

Projet d'économétrie appliquée

Comparaison de l'algorithme de Box et Jenkins aux méthodes de prévision traditionnelles pour la prévision de deux matières premières : le blé et le nickel

> Mosse Joseph - Rubira Pierre M1 - MBFA - ARB

> > Sous la direction de : Seyte Françoise

Résumé

L'objectif de cette étude est de comparer deux classes de méthodes de prévision, les méthodes traditionnelles d'une part et la méthode de Box et Jenkins d'autre part, afin de prédire les cours de deux contrats à terme sur matières premières, à savoir le blé et le nickel. Dans un premier temps, une analyse qualitative des deux cours sera effectuée à l'aide d'une analyse macroéconomique et technique. Dans une deuxième partie, une analyse quantitative sera réalisée pour préparer les séries temporelles à être utilisées par des méthodes traditionnelles de prévision. Dans une troisième partie, l'algorithme de prévision de Box et Jenkins sera abordé pour prédire les cours. Enfin, toutes les méthodes seront comparées afin de déterminer les plus adéquates pour prédire les cours du blé et du nickel en 2023.

Sommaire

Résumé	1
Sommaire	2
Introduction	3
1 Analyse macroéconomique et technique	5
2 Analyse de la saisonnalité et de la tendance	13
3 Prévision par le méthodes traditionnelles	18
4 Prévision selon la méthodologie de Box & Jenkins	28
Conclusion	42

Introduction

Dans un contexte marqué par une pandémie, une guerre militaire en Europe muée en guerre économique et commerciale mondialisée, ainsi que la menace croissante du changement climatique, la situation économique et les marchés financiers en sont retrouvés extrêmement perturbés. Une conception répandue veut que lorsqu'il y a incertitude sur les marchés financiers, les investisseurs considèrent les matières premières comme des valeurs refuge par rapport à d'autres investissements moins tangibles. L'analyse économique et la prévision du prix des matières premières sont donc d'une grande importance.

C'est pourquoi nous avons choisi pour ce travail d'analyser et prévoir le cours de contrat à terme deux matières premières de natures différentes, une agricole et un métal :

- Le blé, céréale essentielle à l'alimentation et dont la production est menacée par le changement climatique, mais aussi dont le commerce s'est retrouvé bouleversé en raison de la guerre russo-ukrainienne.
- Le nickel, métal omniprésent dans l'industrie et dont la demande est en constante augmentation notamment en raison de son utilisation pour la production de batteries.

L'objet du travail porte donc sur la modélisation statistique et la prévision des séries temporelles que sont les cours des contrats futures du blé et du nickel. Concernant la modélisation économétrique des séries temporelles, celle-ci est un piller de la science économique et en particulier de la finance quantitative. Les méthodes dites traditionnelles sont les premières méthodes de prévision à avoir été développées, utilisant des techniques de lissage ou d'extrapolation de composantes des séries temporelles. Cependant, dans les années 1970, l'arrivée de l'algorithme de Box et Jenkins a marqué un changement de paradigme en introduisant l'utilisation de processus aléatoires ARMA pour la modélisation des séries temporelles. Au fil du temps, l'utilisation des processus aléatoires a connu un développement et un approfondissement considérable grâce à des économistes tels que Robert F. Engle, qui a reçu le prix Nobel d'économie pour avoir introduit les modèles ARCH dans les années 1980. Aujourd'hui, les méthodes de prévision restent d'actualité grâce aux avancées technologiques dans le domaine de l'informatique, notamment avec l'avènement des technologies d'intelligence artificielle telles que l'apprentissage automatique. Dans le cadre de ce travail nous n'aborderons que les deux premières citée afin de répondre à la problématique suivante:

Quelles sont les méthodes de prévision les plus performantes pour prévoir l'évolution du prix en 2023 de deux matières premières de natures différentes, à savoir le blé et le nickel : les méthodes traditionnelles ou celle de Box et Jenkins ?

Nous tiendrons également compte de l'impact potentiel de la crise du Covid sur la modélisation de ces matières premières en utilisant deux échantillons de données, un ante-Covid19 : de 2016 à 2019 et un post-Covid19 : de 2016 à 2021.

Pour répondre à cette problématique, nous adopterons tout d'abord une approche qualitative en réalisant une analyse macroéconomique et technique des cours du blé et du nickel. Nous poursuivrons ensuite avec une approche quantitative en analysant les composantes des séries, que nous tenterons de prévoir dans une troisième partie en utilisant

les méthodes traditionnelles. Finalement dans une quatrième partie, nous appliquerons l'algorithme de Box et Jenkins pour effectuer des prévisions sur ces mêmes séries.

1 Analyse macroéconomique et technique

1.1 Présentation des deux matières premières

1.1.1 Le blé meunier

Le travail porte tout d'abord sur le cours du contrat future de blé de meunerie, qui est coté en euros sur le marché des futures à la bourse de Paris (Euronext). Le sous-jacent du contrat est du blé cultivé en l'Union Européenne et la taille d'un lot est de 50 tonnes.

Le blé meunier est une variété de blé tendre (*Triticum aestivum*), elle est la variété de blé la plus couramment cultivée dans les régions tempérées du monde. Le blé meunier est particulièrement apprécié pour sa concentration élevée en gluten, ce dernier donne à la pâte de blé une texture élastique et une capacité à lever. La farine faite à partir du blé meunier est majoritairement utilisée pour la fabrication du pain, pâtisseries et d'autres denrées a base de farine. Célèbre comptine du patrimoine français : "Meunier tu dors" tirée d'une chanson de Léon Raiter et de Fernand Pothier composée au XXème siècle.

Au niveau de l'agriculture mondiale, le blé est l'une des céréales les plus cultivées avec le riz et le mais. Parmi les principaux producteurs de blé : la Chine, l'Inde, la Russie, les États-Unis d'Amérique.¹.

Figure 1: Principaux pays producteurs de blé (2021)

Ici une période s'étalant de 2003 à 2022 est choisie afin de dresser des statistiques descriptives sur le cours du contrat a terme sur le blé meunier.

¹FAO. Production: Crops and livestock products. 2021. URL: https://www.fao.org/faostat/en/#data/QCL.

Table 1: Statistiques descriptives sur le cours du blé de 2003 à 2022

Moyenne	Écart-Type	Minimum	Maximum	Médiane	Q1	Q3
185,26 €	57,65 €	101,50 €	400,75 €	180,37 €	148,88 €	209,88 €

Le prix moyen d'un contrat a terme sur le blé sur les 20 ans est de 185,26 € pour un écart-type de 57 €. Sur la période, le prix minimum de 101,50 € date du mois d'avril 2005. En contrepartie, le prix maximum de 400,75 € a été atteint en avril 2022, l'étendue entre 2003 et 2022 est donc de 299,25 €.

Table 2: Statistiques sur les rendement mensuels du cours du blé de 2003 à 2022

Moyenne	Écart-Type	Minimum	Maximum	Skewness	Kurtosis
0,43 %	7,41%	-24,35%	30,94%	0,09	2,10

Il est aussi intéressant d'analyser les rendements (logarithmiques) du cours. En effet, la moyenne des rendements est quasiment égale à 0 sur les 20 ans, les rendements positifs et négatifs se compensent donc entre eux. Avec 7% de volatilité mensuel, le cours est assez peu volatile. De plus le Skewness étant proche de 0 et le kurtosis proche de 3, la distribution des rendements semble normale, cela semble être confirmé graphiquement par l'histogramme de répartition des rendements.

Figure 2: Distribution des rendements du cours du blé de 2003 à 2022

1.1.2 Le Nickel

Le second cours de matière première choisie dans le cadre de l'analyse est le cours du contrat future du nickel côté en Dollars au *London Metal Exchange*. Le sous-jacent doit être du nickel d'une pureté d'au minimum 99,80% et la taille du lot est de 6 tonnes².

Découvert en 1751, le nickel est un élément chimique métallique qui est représenté par

²London Metal Exchange. LME Nickel - Contrat specification: London Metal Exchange. URL: https://www.lme.com/en/Metals/Non-ferrous/LME-Nickel/Contract-specifications.

le symbole chimique Ni. Il est fréquemment associé au cobalt dans les dépôts miniers, particulièrement apprécié pour ses propriétés physiques et chimiques, en particulier pour sa résistance à la corrosion ou bien sa conductivité électrique/ thermique.

Aujourd'hui le nickel est utilisé dans un nombre important d'industries, en particulier dans la production d'acier, de batteries, de composants électroniques, mais aussi dans la frappe de monnaie, la confection de bijoux ou bien dans la chimie³.

Figure 3: Principales utilisations du nickel

Il est important de souligner qu'il existe un risque potentiel de conflits d'utilisation à long terme, notamment en raison de l'augmentation considérable de l'utilisation du nickel dans les technologies liées à la transition énergétique, en particulier dans la production de batteries. Cette utilisation accrue pourrait épuiser les ressources en nickel et engendrer des conflits géopolitiques.

Concernant l'occurrence du nickel, il est relativement répandu sur le globe, les ressources terrestres étant estimées à 300 millions de tonnes avec 60% correspondent à des dépôts de latérite (roche rouge) et 40% à des gisements de sulfure. Quant aux réserves, elles sont estimées a 100 millions de tonnes et se situent principalement en Indonésie, en Australie, au Brésil, et en Russie. Enfin, concernant la production de nickel dans le monde, la production en 2022 de nickel était de 3,3 millions de tones dont pratiquement la moitié ayant été produite par l'Indonésie⁴.

Comme pour le cours du blé, des statistiques sont faite sur une longue période (de 2006 à 2022) pour le cours du contrat sur le nickel.

Table 3: Statistiques descriptives sur le cours du nickel de 2006 à 2022

Moyenne	Écart-Type	Minimum	Maximum	Médiane	Q1	Q3
18 161,44 \$	7 636,12 \$	8 435,00 \$	49 675,00 \$	16 332,50 \$	12 742,50 \$	21 219,75 \$

³Nickel Institute. *About nickel and its applications.* 2021. URL: https://nickelinstitute.org/en/about-nickel-and-its-applications/.

⁴United States Geological Survey. *Mineral Commodity Summaries - Nickel Statistics and Information*. 2023. URL: https://pubs.usgs.gov/periodicals/mcs2023/mcs2023-nickel.pdf.

En moyenne le cours du contrat de nickel sur les 17 ans est de 18 161,44 \$. Le cours du nickel a connu son plus bas prix en mai 2016 et son plus fort cours a été atteint en avril 2017, l'étendue sur la période est de 41 240\$.

Table 4: Statistiques sur les rendements du cours du nickel de 2006 à 2022

Moyenne	Écart-Type	Minimum	Maximum	Skewness	Kurtosis
0,33 %	10,03%	-26,93%	27,93%	-0,23	0,17

Ici la volatilité mensuelle du contrat est modérée à 10%. Le skewness de -0,23 suggère que la distribution est légèrement asymétrique négative, les rendements sont donc plus souvent négatifs, cependant le skewness étant proche de 0, et le kurtosis inférieur à 3. Ces résultats peuvent laisser à penser que les rendements sont distribués de manière normale.

Figure 4: Distribution des rendements du cours du nickel de 2006 à 2022

1.2 Analyse macroéconomique des cours

Un contrat à terme, est un contrat à terme par lequel deux parties s'engagent à acheter ou vendre une quantité déterminée d'un actif sous-jacent (une action ou un indice boursier par exemple ici des matières premières), à une date d'échéance et à un prix convenus à l'avance. Un contrat future est contrat à terme standardisé, il est échangé sur les marchés réglementés comme Euronext dans le cas du blé. Les contrats futures permettent aux parties d'anticiper les variations futures d'un actif sous-jacent et peut donc servir de couverture contre les fluctuations à venir du marché. Il permet aussi de dynamiser les performances d'un portefeuille. Le contrat a terme constitue un engagement ferme, il doit être exécuté à sa date d'échéance par ses contreparties : l'acheteur contrat doit acheter l'actif sous-jacent au prix convenu et le vendeur doit livrer l'actif.

Il est possible d'apercevoir des hausses significatives des cours lors des périodes de crise. En effet, à chaque crise, le prix des contrats augmentent, les investisseurs étant plongés dans un climat d'incertitude. Afin d'avoir plus de détails sur les fluctuations, un historique des évènements économiques ayant marqué les deux cours des matières premières est développé.

Figure 5: Cours historique des contrats a terme sur blé et nickel

2003 : Sécheresse

• Le blé : La France subit un fort climat de sécheresse ce qui réduit les récoltes de blé meunier de 20% par rapport à 2002. S'ajoute à cela, l'invasion des États-Unis en Irak, ces deux éléments peuvent expliquer l'augmentation du prix, la sécheresse étant le principal élément explicatif. Le cours du blé était de 110,01 € en mai 2003 et est passé à 161,56 en octobre 2003 (+46,86%).

2007-2008: Crise des subprimes

- Le blé : Le 1 juin 2006 le cours était de 111,23 € dès 2007 le cours va augmenter fortement jusqu'à 281,32 € le 1 février 2008 (+152,92%).
- Le nickel : Tout comme le blé, le cours des contrats futures sur le nickel a été largement impacté par la crise des subprimes. Ce dernier est passé de 14 645 \$ en février 2006, à 49 675 \$ en avril 2007 le point culminant pendant la crise des subprimes. Soit une multiplication du cours sur 14 mois de 3,39 fois.

2010-2013 : Crise de la dette Européenne

- Le blé : La crise de la dette européenne a été longue sur les marchés financiers et à donc longuement impacté le cours du blé. En mai 2010 le cours était de : 132,65 € et a atteint deux points culminants : en janvier 2011 270,75 € et en novembre 2012 269,7 € .Preuve de la persistance du climat d'incertitude.
- Le nickel : Comme un grand nombre de matière première, le nickel a subi l'impact de la crise de la dette souveraine, en effet le cours est passé de 9 837 \$ en avril 2009 à 28 875 \$ en février 2011, soit une augmentation de 193,53%.

2020-2023 : Pandémie de Covid-19, guerre russo-ukrainienne, et réchauffement climatique

• Le blé : La pandémie de Covid19 et les différents confinements qui lui sont associés ont provoqué des disruptions sur les chaînes de valeur mondiales et par conséquent sur les marchés aussi. De plus, les récoltes de blé sont menacées par la sécheresse due au réchauffement climatique, et le commerce du blé s'est retrouvé bouleversé par la guerre en Ukraine, faisant flamber le cours du contrat sur le blé à des prix inégalés (400 €).

• Le nickel : Le nickel est surnommé le "métal du diable" de part sa volatilité. En plus des causes citées précédemment la demande est forte augmentation suite à l'engouement autour des véhicules électriques. En 2022 le cours a franchi à nouveau la barre symbolique des 24 000 \$. Le cours a quadruplé en l'espace de deux ans, il à grimpé de 10 887 \$ en mars 2020 à 42 100 \$ en mars 2022.

1.3 Analyse technique des cours

L'analyse technique est une méthode d'analyse des marchés financiers qui consiste à étudier les mouvements de prix et les volumes de transactions pour identifier des tendances et des modèles qui peuvent aider à prédire les mouvements futurs des prix. Cette approche est basée sur l'idée que les prix des actifs financiers reflètent toutes les informations disponibles sur le marché, et que ces informations peuvent être utilisées pour prendre des décisions d'investissement éclairées. Dans cette sous partie, plusieurs indicateurs seront utilisés afin de prévoir les deux cours journaliers sur le court terme. Les indicateurs choisis sont :

- Les Bandes de Bollingers
- Le Stochastique
- Le CCI (Commodity Channel Index)
- La MACD (Moving Average Convergence Divergence)
- Le DMI (directional movement index)
- Le RSI (relative strength index)

Les Bandes de Bollingers

Les bandes de Bollinger sont deux lignes formant un intervalle de confiance autour de la MA(20). Les bandes aident à déterminer les niveaux de support et de résistance et l'état de volatilité d'un actif financier.

Le blé

Le 10 mars 2023 l'écart entre les bandes de Bollinger a augmenté étant donné que le cours est descendu très bas et n'est pas passé loin de sortir de l'intervalle de confiance inférieur des bandes. La forte volatilité du cours à la baisse a fait s'écarter les bandes de Bollinger, toutefois le cours a subi une légère augmentation pour revenir à l'intérieur des bandes, mais reste sur une tendance décroissante.

Le nickel

Les bandes de Bollinger et la MA(20) indiquent une tendance baissière du cours au vu des 20 dernières observations. Néanmoins, le cours est sur la partie inférieure des bandes, en dessous de la MA(20). Il est possible d'imaginer que à court terme le titre retrouve la MA(20). Sur le court terme le cours pourrait donc augmenter.

Le Stochastique

Le stochastique mesure le niveau de clôture d'un actif financier par rapport à sa fourchette de prix sur une période donnée. Cet indicateur aide donc à identifier les signaux d'entrée et

de signaux de sortie potentiels du marché et par conséquent les changements de tendance. L'indicateur comporte deux courbes, %K (bleue) et %D (rouge, cette dernière étant un lissage de la première).

Le blé

Le 10 mars 2023, %K vient de croiser %D en zone de survente provoquant alors un signal d'achat. Cela coincide avec l'intuition apportée par les bandes de Bollinger. Aujourd'hui, les deux courbes ne sont ni en zone de survente, ni en zone de surachat. Cependant, %K vient de couper par le haut %D résultant en un signal de vente.

Le nickel

Les deux courbes sont à la frontière des 20 et haussières, ce qui laisse a supposer qu'elles continueront de croître au delà 20, dans une zone d'achat. De plus %K a croisé %D dans la zone de survente donnant un premier signal d'achat. Les courbes sont actuellement en train de dépasser le signal des 20, ce qui pourrait donner un second signal d'achat.

Le CCI (Commodity Channel Index)

Le CCI est un indicateur technique des oscillateurs, permettant de prendre en compte les mouvements saisonniers et de détecter si la hausse ou la baisse du cours est liée à un cycle saisonnier. Un indicateur entre [-100;100] indique une variation saisonnière, tandis qu'une sortie de cette fourchette donne un signal d'achat ou de vente.

Le blé

Ici le CCI est de -64, il y a alors tendance à la baisse de type saisonnière. De plus, il est possible d'imaginer que le CCI dépasse la ligne des -100 à la baisse marquant un, tendance encore plus baissière preuve d'un signal de **vente**.

Le nickel

Le CCI du cours est de -67, il y a donc en théorie une tendance baissière. Cependant, une tendance haussière s'observe. À partir de là il est possible de supposer que cette croissance subsiste. Le CCI pourrait donc devenir positif envoyant un signal d'achat.

La MACD (Moving Average Convergence Divergence)

La ligne MACD est la différence entre une Moyenne Mobile de 26 jours et une Moyenne Mobile de 12 jours. Elle est représentée par la ligne bleue, la ligne en rouge quant à elle, représente donc la courbe signal qui est une Moyenne Mobile sur 9 jours.

Le blé

Suite à l'augmentation du cours, il y a eu un signal d'achat donné par l'indicateur MACD. Néanmoins, ce signal n'était en réalité qu'une légère correction du cours puisque la puissance de la tendance haussière, mesuré par l'écart entre les deux courbes était très faible.

Le nickel

Ici, la courbe MACD croise à la hausse son signal, il y a donc ici un clair signal d'achat.

Le DMI (directional movement index)

Le DMI permet d'évaluer la force et la direction d'une tendance. Il est composé de de 3 courbes : l'ADX est la courbe rouge qui représente la "température" ainsi que des courbes ID- et ID+ orange et bleue respectivement, ces dernières permettent de jauger

la "pression". Pour qu'il y ait tendance, il faut donc suffisamment de température et de pression.

