

Vector Space

Abstract Systems. Binary Operations and Relations. Introduction to Groups and Fields. Vector Spaces and Subspaces. Linear Independence and Dependence of Vectors. Basis and Dimensions of a Vector Space. Change of basis. Homomorphism and Isomorphism of Vector Spaces. Linear Transformations. Algebra of Linear Transformations. Non-singular Transformations. Representation of Linear Transformations by Matrices.

Group \rightarrow A non-empty set S of elements a, b, c, \dots forms a group with respect to the binary operation $*$, if the following properties hold :

① For every pair a and $b \in S$, $a * b$ is in S (closure law).

② For any three elements $a, b, c \in S$,

$a * (b * c) = (a * b) * c$ holds (associative law).

③ There exists in S an element i , called a left identity, such that

$i * a = a$, for every $a \in S$. The solution x is called left inverse of a .

④ For each a in S , the equation $n * a = i$ has a solution n in S .

Example \rightarrow Consider the set of integers (+ve, -ve, zero)

$$\mathbb{Z} = \{-\dots, -2, -1, 0, 1, 2, \dots\}$$

on which the binary operation is applied. For any $a, b, c \in \mathbb{Z}$ we have,

① $a + b \in \mathbb{Z}$ (closure)

② $(a+b)+c = a+(b+c)$ {associativity}

③ $0+a=a$ {0 is the left identity element}

④ $(-a)+a=0$ {left inverse of a is $-a \in \mathbb{Z}$ }

Note: \rightarrow A non-empty set Q equipped with one or more binary operations is called an algebraic structure.

$\rightarrow (Q, *) \Rightarrow$ algebraic structure with one binary operation.

$\rightarrow (Q, +, \cdot) \Rightarrow$ algebraic structure with two binary operation.

Internal composition \Rightarrow Let S be any non-empty set. If $a * b \in S$ $\forall a, b \in S$ and $a * b$ is unique, then $*$ is said to be an internal composition in the set S .

External composition \Rightarrow Let V and F be any two non-empty sets if $a \circ \alpha \in V$, $\forall a \in F$ and $\forall \alpha \in V$ and $a \circ \alpha$ be unique then ' \circ ' is said to be an external composition in V over F . $[V(F)]$.

Vector Space \Rightarrow Let $(F, +, \cdot)$ be a field. Then a non-empty set V is called vector space over the field F , if in V there be defined an internal composition $*$ and an external composition ' \circ ' over F such that, for all $a, b \in F$ and all $\alpha, \beta \in V$,

① $(V, *)$ is an abelian group.

② $a \circ [\alpha * \beta] = [a \circ \alpha] * [a \circ \beta]$

③ $[\alpha + \beta] \circ \alpha = [\alpha \circ \alpha] * [\beta \circ \alpha]$

④ $[\alpha \cdot b] \circ \alpha = a \circ [b \circ \alpha]$

⑤ $1 \circ \alpha = \alpha$, the unit scalar $1 \in F$.

1 is the multiplicative identity of the field F

Vector Sub-Space \Rightarrow Let V be a vector space over the field F . A non-empty sub-set W of V is called vector subspace or linear sub-space or simply sub-space of V , if W itself be a vector over F with respect to the same compositions as defined in V .

The whole vector space V is a sub-space of V and the sub-set consisting of zero vector alone is also a sub-space of V , called the zero sub-space of V . These two are called improper sub-spaces, while the other sub-spaces are called proper sub-spaces.

Theorem 1 The necessary and sufficient condition for a non-empty sub-set W of a vector space V over F to be a sub-space of V is that W is closed under vector addition and scalar multiplication in V .

\therefore If $\alpha, \beta \in W \Rightarrow \alpha + \beta \in W$,

$a \in F, \alpha \in W \Rightarrow a\alpha \in W$.

Example \Rightarrow Show that the set W of ordered triad $(a_1, a_2, 0)$, where $a_1, a_2 \in F$, a field, is a sub-space of V_3 over F .

