Probabilistic attacks against compressed encrypted protocols

Dimitrios Karakostas

Dionysis Zindros

Aristeidis Pagourtzis

Theoretical background (gzip)

 gzip: The most used encryption software in the Internet.

Implements the DEFLATE algorithm:

DEFLATE(m) = Huffman(LZ77(m))

Theoretical background (LZ77)

- LZ77: Lossless data compression algorithm, published in 1977 by A. Lempel and J. Ziv.
- Method:
 - Find repeated portions of data.
 - Replace them with references as [length, offset].
 - Minimum length = 3.
 - Maximum offset = 32Kb.

Theoretical background (LZ77)

LZ77 example

Hello, world! I love you.

Hello, world! I hate you.

Hello, world! Hello world! Hello world!

```
Hello, world! I love you.

(26, 16) hate (21, 5)

(26, 14) (14, 28)
```

Theoretical background (Huffman)

- **Huffman coding**: Lossless data compression algorithm, proposed by D. Huffman in 1952.
- Method:
 - Analyze the frequency of each letter in the text.
 - Replace common letters with short codes.
 - Replace rare letters with long codes.
 - Code alphabet should be prefix free.

Theoretical background (Huffman)

Huffman example

Frequency analysis:

o : 6	n : 5	r : 3	I: 3
b : 3	c : 3	a : 3	s : 2
k : 2	e : 2	<u>i</u> ; 2	f : 2
h: 1	d : 1	t : 1	u : 1

Code alphabet:

Theoretical background (Same-origin policy)

- Same-origin policy: scripts in one page are allowed to access data in a second page if both have the same origin.
- Origin: protocol, host and port of a URL.
- Documents retrieved from distinct origins are isolated from each other.
- i.e. a document retrieved from http://example.com/target.html is disallowed to access the DOM of a document retrieved from https://head.example.com/target.html.

Theoretical background (Same-origin policy)

- Attacks on same-origin policy:
 - Cross-site scripting (XSS): vulnerability that allows an attacker to inject a client-side script into web pages viewed by other users.
 - Cross-site request forgery (CSRF): exploit that allows the attacker to issue unauthorized requests to a website, on behalf of a user the website trusts.

Theoretical background (TLS)

- Transport Layer Security (TLS): protocol that provides security over the internet.
- Prevents eavesdropping, tampering or message forgery.
- TLS handshake allows the negotiation of a symmetric key via asymmetric cryptography, provided by certificates created by trusted authorities.

Theoretical background (TLS)

TLS record structure

+	Byte +0	Byte +1	Byte +2	Byte +3	
Byte 0	Content type				
Bytes	Version		Length		
14	(Major)	(Minor)	(bits 158)	(bits 70)	
Bytes 5(<i>m</i> -1)	Protocol message(s)				
Bytes <i>m(</i> p-1)	MAC (optional)				
Bytes <i>p</i> (q-1)	Padding (block ciphers only)				

Theoretical background (MitM)

 Man-in-the-Middle: one of the most common attack vectors on modern communications.

- Common MitM techniques:
 - ARP Spoofing: the attacker sends ARP messages, so that its MAC address is associated with the target endpoint's IP address.
 - DNS Poisoning: the attacker introduces data into a DNS resolver's cache, to return incorrect address for the chosen endpoint.

IND-PCPA (PCPA game)

- Traditionally, cryptographers have used games for security analysis
- IND-CPA, IND-CCA{1,2}
- We introduce a new security game:

Indistinguishability under partially chosen plaintext attack (IND-PCPA)

IND-PCPA (PCPA game)

- The challenger generates a pair P_k , S_k and publishes P_k to the adversary.
- The adversary may perform a polynomially bounded number of encryptions or other operations.
- Eventually, the adversary submits two distinct chosen plaintexts M_0 , M_1 to the challenger.
- The challenger selects a bit $b \in \{0,1\}$ uniformly at random.
- The adversary can then submit any number of selected plaintexts R_i , $i \in N$, $|R| \ge 0$, and the challenger sends the ciphertext $C_i = E(P_k, M_h | |R_i)$ back to the adversary.
- The adversary is free to perform any number of additional computations or encryptions, before finally guessing the value of b.

IND-PCPA (PCPA game)

A cryptosystem is indistinguishable under partially chosen plaintext attack, if every probabilistic polynomial time adversary has only a negligible advantage on finding b over random guessing.

