

Modul: Telekomunikacije i informatika

Višemedijske usluge

Distribuirani sustavi i modeli distribuiranog procesiranja

Ak.god. 2007./2008.

Sadržaj predavanja

- Distribuirani sustav
 - definicija i svojstva
 - međuoprema
 - karakteristike komunikacijske međuopreme
- Komunikacijska međuoprema
 - komunikacija korištenjem priključnica (socket)
 - poziv udaljene procedure/metode
 - komunikacija porukama
 - model objavi-pretplati

Distribuirani sustav (1)

Definicija

- Distribuirani (raspodijeljeni) sustav je skup računala povezanih mrežom koji djeluje kao jedinstveni sustava te krajnjem korisniku pruža definiranu uslugu
- Sastoji se od:
 - sklopovlja = (autonomna) računala + mreža
 - programske opreme (omogućuje razvoj jedinstvenog distribuiranog sustava)
- Sa stajališta korisnika riječ je o jedinstvenom sustavu

Distribuirani sustav (2)

Zahtjevi i dobre karakteristike

- Otvorenost
- Skalabilnost
- Transparentnost
- Otpornost na neispravnosti i ispade
- Pouzdanost
- Raspoloživost

Otvorenost

- Za distribuirani sustav se kaže da je otvoren ako nudi usluge slijedeći standardna pravila koja opisuju sintaksu i semantiku tih usluga
- Usluga se obično definira pomoću sučelja
- Primjeri standardnih jezika za opis sučelja
 - Interface Definition Language (IDL) CORBA
 - Web Services Description Language (WSDL)

Skalabilnost

- Sposobnost sustava da se prilagodi i zadovolji zahtjeve povećanog broja korisnika
- Problemi neskalabilnih rješenja
 - centralizirana usluga, podaci, algoritmi
- Rješenje neskalabilnosti
 - raspodijeljenost usluge, podataka, algoritama
 - primjeri skalabilnih sustava: DNS, WWW
 - model s ravnopravnim procesima (engl. peer-to-peer)

Transparentnost

- Osnovni cilj
 - sakriti činjenicu da su procesi i resursi fizički raspodijeljeni na više računala
 - npr. distribuirana baza podataka ponaša se kao i centralizirana
 - klijent ne mora biti svjestan da je izvedba sustava distribuirana (doživljava ga kao jedinstveni sustav)
- postiže se dodavanjem posebnog aplikacijskog sloja koji nudi usluge višim slojevima i olakšava razvoj distribuiranih sustava, a naziva se programska međuoprema (engl. middleware)

Primjeri transparentnosti

- Lokacija
 - prikrivanje stvarne lokacije resursa
 - npr. naziv mrežne usluge neovisan je lokaciji resursa koji realizira uslugu
- Migracija
 - promjena lokacije resursa se ne odražava na krajnjeg korisnika
- Replikacija
 - skrivanje činjenice da postoji više kopija određenog resursa

Sadržaj predavanja

- Distribuirani sustav
 - definicija i svojstva
 - međuoprema
 - karakteristike komunikacijske međuopreme
- Komunikacijska međuoprema
 - komunikacija korištenjem priključnica (socket)
 - poziv udaljene procedure/metode
 - komunikacija porukama
 - model objavi-pretplati

Međuoprema (1)

- Distribuirani sustavi koriste međuopremu (middleware), programsku infrastrukturu koja pruža generičke usluge za jednostavniji razvoj distribuiranih aplikacija
- U internetskom modelu međuoprema je smještena na aplikacijskom sloju između transportnog sloja i aplikacije

Međuoprema (2)

Različite vrste međuopreme

- nude usluge, različite kompleksnosti
- primjer: komunikacijska međuoprema

Komunikacijska međuoprema (1)

- vrsta međuopreme za realizaciju komunikacije među udaljenim računalima
- protokoli za komunikaciju distribuiranih procesa na višem nivou apstrakcije od transportnog sloja
- omogućuje jednostavniji razvoj distribuiranih aplikacija, sakriva kompleksnost i heterogenost nižih slojeva

Komunikacijska međuoprema (2)

