Multiple Regression Model

We can create a regression model using more than one explanatory variables. Let's load a dataset and do it.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
from scipy import stats
from scipy.stats import probplot
import statsmodels.api as sm
import statsmodels.formula.api as smf
from sklearn import preprocessing
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
```

```
In [3]:
    df = pd.read_csv("HeartDiseaseTrain.csv")
    df.head(n=6)
```

```
Out[3]:
                 sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal targe
          0
              63
                        1
                                145
                                     233
                                             1
                                                            150
                                                                     0
                                                                             2.3
                                                                                     3
                                                                                               3
                                                                                                      (
                    1
          1
              67
                    1
                        4
                                160
                                     286
                                            0
                                                            108
                                                                     1
                                                                             1.5
                                                                                     2
                                                                                         5
                                                                                               2
          2
              67
                    1
                                120
                                     229
                                            0
                                                            129
                                                                     1
                                                                             2.6
                                                                                     2
          3
              37
                        3
                                130 250
                                                            187
                                                                     0
                                                                             3.5
                                                                                     3
                                                                                         2
                                                                                               2
                                                                                                      (
                                            0
                        2
              41
                                130
                                     204
                                                            172
                                                                             1.4
                                                                                         2
                                120
                                     236
                                                            178
                                                                             8.0
```

Understanding the dataset using Data analysis

```
In [4]: #checking the data types of the columns df.dtypes
```

```
int64
         age
Out[4]:
                        int64
         sex
                        int64
         ср
                        int64
         trestbps
         chol
                        int64
         fbs
                        int64
         restecg
                        int64
         thalach
                        int64
         exang
                        int64
         oldpeak
                      float64
         slope
                        int64
         ca
                        int64
         thal
                        int64
                        int64
         target
         dtype: object
In [5]:
          #checking if there is a missing row or observation in the dataset
         df.isnull().values.any()
         False
Out[5]:
In [6]:
          #checking the number of missing values for each of the column
          df.isnull().sum()
                      0
         age
Out[6]:
                      0
         sex
                      0
         ср
         trestbps
                      0
         chol
                      0
         fbs
                      0
         restecg
                      0
                      0
         thalach
         exang
                      0
         oldpeak
                      0
         slope
                      0
         ca
                      0
         thal
                      0
         target
                      0
         dtype: int64
In [7]:
         print(df.describe(include='all'))
```

	age	sex	ср	trestbps	chol	fbs
\						
count	200.000000	200.000000	200.000000	200.000000	200.000000	200.000000
mean	54.745000	0.710000	3.155000	132.565000	252.655000	0.170000
std	8.800981	0.454901	0.956845	18.025269	54.316086	0.376575
min	29.000000	0.000000	1.000000	94.000000	126.000000	0.000000
25%	48.750000	0.000000	3.000000	120.000000	218.500000	0.000000
50%	56.000000	1.000000	3.000000	130.000000	248.000000	0.000000
75%	61.000000	1.000000	4.000000	140.000000	282.250000	0.000000
max	77.000000	1.000000	4.000000	200.000000	564.000000	1.000000
	restecg	thalach	exang	oldpeak	slope	ca
\						
count	200.000000	200.000000	200.000000	200.000000	200.000000	200.000000
mean	1.120000	151.105000	0.330000	1.116000	1.620000	2.695000
std	0.995265	22.244506	0.471393	1.171669	0.638465	0.972989
min	0.000000	88.000000	0.000000	0.000000	1.000000	2.000000
25%	0.000000	139.000000	0.000000	0.000000	1.000000	2.000000
50%	2.000000	154.500000	0.000000	0.800000	2.000000	2.000000
75%	2.000000	166.000000	1.000000	1.650000	2.000000	3.000000
max	2.000000	202.000000	1.000000	6.200000	3.000000	5.000000
	thal	target				
count	200.000000	200.000000				
mean	2.900000	0.450000				
std	0.971969	0.498742				
min	2.000000	0.000000				
25%	2.000000	0.000000				
50%	2.000000	0.000000				
75%	4.000000	1.000000				
max	4.000000	1.000000				

We can also check the correlation between the variables using a correlation plot

```
In [8]:
# Draw a heatmap for correlation matrix
plt.figure(figsize=(9,8))
plt.subplot(1,1,1)
sns.heatmap(df.corr(), annot=True)
```

Out[8]: <AxesSubplot:>

Now let's create a model taking chol as our response variable and age and trestbps as our explanatory variable.

