_HDR = 0 0 - ILLUM_DAC_L 1 - ILLUM_DAC_H			
15	EN_ADAPTIVE_HDR	R/W	0h	Enable adaptive HDR to switch between two illumination driver currents (ILLUM_DAC_L and ILLUM_DAC_H) depending on the amplitude of the received signal.	
14:3	TX_SEQ_REG	R/W	924h	switching sequence of illumination channels. Up to a sequence of 6 channel configurations. For example, register value: 2-1-0-2-1-0, illumination channel sequence will be 0-1-2-0-1-2	
2:1	SEL_TX_CH	R/W	0h	Selects the illumination channel when channel switching is disabled.	
0	EN_TX_SWITCH	R/W	0h	Enable switching of illumination channels.	

7.5.1.1.33 Register 2Bh (Address = 2Bh) [reset = 6000h]

Figure 61. Register 2Bh

23	22	21	20	19	18	17	16			
0	0	IL	LUM_SCALE_H_T	X0	ILLUM_SCALE_L_TX0					
R/W - 0h	R/W - 0h		R/W - 0h		R/W - 0h					
15	14	13	12	11	10	9	8			
HDR_THR_HIGH										
			R/W	- 60h						
7	6	5	4	3	2	1	0			
HDR_THR_HIGH										
	R/W - 00h									

Table 62. Register 2B Field Descriptions

Bit	Field	Туре	Reset	Description
23:22	0	R/W	0h	Always read or write 0h.
21:19	ILLUM_SCALE_H_TX0	R/W	0h	Illumination driver current scale register of TX0 Channel with DAC_H current. 0: 5.6 mA 1: 4.2mA 2: 2.8 mA 3: 1.4 mA
18:16	ILLUM_SCALE_L_TX0	R/W	0h	Illumination driver current scale register of TX0 Channel with DAC_L current. 0: 5.6 mA 1: 4.2mA 2: 2.8 mA 3: 1.4 mA
15:0	HDR_THR_HIGH	R/W	6000h	High threshold for the HDR switching. Amplitude is compared against this threshold when the illumination driver current is high (ILLUM_DAC_H) and it will switch to ILLUM_DAC_L if the amplitude exceeds this threshold value.

7.5.1.1.34 Register 2Ch (Address = 2Ch) [reset = 800h]

Figure 62. Register 2Ch

23	22	21	20	19	18	17	16	
0	0	IL	LUM_SCALE_H_T	X1	ILI	LUM_SCALE_L_T	X1	
R/W - 0h	R/W - 0h		R/W - 0h			R/W - 0h		
15	14	13	12	11	10	9	8	
			HDR_TH	HR_LOW				
			R/W	- 08h				
7	6	5	4	3	2	1	0	
	HDR_THR_LOW							
	R/W - 00h							

Table 63. Register 2C Field Descriptions

Bit	Field	Туре	Reset	Description
23:22	0	R/W	0h	Always read or write 0h.
21:19	ILLUM_SCALE_H_TX0	R/W	0h	Illumination driver current scale register of TX1 Channel with DAC_H current. 0: 5.6 mA 1: 4.2 mA 2: 2.8 mA 3: 1.4 mA
18:16	ILLUM_SCALE_L_TX0	R/W	0h	Illumination driver current scale register of TX1 Channel with DAC_L current. 0: 5.6 mA 1: 4.2 mA 2: 2.8 mA 3: 1.4 mA
15:0	HDR_THR_LOW	R/W	800h	Low threshold for the HDR switching. Amplitude is compared against this threshold when the Illumination driver current is low (ILLUM_DAC_L) and it will switch to ILLUM_DAC_H if the amplitude is lower than this threshold value.

7.5.1.1.35 Register 2Dh (Address = 2Dh) [reset = 0h]

Figure 63. Register 2Dh

23	22	21	20	19	18	17	16	
			TEMP_COEFF_M	IAIN_HDR0_TX1				
15	14	13	12	11	10	9	8	
	TEMP_COEFF_M	AIN_HDR0_TX1	1		TEMP_COEFF_M	IAIN_HDR1_TX0)	
7	6	5	4	3	2	1	0	
	TEMP_COEFF_MAIN_HDR1_TX0							

Table 64. Register 2D Field Descriptions

Bit	Field	Туре	Reset	Description
23:12	TEMP_COEFF_MAIN_HD R0_TX1	R/W	0h	Phase temperature coefficient for sensor temperature for TX1 illumination Channel with current of ILLUM_DAC_L_TX1
11:0]	TEMP_COEFF_MAIN_HD R1_TX0	R/W	0h	Phase temperature coefficient for sensor temperature for TX0 illumination Channel with current of ILLUM_DAC_H_TX0

7.5.1.1.36 Register 2Eh (Address = 2Eh) [reset = 8001A0h]

Figure 64. Register 2Eh

23	22	21	20	19	18	17	16
	XTALK_FILT_	TIME_CONST		ILLUM	1_XTALK_REG_S	CALE	INT_XTALK_R EG_SCALE
	R/W	- 8h			R/W - 0h		R/W - 0h
15	14	13	12	11	10	9	8
INT_XTALK_	REG_SCALE	0	ILLUM_XTALK _CALIB	IQ	_READ_DATA_SI	EL	USE_XTALK_R EG_ILLUM
R/W	- 0h	R/W - 0h	R/W - 0h		R/W - 0h		R/W - 1h
7	6	5	4	3	2	1	0
USE_XTALK_F ILT_ILLUM	USE_XTALK_R EG_INT	USE_XTALK_F ILT_INT	INT_XTALK_C ALIB	DIS_AUTO_SC ALE	FC	DRCE_SCALE_V	AL
R/W - 1h	R/W - 0h	R/W - 1h	R/W - 0h	R/W - 0h		R/W - 0h	

Table 65. Register 2E Field Descriptions

Bit	Field	Туре	Reset	Description
23:20	XTALK_FILT_TIME_CONS	R/W	8h	Time constant for crosstalk filtering. Time constant $\tau = 2^{\text{XTALK_FILT_TIME_CONST}}$ frames. At least 5τ should be allowed for settling of crosstalk measurement
19:17	ILLUM_XTALK_REG_SCA LE	R/W	0h	Scale factor illumination crosstalk register (IPHASE_XTALK_REG_HDR <i>>_TX<j>, QPHASE_XTALK_REG_HDR<i>_TX<j>, i = 0, 1, j = 0, 1, 2). Scale = 2INT_XTALK_REG_SCALE</j></i></j></i>
16:14	INT_XTALK_REG_SCALE	R/W	0h	Scale factor internal crosstalk register (IPHASE_XTALK_INT_REG, QPHASE_XTALK_INT_REG). Scale = 2 ^{INT_XTALK_REG_SCALE}
13	0	R/W	0h	Always read or write 0.
12	ILLUM_XTALK_CALIB	R/W	0h	The device initializes the Illumination crosstalk measurement upon setting this bit. This measurement should be done with the photodiode masked such that no modulated light is received. Use following sequence: ILLUM_XTALK_CALIB = 1 delay(at least 5*2 ^{XTALK_FILT_TIME_CONST} frame) ILLUM_XTALK_CALIB = 0
11:9	IQ_READ_DATA_SEL	R/W	0h	Mux selection for IPHASE_XTALK, QPHASE_XTALK registers 000 – Internal Crosstalk 001 – illumination Crosstalk 010 – Raw I, Q 011 - 16-bit frame counter
8	USE_XTALK_REG_ILLUM	R/W	1h	Select register value or internally calibrated value for illumination crosstalk 0 – Calibration value, 1 – Register value

Table 65. Register 2E Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
7	USE_XTALK_FILT_ILLUM	R/W	1h	Select filter or direct sampling for Illumination crosstalk measurement. 0 – Direct sampling, 1 – Filter
6	USE_XTALK_REG_INT	R/W	0h	Select register value or internally calibrated value for internal crosstalk 0 – Calibration value, 1 – Register value
5	USE_XTALK_FILT_INT	R/W	1h	Select filter or direct sampling for internal crosstalk measurement. 0 – Direct sampling, 1 – Filter
4	INT_XTALK_CALIB	R/W	0h	The device initializes the internal electrical crosstalk measurement upon setting this bit. Use following sequence: INT_XTALK_CALIB = 1 delay (at least 5 × 2 ^{XTALK} _FILT_TIME_CONST frames) INT_XTALK_CALIB = 0
3	DIS_AUTO_SCALE	R/W	0h	Disable digital auto scale in the signal path
2:0	FORCE_SCALE_VAL	R/W	0h	Uses this scale value if DIS_AUTO_SCALE = 1. This scale value is also used during any crosstalk calibration even if DIS_AUTO_SCALE is not applied. Scale = 2 ^(6-FORCE_SCALE_VAL)

7.5.1.1.37 Register 2Fh (Address = 2Fh) [reset = 0h]

Figure 65. Register 2Fh

23	22	21	20	19	18	17	16		
		TE	MP_COEFF_MA	IN_HDR1_TX1[11:	4]				
15	14	13	12	11	10	9	8		
			IPHASE_XTALK_	REG_HDR0_TX0					
7	6	5	4	3	2	1	0		
	IPHASE_XTALK_REG_HDR0_TX0								

Table 66. Register 2F Field Descriptions

Bit	Field	Туре	Reset	Description
23:16	TEMP_COEFF_MAIN_HD R1_TX1[11:4]	R/W	0h	MSB of Phase temperature coefficient for sensor temperature for TX1 illumination Channel with current of ILLUM_DAC_H_TX1
15:0	IPHASE_XTALK_REG_HD R0_TX0	R/W	0h	Register for illumination crosstalk in-phase component for TX0 channel with ILLUM_DAC_L_TX0 current

7.5.1.1.38 Register 30h (Address = 30h) [reset = 0h]

Figure 66. Register 30h

23	22	21	20	19	18	17	16	
-	TEMP_COEFF_MAI	N_HDR1_TX1[3	:0]	0	0	0	0	
15	14	13	12	11	10	9	8	
			QPHASE_XTALK	_REG_HDR0_TX0)			
7	6	5	4	3	2	1	0	
	QPHASE_XTALK_REG_HDR0_TX0							

Table 67. Register 30 Field Descriptions

Bit	Field	Туре	Reset	Description
23:20	TEMP_COEFF_MAIN_HD R1_TX1[3:0]	R/W	0h	LSB of Phase temperature coefficient for sensor temperature for TX1 illumination Channel with current of ILLUM_DAC_H_TX1
15:0	QPHASE_XTALK_REG_H DR0_TX0	R/W	0h	Quadrature component of the crosstalk for ILLUM_DAC_L of TX0

7.5.1.1.39 Register 31h (Address = 31h) [reset = 0h]

Figure 67. Register 31h

23	22	21	20	19	18	17	16
		TE	MP_COEFF_MA	IN_HDR0_TX2[11:	:4]		
15	14	13	12	11	10	9	8
			IPHASE_XTALK_	REG_HDR1_TX0			
7	6	5	4	3	2	1	0
	IPHASE_XTALK_REG_HDR1_TX0						

Table 68. Register 31 Field Descriptions

Bit	Field	Туре	Reset	Description
23:16	TEMP_COEFF_MAIN_HD R0_TX2[11:4]	R/W	0h	MSB of Phase temperature coefficient for sensor temperature for TX2 illumination Channel with current of ILLUM_DAC_L_TX2
15:0	IPHASE_XTALK_REG_HD R1_TX0	R/W	0h	

7.5.1.1.40 Register 32h (Address = 32h) [reset = 0h]

Figure 68. Register 32h

23	22	21	20	19	18	17	16
	TEMP_COEFF_MAIN	N_HDR0_TX2[3:0]	0	0	0	0
15	14	13	12	11	10	9	8
			QPHASE_XTALK_	_REG_HDR1_TX0)		
7	7 6 5 4 3 2 1 0						
	QPHASE_XTALK_REG_HDR1_TX0						

Table 69. Register 32 Field Descriptions

Bit	Field	Туре	Reset	Description
23:20	TEMP_COEFF_MAIN_HD R0_TX2[3:0]	R/W	0h	LSB of Phase temperature coefficient for sensor temperature for TX2 illumination Channel with current of ILLUM_DAC_L_TX2
15:0	QPHASE_XTALK_REG_H DR1_TX0	R/W	0h	Register for illumination crosstalk quad phase component for TX0 channel with ILLUM_DAC_H_TX0 current

7.5.1.1.41 Register 33h (Address = 33h) [reset = 0h]

Figure 69. Register 33h

23	22	21	20	19	18	17	16
		TE	MP_COEFF_MA	N_HDR1_TX2[11	:4]		
15	14	13	12	11	10	9	8
			IPHASE_XTALK_	REG_HDR0_TX1			
7	6	5	4	3	2	1	0
	IPHASE_XTALK_REG_HDR0_TX1						

Table 70. Register 33 Field Descriptions

Bit	Field	Type	Reset	Description
23:16	TEMP_COEFF_MAIN_HD R1_TX2[11:4]	R/W	0h	MSB of Phase temperature coefficient for sensor temperature for TX2 illumination Channel with current of ILLUM_DAC_H_TX2
15:0	IPHASE_XTALK_REG_HD R0_TX1	R/W		Register for illumination crosstalk in-phase component for TX1 channel with ILLUM_DAC_L_TX1 current

7.5.1.1.42 Register 34h (Address = 34h) [reset = 0h]

Figure 70. Register 34h

23	22	21	20	19	18	17	16
	TEMP_COEFF_MAIN	N_HDR1_TX2[3	3:0]	0	0	0	0
15	14	13	12	11	10	9	8
			QPHASE_XTALK	_REG_HDR0_TX1	1		
7	6	5	4	3	2	1	0
	QPHASE_XTALK_REG_HDR0_TX1						

Table 71. Register 34 Field Descriptions

Bit	Field	Туре	Reset	Description
23:20	TEMP_COEFF_MAIN_HD R1_TX2[3:0]	R/W	0h	LSB of Phase temperature coefficient for sensor temperature for TX2 illumination Channel with current of ILLUM_DAC_H_TX2
15:0	QPHASE_XTALK_REG_H DR0_TX1	R/W	0h	Register for illumination crosstalk in quad-phase component for TX1 channel with ILLUM_DAC_L_TX1 current

7.5.1.1.43 Register 35h (Address = 35h) [reset = 0h]

Figure 71. Register 35h

23	22	21	20	19	18	17	16	
0	0	0	0	0	0	0	0	
15	14	13	12	11	10	9	8	
	IPHASE_XTALK_REG_HDR1_TX1							
7	6	5	4	3	2	1	0	
	IPHASE_XTALK_REG_HDR1_TX1							

Table 72. Register 35 Field Descriptions

Bit	Field	Туре	Reset	Description
23:16	0	R/W	0h	Always read or write 0h.
15:0	IPHASE_XTALK_REG_HD R1_TX1	R/W	0h	Register for illumination crosstalk in-phase component for TX1 channel with ILLUM_DAC_H_TX1 current

7.5.1.1.44 Register 36h (Address = 36h) [reset = 0h]

Figure 72. Register 36h

23	22	21	20	19	18	17	16		
	TEMP_COEFF_ILLUM_XTALK_IPHASE_HDR0_TX0								
15	14	13	12	11	10	9	8		
		(QPHASE_XTALK_	REG_HDR1_TX	1				
7	6	5	4	3	2	1	0		
	QPHASE_XTALK_REG_HDR1_TX1								

