Final Project NLP

DATASET

Enlace de kaggle de la data:

https://www.kaggle.com/datasets/aadyasingh55/twitter-emotion-classification-dataset/code

Análisis

Para realizar un proceso de análisis del texto primero realizamos normalización del mismo

```
import re

def normalize_text(text):
    text = text.lower()
    text = re.sub(r'[^\w\s]', '', text)
    text = re.sub(r'\d+', '', text)
    return text

df['text'] = df['text'].apply(normalize_text)
```

Las expresiones regulares utilizadas quitan los caracteres especiales y los números

Continuamos retirando las stop_words con la librería nltk

```
from nltk.corpus import stopwords

import nltk
nltk.download('stopwords')

stop_words = set(stopwords.words('english'))

def remove_stopwords(text):
    words = text.split()
    return ' '.join([word for word in words if word not in stop_words])

df['text'] = df['text'].apply(remove_stopwords)
```

Luego realizamos un conteo por cada tipo de label y conocer la distribución

```
label_counts = df['label'].value_counts().sort_index()
print(label_counts)
```

```
label_counts.plot(kind='bar', title='Distribución de emociones',
xlabel='Emociones', ylabel='Frecuencia')
plt.show()
```

```
label
0 121187
1 141067
2 34554
3 57317
4 47712
5 14972
```

Distribución de emociones

También revisamos la proporción por label

```
label_proportion = df['label'].value_counts(normalize=True)
print(label_proportion)
```

```
label
1 0.338445
0 0.290749
```

```
3 0.137514
4 0.114470
2 0.082901
5 0.035921
```

Continuamos revisando si hay alguna relación de la longitud del texto con el label

```
df['text_length'] = df['text'].apply(len)
print(df['text_length'].describe())
```

```
416809.000000
count
          61.718811
mean
            35.378303
std
            0.000000
min
25%
            35.000000
50%
           54.000000
75%
            81.000000
           474.000000
max
```

Revisamos la distribución de los datos

```
df['text_length'].plot(kind='hist', bins=30, title='Distribución de la longitud
  del texto')
  plt.xlabel('Longitud del texto')
  plt.show()
```

Distribución de la longitud del texto

Revisamos la longitud por label

```
length_by_label = df.groupby('label')['text_length'].describe()
print(length_by_label)
```

	count	mean	std	min	25%	50%	75%	max
la	bel							
0	121187.0	59.419418	34.988122	0.0	33.0	52.0	78.0	323.0
1	141067.0	62.769762	35.403254	0.0	36.0	55.0	82.0	282.0
2	34554.0	65.960960	35.856218	8.0	39.0	59.0	86.0	249.0
3	57317.0	60.917267	35.678358	0.0	34.0	53.0	80.0	474.0
4	47712.0	61.853475	35.204518	0.0	35.0	54.0	81.0	252.0
5	14972.0	63.277451	35.168865	10.0	37.0	56.0	82.0	248.0

Luego revisamos las 20 palabras más frecuentes

```
from collections import Counter

word_counts = Counter(" ".join(df['text']).split())
most_common_words = word_counts.most_common(20)
print("Palabras más comunes:", most_common_words)
```

```
Palabras más comunes: [('feel', 289939), ('feeling', 134185), ('like', 73972), ('im', 61662), ('really', 25862), ('know', 23766), ('time', 21292), ('get', 19571), ('little', 19193), ('people', 18125), ('would', 17961), ('want', 16441), ('one', 16041), ('think', 15871), ('still', 15747), ('ive', 14866), ('even', 14850), ('much', 14426), ('life', 14009), ('something', 13417)]
```