IND-PCPA

- IND-PCPA vs IND-CPA:
 - The adversary submits the empty string as chosen plaintext.
 - The challenger then sends back:

$$C = E(P_k, M_b | |"") = E(P_k, M_b)$$

- which is the challenger response of the IND-CPA game.
- Intuitively, if the adversary can beat the game of IND-PCPA, he also has the ability to beat IND-CPA.

IND-PCPA

- PCPA scenario on compression-before-encryption protocol:
 - A system creates:

```
c = Encrypt(Compress(m))
```

where c is the ciphertext of the compressed m.

- The attacker issues a PCPA creating:
 - $m = n_1 | | secret | | n_2 | | reflection | | n_3 |$
- where n_1, n_2, n_3 are random nonces.
- If the chosen reflection is the same as the secret, a pattern emerges and the compression is better, possibly resulting in smaller ciphertext, compared to the one of a wrong reflection.

IND-PCPA (PCPA exploits)

• CRIME:

- [Rizzo, Duong '12]
- CRIME attacked TLS header compression in HTTPS.
- TLS header compression is now disabled.
- CRIME is no longer possible.
- CRIME set the foundation for compression/encryption attacks.

IND-PCPA (PCPA exploits)

BREACH:

- [Prado, Harris, Gluck '13]
- BREACH was based on CRIME.
- BREACH attacks HTTPS response.
- Original BREACH attack had specific assumptions:
 - Against stream ciphers.
 - No noise in response.
 - Secret has known prefix, bootstrapping is trivial.

Attack model (Assumptions)

- The attacker has gained control of the victim's network and can view the victim's encrypted traffic, which can be accomplished by MitM.
- The attack script issues requests toward the chosen endpoint from the victim's browser, i.e. via XSS.
- Each request contains a chosen stream of data, which is reflected in the response body, along with the secret.
- Compression is applied on both the secret and the reflection.

- MitM implementation:
 - We add a rule in the hosts file of the lab machine, in order for all traffic toward an endpoint to be redirected to the localhost.
 - We implemented a Python MitM proxy, that opens
 TCP sockets on both the lab machine and the endpoint and forwards traffic on both ends, while parsing the header and (encrypted) body TLS record.
 - We also implemented a defragmentation mechanism, in order to parse records that span over multiple TCP packets.

- BREACH script implementation:
 - The user inputs a known prefix for the secret, needed to bootstrap the attack, and the alphabet that the characters of the secret belong.
 - An attack vector is created, with each item corresponding to a fragment of the alphabet, where the sum of the fragment makes up the whole alphabet.
 - A request is issued for each item of the vector every 4 seconds, resuming from the beginning when the end of the vector is reached.
 - The requests are made in the form of tags, injected in the HTML body of a controlled website.

- Attack persistence:
 - We propose a command-and-control mechanism that allows the execution of the attack without the need of a contaminated website, that the victim would visit.
 - The victim needs to browse the HTTP web.
 - The attacker that controls the victim's traffic would inject the attack script in the response from a regular HTTP website.

- Vulnerable endpoints:
 - Facebook Chat messages
 - Gmail Authentication token
 - Gmail private emails

(Facebook Chat messages)

- Facebook Chat messages:
 - Facebook provides a lightweight mobile version,
 Facebook Touch.
 - It also allows a search functionality via URL, in the form:

https://touch.facebook.com/messages?q=<search_string>

- The search string is reflected in the body of the response.
- Also, regardless of the search results, the last message of the 5 most recent conversations is also included in the body.

Attack model (Facebook Chat messages)

