UNITS

The course content is organized into commonly taught units. The units have been arranged in a logical sequence frequently found in many college courses and textbooks.

The eight units in AP Calculus AB and ten units in AP Calculus BC, and their weighting on the multiple-choice section of the AP Exam, are listed on the following page.

Pacing recommendations at the unit level and on the Course at a Glance provide suggestions for how teachers can teach the required course content and administer the Personal Progress Checks. The suggested class periods are based on a schedule in which the class meets five days a week for 45 minutes each day. While these recommendations have been made to aid planning, teachers are of course free to adjust the pacing based on the needs of their students, alternate schedules (e.g., block scheduling), or their school's academic calendar.

TOPICS

Each unit is broken down into teachable segments called topics. The topic pages (starting on p. 35) contain the required content for each topic. Although most topics can be taught in one or two class periods, teachers should pace the course to suit the needs of their students and school.

Exam Weighting for the Multiple-Choice Section of the AP Exam

Units	Exam Weighting (AB)	Exam Weighting (BC)
Unit 1: Limits and Continuity	10-12%	4–7%
Unit 2: Differentiation: Definition and Fundamental Properties	10-12%	4-7%
Unit 3: Differentiation: Composite, Implicit, and Inverse Functions	9–13%	4-7%
Unit 4: Contextual Applications of Differentiation	10-15%	6-9%
Unit 5: Analytical Applications of Differentiation	15-18%	8-11%
Unit 6: Integration and Accumulation of Change	17-20%	17–20%
Unit 7: Differential Equations	6-12%	6-9%
Unit 8: Applications of Integration	10-15%	6-9%
Unit 9: Parametric Equations, Polar Coordinates, and Vector-Valued Functions BC ONLY		11-12%
Unit 10: Infinite Sequences and Series BC ONLY		17-18%

Spiraling the Big Ideas The following table shows how the big ideas spiral across units.

Big Ideas	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5
(<u>©</u>)	Limits and Continuity	Differentiation: Definition and Fundamental Properties	Differentiation: Composite, Implicit, and Inverse Functions	Contextual Applications of Differentiation	Analytical Applications of Differentiation
Change CHA					
Limits Lim	⊘			②	
Analysis of Functions					

Spiraling the Big Ideas (cont'd)

Big Ideas	Unit 6	Unit 7	Unit 8	Unit 9	Unit 10
(<u>©</u>)	Integration and Accumulation of Change	Differential Equations	Applications of Integration	Parametric Equations, Polar Coordinates, and Vector- Valued Functions BC ONLY	Infinite Sequences and Series BC ONLY
Change CHA					
Limits					
Analysis of Functions					

Course at a Glance

Plan

The Course at a Glance provides a useful visual organization of the AP Calculus AB and AP Calculus BC curricular components, including:

- Sequence of units, along with approximate weighting and suggested pacing.
 Please note, pacing is based on 45-minute class periods, meeting five days each week for a full academic year.
- Progression of topics within each unit.
- Spiraling of the big ideas and mathematical practices across units.

Teach

MATHEMATICAL PRACTICES

Mathematical practices spiral throughout the course.

- Implementing Mathematical Processes
- 3 Justification
- 4 Communication and Notation
- 2 Connecting Representations

BIG IDEAS

Big ideas spiral across topics and units.

- CHA Change
- FUN Analysis of
- **BC ONLY**

The purple shading represents BC only content,

Assess

Assign the Personal Progress Checks—either as homework or in class—for each unit. Each Personal Progress Check contains formative multiple-choice and free-response questions. The feedback from the Personal Progress Checks shows students the areas where they need to focus.

Limits and Continuity

AP EXAM WEIGHTING

10-12% AB 4-7% BC

CLASS PERIODS ~22-23 AB ~13-14 BC

CHA 2	1,1	Introducing Calculus: Can Change Occur at an Instant?
LIM	1.2	Defining Limits and
2		Using Limit Notation

- 1.3 Estimating Limit
 Values from Graphs
- 1.4 Estimating Limit
 Values from Tables
- 1.5 Determining Limits
 Using Algebraic
 Properties of Limits
- 1.6 Determining Limits
 Using Algebraic
 Manipulation
- 1.7 Selecting Procedures for Determining Limits
- 1.8 Determining Limits
 Using the Squeeze
 Theorem
- 1.9 Connecting Multiple Representations of Limits
- 1.10 Exploring Types of Discontinuities
- 1.11 Defining Continuity
 at a Point
- 1.12 Confirming Continuity
 over an Interval
- 1.13 Removing
 Discontinuities
- 1.14 Connecting Infinite Limits and Vertical Asymptotes
- 1.15 Connecting Limits at Infinity and Horizontal Asymptotes
- 1.16 Working with the Intermediate Value Theorem (IVT)

Personal Progress Check 1
Multiple-choice: ~45 questions
Free-response: 3 questions (partial)

