Set Theory

Hoyan Mok

2020年1月26日

目录

1	集合	i与4	公理	1																	2
	1.1	数	理划	罗车	咠∤	住台	<u>X</u>														2
	1.2	ZF	\mathbf{C}	公	·理																2
2	关系	与包	函数	Į																	5
	2.1	关	系																		Ę
	2.2	函	数																		7

1 集合与公理 2

1 集合与公理

在介绍集合论的 **ZFC** 公理之前, 需要先介绍一些数理逻辑的概念.

1.1 数理逻辑准备

句法概念如形式语言,逻辑符号,非逻辑符号,项,公式,自由变元,约束变元,语句等主要见^[1].

设 Σ 是一个公式集, φ 是一个公式.

Definition 1.1. 有穷公式序列 $\varphi_1, \dots, \varphi_n$ 表示从 Σ 到 φ 的一个**推演**, 如果 其中的任意 φ_i 要么是属于 Σ 的,要么可从之前的公式 φ_j 和 $\varphi_k = \varphi_j \to \varphi_i$ 得到,而且 $\varphi_n = \varphi$. 记作 $\Sigma \vdash \varphi$.

特别地, 如果 T 是语句集, 而 σ 是语句, 如果 $T \vdash \sigma$, 就称存在从 T 到 σ 的一个证明.

如果语句集 T 满足: 对任意语句 σ , $T \vdash \sigma$ 当且仅当 $\sigma \in T$, 即 T 是一个对证明封闭的语句集, 就称 T 为**理论**. 假设 T 是理论, 如果存在一个语句集 $A \subseteq T$ 使得对任意的 $\sigma \in T$ 都有 $A \vdash \sigma$, 就称 A 为 T 的一集**公理**.

如果理论 T 的公理 A 是**递归的** (**可判定的**, **可计算的**) i.e. 任给一语句,总可以在有穷步骤内完全机械地判定它是否属于 A, 就称 T 是**可公理化的**. 理论 T 往往不是递归的,但如果任给 $\sigma \in T$,我们可在有穷的步骤内得出结论,但如果 $\sigma \notin T$,我们可能不能在有穷步骤内得出结论,则称其为**递归可枚举的**.

一个理论是**一致的**当且仅当没有语句 σ s.t. $T \vdash \sigma \land \neg \sigma$.

Definition 1.2. 若 ψ 是性质.

$$\exists! x \psi(x) := \exists x \psi(x) \land \forall x \forall y (\psi(x) \land \psi(y) \to x = y) \tag{1-1}$$

1.2 ZFC 公理

Axion 0. 存在公理 (Exi) 存在一个集合, i.e.

$$\exists x(x=x). \tag{1-2}$$

Axion 1. 外延公理 (Ext) 两个有相同元素的集合相等, i.e.

$$\forall X \forall Y \forall u (u \in X \leftrightarrow u \in Y) \to X = Y. \tag{1-3}$$

1 集合与公理 3

而逻辑上有 $X = Y \rightarrow \forall X \forall Y \forall u (u \in X \leftrightarrow u \in Y)$, 所以:

$$\forall X \forall Y \forall u (u \in X \leftrightarrow u \in Y) \leftrightarrow X = Y \tag{1-4}$$

记 $\neg (X = Y) =: X \neq Y.$

Axion 2. 分离公理模式 (Sep)

令 $\varphi(u)$ 为公式. 对任意集合 X, 存在一个集合 $Y=\{u\in X\mid \varphi(u)\},$ i.e.

$$\forall X \exists Y \forall u (u \in Y \leftrightarrow u \in X \land \varphi(u)). \tag{1-5}$$

Corollary 1.

$$\forall X \exists R_X (R_X \notin R_X). \tag{1-6}$$

Proof.
$$\diamondsuit R_X = \{x \in X \mid x \notin x\} \ \text{!`DT}.$$

令 $\varphi(u)$ 为一个性质. 倘若 $\exists X \forall u (\varphi(u) \to u \in X)$,则 $u \mid \varphi(u) = u \mid \varphi(u)$,根据 Sep (Axion 2), $\exists \varnothing = u \mid \varphi(u)$. 分离于不同的集合 X 和 X' 的 \varnothing 是相同的. 考虑到 $x \neq x \to x \in X$ 是重言式,再根据 Exi (Axion 0),可以得出:

Definition 1.3. $\emptyset = \{x \mid x \neq x\}$ 是集合, 称为**空集**.

