To Decay or Not to Decay: Modeling Video Memorability Over Time Hill

Anelise Newman*, Camilo Fosco*, Vincent Casser*, Barry McNamara, Aude Oliva

Computational Perception & Cognition

Virtual Assistant

Cognitive AI

What is memorable?

The **Memento** project

Can we predict it?

Why is it memorable?

Memento 10k: The biggest video memorability dataset

- 10k+ videos
- 90+ annotations per video
- Nearly 1M annotations

Crowdworkers play an online memorability game and indicate when they see a repeat

Play the game!

memento-game
.csail.mit.edu

Explore the data!

memento-vis
.csail.mit.edu

Modeling the memory decay curve

- Video memory decays linearly with lag
- Videos decay at different decay rates
- Video decay is
 parametrized by decay
 rate α and mem score m_T

Left: A linear trend fits our memorability data. Right: Videos decay at different rates.

Predicting video memorability

Evaluating memorability predictions

- Calculate the Spearman
 Rank Correlation between
 the model and ground-truth
- rankingsHuman split-half consistency:.73

Model	Visual Only	Video Only	Optical Flow Only	Visual + Optical Flow	Temporal MemNet
Spearman's Rank Correlation	.61	.62	.56	.64	.66

Example Predictions:

Predicted decay curve (Temporal MemNet)

—— Ground truth decay curve

Predicted Score 0.53

Future work

- Improve memorability prediction by adding semantic supervision
- Use recurrent network to estimate memorability at different lags
- Use probabilistic approach to learn from raw annotations
 - Study impact of motion on memorability