

SQIsign Past, present and future

Luca De Feo IBM Research Zürich

March 4, 2024, UK Crypto Day

Still the smallest keys;

- Still the smallest keys;
- No progress on the generic isogeny problem, despite SIDH attacks;

- Still the smallest keys;
- No progress on the generic isogeny problem, despite SIDH attacks;
- Very active field, fast progress;

- Still the smallest keys;
- No progress on the generic isogeny problem, despite SIDH attacks;
- Very active field, fast progress;
- Credible alternative in case other pq-schemes fail;

- Still the smallest keys;
- No progress on the generic isogeny problem, despite SIDH attacks;
- Very active field, fast progress;
- Credible alternative in case other pq-schemes fail;
- ...but still a long way to go!

Supersingular isogenies and signing

2012 SIDH PoKs (DF, Jao, Plût), signatures (Yoo, Azarderakhsh, Jao)

2022 Ternary SIDH PoKs (DF, Dobson, Galbraith, Zobernig)

2023 Curves you can trust (Basso, Codogni, Connolly, DF, Fouotsa, Lido, Morrison, Panny, Patranabis, Wesolowski)

SIDH

Best security

Supersingular isogenies and signing

2012 SIDH PoKs (DF, Jao, Plût), signatures (Yoo, Azarderakhsh, Jao)

2019 SeaSign (DF, Galbraith)

CSI-FiSh (Beullens, Kleinjung, Vercauteren)

2022 Ternary SIDH PoKs (DF, Dobson, Galbraith, Zobernig)

2023 Curves you can trust (Basso, Codogni, Connolly, DF, Fouotsa, Lido, Morrison, Panny, Patranabis, Wesolowski)

SIDH CSIDH

Best security Group, ring, threshold, ...

Supersingular isogenies and signing

```
2012 SIDH PoKs (DF, Jao, Plût), signatures (Yoo, Azarderakhsh, Jao)
2017 Galbraith-Petit-Silva
2019 SeaSign (DF, Galbraith)
      CSI-FiSh (Beullens, Kleinjung, Vercauteren)
2020 SOIsign (DF, Kohel, Leroux, Petit, Wesolowski)
2022 Ternary SIDH PoKs (DF, Dobson, Galbraith, Zobernig)
2023 Curves vou can trust (Basso, Codogni, Connolly, DF, Fouotsa, Lido, Morrison, Panny, Patranabis, Wesolowski)
2024 SOlsignHD (Dartois, Leroux, Robert, Wesolowski)
      SIDH
                                       CSIDH
                                                                         Deuring
```

Best security

Group, ring, threshold, ...

Most compact

SQIsign: Signatures from the effective Deuring correspondence

Most compact PQ signature scheme: PK + Signature combined **5**×**smaller** than Falcon.

Secret Key (bytes)	Public Key (bytes)	Signature (bytes)	Security
782	64	177	NIST-1
1138	96	263	NIST-3
1509	128	335	NIST-5

Elliptic curves

$$y^2 = x^3 + ax + b$$

Bezout's theorem

Every line cuts E in exactly three points (counted with multiplicity).

Define a group law such that any three colinear points add up to zero.

Isogenies = finite-kernel group morphisms: E o E/K

Endomorphisms = isogenies E o E

Isogenies: an example over \mathbb{F}_{11}

$$E\,:\,y^2=x^3+x$$

$$E': y^2 = x^3 - 4x$$

$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

Isogenies: an example over \mathbb{F}_{11}

$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

- Kernel generator in red.
- This is a degree 2 map.
- ullet Analogous to $x\mapsto x^2$ in \mathbb{F}_q^* .

Some endomorphisms

Scalar multiplication:
$$[N]: E \rightarrow E$$

Frobenius:
$$(x,y)\mapsto (x^p,y^p)$$

(on curves over \mathbb{F}_p)

Automorphisms:
$$(x, y) \mapsto (-x, iy)$$

(on curve $y^2 = x^3 + x$)

Endomorphisms = imaginary quadratic integers

Endomorphisms form a ring:

$$\omega \circ (\varphi + \psi) = \omega \circ \varphi + \omega \circ \psi$$

Every endomorphism satisfies a quadratic equation

$$\omega^2 - t\omega + n = 0$$

with $t,n\in\mathbb{Z}$ and $t^2-4n\leq 0$.

Endomorphism rings = Ideal lattices

 $\operatorname{End}(E)$ is a free \mathbb{Z} -module of rank 1, 2 or 4. As a ring:

- 1) $\operatorname{End}(E) \simeq \mathbb{Z}$;
- 2) $\operatorname{End}(E)$ is isomorphic to an order¹ of a quadratic imaginary field;
- 4) $\operatorname{End}(E)$ is isomorphic to a maximal order¹ of the quaternion algebra ramified at p and ∞ .

An example

The curve of j-invariant 1728

$$E:y^2=x^3+x$$

is supersingular over \mathbb{F}_p iff $p = -1 \mod 4$.

