High Performance Computing: Impact on Society (SC 2015)

#HPCmatters

Bruno Ferrero, Marcelo Galdino e Willy Reis

Introdução

O que é HPC?

- HPC é o uso de supercomputadores e técnicas de processamento paralelo (incluindo clusters) para resolução de problemas computacionais complexos (que requerem grandes recursos de computação).
- A tecnologia de HPC foca no desenvolvimento de algoritmos e sistemas paralelos incorporando técnicas de administração de sistemas e computação paralela.
- Geralmente classificam-se como sistemas HPC aqueles cuja performance é de pelo menos 10^12 operações de ponto flutuante por segundo (FLOPS).

FLOPS

- FLoating-point Operations Per Second
- É considerado HPC um sistema que execute mais de 10¹² FLOPS.
- Hoje em dia

1° supercomputador?

ASCI Red

Site:				Sa	ndia National Labora	ntories	
System UR	L:			htt	tp://www.sandia.gov/	ASCI/Red/	
Manufactui	rer:			Int	tel		
Cores:				7,2	264		
Memory:							
Processor:				Pe	entium Pro 200MHz		
Interconne	ct:			Pr	oprietary		
Performac	е						
Linpack Pe	rforman	ce (Rmax)		1.0	068 TFlop/s		
Theoretical	l Peak (R	peak)		1.4	453 TFlop/s		
Nmax				21	5,000		
Nhalf				53	,400		
Power Con	sumption	1					
Power:							
Software							
Operating S	System:			Pa	ragon OS		
RANKING							
List	Rank	System	Vendor	Total Cores	Rmax (GFlops)	Rpeak (GFlops)	Power (kW)
06/1997	1	ASCI Red	Intel	7,264	1,068.00	1,453.00	

Top500 - Junho de 2017

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway , NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371
2	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P, NUDT National Super Computer Center in Guangzhou China	3,120,000	33,862.7	54,902.4	17,808
3	Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect, NVIDIA Tesla P100, Cray Inc. Swiss National Supercomputing Centre (CSCS) Switzerland	361,760	19,590.0	25,326.3	2,272
4	Titan - Cray XK7, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x , Cray Inc. DOE/SC/Oak Ridge National Laboratory United States	560,640	17,590.0	27,112.5	8,209
5	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom , IBM DOE/NNSA/LLNL United States	1,572,864	17,173.2	20,132.7	7,890

Top500 - Junho de 2017

Rank	System	Ég	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
495	Software Company (M) United States	Cluster Platform DL360, Xeon E5-2673v3 12C 2.4GHz, 10G Ethernet HPE	16,512	433.8	634.1	550
496	Software Company (M) United States	Cluster Platform DL360, Xeon E5-2673v3 12C 2.4GHz, 10G Ethernet HPE	16,512	433.8	634.1	550
497	Sandia National Laboratories / National Renewable Energy Laboratory United States	Red Sky - Sun Blade x6275, Xeon X55xx 2.9 Ghz, Infiniband Oracle	3 42,440	433.5	497.4	4,344
498	Electricity Company China	Sugon TC6000, Intel Xeon E5-2640v2 8C 2GHz, 10G Ethernet Sugon	43,200	433.3	691.2	530
499	Internet Company China	Sugon TC6000, Intel Xeon E5-2609V2 4C 2.5GHz, Gigabit Ethernet Sugon	110,000	432.2	2,200.0	1,200
500	Bull France	Manny - bullx DLC 720, Xeon E5-2690v3 12 2.6GHz, Infiniband FDR Bull, Atos Group	C 12,960	430.5	539.1	205

Top500 - Junho de 2017 - Brasil

RANKING

Santos Dumont GPU - Bullx B710, Intel Xeon E5-2695v2 12C 2.4GHz, Infiniband FDR, Nvidia K40

Site:	Laboratório Nacional de Computação Científica	
Manufacturer:	Bull	
Cores:	10,692	
Memory:	12,672 GB	
Processor:	Intel Xeon E5-2695v2 12C 2.4GHz	
Interconnect:	Infiniband FDR	
Performace		
Linpack Performance (Rmax)	456.8 TFlop/s	
Theoretical Peak (Rpeak)	657.518 TFlop/s	
Nmax	1,160,192	
Power Consumption		
Power:	371.25 kW (Derived)	
Software		
Operating System:	bullx SCS	

RANKING

List	Rank	System	Vendor	Total Cores	Rmax (TFlops)	Rpeak (TFlops)	Power (kW)
06/2017	471	Bullx B710, Intel Xeon E5-2695v2 12C 2.4GHz, Infiniband FDR, Nvidia K40	Bull	10,692	456.8	657.5	371.25
11/2016	364	Bullx B710, Intel Xeon E5-2695v2 12C 2.4GHz, Infiniband FDR, Nvidia K40	Bull	10,692	456.8	657.5	371.25
06/2016	265	Bullx B710, Intel Xeon E5-2695v2 12C 2.4GHz, Infiniband FDR, Nvidia K40	Bull	10,692	456.8	657.5	371.25
11/2015	200	Bullx B710, Intel Xeon E5-2695v2 12C 2.4GHz, Infiniband FDR, Nvidia K40	Bull	10,692	456.8	657.5	371.25
06/2015	146	Bullx B710, Intel Xeon E5-2695v2 12C 2.4GHz,	Bull	10,692	456.8	657.5	371.25

