

IUT GEII – Outils Mathématiques et Logiciels I (OML1)

Fonctions numériques à variable réelle (partie I)

Andrés F. López-Lopera Université Polytechnique Hauts-de-France (UPHF)

Thèmes

- 1. Domaine de définition
- 2. Domaine d'étude
- 3. Étude des limites et asymptotes
- 4. Transformations
- 5. Sens de variation

1

Motivation

- Dans tous les domaines des sciences et des techniques, des fonctions s'utilisent pour représenter l'évolution d'une donnée par rapport à une autre.
- · Par exemple, un signal électrique est une fonction qui décrit l'évolution d'une quantité physique en fonction du temps.

· Ici, on considère de manière générale des fonctions telles que :

$$f: \begin{cases} \mathbb{R} \to \mathbb{R}, \\ \mathsf{x} \mapsto f(\mathsf{x}). \end{cases}$$

· Le domaine de définition $D \subseteq \mathbb{R}$ d'une fonction est l'ensemble des valeurs $x \in \mathbb{R}$ pour lesquelles la fonction est définie. Ainsi, on exclut du domaine toutes les valeurs de x qui rendent la fonction indéfinie.

Exemple.

$$f(x)=\frac{3}{x-2}, \qquad D=\mathbb{R}-\{2\}.$$

3

Exercice. Déterminer les domaines de définition des fonctions suivantes :

1.
$$f(x) = ax^2 + bx + c$$

2.
$$f(x) = \sqrt{x+2}$$

3.
$$f(x) = \frac{x}{x-3}$$

4.
$$f(x) = \frac{x}{x^2 - 3x + 2}$$

5.
$$f(x) = \sin(x)$$

6.
$$f(x) = \frac{1}{1 - \sin(x)}$$

7.
$$f(x) = \tan(x)$$

1.
$$f(x) = ax^2 + bx + c : D = \mathbb{R}$$

2.
$$f(x) = \sqrt{x+2}$$
: $D = [-2; +\infty[$

3.
$$f(x) = \frac{x}{x-3}$$
: $D = \mathbb{R} - \{3\}$

4.
$$f(x) = \frac{x}{x^2 - 3x + 2} = \frac{x}{(x - 1)(x - 2)}$$
: $D = \mathbb{R} - \{1, 2\}$

5.
$$f(x) = \sin(x)$$
: $D = \mathbb{R}$

6.
$$f(x) = \frac{1}{1 - \cos(x)}$$
: $D = \mathbb{R} - \{2k\pi\}$ avec $k \in \mathbb{Z}$

7.
$$f(x) = an(x)$$
: $D = \mathbb{R} - \{\pi/2 + k\pi\}$ avec $k \in \mathbb{Z}$

- \cdot Il n'est pas toujours nécessaire d'étudier une fonction sur l'ensemble complet de $\emph{D}.$
- · Parfois, la fonction présente une périodicité ou une parité, ce qui permet de restreindre l'analyse à un sous-ensemble spécifique du domaine.
- · Ainsi, le domaine d'étude D_e devient un sous-ensemble du domaine de D, c'est-à-dire $D_e\subseteq D$.

Périodicité

Une fonction f(x) est dite *périodique* si et seulement si, pour toute valeur de $x \in \mathbb{R}$, il existe un réel T > 0 tel que :

$$f(x+T)=f(x).$$

· Cette définition peut être exprimée en termes ensemblistes de la manière suivante :

$$\forall x \in \mathbb{R} : \exists ! T > 0 \mid f(x+T) = f(x).$$

Exemple. La fonction $f(x) = \sin(x)$ est périodique avec une période $T = 2\pi$.

· L'existence de cette périodicité permet de restreindre l'étude à une seule période ; il suffit ensuite de dupliquer le tracé en appliquant cette périodicité à chaque intervalle :

$$D_e = [0; T]$$
 ou $D_e = \left[-\frac{T}{2}; \frac{T}{2} \right]$.

Parité

· Une fonction f(x) est dite paire si elle vérifie la relation suivante :

$$f(-x)=f(x).$$

· Une fonction f(x) est dite *impaire* si elle vérifie la relation suivante :

$$f(-x)=-f(x).$$

 $f(x) = x^2$

 $f(x) = \arctan(x)$

· Dans les deux cas, l'étude de la fonction peut se limiter à l'intervalle

$$D_e = [0; +\infty[$$

$$D_e = [0; +\infty[$$
 ou $D_e =]-\infty; 0].$

 \cdot Toute fonction polynomiale ne comportant que des termes de degré pair est paire.

