Homework 2 - Mobile Robot Kinematics

1. The robot body pose relative to the world frame O can be denoted by the transformation matrix ${}^{O}T_{F}$:

$${}^{O}T_{F} = \begin{bmatrix} cos\theta & -sin\theta & x \\ sin\theta & cos\theta & y \\ 0 & 0 & 1 \end{bmatrix}$$

The positions of the centers of the three wheels in the body frame F:

$$^{F}p_{A} = \begin{bmatrix} Dcos60^{\circ} \\ Dsin60^{\circ} \end{bmatrix}$$
 $^{F}p_{B} = \begin{bmatrix} -D \\ 0 \end{bmatrix}$ $^{F}p_{C} = \begin{bmatrix} Dcos60^{\circ} \\ -Dsin60^{\circ} \end{bmatrix}$

The positions of the centers of the three wheels in the world frame O:

$$p_{A} = {}^{O}T_{F} {}^{F}p_{A} = \begin{bmatrix} \frac{1}{2}Dcos\theta - \frac{\sqrt{3}}{2}Dsin\theta + x \\ \frac{1}{2}Dsin\theta + \frac{\sqrt{3}}{2}Dcos\theta + y \end{bmatrix}$$

$$p_{B} = {}^{O}T_{F} {}^{F}p_{B} = \begin{bmatrix} -Dcos\theta + x \\ -Dsin\theta + y \end{bmatrix}$$

$$p_{C} = {}^{O}T_{F} {}^{F}p_{C} = \begin{bmatrix} \frac{1}{2}Dcos\theta + \frac{\sqrt{3}}{2}Dsin\theta + x \\ \frac{1}{2}Dsin\theta - \frac{\sqrt{3}}{2}Dcos\theta + y \end{bmatrix}$$

2. Taking the derivatives of the wheel positions with respect to time, we get

$$\dot{p}_{A} = \begin{bmatrix} -\frac{1}{2}D\dot{\theta}(sin\theta + \sqrt{3}cos\theta) + \dot{x} \\ \frac{1}{2}D\dot{\theta}(cos\theta - \sqrt{3}sin\theta) + \dot{y} \end{bmatrix}$$

$$\dot{p}_{B} = \begin{bmatrix} D\dot{\theta}sin\theta + \dot{x} \\ -D\dot{\theta}cos\theta + \dot{y} \end{bmatrix}$$

$$\dot{p}_{C} = \begin{bmatrix} -\frac{1}{2}D\dot{\theta}(sin\theta - \sqrt{3}cos\theta) + \dot{x} \\ \frac{1}{2}D\dot{\theta}(cos\theta + \sqrt{3}sin\theta) + \dot{y} \end{bmatrix}$$

Projections of x_F and y_F axes of the body frame F onto wheel velocity vectors $\overrightarrow{v_A}$, $\overrightarrow{v_B}$ and $\overrightarrow{v_C}$:

$${}^{A}P_{F} = \begin{bmatrix} -cos30^{\circ} \\ cos60^{\circ} \end{bmatrix}$$
 ${}^{B}P_{F} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ ${}^{C}P_{F} = \begin{bmatrix} cos30^{\circ} \\ cos60^{\circ} \end{bmatrix}$

(Directions of wheel velocities are chosen so that positive wheel speeds will make the robot spin counterclockwise.)

To find the linear speed of each wheel, we project the previously found \dot{p}_A , \dot{p}_B and \dot{p}_C velocities (in the world frame) onto the vectors $\overrightarrow{v_A}$, $\overrightarrow{v_B}$, and $\overrightarrow{v_C}$, respectively:

$$v_{A} = (^{A}P_{F})^{T} {}^{F}R_{O} \dot{p}_{A} = \left[-\cos 30^{\circ} \cos 60^{\circ}\right] \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \dot{p}_{A}$$

$$= \left(-\frac{\sqrt{3}}{2} \cos \theta - \frac{1}{2} \sin \theta\right) \dot{x} + \left(-\frac{\sqrt{3}}{2} \sin \theta + \frac{1}{2} \cos \theta\right) \dot{y} + D\dot{\theta}$$

