THE OF TECHNOLOGY & SCHILLE

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani

Pilani Campus AUGS/AGSR Division

SECOND SEMESTER 2020-2021 COURSE HANDOUT (PART II)

Date: 18.1.2021

In addition to Part I (General Handout for all courses appended to the Time Table), this portion gives further specific details regarding the course.

Course No. : CHE F414

Course Title : Transport Phenomena

Instructor In-charge : BHANU VARDHAN REDDY KUNCHARAM

1. Course Description

Analogy for momentum, heat and mass transport; shell balance approach for analysis of individual and simultaneous momentum, heat and mass transport; hydrodynamic and thermal boundary layers; velocity, temperature and concentration distributions in turbulent flow; interphase transport for isothermal and non-isothermal systems.

2. Scope and Objectives

- The primary objective of the course is to develop an understanding of a unified approach to study three closely related topics: fluid dynamics, heat transfer, and mass transfer. Also, analyze the analogy in these three transport mechanisms in terms of governing laws.
- The scope of the course is to represent the process behavior mathematically by applying the following transport phenomena fundamentals:
 - o Apply the shell balance (mass, momentum and energy) to develop a system of partial/ordinary differential equations.
 - Find the required boundary conditions based on the understanding of the physics of the system.
 - O Solve governing equations to find velocity/concentration/temperature/pressure profile using appropriate analytical methods.
- Develop the equation of continuity and equation of change for mass, momentum and energy.
- Apply the equation of change to a real physical system and deduce the governing equation by eliminating few terms representing phenomena not occurring in the process.
- Familiarize with computational tools (CFD) available to solve transport phenomena problems.

3. Prescribed Text Book

T.1 Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (2007). Transport phenomena. John Wiley & Sons, 2nd Edition

4. Reference Books

- R.1 Fox and McDonald, 'Introduction to fluid dynamics,' John Wiley & Sons, 2008, 7th Ed.
- R.2 Holman, J.P., 'Heat transfer', McGraw Hill, 1997, 8th edition
- R.3 McCabe, W. L., Smith, J. C., & Harriott, P. Unit operations of chemical engineering, McGraw-Hill, 7th Edition

TECHNOLOGY & SCIENTIFE BANK

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani

Pilani Campus AUGS/AGSR Division

5. Course Plan

	Module	Lecture session	Reference	Lagraina Outcomes	
				Learning Outcomes	
1.	Basics of Momentum Transport	L1. Introduction to transport phenomena	T1:0.1-0.4	Revise the basics of heat, mass and momentum transport and their governing laws	
		L2. Mechanisms of momentum transport	T1: 1.1, 1.7	Understand the various mechanism of momentum transport	
		L3. Generalization of Newton's law of viscosity	T1:1.2	Develop the generalized form of Newton's law of viscosity	
2.	Shell Momentum Balances and Valueity	L4. Concepts of shell momentum balance and boundary conditions	T1:2.1-2.2	To find the velocity profile in a laminar flow for various systems	
	Velocity Distributions in Laminar Flow	L5. Example Problem: Flow through a circular tube	T1:2.3	To apply the shell	
		L6. Example Problem: Flow through an annulus	T1:2.4	momentum balance and develop the governing equation and find out appropriate boundary conditions	
		L7. Example Problem: Flow of two adjacent immiscible fluids	T1:2.5		
		L8. Application of shell momentum balance on narrow slit system with and without moving wall	T1: Ex 2B3- 2B4	To solve the resulting set of equation with	
		L9. Application of shell momentum balance on flow of a film on outside circular tube and annular flow with inner cylinder moving axially	T1: Ex 2B6- 2B7	appropriate analytical method and boundary conditions	
3.	Equation of	L10. Equation of Continuity	T1:3.1	To apply the equation of	
	Change for isothermal systems	L11. Equation of Motion and types of derivatives	T1:3.2-3.5	of motion and develop the governing equation	
		L12. Use of Equation of change to solve flow problems	T1:3.6	and find out appropriate boundary conditions	
		L13. Dimensional analysis and velocity profile development in flow near rotating sphere and cone and plate viscometer	T1:3.7	To solve the resulting set of equation with appropriate analytical	

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani

Pilani Campus AUGS/AGSR Division

		L14. Velocity profile development for flow near rotating sphere and creeping	T1: Ex 3.6.5 and Ex 3.7.1	method and boundary conditions and develop	
		flow around a sphere		velocity profile	
		L15. Demonstration of numerical tools (ANSYS, Matlab) to analyze momentum flow problems.		To familiarize with numerical tools to solve transport phenomena (momentum flow) problems.	
4.	Boundary layer theory and velocity distribution in	L16. Introduction to Boundary Layer theory L17. Examples applying the Boundary	T1: 4.4	To understand the Boundary Layer theory and its application to	
	turbulent flow	Layer theory L18. Basics of turbulent flow and Reynolds decomposition and time-	T1: 5.1-5.2	flow problems. To develop the model for the turbulent flow system using Reynolds	
		smoothed equation of change for incompressible fluids L19. Time smoothed velocity profile	T1: 5.3	decomposition phenomena	
		near a wall		To apply the time smoothed equation of change and develop the velocity profile for turbulent system	
5.	Basic of Energy Transport and	L20. Mechanisms of Energy Transport	T1: 9.1,9.7, 9.8,	To find the temperature profile in solid and in a	
	Temperature Distributions in	L21. Concepts of Shell Energy balance and boundary conditions	T1: 10.1	laminar flow for various systems	
	Solids and Laminar Flow	L22. Temperature distributions in Solids: Heat conduction with electrical heat source	T1: 10.2- 10.3	To apply the shell energy balance and develop the governing	
		L23. Temperature distributions in Solids: Heat conduction with nuclear heat source	T1: 10.3	equation and find out appropriate boundary conditions	
		L24. Temperature distribution in solids with viscous heat source	T1: 10.4	To solve the resulting set	
		L25. Temperature distribution in a cooling fin	T1: 10.7	of equation with appropriate analytical method and boundary	
		L26. Forced Convection	T1: 10.8	conditions	
		L27. Free convection	T1: 10.9		