Definition 1.4. $\varphi(u)$ 是一个性质. 称 $\{u \mid u(u)\}$ 为一个类 (class). 若一个 类不是集合, 则称其为真类 (proper class).

如所有集合的类 \mathbf{V} 就是一个真类 (根据 Corollary 1).

Definition 1.5. 由 Sep, 两个集合的交和差也是集合:

$$X \cap Y = \{ u \in X \mid u \in Y \}$$
 $X - Y = \{ u \in X \mid u \notin Y \}$ (1-7)

Corollary 2. 而非空集 $X \neq \emptyset$ 的任意交

$$\bigcap X = \{ u \mid \forall Y \in X (u \in Y) \}$$
 (1-8)

也是集合.

Proof. $\boxtimes X \neq \emptyset$, $\exists x_0 \in X$. \boxplus Sep,

$$Y = \{ y \in x_0 \mid \forall x \in X (y \in x) \}$$

1 集合与公理 4

Axion 3. 对集公理 (Pai)

$$\forall a \forall b \exists c \forall x (x \in c \leftrightarrow x = a \lor x = b). \tag{1-9}$$

这样的 c 可记为 $\{a,b\}$.

Axion 4. 并集公理 (Uni)

$$\forall X \exists Y \forall u (u \in Y \leftrightarrow \exists z \in X (u \in z). \tag{1-10}$$

Definition 1.6. 子集和真子集关系定义如下:

$$X \subseteq Y := \forall x \in X (x \in Y), \tag{1-11}$$

$$X \supseteq Y := Y \subseteq X,\tag{1-12}$$

$$X \subset Y := X \subseteq Y \land X \neq Y, \tag{1-13}$$

$$X \supset Y := X. \tag{1-14}$$

Corollary 3. $\forall X (\emptyset \subseteq X)$.

Axion 5. 幂集公理 (Pow)

$$\forall X \exists Y \forall u (u \in Y \leftrightarrow u \subseteq X). \tag{1-15}$$

这样的 Y 称为 X 的幂集, 记为 $\mathcal{P}(X)$ 或 2^{X} .

Definition 1.7. 对任意集合 $x, x \cup \{x\}$ 称为其后继, 记为 S(x) 或 x^+ .

Axion 6. 无穷公理 (Inf)

$$\exists X (\varnothing \in X \land \forall x (x \in X \to S(x) \in X)). \tag{1-16}$$

Axion 7. 基础公理 (Fnd)

$$\forall x (x \neq \varnothing \to \exists y \in x (x \cap y = \varnothing)). \tag{1-17}$$

Theorem 1.1.

$$\forall x (x \notin x). \tag{1-18}$$

Proof. 考虑
$$X = \{x\}$$
. 与 Fnd 矛盾.

Theorem 1.2.

$$\nexists X \big(X \neq \varnothing \land \forall x \in X (\exists y \in X (y \in x)) \big).$$
 (1-19)

Proof.

Find
$$\land \forall x \in X (\exists y \in X (y \in x \cap X)) \to \bot$$
.

Axion 8. 替换公理模式 (Rep) 对公式 $\psi(x,y)$, $\forall x$ 都存在唯一的 y s.t. $\psi(x,y)$ 成立. 那么 $\forall A \in \mathbf{V}$, 存在集合:

$$B = \{ y \mid \exists x \in A \, \psi(x, y) \} \tag{1-20}$$

i.e.

$$\forall A \forall x \in A \exists ! y \, \psi(x, y) \to \exists B \forall x \in A \, \exists y \in B \, \psi(x, y) \tag{1-21}$$

Axion 9. 选择公理 (AC) 对任意非空集合 $X \neq \emptyset$, 若

- $(1) \varnothing \notin X$,
- (2) X 中两两不交, 即 $\forall x \in X \ \forall y \in X$ 且 $x \neq y$, 那么 $x \cap y = \emptyset$,

则存在集合 S, 对 $\forall x \in S$, $S \cap x$ 是单点集. i.e.

$$\forall X \big(\varnothing \in X \land \forall x \in X \ \forall y \in X (x = y \lor x \cap y = \varnothing)$$

$$\rightarrow \exists S \forall x \in X \ \exists ! y (S \cap x = \{y\}) \big).$$

$$(1-22)$$

Axion 0 到 8 构成的公理系统称为 *Zermelo-Fraenkel* 系统, 记为 **ZF**, 加上选择公理则记为 **ZF**C.

