Homework 8

Madilyn Simons

- 1. (a) Since $(x^7+25x^6-25x+5)$ is a nonconstant polynomial in \mathbb{Q} , $\mathbb{Q}/(x^7+25x^6-25x+5)$ is a field if and only if $(x^7+25x^6-25x+5)$ is irreducible in \mathbb{Q} . We know that $(x^7+25x^6-25x+5)$ is irreducible in \mathbb{Q} by Eisenstein's Criterion for prime 5. Thus, $\mathbb{Q}/(x^7+25x^6-25x+5)$ is a field.
 - (b) Consider $\mathbb{Z}/2\mathbb{Z}$. If $f(x) = x^3 + 2x^2 x + 1$, then $\overline{f}(x) = x^3 x + 1$. We know that $\overline{f}(x)$ is irreducible in $\mathbb{Z}/2\mathbb{Z}$ because $\overline{f}(0) = \overline{f}(1) = 1$. Since $\overline{f}(x)$ is irreducible in $\mathbb{Z}/2\mathbb{Z}$, f(x) is irreducible in \mathbb{Q} , which means that $\mathbb{Q}[x]/(x^3 + 2x^2 x + 1)$ is a field.
 - (c) Only first-degree and second-degree polynomials can be irreducible in $\mathbb{R}[x]$. Since $(x^5+42x^4+\pi x^3-1729x^2+ln(2)x-2019)$ is a fifth-degree polynomial, it is reducible in $\mathbb{R}[x]$. Therefore $\mathbb{R}[x]/(x^5+42x^4+\pi x^3-1729x^2+ln(2)x-2019)$ is NOT a field.
- 2. (a) Let $f(x) = x^3 + 2x + 1$. We know that f(x) is irreducible in $\mathbb{Z}/3\mathbb{Z}$ because f(0) = f(1) = f(2) = 1. Therefore, K is a field.
- 3. To prove that (a,b) = (d), first let us prove that $(a,b) \subseteq (d)$. Let $ar_1 + br_2$ be any element of (a,b). Since d is the greatest common divisor of a and b, a = dx and b = dy for some integers x and y. Therefore, $ar_1 + br_2 = dxr_1 + dyr_2 = d(xr_1 + dyr_2)$, which is an element of (d). Thus, $(a,b) \subseteq (d)$.

Next, let us prove $(d) \subseteq (a,b)$. Since d is the greatest common divisor of a and b, d = au + bv for some integers u and v. Let rd be any element of (d). Therefore, $rd = r(au + bv) = rau + rbv = a(ru) + b(rv) \subseteq (a,b)$. Thus $(d) \subseteq (a,b)$.

Since $(d) \subseteq (a, b)$ and $(a, b) \subseteq (d)$, (a, b) = (d).

4. Let $a, b \in I$ such that

$$a = 2a_0 + 2a_1x + \dots + 2a_nx^n$$

and

$$b = 2b_0 + 2b_1x + \dots + 2b_nx^n$$

and a_i and b_i are integers for all i. We know that I holds under subtraction because

$$a - b = (2a_0 + 2a_1x + \dots + 2a_nx^n) - (2b_0 + 2b_1x + \dots + 2b_nx^n)$$

= $(2a_0 - 2b_0) + (2a_1 - 2b_1)x + \dots + (2a_n - 2b_n)x^n$
= $2(a_0 - b_0) + 2(a_1 - b_1)x + \dots + 2(a_n - b_n)x^n$

Next let

$$c = c_0 + c_1 x + \dots + c_n x^n$$

be an element of $\mathbb{Z}[x]$. We know that I absorbs multiplication because

$$ca = (c_0 + c_1 x + \dots + c_n x^n)(2a_0 + 2a_1 x + \dots + 2a_n x^n)$$

$$= 2(c_0 + c_1 x + \dots + c_n x^n)(a_0 + a_1 x + \dots + a_n x^n)$$

$$= 2(c_0 a_0 + (c_0 a_1 + c_1 a_0)x + (c_0 a_2 + c_1 a_1 + c_2 a_0)x^2 + \dots + c_n a_n x^n)$$

$$= 2c_0 a_0 + 2(c_0 a_1 + c_1 a_0)x + 2(c_0 a_2 + c_1 a_1 + c_2 a_0)x^2 + \dots + 2c_n a_n x^n$$

$$\subseteq I$$

and

$$ac = (2a_0 + 2a_1x + \dots + 2a_nx^n)(c_0 + c_1x + \dots + c_nx^n)$$

$$= 2(a_0 + a_1x + \dots + a_nx^n)(c_0 + c_1x + \dots + c_nx^n)$$

$$= 2(a_0c_0 + (a_0c_1 + a_1c_0)x + (a_0c_2 + a_1c_1 + a_2c_0)x^2 + \dots + a_nc_nx^n)$$

$$= 2a_0c_0 + 2(a_0c_1 + a_1c_0)x + 2(a_0c_2 + a_1c_1 + a_2c_0)x^2 + \dots + 2a_nc_nx^n$$

$$\subseteq I$$

Therefore, I is an ideal of $\mathbb{Z}[x]$.

5. I claim that $I = (0, x^2 - 7)$. We know that I is finitely generated because for any $g(x) \in I$ can be generated from $f(x) = x^2 - 7$ as such

$$g(7) = f(7)q(7) + r(7)$$

$$0 = 0 * q(7) + r(7)$$

$$0 = 0 + r(7)$$

$$0 = r(7)$$

Therefore I is finitely generated.