Conjuntos Numéricos y propiedades algebraicas

Prof. Jhon Fredy Tavera Bucurú

2024

Conjuntos Numéricos

Números Naturales

Números Enteros

Números Racionales

Números Irracionales

Números Reales

Concepto de Pertenecer y de Estar Contenido

Propiedades de Cuerpo de los Números Reales Otras propiedades importantes

Propiedades Algebraicas de los Números Racionales Propiedades de los Números Naturales

Conjuntos Numéricos

Conjuntos Numéricos

Los conjuntos numéricos son agrupaciones de números que comparten ciertas propiedades. Los principales conjuntos numéricos son:

- ▶ Conjunto de los números naturales (N)
- ▶ Conjunto de los números enteros (Z)
- ightharpoonup Conjunto de los números racionales (\mathbb{Q})
- Conjunto de los números irracionales (I)
- lacktriangle Conjunto de los números reales (\mathbb{R})

Números Naturales (\mathbb{N})

- Definición: Los números naturales son aquellos que se utilizan para contar y ordenar.
- ► Ejemplos: 1, 2, 3, 4, . . .
- Usos: Contar objetos, enumerar elementos, etc.

Números Enteros (\mathbb{Z})

- Definición: Los números enteros incluyen los números naturales, sus opuestos y el cero.
- ightharpoonup Ejemplos: ..., -3, -2, -1, 0, 1, 2, 3, ...
- Usos: Representar ganancias y pérdidas, temperaturas bajo cero, etc.

Números Racionales (\mathbb{Q})

- Definición: Los números racionales son aquellos que pueden expresarse como el cociente de dos enteros, con denominador distinto de cero.
- ► Ejemplos: $\frac{1}{2}$, $-\frac{3}{4}$, 0.75, -2.5
- Usos: Fracciones, porcentajes, razones, etc.

Números Irracionales

- ▶ Definición: Los números irracionales no pueden expresarse como el cociente de dos enteros.
- ▶ Ejemplos: π , $\sqrt{2}$, e
- Usos: En geometría, cálculo, etc.

Números Reales (\mathbb{R})

- Definición: Los números reales incluyen todos los números racionales e irracionales.
- ► Ejemplos: $-3, 0, 0.5, \pi, \sqrt{2}$
- Usos: Representar cualquier medida continua, como la longitud, el tiempo, etc.

 todo real se puede corresponder con un punto en una recta númerica,

Representación Decimal de los Números Reales

Todo número real tiene una representación decimal. Si el número es racional, entonces su correspondiente decimal es periódico.

- $ightharpoonup rac{1}{2} = 0.5000... = 0.\overline{50}$
- $ightharpoonup rac{2}{3} = 0.66666... = 0.\overline{6}$
- $ightharpoonup \frac{157}{495} = 0.3171717... = 0.\overline{317}$
- $ightharpoonup \frac{9}{7} = 1.285714285714... = 1.\overline{285714}$

Decimales Periódicos como Racionales

Un número decimal periódico como x=3.547474747... es un número racional. Para convertirlo a una razón entre dos enteros, escribimos:

$$1000x = 3547.474747...$$
$$10x = 35.474747...$$
$$990x = 3512.0$$

Por lo tanto, $x=\frac{3512}{990}$. La idea es multiplicar x por las potencias apropiadas de 10 y luego restar para eliminar la parte periódica.

Decimales No Periódicos como Irracionales

Si el número es irracional, la representación decimal no es periódica.

- $\sqrt{2} = 1.414213562373095...$
- $\pi = 3.141592653589793...$

Pertenecer y Estar Contenido

- ▶ Pertenecer (∈): Un elemento pertenece a un conjunto si está incluido en él. Por ejemplo, $3 \in \mathbb{N}$, $\frac{2}{3} \in \mathbb{Q}$, $\frac{2}{3} \notin \mathbb{N}$
- ▶ Estar Contenido (\subseteq): Un conjunto A está contenido en un conjunto B si todos los elementos de A también son elementos de B. Por ejemplo, $\mathbb{N} \subseteq \mathbb{Z}$.

Propiedades de Cuerpo de los Números Reales

Clausurativa:

▶ Si $a, b \in \mathbb{R}$, entonces $a + b \in \mathbb{R}$. **Ejemplo:** Si a = 2 y b = 3, entonces a + b = 5, que es un número real.

Clausurativa:

Si $a, b \in \mathbb{R}$, entonces $a + b \in \mathbb{R}$. **Ejemplo:** Si a = 2 y b = 3, entonces a + b = 5, que es un número real.

