This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1. (Currently Amended) A compound of formula I or a pharmaceutically acceptable salt thereof

wherein A is

wherein R^1 is C_3 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, up to per-halosubstituted C_1 - C_{10} alkyl or up to per-halosubstituted C_3 - C_{10} cycloalkyl;

B is an up to tricyclic, aryl or heteroaryl moiety of up to 30 carbon atoms with at least one 5- or 6-member aromatic structure containing 0–4 members of the group consisting of nitrogen, oxygen and sulfur, substituted by -M-L 1 and optionally substituted by one or more substituents independently selected from the group consisting of halogen, up to perhalosubstitution, and X_n ,

wherein n is 0–2 and each X is independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)NR⁵R^{5'}, -C(O)R⁵, -NO₂, -OR⁵, -SR⁵, -NR⁵R^{5'}, -NR⁵C(O)OR^{5'}, -R⁵C(O)R^{5'}, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₇-C₂₄ alkaryl, C₃-C₁₃ heteroaryl, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₂-C₁₀ alkenyl, substituted C₁-C₁₀ alkoxyl, substituted C₃-C₁₀ cycloalkyl, up to per-

halosubstituted C₆-C₁₄ aryl, up to per-halosubstituted C₃-C₁₃ heteroaryl, substituted C₄-C₂₃ alkheteroaryl and -M-L¹;

where X is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)R⁵, -C(O)NR⁵R⁵, -OR⁵, -SR⁵, -NR⁵R⁵, -NO₂, -NR⁵C(O)R⁵, -NR⁵C(O)OR⁵ and halogen up to perhalosubstitution:

wherein R⁵ and R^{5'} are independently selected from H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, up to per-halosubstituted C₁-C₁₀ alkyl, up to perhalosubstituted C₂-C₁₀ alkenyl, up to perhalosubstituted C₃-C₁₀ cycloalkyl, up to per-halosubstituted C₆-C₁₄ aryl and up to perhalosubstituted C₃-C₁₃ heteroaryl,

wherein M is -O-, -S-, $-N(R^5)$ -, $-(CH_2)$ -m, -C(O)-, -CH(OH)-, $-(CH_2)$ mO-, $-NR^{5}C(O)NR^{5}R^{52}$, $-NR^{5}C(O)$ -, $-C(O)NR^{5}$, $-(CH_{2})_{m}S$ -, $-(CH_{2})_{m}N(R^{5})$ -, $-O(CH_{2})_{m}$ -, $-CHX^{a}$ -, $-CX_{2}^{a}$, $-S-(CH_{2})_{m}$ or $-N(R^{5})(CH_{2})_{m}$, m = 1-3, and X^{a} is halogen; and

L¹ is a 5-10 member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur atoms, which is unsubstituted or substituted by halogen up to per-halosubstitution and optionally substituted by Z_{n1} , wherein n1 is 0 to 3 and each Z is independently -CN, -CO₂R⁵, -C(O)NR⁵R⁵, -C(O)NR⁵, -NO₂, -OR⁵, -SR⁵, -NR⁵R⁵, $-NR^5C(O)OR^{5'}$, $-C(O)R^5$, $NR^5C(O)R^{5'}$, C_1-C_{10} alkyl, C_3-C_{10} cycloalkyl, C_6-C_{14} aryl, C_3-C_{13} heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₃-C₁₀ cycloalkyl, substituted C₇-C₂₄ alkaryl or substituted C₄-C₂₃ alkheteroaryl;

wherein if Z is a substituted group, it is substituted by the one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)NR⁵R⁵, -OR⁵, -SR⁵, -NO₂, -NR 5 R 5 ', -NR 5 C(O)R 5 ' and -NR 5 C(O)OR 5 ', and

wherein R^2 is C_6 - C_{14} aryl, C_3 - C_{14} heteroaryl, substituted C_6 - C_{14} aryl or substituted C_3 - C_{14} heteroaryl,

wherein if R^2 is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, and V_n ,

wherein n = 0–3 and each V is independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)NR⁵R^{5'}, -OR⁵, -SR⁵, -NR⁵R^{5'}, -C(O)R⁵, -OC(O)NR⁵R^{5'}, -NR⁵C(O)OR^{5'}, -SO₂R⁵, -SOR⁵, -NR⁵C(O)R^{5'}, -NO₂, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₄ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₃-C₁₀ cycloalkyl, substituted C₆-C₁₄ aryl, substituted C₃-C₁₃ heteroaryl, substituted C₇-C₂₄ alkaryl and substituted C₄-C₂₄ alkheteroaryl,

where if V is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, -CN, -CO₂R⁵, -C(O)R⁵, -C(O)NR⁵R⁵, -NR⁵R⁵, -OR⁵, -SR⁵, -NR⁵C(O)R⁵, -NR⁵C(O)OR⁵ and -NO₂; wherein R⁵ and R⁵ are each independently as defined above.

