

TEKNOFEST 2020 ROKET YARIŞMASI SARTEK ROKET Atışa Hazırlık Raporu (AHR)

Takım Yapısı

Mekanik Sistemler Tasarımı ve Üretimi

- Hasan SEZGİN 4.Sınıf Makine Mühendisliği
- Mahmut GÜNER 4.Sınıf Makine Mühendisliği
- Nevzat GÜVEN 4. Sınıf Makine Mühendisliği

Uçuş Kartı, Atış kontrol ve Faydalı Yük Tasarımı

- Ayça DUMAN 4.Sınıf Elektrik-Elektronik Mühendisliği
- Melis ÖZKAR 4.Sınıf Elektrik-Elektronik Mühendisliği
- Tuna KINACI 4.Sınıf Elektrik-Elektronik Mühendisliği
- Gülpaşa ÖZDEMİR 4. Sınıf Elektrik-Elektronik Mühendisliği

Haberleşme Sistemi ve 3B Telemetre yazılımı

- Ayça DUMAN 4.Sınıf Elektrik-Elektronik Mühendisliği
- Melis ÖZKAR 4.Sınıf Elektrik-Elektronik Mühendisliği
- Tuna KINACI 4.Sınıf Elektrik-Elektronik Mühendisliği

KTR'den Değişimler

- \square 32 gramlık CO_2 tüpleri yerine 12 OZ hacme sahip büyük tüp kullanılmıştır.
- Kullanılan 15 cm'lik pnömatik pistonlar 25 cm'lik pistonlarla değiştirilmiştir.
- ☐ Faydalı yükün boyutu küçültülmüştür.
- Aviyonikleri bir arada tutan parçanın tasarımı değiştirilmiştir.
- Diğer kısımlar KTR raporuna uygun şekilde üretilmiştir.
- ☐ İç yerleşimi kontrol edilmiş herhangi bir uygunsuzluk görülmemiştir.

Roket Alt Sistemleri

Ürün	Üretim Durumu	Tedarik Durumu
Burun Konisi	%100	Tedarik Edildi
Gövdeler	%100	Tedarik Edildi
Aviyonik Sistem	%95	Tedarik Edildi
Motor Bloğu	%100	Tedarik Edildi
Faydalı Yük	%90	Tedarik Edildi
Paraşütler	%100	Tedarik Edildi
Finler	%100	Tedarik Edildi

OpenRocket / Roket Tasarımı Genel Görünüm

Roket Alt Sistemleri Mekanik Görünümleri ve Detayları

Burun ve Faydalı Yük Mekanik Görünüm

- ☐ Burun konisi KTR'de belirtildiği şekilde üretilmiştir.
- ☐ Boya ve yüzey temizleme işlemleri yapılacaktır.

Burun Konisi Tanıtım Videosu https://www.youtube.com/watch?v=CBss7SiQprM

☐ KTR'de belirtilen tasarımın büyük çoğunluğu tamamlanmış olup sadece kart entegrasyon işlemi kalmıştır.

Faydalı Yük Tanıtım Videosu

https://www.youtube.com/watch?v=UIV6M5gkXIY

Burun – Detay

- ☐ Burun konisi KTR'de belirtildiği şekilde üretilmiştir.
- ☐ Boya ve yüzey temizleme işlemleri yapılacaktır.
- ☐ Ölçüleri Kontrol edilmiştir herhangi bir uyumsuzluk yoktur.
- ☐ Burun konisi ilk olarak PLA malzemeden üretilmiş daha sonra sivri kısmı dıştan omzu ise içten kaplanmıştır.

Faydalı Yük ve Faydalı Yük Bölümü – Detay

- ☐ Faydalı yük için iki farklı çapta boru iç içe geçirilmiş ve arasına kurşun dökülmüştür. 4 kg şartı bu şekilde sağlanmıştır.
- ☐ Faydalı yükün elektronik kart ile bağlanacağı ara yüzler henüz entegre edilmemiştir. Fakat bu oldukça kolay bir işlem olup faydalı yük elektronik kartı takımın mekanik bölümünün eline geçtiğinde entegre edilecektir.

