```
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~
33
                                   104
                                              126
0.2.....41
     Phred+33, raw reads typically (0, 40)
S - Sanger
       Solexa+64, raw reads typically (-5, 40)
X - Solexa
I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)
J - Illumina 1.5+ Phred+64, raw reads typically (3, 40)
 with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)
  (Note: See discussion above).
L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)
```

Q1: Based on the the above, which of characters are consistent with which encoding?

- a) *>@A
- b) <P[^
- c) EJ\@

```
scythe -a adapter_file.fasta -o trimmed_sequences.fasta sequences.fastq
```

Run scythe the adaptor file the outfile the infile

By default, Illumina's quality scheme (pipeline > 1.3) is used. Sanger or Solexa (pipeline < 1.3) qualities can be specified with -q:

```
scythe -a adapter_file.fast -q solexa -o trimmed_sequences.fasta sequences.fastq
```

Q2: Based on the the above – indicate which words go in which box.

a) \$dir_scy

- (variable with the path to the software scythe)
- b) 1_scy_human001_pe1.fastq
- (outfile name)

- c) adaptors.fa
- d) human001 pel.fastq
- e) sanger

```
scythe -a adapter_file.fasta -o trimmed_sequences.fasta sequences.fastq
```

Run scythe the adaptor file the outfile the infile

By default, Illumina's quality scheme (pipeline > 1.3) is used. Sanger or Solexa (pipeline < 1.3) qualities can be specified with -q:

```
scythe -a adapter_file.fast -q solexa -o trimmed_sequences.fasta sequences.fastq
```

Q2: Based on the the above – indicate which words go in which box.

a) \$dir_scy

- (variable with the path to the software scythe)
- b) 1_scy_human001_pe1.fastq (outfile name)
- c) adaptors.fa
- d) human001 pel.fastq
- e) sanger

```
scythe -a adapter_file.fasta -o trimmed_sequences.fasta sequences.fastq
```

Run scythe the adaptor file the outfile the infile

By default, Illumina's quality scheme (pipeline > 1.3) is used. Sanger or Solexa (pipeline < 1.3) qualities can be specified with -q:

```
scythe -a adapter_file.fast -q solexa -o trimmed_sequences.fasta sequences.fastq
```

Q2: Based on the the above – indicate which words go in which box.

a) \$dir_scy

- (variable with the path to the software scythe)
- b) 1_scy_human001_pe2.fastq (outf
- (outfile name)

- c) adaptors.fa
- d) human001 pe2.fastq
- e) sanger

```
scythe -a adapter_file.fasta -o trimmed_sequences.fasta sequences.fastq
```

Run scythe the adaptor file the outfile the infile

By default, Illumina's quality scheme (pipeline > 1.3) is used. Sanger or Solexa (pipeline < 1.3) qualities can be specified with -q:

```
scythe -a adapter_file.fast -q solexa -o trimmed_sequences.fasta sequences.fastq
```

Q2: Based on the the above – indicate which words go in which box.

a) \$dir scy

- (variable with the path to the software scythe)
- b) 1_scy_human001_pe2.fastq (outfile name)
- c) adaptors.fa
- d) human001 pe2.fastq
- e) sanger

MANUAL

Run sickle, Paired end mode, input forward (pe1) reads, input reverse (pe2) reads

Q3: Based on the the above – indicate which words go in which box. We want to trim to a quality of 20 and length of 20

- a) sanger
- b) 1 scy human001 pel.fastq
- c) 1 scy human001 pe2.fastq
- d) \$dir sic
- e) 2_sic_human001_pe1.fastq
- f) 2_sic_human001_pe2.fastq
- g) 2 sic human001 sing.fastq
- h) 20
- i) pe
- j) 20

MANUAL

Run sickle, Paired end mode, input forward (pe1) reads, input reverse (pe2) reads

```
Data files = sanger format

sickle pe | f input_file1.fastq | r input_file2.fastq | t sanger |

-o trimmed_output_file1.fastq | -p trimmed_output_file2.fastq |

-s trimmed_singles_file.fastq | -q 12 -1 15 |

forward pe1outfile, reverse pe2outfile

outfile_singletons | Trim if quality is <12, remove if read < 15 bases
```

