Version: 2024.2.0

Objective: This course provides fundamental knowledge about calculus for single and multivariable functions needed to study further mathematics as well as engineering subjects. Students will be provided a mathematical foundation to succeed in the fields of Technology, Engineering and Economics.

Contents: Limits and continuity. Derivatives and differentials of functions of single variable and multivariables, integrals of functions of single variable.

1. GENERAL INFORMATION

Course title: Calculus 1

Course ID: MI1114E

Course Units: 3(2-2-0-6)

Lecture: 30 hoursSeminars: 30 hours

Previous module: -

Prerequisites: -

Companion module: None

2. DESCRIPTION

An introduction to the basic ideas and techniques of differential and integral calculus. Topics include differentiation and integration of functions of a single variable, differentiation of functions of several variables, partial derivatives.

3. OBJECTIVES AND EXPECTED OUTCOMES

Students who complete this module have the abilities to:

Objective s	Objectives description/Expected Outcomes	Outcome standard allocated for modules/ Levels (I/T/U)
[1]	[2]	[3]
M1	Master the basic knowledge of calculus 1 and apply in practice to solve related exercises	
M1.1	Master the basic concepts of analysis 1 such as: limit of sequences, limit of functions, continuous functions, higher order derivatives and differentials, extremals of single- variable functions and multi-variable functions; antiderivative and integral of single-variable functions	I/T
M1.2	Be able to apply the knowledge to solve exercises	T/U
M2	Achieve serious attitude and necessary skills for highly effective work	

Objective s	Objectives description/Expected Outcomes	Outcome standard allocated for modules/ Levels (I/T/U)
M2.1	Be skilled at analyzing and solving problems with strong logical thinking; working independently and staying focused	T/U
M2.2	Identify some practical problems that can be solved by using tools of calculus	I/T/U
M2.3	Gain serious working attitude, proactive creativity, adaptation to highly competitive working environment	I/T

4. COURSE MATERIALS

Textbooks

- [1] James Stewart (2016). Calculus: Concepts and Contexts, eighth edition. Thomson, Brooks/Cole Publishing Company.
- [2] Nguyễn Đình Trí, Trần Việt Dũng, Trần Xuân Hiển, Nguyễn Xuân Thảo (2023). *Toán học cao cấp tập 2: Giải tích.* NXB Giáo dục.
- [3] Nguyễn Đình Trí, Trần Việt Dũng, Trần Xuân Hiển, Nguyễn Xuân Thảo (2023). *Bài tập Toán học cao cấp tập 2: Giải tích.* NXB Giáo dục.

References

- [1] Trần Bình (1998). Giải tích I: Phép tính vi phân và tích phân của hàm một biến. NXB Khoa học và kỹ thuật, Hà Nội.
- [2] Trần Bình (2005). Giải tích II và III: Phép tính vi phân và tích phân của hàm nhiều biến. NXB Khoa học và kỹ thuật, Hà Nội.
- [3] Đoàn Công Định, Trịnh Ngọc Hải, Phạm Thị Hoài, Trần Ngọc Thăng, Nguyễn Thị Toàn (2021). *Bài giảng Giải tích 1*. NXB Bách Khoa Hà Nội.

5. ASSESSMENT

Components	Evaluation method	Description	Assessed expected outcomes	Proportion
[1]	[2]	[3]	[4]	[5]
A1. The process mark				50%
A1.1. Attendance and performance *	Attendance and performance in class		M2.3	10%
A1.2. Continuous assessment	Continuous assessment test	Online multiple choice tests	M1.1, M1.2	10%
A1.3. Midterm exam	Midterm exam Content: From the 1st	Multiple choice and	M1.1, M1.2,	30%

	week to the 7 th week	constructed response test	M2.1, M2.2, M2.3	
A2. Final exam	Final exam	Essay	M1.1, M1.2, M2.1, M2.2, M2.3	50%

^{*} Attendance and performance in class are evaluated according to the Rule of Faculty of Mathematics and Informatics accompanied with the Regulations of Higher Education of Hanoi University of Science and Technology.

