机器学习-逻辑回归

逻辑回归

建立一个逻辑回归模型,用于预测一个学生是否应该被大学录取。

简单起见,大学通过**两次考试的成绩来确定一个学生是否应该录取**。你有以前数届考生的成绩,可以做为训练集学习逻辑回归模型。每个训练样本包括了考生两次考试的成绩和对应的录取决定。

你的任务是建立一个分类模型,根据两次考试的成绩来估计考生被录取的概率。 本次实验需要实现的函数

- plot data 绘制二维的分类数据。
- sigmoid 函数
- cost_function 逻辑回归的代价函数
- cost_gradient 逻辑回归的代价函数的梯度, 无正则化
- predict 逻辑回归的预测函数
- cost function reg 逻辑回归带正则化项的代价函数
- cost_gradient_reg 逻辑回归的代价函数的梯度,带正则化

数据可视化

在实现机器学习算法前,可视化的显示数据以观察其规律通常是有益的。本次作业中,你需要实现 plot_data 函数,用于绘制所给数据的散点图。你绘制的图像应如下图所示,两坐标轴分别为两次考试的成绩,正负样本分别使用不同的标记显示。

热身练习: Sigmoid函数

逻辑回归的假设模型为:

$$h_{ heta}(x) = g(heta^{\mathrm{T}}x)$$

其中函数 $g(\cdot)$ 是Sigmoid函数, 定义为:

$$g(z) = \frac{1}{1 + \exp(-z)}$$

本练习中第一步需要你实现 Sigmoid 函数。在实现该函数后,你需要确认其功能正确。对于输入为矩阵和向量的情况,你实现的函数应当对每一个元素执行Sigmoid 函数。

代价函数与梯度

现在你需要实现逻辑回归的代价函数及其梯度。补充完整 cost_function 函数,使其返回正确的代价。补充完整 cost gradient 函数,使其返回正确的梯度。

逻辑回归的代价函数为:

$$J(heta) = rac{1}{m} \sum_{i=1}^m \left[-y^{(i)} \log \left(h_ heta(x^{(i)})
ight) - (1-y^{(i)}) \log \left(1 - h_ heta(x^{(i)})
ight)
ight]$$

对应的梯度向量各分量为

$$rac{\partial J(heta)}{\partial heta_j} = rac{1}{m} \sum_{i=1}^m ig(h_ heta(x^{(i)}) - y^{(i)}ig) x_j^{(i)}$$

预测函数

在获得模型参数后,你就可以使用模型预测一个学生能够被大学录取。如果某学生考试一的成绩为45,考试二的成绩为85,你应该能够得到其录取概率约为0.776。

你需要完成 predict 函数,该函数输出"1"或"0"。通过计算分类正确的样本百分数,我们可以得到训练集上的正确率。

使用 scipy.optimize.fmin_cg 学习模型参数

在本次作业中,希望你使用 scipy.optimize.fmin_cg 函数实现代价函数 $J(\theta)$ 的优化,得到最佳参数 θ^* 。

使用该优化函数的代码已经在程序中实现,调用方式示例如下:

其中 cost_function 为代价函数, theta 为需要优化的参数初始值, fprime=cost_gradient 给出了代价函数的梯度, args=(X, y) 给出了需要优化的函数与对应的梯度计算所需要的其他参数, maxiter=400 给出了最大迭代次数, full_output=True 则指明该函数除了输出优化得到的参数 theta_opt 外,还会返回最小的代价函数值 cost_min 等内容。

对第一组参数,得到的代价约为 0.203 (cost_min)。

逻辑回归的正则化形式

数据可视化

调用函数 plot_data 可视化第二组数据 LR_data2.txt 。 正确的输出如下:

LR_data2

特征变换

创建更多的特征是充分挖掘数据中的信息的一种有效手段。在函数 map_feature 中,我们将数据映射为其六阶多项式的所有项。

中的语思的一种有效手段。往图数项。
$$egin{align*} egin{align*} egin{alig$$

代价函数与梯度

逻辑回归的代价函数为

$$J(\theta) = \frac{1}{m} \sum_{i=1}^m \left[-y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) - (1-y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^n \theta_j^2$$

对应的梯度向量各分量为:

$$egin{aligned} rac{\partial J(heta)}{\partial heta_0} &= rac{1}{m} \sum_{i=1}^m h\Big(h_ hetaig(oldsymbol{x}^{(i)}ig) - y^{(i)}\Big) x_0^{(i)} & ext{for } j = 0 \ rac{\partial J(heta)}{\partial heta_j} &= rac{1}{m} \sum_{i=1}^m h\Big(h_ hetaig(oldsymbol{x}^{(i)}ig) - y^{(i)}\Big) x_j^{(i)} + rac{\lambda}{m} heta_j & ext{for } j \geq 1 \end{aligned}$$

完成以下函数:

- cost_function_reg()
- cost_gradient_reg()

模型训练

如果将参数 θ 初始化为全零值,相应的代价函数约为 0.693。可以使用与前述无正则化项类似的方法实现梯度下降,

获得优化后的参数 θ^* 。

你可以调用 plot_decision_boundary 函数来查看最终得到的分类面。建议你调整正则化项的系数,分析正则化对分类面的影响!

参考输出图像:

