Subdivisão

Como tornar uma curva suave ?

Subdivisão de Superfícies

- Malha "Grossa" & regra de subdivisão
- Definir uma superfície suave como o limite de uma sequência de refinamentos

Zorin & Schroeder SIGGRAPH 99 Course Notes

Questões Fundamentais

- Como dividir a malha?
- Busca por propriedades como suavidade
- Como armazenar a malha?
- Busca pela eficiência na implementação de regras

- Como dividir a malha?
- Dividir cada triângulo em 4 triângulos a partir da divisão cada aresta e conectar os novos vértices
- Necessita de regras para vértices "par/ímpar" (white/black)

- Como posicionar os novos vértices?
- Escolher localizações para novos vértices como média ponderada dos vértices na vizinhança

E se o vértice ímpar apenas pertencer a um triângulo?

E se o vértice par não tiver grau 6?

Regras para vértices extraordinários e fronteiras:

- Como escolher β ?
- Analisar propriedades da superfície limite
- Interesse na continuidade e suavidade da superfície
- Envolve cálculo de autovalores de matrizes
- » Original Loop

$$\beta = \frac{1}{n} \left(\frac{5}{8} - \left(\frac{3}{8} + \frac{1}{4} \cos \frac{2\pi}{n} \right)^2 \right)$$

Warre

$$\beta = \begin{cases} \frac{3}{8n} & n > 3\\ \frac{3}{16} & n = 3 \end{cases}$$

Superfície limite possui propridades de suavidade verificáveis!

Esquemas de Subdivisão

- Existem diferentes esquemas de subdivisão
- Diferentes métodos para refinamento da topologia
- Diferentes regras para posicionamento de vértices 0
- » Interpolação versus aproximação

			3pono

	Face split	
	Triangular meshes	Quad. meshes
Approximating	$Loop\left(\mathcal{C}^{2}\right)$	Catmull-Clark (C2)
Interpolating	Mod. Butterfly (C^1)	Kobbelt (C^1)

Vertex split
Doo-Sabin, Midedge (C^1)
Biquartic (C^2)

Zorin & Schroeder, SIGGRAPH 99, Course Notes

Subdivisão de Superfícies

Vantagens:

- Método simples para descrição de superfícies complexas
- Relativamente fácil de implementar
- Topologias arbitrárias
- Garantia de continuidade
- Múltiplas resoluções

0

Dificuldades:

- Especificação intuitiva
- Parametrização
- Intersecções

