In [2]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
```

In [3]:

```
1 mpg=sns.load_dataset('mpg')
2 mpg
```

Out[3]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	n
0	18.0	8	307.0	130.0	3504	12.0	70	usa	chev che m
1	15.0	8	350.0	165.0	3693	11.5	70	usa	ł sk
2	18.0	8	318.0	150.0	3436	11.0	70	usa	plym sat
3	16.0	8	304.0	150.0	3433	12.0	70	usa	rebe
4	17.0	8	302.0	140.0	3449	10.5	70	usa	tı
			•••			•••			
393	27.0	4	140.0	86.0	2790	15.6	82	usa	mus
394	44.0	4	97.0	52.0	2130	24.6	82	europe	pi
395	32.0	4	135.0	84.0	2295	11.6	82	usa	d _i ram _i
396	28.0	4	120.0	79.0	2625	18.6	82	usa	ra
397	31.0	4	119.0	82.0	2720	19.4	82	usa	che
308 rows x 0 columns									

398 rows × 9 columns

localhost:8888/notebooks/MPG ML Project.ipynb

In [4]:

```
mpg_data=mpg[['mpg','displacement','horsepower','weight']]
mpg_data
```

Out[4]:

	mpg	displacement	horsepower	weight
0	18.0	307.0	130.0	3504
1	15.0	350.0	165.0	3693
2	18.0	318.0	150.0	3436
3	16.0	304.0	150.0	3433
4	17.0	302.0	140.0	3449
393	27.0	140.0	86.0	2790
394	44.0	97.0	52.0	2130
395	32.0	135.0	84.0	2295
396	28.0	120.0	79.0	2625
397	31.0	119.0	82.0	2720

398 rows × 4 columns

In [5]:

```
1 mpg_data.isna().sum()
```

Out[5]:

mpg 0
displacement 0
horsepower 6
weight 0
dtype: int64

In [6]:

```
1 mpg_data.dropna(axis = 0, inplace=True)
```

F:\RC SLOG\Anaconda\lib\site-packages\ipykernel_launcher.py:1: SettingWithCo pyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

"""Entry point for launching an IPython kernel.

```
In [7]:
```

```
1 mpg_data.isna().sum()
```

Out[7]:

In [8]:

```
1 target=mpg_data['mpg']
2
3 features=mpg_data[['displacement','horsepower','weight']]
```

In [9]:

```
1 target.head()
```

Out[9]:

0 18.0 1 15.0 2 18.0 3 16.0 4 17.0

Name: mpg, dtype: float64

In [10]:

1 features.head()

Out[10]:

	displacement	horsepower	weight
0	307.0	130.0	3504
1	350.0	165.0	3693
2	318.0	150.0	3436
3	304.0	150.0	3433
4	302.0	140.0	3449

In [12]:

```
1 X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.2)
```

```
In [13]:
```

```
1 X_train.head()
```

Out[13]:

	displacement	horsepower	weight
352	98.0	65.0	2380
171	134.0	96.0	2702
148	116.0	75.0	2246
106	350.0	180.0	4499
167	97.0	75.0	2171

In [14]:

```
1 y_train.head()
```

Out[14]:

352 29.9

171 24.0

148 26.0

106 12.0

167 29.0

Name: mpg, dtype: float64

In [15]:

```
1 features.isna().sum()
```

Out[15]:

displacement 0
horsepower 0

weight 0

dtype: int64

In [16]:

```
1 model=LinearRegression()
```

2 model.fit(X_train,y_train)

Out[16]:

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=Fal
se)

In [17]:

```
1 model.coef_
```

Out[17]:

```
array([-0.00584122, -0.0465076, -0.00507419])
```

```
In [18]:
 1 model.intercept_
Out[18]:
44.527119619438025
In [19]:
   pred = model.predict(X_test)
 2
    pred[:5]
 3
Out[19]:
array([11.40061004, 29.85728045, 20.87940225, 30.75654722, 24.28959249])
In [20]:
 1 y_test[:5]
Out[20]:
39
       14.0
266
       30.0
34
       16.0
       38.0
385
276
       21.6
Name: mpg, dtype: float64
In [21]:
 1 r2_score(y_test, pred)
Out[21]:
0.6430187463639594
In [22]:
 1 import pickle
 2 fp=open('mpg_df.pk1','wb')
 3 pickle.dump(model,fp)
 4 fp.close()
```

In [193]:

