TechMech Zusammenfassung

Andreas Biri, D-ITET

31.07.13

1. Grundlagen

Zylinderkoordinaten

$$\vec{r} = \varrho * \overrightarrow{e_{\varrho}} + z * \overrightarrow{e_{z}}$$

$$\overrightarrow{e_{\varrho}} = \cos \varphi \ \overrightarrow{e_x} + \sin \varphi \ \overrightarrow{e_y}, \qquad \overrightarrow{e_{\varphi}} = -\sin \varphi \ \overrightarrow{e_x} + \cos \varphi \ \overrightarrow{e_y}$$

$$\overrightarrow{v} = \dot{\varrho} \ \overrightarrow{e_{\varrho}} + \varrho * \dot{\varphi} \ \overrightarrow{e_{\varrho}} + z * \overrightarrow{e_z}$$

Freiheitsgrade

minimale Anzahl benötigter Lagekoordinaten Zahl d. freien Geschwindig. – und Rotationskomponenten

$$f = n - b$$

n : Freiheitsgrade d. einzelnen Körper

b: lin. unabhängige Bindungsgleichungen

Starrer Körper: FG 6 im Raum, FG 3 in der Ebene

Geschwindigkeit & Schnelligkeit

Geschwindigkeit:

$$\vec{v} = \frac{dr(t)}{dt} = \dot{x} \, \overrightarrow{e_x} + \dot{y} \, \overrightarrow{e_y} + \dot{z} \, \overrightarrow{e_z} = \dot{r}$$

Schnelligkeit:

$$v = |\vec{v}| = \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2}$$

Satz der projizierten Geschwindigkeiten (SdpG)

Bei einem starren Körper verschieben sich die Punkte in d. gleiche Richtung

$$\overrightarrow{v_P}' = \overrightarrow{v_Q}' \triangleq |\overrightarrow{v_P}| * \cos \alpha = |\overrightarrow{v_Q}| * \cos \beta$$

$$\overrightarrow{v_P} * \overrightarrow{PQ} = \overrightarrow{v_Q} * \overrightarrow{PQ}$$

Ebene & räumliche Bewegungen

Eine starre ebene Bewegung ist entweder eine

Translation: alle Punkte haben parallele Geschwindigk.

Rotation: min. zwei Punkte haben nichtparallele Geschw.

Bei räumlichen Bewegungen unterscheidet man:

Kreiselung: ein Punkt des Körpers bleibt fixiert (mom. Rotation)

Schraubung: Rotation um Achse sowie Translation entlang der Rotationsachse

Satz vom Momentanzentrum

Bei einer Rotation um das Momentanzentrum M gilt:

$$|\overrightarrow{v_p}| = \omega * |\overrightarrow{r_p}| \rightarrow \overrightarrow{v_p} = \overrightarrow{\omega} \times \overrightarrow{r_p}$$

Polbahn: Kurve des Mom.zentrum im Verlauf der Bewegung

Kinemate

Die Geschwindigkeit eines Punktes setzt sich zusammen aus dessen **Translationsgeschwindigkeit** $\overrightarrow{v_R}$ und der Rotationsgeschwindigkeit $\vec{\omega}$

Kinemate: $\{\overrightarrow{v_R}, \overrightarrow{\omega}\}$

$$\overrightarrow{v_P} = \overrightarrow{v_R} + \overrightarrow{\omega} x \overrightarrow{r_{RP}}$$

Die Invarianten der Kinematen sind unabhängig vom Bezugssystem:

$$I_1 = \overrightarrow{\omega} \; ; \; I_2 = \overrightarrow{\omega} * \overrightarrow{v_B}$$

 $I_1 = \overrightarrow{\boldsymbol{\omega}} = \mathbf{0}$ $(\overrightarrow{v_M} = \overrightarrow{v_R})$ Translation:

Rotation:

 $I_1 \neq 0$, $I_2 = 0$ $\omega \perp$ Bewegungsebene

Schraubung: $I_2 \neq 0$

Drehmoment M [Nm]

Das Drehmoment ist vom Bezugspunkt abhängig:

$$\overrightarrow{M_0} = \overrightarrow{r_{OP}} x \overrightarrow{F}$$

Kann Kraft entlang Wirkungslinie verschieben!