Conmutativa:

▶ Para todos $a, b \in \mathbb{R}$, a + b = b + a. **Ejemplo:** 2 + 3 = 3 + 2 = 5.

Clausurativa:

Si $a, b \in \mathbb{R}$, entonces $a + b \in \mathbb{R}$. **Ejemplo:** Si a = 2 y b = 3, entonces a + b = 5, que es un número real.

Conmutativa:

Para todos $a, b \in \mathbb{R}$, a + b = b + a. **Ejemplo:** 2 + 3 = 3 + 2 = 5.

Asociativa:

Para todos $a, b, c \in \mathbb{R}$, (a + b) + c = a + (b + c). **Ejemplo:** (1 + 2) + 3 = 1 + (2 + 3) = 6.

Clausurativa:

Si $a, b \in \mathbb{R}$, entonces $a + b \in \mathbb{R}$. **Ejemplo:** Si a = 2 y b = 3, entonces a + b = 5, que es un número real.

Conmutativa:

Para todos $a, b \in \mathbb{R}$, a + b = b + a. **Ejemplo:** 2 + 3 = 3 + 2 = 5.

Asociativa:

Para todos $a, b, c \in \mathbb{R}$, (a + b) + c = a + (b + c). **Ejemplo:** (1 + 2) + 3 = 1 + (2 + 3) = 6.

Elemento Neutro:

Existe $0 \in \mathbb{R}$ tal que a + 0 = a para todo $a \in \mathbb{R}$. Ejemplo: 7 + 0 = 7.

Clausurativa:

▶ Si $a, b \in \mathbb{R}$, entonces $a + b \in \mathbb{R}$. **Ejemplo:** Si a = 2 y b = 3, entonces a + b = 5, que es un número real.

Conmutativa:

▶ Para todos $a, b \in \mathbb{R}$, a + b = b + a. **Ejemplo:** 2 + 3 = 3 + 2 = 5.

Asociativa:

Para todos $a, b, c \in \mathbb{R}$, (a + b) + c = a + (b + c). **Ejemplo:** (1 + 2) + 3 = 1 + (2 + 3) = 6.

Elemento Neutro:

Existe $0 \in \mathbb{R}$ tal que a + 0 = a para todo $a \in \mathbb{R}$. **Ejemplo:** 7 + 0 = 7.

Inverso Aditivo:

Para cada $a \in \mathbb{R}$, existe $-a \in \mathbb{R}$ tal que a + (-a) = 0. **Ejemplo:** 5 + (-5) = 0.

Propiedades del Producto en los Números Reales

Clausurativa:

Si $a, b \in \mathbb{R}$, entonces $a \cdot b \in \mathbb{R}$. **Ejemplo:** Si a = 2 y b = 3, entonces $a \cdot b = 6$, que es un número real.

Conmutativa:

Para todos $a, b \in \mathbb{R}$, $a \cdot b = b \cdot a$. **Ejemplo:** $2 \cdot 3 = 3 \cdot 2 = 6$.

Asociativa:

Para todos $a, b, c \in \mathbb{R}$, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$. **Ejemplo:** $(2 \cdot 3) \cdot 4 = 2 \cdot (3 \cdot 4) = 24$.

Elemento Neutro:

Existe $1 \in \mathbb{R}$ tal que $a \cdot 1 = a$ para todo $a \in \mathbb{R}$. **Ejemplo:** $7 \cdot 1 = 7$.

Inverso Multiplicativo:

Para cada $a \in \mathbb{R}$, con $a \neq 0$, existe $a^{-1} \in \mathbb{R}$ tal que $a \cdot a^{-1} = 1$. **Ejemplo:** $5 \cdot \frac{1}{5} = 1$.

Propiedad Distributiva

Distributiva del Producto sobre la Suma:

Para todos $a, b, c \in \mathbb{R}$, $a \cdot (b + c) = a \cdot b + a \cdot c$. **Ejemplo:** $2 \cdot (3 + 4) = 2 \cdot 3 + 2 \cdot 4 = 14$.

Distributiva de la Suma sobre el Producto:

Para todos $a, b, c \in \mathbb{R}$, $(a + b) \cdot c = a \cdot c + b \cdot c$. **Ejemplo:** $(2 + 3) \cdot 4 = 2 \cdot 4 + 3 \cdot 4 = 20$.

