

Soluções

Vanize Caldeira da Costa

Uruguaiana, maio de 2023

Soluções

São misturas de duas ou mais substâncias que apresentam aspecto uniforme, ou seja, são misturas homogêneas

Substância que se encontra em maior quantidade é o solvente

Substância que se encontra em menor quantidade é o soluto

O solvente é capaz de separar as moléculas ou íons do soluto em certa medida, impedindo a sua agregação que levaria à formação de outra fase

As soluções podem ser *sólidas*, *líquidas* ou *gasosas* dependendo do estado físico do solvente

Ligas metálicas – soluções sólidas

Bronze: mistura formada pelos metais estanho e cobre

Solução gasosa formada, principalmente, pelos gases N₂ e O₂

Água mineral

Solução líquida, pois apresenta vários sais dissolvidos, além de alguns gases, como o oxigênio (O₂).

Bário	0,064	Sulfato	0,10
N. Carlotte		-35 T/A GE	
Estrôncio	0,075	Bicarbonato	40,74
Cálcio	6,587	Fluoreto	0,03
Magnésio	3,326	Nitrato	14,48
Potássio	2,652	Cloreto	2,79
Sódio	7,180	Brometo	0,01

Fonte: http://www.fonteveronica.com.br

Qual a diferença existente entre solução, dispersão e suspensão?

TIPOS DE DISPERSÕES COLOIDAIS

Dispersante	Disperso	Denominação	Exemplo
Líquido	Sólido	Sol	Maisena em água, tintas
Sólido	Líquido	Gel	Gelatina, geléia
Sólido	Gás	Espuma sólida	Maria-mole, suspiro, pedra-pome
Líquido	Gás	Espuma líquida	Creme chantilly, creme de barbear
Gás	Sólido	Aerossol sólido	Fumaça, poeira suspensa no ar
Gás	Líquido	Aerossol líquido	Neblina, névoa
Sólido	Sólido	Sol sólido	Vidro colorido, rubi, safira
Líquido	Líquido	Emulsão	Maionese, creme hidratante

Solubilidade

Ao preparar uma solução, isto é, ao dissolver um soluto em um dado solvente, as **moléculas** ou os **íons do soluto** separam-se, permanecendo dispersos no solvente.

Fonte: https://www.todamateria.com.br/soluto-e-solvente/

Quanto maiores forem as forças de atração entre o soluto e as moléculas de solvente, maior será a solubilidade do soluto

Solubilidade

O coeficiente de solubilidade (Cs) indica a quantidade máxima de uma substância, que em determinadas condições de temperatura, pode dissolverse em uma quantidade fixa de solvente.

Ex.:
$$KNO_3$$
 a 20°C Cs = 31,6 g/100g H_2O

Significa que, a 20 °C consegue-se dissolver no máximo 31,6 g de KNO₃ em 100 g de água. Qualquer quantidade de soluto adicionada, acima desse valor, não se solubilizará.

Qual é a quantidade máxima de KNO₃ que pode ser dissolvida em 30 g de água a 20 °C?

31,6 g de KNO₃ _____ 100 g de H₂O

 $X = (31,6 \times 30)/100$

X _____ 30 g de H₂O

X = 9,48 g de KNO₃

As questões de número 3 e 4 devem ser respondidas com base nos dados da tabela abaixo:

Tabela de solubilidade do NaCl

Temperatura (°C)	g/ <u>100g de H₂O</u>
30	36,3
40	36,6
50	37,0
60	37,3
70	37,8
80	38,4

3) Calcule a quantidade máxima de NaCl que pode ser dissolvida totalmente em 200 g de água a 80 °C.

38,4 g de NaCl _____ 100 g de H₂O

 $X = (38,4 \times 200)/100$

X

_ 200 g de H₂O

X = 76,8 g de NaCl

As questões de número 3 e 4 devem ser respondidas com base nos dados da tabela abaixo:

Tabela de solubilidade do NaCl

Temperatura (°C)	g/ <u>100g de H₂O</u>
30	36,3
40	36,6
50	37,0
60	37,3
70	37,8
80	38,4

4) Calcule a quantidade mínima de H₂O necessária para dissolver totalmente 17 g de NaCl a 50 °C.

37,0 g de NaCl _____ 100 g de H₂O

17 g de NaCl _____ X

 $X = (17 \times 100)/37$

 $X = 45,9 g de H_2O$

Fatores que influenciam na solubilidade

<u>Influência da pressão</u> - Embora a pressão não apresente muita influência na solubilidade de sólidos e líquidos, esta modifica de forma significativa a solubilidade de gases.

Quando o equilíbrio é
estabelecido, a rapidez com que
as moléculas de gás entram na
solução é igual à rapidez com
que as moléculas de soluto
escapam da solução para entrar
na fase gasosa

Aumento da pressão

A frequência com que as moléculas de gás colidem com a superfície da solução aumentará e, consequentemente, a sua solubilidade na solução

Fatores que influenciam na solubilidade

Influência da temperatura

A solubilidade da maior parte dos solutos sólidos em água aumenta ao aumentar-se a temperatura da solução

A solubilidade dos gases em água diminuem ao aumentar a temperatura

Classificação das soluções quanto ao coeficiente de solubilidade

Exemplo:

Solubilidade NaCI: 36 g/100 ml de H₂O (20 °C)

- Preparada mediante aquecimento;
- Instável.

