September 17, 2019 1 Glossary

• SED: spectral energy distribution

• (spectral) line-force: force on material in stellar atmosphere

• LASER: Light Amplification by Stimulated Emission of Radiation

2 General equations - first year overview

2.0.1 Hydrodynamics

Euler equations, together with closing relation (e.g. ideal gas law).

primitive variables			
mass density	velocity	gas energy density	gas pressure
ρ	v	e	p

2.0.2 Radiation

Radiative transfer equation: intensity along a ray while interacting with medium. Photons are massless.

$$\left[\frac{1}{c}\partial_t + \vec{n}.\vec{\nabla}\right]I_{\nu} = \eta_{\nu} - \chi_{\nu}I_{\nu} \tag{1}$$

frequency	intensity	emissivity	total absorption
ν	$I_{ u}$	$\eta_ u$	$\chi_{ u}$

These deliver two equations

• the radiative energy equation (diffusion flux \vec{F}

$$\frac{\partial E}{\partial t} + \vec{\nabla} \cdot \vec{F} = \iint ... d\nu d\Omega \tag{2}$$

• radiative momentum equation

$$\frac{d\vec{F}}{\partial t} = \iint ... \vec{n} d\nu d\Omega \tag{3}$$

(after **integrating over all frequencies**). Depending on the geometry simplifications, one can e.g. integrate over all solid angles.

2.0.3 Radiation-Hydrodynamics

Combination delivers integral-diffusion equation

$$\frac{dI}{d\tau} = S - I$$

$$= \int I d\Omega - I$$
(4)

2.0.4 Challenges

- combination with hydrodynamics
- current analysis: simplified geometries (symmetry). E.g. in 2D, an ADI method is used and now also a multigrid method.
- \bullet complex geometry difficult to show in ray-tracing scheme
- steady-state vs. time dependent
- focus on radiation equations

3

3 Very broad introduction & Summary

The material here originates from the master thesis of Nicolas Moens [MoensNicolas] and from the course notes Introduction to numerical methods for radiation in astrophysics from professor Sundqvist.

3.1 Definitions and equations

3.1.1 Radiation equations

Specific intensity $I(s, \lambda, x, y, t)$

- restrict oursevels to time-independent, one-dimensional (1D) case $I(s, \theta, \lambda)$ where s is the direction of the light ray
- it satisfies Radiation Transfer Equation (RTE) $\boxed{\frac{dI_{\lambda}}{d\tau_{\lambda}} = S_{\lambda} I_{\lambda}}$
- with 'formal' solution $I(\lambda, \tau_{\lambda}) = I_0(\lambda)e^{-\tau_{\lambda}} \int_0^{\tau_{\lambda}} S(t)e^{-t}dt$
 - no emissivity S = 0 then $I(\lambda)I_0(\lambda)e^{-\tau_{\lambda}}$
 - no opacity then $I_0(\lambda) = \int_0^s \eta_{\lambda}(s) ds$
 - constant source function $I(\lambda, \tau) = I_0(\lambda)e^{-\tau_{\lambda}} + S(1 e^{-\tau_{\lambda}})$
 - if $S = a + b\tau$ then $I(\lambda) = a + \frac{b}{k_{\lambda}}$ with k_{λ} the opacity. A jump in opacity leads to the jump in intensity of the opposite sign.

3.1.2 RHD equations

The full RHD equations consist of

- five partial differential equations
- one HD closure equation, e.g. (i) variable Eddington tensor method or (ii) flux limited diffusion

Heat flux The heat flow rate density $\vec{\phi}$ satisfies the Fourier law $\vec{\phi} = -k\nabla T$. More information can be found for instance on [WikiHeat].

