BEST AVAILABLE COPY

ZECZPOSPOLITA **POLSKA**

PATENTOWY RP

OPIS PATENTOWY 151 315

Patent dodatkowy do patentu nr -

Zgłoszono: 67 04 17

/P. 265243 /

Pierwszeństwo ----

Int. Cl.5 C07F 9/09 C11D 1/34

Zgłoszenie ogłoszono: 88 11 10

Opis patentowy opublikowano: 1991 02 28

Twórcy wynalezku: Alojzy Kłopotek, Beata Barbara Kłopotek

' Uprawniony z patentu: Instytut Chemii Przemysłowej, Warszawe /Polska/

SPOSÓB WYTWARZANIA NOWYCH ZWIĄZKÓW POWIERZCHNIOWO CZYNNYCH

Przedmiotem wynalazku jest sposób wytwarzania nowych związków powierzchniowo czynnych o wzorze ogólnya [R/CH2CHOHCH2O/ $_n$ J_k PO/OH $_{3-k}$, w którya k = 1 - 2, n = 1 - 100, M stanowi atom wodoru, atom atomu alkalicznego, grupę amonowę, kation mono-, di- lub trietanolomminy, netomiest R oznacza R_1 -O-, gdzie R_1 stenowi alkil C_1 - C_{36} , hydrokayalkil C_8 - C_{36} , alkiloeryl 6 8 do 42 stomach wegls, lub R_2 = 0 = $/C_mH_{2m}D/_z$ =, gdzie z = 1 = 50, m = 2 = 4, m R_2 stanowi slkil C_1 - C_{24} lub hydroksyslkil C_1 - C_{24} lub slkilosryl o 7 - 42 stomach wegle, lub $R_2 = 0 - /c_2H_4O/_{\Gamma} - /c_3H_6O/_{p}$, gdzie r = 1 - 30, p = 1 - 40, a R_2 me wyżej podene znaczenie, lub R3 - NH - , gdzie R3 stanowi alkil C_4 - C_{36} lub hydrokevelkil C_4 - C_{36} , lub R3- N =, gdzie R_3 as wyżej podene znaczenie, lub R_3 - NH - $/C_8H_{28}O/_2$ -, gdzie R_3 , z, m, seję wyżej podene znaczenie, lub $R_3 - N \left[/ c_B H_{2B} O /_x - J_2$, gdzie x = 1 - 25. a R_3 , m maję wyżej podane znaczenie, lub R-COO- lub R3-CONH - lub R3 - CON = lub R3 - CONHCH2CH2O - lub R3-CONH/C2H4O/z - lub R3 -CON /CH₂CH₂O-/₂ lub R₃-CON $\mathcal{L}/\mathcal{C}_2$ H₄O/_x - \mathcal{J}_2 , gdzie R₃, x, z esję wyżej podene znaczenia. Zwięzki według wynalazku nie były dotychczas znane.

Z opisu petentowego nr 3 609 491 Republiki Federalnej Niemiec znane są związki o wzorze ogólnym $CH_2 = C/R_1/CO_2CH_2CH/OH/CH_2OPO/OR/O-H+, gdzie R = el%il lub fluoroslkil, <math>R_1 = H_1CH_2$ H = H, metal alkaliczny, grupa sacnowa, alkilosmina lub eól elkanolosminy. Przykładowy sposób otrzymywania tych związków przedstawia się następujęco: na 700 g monofosforanu dodecylowego dzieżeno NeOK, aby otrzymać sól jednosodowę, na którę następnie dzieżeno 535 g metakrylenu glicydolu w temperaturze około 70° C w cięgu 20 godzin. Otrzymano 178 g zwięzku o wyżej podanym wzorze, w którym M = Ne, R = dodecyl, R_1 = CH_3 . Zwięzek ten poddano fotopolimeryzacji w wodzie, używając jako inicjatora eteru benzoinoizobutylowego. Otrzymany polimer wykazuje słabe własności powierzchniowo czynne.