Le blé

Lorsque ID- > ID+ et que ADX > 25 comme c'est le cas ici, il y a une tendance à la baisse. Il est également possible d'observer que l'écart entre ID- et ID+ s'agrandit de plus en plus preuve d'un renforcement de tendance.

Le nickel

La courbe ADX en rouge, est de 25 Il n'y a pas de tendance pour le moment. De plus ID-> ID+, il y a donc pression à la baisse, mais l'ADX (température) est faible, il est impossible de conclure à la présence d'une tendance baissière.

Le RSI (relative strength index)

Le RSI mesure la force d'une tendance et permet d'identifier les niveaux de surachat et de survente d'un actif financier.

Le blé

À la date du 20 mars 2023, Le RSI est de 36,18, dans ce cas là il n'est ni en survente ni en surachat, cependant la courbe semble se diriger vers le bas dans la zone de survente, dans ce cas là il y aurait un signal de vente.

Le nickel

L'indicateur des RSI est de 37 donc pas dans une zone d'achat ou de vente. Toutefois, celui-ci est sur une potentielle croissance haussière. On peut essayer de justifier que ce dernier va devenir supérieur au seuil des 50 précisant un signal d'achat.

Pour résumer cette partie d'analyse technique, les signaux d'achat et de vente sont dans le tableau ci dessous.

Table 5: Résumé des signaux donnés par les indicateurs

Sig	nal
Blé	Nickel
Baisse	Hausse
Vente	Achat
Vente	Achat
Neutre	Achat
Neutre	Neutre
Vente	Achat
	Blé Baisse Vente Vente Neutre Neutre

En conclusion, le blé montre beaucoup de signaux de vente ainsi qu'une tendance à la baisse, cela laisse penser qu'il faut vendre le contrat, car le cours est en train De baisser. D'un autre côté le nickel montre beaucoup de signaux d'achats ainsi qu'un signal de tendance à la hausse, signe d'une porte d'entrée sur le marché.

Toutefois, l'analyse technique ne repose pas sur des sciences exactes, il s'agit en revanche d'un outil d'analyse de la psychologie des foules. C'est une raison pour laquelle l'arbitrage autour d'un titre financier ne devrait pas s'arrêter ici, mais devrait s'approfondir par une analyse statistique des cours.

2 Analyse de la saisonnalité et de la tendance

Les méthodes traditionnelles de prévision, reposent sur la décomposition des différentes composantes d'une série temporelle. Ici il s'agira donc ici d'analyser ces différentes composantes (c'est à dire la tendance et la saisonnalité).

Afin de pouvoir travailler sur la série, il est nécessaire de réduire les fluctuations importantes de la série. Pour cela un test ARCH est fait pour chacune des séries afin de déterminer si il y a homoscédasticité dans leur distribution. L'hypothèse nulle et alternative sont :

 H_0 : Homoscédasticité H_1 : Hétéroscédasticité

Statistique de test:

$$LM = n \times R^2 \sim \chi_{0.95}^2 (p)$$

Règle de décision : La statistique du multiplicateur de Lagrange est comparée au quantile à 95% de la distribution du Khi-deux ayant pour degrés de liberté 7. Dans le cas suivant : $\chi^2_{0.95}(7) = 14,067^5$.

Table 6: Résultats du test ARCH

Échantillon	2016	-2019	2016	-2021
Echantillon	Blé	Nickel	Blé	Nickel
\overline{LM}	27,31	21,41	54,10	49,96

Ici, pour toutes les séries, la statistique LM est supérieur au seuil, l'hypothèse H_0 est rejetée au risque de 5%. Les cours du blé et du nickel présentent donc de l'hétéroscédasticité. Afin d'amoindrir ces fluctuations importantes, une transformation logarithmique est faite sur chacune des séries. Les séries transformées serviront donc pour le reste du travail.

2.1 Détection de saisonnalité et de tendance

2.1.1 Analyse graphique

Dans un premier temps, une étude intuitive peut être faite. Il s'agira donc ici d'analyser graphiquement chacune des chroniques afin de déterminer de façon préliminaire, si les cours du blé et du nickel sont sujets à de la saisonnalité, et/ou à une tendance.

Pour le cours du blé, il est possible de déceler une légère tendance à la hausse de 2016 à 2019. Cette tendance s'accentue si 2020 et 2021 sont inclus. Pour ce qui est de la saisonnalité, il semble impossible de déterminer que la série possède une quelconque saisonnalité⁶.

Dans le cas du nickel, une tendance haussière se démarque (tout échantillon confondu). Quant à la saisonnalité, sur l'échantillon 2016-2019, la série ne semble pas saisonnière. Cependant sur l'échantillon 2016-2021, la série peut sembler saisonnière par périodes de

⁵Voir annexe B.1 p.43

⁶Voir figure B.1 p. 44

un an^7 .

Les deux séries semblent donc se comporter de manière similaire : faible tendance haussière, ainsi que non saisonnières.

2.1.2 Analyse de la variance et test de Fisher

Afin de confirmer les intuitons développées dans la sous-partie précédente, une analyse de la variance et le test de Fisher sur la tendance et de saisonnalité doivent être menés. La détection de la saisonnalité est essentielle, car les méthodes de prévision traditionnelles ne peuvent être que menées sur des séries non saisonnières ou bien désaisonnalisées.

L'analyse de la variance est basée sur les moyennes calculées dans le tableau de Buys Ballot⁸. En effet afin d'analyser la saisonnalité, il reviendra a étudier l'influence du facteur colonne (variance des mois) et pour la tendance, l'influence du facteur ligne (variance des années). Après calculs ⁹, les différentes variances sont affichées dans le tableau ci-dessous.

Échantillon	2016	-2019	2016	2016-2021	
ECHANTIIION	Blé	Nickel	Blé	Nickel	
Variance période	0,0086	0,0129	0,0023	0,0243	
Variance année	0,2746	0,3723	0,0661	0,6502	
Variance résidus	0,0048	0,0286	0,0033	0,0098	

Table 7: Analyse de la variance

Enfin grace aux variances, le test de Fisher peut être effectué.

Test de Fisher de détection de saisonnalité

Il s'agira ici de tester l'influence du facteur colonne en comparant la variance période à la variance résiduelle, afin de déterminer si les séries sont saisonnières.

 H_0 : Pas d'influence du facteur colonne (pas de saisonnalité)

 H_1 : Influence du facteur colonne (saisonnalité)

Statistique de test pour un niveau $\alpha = 5\%$:

$$F_c = \frac{V_P}{V_R} \sim F_{0,95}((n-1), (n-1)(p-1))$$

Règle de décision : La statistique calculée (F_c) est ensuite comparée au quantile à 95% de la distribution F de Fisher avec comme degrés de liberté (p-1) et (n-1)(p-1), où n représente le nombre d'année et p le nombre de périodes. Si la statistique empirique est supérieure au quantile, alors H_0 est rejetée, la série est saisonnière. Après calculs :

⁷Voir figure B.2 p. 44

⁸Voir annexe B.3.1 p.45

⁹Voir annexe B.3.2 p.46

Table 8: Test de Fisher (saisonnalité)

Échantillon	2016	-2019	2016 -2021	
Echantillon	Blé	Nickel	Blé	Nickel
$\overline{F_c}$	0,6986	0,4505	1,7906	2,4772
$F_{0,95}$	2,0933	2,0933	1,9675	1,9675
ddl	(11;33)	(11;33)	(11;55)	(11;55)

Ici, les statistiques calculées sont toutes inférieures au seuil, sauf pour l'échantillon (2016-2021) du nickel. Ainsi, l'hypothèse H_0 est acceptée au risque de 5% pour les deux échantillons du blé et pour l'échantillon (2016-2019) du nickel. En revanche elle est rejetée pour l'échantillon (2016-2021) du nickel.

Pour ses deux échantillons, la série du blé n'est donc pas saisonnière, il en est de même pour le premier échantillon de la série du nickel. Par contre, l'échantillon (2016-2021) du nickel est lui saisonnier, il faudra donc par la suite déterminer son type de saisonnalité (déterministe ou aléatoire), puis son type de schéma de décomposition (additif ou multiplicatif) et finalement désaisonnaliser la série afin de pouvoir utiliser les méthodes de prévision.

Test de Fisher de détection de tendance

De manière analogue, il revient à comparer la variance année à la variance résiduelle afin de déterminer si les séries possèdent une tendance.

 H_0 : Pas d'influence du facteur ligne (pas de tendance)

 H_1 : Influence du facteur ligne (tendance)

Statistique de test pour un niveau $\alpha = 5\%$:

$$F_c = \frac{V_A}{V_B} \sim F_{0,95}((p-1), (n-1)(p-1))$$

Règle de décision : Comme pour le test précédent, si la statistique calculée est supérieure au quantile à 95% de la distribution de Fisher ayant pour dll: (n-1) et (n-1)(p-1), alors H_0 est rejetée, la série possède une tendance.

Table 9: Test de Fisher (tendance)

Échantillon	2016	-2019	2016 -2021		
Echantillon	Blé	Nickel	Blé	Nickel	
$\overline{F_c}$	20,1576	12,9965	56,8388	66,2263	
$F_{0,95}$	2,8916	2,8916	2,3828	2,3828	
ddl	(3;33)	(3;33)	(5;55)	(3;55)	

Ici dans tous les cas, le Fisher empirique est supérieur au Fisher théorique, H_0 est rejetée au risque de 5% pour toutes les séries.

Les deux séries et leurs échantillons possèdent donc une tendance. Il à remarquer que la probabilité de rejeter H_0 est bien plus supérieure sur les échantillons (2016-2021) que sur les échantillons (2016-2019), cela confirme l'intuition dégagée de l'analyse graphique.

2.2 Désaisonnalisation de l'échantillon 2016-2021 du nickel

Comme vu précédemment l'échantillon (2016-2021) du Nickel est saisonnier, il est donc indispensable d'étudier, puis de corriger la saisonnalité.

2.2.1 Type de saisonnalité et sélection du schéma de décomposition

Dans un premier temps le type de saisonnalité doit être défini, en effet la saisonnalité peut être déterministe ou bien aléatoire. Pour cela chaque ligne du tableau de Buys-Ballot de l'échantillon concerné sont classées par ordre croissant. De plus pour faciliter la lecture, chaque mois s'est vu attribuer une couleur appartenant à un gradient rouge¹⁰. Il est donc rapidement possible de remarquer que la saisonnalité n'est pas répétitive, elle est donc aléatoire. Il faudra donc désaisonnaliser la série par méthode Census.

Il est par la suite nécessaire de sélectionner le schéma de décomposition de la chronique, un test de Buys-Ballot est donc fait. Le test se base sur les résultats du tableau de Buys-ballot¹¹, le test consiste à tester la significativité de la pente du modèle suivant : $\sigma_{i\cdot} = \beta x_{i\cdot} + \alpha + \varepsilon_{i\cdot}$

Specification du test:

 $H_0: \beta = 0$ Le schéma de décomposition est additif.

 $H_1: \beta \neq 0$ Le schéma de décomposition est multiplicatif.

Statistique de test:

$$t_c = \frac{\hat{\beta}}{\hat{\sigma}_{\hat{\beta}}} \sim t_{0,975}(n-2)$$

Règle de décision : Si la statistique calculée en valeur absolue est inférieure au quantile à 97,5% de la distribution bilatérale de Student avec comme degrés de liberté n-2=4 alors H_0 est acceptée, le paramètre de la pente n'est pas significatif, le schéma de décomposition est donc additif. Après calculs¹²:

$$|t_c| = 0,7701$$
 $t_{0,975}(4) = 2,7764$

Ici la statistique calculée est inférieure au Student lu dans la table de la distribution théorique, H_0 est donc rejetée au risque de 5%. Le schéma de décomposition de la série est un schéma additif. L'échantillon (2016-2021) du nickel peut être modélisé comme la somme de trois composantes : une extra saisonnière, une saisonnière, et une résiduelle :

$$x_t = E_t + S_t + R_t$$

2.2.2 Désaisonnalisation de l'échantillon par méthode Census

Maintenant que le type de saisonnalité, ainsi que le schéma de décomposition de la série sont connus, la série doit être corrigée des variations saisonnières. La désaisonnalisation vise à supprimer la composante saisonnière sans impacter les autres composantes de la série. Ici, la saisonnalité étant aléatoire, la méthode Census est utilisée.

 $^{^{10}}$ Voir tableau B.12 p.47

 $^{^{11}}$ Voir tableau B.6 p.45

¹²Voir tableau B.13 p. 47

La première itération de la méthode Census, à été développée par l'économiste J.Shiskin alors qu'il était chercheur au *Bureau of Census*. La méthode à par la suite été largement améliorée au cours du temps, pour arriver aujourd'hui à la version X-13-ARIMA. Cette méthode consiste en une itération de moyennes mobiles permettant d'estimer les différentes composantes d'une série.

Ici la méthode X-13 est utilisée et les coefficients saisonniers sont calculés¹³ et soustraits à la série de base par le logiciel EViews. La série désaisonnalisée sera donc utilisée pour le reste du travail.

Figure 6: Désaisonnalisation par méthode Census du cours en log du nickel (2016-2021)

 $^{^{13}\}mathrm{Voir}$ tableau B.14 p. 47

3 Prévision par le méthodes traditionnelles

Une fois que toutes les séries ont été amplement analysées, transformées, et si besoin, corrigées des variations saisonnières, il alors est possible d'appliquer des méthodes de prévision traditionnelles. Le choix d'une méthode de prévision depend du caractère déterministe (ou aléatoire) de l'extra-saisonnalité et de la saisonnalité de la série a prévoir.

Dans le cadre de l'analyse du cours du blé et du nickel, il a précédemment été montré que les deux échantillons du blé, ainsi que l'échantillon 2016-2019 du nickel ne présentaient pas de saisonnalité, pour ces séries-là donc, seule la nature de la composante extra-saisonnière est à prendre en compte. Concernant cette dernière, elle est déterministe pour les trois séries citées étant donné qu'elles possèdent toutes une tendance. Dans ce cas-là, en théorie la méthode de prévision à utiliser serait l'extrapolation par une droite de tendance.

Concernant l'échantillon 2019-2021 du nickel, malgré une composante saisonnière aléatoire, ce dernière possède comme les autres échantillons, une tendance. La méthode de prévision adéquate reste l'extrapolation d'une droite de tendance.

Cependant, afin de ne mettre aucun élément d'analyse de côté, en plus de l'extrapolation, des méthodes de prévision par lissage exponentiel de composantes seront utilisées. Parmi ces méthodes, le lissage exponentiel double (LED) et le lissage exponentiel de Holt-Winters sont choisis.

Afin de prévoir le cours en 2023, il est nécessaire de sélectionner la méthode ayant le meilleur score de prévision sur des données passées. Pour les deux matières premières le choix de la meilleure méthode se fera en deux grandes étapes :

- 1. Prévision des cours en 2020 grace aux échantillons 2016-2019, la prévision minimisant le critère MSE sur 2020 sera retenue et prolongée jusqu'à fin 2022.
- 2. Prévision des cours en 2022 grace aux échantillons 2016-2021, comparaison des MSE avec les MSE de la méthode retenue pour 2020, la prévision minimisant le critère sera retenue et utilisée pour prévoir les cours de 2023

3.1 Echantillon 2016-2019

3.1.1 Prévision pour 2020

Extrapolation d'une droite de tendance

La prévision par extrapolation d'une droite est la méthode la plus adéquate pour estimer les tendances déterministes, elle consiste à modéliser la série par une droite. Cette droite s'écrit telle que :

$$x_t = \beta t + \alpha + \varepsilon_t$$

Où x_t est une série temporelle non saisonnière et t le temps. Par la suite, les paramètres $\hat{\alpha}$ et $\hat{\beta}$ sont estimés grace à la méthode des MCO (Moindres Carrés Ordinaires). Avant de prévoir, il est nécessaire de procéder aux tests sur les paramètres et résidus de la regression afin de valider le modèle.

Le test est le même pour les deux séries :

 $H_0: \beta = 0$ Non significativité du paramètre

 $H_1: \beta \neq 0$ Significativité du paramètre

Statistique de test:

$$t_c = \frac{\hat{\beta}}{\hat{\sigma}_{\hat{\beta}}} \sim t_{0,975}(46)$$

Règle de décision : la statistique de Student calculée en valeur absolue est comparée au quantile à 97,5%, de la distribution bilatérale de Student avec comme degrés de liberté 46. Si elle est inférieure alors la pente du modèle n'est pas significative, elle est en revanche significative si la statistique est supérieure au seuil.

Ici, les deux statistiques calculées¹⁴ sont supérieures au seuil (1,96). H_0 est donc acceptée au risque de 5%, les pentes des deux modèles sont significatives. Il en est de même pour les constantes du modèle, la probabilité critique d'accepter l'hypothèse nulle étant 0. Les paramètres du modèles sont donc significatifs. Les valeurs pour 2020 du blé et du nickel peuvent être calculées en extrapolant les droites.

Table 10: Prévision du cours du blé et du nickel en 2020 par extrapolation linéaire

	Blé ((€)	Nicke	l (\$)
Mois	Valeurs prévues	Valeurs réelles	Valeurs prévues	Valeurs réelles
01-2020	192,49	191,00	15312,42	12850,00
02-2020	193,34	187,50	15483,91	12255,00
03-2020	194,20	196,25	15657,33	11484,00
04-2020	195,06	195,75	15832,68	12192,00
05-2020	195,92	188,25	16010,00	12324,00
06-2020	196,79	180,50	16189,31	12805,00
07-2020	197,66	182,75	16370,62	13786,00
08-2020	198,54	187,75	16553,96	15367,00
09-2020	199,41	197,75	16739,36	14517,00
10-2020	200,30	205,25	16926,83	15156,00
11-2020	201,18	210,25	17116,41	16033,00
12-2020	202,07	213,25	17308,10	16613,00

Lissage exponential double (LED)

Les techniques de lissage exponentiel ont été introduites par Holt et Brown. Un lissage exponentiel double consiste à effectuer deux lissage sur une série temporelle non saisonnière. Dans un premier temps donc il est nécessaire d'effectuer un lissage exponentiel simple (LES) sur la série¹⁵. Le LES considère qu'une chronique peut être décrite comme une combinaison linéaire des valeurs passées pondérées par un poids qui décroît plus les observations sont anciennes.

Afin de matérialiser ce poids, une constante de lissage λ comprise entre 0 et 1 est utilisée.

¹⁴Voir Voir annexe C.1.1 p. 48

 $^{^{15}\}mathrm{Voir}$ tableau C.5 p. 51

En fonction de sa valeur, λ donnera un poids plus ou moins important au passé. Si λ est proche de 0, alors la mémoire du phénomène est dite forte, la prévision dépend beaucoup des observations passées. En revanche, si la constante est proche de 1, alors la mémoire du phénomène est faible, le lissage est plus réactif aux observations récentes.

Dans le cas du blé et du nickel, le programme d'optimisation calcule $\lambda=0,43$ pour le blé et $\lambda=0,47$ pour le nickel¹⁶. Les deux constantes sont proches de 0,45, cela veut dire que pour les deux séries, la prévision par lissage apportera très légèrement plus d'importance au passé que au présent.