UNIT 2

Differentiation:
Definition and
Basic Derivative
Rules

AP EXAM WEIGHTING

10-12% AB 4-7% BC

CLASS PERIODS ~13-14 AB ~9-10 BC

CHA 2	2,1	Defining Average and Instantaneous Rates of Change at a Point
CHA 1	2.2	Defining the Derivative of a Function and Using Derivative Notation
CHA 1	2.3	Estimating Derivatives of a Function at a Point
FUN 3	2.4	Connecting Differentiability and Continuity: Determining When Derivatives Do and Do Not Exist
FUN 1	2.5	Applying the Power Rule
FUN 1	2.6	Derivative Rules: Constant, Sum, Difference, and Constant Multiple
FUN LIM 1	2.7	Derivatives of $\cos x$, $\sin x$, e^x , and $\ln x$
FUN 1	2.8	The Product Rule
FUN 1	2.9	The Quotient Rule

2.10 Finding the Derivatives

Secant, and/or Cosecant Functions

of Tangent, Cotangent,

Personal Progress Check 2 Multiple-choice: ~30 questions Free-response: 3 questions (partial)

NOTE: Partial versions of the free-response questions are provided to prepare students for more complex, full questions that they will encounter on the AP Exam.

Differentiation: Composite, Implicit, and **Inverse Functions**

AP EXAM WEIGHTING

9-13% AB 4-7% BC

CLASS PERIODS

~10-11 AB ~8-9 BC

FUN	3.1 The Chain Rule
1	on the cham take
FUN 1	3.2 Implicit Differentiation
FUN 3	3.3 Differentiating Inverse Functions
FUN 1	3.4 Differentiating Inverse Trigonometric Functions
FUN 1	3.5 Selecting Procedures for Calculating Derivatives

3.6 Calculating Higher-**Order Derivatives**

UNIT 4

Contextual **Applications of** Differentiation

AP EXAM WEIGHTING

10-15% AB 6-9% BC

CLASS PERIODS ~10-11 AB ~6-7 BC

CHA 1	4.1	Interpreting the Meaning of the Derivative in Context
CHA 1	4.2	Straight-Line Motion: Connecting Position, Velocity, and Acceleration
CHA 2	4.3	Rates of Change in Applied Contexts Other Than Motion
CHA 1	4.4	Introduction to Related Rates
CHA 3	4.5	Solving Related Rates Problems
CHA 1	4.6	Approximating Values of a Function Using Local Linearity and Linearization
LIM	4.7	Using L'Hospital's Rule for Determining Limits of Indeterminate Forms

Analytical Applications of Differentiation

AP EXAM WEIGHTING

15-18% AB 8-11% BC

CLASS PERIODS ~15-16 AB ~10-11 BC

FUN 3	5.1	Using the Mean Value Theorem
FUN 3	5,2	Extreme Value Theorem, Global Versus Local Extrema, and Critical Points
FUN 2	5.3	Determining Intervals on Which a Function Is Increasing or Decreasing
FUN 3	5,4	Using the First Derivative Test to Determine Relative (Local) Extrema
FUN 1	5.5	Using the Candidates Test to Determine Absolute (Global) Extrema
FUN 2	5.6	Determining Concavity of Functions over Their Domains
FUN 3	5.7	Using the Second Derivative Test to Determine Extrema
FUN 2	5.8	Sketching Graphs of Functions and Their Derivatives
FUN 2	5.9	Connecting a Function, Its First Derivative, and Its Second Derivative
FUN 2	5.10	Introduction to Optimization Problems
FUN 3	5.11	Solving Optimization Problems
FUN 1 3	5.12	Exploring Behaviors of Implicit Relations

Personal Progress Check 3

Multiple-choice: ~15 questions Free-response: 3 questions (partial/full)

Personal Progress Check 4

Multiple-choice: ~15 questions Free-response: 3 questions

Personal Progress Check 5

Multiple-choice: ~35 questions Free-response: 3 questions

Integration and Accumulation of Change

AP EXAM WEIGHTING

17-20% AB 17-20% BC

CLASS PERIODS ~18-20 AB ~15-16 BC

CHA 4	6,1	Exploring Accumulations of Change
LIM 1	6.2	Approximating Areas with Riemann Sums
LIM 2	6.3	Riemann Sums, Summation Notation, and Definite Integral Notation
FUN 1	6.4	The Fundamental Theorem of Calculus and Accumulation Functions
FUN 2	6.5	Interpreting the Behavior of Accumulation Functions Involving Area
FUN 3	6.6	Applying Properties of Definite Integrals
FUN 3	6.7	The Fundamental Theorem of Calculus and Definite Integrals
FUN 4	6.8	Finding Antiderivatives and Indefinite Integrals: Basic Rules and Notation
FUN 1	6.9	Integrating Using Substitution
FUN 1	6.10	Integrating Functions Using Long Division and Completing the Square
FUN 1	6.11	Integrating Using Integration by Parts BC ONLY
FUN 1	6.12	Using Linear Partial Fractions BC ONLY
LIM 1	6.13	Evaluating Improper Integrals BC ONLY
FUN	6.14	Selecting Techniques