Sol: \Rightarrow Let $\alpha = (a_1, a_2, 0)$ and $\beta = (b_1, b_2, 0)$ belong to W , where $a_1, a_2, b_1, b_2 \in F$. If a, b be any two elements of F , we have,

$$\begin{aligned} a\alpha + b\beta &= a(a_1, a_2, 0) + b(b_1, b_2, 0) \\ &= (aa_1, aa_2, 0) + (bb_1, bb_2, 0) \\ &= (aa_1 + bb_1, aa_2 + bb_2, 0) \in W \end{aligned}$$

Since, $(a\alpha_1 + b\beta_1), (a\alpha_2 + b\beta_2) \in F$.

$\therefore W$ is a vector sub-space of V_3 over F .

Example Let $V = \{(x, y, z) : x, y, z \in R\}$ where R is the field of real numbers. Show that, if $W = \{(x, y, z) : x - 3y + 4z = 0\}$, then it is a sub-space of V over R .

Sol: Let $\alpha, \beta \in W$; then we may write

$$\alpha = (3y_1 - 4z_1, y_1, z_1) \text{ and } \beta = (3y_2 - 4z_2, y_2, z_2)$$

If $a, b \in R$, then we have,

$$\begin{aligned} a\alpha + b\beta &= a(3y_1 - 4z_1, y_1, z_1) + b(3y_2 - 4z_2, y_2, z_2) \\ &= (3ay_1 - 4az_1, ay_1, az_1) + (3by_2 - 4bz_2, by_2, bz_2) \\ &= [3(ay_1 + by_2) - 4(a z_1 + b z_2), ay_1 + by_2, az_1 + bz_2] \\ &= [3l - 4m, l, m] \in W \end{aligned}$$

since $l = ay_1 + by_2 \in R$ and $m = az_1 + bz_2 \in R$

$\therefore a, b \in R$ and $\alpha, \beta \in W \Rightarrow a\alpha + b\beta \in W$

$\therefore W$ is a vector sub-space of V in R .

Example: If a_1, a_2, a_3 be fixed elements of a field F , then the set W of all ordered triads (x_1, x_2, x_3) of element of F such as,

$$a_1x_1 + a_2x_2 + a_3x_3 = 0$$

is a sub-space of V_3 in F .

Sol: Let $\alpha = (x_1, x_2, x_3)$ and $\beta = (y_1, y_2, y_3)$

$$\text{Then } a_1x_1 + a_2x_2 + a_3x_3 = 0 \rightarrow ①$$

$$a_1y_1 + a_2y_2 + a_3y_3 = 0 \rightarrow ②$$

for $x_1, x_2, x_3, y_1, y_2, y_3 \in F$

Let a and b be any two elements of F , then

$$\begin{aligned} a\alpha + b\beta &= a(x_1, x_2, x_3) + b(y_1, y_2, y_3) \\ &= (ax_1 + ay_1, ax_2 + ay_2, ax_3 + ay_3) \\ &= (a x_1 + b y_1, a x_2 + b y_2, a x_3 + b y_3) \in W \end{aligned}$$

$$\text{Since, } a_1(ax_1 + by_1) + a_2(ax_2 + by_2) + a_3(ax_3 + by_3)$$

$$= a(a_1x_1 + a_2x_2 + a_3x_3) + b(a_1y_1 + a_2y_2 + a_3y_3)$$

$$= a(0) + b(0)$$

$$= 0 \quad (\text{by 1 and 2})$$

Hence W is a sub-space of V_3 in F .

Linear Combinations: Let V be a vector space over the field F . If $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n \in V$, then any vector \vec{v} said to be a linear combination of the vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ if

$$\vec{v} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_n \vec{v}_n,$$

where the scalars $c_1, c_2, \dots, c_n \in F$.

Example: Let $\vec{v}_1, \vec{v}_2, \vec{v}_3 \in V$, $v \in V$

$$\therefore v = c_1 \vec{v}_1 + c_2 \vec{v}_2 + c_3 \vec{v}_3$$

$$\text{if } \vec{v}_1 = (1, 0, 0), \vec{v}_2 = (0, 1, 0), \vec{v}_3 = (0, 0, 1) \in V$$

\therefore any vector $v = (3, 5, 1)$ can be expressed as,

$$\begin{aligned} (3, 5, 1) &= 3(1, 0, 0) + 5(0, 1, 0) + 1(0, 0, 1) \\ &= (3, 5, 1) \end{aligned}$$