Związki o wzorze ogólnym $R_1R_2NCR / P/O / OH_2 J_2$, gdzie R=H, metyl, etyl, fenyl, CH_2CH_2OH lub CH_2CO_2H , $R_1=H$, metyl, $/CH_2/_1$ OH, $C_3H_7O_2$ lub $C_3H_5O_3$, $R_2=/CH_2/_1OH$, znane są z holenderskiego opisu patentowego nr 7 602 477. Przykładowy spoeób otrzymywania tych związków jest następujący: na związak o wzorze $H_2NCH / P/O / /OH_2 J_2$ dzisłano tlenkiem etylenu w obecności NaOH i otrzymano związak o wyżej podanym wzorze ogólnym, w którym R=H, $R_1=H$ lub CH_2CH_2OH , $R_2=CH_2CH_2OH$. Otrzymany produkt reskcji wykazuje własności kompleksujące, lecz nie wykazuje własności piorących i myjących. Ze wzglądu na swoją budową i własności nie może być zaliczony do związków powierzchniowo czynnych.

Z opisu patentowego nr 49 222 Europejskiego Urzędu Patentowego znane są zwięzki chemiczne o wzorze ogólnym [/RO/2P/S/SCH2CH/OH/CH2Z]nQ, w którym R stanowi węglowodorowy rcdnik aromatyczny lub alifatyczny C₁-C₂₂, który może być także podstawiony grupę hydroksylową lub chlorowcem, względnie przerywany mostkami O lub S, Z oznacza O₂C.O lub /OCHR₄CH₂/m, gdzie R₁ = H lub CH₃, m = O = 30, n = 2 = 4 w zależności od wartościowości Q, natomiast Q oznacza dwu-, trój-, lub czterowartościowy rodnik eromatyczny, aromatyczno-alifatyczny lub alifatyczny, który może być także podstawiony grupą hydroksylową, chlorowcem lub grupą metylową, względnie przerywany mostkami S, O lub NH, natomiast Q może stanowić = PO lub = PS, względnie dwuwartościowy rodnik haterocykliczny zawierający N. Należący do tej grupy związak o wzorze [/C₄H₉CH/C₂H₅/CH₂O/₂P/S/SCH₂CH/OH/CH₂OCH₂J₃= CC₂H₅, otrzymuje się przez działanie na związak o wzorze C₄H₉CH/C₂H₅/CH₂OJ₂P/S/SCH₂CH/OH/CH₂OCH₂J₃= CC₂H₅, otrzymuje się przez działanie na związak o wzorze C₄H₉CH/C₂H₅/CH₂OJ₂P/S/SCH₂CH/OH/CH₂OCH₂J₃= CC₂H₅, otrzymuje się przez działanie na związak o wzorze CH₂ - CHCH₂OCH₂J₃ CC₂H₅ w temperaturze 60°C w czasie dłuższym od 1,5 godziny. Następnie masą reakcyjnę miesza się jeszcze w temperaturze 60 – 90°C przez 2 godziny. Otrzymany w ten sposób związak może być stosowany jeko dodatek do olejów emerowych.

Sposób wytwarzania według wynalazku nowych związków powierzchniowo czynnych o wzorze ogólnym $\left[R/\text{CH}_2\text{CHOHCH}_2\text{D}\right]_n J_k$ PO/OM/3-k, w którym k = 1 - 2, n = 1-100, M stanowi atom wodoru, atom metalu alkalicznego, grupę amonowę, kation mono-, di- lub trietanolosminy, natomiast R oznacza R_1 - O -, gdzie R_1 stanowi alkil C_1 - C_{36} , hydroksyalkil C_8 - C_{36} , alkilosryl o 8 - 42 etomach wegla, lub $R_2 = 0 = /C_BH_{2B}O/z = 0$, gdzie z = 1 = 50, m = 2 = 4, a R_2 stanowi alkil $C_1 = 0$ C_{24} lub hydroksyalkil C_1 - 24 lub alkiloaryl o 7 - 42 atomach wegla, lub R_2 -0-/ C_2 H₄0/ $_T$ - $/c_3H_6O/_p$ -, gdzie r = 1 - 30, p = 1 - 40, a R_2 ma wyżej podane znaczenie, lub R_3 - NH -, gdzie R_3 stanowi alkil C_4 - C_{36} lub hydrokeyalkil C_4 - C_{36} , lub R_3 - N », gdzie R_3 me wyżej podane znaczenie, lub R_3 - NH - $/C_m H_{Zm} O/z^-$, gdzie R_3 , z, m mają wyżej podane znaczenie, lub R_3 - N $[/c_{\rm B}H_{\rm 2B}O/_{\rm X}J_{\rm 2}]$, gdzie x = 1 - 25, a R₃, m, mają wyżej podane znaczenie, lub R₃ - COO - lub R_3 - CONH - 1ub R_3 - CON = 1ub R_3 - CONHCH₂CH₂O - 1ub R_3 - CONH/C₂H₄O/₂ - 1ub R_3 CON/CH₂CH₂O/₂ lub R_3 - CON [/C₂H₄O/_x- J_2 , gdzie R_3 , x, z maję wyżej podane znaczenie, polega na tym, że w środowisku bezwodnym i bez rozpuszczalnika organicznego lub w obojętnym rozpuszczalniku organicznym na związki o wzorze ogólnym RH_k , gdzie R , k mają wyżej podane znaczenie, działa się w obecności lub bez obecności katalizatora 2,3-epoksypropanolem-1, następnie P_2O_5 lub P_2O_5 rozpuszczonym w H_3PO_4 , a otrzymane estry kwasu fosforowego nie zobojętnia się lub neutralizuje się wodorotlenkiem metalu alkalicznego lub amonu, względnie mono-, di-lub trietanoloaminę. Jako katalizatory eteryfikacji, estryfikacji i poliaddycji glicydolu stosuje się kwasy lub zasady lub sole metali, natomiast jako katalizatory estryfikacji pięciotlenkiem fosforu w stanie wolnym lub rozpuszczonym w kwasie fosforowym stosuje się kwasy organiczne i nieorganiczne oraz monosikilofosforany. Jako rozpuszczalników obojętnych używa mię benzenu i jego pochodnych, węglowodorów alifatycznych o temperaturach wrzenie 363 - 423 K, ketonów i estrów.

