CHAPTER 1

PSYCHROMETRICS

Composition of Dry and Moist Air	1.1	Thermodynamic Wet-Bulb and Dew-Point Temperature 1	.9
U.S. Standard Atmosphere	1.1	Numerical Calculation of Moist Air Properties 1	.9
Thermodynamic Properties of Moist Air		Psychrometric Charts	
Thermodynamic Properties of Water at Saturation	1.2	Typical Air-Conditioning Processes	
Humidity Parameters	1.2	•	
Perfect Gas Relationships for Dry and		Transport Properties of Moist Air 1.3	15
Moist Air	1.8	Symbols	15

PSYCHROMETRICS uses thermodynamic properties to analyze conditions and processes involving moist air. This chapter discusses perfect gas relations and their use in common heating, cooling, and humidity control problems. Formulas developed by Herrmann et al. (2009) may be used where greater precision is required.

Hyland and Wexler (1983a, 1983b), Nelson and Sauer (2002), and Herrmann et al. (2009) developed formulas for thermodynamic properties of moist air and water modeled as real gases. However, perfect gas relations can be substituted in most air-conditioning problems. Kuehn et al. (1998) showed that errors are less than 0.7% in calculating humidity ratio, enthalpy, and specific volume of saturated air at standard atmospheric pressure for a temperature range of –50 to 50°C. Furthermore, these errors decrease with decreasing pressure.

COMPOSITION OF DRY AND MOIST AIR

Atmospheric air contains many gaseous components as well as water vapor and miscellaneous contaminants (e.g., smoke, pollen, and gaseous pollutants not normally present in free air far from pollution sources).

Dry air is atmospheric air with all water vapor and contaminants removed. Its composition is relatively constant, but small variations in the amounts of individual components occur with time, geographic location, and altitude. Harrison (1965) lists the approximate percentage composition of dry air by volume as: nitrogen, 78.084; oxygen, 20.9476; argon, 0.934; neon, 0.001818; helium, 0.000524; methane, 0.00015; sulfur dioxide, 0 to 0.0001; hydrogen, 0.00005; and minor components such as krypton, xenon, and ozone, 0.0002. Harrison (1965) and Hyland and Wexler (1983a) used a value 0.0314 (circa 1955) for carbon dioxide. Carbon dioxide reached 0.0379 in 2005, is currently increasing by 0.00019 percent per year and is projected to reach 0.0438 in 2036 (Gatley et al. 2008; Keeling and Whorf 2005a, 2005b). Increases in carbon dioxide are offset by decreases in oxygen; consequently, the oxygen percentage in 2036 is projected to be 20.9352. Using the projected changes, the relative molecular mass for dry air for at least the first half of the 21st century is 28.966, based on the carbon-12 scale. The gas constant for dry air using the current Mohr and Taylor (2005) value for the universal gas constant is

$$R_{da} = 8314.472/28.966 = 287.042 \text{ J/(kg}_{da} \cdot \text{K)}$$
 (1)

Moist air is a binary (two-component) mixture of dry air and water vapor. The amount of water vapor varies from zero (dry air) to a maximum that depends on temperature and pressure. **Saturation** is a state of neutral equilibrium between moist air and the condensed water phase (liquid or solid); unless otherwise stated, it assumes a

flat interface surface between moist air and the condensed phase. Saturation conditions change when the interface radius is very small (e.g., with ultrafine water droplets). The relative molecular mass of water is 18.015 268 on the carbon-12 scale. The gas constant for water vapor is

$$R_w = 8314.472/18.015\ 268 = 461.524\ \text{J/(kg}_w \cdot \text{K)}$$
 (2)

U.S. STANDARD ATMOSPHERE

The temperature and barometric pressure of atmospheric air vary considerably with altitude as well as with local geographic and weather conditions. The standard atmosphere gives a standard of reference for estimating properties at various altitudes. At sea level, standard temperature is 15°C; standard barometric pressure is 101.325 kPa. Temperature is assumed to decrease linearly with increasing altitude throughout the troposphere (lower atmosphere), and to be constant in the lower reaches of the stratosphere. The lower atmosphere is assumed to consist of dry air that behaves as a perfect gas. Gravity is also assumed constant at the standard value, 9.806 65 m/s². Table 1 summarizes property data for altitudes to 10 000 m.

Pressure values in Table 1 may be calculated from

$$p = 101.325(1 - 2.25577 \times 10^{-5}Z)^{5.2559}$$
 (3)

The equation for temperature as a function of altitude is

Table 1 Standard Atmospheric Data for Altitudes to 10 000 m

Altitude, m	Temperature, °C	Pressure, kPa
-500	18.2	107.478
0	15.0	101.325
500	11.8	95.461
1 000	8.5	89.875
1 500	5.2	84.556
2 000	2.0	79.495
2 500	-1.2	74.682
3 000	-4.5	70.108
4 000	-11.0	61.640
5 000	-17.5	54.020
6 000	-24.0	47.181
7 000	-30.5	41.061
8 000	-37.0	35.600
9 000	-43.5	30.742
10 000	-50	26.436

The preparation of this chapter is assigned to TC 1.1, Thermodynamics and Psychrometrics.

$$t = 15 - 0.0065Z \tag{4}$$

where

Z =altitude, m

p = barometric pressure, kPa

 $t = \text{temperature}, ^{\circ}\text{C}$

Equations (3) and (4) are accurate from -5000 m to 11 000 m. For higher altitudes, comprehensive tables of barometric pressure and other physical properties of the standard atmosphere, in both SI and I-P units, can be found in NASA (1976).

THERMODYNAMIC PROPERTIES OF MOIST AIR

Table 2, developed from formulas by Herrmann et al. (2009), shows values of thermodynamic properties of moist air based on the International Temperature Scale of 1990 (ITS-90). This ideal scale differs slightly from practical temperature scales used for physical measurements. For example, the standard boiling point for water (at 101.325 kPa) occurs at 99.97°C on this scale rather than at the traditional 100°C. Most measurements are currently based on the International Temperature Scale of 1990 (ITS-90) (Preston-Thomas 1990).

The following properties are shown in Table 2:

t =Celsius temperature, based on the International Temperature Scale of 1990 (ITS-90) and expressed relative to absolute temperature *T* in kelvins (K) by the following relation:

$$T = t + 273.15$$

 $W_{\rm s}$ = humidity ratio at saturation; gaseous phase (moist air) exists in equilibrium with condensed phase (liquid or solid) at given temperature and pressure (standard atmospheric pressure). At given values of temperature and pressure, humidity ratio W can have any value from zero to W_s .

 v_{da} = specific volume of dry air, m³/kg_{da}

 $v_{as} = v_s - v_{da}$, difference between specific volume of moist air at saturation and that of dry air, m³/kg_{da}, at same pressure and temperature.

 v_s = specific volume of moist air at saturation, m³/kg_{da}.

 h_{da} = specific enthalpy of dry air, kJ/kg_{da}. In Table 2, h_{da} has been assigned a value of 0 at 0°C and standard atmospheric pressure.

 $h_{as} = h_s - h_{da}$, difference between specific enthalpy of moist air at saturation and that of dry air, kJ/kg_{da}, at same pressure and temperature.

 h_s = specific enthalpy of moist air at saturation, kJ/kg_{da}.

 s_{da}^{3} = specific entropy of dry air, kJ/(kg_{da}·K). In Table 2, s_{da} is assigned a value of 0 at °C and standard atmospheric pressure.

 s_s = specific entropy of moist air at saturation kJ/(kg_{dq}·K).

THERMODYNAMIC PROPERTIES OF WATER AT SATURATION

Table 3 shows thermodynamic properties of water at saturation for temperatures from -60 to 160°C, calculated by the formulations described by IAPWS (2007). Symbols in the table follow standard steam table nomenclature. These properties are based on the International Temperature Scale of 1990 (ITS-90). The internal energy and entropy of saturated liquid water are both assigned the value zero at the triple point, 0.01 °C. Between the triple-point and criticalpoint temperatures of water, two states (saturated liquid and saturated vapor) may coexist in equilibrium.

The water vapor saturation pressure is required to determine a number of moist air properties, principally the saturation humidity ratio. Values may be obtained from Table 3 or calculated from the following formulas (Hyland and Wexler 1983b). The 1983 formulas are within 300 ppm of the latest IAPWS formulations. For higher accuracy, developers of software and others are referred to IAPWS (2007) and (2008).

The saturation pressure over ice for the temperature range of -100 to 0°C is given by

$$\ln p_{ws} = C_1/T + C_2 + C_3T + C_4T^2 + C_5T^3 + C_6T^4 + C_7 \ln T$$
 (5)

where

 $C_1 = -5.6745359 E+03$

 $C_2^1 = 6.3925247 \text{ E} + 00$

 $\tilde{C_3} = -9.677 \ 843 \ 0 \ E-03$

 $C_4 = 6.2215701E-07$

 $C_5 = 2.0747825 E-09$

 $C_6 = -9.484\ 024\ 0\ E-13$ $C_7 = 4.1635019E+00$

The saturation pressure over liquid water for the temperature range of 0 to 200°C is given by

$$\ln p_{\text{tot}} = C_8/T + C_9 + C_{10}T + C_{11}T^2 + C_{12}T^3 + C_{13} \ln T \tag{6}$$

 $C_8 = -5.800\ 220\ 6\ E + 03$

 $C_9 = 1.3914993 E+00$

 $C_{10} = -4.864\ 023\ 9\ E-02$

 $C_{11} = 4.1764768 E-05$ $C_{12} = -1.4452093 E-08$ $C_{13} = 6.5459673 E+00$

In both Equations (5) and (6),

 p_{ws} = saturation pressure, Pa T = absolute temperature, K = °C + 273.15

The coefficients of Equations (5) and (6) were derived from the Hyland-Wexler equations. Because of rounding errors in the derivations and in some computers' calculating precision, results from Equations (5) and (6) may not agree precisely with Table 3 values.

The vapor pressure p_s of water in saturated moist air differs negligibly from the saturation vapor pressure p_{ws} of pure water at the same temperature. Consequently, p_s can be used in equations in place of p_{ws} with very little error:

$$p_{s} = x_{ws}p$$

where x_{ws} is the mole fraction of water vapor in saturated moist air at temperature t and pressure p, and p is the total barometric pressure of moist air.

HUMIDITY PARAMETERS

Basic Parameters

Humidity ratio W (alternatively, the moisture content or mixing ratio) of a given moist air sample is defined as the ratio of the mass of water vapor to the mass of dry air in the sample:

$$W = M_w / M_{da} \tag{7}$$

W equals the mole fraction ratio x_w/x_{da} multiplied by the ratio of molecular masses (18.015 268/28.966 = 0.621 945):

$$W = 0.621 \ 945 x_w / x_{da} \tag{8}$$

Specific humidity γ is the ratio of the mass of water vapor to total mass of the moist air sample:

$$\gamma = M_{yy}/(M_{yy} + M_{da}) \tag{9a}$$

In terms of the humidity ratio,

$$\gamma = W/(1+W) \tag{9b}$$

Absolute humidity (alternatively, water vapor density) d_n is the ratio of the mass of water vapor to total volume of the sample:

$$d_{v} = M_{w}/V \tag{10}$$

Psychrometrics 1.3

Table 2 Thermodynamic Properties of Moist Air at Standard Atmospheric Pressure, 101.325 kPa

Temp., °C			c Volume, n			c Enthalpy		Specific Entre	opy, kJ/(kg _{da} ·K	Temn °C
t	W_s , kg_w/kg_{da}	v_{da}	v _{as}	ν_s	h _{da}	has	h_s	S _{da}	S _S	_ rep., c
-60	0.0000067	0.6027	0.0000	0.6027	-60.341	0.016	-60.325	-0,2494	-0.2494	-60
-59	0.0000076	0.6055	0.0000	0.6055	-59.335	0.018	-59.317	-0.2447	-0.2446	-59
-58	0.0000087	0.6084	0.0000	0.6084	-58.329	0.021	-58.308	-0.2400	-0.2399	-58
-57	0.0000100	0.6112	0.0000	0.6112	-57.323	0.024	-57.299	-0.2354	-0.2353	-57
-56 55	0.0000114	0.6141	0.0000	0.6141	-56.317	0.027	-56.289	-0.2307	-0.2306	-56
-55 54	0.0000129	0.6169	0.0000 0.0000	0.6169	-55.311 54.305	0.031 0.035	-55.280 54.260	-0.2261 -0.2215	-0.2260 -0.2213	-55 -54
-54 -53	0.0000147 0.0000167	0.6198 0.6226	0.0000	0.6198 0.6226	-54.305 -53.299	0.035	-54.269 -53.258	-0.2215 -0.2169	-0.2213 -0.2167	-54 -53
-52	0.0000107	0.6255	0.0000	0.6255	-52,293	0.046	-52.247	-0.2124	-0.2107 -0.2121	-52
-51	0.0000215	0.6283	0.0000	0.6283	-51.287	0.052	-51.235	-0.2078	-0.2076	-51
-50	0.0000243	0.6312	0.0000	0.6312	-50.281	0.059	-50.222	-0.2033	-0.2030	-50
-4 9	0.0000275	0.6340	0.0000	0.6340	-49.275	0.066	-49.209	-0.1988	-0.1985	-49
-48	0.0000311	0.6369	0.0000	0.6369	-48.269	0.075	-48.194	-0.1943	-0.1940	-48
-4 7	0.0000350	0.6397	0.0000	0.6397	-47.263	0.085	-47.179	-0.1899	-0.1895	-47
-46	0.0000395	0.6425	0.0000	0.6426	-46.257	0.095	-46.162	-0.1854	-0.1850	-46
-45	0.0000445	0.6454	0.0000	0.6454	-45.252	0.107	-45.144	-0.1810	-0.1805	-45
-44	0.0000500	0.6482	0.0001	0.6483	-44.246	0.121	-44.125	-0.1766	-0.1761	-44
-43	0.0000562	0.6511	0.0001	0.6511	-43.240	0.136	-43.104	-0.1722	-0.1716	-43 43
-42	0.0000631	0.6539	0.0001	0.6540	-42.234 41.220	0.153	-42.081	-0.1679	-0.1672	-42 41
-4 1	0.0000708	0.6568	0.0001	0.6568	-41.229	0.172	-41.057	-0.1635	-0.1628	-41
-40 -39	0.0000793	0.6596	0.0001	0.6597	-40.223 -39.217	0.192 0.215	-40.031	-0.1592 -0.1549	-0.1583	-40 -39
-39 -38	0.0000887 0.0000992	0.6625 0.6653	0.0001 0.0001	0.6626 0.6654	-39.217 -38.212	0.215	-39.002 -37.970	-0.1549 -0.1506	-0.1539 -0.1495	-39 -38
−36 −37	0.0000992	0.6682	0.0001	0.6683	-36.212 -37.206	0.241	-37.970 -36.936	-0.1306 -0.1464	-0.1493 -0.1451	−36 −37
-36	0.0001108	0.6710	0.0001	0.6711	-36.200	0.301	-35.899	-0.1404 -0.1421	-0.1408	-36
-35	0.0001379	0.6738	0.0001	0.6740	-35.195	0.336	-34.859	-0.1379	-0.1364	-35
-34	0.0001536	0.6767	0.0002	0.6769	-34.189	0.374	-33.815	-0.1337	-0.1320	-34
-33	0.0001710	0.6795	0.0002	0.6797	-33.183	0.417	-32.766	-0.1295	-0.1276	-33
-32	0.0001902	0.6824	0.0002	0.6826	-32.178	0.464	-31.714	-0.1253	-0.1232	-32
-31	0.0002113	0.6852	0.0002	0.6855	-31.172	0.516	-30.656	-0.1211	-0.1189	-31
-30	0.0002345	0.6881	0.0003	0.6883	-30.167	0.573	-29.593	-0.1170	-0.1145	-30
-29	0.0002602	0.6909	0.0003	0.6912	-29.161	0.636	-28.525	-0.1129	-0.1101	-29
-28	0.0002883	0.6938	0.0003	0.6941	-28.156	0.706	-27.450	-0.1088	-0.1057	-28
-27	0.0003193	0.6966 0.6994	0.0004 0.0004	0.6970	$-27.150 \\ -26.144$	0.782 0.866	$-26.368 \\ -25.278$	$-0.1047 \\ -0.1006$	$-0.1013 \\ -0.0969$	-27 26
-26 -25	0.0003532 0.0003905	0.7023	0.0004	0.6998 0.7027	-25.144 -25.139	0.958	-23.278 -24.181	-0.1006 -0.0965	-0.0909 -0.0924	$^{-26}_{-25}$
-24	0.0003303	0.7023	0.0005	0.7056	-24,133	1.059	-23.074	-0.0925	-0.0880	-24
-23	0.0004761	0.7080	0.0005	0.7085	-23.128	1.170	-21.958	-0.0884	-0.0835	-23
-22	0.0005251	0.7108	0.0006	0.7114	-22.122	1.291	-20.831	-0.0844	-0.0790	-22
-21	0.0005787	0.7137	0.0007	0.7143	-21.117	1.424	-19.693	-0.0804	-0.0745	-21
-20	0.0006373	0.7165	0.0007	0.7172	-20.111	1.570	-18.542	-0.0765	-0.0699	-20
-19	0.0007013	0.7193	0.0008	0.7201	-19.106	1.728	-17.377	-0.0725	-0.0653	-19
-18	0.0007711	0.7222	0.0009	0.7231	-18.100	1.902	-16.198	-0.0685	-0.0607	-18
-17	0.0008473	0.7250	0.0010	0.7260	-17.095	2.091	-15.003	-0.0646	-0.0560	-17
-16	0.0009303	0.7279	0.0011	0.7290	-16.089	2.298	-13.791	-0.0607	-0.0513	-16
$-15 \\ -14$	0.0010207 0.0011191	0.7307 0.7336	0.0012 0.0013	0.7319 0.7349	$-15.084 \\ -14.078$	2.523 2.769	-12.560 -11.310	-0.0568 -0.0529	-0.0465 -0.0416	$-15 \\ -14$
-14 -13	0.0011191	0.7364	0.0013	0.7349	-14.078 -13.073	3.036	-11.310 -10.037	-0.0329 -0.0490	-0.0416 -0.0367	-14 -13
-12	0.0012201	0.7392	0.0014	0.7408	-12.067	3.326	-8.741	-0.0452	-0.0317	-12
-11	0.0014689	0.7421	0.0017	0.7438	-11.062	3.642	-7.419	-0.0413	-0.0267	$-\dot{1}\dot{1}$
-10	0.0016062	0.7449	0.0019	0.7468	-10.056	3.986	-6.070	-0.0375	-0.0215	-10
<u>-9</u>	0.0017551	0.7478	0.0021	0.7499	-9.050	4.358	-4.692	-0.0337	-0.0163	<u>-9</u>
-8	0.0019166	0.7506	0.0023	0.7529	-8.045	4.763	-3.282	-0.0299	-0.0110	-8
-7	0.0020916	0.7534	0.0025	0.7560	-7.039	5.202	-1.838	-0.0261	-0.0055	-7
-6	0.0022812	0.7563	0.0028	0.7591	-6.034	5.677	-0.356	-0.0223	0.0000	-6
-5	0.0024863	0.7591	0.0030	0.7622	-5.028	6.193	1.164	-0.0186	0.0057	-5
-4 2	0.0027083	0.7620	0.0033	0.7653	-4.023	6.750	2.728	-0.0148	0.0115	-4
$-3 \\ -2$	0.0029482 0.0032076	0.7648 0.7677	0.0036 0.0039	0.7684 0.7716	-3.017 -2.011	7.354 8.007	4.337 5.995	-0.0111 -0.0074	0.0175 0.0236	-3 -2
$-2 \\ -1$	0.0034877	0.7677	0.0039	0.7718	-2.011 -1.006	8.007 8.712	3.993 7.707	-0.0074 -0.0037	0.0236	$-2 \\ -1$
-1	0.0034877	0.7703	0.0043	0.7748	-1.000	9.475	9.475	0.0000	0.0299	-1
1	0.0037900	0.7762	0.0047	0.7780	1.006	10.198	11.203	0.0000	0.0364	1
2	0.004070	0.7790	0.0051	0.7813	2.011	10.198	12.981	0.0037	0.0427	2
3	0.004708	0.7819	0.0059	0.7878	3.017	11.794	14.811	0.0110	0.0559	3
4	0.005055	0.7847	0.0064	0.7911	4.023	12.673	16.696	0.0146	0.0627	4
5	0.005425	0.7875	0.0068	0.7944	5.029	13.611	18.639	0.0182	0.0697	5
6	0.005819	0.7904	0.0074	0.7978	6.034	14.610	20.644	0.0219	0.0769	6
7	0.006238	0.7932	0.0079	0.8012	7.040	15.674	22.714	0.0254	0.0843	7
8	0.006684	0.7961	0.0085	0.8046	8.046	16.807	24.853	0.0290	0.0919	8
9	0.007158	0.7989	0.0092	0.8081	9.052	18.013	27.065	0.0326	0.0997	9
10	0.007663	0.8017	0.0098	0.8116	10.058	19.297	29.354	0.0362	0.1078	10
11	0.008199	0.8046	0.0106	0.8152	11.063	20.661	31.724	0.0397	0.1162	11
12 13	0.008768 0.009372	0.8074 0.8103	0.0113 0.0122	0.8188 0.8224	12.069 13.075	22.111 23.653	34.181 36.728	0.0432 0.0468	0.1248 0.1337	12 13
13	0.010013	0.8103	0.0122	0.8224	14.081	25.290	39.371	0.0503	0.1430	14
	5.510015	0.0101	0.0101	5,0202	1 11301		57,511	0.0202	011 150	4 1