Otras Propiedades Importantes

- ▶ $(-1) \cdot a = -a$ para todo $a \in \mathbb{R}$.
- -(-a) = a.
- $(-a) \cdot b = a \cdot (-b) = -(a \cdot b).$
- ightharpoonup a b = a + (-b)
- -(a+b) = -a-b, -(a-b) = -a+b
- ightharpoonup a(0)=0 para todo $a\in\mathbb{R}$
- Si $a \cdot b = 0$ entonces a = 0, o b = 0, Se dice que lso reales, No tienen divisores de cero.
- $(a^{-1})^{-1} = a$.

Operación utilizando propiedades de los números reales

Expresión a operar:
$$-3(4+5(-2-3))+(2-3)$$

Paso 1: Resolver las operaciones dentro de los paréntesis:

$$-2-3 = -5,$$

 $5(-5) = -25,$
 $4 + (-25) = -21.$

Paso 2: Multiplicación por -3 usando la propiedad $(-a) \cdot b = -(a \cdot b)$:

$$-3(-21) = 63.$$

Paso 3: Resolver la suma restante:

$$2 - 3 = -1$$
.

Paso 4: Combinar todos los resultados:

$$63 + (-1) = 62.$$

Expresiones Algebraicas suma

Definición:

- Una expresión algebraica es una combinación de números, variables y operaciones matemáticas (como suma, resta, multiplicación y división).
- ► Ejemplo: 3x + 5y 2z + 7

Expresiones Algebraicas suma

Definición:

- Una expresión algebraica es una combinación de números, variables y operaciones matemáticas (como suma, resta, multiplicación y división).
- ► Ejemplo: 3x + 5y 2z + 7

Términos Semejantes:

- Los términos semejantes son aquellos términos en una expresión algebraica que tienen la misma variable elevada al mismo exponente.
- ▶ Ejemplo: En la expresión x + 2x, los términos x y 2x son semejantes porque ambos contienen la variable x elevada al mismo exponente (que es 1).

Simplificación de Términos Semejantes:

- ▶ Para simplificar, se suman o restan los coeficientes de los términos semejantes.
- ightharpoonup Ejemplo: x + x = 1x + 1x = (1+1)x = 2x
- Otro Ejemplo: 3x + 5x = (3+5)x = 8x

Simplificación de Términos Semejantes:

- Para simplificar, se suman o restan los coeficientes de los términos semejantes.
- ► Ejemplo: x + x = 1x + 1x = (1+1)x = 2x
- Otro Ejemplo: 3x + 5x = (3+5)x = 8x

Términos No Semejantes:

- Si los términos no son semejantes, no se pueden operar entre sí. Es decir, no se pueden sumar o restar directamente.
- ▶ Ejemplo: En la expresión 3x + 4y, los términos 3x y 4y no se pueden combinar porque tienen diferentes variables $(x \ y \ y)$.

Simplificación de Expresiones Algebraicas Ejemplo: Simplificar la expresión

$$2(x+3y)-4(x-y+z)+5z$$

Simplificación de Expresiones Algebraicas

Ejemplo: Simplificar la expresión

$$2(x+3y)-4(x-y+z)+5z$$

Paso 1: Aplicar la Propiedad Distributiva

- $2(x+3y) = 2 \cdot x + 2 \cdot 3y = 2x + 6y$
- $-4(x-y+z) = -4 \cdot x + (-4) \cdot (-y) + (-4) \cdot z = -4x + 4y 4z$

La expresión se convierte en: 2x + 6y - 4x + 4y - 4z + 5z

Simplificación de Expresiones Algebraicas

Ejemplo: Simplificar la expresión

$$2(x+3y)-4(x-y+z)+5z$$

Paso 1: Aplicar la Propiedad Distributiva

- \triangleright 2(x + 3y) = 2 · x + 2 · 3y = 2x + 6y
- $-4(x-y+z) = -4 \cdot x + (-4) \cdot (-y) + (-4) \cdot z = -4x + 4y 4z$

La expresión se convierte en: 2x + 6y - 4x + 4y - 4z + 5z

Paso 2: Combinar Términos Semejantes

- ightharpoonup Combina los términos con x: 2x 4x = -2x
- ► Combina los términos con y: 6y + 4y = 10y
- ► Combina los términos con z: -4z + 5z = z

La expresión simplificada es: -2x + 10y + z

Resultado Final:

$$2(x+3y)-4(x-y+z)+5z=-2x+10y+z$$

Definición:

Dos fracciones son equivalentes si representan la misma cantidad o el mismo número racional, aunque tengan numeradores y denominadores diferentes.

Definición:

- Dos fracciones son equivalentes si representan la misma cantidad o el mismo número racional, aunque tengan numeradores y denominadores diferentes.
- Formalmente, las fracciones $\frac{a}{b}$ y $\frac{c}{d}$ son equivalentes si $a \cdot d = b \cdot c$.

