IMPORT THE LIBRARIES

```
In [2]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        from scipy import stats
        from sklearn.preprocessing import LabelEncoder
        from sklearn.preprocessing import StandardScaler
        from sklearn.model_selection import train_test_split
```

IMPORT THE DATASET

In [3]: df=pd.read_csv("Titanic-Dataset.csv")

In [4]: df

Out[4]:

•	Passengerld	Survived	Pclass	Name		Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
-) 1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
:	2 3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	s
:	3 4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	1 5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
88	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
88	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
88	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
88	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
89	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

891 rows × 12 columns

In [5]:

df.head()

Out[5]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	s
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

In [6]: df.shape

Out[6]: (891, 12)

In [7]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns):

Data	COTUMITS (COC	ai iz coiumis).						
#	Column	Non-Null Count	Dtype					
0	PassengerId	891 non-null	int64					
1	Survived	891 non-null	int64					
2	Pclass	891 non-null	int64					
3	Name	891 non-null	object					
4	Sex	891 non-null	object					
5	Age	714 non-null	float64					
6	SibSp	891 non-null	int64					
7	Parch	891 non-null	int64					
8	Ticket	891 non-null	object					
9	Fare	891 non-null	float64					
10	Cabin	204 non-null	object					
11	Embarked	889 non-null	object					
<pre>dtypes: float64(2), int64(5), object(5)</pre>								

memory usage: 83.7+ KB

In [8]: df.describe()

Out[8]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [9]: corr=df.corr()

corr

C:\Users\pbalu\AppData\Local\Temp\ipykernel_13168\3182140910.py:1: FutureWarning: The default value of numeric_only in DataFr ame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of nume ric_only to silence this warning. corr=df.corr()

Out[9]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
Passengerld	1.000000	-0.005007	-0.035144	0.036847	-0.057527	-0.001652	0.012658
Survived	-0.005007	1.000000	-0.338481	-0.077221	-0.035322	0.081629	0.257307
Pclass	-0.035144	-0.338481	1.000000	-0.369226	0.083081	0.018443	-0.549500
Age	0.036847	-0.077221	-0.369226	1.000000	-0.308247	-0.189119	0.096067
SibSp	-0.057527	-0.035322	0.083081	-0.308247	1.000000	0.414838	0.159651
Parch	-0.001652	0.081629	0.018443	-0.189119	0.414838	1.000000	0.216225
Fare	0.012658	0.257307	-0.549500	0.096067	0.159651	0.216225	1.000000

In [10]: |plt.subplots(figsize=(16,9))

sns.heatmap(corr,annot=True)

Out[10]: <Axes: >

In [11]: df.Survived.value_counts() # We have to categories the things in the cloumns which are sub and can be able to produce a new fee

Out[11]: 0

549 342

Name: Survived, dtype: int64

```
Out[12]: male
                   577
                   314
         female
         Name: Sex, dtype: int64
In [13]: df.Embarked.value_counts()
Out[13]: S
              644
         \mathcal{C}
              168
               77
         Name: Embarked, dtype: int64
         CHECK FOR NULL VALUES
In [14]: df.isnull().any()
Out[14]: PassengerId
         Survived
                         False
         Pclass
                         False
         Name
                         False
                         False
         Sex
         Age
                          True
         SibSp
                         False
         Parch
                         False
         Ticket
                         False
         Fare
                         False
         Cabin
                          True
         Embarked
                          True
         dtype: bool
In [15]: | df.isnull().sum()
Out[15]: PassengerId
         Survived
                           0
         Pclass
                           0
                           0
         Name
         Sex
                           0
         Age
                         177
         SibSp
                           0
                           0
         Parch
         Ticket
                           0
         Fare
                           0
         Cabin
                         687
         Embarked
         dtype: int64
         Fill null values in the 'Age' column with the mean age
In [16]: mean_age = df['Age'].mean()
         df['Age'].fillna(mean_age, inplace=True)
         Fill null values in the 'Embarked' column with the most common value
In [17]: | most_common_embarked = df['Embarked'].mode()[0]
         df['Embarked'].fillna(most_common_embarked, inplace=True)
In [18]: df.drop(['Cabin'],axis=1, inplace=True)
In [19]: df.drop(['Ticket'],axis=1, inplace=True)
In [20]: df.drop(['Name'],axis=1,inplace=True)
In [21]: print(df.isnull().sum())
         PassengerId
         Survived
                         0
         Pclass
                         0
                         0
         Sex
         Age
                         0
         SibSp
                         0
         Parch
         Fare
                         0
         Embarked
         dtype: int64
```