Table 2 Thermodynamic Properties of Moist Air at Standard Atmospheric Pressure, 101.325 kPa (Concluded)

Temp., °C	Humidity Ratio	Specifi	c Volume, n	n ³ /kg _{da}	Specif	ic Enthalpy	, kJ/kg _{da}	Specific Entro	opy, kJ/(kg _{da} ⋅K)	Temp., °C
t	W_s , kg_w/kg_{da}	v _{da}	v _{as}	v_s	h_{da}	has	h _s	S _{da}	s_s	t t
15 16 17 18 19	0.010694 0.011415 0.012181 0.012991 0.013851	0.8159 0.8188 0.8216 0.8245 0.8273	0.0140 0.0150 0.0160 0.0172 0.0184	0.8299 0.8338 0.8377 0.8416 0.8457	15.087 16.093 17.099 18.105 19.111	27.028 28.873 30.830 32.906 35.107	42.115 44.966 47.929 51.011 54.219	0.0538 0.0573 0.0607 0.0642 0.0676	0.1525 0.1624 0.1726 0.1832 0.1942	15 16 17 18 19
20 21 22 23 24 25 26 27 28 29	0.014761 0.015724 0.016744 0.017823 0.018965 0.020173 0.021451 0.022802 0.024229 0.025738	0.8301 0.8330 0.8358 0.8357 0.8415 0.8443 0.8472 0.8500 0.8529 0.8557	0.0196 0.0210 0.0224 0.0240 0.0256 0.0273 0.0291 0.0311 0.0331 0.0353	0.8498 0.8540 0.8583 0.8626 0.8671 0.8716 0.8763 0.8811 0.8860 0.8910	20.117 21.124 22.130 23.136 24.142 25.148 26.155 27.161 28.167 29.174	37.441 39.914 42.533 45.308 48.245 51.355 54.646 58.128 61.812 65.708	57.558 61.037 64.663 68.444 72.388 76.503 80.801 85.289 89.979 94.882	0.0711 0.0745 0.0779 0.0813 0.0847 0.0881 0.0915 0.0948 0.0982 0.1015	0.2057 0.2175 0.2298 0.2426 0.2560 0.2698 0.2842 0.2992 0.3148 0.3311	20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39	0.027333 0.029018 0.030797 0.032677 0.034663 0.036760 0.038975 0.041313 0.043783	0.8585 0.8614 0.8642 0.8671 0.8699 0.8727 0.8756 0.8784 0.8813 0.8841	0.0376 0.0400 0.0426 0.0454 0.0483 0.0514 0.0547 0.0581 0.0618 0.0657	0.8961 0.9014 0.9069 0.9124 0.9182 0.9241 0.9302 0.9365 0.9430 0.9498	30.180 31.187 32.193 33.200 34.207 35.213 36.220 37.227 38.233 39.240	69.829 74.185 78.791 83.660 88.806 94.245 99.993 106.068 112.487 119.270	100.009 105.372 110.985 116.860 123.013 129.458 136.213 143.294 150.720 158.510	0.1048 0.1081 0.1115 0.1147 0.1180 0.1213 0.1246 0.1278 0.1311 0.1343	0.3481 0.3658 0.3843 0.4035 0.4236 0.4447 0.4666 0.4895 0.5135 0.5386	30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49	0.049145 0.052053 0.055124 0.058368 0.061795 0.065416 0.069242 0.073286 0.077561 0.082081	0.8869 0.8898 0.8926 0.8955 0.8983 0.9011 0.9040 0.9068 0.9096 0.9125	0.0698 0.0741 0.0788 0.0837 0.0888 0.0943 0.1002 0.1063 0.1129 0.1198	0.9567 0.9639 0.9714 0.9791 0.9871 0.9955 1.0041 1.0131 1.0225 1.0323	40.247 41.254 42.261 43.268 44.275 45.282 46.289 47.297 48.304 49.311	126.438 134.014 142.021 150.483 159.429 168.887 178.889 189.466 200.656 212.497	166.685 175.268 184.282 193.751 203.704 214.169 225.178 236.763 248.960 261.808	0.1375 0.1407 0.1439 0.1471 0.1503 0.1535 0.1566 0.1598 0.1629 0.1660	0.5649 0.5923 0.6211 0.6512 0.6828 0.7159 0.7507 0.7877 0.8254 0.8655	40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59	0.086863 0.091922 0.097278 0.102949 0.108958 0.115326 0.122080 0.129248 0.136858 0.144945	0.9153 0.9182 0.9210 0.9238 0.9267 0.9295 0.9324 0.9352 0.9380 0.9409	0.1272 0.1350 0.1433 0.1521 0.1614 0.1714 0.1819 0.1932 0.2051 0.2179	1.0425 1.0531 1.0643 1.0759 1.0881 1.1009 1.1143 1.1284 1.1432 1.1587	50.319 51.326 52.334 53.341 54.349 55.356 56.364 57.372 58.380 59.388	225.030 238.300 252.357 267.251 283.041 299.788 317.560 336.431 356.482 377.800	275.349 289.627 304.690 320.592 337.389 355.144 373.924 393.803 414.862 437.188	0.1692 0.1723 0.1754 0.1785 0.1816 0.1846 0.1877 0.1908 0.1938	0.9078 0.9522 0.9989 1.0481 1.0999 1.1545 1.2121 1.2729 1.3371 1.4050	50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69	0.153545 0.162697 0.172446 0.182842 0.193937 0.205794 0.218478 0.232067 0.246645 0.262309	0.9437 0.9465 0.9494 0.9522 0.9551 0.9579 0.9607 0.9636 0.9664 0.9692	0.2315 0.2460 0.2615 0.2780 0.2957 0.3147 0.3350 0.3568 0.3803 0.4056	1.1752 1.1925 1.2108 1.2302 1.2508 1.2726 1.2957 1.3204 1.3467 1.3748	60.396 61.404 62.412 63.420 64.428 65.436 66.445 67.453 68.462 69.470	400.484 424.641 450.388 477.856 507.192 538.557 572.131 608.118 646.746 688.271	460.880 486.044 512.799 541.276 571.620 603.993 638.576 675.572 715.208 757.741	0.1999 0.2029 0.2059 0.2089 0.2119 0.2149 0.2179 0.2208 0.2238	1.4769 1.5530 1.6337 1.7194 1.8105 1.9074 2.0107 2.1209 2.2386 2.3646	60 61 62 63 64 65 66 67 68 69
70 71 72 73 74 75 76 77 78 79	0.279167 0.297343 0.316979 0.338237 0.361304 0.386399 0.413774 0.443727 0.476610 0.512842	0.9721 0.9749 0.9778 0.9806 0.9834 0.9863 0.9891 0.9919 0.9948	0.4328 0.4622 0.4941 0.5287 0.5663 0.6072 0.6520 0.7010 0.7550 0.8145	1.4049 1.4372 1.4719 1.5093 1.5497 1.5935 1.6411 1.6930 1.7497 1.8121	70.479 71.488 72.496 73.505 74.514 75.523 76.532	732.985 781.220 833.353 889.821 951.124 1017.843 1090.659 1170.366 1257.907 1354.402	803.464 852.707 905.850 963.326 1025.638 1093.367 1167.191 1247.907 1336.458 1433.962	0.2297 0.2326 0.2356 0.2385 0.2414 0.2443 0.2472 0.2501 0.2529 0.2558	2.4997 2.6449 2.8011 2.9697 3.1520 3.3496 3.5645 3.7989 4.0553 4.3371	70 71 72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87 88 89	0.552926 0.597470 0.647218 0.703089 0.766233 0.838105 0.920580 1.016105 1.127952 1.260579 1.420235	1.0005 1.0033 1.0061 1.0090 1.0118 1.0146 1.0175 1.0203 1.0232 1.0260 1.0288	0.8805 0.9539 1.0360 1.1283 1.2328 1.3519 1.4887 1.6473 1.8332 2.0539 2.3198	1.8809 1.9572 2.0421 2.1373 2.2446 2.3665 2.5062 2.6676 2.8564 3.0799 3.3487	80.569 81.579 82.589 83.598 84.608 85.618 86.628 87.638 88.648 89.658 90.668	1461.196 1579.917 1712.556 1861.573 2030.041 2221.858 2442.035 2697.127 2995.880 3350.228 3776.888	1541.765 1661.496 1795.145 1945.171 2114.649 2307.476 2528.662 2784.764 3084.528 3439.885 3867.556	0.2587 0.2615 0.2644 0.2672 0.2701 0.2729 0.2757 0.2785 0.2813 0.2841 0.2869	4.6478 4.9920 5.3754 5.8047 6.2885 6.8376 7.4660 8.1919 9.0396 10.0421 11.2458	80 81 82 83 84 85 86 87 88 89 90

Table 3 Thermodynamic Properties of Water at Saturation

Temp.,	Absolute	Speci	fic Volume, n	n ³ /kg _w		c Enthalpy			Entropy, k	$J/(kg_w \cdot K)$	Temp.,
°C	Pressure	Sat. Solid	Evap.	Sat. Vapor	Sat. Solid	Evap.	Sat. Vapor	Sat. Solid	Evap.	Sat. Vapor	°C
t	p_{ws} , kPa	v_i/v_f	v_{ig}/v_{fg}	v_g	h_i/h_f	h_{ig}/\dot{h}_{fg}	h_g	s_i/s_f	s_{ig}/s_{fg}	s_g	t
-60	0.00108	0.001081	90971.58	90971.58	-446.12	2836.27	2390.14	-1.6842	13.3064	11.6222	-60
-59	0.00124	0.001082	79885.31	79885.31	-444.46	2836.45	2391.99	-1.6764	13.2452	11.5687	-59
-58	0.00141	0.001082	70235.77	70235.78	-442.79	2836.63	2393.85	-1.6687	13.1845	11.5158	-58
-57	0.00161	0.001082	61826.23	61826.24	-441.11	2836.81	2395.70	-1.6609	13.1243	11.4634	-57
-56	0.00184	0.001082	54488.28	54488.28	-439.42	2836.97	2397.55	-1.6531	13.0646	11.4115	-56
-55	0.00209	0.001082	48077.54	48077.54	-437.73	2837.13	2399.40	-1.6453	13.0054	11.3601	-55
-54	0.00238	0.001082	42470.11	42470.11	-436.03	2837.28	2401.25	-1.6375	12.9468	11.3092	-54
-53	0.00271	0.001082	37559.49	37559.50	-434.32	2837.42	2403.10	-1.6298	12.8886	11.2589	-53
-52	0.00307	0.001083	33254.07	33254.07	-432.61	2837.56	2404.95	-1.6220	12.8310	11.2090	-52
-51	0.00348	0.001083	29474.87	29474.87	-430.88	2837.69	2406.81	-1.6142	12.7738	11.1596	-51
-50	0.00394	0.001083	26153.80	26153.80	-429.16	2837.81	2408.66	-1.6065	12.7171	11.1106	-50
-49	0.00445	0.001083	23232.03	23232.04	-427.42	2837.93	2410.51	-1.5987	12.6609	11.0622	-4 9
-48	0.00503	0.001083	20658.70	20658.70	-425.68	2838.04	2412.36	-1.5909	12.6051	11.0142	-48
-47	0.00568	0.001083	18389.75	18389.75	-423.93	2838.14	2414.21	-1.5832	12.5498	10.9666	-4 7
-46	0.00640	0.001083	16387.03	16387.03	-422.17	2838.23	2416.06	-1.5754	12.4950	10.9196	-4 6
-45	0.00720	0.001084	14617.39	14617.39	-420.40	2838.32	2417.91	-1.5677	12.4406	10.8729	-45
-44	0.00810	0.001084	13052.07	13052.07	-418.63	2838.39	2419.76	-1.5599	12.3867	10.8267	-44
-43	0.00910	0.001084	11666.02	11666.02	-416.85	2838.47	2421.62	-1.5522	12.3331	10.7810	-43
-42	0.01022	0.001084	10437.46	10437.46	-415.06	2838.53	2423.47	-1.5444	12.2801	10.7356	-42
-41	0.01146	0.001084	9347.38	9347.38	-413.27	2838.59	2425.32	-1.5367	12.2274	10.6907	-41
-40 20	0.01284	0.001084	8379.20	8379.20	-411.47	2838.64	2427.17	-1.5289	12.1752	10.6462	-4 0
- 39	0.01437	0.001085	7518.44	7518.44	-409.66	2838.68	2429.02	-1.5212	12.1234	10.6022	-39
-38	0.01607	0.001085	6752.43	6752.43	-407.85	2838.72	2430.87	-1.5135	12.0720	10.5585	-38
−37	0.01795	0.001085	6070.08	6070.08	-406.02	2838.74	2432.72	-1.5057	12.0210	10.5152	−37
-36	0.02004	0.001085	5461.68	5461.68	-404.19	2838.76	2434.57	-1.4980	11.9704	10.4724	-36
-35	0.02234	0.001085	4918.69	4918.69	-402.36	2838.78	2436.42	-1.4903	11,9202	10.4299	-35
-34	0.02489	0.001085	4433.64	4433.64	-400.51	2838.78	2438.27	-1.4825	11.8703	10.3878	-34
-33	0.02771	0.001085	3999.95	3999.95	-398.66	2838.78	2440.12	-1.4748	11.8209	10.3461	-33 33
−32 −31	0.03081 0.03423	0.001086	3611.82	3611.82	-396.80	2838.77	2441.97	−1.4671 −1.4594	11.7718	10.3047	−32 −31
-31	0.03423	0.001086	3264.15	3264.16	-394.94	2838.75	2443.82	-1.4394	11.7231	10.2638	
-30	0.03801	0.001086	2952.46	2952.46	-393.06	2838.73	2445.67	-1.4516	11.6748	10.2232	-30
-29	0.04215	0.001086	2672.77	2672.77	-391.18	2838.70	2447.51	-1.4439	11.6269	10.1830	-29
-28	0.04672	0.001086	2421.58	2421.58	-389.29	2838.66	2449.36	-1.4362	11.5793	10.1431	-28
-27	0.05173	0.001086	2195.80	2195.80	-387.40	2838.61	2451.21	-1.4285	11.5321	10.1036	-27
-26	0.05724	0.001087	1992.68	1992.68	-385.50	2838.56	2453.06	-1.4208	11.4852	10.0644	-26
-25	0.06327	0.001087	1809.79	1809.79	-383.59	2838.49	2454.91	-1.4131	11.4386	10.0256	-25
-24	0.06989	0.001087	1644.99	1644.99	-381.67	2838.42	2456.75	-1.4054	11.3925	9.9871	-24
-23	0.07714	0.001087	1496.36	1496.36	-379.75	2838.35	2458.60	-1.3977	11.3466	9.9489	-23
-22	0.08508	0.001087	1362.21	1362.21	-377.81	2838.26	2460.45	-1.3899	11.3011	9.9111	-22
-21	0.09376	0.001087	1241.03	1241.03	-375.88	2838.17	2462.29	-1.3822	11.2559	9.8736	-21
-20	0.10324	0.001087	1131.49	1131.49	-373.93	2838.07	2464.14	-1.3745	11.2110	9.8365	-20
-19	0.11360	0.001087	1032.38	1032.38	-371.98	2837.96	2465.98	-1.3668	11.1665	9.7996	-19
-18	0.12490	0.001088	942.64	942.65	-370.01	2837.84	2467.83	-1.3591	11.1223	9.7631	-18
-17	0.13722	0.001088	861.34	861.34	-368.05	2837.72	2469.67	-1.3514	11.0784	9.7269	-17
-16	0.15065	0.001088	787.61	787.61	-366.07	2837.59	2471.51	-1.3437	11.0348	9.6910	-16
-15	0.16527	0.001088	720.70	720.70	-364.09	2837.45	2473.36	-1.3360	10.9915	9.6554	-15
-14	0.18119	0.001088	659.94	659.94	-362.10	2837.30	2475.20	-1.3284	10.9485	9.6201	-14
-13	0.19849	0.001089	604.72	604.73	-360.10	2837.14	2477.04	-1.3207	10.9058	9.5851	-13
-12	0.21729	0.001089	554.51	554.51	-358.10	2836.98	2478.88	-1.3130	10.8634	9.5504	-12
-11	0.23771	0.001089	508.81	508.81	-356.08	2836.80	2480.72	-1.3053	10.8213	9.5160	-11
-10	0.25987	0.001089	467.19	467.19	-354.06	2836.62	2482.56	-1.2976	10.7795	9.4819	-10
-9	0.28391	0.001089	429.25	429.26	-352.04	2836.44	2484.40	-1.2899	10.7380	9.4481	-9
-8	0.30995	0.001089	394.66	394.66	-350.00	2836.24	2486.23	-1.2822	10.6967	9.4145	-8
-7	0.33817	0.001090	363.09	363.09	-347.96	2836.03	2488.07	-1.2745	10.6558	9.3812	-7
-6	0.36871	0.001090	334.26	334.26	-345.91	2835.82	2489.91	-1.2668	10.6151	9.3482	-6
-5	0.40174	0.001090	307.92	307.92	-343.86	2835.60	2491.74	-1.2592	10.5747	9.3155	-5
-4	0.43745	0.001090	283.82	283.83	-341.79	2835.37	2493.57	-1.2515	10.5345	9.2830	-4
-3	0.47604	0.001090	261.78	261.78	-339.72	2835.13	2495.41	-1.2438	10.4946	9.2508	-3
-2	0.51770	0.001091	241.60	241.60	-337.64	2834.88	2497.24	-1.2361	10.4550	9.2189	-2
-1	0.56266	0.001091	223.10	223.11	-335.56	2834.63	2499.07	-1.2284	10.4157	9.1872	-1
0	0.61115	0.001091	206.15	206.15	-333.47	2834.36	2500.90	-1.2208	10.3766	9.1558	0

