Variational Steady State Simulation for Collective Dephasing

Tanmoy Pandit

Abstract

This repository implements a variational method to approximate the non-equilibrium steady state (NESS) of a dissipative quantum many-body system subject to collective dephasing. The method is based on the McLachlan variational principle, where the trace norm of the Lindblad time derivative $\text{Tr}|\dot{\rho}|$ is minimized over a variational class of product states. The code is built using the QuTiP library for open quantum system simulation and uses SciPy's optimization routines to perform parameter updates.

Motivation and Context

Understanding steady states in dissipative quantum systems is a central challenge in modern quantum optics, non-equilibrium statistical mechanics, and quantum information. Analytical solutions are rare, and brute-force numerical simulation of the full Liouvillian quickly becomes intractable for large systems. Variational methods offer a tractable alternative by projecting the complex dynamics onto a low-dimensional ansatz manifold.

In this work, inspired by the approach proposed by H. Weimer [PRL 114, 040402 (2015)], we variationally minimize the norm of the time derivative of the density matrix within a chosen variational family. This allows us to approximate the NESS without directly integrating the master equation.

Physical Model

We consider a minimal model of two qubits with collective dephasing, driven by a transverse field and coupled via a $Z \otimes Z$ Ising-type interaction. The total Hamiltonian is:

$$H = \frac{W}{2}(X_1 + X_2) + \frac{V}{4}Z_1Z_2 + H_{\text{eff}},$$

where H_{eff} represents a mean-field correction derived from the current variational state to account for interaction feedback. The dissipation is modeled via a set of collapse operators:

$$L_k = \sigma_k^-, \quad \text{for } k = 1, 2,$$

which represent spontaneous emission or local amplitude damping.

Variational Ansatz and Cost Function

Each qubit state is parametrized on the Bloch sphere:

$$\rho_i(\vec{\alpha}_i) = \frac{1}{2} \left(\mathbb{I} + \alpha_{i,x} X + \alpha_{i,y} Y + \alpha_{i,z} Z \right),$$

ensuring positivity via the constraint $\|\vec{\alpha}_i\|^2 \leq 1$. The full two-qubit state is approximated as a tensor product:

$$\rho_{12} = \rho_1 \otimes \rho_2.$$

The variational cost function is:

$$\mathcal{C}[\vec{\alpha}] = \text{Tr}|\dot{\rho}_{12}| = \text{Tr}\left|-i[H, \rho_{12}] + \sum_{k} \left(L_k \rho_{12} L_k^{\dagger} - \frac{1}{2} \{L_k^{\dagger} L_k, \rho_{12}\}\right)\right|,$$

which is minimized using the Sequential Least Squares Quadratic Programming (SLSQP) method, subject to Bloch norm constraints.

Code Structure

- Operator Initialization: Pauli matrices and identity operators are defined for tensor product construction.
- Cost Function fun(alpha): Builds the Hamiltonian and Lindbladian using the variational parameters, then computes the trace norm of $\dot{\rho}$.
- Callback Tracking: Stores optimization history of the cost function and variational parameters.
- Optimization Routine: Calls scipy.optimize.minimize() with inequality constraints to enforce physicality of ρ .
- **Plotting Utilities:** Plots the cost function convergence and evolution of the variational parameters.

Results and Interpretation

The notebook demonstrates:

- 1. Convergence of the cost function $\text{Tr}|\dot{\rho}| \to 0$ as the system approaches the steady state.
- 2. Stabilization of the variational parameters $\vec{\alpha}$ indicating physical consistency.
- 3. Expected symmetry between qubits in the final ρ under uniform parameters and interactions.

This approach can be generalized to larger systems or more sophisticated variational manifolds (e.g., matrix product operators or neural-network states).

Reference

This code is based on the variational framework proposed in:

• H. Weimer, Variational Principle for Steady States of Dissipative Quantum Many-Body Systems, Phys. Rev. Lett. **114**, 040402 (2015). DOI: 10.1103/PhysRevLett.114.040402

Dependencies

- Python 3.7+
- qutip Quantum Toolbox in Python
- numpy Numerical arrays
- scipy Optimization routines
- matplotlib Plotting

Future Directions

Future extensions may include:

- Scaling the method to larger spin chains using product states or tensor networks.
- Introducing correlated variational ansatz with entanglement.
- Exploring different noise models (e.g., collective emission, phase damping).
- Benchmarking against exact diagonalization and MPDO simulations.