Introducción a los espacios de Hilbert

Prueba Objetiva Calificable

Ejercicio 1

Sean \mathcal{H} un espacio prehilbertiano y $x, y \in \mathcal{H}$ tales que $x, y \neq 0$. Se tiene que $||x + y||^2 = ||x||^2 + ||y||^2$ si y sólo si:

- a) $x \in y$ son ortogonales.
- b) $x \in y$ son linealmente dependientes.
- c) Ninguna de las otras dos opciones.

Ejercicio 2

Sea $F = \{x = \{x_n\}_{n=1}^{\infty} \in \ell^2(\mathbb{N}) : x_{2n} = 0, \ \forall n \in \mathbb{N}\}.$ Se tiene:

- a) F no es un subespacio cerrado de $\ell^2(\mathbb{N})$.
- b) $F^{\perp} = \{0\}.$
- c) Ninguna de las otras dos opciones.

Ejercicio 3

En el espacio vectorial $\mathcal{C}[-1,1]$ de las funciones continuas

 $f: [-1,1] \to \mathbb{C}$ con el producto interno $\langle f,g \rangle = \int_{-1}^{1} f(t)\overline{g(t)} dt$, sea $F = \{ f \in \mathcal{C}[-1,1] \colon f(0) = 0 \}$. Se tiene:

- a) F es un subespacio cerrado de $\mathcal{C}[-1,1]$.
- b) $F^{\perp} = \{0\}.$
- c) Ninguna de las otras dos opciones.

Ejercicio 4

Sean \mathcal{H} un espacio de Hilbert y $T \colon \mathcal{H} \to \mathcal{H}$ un operador lineal acotado. La implicación, $\langle T(x), x \rangle = 0$, $\forall x \in \mathcal{H} \Longrightarrow T = 0$, es cierta en los siguientes casos:

p; si \mathcal{H} es real.

q; si \mathcal{H} es complejo.

r; si $T = T^*$.

- a) En los casos p y q.
- b) En los casos q y r.
- c) Ninguna de las otras dos opciones.

Ejercicio 5

Sean \mathcal{H} un espacio de Hilbert real y $T: \mathcal{H} \to \mathcal{H}$ un operador lineal acotado tal que $T^2 = 0$. Se tiene:

- a) $\ker(T) \cap \ker(T^*) = \ker(T + T^*).$
- b) T = 0.
- c) Ninguna de las otras dos opciones.

Soluciones

Ejercicio 1

Sabemos por el teorema de Pitágoras que si x e y son ortogonales entonces $||x+y||^2 = ||x||^2 + ||y||^2$. Sin embargo, si $||x+y||^2 = ||x||^2 + ||y||^2$, desarrollando se obtiene $||x||^2 + ||y||^2 + 2\operatorname{Re}\langle x,y\rangle = ||x||^2 + ||y||^2$, es decir, $\operatorname{Re}\langle x,y\rangle = 0$. Por tanto, si \mathcal{H} es complejo, puede ocurrir que $\langle x,y\rangle = \operatorname{Re}\langle x,y\rangle + \operatorname{Im}\langle x,y\rangle i = \operatorname{Im}\langle x,y\rangle i \neq 0$ y por tanto x e y no sean ortogonales.

Si x e y son linealmente dependientes entonces $x=\alpha y$ con $\alpha \neq 0$ y se tiene $||x+y||^2=||(\alpha+1)y||^2=|\alpha+1|^2||y||^2$ mientras que $||x||^2+||y||^2=(|\alpha|^2+1)||y||^2$. Como no es cierto para cualquier $\alpha\in\mathbb{C}$ que $|\alpha+1|^2=|\alpha|^2+1$, no se puede concluir que $||x+y||^2=||x||^2+||y||^2$ si x e y son linealmente independientes.

En consecuencia la opción correcta es la c).

Ejercicio 2

Veamos que F es cerrado. Sea $\{x^{(m)}\}_{m=1}^{\infty}$ una sucesión convergente a x en $\ell^2(\mathbb{N})$ siendo para cada $n, x^{(m)} \in F$, $x^{(m)} = \{x_1^{(m)}, x_2^{(m)}, x_3^{(m)}, \dots, x_n^{(m)}, \dots\}$, con $x_{2k}^{(m)} = 0$ para todo $k \in \mathbb{N}$, y $x = \{x_n\}_{n=1}^{\infty}$. Como para cada subíndice k se tiene

$$|x_k^{(m)} - x_k| \le ||x^{(m)} - x||_2$$

para k, la sucesión de números complejos $\{x_k^{(m)}\}_{m\in\mathbb{N}}$ converge a x_k . Por tanto, $x_{2k}=\lim_m x_{2k}^{(m)}=0$ y en consecuencia, $x\in F$.

