Amendments to the Specification

Please replace paragraphs [0006]-[0010] with amended paragraphs [0006]-[0010]:

- [0006] Figure 1. BFA4 cDNA sequence (SEQ ID NO.:1).
- [0007] Figure 2. BFA4 amino acid sequence (SEQ ID NO.:2).
- [0008] Figure 3. BCY1 nucleotide (A; SEQ ID NO.:3) and amino acid (B; SEQ ID NO.:4) sequences.
 - [0009] Figure 4. BFA5 cDNA sequence (SEQ ID NO.:5).
 - [0010] Figure 5. BFA5 amino acid sequence (SEQ ID NO.:6).
- 10 Please replace paragraph [0039] with amended paragraph [0039]:
 - [0039] A fusion motif may enhance transport of an immunogenic target to an MHC processing compartment, such as the endoplasmic reticulum. These sequences, referred to as transuction or transcytosis sequences, include sequences derived from HIV tat (see Kim et al. 1997 J. Immunol. 159:1666), *Drosophila* antennapedia (see Schutze-Redelmeier et al. 1996 J. Immunol. 157:650), or human period-1 protein (hPER1; in particular, SRRHHCRSKAKRSRHH (SEQ ID NO: 105)).

Please replace paragraph [0082] with amended paragraph [0082]:

immunoreactivity in HLA-A*0201 human T cells, as described below.

15

20

[0082] A library of 100 peptides from the BFA5/NYBR-1 coding sequence that are predicted to be medium to high binders to HLA-A*0201 were designed using Rammensee and Parker algorithms. The library was sub-divided into 10 pools of ten peptides (**Table III**), and each pool was used to activate 10 different T cell cultures after pulsing peptides on to mature autologous dendritic cells. Two experiments were performed with the library of BFA5/NYBR-1 peptides demonstrating

TABLE III

			BFA5 Peptide Pools	de Pools			
Peptide Group	CLP number	Sequence	SEQ ID	Peptide Group	CLP number	Sequence	SEQ ID
BFA5	2983	LMDMQTFKA	<u>Z</u>	BFA5	3033	FESSAKIQV	<u>53</u>
Group 1	2984	KVSIPTKAL	lœ	Group 6	3034	GVTAEHYAV	<u>54</u>
	2985	SIPTKALEL	10		3035	RVTSNKTKV	<u>55</u>
	2986	LELKNEQTL	10		3036	TVSQKDVCV	<u>56</u>
	2987	TVSQKDVCL	11		3037	KSQEPAFHI	<u>57</u>
	2988	SVPNKALEL	12		3038	KVLIAENTM	<u>58</u>
	2989	CETVSQKDV	<u>13</u>		3039	MLKLEIATL	<u>59</u>
	2990	KINGKLEES	14		3040	EILSVVAKL	<u>60</u>
	2991	SLVEKTPDE	<u>15</u>		3041	MLKKEIAML	<u>61</u>
	2992	SLCETVSQK	<u>16</u>		3042	LLKEKNEEI	<u>62</u>
BFA5	2993	EIDKINGKL	17	BFA5	3043	ALRIQDIEL	<u>63</u>
Group 2	2994	MLLQQNVDV	<u>18</u>	Group 7	3044	KIREELGRI	<u>64</u>
	2995	NMWLQQQLV	<u>19</u>		3045	TLKLKEESL	<u>65</u>
	2996		<u>20</u>		3046	ILNEKIREE	<u>66</u>
	2997	YLLHENCML	21		3047	VLKKKLSEA	<u>67</u>
•	2998	SLFESSAKI	22		3048	GTSDKIQCL	<u>68</u>
	2999	KITIDIHFL	<u>23</u>		3049	GADINLVDV	<u>69</u>
	3000	QLQSKNMWL	24		3050	ELCSVRLTL	<u>70</u>
	3001	SLDQKLFQL	25		3051	SVESNLNQV	<u>71</u>
	3002	FLLIKNANA	26		3052	SLKINLNYA	72

