МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

(государственный университет)

Лабораторная работа 2.2.1

ИССЛЕДОВАНИЕ ВЗАИМНОЙ ДИФФУЗИИ ГАЗОВ

 $\it Янковский Д. \ C. \ \it E01-405$

Содержание

1	Вве	Введение						
2	Me	годика	1	5				
3	Рез	ультат	ГЫ	7				
4	Выводы							
5	Прі	иложе	ние	12				
	5.1^{-2}	Экспе	ериментальная установка	12				
	5.2		рительный мост для определения разности напряжений					
			гревательных элементах	13				
	5.3		ща значений $ au$ при различных давлениях	14				
	5.4	Таблица значений D при различных давлениях						
	5.5							
		5.5.1	Расчет погрешности углового коэффициента графика					
			ln(U)(t)	14				
		5.5.2	Расчет погрешности τ	14				
		5.5.3	Pасчет погрешности D	14				
		5.5.4	Расчет погрешности углового коэффициента и свобод-					
			ного члена графика $D(\frac{1}{P})$	14				
		5.5.5	Расчет погрешности $D_{\text{атм}}$	15				

Аннотация

Измерены коэффициенты взаимной диффузии гелия и воздуха при комнатной температуре 22 °C при давлениях смеси от 40 до 300 торр. Измерения (разности концентраций проводились по изменению теплопроводности смеси) проводились с помощью системы из двух соединенных сосудов, в которые накачивалась смесь газов. В результате обнаружено, что коэффициент диффузии обратно пропорционален давлению. Методом экстраполяции полученной зависимости коэффициента диффузии от давления было получено, что при атмосферном давлении он составляет $(0.49 \pm 0.03) \frac{\text{см}^2}{\text{c}}$. Это означает, что при возникновении утечки α активных изотопов у жителей населенного пункта, удаленного на расстоянии 1 км. имеется ... времени на эвакуацию.

1 Введение

С 1954 года атомные электростанции активно используются в промышленности. Известны случаи аварий на станциях, сопровождающиеся выбросом радиоактивных изотопов, в результате распада которых образуются α частицы (ядра атома гелия). В случае радиоактивных выбросов фон может распространиться на большие расстояния, делая непригодным для жизни загрязненные области до полного распада радиоактивных компонентов. В этом случае необходимо иметь возможность оценить время, необходимое для эвакуации людей из ближайших к выбросу территорий. Проводить натурный эксперимент опасно, поскольку территории, выделенные под эксперимент в течение длительного времени будут загрязнены и могут подвергнуть риску флору и фауну. Целесообразно провести лабораторный эксперимент, в котором α -частицы будут заменены гелием, и оценить времена диффузии гелия в воздухе. Поскольку детектировать изменение концентрации гелия можно лишь в случае, когда она сопоставима с концентрацией воздуха, имеет смысл проводить такой эксперимент при пониженном давлении воздуха, чтобы обеспечить должную чувствительность установки, а затем экстраполировать в область атмосферного давления. Целью настоящей работы было измерение коэффициента диффузии гелия в воздухе при пониженном давлении.

2 Методика

Известно из литературы (методическое пособие), что разность (Δn) концентраций примеси гелия в двух резервуарах, между которыми наблюдается диффузия, изменяется по экспоненциальному закону

$$\Delta n = \Delta n_0 e^{-\frac{t}{\tau}} \tag{1}$$

где τ - характерное время релаксации, $\tau=\frac{VL}{2DS},\ V$ - объем резервуаров со смесью газов, L - длина трубки, в которой наблюдается диффузия, S - площадь сечения трубки, D - коэффициент диффузии.

Для определения коэффициента D диффузии необходимо измерить зависимость разности Δn концентраций от времени t диффузии, чтобы определить τ .

Основная задача состоит в том, чтобы определить Δn гелия в сосудах в каждый момент времени. В работе использована зависимость теплопроводности смеси газов k от ее состава. В общем случае теплопроводность сложным образом зависит от концентрации, однако при малой разности концентраций в сосудах (Δn) можно ожидать, что разность теплопроводностей (Δk) будет прямо пропорциональна Δn .

$$\Delta k = k(n_2) - k(n_1) \approx const \cdot \Delta n$$
 (2)

Эксперименты показывают, что если доля примеси гелия составляет менее 15%, отклонение от линейной зависимости не превышает 0.5%, что для наших целей вполне достаточно. Более подробное описание можно найти в методическое пособие.

