Lecture 1: January 12, 2015 es 573: Probabilistic Reasoning Professor Nevatia Spring 2015

USC CS573: Advanced AI, Spring 2015

Copyright 2015, by R. Nevatia

General Information

- Course web page https://courses.uscden.net
 - Must be registered for class to have access
 - Usually, a preliminary version of slides will be posted prior to class, complete version after the class.
 - Lecture videos, course notes....
- Office hours:
 - Instructor: MW 1:30-3:00 P.M., PHE 204, 213-740-6427, nevatia AT usc.edu
 - This week only: Today, 1-2 P.M., none on Wednesday
 - TA: Tom Collins, collinst AT usc.edu, office hours and place TBD
- · Book:
 - Required: Probabilistic Graphical Models by Koller and Friedman, MIT Press 2010. Note: errata for early printings may be found at http://pgm.stanford.edu/errata/
- Koller video lectures available at:

https://class.coursera.org/pgm/lecture/preview

USC CS573: Advanced AI, Spring 2015

Copyright 2015, by R. Nevatia

Introduction

• Course name: Probabilistic Reasoning

- csci 573

• Instructor: Prof. Ram Nevatia

- My background, interests

- Attendance sheet, in class students only
- Today's objective
 - Describe course content
 - Conduct of the class
 - Required work, grading
 - Pre-requisites

USC CS573: Advanced AI, Spring 2015

Copyright 2015, by R. Nevatia

2

About Enrollment

- · On-campus section is fully subscribed
- Capacity limited by physical space and ability to provide individual attention to students
 - Not possible to add another section due to non-availability of a qualified instructor
- Heavy demand is a surprise to us
 - Previous years have seen much lower demand and enrollments
- Common for students to drop in first 1-2 weeks of class
 - Will fill in if and as students drop

USC CS573: Advanced AI, Spring 2015

Copyright 2015, by R. Nevatia

Prerequisites

- Undergraduate level course in probability theory
- Good skills with basic mathematics such as calculus and linear algebra
- Programming skills: ability to convert algorithms into programs
- May have some overlap with cs561 (basic AI course) and cs567 (Machine Learning).
 - Neither is a pre-requisite

USC CS573: Advanced AI, Spring 2015

Copyright 2015, by R. Nevatia

e

Course Objectives

- In-depth coverage of issues related to probabilistic reasoning.
 These include:
 - Probabilistic Representations (~ 4 Weeks)
 - Bayesian networks, undirected graphs, dynamic networks
 - Probabilistic inference (~ 4 Weeks)
 - Exact and approximate, including for temporal graphs
 - Learning of parameters and structure of probabilistic graphical models (~ 3 Weeks)
 - Decision making under uncertainty (~ 2 Weeks)
- First two topics will get the most attention. There are other courses that cover learning and planning in more detail.
- Focus on concepts and algorithms, not applications or commercial systems

USC CS573: Advanced AI, Spring 2015

Copyright 2015, by R. Nevatia

Requirements and Grading

- Assignments: 7-8 assignments, mostly written (mathematical) but 1-2 programming assignments may be included. *Large* projects are not planned.
- Grading:
 - Assignments 30%,
 - Exams 1 and 2: 30% each
 - Class attendance and participation 10% (does not apply to DEN students)
- Exams:
 - Exam 1, during 7th or 8th week of classes; exact date will be announced at least 1 week in advance
 - Exam 2, April 29, 2015; last day of scheduled classes
- Programming
 - No programming projects are planned but some programming may be necessary to solve numerical problems
 - Students may choose their own language but some packages may be specific to some languages

USC CS573: Advanced AI, Spring 2015

Copyright 2015, by R. Nevatia

,

Syllabus in terms of Book Sections

- Note: This is only a plan, actual coverage may vary some. Not all
 material in each section may be covered and some external
 material may be included.
- Representations: Chapters 2-5 all except sections marked with "*" in the book, Chapter 6: 6.1, 6.2 only
- Inference: Chapter 9 (except 9.5 and 9.6), 10, 11.1 to 11.3, 12.1 to 12.3, 13.1 to 13.3, 15.1, 15.2; additional notes
- Parameter Estimation: 17.1, 17.2 (exclude 17.2.4, 17.2.5), 19.2.2 (exclude 19.2.2.5, 19.2.2.6), Additional Notes
- Decision Theory: Ch. 22
- Selected parts of Ch. 7, 14, 11.4, 23