Definición:

- Dos fracciones son equivalentes si representan la misma cantidad o el mismo número racional, aunque tengan numeradores y denominadores diferentes.
- Formalmente, las fracciones $\frac{a}{b}$ y $\frac{c}{d}$ son equivalentes si $a \cdot d = b \cdot c$.

Ejemplo:

$$\frac{2}{3}$$
 es equivalente a $\frac{4}{6}$ porque $2\cdot 6=12$ y $3\cdot 4=12$

Definición:

- Dos fracciones son equivalentes si representan la misma cantidad o el mismo número racional, aunque tengan numeradores y denominadores diferentes.
- Formalmente, las fracciones $\frac{a}{b}$ y $\frac{c}{d}$ son equivalentes si $a \cdot d = b \cdot c$.

Ejemplo:

$$\frac{2}{3}$$
 es equivalente a $\frac{4}{6}$ porque $2\cdot 6=12$ y $3\cdot 4=12$

$$\frac{2}{3} = \frac{4}{6}$$

Definición:

- Dos fracciones son equivalentes si representan la misma cantidad o el mismo número racional, aunque tengan numeradores y denominadores diferentes.
- Formalmente, las fracciones $\frac{a}{b}$ y $\frac{c}{d}$ son equivalentes si $a \cdot d = b \cdot c$.

Ejemplo:

$$\frac{2}{3}$$
 es equivalente a $\frac{4}{6}$ porque $2\cdot 6=12$ y $3\cdot 4=12$

$$\frac{2}{3} = \frac{4}{6}$$

Suma de Fracciones con el Mismo Denominador

Definición:

▶ Para sumar fracciones que tienen el mismo denominador, se suman los numeradores y se deja el mismo denominador.

Suma de Fracciones con el Mismo Denominador

- Para sumar fracciones que tienen el mismo denominador, se suman los numeradores y se deja el mismo denominador.
- Formalmente, $\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$.

Suma de Fracciones con el Mismo Denominador

Definición:

- ▶ Para sumar fracciones que tienen el mismo denominador, se suman los numeradores y se deja el mismo denominador.
- ► Formalmente, $\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$.

$$\frac{2}{5} + \frac{3}{5} = \frac{2+3}{5} = \frac{5}{5} = 1$$

Suma de Fracciones con el Mismo Denominador

Definición:

- ▶ Para sumar fracciones que tienen el mismo denominador, se suman los numeradores y se deja el mismo denominador.
- ► Formalmente, $\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$.

$$\frac{2}{5} + \frac{3}{5} = \frac{2+3}{5} = \frac{5}{5} = 1$$

Definición:

▶ Para multiplicar dos fracciones, se multiplican los numeradores y se multiplican los denominadores.

- ▶ Para multiplicar dos fracciones, se multiplican los numeradores y se multiplican los denominadores.
- ▶ Formalmente, $\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$.

Definición:

- ▶ Para multiplicar dos fracciones, se multiplican los numeradores y se multiplican los denominadores.
- ► Formalmente, $\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$.

$$\frac{2}{3} \cdot \frac{4}{5} = \frac{2 \cdot 4}{3 \cdot 5} = \frac{8}{15}$$

Definición:

- ▶ Para multiplicar dos fracciones, se multiplican los numeradores y se multiplican los denominadores.
- ► Formalmente, $\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$.

$$\frac{2}{3} \cdot \frac{4}{5} = \frac{2 \cdot 4}{3 \cdot 5} = \frac{8}{15}$$

Definición:

▶ Para dividir dos fracciones, se multiplica la primera fracción por el recíproco de la segunda fracción.

- ▶ Para dividir dos fracciones, se multiplica la primera fracción por el recíproco de la segunda fracción.
- ► Formalmente, $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{a \cdot d}{b \cdot c}$.

Definición:

- Para dividir dos fracciones, se multiplica la primera fracción por el recíproco de la segunda fracción.
- ► Formalmente, $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{a \cdot d}{b \cdot c}$.

$$\frac{3}{4} \div \frac{2}{5} = \frac{3}{4} \cdot \frac{5}{2} = \frac{3 \cdot 5}{4 \cdot 2} = \frac{15}{8}$$

Definición:

- Para dividir dos fracciones, se multiplica la primera fracción por el recíproco de la segunda fracción.
- ► Formalmente, $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{a \cdot d}{b \cdot c}$.

