

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบกลางภาคเรียนที่ 2 ปีการศึกษา 2554

ข้อตอบวิชา STA432 Statistical Data Processing

นักศึกษาภาควิชาสถิติ ชั้นปีที่ 4

สอบวันพุธที่ 25 มกราคม 2555 เวลา 13.00-16.00น.

<u>กำเตือน</u>

- ข้อสอบมีทั้งหมด 13 หน้า 2 ชุด (รวมปก)
 ชุดที่ 1 มีคำถาม 6 ข้อ ให้ตอบคำถามทุกข้อลงในข้อสอบ คะแนนเต็ม 120 คะแนน ชุดที่ 2 เอกสารกำกับรายวิชา เป็นผลลัพธ์จากโปรแกรมสำเร็จรูปทางสถิติ SPSS ให้ใช้เพื่อ ช่วยตอบคำถามตามข้อที่ระบ
- 2. ไม่อนุญาตให้นำตำราและเอกสารใด ๆ เข้าห้องสอบ
- 3. อนุญาตให้ใช้เครื่องคำนวณตามระเบียบมหาวิทยาลัย
- 4. ในกรณีที่ข้อสอบไม่ชัคเจนหรือมีข้อสงสัย ให้ตัดสินใจแก้ปัญหา พร้อมทั้งอธิบายเหตุผลที่ ตัดสินใจทำเช่นนั้น
- 5. คำถามทุกข้อให้<u>ระบุสูตรต่าง ๆ ที่ใช้ทุกครั้ง</u> ก่อนที่จะนำค่าผลลัพธ์จากโปรแกรมมาใช้

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ

ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ

นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา

		1
<u>4</u> _	รหัส	กาดวิจา
ชื่อ	รหส	ภาควชา

(ก. บุญกอง ทะกาโยกิน ผู้ออกข้อสอบ

ข้อสอบได้ผ่านการพิจารุณาลากภากวิชากณิตศาสตร์

(คร.คุษฎี ศุขวัฒน์)

หัวหน้าภาควิชาคณิตศาสตร์

กำสั่ง จงตอบกำถามต่อไปนี้ ตามกำสั่งที่โจทย์ระบุในแต่ละข้อ

ง้อที่ 1. น.ส.ยิ่งลักษณ์ ชินวัตร นายกรัฐมนตรี ได้มอบคำขวัญเนื่องในวันเค็กแห่งชาติ ประจำปี พ.ศ. ๒๕๕๕ ว่าอย่างไร และคำขวัญมีความสัมพันธ์กับวิชา Statistical Data Processing และ Basic Concept of Learning ของ Jerome Bruner อย่างไร (10 คะแนน) ข้อที่ 2. จงเขียน Diagram หรือ Mind Mapping เพื่ออธิบายถึงความสัมพันธ์ระหว่างสิ่งที่กำหนดให้ว่ามีความ เชื่อมโยงกับวิชา Statistical Data Processing อย่างไร (15 คะแนน)

Data Processing Life Cycle, Statistical Method une The Principle Components of Computer

ข้อที่ 3. จงสรุปการตัดสินใจเลือกใช้<u>ตัวสถิติ</u>ในการทดสอบสมมติฐานเกี่ยวกับค่าเฉลี่ย สำหรับการทดสอบที่ใช้พารามิเตอร์ กรณีประชากร 1 กลุ่ม 2 กลุ่ม และมากกว่า 2 กลุ่ม ให้สรุปในรูปแบบตารางหรือผังงาน กำหนดเงื่อนไขในการใช้ ในแค่ละกรณีให้ชัดเจน (15 กะแนน)

ข้อที่ 4. เพื่อทคสอบประสิทธิภาพของวิธีการสอนแบบใหม่ จึงสุ่มนักศึกษาที่เรียนวิชาสถิติมา 10 คน แล้วเก็บ คะแนนสอบที่ได้จากการเรียนโดยวิธีเดิมกับวิธีใหม่ ปรากฏผลดังในตารางข้างล่าง (20 คะแนน)

กนที่	1	2	3	4	5	6	7	8	9	10	ผลรวม
วิธีเคิม	48	47	37	32	42	49	50	51	36	52	
วิชีใหม่	50	60	48	41	51	54	57	61	43	58	
d _i											

จงตอบคำถามต่อไปนี้

4.1 จงเขียนรูปแบบการป้อนข้อมูลในโปรแกรมสำเร็จรูปทางสถิติ SPSS

(5 กะแนน)

4.2 จงสร้างช่วงความเชื่อมั่น 98% สำหรับผลค่างที่แท้จริงของคะแนนสอบระหว่างวิธีการสอนทั้ง 2 วิธี (15 คะแนน) ข้อที่ 5. สุ่มตัวอย่างเด็กอายุ 5-10 ขวบ ที่ได้รับวิตามินและไม่ได้รับวิตามิน มากลุ่มละ 5 คน ปรากฏว่าชั่งน้ำหนักตัว

ได้ดังนี้ (หน่วย : กิโลกรัม) (25 กะแนน)

