Laboratorio di Basi di Dati Turni T3 e T4

a.a. 2018/2019 Ruggero Pensa - Fabiana Vernero

Argomenti

- Introduzione alla progettazione di basi di dati
- Progettazione concettuale (parte 1):
 - > Il modello E-R:
 - Entità
 - Relazioni
 - Attributi
 - Cardinalità delle relazioni
 - Cardinalità degli attributi

Introduzione alla progettazione di basi di dati

Obiettivo

- Progettazione di una base di dati a partire dai suoi requisiti.
- Progettare una base di dati significa definirne:
 - > Struttura
 - > Caratteristiche
 - > Contenuto

Il ciclo di vita dei sistemi informativi

Il ciclo di vita dei sistemi informativi

Studio di fattibilità Raccolta e analisi dei requisiti Progettazione dei dati Progettazione Implementazione Progettazione delle applicazioni Validazione e collaudo **Funzionamento**

Il ciclo di vita dei sistemi informativi

Perché progettare? - 1

Scott Adams, Inc./Dist. by UFS, Inc.

Perché progettare? - 2

La diagnosi di appendicite acuta e prevaientemente cimica, in quanto si basa sull'accurata valutazione dei dati forniti dalla raccolta anamnestica e sull'esame obiettivo del paziente.

La diagnosi precoce rappresenta una condizione essenziale per un trattamento efficace.

L'esecuzione di esami radiologici (ecografia e TAC) può infatti essere utile nel completamento diagnostico in casi selezionati (anziani, obesi) per escludere altre patologie o se si sospettano eventuali complicanze in atto, ma non deve ritardare inopportunamente il momento diagnostico: una conferma diagnostica tardiva può essere non solo inutile ma soprattutto dannosa per il paziente. Le peculiarità e le difficoltà del percorso diagnostico, in caso di sospetta appendicite acuta, sono dovute al polimorfismo del quadro clinico che si modifica in rapporto alla varietà dei quadri anatomo-patologici ed alla posizione anatomica dell'appendice stessa nella cavità addominale.

La triade sintomatologica classica è caratterizzata da nausea con o senza vomito, febbre e dolore addominale e si presenta in poco più del 50% dei casi.

Il dolore è il sintomo cardine, tipicamente inizia come dolore addominale continuo, non specifico, di tipo viscerale, che progressivamente aumenta di intensità peggiorando in 6-24 ore e migrando in fossa iliaca destra. Esso è causato dall'ostruzione del lume del viscere da parte di un coprolita o dalla presenza di iperplasia linfoide follicolare a livello sottomucoso, che procura la distensione della parete appendicolare da overgrowth batterico. Di conseguenza si instaura il processo di ischemia e necrosi della parete con successivo evento perforativo. Il dolore viene pertanto inizialmente riferito in regione epigastrica-periombelicale, per l'irritazione delle vie viscerali autonomiche afferenti fino al 10° ganglio toracico. Quando il processo infiammatorio progredisce fino a coinvolgere il peritoneo parietale (irritando le vie nervose somatiche) il dolore tende a localizzarsi in fossa iliaca destra con dolorabilità elettiva nel punto di McBurney (situato all'unione del terzo laterale e dei 2/3 mediali della linea spino-ombelicale). Tuttavia il punto di massima dolorabilità può variare in rapporto alla variabilità anatomica di sede dell'appendice cecale, potendo essa ruotare di 360° rispetto alla sua base d'inserzione colica, procurando scenari atipici come il dolore lombare, per

Perché progettare? - 3

What Product Marketing specified

What the salesman promised

Design group's initial design

Corp. Product Architecture's modified design

Pre-release version

General release version

What the customer actually wanted

E' facile progettare? - 1

E' facile progettare? - 2

 "Quando qualcuno dice: questo lo so fare anch'io, vuol dire che lo sa rifare, altrimenti lo avrebbe già fatto prima" [Bruno Munari].

Metodologia di progettazione

- Una metodologia di progettazione consiste in:
 - > Decomposizione dell'attività di progetto in fasi successive e indipendenti.
 - > Strategie da seguire in ogni fase e criteri per la scelta delle alternative.
 - Modelli di riferimento per la descrizione dei dati in ingresso/uscita delle varie fasi.

Metodologia di progettazione per basi di dati - 1

Metodologia di progettazione per basi di dati - 2

Prodotti della progettazione

- Proget. Concettuale
- Proget. Logica
- Proget, Fisica

Progettazione concettuale

- Permette di rappresentare specifiche informali tramite una descrizione formale indipendente dai criteri di rappresentazione usati nel DBMS.
 - > Alto livello di astrazione.
 - Nessun dettaglio implementativo (codifica, efficienza)
- Produce uno schema concettuale.
- Fa riferimento a un modello concettuale.
 - > Ad esempio: modello Entità Relazione (E R).

Progettazione logica

- Consiste nella traduzione di uno schema concettuale secondo il modello di rappresentazione usato nel DBMS.
 - > Indipendente dai dettagli fisici.
 - > Scelte basate su ottimizzazioni delle operazioni.
 - Qualità dello schema verificata mediante tecniche formali (normalizzazione).
- Produce uno schema logico.
- Fa riferimento a un modello logico.
 - > Ad esempio: modello relazionale.

