US Recession Forecast: November 12, 2019

Danny Cohen, Corporate Intelligence Analyst Intern

1 Recession Probabilities

1.1 Three-month Predictions

1.2 Interpreting the Data

Do not treat these numbers as mere raw percentages. Based on previous analysis, values above 5% indicate an elevated risk of recession; values above 10% indicate a significant risk of recession; and values above 20% indicate near-certainty of recession.

The algorithm is designed to underestimate recession risk, meaning high recession probabilities should not be taken lightly.

Disclaimer: these algorithms were trained exclusively on past recessions. Most downturns share macroeconomic characteristics, which makes prediction a reasonable task. However, any future recession would likely go unnoticed if its causes were novel and previously unseen, at which point prediction would be akin to gambling.

2 Independent Variables & Sources

Key	Source	
M1	http://www.federalreserve.gov/releases/h6/	
DTWEXBGS	http://www.federalreserve.gov/releases/h10/	
UMCSENT	http://www.sca.isr.umich.edu/	
PERMIT	http://www.census.gov/construction/nrc/	
ASPUS	http://www.census.gov/construction/nrs/	
HSN1F	http://www.census.gov/construction/nrs/	
AWHAEMAN	http://www.bls.gov/ces/	
TCU	http://www.federalreserve.gov/releases/g17/	
RSXFS	http://www.census.gov/retail/	
CPIAUCSL	http://www.bls.gov/cpi/	
CPALTT01USM657N	http://www.oecd-	
	ilibrary.org/economics/data/main-economic-	
	indicators/main-economic-indicators-	
	complete-database_data-00052-en	
DTWEXB	http://www.federalreserve.gov/releases/h10/	
NASDAQCOM	http://www.nasdaq.com/	
BOGZ1LM155035015A	http://www.federalreserve.gov/releases/z1/	
AMTMNO	http://www.census.gov/indicator/www/m3/	
MANEMP	http://www.bls.gov/ces/	
INDPRO	http://www.federalreserve.gov/releases/g17/	
DJIA	http://www.djaverages.com/	
AWHMAN	http://www.bls.gov/ces/	
NEWORDER	http://www.census.gov/indicator/www/m3/	
IPMAN	http://www.federalreserve.gov/releases/g17/	
A36SNO	http://www.census.gov/indicator/www/m3/	
MCUMFN	http://www.federalreserve.gov/releases/g17/	
TOTBUSMPCIMSA	http://www.census.gov/mtis/www/mtis.html	
M2	http://www.federalreserve.gov/releases/h6/	
MSPUS	http://www.census.gov/construction/nrs/	
ESALEUSQ176N	http://www.census.gov/housing/hvs/	
ACDGNO	http://www.census.gov/indicator/www/m3/	
IPDCONGD	http://www.federalreserve.gov/releases/g17/	
AMDMUO	http://www.census.gov/indicator/www/m3/	
AMTMUO	http://www.census.gov/indicator/www/m3/	
BUSINV	http://www.census.gov/mtis/www/mtis.html	
T10YFF		

CPROFIT	https://www.bea.go	/data/gdp/gross-
CITCOIII	1100 ps. / / 11 11 11 11 200.50	/ data / Sab/ Stopp

domestic-product

ICSA http://www.dol.gov/ui/data.pdf

DTWEXM http://www.federalreserve.gov/releases/h10/

CSCICP03USM665S http://www.oecd-

ilibrary.org/economics/data/main-economic-

indicators/main-economic-indicators-complete-database_data-00052-en

HOUST http://www.census.gov/construction/nrc/
DGORDER http://www.census.gov/indicator/www/m3/
AMDMUS http://www.census.gov/indicator/www/m3/
ACOGNO http://www.census.gov/indicator/www/m3/
TOTALSA https://www.bea.gov/national/xls/gap_hist.xlsx
ECOMSA http://www.census.gov/mrts/www/ecomm.html

UNRATE http://www.bls.gov/ces/

IC4WSA http://www.dol.gov/ui/data.pdf

SP500 https://us.spindices.com/indices/equity/sp-

500

MICH http://www.sca.isr.umich.edu/

BSCICP03USM665S http://www.oecd-

ilibrary.org/economics/data/main-economic-

indicators/main-economic-indicators-complete-database_data-00052-en

ETOTALUSQ176N http://www.census.gov/housing/hvs/

LCEAMN01USM659S http://www.oecd-

ilibrary.org/economics/data/main-economic-

indicators/main-economic-indicatorscomplete-database_data-00052-en

PCDG https://www.bea.gov/data/gdp/gross-

domestic-product

MARTSMPCSM44000USS htt

http://www.census.gov/retail/

 $RETAILMPCSMSA \\ http://www.census.gov/mtis/www/mtis.html$

CPALTT01USQ657N http://www.oecd-

ilibrary.org/economics/data/main-economic-

indicators/main-economic-indicators-complete-database_data-00052-en

Table 1: Independent variables keys and their associated sources.

3 Process

- 1. Retrieve data for each of the 58 independent variables from FRED server.
- 2. Clean, interpolate, and aggregate these data.
- 3. Retrieve dependent variables from FRED, and offset by desired number of months.
- 4. Combine independent and dependent variables and merge with VMware internal data.
- 5. Upload tables to *sse_ccmi* schema in PostgreSQL data warehouse:
 - $dc_model_aggregate$: independent variables
 - dc_model_merged: independent and dependent variables
 - dc_model_sources: independent variables and their sources
 - dc_model_vmware_sales_2010_onward: VMware sales 2010-present
 - dc_model_fred_vmware_combined: independent and dependent variables, VMware sales data
 - dc_model_complete: independent and dependent variables, VMware sales data, dependent-variable predictions
- 6. Read data into Python's TensorFlow machine learning framework.
- 7. Divide dataset into five segments, one for each recession in the past 48 years.
- 8. For each segment: train three new boosted regression tree algorithms on the other four segments and pick the most accurate iteration.
- 9. Use five algorithms (best one from each segment) to predict state of macroeconomy.
- 10. Export report as PDF.