

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Prof^a. Karla Lima

Cálculo I

11 de Junho de 2017

(1) Seja $f(x) = 5\sqrt{x} e g(x) = 4 + \cos x$.

a) Encontre
$$(f \circ g)(x)$$
 e $(f \circ g)'(x)$.

b) Encontre
$$(g \circ f)(x)$$
 e $(g \circ f)'(x)$

(2) Encontre f'(x):

a)
$$f(x) = (x^3 + 2x)^{37}$$

b)
$$f(x) = \operatorname{sen}\left(\frac{1}{x^2}\right)$$

c)
$$f(x) = \cos^2(3\sqrt{x})$$

d)
$$f(x) = \cos^3(\sin 2x)$$

e)
$$f(x) = \left(\frac{x-5}{2x+1}\right)^3$$

(3) Se a equação de movimento de uma partícula for dada por $s(t) = A\cos(\omega t + \delta)$, dizemos que a partícula está em movimento harmônico simples.

a) Encontre a velocidade da partícula no instante t.

b) Quando a velocidade é zero?

Gabarito:
$$(1) \quad \text{a)} \ (f\circ g)(x) = 5\sqrt{4+\cos x} \ \mathrm{e} \ (f\circ g)'(x) = \frac{-5\mathrm{sen}x}{2\sqrt{4+\cos x}}.$$

b)
$$(g \circ f)(x) = \sqrt{4 + \cos(5\sqrt{x})} e(g \circ f)'(x) = \frac{-5\sin(5\sqrt{x})}{2\sqrt{x}}$$

(2) a)
$$f'(x) = 37(x^3 + 2x)^{36}(3x^2 + 2)$$

b)
$$f'(x) = -\frac{2}{x^3}\cos\left(\frac{1}{x^2}\right)$$

c)
$$f'(x) = -\frac{3}{\sqrt{x}}\cos(3\sqrt{x})\sin(3\sqrt{x})$$

d)
$$f'(x) = -6\cos^3(\sin 2x)\sin(\sin 2x)\cos(2x)$$

e)
$$f'(x) = 33 \frac{(x-5)^2}{(2x+1)^4}$$

(3) a)
$$v(t) = s'(t) = -Aw\operatorname{sen}(\omega t + \delta)$$
.

b) Assumindo as constantes A e ω não nulas, a velocidade é zero para todo $t = \frac{k\pi - \delta}{\omega}$, para todo $k \in \mathbb{Z}$.