Laboratorio di Elettronica e Tecniche di Acquisizione Dati 2025-2026

Elettronica digitale

(cfr. https://physics.ucsd.edu/~tmurphy/phys121/phys121.html
https://physics.ucsd.edu/~tmurphy/phys121/phys121.html
https://physics.ucsd.edu/~tmurphy/phys121/phys121.html
https://physics.ucsd.edu/~tmurphy/phys121/phys121.html
https://physics.ucsd.edu/~tmurphy/phys121/phys121.html
https://physics.ucsd.edu/~tmurphy/phys121/phys121.html
https://www.allelcoelec.com/blog/XOR-Gate-Explained-
https://www.allelcoelec.com/blog/xor-Applications.html
https://www.allelcoelec.com/blog-xand-Applications.html
<a href="https://www.allelcoelec.com/blog-xan

ADC (1)

- Dal punto di vista funzionale gli ADC sono dei classificatori:
 - l' intervallo di variabilità del segnale V_x viene diviso in n intervalli, detti canali, di ampiezza costante K. Definiamo quindi $V_i = K i + V_o$
 - il segnale in ingresso V_x viene *classificato* nel canale *i*-esimo se è verificata la relazione

$$V_{i-1} < V_{\chi} < V_{i}$$

inevitabilmente si ha un errore di quantizzazione

ADC (2)

ADC: Analog to Digital Converter

ADC "commerciali" sono caratterizzati da:

- Range: Intervallo di tensione che l'ADC può accettare in ingresso: [Vmin, Vmax]
- Numero di canali in cui è diviso il range: definito dal numero n di bit
 - n = 12 bit: $N = 2^{12} = 4096$
 - n = 16 bit: $N = 2^{16} = 65536$
- Risoluzione: minima variazione di tensione rivelabile: (Vmax-Vmin) / n
- Sampling rate: frequenza di campionamento $f_C = 1/\Delta T_C$
- Sampling time: intervallo di tempo necessario ad effettuare una operazione di campionamento Δt

Comparatori

- è spesso utile generare un segnale elettrico "forte" associato con un certo evento (cfr. *trigger*)
- possiamo utilizzare un comparatore per confrontare un segnale con una certa soglia
 - può essere una temperatura, una pressione, etc...: qualsiasi cosa che possa essere trasformata in un voltaggio
- possiamo utilizzare un operazionale senza feedback
 - input invertente alla soglia
 - input non-invertente collegato al segnale da testare
 - l'operazionale farà uscire un segnale (a fondo scala) negativo se il segnale è < della soglia, positivo se il segnale è > della soglia
- purtroppo l'operazionale è lento (basso "slew rate")
 - 15 V/µs significa 2 µs per arrivare a fondo scala se alimentato $\pm 15~\text{V}$

Esempio (reale) di comparatore

- quando V_{in} < V_{ref}, V_{out} va a V_{CC}-, i.e. 0 (*)
- quando V_{in} > V_{ref}, V_{out} va a V_{CC}⁺, i.e. 5V (*)
 - nell'esempio è anche "pulled-up" (attraverso il resistore di "pull-up", usualmente 1 $k\Omega$ o più): se la corrente richiesta dal carico è maggiore di quella possibile per l'op.amp (O(10 mA)), l'extra-corrente arriva dall'alimentazione esterna e non dall'op.amp
- l'uscita è una versione "digitale" del segnale
 - i valori "alto" e "basso" sono configurabili (ground e 5V, nell'esempio)
- possono essere utili anche per convertire un segnale "lento" in uno "veloce"
 - se è necessaria una maggiore precisione di "timing"

(*) in realtà a meno di N potenziali di contatto / soglie di conduzione del diodo...

