Höhere Analysis I

Sommersemester 2015

Prof. Dr. D. Lenz

Blatt 1

Abgabe Dienstag 28.04.2015

- (1) Sei X eine unendliche Menge und \mathcal{A} die Potenzmenge von X. Sei $\mu: \mathcal{A} \longrightarrow [0, \infty]$ definiert durch $\mu(A) = 0$ falls A endlich ist und $\mu(A) = \infty$ sonst. Sei $\nu: \mathcal{A} \longrightarrow [0, \infty]$ definiert durch $\nu(A) = 0$ falls A abzählbar ist und $\nu(A) = \infty$ sonst. Zeigen Sie, da μ und ν additiv sind. Untersuchen Sie, ob μ oder ν Mae sind.
- (2) Sei (X, \mathcal{A}) ein mebarer Raum und $f : \mathcal{A} \longrightarrow \mathbb{R}$ beschränkt. Zeigen Sie die Äquivalenz der folgenden beiden Aussagen:
 - (i) Es ist f mebar.
 - (ii) Es lät sich f gleichmäig durch einfache Funktionen approximieren.
- (3) Seien X und Y Mengen, $\mathcal T$ eine Topologie auf X und $f:X\longrightarrow Y$ eine Funktion. Untersuchen Sie, ob

$$\{B \subseteq Y : f^{-1}(B) \in \mathcal{T}\}$$

eine Topologie ist.

- (4) Sei (X, \mathcal{A}) ein mebarer Raum und $\mu : \mathcal{A} \longrightarrow [0, \infty]$ erfülle
 - $\mu(\emptyset) = 0,$
 - $-\mu(A \cup B) = \mu(A) + \mu(B)$ für alle $A, B \in \mathcal{A}$ mit $A \cap B = \emptyset$.

Zeigen Sie die Äquivalenz der folgenden beiden Aussagen:

- (i) Es ist μ ein Ma.
- (ii) Es gilt $\lim_{n\to\infty} \mu(A_n) = \mu\left(\bigcup_{n\in\mathbb{N}} A_n\right)$ für alle $A_n \in \mathcal{A}$ mit $A_n \subseteq A_{n+1}$ für alle $n\in\mathbb{N}$.