Analyse et Traitement de l'Information

Probabilities and Statistics
High-dimensional Data

Data modelling

Representation spaces

Model and data analysis

Data volume and dimension

Complexity and performance

Representation spaces

Characteristics / features

Measure and topology

Space partition

Statistical data analysis

Representation spaces

Data types:

- Scientific data, industrial, financial, etc
- Multimedia: text, audio, video
- $C=\{d_1,d_2,...,d_N\}$ a document collection
 - For each document: extract features
 - $-d_i$ is represented by a vector of M charactéristics x_i in R^M
 - $-x_i$ is the machine view of d_i

Examples

- Images: x_i is a histogram: 128 colors: M=128
- Text: x_i measure occurrence of every word in the vocabulary: M=50'000

Approach

Vectors metric weight topologis countinuity

C, a collection of documents, représented par vectors (points) in a vector space

This is a population in R^M

- To index (organize) this collection, we must understand its structure
- → We look for geometric properties of this population
 - → Notions of distance, neighborhood
- → We study the statistical properties of this population
 - →density, generative law

Representation spaces

$$C = \{x_1, x_2, ..., x_N\}$$
 $x_i \in R^M$

- We want to induce an order over C, some base structure
 - We define a topology over the representation space

- →Study neighborhoods
- → Define a distance

Norm and distances

$$C = \{x_1, x_2, ..., x_N\}$$
 $x_i \in R^M$

- Norm
 - $\|x\|$ norm of x, vector from R^M
 - $||x||^2 = \langle x, x \rangle = x^T x$ if the norm arises from a inner product

Exple: $\langle x, y \rangle = \sum_{i=1}^{M} x_i . y_i \implies ||x|| = \sqrt{\sum_{i=1}^{M} x_i^2}$

Distance (metric)

$$d: C \times C \to R^+$$

$$d(x, x) = 0 \quad \forall x$$

$$d(x, y) = d(x, y) \quad \forall x, y$$

$$d(x, z) \le d(x, y) + d(y, z) \quad \forall y$$

Norm and distance

$$d(x,y) = ||x-y||$$

Norms and distances

$$C = \{x_1, x_2, ..., x_N\}$$
 $x_i \in R^M$

- Examples of norms (distances)
 - Minkowsky norms (norms L_p)

$$\|x\|_p = \left(\sum_{i=1}^M x_i^p\right)^{\frac{1}{p}}$$

- $p=1 : norm L_1 ||x||_1 = \sum_{i=1}^{m} |x_i|$
- p=2: norm L₂ (Euclidean)
- $p = \infty$: norm $L_{\infty} ||x||_{\infty} = \max_{i} (|x_{i}|)$
- Unit Ball: given distance d(.,.)

$$B_d(x) = \{ y \text{ t.q } d(x, y) \le 1 \}$$
 (closed)

$$B_d(x) = \{ y \text{ t.q } d(x, y) < 1 \}$$
 (open)

Norms and distances

Generalised Euclidean Distance

$$d_G(x, y) = \sqrt{\sum_{i=1}^{M} \frac{1}{w_i} (x_i - y_i)^2}$$

Mahalanobis Distance

Alahalanobis Distance

$$A \in R^{MxM}$$

psd $(x^T Ax > 0; \forall x \neq 0)$

$$d_A^2(x, y) = (x - y)^T A^{-1}(x - y)$$

si
$$A = Id \implies d_A = d_2$$

si
$$A = \operatorname{diag}(w_i) \implies d_A = d_G$$

Norms and distances

Hausdorff Distance

X, Y subsets of C

$$d_H(X,Y) = \max(\sup_{y \in Y} \inf_{x \in X} d(x,y), \sup_{x \in X} \inf_{y \in y} d(x,y))$$

Nearest neighbors

One of the most frequently encountered problems in data analysis

- Given a query vector $q \in R^M$
- We look for its neighborhood V

K-NN (nearest neighbor) $k \in N^*$

$$V = \left\{ x_{i_1}, x_{i_2}, \dots, x_{i_k} \text{ t.q } d(q, x_{i_l}) \le d(q, x_j) \quad \forall j \notin \{i_1, \dots, i_k\} \right\}$$

 x_{i_1} is the closest k-neighbor

 x_{i_k} is the farthest k-neighbor

 ε -NN ε >0, fixed

$$V = \{x_{i_1}, x_{i_2}, ..., x_{i_k} \text{ t.q } d(q, x_{i_l}) \le \varepsilon \quad \forall k \}$$

