Cirrhosis Prediction

By: Sheryl, Anjali, Qiao Shi

Lab Group: W132

- 01 Problem Definition
- 02 Exploratory Data Analysis
- 03 Machine Learning
- 04 Conclusions

TABLE OF CONTENTS

What is Cirrhosis?

Cirrhosis is a **chronic liver disease** where the liver is scarred and permanently damaged

Stage 1: Healthy Liver

Stages of disease

Stage 4: Cirrhosis

Liver Fibrosis

Can we predict if a patient is in early or late stage of liver cirrhosis?

Mayo Clinic Trial

418 Patient Records

20 Information attributes

Dealing with NULL Values

```
In [68]: liverData.isnull().sum()
Out[68]: ID
         N_Days
          Status
          Drug
                           106
         Age
         Sex
         Ascites
                           106
         Hepatomegaly
                           106
         Spiders
                           106
          Edema
          Bilirubin
         Cholesterol
                           134
         Albumin
         Copper
                           108
         Alk_Phos
                           106
         SGOT
                           106
         Tryglicerides
                           136
         Platelets
                            11
          Prothrombin
         Stage
         dtype: int64
```

1. Remove rows with NULL value for stage

```
In [68]: liverData.isnull().sum()
Out[68]: ID
          N_Days
          Status
          Drug
                           106
          Age
          Sex
          Ascites
                           106
          Hepatomegaly
                           106
          Spiders
                           106
          Edema
          Bilirubin
          Cholesterol
                           134
          Albumin
                           108
          Copper
          Alk_Phos
                           106
          SGOT
                           106
          Tryglicerides
                           136
          Platelets
                            11
          Prothrombin
          Stage
          dtype. into
```

2. Replace NULL values with the mode of each column

```
In [68]: liverData.isnull().sum()
Out[68]: ID
         N_Days
         Status
         Drug
                           106
         Age
         Sex
         Ascites
                           106
         Hepatomegaly
                           106
         Spiders
                           106
         Edema
         Bilirubin
         Cholesterol
                           134
         Albumin
                           108
         Copper
         Alk_Phos
                           106
         SGOT
                           106
         Tryglicerides
                           136
         Platelets
                            11
         Prothrombin
         Stage
         dtype: int64
```

Early Stage

Late Stage

Creating a new column

Create a new column on dataset to see whether the patient is in early or late stage of disease.

```
In [9]: # If 0, patient is in early stage.
# If 1, patient is in late stage.
# We first expressed it in numeric form for comparison.

def Early_Late_Stage(liverData):
    if (liverData["Stage"] == 1.0) or (liverData["Stage"] == 2.0):
        return 0
    else:
        return 1

liverData["Early/Late Stage"] = liverData.apply(lambda liverData: Early_Late_Stage(liverData), axis=1)
```


Remove the ID column

Removing outliers

Exploratory Analysis

Exploratory Data Analysis

of Factors
Across Stages

Correlation of Factors with Stage

Exploring
Discrete and
Continuous
data

Contribution of Factors Across Stages

Females have a higher tendency of developing liver disease than males

Using Plotly

Contribution of Factors Across Stages

Positive Correlation

- ★ Bilirubin
- ★ Triglyceride
- ★ Copper
- ★ Prothrombin

Negative Correlation

- ★ Albumin
- **★** Platelets
- ★ Cholesterol

Correlation of Gender With Factors

Exploring Discrete Data

Decision Tree Classifier

Low Gini Index

- Ascites
- > Edema
- > Spiders

Exploring Continuous Data

Bar Plot

Machine Learning Models Used

1. Random Forest Classifier

2. Logistic Regression

3. K-Nearest Neighbour (KNN) Classifier 4. Bagging Classifier

Accuracy of Models

71.5% 68.6% 67.8% 67.3%

Logistic Regression K-Nearest Neighbours Random Forest Classifier Bagging Classifier

Receiver Operating Characteristic Curve

Receiver Operating Characteristic Curve

1. Area Under Curve (AUC)

The higher the AUC, the better the overall performance

2. Difference between training and validation accuracy

The smaller the difference, the lower the tendency to overfit, thus it works better for new, unseen data

