

ALGORITMIA BÁSICA  $3^o$  Grado en Ingeniería en Informática. Itinerario Computación Curso 2022/23

## Práctica 1: Algoritmos voraces

1 de marzo de 2023

# Organización general de las prácticas.

#### Equipos de trabajo

Se han formado equipos de dos personas. Si una de las dos abandona la asignatura, la otra deberá terminar en solitario.

#### Entrega de la práctica

Las entregas de prácticas se realizarán en el computador hendrix.

■ La entrega de la práctica mediante la ejecución de: someter ab\_22 practica.tar

El fichero practica.tar contendrá un directorio denominado practica\_NIA1\_NIA2 (siendo NIA1 y NIA2 los números identificadores de cada estudiante asignados por la Universidad de Zaragoza, y NIA1 será el NIA menor. En el caso de un grupo de prácticas formado por un único alumno, la carpeta tendrá como nombre practica\_NIA con el identificador de ese alumno) con los ficheros de texto incluyendo:

 Descripción general del programa: cómo está organizado, qué se puede y qué no se puede hacer (tiene que llamarse LEEME).

Contendrá en sus primeras líneas la lista de integrantes del grupo, con el siguiente formato:

Apellido1 Apellido2, Nombre [tab] correo@electronico [tab] login en hendrix Apellido1 Apellido2, Nombre [tab] correo@electronico [tab] login en hendrix

en orden alfabético. Donde [tab] representa el caracter tabulador.

Listados del código debidamente comentados y dispuestos para ser compilados y utilizados.
 Deberán seguir una estructura lógica para poder encontrar y navegar adecuadamente cada una de las partes de la práctica.

- Un programa para la shell denominado ejecutar.sh que automatice la compilación y ejecución de los programas entregados con algunos casos de prueba. Deberá funcionar en hendrix. Idealmente, este script llamaría a otro por cada una de las partes de la práctica, que deberían poder ejecutarse de manera independiente.
- Los ficheros auxiliares de entrada necesarios para ejecutar las pruebas del punto anterior.
- Un fichero en formato PDF con el análisis de las pruebas realizadas (máximo 3 páginas, sin portada). Indicar: nombre, apellidos y NIA de cada miembro del grupo de prácticas.
- La fecha límite de entrega para la primera convocatoria es el día anterior a la sesión de evaluación de las prácticas. Es decir:

| Grupo       | Fecha y hora      |
|-------------|-------------------|
| Jueves A    | 12/04/2023 8:00AM |
| Viernes A   | 13/04/2023 8:00AM |
| Miércoles A | 18/04/2023 8:00AM |
| Jueves B    | 19/04/2023 8:00AM |
| Viernes B   | 20/04/2023 8:00AM |
| Miércoles B | 25/04/2023 8:00AM |

#### Evaluación

- En la calificación se tendrán en cuenta los siguientes aspectos: documentación, funcionamiento, implementación, diseño de tests de pruebas, análisis de las pruebas realizadas y facilidad para la repetición de las pruebas por los profesores.
- Se aplicarán las reglas de tratamiento de casos de plagio explicadas en la presentación de la asignatura.

### Aproximación a la criptogafía

Vamos a desarrollar un sistema de cifrado de clave pública sencillo. Se trata del sistema descrito por Merkle y Hellman [?], y está basado en el problema de la mochila.

Para empezar, vamos a recordar una versión simple del problema generalizado de la mochila: "Dados una mochila de capacidad N y un número de 'objetos' de volúmenes  $e_i$ ,  $i \in \{1, 2, ..., n\}$ , el objetivo consiste en llenar completamente la mochila con los objetos siempre que sea posible; esto es, se trata de encontrar un subconjunto  $I \subseteq \{1, 2, ..., n\}$  tal que  $\sum_{i \in I} e_i = N$ , si es que existe tal subconjunto." Más formalmente: "Dado un conjunto  $\{e_i\}$  con n enteros positivos y un entero N, encontrar un entero k que expresado en binario con n bits,  $k = (b_n, ..., b_2, b_1)$  y tal que  $\sum_{i \in I} b_i \cdot e_i = N$  (el bit i,  $b_i$ , representa si el entero  $e_i$  se incluye o no)."