เด็กกลุ่มที่ได้รับวิตามิน	17.53	20.60	17.62	28.93	27.10	S ² ₁ =	
เด็กกลุ่มที่ไม่ได้รับวิตามิน	15.59	14.75	13.32	12.45	12.79	$S_2^2 =$	

ถ้าสมมุติว่าน้ำหนักของเด็กทั้ง 2 กลุ่ม มีการแจกแจงปกติและไม่ทราบความแปรปรวน กำหนดระดับ นัยสำคัญทางสถิติเท่ากับ 0.01

จงตอบคำถามต่อไปนี้

(5 คะแนน)

5.2 จงทคสอบสมมติฐาน
$$H_0: G_1^2 = G_2^2 \vec{n} \alpha = 0.01$$

(8 คะแนน)

5.3 จงทคสอบว่าวิตามินจะช่วยเพิ่มน้ำหนักให้เค็กได้หรือไม่ (12 คะแนน) (นักศึกษาต้องแสดงการทดสอบทั้ง 5 ขั้นตอน โดยใช้โปรแกรมช่วยในด้านการกำนวณ)

ข้อที่ 6. จงตอบคำถามต่อไปนี้

(35 กะแนน)

นักวิจัยการตลาดท่านหนึ่งต้องการทราบว่า รถยนต์ที่กำลังได้รับความนิยมในท้องตลาด 3 ชี่ห้อ คือA,B และ C จะแล่นได้ระยะทางที่แตกต่างกันหรือไม่ โดยใช้น้ำมันเฉลี่ย 3 ลิตรต่อกัน เขาจึงสุ่มตัวอย่างรถยนต์ยี่ห้อ ดังกล่าวมายี่ห้อละ4 คัน แล้วให้ทดลองแล่น จนกระทั่งน้ำมันหมด ได้ระยะทางที่รถแล่นดังตารางต่อไปนี้

	ŧ	ห้อรถยนต	Á	
รถคันที่	A	В	C	รวม
1	21	35	23	
2	26	38	26	
3	25	35	25	
4	20	32	18	
รวม (T.j)				T = 324
ค่าเฉลี่ย				ȳ = 27
ค่าความแปรปรวน				

จงตอบคำถามต่อไปนี้

6.1 จงเขียนรูปแบบการป้อนข้อมูลในโปรแกรมสำเร็จรูปทางสถิติ SPSS พร้อมระบุลำคับคำสั่งงานที่สำคัญ (5 กะแนน)

- 6.2 จงทดสอบสมมุติฐานว่า ระยะทางเฉลี่ยที่รถยนต์ทั้ง 3 ยี่ห้อ แล่นได้แตกต่างกันหรือไม่ ที่ระดับนัยสำคัญทางสถิติ 0.05
 - 6.2.1 จงทคสอบสมมุติฐานเกี่ยวกับความแปรปรวน ($\alpha = 0.01$)

(5 กะแนน)

		4	d	•	•	d
6.2.2	จงทคสอบสมมุ	เคร	านเกียว	กา	ู	นลย

(2 กะแนน)

6.2.3 จงหาก่าของ SST, SSTR, SSE (ให้ระบุสูตรด้วย) กำนวณก่าต่างๆ ดังนี้

(5 กะแนน)

C.T. =

SST =

SSTR =

SSE

SSE =

6.2.4 จงสร้างตาราง ANOVA และสรุปผล

(8 กะแนน)

สรุปผลการคำนวณในตาราง ANOVA ได้ดังนี้

Source of Variation	d.f.	Sum of Square	Mean of Square	F-ratio
				'

6.2.5 จากผลลัพธ์ที่ได้ในข้อ 6.2.4 ให้เหตุผลในการเลือกวิธีการเปรียบเทียบเชิงซ้อนที่เหมาะสมจาก 3 วิธี คือ LSD, Sechffe's , Tukey's ที่ $\alpha=0.05$ พร้อมจัคกลุ่มยี่ห้อรถยนต์และท่านคิดว่านักวิจัยท่านนี้ ควรแนะนำให้เลือกใช้ รถยนต์ยี่ห้อใด เพราะเหตุใด (10 กะแนน)

ชุดที่2 : เอกสารกำกับรายวิชา STA432 : Statistical Data Processing ; 2/2554

<u>คำชี้แจง</u> : ผลลัพธ์จากโปรแกรมสำเร็จรูปทางสถิติ SPSS สำหรับช่วยตอบคำถามตามข้อที่ระบุ

	ข้อที่ 4: T-Test	Pair	NEW OLD	Mean 52.3000	Paired Samples Statistics an N Std. 3000 10 4000 10	Std. Deviation 6.92901 7.13676
NEW 52.3000 10 OLD 44.4000 10	ข้อที่ 4: T-Test			Mean	z	Std. Deviation
44.4000 10		Pair	NEW	52.3000	10	6.92901
		_	OLD	44.4000	10	7.13676