```
import tkinter as tk
 2
   import PIL.Image
   import PIL.ImageTk
 5
   with open('mpg_df.pk1', 'rb') as fp:
 6
       model = pickle.load(fp)
 7
       fp.close()
 8
9
   root=tk.Tk()
10
   root.title('MPG Calculator')
11
12
   canvas = tk.Canvas(root, height=500, width=600)
13
14 | im = PIL.Image.open("F:\RC SLOG\Python\car.jpg")
15
   photo = PIL.ImageTk.PhotoImage(im)
16
   background_label = tk.Label(root, image=photo)
   background_label.place(relx=0, rely=0, relwidth=1, relheight=1)
17
18
19
   canvas.pack()
20
21 | dis=tk.IntVar()
22 hpower=tk.IntVar()
23
   weight=tk.IntVar()
24
25
   def clear():
26
       dis.set('')
27
       hpower.set('')
       weight.set('')
28
29
   clear()
30
31
   l=tk.Label(root,text='MPG Calculator', bd=2)
   1.config(bg='#3E3E43',fg='#FFFFFF', font=('Courier', 20, 'bold'))
   1.place(relx=0.5, rely=0.05, relwidth=0.5, relheight=0.1, anchor='n')
33
34
   11 = tk.Label(root, text="Displacement".center(20)+" : ")
35
   11.config(bg='#eeeeee', fg='#333333', font=('Courier', 18, 'bold'))
   11.place(relx=0.025, rely=0.6, relwidth=0.4, relheight=0.1)
37
38
39
   e1 = tk.Entry(root,textvariable=dis,bg='#3E3E43',fg='#FFFFFF',font=('Courier', 18))
40
   e1.place(relx=0.4, rely=0.6, relwidth=0.15, relheight=0.1)
41
42
   12 = tk.Label(root, text="Horse Power".center(20)+" : ")
43
   12.config(bg='#eeeeee', fg='#333333', font=('Courier', 18, 'bold'))
   12.place(relx=0.025, rely=0.7, relwidth=0.4, relheight=0.1)
44
45
46
   e2 = tk.Entry(root,textvariable=hpower,bg='#3E3E43',fg='#FFFFFF',font=('Courier', 18))
47
   e2.place(relx=0.4, rely=0.7, relwidth=0.15, relheight=0.1)
48
   13 = tk.Label(root, text="Weight".center(20)+" : ")
49
50
   13.config(bg='#eeeeee', fg='#333333', font=('Courier', 18, 'bold'))
51
   13.place(relx=0.025, rely=0.8, relwidth=0.4, relheight=0.1)
52
53
   e3 = tk.Entry(root,textvariable=weight,bg='#3E3E43',fg='#FFFFFF',font=('Courier', 18))
54
   e3.place(relx=0.4, rely=0.8, relwidth=0.15, relheight=0.1)
55
56
   b1 = tk.Button(root, text='Generate MPG', command=lambda : predict())
   b1.config(bg='#eeeeee', fg='black', font=('Courier', 18, 'bold'),border=5)
57
58
   b1.place(relx=0.58, rely=0.8, relwidth=0.4, relheight=0.1)
59
```

```
60
   def predict():
61
       d = dis.get()
       hp = hpower.get()
62
       w = weight.get()
63
       features = [ [ d, hp, w ] ]
64
       clear()
65
66
       m = model.predict(features)[0]
       print("MPG of Car : ", m)
67
68
       win = tk.Toplevel(root)
       win.grab_set()
69
       text = f"""
70
71
       Displacement : {d}
72
       Horse Power : {hp}
73
       Weight
                       : {w}
74
       MPG
                       : {m:.2f}
75
76
       msg = tk.Message(win, text=text)
        msg.config(bg='#3E3E43', fg='#FFFFFF', font=('monospace', 25, 'bold'))
77
       msg.pack(fill=tk.BOTH, expand=tk.YES)
78
79
80
        eb = tk.Button(win, text='Exit', command=lambda : win.destroy())
81
        eb.config(fg='black', bg='#eeeeee', font=('monospace', 25, 'bold'),border=5)
82
       eb.pack(fill=tk.X, expand=tk.YES)
83
84
       eb.focus()
85
86
   root.mainloop()
```

MPG of Car: 28.855110206987586

Output

In []:

1