Introduction to Data Science CS61 June 12 - July 12, 2018

Dr. Ash Pahwa

Lesson 5: Regression

Lesson 5.1: Regression 2 Variables

Outline

- Finding the Least Square Line
- Approach#1: Closed Form Solution: Calculus
 - Statistics: Correlation + Standard Deviation
 - Matrix Solution
- Approach#2: Gradient Decent Algorithm
- Regression
 - R
 - Excel (Data Analysis / Regression)

Regression Finding the Least Square Line

Regression Strategy Ordinary Least Squares (OLS)

The least-squares regression line of y and x is the line that makes

- the sum of the squares of the vertical distances
- of the data points from the line
- As small as possible

Solution for Regression Line

- Approach#1
 - Closed Form Solution
 - Compute Gradient
 - Vector of Partial Derivatives
 - Set gradient to zero
 - Compute slope and intercept
 - Matrix Approach
- Approach#2
 - Gradient Decent Algorithm
 - Gradually change slope and intercept till we reach at the optimum solution
 - Can be computed by Excel Solver

Approach#1

Closed Form Solution

Closed Form Solution Definition

- In mathematics, a closed-form expression is a mathematical expression that can be evaluated in a finite number of operations.
- It may contain constants, variables, certain "well-known" operations (e.g., + × ÷), and functions (e.g., nth root, exponent, logarithm, trigonometric functions, and inverse hyperbolic functions), but usually no limit.
- The set of operations and functions admitted in a closed-form expression may vary with author and context.

Closed Form Solution

- Quadratic Equation: $ax^2 + bx + c = 0$
- Closed Form Solution

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$3x^2 + 6x - 10 = 0$$

•
$$x = 1.08, x = -3.08$$

Iterative Solution

•
$$x = 0, y = -10$$

•
$$x = 1, y = -1$$

•
$$x = 2, y = 14$$

- Solution must be between 1 and 2
- Increase 'x' value by 0.1 and keep on checking if the y value becomes zero.

Solution for Regression Line Closed Form Solution

- Approach#1
 - Closed Form Solution
 - Compute Gradient
 - Vector of Partial Derivatives of RSS (Residual Sum of Squares) w.r.t. predictor variables
 - Set gradient to zero
 - Compute slope and intercept
 - Matrix Approach

Computing the Regression Line Compute: Intercept and Slope

- Residual = Observed value Computed Value
- Suppose regression equation is
 - y = mx + b
 - y is the explanatory variable
 - x is the pedictor variable
 - m is the slope of the line
 - b is the intercept
- $Residual = y_i (mx_i + b)$
- $Residual^2 = (y_i (mx_i + b))^2$
- Residuals Sum of Squares = $(RSS) = \sum_{i=1}^{N} (y_i (mx_i + b))^2$

Partial Derivatives of the RSS w.r.t. Intercept and Slope

- Residuals Sum of Squares = $(RSS) = \sum_{i=1}^{N} (y_i (mx_i + b))^2$
- To find the minimum point of this function,
 - we will take the partial derivative of RSS with respect to 'm' and 'b' and set that to zero.

•
$$RSS = \sum_{i=1}^{N} (y_i - (mx_i + b))^2$$

$$\frac{\partial RSS(m,b)}{\partial b} = \sum_{i=1}^{N} \frac{\partial}{\partial b} (y_i - (mx_i + b))^2$$

$$\frac{\partial RSS(m,b)}{\partial b} = -2\sum_{i=1}^{N} (y_i - (mx_i + b))$$

•
$$RSS = \sum_{i=1}^{N} (y_i - (mx_i + b))^2$$

$$\frac{\partial RSS(m,b)}{\partial m} = \sum_{i=1}^{N} \frac{\partial}{\partial m} (y_i - (mx_i + b))^2$$

$$\frac{\partial RSS(m,b)}{\partial m} = -2\sum_{i=1}^{N} (y_i - (mx_i + b))x_i$$

$$\nabla RSS(b,m) = \left| \frac{\partial RSS(m,b)}{\partial b} \frac{\partial RSS(m,b)}{\partial m} \right| = \left| -2 \sum_{i=1}^{N} (y_i - (mx_i + b)) -2 \sum_{i=1}^{N} (y_i - (mx_i + b))x_i \right| = 0$$