Table 73. Register 36 Field Descriptions

Bit	Field	Туре	Reset	Description
23:16	TEMP_COEFF_ILLUM_XT ALK_IPHASE_HDR0_TX0	R/W	0h	Temperature coefficient of crosstalk in-phase component with TILLUM for TX0 channel with ILLUM_DAC_L_TX0 current.
15:0	QPHASE_XTALK_REG_H DR1_TX1	R/W	0h	Register for illumination crosstalk quad-phase component for TX1 channel with ILLUM_DAC_H_TX1 current

7.5.1.1.45 Register 37h (Address = 37h) [reset = 0h]

Figure 73. Register 37h

23	22	21	20	19	18	17	16			
	TEMP_COEFF_ILLUM_XTALK_QPHASE_HDR0_TX0									
15	14	13	12	11	10	9	8			
			IPHASE_XTALK_	REG_HDR0_TX2						
7	7 6 5 4 3 2 1 0									
	IPHASE_XTALK_REG_HDR0_TX2									

Table 74. Register 37 Field Descriptions

Bit	Field	Туре	Reset	Description
23:16	TEMP_COEFF_ILLUM_XT ALK_QPHASE_HDR0_TX0		0h	Temperature coefficient of crosstalk quad-phase component with TILLUM for TX0 channel with ILLUM_DAC_L_TX0 current.
15:0	IPHASE_XTALK_REG_HD R0_TX2	R/W	0h	Register for illumination crosstalk in-phase component for TX2 channel with ILLUM_DAC_L_TX2 current

7.5.1.1.46 Register 38h (Address = 38h) [reset = 0h]

Figure 74. Register 38h

23	22	21	20	19	18	17	16		
	TEMP_COEFF_XTALK_IPHASE_HDR0_TX0								
15	15 14 13 12 11 10 9 8								
			QPHASE_XTALK_	REG_HDR0_TX2					
7	7 6 5 4 3 2 1 0								
	QPHASE_XTALK_REG_HDR0_TX2								

Table 75. Register 38 Field Descriptions

Bit	Field	Type	Reset	Description
23:16	TEMP_COEFF_XTALK_IP HASE_HDR0_TX0	R/W	0h	Temperature coefficient of crosstalk in-phase component with TMAIN for TX0 channel with ILLUM_DAC_L_TX0 current
15:0	QPHASE_XTALK_REG_H DR0_TX2	R/W	0h	Register for illumination crosstalk quad -phase component for TX2 channel with ILLUM_DAC_L_TX2 current

7.5.1.1.47 Register 39h (Address = 39h) [reset = 0h]

Figure 75. Register 39h

23	22	21	20	19	18	17	16			
TEMP_COEFF_XTALK_QPHASE_HDR0_TX0										
15	14	13	12	11	10	9	8			
	IPHASE_XTALK_REG_HDR1_TX2									
7 6 5 4 3 2 1 0										
	IPHASE_XTALK_REG_HDR1_TX2									

Table 76. Register 39 Field Descriptions

Bit	Field	Type	Reset	Description
23:16	TEMP_COEFF_XTALK_QP HASE_HDR0_TX0	R/W	0h	Temperature coefficient of crosstalk quad-phase component with TMAIN for TX0 channel with ILLUM_DAC_L_TX0 current
15:0	IPHASE_XTALK_REG_HD R1_TX2	R/W	0h	Register for illumination crosstalk in-phase component for TX2 channel with ILLUM_DAC_H_TX2 current

7.5.1.1.48 Register 3Ah (Address = 3Ah) [reset = 0h]

Figure 76. Register 3Ah

23	22	21	20	19	18	17	16	
0	SCALE_AMB_XTALK_COEFF			SCALE_TEMP_COEFF_XTALK			EN_TEMP_XT ALK_CORR	
R/W - 0h		R/W - 4h			R/W - 5h		R/W - 0h	
15	14	13	12	11	10	9	8	
			QPHASE_XTALK	_REG_HDR1_TX	2			
			R/W	- 0h				
7	6	5	4	3	2	1	0	
	QPHASE_XTALK_REG_HDR1_TX2							
	R/W - 0h							

Table 77. Register 3A Field Descriptions

Bit	Field	Type	Reset	Description
23	0	R/W	0h	Always read or write 0h.
22:20	SCALE_AMB_XTALK_COE FF	R/W	4h	Scaling factor for ambient coefficient of crosstalk (AMB_XTALK_*)
19:17	SCALE_TEMP_COEFF_XT ALK	R/W	5h	Scaling factor for temperature coefficient of crosstalk (TEMP_COEFF_XTALK_*PHASE_HDR*_TX*)
16	EN_TEMP_XTALK_CORR	R/W	0h	Enable crosstalk correction with temperature.
15:0	QPHASE_XTALK_REG_H DR1_TX2	R/W	0h	Register for illumination crosstalk quad -phase component for TX2 channel with ILLUM_DAC_H_TX2 current

7.5.1.1.49 Register 3Bh (Address = 3Bh) [reset = 0h]

Figure 77. Register 3Bh

23	22	21	20	19	18	17	16		
	IPHASE_XTALK								
15	14	13	12	11	10	9	8		
	IPHASE_XTALK								
7	6	5	4	3	2	1	0		
	IPHASE XTALK								

Table 78. Register 3B Field Descriptions

Bit	Field	Туре	Reset	Description
23:0	IPHASE_XTALK	R		Read-only register. In-phase component. Different values can be selected to be readout with IQ_READ_DATA_SEL

7.5.1.1.50 Register 3Ch (Address = 3Ch) [reset = 0h]

Figure 78. Register 3Ch

23	22	21	20	19	18	17	16		
	QPHASE_XTALK								
15	15 14 13 12 11 10 9 8								
	QPHASE_XTALK								
7	7 6 5 4 3 2 1 0								
	QPHASE_XTALK								

Table 79. Register 3C Field Descriptions

Bit	Field	Туре	Reset Description	
23:0	QPHASE_XTALK	R		Read-only register. Quadrature phase component. Different values can be selected to be readout with IQ_READ_DATA_SEL.

7.5.1.1.51 Register 3Dh (Address = 3Dh) [reset = 0h]

Figure 79. Register 3Dh

23	22	21	20	19	18	17	16	
0	0	0	0	0	0	0	0	
15	14	13	12	11	10	9	8	
	IPHASE_XTALK_INT_REG							
7	6	5	4	3	2	1	0	
	IPHASE_XTALK_INT_REG							

Table 80. Register 3D Field Descriptions

Bit	Field	Туре	Reset	Description
15:0	IPHASE_XTALK_INT_REG	R/W	0h	Register for in-phase component of internal crosstalk

7.5.1.1.52 Register 3Eh (Address = 3Eh) [reset = 0h]

Figure 80. Register 3Eh

23	22	21	20	19	18	17	16	
0	0	0	0	0	0	0	0	
15	14	13	12	11	10	9	8	
	QPHASE_XTALK_INT_REG							
7	6	5	4	3	2	1	0	
	QPHASE_XTALK_INT_REG							

Table 81. Register 3E Field Descriptions

Bit	Field	Туре	Reset	Description
15:0	QPHASE_XTALK_INT_RE G	R/W	0h	Register for quad-phase component of internal crosstalk

7.5.1.1.53 Register 3Fh (Address = 3Fh) [reset = 0h]

Figure 81. Register 3Fh

23	22	21	20	19	18	17	16
			IB_HDR0_TX2				
15	14	13	12	11	10	9	8
	TILLUM_CALI	B_HDR0_TX2			TMAIN_CALIE	B_HDR0_TX2	
7	6	5	4	3	2	1	0
	TMAIN_CALIB_HDR0_TX2						

Table 82. Register 3F Field Descriptions

Bit	Field	Туре	Reset	Description
23:12	TILLUM_CALIB_HDR0_TX 2	R/W	0h	Calibration temperature of external temperature sensor (TILLUM) for TX2 illumination channel with current of ILLUM_DAC_L_TX2
11:0	TMAIN_CALIB_HDR0_TX2	R/W	0h	Calibration temperature of on chip temperature sensor (TMAIN) for TX2 illumination channel with current of ILLUM_DAC_L_TX2

STRUMENTS

7.5.1.1.54 Register 40h (Address = 40h) [reset = 2021E0h]

Figure 82. Register 40h

23	22	21	20	19	18	17	16	
0	EN_MULTI_FR EQ_PHASE	NCR_CONFIG		BETA0_DEALIAS_SCALE				
R/W - 0h	R/W - 0h	R/W - 1h			R/W - 0h			
15	14	13	12	11	10	9	8	
BETA0_DEALI AS_SCALE		ALPHA0_DEALIAS_SCALE						
R/W - 0h			R/W	- 10h			R/W - 1h	
7	6	5	4	3	2	1	0	
1	1	1	0	0	0	0	EN_DEALIAS_ MEAS	
R/W - 1h	R/W - 1h	R/W - 1h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	

Table 83. Register 40 Field Descriptions

Bit	Field	Туре	Reset	Description
22	EN_MULTI_FREQ_PHASE	R/W	0h	With this bit set along with EN_DEALIAS_MEAS = 1, the PHASE_OUT register will give the phase measurement with two frequencies. The frequency of the phase will be indicated in MOD_FREQ status bit.
21	NCR_CONFIG	R/W	1h	Select second frequency for de-alias operation. 0 – 10 × 6 / 7 MHz or 1 – 10 × 6 / 5 MHz.
20:15	BETA0_DEALIAS_SCALE	R/W	0h	Internal crosstalk scaling for de-alias frequency. β = BETA_DEAL_SCALE / 16.
14:9	ALPHA0_DEALIAS_SCALE	R/W	10h	Internal crosstalk scaling for de-alias frequency. α = ALPHA_DEAL_SCALE / 16.
8:5	15	R/W	Fh	Always read or write Fh.
4:1	0	R/W	0h	Always read or write 0h.
0	EN_DEALIAS_MEAS	R/W	0h	Enables de-alias measurement.

7.5.1.1.55 Register 41h (Address = 41h) [reset = 10h]

Figure 83. Register 41h

23	22	21	20	19	18	17	16	
			TMAIN_CALI	B_HDR1_TX1				
			R/W	/ - 0h				
15	14	13	12	11	10	9	8	
	TMAIN_CALIE	B_HDR1_TX1		BETA1_DEALIAS_SCALE				
	R/W	- 0h		R/W - 0h				
7	6	5	4	3	2	1	0	
BETA1_DEALIAS_SCALE			ALPHA1_DEALIAS_SCALE					
R/W - 0h				R/W	- 10h			

Table 84. Register 41 Field Descriptions

Bit	Field	Type	Reset	Description
23:12	TMAIN_CALIB_HDR1_TX1	R/W	0h	Calibration temperature of on chip temperature sensor (TMAIN) for TX1 illumination Channel with current of ILLUM_DAC_H_TX1
11:6	BETA1_DEALIAS_SCALE	R/W	0h	Illumination crosstalk scaling for de-alias frequency. β = BETA_DEAL_SCALE/16
5:0	ALPHA1_DEALIAS_SCALE	R/W	10h	Illumination crosstalk scaling for de-alias frequency. α = ALPHA_DEAL_SCALE/16

7.5.1.1.56 Register 42h (Address = 42h) [reset = 0h]

Figure 84. Register 42h

23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	0
15	14	13	12	11	10	9	8
			PHASE_OFFS	ET_HDR0_TX0			
7	6	5	4	3	2	1	0
	PHASE_OFFSET_HDR0_TX0						

Table 85. Register 42 Field Descriptions

Bit	Field	Туре	Reset	Description
23:16	0	R/W	0h	Always read or write 0h.
15:0	PHASE_OFFSET_HDR0_T X0	R/W	0h	Phase offset for TX0 illumination channel with current of ILLUM_DAC_L_TX0

7.5.1.1.57 Register 43h (Address = 43h) [reset = 81h]

Figure 85. Register 43h

23	22	21	20	19	18	17	16
TILLUM_CALIB_HDR1_TX1							
			R/W	- 0h			
15	14	13	12	11	10	9	8
	TILLUM_CALI	B_HDR1_TX1		0	0	0	SCALE_PHAS E_TEMP_COE FF
	R/W	- 0h		R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h
7	6	5	4	3	2	1	0
SCALE_PHASE_TEMP_COEFF 0 0			0	0	EN_TEMP_CO RR	EN_PHASE_C ORR	
R/V	V - 2h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 1h

Table 86. Register 43 Field Descriptions

Bit	Field	Type	Reset	Description
23:12	TILLUM_CALIB_HDR1_TX 1	R/W	0h	Calibration temperature of external temperature sensor (TILLUM) for TX1 illumination channel with current of ILLUM_DAC_H_TX1.
8:6	SCALE_PHASE_TEMP_C OEFF	R/W	2h	Adjust scale factor for temperature coefficient.
1	EN_TEMP_CORR	R/W	0h	Enables temperature correction for phase.
0	EN_PHASE_CORR	R/W	1h	Enables phase offset correction.

7.5.1.1.58 Register 44h (Address = 44h) [reset = 0h]

Figure 86. Register 44h

23	22	21	20	19	18	17	16	
0	0	0	0	0	0	0	0	
15	14	13	12	11	10	9	8	
	PHASE2_OFFSET_HDR0_TX0							
7	6	5	4	3	2	1	0	
	PHASE2_OFFSET_HDR0_TX0							

Table 87. Register 44 Field Descriptions

Bit	Field	Type	Reset	Description
15:0]	PHASE2_OFFSET_HDR0_ TX0	R/W	l (In	De-alias frequency phase offset for TX0 Illumination Channel with current of ILLUM_DAC_L_TX0.