Otrzymane według wynalezku nowe zwięzki powierzchniowo czynne ulegaje w roztworach wodnych dysocjacji na aniony hydrofobowo-hydrofilowe, decydujące o ich aktywności powierzchnio-wej i dlatego zwięzki te należę do grupy anionowych zwięzków powierzchniowo czynnych. Ich własności fizykochemiczne i użytkowe zależę od ich budowy chemicznej, a szczególnie od wzajemnego stosunku reszty hydrofobowej do grup hydrofilowych, tj. od współczynnika HLB. Zwięzki według wynalezku w roztworach wodnych silnie obniżaję napięcie powierzchniowe na granicy

151 315

granicy fazy stałej i ciekłej oraz na granicy trzech faz dając niskie wartości kąte granicznego, a więc berdzo dobrą zwilżalność cieł stałych. Związki wadług wynalazku charakteryzuję
się dobrysi własnościemi pioręcymi, myjącymi, kompleksującymi w stosunku do jonów metali
wywożujących tzw. twardości wody, inhibitującymi korozję, antyelektrostatycznymi, zmiękczającymi, emulgującymi, dyspergującymi, stabilizującymi w odniesieniu do nadtlenku wodoru,
ochronnymi i innymi.

Nowe zwięzki powierzchniowo czynne według wynalszku mogę być stosowane pojedyńczo lub w kompozycji z innymi substancjemi jako środki pioręce, myjęce, zwilżające, inhibitory korozji, sekwestranty, zmiękczecze wody i wyrobów włókienniczych, antyslektrostatyki, emulgatory, dyspergatory i wielofunkcyjne dodatki do innych środków, gdzie istotnę rolę odgrywają ich własności fizykochemiczne i cechy użytkowe.

Przedmiot wynalazku przedstawiono w poniższych przykładach wykonania.

Przykład I. Do reaktora kwasoodpornego wyposażonego w aieszedło mechaniczne, elementy grzewczo-chłodnicze, termometr, dozownik, chłodnicę zwrotnę i bełkotkę doprowadzające gaz obojętny /N₂ lub CO₂/ wprowadza się 3 mole dokozanolu - 1. Zewartość reaktora w obecności szotu ogrzewa się do temperatury 358 - 363 K i mieszejęc dozuje się do niego w czasie 2 godzin 6 moli 2,3-epoksypropanolu-i, utrzymujęc temperaturę egzotermicznej reakcji w granicach nie-przekraczających 373 K. Po zakończeniu dozowania 2,3-epoksypropanolu-i /glicydolu/ zawartość reaktora miesza się jeszcze przez jedną godzinę, a następnie dozuje do niego w temperaturze 368 - 373 K i mol pięciotlenku fosforu, z takę szybkościę, aby kolejna porcja była wprowadzona dopiero po dokładnym wymieszeniu poprzedniej oraz aby temperatura reakcji nie przekraczała 393 K, co trwa około i godziny.