"digitale" continuo discreto analogico digitale Stati logici solo due possibili stati 1, alto (H), vero (true) 0, basso (L), falso (false)

Algebra booleana sistema matematico per l'analisi di stati logici

Porte logiche di base - OR

A	В	Q
0	0	0
0	1	1
1	0	1
1	1	1

$$A+B+C = (A+B)+C = A+(B+C)$$

 $A+B = B+A$
 $A+1 = 1, A+A = A, A+0 = A$

Porte logiche di base - AND

Α	В	Q
0	0	0
0	1	0
1	0	0
1	1	1

$$A \cdot B \cdot C = (A \cdot B) \cdot C = A \cdot (B \cdot C)$$

 $A \cdot B = B \cdot A$
 $A \cdot 1 = A, A \cdot A = A, A \cdot 0 = 0$
 $A \cdot (B+C) = A \cdot B + A \cdot C$

Porte logiche di base - NOT

$$\overline{A} = A$$

$$A + A = 1$$

$$A \cdot A = 0$$

$$A + \overline{A} \cdot B = A + B$$

sapendo che

$$B+1=1, A\cdot 1=A, \overline{A}+A=1$$

$$A + \overline{A} \cdot B = A \cdot (B+1) + \overline{A} \cdot B = A \cdot B + A + \overline{A} \cdot B = A \cdot \overline{A} \cdot B = A \cdot$$

Porte logiche di base – NAND

NAND

$$Q = A \cdot B$$

Α	В	Q
0	0	1
0	1	1
1	0	1
1	1	0

porta universale

Porte logiche di base – NOR

NOR

A	В	Q
0	0	1
0	1	0
1	0	0
1	1	0

Porte logiche di base – XOR

A	В	Q
0	0	0
0	1	1
1	0	1
1	1	0

OR esclusivo

XOR con AND, NOT e OR (1)

	ı	
Δ	l R	

Α	В	Q	A	В	Q
0	0	0	0	0	0
	1	1	0	1	1

O	1	1	0	1	1
	l _	1 .		1 _	. ا

_					
1	1	1	1	1	0

3 casi sono già ok, va sistemato solo l'ultimo

XOR con AND, NOT e OR (1)

 OR
 XOR

 A
 B
 Q
 Q2
 A
 B
 Q

 O
 O
 O
 O
 O
 O

 O
 1
 O
 O
 O

Q₂ è una NAND (AND negata)

se inserisco un'altra
operazione posso agire
sull'ultimo combinando questa
operazione con l'OR (Q)

XOR con AND, NOT e OR (1)

 OR
 XOR

 A
 B
 Q
 Q2
 Y
 A
 B
 Q

 0
 0
 0
 1
 0
 0
 0
 0

 0
 1
 1
 1
 1
 0
 1
 1

se combino la OR (Q), in modo opportuno (AND) con la NAND (Q2) ottento esattamente la

mia XOR (Y)

Manipolazione dati

- tutta la "manipolazione" è basata sulla logica
- la logica segue regole ben precise, producendo uscite deterministiche, funzione solamente degli input

AND		
A	В	C
0	0	0
0	1	0
1	0	0
1	1	1

$$A \longrightarrow C \longrightarrow B \longrightarrow C$$

A	В	С	f(A, B, C)
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Prima forma canonica (esempio)

$$f(A,B,C) = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (\overline{A} \cdot B \cdot C) + (A \cdot B \cdot \overline{C}) + (A \cdot B \cdot C)$$

Ogni riga come prodotto (AND) dei termini naturali (se 1) o complementati (se 0) Somma (OR) delle righe con valore pari a 1.

Seconda forma canonica (esempio)

$$f(A,B) = (A+B)(\overline{A}+B)(\overline{A}+\overline{B})$$

Ogni riga come somma (OR) dei termini naturali (se 1) o complementati (se 0)
Prodotto (AND) delle righe con valore pari a 0.

A	В	f(A,B)
0	0	0
0	1	1
1	0	0
1	1	0

A	В	С	f(A, B, C)
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Prima forma canonica (esempio)

$$f(A,B,C) = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (\overline{A} \cdot B \cdot C) + (A \cdot B \cdot \overline{C}) + (A \cdot B \cdot C)$$

Ogni riga come prodotto (AND) dei termini naturali (se 1) o complementati (se 0) Somma (OR) delle righe con valore pari a 1.