- Postojeća rješenja za komunikaciju distribuiranih procesa
 - komunikacija korištenjem priključnica (socket)
 - poziv udaljene procedure (remote procedure call, RPC)
 - distribuirani objekti poziv udaljene metode (remote method invocation, RMI)
 - komunikacija razmjenom poruka (message-oriented interaction)
 - model objavi-pretplati (publish/subscribe)

Osnovni model komunikacije: klijent-poslužitelj

- KLIJENT
- zahtjeva uslugu
- šalje zahtjev poslužitelju i čeka odgovor

- POSLUŽITELJ
- nudi usluge
- prima i obrađuje dolazne zahtjeve te šalje odgovor klijentima

Sadržaj predavanja

- Distribuirani sustav
 - definicija i svojstva
 - međuoprema
 - karakteristike komunikacijske međuopreme
- Komunikacijska međuoprema
 - komunikacija korištenjem priključnica (socket)
 - poziv udaljene procedure/metode
 - komunikacija porukama
 - model objavi-pretplati

Karakteristike komunikacijske međuopreme (1)

- vremenska (ne)ovisnost
 - vremenski ovisni procesi moraju biti istovremeno dostupni za realizaciju komunikacije
 - vremenski neovisni procesi mogu komunicirati i ako nisu istovremeno dostupni
- ovisnost o referenci "sugovornika"
 - proces je ovisan o referenci "sugovornika" ako mora znati jedinstveni identifikator udaljenog procesa s kojim želi komunicirati
 - proces može biti i neovisan o referenci, tj. ne mora znati jedinstveni identifikator udaljenog procesa

Karakteristike komunikacijske međuopreme (2)

- perzistentnost komunikacije
 - perzistentna komunikacija garantira isporuku poruke, poruka se pohranjuje u sustavu i isporučuje na odredište kada ono postane dostupno
 - neperzistentna komunikacija je nepouzdana, garantira isporuku poruke samo ako su pošiljatelj i primatelj istovremeno dostupni

Karakteristike komunikacijske međuopreme (3)

- sinkrona ili asinkrona komunikacija
 - sinkrona komunikacija blokira klijenta dok ne dobije odgovor od strane poslužitelja (konekcijska)
 - asinkrona komunikacija omogućuje klijentu nastavak procesiranja odmah nakon slanja zahtjeva (beskonekcijska)

blokiranje

asinkrona komunikacija

Karakteristike komunikacijske međuopreme (4)

- pull ili push pokretanje komunikacije
 - pull klijent eksplicitno šalje zahtjev poslužitelju
 - push poslužitelj šalje podatke, a klijent "sluša"

Sadržaj predavanja

- Distribuirani sustav
 - definicija i svojstva
 - međuoprema
 - karakteristike komunikacijske međuopreme
- Komunikacijska međuoprema
 - komunikacija korištenjem priključnica (socket)
 - poziv udaljene procedure/metode
 - komunikacija porukama
 - model objavi-pretplati

Komunikacija pomoću socketa

- jednostavno korištenje funkcionalnosti transportnog sloja
 - TCP konekcijski protokol, pouzdan prijenos podataka
 - UDP prijenos nezavisnih paketa (datagrami), nepouzdan prijenos
- Socket
 - komunikacijska točka preko koje aplikacija šalje podatke u mrežu i iz koje čita primljene podatke
 - viši nivo apstrakcije nad komunikacijskom točkom koju operativni sustav koristi za pristup transportnom sloju

Komunikacija pomoću socketa

korisnički procesi

> kontrolira operativni sustav

Transportni protokol UDP

User Datagram Protocol (UDP)

 komunikacija se odvija preko vrata (engl. portova) koje dodjeljuje operativni sustav

Komunikacija pomoću UDP socketa (Socket API)

Funkcija	Značenje
socket	Kreiranje nove komunikacijske točke (socket)
bind	Povezivanje transportne adrese* i socket-a
recvfrom	Primanje datagrama (zahtjeva ili odgovora)
sendto	Slanje datagrama (zahtjeva ili odgovora)
close	Zatvaranje konekcije

*Transportna adresa = (IP adresa, port)