Table 3 Thermodynamic Properties of Water at Saturation (Continued)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Temp.,	Absolute	Specifi	c Volume, n	n ³ /kg _w	Specifi	c Enthalpy	, kJ/kg _w	Specific l	Entropy, k	J/(kg _w ·K)	Temp.,
0 0.6112 0.001000 192.444 1839 206.140 0.04 2500.33 2500.89 0.0002 9.158 9.158 0.0100 192.444 1839 2046.17 20457 0.0306 9.0721 9.1027 2 0.07060 0.001000 192.454 1839 2046.17 2046.79 0.0306 9.0721 9.1027 2 0.07060 0.001000 179.753 179.764 8.39 2046.17 2046.79 0.0306 9.0721 9.1027 2 0.07060 0.001000 179.753 179.764 8.39 2046.17 2046.79 0.0306 9.0721 9.1027 2 0.0706	°C	Pressure							Sat. Solid	Evap.	Sat. Vapor	°C
1												
2 0.75660 0.001000 179,763 179,764 83.99 246.17 2904.57 0.0306 9.0721 9.1027 2 3 0.7581 0.001000 18.0013 18.0013 18.0014 12.00 2491.80 2908.40 0.0419 9.0306 9.0762 3 4 0.8155 0.001000 157,267 157,121 15.81 2491.40 2908.40 0.0419 9.0306 9.0762 3 5 0.0354 0.001000 17,021 157,121 15.81 2491.40 2908.20 0.0611 8.0081 8.0081 9.0066 7 7 1.0021 0.001000 128,027 128,528 29.43 2484.81 2513.74 0.1064 8.6778 8.9944 6 8 1.0730 0.001000 12.0333 10.0814 33.65 2481.94 2515.57 0.1213 8.8278 8.9944 9 9 1.1485 0.001001 01 10.0331 10.0814 33.65 2481.94 2515.57 0.1213 8.8278 8.9492 7 11 1.3129 0.001000 99.793 99.793 46.22 2477.81 2519.23 0.1518 8.7488 8.9492 8 11 1.3129 0.001000 99.793 99.793 46.22 2477.84 2521.06 0.1659 8.6705 8.8755 11 11 1.3129 0.001000 99.723 99.793 46.22 2477.84 2521.06 0.1659 8.6705 8.8755 11 11 1.3129 0.001000 99.723 99.793 46.22 2477.84 2521.06 0.1659 8.6705 8.8755 11 11 1.3129 0.001000 99.723 99.793 46.22 2477.84 2521.06 0.1659 8.6705 8.8755 11 11 1.3129 0.001000 99.723 99.793 46.22 2477.84 2521.06 0.1659 8.6705 8.8755 11 11 1.3129 0.001000 99.723 99.793 46.22 2477.84 2521.06 0.1659 8.6705 8.8755 11 11 1.3129 0.001000 99.723 99.793 46.22 2477.84 2521.06 0.1659 8.6705 8.8755 11 11 1.3129 0.001000 99.723 99.793 46.22 2477.84 2521.06 0.1659 8.8705 8.8755 11 11 1.3129 0.001000 99.723 99.793 46.22 2477.84 2521.06 0.1659 8.8705 8.8755 11 11 11 1.3129 0.001000 99.723 99.793 46.22 2477.84 2521.06 0.1659 8.8705 8.8755 11 11 11 1.3129 0.001000 99.723 99.793 46.22 2477.84 252.00 0.1659 8.8705 8.8755 11 11 11 1.3129 0.001000 99.723 99.793 46.22 2477.84 252.00 0.1659 8.8756 8.8756 99.7788 1.77							2500.93				9.1558	
10		0.6571		192.444	192.445	4.18 9.20			0.0153	9.1138	9.1291	1
10	2		0.001000	1/9,/03					0.0306		9.1027	2
10	3 4		0.001000	157 120						8 0805		Δ
10	5									8 9486	9.0300	5
10	6									8.9081		6
10	7								0.1064	8.8678	8.9742	7
10	8			120.833	120.834			2515.57		8.8278	8.9492	8
11 1.3129 0.001000 99.792 99.793 46.22 2474.84 2522.80 0.1659 8.7096 8.8755 11 12 14.088 0.001001 93.723 93.724 65.041 2472.48 2522.80 0.1650 8.6708 8.8514 12 13 14.4981 0.001001 82.797 82.798 5.041 2472.48 2522.80 0.1806 8.6708 8.8514 12 13 14.4981 0.001001 82.797 82.798 5.460 2470.11 2524.71 0.1953 8.6522 82.853 14 15 17.078 90.001001 82.797 77.889 6.879 2467.75 2526.54 0.2995 8.5939 8.8038 14 16 17.078 90.001001 69.005 77.889 6.879 2467.88 2528.86 0.2284 8.5539 8.8038 14 17 18 18 2.0647 0.001001 69.005 69.006 6.706 17 13.66 2466.65 2252.01 0.2534 8.8539 8.8038 14 17 18 18 2.0647 0.001001 69.005 69.006 6.706 77.36 2466.65 2252.01 0.001002 15.206 61.261 79.73 2455.20 2535.65 0.2822 8.4064 8.6588 19 19 2.1982 0.001002 61.206 61.261 79.73 2455.20 2535.65 0.2822 8.4064 8.6588 19 19 2.1982 0.001002 54.486 54.887 88.10 2451.18 2539.29 0.3108 8.3331 8.6439 21 12 22 2.6432 0.001002 54.486 54.887 88.10 2451.18 2539.29 0.3108 8.3331 8.6439 21 12 2.881 0.001003 48.551 48.552 92.29 2448.81 2533.40 0.001003 48.551 48.552 92.29 2448.81 2533.40 0.001003 48.551 48.552 92.29 2448.81 2533.83 0.2678 8.6661 2.0 22 2.6432 0.001003 48.551 48.552 92.99 2448.81 2533.83 0.2678 8.6661 2.0 22 2.6432 0.001003 43.514 51.522 92.29 2448.81 2533.83 0.2678 8.86661 2.0 22 2.2443.83 0.001004 43.541 51.422 92.29 2448.81 2533.83 0.2698 8.6000 22 2.25 2.25 2.25 2.25 2.25 2.25 2.2	9	1.1483	0.001000	113.308		37.82	2479.58	2517.40	0.1362	8.7882	8.9244	9
12	10							2519.23	0.1511		8.8998	
13		1.3129		99.792					0.1659	8.7096	8.8755	11
14		1.4028	0.001001							8.6708	8.8514	12
15				88.069						8.6322	8.8275	13
16				82,797					0.2099	8.5939	8.8038	14
17				77.880	77.881	62.98		2528.36	0.2245	8.5559	8.7804	
18				60.005	60.006			2530.19	0.2390	0.3101	0./3/1 9.72/1	10
19		2.0647							0.2334	8 4434	8.7341 8.7112	
20												
21 2.4881 0.001002 54.486 54.487 88.10 2451.18 2599.29 0.3108 8.3331 8.6439 21 22 2.6452 0.001002 51.421 51.422 92.29 96.47 2446.81 2541.10 0.3250 8.2969 8.6000 23 24 2.9856 0.001003 48.551 48.552 96.47 2446.45 2542.92 0.3391 8.2609 8.6000 23 25 3.1697 0.001003 43.340 43.341 104.84 2441.71 2546.54 0.3653 8.2261 26 3.3637 0.001003 4976 40.977 109.02 2439.33 2548.35 0.3673 8.1895 8.5568 25 27 3.5679 0.001004 38.757 38.758 113.20 2436.96 2550.16 0.3952 8.192 8.192 8.194 22 28 3.7828 0.001044 36.674 36.675 117.38 2434.59 2551.97 0.4091 8.0843 8.4934 28 29 4.0089 0.001004 34.718 34.719 211.56 2432.21 2553.78 0.4230 8.0497 8.4727 29 30 4.2467 0.001005 28.81 32.882 125.75 2429.84 2555.58 0.4368 8.0153 8.4521 30 31 4.4966 0.001005 31.153 31.154 129.93 2427.46 2557.39 0.4506 7.9812 8.4317 31 32 4.7592 0.001005 28.000 28.001 188.29 2422.70 2560.99 0.4780 7.9135 8.3914 33 34 5.324 7.9502 0.001006 25.207 25.208 146.64 241.79 2420.32 2560.99 0.4780 7.9135 8.3914 33 35 5.6286 0.001006 25.207 25.208 146.64 241.79 2420.32 2566.39 0.4796 7.8800 8.3715 34 35 5.6286 0.001006 25.207 25.208 146.64 241.79 2566.38 0.5052 7.8467 8.3518 35 36 6.9977 0.001006 25.207 25.208 146.64 241.79 2566.38 0.5052 7.8467 8.3518 35 37 6.2818 0.001007 22.728 22.729 155.00 2413.17 2568.17 0.5322 7.7807 8.3129 37 38 6.6234 0.001007 22.728 22.729 155.00 2413.17 2568.17 0.5322 7.7807 8.3129 37 38 6.6280 0.001008 18.564 18.565 171.72 2403.61 2575.33 0.5858 7.7808 8.2936 38 39 6.9997 0.001009 16.815 16.816 18.60 8.08 2398.82 2578.89 0.6123 7.7807 8.3129 37 44 17.7873 0.001008 18.564 18.565 171.72 2403.61 2575.33 0.5858 7.7568 8.1999 44 41 7.7873 0.001009 16.815 16.816 18.00 8.08 2398.82 2578.89 0.6123 7.7586 8.2256 9.00101 13.855 13.856 12.523 18.844 239.40 2258.245 0.6386 7.7590 8.2236 9.00101 13.855 13.856 12.523 18.844 239.40 2.258.257 0.6628 7.7564 8.1816 44 45 9.9544 0.00101 15.252 15.523 18.844 239.40 2.2588.25 0.0668 7.7590 8.2235 9.00101 13.855 18.856 18.866 2.258.257 9.00101 11.881 1.482 21.552 239.566 2393.08 0.01623 7.7586 8.2555 9.00101 11.881 1												
22 2,6452 0,001002 51,421 51,422 92,39 2448,81 2541,10 0,3250 8,2669 8,6218 22 23 2,8109 0,001003 45,862 45,863 100,66 2444,08 2544,73 0,3591 8,2609 8,6000 23 24 2,9856 0,001003 43,340 43,341 104,84 2441,71 2546,54 0,3673 8,1895 8,2568 25 26 3,3637 0,001003 40,976 40,977 109,02 2439,33 2548,35 0,3813 8,1542 8,3355 26 27 3,5679 0,001004 38,787 38,788 113,20 24345,96 2550,16 0,3952 8,1192 8,5184 27 28 3,7828 0,001004 36,674 36,675 117,38 2434,59 2551,97 0,4091 8,0947 8,4727 29 29 4,0089 0,001004 34,718 34,719 121,56 2432,21 2555,78 0,4030 8,0947 8,4727 29 30 42,467 0,001004 31,83 31,184 129,39 2427,46 2555,38 0,4368 8,0153 8,4521 30 31 4,4966 0,001005 31,133 31,134 129,39 3427,46 2557,39 0,4506 7,9812 8,4317 31 32 4,7592 0,001005 29,528 29,529 134,11 2425,08 2559,19 0,4604 7,9812 8,4317 31 33 5,0351 0,00100 20,528 29,529 134,11 2425,08 2559,19 0,4604 7,9812 8,4115 32 34 5,3247 0,001005 26,561 26,562 142,47 2420,32 2562,79 0,4916 7,8800 8,3715 34 5,53247 0,001006 26,561 26,562 142,47 2420,32 2562,79 0,4916 7,8800 8,3715 34 5,53247 0,001006 23,931 23,932 150,82 2415,56 2566,38 0,5187 7,8136 8,3323 36 5,9475 0,001007 22,728 22,729 155,00 2413,17 2568,17 0,5322 7,7807 8,319 37 38 6,6324 0,001007 21,594 21,595 15,918 2410,78 2569,96 0,5457 7,7480 8,2936 38 40 7,3844 0,001007 21,594 21,595 15,918 2410,78 2569,96 0,5457 7,7480 8,2936 38 40 7,3844 0,001008 18,564 18,565 175,90 2401,28 2577,31 0,5828 7,7807 8,319 37 38 6,6324 0,001009 16,815 16,816 18,16 18,00 23,941 2575,33 0,5858 7,780 8,399 43 40 7,3844 0,001009 16,815 16,816 18,55 17,72 2403,61 2575,33 0,5858 7,780 8,399 43 41 7,7873 0,001008 18,564 18,555 17,766 17,745 8,2936 38 42 9,594 0,00101 11,225 15,234 18,244 2,245 2,255 256,38 0,5187 7,7816 8,3232 36 41 7,7873 0,001008 18,564 18,565 175,90 2401,21 2575,33 0,5858 7,7830 8,399 43 42 8,299 0,00101 11,225 15,234 18,244 2,254 2,255 256,38 0,5187 7,7816 8,3232 3,36 43 8,560 0,00101 11,232 13,233 20,588 22,398 22,398 22,399 44,399 24,399 24,399 24,399 24,399 24,399 24,399 24,399 24,399 24,399 24,399 24,399 24,399 24				54 486		88 10					8 6439	21
23	22	2.6452		51.421					0.3250			22
24 2,9856 0,001003 45,862 45,863 100,66 2444,08 2544,73 0,3532 8,2251 8,5788 24 25 3,1697 0,001003 40,976 40,977 109,02 2439,33 2548,35 0,3673 8,1895 8,5568 25 26 3,3637 0,001004 36,8757 38,758 113,20 2436,96 2550,16 0,3673 8,1895 8,5568 25 27 3,5679 0,001004 36,8757 38,758 113,20 2436,96 2550,16 0,3952 8,1192 8,5144 27,228 28 4,0089 0,001004 34,718 34,719 121,56 2432,21 2553,78 0,4230 8,0497 8,4727 29 30 4,2467 0,001004 32,881 32,882 125,75 2429,84 2555,58 0,4368 8,0153 8,4521 30 31 4,4966 0,001005 31,153 31,154 129,93 2427,46 2557,39 0,4506 7,9812 8,4317 31 32 4,7592 0,01005 22,88 29,529 134,11 2425,08 255,197 0,4643 7,9472 8,4115 32 33 5,0351 0,001005 28,000 28,001 138,29 2422,70 2560,99 0,4780 7,9135 8,3914 33 34 5,3247 0,001006 25,207 25,208 146,64 2417,94 2564,58 0,5052 7,8467 8,5318 35 35 6,5286 0,001006 25,207 25,208 146,64 2417,94 2564,58 0,5052 7,8467 8,5318 35 36 5,9475 0,001006 25,207 25,208 146,64 2417,94 2564,58 0,5052 7,8467 8,5318 35 37 6,2818 0,001007 22,728 22,729 155,00 2413,17 2568,17 0,5322 7,7807 8,13129 37 38 6,6324 0,001007 22,728 22,729 155,00 2413,17 2568,17 0,5322 7,7807 8,13129 37 38 6,6324 0,001007 20,525 20,526 153,36 2408,39 2571,75 0,5591 7,7480 8,2936 38 39 6,9997 0,001007 20,525 20,526 153,36 2408,39 2571,75 0,5591 7,7480 8,2936 38 39 6,9997 0,001007 12,64 12,695 159,18 2410,78 2573,33 0,5888 7,7612 8,2359 41 41 7,7873 0,001008 18,564 18,565 171,72 2403,61 2575,33 0,5888 7,7612 8,2359 41 42 8,2090 0,001009 17,664 17,665 175,90 2401,21 2575,33 0,5888 7,7612 8,2359 41 43 8,6503 0,00109 17,664 17,665 175,90 2401,21 2584,23 0,6517 7,7480 8,129 9,444 9,1118 0,00109 10,012 1,603 18,868 19,868 2389,82 2587,77 0,6778 8,1129 9,594 41 41 7,7873 0,00101 11,3512 13,213 10,0010 12,252 13,253 18,44 24,000 258,354 0,0010 11,354 14,354 14,555 171,72 2403,61 2575,33 0,5888 7,7612 8,2359 41 42 8,2090 0,00109 17,666 17,690 2,0010 2				48.551					0.3391	8.2609		23
25 3,1697 0,001003 43,340 43,341 104,84 241,71 2546,54 0,3673 8,1895 8,5568 25 26 3,3637 0,001004 38,757 38,758 113,20 2439,33 2548,35 0,3813 8,1542 8,3535 26 27 3,5679 0,001004 38,757 38,758 113,20 2436,96 2550,16 0,3952 8,1192 8,5144 27 29 4,0089 0,001004 34,718 34,719 121,56 2432,21 2553,78 0,4290 8,0497 8,4727 29 30 42467 0,001005 31,153 31,154 129,93 242746 2,5573,9 0,4696 7,9812 8,4317 31 32 447592 0,001005 31,153 31,154 129,93 242746 2,5573,9 0,4506 7,9812 8,4317 31 33 5,0351 0,001005 29,528 29,529 134,11 2425,68 2,557,39 0,4506 7,9812 8,4317 31 34 5,3247 0,001006 26,561 26,562 142,47 2420,32 2,562,79 0,4916 7,8800 8,3715 34 5,3247 0,001006 26,561 26,562 142,47 2420,32 2,562,79 0,4916 7,8800 8,3715 34 5,3247 0,001006 25,207 2,5208 142,47 2420,32 2,562,79 0,4916 7,8800 8,3715 34 5,3247 0,001006 25,207 2,5208 142,47 2420,32 2,562,79 0,4916 7,8800 8,3715 34 5,3247 0,001006 25,207 2,5208 142,47 2420,32 2,562,79 0,4916 7,8800 8,3715 34 5,3247 0,001006 25,207 2,5208 142,47 2420,32 2,562,79 0,4916 7,8800 8,3715 34 5,3247 0,001006 25,207 2,5208 142,47 2420,32 2,562,79 0,4916 7,8800 8,3715 34 5,3247 0,001006 25,207 2,5208 142,47 2420,32 2,562,79 0,4916 7,8800 8,3715 34 5,3247 0,001006 25,207 2,5208 142,47 2420,32 2,562,79 0,4916 7,8800 8,3715 34 5,3247 0,001007 21,594 21,595 155,00 2413,17 2568,17 0,5322 7,7807 8,3329 37 8,66324 0,001007 21,594 21,595 155,00 2413,17 2568,17 0,5322 7,7807 8,3329 37 8,66324 0,001007 21,594 21,595 155,00 2413,17 2568,17 0,5322 7,7807 8,3329 37 8,66324 0,001007 21,594 21,595 155,00 2413,17 240,61 2,575,33 0,559 7,7185 8,2746 39 44 17,7873 0,001008 19,516 19,517 167,54 2,406,00 2573,54 0,5724 7,6832 8,2557 40 14 7,7873 0,001008 18,564 18,565 17,172 240,561 2,575,33 0,559 7,7185 8,2746 39 44 1,77873 0,001008 18,564 18,565 17,172 240,561 2,575,33 0,559 7,7185 8,2746 49 1,118 0,001009 16,012 16,013 18,262 2,575,360 0,5752 7,5561 8,1816 44 9,1118 0,001009 16,012 16,013 18,262 2,575,390 0,406 0,5752 7,5561 8,1816 44 9,1118 0,001009 16,012 16,013 18,262 2,575 18,260 0,5752 7,5561 8,1816 44	24	2.9856		45.862	45.863	100.66			0.3532	8.2251	8.5783	24
27 3.5679 0.001004 38.757 38.758 113.20 2436.96 2550.16 0.3952 8.1192 8.5144 27 28 3.7828 0.001004 34.6674 36.675 117.32 2436.96 2550.16 0.4991 8.0843 8.4934 28 29 4.0089 0.001004 34.718 34.719 121.56 2432.21 2553.78 0.4200 8.0497 8.4727 29 30 4.2467 0.001004 32.881 32.882 125.75 2429.84 2555.58 0.4368 8.0153 8.4321 31 31 4.4966 0.001005 31.153 31.154 129.93 2427.46 2557.39 0.4506 7.9812 8.4317 31 32 4.7592 0.001008 29.528 29.529 134.11 2425.08 2559.19 0.4643 7.9472 8.4115 32 33 5.0351 0.001005 28.0000 28.001 138.29 2422.70 2560.99 0.4780 7.9135 8.3914 33 34 5.3247 0.001006 26.561 26.562 142.47 2420.32 2562.79 0.4916 7.8800 8.3715 34 35 5.6286 0.001006 25.207 25.208 146.64 2417.94 2564.58 0.5052 7.8467 8.3518 35 36 5.9475 0.001006 23.931 23.932 150.82 2415.56 2566.38 0.5187 7.8136 8.3323 36 37 6.2818 0.001007 22.728 22.729 155.00 2413.17 2568.17 0.7807 8.3129 37 38 6.6324 0.001007 21.594 21.595 159.18 2410.78 2569.96 0.45457 7.7480 8.2936 38 39 6.9997 0.001007 20.525 20.526 61.336 2408.39 2571.75 0.5591 7.7155 8.2746 39 40 7.3844 0.001008 19.516 19.517 167.54 2406.00 2573.54 0.5724 7.6832 8.2557 40 41 7.7873 0.001009 16.815 16.816 180.08 23.88.2 2578.89 0.6123 7.8876 8.1999 43 44 9.1118 0.001009 16.815 16.816 180.08 23.88.2 2588.89 0.6123 7.8876 8.1999 43 44 9.1118 0.001009 16.815 16.816 180.08 23.88.2 2588.90 0.6255 7.5561 8.1816 44 45 9.5944 0.001010 15.252 15.253 188.44 2394.02 2580.67 0.6255 7.5561 8.1816 44 46 10.998 0.00101 13.855 13.856 10.600 2389.21 2580.67 0.6255 7.5561 8.1816 44 47 10.6259 0.00101 13.855 13.856 10.600 2389.21 2580.60 0.6648 7.4628 8.1276 47 48 11.1764 0.00101 13.855 13.856 10.808 23.88.20 2588.89 0.6123 7.8876 8.1999 43 49 11.7512 0.001012 12.003 12.604 20.516 2338.39 2589.54 0.6908 7.4015 8.0923 49 50 12.3513 0.001012 12.007 12.028 20.934 2388.91 2588.60 0.6648 7.4628 8.1276 47 51.11764 0.00101 13.855 13.856 10.600 23.838.39 2589.54 0.6908 7.4015 8.0923 49 50 12.3513 0.001010 13.656 7.666 7.6677 23.288 8.3668 0.7652 7.2514 8.0066 7.5596 7.5396 9.00101 13.855 13.856 10.600 7.5596 7.5	25	3.1697	0.001003	43.340			2441.71		0.3673	8.1895	8.5568	25
28 3.7828 0.001004 36.674 36.675 117.38 2434.59 2551.97 0.4091 8.0843 8.4934 28 29 4.0089 0.001004 32.881 32.882 125.75 242.84 2555.58 0.4368 8.0497 8.4727 29 30 4.2467 0.001005 32.881 32.882 125.75 242.84 2555.58 0.4368 8.0153 8.4521 30 31 4.4966 0.001005 28.000 28.001 134.11 242.082 2559.19 0.4643 7.9472 8.4115 32 33 5.0351 0.001006 28.000 28.001 138.29 2422.70 2560.99 0.4780 7.9135 8.3115 33 34 5.3247 0.001006 25.207 25.208 146.64 2417.94 2564.58 0.5052 7.8467 8.3518 35 5.6286 0.001006 25.207 25.208 146.64 2417.94 2568.17 0.532 7.7467				40.976		109.02			0.3813		8.5355	26
29	27				38.758				0.3952		8.5144	27
30	28			36.674					0.4091		8.4934	28
31 4,4966 0,001005 31.153 31.154 129.93 2427.46 2557.39 0,4506 7,9812 8,4317 31 32 47.592 0,001005 28,000 28,001 138.29 2422.70 2560.99 0,4780 7,9472 8,4115 32 33 5.0351 0,001005 28,000 28,001 138.29 2422.70 2560.99 0,4780 7,9135 8,3914 33 34 5.3247 0,001006 25.207 25.208 146.64 2417.94 2564.58 0.5052 7,8467 8.3518 35 5.6286 0,001006 25.207 25.208 146.64 2417.94 2564.58 0.5052 7,8467 8.3518 35 36 5.9475 0,001006 23.931 23.932 150.82 2415.56 2566.38 0.5187 7,8136 8.3323 36 37 6.2818 0,001007 21.594 21.595 159.18 2410.78 2569.96 0.5457 7,7480 8.2936 38 39 6.6997 0,001007 20.525 20.526 163.36 2408.99 2571.75 0.5591 7,7155 8.2746 39 40 7.3844 0,001008 19.516 19.517 167.54 2406.00 2573.54 0.5724 7.6832 8.2569 41 7.7873 0,001008 18.564 18.565 171.72 2403.61 2575.33 0.5888 7.6512 8.2369 41 41 7.7873 0,001009 16.815 16.816 180.08 2398.82 2578.89 0.6123 7.5876 8.1999 43 44 49.118 0,001009 16.115 16.013 188.42 2394.02 2582.45 0,6386 7.5248 8.1816 44 45 9.5944 0,001010 15.252 15.253 18.844 2394.02 2582.45 0,6386 7.5248 8.1634 45 45 9.5944 0,001010 15.252 15.253 18.844 2394.02 2582.45 0,6386 7.5248 8.1634 45 46 10.0988 0,001010 14.534 14.335 19.262 2391.61 2584.23 0.6517 7.4937 8.1454 46 47 10.6259 0,001011 13.825 13.213 200.98 2386.80 2587.77 0,0778 7.4320 8.1999 48 49 11.754 0,001012 12.027 12.028 209.34 2381.97 2591.31 0,0708 7.3711 8.0739 8.0956 51 12.9774 0,001013 11.481 11.482 213.52 2379.56 2593.08 0,7167 7.3409 8.0576 51 12.9774 0,001013 10.963 10.964 217.70 2377.14 2594.84 0,7296 7.3109 8.0956 53 53 14.3116 0,001014 10.472 10.473 22.188 2374.72 2596.60 0,74		4.0089	0.001004	34.718		121.56		2553.78	0.4230	8.0497	8.4727	
32 4,7592 0,001005 29,528 29,529 134,11 2425,08 2559,19 0,4643 7,9472 8,4115 32 33 34 5,3247 0,001006 26,561 26,562 142,47 2420,32 2562,79 0,4916 7,8800 8,3715 34 5,3247 0,001006 25,501 25,207 25,208 140,64 2417.94 2564,58 0,5052 7,8467 8,3518 33 36 5,9475 0,001006 23,931 23,932 150,82 2415,56 2566,38 0,5187 7,8136 8,3323 36 5,9475 0,001007 22,728 22,729 155,00 2413,17 2568,17 0,5322 7,7807 8,3129 37 8,66324 0,001007 22,525 20,526 163,36 2408,39 2571,75 0,5591 7,7480 8,2936 38 39 6,9997 0,001007 20,525 20,526 163,36 2408,39 2571,75 0,5591 7,7155 8,2746 39 40 7,3844 0,001008 18,564 18,565 171,72 2403,61 2575,33 0,5858 7,6512 8,2369 41 7,7873 0,001008 18,564 18,565 171,72 2403,61 2575,33 0,5858 7,6512 8,2369 41 42 8,2090 0,001009 17,664 17,665 175,90 2401,21 2575,11 0,5990 7,6193 8,2183 42 43 8,6503 0,001009 16,012 16,013 184,26 2396,42 2580,67 0,6255 7,5561 8,1816 44 9,1118 0,001009 16,012 16,013 184,26 2396,42 2580,67 0,6255 7,5561 8,1816 44 11,7512 0,001011 13,252 15,253 188,44 2394,02 2584,45 0,6386 7,5248 8,1634 45 46 10,0988 0,001010 14,534 14,535 192,62 2391,61 2584,23 0,06127 7,4937 8,1454 46 10,0988 0,001010 13,855 13,856 196,80 2389,21 2580,00 6,644 7,4628 8,1276 47 48 11,1764 0,001011 13,212 13,213 200,98 2386,80 2587,77 0,6778 7,4320 8,1099 48 11,1764 0,001011 13,212 12,603 12,604 20,516 2384,39 2587,77 0,6778 7,4320 8,1099 48 11,1764 0,001010 11,1841 11,482 213,52 2379,56 2593,08 0,7167 7,3499 8,0475 55 15,7614 0,001012 12,603 12,604 20,516 2384,39 2587,57 0,6788 7,4320 8,1099 48 11,1764 0,001010 13,635 10,964 21,770 237,714 2596,60 0,7424 7,2811 8,0235 53 14,116 0,001014 10,472 10,473 221,88 237,72 2596,60 0,7424 7,2811 8,0235 53 14,3116 0,001014 10,472 10,473 221,88 237,472 2596,60 0,7424 7,2811 8,0235 53 14,3116 0,001016 8,3678 8,3688 242,79 2362,57 2506,10 8,001017 7,6666 7,6677 251,15 2357,89 266,00 0,7424 7,2811 8,0235 53 14,3116 0,001016 8,3678 8,3688 242,79 2362,57 2506,00 0,7424 7,2811 8,0235 53 14,3116 0,001016 8,3678 8,3688 242,79 2362,57 2506,00 0,7424 7,2811 8,0235 53 14,3116 0,001016 8,				32.881	32.882				0.4368	8.0153	8.4521	30
33 5.0351 0.001005 28.0001 28.001 138.29 2422.70 2560.79 0.4780 7.9135 8.3914 33 34 5.3247 0.001006 25.207 25.208 146.64 2417.94 2566.58 0.5052 7.88467 8.3318 35 36 5.9475 0.001006 23.931 23.932 150.82 2415.56 2566.38 0.5187 7.8136 8.3323 36 37 6.2818 0.001007 21.728 22.729 155.00 2413.17 2558.17 0.5322 7.7807 8.3129 37 38 6.6324 0.001007 21.594 21.595 159.18 2410.78 2569.96 0.5457 7.7480 8.2036 38 40 7.3844 0.001008 19.516 19.517 167.54 2406.00 2573.54 0.5724 7.6832 8.2557 40 41 7.7873 0.001008 18.566 17.172 2403.61 2575.33 0.5858 7.6512	31			31.153	31.154	129.93			0.4506	7.9812	8.4317	31
36 5,9475 0.001006 23,931 23,932 150,82 2415,56 2566,38 0.5187 7,8136 8,3323 36 37 6,2818 0.001007 22,728 22,729 155,00 2413,17 2568,17 0.5322 7,7807 8,1329 37 38 6,6324 0.001007 21,594 21,595 159,18 2410,78 2569,96 0.5457 7,7480 8,2936 38 39 6,9997 0.001007 20,525 20,526 163,36 2408,39 2571,75 0.5591 7,7155 8,2746 39 40 7,3844 0.001008 19,516 19,517 167,54 2406,00 2573,54 0.5724 7,6832 8,2557 40 41 7,7873 0.001008 18,564 18,565 171,72 2403,61 2575,33 0.5858 7,6512 8,2369 41 42 8,2090 0.001009 16,64 17,666 175,90 2401,21 2577,11 0,599 7,6193 8,2183 42 43 8,6503 0.001009 16,815 16,816 180,08 2398,82 2578,89 0,6123 7,5876 8,1999 43 44 9,1118 0.001009 16,012 16,013 184,26 2396,42 2580,67 0.6255 7,5561 8,1816 44 45 9,5944 0.001010 15,252 15,253 188,44 2394,02 2582,45 0,6386 7,5248 8,1634 45 46 10,0988 0.001010 14,534 14,535 192,62 2391,61 2582,45 0,6386 7,5248 8,1634 45 46 11,764 0.001011 13,855 13,885 196,80 2389,21 2580,60 0,6648 7,4628 8,1276 47 48 11,1764 0.001012 12,603 12,604 205,16 2384,39 2589,54 0,6908 7,4015 8,0923 49 11,7512 0.001012 12,603 12,604 205,16 2384,39 2589,54 0,6908 7,4015 8,0923 49 11,7512 0.001013 11,481 11,482 213,52 2379,56 2593,08 0,7167 7,3409 8,0576 51 52 15,6305 0.001013 10,963 10,964 217,70 2377,14 2594,84 0,7296 7,3109 8,0405 52 53 14,3116 0.001014 10,072 10,073 12,088 20,093 42,342 2369,60 0,7424 7,2811 8,0235 53 14,3116 0.001014 10,072 10,073 8,3661 23,644 0,070107 8,0083 8,0093 246,97 2360,13 2607,10 0,8186 7,1094 7,9405 59 19,0407 0.001017 8,0083 8,0093 246,97 2360,13 2607,10 0,8186 7,1096 7,9243 59 19,0407 0.001018 7,348 7,348 22 55,34 235,55 2 2352,80 0,8312 7,0770 7,9082 60 19,9458 0.001018 7,348 7,348 22 55,34 235,55 2 2352,80 0,8312 7,0770 7,9082 60 19,9458 0.001018 7,348 7,3428 255,34 2355,52 2352,80 0,8312 7,0770 7,9082 60 19,9458 0.001018 7,348 7,348 22 55,34 2355,52 2352,80 0,8312 7,0770 7,9082 60 61 20,8873 0.001018 7,348 7,3428 255,34 2355,52 2352,80 0,8312 7,0770 7,9082 60 66 22,18664 0.001018 7,339 8,546 22,67 236,50 2360,50 0,9182 6,8808 7,7990 67 23,688 20,00102 5,	32			29.528	29,529	134.11	2425.08	2559.19	0.4643	7.9472	8.4115	32
