Control Systems

G V V Sharma*

Contents				8	Compensators 4		
						Lead	4
1	Signal Flow Graph		1			Circuit	4
	1.1	Mason's Gain Formula	1			ead	4
	1.2	Matrix Formula	1		8.4 Examp	ole	4
	1.3	Example	1	9	Gain Margin		4
2	Coin of	E Eardhadt Cinquita	1		9.1 Introdu	action	4
2		Feedback Circuits	1		9.2 Examp	ole	4
	2.1	Current Amplifiers	1	10	DI M :		4
3	Bode Plot		4	10	Phase Margin 10.1 Intoduc	ation	4 4
3	3.1	Introduction	4			ction	4
	3.1		4		10.2 Examp	<i>n</i> c	7
	3.3	Example	4	11	11 Oscillator		4
	3.4		4		11.1 Introdu	action	4
	3.4	Example	4		11.2 Examp	ole	4
4	Second	Second order System		12	Root Locus 4		
	4.1	Damping	4			action	4
	4.2	Peak Overshoot	4		12.2 Examp	ole	4
	4.3	Settling Time	4				
	4.4	Example	4	13	Polar Plot		4
		_			13.1 Introdu	action	4
5	Routh Hurwitz Criterion		4	14	14 PID Controller 4		
	5.1	Routh Array	4	17		action	4
	5.2	Marginal Stability	4				•
	5.3	Stability	4		Abstract—This manual is an introduction to contro systems based on GATE problems.Links to sample Python codes are available in the text.		
	5.4	Example	4				OH
6	State-Si	pace Model	4	Download python codes using			
Ü	6.1	Controllability and Observ-	•	svn c	om/gadepall/school/trunk/		
	0.1	ability	4	control/codes			
	6.2	Second Order System	4		·		
	6.3	Example	4		1 Signal Flow Graph		
_				1.1 Mason's Gain Formula			
7		quist Plot		1.2 I	1.2 Matrix Formula		
	7.1	Introduction	4	1.3 Example			
	7.2	Example	4	2 Gain of Feedback Circuits			
*Th/	author ic	with the Department of Electrical Engineer	ina	210	urrent Amplifiers		
		with the Department of Electrical Engineering Technology, Hyderabad 502285 India e-m	•1		1 0		:
		All content in this manual is released under G				current amplifier shown	ın

GPL. Free and open source.

2.1.1, Draw the Small-Signal Model

Fig. 2.1.1

Solution: While drawing a Small-Signal Model, we ground all constant voltage sources

All 2.1.4. Find the Expression for the Open-Loop Gain Small-Signal paramters are obtained from DC-Analysis of the circuit.

Fig. 2.1.1

2.1.2. Describe the importance of given Amplifier 2.1.5. Find the Expression of the Feedback Factor Topology.

Solution: This Feedback Topology is also known as Shunt-Series Feedback because of the parallel (or shunt) resistance at the input, and the series resistance at the output. This topology not only stabilizes the current gain but also results in a lower input resistance, and a higher output resistance, both desirable properties for a current amplifier. The decrease in input resistance results because the feedback current I_f subtracts from the input current I_s , and thus a lower current enters the basic current amplifier. This in turn results in a lower voltage

at the amplifier input, that is, across the current source I_s .

2.1.3. Describe how the given circuit is a Negetive Feedback Amplifier.

> **Solution:** For the feedback to be negative, I_f must have the same polarity as I_s . To ascertain that this is the case, we assume an increase in I_s and follow the change around the loop: An increase in I_s causes I_i to increase and the drain voltage of Q_1 will increase. Since this voltage is applied to the gate of the p-channel device Q_2 , its increase will cause I_o , the drain current of Q_2 , to decrease. Thus, the voltage across R_M will decrease, which will cause I_f to increase. This is the same polarity assumed for the initial change in I_s , verifying that the

 $G = \frac{I_o}{I_i}$, from the Small-Signal Model. For simplicity, neglect the Early effect in Q_1 and