$$\rightarrow |\overrightarrow{M_0}| = d * F$$

Vorzeichen aus Korkenzieherregel

Moment bezüglich Achse

- 1. Projiziere Kraft auf Ebene senkrecht zu Achse
- 2. Multipliziere Betrag mit Abstand zur Achse d
- 3. Vorzeichen aus Korkenzieherregel

Lote auf Geschwindigkeiten geben Momentanzentrum Auflager sind stets Momentanzentren

Leistung P [1 W = 1 J/s]

$$P = \overrightarrow{F_Q} * \overrightarrow{v_Q}$$

leistungslos:

$$P = 0 \rightarrow F_0 \perp v_0$$

Bei reiner Rotation gilt:

$$P = \overrightarrow{M_0} * \overrightarrow{\omega}$$

2. Statik

Reduktion von Kräftegruppen

Resultierende \vec{R} : Summe der Kräfte der Kräftegruppe

$$\vec{R} = \sum_{i} \vec{F}_{i}$$

Resultierendes Moment $\overrightarrow{M_0}$ zum Bezugspunkt O:

$$\overrightarrow{M_0} = \sum_{i} \overrightarrow{r_i} \times \overrightarrow{F_i}$$

Gesamtleistung P bei einer Starrkörperbewegung

$$P = \overrightarrow{R} * \overrightarrow{v_B} + \overrightarrow{M_B} * \overrightarrow{\omega}$$

Statische Äquivalenz

- 1. $P\left(\left\{\overrightarrow{F_{t}}\right\}\right) = P\left(\left\{\overrightarrow{G_{t}}\right\}\right) \ \forall \ \left\{\overrightarrow{\boldsymbol{v_{B}}}, \ \overrightarrow{\boldsymbol{\omega}}\right\}$
- 2. Dynamen (Resultierende u. resultierendes Moment) gleich

Für zwei Kräfte: vektoriell gleich und selbe Wirkungslinie

Kräftepaar: "freies Moment"

Besteht aus zwei Kräften gleichen Betrags in entgegengesetzte Richtung:

$$\vec{R} = 0$$
; $\vec{M} = \vec{r} \times \vec{F}$; $M = d * F$

Moment ist unabhängig von Bezugspunkt!

Dyname

Eine Kräftegruppe wird durch ihre Dyname bestimmt:

Dyname:
$$\{ \vec{R} , \overrightarrow{M_0} \}$$

 \vec{R} : Resultierende

 $\overrightarrow{M_O}$: Resultierendes Moment

Transformationsregel

$$\overrightarrow{M_P} = \overrightarrow{M_0} + \overrightarrow{r_{PO}} x \overrightarrow{R}$$

Die **Invarianten der Dynamen** sind unabhängig vom Bezugssystem:

$$I_1 = \vec{R}$$
; $I_2 = \vec{R} * \overrightarrow{M_0}$

Nullsystem: $\vec{R} = 0$, $\overrightarrow{M_O} = 0$

Kräftepaar: $\vec{R} = 0$, $\overrightarrow{M_O} \neq 0$

Einzelkraft: $\vec{R} \neq 0$, $I_2 = 0$

Schraube: $I_2 \neq 0$

Schwerpunkt / Kräftemittelpunkt

$$\overrightarrow{r_c} = \frac{1}{M} \int_{R} \overrightarrow{r} \ dm = \frac{1}{M} \sum_{i} m_i * \overrightarrow{r_i}$$

Für homogene Verteilung:

$$\overrightarrow{r_c} = \frac{1}{V} \int_{B} \overrightarrow{r} \ dV = \frac{1}{V} \sum_{i} V_i * \overrightarrow{r_{c_i}}$$

$$\overrightarrow{r_c} = \frac{1}{A} \int_A \overrightarrow{r} \ dA = \frac{1}{A} \sum_i A_i * \overrightarrow{r_{c_i}}$$

<u>Kräftemittelpunkt:</u> $G * \overrightarrow{r_c} = \sum_i G_i * \overrightarrow{r_i}$

$$\overrightarrow{r_c} = \frac{1}{R} \sum_{i} F_i * \overrightarrow{r_{c_i}}$$

Prinzip der virtuellen Leistungen (PdvL)