36 5,9475 0.001006 23,931 23,932 150,82 2415,56 2566,38 0.5187 7,8136 8,3323 36 37 6,2818 0.001007 22,728 22,729 155,00 2413,17 2568,17 0.5322 7,7807 8,1329 37 38 6,6324 0.001007 21,594 21,595 159,18 2410,78 2569,96 0.5457 7,7480 8,2936 38 39 6,9997 0.001007 20,525 20,526 163,36 2408,39 2571,75 0.5591 7,7155 8,2746 39 40 7,3844 0.001008 19,516 19,517 167,54 2406,00 2573,54 0.5724 7,6832 8,2557 40 41 7,7873 0.001008 18,564 18,565 171,72 2403,61 2575,33 0.5858 7,6512 8,2369 41 42 8,2090 0.001009 16,64 17,666 175,90 2401,21 2577,11 0,599 7,6193 8,2183 42 43 8,6503 0.001009 16,815 16,816 180,08 2398,82 2578,89 0,6123 7,5876 8,1999 43 44 9,1118 0.001009 16,012 16,013 184,26 2396,42 2580,67 0.6255 7,5561 8,1816 44 45 9,5944 0.001010 15,252 15,253 188,44 2394,02 2582,45 0,6386 7,5248 8,1634 45 46 10,0988 0.001010 14,534 14,535 192,62 2391,61 2582,45 0,6386 7,5248 8,1634 45 46 11,764 0.001011 13,855 13,885 196,80 2389,21 2580,60 0,6648 7,4628 8,1276 47 48 11,1764 0.001012 12,603 12,604 205,16 2384,39 2589,54 0,6908 7,4015 8,0923 49 11,7512 0.001012 12,603 12,604 205,16 2384,39 2589,54 0,6908 7,4015 8,0923 49 11,7512 0.001013 11,481 11,482 213,52 2379,56 2593,08 0,7167 7,3409 8,0576 51 52 15,6305 0.001013 10,963 10,964 217,70 2377,14 2594,84 0,7296 7,3109 8,0405 52 53 14,3116 0.001014 10,072 10,073 12,088 20,093 42,342 2369,60 0,7424 7,2811 8,0235 53 14,3116 0.001014 10,072 10,073 8,3661 23,644 0,070107 8,0083 8,0093 246,97 2360,13 2607,10 0,8186 7,1094 7,9405 59 19,0407 0.001017 8,0083 8,0093 246,97 2360,13 2607,10 0,8186 7,1096 7,9243 59 19,0407 0.001018 7,348 7,348 22 55,34 235,55 2 2352,80 0,8312 7,0770 7,9082 60 19,9458 0.001018 7,348 7,348 22 55,34 235,55 2 2352,80 0,8312 7,0770 7,9082 60 19,9458 0.001018 7,348 7,3428 255,34 2355,52 2352,80 0,8312 7,0770 7,9082 60 19,9458 0.001018 7,348 7,348 22 55,34 2355,52 2352,80 0,8312 7,0770 7,9082 60 61 20,8873 0.001018 7,348 7,3428 255,34 2355,52 2352,80 0,8312 7,0770 7,9082 60 66 22,18664 0.001018 7,339 8,546 22,67 236,50 2360,50 0,9182 6,8808 7,7990 67 23,688 20,00102 5,	33			28.000	28.001				0.4780	7.9135	8.3914	33
36 5,9475 0.001006 23,931 23,932 150,82 2415,56 2566,38 0.5187 7,8136 8,3323 36 37 6,2818 0.001007 22,728 22,729 155,00 2413,17 2568,17 0.5322 7,7807 8,1329 37 38 6,6324 0.001007 21,594 21,595 159,18 2410,78 2569,96 0.5457 7,7480 8,2936 38 39 6,9997 0.001007 20,525 20,526 163,36 2408,39 2571,75 0.5591 7,7155 8,2746 39 40 7,3844 0.001008 19,516 19,517 167,54 2406,00 2573,54 0.5724 7,6832 8,2557 40 41 7,7873 0.001008 18,564 18,565 171,72 2403,61 2575,33 0.5858 7,6512 8,2369 41 42 8,2090 0.001009 16,64 17,666 175,90 2401,21 2577,11 0,599 7,6193 8,2183 42 43 8,6503 0.001009 16,815 16,816 180,08 2398,82 2578,89 0,6123 7,5876 8,1999 43 44 9,1118 0.001009 16,012 16,013 184,26 2396,42 2580,67 0.6255 7,5561 8,1816 44 45 9,5944 0.001010 15,252 15,253 188,44 2394,02 2582,45 0,6386 7,5248 8,1634 45 46 10,0988 0.001010 14,534 14,535 192,62 2391,61 2582,45 0,6386 7,5248 8,1634 45 46 11,764 0.001011 13,855 13,885 196,80 2389,21 2580,60 0,6648 7,4628 8,1276 47 48 11,1764 0.001012 12,603 12,604 205,16 2384,39 2589,54 0,6908 7,4015 8,0923 49 11,7512 0.001012 12,603 12,604 205,16 2384,39 2589,54 0,6908 7,4015 8,0923 49 11,7512 0.001013 11,481 11,482 213,52 2379,56 2593,08 0,7167 7,3409 8,0576 51 52 15,6305 0.001013 10,963 10,964 217,70 2377,14 2594,84 0,7296 7,3109 8,0405 52 53 14,3116 0.001014 10,072 10,073 12,088 20,093 42,342 2369,60 0,7424 7,2811 8,0235 53 14,3116 0.001014 10,072 10,073 8,3661 23,644 0,070107 8,0083 8,0093 246,97 2360,13 2607,10 0,8186 7,1094 7,9405 59 19,0407 0.001017 8,0083 8,0093 246,97 2360,13 2607,10 0,8186 7,1096 7,9243 59 19,0407 0.001018 7,348 7,348 22 55,34 235,55 2 2352,80 0,8312 7,0770 7,9082 60 19,9458 0.001018 7,348 7,348 22 55,34 235,55 2 2352,80 0,8312 7,0770 7,9082 60 19,9458 0.001018 7,348 7,3428 255,34 2355,52 2352,80 0,8312 7,0770 7,9082 60 19,9458 0.001018 7,348 7,348 22 55,34 2355,52 2352,80 0,8312 7,0770 7,9082 60 61 20,8873 0.001018 7,348 7,3428 255,34 2355,52 2352,80 0,8312 7,0770 7,9082 60 66 22,18664 0.001018 7,339 8,546 22,67 236,50 2360,50 0,9182 6,8808 7,7990 67 23,688 20,00102 5,	34 25			25.301	20.302					7.0000	0.3/13	34 25
37 6.2818 0.001007 22.728 22.729 155.00 2413.17 2568.17 0.5322 7.7807 8.3129 37 38 6.6324 0.001007 21.594 21.595 159.18 2410.78 2569.96 0.5457 7.7480 8.2936 38 39 6.9997 0.001007 20.525 20.526 163.36 2408.39 2571.75 0.5591 7.7155 8.2746 39 40 7.3844 0.001008 19.516 19.517 167.54 2406.00 2573.54 0.5724 7.6832 8.2557 40 41 7.7873 0.001008 18.564 18.565 171.72 2403.61 2575.33 0.5858 7.6512 8.2369 41 28.2090 0.001009 17.664 17.665 175.90 2401.21 2577.11 0.5990 7.6193 8.2183 42 43 8.5603 0.001009 16.815 16.816 180.08 2398.82 2578.89 0.6123 7.5876 8.1999 43 44 9.1118 0.001009 16.012 16.013 184.26 2396.42 2580.67 0.6255 7.5561 8.1816 44 45 9.5944 0.001010 15.252 15.253 188.44 2394.02 2582.45 0.6386 7.5248 8.1634 45 46 10.0988 0.001010 14.534 14.535 192.62 2391.02 2391.61 2582.45 0.6386 7.5248 8.1634 45 10.6259 0.001011 13.855 13.856 196.80 2389.21 2586.00 0.6648 7.4628 8.1276 47 48 11.1764 0.001011 13.212 13.213 200.98 2386.80 2587.77 0.6778 7.4320 8.1099 48 11.7512 0.001012 12.603 12.604 205.16 2384.39 2591.31 0.7038 7.3711 8.0749 50 12.3513 0.001012 12.027 12.028 209.34 2381.97 2591.31 0.7038 7.3711 8.0749 50 12.3513 0.001013 11.481 11.482 121.552 2379.56 2593.08 0.7167 7.3409 8.0576 51 22.9774 0.001013 11.481 11.482 21.352 2379.56 2593.08 0.7167 7.3409 8.0576 51 22.9774 0.001014 10.472 10.473 221.88 2374.72 2596.60 0.7424 7.2811 8.0235 53 14.3116 0.001014 10.472 10.473 221.88 2374.72 2596.60 0.7424 7.2811 8.0235 53 14.3116 0.001014 10.472 10.473 221.88 2374.72 2596.60 0.7424 7.2811 8.0235 53 14.3116 0.001015 9.5639 9.5649 230.24 2369.87 2600.11 0.7680 7.71926 7.7933 56 15.7614 0.001015 9.5639 9.5649 230.24 2369.87 2600.11 0.7680 7.7219 7.9899 55 56 16.5322 0.001018 7.3418 7.3428 255.34 2355.25 2610.58 0.8438 7.0485 7.8922 61 20.8873 0.001018 7.3418 7.3428 255.34 2355.25 2610.58 0.8438 7.0485 7.8922 61 20.8873 0.001018 7.3418 7.3428 255.34 2355.25 2610.58 0.8438 7.0485 7.8922 61 20.8873 0.001019 6.4591 6.4601 26.689 234.42 2369.87 2600.11 0.08836 7.0901 7.8666 26.1827 0.001019 6.4591 6.4601 26.8898 242.79 2362.57 26	36			23.207	23.208				0.5052	7.8136	8 3323	36
38 6.6324 0.001007 21.594 21.595 159.18 2410.78 2569.96 0.5457 7.7480 8.2936 38 39 6.9997 0.001007 20.525 20.526 163.36 2408.39 2571.75 0.5591 7.7155 8.2746 39 40 7.3844 0.001008 19.516 19.517 167.54 2406.00 2573.54 0.5724 7.6832 8.2557 40 41 7.7873 0.001009 17.664 11.7665 171.72 2403.61 2575.33 0.5858 7.6193 8.2183 42 43 8.0503 0.001009 16.815 16.816 180.08 2398.82 2578.89 0.6123 7.5876 8.1994 34 44 9.1118 0.00100 15.252 15.253 188.42 2394.62 2580.67 0.6255 7.5561 8.1816 44 45 9.5944 0.01010 15.252 15.253 188.44 2394.02 2580.45 0.6386 7.5248 8.16				22.728							8 3129	37
39 6,9997 0,001007 20,525 20,526 163,36 2408,39 2571,75 0,5591 7,7155 8,2746 39 40 7,3844 0,001008 18,564 18,565 171,72 2403,610 2573,54 0,5724 7,6832 8,2557 40 41 7,7873 0,001009 17,664 17,665 175,90 2401,21 2577,11 0,5990 7,6193 8,2183 42 43 8,6503 0,001009 16,615 16,816 180,08 2398,82 2578,89 0,6123 7,5876 8,1999 43 44 9,1118 0,001010 15,252 188,44 2394,02 2582,45 0,6386 7,5248 8,1634 45 45 9,5944 0,001011 15,252 13,856 196,80 2389,21 2580,00 0,6648 7,4628 8,1276 47 47 10,6259 0,001011 13,855 13,856 196,80 2389,21 2587,00 0,6648 7,4628	38			21.594				2569.96	0.5457		8.2936	38
41 7.7873 0.001008 18.564 18.565 171.72 2403.61 2575.33 0.5858 7.6512 8.2369 41 42 8.2090 0.001009 17.664 17.665 175.90 2401.21 2577.11 0.5990 7.6193 8.2183 42 43 8.6503 0.001009 16.815 16.816 180.08 2398.82 2578.89 0.6123 7.5876 8.1999 43 44 9.1118 0.001010 15.252 15.253 188.44 2394.02 2580.67 0.6255 7.5561 8.1816 44 45 9.5944 0.001010 14.534 14.535 192.62 2391.61 2580.60 0.6386 7.5248 8.1634 45 46 10.6259 0.001011 13.815 19.680 2389.21 2586.00 0.6648 7.4320 8.1099 48 49 11.7512 0.001012 12.063 12.604 205.16 2384.39 2589.77 0.6778 7.4320	39											39
41 7.7873 0.001008 18.564 18.565 171.72 2403.61 2575.33 0.5858 7.6512 8.2369 41 42 8.2090 0.001009 17.664 17.665 175.90 2401.21 2577.11 0.5990 7.6193 8.2183 42 43 8.6503 0.001009 16.815 16.816 180.08 2398.82 2578.89 0.6123 7.5876 8.1999 43 44 9.1118 0.001010 15.252 15.253 188.44 2394.02 2580.67 0.6255 7.5561 8.1816 44 45 9.5944 0.001010 14.534 14.535 192.62 2391.61 2580.60 0.6386 7.5248 8.1634 45 46 10.6259 0.001011 13.815 19.680 2389.21 2586.00 0.6648 7.4320 8.1099 48 49 11.7512 0.001012 12.063 12.604 205.16 2384.39 2589.77 0.6778 7.4320	40	7.3844	0.001008	19.516	19.517	167.54	2406.00	2573.54	0.5724	7.6832	8.2557	40
42 8.2090 0.001009 17.664 17.665 175.90 2401.21 2577.11 0.5990 7.6193 8.2183 42 43 8.6503 0.001009 16.815 16.816 180.08 2398.82 2578.89 0.6123 7.5876 8.1999 43 44 9.118 0.001009 16.012 16.013 184.26 2396.42 2580.67 0.6255 7.5561 8.1816 44 45 9.5944 0.001010 14.534 14.535 192.62 2391.61 2582.45 0.6386 7.5248 8.1634 45 46 10.0259 0.001011 13.855 13.856 196.80 2389.21 2586.00 0.6648 7.4628 8.1276 47 48 11.7512 0.001012 12.603 12.604 205.16 2384.39 2589.54 0.6908 7.4015 8.0923 49 50 12.3513 0.001012 12.027 12.028 209.34 2381.97 2591.31 0.7038		7.7873		18.564				2575.33		7.6512	8.2369	41
43 8.6503 0.001009 16.815 16.816 180.08 2398.82 2578.89 0.6123 7.5876 8.1999 43 44 9.1118 0.001009 16.012 16.013 184.26 2396.42 2580.67 0.6255 7.5561 8.1816 44 45 9.5944 0.001010 15.252 15.253 188.44 2394.02 2582.45 0.6386 7.5248 8.1634 45 46 10.0988 0.00101 14.534 14.535 192.62 2391.61 2584.23 0.6517 7.4937 8.1454 46 47 10.6259 0.001011 13.212 13.213 200.98 2386.80 2587.77 0.6778 7.4320 8.1099 48 49 11.7512 0.001012 12.603 12.604 205.16 2384.39 2589.54 0.6908 7.4015 8.0923 49 50 12.3513 0.001012 12.027 12.028 209.34 2381.97 2591.31 0.7038 <td>42</td> <td></td> <td>0.001009</td> <td>17.664</td> <td>17.665</td> <td>175.90</td> <td>2401.21</td> <td>2577.11</td> <td></td> <td>7.6193</td> <td>8.2183</td> <td>42</td>	42		0.001009	17.664	17.665	175.90	2401.21	2577.11		7.6193	8.2183	42
45 9,5944 0,001010 15,252 15,253 188,44 2394,02 2582,45 0,6386 7,5248 8,1634 45 46 10,0988 0,001010 14,534 14,535 192,62 2391,61 2584,23 0,6517 7,4937 8,1454 46 47 10,6259 0,001011 13,856 13,856 13,856 13,856 13,856 0,6648 7,4628 8,1276 47 48 11,1764 0,001012 12,603 12,604 205,16 2384,39 2589,54 0,6908 7,4015 8,0923 49 50 12,3513 0,001012 12,027 12,028 209,34 2381,97 2591,31 0,7038 7,3711 8,0749 50 51 12,9774 0,001013 11,481 11,482 213,52 2379,56 2593,08 0,7167 7,3409 8,0576 51 52 13,6305 0,001013 10,963 10,964 217,70 2377,14 2594,84 0,7296 <td>43</td> <td></td> <td></td> <td></td> <td></td> <td>180.08</td> <td></td> <td></td> <td></td> <td>7.5876</td> <td></td> <td>43</td>	43					180.08				7.5876		43
46 10,0988 0,001010 14.534 14.535 192.62 2391.61 2584.23 0.6517 7.4937 8.1454 46 47 10.6259 0.001011 13.855 13.856 196.80 2389.21 2586.00 0.6648 7.4628 8.1276 47 48 11.1764 0.001012 12.603 12.604 205.16 2384.39 2587.77 0.6778 7.4320 8.1099 48 49 11.7512 0.001012 12.603 12.604 205.16 2384.39 2589.54 0.6908 7.4015 8.0923 49 50 12.3513 0.001012 12.027 12.028 209.34 2381.97 2591.31 0.7038 7.3111 8.0749 50 51 12.9774 0.001013 11.481 11.482 213.52 2379.56 2593.08 0.7167 7.3409 8.0576 51 52 13.6305 0.001014 10.472 10.473 221.88 2374.72 2596.60 0.7424												
47 10.6259 0.001011 13.855 13.856 196.80 2389.21 2586.00 0.6648 7.4628 8.1276 47 48 11.1764 0.001011 13.212 13.213 200.98 2386.80 2587.77 0.6778 7.4320 8.1099 48 49 11.7512 0.001012 12.603 12.604 205.16 2384.39 2589.54 0.6908 7.4015 8.0923 49 50 12.3513 0.001012 12.027 12.028 209.34 2381.97 2591.31 0.7038 7.3711 8.0749 50 51 12.9774 0.001013 11.481 11.482 213.52 2379.56 2593.08 0.7167 7.3409 8.0576 51 52 13.6305 0.001013 10.963 10.964 217.70 2377.14 2594.84 0.7296 7.3109 8.0405 52 53 14.3116 0.001014 10.0472 10.473 2217.70 2372.30 2598.35 0.75									0.6386			
48 11.1764 0.001011 13.212 13.213 200.98 2386.80 2587.77 0.6778 7.4320 8.1099 48 49 11.7512 0.001012 12.603 12.604 205.16 2384.39 2589.54 0.6908 7.4015 8.0923 49 50 12.3513 0.001012 12.027 12.028 209.34 2381.97 2591.31 0.7038 7.3711 8.0749 50 51 12.9774 0.001013 11.481 11.482 213.52 2379.56 2593.08 0.7167 7.3409 8.0576 51 52 13.6305 0.001013 10.963 10.964 217.70 2377.14 2594.84 0.7296 7.3109 8.0405 52 53 14.3116 0.001014 10.0472 10.473 221.88 2374.72 2596.60 0.74244 7.2811 8.0235 53 54 15.0215 0.001014 10.007 226.06 2372.30 2598.35 0.7552 7.25					14.535							
49 11.7512 0.001012 12.603 12.604 205.16 2384.39 2589.54 0.6908 7.4015 8.0923 49 50 12.3513 0.001012 12.027 12.028 209.34 2381.97 2591.31 0.7038 7.3711 8.0749 50 51 12.9774 0.001013 11.481 11.482 213.52 2379.56 2593.08 0.7167 7.3409 8.0576 51 52 13.6305 0.001014 10.963 10.964 217.70 2377.14 2594.84 0.7296 7.3109 8.0405 52 53 14.3116 0.001014 10.472 10.473 221.88 2374.72 2596.60 0.7424 7.2811 8.0235 53 54 15.0215 0.001014 10.006 10.007 226.06 2372.30 2598.35 0.7552 7.2514 8.0066 54 55 15.7614 0.001015 9.5639 9.5649 230.24 2369.87 2600.11 0.7680					13.836							
50 12.3513 0.001012 12.027 12.028 209.34 2381.97 2591.31 0.7038 7.3711 8.0749 50 51 12.9774 0.001013 11.481 11.482 213.52 2379.56 2593.08 0.7167 7.3409 8.0576 51 52 13.6305 0.001014 10.472 10.473 221.88 2374.72 2596.60 0.7424 7.2811 8.0235 53 53 14.3116 0.001014 10.0472 10.473 221.88 2374.72 2596.60 0.7424 7.2811 8.0235 53 54 15.0215 0.001014 10.006 10.007 226.06 2372.30 2598.35 0.7552 7.2514 8.0666 54 55 15.7614 0.001015 9.5649 230.24 2369.87 2600.11 0.7680 7.2219 7.9899 55 56 16.5322 0.001016 8.7461 8.7471 238.61 2365.01 2603.61 0.7934 7.163												
51 12.9774 0.001013 11.481 11.482 213.52 2379.56 2593.08 0.7167 7.3409 8.0576 51 52 13.6305 0.001013 10.963 10.964 217.70 2377.14 2594.84 0.7296 7.3109 8.0405 52 53 14.3116 0.001014 10.472 10.473 221.88 2374.72 2596.60 0.7424 7.2811 8.0235 53 54 15.0215 0.001014 10.006 10.007 226.06 2372.30 2598.35 0.7552 7.2514 8.0066 54 55 15.7614 0.001015 9.5639 9.5649 230.24 2369.87 2600.11 0.7680 7.219 7.9899 55 56 16.5322 0.001015 9.1444 9.1454 234.42 2367.44 2601.86 0.7807 7.1926 7.9733 56 57 17.3350 0.001016 8.7461 8.7471 238.61 2365.01 2603.61 0.7934<												
52 13.6305 0.001013 10.963 10.964 217.70 2377.14 2594.84 0.7296 7.3109 8.0405 52 53 14.3116 0.001014 10.472 10.473 221.88 2374.72 2596.60 0.7424 7.2811 8.0235 53 54 15.0215 0.001014 10.006 10.007 226.06 2372.30 2598.35 0.7552 7.2514 8.0066 54 55 15.7614 0.001015 9.5639 9.5649 230.24 2369.87 2600.11 0.7680 7.2219 7.9899 55 56 16.5322 0.001015 9.1444 9.1454 234.42 2367.44 2601.86 0.7807 7.1926 7.9733 56 57 17.3350 0.001016 8.7461 8.7411 238.61 2365.01 2603.61 0.7934 7.1634 7.9568 57 58 18.1708 0.001017 8.0083 8.0933 246.97 2360.13 2607.10 0.8186 7.1056 7.9243 59 60 19.9458 0.001017												
53 14.3116 0.001014 10.472 10.473 221.88 2374.72 2596.60 0.7424 7.2811 8.0235 53 54 15.0215 0.001014 10.006 10.007 226.06 2372.30 2598.35 0.7552 7.2514 8.0066 54 55 15.7614 0.001015 9.5639 9.5649 230.24 2369.87 2600.11 0.7680 7.2219 7.9899 55 56 16.5322 0.001015 9.1444 9.1454 234.42 2367.44 2601.86 0.7807 7.1926 7.9733 56 57 17.3350 0.001016 8.7461 8.7471 238.61 2365.01 2603.61 0.7934 7.1634 7.9405 58 58 18.1708 0.001016 8.3678 8.3688 242.79 2362.57 2605.36 0.8060 7.1344 7.9405 58 59 19.0407 0.001017 7.6666 7.6677 251.15 2357.69 2608.85 0.8312												
54 15.0215 0.001014 10.006 10.007 226.06 2372.30 2598.35 0.7552 7.2514 8.0066 54 55 15.7614 0.001015 9.5639 9.5649 230.24 2369.87 2600.11 0.7680 7.2219 7.9899 55 56 16.5322 0.001015 9.1444 9.1454 234.42 2367.44 2601.86 0.7807 7.1926 7.9733 56 57 17.3350 0.001016 8.7461 8.7471 238.61 2365.01 2603.61 0.7934 7.1634 7.9568 57 58 18.1708 0.001016 8.3678 8.3688 242.79 2362.57 2605.36 0.8060 7.1344 7.9405 58 59 19.0407 0.001017 7.6666 7.6677 251.15 2357.69 2608.85 0.8312 7.0770 7.9082 60 61 29.8873 0.001018 7.3418 7.3428 255.34 2355.25 2610.58 0.8438												
55 15.7614 0.001015 9.5639 9.5649 230.24 2369.87 2600.11 0.7680 7.2219 7.9899 55 56 16.5322 0.001015 9.1444 9.1454 234.42 2367.44 2601.86 0.7807 7.1926 7.9733 56 57 17.3350 0.001016 8.7461 8.7471 238.61 2365.01 2603.61 0.7934 7.1634 7.9568 57 58 18.1708 0.001016 8.3678 8.3688 242.79 2362.57 2605.36 0.8060 7.1344 7.9405 58 59 19.0407 0.001017 8.0083 8.0093 246.97 2360.13 2607.10 0.8186 7.1056 7.9243 59 60 19.9458 0.001017 7.6666 7.6677 251.15 2357.69 2608.85 0.8312 7.0770 7.9082 60 61 20.8873 0.001018 7.3418 7.3428 255.34 2355.25 2610.58 0.8438												
56 16.5322 0.001015 9.1444 9.1454 234.42 2367.44 2601.86 0.7807 7.1926 7.9733 56 57 17.3350 0.001016 8.7461 8.7471 238.61 2365.01 2603.61 0.7934 7.1634 7.9568 57 58 18.1708 0.001016 8.3678 8.3688 242.79 2362.57 2605.36 0.8060 7.1344 7.9405 58 59 19.0407 0.001017 7.6666 7.6677 251.15 2357.69 2608.85 0.8312 7.0770 7.9082 60 61 20.8873 0.001018 7.3418 7.3428 255.34 2355.25 2610.58 0.8438 7.0485 7.8922 61 62 21.8664 0.001018 7.0328 7.0338 259.52 2352.80 2612.32 0.8563 7.0201 7.8764 62 63 22.8842 0.001019 6.7389 6.7399 263.71 2350.35 2614.05 0.8687				9 5639								
57 17.3350 0.001016 8.7461 8.7471 238.61 2365.01 2603.61 0.7934 7.1634 7.9568 57 58 18.1708 0.001016 8.3678 8.3688 242.79 2362.57 2605.36 0.8060 7.1344 7.9405 58 59 19.0407 0.001017 8.0083 8.0093 246.97 2360.13 2607.10 0.8186 7.1056 7.9243 59 60 19.9458 0.001017 7.6666 7.6677 251.15 2357.69 2608.85 0.8312 7.0770 7.9082 60 61 20.8873 0.001018 7.3418 7.3428 255.34 2355.25 2610.58 0.8438 7.0485 7.8922 61 62 21.8664 0.001018 7.0328 7.0338 259.52 2352.80 2612.32 0.8563 7.0201 7.8764 62 63 22.8842 0.001019 6.7389 6.7399 263.71 2350.35 2614.05 0.8687												
58 18.1708 0.001016 8.3678 8.3688 242.79 2362.57 2605.36 0.8060 7.1344 7.9405 58 59 19.0407 0.001017 8.0083 8.0093 246.97 2360.13 2607.10 0.8186 7.1056 7.9243 59 60 19.9458 0.001017 7.6666 7.6677 251.15 2357.69 2608.85 0.8312 7.0770 7.9082 60 61 20.8873 0.001018 7.3418 7.3428 255.34 2355.25 2610.58 0.8438 7.0485 7.8922 61 62 21.8664 0.001018 7.0328 7.0338 259.52 2352.80 2612.32 0.8563 7.0201 7.8764 62 63 22.8842 0.001019 6.7389 6.7399 263.71 2350.35 2614.05 0.8687 6.9919 7.8607 63 64 23.9421 0.001019 6.4591 6.4601 267.89 2347.89 2615.78 0.8811 6.9639 7.8451 64 65 25.0411 0.001020 6.1928 6.1938 272.08 2345.43 2617.51 0.8935 6.9361 7.8296 65 66 <												
60 19.9458 0.001017 7.6666 7.6677 251.15 2357.69 2608.85 0.8312 7.0770 7.9082 60 61 20.8873 0.001018 7.3418 7.3428 255.34 2355.25 2610.58 0.8438 7.0485 7.8922 61 62 21.8664 0.001018 7.0328 7.0338 259.52 2352.80 2612.32 0.8563 7.0201 7.8764 62 63 22.8842 0.001019 6.7389 6.7399 263.71 2350.35 2614.05 0.8687 6.9919 7.8607 63 64 23.9421 0.001019 6.4591 6.4601 267.89 2347.89 2615.78 0.8811 6.9639 7.8451 64 65 25.0411 0.001020 6.1928 6.1938 272.08 2345.43 2617.51 0.8935 6.9361 7.8296 65 66 26.1827 0.001020 5.9392 5.9402 276.27 2342.97 2619.23 0.9059		18.1708		8.3678	8.3688							
61 20.8873 0.001018 7.3418 7.3428 255.34 2355.25 2610.58 0.8438 7.0485 7.8922 61 62 21.8664 0.001018 7.0328 7.0338 259.52 2352.80 2612.32 0.8563 7.0201 7.8764 62 63 22.8842 0.001019 6.7389 6.7399 263.71 2350.35 2614.05 0.8687 6.9919 7.8607 63 64 23.9421 0.001019 6.4591 6.4601 267.89 2347.89 2615.78 0.8811 6.9639 7.8451 64 65 25.0411 0.001020 6.1928 6.1938 272.08 2345.43 2617.51 0.8935 6.9361 7.8296 65 66 26.1827 0.001020 5.9392 5.9402 276.27 2342.97 2619.23 0.9059 6.9083 7.8142 66 67 27.3680 0.001021 5.6976 5.6986 280.45 2340.50 2620.96 0.9182 6.8808 7.7990 67 68 28.5986 0.001022	59	19.0407	0.001017	8.0083	8.0093	246.97	2360.13	2607.10	0.8186	7.1056	7.9243	59
62 21.8664 0.001018 7.0328 7.0338 259.52 2352.80 2612.32 0.8563 7.0201 7.8764 62 63 22.8842 0.001019 6.7389 6.7399 263.71 2350.35 2614.05 0.8687 6.9919 7.8607 63 64 23.9421 0.001019 6.4591 6.4601 267.89 2347.89 2615.78 0.8811 6.9639 7.8451 64 65 25.0411 0.001020 6.1928 6.1938 272.08 2345.43 2617.51 0.8935 6.9361 7.8296 65 66 26.1827 0.001020 5.9392 5.9402 276.27 2342.97 2619.23 0.9059 6.9083 7.8142 66 67 27.3680 0.001021 5.6976 5.6986 280.45 2340.50 2620.96 0.9182 6.8808 7.7990 67 68 28.5986 0.001022 5.4674 5.4684 284.64 2338.03 2622.67 0.9305 6.8534 7.7839 68												
63 22.8842 0.001019 6.7389 6.7399 263.71 2350.35 2614.05 0.8687 6.9919 7.8607 63 64 23.9421 0.001019 6.4591 6.4601 267.89 2347.89 2615.78 0.8811 6.9639 7.8451 64 65 25.0411 0.001020 6.1928 6.1938 272.08 2345.43 2617.51 0.8935 6.9361 7.8296 65 66 26.1827 0.001020 5.9392 5.9402 276.27 2342.97 2619.23 0.9059 6.9083 7.8142 66 67 27.3680 0.001021 5.6976 5.6986 280.45 2340.50 2620.96 0.9182 6.8808 7.7990 67 68 28.5986 0.001022 5.4674 5.4684 284.64 2338.03 2622.67 0.9305 6.8534 7.7839 68												
64 23.9421 0.001019 6.4591 6.4601 267.89 2347.89 2615.78 0.8811 6.9639 7.8451 64 65 25.0411 0.001020 6.1928 6.1938 272.08 2345.43 2617.51 0.8935 6.9361 7.8296 65 66 26.1827 0.001020 5.9392 5.9402 276.27 2342.97 2619.23 0.9059 6.9083 7.8142 66 67 27.3680 0.001021 5.6976 5.6986 280.45 2340.50 2620.96 0.9182 6.8808 7.7990 67 68 28.5986 0.001022 5.4674 5.4684 284.64 2338.03 2622.67 0.9305 6.8534 7.7839 68												
65 25.0411 0.001020 6.1928 6.1938 272.08 2345.43 2617.51 0.8935 6.9361 7.8296 65 66 26.1827 0.001020 5.9392 5.9402 276.27 2342.97 2619.23 0.9059 6.9083 7.8142 66 67 27.3680 0.001021 5.6976 5.6986 280.45 2340.50 2620.96 0.9182 6.8808 7.7990 67 68 28.5986 0.001022 5.4674 5.4684 284.64 2338.03 2622.67 0.9305 6.8534 7.7839 68												
66 26.1827 0.001020 5.9392 5.9402 276.27 2342.97 2619.23 0.9059 6.9083 7.8142 66 67 27.3680 0.001021 5.6976 5.6986 280.45 2340.50 2620.96 0.9182 6.8808 7.7990 67 68 28.5986 0.001022 5.4674 5.4684 284.64 2338.03 2622.67 0.9305 6.8534 7.7839 68												
67 27.3680 0.001021 5.6976 5.6986 280.45 2340.50 2620.96 0.9182 6.8808 7.7990 67 68 28.5986 0.001022 5.4674 5.4684 284.64 2338.03 2622.67 0.9305 6.8534 7.7839 68												
68 28.5986 0.001022 5.4674 5.4684 284.64 2338.03 2622.67 0.9305 6.8534 7.7839 68												