В эксперименте использованы два нагревательных элемента - тонкие платиновые проволочки, расположенные в обоих сосудах. По проволочкам пропускается электрический ток. Тепло от проволочки к стенкам сосуда передается в основном за счет теплопроводности газа. При заданной мощности нагревания приращение температуры проволочки, и следовательно, приращение ее сопротивления пропорциональны теплопроводности газа.

$$R(t) = R_{273} \cdot (1 + \alpha T) \tag{3}$$

где α - температурный коэффициент сопротивления материала, $\alpha = \frac{1}{R_{273}} \frac{dR}{dT}$. Так как U = IR - напряжение на проволоке, и оно пропорционально сопротивлению, то оно также пропорционально теплопроводности газа. Это означает, что разность напряжений на проволоках пропорциональна разности теплопроводностей газов в сосудах и пропорциональна разности концентраций примеси в сосудах (выражение (2)).

$$U \propto \Delta k \propto \Delta n \tag{4}$$

Из (1) и (4) следует, что

$$U = U_0 e^{-\frac{t}{\tau}} \tag{5}$$

где U_0 - разность напряжений на проволоках в начале измерений. Окончательно имеем, что для определения коэффициента τ в выражении (1) необходимо измерить зависимость разности напряжений на нагревательных элементах от времени, удовлетворяющую закону (5). Непосредственно

коэффициент τ определяется как угловой коэффициент графика ln(U)(t)

$$ln(U) = ln(U_0) - \frac{t}{\tau} \tag{6}$$

Значение коэффициента $D_{\text{атм}}$ диффузии при атмосферном давлении может быть получено путем экстраполяции зависимости $D(\frac{1}{P})$ в сторону атмосферного давления.

3 Результаты

В эксперименте использована установка, состоящая из двух резервуаров. Сосуды соединены трубкой, оснащенной краном K_3 , через которую диффундирующий газ перетекает из одного сосуда в другой. Сосуды подключены к системе напуска и откачки гелия и воздуха (краны K_1 и K_2 позволяют накачивать газы по отдельности в каждый сосуд). Также к системе подключен манометр. Важная особенность установки, позволяющая использовать формулу (1), верную только для квазистационарного потока газа, заключается в том, что объем трубки, соединяющей два резервуара, много меньше объемов сосудов ($LS \ll V$).

Более подробное описание установки см. в **Приложение**. Параметры установки:

$$V = (775 \pm 10) \text{cm}^3$$

 $\frac{L}{S} = (5.3 \pm 0.1) \frac{1}{\text{cm}}$

L - длина трубки, в которой происходит диффузия,

S - площадь поперечного сечения этой трубки (в приложение) Перед каждым измерением искомой зависимости, описанной в методике, установка была подготовлена: в сосуды была закачана смесь гелия и воздуха до определенного давления. Давление измерялось с помощью манометра, подключенного к соединительным трубкам. Он показывает разность давлений между соединительными трубками и атмосферой и позволяет измерять давления в разных частях системы (в зависимости от положения кранов).

Разность напряжений на нагревательных элементах - проволоках $(Д_1, Д_2)$, расположенных в сосудах, измерялась с помощью мостовой схемы (см. Приложение).

Перед каждым измерением установка была подключена к насосу и откачана до давления ~ 0.1 торр. Затем в установку напускался воздух до рабочего давления в диапазоне от 40 до 300 торр, и производилась балансировка моста (при запертых кранах K_1, K_2, K_3 - открыт). Затем установка снова откачивалась до давления ~ 0.1 торр. При изолированном объеме V_2 , в установку был закачан гелий до давления $P_{He}=0.2P$ (кран K_7 открыт), для более точной накачки был использован дозатор. Теперь, когда один из сосудов (V_1) заполнен гелием, в объем V_2 был напущен воздух до давления P=1.675P при изолированном объеме V_1 . Затем были уравнены давления в сосудах путем открытия кранов K_1 и K_2 при закрытых K_3 и K_4 . Поскольку газ при адиабатическом расширении остывает, краны K_1 и K_2 были открытыми в течение 30-60 с., чтобы дать давлениям выравняться при одинаковых температурах. Это время не должно быть слишком велико, чтобы диффузия гелия по патрубкам в обратном направлении не привела к искажению приготовленного состояния.

