Problem 28

The 1H and $^{13}C\{^1H\}$ NMR spectra of ethyl 6-bromohexanoate ($C_8H_{15}BrO_2$) recorded in CDCl₃ solution at 298 K and 500 MHz are given below. The 1H NMR spectrum has signals at δ 1.25, 1.48, 1.65, 1.87, 2.31, 3.41 and 4.12 ppm. The $^{13}C\{^1H\}$ NMR spectrum has signals at δ 14.3, 24.0, 27.6, 32.4, 33.5, 34.0, 60.2 and 173.3 ppm.

The 2D ¹H–¹H COSY and the multiplicity-edited ¹H–¹³C HSQC spectra are given on the facing page. From the COSY spectrum, assign the proton spectrum, then use this information to assign the ¹³C{¹H} spectrum.

Proton	Chemical Shift (ppm)	Carbon	Chemical Shift (ppm)
H ₁		C_1	
H ₂		C ₂	
H ₃		C ₃	
H ₄		C ₄	
H ₅		C ₅	
		C ₆	
H ₇		C ₇	
H ₈		C ₈	