$$v_{B} = (^{B}P_{F})^{T} {}^{F}R_{O} \dot{p}_{B} = D\dot{\theta} \sin^{2}\theta + \dot{x}\sin \theta + D\dot{\theta} \cos^{2}\theta - \dot{y}\cos \theta$$

$$= \dot{x}\sin \theta - \dot{y}\cos \theta + D\dot{\theta}$$

$$v_{C} = (^{C}P_{F})^{T} {}^{F}R_{O} \dot{p}_{C} = \left(\frac{\sqrt{3}}{2} \cos \theta - \frac{1}{2} \sin \theta\right) \dot{x} + \left(\frac{\sqrt{3}}{2} \sin \theta + \frac{1}{2} \cos \theta\right) \dot{y} + D\dot{\theta}$$

Rotational speeds are thus

$$\begin{bmatrix} w_A \\ w_B \\ w_C \end{bmatrix} = \frac{1}{R} \begin{bmatrix} v_A \\ v_B \\ v_C \end{bmatrix} = \begin{bmatrix} -\frac{\sqrt{3}}{2R}cos\theta - \frac{1}{2R}sin\theta & -\frac{\sqrt{3}}{2R}sin\theta + \frac{1}{2R}cos\theta & \frac{D}{R} \\ \frac{1}{R}sin\theta & -\frac{1}{R}cos\theta & \frac{D}{R} \\ \frac{\sqrt{3}}{2R}cos\theta - \frac{1}{2R}sin\theta & \frac{\sqrt{3}}{2R}sin\theta + \frac{1}{2R}cos\theta & \frac{D}{R} \end{bmatrix} \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix}$$

- 3. See $hw3_script3.m$.
- 4. Integrating the returned result from the function implemented in Q3 using ode45, and plotting x, y, θ with respect to time for different values of w_A , w_B , w_C :
 - (a) all wheels rotate at the same speed $(w_A = w_B = w_C = 1)$

Figure 1: all wheels rotate at the same speed

As seen from Figure 1, only θ changes in value over time, translational velocity of the robot is zero. The robot is spinning with its position fixed.

(b)
$$w_A = 1$$
, $w_B = 0$, $w_C = -w_A = -1$

As seen from Figure 2, when two of the wheels have the opposite speed values, and the third one is not rotating, the robot follows a straight path with zero rotation.

(c) only one of the three wheels is rotating $(w_A = 1, w_B = w_C = 0)$ The robot follows a circular trajectory.

Figure 2: forward motion, no change in orientation

Figure 3: only one wheel is rotating

5. The pose of the end effector relative to frame O is derived by applying a sequence of transformations given by a rotation in 2D followed by a translation along the rotated x axis:

$$\begin{split} f(\theta_1,\theta_2,\theta_3) &= \ ^OT_E = R(\theta_1)t_x(a_1)R(\theta_2)t_x(a_2)R(\theta_3)t_x(a_3) \\ &= \begin{bmatrix} \cos\theta_1 & -\sin\theta_1 & 0 \\ \sin\theta_1 & \cos\theta_1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & a_1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} R(\theta_2)t_x(a_2)R(\theta_3)t_x(a_3) \\ &= \begin{bmatrix} \cos\theta_1 & -\sin\theta_1 & a_1\cos\theta_1 \\ \sin\theta_1 & \cos\theta_1 & a_1\sin\theta_1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\theta_2 & -\sin\theta_2 & a_2\cos\theta_2 \\ \sin\theta_2 & \cos\theta_2 & a_2\sin\theta_2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\theta_3 & -\sin\theta_3 & a_3\cos\theta_3 \\ \sin\theta_3 & \cos\theta_3 & a_3\sin\theta_3 \\ 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} \cos(\theta_1 + \theta_2 + \theta_3) & -\sin(\theta_1 + \theta_2 + \theta_3) & a_2\cos(\theta_1 + \theta_2) + a_1\cos(\theta_1) + a_3\cos(\theta_1 + \theta_2 + \theta_3) \\ \sin(\theta_1 + \theta_2 + \theta_3) & \cos(\theta_1 + \theta_2 + \theta_3) & a_2\sin(\theta_1 + \theta_2) + a_1\sin(\theta_1) + a_3\sin(\theta_1 + \theta_2 + \theta_3) \\ 0 & 0 & 1 \end{bmatrix} \end{split}$$