Noise

```
sp gP6 TxUSO2F sx cb8aa4" dat -sigil="attachment-icon" style="display:none"></i><i class="mensageicons touched show lmg op gP6 TxUSO2F
sx 636138" data-sigil="attach ent-icon" style="display:none"></i><span class="snippet"></ class="touched hide messageicons ing sp gP6 Twos02"
sx 313cac"></i><i class="mess geicons touched show img sp gP6 TxUSO2F sx 86fcc8"></i></oan>Credit Card: 592274170593184</span and /><span
class="word break"></span>0</span></div></div></div></div></div>class="item more acw abt" data-sigil="marea"><a class= touchable
primary" href="/messages/?more@amp;refid=11" data-sigil="touchable"><div class="primarywrap"><div class="content"><div_class="title mfsm
fc1"><strong>See all messages /strong></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></di>
2jdm noCount" data-store="%#123;"tab":"notifications"%#125;" id="notifications jewel" data-sigil="popover
notifications"><a class=" 59th touchable" data-store="&#123;&quot;behavior&quot;:&quot;custom&quot;&#125;" accesskey="4"
href="/notifications.php?refic=11" data-sigil="icon blocking-touchable"><span
style="display:block;height:0;pverflow:hidden;position:absolute;width:0;padding:0">Notifications</span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span><span
sigil="count">0</span></a><div class="flyout popover hidden" role="complementary" id="u 0 9" data-sigil="flyout"><div data-sigil="flyout"><div data-sigil="flyout"></a>
content"><header class=" 52je 52jb 52jh 4g33 52we 2pi8 2pi4" tabindex="0"><div class=" 4g34">Notifications</div><div class=" 5s61"><a
class="button touchable" role= button" href="/settings/notifications/?refid=11" aria-label="Notification Settings" data-sigil="blocking-
touchable"><span class=" 5r0v img"><i class=" 5r0t 4q9b img sp gP6 TxUSO2F sx 9ca6ac"></i>
sx 9d95c2"></i></span></a></dip></header><<span
class="mfsl fcg">No new notifications</span></div></div></div></div><div class="_4g34"><div class="_59te jewel noCount" data-
store="%#123;%quot;tab%quot;:% uot;search%quot;%#125;" id="search_jewel" data-sigil="popover search"><a class="_59tf touchable"
href="/search/?refid=11" data-ligil="icon blocking-touchable"><span
```

window.MAjaxify&: %Amp; MAjaxify.form(event,this,aq.at;async elem","pageload",null,false); \" id=\"u 0 q\">\u003Cinput type=\"hidden\" fame=\"fb_dtsg\" value=\"AQFBAZi90NjP\" autocomplete=\"off\" \/\\u003Cinput type=\"hidden\" name=\"charset_test\" value=\"8#x20ac;,&x:b4:,€,´,水,A: 0"x4v4;\" \/\u003Ctable cellspacing=\"0\" cellpadding=\"0\" class=\"comboInput\" id=\"messages_search_box\">\uoosca__uoosca crass ("inputCell\">\uoo3Cinput autocapitalize=\"off\" class \"_5whq input quicksearch\" name=\"q\" autocorrect=\"off\" autocomplete=\"of{\" value=\"rynmkwi 1 2 3 4 5 6 7 8 9 Credit Card : Oznq\") - I-ceholder=\"Search Messages...\" size=\"15\" type=\"text\" data-sigil=\"quicksearch input\" \/>\u003C\/td>\u003Ctd class=\"btnCell\">\u003Cbutton type=\ submi!\" value=\"Clear\" class=\"btn btnD mfss touchable\" disableu-\"\" data-sigil=\"guicksearch-button plocking $touchable \"\clear\u003C\form\u$ id=\"threadlist rows\">\u003Cdiv class=\"acw apl\" data-sigil=\"marea\">\u003Cdiv style=\"text-align:center;\">\u003Cspan class=\"mfsl fcg\">No Messages\u003C\/span>\u003C\/div>\u003C\/div>\u003Cdiv class=\"item 112j acw\" id=\"switch search link\" datasigil=\"marea\">\u003Ca class=\"touchable primary\" href=\"\/messages\/? q=rynmkwi 1 2 3 4 5 6 7 8 9 Credit+Card+\u00253A+0znq&pagination direction=1&sbt=1&refid=11\" data-sigil=\"touch-\le\">\u003Cdiv class=\"primarywrap\">\u003Cdiv class=\"content\">\u003Cdiv class=\"title mfsm fcl\">\u003Cstrong>Search by Text\u003C\/strong>\u003C\/div sigil=\"marea\">\u003Ca href=\"\/messages\/?sbt&refid=11\">View All Messages\u003C\/a>\u003C\/div>\u003C\/div>"},"pageletConfig": {"lid":"61:7250281872031748-60001", "name . "in.at", "pass":1, "serverJSData":{"instruces :[["m 0 9",["MQuickSearch"], ;"curi":"\/messages\/","nodeID":"messages_search_box;"resultsBox<u>ID":"ih</u>readlist_rows",["]containerID":"u_0_p","args": {"q":"rynmkwi_1_2_3_4_5_6_7_8_9_<mark>Credit Card</mark> : 0zqq","__a =-_: "},"shouldScroll[®]:false,"throbber":"\u003Cdiv class=\"acw apm abt\" dataigil=\"marea\">\u003Cdiv class=\" 597g\">\u003Cdiv style=\"text-align:center;\">\u003Ci class=\"img img\" style=\"background-image:

