

Lösningsskisser övningstentamen 3; M0049M

1.

- a) Ekvationen är reell så 3+3i är också en rot och det följer att polynomet i högerledet är delbart med $z^2-6z+18$. Efter en polynomdivision så ser man att ekvationen är ekvivalent med $(z^2-6z+18)(z^2+3)=0$. De två återstående rötterna kommer från den andra faktorn och är $\pm\sqrt{3}i$.
- b) Förläng med konjugatet och man får

$$\frac{(1+2i)^2(1+ai)}{1+a^2} = \frac{(-3+4i)(1+ai)}{1+a^2} = \frac{-3-4a+i(4-3a)}{1+a^2}$$

För att ett argument skall vara $7\pi/6$ skall kvoten mellan imaginärdelen och realdelen vara $1/\sqrt{3}$ och realdelen negativ (rita upp det komplexa talplanet). Så

$$\frac{1}{\sqrt{3}} = \frac{4 - 3a}{-3 - 4a}$$

vilket är ekvivalent med

$$a = \frac{4\sqrt{3} + 3}{3\sqrt{3} - 4}.$$

Eftersom detta a är positivt blir realdelen negativ.

2. $\mathbf{0} \in H$: självklart, $p, q \in H \Rightarrow p + q \in H$: antag $p, q \in H$, det gäller att $(p+q)(\pm 1) = p(\pm 1) + q(\pm 1) = 0 + 0 = 0$ ok och $p \in H \Rightarrow cp \in H$: antag $p \in H$, $(cp)(\pm 1) = cp(\pm 1) = c \cdot 0 = 0$ ok.

Eftersom polynomen i H har nollställe i ± 1 så måste de vara delbara med t^2-1 . Polynomen i H är således de på formen $(t^2-1)(at+b)$. En bas är $\{t(t^2-1),t^2-1\}$ (dessa spänner uppenbarligen upp H och de är linjärt oberoende). Dimensionen är antalet element i en bas så dim H=2.

3. Den karakteristiska ekvationen $\det(A-\lambda I)=0$ blir i detta fall $\lambda^2-6\lambda+10=0$ vilken löses till $\lambda=3\pm i$. Man vet att om en reell matris har komplexa egenvärden så kommer både egenvärden och egenvektorer i komplexkonjugerade par. Det räcker således att räkna ut egenvektor för en av egenvärdena. Bestäm egenvektor som hör ihop med $\lambda=3+i$. Ställ upp och gausseliminera ekvationen $A\mathbf{v}=(3+i)\mathbf{v}$. Man får:

$$\left[\begin{array}{c|c} -i & 2 & 0 \\ -\frac{1}{2} & -i & 0 \end{array}\right] \sim \left[\begin{array}{c|c} -i & 2 & 0 \\ 0 & 0 & 0 \end{array}\right].$$

Man finner en egenvektor $\begin{bmatrix}2\\i\end{bmatrix}$ och därför är $\begin{bmatrix}2\\-i\end{bmatrix}$ en egenvektor med egenvärde 3-i. Det gäller således att $A=PDP^{-1}$ med

$$P = \begin{bmatrix} 2 & 2 \\ i & -i \end{bmatrix} \text{ och } D = \begin{bmatrix} 3+i & 0 \\ 0 & 3-i \end{bmatrix}.$$

4. Bestäm den funktion på formen $y = \alpha x + \beta x^2$ som bäst anpassar till datapunkterna i minsta kvadratmetodens mening. Sätt in datapunkterna i modellfunktionen och man får ekvationssystemet

$$\begin{cases} 0 = -\alpha + \beta \\ 1 = \alpha + \beta \\ 4 = 2\alpha + 4\beta. \end{cases}$$

Man ser direkt att lösning saknas (de två första ekvationerna ger $\alpha = \beta = 1/2$ vilket inte fungerar i den tredje ekvationen). På matrisform skrivs systemet $A\mathbf{x} = \mathbf{b}$. Motsvarande normalekvation är

$$A^T A \mathbf{x} = A^T \mathbf{b}$$

vilket blir

$$\left[\begin{array}{cc} 6 & 8 \\ 8 & 18 \end{array}\right] \left[\begin{array}{c} \alpha \\ \beta \end{array}\right] = \left[\begin{array}{c} 9 \\ 17 \end{array}\right]$$

som har lösningen $\alpha = 13/22$ och $\beta = 15/22$. Den optimala funktionen är således $y = (13x + 15x^2)/22$.

