

How much would you lose in the best of the 5% worst cases?

Kris Boudt
Professor of finance and econometrics

Value-at-risk

• A popular measure of downside risk: 5% value-at-risk. The 5% quantile of the return distribution represents the best return in the 5% worst scenarios.

Forward looking approach is needed

- Quantiles of rolling windows of returns are backward looking:
 - ex post question: what has the 5% quantile been for the daily returns over the past year
 - ex ante question: what is the 5% quantile of the predicted distribution of the future return?
- Forward looking risk management uses the predicted quantiles from the GARCH estimation.
- How? Method quantile() applied to a ugarchroll object.

Workflow to obtain predicted 5% quantiles from ugarchroll

• ugarchspec(): Specify which GARCH model you want to use.

• ugarchroll(): Estimate the GARCH model on rolling estimation samples

• quantile(): Compute the predicted quantile

```
garchVaR <- quantile(garchroll, probs = 0.05)</pre>
```

(or any other loss probability that you wish to use: 1% and 2.5% are also popular)

Value-at-risk plot for loss probability 5%

```
actual <- xts(as.data.frame(garchroll)$Realized, time(garchVaR))
VaRplot(alpha = 0.05, actual = actual, VaR = garchVaR)</pre>
```


Exceedance and VaR coverage

A VaR exceedance occurs when the actual return is less than the predicted value-at-risk: $R_t < VaR_t$.

The frequency of VaR exceedances is called the VaR coverage.

Calculation of coverage for S&P 500 returns and 5% probability level mean(actual < garchVaR)

0.05159143

VaR coverage and model validation

- Interpretation of coverage for VaR at loss probability α (e.g. 5%):
 - Valid prediction model has a coverage that is close to the probability level α used.
 - If coverage $\gg \alpha$: too many exceedances: the predicted quantile should be more negative. Risk of losing money has been underestimated.
 - If coverage $\ll \alpha$: too few exceedances, the predicted quantile was too negative. Risk of losing money has been overestimated.

Factors that deteriorate the performance

• distribution.model = "std" instead of distribution.model = "sstd":

Rolling estimation and 5% VaR prediction:

0.05783233

Further deterioration

Rolling estimation and 5% VaR prediction:

0.06074475

Even further deterioration

```
• refit.every = 1000
instead of
refit.every = 100:
```


Downside risk means thinking about predicted quantiles.

Use the validated GARCH model in production

Kris Boudt

Professor of finance and econometrics

Use in production

New functionality

- Use ugarchfilter() for analyzing the recent dynamics in the mean and volatility
- Use ugarchforecast() applied to a ugarchspec object (instead of ugarchfit()) object for making the predictions about the future mean and volatility

Example on MSFT returns

- msftret: 1999-2017 daily returns.
- Suppose the model fitting was done using the returns available at year-end 2010.
- You use this model at year-end 2017 to analyze past volatility dynamics and predict future volatility.

Step 1: Defines the final model specification

• Fit the best model using the msftret available at year-end 2010:

• Define progarchaped as the specification to be used in production and use the

instruction setfixed(progarchspec) <- as.list(coef(garchfit)):</pre>

```
progarchspec <- garchspec
setfixed(progarchspec) <- as.list(coef(garchfit))</pre>
```


Step 2: Analysis of past mean and volatility dynamics

• Use the ugarchfilter() function:

```
garchfilter <- ugarchfilter(data = msftret, spec = progarchspec)
plot(sigma(garchfilter))</pre>
```


Step 3: Make predictions about future returns

```
T+1 0.0004781733 0.01124870

T+2 0.0003610470 0.01132550

T+3 0.0003663683 0.01140171

T+4 0.0003661265 0.01147733

T+5 0.0003661375 0.01155238

T+6 0.0003661370 0.01162688

T+7 0.0003661371 0.01170083

T+8 0.0003661371 0.01177424

T+9 0.0003661371 0.01184712

T+10 0.0003661371 0.01191948
```

Use in simulation

 Instead of applying the complete model to analyze observed returns, you can use it to simulate artificial log-returns:

$$r_t = \log(P_t) - \log(P_{t-1})$$

 Useful to assess the randomness in future returns and the impact on prices, since the future price equals:

$$P_{t+h} = P_t \exp(r_{t+1} + r_{t+2} + ... + r_{t+h})$$

Step 1: Calibrate the simulation model

Use the log-returns in the estimation

```
# Compute log returns msftlogret <- diff(log(MSFTprice))[(-1)]
```

