Community Embeddings with Bayesian Gaussian Mixture Model and Variational Inference

Anton I. N. Begehr Graduate School of Business National Research University Higher School of Economics National Research University Higher School of Economics Moscow, Russia a.begehr@fu-berlin.de

Prof. Dr. Petr Panfilov Graduate School of Business Moscow, Russia ppanfilov@hse.ru

Abstract—Graphs, such as social networks, emerge naturally from various real-world situations. Recently, graph embedding methods have gained traction in data science research. The graph and community embedding algorithm ComE aims to preserve first-, second- and higher-order proximity. ComE requires prior knowledge of the number of communities K. In this paper, ComE is extended to utilize a Bayesian Gaussian mixture model with variational inference for learning community embeddings (ComE BGMM+VI), similar to ComE+. ComE BGMM+VI takes K as the maximum number of communities and drops components through the trade-off hyperparameter weight concentration prior. The advantage of ComE BGMM+VI over the non-Bayesian ComE for an unknown number of communities K is shown for the small Karate club dataset and explored for the larger DBLP dataset.

Index Terms—graph, embedding, community embedding, ComE, Bayesian, variational inference, Gaussian mixture, expectation maximization

I. INTRODUCTION

Graphs, such as social networks, knowledge graphs, content-rating graphs, and communication networks, emerge naturally from various real-world situations. Analyzing these graphs leads to findings and understanding of the underlying structures, coherences, and dependencies. Recently, methods for embedding graph's nodes into lower-dimensional Euclidean spaces, called graph embeddings, have gained traction in multiple areas of data science research [1].

Community Embeddings, in addition to embedding a graph's nodes through first- and second-order proximity, also preserve higher-order proximity by embedding clusters present in the graph data. The graph and community embedding algorithm ComE aims to preserve first-, second- and higher-order proximity by embedding a graph's nodes and communities[2]. ComE requires prior knowledge of the number of communities K. In this paper, ComE is extended to utilizing a Bayesian Gaussian mixture model with variational inference for learning community embeddings (ComE BGMM+VI), similar to ComE+ published by Cavallari et al. in 2019 [3]. ComE BGMM+VI takes K as the maximum number of communities and drops components through a trade-off hyperparameter.

The reported study was partially supported by RFBR grant №20-07-00958. The paper was prepared within the framework of the HSE University Project Group Competition 2020-2022.

The recent 2017 graph embeddings algorithm ComE is extended similarily to the 2019 ComE+ by taking a Bayesian approach. The open-source code for the Bayesian approach to ComE's community embedding is published on GitHub¹ and serves as a contribution to community embedding research [4].

The original ComE paper Learning Community Embedding with Community Detection and Node Embedding on Graphs by Cavallari et al. and the ComE+ paper Embedding Both Finite and Infinite Communities on Graphs by Cavallari et al. in combination with the ComE source code have provided the basis and architecture for the community embeddings utilized in this work [2, 3, 5].

Multiple surveys and articles on graph embeddings were consulted to build a full picture of the current state of graph embedding research. Especially the 2018 survey Graph Embedding Techniques, Applications, and Performance: A Survey by Goyal and Ferrara and the 2020 paper On Proximity and Structural Role-based Embeddings in Networks: Misconceptions, Techniques, and Applications by Rossi et al. have proven to be primary resources for understanding the current landscape of graph embedding research [1, 6].

On part of comparing the Bayesian Gaussian mixture model with variational inference to the Gaussian mixture model with expectation-maximization, the 2006 book Pattern Recognition and Machine Learning (Information Science and Statistics) by Bishop includes essential statistics and information science knowledge and explanations [7].

II. COMMUNITY EMBEDDING

REFERENCES

- [1] P. Goyal and E. Ferrara, "Graph embedding techniques, applications, and performance: A survey," Knowledge-Based Systems, vol. 151, p. 78-94, 7 2018. [Online]. Available: http://dx.doi.org/10.1016/j.knosys.2018.03.022
- [2] S. Cavallari, V. W. Zheng, H. Cai, K. C.-C. Chang, and E. Cambria, "Learning community embedding with community detection and node embedding on graphs," in Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, ser. CIKM Association for Computing Machinery, 2017,

¹at https://github.com/abegehr/ComE_BGMM

- p. 377–386. [Online]. Available: https://doi.org/10.1145/3132847.3132925
- [3] S. Cavallari, E. Cambria, H. Cai, K. C. Chang, and V. W. Zheng, "Embedding both finite and infinite communities on graphs [application notes]," *IEEE Computational Intelligence Magazine*, vol. 14, no. 3, pp. 39–50, 2019.
- [4] A. Begehr. (2020) abegehr/ComE_BGMM. [Online]. Available: https://github.com/abegehr/ComE_BGMM
- [5] S. Cavallari. (2017) andompesta/ComE. [Online]. Available: https://github.com/andompesta/ComE
- [6] R. A. Rossi, D. Jin, S. Kim, N. K. Ahmed, D. Koutra, and J. B. Lee, "On proximity and structural role-based embeddings in networks: Misconceptions, techniques, and applications," in *Transactions on Knowledge Discovery from Data (TKDD)*, 2020, p. 36.
- [7] C. M. Bishop, *Pattern Recognition and Machine Learning* (*Information Science and Statistics*). Berlin, Heidelberg: Springer-Verlag, 2006.