5. Homogenlösning: kar. ekv. $r^2 - 5r + 6 = 0$ vilken har lösningarna 2 och 3 så

$$y_h = Ae^{2x} + Be^{3x}.$$

Partikulärlösning: högerledet har två delar så dela upp partikulärlösningen i två termer $y_p = y_{p_1} + y_{p_2}$. För 1 i högerledet fås $y_{p_1} = 1/6$ (ses direkt) medan för $2xe^{2x}$ gör man ansatsen $y_{p_2} = z(x)e^{2x}$. Man får $y'_{p_2} = z'e^{2x} + 2ze^{2x}$ och $y''_{p_2} = z''e^{2x} + 4z'e^{2x} + 4ze^{2x}$. Sätt in det i differentialekvationen (utan 1:an i högerledet) och man får

$$z''e^{2x} + 4z'e^{2x} + 4ze^{2x} - 5(z'e^{2x} + 2ze^{2x}) + 6ze^{2x} = 2xe^{2x}$$

Förkorta e^{2x} och sortera om och man får

$$z'' - z' = 2x,$$

(vi visste z skulle försvinna ty e^{2x} är en homogen lösning). Ansätt $z = ax^2 + bx$ vilket leder till 2a - 2ax - b = 2x så a = -1 och b = -2, d.v.s. $z(x) = -x^2 - 2x$ och därmed $y_{p_2} = (-x^2 - 2x)e^{2x}$. En partikulärlösning är

$$y_p = y_{p_1} + y_{p_2} = \frac{1}{6} - (x^2 + 2x)e^{2x}$$

och den allmänna lösningen är därför

$$y = Ae^{2x} + Be^{3x} + \frac{1}{6} - (x^2 + 2x)e^{2x}.$$

Man behöver derivatan för det ena begynnelsevärdet så derivera och man får

$$y' = 2Ae^{2x} + 3Be^{3x} - (2x+2)e^{2x} - 2(x^2+2x)e^{2x}.$$

Villkoret y(0) = 1 ger

$$1 = A + B + \frac{1}{6}$$

medan y'(0) = 0 ger

$$0 = 2A + 3B - 2$$
.

Detta system av ekvationer har lösningen A=1/2 och B=1/3. Lösningen till differentialekvationen är således

$$y = \frac{1}{2}e^{2x} + \frac{1}{3}e^{3x} + \frac{1}{6} - (x^2 + 2x)e^{2x}.$$

6. Efter en division med x ser vi att det är en Euler-ekvation. Låt $x=e^t$ och bilda z(t)=y(x). Det följer z'=xy' och $z''-z'=x^2y''$. Insatt i ekvationen ger detta

$$z'' - 2z' + z = e^{-t}.$$

Homogenlösningar: kar. ekv. $r^2-2r+1=0$ vilken har dubbelroten r=1 så $z_h=Ae^t+Bte^t$. Partikulärlösning: ansatsen $z_p=Ce^{-t}$ leder till

$$Ce^{-t} + 2Ce^{-t} + Ce^{-t} = e^{-t}$$

vilket ger C = 1/4 och därmed $z_p = e^{-t}/4$. Detta ger

$$z = z_h + z_p = Ae^t + Bte^t + \frac{e^{-t}}{4}$$

och därmed

$$y = Ax + Bx \ln x + \frac{1}{4x}.$$

- a) T skall vara en funktion från V till W som uppfyller att för varje $\mathbf{u},\mathbf{v}\in V$ och varje skalär c
 - i. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ (additiv)
 - ii. $T(c\mathbf{u}) = cT(\mathbf{u})$ (homogen).
- b) Det följer att $T(\mathbf{0}) = T(0\mathbf{0}) = \mathbf{0}T(\mathbf{0}) = \mathbf{0}$ (homogeniteten användes i den andra likheten). Nu, antag $c_1\mathbf{v}_1 + \ldots + c_n\mathbf{v}_n = \mathbf{0}$ och visa $c_i = 0$. Det följer att $T(c_1\mathbf{v}_1 + \ldots + c_n\mathbf{v}_n) = T(\mathbf{0}) = \mathbf{0}$. Från lineariteten följer det därför $c_1T(\mathbf{v}_1) + \ldots + c_nT(\mathbf{v}_1) = \mathbf{0}$. Antagandet att $\{T(\mathbf{v}_1), \ldots, T(\mathbf{v}_n)\}$ är linjärt oberoende följer det att $c_i = 0$.