Specific intensity and its angular moments

specific intensity	$\Delta \epsilon = \boxed{I_{\nu}} A_1 A_2 / r^2 \Delta \nu \Delta t$
energy density	$E = \frac{1}{c} \iint I_{\nu} d\nu d\Omega$
flux vector	$F = \iint I_{\nu} n d\nu d\Omega$
pressure tensor	$P = \iint I_{\nu} nn d\nu d\Omega$
mean intensity	$J_{\nu} = \frac{c}{4\pi} E_{\nu}$
Eddington flux	$H_{\nu} = \frac{1}{4\pi} F_{\nu}$
Eddington's K	$K_{\nu} = \frac{c}{4\pi} P_{\nu}$

Eddington factor In general, the Eddington factor is a tensor, for 1D systems it is reduced to a scalar.

$$f_{\nu} = \frac{K_{\nu}}{J_{\nu}} = \frac{P_{\nu}}{E_{\nu}} \tag{5}$$

- isotropic radiation field
- radiation field stronly peaked in radial (i.e. vertical in cartesian) direction

3.1.3 Radiation transport equations, diffusion, equilibrium

- black body radiation (Planck function $I_{\nu} = J_{\nu} = B_{\nu}$)
- in general, extinction(absorption, scattering) and emission

$$\frac{dI_{\nu}}{ds} = j_{\nu} - k_{\nu}I_{\nu} \tag{6}$$

- Cartesian coordinates:

$$\frac{\partial I_{n,\nu}}{\partial t} \frac{1}{c} + n \nabla I_{n,\nu} = j_{\nu} - k_{n,\nu} I_{n,\nu}$$
(7)

- spherical coordinates
- 1D-problem with only variation along z-axis $\mu \frac{dI}{dz} = j kI$
- spherical symmetry $\mu \frac{\partial I}{\partial r} + \frac{1-\mu^2}{r} \frac{\partial I}{\partial \mu} = j kI$
- plane-parallel approximation

$$\mu \frac{dI}{dr} = j - kI \tag{8}$$

The angle μ is constant throughout the computational domain. Dividing by k_{ν} , this yields

$$\mu \frac{dI}{k_{\nu}dr} = \mu \frac{dI}{k_{\nu}dz} = S - I \tag{9}$$

- Oth moment equation: integrate Equation (7) over ν and Ω , i.e. $\int d\nu d\Omega$. Conservation of energy
- first multiply Equation (7) with $\frac{n}{c}$ and then do integration

3.1.4 Radiative Diffusion Approximation

The radiative diffusion approximation bridges two regimes: regimes with ...

- ullet on one hand, large optical depth $au\gg 1$: diffusion equation: temperature structure in a static stellar atmosphere
- on the other hand, where radiative transport is important

The diffusive approximation is the following: replace I = B or $I_{\nu} = B_{\nu}$.

$$I_{\nu} = B_{\nu} - \mu \frac{dB_{\nu}}{k_{\nu}dz} \tag{10}$$

This equation can be derived as a random walk of photons!

3.1.5 Applications and approximations for radiative forces

- definition of general radiative acceleration vector $g=\frac{1}{\rho c}\int\int nk_{\nu}I_{\nu}d\Omega d\nu$
 - $-\,$ continuum Thomson scattering
 - spectral line with extinction
 - * furthermore assume central continuum source

* then
$$g_{line} = \frac{F_{\nu}^0 k_L}{\rho c}$$

- Sobolev approximation
- CAK theory

3.1.6 Optical depth (recap)

 $\begin{tabular}{ll} \textbf{Optical depth: physical understanding} & \textbf{Optical depth is the ratio of incident radiant power to transmitted radiant power ([\textbf{WikiOpticalDepth}]).} \end{tabular}$

optical depth	optical depth along ray	line optical depth	Sobolev optical depth
$d\tau = k_{\nu}ds = \sigma_{nu}nds = \kappa \rho ds$	$\tau_{\mu,\nu} = \int_{z}^{z_{max}} \frac{\alpha_{nu}(z')}{\mu} dz' = \frac{\tau_{\nu}(z)}{\mu}$	$\tau_{\nu} = \int k_{L} \phi_{\nu} dl = \int \kappa \rho ds$	
$\tau_{\nu} = \int k_{\nu} ds = \int \sigma_{\nu} n ds$			'

with

- \bullet σ cross-section
- \bullet *n* number density
- κ mass absorption density
- ρ mass density
- k_{ν} extinction coefficient