 \cdot Toute fonction polynomiale ne comportant que des éléments de degré impair est impaire.

Propriétés.

- · La somme de deux fonctions paires est paire.
- La somme de deux fonctions impaires est impaire.
- Le produit ou le quotient de deux fonctions paires est pair.
- · Le produit ou le quotient de deux fonctions impaires est pair.
- Le produit ou le quotient d'une fonction impaire par une fonction paire est impair.

Démonstration.

· Soient f et g deux fonctions paires :

$$h(x) = f(x) + g(x) = f(-x) + g(-x) = h(-x),$$

$$h(x) = f(x)g(x) = f(-x)g(-x) = h(-x),$$

$$h(x) = \frac{f(x)}{g(x)} = \frac{f(-x)}{g(-x)} = h(-x).$$

· Soient f et g deux fonctions impaires :

$$h(x) = f(x) + g(x) = -f(-x) - g(-x) = -h(-x),$$

$$h(x) = f(x)g(x) = [-f(-x)][-g(-x)] = h(-x),$$

$$h(x) = \frac{f(x)}{g(x)} = \frac{-f(-x)}{-g(-x)} = h(-x).$$

 \cdot Soient f une fonction paire et g une fonction impaire :

$$h(x) = f(x)g(x) = f(-x)[-g(-x)] = -h(-x),$$

$$h(x) = \frac{f(x)}{g(x)} = \frac{f(-x)}{-g(-x)} = -h(-x).$$

- · Il est nécessaire de déterminer le comportement de f lorsque $x \to \pm \infty$.
- De même, il convient d'étudier le comportement de f pour les valeurs de x pour lesquelles $f(x) \to \pm \infty$.

Limite

On dit que f(x) admet pour limite $\ell \in \mathbb{R}$ (ou tend vers ℓ) lorsque x tend vers $a \in \mathbb{R}$, si, en choisissant x de plus en plus proche de a, f(x) devient aussi proche de ℓ que l'on souhaite. On note :

$$\lim_{x\to a} f(x) = \ell.$$

· On distingue la limite à gauche et la limite à droite :

$$\lim_{x\to a^-} f(x), \qquad \lim_{x\to a^+} f(x).$$

- · Deux cas peuvent se présenter :
 - Si $\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x) = \ell$, alors f(x) tend vers ℓ des deux côtés de a, et on écrit :

$$\lim_{x\to a} f(x) = \ell.$$

$$\lim_{x\to 0^-} f(x) = 0$$

$$\lim_{x\to o^+} f(x) = 0$$

• Si $\lim_{x\to a^-} f(x) \neq \lim_{x\to a^+} f(x)$, alors la f admet une discontinuité en x=a.

Continuité

On dit que f(x) est continue sur $I \subseteq \mathbb{R}$ si et seulement si, pour tout $a \in I$, les conditions suivantes sont vérifiées :

$$\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x) = f(a).$$

Cas possibles en un point d'abscisse a

· La limite de f(x) est finie lorsque x tend vers $a \in \mathbb{R}$, c'est-à-dire qu'il existe un réel ℓ tel que

$$\lim_{x\to a} f(x) = \ell.$$

$$\lim_{x\to 0}e^{-|x|}=1$$

 \cdot La limite de f est infinie lorsque x tend vers a, ce qui signifie que :

$$\lim_{x\to a} f(x) = \pm \infty.$$

 \cdot La limite n'existe si f présente des oscillations infinies autour de a

$$\lim_{x \to +\infty} \sin\left(\frac{1}{x-1}\right) = ?$$

$\lim f(x)$	ℓ	$\ell < o$				$\ell > 0$			
$\lim g(x)$	ℓ'	o^+	o^-	$+\infty$	$-\infty$	O^+	o^-	$+\infty$	$-\infty$
$\lim[h(x)+g(x)]$	$\ell + \ell'$	ℓ	ℓ	$+\infty$	$-\infty$	ℓ	ℓ	$+\infty$	$-\infty$
$\lim[h(x)\cdot g(x)]$	$\ell \cdot \ell'$	o^-	o^+	$-\infty$	$+\infty$	o^+	o^-	$+\infty$	$-\infty$
$\lim[h(x)/g(x)]$	ℓ/ℓ'	$-\infty$	$+\infty$	o^-	o^+	$+\infty$	$-\infty$	o^+	0_

