Aidan Fischer 12/1/2021

CS558 HW4

I pledge my honor that I have abided by the Stevens Honor System.

Output Images

K-Means

white-tower.png

SLIC white-tower.png

wt_slic.png

sky_train.jpg - labeled

sky_test1.jpg

sky_test2.jpg

sky_test3.jpg

sky_test4.jpg

Implementation Details:

- Because each problem took a while to run, I only ran one at a time during testing and commented out all other problems, however all have been uncommented in final code submission
- Image.py wrapper utility around PIL's Image and ImageOps classes to reduce code duplication.
 Used in my all my homeworks since I started organizing my code into different modules in HW2
- KMeans.py implements KMeans for both problem 1 and 3
 - rgb_dst Determines Euclidean distance between two color triples
 - assign_centroids Returns a list of quadruplets consisting of (r,g,b,c) where c is the closest centroid assigned to (r,g,b). Set up to allow handling of split training data for problem 3.
 - get_new_centroids Takes in output from assign_centroids, and calculates the next k
 centroids from the averages of the assignments. Will ignore centroid assignments of -1,
 which is a control value used to indicate ignored pixels, implemented for use in problem
 3 which splits sky and nonsky pixels into 2 kmeans sets.
 - kmeans_rgb Runs kmeans on an image, returns kmeans output image as a numpy array.
 - split_kmeans takes labeled and unlabeled training images, as well as k, and runs
 kmeans on the unlabeled image, using labeled as a guide to distinguish between sky and

nonsky pixels. Centroids are assigned randomly as in kmeans, but it makes sure both sky and nonsky have k centroids. Returns a tuple consisting of the list of final nonsky centroids and the list of final sky centroids after kmeans runs to convergence for both sets.

- SLIC.py Implements SLIC for problem 2
 - init Returns the initial centroids. Segmentation is implied in centroid locations.
 - o local shift implements the local shift operation
 - get_pixel_assignment gets the centroid closest to a given pixel in xyrgb space at a given location in an image. Ignores centroids over 100 pixels away from the given location.
 - COLOR_SCALING_FACTOR used to normalize pixel locations to color scale
 - o update centroids updates centroid locations in xyrgb space
 - output generates final output image
 - do_SLIC implements SLIC algorithm
- Classification.py Implements image classification for problem 3
 - o BRIGHT_PINK Color used to indicate detected sky pixels in output images
 - do_classification implements classification algorithm. Most of the work is done in split_kmeans in KMeans.py, this just does that then assigns output pixel colors based on classification as sky or non_sky from output of split_kmeans and closest detected centroid. Takes labeled training image, unlabeled training image, and an array of input testing images. Outputs array of output images in same order as input images.