Tugas Metode Peramalan Deret Waktu: Single Exponential Smoothing

Akmala F. - G14160079

Metode Single Exponential Smoothing adalah metode pemulusan dengan melakukan pembobotan menurun secara eksponensial dengan satu parameter (α), di mana nilai yang lebih baru diberi bobot yang lebih besar dari nilai terdahulu.

Pemulusan

Setelah data di-input dan disimpan sebagai data deret waktu pada R dengan menggunakan kode berikut:

```
1 mpdw3 <- read.csv('/Users/Mala/Documents/datasesd1d2.csv')
2 mpdw3.d1.ts <- ts(mpdw3$Demand_1)</pre>
```

dilakukanlah pemulusan terhadap data. Pemulusan terhadap data dilakukan menggunakan nilai-nilai α di bawah.

 $\alpha = 0.1$

kode:

```
9     SES.1 <- HoltWinters(mpdw3.d1.ts, alpha = 0.1, beta = FALSE, gamma = FALSE)
10     xhat.1 <- SES.1$fitted[,1]
11     error.1 <- residuals(SES.1)
12     SSE.1 <- SES.1$SSE
13     MSE.1 <- mean(error.1^2)
14     MAD.1 <- mean(abs(error.1))
15     MAPE.1 <- mean(abs(error.1/mpdw3.d1.ts)*100)</pre>
```

penjelasan:

Pemulusan dengan metode SES dengan nilai α 0.1 dilakukan dengan menggunakan fungsi HoltWinters(), di mana parameter alpha = 0.1 dan parameter lain FALSE, dan disimpan pada variabel SES.1 (baris kesembilan). Keluaran dari fungsi tersebut adalah sebagai berikut:

```
> SES.1
Holt-Winters exponential smoothing without trend and without seasonal component.

Call:
HoltWinters(x = mpdw3.d1.ts, alpha = 0.1, beta = FALSE, gamma = FALSE)

Smoothing parameters:
    alpha: 0.1
    beta : FALSE
    gamma: FALSE

Coefficients:
       [,1]
a 486.4783
```

di mana a adalah hasil peramalan untuk periode berikutnya. Nilai hasil peramalan kemudian disimpan pada variabel xhat.1, dan galatnya disimpan pada variabel error.1 (baris 10-11).

xhat.1

_	±	15	546.6487
1	775.0000	16	
2	743,4000	16	545.9838
-	743.4000	17	538.4854
3	715.2600	18	530.2369
4	697.3340	19	535.2132
5	663.8006	20	533.9919
_	630 5305	20	333.3313
6	630.5205	21	514.7927
7	613.0685	22	506.5134
8	593.6616	23	517.9621
9	576.5955	24	508.9659
10	555.8359	25	502.1693
11	553.6523	26	517.1524
12	563.8871	27	510.8371
13	558.9984	28	498.5534
14	547.4986	29	501.1981

error.1

1	± 316 000000	15	-6.648696
1	-316.000000	16	-74.983827
2	-281.400000	17	-82.485444
3	-179.260000	18	49.763101
4	-335.334000	19	-12.213210
5	-332.800600	20	-191.991889
6	-174.520540	21	-82,792700
7	-194.068486	22	114.486570
8	-170.661637	23	-89.962(114
9	-207.595474	24	-67.965878
10	-21.835926	25	149.830710
11	102.347666		
- 11	102.347000	26	-63.152361
12	-48.887100	27	-122.837125
13	-114.998390	28	26.446587
14	-8.498551	29	-147.198071

Berikutnya, kita hitung nilai SSE, MSE, MAD, RMSE, dan MAPE dari hasil ramalan ini (kode baris 12-15). Keluarannya adalah sebagai berikut:

```
> SSE.1

[1] 749885.7

> MSE.1

[1] 25858.13

> MAD.1

[1] 130.0333

> RMSE.1

[1] 160.8046

> MAPE.1

[1] 30.5422
```

$\alpha = 0.3$

kode:

```
20 SES.2 <- HoltWinters(mpdw3.d1.ts, alpha = 0.3, beta = FALSE, gamma = FALSE)
21 xhat.2 <- SES.2$fitted[,1]
22 error.2 <- residuals(SES.2)
23 forecast2 <- predict(SES.2, n.ahead = 1)
24 SSE.2 <- SES.2$SSE
25 MSE.2 <- mean(error.2^2)
26 MAD.2 <- mean(abs(error.2))
27 RMSE.2 <- sqrt(MSE.2)
28 MAPE.2 <- mean(abs(error.2/mpdw3.d1.ts)*100)</pre>
```

penjelasan:

proses yang dilakukan sama seperti pada pengerjaan α = 0.1 di atas, hanya saja kali ini nilai α = 0.3, dan semua variabel disimpan dengan format <objek>.2. Nilai hasil ramalan disimpan pada variabel forecast2 (kode baris 23). Keluaran SES.2 adalah sebagai berikut:

```
> SES.2
Holt-Winters exponential smoothing without trend and without seasonal component.

Call:
HoltWinters(x = mpdw3.d1.ts, alpha = 0.3, beta = FALSE, gamma = FALSE)

Smoothing parameters:
    alpha: 0.3
    beta : FALSE
    gamma: FALSE

Coefficients:
       [,1]
a 446.1036
```

dengan nilai dugaan peramalan dan error berikut:

