Systems Development

Lecture 9: Component Design and Model Component

Contents

- Summary of last lecture
- Component design
- ▶ The Model Component activity
- ▶ Solution to Written exam 2018-01

Contents

- Summary of last lecture
 - Why are we making the descriptions?
 - Architectural design
 - The Criteria activity
 - The Components activity
- Component design
- ▶ The Model Component activity
- ▶ Solution to Written exam 2018-01

Architectural Design: Key Concepts

System:

A collection of components that implements modeling requirements, functions, and interfaces.

Architecture:

A general structure that is later developed further

Architectural Design: Summary

Purpose	To structure a computerized system.
Concepts	 Criterion: A preferred property of an architecture. Component architecture: A system structure composed of interconnected components. Process architecture: A system-execution structure
Principles	 composed of interdependent processes. Define and prioritize criteria. Bridge criteria and technical platform. Evaluate designs early.
Results	Structures for a system's components and processes.

Criteria: Result

- A collection of prioritized criteria
- Reasons for the priority of each criterion

Criterion	Very im- portant	Im portant	Less im- portant	Irrelevant	Easily fulfilled
Usable	Х				
Secure			Х		
Efficient					Х
Correct		х		 - - -	
Reliable			Х		
Maintainable		1	Х	1 - - -	
Testable		 	Х	 	
Flexible			Х		
Comprehensible		Х		1 - - -	
Reusable		 	Х	 	
Portable	Х				
Interoperable				Х	

Criteria: Summary

Purpose	To set design priorities.
Concepts	 Criterion: A preferred property of an architecture. Conditions: The technical, organizational, and human opportunities and limits involved in performing a task.
Principles	 A good design has no major weaknesses. A good design balances several criteria. A good design is usable, flexible, and comprehensible.
Results	A collection of prioritized criteria.

Components: Result

- A structural perspective
- Separates concerns in a system
- Emphasizes comprehensibility and flexibility

Key Concept: Component

A collection of program parts

- Constitutes a totality
- Has a well-defined responsibility
- Smallest: a class
- Largest: a system
- Example:
 This component has the responsibility for reading the buttons and updating the display

Pattern: The Generic Architecure

- The generic architecture reflects the division of the context into problem domain and application domain
- "Technical platform" is an extension and encapsulation of the underlying technical platform

Components: Summary

Purpose	To create a comprehensible and flexible system structure
Concepts	Component architecture: a system structure of interconnected components.
	 Component: a collection of program parts that constitutes a whole and has well-defined responsibilities.
Principles	 Reduce complexity by separating concerns. Reflect stable context structures. Reuse existing components.
Result	A class diagram with specifications of the complex components.

Quiz 8

Quiz 8

Average

3.60 (of 5.00) of 41 finished attempts (of 159)

Best result (0.67-1.00)

1 (0.85) Which are the general criteria for design that OOA&D focuses on

3 (0.73) Which of the following statements are true?

Middle result (0.34-0.66)

2 (0.66) For the system controlling the train traffic at Aalborg Station, the following criteria is/are very important

4 (0.50) Which statements are true for the client-server architecture?

Worst result (0.00-0.33)

None

Question I and 2

Which are the general criteria for design that OOA&D focuses on:
Select one or more:
☑ a. comprehensible
☑ b. usable
☐ c. efficient
☐ d. testable
☑ e. flexible
☐ f. correct
For the system controlling the train traffic at Aalborg Station, the following criteria is/are very important:
Select one or more:
Scient one of more.
☑ a. Correct
☑ a. Correct
☐ a. Correct ☐ b. Interoperable
☑ a. Correct ☐ b. Interoperable ☐ c. Efficient ☐

Question 3 and 4

Which of the following statements are true?
Select one or more: ☑ a. in an open-strict architecture a layer can use operations from all layers below
☐ b. in an open-strict architecture a layer can use operations from all layers above
$\hfill \Box$ c. in an open-relaxed architecture a layer can only use operations from layers below
☑ d. in a closed-strict architecture a layer can only use operations from the layer immediately below
$\ensuremath{\square}$ e. in an closed-relaxed architecture a layer can only use operations from the layers immediately above and below
☑ f. in an open-relaxed architecture a layer can use operations from all layers above and below
g. in an closed-strict architecture a layer can use operations from the layers immediately below and above
☐ h. in an closed-relaxed architecture a layer can only use operations from the layer immediately above

Which statements are true for the client-server architecture?

