Numerical Analysis & Scientific Computing II

Lesson 4

Numerical Solution of PDE

4.1 BVP for 2nd Order Elliptic PDE

Numerical Analysis & Scientific Computing II

Lesson 4

Numerical Solution of PDE

4.1 BVP for 2nd Order Elliptic PDE

- Finite Difference Method

Akash Anand MATH, IIT KANPUR

Numerical Methods for PDE: 2nd Order Elliptic PDE

A natural generalization to the two-point BVP

$$u'' = f(t),$$
 $a < t < b,$
 $u(a) = 0,$ $u(b) = 0,$

to two dimensions is

$$\Delta u \coloneqq u_{x_1x_1} + u_{x_2x_2} = f,$$
 in Ω , $u = g$, on Γ .

Akash Anand MATH, IIT KANPUR

Numerical Methods for PDE: 2nd Order Elliptic PDE

A natural generalization to the two-point BVP

$$u'' = f(t),$$
 $a < t < b,$
 $u(a) = 0,$ $u(b) = 0,$

to two dimensions is

$$\Delta u \coloneqq u_{x_1x_1} + u_{x_2x_2} = f,$$
 in Ω , $u = g$, on Γ .

For simplicity, we will first consider a very simple domain $\Omega = (0,1) \times (0,1)$.

)F

Numerical Methods for PDE: 2nd Order Elliptic PDE

A natural generalization to the two-point BVP

$$u'' = f(t),$$
 $a < t < b,$
 $u(a) = 0,$ $u(b) = 0,$

to two dimensions is

$$\Delta u \coloneqq u_{x_1x_1} + u_{x_2x_2} = f,$$
 in Ω , $u = g$, on Γ .

For simplicity, we will first consider a very simple domain $\Omega = (0,1) \times (0,1)$.

Let N be a positive integer and set h = 1/N. Consider the mesh in \mathbb{R}^2

$$\mathbb{R}_h^2 = \{ (mh, nh) : m, n \in \mathbb{Z} \}.$$

Let $\Omega_h = \Omega \cap \mathbb{R}^2_h$, the set of interior mesh points.

Ω

A natural generalization to the two-point BVP

$$u'' = f(t),$$
 $a < t < b,$
 $u(a) = 0,$ $u(b) = 0,$

to two dimensions is

$$\Delta u \coloneqq u_{x_1x_1} + u_{x_2x_2} = f,$$
 in Ω , $u = g$, on Γ .

For simplicity, we will first consider a very simple domain $\Omega = (0,1) \times (0,1)$.

Let N be a positive integer and set h = 1/N. Consider the mesh in \mathbb{R}^2

$$\mathbb{R}_h^2 = \{(mh, nh) : m, n \in \mathbb{Z}\}.$$

Let $\Omega_h = \Omega \cap \mathbb{R}^2_h$, the set of interior mesh points.

A natural generalization to the two-point BVP

$$u'' = f(t),$$
 $a < t < b,$
 $u(a) = 0,$ $u(b) = 0,$

to two dimensions is

$$\Delta u \coloneqq u_{x_1x_1} + u_{x_2x_2} = f,$$
 in Ω , $u = g$, on Γ .

For simplicity, we will first consider a very simple domain $\Omega = (0,1) \times (0,1)$.

Let N be a positive integer and set h = 1/N. Consider the mesh in \mathbb{R}^2

$$\mathbb{R}_h^2 = \{ (mh, nh) : m, n \in \mathbb{Z} \}.$$

Let $\Omega_h = \Omega \cap \mathbb{R}^2_h$, the set of interior mesh points.

Note that for each $x \in \mathbb{R}^2_h$ has a set of four nearest neighbors in \mathbb{R}^2_h , one each to the left, right, above and below. We define Γ_h as the set of mesh points in \mathbb{R}^2_h which in not in Ω_h but has a nearest neighbor in Ω_h .

A natural generalization to the two-point BVP

$$u'' = f(t),$$
 $a < t < b,$
 $u(a) = 0,$ $u(b) = 0,$

to two dimensions is

$$\Delta u \coloneqq u_{x_1x_1} + u_{x_2x_2} = f,$$
 in Ω , $u = g$, on Γ .

For simplicity, we will first consider a very simple domain $\Omega = (0,1) \times (0,1)$.

