문제 1. 경작

입력 파일: standard input 출력 파일: standard output

시간 제한: 2 seconds 메모리 제한: 256 megabytes

21XX년, IOI 행성의 주민들은 최근 발견된 행성으로 이주하게 되었다.

새로 발견된 행성은 R행 C열 격자로 이루어진 밭이 있다. 열은 남-북 방향으로, 행은 동-서 방향으로 놓여있다. 북쪽에서 i번째, 서쪽에서 j번째 격자의 번호는 (i,j)이다. 가장 북서쪽에 있는 격자의 번호는 (1,1)이고, 가장 남동쪽에 있는 격자의 번호는 (R,C)이다. 각 년마다, IOI 행성의 주민들은 밭에 불 바람의 방향을 고른다. 방향은 동, 남, 서 혹은 북이다.

새 행성에서는 농업을 활성화 시키기 위해서, 밭의 모든 칸에 "JOI 풀"을 심을 것이다. 이주한 첫 년도에는 N개의 격자에 JOI 풀이 심어져 있다.

JOI 풀은 바람으로 생활권을 늘려간다. 각 여름마다, JOI 풀의 씨앗이 IOI 행성의 주민들이 고른 바람의 방향으로 날아간다. 씨앗은 원래 JOI 풀이 심어져 있던 곳에서 바람 방향으로 한 칸 움직여 땅에 착지한다. 만약 그 칸에 JOI 풀이 심어져 있지 않다면, 그 칸에는 새로운 JOI 풀이 자란다. 한 격자에 JOI 풀이 심어져 있으면, 그 풀은 영구히 잘한다.

바람의 방향을 적당히 설정 했을 때, 밭의 모든 칸에 JOI 격자를 심을 수 있으려면 최소 몇년이 걸리는지 구하고 싶다.

입력 형식

다음 정보가 표준 입력으로 주어진다.

- 첫째 줄에는 공백으로 구분 된 두 정수 R, C가 주어진다. 이는 격자가 R행 C열로 이루어져 있다는 의미이다.
- 둘째 줄에는 정수 N이 주어진다. 이는 이주 첫 년도에 JOI 풀이 심어져 있는 칸의 수이다.
- 다음 N개의 줄의 i 번째 $(1 \le i \le N)$ 줄에는 공백으로 구분 된 두 정수 S_i , E_i 가 주어진다. 이는 이주 첫 년도에 (S_i, E_i) 번 격자에 JOI 풀이 심어져 있다는 뜻이다.

출력 형식

표준 출력으로 한 개의 줄을 출력하여라. 출력은 우리가 방향을 적당히 설정했을 때, 모든 격자에 JOI 풀이 심어져 있기 위해 필요한 년도의 최솟값이다.

제한

- $1 \le N \le 300$.
- $1 \le R \le 1\ 000\ 000\ 000$.
- $1 \le C \le 1\ 000\ 000\ 000$.
- $1 \le S_i \le R \ (1 \le i \le N)$.
- $1 \le E_i \le C \ (1 \le i \le N)$.
- 이주 첫 년도에 JOI풀이 심어져 있지 않은 격자가 존재한다.

서브태스크 1 (5 점)

• $R \leq 4$

• $C \le 4$

서브태스크 2 (10 점)

- $R \le 40$
- $C \le 40$

서브태스크 3 (15 점)

• $R \le 40$

서브태스크 4 (30 점)

• $N \le 25$

서브태스크 5 (20 점)

• $N \le 100$

서브태스크 6 (20 점)

추가 제한조건이 없다.

예제

standard input	standard output
3 4	3
3	
1 2	
1 4	
2 3	

이 예제에서, 이주 첫 년도에 다음 칸들에 JOI 풀이 심어져 있다.

0		0
	0	

새 행성의 밭. '0'이 써있는 칸은 이주 첫 년도에 JOI 풀이 심어져 있다.

만약에 처음 3년 동안 바람을 서쪽, 남쪽, 남쪽으로 불어가게 만들면, 모든 격자에는 3년 이후에는 JOI 풀이심어져 있을 것이다. 다음 숫자는 각 격자에 JOI 풀이심어진 년도를 의미한다. 이는 최솟값이다.

1	0	1	0
2	1	0	2
3	2	2	3

standard input	standard output
4 4	4
4	
1 1	
1 4	
4 1	
4 4	

문제 2. 항구 시설

입력 파일: standard input 출력 파일: standard output

시간 제한: 3.5 seconds 메모리 제한: 1024 megabytes

JOI 항구에는 매일 많은 컨테이너들이 운반되어 오고, 전국 각지로 트럭을 통해 운반된다.

JOI 항구는 매우 좁아서, 콘테이너를 넣을 수 있는 공간이 2개 밖에 없다. 각각의 공간에는 컨테이너를 수직으로 쌓아서 몇개든 넣을 수 있다.

