Tutorial 12

January 28, 2020

1. Apply the rules of Boolean algebra, verify the following.

(a)
$$y \wedge (x \vee (x' \wedge (y \vee y'))) = y$$

i. Start from LHS
$$y \left(x + (\bar{x} \cdot (y + \bar{y}))\right) = y \left(x + (\bar{x} \cdot t)\right) \text{ Inverse law}$$

$$= y \left(x + \bar{x}\right) \text{ Identity law}$$

$$= y \text{ Identity law}$$

$$= RHS$$

(b)
$$((x \wedge y') \wedge (z \vee (x \wedge y')))' = x' \vee y$$

i. Start from LHS

$$\begin{split} \left(\left(x\bar{y}\right)\left(z+xy'\right)\right)' &= \overline{\left(x\bar{y}\right)} + \overline{\left(z+xy'\right)} \text{DeMorgan's Law} \\ &= \bar{x}+y+\bar{z}\cdot\overline{\left(xy'\right)} \text{DeMorgan's Law} \\ &= \bar{x}+y+\bar{z}\cdot(\bar{x}+y) \text{ DeMorgan's Law} \\ &= \bar{x}+y+\bar{z}\bar{x}+\bar{z}y \text{Distributive law} \\ &= \bar{x}+\bar{z}\bar{x}+y+\bar{z}y \text{Associative law} \\ &= \bar{x}\left(1+\bar{z}\right)+y\left(1+\bar{z}\right) \text{ Distributive law} \\ &= \bar{x}+y \text{Null law} \\ &= x'\vee y \\ &= RHS \end{split}$$

2. Simplify the following Boolean functions.

(a)
$$f(x,y) = (x \wedge y') \vee (x' \wedge y) \vee (x \wedge y)$$

$$f(x,y) = (x \wedge y') \vee (x' \vee x) \wedge y$$

$$= (x \wedge y') \vee t \wedge y$$

$$= (x \wedge y') \vee y$$

$$= (x \vee y) \wedge 1$$

$$f(x,y) = (x \vee y)$$

(b)
$$f(x, y, z) = (x' \wedge y' \wedge z') \vee (x \wedge y' \wedge z') \vee (x' \wedge y \wedge z') \vee (x \wedge y \wedge z')$$

 $f(x, y, z) = (x' \wedge y' \wedge z') \vee (x \wedge y' \wedge z') \vee (x' \wedge y \wedge z') \vee (x \wedge y \wedge z')$
 $= (x'y'z') + (xy'z') + (x'yz') + (xyz')$
 $= (x' + x) y'z' + (x' + x) yz'$
 $= y'z' + yz'$
 $= z'(y' + y)$
 $f(x, y, z) = z'$

(c)
$$f(x, y, z) = (x \wedge y) \vee [x \wedge (y \wedge z)']$$

$$(x \wedge y) \vee [x \wedge (y \wedge z)'] = (x \wedge y) \vee [x \wedge (y' \vee z')]$$

$$= (x \wedge y) \vee (x \wedge y') \vee (x \wedge z')$$

$$= x \wedge (y \vee y') \vee (x \wedge z')$$

$$= x \wedge 1 \vee (x \wedge z')$$

$$= x \vee (x \wedge z')$$

$$= x \wedge (1 \vee z')$$

$$(x \wedge y) \vee [x \wedge (y \wedge z)'] = x$$

$$f(x, y, z) = x$$

3. Find the disjunctive normal form of the Boolean function $f=f\left(x,y,z\right)$ with the given truth table. Then, simplify the expression by constructing the Karnaugh Map

	x	y	z	f(x,y,z)
	0	0	0	1
	0	0	1	1
	0	1	0	0
(a)	0	1	1	0
	1	0	0	1
	1	0	1	0
	1	1	0	1
	1	1	1	0

i. Find PDNF (all ones):

$$f(x, y, z) = \bar{x}\bar{y}\bar{z} + \bar{x}\bar{y}z + x\bar{y}\bar{z} + xy\bar{z}$$

ii. Construct karnaugh map

		y'	y'	y	y
Δ	x'	1	1	0	0
Α.	x	1	0	0	1
		z'	z	z	z'

$$\bar{x}\bar{y}\bar{z} + \bar{x}\bar{y}z + x\bar{y}\bar{z} + xy\bar{z} = x'y' + xz'$$

	x	y	z	$f\left(x,y,z\right)$
	0	0	0	1
	0	0	1	1
	0	1	0	1
(b)	0	1	1	1
	1	0	0	0
	1	0	1	0
	1	1	0	0
	1	1	1	1

i. Find PDNF

A.
$$\bar{x}\bar{y}\bar{z} + \bar{x}\bar{y}z + \bar{x}y\bar{z} + \bar{x}yz$$

ii. Construct Karnaugh Map

		y'	y'	y	y
A.	x'	1	1	1	1
	x	0	0	1	1
		z'	z	z	z'

