# Київський національний університет імені Тараса Шевченка Факультет комп'ютерних наук та кібернетики

# Лабораторна робота №1 з дисципліни "Проблеми багатозначного аналізу"

на тему:

"ДОСЛІДЖЕННЯ СУБДИФЕРЕНЦІАЛА ФУНКЦІЇ ТА РОЗВ'ЯЗАННЯ ЗАДАЧІ НЕГЛАДКОЇ ОПТИМІЗАЦІЇ "

Виконала студентка групи ПМ-1 Чернорай Владислава Олегівна

# **3MICT**

| ПОСТАНОВКА ЗАДАЧІ          | 3  |
|----------------------------|----|
| ОПИС МАТЕМАТИЧНОЇ МОДЕЛІ   | 3  |
| ОПИС ПРОГРАМНОЇ РЕАЛІЗАЦІЇ | 5  |
| РЕЗУЛЬТАТИ                 | 7  |
| висновок                   | 12 |
| ПЕРЕЛІК ДЖЕРЕЛ ПОСИЛАННЯ   | 12 |

#### ПОСТАНОВКА ЗАДАЧІ

Задана функція

$$egin{aligned} f\left(x_{1},\,x_{2}
ight) \,=\, x_{1}^{2} \,+\, 4x_{2}^{2} \,+\, 2x_{1}x_{2} \,+\, |2x_{1}-x_{2}-1| \,+\, |x_{1}+2x_{2}+1| \ &x=\left(x_{1},\,x_{2}
ight) \in \mathbb{R}^{2} \end{aligned}$$

Знайти субдиференціал функції f(x), проаналізувати його властивості як багатозначного відображення. Побудувати графік субдиференціалу функції f(x) або відобразити його характеристики. Розв'язати задачу

$$f(x) \rightarrow min$$

застосовуючи один з числових методів негладкої оптимізації.

#### ОПИС МАТЕМАТИЧНОЇ МОДЕЛІ

# 1. Знаходження субдиференціала функції f(x)

Знайдемо субдиференціал [1] заданої функції, яка містить абсолютні значення. Спершу переконаємось у його існуванні.

Функція, наведена в умові, є опуклою, оскільки вона складається із суми опуклих функцій. Для будь-якої опуклої функції, визначеної на відкритій опуклій множині, завжди існує принаймні один субградієнт у кожній точці цієї множини, що означає непорожність субдиференціала.

Оскільки функція включає абсолютні значення, обчислення субдиференціала виконується через розрахунок частинних похідних кожного компонента з урахуванням випадків негладкості.

1.1. Обчислення частинних похідних для гладкої частини:

$$egin{split} rac{\partial (x_1^2+4x_2^2+2x_1x_2)}{\partial x_1} &= 2x_1+2x_2 \ rac{\partial (x_1^2+4x_2^2+2x_1x_2)}{\partial x_2} &= 8x_2+2x_1 \end{split}$$

1.2. Частинні похідні для негладких компонентів:

$$rac{\partial h_1}{\partial x_1} = egin{cases} 2 & ext{, якщо } 2x_1 - x_2 - 1 > 0, \ -2 & ext{, якщо } 2x_1 - x_2 - 1 < 0, \ [-2,2] & ext{, якщо } 2x_1 - x_2 - 1 = 0. \end{cases}$$
  $rac{\partial h_1}{\partial x_2} = egin{cases} 1 & ext{, якщо } 2x_1 - x_2 - 1 > 0, \ -1 & ext{, якщо } 2x_1 - x_2 - 1 < 0, \ [-1,1] & ext{, якщо } 2x_1 - x_2 - 1 = 0. \end{cases}$ 

1.2.2. Для виразу  $h_2(x_1,x_2)=x_1+2x_2+1$ 

$$rac{\partial h_2}{\partial x_1} = egin{cases} 1 & ext{, якщо } x_1 + 2x_2 + 1 > 0, \ -1 & ext{, якщо } x_1 + 2x_2 + 1 < 0, \ [-1,1] & ext{, якщо } x_1 + 2x_2 + 1 = 0. \end{cases}$$
  $rac{\partial h_2}{\partial x_2} = egin{cases} 2 & ext{, якщо } x_1 + 2x_2 + 1 > 0, \ -2 & ext{, якщо } x_1 + 2x_2 + 1 < 0, \ [-2,2] & ext{, якщо } x_1 + 2x_2 + 1 = 0. \end{cases}$ 