안전상의 이유로, 컨테이너가 항구에서 운반되어 오면 두 공간 중 하나에 컨테이너를 놓아야 한다. 만약 이미 컨테이너가 그 위치에 있으면, 이미 있는 컨테이너의 위에 새 컨테이너를 쌓는다. 트럭으로 운반 할 때는, 두 공간에 쌓인 컨테이너 중 가장 위에서 부터 차례대로 운반해야 한다.

오늘, JOI 항구에는 N개의 컨테이너가 배로 운반 될 예정이다. 모든 컨테이너는 오늘 내로 트럭으로 운반될 예정이다.

당신은 JOI 항구의 항구시설의 관리를 맡고 있어서, 모든 컨테이너가 배로 운반되는 시각과 트럭으로 운반되는 시간을 알고 있다. 컨테이너를 쌓고 가져가는 경우의 수를 1 000 000 007로 나눈 나머지를 구하여라.

입력 형식

다음 정보가 표준 입력으로 주어진다.

- 첫째 줄에는 공백으로 쩡수 N이 주어진다. 이는 JOI 항구에 운반 될 컨테이너의 수이다.
- 다음 N개의 줄의 i 번째 $(1 \le i \le N)$ 줄에는 공백으로 구분 된 두 정수 A_i , B_i 가 주어진다. 이는 JOI 항구에 i 번째 컨테이너가 시각 A_i 에 와서 시각 B_i 에 트럭으로 운반된다는 의미이다.

출력 형식

표준 출력으로 한 개의 줄을 출력하여라. 출력은 컨테이너를 쌓고 가져가는 경우의 수를 1 000 000 007로 나뉴 나머지이다.

제하

- $1 \le N \le 1\ 000\ 000$.
- $1 \le A_i \le 2N \ (1 \le i \le N)$.
- $1 \le B_i \le 2N \ (1 \le i \le N)$.
- $A_i < B_i \ (1 \le i \le N)$.
- 2N개의 정수 $A_1, \dots, A_N, B_1, \dots, B_N$ 은 서로 다르다.

서브태스크 1 (10 점)

• *N* < 20

서브태스크 2 (12 점)

• N < 2000

서브태스크 3 (56 점)

• $N \le 100~000$

서브태스크 4 (22 점)

추가 제한조건이 없다.

예제

standard input	standard output
4	4
1 3	
2 5	
4 8	
6 7	

컨테이너를 놓는 네 가지 방법이 있다. 각 공간을 A, B라고 하자. 다음 방법으로 컨테이너를 놓을 수 있다.

- 1, 2, 3, 4번 컨테이너를 각각 A, B, A, A에 놓는다.
- 1, 2, 3, 4번 컨테이너를 각각 A, B, A, B에 놓는다.
- 1, 2, 3, 4번 컨테이너를 각각 B, A, B, A에 놓는다.
- 1, 2, 3, 4번 컨테이너를 각각 B, A, B, B에 놓는다.

standard input	standard output
3	0
1 4	
2 5	
3 6	
5	8
1 4	
2 10	
6 9	
7 8	
3 5	
8	16
1 15	
2 5	
3 8	
4 6	
14 16	
7 9	
10 13	
11 12	

문제 3. 불꽃놀이 막대

입력 파일: standard input 출력 파일: standard output

시간 제한: 2 seconds 메모리 제한: 256 megabytes

 ${
m JOI}$ 군은 자신을 포함하여 ${
m \it N}$ 명의 친구들과 불꽃놀이 막대를 가지고 놀 것이다. 이번에 사용할 불꽃놀이 막대는 불을 붙이면 정확히 ${
m \it T}$ 초 동안 불이 붙는다.

처음에 JOI군과 친구들은 동서방향으로 일직선으로 서 있고, 한 사람당 하나의 불꽃놀이 막대를 들고 있다. JOI군과 친구들은 각각 1 이상 N 이하의 번호가 붙어있다. i < j를 만족하는 i와 j에 대해서, i 번째 사람은 j 번째 사람의 서쪽에 서 있거나, 같은 장소에 서 있다. i 번째 사람과 가장 서쪽에 있는 첫 번째 사람의 거리는 X_i 미터이다. JOI군은 K번째 사람이다.

불꽃놀이를 시작 하려 할 때, 라이터의 연료가 충분하지 않다는 사실을 알았다. 오직 하나의 불꽃놀이 막대에만 불을 붙일 수 있다.

그래서 일단 JOI군의 불꽃놀이 막대에 불을 붙이고, 타고 있는 불꽃놀이 막대의 불을 옮겨가면서 불을 붙이기로 했다. 불꽃놀이 막대에서 불을 옮길 때는, 다음 조건이 만족되어야 한다.

