-NoValue-

Reversible Computing

ian.mcloughlin@atu.ie

Last updated: 30 November 2023

Logical Reversibility

x_1	x_2	\wedge
0	0	0
0	1	0
1	0	0
1	1	1

$$\begin{array}{c|c}
x & \bar{x} \\
\hline
0 & 1 \\
1 & 0
\end{array}$$

Landauer's Principle

 $\Delta E \ge kT \ln 2$

 $k = 1.380649 \times 10^{-23} \mathrm{JK}^{-1}$

 $\Delta E \geq (1.380649\times 10^{-23})(293)(0.693147) \approx 2.8\times 10^{-21} \mathrm{J~at~} 20^{\circ}\mathrm{C}\text{,}$

¹ Somewhere in th

XOR

x_1	x_2	\oplus
0	0	0
0	1	1
1	0	1
1	1	0

x_1	x_2	x_1	$x_1 \oplus x_2$
0	0	0	0
0	1	0	1
1	0	1	1
1	1	1	0

Toffoli

$$y=x_3\oplus(x_1\wedge x_2)$$

ŝ	x_1	<i>x</i> ₂	<i>x</i> ₃	$ x_1 $	x_2	y
	0	0	0	0	0	0
	0	0	1	0	0	1
	0	1	0	0	1	0
	0	1	1	0	1	1
	1	0	0	1	0	0
	1	0	1	1	0	1
	1	1	0	1	1	1
	1	1	1	1	1	0

Fredkin

$$y_1 = x_1 \oplus (x_0 \wedge (x_1 \oplus x_2))$$

$$y_2 = x_2 \oplus (x_0 \wedge (x_1 \oplus x_2))$$

x_0	x_1	x_2	$ x_0$	y_1	y_2
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	0	1
1	1	1	1	1	1