Po wprowedzeniu cełej ilości P_2O_8 , przy włączonym mieszadle i przepływie azotu, proces syntezy estru kwesu fosforowego w temperaturze 373 – 383 K prowedzi się jeszcze przez 4 godziny. Po upływie tego czesu zawartość resktore chłodzi się do temperatury niższej od 323 K i dozuje stopniowo 3 mole NaOH w formie 45% wodnego roztworu. W wyniku przeprowadzonego procesu syntezy otrzymuje się z wydajnością ponad 96% i mol soli sodowej monoestru kwasu fosforowego o wzorze $C_{22}H_{45}O$. $/CH_2CHOHCH_2O/_3$ PO $/ONa/_2$ i 1 mol soli sodowej diestru kwasu fosforowego o wzorze $/C_{22}H_{45}O$. $/CH_2CHOHCH_2O/_3$ PO $/ONa/_2$ i 2 mol soli sodowej diestru kwasu fosforowego o wzorze

Otrzymana mieszanina związków bez rozdzielenia może być stosowana jako składnik środków piorących, myjących, czyszczących, antyelektrostatycznych, zmiękczejących, inhibitorów korozji i innych.

Przykład II. Do resktora ze stali kwasoodpornej zaopatrzonego w element grzewczo-chłodniczy, termometr, mieszadło mechaniczna i bałkotkę doprowadzającą gaz obojętny /CO₂ lub N₂/ wprowadza się 6 moli nonylofenolu. Mieszając zawartość reaktora w obecności dwutlenku węgla ogrzewa się do temperatury 343 K i dozuje do niego w czasie 1,5 godziny 6 moli 2,3-epoksypropanolu-i. Temperaturę egzotermicznej reakcji utrzymuje się w granicach 353 - 363 K przez odpowiednią szybkość dozowania glicydolu i pośradnie chłodzenie zawartości reaktore wodę. W przypadku naglego wzrostu temperatury do ponad 373 K do reaktora wprowadza się bezpośrednio niewielką ilość wody, która hamuje lub zatrzymuje proces eteryfikacji nonylofenolu na drodze zamiany 2,3-epoksypropenolu i na propano-1,2,3-triol. Fo wprowadzeniu całaj ilości glicydolu proces eteryfikacji prowadzi się jeszcze przez 2,5 godziny. Następnie mieszając zawartość resktora za pomocą mieszadła mechanicznego oraz bełkotki z dwutlenkiem węgla wprowadza się O,1 mole kwasu p-toluenosulfonowego i P_2O_5 rozpuszczony w 85% wodnym roztworze H_3PO_4 w takiej iloáci, która daje 2 mole kwasu trójpolifosforowego $/P_2O_5$ + H_3PO_4 + H_2O = $H_6P_3O_{10}/$. Proces estryfikacji prowedzi się w temperaturze 373 – 383 K przez 5 godzin. Regulację temperatury prowadzi się przez odpowiednie chłodzenie resktora. Otrzymany z wydajnoście ponad 95% monoester kweeu fosforowego i eteru nonylofenyloglicerynowego o wzorze $C_9^{\rm H}{}_{19}$ - $C_6^{\rm H}{}_4$ - 0 - $C_6^{\rm H}{}_2^{\rm CHOHCH}{}_2^{\rm OPO}$ /OH/2 może być stosowany jeko podstawowy składnik kwaśnych środków pioręcych, środków do usuwania kamienia wodnego, mlecznego i moczowego w instalacjach oraz urzędzeniach przemysłowych, komunalnych i w gospodarstwach domowych, gdyż wykazuje jednocześnie własności myjące, kompleksujące, inhibitujące, zwilżające i penetrujące, w wyniku czego następuje rozpuszczenie różnego typu osadów w postaci tzw. kamieni.