- 불이 붙지 않은 불꽃놀이 막대를 불을 붙인지 T초 이내의 불꽃놀이 막대와 맞닿아야 한다. 불을 붙인지 정확히 T초가 지나도 불을 옮길 수 있다.
- 불을 붙이려는 불꽃놀이 막대는, 한 번도 불이 붙은 적이 없어야 한다.
- 불이 붙지 않은 불꽃놀이 막대와 불이 붙은 불꽃놀이 막대를 가진 사람이 같은 장소에 있어야 한다.

우리는 한 불꽃놀이 막대에서 다른 불꽃놀이 막대로 불이 붙기를 기다리는 시간 등을 무시 할 것이다.

JOI군과 친구들이 서로 떨어져 서 있기 때문에, 불을 붙이기 위해서는 잘 이동해야 한다. 그들은 임의의 속도로 달릴 수 있지만, 불꽃놀이를 하고 있는 중 달리면 위험하기 때문에, 속도가 초당 s미터를 넘지 않게 하고 싶다. 여기서, s는 음이 아닌 정수이다.

모든 불꽃놀이 막대에 불을 붙이기 위해서 속도 제한을 어떻게 정하는게 좋을까?

입력 형식

다음 정보가 표준 입력으로 주어진다.

- 첫째 줄에는 공백으로 구분 된 세 정수 N, K, T가 주어진다. 이는 N명의 사람이 있고, JOI군이 K번째 사람이고, 막대 불꽃놀이에 불을 붙이면 T초 동안 불이 붙어있다는 것을 말한다.
- 다음 N개의 줄의 i 번째 $(1 \le i \le N)$ 줄에는 공백으로 정수 X_i 가 주어진다. 이는 i 번째 사람과 가장 서쪽에 있는 첫 번째 사람의 거리는 X_i 미터 라는 것을 말한다.

출력 형식

표준 출력으로 한 개의 줄을 출력하여라. 출력은 모든 불꽃놀이에 불을 붙이기 위한 음이 아닌 정수 속도 제한 s이다.

제한

- $1 \le K \le N \le 100\ 000$.
- $1 \le T \le 1\ 000\ 000\ 000$.
- $1 \le X_i \le 1\ 000\ 000\ 000\ (1 \le i \le N)$.

- $X_1 = 0$
- $X_i \le X_i \ (1 \le i \le N)$.

서브태스크 1 (30 점)

• $N \le 20$

서브태스크 2 (20 점)

• $N \le 1000$

서브태스크 3 (50 점)

추가 제한조건이 없다.

예제

standard input	standard output
3 2 50	2
0	
200	
300	

이 예제에서, 속도 제한은 초당 2미터여도 된다.

첫 번째 사람이 동쪽으로, 두 번째와 세 번째 사람이 서쪽으로 움직인다. 속도는 초당 2미터이다. 50초 이후에, 두 번째 사람은 첫 번째 사람에게 불을 옮길 수 있다.

그리고, 첫 번째 사람이 동쪽으로, 세 번째 사람이 서쪽으로 움직인다. 속도는 초당 2미터이다. 25초 이후에, 첫 번째 사람은 세 번째 사람에게 불을 옮길 수 있다.

속도 제한이 1 미터였다면, 모든 막대에 불을 붙일 수 없다.

standard input	standard output
3 2 10	8
0	
200	
300	

이 예제에서, 속도 제한은 초당 8미터여도 된다.

첫 번째와 두 번째 사람이 동쪽으로, 세 번째 사람이 서쪽으로 움직인다. 속도는 초당 8미터이다.

3초 후에, 두 번째 사람이 움직임을 멈춘다. 첫 번째와 세 번째 사람은 계속 움직인다.

6.5초가 더 지난 이후에, 두 번째 사람과 세 번째 사람이 같은 장소에 모인다. 두 번째 사람과 세 번째 사람이 움직임을 멈춘다. 첫 번째 사람은 계속 움직인다.

0.5초가 더 지난 이후에, 두 번째 사람은 세 번째 사람에게 불을 옮긴다. 첫 번째 사람은 계속 움직인다. 세번째 사람은 서쪽으로 움직인다. 속도는 초당 8 미터이다.

9초가 더 지난 이후에, 첫 번째 사람과 세 번째 사람이 같은 장소에 모인다. 세 번째 사람은 첫 번째 사람에게 불을 옮긴다.

속도 제한이 7 미터였다면, 모든 막대에 불을 붙일 수 없다.

제 16회 일본 정보올림피아드 (JOI 2016/2017) 여름 캠프 / 선발 고사, 2017년 3월 19-25일, (도쿄 코마바, 요요기)

standard input	standard output
20 6 1	6
0	
2	
13	
27	
35	
46	
63	
74	
80	
88	
100	
101	
109	
110	
119	
138	
139	
154	
172	
192	