6. KÉ HOẠCH GIẢNG DẠY (chưa thay đổi, cần chỉnh sửa)

Week	Topics	Objective	Activities	Exercises
[1]	[2]	[3]	[4]	[5]
1	Chapter 1: Differentiation of functions of single variable 1.1. Concepts of functions - Definition of a function, domain and range Bounded functions, monotone functions, periodic functions, composite functions.	M1.1 M1.2 M2.1 M2.3	Lecturer: - Self- introduce - Introduce the course outline - Explain teaching and learning methods; and forms of subject assessment - Lecture, exchange questions and answers with students during the lecture Student: - Read in advance the next lesson - Master the basic concepts and apply to solve exercises according to	A1.1, A1.2, A1.3, A2

Week	Topics	Objective	Activities	Exercises
[1]	[2]	[3]	[4]	[5]
			the content and progress of the subject	
2	- Inverse function		Lecturer:	A1.1,
	- Elementary functions.		- Lecture,	A1.2,
	1.2. Limit of a function		exchange	A1.3,
	- Definition, uniqueness of limit of a		questions and	A2
	function		answers with	
	- Left hand and right hand limits, limit		students during the	
	at infinity		lecture	
3	- Limit laws		Student:	A1.1,
	- Infinite limit		- Read in	A1.2, A1.3,
	- Concept of infinitesimal and infinity.		advance the	A2
			next lesson	112
			- Master the	
4	1.3. Continuity of a function		basic concepts and apply to	A1.1,
	- Definition		solve	A1.2, A1.3,
	- Left hand and right hand continuity		exercises as	A1.5,
	- Continuity of composite and inverse		well as some	112
	function		practical models	
	- Uniform continuity		connected	
5	- Theorems of continuous functions.		with the	A1.1,
	1.4. Derivative and differential of a function		subject	A1.2, A1.3,
	- Definition of derivative, differential			A2
	- Differentiation rules, chain rule and	N/1 1		
6	differentiation of inverse functions	M1.1 M1.2		A1.1, A1.2,
	- Derivatives of elementary functions	M1.2 M2.1		A1.3,
		M2.1 M2.2		A2
		M2.3		
7	- Higher order derivatives and higher	M1.1		Λ1 1
′	order differentials	M1.1 M1.2		A1.1, A1.2,
	- Mean value theorems	M1.2 M2.1		A1.3,
		M2.1 M2.3		A2
		1412.3		
8	- L'Hospital rule	M1.1		A1.1,
	- Finite expansion formula of a	M1.2		A1.2,
	function.	M2.1		A2
		M2.2		
		M2.3		

Week	Topics	Objective	Activities	Exercises
[1]	[2]	[3]	[4]	[5]
9	1.5. Scheme of surveying a function	M1.1 M1.2 M2.1	Lecturer: - Lecture, exchange	A1.1, A1.2, A2
10	Chapter 2: Integration of functions of single variable 2.1. Indefinite integrals - Definition. Linearity of integration - Integrals of elementary functions - Integration by parts - Change of variables formulae - Integration of rational functions.	M2.3	questions and answers with students during the lecture Student: - Read in advance the next lesson	A1.1, A1.2, A2
11	 2.2. Definite integrals Definition, geometric and mechanical interpretations Criteria for integrability. Properties Fundamental theorem of calculus. Newton-Leibniz formula Techniques of integration. 	M1.1 M1.2 M2.1 M2.2 M2.3	- Master the basic concepts and apply to solve exercises as well as some practical models connected	A1.1, A1.2, A2
12	 2.3. Applications of definite integrals - Areas of planar regions - Volumes of solids and of solids of revolution - Arc-lengths - Areas of surfaces of revolution. 	M1.1 M1.2 M2.1 M2.3	with the subject	A1.1, A1.2, A2
13	Chapter 3: Functions of Several Variables 3.1. Functions of several variables - Domain, distance, neighborhood, boundary, closed and open sets, bounded sets - Definition of functions of multivariable, geometric interpretation, domain and range - Limit of functions of multivariables - Continuity			A1.1, A1.2, A2
14	 3.2. Partial derivatives and total differentials - Partial derivatives: definition, differentiation rules, chain rule - Total differential: definition, approximation by differentials 	M1.1 M1.2 M2.1 M2.2 M2.3		A1.1, A1.2, A2

Week	Topics	Objective	Activities	Exercises
[1]	[2]	[3]	[4]	[5]
	- Higher order derivatives and higher order differentials			
	- Taylor expansion			
15	3.3. Extrema of functions of multivariables			A1.1, A1.2,
	- Extrema			A2
	- Constrained extrema (self-study)			
	- Maxima and minima.			
16	Summary	and revision		

7. R	ULES	OF	THE	MOD	UL	Æ
------	------	-----------	-----	-----	----	---

8. DATE OF APPROVAL:

Faculty of Mathematics and Informatics