2. (Previously Presented) A compound of claim 1, wherein R^2 is substituted or unsubstituted phenyl or pyridinyl, and the substituents for R^2 are selected from the group consisting of halogen, up to per-halosubstitution and V_n , wherein n=0-3, and each V is independently selected from the group consisting of substituted and unsubstituted C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, C_6 - C_{10} aryl, -NO₂, -NH₂, -C(O)-C₁₋₆ alkyl, -C(O)N-(C₁₋₆ alkyl)₂, -C(O)NH-C₁₋₆ alkyl, -O-C₁₋₆ alkyl, -NHC(O)H, -NHC(O)OH, -N(C₁₋₆ alkyl)C(O)-C₁₋₆ alkyl, -N-(C₁₋₆ alkyl) -O-C₁₋₆ alkyl, -OC(O)NH C₆₋₁₄ aryl, -NHC(O)-C₁₋₆ alkyl, -NHC(O)O-C₁₋₆ alkyl, -NHC(O)O-C₁₋₆ alkyl, -S(O)-C₁₋₆ alkyl and -SO₂-C₁₋₆ alkyl,

wherein if V is a substituted group, it is substituted by one or more halogen, up to perhalosubstitution.

3. (Canceled)

4. (Previously Presented) A compound of claim 1, wherein

M is selected from the group consisting of -O-, -S-, -CH₂-, -SCH₂-, -CH₂S-, -CH(OH), -C(O)-, -CX a_2 , -CX a_3 H-, -CH₂O- and -OCH₂-, and X a is halogen.

5. (Previously Presented) A compound of claim 4, wherein

B is phenyl, naphthyl, a 5-6 membered monocyclic heteroaryl group having 1-4 hetero atoms independently selected from the group consisting of O, S and N or a 8-10 member bicyclic heteroaryl groups having 1-4 hetero atoms independently selected from the group consisting of O, S and N;

L¹ is selected from the group consisting of phenyl, pyridinyl, naphthyl, pyrimidinyl, quinolinyl, isoquinolinyl, imidazolinyl and benzothiazolyl, unsubstituted or substituted by halogen, up to per-halo substitution, and

Z and X are independently selected from the group consisting of $-R^6$, $-OR^6$ and $-NHR^7$, wherein R^6 is hydrogen, C_1-C_{10} -alkyl or C_3-C_{10} -cycloalkyl and R^7 is selected from the group consisting of hydrogen, C_3-C_{10} -alkyl, C_3-C_6 -cycloalkyl and C_6-C_{10} -aryl, wherein R^6 and R^7 can be substituted by halogen Θ up to per-halosubstitution.

6. (Original) A compound of claim 1, wherein R^1 is t-butyl and R^2 is unsubstituted or substituted phenyl.

7.—8. (Canceled)

9. (Original) A compound of claim 1 of the formula

wherein B and R² are as defined in claim 1.

10. (Previously Presented) A compound of claim 9, wherein R^2 is selected from substituted and unsubstituted members of the group consisting of phenyl and pyridinyl, wherein if R^2 is a substituted group, it is substituted by one or more of the substituents selected from the group consisting of halogen and W_n , wherein n = 0-3, and W is selected from the group consisting of $-NO_2$, $-C_{1-3}$ alkyl, $-NH(O)CH_3$, $-CF_3$, $-OCH_3$, -F, -Cl, $-NH_2$, -OC(O)NH-up to per-halosubstituted phenyl, $-SO_2CH_3$, pyridinyl, phenyl, up to per-halosubstituted phenyl and C_1 - C_6 alkyl substituted phenyl.

11.—14. (Canceled)

15. (Previously Presented) A method for the treatment of disease mediated by raf kinase, comprising administering an effective amount of a compound of formula I or a pharmaceutically acceptable salt thereof to a host in need thereof:

wherein A is

wherein R^1 is C_3 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, up to per-halosubstituted C_1 - C_{10} alkyl or up to per-halosubstituted C_3 - C_{10} cycloalkyl;

B is a substituted or unsubstituted, up to tricyclic, aryl or heteroaryl moiety of up to 30 carbon atoms with at least one 5- or 6-member aromatic structure containing 0–4 members of the group consisting of nitrogen, oxygen and sulfur, substituted by -M-L¹ and optionally substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, and X_n ,

wherein n is 0–2 and each X is independently selected from the group consisting of -CN, CO_2R^5 , $-C(O)NR^5R^{5'}$, $-C(O)R^5$, $-NO_2$, $-OR^5$, $-SR^5$, $-NR^5R^{5'}$, $-NR^5C(O)OR^{5'}$, $-NR^5C(O)R^{5'}$, C_1-C_{10} alkyl, C_{2-10} -alkenyl, C_{1-10} -alkoxy, C_3-C_{10} cycloalkyl, C_6-C_{14} aryl, C_7-C_{24} alkaryl, C_3-C_{13} heteroaryl, C_4-C_{23} alkheteroaryl, substituted C_1-C_{10} alkyl, substituted C_{2-10} -alkenyl, substituted C_3-C_{10} cycloalkyl, up to perhalosubstituted C_6-C_{14} aryl, up to perhalosubstituted C_3-C_{13} heteroaryl, substituted C_4-C_{23} alkheteroaryl and $M-L^1$;

where X is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)R⁵, -C(O)NR⁵R^{5'}, -OR⁵, -SR⁵, -NR⁵R^{5'}, -NO₂, -NR⁵C(O)R^{5'}, -NR⁵C(O)OR^{5'} and halogen up to perhalosubstitution;

wherein R^5 and $R^{5'}$ are independently selected from H, C_1 - C_{10} alkyl, C_{2-10} -alkenyl, C_3 - C_{10} cycloalkyl, C_6 - C_{14} aryl, C_3 - C_{13} heteroaryl, C_7 - C_{24} alkaryl, C_4 - C_{23} alkheteroaryl, up to