#### 1.3. Субдиференціал функції

Субдиференціал  $\partial f(x)$   $\epsilon$  сумою частинних похідних для всіх компонентів:

$$egin{align} \partial f(x) &= \left(rac{\partial f}{\partial x_1}, \, rac{\partial f}{\partial x_2}
ight) \ rac{\partial f}{\partial x_1} &= 2x_1 \,+\, 2x_2 \,+\, rac{\partial h_1}{\partial x_1} \,+\, rac{\partial h_2}{\partial x_1} \ rac{\partial f}{\partial x_2} &= 8x_2 \,+\, 2x_2 \,+\, rac{\partial h_1}{\partial x_2} \,+\, rac{\partial h_2}{\partial x_2} \ \end{pmatrix}$$

### 2. Розв'язання задачі мінімізації функції

Для вирішення запропонованої задачі мінімізації функції застосовано числовий метод негладкої оптимізації — генетичний алгоритм.

**Генетичний алгоритм** [2][3] — це метод оптимізації, який моделює природний процес еволюції, застосовуючи операції відбору, схрещування та мутації для створення нових поколінь рішень.

#### Основні етапи алгоритму:

1. *Ініціалізація популяції*: Генерується початкова популяція рішень (випадкові точки у визначеному просторі).

- 2. *Оцінка функції пристосованості*: Для кожного рішення обчислюється значення цільової функції (fitness), що показує, наскільки добре це рішення підходить для досягнення мети.
- 3. *Селекція*: Відбираються найкращі рішення, які будуть використовуватися для створення наступного покоління.
- 4. *Схрещування*: Комбінуються частини двох рішень для створення нових варіантів.
- 5. *Мутація*: Змінюються деякі значення в нових рішеннях для збереження різноманітності популяції.
- 6. *Заміна поколінь*: Нова популяція замінює попередню, і цикл повторюється до досягнення умов зупинки.

## ОПИС ПРОГРАМНОЇ РЕАЛІЗАЦІЇ

Програмна реалізація була виконана з використанням Python у середовищі Google Colab.

Посилання на код: CLab 1.ipynb

У роботі було використано такі основні бібліотеки:

- *питру:* Використовується для обчислень з масивами і для створення сітки значень координат.
- *matplotlib*: Використовується для побудови векторного поля, контурних ліній і кольорової шкали для величини субградієнта.
- *mpl\_toolkits.mplot3d*: Для тривимірної візуалізації.
- *random:* Використовується для генерації випадкових значень у межах заданого діапазону.

Структура програмної реалізації:

1. Векторне поле субградієнту функції

- 1.1. def partial\_h1\_x1(x1, x2), def partial\_h1\_x2(x1, x2), def partial\_h2\_x1(x1, x2), def partial\_h2\_x2(x1, x2): Обчислюють часткові похідні для негладких компонент функції (модулів). Залежно від знака виразів під модулем, повертають відповідне значення похідної або випадкове значення, якщо вираз дорівнює нулю.
- 1.2. *def subdifferential(x1, x2):* Обчислює всі можливі значення субдиференціала функції, комбінуючи похідні гладкої та негладких компонентів.
- 1.3. *def visualize\_subdifferential\_field():* Створює графік векторного поля субдиференціала функції.

#### 2. Генетичний алгоритм

#### 2.1. Параметри:

- 2.1.1. *population\_size:* Кількість індивідів у кожному поколінні.
- 2.1.2. *generations:* Загальна кількість ітерацій (поколінь).
- 2.1.3. *x1\_from*, *x1\_to*, *x2\_from*, *x2\_to*: Межі для змінних *x1* і *x2*, які визначають простір пошуку для цільової функції.
- 2.1.4. *mutation\_probability:* Частота мутації генів у кожному поколінні.
- 2.1.5. *early\_stop\_threshold:* Поріг для ранньої зупинки.

#### 2.2. Основні функції:

- **2.2.1.** *def f(x1, x2):* Обчислює значення цільової функції, яка складається з гладкої квадратичної частини та негладких компонент, що включають модулі.
- **2.2.2.** *def generate\_population():* Генерує початкову популяцію з випадкових значень координат x1 і x2 у визначеному діапазоні.
- **2.2.3.** *def apply\_function(individ):* Обчислює значення цільової функції для заданого індивіда

- **2.2.4.** *def sort\_population\_by\_fitness(population):* Сортує популяцію за значенням цільової функції, розташовуючи індивіди з найкращим (мінімальним) значенням на початку списку.
- **2.2.5.** *def crossover(first\_parent, second\_parent):* Створює нового нащадка шляхом схрещування двох батьківських індивідів, комбінуючи їх координати *x1* та *x2* з випадковим множником.
- **2.2.6.** *def mutate(individ):* Виконує мутацію індивіда, додаючи випадкові зміни до його координат *x1* і *x2* в межах допустимого діапазону.
- **2.2.7.** *def make\_next\_generation(previous\_population):* Створює нове покоління індивідів на основі відбору, схрещування та мутації з попереднього покоління.