Y finalmente palabras más comunes por label serían la siguiente:

```
for label in df['label'].unique():
    texts = df[df['label'] == label]['text']
    word_counts = Counter(" ".join(texts).split())
    print(f"Palabras más comunes para la emoción {label}:
    {word_counts.most_common(10)}")
```

```
Palabras más comunes para la emoción 0: [('feel', 84184), ('feeling', 40849),
('like', 22167), ('im', 17631), ('really', 7533), ('know', 7183), ('time',
6133), ('little', 5719), ('get', 5410), ('ive', 5172)]
Palabras más comunes para la emoción 1: [('feel', 102709), ('feeling', 40953),
('like', 25245), ('im', 20445), ('really', 8506), ('time', 7323), ('know',
7159), ('get', 6523), ('would', 5916), ('people', 5794)]
Palabras más comunes para la emoción 2: [('feel', 24463), ('feeling', 10303),
('like', 7558), ('im', 4775), ('love', 2365), ('really', 2247), ('know', 2077),
('people', 1705), ('would', 1694), ('time', 1690)]
Palabras más comunes para la emoción 3: [('feel', 37717), ('feeling', 19236),
('like', 10367), ('im', 9298), ('really', 3771), ('know', 3399), ('get', 3340),
('people', 3074), ('time', 2937), ('little', 2826)]
Palabras más comunes para la emoción 4: [('feel', 30913), ('feeling', 17673),
('im', 7550), ('like', 6260), ('little', 3518), ('know', 3040), ('really',
2800), ('bit', 2424), ('time', 2418), ('still', 2390)]
Palabras más comunes para la emoción 5: [('feel', 9953), ('feeling', 5171),
('like', 2375), ('im', 1963), ('amazed', 1415), ('impressed', 1414), ('weird',
1413), ('strange', 1400), ('overwhelmed', 1391), ('surprised', 1389)]
```

Preprocesamiento de Datos de Twitter para Clasificación de Emociones

Descripción del Script

El script tiene dos funciones principales:

- 1. Dividir el conjunto de datos en entrenamiento y validación
- 2. Preprocesar los datos para formatearlos adecuadamente para la clasificación de emociones

El código divide los datos proporcionados en un conjunto de entrenamiento y uno de validación. Luego, realiza una conversión de etiquetas a emociones, así como un formato de salida adecuado que puede ser

utilizado por un modelo de lenguaje.

Estructura del Código

Importación de Bibliotecas

Importamos la biblioteca pandas para manejar y procesar los datos.

```
import pandas as pd
```

Definición de la Función preprocess_twitter_data

```
def preprocess_twitter_data(input_parquet, output_file):
    label_to_emotion = {
       0: "sadness",
       1: "joy",
       2: "love",
       3: "anger",
       4: "fear",
        5: "surprise"
    }
    df = pd.read_csv(input_parquet)
    df['emotion'] = df['label'].map(label_to_emotion)
   df['formatted'] = df['emotion'].apply(lambda x: f"<{x}>") + " " +
df['text']
    with open(output_file, 'w', encoding='utf-8') as f:
        f.write("\n".join(df['formatted']))
    print(f"Datos preprocesados guardados en {output file}")
```

La función preprocess_twitter_data realiza las siguientes tareas:

- Mapea los valores de las etiquetas (label) a emociones ("joy", "sadness", etc.) usando el diccionario label_to_emotion.
- Formatea los datos agregando una etiqueta textual de la emoción antes del texto original, por ejemplo: <joy> texto_del_tweet.
- Escribe los datos preprocesados en un archivo de texto.

Función principal

```
if __name__ == "__main__":
    input_parquet = "corpus/train-00000-of-00001.parquet"
    output_file_train = "data/train.txt"
```

```
output_file_valid = "data/valid.txt"

df = pd.read_parquet(input_parquet)
    train_df = df.sample(frac=0.8, random_state=42)
    valid_df = df.drop(train_df.index)

train_df.to_csv("data/train_data.csv", index=False)
    valid_df.to_csv("data/valid_data.csv", index=False)

preprocess_twitter_data("data/train_data.csv", output_file_train)
    preprocess_twitter_data("data/valid_data.csv", output_file_valid)
```

En la sección principal del código se lleva a cabo lo siguiente:

- 1. Cargar el archivo de entrada: Se carga un archivo parquet que contiene los datos originales.
- 2. **Dividir los datos**: Los datos se dividen en un conjunto de entrenamiento (80%) y un conjunto de validación (20%).
- 3. **Guardar conjuntos de entrenamiento y validación**: Se exportan los conjuntos resultantes a archivos CSV.
- 4. **Preprocesar y guardar los datos formateados**: Los conjuntos de entrenamiento y validación se formatean y se guardan en archivos de texto (train.txt y valid.txt).

Archivos Resultantes

- data/train_data.csv: Contiene los datos de entrenamiento en formato CSV.
- data/valid data.csv: Contiene los datos de validación en formato CSV.
- data/train.txt: Conjunto de entrenamiento preprocesado en un formato adecuado para el modelo.
- data/valid.txt: Conjunto de validación preprocesado en un formato adecuado para el modelo.

Entrenamiento de un Modelo GPT-2 para Generación de Texto Condicional

Se elaboró un script en Python utilizado para entrenar un modelo de lenguaje GPT-2 para la generación de texto condicional basado en emociones. El código se basa en la librería transformers de Hugging Face, que permite la personalización y entrenamiento de modelos de lenguaje previamente entrenados, como GPT-2.