Table 11: Prévision du cours du blé et du nickel en 2020 par lissage exponentiel double

	Blé ((€)	Nicke	l (\$)
Mois	Valeurs prévues	Valeurs réelles	Valeurs prévues	Valeurs réelles
01-2020	189,45	191,00	13817,13	12850,00
02-2020	192,02	187,50	13484,34	12255,00
03-2020	194,64	196,25	13159,58	11484,00
04-2020	197,28	195,75	12842,63	12192,00
05-2020	199,97	188,25	12533,32	12324,00
06-2020	202,69	180,50	12231,45	12805,00
07-2020	205,45	182,75	11936,86	13786,00
08-2020	208,24	187,75	11649,36	15367,00
09-2020	211,07	197,75	11368,79	14517,00
10-2020	213,95	205,25	11094,98	15156,00
11-2020	216,86	210,25	10827,75	16033,00
12-2020	219,81	213,25	10566,97	16613,00

Lissage exponentiel de Holt-Winters

La prévision par lissage exponentiel de Holt-Winters est une méthode de prévision de séries chronologiques saisonnières. La méthode consiste à effectuer un LED de Holt sur la partie non saisonnière, c'est-à-dire la moyenne et la tendance, et un lissage exponentiel saisonnier sur la composante saisonnalité¹⁷. Ici, les deux échantillons du blé, ainsi que l'échantillon 2016-2019 du nickel étant non saisonniers, la méthode revient à un LED sur deux paramètres pour ces échantillons.

Comme pour le LED, les différentes constantes de lissage (α, β) sont calculées via une minimisation de la somme des carrés des résidus et sont trouvés dans le tableau ci dessous.

Table 12: Constantes de lissage de la méthode HW 18

	Blé	Nickel
$\frac{\alpha}{\beta}$	0,78 0,00	0,89 0,00

 $^{^{16}}$ Voir annexe C.1.2 p. 51

¹⁷Voir tableau C.8 p. 52

¹⁸Voir annexe C.1.3 p. 52

Ainsi la prévision pour 2020 peut être faite :

Table 13: Prévision du cours du blé et du nickel en 2020 par lissage de Holt-Winters

	Blé (€)		Nickel (\$)	
Mois	Valeurs prévues	Valeurs réelles	Valeurs prévues	Valeurs réelles
01-2020	187,26	191,00	14272,31	12850,00
02-2020	186,99	187,50	13306,19	12255,00
03-2020	186,72	196,25	11664,18	11484,00
04-2020	186,46	195,75	11825,33	12192,00
05-2020	186,19	188,25	12081,62	12324,00
06-2020	185,93	180,50	12792,85	12805,00
07-2020	185,66	182,75	13731,23	13786,00
08-2020	185,40	187,75	14456,35	15367,00
09-2020	185,14	197,75	14663,90	14517,00
10-2020	184,87	205,25	14916,73	15156,00
11-2020	184,61	210,25	14698,81	16033,00
12-2020	184,35	213,25	16106,49	16613,00

3.1.2 Choix de la meilleure méthode

Il désormais nécessaire de sélectionner la meilleure méthode de prévision pour chacun des cours. En effet, la meilleure méthode sera ensuite utilisée pour prévoir les cours de l'année 2022. Pour ce faire, le critère de comparaison utilisé est le MSE, ce dernier est calculé comme la moyenne des erreurs quadratiques. la prévision minimisant le MSE sera sélectionnée.

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)$$

Où n est le nombre de périodes prévues (ici 12), Y_i , les valeurs réelles et \hat{Y}_i , les valeurs prévues. Il est également possible de calculer le critère RMSE tel que : RMSE = $\sqrt{\text{MSE}}$, ce dernier permettant de mieux évaluer la distance moyenne entre les valeurs prévues et les données empiriques.

Table 14: Critère MSE et RMSE pour la prévision des cours du blé et du nickel en 2020

	В	Blé		Nickel	
Méthode	MSE	RMSE	MSE	RMSE	
Extrapolation	78,19	8,84	7501793	2738,94	
LED	161,02	12,69	9445216	3073,31	
Holt-Winter	192,20	13,86	525124	724,65	

Ici, pour le blé, la meilleure méthode de prévision d'après le critère MSE est la prévision par extrapolation d'une droite de tendance. Pour le nickel la meilleure méthode est celle du lissage de Holt-Winters. Ces deux méthodes sont sélectionnées.

3.1.3 Prévision pour 2022

Les méthodes retenues sont donc utilisées sur les échantillons 2019-2016 du blé et du nickel pour prévoir les cours de 2022. L'objectif ici étant de prévoir 2022 avec des échantillons ne comportant pas la période de crise sanitaire liée à la pandémie de Covid-19.

Table 15: Prévision du cours du blé et du nickel en 2022 avec échantillons ante-Covid-19

	Blé (€)		Nickel (\$)	
Mois	Valeurs prévues	Valeurs réelles	Valeurs prévues	Valeurs réelles
01-2022	214,01	266,00	22595,97	22328,00
02-2022	214,96	322,50	23029,39	24282,00
03-2022	215,91	369,50	23471,11	32107,00
04-2022	216,87	400,75	23921,31	31771,00
05-2022	217,83	392,25	24380,15	28392,00
06-2022	218,79	350,25	24847,78	22698,00
07-2022	219,76	343,00	25324,39	23619,00
08-2022	220,73	332,25	25810,14	21411,00
09-2022	221,71	356,75	26305,20	21107,00
10-2022	222,69	352,25	26809,76	21809,00
11-2022	223,68	326,50	27324,00	26987,00
12-2022	224,67	309,25	27848,10	30048,00
MSE	16645,29		19816354,21	

Les MSE ci dessus seront par la suite comparés aux MSE des méthodes utilisées sur les échantillons (2016-2021) afin de vérifier si la période de Covid19 à réellement eu un impact sur la prévision du cours de 2022.

3.2 Échantillon 2016-2021

La démarche empruntée ici est la même que celle de la sous-partie précédente. L'objectif est de prévoir les cours du blé et du nickel pour l'année 2022, les échantillons utilisés seront les échantillons couvrant 2016 jusqu'à 2021. Prévoir grace à ces échantillons, permet d'intégrer à la modélisation la période de crise liée à la pandémie de Covid-19. La situation conjoncturelle n'ayant pas réellement connue d'accalmie en raison du changement climatique et en particulier de la guerre en Ukraine, l'ajout de la période Covid-19 permettra potentiellement aux différentes méthodes de mieux intégrer les variations importantes.

3.2.1 Prévision pour 2022

De manière analogue, les trois méthodes traditionnelles utilisées sont l'extrapolation d'une droite de tendance, le lissage exponentiel double, et le lissage exponentiel de Holt-Winters. Elles seront par la suite comparées entre elles ainsi qu'à la prévision faite pour 2022 dans la partie précédente par le biais du critère MSE.

Extrapolation d'une droite de tendance

Les paramètres de la droite de tendance sont estimés grace à la méthode des MCO, ils sont pour le blé et le nickel tous significativement différents de 0. les résidus des droites sont pour les deux matières premières soumis à de l'hétéroscédasticité ainsi que à de l'autocorrélation, malgré cela ils sont normalement distribués. Les résidus du blé et du nickel ne suivent donc pas un bruit blanc, cependant le modèle est quand même utilisé pour prévoir 2022, les paramètres étant tout de même significatifs¹⁹.

Lissage exponentiel double (LED)

Les constantes de lissage pour les séries de blé et de nickel sont calculés et minimisent la somme des carrés des écarts prévisionnels. Pour le ble $\lambda=0,37$, cela veut dire que la mémoire du phénomène est forte, une plus grand pondération est appliquée aux observations passées. Pour le nickel, $\lambda=0,5$, cela veut dire que la mémoire n'est ni forte, ni faible, la prévision accorde autant d'importance au passé que au présent²⁰.

Lissage exponentiel de Holt-Winters

Ici, le lissage de Holt-Winters pour le blé revient à un LED sur deux paramètres : la moyenne et la tendance. Les constantes de lissages sont calculées de la même façon que pour un LED²¹:

$$\alpha = 0,73 \qquad \beta = 0$$

En revanche, l'échantillon 2016-2021 du nickel présente de la saisonnalité additive, dans ce cas là l'échantillon «brut» (non corrigé des variations saisonnières) est utilisé, et la composante saisonnière est donc lissée par un lissage exponentiel saisonnier de Winters. Les constantes de lissage sont :

$$\alpha = 0, 9$$
 $\beta = 0$ $\gamma = 0$

Les valeurs prévues du cours du blé en 2020 par les trois méthodes sont calculées et dans le tableau ci dessous :

¹⁹Voir annexe C.2.1 p. 53

 $^{^{20}\}mathrm{Voir}$ annexe C.2.2 p. 56

 $^{^{21}\}mathrm{Voir}$ annexe C.2.3 p. 56

Table 16: Prévisions du cours du blé en 2022 par différentes méthodes de prévision

(en €) Mois	Valeurs prévues par Extrapolation	Valeurs prévues par LED	Valeurs prévues par HW	Valeurs Réelles
01-2022	234,33	292,14	280,78	266,00
02-2022	235,80	301,04	282,51	322,50
03-2022	237,28	310,20	284,25	369,50
04-2022	238,76	319,65	286,00	400,75
05-2022	240,26	329,38	287,76	392,25
06-2022	241,76	339,41	289,53	350,25
07-2022	243,28	349,75	291,31	343,00
08-2022	244,80	360,40	293,11	332,25
09-2022	246,33	371,37	294,91	356,75
10-2022	247,88	382,68	296,73	352,25
11-2022	249,43	394,33	298,55	326,50
12-2022	250,99	406,34	300,39	309,25

Il est dans un premier temps ici facilement remarquable que les modèles traditionnels ont relativement du mal a prévoir l'année 2022, hautement volatile dû à l'invasion Russe en Ukraine, le critère MSE permettra donc de discriminer la meilleure méthode.

Les valeurs du nickel sont pareillement calculées et dans le tableau ci dessous :

Table 17: Prévisions du cours du nickel en 2022 par différentes méthodes de prévision

(en \$) Mois	Valeurs prévues par Extrapolation	Valeurs prévues par LED	Valeurs prévues par HW	Valeurs Réelles
01-2022	18780,42	21472,00	21039,45	22328,00
02-2022	19149,75	22376,20	21558,85	24282,00
03-2022	17740,34	21185,63	20351,32	32107,00
04-2022	18229,36	22248,81	20923,61	31771,00
05-2022	18230,73	22740,26	20797,59	28392,00
06-2022	19132,73	24390,70	21631,74	22698,00
07-2022	20504,99	26715,48	23198,64	23619,00
08-2022	21845,07	29087,93	24336,37	21411,00
09-2022	20485,09	27877,46	23365,18	21107,00
10-2022	21129,49	29387,35	23984,39	21809,00
11-2022	20272,23	28815,69	23297,93	26987,00
12-2022	20883,14	30337,46	23608,95	30048,00

L'analyse tacite est similaire à celle de la prévision du blé, le critère MSE permettra de choisir la meilleure méthode. Il reste cependant à remarquer que pour les deux matières premières, l'extrapolation d'une droite de tendance semble être la méthode la moins adaptée.

3.2.2 Choix de la meilleure méthode

Afin de sélectionner les meilleures de prévisions pour le blé et le nickel en 2022, les critères MSE des différentes méthodes sont comparées. La prévision minimisant le critère sera choisie pour prévoir 2023.

Table 18: Critère MSE et RMSE pour la prévision des cours du blé et du nickel en 2022

	Blé		Nickel	
Méthode	MSE	RMSE	MSE	RMSE
Extrapolation	11427,19	106,90	57040109	7552,49
LED	2609,42	51,08	35361885	5946,59
Holt-Winter	4069,21	63,79	33115542	5754,61
Prévision (2016-2019)	16645,29	129,02	19816354	4451,56

Pour le blé, la méthode qui minimise le critère RMSE est celle du lissage exponentiel double. Pour le nickel, c'est la méthode de Holt-Winters sur l'échantillon 2016-2019 qui minimise le MSE. L'ajout de la période de pandémie de Covid-19 aura été utile pour prévoir le cours du blé, mais pas le cours du nickel.

Les méthodes et échantillons choisis sont donc :

- Blé: Lissage exponentiel double sur l'échantillon 2016-2021.
- Nickel: Lissage exponentiel de Holt-Winter sur l'échantillon 2016-2019.

Ces méthodes seront comparées dans la prochaine partie aux prévisions obtenues avec la méthode de Box et Jenkins afin de répondre à la problématique.

En théorie, si aucune information n'est perdue lors de la prévision, les résidus des deux prévisions devraient se comporter statistiquement comme un bruit blanc normal. Les différents tests sur les résidus sont fait²².

Test d'absence d'autocorrélation des résidus

Le test utilisé est le test de Ljung-Box, ce test permet de vérifier si les résidus d'un modèle de série temporelle présentent une corrélation significative jusqu'à un certain ordre k. Il utilise les autocorrélations des résidus jusqu'à un nombre donné de retards k et les compare à une distribution du chi-deux pour évaluer la significativité de la corrélation. Spécification du test :

 H_0 : Absence d'autocorrélation des résidus à l'ordre k.

 H_1 : Autocorrélation à l'ordre k.

Statistique de test:

$$Q = n(n+2) \sum_{k=1}^{h} \frac{\hat{\rho}_k^2}{n-k} \sim \chi_{0,95}^2(k)$$

²²Voir annexe C.2.4 p. 57

Règle de décision : Si la valeur de la statistique Q est inférieur au seuil lu dans la table du khi-deux alors H_0 est acceptée au risque de 5%, il y a autocorrélation à l'ordre k. Ici pour le blé et le nickel, les corrélogrammes montrent que pour n'importe quel nombre de retards k, la probabilités d'accepter H_0 est inférieures à 5%. H_0 est donc rejetée au risque de 5%, il y a autocorrélation des résidus pour les deux modèles

Test d'homoscédasticité

Le test utilisé est le test ARCH, il permet de tester si les résidus d'un modèle sont homoscédastiques. Le test consiste à réaliser une régression auxiliaire des carrés des résidus, en les retardant d'un certain nombre de périodes, puis tester la significativité des paramètres de la regression grace à un test F ou un test LM.

Spécification du test :

 H_0 : Homoscédasticité des résidus.

 H_1 : Hétéroscédasticité.

Statistique de test:

$$LM_{ble} = nR^2 = 77 \times 0,83 = 63,65$$
 $LM_{nickel} = 77 \times 0,42 = 32,00$

Règle de décision : la statistique LM est comparée au quantile lu dans la table du khi-deux pour un niveau de test à 5%, ici $\chi^2_{0,95}(7) = 14.07$. Si elle est inférieure, alors H_0 est acceptée au risque de 5%

Ici pour les deux modèles LM est supérieure, H_0 est alors rejetée au risque de 5% pour les deux. Les résidus des modèles de prévision du blé et du nickel sont hétéroscédastiques.

Test de normalité

Le test utilisé est le test de Jarque-Bera, le test vérifie si une distribution est normalement distribué. Ce test est basé sur une mesure de l'asymétrie et de l'aplatissement de la distribution, appelée le statistique de Jarque-Bera (JB).

Spécification du test:

 H_0 : Les résidus suivent une distribution normale.

 H_1 : Les résidus ne suivent pas une distribution normale.

Statistique de test:

$$JB_{ble} = \frac{n}{6} \left(S^2 + \frac{1}{4} (K - 3)^2 \right) = 138,46$$
 $JB_{nickel} = 141,12$

Où S est le coefficient d'asymétrie (skewness) et K le coefficient d'aplatissement (kurto-sis).

Règle de décision: La statistique JB est comparée au quantile à 95% de la distribution de khi-deux ayant pour degrés de libérté 2, ici $\sim \chi^2_{0,95}(2) = 5,99$. Si la statistique est inférieure au seuil critique H_0 est acceptée au risque de 5%.

Ici dans les deux cas la statistique de Jarque-Bera est largement supérieur à 5,99, H_0 est donc rejetée pour les résidus du le blé et le nickel, ils ne suivent pas une distribution

normale normalité.

Les résidus des prévisions sont hétéroscédastiques, autocorrélés et ne sont pas normalement distribués. Ils ne suivent donc pas un bruit blanc, une partie de l'information est donc perdue lors de la prévision.

4 Prévision selon la méthodologie de Box & Jenkins

4.1 Présentation de la méthode

Lors de des prévisions faites grace aux méthodes traditionnelles, il a été possible de montrer que les résidus des prévisions n'étaient pas des bruits blancs. En effet, les méthodes traditionnelle s'avèrent le plus souvent inefficaces lors de prévisions de chroniques économiques, en particulier financières. Une partie des informations est donc perdue, mal modélisée par les lissages ou extrapolations. Une autre classe de méthodes de modélisation de séries temporelles peut donc être utilisée pour modéliser le cours du blé et du nickel : les processus aléatoires ARMA.

La démocratisation de l'utilisation des processus aléatoires dans le domaine de la modélisation économique remonte aux années 1970. À cette époque, deux statisticiens, George Box et Gwilym Jenkins mettent au point une méthode itérative de prévision de séries temporelles basée sur les processus aléatoires ARMA.

La première étape de cet algorithme est de transformer la série de base, c'est à dire procéder a une transformation logarithmique en cas de fortes variations, corriger les variations saisonnières en cas de saisonnalité, et finalement corriger la tendance si il y en à une. Cette étape de transformation vise donc à rendre stationnaire une série temporelle pour que ses caractéristiques se rapprochent le plus à celles d'un processus ARMA. En effet, la méthodologie de Box et Jenkins est bâtie sur la modélisation de chroniques stationnaires, or les séries économiques ou financières sont rarement la réalisation de de processus aléatoires stationnaires. Il faut donc réaliser un test de racine unitaire pour déterminer si la série est stationnaire ou non, et si elle ne l'est pas, identifier le type de non-stationnarité.

Les types de processus non-stationnaires les plus fréquents sont :

- Les processus DS (Differency Stationary) représentent la non-stationnarité aléatoire, forme la plus commune des chroniques financières.
- Les processus TS (*Trend Stationary*) représentent la non-stationnarité déterministe.

Si la série est un DS, il faut appliquer un filtre aux différences pour corriger la stationnarité. Au contraire si c'est un TS, la stationnarité est corrigée par la méthode des moindres carrés ordinaires.

Lorsque la série est stationnaire, vient alors l'étape d'identification. Les caractéristiques des fonctions d'autocorrélation et autocorrélation partielle de la chronique sont comparées à celles de processus ARMA théoriques, ceci permet d'identifier l'ordre du processus ARMA sous-jacent.

La troisième étape est l'étape d'estimation, les paramètres du processus ARMA identifié sont estimés par la méthode des MCO. Pour rappel, un ARMA(p,q) est une combinaison linéaire de processus autorégressif à l'ordre p AR(p) et de processus moyenne mobile à l'ordre q MA(q) tel que :

$$x_t = \varepsilon_t + \sum_{i=1}^p \phi_i x_{t-i} + \sum_{i=1}^q \theta_i \varepsilon_{t-i}$$

Une fois que les paramètres du modèle ont été estimés, s'en suit l'étape de tests de validation du modèle. En effet, si le modèle ne répond pas aux critères attendus d'un bon modèle ARMA, alors il faut revenir à l'étape d'identification afin d'identifier si possible, un meilleur modèle. Ces critères peuvent être classés de la sorte :

- Minimisation des critères d'information construits pour les ARMA.
- Stationnarité de la partie AR et inversibilité de la partie MA.
- Significativité des paramètres estimés et du coefficient de détermination.
- Les résidus suivent un bruit blanc gaussien.
- Respect du principe de parcimonie.

Si le modèle estimé respecte la majorité des éléments de la liste, il alors est possible de passer à la cinquième et dernière étape : la prévision. Une fois la prévision faite, il est nécessaire de recolorer la chronique, c'est à dire re-transformer la chronique à son état d'origine.

Maintenant que les étapes de l'algorithme ont été explicitées, ce dernier est utilisé afin de prévoir les valeurs des cours du blé et du nickel. La stratégie est sensiblement la même que celle de la partie 3, c'est à dire : une prévision pour 2022 grace aux échantillons 2016-2019, puis une prévision pour 2022 grace aux échantillons 2016-2021, les échantillons utilisés étant ceux ayant été transformés logarithmiquement et corrigés des variations saisonnières si besoin. Les meilleurs modèles seront par la suite comparés aux méthodes traditionnelles afin de déterminer la méthode a utiliser pour prévoir 2023.

