Totale ou non totale

La présence d'ion thiocyanate SCN⁻ dans le sang et les urines révèle une intoxication à l'ion cyanure (provenant d'un incendie, d'une eau contaminée, etc.). Pour détecter la présence de l'ion thiocyanate dans un échantillon d'urine, un test simple consiste à y ajouter l'ion fer (III) Fe^{3+} .

Protocole

Étape 1 :

Préparer trois tubes à essais, numérotés de 1 à 3, contenant chacun les trois solutions suivantes :

Solution aqueuse	Concentration en quantité de matière	Volume (en mL)
S _A : chlorure de fer (III)	2,0 mmol·L ^{−1} en ion SCN [−]	2,0
S _B : thiocyanate de potassium	2,0 mmol· L^{-1} en ion SCN^{-}	2,0

Attention, les solutions utilisées dans ce TP sont toutes acidifiées et donc corrosives.

Étape 2 :

Ajouter à chacun de ces tubes 1,0 mL de la solution indiquée dans le tableau ci-dessous.

Tube n°	Solution	Concentration en quantité de matière	Volume (en mL)
1	eau	-	1,0
2	S' _A : chlorure de fer (III)	20 mmol·L $^{-1}$ en ion Fe $^{3+}$	1,0
3	S' _B : thiocyanate de potassium	20 mmol⋅L ⁻¹ en ion SCN ⁻	1,0

Mettre en œuvre le protocole.

Exploitation

- Calculer les quantités de matière initiales $n_{\rm i,Fe^{3+}}$ et $n_{\rm i,SCN^-}$ des deux réactifs mis en présence dans les 3 tubes à essai à l'étape 1.
- 2. Dans l'hypothèse où la réaction est totale, déterminer le réactif limitant pour le mélange de l'étape 1.
- 3. Quelle est l'utilité du tube 1?
- 4. Préciser l'espèce chimique mise en évidence par l'ajout de la solution S'1 de thiocyanate de potassium dans le tube n° 2, lors de l'étape 2.
- 5. Préciser l'espèce chimique mise en évidence par l'ajout de la solution S'2 de nitrate de fer (III) dans le tube n° 3, lors de l'étape 2.
- Déterminer le caractère total ou non de la transformation qui a eu lieu à l'issue de l'étape 1. 6.
- 7. Compléter l'équation de la réaction entre l'ion thiocyanate et l'ion fer (III).

$$Fe^{3+}(aq) + SCN^{-}(aq)$$
 $Fe(SCN)^{2+}(aq)$

Détermination de $\varepsilon_{475} \times \ell$ pour la solution de Fe(SCN)²⁺

Les solutions

- S'_A: (Fe³⁺; 3 Cl⁻) à $C_{A'} = 2.0 \times 10^{-2}$ mol·L⁻¹ (préparée dans solution de HCl à 0,1 mol·L⁻¹)
- S_B: (K+; SCN-) à $C_B = 2.0 \times 10^{-3}$ mol·L-1 (préparée dans solution de HCl à 0,1 mol·L-1 \triangle)

Protocole

- Le spectrophotomètre est réglé sur 475 nm.
- Préparer les différents tubes du tableau ci-dessous :

	Tube 0	Tube 1	Tube 2	Tube 3	Tube 4
Volume de S' _A (mL)	10,0	10,0	10,0	10,0	10,0
Volume de S _B (mL)	0	1,0	2,0	3,0	4,0
Volume d'eau distillée (mL)	4,0	3,0	2,0	1,0	0
[FeSCN ²⁺] _f (mol·L ⁻¹)					
Α					
$\varepsilon_{475} \times \ell$					

- Le blanc est fait avec une solution de 10,0 mL de S'_A et 4,0 mL d'eau (tube 0).
- Mesurer l'absorbance des tubes 1 à 4.

Mettre en œuvre le protocole.

 \underline{Rq} : on pourra considérer la transformation **quasi-totale** dans cette partie. C'est la grande différence de concentration entre S'_A et S_B qui nous le permet.