Seconda forma canonica (esempio)

$$f(A,B) = (A+B)(\overline{A}+B)(\overline{A}+\overline{B})$$

Ogni riga come somma (OR) dei termini naturali (se 1) o complementati (se 0) Prodotto (AND) delle righe con valore pari a 0.

A	В	f(A,B)
0	0	0
0	1	1
1	0	0
1	1	0

A	В	С	f(A, B, C)
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Prima forma canonica (esempio)

$$f(A,B,C) = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (\overline{A} \cdot B \cdot C) + (A \cdot B \cdot \overline{C}) + (A \cdot B \cdot C)$$

Ogni riga come prodotto (AND) dei termini naturali (se 1) o complementati (se 0).
Semma (OR) delle righe con valore pari a 1.

Seconda forma canonica (esempio)

$$f(A,B) = (A+B)(\overline{A}+B)(\overline{A}+\overline{B})$$

Ogni riga come somma (OR) dei termini naturali (se 1) o complementati (se 0) Prodotto (AND) delle righe con valore pari a 0.

A	В	f(A,B)
0	0	0
0	1	1
1	0	0
1	1	0

A	В	С	f(A, B, C)
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Prima forma canonica (esempio)

$$f(A,B,C) = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (\overline{A} \cdot B \cdot C) + (A \cdot B \cdot \overline{C}) + (A \cdot B \cdot C)$$

Ogni riga come prodotto (AND) dei termini naturali (se 1) o complementati (se 0) Somma (OR) delle righe con valore pari a 1.

Seconda forma canonica (esempio)

$$f(A,B) = (A+B)(\overline{A}+B)(\overline{A}+\overline{B})$$

Ogni riga come somma (OR) dei termini naturali (se 1) o complementati (se 0)
Prodotto (AND) delle righe con valore pari a 0.

A	В	f(A,B)
0	0	0
0	1	1
1	0	0
1	1	0

Algebra booleana

trasformare una funzione logica in un' altra di più facile implementazione hardware

Teoremi di De Morgan

$$\overline{A \cdot B \cdot C \cdot \dots} = \overline{A} + \overline{B} + \overline{C} + \dots$$

$$A + B + C + \dots = A \cdot B \cdot C \cdot \dots$$

Il complemento dell' AND di più variabili logiche è dato dall' OR dei complementi

Il complemento dell' OR di più variabili logiche è dato dall' AND dei complementi

Un circuito AND per logica positiva funziona come un OR per logica negativa

non è necessario usare i tre circuiti di base

bastano due

OR e NOT oppure AND e NOT

$$\bigcirc$$
 Q $\overline{\overline{A} + \overline{B}} \Leftrightarrow A \cdot B$ $\overset{\mathsf{A}}{=}$

$$-- Q \quad \overline{\overline{A} \cdot \overline{B}} \Leftrightarrow A + B$$

XOR con AND, NOT e OR (2)

OR

XOR

A	В	Q	Q_2	У	A	В	Q
0	0	0	1	0	0	0	0
0	1	1	1	1	0	1	1
1	0	1	1	1	1	0	1
1	1	1	0	0	1	1	0

$$(A+B)\cdot\overline{(A\cdot B)}=(A+B)\cdot(\overline{A}+\overline{B})$$

$$A \cdot \overline{A} + A \cdot \overline{B} + B \cdot \overline{A} + B \cdot \overline{B} = A \cdot \overline{B} + B \cdot \overline{A}$$

Tutta la logica con la sola NAND

Tutta la logica con la sola NAND

XOR = (A NAND B) AND (A OR B)

- la OR già sappiamo come farla di sole porte NAND
- 6 NAND in totale: 3 per la OR, 2 per la AND e 1 per la NAND
- questa è una XNOR, che utilizzando un'altra NAND viene negata, cioè diventa la XOR desiderata

