ES-S1 2018-2019

- Correction - Analyse -

Exercice 1

On considère l'équation différentielle linéaire du second ordre en la fonction inconnue y de la variable x:

$$(\mathcal{E}_{\lambda}) \quad x(x+1)y''(x) + (2x+1)y'(x) - \lambda(\lambda+1)y(x) = 0,$$

où λ désigne un paramètre réel.

1. Etant donné $\lambda \in \mathbb{R}$, comparer les équations (\mathcal{E}_{λ}) et $(\mathcal{E}_{-\lambda-1})$. (\mathscr{E}_{λ}) et $(\mathscr{E}_{-\lambda-1})$ sont identiques.

On supposera dans la suite que $\lambda \ge -\frac{1}{2}$. Dans la suite, y désigne un fonction de la variable x, admettant un développement en série entière

$$y(x) = \sum_{n=0}^{+\infty} a_n x^n$$
 au voisinage de 0.

2. Montrer que pour que y soit solution de (\mathcal{E}_{λ}) , il faut et il suffit que l'on ait pour tout $n \in \mathbb{N}$:

$$a_{n+1} = \frac{(\lambda + n + 1)(\lambda - n)}{(n+1)^2} a_n$$

y admet un développement en série entière au voisinage de 0, donc sur ce voisinage, y est de classe C^{∞} et on a :

$$y'(x) = \sum_{n=0}^{+\infty} n a_n x^{n-1} \text{ et } y''(x) = \sum_{n=0}^{+\infty} n(n-1) a_n x^{n-2}.$$

$$\sum_{n=0}^{+\infty} n(n-1)a_n x^n + \sum_{n=0}^{+\infty} n(n-1)a_n x^{n-1} + 2\sum_{n=0}^{+\infty} na_n x^n + \sum_{n=0}^{+\infty} na_n x^{n-1} - \lambda(\lambda+1)\sum_{n=0}^{+\infty} a_n x^n = 0$$

ce qui équivaut à : $\sum_{n=0}^{\infty} \left[(n(n-1) + 2n - \lambda(\lambda+1))a_n + ((n+1)n + n + 1)a_{n+1} \right] x^n = 0.$

Par unicité du développement en série entière, cela équivaut à :

$$\forall n \in \mathbb{N}, a_{n+1} = \frac{\lambda^2 + \lambda - n^2 - n}{(n+1)^2} a_n = \frac{(\lambda + n + 1)(\lambda - n)}{(n+1)^2} a_n$$

3. a. Donner une condition nécessaire et suffisante sur $\lambda \in \left| -\frac{1}{2}, +\infty \right|$ pour que l'équation (\mathscr{E}_{λ}) admette des solutions polynomiales de degré donné $d \in \mathbb{N}$.

y est une solution polynomiale de degré d si et seulement si $a_d \neq 0$ et pour tout $n > d, a_n = 0$. La formule établie précédemment montre (à l'aide d'une récurrence immédiate) que si l'un des coefficients est nuls, les suivants le sont tous. Ainsi, y est une solution polynomiale de degré d si, et seulement si : $\frac{(\lambda+d+1)(\lambda-d)}{(d+1)^2} = 0, \text{ d'où } \lambda = d.$

b. Lorsque c'est le cas, montrer qu'il existe une unique solution polynomiale de (\mathcal{E}_{λ}) de degré d, que nous noterons φ_d , telle que $\varphi_d(0) = 1$.

La condition $\varphi_d(0)=1$ revient à imposer $a_0=1$. L'égalité $a_{n+1}=\frac{(\lambda+n+1)(\lambda-n)}{(n+1)^2}a_n$ pour tout $n\in [0,d-1]$ assure l'unicité.

Remarque : on peut montrer par récurrence que $a_n = \binom{n+d}{n} \binom{d}{n}$.