per-halosubstituted C_1 - C_{10} alkyl, up to per-halosubstituted C_{2-10} -alkenyl, up to per-halosubstituted C_3 - C_{10} cycloalkyl, up to per-halosubstituted C_6 - C_{14} aryl and up to per-halosubstituted C_3 - C_{13} heteroaryl,

wherein M is -O-, -S-, -N(R⁵)-, -(CH₂)-_m, -C(O)-, -CH(OH)-, -(CH₂)_mO-, -(CH₂)_mS-, -(CH₂)_mN(R⁵)-, -O(CH₂)_m-, -CHX^a-, -CX^a₂-, -S-(CH₂)_m- or -N(R⁵)(CH₂)_m-, m = 1-3, and X^a is halogen; and

L¹ is a 5- or 6-member aromatic structure containing 0–2 members of the group consisting of nitrogen, oxygen and sulfur atoms which is unsubstituted or substituted by halogen up to per-halosubstitution and optionally substituted by Z_{n1}, wherein n1 is 0 to 3 and each Z is independently -CN, -C(O)R⁵, -CO₂R⁵, -C(O)NR⁵R^{5'}, -C(O)NR⁵, -NO₂, -OR⁵, -SR⁵, -NR⁵C(O)OR^{5'}, -NR⁵C(O)OR^{5'}, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₃-C₁₀ cycloalkyl, substituted C₇-C₂₄ alkaryl or substituted C₄-C₂₃ alkheteroaryl;

wherein if Z is a substituted group, it is substituted by the one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)NR⁵R^{5'}, -OR⁵, -SR⁵, -NO₂, -NR⁵R^{5'}, -NR⁵C(O)R^{5'} and -NR⁵C(O)OR^{5'}, and

wherein R^2 is C_6 - C_{14} aryl, C_3 - C_{14} heteroaryl, substituted C_6 - C_{14} aryl or substituted C_3 - C_{14} heteroaryl,

wherein if R^2 is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, and V_n ,

wherein n=0-3 and each V is independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)NR⁵R^{5'}, -OR⁵, -SR⁵, -NR⁵R^{5'}, -OC(O)NR⁵R^{5'}, -NR⁵C(O)OR^{5'}, -NR⁵C(O)OR^{5'}, -SO₂R⁵, -SOR⁵, -NR⁵C(O)R^{5'}, -NO₂, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄

aryl, C_3 - C_{13} heteroaryl, C_7 - C_{24} alkaryl, C_4 - C_{24} alkheteroaryl, substituted C_1 - C_{10} alkyl, substituted C_3 - C_{10} cycloalkyl, substituted C_6 - C_{14} aryl, substituted C_3 - C_{13} heteroaryl, substituted C_7 - C_{24} alkaryl and substituted C_4 - C_{24} alkheteroaryl,

where V is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, -CN, -CO₂R⁵, -C(O)R⁵, -C(O)NR⁵R⁵, -NR⁵R⁵, -OR⁵, -SR⁵, -NR⁵C(O)R⁵, -NR⁵C(O)OR⁵ and -NO₂, wherein R⁵ and R⁵ are each independently as defined above.

- 16. (Original) A method as in claim 15, wherein R^2 is selected from substituted or unsubstituted members of the group consisting of phenyl and pyridinyl, and the substituents for R^2 are selected from the group consisting of halogen, up to perhalosubstitution and V_n , wherein n=0-3, and each V is independently selected from the group consisting of substituted and unsubstituted C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, C_6 - C_{10} aryl, $-NO_2$, $-NH_2$, -C(O)- C_{1-6} alkyl, -C(O)N- $(C_{1-6}$ alkyl)₂, -C(O)NH- C_{1-6} alkyl, -O- C_{1-6} alkyl, -NHC(O)H, -NHC(O)OH, $-N(C_{1-6}$ alkyl, -S(O)- $-C_{1-6}$ alkyl and $-SO_2$ - $-C_{1-6}$ alkyl, wherein if V is a substituted group, it is substituted by one or more halogen, up to per-halosubstitution.
 - 17. (Canceled)
 - 18. (Previously Presented) A method of claim 15, wherein B is

$$X_{0-2}$$
 $-L-M-L^{\frac{1}{2}}Z_{n1}$

wherein

M is selected from the group consisting of -O-, -S-, -CH₂-, -SCH₂-, -CH₂S-, -CH(OH)-, -C(O)-, -CX $^{a}_{2}$, -CX $^{a}_{1}$ H-, -CH₂O- and -OCH₂-,

X^a is halogen,

L is six member aromatic structure containing 0-2 nitrogen, unsubstituted or substituted by halogen, up to per-halosubstitution;

L¹ is a mono- or bicyclic aromatic structure of 5–10 members with 3 to 10 carbon atoms and 0–2 members of the group consisting of N, O and S, unsubstituted by halogen up to per-halosubstitution,

X, Z, and n1 are as defined in claim 15.