Ein System ist genau dann in Ruhelage, wenn virtuelle Gesamtleistung für alle Bewegungszustände verschwindet:

$$\widetilde{P} = \widetilde{P}^{(innen)} + \widetilde{P}^{(aussen)} = 0 \quad \forall \{\widetilde{v}\}$$

Gilt auch für konstante (Rotations-) Geschwindigkeiten

Zulässiger virtueller Bewegungszustand: verletzt keine Bindungen

Hauptsatz der Statik

Ein starrer Körper befindet sich genau dann in einer Ruhelage, wenn die äusseren Kräfte im Gleichgewicht sind:

$$\overrightarrow{R}=0$$
 , $\overrightarrow{M_0}=0$

Statische Bestimmtheit

Bindung: Einschränkung der Bewegungsfreiheit

Statisch bestimmt:

Unbekannte = # lin. unabh. Gleichungen

Statisch unbestimmt: "klemmt"

Unbekannte > # lin. unabh. Gleichungen

Grad der Unbestimmtheit: # Unbekannte – # Gleichungen

Kinematisch bestimmt: falls aufgrund der Lagerung keine zulässigen (Starrkörper-) Bewegungen mehr möglich sind

Kinematisch unbestimmt: System ist beweglich; kann nicht statisch bestimmt sein

Reibung

<u>Haftreibungskraft</u>

$$|F| < \mu_0 * |N|$$
 μ_0 Haftreibungskoeffizient

Stellt zusätzliche Unbekannte dar und dient lediglich nachträglich zur Überprüfung, ob Ruhe wirklich möglich ist.

Gleitreibungskraft

$$|F| = \mu_1 * |N|$$
 μ_1 Gleitreibungskoeffizient

Entgegen d. Bewegungsrichtung: $\vec{F} = -\mu_1 * |N| * \frac{\overrightarrow{v_B}}{|v_B|}$

Liefert stets eine zusätzliche Gleichung zum Lösen des GS

Rollwiederstand (Deformation)

$$|M_f| \leq \mu_2 * |N|$$

In Bewegung (entgegengesetzt zu Rotationsrichtung):

$$|M_f| = \mu_2 * |N|$$
, $\overline{M_f} = -\mu_2 * |N| * \frac{\overrightarrow{\omega}}{|\omega|}$

ideal rau: $\mu_0=\infty$, $\mu_2=0$

3. Dynamik

 $\mbox{Beschleunigung:} \quad a = \ \dot{\pmb{v}} = \ \ddot{\pmb{r}} = \quad \ddot{x} * e_x + \ddot{y} * e_y + \ddot{z} * e_z$

 ${\it \underline{Tr\"{a}gheitskraft:}}$ Tr\"{agheitskraftdichte ho

$$f^{(t)} = -\rho a$$
; $dF^{(t)} = -\rho a dV = -a dm$
 $\widetilde{P}^{(tr\"{a}gheit)} + \widetilde{P}^{(innen)} + \widetilde{P}^{(aussen)} = 0 \quad \forall \{\widetilde{v}\}$

Newton'sches Bewegungsgesetz

$$\vec{R} = m * \vec{a}$$

<u>Massenmittelpunktsatz:</u> kann ausgedehnter Körper wie Massenpunkt im Schwerpunkt betrachten

Kinetische Energie

$$E_{kin} = \frac{1}{2} m * v^2$$

<u>Impuls</u>

$$\vec{\rho} = m * \vec{v} = \iiint_{R} v \, dm$$

Impulssatz / Massenmittelpunktsatz

$$\dot{\boldsymbol{\rho}} = \overrightarrow{\boldsymbol{R}} = \frac{d}{dt} \left(m * \overrightarrow{v_C} \right) = m * \overrightarrow{a_C}$$

