

# **Módulo** | Análise de Dados: Aprendizado de Máquina, Classificação

Caderno de Exercícios

Professor André Perez

# **Tópicos**

- 1. Classificação;
- 2. Dados;
- 3. Treino;
- 4. Avaliação;
- 5. Predição.

# **Exercícios**

## 1. Pinguins

Neste exercício, vamos utilizar uma base de dados com informações sobre penguins. A idéia é prever a espécie do penguin (**species**) baseado em suas características físicas e geográficas (variáveis preditivas).

```
In []:
    import sklearn
    import numpy as np
    import pandas as pd
    import seaborn as sns

In []:
    penguim = sns.load_dataset('penguins')
```

```
In []: penguim.head(25)
```

## 1.1. Análise exploratória

Utilize os gráficos abaixo para entender melhor a relação entre os atributos e variável resposta da base de dados. Comente o que observou em cada gráfico.

• Atributos numéricos por espécie:

#### Comentário: ?

Sexo por espécie:

#### Comentário: ?

• Ilha por espécie:

#### Comentário: ?

## 2. Dados

#### 2.1. Valores nulos

A base de dados possui valores faltantes, utilize os conceitos da aula para trata-los.

## 2.2. Variáveis categóricas

Identifique as variáveis categóricas nominais e ordinais, crie uma nova coluna aplicando a técnica correta de conversão a seus valores. A nova coluna deve ter o mesmo nome da coluna original acrescidade de "\_nom" ou "\_ord".

Nota: Você não deve tratar a variável resposta.

**Nota**: Por definição, árvores de decisão **não precisam** da transformação de atributos categóricos em numéricos. Contudo, por **limitação** do pacote Python Scikit Learn, devemos conduzir esta etapa. Mais informações neste link.

```
In []: # resposta da questão 2.2
```

## 2.3. Limpeza

Descarte as colunas categóricas originais e mantenha a variável resposta na primeira coluna do dataframe.

```
In []: # resposta da questão 2.3
```

## 2.4. Treino/Teste

Separe a base de dados em treino e teste utilizando uma proporção de 2/3 para treino e 1/3 para testes.

```
In []: # resposta da questão 2.4
```

# 3. Modelagem

#### 3.1. Treino

Treine um modelo de **árvore de decisão** com os **dados de treino** (2/3). Gere o gráfico da árvore do modelo treinado e responda: quantas **folhas** a árvore treinada possui?

#### Resposta: ?

```
In []: # resposta da questão 3.1
```

# 3.2. Avaliação

a. Matriz de Confusão

Calcule e visualize a **matriz de confusão** para o modelo de **árvore de decisão** treinado com os **dados de teste** (1/3). Comente os resultados.

#### Comentário: ?

```
In []: # resposta da questão 3.2.a
```

#### b. Acurácia

Calcule a **acurácia** para o modelo de **árvore de decisão** treinado com os **dados de teste** (1/3).

**Nota:** Como referência, eu consegui uma acurácia de approx. 96% (sua acurácia pode não ser igual).

```
In []: # resposta da questão 3.2.b
```

# 4. Predição

## 4.1. Novo penguim

Qual a espécie de um penguim com as seguintes características:

| island | bill_length_mm | bill_depth_mm | flipper_length_mm | body_mass_g | sex  |
|--------|----------------|---------------|-------------------|-------------|------|
| Biscoe | 38.2           | 18.1          | 185.0             | 3950.0      | Male |

**Atenção:** Lembre-se de pre-processar os atributos assim como nos exercício 2.2. A ordem dos atributos importa, deve ser a mesma usada na modelagem.

**Nota:** Como referência eu obtive **adelie** como espécie predita (a sua predição pode não ser igual).

```
In []: # resposta da questão 4.1
```