UNIT 7	Differential
	Equations

AP EXAM WEIGHTING

6-9% вс

CLASS PERIODS

~8-9 AB

~9-10 BC

CLASS	EKIOD	-8-9 AB -9-10 BC
FUN 2	7.1	Modeling Situations with Differential Equations
FUN 3	7.2	Verifying Solutions for Differential Equations
FUN 2	7.3	Sketching Slope Fields
FUN 4	7.4	Reasoning Using Slope Fields
FUN 1	7.5	Approximating Solutions Using Euler's Method BC ONLY
FUN 1	7.6	Finding General Solutions Using Separation of Variables
FUN 1	7.7	Finding Particular Solutions Using Initial Conditions and Separation of Variables
FUN 3	7.8	Exponential Models with Differential Equations
FUN 3	7.9	Logistic Models with Differential Equations BC ONLY

UNIT 8

Applications of Integration

AP EXAM WEIGHTING

10-15% AB 6-9% BC

CLASS PERIODS ~19-20 AB ~13-14 BC

CLASS	PERIODS	~19-20 AB ~13-14 BC
CHA 1	8.1	Finding the Average Value of a Function on an Interval
CHA 1	8.2	Connecting Position, Velocity, and Acceleration of Functions Using Integrals
З	8.3	Using Accumulation Functions and Definite Integrals in Applied Contexts
CHA 4	8.4	Finding the Area Between Curves Expressed as Functions of <i>x</i>
CHA 1	8.5	Finding the Area Between Curves Expressed as Functions of y
CHA 2	8.6	Finding the Area Between Curves That Intersect at More Than Two Points
CHA 3	8.7	Volumes with Cross Sections: Squares and Rectangles
CHA 3	8.8	Volumes with Cross Sections: Triangles and Semicircles
CHA 3	8.9	Volume with Disc Method: Revolving Around the <i>x</i> - or <i>y</i> -Axis
CHA 2	8.10	Volume with Disc Method: Revolving Around Other Axes
GHA 4	8.11	Volume with Washer Method: Revolving Around the <i>x</i> - or <i>y</i> -Axis
CHA 2	8.12	Volume with Washer Method: Revolving Around Other Axes
З	8.13	The Arc Length of a Smooth, Planar Curve and Distance Traveled BC ONLY

Personal Progress Check 6 Multiple-choice:

for Antidifferentiation

- ~25 questions (AB)
- ~35 questions (BC)

Free-response: 3 questions

Personal Progress Check 7

Multiple-choice:

- ~15 questions (AB)
- ~20 questions (BC)

Free-response: 3 questions

Personal Progress Check 8

Multiple-choice: ~30 questions Free-response: 3 questions

Parametric Equations, Polar Coordinates, and Vector-Valued Functions BC ONLY

N/A AB

11-12% BC

CLASS PERIODS N/A AB

~10-11 BC

CHA	9,1	Defining and
2		Differentiating
		Parametric Equations

CHA	9.2 Second Derivatives	
	of Parametric	
	Equations	

CHA	9.3 Finding Arc Lengths
	of Curves Given
1	by Parametric
	Equations

CHA	9.4 Defining and
	Differentiating Vector-
1	Valued Functions

FUN	9.5	Integrating Vector-	
1	Valued Functions		

FUN	9.6 Solving Motion
	Problems Using
1	Parametric and Vector-
7	Valued Functions

FUN	9.7 Defining Polar
	Coordinates and
2	Differentiating in
	Polar Form

CHA	9.8 Find the Area of a Polar
	Region or the Area
3	Bounded by a Single
	Polar Curve

CHA	9.9 Finding the Area of the		
3	Region Bounded by		
	Two Polar Curves		

UNIT 10

Infinite Sequences and Series BC ONLY

APEXAM N/A

W	EIGHTING	N/A AB	17-18 % во
CLASS	PERIODS	N/A AB	~17-18 вс
LIM 3	10,1	Defining Co and Diverge Series	
LIM 3	10.2	Working wi Geometric	
LIM 3	10.3	The <i>n</i> th Ten Divergence	
LIM 3	10.4	Integral Tes Convergence	
LIM 3	10.5	Harmonic S p-Series	eries and
LIM 3	10.6	Comparison Convergence	
LIM 3	10.7	Alternating for Converg	Series Test jence
LIM 3	10.8	Ratio Test f Convergen	
LIM 3	10.9	Determining or Condition Convergence	nal
LIM 1	10.10	Alternating Error Boun	
LIM 3 2	10.11	Finding Tay Polynomial Approxima of Function	tions
LIM 1	10.12	Lagrange E	rror Bound
LIM	10.13	Radius and	Interval

Personal Progress Check 9

Multiple-choice: ~25 questions Free-response: 3 questions

Personal Progress Check 10

a Function 10.15 Representing Functions as **Power Series**

of Convergence of **Power Series** 10.14 Finding Taylor or Maclaurin Series for

Multiple-choice: ~45 questions Free-response: 3 questions