Node-screening tests for the ℓ_0 -penalized least-squares problem

Théo Guyard*, Cédric Herzet[†], Clément Elvira[‡]

*Applied Mathematics Department, INSA Rennes, France | †SIMSMART team, INRIA Rennes-Bretagne Atlantique, France | ‡SCEE team, CentraleSupelec Rennes, France

Objectives

Reduce the optimization time of a Branchand-Bound (BnB) algorithm tailored to the ℓ_0 penalized least-squares problem by detecting nodes of the decision tree that cannot yield a global optimizer.

Introduction

• Sparse decomposition: Find an approximation of a vector **y** as the *linear combination* of a few columns of a matrix **A**.

ℓ_0 -penalized least-squares

$$\begin{aligned} &\|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2 & \|\mathbf{x}\|_0 \\ &\text{Ensures data-fidelity} & \text{Promotes sparsity} \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

• Characteristics:

- NP-hard problem due to the ℓ_0 -norm
- Mixed-Integer Program reformulation
- Addressable with BnB algorithms
- "Big-M" to construct bounded relaxations

• Recent advances by Atamturk et. al.:

- Screening tests to detect zeros and non-zeros in the optimizers of the problem
- Dimensionality reduction in pre-processing

• Our contributions:

- Node-screening tests to detect zeros and non-zeros in the optimizers of any node problem
- Dimensionality reduction at any step of the optimization process
- Larger improvement in the solving time

BnB algorithms

• Generic procedure:

Algorithm 1: BnB algorithm

Create a root node ν^0 and initialize $\mathcal{Q} = \{\nu^0\}$ while $\mathcal{Q} \neq \emptyset$ do

- 1) Select a new node ν in \mathcal{Q}
- 2) Find a lower and an upper bound on the node problem objective value
- 3) Update the best upper bound known if $node\ LB \leq best\ UB\ \mathbf{then}$
 - 4) Create child nodes of ν by fixing new constraints and push them in \mathcal{Q}
- end

5) Remove ν from \mathcal{Q}

end

return any node yielding the best UB

• Efficiency of the algorithm:

- Tightness of the bounds computed
- Ability to process nodes quickly
- Number of nodes processed

• Particularized to our problem:

- Binary tree with decision about the nullity of an entry at each node
- Each node is uniquely defined by the set of entries forced to zero and to non-zero

$\begin{array}{c} \nu^{(0)} \\ x_{i_1} = 0 \\ \hline \nu^{(1)} \\ x_{i_2} = 0 \\ \hline \nu^{(2)} \\ x_{i_2} = 0 \\ \hline \nu^{(3)} \\ \hline \nu^{(4)} \\ \hline \nu^{(5)} \\ \hline \nu^{(6)}$

Node-screening tests

Underlying idea:

- i) For many nodes, it is obvious that they cannot yield a global solution (too large penalty, etc...)
- ii) BnB is an exact method so we have to prove that they can be pruned safely
- iii) Standard pruning methodology: solve a convex relaxation. This is expensive!
- iv) Why not trying weaker but cheaper methods?

• Differences with the classical method:

- Test any unfixed index, no branching rule
- No computational overhead to prune nodes
- Can fix multiple variables simultaneously

Main ingredients

- At each node, a convex relaxation is solved
- We construct the dual of this relaxation
- Duals are very similar between two nodes
- At node ν , we use this relation to hopefully prune the child node of ν constructed by branching on a given index

Numerical results

• Data generation:

- 1) Set (m, n) = (500, 1000)
- 2) Generate a random matrix $\mathbf{A} \in \mathbf{R}^{m \times n}$ with a correlation ρ between the columns
- 3) Generate a k-sparse vector $\mathbf{x}^{\dagger} \in \mathbf{R}^n$
- 4) Set $\mathbf{y} = \mathbf{A}\mathbf{x}^{\dagger} + \text{noise with 10dB SNR}$
- 5) Calibrate λ and M statistically to recover \mathbf{x}^{\dagger}

Concurrent methods:

- Direct method using CPLEX
- Tailored BnB algorithm from Mhenni et. al.
- Tailored BnB algorithm with node-screening

		Direct			BnB			BnB + node-scr.		
ρ	k	N	Τ	$F \mid$	N	Τ	F	N	Τ	F
Low	5	0.1	25.9	0	0.1	1.5	0	0.05	0.7	0
	7	0.3	60.8	0	0.2	5.1	0	0.1	3.0	0
	9	0.8	102.6	10	0.5	15.6	$\mid 0 \mid$	0.4	9.8	0
High	5	1.4	10.2	0	1.0	6.4	0	0.7	4.2	0
	7	17.6	106.5	0	10.5	79.3	0	7.9	52.2	0
	9	80.7	353.4	50	47.8	346.4	48	41.2	267.0	40

Table: (N): Nodes explored $\times 10^{-3}$. (T): Solving time in sec. (F): Number of instances not solved within 10^3 sec.

Observations:

- BnB + node-scr. has the best performances
- Time gain is larger than node gain
- Double kiss-cool effect: the bounding step is performed all the faster as many variables are fixed

Take home message

In a BnB tailored to a sparse problem, there is not always need to perform heavy computations to prune nodes. Many nodes can be easily pruned by performing simple and cheap tests like the node-screening one.