ALGEBRA DI BOOLE

Fondamenti di Programmazione 2021/2022

Francesco Tortorella

(si ringrazia la prof. Sabrina Senatore per parte del materiale)

Usiamo la logica!

- All'interno dei costrutti di selezione e ciclici abbiamo usato delle espressioni il cui risultato è un valore logico.
 - b > max
 - cont < n</pre>
- Un'espressione di questo tipo può assumere solo uno tra due valori possibili:
 - vero (true)
 - falso (false)

Usiamo la logica!

- Anche nella vita reale abbiamo spesso a che fare con espressioni del genere:
 - Oggi piove
 - Paolo è più alto di Antonio
 - Il mio numero di anni è maggiore di 18
- ... e ci capita di usarli in contesti condizionali e ciclici
 - Se hai più di 18 anni, voti
 - Sali finché arrivi al 5° piano

Espressioni logiche

Nell'ambito delle espressioni possibili che possiamo ritrovare all'interno di un algoritmo, le più semplici sono quelle basate su un confronto:

```
Uguale: a == b
```

- Diverso: a != b
- Maggiore: a > b
- Maggiore o uguale: a >= b
- Minore: a < b</p>
- Minore o uguale: a <= b</p>

Espressioni logiche

- Queste però da sole non bastano per esprimere condizioni più complesse.
 - "Se x è compreso tra 18 e 30 ..."
- In questo caso la condizione è vera se x >= 18 e contemporaneamente x <= 30</p>
- È quindi necessario avere la possibilità di combinare espressioni logiche semplici per ottenere espressioni logiche più complesse.
- In matematica, questo è possibile grazie all'algebra elementare che consente di scrivere espressioni di tipo numerico.

 Lo strumento analogo in logica è l'algebra di Boole, da George Boole, matematico del 19° sec. (1815-1864)

- Boole ha sviluppato un sistema matematico (algebra) con l'obiettivo di meccanizzare i processi logici.
- An Investigation of the Laws of Thought, on Which are founded the Mathematical Theories of Logic and Probabilities (1854)
 - propone una nuova impostazione della logica: dopo aver rilevate le analogie fra oggetti dell'algebra e oggetti della logica, riconduce le composizioni degli enunciati a semplici operazioni algebriche (Wikipedia)

- È un'algebra in cui le variabili (e le funzioni) possono assumere solamente i valori vero (true) e falso (false)
- Componenti dell'algebra di Boole:
 - Gli operatori booleani: legano insieme le espressioni logiche (o proposizioni)
 - Gli operandi booleani (proposizioni): sono valori logici che possono assumere uno tra due i due valori possibili vero (true) e falso (false)

- Operatori dell'algebra di Boole:
 - and congiunzione
 - or disgiunzione
 - not negazione
- Gli operatori and e or sono binari, cioè lavorano su due operandi.
- L'operatore not è unario, cioè lavora su un solo operando.

- Come accade per gli operatori aritmetici
 - gli operatori binari si scrivono tra i due operandi
 - l'operatore unario si antepone all'unico operando
- Assumiamo che A e B siano due variabili booleane, cioè due variabili che possono assumere uno tra i due valori vero (true) e falso (false). Si scrive:
 - A and B
 - A or B
 - not A

Per capire quale sia il risultato delle operazioni booleane che possiamo effettuare con gli operatori visti, consideriamo quali siano le diverse combinazioni che possono assumere i loro operandi

Α
F(alse)
T(rue)

Α	В
F	F
F	Т
Т	F
Т	Т

- L'operazione A and B restituisce true se e solo se sia A che B sono true, altrimenti restituisce false
- L'operazione A or B restituisce false se e solo se sia A che B sono false, altrimenti restituisce true
- L'operazione not A restituisce true se A è false, restituisce false se A è true

Α	not A
F	Т
Т	F

Α	В	A or B
F	F	F
F	Т	Т
Т	F	Т
Т	Т	Т

Α	В	A and B
F	F	F
F	Т	F
Т	F	F
Т	Т	Т

Esistono diverse notazioni alternative

```
and: ∧, &&
or: ∨, ||
not: ¬,!
```

- Gli operatori &&, || e! sono impiegati sia in Algobuild che nel linguaggio C e C++
- Esempio:
 - espressione vera se x è compreso tra 18 e 30: (x >= 18) && (x <= 30)</p>

Precedenza degli operatori

- È possibile costruire un'espressione in cui siano presenti più operatori.
- In questo caso va tenuto conto di quale sia l'ordine di applicazione (precedenza) degli operatori in modo che non ci siano ambiguità sul risultato finale.
- L'ordine di precedenza degli operatori booleani è:
 - 1. not
 - 2. and
 - 3. or
- È possibile imporre un ordine di applicazione diverso tramite l'uso di parentesi.

