CAN102 Electromagnetism and Electromechanics

Revision - Electromagnetism

Zhao Wang

Zhao.wang@xjtlu.edu.cn

Room EE322

Outline

- 1. Information about the final exam
- 2. Go through the syllabus
- 3. Past exam questions

Information about the final exam

- 1. This is a **closed-book** examination.
 - > Date: May 29th, 2023 (14:00-17:00)
 - > Location: CG23W, FBG95, SB123, SC169 (North Campus)
 - > Time-allowed: 10 min. for reading + 180 min. for writing
 - ➤ 10 min. reading time (14:00-14:10, can only read through the paper, but not making notes or drafts)
- 2. **FOUR** questions in total (100%)
 - > 60% for Electromagnetism + 40% for Electromechanics
 - Each question has several sub-questions
 - > NO MCQs

Information about the final exam

- 3. Only solutions in English are acceptable.
- 4. Write all the answers in the answer booklet provided.
- 5. Solutions for each question should start on a **NEW** page (larger text and space are preferred).
- 6. Only the university approved calculator Casio FS82ES/83ES can be used.
- 7. Correct answers do not guarantee a full score: mark penalties may be imposed for missing intermediate solution steps or illogical solution processes.

Exam Paper Cover

2nd SEMESTER 2023/24 FINAL EXAMINATIONS

BACHELOR DEGREE - Year 2

Electromagnetism and Electromechanics

Writing Time: 180 minutes

Reading Time: 10 minutes (no writing or annotating allowed anywhere)

TOTAL TIME ALLOWED: 180 minutes writing time + 10 reading time

INSTRUCTIONS TO ALL CANDIDATES

- Total marks available are 100.
- The number in the column on the right indicates the approximate marks for each section.
- Answer should be written in the answer booklet(s) provided.
- Only solutions in English are acceptable.
- 5. Answer all questions.
- 6. Only the university approved calculator Casio FS82ES/83ES can be used.
- No annotating is allowed in reading time or after the end of writing time.

Tips

- Read the question carefully
 - Highlight the key information
- Be careful with the UNITS and SI prefixes

$$m = 10^{-3}$$
 $\mu = 10^{-6}$ $n = 10^{-9}$ $p = 10^{-12}$ $K = 10^{3}$ $M = 10^{6}$ $G = 10^{9}$ $T = 10^{12}$

- Write down the equations **CORRECTLY**
 - Majority of equations are provided. Please copy them in the correct form!

Structure of EM part

Lecture 01-02 Introduction and Math preparation

- Lecture 03-06 Static Electric Field
- Lecture 07-08 Steady current and R and C

- Lecture 09-10 Static Magnetic Field
- Lecture 11-12 Electromagnetic Induction and L

• Part 1

- What is Electromagnetism?
- Why do we learn it?

• Part 2

- 1. Scalars and Vector
 - Definition and Representation
 - Vector Algebra
 - Scalar and Vector Fields
- 2. 2D Coordinate Systems
 - Rectangular CS and Polar CS
 - Conversion between Rect. CS and Polar CS
 - Vector Algebra in 2D CSs

- 3D Coordinate Systems
 - Key concepts about a Coordinate System
 - Rectangular, Cylindrical, Spherical CSs
- Vector Analysis
 - Integrals
 - Line/Surface/Volume Integrals
 - Differential Elements in Three CSs
 - Differentials
 - Gradient, Divergence, Curl and Laplacian
 - Theorems
 - Gauss's and Stokes' Theorems

- 1. Electrical charge
 - Conductor and Insulator
- 2. Coulomb's Law
 - Principle of Superposition
- 3. Electric-field and Visualization
 - E-field Intensity \vec{E}
 - Visualization Field lines
- 4. Electric-fields produced by continuous charge distributions
 - using line integral, surface integral and volume integral

- Electric Flux
- Gauss's Law Integral form
 - Gauss's Law
 - Flux density
 - Calculating E-field using Gauss's Law
- Gauss's Law Differential form
 - Divergence
 - Divergence Theorem
 - Gauss's Law in differential form

- Electric Potential
 - Work and energy
 - Potential difference and Potential
 - Potential field due to charges
 - Equipotential lines / surfaces
- E-field Loop Theorem
 - Electric field circulation
 - Conservative fields
 - Gradient
- Poisson's and Laplace's Equations

- Maxwell's equation II Electric field loop theorem
 - Curl
 - Stoke's Theorem
 - Integral and Differential forms
- Conductors and Dielectrics
 - Ideal conductors
 - Electric Equilibrium
 - Dielectrics and Permittivity
- Boundary Conditions
 - Tangential and normal components of E-field