Spé PT Page 1 sur 4

- c. Expliciter la fonction polynôme φ_1 . $\varphi_1(x) = 1 + 2x$.
- **d.** Déterminer les coefficients $a, b, c, \alpha, \beta, \gamma$ tels que :

$$\frac{8x^2 + 8x + 1}{x(x+1)(2x+1)} = \frac{a}{x} + \frac{b}{x+1} + \frac{c}{2x+1}, \quad \text{et} \quad \frac{1}{x(x+1)(2x+1)^2} = \frac{\alpha}{x} + \frac{\beta}{x+1} + \frac{\gamma}{(2x+1)^2}.$$

$$\frac{8x^2 + 8x + 1}{x(x+1)(2x+1)} = \frac{1}{x} + \frac{1}{x+1} + \frac{4}{2x+1}, \quad \text{et} \quad \frac{1}{x(x+1)(2x+1)^2} = \frac{1}{x} - \frac{1}{x+1} - \frac{4}{(2x+1)^2}.$$

En déduire la solution générale de l'équation (\mathcal{E}_1) sur $]0, +\infty[$.

La fonction φ_1 ne s'annule pas sur $]0, +\infty[$. On cherche une solution de (\mathscr{E}_1) sous la forme $y = h\varphi_1$. y est solution de (\mathscr{E}_1) si et seulement si : $x(x+1)h''\varphi_1 + 2x(x+1)h'\varphi_1' + (2x+1)h'\varphi_1 = 0$, ce qui équivaut à h' solution de l'équation différentielle : (E) : $x(x+1)(2x+1)y' + (8x^2 + 8x + 1)y = 0$. On en déduit qu'il existe $C_1 \in \mathbb{R}$, tel que pour x > 0, $h'(x) = \frac{C_1}{x(x+1)(2x+1)^2}$, puis qu'il existe $C_2 \in \mathbb{R}$ tel

que pour
$$x > 0$$
: $h(x) = C_1 \left(\ln \left(\frac{x}{x+1} \right) + \frac{2}{2x+1} \right) + C_2$.

$$x \mapsto C_2(1+2x) + C_1\left((1+2x)\ln\left(\frac{x}{x+1}\right) + 2\right)$$

- **4.** On se place dans le cas où $\lambda \geq -\frac{1}{2}, \lambda \notin \mathbb{N}$.
 - On suppose que y est une solution non identiquement nulle de (\mathscr{E}_{λ}) . Déterminer le rayon de convergence de la série entière $\sum_{n\geq 0} a_n x^n$.

Le fait que y soit non identiquement nulle revient à supposer (par une récurrence immédiate) que $a_0 \neq 0$ et,

dans ce cas, $\forall n \in \mathbb{N}, a_n \neq 0$ car $\lambda \notin \mathbb{N}$. On a pour tout $n \in \mathbb{N}$, $\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(\lambda + n + 1)(\lambda - n)}{(n+1)^2} \right| \xrightarrow[n \to +\infty]{} 1$; la règle de d'Alembert permet de conclure

b. Montrer qu'il existe une unique solution de (\mathscr{E}_{λ}) que nous noterons φ_{λ} , développable en série entière sur]-1,1[et telle que $\varphi_{\lambda}(0)=1.$

La condition $\varphi_{\lambda}(0) = 1$ revient à imposer $a_0 = 1$. Les coefficients a_n sont alors uniquement déterminés par la relation $a_{n+1} = \frac{(\lambda + n + 1)(\lambda - n)}{(n+1)^2} a_n$; d'où l'unicité de la fonction φ_{λ} .

De plus, une récurrence immédiate montre que tous les coefficients sont non nuls, et un produit télescopique

$$\text{donne}: \forall n \in \mathbb{N}^*, a_n = \prod_{k=0}^{n-1} \frac{a_{k+1}}{a_k} = \prod_{k=0}^{n-1} \frac{(\lambda+k+1)(\lambda-k)}{(k+1)^2} = \frac{1}{(n!)^2} \prod_{k=0}^{n-1} (\lambda+k+1)(\lambda-k).$$
 La série entière dont les coefficients sont a_n a pour rayon de convergence 1, et sa somme vérifie (\mathscr{E}_{λ}) sur

] – 1, 1[d'où l'existence de φ_{λ} .

c. Expliciter le développement en série entière de la fonction $\varphi_{-\frac{1}{2}}$.