Precedenza degli operatori

Per quali valori di x e y sono vere le seguenti espressioni?

$$(x >= 10) && (x <= 20) | | (x < 5)$$

$$(x > 2) | (x < 0) && (x > -10)$$

$$(x == 1) | (x == 10) | (x > 100)$$

$$((x == 0) | (x == 1)) && (y > 3)$$

$$(x == 3) && (x != 3)$$

Precedenza degli operatori

Per quali valori di x e y sono vere le seguenti espressioni?

$$(x >= 10) && (x <= 20) | | (x < 5)$$

$$(x > 2) | (x < 0) && (x > -10)$$

$$(x == 1) | (x == 10) | (x > 100)$$

$$((x == 0) | (x == 1)) && (y > 3)$$

$$(x == 3) && (x != 3)$$

contraddizione (A and not A)

tautologia (A or not A)

Proprietà degli operatori

Proprietà		
Elemento neutro	A && true = A	A false = A
Minimo e massimo	A && false = false	A true = true
Idempotenza	A && A = A	A
Complemento	A && (!A) = false	A (!A) = true
Commutativa	A && B = B && A	A B = B A
Associativa	A && (B && C) = (A && B) && C	A (B C) = (A B) C
Distributiva	A && (B C) = A && B A && C	A (B && C) = (A B) && (A C)
Assorbimento	A && (A B) = A	A (A && B) = A
Teoremi di De Morgan	!(A && B) = !A !B	!(A B) = !A && !B

Tabella della verità

- È possibile esprimere espressioni a più variabili booleane tramite una forma tabellare (tabella della verità)
- Nota l'espressione, è facile ottenere la tabella

a	b	С	a AND b	NOT(a) AND c	(a AND b) OR (NOT(a) AND c)
F	F	F	F	F	F
F	F	Т	F	Т	Т
F	Т	F	F	F	F
F	Т	Т	F	Т	Т
Т	F	F	F	F	F
Т	F	Т	F	F	F
Т	Т	F	Т	F	Т
Т	Т	Т	Т	F	Т

Tabella della verità

- In altri casi, potremmo conoscere la tabella, ma non sappiamo qual è l'espressione relativa
- Ci basta trovare una delle possibili espressioni equivalenti che hanno questa tabella della verità

a	b	С	Espressione?
F	F	F	F
F	F	Т	F
F	Т	F	F
F	Т	Т	Т
Т	F	F	F
Т	F	Т	Т
Т	Т	F	Т
Т	Т	T	Т

- 1. Identificare di tutte le righe che hanno valore di verità **T**
- 2. per ogni riga identificata si costruisce una sotto-espressione formata dall'and di tutte le lettere prese nella loro forma naturale o complementata (negata) seguendo le seguenti regole:
 - le lettere che nella riga in esame hanno valore **T** sono prese nella forma naturale;
 - le lettere che nella riga in esame hanno valore **F** sono prese nella forma complementata;
- 3. le sotto-espressioni così ottenute vengono connesse in **or** tra loro, per realizzare l'espressione complessiva desiderata.

	a	b	C	espressione	_
riga 0	F	F	F	F	_
riga 1	F	F	Т	F	_
riga 2	F	Т	F	F	_
riga 3	F	Т	Т	Т	⇔
riga 4	Т	F	F	F	_
riga 5	Т	F	Т	Т	⇔
riga 6	Т	Т	F	Т	⇔
riga 7	Т	Т	Т	Т	

	a	b	С	espressione	_	
riga 0	F	F	F	F		
riga 1	F	F	Т	F	_	
riga 2	F	Т	F	F	_	
riga 3	F	Т	Т	Т	4	(!a) && b && e
riga 4	Т	F	F	F	_	
riga 5	Т	F	Т	Т	⇔	a && (!b) && (
riga 6	Т	Т	F	Т	4	a && b && (!c
riga 7	Т	Т	Т	Т	⇔	a && b && c

	a	b	C	espressione	_	
riga 0	F	F	F	F		
riga 1	F	F	Т	F	_	
riga 2	F	Т	F	F	_	
riga 3	F	Т	Т	Т		(!a) && b && c
riga 4	Т	F	F	F	_	
riga 5	Т	F	Т	Т	⇔	a && (!b) && c
riga 6	Т	Т	F	Т		a && b && (!c)
riga 7	Т	Т	Т	Т	⇔	a && b && c

Espressione complessiva: (!a) && b && c || a && (!b) && c || a && b && (!c) || a && b && c