Estimate the model and assign model parameters to the simulation model

Step 2: Run the simulation with ugarchpath()

- Simulation using the ugarchpath() function requires to choose:
 - spec : completely specified GARCH model
 - m.sim: number of time series of simulated returns you want
 - n.sim: number of observations in the simulated time series (e.g. 252)
 - rseed: any number to fix the seed used to generate the simulated series
 (needed for reproducibility)

Step 3: Analysis of simulated returns

• Method fitted() provides the simulated returns:

```
simret <- fitted(simgarch)
plot.zoo(simret)</pre>
```


Analysis of simulated volatility

plot.zoo(sigma(simgarch))

Analysis of simulated prices

• Plotting 4 simulations of 10 years of stock prices, with initial price set at 1:

```
simprices <- exp(apply(simret, 2, "cumsum"))
matplot(simprices, type = "l", lwd = 3)</pre>
```


Time to practice with setfixed(), ugarchfilter(), ugarchforecast() and ugarchpath()

Model risk is the risk of using the wrong model

Kris Boudt

Professor of finance and econometrics

Sources of model risk and solutions

Sources:

- modeling choices
- starting values in the optimization
- outliers in the return series

Solution: Protect yourself through a robust approach

- model-averaging: averaging the predictions of multiple models
- trying several starting values and choosing the one that leads to the highest likelihood
- cleaning the data

Model averaging

• If you cannot choose which model to use, you could estimate them all

```
variance.models <- c("sGARCH", "gjrGARCH")</pre>
distribution.models <- c("norm", "std", "std")</pre>
c < -1
for (variance.model in variance.models) {
    for (distribution.model in distribution.models) {
        garchspec \leftarrow ugarchspec (mean.model = list(armaOrder = c(0, 0)),
                                   variance.model = list(model = variance.model),
                                   distribution.model = distribution.model)
        garchfit <- ugarchfit(data = msftret, spec = garchspec)</pre>
        if (c==1) {
          msigma <- sigma(garchfit)</pre>
        } else {
          msigma <- merge(msigma, sigma(garchfit))</pre>
        c < -c + 1
```


The average vol prediction

avesigma <- xts(rowMeans(msigma), order.by = time(msigma))</pre>

Robustness to starting values

GARCH models have many parameters, like

```
coef(garchfit)

mu omega alphal betal skew shape

5.669200e-04 6.281258e-07 7.462984e-02 9.223701e-01 9.436331e-01 6.318621e+00
```

- Those estimates are the result of a complex optimization of the likelihood function
- Optimization is numeric and iterative: step by step improvement, which can be sensitive to starting values
- rugarch has a default approach in getting sensible starting values
- You can specify your own starting values by applying the setstart() method to your ugarchspec() GARCH model specification

Example with setstart() - default starting values

Estimation with default starting values

Example with setstart() - modified starting values

Estimation with modified starting values

Cleaning the data

- Avoid that outliers distort the volatility predictions
- How? Through winsorization: reduce the magnitude of the return to an acceptable level using the function Return.clean() in the package PerformanceAnalytics

with method="boudt":

```
# Clean the return series
library(PerformanceAnalytics)
clmsftret <- Return.clean(msftret, method = "boudt")

# Plot them on top of each other
plotret <- plot(msftret, col = "red")
plotret <- addSeries(clmsftret, col = "blue", on = 1)</pre>
```


Impact of cleaning on volatility prediction

Make the volatility predictions using raw and cleaned Microsoft returns

Compare them in a time series plot

```
plotvol <- plot(abs(msftret), col = "gray")
plotvol <- addSeries(sigma(garchfit), col = "red", on = 1)
plotvol <- addSeries(sigma(clgarchfit), col = "blue", on = 1)
plotvol</pre>
```


Be a robustnik: it is better to be roughly right than exactly wrong

GARCH volatility leads to time-varying variability of the returns

Kris Boudt

Professor of finance and econometrics

GARCH covariance

• If two asset returns $R_{1,t}$ and $R_{2,t}$ have correlation ρ and time varying volatility $\sigma_{1,t}$ and $\sigma_{2,t}$, then their covariance is:

$$\sigma_{12,t} = \rho \, \sigma_{1,t} \, \sigma_{2,t}$$

GARCH covariance estimation in four steps

• Step 1: Use ugarchfit() to estimate the GARCH model for each return series.

```
msftgarchfit <- ugarchfit(data = msftret, spec = garchspec)
wmtgarchfit <- ugarchfit(data = wmtret, spec = garchspec)</pre>
```

