Báo Cáo Kết Quả Thực Nghiệm

1.1 Dụng cụ

• Loại detector sử dụng: Geiger-Müller

• Cao thế: 900 (Volt), thời gian đo: 60 giây

• Kích thước tinh thể nhấp nháy: 3,31 (cm)

• Loại nguồn sử dụng

1. Nguồn yếu: Co-60, hoạt độ: 1 μ Ci

2. Nguồn mạnh: Eu-152, hoạt độ: 1 μ Ci

• Khoảng cách giữa detector và nguồn: 4,2 (cm)

1.2 Bảng số liệu

Bảng số liệu số đếm (số đếm/s)

\mathbf{STT}	$m_{ m p}$	m_1	m_2	m ₁₂	n_1	n_2	n ₁₂
1	0,5167	2,3333	6,2000	9,1833	2,3771	6,5191	9,9013
2	0,6667	2,6333	7,2333	8,6833	2,6893	7,6715	9,3225
3	0,6833	2,5167	7,2000	8,5833	2,5677	7,6340	9,2074
4	0,4000	2,3833	8,5833	8,6167	2,4290	9,2074	9,2457
5	0,7000	2,7833	7,2333	9,2167	2,8459	7,6715	9,9401
6	$0,\!4167$	2,2167	7,2000	8,5500	2,2562	7,6340	9,1690
7	$0,\!5167$	2,2333	7,7333	8,5333	2,2734	8,2363	9,1498
8	0,5000	2,3500	6,7667	9,1833	2,3944	7,1486	9,9013
9	$0,\!5500$	2,2333	$6,\!5167$	8,8500	2,2734	6,8702	9,5149
10	$0,\!4667$	2,5667	$6,\!5167$	8,7167	2,6198	6,8702	9,3610
Trung bình	0,5417	2,4250	7,1183	8,8117	2,4726	7,5463	9,4713
Sai số	0,7360	1,5572	2,6680	2,9684	1,5725	2,7470	3,0775

1.3 Thời gian chết

Ta có thời gian chết

$$\tau = \frac{x\left(1 - \sqrt{1 - z}\right)}{y} \tag{1}$$

Trong đó:

$$x = m_1 m_2 - m_p m_{12}$$

$$y = m_1 m_2 (m_{12} + m_p) - m_p m_{12} (m_1 + m_2)$$

$$z = \frac{y(m_1 + m_2 - m_{12} - m_p)}{r^2}$$

Áp dụng, ta có:

$$x = 2,4250 \times 7,1183 - 0,5417 \times 8,8117 = 12,4886$$

$$y = 2,4250 \times 7,1183(8,8117 + 0,5417) - 0,5417 \times 8,8117(2,4250 + 7,1183)$$

$$= 115,9042$$

$$z = \frac{115,9042(2,4250 + 7,1183 - 8,8117 - 0,5417)}{12,4886^2} = 0,1411$$

Thế vào công thức (1), ta có:

$$\tau = \frac{12,4886(1 - \sqrt{1 - 0,1411})}{115,9042} = 0,0079~(s)$$

1.4 Hiệu suất ghi

Ta có công thức tính hiệu suất ghi

$$F_e = \frac{n}{A \times G \times v} \tag{2}$$

Trong đó:

 $n=\bar{n}_1$: Tốc độ đếm nguồn Co-60

A: Cường độ nguồn

G: Hệ số hình học

 υ : số lượng tử suất hiện trong mỗi phân rã

Ta có hệ số hình học G:

$$G = \frac{1 - \frac{a}{\sqrt{a^2 + r^2}}}{2} = \frac{1 - \frac{4,2}{\sqrt{4,2^2 + (3,31/2)^2}}}{2} = 0,0348$$

Với: n=2,4726 (số đếm/s); $A=3,7\times 10^4$ (pr/s); $\upsilon=2$ Từ đây ta có hiệu suất ghi ở công thức (2)

$$F_e = \frac{2,4726}{3,7 \times 10^4 \times 0,0348 \times 2} \times 100\% = 0,0960 (\%)$$