Thesis notes

20th April

The Echo Chamber Problem - notation

- $ightharpoonup G = (V, E^+, E^-)$ interaction graph
- \triangleright \mathcal{C} set of contents
- ▶ $C \in C$ content, \mathcal{T}_C set of threads associated with C. A thread $T \in \mathcal{T}_C$ is a subgraph of G
- ▶ $U \subseteq V$ subset of users, T[U] subgraph of T induced by U. |T(U)| is the number of edges of this subgraph

The Echo Chamber Problem - notation

- ▶ $\eta(C)$ fraction of negative edges associated with C (analogous definition for a thread T). Content (or thread) controversial if $\eta \in [\alpha, 1]$
- $ightharpoonup \hat{\mathcal{C}} \subseteq \mathcal{C}$ set of *controversial* contents
- \triangleright $S_C(U)$ set of *non controversial* threads induced by U, for *controversial* contents, i.e.

$$\mathcal{S}_{C}(U) = \{T[U] \text{ s.t. } T[U] \text{ non controversial}, T \in \mathcal{T}_{C}, C \in \hat{\mathcal{C}}, U \subseteq V\}$$

$$\tag{1}$$

The Echo Chamber Problem

Goal: given an interaction graph G, find $U \subseteq V$ maximing

$$\xi(U) = \sum_{C \in \hat{\mathcal{C}}} \sum_{T[U] \in S_C(U)} |T[U]| \tag{2}$$

The set of users maximing the expression is denoted as \hat{U} and the corresponding score is $\xi(G)$

The Densest Echo Chamber Problem

Goal: given an interaction graph G, find $U \subseteq V$ maximing

$$\psi(U) = \sum_{C \in \hat{\mathcal{C}}} \sum_{T[U] \in S_C(U)} \frac{|T[U]|}{|U|} \tag{3}$$

The set of users maximing the expression is denoted as \hat{U} and the corresponding score is $\psi(G)$

Unapproximable variations on the Echo Chamber problem

For any of these functions it is possible to find a number of negative edges to insert s.t. the problem resorts to the original one

$$\xi(U) = \sum_{C \in \mathcal{C}} \sum_{T \in \mathcal{T}_C} (\alpha - \eta(T[U])) |T[U]|$$

$$\xi(U) = \sum_{C \in \mathcal{C}} \sum_{T \in \mathcal{T}_C} (1 - \eta(T[U])) |T[U]|$$

$$\xi(U) = \sum_{C \in \mathcal{C}} \sum_{T \in \mathcal{T}_C} (1 - \eta(T[U]))^2 |T[U]|$$

Same conclusion for the corresponding Densest version

A solvable Densest Echo Chamber problem (1)

Let G = (V, E) be the interaction graph, $\delta(i,j)$ and $\delta^-(i,j)$ the sum of the edges and negative edges, respectively, between vertices v_i and v_j associated to controversial contents.

The graph $G_d = (V_d, E_d)$ is constructed as follows from G:

- ightharpoonup for any vertex $v_i \in V$ add a corresponding vertex in V_d
- for any pair of vertices in G
 - let $\eta(i,j) := \frac{\delta^-(i,j)}{\delta(i,j)}$. If $\eta(i,j) \le \alpha$ add a positive edge between v_i and v_j in G_d

Let $E_d[U]$ the set of edges induced on G_d by $U \subseteq V$. **Goal**: find U maximizing

$$\xi(U) = \frac{|E_d[U]|}{|U|} \tag{4}$$

A solvable Densest Echo Chamber problem (2)

Alternatives:

- ► Compute DCS-AM on *G*, where each snapshot corresponds to a content. Problems: graph may be too spars along contents, not solvable in polynomial time.
- Aggregate edges separately for each $T \in T_C$, $C \in \hat{C}$, i.e. let $\delta_T(i,j)$ be $\delta(i,j)$ for the subgraph T:
 - let $\eta(T, i, j) := \frac{\delta_T^-(i, j)}{\delta_T(i, j)}$. If $\eta(T, i, j) \le \alpha$ add a positive edge

A model for the Echo Chamber Problem

Model parameters:

- \triangleright b_i , the group of each user i
- ω_{rs}^+ and ω_{rs}^- , the probabilities of positive and negative edges, respectively, between users in group r and s ($\omega_{rs}^+ + \omega_{rs}^- \le 1$).

For each node pairing i,j consider their corresponding groups r and s and draw from the categorical distribution with parameters $(\omega_{rs}^+,\omega_{rs}^-,1-\omega_{rs}^+-\omega_{rs}^-)$ to add an edge (or not).

Computing the score on the synthetic data (1)

The following graphs contains 2 communities of 40 vertices each and 10 threads, for $\alpha=0.2$. The results have been computed with the non-exact algorithm.

Computing the score on the synthetic data (2)

First graph: mainly positive edges inside the groups and negative edges between groups.

 $|E| \approx 900, \ \eta(G) \approx 0.5, \ \bar{\xi}(G) = 32.$ Time (single iteration): 8.5 seconds.

Computing the score on the synthetic data (2)

Second graph: much more positive edges inside groups and negative edges between groups.

 $|E| \approx 900$, $\eta(G) \approx 0.5$, $\bar{\xi}(G) = 96.6$. Time (single iteration): 8.9 seconds.

Computing the score on the synthetic data (2)

Third graph: equal distribution of positive and negative edges.

 $|E| \approx 830, \ \eta(G) \approx 0.5, \ \bar{\xi}(G) = 19.8.$ Time (single iteration): 8 seconds.

Computing the score on the synthetic data (4)

Fourth graph: positive and negative edges equally distributed in the graph but many more negative edges than positive ones.

 $|E| \approx 800, \ \eta(G) \approx 0.75, \ \bar{\xi}(G) = 9.$ Time (single iteration): 7 seconds.

The datasets - negative edge fractions for contents

An initial implementation - results

Table: Echo chamber scores, MIP approaches. Each results is a tuple with (score, |U|, number of contributing threads, time in seconds)

Source, $ V $, $ E $	$\xi_{MIP}(G)$	$\xi_{MIPr\ alg}(G)$	$\psi_{MIP}(G)$
@emanews, 1226, 1842	(0, 0, 0, 0.16)	(0, 0, 0, 0.14)	(0, 0, 0, 0.16)
Obbcscience, 447, 388	(7, 12, 5, 0.09)	(7, 12, 5, 0.05)	(0.75, 4, 1, 0.11)
@bbcentertainment, 220, 183	(34, 35, 6, 0.93)	(34, 35, 6, 1.14)	(1.5, 2, 1, 0.15)
Obbctech, 713, 719	(309, 295, 30, 1.5)	(309, 295, 30, 1.8)	(2.25, 4, 2, 0.76)
@bbcsport, 2140, 3100	(1030, 733, 48, 217)	(999, 723, 46, 18.6)	-