Tau Mass Reconstruction. One More Status Report

Claudio (with lots of help from Hualin)
10 Feb 2022

$H \rightarrow \tau \tau$ kinematics

There are up to 6 unknowns

$$\overrightarrow{a} = (x_1, \varphi_1, m_{vv1}, x_2, \varphi_2, m_{vv2})$$

There is "event data"

$$\overrightarrow{a} = (x_1, \varphi_1, m_{vv1}, x_2, \varphi_2, m_{vv2}) \qquad \overrightarrow{y} = (E_{vis1}, \overrightarrow{p}_{vis1}, E_{vis2}, \overrightarrow{p}_{vis2}, \overrightarrow{E}_T^{miss})$$

 $\frac{E_{vis}}{E_{\tau}}$

vv inv. mass (leptonic decays) Note: θ_{GI} can be calculated from the other vars. (not immediately obvious)

SvFit has a likelihood, maximized as a function of m_{test}

$$\mathcal{L}(m_{test}|event|data) = \int p(m_{\tau\tau}|\vec{y}, \vec{a}) \delta(m_{\tau\tau} - m_{test}) d\vec{a}$$

$$m_{ au au}(\vec{y},\vec{a})$$

 $p(m_{\tau\tau}|\vec{y},\vec{a}) = ME \cdot TF \cdot REG$ transfer fudge matrix factor, ie, factor element detector effect

Integral is complicated, done with MC methods, slow

FastMTT, simplification of SVFit (faster)

- Collinear approximation, $\theta_{GJ} = 0$
 - $\vec{a} = (x_1, y_1, m_{vv1}, x_2, y_2, m_{vv2})$
- Matrix elements = constant
- Only "Transfer Factor" is for E_T^{miss}

$$\mathcal{L}(m_{test}|event\;data) = MET_TF(\vec{E}_{T}^{miss\;reco},\vec{E}_{T}^{miss\;hypo}) \cdot \int \delta(m_{\tau\tau} - m_{test})d\vec{a} \quad \bullet \text{REG}$$

$$= \frac{1}{m_{test}^3}$$
 (controls high tails)
$$\frac{1}{2\pi\sqrt{|V|}} \cdot \exp\left[-\frac{1}{2}\left((\vec{E}_{T}^{miss\;reco} - \vec{E}_{T}^{miss\;hypo})^T \cdot V^{-1} \cdot (\vec{E}_{T}^{miss\;reco} - \vec{E}_{T}^{miss\;hypo})\right)\right]$$
 depends on x_1 and x_2

- The integral over the δ -function can be done analytically
 - There is a bit of fudging of the limits of integrations as well

FastMTT out of the box. Crystal Ball Fit

Should probably take the time to look at these for different final states!!!

Improvement of FastMTT (CC version)

 $P_{ au}$ $\theta_{G^{j}}$

- Super-Collinear approximation, θ_{GJ} = 0, \underline{vv} also collinear
 - $\bullet \overrightarrow{a} = (x_1, y_1, m_{vv1}, x_2, y_2, m_{vv2})$
- Include expected x_i pdfs from MC (~matrix element)
 - In practice since the pdfs come from MC the lack of collinearity of the neutrinos in leptonic decays is actually included! (integrated

"pol4" (hadronic)	H
"pol3" (leptonic)	

Fits to

	Chi2	-	201.181		
	NDf	-	44		
	p0	-	-20.8584	+/-	5.6006
	p1		-103.46	+/-	181.62
	p2	-	28912.2	+/-	1039.6
	p3	-	-40754	+/-	1916.3
	p4	-	16937.9	+/-	1087.5
	**************************************		******		
	Minimizer is Linear /	Migrad			
	Chi2	-	118.649		
	NDf	-	46		
	p0	-	6462.7	+/-	42.8792
	p1	-	7119.87	+/-	319.185
	p2	-	-24764.4	+/-	642.921
	n3	-	11189 4	+/-	371 598

Minimizer is Linear / Migrad

- With polynomial functions the integral with the $\delta\text{-function}$ can be done analytically (still very fast!)
 - $\int p_1(x_1)p_2(x_2)\delta(m_{\tau\tau}-m_{test})dx_1dx_2$

Would like to incorporate $P_T(HH)$ information

GEN expectations:


```
Double_t func1(Double_t *x, Double_t *par){
    Double_t fitval;
    Double_t pt = x[0];
    Double_t p0 = par[0];
    Double_t p1 = par[1];
    Double_t p2 = par[2];
    fitval = pt*p0*pow((1+pt/p1), -p2);
    return fitval;
}
```

Not so easy to do in the SvFit/FastMTT approach

```
\mathcal{L}(m_{test}, p_{T,test} | event \ data) = MET\_TF(\vec{E}_{T}^{miss}) \cdot \int \delta(m_{\tau\tau} - m_{test}) d\vec{a} \cdot \int \delta(p_{Tx,\tau\tau} - p_{Tx,test}) d\vec{a} \cdot \int \delta(p_{Ty,\tau\tau} - p_{Ty,test}) d\vec{a} 
(8)
```

- ullet The δ functions are nasty unless we remove the matrix element completely
- (There may be a way...need to talk to Hualin as one needs to run the actual FastMTT code, not my kludges)

Instead, try a different approach, similar to Atlas

```
\mathcal{L} = MET_TF \cdot p(x_1) \cdot p(x_2) \cdot p(P_T) \cdot REG
Since P_T = P_T(x_1, x_2) this is probably not entirely kosher. Not sure. But neither is REG...
```

First, check this out without the P_T information

What happened to P_T ?