Q3: Based on the the above – indicate which words go in which box. We want to trim to a quality of 20 and length of 20

```
$dir_sic/sickle pe -f 1_scy_human001_pe1.fastq -r 1_scy_human001_pe1.fastq -t sanger -o 2_sic_human001_pe1.fastq -p 2_sic_human001_pe2.fastq -s 2_sic_human001_sing.fastq -q 20 -1 20
```


Two steps – 1 (has to be done for pe1 & pe2)

MANUAL

Based on the the above indicate which words go in which box

```
/bwa dir_ref/
```

aln

chr14.fa

2_sic_human001_pe1.fastq
dir_bwa
3_bwa_human001_pe1.sai

Two steps – 1 (has to be done for pe1 & pe2)

MANUAL


```
dir_bwa/bwa aln dir_ref/chr14.fa 2_sic_human001_pe1.fastq > 3_bwa_human001_pe1.sai
```

```
aln
2_sic_human001_pe1.fastq
dir_bwa
3_bwa_human001_pe1.sai
chr14.fa
```


Two steps -1 (has to be done for pe2 now)

MANUAL

Based on the the above indicate which words go in which box

```
/bwa dir_ref/
```

aln

2_sic_human001_pe2.fastq
\$dir_bwa
3_bwa_human001_pe2.sai
chr14.fa

Two steps – 1 (has to be done for pe1 & pe2)

MANUAL

3 bwa human001 pel.sai

chr14.fa

```
Run BWA, align mode, genome reference, input file output file bwa aln ref.fa short_read.fq > aln_sa.sai
```

```
$dir_bwa/bwa aln dir_ref/chr14.fa 2_sic_human001_pe2.fastq >
3_bwa_human001_pe2.sai
aln
2_sic_human001_pe1.fastq
$dir bwa
```


- 2_sic_human001_pe1.fastq
- 2_sic_human001_pe2.fastq
- 3_bwa_human001_pe1.sai
- 3_bwa_human001_pe2.sai
- 4_bwa_human001_pe12.sam


```
$dir_bwa/bwa sampe $dir_ref/chr14.fa 3_bwa_human001_pe1.sai
3_bwa_human001_pe2.sai 2_sic_human001_pe1.fastq

2_sic_human001_pe2.fastq > 4_bwa_human001_pe12.sam
```

```
2_sic_human001_pe1.fastq
2_sic_human001_pe2.fastq
3_bwa_human001_pe1.sai
3_bwa_human001_pe2.sai
4 bwa human001 pe12.sam
```

Sam to Bam file

Lets convert our sam file to a bam file using picard tools

MANUAL

We also have to add: CREATE_INDEX=true

```
$dir_pic
5_bwasort_human001_pe12.bam
4_bwa_human001_pe12.sam
```

Sam to Bam file

Lets convert our sam file to a bam file using picard tools

MANUAL

```
java -jar SortSam.jar \
I=input.sam \
O=output.bam \
SO=coordinate
```

```
We also have to add: CREATE_INDEX=true
```

```
$dir_pic
5_bwasort_human001_pe12.bam
4_bwa_human001_pe12.sam
```

Filtering out poorly mapping reads

What if wanted to excluded any unmapped reads or reads with low mapping scores?

Filter out unmapped reads

Filter out reads if mapping quality < 30

samtools view —F 4 —q 30 —b mybamfile > myoutfile

samtools view —F 4 —q 30 —b

5_bwasort_human001_pe12.bam
\$dir_sam
6 bwafil human001 pe12.bam

Filtering out poorly mapping reads

What if wanted to excluded any unmapped reads or reads with low mapping scores?

Filter out unmapped reads

Filter out reads if mapping quality < 30

samtools view —F 4 —q 30 —b mybamfile > myoutfile

\$dir_sam/samtools view -F 4 -q 30 -b 5_bwasort_human001_pe12.bam

> 6_bwafil_human001_pe12