NPDAs Accept Context-Free Languages

Theorem: 6641minginity 2 don

Context-Free
Languages
Accepted by
NPDAs

Proof - Step 1: (1)

```
Context-Free
Languages
Languages
(Grammars)

Languages
Accepted by
NPDAs
```

Convert any context-free grammar G to a NPDA M with: L(G) = L(M)

Proof - Step 2:

Context-Free
Languages
(Grammars)

Languages
Accepted by
NPDAs

MPDA -> Contex-free G

Convert any NPDA M to a context-free grammar G with: L(G) = L(M)

Deterministic PDA

DPDA

Deterministic PDA: DPDA

Allowed transitions:

monoridity
$$q_1$$
 q_2
 q_1 q_2
 q_3 state storph q_2

input storph q_3 monoridity usinosi state lun q_1
 q_1 $\lambda, b \to w$ q_2

(deterministic choices)

Allowed transitions:

Top stack on

(deterministic choices)

Not allowed:

$$\begin{array}{c} \lambda, b \rightarrow w_1 & q_2 \\ \hline q_1 & \\ a, b \rightarrow w_2 & \\ \hline q_3 & \end{array}$$

\$\hat{\theta}\$ → (non-deterministic choices)

DPDA example

$$L(M) = \{a^n b^n : n \ge 0\}$$

The language
$$L(M) = \{a^n b^n : n \ge 0\}$$

is deterministic context-free

Definition:

A language \underline{L} is deterministic context-free if there exists some DPDA that accepts it \widehat{n} is \widehat{n} and \widehat{n} and \widehat{n} in \widehat{n}

Example of Non-DPDA (NPDA)

$$L(M) = \{ww^R\}$$

$$\downarrow \text{19 to NPDA odition}$$

$$a, \lambda \to a \qquad a, a \to \lambda$$

$$b, \lambda \to b \qquad b, b \to \lambda$$

$$\uparrow \text{20 in Normal constraints}$$

$$\lambda, \lambda \to \lambda \qquad q_1 \qquad \lambda, \$ \to \$$$

Not allowed in DPDAs

NPDAS

สหรัฐภาพ มากาวกา Have More Power than

DPDAs

It holds that:

Deterministic
Context-Free
Languages
(DPDA)

Context-Free
Languages
NPDAs

Since every DPDA is also a NPDA

We will actually show:

We will show that there exists a context-free language L which is not accepted by any DPDA

The language is:

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

$$n \ge 0$$

We will show:

2 Step

 $\hat{\mathbb{U}} \cdot L$ is context-free

NPDA

NPDA

 $\textcircled{2} \cdot L$ is not deterministic context-free

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}\$$

Language L is context-free

Context-free grammar for L:

$$S o S_1 \mid S_2$$
 $\{a^nb^n\} \cup \{a^nb^{2n}\}$ $\{a^nb^{2n}\} \cup \{a^nb^{2n}\}$ $\{a^nb^{2n}\} \cup \{a^nb^{2n}\}$

Theorem:

The language
$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

is not deterministic context-free

(there is no DPDA that accepts $\,L\,$)

Agon of L dhorigh oppa

Proof: Assume for contradiction that

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}\$$

is deterministic context free

Therefore:

there is a DPDA $\,M\,$ that accepts $\,L\,$

DPDA
$$M$$
 with $L(M) = \{a^nb^n\} \cup \{a^nb^{2n}\}$

accepts $a^n b^n$

DPDA
$$M$$
 with $L(M) = \{a^nb^n\} \cup \{a^nb^{2n}\}$

Such a path exists because of the determinism

Fact 1: The language $\{a^nb^nc^n\}$ is not context-free

(we will prove this at a later class using pumping lemma for context-free languages)

ภาชาใกว กิศามที่ U กับ non CFL = non CFL

Fact 2: The language $L \cup \{a^nb^nc^n\}$ is not context-free

$$(L = \{a^n b^n\} \cup \{a^n b^{2n}\})$$

(we can prove this using pumping lemma for context-free languages)

We will construct a NPDA that accepts:

$$L \cup \{a^n b^n c^n\}$$

$$(L = \{a^n b^n\} \cup \{a^n b^{2n}\})$$

which is a contradiction!

The NPDA that accepts $L \cup \{a^nb^nc^n\}$

Connect final states of M'with final states of M

ดัวหัทบีมิโทษ สมมพิฐาหล่าตั้งไว้ อ่ง

Proof: Assume for contradiction that

 $L = \{a^n b^n\} \cup \{a^n b^{2n}\}$

is deterministic context free

CAD GAD L COPPOS C L CNP DAS

Since $L \cup \{a^nb^nc^n\}$ is accepted by a NPDA

it is context-free

Contradiction!

(since $L \cup \{a^n b^n c^n\}$ is not context-free)

Therefore:

Not deterministic context free

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}\$$

There is no DPDA that accepts

End of Proof

Supplementary proof: https://goo.gl/zoPKmY

สุปเปิดหหัวเดียล

Maioonson immissional linemonates

We will prove that:

"There is a language L that is in L(NPDA) but is not in L(DPDA)."

Next, we will show that "Lis not in L(DPDA)."

Proof by contradiction:

Assume for contradiction that \bigcirc Augustian L = $\{a^nb^n\}\cup\{a^nb^{2n}\}$ is in L(DPDA).

This DPDA M exists because of our assumption.

If we can construct NPDA that accepts the above language, we will reach a contradiction.

We construct NPDA from M to accept L.

This NPDA accepts the non-CFL $\{a^nb^n\}\cup\{a^nb^{2n}\}\cup\{a^nb^nc^n\}$. Contradiction !!! Our assumption is wrong. Therefore, L is not in L(DPDA).

Therefore, $L \in L(NPDA)$.