- Currents
 - Conduction current
 - Convection current
 - Electrolytic current
- Conduction current and current density
 - Drift Velocity and Mobility
 - Current Density and Current
 - Conductivity and resistivity
- From Electromagnetics (EM) to Electric circuits (EC)
 - Ohm's law in microscopic and macroscopic views
 - Joule's law (Power and Energy)
- Boundary Conditions

Resistors

- Resistance calculation
- Resistance, resistivity and conductivity
- Adminttance

Capacitors

- Capacitance calculation
- Capacitor with dielectrics
- Parallel and series connection of capacitors
- Energy stored in capactors
- I-V relationship of capacitors

- Fundamentals of Magnetic Fields
 - What is a magnetic field
 - Sources of the magnetic fields
- Biot-Savart Law
- Gauss's Law for Magnetic Field
- Magnetic field Loop Theorem Ampere's Law
 - Integral and Differential forms
 - Application: find magnetic field for given current sources

- Visualisation of Magneitc Fields
 - Magnetic field lines
 - Comparison with electric field lines
- Magnetic Forces
 - on a moving charge
 - on a current-carrying wire
- Magnetic materials
 - Permeability
 - Classification and ferromagnetic materials
- Boundary Conditions

- Faraday's Experiments
- Lenz's Law
- Faraday's Law
 - EMF (Electromotive Force)
- Integral and Differential forms
- Motional EMF

- Inductance
 - Inductors
 - Self-inductance
 - Mutual-inductance
 - Energy stored

Static Electric Field

- A single positive point charge Q is positioned inside an uncharged spherical conducting shell as shown below. Draw the electric field lines for the following cases:
- i) If the point charge is placed at the centre of the spherical shell;
- ii) If the point charge is placed at an arbitrary location inside the spherical shell;
- iii) If the shell is an ellipsoidal shell;
- iv) What are the induced charges on the inner and outter surface of the shell?
- v) If the shell takes a total charge Q2, what are the induced charges again?

Static Electric Field

- Two positive charges +Q₁ and +Q₂, and a negative charge
 -Q₃ are arranged in a line as shown. In this arrangement
 +Q₁ is in equilibrium while +Q₂ and -Q₃ are fixed.

 Gravitational forces are negligible.
- i) Plot and label **all** the forces exerted on the charge $+Q_1$ and determine their magnitudes.
- ii) Determine the relationship between charge Q_2 and charge Q_3 which ensures the equilibrium status of $+Q_1$.
- iii) If the charge $+Q_2$ is now removed and $+Q_1$ and $-Q_3$ have charges of +12 nC and -12 nC respectively, determine the electric field intensity and the electric potential V_a at the point a with the distance 2d = 10 cm.

Static Electric Field

• Jerry plans to measure the depth r of water in a cubic tank of volume $1.0 \times 1.0 \times 1.0$ m3 as shown in Figure Q1(b). He places conducting plates (with the area of S) on the top and bottom surfaces of the tank and measures the capacitance between them as a function of water depth. The water is non-conducting with the permittivity λ. Assume the tank walls do not contribute to the capacitance and the fringing fields can be neglected. Show that the capacitance of this system is:

$$C = \frac{\varepsilon_0 S}{d - r \left(1 - \frac{\varepsilon_0}{\lambda}\right)}$$

Steady Current and Resistors

- A solid wire with conductivity σ_1 and radius a has a jacket of material with conductivity σ_2 , and its inner radius is a and outer radius is b as shown.
- a) Calculate the resistances in both regions in terms of the radii and conductivities.
- b) Determine if the ratio of the current densities in the two materials is independent of radius a and radius b and explain the reason with calculations.

Static Magnetic Field

• Find the magnetic flux density at point P:

Static Magnetic Field

- Tom has a pair of two identical current-carrying coils (radius *a*, turn N=1) carrying the same steady current *I*. He placed them at a distance *d* apart from each other as shown. Assume the setup is in free space and the currents carried by the coils are in the same direction.
- i) Determine whether the two coils are going to attract or repel each other and explain the reason.
- ii) With aid of the **cylindrical coordinate system**, determine the magnetic field intensity at any point along the *z*-axis.
- iii) Given that a = d = 20 mm, plot the magnetic field lines produced by the whole system.

Electromagnetic Induction

• In a uniform magnetic field, a circular conducting loop with radius *a* lies in the y-z plane. There is a small gap between points *m* and *n* with wires leading to an external circuit of a resistor *R* situated in the x-y plane as shown. It is given that

$$\vec{B} = B_0 \left[2 \left(\frac{t}{\tau} \right)^4 - 4 \left(\frac{t}{\tau} \right)^2 \right] \hat{x}$$

where t is the variable of time, B_0 and τ are constant values.

- a) Derive the expression for the induced emf in the conducting loop;
- b) Given that the resistance of the resistor is $R = 2B_0 \Omega$, determine an expression for the current flowing through the resistor and the time at which the current through the resistor reverses its direction.