7.5.1.1.59 Register 45h (Address = 45h) [reset = 0h]

Figure 87. Register 45h

23	22	21	20	19	18	17	16
			TMAIN_CALIE	B_HDR1_TX2			
15	14	13	12	11	10	9	8
	TMAIN_CALIE	B_HDR1_TX2		TEMP_COEFF_MAIN_HDR0_TX0			
7	6	5	4	3	2	1	0
	TEMP_COEFF_MAIN_HDR0_TX0						

Table 88. Register 45 Field Descriptions

Ī	Bit	Field	Туре	Reset	Description
	23:12	TMAIN_CALIB_HDR1_TX2	R/W	0h	Calibration temperature of on chip temperature sensor (TMAIN) for TX2 illumination channel with current of ILLUM_DAC_H_TX2
	11:0	TEMP_COEFF_MAIN_HD R0_TX0	R/W	0h	Phase temperature coefficient with on chip temperature sensor (TMAIN) for TX0 illumination channel with current of ILLUM_DAC_L_TX0

7.5.1.1.60 Register 46h (Address = 46h) [reset = 0h]

Figure 88. Register 46h

23	22	21	20	19	18	17	16
			TILLUM_CALI	B_HDR1_TX2			
15	14	13	12	11	10	9	8
	TILLUM_CALI	B_HDR1_TX2		TEMP_COEFF_ILLUM_HDR0_TX0			
7	6	5	4	3	2	1	0
	TEMP_COEFF_ILLUM_HDR0_TX0						

Table 89. Register 46 Field Descriptions

Bit	Field	Туре	Reset	Description
23:12	TILLUM_CALIB_HDR1_TX 2	R/W	0h	Calibration temperature of external temperature sensor (TILLUM) for TX2 illumination channel with current of ILLUM_DAC_H_TX2
11:0	TEMP_COEFF_ILLUM_HD R0_TX0	R/W	0h	Phase temperature coefficient with external temperature sensor (TILLUM) for TX0 illumination channel with current of ILLUM_DAC_L_TX0

7.5.1.1.61 Register 47h (Address = 47h) [reset = 800800h]

Figure 89. Register 47h

23	22	21 20	19	18	17	16		
	TILLUM_CALIB_HDR0_TX0							
	R/W - 80h							
15	14	13 12	11	10	9	8		
TII	LUM_CALIB_HDI	R0_TX0		TMAIN_CALIE	TMAIN_CALIB_HDR0_TX0			
	R/W - 0h			R/W - 8h				
7	6	5 4	3	2	1	0		
	TMAIN_CALIB_HDR0_TX0							
	R/W - 0h							

Table 90. Register 47 Field Descriptions

Bit	Field	Туре	Reset	Description
23:12	TILLUM_CALIB_HDR0_TX 0	R/W	800h	Calibration temperature of external temperature sensor (TILLUM) for TX0 illumination channel with current of ILLUM_DAC_L_TX0
11:0	TMAIN_CALIB_HDR0_TX0	R/W	800h	Calibration temperature of on chip temperature sensor (TMAIN) for TX0 illumination channel with current of ILLUM_DAC_L_TX0

7.5.1.1.62 Register 48h (Address = 48h) [reset = 0h]

Figure 90. Register 48h

23	22	21	20	19	18	17	16
			TILLUM_CALI	B_HDR1_TX0			
15	14	13	12	11	10	9	8
	TILLUM_CALIE	B_HDR1_TX0		TMAIN_CALIB_HDR1_TX0			
7	6	5	4	3	2	1	0
	TMAIN_CALIB_HDR1_TX0						

Table 91. Register 48 Field Descriptions

Bit	Field	Туре	Reset	Description
23:12	TILLUM_CALIB_HDR1_TX 0	R/W	0h	Calibration temperature of external temperature sensor (TILLUM) for TX0 illumination channel with current of ILLUM_DAC_H_TX0
11:0	TMAIN_CALIB_HDR1_TX0	R/W	0h	Calibration temperature of on chip temperature sensor (TMAIN) for TX0 illumination channel with current of ILLUM_DAC_H_TX0

7.5.1.1.63 Register 49h (Address = 49h) [reset = 0h]

Figure 91. Register 49h

23	22	21	20	19	18	17	16		
	TILLUM_CALIB_HDR0_TX1								
15	14	13	12	11	10	9	8		
	TILLUM_CALI	B_HDR0_TX1		TMAIN_CALIB_HDR0_TX1					
7	6	5	4	3	2	1	0		
	TMAIN_CALIB_HDR0_TX1								

Table 92. Register 49 Field Descriptions

Bit	Field	Туре	Reset	Description
23:12	TILLUM_CALIB_HDR0_TX 1	R/W	0h	Calibration temperature of external temperature sensor (TILLUM) for TX1 illumination channel with current of ILLUM_DAC_L_TX1
11:0	TMAIN_CALIB_HDR0_TX1	R/W	0h	Calibration temperature of on chip temperature sensor (TMAIN) for TX0 illumination channel with current of ILLUM_DAC_L_TX1

7.5.1.1.64 Register 4Ah (Address = 4Ah) [reset = 0h]

Figure 92. Register 4Ah

23	22	21	20	19	18	17	16	
0	0	0	0	SCALE_NL_C	ORR_COEFF	A0_COEFI	F_HDR0_TX0	
15	14	13	12	11	10	9	8	
	A0_COEFF_HDR0_TX0							
7	6	5	4	3	2	1	0	
	A0_COEFF_HDR0_TX0 0 EN_NL_COR							

Table 93. Register 4A Field Descriptions

Bit	Field	Туре	Reset	Description
19:18	SCALE_NL_CORR_COEF F	R/W	0h	Scaling factor for non-linearity correction coefficients (A*_COEFF_HDR*_TX*)
17:2	A0_COEFF_HDR0_TX0	R/W	0h	0th order coefficient for square wave non-linearity correction
0	EN_NL_CORR	R/W	0h	Enables square wave harmonic non-linearity correction

7.5.1.1.65 Register 4Bh (Address = 4Bh) [reset = 407h]

Figure 93. Register 4Bh

23	22	21	20	19	18	17	16		
0	0	0	0	0	0	0	0		
R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h		
15	14	13	12	11	10	9	8		
	A1_COEFF_HDR0_TX0								
			R/W	- 04h					
7	7 6 5 4 3 2 1 0						0		
	A1_COEFF_HDR0_TX0								
	R/W - 07h								

Table 94. Register 4B Field Descriptions

Bit	Field	Туре	Reset	Description
23:16	0	R/W	0h	Always read or write 0h.
15:0	A1_COEFF_HDR0_TX0	R/W	407h	1st order coefficient for square wave non-linearity correction for TX0 illumination channel with current of ILLUM_DAC_L_TX0

7.5.1.1.66 Register 4Ch (Address = 4Ch) [reset = F23Eh]

Figure 94. Register 4Ch

23	22	21	20	19	18	17	16		
0	0	0	0	0	0	0	0		
R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h		
15	14	13	12	11	10	9	8		
	A2_COEFF_HDR0_TX0								
			R/W	- F2h					
7	7 6 5 4 3 2 1 0								
	A2_COEFF_HDR0_TX0								
	R/W - 3Eh								

Table 95. Register 4C Field Descriptions

Bit	Field	Type	Reset	Description
23:16	0	R/W	0h	Always read or write 0h.
15:0	A2_COEFF_HDR0_TX0	R/W	F23Eh	Second order coefficient for square wave non-linearity correction for TX0 illumination channel with current of ILLUM_DAC_L_TX0

7.5.1.1.67 Register 4Dh (Address = 4Dh) [reset = 1144h]

Figure 95. Register 4Dh

23	22	21	20	19	18	17	16		
0	0	0	0	0	0	0	0		
R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h		
15	15 14 13 12		11	10	9	8			
	A3_COEFF_HDR0_TX0								
			R/W	- 11h					
7	7 6 5 4 3 2 1 0								
	A3_COEFF_HDR0_TX0								
			R/W	- 44h					

Table 96. Register 4D Field Descriptions

Bit	Field	Type	Reset	Description
23:16	0	R/W	0h	Always read or write 0h.
15:0	A3_COEFF_HDR0_TX0	R/W	1144h	Third order coefficient for square wave non-linearity correction for TX0 illumination channel with current of ILLUM_DAC_L_TX0.

7.5.1.1.68 Register 4Eh (Address = 4Eh) [reset = F881h]

Figure 96. Register 4Eh

23	22	21	20	19	18	17	16	
0	0	0	0	0	0	0	0	
R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	
15	14	13	12	11	10	9	8	
	A4_COEFF_HDR0_TX0							
			R/W	- F8h				
7	6	5	4	3	2	1	0	
	A4_COEFF_HDR0_TX0							
	R/W - 81h							

Table 97. Register 4E Field Descriptions

В	it	Field	Туре	Reset	Description
23:	16	0	R/W	0h	Always read or write 0h.
15	5:0	A4_COEFF_HDR0_TX0	R/W	F881h	Fourth order coefficient for square wave non-linearity correction for TX0 illumination channel with current of ILLUM_DAC_L_TX0

7.5.1.1.69 Register 50h (Address = 50h) [reset = 200100h]

Figure 97. Register 50h

23	22	21	20	19	18	17	16
0	OVERRIDE_CL KGEN_REG	1	0	0	0	0	0
R/W - 0h	R/W - 0h	R/W - 1h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h
15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	1
R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 1h
7	6	5	4	3	2	1	0
0	0	0	0	CLIP_MODE_O FFSET	CLIP_MODE_T EMP	CLIP_MODE_N L	CLIP_MODE_F C
R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h

STRUMENTS

Table 98. Register 50 Field Descriptions

Bit	Field	Туре	Reset	Description
23	0	R/W	0h	Always read or write 0h.
22	OVERRIDE_CLKGEN_RE G	R/W	0h	Setting this register 1 allows user to independently control DEALIAS_FREQ, DEALIAS_EN.
21	1	R/W	1h	Always read or write 1h.
20:9	0	R/W	0h	Always read or write 0h.
8	1	R/W	1h	Always read or write 1h.
7:4	0	R/W	0h	Always read or write 0h.
3	CLIP_MODE_OFFSET	R/W	0h	Chooses either clipping or wrap around when applying offset correction for phase. 0 – wrap around 1 – Clip
2	CLIP_MODE_TEMP	R/W	0h	Chooses either clipping or wrap around when applying temp correction for phase. 0 – wrap around 1 – Clip
1	CLIP_MODE_NL	R/W	0h	Chooses either clipping or wrap around when applying non-linearity correction for phase. 0 – wrap around 1 – Clip
0	CLIP_MODE_FC	R/W	0h	Chooses clipping or wrap around when applying freq-correction for phase. 0 – wrap around 1 – Clip

7.5.1.1.70 Register 51h (Address = 51h) [reset = 0h]

Figure 98. Register 51h

23	22	21	20	19	18	17	16		
TEMP_COEFF_ILLUM_HDR1_TX0[11:4]									
15	14	13	12	11	10	9	8		
			PHASE_OFFS	ET_HDR1_TX0					
7	6	5	4	3	2	1	0		
	PHASE_OFFSET_HDR1_TX0								

Table 99. Register 51 Field Descriptions

Bit	Field	Туре	Reset	Description
23:16	TEMP_COEFF_ILLUM_HD R1_TX0[11:4]	R/W	0h	Phase temperature coefficient with external temperature sensor (TILLUM) for TX0 illumination channel with current of ILLUM_DAC_H_TX0
15:0	PHASE_OFFSET_HDR1_T X0	R/W	0h	Phase offset for TX0 illumination channel with current of ILLUM_DAC_H_TX0

7.5.1.1.71 Register 52h (Address = 52h) [reset = 0h]

Figure 99. Register 52h

23	22	21	20	19	18	17	16
	TEMP_COEFF_ILLU	M_HDR1_TX0	[3:0]	0	0	0	0
15	14	13	12	11	10	9	8
			PHASE_OFFS	ET_HDR0_TX1			
7	6	5	4	3	2	1	0
	PHASE_OFFSET_HDR0_TX1						

Table 100. Register 52 Field Descriptions

Bit	Field	Туре	Reset	Description
23:20	TEMP_COEFF_ILLUM_HD R1_TX0[3:0]	R/W	0h	Phase temperature coefficient with external temperature sensor (TILLUM) for TX0 illumination channel with current of ILLUM_DAC_H_TX0
15:0	PHASE_OFFSET_HDR0_T X1	R/W	0h	Phase offset for TX1 illumination channel with current of ILLUM_DAC_L_TX1

7.5.1.1.72 Register 53h (Address = 53h) [reset = 0h]

Figure 100. Register 53h

23	22	21	20	19	18	17	16		
TEMP_COEFF_ILLUM_HDR0_TX1[11:4]									
15	14	13	12	11	10	9	8		
			PHASE_OFFS	ET_HDR1_TX1					
7	6	5	4	3	2	1	0		
	PHASE_OFFSET_HDR1_TX1								

Table 101. Register 53 Field Descriptions

Bit	Field	Туре	Reset	Description
23:16	TEMP_COEFF_ILLUM_HD R0_TX1[11:4]	R/W	0h	Phase temperature coefficient with external temperature sensor (TILLUM) for TX1 illumination channel with current of ILLUM_DAC_L_TX1
15:0	PHASE_OFFSET_HDR1_T X1	R/W	0h	Phase offset for TX1 illumination channel with current of ILLUM_DAC_H_TX1

7.5.1.1.73 Register 54h (Address = 54h) [reset = 0h]

Figure 101. Register 54h

23	22	21	20	19	18	17	16
	TEMP_COEFF_ILLU	M_HDR0_TX1[[3:0]	0	0	0	0
15	14	13	12	11	10	9	8
			PHASE_OFFS	ET_HDR0_TX2			
7	6	5	4	3	2	1	0
	PHASE_OFFSET_HDR0_TX2						

Table 102. Register 54 Field Descriptions

Bit	Field	Type	Reset	Description
23:20	TEMP_COEFF_ILLUM_HD R0_TX1[3:0]	R/W	0h	Phase temperature coefficient with external temperature sensor (TILLUM) for TX1 illumination channel with current of ILLUM_DAC_L_TX1
15:0	PHASE_OFFSET_HDR0_T X2	R/W	0h	Phase offset for TX2 illumination channel with current of ILLUM_DAC_L_TX2

7.5.1.1.74 Register 55h (Address = 55h) [reset = 0h]

Figure 102. Register 55h

23	22	21	20	19	18	17	16		
TEMP_COEFF_ILLUM_HDR1_TX1[11:4]									
15	14	13	12	11	10	9	8		
			PHASE_OFFS	ET_HDR1_TX2					
7	6	5	4	3	2	1	0		
	PHASE_OFFSET_HDR1_TX2								

Table 103. Register 55 Field Descriptions

Bit	Field	Type	Reset	Description
23:16	TEMP_COEFF_ILLUM_HD R1_TX1[11:4]	R/W	0h	Phase temperature coefficient with external temperature sensor (TILLUM) for TX1 illumination channel with current of ILLUM_DAC_H_TX1
15:0	PHASE_OFFSET_HDR1_T X2	R/W	0h	Phase offset for TX2 illumination channel with current of ILLUM_DAC_H_TX2

7.5.1.1.75 Register 56h (Address = 56h) [reset = 0h]

Figure 103. Register 56h

23	22	21	20	19	18	17	16
	TEMP_COEFF_ILLU	M_HDR1_TX1[[3:0]	0	0	0	0
15	14	13	12	11	10	9	8
			PHASE2_OFFS	SET_HDR1_TX0			
7	6	5	4	3	2	1	0
	PHASE2_OFFSET_HDR1_TX0						

Table 104. Register 56 Field Descriptions

Bit	Field	Туре	Reset	Description
23:20	TEMP_COEFF_ILLUM_HD R1_TX1[3:0]	R/W	0h	Phase temperature coefficient with external temperature sensor (TILLUM) for TX1 illumination channel with current of ILLUM_DAC_H_TX1
15:0	PHASE2_OFFSET_HDR1_ TX0	R/W	0h	De-alias frequency phase offset for TX0 illumination channel with current of ILLUM_DAC_H_TX0

7.5.1.1.76 Register 57h (Address = 57h) [reset = 0h]

Figure 104. Register 57h

23	22	21	20	19	18	17	16	
		TE	EMP_COEFF_ILLU	JM_HDR0_TX2[11	:4]			
15	14	13	12	11	10	9	8	
			PHASE2_OFFS	SET_HDR0_TX1				
7	6	5	4	3	2	1	0	
	PHASE2_OFFSET_HDR0_TX1							

Table 105. Register 57 Field Descriptions

Bit	Field	Туре	Reset	Description
23:16	TEMP_COEFF_ILLUM_HD R0_TX2[11:4]	R/W	0h	Phase temperature coefficient with external temperature sensor (TILLUM) for TX1 illumination channel with current of ILLUM_DAC_L_TX2
15:0	PHASE2_OFFSET_HDR0_ TX1	R/W	0h	De-alias frequency phase offset for TX1 illumination channel with current of ILLUM_DAC_L_TX1

7.5.1.1.77 Register 58h (Address = 58h) [reset = 0h]

Figure 105. Register 58h

23	22	21	20	19	18	17	16	
	TEMP_COEFF_ILLU	M_HDR0_TX2[3:0]	0	0	0	0	
15	14	13	12	11	10	9	8	
			PHASE2_OFFS	SET_HDR1_TX1				
7	7 6 5 4 3 2 1 0							
	PHASE2_OFFSET_HDR1_TX1							