Cluster Platform DL360, Xeon E5-2673v3 12C 2.4GHz, 10G Ethernet

Site:	Cloud Provider	
Manufacturer:	HPE	
Cores:	17,136	
Memory:		
Processor:	Xeon E5-2673v3 12C 2.4GHz	
Interconnect:	10G Ethernet	
Performace		
Linpack Performance (Rmax)	450.223 TFlop/s	
Theoretical Peak (Rpeak)	658.022 TFlop/s	
Power Consumption		
Power:	571.20 kW (Derived)	
Software		
Operating System:	Linux	

Cluster Platform DL360, Xeon E5-2673v3 12C

2.4GHz, 10G Ethernet

Power

(kW)

571.20

(TFlops)

17,136

Top500 - Santos Dumont (LNCC/RJ)

Área do conhecimento

Overview HPC

- HPC evoluiu devido ao aumento da demanda por velocidade de processamento.
- HPC reúne várias tecnologias como arquitetura de computadores, algoritmos, programas e eletrônicos, e sistemas de softwares para resolver problemas de forma efetiva e rápida.

E quem incentiva HPC? Por quê?

- Segmento dos Top500:
 - o Indústria (251)
 - Serviços de internet, Processamento de Dados, Manufatura, Energia, Automotivo, Petroleira, entre outros.
 - Pesquisa (106)
 - Estudos meteorológicos e ambientais, Laboratório, NASA.
 - Academia (95)
 - Universidades, Institutos de Pesquisa
 - o Governo (38)
 - Estados Unidos e China.
 - Vendor (7)
 - Classified (3)
 - Governo

SC Conference

- Também conhecida com Supercomputer Conference.
- Cujo nome oficial é International Conference for High Performance Computing, Networking, Storage and Analysis.
- Realizada anualmente desde 1988.
- Patrocinada pela Association for Computing Machinery (ACM) and the IEEE Computer Society.

SC Conference

- A partir de 2013, os organizadores da conferência SC lançaram o "HPC Matters" para encorajar os membros da comunidade de ciências computacionais a compartilhar suas ideias, visões e experiências a respeito da forma como os computadores de alto desempenho são usados para melhorar a vida das pessoas em todo o mundo.
- Em 2015 a palestra de abertura foi realizada por Diane Bryant, na época vice presidente sênior e gerente geral do Intel's Data Center Group, hoje presidente do grupo.

HPC Transforms

- Lei de Moore
- Machine Learning
 - Machine learning transforma HPC
 - Segundo cientista chefe da Baidu, HPC pode ser o futuro da IA
- Comunidades

"This really enables a third way of doing science."

HPC Matters

"...much more complex problems can be tackled in a useful way"

HPC na Medicina

Configuração experimental e taxas de digitação durante sessões de perguntas e respostas de ritmo livre.

A comunicação é um aspecto importante da vida cotidiana, alcançada através de diversos métodos, tais como Conversando, escrevendo e usando interfaces de computador que cada vez mais fornecem um meio importante para Interagir com outras pessoas através de canais como e-mail e mensagens de texto.

Fonte: High performance communication by people with paralysis using an intracortical brain-computer interface

HPC na Medicina

Ao combinar dados sobre conectividade cerebral e comportamento humano, os pesquisadores descobriram que a região é um mosaico de elementos distintos, com cada um executando um trabalho diferente.

Fonte: http://spectrum.ieee.org/computing/hardware/the-human-brain-project-reboots-a-search-engine-for-the-brain-is-in-sight

Tratamento de epilepsia

- Para 15% das crianças com epilepsia não basta o uso de remédio, é necessário procedimento cirúrgico.
- Então utilizando HPC o cérebro dessas crianças é modelado com detalhe e é possível saber onde agir.

Mal de Parkinson

- Modelagem do cérebro
- Utilizando high performance visualization, é possível definir que área aplicar uma corrente elétrica e em qual voltagem, para que hajam melhores resultados em um tratamento.
- Ao invés de ter um modelo genérico de tratamento, é possível criar tratamentos personalizados.

Paypal

- Segurança (Para combater a ameaça, o PayPal implantou um cluster HPC para ajudar a detectar cobranças fraudulentas.)
- Processamento de Megabytes ou Gigabytes de dados em menos de um segundo. (13 milhões de transações financeiras a cada dia.)
- Alavancando tecnologias, a detecção que anteriormente demorou duas semanas agora acontece em tempo real, enquanto a análise de fraude preditiva oferece visibilidade de ameaças emergentes.

MH370

- Simulação de cinco cenários da colisão da nave MH370 com a água do mar, fim de entender como aconteceu a colisão da aeronave, uma vez que não foram encontrados detritos.
- Foram testados vários ângulos de impacto e isso só se tornou viável graças ao uso de HPC.
- Segundo os experimentos, explicação mais plausível é a entrada de água verticalmente, pois diminui a chance de quebra da aeronave.

