

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ & ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΉΣ

Ηλεκτρονική ΙΙΙ

Ακαδημαϊκό Έτος 2022-2023 4η Σειρά Εργαστηριακών Ασκήσεων Παύλος-Πέτρος Σωτηριάδης, Καθ. Νικόλαος Βουδούκης, ΕΔΙΠ Χρήστος Δήμας, Δρ.

Οδηγίες

- Οι ασκήσεις είναι αυστηρά ατομικές.
- Η υποβολή γίνεται στις εργασίες στο helios.
- Παραδοτέα: ένα αρχείο .rar ή .zip το οποίο περιλαμβάνει:
- 1. Μια τεχνική αναφορά με τις απαντήσεις, τις γραφικές παραστάσεις και τις κατάλληλες περιγραφές/ αιτιολογήσεις
 - 2. Τα κατάλληλα αρχεία προσομοιώσεων .asc του LT SPICE
- Αξιολογούνται η ορθότητα, η τεχνική και επιστημονική τεκμηρίωση, η ποιότητα και η πληρότητα των εργασιών.
- Προθεσμία παράδοσης μέχρι και Δευτέρα 6 Φεβρουαρίου 2023.
- Οι προθεσμίες παράδοσης είναι αυστηρές και δεν θα δοθούν παρατάσεις.
- Η βαθμολογία των θεωρητικών σειρών ασκήσεων συμμετέχει στο 20% του τελικού βαθμού, ανεξαρτήτως του αν θα επιλέξετε το εργαστήριο.

Ύλη προς μελέτη:

Διαφάνειες	Θέμα	Κεφάλαιο(α)	Βιβλίο
PS_L8	Ταλαντωτές	18	Μικροηλεκτρονικά
			Κυκλώματα,
			A.Sedra, K. Smith, 7η
			Έκδοση,
			Εκδόσεις Παπασωτηρίου

Άσκηση 1

Για το κύκλωμα του παρακάτω σχήματος δίνονται: V+=-V-=10V, $R_1=10k\Omega$, $R_2=R_3=100k\Omega$. Ο τελεστικός ενισχυτής του σχήματος είναι ο LT1097. Ο διακόπτης S_1 είναι αρχικά ανοιχτός.

Ερώτημα 1:

Για ποια τιμή του πυκνωτή C_1 η συχνότητα ταλάντωσης του πολυδονητή είναι 1kHz;

Ερώτημα 2:

Ποιο το peak-to-peak πλάτος της τάσης στην έξοδο του κυκλώματος (1);

Ερώτημα 3:

Ποιο το peak-to-peak πλάτος της τάσης στην έξοδο του κυκλώματος (2) αν κλείσει ο διακόπτης S_1 ;

Άσκηση 2

Για το κύκλωμα του παρακάτω σχήματος δίνονται: $V_{CC}=10V, V_2=3V$, $R_2=10k\Omega$, $C_1=1nF, C_2=10nF, L_1=100\mu H$. Θεωρείστε σαν έξοδο του κυκλώματος τον συλλέκτη του Q_1 .

Ερώτημα 1:

Ποια είναι η συχνότητα ταλάντωσης του παραπάνω ταλαντωτή;

Ερώτημα 2:

Ποιο το πλάτος της πρώτης αρμονικής της τάσης στην έξοδο;

Ερώτημα 3:

Ποιο το πλάτος της δεύτερης αρμονικής της τάσης στην έξοδο;

Ασκηση 3

Στο παρακάτω σχήμα δίνεται ένα κύκλωμα ταλαντωτή τύπου Wien. Χρησιμοποιήστε έναν τελεστικό τύπου JFET με τροφοδοσία ± 10 V.

Ερώτημα 1:

Ποια είναι η μέγιστη τιμή της αντίστασης R_x που επιτρέπει να αρχίσουν οι ταλαντώσεις;

Ερώτημα 2:

Ποια είναι η συχνότητα ταλάντωσης του κυκλώματος; Συμφωνεί με τη θεωρητική; Αναφέρατε πιθανούς παράγοντες (πολύ μικρής) απόκλισης.