Gradient Vector of Partial Derivatives

- To Compute 'm' and 'b'
 - SET GRADIENT = 0

$$\nabla RSS(b,m) = \begin{vmatrix} \frac{\partial RSS(m,b)}{\partial b} \\ \frac{\partial RSS(m,b)}{\partial m} \end{vmatrix} = \begin{vmatrix} -2\sum_{i=1}^{N} (y_i - (mx_i + b)) \\ -2\sum_{i=1}^{N} (y_i - (mx_i + b))x_i \end{vmatrix} = 0$$

- _____
- Top term

$$b = \left(\frac{\sum y_i}{N} - m \frac{\sum x_i}{N}\right) = \mu_y - m \mu_x$$

- _____
- Bottom term

$$m = \frac{\sum y_i x_i - \frac{\sum y_i \sum x_i}{N}}{\sum x_i^2 - \frac{\sum x_i \sum x_i}{N}} = r \frac{\sigma_y}{\sigma_x} = Correlation \frac{Std \ Dev \ of \ y}{Std \ Dev \ of \ x}$$

Example Sample Data

	А	В	С
1			
2			
3		X	Y
4		0	1
5		1	3
6		2	7
7		3	13
8		4	21
q			

$$b = \left(\frac{\sum y_i}{N} - m \frac{\sum x_i}{N}\right)$$

	А	В	С	D	Е	F	G	
1								
2								
3		X	Υ		X*Y		X^2	
4		0	1		0		0	
5		1	3		3		1	
6		2	7		14		4	
7		3	13		39		9	
8		4	21		84		16	
9								
10	SUM	10	45		140		30	
11	AVERAGE	2	9		28		6	
12	StdDev	1.58113883	8.124038405					
13	Correlation	0.97312368						
14								

Method#1 Compute Slope

$$m = \frac{\sum y_i x_i - \frac{\sum y_i \sum x_i}{N}}{\sum x_i^2 - \frac{\sum x_i \sum x_i}{N}}$$

$$b = \left(\frac{\sum y_i}{N} - m \frac{\sum x_i}{N}\right)$$

Regression Equatior	1
v = 5x - 1	

	Α	В	С	D	Е	F	G	
1								
2								
3		X	Υ		X*Y		X^2	
4		0	1		0		0	
5		1	3		3		1	
6		2	7		14		4	
7		3	13		39		9	
8		4	21		84		16	
9								
10	SUM	10	45		140		30	
11	AVERAGE	2	9		28		6	
12	StdDev	1.58113883	8.124038405					
13	Correlation	0.97312368						
14								

C1	6 •	: × <	<i>f</i> x =E10-(E	310*(C10/5)				
4	Α	В	С	D	E	F	G		
14									
15	Closed Form	Slope : Using St	JM						
16		Numerator 50			(Sum of X	of X*Y) - (1/N)*((Sum of X) * (Sum of Y))			
17		Denominator	10		(Sum of X	^2) - (1	/N)*((Sum	of X * Sum of X))	
18		Slope	5						
19									
20		Intercept	-1		(Mean of	Y) - slo	pe * (Mear	n of X)	
21									

Method#2 Compute Slope

$$b = \left(\frac{\sum y_i}{N} - m \frac{\sum x_i}{N}\right)$$

	А	В	С	D	Е	F	G	
1								
2								
3		X	Y		X*Y		X^2	
4		0	1		0		0	
5		1	3		3		1	
6		2	7		14		4	
7		3	13		39		9	
8		4	21		84		16	
9								
10	SUM	10	45		140		30	
11	AVERAGE	2	9		28		6	
12	StdDev	1.58113883	8.124038405					
13	Correlation	0.97312368						
14								

$$m = \frac{\sum y_i x_i - \frac{\sum y_i \sum x_i}{N}}{\sum x_i^2 - \frac{\sum x_i \sum x_i}{N}}$$

Divide both numerator and denominator by N

$$\frac{\sum y_i x_i}{\frac{N}{N} - \frac{\sum y_i \sum x_i}{N.N}} = \frac{Mean \ of \ X * Y - (Mean \ of \ X) * (Mean \ of \ Y)}{Mean \ of \ x^2 - (Mean \ of \ X) * (Mean \ of \ X)}$$