Table 106. Register 58 Field Descriptions

Bit	Field	Type	Reset	Description
23:20	TEMP_COEFF_ILLUM_HD R0_TX2[3:0]	R/W	0h	Phase temperature coefficient with external temperature sensor (TILLUM) for TX1 illumination channel with current of ILLUM_DAC_L_TX2
15:0	PHASE2_OFFSET_HDR1_ TX1	R/W	0h	De-alias frequency phase offset for TX1 illumination channel with current of ILLUM_DAC_H_TX1

7.5.1.1.78 Register 59h (Address = 59h) [reset = 0h]

Figure 106. Register 59h

23	22	21	20	19	18	17	16		
	TEMP_COEFF_ILLUM_HDR1_TX2[11:4]								
15	14	13	12	11	10	9	8		
			PHASE2_OFFS	ET_HDR0_TX2					
7	6	5	4	3	2	1	0		
	PHASE2_OFFSET_HDR0_TX2								

Table 107. Register 59 Field Descriptions

Bit	Field	Туре	Reset	Description
23:16	TEMP_COEFF_ILLUM_HD R1_TX2[11:4]	R/W	0h	Phase temperature coefficient with external temperature sensor (TILLUM) for TX1 illumination channel with current of ILLUM_DAC_H_TX2
15:0	PHASE2_OFFSET_HDR0_ TX2	R/W	0h	De-alias frequency phase offset for TX2 illumination channel with current of ILLUM_DAC_L_TX2

7.5.1.1.79 Register 5Ah (Address = 5Ah) [reset = 0h]

Figure 107. Register 5Ah

23	22	21	20	19	18	17	16
	TEMP_COEFF_ILLU	M_HDR1_TX2	[3:0]	0	0	0	0
15	14	13	12	11	10	9	8
			PHASE2_OFFS	SET_HDR1_TX2			
7	6	5	4	3	2	1	0
	PHASE2_OFFSET_HDR1_TX2						

Table 108. Register 5A Field Descriptions

Bit	Field	Туре	Reset	Description
23:20	TEMP_COEFF_ILLUM_HD R1_TX2[3:0]	R/W	0h	Phase temperature coefficient with external temperature sensor (TILLUM) for TX1 illumination channel with current of ILLUM_DAC_H_TX2
15:0	PHASE2_OFFSET_HDR1_ TX2	R/W	0h	De-alias frequency phase offset for TX2 illumination channel with current of ILLUM_DAC_H_TX2

7.5.1.1.80 Register 5Bh (Address = 5Bh) [reset = 0h]

Figure 108. Register 5Bh

23	22	21	20	19	18	17	16	
		TEMP_C	OEFF_ILLUM_XT	ALK_IPHASE_H	DR1_TX1			
15	14	13	12	11	10	9	8	
		TEMP_C	OEFF_ILLUM_XT	ALK_IPHASE_H	DR0_TX1			
7	6	5	4	3	2	1	0	
	TEMP_COEFF_ILLUM_XTALK_IPHASE_HDR1_TX0							

Table 109. Register 5B Field Descriptions

Bit	Field	Type	Reset	Description
23:16	TEMP_COEFF_ILLUM_XT ALK_IPHASE_HDR1_TX1	R/W	0h	Temperature coefficient of crosstalk in-phase component with TILLUM for TX1 channel with ILLUM_DAC_H_TX1 current.
15:8	TEMP_COEFF_ILLUM_XT ALK_IPHASE_HDR0_TX1	R/W	0h	Temperature coefficient of crosstalk in-phase component with TILLUM for TX1 channel with ILLUM_DAC_L_TX1 current.
7:0	TEMP_COEFF_ILLUM_XT ALK_IPHASE_HDR1_TX0	R/W	0h	Temperature coefficient of crosstalk in-phase component with TILLUM for TX0 channel with ILLUM_DAC_H_TX0 current.

7.5.1.1.81 Register 5Ch (Address = 5Ch) [reset = 0h]

Figure 109. Register 5Ch

23	22	21	20	19	18	17	16				
TEMP_COEFF_ILLUM_XTALK_QPHASE_HDR1_TX0											
15	14	13	12	11	10	9	8				
	TEMP_COEFF_ILLUM_XTALK_IPHASE_HDR1_TX2										
7 6 5 4 3 2 1 0											
	TEMP_COEFF_ILLUM_XTALK_IPHASE_HDR0_TX2										

Table 110. Register 5C Field Descriptions

Bit	Field	Туре	Reset	Description
23:16	TEMP_COEFF_ILLUM_XT ALK_QPHASE_HDR1_TX0	R/W	0h	Temperature coefficient of crosstalk quad-phase component with TILLUM for TX0 channel with ILLUM_DAC_H_TX0 current.
15:8	TEMP_COEFF_ILLUM_XT ALK_IPHASE_HDR1_TX2	R/W	0h	Temperature coefficient of crosstalk in-phase component with TILLUM for TX2 channel with ILLUM_DAC_H_TX2 current.
7:0	TEMP_COEFF_ILLUM_XT ALK_IPHASE_HDR0_TX2	R/W	0h	Temperature coefficient of crosstalk in-phase component with TILLUM for TX2 channel with ILLUM_DAC_H_TX2 current.

7.5.1.1.82 Register 5Dh (Address = 5Dh) [reset = 0h]

Figure 110. Register 5Dh

23	22	21	20	19	18	17	16				
		TEMP_C	DEFF_ILLUM_XT	ALK_QPHASE_H	IDR0_TX2						
15	14	13	12	11	10	9	8				
	TEMP_COEFF_ILLUM_XTALK_QPHASE_HDR1_TX1										
7	7 6 5 4 3 2 1 0										
	TEMP_COEFF_ILLUM_XTALK_QPHASE_HDR0_TX1										

Table 111. Register 5D Field Descriptions

Bit	Field	Туре	Reset	t Description		
23:16	TEMP_COEFF_ILLUM_XT ALK_QPHASE_HDR0_TX2	R/W	0h	Temperature coefficient of crosstalk quad-phase component with TILLUM for TX2 channel with ILLUM_DAC_L_TX2 current.		
15:8	TEMP_COEFF_ILLUM_XT ALK_QPHASE_HDR1_TX1	R/W	0h	Temperature coefficient of crosstalk quad-phase component with TILLUM for TX1 channel with ILLUM_DAC_H_TX1 current.		
7:0	TEMP_COEFF_ILLUM_XT ALK_QPHASE_HDR0_TX1	R/W	0h	Temperature coefficient of crosstalk quad-phase component with TILLUM for TX1 channel with ILLUM_DAC_L_TX1 current.		

7.5.1.1.83 Register 5Eh (Address = 5Eh) [reset = 0h]

Figure 111. Register 5Eh

23	22	21	20	19	18	17	16				
TEMP_COEFF_XTALK_IPHASE_HDR0_TX1											
15	14	13	12	11	10	9	8				
	TEMP_COEFF_XTALK_IPHASE_HDR1_TX0										
7	7 6 5 4 3 2 1 0										
	TEMP_COEFF_ILLUM_XTALK_QPHASE_HDR1_TX2										

Table 112. Register 5E Field Descriptions

Bit	Field	Туре	Reset	Description
23:16	TEMP_COEFF_XTALK_IP HASE_HDR0_TX1	R/W	0h	Temperature coefficient of crosstalk in-phase component with TMAIN for TX1 channel with ILLUM_DAC_L_TX1 current

Table 112. Register 5E Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
15:8	TEMP_COEFF_XTALK_IP HASE_HDR1_TX0	R/W	0h	Temperature coefficient of crosstalk in-phase component with TMAIN for TX0 channel with ILLUM_DAC_H_TX0 current
7:0	TEMP_COEFF_ILLUM_XT ALK_QPHASE_HDR1_TX2	R/W	0h	Temperature coefficient of crosstalk quad-phase component with TILLUM for TX2 channel with ILLUM_DAC_H_TX2 current.

7.5.1.1.84 Register 5Fh (Address = 5Fh) [reset = 0h]

Figure 112. Register 5Fh

23	22	21	20	19	18	17	16				
TEMP_COEFF_XTALK_IPHASE_HDR1_TX2											
15	14	13	12	11	10	9	8				
	TEMP_COEFF_XTALK_IPHASE_HDR0_TX2										
7 6 5 4 3 2 1 0											
	TEMP_COEFF_XTALK_IPHASE_HDR1_TX1										

Table 113. Register 5F Field Descriptions

Bit	Field	Туре	Reset	Description		
23:16	TEMP_COEFF_XTALK_IP HASE_HDR1_TX2	R/W	0h	Temperature coefficient of crosstalk in-phase component with TMAIN for TX2 channel with ILLUM_DAC_H_TX2 current		
15:8	TEMP_COEFF_XTALK_IP HASE_HDR0_TX2	R/W	0h	Temperature coefficient of crosstalk in-phase component with TMAIN for TX2 channel with ILLUM_DAC_L_TX2 current		
7:0	TEMP_COEFF_XTALK_IP HASE_HDR1_TX1	R/W	0h	Temperature coefficient of crosstalk in-phase component with TMAIN for TX1 channel with ILLUM_DAC_H_TX1 current		

7.5.1.1.85 Register 60h (Address = 60h) [reset = 0h]

Figure 113. Register 60h

23	22	21	20	19	18	17	16				
TEMP_COEFF_XTALK_QPHASE_HDR1_TX1											
15	14	13	12	11	10	9	8				
		TEMF	COEFF_XTALK_	QPHASE_HDR	D_TX1						
7	7 6 5 4 3 2 1 0										
	TEMP_COEFF_XTALK_QPHASE_HDR1_TX0										

Table 114. Register 60 Field Descriptions

Bit	Field	Type	Reset	Description
23:16	TEMP_COEFF_XTALK_QP HASE_HDR1_TX1	R/W	0h	Temperature coefficient of crosstalk quad-phase component with TMAIN for TX1 channel with ILLUM_DAC_H_TX1 current
15:8	TEMP_COEFF_XTALK_QP HASE_HDR0_TX1	R/W	0h	Temperature coefficient of crosstalk quad-phase component with TMAIN for TX1 channel with ILLUM_DAC_L_TX1 current
7:0	TEMP_COEFF_XTALK_QP HASE_HDR1_TX0	R/W	0h	Temperature coefficient of crosstalk quad-phase component with TMAIN for TX0 channel with ILLUM_DAC_H_TX0 current

7.5.1.1.86 Register 61h (Address = 61h) [reset = 0h]

Figure 114. Register 61h

23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	0
15	14	13	12	11	10	9	8
		TEMF	COEFF_XTALK	_QPHASE_HDR1	_TX2		
7	6	5	4	3	2	1	0

Product Folder Links: *OPT3101*

72

STRUMENTS

TEMP_COEFF_XTALK_QPHASE_HDR0_TX2

Table 115. Register 61 Field Descriptions

Bit	Field	Туре	Reset	Description
15:8	TEMP_COEFF_XTALK_QP HASE_HDR1_TX2	R/W	0h	Temperature coefficient of crosstalk quad-phase component with TMAIN for TX2 channel with ILLUM_DAC_H_TX2 current
7:0	TEMP_COEFF_XTALK_QP HASE_HDR0_TX2	R/W	0h	Temperature coefficient of crosstalk quad-phase component with TMAIN for TX2 channel with ILLUM_DAC_L_TX2 current

7.5.1.1.87 Register 64h (Address = 64h) [reset = 280C00h]

Figure 115. Register 64h

23	22	21	20	19	18	17	16
PR	OG_OVLDET_RE	FM	PR	OG_OVLDET_RE	0	0	
	R/W - 1h			R/W - 2h	R/W - 0h	R/W - 0h	
15	14	13	12	11	10	9	8
0	0	0	0	1	1	0	0
R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 1h	R/W - 1h	R/W - 0h	R/W - 0h
7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0
R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h

Table 116. Register 64 Field Descriptions

Bit	Field	Туре	Reset	Description
23:21	PROG_OVLDET_REFM	R/W	1h	Program overload comparator threshold 0: default 1: +100 mV 2: +200 mV
20:18	PROG_OVLDET_REFP	R/W	2h	Program overload comparator threshold 0: default 2: -100 mV
17:16	0	R/W	0h	Always read or write 0h.
15:8	12	R/W	0Ch	Always read or write 0Ch.
7:0	0	R/W	0h	Always read or write 0h.

7.5.1.1.88 Register 65h (Address = 65h) [reset = 0h]

Figure 116. Register 65h

23	22	21	20	19	18	17	16
DIS_OVLDET	0	0	0	0	0	0	0
15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0
7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0

Table 117. Register 65 Field Descriptions

Bit	Field	Туре	Reset	Description	
23	DIS_OVLDET	R/W	0h	Disables AFE overload detection.	
22:0	22:0 0 R/W 0h		0h	Always read or write 0h.	

7.5.1.1.89 Register 6Eh (Address = 6Eh) [reset = 20000h]

Figure 117. Register 6Eh

23	22	21	20	19	18	17	16
0	0	0	0	EN_TEMP_CO NV	0	1	0
R/W - 0h	R/W - 0h	R/W - 1h	R/W - 0h				
15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0
R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h				
7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0
R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h				

Table 118. Register 6E Field Descriptions

E	Bit	Field	Туре	Reset	Description	
1	19	EN_TEMP_CONV	R/W	0h	Enable temperature sensor conversion	
1	17	1	R/W	1h	Always read or write 1h	

7.5.1.1.90 Register 71h (Address = 71h) [reset = 0h]

Figure 118. Register 71h

23	22	21	20	19	18	17	16
0	0	0	0	0	0	UNMASK_ILLU MEN_INTXTAL K	
15	14	13	12	11	10	9	8
ILLUM_CLK_G PIO_MODE	0	0	DIS_ILLUM_CL K_TX	INVERT_AFE_ CLK	0	INVERT_TG_C LK	SHUT_CLOCK S
7	6	5	4	3	2	1	0
0		SHIFT_ILLU	JM_PHASE	DEALIAS_FRE Q	DEALIAS_EN	0	

Table 119. Register 71 Field Descriptions

Bit	Field	Туре	Reset	Description
17	UNMASK_ILLUMEN_INTX TALK	R/W	0h	Mask/unmask ILLUM_EN_TX0 going to GPIO with internal crosstalk signal 0: ILLUM_EN_TX0 is masked with internal crosstalk correction signal 1: ILLUM_EN_TX0 is not masked with internal crosstalk correction signal
16	EN_ILLUM_CLK_GPIO	R/W	0h	Enable ILLUM CLK going to GPIO
15	ILLUM_CLK_GPIO_MODE	R/W	0h	Disable ILLUM_EN_TX0 gating ILLUM_CLK going to GPIO. 0: ILLUM_CLK will come on GPIO only when ILLUM_EN high 1 ILLUM_CLK alive always
12	DIS_ILLUM_CLK_TX	R/W	0h	Disable ILLUM_CLK going to transmitter
11	INVERT_AFE_CLK	R/W	0h	Invert CLK input to AFE
9	INVERT_TG_CLK	R/W	0h	Invert CLK input to timing generation unit.
8	SHUT_CLOCKS	R/W	0h	Shut down all CLK signals at modulation frequency.
6:3	SHIFT_ILLUM_PHASE	R/W	0h	Shift the phase of ILLUM_CLK. PHASE = SHIFT_ILLUM_PHASE × 22.5 deg
2	DEALIAS_FREQ	R/W	0h	Select modulation freq when DEALIAS_EN = 1. This register will work only when OVERRIDE_CLKGEN_REG = 1 0: $10 \times 6 / 7$ MHz 1: $10 \times 6 / 5$ MHz
1	DEALIAS_EN	R/W	0h	Change the modulation frequency. This register will work only when OVERRIDE_CLKGEN_REG = 1

7.5.1.1.91 Register 72h (Address = 72h) [reset = C0h]

Figure 119. Register 72h

23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	0
R/W - 0h							
15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0
R/W - 0h							
7	6	5	4	3	2	1	0
	IAMB_M	AX_SEL		0	0	0	0
	R/W	- Ch		R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h

Table 120. Register 72 Field Descriptions

Bit	Field	Туре	Reset	Description
23:8	0 R/W 0h Always read or write 0h.			Always read or write 0h.
7:4	7:4 IAMB_MAX_SEL R/W Ch selects the value of ambient cancellation DAC resistor 0: 20 µA 5: 10 µA 10: 33 µA 11: 50 µA 12: 100 µA 14		selects the value of ambient cancellation DAC resistor 0: 20 µA 5: 10 µA 10: 33 µA 11: 50 µA 12: 100 µA 14: 200 µA	
3:0	3:0 0 R/W 0h Always read or write 0h.		Always read or write 0h.	

