Binomial coefficients

• Author: Fabio Furini

Contents

1	Binomial coefficients	2
2	Newton's binomial	4

1 Binomial coefficients

Definition 1: binomial coefficient

The **binomial coefficient** is the value:

$$c_{n,k} = \frac{n!}{k! (n-k)!} \quad \text{with } 0 \le k \le n, k \in \mathbb{N}.$$

- The binomial coefficient $c_{n,k}$ is usually indicated by the symbol: $\binom{n}{k}$ which is read "n choose k".
- Some properties of the factorial, of immediate verification, are:

$$n! = n \cdot (n-1)!$$

$$\frac{n!}{(n-k)!} = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-k+1), \text{ con } k \ge 1$$
 (2)

With $k \ge 1$, it boils down to the product of k factors, starting from n and decreasing by one unit at a time.

• Given (1) and (2), we have:

$$c_{n,k} = \binom{n}{k} = \frac{n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-k+1)}{k!}$$
(3)

with $k \ge 1$, expression that is more manageable for calculating the binomial coefficient.

Observation 1

For any $n \ge 0$ and $0 \le k \le n$, it holds:

$$\binom{n}{n-k} = \binom{n}{k}$$

Proof. We have:

$$\binom{n}{n-k} = \frac{n!}{(n-k)! (n-(n-k))!} = \frac{n!}{k! (n-k)!} = \binom{n}{k}$$

Observation 2

For any $n \ge 1$ and $1 \le k \le n$, it holds:

$$\binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{k}$$
 (4)

Proof. We have:

$$\binom{n-1}{k-1} + \binom{n-1}{k} = \frac{(n-1)!}{(k-1)!} + \frac{(n-1)!}{k! (n-k-1)!}$$

$$= \frac{(n-1)!}{(k-1)! (n-k) (n-k-1)!} + \frac{(n-1)!}{k (k-1)! (n-k-1)!}$$

$$= \frac{(n-1)!}{(k-1)! (n-k) (n-k-1)!} + \frac{(n-1)!}{k (k-1)! (n-k-1)!}$$

$$= \frac{k (n-1)! + (n-k) (n-1)!}{k (k-1)! (n-k) (n-k-1)!} = \underbrace{\frac{(n-1)!}{k (k-1)!} \frac{(n-k) (n-k-1)!}{(n-k)!}}_{k!}$$

$$= \frac{n!}{k! (n-k)!} = \binom{n}{k}$$

The relation (4) allows to calculate the binomial coefficients $\binom{n}{k}$ in a recursive manner by means of the so-called **Pascal's triangle**

- The rules for creating the Pascal's triangle are:
 - 1. At the top of the triangle there is the number $\binom{0}{0} = 1$ (by definition).
 - 2. On the sides there are the numbers $\binom{n}{0} = \binom{n}{n} = 1$ for any $n \ge 1$.
 - 3. For 0 < k < n, the value $\binom{n}{k}$ is written at the intersection of the n-th row and k-th column.
 - 4. The value $\binom{n}{k}$ results from the sum of the two numbers that are in the previous row, the one on the same column and the one on the previous column:

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

for $n \ge 2$ and $1 \le k < n$.

Example 1: Pascal's triangle for $n \le 10$ e $k \le 10$

	k = 0	<i>k</i> = 1	<i>k</i> = 2	<i>k</i> = 3	<i>k</i> = 4	<i>k</i> = 5	<i>k</i> = 6	k = 7	<i>k</i> = 8	<i>k</i> = 9	k = 10
n = 0	1										
n = 1	1	1									
n = 2	1	2	1								
n = 3	1	3	3	1							
n = 4	1	4	6	4	1						
n = 5	1	5	10	10	5	1					
n = 6	1	6	15	20	15	6	1				
n = 7	1	7	21	35	35	21	7	1			
n = 8	1	8	28	56	70	56	28	8	1		
n = 9	1	9	36	84	126	126	84	36	9	1	
n = 10	1	10	45	120	210	252	210	120	45	10	1

To compute the binomial coefficient $\binom{5}{3}$, corresponding to the blue cell, we can use the (4) relation and add the two binomial coefficients: $\binom{4}{2}$ and $\binom{4}{3}$, corresponding to the red cells:

$$\binom{5}{3} = \binom{4}{2} + \binom{4}{3} = 6 + 4 = 10$$

Given a set of n elements, there are $\binom{n}{k}$ subsets of $k \le n$ elements.

2 Newton's binomial

• The n-th power of a binomial (a+b) can be calculated with the following formula (hence the name of binomial coefficient):

Theorem 1: Newton's binomial

For any integer $n \ge 0$ and $a, b \in \mathbb{R}$, it holds:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$
 (5)

Proof. By induction on n.

• First step of the induction

Let n = 0. Then the statement becomes: $(a + b)^0 = \binom{0}{0} a^0 b^0$ that is 1 = 1 which is evidently true.

Inductive step

Suppose it is true for n, and we prove it for n+1. By inductive hypothesis, we have: $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$. Accordingly we have:

$$(a+b)^{n+1} = (a+b) \cdot (a+b)^n = (a+b) \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

$$= \sum_{k=0}^n \binom{n}{k} a^{n-k+1} b^k + \sum_{k=0}^n \binom{n}{k} a^{n-k} b^{k+1}$$

$$= \sum_{k=1}^{n+1} \binom{n}{k-1} a^{n-k+1} b^k$$

$$= a^{n+1} + \sum_{k=1}^n \binom{n}{k} a^{n-k+1} b^k + b^{n+1} + \sum_{k=1}^n \binom{n}{k-1} a^{n-k+1} b^k$$

$$= a^{n+1} + b^{n+1} + \sum_{k=1}^n \underbrace{\binom{n}{k} + \binom{n}{k-1}}_{=n+1} a^{n-k+1} b^k$$

$$= \binom{n+1}{k} a^{n+1-k} b^k$$

which is exactly the intended statement, for n + 1.

Observation 3

For any $n \ge 0$ and $0 \le k \le n$, it holds:

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n \tag{6}$$

Proof. We have:

$$2^n = (1+1)^n$$

then by applying the Newton's binomial we get:

$$(1+1)^n = \sum_{k=0}^n \binom{n}{k} 1^{n-k} 1^k = \sum_{k=0}^n \binom{n}{k}$$

Given a set of n elements, the number of all possible subsets is 2^n .