					Group 5	BFA5									Group 4	BFA5								Group 3	BFA5	Peptide Group	
3029	3028	3027	3026	3025	3024	3023	3022	3021	3020	3019	3018	3017	3016	3015	3014	3013	3012	3011	3010	3009	3007	3006	3005	3004	3003	CLP number	
AVQDHDQIV	· I •		SVPNKAFEL	IQDIELKSV	EQMKKKFCV	CMLKKEIAM	QQLEQALRI	GLLKANCGM	GLLKATCGM	· ·	AMLKLEIAT	QIMEYIRKL	KELEVKQQL	SQYSGQLKV	SLTPLLLSI	KLSKNHQNT	VLIAENTML	VSV	Z	AVYSEILSV	KLLSHGAVI	KVMEINREV	ILIDSGADI	SLSKILDTV	KILDTVHSC	Sequence	
<u>52</u>	51	<u>50</u>	<u>49</u>	<u>48</u>	47	46	45	44	43	42	<u>41</u>	40	<u>39</u>	38	37	<u>36</u>	<u>35</u>	34	33	32	31	<u>30</u>	29	28	27	SEQ ID	
						Group 10	BFA5								Group 9	BFA5								Group 8	BFA5	Peptide Group	
3080 3081	3079	3078	3077	3076	307.5		3074	3072	3071	3070	3069	3068	3067	3066	3065	3063	3062	3061	3060	3058	3057	3056	3055	3054	3053	CLP number	
ACLQRKMNV SLVEGTSDK	AVTCGFHHI	AVIEVHNKA	SEQIVEFLL	ALQCHQEAC	QMKKKFCVL		ALHYAVYSE	VKTGCVARV	VGMLLQQNV	IAWEKKEDT	KIAWEKKET	KIQCLEKAT	KCTALMLAV	NLVDVYGNM	NIQDAQKRT	QLVHAHKKA	ILKEKNAEL	EIFNYNNHL	PAIEMQNSV	VFAADICGV	AELQMTLKL	EIAMLKLEI	LSHGAVIEV	ATCGMKVSI	KTPDEAASL	Sequence	
98	<u> 36</u>	95	94	93	92		91	90	89	88	87	86	85	28	83	82	81	88	79	78	77	<u>76</u>	75	74	<u>73</u>	SEQ ID	

ELISPOT analysis was performed on human T-cell cultures activated through four rounds of stimulation with each pool of BFA5 peptides. Reactivity against a CMV pp65 peptide and a Flu matrix peptide were used as positive controls for T-cell activation in the experiments. Each experiment was performed with PBMC and dendritic cells from a single HLA-A*0201⁺ donor designated as "AP10". The results show that, although BFA4 is markedly reactive with high ELISPOT counts per 100,000 cells in the assay, BFA5 is even more reactive with 9/10 pools demonstrating ELISPOT reactivity. Similar results were obtained for both BFA4 and BFA5/NYBR-1 with a different HLA-A*0201. The bars reach a maximum at 600 spots because beyond that the ELISPOT reader does not give accurate counts. Cultures having a reading of 600 spots have more than this number of spots.

Please replace paragraph [0084] with amended paragraph [0084]:

[0084] In addition to ELISPOT analysis, human T cells activated by BFA5 peptides were assayed to determine their ability to function as CTL. The cells were activated using peptide-pulsed dendritic cells followed by CD40 ligand-activated B cells (5 rounds of stimulation). The experiment shown was performed with isolated PBMC from HLA-A*0201⁺ donor AP31. Isolated T cells were tested in ⁵¹Cr-release assays using peptideloaded T2 cells. The % specific lysis at a 10:1, 5:1, and 1:1 T-cell to target ratio is shown for T2 cells pulsed with either pools of BFA5/NYBR-1 peptides or with individual peptides. The graph shows CTL activity induced against targets loaded with a c nonspecific HLA-A*0201-binding HIV peptide (control) followed by the CTL activity against the peptide pool (Pool 1 etc.) and then the activity induced by individual peptides from the respective pool to the right. A high level of cytotoxicity was observed for some peptides at a 1:1 E:T ratio. CTL activity (percent specific lysis) induced by the control HIV peptide was generally <10%. Similar results were obtained with another PBMC donor expressing HLA-A*0201 (AP10). A large number of BFA5 peptides trigger T cell-mediated cytotoxicity of BFA5 peptide-loaded target cells. Table IV lists those peptides having immunogenic properties. Five peptides (LMDMQTFKA (SEQ ID NO.:7), ILIDSGADI (SEQ ID NO.:29), ILSVVAKLL (SEQ ID NO.:34), SQYSGQLKV

(SEQ ID NO.:38), and ELCSVRLTL (SEQ ID NO.:70)) were found to induce both IFN-γ secretion and CTL activity in T cells from both donors.