 Table 3
 Thermodynamic Properties of Water at Saturation (Concluded)

Томи	Absoluto	Specifi	Specific Volume, m ³ /kg _w			c Enthalpy,	, kJ/kg _w	·	Entropy, k	J/(kg _w ·K)	Temp.,
Temp., °C	Absolute Pressure	Sat. Solid	Evap.	Sat. Vapor	Sat. Solid	Evap.	Sat. Vapor	Sat. Solid	Evap.	Sat. Vapor	°C
ť	p_{ws} , kPa	v_i/v_f	v_{ig}/v_{fg}	v_g	h_i/h_f	h_{ig}/h_{fg}	h_g	s_i/s_f	s_{ig}/s_{fg}	s_g	ť
70	31.2006	0.001023	5.0387	5.0397	293.02	2333.08	2626.10	0.9550	6.7990	7.7540	70
70	32.5750	0.001023	4.8392	4.8402	293.02	2330.60	2627.81	0.9672	6.7720	7.7392	71
72	34.0001	0.001023	4.6488	4.6498	301.40	2328.11	2629.51	0.9793	6.7452	7.7245	72
73	35.4775	0.001025	4.4671	4.4681	305.59	2325.62	2631.21	0.9915	6.7185	7.7100	73
74	37.0088	0.001025	4.2937	4.2947	309.78	2323.13	2632.91	1.0035	6.6920	7.6955	74
75	38.5954	0.001026	4.1281	4.1291	313.97	2320.63	2634.60	1.0156	6.6656	7.6812	75
76	40.2389	0.001026	3.9699	3.9709	318.17	2318.13	2636.29	1.0276	6.6393	7.6669	76
77	41.9409	0.001027	3.8188	3.8198	322.36	2315.62	2637.98	1.0396	6.6132	7.6528	77
78	43.7031	0.001028	3.6743	3.6754	326.56	2313.11	2639.66	1.0516	6.5872	7.6388	78
79	45.5271	0.001028	3.5363	3.5373	330.75	2310.59	2641.34	1.0635	6.5613	7.6248	79
80	47.4147	0.001029	3.4042	3.4053	334.95	2308.07	2643.01	1.0754	6.5356	7.6110	80
81	49.3676	0.001030	3.2780	3.2790	339.15	2305.54	2644.68	1.0873	6.5100	7.5973	81
82	51.3875	0.001030	3.1572	3.1582	343.34	2303.01	2646.35	1.0991	6.4846	7.5837	82
83	53.4762	0.001031	3.0415	3.0426	347.54	2300.47	2648.01	1.1109	6.4592	7.5701	83
84	55.6355	0.001032	2.9309	2.9319	351.74	2297.93	2649.67	1.1227	6.4340	7.5567	84
85	57.8675	0.001032	2.8249	2.8259	355.95	2295.38	2651.33	1.1344	6.4090	7.5434	85
86 87	60.1738 62.5565	0.001033 0.001034	2.7234 2.6262	2.7244 2.6272	360.15 364.35	2292.83 2290.27	2652.98 2654.62	1.1461 1.1578	6.3840 6.3592	7.5301 7.5170	86 87
88	65.0174	0.001034	2.5330	2.5341	368.56	2290.27	2656.26	1.1694	6.3345	7.5039	88
89	67.5587	0.001035	2.3330	2.3341	372.76	2285.14	2657.90	1.1811	6.3099	7.4909	89
90 91	70.1824	0.001036	2.3581	2.3591	376.97	2282.56	2659.53	1.1927	6.2854	7.4781	90 91
91 92	72.8904 75.6849	0.001037 0.001037	2.2760 2.1973	2.2771 2.1983	381.18 385.38	2279.98 2277.39	2661.16 2662.78	1.2042 1.2158	6.2611 6.2368	7.4653 7.4526	91 92
93	78.5681	0.001037	2.1217	2.1983	389.59	2274.80	2664.39	1.2136	6.2127	7.4320	93
93 94	81.5420	0.001038	2.0492	2.1228	393.81	2274.80	2666.01	1.2387	6.1887	7.4400	93
95	84.6089	0.001039	1.9796	1.9806	398.02	2269.60	2667.61	1.2502	6.1648	7.4150	95
96	87.7711	0.001040	1.9128	1.9138	402.23	2266.98	2669.22	1.2616	6.1411	7.4027	96
97	91.0308	0.001041	1.8486	1.8497	406.45	2264.37	2670.81	1.2730	6.1174	7.3904	97
98	94.3902	0.001042	1.7870	1.7880	410.66	2261.74	2672.40	1.2844	6.0938	7.3782	98
99	97.8518	0.001043	1.7277	1.7288	414.88	2259.11	2673.99	1.2957	6.0704	7.3661	99
100	101.4180	0.001043	1.6708	1.6719	419.10	2256.47	2675.57	1.3070	6.0471	7.3541	100
101	105.0910	0.001044	1.6161	1.6171	423.32	2253.83	2677.15	1.3183	6.0238	7.3421	101
102	108.8735	0.001045	1.5635	1.5645	427.54	2251.18	2678.72	1.3296	6.0007	7.3303	102
103	112.7678	0.001046	1.5129	1.5140	431.76	2248.52	2680.28	1.3408	5.9777	7.3185	103
104	116.7765	0.001047	1.4642	1.4653	435.99	2245.85	2681.84	1.3520	5.9548	7.3068	104
105	120.9021	0.001047	1.4174	1.4185	440.21	2243.18	2683.39	1.3632	5.9320	7.2951	105
106	125.1472	0.001048	1.3724	1.3734	444.44	2240.50	2684.94	1.3743	5.9092	7.2836	106
107	129.5145	0.001049	1.3290	1.3301	448.67	2237.81	2686.48	1.3854	5.8866	7.2721	107
108	134.0065	0.001050	1.2873	1.2883	452.90	2235.12	2688.02	1.3965	5.8641	7.2607	108
109	138.6261	0.001051	1.2471	1.2481	457.13	2232.41	2689.55	1.4076	5.8417	7.2493	109
110	143.3760	0.001052	1.2083	1.2094	461.36	2229.70	2691.07	1.4187	5.8194	7.2380	110
111	148.2588	0.001052	1.1710	1,1721	465.60	2226.99	2692.58	1.4297	5.7972	7.2268	111
112	153.2775	0.001053	1.1351	1.1362	469.83	2224.26	2694.09	1.4407	5.7750	7.2157	112
113 114	158.4348	0.001054	1.1005	1.1015	474.07	2221.53	2695.60	1.4517	5.7530	7.2047	113 114
114	163.7337 169.1770	0.001055 0.001056	1.0671 1.0349	1.0681 1.0359	478.31 482.55	2218.78 2216.03	2697.09 2698.58	1.4626 1.4735	5.7310 5.7092	7.1937 7.1827	114
116	174.7678	0.001036	1.0349	1.0339	482.33 486.80	2210.03	2098.38	1.4733	5.6874	7.1719	116
117	180.5090	0.001057	0.9739	0.9750	491.04	2213.27	2700.07	1.4953	5.6658	7.1719	117
118	186.4036	0.001059	0.9450	0.9461	495.29	2207.73	2703.02	1.5062	5.6442	7.1504	118
119	192.4547	0.001059	0.9171	0.9182	499.53	2204.94	2704.48	1.5170	5.6227	7.1397	119
120	198.6654	0.001060	0.8902	0.8913	503.78	2202.15	2705.93	1.5278	5.6013	7.1291	120
122	211.5782	0.001062	0.8392	0.8403	512.29	2196.53	2708.82	1.5494	5.5587	7.1081	122
124	225.1676	0.001064	0.7916	0.7927	520.80	2190.88	2711.69	1.5708	5.5165	7.0873	124
126	239.4597	0.001066	0.7472	0.7483	529.32	2185.19	2714.52	1.5922	5.4746	7.0668	126
128	254.4813	0.001068	0.7058	0.7068	537.85	2179.47	2717.32	1.6134	5.4330	7.0465	128
130	270.2596	0.001070	0.6670	0.6681	546.39	2173.70	2720.09	1.6346	5.3918	7.0264	130
132	286.8226	0.001072	0.6308	0.6318	554.93	2167.89	2722.83	1.6557	5.3508	7.0066	132
134	304.1989	0.001074	0.5969	0.5979	563.49	2162.04	2725.53	1.6767	5.3102	6.9869	134
136	322.4175	0.001076	0.5651	0.5662	572.05	2156.15	2728.20	1.6977	5.2698	6.9675	136
138	341.5081	0.001078	0.5353	0.5364	580.62	2150.22	2730.84	1.7185	5.2298	6.9483	138
140	361.5010	0.001080	0.5074	0.5085	589.20	2144.24	2733.44	1.7393	5.1900	6.9293	140
142	382.4271	0.001082	0.4813	0.4823	597.79	2138.22	2736.01	1.7600	5.1505	6.9105	142
144	404.3178	0.001084	0.4567	0.4577	606.39	2132.15	2738.54	1.7806	5.1112	6.8918	144
146	427.2053	0.001086	0.4336	0.4346	615.00	2126.04	2741.04	1.8011	5.0723	6.8734	146
148	451.1220	0.001088	0.4118	0.4129	623.62	2119.88	2743.50	1.8216	5.0335	6.8551	148
150	476.1014	0.001091	0.3914	0.3925	632.25	2113.67	2745.92	1.8420	4.9951	6.8370	150
152 154	502.1771 529.3834	0.001093 0.001095	0.3722 0.3541	0.3733 0.3552	640.89 649.55	2107.41 2101.10	2748.30 2750.64	1.8623 1.8825	4.9569 4.9189	6.8191	152 154
154	529.3834 557.7555	0.001095	0.3341	0.3332	649.55 658.21	2094.74	2750.64 2752.95	1.8825	4.9189	6.8014 6.7838	154
158	587.3287	0.001097	0.3209	0.3381	666.89	2088.32	2752.93	1.9027	4.8436	6.7664	158
160	618.1392	0.001102	0.3057	0.3068	675.57	2081.86	2757.43	1.9428	4.8063	6.7491	160

