Explain this equation:			
	Thus the net rate of		
CO ₂ assimilation is	That the net late of		
$A = V_c - 0.5 \ V_o - R_d^{1}$	(1)		
where V_c is the rate of carboxylate of oxygenation. The symbol R_d reption from mitochondria in the light associated with the PCO cycle.	presents CO ₂ evolu-		
Can you explain the following sen	itence? What proces	ss does represent?	
For each carboxylation, ϕ oxy	genations occur.		
What is meant by 'RUBISCO limite	ed' or 'RUBP limited'	photosynthesis?	
NA/le at its up a set by all attends to a sec			
What is meant by electron transp	ort (J) limited photo	isyntnesis?	

How does the following equation (from Carl's lecture) summarize the Farquhar model (and its extensions)?

$$A = \min \left\{ w_c, w_j, w_p \right\} (1 - \Gamma^* / C) - R_d$$

Why did Farquhar et al measure photosynthesis under different Oxygen concentrations?

Fig. 7. $\rm CO_2$ fluxes versus intercellular $p(\rm CO_2)$, $\rm C(\mu bar)$. The solid lines at 25C and 1000 $\rm \mu mol$ photons m⁻² s⁻¹ represent the situation in ambient (210 mbar) $p(\rm O_2)$, with V_c , A and $0.5 \cdot V_o$ denoting the rates of carboxylation, the net rate of assimilation of $\rm CO_2$ and the rate of release of photorespired $\rm CO_2$. The dashed line represents the rate of $\rm CO_2$ assimilation in 10 mbar $p(\rm O_2)$

What is the significance of this statement from Farquhar et al 1980?
The ratio of the solubilities of O_2 and CO_2 increase with temperature and Ku and Edwards (1977) have suggested that photorespiration increases more rapidly with temperature than does carboxylation for this reason.
How does Long 1991 expand these ideas?