7.5.1.1.92 Register 76h (Address = 76h) [reset = 0h]

Figure 120. Register 76h

23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	0
15	14	13	12	11	10	9	8
0	0	0	0	PDN_GLOBAL	0	DIS_GLB_PD_I 2CHOST	DIS_GLB_PD_ OSC
7	6	5	4	3	2	1	0
0	DIS_GLB_PD_ AMB_ADC	DIS_GLB_PD_ AMB_DAC	DIS_GLB_PD_ AFE_DAC	DIS_GLB_PD_ AFE	DIS_GLB_PD_I LLUM_DRV	DIS_GLB_PD_ TEMP_SENS	DIS_GLB_PD_ REFSYS

Table 121. Register 76 Field Descriptions

Bit	Field	Туре	Reset	Description
11	PDN_GLOBAL	R/W	0h	Global power down of all the blocks.
9	DIS_GLB_PD_I2CHOST	R/W	0h	Disable global power down of I2C Host.
8	DIS_GLB_PD_OSC	R/W	0h	Disable global power down of main oscillator.
7	DIS_GLB_PD_TEST_CUR R	R/W	0h	Disable global power down of test current source.
6	DIS_GLB_PD_AMB_ADC	R/W	0h	Disable global power down of ambient ADC.
5	DIS_GLB_PD_AMB_DAC	R/W	0h	Disable global power down of ambient cancellation.
4	DIS_GLB_PD_AFE_DAC	R/W	0h	Disable global power down of AFE DAC.
3	DIS_GLB_PD_AFE	R/W	0h	Disable global power down of AFE.
2	DIS_GLB_PD_ILLUM_DRV	R/W	0h	Disable global power down of illumination driver.
1	DIS_GLB_PD_TEMP_SEN S	R/W	0h	Disable global power down of temperature sensor.
0	DIS_GLB_PD_REFSYS	R/W	0h	Disable global power down of reference.

7.5.1.1.93 Register 77h (Address = 77h) [reset = 0h]

Figure 121. Register 77h

23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	0
15	14	13	12	11	10	9	8
0	0	0	0	0	0	EN_DYN_PD_I 2CHOST_OSC	EN_DYN_PD_ OSC
7	6	5	4	3	2	1	0
EN_DYN_PD_ TEST_CURR	EN_DYN_PD_ AMB_ADC	EN_DYN_PD_ AMB_DAC	EN_DYN_PD_ AFE_DAC	EN_DYN_PD_ AFE	EN_DYN_PD_L ED_DRV	EN_DYN_PD_ TEMP_SENS	EN_DYN_PD_ REFSYS

Table 122. Register 77 Field Descriptions

Bit	Field	Туре	Reset	Description
9	EN_DYN_PD_I2CHOST_O SC	R/W	0h	Enable dynamic power down of I ² C host oscillator.
8	EN_DYN_PD_OSC	R/W	0h	Enable dynamic power down of main oscillator.
7	EN_DYN_PD_TEST_CUR R	R/W	0h	Enable dynamic power down of test current source.
6	EN_DYN_PD_AMB_ADC	R/W	0h	Enable dynamic power down of ambient ADC.
5	EN_DYN_PD_AMB_DAC	R/W	0h	Enable dynamic power down of ambient cancellation.
4	EN_DYN_PD_AFE_DAC	R/W	0h	Enable dynamic power down of AFE DAC.
3	EN_DYN_PD_AFE	R/W	0h	Enable dynamic power down of AFE.
2	EN_DYN_PD_LED_DRV	R/W	0h	Enable dynamic power down of illumination driver.
1	EN_DYN_PD_TEMP_SEN S	R/W	0h	Enable dynamic power down of temperature sensor.
0	EN_DYN_PD_REFSYS	R/W	0h	Enable dynamic power down of reference.

7.5.1.1.94 Register 78h (Address = 78h) [reset = 0h]

Figure 122. Register 78h

23	22	21	20	19	18	17	16
0	SEL_GP3_ON_ SDAM	0	0	0	0	0	GPIO2_IBUF_E N
15	14	13	12	11 10		9	8
GPIO2_OBUF_ EN	0	0	GPIO1_OBUF_ EN		GPO2_MUX_SEL	-	GPO1_MUX_S EL
7	6	5	4	3	2	1	0
GPO1_N	MUX_SEL	0	0	0		GPO3_MUX_SEI	_

Table 123. Register 78 Field Descriptions

Bit	Field	Type	Reset	Description
22	SEL_GP3_ON_SDAM	R/W	0h	Select GP3 on SDA_M pin. This feature can be used when I ² C host is not used in the system. Pull up need to be present on SDA_M pin. To save power the signal on this pin are inverted (active low).
16	GPIO2_IBUF_EN	R/W	0h	Enable input buffer on GP2 pin. Used for reference CLK input.
15	GPIO2_OBUF_EN	R/W	0h	Enable output buffer on GP2 pin.
12	GPIO1_OBUF_EN	R/W	0h	Enable output buffer on GP1 pin.
11:9	GPO2_MUX_SEL	R/W	0h	0 - DVSS 2 - DIG_GPO_0 3 - DIG_GPO_1 7 - ILLUM_EN_TX0
8:6	GPO1_MUX_SEL	R/W	0h	0 - DVSS 2 — DIG_GPO_0 3 — DIG_GPO_1 7 — ILLUM_CLK
2:0	GPO3_MUX_SEL	R/W	0h	0 - DVSS 2 — DIG_GPO_0 3 — DIG_GPO_1 7 — DIG_GPO_2

7.5.1.1.95 Register 79h (Address = 79h) [reset = 1h]

STRUMENTS

Figure 123. Register 79h

23	22	21	20	19	18	17	16	
0	0	0	0	PDN_ILLUM_D RV	0	0	0	
R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	
15	14	13	12	11	10	9	8	
0	0	0	PDN_ILLUM_D C_CURR	ILLUM_DC_CURR_DAC				
R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h		R/W	- 0h		
7	6	5	4	3	2	1	0	
0	0	0	EN_TX_DC_C URR_ALL	SEL_ILLUM_T X0_ON_TX1	EN_TX_CLKZ	0	EN_TX_CLKB	
R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 1h	

Table 124. Register 79 Field Descriptions

Bit	Field	Туре	Reset	Description
23:20	0	R/W	0h	Always read or write 0.
19	PDN_ILLUM_DRV	R/W	0h	Test Mode bit to power down illumination Driver
18:14	0	R/W	0h	Always read or write 0.
12	PDN_ILLUM_DC_CURR	R/W	0h	Power down DC bias current through TX pins.
11:8	ILLUM_DC_CURR_DAC	R/W	0h	DC current through TX pin = 0.5mA*ILLUM_DC_CURR_DAC
7:5	0	R/W	0h	Always read or write 0.
4	EN_TX_DC_CURR_ALL	R/W	0h	Enable DC current of all TX channels when TX0 is selected.
3	SEL_ILLUM_TX0_ON_TX1	R/W	0h	Use ILLUM_EN_TX0 for TX1. This mode is required to enable static current drive mode.
2	EN_TX_CLKZ	R/W	0h	Enable inverted modulation CLK.
0	EN_TX_CLKB	R/W	1h	Enable modulation CLK.

7.5.1.1.96 Register 7Ah (Address = 7Ah) [reset = 0h]

Figure 124. Register 7Ah

23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	0
15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0
7	6	5	4	3	2	1	0
0	0	TX0_PIN	_CONFIG	TX2_PIN	_CONFIG	TX1_PIN	_CONFIG

Table 125. Register 7A Field Descriptions

Bit	Field	Туре	Reset	Description
5:4	TX0_PIN_CONFIG	R/W	0h	Configure TX0 pin. 0: CLKB 2: CLKZ 3: 1
3:2	TX2_PIN_CONFIG	R/W	0h	Configure TX2 pin. 0: CLKB 2: CLKZ 3: 1
1:0	TX1_PIN_CONFIG	R/W	0h	Configure TX1 pin. 0: CLKB 2: CLKZ 3: 1

7.5.1.1.97 Register 80h (Address = 80h) [reset = 4E1Eh]

Figure 125. Register 80h

23	22	21	20	19	18	17	16	
DIS_TG_ACON F	0	0	0	0	0	0	SUB_VD_CLK_ CNT	
R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	
15	14	13	12	11	10	9	8	
	SUB_VD_CLK_CNT							

R/W - 4Eh							
7	6	5	4	3	2	1	0
	SUB_VD_CLK_CNT TG_EN						
R/W - 0Fh R/W - 0h							

Table 126. Register 80 Field Descriptions

Bit	Field	Туре	Reset	Description
23	DIS_TG_ACONF	R/W	0h	Disable automatic configuration of TG registers (TG_CAPTURE_MASK*, TG_OVL_WINDOW_MSAK*, TG_ILLUMEN_MASK*, TG_CALC_MASK*, TG_DYNPDN_MASK*, and more) if these signals need to be configured by user this bit may be used as an override.
22:17	0	R/W	0h	Always read or write 0h.
16:1	SUB_VD_CLK_CNT	R/W	270Fh	The number of TG CLKs in a sub-frame.
0	TG_EN	R/W	0h	Enable the timing generation unit.

7.5.1.1.98 Register 83h (Address = 83h) [reset = D0h]

Figure 126. Register 83h

23	22	21	20	19	18	17	16		
0	0	0	0	0	0	0	0		
R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h		
15	14	13	12	11	10	9	8		
	TG_AFE_RST_START								
			R/W	- 00h					
7	7 6 5 4 3 2 1 0					0			
	TG_AFE_RST_START								
	R/W - D0h								

Table 127. Register 83 Field Descriptions

Bit	Field	Туре	Reset	Description
23:16	0	R/W	0h	Always read or write 0h.
15:0	TG_AFE_RST_START	R/W	D0h	AFE reset TG signal start position (number of TG CLKs) in a sub frame

7.5.1.1.99 Register 84h (Address = 84h) [reset = D8h]

Figure 127. Register 84h

23	22	21	20	19	18	17	16		
0	0	0	0	0	0	0	0		
R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h		
15	14	13	12	11	10	9	8		
	TG_AFE_RST_END								
			R/W	- 00h					
7	7 6 5 4 3 2 1 0					0			
TG_AFE_RST_END									
	R/W - D8h								

Table 128. Register 84 Field Descriptions

Bit	Field	Туре	Reset	Description
23:16	0	R/W	0h	Always read or write 0h.
15:0	TG_AFE_RST_END	R/W	D8h	AFE reset TG signal end position (number of TG CLKs) in a sub frame

Product Folder Links: OPT3101

STRUMENTS

7.5.1.1.100 Register 85h (Address = 85h) [reset = 20h]

Figure 128. Register 85h

23 22 21 2			20	19	18	17	16		
0	0	0	0	0	0	0	0		
R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h		
15	14	13	12	11	10	9	8		
	TG_SEQ_INT_START								
			R/W	- 00h					
7 6 5 4 3 2 1 0					0				
	TG_SEQ_INT_START								
R/W - 20h									

Table 129. Register 85 Field Descriptions

Bit	Field	Туре	Reset	Description
23:16	0	R/W	0h	Always read or write 0h.
15:0	TG_SEQ_INT_START	R/W	20h	Sequencer interrupt TG signal start position (number of TG CLKs) in a sub frame

7.5.1.1.101 Register 86h (Address = 86h) [reset = 28h]

Figure 129. Register 86h

23	22	21	20	19	18	17	16		
0	0	0	0	0	0	0	0		
R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h		
15	14	13	12	11	10	9	8		
	TG_SEQ_INT_END								
			R/W	- 00h					
7	7 6 5 4 3 2 1 0						0		
	TG_SEQ_INT_END								
	R/W - 28h								

Table 130. Register 86 Field Descriptions

Bit	Field	Туре	Reset	Description
23:16	0	R/W	0h	Always read or write 0h.
15:0	TG_SEQ_INT_END	R/W	28h	Sequencer interrupt TG signal end position (number of TG CLKs) in a sub frame

7.5.1.1.102 Register 87h (Address = 87h) [reset = 2454h]

Figure 130. Register 87h

23	22	21	20	19	18	17	16		
0	0	0	0	0	0	0	0		
R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h		
15	14	13	12	11	10	9	8		
	TG_CAPTURE_START								
			R/W	- 24h					
7 6 5 4 3 2				2	1	0			
	TG_CAPTURE_START								
	R/W - 54h								

Table 131. Register 87 Field Descriptions

Bit	Field	Туре	Reset	Description
23:16	0	R/W	0h	Always read or write 0h.
15:0	TG_CAPTURE_START	R/W	2454h	Internal data capture TG signal start position (number of TG CLKs) in a sub frame

7.5.1.1.103 Register 88h (Address = 88h) [reset = 2648h]

Figure 131. Register 88h

23	22	21	20	19	18	17	16		
0	0	0	0	0	0	0	0		
R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h		
15	14	13	12	11	10	9	8		
	TG_CAPTURE_END								
			R/W	- 26h					
7	7 6 5 4			3	2	1	0		
	TG_CAPTURE_END								
	R/W - 48h								

Table 132. Register 88 Field Descriptions

Bit	Field	Туре	Reset	Description
23:16	0	R/W	0h	Always read or write 0h.
15:0	TG_CAPTURE_END	R/W	2648h	Internal data capture TG signal end position (number of TG CLKs) in a sub frame

7.5.1.1.104 Register 89h (Address = 89h) [reset = 3E8h]

Figure 132. Register 89h

23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	0
R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h
15	14	13	12	11	10	9	8
	TG_OVL_WINDOW_START						
			R/W	- 03h			
7	6	5	4	3	2	1	0
TG_OVL_WINDOW_START							
	R/W - E8h						

Table 133. Register 89 Field Descriptions

Bit	Field	Туре	Reset	Description
23:16	0	R/W	0h	Always read or write 0h.
15:0	TG_OVL_WINDOW_STAR	R/W	3E8h	AFE overload observation window TG signal start position (number of TG CLKs) in a sub frame

7.5.1.1.105 Register 8Ah (Address = 8Ah) [reset = 1F40h]

Figure 133. Register 8Ah

23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	0
R/W - 0h							
15	14	13	12	11	10	9	8

www.ti.com		SBAS883 – FEBRUARY 2018
	TG OVI WINDOW END	

TG_OVL_WINDOW_END							
R/W - 1Fh							
7	6	5	4	3	2	1	0
	TG_OVL_WINDOW_END						
			R/W	- 40h			

Table 134. Register 8A Field Descriptions

Bit	Field	Туре	Reset	Description
23:16	0	R/W	0h	Always read or write 0h.
15:0	TG_OVL_WINDOW_END	R/W	1F40h	AFE overload observation window TG signal end position (number of TG CLKs) in a sub frame