Private message

Reflection

Attack model (Gmail Authentication token)

- Gmail Authentication token:
 - Gmail provides a plain HTML version for faster browsing, which enables a search functionality as:

https://mail.google.com/mail/u/0/x/?s=q&q=<search_string>

- Each request should contain a valid, random-generated string between the 0 and x parameter of the URL.
- If no string is included, a redirection to a URL that contains such a string is applied, returning an empty result page, stating the action as incomplete.
- However, the HTML body contains both the search string and the authentication token for the account.
- Different tokens of different accounts demonstrate a fixed prefix: "AF6bup".

Attack model (Gmail Authentication token)

```
amp;pv=tl&eot=1&
amp; s=g">Compose</a><div class="notification">We cannot
complete the action at this time. Please try again using the search action above.
</div><form action="?&amp;mnut=tl&amp;v=mnu" name="f" method="post"><input
type="hidden" name="at" value="AF6bupNx9G8BD Wr7frvMfpnjj Nh 0GVQ" /><input
type="hidden" name value="?& at=AF6bupNx9G8BD wr, n. viii Nh 0GV0&
amp. - q" /><input type="hidden" name="nredir" value="?&
68 acegikmogsuwvACEGIKMOOSUWY-AF6bup0zng&s=g"
/> ipput type="hidden" name="search" value="guery" /> div class="noMatches">No
celgikmogsuwyACEGIKMOQSUWY-AF6bup0zng</div><script
type="text/is"
searchPageL....b=document.getElementsBvClass".me('searchPageLink");
for (i=0;i<searchPageLinks.length;i++) searchPageLinks[i].onclick=function(e) {var
href= .currentTarget.href; var form=document.createElement("form");
form.setAttribute("method", "post"); form.setAttribute("action", href); var
inputToken=document.createElement("input");
```

Reflection

Authentication token

Attack model (Gmail private emails)

- Gmail private emails:
 - The attacker issues a search request through a URL like:

https://mail.google.com/mail/u/0#search/<search_string>

- The response body does not include the search string, however, it contains both the Subject and a fragment of the body of the latest inbox mails.
- The attacker could send multiple mails to the victim, that would be included in the response, along with other private mails.

- Validation of secret-reflection compression:
 - We use mitmproxy¹, to extract the compressed body of a response that was obtained with the attack.
 - We use infgen², to disassemble the compressed body to the LZ77 compression of the initial data stream.

(Block ciphers)

- Original attacks assumed stream ciphers. e.g. original BREACH assumed RC4.
- [Prado, Neal, Gluck] suggested block ciphers are vulnerable, but did not provide practical attack details.
- In this work, we perform practical attacks against popular block ciphers:
 - We attack AES_128 used in Facebook, Gmail, Twitter, Wikipedia, YouTube, Amazon etc.
- We have found that the AES implementation in the NSS library displays certain patterns.

Statistical methods (Block ciphers)

```
User application payload: 1083
                                                                                User application payload: 255
                                                                                Endpoint application payload: 270
Endpoint application payload: 40
                                                                                                                      First request
                                                                                Endpoint application payload: 350
Endpoint application payload: 1524
                                                                                Endpoint application payload: 41
Endpoint application payload: 101
                                                                                User application payload: 41
                                           First request
Endpoint application payload: 1524
                                                                                User application payload: 259
Endpoint application payload: 1104
                                                                                Endpoint application payload: 74
                                                                                                                      First redirection
Endpoint application payload: 1524
                                                                                Endpoint application payload: 1395
Endpoint application payload: 2604
                                                                                Endpoint application payload: 1287
Endpoint application payload: 1351
                                                                                Endpoint application payload: 41
User application payload: 40
                                                                                User application payload: 41
                                                                                User application payload: 255
User application payload: 1083
                                                                                Endpoint application payload: 271
Endpoint application payload: 40
                                                                                                                      Second request
                                                                                Endpoint application payload: 402
Endpoint application payload: 1524
                                                                                Endpoint application payload: 41
Endpoint application payload: 101
                                                                                User application payload: 41
                                           Second request
Endpoint application payload: 1524
                                                                                User application payload: 260
Endpoint application payload: 1104
                                                                                Endpoint application payload: 70
                                                                                                                      Second redirection
Endpoint application payload: 1524
                                                                                Endpoint application payload: 1395
Endpoint application payload: 2604
                                                                                Endpoint application payload: 1304
Endpoint application payload: 1353
                                                                                Endpoint application payload: 41
                                                                                User application payload: 41
User application payload: 40
```