Density ρ of a moist air mixture is the ratio of total mass to total volume:

$$\rho = (M_{da} + M_w)/V = (1/v)(1+W) \tag{11}$$

where v is the moist air specific volume, m^3/kg_{da} , as defined by Equation (26).

Humidity Parameters Involving Saturation

The following definitions of humidity parameters involve the concept of moist air saturation:

Saturation humidity ratio $W_{c}(t, p)$ is the humidity ratio of moist air saturated with respect to water (or ice) at the same temperature t and pressure p.

Degree of saturation μ is the ratio of air humidity ratio W to humidity ratio W_s of saturated moist air at the same temperature and

$$\mu = \left. \frac{W}{W_s} \right|_{t, p} \tag{12}$$

Relative humidity ϕ is the ratio of the mole fraction of water vapor x_w in a given moist air sample to the mole fraction x_{ws} in an air sample saturated at the same temperature and pressure:

$$\phi = \frac{x_w}{x_{ws}} \bigg|_{t=0} \tag{13}$$

Combining Equations (8), (12), and (13)

$$\mu = \frac{\phi}{1 + (1 - \phi)W_s/(0.621\ 945)} \tag{14}$$

Dew-point temperature t_d is the temperature of moist air saturated at pressure p, with the same humidity ratio W as that of the given sample of moist air. It is defined as the solution $t_d(p, W)$ of the following equation:

$$W_{s}(p, t_{d}) = W \tag{15}$$

Thermodynamic wet-bulb temperature t^* is the temperature at which water (liquid or solid), by evaporating into moist air at drybulb temperature t and humidity ratio W, can bring air to saturation adiabatically at the same temperature t^* while total pressure p is constant. This parameter is considered separately in the section on Thermodynamic Wet-Bulb and Dew-Point Temperature.