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani

Pilani Campus AUGS/AGSR Division

	L28. Example Problems: Forced convection heat transfer in parallel plates		T1: 10B.7		
6.	Equation of change for non-isothermal systems	L29. Development of Energy Equation	T1: 11.1- 11.3	To apply the equation of change of energy and equation of motion and develop the governing equation and find out appropriate boundary	
		L30. Use of Equations of change of energy to solve steady state problems: Laminar flow in circular tube	T1:11.4.1		
		L31. Use of Equations of change of energy to solve steady state problems: Tangential flow in annulus with viscous heat generation	T1:11.4.2	To solve the resulting set of equation with	
		L32. Use of Equations of change of energy to solve steady state problems: Transpiration cooling	T1:11.4.3	appropriate analytical method and boundary conditions and develop temperature profile	
		L33. Use of Equations of change of energy to solve steady state problems: Free convection heat transfer from a vertical plate	T1: 11.4.5	To familiarize with numerical tools to solve energy transport problems and non-isothermal systems.	
		L34. Dimensional analysis of the equation of change for non-isothermal system	T1:11.5		
		L35. Demonstration of numerical tools (ANSYS, Matlab) to analyze Energy transport and non-isothermal systems.			
7.	Basics of Mass Transport, Shell Balance and	L36. Mechanics of Mass Transport	T1: 17.1,17.7, 17.8,17.9	To find the concentration profile in stagnant and in a laminar flow for various systems	
	Equation of Change for multi-	L37. Shell Mass Balance and Boundary conditions	T1: 18.1	·	
	component system	L38. Diffusion with a stagnant film	T1: 18.2	To apply the shell mass balance and develop the	
		L39. Diffusion with heterogeneous/homogeneous chemical reaction	T1: 18.3- 18.4	governing equation and find out appropriate boundary conditions	
		L40. Diffusion into a falling liquid film and diffusion and chemical reaction inside a porous catalyst	T1: 18.5, 18.7	To solve the resulting set of equation with	

THE OF TECHNOLOGY & SCHILLE

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani

Pilani Campus AUGS/AGSR Division

L41. Equation of Change for multi component system L42. Summary of multi component equation of change	T1: 19.1 T1:19.2	appropriate analytical method and boundary conditions. To familiarize with numerical/CFD tools available to solve mass transport (diffusion and reaction in porous media).
L43. Illustration of diffusion and reaction in a porous catalyst using CFD software.		

Overall Course Learning Outcomes:

- 1. Identify and develop analogy between momentum, mass and heat transport phenomena.
- 2. Write shell balances for 1D momentum, heat and mass transport problems,
- 3. Develop ordinary and partial differential equations from the shell balances and identify the boundary conditions to solve the ODEs and PDEs.
- 4. Develop continuity, equation of change for isothermal and non-isothermal systems for momentum, heat and mass transport problems.
- 5. Apply equation of change to real systems and develop the governing equation by eliminating terms that are not necessary or negligible.
- 6. Use CFD software to solve transport phenomena problems and appreciate the know-how behind the CFD.

6. Evaluation Scheme:

EC No.	Evaluation Component	Duration	Weightage (%)	Date & Time	Remarks
1.	Mid Semester Test	90 min	30	TBA	Open Book
2.	Assignments (2)	-	5	Throughout Semester	Open Book/Take Home
3.	Quizzes (2)	15 min	10	Throughout Semester	Closed Book
4.	Design Project and Seminar using CFD software	-	15	Throughout Semester	Open Book/Take Home
5.	Comprehensive Exam	120 min	40	TBA	Open Book

Closed Book Test:

No reference material of any kind will be permitted inside the exam hall.

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani

Pilani Campus AUGS/AGSR Division

Open Book Exam:

Use of any printed/written reference material (books and notebooks) will be permitted inside the exam hall. Loose sheets of paper will not be permitted. Computers or electronic devices of any kind will not be allowed inside the exam hall. Use of calculators will be allowed in all exams. No exchange of any material will be allowed.

7. Chamber Consultation Hours:

TBA

8. Notices:

All announcements, notices will be posted on the Nalanda portal or Google Classroom only.

9. Make-up Policy:

Make-up is granted only for genuine cases with valid justification and prior permission of the Instructor-in-charge. Certificate from authenticated doctor, say from the Medical Center, must accompany make-up application (only prescription or vouchers for medicines will not be sufficient). Prior permission from IC, barring emergencies, is mandatory. *There is no makeup for Project, Assignment, and surprise quiz/discussion components*.

10. Note:

Any changes made to the above handout will be notified earlier in the class.

(BHANU VARDHAN REDDY KUNCHARAM)

Instructor-In-Charge CHE F414