• Step 2: Use residuals() to compute the standardized returns.

```
stdmsftret <- residuals(msftgarchfit, standardize = TRUE)
stdwmtret <- residuals(wmtgarchfit, standardize = TRUE)</pre>
```

• Step 3: Use cor() to estimate ρ as the sample correlation of the standardized returns.

```
msftwmtcor <- as.numeric(cor(stdmsftret, stdwmtret))
msftwmtcor</pre>
```

0.298795

GARCH covariance estimation in four steps

• Step 4: Compute the GARCH covariance by multiplying the estimated correlation and volatilities

msftwmtcov <- msftwmtcor * sigma(msftgarchfit) * sigma(wmtgarchfit)</pre>

Applications of covariance in finance

- Numerous!
- Important case: Optimizing the variance of the portfolio.
- It depends on the:
 - portfolio weights
 - the variance of all the assets
 - the covariance between the asset returns

Application to portfolio optimization

• Variance of portfolio of two assets with weight $w_{1,t}$ invested in asset 1 and $(1-w_{1,t})$ in asset 2:

$$\sigma_{p,t}^2 = w_{1,t}^2 \ \sigma_{1,t}^2 + (1-w_{1,t})^2 \ \sigma_{2,t}^2 + 2 \ w_{1,t} \ (1-w_{1,t}) \sigma_{12,t}$$

- Many ways to define optimal $w_{1,t}$. One appraoch is to set $w_{1,t}$ such that the portfolio variance σ_t^2 is minimized.
- First order condition to find minimum variance portfolio

$$\frac{d\sigma_{p,t}^2}{dw_{1,t}} = 2w_{1,t}(\sigma_{1,t}^2 + \sigma_{2,t}^2 - 2\sigma_{12,t}) - 2(\sigma_{2,t}^2 - \sigma_{12,t}) = 0$$

Minimum variance portfolio weights

• Solution:

$$w_{1,t}^* = \frac{\sigma_{2,t}^2 - \sigma_{12,t}}{\sigma_{1,t}^2 + \sigma_{2,t}^2 - 2\sigma_{12,t}}$$

Calculation in R

```
msftvar <- sigma(msftgarchfit)^2
wmtvar <- sigma(wmtgarchfit)^2
msftwmtcov <- msftwmtcor * sigma(msftgarchfit) * sigma(wmtgarchfit)
msftweight <- (wmtvar - msftwmtcov) / (msftvar + wmtvar - 2 * msftwmtcov)</pre>
```


Dynamic beta

- The estimation of a stock's beta: systematic risk of a stock
- Defined as the covariance of the stock return and the market return, divided by the variance of the market returns

$$\beta_t = \frac{covariance\ between\ the\ stock\ return\ and\ the\ market\ return}{variance\ of\ the\ market\ return}$$

- Needed to compute the risk premium. The higher it is, the more risky the stock and thus the higher the required rate of return.
- For US stocks, the market return is the return on the S&P 500.

The daily beta of MSFT

Compute the covariance between MSFT and S&P 500 returns

```
msftsp500cor <- as.numeric(cor(stdmsftret, stdsp500ret))
msftsp500cov <- msftsp500cor * sigma(msftgarchfit) * sigma(sp500garchfit)</pre>
```

Compute the variance of the S&P 500 returns

```
sp500var <- sigma(sp500garchfit)^2
```

Compute the beta

```
msftbeta <- msftsp500cov / sp500var
```


Let's practice!

Congratulations! You have learned three languages

Kris Boudt

Professor of finance and econometrics

Language of GARCH models

- Volatility σ_t at its clusters
- Information set and predictions
- Mean, variance and distribution assumptions
- Leverage effect and the GJR GARCH model
- Skewness, fat tails and the skewed student t distribution
- Model validation using the mean squared error, significance testing, standardized returns and Ljung-Box test
- Applications to value-at-risk, dynamic beta calculation and optimization of financial portfolios

Language of rugarch

```
• ugarchspec()
```

- ugarchfit()
- ugarchroll()
- ugarchforecast()
- ugarchfilter()
- ugarchpath()
- Many useful methods sigma(), fitted(), coef(), infocriteria(),

```
likelihood(), setfixed(), setbounds(), quantile()...
```


@OptimizeRisk