2 关系与函数

2.1 关系

Definition 2.1. 集合 a, b 的有序对 $(a, b) := \{\{a\}, \{a, b\}\}.$

Theorem 2.1.

$$(a,b) = (a',b') \leftrightarrow a = a' \land b = b'.$$

Proof. 只证明"→":

(1) a = b. $(a, b) = \{\{a\}\} = (a', b')$, $\not\bowtie (a', b') = \{\{a\}\} = \{\{a'\}, \{a', b'\}\}$, $\not\bowtie$ Ext (axion 1), $\{a'\} = \{a', b'\} = \{a\}$, $\not\bowtie$ a = b = a' = b'.

(2) $a \neq b$. 假设 $\{a,b\} = \{a'\}$, 得 $\forall x \in \{a,b\}(x=a')$ 即 a = b = a' 与 $a \neq b$ 矛盾. 从而只有 $\{a,b\} = \{a',b'\} \land \{a\} = \{a'\}$, 仍然由 Ext 易证.

Definition 2.2. 令 X 和 Y 是集合, 其**直**积或 Cartesian 积定义为:

$$X \times Y := \{(x, y) \mid x \in X \land y \in Y\}.$$
 (2-1)

简记 $X \times X =: X^2$.

Theorem 2.2. 对于 $\forall X \forall Y, X \times Y$ 是集合.

Proof. 令 $\varphi(z) = \exists x \in X \exists y \in Y((x,y) = z), \ \mathbb{R} \ Z = \{z \in 2^{\{X \cup Y\}} \mid \varphi(z)\}, \ \text{由 Ext 和 Sep (Axion 2) 即可知 } X \times Y = Z.$

Definition 2.3. 如果存在集合 X,Y s.t. $R \subseteq X \times Y$, 则称集合 R 是二元 关系. 通常记 $(x,y) \in R =: R(x,y)$, 或 xRy. dom $R := \{x \mid \exists y R(x,y)\}$ 称为其定义域, $\operatorname{ran} R = \{y \mid \exists x R(x,y)\}$ 称为其值域.

特别地, 如果 $R \subseteq X^2$, 则称其为 X 上的二元关系.

Definition 2.4. 集合 X 在关系 R 的像R[X] 定义为 $\{y \in \text{ran } R \mid \exists x \in X (R(x,y))\}$. 集合 Y 的逆像 $R^{-1}[Y]$ 则定义为 $\{x \in \text{dom } R \mid \exists y \in Y (R(x,y))\}$. 二元关系 R 的逆 R^{-1} 是 $\{(x,y) \mid R(y,x)\}$. 两个二元关系 R, S 的复合 $S \circ R$ 则定义为 $\{(x,z) \mid \exists y (R(x,y) \land S(y,z))\}$.

Cartesian 积可递归地推广到 n 元:

$$(x_1, \dots, x_{n+1}) = ((x_1, \dots, x_n), x_{n+1});$$
 (2-2)

$$X_1 \times \dots \times X_n = \{(x_1, \dots, x_n) \mid x_1 \in X_1 \wedge \dots \wedge x_n \in X_n\}$$
 (2-3)

n 元 Cartesian 积的子集可类似地定义n 元关系.

2.2 函数

Definition 2.5. 二元关系 f 倘满足:

$$\forall x \big((x, y) \in f \land (x, z) \in f \to y = z \big),$$

则称 f 是函数, y 是 f 在 x 处的值, 记为 f(x) = y, 或 $f: x \mapsto y$. 倘若 $\operatorname{dom} f = X$, $\operatorname{ran} f \subseteq Y$, 则称 f 是 X 到 Y 的函数, 记为 $f: X \to Y$.

对任意集合 X 定义 $\mathrm{id}_X\colon X\to X$ 为 $\forall x\in X(\mathrm{id}_X(x)=x),$ 称为**等同函** 数.

Theorem 2.3. f, g 都是函数.

$$f = g \leftrightarrow \text{dom } f = \text{dom } g \land \forall x \in \text{dom } f(f(x) = g(x)).$$

Proof. 只证明"←":

$$\forall (x,y) \in f(x \in \text{dom } f \land y = f(x)) \land \text{dom } f = \text{dom } g \land \forall x \in \text{dom } f(f(x) = g(x))$$
$$\rightarrow \forall (x,y) \in f(x \in \text{dom } g \land y = g(x)).$$

同理,
$$\forall (x,y) \in g(x \in \text{dom } f \land y = f(x))$$
, 即 $\forall (x,y)(y = f(x) \leftrightarrow y = g(x))$. 由 Ext, $f = g$.

