

(11)Publication number:

08-160658

(43)Date of publication of application: 21.06.1996

(51)Int.CI.

G03G 9/08

G03G 9/087 G03G 9/09

(21)Application number: 06-329803

(71)Applicant: CANON INC

(22)Date of filing:

06.12.1994

(72)Inventor: CHIBA TATSUHIKO

INABA KOJI

NAKAMURA TATSUYA **ISHIYAMA TAKAO**

(54) COLOR TONER FOR DEVELOPING ELECTROSTATIC CHARGE IMAGE

(57)Abstract:

 PURPOSE: To provide a color toner for developing an electrostatic image obtaining a clear color and excellent in heat resistance, light resistance, and OHP transparency.

CONSTITUTION: This toner is obtained by directly suspensionpolymerizing a composition containing at least a polymerization monomer, wax, and a colorant. The weight average diameter of the toner is set to 7μ m or below, the wax is the ester wax containing one or more long-chain ester portions having the carbon number of 15 or above, and the colorant has the skeleton expressed by the formula. In the formula, X and/or Y indicates the aromatic group and its derivative such as the phenyl group and naphthyl group, or the heteroaromatic group and its derivative such as the pyridyl group, furyl group, and thiophenyl group.

LEGAL STATUS

[Date of request for examination]

26.11.1999

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3372683

[Date of registration]

22.11.2002

[Number of appeal against examiner's decision of rejection

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-160658

(43)公開日 平成8年(1996)6月21日

(51) Int.Cl.⁶

酸別記号 庁内整理番号

FΙ

技術表示箇所

G03G 9/08

9/087 9/09

G 0 3 G 9/08

365

321

審査請求 未請求 請求項の数4 FD (全 13 頁) 最終頁に続く

(21)出願番号

特願平6-329803

(71)出願人 000001007

キヤノン株式会社

東京都大田区下丸子3丁目30番2号

(22)出願日 平成6年(1994)12月6日

(72)発明者 千葉 建彦

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(72)発明者 稲葉 功二

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(72)発明者 中村 達哉

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(74)代理人 弁理士 豊田 善雄 (外1名)

最終頁に続く

(54) 【発明の名称】・ 静電荷像現像用カラートナー

(57)【要約】

【目的】 鮮明な色彩が得られ、耐熱・耐光性に優れ且 つ〇HP透明性に優れた静電荷像現像用カラートナーを 提供することにある。

【構成】 少なくとも重合性単量体、ワックスおよび着色剤を含む組成物を直接懸濁重合して得られるトナーにおいて、該トナーの重量平均径が7μm以下であり、該ワックスは炭素数が15以上の長鎖エステル部分を1個以上有することを特徴とするエステルワックスであり、且つ該着色剤は下記構造式で示される骨格を有することを特徴とする静電荷像現像用カラートナーである。

【化13】

[式中、Xおよび/またはYは、フェニル基, ナフチル 基等で示される芳香族基およびその誘導体、またはピリ ジル基, フリル基, チオフェニル基等で示されるヘテロ 芳香族基およびその誘導体を示す。]

【特許請求の範囲】

【請求項1】 少なくとも重合性単量体、ワックスおよ び着色剤を含む組成物を直接懸濁重合して得られるトナ

該トナーの重量平均径が7μm以下であり、該ワックス は炭素数が15以上の長鎖エステル部分を1個以上有す ることを特徴とするエステルワックスであり、且つ該着 色剤は下記構造式で示される骨格を有することを特徴と する静電荷像現像用カラートナー。

【化1】

一般式(I)

[式中、Xおよび/またはYは、フェニル基、ナフチル 基等で示される芳香族基およびその誘導体、またはピリ ジル基、フリル基、チオフェニル基等で示されるヘテロ 芳香族基およびその誘導体を示す。]

【請求項2】 該ワックスおよび該着色剤が、該トナー 中の樹脂成分に対してそれぞれ5~30重量%および1 ~9 重量%含有されることを特徴とする請求項1に記載 の静電荷像現像用カラートナー。

【請求項3】 該エステルワックスが下記一般式で示さ れる物質のいずれかを主成分とすることを特徴とする請 求項1又は2に記載の静電荷像現像用カラートナー。 【化2】

<エステルワックスの一般構造式①>

$$\begin{bmatrix} R_1 - C - O - (CH_2)_n \frac{1}{3} - C + (CH_2)_m - O - C - R_2 \end{bmatrix}$$

$$O$$

(a, b:0~4迄の整数であり、a+b=4

R1, R2: 炭素数が1~40迄の整数を有する有機基で

且つR1とR2との炭素数差が3以上

m, n:0~25迄の整数であり、mとnが同時に0に

なることはない。)

【化3】

<エステルワックスの一般構造式②>

$$[R_1 - C - O - (CH_2)_n - C - (CH_2)_m - OH]_b$$

(a, b:0~4迄の整数であり、a+b=4, b≠0

R1: 炭素数が1~40迄の整数を有する有機基

m, n:0~25迄の整数であり、mとnが同時に0に

なることはない。)

【化4】

<エステルワックスの―般構造式③>

$$[R_{1} - C - O - (CH_{2})_{n} - C - (CH_{2})_{m} - O - C - R_{2}]_{b}$$

$$[R_{1} - C - O - (CH_{2})_{n} - C - (CH_{2})_{m} - O - C - R_{2}]_{b}$$

$$[R_{3} - C - O - (CH_{2})_{n} - C - C - C - R_{2}]_{b}$$

(a, b:0~3迄の整数であり、1≦a+b≦3 R1, R2: 炭素数が1~40迄の整数を有する有機基で 且つR1とR2との炭素数差が3以上

R3 : 水素原子、炭素数が1以上の有機基。但し、a +b=2のとき、R3のどちらか一方は、炭素数が1以 上の有機基

k : 1~3迄の整数

m, n:0~25迄の整数であり、mとnが同時に0に なることはない。)

【請求項4】 該トナーの透過型電子顕微鏡(TEM) を用いたトナー断面層の観察で、該エステルワックスが 外殻樹脂層で内包化され、ルーゼックスで測定した形状

係数SF1が100~130を示すことを特徴とする請 求項1乃至3のいずれかに記載の静電荷像現像用カラー トナー。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は電子写真法、静電印刷法 などにおいて形成される静電荷像を現像する静電荷像現 像用カラートナーに関する。