Space partitioning

Voronoi Diagram

 $C = \{x_1, x_2, ..., x_N\}$ $x_i \in R^M$

 c_i : Voronoi cell of point x_i

$$c_i = \{ y \in \mathbb{R}^M \quad \text{t.q.} \quad d(x_i, y) < d(x_j, y) \quad \forall j \neq i \}$$

Delaunay Graph

D=(C,E): Points x_i are the vertices of D (x_i,x_j) is an edge iff c_i and c_j share a side Edges connect neighboring cells

Given experience *E*, *W* is the set of possible outcomes

A specific outcome of E is w from WAn event $A \subset W$ is a subset of W (an assertion)

Examples:

```
E=« roll a dice » (experience)

W={1,2,3,4,5,6}

w=2

A=« result is even » = {2,4,6}
```

Probability: function *P* measuring the odds of an event occurring

P: probability function

$$P(W) = 1$$

$$P(\phi) = 0$$

$$0 \le P(A) \le 1 \quad \forall A$$

$$P(\overline{A}) = 1 - P(A)$$

$$P(A) \le P(B) \quad \text{si } A \subset B$$

$$P(A \cup B) = P(A) + (PB) - P(A \cap B)$$

$$P(\bigcup_{i} A_{i}) = \sum_{i} P(A_{i}) \text{ if } A_{i} \text{ are disjoint events}$$

$$\text{if } 0 \le p_{i} \le 1 \ \forall i \ \text{ and } \sum_{i} p_{i} = 1, \ p_{i} \text{ is probaility of event } w_{i} \in W$$

$$\text{then } P(A) = \sum_{w_{i} \in A} p_{i}$$

$$\text{if } p_{i} = \text{cste } \forall i \ \text{ (equiprobable events)} \ P(A) = \frac{|A|}{|W|}$$

Exple: P(``area result is odd in a fair dice ")=3/6=0.5

Joint probability

$$P(A \cap B) = P(A, B) = P(B \cap A) = P(B, A)$$

Conditional Probability

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A, B)}{P(B)}$$

Independent events

- if
$$P(A \cap B) = P(A)P(B)$$
 then
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A)$$

Bayes Formula

$$P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)}$$

Random variable (r.v) – formal definition

A measurable function

 $X: W \to E$ with E measurable (classically $E \subseteq \Re$)

- ⇒It is a way to associate labels (which can be structured eg in subsets or intervals) to every event in W
- ⇒We can associate the odd of realization to any set of labels as a measure of their corresponding part

$$P(X = x) = P(X^{-1}(x)) \quad \forall x \in E$$

Exples:

Roll a fair dice: P(X="5") = P("face labeled 5") = 1/6

Toss 2 fair coins: P(X="Head,Tail")

Random variable (r.v) – informal definition

An event A (subset of W) may occur or not. This is translated into a logical proposition that may be either True or False

Eg.: A=« result is even » \rightarrow "result is even" = True

A random variable is translated into a logic proposition that has probability p to be True and 1-p to be False

If the random variable has multiple values, its probability is computed as "one-against-all"

Exple:

Roll a dice:
$$P((X="5")=True)=p=1/6$$

 $\rightarrow P((X="5")=False)=1-p=1-1/6=5/6$

Hence:

A random variable is a variable that can take some values with certain probabilities

Probability law of a real r.v.