Let N be a positive integer and set h = 1/N. Consider the mesh in \mathbb{R}^2

$$\mathbb{R}_h^2 = \{ (mh, nh) : m, n \in \mathbb{Z} \}.$$

Let $\Omega_h = \Omega \cap \mathbb{R}^2_h$, the set of interior mesh points.

Note that for each $x \in \mathbb{R}^2_h$ has a set of four nearest neighbors in \mathbb{R}^2_h , one each to the left, right, above and below. We define Γ_h as the set of mesh points in \mathbb{R}^2_h which in not in Ω_h but has a nearest neighbor in Ω_h .

A natural generalization to the two-point BVP

$$u'' = f(t),$$
 $a < t < b,$
 $u(a) = 0,$ $u(b) = 0,$

to two dimensions is

$$\Delta u \coloneqq u_{x_1x_1} + u_{x_2x_2} = f,$$
 in Ω , $u = g$, on Γ .

For simplicity, we will first consider a very simple domain $\Omega = (0,1) \times (0,1)$.

Let N be a positive integer and set h = 1/N. Consider the mesh in \mathbb{R}^2

$$\mathbb{R}_h^2 = \{ (mh, nh) : m, n \in \mathbb{Z} \}.$$

Let $\Omega_h = \Omega \cap \mathbb{R}^2_h$, the set of interior mesh points.

Note that for each $x \in \mathbb{R}^2_h$ has a set of four nearest neighbors in \mathbb{R}^2_h , one each to the left, right, above and below. We define Γ_h as the set of mesh points in \mathbb{R}^2_h which in not in Ω_h but has a nearest neighbor in Ω_h .

Also let
$$\overline{\Omega}_h = \Omega_h \cup \Gamma_h$$
.

To discretize

$$\Delta u = f$$
, in Ω , $u = g$, on Γ ,

we seek a function $u_h:\overline{\Omega_h}\to\mathbb{R}$ satisfying

$$\Delta_h u_h = f$$
, on Ω_h , $u_h = g$, on Γ_h .

where, writing $v_{m,n} = v(mh, nh)$, we have the 5-point Laplacian

$$\Delta_h v(mh, nh) = \frac{v_{m+1,n} - 2v_{m,n} + v_{m-1,n}}{h^2} + \frac{v_{m,n+1} - 2v_{m,n} + v_{m,n-1}}{h^2}$$

To discretize

$$\Delta u = f$$
, in Ω , $u = g$, on Γ ,

we seek a function $u_h:\overline{\Omega_h}\to\mathbb{R}$ satisfying

$$\Delta_h u_h = f$$
, on Ω_h , $u_h = g$, on Γ_h .

where, writing $v_{m,n}=v(mh,nh)$, we have the 5-point Laplacian

$$\Delta_h v(mh, nh) = \frac{v_{m+1,n} - 2v_{m,n} + v_{m-1,n}}{h^2} + \frac{v_{m,n+1} - 2v_{m,n} + v_{m,n-1}}{h^2}$$
$$= \frac{v_{m+1,n} + v_{m-1,n} + v_{m,n+1} + v_{m,n-1} - 4v_{m,n}}{h^2}.$$

To discretize

$$\Delta u = f$$
, in Ω , $u = g$, on Γ ,

we seek a function $u_h:\overline{\Omega_h}\to\mathbb{R}$ satisfying

$$\Delta_h u_h = f$$
, on Ω_h , $u_h = g$, on Γ_h .

where, writing $v_{m,n} = v(mh, nh)$, we have the 5-point Laplacian

$$\Delta_h v(mh, nh) = \frac{v_{m+1,n} - 2v_{m,n} + v_{m-1,n}}{h^2} + \frac{v_{m,n+1} - 2v_{m,n} + v_{m,n-1}}{h^2}$$
$$= \frac{v_{m+1,n} + v_{m-1,n} + v_{m,n+1} + v_{m,n-1} - 4v_{m,n}}{h^2}.$$

From the error estimate in one-dimensional case, we case easily get that for $v \in C^4(\overline{\Omega})$,

$$\Delta_h v(mh, nh) - \Delta v(mh, nh) = \frac{h^2}{12} \left[\frac{\partial^4 v}{\partial x_1^4} (\xi, nh) + \frac{\partial^4 v}{\partial x_2^4} (mh, \eta) \right]$$

for some ξ , η .

