Découverte des Systèmes Linéaires Continus et Invariants Analyse, Modélisation, Résolution

Chapitre 2- Modélisation des Systèmes Linéaires Continus Invariants -Transformée de Laplace

TD 2

Étude d'une cellule d'assemblage pour avion Falcon

D'après concours E3A - PSI - 2015.

Savoirs et compétences :

Résoudre : à partir des modèles retenus :

Afin d'assembler les différents tronçons d'un avion Falcon 7X, la société Dassault utilise un Robot permettant les opérations suivantes :

- 1. mise en place des éléments à assembler;
- 2. perçage des éléments;
- 3. dépose d'un rivet;
- 4. pose d'une bague déformable;
- 5. serrage du rivet par déformation de la bague.

Objectif

Les équations caractéristiques du moteur à courant continu sont les suivantes:

- $\begin{aligned} \bullet & u(t) = e(t) + L \frac{\mathrm{d}i(t)}{\mathrm{d}t} + Ri(t) \\ \bullet & e(t) = K_E \cdot \omega_m(t) \\ \bullet & C_M(t) = K_C \cdot i(t); \\ \bullet & J_{eq} \frac{d\omega_m(t)}{dt} + f\omega_m(t) = C_M(t) C_R(t). \end{aligned}$

- u(t): tension moteur;
- i(t): courant moteur;
- *e*(*t*): force contre-électromotrice;
- $\omega_m(t)$: fréquence de rotation moteur;
- $C_M(t)$: couple moteur;
- $C_R(t)$: couple résistant modélisant l'action de pesanteur.

Question 1 À partir des équations du moteur à courant continu, réaliser le schéma bloc du moteur à courant continu.

Correction Les équations caractéristiques du moteur à courant continu dans le domaine de Laplace sont les suivantes:

- U(p) = E(p) + LpI(p) + RI(p)
- $E(p) = K_E \cdot \Omega_m(t)$
- $C_M(p) = K_C \cdot I(p)$;
- $J_{eq}p\Omega_m(p) + f\Omega_m(p) = C_M(p) C_R(p)$.

Question 2 En considérant $C_R(p) = 0$, déterminer la fonction de transfert $H_M(p) = \frac{\Omega_M(p)}{U(p)}$ sous sa forme canonique.

Correction Si $C_R(p) = 0$, on a:

$$H_{M}(p) = \frac{K_{C} \frac{1}{R + Lp} \frac{1}{J_{eq}p + f}}{1 + K_{C} K_{E} \frac{1}{R + Lp} \frac{1}{J_{eq}p + f}}$$

$$= \frac{K_{C}}{(R + Lp)(J_{eq}p + f) + K_{C} K_{E}}$$

$$= \frac{K_{C}}{RJ_{eq}p + LJ_{eq}p^{2} + fR + Lpf + K_{C} K_{E}}$$

$$= \frac{\frac{K_{C}}{K_{C} K_{E} + Rf}}{\frac{LJ_{eq}}{K_{C} K_{E} + Rf}} p^{2} + \frac{RJ_{eq} + Lf}{K_{C} K_{E} + Rf} p + 1$$

Question 3 Montrer que $H_M(p)$ peut se mettre sous la forme simplifiée : $H_M(p) = \frac{K_C}{K_C K_E + R J_{eq} p + L J_{eq} p^2}$ puis sous la forme $H_M(p) = \frac{K_M}{\left(1 + T_E p\right)\left(1 + T_M p\right)}$ avec $T_E < T_M$.

Correction En negligeant le frottement fluide, on a donc $f \simeq 0$. En conséquences, $H_M(p) = \frac{K_C}{K_C K_E + R J_{eq} p + L J_{eq} p^2}$. En mettant cette expressions sous forme canonique, on obtient $H_M(p) = \frac{1/K_E}{1 + \frac{R J_{eq}}{K_C K_E} p + \frac{L J_{eq}}{K_C K_E} p^2}$. Développons l'expression donnée dans la question : $H_M(p) = \frac{K_M}{1 + T_E p + T_M p + T_E T_M p^2}$. En identifiant on a donc :

$$\begin{cases} T_E + T_M = \frac{R J_{eq}}{K_C K_E} \\ T_E \cdot T_M = \frac{L J_{eq}}{K_C K_E} \end{cases}$$

Question 4 Quelle doit être la valeur de K_G pour assurer un asservissement correct (c'est-à-dire que l'écart ε doit être nul si la position de l'axe est identique à la consigne)?

Correction

Question 5 Compléter le schéma bloc de l'asservissement de l'axe du document réponse.

Correction

Question 6 Mettre le schéma bloc sous la forme d'un schéma bloc à retour unitaire ayant la forme suivante en explicitant la fonction de transfert $H_C(p)$.

Correction

On note C(p) = 1.

Question 7 L'exigence *** est-elle vérifiée ?

Correction

On note
$$C(p) = K_I \left(1 + \frac{A}{T_i p} \right) \left(1 + T_D p \right)$$
.

Question 8 L'exigence *** est-elle vérifiée ?

Correction

Afin de vérifier maintenant le critère de rapidité, le document réponse donne la réponse temporelle de l'axe à un échelon de position de $1\,m$.

Question 9 L'exigence *** est-elle vérifiée ?

Correction