PENGOLAHAN CITRA DIGITAL

High Pass Filter & Low Pass Filter

Tugas Ke-2

Disusun Oleh:

Nama : Suprianto

Nim : 5301414005

Dosen : Dr. Hari Wibawanto, M.T

Kuntoro Adi Nugroho, S.T., M.Eng

PENDIDIKAN TEKNIK ELEKTRO-TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS NEGERI SEMARANG 2017

1. High Pass Filter

```
import numpy as np #untuk memanggil library numpy

import watplotlib.pyplot as plt

from scipy import ndimage #untuk memanggil library andimage dari scipy

import matplotlib.pyplot as plt

from scipy import ndimage #untuk memanggil library ndimage dari scipy

img = cv2.imread('cat.jpg') #untuk memanggil gambar cat.jpg, yang akan ditampilkan

gray = cv2.cvtColor(img, cv2.cOLOR. BGRZGRAY) #untuk mengkonvert gambar menjadi graysclae

data = np.array(gray, dtype=float)

kernel = np.array([[-1, -1, -1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1, -1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 2, 1, -1],

[-1, 1, 1, 2, 1, -1],

[-1, 1
```

1. Memanggil Library yang digunakan

```
import numpy as np
import cv2
import matplotlib.pyplot as plt
from scipy import ndimage
```

Program diatas untuk memanggil library yang digunakan dalam python, seperti libtrary numpy, cv2, matplot, scipy untuk memproses gambar.

2. Konversi gambar

```
7 img = cv2.imread('cat.jpg') #untuk men
8 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
9 data = np.array(gray, dtype=float)
```

Memanggil gambar yang akan di filter, nama gambar adalah "cat.jpg" serta mengubah gambar menjadi grayscale.

3. Filter Kernel

Menggunakan kernel berukuran 5x5. Filter yang digunakan adalah neighborhood averaging, yang bekerja dengan cara mengganti nilai suatu piksel pada citra asal dengan nilai rata-rata dari piksel tersebut dan lingkungan tetangganya.

4. Proses Filter dan Histogram

```
hist1,bins1 = np.histogram(highpass_5x5.flatten(),256,[0,256])
cdf1 = hist1.cumsum()
norm1 = cdf1 * hist1.max()/ cdf1.max()
```

Memproses gambar untuk difilter dengan kernel yang telah ditentukan tadi. Kemudian hasil gambar tadi diproses kembali agar dapat ditampilkan dalam bentuk histogram sesuai dengan gambar yang telah di filter.

5. Menampilkan hasil filter

```
cv2.imshow('Grayscale',gray)
cv2.imshow('Highpass_5x5',highpass_5x5)
cv2.imshow('Org',img)
plt.plot(norm1, color = 'b')
plt.hist(highpass_5x5.flatten(),256,[0,256], color = 'r')
plt.xlim([0,256])
plt.legend(('cdf','histogram'), loc = 'upper left')

plt.show() #untuk m
```

Perintah cv2.imshow untuk menampilkan gambar dalam sebuah frame, perintah plt untuk memplot gambar serta histogram dari gambar yang telah difilter.

6. Menutup perintah

```
33 cv2.waitKey(0)
34 cv2.destroyAllWindows()
```

Program tersebut untuk menutup program diatasnya.

2. Low Pass Filter

```
import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('cat.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGRZGRAY)

kernel = np.ones((5,5),np.float32)/25

lpf = cv2.filter2D(gray,-1,kernel)
histl,bins1 = np.histogram(lpf.flatten(),256,[0,256])
cdf1 = histl.cmusum()
norm1 = cdf1 * histl.max()/
equ = cv2.equalizetist(lpf)
res = np.hstack((lpf,equ))

cv2.imshow('org',img)
cv2.imshow('org',gray)
cv2.imshow('org',gray)
cv2.imshow('org',gray)
plt.hist(lpf.flatten(),256,[0,256], color = 'r')
plt.slim([0,256])
plt.xlim([0,256])
plt.xlim([0,256])
plt.sleped(('cdf', 'histogram'), loc = 'upper left')
plt.show()

#menampilkan sambar histogram gambar histogram
#menampilkan histogram gambar hasil low pass filter beserta kete

#ketika semua selesai maka gambar akan di close
cv2.waitkey(0)
cv2.destroyAllMindows()
```

1. Memanggil Library yang digunakan

```
1 import numpy as np
2 import cv2
3 from matplotlib import pyplot as plt
```

Program diatas untuk memanggil library yang digunakan dalam python, seperti libtrary numpy, cv2, matplot, scipy untuk memproses gambar.

2. Konversi gambar

```
5 img = cv2.imread('cat.jpg')
6 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) #
```

Memanggil gambar yang akan di filter, nama gambar adalah "cat.jpg" serta mengubah gambar menjadi grayscale.

3. Filter Kernel

Menggunakan kernel 5x5, semuanya terdapat 25 pixel dibawah kernelnya. Pixel diambil rata-ratanya dan pixel pusat diganti dengan nilai rata-rata baru. Proses ini berlangsung terus menerus di semua pixel pada gambar.

4. Proses Low Filter

```
11    lpf = cv2.filter2D(gray, -1, kernel)
12    hist1, bins1 = np.histogram(lpf.flatten(), 256, [0, 256])
13    cdf1 = hist1.cumsum()
14    norm1 = cdf1 * hist1.max()/ cdf1.max()
15    equ = cv2.equalizeHist(lpf)
16    res = np.hstack((lpf, equ))
```

Memproses gambar untuk difilter dengan kernel yang telah ditentukan tadi. Kemudian hasil gambar tadi diproses kembali agar dapat ditampilkan dalam bentuk histogram sesuai dengan gambar yang telah di filter.

5. Menampilkan hasil filter

Perintah cv2.imshow untuk menampilkan gambar dalam sebuah frame, perintah plt untuk memplot gambar serta histogram dari gambar yang telah difilter.

7. Menutup perintah

```
30 cv2.waitKey(0)
31 cv2.destroyAllWindows()
```

Program tersebut untuk menutup program diatasnya.