Theorem 2.4. 如果 f 和 g 是函数, 它们的复合 $h = g \circ f$ 也是函数. 而且 $\operatorname{dom} h = f^{-1}(\operatorname{dom} g)$.

注: 这里的复合和通常的定义有细微不同, 但保持了与二元关系的统一.

Proof. 复合的定义: $h = g \circ f \leftrightarrow \forall (x,z) \in h \Big(\exists y \big(y = f(x) \land z = g(y)\big)\Big)$. 倘若 $(x,u) \in h \land (x,u) \in h$,有 $\exists ! y$ s.t. y = f(x),且 u = v = g(y). 因而 h 也是函数.

其定义域 $\operatorname{dom} h = \{x \mid \exists z (z = h(x))\}, \ \mathbb{Z}$ 因 $\exists z (z = h(x)) \leftrightarrow \exists z \exists y (y = f(x) \land z = g(y)), \ \text{后者又等价于 } \exists y (y = f(x) \land \exists z (z = g(y))), \ \text{i.e. } \exists y \in \operatorname{dom} g(y = f(x)),$

$$\operatorname{dom} h = \{x \mid \exists y \in \operatorname{dom} g \big(y = f(x) \big) \} = f^{-1}(\operatorname{dom} g).$$

Definition 2.6. 令 $f: X \to Y$ 是函数. 若 $f(x_1) = f(x_2) \leftrightarrow x_1 = x_2$ 则称 f 为单射. 若 ran f = Y 则称其为满射. 既单又满的函数称为双射. 如果函数的逆 f^{-1} 也是函数, 则函数 f 称为**可逆**的.

作为例子, 若空映射 $\operatorname{ran} f = \operatorname{dom} f = \varnothing$, $f = \varnothing$ 总是单的, $f^{-1} = \{(y,x) \mid y = f(x)\} = \varnothing$ 也是空映射.

注: 这里函数的逆的定义与通常不同, 因 $\operatorname{dom} f^{-1} = \operatorname{ran} f$ 而非 Y. 因 而下面的定理在这样的定义下是成立的 (否则还要加上满射的条件):

Theorem 2.5. 函数 f 可逆 iff f 是单射.

Proof. 可逆意味着 $(y, x_1) \in f^{-1} \land (y, x_2) \in f^{-1} \leftrightarrow x_1 = x_2$, 又由逆的定义, $y = f(x_1) \land y = f(x_2) \leftrightarrow x_1 = x_2$, 这即是单射的定义.

Theorem 2.6. 函数 f 若可逆, 则 f^{-1} 可逆, 且 $(f^{-1})^{-1} = f$.

索引

n 元关系, 6	Zermelo-Fraenkel 系统, 5
笔记中出现的符号 (a,b) , $\frac{5}{5}$ 2^{X} , $\frac{4}{x^{+}}$, $\frac{4}{4}$	一致的, 2 二元关系, 6 交, 3 任意交, 3
$AC, 5$ $\mathscr{P}(X), 4$ $R(x,y), 6$ $\Sigma \vdash \varphi, 2$ $T \vdash \sigma, 2$ $V, 3$ $X^{2}, 6$ $X \times Y, 6$ $xRy, 6$	值,7 值域,6 像,6 公式,2 公理,2 函数,7 分离公理模式,3 单射,8 可公理化的,2 可判定的,2
Cartesian 积, 6	可计算的, 2 可逆, 8
Exi, 2 Ext, 2	后继, 4 基础公理, 4
Fnd, 4	复合, 6 外延公理, 2
Inf, 4	子集, 4 存在公理, 2
Pai, 4 Pow, 4	定义域, 6 对集公理, 4
Rep, 5	差, 3 幂集, 4
Sep, 3	幂集公理,4
Uni, 4	并集公理, 4 形式语言, 2

索引 10

```
推演, 2
王京小哥
```

无穷公理,4

替换公理模式,5

有序对,5

理论, 2

直积,6

真子集,4

真类, 3

空集, 3

等同函数,7

类, **3**

约束变元, 2

自由变元, 2

证明, 2

语句, 2

逆,6

选择公理,5

递归可枚举的,2

递归的, 2

逻辑符号, 2

非逻辑符号, 2

项, 2

参考文献 11

参考文献

[1] 数理逻辑: 证明及其限度[M/OL]. 上海: 复旦大学出版社, 2014. https://books.google.co.jp/books?id=WDPqjgEACAAJ.