CPSC 131 Data Structures Concepts

Dr. Anand Panangadan apanangadan@fullerton.edu

Goals

- Graphs
 - Terminology
 - Applications
 - Abstract Data Structure
 - Two possible implementations
 - 1. Adjacency list
 - 2. Adjacency matrix

Graphs

- A graph is a pair (V, E), where
 - V is a set of nodes, called vertices
 - E is a collection of pairs of vertices, called edges
 - Vertices and edges are positions and store elements

Fall 2022

Graphs

- Example:
 - A vertex: an airport (three-letter airport code)
 - An edge: a flight route between two airports (mileage of the route)

Fall 2022

Edge Types

- Directed edge
 - ordered pair of vertices (u,v)
 - first vertex u is the origin
 - second vertex v is the destination
 - e.g., a flight
- Undirected edge
 - unordered pair of vertices (u,v)
 - e.g., a flight route
- Directed graph
 - all the edges are directed
 - e.g., route network
- Undirected graph
 - all the edges are undirected
 - e.g., flight network

Applications

- Electronic circuits
 - Printed circuit board
 - Integrated circuit
- Transportation networks
 - Highway network
 - Flight network
- Computer networks
 - Local area network
 - Internet
 - Web

Social network

What are:

- Vertices
- Edges
- Vertex element/label
- Edge element/label

State map

What are:

- Vertices
- Edges
- Vertex element/label
- Edge element/label

Actor collaboration network

What are:

- Vertices
- Edges
- Vertex element/label
- Edge element/label

Terminology

- End vertices (or endpoints) of an edge
 - Endpoints of a?
 - U and V
- Edges incident on a vertex
 - Incident on V?
 - a, d, and b
- Adjacent vertices
 - U and V?
 - U and V are adjacent
 - U and X?
- Degree of a vertex
 - Degree of X?
 - X has degree 4

Terminology (cont.)

Path

- sequence of alternating vertices and edges
- begins with a vertex
- ends with a vertex
- each edge is preceded and followed by its endpoints
- Simple path
 - path such that all its vertices and edges are distinct
- Examples
 - P_1 =(V,b,X,h,Z) is a simple path
 - P₂=(U,c,W,e,X,g,Y,f,W,d,V) is a path that is not simple

Terminology (cont.)

- Tree: an undirected connected graph that
 - is acyclic (no cycles)
 - OR would become disconnected if an edge is removed
 - OR any two vertices are connected by a unique simple path.

Complete

- **Complete** Graph: each pair of graph vertices is connected by an edge.
- Bipartite Graph: a graph whose vertices can be divided into two disjoint groups such that no two vertices in the same group share an edge
- Directed Acyclic Graph: a directed graph with no cycles

Graph Representations

- How to represent a graph in a computer program?
- Efficiently:
 - Check if two vertices are adjacent?
 - List all adjacent vertices of a vertex
 - Add/remove a vertex to/from the graph
 - Add/remove an edge to/from the graph

Two representations of a Graph

- Adjacency List
- Adjacency Matrix

Adjacency List

 Separate list of incident edges for each vertex

Property 1

$$\sum_{v} \deg(v) = 2m$$

Proof: each edge is counted twice

Notation

n number of vertices

m number of edges

deg(v) degree of vertex v

Example

$$n = 4$$

$$\mathbf{m} = 6$$

Property 2

In an undirected graph with no self-loops and no multiple edges

$$m \leq n (n-1)/2$$

Proof: each vertex has degree at most (*n* - 1)

Notation

n number of vertices

m number of edges

deg(v) degree of vertex v

Example

$$n = 4$$

$$\mathbf{m} = 6$$

Performance of Adjacency List structure

n vertices, m edgesno parallel edges, no self-loops	Adjacency List	
Space	O(n+m)	
v.incidentEdges()	$O(\deg(v))$	
v.isAdjacentTo (w)	$O(\min(\deg(v), \deg(w)))$	
insertVertex(o)	O(1)	
insertEdge(v , w , o)	O(1)	
eraseVertex(v)	$O(\deg(v))$	
eraseEdge(e)	O(1)	
vertices()	O(n)	
edges()	O(m)	
$oldsymbol{e}.$ isIncidentOn($oldsymbol{v}$)	O(1)	
e.endVertices()	O(1)	
e.opposite(v)	O(1)	

Adjacency Matrix

- 2D-array
 - True when cell myarray[i][j] represents an edge
 - False for nonadjacent vertices

Comparative performance

■ n vertices, m edges	Adjacency List	Adj. Matrix
Space	O(n + m)	$O(n^2)$
List adjacent vertices of v	O(n)	$\mathrm{O}(n)$
v.isAdjacentTo (w)	O(n)	O(1)
insertVertex(v)	O(1)	$O(n^2)$
insertEdge(v , w)	O(1)	O(1)