Ejemplo:

$$\frac{3}{4} \div \frac{2}{5} = \frac{3}{4} \cdot \frac{5}{2} = \frac{3 \cdot 5}{4 \cdot 2} = \frac{15}{8}$$

$$\frac{\frac{3}{4}}{\frac{2}{5}} = \frac{3}{4} \cdot \frac{5}{2} = \frac{3 \cdot 5}{4 \cdot 2} = \frac{15}{8}$$

Definición:

- Para dividir dos fracciones, se multiplica la primera fracción por el recíproco de la segunda fracción.
- ► Formalmente, $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{a \cdot d}{b \cdot c}$.

Ejemplo:

$$\frac{3}{4} \div \frac{2}{5} = \frac{3}{4} \cdot \frac{5}{2} = \frac{3 \cdot 5}{4 \cdot 2} = \frac{15}{8}$$

$$\frac{\frac{3}{4}}{\frac{2}{5}} = \frac{3}{4} \cdot \frac{5}{2} = \frac{3 \cdot 5}{4 \cdot 2} = \frac{15}{8}$$

Definición:

▶ Un **número primo** es un número natural mayor que 1 que solo tiene dos divisores positivos: 1 y él mismo.

- ► Un **número primo** es un número natural mayor que 1 que solo tiene dos divisores positivos: 1 y él mismo.
- ▶ Ejemplos de números primos: 2, 3, 5, 7, 11, 13, etc.

- ► Un **número primo** es un número natural mayor que 1 que solo tiene dos divisores positivos: 1 y él mismo.
- ▶ Ejemplos de números primos: 2, 3, 5, 7, 11, 13, etc.
- ▶ Por ejemplo, 7 es primo porque sus únicos divisores son 1 y 7.

- ► Un **número primo** es un número natural mayor que 1 que solo tiene dos divisores positivos: 1 y él mismo.
- ▶ Ejemplos de números primos: 2, 3, 5, 7, 11, 13, etc.
- ▶ Por ejemplo, 7 es primo porque sus únicos divisores son 1 y 7.

Enunciado:

Todo número natural mayor que 1 puede descomponerse de manera única como un producto de números primos, salvo el orden de los factores.

Enunciado:

Todo número natural mayor que 1 puede descomponerse de manera única como un producto de números primos, salvo el orden de los factores.

Ejemplo:

► El número 60 puede descomponerse en factores primos como:

Enunciado:

Todo número natural mayor que 1 puede descomponerse de manera única como un producto de números primos, salvo el orden de los factores.

Ejemplo:

► El número 60 puede descomponerse en factores primos como:

$$60 = 2^2 \times 3 \times 5$$

Enunciado:

Todo número natural mayor que 1 puede descomponerse de manera única como un producto de números primos, salvo el orden de los factores.

Ejemplo:

► El número 60 puede descomponerse en factores primos como:

$$60 = 2^2 \times 3 \times 5$$

► El número 84 puede descomponerse en factores primos como:

Enunciado:

Todo número natural mayor que 1 puede descomponerse de manera única como un producto de números primos, salvo el orden de los factores.

Ejemplo:

► El número 60 puede descomponerse en factores primos como:

$$60 = 2^2 \times 3 \times 5$$

► El número 84 puede descomponerse en factores primos como:

$$84 = 2^2 \times 3 \times 7$$

Enunciado:

Todo número natural mayor que 1 puede descomponerse de manera única como un producto de números primos, salvo el orden de los factores.

Ejemplo:

► El número 60 puede descomponerse en factores primos como:

$$60 = 2^2 \times 3 \times 5$$

► El número 84 puede descomponerse en factores primos como:

$$84 = 2^2 \times 3 \times 7$$

Definición:

► El **mínimo común múltiplo** de varios números es el menor número natural que es múltiplo de todos ellos.

Definición:

El mínimo común múltiplo de varios números es el menor número natural que es múltiplo de todos ellos.

Ejemplo:

► Calculemos el MCM de 12, 15 y 20.

Definición:

► El **mínimo común múltiplo** de varios números es el menor número natural que es múltiplo de todos ellos.

- ► Calculemos el MCM de 12, 15 y 20.
- Descomponemos cada número en sus factores primos:

Definición:

El mínimo común múltiplo de varios números es el menor número natural que es múltiplo de todos ellos.

- ► Calculemos el MCM de 12, 15 y 20.
- Descomponemos cada número en sus factores primos:

$$12 = 2^2 \times 3$$
, $15 = 3 \times 5$, $20 = 2^2 \times 5$

Definición:

► El **mínimo común múltiplo** de varios números es el menor número natural que es múltiplo de todos ellos.

