Problem §1 (6.12) Let G be a group that acts on a set X.

- (a) Suppose |G| = 15 and |X| = 7. Prove there is some element in X that is fixed by every element of G.
- (b) What goes wrong if either X = 6 or X = 8?

Solution:

(a) Suppose |G| = 15 and |X| = 7. We know from Proposition 6.19 that |Gx| divides |G|; furthermore, the distinct orbits Gx_1, \ldots, Gx_k form a disjoint union of X.

From the Orbit-Stabilizer Counting Theorem, we know that

$$|X| = \sum_{i=1}^{k} |Gx_i| = \sum_{i=1}^{k} \frac{|G|}{|G_{x_i}|}.$$

Since $|Gx_i|$ divides |G| = 15 for all $1 \le i \le k$ and $\sum_{i=1}^k |Gx_i| = |X| = 7$, we must have

$$|Gx_i| = 1, 3$$
, or 5 for all distinct orbits.

With these numbers, there are thus only three possible partitions of X into distinct orbits, up to ordering (each number represents the number of elements in each distinct orbit):

- 7 = 1 + 1 + 5
- $7 = \underbrace{1 + \ldots + 1}_{7 \text{ times}}$
- 7 = 3 + 3 + 1

In all cases, there is at least one orbit with only one element; this then implies that

$$1 = |Gx_j| = \frac{|G|}{|G_{x_j}|} = \frac{15}{15}$$

for some orbit Gx_j (from Proposition 6.19c). But then for some $x_j \in X$, its stabilizer has 15 = |G| elements; in other words, for some element in X, it is fixed by every element of G.

- (b) Suppose instead that |X| = 6 or 8. There are then different possible partitions of X; but in either case, there exists a partition of X into distinct orbits that does not consist of any orbit with only 1 element:
 - For |X| = 6, X can be partitioned into two orbits with 3 elements each (since $|Gx_1| + |Gx_2| = 3 + 3 = 6 = |X|$, as required by the Orbit-Stabilizer Counting Theorem).
 - For |X| = 8, X can be partitioned into two orbits, one with 3 elements and one with 5 ($|Gx_1| + |Gx_2| = 5 + 3 = 8 = |X|$).

Thus when the group G acts on the set X, it is possible that there doesn't exist any orbit with only one element; then by Proposition 6.19, since

$$1 < |Gx_j| = \frac{|G|}{|G_{x_j}|} = \frac{15}{n},$$

where 1 < n = 3 or 5. In other words, it is possible that no element in X is fixed by every element in G (since the number of elements in the stabilizer of any x could be less than 15).

Problem §2 (6.14) Let p be a prime. We proved that every group with p^2 elements is Abelian; now let G be a group with p^3 elements.

- (a) Mimic the proof of Corollary 6.26 to try to prove that p^3 is Abelian. Where does the proof go wrong?
- (b) Give two examples of non-Abelian groups with 2^3 elements.

(c) What sort of information can you deduce about G from the proof in (a) that failed?

Solution:

(a) Let Z = Z(G) as before. Since Z is a subgroup of G, Lagrange's Theorem tells us that the order of Z divides $|G| = p^3$, so

$$|Z| = 1, p, p^2$$
, or p^3 .

Theorem 6.25 tells us that $Z \neq \{e\}$, so $|Z| \neq 1$.

Suppose $|Z| = p^2$. Since the center Z of G is a normal subgroup, we form the quotient subgroup G/Z, with Lagrange telling us that

$$|G/Z| = \frac{|G|}{|Z|} = \frac{p^3}{p^2} = p.$$

Thus G/Z is of prime order, so Proposition 2.43 tells us that it is cyclic. Let hZ be a coset that generates G/Z,

$$G/Z = \{hZ, h^2Z, \dots, h^{p-1}Z\}.$$

In particular, this implies that

$$G = Z \cup hZ \cup \ldots \cup h^{p-1}Z,$$

since every element is in a coset of Z.

Let $g_1, g_2 \in G$ be arbitrary elements. Since they're in some coset of Z, we have

$$g_1 = h^{i_1} z_1, \ g_2 = h^{i_2} z_2$$
 for some $z_1, z_2 \in Z$ and $0 \le i_1, i_2 \le p - 1$.