3.2 Overview of symmetry assumptions

plane-parallel	1D atmosphere	
	bounded by horizontal surfaces	

7

4 Introduction: course material (Sundqvist - CMPAA course)

4.1 EXERCISES: Introduction to numerical methods for radiation in astrophysics

- 1. introduction
- 2. radiation quantities
 - exercise p.3:
 - on one hand, we know that $\Delta \epsilon \sim C/r^2$
 - on the other hand, from the definition we know that $\Delta \epsilon = I_{\nu} A_1 A_2 / r^2 \Delta \nu \Delta t$
 - combining these equations shows that I_{ν} is independent from r
 - exercise p.4:

_

• exercise 1:

$$-F_x = \int_0^\pi \left[I_\nu(\theta) \sin^2(\theta) \int_0^{2\pi} \cos(\phi) \right] d\theta d\phi = 0$$

- the same reasoning for $F_y = 0$
- exercise 2:
 - the equation follows from $d\mu = d\cos(\theta) = \sin(\theta)d\theta$
- exercise 3:
 - isotropic radiation field (i.e. $I(\mu) = I$) then we have $F_{\nu} = 2\pi \int_{-1}^{1} I \mu d\mu = 2\pi I \left. \frac{x^2}{2} \right|_{1}^{1} = 0$
- exercise 4

$$-F_{\nu} = 2\pi \int_{-1}^{1} I(\mu)\mu d\mu = 2\pi \int_{-1}^{0} I_{\nu}^{-} \mu d\mu + 2\pi \int_{0}^{1} I_{\nu}^{+} \mu d\mu = 2\pi I_{\nu}^{+}$$

- exercise p.7:
 - isotropic radiation field:
 - * although the radiation pressure is a tensor, we will denote it as a scalar $P_{\nu} = \frac{4\pi I_{\nu}}{c}$
 - * the radiation energy density $E_{\nu} = \frac{12\pi I_{\nu}}{c}$
 - * thus $f_{\nu} = \frac{1}{3}$
 - very strongly peaked in radial direction (beam): $I_{\nu} = I_0 \delta(\mu \mu_0)$ with $\mu_0 = 1$
 - * pressure tensor $P_{nu} = \frac{1}{c} \int I_0 \delta(\mu \mu_0) nn d\Omega$
 - * energy density $E_{\nu} = \frac{1}{c} \int I_{\nu} d\Omega$
 - * in this case $P_{\nu} = E_{\nu}$ thus $f_{\nu} = 1$
- 3. radiation transport vs. diffusion vs. equilibrium
 - exercise p. 12: 1D, Cartesian geometry, plane-parallel, frequency-independent and isotropic emission/extinction
 - radiation energy equation
 - * The equation follows by integrating Equation (8)
 - * By definition, $E = \frac{1}{c} \iint I_{\nu} d\nu d\Omega$
 - * thus $\frac{dE}{dr} = \int (j kI) d\nu d\Omega$ thus $\boxed{\frac{dE}{dr} = \frac{(j kI) 4\pi (\nu_1 \nu_0)}{c}}$

- * work out the integral taking into account frequency-independent and isotropic coefficients:
- zeroth momentum equations
 - * One must also take into account the specific form of the flux vector

$$F = \iint I_{\nu} n d\nu d\Omega = 2\pi \int_{-1}^{1} I_{\nu}(\mu) \mu d\mu$$

* thus
$$\frac{dF}{dr} = \frac{1}{c} \int (j-kI) n d\nu d\Omega$$
 thus $dF = \frac{(j-kI) 4\pi (\nu_1 - \nu_0) n}{c}$

- first moment equation
 - * similar reasoning

*
$$\frac{dP}{dr} = \int (j - kI)n \cdot n d\nu d\Omega$$
 thus $\left[\frac{dF}{dr} = \frac{(j - kI)4\pi(\nu_1 - \nu_0)n}{c}\right]$

• first exercise p. 15

$$- \ P = \frac{1}{c} \iint I_{\nu} \mu^2 d\Omega d\nu = \frac{2\pi}{c} \int_{\nu} \int_{-1}^{1} I_{\nu} \mu^2 d\mu d\nu = \frac{4\pi}{3c} \int B_{\nu} d\nu = \frac{aT^4}{3} = \frac{E}{3}$$