The probability law of X, P_x is defined by

$$P_X(x) = P(X^{-1}(x)) = P(X = x) \quad \forall x \in E$$

 \rightarrow It is the histogram of X

Discrete r.v: E discrete (exple: dice, E={1,2,3,4,5,6})

$$P_{X}(x) = P(X = x) \quad x \in E$$

$$P_X(B) = \sum_{x \in B} P_X(x)$$

$$0 \le P_X(x) \le 1$$
 ; $\sum_{x \in S} P_X(x) = 1$

Continuous r.v: E continuous (exple: Temperature, E=[-10,50])

$$P_{x}(x) = 0$$
; $P_{x}([x, x + dx]) \neq 0$ $x \in E$

Probability density

$$f(x) = P_X(X \in [x, x + dx]).dx$$
; $f(x) \ge 0$; $\int_R f(x)dx = 1$

$$P_X(B) = \int f(x) dx$$

Laws for r.v

Partition function F

Increasing function

$$F: R \to [0,1]$$
$$x \to P(X \le x)$$

- Right-continuous function
- $\lim_{x \to -\infty} F(x) = 0$; $\lim_{x \to +\infty} F(x) = 1$

Laws for r.v

Discrete r.v

$$F(x) = \sum_{y \in E; y \le x} P_X(y)$$

$$P(a \le X \le b) = F(b) - F(a)$$

$$P(X > x) = 1 - F(x)$$

Continuous r.v

$$f_X(a) = \frac{\partial F_X(x)}{\partial x} \quad \text{at } a$$

$$F(a) = \int_{-\infty}^{a} f(x) dx$$

$$P(a \le X \le b) = F(b) - F(a) = \int_{a}^{b} f(x)dx$$

$$P(X > a) = P(X \ge a) = \int_{a}^{+\infty} f(x)dx = 1 - F(a)$$

Expectation

discrete r.v

$$E(X) = \sum_{x \in E} x \cdot P_X(x)$$

$$Y = g(X)$$

$$E(Y) = \sum_{x \in E} g(x) P_X(x)$$

$$E(X) = \int_{R} x.f(x)dx$$
$$Y = g(X)$$
$$E(Y) = \int_{R} g(x).f(x)dx$$

$$E(a) = a$$
 $E(aX + bY) = aE(X) + bE(Y)$
 $E(XY) = E(X)E(Y)$ if X and Y are indepedent

Variance

$$V(X) = \sigma_X^2 = E((X - E(X))^2)$$

$$V(X) = E(X^2) - (E(X))^2$$

$$V(X) \ge 0 \qquad \sigma_X \ge 0$$

$$V(aX + b) = a^2V(X)$$
Example 1: $\sigma_X = \sqrt{V(X)}$

$$V(X) = 0 \Rightarrow X = \text{cste}$$

Moments

Moments (non centered) of order *k*

$$m_k = (E(X^k))$$
 $m_1 = E(X)$

Moments (centered) of order k

$$\mu_{k} = E((X - E(X)^{k}))$$
 $\mu_{1} = 0$
 $\mu_{2} = Var(X)$

Symmetric law: $\mu_{2k+1} = 0 \quad \forall k \ge 0$

Asymmetry (skewness)

Flatenning (kurtosis)

$$\gamma_1 = \frac{\mu_3}{\sigma^3} \qquad \qquad \gamma_2 = \frac{\mu_4}{\sigma^4}$$

Chebichev inequality

- Relationship between the standard deviation and the dispersion around the
 - expectation

$$P(|X - \mu| > n\sigma) \le \frac{1}{n^2}$$

- $n = \sqrt{2}$: at least half of the values are in $[\mu \sqrt{2}\sigma, \mu + \sqrt{2}\sigma]$
- Gaussian N(0,1): $P(|X| < 3) \approx 0.9973$
- Normalized and centered variable:

$$X^* = \frac{X - E(X)}{\sigma_X}$$
 ; $E(X^*) = 0$; $\sigma_{X^*} = 1$

Entropy

The Entropy of a discrete r.v X is

$$H(X) = E(-\ln(P(X))) = E(I(X))$$
 where $I(X) = -\ln(P(X))$

I(X) estimate the information content in X (in bits)

$$H(X) = \sum_{i=1}^{n} P(x_i).I(x_i) = -\sum_{i=1}^{n} P(x_i).\ln(P(x_i))$$

Entropy vs bias of a coin

Pairs of r.v

Discrete: $P({X = x} \cap {Y = y})_{x \in E, y \in F}$

Continuous: $f(x, y)dxdy = P(\lbrace X \in [x, x + dx[\rbrace \cap \lbrace Y \in [y, y + dy[\rbrace)))$