Bateria

- Utilização de HPC para testar combinações de elementos através do Electrolyte Genome project.
- Eles conseguem identificar compostos com potencial de uso e que são sintetizados em laboratório para validação.
- Um exemplo é da cientista que quando era estudante precisou de um ano para produzir um composto, enquanto que com HPC conseguem milhares de materiais por semana.

Modelos climáticos

 Melhor entender efeitos individuais da mudança de energia expelida pelo sol, quantidade de material vulcânico na atmosfera, mudança na camada de ozônio devido a atividades humanas. Oceanos, nuvens, ...

"...these are things that couldn't have been done without the high-performance computing capability..."

Previsão de tempestades

- Uma vez que se tenha muitos dados, quanto mais potente o computador, mais coisas é possível calcular e portanto temos melhores previsões.
- Quanto mais rápido o computador, mais rápido é para assimilar e dissipar informação.
- Exemplo: o quanto antes for possível dar informação de uma catástrofe, melhor pode ser a tomada de ação das pessoas envolvidas.

Entretenimento

- Tempo gasto para renderização
- Mais detalhes: cabelo, neve, água, luz, roupas.

Bens de consumo

 Uso de modelagem e simulação para saber como é o comportamento de fluídos e como eles se comportam em embalagens.

- É um problema de simulação;
- Criar um "mundo/clima" dentro de um computador;
- Clima: componentes que interagem (trocam energia)
 entre si: atmosfera, oceano, criosfera, biosfera, litosfera...
- O que é um modelo climático?

uma representação matemática dessas componentes e suas interações;

- Sistema de Eq. de Navier-Stokes* (sistema sem solução analítica);
 - É um problema de \$1'000'000.00!!
- Solução numérica: contínuo -> discreto;

Global mean temperature near-term projections relative to 1986-2005

Fonte: IPCC (2007)

IPCC 2007

Resolução: do contínuo para o discreto

- Espacial: o quão grande será a célula de grade do modelo;
- Temporal: qual é o passo de tempo no modelo;

Geophysical Fluid Dynamics Lab Climate Model

O "tamanho" do problema:

- → 360° longitude x 180° latitude (1° em latitudes médias ~110km);
- → Resolução vertical: **50** camadas (troposfera ~ 15 km de espessura)
 - ♦ 300 metros por camada (grosseiro);
- → Tamanho de celula de 55 km: => 720 x 360;
- → Timestep para um modelo de clima deve ser pelo menos 30 minutos:

100 anos de simulação => ~ **1'753'152** (meia hora)

720 x 360 x 50 x 1753152 = **22.720.849.920.000**

Para simular uma única variável do problema

Cheyenne

Planned production, January 2017 - 2021

- SGI ICE XA cluster
- 4,032 dual-socket nodes
- 18-core, 2.3-GHz Intel Xeon E5-2697v4 processors
- 145,152 "Broadwell" cores total
- 5.34 PFLOPs peak 1.325 TFLOPs per node!
- 313 TB total memory (3,164 64-GB and 864 128-GB nodes)
- >2.45 Yellowstone equivalents

High-Performance Interconnect

- Mellanox EDR InfiniBand
- 9-D enhanced hypercube topology
- 100-Gbps link bandwidth 0.5 μs latency
- 36 TB/s bisection bandwidth
- 224 36-port switches, no director switches

Compilers, Libraries, Debugger & Performance Tools

- Intel Parallel Studio XE Cluster
 - Fortran, C++, performance & MPI libraries, trace collector & analyzer
- Intel VTune Amplifier XE performance optimizer
- PGI CDK (Fortran, C, C++, pgdbg debugger, pgprof)
- Allinea Forge and Performance Reports
- SGI Message Passing Toolkit (MPT)

Vórtices e mudanças climáticas: Petrobras

HPC no futuro

HPC no futuro

- ACM SIGHPC / INTEL Computational & Data Science Fellowship (para mulheres e minorias)
 - \$300.000 por ano durante 5 anos
 - Uma forma para levar HPC para várias áreas, com pessoas com diversas realidades..
- Exascale HPC (Challenge to the future)
 - Capacidade de simulação preditiva
- O grande desafio atualmente é a questão energética.

"... and as the performance increases, the range of problems that could be addressed continuous to grow."

Dúvidas? Sugestões?

Obrigado!

Referências

O que é HPC?

- https://www.techopedia.com/definition/4595/high-perf ormance-computing-hpc
- http://searchenterpriselinux.techtarget.com/definition/h igh-performance-computing
- https://pt.wikipedia.org/wiki/Computa%C3%A7%C3%A
 3o_de_alto_desempenho

HPC Matters

http://sc15.supercomputing.org/media/video-gallery.ht
 ml

Referências

SC Conference

- http://www.supercomp.org/about.php
- https://en.wikipedia.org/wiki/ACM/IEEE_Supercomputing_Conference

TOP500

https://www.top500.org/