CSC 525: Computer Networks

The Final Exam

- Friday 12/10, 1:00 3:00 PM, GS 701.
 - Focus on papers and lecture slides covered in the 2nd half of semester.
 - Closed books, closed notes.
 - One letter-sized (8.5x11) cheat sheet, double-sided, any font size.
 - and a simple calculator.
- Same type of questions as in the midterm exam
 - Design principles
 - Protocol operations
 - Comparison and evaluation
- This review just highlights points that I think are important. By no means it is a complete list.

Overview

- IP Multicast:
 - IGMP, DVMRP, MOSPF, CBT/PIM.
- TCP Congestion Control:
 - TCP Reno, BBR
- Overlays
 - DNS, RON, Application Multicast, DHT, Bittorrent
- Local area networks
 - Ethernet, Seattle, Portland
- Others
 - SDN, IPv6, CDN, NDN, LEO satellite networks
- Focus on basic concepts and key protocol mechanisms.

IP Multicast

- The basic service model and design.
- IGMP: how it works, especially how it uses multicast to reduce duplicate query/reply packets.
- Routing: DVMRP, MOSPF, CBT/PIM
 - Tradeoff between source tree vs. shared group tree
 - How the protocols work.
 - Pros and cons of each protocol.

TCP

- Basic mechanism for reliable transmission
 - Retransmission timer, window size, RTT estimate, ...
 - How TCP estimates timeout values.

TCP Reno

- i.e., Tahoe + fast retransmission + fast recovery
- How congestion window size and threshold re adjusted, understand the pseudo code, be able to execute it over an example.

BBR

- Fully utilize bandwidth without causing large delay.
- How it measures delay and bandwidth, and use them to control sending rate.

DNS

- Understand the overall system and its various components.
- Lookup process
 - How does it work?
 - Recursive vs. Iterated
 - Caching, replication.
- Resource records
 - Four major types
- Configuration errors
 - Understand the error scenarios.

Overlay Multicast

- How does it compare with IP multicast?
- The main challenge in application layer multicast: how to build efficient overlay for multicast delivery?
- Narada
 - Maintain the complete virtual graph among all the members, reduce it to a well-connected mesh, and run DVMRP on top of the mesh.
- The main part is construct and manage the mesh
 - Join, leave, repair partition
 - Add links based on "utility"
 - Drop links based on "consensus cost"

Resilient Overlay Network

Goal

- Quickly route around failed or congested links
- For small communities only
- The basic idea
 - Frequently measure all inter-node overlay links
 - Estimate link and path performance
 - Exchange the performance information
 - Route along app-specific best paths

Main results

- Respond quickly
- Improve latency and throughput
- One-hop indirection is enough in most cases.

Distributed Hashing Table

- What is a DHT? The basic functions.
- Chord
 - A one-dimensional id space
 - An item is stored at the node with next highest id.
 - A node keeps track of
 - Successor (for lookup)
 - Predecessor (for ring maintenance)
 - Finger table (to speed up lookup)
 - Lookup process
 - Join Process
- Properties
 - Routing table size O(logN)
 - Lookup steps O(logN)

Bittorrent

- The basic idea, terminology, and the process of running a torrent.
- Rarest-first in choosing pieces to download.
- Choke/unchoke algorithm to choose peers.
- Clustering, sharing incentives, and upload utilization.
 - Understand the concepts and metrics.

Comparison

- Compare different overlay networks we covered:
 - DNS for name lookup, overlay multicast, RON for unicast, DHT for searching, Bittorrent for file distribution.
 - What overlay topology does each protocol maintain, how do they maintain the overlay, and how it fits the application goals.

Ethernet, Seattle, PortLand

What are the problems?

- Ethernet's self-learning switching vs. IP-based routing, pros and cons.
- Need scalable solutions for large enterprise or datacenter networks.

How SEATTLE works

- Switches run a link-state routing protocol among themselves.
- Hosts register with the attached Switch.
- Switches run a one-hop DHT to map the destination host to one of the switches.
- Optimizing the path by caching mapping results.

How PortLand works

- Assume FatTree topology, use virtual MAC to denote the position of a server in the topology.
- Use a central manager for the mapping from physical MAC to virtual MAC, track server/switch status, facilitate failure recovery.

IPv6

- How NAT allows multiple hosts share a single public IP address.
 - Pros and cons.
- The different measurement metrics used in the paper to quantify the deployment of IPv6.

HTTP and CDN

- Basic HTTP mechanisms
 - Request and reply, proxy, persistent connection with pipelining, caching.
- The concept of Content Distribution Networks.

Software-Defined Networks

- The basic concepts of SDN
 - What problems it tries to solve, and how.

• Understand how SDN enables Google to use links at > 90% average utilization.

Named Data Networking

- The idea of NDN
 - Interest and Data packets carry application-level names that identify the data wanted by apps.
 - Network is not limited to any particular address to retrieve the data from.
 - requires Data to be signed by the producer.
- NDN's basic operation
 - Hierarchical name, one Interest for one Data at packet level, Interest is routed based on its name, and Data returns on the same path as Interest's.
- NDN's node model.

Satellite Networks

- Why the recent push for LEO constellations?
 - Benefits and challenges.
- StarLink constellation
 - The placement of satellites and orbital planes
 - The inter-satellite links
 - Source routing