Karakteristike UDP socketa

- vremenska ovisnost
 - poslužitelj mora biti aktivan za primanje datagrama
- klijent mora znati identifikator poslužitelja
- komunikacija nije perzistentna
- asinkrona komunikacija
 - klijent šalje datagram i nastavlja procesiranje

Transportni protocol TCP

Transmission Control Protocol (TCP)

 konekcija između dvije krajnje točke koje se moraju dogovoriti o uspostavi konekcije

Konekcijska komunikacija pomoću TCP socketa (Socket API)

Funkcija	Značenje
socket	Kreiranje nove komunikacijske točke (socket)
bind	Povezivanje transportne adrese sa <i>socket</i> -om
listen	Najava spremnosti za komunikaciju
accept	Poslužitelj prima zahtjev za inicijalizaciju konekcije
connect	Pokušaj uspostave konekcije
send	Slanje podataka
receive	Primanje podataka
close	Zatvaranje konekcije

TCP socket

POSLUŽITELJ

- socket kreira komunikacijsku točku, operativni sustav rezervira resurse koji će omogućiti slanje i primanje podataka koristeći odabrani transportni protokol
- bind povezuje adresu sa socketom. Poslužitelj povezuje IP adresu računala i broj porta sa socketom.
- listen omogućuje operativnom sustavu rezerviranje resursa (spremnika) za specificirani maksimalni broj konekcija.
- accept poslužitelj prima zahtjev za iniciranje konekcije od strane klijenta (connect).
 Poslužitelj stvara novi identičan socket koji se koristi za komunikaciju s klijentom.
 Originalni socket se koristi za "osluškivanje" novih zahtjeva.
- read i write slanje i primanje podataka

KLIJENT

- socket kreira komunikacijsku točku, bind nije potreban jer OS dinamički alocira port socketu pri kreiranju konekcije.
- connect klijent šalje zahtjev za kreiranje konekcije. Klijent mora definirati transportnu adresu na koju se šalje zahtjev za kreiranje konekcije. Klijent je blokiran do uspostave konekcije.
- read i write slanje i primanje podataka
- close zatvaranje konekcije

Konkurentni korisnički zahtjevi

- za svaki novi korisnički zahtjev kreira se novi socket koji je kopija originalnog
- originalni poslužiteljski socket mora konstantno biti u stanju "osluškivanja"

Karakteristike TCP socketa

- vremenska ovisnost
 - klijent i poslužitelj moraju biti istovremeno dostupni
- klijent mora znati identifikator poslužitelja
- komunikacija nije perzistentna
- sinkrona komunikacija
 - klijent šalje zahtjev za kreiranje konekcije i blokiran je do uspostave konekcije
- pull pokretanje komunikacije

Sadržaj predavanja

- Distribuirani sustav
 - definicija i svojstva
 - međuoprema
 - karakteristike komunikacijske međuopreme
- Komunikacijska međuoprema
 - komunikacija korištenjem priključnica (socket)
 - poziv udaljene procedure/metode
 - komunikacija porukama
 - model objavi-pretplati

Poziv udaljene procedure

Remote Procedure Call (RPC)

- Omogućiti procesima pozivanje i izvođenje procedura na udaljenom računalu
- Proces na računalu A poziva proceduru koja se izvodi na računalu B.
- Pozivajući proces na računalu A šalje parametre za izvođenje procedure na računalo B i blokiran je čekajući rezultate izvođenja procedure.
- Računalo B izvodi proceduru koristeći primljene parametre i šalje odgovor računalu A.
- Transparentnost: za proces na računalu A poziv udaljene procedure jednak je pozivu lokalne procedure.

Princip komunikacije

Koraci RPC-a

- 1. Klijent poziva proceduru add(i, j) koristeći *stub*.
- 2. Stub "pakira" parametre i identifikator procedure i poziva OS.
- 3. OS klijentskog računala šalje poruku na udaljeno računalo.
- 4. OS udaljenog računala predaje poruku *stubu* poslužitelja.
- Stub poslužitelja "raspakira" parametre i poziva proceduru add(i, j) koristeći primljene parametre.
- 6. Procedura vraća rezultat izvođenja poslužiteljskom *stub*-u.
- 7. Stub poslužitelja "pakira" rezultat u poruku i poziva OS.
- 8. OS poslužitelja šalje poruku OS-u klijenta.
- 9. OS klijenta predaje poruku *stubu*.
- 10. Stub "raspakira" rezultat i predaje ga klijentskom procesu.