Regression Equation
$$y = 5x - 1$$

	Α	В	С	D	Е	F	G	
22								
23		Slope : Using Average						
24		Numerator	10		(Mean of X * Y) - (Mean of X)*(Mean of Y)			X)*(Mean of Y)
25		Denominator	2		(Mean of X^2) - (Mean of X)*(Mean of X))*(Mean of X)
26		Slope	5					
27								
28								

Method#3 Compute Slope

$$m = \frac{\sum y_i x_i - \frac{\sum y_i \sum x_i}{N}}{\sum x_i^2 - \frac{\sum x_i \sum x_i}{N}}$$

$$= r \frac{\sigma_y}{\sigma_x} = Correlation \frac{Std \ Dev \ of \ y}{Std \ Dev \ of \ x}$$

m –	$\sum y_i x_i$	$-\frac{\sum y_i \sum x_i}{N}$
m =	$\sum x_i^2$	$\frac{\sum x_i \sum x_i}{N}$

$$b = \left(\frac{\sum y_i}{N} - m \frac{\sum x_i}{N}\right)$$

	Α	В	С	D	Е	F	G	
1								
2								
3		X	Υ		X*Y		X^2	
4		0	1		0		0	
5		1	3		3		1	
6		2	7		14		4	
7		3	13		39		9	
8		4	21		84		16	
9								
10	SUM	10	45		140		30	
11	AVERAGE	2	9		28		6	
12	StdDev	1.58113883	8.124038405					
13	Correlation	0.97312368						
14								

Regression Equation y = 5x - 1

Closed Form Solution

Linear Regression Using Matrices

2 Variable Regression

X	Y
x_1	y_1
x_2	y_2
x_3	y_3
x_n	y_n

- Given values of X and Y
- Suppose the least square regression line is given by the following function

$$f(x) = b + mx$$

Residual Sum of Squares = Error term

•
$$(y_1 - f(x_1))^2 + (y_2 - f(x_2))^2 + \dots + (y_n - f(x_n))^2$$

Systems of Linear Equations

- Systems of Linear Equations
 - $y_1 = (b + mx_1) + e_1$
 - $y_2 = (b + mx_2) + e_2$
 - **...**
 - $y_n = (b + mx_n) + e_n$

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix} \quad X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \dots & \dots \\ 1 & x_n \end{bmatrix} \quad A = \begin{bmatrix} b \\ m \end{bmatrix} \quad E = \begin{bmatrix} e_1 \\ e_2 \\ \dots \\ e_n \end{bmatrix}$$

- Matrix Equation: Y = XA + E
- E = Y XA
- Solve this matrix equation for
 - Matrix A where square of residuals is least

Objective Function: Objective Function: Minimize Sum of Square Errors $\begin{vmatrix} \mathbf{v} \\ \mathbf{v} \\ \mathbf{v} \end{vmatrix} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_4 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_4 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_4 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_4 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_4 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_4 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_4 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_4 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_4 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_4 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_4 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_4 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_4 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_4 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_4 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_4 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_4 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_4 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_4 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_4 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \mathbf{v$

- Matrix Equation: Y = XA + E
- E = Y XA

RSS (Residual Sum of Squares) = $e_1^2 + e_2^2 + \cdots + e_n^2$

$$RSS = [e_1 \quad e_2 \quad \dots \quad e_n] \begin{vmatrix} e_1 \\ e_2 \\ \dots \\ e_n \end{vmatrix} = e_1^2 + e_2^2 + \dots + e_n^2$$

