산업지능화를위한「Al Factory 컨퍼런스」

지식베이스 기반 스마트팩토리용 AI 프레임워크 개발

2019. 10. 02 서울SW-SoC융합R&BD센터 김원종

주최/주관: 한국스마트제조산업협회, 전자부품연구원, 코엑스

목차

- I. 개요
- Ⅱ. 전문가 공정제어
- Ⅲ. 불량 감지
- IV. AI 프레임워크 개발
- V. 결론

I. 개요

❖ 스마트팩토리 주요 문제 유형

I. 개요

❖ 스마트팩토리 데이터 주요 문제

설비명	작업일	일시	온도1	온도2
6350T	2014-06-30	59:00.0	699.761	695.162
6350T	2014-06-30	58:00.0	698.272	694.157
6350T	2014-06-30	57:00.0	694.682	691.946
6350T	2014-06-30	56:00.0	700.241	687.081
6350T	2014-06-30	55:00.0	699.585	697.126
6350T	2014-06-30	54:00.0	699.087	697.279

설비명	작업일	주야	불량항목	불량개수
6350T	2014-01-02	주	11	37
6350T	2014-01-03	주	1	3
6350T	2014-01-03	주	11	30
6350T	2014-01-04	주	11	15
6350T	2014-01-06	야	1	4
6350T	2014-01-06	야	11	24

<Data with Tolerance>

<Statistics Only>

설비명	작업일	생산일시	고객사	품번	금형호기	기계보유#	저속속도	고속속도	고속구간	고속가속	승압시간	비스켓두께	주조압력	스프레이	CycleTime	형체력
6350T	2014-12-31	11:49.8	7	222	5	40	0.035	0.95	345	4.8	0	150	0	0	100	10
6350T	2014-12-31	10:05.2	7	222	5	39	0.035	0.95	345	4.8	0	150	0	0	100	10
6350T	2014-12-31	09:26.9	7	222	5	38	0.035	0.95	345	4.8	0	150	0	0	100	10
6350T	2014-12-31	08:58.8	7	222	5	37	0.035	0.95	345	4.8	0	150	0	0	100	10
6350T	2014-12-31	07:42.3	7	222	5	35	0.035	0.95	345	4.8	0	150	0	0	100	10
6350T	2014-12-31	38:41.4	7	222	5	454	0.035	0.95	345	4.8	0	150	0	0	100	10
6350T	2014-12-31	34:52.1	7	222	5	453	0.035	0.95	345	4.8	0	150	0	0	100	10
6350T	2014-12-31	34:13.7	7	222	5	452	0.035	0.95	345	4.8	0	150	0	0	100	10
6350T	2014-12-31	33:35.5	7	222	5	451	0.035	0.95	345	4.8	0	150	0	0	100	10
6350T	2014-12-31	33:07.3	7	222	5	450	0.035	0.95	345	4.8	0	150	0	0	100	10

I. 개요

❖ 스마트팩토리 주요 문제 AI 모델 유형

<Classification>

<Forecasting>

❖ BLT (Built-up T-Bar) Welding Process (참고 영상)

- > Input: Material Data, Welder Data, Work environment
 - ✓ Face L, T, W
 - ✓ Web: L, T, W
 - ✓ Welder ID
 - ✓ Day/Night
- Output: RF Parameters
 - ✓ Result Height
 - ✓ Result Freq. Watt

❖ Parameter Recommendation

Data Pre-Processing

Original Data	7,682 x 24	rows x columns
Preprocessed	7,682 x 10	Remove Nan columns
Result Patterns wth L	1,133	
Result Patterns w/o L	165	

[face_l], face_t, face_w, [web_l], web_t, web_w

❖ Parameter Recommendation

Data Patterns

Parameter Recommendation

Histograms – not distributed well

- > Correlation of inputs
 - ✓ Web length와 face length만 상관성(correlation)이 큼

Ⅱ. 전문가 공정제어

- Regression Results 1
 - ✓ Mean error values are good, but max error values are quite big

Ⅱ. 전문가 공정제어

- > Regression Results 1: **mean error** & **accuracy**
 - ✓ Decision Trees , Random Forest, Extra Trees win, but accuracy is < 92%</p>