ิ		g	1	1	n
u	u	~	а	а	

•			
_	<u></u>	15	507.1477
1	775.0000	16	517.0034
2	680.2000	17	503.2024
3	614.7400	18	489.0417
4	591.1180	19	516.3292
5	522.3826	20	518.3304
6	464.9678	21	
7	462,2775		465.4313
		22	455.4019
8	449.2942	23	505.0813
9	441.4060	24	481.9569
10	419.6842	25	469.6699
11	453.9789	26	524.3689
12	514.5852	27	503.2582
13	514.7097	28	468.6808
14	493.4968	29	485.5765

error

error			
	±	15	22 0522500
1	-316.0000000	15	32.8522609
2	-218.2000000	16	-46.0034173
3	-78.7400000	17	-47.2023921
4	-229.1180000	18	90.9583255
5	-191.3826000	19	6.6708279
		20	-176.3304205
6	-8.9678200	21	-33.4312944
7	-43.2774740	22	165.5980940
8	-26.2942318	23	-77.0813342
9	-72.4059623	24	-40.9569340
10	114.3158264	25	182.3301462
11	202.0210785	26	-70.3688976
12	0.4147549		
	70 7000715	27	-115.2582283
13	-70.7096715	28	56.3192402
14	45.5032299	29	-131.5765319

α = 0.5

kode:

```
31 SES.3 <- HoltWinters(mpdw3.d1.ts, alpha = 0.5, beta = FALSE, gamma = FALSE)
32 xhat.3 <- SES.3$fitted[,1]
33 error.3 <- residuals(SES.3)
34 forecast3 <- predict(SES.3, n.ahead = 1)
35 SSE.3 <- SES.3$SSE
36 MSE.3 <- mean(error.3^2)
37 MAD.3 <- mean(abs(error.3))
38 RMSE.3 <- sqrt(MSE.3)
39 MAPE.3 <- mean(abs(error.3/mpdw3.d1.ts)*100)
```

penjelasan:

proses yang dilakukan sama seperti pada pengerjaan α = 0.1 di atas, hanya saja kali ini nilai α = 0.5, dan semua variabel disimpan dengan format <objek>.3. Nilai hasil ramalan disimpan pada variabel forecast3 (kode baris 34). Keluaran SES.3 adalah sebagai berikut:

```
> SES.3
Holt-Winters exponential smoothing without trend and without seasonal component.

Call:
HoltWinters(x = mpdw3.d1.ts, alpha = 0.5, beta = FALSE, gamma = FALSE)

Smoothing parameters:
    alpha: 0.5
    beta : FALSE
    gamma: FALSE

Coefficients:
       [,1]
a 419.8515
```

dengan nilai dugaan peramalan dan error berikut:

- 1					
n	u	σ	а	а	n
u	u	s	а	а	

auguan			
_	<u> </u>		
1	775.0000	15	514.9227
2	617.0000	16	527.4614
3	539.5000	17	499.2307
4	537.7500	18	477.6153
		19	528.8077
5	449.8750	20	525.9038
6	390.4375	21	433.9519
7	423.2188	22	432.9760
8	421.1094	23	526.9880
9	422.0547	24	477.4940
10	395.5273	25	459.2470
11	464.7637	26	555.6235
12	560.3818	27	504.8117
13	537.6909	28	446.4059
14	490.8455	29	485,7029
14	430.0433	29	465.7029

error

1	-316.000000	15	25.077271
2	-155.000000	16	-56.461365
3	-3.500000	17	-43.230682
4	-175.750000	18	102.384659
5	-118.875000	19	-5.807671
6	65.562500	20	-183.903835
		21	-1.951918
7	-4.218750	22	188.024041
8	1.890625	23	-98.987979
9	-53.054688	24	-36.493990
10	138.472656	25	192.753005
11	191.236328	26	-101.623497
12	-45.381836	27	-116.811749
13	-93.690918	28	78.594126
14	48.154541	29	-131.702937