Solution: In Small-Signal Model,

$$v_B = I_i R_D \tag{2.1.4.1}$$

$$v_{gs_2} = v_B = I_i R_D (2.1.4.2)$$

In Small-Signal Analysis, P-MOSFET is modelled as a current source where current flows from Source to Drain. So, the value of current flowing from Source to Drain in P-MOSFET is,

$$I_o = -g_{m_2} v_{gs_2} = -g_{m_2} I_i R_D (2.1.4.3)$$

So, the Open-Circuit Gain is

$$G = \frac{I_o}{I_i} = -g_{m_2} R_D (2.1.4.4)$$

 $H = \frac{I_f}{I_c}$, from Small-Signal Model. For simplicity, neglect the Early effect in Q_1 and Q_2 . **Solution:**

 I_o is fed to a current divider formed by R_M and R_F . R_F is a Large Resistance compared to Input resistance of Amplifier and so most of the current flows through it leaving a small current as input to Amplifier. Hence the voltage at point 'A' is very small and is considered, $v_A \simeq 0$. So R_F and R_M are parallel and Voltage Drop across them is same.

$$(I_o + I_f)R_M \simeq -I_f R_o$$
 (2.1.5.1)

$$+I_f)R_M \simeq -I_f R_o$$
 (2.1.5.1)
 $\frac{I_f}{I_o} \simeq -\frac{R_M}{R_F + R_M}$ (2.1.5.2)

So, the Feedback Factor,

$$H \equiv \frac{I_f}{I_o} \simeq -\frac{R_M}{R_F + R_M} \tag{2.1.5.3}$$

2.1.6. Find the Expression for the Closed-Loop Gain $T = \frac{I_o}{I_s}$. For simplicity, neglect the Early effect in $Q_1^{r_3}$ and Q_2 .

Solution:

From Open-Loop Gain and Feedback Factor,

$$I_s = I_i + I_f (2.1.6.1)$$

$$I_s = I_i + I_f$$
 (2.1.6.1)
 $I_s = \frac{I_o}{G} + HI_o$ (2.1.6.2)

$$GI_s = I_o(1 + GH)$$
 (2.1.6.3)

$$\frac{I_o}{I_s} = \frac{G}{1 + GH} \tag{2.1.6.4}$$

$$GI_{s} = I_{o}(1 + GH)$$
 (2.1.6.3)

$$\frac{I_{o}}{I_{s}} = \frac{G}{1 + GH}$$
 (2.1.6.4)

$$\frac{I_{o}}{I_{s}} = -\frac{g_{m_{2}}R_{D}}{1 + g_{m_{2}}R_{D}/\left(1 + \frac{R_{F}}{R_{M}}\right)}$$
 (2.1.6.5)

So, the value of Closed-Loop Gain is

$$T = \frac{I_o}{I_s} = -\frac{g_{m2}R_D}{1 + g_{m2}R_D/\left(1 + \frac{R_F}{R_M}\right)}$$
 (2.1.6.6)

3 Bode Plot

- 3.1 Introduction
- 3.2 Example
- 3.3 Phase
- 3.4 Example
- 4 SECOND ORDER SYSTEM
- 4.1 Damping
- 4.2 Peak Overshoot
- 4.3 Settling Time
- 4.4 Example
 - 5 Routh Hurwitz Criterion
- 5.1 Routh Array
- 5.2 Marginal Stability
- 5.3 Stability
- 5.4 Example
- 6 STATE-SPACE MODEL
- 6.1 Controllability and Observability
- 6.2 Second Order System
- 6.3 Example
- 7 NYQUIST PLOT
- 7.1 Introduction
- 7.2 Example
- 8 Compensators
- 8.1 Phase Lead
- 8.2 Lead Circuit
- 8.3 Lag Lead
- 8.4 Example
- 9 Gain Margin
- 9.1 Introduction
- 9.2 Example
- 10 Phase Margin
- 10.1 Intoduction
- 10.2 Example
- 11 OSCILLATOR
- 11.1 Introduction
- 11.2 Example
- 12 Root Locus
- 12.1 Introduction
- 12.2 Example
- 13 Polar Plot
- 13.1 Introduction
 - 14 PID Controller
- 14.1 Introduction