Aritmetica

sommiamo due numeri binari:

```
00101110 = 46
+ 01001101 = 77
01111011 = 123
```

come lo abbiamo fatto? Definiamo le nostre "regole":

```
0 + 0 = 0;

0 + 1 = 1 + 0 = 1;

1 + 1 = 10 (2): (0, riporto 1);

1 + 1 + (1 di riporto) = 11 (3): (1, riporto 1)
```

- proviamo ad associare una porta logica a queste "regole"
 - essendo una somma pensiamo subito alla OR
 - il caso "'1+1=0 (riporto1)' si adatta meglio alla XOR
 - ancora manca le gestione del riporto

XOR

AB | C

0 0 0

0 1 1

1 0 1

1 1 0

Half Adder

Α	В	S	R			
0	0	0	0			
0	1	1	0			
1	0	1	0			
1	1	0	1			
XOR AND						

$$S = A \oplus B = \overline{A} \cdot B + A \cdot \overline{B}$$

$$R = A \cdot B$$

Half Adder

Somma binaria è analoga alla somma decimale:

- 1) sommare i due bit corrispondenti al digit 2ⁿ
- 2) sommare il risultato al riporto dal digit 2ⁿ⁻¹

Il circuito sommatore a due ingressi è detto Half Adder (ne occorrono due per fare una somma completa: riporto precedente!)

due input i bit da sommare due output la somma e il riporto

può essere costruito con i circuiti di base

Full Adder

Tabella di verità della somma di 3 bit

A_{n}	B_n	R _{n-1}	S_n	R_n
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Full Adder

L'insieme di due half-adder e una porta logica OR, opportunamente collegati, restituisce un <u>full-adder</u>

Il caso in cui entrambi gli "C" (C^{α} e C^{β}) sono 1 sarebbe un problema (come facciamo col resto?), ma non esiste (quindi OR o XOR sono equivalenti):

- C^{α} = 1 solo se A_n e B_n sono entrambi 1 \rightarrow S^{α} = 0
- ma se $S^{\alpha} = 0 \rightarrow C^{\beta} = 0$, indipendentemente da C_{n-1}

Half Adder:

A	В	S	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Full Adder

Tabella di verità della somma di 3 bit

A_{n}	B_n	R _{n-1}	S_n	R_n
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

possiamo riscrivere R_n , sapendo che Q+Q+Q=Q

$$R_{n} = \left(\overline{A_{n}}B_{n}R_{n-1} + A_{n}B_{n}R_{n-1}\right) + \left(A_{n}\overline{B_{n}}R_{n-1} + A_{n}B_{n}R_{n-1}\right) + \left(A_{n}B_{n}\overline{R_{n-1}} + A_{n}B_{n}R_{n-1}\right)$$

$$R_{n} = \left(\overline{A_{n}} + A_{n}\right)B_{n}R_{n-1} + \left(\overline{B_{n}} + B_{n}\right)A_{n}R_{n-1} + \left(\overline{R_{n-1}} + R_{n-1}\right)A_{n}B_{n}$$

$$R_{n} = B_{n}R_{n-1} + A_{n}R_{n-1} + A_{n}B_{n} = A_{n}B_{n} + \left(A_{n} + B_{n}\right)R_{n-1}$$

Full Adder

$$S_n = \overline{A_n} \overline{B_n} R_{n-1} + \overline{A_n} \overline{B_n} \overline{R_{n-1}} + A_n \overline{B_n} \overline{R_{n-1}} + A_n B_n R_{n-1}$$

$$R_n = \overline{A_n} B_n R_{n-1} + A_n \overline{B_n} \overline{R_{n-1}} + A_n B_n \overline{R_{n-1}} + A_n B_n R_{n-1}$$

possiamo riscrivere la somma S_n

$$S_n = R_{n-1} \left(A_n B_n + \overline{A_n} \overline{B_n} \right) + \overline{R_{n-1}} \left(\overline{A_n} B_n + A_n \overline{B_n} \right)$$

ma $A \oplus B = \overline{A} \cdot B + A \cdot \overline{B}$ (la tab. di verità della XOR è simmetrica)