- second exercise p.15
 - assuming the diffusion limit,
 - flux-weighted mean opacity $\kappa_F = \frac{\int F_\nu \kappa_\nu d\nu}{\int F_\nu d\nu}$
 - Rosseland mean opacity $\frac{1}{\kappa_R} = \frac{\int_0^\infty \frac{1}{\kappa_\nu} \frac{dB_\nu}{dT}}{\int_0^\infty \frac{dB_\nu}{dT} d\nu}.$
 - * in the diffusion limit, $F_{\nu}=-\frac{4\pi}{3}\frac{dB_{\nu}}{k..dz}$ thus $\frac{dB_{nu}}{dT}=$
- third exercise p.15
- 4. the equations of radiation-hydrodynamics
- 5. numerical techniques for the radiative diffusion approximation
- 6. applications and approximations for a dynamically important radiative force in supersonic flows

• exercise p.27:
$$L_{SOB}=\Delta r=\frac{v_{th}}{dv/dr}=\frac{10[km/s]}{1000[km/s]/R_*}=0.01R_*$$

- 7. Appendix A: properties of equilibrium black-body radiation
 - exercise p. 29
 - this should be satisfied: $B_{\nu}d\nu = -B_{\lambda}d\lambda$ and also $\nu = \frac{c}{\lambda}$

- this is equivalent to saying that
$$0 = \nu d\lambda + \lambda d\nu$$
 or $d\lambda = -\frac{\lambda}{\nu} d\nu$ thus $B_{\lambda} = \frac{\nu}{\lambda} B_{\nu}$
- $B_{\lambda}(T) = \frac{\nu}{\lambda} \frac{2h\nu^{3}}{(\lambda\nu)^{2}} \frac{1}{e^{hc/\lambda kT} - 1} = \frac{2h\nu^{2}}{\lambda^{3}} \frac{1}{e^{hc/\lambda kT} - 1} = \frac{2hc^{2}}{\lambda^{5}} \frac{1}{e^{hc/\lambda kT} - 1}$

- first exercise p.31
 - derive that $\lambda_{max}T = 2897.8[\mu mK]$
- second exercise p.31
 - this is about the spectra of (unknown) stars
- first exercise p.32
 - see exercise 7
- second exercise p.32

September 17, 2019

9

- BB radiation: $I_{\nu} = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/kt} 1}$
- the radiative flux for isotropic BB radiation is zero. See also exercise 3. This dus also holds for BB radiation.
- exercise p. 33
 - HR-diagram
- 8. Appendix B: Simple examples to the radiative transfer equation
 - first exercise p. 34
 - start from radiative transport equation $\mu \frac{dI}{ds} = \alpha \eta I$ in which $\eta = 0$ thus $\mu \frac{dI}{ds} = \alpha$
 - solving the ODE in the general case that $\alpha(s)$ is not constant:
 - * integrate the equation $\mu I = \int_0^D \alpha ds$
 - * ...
 - second exercise p. 34
 - * case $\tau(D) >> 1$: then $I(D) \approx S$
 - * case $\tau(D) << 1$: then $I(D) \approx I(0) + S(1-1) = I(0)$
 - first exercise p.35
 - * is the plane-parallel approximation valid for the solar photosphere?
 - second exercise p.35
 - * goal: find a solution to the equation $\mu \frac{dI_{\nu}}{d\tau_{\nu}} = I_{\nu} S_{\nu}$ where $I(\tau, \mu)$
 - * solution
 - second exercise p.35
- 9. Appendix C: connecting random walk of photons with radiative diffusion model
 - exercise p. 38. Computing the average photon mean-free path inside the Sun. $l=\frac{1}{\kappa\rho}=\frac{V_o}{\kappa M_o}[cm]$
 - exercise p.39. Computing the random-walk time (diffusion time) for photons

4.2 Implicit 1D solver (20-11-2018)

See computer code

4.3 ADI 2D Solver

See computer code

4.4 Area of a circle

See computer code

4.5 Limb Darkening

See Section ??.

5 The mathematics of Radiative Transfer

The material in this section is based on the book [Busbridge].