Ejemplo:

- ► Calculemos el MCM de 12, 15 y 20.
- Descomponemos cada número en sus factores primos:

$$12 = 2^2 \times 3$$
, $15 = 3 \times 5$, $20 = 2^2 \times 5$

Tomamos el mayor exponente de cada factor primo:

Definición:

► El **mínimo común múltiplo** de varios números es el menor número natural que es múltiplo de todos ellos.

Ejemplo:

- ► Calculemos el MCM de 12, 15 y 20.
- Descomponemos cada número en sus factores primos:

$$12 = 2^2 \times 3$$
, $15 = 3 \times 5$, $20 = 2^2 \times 5$

Tomamos el mayor exponente de cada factor primo:

$$MCM(12, 15, 20) = 2^2 \times 3 \times 5 = 60$$

Definición:

► El **mínimo común múltiplo** de varios números es el menor número natural que es múltiplo de todos ellos.

Ejemplo:

- ► Calculemos el MCM de 12, 15 y 20.
- Descomponemos cada número en sus factores primos:

$$12 = 2^2 \times 3$$
, $15 = 3 \times 5$, $20 = 2^2 \times 5$

Tomamos el mayor exponente de cada factor primo:

$$MCM(12, 15, 20) = 2^2 \times 3 \times 5 = 60$$

Definición:

► El **máximo común divisor** de varios números es el mayor número natural que divide exactamente a todos ellos.

Definición:

El máximo común divisor de varios números es el mayor número natural que divide exactamente a todos ellos.

Ejemplo:

► Calculemos el MCD de 24, 36 y 60.

Definición:

El máximo común divisor de varios números es el mayor número natural que divide exactamente a todos ellos.

- ► Calculemos el MCD de 24, 36 y 60.
- Descomponemos cada número en sus factores primos:

Definición:

El máximo común divisor de varios números es el mayor número natural que divide exactamente a todos ellos.

- Calculemos el MCD de 24, 36 y 60.
- Descomponemos cada número en sus factores primos:

$$24 = 2^3 \times 3$$
, $36 = 2^2 \times 3^2$, $60 = 2^2 \times 3 \times 5$

Definición:

El máximo común divisor de varios números es el mayor número natural que divide exactamente a todos ellos.

Ejemplo:

- Calculemos el MCD de 24, 36 y 60.
- Descomponemos cada número en sus factores primos:

$$24 = 2^3 \times 3$$
, $36 = 2^2 \times 3^2$, $60 = 2^2 \times 3 \times 5$

► Tomamos el menor exponente de cada factor primo común:

Definición:

El máximo común divisor de varios números es el mayor número natural que divide exactamente a todos ellos.

Ejemplo:

- ► Calculemos el MCD de 24, 36 y 60.
- Descomponemos cada número en sus factores primos:

$$24 = 2^3 \times 3$$
, $36 = 2^2 \times 3^2$, $60 = 2^2 \times 3 \times 5$

Tomamos el menor exponente de cada factor primo común:

$$MCD(24, 36, 60) = 2^2 \times 3 = 12$$

Definición:

El máximo común divisor de varios números es el mayor número natural que divide exactamente a todos ellos.

Ejemplo:

- ► Calculemos el MCD de 24, 36 y 60.
- Descomponemos cada número en sus factores primos:

$$24 = 2^3 \times 3$$
, $36 = 2^2 \times 3^2$, $60 = 2^2 \times 3 \times 5$

Tomamos el menor exponente de cada factor primo común:

$$MCD(24, 36, 60) = 2^2 \times 3 = 12$$

Fracciones Heterogéneas

Definición:

Las **fracciones heterogéneas** son aquellas fracciones que tienen diferentes denominadores.

Fracciones Heterogéneas

Definición:

- Las fracciones heterogéneas son aquellas fracciones que tienen diferentes denominadores.
- Para operar con fracciones heterogéneas (sumar, restar), es necesario convertirlas a fracciones equivalentes con un denominador común.

Fracciones Heterogéneas

Definición:

- Las fracciones heterogéneas son aquellas fracciones que tienen diferentes denominadores.
- Para operar con fracciones heterogéneas (sumar, restar), es necesario convertirlas a fracciones equivalentes con un denominador común.

► Consideremos las fracciones $\frac{3}{4}$, $\frac{5}{6}$, $\frac{7}{8}$.

- ► Consideremos las fracciones $\frac{3}{4}$, $\frac{5}{6}$, $\frac{7}{8}$.
- Para sumar estas fracciones, primero encontramos el Mínimo Común Múltiplo (MCM) de los denominadores: 4, 6 y 8.