Foram preparadas duas soluções, I e II, através da adição de 5,0 g de cloreto de sódio, NaCI, e de 5,0 g de sacarose, $C_{12}H_{22}O_{11}$, respectivamente, a 10 g de água, em recipientes distintos. Considerando que as solubilidades (g do soluto/ 100g de H_2O) do NaCI e da $C_{12}H_{22}O_{11}$ são 36 e 203,9, respectivamente, em relação às soluções I e II, pode-se afirmar que:

- a) a solução I é saturada e todo o soluto adicionado se dissolveu.
- b) a solução II é insaturada e todo o açúcar adicionado se dissolveu.
- c) ambas são saturadas e nem todo o soluto adicionado se dissolveu.
- d) ambas são insaturadas e todo o soluto adicionado se dissolveu.

1,4 g não serão solubilizados

 $C_s = 36 \text{ g}/100 \text{ g de H}_2\text{O}$

36 g de NaCl _____ 100 g de
$$H_2O$$
 X ____ 10 g de H_2O

$$X = (36 \times 10)/100 = 3,6 g de NaCl$$

Quantidade máxima de NaCl que pode ser solubilizada em 10 g de H₂O

Foram preparadas duas soluções I e II, através da adição de 5,0 g de cloreto de sódio, NaCl, e de 5,0 g de sacarose, $C_{12}H_{22}O_{11}$ respectivamente, a 10 g de água, em recipientes distintos. Considerando que as solubilidades (g do soluto/ 100g de H_2O) do NaCl e da $C_{12}H_{22}O_{11}$ são 36 e 203,9 respectivamente, em relação às soluções I e II, pode-se afirmar que:

- a) a solução I é saturada e todo o soluto adicionado se dissolveu.
- a solução II é insaturada e todo o açúcar adicionado se dissolveu.
- c) ambas são saturadas e nem todo o soluto adicionado se dissolveu.
- d) ambas são insaturadas e todo o soluto adicionado se dissolveu.

Quantidade máxima de C₁₂H₂₂O₁₁ que pode ser solubilizada em 10 g de H₂O

O gráfico a seguir representa as curvas de solubilidade de várias substâncias:

a) Considerando apenas as substâncias NaNO₃ e Pb(NO₃)₂ qual delas é a mais solúvel em água, a qualquer temperatura?

NaNO₃

- a) Aproximadamente a qual temperatura a solubilidade do KCI e do NaCI são iguais?
- a) Qual a massa de NaNO₃ em uma solução saturada obtida a partir da solubilização deste soluto em 500 g de H₂O a 10 °C?


```
80 g de NaNO<sub>3</sub> _____ 100 g de H_2O
X _____ 500 g de H_2O
```

 $X = (80 \times 500)/100 = 400 \text{ g de NaNO}_3$

A 18 °C, a solubilidade do cloreto de magnésio (MgCl₂) é de 55,8 g por 100 g de H₂O. Nessa temperatura, 150 g de MgCl₂ foram misturados em 200 g de água.

- a) O sistema obtido é homogêneo ou heterogêneo?
- b) Qual é a massa de sólido dissolvido na água? 111,6 g
- c) Qual é a massa de MgCl₂ depositada? 38,4 g

55,8 g de MgCl₂ _____ 100 g de H₂O X _____ 200 g de H₂O

 $X = (55,8 \times 200)/100 = 111,6 g de MgCl₂$ Quantidade máxima de MgCl₂ que pode ser solubilizada em 200 g de H₂O

Classificação das soluções quanto à natureza do soluto

• Moleculares ou não-eletrolíticas - o soluto é formado por moléculas, que não se dissociam. Não conduzem eletricidade.

Ex.: Glicose em água $C_6H_{12}O_{6 (s)} \rightarrow C_6H_{12}O_{6 (aq)}$

$$C_6H_{12}O_{6 (s)} \rightarrow C_6H_{12}O_{6 (aq)}$$

 lônicas ou eletrolíticas: o soluto não apenas se dissolve, mas se separa em íons. Conduzem eletricidade.

Ex.: Sal em água

$$NaCl_{(s)} \rightarrow Na^{+}_{(aq)} + Cl^{-}_{(aq)}$$

Fonte: https://seara.ufc.br

Classificação das soluções quanto à proporção de soluto e de solvente

 Solução diluída: quando a quantidade de soluto na solução é considerada pequena, ou seja, quando a concentração de soluto é no máximo de 0,1 mol/L;

· <u>Solução concentrada</u>: quando a quantidade do soluto na solução é considerada

grande.

Solução concentrada

Uma solução aquosa salina foi cuidadosamente aquecida de forma que evaporasse parte do solvente. A solução obtida, comparada com inicial, apresenta-se mais:

- a) diluída com menor volume
- b) diluída com maior volume
- c) concentrada com maior volume
- d'concentrada com menor volume