4.2 Test de racine unitaire

La type de non-stationnarité revêt une grande importance lorsqu'il s'agit de traiter des données statistiques d'une série temporelle. Pour cela qu'il est primordial d'identifier si la chronique est un DS ou un TS, une mauvaise stationnarisation pouvant grandement fausser les résultats. Plusieurs tests permettent de répondre à cette problématique, ce sont les tests de recherche de racine unitaire, parmi eux, le premier à avoir été mis au point est celui de Dickey-Fuller. Pour ce travail, le test de Philip-Perron est utilisé, il s'agit d'une extension de celui de Dickey-Fuller qui permet de permet de prendre en compte les erreurs hétéroscédastiques et/ou autocorrélées.

La stratégie de test de Philip-Perron est la même que celle du test de Dickey-Fuller augmenté, elle consiste en une estimation séquentielle de trois modèles : un AR(1) avec tendance et constante, un AR(1) avec constante, et un AR(1) simple. À chacune des étapes deux tests sont faits :

- Un test de présence de racine unitaire H_0 (l'hypothèse alternative H_1 étant station-narité de la chronique).
- Un test d'hypothèse jointe, permettant de valider la présence de racine unitaire et de différencier TS et DS.

4.2.1 Echantillon 2016-2019

Dans un premier temps, la stratégie de test de racine unitaire est fait sur les échantillons 2016-2019 des cours du blé et du nickel²³.

• Test de racine unitaire sur le cours blé

Le modèle 3 est estimé, c'est un AR(1) avec tendance et constante :

$$x_t = c + bt + \phi_1 x_{t-1} + a_t$$

L'hypothèse de présence de racine unitaire est testée.

- Hypothèse:

 $H_0: \phi_1 = 1$

Présence de racine unitaire.

 $H_1: |\phi_1| < 1$

Stationnarité du processus.

- Statistique de test :

$$t_c = \frac{\tilde{\phi}_1 - 1}{\hat{\sigma}_{\tilde{\phi}_1}}$$

- Règle de décision : Pour un niveau de test à 5%, la statistique de Student calculée est ensuite comparée à la statistique de student ajustée de la table de Dickey-Fuller (annexe). Si la statistique calculée est supérieure au seuil, alors l'hypothèse nulle de présence de racine unitaire est acceptée.
- Application :

$$t_c = -2,67$$

D'autre part, la statistique de Student ajustée lue dans la table de Dickey-Fuller est $t_{ajs} = -3,51$. La statistique calculée est donc supérieure au seuil critique, l'hypothèse H_0 est acceptée au risque de 5%, il y a présence de racine unitaire.

Afin de distinguer TS de DS, il faut a présent tester l'hypothèse jointe H_0^3

- Spécification du test :

$$H_0^3:(c;b;\phi_1)=(c;0;1)$$

 H_1^3 : Au moins un des paramètres est différent.

- Statistique de test :

$$F_3 = \frac{(SCR_c^3 - SCR_3)/2}{SCR_3/(n-3)}$$

Où SCR_3 est la somme des carrés des résidus du modèle 3 et SCR_c^3 la somme des carrés des résidus du modèle 3 contraint sous l'hypothèse H_0^3 tel que : $SCR_c^3 = \sum_t (x_t - x_{t-1} - \hat{c})^2$.

- Règle de décision : La statistique de Fisher calculée est par la suite comparée à la statistique de Fisher tabulée de Dickey-Fuller. Si F_3 est inférieur au seuil critique lu dans la table pour un niveau de test à 5%, alors H_0^3 est acceptée.

²³Voir annexe D.1.1 p. 60

- Application:

$$F_3 = \frac{(0,100994 - 0,087023)/2}{0,087023/(47 - 3)} = 3,53$$

La statistique lue dans la table de Dickey-Fuller est $\Phi_3 = 6,73$; or F_3 est inférieure à Φ_3 . L'hypothèse H_0^3 Est donc acceptée au risque de 5%.

En suivant le diagramme de stratégie de test de racine unitaire, il est désormais nécessaire de tester l'hypothèse jointe H_0^2 .

- Spécification du test :

$$H_0^2:(c;b;\phi_1)=(0;0;1)$$

 H_1^2 : Au moins un des paramètres est différent.

- Statistique de test :

$$F_2 = \frac{(SCR_c - SCR_3)/3}{SCR_3/(n-3)}$$

Où SCR_c est la somme des carrés des résidus du modèle 3 contraint sous l'hypothèse H_0^2 , il s'agira donc ici de la somme des carrés de la différence première du cours en log du blé.

- Règle de décision : Si la statistique F_2 est inférieure à la statistique lue dans la table de Dickey-Fuller pour un niveau de test de 5%, alors H_0^2 est acceptée.
- Application:

$$F_2 = \frac{(0,101423 - 0,087023)/3}{0,087023/(47 - 3)} = 2,43$$

De plus, la statistique de Fisher lue dans la table de Dickey-Fuller $\Phi_2 = 5, 13$ est supérieure à la statistique calculée. L'hypothèse H_0^2 est donc acceptée au risque de 5%.

Pour le moment, d'après le diagramme, le cours du blé ne peut pas être un TS. Il est maintenant nécessaire d'estimer le modèle 2, qui est identique au modèle 3 à l'exception de l'absence de tendance.

$$x_t = c + \phi_1 x_{t-1} + a_t$$

De manière séquentielle, comme pour le modèle 3, l'hypothèse de présence de racine unitaire est testée.

- Hypothèse:

$$H_0: \phi_1 = 1$$

Présence de racine unitaire.

$$H_1: |\phi_1| < 1$$

Stationnarité du processus.

- Statistique de test :

$$t_c = \frac{\tilde{\phi}_1 - 1}{\hat{\sigma}_{\tilde{\phi}_1}}$$

- Règle de décision : La statistique de student calculée est comparée à la statistique de student tabulée de Dickey-Fuller pour un niveau de test à 5%. Si la statistique calculée est supérieure au seuil critique, alors l'hypothèse nulle de présence de racine unitaire est acceptée.

31

- Application:

$$t_c = -1,73 > t_{ajs} = -2,93$$

L'hypothèse H_0 est donc acceptée au risque de 5\%, il y a présence de racine unitaire.

Un test d'hypothèse jointe H_0^1 est ensuite fait afin de valider la présence de racine unitaire et tester la nullité de la constante c.

- Spécification du test :

$$H_0^1:(c;\phi_1)=(0;1)$$

 H_1^1 : Au moins un des paramètres est différent.

- Statistique de test :

$$F_1 = \frac{(SCR_c - SCR_2)/2}{SCR_2/(n-2)}$$

Où SCR_2 est la somme des carrés des résidus du modèle 2 non contraint.

- Règle de décision : Si la statistique F_2 est inférieure à la statistique lue dans la table de Dickey-Fuller pour un niveau de test de 5%, alors H_0^2 est acceptée.
- Application:

$$F_1 = \frac{(0,101423 - 0,094683)/2}{0,094683/(47 - 2)} = 1,60$$

Cette statistique est inférieure à la statistique de Fisher lue dans la table de Dickey-Fuller $\Phi_1 = 4,86$. L'hypothèse H_0^2 est donc acceptée au risque de 5%.

D'après le diagramme, il faut maintenant tester la nullité de la moyenne du cours du blé. En effet, si il s'avère que la moyenne n'est pas nulle alors le processus sous-jacent est un DS.

- Spécification du test :

$$H_0: \mu = 0$$
 $H_1: \mu \neq 0$

- Règle de décision : La statistique calculé est un student et elle est comparée à la distribution bilatérale de la loi de Student qui converge vers une loi normale centrée réduite. Si la statistique calculée est inférieure à 1,96, alors H_0 est acceptée au risque de 5%.
- **Application :** Ici $t_c = 400 > 1,96$, l'hypothèse de nullité de la moyenne est donc rejetée au risque de 5%.

La moyenne du cours du blé n'étant pas nulle, il est possible de conclure que le processus générateur de la chronique est un DS sans dérive $\Delta x_t = a_t$. Pour le rendre stationnaire il est donc nécessaire d'appliquer un filtre aux différences premières. Soit x_t le cours du blé.

$$\Delta x_t = \ln x_t - \ln x_{t-1}$$
$$= \ln \left(\frac{x_t}{x_{t-1}}\right)$$

Ici Δx_t correspond aux rendements logarithmiques du cours du blé.

• Test de racine unitaire sur le cours nickel

La même stratégie (annexe) est utilisée afin de déterminer si le cours du nickel est stationnaire, et dans le cas contraire, identifier le type de non-stationnarité. Dans un premier temps, le modèle 3 est estimé, c'est un AR(1) avec tendance et constante. À partir de ce modèle l'hypothèse de présence de racine unitaire est ensuite testée.

- Hypothèse:

$$H_0: \phi_1 = 1$$
 Présence de racine unitaire.
 $H_1: |\phi_1| < 1$ Stationnarité du processus.

- Statistique de test :

$$t_c = \frac{\tilde{\phi}_1 - 1}{\hat{\sigma}_{\tilde{\phi}_1}} = -3,04$$

- Règle de décision: La statistique calculée est comparée au seuil critique lu dans la table de Dickey-Fuller (annexe). Si la statistique calculée est supérieure à ce seuil, alors l'hypothèse de présence de racine unitaire est acceptée.
- **Application :** La statistique de student ajustée lue dans la table de Dickey-Fuller est $t_{ajs} = -3,51$. Or $t_c > t_{ajs}$, H_0 est acceptée au risque de 5%, il y a une racine unitaire.

Il est maintenant nécessaire de tester l'hypothèse jointe pour différencier TS de DS.

- Spécification du test :

$$H_0^3:(c;b;\phi_1)=(c;0;1)$$
 $H_1^3:$ Au moins un des paramètres est différent.

- Statistique de test :

$$F_3 = \frac{(SCR_c^3 - SCR_3)/2}{SCR_3/(n-3)} = 4,44$$

- Règle de décision : La statistique calculée est comparée à celle lue dans la table de Dickey-Fuller. Si F_3 est inférieure à celle lue pour un niveau de 5%, alors H_0^3 est acceptée.
- **Application :** La statistique lue dans la table de Dickey-Fuller est $\Phi_3 = 6,73$; or $F_3 < \Phi_3$. L'hypothèse H_0^3 est acceptée au risque de 5%.

L'hypothèse jointe H_0^2 est testée.

- Spécification du test :

$$H_0^2:(c;b;\phi_1)=(0;0;1)$$

$$H_1^2: \mbox{Au moins un des paramètres est différent}.$$

- Statistique de test :

$$F_2 = \frac{(SCR_c - SCR_3)/3}{SCR_3/(n-3)} = 3,19$$

- Règle de décision : Si la statistique $F_2 < \Phi_2$ pour un niveau de test de 5%, alors H_0^2 est acceptée.
- Application : $F_2 < \Phi_2 = 5, 13$. Alors H_0^2 est acceptée au risque de 5%.

Le cours du nickel ne peut pas être considéré comme un TS. Par conséquent, il faut estimer le modèle 2. Il convient ensuite de tester l'hypothèse de présence de racine unitaire

- Hypothèse:

$$H_0: \phi_1 = 1$$
 Présence de racine unitaire.
 $H_1: |\phi_1| < 1$ Stationnarité du processus.

- Statistique de test :

$$t_c = \frac{\tilde{\phi}_1 - 1}{\hat{\sigma}_{\tilde{\phi}_1}} = -1,81$$

- Règle de décision : Si pour un niveau de test à 5%, le student calculé est supérieur au student ajusté de Dickey-Fuller alors H_0 est acceptée.
- Application : $t_c > t_{ajs} = -2.93$. Alors H_0 est acceptée au risque de 5%.

Afin de valider la présence de racine unitaire ainsi que tester la significativité de la constante, le test d'hypothèse jointe H_0^1 est fait.

- Spécification du test :

$$H^1_0:(c;\phi_1)=(0;1)$$

$$H^1_1: \mbox{Au moins un des paramètres est différent}.$$

- Statistique de test:

$$F_1 = \frac{(SCR_c - SCR_2)/2}{SCR_2/(n-2)} = 2,16$$

- Règle de décision : Si la statistique $F_1 < \Phi_1$ pour un niveau de test de 5%, alors H_0^1 est acceptée.
- **Application** : $F_1 < \Phi_1 = 4,86$. Alors H_0^1 est acceptée au risque de 5%.

Un test de nullité de la moyenne du cours du nickel est fait :

- Spécification du test :

$$H_0: \mu = 0$$
 $H_1: \mu \neq 0$

- Règle de décision : Si $t_c < U_{0,95}$, alors H_0 est acceptée au risque de 5%.
- Application : Ici $t_c = 340 > 1,96$. Donc H_0 est rejetée au risque de 5%.

La moyenne du cours du nickel n'est donc pas nulle, d'après le diagramme de stratégie de test de racine unitaire, le processus sous-jacent est un DS sans dérive. Un filtre aux différences premières est appliqué pour le rendre stationnaire.

4.2.2 Echantillon 2016-2021

Le même procédé que dans la partie précédente est utilisé pour déterminer si les échantillons incluant la période Covid-19 sont stationnaires ou non, et dans le cas échéant quel est type de non stationnairé.

Les séries étant les mêmes que celles testées précédemment seulement rallongées de deux ans, cela laisse à penser que les processus générateurs des échantillons 2016-2021 soient aussi des DS sans dérive. Pour éviter toute redondance, les deux tests seront donc synthétisés en un seul²⁴.

Le modèle 3 est estimé, puis test de racine unitaire \mathcal{H}_0 est fait.

- Spécification du test :

 H_0 : Présence de racine unitaire. H_1 : Stationnarité du processus.

- Statistique de test :

Blé Nickel
$$t_c=-2,73 \qquad > \quad t_{ajs}=-3,47 \qquad \qquad t_c=-2.83 \qquad > \quad t_{ajs}=-3,47$$

- Règle de décision : H_0 acceptée au risque de 5% pour les deux. Il y a racine unitaire dans les deux cas.

Test d'hypothèse jointe H_0^3 .

- Spécification du test :

$$H_0^3:(c;b;\phi_1)=(c;0;1)$$

- Statistique de test :

Blé Nickel
$$F_3 = 4,27 \qquad < \quad \Phi_3 = 6,49 \qquad \qquad F_3 = 4,05 \qquad < \quad \Phi_3 = 6,49$$

- Règle de décision : $F_3 < \Phi_3$, alors H_0^3 est acceptée au risque de 5% pour les deux échantillons, il y a racine unitaire et le paramètre de pente est nulle.

Test d'hypothèse jointe H_0^2 .

- Spécification du test :

$$H_0^2:(c;b;\phi_1)=(0;0;1)$$

- Statistique de test :

Blé Nickel
$$F_2 = 3,29 \qquad < \quad \Phi_2 = 4,88 \qquad \qquad F_2 = 3,47 \qquad < \quad \Phi_2 = 4,88$$

²⁴Voir annexe D.1.2 p. 64

- Règle de décision : $F_2 < \Phi_2$, alors H_0^2 est acceptée au risque de 5% pour les deux échantillons, la constante du modèle n'est pas significative.

Le modèle 2 est estimé, par la suite, un test de racine unitaire H_0 est fait.

- Spécification du test :

 H_0 : Présence de racine unitaire. H_1 : Stationnarité du processus.

- Statistique de test :

Blé Nickel
$$t_c=-0,19 \qquad > \quad t_{ajs}=-2,90 \qquad \qquad t_c=-0,73 \qquad > \quad t_{ajs}=-2,90$$

- Règle de décision : H_0 acceptée au risque de 5% pour les deux. Il y a racine unitaire dans les deux cas.

Test d'hypothèse jointe H_0^1 .

- Spécification du test :

$$H_0^1:(c;\phi_1)=(0;1)$$

- Statistique de test :

Blé Nickel
$$F_1=0,77 \qquad < \quad \Phi_1=4,71 \qquad \qquad F_1=1,26 \qquad < \quad \Phi_1=4,71$$

- Règle de décision : $F_1 < \Phi_1$, alors H_0^1 acceptée au risque de 5% pour les deux échantillons, la constante du modèle n'est pas significative

Test de nullité de la moyenne

- Spécification du test :

$$H_0: \mu = 0$$
 $H_0: \mu \neq 0$

- Statistique de test :

Blé Nickel
$$t_c = 287,06$$
 $t_c = 267,5$

- Règle de décision : $t_c > 1,96$, Pour les deux échantillons, H_0 est rejetée au risque de 5%, la moyenne n'est pas significative.

Le résultat est donc le même que celui trouvé précédemment, les processus générateurs du cours du blé et du nickel sur la période 2016-2021 ne sont pas stationnaires et sont des DS sans dérive. Il faut appliquer un filtre aux différences premières afin de rendre stationnaire les séries.

4.3 Identification, validation et prévision des processus

La seconde étape de l'algorithme de Box et Jenkins est l'étape d'identification. En effet dès lors qu'un série chronologique a été rendue stationnaire, il est nécessaire d'identifier le processus ARMA le plus apte à s'assimiler aux données empiriques. Pour cela l'identification d'un processus ARMA se fait par la comparaison des fonctions d'autocorrélation et d'autocorrélation partielle de la série à celles de processus ARMA théoriques. En somme, un processus ARMA sera choisi si les FAC et FAP de ce dernier sont semblables à celle observées sur les cours du blé et du nickel (en différences premières).

Cependant, avant d'analyser les fonctions d'autocorrélation, il est courant de réaliser un test BDS sur une série stationnaire afin de déterminer si elle est indépendante statistiquement et identiquement distribué (i.i.d). En effet si la série est indépendante et i.i.d, sa modélisation par processus aléatoire ARMA est impossible. Le test est fait pour les quatres échantillons²⁵.

Spécification du test:

 H_0 : La chronique est indépendant et i.i.d

Règle de décision : Concernant le blé, pour l'échantillon 2016-2019 , la majorité des probabilités d'accepter H_0 sont inférieures à 5%, H_0 est donc rejetée pour cet échantillon. Pour celui allant jusqu'a 2021 les probabilités sont toutes inférieures à 5% pour toutes les dimensions H_0 est également rejetée. Le cours du blé (tout échantillon confondu) n'est donc pas indépendant et i.i.d, il est possible de le modéliser grace à des processus ARMA.

En revanche, pour le nickel, sur les deux échantillons la grande majorité des probabilités d'accepter H_0 sont supérieures à 5%, dans les deux cas H_0 est donc acceptée, le cours du nickel est indépendant et i.i.d, il est impossible de modéliser le cours grace à des processus ARMA. La prévision du cours du nickel grace aux processus aléatoire s'arrête donc ici.

4.3.1 Echantillon 2016-2019

Pour le blé, l'étude du corrélogramme 26 révèle des coefficients significatif au premier retard de la FAC et de la PAC. Cette configuration pourrait donc faire penser à celle d'un ARMA(1,1). Cependant, il serait aussi judicieux de considérer la possibilité que le processus puisse être identifié comme un AR(1) ou un MA(1). Afin de discriminer le modèle le plus pertinent, 36 simulations de modèles ARMA sont faites (les ordres des processus allant de 0 à 5, par respect du principe de parcimonie). Le modèle choisi sera celui le plus apte à répondre à ces trois problématiques :

- 1. Minimisation du critère d'Akaike.
- 2. Significativité des paramètre(s) du modèle.
- 3. Qualité des résidus (non autocorrélation, homoscédasticité, normalité).