$$\begin{pmatrix}
A_n B_n + \overline{A_n} \overline{B_n} \\
\overline{A_n} B_n + \overline{A_n} \overline{B_n}
\end{pmatrix} = \overline{A_n} \oplus \overline{B_n}$$

$$\begin{pmatrix}
A_n B_n + \overline{A_n} \overline{B_n} \\
\overline{A_n} B_n + \overline{A_n} \overline{B_n}
\end{pmatrix} = A_n \oplus B_n$$

quindi

$$S_n = R_{n-1} \cdot \overline{A_n \oplus B_n} + \overline{R_{n-1}} \cdot A_n \oplus B_n$$

$$S_n = R_{n-1} \oplus \left(A_n \oplus B_n \right)$$

Full Adder - circuito

Full Adder

VS.

 S_n

 A_n B_n C^{β} S^{β}

 R_{n-1}

Nella AND del secondo HA (HA^{β}) entrano:

$$C_{n-1}$$

е

$$S^{\alpha}$$

(cioè $A_n \oplus B_n$)

e poi C^{β} va in OR con

 \mathbf{C}^{α}

 $(cioè A_nB_n)$

VS.

Nella AND del secondo HA (HA^{β}) entrano:

$$C_{n-1}$$

е

$$A_n + B_n$$

e poi C^{β} va in OR con

$$\mathbf{C}^{\alpha}$$

 $(cioè A_nB_n)$

$$C_{n-1}(A_n \bigoplus B_n) + A_nB_n$$
=?
$$C_{n-1}(A_n + B_n) + A_nB_n$$

l'unica differenza potrebbe esserci se A_n e B_n sono entrambi 1. In questo caso:

$$A_nB_n = C^{\alpha} = 1$$

a questo punto, dato che questo è in OR non è importante con cosa lo sia

VS.

 R_n R_n R_{n-1} R_n

Aritmetica binaria vs transistor

Input		Intermedi			Intermedi Output			put
A B C	\mathbb{C}_{in}	E	F	H ($\mathbf{\hat{J}}$	D	C_{out}	
0 0	0	0	0	0	0	0	0	
0 1	0	1	1	0	0	1	0	
1 0	0	1	1	0	0	1	0	
1 1	0	0	1	0	1	0	1	
0 0	1	0	0	0	0	1	0	
0 1	1	1	1	1	0	0	1	
1 0	1	1	1	1	0	0	1	
1 1	1	0	1	1	1	1	1	

- ogni cifra richiede 6 porte
- ogni porta ha ~ 6 transistor
- ~ 36 transistor per cifra

3 input e 2 output

Una somma di 4 bit può essere eseguita in parallelo usando 4 Full Adders

Aritmetica binaria a 8 bit (in cascata)

Somma seriale

Una unità di ritardo in più D = T fra gli impulsi

impulso di riporto in tempo con i bit da sommare

Famiglie logiche

Famiglie logiche più diffuse e usate

- CMOS (Complementary MOS)
- NMOS (MOSFET a canale n)
- TTL (Transistor-Transistor Logic)
- ECL (Emitter Coupled Logic)

transistor **FET**

transistor **BJT**

Le porte logiche possono essere fabbricate con le varie tecnologie in un singolo chip con stesse funzioni, compatibili

numero di porte

SSI small scale integration (1-10 gates)

MSI medium scale integration (10-100 gates)

LSI large scale integration (~ 10³)

VLSI very large scale integration (~ 10⁶)

ULSI ultra large scale integration (> 10⁶)

Famiglie logiche (le due più comuni)

- TTL: Transistor-Transistor Logic, basato sul BJT
 - output: '1' logico: $V_{OH} > 3.3 \text{ V}$; '0' logico: $V_{OL} < 0.35 \text{ V}$
 - input: '1' logico: $V_{IH} > 2.0 \text{ V}$; '0' logico: $V_{IL} < 0.8 \text{ V}$
 - zona "morta" fra 0.8V e 2.0 V
- CMOS: Complimentary MOSFET, basato su FET
 - output: '1' logico: $V_{OH} > 4.7 \text{ V}$; '0' logico: $V_{OL} < 0.2 \text{ V}$
 - input: '1' logico: $V_{IH} > 3.7 \text{ V}$; '0' logico: $V_{IL} < 1.3 \text{ V}$
 - zona "morta" fra 1.3V e 3.7 V