B. Conclusion: $\bar{x}\bar{y}\bar{z} + \bar{x}\bar{y}z + \bar{x}y\bar{z} + \bar{x}yz \equiv x' + yz$

- 4. In the following questions, Karnaugh maps of functions are given, write the simplified Boolean expression for these functions.
 - - i. $f(x,y) = (x' \wedge y') \vee (x \wedge y)$
 - - i. $f(x,y) = x \wedge y$

		y'	y'	y	y
(c)	x'	1	1	1	1
	x	1	0	0	1
		z'	z	z	z'

i. x' + z'

		y'	y'	y	y
(d)	x'	1	1	0	1
	x	0	1	0	1
		z'	z	z	z'

i. x'y' + yz + yz'

		g	g	$\mid g \mid$	g
(e)	x'	1	1	1	1
	x	0	0	1	0
		z'	z	z	z'

	i. ;	x'+x	yz				
(f)		y'	y'	y	y		
	x'	0	1	0	1		
	x	1	1	0	1		
		z'	z	z	z'		
i. $xy' + yz' + y'z$							

- 5. Draw a Karnaugh map for the Boolean expression whose disjunctive normal forms are as follow. Hence find a simplified version of the expression.
 - (a) $f(x,y,z) = (x' \wedge y' \wedge z) \vee (x' \wedge y \wedge z) \vee (x \wedge y \wedge z') \vee (x \wedge y \wedge z)$

		y'	y'	y	y
i	x'	0	1	1	0
1.	x	0	0	1	1
		z'	z	z	z'

A. x'z + xy

(b) $f(x,y,z,w) = (x \wedge y \wedge z \wedge w) \vee (x \wedge y \wedge z \wedge w') \vee (x' \wedge y \wedge z \wedge v \wedge w) \vee (x' \wedge y \wedge z \wedge w') \vee (x \wedge y' \wedge z' \wedge w') \vee (x' \wedge y' \wedge z' \wedge w')$

		z'	z'	z	z	
	x'	1	0	0	0	y'
i.	x'	0	0	1	1	y
1.	\boldsymbol{x}	0	0	1	1	y
	\boldsymbol{x}	1	0	0	0	y'
		w'	w	w	w'	

A. y'z'w' + yz

6. Find the disjunctive normal form of the Boolean function f(x, y, z) with the following truth table and then draw a Karnaugh map to find a simplified version of f(x, y, z).

	x	y	z	$f\left(x,y,z\right)$
	0	0	0	1
	0	0	1	0
	0	1	0	1
(a)	0	1	1	0
	1	0	0	0
	1	0	1	1
	1	1	0	0
	1	1	1	1

i. Find PDNF

A.
$$\bar{x}\bar{y}\bar{z} + \bar{x}y\bar{z} + x\bar{y}z + xyz$$

		$\mid g \mid$	g	g	g
ii.	x'	1	0	0	1
11.	x	0	1	1	0
		z'	z	z	z'

iii.
$$x'z' + xz$$

7. Construct a truth table for the Boolean expression $(x \land (y' \lor z)) \lor (x' \land (y \lor z'))$ and hence determine its disjunctive normal form. Draw a Karnaugh map and hence find a simplified version of f(x,y,z).

	x	y	z	$y' \lor z$	$y \vee z'$	$x \wedge (y' \vee z)$	$x' \wedge (y' \vee z')$	$x \wedge (y' \vee z) \vee x' \wedge (y' \vee z')$	
(a)	0	0	0	1	1	0	1	1	
	0	0	1	1	0	0	0	0	
	0	1	0	0	1	0	1	1	
	0	1	1	1	1	0	1	1	
	1	0	0	1	1	1	0	1	
	1	0	1	1	0	0	0	0	
	1	1	0	0	1	1	0	1	
	1	1	1	1	1	1	0	1	

i. x'y'z' + x'y'z' + x'yz + xy'z' + xyz' + xyz

		y'	y'	y	y
(b)	x'	1	0	1	1
(b)	\boldsymbol{x}	1	1	1	0
		z'	z	z	z'

i. y'z' + xz + x'y