$\therefore (3, 5, 1)$ is a linear combination of $(1, 0, 0)$, $(0, 1, 0)$ and $(0, 0, 1)$

Example: $\vec{v} = (1, 1)$, $\vec{w} = (1, 2)$

$$\begin{aligned} \therefore (7, 19) &= a\vec{v} + b\vec{w} = a(1, 1) + b(1, 2) \\ &= (a+b, a+2b) \end{aligned}$$

$$\therefore a+b=7,$$

$$\begin{array}{r} a+2b=19 \\ -b=-7 \\ \hline \end{array}$$

$$\Rightarrow \boxed{b=7}; \boxed{a=0}$$

Example: Express $(-1, 2, 1)$ as a linear combination of $\vec{v}=(-1, 2, 0)$, $\vec{w}=(0, -1, 1)$, $\vec{z}=(3, -9, 2)$ in the vector space V_3 of real numbers.

Sol: Let a, b, c three scalar in real number such that,

$$\begin{aligned} (-1, 2, 1) &= a\vec{v} + b\vec{w} + c\vec{z} \\ &= a(-1, 2, 0) + b(0, -1, 1) + c(3, -9, 2) \\ &= (-a+3c, 2a-b-9c, b+2c) \end{aligned}$$

$$\begin{aligned} \therefore -a+3c &= -1 \\ 2a-b-9c &= 2 \\ b+2c &= 1 \end{aligned} \quad \left. \begin{array}{l} \text{on solving, we get } \boxed{a=1}, \boxed{b=2}, \boxed{c=1} \end{array} \right\}$$

$$\therefore (-1, 2, 1) = 1(-1, 2, 0) + 2(0, -1, 1) + 1(3, -9, 2)$$

Linearly dependent Vectors \Rightarrow let V be the vector space over the field F , a finite subset $\{\bar{v}_1, \bar{v}_2, \dots, \bar{v}_n\}$ of vectors of V said to be linearly dependent, if there exists scalars $a_1, a_2, \dots, a_n \in F$, not all zero, such that,

$$a_1\bar{v}_1 + a_2\bar{v}_2 + \dots + a_n\bar{v}_n = \bar{0}$$

Linearly Independent Vectors \Rightarrow let V be the vector space over the field F , a finite subset $\{\bar{v}_1, \bar{v}_2, \dots, \bar{v}_n\}$ of vectors of V said to be linearly independent, if where scalars, $a_1 = a_2 = \dots = a_n = 0 \in F$, such that,

$$a_1\bar{v}_1 + a_2\bar{v}_2 + \dots + a_n\bar{v}_n = \bar{0}$$

Example \Rightarrow show that the vectors $\{(2, -3, 1), (3, -1, 5), (1, -9, 3)\}$ are linearly independent in $V_3(\mathbb{R})$.

Sol \Rightarrow let a, b, c be three scalars in real numbers such that,

$$a(2, -3, 1) + b(3, -1, 5) + c(1, -9, 3) = (0, 0, 0)$$

$$\Rightarrow [2a + 3b + c, -3a - b - 9c, a + 5b + 3c] = (0, 0, 0)$$

$$\therefore 2a + 3b + c = 0$$

$$-3a - b - 9c = 0$$

$$a + 5b + 3c = 0$$

let $AX = 0$

$$\text{where } A = \begin{bmatrix} 2 & 3 & 1 \\ -3 & 1 & 9 \\ 1 & 5 & 3 \end{bmatrix}, X = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

$$\text{now } |A| = 2(3 - 20) - 3(9 - 1) \\ + 1(15 - 1) \\ = -35$$

$$\neq 0.$$

\therefore rank of $A = 3 = \text{no. of unknowns.}$

Hence, $a = b = c = 0$ is the only solⁿ, Thus the given system is linearly independent.

Question \Rightarrow Examine whether the sets of vectors are linearly dependent or linearly independent. $\{(1, 0, 1), (1, 1, 0), (1, -1, 1), (1, 2, -3)\}$.