Random Forest Classifier

Random Fores	st			
[[0 10] [3 23]]				
Training Acc. Validation Ac				
	precision	recall	f1-score	support
0	0.00	0.00	0.00	10
1	0.70	0.88	0.78	26
accuracy			0.64	36
macro avg	0.35	0.44	0.39	36
weighted avg	0.50	0.64	0.56	36

Tendency to Overfit: 36.11 percentage points

Logistic Regression Model

```
Logistic Regression
  3 23]]
Training Acc. : 73.87%
Validation Acc.: 66.67%
              precision
                            recall f1-score
                                                support
                   0.25
                                        0.14
                              0.10
                                                     10
                   0.72
                                        0.79
                              0.88
                                                     26
                                        0.67
                                                     36
    accuracy
                   0.48
                              0.49
                                        0.47
   macro avg
weighted avg
                   0.59
                              0.67
                                        0.61
```


Tendency to Overfit: 7.2 percentage points

K-Nearest Neighbours

```
KNN
  3 7]
 [ 3 23]]
Training Acc. : 74.77%
Validation Acc.: 72.22%
              precision
                           recall f1-score
                                               support
                   0.50
                             0.30
                                        0.37
                                                    10
                   0.77
                             0.88
                                        0.82
                                                    26
                                        0.72
                                                    36
    accuracy
                   0.63
                                        0.60
                                                    36
   macro avg
                             0.59
weighted avg
                   0.69
                             0.72
                                        0.70
                                                    36
```


Tendency to Overfit: 2.55 percentage points

Bagging Classifier

```
Bagging Classifier
[[ 2 8]
 [ 5 21]]
Training Acc. : 98.5%
Validation Acc.: 63.89%
                            recall f1-score
                                               support
              precision
                   0.29
                             0.20
                                        0.24
                                                    10
                   0.72
                             0.81
                                        0.76
                                                    26
                                        0.64
                                                    36
    accuracy
                                        0.50
                                                    36
                   0.50
                             0.50
  macro avg
weighted avg
                   0.60
                             0.64
                                        0.62
                                                    36
```


Tendency to Overfit: 34.61 percentage points

Summary of Models

Model	Random Forest	Logistic Regression	K-Nearest Neighbours	Bagging Classifier
Accuracy	67.8%	71.5%	68.6%	67.3%
Tendency to Overfit	Highest	Low	Lowest	High
Area Under Curve (AUC)	0.57	0.64	0.55	0.44

Summary of Models

Model	Rivoca Frest	Logistic Regression	K-Nearest Neighbours	Br gn C ssifie
Accuracy	%	71.5%	68.6%	7. %
Tendency to Overfit	ligh st	Low	Lowest	igh
Area Under Curve (AUC)	57	0.64	0.55	C 14

Identifying key factors

Identifying key factors

Triglicerides?

Can we predict if a patient is in early or late stage of liver cirrhosis?

Yes

Logistic Regression Model

Key factors for prediction

- Platelets
- 2 Bilirubin
- 3 Copper

With the derived results, what are some recommendations?

Recommendation (model): Larger training data

Recommendations: Healthcare providers

To improve time efficiency, nurses can just collect patients' data regarding these 3 factors

Late stage Cirrhosis patients should:

1. Exercise regularly to help blood flow and increase platelet count

It is imperative for late stage Cirrhosis patients to:

2. Have a healthier diet

- Drink more water
- Cut back on alcohol consumption
- Eat more fruits and vegetables
- Eat fewer processed foods

Late stage Cirrhosis patients should:

- 3. Consume food low in copper
- 4. Under doctor's advice
 - Take more vitamin Cs
 - Take zinc supplements

Thank you!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics and images by **Freepik**

References

https://images.app.goo.gl/ffuJVPmjK38prsZz5

https://images.app.goo.gl/dhBFCCSS9w3UqMZe9

<u>Premium Vector | Liver exercise set character cartoon mascot vector (freepik.com)</u>

Healthy Liver Internal Organs Anatomy Body Part Nervous System Infographic

<u>Health Care Concept Stock Illustration - Download Image Now - iStock</u> (istockphoto.com)

Vitamin C Bottle Stock Illustration - Download Image Now - Vitamin C,

Nutritional Supplement, Bottle - iStock (istockphoto.com)

Pills with Zinc Zn Element Dietary Supplements. Vitamin Capsules Stock

Illustration - Illustration of dietary, diet: 62351501 (dreamstime.com)