Kurtarma Sistemi Mekanik Görünüm

- ☐ Montajı tamamlanmıştır. KTR'den farklı olarak büyük hacimli tüp kullanılmıştır.
- ☐ Tüp gövdeye kelepçelerle sabitlenecektir. Rijitliği bu şekilde sağlanacaktır ve roket gövdesi içinde herhangi bir hareketi olmayacaktır.

Paraşüt Tanıtım Videosu https://www.youtube.com/watch?v=z7XSogsqqfY

uygun malzemelerle yapılmıştır.

☐ Paraşütlerin üretimleri KTR'de belirtilen ölçülerde ve

Kurtarma Sistemleri Tanıtım Videosu

https://www.youtube.com/watch?v=7RxWwPcTILk

Ayrılma Sistemi – Detay

- ☐ 25 cm'lik 20 mm çaplı iki pnömatik piston ve uygun selenoid valfler tedarik edilmiştir.
- ☐ Bağlantı yerleri ve vidalanma kısımları teflonla sarılmıştır. Gaz kaçırmadığı test edilmiştir.
- ☐ Montajı tamamlanmıştır.
- ☐ KTR'den farklı olarak büyük hacimli tüp kullanılmıştır.
- ☐ Tüpün standartlara uygunluğuna dikkat edilmiştir.
- ☐ Pistonların gövdeye entegrasyonunu sağlayacak olan yüzüğe vida delikleri açılacaktır.
- ☐ Tüp ise gövdeye plastik kelepçelerle sabitlenecektir.

Paraşütler – Detay

- ☐ Paraşütler uygun çaplarda üretilmiştir.
- ☐ Testleri daha önceden yapılmış olan ipler ve şok kordonu kullanılmıştır.
- ☐ Paraşüt kesim kalıpları çıkarılmış ve üretimi standart hale getirilmiştir.
- ☐ Yeterli malzeme olduğu takdirde 1 gün içerisinde 3 adet paraşüt üretilebilmektedir.

Aviyonik Sistem Mekanik Görünüm

Kartları elle üretmek zorunda kaldık lakin İstanbul'da ki bir firma ile görüşülerek kartların makine üretimi (yedek bir sistem elimizde olsun diye) sağlanılacak.

Aviyonik Sistem Tanıtım videosu https://youtu.be/rpWvoyi4ugl

Aviyonik Sistem – Detay

- Aviyonik sistemin devre kartları üretimi tamamlanmıştır.
- ☐ Kartları tutacak olan destek parçasının üretimi için modelleme yapılmış 3 boyutlu yazıcıda çıktı alma işlemi kalmıştır.
- ☐ Kartların yerleşiminin sağlanacağı hazne temsilen sağ taraftaki resimde görülen silindirik malzeme kullanılmıştır.
- ☐ Yerleşimde herhangi bir uyumsuzluk saptanmamıştır.

Kanatçıklar Mekanik Görünüm

☐ Üretimi tamamlanmıştır. Yapılan işlemler KTR'yle tamamen uyum içindedir.

Finlerin ve Motor Bloğunun Tanıtım Videosu https://www.youtube.com/watch?v=noDGrimD908

Kanatçıklar – Detay

- ☐ Kanatçıklar lazer kesimde 6061 Alüminyum malzemeden üretilmiştir.
- ☐ Kanatçıkların gövdeye entegresini sağlayacak ara parça PLA malzemeden 3D yazıcı ile üretilmiştir.
- ☐ Birbirine geçmeleri kontrol edilmiştir, tasarıma uygun olduğu görülmüştür.
- ☐ Finlerin uç kısımlarına pah kırma işlemi yapılacaktır.

Roket Genel Montaji

İç Yerleşim Yapılmadan Önce

Montaj Edilmiş Hali

Genel Montaj Videosu

https://www.youtube.com/watch?v=LJpBEMEJWSM

Roket Motoru Montaji

☐ Roketi tutacak arka tutucu kapağın yerine takılıp çıkarılması somunlarla yapıldığı için çok kolaydır.

Roket Motoru Montaj Videosu https://www.youtube.com/watch?v=rjqbjeSNPRs

Atış Hazırlık Videosu

Montaj işlemi yaklaşık 5 dakikalık bir sürede tamamlanmıştır.

https://youtu.be/XzPbC1hhMyU

Testler

☐ KTR'ye büyük oranda uyumluluk gösterildiği için testlerin tekrarlanmasına genel anlamda ihtiyaç duyulmamıştır.