Marginal law

Discrete:
$$P({X = x}) = \sum_{y \in F} P(X = x, Y = y)$$

Continuous:
$$f(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

Pairs of r.v

Conditional laws

$$P(Y = y \mid X = x) = \frac{P(X = x, Y = y)}{P(X = x)} \quad \forall y \in F$$
$$f(y \mid x) = \frac{f(x, y)}{f(x)} \quad \forall y \in R$$

Covariance

$$cov(X,Y) = E((X - E(X))(Y - E(Y)))$$

$$\Rightarrow cov(X,Y) = E(XY) - E(X)E(Y)$$

$$\Sigma(X,Y) = \begin{pmatrix} V(X) & cov(X,Y) \\ cov(X,Y) & V(Y) \end{pmatrix}$$

$$\rho(X,Y) = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y}$$

$$\Rightarrow \rho(X,Y) = \operatorname{cov}(X^*,Y^*)$$

$$-1 \le \rho(X,Y) \le 1$$

$$|\rho(X,Y)| = 1 \implies Y = aX + b$$

$$\rho(X,Y) = 0 \implies \text{cov}(X,Y) = 0$$

$$\Rightarrow V(XY) = V(X)V(Y)$$
 $E(XY) = E(X)E(XY)$

Usual discrete laws

$$C_n^x = \frac{n!}{x!(n-x)!}$$

Bernoulli:

— Draw from an urn containing a proportion of p white balls and q=1-p red balls. $X=\infty$ number of red balls »

$$x \in \{0,1\}$$
 $Ber(p): P(X = x) = p^{x}q^{1-x}$ $x \in \{0,1\}$ $E(X) = p$ $V(X) = pq$

Uniform

fair dice with n faces

$$U(n): P(X = x) = \frac{1}{n}$$
 $x \in \{1,...,n\}$ $E(X) = \frac{n+1}{2}$ $V(X) = \frac{n^2 - 1}{2}$

Binomial

n draws with return from a Bernoulli urn

$$Bi(n): P(X = x) = C_n^x p^x q^{n-x} \quad x \in \{0,1\} \quad E(X) = np \quad V(X) = nqp$$

Poisson

Number of people at a bus stop after time λ

$$P(\lambda): P(X = x) = e^{-\lambda} \frac{\lambda^2}{x!} \quad x \in N \quad E(X) = V(X) = \lambda$$

Usual continuous laws

Uniform

$$U([a,b]): f(x) = \frac{1}{b-a} 1_{a \le x \le b} \quad E(X) = \frac{a+b}{2} \quad V(X) = \frac{(b-a)^2}{12}$$

$$F(X) = \begin{cases} 0 & si \quad x < a \\ \frac{x - a}{b - a} & si \quad a \le x \le b \\ 1 & si \quad x > b \end{cases}$$

Normal

$$N(\mu,\sigma): f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} \quad E(X) = \mu \quad V(X) = \sigma^2$$

$$\mu = 0$$
; $\sigma = 1 \Rightarrow F(0) = \frac{1}{2}$ $F(x) < \frac{1}{2} \Rightarrow x < 0$ $F(-x) = 1 - F(x)$

$$P(|X| < x) = 2F(x) - 1$$

$$P(|X| < 3) \cong 0.9973$$

$$N_D(\mu, \Sigma): f(x) = \frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$

Usual continuous laws

• Chi-2 $X \propto Z = \sum_{i=1}^{k} X_{i}^{2}$ $X_{i} \propto N(0,1)$; E(X) = k V(X) = 2k

$$F(x) = \frac{\gamma(k/2, x/2)}{\Gamma(k/2)}$$

$$\chi^{2}(k): f(x) = \frac{1}{2^{k/2} \Gamma(k/2)} x^{k/2-1} e^{-x/2} 1_{x \ge 0} \quad k \in N^{\frac{1}{2}}$$