【〇〇〇2】さらに詳しくは、少なくとも離型剤、着色 剤を含有する単量体組成物を水性懸濁重合して得られた マゼンタトナーに関する。

[0003]

【従来の技術】従来、電子写真プロセスを用いる現像剤は、ポリエステル・スチレンーアクリル・エポキシ樹脂等に着色剤や荷電制御剤さらには離型剤を加え溶融混練し、均一に分散せしめた後、所定の粒度に粉砕しさらに過剰の微/粗粉現像剤を分級器を用い除去する粉砕法による製造方法が一般的である。

【0004】しかしながら、最近の更なる高画質化に伴い現像剤を更に小粒径化することが必要になってきた。

【0005】もっとも、コールターカウンターにより測定した粒度が7μm以下になるに従い、従来では問題にならなかった使用原材料の均一分散性や効率の高い粉砕性、更にはシャープな粒度分布に現像剤を分級することが極めて難しくなる傾向にある。

【0006】これら粉砕法による現像剤の問題点を克服するため、特公昭36-10231号、特公昭43-10799号及び特公昭51-14895号公報等により懸濁重合法による現像剤の製造方法が提案されている。懸濁重合法においては重合性単量体・着色剤・重合開始剤、更に必要に応じて架橋剤・荷電制御剤・その他添加剤を、均一に溶解または分散せしめて単量体組成物とした後、この単量体組成物を分散安定剤を含有する連続相、たとえば水相中に適当な撹拌機を用いて分散し、同時に重合反応を行わせ、所望の粒径を有する現像剤を得る方法である。

【0007】この製造方法は、粉砕工程を経ないため現像剤に脆性を付与せしめる必要がなく、更に従来の粉砕法では使用することができなかった低軟化点物質を多量に使用することができる等の材料の選択幅が広がる。また現像剤粒子表面に疎水性の材料である離型剤や着色剤等が露出しづらく、このため現像剤保持部材・感光体・転写ローラー・定着器等への汚染が少ない等の特徴を有し最近注目されている。

【0008】更に近年、デジタルフルカラー複写機やプリンターが実用化され、トナーにおいては画像忠実性、離型性、色再現性等の特色をさらに向上させる必要が生じてきた。

【0009】画像忠実性に求められる要求品質として、デジタルフルカラー複写機においては白黒複写機と較べ 多量の現像剤を感光体から転写材に転写させる必要があることや、将来の更なる高画質化に対応すべくより微小ドットに対応した現像剤の微小粒径化の要求が予想される。

【0010】この点からも比較的容易に粒度分布がシャープで微小粒径の現像剤が製造できる重合法は優れた特性を有している。

【OO11】また将来のプリンターや複写機の高速化やフルカラー化に伴い、低温定着性の向上も重要な要素となる。

【OO12】フルカラー複写機では、定着工程で多色トナーが充分混合して色再現性やOHP画像の透明性を得

ることが必須であり、黒トナーと較ベカラートナーは、一般的にシャープメルトな低分子量樹脂が要望される。 【0013】また、一般的に黒トナーは、定着時の耐高温オフセット性を向上させる為にポリエチレンワックスやポリプロピレンワックス等の比較的離型性の高い結晶性の材料を用いているが、カラートナーに上記のようなワックスを用いた場合にはこの離型剤の結晶性の高さのためOHPに出力した際著しく透明性が阻害される。

【0014】このため、通常カラートナー構成成分として離型剤を添加せずに加熱定着ローラーへシリコーンオイル等を均一塗布せしめることで、結果的に耐高温オフセット性の向上を図っている。しかしながら、このようにして得られた出力転写部材は、その表面に余分のシリコーオイル等が付着するため、ユーザーが使用する際に不快感を生じ好ましくない。

【0015】このため、現像剤中に多量の低軟化点物質を含有せしめたオイルレス定着用の現像剤の検討も行われているが、低温定着性と透明性に優れ、同時に耐高温オフセット性を示す現像剤は、未だ充分満足するものは得られていない。

【0016】また、微小粒径のトナーになるほど粉砕法では均一に離型剤を内包することが難しくなるため、微小粒径における離型剤内包化が大きな課題となってきている。

【0017】色再現性等の特色に求められる要求品質としては色調・彩度・着色力等のさらなる向上があり、着色剤そのものの改質によってその多くが左右される。

【0018】特にマゼンタトナーは肌色等用いる色としての需要が大きいこともあり、従来よりキナクリドン系・チオインジゴ系・キサンテン系・モノアゾ系・ペリレン系・ジケトピロロピロール系等数多くの顔料がトナー用顔料として開示されてきた。

【0019】たとえば、特公昭49-46951号公報には2、9-ジメチルキナクリドン顔料の記載が、特開昭55-26574号公報にはチオインジゴ系顔料に関して、特開昭59-57256号公報にはキサンテン系染料に関して、特開平2-210459号公報にはジケトピロロピロール系顔料に関して、特公昭55-42383号公報にはアントラキノン系染料について記載されている。

【 O O 2 O 】これらの着色剤は重合トナーにおいても結 着樹脂への溶融親和性、耐光性が良好で、一応帯電特性 ・色調等の優れたトナーが得られる。しかしながら低温 定着性・透明性を満足した上で、より原稿に忠実な画像 を得るためには、より一層の画像耐久/環境安定性や、 離型剤との親和性、色調・彩度等の向上が望まれてい

【OO21】また、近年さらなる電子写真技術の応用として鋼材・布等へ画像を再転写加工する動きが生じているが、このような加工品の場合は、屋外で使用されやす

いというその用途から従来以上の耐熱・耐光性が必要とされる。

【0022】これらの観点より特にジケトピロロピロール系顔料は優れた耐熱特質を有するが、粒径が7μm以下であるような重合法微粒子トナーに用いると、その極性基の特性のためにトナー表面にでやすく、帯電性等に未だ十分満足するものが得られていない。

[0023]