TABLE IV
Immunoreactive peptides from BFA5

	BFA5 peptides el	iciting high IFN-γ	BFA5 peptides in	ducing CTL lysis
	release (>200 spo	ots/100,000 cells)	of pulse	ed cells
SEQ	Donor AP10	Donor AP31	Donor AP10	Donor AP31
<u>ID</u>				
NO.				
7	LMDMQTFKA	LMDMQTFKA	LMDMQTFKA	LMDMQTFKA
<u>8</u>	KVSIPTKAL			KVSIPTKAL
9	SIPTKALEL			SIPTKALEL
11	TVSQKDVCL			
<u>12</u>	SVPNKALEL			
21	YLLHENCML	YLLHENCML	YLLHENCML	
<u>24</u>	QLQSKNMWL	QLQSKNMWL		QLQSKNMWL
<u>28</u>	SLSKILDTV	SLSKILDTV		SLSKILDTV
29	ILIDSGADI	ILIDSGADI	ILIDSGADI	ILIDSGADI
30	KVMEINREV			
32	AVYSEILSV			
34	ILSVVAKLL	ILSVVAKLL	ILSVVAKLL	ILSVVAKLL
<u>37</u>	SLTPLLLSI	SLTPLLLSI		SLTPLLLSI
38	SQYSGQLKV	SQYSGQLKV	SQYSGQLKV	SQYSGQLKV
40	QIMEYIRKL	QIMEYIRKL		QIMEYIRKL
<u>49</u>	SVPNKAFEL			
<u>51</u>	NLNYAGDAL	NLNYAGDAL		
<u>54</u>		GVTAEHYAV		
<u>57</u>		KSQEPAFHI		
<u>59</u>	MLKLEIATL	MLKLEIATL		MLKLEIATL
<u>61</u>		MLKKEIAML		
<u>63</u>	ALRIQDIEL			
<u>67</u>		VLKKKLSEA		
<u>70</u>	ELCSVRLTL	ELCSVRLTL	ELCSVRLTL	ELCSVRLTL
<u>72</u>	SLKINLNYA	SLKINLNYA		SLKINLNYA
74	ATCGMKVSI		ATCGMKVSI	
<u>77</u>	AELQMTLKL		AELQMTLKL	AELQMTLKL
<u>78</u>		VFAADICGV		
<u>81</u>	ILKEKNAEL	ILKEKNAEL		
84	NLVDVYGNM		NLVDVYGNM	
<u>85</u>	KCTALMLAV			

Please replace paragraph [0085] with amended paragraph [0085]:

[0085] Polyclonal antisera were generated against the following series of 22- to 23- mer peptides of BFA5:

BFA5(1-23) KLH-MTKRKKTINLNIQDAQKRTALHW (CLP-2977; SEQ ID NO:99) BFA5(312-334) KLH-TSEKFTWPAKGRPRKIAWEKKED (CLP-2978; SEQ ID NO:100)

BFA5(612-634) KLH-DEILPSESKQKDYEENSWDTESL (CLP-2979; SEQ ID NO: 101)

BFA5(972-994) KLH-RLTLNQEEEKRRNADILNEKIRE (CLP-<u>2980; SEQ ID NO: 102)</u> BFA5(1117-1139) KLH-AENTMLTSKLKEKQDKEILEAEI (CLP-<u>2981; SEQ ID NO: 103)</u>

BFA5(1319-1341) KLH-NYNNHLKNRIYQYEKEKAETENS (CLP-2982; SEQ ID NO: 104)