USC CS573: Advanced AI, Spring 2015

Copyright 2015, by R. Nevatia

Reasoning under Uncertainty

- Uncertainty is almost always present in solving real problems
 - State of the world is not known precisely or not even knowable in principle
 - Some aspects of the state can't be measured directly (e.g. cause of some types of sickness)
 - Effects of actions are uncertain
 - *e.g.* What route to take to go to the airport? When to start? What courses to take to succeed in a cs career?
- Rational decision (under uncertainty)
 - Consider the relative importance of various goals and the likelihood that they will be achieved.
 - Rationality does not *guarantee* success

USC CS573: Advanced AI, Spring 2015

Copyright 2015, by R. Nevatia

11

Course Style

- Interactive to the extent possible
- Will follow book closely; however, we will skip some details such as proofs of most theorems.
 - Assignments may require more detailed knowledge than covered in class
 - Preliminary version of lecture slides will be posted in advance of the lectures
- We will discuss algorithms at a relatively high level, almost never at the code or data structure levels
 - In English, in pseudo-code, by examples
 - Ability to convert high level descriptions to code is assumed

USC CS573: Advanced AI, Spring 2015

Copyright 2015, by R. Nevatia

10

Possible Application Areas

- Originally developed for "expert systems"
 - Medical diagnosis (Pathfinder), Prospector...
 - Attempt to systematize reasoning about uncertain knowledge
- Now, virtually all aspects of computer science
 - AI, robotics, vision, speech
 - e-commerce, search....
 - Networks, OS, software engineering...
- Outside CS
 - Economics, finance, weather prediction, political science....
- Likely to become as important in CS study as discrete algorithms taught in courses such as cs570/670

USC CS573: Advanced AI, Spring 2015

Copyright 2015, by R. Nevatia

An Example Graph • Note: only the *structure* of relations is shown • Methodology attempts to combine rule-based representations with probabilistic reasoning

USC CS573: Advanced AI, Spring 2015

Copyright 2015, by R. Nevatia

13

Denoising an Image Observed, noisy image Model Estimated Image From: http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV0809/ORCHARD/ USC CS573: Advanced AI, Spring 2015 Copyright 2015, by R. Nevatia 14

Robot Localization

 $http://www.cc.gatech.edu/{\sim} dellaert/assets/images/autogen/a_sonar.gif$

USC CS573: Advanced AI, Spring 2015

Copyright 2015, by R. Nevatia

17

Nature of Study

- Develop a representation for a problem domain
 - We will not study specific domains, just the methodologies
 - Will normally consist of choice of *random variables* and relations between them, represented in a graph
- Given values of some variables, compute probability distributions of others. Some types of *queries*:
 - Forensic/diagnostic: causes given evidence
 - Predictions: observables given cause
 - Explanations: of observed phenomenon
 - Actions: optimal actions given a model and observations
- Learning of the parameters (sometimes also the structure) of the graph from examples

USC CS573: Advanced AI, Spring 2015

Copyright 2015, by R. Nevatia

18

Basic Probability: Informal concepts

- *Unconditional* or *prior* probability that a proposition A is true
 - Let P (the event of rain falling on jan 12 in L.A. is True) = 0.2
 - $-P(fair_coin_toss:head) = 0.5$
- *Conditional* probability P(rain_today|cloudy_today)
- *Joint* probability P(rain_Jan12, cloudy_Jan12)
- Independence of variables: coin toss and weather

USC CS573: Advanced AI, Spring 2015

Copyright 2015, by R. Nevatia

19

Probability Theory: Some notations

- Event *space*, space of all possible outcomes, Ω
 - For outcome of roll of dice: $\Omega = \{1,2,3,4,5,6\}$
 - Each event is a subset of Ω , e.g. {3}, {2,4,6} (even outcome)
- Set of measureable events: S
 - We assign probabilities to elements of S
 - Contains empty event θ and trivial event Ω
 - Closed under union (if α and β ϵ S, then so is α U $\beta)$
 - If $\alpha \in S$, so is Ω α

USC CS573: Advanced AI, Spring 2015

Copyright 2015, by R. Nevatia

Probability Distributions

- Probability distribution P defined over (Ω, S) :
 - Mapping from events in S to real values (probabilities)

$$P(\alpha) \ge 0$$
 for all $\alpha \in S$

$$P(\Omega) = 1$$

If
$$\alpha$$
, $\beta \in S$, and $\alpha \cap \beta = 0$, then $P(\alpha \cup \beta) = P(\alpha) + P(\beta)$

• It follows that P(0)=0 and

$$P(\alpha \cup \beta) = P(\alpha) + P(\beta) - P(\alpha \cap \beta)$$

- Common interpretation of probability is as frequency of events
 - Examples: coin toss, dice roll, weather (how many outcomes?)