PERFECT GAS RELATIONSHIPS FOR DRY AND MOIST AIR

When moist air is considered a mixture of independent perfect gases (i.e., dry air and water vapor), each is assumed to obey the perfect gas equation of state as follows:

Dry air:
$$p_{da}V = n_{da}RT$$
 (16)

Water vapor:
$$p_w V = n_w RT$$
 (17)

where

 p_{da} = partial pressure of dry air

 $p_w = \text{partial pressure of water vapor}$ V = total mixture volume

 n_{da} = number of moles of dry air

 $n_w =$ number of moles of water vapor

R = universal gas constant, 8314.472 J/(kmol·K)

T = absolute temperature, K

The mixture also obeys the perfect gas equation:

$$pV = nRT \tag{18}$$

or

$$(p_{da} + p_w)V = (n_{da} + n_w)RT$$
 (19)

where $p = p_{da} + p_w$ is the total mixture pressure and $n = n_{da} + n_w$ is the total number of moles in the mixture. From Equations (16) to (19), the mole fractions of dry air and water vapor are, respectively,

$$x_{da} = p_{da}/(p_{da} + p_{w}) = p_{da}/p$$
 (20)

and

$$x_w = p_w/(p_{da} + p_w) = p_w/p$$
 (21)

From Equations (8), (20), and (21), the humidity ratio W is

$$W = 0.621 \ 945 \ \frac{p_w}{p - p_w} \tag{22}$$

The degree of saturation μ is defined in Equation (12), where

$$W_s = 0.621 \ 945 \ \frac{p_{ws}}{p - p_{ws}} \tag{23}$$

The term p_{ws} represents the saturation pressure of water vapor in the absence of air at the given temperature t. This pressure p_{ws} is a function only of temperature and differs slightly from the vapor pressure of water in saturated moist air.

The relative humidity ϕ is defined in Equation (13). Substituting Equation (21) for x_w and x_{ws} ,

$$\phi = \frac{p_w}{p_{ws}} \bigg|_{t,p} \tag{24}$$

Substituting Equation (23) for W_s into Equation (14),

$$\phi = \frac{\mu}{1 - (1 - \mu)(p_w/p)} \tag{25}$$

Both ϕ and μ are zero for dry air and unity for saturated moist air. At intermediate states, their values differ, substantially so at higher temperatures.

The specific volume v of a moist air mixture is expressed in terms of a unit mass of dry air:

$$v = V/M_{da} = V/(28.966n_{da}) \tag{26}$$

where V is the total volume of the mixture, M_{da} is the total mass of dry air, and n_{da} is the number of moles of dry air. By Equations (16) and (26), with the relation $p = p_{da} + p_{w}$,

$$v = \frac{RT}{28.966(p - p_w)} = \frac{R_{da}T}{p - p_w}$$
 (27)

Using Equation (22),

$$v = \frac{RT(1 + (1.607858)W)}{28.966p} = \frac{R_{da}T(1 + (1.607858)W)}{p}$$
 (28)

In Equations (27) and (28), ν is specific volume, T is absolute temperature, p is total pressure, p_w is partial pressure of water vapor, and W is humidity ratio.

In specific units, Equation (28) may be expressed as

$$v = 0.287 \ 042(t + 273.15)(1 + 1.607 \ 858W)/p$$

where

 $v = \text{specific volume, m}^3/\text{kg}_{da}$

1.9 **Psychrometrics**

 $t = \text{dry-bulb temperature, } ^{\circ}\text{C}$ $W = \text{humidity ratio, } kg_w/kg_{da}$ p = total pressure, kPa

The enthalpy of a mixture of perfect gases equals the sum of the individual partial enthalpies of the components. Therefore, the specific enthalpy of moist air can be written as follows:

$$h = h_{da} + Wh_{g} \tag{29}$$

where h_{da} is the specific enthalpy for dry air in kJ/kg_{da} and h_{g} is the specific enthalpy for saturated water vapor in kJ/kg, at the temperature of the mixture. As an approximation,

$$h_{da} \approx 1.006t \tag{30}$$

$$h_g \approx 2501 + 1.86t$$
 (31)

where t is the dry-bulb temperature in °C. The moist air specific enthalpy in kJ/kg_{da} then becomes

$$h = 1.006t + W(2501 + 1.86t)$$
 (32)

THERMODYNAMIC WET-BULB AND **DEW-POINT TEMPERATURE**

For any state of moist air, a temperature t^* exists at which liquid (or solid) water evaporates into the air to bring it to saturation at exactly this same temperature and total pressure (Harrison 1965). During adiabatic saturation, saturated air is expelled at a temperature equal to that of the injected water. In this constant-pressure process,

- Humidity ratio increases from initial value W to W_s^* , corresponding to saturation at temperature t^*
- Enthalpy increases from initial value h to h_s^* , corresponding to saturation at temperature t^*
- Mass of water added per unit mass of dry air is $(W_s^* W)$, which adds energy to the moist air of amount $(W_s^* - W)h_w^*$, where h_w^* denotes specific enthalpy in kJ/kg_w of water added at temperature t*

Therefore, if the process is strictly adiabatic, conservation of enthalpy at constant total pressure requires that

$$h + (W_s^* - W)h_w^* = h_s^* \tag{33}$$

 W_s^* , h_w^* , and h_s^* are functions only of temperature t^* for a fixed value of pressure. The value of t^* that satisfies Equation (33) for given values of h, W, and p is the thermodynamic wet-bulb temperature.

A psychrometer consists of two thermometers; one thermometer's bulb is covered by a wick that has been thoroughly wetted with water. When the wet bulb is placed in an airstream, water evaporates from the wick, eventually reaching an equilibrium temperature called the wet-bulb temperature. This process is not one of adiabatic saturation, which defines the thermodynamic wet-bulb temperature, but one of simultaneous heat and mass transfer from the wet bulb. The fundamental mechanism of this process is described by the Lewis relation [Equation (38) in Chapter 5]. Fortunately, only small corrections must be applied to wet-bulb thermometer readings to obtain the thermodynamic wet-bulb temperature.

As defined, thermodynamic wet-bulb temperature is a unique property of a given moist air sample independent of measurement techniques.

Equation (33) is exact because it defines the thermodynamic wetbulb temperature t^* . Substituting the approximate perfect gas relation [Equation (32)] for h, the corresponding expression for h_s^* , and the approximate relation for saturated liquid water

$$h_w^* \approx 4.186t^* \tag{34}$$

into Equation (33), and solving for the humidity ratio,

$$W = \frac{(2501 - 2.326t^*)W_s^* - 1.006(t - t^*)}{2501 + 1.86t - 4.186t^*}$$
(35)

where t and t^* are in °C. Below freezing, the corresponding equations are

$$h_w^* \approx -333.4 + 2.1t^*$$
 (36)

$$W = \frac{(2830 - 0.24t^*)W_s^* - 1.006(t - t^*)}{2830 + 1.86t - 2.1t^*}$$
(37)

A wet/ice-bulb thermometer is imprecise when determining moisture content at 0°C.

The dew-point temperature t_d of moist air with humidity ratio W and pressure p was defined as the solution $t_d(p, w)$ of $W_s(p, t_d)$. For perfect gases, this reduces to

$$p_{ws}(t_d) = p_w = (pW)/(0.621\ 945 + W)$$
 (38)

where p_w is the water vapor partial pressure for the moist air sample and $p_{ws}(t_d)$ is the saturation vapor pressure at temperature t_d . The saturation vapor pressure is obtained from Table 3 or by using Equation (5) or (6). Alternatively, the dew-point temperature can be calculated directly by one of the following equations (Peppers 1988):

Between dew points of 0 and 93°C,

$$td = C_{14} + C_{15}\alpha + C_{16}\alpha^2 + C_{17}\alpha^3 + C_{18}(p_w)^{0.1984}$$
 (39)

Below 0°C.

$$t_d = 6.09 + 12.608\alpha + 0.4959\alpha^2 \tag{40}$$

where

 $t_d = \text{dew-point temperature, } ^{\circ}\text{C}$

 $\alpha = \ln p_w$

 p_w = water vapor partial pressure, kPa

 $C_{14} = 6.54$ $C_{15} = 14.526$ $C_{16} = 0.7389$

 $C_{17} = 0.09486$

 $C_{18} = 0.4569$

NUMERICAL CALCULATION OF MOIST AIR PROPERTIES

The following are outlines, citing equations and tables already presented, for calculating moist air properties using perfect gas relations. These relations are accurate enough for most engineering calculations in air-conditioning practice, and are readily adapted to either hand or computer calculating methods. For more details, refer to Tables 15 through 18 in Chapter 1 of Olivieri (1996). Graphical procedures are discussed in the section on Psychrometric Charts.

SITUATION 1.

Given: Dry-bulb temperature t, Wet-bulb temperature t^* , Pressure p

To Obtain	Use	Comments			
$\overline{p_{ws}(t^*)}$	Table 3 or Equation (5) or (6)	Sat. press. for temp. t*			
W_s^*	Equation (23)	Using $p_{ws}(t^*)$			
W	Equation (35) or (37)				
$p_{ws}(t)$	Table 3 or Equation (5) or (6)	Sat. press. for temp. t			
W_s	Equation (23)	Using $p_{ws}(t)$			
μ	Equation (12)	Using W_s			
φ	Equation (25)	Using $p_{ws}(t)$			
ν	Equation (28)	== //0 * *			
h	Equation (32)				
p_w	Equation (38)				
t_d	Table 3 with Equation (38), (39), or (40)				

SITUATION 2.

Given: Dry-bulb temperature t_d , Pressure p

To Obtain	Use	Comments
$\overline{p_w = p_{ws}(t_d)}$	Table 3 or Equation (5) or (6)	Sat. press. for temp. t_d
W	Equation (22)	
$p_{ws}(t)$	Table 3 or Equation (5) or (6)	Sat. press. for temp. t_d
W_s	Equation (23)	Using $p_{ws}(t)$
μ	Equation (12)	Using W_s
ф	Equation (25)	Using $p_{ws}(t)$
ν	Equation (28)	
h	Equation (32)	
<i>t</i> *	Equation (23) and (35) or (37) with Table 3 or with Equation (5) or (6)	Requires trial-and-error or numerical solution method

SITUATION 3.

Given: Dry-bulb temperature t, Relative humidity ϕ , Pressure p

To Obtain	Use	Comments
$p_{ws}(t)$	Table 3 or Equation (5) or (6)	Sat. press. for temp. t
p_w	Equation (24)	
W	Equation (22)	
W_s	Equation (23)	Using $p_{ws}(t)$
μ	Equation (12)	Using W_s
ν	Equation (28)	
h	Equation (32)	
t_d	Table 3 with Equation (38), (39), or (40)	
t*	Equation (23) and (35) or (37) with Table 3 or with Equation (5) or (6)	Requires trial-and-error or numerical solution method

Moist Air Property Tables for Standard Pressure

Table 2 shows thermodynamic properties for standard atmospheric pressure at temperatures from -60 to 90 °C. Properties of intermediate moist air states can be calculated using the degree of saturation μ :

Volume
$$v = v_{da} + \mu v_{as}$$
 (41)

Enthalpy
$$h = h_{da} + \mu h_{as}$$
 (42)

These equations are accurate to about 70 °C. At higher temperatures, errors can be significant. Hyland and Wexler (1983a) include charts that can be used to estimate errors for ν and h for standard barometric pressure. Nelson and Sauer (2002) provide psychrometric tables and charts up to 320 °C and 1.0 kg_w/kg_{da}.

PSYCHROMETRIC CHARTS

A psychrometric chart graphically represents the thermodynamic properties of moist air.

The choice of coordinates for a psychrometric chart is arbitrary. A chart with coordinates of enthalpy and humidity ratio provides convenient graphical solutions of many moist air problems with a minimum of thermodynamic approximations. ASHRAE developed five such psychrometric charts. Chart No. 1 is shown as Figure 1; the others may be obtained through ASHRAE.

Charts 1, 2, 3 and 4 are for sea-level pressure (101.325 kPa). Chart 5 is for 750 m altitude (92.634 kPa), Chart 6 is for 1500 m altitude (84.54 kPa), and Chart 7 is for 2250 m altitude (77.058 kPa). All charts use oblique-angle coordinates of enthalpy and humidity ratio, and are consistent with the data of Table 2 and the properties computation methods of Goff (1949) and Goff and Gratch (1945), as well as Hyland and Wexler (1983a). Palmatier (1963) describes

the geometry of chart construction applying specifically to Charts 1 and $\,4.$

The dry-bulb temperature ranges covered by the charts are

Charts 1, 5, 6, 7	Normal temperature	0 to 50°C
Chart 2	Low temperature	−40 to 10°C
Chart 3	High temperature	10 to 120°C
Chart 4	Very high temperature	100 to 200°C

Charts 8 to 16 are for 200 to 320°C and cover the same pressures as 1, 5, 6, and 7 plus the additional pressures of 0.2, 0.5,1.0, 2.0, and 5.0 MPa. They were produced by Nelson (2002) and are available on the CD-ROM included with Gatley (2005).

Psychrometric properties or charts for other barometric pressures can be derived by interpolation. Sufficiently exact values for most purposes can be derived by methods described in the section on Perfect Gas Relationships for Dry and Moist Air. Constructing charts for altitude conditions has been discussed by Haines (1961), Karig (1946), and Rohsenow (1946).

Comparison of Charts 1 and 4 by overlay reveals the following:

- The dry-bulb lines coincide.
- Wet-bulb lines for a given temperature originate at the intersections of the corresponding dry-bulb line and the two saturation curves, and they have the same slope.
- Humidity ratio and enthalpy for a given dry- and wet-bulb temperature increase with altitude, but there is little change in relative humidity.
- Volume changes rapidly; for a given dry-bulb and humidity ratio, it is practically inversely proportional to barometric pressure.

The following table compares properties at sea level (Chart 1) and 1500 m (Chart 6):

Chart No.	db	wb	h	W	rh	v
1	40	30	99.5	23.0	49	0.920
6	40	30	114.1	28.6	50	1.111

Figure 1 shows humidity ratio lines (horizontal) for the range from 0 (dry air) to 30 grams moisture per kilogram dry air. Enthalpy lines are oblique lines across the chart precisely parallel to each other.

Dry-bulb temperature lines are straight, not precisely parallel to each other, and inclined slightly from the vertical position. Thermodynamic wet-bulb temperature lines are oblique and in a slightly different direction from enthalpy lines. They are straight but are not precisely parallel to each other.

Relative humidity lines are shown in intervals of 10%. The saturation curve is the line of 100% rh, whereas the horizontal line for W = 0 (dry air) is the line for 0% rh.

Specific volume lines are straight but are not precisely parallel to each other.

A narrow region above the saturation curve has been developed for fog conditions of moist air. This two-phase region represents a mechanical mixture of saturated moist air and liquid water, with the two components in thermal equilibrium. Isothermal lines in the fog region coincide with extensions of thermodynamic wet-bulb temperature lines. If required, the fog region can be further expanded by extending humidity ratio, enthalpy, and thermodynamic wet-bulb temperature lines.

The protractor to the left of the chart shows two scales: one for sensible/total heat ratio, and one for the ratio of enthalpy difference to humidity ratio difference. The protractor is used to establish the direction of a condition line on the psychrometric chart.

Example 1 illustrates use of the ASHRAE Psychrometric Chart to determine moist air properties.

Example 1. Moist air exists at 40°C dry-bulb temperature, 20°C thermodynamic wet-bulb temperature, and 101.325 kPa pressure. Determine the humidity ratio, enthalpy, dew-point temperature, relative humidity, and specific volume.

Solution: Locate state point on Chart 1 (Figure 1) at the intersection of 40° C dry-bulb temperature and 20° C thermodynamic wet-bulb temperature lines. Read **humidity ratio** $W = 6.5 \text{ g}_w/\text{kg}_{da}$.

The **enthalpy** can be found by using two triangles to draw a line parallel to the nearest enthalpy line (60 kJ/kg_{da}) through the state point to the nearest edge scale. Read $h = 56.7 \text{ kJ/kg}_{da}$.

Dew-point temperature can be read at the intersection of $W = 6.5 \, g_w/kg_{da}$ with the saturation curve. Thus, $t_d = 7^{\circ}C$.

Relative humidity ϕ can be estimated directly. Thus, $\phi = 14\%$.

Specific volume can be found by linear interpolation between the volume lines for 0.88 and 0.90 m³/kg_{da}. Thus, $\nu=0.896$ m³/kg_{da}.

TYPICAL AIR-CONDITIONING PROCESSES

The ASHRAE psychrometric chart can be used to solve numerous process problems with moist air. Its use is best explained through illustrative examples. In each of the following examples, the process takes place at a constant total pressure of 101.325 kPa.

Moist Air Sensible Heating or Cooling

Adding heat alone to or removing heat alone from moist air is represented by a horizontal line on the ASHRAE chart, because the humidity ratio remains unchanged.

Figure 2 shows a device that adds heat to a stream of moist air. For steady-flow conditions, the required rate of heat addition is

$$_{1}q_{2} = \dot{m}_{da}(h_{2} - h_{1}) \tag{43}$$

Example 2. Moist air, saturated at 2°C, enters a heating coil at a rate of 10 m³/s. Air leaves the coil at 40°C. Find the required rate of heat addition.

Solution: Figure 3 schematically shows the solution. State 1 is located on the saturation curve at 2°C. Thus, $h_1=13.0 \text{ kJ/kg}_{da}$, $W_1=4.38 \text{ g}_w/\text{kg}_{da}$, and $v_1=0.785 \text{ m}^3/\text{kg}_{da}$. State 2 is located at the intersection of $t=40 ^{\circ}\text{C}$ and $W_2=W_1=4.38 \text{ g}_w/\text{kg}_{da}$. Thus, $h_2=51.5 \text{ kJ/kg}_{da}$. The mass flow of dry air is:

$$\dot{m}_{da} = 10/0.785 = 12.74 \text{ kg}_{da}/\text{s}$$

From Equation (43),

$$_{1}q_{2} = 12.74(51.5 - 13.0) = 490 \text{ kW}$$

Moist Air Cooling and Dehumidification

Moisture condensation occurs when moist air is cooled to a temperature below its initial dew point. Figure 4 shows a schematic cooling coil where moist air is assumed to be uniformly processed.

Fig. 2 Schematic of Device for Heating Moist Air

Although water can be removed at various temperatures ranging from the initial dew point to the final saturation temperature, it is assumed that condensed water is cooled to the final air temperature t_2 before it drains from the system.

For the system in Figure 4, the steady-flow energy and material balance equations are

$$\begin{split} \dot{m}_{da}h_1 &= \dot{m}_{da}h_2 + {}_1q_2 + \dot{m}_w h_{w2} \\ \dot{m}_{da}W_1 &= \dot{m}_{da}W_2 + \dot{m}_w \end{split}$$

Thus.

$$\dot{m}_{w} = \dot{m}_{da}(W_1 - W_2) \tag{44}$$

$$_{1}q_{2} = \dot{m}_{da}[(h_{1} - h_{2}) - (W_{1} - W_{2})h_{w2}]$$
 (45)

Example 3. Moist air at 30°C dry-bulb temperature and 50% rh enters a cooling coil at 5 m³/s and is processed to a final saturation condition at 10°C. Find the kW of refrigeration required.

