

KIV Operační systémy

Souborový systém

- Thread volá jednotné API pro práci se soubory
 - Adresář je jenom speciální typ souboru
- Souborový systém je abstrakce nějakého souvislého bloku paměti, které ho umožňuje organizovat do souborů – tj. do menších, pojmenovaných bloků paměti
- Typicky je blok paměti hw realizovaný diskem, ale může to být i síťový protokol nebo část RAM
- Každý blok paměti může mít jiný souborový systém
- OS musí zpřístupnit jednotné API Virtual File System

6

Virtual File System

- VFS je sice obecný model souborového systému, ale má design podle UNIXu
 - Souborové systémy, které byly navržené podle jiných pravidel, se mu musí přizpůsobit – např. FAT nemá koncept inode
- Hlavní komponenty VFS:
 - superblock info o připojeném souborovém systému
 - inode info o konkrétním souboru
 - file info o konkrétním, otevřeném souboru
 - Dentry info o adresářové položce

- VFS je sice obecný model souborového systému, ale má design podle UNIXu
 - Souborové systémy, které byly navržené podle jiných pravidel, se mu musí přizpůsobit – např. FAT nemá koncept inode
- Hlavní komponenty VFS:
 - superblock info o připojeném souborovém systému
 - inode info o konkrétním souboru
 - file info o konkrétním, otevřeném souboru
 - Dentry info o adresářové položce

Virtual File System

VFS tabulka funkcí

- V OOP bychom nadefinovali abstraktní třídy jednotlivých objektů VFS, a konkrétní implementace souborových systémů by je implementovaly
- Linux má C rozhraní, a v C není OOP
- =>každý VFS má definovanou sadu funkcí, které nad ním lze provádět a instance každého objektu je reprezentována tabulkou ukazatelů na funkce
 - Obdoba VMT
 - Některé generické funkce může poskytnout už OS

Proces a soubory

- Každý proces má svůj pracovní a kořenový adresář
 - Uloženo ve fs_struct ve fs položce PCB
- Otevřené soubory jsou uloženy ve files_struct v položce files PCB
 - Funkce otevření souboru open() vrací index do pole objektů
 file (položka fd ve files)
 - current->files->fd[0] je stdin, 1 stdout a 2 stderr
 - Po uzavření close() nějakého fd, open() vrátí první volný index
 do fd tj. lze takto přesměrovat stdio

Extended File System 2

- ext1 ... ext4, klíčový pro pochopení je ext2
- Návrhovým vzorem odpovídá VFS
- Skládá se z bloků, které seskupuje
 - Velikost bloku je od 1 do 4kB
 - Volitelný počet inode
 - Prealokuje bloky souborům před tím, než jsou použitý
 - První blok je vždy vyhrazen pro boot sector

Struktura ext2

První skupina bloků, tj. 0, je vyhrazena pro jádro OS

superblock

- Obsahuje
 - Celkový počet inode uzlů
 - Velikost souborového systému v blocích
 - Počítadla volných bloků a inode uzlů
 - Velikost bloku
 - Počty bloků a inodů uzlů ve skupině
 - 128-bit id souborového systému
 - Počítadlo připojení
 - A další

group descriptor

- ext2_group_desc Obsahuje
 - Počty bloků bitmap bloků, inode uzlů a prvního inode
 v tabulce bloků
 - Pokud je n-tý bit bitmapy nastaven, daný blok/inode je použit
 - Počty volných bloků, inode uzlů a adresářů v bloku
 - A další

Tabulka inode uzlů

- Jsou to po sobě uložené bloky obsahující záznamy typu ext2_inode, tj. o stejné velikosti
- ext2_inode obsahuje
 - Typ souboru a přístupová práva
 - Identifikátory vlastníka a skupiny
 - Délku v bytech a blocích
 - Časová razítka
 - Pole ukazatelů na datové bloky
 - A další

Typy souborů

- inode.filetype
 - Běžný soubor potřebuje datové bloky, kde ukládá data
 - Adresář speciální typ souboru, jeho datové bloky ukládají jména souborů v adresáři společně s jejich čísly inode uzlů
 - Symbolický odkaz do 60 bytů se odkaz ukládá v inode (tzv. fast symbolic link), jinak také potřebuje datové bloky

ext2 paměťové struktury

- Časté operace nad souborovým systémem vyžadují frekventovaný přístup k některým datovým strukturám
 - => lze je při připojení systému nahrát do paměti, aktualizovat
 je tam a průběžně a při odpojení je nahrát na disk
- OS sice drží část disku v diskové cache, ale proč tam zabírat místo datům něčím, co stejně potřebujeme v mít paměti?