La fonction $\varphi_{-\frac{1}{2}}$ est entièrement déterminée par les coefficients a_n qui valent, $a_0=1$ et pour $n\in\mathbb{N}^*$:

$$a_n = \frac{1}{2^{2n}(n!)^2} \prod_{k=0}^{n-1} (2k+1)(-1-2k) = (-1)^n \left(\frac{(2n)!}{4^n(n!)^2}\right)^2.$$

Spé PT Page 2 sur 4

Exercice 2

1. Montrer que les intégrales $\int_0^{\frac{\pi}{2}} \ln(\sin(t)) dt$ et $\int_0^{\frac{\pi}{2}} \ln(\cos(t)) dt$ convergent.

 $t\mapsto \ln(\sin(t))$ est continue sur $\left]0,\frac{\pi}{2}\right]$ donc localement intégrable sur cet intervalle. Au voisinage de $0:\ln(\sin(t))\underset{0}{\sim}\ln(t)$, les deux fonctions étant de signe constant sur]0,1].

$$\int_0^1 \ln(t) dt$$
 est une intégrale de référence convergente, on en déduit que $\int_0^{\frac{\pi}{2}} \ln(\sin(t)) dt$ converge.

La fonction $t \mapsto \frac{\pi}{2} - t$ établit une bijection de classe C^1 entre $\left[0, \frac{\pi}{2}\right]$ et $\left[0, \frac{\pi}{2}\right[$.

Le théorème de changement de variable donne $\int_0^{\frac{\pi}{2}} \ln(\sin(t)) dt$ et $\int_{\pi}^0 \ln\left(\sin\left(\frac{\pi}{2}-t\right)\right) (-dt)$ de même nature

(convergentes d'après ce qui précède). On a donc la convergence de l'intégrale $\int_0^{\frac{\pi}{2}} \ln \cos(t) dt$.

On notera
$$I = \int_0^{\frac{\pi}{2}} \ln(\sin(t)) dt$$
 et $J = \int_0^{\frac{\pi}{2}} \ln(\cos(t)) dt$

2. A l'aide d'un changement de variable, montrer que

$$I = \int_{\frac{\pi}{2}}^{\pi} \ln(\sin(t)) \, \mathrm{d}t$$

La fonction $t \mapsto \pi - t$ établit une bijection de classe C^1 entre $\left[0, \frac{\pi}{2}\right]$ et $\left[\frac{\pi}{2}, \pi\right[$.

Le théorème de changement de variable donne I et $\int_{\pi}^{\frac{n}{2}} \ln(\sin(\pi - t))(-dt)$ de même nature, donc convergentes, et par suite égales. Ainsi, $I = \int_{\pi}^{\pi} \ln(\sin(t)) dt$.

3. A l'aide d'un changement de variable, trouver une relation entre I + J et I.

I et J étant des intégrales convergentes, on a par linéarité

$$I + J = \int_0^{\frac{\pi}{2}} \ln\left(\sin(t)\cos(t)\right) dt = \int_0^{\frac{\pi}{2}} \ln\left(\frac{\sin(2t)}{2}\right) dt = \int_0^{\frac{\pi}{2}} \ln(\sin(2t)) dt - \int_0^{\frac{\pi}{2}} \ln(2) dt.$$

La fonction $t\mapsto 2t$ établit une bijection de classe C^1 entre $\left[0,\frac{\pi}{2}\right]$ et $\left[0,\pi\right]$. Le théorème de changement de

variable donne $\int_0^{\frac{\pi}{2}} \ln(\sin(2t)) dt$ et $\int_0^{\pi} \ln(\sin(t)) \frac{1}{2} dt$ de même nature.

