oef 54 Wietse Vaes Analyse 2

Definieer op \mathbb{R}^2 de volgende equivalentierelatie

$$(x_0, y_0)R(x_1, y_1) \iff x_0^2 + y_0^2 = x_1^2 + y_1^2$$

en zij X de bijbehorende quotiëntruimte. Is X homeomorf met $[0, \infty]$?

Zij $f: \mathbb{R}^2 \to \mathbb{R}^+ (= [0, \infty[) : (x, y) \mapsto x^2 + y^2]$

f is duidelijk continu en surjectief

Nu creëren we een $\bar{f}: X \to [0, \infty[$ opdat $f:=\bar{f}\circ q,$ namelijk $\bar{f}(\langle x,y\rangle)=f(x,y)$ met $(x,y)\in\mathbb{R}^2$

Uit de continuïteit van f (stelling 1.75) volgt de continuïteit van \bar{f} . Nu is \bar{f} ook injectief want: indien $\bar{f}(\langle x,y\rangle) = \bar{f}(\langle t,z\rangle)$ dan zijn (x,y)R(t,z) (want f(x,y) = f(t,z)), dus $\langle x,y\rangle = \langle t,z\rangle$. Dus \bar{f} is bijectief. (f is surjectief dus \bar{f} is surjectief (zie R&S))

Indien we aantonen dat \bar{f} een open afbeelding is, is f^{-1} continu (stelling 1.40):

Zij $A \in \mathcal{T}_{\backslash R} \Rightarrow \exists G \in \mathcal{T}_{eucl}: q^{-1}(A) \in \mathcal{T}_{\backslash R} \Rightarrow q(G) = A$ $\bar{f}(A) = \bar{f} \circ q \circ q^{-1}(A) = f(q^{-1}(A)) = f(G)$

Zij nu $G \in \mathcal{T}_{eucl}$ (bijvoorbeeld die G van hierboven). Neem $z \in f(G) \Rightarrow \exists (x,y) \in G : f(x,y) = z \Rightarrow \exists \delta > 0$ zodat $]x - \delta, x + \delta[\times \{y\} \subset G]$

Nu is $z \in f(|x-\delta,x+\delta|,y) = |(x-\delta)^2 + y^2, (x+\delta)^2 + y^2| \subset f(G) \Rightarrow f(G) \in T_{eucl} \Rightarrow \bar{f}(A) \in T_{eucl} \Rightarrow \bar{f}$ is een open afbeelding.

Nu is \bar{f} continu en bijectief, en \bar{f}^{-1} is continu. $\bar{f}: X \to [0, \infty[$ is dus een homeomorfisme, dus is X homeomorf met $[0, \infty]$ met de euclidische topologie.