Testler

	Finlerin Geometrik Tolerans Kontrolü	Malzeme Dayanım Testleri	İp ve Şok Kordonu Dayanımı
Yapısal/Mekanik Mukavemet Testleri	Finlerin arasındaki açılar hassas açıölçer kullanılarak ölçülmüştür. İstenilen toleransları sağladığı görülmüştür.	Tasarımda kullanılacak malzemeler daha önceden dayanım testine tabi tutulmuştur. Üretim yaparken aynı malzemeler olmasına dikkat edilmiştir.	Son haline getirilen paraşütlerin ip ve kordonları daha önceki testlerde kullanılan onay alan malzemelerden yapılmıştır.
Kurtarma Sistemi Testleri	Yeni tüple açılma testleri yapılmış herhangi bir sorun görülmemiştir.	Paraşütlerin testleri daha önceden yapılmış tekrarına gerek duyulmamıştır.	Yeni tüple beraber roket içi yerleşim yapılmıştır. Herhangi bir sorunla karşılaşılmamıştır.
	Pnömatik Sistem Açılma Testi	Paraşüt Açılma Testleri	Yerleşim Testi

Testler

	Veri hız testleri	Güç testi	Sarsıntı testi	Yazılım şişme testleri
Aviyonik sistem Yazılım ve Donanım Testleri	Aviyonik testlerde sensörlerin veri basma frekasları ile doğru data oranları ölçülmüş, denetleyici hızları ayarlanmıştır.	Güç testleri yapılmış ve maksimum güçte 5 saat çalışacak şekilde batarya beslemeleri ayarlanmıştır.	Sarsıntıya karşı pinler ve diğer sistemler silikonlanarak elektriksel rezonansların önüne geçilmiştir.	Yazılım saatlerce açık bırakılarak bellekte her hangi bir şişme olup olmadığı kontrol edilmiştir. Thread lar kontrol edilmiştir
Telekominikasyon Testleri	Mesafe testinde araçla geçen sene yapılan testler ön görülmüştür. Covid den dolayı bu test tekrarlanamamıştır.	Veri testleri kısa mesafede denenmiş olup sistemi zorlamayacak şekilde tasarlanmıştır.	Anten testleri CST ile denenip açılar 30 dereceye çekilmiştir.	Radonun frekansı çok kaydırmamasından dolayı sandviç sisteme gerek duyulmamıştır.
	Mesafe testi	Veri testi	Anten açı testi	Radom testi

Yarışma Alanı Planlaması

GÖREV DAĞILIMI			
MONTAJ GÜNÜ	GÖREVLER	YETKİLİLER	
	Roketin Genel Montajının Yapılması	Nevzat Güven - Mahmut Güner- Hasan Sezgin	
	Motorun Yerleşimi	Hasan Sezgin-Nevzat Güven	
	Hakemlerle İletişim	Hasan Sezgin	
ATIŞ GÜNÜ GÜNÜ	GÖREVLER	YETKİLİLER	
	Elektronik Sistemlerin Aktifleştirilmesi	Tuna Kınacı	
	Roketin Takibinin Yapılması	Gül Özdemir	
	Roket Parçalarının Araziden Toplanması	Hasan Sezgin – Nevzat Güven	

Yarışma Alanı Planlaması

ACİL DURUM EYLEM PLANI		
OLAY	EYLEM	
Roketin rampadan uygun çıkmaması durumu	Bunun için bir algoritma oluşturulmuştur.	
Paraşütlerin uygun irtifada açılmaması	Vereceğimiz komutla tüm paraşütler aynı	
Rampada paraşüt açılması	anda açabileceğiz	
Aviyoniklerden veri gelmemesi		
Motorun çevresel etkiler nedeniyle sıkışması	Motorun yerleştiği yuvanın her iki tarafından motora erişim imkanı var ve yuvanın toleranslarına dikkat edildi.	
Basit yaralanmalar	İlk yardımla Hasan Sezgin arkadaşımız ilgilenecektir.	

31 Temmuz 2020 Cuma

Yarışma Alanı Planlaması

TEDARİK VE YEDEK PARÇA	RISKLER	EYLEM
ile ilgili riskler	Parçaların hasar görmesi durumu	Yarışma alanına getirilen yedek parçanın kullanımı