Grace à la table²⁷, il est rapidement possible de déterminer que le modèle répondant aux problématiques précédentes est un AR(1). En effet, le modèle minimise le critère d'Akaike, Le paramètre est significatif et les résidus suivent un bruit blanc gaussien²⁸.

 $^{^{25}}$ Voir annexe D.2.1 p. 68

²⁶Voir figure D.1 p. 70

²⁷Voir tableau D.2 p. 70

²⁸Voir annexe D.2.3 p. 71

Hypothèse nulle (H_0)	Test	Valeur-p	Decision
Paramètre non significatif Absence d'autocorrelation des résidus	Student Ljung-Box	0,04 >0,05	Rejetée Acceptée
Homoscédasticité des résidus	ARCH	0,44	Acceptée
Normalité des résidus	Jarque-Bera	0,93	Acceptée

Le modèle est donc utilisé afin de prévoir l'année 2022.

$$\Delta x_t = \phi_1 \Delta x_{t-1}$$
$$\Delta x_t = -0, 32 \times \Delta x_{t-1}$$

D'après cette modélisation, le rendement logarithmique du blé à l'instant t dépend du rendement logarithmique du mois précédent. Il est cependant bon de remarquer que le coefficient ϕ_1 est assez faible, la modélisation étant linéaire, la prévision risque d'être relativement plate.

Table 20: Prévision du cours du blé en 2022 avec échantillon ante-Covid-19

(en €) Mois	Prévision par AR(1)	Valeurs Réelles
01-2022	187,95	266,00
02-2022	187,95	322,50
03-2022	187,95	369,50
04-2022	187,95	400,75
05-2022	187,95	392,25
06-2022	187,95	350,25
07-2022	187,95	343,00
08-2022	187,95	332,25
09-2022	187,95	356,75
10-2022	187,95	352,25
11-2022	187,95	326,50
12-2022	187,95	309,25

En effet passé un certain horizon de prévision, la prévision du cours devient totalement constante à 187,95 € le contrat. Il est envisageable de résoudre ce problème en prenant en considération la période de la pandémie de Covid-19 et en réduisant l'horizon de prévision. Par conséquent, il est nécessaire de passer à l'échantillon suivant.

4.3.2 Echantillon 2016-2021

Le principe est le même que dans la sous-partie précédente. Le corrélogramme²⁹ des rendements logarithmes du blé sur la période 2016-2021 est quasiment le même que celui vu précédemment, c'est à dire, un coefficient significatif au retard 1 sur la FAC et la FAP. En théorie le processus aléatoire théorique le plus proche de cette série est donc un

 $^{^{29}}$ Voir figure D.5

ARMA(1,1) ou AR(1) ou MA(1). Comme dans la sous partie précédente, la carte thermique³⁰ générée indique le processus ARMA répondant aux problématiques exprimées précédemment. Il s'agit (comme pour l'échantillon 2016-2019) d'un AR(1), en effet c'est le modèle qui minimise le critère d'Akaike parmi les autres, le paramètre est significatif au seuil de 5%, et les résidus suivent un bruit blanc normal³¹.

Comme pour le modèle précédent, les rendements log du cours du blé a l'instant t dépendent de ceux du mois précédent.

$$\Delta x_t = \phi_1 \Delta x_{t-1}$$
$$\Delta x_t = -0.31 \times \Delta x_{t-1}$$

Encore une fois, le coefficient étant assez bas, la prévision risque d'être plate (comme celle obtenue avec l'échantillon 2016-2019).

Table 21: Prévision du cours du blé en 2022 avec échantillon post-Covid-19

(en €) Mois	Prévision par AR(1)	Valeurs Réelles
01-2022	278,81	266,00
02-2022	278,71	322,50
03-2022	278,74	369,50
04-2022	278,73	400,75
05-2022	278,74	392,25
06-2022	278,74	350,25
07-2022	278,74	343,00
08-2022	278,74	332,25
09-2022	278,74	356,75
10-2022	278,74	352,25
11-2022	278,74	326,50
12-2022	278,74	309,25

De fait, la prévision ne varie que en centimes d'euros les quatres premiers mois, jusqu'a devenir constante a partir du cinquième.

4.3.3 Choix de la meilleure méthode

Les prévisions obtenues à travers la méthode de Box et Jenkins ne semblent pas très exactes. En effet, les prévisions obtenues dans les deux cas sont constantes, ce scénario semble peu envisageable dans la mesure où dans un contexte de guerre ou bien de réchauffement climatique, le cours du blé ne peut pas stagner. Cependant, il est nécessaire de comparer les deux prévisions en utilisant le critère MSE et RMSE.

³⁰Voir figure D.6 p. 73

³¹Voir annexe D.2.5 p. 73

Table 22: Critère MSE et RMSE pour la prévision du cours du blé en 2022

Échantillon	Processus	MSE	RMSE		
2016-2019	AR(1)	25397,24	159,37		
2016-2021	AR(1)	5408,62	73,54		

Ici le MSE de la prévision utilisant l'échantillon post-Covid19 est cinq fois plus petit que celui de la prévision ante-Covid19. La prévision par AR(1) sur l'échantillons 2016-2021 est donc choisie pour être comparée à celles des méthodes traditionnelles. L'ajout de la période Covid19 aura été utile pour prévoir l'année 2022 avec l'algorithme de Box et Jenkins.

4.4 Prévision pour 2023

Dans une dernière étape de comparaison des méthodes de prévision, les prévisions traditionnelles retenues dans la partie 3 seront comparées à celles de la méthodologie de Box et Jenkins. La méthode minimisant le critère MSE sera utilisée pour prévoir l'année 2023.

Dans un premier temps, le cours du nickel n'étant pas modélisable par des processus ARMA, la méthode de prévision pour 2023 est celle choisie en 3.2.2, c'est à dire un lissage exponentiel de Holt et Winters sur l'échantillon 2016-2019.

Concernant le blé, il s'agit de comparer la prévision grace à un AR(1) sur l'échantillon 2016-2021 à la prévision du lissage exponentiel double sur ce même échantillon.

Table 23: Critère MSE et RMSE pour la prévision pour le cours du blé en 2022

Méthode	MSE	RMSE
LED	2609,42	51,08
Box-Jenkins	5408,62	73,54

Ici, la meilleure méthode la méthode minimisant le critère MSE est la méthode traditionnelle du lissage exponentiel double sur l'échantillon 2016-2019. Cette méthode est donc retenue afin de prévoir le cours du blé en 2023.

Finalement, les prévisions pour l'années 2023 du cours des contrats a terme du blé et du Nickel sont :

Table 24: Prévision du cours des contrats à terme sur blé et du nickel en 2023

	Blé (<i>e</i>	n €)	Nickel	(en \$)
Mois	Valeurs prévues	Valeurs réelles	Valeurs prévues	Valeurs réelles
01-2023	418,72	287,75	28382,25	30344,00
02-2023	431,47	274,25	28926,65	24794,00
03-2023	444,60	248,00	29481,50	22593,50
04-2023	458,14		30046,98	
05-2023	472,09		30623,31	
06-2023	486,47		31210,70	
07-2023	501,28		31809,35	
08-2023	516,55		32419,49	
09-2023	532,27		33041,32	
10-2023	548,48		33675,09	
11-2023	565,18		34321,01	
12-2023	582,39		34979,32	

Ici, il a été possible d'obtenir le cours moyen mensuel des trois premiers mois de 2023. La prévision du blé semble grandement surestimer le cours avec des valeurs prévues deux fois plus grandes. Concernent le nickel, la prévision parait plus précise que celle du blé. Cependant la prévision est croissante alors que le cours réel lui est décroissant pour le moment, il est donc possible que dans les mois à venir le lissage de Holt-Winters surestime le vrai cours. Il est possible de calculer les MSE et RMSE sur l'année 2023 à titre informatif.

Table 25: Critère MSE et RMSE pour les prévisions de 2023

	Blé	Nickel
MSE	26840,58	22790590,23
RMSE	163,83	4773,95

Conclusion

Le but de ce travail était d'évaluer les performances de différentes méthodes de prévision, notamment comparer les méthodes traditionnelles et la méthodologie de Box et Jenkins, dans le but d'identifier la méthode la plus efficace pour effectuer des prévisions sur le cours de deux matières premières de nature différentes. Toutefois, étant donné l'ampleur inédite du choc économique survenu en 2020, il était nécessaire de développer une stratégie de prévision pour répondre à cette problématique. Cette stratégie nous a permis de rester flexibles dans notre modélisation de ce choc. Pour cela, nous avons utilisé deux échantillons : un échantillon ante-Covid19 (de 2016 à 2019) et un échantillon post-Covid19 (de 2016 à 2021).

Lors d'une analyse de prévision basée sur des méthodes traditionnelles, nous avons observé que même en présence de composantes extra-saisonnières (tendance) déterministes, les lissages exponentiels étaient les meilleures méthodes pour prévoir les deux cours. En particulier, un lissage exponentiel double a été utilisé pour prévoir le cours du blé et un lissage exponentiel de Holt-Winters a été utilisé pour prévoir celui du nickel. De plus, nous avons constaté que la prévision du cours du nickel était plus précise lorsqu'on utilisait l'échantillon ante-Covid19, et inversement pour le blé. Donc :

- Le lissage exponentiel double s'est avéré être la méthode la plus efficace pour prévoir le cours du blé. En outre, l'inclusion de la période de la pandémie Covid19 a permis une meilleure modélisation de la série.
- La méthode appropriée pour prévoir le cours du nickel est le lissage de Holt-Winters. Cependant, contrairement au cours du blé, l'inclusion de la période de la pandémie Covid19 n'a pas amélioré les résultats de la prévision.

Par la suite, nous avons comparé les résultats obtenus par ces méthodes aux résultats obtenus en prévoyant à l'aide de la méthodologie de Box-Jenkins. Plus précisément, dans la section 4, nous avons tenté de modéliser les prix en utilisant des processus aléatoires de type ARMA. Cependant, il n'a été possible de modéliser que le prix du blé, car celui du nickel s'est avéré statistiquement indépendant et *i.i.d.*. En ce qui concerne le prix du blé, après avoir été rendu stationnaire, le processus sous-jacent ARMA identifié et estimé fut celui d'un AR(1).

Après avoir effectué des prévisions à l'aide de l'algorithme de Box et Jenkins, une dernière étape de comparaison a été réalisée, révélant que les méthodes traditionnelles demeurent plus efficaces pour prédire les fluctuations de prix des deux matières premières. Il est possible que ce résultat soit cohérent étant donné que les contrats à terme sur les matières premières ont un comportement distinct de celui des instruments financiers tels que les actions, qui peuvent être plus volatils et mieux modélisés par des méthodes telles que les modèles ARMA ou GARCH.

En réalité, la pertinence de telles méthodes peut être remise en question, car elles peuvent être peu applicables en finance, étant donné leur difficulté à prédire les mouvements de marché anormaux tels que les chocs et les crises. En effet, à l'heure de la digitalisation croissante de l'industrie financière, cette dernière est de plus en plus axée sur les données data driven. L'utilisation de données massives et d'algorithmes pour l'analyse de marché, gérer des portefeuilles et prendre des décision est de plus en plus courante et ont tendance à surpasser les méthodes abordées dans ce travail.

A Analyse macroéconomique et technique

B Analyse de la saisonnalité et de la tendance

B.1 Test ARCH

Table B.1: Test ARCH pour la série Blé

Heteroskedasticity Test: ARCH		Echantillon	2016-2019	
F-statistic	9.401617	Prob. F(7,33)		0.0000
Obs*R-squared	27.30724	Prob Chi-Square(7)		0.0003
Heteroskedasticity Test: ARCH		Echantillon	2016-2021	
F-statistic	40.42172	Prob. F(7,57)		0.0000
$Obs^*R ext{-}squared$	54.10140	Prob. Chi-Square(7)		0.0000

Table B.2: Test ARCH pour la série Nickel

Heteroskedasticity Test: ARCH		Echantillon	2016-2019	
F-statistic Obs*R-squared	5.151741 21.40896	Prob. F(7,33) Prob. Chi-Square(7)		0.0005 0.0032
Heteroskedasticity Test: ARCH		Echantillon	2016-2021	
F-statistic Obs*R-squared	27.04986 49.96036	Prob. F(7,57) Prob. Chi-Square(7)		0.0000 0.0000

B.2 Analyse graphique

Figure B.1: Cours du blé (en logarithme)

Figure B.2: Cours du nickel (en logarithme)

B.3 Analyse de la variance

B.3.1 Tableau de Buys-Ballot

Table B.3: Tableau de Buys-Ballot du blé (2016-2019)

	Jan.	Fév.	Mars	Avr.	Mai	Juin	Jui.	Août	Sep.	Oct.	Nov.	Déc.	x_{i} .	σ_{i} .
2016	5.0983	4.9921	5.0288	5.0206	5.1044	5.0483	5.1120	5.0418	5.0783	5.1105	5.0876	5.1240	5.0706	0.0428
2017	5.1090	5.1489	5.1029	5.1255	5.1165	5.1733	5.1255	5.0483	5.1120	5.0876	5.0720	5.0689	5.1075	0.0350
2018	5.0642	5.1165	5.0983	5.1255	5.2081	5.1846	5.3095	5.3218	5.3058	5.2908	5.3045	5.3144	5.2203	0.0986
2019	5.3193	5.2640	5.2244	5.2109	5.2217	5.1943	5.1634	5.1014	5.1634	5.1818	5.2231	5.2404	5.2090	0.0552
$x_{\cdot j}$	5.1477	5.1304	5.1136	5.1206	5.1627	5.1501	5.1776	5.1283	5.1649	5.1677	5.1718	5.1869	<i>x</i>	σ
$\sigma_{\cdot j}$	0.1160	0.1118	0.0813	0.0779	0.0608	0.0685	0.0906	0.1317	0.1003	0.0914	0.1115	0.1111	5.1519	0.0881

Table B.4: Tableau de Buys-Ballot du blé (2016-2021)

	Jan.	Fév.	Mars	Avr.	Mai	Juin	Jui.	Août	Sep.	Oct.	Nov.	Déc.	$x_{i\cdot}$	σ_{i} .
2016	5.0983	4.9921	5.0288	5.0206	5.1044	5.0483	5.1120	5.0418	5.0783	5.1105	5.0876	5.1240	5.0706	0.0428
2017	5.1090	5.1489	5.1029	5.1255	5.1165	5.1733	5.1255	5.0483	5.1120	5.0876	5.0720	5.0689	5.1075	0.0350
2018	5.0642	5.1165	5.0983	5.1255	5.2081	5.1846	5.3095	5.3218	5.3058	5.2908	5.3045	5.3144	5.2203	0.0986
2019	5.3193	5.2640	5.2244	5.2109	5.2217	5.1943	5.1634	5.1014	5.1634	5.1818	5.2231	5.2404	5.2090	0.0552
2020	5.4250	5.5013	5.3730	5.5520	5.3648	5.3435	5.4083	5.5164	5.5530	5.6463	5.6330	5.6294	5.4955	0.1105
2021	5.2338	5.2794	5.2768	5.2378	5.1957	5.2081	5.2351	5.2870	5.3242	5.3483	5.3625	5.4250	5.2845	0.0691
<i>x</i> . _j	5.2083	5.2170	5.1840	5.2120	5.2019	5.1920	5.2256	5.2194	5.2561	5.2775	5.2805	5.3003	<i>x</i>	σ
$\sigma_{.j}$	0.1433	0.1745	0.1296	0.1832	0.0936	0.0941	0.1160	0.1887	0.1768	0.2070	0.2076	0.2060	5.2312	0.1552

Table B.5: Tableau de Buys-Ballot du nickel (2016-2019)

	Jan.	Fév.	Mars	Avr.	Mai	Juin	Jui.	Août	Sep.	Oct.	Nov.	Déc.	x_{i} .	σ_{i} .
2016	9.0618	9.0502	9.0466	9.1532	9.0401	9.1532	9.2714	9.1866	9.2662	9.2567	9.3281	9.2123	9.1689	0.1013
2017	9.2058	9.3038	9.2128	9.1538	9.1016	9.1474	9.2316	9.3759	9.2591	9.4169	9.3156	9.4541	9.2649	0.1110
2018	9.5178	9.5317	9.4955	9.5215	9.6304	9.6091	9.5490	9.4572	9.4415	9.3501	9.3237	9.2771	9.4754	0.1105
2019	9.4319	9.4765	9.4715	9.4093	9.3941	9.4486	9.5812	9.7926	9.7439	9.7199	9.5230	9.5486	9.5451	0.1371
$x_{\cdot j}$	9.3043	9.3406	9.3066	9.3094	9.2916	9.3396	9.4083	9.4530	9.4277	9.4359	9.3726	9.3730	<i>x</i>	σ
$\sigma_{\cdot j}$	0.2084	0.2166	0.2154	0.1858	0.2736	0.2282	0.1822	0.2532	0.2271	0.2004	0.1004	0.1554	9.3636	0.1885

Table B.6: Tableau de Buys-Ballot du nickel (2016-2021)

	Jan.	Fév.	Mars	Avr.	Mai	Juin	Jui.	Août	Sep.	Oct.	Nov.	Déc.	x_i .	σ_{i} .
2016	9.0618	9.0502	9.0466	9.1532	9.0401	9.1532	9.2714	9.1866	9.2662	9.2567	9.3281	9.2123	9.1689	0.1013
2017	9.2058	9.3038	9.2128	9.1538	9.1016	9.1474	9.2316	9.3759	9.2591	9.4169	9.3156	9.4541	9.2649	0.1110
2018	9.5178	9.5317	9.4955	9.5215	9.6304	9.6091	9.5490	9.4572	9.4415	9.3501	9.3237	9.2771	9.4754	0.1105
2019	9.4319	9.4765	9.4715	9.4093	9.3941	9.4486	9.5812	9.7926	9.7439	9.7199	9.5230	9.5486	9.5451	0.1371
2020	9.4611	9.4137	9.3487	9.4085	9.4193	9.4576	9.5314	9.6400	9.5831	9.6262	9.6824	9.7179	9.5242	0.1227
2021	9.7808	9.8297	9.6846	9.7798	9.8044	9.8099	9.8808	9.8806	9.7946	9.8755	9.8983	9.9406	9.8300	0.0691
$x_{\cdot j}$	9.4099	9.4343	9.3766	9.4044	9.3983	9.4376	9.5076	9.5555	9.5147	9.5409	9.5118	9.5251	x	σ
$\sigma_{\cdot j}$	0.2510	0.2579	0.2256	0.2369	0.2951	0.2583	0.2362	0.2635	0.2315	0.2382	0.2393	0.2738	9.4681	0.2371

B.3.2 ANOVA

Table B.7: Tableau d'analyse de la variance du blé (2016-2019)

Somme des carrés	Degrés de liberté	Désignation	Variance
0.0252	11	Variance période	0.0023
0.1984	3	Variance année	0.0661
0.1082	33	Variance résidu	0.0033

Table B.8: Tableau d'analyse de la variance du blé (2016-2021)

Somme des carrés	Degrés de liberté	Désignation	Variance
0.0951	11	Variance période	0.0086
1.3728	5	Variance année	0.2746
0.2657	55	Variance résidu	0.0048

Table B.9: Tableau d'analyse de la variance du nickel (2016-2019)

Somme des carrés	Degrés de liberté	Désignation	Variance
0.1420	11	Variance période	0.0129
1.1170	3	Variance année	0.3723
0.9454	33	Variance résidu	0.0286

Table B.10: Tableau d'analyse de la variance du nickel (2016-2021)

Somme des carrés	Degrés de liberté	Désignation	Variance
0.2675	11	Variance période	0.0243
3.2508	5	Variance année	0.6502
0.5399	55	Variance Résidus	0.0098

Table B.11: Analyse de la variance³²

Somme des carrés	Degré de liberté	Désignation	Variance
$S_p = N \sum_{i} (x_{\cdot j} - x_{\cdot \cdot})^2$	p-1	Variance Période	$V_p = \frac{S_p}{p-1}$
$S_A = P \sum_{i}^{J} (x_{i\cdot} - x_{\cdot\cdot})^2$	N-1	Variance Année	$V_A = \frac{S_A}{N-1}$
$S_R = \sum_{i} \sum_{j} (x_{ij} - x_{i.} - x_{.j} + x_{})^2$	(p-1)(N-1)	Variance Résidu	$V_R = \frac{S_R}{(p-1)(N-1)}$
S_T	$N \times p - 1$	Variance Totale	$V_T = \frac{S_T}{N \times p - 1}$

 $^{^{32}}$ Régis Bourbonnais & Michel Terraza. Analyse des séries temporelles. Dunod, 2016. DOI: 10.3917/dunod.bourb.2016.01. URL: https://doi.org/10.3917/dunod.bourb.2016.01.