Exponential

1.5
1.4
1.3
$$\lambda = 0.5$$
 $\lambda = 1.0$
 $\lambda = 1.5$

1.1
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0
1
2
3
4
5

$$E(X) = \frac{1}{\lambda}$$
$$V(X) = \frac{1}{\lambda^2}$$

$$Exp(\lambda): f(x) = \lambda e^{-\lambda x} \quad \lambda > 0$$

$$F(x) = 1 - e^{-\lambda x}$$

Gamma function (Γ)

Extension of factorial numbers

 $\Gamma(z) = \int_{0}^{\infty} t^{z-1} e^{-t} dt$

$$\Gamma(n) = (n-1)!$$

To be read in tables or as a function in libraries

Y = gamma(X) in Matlab

Sampling a distribution

Inversion theorem: F partition function

$$F^{-1}(y) = \inf\{x \in R \quad s.t. \quad F(x) = y\}$$
 U uniform over [0,1]

- (a) The partition function of $X \sim F^{-1}(U)$ is F
- (b) If F is continuous over R and X has partition function F, U=F(X) is uniformly distributed over [0,1]
- Sampling
 - Sample *n* instance u_1 ... u_n from a [0,1] uniform distribution
 - Compute $x_i = F^{-1}(u_i)$: these are n samples of X of law f
- Discrete case

$$(p_i = P(X = x_i))_{i=1...n}$$
 ; $s_k = P(X \le x_k) = \sum_{i=1}^k p_i$; $F(u) = \sum_k s_{k-1} 1_{x_{k-1} \le u \le x_k}$

if
$$u_1...u_n$$
 uniform samples over [0,1] $x_k^* = F^{-1}(u_i) = \sum_{k=1}^n x_k 1_{s_{k-1} \le u_i \le s_k}$

Sampling a distribution

Sampling a distribution

In practice F⁻¹ is hard to compute

Distribution			
Densité	F(x)	$X = F^{-1}$	Forme simplifiée
Exponentielle (λ)			
$\lambda e^{-lx}, x \ge 0$	$1 - e^{-lx}$	$-\frac{1}{\lambda}\ln(1-U)$	$-\frac{1}{\lambda}\ln(U)$
Cauchy $^4(\sigma)$			
$\frac{\sigma}{\pi(x^2+\sigma^2)}$	$\frac{1}{\pi} + \frac{1}{\pi} Arc \tan\left(\frac{x}{\sigma}\right)$	$\sigma \tan \left(\pi \left(U - \frac{1}{2}\right)\right)$	$\sigma \tan (\pi U)$
Pareto $(a,b), b>0$			
$\frac{ab^a}{x^{a+1}}, w \ge b > 0$	$1-\left(\frac{b}{x}\right)^a$	$\frac{b}{(1-U)^{1/a}}$	$\frac{b}{(U)^{1/a}}$

For sampling the Gaussian distribution, we can use the Central Limit Theorem (later)

Weak Law of Large Numbers (WLLN)

X a r.v such that $E(X)=\mu$ and $V(X)=\sigma^2$

 $(X_1,...,X_n)$ populations, $(x_1,...,x_m)$ samples

then

$$\forall n \in N^* \quad \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$$

is an \ll estimator \gg of E(X)

$$\lim_{n\to\infty} P(\left|\overline{X} - \mu\right| \ge \varepsilon) = 0 \ \forall \varepsilon > 0 \qquad E(\overline{X}) = \mu \qquad V(\overline{X}) = \frac{\sigma^2}{n}$$

Sampling an exponential distribution

m samples of uniform law U([0,1])

•
$$X = -\frac{1}{\lambda} \ln(U)$$
 $\lambda = 3$

Central Limit Theorem (CLT)

X a r.v such that $E(X)=\mu$ and $V(X)=\sigma^2$

 $X_1,...,X_n$ r.v.s following the same law as X

$$\forall n \in N^*$$
 $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ $Z_n = \frac{\sqrt{n}}{\sigma} (\overline{X} - \mu)$

then the law of Z_n converges to the Normal distribution N(0,1)

$$\Rightarrow \lim_{n \to \infty} P(a < Z_n < b) = \int_a^b \frac{1}{\sigma \sqrt{2}} e^{-\frac{x^2}{2}} dx$$