5.1 Auxiliary mathematics

- $\cos(\Theta) = \cos(\theta)\cos(\theta') + \sin(\theta)\sin(\theta')\cos(\phi \phi')$
- phase function $p(\mu, \phi, \mu', \phi', \tau) = \sum_{n=0}^{N} \omega_n P_n(\cos(\Theta))$
 - isotropic scattering $p(\tau) = \omega_0(\tau)$
- equation of transfer $\boxed{\mu \frac{\partial I(\tau, \mu, \phi)}{\partial \tau} = I(\tau, \mu, \phi) \mathcal{S}(\tau, \mu, \phi)}$ with $\mathcal{S}(\tau, \mu, \phi) = B_1(\tau) + \frac{1}{4\pi} \int_{-1}^1 d\mu' \int_0^{2\pi} I(\tau, \mu', \phi') p(\mu, \phi, \mu', \phi') d\phi'$
 - axially symmetric with isotropic scattering $\mathcal{S}(\tau) = \frac{\omega_0(\tau)}{2} \int_{-1}^1 I(\tau,\mu') d\mu' = B_1(\tau) + \frac{\omega_0(\tau)}{2} \int_0^{\tau_1} \mathcal{S}(t) E_1(|t-\tau|) dt$
 - the Milne equation of the problem $(1 \omega_0 \bar{\Lambda})$ { mahtcalS(t)} = $B(\tau)$
 - * solve for S(t)
 - * then find $I(\tau, \mu)$

5.2 The H-functions

• characteristic equation

6 Monte Carlo and Radiative Transfer (Puls)

- 6.1 basic definitions and facts
- 6.2 about random numbers
- 6.3 MC integration
- 6.4 MC simulation

Radiative transfer in stellar atmospheres

- GOAL: spatial radiation energy density $E(\tau)$ in an atmospheric layer
 - only photon-electron scattering
 - $-\tau$ is the optical depth
- Milne's integral equation $E(\tau) = \frac{1}{2} \int_0^\infty E(t) E_1(|t-\tau|) dt$
 - analytical solution $\frac{E(\tau)}{E(0)} = \sqrt{3}(\tau + q(\tau))$
 - MC simulation
 - * emission angle
 - * optical depth until next scattering event
 - * scattering angle
- HOW DOES THIS WORK?

Algorithm 1 Limb darkening: compute quantitiy of photons

create photons

probability distribution for emission angle $\mu = \cos(\theta)$: $p(\mu)d\mu = \mu d\mu$

optical depth until next scattering event: $p(\tau)dt \approx e^{-\tau}d\tau$

isotropic scattering angle at low energies: $p(\mu)d\mu \approx d\mu$

follow all photons until they leave the atmosphere or are scattered back into stellar interior

- 6.5 Exercise 1: RNG
- 6.6 Exercise 2: Planck-function
 - 1. analytical method
 - 2. MC method

6.7 limb darkening

See section ??.

7 Introduction to Monte Carlo Radiation Transfer (Wood+)

The material is taken from

- $\bullet \ ({\bf Wood, \, Wittney, \, Bjorkman, \, Wolff \, \text{-} \, \, 2001})$
- (Wood, Wittney, Bjorkman, Wolff 2013)

7.1 Elementary principles

specific intensity	$I_{ u}$
radiant energy	dE_{ν}
surface area	dA
angle	θ
solid angle	$d\Omega$
frequency range	$d\nu$
time	dt
flux	$F_{ u}$
cross section	σ
scattering angle	χ
	$\mu = \cos(\chi)$
mean intensity	J
flux	Н
radiation pressure	K

intensity	$I_{\nu}(l) = I_{\nu}(0)e^{n\sigma l}$
angular phase function of the scattering particle	$P(\cos(\chi))$

inverse method	$\xi = \int_0^{x_0} P(x)dx \text{ with } \xi \in \mathcal{U}(0,1)$
rejection method	