Solution: Figure 5 shows the schematic solution. State 1 is located at the intersection of $t=30^{\circ}\text{C}$ and $\phi=50\%$. Thus, $h_1=64.3 \text{ kJ/kg}_{da}$, $W_1=13.3 \text{ g}_w/\text{kg}_{da}$, and $v_1=0.877 \text{ m}^3/\text{kg}_{da}$. State 2 is located on the saturation curve at 10°C . Thus, $h_2=29.5 \text{ kJ/kg}_{da}$ and $W_2=7.66 \text{ g}_w/\text{kg}_{da}$. From Table 2, $h_{w2}=42.02 \text{ kJ/kg}_w$. The mass flow of dry air is:

$$\dot{m}_{da} = 5/0.877 = 5.70 \text{ kg}_{da}/\text{s}$$

From Equation (45),

$$_{1}q_{2} = 5.70[(64.3 - 29.5) - (0.0133 - 0.00766)42.02]$$

= 197 kW

Fig. 3 Schematic of Device for Cooling Moist Air

Fig. 4 Schematic Solution for Example 2

Psychrometrics 1.13

Fig. 5 Schematic Solution for Example 3

Fig. 6 Adiabatic Mixing of Two Moist Airstreams

Adiabatic Mixing of Two Moist Airstreams

A common process in air-conditioning systems is the adiabatic mixing of two moist airstreams. Figure 6 schematically shows the problem. Adiabatic mixing is governed by three equations:

$$\dot{m}_{da1}h_1 + \dot{m}_{da2}h_2 = \dot{m}_{da3}h_3$$

$$\dot{m}_{da1} + \dot{m}_{da2} = \dot{m}_{da3}$$

$$\dot{m}_{da1}W_1 + \dot{m}_{da2}W_2 = \dot{m}_{da3}W_3$$

Eliminating m_{da3} gives

$$\frac{h_2 - h_3}{h_3 - h_1} = \frac{W_2 - W_3}{W_3 - W_1} = \frac{\dot{m}_{da1}}{\dot{m}_{da2}} \tag{46}$$

according to which, on the ASHRAE chart, the state point of the resulting mixture lies on the straight line connecting the state points of the two streams being mixed, and divides the line into two segments, in the same ratio as the masses of dry air in the two streams.

Example 4. A stream of 2 m³/s of outdoor air at 4°C dry-bulb temperature and 2°C thermodynamic wet-bulb temperature is adiabatically mixed with 6.25 m³/s of recirculated air at 25°C dry-bulb temperature and 50% rh. Find the dry-bulb temperature and thermodynamic wet-bulb temperature of the resulting mixture.

Fig. 7 Schematic Solution for Example 4

Solution: Figure 7 shows the schematic solution. States 1 and 2 are located on the ASHRAE chart: $v_1 = 0.789 \, \text{m}^3/\text{kg}_{da}$, and $v_2 = 0.858 \, \text{m}^3/\text{kg}_{da}$. Therefore,

$$\dot{m}_{da1} = 2 \ \S \ 0.789 = 2.535 \ kg_{da}/s$$

 $\dot{m}_{da2} = 6.25 \ \S \ 0.858 = 7.284 \ kg_{da}/s$

According to Equation (46),

$$\frac{\text{Line } 3-2}{\text{Line } 1-3} = \frac{\dot{m}_{da1}}{\dot{m}_{da2}} \text{ or } \frac{\text{Line } 1-3}{\text{Line } 1-2} = \frac{\dot{m}_{da2}}{\dot{m}_{da3}} = \frac{7.284}{9.819} = 0.742$$

Consequently, the length of line segment 1–3 is 0.742 times the length of entire line 1–2. Using a ruler, State 3 is located, and the values $t_3=19.5^{\circ}\mathrm{C}$ and $t_3^*=14.6^{\circ}\mathrm{C}$ found.

Adiabatic Mixing of Water Injected into Moist Air

Steam or liquid water can be injected into a moist airstream to raise its humidity, as shown in Figure 8. If mixing is adiabatic, the following equations apply:

$$\dot{m}_{da}h_1 + \dot{m}_w h_w = \dot{m}_{da}h_2$$

 $\dot{m}_{da}W_1 + \dot{m}_w = \dot{m}_{da}W_2$

Therefore.

$$\frac{h_2 - h_1}{W_2 - W_1} = \frac{\Delta h}{\Delta W} = h_w \tag{47}$$

according to which, on the ASHRAE chart, the final state point of the moist air lies on a straight line in the direction fixed by the specific enthalpy of the injected water, drawn through the initial state point of the moist air.

Example 5. Moist air at 20°C dry-bulb and 8°C thermodynamic wet-bulb temperature is to be processed to a final dew-point temperature of 13°C by adiabatic injection of saturated steam at 110°C. The rate of dry airflow is 2 kg_{da} /s. Find the final dry-bulb temperature of the moist air and the rate of steam flow.

Solution: Figure 9 shows the schematic solution. By Table 3, the enthalpy of the steam $h_g = 2691.07 \text{ kJ/kg}_w$. Therefore, according to Equation (47), the condition line on the ASHRAE chart connecting States 1 and 2 must have a direction:

Fig. 8 Schematic Showing Injection of Water into Moist Air

Fig. 9 Schematic Solution for Example 5

$$\Delta h/\Delta W = 2.691 \text{ kJ/g}_{\text{w}}$$

The condition line can be drawn with the $\Delta h/\Delta W$ protractor. First, establish the reference line on the protractor by connecting the origin with the value $\Delta h/\Delta W=2.691~{\rm kJ/g_w}$. Draw a second line parallel to the reference line and through the initial state point of the moist air. This second line is the condition line. State 2 is established at the intersection of the condition line with the horizontal line extended from the saturation curve at 13°C ($t_{d2}=13$ °C). Thus, $t_2=21$ °C.

Values of W_2 and W_1 can be read from the chart. The required steam flow is.

$$\dot{m}_w = \dot{m}_{da}(W_2 - W_1) = 2 \times 1000(0.0093 - 0.0018)$$

= 15.0 kg_w/s

Space Heat Absorption and Moist Air Moisture Gains

Air conditioning required for a space is usually determined by (1) the quantity of moist air to be supplied, and (2) the supply air condition necessary to remove given amounts of energy and water from the space at the exhaust condition specified.

Figure 10 shows a space with incident rates of energy and moisture gains. The quantity q_s denotes the net sum of all rates of heat gain in the space, arising from transfers through boundaries and from sources within the space. This heat gain involves energy addition alone and does not include energy contributions from water (or water vapor) addition. It is usually called the **sensible heat gain**. The quantity $\Sigma \dot{m}_w$ denotes the net sum of all rates of moisture gain on the space arising from transfers through boundaries and from sources within the space. Each kilogram of water

Fig. 10 Schematic of Air Conditioned Space

vapor added to the space adds an amount of energy equal to its specific enthalpy.

Assuming steady-state conditions, governing equations are

$$\dot{m}_{da}h_1 + q_s + \sum (\dot{m}_w h_w) = \dot{m}_{da}h_2$$

$$\dot{m}_{da}W_1 + \sum \dot{m}_w = \dot{m}_{da}W_2$$

or

$$q_s + \sum (\dot{m}_w h_w) = \dot{m}_{da} (h_2 - h_1) \tag{48}$$

$$\sum \dot{m}_{w} = \dot{m}_{da}(W_2 - W_1) \tag{49}$$

The left side of Equation (48) represents the total rate of energy addition to the space from all sources. By Equations (48) and (49),

$$\frac{h_2 - h_1}{W_2 - W_1} = \frac{\Delta h}{\Delta W} = \frac{q_s + \sum (\dot{m}_w h_w)}{\sum \dot{m}_w}$$
 (50)

according to which, on the ASHRAE chart and for a given state of withdrawn air, all possible states (conditions) for supply air must lie on a straight line drawn through the state point of withdrawn air, with its direction specified by the numerical value of $[q_s + \Sigma(\dot{m}_w h_w)]/\Sigma \dot{m}_w$. This line is the condition line for the given problem.

Example 6. Moist air is withdrawn from a room at 25°C dry-bulb temperature and 19°C thermodynamic wet-bulb temperature. The sensible rate of heat gain for the space is 9 kW. A rate of moisture gain of 0.0015 kg_w/s occurs from the space occupants. This moisture is assumed as saturated water vapor at 30°C. Moist air is introduced into the room at a dry-bulb temperature of 15°C. Find the required thermodynamic wet-bulb temperature and volume flow rate of the supply air.

Solution: Figure 11 shows the schematic solution. State 2 is located on the ASHRAE chart. From Table 3, the specific enthalpy of the added water vapor is $h_g = 2555.58 \text{ kJ/kg}_w$. From Equation (50),

$$\frac{\Delta h}{\Delta W} = \frac{9 + (0.0015 \times 2555.58)}{0.0015} = 8555 \text{ kJ/kg}_{w}$$

With the $\Delta h/\Delta W$ protractor, establish a reference line of direction $\Delta h/\Delta W=8.555~{\rm kJ/g_w}$. Parallel to this reference line, draw a straight line on the chart through State 2. The intersection of this line with the 15°C dry-bulb temperature line is State 1. Thus, $t_1^*=14.0^{\circ}{\rm C}$.

An alternative (and approximately correct) procedure in establishing the condition line is to use the protractor's sensible/total heat ratio scale instead of the $\Delta h/\Delta W$ scale. The quantity $\Delta H_s/\Delta H_t$ is the ratio of rate of sensible heat gain for the space to rate of total energy gain for the space. Therefore,

Psychrometrics 1.15

30 26 DOTTED LINE BOUNDS ALL STATES SHOWN ON PSYCHROMETRIC CHARTS 1, 2, AND 3 22 /ISCOSITY, µPa·s

Fig. 11 Schematic Solution for Example 6

LIVE GRAPH Click here to view

Fig. 12 Viscosity of Moist Air

Table 4 Calculated Diffusion Coefficients for Water-Air at 101.325 kPa

Temp., °C	mm²/s	Temp., ℃	mm²/s	Temp., ℃	mm²/s
-70	13.2	0	22,2	50	29.5
-50	15.6	5	22.9	55	30.3
-40	16.9	10	23.6	60	31.1
-35	17.5	15	24.3	70	32.7
-30	18.2	20	25.1	100	37.6
-25	18.8	25	25.8	130	42.8
-20	19.5	30	26.5	160	48.3
-15	20.2	35	27.3	190	54.0
-10	20.8	40	28.0	220	60.0
-5	21.5	45	28.8	250	66.3

$$\frac{\Delta H_s}{\Delta H_t} = \frac{q_s}{q_s + \Sigma(\dot{m}_w h_w)} = \frac{9}{9 + (0.0015 \times 2555.58)} = 0.701$$

Note that $\Delta H_s/\Delta H_t = 0.701$ on the protractor coincides closely with $\Delta h/\Delta W = 8.555 \text{ kJ/g}_{\text{w}}$

The flow of dry air can be calculated from either Equation (48) or (49). From Equation (48),

$$\dot{m}_{da} = \frac{q_s + \Sigma(\dot{m}_w h_w)}{h_2 - h_1} = \frac{9 + (0.0015 \times 2555.58)}{53.9 - 39.2}$$
$$= 0.873 \text{ kg}_w/\text{s}$$

At State 1, $v_1 = 0.829 \text{ m}^3/\text{kg}_w$

Therefore, supply volume = $\dot{m}_{da}v_1 = 0.873 \times 0.829 = 0.724 \text{ m}^3/\text{s}$

TRANSPORT PROPERTIES OF MOIST AIR

For certain scientific and experimental work, particularly in the heat transfer field, many other moist air properties are important. Generally classified as transport properties, these include diffusion coefficient, viscosity, thermal conductivity, and thermal diffusion factor. Mason and Monchick (1965) derive these properties by calculation. Table 4 and Figures 12 and 13 summarize the authors' results on the first three properties listed. Note that, within the boundaries of ASHRAE Psychrometric Charts 1, 2, and 3, viscosity varies little from that of dry air at normal atmospheric pressure, and thermal conductivity is essentially independent of moisture content.

Fig. 13 Thermal Conductivity of Moist Air

SYMBOLS

 C_1 to C_{18} = constants in Equations (5), (6), and (39) d_{ν} = absolute humidity of moist air, mass of water per unit volume of mixture, kg_w/m³

 $h = \text{specific enthalpy of moist air, kJ/kg}_{da}$ $H_s = \text{rate of sensible heat gain for space, kW}$ $h_s^* = \text{specific enthalpy of saturated moist air } a$ = specific enthalpy of saturated moist air at thermodynamic wetbulb temperature, kJ/kg_{da} H_t = rate of total energy gain for space, kW

 h_{w}^{*} = specific enthalpy of condensed water (liquid or solid) at thermodynamic wet-bulb temperature and a pressure of 101.325 kPa,

 $M_{da} = \text{mass of dry air in moist air sample, } kg_{da}$

 \dot{m}_{da} = mass flow of dry air, per unit time, kg_{da}/s

 M_w = mass of water vapor in moist air sample, kg_w

 \dot{m}_{w} = mass flow of water (any phase), per unit time, kg_w/s

 $n = n_{da} + n_{w}$, total number of moles in moist air sample

 n_{da} = moles of dry air n_w = moles of water vapor

p = total pressure of moist air, kPa

 p_{da} = partial pressure of dry air, kPa

 p_s = vapor pressure of water in moist air at saturation, kPa. Differs slightly from saturation pressure of pure water because of presence of air.

 p_w = partial pressure of water vapor in moist air, kPa

 p_{ws} = pressure of saturated pure water, kPa

 q_s = rate of addition (or withdrawal) of sensible heat, kW

 $R = \text{universal gas constant}, 8314.472 \text{ J/(kg mole \cdot K)}$

 R_{da} = gas constant for dry air, kJ/(kg_{da}·K)

 $R_w = \text{gas constant for water vapor, } kJ/(kg_w \cdot K)$

 $s = \text{specific entropy, kJ/(kg}_{da} \cdot \text{K}) \text{ or kJ/(kg}_{w} \cdot \text{K})$

T = absolute temperature, K

 $t = \text{dry-bulb temperature of moist air, } ^{\circ}\text{C}$

 $t_d = \text{dew-point temperature of moist air, °C}$

 t^* = thermodynamic wet-bulb temperature of moist air, °C

 $V = \text{total volume of moist air sample, m}^3$

 $v = \text{specific volume, } m^3/kg_{da} \text{ or } m^3/kg_w$

 v_T = total gas volume, m³

 $W = \text{humidity ratio of moist air, } kg_w/kg_{da} \text{ or } g_w/kg_{da}$

 W_s^* = humidity ratio of moist air at saturation at thermodynamic wet-bulb temperature, kg_w/kg_{da} or g_w/kg_{da}

 x_{da} = mole fraction of dry air, moles of dry air per mole of mixture

 $x_w = \text{mole fraction of water, moles of water per mole of mixture}$

 x_{ws} = mole fraction of water vapor under saturated conditions, moles of vapor per mole of saturated mixture

Z = altitude, m

Greek

 $\alpha = \ln(p_w)$, parameter used in Equations (39) and (40)

γ = specific humidity of moist air, mass of water per unit mass of mixture

 $\mu = \text{degree of saturation } W/W_s$

 ρ = moist air density

 ϕ = relative humidity, dimensionless

Subscripts

as = difference between saturated moist air and dry air

da = dry air

f =saturated liquid water

fg = difference between saturated liquid water and saturated water vapor

g =saturated water vapor

i =saturated ice

ig = difference between saturated ice and saturated water vapor

s =saturated moist air

t = total

w =water in any phase

REFERENCES

Gatley, D.P. 2005. Understanding psychrometrics, 2nd ed. ASHRAE.

Gatley, D.P. S. Herrmann, and H.J. Kretzschmar. 2008. A twenty-first century molar mass for dry air. HVAC&R Research 14:655-662.

Goff, J.A. 1949. Standardization of thermodynamic properties of moist air. *Heating, Piping, and Air Conditioning* 21(11):118-128.

Goff, J.A. and S. Gratch. 1945. Thermodynamic properties of moist air. ASHVE Transactions 51:125.

Haines, R.W. 1961. How to construct high altitude psychrometric charts. Heating, Piping, and Air Conditioning 33(10):144.

Harrison, L.P. 1965. Fundamental concepts and definitions relating to humidity. In *Humidity and moisture measurement and control in science* and industry, vol. 3. A. Wexler and W.A. Wildhack, eds. Reinhold, New York.

Herrmann, S., H.J. Kretzschmar, and D.P. Gatley. 2009. Thermodynamic properties of real moist air, dry air, steam, water, and ice. HVAC&R Research (forthcoming).

Hyland, R.W. and A. Wexler. 1983a. Formulations for the thermodynamic properties of dry air from 173.15 K to 473.15 K, and of saturated moist air from 173.15 K to 372.15 K, at pressures to 5 MPa. ASHRAE Transactions 89(2A):520-535.

- Hyland, R.W. and A. Wexler. 1983b. Formulations for the thermodynamic properties of the saturated phases of $\rm H_2O$ from 173.15 K to 473.15 K. ASHRAE Transactions 89(2A):500-519.
- IAPWS. 1992. Revised supplementary release on saturation properties of ordinary water system. International Association for the Properties of Water and Steam, Oakville, ON, Canada.
- IAPWS. 2006. Release on an equation of state for H_2O ice Ih. International Association for the Properties of Water and Steam, Oakville, ON, Canada.
- IAPWS. 2007. Revised release on the IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam. International Association for the Properties of Water and Steam, Oakville, ON, Canada.
- IAPWS. 2008. Revised release on the pressure along the melting and sublimation curves of ordinary water substance. International Association for the Properties of Water and Steam, Oakville, ON, Canada.
- Karig, H.E. 1946. Psychrometric charts for high altitude calculations. Refrigerating Engineering 52(11):433.
- Keeling, C.D. and T.P. Whorf. 2005a. Atmospheric carbon dioxide record from Mauna Loa. Scripps Institution of Oceanography—CO₂ Research Group. (Available at http://cdiac.ornl.gov/trends/co2/sio-mlo.html)
- Keeling, C.D. and T.P. Whorf. 2005b. Atmospheric CO₂ records from sites in the SIO air sampling network. *Trends: A compendium of data on global change*. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory.
- Kuehn, T.H., J.W. Ramsey, and J.L. Threlkeld. 1998. Thermal environmental engineering, 3rd ed. Prentice-Hall, Upper Saddle River, NJ.
- Lemmon, E.W., R.T. Jacobsen, S.G. Penoncello, and D.G. Friend. 2000. Thermodynamic properties of air and mixture of nitrogen, argon, and oxygen from 60 to 2000 K at pressures to 2000 MPa. *Journal of Physical and Chemical Reference Data* 29:331-385.
- Mason, E.A. and L. Monchick. 1965. Survey of the equation of state and transport properties of moist gases. In *Humidity and moisture measurement and control in science and industry*, vol. 3. A. Wexler and W.A. Wildhack, eds. Reinhold, New York.
- Mohr, P.J. and P.N. Taylor. 2005. CODATA recommended values of the fundamental physical constants: 2002. Reviews of Modern Physics 77:1-107.
- NASA. 1976. U.S. Standard atmosphere, 1976. National Oceanic and Atmospheric Administration, National Aeronautics and Space Administration, and the United States Air Force. Available from National Geophysical Data Center, Boulder, CO.
- Nelson, H.F. and H.J. Sauer, Jr. 2002. Formulation of high-temperature properties for moist air. *International Journal of HVAC&R Research* 8(3):311-334.
- NIST. 1990. Guidelines for realizing the international temperature scale of 1990 (ITS-90). NIST *Technical Note* 1265. National Institute of Technology and Standards, Gaithersburg, MD.
- Olivieri, J. 1996. Psychrometrics—Theory and practice. ASHRAE.
- Palmatier, E.P. 1963. Construction of the normal temperature. ASHRAE psychrometric chart. ASHRAE Journal 5:55.
- Peppers, V.W. 1988. A new psychrometric relation for the dewpoint temperature. Unpublished. Available from ASHRAE.
- Preston-Thomas, H. 1990. The international temperature scale of 1990 (ITS-90). *Metrologia* 27(1):3-10.
- Rohsenow, W.M. 1946. Psychrometric determination of absolute humidity at elevated pressures. *Refrigerating Engineering* 51(5):423.

BIBLIOGRAPHY

Kusuda, T. 1970. Algorithms for psychrometric calculations. NBS *Publication* BSS21 (January) for sale by Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.