19. (Previously Presented) A method as in claim 18, wherein

L is phenyl or pyridinyl, unsubstituted or substituted by halogen, up to perhalosubstitution,

L¹ is selected from the group consisting of phenyl, pyridinyl, naphthyl, pyrimidinyl, quinolinyl, isoquinolinyl, imidazolinyl and benzothiazolyl, substituted or unsubstituted by halogen, up to per-halo substitution, and

Z and X are independently selected from the group consisting of $-R^6$, $-OR^6$ and $-NHR^7$, wherein R^6 is hydrogen, C_1 - C_{10} -alkyl or C_3 - C_{10} -cycloalkyl and R^7 is selected from the group consisting of hydrogen, C_3 - C_{10} -alkyl, C_3 - C_6 -cycloalkyl and C_6 - C_{10} -aryl, wherein R^6 and R^7 can be substituted by halogen or up to per-halosubstitution.

20. (Previously Presented) A method as in claim 18, wherein L is phenyl, L^1 is phenyl or pyridinyl, M is -O-, -S- or -CH₂-, and X and Z are independently Cl, F, NO₂ or CF₃.

21. (Previously Presented) A method as in claim 15, which comprises administering a compound of the formula

wherein B and R² are as defined in claim 15.

- 22. (Previously Presented) A method as in claim 21, wherein R^2 is selected from substituted and unsubstituted members of the group consisting of phenyl or pyridinyl, wherein if R^2 is a substituted group, it is substituted by one or more substituents selected from the group consisting of halogen and W_n , wherein n = 0-3, and W is selected from the group consisting of -NO₂, -C₁₋₃ alkyl, -NH(O)CH₃, -CF₃, -OCH₃, -F, -Cl, -NH₂, -OC(O)NH-up to per-halosubstituted phenyl, -SO₂CH₃, pyridinyl, phenyl, up to per-halosubstituted phenyl and C₁-C₆ alkyl substituted phenyl.
- 23. (Previously Presented) A method as in claim 15, comprising administering an amount of compound of formula I effective to inhibit raf kinase.
- 24. (Previously Presented) A pharmaceutical composition comprising an effective amount of a compound of claim 1 and a pharmaceutically acceptable carrier.
- **25.** (Currently Amended) A pharmaceutical composition comprising an effective amount of a compound of claim 33 [[2]] and a pharmaceutically acceptable carrier.

26. (Previously Presented) A method for treating a solid cancer, melanoma or adenoma, comprising administering an effective amount of a compound of formula I or a pharmaceutically acceptable salt thereof to a host in need thereof:

wherein A is

wherein R^1 is selected from the group consisting of C_3 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, up to per-halosubstituted C_1 - C_{10} alkyl and up to per-halosubstituted C_3 - C_{10} cycloalkyl;

B is a substituted or unsubstituted, up to tricyclic, aryl or heteroaryl moiety of up to 30 carbon atoms with at least one 5- or 6-member aromatic structure containing 0-4 members of the group consisting of nitrogen, oxygen and sulfur, substituted by -M-L¹ and optionally substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, and X_n ,

wherein n is 0–2 and each X is independently selected from the group consisting of -CN, CO_2R^5 , $-C(O)NR^5R^{5'}$, $-C(O)R^5$, $-NO_2$, $-OR^5$, $-SR^5$, $-NR^5R^{5'}$, $-NR^5C(O)OR^{5'}$, -NR $^5C(O)R^{5'}$, C_1-C_{10} alkyl, C_{2-10} -alkenyl, C_{1-10} -alkoxy, C_3-C_{10} cycloalkyl, C_6-C_{14} aryl, C_7-C_{24} alkaryl, C_3-C_{13} heteroaryl, C_4-C_{23} alkheteroaryl, substituted C_1-C_{10} alkyl, substituted C_{2-10} -alkenyl, substituted C_{1-10} -alkoxy, substituted C_3-C_{10} cycloalkyl, up to per-halosubstituted C_6-C_{14} aryl, up to per-halosubstituted C_3-C_{13} heteroaryl substituted C_4-C_{23} alkheteroaryl and $M-L^1$;

Appl. No.: 09/472,232

where X is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)R⁵, -C(O)NR⁵R^{5'},

halosubstitution;

wherein R^5 and $R^{5'}$ are independently selected from H, C_1 - C_{10} alkyl, C_{2-10} -alkenyl, C_3 - C_{10} cycloalkyl, C_6 - C_{14} aryl, C_3 - C_{13} heteroaryl, C_7 - C_{24} alkaryl, C_4 - C_{23} alkheteroaryl, up to per-halosubstituted C_1 - C_{10} alkyl, up to per-halosubstituted C_2 - C_{10} -alkenyl, up to per-halosubstituted C_3 - C_{10} cycloalkyl, up to per-halosubstituted C_6 - C_{14} aryl and up to per-halosubstituted C_3 - C_{13} heteroaryl,

-OR⁵, -SR⁵, -NR⁵R⁵, -NO₂, -NR⁵C(O)R⁵, -NR⁵C(O)OR⁵ and halogen up to per-

wherein M is -O-, -S-, -N(R⁵)-, -(CH₂)-_m, -C(O)-, -CH(OH)-, -(CH₂)_mO-, -(CH₂)_mS-, -(CH₂)_mN(R⁵)-, -O(CH₂)_m-, -CHX^a-, -CX^a₂-, -S-(CH₂)_m- or -N(R⁵)(CH₂)_m-, m = 1-3, and X^a is halogen; and