7.2 Eddington factors

7.3 Example: plane parallel atmosphere

- $1.\,$ emission of photons: select two angles (3D space). In isotropic scattering
 - θ met $\mu = \cos(\theta)$ - $\mu = 2\xi - 1$ (isotropic scattering) - $\mu = \sqrt{\xi}$ (A slab is heated from below. Then $P(\mu) = \mu$)
 - $\phi = 2\pi \xi$
- 2. propagation of photons
 - sample optical depth from $\tau = -\log(\xi)$
 - distance travelled $L = \frac{\tau z_{max}}{\tau_{max}}$

3. conclusion of emission and propagation

$$x = x + L\sin(\theta)\cos(\phi)$$

$$y = y + L\sin(\theta)\sin(\phi)$$

$$z = z + L\cos(\theta)$$
(11)

4. Binning: once the photon exists the slab. Produce histograms of the distribution function. Finally, we wish to compute the output flux or the intensity.

I have seen that a newer version of the paper is available, which was also used in these notes (which contains amongst other up-to-date references to code fragments).

A Plane Parallel, Isotropic Scattering Monte Carlo Code

7.4 Monte Carlo Radiative Transfer

From a macroscopic perspective, RT calculations rest on the transfer equation

- emissivity η (how much energy is added to radiation field due to emission)
- \bullet opacity χ (how much energy is removed due to absorption)
- the source function $S = \frac{\eta}{\chi}$
- \bullet optical depth τ captures the opaqueness of a medium

$$\left(\frac{1}{c}\frac{\partial}{\partial t} + \nabla \cdot n\right)I = \eta - \chi I \tag{12}$$

$$d\epsilon = Id\nu dt d\Omega dA.n \tag{13}$$

7.5 P Cygni profile for beta-velocity law and given opacity Monte Carlo simulation

7.5.1 Structure of the code

- module common
- module my_inter
- program pcyg
 - $-\,$ INPUT xk0, alpha, beta
 - OUTPUT
 - PROGRAM FLOW: loop over all photons
 - * get xstart and vstart

*

- then do normalisation
- function func(r)
- $\bullet \ \, {\rm function} \, \, {\rm xmueout}({\rm xk0,alpha,r,v,sigma}) \\$
- function rtbis(func,x1,x2,xacc)

8 Challenges in Radiative Transfer (Ivan Milic)

8.1 Overview of the problem

$$\xrightarrow{I_{\lambda}^{*}} T(\tau) , \rho(\tau) , \vec{B}(\tau) , \vec{v}(\tau) \xrightarrow{I_{\lambda}^{+}}$$

Forward problem

The forward problem is schematically represented

$$\xrightarrow{\vec{T}, \rho, \vec{B}, \vec{v}} \xrightarrow{\text{forward problem}} I_{\lambda}^{+} = F(\vec{T}, \rho, \vec{B}, \vec{v})$$

In fact solve for intensity vector $\vec{I} = \begin{pmatrix} I \\ Q \\ \alpha \\ V \end{pmatrix}$ obeying the equation

$$\frac{d\vec{I}}{d\tau} = -X(\vec{T}, \rho, \vec{B}, \vec{v})\vec{I} - \vec{j}(\vec{T}, \rho, \vec{B}, \vec{v}) \tag{14} \label{eq:14}$$

and the solution

$$I_{\lambda}^{+} = I_{0}^{+}e^{-\int} + \int \vec{j}e^{-\int}d\tau \tag{15}$$

Example Source function
$$S = a\tau + b$$
 then $\int_0^{\tau_{max}} (a\tau + b)e^{-\tau}d\tau = ...$

Inverse problem

The inverse problem is schematically represented

Via least-squares approximation

$$\min_{\vec{T},\rho,\vec{B},\vec{v}} \sum \left(I_{\lambda}^{obs} - I_{\lambda}(\vec{T},\rho,\vec{B},\vec{v}) \right)^{2} \tag{16}$$

8.2 Challenging domains of application

- Lyman alpha in Galaxy Halos
- Dusty torii (AGD)
- protoplanetary disks
- circumstellar disks
- athmospheres

September 17, 2019 **9 Asymptotic Preserving Monte Carlo methods for transport** equations in the diffusive limit (Dimarco+2018)

$\frac{18}{10}$ Splitting methods

From notes by professor Frank.

10.1 Exercises

10.1.1 Exercise 1