По измеренным зависимостям U(t) для 6 различных рабочих давлений с помощью компьютерной программы, построены линеаризованные графики. Результаты измерения разности концентраций от времени представлены на рисунке

Графики зависимости ln(U)(t)

График, изображенный на рисунке, является линейным, следовательно, эксперимент согласуется с теорией и разность (Δn) концентраций связана со временем (t) выражением (1).

По методу наименьших квадратов определены коэффициенты наклона прямых, которые по значениям совпадают с коэффициентом $-\frac{1}{\tau}$ из выражения (6).

$$k = -\frac{1}{\tau} \propto D$$

$$k_{41} = (-0.00569 \pm 0.00021)c^{-1}$$

$$k_{80} = (-0.00249 \pm 0.00005)c^{-1}$$

$$k_{120} = (-0.00191 \pm 0.00004)c^{-1}$$

$$k_{153} = (-0.001262 \pm 0.000020)c^{-1}$$

$$k_{194} = (-0.001440 \pm 0.000020)c^{-1}$$

$$k_{235} = (-0.000980 \pm 0.000009)c^{-1}$$

$$\epsilon_{41} = 3.622\%$$

$$\epsilon_{80} = 1.865\%$$

$$\epsilon_{120} = 1.895\%$$

$$\epsilon_{153} = 1.552\%$$

$$\epsilon_{194} = 1.411\%$$

$$\epsilon_{235} = 0.8693\%$$

$$(7)$$

Из графика и выражения (7) следует, что с увеличением давления уменьшается коэффициент диффузии. Коэффициент диффузии линейно выражается через длину свободного пробега молекул газа

$$D = \frac{1}{3}\lambda v \tag{8}$$

где λ - длина свободного пробега молекулы, $\lambda=\frac{1}{\sigma n},\,n$ - концентрация молекулярного фона. При увеличении давления увеличивается концентрация

молекул, следовательно, уменьшается длина свободного пробега (молекулы чаще ударяются друг о друга). Так как $D \propto \lambda$, то коэффициент диффузии уменьшается.

Рассчитанные значения au для каждого давления представлены в таблице (см. Приложение).

Рассчитанные значения D для каждого давления представлены в таблице (см. Приложение)

Используя данные из таблицы (см. Приложение), построили график зависимости $D(\frac{1}{P})$

График зависимости $D(\frac{1}{P})$

Из графика видно, что D линейно зависит от $\frac{1}{P}$, что удовлетворяет предположению теории. В общем случае, при учете диффузии каждого из компонентов смеси (в работе рассматривалась диффузия легких и подвижных молекул гелия на фоне тяжелых и неподвижных молекул воздуха) выражение (8) сохраняется, если под λ понимать величину $\lambda = \frac{1}{n_{\Sigma}\sigma}$, где $n_{\Sigma} = n_{He} + n_{\text{возд}} = \frac{P}{k_{\text{B}}T}$ - полная концентрация частиц смеси и под v понимать среднюю относительную скорость частиц разных сортов. Таким образом

$$D = \frac{1}{3}\lambda v = \frac{1}{3}\frac{k_{\rm B}T}{P\sigma} \propto \frac{1}{P} \tag{9}$$

С помощью метода наименьших квадратов определили значение углового коэффициента $k=(479.15\pm33.63)\frac{\text{см}^2}{c\cdot\text{торp}}$ и свободного члена $b=(-0.1407\pm0.4091)\frac{\text{см}^2}{c}$

По графику определили коэффициент диффузии при атмосферном давлении:

$$D_{\text{atm}} = k \cdot \frac{1}{P_{\text{atm}}} + b \tag{10}$$

$$D_{\rm atm} = (0.49 \pm 0.03) \frac{{\rm cm}^2}{c}$$

(Оценка времени распространения радиоактивного облака)

Выводы 4

По графику зависимости ln(U)(t) определено, что с ростом давления смеси гелия и воздуха коэффициент диффузии уменьшается.

По графику $D(\frac{1}{P})$ определен характер зависимости. Коэффициент диф-

фузии - линейная функция от $\frac{1}{P}$. Предположение теории оказалось верно. Определен коэффициент диффузии гелия и воздуха при атмосферном давлении $D_{\text{атм}}=(0.49\pm0.03)\frac{\text{см}^2}{c}$

5 Приложение

5.1 Экспериментальная установка

Схема экспериментальной установки приведена на рис. 1 Установка состоит

Рис. 1. Экспериментальная установка

из двух сосудов, объемами $V_1=V_2=(775\pm 10){\rm cm}^3$, размещенных вертикально. Краны K_1 и K_2 служат для управления откачкой о подачей воздуха/гелия в сосуды. Диффузия осуществляется через тонкую короткую трубку, соединяющую сосуды, оснащенную краном K_3 . Выравнивание давлений в сосудах без изменения состава газов в них может быть осуществлено через обводные трубки, посредством кратковременного открытия кранов K_1 и K_2 (при закрытом K_3).