L¹ is a 5- or 6-member aromatic structure containing 0–2 members of the group consisting of nitrogen, oxygen and sulfur atoms which is unsubstituted or substituted by halogen up to per-halosubstitution and optionally substituted by Z_{n1}, wherein n1 is 0 to 3 and each Z is independently -CN, -C(O)R⁵, -CO₂R⁵, -C(O)NR⁵R^{5'}, -C(O)NR⁵, -NO₂, -OR⁵, -SR⁵, -NR⁵R^{5'}, -NR⁵C(O)OR^{5'}, -NR⁵C(O)R^{5'}, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₃-C₁₀ cycloalkyl, substituted C₇-C₂₄ alkaryl or substituted C₄-C₂₃ alkheteroaryl;

wherein if Z is a substituted group, it is substituted by the one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)NR⁵R^{5'}, -OR⁵, -SR⁵, -NO₂, -NR⁵R^{5'}, -NR⁵C(O)R^{5'} and -NR⁵C(O)OR^{5'}, and

wherein R^2 is C_6 - C_{14} aryl, C_3 - C_{14} heteroaryl, substituted C_6 - C_{14} aryl or substituted C_3 - C_{14} heteroaryl,

wherein if R^2 is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, and V_n ,

wherein n=0-3 and each V is independently selected from the group consisting of -CN, $-CO_2R^5$, $-C(O)NR^5R^{5'}$, $-OR^5$, $-SR^5$, $-NR^5R^{5'}$, $-OC(O)NR^5R^{5'}$, $-NR^5C(O)OR^{5'}$, $-NR^5C(O)OR^{5'}$, $-NR^5C(O)OR^{5'}$, $-NR^5C(O)OR^{5'}$, $-NO_2R^5$, $-NO_2$

where V is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, -CN, -CO₂R⁵, -C(O)R⁵, -C(O)NR⁵R⁵, -NR⁵R⁵', -OR⁵, -SR⁵, -NR⁵C(O)R⁵', -NR⁵C(O)OR⁵' and -NO₂, wherein R⁵ and R⁵' are each independently as defined above.

- 27. (Previously Presented) A method as in claim 26, wherein the compound of formula I displays IC50s between 10nM and 10μ M as determined by an in-vitro raf kinase assay.
- 28. (Previously Presented) A method according to claim 26, wherein the disease is a cancer dependent upon the raf protein signal transduction cascade and is treated by inhibiting raf kinase.
- 29. (Previously Presented) A method according to claim 26, wherein the solid cancer is a carcinoma of the lungs, pancreas, thyroid, bladder or colon.

30. (Currently Amended) A compound of formula I or a pharmaceutically acceptable salt thereof

wherein A is

wherein R^1 is C_3 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, up to per-halosubstituted C_1 - C_{10} alkyl or up to per-halosubstituted C_3 - C_{10} cycloalkyl;

B is phenyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, naphthyl, quinolinyl, isoquinolinyl, phthalimidinyl, furyl, thienyl, pyrrolyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, benzofuryl, benzothienyl, indolyl, benzopyrazolyl, benzoxazolyl, benzisoxazolyl, benzothiazolyl or benzisothiazolyl substituted by -M-L 1 ; and is optionally substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, and X_n ,

wherein n is 0–2 and each X is independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)NR⁵R^{5'}, -C(O)R⁵, -NO₂, -OR⁵, -SR⁵, -NR⁵R^{5'}, -NR⁵C(O)OR^{5'}, -NR⁵C(O)OR^{5'}, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₇-C₂₄ alkaryl, C₃-C₁₃ heteroaryl, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₂-C₁₀ alkenyl, substituted C₁-C₁₀ alkoxyl, substituted C₃-C₁₀ cycloalkyl, up to perhalosubstituted C₆ -C₁₄ aryl, up to per-halosubstituted C₃-C₁₃ heteroaryl and substituted C₄-C₂₃ alkheteroaryl and -M-L¹;

where X is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)R⁵, -C(O)NR⁵R^{5'}, -OR⁵, -SR⁵, -NR⁵R^{5'}, -NO₂, -NR⁵C(O)R^{5'}, -NR⁵C(O)OR^{5'} and halogen up to perhalosubstitution;

wherein R^5 and $R^{5'}$ are independently selected from H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_3 - C_{10} cycloalkyl, C_6 - C_{14} aryl, C_3 - C_{13} heteroaryl, C_7 - C_{24} alkaryl, C_4 - C_{23} alkheteroaryl, up to per-halosubstituted C_1 - C_{10} alkyl, up to per-halosubstituted C_2 - C_{10} alkenyl, up to per-halosubstituted C_3 - C_{10} cycloalkyl, up to per-halosubstituted C_6 - C_{14} aryl and up to per-halosubstituted C_3 - C_{13} heteroaryl,

wherein M is -O-, -S-, -N(R⁵)-, -(CH₂)-_m, -C(O)-, -CH(OH)-, -(CH₂)_mO-, -NR⁵C(O)NR⁵R⁵²-, -NR⁵C(O)-, -C(O)NR⁵, -O(CH₂)_m-, -(CH₂)_mS-, -(CH₂)_mN(R⁵)-, -CHX^a-, -CX^a₂-, -S-(CH₂)_m- or -N(R⁵)(CH₂)_m-, m = 1-3, and X^a is halogen; and