Przykład III. Do reaktora ze stali kwasoodpornej zaopatrzonego w mieszadło mechaniczne, element grzewczy, pławzcz chłodniczy, bełkotkę doprowadzającę gaz obojętny, termometr, dozownik i chłodnicę zwrotną wprowadza się 9 moli oksyctylerowanego i oksypropylanowanego nonylofanolu o średniej masie częsteczkowej odpowiadającej wzorowi $c_9H_{19} - c_6H_4 - 0 - /c_2H_4O/8 - /c_3H_6O/7 - H.$ w obecności obojętnego gazu zawartość reaktora miesza się i ogrzewa do temperatury 323 K. Następnie w czasie 2 godzin do reaktore wkrapla się 18 moli 2,3-spoksypropanolu-i utrzymując przez odpowiednią szybkość dozowania i chłodzenie reaktora temperaturę egzotermicznej reakcji eteryfikacji i poliaddycji w granicach nie przekraczających 368 K. Po wprowadzeniu całej ilości glicydolu proces prowadzi się jeszcze w tej samej temperaturze przez 2 godziny, a następnie wprowadza się do reaktora stopniowo pięciotlanek fosforu rozpuszczony w 85 % kwasie ortofosforowym w ilości odpowiadającej 3 molom kwasu trójpolifosforowego. Temperaturę egzotermicznej reakcji estryfikacji prowadzi się w granicach nie przekraczających 403 K w obecności dwutlenku węgla przez 4,5 godziny. Z kolei zawertość reektora chłodzi się do temperatury 313 - 323 K i dodaje 9 moli trietanoloaminy. Z wydajnością ponad 98% otrzymuje się sól trietanolomninową monoestru kwasu fosforowago i poliglicydolopolioksypropylenopolioksystyleno-nonylofenolu o średniej masie częsteczkowej odpowiadającej wzorowi C9H19-C6H4-0-/C2H4O/8-/C3H6O/7-/CH2CHOHCH2O/2-PO/OH/2N/CH2CH2OH/3.

Otrzymany produkt wykazuje bardzo dobre własności zwilzające, antyslektrostatyczne, zmiękczające wodą i wyroby włókiennicze, antykorozyjne i ochronne na skórę. Moze być stosowany jako cenny składnik ciekłych środków piorących, myjących, antyelektrostatycznych, zwilżających, środków do usuwania kamienia wodnego i mlecznego, środków do czyszczenia dywanów, dywanowych wykładzin podłogowych i obić tapicarskich.

Przykład IV. Do reaktora kwasodpornego wyposazonego w mieszadło mechaniczne, element grzewczy, płaszcz chłodniczy, termomatr, dozownik, chłodnicą zwrotną i bełkotkę doprowadzającą gaz obojętny / co_2 lub N_2 / wprowadza się 6 moli heksatriakontanoaminy i 30 moli toluenu z zdyspargowaną w nim O,1 mola KOH. Zawartość reaktora miesza się za pomocą mieszadła mechanicznego i bełkotki z dwutlenkiem węgla oraz ogrzewa do temperatury 313 K. Następnie wkrapia się stopniowo w czasie 2 godzin 90 moli 2,3-epoksypropanulu-1. Temperaturę egzotermicznej reakcji utrzynuje się w granicach 358 – 363 K przez odporiednią szybkość dozowania glicydolu oraz intensywność chłodzenia reaktora. Po wkropleniu całej ilości glicydolu masę reakcyjną miesza się jeszcze przez 1,5 godziny i wprowadza stopniowo w czesie 2 godzin 2 mole P_2O_5 zdyspergowanego w 10 molecn toluenu oraz 0,2 mole soli sodowej fosforanu monooktadecylowego. Zawartość reaktora w obecności gezu obojętnego miesza się jeszcze przez 4 godziny w temperaturze nie przekraczającej 368 K. Z kolei zawartość reaktora chłodzi się do temperatury 308 - 318 K i w tej temperaturza zobojętnia za pomocą zdyspargowanago w toluania KOH do pH + 7. Z otrzymanego produktu odpędza się pod zmniejszonym ciśnieniem rozpuszczalnik - toluen. Z wydajnością ponad 97% otrzymuje się produkt będący mieszaniną soli potasowych mono- oraz diestrów kwasu fogforowego i poliglicydolowych pochodnych heksatriakontanoaminy. Produkt może być stosowany bezpośrednio lub w kompozycji z innymi substancjami jako wielofunkcyjny składnik środków pioręcych, pomocniczych do prania, myjących, czyszczących, saulgujących, dyspargujących i antykorozyjnych.