Theorem

If
$$v \in C^2(\overline{\Omega})$$
, then

If
$$v \in C^4(\overline{\Omega})$$
, then

where

$$\lim_{h\to 0} \|\Delta_h v - \Delta v\|_{\infty,\Omega_h} = 0.$$

$$\|\Delta_h v - \Delta v\|_{\infty,\Omega_h} \le \frac{h^2}{6} M_4,$$

$$M_4 = \max \left\{ \left\| \frac{\partial^4 v}{\partial x_1^4} \right\|_{\infty,\overline{\Omega}}, \left\| \frac{\partial^4 v}{\partial x_2^4} \right\|_{\infty,\overline{\Omega}} \right\}.$$

Theorem

If
$$v \in C^2(\overline{\Omega})$$
, then

If
$$v \in C^4(\overline{\Omega})$$
, then

where

$$\lim_{h\to 0} \|\Delta_h v - \Delta v\|_{\infty,\Omega_h} = 0.$$

$$\|\Delta_h v - \Delta v\|_{\infty,\Omega_h} \le \frac{h^2}{6} M_4,$$

$$M_4 = \max \left\{ \left\| \frac{\partial^4 v}{\partial x_1^4} \right\|_{\infty,\overline{\Omega}}, \left\| \frac{\partial^4 v}{\partial x_2^4} \right\|_{\infty,\overline{\Omega}} \right\}.$$

Note that the discrete PDE $\Delta_h u_h = f$, on Ω_h is a system of $(N-1)^2$ equations in $(N-1)^2$ unknowns.

Theorem

If
$$v \in C^2(\overline{\Omega})$$
, then

If
$$v \in C^4(\overline{\Omega})$$
, then

where

$$\lim_{h\to 0} \|\Delta_h v - \Delta v\|_{\infty,\Omega_h} = 0.$$

$$\|\Delta_h v - \Delta v\|_{\infty,\Omega_h} \le \frac{h^2}{6} M_4,$$

$$M_4 = \max \left\{ \left\| \frac{\partial^4 v}{\partial x_1^4} \right\|_{\infty,\overline{\Omega}}, \left\| \frac{\partial^4 v}{\partial x_2^4} \right\|_{\infty,\overline{\Omega}} \right\}.$$

Note that the discrete PDE $\Delta_h u_h = f$, on Ω_h is a system of $(N-1)^2$ equations in $(N-1)^2$ unknowns.

Theorem (Discrete Maximum Principle)

Let v be a function on $\overline{\Omega}_h$ satisfying $\Delta_h v \geq 0$ on Ω_h . Then $\max_{\Omega_h} v \leq \max_{\Gamma_h} v$. Equality holds if and only if v is constant.

Theorem

If
$$v \in C^2(\overline{\Omega})$$
, then

If
$$v \in C^4(\overline{\Omega})$$
, then

where

$$\lim_{h\to 0} \|\Delta_h v - \Delta v\|_{\infty,\Omega_h} = 0.$$

$$\|\Delta_h v - \Delta v\|_{\infty,\Omega_h} \le \frac{h^2}{6} M_4,$$

$$M_4 = \max \left\{ \left\| \frac{\partial^4 v}{\partial x_1^4} \right\|_{\infty,\overline{\Omega}}, \left\| \frac{\partial^4 v}{\partial x_2^4} \right\|_{\infty,\overline{\Omega}} \right\}.$$

Note that the discrete PDE $\Delta_h u_h = f$, on Ω_h is a system of $(N-1)^2$ equations in $(N-1)^2$ unknowns.

Theorem (Discrete Maximum Principle)

Let v be a function on $\overline{\Omega}_h$ satisfying $\Delta_h v \geq 0$ on Ω_h . Then $\max_{\Omega_h} v \leq \max_{\Gamma_h} v$. Equality holds if and only if v is constant.

Proof: Exercise. HINT: Use $4v(x_0) = \sum_{i=1}^4 v(x_i) - h^2 \Delta_h v(x_0)$ where x_1, x_2, x_3, x_4 are neighbors of x_0 .

Theorem (Discrete Minimum Principle)

Let v be a function on $\overline{\Omega}_h$ satisfying $\Delta_h v \leq 0$ on Ω_h . Then $\min_{\Omega_h} v \geq \min_{\Gamma_h} v$. Equality holds if and only if v is constant.