Se realizó la importación de las librerías torch y transformers que se utilizan para manejar los aspectos principales del modelo, la tokenización y el entrenamiento.

```
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel, Trainer,
TrainingArguments, TextDataset, DataCollatorForLanguageModeling
```

Definir el Dispositivo de Entrenamiento

```
device = "cuda" if torch.cuda.is_available() else "cpu"
```

Primero detectamos si poseemos una gpu para poder usarla

Preprocesamiento del Dataset

```
def preprocess_dataset(file_path, tokenizer):
    dataset = TextDataset(
        tokenizer=tokenizer,
        file_path=file_path,
        block_size=128
    )
    return dataset
```

La función preprocess_dataset carga un conjunto de datos a partir de un archivo de texto, utilizando el tokenizador proporcionado. Los datos se dividen en bloques de 128 tokens para su procesamiento durante el entrenamiento.

Función de Entrenamiento del Modelo

```
def train_model(train_file, valid_file, output_dir):
   model_name = "gpt2"
   tokenizer = GPT2Tokenizer.from_pretrained(model_name)
   model = GPT2LMHeadModel.from_pretrained(model_name).to(device)
```

La función train_model comienza cargando el modelo preentrenado GPT-2 y el tokenizador asociado. El modelo se mueve al dispositivo adecuado (GPU o CPU).

Agregar Tokens Personalizados

```
emotions = ["sadness", "joy", "love", "anger", "fear", "surprise"]
for emotion in emotions:
    tokenizer.add_tokens(f"<{emotion}>")
model.resize_token_embeddings(len(tokenizer))
```

Se agregan etiquetas especiales para representar las emociones (<sadness>, <joy>, etc.). Esto permite que el modelo genere texto de manera condicional basado en la emoción especificada. El tamaño del vocabulario del modelo se ajusta para incluir estos nuevos tokens.

Preprocesar Conjuntos de Datos de Entrenamiento y Validación

```
train_dataset = preprocess_dataset(train_file, tokenizer)
valid_dataset = preprocess_dataset(valid_file, tokenizer)
```

Los conjuntos de entrenamiento y validación se preprocesan utilizando la función preprocess_dataset previamente definida.

Configuración del Colaborador de Datos

```
data_collator = DataCollatorForLanguageModeling(
    tokenizer=tokenizer, mlm=False
)
```

Se utiliza DataCollatorForLanguageModeling para manejar la agrupación de datos durante el entrenamiento. El argumento mlm=False indica que no se utilizará enmascaramiento de lenguaje (MLM), ya que GPT-2 se basa en un modelo de lenguaje autoregresivo.

Configuración de Argumentos de Entrenamiento

```
training_args = TrainingArguments(
    output_dir=output_dir,
    overwrite_output_dir=True,
    num_train_epochs=50,
    per_device_train_batch_size=8,
    save_steps=500,
    save_total_limit=2,
    logging_dir="./logs",
    logging_steps=100,
    evaluation_strategy="steps",
    eval_steps=500,
    learning_rate=5e-5,
    warmup_steps=100,
   weight_decay=0.01,
   push_to_hub=False
)
```

Se establecen los argumentos de entrenamiento, como el número de épocas, el tamaño del lote de entrenamiento (per_device_train_batch_size=8), y la frecuencia de guardado y evaluación. También se define una tasa de aprendizaje de 5e-3 y se aplica un decaimiento del peso (weight_decay=0.01) para evitar el sobreajuste.

Definir y Ejecutar el Entrenador

```
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    eval_dataset=valid_dataset,
    data_collator=data_collator,
)

trainer.train()
```

Se utiliza la clase Trainer de Hugging Face para manejar el proceso de entrenamiento del modelo. Se especifican el modelo, los argumentos de entrenamiento, los conjuntos de datos y el colaborador de datos.

Guardar el Modelo Entrenado

```
trainer.save_model(output_dir)
print(f"Modelo guardado en {output_dir}")
```

Una vez finalizado el entrenamiento, el modelo se guarda en el directorio especificado (output_dir).

Ejecución del Script

```
if __name__ == "__main__":
    train_file = "data/train.txt"
    valid_file = "data/valid.txt"
    output_dir = "model/emotion_generator"

train_model(train_file, valid_file, output_dir)
```

En la sección principal del script, se especifican los archivos de entrada de entrenamiento y validación, así como el directorio de salida donde se almacenará el modelo entrenado. Luego se llama a la función train_model para comenzar el entrenamiento.