

NUEVAS PRÁCTICAS EN EL ENTORNO DOCENTE DE ROBÓTICA JDEROBOT-ACADEMY

Vanessa Fernández Martínez v.fernandezmarti@alumnos.urjc.es

Índice

- Introducción
- Objetivos
- Infraestructura
- Práctica: TeleTaxi
- Práctica: Aspiradora autónoma
- Práctica: Aparcamiento automático
- Conclusiones

Introducción

- Robots de servicio
- Robots industriales
- Robots médicos
- Robots militares
- Robots en docencia

Introducción

JdeRobot-Academy

- Entorno docente de robótica universitaria orientado a la práctica.
- Inteligencia de los robots (no middleware).
- Prácticas de drones, coches, visión...
- Emplea Gazebo y Python.

Objetivos

Aumentar prácticas de JdeRobot-Academy

- TeleTaxi.
- Aspiradora autónoma.
- Aparcamiento automático.

Enunciado Infraestructura	•	Solución de referencia	
---------------------------	---	---------------------------	--

Infraestructura

- JdeRobot
- Gazebo
- OpenCV
- Python
- PyQt

Infraestructura

- Robot empleado: taxi_holo.
- Modelo de ciudad: cityLarge.
- Mundo Gazebo.

Componente académico

- GUI: visor de parámetros.
- API de sensores y actuadores.
- Código auxiliar

- Conoce el mapa.
- GPS.
- Destino fijado por el usuario.
- Planificación + pilotaje.

Solución de referencia: Planificación

- Generación campo ficticio de navegación global.
- Penalización por cercanía de obstáculos.
- Cálculo de ruta ideal.

Solución de referencia: Pilotaje

- Emplea información de la planificación.
- Estimar posición del robot.
- En cada iteración un objetivo.

Solución de referencia

https://www.youtube.com/watch?v=q6G6BHqljP4

Evaluador automático

Aspiradora autónoma ü Universidad Rey Juan Carlos

Infraestructura

- Robot empleado: Roomba:
 - Sensor láser.
 - Sensor bumper.
- Modelo de casa.
- Mundo de Gazebo.

Aspiradora autónoma universidad Rey Juan Ca

Componente académico

- GUI: visor de parámetros.
- API de sensores y actuadores.
- Código auxiliar.

Aspiradora autónoma un Universidad Rey Juan Carlos

- Objetivo: recorrer el mayor porcentaje de casa.
- El algoritmo sin autolocalización.
- Algoritmo de modelos 500, 600, 700 y 800 de Roomba.

Aspiradora autónoma Universidad Rey Juan Ca

- Estado 1: patrón espiral.
- Estado 2: Recorrer perímetro.
- Estado 3: Cruce de habitación.
- https://www.youtube.com/watch?v=pp4KmHGmPNs

Aspiradora autónoma ü Universidad Rey Juan Carlos

Aspiradora autónoma ü Universidad Rey Juan Carlos

Evaluador automático

Aparcamiento automático u Universidad Rey Juan Carlos

Infraestructura

- Robot: Taxi_Holo_Laser.
 - 3 sensores láser.
- Modelo de acera.
- Modelo: carNoMotor.
- Mundo de Gazebo.

Aparcamiento automático u Universidad Rey Juan Carlos

Componente académico

- GUI: visor gráfico de parámetros.
- API de sensores y actuadores.
- Código auxiliar.

Aparcamiento automático universidad Rey Juan Carlos

- Objetivo: encontrar plaza de aparcamiento y aparcar.
- Datos sensoriales.
- Orientación del taxi.
- Solución "ad hoc".

Aparcamiento automático universidad Rey Juan Car

- Estado 1: velocidad constante.
- Estado 2: Para.
- Estado 3: Giro atrás hacia derecha.
- Estado 4: Giro atrás hacia izquierda.
- Estado 5: Rectificación.
- https://www.youtube.com/watch?v=BpHSDrFqpVk

Aparcamiento automático universidad Rey Juan Carlos

Aparcamiento automático Universidad Rey Juan Carlos

Evaluador automático

Conclusiones

Conclusiones

- Objetivo cumplido: Ampliar y mejorar el conjunto de prácticas JdeRobot-Academy.
- "TeleTaxi".
- "Aspiradora autónoma"
- "Aparcamiento automático".

Enunciado	Infraestructura	Componente Académico	

Conclusiones

Trabajos futuros

- Uso de robots reales.
- "TeleTaxi": otras técnicas de planificación.
- "Aparcamiento automático": Planificación con OMPL.

Enlaces

Enlaces

- Mediawiki: http://jderobot.org/Vmartinezf-tfg
- Repositorio: https://github.com/RoboticsURJC-students/2016-tfg-vanessa-fernandez