Theorem (Discrete Minimum Principle)

Let v be a function on $\overline{\Omega}_h$ satisfying $\Delta_h v \leq 0$ on Ω_h . Then $\min_{\Omega_h} v \geq \min_{\Gamma_h} v$. Equality holds if and only if v is constant.

Proof: Exercise.

Theorem (Discrete Minimum Principle)

Let v be a function on $\overline{\Omega}_h$ satisfying $\Delta_h v \leq 0$ on Ω_h . Then $\min_{\Omega_h} v \geq \min_{\Gamma_h} v$. Equality holds if and only if v is constant.

Proof: Exercise.

Theorem

There is a unique solution to the discrete BVP

$$\Delta_h u_h = f,$$
 on Ω_h , $u_h = g,$ on Γ_h .

Theorem (Discrete Minimum Principle)

Let v be a function on $\overline{\Omega}_h$ satisfying $\Delta_h v \leq 0$ on Ω_h . Then $\min_{\Omega_h} v \geq \min_{\Gamma_h} v$. Equality holds if and only if v is constant.

Proof: Exercise.

Theorem

There is a unique solution to the discrete BVP

$$\Delta_h u_h = f$$
, on Ω_h , $u_h = g$, on Γ_h .

Proof: Exercise.

Theorem (Discrete Minimum Principle)

Let v be a function on $\overline{\Omega}_h$ satisfying $\Delta_h v \leq 0$ on Ω_h . Then $\min_{\Omega_h} v \geq \min_{\Gamma_h} v$. Equality holds if and only if v is constant.

Proof: Exercise.

Theorem

There is a unique solution to the discrete BVP

$$\Delta_h u_h = f$$
, on Ω_h , $u_h = g$, on Γ_h .

Proof: Exercise.

Theorem

The solution u_h to

$$\Delta_h u_h = f$$
, on Ω_h , $u_h = g$, on Γ_h .

$$||u_h||_{\infty,\overline{\Omega}_h} \leq \frac{1}{8}||f||_{\infty,\Omega_h} + ||g||_{\infty,\Gamma_h}.$$

Theorem (Discrete Minimum Principle)

Let v be a function on $\overline{\Omega}_h$ satisfying $\Delta_h v \leq 0$ on Ω_h . Then $\min_{\Omega_h} v \geq \min_{\Gamma_h} v$. Equality holds if and only if v is constant.

Proof: Exercise.

Theorem

There is a unique solution to the discrete BVP

$$\Delta_h u_h = f$$
, on Ω_h , $u_h = g$, on Γ_h .

Proof: Exercise.

Theorem

The solution u_h to

$$\Delta_h u_h = f,$$
 on Ω_h , $u_h = g,$ on Γ_h .

satisfies

$$||u_h||_{\infty,\overline{\Omega}_h} \leq \frac{1}{8} ||f||_{\infty,\Omega_h} + ||g||_{\infty,\Gamma_h}.$$

Proof: Exercise. HINT: Use $w(x_1, x_2) = [(x_1 - 1/2)^2 + (x_2 - 1/2)^2]/4$.

Theorem

Let u be the solution to

$$\Delta u = f$$
, in Ω , $u = g$, on Γ ,

and u_h be the solution to the corresponding discrete problem

$$\Delta_h u_h = f,$$
 on Ω_h , $u_h = g$, on Γ_h .

Then,

$$||u_h - u||_{\infty,\overline{\Omega}_h} \le \frac{1}{8} ||\Delta u - \Delta_h u||_{\infty,\overline{\Omega}_h}.$$

Proof: Exercise.

Corollary

If
$$u \in C^2(\overline{\Omega}_h)$$
, then

If
$$u \in C^4(\overline{\Omega}_h)$$
, then

$$\lim_{h\to 0}||u_h-u||_{\infty,\overline{\Omega}_h}=0.$$

$$\|u_h - u\|_{\infty,\overline{\Omega}_h} \le \frac{h^2}{48} M_4, \qquad M_4 = \max \left\{ \left\| \frac{\partial^4 v}{\partial x_1^4} \right\|_{\infty,\overline{\Omega}}, \left\| \frac{\partial^4 v}{\partial x_2^4} \right\|_{\infty,\overline{\Omega}} \right\}.$$