7.5.1.1.106 Register 8Fh (Address = 8Fh) [reset = 0h]

Figure 134. Register 8Fh

23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	0
15	14	13	12	11	10	9	8
			TG_ILLUM	EN_START			
7	6	5	4	3	2	1	0
TG_ILLUMEN_START							

Table 135. Register 8F Field Descriptions

Bit	Field	Туре	Reset	Description
23:16	0	R/W	0h	Always read or write 0h.
15:0	TG_ILLUMEN_START	R/W	0h	Illumination enable TG signal start position (number of TG CLKs) in a sub frame

7.5.1.1.107 Register 90h (Address = 90h) [reset = 2134h]

Figure 135. Register 90h

23	22	21	20	19	18	17	16	
0	0	0	0	0	0	0	0	
R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	
15	14	13	12	11	10	9	8	
	TG_ILLUMEN_END							
			R/W	- 21h				
7	6	5	4	3	2	1	0	
TG_ILLUMEN_END								
	R/W - 34h							

Table 136. Register 90 Field Descriptions

Bit	Field	Туре	Reset	Description
23:16	0	R/W	0h	Always read or write 0h.
15:0	TG_ILLUMEN_END	R/W	2134h	Illumination enable TG signal end position (number of TG CLKs) in a sub frame

7.5.1.1.108 Register 91h (Address = 91h) [reset = 2134h]

Figure 136. Register 91h

23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	0
R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h
15	14	13	12	11	10	9	8
	TG_CALC_START						
			R/W	- 21h			
7	6	5	4	3	2	1	0
TG_CALC_START							
R/W - 34h							

Table 137. Register 91 Field Descriptions

Bit	Field	Type	Reset	Description
23:16	0	R/W	0h	Always read or write 0h.
15:0	TG_CALC_START	R/W	2134h	Calculation TG signal start position (number of TG CLKs) in a sub frame

7.5.1.1.109 Register 92h (Address = 92h) [reset = 2EE0h]

Figure 137. Register 92h

23	22	21	20	19	18	17	16			
0	0	0	0	0	0	0	0			
R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h			
15 14 13 12 11 10 9 8										
			TG_CAL	_C_END						
			R/W	- 2Eh						
7	6	5	4	3	2	1	0			
	TG_CALC_END									
	R/W - E0h									

Table 138. Register 92 Field Descriptions

Bit	Field	Type	Reset	Description	
23:16	0	R/W	0h	Always read or write 0h.	
15:0	TG_CALC_END	R/W	2EE0h	Calculation TG signal end position (number of TG CLKs) in a sub frame	

7.5.1.1.110 Register 93h (Address = 93h) [reset = 0h]

Figure 138. Register 93h

23	22	21	20	19	18	17	16		
0	0	0	0	0	0	0	0		
15	14	13	12	11	10	9	8		
			TG_DYNPI	ON_START					
7 6 5 4 3 2 1 0									
TG_DYNPDN_START									

Table 139. Register 93 Field Descriptions

Bit	Field	Туре	Reset	Description
23:16	0	R/W	0h	Always read or write 0h.
15:0	TG_DYNPDN_START	R/W	0h	Dynamic power down TG signal start position (number of TG CLKs) in a sub frame

7.5.1.1.111 Register 94h (Address = 94h) [reset = FFFFh]

Figure 139. Register 94h

23	22	21	20	19	18	17	16		
0	0	0	0	0	0	0	0		
R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h		
15	14	13	12	11	10	9	8		
			TG_DYNI	PDN_END					
			R/W	- FFh					
7	6	5	4	3	2	1	0		
TG_DYNPDN_END									
R/W - FFh									

Table 140. Register 94 Field Descriptions

Bit	Field	Туре	Reset	Description	
23:16	0	R/W	0h	Always read or write 0h.	
15:0	TG_DYNPDN_END	R/W	FFFFh	Dynamic power down TG signal end position (number of TG CLKs) in a sub frame	

7.5.1.1.112 Register 97h (Address = 97h) [reset = 0h]

Figure 140. Register 97h

23	22	21	20	19	18	17	16			
	TG_SEQ_INT_MASK_END									
15	14	13	12	11	10	9	8			
	TG_SEQ_INT	_MASK_END		TG_SEQ_INT_MASK_START						
7	6	5	4	3	2	1	0			
	TG_SEQ_INT_MASK_START									

Table 141. Register 97 Field Descriptions

Bit Field Type Reset		Reset	Description		
23:12	TG_SEQ_INT_MASK_END	R/W	0h	Sequencer interrupt TG signal mask end position (number of sub-frame) in frame.	
11:0	TG_SEQ_INT_MASK_STA RT	R/W	0h	Sequencer interrupt TG signal mask start position (number of sub-frame) in frame. TG signal will exist between START and END sub-frames.	

7.5.1.1.113 Register 98h (Address = 98h) [reset = 0h]

Figure 141. Register 98h

23	22	21	20	19	18	17	16		
TG_CAPTURE_MASK_END									
15	14	13	12	11	10	9	8		
	TG_CAPTURE	_MASK_END			TG_CAPTURE_MASK_START				
7	6	5	4	3	2	1	0		
	TG_CAPTURE_MASK_START								

Table 142. Register 98 Field Descriptions

Bit	Field	Туре	Reset	Description
23:12	TG_CAPTURE_MASK_END	R/W		Internal data capture TG signal mask end position (number of sub-frame) in frame. This register should be equal to NUM_AVG_SUB_FRAMES when DIS_TG_ACONF = 1.

Table 142. Register 98 Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
11:0	TG_CAPTURE_MASK_ST ART	R/W	0h	Internal data capture TG signal mask start position (number of sub-frame) in frame. This register should be equal to NUM_AVG_SUB_FRAMES when DIS_TG_ACONF = 1. TG signal will exist between START and END sub-frames.

7.5.1.1.114 Register 99h (Address = 99h) [reset = 1h]

Figure 142. Register 99h

23	22	21	20	19	18	17	16			
	TG_OVL_WINDOW_MASK_END									
15	14	13	12	11	10	9	8			
	TG_OVL_WINDO	W_MASK_END)	TG_OVL_WINDOW_MASK_START						
7	6	5	4	3	2	1	0			
	TG_OVL_WINDOW_MASK_START									

Table 143. Register 99 Field Descriptions

Bit	Field	Туре	Reset	Description
23:12	TG_OVL_WINDOW_MASK _END	R/W	0h	AFE overload observation window TG signal mask end position (number of sub-frame) in frame. This register should be equal to NUM_AVG_SUB_FRAMES when DIS_TG_ACONF = 1.
11:0	TG_OVL_WINDOW_MASK _START	R/W	1h	AFE overload observation window TG signal mask start position (number of sub-frame) in frame.TG signal will exist between START and END sub-frames. Write this register 0 when DIS_TG_ACONF=1 and EN_ADAPTIVE_HDR = 0 or 1 when DIS_TG_ACONF = 1 and EN_ADAPTIVE_HDR = 1.

7.5.1.1.115 Register 9Ch (Address = 9Ch) [reset = FFF000h]

Figure 143. Register 9Ch

23	22	21	20	19	18	17	16				
	TG_ILLUMEN_MASK_END										
	R/W - FFh										
15	14	13	12	11	10	9	8				
	TG_ILLUMEN	_MASK_END		TG_ILLUMEN_MASK_START							
	R/W	- Fh		R/W - 0h							
7	6	5	4	3	2	1	0				
	TG_ILLUMEN_MASK_START										
	R/W - 0h										

Table 144. Register 9C Field Descriptions

Bit	Field	Туре	Reset	Description
23:12	TG_ILLUMEN_MASK_END	R/W	FFFh	Illumination enable TG signal mask end position (number of sub-frame) in frame. This register should be equal to NUM_AVG_SUB_FRAMES when DIS_TG_ACONF = 1.
11:0	TG_ILLUMEN_MASK_STA RT	R/W	0h	Illumination enable TG signal mask start position (number of sub-frame) in frame. TG signal will exist between START and END sub-frames.

7.5.1.1.116 Register 9Dh (Address = 9Dh) [reset = 0h]

Figure 144. Register 9Dh

23	22	21	20	19	18	17	16		
TG_CALC_MASK_END									
15	14	13	12	11	10	9	8		
	TG_CALC_MASK_END TG_CALC_MASK_START								
7 6 5 4 3 2 1 0									
	TG_CALC_MASK_START								

Table 145. Register 9D Field Descriptions

Bit	Field	Туре	Reset	Description	
23:12	TG_CALC_MASK_END	R/W	0h	Calculation TG signal mask end position (number of sub-frame) in frame. This register should be equal to NUM_AVG_SUB_FRAMES when DIS_TG_ACONF = 1.	
11:0	TG_CALC_MASK_START	R/W	0h	Calculation TG signal mask start position (number of sub-frame) in frame. TG signal will exist between START and END sub-frames. This register should be equal to NUM_AVG_SUB_FRAMES when DIS_TG_ACONF = 1	

7.5.1.1.117 Register 9Eh (Address = 9Eh) [reset = 0h]

Figure 145. Register 9Eh

23	22	21	20	19	18	17	16				
	TG_DYNPDN_MASK_END										
15	14	13	12	11	10	9	8				
	TG_DYNPDN	_MASK_END		TG_DYNPDN_MASK_START							
7	7 6 5 4 3 2 1 0										
	TG_DYNPDN_MASK_START										

Table 146. Register 9E Field Descriptions

Bit	Field	Туре	Reset	Description
23:12	TG_DYNPDN_MASK_END	R/W	0h	Dynamic power down TG signal mask end position (number of sub-frame) in frame. This register should be equal to NUM_AVG_SUB_FRAMES when DIS_TG_ACONF = 1
11:0	TG_DYNPDN_MASK_STA RT	R/W	0h	Dynamic power down TG signal mask start position (number of sub-frame) in frame. TG signal will outside START and END sub-frames.

7.5.1.1.118 Register 9Fh (Address = 9Fh) [reset = 0h]

Figure 146. Register 9Fh

23	22	21	20	19	18	17	16			
	NUM_AVG_SUB_FRAMES									
15	14	13	12	11	10	9	8			
	NUM_AVG_SUB_FRAMES NUM_SUB_FRAMES									
7	7 6 5 4 3 2 1 0									
	NUM_SUB_FRAMES									

Table 147. Register 9F Field Descriptions

Bit	Field	Type	Reset	Description
23:12	NUM_AVG_SUB_FRAMES	R/W	0h	Specifies the number of sub-frames to be averaged in a frame. Averaging sub-frames = NUM_AVG_SUB_FRAMES + 1.
11:0	NUM_SUB_FRAMES	R/W	0h	Total number of sub-frames in a frame. Each sub-frame is approximately 0.25 ms (SUB_VD_CLK_CNT × 25 ns) Number of sub frames in a frame = NUM_SUB_FRAMES + 1. This number must be equal or greater than NUM_AVG_SUB_FRAMES.

7.5.1.1.119 Register A0h (Address = A0h) [reset = 2198h]

Figure 147. Register A0h

23	22	21	20	19	18	17	16			
0	0	0	0	0	0	0	0			
R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h			
15	15 14 13 12				10	9	8			
CAPTURE_CLK_CNT										
			R/W	- 21h						
7	6	5	4	3	2	1	0			
CAPTURE_CLK_CNT										
	R/W - 98h									

Table 148. Register A0 Field Descriptions

	Bit	Field	Type	Reset	Description
	23:16	0	R/W	0h	Always read or write 0h
ſ	15:0	CAPTURE_CLK_CNT	R/W	2198h	Internal data capture position (number of TG CLKs) in a sub frame

7.5.1.1.120 Register A2h (Address = A2h) [reset = 0h]

Figure 148. Register A2h

23	22	21	20	19	18	17	16			
A3_COEFF_HDR0_TX1[15:8]										
15	14	13	12	11	10	9	8			
			A0_COEFF_	HDR1_TX0						
7	6	5	4	3	2	1	0			
	A0_COEFF_HDR1_TX0									

Table 149. Register A2 Field Descriptions

Bit	Field	Type	Reset	Description
23:16	A3_COEFF_HDR0_TX1[15 :8]	R/W	0h	MSB of third order coefficient for square wave non-linearity correction for TX1 illumination channel with current of ILLUM_DAC_L_TX1.
15:0	A0_COEFF_HDR1_TX0	R/W	0h	Constant offset for square wave non-linearity correction for TX0 illumination channel with current of ILLUM_DAC_H_TX0.

7.5.1.1.121 Register A3h (Address = A3h) [reset = 0h]

Figure 149. Register A3h

23	22	21	20	19	18	17	16			
A3_COEFF_HDR0_TX1[7:0]										
15	14	13	12	11	10	9	8			
			A0_COEFF_	_HDR0_TX1						
7	6	5	4	3	2	1	0			
	A0_COEFF_HDR0_TX1									

Table 150. Register A3 Field Descriptions

Bit Field		Туре	Reset	Description
23:16	A3_COEFF_HDR0_TX1[7: 0]	R/W	0h	LSB of third order coefficient for square wave non-linearity correction for TX1 illumination channel with current of ILLUM_DAC_L_TX1.
15:0	A0_COEFF_HDR0_TX1	R/W	0h	Constant offset for square wave non-linearity correction for TX1 illumination channel with current of ILLUM_DAC_L_TX1.

7.5.1.1.122 Register A4h (Address = A4h) [reset = 0h]

Figure 150. Register A4h

23	22	21	20	19	18	17	16			
A3_COEFF_HDR1_TX1[15:8]										
15	14	13	12	11	10	9	8			
			A0_COEFF_	HDR1_TX1						
7	6	5	4	3	2	1	0			
	A0_COEFF_HDR1_TX1									

Table 151. Register A4 Field Descriptions

Bit	Bit Field		Reset	Description
23:16	A3_COEFF_HDR1_TX1[15 :8]	R/W	0h	MSB of third order coefficient for square wave non-linearity correction for TX1 illumination channel with current of ILLUM_DAC_H_TX1.
15:0	A0_COEFF_HDR1_TX1	R/W	0h	Constant offset for square wave non-linearity correction for TX1 illumination channel with current of ILLUM_DAC_H_TX1.

7.5.1.1.123 Register A5h (Address = A5h) [reset = 0h]

Figure 151. Register A5h

23	22	21	20	19	18	17	16				
A3_COEFF_HDR1_TX1[7:0]											
15	14	13	12	11	10	9	8				
			A0_COEFF_	HDR0_TX2							
7	6	5	4	3	2	1	0				
	A0_COEFF_HDR0_TX2										

Table 152. Register A5 Field Descriptions

E	Bit	Field	Туре	Reset	Description
23	3:16	A3_COEFF_HDR1_TX1[7: 0]	R/W	0h	LSB of third order coefficient for square wave non-linearity correction for TX1 illumination channel with current of ILLUM_DAC_H_TX1.
1	15:0	A0_COEFF_HDR0_TX2	R/W	0h	Constant offset for square wave non-linearity correction for TX2 illumination channel with current of ILLUM_DAC_L_TX2.

7.5.1.1.124 Register A6h (Address = A6h) [reset = 0h]

Figure 152. Register A6h

23	22	21	20	19	18	17	16				
A3_COEFF_HDR0_TX2[15:8]											
15	14	13	12	11	10	9	8				
			A0_COEFF_	_HDR1_TX2							
7	6	5	4	3	2	1	0				
	A0_COEFF_HDR1_TX2										

Table 153. Register A6 Field Descriptions

Bit	Field	Type	Reset	Description
23:16	A3_COEFF_HDR0_TX2[15 :8]	R/W	0h	MSB of third order coefficient for square wave non-linearity correction for TX2 illumination channel with current of ILLUM_DAC_L_TX2.
15:0	A0_COEFF_HDR1_TX2	R/W	0h	Constant offset for square wave non-linearity correction for TX2 illumination channel with current of ILLUM_DAC_H_TX2.