【発明が解決しようとする課題】本発明の目的は上述の 如き欠点を解決した静電荷像現像用カラートナーを提供 するものである。

【0024】すなわち、本発明の目的はOHP透明性に 優れ且つ環境安定性に優れた帯電特性を有する静電荷像 現像用カラートナーを提供するものである。

【OO25】本発明の別の目的は耐熱耐光性に優れた静 電荷像現像用カラートナーを提供するものである。

【0026】本発明のさらなる目的は、極めて鮮明な色彩が得られる静電荷像現像用カラートナーを提供するものである。

[0027]

【課題を解決するための手段及び作用】本発明の目的は、少なくとも重合性単量体、ワックスおよび着色剤を含む組成物を直接懸濁重合して得られるトナーにおいて、該トナーの重量平均径が7μm以下であり、該ワックスは炭素数が15以上の長鎖エステル部分を1個以上有することを特徴とするエステルワックスを用い、且つ該着色剤は下記構造式で示される骨格を有する化合物を含有することで達成される。

[0028]

【化5】

【0029】 [式中、Xおよび/またはYは、フェニル基、ナフチル基等で示される芳香族基およびその誘導体、またはピリジル基、フリル基、チオフェニル基等で示されるヘテロ芳香族基およびその誘導体を示す。] 【0030】以下、本発明を詳細に説明する。

【0031】本発明者らは鋭意検討の結果、トナー中にジケトピロロピロール系顔料と特定のエステル系ワックスを含有させることで本発明の目的が達成されることを見いだした。これは、ジケトピロロピロール系顔料の官能基にワックス中のエステル基が親和性を有するため、顔料が疎水性を有するワックスに取り込まれて、トナー中に埋没してしまうために生じると考えている。

【0032】一般式(I)中のX, Yとしては、フェニル基, ジフェニル基, ターフェニル基, ナフチル基で示

される芳香族基又はその置換誘導体や、ピリジル基、ピ ラジニル基、トリアジニル基、フリル基、ピロリイル 基、チオフェニル基、キノリイル基、クマリニル基、ベ ンズフラニル基、ベンズイミダゾリイル基、オキサゾリ イル基、イソオキサゾリイル基、シンノリル基、キナゾ リル基、キノキサリル基、フタラジニル基、フタラジン ジオニル基、フタラミジル基、クロモニル基、ナフトラ クタミル基、キノロニル基、oースルホベンジミジル 基、マレインイミジル基、ナフタリジニル基、ペンジミ ダゾロニル基。ベンゾキサゾロニル基。ベンズチアゾロ ニル基、ペンズチアゾチオニル基、キナゾロニル基、キ ノキサロニル基、フタラゾニル基、ジオキサピリミジニ ル基、ピリドニル基、イソキノロニル基、イソキノリニ ル基、イソチアゾリイル基、ベンジソキサゾリル基、ベ ンジソチアゾリル基、インダゾロニル基、アクリジニル 基、アクリドニル基、キナゾリンジオニル基、キノキサ リンジオニル基、ペンズオキサジンジオニル基、ペンズ オキサジオニル基、ナフタリミジイル基等のヘテロ化合 物及びその置換誘導体が挙げられる。

【0033】上記置換誘導体における置換基の例として は、着色剤の色味等の理由から適切なものを選択する必 要があり、本発明においては、メチル基、エチル基、n -プロピル基, イソプロピル基, n-ブチル基, イソブ チル基, tーブチル基, nーオクチル基, 1, 1, 3, 3-テトラメチルブチル基等のアルキル基:メトキシ 基、エトキシ基、nープロポキシ基、nーブトキシ基、 t ーブトキシ基、n ーヘキシルオキシ基等のアルコキシ 基;メトキシメトキシ基、エトキシエトキシ基、メトキ シエトキシ基、エトキシメトキシ基等のアルコキシアル コキシ基:メトキシメチル基、メトキシエチル基、エト キシエチル基。n-プロポキシエチル基。n-ブトキシ エチル基等のアルコキシアルキル基;ベンジル基、フェ ネチル基, γ-フェニルプロピル基等のアラルキル基; メトキシカルボニル基、エトキシカルボニル基、nープ ロポキシカルボニル基等のアルコキシカルボニル基:ア セチルオキシ基、エチルカルボキシ基、n-プロピルカ ルボキシ基等のアルキルカルボキシル基;水酸基、水素 原子及びフッ素原子、塩素原子、臭素原子等が挙げられ

【〇〇34】該一般式(I)で示される化合物の合成法としては例えば、アルキル基、アリル基、シクロヘキシル基等の基を有するコハク酸エステル1モルに対して、一般式×、Yのニトリル付加物(X=CN、Y=CN)を付加・縮合反応させて得ることが一般的であるが、何らこれに限定されるべきものでは無い。また、色味を変更するためや、分散性を更に上げる等の目的のために、従来公知の顔料に用いられる公知の方法、例えばソルスパーズに代表される分散剤の利用等が、本発明の着色剤に使用可能である。

【0035】本発明に用いられるこれら着色剤の添加量

としては、着色力を得て且つ分散時の凝集を防ぐという 観点より、トナーに対して1~9重量%、好ましくは2 ~5重量%である。

【0036】また、これら着色剤は一般公知の着色剤、例えばC. I. ピグメントレッド122のごときキナクリドン系顔料、C. I. ピグメントレッド57のごときアゾ系顔料、C. I. ソルベントレッド49のごときローダミン染料のレーキ顔料等と併用しても良い。

【0037】本発明においては炭素数が15以上の長鎖 エステル部分を1個以上有することを特徴とするエステ ルワックスを、本発明の顔料に組み合わせることによっ て帯電性の向上が達成される。

【 O O 3 8 】本発明のワックスは炭素数が 1 5 以上の長鎖エステル部分を 1 個以上有することが必要である。

【0039】炭素数が15未満であると顔料の表面改質はするものの、顔料の水相移行性を食い止めることができず、トナーの帯電安定性が悪化する。

【0040】そして、この観点において本発明における 長鎖エステル部分の炭素数としては15以上30以下で あることがより望ましい。

【 O O 4 1 】また、近年フルカラー両面画像の必要性も増してきており、両面画像を形成せしめる際においては、最初に表面に形成された転写紙上のトナー像が次に裏面に画像を形成する時にも定着器の加熱部を再度通過する可能性が有り、よりトナーの耐高温オフセット性を十分に考慮する必要がある。その為にも本発明においては、多量のエステルワックスの添加が必須となる。

【0042】そのため、本発明のエステルワックスとしては顔料の改質のほかに離型性、透明性も与える必要があり、エステルワックスをトナー中に5~30重量%添加することが好ましい。

【0043】仮に5重量%未満の添加では十分な改質性を示さず、更に両面画像の定着時において裏面の画像がオフセット現象を示す傾向がある。また30重量%を超える場合は、トナーの製造時に、たとえば粉砕法による

製造において装置融着やトナーの融着が発生しやすく、 重合法による製造においても造粒時にトナー粒子同士の 合一が起きやすく、ドラムに対しての耐衝撃力が低下す るためフィルミングが発生し易くなる。

【0044】また本発明の顔料に対してエステルワックスを添加し、改質する手段としては、あらかじめマスターパッチ化する等の公知の手段が使用できるが、改質性、分散性、再凝集性等の効果を得るため、両者の添加時には顔料100重量部に対してエステルワックス100~3000重量部の比で添加することが望ましい。

【0045】本発明において、用いられるエステルワックスとしてはASTM D3418-8に準拠し測定された主体極大ピーク値が、40~90℃を示す化合物が好ましい。極大ピークが40℃未満であると低軟化点物質の自己凝集力が弱くなり、結果として耐高温オフセット性が弱くなりフルカラートナーには好ましくない。一方極大ピークが、90℃を超えると定着温度が高くなり、定着画像表面を適度に平滑化せしめることが困難となり混色性の点から好ましくない。更に直接重合方法によりトナーを得る場合においては、水系で造粒・重合を行うため極大ピーク値の温度が高いと主に造粒中に低軟化点物質が析出してきて懸濁系を阻害するため好ましくない。

【0046】本発明の極大ピーク値の温度の測定には、例えばパーキンエルマー社製DSC-7を用いる。装置検出部の温度補正はインジウムと亜鉛の融点を用い、熱量の補正についてはインジウムの融解熱を用いる。サンプルはアルミニウム製パンを用い対照用に空パンをセットし、昇温速度10℃/min.で測定を行った。

【 O O 4 7】本発明に好ましい具体的なエステルワックスの代表的化合物の構造式を以下に一般構造式①・一般構造式②及び一般構造式③として示す。

[0048] [化6]

<エステルワックスの一般構造式①>

【 O O 4 9 】 (a, b: O ~ 4 迄の整数であり、a + b = 4

R1, R2: 炭素数が1~40迄の整数を有する有機基で 且つR1とR2との炭素数差が3以上 $m. n: 0 \sim 25$ 迄の整数であり、 $m \ge n$ が同時に0 になることはない。)

[0050]

【化フ】

<エステルワックスの一般構造式②>

$$[R_1 - C - O - (CH_2)_n - \frac{1}{2} C - (CH_2)_m - OH]_b$$

【0051】 (a, b:0~4迄の整数であり、a+b = 4, b≠0

R₁: 炭素数が1~40迄の整数を有する有機基

[0052]

m, n:0~25迄の整数であり、mとnが同時に0に

が同時に0に 【化8】

なることはない。)

<エステルワックスの一般構造式③>

$$\begin{array}{c} (R_8)_k \\ | \\ [R_1-C-O-(CH_2)_n - \frac{1}{3a} - C - (CH_2)_m - O - C - R_2]_b \\ | \\ O \end{array}$$

【0053】 (a, b:0~3迄の整数であり、1≦a +b≦3

R₁, R₂: 炭素数が 1 ~ 4 O 迄の整数を有する有機基で 且つR₁とR₂との炭素数差が 3 以上

R3 : 水素原子、炭素数が1以上の有機基。但し、a +b=2のとき、R3のどちらか一方は、炭素数が1以 上の有機基

k : 1~3迄の整数

 $m, n: O \sim 25$ 迄の整数であり、 $m \ge n$ が同時にOになることはない。)

【0054】本発明で好ましく用いられるエステルワックスは、硬度0.5~5.0を有するものが好ましい。エステルワックスの硬度は直径20mmφで厚さが5mmの円筒形状のサンプルを作製した後、島津製作所製ダイナミック超微小硬度計(DUH-200)を用いビッ

カース硬度を測定した値である。測定条件は、O.5gの荷重で負荷速度が9.67mm/秒の条件で10μm変位させた後15秒間保持し、得られた打痕形状を測定しビッカース硬度を求める。本発明に好ましく用いられるエステルワックスの硬度は、O.5~5.0の値を示す。硬度がO.5未満の低軟化点物質では定着器の圧力依存性及びプロセススピード依存性が大きくなり、耐高温オフセット効果の発現が不十分となりやすく、他方5.0を超える場合ではトナーの保存安定性に乏しく、離型剤自身の自己凝集力も小さいため本発明の顔料に対する改質性が不十分となりやすい。

【0055】具体的化合物としては、下記化合物が挙げられる。

[0056]

【化9】

(1)
$$O = C - CH_{3}$$

$$CH_{2}$$

$$CH_{3} - (CH_{2})_{20} - C - O - CH_{2} - C - CH_{2} - O - C - (CH_{2})_{20} - CH_{3}$$

$$O = C - CH_{3}$$

$$CH_{2} - O - C - CH_{3}$$

$$O = C - CH_{3}$$

(2)
$$O = C - CH_{3}$$

$$CH_{2}$$

$$CH_{3} - (CH_{2})_{20} - C - O - CH_{2} - C - CH_{2} - O - C - (CH_{2})_{20} - CH_{3}$$

$$CH_{2} - CH_{2} - CH_{2} - C - CH_{3} - CH_{4}$$

$$CH_{2} - CH_{2} - CH_{5}$$

$$CH_{2} - CH_{5}$$

$$CH_{2} - CH_{3}$$

(3)
$$CH_3 - (CH_2)_{20} - C - O - (CH_2)_{21} - CH_3$$

$$\begin{array}{c} CH_{3} \\ CH_{3}-(CH_{2})_{20}-C-O-CH_{2}-C-(CH_{2})_{2}-O-C-(CH_{2})_{20}-CH_{3} \\ \parallel & \parallel & \parallel \\ O \end{array}$$

【0057】更に本発明においては、透過型電子顕微鏡(TEM)を用いたトナー断面層の観察で、該エステルワックスが外殼樹脂層で内包化されていることが顔料改質の点より好ましい。

【0058】該エステルワックスを内包化する手段としては、特開昭59-6287号公報のように懸濁重合粒子を核としてシード重合する方法や、特開昭61-46955号公報のようにエステルワックスと相溶性の悪い極性の樹脂を添加する方法など多くの方法が開示されているが、これら公知の方法によって本発明の方法で確認できるものであるならばどのような手段を用いてもよい。

【0059】本発明者らはこれら公知の方法の中で極性 樹脂を添加する方法は該エステルワックスの偏在を促進 し、かつ公知のどの方法と組み合わせてもより効果を発 揮することを見い出したため、本発明においては極性物 質の添加は必須と考えている。

【0060】本発明に用いられる極性樹脂としては、スチレンと(メタ)アクリル酸の共重合体、マレイン酸共重合体、飽和ポリエステル樹脂、エポキシ樹脂等一般的

に用いられている材料が好ましく用いられる。

【0061】該極性樹脂は、単量体と反応しうる不飽和基を分子中に含まないものが特に好ましい。仮に不飽和基を有する極性樹脂を含む場合においては、外殻樹脂層を形成する単量体と架橋反応が起きフルカラー用トナーとしては、極めて高分子量になり四色トナーの混色には不利となり好ましくない。

【 O O 6 2 】本発明においてトナーの断層面を測定する 具体的方法としては、常温硬化性のエポキシ樹脂中にトナーを十分分散させた後、温度 4 O ℃の雰囲気中で 2 日間硬化させ得られた硬化物を四三酸化ルテニウム、必要により四三酸化オスミウムを併用し染色を施した後、ダイヤモンド歯を備えたミクロトームを用い薄片状のサーの断層形態を測定した。本発明においては、用いる低軟化点物質と外殼を構成する樹脂との若干の結晶化度の違いを利用して材料間のコントラストを付けるため四三酸化ルテニウム染色法を用いることが好ましい。代表的な一例を図 1 に示す。明らかに低軟化点物質が外殼樹脂で内包化されていることが観測された。 【0063】さらに本発明においては高速複写時における転写性、現像性を確保するため、ルーゼックスで測定した形状係数SF1が100~130を示すことが好ましい。

【0064】本発明における形状係数を示すSF1とは、日立製作所製FE-SEM(S-800)を用いトナー像を100個無作為にサンプリングし、その画像情報はインターフェースを介してニコレ社製画像解析装置(Luzex3)に導入し解析を行い、下式より算出した値を本発明ではSF1と定義した。

【0065】 [SF1の定義式]

[0066]

【数1】

形状係数 (SF - 1) =
$$\frac{(MXLNG)^2}{AREA} \times \frac{\pi}{4} \times 100$$

【0067】 [式中、MXLNGは画像上現像剤の絶対 最大長を示し、AREAは現像剤の投影面積を示す。] 【0068】現像剤の形状係数SF1が130より大き い現像剤形状は、球形から徐々に不定形に近づき、それ につれて同時に転写効率が低下するためドラム上に転写 されずに残るトナーが多くなり、結果として高速複写時 にはフィルミングが発生し易くなる。

【0069】本発明のトナーの場合、実用上の耐フィルミング性および転写・現像性を確保する為にトナーの形状係数SF1が100~130、より好ましくは100~120の実質球形のトナーが好ましく、更に高画質化のためより微小な潜像ドットを忠実に現像するために、現像剤よりも微小粒径の、具体的にはコールターカウンターにより測定された重量平均径が7 μ m以下、より好ましくは4 μ m~7 μ mで個数変動係数が35%以下のトナーが良い。

【〇〇70】本発明のトナーに用いられる重合性単量体 としてはスチレン、oーメチルスチレン、mーメチルス チレン, p-メチルスチレン, p-メトキシスチレン, pーエチルスチレン等のスチレン系単量体、アクリル酸 メチル、アクリル酸エチル、アクリル酸n-ブチル、ア クリル酸イソブチル, アクリル酸 n - プロピル, アクリ ル酸nーオクチル、アクリル酸ドデシル、アクリル酸2 -エチルヘキシル、アクリル酸ステアリル、アクリル酸 2-クロルエチル、アクリル酸フェニル等のアクリル酸 エステル類、メタクリル酸メチル、メタクリル酸エチ ル,メタクリル酸 n ープロピル,メタクリル酸 n ーブチ ル、メタクリル酸イソブチル、メタクリル酸n-オクチ ル、メタクリル酸ドデシル、メタクリル酸2-エチルへ キシル、メタクリル酸ステアリル、メタクリル酸フェニ ル、メタクリル酸ジメチルアミノエチル、メタクリル酸 ジエチルアミノエチル等のメタクリル酸エステル類その 他のアクリロニトリル、メタクリロニトリル、アクリル アミド等の単量体が挙げられる。

【0071】これらの単量体は単独または混合して使用

し得る。上述の単量体の中でも、スチレンまたはスチレン誘導体を単独で、あるいはほかの単量体と混合して使用する事がトナーの現像特性及び耐久性の点から好ましい。

【0072】なお、分子量をコントロールするために、公知の架橋剤、連鎖移動剤を添加しても良ぐ、好ましい添加量としては、0.001~15重量%である。

【0073】また、単量体系にさらに樹脂を添加して重合しても良い。例えば、単量体では水溶性のため水性懸濁液中では溶解して乳化重合を起こすため使用できないアミノ酸、カルボン酸基、水酸基、スルフォン酸基、グリシジル基、ニトリル基等親水性官能基合有の単量体成分をトナー中に導入したい時には、これらとスチレンあるいはエチレン等ビニル化合物とのランダム共重合体、ブロック共重合体、あるいはグラフト共重合体等、共重合体の形にして、あるいはポリエステル、ポリアミド等の重縮合体、ポリエーテル、ポリイミン等重付加重合体の形で使用が可能となる。

【0074】その使用量としては、1~20重量%が好ましい。また、これら極性官能基を含む高分子重合体の平均分子量は5,000以上が好ましく用いられる。5,000未満、特に4,000以下では、本重合体が表面付近に集中し易い事から、現像性、耐ブロッキング性等に悪い影響が起こり易くなり好ましくない。また、単量体を重合して得られるトナーの分子量範囲とは異なる分子量の重合体を単量体中に溶解して重合すれば、分子量分布の広い、耐オフセット性の高いトナーを得ることが出来る。

【0075】また重合法において用いられる重合開始剤としては、いずれか適当な重合開始剤、例えば、2,2'ーアゾビスー(2,4ージメチルバレロニトリル)、2,2'ーアゾビスイソブチロニトリル、1,1'ーアゾビス(シクロヘキサンー1ーカルボニトリル)、2,2'ーアゾビスー4ーメトキシー2,4ージメチルバレロニトリル、アゾビスイソブチロニトリル、アゾビスイソブチロニトリル、アゾビスイソブチロニトリル、アゾビスイソブチロニトリルオキシアゾ系取はジアゾ系重合開始剤、ベンゾイルペルオキシカーボネート、クメンヒドロペルオキシト、2,4ージクロロベンゾイルペルオキシド、ラウロイルペルオキシド等の過酸化物系重合開始剤が挙げられる。これら重合開始剤は、重合性単量体の0.5~20重量%の添加量が好ましく、単独で、又は、併用しても良い。

【0076】重合法においては、分散安定剤として公知の界面活性剤や有機・無機分散剤が使用出来、中でも無機分散剤が有害な超微粉を生じ難く、その立体障害性により分散安定性を得ているので反応温度を変化させても安定性が崩れ難く、洗浄も容易でトナーに悪影響を与え難いので、好ましく使用出来る。こうした無機分散剤の例としては、燐酸カルシウム、燐酸マグネシウム、燐酸

(9)

アルミニウム、燐酸亜鉛等の燐酸多価金属塩、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、メタ珪酸カルシウム、硫酸カルシウム、硫酸パリウム等の無機塩、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、シリカ、ベントナイト、アルミナ等の無機酸化物が挙げられる。

【0077】これらの無機分散剤は、重合性単量体100重量部に対して、0.2~20重量部を単独で使用する事が望ましいが、超微粒子を発生し難いもののトナーの微粒化はやや苦手であるので、0.001~0.1重量部の界面活性剤を併用しても良い。

【0078】界面活性剤としては、例えばドデシルベンゼン硫酸ナトリウム、テトラデシル硫酸ナトリウム、ペンタデシル硫酸ナトリウム、オクチル硫酸ナトリウム、オレイル酸ナトリウム、ラウリル酸ナトリウム、ステアリン酸ナトリウム、ステアリン酸カリウム等が挙げられる。

【 O O 7 9 】 これら無機分散剤を用いる場合には、そのまま使用しても良いが、より細かい粒子を得るため、水系媒体中にて該無機分散剤粒子を生成させることが出来る。例えば、硫酸カルシウムの場合、高速撹拌下、硫酸ナトリウム水溶液と塩化カルシウム水溶液とを混合して、水不溶性の燐酸カルシウムを生成させることが出来、より均一で細かな分散が可能となる。

【 O O 8 O 】本発明においては、トナーの帯電性を制御する目的でトナー材料中に荷電制御剤を添加しておくことが望ましい。これら荷電制御剤としては、例えば正荷電制御剤としてニグロシン系染料、トリフェニルメタン系染料、四級アンモニウム塩、グアニジン誘導体、イミダゾール誘導体、アミン系及びポリアミン系化合物等が挙げられ、負荷電制御剤としては、含金属サリチル酸系化合物、含金属モノアゾ系染料化合物、尿素誘導体、スチレンーアクリル酸共重合体、スチレンーメタクリル酸共重合体等が挙げられる。これら荷電制御剤の添加量としては、 O . 1~10重量%が好ましい。

【0081】各種トナー特性付与を目的とした添加剤としては、トナー中に、あるいはトナーに添加した時の耐久性の点から、トナー粒子の体積平均径の1/10以下の粒径であることが好ましい。この添加剤の粒径とは、電子顕微鏡におけるトナー粒子の表面観察により求めたその平均粒径を意味する。これら特性付与を目的とした添加剤としては、たとえば、以下のようなものが用いられる。

【 O O 8 2 】 1)流動性付与剤:金属酸化物(酸化ケイ素,酸化アルミニウム,酸化チタンなど)・カーボンブラック・フッ化カーボンなど。それぞれ、疎水化処理を行ったものが、より好ましい。

【0083】2) 研磨剤:金属酸化物(チタン酸ストロンチウム,酸化セリウム,酸化アルミニウム,酸化マグネシウム,酸化クロムなど)・窒化物(窒化ケイ素な

ど)・炭化物(炭化ケイ素など)・金属塩(硫酸カルシウム、硫酸パリウム、炭酸カルシウムなど)など。

【0084】3) 滑剤:フッ素系樹脂粉末(フッ化ビニリデン、ポリテトラフルオロエチレンなど)・脂肪酸金属塩(ステアリン酸亜鉛、ステアリン酸カルシウムなど)など。

【0085】4)荷電制御性粒子:金属酸化物(酸化 錫,酸化チタン,酸化亜鉛,酸化ケイ素,酸化アルミニ ウムなど)・カーボンブラックなど。

【0086】これら添加剤は、トナー粒子100重量部に対し、0.1~10重量部が用いられ、好ましくは、0.1~5重量部が用いられる。これら添加剤は、単独で用いても、又、複数併用しても良い。

【0087】また現像剤にキャリアを使用する場合は従来から公知のものが使える。例えば鉄、コバルト、ニッケルなどの磁性物質、及びそれらの合金や混合物、あるいはこれらの表面にコーティングを施したものである。

【 O O 8 8 】本発明の着色剤を含有するカラートナーの 一般的製造例を挙げる。

【0089】① 重合性単量体中に離型剤、着色剤、荷電制御剤、重合開始剤、その他の添加剤を加え、ホモジナイザー、超音波分散機、ボールミル、サンドミル、アトライター等のメディア分散機等によって均一に溶解又は分散せしめた単量体系を、公知の分散安定剤を含有する水相中に通常の撹拌機またはホモミキサー、ホモジナイザー等により分散せしめる。

【0090】② 好ましくは単量体液滴が所望のトナー粒子のサイズ、一般に30μm以下の粒径を有するように撹拌速度・時間を調整し、造粒する。その後は分散安定剤の作用により、粒子状態が維持され、且つ粒子の沈降が防止される程度の撹拌を行う。

【0091】なお、重合温度は40℃以上、一般的には50~90℃の温度に設定して重合を行う。また、重合反応後半に昇温しても良く、更に、トナー定着時の臭いの原因等となる未反応の重合性単量体、副生成物等を除去するために反応後半、又は、反応終了後に一部水系媒体を留去しても良い。

【 0 0 9 2 】 ③ 反応終了後、生成したトナー粒子を洗浄・濾過により回収し、乾燥する。

【0093】④ 場合により分級機で分級し、更に、分級物中にシリカ等をヘンシェルミキサー等で分散する。 【0094】本発明における粒度分布測定について述べる。

【0095】測定装置としてはコールターカウンターTA-II型(コールター社製)を用い、個数平均分布、体積平均分布を出力するインターフェイス(日科機製)及びCX-1パーソナルコンピューター(キヤノン製)を接続し電解液は1級塩化ナトリウムを用いて1%NaCI水溶液を調製する。

【0096】測定法としては前記電解水溶液100~1

50m | 中に分散剤として界面活性剤、好ましくはアルキルベンゼンスルホン酸塩を $0.1\sim5m$ | 加え、さらに測定試料を $0.5\sim50m$ g 加える。

【〇〇97】試料を懸濁した電解液は超音波分散器で約1~3分間分散処理を行い、前記コールターカウンターTA-II型により、アパチャーとして100μmアパチャーを用いて2~40μmの粒子の粒度分布を測定して体積平均分布、個数平均分布を求める。これら求めた体積平均分布、個数平均分布より、重量平均粒径を得る。

【0098】また、耐光性については、JIS K-7102(A法、FV形)に準拠して行なった。すなわち、試験画像を水スプレーをかけない条件下でカーボンアーク燈光を照射し、その変退色をブルースケールを用いて測定し、評価した。

【0099】本発明における定着性、耐オフセット性、 混色領域及び透明性の評価方法は以下の通りである。

【 O 1 O O 】 1)定着性、耐オフセット性、混色領域に ついて

まず、本発明のエステルワックスを含有したトナーに対して、上記外添剤を適量外添し、現像剤を得る。得られた現像剤の未定着画像は市販の複写機によって作成する。

【 O 1 O 1 】上記トナーが黒トナーの場合には、オイル 塗布機能のない熱ローラー外部定着器によって、定着性 及び耐オフセット性の評価をする。

【0102】さらにモノカラートナーまたはフルカラー 用トナーの場合には、オイル塗布機能のない熱ローラー 外部定着器の他、市販のフルカラー複写機であるCLC -550(キヤノン製)の定着器を用い、若干のオイル を均一に定着ローラーに塗布(例えばO.02g/A4 サイズ)し、定着性、耐オフセット性、混色領域の評価 をし、かつ、透明性評価のための定着画像を得る。

【0103】なお、この時のローラー材質としては、上部、下部共にフッ素系のものを使用する。また、定着条件としては、転写材がSK紙(日本製紙社製)の場合にはニップ7.0mm、プロセススピード105mm/secとし、転写材がOHPシート(複写機用ピクトリコトラペン/旭硝子社製)の場合には、ニップ6.0mm、プロセススピード25mm/secとし、80℃から230℃の温度範囲内で5℃おきに温調をかけて行

スチレン単量体

nーブチルアクリレート単量体

[0112] 【化10】 う

【O104】定着性は定着画像(低温オフセットした画像も含む)を50g/cm²の荷重をかけシルボン紙 [Lenz Cleaning Paper "das per(R)"(Ozu Paper Co. Lt d)]で擦り、擦り前後の濃度低下率が10%未満になる温度を定着開始点とする。

【0105】耐オフセット性は、目視でオフセットのでなくなる温度を低温オフセット始点とし、温度を上げ、オフセットのでない最高温度を高温オフセット終点とする

【 0 1 0 6 】さらに混色領域は、非オフセット領域にある画像をハンデイ光沢計グロスチェッカ I G - 3 1 0 (堀場製作所製) を用いてグロスを測定し、グロス値 7 以上最高値までと定義し領域を決定する。

【0107】2)透明性について

得られた定着画像の単位面積あたりの各トナー量に対する透過率及び曇価(ヘイズ)を測定し、画像濃度 1.5における数値を用い、透明性を評価した。以下に透過率とヘイズの測定方法を述べる。

【0108】透過率の測定は、島津自記分光光度計UV 2200(島津製作所社製)を使用し、OHPフィルム 単独の透過率を100%とし、

マゼンタトナーの場合:650nm シアントナーの場合:500nm

イエロートナーの場合:600nm

での最大吸収波長に於ける透過率を測定する。

【0109】また、ヘイズ測定は、ヘイズメーターNDH-300A(日本発色工業社製)を用いて測定した。 【0110】

【実施例】実施例をもって本発明を詳細に説明する。 【 O 1 1 1 】実施例 1

O. 1 MのNa3PO4水溶液と1 MのCaCI2水溶液を用意する。高速撹拌装置TKーホモミキサーを備えた2リットル用四つロフラスコ中に、イオン交換水710重量部とO. 1モルーNa3PO4水溶液450重量部を添加し回転数を12000回転に調整し、65℃に加温せしめた。ここに1. 0モルーCaCI2水溶液68重量部を徐々に添加し微小な難水溶性分散剤Ca3(PO4)2を含む分散媒系を調製した。一方分散質系は、

1 6 5 重量部 3 5 重量部 H N CI

14重量部

[0113]

飽和ポリエステル

10重量部

(テレフタール酸ープロピレンオキサイド変性ビスフェノールA

酸価15、ピーク分子量6000)

サリチル酸金属化合物

2 重量部

化合物(4)(極大ピーク値64.4°C)

40重量部

【0114】上記混合物をアトライターを用い3時間分散させた後、重合開始剤である2,2'ーアゾビス(2,4ージメチルパレロニトリル)10重量部を添加した分散物を、分散媒中に投入し回転数を維持しつつ15分間造粒した。その後高速撹拌器からプロペラ撹拌羽根に撹拌器を変え、内温を80℃に昇温させ50回転で重合を10時間継続させた。重合終了後スラリーを冷却し、希塩酸を添加し分散剤を除去せしめた。

【 O 1 1 5 】更に洗浄し乾燥を行うことで、コールターカウンターで測定したマゼンタトナーの重量平均径は 6 μmで個数変動係数が 2 8 %であり、S F - 1 が 1 0 5 であった。得られたマゼンタトナーの断層写真の模式図を図 1 に示す。低軟化点物質である化合物(1)が外殻樹脂で覆われた構造を示している。得られたトナーに疎水化処理酸化チタンを 2 %外添し流動性に優れたトナーを得た。

【 O 1 1 6 】このトナー7 重量部に対し、アクリル樹脂 コーティングされたフェライトキャリア 9 3 重量部を混合し現像剤としてキヤノン製フルカラー複写機 C L C 5 O O 改造機にて画だし評価を行ったところ、23℃, 6 O %の条件下、2万枚耐久後も現像性が低下することなく安定した鮮明かつ良好なマゼンタ画像が得られた。

【O117】また複写物の耐光性も良好で7級であって、定着性、OHP透明性にも優れたものであった。

【 0 1 1 8 】更に複写耐久試験を、30℃, 80%の高 温高湿下で1万枚行ったが、カブリ等は生じなかった。 【 0 1 1 9 】比較例 1

実施例1の処方のなかで着色剤を、キナクリドン系顔料(C. I. Pig. Red202)3.5重量部に変更した他は実施例1と同様の操作を行い、重量平均径5.8μmのトナーを作製し評価を行った。実施例1と比較すると彩度が劣り、くすんだ色調の画像が得られ、実用レベルには達しなかった。

【0120】なお、耐光性は7級と変わらないものの、

100℃放置10日の耐熱試験においては実施例1より 劣るものであった。

【0121】比較例2

実施例 1 の処方のなかでエステルワックスの代わりにパラフィンワックス(極大ピーク値 7 3. 1°) 5 0 重量 部を用いた他は実施例 1 と同様の操作を行い、重量平均 径 6. 6μ mのトナーを作製し評価を行った。実施例 1 と比較すると 23° 、 60° の条件下では差異がないものの、 30° 、 80° の高温高湿下での 1 万枚耐久では 帯電性が得られなくなり、耐久につれてカブリ等が生じ 実用レベルには達しなかった。

【0122】また、OHP透明性が全くなく不透明な画像であった。

【0123】実施例2

実施例1の処方のなかで着色剤を

[0124]

【化11】

に変更した他はすべて実施例 1 と同様の操作を行い、重量平均径 5. 3μ mのトナーを作製し評価を行った。すると実施例 1 と同様 2 万枚の耐久においても、高温高湿下における 1 万枚の耐久においても、飛散、カブリ等の生じない安定した鮮明かつ良好な画像が得られた。

【0125】また複写物の耐光性も良好で7級であって、定着性、OHP透明性にも優れたものであった。

【0126】実施例3

実施例1の処方のなかで着色剤を

[0127]

【化12】

10重量部

に変更した他はすべて実施例1と同様の操作を行い、重量平均径6.7 μ mのトナーを作製し評価を行った。すると実施例1と同様2万枚の耐久においても、高温高湿下における1万枚の耐久においても、飛散、カブリ等の生じない安定した鮮明かつ良好な画像が得られた。

【 0 1 2 8 】また複写物の耐光性も良好で 6 ~ 7 級であって、定着性、 O H P 透明性にも優れたものであった。 【 0 1 2 9 】<u>実施例 4</u>

実施例1の処方のなかでエステルワックスの添加量を7 重量部とした他はすべて実施例1と同様の操作を行い、 重量平均径5. $1 \mu m O$ トナーを作製し評価を行った。 【0130】すると、実施例1と比較すると $23 \, ^{\circ} \! ^{\circ}$. $60 \, ^{\circ} \! ^{\circ} \! ^{\circ} \! ^{\circ}$. $60 \, ^{\circ} \! ^{\circ} \! ^{\circ} \! ^{\circ} \! ^{\circ} \! ^{\circ}$. $60 \, ^{\circ} \! ^{\circ}$

【0131】実施例5

実施例 1 の処方のなかで造粒する時間を 1 5 分間から 2 5 分に変更し、重合 1 時間後に 0. 1 モルーN a 3 P O 4 水溶液 4 5 重量部および 0. 1 モルーC a C I 2 水溶液 6. 8 重量部を添加することにより、重量平均径は、6. 4 μ mで個数変動係数が 4 6%であり、S F - 1 が 1 3 2 のトナーを得た。

【0132】得られたトナーを実施例1と同様に評価したところ、23℃、60%の条件下での2万枚の耐久で実用レベルではあるものの、耐久につれてカブリが若干発生してくる傾向が見られた。

[0133]

【発明の効果】本発明におけるトナーは、他の着色剤以上に耐熱・耐光性に優れるだけでなく、ビシクロ [3,3,1] ジピロール環構造に由来すると思われる特異な分子構造を有しているために、従来よりも彩度の高い着色力のあるトナーを得ることができる。

【 O 1 3 4 】また本発明の着色剤は、耐アルカリ性、耐酸性、耐溶剤性等にも優れているのでいわゆる重合法トナーに特に好適である。特に、水系媒体中で重合しトナーを製造する懸濁重合法においては、着色剤が水に対して親和性を持っていると、トナー表面に着色剤が露出し、カブリ等の現象が生じ易いのだが、本発明のエステルワックスとの組み合わせにより、帯電性、定着性、OHP透明性にも優れたトナーが得られる。

【図面の簡単な説明】

【図1】エステルワックスが外殻樹脂に内包化されている、本発明トナーの断層面の模式図である。

【図1】

トナー粒子の断層

フロントページの続き

(51) Int. Cl. 6

識別記号 广内整理番号

FI

技術表示箇所

G O 3 G 9/08

(72) 発明者 石山 孝雄 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内