Installable File System

- VFS Windows
- Funguje ve třech režimech
 - nemusí být nutné implementovat všechny tři
 - file system vytváří vlastní souborový systém na diskem
 - Mini Filter rozhraní pro antivirové programy a indexovací služby
 - FS FilterDriver používá se pro úpravu již existujících souborových systémů
 - Zachycuje požadavky a vrací modifikované odpovědi
- Používá IO Request Packet pro komunikaci

10 Request Packet

- Struktura používaná ke komunikaci mezi ovladačem zařízení a OS
- Popisuje požadavky, které se mají se provést
- Dávají se do fronty, kterou si OS může přeuspořádat
- Většinou je vytváří I/O manager podle volání souborových funkcí z uživatelského adresového prostoru
- Ale mohou je vytvářet i další části, např. systém úspory energie bude chtít při nečinnost vypnout disk

Filter Manager

- Aktivuje se při načtení mini filtru
- Připojí se do file system stacku daného disku
 - Respektive zaregistruje se pro I/O operace, které bude chtít filtrovat
- Filtry jsou ve stacku podle priorit, např. antivir má větší prioritu než indexovací či replikovací služba

Fast I/O

- IRP je výchozí mechanismus pro všechno
 - Synchronní i asynchronní přenosy, data v cache i mimo ni, výpadky stránek
- Ale pro synchronní operace nad daty v cache lze použít Fast
 I/O
- Data jsou pak přenesena přímo mezi buffery procesů přes systémovou cache
 - Zkratka, která obejde celý fs a hw stack něco jako loopback na localhostu
- Fast I/O dělá v případě neúspěchu fallback na IRP

- První verze byla nasazena roku 1977 na 8 palcových disketách, v dalších verzích se používá dodnes
 - Digitální kamery, bootování UEFI, USB čitelné různými OS…
- Disk s FAT má bootovací sektor, alokační tabulku souborů, její kopii, kořenový adresář a zbývající adresáře a soubory

Boot Sector	FAT 1	FAT 2 (Duplicate)	Root Folder	Other Folders and All Files
----------------	-------	----------------------	----------------	-----------------------------

FAT – položka adresáře

- Obsahuje
 - Jméno ve formátu 8.3
 - Dlouhá jména řeší VFAT a pozdější verze
 - Atributy
 - Disk, adresář, soubor
 - Skrytý, systémový, jen ke čtení
 - Časová razítka
 - Číslo prvního clusteru, kde začínají data položky adresáře
 - Velikost souboru
 - A další

FAT alokace souborů

- Souborům se při zápisu přiděluje první volný cluster
 - FAT disk je rozdělen na bloky nazývané clustery
 - Clustery nemusí jít po sobě => problém fragmentace
- Každý cluster obsahuje číslo dalšího cluster, který obsahuje další data daného souboru, anebo značku konce souboru

New Technology File System

- Navržen pro Windows NT, aby na rozdíl od FAT a HPFS (fs vyvíjený s IBM pro OS/2) uměl
 - metadata, ACL, journaling, datové streamy, atd.
 - ale hlavně, aby se zvýšila rychlost, spolehlivost a zlepšilo se využití místa na disku
 - Např. od Vista umí i transakce
- Detailní srovnání např. NTFS, ext4, či btrfs je mimo rozsah a je ponecháno na laskavém čtenáři "as needed"

NTFS disk

- Disk naformátovaný s NTFS má následující strukturu:
 - Boot sektor
 - Master File Table
 - Master File Table zóna, do které může MFT růst
 - Systémové soubory
 - Uprostřed disku je kopie (části) MFT
 - Zbývající místo je určeno pro soubory

NTFS's MFT

Každá položka představuje jeden soubor

MFT položka

- Položka se sestává z dvojic <atribut, hodnota>, takže ji
 Ize dynamicky rozšiřovat, a obsahuje
 - Standardní informace
 - Práva, časová razítka, hard-link count (kolik adresářů na soubor ukazuje)
 - Jméno souboru
 - Security descriptor
 - Data
 MFT Entry (Simplified)

Standard Information	File Name	Security Desriptor	Data
----------------------	-----------	--------------------	------

MFT položka souboru

- Každý soubor se skládá alespoň z jednoho data stream
 - type soubor.txt:druhytext
- Pokud jsou celá data souboru větší než místo v MFT,
 pak položka data odkazuje na další místo na disku, kde jsou data uložena
- Dostatečně malé souboru jsou uloženy přímo v MFT
 - Viz fast symbolic link u ext2

MFT data pointer

- Pointery na data jsou pointery na posloupnost logických clusterů na disku (extent)
- Každá posloupnost má
 - VCN virtual cluster number, první cluster souboru
 - LCN logical cluster number, první logický cluster jedné sekvence
 - Délka v počtu clusterů
- MFT obsahuje list položek popisujících extent
 - Unix-like používá strom

MFT Entry (with extents)

MFT položka adresáře

- Adresář je speciální soubor obsahující seznam souborů
- Adresář má jméno a referenci
 - Reference je pár <číslo souboru, sekvenční číslo>
 - Číslo souboru je offset do MFT
 - Něco jako číslo inode uzlu ve VFS
- Položka adresáře obsahuje seznam souborů v B+ stromu
 - Jméno souboru je jak v položce adresáře, tak i v MFT
- Pokud je záznam adresáře dostatečně malý, je v MFT

MFT položka adresáře

MFT Directory Entry (Everything Fits)

Standard Information	File Name	Security Desriptor	Index		
Standard Information		Security Destriptor	file5	flle10	file15

MFT Directory Entry (with extents)