Гелий содержится в баллоне под давлением, превышающим атмосферное. Для предотвращения избыточного расхода гелия и его неконтролируемого проникания в установку предусмотрен кран K_7 , отделяющий ее от баллона с гелием. Для подачи малых порций гелия предусмотрен двухходовый кран с дозатором (рис. 2).

Рис. 2. Дозатор

При повороте рычажка P в положение 1 гелий в небольшом количестве поступает в дозатор (если открыт K_7), а при повороте P в положение 2 порция из дозатора поступает в установку.

5.2 Измерительный мост для определения разности напряжений на нагревательных элементах

Измерительный мост

Мост балансируется, когда в сосудах находится только воздух при давлении близком к тому, при котором будут производиться измерения. Балансировка моста осуществляется с помощью переменных сопротивлений (R,R_1,R_2) . Сопротивления R_1,R_2 спарены (их подвижные контакты находятся на общей оси) и изменяются одновременно при повороте ручки грубой регулировки. Точная регулировка выполняется потенциометром R. Балансировка закончена, когда показания гальванометра Γ влуктуируют около нулевого значения. При заполнении сосудов смесями различного состава возникает

разбалансировка моста, и гальванометр показывает искомую разность напряжений на проволоках. Установка компьютеризирована, что позволяет снимать зависимость показаний гальванометра от времени с помощью программы.

5.3 Таблица значений au при различных давлениях

P, $Topp$	σ_P , Topp	$k \cdot 10^{-3}, c^{-1}$	$\sigma_k \cdot 10^{-3}, c^{-1}$	au, c	σ_{τ}, c
41	1.9	-5.69	0.21	175.85	6.40
80	1.9	-2.49	0.05	401.96	7.50
120	1.9	-1.91	0.04	523.64	9.92
153	1.9	-1.262	0.019	792.42	12.30
194	1.9	-1.440	0.021	694.38	9.80
235	1.9	-0.980	0.009	1020.30	8.87

5.4 Таблица значений D при различных давлениях

P, $Topp$	41	80	120	153	194	235
$D, \frac{\mathrm{cm}^2}{c}$	11.67	5.10	3.92	2.59	2.95	2.01
$\sigma_D, \frac{\text{cm}^2}{c}$	0.011	0.0022	0.0017	0.0009	0.0011	0.0006

5.5 Формулы для расчета погрешностей

5.5.1 Расчет погрешности углового коэффициента графика ln(U)(t).

$$\sigma_k = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle ln(U)^2 \rangle - \langle ln(U) \rangle^2}{\langle t^2 \rangle - \langle t \rangle^2} - k^2}$$

n - количество экспериментальных точек.

5.5.2 Расчет погрешности τ .

$$\epsilon_{\tau} = \epsilon_{k} \Rightarrow \frac{\sigma_{\tau}}{\tau} = \frac{\sigma_{k}}{k} \Rightarrow \sigma_{\tau} = \frac{\tau \cdot \sigma_{k}}{k}$$

5.5.3 Расчет погрешности D.

$$\sigma_D = D\sqrt{\epsilon_\tau^2 + \epsilon_{\frac{L}{S}}^2 + \epsilon_V^2}$$

5.5.4 Расчет погрешности углового коэффициента и свободного члена графика $D(\frac{1}{D}).$

$$\sigma_k = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle D^2 \rangle - \langle D \rangle^2}{\langle \frac{1}{P}^2 \rangle - \langle \frac{1}{P} \rangle^2} - k^2}$$

$$\sigma_b = \sigma_k \cdot \sqrt{\langle (\frac{1}{P})^2 \rangle - \langle \frac{1}{P} \rangle^2}$$

5.5.5 Расчет погрешности $D_{\text{атм}}$.

$$\sigma_{D_{\text{atm}}} = \sqrt{\frac{\sigma_k^2}{P_{\text{atm}}^2} + \sigma_b^2}$$