USC CS573: Advanced AI, Spring 2015

Copyright 2015, by R. Nevatia

21

Random Variables

- Random variables take on different values with probabilities given by a distribution function
 - e.g. coin toss, roll of dice, grades in a course etc
 - Formally, defined by function that associates a real value to each outcome in O.
 - Random variables normally denoted by upper case letters X, Y, Z...
- Discrete random variable: takes one of a finite set of values: Val(X) denotes the set of values of X
- $P(X = x^i)$ denotes the probability that X takes value x^i
- Often abbreviated to $P(x^i)$
 - $-\sum_{x}$ denotes summation over all possible values of X
 - Sum over all possible values must equal 1 for a discrete variable, i.e. $\sum_{x} P(x) = 1$
 - Distribution is called multinomial
 - · Binomial or Bernoulli for a binary variable
- Bold letters used to denote a set of variables, e.g. X, Y, Z...
 - -x, y, z denote values of variable in these sets

USC CS573: Advanced AI, Spring 2015

Copyright 2015, by R. Nevatia

23

Conditional Probability, Bayes' Rule

- Conditional probability: $P(\beta \mid \alpha)$
 - Probability that β is true, given that α is true
 - e.g. P (rain|cloudy), P(gradeA|high intell)
 - $P(\beta \mid \alpha) = P(\alpha \cap \beta) / P(\alpha)$
- Chain rule: $P(\alpha \cap \beta) = P(\alpha) P(\beta \mid \alpha)$

$P(\alpha_1 \cap \ldots \cap \alpha_k) = P(\alpha_1)P(\alpha_2 \mid \alpha_1) \cdots P(\alpha_k \mid \alpha_1 \cap \ldots \cap \alpha_{k-1})$

- Bayes' rule $P(\alpha \mid \beta) = P(\beta \mid \alpha) P(\alpha) / P(\beta)$
 - It may be easier to gather P ($\beta \mid \alpha$) then P ($\alpha \mid \beta$), for some situations (*e.g.* probability of symptoms given disease rather than the disease given symptoms)

$$P(\alpha \mid \beta \cap \gamma) = \frac{P(\beta \mid \alpha \cap \gamma)P(\alpha \mid \gamma)}{P(\beta \mid \gamma)}$$

USC CS573: Advanced AI, Spring 2015

Copyright 2015, by R. Nevatia

22

Marginal and Joint Distributions

- Joint distribution: probabilities for each combination of values of the random variables.
- P(x, y) is used to denote joint probability of X = x and Y = yFigure 2.1, example of P(Intelligence, grade)

		Intell		
		low	high	
	A	0.07	0.18	0.25
Grade	В	0.28	0.09	0.37
	C	0.35	0.03	0.38
		0.7	0.3	1

- Marginal distribution: Distribution of one variable, regardless of the values of others:
 - obtained by summing over all other variables from the joint distribution, e.g. P(Intelligence = high) or P(grade = A);

USC CS573: Advanced AI, Spring 2015

Copyright 2015, by R. Nevatia

Conditional Distribution

- P(X|Y):
 - for each value of Y, assign a distribution over values of X.
- Chain rule: $P(X, Y) = P(X) P(Y \mid X)$

$$P(X_1,...,X_k) = P(X_1)P(X_2 \mid X_1) \cdots P(X_k \mid X_1,...,X_{k-1})$$

• Bayes' rule P(X | Y) = P(X) P(Y | X) / P(Y)

USC CS573: Advanced AI, Spring 2015

Copyright 2015, by R. Nevatia

25

Next Class

• Read sections 2.1, 2.2 and 3.1 of the KF book

USC CS573: Advanced AI, Spring 2015

Copyright 2015, by R. Nevatia

27

Independence

- Event α is independent of event β in P, denoted as $P \models \alpha \perp \beta$, if $P(\alpha \mid \beta) = P(\alpha)$, or if $P(\beta) = 0$
- Follows that $P(\alpha \cap \beta) = P(\alpha) P(\beta)$
- Examples: toss two coins; coin toss and weather...
- Full independence is rare, *conditional independence* where two events are independent, given a third event
- · Conditional independence
 - P (USC | UCLA, GradeA) = P(USC | GradeA)
 (USC means admitted to USC, similar for UCLA)
 - P (Congestion | Flu, Hayfever, Season) = P (Congestion | Flu, Hayfever)
- Event α is independent of event β in P, given event γ , denoted as $P = (\alpha \perp \beta \mid \gamma)$ if $P(\alpha \mid \beta \cap \gamma) = P(\alpha \mid \gamma)$, or if $P(\beta \mid \gamma) = 0$
- Follows that $P(\alpha \cap \beta \mid \gamma) = P(\alpha \mid \gamma) P(\beta \mid \gamma)$

USC CS573: Advanced AI, Spring 2015

Copyright 2015, by R. Nevatia