 L^1 is phenyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, naphthyl, quinolinyl, isoquinolinyl, phthalimidinyl, furyl, thienyl, pyrrolyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, benzofuryl, benzothienyl, indolyl, benzopyrazolyl, benzoxazolyl, benzisoxazolyl, benzothiazolyl or benzisothiazolyl, optionally substituted by halogen up to per-halosubstitution and optionally substituted by Z_{n1} ,

wherein n1 is 0 to 3 and each Z is independently -CN, -CO₂R⁵, -C(O)NR⁵R^{5'}, -C(O)NR⁵, -NO₂, -OR⁵, -SR⁵, -NR⁵R^{5'}, -NR⁵C(O)OR^{5'}, -C(O)R⁵, NR⁵C(O)R^{5'}, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₃-C₁₀ cycloalkyl, substituted C₇-C₂₄ alkaryl or substituted C₄-C₂₃ alkheteroaryl;

wherein if Z is a substituted group, it is substituted by the one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)NR⁵R^{5'}, -OR⁵, -SR⁵, -NO₂, -NR⁵R^{5'}, -NR⁵C(O)R^{5'} and -NR⁵C(O)OR^{5'}, and

wherein R^2 is optionally substituted phenyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, naphthyl, quinolinyl, isoquinolinyl, phthalimidinyl, furyl, thienyl, pyrrolyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, benzofuryl, benzothienyl, indolyl, benzopyrazolyl, benzoxazolyl, benzisoxazolyl, benzothiazolyl or benzisothiazolyl, wherein if R^2 is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, and V_n ,

wherein n = 0-3 and each V is independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)NR⁵R^{5'}, -OR⁵, -SR⁵, -NR⁵R^{5'}, -C(O)R⁵, -OC(O)NR⁵R^{5'}, -NR⁵C(O)OR^{5'}, -SO₂R⁵, -SOR⁵, -NR⁵C(O)R^{5'}, -NO₂, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₄ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₃-C₁₀ cycloalkyl, substituted C₆-C₁₄ aryl, substituted C₃-C₁₃ heteroaryl, substituted C₇-C₂₄ alkaryl and substituted C₄-C₂₄ alkheteroaryl,

where if V is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, -CN, -CO₂R⁵, -C(O)R⁵, -C(O)NR⁵R⁵, -NR⁵R⁵', -OR⁵, -SR⁵, -NR⁵C(O)R⁵', -NR⁵C(O)OR⁵' and -NO₂; wherein R⁵ and R⁵' are each independently as defined above.

31. (Previously Presented) A compound as in claim 30 wherein R² is phenyl, substituted phenyl, pyridinyl or substituted pyridinyl, L¹ is phenyl or pyridinyl, M is -O-, -S- or -CH₂, X and Z are independently Cl, F, CF₃, NO₂ or CN, and R¹ is t-butyl.

- 32. (Currently Amended) A compound as in claim 39 [[1]] wherein B is optionally substituted diphenyl ether, diphenyl thioether, diphenyl amine, phenylpyridinyl ether pyridinyloxyphenyl, pyridinylmethylphenyl, phenylpyridinylthioether pyridinylthiophenyl, phenylbenzothiazolyl ether benzothiazolyloxyphenyl, phenylpyrimidinyl ether pyrimidinyloxyphenyl, phenylquinoline thioether quinolinylthiophenyl, phenylpyrimidinyl ether, pyridinylnapthyl ether, pyridinylnapthyl ether, pyridinylnapthyl thioether and phthalimidylmethylphenyl and R² is phenyl, substituted phenyl, pyridinyl or substituted pyridinyl.
- 33. (Previously Presented) A compound of formula I or a pharmaceutically acceptable salt thereof

wherein A is

wherein R^1 is C_3 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, up to per-halosubstituted C_1 - C_{10} alkyl or up to per-halosubstituted C_3 - C_{10} cycloalkyl;

B is phenyl, pyridinyl, or naphthyl, substituted by $-M-L^1$; and is optionally substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, and X_n ,

wherein n is 0–2 and each X is independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)NR⁵R^{5'}, -C(O)R⁵, -NO₂, -OR⁵, -SR⁵, -NR⁵R^{5'}, -NR⁵C(O)OR^{5'},

-NR 5 C(O)R 5 ', C $_1$ -C $_{10}$ alkyl, C $_2$ -C $_{10}$ alkenyl, C $_1$ -C $_{10}$ alkoxy, C $_3$ -C $_{10}$ cycloalkyl, C $_6$ -C $_{14}$ aryl, C $_7$ -C $_{24}$ alkaryl, C $_3$ -C $_{13}$ heteroaryl, C $_4$ -C $_{23}$ alkheteroaryl, substituted C $_1$ -C $_{10}$ alkyl, substituted C $_2$ -C $_{10}$ alkenyl, substituted C $_1$ -C $_{10}$ alkoxyl, substituted C $_3$ -C $_{10}$ cycloalkyl, up to perhalosubstituted C $_3$ -C $_{13}$ heteroaryl and substituted C $_4$ -C $_{23}$ alkheteroaryl and -M-L $_1$;

where X is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)R⁵, -C(O)NR⁵R^{5'}, -OR⁵, -SR⁵, -NR⁵R^{5'}, -NO₂, -NR⁵C(O)R^{5'}, -NR⁵C(O)OR^{5'} and halogen up to perhalosubstitution;