Exploitation

- 8. Déterminer la concentration en quantité de matière en ions $Fe(SCN)^{2+}$ puis compléter la ligne correspondante du tableau.
- 9. La loi de Beer-Lambert est-elle vérifiée ?
- 10. Déterminer $\varepsilon_{475} \times \ell$ où ε_{475} est le coefficient d'absorption molaire à 475 nm de l'ion $Fe(SCN)^{2+}$ et ℓ est la largeur de la solution traversée par le faisceau du spectrophotomètre, puis compléter la ligne correspondante du tableau.
- 11. Calculer la valeur moyenne de $\varepsilon_{475} \times \ell$:

$$\varepsilon_{475} \times \ell =$$

Détermination de la constante d'équilibre

L'ion thiocyanate SCN^- réagit donc avec l'ion fer (III) Fe^{3+} suivant une transformation non totale. L'espèce colorée formée, l'ion $Fe(SCN)^{2+}$, servait autrefois de «faux sang» dans les films.

Tube à essais

 V_A (en mL)

 V_E (en mL)

 V_R (en mL)

1

5,0

3,0

7,0

2

5,0

4,0

6,0

3

5,0

5,0

5,0

4

5,0

6,0

4,0

5

5,0

7,0

3,0

On va maintenant tâcher de déterminer la constante d'équilibre de cette réaction.

Les solutions

- S_A : (Fe³⁺; 3 Cl⁻) à $C_{A'} = 2.0 \times 10^{-2}$ mol·L⁻¹ (préparée dans solution de HCl à 0,1 mol·L⁻¹ $\stackrel{1}{.}$)
- S_B: (K+; SCN-) à $C_B = 2.0 \times 10^{-3}$ mol·L-1 (préparée dans solution de HCl à 0,1 mol·L-1 \triangle)

Protocole

- Numéroter six tubes à essais de 0 à 5.
- À l'aide de pipettes graduées, et selon les indications du tableau ci-contre, introduire dans chaque tube à essais :
 - un volume V_A de la solution S_A ;
 - un volume V_E d'eau ;
 - un volume V_R de la solution S_B .
- Agiter le contenu des tubes à essais et attendre dix minutes que la réaction soit terminée.
- Mesurer l'absorbance $A_{475,j}$ des mélanges contenus dans les tubes à essais n° 0 à 5 ($\lambda=475$ nm).

Mettre en œuvre le protocole.

Exploitation

12. En supposant que la loi de Beer-Lambert est vérifiée, montrer que l'avancement final x_f de la réaction est donné par la relation :

$$x_f = \frac{A_{475} \times V}{\varepsilon_{475} \times \ell}$$
où $V = V_A + V_E + V_B$.

- 13. Dresser le tableau d'avancement de la transformation.
- 14. Déterminer $[Fe^{3+}]_{f'}[SCN^{-}]_{f}$ et $[Fe(SCN)^{2+}]_{f'}$
- 15. Exprimer le quotient de réaction à l'équilibre $Q_{r,eq}$ en fonction de $[Fe^{3+}]_f$, $[SCN^-]_f$, $[Fe(SCN)^{2+}]_f$ et c° .

16. Compléter le tableau suivant :

Tube à essais	1	2	3	4	5
V _A (en mL)					
V _E (en mL)					
V _B (en mL)					
[Fe³+] _i (mol·L ⁻¹)					
[SCN-] _i (mol·L ⁻¹)					
[FeSCN ²⁺] _f (mol·L ⁻¹)					
[Fe³+] _f (mol·L ⁻¹)					
[SCN ⁻] _f (mol·L ⁻¹)					
$\mathbf{Q}_{r,eq}$					

- 17. Comparer les différentes valeurs de $\mathcal{Q}_{r,\mathrm{eq}}$ obtenues et commenter.
- 18. En déduire une valeur de la constante d'équilibre K(T) de la réaction avec son incertitude-type pour la température où a été faite les expériences.

$$K(T) = \pm$$