Cavity Opening in Transitional Discs

Kieran Hirsh

What is a Transitional Disc?

What is a Transitional Disc?

HD 135344B

Binaries

$$T_{m,N}^{LR} \gtrsim T_{\nu}$$
$$-m\pi^{2} \left[\Sigma \left(\frac{dD}{d \ln r} \right)^{-1} |\Psi_{m,N}|^{2} \right] \gtrsim 3\pi\alpha h^{2} \Sigma \Omega^{2} r^{4}$$

$$\frac{r_{LR}}{a} = \left(\frac{m+1}{N}\right)^{\frac{2}{3}}$$

Binaries

$$T_{m,N}^{LR} \gtrsim T_{\nu}$$
$$-m\pi^{2} \left[\Sigma \left(\frac{dD}{d \ln r} \right)^{-1} |\Psi_{m,N}|^{2} \right] \gtrsim 3\pi\alpha h^{2} \Sigma \Omega^{2} r^{4}$$

$$\frac{r_{LR}}{a} = \left(\frac{m+1}{N}\right)^{\frac{2}{3}}$$

Artymowicz & Lubow (1994)

Binaries

$$T_{m,N}^{LR} \gtrsim T_{\nu}$$
$$-m\pi^{2} \left[\Sigma \left(\frac{dD}{d \ln r} \right)^{-1} |\Psi_{m,N}|^{2} \right] \gtrsim 3\pi\alpha h^{2} \Sigma \Omega^{2} r^{4}$$

$$\frac{r_{LR}}{a} = \left(\frac{m+1}{N}\right)^{\frac{2}{3}}$$

Miranda & Lai (2015)

Eccentricity

Eccentricity

Scale Height

Polar Orbit

Inclination

But...

More Orbits

MORE Orbits

Eccentricity

Scale Height

Summary

- Binary coentricity sets cavity size.
- Disc Viscosity has no effect on cavity size.
- Be rigorous in your research unless you enjoy wasting time.
- On the dynamical timescale viscosity has no effect on cavity size.
- On the viscous timescale... I'm not sure yet.