- $RSS = E^T E$
- We have already seen that E = Y XA
- $RSS = (Y XA)^T (Y XA)$

Compute Gradient of RSS Set Gradient = 0

$$RSS = (Y - XA)^T (Y - XA)$$

$$RSS = Y^TY - 2Y^TXA + AX^TXA$$

• Set
$$\frac{\partial RSS}{\partial A} = 0$$
,

• to compute the value of A for minimum RSS

$$\nabla RSS = \nabla [(Y - XA)^T (Y - XA)]$$

$$\nabla RSS = -2X^T(Y - XA) = 0$$

$$-2X^TY + 2X^TXA = 0$$

$$X^TXA = X^TY$$

• Multiply both sides with $(X^TX)^{-1}$

•
$$(X^TX)^{-1}X^TXA = (X^TX)^{-1}X^TY$$

• Since:
$$(X^T X)^{-1} X^T X = I$$
 & $IA = A$

$$A = (X^T X)^{-1} X^T Y$$

$$= \frac{d}{dA}(Y - XA)^2$$

$$= 2(Y - XA)(-X)$$

$$= -2X(Y - XA)$$

X	Y	
0	1	
1	3	
2	7	
3	13	
4	21	

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix} \quad X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \dots & \dots \\ 1 & x_n \end{bmatrix} \quad A = \begin{bmatrix} b \\ m \end{bmatrix} \quad E = \begin{bmatrix} e_1 \\ e_2 \\ \dots \\ e_n \end{bmatrix}$$

$$Y = \begin{bmatrix} 1 \\ 3 \\ 7 \\ 13 \\ 21 \end{bmatrix} \quad X = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix}$$

- Y = XA + E
- Solution for Least RSS = $A = (X^T X)^{-1} X^T Y$

Example-1
$$\begin{bmatrix} \cdot & Y = \begin{bmatrix} 1 \\ 3 \\ 7 \\ 13 \\ 21 \end{bmatrix} & X = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix}$$

$$\cdot A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\cdot A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

•
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

•
$$A^{-1} = \frac{1}{ad-bc}\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Solution for Least RSS = $A = (X^TX)^{-1}X^TY$

$$X^{T}X = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 5 & 10 \\ 10 & 30 \end{bmatrix}$$

$$(X^T X)^{-1} = \frac{1}{50} \begin{bmatrix} 30 & -10 \\ -10 & 5 \end{bmatrix} = \begin{bmatrix} 0.6 & -0.2 \\ -0.2 & 0.1 \end{bmatrix}$$

$$X^{T}Y = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 7 \\ 13 \\ 21 \end{bmatrix} = \begin{bmatrix} 45 \\ 140 \end{bmatrix}$$

•
$$A = (X^T X)^{-1} X^T Y = \begin{bmatrix} 0.6 & -0.2 \\ -0.2 & 0.1 \end{bmatrix} \begin{bmatrix} 45 \\ 140 \end{bmatrix} = \begin{bmatrix} -1 \\ 5 \end{bmatrix}$$

24

Example-1: Final Answer

•
$$A = (X^T X)^{-1} X^T Y = \begin{bmatrix} 0.6 & -0.2 \\ -0.2 & 0.1 \end{bmatrix} \begin{bmatrix} 45 \\ 140 \end{bmatrix} = \begin{bmatrix} -1 \\ 5 \end{bmatrix}$$

$$f(x) = -1 + 5x$$

Regression Equation
$$y = 5x - 1$$

Price	Demand
\$49	124
\$69	95
\$89	71
\$99	45
\$109	18

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix} \quad X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \dots & \dots \\ 1 & x_n \end{bmatrix} \quad A = \begin{bmatrix} b \\ m \end{bmatrix} \quad E = \begin{bmatrix} e_1 \\ e_2 \\ \dots \\ e_n \end{bmatrix}$$

$$Y = \begin{bmatrix} 124 \\ 95 \\ 71 \\ 45 \\ 18 \end{bmatrix} \quad X = \begin{bmatrix} 1 & 49 \\ 1 & 69 \\ 1 & 89 \\ 1 & 99 \\ 1 & 109 \end{bmatrix}$$

- Y = XA + E
- Solution for Least RSS = $A = (X^T X)^{-1} X^T Y$

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

•
$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Solution for Least RSS =
$$A = (X^T X)^{-1} X^T Y$$

$$X^T X = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 49 & 69 & 89 & 99 & 109 \end{bmatrix} \begin{bmatrix} 1 & 49 \\ 1 & 69 \\ 1 & 89 \\ 1 & 109 \end{bmatrix} = \begin{bmatrix} 5 & 415 \\ 415 & 36765 \end{bmatrix}$$

$$(X^T X)^{-1} = \frac{1}{11600} \begin{bmatrix} 36765 & -415 \\ -415 & 5 \end{bmatrix}$$

$$X^{T}Y = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 49 & 69 & 89 & 99 & 109 \end{bmatrix} \begin{bmatrix} 124 \\ 95 \\ 71 \\ 45 \\ 18 \end{bmatrix} = \begin{bmatrix} 353 \\ 25367 \end{bmatrix}$$

$$A = (X^T X)^{-1} X^T Y = \frac{1}{11600} \begin{bmatrix} 36765 & -415 \\ -415 & 5 \end{bmatrix} \begin{bmatrix} 353 \\ 25367 \end{bmatrix} = \begin{bmatrix} 211.2707 \\ -1.6948 \end{bmatrix}$$
Copyright 2018 - Dr. Ash Pahwa