Since $z_1, z_2 \in \mathbb{Z}$, we have

$$g_1g_2 = (h^{i_1}z_1)(h^{i_2}z_2) = (h^{i_1}h^{i_2})(z_1z_2) = h^{i_1+i_2}z_2z_1$$

= $(h^{i_2}h^{i_1})(z_2z_1) = (h^{i_2}z_2)(h^{i_1}z_1) = g_2g_1.$

Y I K E S!!! We've shown that every element in G commutes with every other element; this means that Z = G, a contradiction of our assumption that $|Z| = p^2 \neq p^3 = |G|$. Thus $|Z| \neq p^2$.

Now, suppose |Z| = p. Z normal allows us to form the quotient subgroup G/Z, with Lagrange telling us that

$$|G/Z| = \frac{|G|}{|Z|} = \frac{p^3}{p} = p^2.$$

Thus G/Z has order p^2 , so Corollary 6.26 tells us that it is Abelian. That means for two cosets $gZ, hZ \in G/Z$, we have ghZ = hgZ.

Like before, since every element is in a coset of Z, and G/Z is a collection of distinct cosets of G, we have

$$G = h_1 Z \cup h_2 Z \cup \ldots \cup h_{n^2 - 1} Z,$$

where $h_1, \ldots, h_{p^2-1} \in G$ form distinct cosets of Z.

Let $g_1, g_2 \in G$ be arbitrary elements of G. Then

$$g_1 = h_i z_1, \ g_2 = h_j z_2$$
 for some $h_1, h_2 \in G$ and $1 \le i, j \le j - 1$.

With g_1g_2 , we have

$$g_1g_2 = (h_iz_1)(h_iz_2) = (h_ih_i)(z_1z_2),$$

and with g_2g_1 , we have

$$g_2g_1 = (h_iz_2)(h_iz_1) = (h_ih_i)(z_2z_1) = (h_ih_i)(z_1z_2).$$

Are these two equal?

Not necessarily. ghZ = hgZ means that for every $ghz \in ghZ$, $ghz \in hgZ$; and for every $hgz' \in hgZ$, $hgz' \in ghZ$. However, this does **not** guarantee that z = z'. Indeed, two examples (stated below) illustrate this: ghZ = hgZ does not guarantee that gh = hg for all $gh \in G$.

Therefore, since not every element necessarily commutes with every other element, it's possible for |Z| = p; there is no contradiction.

Thus there exist non-Abelian groups of order p^3 .

- (b) Two examples of non-Abelian groups of order 2^3 are the dihedral group \mathcal{D}_4 (which one can easily verify is not Abelian), and the quaternion group \mathcal{Q} (see Example 2.18; clearly $ji = -ij \neq ij$, and thus is non-commutative). These examples also illustrate that G/Z being Abelian does not necessarily force G to be Abelian; both \mathcal{D}_4 and \mathcal{Q} have centers of order 2 $(Z(\mathcal{D}_4) = \{e, f\})$ where f is the flip that fixes the first and third vertices; and $Z(\mathcal{Q}) = \{\pm 1\}$), so G/Z is Abelian (since $|G/Z| = 4 = 2^2$), yet $G = \mathcal{D}_4$ or \mathcal{Q} are not Abelian.
- (c) Let G be a group with order p^3 . If G is Abelian, then definitionally Z(G) = G, so suppose $Z(G) \neq G$ (i.e. G is non-Abelian). Then $|Z(G)| \neq p^3$; and from the proof in (a), we see that $|Z(G)| \neq 1$ and $|Z(G)| \neq p^2$; the only possible value for |Z(G)| is p. Therefore, if G is a non-Abelian group of order p^3 , then its center Z(G) has order p.

Problem §3 (6.17) This exercise sketches an alternative proof of a key step in the proof of Corollary 6.26.

(a) Let G be a group, and let $g \in G$ be an element that is not in the center of G. Prove that there is a strict inclusion

$$Z(G) \subsetneq Z_G(g);$$

i.e. prove that the centralizer of g is strictly larger than the center of G.