Prenošenje parametara

- Marshaling "pakiranje" parametara ili rezultata u poruku
- Unmarshaling čitanje parametara ili rezultata iz poruke
- Prenošenje vrijednosti parametra
 - navodi se tip (npr. int, char, long) i vrijednost
 - različiti OS koriste različite prikaze znakova
- Prenošenje parametara koristeći reference
 - referenca ima smisla samo u adresnom prostoru procesa koji je koristi!
 - Kako prenijeti string na udaljeno računalo?
 - nije moguće koristiti referencu na string!
 - kopiranje cijelog stringa i "pakiranje" u poruku

Asinkroni RPC

 Klijent šalje zahtjev poslužitelju, ali ne očekuje odgovor, tj. rezultat izvođenja procedure, već samo potvrdu o primitku zahtjeva

Odgođeni sinkroni RPC

- klijent šalje zahtjev poslužitelju i nastavlja s procesiranjem nakon što primi potvrdu.
- rezultat izvođenja procedure poslužitelj šalje koristeći drugi asinkroni
 RPC

Poziv udaljene metode

Remote Method Invocation (RMI)

- "nasljednik" poziva udaljene procedure, poziva se metoda udaljenog objekta
- distribuirani objekt
 - proširenje osnovnog objektnog modela na distribuirane objekte
 - odvajanje sučelja i implementacije objekta
- objekt (klijent) poziva metodu udaljenog objekta (poslužitelja) na transparentan način
 - identično pozivu metode lokalnog objekta

Distribuirani objekti

- Postoje reference na lokalne i udaljene objekte
- Svaki udaljeni objekt ima globalno jedinstven identifikator
 - npr. [ref: [endpoint:[161.53.19.24:1251](local),objlD:[0]]]]
- Potrebna je usluga za registriranje i pronalaženje udaljenih objekata (directory service)

Koraci RMI-a

- 1. Klijentski objekt se povezuje s distribuiranim objektom.
 - pronalaženje udaljenog objekta
 - kreiranje stuba na klijentskom računalu
- Klijent poziva metodu stuba (stub ili proxy ima isto sučelje kao i poslužiteljski objekt).
- 3. Stub "pakira" poziv metode u poruku i šalje je *skeletonu*.
- Skeleton čita primljenu poruku i poziva odgovarajuću metodu poslužiteljskog objekta.
- Skeleton prima rezultat izvođenja metode, "pakira" ga u poruku i prosljeđuje stubu.
- 6. Stub čita poruku i vraća rezultat izvođenja metode klijentskom objektu.

Karakteristike RPC/RMI

- vremenska ovisnost
- klijent mora znati identifikator poslužitelja
- komunikacija nije perzistentna
- sinkrona komunikacija
 - klijent je blokiran dok ne primi odgovor od strane poslužitelja
- pull pokretanje komunikacije
 - klijent eksplicitno šalje zahtjev poslužitelju

Sadržaj predavanja

- Distribuirani sustav
 - definicija i svojstva
 - međuoprema
 - karakteristike komunikacijske međuopreme
- Komunikacijska međuoprema
 - komunikacija korištenjem priključnica (socket)
 - poziv udaljene procedure/metode
 - komunikacija porukama
 - model objavi-pretplati

Komunikacija porukama

- Procesi komuniciraju razmjenjujući poruke.
- U komunikaciji sudjeluju izvor (pošiljatelj poruke) i odredište.
- Izvor šalje poruku, poruka se pohranjuje u rep koji je pridijeljen odredištu.
- Odredište čita poruku iz repa.
- Poruke sadrže podatke, važna je adresa odredišnog repa.
- Adresiranje se izvodi najčešće na nivou sustava, svaki rep ima jedinstven identifikator u sustavu.