B.4 Désaisonnalisation de l'échantillon (2016-2021) du Nickel

Table B.12: Tableau de Buys-Ballot classé du Nickel (2019-2021)

2016	Mai	Mars	Fev.	Jan.	Avr.	Juin	Aout	Dec.	Oct.	Sep.	Jui.	Nov.
2017	Mai	Juin	Avr.	Jan.	Mars	Jui.	Sep.	Fev.	Nov.	Aout	Oct.	Dec.
2018	Dec.	Nov.	Oct.	Sep.	Aout	Mars	Jan.	Avr.	Fev.	Jui.	Juin	Mai
2019	Mai	Avr.	Jan.	Juin	Mars	Fev.	Nov.	Dec.	Jui.	Oct.	Sep.	Aout
2020	Mars	Avr.	Fev.	Mai	Juin	Jan.	Jui.	Sep.	Oct.	Aout	Nov.	Dec.
2021	Mars	Avr.	Jan.	Sep.	Mai	Juin	Fev.	Oct.	Aout	Jui.	Nov.	Dec.

Table B.13: Estimation par les MCO du test de Buys-Ballot sur le Nickel (2019-2021)

Dependent Variable: σ_i . Method: Least Squares Included observations: 6

Variable	Coefficient	Std. Error	t-Statistic	Prob.
x_i .	-0.035433 0.444098	0.046008 0.435722	-0.770138 1.019224	0.4842 0.3657
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.129131 -0.088586 0.023947 0.002294 15.09423 0.593113 0.484180	Mean depen S.D. depend Akaike info Schwarz crit Hannan-Qui Durbin-Wat	lent var criterion cerion nn criter	0.108617 0.022952 -4.364743 -4.434157 -4.642611 1.361545

Table B.14: Coefficients saisonniers prévisionnels pour 2022 du nickel

D 10.A Final seasonal component forecasts From 2022.Jan to 2022.Dec								
Observations 12								
Jan	Feb	Mar	Apr	May	Jun	AVGE		
Jul	Aug	Sep	Oct	Nov	Dec			
0.0100	0.0196	-0.0668	-0.0496	-0.0595	-0.0211			
0.0382	0.0916	0.01734	0.0384	-0.0130	0.0068			

C Prévision par les méthodes traditionnelles

C.1 Échantillon 2016-2019

C.1.1 Extrapolation d'une droite de tendance

Table C.1: Estimation par les MCO de l'échantillon 2016-2019 du blé

Dependent Variable: LBLE 19

Method: Least Squares Sample: 2016M01 2019M12 Included observations: 48

Variable	Coefficient	Std. Error	t-Statistic	Prob.
@TREND	0.004416	0.000674	6.548293	0.0000
C	5.048073	0.018398	274.3878	0.0000
R-squared	0.482449	Mean dependent var		5.151855
Adjusted R-squared	0.471198	S.D. depend	S.D. dependent var	
S.E. of regression	0.064730	Akaike info	criterion	-2.596423
Sum squared resid	0.192736	Schwarz crit	cerion	-2.518457
Log likelihood	64.31416	Hannan-Qui	nn criter	-2.566960
F-statistic	42.88014	Durbin-Watson stat		0.524474
Prob(F-statistic)	0.000000			

Table C.2: Estimation par les MCO de l'échantillon 2016-2019 du nickel

Dependent Variable: LNICKEL 19

Method: Least Squares Sample: 2016M01 2019M12 Included observations: 48

Variable	Coefficient	Std. Error	t-Statistic	Prob.
@TREND	0.011137	0.001153	9.657298	0.0000
C	9.101828	0.031460	289.3131	0.0000
R-squared	0.669691	Mean dependent var		9.363555
Adjusted R-squared	0.662510	S.D. depend	0.190534	
S.E. of regression	0.110688	Akaike info	criterion	-1.523421
Sum squared resid	0.563589	Schwarz crit	erion	-1.445454
Log likelihood	38.56209	Hannan-Qui	nn criter	-1.493957
F-statistic	93.26340	Durbin-Watson stat		0.674312
Prob(F-statistic)	0.000000			

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1		1	0.731	0.731	27.257	0.000
		2	0.647	0.242	49.069	0.00
	1	3	0.444	-0.207	59.582	0.00
		4	0.315	-0.078	64.989	0.00
		5	0.117	-0.187	65.757	0.00
		6	-0.114	-0.342	66.499	0.00
		7	-0.312	-0.236	72.208	0.00
		8	-0.460	-0.120	84.894	0.00
		9	-0.531	-0.019	102.27	0.00
		10	-0.585	-0.040	123.85	0.00
		11	-0.554	0.068	143.80	0.00
		12	-0.535	-0.066	162.88	0.00
		13	-0.411	0.019	174.45	0.00
		14	-0.280	0.037	179.97	0.00
		15	-0.174	-0.164	182.16	0.00
		16	-0.035	-0.052	182.26	0.00
		17	0.104	0.068	183.10	0.00
		18	0.178	-0.160	185.65	0.00
		19	0.240	-0.105	190.40	0.00
		20	0.240	-0.086	195.33	0.000

Figure C.1: Corrélograme des résidus des MCO de l'échantillon 2016-2019 du blé

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.656	0.656	21.989	0.000
		2	0.393	-0.066	30.048	0.000
		3	0.114	-0.207	30.745	0.00
		4	0.022	0.088	30.771	0.000
		5	-0.031	-0.014	30.826	0.000
 		6	-0.131	-0.203	31.814	0.000
		7	-0.235	-0.123	35.057	0.000
		8	-0.400	-0.251	44.655	0.000
		9	-0.487	-0.185	59.227	0.000
		10	-0.507	-0.140	75.465	0.000
		11	-0.382	0.003	84.916	0.000
		12	-0.314	-0.203	91.495	0.000
- I		13	-0.113	0.153	92.370	0.000
1 1 1		14	-0.017	-0.050	92.391	0.000
		15	0.152	0.103	94.063	0.000
		16	0.167	-0.148	96.150	0.000
		17	0.185	-0.061	98.812	0.000
		18	0.270	0.103	104.63	0.000
		19	0.267	-0.119	110.52	0.000
		20	0.210	-0.228	114.28	0.000

Figure C.2: Corrélograme des résidus des MCO de l'échantillon 2016-2019 du nickel

Figure C.3: Histogramme des résidus des MCO de l'échantillon 2016-2019 du blé

Figure C.4: Histogramme des résidus des MCO de l'échantillon 2016-2019 du nickel Table C.3: Test ARCH sur les résidus des MCO de l'échantillon 2016-2019 du blé

Heteroskedasticity	Test: ARCH		
F-statistic Obs*R-squared	3.103962 16.27762	Prob. F(7,33) Prob. Chi-Square(7)	0.0125 0.0227
Test Equation: Dependent Variable	e: RESID^2		

Dependent Variable: RESID^2 Method: Least Squares

Sample (adjusted): 2016M08 2019M12 Included observations: 41 after adjustments

Table C.4: Test ARCH sur les résidus des MCO de l'échantillon 2016-2019 du nickel

Heteroskedasticity	Test: ARCH		
F-statistic	1.176489	Prob. F(7,33)	0.3427
Obs*R-squared	8.188406	Prob. Chi-Square(7)	0.3163

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares

Sample (adjusted): 2016M08 2019M12 Included observations: 41 after adjustments

C.1.2 Lissage exponential double

Table C.5: Détail des calculs du lissage exponentiel double³³

$$\begin{split} \hat{x}_t &= \lambda x_{t-1} + (1-\lambda)\hat{x}_{t-1} & \text{Calcul du LES} \\ \hat{x}_t &= \lambda \hat{x}_t + (1-\lambda)\hat{x}_{t-1} & \text{Calcul du LED} \\ a_t &= 2\hat{x}_t - \hat{x}_t \\ b_t &= \frac{1}{\overline{\lambda}}(\hat{x}_t - \hat{x}_t) & \text{Avec } \overline{\lambda} &= \frac{1-\lambda}{\lambda} \\ x_{t-1,t}^p &= a_t + b_t & \text{Calcul des valeurs prévues pour } t = 2, \dots, n+1 \\ x_{n,n+h}^p &= a_{n+1} + b_{n+1} \times h & \text{Calcul des valeurs prévues pour } h = 2, 3, \dots \end{split}$$

Table C.6: Constante de lissage LED blé (2016-2019)

Sample: 2016M01 2019M12 Included observations: 48 Method: Double Exponential Original Series: LBLE_19 Forecast Series: LBLE_19_LED	
Parameters: Alpha	0.4280
Sum of Squared Residuals	0.104149
Root Mean Squared Error	0.046581

Table C.7: Constante de lissage LED nickel (2016-2019)

Sample: 2016M01 2019M12	
Included observations: 48	
Method: Double Exponential	
Original Series: LNICKEL 19	
Forecast Series: LNICKEL_19_LED	
Parameters: Alpha	0.4700
Sum of Squared Residuals	0.467077
Root Mean Squared Error	0.098645

³³Terraza, Analyse des séries temporelles.

C.1.3 Lissage exponentiel de Holt-Winters

Table C.8: Détail des calculs du lissage de Holt et Winters pour schéma additif ³⁴

$$\begin{aligned} a_t &= \alpha(x_t - S_{t-p}) + (1-\alpha)(a_{t-1} + b_{t-1}) & \text{Lissage de la moyenne} \\ b_t &= \beta(a_t - a_{t-1}) + (1-\beta)b_{t-1} & \text{Lissage de la tendance} \\ S_t &= \gamma(x_t - a_t) + (1-\gamma)S_{t-p} & \text{Lissage de la Saisonnalit\'e} \\ \hat{x}_{t+h} &= (a_t + h \cdot b_t) + S_{t-p+h} & 1 \leq h \leq p \\ \hat{x}_{t+h} &= (a_t + h \cdot b_t) + S_{t-2p+h} & p+1 \leq h \leq 2p \end{aligned}$$

Table C.9: Constantes de lissage HW blé (2016-2019)

Sample: 2016M01 2019M12 Included observations: 48 Method: Holt-Winters No Seasonal Original Series: LBLE 19	
Forecast Series: LBLE 19 HW	
	0.7000
Parameters: Alpha	0.7800
Beta	0.0000
Sum of Squared Residuals	0.095621
Root Mean Squared Error	0.044633

Table C.10: Constantes de lissage HW nickel (2016-2019)

Sample: 2016M01 2019M12						
Included observations: 48						
Method: Holt-Winters No Seasonal						
Original Series: LNICKEL_19						
Forecast Series: LNICKEL_19_HW						
Parameters: Alpha	0.8900					
Beta	0.0000					
Sum of Squared Residuals	0.378752					
Root Mean Squared Error	0.088829					

³⁴Terraza, Analyse des séries temporelles.

C.2 Échantillon 2016-2021

C.2.1 Extrapolation d'une droite de tendance

Table C.11: Estimation par les MCO de l'échantillon 2016-2021 du blé

Dependent Variable: LBLE 21

Method: Least Squares Sample: 2016M01 2021M12 Included observations: 72

Variable	Coefficient	Std. Error	t-Statistic	Prob.
@TREND	0.006244	0.000471	13.24514	0.0000
C	5.007174	0.019392	258.2090	0.0000
R-squared	0.714791	Mean depen		5.228833
Adjusted R-squared	0.710716	S.D. dependent var		0.154562
S.E. of regression	0.083132	Akaike info	criterion	-2.109399
Sum squared resid	0.483760	Schwarz crit	erion	-2.046159
Log likelihood	77.93838	Hannan-Quinn criter.		-2.084223
F-statistic	175.4338	Durbin-Wat	son stat	0.473428
$Prob(F ext{-statistic})$	0.000000			

Table C.12: Estimation par les MCO de l'échantillon 2016-2021 du nickel

Dependent Variable: SLNICKEL 21

Method: Least Squares Sample: 2016M01 2021M12 Included observations: 72

Variable	Coefficient	Std. Error	t-Statistic	Prob.
@TREND	0.009946	0.000625	15.91309	0.0000
	9.114432	0.025711	354.5001	0.0000
R-squared	0.783434	Mean depen	dent var	9.467514
Adjusted R-squared	0.780340	S.D. depend	lent var	0.235170
S.E. of regression	0.110219	Akaike info	criterion	-1.545304
Sum squared resid	0.850382	Schwarz crit	cerion	-1.482063
Log likelihood	57.63093	Hannan-Qui	nn criter	-1.520127
F-statistic	253.2265	Durbin-Wat	son stat	0.466778
Prob(F-statistic)	0.000000			

Date: 03/09/23 Tim Sample: 2016M01 2 Included observation	021M12					
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.722	0.722	39.076	0.000
		2	0.614	0.194	67.725	0.000
		3	0.403	-0.203	80.283	0.000
		4	-	-0.046	86.203	0.000
		5	0.147	-0.029	87.919	0.000
		6	0.098	0.057	88.700	0.000
		7	0.028	-0.046	88.765	0.000
		8	0.001	-0.021	88.765	0.000
	■	9	-0.060	-0.076	89.069	0.000
		10	-0.069	0.014	89.481	0.000
 		11	-0.117	-0.057	90.671	0.000
	I	12	-0.183	-0.159	93.649	0.000
		13	-0.208	-0.003	97.569	0.000
		14	-0.257	-0.070	103.62	0.000
		15	-0.270	-0.038	110.41	0.000
		16	-0.262	-0.001	116.93	0.000
		17	-0.230	0.006	122.05	0.000
		18	-0.217	-0.056	126.68	0.000
		19	-0.147	0.068	128.85	0.000
		20	-0.131		130.61	0.000

Figure C.5: Corrélograme des résidus des MCO de l'échantillon 2016-2021 du blé

Date: 03/09/23 Tim Sample: 2016M01 2						
Included observation Autocorrelation	s: 72 Partial Correlation		AC	PAC	Q-Stat	Prob
1	1	1	0.756	0.756	42.889	0.000
		2	0.577	0.013	68.239	0.000
		3	0.344	-0.225	77.373	0.000
	1 1 1	4	0.197	0.012	80.409	0.000
	 	5	0.029	-0.135	80.474	0.000
1 1	1 I	6	-0.130	-0.181	81.847	0.000
		7	-0.239	-0.031	86.517	0.000
	III	8	-0.329	-0.107	95.548	0.000
	1 1	9	-0.387	-0.113	108.19	0.000
		10	-0.412	-0.048	122.78	0.000
		11	-0.348	0.085	133.36	0.000
	1	12	-0.327	-0.162	142.88	0.000
		13	-0.132	0.336	144.45	0.000
		14	0.020	0.099	144.49	0.000
		15	0.219	0.091	148.97	0.000
	I 📺 I	16	0.260	-0.132	155.38	0.000
	I 📺 I	17	0.259	-0.123	161.86	0.000
	1 1 1	18	0.256	0.021	168.35	0.000
	ı 	19	0.185	-0.166	171.79	0.000
		20	0.057	-0.239	172.12	0.000

Figure C.6: Corrélograme des résidus des MCO de l'échantillon 2016-2021 du nickel

Figure C.7: Histogramme des résidus des MCO de l'échantillon 2016-2021 du blé

Figure C.8: Histogramme des résidus des MCO de l'échantillon 2016-2021 du nickel Table C.13: Test ARCH sur les résidus des MCO de l'échantillon 2016-2021 du blé

Heteroskedasticity Test: ARCH							
F-statistic Obs*R-squared	8.190606 32.59501	Prob. F(7,57) Prob. Chi-Square(7)	0.0000 0.0000				
Test Equation: Dependent Variable Method: Least Squ Sample (adjusted): Included observation	iares 2016M08 202						

Table C.14: Test ARCH sur les résidus des MCO de l'échantillon 2016-2021 du nickel

Heteroskedasticity Test: ARCH							
F-statistic	4.383482	Prob. F((7,57)	0.0006			
Obs *R-squared	22.74618	Prob. Ch	hi-Square(7)	0.0019			
Test Equation: Dependent Variabl Method: Least Sq Sample (adjusted): Included observation	uares : 2016M08 202		5				

C.2.2 Lissage exponential double

Table C.15: Constante de lissage LED blé (2016-2021)

Sample: 2016M01 2021M12 Included observations: 72 Method: Double Exponential Original Series: LBLE_21 Forecast Series: LBLE_21_LED Parameters: Alpha 0.3720 Sum of Squared Residuals 0.236817 Root Mean Squared Error 0.057351		
Sum of Squared Residuals 0.236817	Included observations: 72 Method: Double Exponential Original Series: LBLE_21	
	Sum of Squared Residuals	0.236817

Table C.16: Constante de lissage LED nickel (2016-2021)

Sample: 2016M01 2021M12 Included observations: 72 Method: Double Exponential Original Series: SLNICKEL_21 Forecast Series: SLNICKEL_21_LED	
Parameters: Alpha	0.5040
Sum of Squared Residuals	0.472073
Root Mean Squared Error	0.080973

C.2.3 Lissage exponentiel de Holt-Winters

Table C.17: Constantes de lissage HW blé (2016-2021)

Sample: 2016M01 2021M12	
Included observations: 72	
Method: Holt-Winters No Seasonal	
Original Series: LBLE 21	
Forecast Series: LBLE_21_HW	
Parameters: Alpha	0.7300
Beta	0.0000
Sum of Squared Residuals	0.209799
Root Mean Squared Error	0.053980

Table C.18: Constantes de lissage HW nickel (2016-2021)

Sample: 2016 Included obse	M01 2021M12 rvations: 72	
Method: Holt	-Winters Additive Seasonal	
Original Series	s: LNICKEL_21	
Forecast Serie	es: LNICKEL_21_HW	
Parameters:	Alpha	0.9000
	Beta	0.0000
	Gamma	0.0000
Sum of Squar	ed Residuals	0.381191
Root Mean So	quared Error	0.072762

C.2.4 Test sur les résidus des meilleures méthodes

Sample: 2016M01 2 Included observation						
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.521	0.521	23.585	0.000
		2	0.239	-0.044	28.608	0.000
		3	-0.047	-0.211	28.806	0.000
I		4	-0.118	0.001	30.056	0.000
1		5	-0.166	-0.071	32.562	0.000
1 🔳		6	-0.134	-0.031	34.237	0.000
		7	-0.217	-0.189	38.672	0.000
		8	-0.206	-0.059	42.701	0.000
		9	-0.159	-0.006	45.122	0.000
1 📕 1		10	-0.065	-0.015	45.536	0.000
		11	-0.016	-0.042	45.562	0.000
III	I	12	-0.057	-0.146	45.891	0.000
1 📕 1		13	-0.049	-0.003	46.138	0.000
I 🔳 I	I 🔳 I	14	-0.103	-0.133	47.231	0.000
		15	-0.035	0.009	47.360	0.000
		16	-0.035	-0.084	47.490	0.000
		17	0.099	0.112	48.548	0.000
		18	0.136	0.038	50.565	0.000
		19	0.132	-0.065	52.513	0.000
	I	20	-0.003	-0.134	52.514	0.000