(b) Let G be a finite group of prime power order, say $|G| = p^n$. Prove that if the center of G satisfies $|Z(G)| \ge p^{n-1}$, then Z(G) = G, and so G is Abelian.

Solution:

(a) Let $g \in G$ be an element not in the center of G. By definition,

$$Z(G) \subseteq Z_G(g)$$
,

since $Z_G(g)$ consists of all elements that commute with any element $g^i \in \langle g \rangle \subseteq G$; but every element $z \in Z(G)$ commutes with any element in G. Moreover, since $g \notin Z(G)$, we know $g \neq e$ (g is non-trivial); hence $\langle g \rangle \neq \{e\}$ (and so $\langle g \rangle$ has at least one non-identity element).

Clearly, any $g^i \in \langle g \rangle$ commutes with any element in $\langle g \rangle$. Let $g^i, g^j \in \langle g \rangle$. Then

$$q^i q^j = q^{i+j} = q^{j+i} = q^j q^i.$$

Therefore $\langle q \rangle \subseteq Z_G(q)$.

But $q \notin Z(G)$ and $q \in Z_G(q)$; thus $Z(G) \subseteq Z_G(q)$, as required.

(b) We start with a lemma (since we didn't do 6.16):

Lemma 1 ($Z_G(g)$ is Subgroup). Let G be a group, and $g \in G$ an element. Then $Z_G(g)$ is a subgroup of G.

Proof. Clearly, eg = ge for every $g \in G$; thus $e \in Z_G(g)$.

Let $z_g \in Z_G(g)$. Then $z_g g = g z_g$. Since $z_g \in Z_G(g) \subseteq G$, $z_g^{-1} \in G$ as well. Then

$$z_g g = g z_g \iff z_g^{-1} z_g g = z_g^{-1} g z_g \iff g z_g^{-1} = z_g^{-1} g z_g z_g^{-1} \iff g z_g^{-1} = z_g^{-1} g.$$

Hence $z_q^{-1} \in Z_G(g)$ for any $z_g \in Z_G(g)$.

Finally, suppose $z_g, z_g' \in Z_G(g)$, and consider $z_g z_g'$. Then

$$z_g z_q' g = z_g g z_g' = g z_g z_g',$$

and so $z_g z_g' \in Z_G(g)$ as well. Therefore $Z_G(g)$ is a subgroup of G. \square

Suppose G has order p^n for some prime number p, and $|Z(G)| \ge p^{n-1}$. Since Z(G) is a (normal) subgroup of G, Lagrange's Theorem tells us that |Z(G)| must be either p^{n-1} or p^n .

Suppose $Z(G) \neq G$. Then $|Z(G)| = p^{n-1}$, and there exists some $g \in G$ such that $g \notin Z(G)$ (that is, there exists some $g \in G \setminus Z(G)$). From (a), we know that

$$Z(G) \subsetneq Z_G(g);$$

that is, $Z_G(g)$ is strictly larger than Z(G). But we know that $Z_G(g)$ is a subgroup of G from Lemma 1; thus Lagrange tells us that $|Z_G(g)| = p^r$ for some $0 \le r \le n$. Since $|Z(G)| = p^{n-1}$, we need $p^{n-1} = |Z(G)| < |Z_G(g)| = p^n$. Hence $Z_G(g) = G$; but since the choice of $g \in G \setminus Z(G)$ was arbitrary, that means every element not in Z(G) commutes with every element in G. In other words, $g \in Z(G)$; a contradiction.

Therefore |Z(G)| must be p^n , and so Z(G) = G, and so G is Abelian.

In Corollary 6.26, the above result can be used instead of deriving a contradiction for |Z(G)| = p. From Lagrange, we know that |Z(G)| = 1, p, or p^2 . Theorem 6.25 tells us that $Z(G) \neq \{e\}$, so $|Z(G)| \neq 1$; that is, |Z(G)| = p or p^2 . In either case, $|Z(G)| \geq p^{2-1} = p$, so from the result above, we know that G is Abelian.

