Universidad Nacional de Trujillo Facultad de Ciencias Físicas y Matemáticas Ingeniería Informática

Datos del sensor con incertidumbre

Calculo de Incertidumbre

La incertidumbre surge porque se tiene un conocimiento incompleto o incorrecto del mundo, o por limitaciones en la forma de representar dicho conocimiento.

TIPOS

Incertidumbre Tipo A

Incertidumbre Tipo B

¿Que es la Incertidumbre Tipo A?

<u>Método</u> para evaluar la incertidumbre mediante el <u>análisis estadístico</u> de una serie de observaciones.

Ejemplo: Tipo A

n	Medición q_k	$\bar{q} = \frac{1}{n} \sum_{k=1}^{n} q_k$	$(q_k - \bar{q})$	$(q_k - \overline{q})^2$	$S^{2}(q_{k}) = \frac{1}{n-1} \sum_{k=1}^{n} (q_{k} - \overline{q})^{2}$	$S^2(\bar{q}) = \frac{S^2(q_k)}{n}$	$S(\overline{q}) = \sqrt{S^2(\overline{q})}$	$u(x_i) = \sqrt{\frac{\sum_{k=1}^{n} (q_k - \overline{q})^2}{n(n-1)}}$
1	27.34	27.304	0.036	0.001296				
2	27.27	27.304	-0.034	0.001156				
3	27.26	27.304	-0.044	0.001936	0.000693	6.93333E-05	0.008326664	0.008326664
4	27.3	27.304	-0.004	1.6E-05				
5	27.31	27.304	0.006	3.6E-05				
6	27.32	27.304	0.016	0.000256				
7	27.3	27.304	-0.004	1.6E-05				
8	27.34	27.304	0.036	0.001296				
9	27.31	27.304	0.006	3.6E-05				
10	27.29	27.304	-0.014	0.000196				
SUMA	273.04			0.00624				
\bar{q}	27.304							

Por la tanto el resultado de la media con la incertidumbre seria : $\bar{q}+u(x_i)=\bar{q}+S(\bar{q})=27.304\pm0.008326664$

¿Que es la Incertidumbre Tipo B?

Método para evaluar la incertidumbre por otro medio que <u>NO</u> sea el <u>análisis estadístico</u> de una serie de observaciones.

- Está basado sobre todo en la experiencia y el conocimiento general.
- Datos de mediciones anteriores.
- Especificaciones del fabricante.
- ✓ Manuales de los instrumentos.
- ✓ Datos provistos en calibraciones u otros certificados.
- Experiencia o conocimiento de materiales de referencia, patrones o instrumentos.

Cuando un intervalo de confianza se da con un nivel de confianza en la forma de (± a con un % de probabilidad), se debe dividir el valor de "a" entre un valor apropiado:

1,64 (90% de probabilidad)

1,96 (95 % de probabilidad)

2,58 (99% de probabilidad)

Una especificación por calibración, establece que el valor de una balanza cuando mide 50 g o menos, está comprendido dentro de ± 0,1 mg con un nivel de confianza del 95% ¿Cuál sería su incertidumbre estándar?

$$\frac{0.1 \, mg}{1.96} = 0.051 \, mg$$

Si los límites de "a" se dan <u>sin</u> un nivel y hay razón para esperar que los <u>valores extremos sean **igualmente probables** como cualquier valor dentro del intervalo</u>

Se asume

Que este intervalo sigue una

distribución rectangular

<u>Ejemplo:</u>

Cuando se trabaja con materiales de referencia y se vende un tipo primario con una pureza del 99,9 ± 0,1%

En este caso la pureza es de 0,999 ± 0,001 (esto quiere decir que el valor está comprendido entre el 1,000 y 0,998)

Para calcular la incertidumbre como incertidumbre estándar se procede así:

$$\frac{0,001}{\sqrt{3}} = 0,00058$$

0,0006

Cuando <u>no</u> hay razón para suponer <u>que</u> los valores extremos son probables y se tiene conocimiento de que los valores de las mediciones resultan ser <u>muy</u> <u>cercanas a los valores nominales</u>, se asume que este intervalo sigue una <u>distribución triangular</u>

$$\frac{\pm a}{\sqrt{6}}$$

Ejemplo:

Para una pipeta que vierte 25,00 mL la tolerancia es de ±0,03. La incertidumbre estándar en este caso sería:

$$\frac{0,03}{\sqrt{6}} = 0,012 \ mL$$

0,01 mL

Diferencia entre incertidumbre tipo A y B

<u>Tipo A:</u> No se tiene valores de referencias y se aplican procesos de repetibilidad y reproducibilidad para obtener las mediciones.

<u>Tipo B:</u> Aquellas que si cuenta con patrones de referencia, normas o manuales.

Laboratorio 2 – Unidad 2

Investigar sobre errores aleatorios

Tarea 2 - Unidad 2

• Investigar sobre Incertidumbre para Medición de Temperatura

Foro - Unidad 2

- Expresa tus ideas en respuesta al Tema *Incertidumbre para Medición* de *Temperatura* en el foro del aula virtual:
- Realiza tu participación y a la vez comenta la participación de 2 de tus compañeros. El foro cierra el 17 de diciembre a las 11 p.m.

Consultas.

