DM N°6 (pour le 06/12/2013)

EXERCICE 1 : Polynômes de Hilbert.

On définit la suite $(H_n)_{n\in\mathbb{N}}$ de polynômes par

$$H_0 = 1$$
 et $H_n = \frac{1}{n!}X(X-1)\cdots(X-n+1)$

1. Montrer que pour tout $x \in \mathbb{Z}$, on a $H_n(x) \in \mathbb{Z}$.

En déduire que le produit de n entiers consécutifs dans \mathbb{Z} est divisible par n!.

- **2.** Soit $A \in \mathbb{R}[X]$. On suppose que, pour tout $x \in \mathbb{Z}$, $A(x) \in \mathbb{Q}$. Montrer qu'alors $A \in \mathbb{Q}[X]$.
- **3.** Soit $A \in \mathbb{R}[X]$. On suppose que, pour tout $x \in \mathbb{Z}$, $A(x) \in \mathbb{Z}$. A-t-on $A \in \mathbb{Z}[X]$?
- **4.** Soit $P \in \mathbb{R}[X]$ de degré $\leq n$. Montrer que les propriétés suivantes sont équivalentes :
 - (a) $P(\mathbb{Z}) \subset \mathbb{Z}$;
 - (b) $P(k) \in \mathbb{Z}$ pour k = 0, 1, ..., n;
 - (c) il existe $k \in \mathbb{Z}$ tel que $P(k), P(k+1), \dots, P(k+n)$ sont dans \mathbb{Z} ;
 - (d) il existe $(\lambda_0, ..., \lambda_n) \in \mathbb{Z}^{n+1}$ tels que $P = \sum_{k=0}^n \lambda_k H_k$.

EXERCICE 2 : Polynômes de Tchebychev de 1ère espèce.

1. Soit $n \in \mathbb{N}$. Établir l'existence et l'unicité d'un polynôme $T_n \in \mathbb{Z}[X]$ tel que :

$$\forall x \in \mathbb{R}, \ T_n(\cos x) = \cos(nx)$$

Déterminer le degré de T_n , sa parité, son coefficient dominant, et une relation de récurrence entre T_n, T_{n+1} et T_{n+2} .

Déterminer les racines de T_n , et décomposer T_n en produit de facteurs irréductibles de $\mathbb{R}[X]$.

- **2.** Montrer que l'on a également : $\forall x \in \mathbb{R}$, $T_n(\operatorname{ch} x) = \operatorname{ch}(nx)$.
- 3. Montrer que T_n est solution de l'équation différentielle : $(1-x^2)y'' xy' + n^2y = 0$. En déduire une expression des coefficients de T_n .

EXERCICE 3 : Calcul de $\zeta(2)$.

1. Montrer que, pour tout $\alpha \notin \pi \mathbb{Z}$ et pour tout $p \in \mathbb{N}^*$:

$$\frac{\sin(p\alpha)}{\sin^p\alpha} = \binom{p}{1}\cot^{p-1}\alpha - \binom{p}{3}\cot^{p-3}\alpha + \binom{p}{5}\cot^{p-5}\alpha - \dots$$

2. Résoudre l'équation : $\binom{2n+1}{1}x^n - \binom{2n+1}{3}x^{n-1} + \binom{2n+1}{5}x^{n-2} - \dots + (-1)^n = 0$.

Que vaut la somme de ses racines?

– DM N°6 – **PSI*** **13-14**

3. En utilisant les relations

$$\frac{1}{\sin^2 \alpha} = 1 + \cot^2 \alpha \text{ et } \sin \alpha \le \alpha \le \tan \alpha \text{ (0 < } \alpha < \pi/2\text{)}$$

démontrer:

$$\frac{\pi^2}{3} \frac{n(2n-1)}{(2n+1)^2} \le \sum_{p=1}^n \frac{1}{p^2} \le \frac{\pi^2}{3} \frac{2n(n+1)}{(2n+1)^2}$$

En déduire la valeur de $\zeta(2) = \sum_{p=1}^{\infty} \frac{1}{p^2}$.