In [12]: df.Sex.value_counts()

```
In [22]: df.shape
Out[22]: (891, 9)
```

Data Visualization

```
In [23]: # Visualize the distribution of the 'Survived' column (0 = Not Survived, 1 = Survived)
sns.countplot(data-df, x='Survived')
plt.xiabel('Survived')
plt.xiabel('Survived')
plt.show()

500

400

200

100

In [26]: df.boxplot('Age')
plt.show()
```


In [28]: #Visualize the distribution of the 'Fare' column and detect outliers we will handle outliers in the next step
sns.boxplot(data=df, x='Fare')
plt.title('Fare Distribution')
plt.xlabel('Fare')
plt.show()


```
In [29]: corr_matrix = df.corr()
    sns.heatmap(corr_matrix, annot=True,cmap='coolwarm')
    plt.title('Correlation Heatmap')
    plt.show()
```

C:\Users\pbalu\AppData\Local\Temp\ipykernel_13168\554220597.py:1: FutureWarning: The default value of numeric_only in DataFra me.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numer ic_only to silence this warning.

corr_matrix = df.corr()

5. Detect and Handle Outliers

```
In [30]: z_scores = np.abs(stats.zscore(df['Age']))
    max_threshold=3
    outliers = df['Age'][z_scores > max_threshold]

# Print and visualize the outliers
    print("Outliers detected using Z-Score:")
    print(outliers)

Outliers detected using Z-Score:
    96    71.0
    116    70.5
```

116 70.5 493 71.0 630 80.0 672 70.0 745 70.0

851 74.0

Name: Age, dtype: float64

```
In [31]: | z_scores = np.abs(stats.zscore(df['Fare']))
          max_threshold=3
          outliers = df['Fare'][z_scores > max_threshold]
          # Print and visualize the outliers
          print("Outliers detected using Z-Score:")
          print(outliers)
          Outliers detected using Z-Score:
          27
                 263.0000
                 263.0000
          88
          118
                 247.5208
          258
                 512.3292
          299
                 247.5208
                 262.3750
          311
                 263.0000
          341
          377
                 211.5000
          380
                 227.5250
          438
                 263.0000
          527
                 221.7792
          557
                 227.5250
          679
                 512.3292
          689
                 211.3375
          700
                 227.5250
                 227.5250
          716
          730
                 211.3375
          737
                 512.3292
          742
                 262.3750
          779
                 211.3375
          Name: Fare, dtype: float64
In [32]: column name = 'Fare'
          # Calculate the first quartile (Q1) and third quartile (Q3)
          Q1 = df[column_name].quantile(0.25)
          Q3 = df[column_name].quantile(0.75)
          # Calculate the IQR
          IQR = Q3 - Q1
          # Define the lower and upper bounds for outliers
          lower_bound = Q1 - 1.5 * IQR
          upper_bound = Q3 + 1.5 * IQR
          # Filter rows with values outside the IQR bounds
          df_cleaned = df[(df[column_name] > lower_bound) & (df[column_name] <upper_bound)]</pre>
          # Display the original and cleaned DataFrame sizes
         print(f"Original DataFrame size: {df.shape}")
print(f"Cleaned DataFrame size: {df_cleaned.shape}")
          df_cleaned
          Original DataFrame size: (891, 9)
          Cleaned DataFrame size: (775, 9)
```

Out[32]:

	Passengerld	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	1	0	3	male	22.000000	1	0	7.2500	S
2	3	1	3	female	26.000000	0	0	7.9250	S
3	4	1	1	female	35.000000	1	0	53.1000	S
4	5	0	3	male	35.000000	0	0	8.0500	S
5	6	0	3	male	29.699118	0	0	8.4583	Q
886	887	0	2	male	27.000000	0	0	13.0000	S
887	888	1	1	female	19.000000	0	0	30.0000	S
888	889	0	3	female	29.699118	1	2	23.4500	S
889	890	1	1	male	26.000000	0	0	30.0000	С
890	891	0	3	male	32.000000	0	0	7.7500	Q

