MAC0344 Arquitetura de Computadores Lista de Exercícios No. 4

Mateus Agostinho dos Anjos NUSP 9298191

6 de Outubro de 2019

 ${\bf 1}$ - Começamos o código de Hamming definindo os valores de x_1 até $x_{11}.$

$$x_1$$
 = a determinar = ?
 x_2 = a determinar = ?
 x_3 = m_1 = 1
 x_4 = a determinar = ?
 x_5 = m_2 = 1
 x_6 = m_3 = 0
 x_7 = m_4 = 0
 x_8 = a determinar = ?
 x_9 = m_5 = 1
 x_{10} = m_6 = 0
 x_{11} = m_7 = 1

Agora calculamos x_1 , x_2 , x_3 , x_4 da seguinte forma: (\oplus representa a operação "ou exclusivo" (XOR))

$$\begin{array}{rcl}
x_1 & = & x_3 \oplus x_5 \oplus x_7 \oplus x_9 \oplus x_{11} \\
x_2 & = & x_3 \oplus x_6 \oplus x_7 \oplus x_{10} \oplus x_{11} \\
x_4 & = & x_5 \oplus x_6 \oplus x_7 \\
x_8 & = & x_9 \oplus x_{10} \oplus x_{11}
\end{array}$$

Existe uma forma simples para chegar às fórmulas, basta seguir os passos:

- 1. escrever os números de 1 a 11 em binário.
- 2. x_1 é calculado utilizando os números que possuem o bit 2^0 igual a 1.
- 3. x_2 é calculado utilizando os números que possuem o bit 2^1 igual a 1.
- 4. x_3 é calculado utilizando os números que possuem o bit 2^2 igual a 1.
- 5. x_4 é calculado utilizando os números que possuem o bit 2^3 igual a 1.

Substituindo os valores na fórmula, chegamos em:

$$\begin{array}{rcl} x_1 & = & 1 \oplus 1 \oplus 0 \oplus 1 \oplus 1 \\ x_2 & = & 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 \\ x_4 & = & 1 \oplus 0 \oplus 0 \\ x_8 & = & 1 \oplus 0 \oplus 1 \end{array}$$

Depois de efetuar os cálculos acima, chegamos em:

$$\begin{array}{rcl}
 x_1 & = & 0 \\
 x_2 & = & 0 \\
 x_4 & = & 1 \\
 x_8 & = & 0
 \end{array}$$

Portanto o código de Hamming $x_1x_2x_3x_4x_5x_6x_7x_8x_9x_{10}x_{11}$ para o dado $m_1m_2m_3m_4m_5m_6m_7=1100101$ será:

$$\begin{array}{rcl} x_1 & = & 0 \\ x_2 & = & 0 \\ x_3 & = & 1 \\ x_4 & = & 1 \\ x_5 & = & 1 \\ x_6 & = & 0 \\ x_7 & = & 0 \\ x_8 & = & 0 \\ x_9 & = & 1 \\ x_{10} & = & 0 \\ x_{11} & = & 1 \end{array}$$

2 -

Do enunciado, temos:

Identificando se há erro:

Para detectar erros primeiro devemos calcular k_1, k_2, k_3, k_4 .

Se $k_1 = k_2 = k_3 = k_4 = 0$, então não há erros.

Se houver erro, então o erro estará na posição codificada por $k_4k_3k_2k_1$ na representação binária.

Portanto devemos calcular k_1, k_2, k_3, k_4 da seguinte forma:

$$\begin{array}{lll} k_1 & = & y_1 \oplus y_3 \oplus y_5 \oplus y_7 \oplus y_9 \oplus y_{11} \\ k_2 & = & y_2 \oplus y_3 \oplus y_6 \oplus y_7 \oplus y_{10} \oplus y_{11} \\ k_3 & = & y_4 \oplus y_5 \oplus y_6 \oplus y_7 \\ k_4 & = & y_8 \oplus y_9 \oplus y_{10} \oplus y_{11} \end{array}$$

Substituindo os valores temos:

$$k_1 = 0 \oplus 1 \oplus 0 \oplus 0 \oplus 1 \oplus 1$$

$$k_2 = 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1$$

$$k_3 = 1 \oplus 0 \oplus 0 \oplus 0$$

$$k_4 = 0 \oplus 1 \oplus 0 \oplus 1$$

Calculando k_1, k_2, k_3, k_4 , chegamos em:

$$k_1 = 1$$
 $k_2 = 0$
 $k_3 = 1$
 $k_4 = 0$

Portanto, o bit y_5 (0101) está errado, pois tem o valor 0 e deveria ser 1.