Wave Property and Wave-based Sensing

Jin Zhang

Department of Computer Science and Engineering

Southern University of Science and Technology

Waves: Transfer of energy, not mass

Sound Visible light

Physical vibrations WiFi signal

Ripples in water Infrared

...

Mechanical Wave

Electromagnetic Wave

Sound

Visible light

Physical vibrations

WiFi signal

Ripples in water

Infrared

•••

•••

Mechanical Wave

Sound

Physical vibrations

Ripples in water

Acoustic Longitudinal Wave

•••

Electromagnetic Wave

Visible light

WiFi signal

Infrared

THE BREAKER OF CHAINS

Waves made this possible

Waves made this possible

Waves made this possible

Waves Properties

A Wave on a Rope

Equation of waves in time and space

The speed of the wave is known

the speed of light =

299 792 458 m/s

speed of sound in dry air at 20 °C =

343 m/s

Echolocation

Echolocation in Nature

Bat

Application: Contact tracing

Infection rate

Credit: Kit Yates. Senior Lecturer in Mathematical Biology at the University of Bath and author of the Maths of Life and Death

What is contact tracing?

Contact tracing aims to identify and alert people who have come into contact with a person infected with coronavirus.

How to find the proximity between two smartphones?

Smartphones can be used to quickly and automatically determine whether somebody has been in contact with an infected person.

A simple acoustic ranging technique BeepBeep — SenSys 2007

The Requirement

- A widely applicable solution
 - Work on COTS devices
 - No additional hardware
 - Pure user space software (no change to OS/driver)
 - Not dependent on infrastructure
 - Applicable in spontaneous, ad hoc situations
 - Minimum set of sensors
- High accuracy!

Device A

"Beep"!

Signal Design

- Good signal design helps detection
 - Easily detectable in digital recording
 - Robust against ambient noise
 - Robust against acoustic distortion
 - Low-fidelity speaker & mic in COTS mobile device
 - Within hardware capability
 - Most COTS devices have limited voice frequency range
- Our empirical design ("chirp" sound)
 - 50ms long, shifting frequency from 2 to 6 kHz

Signal Detection Algorithm Design

- Efficient and fast signal detection algorithm
 - Quickly locate possible signal regions
- Robust against low SNR
 - Utilize noise floor to boost SNR
- Combat multipath effect
 - Multipath: big issue indoor environment
 - We derived special algorithm to detect first "sharp peak" signal correlation

Time domain signal

FFT Plot

Device A

"Beep"

Time domain

Freq. domain

After bandpass filter

Problem: Clock synchronization

three uncertainties

Clock synchronization uncertainty

- three uncertainties
 - Clock synchronization uncertainty
 - Sending uncertainty
 - Receiving uncertainty

ADC = Analog-to-Digital Converter

DAC = Digital-to-Analog Converter

DAC = Digital-to-Analog Converter

- three uncertainties
 - Clock synchronization uncertainty
 - Sending uncertainty

software issuing command

```
...
t0 = wall_clock();
write(sound_dev, signal);
...
```

- three uncertainties
 - Clock synchronization uncertainty
 - Sending uncertainty

software issuing command

```
...

t0 = wall_clock();
write(sound_dev, signal);
...

unknown delays (software, system, driver, hardware, ...)

sound leaves speaker

page 2
```

- three uncertainties
 - Clock synchronization uncertainty
 - Sending uncertainty

software issuing command

Receiving uncertainty

software aware of arrival

```
read(sound_dev, signal);
t1 = wall_clock();
...

sound
unknown delays (hardware, interrupt, driver, scheduling, ...)
```

time

BeepBeep

- A simple and effective solution
 - Each device just needs to emit a sound signal and record them simultaneously
 - Only require a speaker, a mic, and some way of communicating with the other device
- Achieving 1cm accuracy while satisfying all the requirements

Beepbeep's basic procedure

- 1. Device A emits a beep while both recording
- 2. Device B emits another beep while both continue recording
- 3. Both devices detect TOA of the two beeps and obtain respective ETOAs
- 4. Exchange ETOAs and calculate the distance

Design Rationale

- Self-recording
 - Record signals from both the other party and itself
 - Establish the starting reference point of the whole ranging process
 - Duplex audio channel
- Two-way sensing
 - Avoid clock synchronization uncertainty
 - To capture the ending reference point of the whole ranging process
 - not attempt to capture any system time info

Design Rationale

- Sample counting
 - Avoid referring to system clocks for timing info
 - Dedicated A/D converter, w/ fixed sampling rate
 - Achievable precision is determined by the sampling frequency: 0.8cm at 44.1kHz sampling rate
- Putting together:
 - Bypass all the three uncertainties by making time measurement irrelevant to system clocks

Finding distance using waves

- Distance from the speed information
 - Techniques
 - Signal detection
- Distance from the amplitude information
 - Absorption
 - Propagation loss
- Distance from the frequency information
 - Doppler effect
 - A case study (Doppler + Triangulation)

- Distance from the speed information
 - Techniques
 - Signal detection
- Distance from the amplitude information
 - Absorption
 - Propagation loss
- Distance from the frequency information
 - Doppler effect
 - A case study (Doppler + Triangulation)

Distance from the speed information

Distance from the speed information

TDoA

TDoA

Distance from the speed information

Distance from the speed information

How to detect the signal at the receiver/observer?

Round-trip Time of Flight (RToF)

Correlation

$$R_{xy}[k] = \sum_{m=-\infty}^{\infty} x[m]y[m-k]$$

Correlation

- Distance from the speed information
 - Techniques
 - Signal detection
- Distance from the amplitude information
 - Absorption
 - Propagation loss
- Distance from the frequency information
 - Doppler effect
 - A case study (Doppler + Triangulation)

Distance from the amplitude information

Distance from the amplitude information

20 30 40 50 60

Relative Humidity (%)

6000 H:

2000 Hz

- Distance from the speed information
 - Techniques
 - Signal detection
- Distance from the amplitude information
 - Absorption
 - Propagation loss
- Distance from the frequency information
 - Doppler effect
 - A case study (Doppler + Triangulation)

Distance from the frequency information

- Motion of the sound source and/or the observer changes the frequency of the observed signal.
- The change depends on the velocity of the source/observer.
- This phenomena is known as Doppler effect or Doppler shift.

Simple wave model: Stationary source

Simple wave model: Stationary source

Simple wave model: Stationary source

Simple wave model: Stationary source

Simple wave model: Moving source

Simple wave model: Moving source

Simple wave model: Moving source

Simple wave model: Moving source

Simple wave model: Moving source

End of This Chapter