Problem §4 (6.19) Let p be prime, and let G be a group of order p^n . Prove that for every $0 \le r \le n$, there is a subgroup H of G of order p^r .

Solution: We begin with two lemmas.

Lemma 2 (Subgroups of Center are Normal). Let G be a finite group, and Z(G) its center. If $H \subseteq Z(G)$ is a subgroup of Z(G), then H is a normal subgroup of G.

Proof. Suppose $H \subseteq Z(G)$ is a subgroup of Z(G) (and thus of G as well). Then for any $h \in H$,

$$hg = gh$$
 for all $g \in G$.

But then

$$hg = gh \iff g^{-1}hg = h \in H$$

for every $g \in G$; thus $g^{-1}Hg \subseteq H$ for any $g \in G$. Proposition 6.10 then informs us that $g^{-1}Hg$ is a normal subgroup of G. \square

Lemma 3. If G is a finite group with order p^n for some $n \in \mathbb{Z}_{>0}$, G has a normal subgroup of order p.

Proof. It suffices to prove that an element $z \in Z(G)$ has order p; this thus forms a cyclic subgroup $\langle z \rangle \subseteq Z(G)$ with order p.

Theorem 6.25 tells us that the center of $Z(G) \neq \{e\}$; that is, the center Z(G) of G has non-trivial elements. Precisely, Lagrange tells us that $|Z(G)| = p^i$ for some $1 \leq i \leq n$. Let $z \in Z(G)$; since Corollary 2.42 implies $z^{p^i} = e$, consider $z^{\frac{p^i}{p}} = z^{p^{i-1}}$. Then the order of $z^{p^{i-1}}$ is p, since clearly k = p is the lowest power such that $(z^{p^{i-1}})^k = e$. Thus $z^{p^{i-1}} \in Z(G)$ has order p, and so forms a cyclic subgroup of Z(G), which is a normal subgroup of G with order p (by Lemma 2), as required. \square

We now proceed to the main problem by induction on n. If n = 1, then |G| = p, and $\{e\}$ (with order $p^0 = 1$) and $\{G\}$ (with order p) are clearly subgroups of G; so suppose $n \geq 2$, and that the statement holds for groups of order $p^{n'}$ with n' < n.

From Lemma 2, G has a normal subgroup N of G with order p; thus the quotient group G/N is well-defined by Theorem 6.12, and has order

$$|G/N| = \frac{|G|}{|N|} = \frac{p^n}{p} = p^{n-1}.$$

Since n-1 < n, the inductive hypothesis says that G/N has subgroups H_r of order p^r for every $0 \le r \le n-1$. To complete the proof, we must now show that every $H_r \in G/N$ has an analogous subgroup of G with the same order.

Let $g_1N, g_2N, \ldots, g_{p^{n-1}}N$ denote the elements of G/N (i.e. distinct cosets of N); here $g_i \in G$ are distinct elements of G; i.e. $g_i \neq g_j$ for $i \neq j$ (we can impose a stricter condition on g_i and g_j , since $g_iN \neq g_jN$; but this suffices). Consider the homomorphism

$$\phi: G/N \longrightarrow G, \ \phi(g_iN) = g_i.$$

To see why this is a well-defined function, consider two cosets $gN = g'N \in G/N$. Then $gN = g'N = g_iN$ for one of the cosets above, $g_iN \in G/N$ (since $g_1N, \ldots, g_{p^{n-1}}N$ represent all elements of G/N). So,

$$\phi(gN) = \phi(g_iN) = g_i = \phi(g_iN) = \phi(g'N),$$

and so $\phi(gN) = \phi(g'N)$. Homomorphism properties follow trivially from coset multiplication properties.

We now show that for every $0 \le r \le n-1$, the image of the subgroup H_r —denoted $\phi(H_r)$ —forms a subgroup in G with order p^r . Let H_r be a subgroup of G/N with order p^r . Clearly, $\phi(H_r)$ is a subset of G, since for every element $g_j N \in H_r \subseteq G/N$, $g_j \in G$, so every element $\phi(g_j N) = g_j \in \phi(H_r)$ is in G as well. Moreover, since there are p^r elements $g_j N \in H_r$ and for different elements $g_j N$ and $g_k N$, $g_j \neq g_k$, there are necessarily p^r elements in $\phi(H_r)$ as well.

