Réseau internet : une introduction aux protocoles de la famille TCP/IP

Thomas Di Giovanni et Maëlle Beuret

Faculté des Sciences - Licence informatique Université de Montpellier

12 mai 2017

Table des matières

Introduction

Présentation générale

Présentation détaillée des couches

Conclusion

Introduction

Définition : protocole de communication

Ensemble de règles permettant de communiquer entre deux ordinateurs

- TCP/IP (Transmission Control Protocol/Internet Protocol) : suite de protocoles réseau
- Également appelée famille des protocoles Internet
- Spécifications définies dans des documents du domaine public appelés RFC (Request For Comments)
- Développée durant les années 1970 et adoptée comme famille de protocoles standards pour ARPANET en 1983

Fonctionnement global I

- Utilise le modèle client/serveur
- Communication en point-à-point : d'un point (ou hôte) à un autre
- Fractionnement des messages en paquets
- Système d'adresses
- Acheminement des données sur le réseau
- Contrôle des erreurs

Fonctionnement global II

Figure – Fonctionnement de la transmission de données

Les protocoles du cœur de la suite l

Protocole IP

- Détermine le destinataire grâce à l'adresse IP, le masque de sous-réseau et la passerelle par défaut
- Fragmente les datagrammes (paquets) au niveau des routeurs
- Assure l'acheminement des datagrammes à travers un réseau en empruntant le chemin le plus court (routage)

Les protocoles du cœur de la suite II

Protocole TCP

- Permet de remettre en ordre les datagrammes en provenance du protocole IP
- Vérifie le flot de données (évite la saturation)
- Formate les données en segments pour que le protocole IP se charge du routage
- Multiplexe les données
- S'assure du bon fonctionnement de l'initialisation et de la fin d'une communication

Les protocoles du cœur de la suite III

Protocole UDP (User Datagram Protocol)

- Permet d'assurer une transmission simple des données
- Ne garantit pas la bonne livraison des datagrammes à destination ni leur ordre d'arrivée
- Intégrité des données assurée par une somme de contrôle sur l'en-tête
- Utile pour une transmission rapide de petites quantités de données ou lorsque la perte d'un datagramme est moins problématique que le temps de transmission

TCP/IP et OSI I

- Tous deux possèdent une architecture en couches
- Chaque couche TCP/IP correspond à une ou plusieurs couches OSI
- OSI est en 7 couches et a rencontré moins de succès pratique
- Ainsi, TCP/IP est devenu un modèle pratique et OSI un modèle théorique

TCP/IP et OSI II

Figure - Couches du modèle OSI et leur équivalent pour TCP/IP

Couche "Accès réseau" I

Les rôles de cette couche :

- Le support de transmission des données
- La connexion des machines sur un réseau local
- La détection des erreurs à l'arrivée

Couche "Accès réseau" II

Différents matériels utilisés, parmi les plus connus :

(a) Câble coaxial

(b) Paire torsadée

(c) Fibre optique

Couche "Accès réseau" III

Trois topologies réseau principales :

(a) En bus

(b) En anneau

(c) En étoile

Couche "Accès réseau" IV

Pour communiquer, les machines utilisent une adresse MAC :

- L'adresse MAC est l'adresse d'une carte réseau.
- Chaque carte réseau a sa propre adresse, unique au monde.
- L'adresse MAC est écrite en hexadécimal, et codée sur 6 octets.

Il faut aussi un protocole particulier : Ethernet.

- Il n'est pas le seul protocole, mais il est de très loin le plus utilisé aujourd'hui.
- Le protocole va définir le format des messages (appelés trames) envoyés sur le réseau.

Couche "Accès réseau" V

Le code de correction des erreurs (CRC)

Imaginons qu'une machine A envoie un message à une machine B.

- 1 Lors de l'envoi, A calcule le CRC et le met à la fin de la trame.
- 2 B reçoit le message et fait le même calcul que A avec la trame reçue.
- B compare la valeur qu'elle a calculée avec la valeur que A avait calculée et mise à la fin de la trame.
- 4 Si elles sont égales, la trame envoyée par A est identique à celle reçue par B. Sinon : erreur.

Couche "Accès réseau" VI

Préambule	Adresse MAC Destination	Adresse MAC Source	Longueur/ Type	Données utiles	CRC
1	6	6	2	46 à 1500	2
		En-tête MAC 14 octets			

Figure - Trame Ethernet

Couche "Accès réseau" VII

Le commutateur (switch en anglais) est un boîtier sur lequel sont présentes plusieurs prises RJ45 femelles, ce qui permet de relier plusieurs machines entre elles.

Figure – Un commutateur

Couche "Accès réseau" VIII

Il contient une table qui fait l'association entre un port et une adresse MAC. Cette table est appelée la table CAM.

CAM Table :

MAC Adress	Port	
00:1C:14:80:59:02	3	
00:16:3E:C3:EC:C5	2	
00:16:3E:58:C4:4C	1	
00:16:3E:11:94:09	4	
00:16:3E:9D:DB:A9	5	
00:0C:29:4A:87:C7	10	
00:50:56:C4:80:DB	11	
00:05:69:F3:0D:EF	8	
00:50:56:F5:29:7E	7	

Figure – Une table CAM

Couche "Internet" I

Le rôle de cette couche est d'inter-connecter les réseaux : la connexion à une machine sur un autre réseau se fera à travers d'autres réseaux, de proche en proche.

Pour cela, on utilise l'adresse IP, qui est :

- L'adresse du réseau et de la machine
- Codée sur 32 bits ou 128 bits

On y ajoute un masque qui va indiquer quelle est la partie réseau de l'adresse (bits à 1), et quelle est la partie machine (bits à 0).

Couche "Internet" II

Figure – Une adresse IP et son masque

Couche "Internet" III

Une plage d'adresse est l'ensemble des adresses définies par l'association d'une adresse et d'un masque, de la plus petite adresse à la plus grande.

Nombre d'adresses dans un réseau = $2^{NombreDe0DansLeMasque}$. Deux adresses particulières dans la plage :

- La première est l'adresse du réseau
- La dernière est l'adresse de broadcast

Couche "Internet" IV

Autres protocoles de couche 3 :

Protocole ARP

Permet de connaître l'adresse physique d'une carte réseau correspondant à une adresse IP.

Protocole ICMP

Permet de gérer les informations relatives aux erreurs aux machines connectées.

Couche "Transport" I

Le rôle de cette couche est de permettre à des applications tournant sur des machines distantes de communiquer.

Pour cela, elle utilise deux protocoles différents : TCP et UDP.

Un identifiant, le port

Le port est l'adresse d'une application sur une machine. Il est codé en décimal sur deux octets.

Couche "Application" I

Elle contient les applications et programmes réseaux, ainsi que les protocoles qu'ils utilisent :

- Transfert de fichiers (FTP)
- Messagerie (SMTP)
- Connexion à distance sécurisée (SSH)
- World Wide Web (HTTP)
- etc...

Conclusion

La suite TCP/IP est :

- L'ensemble des protocoles utilisés pour le transfert des données sur Internet.
- L'implémentation du modèle OSI dans notre système d'exploitation.
- Représentée en 4 couches :
 - Accès réseau
 - 2 Internet
 - 3 Transport
 - 4 Application