EXERCICE 4 : Polynômes de Bernoulli et quelques applications.

1. a) Soit $P \in \mathbb{R}[X]$. Démontrer qu'il existe un unique polynôme $Q \in \mathbb{R}[X]$ tel que

$$Q' = P$$
 et $\int_0^1 Q(x) dx = 0$.

b) En déduire qu'il existe une unique suite de polynômes $(B_n)_{n\in\mathbb{N}}$ vérifiant

•
$$B_0 = 1$$
;

•
$$\forall n \geq 1, B'_n = nB_{n-1};$$

•
$$\forall n \ge 1$$
, $\int_0^1 B_n(x) dx = 0$.

Pour tout $n \in \mathbb{N}$, on pose $b_n = B_n(0)$. Les B_n sont les polynômes de Bernoulli et les b_n sont les nombres de Bernoulli.

c) Expliciter B_n et b_n pour $n \in [0, 4]$.

2. a) Quel est le degré de B_n pour $n \ge 1$?

- **b)** Montrer que, pour tout $n \ge 2$, on a $B_n(0) = B_n(1)$.
- c) Prouver par récurrence que, pour tout $n \ge 0$, on a

$$B_n = \sum_{k=0}^n \binom{n}{k} b_{n-k} X^k.$$

- **d)** En déduire pour $n \ge 1$ une expression de b_n en fonction de b_0, \ldots, b_{n-1} . Calculer b_5 et b_6 .
- e) Montrer que les polynômes B_n sont à coefficients rationnels.
- **f)** Pour tout $n \in \mathbb{N}$ on pose

$$C_n = (-1)^n B_n (1 - X).$$

Montrer, en utilisant la définition des polynômes de Bernouli que, pour tout $n \in \mathbb{N}$ on a $C_n = B_n$.

g) En déduire que :

•
$$\forall n \ge 1, b_{2n+1} = 0;$$

•
$$\forall n \ge 0, \ B_{2n+1}\left(\frac{1}{2}\right) = 0.$$

3. *Une application arithmétique*

a) Montrer que, pour tout $n \ge 1$:

$$B_n(X+1) - B_n(X) = nX^{n-1}$$
.

– DM N°6 – **PSI* 13-14**

b) Soient $p \ge 1$ et $N \ge 0$ deux entiers. On pose $S_p(N) = \sum_{k=0}^{N} k^p$. Montrer que

$$S_p(N) = \frac{B_{p+1}(N+1) - b_{p+1}}{p+1}.$$

- c) Calculer explicitement, en fonction de l'entier N, les sommes $S_p(N)$ pour p=1,2,3.
- 4. Une application analytique
 - a) On admet que l'on a l'équivalent :

$$b_{2p} \sim (-1)^{p+1} \left(\frac{p}{\pi e}\right)^{2p} \sqrt{16\pi p}$$
.

Montrer que le rayon de convergence de la série entière $\sum_{n\geq 0} \frac{b_n}{n!} t^n$ est égal à 2π (on pourra utiliser la formule de Stirling).

b) Calculer le produit au sens de Cauchy des séries entières

$$\left(\sum_{n\geqslant 1}\frac{t^n}{n!}\right)\cdot\left(\sum_{n\geqslant 0}\frac{b_n}{n!}t^n\right)$$

et en déduire que, pour tout $t \in]-2\pi, 2\pi[$, on a

$$\frac{t}{\mathrm{e}^t - 1} = \sum_{n=0}^{+\infty} \frac{b_n}{n!} t^n.$$

c) Montrer que, pour tout $x \in \mathbb{R}$ et tout $t \in]-2\pi, 2\pi[$, on a

$$\frac{te^{xt}}{e^t-1} = \sum_{n=0}^{+\infty} \frac{B_n(x)}{n!} t^n.$$