Figure C.9: Corrélograme des résidus de la prévision pour 2022 du blé

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.607	0.607	32.102	0.000
	I	2	0.282	-0.137	39.115	0.000
- I II -		3	-0.043	-0.249	39.277	0.000
I		4	-0.150	0.034	41.297	0.000
	I	5	-0.257	-0.173	47.341	0.000
		6	-0.259	-0.066	53.569	0.000
1		7	-0.127	0.149	55.082	0.000
		8	0.020	0.017	55.120	0.000
		9	0.059	-0.104	55.454	0.000
1 1		10	-0.008	-0.100	55.460	0.000
		11	0.028	0.134	55.537	0.000
		12	-0.018	-0.118	55.568	0.000
		13	0.041	0.131	55.737	0.000
		14	0.021	0.012	55.781	0.000
		15	0.077	0.001	56.399	0.000
		16	0.047	-0.045	56.636	0.000
		17	0.032	0.027	56.743	0.000
		18	0.042	0.109	56.933	0.000
		19	0.023	-0.060	56.991	0.000
I 📫 I		20	-0.051	-0.100	57.285	0.000

Figure C.10: Corrélograme des résidus de la prévision pour 2022 du nickel

Figure C.11: Histogramme des résidus de la prévision pour 2022 du blé

Figure C.12: Histogramme des résidus de la prévision pour 2022 du nickel

Table C.19: Test ARCH sur les résidus de la prévision pour 2022 du blé

Dependent Variable: RESID_BLE2

Method: Least Squares

Sample (adjusted): 2016M08 2022M12 Included observations: 77 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID BLE2(-1)	1.231199	0.110685	11.12343	0.0000
RESID_BLE2(-2)	-0.974188	0.174949	-5.568420	0.0000
RESID_BLE2(-3)	0.685717	0.203580	3.368284	0.0012
RESID_BLE2(-4)	-0.457943	0.213699	-2.142936	0.0356
RESID_BLE2(-5)	0.382876	0.208874	1.833051	0.0710
RESID_BLE2(-6)	-0.556338	0.187821	-2.962072	0.0042
RESID_BLE2(-7)	0.939887	0.132326	7.102822	0.0000
R-squared	0.826628	Mean depen	dent var	531.9658
Adjusted R-squared	0.811768	S.D. depend	lent var	1487.761
S E of regression	645 4764	Akaike info	Akaike info criterion	
Sum squared resid	29164783	Schwarz criterion		16.07744
Log likelihood	-603.7779	Hannan-Quinn criter.		15.94959
Durbin-Watson stat	2.216225			

Table C.20: Test ARCH sur les résidus de la prévision pour 2022 du nickel

Dependent Variable: RESID_NICKEL2

Method: Least Squares

Sample (adjusted): 2016M08 2022M12 Included observations: 77 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID_NICKEL2(-1)	0.738980	0.119712	6.172987	0.0000
RESID_NICKEL2(-2)	-0.374722	0.150148	-2.495678	0.0149
RESID_NICKEL2(-3)	0.191706	0.159770	1.199891	0.2342
RESID_NICKEL2(-4)	0.014520	0.161436	0.089941	0.9286
RESID_NICKEL2(-5)	0.125580	0.160788	0.781031	0.4374
RESID_NICKEL2(-6)	0.217586	0.154733	1.406201	0.1641
RESID_NICKEL2(-7)	-0.101268	0.126985	-0.797473	0.4279
R-squared	0.415533	Mean depen	dent var	5080974.
Adjusted R-squared	0.365436	S.D. depend	ent var	11684521
S.E. of regression	9307835.	Akaike info	criterion	35.01712
Sum squared resid	6.06E+15	Schwarz crit	erion	35.23019
Log likelihood	-1341.159	Hannan-Qui	nn criter	35.10235
Durbin-Watson stat	1.992195			

D Prévision selon la méthodologie de Box-Jenkins

D.1 Test de racine unitaire

D.1.1 Echantillon 2016-2019

Blé

Table D.1: Estimation du modèle 3 pour le blé (2016-2019)

Null Hypothesis: LBLE $_19$ has a unit root

Exogenous: Constant, Linear Trend

Bandwidth: 2 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test sta	tistic	-2.671980	0.2524
Test critical values:	1% level	-4.165756	
	5% level	-3.508508	
	10% level	-3.184230	

Phillips-Perron Test Equation
Dependent Variable: D(LBLE 19)

Method: Least Squares

Sample (adjusted): 2016M02 2019M12 Included observations: 47 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LBLE_19(-1)	-0.268617	0.101366	-2.649965	0.0111
С	1.355316	0.511357	2.650430	0.0111
@TREND("2016M01")	0.001295	0.000658	1.967975	0.0554
R-squared	0.138331	Mean dependent var		0.003023
Adjusted R-squared	0.099164	S.D. dependent var		0.046856
S.E. of regression	0.044473	Akaike info criterion		-3.326190
Sum squared resid	0.087023	Schwarz criterion		-3.208095
Log likelihood	81.16545	Hannan-Quinn criter.		-3.281750
F-statistic	3.531847	Durbin-Watson stat		2.151360
Prob(F-statistic)	0.037800			

Table D.2: Estimation du modèle 3 contraint sous H_0^3 pour le blé (2016-2019)

Dependent Variable: D(LBLE_19)

Method: Least Squares

Sample (adjusted): 2016M02 2019M12 Included observations: 47 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.003023	0.006835	0.442306	0.6603
R-squared	0.000000	Mean depen	dent var	0.003023
Adjusted R-squared	0.000000	S.D. depend	lent var	0.046856
S.E. of regression	0.046856	Akaike info	criterion	-3.262412
Sum squared resid	0.100994	Schwarz crit	erion	-3.223047
Log likelihood	77.66668	Hannan-Qui	nn criter	-3.247599
Durbin-Watson stat	2.480204			

Table D.3: Estimation du modèle 2 pour le blé (2016-2019)

Null Hypothesis: LBLE_19 has a unit root

Exogenous: Constant

Bandwidth: 0 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test st	atistic	-1.731845	0.4090
Test critical values:	1% level	-3.577723	
	5% level	-2.925169	
	10% level	-2.600658	

Phillips-Perron Test Equation
Dependent Variable: D(LBLE_19)

Method: Least Squares

Sample (adjusted): 2016M02 2019M12 Included observations: 47 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LBLE_19(-1)	-0.131600	0.075988	-1.731845	0.0902
C	0.680760	0.391395	1.739315	0.0888
R-squared	0.062486	Mean depen	dent var	0.003023
Adjusted R-squared	0.041652	S.D. depend	ent var	0.046856
S.E. of regression	0.045870	Akaike info	criterion	-3.284382
Sum squared resid	0.094683	Schwarz crit	erion	-3.205653
Log likelihood	79.18298	Hannan-Qui	nn criter.	-3.254756
F-statistic	2.999285	Durbin-Wats	on stat	2.300599
Prob(F-statistic)	0.090152			

Table D.4: Test de significativité de la moyenne du cours du blé (2016-2019)

Hypothesis Testing for LBLE _19
Sample (adjusted): 2016M01 2019M12
Included observations: 48 after adjustments
Test of Hypothesis: Mean = 0.000000

Sample Mean = 5.151855Sample Std. Dev. = 0.089014

Method Value Probability t-statistic 400.9849 0.0000

Nickel

Table D.5: Estimation du modèle 3 pour le nickel (2016-2019)

Null Hypothesis: LNICKEL_19 has a unit root

Exogenous: Constant, Linear Trend

Bandwidth: 3 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test statistic		-3.039752	0.1327
Test critical values:	1% level	-4.165756	
	5% level	-3.508508	
	10% level	-3.184230	

Phillips-Perron Test Equation

Dependent Variable: D(LNICKEL_19)

Method: Least Squares

Sample (adjusted): 2016M02 2019M12 Included observations: 47 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LNICKEL 19(-1)	-0.336008	0.113566	-2.958712	0.0050
C	3.071503	1.032301	2.975396	0.0047
@TREND("2016M01")	0.003490	0.001579	2.210577	0.0323
R-squared	0.167930	Mean depend	dent var	0.010357
Adjusted R-squared	0.130108	S.D. depend	ent var	0.090890
S.E. of regression	0.084771	Akaike info	criterion	-2.036017
Sum squared resid	0.316192	Schwarz crit	erion	-1.917923
Log likelihood	50.84641	Hannan-Quir	nn criter.	-1.991578
F-statistic	4.440073	Durbin-Wats	on stat	1.929226
Prob(F-statistic)	0.017519			

Table D.6: Estimation du modèle 3 contraint sous H_0^3 pour le nickel (2016-2019)

Dependent Variable: D(LNICKEL 19)

Method: Least Squares

Sample (adjusted): 2016M02 2019M12 Included observations: 47 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.010357	0.013258	0.781171	0.4387
R-squared	0.000000	Mean depen	dent var	0.010357
Adjusted R-squared	0.000000	S.D. depend	lent var	0.090890
S.E. of regression	0.090890	Akaike info	criterion	-1.937285
Sum squared resid	0.380006	Schwarz crit	erion	-1.897920
Log likelihood	46.52620	Hannan-Qui	nn criter	-1.922472
Durbin-Watson stat	2.247985			

Table D.7: Estimation du modèle 2 pour le Nickel (2016-2019)

Null Hypothesis: LNICKEL_19 has a unit root

Exogenous: Constant

Bandwidth: 5 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test st	atistic	-1.805265	0.3735
Test critical values:	1% level	-3.577723	
	5% level	-2.925169	
	10% level	-2.600658	

Phillips-Perron Test Equation

Dependent Variable: D(LNICKEL 19)

Method: Least Squares

Included observations: 47 after adjustments

	Coefficient	Std. Error	t-Statistic	Prob.
LNICKEL_19(-1)	-0.131039	0.068346	-1.917289	0.0616
C	1.236833	0.639823	1.933087	0.0595
R-squared	0.075520	Mean depen	dent var	0.010357
Adjusted R-squared	0.054976	S.D. depend	ent var	0.090890
S.E. of regression	0.088356	Akaike info d	criterion	-1.973256
Sum squared resid	0.351308	Schwarz crit	erion	-1.894526
Log likelihood	48.37151	Hannan-Quii	nn criter.	-1.943629
F-statistic	3.675998	Durbin-Wats	on stat	2.131965
Prob(F-statistic)	0.061563			

Table D.8: Test de significativité de la moyenne du cours du nickel (2016-2019)

Hypothesis Testing for LNICKEL_19
Sample (adjusted): 2016M01 2019M12
Included observations: 48 after adjustments
Test of Hypothesis: Mean = 0.000000

Sample Mean = 9.363555Sample Std. Dev. = 0.190534

Method Value Probability t-statistic 340.4783 0.0000

D.1.2 Echantillon 2016-2021

Blé

Table D.9: Estimation du modèle 3 pour le blé (2016-2021)

Null Hypothesis: LBLE_21 has a unit root

Exogenous: Constant, Linear Trend

Bandwidth: 3 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test stat	istic	-2.726835	0.2294
Test critical values:	1% level	-4.092547	
	5% level	-3.474363	
	10% level	-3.164499	

Phillips-Perron Test Equation
Dependent Variable: D(LBLE 21)

Method: Least Squares

Sample (adjusted): 2016M02 2021M12 Included observations: 71 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LBLE_21(-1)	-0.223025	0.081532	-2.735433	0.0079
C	1.112247	0.408375	2.723593	0.0082
@TREND("2016M01")	0.001670	0.000585	2.857098	0.0057
R-squared	0.111607	Mean depend	dent var	0.007480
Adjusted R-squared	0.085478	S.D. depend	ent var	0.057186
S.E. of regression	0.054687	Akaike info	criterion	-2.933032
Sum squared resid	0.203368	Schwarz crit	erion	-2.837425
Log likelihood	107.1226	Hannan-Quir	nn criter	-2.895012
F-statistic	4.271348	Durbin-Wats	on stat	2.307856
Prob(F-statistic)	0.017889			

Table D.10: Estimation du modèle 3 contraint sous H_0^3 pour le blé (2016-2021)

Dependent Variable: D(LBLE 21)

Method: Least Squares

Sample (adjusted): 2016M02 2021M12 Included observations: 71 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.007480	0.006787	1.102144	0.2742
R-squared	0.000000	Mean depen	dent var	0.007480
Adjusted R-squared	0.000000	S.D. depend	lent var	0.057186
S.E. of regression	0.057186	Akaike info	criterion	-2.871029
Sum squared resid	0.228917	Schwarz crit	erion	-2.839160
Log likelihood	102.9215	Hannan-Qui	nn criter	-2.858355
Durbin-Watson stat	2.590875			

D'où:

$$F_3 = \frac{(0,228917 - 0,203368)/2}{0,203368/(71 - 3)} = 4,27139963$$

$$F_2 = \frac{(0,232889 - 0,203368)/3}{0,203368/(71 - 3)} = 3,29037964$$

Table D.11: Estimation du modèle 2 pour le blé (2016-2021)

Null Hypothesis: LBLE 21 has a unit root

Exogenous: Constant

Bandwidth: 2 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test st	atistic	-0.193318	0.9337
Test critical values:	1% level	-3.525618	
	5% level	-2.902953	
	10% level	-2.588902	

Phillips-Perron Test Equation
Dependent Variable: D(LBLE_21)

Method: Least Squares

Sample (adjusted): 2016M02 2021M12 Included observations: 71 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LBLE_21(-1)	-0.027212	0.046398	-0.586497	0.5595
C	0.149616	0.242444	0.617117	0.5392
R-squared	0.004960	Mean dependent var		0.007480
Adjusted R-squared	-0.009460	S.D. depend	ent var	0.057186
S.E. of regression	0.057456	Akaike info d	criterion	-2.847832
Sum squared resid	0.227782	Schwarz crite	erion	-2.784095
Log likelihood	103.0980	Hannan-Quinn criter		-2.822486
F-statistic	0.343978	Durbin-Wats	on stat	2.532347
$Prob(F ext{-}statistic)$	0.559456			

D'où:

$$F_1 = \frac{(0,232889 - 0,227782)/2}{0,227782/(71 - 2)} = 0,773611288$$

Table D.12: Test de significativité de la moyenne du cours du blé (2016-2021)

Hypothesis Testing for LBLE_21 Sample: 2016M01 2021M12

Included observations: 72

Test of Hypothesis: Mean = 0.000000

Sample Mean = 5.228833Sample Std. Dev. = 0.154562

MethodValueProbabilityt-statistic287.05620.0000

Nickel

Table D.13: Estimation du modèle 3 pour le nickel (2016-2021)

Null Hypothesis: LNICKEL_21_D11 has a unit root

Exogenous: Constant, Linear Trend

Bandwidth: 1 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test stat	istic	-2.829230	0.1920
Test critical values:	1% level	-4.092547	
	5% level	-3.474363	
	10% level	-3.164499	

Phillips-Perron Test Equation

Dependent Variable: D(LNICKEL 21 D11)

Method: Least Squares

Sample (adjusted): 2016M02 2021M12 Included observations: 71 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LNICKEL_21_D11(-1)	-0.219037	0.077080	-2.841685	0.0059
C	2.004773	0.702051	2.855594	0.0057
@TREND("2016M01")	0.002232	0.000865	2.580478	0.0120
R-squared	0.106472	Mean dependent var		0.012806
Adjusted R-squared	0.080192	S.D. dependent var		0.073893
S.E. of regression	0.070868	Akaike info o	criterion	-2.414657
Sum squared resid	0.341516	Schwarz criterion		-2.319051
Log likelihood	88.72032	Hannan-Quinn criter.		-2.376637
F-statistic	4.051406	Durbin-Wats	on stat	2.004214
Prob(F-statistic)	0.021761			

Table D.14: Estimation du modèle 3 contraint sous ${\cal H}_0^3$ pour le nickel (2016-2021)

Dependent Variable: D(LNICKEL_21_D11)

Method: Least Squares

Sample (adjusted): 2016M02 2021M12 Included observations: 71 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.012806	0.008769	1.460239	0.1487
R-squared	0.000000	Mean depen	dent var	0.012806
Adjusted R-squared	0.000000	S.D. depend	lent var	0.073893
S.E. of regression	0.073893	Akaike info	criterion	-2.358417
Sum squared resid	0.382211	Schwarz crit	erion	-2.326549
Log likelihood	84.72381	Hannan-Qui	nn criter	-2.345744
Durbin-Watson stat	2.231937			

D'où:

$$F_3 = \frac{(0,382211 - 0,341516)/2}{0,341516/(71 - 3)} = 4,051435365$$
$$F_2 = \frac{(0,393853 - 0,41516)/3}{0,341516/(71 - 3)} = 3,473663561$$

Table D.15: Estimation du modèle 2 pour le Nickel (2016-2021)

Null Hypothesis: LNICKEL_21_D11 has a unit root

Exogenous: Constant

Bandwidth: 2 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test stat	istic	-1.132892	0.6985
Test critical values:	1% level	-3.525618	
	5% level	-2.902953	
	10% level	-2.588902	

Phillips-Perron Test Equation

Dependent Variable: D(LNICKEL 21 D11)

Method: Least Squares

Sample (adjusted): 2016M02 2021M12 Included observations: 71 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LNICKEL_21_D11(-1)	-0.043937	0.038034	-1.155205	0.2520
С	0.428496	0.359947	1.190440	0.2380
R-squared	0.018974	Mean dependent var		0.012806
Adjusted R-squared	0.004756	S.D. dependent var		0.073893
S.E. of regression	0.073717	Akaike info o	criterion	-2.349404
Sum squared resid	0.374959	Schwarz crit	erion	-2.285667
Log likelihood	85.40385	Hannan-Quinn criter.		-2.324058
F-statistic	1.334499	Durbin-Watson stat		2.177299
Prob(F-statistic)	0.251991			

D'où:

$$F_1 = \frac{(0,393853 - 0,374959)/2}{0,374959/(71 - 2)} = 1,738463851$$

Table D.16: Test de significativité de la moyenne du cours du nickel (2016-2021)

Hypothesis Testing for LNICKEL 21 D11

Sample: 2016M01 2021M12 Included observations: 72

Test of Hypothesis: Mean = 0.000000

Sample Mean = 9.467908

Sample Std. Dev. = 0.237150

Method Value Probability t-statistic 338.7641 0.0000

D.2 Identification, validation, prévision

D.2.1 Test BDS

Table D.17: Test BDS sur le cours du blé (2016-2019)

Sample: 201	r DLBLE_19 6M02 2019M12 ervations: 47				
Dimension	BDS Statistic	Std. Error	z-Statistic	Prob.	
2	0.032216	0.009348	3.446493	0.0006	
3	0.048209	0.015104	3.191785	0.0014	
4	0.054806	0.018285	2.997275	0.0027	
5	0.034039	0.019377	1.756649	0.0790	
6	0.014321	0.019003	0.753646	0.4511	
Raw epsilon		0.068925			
Pairs within	epsilon	1569.000	V-Statistic	0.710276	
Triples withi	n epsilon	55669.00	V-Statistic	0.536191	
Dimension	C(m,n)	c(m,n)	C(1, n-(m-1))	c(1, n-(m-1))	c(1,n-(m-1))^k
2	537.0000	0.518841	722.0000	0.697585	0.486624
3	380.0000	0.383838	688.0000	0.694949	0.335629
4	264.0000	0.279070	651.0000	0.688161	0.224264
5	180.0000	0.199336	630.0000	0.697674	0.165297
6	117.0000	0.135889	606.0000	0.703833	0.121567