#### РЕЗУЛЬТАТИ

Знаходження субдиференціала функції f(x) та дослідження багатозначності



На графіку зображено векторне поле субдиференціала функції:

$$f\left(x_{1},\,x_{2}
ight) \,=\, x_{1}^{2} \,+\, 4x_{2}^{2} \,+\, 2x_{1}x_{2} \,+ |2x_{1}-x_{2}-1| \,+ |x_{1}+2x_{2}+1|$$

#### Основні елементи графіку:

- **Векторне поле:** Стрілки на графіку показують напрямок та нормовану величину субдиференціала в кожній точці області. Колір стрілок варіюється відповідно до величини субградієнта, що допомагає візуально оцінити силу субдиференціала в різних точках.
- *Червоні лінії*: Відповідають значенням, де вирази під модулем дорівнюють нулю, тобто місцям, де функція змінює свою поведінку.
- *Контурні лінії*: Чорні контурні лінії показують місця де функція набуває однакових значень і надають додаткову інформацію про форму поверхні функції в різних точках площини.

Багатозначність субдиференціала функції виникає на лініях негладкості  $2x_1-x_2-1=0$  та  $x_1+2x_2+1=0$ , де вирази під модулями дорівнюють нулю. На цих лініях субдиференціал є множиною векторів, які відповідають всім можливим напрямкам зміни функції. Це означає, що в кожній точці на червоних лініях субдиференціал включає кілька значень, а не єдиний напрямок, що відображає негладкий характер функції в цих областях.

# Розв'язання задачі мінімізації функції з використанням генетичного алгоритму

Для дослідження властивостей генетичного алгоритму у задачі мінімізації функції було проведено серію експериментів з різними параметрами.

| Номер | Кількість | Кількість | Коефіцієнт | Проміжок | Проміжок | Умова зупинки | Результат |
|-------|-----------|-----------|------------|----------|----------|---------------|-----------|
|       |           |           |            |          |          |               |           |

| експеременту | поколінь | особин в<br>поколінні | мутації | по х <sub>1</sub> | по х <sub>2</sub> |                                       | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | $f(x_1, x_2)$ |
|--------------|----------|-----------------------|---------|-------------------|-------------------|---------------------------------------|-----------------------|-----------------------|---------------|
| 1            | 50       | 50                    | 0,05    | [-6,6]            | [-6,6]            | Обчислення<br>останнього<br>покоління | 0.30670839            | -0.38480538           | 0.98920015    |
| 2            | 50       | 100                   | 0,05    | [-6,6]            | [-6,6]            | Обчислення<br>останнього<br>покоління | 0.31343388            | -0.37363829           | 0.98910465    |
| 3            | 50       | 200                   | 0,05    | [-6,6]            | [-6,6]            | Обчислення<br>останнього<br>покоління | 0.30724401            | -0.38539141           | 0.98826839    |
| 4            | 100      | 50                    | 0,05    | [-6,6]            | [-6,6]            | Обчислення<br>останнього<br>покоління | 0.30492555            | -0.38432548           | 0.99152058    |
| 5            | 100      | 100                   | 0,05    | [-6,6]            | [-6,6]            | Обчислення<br>останнього<br>покоління | 0.30831586            | -0.38326696           | 0.98818162    |
| 6            | 100      | 200                   | 0,05    | [-6,6]            | [-6,6]            | Обчислення<br>останнього<br>покоління | 0.31132823            | -0.37648601           | 0.98868442    |
| 7            | 200      | 50                    | 0,05    | [-6,6]            | [-6,6]            | Обчислення<br>останнього<br>покоління | 0.30702780            | -0.38409933           | 0.98921112    |
| 8            | 200      | 100                   | 0,05    | [-6,6]            | [-6,6]            | Обчислення<br>останнього<br>покоління | 0.30988348            | -0.37967321           | 0.98842274    |
| 9            | 200      | 200                   | 0,05    | [-6,6]            | [-6,6]            | Обчислення<br>останнього<br>покоління | 0.31032225            | -0.37933368           | 0.98812141    |
| 10           | 50       | 50                    | 0.1     | [-6,6]            | [-6,6]            | Обчислення<br>останнього<br>покоління | 0.31386316            | -0.36756203           | 0.99163986    |
| 11           | 50       | 100                   | 0.1     | [-6,6]            | [-6,6]            | Обчислення<br>останнього<br>покоління | 0.30576225            | -0.38563615           | 0.98985485    |
| 12           | 50       | 200                   | 0.1     | [-6,6]            | [-6,6]            | Обчислення<br>останнього<br>покоління | 0.30713493            | -0.38424999           | 0.98900600    |
| 13           | 100      | 50                    | 0.1     | [-6,6]            | [-6,6]            | Обчислення                            | 0.31255740            | -0.37349297           | 0.98916784    |