Modello dei dati

- E' un insieme di costrutti utilizzati per organizzare i dati di interesse e descriverne la dinamica.
- Componente fondamentale: meccanismi di strutturazione (o costruttori di tipo).
 - Come nei linguaggi di programmazione esistono meccanismi che permettono di definire nuovi tipi, così ogni modello dei dati prevede alcuni costruttori.
 - Ad esempio, il modello relazionale prevede il costruttore relazione, che permette di definire insiemi di record omogenei.

Modelli concettuali: perche'?

- Proviamo a modellare una applicazione definendo direttamente lo schema logico della base di dati:
 - > Da dove cominciamo?
 - > Rischiamo di perderci subito nei dettagli!
 - Dobbiamo pensare subito a come correlare le varie tabelle (chiavi etc.)
- I modelli logici sono rigidi!

Modelli concettuali: perche'?

- I modelli concettuali servono per ragionare sulla realtà di interesse, indipendentemente dagli aspetti realizzativi.
 - > Permettono di rappresentare le classi di oggetti di interesse e le loro correlazioni.
 - Prevedono efficaci rappresentazioni grafiche utili anche per documentazione e comunicazione.

Progettazione concettuale

Il modello Entità – Relazione (E-R)

- E' il modello concettuale più diffuso
- Fornisce costrutti per descrivere le specifiche sulla struttura dei dati in modo semplice e comprensibile:
 - > Con un formalismo grafico.
 - > In modo indipendente dal modello logico dei dati, che può essere scelto in seguito.

Costrutti principali

- Entità
- Relazioni
- Attributi
- Identificatori
- Generalizzazioni e sottoinsiemi

Entità

 Rappresentano classi di oggetti del mondo reale che hanno proprietà comuni e esistenza autonoma.

 Un'occorrenza di un'entità è un oggetto della classe che l'entità rappresenta: es. Roma, Sean Penn

Relazioni

- Rappresentano un legame logico tra due o più entità.
 - > A volte si utilizza il termine "associazione", per non generare confusione con la relazione del modello relazionale.

Relazioni: occorrenze - 1

- Una occorrenza di una relazione è un'ennupla costituita da occorrenze di entità (una per ciascuna entità coinvolta)
 - > es. (Rossi, BD), (Verdi, Prog1), ecc.

Relazioni: occorrenze - 2

- Non vi possono essere ennuple identiche.
 - Non è possibile che uno studente sostenga due volte lo stesso esame.

Relazioni ternarie - 1

- Uno studente può ripetere lo stesso esame in tempi diversi.
 - > es. (Rossi, BD, 13 febbraio 2019)

Relazioni ternarie - 2

> es. (Ditta Verdi, Stampanti, Vendite)

Relazioni diverse sulle stesse entità

Relazioni ricorsive - 1

 In una relazione ricorsiva, un'entità è in relazione con se stessa.

Relazioni ricorsive - 2

 Se la relazione non è simmetrica, occorre definire i due ruoli dell'entità

Relazioni ternarie ricorsive

T1 è migliore di T2 su S2 T2 è migliore di T1 su S1 T3 è migliore di T2 su S1

Attributi

- Un attributo descrive una proprietà elementare di un'entità o di una relazione.
- Ogni attributo è caratterizzato dal dominio,
 l'insieme dei valori ammissibili per l'attributo.

Attributi: esempi di occorrenze

Attributi composti

- Gli attributi composti raggruppano attributi di una medesima entità o relazione che presentano affinità nel loro significato o uso.
 - > Esempio: Via, Numero civico e CAP formano un Indirizzo.

Cardinalità di una relazione - 1

- La cardinalità di una relazione è una coppia di valori associati a ogni entità che partecipa a una relazione.
- I valori specificano il numero minimo e massimo di occorrenze della relazione cui ciascuna occorrenza di una entità può partecipare.

Cardinalità di una relazione - 2

- Per semplicità usiamo solo tre simboli:
 - > Per la cardinalità minima 0 e 1:
 - 0 → partecipazione opzionale
 - 1 → partecipazione obbligatoria
 - > Per la cardinalità massima 1 e N:
 - N non pone alcun limite

Cardinalità di una relazione - 3

Classificazione delle relazioni

- Con riferimento alle cardinalità massime, le relazioni si definiscono:
 - > uno a uno
 - > uno a molti
 - > molti a molti
- Per quanto riguarda le cardinalità minime, il caso di partecipazione obbligatoria è raro.

Cardinalità delle relazioni: esempi - 1

Cardinalità delle relazioni: esempi - 2

Cardinalità delle relazioni: esempi - 3

Le relazioni uno a uno sono molto rare!

Cardinalità degli attributi - 1

- E' possibile associare delle cardinalità anche agli attributi, con due scopi:
 - indicare attributi opzionali ("informazione incompleta")
 - indicare attributi multivalore

Cardinalità degli attributi - 2

- Cardinalità minima = 0 → attributo opzionale
- Cardinalità minima = 1 → attributo obbligatorio
- Cardinalità massima = N → attributo multivalore