Obviamente $F^{\perp} \neq \{0\}$. Por ejemplo, $e = \{0, 1, 0, 0, 0 \ldots\} \in F^{\perp}$ pues para todo $x \in F \ \langle e, x \rangle = x_2 = 0$.

En consecuencia la opción correcta es la c).

Ejercicio 3

Veamos que F no es cerrado. Sea

$$f_n(t) = \begin{cases} n|t| & \text{si } |t| \le \frac{1}{n} \\ 1 & \text{si } |t| > \frac{1}{n} \end{cases}$$

Obviamente $f_n \in F$ y además la sucesión $\{f_n\}$ converge a la función constante $f \equiv 1$ pues

$$||f - f_n||^2 = \int_{-1}^{1} |f(t) - f_n(t)|^2 dt = 2 \int_{0}^{1/n} (1 - nt)^2 dt = \left[t + \frac{1}{3}n^2t^3 - nt^2\right]_{0}^{1/n} = \frac{1}{3n}$$

Sin embargo $f \notin F$ pues f(0) = 1.

Veamos que $F^{\perp} = \{0\}$. Sea $f \in F^{\perp}$. Si fuera f no nula existe $t \in [-1,1]$ tal que f(t) = 0. Además si f(0) = 0 resulta que $f \in F$ y en consecuencia $||f||^2 = \langle f, f \rangle = 0$ y por tanto f = 0. Así pues $f(0) \neq 0$. Como f es continua sea n_0 tal que $f(x) \neq 0$ si $x \in [-1/n_0, 1/n_0]$. Sean las funciones continuas g_n definidas mediante

$$g_n(t) = \begin{cases} n|t|f(t) & \text{si } |t| \le \frac{1}{n} \\ f(t) & \text{si } |t| > \frac{1}{n} \end{cases}$$

Obviamente $g_n \in F$ y además para todo $n \ge n_0$ se tiene que

$$\int_{|t|>1/n} |f(t)|^2 \le \langle f, g_n \rangle = 0$$

y en consecuencia f(t) = 0 para todo $|t| \ge 1/n$. Por tanto, f = 0.

En consecuencia la opción correcta es la b).

Ejercicio 4

p: En el caso real la implicación no tiene por qué ser cierta. Véase el ejemplo del libro al final de la p.130.

q: En el caso complejo, la implicación se deduce del lema 6.28, tomando S=0.

r: Sabemos que si T es autoadjunto entonces $||T|| = \sup_{||x||=1} |\langle T(x), x \rangle|$. En consecuencia, si T es autoadjunto y $\langle T(x), x \rangle = 0$, $\forall x \in \mathcal{H}$ entonces ||T|| = 0 y por tanto T = 0.

La implicación es cierta en los casos q y r.

Ejercicio 5

La inclusión $\ker(T) \cap \ker(T^*) \subset \ker(T+T^*)$ es evidente pues si $x \in \ker(T) \cap \ker(T^*)$ entonces $T(x) = T^*(x) = 0$, de modo que $(T+T^*)(x) = 0$ y por tanto $x \in \ker(T+T^*)$.

Inversamente, si $x \in \ker(T + T^*)$ entonces $T^*(x) = -T(x)$. Se tiene:

$$||T^*(x)||^2 = \langle T^*(x), T^*(x) \rangle = -\langle T^*(x), T(x) \rangle = -\langle x, T(T(x)) \rangle = 0$$

De modo que $T^*(x) = 0$ y en consecuencia $T(x) = -T^*(x) = 0$. Por tanto, $x \in \ker(T) \cap \ker(T^*)$.

En general, no se tiene que cumplir que T=0. Por ejemplo si $\{e_n\}_{n=1}^{\infty}$ es una base ortonormal de \mathcal{H} y se define T mediante $T(e_1)=e_2$ y $T(e_k)=0$ para todo $k \in \mathbb{N} \setminus \{1\}$, T define un operador lineal acotado tal que $T^2=0$ y sin embargo $T \neq 0$.

En consecuencia la opción correcta es la a).