Sol \Rightarrow let a, b, c, d be the 4 scalars of real numbers,

$$a(1, 0, 1) + b(1, 1, 0) + c(1, -1, 1) + d(1, 2, -3) = (0, 0, 0)$$

$$\Rightarrow (a+b+c+d, b-c+2d, a+c-3d) = (0, 0, 0)$$

$$\therefore a+b+c+d = 0 \rightarrow ①$$

$$b - c + 2d = 0 \rightarrow ②$$

$$a + c - 3d = 0 \rightarrow ③$$

Note \Rightarrow

$$AX = 0$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 1 & 2 & -3 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$$

If rank of A is = no. of unknowns, then the system have only solⁿ

$$a = b = c = 0$$

$$|A| \neq 0.$$

Let, $Ax = 0$, let $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & 2 \\ 1 & 0 & 1 & -3 \end{bmatrix}$, $x = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$

$$\text{Now, } \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{vmatrix} = -1 \neq 0$$

\therefore rank of the matrix is 3 which is less than the unknowns,

Hence, the equation will possess a non-zero solution,

Let $d=1$

$$\therefore a+b+c+1=0 \rightarrow ③$$

$$b+c+2=0 \rightarrow ④$$

$$a+c-3=0 \rightarrow ⑤$$

on solving the equations ③, ④, ⑤ we get,

$$b=-4, c=-2, a=5$$

Hence, the given set is linearly dependent.

Linear Span \Rightarrow Let V be a vector space over the field F and S be any non-empty sub-set of V . Then the linear span of S is defined as the set of all linear combinations of finite sets of elements of S . It is denoted by $L(S)$.

Thus we have,

$$L(S) = \{a_1x_1 + a_2x_2 + \dots + a_nx_n : x_i \in S, a_i \in F, i=1, 2, \dots, n\}$$

Basis and dimension of a Vector Space \Rightarrow Let V be a vector space over the field F and S be a sub-set of $V(F)$ such that
 (i) S is a set of linearly independent vectors in V and
 (ii) $L(S) = V$, that is each vector in V is a linear combination of a finite number of elements of S , then S is called a basis set or simply a basis of V .

e.g. consider the set $B = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ in V_3 over the real numbers.

This set is linearly independent. Also B spans V_3 , because any vector (a_1, a_2, a_3) of V_3 can be written as a linear combination of the vectors of B , i.e

$$(a_1, a_2, a_3) = a_1(1, 0, 0) + a_2(0, 1, 0) + a_3(0, 0, 1)$$

It is called a standard basis R^3 .

Dimension \Rightarrow The number of elements in any basis set of a finite dimensional vector space $V(F)$ is called the dimension of the vector space and is denoted by $\dim V$.

$V_n(F)$ is n -dimensional, if its basis contains n elements.

The dimension of the vector space R^2 is 2, since.

$B = \{(1, 0), (0, 1)\}$ is a basis.

The vector space R^3 is of dimension 3, as,

$B = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$

Note → A vector space V is said to be finite dimensional or finitely generated, if there exist a finite sub-set S of V such that $L(S) = V$. Otherwise, the vector space is infinite dimensional.

Question → Show that the vectors $(1, 2, 1), (2, 1, 0), (1, -1, 2)$ form a basis of the vector space V_3 over the field of real numbers.

Sol: We know that if $V(F)$ be a finite dimensional vector space of dimension n , then any set of n linearly independent vectors in V forms a basis of V .

Now the set $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ forms a basis of the vector space V_3 over the field of real numbers. Hence its dimension is 3. If we can show that the set,

$$S = \{(1, 2, 1), (2, 1, 0), (1, -1, 2)\}$$

is linearly independent, then S will also form a basis of V_3 .

$$\text{Now, } a_1(1, 2, 1) + a_2(2, 1, 0) + a_3(1, -1, 2) = (0, 0, 0)$$

$$\Rightarrow (a_1 + 2a_2 + a_3, 2a_1 + a_2 - a_3, a_1 + 2a_3) = (0, 0, 0)$$

$$\therefore a_1 + 2a_2 + a_3 = 0$$

$$2a_1 + a_2 - a_3 = 0$$

$$a_1 + 2a_3 = 0.$$

The coefficient matrix is $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & -1 \\ 1 & 0 & 2 \end{bmatrix} = A \text{ (say)}$

Now, $|A| = -9 \neq 0$. Thus the rank of A is 3. = no. of unknowns. Hence solving these equations, we have the only soln,

$$a_1 = a_2 = a_3 = 0.$$

Therefore the set S is linearly independent. Hence it forms a basis of V_3 in the field of the real numbers.