Facebook flow

Gmail flow

Statistical methods (Block ciphers)

```
Endpoint application payload: 214
Endpoint application payload: 340
Endpoint application payload: 36
User application payload: 3161
User application payload: 36
Endpoint application payload: 78
Endpoint application payload: 229
Endpoint application payload: 36
User application payload: 36
User application payload: 3015
Endpoint application payload: 53
Endpoint application payload: 1122
Endpoint application payload: 36
User application payload: 36
User application payload: 3142
Endpoint application payload: 80
Endpoint application payload: 340
Endpoint application payload: 36
User application payload: 36
User application payload: 3160
Endpoint application payload: 67
Endpoint application payload: 230
Endpoint application payload: 36
User application payload: 36
User application payload: 3015
Endpoint application payload: 53
Endpoint application payload: 1125
Endpoint application payload: 36
User application payload: 36
```

User application payload: 3142

Old browser flow

```
User application payload: 2220
Endpoint application payload: 98
Endpoint application payload: 362
Endpoint application payload: 41
User application payload: 41
User application payload: 2105
Endpoint application payload: 46
Endpoint application payload: 1330
Endpoint application payload: 41
User application payload: 41
User application payload: 2205
Endpoint application payload: 237
Endpoint application payload: 418
Endpoint application payload: 41
User application payload: 2220
User application payload: 41
Endpoint application payload: 98
Endpoint application payload: 259
Endpoint application payload: 41
User application payload: 41
User application payload: 2105
Endpoint application payload: 46
Endpoint application payload: 1306
Endpoint application payload: 41
User application payload: 41
User application payload: 2205
Endpoint application payload: 236
Endpoint application payload: 424
Endpoint application payload: 41
User application payload: 41
```

Newer browser flow

(Block ciphers)

- We issue a large amount of requests for each item of the attack vector.
- We calculate the mean response length for each item.
- The correct guess should converge to smaller mean response length, compared to the others.

(Huffman fixed-point)

- Huffman tables may be tampered, when different requests are issued.
- We describe a methodology to bypass this Huffman-induced noise:
 - An alphabet pool is created, containing every item in the alphabet of the secret.
 - In each request, the part of the alphabet that is not being tested is appended in the beginning.
 - Each request presents same letter frequency, although the text is rearranged.

(Huffman fixed-point)

```
?q=rynmkwi 1 2 3 4 5 6 7 8 9 Credit Card: 0znq
?q=rynmkwi 0 2 3 4 5 6 7 8 9 Credit Card: 1znq
?q=rynmkwi 0 1 3 4 5 6 7 8 9 Credit Card: 2znq
?q=rynmkwi 0 1 2 4 5 6 7 8 9 Credit Card: 3znq
?q=rynmkwi 0 1 2 3 5 6 7 8 9 Credit Card: 4znq
?q=rynmkwi 0 1 2 3 4 6 7 8 9 Credit Card: 5znq
?q=rynmkwi 0 1 2 3 4 5 7 8 9 Credit Card: 6znq
?q=rynmkwi 0 1 2 3 4 5 6 8 9 Credit Card: 7znq
?q=rynmkwi 0 1 2 3 4 5 6 7 9 Credit Card: 8znq
?q=rynmkwi 0 1 2 3 4 5 6 7 8 Credit Card: 9znq
```

Statistical methods

(Hill-climbing parallelization)

- The alphabet partitioning follows a divide-and-conquer scheme.
- Example:
 - The attack vector on digits could be as follows:

["0 2 4 6 8", "1 3 5 7 9"]

- The correct digit will be compressed with the secret, so the vector item that contains it will present better behavior.
- Each stage of the attack outputs a chosen half of the tested alphabet fragment, until the chosen half contains only one digit, which is the correct one.
- This method could reduce the time of the attack from O(|S|) to O(log|S|).