- ▶ 학습 데이터 재확인: 동일한 입력에 대해서 다른 값 사용 -> Tolerance 존재
 - (face_l face_t face_w web_l web_t web_w)

20.244 32 0.18 20.279 14.5 0.55

19.998 24 0.15 19.998 12 0.425

19.998 24 0.125 19.998 12 0.425

Modify values for input cases

- ▶ Input 데이터 종류에 대하여 Min/Max 범위에 일정한 Trend가 없음
- ➤ Result 값을 average, median 값으로 대체해서 사용
- ➤ Evaluation도 average, median 값으로 평가
- ➤ Post Evaluation은 min~max 범위 이내 여부로 판단

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85

Parameter Recommendation

➤ Regression Results 2

Ⅱ. 전문가 공정제어

- > Regression Results 2: **mean error** & **accuracy**
 - ✓ Decision Trees, Extra Trees, Random Forest win
 - ✓ Mean error: 0.0, 0.01, 0.015
 - ✓ Accuracy: 100%, 99.999%, 99.999%

❖ 주조 공정 제품 불량 감지

용융로/보온로

❖ Data Sets 형태

> 보온로

▶ 주조 파라미터

설비명	작업일	일시	온도1	온도2
6350T	2014-06-30	59:00.0	699.761	695.162
6350T	2014-06-30	58:00.0	698.272	694.157
6350T	2014-06-30	57:00.0	694.682	691.946
6350T	2014-06-30	56:00.0	700.241	687.081
6350T	2014-06-30	55:00.0	699.585	697.126
6350T	2014-06-30	54:00.0	699.087	697.279

설비명	작업일	생산일시	고객사	품번	금형호기	기계보유#	저속속도	고속속도	고속구간	고속가속	승압시간	비스켓두께	주조압력	스프레이	CycleTime	형체력
6350T	2014-12-31	11:49.8	7	222	5	40	0.035	0.95	345	4.8	0	150	0	0	100	10
6350T	2014-12-31	10:05.2	7	222	5	39	0.035	0.95	345	4.8	0	150	0	0	100	10
6350T	2014-12-31	09:26.9	7	222	5	38	0.035	0.95	345	4.8	0	150	0	0	100	10
6350T	2014-12-31	08:58.8	7	222	5	37	0.035	0.95	345	4.8	0	150	0	0	100	10
6350T	2014-12-31	07:42.3	7	222	5	35	0.035	0.95	345	4.8	0	150	0	0	100	10
6350T	2014-12-31	38:41.4	7	222	5	454	0.035	0.95	345	4.8	0	150	0	0	100	10
6350T	2014-12-31	34:52.1	7	222	5	453	0.035	0.95	345	4.8	0	150	0	0	100	10
6350T	2014-12-31	34:13.7	7	222	5	452	0.035	0.95	345	4.8	0	150	0	0	100	10
6350T	2014-12-31	33:35.5	7	222	5	451	0.035	0.95	345	4.8	0	150	0	0	100	10
6350T	2014-12-31	33:07.3	7	222	5	450	0.035	0.95	345	4.8	0	150	0	0	100	10

▶ 불량 정보

설비명	작업일	주야	품번	금형호기	불량항목	불량개수
6350T	2014-01-02	주	76	9	11	37
6350T	2014-01-03	주	76	9	1	3
6350T	2014-01-03	주	76	9	11	30
6350T	2014-01-04	주	76	9	11	15
6350T	2014-01-06	야	76	9	1	4
6350T	2014-01-06	O‡	76	9	11	24