$\lim f(x)$	0	$+\infty$	$-\infty$	$-\infty$	$+\infty$
$\lim g(x)$	0	$+\infty$	$-\infty$	$+\infty$	$-\infty$
$\lim[h(x)+g(x)]$	0	$+\infty$	$-\infty$	fi	fi
$\lim[h(x)\cdot g(x)]$	0	$+\infty$	$+\infty$	$-\infty$	$-\infty$
$\lim[h(x)/g(x)]$	fi	fi	fi	fi	fi

Étude des indéterminations

 \cdot À l'infini, la limite d'une fonction polynomiale est dominée par son terme de plus haut degré :

$$\lim_{X\to +\infty} (X^2-X) \sim \lim_{X\to +\infty} X^2 = +\infty.$$

 \cdot Pour un quotient de deux polynômes, la limite à l'infini est approximée par le rapport de leurs termes dominants :

$$\lim_{x \to +\infty} \frac{3x^3 - 5x^2 + x + 1}{2x^3 - 5x + 2} \sim \lim_{x \to +\infty} \frac{3x^3}{2x^3} = \frac{3}{2}.$$

Remarque : Cette méthode est valable lorsque le degré du numérateur et du dénominateur sont égaux. Dans le cas contraire :

- Si le degré du numérateur est supérieur à celui du dénominateur, la limite tend vers $+\infty$ ou $-\infty$.
- · Si le degré du dénominateur est supérieur, la limite est o.

Étude des indéterminations

· Pour toute valeur de a> o, la fonction x^a croît toujours plus rapidement que la fonction $\ln(x)$ lorsque $x\to +\infty$.

$$\lim_{\substack{x \to +\infty}} \frac{\ln x}{x} = 0,$$

$$\lim_{\substack{x \to +\infty}} \frac{x}{\ln x} = +\infty.$$

· Pour toute valeur de a> 0 et toute base b> 1, la fonction b^x croît toujours plus rapidement que la fonction x^a lorsque $x\to +\infty$.

Comportements asymptotiques

· Une fonction admet une asymptote horizontale d'équation y = a si

$$\lim_{x \to -\infty} f(x) = a$$
, ou $\lim_{x \to +\infty} f(x) = a$.

Exemple 1.

$$\lim_{\substack{x \to -\infty \\ x \to +\infty}} \arctan x = -\frac{\pi}{2},$$

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} \arctan x = \frac{\pi}{2}.$$

Exemple 2.

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{2x}{x-3} \sim \lim_{x \to +\infty} \frac{2x}{x} = 2.$$

· Une fonction admet une asymptote verticale d'équation x = a si

$$\lim_{x\to a} f(x) = +\infty, \qquad \text{ou} \qquad \lim_{x\to a} f(x) = -\infty.$$

Exemple.

$$\lim_{x \to 2^{-}} \frac{3}{x - 2} = -\infty,$$

$$\lim_{x \to 2^{+}} \frac{3}{x - 2} = +\infty.$$

 \cdot Si une fonction f s'écrit sous la forme

$$f(x) = ax + b + g(x),$$

avec

$$\lim_{x \to -\infty} g(x) = 0$$
, ou $\lim_{x \to +\infty} g(x) = 0$,

alors la droite d'équation y = ax + b est une asymptote oblique de f en $\pm \infty$.

Exemple.

$$f(x) = \frac{3x^2 - 2x + 5}{x} = 3x - 2 + \frac{5}{x}$$

Χ

 \cdot Si une fonction f s'écrit sous la forme

$$f(x) = k(x) + g(x),$$

avec

$$\lim_{x \to -\infty} g(x) = 0,$$
 ou $\lim_{x \to +\infty} g(x) = 0,$

alors la fonction k(x) est une courbe asymptote de f en $\pm \infty$.

