Министерство образования и науки Российской Федерации Санкт-Петербургский политехнический университет Петра Великого

Институт информационных технологий и управления Кафедра «Информационная безопасность компьютерных систем»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 7

по дисциплине «Электроника и схемотехника»

Выполнил

студент гр. 23508/4 Е.Г.Проценко

Проверил

доцент А.Ф. Супрун

1. Цель работы

Изучить схемотехнику и работу транзисторного резистивного усилителя. Экспериментально исследовать амплитудно-частотную характеристику (AЧX) усилительного каскада.

2. Ход работы

2.1. Модель исследуемой цепи

2.2. Исследования влияния на АЧХ усилителя сопротивления нагрузки

2.2.1. Для $R_3 = 100 \ \mathrm{Om}$

Частота f , Гц	$U_{\scriptscriptstyle m BMX}$, $\mu m B$	$k = (U_{\text{вых}}/U_{\text{вход}})$
100	27,24	0,002724
200	54,483	0,0054483
300	81,734	0,0081734
450	122,632	0,0122632
700	190,867	0,0190867
1000	272,884	0,0272884
1500	409,869	0,0409869
2000	547,132	0,0547132
3000	822,327	0,0822327
4500	1237	0,1237
6000	1655	0,1655
8000	2202	0,2202

11000	3006	0,3006
15000	4047	0,4047
20000	5284	0,5284
30000	7492	0,7492
40000	9302	0,9302
60000	11785	1,1785
80000	13092	1,3092
120000	13719	1,3719
150000	13361	1,3361
200000	12241	1,2241

2.2.2. Для $R_3 = 1$ кОм

Частота f , Гц	$U_{\scriptscriptstyle m BMX}$, $\mu{ m B}$	$k = (U_{\text{вых}}/U_{\text{вход}})$
100	27,24	0,002724
200	54,483	0,0054483
300	81,734	0,0081734
500	136,271	0,0136271
700	190,867	0,0190867
1000	272,884	0,0272884
1500	409,869	0,0409869
2000	547,13	0,054713
2500	684,619	0,0684619
3000	822,329	0,0822329
4000	1099	0,1099
5000	1376	0,1376
7000	1930	0,1930
9000	2472	0,2472
11000	3006	0,3006
15000	4047	0,4047
20000	5284	0,5284
30000	7492	0,7492
40000	9302	0,9302
60000	11785	1,1785
90000	13438	1,3438
130000	13647	1,3647
170000	12955	1,2955
200000	12241	1,2241

2.2.3. Для $R_3 = 3,7$ кОм

Частота <i>f</i> , Гц	$U_{\scriptscriptstyle m BMX}$, $\mu m B$	$k = (U_{\text{вых}}/U_{\text{вход}})$
100	24,131	0,0024131
200	48,058	0,0048058
300	71,708	0,0071708
450	105,76	0,010576
600	138,155	0,0138155
800	178,005	0,0178005
1000	213,68	0,021368
1500	285,127	0,0285127
2000	336,06	0,033606
3000	402,502	0,0402502
5000	488,069	0,0488069
10000	691,576	0,0691576
15000	923,072	0,0923072
20000	1170	0,1170
25000	1422	0,1422
35000	1930	0,1930
45000	2427	0,2427
55000	2902	0,2902
70000	3556	0,3556
100000	4590	0,4590
130000	5219	0,5219
170000	5527	0,5527
200000	5497	0,5497

2.3. Исследования АЧХ усилителя в области низких частот

Частота <i>f</i> , Гц	$k = (U_{\text{вых}}/U_{\text{вход}})$		
	$C_1 = 10 \text{ н}\Phi$	$C_1 = 24 \text{ н}\Phi$	$C_1 = 100 \text{ н}\Phi$
100	0,0254644	0,0607798	0,2332
200	0,0509276	0,1196	0,384
300	0,076617	0,1751	0,467
400	0,1018	0,2263	0,5157
500	0,1274	0,2728	0,5512
700	0,1782	0,3544	0,5956
900	0,229	0,4229	0,6391
1100	0,2796	0,4851	0,6821
1400	0,3566	0,5712	0,7527
1700	0,4307	0,6539	0,8298
2000	0,5054	0,7356	0,9107
2500	0,6283	0,8718	1,0546
3000	0,7491	1,0085	1,2045
3500	0,8667	1,1446	1,3578
4500	1,0926	1,4145	1,6661
6000	1,404	1,7998	2,1174
8000	1,7524	2,2501	2,6586
10000	2,032	2,6279	3,1256
15000	2,4962	3,297	3,99
30000	2,9306	4,0264	5,0362
35000	2,9524	4,088	5,1496
40000	2,9493	4,112	5,2108
50000	2,8985	4,0898	5,2385
60000	2,814	4,0135	5,1925
70000	2,7125	3,9078	5,1041
80000	2,6033	3,7854	4,9898
90000	2,4917	3,6542	4,8609
100000	2,381	3,5218	4,7219

2.4. Исследования АЧХ усилителя в области высоких частот

Частота f, Гц	$k = (U_{\text{вых}}/U_{\text{вход}})$		
	$C_5 = 10 \; \text{н} \Phi$	$C_5 = 24 \text{ н}\Phi$	$C_5 = 100 \ \text{н}\Phi$
100	0,0254644	0,022588	0,139985
200	0,050927	0,045166	0,27955
300	0,076386	0,0677239	0,418279
400	0,1018	0,0902513	0,0555769
600	0,1527	0,1352	0,0825496
800	0,2035	0,18	0,1086
1000	0,2542	0,2241	0,1335
1500	0,3803	0,3328	0,1895
2500	0,6271	0,5366	0,2734
3500	0,8635	0,7167	0,326
5000	1,192	0,9376	0,37
7000	1,5727	1,1471	0,3975
9000	1,8853	1,2815	0,4099
13000	2,3323	1,4269	0,4192
20000	2,7368	1,5128	0,4192
30000	2,9304	1,5191	0,4084
40000	2,9493	1,481	0,3924
50000	2,8984	1,4248	0,3737
60000	2,8139	1,3604	0,3526
70000	2,7125	1,2932	0,3342
80000	2,6033	1,2261	0,3158
90000	2,4917	1,161	0,2969
100000	2,3809	1,0991	0,2801
120000	2,1707	0,9867	0,2494
150000	1,8946	0,8467	0,2131
175000	1,7013	0,753	0,1879
200000	1,5381	0,6758	0,1689

3. Вывод

- При увеличении сопротивления нагрузки коэффициент усиления сигнала уменьшается.
- При увеличении емкости разделительного конденсатора коэффициент усиления в области низких и средних частот возрастает. Это ожидаемо, так как разделительный конденсатор обладает существенным сопротивлением при малых частотах, а увеличение емкости снижает это сопротивление.
- При увеличении емкости шунтирующего конденсатора коэффициент усиления в области средних и высоких частот уменьшается. Это подтверждает тот факт, что этот конденсатор служит для ограничения пропускания на высоких частотах.