Memorization in Attention-only Transformers

Léo Dana

June 13, 2024

Memorization in Transformers

It is traditionnaly thought that MLP store information in Transformers.

Figure: From Fact Finding: Attempting to Reverse-Engineer Factual Recall on the Neuron Level

Memorization in Transformers

We want to complete this view: maybe Attention layers can remember information.

The questions we have begun to answer are:

- Can an Attention-only Transformer memorize? How well can it do?
- How much can it memorize ?
- How does it memorize? What algorithm is implemented?

Associative memory

In Birth of a Transformer: A Memory Viewpoint. Bietti et al. 2023, the Associative memory framework is introduced to Transformers.

Goal: remember a mapping $g:[N]\to [N]$ using the argmax of W_UWW_E , where $W_U,W_E\in\mathbb{R}^{N,d}$ random embedding matrices, and $W\in\mathbb{R}^{d,d}$ is to learn.

Using

$$W = \sum_{i} w_{U}(g(i))^{T} w_{e}(i)$$

they show the model can remember association, but only d of them.

Attention-only Transformers

Attention-only Transformers

Goal: memorize a distribution $\pi(t_{S+1}|t_S,...,t_1)$ for all sequences.

Theorem

Let $\varepsilon \geq 0$, N_{ε} the smallest number of questions whose cumulative probability is greater than $1-\varepsilon$, and f_{W^*} the optimal linear mapping of rank d.

There exist a transformer T^* with embedding dimension d, $\lceil \frac{N_c}{d} \rceil$ total parallel attention module such that whose divergence with π is

$$|d_{KL}(\pi, f_{W^*}) - d_{KL}(\pi, T^*)| \le \varepsilon \sigma_1(f_{W^*}) C(d, N, k, N_{\varepsilon})$$

Optimal Linear Mapping

Now we want to bound the quantity $d_{KI}(\pi, f_{W^*})$ to obtain an upper bound on the best Transformer possible.

$$d_{\mathit{KL}}(\pi, T^*) \leq d_{\mathit{KL}}(\pi, f_{\mathit{W}^*}) + \varepsilon \sigma_1(f_{\mathit{W}^*}) C(d, N, k, N_{\varepsilon})$$

We can acheive 0 divergence if

$$w_U(t_{S+1})^T w_E(t_{1:S}) = \log(\pi(t_{S+1}|t_{1:S}))$$

so if $L = \log(\pi)$ has rank d.

Optimal Linear Mapping

Now we want to bound the quantity $d_{KI}(\pi, f_{W^*})$ to obtain an upper bound on the best Transformer possible.

$$d_{\mathit{KL}}(\pi, T^*) \leq d_{\mathit{KL}}(\pi, f_{\mathit{W}^*}) + \varepsilon \sigma_1(f_{\mathit{W}^*}) C(d, N, k, N_{\varepsilon})$$

We can acheive 0 divergence if

$$w_U(t_{S+1})^T w_E(t_{1:S}) = \log(\pi(t_{S+1}|t_{1:S}))$$

so if $L = \log(\pi)$ has rank d.

If $d \ge N - 1$ this is always the case. Otherwise we look at special cases.

Almost rank d

When the distribution to predict has low rank, a Taylor on the divergence reveals two possible optimal mappings:

Almost rank d

When the distribution to predict has low rank, a Taylor on the divergence reveals two possible optimal mappings:

 \bullet f_{ls} solution to the least-square problem

$$||W_{ls} - L||_2$$

$$d_{KL}(\pi, f_{ls}) \leq N||\pi||_{+\infty}^2 \sigma_{d+1}^2 + (N||\pi||_{+\infty})^{\frac{3}{2}} \sigma_{d+1}^3$$

Almost rank d

When the distribution to predict has low rank, a Taylor on the divergence reveals two possible optimal mappings:

 \bullet f_{ls} solution to the least-square problem

$$||W_{ls} - L||_2$$

$$d_{KL}(\pi, f_{ls}) \le N||\pi||_{+\infty}^2 \sigma_{d+1}^2 + (N||\pi||_{+\infty})^{\frac{3}{2}} \sigma_{d+1}^3$$

 \bullet f_{wls} solution to the weighted least-square problem

$$||I_{\sqrt{\pi}}(W_{wls}-L)||_2$$

$$d_{\mathit{KL}}(\pi, f_{\mathit{wls}}) \leq ||\pi||_{+\infty} \sigma_{d+1}^2 + \left(\frac{||\pi||_{+\infty}}{||\pi||_{-\infty}}\right)^{\frac{3}{2}} \sigma_{d+1}^3$$

←□▶ ←□▶ ← □ ▶ ←

Low Entropy

For low entropy, or look-up table, there exist a function $g:[N^S] \to [N]$ such that $\pi(t|t_{1:S}) \simeq \delta_{t=g(t_{1:S})}$.

Low Entropy

For low entropy, or look-up table, there exist a function $g:[N^S] \to [N]$ such that $\pi(t|t_{1:S}) \simeq \delta_{t=g(t_{1:S})}$.

Bound on the divergence

Theorem

For this choice of f and $C = \sqrt{\frac{32 \log(N+1)}{d}}$, we have the bound

$$d_{\mathit{KL}}(\pi,f) \leq \mathbb{E}_{t_{1:S}}\left[\left(1 - \pi(g(t_{1:S})|t_{1:S})\right)\log\left(\frac{\mathit{N}-1}{e^{-\mathit{H}(\pi_{t_{1:S}})}-1}\right)\right]\left(\frac{1+4\mathit{C}}{1-2\mathit{C}}\right)$$

Conclusion

We showed that

- the attention mechanism in Transformers can memorize,
- we can quantify the error in some best cases,

Limitations:

- We do not know how memorization occurs in the sparce regime $dP < N_{\varepsilon}$,
- We cannot identify memorization behavior in a real Transformer's attention layer,

Experimental validation

No memorization limit in term of quantity, but in term of quality !