Functions → we can pass from one vector space to another by means of some functions possessing certain linearity property and are known as linear transformations.

A function consists of the following

a) a set V , which is called domain of the function.

b) a set w , which is called co-domain of the function.

c) a rule f , which associates each element v of V a single element $f(v)$ of w .

Linear Transformation: Let V and W be vector spaces over the field F . A linear transformation from V into W is a function f from V into W such that,

$$f(cx + dy) = cf(x) + df(y) \quad \text{--- (1)} \quad | f(ax + by) = af(x) + bf(y).$$

for all x, y in V and all scalars c, d in F .

This is also called linearity property.

Question: Show that the transformation $T: \mathbb{R}^2 \rightarrow \mathbb{R}^3$ defined by

$T(x, y) = (x-y, x+y, y)$
is a linear transformation from \mathbb{R}^2 to \mathbb{R}^3 .

Sol: Let $\alpha = (x_1, y_1)$ and $\beta = (x_2, y_2) \in \mathbb{R}^2$

$$\therefore T(\alpha) = T(x_1, y_1) = (x_1 - y_1, x_1 + y_1, y_1)$$

$$\text{and } T(\beta) = T(x_2, y_2) = (x_2 - y_2, x_2 + y_2, y_2)$$

Also, $a, b \in \mathbb{R}$. Then $a\alpha + b\beta \in \mathbb{R}^2$

$$\text{and } T(a\alpha + b\beta) = T[a(x_1, y_1) + b(x_2, y_2)]$$

$$= T[ax_1 + bx_2, ay_1 + by_2]$$

$$= [ax_1 + bx_2 - ay_1 - by_2, ax_1 + bx_2 + ay_1 + by_2, ay_1 + by_2]$$

$$= [a(x_1 - y_1) + b(x_2 - y_2), a(x_1 + y_1) + b(x_2 + y_2), ay_1 + by_2]$$

$$= a(x_1 - y_1, x_1 + y_1, y_1) + b(x_2 - y_2, x_2 + y_2, y_2)$$

$$= aT(\alpha) + bT(\beta).$$

Therefore, T is a linear transformation.

Zero Transformation: Let V and W be two vector spaces over the same field F .

The function $f: V \rightarrow W$ defined by,

$$f(x) = \vec{0} \quad (\text{zero vector of } W); \text{ for all } x \in V.$$

is a linear transformation from V into W .

Let $\alpha, \beta \in V$ and $a, b \in F$

Then, $a\alpha + b\beta \in V$

$$\text{Now we have, } f(a\alpha + b\beta) = \vec{0} = a \cdot \vec{0} + b \cdot \vec{0} = af(\alpha) + bf(\beta).$$

$\therefore f$ is a linear transform from V into W .

this transformation is called a zero transformation.

Properties of Linear Transformation: Let T be a transform from a vector space V into a vector space W over the field F . Then

① $T(\vec{0}) = \vec{0}'$, where $\vec{0}$ and $\vec{0}'$ are the zero vectors of V and W respectively.

② $T(-\alpha) = -T(\alpha)$, for all $\alpha \in V$.

③ $T(\alpha - \beta) = T(\alpha) - T(\beta)$, for all $\alpha, \beta \in V$.

Singular and non-singular: Let $T: V \rightarrow W$ be a linear transformation for two vector spaces V and W under the same field F . The set of images of the elements of V under the transformation T is said to be the image of T , and is denoted by $I_m(T)$.

If a linear transformation $T: V \rightarrow W$ be such that the image of some non-zero vector $\alpha \in V$ under T is $\vec{0}' \in W$, then the linear transformation is called singular.

Thus T is a non-singular transformation if only $\vec{0} \in V$ maps into $\vec{0}' \in W$ under T , that is if null space of T consists of only zero vector.

Example: If $T: V_3 \rightarrow V_1$ and $T(x_1, x_2, x_3) = x_1^{\vee} + x_2^{\vee} + x_3^{\vee}$, then show that T is not a linear transformation.