```
In [9]:
    model = smf.ols('chol~trestbps+age', data = df)
    results = model.fit()
    print(results.summary())
```

OLS Regression Results

========	-======	-========	======	========	=======			
Dep. Variabl	Le:	cho	l R-sq	uared:		0.097		
Model:		OL	S Adj.	R-squared:		0.088		
Method:		Least Square	s F-st	atistic:		10.64		
Date:		Mon, 25 Apr 202	2 Prob	(F-statistic):	4.10e-05		
Time:		15:49:1	0 Log-	Likelihood:		-1072.0		
No. Observat	cions:	20	0 AIC:			2150.		
Df Residuals	5:	19	7 BIC:			2160.		
Df Model:			2					
Covariance 5	Type:	nonrobus	t					
===========			======	========				
	coef	std err	t	P> t	[0.025	0.975]		
Intercept	125.4077	31.767	3.948	0.000	62.760	188.055		
trestbps	0.2446	0.212	1.156	0.249	-0.173	0.662		
age	1.7322	0.433	3.998	0.000	0.878	2.587		
Omnibus:	=======		====== 3 Durb	========= in-Watson:	=======	2.125		
Prob(Omnibus	s):	0.00	0 Jarq	ue-Bera (JB):		256.300		
Skew:	•	1.21	2 Prob	(JB):		2.21e-56		
Kurtosis:		7.98	8 Cond	. No.		1.25e+03		
=========			======	=========	========			

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correct ly specified.
- [2] The condition number is large, 1.25e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

Now let's ass the variable thalach in the model.

```
In [10]: model = smf.ols('chol~trestbps+age+thal', data = df)
    results = model.fit()
    print(results.summary())
```

OLS Regression Results

Dep. Variab				====== R-squ Adj.	======== ared: R-squared:		0.098		
Method:		Least Squa	ares	F-sta	7.126				
Date:		Mon, 25 Apr 2	2022	Prob	(F-statistic):	0.000144		
Time:		15:49	9:10	Log-L	ikelihood:		-1071.9		
No. Observa	tions:		200	AIC:			2152.		
Df Residuals	s:		196	BIC:			2165.		
Df Model:			3						
Covariance '	Type:	nonrok	oust						
========	=======	========	====	=====			=======		
	coef	std err		t 	P> t	[0.025	0.975]		
Intercept	128.3651	32.542		3.945	0.000	64.188	192.543		
trestbps	0.2505	0.212		1.179	0.240	-0.168	0.669		
age	1.7525	0.437		4.013	0.000	0.891	2.614		
thal	-1.6756	3.829	-	0.438	0.662	-9.227	5.876		
Omnibus:		65 .	-==== .751	===== Durbi	======== n-Watson:		2.125		
Prob(Omnibus	s):	0 .	.000	Jarqu	e-Bera (JB):		268.767		
Skew:	•	1.	234	Prob(JB):		4.35e-59		
Kurtosis:		8 .	.115	Cond.	No.		1.28e+03		

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correct ly specified.
- [2] The condition number is large, 1.28e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

Adding Interaction term

we can add interaction term in two ways one is interaction term and the original term using * and the other is using :: with just the interaction term.

```
In [11]:
    model = smf.ols('chol~trestbps*age', data = df)
    results = model.fit()
    print(results.summary())
```

OLS Regression Results

=========	========		=======	========	=======			
Dep. Variable Model: Method:		chol OLS Least Squares	R-squar Adj. R- F-stati	squared:		0.109 0.096 8.015		
Date:		, 25 Apr 2022		-statistic):	4.58e-05			
Time:	1101	15:49:10	•	elihood:		-1070.7		
No. Observation	ons:	200	AIC:	01111000.		2149.		
Df Residuals:	01121	196	BIC:			2163.		
Df Model:		3						
Covariance Ty	pe:	nonrobust						
=======================================	=======	:========	:======	========	=======	=======		
	coef	std err	t	P> t	[0.025	0.97		
5]					-			
Intercept	-194.1734	200.754	-0.967	0.335	-590.089	201.7		
trestbps	2.7245	1.553	1.755	0.081	-0.338	5.7		
age 57	7.3871	3.534	2.090	0.038	0.417	14.3		
trestbps:age 10	-0.0437	0.027	-1.612	0.109	-0.097	0.0		
Omnibus:	========	61.076	======= -Durbin	======= Watson:	=======	2.122		
Prob(Omnibus)	:	0.000		Bera (JB):		223.726		
Skew:		1.176	_	, ,		2.62e-49		
Kurtosis:		7.616	Cond. N	•		4.12e+05		

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correct ly specified.
- $\[2\]$ The condition number is large, 4.12e+05. This might indicate that there are

strong multicollinearity or other numerical problems.