Select one or more:

☑ a. the architecture of both the client and the server may consist of layers

□ b. a server never contains parts of the model

☑ c. both the client and server includes interfaces

☑ d. the server's responsibility is to provide what is common for the clients

□ e. the clients' responsibility is to provide information to the server(s)

□ f. a client never contains functionality

- Closed architecture: only apply operations from an adjacent layer
 Open arcitecture: apply operations from any other layer
- Strict architecture: only apply operations from a layer below Relaxed architecture: apply operation from layer both above and below

Question 5

Systems Development 15

Contents

- Summary of last lecture
- Component design
 - Results
 - Key concepts
 - Activities
- ▶ The Model Component activity
- ▶ Solution to Written exam 2018-01

Component Design: Results

- Details in individual components
- Connections between components
- Iterate architecture
 - Use and revise division into components

Key Concepts: From Architecture to Components

Principles:

- Respect the component architecture
- Adapt component designs to the technical possibilities

Component Design: Activities

Model component
Function component
Connect components
... more components

Component Design: Summary

Purpose	To determine an implementation of requirements within an architectural framework.
Concepts	 Component: a collection of program parts that constitutes a whole and has well-defined responsibilities.
	Connection: the implementation of a dependency relation.
Principles	 Respect the component architecture. Adapt component designs to the technical possibilities.
Result	A description of the system's components.

Contents

- Summary of last lecture
- Component design
- ▶ The Model Component activity
 - Results
 - Key concepts
 - Activities
- ► Solution to Written exam 2018-01

Model Component: Results

- Point of departure in the class diagram from the problem domain analysis
- Extended with representation of the data contents of the behavior described in the statechart diagrams
- The statechart diagrams are no longer needed for implementation of the model component

Key Concepts: From Totality to Part

Component:

A collection of program parts that constitutes a whole and has well-defined responsibilities

- Responsibility of the model component:
 Maintain an updated representastion of the problem domain
- "Remember" what has happened in the problem domain

Model Component: Activities

Example: Bank System

Analysis model:

- Class diagram
- Statechart diagrams
- Event table

Event	Customer	Account
Credit approval	+	
Change address	*	
Account opened	*	+
Account closed	*	+
Deposit	*	*
Withdraw	*	*

What do we want to remember here?

Represent Private Events (I)

Sequence and selection

- Represent these events as a state attribute in the class described by the statechart diagram.
- Every time one of the involved events occurs, the system shall assign a new value to the state attribute.
- Integrate the attributes of the involved events into the class.

Iteration

- Represent these events as a new class; attach it to the class described by the statechart diagram using an aggregation structure.
- For each iteration that occurs, the system shall generate a new object from the class.
- Integrate the event attributes into the new class.

Represent Private Events (2)

- The event 'change address' is private to the class Customer. It is an iteration in the statechart diagram of the class
- Represent this event as a new class
- The event 'credit approval' is private to the class Customer. It is part of a sequence in the statechart diagram
- Represent this event as an attribute

Represent Common Events (I)

Common events:

- If the event is involved in the statechart diagrams in different ways, represent it in relation to the class that offers the simplest representation.
- If the event is involved in the statechart diagrams in the same way, you must weigh possible representations against each other.

Represent Common Events: Solution A

- The events 'deposit' and 'withdraw' are iterations in both the Customer and Account classes
- One option is to represent these events as new classes under Account

Represent Common Events: Solution B

Alternatively, the events 'deposit' and 'withdraw' can be represented as new classes under Customer

- B implies a complex structure (two associations across)
- ▶ Therefore, we select solution A

Restructure Classes (I)

- The revised class diagram represents the same information as the statechart diagrams
- The class diagram can often be simplified without loss of information:
 - Generalization
 - Association
 - Embedded iterations

Restructure Classes (2)

Unnecessary association

How do the statechart diagrams look?

Restructure Classes (3)

Unnecessary classes with embedded iteration

Model Component: Summary

Purpose	To represent a model of a problem domain.
Concepts	 Model component: a part of a system that implements a problem domain model.
	Attribute: a descriptive property of a class or an event.
Principles	 Represent events as classes, structures, and attributes.
	 Choose the simplest representation of events.
Result	A class diagram for the model component.

Contents

- Summary of last lecture
- Component design
- ▶ The Model Component activity
- ▶ Solution to Written exam 2018-01