Sampling the Normal distribution

- m samples of n uniform laws U([-0.5,0.5])
- Average the *n* laws: *m* samples of \overline{X}

Interpretation

- X r.v of which μ is to be estimated
 - Exple: « Diameter »
- X_i population
 - Exple: « meter i measuring apples »
- x_i: results of the measure
 - Exple: « measured diameters »
- $\rightarrow \overline{X}$ (the average of meters) converges towards X (by the WLLN)
- The CLT tells us that the error on μ (Z_n) follows a Normal law N(0,1)
 - Z_n is a r.v representing the average error made by \overline{X}

$$\overline{\mu} = \mu \pm Z_n$$

Density estimation

 $\{x_1, x_2, ..., x_n\}$ *n* samples of a unknown probability density function *f*. We want to estimate the structure of *f*

$$\hat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - x_i}{h}\right)$$
 K Kernel function (Noyau)

- K(x): Symmetric Kernel, integrating to 1
- h>0 : Bandwith (Bande passante)

Exple:

Gaussian Kernel

$$K(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$$

• Pb: How to select h?

High dimensionality

$$C = \{x_1, x_2, ..., x_N\}$$
 $x_i \in R^M$

- M is the data dimension
 - Measurements, features, ...
- C is a sample of a M-dimensional space
- → We wish to study what happens when M increases
 - Influence on geometric notion (distances, k-NN)
 - Influence on statistical notions
- → « Curse of dimensionality »
 - → Richard Ernest Bellman (1961). Adaptive control processes: a guided tour. Princeton University Press.
 - → « malédiction de la dimensionnalité »
 - → but also "blessing of dimensionality"

High dimensions

Imagine a population following a distribution in interval $[a,b]^M$

Each dimension is quantized into *k bins*

To estimate the prob law we want *n* samples in

each bin in average

• $M=1: N^{k}.n$

• $M=2: N^n.k^2$

• M: N~n.k^M

k=10, n=10, $M=6 => N \sim 10'000'000$ samples

Data sparsity

If we fixe the number N of samples:

•
$$M=1$$
: $n \sim \frac{N}{k}$ $E(P(x_i \in bin_k)) \sim \frac{N}{k}$

• • •

M

$$n \sim \frac{N}{k^M}$$
 $E(P(x_i \in bin_k)) \sim \frac{N}{k^M}$

Structure of a sample

Given S the hypersphere centred at 0 of radius r included in the cube $[-r,+r]^M$

We draw N samples uniformly distributed in $U([-r,+r]^M)$

We can compute the proportion of these samples

falling into S

$$V_{S}(M) = \frac{2r^{M}\pi^{M/2}}{M\Gamma(M/2)}$$
 $V_{C}(M) = (2r)^{M}$

ratio =
$$\frac{V_S(M)}{V_C(M)} = \frac{\pi^{M/2}}{M 2^{M-1} \Gamma(M/2)} \xrightarrow{M \to \infty} 0$$

Interpretation

In high dimensions (M large – in fact > 10)

- The (relative) volume of the sphere goes to 0
- All samples are in the « corners » of the cube
- All samples « go away from the center »

High-dimensional k-NN

$\Delta_{\rm max}$ and $\Delta_{\rm min}$ distances of farthest and closest kneighbors, respectively. One can prove:

Thm [Beyer et al, 1999]

if
$$\lim_{M \to \infty} V \left(\frac{\|X_M\|_k}{E(\|X_M\|_k)} \right) = 0$$
 then $\lim_{M \to \infty} P \left(\frac{(\Delta_{\max} - \Delta_{\min})}{\Delta_{\min}} < \varepsilon \right) = 1 \quad \forall \varepsilon > 0$

$$\frac{(\Delta_{\max} - \Delta_{\min})}{\Delta_{\min}} \quad \stackrel{M \to \infty}{\to}_{P} \quad 0$$

- ⇒ Neighboring structures are no longer relevant in high dimensions
 - \Rightarrow ε-NN: all points are neighbors
 - \Rightarrow k-NN: random choice

Beyer, K., Goldstein, J., Ramakrishnan, R., and Shaft, U. (1999). When is "nearest neighbor" meaningful? In Proceedings of the 7th International Conference on Database Theory, pages 217–235