Sol: Let $x = y = (1, 0, 0)$

$$\begin{aligned} \text{then, } T(x+y) &= (x_1 + y_1)^{\vee} + (x_2 + y_2)^{\vee} + (x_3 + y_3)^{\vee} \\ &= (1+1)^{\vee} + (0+0)^{\vee} + (0+0)^{\vee} \\ &= 2 \end{aligned}$$

$$\begin{aligned} \text{while, } T(x) + T(y) &= x_1^{\vee} + x_2^{\vee} + x_3^{\vee} + y_1^{\vee} + y_2^{\vee} + y_3^{\vee} \\ &= 1^{\vee} + 0^{\vee} + 0^{\vee} + 0^{\vee} + 0^{\vee} + 0^{\vee} \\ &= 0. \end{aligned}$$

∴ ∵ $T(x+y) \neq T(x) + T(y)$, then T is not a linear transformation.

*** Representation of Linear Transformation by matrices:**

Let V be an n -dimensional vector space over the field F and W be an m -dimensional vector space over the same field.

Let, $B_1 = \{x_1, x_2, \dots, x_n\}$ be an ordered basis for V and

$B_2 = \{\beta_1, \beta_2, \dots, \beta_m\}$ be an ordered basis for W .

Let T be any transformation from V into W , then each of the n vectors $T(x_j)$, $j=1, 2, \dots, n$, can be expressed uniquely as a linear combination of the elements of B_2 . Let

$$T(x_j) = a_{1j}\beta_1 + a_{2j}\beta_2 + \dots + a_{mj}\beta_m ; j=1, 2, \dots, n \rightarrow (1)$$

The Scalars $a_{1j}, a_{2j}, \dots, a_{mj}$ are the co-ordinates of $T(x_j)$ and the transformation T is determined by the $m \times n$ Scalars a_{ij} according to 1.

The matrix $A = [a_{ij}]_{m \times n}$ is called the matrix of T relative to the pair of ordered bases B_1 and B_2 .

Example: Let T be a linear transformation of \mathbb{R}^2 into itself that maps $(1, 1)$ to $(-2, 3)$ and $(1, -1)$ to $(4, 5)$. Determine the matrix representing T with respect to the base $\{(1, 0), (0, 1)\}$.

Sol: \rightarrow we are to determine the effect of T when applied to $(1, 0)$ and $(0, 1)$.

$$\text{Now, } (1, 0) = \frac{1}{2}(1, 1) + \frac{1}{2}(1, -1)$$

$$\text{and } (0, 1) = \frac{1}{2}(1, 1) - \frac{1}{2}(1, -1)$$

$\therefore T$ is the linear transformation, we have

$$\begin{aligned} T(1, 0) &= T\left[\frac{1}{2}(1, 1) + \frac{1}{2}(1, -1)\right] \\ &= \frac{1}{2}T(1, 1) + \frac{1}{2}T(1, -1) \\ &= \frac{1}{2}(-2, 3) + \frac{1}{2}(4, 5) \\ &= \frac{1}{2}(2, 8) \\ &= (1, 4) \\ &= 1(1, 0) + 4(0, 1) \quad \rightarrow \textcircled{1} \end{aligned}$$

$$\begin{aligned} \text{Also, } T(0, 1) &= T\left[\frac{1}{2}(1, 1) - \frac{1}{2}(1, -1)\right] \\ &= \frac{1}{2}T(1, 1) - \frac{1}{2}T(1, -1) \\ &= \frac{1}{2}(-2, 3) - \frac{1}{2}(4, 5) \\ &= \frac{1}{2}(-6, -2) \\ &= (-3, -1) \\ &= -3(1, 0) - 1(0, 1) \quad \rightarrow \textcircled{2} \end{aligned}$$

\therefore from $\textcircled{1}$ and $\textcircled{2}$ we have the representative matrix as,

$$\begin{bmatrix} 1 & -3 \\ 4 & -1 \end{bmatrix}_A$$

Example: Let T be the linear operator on \mathbb{R}^3 defined by,

$$T(x_1, x_2, x_3) = (3x_1 + x_3, -2x_1 + x_2, -x_1 + 2x_2 + 4x_3).$$

Find the matrix of T in the ordered basis $\{\alpha_1, \alpha_2, \alpha_3\}$ where,

$$\alpha_1 = (1, 0, 1), \quad \alpha_2 = (-1, 2, 1), \quad \alpha_3 = (2, 1, 1)$$