Table D.18: Test BDS sur le cours du nickel (2016-2019)

Sample: 201	r DLNICKEL_19 6M02 2019M12 ervations: 47				
Dimension	BDS Statistic	Std. Error	z-Statistic	Prob.	
2	0.002811	0.007665	0.366726	0.7138	
3	-0.032898	0.012355	-2.662638	0.0078	
4	-0.016942	0.014919	-1.135555	0.2561	
5	-0.014378	0.015769	-0.911825	0.3619	
6	-0.037130	0.015423	-2.407528	0.0161	
Raw epsilon		0.141344			
Pairs within	epsilon	1567.000	V-Statistic	0.709371	
Triples withi	n epsilon	54943.00	V-Statistic	0.529199	
Dimension	C(m,n)	c(m,n)	C(1, n-(m-1))	c(1,n-(m-1))	c(1,n-(m-1))^k
2	501.0000	0.484058	718.0000	0.693720	0.481247
3	328.0000	0.331313	707.0000	0.714141	0.364211
4	222.0000	0.234672	670.0000	0.708245	0.251614
5	146.0000	0.161683	638.0000	0.706534	0.176062
6	94.00000	0.109175	625.0000	0.725900	0.146306

Table D.19: Test BDS sur le cours du blé (2016-2021)

BDS Test for DLBLE 21 Sample: 2016M02 2021M12 Included observations: 71 **BDS** Statistic Dimension Std. Error z-Statistic Prob. 2 0.043953 0.010254 4.286424 0.0000 3 0.072707 0.0164814.411573 0.0000 4 0.079991 0.019850 4.029675 0.0001 5 0.084684 0.020929 4.046289 0.0001 6 0.065691 0.020419 3.217165 0.0013Raw epsilon 0.078411 Pairs within epsilon 3567.000 V-Statistic 0.707598Triples within epsilon 194557.0 V-Statistic 0.543590 Dimension C(m,n)C(1, n-(m-1)) $c(1,n-(m-1))^k$ c(m,n)c(1, n-(m-1))2 1286.000 0.532505 1688.000 0.698965 0.488552 3 956.0000 0.407502 1629.000 0.694373 0.334795 4 738.0000 0.323968 1601.000 0.702809 0.2439785 558.0000 0.252374 1547.000 0.699683 0.167690 419.0000 0.7114220.129647 6 0.195338 1526.000

Table D.20: Test BDS sur le cours du nickel (2016-2021)

BDS Test for DLNICKEL_21_D11 Sample: 2016M02 2021M12 Included observations: 71						
Dimension	BDS Statistic	Std. Error	z-Statistic	Prob.		
2	0.004770	0.008404	0.567613	0.5703		
3	0.014399	0.013435	1.071799	0.2838		
4	0.029289	0.016090	1.820267	0.0687		
5	0.038457	0.016867	2.279984	0.0226		
6	0.039080	0.016361	2.388621	0.0169		
Raw epsilon		0.109889				
Pairs within	epsilon	3553.000	V-Statistic	0.704820		
Triples withi	n epsilon	190383.0	V-Statistic	0.531928		
Dimension	C(m,n)	c(m,n)	C(1, n-(m-1))	c(1, n-(m-1))	c(1,n-(m-1))^k	
2	1183.000	0.489855	1682.000	0.696480	0.485085	
3	812.0000	0.346121	1624.000	0.692242	0.331722	
4	582.0000	0.255487	1571.000	0.689640	0.226199	
5	419.0000	0.189507	1515.000	0.685210	0.151050	
6	298.0000	0.138928	1461.000	0.681119	0.099848	

D.2.2 Identification échantillon 2016-2019

Figure D.1: Corrélograme du cours du blé en différences premieres (2016-2019)

	Ō	1	A	R 3	4	5	 _
0	AIC:-3.258 Signif: OUI Abs autoco: NON Homo: OUI Norma: OUI	AIC : -3.314 Signif : OUI Abs autoco : OUI Homo : OUI Norma : OUI	AIC: -3.292 Signif: NON Abs autoco: OUI Homo: OUI Norma: OUI	AIC :-3.251 Signif: NON Abs autoco : OUI Homo : OUI Norma : OUI	AIC : -3.21 Signif : NON Abs autoco : OUI Homo : OUI Norma : OUI	AIC:-3.196 Signif: NON Abs autoco: OUI Homo: OUI Norma: OUI	3.30
1	AIC : -3.289 Signif : NON Abs autoco : OUI Homo : OUI Norma : OUI	AIC : -3.292 Sig nif : NON Abs autoco : OUI Homo : OUI Norma : OUI	AIC ; -3.251 Signif : NON Abs autoco : OUI Homo : OUI Norma : OUI	AIC : -3,209 Signif : NON Abs autoco : OUI Homo : OUI Norma : OUI	AIC : -3.172 Signif : NON Abs autoco : OUI Homo : OUI Norma : OUI	AIC : -3.153 Signif : NON Abs autoco : OUI Homo : OUI Norma : OUI	3.25
2	AIC : -3.274 Signif : NON Abs autoco : OUI Homo : OUI Norma : OUI	AIC: -3.252 Signif: NON Absautoco: OUI Homo: OUI Norma: OUI	AIC : -3.209 Signif : NON Abs autoco : OUI Homo : OUI Norma : OUI	AIC : -3.178 Signif : NON Abs autoco : OUI Homo : OUI Norma : OUI	AIC : -3.199 Signif : NON Abs autoco : OUI Homo : OUI Norma : OUI	AIC: -3.167 Signif: NON Abs autoco: OUI Homo: OUI Norma: OUI	3.20
3 MM	AIC : -3.246 Signif : NON Abs autoco : OUI Homo : OUI Norma : OUI	AIC:-3.213 Signif: NON Abs autoco: OUI Homo: OUI Norma: OUI	AIC : -3.226 Signif : NON Abs autoco : OUI Homo : OUI Norma : OUI	AIC: -3.176 Signif: NON Abs autoco: OUI Homo: OUI Norma: OUI	AIC: -3.119 Signif: NON Abs autoco: NON Homo: OUI Norma: OUI	AIC:-3.137 Signif: NON Abs autoco: OUI Homo: OUI Norma: OUI	3.15
4	AIC : -3.269 Signif : NON Abs autoco : OUI Homo : OUI Norma : OUI	AIC : -3.26 Signif : NON Abs autoco : OUI Homo : OUI Norma : OUI	AIC: -3.139 Signif: NON Abs autoco: OUI Homo: OUI Norma: OUI	AIC:-3.097 Signif: NON Abs autoco: NON Homo: OUI Norma: OUI	AIC : -3.12 Signif : NON Abs autoco : NON Homo : OUI Norma : OUI	AIC: -3.039 Signif: NON Abs autoco: NON Homo: OUI Norma: OUI	3.10
5	AIC : -3.264 Signif : NON Abs autoco : OUI Homo : OUI Norma : OUI	AIC: -3.223 Signif: NON Absautoco: OUI Homo: OUI Norma: OUI	AIC : -3.181 Signif : NON Abs autoco : OUI Homo : OUI Norma : OUI	AIC:-3.139 Signif: NON Abs autoco: OUI Homo: OUI Norma: OUI	AIC:-3.129 Signif: NON Abs autoco: OUI Homo: OUI Norma: OUI	AIC:-3.095 Signif: NON Abs autoco: NON Homo: OUI Norma: OUI	3.05

Figure D.2: Carte thermique représentant le critère de Akaike de différentes simulations de ARMA pour le cours du blé (2016-2019)

D.2.3 Validation échantillon 2016-2019

Table D.21: Estimation du modèle AR(1) pour le cours du blé (2016-2019)

Dependent Variable: DLBLE_19

Method: ARMA Maximum Likelihood (OPG - BHHH)

Sample: 2016M02 2019M12 Included observations: 47

Convergence achieved after 8 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(1) SIGMASQ	-0.321792 0.001950	0.154446 0.000378	-2.083525 5.158054	0.0429 0.0000
R-squared	0.092324	Mean depen		0.003023
Adjusted R-squared	0.072153	S.D. depend	lent var	0.046856
S.E. of regression	0.045134	Akaike info	criterion	-3.314400
Sum squared resid	0.091670	Schwarz crit	erion	-3.235671
Log likelihood	79.88841	Hannan-Qui	nn criter	-3.284774
Durbin-Watson stat	1.735661			
Inverted AR Roots	32			

Sample: 2016M02 2019M12 Q-statistic probabilities adjusted for 1 ARMA term								
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob		
		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0.082 0.130 -0.091 -0.155 -0.233 -0.164 -0.177 -0.097 -0.237 -0.082 0.054 -0.052 0.026 0.132	-0.162 -0.192 -0.171 -0.180 -0.060 -0.206 -0.074	2.5877 3.9666 7.1724 8.7937 10.735 11.334 15.015 15.467 15.669 15.861 15.911 17.240	0.432 0.660 0.754 0.713 0.681 0.411 0.362 0.294 0.332 0.182 0.217 0.267 0.322 0.388 0.370 0.363		
		19 20	0.200 0.031	0.025 -0.058	21.724 21.804	0.244 0.294		

Figure D.3: Corrélograme des résidus du modèle AR(1) du blé (2016-2019)

Figure D.4: Histogramme des résidus du modèle AR(1) du blé (2016-2019)

Table D.22: Test ARCH sur les résidus du modèle AR(1) du blé (2016-2019)

Heteroskedasticity Test: ARCH					
F-statistic	0.950478	Prob. F(7,32)	0.4828		
Obs*R-squared	6.885143	Prob. Chi-Square(7)	0.4409		

Test Equation:

Dependent Variable: RESID^2

Method: Least Squares

Sample (adjusted): 2016M09 2019M12 Included observations: 40 after adjustments

D.2.4 Identification échantillon 2016-2021

Sample: 2016M02 2						
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
-		1	-0.324	-0.324	7.7697	0.005
		2	0.187	0.092	10.408	0.005
1 📑 1		3	-0.100	-0.017	11.168	0.011
1 1		4	-0.008	-0.067	11.173	0.025
📕		5	-0.063	-0.081	11.487	0.043
		6	0.069	0.045	11.871	0.065
iii		7	-0.082	-0.044	12.420	0.088
1 📺 1		8	-0.092	-0.174	13.118	0.108
1 1 1		9	0.016	-0.050	13.138	0.156
1 1		10	-0.013	0.013	13.153	0.215
		11	0.083	0.077	13.741	0.248
		12	-0.034	-0.025	13.846	0.311
		13	0.042	-0.003	14.003	0.374
		14	-0.040	-0.003	14.147	0.439
		15	-0.026	-0.065	14.209	0.510
		16	-0.008	-0.052	14.216	0.583
		17	0.036	0.027	14.338	0.643
		18	-0.092	-0.066	15.160	0.651
		19	0.110	0.067	16.360	0.633
		20	-0.076		16.952	0.656

Figure D.5: Corrélograme du cours du blé en différences premieres (2016-2021)

	0	1	2	.R 3	4	5	<u> </u>
0	AIC: -2.854 Signif: OUI Abs autoco: NON Homo: OUI Norma: NON	AIC : -2.922 Signif : OUI Abs autoco : OUI Homo : OUI Norma : OUI	AIC : -2.911 Signif : NON Abs autoco : OUI Homo : OUI Norma : OUI	AIC : -2.883 Signif : NON Abs autoco : OUI Homo : OUI Norma : OUI	AIC: -2.856 Signif: NON Abs autoco: OUI Homo: OUI Norma: OUI	AIC : -2.833 Signif : NON Abs autoco : OUI Homo : OUI Norma : OUI	2.900
1	AIC:-2.898 Signif: OUI Abs autoco: OUI Homo: OUI Norma: OUI	AIC : -2.908 Signif : NON Abs autoco : OUI Homo : OUI Norma : OUI	AIC : -2.883 Signiff : NON Abs autoco : OUI Homo : OUI Norma : OUI	AIC : -2.855 Signif : NON Abs autoco : OUI Homo : OUI Norma : OUI	AIC: -2.83 Signif: NON Abs autoco: OUI Homo: OUI Norma: OUI	AIC : -2.808 Signif : NON Abs autoco : OUI Homo : OUI Norma : OUI	2.875
2	AIC : -2.906 Signif : OUI Abs autoco : OUI Homo : OUI Norma : OUI	AIC : -2.884 Signif : NON Abs autoco : OUI Homo : OUI Norma : OUI	AIC : -2.858 Signif : NON Abs autoco : OUI Homo : OUI Norma : OUI	AIC : -2.832 Signif : NON Abs autoco : OUI Homo : OUI Norma : OUI	AIC: -2.818 Signif: NON Abs autoco: OUI Homo: OUI Norma: OUI	AIC : -2.779 Signif : NON Abs autoco : OUI Homo : OUI Norma : OUI	2.850 2.825 R A
3 MA	AIC : -2.887 Signif : NON Abs autoco : OUI Homo : OUI Norma : OUI	AIC : -2.86 Signif : NON Abs autoco : OUI Homo : OUI Norma : OUI	AIC:-2.84 Signif: NON Abs autoco: OUI Homo: OUI Norma: OUI	AIC: -2.821 Signif: NON Abs autoco: OUI Homo: OUI Norma: OUI	AIC: -2.794 Signif: NON Abs autoco: OUI Homo: OUI Norma: OUI	AIC: -2.757 Signif: NON Abs autoco: OUI Homo: OUI Norma: OUI	2.800
4	AIC : -2.861 Signif : NON Abs autoco : OUI Homo : OUI Norma : OUI	AIC: -2.833 Signif: NON Abs autoco: OUI Homo: OUI Norma: OUI	AIC:-2:819 Signif: NON Abs autoco: OUI Homo: OUI Norma: OUI	AIC: -2.794 Signif: NON Abs autoco: OUI Homo: OUI Norma: OUI	AIC: -2.752 Signif: NON Abs autoco: OUI Homo: OUI Norma: OUI	AIC: -2.732 Signif: NON Abs autoco: OUI Homo: OUI Norma: OUI	2.775 2.750
5	AIC : -2.833 Signif : NON Abs autoco : OUI Homo : OUI Norma : OUI	AIC: -2.805 Signif: NON Abs autoco: OUI Homo: OUI Norma: OUI	AIC:-2.791 Signif: NON Abs autoco: OUI Homo: OUI Norma: OUI	AIC : - 2.77 Signif : NON Abs autoco : OUI Homo : OUI Norma : OUI	AIC: -2.753 Signif: NON Abs autoco: OUI Homo: OUI Norma: OUI	AIC : -2.709 Signif : NON Abs autoco : OUI Homo : OUI Norma : OUI	2.725

Figure D.6: Carte thermique représentant le critère de Akaike de différentes simulations de ARMA pour le cours du blé (2016-2021)

D.2.5 Validation échantillon 2016-2021

Table D.23: Estimation du modèle AR(1) pour le cours du blé (2016-2021)

Dependent Variable: DLBLE_21

Method: ARMA Maximum Likelihood (OPG - BHHH)

Sample: 2016M02 2021M12 Included observations: 71

Convergence achieved after 23 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(1) SIGMASQ	-0.308181 0.002975	0.080642 0.000506	-3.821577 5.880245	0.0003 0.0000
R-squared	0.077313	Mean depen		0.007480
Adjusted R-squared	0.063941	S D depend	0.057186	
S.E. of regression	0.055328	Akaike info	-2.921919	
Sum squared resid	0.211219	Schwarz crit	-2.858182	
Log likelihood	105.7281	Hannan-Quinn criter.		-2.896573
Durbin-Watson stat	1.851248			
Inverted AR Roots	31			

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.012	0.012	0.0109	
		2	0.012	0.012	0.5350	0.46
		3		-0.060	0.3330	0.40
		4		-0.000	1.1290	0.07
		5		-0.072	1.3571	0.77
		6	0.035	0.045	1.4548	0.83
		7		-0.113	2.4382	0.87
		8		-0.113	4.0038	0.67
		9	-0.136		4.0036	0.77
		10	0.016	0.004 0.035	4.0233	0.83
		11	0.016	0.055	4.6850	0.90
		12		-0.042	4.6854	0.94
		13	0.026	0.010	4.7436	0.96
		14		-0.026	4.9098	0.97
		15		-0.074	5.1210	0.98
		16		-0.020	5.1235	0.99
1 1	<u> </u>	17	0.009	0.014	5.1318	0.99
 	" "	18		-0.051	5.5292	0.99
<u> </u>	<u> </u>	19	0.076	0.080	6.1041	0.99
		20	-0.034	-0.029	6.2239	0.99

Figure D.7: Corrélograme des résidus du modèle AR(1) du blé (2016-2021)

Figure D.8: Histogramme des résidus du modèle AR(1) du blé (2016-2021)

Table D.24: Test ARCH sur les résidus du modèle AR(1) du blé (2016-2021)

Heteroskedasticity	Test: ARCH		
F-statistic	3.285391	Prob. F(7,56)	0.0054
Obs*R-squared	18.63161	Prob. Chi-Square(7)	0.0094

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares

Sample (adjusted): 2016M09 2021M12 Included observations: 64 after adjustments

Table des matières

K	esum	ie	T
Sc	mm	aire	2
In	trod	uction	3
1		alyse macroéconomique et technique	5
	1.1	Présentation des deux matières premières	5
		1.1.1 Le blé meunier	5
		1.1.2 Le Nickel	6
	1.2	Analyse macroéconomique des cours	8
	1.3	Analyse technique des cours	10
2	Ana	alyse de la saisonnalité et de la tendance	13
	2.1	Détection de saisonnalité et de tendance	13
		2.1.1 Analyse graphique	13
		2.1.2 Analyse de la variance et test de Fisher	14
	2.2	Désaisonnalisation de l'échantillon 2016-2021 du nickel	16
		2.2.1 Type de saisonnalité et sélection du schéma de décomposition	16
		2.2.2 Désaisonnalisation de l'échantillon par méthode Census	16
3	Pré	evision par le méthodes traditionnelles	18
	3.1	Échantillon 2016-2019	18
		3.1.1 Prévision pour 2020	18
		3.1.2 Choix de la meilleure méthode	21
		3.1.3 Prévision pour 2022	22
	3.2	Échantillon 2016-2021	22
		3.2.1 Prévision pour 2022	22
		3.2.2 Choix de la meilleure méthode	25
4	Pré	evision selon la méthodologie de Box & Jenkins	28
	4.1	Présentation de la méthode	28
	4.2	Test de racine unitaire	29
		4.2.1 Echantillon 2016-2019	30
		4.2.2 Echantillon 2016-2021	35
	4.3	Identification, validation et prévision des processus	37
		4.3.1 Echantillon 2016-2019	37
		4.3.2 Echantillon 2016-2021	38
		4.3.3 Choix de la meilleure méthode	39
	4.4	Prévision pour 2023	40
C	onclu	ısion	42

References

- Exchange, London Metal. LME Nickel Contrat specification: London Metal Exchange. URL: https://www.lme.com/en/Metals/Non-ferrous/LME-Nickel/Contract-specifications.
- FAO. Production: Crops and livestock products. 2021. URL: https://www.fao.org/faostat/en/#data/QCL.
- Institute, Nickel. About nickel and its applications. 2021. URL: https://nickelinstitute.org/en/about-nickel-and-its-applications/.
- Survey, United States Geological. *Mineral Commodity Summaries Nickel Statistics and Information*. 2023. URL: https://pubs.usgs.gov/periodicals/mcs2023/mcs2023-nickel.pdf.
- Terraza, Régis Bourbonnais & Michel. *Analyse des séries temporelles*. Dunod, 2016. DOI: 10.3917/dunod.bourb.2016.01. URL: https://doi.org/10.3917/dunod.bourb.2016.01.