Exemple.

$$f(x) = \cosh(x) = \frac{e^x + e^{-x}}{2} = \frac{e^x}{2} + \frac{e^{-x}}{2}$$

- · On dit que:
 - $k(x) = \frac{e^x}{2}$ est asymptote à f(x) à $+\infty$
 - $g(x) = \frac{e^{-x}}{2}$ est asymptote à f(x) à $-\infty$

Dilatation et contraction horizontale

· Soit g(x) une transformation de la fonction f(x) définie par :

$$g(x) = f(ax).$$

- Si 0 < a < 1, la fonction subit une dilatation horizontale (étirement).
- Si *a* > 1, il s'agit d'une contraction horizontale (rétrécissement).

Dilatation et contraction verticale

· Soit g(x) une transformation de la fonction f(x) définie par :

$$g(x) = af(x)$$

- Si a > 1, la fonction subit une dilatation verticale (amplification).
- Si o < a < 1, il s'agit d'une contraction verticale (atténuation).

Translation horizontale

· Une fonction g(x) est une translation horizontale de la fonction f(x) si :

$$g(x)=f(x-a).$$

- Si a > o, la translation est vers la droite.
- Si a < o, la translation est vers la gauche.

Translation verticale

· Une fonction g(x) est une translation verticale (offset) de f(x) si :

$$g(x) = f(x) + a.$$

- Si a > o, la translation est vers le haut.
- Si a < o, la translation est vers le bas.

Exercice. Soit $f(x) = e^{-x^2}$. Représenter graphiquement la fonction :

$$g(x) = \frac{1}{2}f(2[x-1]).$$

Exercice. Soit $f(x) = e^{-x^2}$. Représenter graphiquement la fonction :

$$g(x) = \frac{1}{2}f(2[x-1]).$$

$$f(x)=e^{-x^2}$$

Exercice. Soit $f(x) = e^{-x^2}$. Représenter graphiquement la fonction :

$$g(x) = \frac{1}{2}f(2[x-1]).$$

$$f(x) = e^{-x^2}$$

 $f(x-1) = e^{-(x-1)^2}$

Exercice. Soit $f(x) = e^{-x^2}$. Représenter graphiquement la fonction :

$$g(x) = \frac{1}{2}f(2[x-1]).$$

$$f(x) = e^{-x^2}$$

$$f(x-1) = e^{-(x-1)^2}$$

$$f(2[x-1]) = e^{-(2[x-1]^2)}$$

Exercice. Soit $f(x) = e^{-x^2}$. Représenter graphiquement la fonction :

$$g(x) = \frac{1}{2}f(2[x-1]).$$

$$f(x) = e^{-x^2}$$

$$f(x-1) = e^{-(x-1)^2}$$

$$f(2[x-1]) = e^{-(2[x-1]^2)}$$

$$\frac{1}{2}f(2[x-1]) = \frac{1}{2}e^{-(2[x-1]^2)}$$

· Une fonction est dite *croissante* sur un intervalle $I \subseteq \mathbb{R}$ si, pour tous $x_1, x_2 \in I$ tels que $x_1 < x_2$, on a :

$$f(x_1) \leq f(x_2).$$

· Une fonction est dite *strictement croissante* sur un intervalle $I \subseteq \mathbb{R}$ si, pour tous $x_1, x_2 \in I$ tels que $x_1 < x_2$, on a :

$$f(x_1) < f(x_2).$$

· Une fonction est dite *décroissante* sur un intervalle $I\subseteq \mathbb{R}$ si, pour tous $x_1,x_2\in I$ tels que $x_1< x_2$, on a :

$$f(X_1)\geq f(X_2).$$

· Une fonction est dite *strictement décroissante* sur un intervalle $I \subseteq \mathbb{R}$ si, pour tous $x_1, x_2 \in I$ tels que $x_1 < x_2$, on a :

$$f(x_1) > f(x_2).$$

· Une fonction est dite monotone (resp. strictement monotone) si et seulement si elle est soit croissante (resp. strictement croissante), soit décroissante (resp. strictement décroissante).

Remarque. Le sens de variation d'une fonction peut également être déterminé à partir de l'étude de sa dérivée.

Références

Frédéric Guegnard and Marc Bourcerie.

Mathématiques IUT GEII 1ère Année.

Ellipses, 2017.

Jean Duveau, Marcel Pasquinelli, and Michel Tholomier.

Électronique : IUT 1ère Année GEII - GMP.

DUNOD, 2e édition, 2017.

Geogebra outils et ressources.

https://www.geogebra.org/?lang=fr.

Accessed: 2023-07.