Изучение электропроводности и определение удельного сопротивления полупроводников

Нехаев Александр 654 гр.

Задачи

- 1. Ознакомиться с методикой проведения измерений.
- 2. Провести необходимые измерения для определения удельного сопротивления полупроводникового образца
- 3. Сделать выводы об однородности образца

Принципиальная схема двухзондового метода измерения удельного сопротивления полупроводникового образца.

Используя 4 контакта с проводником, проводим измерения с помощью компенсационного метода.

При смещении одного из зондов исследуем длину $L = L_0 - x$. x смещаем по 0.25 мм.

Таблица 1. Полученные данные

L	I	U
(0.000 ± 0.010) mm	$(100.00 \pm 0.10) \text{ mA}$	(16.30 ±0.10) mV
(0.250 ±0.010) mm	(100.00 ± 0.10) mA	(14.60 ±0.10) mV
(0.500 ±0.010) mm	(100.00 ± 0.10) mA	(15.50 ±0.10) mV
(0.750 ±0.010) mm	(100.00 ± 0.10) mA	(14.50 ±0.10) mV
(1.000 ±0.010) mm	(100.00 ± 0.10) mA	(14.80 ±0.10) mV
(1.250 ±0.010) mm	(100.00 ± 0.10) mA	(14.00 ±0.10) mV
(1.500 ±0.010) mm	(100.00 ± 0.10) mA	(13.00 ±0.10) mV
(1.750 ±0.010) mm	(100.00 ± 0.10) mA	(14.10 ±0.10) mV
(2.000 ±0.010) mm	(100.00 ± 0.10) mA	(13.20 ±0.10) mV
(2.250 ±0.010) mm	(100.00 ± 0.10) mA	(12.10 ±0.10) mV
(2.500 ±0.010) mm	(101.00 ± 0.10) mA	(12.40 ±0.10) mV
(2.750 ± 0.010) mm	(101.00 ± 0.10) mA	$(\textbf{9.50} \pm \textbf{0.10}) \text{ mV}$
(3.000 ± 0.010) mm	$(102.00 \pm 0.10) \text{ mA}$	$(10.90 \pm 0.10) \text{ mV}$
(3.250 ± 0.010) mm	$(101.00 \pm 0.10) \text{ mA}$	$(11.40 \pm 0.10) \text{ mV}$
(3.500 ± 0.010) mm	$(101.00 \pm 0.10) \text{ mA}$	$(\textbf{9.40} \pm \textbf{0.10}) \text{ mV}$
(3.750 ± 0.010) mm	$(101.00 \pm 0.10) \text{ mA}$	$(\textbf{9.80} \pm \textbf{0.10}) \text{ mV}$
$(\textbf{4.000} \pm \textbf{0.010}) \text{ mm}$	$(101.00 \pm 0.10) \text{ mA}$	$(9.20 \pm 0.10) \text{ mV}$
$(\textbf{4.250} \pm \textbf{0.010}) \text{ mm}$	$(101.00 \pm 0.10) \text{ mA}$	$(\textbf{8.40} \pm \textbf{0.10}) \ \textbf{mV}$
$(\textbf{4.500} \pm \textbf{0.010}) \text{ mm}$	$(102.00 \pm 0.10) \text{ mA}$	$(\textbf{8.50} \pm \textbf{0.10}) \text{ mV}$
$(4.750 \pm 0.010) \text{ mm}$	$(102.00 \pm 0.10) \text{ mA}$	$(\textbf{7.80} \pm \textbf{0.10}) \text{ mV}$
(5 000 ± 0 010) mm	(102 00 ± 0 10) mA	(7 70 ± 0 10) mV

На графике наблюдается отклонение от линейной зависимости больше чем погрешность. Значит образец имеет неоднородности.

Out[17]=

Параметры аппроксимации:

Диаметр образца: $d = 6 \text{ мм} \Rightarrow \text{Находим площадь:}$

Пусть

 U_{x} - падение напряжения между зонами 2 и 3, U_{3T} - падение напряжения на эталонном сопротивлении

$$\frac{U_x}{U_{\text{\tiny ST}}} = \frac{R_x}{R_{\text{\tiny ST}}}; \ U_x = \frac{\rho \, I_{\text{\tiny ST}}}{S} \, L \Rightarrow k = \frac{\rho \, I_{\text{\tiny ST}}}{S} \Rightarrow \rho = k \, \frac{S}{I_{\text{\tiny ST}}}; \ I_{\text{\tiny ST}} = 100 \, \text{mA}$$

Удельное сопротивление образца

$$\rho = k \frac{S}{I_{\text{TT}}}$$

При подстановке получаем:

Out[24]=
$$(0.485 \pm 0.027) \text{ mm } \Omega$$

Вывод

Изучили образец с помощью 4-х контактного метода. Получили зависимость $U_x = f(x)$. По ней определили удельное линейное сопротивление. Зависимость имеет линейный вид с явными неоднородностями.