ITI1500

Professeur : Ahmed Karmouch Solutions du devoir # 1

1.3

$$(4310)_5 = 4 * 5^3 + 3 * 5^2 + 1 * 5^1 = (580)_{10}$$

 $(198)_{12} = 1 * 12^2 + 9 * 12^1 + 8 * 12^0 = (260)_{10}$
 $(445)_8 = 4 * 8^2 + 4 * 8^1 + 5 * 8^0 = (293)_{10}$
 $(345)_6 = 3 * 6^2 + 4 * 6^1 + 5 * 6^0 = (137)_{10}$

1.7

$$64CD = (0110_0100_1100_1101)_2 = (110_010_011_001_101)_2 = (62315)_8$$

1.9

(a)
$$(10110.0101)_2 = 16 + 4 + 2 + .25 + .0625 = 22.3125$$

(b) $(16.5)_{16} = 16 + 6 + 5*(.0625) = 22.3125$
(c) $(26.24)_8 = 2*8 + 6 + 2/8 + 4/64 = 22.3125$
(d) $(DABA.B)_{16} = 13*16^3 + 10*16^2 + 11*16 + 10 + 11*16^{-1} = 55994.6875$
(e) $(1011.1001)_2 = 8 + 2 + 1 + .5 + .0625 = 11.5625$

1.13

(a) Convert 27.315 to binary:

Commençons par la conversion de la partie entière 27 en binaire.

$$(27)_{10} = (11011)_2$$

Ensuite, on passe à la conversion de la partie décimale :

$$.315 \times 2 = .630$$
 0
 $.630 \times 2 = .26$ **1**
 $.26 \times 2 = .52$ **0**
 $.52 \times 2 = .04$ **1**

$$(.315)_{10} \cong (.0101)_2 = .25 + .0625 = .3125$$

$27.315 \cong (11011.0101)_2$

(b)

 $2/3 \cong .66666666667$

l I	1	.3333_3333_34	.6666_6666_67 x 2 =
)	0	.666666668	.3333333334 x 2 =
L	1	.3333333336	.6666666668 x 2 =
)	0	.6666666672	.3333333336 x 2 =
L	1	.3333333344	.6666666672 x 2 =
)	0	.666666688	.3333333344 x 2 =
L	1	.3333333376	.6666666688 x 2 =
)	0	.6666666752	.3333333376 x 2 =

$$.666666667_{10} \cong (.10101010)_2 = .5 + .125 + .03125 + .0078125 = (.66406)_{10}$$

Donc résultat est près de 2/3 par 0.002606

(c)

$$(.10101010)_2 = (.1010_1010)_2 = (.\mathbf{A}\mathbf{A})_{\mathbf{16}} = 10*16^{-1} + 10*16^{-2} = .\mathbf{66406}_{\mathbf{10}}$$

Donc, c'est le même résultat

1.14

(a) 1001_0000	(b) 0000_0000	(c) 1101_1010
1s comp: 0110_1111	1s comp: 1111_1111	1s comp: 0010_0101
2s comp: 0111_0000	2s comp: 0000_0000	2s comp: 0010_0110

(d) 1010_1010	(e) 1010_0101	(f) 1111_1111
1s comp: 0101_0101	1s comp: 0101_1010	1s comp: 0000_0000
2s comp: 0101_0110	2s comp: 0101_1011	2s comp: 0000_0001

1.16

	C3AF	C3AF: 1100_0011_1010_1111
15s comp:	3C50	1s comp: 0011_1100_0101_0000
16s comp:	3C51	2s comp: 0011 1100 0101 0001 = 3C51

1.17

(a)
$$5,297 \rightarrow 9999 - 5,297 \rightarrow 4702$$
 (9s comp) $\rightarrow 4702 + 1 = 4703$ (10s comp) $6,473 - 5,297 = 6473 + 4703 \rightarrow 1176$ (on néglige la dernière retenue) Résultat: $6,473 - 5297 \rightarrow 1176$

(b)
$$1800 \rightarrow 9999-1800 \rightarrow 8199 \text{ (9s comp)} \rightarrow 8199 + 1 = 8200 \text{ (10s comp)}$$

 $125 - 1800 = 0125 + 8200 = 8325$

On Doit calculer maintenant le complément à 10 de 8325:

 $9999 - 8325 = 1674 \text{ (9s comp)} \rightarrow 1674 + 1 = 1675 \text{ (10s comp)}$ puis on ajoute le signe '-'.

Résultat: -1675

(c)
$$3,217 \rightarrow 9999 - 3217 \rightarrow 6782 \text{ (9s comp)} \rightarrow 6783 \text{ (10s comp)}$$

 $1076 - 3217 = 1076 + 6783 = 7859$

On Doit calculer maintenant le complément à 10 de 7859:

 $9999 - 7859 = 2140 \text{ (9s comp)} \rightarrow 2140 + 1 = 2141 \text{ (10s comp)}$ puis on ajoute le signe '-'.

Résultat: -2141

(d)
$$745 \rightarrow 9999 - 0745 \rightarrow 9254$$
 (9s comp) $\rightarrow 9255$ (10s comp) $1631 - 745 = 1631 + 9255 \rightarrow 886$ (on néglige la dernière retenue) Result: $1631 - 745 = 886$

1.18

(a) 10011 - 10010

Complément à 2 de 10010 est: 01110

 $10011 + 01110 \rightarrow 00001$ (on néglige la dernière retenue)

Résultat : 1

(b) 100010 - 100110

Complément à 2 de 100110 est : 011010

 $100010 + 011010 \rightarrow 111100$

On Doit calculer maintenant le complément à 2 de 111100 puis on ajoute le signe '-' :

Le complément à 2 de 111100 est : 000100

```
Résultat : - (100)<sub>2</sub>

(c) 1001 - 110101

Complément à 2 de 110101 est : 001011

001001 + 001011 = 010100

On Doit calculer maintenant le complément à 2 de 010100 puis on ajoute le signe '-' : Le complément à 2 de 010100 est : 101100

Résultat : - (101100)<sub>2</sub>

(d) 101000 - 10101

Complément à 2 de 010101 est : 101011

101000 + 101011 → 010011 (on néglige la dernière retenue)
```

Résultat : (010011)₂