Since H_r has an identity element $eN = N \in H_r$, its image $\phi(N) = e$ has the identity element as well. For two $g = \phi(gN), g' = \phi(g'N) \in \phi(H_r)$, their product

$$\phi(gN \cdot g'N) = \phi(gg'N) = gg' \in \phi(H_r)$$

is in the image as well. Finally, for every $gN \in H_r$, $g^{-1}N \in H_r$ as well, since H_r is itself a subgroup; thus for every $g = \phi(gN) \in \phi(H_r)$, we have

$$\phi(g^{-1}N) = g^{-1} \in \phi(H_r)$$

as well. Therefore $\phi(H_r)$ is a subgroup of G with order p^r .

Since this holds for any H_r with $0 \le r \le n-1$, we have thus shown that G has subgroups of order p^r for every $0 \le r \le n-1$. Clearly, G is a subgroup of itself; thus G has a subgroup of order p^n as well. Therefore, every group G of order p^n has subgroups of order p^r for every $0 \le r \le n$.

Problem §5 (6.20) Give two different proofs of the following stronger version of Sylow's Theorem:

Let G be a finite group, let p prime, and suppose that |G| is divisible by p^r . Prove that G has a subgroup of order p^r . (Note that here, p^r is not required to be the largest power of p that divides |G|).

- (a) Give a proof that directly mimics the proof of Theorem 6.29 by considering the sets of all subsets of G that contain p^r elements.
- (b) Combine the version of Sylow's Theorem that we did prove with Exercise 6.19.

Solution: Let p^n be the largest power of p that divides |G|, and suppose r < n (since otherwise, we can just apply Sylow's Theorem). We're given that p^r divides |G|, so we can factor

$$|G| = p^r k = p^n m$$

for some integers k and m where $m \nmid p$. The proof is by induction on k. If k = 1, then $|G| = p^r$, so G itself is the desired subgroup. Suppose now that $k \geq 2$, and that the stronger theorem holds for groups of order $p^r k'$ with k' < k.

Recall that a subset $A \subseteq G$ is a subgroup if and only if aA = A for every $a \in A$. Let's look at the collection of p^r -element subsets of G and let G act on these subsets by left multiplication. Let

$$S = \{ A \subseteq G \mid A \text{ has } p^r \text{ elements } \}.$$

Since G has $p^r k$ elements and we need to choose p^r of them, the number of elements of S is equal to

$$|S| = \binom{p^r k}{p^r}.$$

Let $A_1, \ldots, A_d \in S$ so that GA_1, \ldots, GA_d form distinct orbits. With the Orbit-Stabilizer Counting Theorem, we thus have

$$|S| = \sum_{i=1}^{d} |GA_i| = \sum_{i=1}^{d} \frac{|G|}{|G_{A_i}|}.$$

Observe that

$$|S| = \binom{p^r k}{p^r} = \frac{(p^r k)!}{p^r ! (p^r k - p^r)!} = \frac{p^r k (p^r k - 1) \dots (p^r k - p^r + 1)}{p^r (p^r - 1) \dots 2 \cdot 1}.$$

Unfortunately, we cannot apply Lemma 6.30 here, since n > r; that is, the above product is still divisible by p. However, we can glean some information about its divisibility:

Recall that $p^r k = p^n m$, where $p \nmid m$. Thus $k = p^{n-r} m$, and p^{n-r} is the maximal power of p that divides k. It turns out that p^{n-r} is the maximal power of p that divides |S| as well. Since

$$|S| = \prod_{j=0}^{p^r - 1} \frac{p^r k - j}{p^r - j},$$

we can inspect each individual fraction. For j=0, the fraction $\frac{p^rk}{p^r}=k$ has maximal p-power p^{n-r} . It remains to show that none of the $1 \le j \le p^r-1$ fractions are divisible by p. Take any j between 1 and p^r-1 , and factor it into

$$j = p^i s$$
 with $0 \le i < r$ and $p \nmid s$.

