Quantum Key Distribution with BB84

BY **W**@QUANTUMCHEAP

Quantum Key Distribution

- is a secure communication method which implements a cryptographic protocol involving components of quantum mechanics
- There's an inherent ability for the two communicators to detect the presence of an eavesdropper (since measuring a quantum system disturbs the system)

BB84

- developed by Charles Bennett and Gilles Brassard in 1984
- It is the first quantum cryptography protocol
- It is usually explained as a method of securely communicating a private key from one party to another for use in one-time pad encryption.

The Setup

The Setup – Classic Channel

The Setup – Quantum Channel

The Setup – Quantum Channel

Measurement Basis

Rectilinear

Diagonal

The Setup – Quantum Channel

Alice has two pairs or polarizers to send photons through. Each pair are perpendicular to each other (0° and 90°) and (45° and 135°).

single-photon light source

Bob measures the polarization of the photons with two special polarizers. There is a rectilinear polarizer (0° and 90°) and a diagonal polarizer (45° and 135°).

Rectilinear

Diagonal

The receiver randomly selects which bases to measure each photon.

Polarization Demo

0° rotation 100% pass-through

45° rotation 50% pass-through

90° rotation 0% pass-through

Photon polarization Alice sends	1				
Bob's random measuring basis	+				
Photon polarization Bob measures	1				

Photon polarization Alice sends	1	0				
Bob's random measuring basis	+	X				
Photon polarization Bob measures	1	1/				
		H	h	h		
single-photon light source						

	Photon polarization	Alice sends	1	0	\ 0					
	Bob's random meas	uring basis	+	X	X					
ı	Photon polarization B	ob measures	1	1/	\ 0					
ı										
ı										
									-1	
								_ 64		
							- 6	WN,		
							M			
						N,				
				N						
	1	0	Z							
		N								
	1/	0								
	S. C.									
	single-photon									

Photon polarization Alice sends	1	0	\ 0	1	\ 0		
Bob's random measuring basis	+	×	×	×	+		
Photon polarization Bob measures	1	1	0	1/	0		

Photon polarization Alice sends	1	0	0	1	0	1/	1/	
Bob's random measuring basis	+	×	×	×	+	×	+	
Photon polarization Bob measures	1	1/	\ 0	1/	0	1/	0	

Photon polarization Alice sends	1	0	\ 0	1	0	1/	1/	0
Bob's random measuring basis	+	×	×	×	+	×	+	+
Photon polarization Bob measures	1	1/	0	1/	0	1/	0	0

Back on the classic channel...

Bob and Alice compare which basis they used to send and receive each qubit

Photon polarization Alice sends	1	0	\ 0	1	\ 0	1/	1/	0
Alice's sending basis	+	+	X	+	X	X	X	+
Bob's random measuring basis	+	×	×	×	+	×	+	+
Photon polarization Bob measures	1	1/	\ 0	1/	0	1/	0	0
PUBLIS DISCUSSION OF BASIS								
Shared secret key	1		0			1		0

The bits corresponding to matching basises become the key!

Why Does This Work?

Mission accomplished?

...or "mission accomplished"?

We've got an eavesdropper!

Photon polarization Alice sends	1	0			
Eve's random measuring basis	+	×			
Polarization Eve measures and sends	1	1/			
Bob's random measuring basis	+	×			
Photon polarization Bob measures	1	1/			
	4	h	1/		

single-photon light source

Photon polarization Alice sends	1	0	0			
Eve's random measuring basis	+	×	+			
Polarization Eve measures and sends	1	1/	0			
Bob's random measuring basis	+	×	×			
Photon polarization Bob measures	1	1/	1/			
1 0 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1	2	2	A			

Photon polarization Alice sends	1	0	0	1	\ 0		
Eve's random measuring basis	+	×	+	+	×		
Polarization Eve measures and sends	1	1/	0	1	0		
Bob's random measuring basis	+	×	X	×	+		
Photon polarization Bob measures	1	1/	1/	\ 0	0		
	2	7					

single-photon light source

Back on the classic channel...

Photon polarization Alice sends	1	0	\ 0	1	0	1/	1/	0
Alice's sending basis	+	+	X	+	X	X	×	+
Eve's random measuring basis	+	×	+	+	×	+	×	+
Polarization Eve measures and sends	1	1/	0	1	0	0	1/	0
Bob's random measuring basis	+	×	X	×	+	X	+	+
Photon polarization Bob measures	1	1/	1/	√ 0	0	1/	1	0
PUBLIS DISCUSSION OF BASIS								
Shared secret key	1		1			1		0
Errors in key	✓		X			√		✓

What do we do now?

- (Assuming Alice chooses randomly) the probability Eve chooses the incorrect basis is 50%.
- If Bob measures Eve's photon in the same basis that Alice sent, he gets a random result, i.e., an incorrect result with probability of 50%.
- So, the probability an intercepted photon generates an error in the key string is then $50\% \times 50\% = 25\%$

Alice and Bob will then publicly compare n of their key bits. The probability of finding mis-matched bits and the eavesdropper is

$$P = 1 - (\frac{3}{4})^n$$

So, to detect an eavesdropper with probability 99.9999999%, Alice and Bob would only need to compare **72** bits.

The Steps

- Alice sends a bunch of qubits
 - Random bits with random polarizations
- Bob measures the qubits
 - With either rectilinear (+) or diagonal (X) basis
- Bob and Alice find out which qubits were measured correctly by publicly comparing each others' basiseseses
 - The bits with matching basis become the key
- They publicly compare a set of those bits
 - if they match, the remaining bits become the key
 - If they don't match, there may have been an eavesdropper. So they start all over again.