<u>Impulserhaltung</u>

$$m_1 * v_1 + m_2 * v_2 = m_1 * v_1' + m_2 * v_2'$$

Inelastischer Stoss: $v_1' = v_2' = v'$

Elastischer Stoss (Energieerhaltung):

$$m_1 * v_1^2 + m_2 * v_2^2 = m_1 * v_1'^2 + m_2 * v_2'^2$$

Stosszahl k : $(v_2' - v_1') = k * (v_1 - v_2)$

k = 0: vollkommen inelastisch; k = 1: vollkommen elastisch

Drallsatz

Drallsatz bezüglich inertialen (in Ruhe) Punkts O

$$M_O = \iiint r x a dm$$

$$L_o = \iiint \mathbf{r} \, \mathbf{x} \, \mathbf{v} \, dm$$

$$\dot{L_0} = M_0$$

Drallsatz bezüglich dem Massenmittelpunkt C

$$L_C = \iiint \mathbf{r}' \mathbf{x} \mathbf{v}' dm$$

$$\dot{L_C} = M_C$$

<u>Umrechnungsformel</u>

$$L_0 = r_C x p + L_C$$

DS bezüglich 0: praktisch für Kreiselung um O
DS für relativen Drall: gut für beschleunigt bewegtes C

Drallsatz für ebene Bewegungen

$$L_0 = I_0 * \omega = I_0 * \dot{\varphi}$$

$$\dot{L_O} = I_O * \dot{\omega} = M_O$$

Drallrichtung und Moment besitzen selben Richtungssinn!

Massenträgheitsmoment Io

$$I_0 = \iint\limits_R r^2 \, dm$$

<u>Drallsatz bezüglich des Massenmittelpunktes C</u>

$$L_C = I_C * \omega$$
 ; $\dot{L_C} = I_C * \dot{\omega} = M_C$

Kinematische Relation $\dot{x} = r * \dot{\phi}$?

Trägheitsmomente einfacher Körper

Massenpunkt im Abstand r $I = mr^2$

Stabmitte, Querachse $I = \frac{ml^2}{12}$

Stabende, Querachse $I = \frac{ml^2}{3}$

Rolle, Mittelpunkt $I = \frac{mR^2}{2}$

4. Problemlösungsverfahren

PdvL: für einzelne Kräfte

- 1. Stab ausschneiden, Zugkräfte einführen
- 2. **Bewegungszustand wählen:** zB. führe Rotation ω ein, s.d. immer noch wirkliche Bewegung und Lagerungskräfte sollen nicht bei Leistungsberechnung vorkommen
- 3. -> P = 0 , auflösen auf gesuchte Variabel

HS: für alle Lager- und Bindungskräfte

Komponentenbedingungen (KB) : R = 0

Momentenbedingungen (MB) : $M_O = 0$

- 1. Wenn möglich bei Schnittpunkten; will diese ja meistens nicht berechnen, sollen nicht vorkommen in Gleichung
- 2. freies Moment darf überall angesetzt werden!
- + Zusatzbedingungen:
- 1. S>0 : Seilkraft immer positiv, da nur Zugkraft möglich
- 2. falls Z < 0: Knickgefahr bei Pendelstütze

Z > 0 : Zugstab ; Z < 0 : Druckstab

Kinematische Relation: Sind Koordinaten miteinander verbunden? (zB. Rolle $\dot{x}=\dot{y}$)

Anwendung des Hauptsatzes der Statik

- 1. System freischneiden und angreifende Kräfte einführen:
 - Gewichtskräfte greifen im Schwerpunkt an
 - Seil- und Stabkräfte als Zugkräfte
 - Normalkräfte senkrecht zu r Bewegungsebene (eventuell weitere Unbekannte für Angriffspunkt)
- 3. Zweckmässiges Koordinatensystem finden
- 3. Gleichgewichtsbedingungen formulieren (KB, MB)
- 4. Gleichungen und Unbekannte abzählen; bei zu vielen Unbekannten aufschneiden
- 5. Lösen und Resultate diskutieren
 - Ist Seil gespannt: S > 0?
 - Körper kippt nicht: *N* > 0, *innerhalb Körper* ?
 - Körper bleibt in Ruhe: $|F| < \mu_0 * |N|$

Lösung von Dynamikproblemen

- 1. System freischneiden und in allgemeiner Lage angreifende Kräfte einführen
- 2. Zweckmässiges Koordinatensystem aufstellen und kinematische Relationen aufstellen.
- 3. Differentialgleichungen mittels Massenmittelpunktsatz und Drallsatz aufstellen
- 4. Bindungskräfte bestimmen und aus den Bewegungsgleichungen eliminieren
- 5. Anfangsbedingungen formulieren und gesuchte Grössen berechnen
- 6. Resultat diskutieren: zB. $Eigenfrequenz \ddot{x} + \omega^2 x = 0$