Statistical methods

(Cross-domain parallelization)

- Most websites use subdomains for specific applications, such as mobile versions.
- Cookies from the parent domain are available to the subdomains.
- If the subdomains handle similar data, containing the chosen secret, the attack could be issued against them.
- The parallelization could effectively increase the attack efficiency up to Nx, where N is the number of different subdomains.

Statistical methods

(Point-system meta-predictor)

- Experiments revealed that the correct guess does not always result in minimum mean response length.
- However, the correct item is more probable to be among the best ones over time, compared to the others, that may demonstrate only a spike in performance for a certain period.
- For that reason we introduce a point-system that evaluates the performance of each item compared to the others.

1: 20 **2:** 16

3: 12 **4**: 10

5: 8 **6**: 6

7: 4 **8:** 3

9: 2 **10**: 1

Experimental results (Facebook Chat messages)

- We created a lab account, that has no friends, no user activity of any kind, except for a self-sent private message, containing the secret.
- We choose a prefix to bootstrap the attack, while the alphabet consists of lowercase and uppercase letters.
- We issue the attack using the serial method of requests, performing 4000 iterations, with a 4 second interval between requests.

Total time

4000*52*4 = 832000 seconds = 9 days

Experimental results (Facebook Chat messages)

Experimental results (Facebook Chat messages)

Experimental results

(Gmail Authentication token)

- We use the hill-climbing parallelized attack method to steal the auth token of a regular Gmail account.
- The alphabet consists of lowercase, uppercase, digits and dashes, so the stages of the attack are log(64) = 6.
- We repeat each stage of the attack, until one of the two halves is chosen 4 times, so at most 7 attempts are made for each stage of the parallelization.

Total time

4000*7*6*4 = 672000 seconds = 7 days

Experimental results (Gmail Authentication token)

Mitigation techniques

- [Prado etc.] proposed several mitigation techniques:
 - Length hiding. In this work, we were able to defeat this mitigation measure through noise by-passing.
 - Separating secrets from user input. In this work, we were able to defeat this mitigation measure through alternative secrets: Secrets and user input are sometimes one and the same, e.g. private messages.
 - Masking secrets. This mitigation mechanism is still feasible. But we showed that many more secrets than CSRF tokens must be masked.
 - Rate limiting and monitoring. This mitigation mechanism is still feasible.
 - CSRF protection. In this work, we showed that this is not adequate mitigation, as secrets other than CSRF can be stolen.
 - Disabling compression. While this solves the problem, it is not a practical solution.

Novel mitigation techniques (Compressibility annotation)

- We propose that web servers and web application servers cooperate to indicate which portions must not be compressed.
- Web application server returns annotated response:
 - Annotation indicates where secrets are located.
 - Annotation indicates where reflection is located.
 - Annotation uses some special format.
- Must be implemented separately in every web framework, e.g. Django, Ruby on Rails.
- Web server interprets annotated web application server response and changes compression behavior.
- Annotated reflections and secrets always sent as literals
- Must be implemented separately in web servers, e.g. mod_breach for Apache, Nginx etc.

Novel mitigation techniques (SOS headers)

- [Schema, Toukharian '13] propose SOS headers as an extension to CSP.
- A policy applies to each cookie, specifying whether it should be included in a request.
- Policies applied: any, self, isolate
- Pre-flight requests are made to check for exceptions.
- If trusted websites use HSTS policy and cookies are not included in other cases, the response would not contain the secret.
- Complete mitigation of the attack.

Conclusion

- Our contributions:
 - Definition of IND-PCPA
 - Attack optimization:
 - Parallelization
 - Point-system prediction
 - Attack persistence
 - Alternative secrets
 - Experimental results on major systems
- Future work:
 - Mathematical proof for IND-PCPA properties
 - HTTP injection persistency mechanism
 - Integration of MitM attacks
 - Implementation of proxy on TCP level
 - Implementation of novel mitigation techniques

Thank you!

Questions?