❖ Data Set 특징

- ▶ 보온로
 - ✓ 작업일: 업체의 작업 시작 날짜
 - ✓ 일시: 데이터 획득 일시
 - ✓ 온도1/온도2: 두 개의 보온로 각각의 온도, 용해로/보온로 용도로 사용되면서, 사용 후 주기적으로 Rotate됨
- ▶ 주조 파라미터
 - ✓ No Head, 992,506 rows
 - ✓ Fault에 영향이 클 것으로 예상되는 파라미터들은?
 - CycleTime[sec]
 - 주조압력: 20 기준,
 - 비스켓두께: 주조 후 남은 쇳물의 두께, 지나치게 크거나 적으면 오류 가능
 - 저속속도, 고속속도, 고속구간, 고속가속
 - ✓ Fault에 영향이 없는 파라미터들은?
 - 금형호기: 금형 시리얼 번호
 - 스프레이[sec]
 - 형체력: 재료가 물려 있는 정도
 - 기계보유#: 시리얼 번호 의미이며, 가끔 리셋을 함
- ▶ 불량 정보
 - ✓ With Head, 124 rows
 - ✓ <u>주/야 시간 구분 기준은?</u> 07:40~19:40, 19:40~07:40
 - ✓ <u>불량항목의 의미는?</u> -> 불량 종류 ID임
 - 1번 200개, 11번 200개 불량임

III. 불량 감지

Problem Definition

- ▶ 보온로 조건 및 주조 파라미터 값을 바탕으로 불량 항목 및 개수의 상관 관계 도출
- ▶ 주조 파라미터에 따른 <u>불량 종류별</u> 불량률/수율 (Yield) 예측

Data Pre-Processing: Data Merge

- ➤ Parameter data의 생산일시를 작업일 주/야로 구분
- 품번 별로 정리, 생산일시 주/야 시간에 맞춰서 품번별 생산 개수 도출
- ▶ 해당 품번의 불량 개수를 생산 개수로 나누어서 불량률/수율 계산
- ▶ 보온로 온도 파일에서 동일 설비명의 생산일시의 온도를 추출
- ➤ 온도가 없는 부분은 interpolation
- > 각 품번에 대하여 주조 파라미터에 따른 <u>불량 종류별</u> 수율 예측

설비명	작업일시	품번	Temp1	Temp2	저속속도	고속속도	고속구간	고속가속	승압시간	비스켓두께	주조압력	스프레이	CydeTime	불량1	불량2	•••••	불량11
6350T	2014-12-31	3	699.761	695.162	0.2	2.784	74.2	1.289	4257	150	0	0	100	1	1	1	1
	2014-12-31																
6350T	2014-12-31	3	698.272	694.157	0.2	2.903	74.3	1.263	4261	150	0	0	100	1	1	1	1
6350T	2014-12-31	3	694.682	691.946	0.2	2.897	74.5	1.252	4250	150	0	0	100	1	1	1	0.97
6350T	2014-12-31	3	700.241	687.081	0.2	2.881	74.6	1.257	4254	150	0	0	100	0.98	1	1	1
6350T	2014-12-31	3	699.585	697.126	0.2	2.872	74.5	1.256	4253	150	0	0	100	1	0.92	1	1
6350T	2014-12-31	3	699.087	697.279	0.2	2.857	74.5	1.26	4258	150	0	0	100	1	1	1	1
6350T	2014-12-31	3	699.585	697.126	0.2	2.878	74.6	1.252	4250	150	0	0	100	1	1	0.99	1
6350T	2014-12-31	3	699.087	697.279	0.2	2.887	74.6	1.268	4266	150	0	0	100	1	1	1	1

❖ Input Data Patterns

❖ Fault Data Patterns

▶ 1, 2, 10, 11번 오류가 비교적 많이 분포

❖ Parameter Histogram

전반적으로 데이터가 고르게 분포되어 있지 않음

III. 불량 감지

Parameter Correlations

Spary/RisingTime 및 Temp1/Temp2만 높은 상관 관계가 있음

***** Regression Results

- > Regression Results: mean error & accuracy
 - ✓ Decision Trees, Random Forest, Extra Trees win
 - ✓ Mean error: 0.00058, 0.00085, 0.000124
 - ✓ Accuracy: 99.315%, 99.622%, 99.705%

- ***** Feature <u>Importance</u> for all inputs
 - Using Decision Trees for all fault type

- **Feature Selection: 5 inputs are best features**
 - Decision Tree with all outputs

Data Analysis

> Data View, Histogram, Density, Box plot, Correlation, Scatter Matrix

❖ Regression/Classification Results

❖ Feature Selection Results

V. 결론

