Cel ćwiczenia 1

Celem ćwiczenia było wyznaczenie współczynnika sprężystości sprężyny przy użyciu metody statycznej i dynamicznej. Ćwiczenie obejmowało również wyznaczenie współczynnika sprężystości dla układu sprężyn połączonych równolegle i szeregowo.

2 Metoda statyczna

pomierzone dane

l.p.	$\Delta x [\mathrm{cm}]$	m [g]
1	3,7	50
2	6,7	100
3	$10,\!3$	150
4	13, 9	200
5	17,0	250
6	$20,\!6$	300
7	24,7	350
8	27,7	400
9	$31,\!3$	450

m - masa zawieszona na sprężynie

 Δx - zmiana wychylenia sprężyny od wychylenia początkowego po zawieszeniu ciężarków o określonej masie

2.2wykres $\Delta x(m)$

miejsce na wykres

obliczenie stałej sprężystości

korzystamy ze wzoru¹

$$\rho = \rho_w \frac{p + \frac{q}{10} + \frac{r}{100}}{p_w + \frac{q_w}{10} + \frac{r_w}{100}}$$

rachunek niepewności

do wyliczenia niepewności korzystamy ze wzoru ²

 $[\]frac{1}{2} \texttt{https://pg.edu.pl/files/ftims/2021-03/cwiczenieM1.pdf} \ (M1.4) \\ 2 \texttt{https://pg.edu.pl/files/ftims/2021-03/cw_26.pdf} \ (26.9)$

Metoda dynamiczna 3

pomierzone dane 3.1

l.p.	t [s]	m [g]	$T^{2} [s^{2}]$
1	8,07	50	
2	10,64	100	
3	$12,\!55$	150	
4	15,19	200	
5	16,66	250	
6	17,94	300	
7	19,85	350	
8	21,41	400	

m - masa zawieszona na sprężynie t - pomierzony czas 20 okresów t = 20T

3.2 wykres $T^2(m)$

miejsce na wykres

obliczenie stałej sprężystości

korzystamy ze wzoru 3

$$\rho = \rho_w \frac{p + \frac{q}{10} + \frac{r}{100}}{p_w + \frac{q_w}{10} + \frac{r_w}{100}}$$

rachunek niepewności

do wyliczenia niepewności korzystamy ze wzoru 4

Moduł sztywności 4

pomierzone dane

$_{ m dana}$	wartość
r	$0.35\mathrm{mm}$
\mathbf{R}	$7{,}05\mathrm{mm}$
N	80 zwojów

r - promień drutu sprężyny

R - promień sprężyny

 ${\cal N}$ - liczba zwojów sprężyny

 $[\]frac{^3 \text{https://pg.edu.pl/files/ftims}/2021-03/\text{cwiczenieM1.pdf}}{^4 \text{https://pg.edu.pl/files/ftims}/2021-03/\text{cw}_26.\text{pdf}} \left(26.9\right)$

4.2obliczenie modułu sztywności

korzystamy ze wzoru⁵

$$\rho = \rho_w \frac{p + \frac{q}{10} + \frac{r}{100}}{p_w + \frac{q_w}{10} + \frac{r_w}{100}}$$

4.3rachunek niepewności

do wyliczenia niepewności korzystamy ze wzoru ⁶

Układ sprężyn połączony równolegle 5

5.1pomierzone dane

l.p.	$\Delta x [cm]$	m [g]	t[s]	T[s]	$T^2 [s^2]$
1	2,2	50	8,06		
2	4,3	100	9,41		
3	6,6	150	$11,\!45$		
4	8,8	200	$13,\!02$		
5	10,9	250	$14,\!11$		
6	12,7	300	$15,\!53$		
7	14,6	350	$16,\!46$		
8	17,1	400	$17,\!62$		
9	19,2	450	$18,\!39$		

oznaczenia jak w pozostałych podpunktach

5.2wykres i opracowanie $\Delta x(m)$

miejsce na wykres

wykres i opracowanie $T^2(m)$

miejsce na wykres

rachunek niepewności

do wyliczenia niepewności korzystamy ze wzoru 7

 $[\]frac{5}{6} https://pg.edu.pl/files/ftims/2021-03/cwiczenieM1.pdf~(M1.4)\\ \frac{6}{6} https://pg.edu.pl/files/ftims/2021-03/cw_26.pdf~(26.9)\\ \frac{7}{6} https://pg.edu.pl/files/ftims/2021-03/cw_26.pdf~(26.9)$

6 Układ sprężyn połączony szeregowo

6.1 pomierzone dane

l.p.	$\Delta x [\mathrm{cm}]$	m [g]	t[s]	\mid T[s] \mid T^2 [s^2]
1	8,8	50	13,42	
2	18,0	100	17,80	
3	27,1	150	21,13	
4	35,9	200	24,49	
5	44,9	250	27,17	

oznaczenia jak w pozostałych podpunktach

6.2 wykres i opracowanie $\Delta x(m)$

miejsce na wykres

6.3 wykres i opracowanie $T^2(m)$

miejsce na wykres

6.4 rachunek niepewności

do wyliczenia niepewności korzystamy ze wzoru 8

7 Wnioski

${ m zadanie}$	współczynnik spreżystości
metoda statyczna	831,83
metoda dynamiczna	1173,17
układ połączony szeregowo	123
układ połączony równolegle	123

Podobieństwo pomiaru metodą statyczną i dynamiczną. Sensowność wyników w układzie połączonym równolegle i szeregowo (równolegle > szeregowo). Moduł sztywności. Błąd paralaksy, błąd reakcji, niedokładność linijki.

 $^{^8 \}mathtt{https://pg.edu.pl/files/ftims/2021-03/cw_26.pdf} \ (26.9)$