|    |     |     |     |        |        | останнього<br>покоління               |            |             |            |
|----|-----|-----|-----|--------|--------|---------------------------------------|------------|-------------|------------|
| 14 | 100 | 100 | 0.1 | [-6,6] | [-6,6] | Обчислення<br>останнього<br>покоління | 0.31227925 | -0.37513157 | 0.98844755 |
| 15 | 100 | 200 | 0.1 | [-6,6] | [-6,6] | Обчислення<br>останнього<br>покоління | 0.30977510 | -0.37991422 | 0.98840618 |
| 16 | 200 | 50  | 0.1 | [-6,6] | [-6,6] | Обчислення<br>останнього<br>покоління | 0.31288636 | -0.37385472 | 0.98856867 |
| 17 | 200 | 100 | 0.1 | [-6,6] | [-6,6] | Обчислення<br>останнього<br>покоління | 0.30947072 | -0.38104099 | 0.98810532 |
| 18 | 200 | 200 | 0.1 | [-6,6] | [-6,6] | Обчислення<br>останнього<br>покоління | 0.30801284 | -0.38384703 | 0.98821252 |

#### Результати показали, що:

- 1. *Кількість поколінь*: Збільшення до 200 поколінь не дає значного покращення, оскільки алгоритм досягає стабільного результату вже за 50–100 поколінь.
- 2. *Кількість особин*: Збільшення кількості особин до 200 підвищує стабільність та точність результатів, що дозволяє уникнути локальних мінімумів.
- 3. *Коефіцієнт мутації*: При коефіцієнті мутації 0.1 алгоритм демонструє більшу різноманітність рішень, що трохи покращує результати порівняно з мутацією 0.05.
- 4. *Оптимальний результат*: Найменше значення функції досягнуто в експерименті з 200 поколіннями, 200 особинами і мутацією 0.05  $f(x_1,\,x_2)\,\cong\,0.988121141$

На графіках показано поверхню функції f(x) з точкою мінімуму, позначеною червоною крапкою. Точка мінімуму є результатом роботи генетичного алгоритму і показує місце, де функція досягає найменшого значення.





#### **ВИСНОВОК**

У даній лабораторній роботі досліджено субдиференціал функції з негладкими компонентами та його багатозначність на лініях негладкості. З використанням генетичного алгоритму було розв'язано задачу мінімізації, досліджено вплив параметрів алгоритму (кількість поколінь, кількість особин у поколінні, коефіцієнт мутації) на результат.

#### ПЕРЕЛІК ДЖЕРЕЛ ПОСИЛАННЯ

- [1]. Учасники проектів Вікімедіа. Субдиференціал Вікіпедія [Електронний ресурс] / Учасники проектів Вікімедіа // Вікіпедія. — Режим доступу: <a href="https://uk.wikipedia.org/wiki/Субдиференціал">https://uk.wikipedia.org/wiki/Субдиференціал</a>
- [2]. ДОСЛІДЖЕННЯ ГЕНЕТИЧНИХ АЛГОРИТМІВ РОЗВ'ЯЗУВАННЯ ЗАДАЧ ОПТИМІЗАЦІЇ | Cherkasy University Bulletin: Applied Mathematics. Informatics [Електронний ресурс] // Cherkasy University Bulletin: Applied Mathematics. Informatics. Режим доступу: <a href="https://ami-ejournal.cdu.edu.ua/article/view/3703/">https://ami-ejournal.cdu.edu.ua/article/view/3703/</a>.
- [3]. Academic Journals and Conferences. Режим доступу: <a href="https://science.lpnu.ua/sites/default/files/journal-paper/2023/oct/31568/pa">https://science.lpnu.ua/sites/default/files/journal-paper/2023/oct/31568/pa</a> <a href="per10.pdf">per10.pdf</a>