Then

$$\frac{p^rk-j}{p^r-j} = \frac{p^rk-p^is}{p^r-p^is} = \frac{p^{r-i}k-s}{p^{r-i}-s}.$$

Since i < r and $p \nmid s$, we see that neither the numerator or the denominator is divisible by p. Thus, the maximal power of p that divides |S| is p^{n-r} .

Thus, since

- |S| is divisible by p^{n-r} (and not divisible for any $\alpha > n-r$);
- $|S| = \sum_{i=1}^{d} |GA_i| = \sum_{i=1}^{d} \frac{|G|}{|G_{A_i}|}$; and
- $\frac{|G|}{|G_{A_i}|}$ is an integer,

every individual summand $\frac{|G|}{|G_{A_i}|}$ is divisible by p^{n-r} ; however, does this guarantee that for some G_{A_i} , p^r divides $|G_{A_i}|$?

Suppose that $p^r \nmid |G_{A_i}|$ for every $1 \leq i \leq d$ (that is, p^r does not divide the order of any stabilizer). In other words, $|G_{A_i}|$ is only divisible by a smaller maximal power of p, say p^{r-j_i} for some $1 \leq j_i \leq r$ (and so factors into $|G_{A_i}| = p^{r-j_i}s$, where $p \nmid s$). Then every orbit GA_i would have order

$$|GA_i| = \frac{|G|}{|G_{A_i}|} = \frac{p^n m}{p^{r-j_i} s} = p^{n-r+j_i} \frac{m}{s}.$$

But then every orbit would be divisible by some $p^{n-r+\alpha}$, where $\alpha = \min\{j_1, \ldots, j_d\}$. Since every $j_i \geq 1$, $\alpha \geq 1$, so $n-r+\alpha > n-r$, and so $\sum_{i=1}^d |GA_i| = |S|$ is divisible by $ptdn-r+\alpha$, a contradiction of above (since p^{n-r} is the maximal power of p that divides |S|). Thus at least one stabilizer G_{A_i} has order $|G_{A_i}|$ divisible by p^r .

In other words, we have shown that there exists a subset $A \subseteq G$ with $|A| = p^r$ such that the stabilizer G_A of A has order

$$|G_A| = p^r k'$$
 with $k'|k$,

since p^r dividing $|G_A|$ means $|G_A| = p^r k'$ for some integer k'; and $\frac{|G|}{|G_A|} = \beta$ for some integer β means

$$\beta = \frac{p^n m}{p^r k'} = \frac{p^{n-r} m}{k'} \implies k' \beta = p^{n-r} m = k,$$

and so k'|k.

We consider two cases. If k' < k, then the induction hypothesis says that G_A has a subgroup H with order p^r ; but H is thus also a subgroup of G (since G_A is a subgroup of G), so we are done.

Otherwise, suppose k' = k. Then $|G_A| = |G|$, so $G_A = G$. By definition of a stabilizer G_A , this means that

$$gA = A$$
 for every element $g \in G$.

The set has A has p^r elements, so it must be non-empty. Let $a \in A$ be some element of A. Then for every $g \in G$, we have

$$g = (ga^{-1})a \in (ga^{-1})A = A.$$

Thus every element of G is in A, so $G \subseteq A$; and since $A \subseteq G$, G = A, so $|G| = |A| = p^r$. But G has order $p^r k$ with $k \ge 2$, a contradiction.

Therefore k' < k, and so G has a subgroup of order p^r .

Alternatively, suppose p^r divides |G| for a prime p and a positive integer r. Let p^n be the highest power of p that divides |G|; then $0 \le r \le n$ (since r is a positive integer, and any p^r that divides |G| also divides p^n). By Sylow's Theorem, G has a subgroup H of order p^n ; and by Exercise 6.19, since H is itself a group, H has a subgroup H of order H is a subgroup of H of order H is a subgroup of H is a subgroup of H of order H is a subgroup of H is a subgroup of H of order H is a subgroup of H in H is a subgroup of H