Poisson Regression

Poisson – counts (integer)

- number of traffic accidents,
- I number of warranty claims received each week, or
- I number of reads mapped to some genes.

Offset

- Population
- Time
- Time at Risk

Log link:
$$\log\left(\frac{\mu}{u}\right) = X\beta \rightarrow \frac{\mu}{u} = exp(X\beta) \rightarrow \mu = u \ exp(X\beta)$$

identity link:
$$\left(\frac{\mu}{u}\right) = X\beta \rightarrow \mu = uX\beta$$

Survival from lung cancer in males who were diagnosed in Connecticut during 1973 (Holford 1980)

1:

2:

6:

7:

4 102

- Total 539 Subjects
- 3 Levels of histology
- 3 stages of disease
- Follow up every 2 month

	H_1				H_2				H_3		
time	S_1	S_2	S_3		s_1	S_2	S_3		s_1	S_2	S_3
0- 2:	9	12	42		5	4	28		1	1	19
2- 4:	2	7	26		2	3	19		1	1	11
4- 6:	9	5	12		3	5	10		1	3	7
6- 8 :	10	10	10		2	4	5		1	1	6
8-10:	1	4	5		2	2	0		0	0	3
10-12:	3	3	4		2	1	3		1	0	3
12+:	1	4	1		2	4	2		0	2	3

Total time at risk in month

time 1 1 1 2 1 3 2 1 2 2 2 3 3 1

Number of death from lung cancer

Table 4.1: Number of Children Ever Born to Women of Indian Race By Marital Duration, Type of Place of Residence and Educational Level

Mind the Gap

- Probability models are idealization and not necessarily a representation of reality.
- You can fit the model to the data but all models have their limits.
 - ☐ Gaussian: Unimodal, symmetric, light tail
 - \Box Binomial: Expected proportion and variance have relationship (np(1-p))
 - □ Poisson: Unimodal and almost symmetric for large rates. Mean and variance are equal

Over/Under dispersion

- Over/under dispersion almost always happen.
- Diagnostics: Residual plot
- Remedy:
 - □ Better estimation of the standard error
 - □ More flexible model

Better Estimation of the standard error

- Bootstrap
- Quasi-Poisson Regression
- Sandwich estimator