Lista 14, Analiza Matematyczna I

1. Sprawdzić zbieżność szeregów i zbadać różniczkowalność sumy na podanym zbiorze.

a)
$$\sum_{n=1}^{\infty} \frac{\cos(nx)}{n^3}, \quad \mathbb{R},$$

$$\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^2}, \quad (0, \pi),$$
 b)
$$\sum_{n=1}^{\infty} \frac{\cos(n^2x)}{2^n}, \quad \mathbb{R},$$

$$\vdots$$

$$\sum_{n=1}^{\infty} \frac{\log(nx^2+1)}{n^2}, \quad \mathbb{R},$$

$$\sum_{n=1}^{\infty} \left(\frac{\pi}{2} - \arctan(n^2x^2)\right), \quad (0, \infty).$$

- **2.** Niech $P(x) = 1 + 3x + 5x^2 2x^3$. Znajdź wielomian Q, taki że P(x) = Q(x+1).
- $\bf 3$. Niech fbędzie funkcją klasy C^{N+1} w pewnym otoczeniu zera. Uzasadnić, że jeśli na pewnym otoczeniu zera zachodzi $\bf ^2$

(1)
$$f(x) = \sum_{k=0}^{N} a_k x^k + O(x^{N+1}),$$

to $f^{(k)}(0) = k! \cdot a_k$ dla k = 0, 1, ..., N.

4. Zapisz poniższe funkcje w postaci (1) do podanego rzędu N.

$$e^{2x-x^{2}}, \quad N = 5,$$

$$\log(\cos x), \quad N = 5,$$

$$\dot{\mathbf{d}}$$

$$\sqrt[3]{1 - 2x - x^{3}}, \quad N = 2,$$

$$\sin(\sin x), \quad N = 3.$$

5. Obliczyć granicę korzystając ze wzoru Taylora i notacji o(x) lub O(x).

a)
$$\dot{c}$$
) \dot{e})
$$\lim_{x \to 0} \frac{\cos x - 1}{x^2} \qquad \lim_{x \to 0} \frac{e^{x^2} + 2\cos x - 3}{\sin(x^2) - x^2} \qquad \lim_{x \to 0} \frac{\log(1 + x) - \sin(2x) + x}{e^{x^2} - \cos(x^2) + x^2}$$
b) \dot{d})
$$\lim_{x \to 0} \frac{e^{2x} - 2\sin x - \cos x}{x^2} \qquad \lim_{x \to 0} \frac{\cos x - 1}{e^{x} - \sin x - 1} \qquad \lim_{x \to 0} \frac{(x\sin x + 2\cos x - 2)(e^x - 1)}{(\sin(x) - x)(e^{x^2} - 1)}$$

- **6.** Dla a > 0 i $N \in \mathbb{N}$ znaleźć rozwinięcie (1) funkcji $f(x) = \log(x + a)$.
- 7. Korzystając z rozwinięcia Taylora i oszacowania reszty obliczyć wielkości z podaną dokładnością.

 $^{^1\}mathit{Uwaga}\colon$ Funkcja jest klasy C^m gdy istnieje pochodna $\mathit{m}\text{-ta}$ i jest ona ciągła.

 $^{^{2}}$ Uwaga: Zapis g(x) = O(h(x)) (w x = 0) oznacza, że na pewnym otoczeniu zera mamy $|g(x)| \leq C|h(x)|$.

- 8. Dla poniższych funkcji napisać wzór Taylora rzędu N oraz pokazać, że reszta zbiega do zera dla $x \in \mathbb{R}$ (chyba że podano inaczej).
 - a) c) e^{x} , $\cos x$, $\cosh x$, b) $\sin x$, $\cos x$, $\cos x$, $\cos x$, $\cos x$, $\sin x$, $\sin x$, $\sin x$, $\sin x$, $\cos x$, $\cos x$, $\cos x$, $\cos x$, $\sin x$
- 9. Znaleźć szereg Maclaurin'a $\sum_{k=0}^{\infty} a_k x^k$ dla podanych funkcji.
 - a) $\dot{\mathbf{c}}$) $\dot{\mathbf{e}}$) $\operatorname{arctg}(x^3)$, $\cot(2x)$, $\cot(2x$
- 10. Znaleźć szereg Taylora dla funkcji

$$f(x) = \begin{cases} \frac{\sin x - x}{x^3} & x \neq 0 \\ -\frac{1}{6} & x = 0 \end{cases}.$$

- **11.** Niech $f(x) = x^3 \sin^2(x^2)$. Wyznaczyć $f^{(1003)}(0)$.
- $\ddot{\mathbf{1}}\mathbf{2}.$ Funkcja fjest (n+1)-krotnie różniczkowalna i $f^{(n+1)}$ jest funkcją ciągłą. Niech

$$f(x+h) = f(x) + hf'(x) + \ldots + \frac{h^n}{n!} f^{(n)}(x+\theta(h)h) \quad (0 < \theta(h) < 1)$$
przy czym $f^{(n+1)}(x) \neq 0$. Pokazać, że $\theta(h) \to \frac{1}{n+1}$, gdy $h \to 0$.

- $\ddot{\bf 13.}$ Załóżmy, że f(x)=1+kx+g(x)ora
z $\lim_{x\to 0}(g(x)/x)=0.$ Pokazać, że $\lim_{x\to 0}f(x)^{1/x}=e^k.$
- **Ï4.** Funkcja f(x) jest dwukrotnie różniczkowalna w sposób ciągły na odcinku [0,1] oraz $f(0) = f(1) = 0, |f''(x)| \le A \operatorname{dla} x \in (0,1)$. Pokazać, że $|f'(x)| \le A/2 \operatorname{dla} 0 \le x \le 1$.
- **15.** Niech f(x) będzie funkcją dwukrotnie różniczkowalną na półprostej dodatniej i $M_n = \sup_x |f^{(n)}(x)|$ dla n = 0, 1, 2. Udowodnić nierówność $M_1^2 \le 4M_0M_2$. Pokazać na przykładzie, że stała 4 jest optymalna.