- ► Consideremos las fracciones $\frac{3}{4}$, $\frac{5}{6}$, $\frac{7}{8}$.
- ▶ Para sumar estas fracciones, primero encontramos el Mínimo Común Múltiplo (MCM) de los denominadores: 4, 6 y 8.
- ► El MCM de 4, 6 y 8 no es simplemente el producto de los denominadores, sino el menor número que es múltiplo de todos ellos.

- ► Consideremos las fracciones $\frac{3}{4}$, $\frac{5}{6}$, $\frac{7}{8}$.
- ▶ Para sumar estas fracciones, primero encontramos el Mínimo Común Múltiplo (MCM) de los denominadores: 4, 6 y 8.
- ► El MCM de 4, 6 y 8 no es simplemente el producto de los denominadores, sino el menor número que es múltiplo de todos ellos.
- Descomponemos en factores primos:

- ► Consideremos las fracciones $\frac{3}{4}$, $\frac{5}{6}$, $\frac{7}{8}$.
- ▶ Para sumar estas fracciones, primero encontramos el Mínimo Común Múltiplo (MCM) de los denominadores: 4, 6 y 8.
- ► El MCM de 4, 6 y 8 no es simplemente el producto de los denominadores, sino el menor número que es múltiplo de todos ellos.
- Descomponemos en factores primos:

$$4 = 2^2$$
, $6 = 2 \times 3$, $8 = 2^3$

- ► Consideremos las fracciones $\frac{3}{4}$, $\frac{5}{6}$, $\frac{7}{8}$.
- ▶ Para sumar estas fracciones, primero encontramos el Mínimo Común Múltiplo (MCM) de los denominadores: 4, 6 y 8.
- ► El MCM de 4, 6 y 8 no es simplemente el producto de los denominadores, sino el menor número que es múltiplo de todos ellos.
- Descomponemos en factores primos:

$$4 = 2^2$$
, $6 = 2 \times 3$, $8 = 2^3$

► El MCM es el mayor exponente de cada factor primo:

- ► Consideremos las fracciones $\frac{3}{4}$, $\frac{5}{6}$, $\frac{7}{8}$.
- ▶ Para sumar estas fracciones, primero encontramos el Mínimo Común Múltiplo (MCM) de los denominadores: 4, 6 y 8.
- ► El MCM de 4, 6 y 8 no es simplemente el producto de los denominadores, sino el menor número que es múltiplo de todos ellos.
- Descomponemos en factores primos:

$$4 = 2^2$$
, $6 = 2 \times 3$, $8 = 2^3$

► El MCM es el mayor exponente de cada factor primo:

$$MCM(4,6,8) = 2^3 \times 3 = 24$$

- ► Consideremos las fracciones $\frac{3}{4}$, $\frac{5}{6}$, $\frac{7}{8}$.
- ▶ Para sumar estas fracciones, primero encontramos el Mínimo Común Múltiplo (MCM) de los denominadores: 4, 6 y 8.
- ► El MCM de 4, 6 y 8 no es simplemente el producto de los denominadores, sino el menor número que es múltiplo de todos ellos.
- Descomponemos en factores primos:

$$4 = 2^2$$
, $6 = 2 \times 3$, $8 = 2^3$

► El MCM es el mayor exponente de cada factor primo:

$$MCM(4,6,8) = 2^3 \times 3 = 24$$

► Convertimos cada fracción a una fracción equivalente con denominador 24:

► Convertimos cada fracción a una fracción equivalente con denominador 24:

$$\frac{3}{4} = \frac{18}{24}, \quad \frac{5}{6} = \frac{20}{24}, \quad \frac{7}{8} = \frac{21}{24}$$

Convertimos cada fracción a una fracción equivalente con denominador 24:

$$\frac{3}{4} = \frac{18}{24}, \quad \frac{5}{6} = \frac{20}{24}, \quad \frac{7}{8} = \frac{21}{24}$$

Ahora podemos sumar las fracciones:

Convertimos cada fracción a una fracción equivalente con denominador 24:

$$\frac{3}{4} = \frac{18}{24}, \quad \frac{5}{6} = \frac{20}{24}, \quad \frac{7}{8} = \frac{21}{24}$$

Ahora podemos sumar las fracciones:

$$\frac{18}{24} + \frac{20}{24} + \frac{21}{24} = \frac{59}{24} = 2\frac{11}{24}$$

Convertimos cada fracción a una fracción equivalente con denominador 24:

$$\frac{3}{4} = \frac{18}{24}, \quad \frac{5}{6} = \frac{20}{24}, \quad \frac{7}{8} = \frac{21}{24}$$