5. Verschiedenes

DGL-Lösungen

$$\ddot{x} = k \qquad \qquad x(t) = \frac{k}{2} t^2 + A * t + B$$

$$\ddot{x} + \omega^2 * x = k$$
 $x(t) = \frac{k}{\omega^2} + A * cos(\omega t) + B * sin(\omega t)$ \rightarrow Kreisfrequenz ω , Periode $T = \frac{2\pi}{\omega}$

$$\ddot{x} - \lambda^2 * x = k$$
 $x(t) = -\frac{k}{\omega^2} + A * e^{\lambda t} + B * e^{-\lambda t}$

Rollendes Rad

$$x = R(\varphi - \sin \varphi) ; \quad y = R(1 - \cos \varphi)$$

$$v_x = R \dot{\varphi} (1 - \cos \varphi) ; \quad v_y = R \dot{\varphi} \sin \varphi$$

$$a_x = R \ddot{\varphi} (1 - \cos \varphi) + R \dot{\varphi}^2 \sin \varphi$$

$$a_y = R \ddot{\varphi} \sin \varphi + R \dot{\varphi}^2 \cos \varphi$$

 $falls \dot{\varphi} = \omega konstant$

$$a_x = R \dot{\varphi}^2 \sin \varphi$$
; $a_y = R \dot{\varphi}^2 \cos \varphi$

Zylinderkoordinaten

$$\vec{v} = \dot{\varrho} \, \overrightarrow{e_{\varrho}} + \varrho * \dot{\varphi} \, \overrightarrow{e_{\varphi}} + z * \overrightarrow{e_{z}}$$

$$\rightarrow a = (\ddot{\rho} - \rho \, \dot{\varphi}^{2}) \, e_{\varrho} + (\rho \, \ddot{\varphi} + 2 \, \dot{\rho} \, \dot{\varphi}) \, e_{\varrho} + \ddot{z} \, e_{z}$$

Polarkoordinaten: $\ddot{z} = 0$

Kreiskoordinaten: $\ddot{z}=0$, $\dot{\rho}=0$

Energieerhaltung

In einem geschlossenen System ist die Summe der potentiellen und kinetischen Energie konstant:

$$E_{tot} = m * g * h + \frac{1}{2} * m * v^2 = const.$$

Winkel & Approximationen

 $\sin \varphi \approx \varphi$; $\cos \varphi \approx 1$; $\tan \varphi \approx \varphi$

Grad	Rad	$\sin \varphi$	$\cos \varphi$	$\tan \varphi$
0°	0	0	1	0
30°	$\frac{1}{6}\pi$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
45°	$\frac{1}{4}\pi$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60°	$\frac{1}{3}\pi$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90°	$\frac{1}{2}\pi$	1	0	
120°	$\frac{2}{3}\pi$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\sqrt{3}$
135°	$\frac{3}{4}\pi$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	-1
150°	$\frac{5}{6}\pi$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$
180°	π	0	-1	0

Schwerpunkte ebener Flächen

	$\mathbf{x_c}$	ус
Rechteck	$\frac{x_1+x_2}{2}$	$\frac{y_1 + y_2}{2}$
Dreieck	$\frac{x_1 + x_2 + x_3}{3}$	$\frac{y_1 + y_2 + y_3}{3}$
Halbkreis	0	$\frac{4R}{3\pi}$
Viertelkreis	$\frac{4R}{3\pi}$	$\frac{4R}{3\pi}$

Auflager (einseitig)		N > 0
Auflager (einseitig) Loslager		N > 0
Auflager (beidseitig) Loslager		Å ^N
Auflager (beidseitig) Kurzes Querlager Loslager		N
Gelenk Festlager		B A
Gelenk		$B \bigwedge_{A}$
Gelenk (zwei gelenkig verbundene Balken)		B
Einspannung		M A
Faden / Seil		S>0
Pendelstütze (keine Kräfte am Stab) Newicht verrach - 1655 is bar		S
Parallelführung		M A
Langes Querlager, Schiebehülse		A M
Längs- und kurzes Querlager		A = N > 0