

EVOLUTIONARY FOREST An example of classification for celiac desease

(R)evolutionary T(h)ree

AGENDA

- Decision Tree
- Evolutionary Forest
- Comparison of Tree-Based Methods
 - > Simulated Data
 - Celiac Dataset
- Conclusion

DECISION TREE

GOAL

Explore non linear relationship and predict Y

HOW

- 1) Partitioning the space $X=(X_1,...,X_p)$ into M regions $R_m(m=1,...,M)$
- 2) Fitting a model within every region Y| $X \in R_m$

SPLITTING RULE

Top down greedy approach

→ recursive binary splitting

DIFFERENT TREES

REGRESSION TREE	CLASSIFICATION TREE	
Quantitative variable response	Qualitative variable response	
Mean	Mode	
RSS	 Error rate: Misclassification error rate Gini index Cross entropy 	

ALGORITHMS

- Local optimization: CART
- Global optimization: Random Forest
- > Stochastic optimization: Evolutionary Forest

EVOLUTIONARY FOREST

GOAL

Maintain the simple tree structure and offer better performance (in terms of predictive accuracy and/or complexity) than commonly-used recursive partitioning algorithms.

Evolutionary algorithms are inspired by natural Darwinian evolution employing concepts such as inheritance, mutation, natural selection and crossing over.

ALGORITHM

- 1) Initialise the population: let $\theta_n = (v_n, s_n) \in \Theta$ a single tree to be initialised
- 2) At each iteration and for each tree selected:
 - change the tree through 5 variation operators
 - evaluate the new tree through the evaluation function

VARIATION OPERATORS

Mutation operators:

- > Split: select randomly terminal node and assigns randomly generated splitting rule
- Prune: select randomly an internal node and prune it into a terminal one
- Major split rule mutation: chooses randomly an internal node, changes splitting rule (with splitting variables) and split point
- Minor split rule mutation: changes the split point only through the splitting rule

Crossover operator:

Exchanges subtrees between two trees randomly

EVALUATION FUNCTION

EvalFun = Loss Function + Comp(θ)

 $EvalFun_{class} = 2N \cdot MC(f(X,\theta)) + \alpha \cdot M \cdot logN$ $EvalFun_{reg} = 2N \cdot MSE(f(X,\theta)) + 4\alpha \cdot (M+1) \cdot logN$

max accuracy min complexity

METRICS TO COMPARE ALGORITHMS

Sensitivity (Recall) = TP/(TP+FN)

F-measure = $\frac{2*(PRECISION*SENSITIVITY)}{PRECISION+SENSITIVITY}$

Positive predicted value (Precision) = TP/(TP+FP)

SIMULATED DATA

SETTING

- > Diamond DAG
- > n = 500
- Y ~ binomial

ANALYSIS

- Logit Regression
- > CART Model
- Evolutionary Forest
- > Random Forest

LOGIT


```
glm(formula = y \sim X, family = binomial(link = "logit"))
Deviance Residuals:
   Min 1Q Median 3Q Max
-3.1740 -0.4331 -0.0348 0.4244 2.7455
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.2891
                      0.1443 -2.004 0.0451 *
XX1
           -0.2995
                      0.3015
                             -0.993
                                     0.3206
            0.8516
                      0.1712
                             4.976 6.50e-07 ***
XX2
XX3
          1.2472 0.1731 7.207 5.71e-13 ***
                   0.1612 6.306 2.87e-10 ***
            1.0166
XX4
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


CART

EVOLUTIONARY FOREST

RANDOM FOREST

Variable Importance

COMPARISON

	CART	EVTREE	RANDOM FOREST
N. terminal nodes	7	7	
Misclassification	0.18	0.15	0.15
Evaluation function	223.50	190.62	

	CART	EVTREE
Positive predictive value	83%	91%
Sensitivity	75%	73%
F-measure	79%	81%

CELIAC DATASET

55 celiac desease patients from 25 to 52 years old

40 healty subjects from 23 to 42 years old

We join the datasets

Y = 0 if healty 1 if cd patient

49 metabonomics as explanatory variables

EXPLORING THE DATA

LOGISTIC REGRESSION

correlation among explanatory variables

REGULARIZATION

a) Lasso estimator

40 coefficients shrinked to 0 (From 49 to 9 explanatory variables)

b) Ridge estimator

All the coefficients shrinked towards zero

→ more stable estimates

SPLITTING DATASET

- > 70% obs in training set used to build trees
- > 30% obs in test set used to predict

ALGORITHMS

- > CART
- > Evolutionary Forest
- > Random Forest

CART

EVOLUTIONARY FOREST

RANDOM FOREST

COMPARISON

	CART	EVTREE	RANDOM FOREST
N. terminal nodes	5	5	
Misclassification	0.31	0.31	0.24
Evaluation function	81.73	81.73	
		CART	EVTREE
Positive predictive va	alue	75%	72%
Sensitivity		70%	76%
F-measure		72%	74%

COMPARISON (VARIATION OPERATORS)

CONCLUSION

Simulated Data

- Evtree works better than CART
- both did not include X₁ as a split variable

Celiac Data

- CART has higher correct classification percentage
- > Evtree outperforms CART

Evtree

- √ complement to CART
- ✓ global partitioning method

another viewpoint

THANK YOU FOR YOUR ATTENTION!