Ahora podemos sumar las fracciones:

$$\frac{18}{24} + \frac{20}{24} + \frac{21}{24} = \frac{59}{24} = 2\frac{11}{24}$$

Observación sobre Notación de Fracciones Negativas Notación de Fracciones Negativas:

Dada una fracción negativa $\frac{-a}{b}$, podemos escribirla de varias maneras equivalentes:

Observación sobre Notación de Fracciones Negativas Notación de Fracciones Negativas:

- ▶ Dada una fracción negativa $\frac{-a}{b}$, podemos escribirla de varias maneras equivalentes:

$$\frac{-a}{b} = -\left(\frac{a}{b}\right) = \frac{a}{-b}$$

Notación de Fracciones Negativas:

- ▶ Dada una fracción negativa $\frac{-a}{b}$, podemos escribirla de varias maneras equivalentes:

$$\frac{-a}{b} = -\left(\frac{a}{b}\right) = \frac{a}{-b}$$

Explicación:

 $ightharpoonup rac{-a}{b}$ significa que el numerador es negativo, mientras que el denominador es positivo.

Notación de Fracciones Negativas:

- ▶ Dada una fracción negativa $\frac{-a}{b}$, podemos escribirla de varias maneras equivalentes:

$$\frac{-a}{b} = -\left(\frac{a}{b}\right) = \frac{a}{-b}$$

Explicación:

- $ightharpoonup rac{-a}{b}$ significa que el numerador es negativo, mientras que el denominador es positivo.
- $-\left(\frac{a}{b}\right)$ coloca el signo negativo fuera de la fracción, lo que implica que toda la fracción es negativa.

Notación de Fracciones Negativas:

- ▶ Dada una fracción negativa $\frac{-a}{b}$, podemos escribirla de varias maneras equivalentes:

$$\frac{-a}{b} = -\left(\frac{a}{b}\right) = \frac{a}{-b}$$

Explicación:

- $ightharpoonup rac{-a}{b}$ significa que el numerador es negativo, mientras que el denominador es positivo.
- $-(\frac{a}{b})$ coloca el signo negativo fuera de la fracción, lo que implica que toda la fracción es negativa.
- ▶ $\frac{a}{-b}$ significa que el numerador es positivo, pero el denominador es negativo.

Notación de Fracciones Negativas:

- ▶ Dada una fracción negativa $\frac{-a}{b}$, podemos escribirla de varias maneras equivalentes:

$$\frac{-a}{b} = -\left(\frac{a}{b}\right) = \frac{a}{-b}$$

Explicación:

- $ightharpoonup rac{-a}{b}$ significa que el numerador es negativo, mientras que el denominador es positivo.
- $-(\frac{a}{b})$ coloca el signo negativo fuera de la fracción, lo que implica que toda la fracción es negativa.
- ▶ $\frac{a}{-b}$ significa que el numerador es positivo, pero el denominador es negativo.

Ejemplo Numérico:

$$\frac{-3}{5} = -\left(\frac{3}{5}\right) = \frac{3}{-5}$$

Notación de Fracciones Negativas:

- ▶ Dada una fracción negativa $\frac{-a}{b}$, podemos escribirla de varias maneras equivalentes:

$$\frac{-a}{b} = -\left(\frac{a}{b}\right) = \frac{a}{-b}$$

Explicación:

- $ightharpoonup rac{-a}{b}$ significa que el numerador es negativo, mientras que el denominador es positivo.
- $-(\frac{a}{b})$ coloca el signo negativo fuera de la fracción, lo que implica que toda la fracción es negativa.
- ▶ $\frac{a}{-b}$ significa que el numerador es positivo, pero el denominador es negativo.

Ejemplo Numérico:

$$\frac{-3}{5} = -\left(\frac{3}{5}\right) = \frac{3}{-5}$$

Notación de Fracciones Negativas:

- ▶ Dada una fracción negativa $\frac{-a}{b}$, podemos escribirla de varias maneras equivalentes:

$$\frac{-a}{b} = -\left(\frac{a}{b}\right) = \frac{a}{-b}$$

Explicación:

- $ightharpoonup rac{-a}{b}$ significa que el numerador es negativo, mientras que el denominador es positivo.
- $-(\frac{a}{b})$ coloca el signo negativo fuera de la fracción, lo que implica que toda la fracción es negativa.
- ▶ $\frac{a}{-b}$ significa que el numerador es positivo, pero el denominador es negativo.

Ejemplo Numérico:

$$\frac{-3}{5} = -\left(\frac{3}{5}\right) = \frac{3}{-5}$$