El problema de la mochila generalizada tiene un caso especial: cuando los valores  $e_i$ , ordenados de forma creciente, cumplen la propiedad de que cada uno es mayor que la suma de los anteriores  $(e_i > \sum_{j=1}^{i-1} e_j)$ , hablamos de la mochila fácil<sup>1</sup>. Mientras que el problema de la mochila general es muy difícil (de hecho es NP-completo), el de la mochila fácil se resuelve de modo trivial aplicando un esquema voraz.

El criptosistema de Merkle-Hellman se basa en algunas propiedades interesantes de este problema. Consideremos que el mensaje que se desea codificar está representado en binario, y dividido en bloques de tamaño n, donde cada bloque se denota como M y n es un entero escogido por el usuario.

- 1. El usuario elige una mochila fácil  $\{e_1, e_2, ..., e_n\}$ , un entero N mayor que  $\sum_{i \in I} e_i$ , y un entero grande w primo<sup>2</sup> con N y tal que 0 < w < N.
- 2. El usuario calcula  $w^{-1} \pmod{N}^3$ . Después calcula la tupla  $\{a_1, a_2, ..., a_n\}$ , definida mediante  $a_i = w \cdot e_i \pmod{N}$ . Los números  $e_i, N, w, w^{-1}$  son secretos y se publica la tupla  $a_i$ . La clave de cifrado entonces es  $K_{pub} = \{a_1, a_2, ..., a_n\}$ , y la de descifrado es  $k_{priv} = (w, N)$ .
- 3. El que quiera enviarnos un bloque de mensaje binario  $M=(M_1,M_2,...,M_n)$  tiene que calcular  $C=\sum_{i=1}^n M_i \cdot a_i$  y trasmitir ese entero.
- 4. Para descifrar el mensaje, deberemos calcular  $w^{-1} \cdot C(mod\ N)$  que corresponde a:  $V = \sum_{i=1}^{n} M_i \cdot e_i$  (ya que  $\sum_{i=1}^{n} M_i \cdot e_i \leq \sum_{i=1}^{n} e_i \leq N$ . Entonces, utilizar el algoritmo de resolu-

 $<sup>^1</sup>superincreasing\ knapsack$ 

 $<sup>^2 {\</sup>rm dos}$ enteros, w y N, se dicen primos entre sí si su máximo común divisor es 1

 $<sup>^3</sup>w^{-1}(mod\ N)=w'$  si y sólo si  $w\cdot w'=1(mod\ N)$ ; por ejemplo, el inverso de  $3(mod\ 7)$  es 5 porque  $3\cdot 5=15$  y  $15(mod\ 7)=1$ 

ción de la mochila fácil para encontrar la solución única  $M = (M_1, ..., M_n)$ , recuperando de esta forma el mensaje.

Veamos un ejemplo. Se toman como unidades del mensaje original las letras del alfabeto de 26 letras y se utiliza una codificación binaria (de longitud 5). Si la clave secreta es la 5-tupla (2,3,7,15,31) y se escoge N=61 y w=17, entonces se calcula  $w^{-1}=18=17^{-1} \pmod{61}$ . Mediante  $a_1=17\cdot 2=34 \pmod{61}$ ,  $a_2=17\cdot 3=51 \pmod{61}$ ,  $a_3=17\cdot 7=58 \pmod{61}$ ,  $a_4=17\cdot 15=11 \pmod{61}$  y  $a_5=17\cdot 31=39 \pmod{61}$ , se obtiene la clave de cifrado (34,51,58,11,39). Para enviar el mensaje "HAY" se utiliza la siguiente correspondencia:

$$H = (01000) \longrightarrow 0.34 + 1.51 + 0.58 + 0.11 + 0.39 = 51$$

$$A = (00001) \longrightarrow 0.34 + 0.51 + 0.58 + 0.11 + 1.39 = 39$$

$$Y = (11001) \longrightarrow 1.34 + 1.51 + 0.58 + 0.11 + 1.39 = 124$$
(1)

Para descifrar el mensaje (51, 39,124) primero se multiplica por 18 en módulo 61, obteniendose (3, 31, 36), y luego se resuelve el problema fácil de la mochila con la clave secreta (2,3,7,15,31) para cada uno de los tres casos, recuperando así el mensaje original.