Paired Samples Correlations

.000	9	7.861	10.73551	3.17805 1.00499 5.06449 10.73551	1.00499	3.17805	00006.7	Pair 1 NEW - OLD	Pair 1
			Upper	Lower					
			nce interval	Std. Error 98% Confidence Interval Mean of the Difference	Std. Error Mean	Std. Deviation	Mean		
Sig. (2-tailed)	Q.	-		·	Paired Differences	Pain			
			it	Paired Samples Test	Pairec				
	.000	.898	.8	10	OLD	Pair 1 NEW & OLD	Pa		
	Sig.		Correlation	z					

ข้อที่ 5 มี 2 วิธี ให้เลือกเพียง 1 วิธีเท่านั้น

ข้อที่ 5: T-Test

Independent Sample Test

Group Statistics

.59907	1.33955	13.7800	5	Nonvitamin
2.39297	5.35085	22.3560	5	WEIGHT Vitamin
Mean	Std. Deviation	Mean	z	GROUP
Std. Error				

Independent Samples Test

	WEIGH			_
Equal variances not assumed	WEIGHT Equal variances assumed			
	17.884	F		Levene's Test for Equality of Variances
	.003	Sig.		Test for Variances
3.477	3.477	t		
4.499	8	ď		
.002	.008	Sig. (2-tailed) Difference Difference		t-test fo
8.57600	8.57600	Difference	Mean	t-test for Equality of Means
2,46682	2,46682	Difference	Std. Error	eans
2.46682 -1.96510 19.11710		Lower	99% Confidence Interval of the Difference	
19.11710	.29886 16.85314	Upper	nfidence I of the ence	

Paired Samples Statistics

ข้อที่ 5: T-Test

Paired Sample Test

.59907	1.33955	5	13.7800	Nonvitamin	_
2.39297	5.35085	5	22.3560	Vitamin	Pair
Mean	Std. Deviation	z	Mean		
Std. Error					

Paired Samples Correlations

.139	757	5	Vitamin & Nonvitamin	Pair 1
Sig.	Correlation	Z		

Paired Samples Test

Pair 1 Vitamin					
Nonvitamin					-
8.57600	Mean				
6.42463	Std. Deviation				Paire
2.87318	Mean	Std. Error			d Differences
-4.65241	Lower	Difference	Interval of the	99% Confidence	
21.80441	Upper	ence	of the	nfidence	
2.985	t				
4	df				
.041	Sig. (2-tailed)				

ข้อที่ 6 : Oneway ANOVA

Test of Homogeneity of Variances

df1 df2	Levene Statistic .522
1 19-	N

AVOVA

Distance

			11	466.000	Total
		9.111	9	82.000	Within Groups
.000	21.073	192.000	2	384.000	Between Groups
Sig.	П	Mean Square	ď	Squares	
				Sum of	

Post Hoc Tests

Multiple Comparisons

Dependent \	Dependent Variable: Distance	tance					
			Mean				
			Difference			95% Confidence Interval	nce interval
	(I) Brand	(J) Brand	(]	Std. Error	Sig.	Lower Bound	Upper Bound
Tukey HSD	1.00	2.00	-12.00000*	2.13437	.001	-17.9592	-6.0408
		3.00	.00000	2.13437	1.000	-5.9592	5.9592
	2.00	1.00	12.00000*	2.13437	.001	6.0408	17.9592
		3.00	12.00000°	2.13437	.001	6.0408	17.9592
	3.00	1.00	.00000	2.13437	1.000	-5.9592	5.9592
		2.00	-12.00000°	2.13437	.001	-17.9592	-6.0408
Scheffe	1.00	2.00	-12.00000*	2.13437	.001	-18.2275	-5.7725
		3.00	.00000	2.13437	1.000	-6.2275	6.2275
	2.00	1.00	12.00000*	2.13437	.001	5.7725	18.2275
		3.00	12.00000*	2.13437	.001	5.7725	18.2275
	3.00	1.00	.00000	2.13437	1.000	-6.2275	6.2275
		2.00	-12.00000°	2.13437	.001	-18.2275	-5.7725
LSD	1.00	2.00	-12.00000*	2.13437	.000	-16.8283	-7.1717
		3.00	.00000	2.13437	1.000	4.8283	4.8283
	2.00	1.00	12.00000*	2.13437	.000	7.1717	16.8283
		3.00	12.00000*	2.13437	.000	7.1717	16.8283
	3.00	1.00	.00000	2.13437	1.000	4.8283	4.8283
		2.00	-12.00000°	2.13437	.000	-16.8283	-7.1717

Distance

Homogeneous Subsets

1.000	1.000		Sig.
35.0000		4	2.00
	23.0000	4	3.00
	4 23.0000	4	Scheffe 1.00
1.000	1.000		Sig.
35.0000		4	2.00
	23.0000	4	3.00
	4 23.0000	4	Tukey HS 1.00
2	_	Z	Brand
ubset for alpha = .0	ubset for		

Means for groups in homogeneous subsets a a.Uses Harmonic Mean Sample Size = 4.0t

* The mean difference is significant at the .05 level.