wherein R^5 and $R^{5'}$ are independently selected from H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_3 - C_{10} cycloalkyl, C_6 - C_{14} aryl, C_3 - C_{13} heteroaryl, C_7 - C_{24} alkaryl, C_4 - C_{23} alkheteroaryl, up to per-halosubstituted C_1 - C_{10} alkyl, up to per-halosubstituted C_2 - C_{10} alkenyl, up to per-halosubstituted C_3 - C_{10} cycloalkyl, up to per-halosubstituted C_6 - C_{14} aryl and up to per-halosubstituted C_3 - C_{13} heteroaryl,

wherein M is -O-, -S-, or -(CH₂)-_m

m = 1-3, and X^a is halogen; and

 L^1 is pyridinyl, quinolinyl or isoquinolinyl, optionally substituted by halogen up to per-halosubstitution and optionally substituted by Z_{n1} ,

wherein n1 is 0 to 3 and each Z is independently -CN, -CO₂R⁵, -C(O)NR⁵R⁵', -C(O)NR⁵, -NO₂, -OR⁵, -SR⁵, -NR⁵R⁵', -NR⁵C(O)OR⁵', -C(O)R⁵, NR⁵C(O)R⁵', C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₃-C₁₀ cycloalkyl, substituted C₇-C₂₄ alkaryl or substituted C₄-C₂₃ alkheteroaryl;

wherein if Z is a substituted group, it is substituted by the one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)NR⁵R^{5'}, -OR⁵, -SR⁵, -NO₂, -NR⁵R^{5'}, -NR⁵C(O)R^{5'} and -NR⁵C(O)OR^{5'}, and

wherein R² is unsubstituted phenyl, unsubstituted pyridinyl, substituted phenyl or substituted pyridinyl

wherein if R^2 is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, and V_n ,

wherein n=0-3 and each V is independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)NR⁵R^{5'}, -OR⁵, -SR⁵, -NR⁵R^{5'}, -C(O)R⁵, -OC(O)NR⁵R^{5'}, -NR⁵C(O)OR^{5'}, -SO₂R⁵, -SOR⁵, -NR⁵C(O)R^{5'}, -NO₂, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₄ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₃-C₁₀ cycloalkyl, substituted C₆-C₁₄ aryl, substituted C₃-C₁₃ heteroaryl, substituted C₇-C₂₄ alkaryl and substituted C₄-C₂₄ alkheteroaryl,

where if V is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, -CN, -CO₂R⁵, -C(O)R⁵, -C(O)NR⁵R⁵, -NR⁵R⁵', -OR⁵, -SR⁵, -NR⁵C(O)R⁵', -NR⁵C(O)OR⁵' and -NO₂; wherein R⁵ and R⁵' are each independently as defined above.

34. (Previously Presented) A compound of claim 33 wherein one of the following combinations is satisfied:

R²= unsubstituted phenyl, B=phenyl and L¹ is pyridinyl, quinolinyl or isoquinolinyl,

- R^2 = unsubstituted phenyl, B=pyridinyl and L^1 is pyridinyl, quinolinyl or isoquinolinyl,
- R^2 = unsubstituted phenyl, B = naphthyl and L^1 is pyridinyl, quinolinyl or isoquinolinyl,
- R^2 = unsubstituted pyridinyl, B= phenyl and L^1 is pyridinyl, quinolinyl or isoquinolinyl,
- R^2 = unsubstituted pyridinyl, B= pyridinyl and L^1 is pyridinyl, quinolinyl or isoquinolinyl,
- R^2 = unsubstituted pyridinyl, B= naphthyl and L^1 is pyridinyl, quinolinyl or isoquinolinyl,
 - R²= substituted phenyl, B=phenyl and L¹ is pyridinyl, quinolinyl or isoquinolinyl,
 - R²= substituted phenyl, B=pyridinyl and L¹ is pyridinyl, quinolinyl or isoquinolinyl,
 - R^2 = substituted phenyl, B = naphthyl and L^1 is pyridinyl, quinolinyl or isoquinolinyl,
 - R²= substituted pyridinyl, B= phenyl and L¹ is pyridinyl, quinolinyl or isoquinolinyl,
- R²= substituted pyridinyl, B= pyridinyl and L¹ is pyridinyl, quinolinyl or isoquinolinyl, or
 - R²= substituted pyridinyl, B= naphthyl and L¹ is pyridinyl, quinolinyl isoquinolinyl.

35.—37. (Canceled)

38. (Currently Amended) A method according to claim 29 35, wherein the solid cancer is a <u>tumor earcinoma of the lungs</u>, panereas, thyroid, bladder or colon.

39. (Currently Amended) A compound of Formula I or a pharmaceutically acceptable salt thereof

wherein A is

wherein R^2 is phenyl substituted by one or more substituents independently selected from halogen, up to per-halosubstitution an V_n , wherein n=0-1 and each V is independently $-NO_2$, $-NHC(O)CH_3$, $-NH_2$, CH_3 , $-OCH_3$ or $-SO_2CH_3$;