Gaussian distribution

Given a Gaussian distribution in M dimensions $N(\mu_M, \Sigma_M)$, we measure the density in the surface at radius r

WLOG we use the centered scaled distribution $N(0, Id_M)$

Gaussian distribution

$$X = (X_1, ..., X_M) \quad X_i \sim N(0,1)$$

estimation of
$$P(X = (r, ..., r)^T)$$

$$||X||_2^2 = \sum_{i=1}^M X_i^2 = M.r^2$$

$$\Rightarrow r^2 = \frac{1}{M} \sum_{i=1}^{M} X_i^2 \sim \frac{1}{M} \chi^2$$

$$\Rightarrow E(r^2) = \frac{1}{M}M = 1 \qquad V(r^2) = \frac{2M}{M^2} = \frac{2}{M}$$

$$E(aX + b) = aE(X) + b$$

$$V(aX + b) = a2V(X)$$

$$E(\chi^{2}) = k \quad ; \quad V(\chi^{2}) = 2k$$

Gaussian distribution

Figure 1.5: Plot of probability mass versus dimension. Plot shows the volume of density inside 0.95 of a standard deviation (yellow), between 0.95 and 1.05 standard deviations (green), between 1.05 and 2 standard deviations (white)

Empirical evidence (10'000 samples)

Empirical evidence (10'000 samples)

Empirical evidence (10'000 samples)

Hubs

 We want to characterise the number of times a sample appears in the k-NN of another sample:

$$P_{ik}(x) = \begin{cases} 1 \text{ if } x \in \text{NN}_k(x_i) \\ 0 \text{ otherwise} \end{cases}$$

$$N_k(x) = \sum_{i} P_{ik}(x)$$

The distribution of N_k is skewed to the left. A small number of samples appear in the neighbourhood of many samples

20-NN M=100 (1000 samples) (50bins)

Hubness

Hubs: centering

When using the cosine distance as similarity measure

 $d_{\cos}(x, y) = 1 - \frac{x^T y}{\|x\| \|y\|}$

Centering the data helps reducing the hubness

I Suzuki et al. Centering Similarity Measures to Reduce Hubs. 2013 Conf. on Empirical Methods in NLP.

Dimension reduction

- Space filling curves
- PCA
- FastMap
- IsoMap
- Random Projections (lemma)

SPACE FILLING CURVES

Space-filling curves

• Definition:

 A continuous curve which passes through every point of a closed n-cell in Euclidean nspace Eⁿ is called a *space filling curve (SFC)*.

Application of SFC

- Mapping multi-dimensional space to one dimensional sequence
- Applications in computer science:
 - Database multi-attribute access
 - Image compression
 - Information visualization
 - **—**

Categories of SFC

- Non-recursive
 - Z-Scan Curve
 - Snake Scan Curve
- Recursive
 - Hilbert Curve
 - Peano Curve
 - Gray Code Curve

Non-recursive Space Filling Curves

Z-Scan Curve

Snake Scan Curve

Recursive Space Filling Curves

Hilbert Curve (a) (b) (c) **Gray Code Curve** (a) (b) (c) Peano Curve (c) (a) (b)

Properties of SFCs

- Coherent in Continuity
- Clustering Property

Direction Preserving

3D SFC

N-dimensional algorithm:

A.R. Butz (April 1971). "Alternative algorithm for Hilbert's space filling curve.". *IEEE Trans. On Computers*, **20**: 424–42.

SFC in Information Visualization

- Example Data
 - Color (R, G, B: [0, 255])
 - Data with obvious geometric pattern
 - 4D Hyper Sphere
 - Data without obvious geometric pattern
 - Iris flowers (5 attributes, 3 classes)
- Example SFC
 - Z-Curve
 - Hilbert Curve

Visualizing 4D Hyper-Sphere Surface

Z-Curve

Hilbert Curve

The Visualization of Iris Flowers

• Z-Curve

Hilbert Curve

The Visualization of Iris Flowers

Extended Hilbert Curve

Stephane.Marchand-Maillet@unige.ch – University of Geneva – Computer Science – ATI Probas-85