```
In [12]: model = smf.ols('chol~trestbps:age', data = df)
    results = model.fit()
    print(results.summary())
```

OLS Regression Results

=========	=======			========	=======				
Dep. Variable:		chol	R-squar	ed:		0.080			
Model:		OLS	Adj. R-	squared:		0.076			
Method:		Least Squares	F-stati	stic:		17.26			
Date:		, 25 Apr 2022		-statistic):		4.85e-05			
Time:		15:49:10	,	elihood:		-1073.9			
No. Observation	ns:	200	AIC:			2152.			
Df Residuals:	110 •	198	BIC:			2158.			
Df Model:		1	D10 .			2130.			
Covariance Type	•	nonrobust							
covariance Type	e: 	HOHLODUST							
==		. 1		5 5 1		0.07			
	coef	std err	t	P> t	[0.025	0.97			
5]									
Intercept	187.6823	16.070	11.679	0.000	155.991	219.3			
73									
trestbps:age	0.0089	0.002	4.154	0.000	0.005	0.0			
13									
==========	=======	=========	=======	========	=======	=======			
Omnibus:		71.861	Durbin-	Watson:		2.135			
Prob(Omnibus):		0.000	Jarque-	Bera (JB):		332.678			
Skew:		1.316	-	, ,	5.75e-73				
Kurtosis:		8.744	Cond. N	•	3.26e+04				
============		==========			=======				

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correct ly specified.
- [2] The condition number is large, 3.26e+04. This might indicate that there are

strong multicollinearity or other numerical problems.

Categorical data

Categorical data is very useful in data science. We will see now how to manipulate categorical data and also how to use categorical data to build regression model.

We can make a column of a dataframe from numerical to categorical if feasible.

```
In [13]:

df['sex']=df['sex'].astype('category')
##we can rename the column values as male and female

df['sex'].replace({1:"M",0:"F"},inplace=True)

df['sex']=df['sex'].astype('category')

print(df.describe(include='category'))
```

```
count 200 unique 2 top M freq 142
```

```
In [14]: df.head(n=5)
```

Out[14]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	targe
	0	63	М	1	145	233	1	2	150	0	2.3	3	2	3	(
	1	67	М	4	160	286	0	2	108	1	1.5	2	5	2	
	2	67	М	4	120	229	0	2	129	1	2.6	2	4	4	
	3	37	М	3	130	250	0	0	187	0	3.5	3	2	2	(
	4	41	F	2	130	204	0	2	172	0	1.4	1	2	2	(

Now we can see that the sex is now categorical as M and F

```
In [15]:
           df.dtypes
                          int64
          age
Out[15]:
          sex
                       category
                          int64
          ср
          trestbps
                          int64
          chol
                          int64
          fbs
                          int64
          restecg
                          int64
          thalach
                          int64
          exang
                          int64
          oldpeak
                        float64
          slope
                          int64
                          int64
          ca
          thal
                          int64
          target
                          int64
          dtype: object
```

Building model with categorical data

```
In [16]: model = smf.ols('chol~sex', data = df)
    results = model.fit()
    print(results.summary())
```

OLS Regression Results

========	=======	========	=====	======		=======	:=======		
Dep. Variab	le:		chol	R-sqı	ared:		0.064		
Model:			OLS	Adj.	R-squared:		0.060		
Method:		Least Sq	ıares	F-sta	atistic:		13.63		
Date:		Mon, 25 Apr	2022	Prob	(F-statistic	c):	0.000287		
Time:		15:	49:10	Log-I	Likelihood:		-1075.6		
No. Observa	tions:		200	AIC:			2155.		
Df Residual	s:		198	BIC:			2162.		
Df Model:			1						
Covariance '	Type:	nonro	obust						
========	=======	========		======		========	========		
	coe	f std err		t	P> t	[0.025	0.975]		
Intercept	274.172	4 6.916	3	9.644	0.000	260.534	287.811		
sex[T.M]	-30.3062	8.208	_	3.692	0.000	-46.492	-14.121		
Omnibus:		======================================	===== 9.018	Durb	======== in-Watson:		2.161		
Prob(Omnibu	s):	(0.000	Jarqı	ıe-Bera (JB)	•	165.853		
Skew:	•	(0.949	Prob	(JB):		9.67e-37		
Kurtosis:		•	7.038	Cond	No.		3.48		
========	=======	========		======	-========	========	========		

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correct ly specified.

In the summary table the sex[T.M] means that the type specified for sex is Male. T goes for type.

```
In [17]: #Adding numerical variable with categorical
  model = smf.ols('chol~trestbps+sex', data = df)
  results = model.fit()
  print(results.summary())
```

OLS Regression Results

Dep. Variab Model: Method: Date: Time: No. Observa- Df Residual: Df Model:	tions:	Least Squa Mon, 25 Apr 2 15:49	OLS Ad ares F- 2022 Pr		tic):	0.083 0.074 8.961 0.000188 -1073.5 2153. 2163.		
Covariance	Туре:	nonrol	oust					
	coef	std err		t P> t	[0.025	0.975]		
Intercept sex[T.M]	218.1654 -29.1116		7.63 -3.56		161.811 -45.216	274.520 -13.007		

______ Durbin-Watson: 56.894 2.148 Prob(Omnibus): 0.000 Jarque-Bera (JB): 228.726 Skew: 1.051 Prob(JB): 2.15e-50 Kurtosis: 7.799 Cond. No. 1.04e+03

2.019

0.045

0.010

0.823

Notes:

trestbps

- $\[1\]$ Standard Errors assume that the covariance matrix of the errors is correct ly specified.
- [2] The condition number is large, 1.04e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

0.206

0.4161