•
$$A = (X^T X)^{-1} X^T Y = \frac{1}{11600} \begin{bmatrix} 36765 & -415 \\ -415 & 5 \end{bmatrix} \begin{bmatrix} 353 \\ 25367 \end{bmatrix} = \begin{bmatrix} 211.2707 \\ -1.6948 \end{bmatrix}$$

$$f(x) = 211.27 - 1.6948x$$

Regression Equation
$$y = -1.6948x + 211.2707$$

Approach#2

Gradient Decent Algorithm

- Approach#2
 - Gradient Decent Algorithm
 - Gradually change slope and intercept till we reach at the optimum solution (minimum value of RSS)
 - Can be computed by Excel Solver

Gradient Decent Algorithm 2 Variables

$$\nabla RSS(b,m) = \left| \frac{\partial RSS(m,b)}{\partial b} \right| = \left| \frac{-2\sum_{i=1}^{N} (y_i - (mx_i + b))}{-2\sum_{i=1}^{N} (y_i - (mx_i + b))x_i} \right| = 0$$

- g(x) = mx + b
- Algorithm
- _____
- While NOT Converged

$$\quad \quad m^{t+1} \leftarrow m^t - \eta \, \frac{\partial g}{\partial m} \, \|_{m^t}$$

- _____
- Convergence Test
- $\left| \frac{\partial g(w)}{\partial m} \right| < \varepsilon \text{ (threshold to be set)}$

Gradient Decent Algorithm

3 Variables

- _____
- While NOT Converged
 - $w^{t+1} \leftarrow w^t \eta \nabla g(w^t)$

- Convergence Test
- $|\nabla g(w)| < \varepsilon$ (threshold to be set)

Regression in R and Excel

Example-2 Solution in R – Using Matrix

```
Regression Equation y = -1.6948x + 211.2707
```

```
> price = c(49, 69, 89, 99, 109)
> demand = c(124, 95, 71, 45, 18)
> plot(price, demand)
> Oneprice = c(1,1,1,1,1,price)
> Xprice = matrix(Oneprice, nrow=5)
> Xprice
    [,1] [,2]
[1,]
[2,] 1 69
[3,] 1 89
    1 9.9
[4,]
[5,1
    1 109
> demand = c(124, 95, 71, 45, 18)
> Ydemand = matrix(demand, nrow=5)
> Ydemand
    [,1]
[1,] 124
[2,] 95
[3,]
   71
[4,]
    45
[5,1
    18
```

```
> ###########################
> z1 = t(Xprice) %*%Xprice
> 7.1
     [,1] [,2]
[1,] 5 415
[2,] 415 36765
> # comput the inverse of z
> det(z1)
[1] 11600
> invz1 = solve(z1)
> ################################
> z2 = t(Xprice) %*%Ydemand
> z2
      [,1]
[1,] 353
[2,] 25367
> #############################
> ans = invz1 %*% z2
> ans
           [,1]
[1,] 211.270690
[2,1] -1.694828
```

Example-2 Solution in R – Using 'lm' command

```
> summary(lm(demand~price))
Call:
                                          Regression Equation
lm(formula = demand ~ price)
                                          y = -1.6948x + 211.2707
Residuals:
-4.2241 0.6724 10.5690 1.5172 -8.5345
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 211.2707 14.7215 14.351 0.000733 ***
      -1.6948 0.1717 -9.872 0.002210 **
price
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 8.269 on 3 degrees of freedom
Multiple R-squared: 0.9701, Adjusted R-squared: 0.9602
F-statistic: 97.46 on 1 and 3 DF, p-value: 0.00221
```

Summary

- Finding the Least Square Line
- Approach#1: Closed Form Solution: Calculus
 - Statistics: Correlation + Standard Deviation
 - Matrix Solution
- Approach#2: Gradient Decent Algorithm
- Regression
 - R
 - Excel (Data Analysis / Regression)