α = 0.7

kode:

```
42 SES.4 <- HoltWinters(mpdw3.d1.ts, alpha = 0.7, beta = FALSE, gamma = FALSE)
43 xhat.4 <- SES.4$fitted[,1]
44 error.4 <- residuals(SES.4)
45 forecast4 <- predict(SES.4, n.ahead = 1)
46 SSE.4 <- SES.4$SSE
47 MSE.4 <- mean(error.4^2)
48 MAD.4 <- mean(abs(error.4))
49 RMSE.4 <- sqrt(MSE.4)
50 MAPE.4 <- mean(abs(error.4/mpdw3.d1.ts)*100)
```

penjelasan:

proses yang dilakukan sama seperti pada pengerjaan α = 0.1 di atas, hanya saja kali ini nilai α = 0.7, dan semua variabel disimpan dengan format <objek>.4. Nilai hasil ramalan disimpan pada variabel forecast2 (kode baris 23). Keluaran SES.4 adalah sebagai berikut:

```
> SES.4
Holt-Winters exponential smoothing without trend and without seasonal component.

Call:
HoltWinters(x = mpdw3.d1.ts, alpha = 0.7, beta = FALSE, gamma = FALSE)

Smoothing parameters:
    alpha: 0.7
    beta : FALSE
    gamma: FALSE

Coefficients:
        [,1]
a 395.8627
```

dengan nilai dugaan peramalan dan error berikut:

dugaan

uuguun			
	± 77F 0000	15	519.3468
1	775.0000	16	533.8040
2	553.8000	17	489.8412
3	489.5400	18	466.1524
4	522.0620	19	545.8457
5	410.0186	20	529.8537
6	354.7056	21	398.3561
7	425.6117	22	421.9068
8	420.9835	23	561.2721
9	422,3951	24	467.9816
10	385.0185		
10	363.0163	25	449.0945
11	489.3056	26	591.1283
12	605.9917	27	495.1385
13	542.2975	28	420.1416
14	473.4892	29	493.5425

error

*	±	15	20.653225
1	-316.000000	16	-62.804032
2	-91.800000	17	-33.841210
3	46.460000	18	113.847637
4	-160.062000	19	-22.845709
5	-79.018600	20	-187.853713
6	101.294420	21	33.643886
7	-6.611674	22	199.093166
8	2.016498	23	-133.272050
9	-53.395051	24	-26.981615
10	148.981485	25	202.905515
11	166.694445	26	-137.128345
12	-90.991666	27	-107.138504
13	-98.297500	28	104.858449
14	65.510750	29	-139.542465
14	03.310730	29	-139.342463

Perbandingan SSE, MSE, MAD, RMSE, dan MAPE

Kode:

```
52 data.forecast <- data.frame(modelSES = c('Alpha = 0.1', 'Alpha = 0.3', 'Alpha = 0.5', 'Alpha = 0.7'),
53 SES = c(SSE.1, SSE.2, SSE.3, SSE.4), MSE = c(MSE.1, MSE.2, MSE.3, MSE.4),
54 MAD = c(MAD.1, MAD.2, MAD.3, MAD.4), RMSE = c(RMSE.1, RMSE.2, RMSE.3, RMSE.4),
55 MAPE = c(MAPE.1, MAPE.2, MAPE.3, MAPE.4), forecast = c(forecast1, forecast2, forecast3, forecast4))
```

penjelasan:

Untuk membandingkan SES, MSE, MAD, RMSE, dan MAPE dari masing-masing nilai α , dibuatlah tabel (dengan menggunakan fungsi data.frame()) dengan menggunakan kode di atas. Keluarannya adalah sebagai berikut.

Dari tabel di atas, kita dapat melihat bahwa nilai SES, MSE, MAD, RMSE, dan MAPE terus mengecil hingga nilai α = 0.5, kemudian membesar kembali pada α = 0.7. Hal ini menunjukkan bahwa nilai α yang tinggi tidak menjamin dihasilkannya dugaan yang lebih

baik; terdapat nilai α yang optimal bagi setiap jenis data. Untuk data demand yang kita miliki ini, misalnya, nilai α yang optimal adalah 0.5.

Plot antara demand dengan Data Forecasting Hasil Pemulusan

Kode:

penjelasan:

plot yang dihasilkan dari kode di atas digunakan untuk membandngkan data dengan nilai hasil pemulusan dengan tiap-tiap nilai α .

Actual Data and Predictions made using Provided Alphas

dapat dilihat bahwa pemulusan dengan nilai α = 0.5 memiliki plot yang paling mulus. Kita juga dapat melihat bahwa untuk satu periode ke depan, nilai *demand* diramalkan akan naik.

Kesimpulan

Demand produk dari perusahaan A yang digambarkan pada data diramalkan akan naik, sehingga perusahaan A diharapkan dapat mengambil keputusan yang baik dalam pembuatan strategi penjualan sehingga kenaikan yang diramalkan menjadi optimal.