```
In [18]:
```

```
#adding interaction term with categorical data
model = smf.ols('chol~trestbps*sex', data = df)
results = model.fit()
print(results.summary())
```

OLS Regression Results

=======================================		:======			===========	
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Mon, 25 A	chol OLS Squares Apr 2022 .5:49:10 200 196 3 Onrobust	R-squared: Adj. R-squared: F-statistic Prob (F-statistic Log-Likeliho AIC: BIC:	0.083 0.069 5.946 0.000669 -1073.5 2155. 2168.		
=======================================		:======	========		=========	
0.975]	coef	std err	t	P> t	[0.025	
Intercept 310.526 sex[T.M] 92.301 trestbps 1.144	214.8519 -24.1618 0.4407	48.513 59.054 0.357	4.429 -0.409 1.235	0.000 0.683 0.218	119.178 -140.624 -0.263	
<pre>trestbps:sex[T.M] 0.826</pre>	-0.0370	0.438	-0.085	0.933	-0.900	
Omnibus: Prob(Omnibus): Skew: Kurtosis:		57.224 0.000 1.056 7.828	Durbin-Watso Jarque-Bera Prob(JB): Cond. No.		2.145 231.410 5.62e-51 3.30e+03	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correct ly specified.
- [2] The condition number is large, 3.3e+03. This might indicate that there are strong multicollinearity or other numerical problems.

We should remember that if we use the categorical columns as numerical like 0 and 1 we will get the same results. We can also use C() in the model to factor them inside the model.

```
In [19]: model = smf.ols('chol~trestbps+C(cp)', data = df)
    results = model.fit()
    print(results.summary())
```

OLS Regression Results

Dep. Variable: chol R-squared: 0.039 Model: OLS Adj. R-squared: 0.019 Method: Least Squares F-statistic: 1.978 Date: Mon, 25 Apr 2022 Prob (F-statistic): 0.0994 Time: 15:49:10 Log-Likelihood: -1078.3200 AIC: No. Observations: 2167. Df Residuals: 195 BIC: 2183. Df Model: Covariance Type: nonrobust ______ t P>|t| [0.025 coef std err 0.000 Intercept 168.8236 33.850 4.987 102.065 235.582 9.8141 0.579 0.563 -23.605 C(cp)[T.2] 16.945 43.233 C(cp)[T.3] 17.1428 15.375 1.115 0.266 -13.18047.466 C(cp)[T.4] 22.2369 14.750 1.508 0.133 -6.853 51.327 trestbps 0.5038 2.334 0.021 0.078 0.216 0.930

______ Omnibus: 75.125 Durbin-Watson: 2.170 Prob(Omnibus): 0.000 Jarque-Bera (JB): 372.089 Skew: 1.59e-81 1.360 Prob(JB): Kurtosis: 9.104 Cond. No. 1.32e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correct ly specified.
- [2] The condition number is large, 1.32e+03. This might indicate that there ar

strong multicollinearity or other numerical problems.

```
In [20]:
          ##we can predict for a new value
          preds = results.predict(pd.DataFrame({"trestbps":[100],"cp":[1]}))
          print(preds)
              219.206839
```

dtype: float64

```
In [21]:
          #predicting for train
          preds1 = results.predict(df)
          df["predicted"] = preds1
```

```
In [22]:
           df.head()
```

Out[22]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	targe
	0	63	М	1	145	233	1	2	150	0	2.3	3	2	3	(
	1	67	М	4	160	286	0	2	108	1	1.5	2	5	2	•
	2	67	М	4	120	229	0	2	129	1	2.6	2	4	4	
	3	37	М	3	130	250	0	0	187	0	3.5	3	2	2	(
	4	41	F	2	130	204	0	2	172	0	1.4	1	2	2	(

```
In [23]:
    model = smf.ols('chol~trestbps', data = df)
    results = model.fit()
    preds = results.predict()
    # visualizing the results.
    plt.figure(figsize=(18, 10))
    # Scatter plot of input and output values
    plt.scatter(df.trestbps, df.chol, color='teal')
    # plot of the input and predicted output values
    plt.plot(df.trestbps, results.predict(), color='Red', linewidth=2 )
    plt.title('Simple Linear Regression')
    plt.xlabel('trestbps')
    plt.ylabel('Cholesterol level')
```

Out[23]: Text(0, 0.5, 'Cholesterol level')

In []: