Digitaltechnik Wintersemester 2017/2018 9. Vorlesung

Inhalt

- 1. Einleitung
- 2. Zeitverhalten synchroner sequentieller Logik
- 3. Parallelität
- 4. Zusammenfassung

Einleitung

10101100000011000111110100111100000110	110
1010001011010110110000011001011111011	1101
0110011011010101010100100110010010111	1111
10011110101010100110100010110100010100	010
1100011100101111010110110110100101110	100
0010001001000011101110011110000001010	110
110000010011100000011010001000001001	1111
0000010100101111010001001011110011101	1101
11011101100101111101001011001011110001	1111
10100001001111010101111101100101011010	101
1000110010000111100000011010000100100	010
10100101010100001100100111111110000000	011
1110011010010010010000111101010110110	0001
1000100000100000000010000110011001	011
10100001110111111100101111011111110011	1110
1111110110011100110011000011010010010	011

Organisatorisches

- Zusammenlegung von Übungsgruppen ab KW 51 geplant
 - Tutoren-Zuordnung bleibt erhalten
 - genaue Infos bis Ende KW 50 im Moodle

Rückblick auf die letzten Vorlesungen

- Sequentielle Logik
 - Sequentielle Schaltungen
 - Speicherelemente
 - Synchrone sequentielle Logik
- Endliche Zustandsautomaten
 - Konzept, Notationen und Anwendungsbeispiele
 - Moore vs. Mealy
 - Zerlegen von Zustandsautomaten

Harris 2013 Kap. 3.1 - 3.4

Wiederholung: Speicherelemente

Wiederholung: Endliche Automaten Notation, Überführung

Wiederholung: Endliche Automaten Don't Cares

S	а	S'		S	s ₂	S ₁	s_0	pat	tern/moore	/state.esp
	0	S_0		$\overline{S_0}$	0	0	0	1	.i 4	
0		-			-	_		2	. 0 3	
S_0	1	S_1		S_1	0	0	1	3	0000	000
$egin{array}{c} S_0 \ S_1 \end{array}$	0	S_0		S_2	0	1	0	4	0001	001
S_1	1	S_2		S_3	0	1	1	5	0010	000
					4			6	0011	010
S_2	0	S_3		S_4	1	0	0	7	0100	011
S ₂ S ₂ S ₃ S ₃ S ₄	1	S_2						8	0101	010
S_3	0	S_0						9	0110	000
S.	1	S_4						10	0111	100
O 3	_							11	1000	000
	0	S_0						a 12	1001	010
S_4	1	S_2	_	ā				13	1010	
		!	Reset $\rightarrow (S_0)$	$a \rightarrow S$	a	$\rightarrow (S_2)$	<u>√</u> a	S_3 A S_4 A	1011	
			110301			02	/ /	y 15	1100	
				<u> </u>	ā			16	1101	
				_	_	ā	_	17	1110	

Wiederholung: Endliche Automaten Mealy vs. Moore

Wiederholung: Endliche Automaten Mealy vs. Moore

Wiederholung: Endliche Automaten Zerlegung

Wiederholung: Endliche Automaten Zerlegung

Überblick der heutigen Vorlesung

- Zeitverhalten synchroner sequentieller Schaltungen
- Parallelität

Kap. 3.5-3.6 Seite 133 - 153

Zeitverhalten synchroner sequentieller Logik

01110110001111011111011101000100111110111
00010000011011010101
01110010010000100100010001001111100010111
11100011001111000110110111111010010101000
1100111100011010110010100000101001101110
00101110010010111100001011010010000111100
0100100010010011000110011011101111011101
11110000011100010100100000100001110011
10111010000010000100010101010001000001111
01000101111101010001110010111111101000100
100100100011000011101101000001101110110
10000110100111110011100101111000000111
101010111101101001101000110000110001010011100
0100101110011100111100111011001100000100
001010100011010111011011001010001111111
110010100100101110001000001011001001011

Zeitverhalten synchroner sequentieller Logik

- ► Flip-Flop übernimmt D zur steigenden Taktflanke
- Was passiert bei zeitgleicher Änderung von D und CLK?
- bisher vereinfachte Annahme:
 - Wert unmittelbar vor der Taktflanke wird übernommen
- Aber:
 - Was heißt "unmittelbar"?
 - Wie schnell wird neuer Zustand am Ausgang sichtbar?
 - Was muss daher bei synchronen sequentiellen Schaltungen beachtet werden?

Analogie zur Fotografie: Bewegungsunschärfe (Bewegung während Belichtung)

Quelle: http://lightwatching.de

Metastabilität durch Rückkopplung kombinatorischer Logik

- Transferfunktion schneidet Hauptdiagonale in
 - V_a repräsentiert 0
 - V_b repräsentiert 1
 - V_c im "verbotenen" Spannungsbereich
- V_c ist "metastabil", da
 - lacktriangle kleine Änderung an $V_{in}
 ightarrow große Änderung an <math>V_{out}$
- ⇒ geht nach zufälliger Verzögerung in einen stabilen Zustand über

Metastabilität an Flip-Flops

Zeitanforderungen an DFF Eingangssignale

- Dateneingang D muss in Abtast-Zeitfenster um Taktflanke stabil sein, um Metastabilität zu vermeiden
 - t_{setup} Zeitintervall vor Taktflanke, in dem D stabil sein muss
 - thold Zeitintervall nach Taktflanke, in dem D stabil sein muss
 - t_a Abtastzeitfenster: $t_a = t_{setup} + t_{hold}$
- Größenordnung: 10 ps

Zeitcharakteristik der DFF Ausgangssignale

- Verzögerung des Registerausgangs relativ zur steigenden Taktflanke
 t_{ccq} Kontaminationsverzögerung, bis Q (frühestens) umschaltet
 - t_{pcq} Laufzeitverzögerung, bis Q (spätestens) stabil
- Größenordnung: 10 ps

Dynamische Entwurfsdisziplin

- kombinatorische Logik zwischen zwei Registern hat max/min Verzögerung
- abhängig von Verzögerungen der Gatter und des ersten Registers
- ⇒ Timing-Bedingungen des zweiten Registers müssen erfüllt werden
 - $ightharpoonup t_{ccq,1} + t_{cd} > t_{hold,2}$
 - $ightharpoonup t_{
 m pcq,1} + t_{
 m pd} + t_{
 m setup,2} \leq rac{1}{f_{
 m CLK}}$
- → maximale Taktrate wird durch kritischen Pfad bestimmt
 - $f_{\text{CLK}} \leq \frac{1}{t_{\text{pcq}} + t_{\text{pd}} + t_{\text{setup}}}$

Beispiel:

Analyse der Timing-Bedingungen

- Timing-Vorgaben:
 - $t_{cca} = 30 \text{ ps}$
 - $t_{pcq} = 50 \text{ ps}$
 - $t_{\text{setup}} = 60 \text{ ps}$
 - $t_{hold} = 70 \, ps$
 - $t_{cd.Gatter} = 25 \, ps$
 - $ightharpoonup t_{pd,Gatter} = 35 \, ps$
- kombinatorischer Pfad:
 - $t_{cd} = 25 \, ps$
 - $t_{pd} = 3.35 \, ps = 105 \, ps$

$$f_{CLK} \le \frac{1}{t_{pcq} + t_{pd} + t_{setup}} = \frac{1}{215 \, ps} = 4,65 \, GHz$$

$$t_{ccq} + t_{cd} = 55 \, ps < t_{hold}$$

Beispiel: Beheben der verletzten Hold-Zeitanforderung

- ▶ Timing-Vorgaben:
 - $t_{cca} = 30 \, ps$
 - $t_{pcq} = 50 \text{ ps}$
 - $t_{\text{setup}} = 60 \text{ ps}$
 - $t_{hold} = 70 \, ps$
 - $t_{cd.Gatter} = 25 \, ps$
 - $t_{pd,Gatter} = 35 ps$
- kombinatorischer Pfad:
 - $t_{cd} = 50 \, ps$
 - $t_{pd} = 3.35 \, ps = 105 \, ps$

$$f_{CLK} \le \frac{1}{t_{pcq} + t_{pd} + t_{setup}} = \frac{1}{215 \, ps} = 4,65 \, GHz$$

$$t_{ccq} + t_{cd} = 80 \, ps > t_{hold} \, \checkmark$$

Taktverschiebung (clock skew)

- Takt kommt nicht bei allen Registern gleichzeitig an
 - unterschiedliche Verdrahtungswege auf dem Chip (clock tree),
 - Logik in Taktsignal (bspw. gated clock)
- t_{skew} ist max. Differenz der Taktankunftszeit zwischen zwei Registern

Timing-Bedingungen mit Taktverschiebung

- Timing-Bedingungen müssen auch im worst-case eingehalten werden:
 - $t_{cca.1} + t_{cd} > t_{skew} + t_{hold.2}$
 - $t_{\text{pcq,1}} + t_{\text{pd}} + t_{\text{setup,2}} + t_{\text{skew}} \leq \frac{1}{f_{\text{CLK}}}$
- ⇒ idR. wird Timing durch t_{skew} enger

 Taktfrequenz kann durch t_{skew} auch steigen, wenn
 CLK₂ sicher nach CLK₁ schaltet

Verletzung der dynamischen Entwurfsdisziplin

- asynchronen Eingänge:
 - Benutzereingaben
 - Kommunikationssignale von externen ICs
- ⇒ Timing-Bedingungen können nicht garantiert werden
- zweifaches Shiftregister für Synchronisation
 - erstes Flip-Flop kann metastabil werden
 - kippt idR. vor nächster Taktflanke in stabilen Zustand
 - ⇒ zweites Flip-Flop wird nicht metastabil

Parallelität

101010111001100110111101010001111000110	01
111011110001101100000110000111111100001	10
0011010010011100011101010111111000011	0 1
10101110010110001011110110001001110010	11
111011111111100100011101011111000101001	10
111100100010101101101101101110100001010	11
111100011000010101010101011100000101101	11
00011110000101000101111111101100111000	01
10010000111001100000100011000101011000	01
101001100010010010111111011110001000	10
11011000110100011001010101111110011001	0 1
001001010001000100011001111111001000111	10
001111000000010000001111100100001101	11
001000001001111111110101001101111111010	10
10010100000001011111110111101110001000	10
11001111101000101011001110010001010001	0 1

Arten der Parallelität

- räumliche Parallelität
 - mehrere Aufgaben durch vervielfachte Hardware gleichzeitig bearbeiten
- zeitliche Parallelität
 - Aufgabe in mehrere Unteraufgaben aufteilen
 - Unteraufgaben parallel ausführen
- Beispiel: Fließbandprinzip bei Autofertigung ("Pipelining")
 - nur eine Station für pro Arbeitsschritt
 - alle unterschiedlichen Arbeitsschritte für mehrere Autos parallel ausgeführt
 - ⇒ zeitliche Paralellität

Grundlegende Begriffe

Datensatz: Vektor aus Eingabewerten, zu denen ein Vektor aus Ausgabewerten berechnet wird

Latenz: Zeit von der Eingabe eines Datensatzes bis zur Ausgabe des zugehörigen Ergebnisses

Durchsatz: Anzahl von Datensätzen, die pro Zeiteinheit bearbeitet werden können

⇒ Parallelität erhöht Durchsatz

Beispiel: Plätzchen backen

- Annahmen:
 - genug Teig ist fertig
 - 5 Minuten zum Belegen eines Bleches
 - 15 Minuten Backzeit
- sequentiel: ein Blech nach dem anderen belegen und backen
- zeitlich parallel: nächstes Blech belegen, während erstes noch im Ofen ist
- räumlich parallel: zwei Bäcker, jeweils mit eigenem Ofen
- räumliche und zeitliche Parallelität kombiniert

Beispiel: Plätzchen backen

Beispiel: Pipelining in Schaltungen Ohne Pipeline-Register

- ► $f_{CLK} \le \frac{1}{9.5 \, \text{ns}} = 105 \, \text{MHz}$

Beispiel: Pipelining in Schaltungen Zwei Pipeline-Stufen

- $f_{\text{CLK}} \le \max(\frac{1}{5.5 \, \text{ns}}, \frac{1}{4.5 \, \text{ns}}) = 182 \, \text{MHz}$
- ▶ Latenz: 2 Takte = 11 ns

Beispiel: Pipelining in Schaltungen Drei Pipeline-Stufen

- $f_{CLK} \le \max(\frac{1}{3.5 \text{ ns}}, \frac{1}{2.5 \text{ ns}}, \frac{1}{4.5 \text{ ns}}) = 222 \text{ MHz}$

Bewertung Pipelining

- Pipelinestufen sollten möglichst gleich lang sein ("ausbalanciert")
 - ► längste Stufe bestimmt Taktrate
 - Latenz = Pipelinestufen / Taktrate
- mehr Pipelinestufen
 - höherer Durchsatz (mehr Ergebnisse pro Zeiteinheit)
 - aber auch h\u00f6here Latenz (l\u00e4nger auf Ergebnis warten)
 - ⇒ lohnt sich nur, wenn viele Datensätze bearbeitet werden müssen
- ▶ Probleme bei Abhängigkeiten zwischen Teilaufgaben
 - bspw. erst Backergebnis prüfen, bevor nächstes Blech belegt wird
- wird noch intensiv beim Thema Befehlsverarbeitung von Prozessoren behandelt

Zusammenfassung

0100000001101100100000010001001110111111
110011110010000010111010001011100000000
0000100110111010000110010001110011010001
001000101101101110101100111010100110
00111000010010110010110101101110111101
1100001011100100011110110011101000011111
1010101110000010110110010000111010000010
01011111010101111110100110001100110011011
10010010110010110000000100110100001101
010001100010111011111111101011110111111
1011110010010011110001000011010100000111
1010111111110100011010001010000011000111
111001101001110001001010101111101001110
0110001000001010010011000010111100001010
0000011100010100000100111100001011111101
0011101100111001101100001010001100100011

Zusammenfassung und Ausblick

- Zeitverhalten synchroner sequentieller Schaltungen
- Parallelität
- Nächste Vorlesung behandelt
 - Hardwarebeschreibung mit SystemVerilog