Przykład V. Do reaktora ze stali kwasodpornej zaopatrzonego w mieszadłu mechaniczne, element grzewczy, płaszcz chłodniczy, termometr, dozownik, chłodnicę zwrotnę i bełkotkę doprowadzającą gaz obojętny /N2 lub CO2/ wprowadza się 3 mole kwasu rycynowego o wzorza CH2/CH2/6CHOHCH2CH = CH/CH2/6COH. Mieszając zawartość reaktora ogrzewa się w atmosferza gazu ebojętnego do temperatury 313 K i w czesia 3 godzin dozuje się 210 moli 2,3-epoksyprepanolu = 1. Temperaturę egzotermicznej reakcji utrzymuje się w granicech 343 = 353 K przez odpowiednię szybkość dozowania glicydolu i efektywność chłodzenia. Po wprowadzaniu całej ilości glicydolu proces syntezy prowadzi się jeszcze przez 0,5 godziny, a następnie wprowadza się do reaktora pięciotlenek fosforu rozpuszczony w kwasie fosforowym w ilości odpowiadającej i molowi kwasu trójpolifosforowego oraz 0,1 mola kwasu p-toluenosulfonowego. Proces katalitycznej estryfikacji prowadzi się w temperaturze 353 = 363 K w stmosferze gazu obojętnego przez 4 godziny, Mastępnie zawartość reaktora chłodzi się do temporatury 308 = 318 K i zobojętnia za

posoce 20% wodnego roztworu Mil4OH do pH = 7,0 = 8,0.

Otrzymany z wydajnością ponad 99% produkt może być bez oczyszczenia stosowany jako składnik środków pioręcych, myjących i czyszczących.

Przykłed VI. Do reaktore kwesoodpornego wyposażonego w mieszadło mechaniczne, element grzewczy, płaszcz chłodniczy, termometr, dozownik, chłodnicą zwrotną i bełkotką doprowadzającą gez obojętny /CO₂ lub N₂/ wprowadza się 1 mol amidu kwasu etearynowego o wzorze CH₂/CH₂/₁₆ CONH₂ oraz 500 g banzyny lakowej i zdyspergowenej w niej 10 g NaOH. Zawartość reaktora miesza mię w obecności gazu obojętnego i stopniowo wprowadza 1 mol 2,3-epokaypropanolu-1, utrzymując temperaturą egzotermicznej reakcji w granicach nie przekraczających 363 K. Po zakończeniu dozowania glicydolu, zawartość reaktora miesza się jeszcze przez 2 godziny, m następnie dodaje P₂O₅ rozpuszczony w kwasie fosforowym w ilości odpowiadającej 1 molowi H₈P₃O₁₀. Proces estryfikacji prowadzi się przez 3 godziny w temperaturze nie przekraczającej 373 K. Następnie zawartość reaktora chłodzi się do temperatury niższej od 323 K i zobojętnia otrzymany monoester kwasu ortofosforowego 4 molami monoestanolominy. Następnie pod zmniejszonym ciśnieniem odpędza się rozpuszczalnik organiczny. W wyniku przeprowadzonego trójstadiowego procesu syntezy otrzymuje się z wydajnościę poned 97% anionowy związek powierzchniowo czynny o średnim ciężarze częsteczkowym odpowiadającym wzorowi CH₃/CH₂/₁₆CONHCH₂CHCHCH₂O-PO/CHH₃CH₂CH₂OH/₂.

Otrzymany produkt wykazuje dobre własności ochronne względem skóry ludzkiej, w stosunku do materiałów konstrukcyjnych mytych i czyszczonych powierzchni oraz wysoką zdolność do obniżania oporności właściwaj pranych w nim wyrobów z włókien syntatycznych i mieszanin.

VII. Do reektora ze stali kwasoodpornej zaopatrznnego w mieszadło Przykład mechaniczne, element grzewczy, płaszcz chłodniczy, termometr, dozownik, chłodnicę zwrotnę i bełkotką doprowadzającą gaz obojętny $/\text{CO}_2$ lub $\text{N}_2/\text{ wprowadza się 700 kg monoetanolosmidów kwatów$ oleju kukosowego - bezwodnych lub o zawertości wody mniejszej od 0,4% weg. i 10 kg kwasu fosforowego. Mieszając zawartość reaktore podgrzewa się do temperatury 313 K w checności gazu obojętnego i vkrapla w czasie 2 godzin 300 kg 2,3-epokaypropanolu-1. Temperaturę eczotermicznej rankcji utrzymuje się w granicach 348 - 358 K przez odpowiednią szybkość dozowania glicydolu 1 efektywne chłodzenie reaktora. Po wkropleniu całej ilości glicydolu, zawartość reaktora w atmosfe-ze azotu miesza się jeszcze przez 2 godziny, a następnie w tej samej temperaturze wprowadza się pięciotlanak forforu rozpuszczony w kwasie fosforowym w ilości odpowiadającej 260 kg M.P.O. Proces estryfilacji prowadzi się przez 4 godziny, a następnie zawartość reaktora chłodzi się do temperatury miższej od 323 K i zobojętnia masę poreakcyjnę 40% wodnym roztworms NaOH do pH = 8 = 9. lączna wydajność procesu syntezy anio-lowych związków powiarzchniowo czynnych, wyliczona z bilansu masowago oraz oznaczenia liczby hydroksylowej, grup epoksydowych i liczby kwasowej wynosi ponad 96%. Produkt stanowi mieszaninę związków chemicznych odpowiadających w przybliżeniu ogólnemu wzorowi RCONH - CH₂CH₂O - /CH₂CHOHCH₂O/₂ - PO /DNa/₂, gdzie R stanowi rodnik węglowodoromy kwasów oleju kołosowago.

