OPRACOWANIE ZAGADNIEŃ NA EGZAMIN DYPLOMOWY

spis treści

- 1 Zagadnienia obejmujące podstawowe treści programowe kierunku studiów Fizyka Techniczna do egzaminu dyplomowego na studiach II stopnia
 - Ruch w mechanice newtonowskiej i relatywistycznej 1
 - Zasady zachowania i symetrie w fizyce
 - Klasyczny i kwantowy oscylator harmoniczny
- Specjalność: Eksploracja Danych i Modelowanie Interdyscyplinar-3
- zagadnienia obejmujące podstawowe treści programowe kierunku studiów fizyka techniczna do egzaminu dyplomowego na studiach ii stopnia
- 1.1 Ruch w mechanice newtonowskiej i relatywistycznej

1 Zasada dynamiki Newtona:

I zasada dynamiki Newtona zakłada istnienie inercjalnego układu odniesienia. Układ inercjalny to taki, w którym cząstka nie podlegająca oddziaływaniu z otoczeniem, spoczywa lub porusza się po prostej ze stałą predkościa (układy inercjalne poruszają się ruchem jednostajnym lub spoczywają względem siebie).

2 Zasada dynamiki Newtona:

W inercjalnym układzie odniesienia jeśli siły działające na ciało nie rownoważą się $(\vec{F_w} \neq 0)$ to ciało porusza się z przyśpieszeniem wprost proporcjonalnym do siły wypadkowej, a odwrotnie proporcjonalnym do masy ciała:

$$\vec{F}_w = \frac{d\vec{p}}{dt} = \frac{d}{dt}(m\vec{v}) = m\frac{d\vec{v}}{dt} = m\vec{a}$$

 $\vec{a} = \frac{1}{m} * \vec{F_w}$ $\vec{F_w} = \frac{d\vec{p}}{dt} = \frac{d}{dt}(m\vec{v}) = m\frac{d\vec{v}}{dt} = m\vec{a}$ Pierwsza zasada dynamiki Newtona jest szczególnym przypadkiem drugiej zasady dynamiki Newtona (gdy $\vec{F_w} = 0$).

3 Zasada dynamiki Newtona:

Oddziaływania ciał są zawsze wzajemne. Jeżeli ciało A działa na ciało B siła \vec{F} (akcja), to ciało B działa na ciało A siłą o takiej samej wartości i kierunku, lecz przeciwnym zwrocie (reakcja).

Szczególna teoria względności

1 postulat:

We wszystkich układach inercjalnych prawa fizyki są jednakowe (zasada względności).

2 postulat:

Dla wszystkich obserwatorów inercjalnych prędkość światła w próżni (c) jest taka sama i nie zależy od prędkości źródła światła.

Te postualaty Einsteina prowadza do tranformacji Lorentza:

Rozważmy układ K oraz układ K' poruszający się względem K z predkością v_x wzdłuż osi OX (dla t = t' = 0 początki układów współrzednych 0_K i $0_{K'}$ pokrywają się), wtedy:

pokrywają się), wtedy:
$$t' = \gamma(\mathbf{t} - \frac{v_x x}{c^2}), \ \gamma = \frac{1}{\sqrt{1 - \frac{v_x^2}{c^2}}}$$
$$x' = \gamma(x - v_x t), \ \mathbf{y'=y}, \ \mathbf{z'=z}$$

Konsekwencje szczególnej teorii względności:

- Względność jednoczesności dwa zdarzenia określone przez jednego obserwatora jako jednoczesne, mogą nie być jednoczesne dla innego obserwatora.
- Dylatacja czasu czas, jaki mija pomiędzy dwoma zdarzeniami, nie jest jednoznacznie określony, lecz zależy od ruchu obserwatora (paradoks bliźniąt).
- Relatywistyczne składanie prędkości.
- Masa jest równoważna energii $E = mc^2$.
- Ciała bezmasowe poruszają się z prędkością c, dla ciał z niezerową masą niemożliwe jest osiągnięcie prędkości c.
- Skrócenie Lorentza.

1.2 Zasady zachowania i symetrie w fizyce

Jeśli układ posiada pewną symetrię, oznacza to, że równania opisujące ten układ nie zmieniają swojej postaci po dokonaniu przekształceń symetrii.

<u>Dyskretne przekształcenia symetrii</u> to takie, których nie można sparametryzować np.

- Teoria grup i symetrii translacyjnej dla sieci periodycznej w kryształach.
- Symetria permutacyjna funkcji falowej dla układu wielu ciał związana z nierozróżnialnością cząstek elementarnych (zamiana miejscami cząstek układu nie zmiłaby równań opisujących układ).
- Symetria zwierciadlana P związana z przekształceniem odbicia przestrzennego (zmiana znaków składowych przestrzennych wektorów na przeciwne).
- Odwracalność w czasie T (zmiana znaku czasu w równaniach).
- Parzystość ładunkowa C (zmiana znaku ładunku).

Elektromagnetyzm, grawitacja i oddziaływania silne są niezmiennicze względem każdej z ostatnich trzech wymienionych symetrii (CPT) osobno, jednakże w przypadku oddziaływań słabych niezmienniczość jest zachowana tylko w przypadku łącznego ich działania CPT (rozpad β łamie symetrie P i C, ale zachowuje połączoną symetrie CP, która dla odmiany jest łamana w przypadku rozpadu mezonów K).

Symetrie związane z ciągłymi przekształceniami są bezpośrednio związane z istnieniem zasad zachowania - związek ten opisuje twierdzenie Noether. Zgodnie z tym twierdzeniem, z daną symetrią układu jest związanych tyle praw zachowania, ile ciągłych rzeczywistych parametrów potrzebnych jest do sparametryzowania odpowiadających tej symetrii przekształceń np.

- Zasada zachowania energii wynika z symetrii związanej z przesunięciem w czasie niezmienniczości działania S opisującego ruch danego układu od czasu (t parametr). Jeżeli układ absorbuje lub emituje energie, wówcząs to działanie jest funkcją czasu (t) odpowiada to w konsekwencji zmianie energii układu.
- Zasada zachowania pędu wynika z symetrii związanej z przesunięciem układu w przestrzeni.
- Zasada zachowania momentu pędu wynika z z symetrii związanej z obrotem układu.
- Zasada zachowania ładunku wyniki z niezmienniczości funkcji falowej elektronu względem transformacji cechowania.
- 1.3 Klasyczny i kwantowy oscylator harmoniczny

Lalala

 $2 \;\;$ specjalność: eksploracja danych i modelowanie interdyscyplinarne