L'uscita di un CMOS è TTL-compatibile

Confronto famiglie logiche

	TTL (V)	CMOS (V)	ECL (V)
tensione massima di alimentazione	5	5	-5.2
valore massimo V _{in} identificato come O	0.8	1.3	-1.4
valore minimo V _{in} identificato come 1	2.0	3.7	-1.2
valore massimo V _{out} identificato come O	0.35	0.2	-1.7
valore minimo V _{out} identificato come 1	3.3	4.7	-0.9

Nomenclatura circuiti

SN74ALS245N

significa che è fatto dalla Texas Instruments (SN), è una porta logica TTL con range di temperatura commerciale (74), è della famiglia "Advanced Low-power Schottky" (ALS), ed è un buffer bi-direzionale a 8 bit, in un package plastico di tipo through-hole DIP (N).

Full Adder - NAND

Logica programmabile

Simplified programmable logic device

fra loro)

Logica programmabile

Simplified programmable logic device

leggermente

dopo gli altri

Reti Logiche e Sequenziali

- No feedback, in ogni istante l'output è funzione degli input
- Tutti i circuiti analizzati fino adesso sono reti logiche

Rete Sequenziale Combinational Logic Circuit Previous State Memory Clock Signal

- L'output è funzione dell'input corrente e dell'output precedente
- I (possibili) cambi di output sono definiti dal segnale di clock
- Il circuito ha "memoria" dei suoi stati precedenti

 FLIP FLOP: unità di memoria fondamentale dei circuiti digitali. Elemento di base dei circuiti sequenziali. È un circuito che immagazzina l'informazione di base, (bit, 0 o 1)

SR Flip Flop (Set – Reset)

$\overline{}$			
R	S	Q_n	\overline{Q}_n
0	0	non co	onsentito
0	1	1	0
1	0	0	1
1	1	Q_{n-1}	\overline{Q}_{n-1}

stato "set" stato "reset"

 FLIP FLOP: unità di memoria fondamentale dei circuiti digitali. Elemento di base dei circuiti sequenziali. È un circuito che immagazzina l'informazione di base, (bit, 0 o 1)

SR Flip Flop (Set – Reset)

R	S	Q_n	\overline{Q}_n
0	0	non co	onsentito
0	1	1	0
1	0	0	1
1	1	Q_{n-1}	\overline{Q}_{n-1}

stato "set" stato "reset"

 FLIP FLOP: unità di memoria fondamentale dei circuiti digitali. Elemento di base dei circuiti sequenziali. È un circuito che immagazzina l'informazione di base, (bit, 0 o 1)

SR Flip Flop (Set – Reset)

R	S	Q_n	\overline{Q}_n	
0	0	non consentito		
0	1	1	0	
1	0	0	1	
1	1	Q_{n-1}	\overline{Q}_{n-1}	

stato "set" stato "reset"

 FLIP FLOP: unità di memoria fondamentale dei circuiti digitali. Elemento di base dei circuiti sequenziali. È un circuito che immagazzina l'informazione di base, (bit, 0 o 1)

SR Flip Flop (Set – Reset)

R	S	Q_n	\overline{Q}_n	
0	0	non consentito		
0	1	1	0	
1	0	0	1	
1	1	Q_{n-1}	\overline{Q}_{n-1}	

stato "set" stato "reset"

 FLIP FLOP: unità di memoria fondamentale dei circuiti digitali. Elemento di base dei circuiti sequenziali. È un circuito che immagazzina l'informazione di base, (bit, 0 o 1)

SR Flip Flop (Set - Reset)

R	S	Q_n	\overline{Q}_n
0	0	non co	onsentito
0	1	1	0
1	0	0	1
1	1	Q_{n-1}	\overline{Q}_{n-1}

stato "set" stato "reset"