Sol: From the given definition of T , we have,

$$T(\alpha_1) = T(1, 0, 1) = (4, -2, 3)$$

Now, we are to express $(4, -2, 3)$ as a linear combination of the vectors of the basis $\{\alpha_1, \alpha_2, \alpha_3\}$.

$$\begin{aligned} \therefore (a, b, c) &= x\alpha_1 + y\alpha_2 + z\alpha_3 \\ &= x(1, 0, 1) + y(-1, 2, 1) + z(2, 1, 1) \\ &= (x-y+z, 2y+z, x+y+z) \end{aligned}$$

$$\begin{aligned} \therefore x-y+z &= a \quad \left. \begin{array}{l} \text{Putting } a=4, b=-2 \text{ and } c=3 \text{ we get.} \\ \text{on solving we have,} \end{array} \right. \\ 2y+z &= b \\ x+y+z &= c \quad \left. \begin{array}{l} \rightarrow 0 \\ x=\frac{17}{9}, \quad y=-\frac{3}{9}, \quad z=-\frac{1}{2} \end{array} \right. \end{aligned}$$

$$\therefore T(\alpha_1) = T(1, 0, 1) = \frac{17}{9}\alpha_1 - \frac{3}{9}\alpha_2 - \frac{1}{2}\alpha_3.$$

Similarly $T(\alpha_2) = T(-1, 2, 1) = (-2, 9, 9)$, from the definition.

Putting $a=-2, b=9, c=9$ in (1), we have,

$$x = \frac{35}{9}, \quad y = \frac{15}{9}, \quad z = -\frac{7}{2}$$

$$\therefore T(\alpha_2) = T(-1, 2, 1) = \frac{35}{9}\alpha_1 + \frac{15}{9}\alpha_2 - \frac{7}{2}\alpha_3.$$

$$\text{Finally } T(\alpha_3) = T(2, 1, 1) = (7, -3, 4).$$

Putting $a=7, b=-3$ and $c=4$ in (1) we get

$$x = \frac{11}{2}, \quad y = -\frac{3}{2}, \quad z = 0.$$

$$\therefore T(\alpha_3) = T(2, 1, 1) = \frac{11}{2}\alpha_1 - \frac{3}{2}\alpha_2 + 0\cdot\alpha_3.$$

Thus the matrix of the transformation, T is,

$$\begin{bmatrix} \frac{17}{9} & \frac{35}{9} & \frac{11}{2} \\ -\frac{3}{9} & \frac{15}{9} & -\frac{7}{2} \\ -\frac{1}{2} & -\frac{3}{2} & 0 \end{bmatrix}.$$

Example: Find the matrix of a linear transformation T on $V_2(\mathbb{C})$ with respect to the ordered basis,

$B = \{(1,0), (0,1)\}$ be $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, then find the matrix of T with respect to the ordered basis. $B' = \{(1,1), (-1,1)\}$.

Sol: we are given that,

$$[T]_B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\therefore T(1,0) = 1(1,0) + 1(0,1) = (1,1)$$

$$T(0,1) = 1(1,0) + 1(0,1) = (1,1)$$

if $a, b \in V_2$, then we have,

$$(a,b) = a(1,0) + b(0,1)$$

$$\therefore T(a,b) = T[a(1,0) + b(0,1)]$$

$$= aT(1,0) + bT(0,1)$$

$$= a(1,1) + b(1,1)$$

$$= (a+b, a+b)$$

This represents the linear transformation T .

Now let us find the matrix of T with respect to $B' = \{(1,1), (-1,1)\}$.

$$\text{Also, } T(1,1) = (2,2)$$

$$\therefore (2,2) = x(1,1) + y(-1,1) = (x-y, x+y)$$

$$\therefore \begin{cases} x-y=2 \\ x+y=2 \end{cases} \text{ which gives } x=2, y=0$$

$$\therefore T(1,1) = 2(1,1) + 0(-1,1).$$

$$\text{Also, } T(-1,1) = (0,0) = 0(1,1) + 0(-1,1).$$

$$\therefore [T]_{B'} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

