Assignment 7 (CHE331A)

1. A sample of the tracer hytane at 320 K was injected as a pulse input in to a reactor. The effluent concentration was measured as a function of time and reported in the following Table.

Time,t (min)	0	0.5	1	2	3	4	5	6	7	8	9	10	11	14
C (g/m ³)	0	1	2	5	8	10	8	6	4	3	2.5	1.5	0.8	0

- a. Construct a figure showing the tracer concentration C(t) as a function of time.
- b. Construct a figure showing E(t) as a function of time.
- c. Construct the F(t) curve.
- d. Calculate the mean residence time, t_m and variance
- e. Construct the $E(\Theta)$ vs Θ curve.
- 2. An RTD experiment was carried out in a non-ideal reactor that gave the following results

$$E(t) = 0$$
 for $t < 1$ min
 $E(t) = 1 \text{ min}^{-1}$ for $1 \le t \le 2$ min
 $E(t) = 0$ for $t > 2$ min

- a. What is the mean residence time ' t_m ' and variance σ^2 ?
- b. What fraction of fluid spends time 2 min or less in the reactor?
- c. What fraction of fluid spends time between 1.5 and 2 min in the reactor?
- 3. A reactor with several dividing baffles is to be used to carry out the reaction $A \rightarrow R$ with a rate law given by:

 $-r_A = 0.05 C_A \frac{mol}{l min}$. The results of a pulse tracer test are given below:

	Lintert							
t (min)	0	10	20	30	40	50	60	70
C (mol/L)	35	38	40	40	39	37	36	35

- a. How many tanks in series would you suggest to model this reactor?
- b. Assuming the tanks in series model, find out the expected conversion.
- 4. The first-order reaction, $A \stackrel{k}{\rightarrow} B$, with k = 0.8 min⁻¹ is carried out in a real reactor with the following RTD function

$$E(t) = \sqrt{\tau^2 - (t - \tau)^2} \text{ min}^{-1} \qquad \text{for } 2\tau \ge t \ge 0$$

$$E(t) = 0 \qquad \text{for } t > 2\tau$$

- a. What is the mean residence time?
- b. What is the variance?
- c. What is the conversion predicted by the segregation model?
- d. What is the conversion predicted by the maximum mixedness model?

NOTE: Please solve Q.4 (c) and (d) by using MATLAB /Python. Codes should be sent to che331a@gmail.com