 FLIP FLOP: unità di memoria fondamentale dei circuiti digitali. Elemento di base dei circuiti sequenziali. È un circuito che immagazzina l'informazione di base, (bit, 0 o 1)

SR Flip Flop (Set – Reset)

R	S	Q_n	\overline{Q}_n
0	0	non co	onsentito
0	1	1	0
1	0	0	1
1	1	Q_{n-1}	\overline{Q}_{n-1}

stato "set" stato "reset"

- Asincrono: il cambio di stato dell'output avviene in corrispondenza al cambio di stato degli input
- Stato R=0, S=0 proibito:

 $Q_n=1$ $\overline{Q_n}=1$ (i.e. non è vero che "Q" != "!Q"): situazione anomala, è necessario evitare che il FF sia in questo stato

Flip Flop SR (NOR)

SR NOR latch [edit]

While the R and S inputs are both low, feedback maintains the Q and \overline{Q} outputs in a constant state, with \overline{Q} the complement of Q. If S (Set) is pulsed high while R (Reset) is held low, then the Q output is forced high, and stays high when S returns to low; similarly, if R is pulsed high while S is held low, then the Q output is forced low, and stays low when R returns to low.

SR latch operation^[3]

	Cha	aracter	Excitation table				
s	R	Q _{next}	Action	Q	Q _{next}	s	R
0	0	Q	Hold state	0	0	0	Χ
0	1	0	Reset	0	1	1	0
1	0	1	Set	1	0	0	1
1	1	Х	Not allowed	1	1	Х	0

R	S	R'	S'	Q_n	\overline{Q}_n	
X	X	1	1	Q_{n-1}	\overline{Q}_{n-1}	
0	1	1	0	1	0	
1	0	0	1	0	1	
1	1	non consentito				

ENABLE: gate che abilita la porta:

PRESET e CLEAR: gate per definire lo stato iniziale del FF

R	S	R'	S'	Q_n	\overline{Q}_n	
X	X	1	1	Q_{n-1}	\overline{Q}_{n-1}	
0	1	1	0	1	0	
1	0	0	1	0	1	
1	1	non consentito				

ENABLE = 0: S'=R'=1: FF Mantiene lo stato attuale, non risponde a variazioni di S e R

R	S	R'	S'	Q_n	\overline{Q}_n
0	0	1	1	Q_{n-1}	\overline{Q}_{n-1}
0	1	1	0	1	0
1	0	0	1	0	1
1	1	non consentito			

- Il gate EN permette di controllare quando il FF può cambiare stato: quando EN=0, l'uscita del FF "memorizza" l'output definito nel tempo in cui EN=1
- Sincrono: il cambio di stato di Q e !Q avviene solamente quando il segnale

R	S	R'	S'	Q_n	\overline{Q}_n	
0	0	1	1	Q_{n-1}	\overline{Q}_{n-1}	
0	1	1	0	1	0	
1	0	0	1	0	1	
1	1	non consentito				

- Il gate EN permette di controllare quando il FF può cambiare stato: quando EN=0, l'uscita del FF "memorizza" l'output definito nel tempo in cui EN=1
- Sincrono: il cambio di stato di Q e !Q avviene solamente quando il segnale di enable è positivo

R	S	R'	S'	Q_n	\overline{Q}_n	
0	0	1	1	Q_{n-1}	\overline{Q}_{n-1}	
0	1	1	0	1	0	
1	0	0	1	0	1	
1	1	non consentito				

- Il gate EN permette di controllare quando il FF può cambiare stato: quando EN=0, l'uscita del FF "memorizza" l'output definito nel tempo in cui EN=1
- Sincrono: il cambio di stato di Q e !Q avviene solamente quando il segnale di enable è positivo

R	S	R'	S'	Q_n	\overline{Q}_n	
0	0	1	1	Q_{n-1}	\overline{Q}_{n-1}	
0	1	1	0	1	0	
1	0	0	1	0	1	
1	1	non consentito				