On a montré précédemment que $\int_{0}^{\frac{\pi}{2}} \ln(\sin(t)) dt$ et $\int_{\frac{\pi}{2}}^{\pi} \ln(\sin(t)) dt$ convergent (et valent I), on en déduit que

 $\int_0^{\pi} \ln(\sin(t)) dt$ converge, et par suite (à l'aide de la relation de Chasles) que :

$$\int_0^{\frac{\pi}{2}} \ln(\sin(2t)) dt = \frac{1}{2} \left(\int_0^{\frac{\pi}{2}} \ln(\sin(t)) dt + \int_{\frac{\pi}{2}}^{\pi} \ln(\sin(t)) dt \right) = I.$$

Finalement, on a : $I + J = I - \ln(2) \times \frac{\pi}{2}$.

4. A l'aide d'un changement de variable montrer que I=J.

Le changement de variable $t\mapsto \frac{\pi}{2}-t$ effectué à la question 1 donne I=J.

5. Déduire de ce qui précède la valeur de I et J.

$$I = J = -\ln(2) \times \frac{\pi}{2}.$$

Spé PT Page 3 sur 4

Exercice 3

Résoudre le système différentiel suivant :

$$\begin{cases} x'(t) = 3x(t) - z(t) \\ y'(t) = x(t) + y(t) \\ z'(t) = x(t) + z(t) \end{cases}$$

On pose
$$A = \begin{pmatrix} 3 & 0 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
 et $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$. Le système est équivalent à $(S): X' = AX$.

Le polynôme caractéristique de A est $\chi_A = (X-1)(X-2)^2$. Il est scindé donc A est trigonalisable.

On a : $E_1 = \text{Vect}\{(0, 1, 0)\}$ et $E_2 = \text{Vect}\{(1, 1, 1)\}$.

 $\dim(E_2) \neq m(2)$ donc A n'est pas diagonalisable.

Considérons la famille $\{(0,1,0),(1,1,1),(1,0,0)\}$; son déterminant vaut 1, elle forme donc une base de \mathbb{R}^3 .

 $A \text{ est donc semblable à une matrice de la forme } B = \begin{pmatrix} 1 & 0 & a \\ 0 & 2 & b \\ 0 & 0 & 2 \end{pmatrix}, \text{ telle que } AP = PB \text{ où } P = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$

Le produit matriciel donne a = 0 et b = 1.

On pose $Z = P^{-1}X = \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix}$, X est solution de (S) si, et seulement si Z est solution de Z' = BZ c'est-à-dire :

$$\begin{cases} z_1' = z_1 \\ z_2' = 2z_2 + z_3 \\ z_3' = 2z_3 \end{cases}$$

La première et la troisième équations se résolvent immédiatement.

Les solutions sont $z_1: t \mapsto C_1 e^t$ et $z_3: t \mapsto C_3 e^{2t}$, avec $(C_1, C_3) \in \mathbb{R}^2$.

La deuxième équation s'écrit donc $z'_2 = 2z_2 + C_3 e^{2t}$.

Les solutions de l'équation homogène $z_2'=2z_2$ sont $t\mapsto C_2\mathrm{e}^{2t}$, avec $C_2\in\mathbb{R}$.

On cherche une solution particulière de la forme $t \mapsto ate^{2t}$, et on trouve $a = C_3$.

Finalement, il existe $(C_1, C_2, C_3) \in \mathbb{R}^3$ tel que pour $t \in \mathbb{R}$: $\begin{cases} z_1(t) = C_1 e^t \\ z_2(t) = (C_2 + C_3 t) e^{2t} \\ z_3(t) = C_3 e^{2t} \end{cases}$.

On trouve les solutions du système initial en faisant le produit PZ:

$$\begin{cases} x(t) = (C_2 + C_3 + C_3 t)e^{2t} \\ y(t) = C_1 e^t + (C_2 + C_3 t)e^{2t} \\ z(t) = (C_2 + C_3 t)e^{2t} \end{cases}, (C_1, C_2, C_3) \in \mathbb{R}^3.$$

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 4 sur 4