B is phenyl, substituted by $M-L^1$ and is optionally substituted by one or more substituents independently selected from the group consisting of halogen, up to perhalosubstitution and X_n

wherein n is 0–2 and each X is independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)NR⁵R^{5'}, -C(O)R⁵, -NO₂, -OR⁵, -SR⁵, -NR⁵R^{5'}, -NR⁵C(O)OR^{5'}, -NR⁵C(O)OR^{5'}, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₇-C₂₄ alkaryl, C₃-C₁₃ heteroaryl, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₂-C₁₀ alkenyl, substituted C₃-C₁₀ cycloalkyl, up to perhalosubstituted C₆-C₁₄ aryl, up to per-halosubstituted C₃-C₁₃ heteroaryl and substituted C₄-C₂₃ alkheteroaryl and -M-L¹;

where X is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)R⁵, -C(O)NR⁵R^{5'}, -OR⁵, -SR⁵, -NR⁵R^{5'}, -NO₂, -NR⁵C(O)R^{5'}, -NR⁵C(O)OR^{5'} and halogen up to perhalosubstitution;

wherein R^5 and $R^{5'}$ are independently selected from H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_3 - C_{10} cycloalkyl, C_6 - C_{14} aryl, C_3 - C_{13} heteroaryl, C_7 - C_{24} alkaryl, C_4 - C_{23} alkheteroaryl, up to per-halosubstituted C_1 - C_{10} alkyl, up to per-halosubstituted C_2 - C_{10} alkenyl, up to per-halosubstituted C_3 - C_{10} cycloalkyl, up to per-halosubstituted C_6 - C_{14} aryl and up to per-halosubstituted C_3 - C_{13} heteroaryl,

wherein M is -O-, -S-, -N(R⁵)-, -(CH₂)-_m, -C(O)-, -CH(OH)-, -(CH₂)_mO-, -NR⁵C(O)NR⁵R⁵²-, -NR⁵C(O)-, -C(O)NR⁵, -O(CH₂)_m-, -(CH₂)_mS-, -(CH₂)_mN(R⁵)-, -CHX^a-, -CX^a₂-, -S-(CH₂)_m- or -N(R⁵)(CH₂)_m-, m = 1-3, and X^a is halogen; and

 L^1 is pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, quinolinyl, isoquinolinyl, phthalimidinyl, furyl, thienyl, pyrrolyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, benzofuryl, benzothienyl, indolyl, benzopyrazolyl, benzoxazolyl, benzothiazolyl or benzisothiazolyl, optionally substituted by halogen up to per-halosubstitution and optionally substituted by Z_{n1} ,

wherein n1 is 0 to 3 and each Z is independently -CN, -CO₂R⁵, -C(O)NR⁵R⁵, -C(O)NR⁵R⁵, -NO₂, -OR⁵, -SR⁵, -NR⁵R⁵, -NR⁵C(O)OR⁵, -C(O)R⁵, NR⁵C(O)R⁵, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₃-C₁₀ cycloalkyl, substituted C₇-C₂₄ alkaryl or substituted C₄-C₂₃ alkheteroaryl;

wherein if Z is a substituted group, it is substituted by the one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)NR⁵R^{5'}, -OR⁵, -SR⁵, -NO₂, -NR⁵R^{5'}, -NR⁵C(O)R^{5'} and -NR⁵C(O)OR^{5'}.

40. (Previously Presented) A compound which is

- N-(1-(3-aminophenyl)-3-tert-butyl-5-pyrazolyl)-N'-(4-phenoxyphenyl) urea;
- N-(1-(3-actamidophenyl)-3-tert-butyl-5-pyrazolyl)-N'-(4-phenoxyphenyl) urea;
- N-(1-(3-nitrophenyl)-3-tert-butyl-5-pyrazolyl)-N'-(4-phenoxyphenyl)urea;
- N-(1-(phenyl)-3-tert-butyl-5-pyrazolyl)-N'-(4-(4-pyridinyl methyl)phenyl) urea;
- N-(1-(4 pyridinyl)-3-tert-butyl-5-pyrazolyl)-N'-(4-(4-pyridinyl methyl)phenyl) urea;
- N-(1-(2, 5 dichloro phenyl)-3-tert-butyl-5-pyrazolyl)-N'-(4-(4-pyridinyl methyl)phenyl) urea;
- N-(1-(4-fluoro phenyl)-3-tert-butyl-5-pyrazolyl)-N'-(4-(4-pyridinyl methyl)phenyl) urea;
- N-(1-(2-methyl phenyl)-3-tert-butyl-5-pyrazolyl)-N'-(4-(4-pyridinyl methyl)phenyl) urea;
- N-(1-(3 fluoro phenyl)-3-tert-butyl-5-pyrazolyl)-N'-(4-(4-pyridinyl methyl)phenyl) urea;
- N-(1-(4-methylsulfoxy phenyl)-3-tert-butyl-5-pyrazolyl)-N'-(4-(4-pyridinyl methyl)phenyl) urea;

- N-(1-(4-nitro phenyl) -3-tert-butyl-5-pyrazolyl)-N'-(4-(4-pyridinyl methyl)phenyl) urea;
- N-(1-(3-methoxy phenyl) -3-tert-butyl-5-pyrazolyl)-N'-(4-(4-pyridinyl methyl)phenyl) urea;
- N-(1-(3-amino phenyl) -3-tert-butyl-5-pyrazolyl)-N'-(4-(4-pyridinyl methyl)phenyl) urea;
- N-(1-(3-nitro phenyl) -3-tert-butyl-5-pyrazolyl)-N'-(4-(4-pyridinyl methyl)phenyl) urea;
- N-(1-(3-amino phenyl) -3-tert-butyl-5-pyrazolyl)-N'-(4-(4-pyridinyl thio)phenyl) urea.