- Il gate EN permette di controllare quando il FF può cambiare stato: quando EN=0, l'uscita del FF "memorizza" l'output definito nel tempo in cui EN=1
- Sincrono: il cambio di stato di Q e !Q avviene solamente quando il segnale di enable è positivo
- Gli ingressi di Preset e Clear devono essere tenuti alti durante il funzionamento. Possono essere usati per definire lo stato iniziale del FF quando il segnale EN è basso (EN=0)

Flip Flop D

D Flip Flop

- Grazie all'invertitore, si ha solamente S=1, R=0 oppure S=0, R=1 -> assimilabile a un unico input "D"
- Il DATO (D) viene trasferito su Q solo se il segnale di enable è alto
 - Latch FF, Level Triggered

Master Slave Flip Flop D

MASTER-SLAVE D Flip Flop

- Clk=1 → S e R sono settati da D.
- Clk=0 → Q e !Q sono settati da S e R.
- D è trasferito a Q in un intero ciclo di clock
- Edge Triggered

Backup

Sistemi Logici Complessi

porte logiche + flip flop + memorie/registri --> Sistemi logici complessi

FSM (Finite State Machine): sistema che può trovarsi in un numero finito di stati che può cambiare mediante transizioni triggerate da eventi esterni

Invertitore (NOT)

Realizzazione: è di fatto un interruttore

logica TTL (BJT)

- quando V_s è ~ 0 il transitor è in cut-off \rightarrow I_B ~0 \rightarrow I_C ~0 \rightarrow V_{out} è "pulled up" verso V_{CC}
- quando V_s è "grande" il transitor va in saturazione

→
$$I_C$$
 è massima
→ V_{out} ~0
(dato che V_{CC} - V_{out} = R_C * I_{C})

Interruttori MOSFET

- i MOSFET, utilizzati nei circuiti di logica, agiscono come interruttori controllati con un voltaggio
 - n-channel MOSFET è chiuso (conduce) quando è applicato un voltaggio positivo (+5V), aperto quando il voltaggio è nullo
 - p-channel MOSFET è aperto quando è applicato un voltaggio positivo (+5V), chiuso (conduce) quando il voltaggio è nullo

Invertitore (NOT)

Realizzazione: è di fatto un interruttore

logica TTL (BJT)

logica NMOS (MOSFET)

Invertitore (NOT) MOSFET:

- OV come input "apre" il FET in basso (n-channel) ma "chiude" quello in alto (p-channel) → l'output è a +5V
- 5V come input "chiude" il FET in basso (n-channel) ma "apre" quello in alto (p-channel) → l'output è a 0V

 \rightarrow l'effetto netto è l'inversione logica: $0 \rightarrow 5$; $5 \rightarrow 0$

NAND MOSFET:

- Entrambe gli input a 0V:
 - i due FET in basso OFF, i due in alto
 ON
 - → uscita "alta"
- Entrambe gli input a 5V:
 - i due FET in basso ON, i due in alto
 OFF
 - → uscita "bassa"
- IN A a 5V, IN B a 0V:
 - alto a sinistra OFF, più basso ON
 - alto a destra ON, in mezzo OFF
 - → uscita "alta"

NAND

• IN A a 0V, IN B a 5V:

AB C 0 0 1 0 1 1

opposto rispetto a prima

 $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$

→ uscita "alta"

NOR MOSFET:

- Entrambe gli input a 0V:
 - i due FET in basso OFF, i due in alto
 ON
 - → output "alto"
- → Entrambe gli input a 5V:
 - i due FET in basso ON, i due in alto
 OFF
 - → output "basso"
- IN A a 5V, IN B a 0V:
 - basso a sinistra OFF, basso destra ON
 - più alto ON, in mezzo OFF
 - → output "basso"

NOR

• IN A a 0V, IN B a 5V:

0 0 1

opposto rispetto a prima

0 1 | 0

 \rightarrow output "basso" $_{A}$

»__C

1 0 0

Sottofamiglie TTL