Izvođenje komunikacije porukama (1)

1 izvor : 1 odredište

Izvođenje komunikacije porukama (2)

- put dodaj poruku u rep
- get pročitaj poruku iz repa, primatelj je blokiran ako je rep prazan
- poll provjeri postoje li poruke u repu i pročitaj prvu poruku ako takva postoji, primatelj nije blokiran

Karakteristike komunikacije porukama

- vremenska neovisnost
 - primatelji i pošiljatelji ne moraju istovremeno biti aktivni, poruka se sprema u rep
- pošiljatelj mora znati identifikator odredišta, tj. njegovog repa
- komunikacija je perzistentna
- asinkrona komunikacija
 - pošiljatelj šalje poruku i nastavlja procesiranje neovisno o odgovoru od strane primatelja
- pull pokretanje komunikacije
 - primatelj provjerava postoji li poruka u repu

Sadržaj predavanja

- Distribuirani sustav
 - definicija i svojstva
 - međuoprema
 - karakteristike komunikacijske međuopreme
- Komunikacijska međuoprema
 - komunikacija korištenjem priključnica (socket)
 - poziv udaljene procedure/metode
 - komunikacija porukama
 - model objavi-pretplati

Model objavi-pretplati (1)

Model objavi-pretplati (2)

- izvori i pretplatnici razmjenjuju obavijesti
- izvori (publishers) objavljuju obavijest preko posrednika
- pretplatnici (subscribers) se pretplaćuju na određene vrste obavijesti
- kada izvor objavi novu obavijest, posrednik ga dostavlja svim odredištima pretplaćenim na taj tip obavijesti (višeodredišni način komunikacije)
- izvori i pretplatnici su neovisni, međusobno anonimni
 - posrednik vodi računa o pretplatnicima i njihovim pretplatama

Vrste pretplate

- Pretplata na kanal
 - tematsko grupiranje obavijesti (npr. vrijeme)
 - hijerarhijski odnos kanala (npr. vrijeme u Europi, Hrvatskoj, Zagrebu)
 - kanal logička veza između izvora i odredišta
- Pretplata na sadržaj
 - pretplata se definira ovisno o svojstvima i sadržaju obavijesti (skup atributa i vrijednosti)

Pretplata na kanal

Pretplatnik odabirom kanala definira "filter" za obavijesti

Pretplata na sadržaj


```
e<sub>1</sub> = ( category = "books"
& author = "D. Adams"
& title = "The Hitchhiker's Guide through the Galaxy"
& price = 9.99 EUR)
```

e₂ = (category = "books" & author = "J.R.R. Tolkien" & title = "The Lord of the Rings" & price = 19.99 EUR)

Sub₁ = (category == "books" & price < 20 EUR) sub₂ = (category == "books" & author == "J.R.R. Tolkien" & price < 20 EUR)

Arhitektura sustava objavi-pretplati

Centralizirana

- svi izvori i odredišta razmjenjuju obavijesti preko jednog poslužitelja posrednika
- poslužitelj pohranjuje sve pretplate i prosljeđuje objavljene obavijesti

Distribuirana

- za veliki broj izvora, odredišta i pretplata
- skup poslužitelja, svaki je poslužitelj zadužen za izvore i odredišta u svojoj domeni
- algoritmi za usmjeravanje informacija o pretplatama i usmjeravanje objavljenih događaja

Centralizirana arhitektura

Distribuirana arhitektura

Karakteristike modela objavi-pretplati (1)

- vremenska neovisnost
 - izvori i odredišta ne moraju istovremeno biti aktivna, posrednik pohranjuje poruku
- izvor ne mora znati identifikator odredišta (anonimnost), o tome se brine posrednik
- komunikacija je perzistentna
- asinkrona komunikacija
 - izvor šalje poruku i nastavlja procesiranje neovisno o odgovoru od strane odredišta
- push pokretanje komunikacije
 - izvor šalje poruku posredniku koji je prosljeđuje odredištima bez prethodnog eksplicitnog zahtjeva

Karakteristike modela objavi-pretplati (2)

- personalizacija primljenog sadržaja
 - filtriranje objavljenih poruka prema pretplatama
- proširivost sustava
 - dodavanje novog izvora ili odredišta ne utječe na ostale strane u komunikaciji
- skalabilnost
 - implementacija distribuiranog sustava (distribuirana arhitektura)