775 rows × 9 columns

```
Out[33]:
               PassengerId Survived Pclass
                                             Sex
                                                       Age
                                                           SibSp Parch
                                                                            Fare Embarked
                                                  22.000000
                                                                          7.2500
                                                                                         s
                                            male
                        3
                                                  26.000000
                                                                       0
                                                                          7.9250
                                                                                         s
                                        3 female
                                                  35.000000
                                                                         53.1000
                                                                                         s
                                           female
                        5
                                                  35.000000
                                                                       0
                                                                          8.0500
                                                                                         s
                                            male
                        6
                                                  29.699118
                                                                          8.4583
                                                                                        Q
                                        3
                                            male
           95
                       96
                                 0
                                        3
                                                  29.699118
                                                                0
                                                                      0
                                                                          8.0500
                                                                                         s
                                            male
                       97
                                                                0
                                                                                         С
           96
                                        1
                                            male
                                                  71.000000
                                                                       0 34.6542
                                                                                         С
           97
                       98
                                            male
                                                  23.000000
                                                                       1 63.3583
                                                                                         s
           98
                       99
                                        2 female
                                                  34.000000
                                                                0
                                                                       1 23.0000
                                                                                         s
           99
                      100
                                            male 34.000000
                                                                       0 26.0000
          91 rows × 9 columns
In [34]: sns.boxplot(df_cleaned)
            600
            400
            200
              0
                PassengerIdSurvived
                                       Pclass
                                                   Age
                                                            SibSp
                                                                      Parch
                                                                                  Fare
In [36]: df=df_cleaned
In [38]: x=df.drop('Survived', axis=1)
          y=df['Survived']
In [39]: x.head()
Out[39]:
              Passengerld Pclass
                                             Age SibSp Parch
                                                                  Fare Embarked
                                   Sex
           0
                                  male
                                        22.000000
                                                                7.2500
                                                                              S
                       3
                                 female
                                        26.000000
                                                      0
                                                            0
                                                                7.9250
                                                                              S
                                        35.000000
                                                            0
                                                               53.1000
                                                                              S
                       5
                              3
                                        35.000000
                                                      0
                                                            0
                                                                8.0500
                                                                              S
           5
                                        29.699118
                                                                8.4583
                                                                              Q
In [40]: y.head()
Out[40]:
          0
                0
          2
                1
          3
                1
          4
                0
          5
          Name: Survived, dtype: int64
          Perform Encoding
```

In [33]: df_cleaned.head(91)

In [41]: en = LabelEncoder()

x['Sex'] = en.fit_transform(x['Sex'])

```
In [42]: x.head()
Out[42]:
             Passengerld Pclass Sex
                                        Age SibSp Parch
                                                            Fare Embarked
          0
                                 1 22.000000
                                                          7.2500
                                                                        s
                             3
          2
                      3
                            3
                                 0 26.000000
                                                       0
                                                                        S
                                                          7.9250
          3
                                 0 35.000000
                                                       0 53.1000
                                                                        s
                      5
                            3
                                 1 35.000000
                                                       0
                                                          8.0500
                                                                        S
                      6
                            3
                                 1 29 699118
                                                       Ω
                                                          8.4583
                                                                        Ω
In [43]: x = pd.get_dummies(x,columns=['Embarked'])
In [44]: x.head()
Out[44]:
             Passengerld Pclass Sex
                                        Age SibSp Parch
                                                            Fare Embarked_C Embarked_Q Embarked_S
                                                                                                 1
                                 1 22.000000
                                                          7.2500
                                                                          0
                            3
                                 0 26.000000
                                                       0
                                                          7.9250
                                                                          0
                                                                                      0
                                 0 35.000000
                                                       0 53.1000
                                                                          0
                                                                                      0
                      5
                            3
                                                 0
                                                       0
                                                                          0
                                                                                      0
                                 1 35.000000
                                                          8.0500
                                                                                                 0
                                 1 29.699118
                                                       0
                                                          8.4583
          Feature Scaling
In [45]: scale = StandardScaler()
         x[['Age', 'Fare']] = scale.fit_transform(x[['Age', 'Fare']])
In [46]: x.head()
Out[46]:
             Passengerld Pclass
                                                  Parch
                                                             Fare Embarked_C Embarked_Q Embarked_S
                                        Age SibSp
          0
                                    -0.556219
                                                                           0
                                                                                       0
                                                                                                   1
                                                       0 -0.779117
          2
                            3
                                 0 -0.243027
                                                0
                                                       0 -0.729373
                                                                           0
                                                                                       0
                                                                                                   1
                                                                           0
                                                                                       0
                      4
                                    0.461654
                                                       0 2.599828
          3
                             1
                                                1
                                                                                                  1
                                                                           0
                      5
                            3
                                                0
                                                       0 -0.720161
                                                                                       0
                                    0.461654
                                                       0 -0.690071
                                                                           0
                                    0.046606
         Splitting the data into Train and Test
In [47]: | x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
In [48]: print(x_train.shape)
          print(x_test.shape)
```

```
print(y_train.shape)
         print(y test.shape)
         y_train.head()
          (620, 10)
          (155, 10)
          (620,)
          (155,)
Out[48]: 147
                 0
         868
         60
                 0
          468
                 0
          777
         Name: Survived, dtype: int64
```