Produkt bez oczys:czenie może być stosowany pojedyńczo lub w kompozycji z innymi substercjani jako środek pioręcy, myjący, antyelektrostatyczny, antykorozyjny, ochronny, zmięk-czający wodę i tkaniny.

Zestrzezenii patentowa

1. Speech wyimerzenie nowych zwięzkow powierzchniowo czynnych a wzcrze ogólnya, / R/CH_CHOHCH_C/n /k PO/OM/3-k, w którym k τ 1-7, n = 1-100, M stanowi atos wodoru, atos matelu alkalicznego, grupę amonowe, kation mino-, di - lub trietanolominy, natomiast R oznacza R₁ - 0 -, gdzie R₁ stanowi alkił C₁ - C_{3/3}, hydroksyskił C₈ - C₃₆, alkilomyl o 8-42 stomach wegla, lub R₂ - 0 - /C₈H_{2m}O/₂-, gdził z + 1 - 50, m = 2 - 4, s R₂ stanowi alkił C₁ - C₂₄ lub hydroksyskił C₁ - C₂₄ lub al:ilomyl o ? - 42 stomach węgle, lub F₂ - 0 - /C₂H₄O/_r - /C₃H₈O/_p -, gdzie r = 1 - 10, p = 1 - 40, s R₂ ms wyzej podane znaczenie, lub R₃ - NH - , 2:1/16 R₃ stanowi alkił C₄ - C₃₆ Jub hydroksysłkił C₄ - C₃₆, lub R₃ - Ne, gdzie R₁ ne wyżej podane

 $\int /C_{\rm m}H_{23}O/_{\rm x} = J_2$, gdzie x = 1 - 25, a R3, m nają wyżej podane znac;enie, lub R3 - COO- lub R3-CONH - lub R3-CON= lub R3 - CONHCH2CH2O - lub R3 - CONH/C2H4O/ $_{\rm z}$ - lub R3 - CON/CH2CH2O-/2 lub R3-CON $_{\rm z}$ /C2H4O/ $_{\rm x}$ J2, gdzie R3, x, z nają wyżej podane znaczenie, z n a m i e n n y t y m, że w środowisku bezwodnym i bez rozpuszczalnika organicznego lub w obojętnym rozpuszczalniku organicznym na związki o wzorze ogólnym RH $_{\rm k}$, gdzie R, k naję wyżej podane znaczenie, działa się w obecności lub bez obecności katalizatora 2,3-epoknypropanolam-1, następnie P_2O_5 lub P_2O_5 rozpuszczonym w H_3PO_4 , a otrzymane estry kwasu fosforowago nie zobojętnia się lub neutralizuje się wodorotlenkiem netalu alkalicznego lub amonu, względnie mono-, di- lub trietanologminę.

- 2. Sposób według zastrz.i, z n e m i e n n y t y m, że jako katalizatory eteryfikacji, estryfikacji i poliaddycji glicydolu stosuje się kwasy lub zasady lub sole metali.
- 3. Sposób według zastrz.i, z n a m i e n n y t y m, że jako katalizatory estryfikacji pięciotlenkiem fosforu w stanin wolnym lub rozpuszczonym w kwasie fosforowym stosuje się kwasy organiczne i nieorganiczne oraz monoalkilofosforany.
- 4. Sposób według zastrz.1, z n s m i e n n y $\,$ t y m, że jako obojętne rozpuszczelniki organiczne stosuje się benzen i jego pochodne, węglowodory alifatyczne o temperaturach wrzenia 363 423 K, ketony i estry.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.