There is a depletion of events near zero in the Atlas-like (with P_T) algorithm.

This is not unexpected.

There are large uncertainties.

The P_T pdfs go to zero at P_T = 0.

Because of the large uncertainties the penalty to move any given event away from zero is not so large.

Therefore, events are moved away from 0

Summary (1)

- It is possible to improve FastMTT a little bit by adding the matrix element.
- An Atlas-like reconstruction does just as well as FastMTT
- In the Atlas-like reconstruction it is "easy" to include the $P_{\tau}(HH)$ information
- The additional information improves resolution in the N_{jet} = 0 sample by about 15%, but hardly at all in the N_{iet} >0 case.
 - It may be improved by fine-tuning the fudge factor (eg: different fudge factors for different tau decays?)
- The $P_T(HH)$ distribution becomes a little weird, but actually I think it makes sense.
- The inclusion of the $P_T(HH)$ is probably not kosher
- I think there may be a way to put the $P_T(HH)$ information in the FastMTT framework. Not sure
- Franny's study seems to indicate that none of this matters much if at all

Summary (2)

- The "FastMTT+ME" the "Atlas-like" algos are coded by me inside a custom looper and should be repackaged in case we want to use them more widely.
- Think more about the slightly iffy use of the P_T in the Atlas-like algorithm
- Talk to Hualin about one more attempt to include the P_T pdf in the standard FastMTT (ie: without ME) in a sensible way
- I wonder if the average of the the two algorithms leads to better resolution?
- There is some algebra involved in "FastMTT+ME", needs to be double-checked
 - See backup

Backup

Algebra for FastMTT + ME

We reuse some of the results from Appendix A of the Foot MTT analysis note

$$m_{ au au} \simeq rac{m_{ au is}}{\sqrt{x_1 x_2}}$$

$$m_{ au au} \simeq rac{m_{vis}}{\sqrt{x_1 x_2}} - rac{2m_{vis}^2}{m_{test}^3} rac{1}{x_2}, \ \ x_1 x_2 = \left(rac{m_{vis}}{m_{test}}
ight)^2$$

$$x_{min} = \max \left(x_{2,min}, \left(\frac{m_{vis}}{m_{test}} \right)^2 \right)$$
$$x_{max} = \min \left(1, \left(\frac{m_{vis}}{m_{test}} \right)^2 \frac{1}{x_{1,min}} \right)$$

$$\begin{split} V_{\tau_{h}\tau_{h}}(m_{test},m_{vis}) &= \int_{x_{1,min}}^{1} dx_{1} \int_{x_{2,min}}^{1} dx_{2} \int_{0}^{2\pi} d\phi_{1} \int_{0}^{2\pi} d\phi_{1} \delta(m_{test} - \frac{m_{vis}}{\sqrt{x_{1}x_{2}}}) = \\ &4\pi^{2} \int_{x_{1,min}}^{1} dx_{1} \int_{x_{2,min}}^{1} dx_{2} \delta(m_{test} - \frac{m_{vis}}{\sqrt{x_{1}x_{2}}}) = \\ &4\pi^{2} \frac{2m_{vis}^{2}}{m_{test}^{2}} \int_{x_{min}}^{x_{max}} \frac{1}{x_{2}} dx_{2} = \sqrt{\mu^{2}} \frac{2m_{vis}^{2}}{m_{test}^{2}} \log \left(\frac{x_{max}}{x_{min}}\right) - \frac{1}{2\pi} \log \left(\frac{x_{max}}{x_{min}}\right)$$

(My and My or the visible mass of the 2

The formula above works for hadronic tous, which have My =0, which is exectly what we care (f,(x)) fz(x2) S(Mtest - Mus) dxdx2

Let
$$\alpha = (\frac{M_{VIS}}{M_{test}})_{\frac{1}{4}}$$

Also $f_{1}(x) = \sum_{k=0}^{2} a_{ij} x^{k}$

$$f_{2}(x) = \sum_{k=0}^{4} a_{2k} x^{k}$$

$$= \frac{2\alpha}{M_{test}} \int_{x_{min}}^{x_{mex}} \frac{4}{\delta^{-2}} \frac{a_{ij}}{x_{2}} x^{k} x^{2} \frac{1}{\delta^{-2}} \frac{1}{\delta^{-2}} \frac{1}{\delta^{-2}} \frac{1}{\delta^{-2}} \frac{1}{\delta^{-2}} \frac{4}{\delta^{-2}} \frac{1}{\delta^{-2}} \frac{$$

$$= \frac{2\lambda}{m_{test}} \sum_{i} Q_{ij} \lambda^{i} \sum_{i} Q_{2k} \left[\sum_{k=i}^{k} \log \frac{x_{mex}}{x_{min}} + \frac{1 - \delta_{ES}}{k - j} \left(x_{mex}^{k-3} - x_{min}^{k-j} \right) \right]$$

(the factor of 2 is irrelevant for the purpose of maximizing the likelihood)