7.5.1.1.125 Register A7h (Address = A7h) [reset = 0h]

Figure 153. Register A7h

23	22	21	20	19	18	17	16			
A3_COEFF_HDR0_TX2[7:0]										
15	14	13	12	11	10	9	8			
			A1_COEFF_	HDR1_TX0						
7	6	5	4	3	2	1	0			
	A1_COEFF_HDR1_TX0									

Table 154. Register A7 Field Descriptions

Bit Field Type		Reset	Description	
23:16 A3_COEFF_HDR0_TX2[7: R/W		0h	LSB of third order coefficient for square wave non-linearity correction for TX2 illumination channel with current of ILLUM_DAC_L_TX2.	
15:0	A1_COEFF_HDR1_TX0	R/W	0h	First order coefficient for square wave non-linearity correction for TX0 illumination channel with current of ILLUM_DAC_H_TX0.

7.5.1.1.126 Register A8h (Address = A8h) [reset = 0h]

Figure 154. Register A8h

23	22	21	20	19	18	17	16			
A3_COEFF_HDR1_TX2[15:8]										
15	14	13	12	11	10	9	8			
			A1_COEFF_	HDR0_TX1						
7	6	5	4	3	2	1	0			
	A1_COEFF_HDR0_TX1									

Table 155. Register A8 Field Descriptions

Bit	Field	Туре	Reset	Description
23:16	A3_COEFF_HDR1_TX2[15 :8]	R/W	0h	MSB of third order coefficient for square wave non-linearity correction for TX2 illumination channel with current of ILLUM_DAC_H_TX2.
15:0	A1_COEFF_HDR0_TX1	R/W	0h	First order coefficient for square wave non-linearity correction for TX1 illumination channel with current of ILLUM_DAC_L_TX1.

7.5.1.1.127 Register A9h (Address = A9h) [reset = 0h]

Figure 155. Register A9h

23	22	21	20	19	18	17	16			
A3_COEFF_HDR1_TX2[7:0]										
15	14	13	12	11	10	9	8			
			A1_COEFF_	_HDR1_TX1						
7	6	5	4	3	2	1	0			
	A1_COEFF_HDR1_TX1									

Table 156. Register A9 Field Descriptions

Bit	Field	Type	Reset	Description		
23:16	A3_COEFF_HDR1_TX2[7: 0]	R/W	0h	LSB of third order coefficient for square wave non-linearity correction for TX2 illumination channel with current of ILLUM_DAC_H_TX2.		
15:0	A1_COEFF_HDR1_TX1 R/W 0h		0h	First order coefficient for square wave non-linearity correction for TX1 illumination channel with current of ILLUM_DAC_H_TX1.		

7.5.1.1.128 Register AAh (Address = AAh) [reset = 0h]

Figure 156. Register AAh

23	22	21	20	19	18	17	16				
A4_COEFF_HDR1_TX0[15:8]											
15	14	13	12	11	10	9	8				
			A1_COEFF_	HDR0_TX2							
7	6	5	4	3	2	1	0				
	A1_COEFF_HDR0_TX2										

Table 157. Register AA Field Descriptions

Bit	Field	Туре	Reset	Description
23:16	A4_COEFF_HDR1_TX0[15 :8]	R/W	0h	MSB of fourth order coefficient for square wave non-linearity correction for TX0 illumination channel with current of ILLUM_DAC_H_TX0.
15:0	A1_COEFF_HDR0_TX2	R/W	0h	First order coefficient for square wave non-linearity correction for TX2 illumination channel with current of ILLUM_DAC_L_TX2.

7.5.1.1.129 Register ABh (Address = ABh) [reset = 0h]

Figure 157. Register ABh

23	22	21	20	19	18	17	16				
A4_COEFF_HDR1_TX0[7:0]											
15	14	13	12	11	10	9	8				
			A1_COEFF_	HDR1_TX2							
7	6	5	4	3	2	1	0				
	A1_COEFF_HDR1_TX2										

Table 158. Register AB Field Descriptions

Bit	Field	Туре	Reset	Description		
23:16	A4_COEFF_HDR1_TX0[7: 0]	R/W	0h	LSB of fourth order coefficient for square wave non-linearity correction for TX0 illumination channel with current of ILLUM_DAC_H_TX0.		
15:0	A1_COEFF_HDR1_TX2 R/W 0h		0h	First order coefficient for square wave non-linearity correction for TX2 illumination channel with current of ILLUM DAC H TX2.		

7.5.1.1.130 Register ACh (Address = ACh) [reset = 0h]

Figure 158. Register ACh

23	22	21	20	19	18	17	16				
A4_COEFF_HDR0_TX1[15:8]											
15	14	13	12	11	10	9	8				
			A2_COEFF	_HDR1_TX0							
7	6	5	4	3	2	1	0				
	A2_COEFF_HDR1_TX0										

Table 159. Register AC Field Descriptions

Bit	Field	Type	Reset	Description
23:16	A4_COEFF_HDR0_TX1[15 :8]	R/W		MSB of fourth order coefficient for square wave non-linearity correction for TX1 illumination channel with current of ILLUM_DAC_L_TX1.
15:0	A2_COEFF_HDR1_TX0	R/W 0h		Second order coefficient for square wave non-linearity correction for TX0 illumination channel with current of ILLUM_DAC_H_TX0.

7.5.1.1.131 Register ADh (Address = ADh) [reset = 0h]

Figure 159. Register ADh

23	22	21	20	19	18	17	16				
A4_COEFF_HDR0_TX1[7:0]											
15	14	13	12	11	10	9	8				
			A2_COEFF_	HDR0_TX1							
7	6	5	4	3	2	1	0				
	A2_COEFF_HDR0_TX1										

Table 160. Register AD Field Descriptions

Bit Field Type Re		Reset	Description			
23:16	A4_COEFF_HDR0_TX1[7: 0]	DR0_TX1[7: R/W 0h		LSB of fourth order coefficient for square wave non-linearity correction for TX1 illumination channel with current of ILLUM_DAC_L_TX1.		
15:0	A2_COEFF_HDR0_TX1	R/W	0h	Second order coefficient for square wave non-linearity correction for TX1 illumination channel with current of ILLUM_DAC_L_TX1.		

7.5.1.1.132 Register AEh (Address = AEh) [reset = 0h]

Figure 160. Register AEh

23	22	21	20	19	18	17	16				
A4_COEFF_HDR1_TX1[15:8]											
15	14	13	12	11	10	9	8				
			A2_COEFF_	HDR1_TX1							
7	6	5	4	3	2	1	0				
	A2_COEFF_HDR1_TX1										

Table 161. Register AE Field Descriptions

Bit	Field	Туре	Reset	Description
23:16	A4_COEFF_HDR1_TX1[15 :8]	R/W	0h	MSB of fourth order coefficient for square wave non-linearity correction for TX1 illumination channel with current of ILLUM_DAC_H_TX1.
15:0	A2_COEFF_HDR1_TX1	R/W	0h	Second order coefficient for square wave non-linearity correction for TX1 illumination channel with current of ILLUM_DAC_H_TX1.

7.5.1.1.133 Register AFh (Address = AFh) [reset = 0h]

Figure 161. Register AFh

23	22	21	20	19	18	17	16			
A4_COEFF_HDR1_TX1[7:0]										
15	14	13	12	11	10	9	8			
	A2_COEFF_HDR0_TX2									
7	6	5	4	3	2	1	0			
	A2_COEFF_HDR0_TX2									

Table 162. Register AF Field Descriptions

Bit	Field	Type	Reset	Description
23:16	A4_COEFF_HDR1_TX1[7: 0]	R/W	0h	LSB of fourth order coefficient for square wave non-linearity correction for TX1 illumination channel with current of ILLUM_DAC_H_TX1.
15:0	A2_COEFF_HDR0_TX2	R/W	0h	Second order coefficient for square wave non-linearity correction for TX2 illumination channel with current of ILLUM_DAC_L_TX2.

7.5.1.1.134 Register B0h (Address = B0h) [reset = 0h]

Figure 162. Register B0h

23	22	21	20	19	18	17	16				
A4_COEFF_HDR0_TX2[15:8]											
15	14	13	12	11	10	9	8				
	A2_COEFF_HDR1_TX2										
7	6	5	4	3	2	1	0				
	A2_COEFF_HDR1_TX2										

Table 163. Register B0 Field Descriptions

Bit	Field	Туре	Reset	Description
23:16	A4_COEFF_HDR0_TX2[15 :8]	R/W	0h	MSB of fourth order coefficient for square wave non-linearity correction for TX2 illumination channel with current of ILLUM_DAC_L_TX2.
15:0	A2_COEFF_HDR1_TX2	R/W	0h	Second order coefficient for square wave non-linearity correction for TX2 illumination channel with current of ILLUM_DAC_H_TX2.

7.5.1.1.135 Register B1h (Address = B1h) [reset = 0h]

Figure 163. Register B1h

23	22	21	20	19	18	17	16				
A4_COEFF_HDR0_TX2[7:0]											
15	14	13	12	11	10	9	8				
	A3_COEFF_HDR1_TX0										
7	6	5	4	3	2	1	0				
	A3_COEFF_HDR1_TX0										

Table 164. Register B1 Field Descriptions

Bit	Field	Туре	Reset	Description		
23:16	A4_COEFF_HDR0_TX2[7: 0]	R/W	0h	LSB of fourth order coefficient for square wave non-linearity correction for TX2 illumination channel with current of ILLUM_DAC_L_TX2.		
15:0	A3_COEFF_HDR1_TX0	R/W	0h	Third order coefficient for square wave non-linearity correction for TX0 illumination channel with current of ILLUM_DAC_H_TX0.		

7.5.1.1.136 Register B2h (Address = B2h) [reset = 0h]

Figure 164. Register B2h

23	22	21	20	19	18	17	16				
0	0	0	0	0	0	0	0				
15	14	13	12	11	10	9	8				
	A4_COEFF_HDR1_TX2										
7	6	5	4	3	2	1	0				
	A4_COEFF_HDR1_TX2										

Table 165. Register B2 Field Descriptions

Bit	Field	Туре	Reset	Description
15:0	A4_COEFF_HDR1_TX2	R/W	0h	Fourth order coefficient for square wave non-linearity correction for TX2 illumination channel with current of ILLUM_DAC_H_TX2.

7.5.1.1.137 Register B4h (Address = B4h) [reset = 0h]

Figure 165. Register B4h

23	22	21	20	19	18	17	16				
AMB_PHASE_CORR_PWL_COEFF3											
15	14	13	12	11	10	9	8				
	AMB_PHASE_CORR_PWL_COEFF2										
7	6	5	4	3	2	1	0				
	AMB_PHASE_CORR_PWL_COEFF1										

Table 166. Register B4 Field Descriptions

Bit	Field	Туре	Reset	Description
23:16	AMB_PHASE_CORR_PWL _COEFF3	R/W	0h	Coefficient 3 for PWL phase correction with ambient.
15:8	AMB_PHASE_CORR_PWL _COEFF2	R/W	0h	Coefficient 2 for PWL phase correction with ambient.
7:0	AMB_PHASE_CORR_PWL _COEFF1	R/W	0h	Coefficient 1 for PWL phase correction with ambient.

7.5.1.1.138 Register B5h (Address = B5h) [reset = 0h]

Figure 166. Register B5h

23	22	21	20	19	18	17	16	
15	14	13	12	11	10	9	8	
7	6	5	4	3	2	1	0	
					SCALE_AMB_PHASE_CORR_COEFF			

Table 167. Register B5 Field Descriptions

Bit	Field	Type	Reset	Description
23:3	0	R/W	0h	Always read or write 0h.
2:0	SCALE_AMB_PHASE_CO RR_COEFF	R/W	0h	Scaling factor for ambient based PWL phase correction.

7.5.1.1.139 Register B8h (Address = B8h) [reset = 7FDFFh]

Figure 167. Register B8h

23	22	21	20	19	18	17	16									
0	0	0	GIVE_DEAL_D ATA													
R/W - 0h	R/W - 0h	R/W - 0h	R/W - 0h	R/W - 7h												
15	14	13	12	11	10	9	8									
		AMB_PHASE_0	CORR_PWL_X1			AMB_PHASE_0	CORR_PWL_X0									
		R/W	- 3Fh			R/W	' - 1h									
7	6	5	4	3	2	1	0									
	AMB_PHASE_CORR_PWL_X0															
			R/W -	FFh		R/W - FFh										

Table 168. Register B8 Field Descriptions

Bit	Field	Туре	Reset	Description
23:21	0	Always read or write 0h.		
20	GIVE_DEALIAS_DATA	R/W	0h	When this register is set to 1, de-aliased phase will be given out on PHASE_OUT.
19:10	AMB_PHASE_CORR_PWL _X1	R/W	1FFh	Second knee point of PWL phase correction with ambient.

Table 168. Register B8 Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
9:0	AMB_PHASE_CORR_PWL _X0	R/W	1FFh	First knee point of PWL phase correction with ambient.

7.5.1.1.140 Register B8h (Address = B9h) [reset = 1FFh]

Figure 168. Register B9h

23	22	21	20	19	18	17	16	
I	LLUM_SCALE_H_T	X2	IL	LUM_SCALE_L_T	AMB_AD	C_IN_TX2		
	R/W - 0h			R/W - 0h		R/W	′ - 0h	
15	14	13	12	11	10	9	8	
AMB_A	DC_IN_TX1	AMB_AD	C_IN_TX0	EN_TX2_ON_T X0	EN_TX1_ON_T X0	AMB_PHASE_CORR_PWL_X		
R/	W - 0h	R/W	′ - 0h	R/W - 0h	R/W - 0h	R/W	/ - 1h	
7	6	5	4	3	2	1	0	
			AMB_PHASE_	CORR_PWL_X2				
			R/W	/ - FFh				

Table 169. Register B9 Field Descriptions

Bit	Field	Type	Reset	Description
23:21	ILLUM_SCALE_H_TX2	R/W	0h	Illumination driver current scale register of TX2 Channel with DAC_H current. 0: 5.6 mA 1: 4.2 mA 2: 2.8 mA 3: 1.4 mA
20:18	ILLUM_SCALE_L_TX2	R/W	0h	Illumination driver current scale register of TX2 Channel with DAC_L current. 0: 5.6 mA 1: 4.2 mA 2: 2.8 mA 3: 1.4 mA
17:16	AMB_ADC_IN_TX2	R/W	0h	Select ambient ADC input when TX2 channel is selected. 0 = DACP - DACM 1 = DACP - REFP 2 = DACM - DACP 3 = DACM - REFM
15:14	AMB_ADC_IN_TX1	R/W	0h	Select ambient ADC input when TX1 channel is selected. 0 = DACP - DACM 1 = DACP - REFP 2 = DACM - DACP 3 = DACM - REFM
13:12	AMB_ADC_IN_TX0	R/W	0h	Select ambient ADC input when TX0 channel is selected. 0 = DACP - DACM 1 = DACP - REFP 2 = DACM - DACP 3 = DACM - REFM
11	EN_TX2_ON_TX0	R/W	0h	If this bit is 1, when TX2 is selected, the illumination driver current will flow through TX0.
10	EN_TX1_ON_TX0	R/W	0h	If this bit is 1, when TX1 is selected, the illumination driver current will flow through TX0.
9:0	AMB_PHASE_CORR_PWL _X2	R/W	1FFh	Third knee point of PWL phase correction with ambient

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

OPT3101 AFE is a fully integrated analog front end with integrated illumination driver for measuring distance. The device interfaces external photodiode and LED/VCSEL/LASER. Device has I²C interface for the data output. External MCU can readout the distance data from the device directly and no computation is required on the external MCU. All the computation and corrections for crosstalk, phase offset, temperature dependent phase drift and ambient dependent phase drift are done on the chip. The device also provides temperature output from the on-chip temperature sensor. It can operate up to a speed of 4000 sps in non-HDR mode and 2000 sps in auto HDR mode.