Endomorphisms

 $\operatorname{End}(E)\subset \mathbb{Q}\langle\iota,\pi\rangle$, with:

- π the Frobenius endomorphism, s.t. $\pi^2 = -p$;
- ι the map

$$\iota(x,y)=(-x,iy),$$

where $i \in \mathbb{F}_{p^2}$ is a 4-th root of unity. Clearly, $\iota^2 = -1$.

And $\iota \pi = -\pi \iota$.

N-torsion

$$E[N] \simeq \mathbb{Z}/N\mathbb{Z} imes \mathbb{Z}/N\mathbb{Z}$$

*over an algebraically closed field

Endomorphisms = 2×2 matrices

Fix any basis $\langle P, Q \rangle$ of E[N]

$$egin{aligned} \omega: E[N] &\longrightarrow E[N] \ \left(egin{array}{c} x \ y \end{array}
ight) &\longmapsto \left(egin{array}{c} a & b \ c & d \end{array}
ight) \left(egin{array}{c} x \ y \end{array}
ight) \mod N \end{aligned}$$

Tate's isogeny theorem

When E is supersingular:

$$\operatorname{End}(E)/N\operatorname{End}(E)\simeq \mathcal{M}_{2 imes 2}(\mathbb{Z}/N\mathbb{Z})$$

When E is ordinary:

 $\operatorname{End}(E)/N\operatorname{End}(E)\simeq \{\operatorname{\mathsf{Diagonal}}\operatorname{\mathsf{matrices}}\}\subset \mathcal{M}_{2 imes 2}(\mathbb{Z}/N\mathbb{Z})$

Isogenies = Ideals

$$E' \longleftarrow F$$

$$arphi\in \operatorname{\mathsf{Hom}}(E,E')$$

Isogenies = Ideals

$$arphi\circ\omega\in \operatorname{\mathsf{Hom}}(E,E')$$

Isogenies = Ideals

$$\omega'\circ\varphi\in\operatorname{Hom}(E,E')$$

The Deuring correspondences

Ellitpic curves	Number fields / Quaternion algebras
Endomorphisms	Algebraic integers
Endomorphism ring	(Maximal) order
Isogeny	Invertible ideal
Isogeny degree	Ideal norm
Isogeny composition	Ideal multiplication
Isogenies • • •	Ideal classes
Dual isogeny	Conjugate ideal

Two computational worlds

	Ordinary / CSIDH	Supersingular
	2	4
Endomorphism algebra	number field	quaternion algebra
Maximal orders	one	many
Ideal class	group	set
Find isogeny $E o E'$	hard	hard
$\textbf{Convert isogenies} \leftrightarrow \textbf{ideals}$	easy-ish ¹	easy ¹
Compute End(E)	easy	hard

 $^{^{1}}$ When End(E) is known

A loose analogy: discrete log groups

Input	Output	
Curve E , isogeny $\phi:E o E'$	E^{\prime}	easy
Curves E, E'	$\phi:E o E'$	hard
Generator g , exponent a	g^{a}	easy
Elements g, h	$\log_{a}(h)$	hard

The Deuring correspondence (for supersingular curves)

An equivalence of categories (roughly) $\{\omega \in B_{p,\infty} \mid \omega I = I\}$ connecting ideal $\{\omega \in B_{p,\infty} \mid I\omega = I\}$ left order right order supersingular curve supersingular curve isogeny

The effective Deuring correspondence

Input	Output	
random $\it E$	$\operatorname{End}(E)$	hard
random $\it E$	$\omega\in \operatorname{End}(E)$	hard
random $\it E$	$\phi:E_0\to E$	hard
$\operatorname{End}(E)$	E	easy
$\operatorname{End}(E),\operatorname{End}(E')$	connecting ideal	easy
$I\subset \operatorname{End}(E)$	$\phi_I:E o E'$	easy
${ m End}(E), \;\; \phi:E o E'$	$I_{\phi}\subset \operatorname{End}(E),\ \operatorname{End}(E')$	easy

The endomorphism ring problem

Given a random supersingular curve E, compute $\operatorname{End}(E)$

Contagious knowledge

Contagious knowledge

Contagious knowledge

Galbraith-Petit-Silva (2017)

Σ -protocol with binary challenge:

---- secret key

Galbraith-Petit-Silva (2017)

Σ -protocol with binary challenge:

Galbraith-Petit-Silva (2017)

Σ -protocol with binary challenge:

Seeking a larger challenge space

Seeking a larger challenge space

Seeking a larger challenge space

SQIsign: Signatures from the effective Deuring correspondence

Most compact PQ signature scheme: PK + Signature combined **5**×**smaller** than Falcon.

	Bytes			Mcycles		
Secret Key	Public Key	Signature	Keygen	Sign	Verify	Security
782	64	177	3,728	5,779	108	NIST-1
1,138	96	263	23,734	43,760	654	NIST-3
1,509	128	335	91,049	158,544	2,177	NIST-5

SQIsign: the future

	AprèsSQI (CKMR24)	SQIsignHD (DLRW24)
Technique	Extension fields	SIDH attacks
Pros	Faster verification	Way faster signing Smaller signatures <i>Better</i> securty proof Easy scaling
Cons	Complex implementation	Slower verification Monstrous mathematics Annoying proof artifact

