

Synopsis Presentation on

Intelligent Fraud Detection System Using Machine Learning

Guided By:

Prof.Ankita Agrawal

Presented By:

Priyanshu Yadav (0827IT211091)

Shubhra Jain (0827IT211109)

Shyamsundar (0827IT211111)

Yashika Rahinj (0827IT211134)

- . Introduction
 - 1.1 Overview
 - 1.2 Purpose
- 2. Literature Review
- 3. Problem Statement
- 4. Proposed Solution
- 5. Objectives
- 6. Theoretical Analysis
 - 6.1.1 Flowchart
 - 6.1.2 Use Case Diagram
 - 6.1.3 Block Diagram
 - 6.1.4 Detailed Block Diagram
 - **6.2** Software Requirements
- 7. Applications

REFERENCES

1. Introduction

1.1 Overview

- ❖ Fraudulent activities in bank transactions are an increasing concern in our quickly changing digital world.
- Offering serious risks to both financial institutions and their clients.
- ❖ Traditional rule-based systems frequently struggle to recognize and stop these more complex fraud schemes.

1.2 Purpose

- * Machine learning has become a powerful technique to handle this problem, with classification at its core.
- This study seeks to investigate the use of logistic regression in the particular context of detecting bank transaction fraud.
- While highlighting its benefits, drawbacks, and practical use in the financial industry.

2. Literature Review

/	S. No.	Name of Solution/System	Features	Drawback
	1	Random Forest	Fast training and prediction	Sensitive to noisy data and outliers
	2	Logistic Regression	Simple, interpretable model	Struggles with large feature sets and interactions
	3	Decision Trees (CART)	Handles missing values well	Prone to overfitting without pruning
	4	Neural Networks	Learns complex, non- linear patterns	Computationally intensive
	5	XGBoost	High-performance gradient boosting	Dependent on smartphones and internet

3. Problem Statement

Reduce reliance on manual fraud detection

Minimize human involvement in detecting fraud by automating the process using machine learning.

Ensure real-time fraud detection

Implement a system capable of detecting fraud as transactions occur, with immediate alerts.

Adapt to changing fraud patterns

Design a system that evolves with emerging fraud techniques and continuously learns from new data.

Handle large transaction datasets efficiently

Build a system capable of processing and analyzing high volumes of transaction data without performance degradation.

Minimize false positive rates

Ensure that legitimate transactions are not incorrectly flagged as fraudulent, reducing customer friction and operational overhead.

4. Proposed Solution

Fraud detection with machine learning models

Train algorithms like Random Forest or XGBoost on labeled transaction data to classify transactions as fraudulent or legitimate.

Automated fraud detection

Develop an automated pipeline that processes incoming transactions and applies the trained model without manual intervention.

Real-time transaction analysis

Deploy the model in a real-time environment where transactions are evaluated immediately, and suspicious activities are flagged instantly.

Adaptive fraud detection

Continuously retrain the model with new transaction data to adapt to evolving fraud patterns.

4. Proposed Solution

Scalable system design

Implement a cloud-based infrastructure to handle large transaction volumes efficiently, ensuring the system scales as transaction data grows.

Reduce false positives

Optimize machine learning models and fine-tune detection thresholds to minimize legitimate transactions being incorrectly flagged as fraud.

Detect new and unseen fraud tactics

Leverage anomaly detection techniques to identify emerging fraud schemes that have not been observed in historical data.

Provide real-time decision-making support

Develop a real-time fraud detection system that can provide instant feedback on transactions, enabling immediate actions by fraud analysts or automated systems.

5. Objectives

Identify fraudulent transactions accurately

Use machine learning algorithms to detect fraudulent activities within large datasets of financial transactions.

Detect fraud in real-time

Implement a system capable of immediately identifying and responding to potential fraudulent transactions as they occur.

Adapt to evolving fraud patterns

Continuously enhance the fraud detection model to detect emerging fraud techniques and trends over time.

Optimize the system for scalability

Build a solution that can scale efficiently to handle high transaction volumes, ensuring performance remains optimal as data grows.

Improve decision-making with minimal false positives

Fine-tune the system to minimize false positives, ensuring that legitimate transactions are not flagged as fraudulent.

6.1.1 Flowchart:

6.1.2 Use Case Diagram:

6. Theoretical Analysis

6.1.3 Block Diagram:

6. Theoretical Analysis

6.1.4 Detailed Block Diagram:

6. Theoretical Analysis

6.2 Software Requirements:

Python: It offers a rich ecosystem of libraries and frameworks that are well-suited for image recognition, data preprocessing, and model development. Data Management and Processing

Pandas: Pandas is a Python library used for data manipulation and analysis. It can be beneficial for handling datasets and preprocessing.

NumPy: NumPy is another Python library for numerical computing. It's useful for performing operations on multidimensional arrays, which are common in image data.

Applications

- **1.Anomaly Detection**: Identifies transactions that deviate from typical spending patterns, signaling potential fraud.
- **2.Real-Time Fraud Prevention**: Flags suspicious transactions instantly, preventing fraudulent activities.
- **3.Classification Models**: Uses labeled data to classify transactions as legitimate or fraudulent, improving predictive accuracy.
- **4.Ensemble Learning**: Combines multiple models to enhance fraud detection by reducing errors and improving robustness.
- **5.Clustering Techniques**: Groups similar transactions, helping to spot outliers that may indicate fraudulent behavior.
- **6.Deep Learning**: Detects complex, non-linear fraud patterns in large datasets using neural networks.
- **7.Risk Scoring**: Assigns a risk score to each transaction, automatically flagging or blocking high-risk activities.
- **8.Adaptive Learning**: Continuously updates the model based on new data to stay ahead of evolving fraud tactics.

REFERENCES

- https://www.tutorialspoint.com/scikit_learn/index.htm
- 2. https://en.wikipedia.org/wiki/Data_analysis_for_fraud_detection
- 3. https://en.wikipedia.org/wiki/Credit_card_fraud
- 4. https://www.itransition.com/machine-learning/fraud-detection

Thank You

Queries?