8.2 Typical Application

Obstacle avoidance for autonomous vehicle navigation is a typical application which can be implemented using this AFE. System can be optimized to meet the application requirements by optimizing various parameters like illumination current, sub-frame averaging, auto HDR mode which are explained in below sections. Figure 169 shows the interface between OPT3101 and external MCU.

Figure 169. Typical Application Block Diagram

8.2.1 Design Requirements

Table 170 lists the application requirements for obstacle avoidance system.

Table 170. Application Specifications

Specification	Value	Units	Comments
Minimum Distance	0.3	m	
Maximum Distance	5	m	
Distance Accuracy	2	%	For an object with 18% reflectivity.
Ambient Light	130	kLux	Sunlight condition
Field of View	±3	degrees	
Wavelength	850	nm	Infrared wavelength for illumination.
Sample Rate	30	sps	
Supply	3.3	V	Single supply for the system

8.2.2 Detailed Design Procedure

8.2.2.1 Sample Rate

Sample rate can be adjusted by programming the number of sub-frames in a frame. To meet the application requirement of 30 sps, 128 sub-frame averaging can be used from Equation 1. Set the register NUM SUB FRAME = 127 and NUM AVG SUB FRAMES = 127, which will give a samples rate of 31.25 sps.

8.2.2.2 Photo diode and LED

OSRAM SFH4550 LED meets the required field of view specification and has peak of spectral emission at 860 nm. Even though LED is specified for an half angle ±3 degrees, significant amount of the optical power will be outside the half angle. Figure 170 shows the radiation characteristics of the LED. Photodiode should have a field of view greater than the field of view of LED to effectively collect all the optical power thrown from the LED and reflected by the object. Photodiode should also have peak sensitivity matching the LEDs peak spectral emission. Most of the photodiodes come in two variants;

- With day light filter, which has a very broad spectrum; example: SFH213
- Narrow band IR spectrum spectrum; example: SFH213FA.

Photiode with narrow band IR filter should be selected as it will collect lower ambient signal. Photodiode SFH213FA meets these requirements. This photodiode has a capacitance of 5.8 pF at 1-V reverse bias, which is within the supported capacitance range of the AFE. Photodiode characterisits are shown in Figure 171 and Figure 172

Figure 170. SFH4550 LED Radiation Characteristics

Figure 172. SFH213FA Photodiode Reverse Bias Capacitance

Submit Documentation Feedback

(9)

8.2.2.3 Ambient Support

The photodiode has an IR filter centered at 900 nm as shown in Figure 173, the sunlight spectral irradiance within the spectral bandwidth of the photodiode is also shown in the same figure. The total sunlight power with in the spectral bandwidth of photodiode is 176 Watts/ m^2 . The ambient sun light power received by the photodiode can be calculated using Equation 8. Total ambient current for this photodiode is 49.2 μ A. Accounting for variations in reflectivity IAMB_MAX_SEL = 12 setting should be selected, which corresponds to 100 μ A ambient current support.

$$P_{r,amb}\!=\!P_{AMB}\times A_{scene}\times \frac{\Omega_{lens}}{\Omega_{semi-sphere}} \;\; in\; Watts$$

where

- P_{AMB} = Total ambient light power in the photodiode spectral bandwidth in W/m²
- A_{scene} = Area covered by photodiode FoV
- Ω_{lens} = Solid angle from a point on target object to the photodiode lens

•
$$\Omega_{\text{semi-sphere}} = 2\pi$$
 (8)
$$= \frac{P_{\text{AMB}} \times \left[\tan(\phi_{\text{PD}}) \right]^2}{2} \text{ in Watts/m}^2$$

where

φ_{PD} = Photodiode field of view = 20° for SFH213FA

Diode Spectral Response 1.3 Sunlight x Diode Response 1.2 Sunlight 1.1 Sunlight Power (W/nm/m²) 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 400 500 600 700 800 1000 1100

Figure 173. SFH213FA Photodiode Spectral Response and Sunlight Power Within Photodiode Spectral Bandwidth

Wavelength (nm)

Table 171. Photodiode Specifications

Parameter	Value	Units	Comments
Photo current with 1mW/cm ²	90	μA	Photodiode specification
Half angle	±10	degrees	Photodiode specification
Total Sunlight Power in photo diode spectral bandwidth falling on the object	175	W/m ²	Calculated from Sunlight spectra (see Figure 173)
Total power received at the photodiode	0.2736	mW/cm ²	Calculated using Equation 9
Ambient current	49.2	μА	Calculated from $0.2736~\text{mW/cm}^2 \times 90\mu\text{A/}(1~\text{mW/cm}^2)$. Additional factor of 2 should be added to account for the photodiode response outside specified half angle of $\pm 10~\text{degrees}$.
Reverse bias capacitance at V _R = 1V	5.8	pF	AFE supports a maximum capacitance of 6 pF.

8.2.2.4 Distance Accuracy

For 30 sps operation, 128 sub-frames can be averaged to improve the noise performance by settings NUM_SUB_FRAMES = 127 and NUM_AVG_SUB_FRAMES = 127. AFE noise with 6pF photodiode capacitance and 100 μ A ambient current support can be extracted from Figure 2 as 2.25 pA/rt-Hz. Total noise at 31.25 sps operation with above settings is 12.6 pA. Minimum SNR required to meet the distance accuracy of 2%, (10 cm at 5 m) can be calculated using Equation 5 as 23.8. So minimum signal current required is 12.6 pA × 23.8 = 300 pA. The photodiode current required to get a signal current of 300pA can be calculated from Equation 10 as 720pA. With a diode responsivity of 0.5A/W, the optical power required is 720pA/(0.5A/W) = 1.44nW. Illumination power required with 18% reflective target can be calculated from Equation 11 as 64mW. SFH4550 produces 70mW of optical power for a current of 100mA. From this, the required illumination current can be calculated as 91.5mA

$$I_{SIG_AFE} = \frac{I_{PD}}{2} \times \frac{30}{(30 + C_{PD})}$$

where

- I_{PD} = Photodiode Signal Current.
- I_{SIG AFE} = Signal current entering the AFE.

•
$$C_{PD}$$
 = Photodiode Capacitance at a reverse bias voltage of 1V. (10)

$$P_{r,sig} = P_{LED} \times \frac{\Omega_{lens}}{\Omega_{semi-sphere}} \times R \text{ in Watts}$$

where

- P_{r,sig} = Signal power received by the photodiode
- P_{LED} = LED output power
- R = Object Reflectivity
- Ω_{lens} = Solid angle from a point on target object to the photodiode lens

•
$$\Omega_{\text{semi-sphere}} = 2\pi$$
 (11)

$$\Omega_{lens} = 4\pi \sin^2 \left(\frac{1}{2} \tan^{-1} \left(\frac{D_{lens}}{2d} \right) \right) \sim \pi \frac{D_{lens}^2}{4d^2}$$

where

• D_{lens} = Diameter of the lens over the photodiode = 5mm for SFH213FA

Chose 100 mA as illumination current for meeting the SNR requirement for the 18% reflective target at 5 m distance. With this illumination current, 90% reflective object will give a signal current of 1.5 nA for an object at 5m and AFE saturates at an object at a distance of 5 m/sqrt(200 nA/1.5nA) = 0.43 m. Since required minimum distance is lower than this, on chip adaptive HDR should be used by setting ENABLE_ADAPTIVE_HDR = 1, ILLUM_DAC_L_TX0 = 2 and ILLUM_DAC_H_TX0 = 20. HDR switching thresholds can be set at HDR_THR_HIGH = 27000 and HDR_THR_LOW = 27000/10/1.2 = 2250.

8.2.2.5 Supply Voltage

Since the system need to operate with a single supply, OPT3101 can be used in LDO mode where required 1.8V supplies AVDD and DVDD are generated by the device it self using internal LDO. To operate in this mode, connect REG_MODE pin to IOVDD supply (3.3 V).

8.2.3 Application Curves

Figure 174 and Figure 175 shows simulated received signal and distance standard deviation with object distance

8.3 Initialization Set Up

After device power up, apply device reset by applying an active low pulse of duration $> 30 \mu s$.

Write the following registers to set the device running in required condition

- Write NUM_SUB_FRAMES, NUM_AVG_SUB_FRAMES registers to set the device to operate at the required sample rate.
- Select the maximum ambient current to be supported by writing IAMB_MAX_SEL
- Enable adaptive HDR mode if required: EN ADAPTIVE HDR.
- Write Illumination DAC currents ILLUM_DAC_L_TX0 and ILLUM_DAC_H_TX0.
- · Program adaptive HDR thresholds: HDR THR LOW and HDR THR HIGH.
- Load all the calibration settings: Illumination crosstalk, Phase offset, Phase temperature coefficient and phase ambient coefficient.
- Enable frequency calibration if external reference CLK is connected to GP2: EN_AUTO_FREQ_COUNT = 1, EN_FLOOP=1, EN_FREQ_CORR=1, SYS_CLK_DIVIDER = round(log₂(40e⁶/f_{EXT})), REF_COUNT_LIMIT = 2¹⁴x(40e⁶/2^{SYS_CLK_DIV})/f_{EXT}, EN_CONT_FCALIB = 1
- Enable on chip temperature conversion: EN_TEMP_CONV = 1
- Write I²C Host settings to read the external temperature sensor if it is present in the system. Register settings are listed in Table 26
- Enable Timing Generator TG_EN = 1
- Perform internal crosstalk correction by making INT_XTALK_CALIB = 1 and followed by INT_XTALK_CALIB = 0

Submit Documentation Feedback

9 Power Supply Recommendations

OPT3101 requires 1.8-V and 3.3-V supplies. There are two 1.8-V supplies (AVDD and DVDD) and two 3.3-V supplies (AVDD3 and IOVDD). AVDD and AVDD3 are analog supplies, DVDD and IOVDD are digital and I/O supplies. VDD_LED is not a device pin, but the supply connecting to the anode of the LED (Illumination source). Minimum voltage of the VDD_LED supply is 0.7 V (V_{DRV}) + Forward voltage drop of the LED at the maximum illumination driver current (1.8-V typical for 850-nm LED with 100 mA) + IR drop across the series elements (beads, PCB routing) in the supply (VDD_LED) – ground (VSSL) path. The transmitter and receiver of OPT3101 operate at the same modulation frequency (10 MHz). Any coupling from the transmitter switching to the AFE will result in crosstalk signal which will affect the performance of the distance measurement. Achieving lowest possible crosstalk is critical for an accurate distance measurement system. Care should be taken to isolate all analog and switching supplies. VDD_LED will have the highest switching current at the modulation frequency, f_{MOD} . DVDD and IOVDD will also have switching current at the modulation frequency f_{MOD} but much lower than VDD_LED. Use ferrite beads with highest impedance at 10 MHz (> 500 Ω) in the series path of the supplies and decoupling capacitors with low impedance at f_{MOD} on the supplies very close to the device.

9.1 System With Off-Chip 1.8-V Regulator

Figure 176 shows the supply network with 1.8 V generated using an off chip regulator. REG_MODE pin of OPT3101 should be connected to IOVSS in this mode. One external regulator can be used to generate 1.8-V supply and use beads to isolate AVDD and DVDD. External regulator mode will be useful only when on chip regulator mode cannot meet the power down state current requirement. For example, In systems where the sample rate is very low and kept in power down state most of the time.

Figure 176. Power Supply Network in System With External 1.8-V Regulator

9.2 System With On-Chip 1.8-V Regulator

Figure 177 shows the supply network with 1.8 V generated using on-chip regulators. There are two regulators one each for AVDD and DVDD with input supply as AVDD3. Only decoupling capacitors need to be placed on AVDD and DVDD supplies. All other supplies should have beads in series path. REG_MODE pin of OPT3101 should be connected to IOVDD in this mode.

System With On-Chip 1.8-V Regulator (continued)

Figure 177. Power Supply Network With On-Chip 1.8-V Regulator

10 Layout

10.1 Layout Guidelines

Reducing coupling between transmitter and receiver is very critical to achieve good system performance. Area of transmitter current carrying loop through LED supply decoupling capacitor, LED and the AFE pins TX*, VSSL should be minimized. Similarly receiver loop involving the photodiode, matching capacitor and the AFE pins INP, INM should be minimized. Figure 178 shows the transmitter and receiver loops.

Figure 178. AFE Interface With Photodiode and LED

10.2 Layout Example

Layout of a system involving 5-mm radial through hole photodiode and LED is shown in Figure 179. Following guidelines should be followed to keep the crosstalk between transmitter and receiver low.

- Use a 4 layer board, so that all the analog and digital supplies can be well isolated from each other.
- Place photodiode and LED oriented orthogonal to each other.
- Minimize the area of the transmitter current carrying loop involving LED, VDD LED to VSSL decoupling

Layout Example (continued)

capacitor, and AFE.

- Minimize the area of the receiver loop involving photodiode, matching capacitor and AFE.
- Shield the receiver loop using AVSS ground in TOP and bottom PCB layers. Also place a shielding ring around the photodiode and connect the shielding ring to AVSS. This shielding ring will help in reducing the electrical and optical crosstalk.
- Shield the transmitter loop using IOVSS ground in all the PCB layers. Also place a shielding ring around the LED and connect the shielding ring to IOVSS.
- LED terminals should not see the photodiode terminals directly. Any small amount of capacitive coupling between photodiode and LED terminals result in huge crosstalk. Grounded metal rings around photodiode and LED will help in shielding.
- Use vias around the transmitter and receiver loops in respective ground planes to improve the shielding.
- · Connect the device thermal pad to AVSS.
- Do not overlap different ground planes, keep them well isolated.

Figure 179. PCB Layout example

Figure 180. Ground isolation between AVSS and IOVSS in a four layer PCB

Layout Example (continued)

Figure 181. Photodiode and LED placement on PCB

102

11 Device and Documentation Support

11.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.3 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com

12.1 Package Option Addendum

12.1.1 Packaging Information

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish ⁽³⁾	MSL Peak Temp (4)	Op Temp (°C)	Device Marking ⁽⁵⁾⁽⁶⁾
POPT3101RHFR	PREVIEW	VQFN	RHF	28	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to +85	OPT3101

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PRE PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.
- (4) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device
- Multiple Device markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

Product Folder Links: OPT3101

ADVANCE INFORMATION

12.1.2 Tape and Reel Information

NSTRUMENTS

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
POPT3101RHFR	VQFN	RHF	28	3000	330.0	12.4	4.3	5.3	1.3	8.0	12.0	Q1

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
POPT3101RHFR	VQFN	RHF	28	3000	367.0	367.0	35.0

Submit Documentation Feedback

RHF0028A

PACKAGE OUTLINE

VQFN - 1.0 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

www.ti.com

EXAMPLE BOARD LAYOUT

RHF0028A

VQFN - 1.0 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

www.ti.com

This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
 Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown

on this view. It is recommended that vias under paste be filled, plugged or tented.

EXAMPLE STENCIL DESIGN

RHF0028A

VQFN - 1.0 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

www.ti.com

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4204845/J

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.