Desafio Cientista de Dados

Você foi alocado(a) em um time da Indicium que está trabalhando atualmente junto a um cliente no processo de criação de uma plataforma de aluguéis temporários na cidade de Nova York. Para o desenvolvimento de sua estratégia de precificação, pediu para que a Indicium fizesse uma análise exploratória dos dados de seu maior concorrente, assim como um teste de validação de um modelo preditivo.

Seu objetivo é desenvolver um modelo de previsão de preços a partir do dataset oferecido, e avaliar tal modelo utilizando as métricas de avaliação que mais fazem sentido para o problema. O uso de outras fontes de dados além do dataset é permitido (e encorajado). Você poderá encontrar em anexo um dicionário dos dados.

Análise Exploratória de Dados

1. Faça uma análise exploratória dos dados (EDA), demonstrando as principais características entre as variáveis e apresentando algumas hipóteses de negócio relacionadas. Seja criativo!

```
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

df = pd.read_csv("teste_indicium_precificacao.csv")

df.head()
```

_ *		id	nome	host_id	host_name	bairro_group	bairro	latitude	longitude	room_type	price	minimo_noites	numero_de_revi
	0	2595	Skylit Midtown Castle	2845	Jennifer	Manhattan	Midtown	40.75362	-73.98377	Entire home/apt	225	1	
	1	3647	THE VILLAGE OF HARLEMNEW YORK!	4632	Elisabeth	Manhattan	Harlem	40.80902	-73.94190	Private room	150	3	
	2	3831	Cozy Entire Floor of Brownstone	4869	LisaRoxanne	Brooklyn	Clinton Hill	40.68514	-73.95976	Entire home/apt	89	1	
	3	5022	Entire Apt: Spacious Studio/Loft by central park	7192	Laura	Manhattan	East Harlem	40.79851	-73.94399	Entire home/apt	80	10	
	4	5099	Large Cozy 1 BR Apartment In Midtown East	7322	Chris	Manhattan	Murray Hill	40.74767	-73.97500	Entire home/apt	200	3	

Next steps: Generate code with df View recommended plots New interactive sheet df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 48894 entries, 0 to 48893 Data columns (total 16 columns): # Column Non-Null Count Dtype 0 id 48894 non-null int64 48878 non-null 1 object nome

host id 48894 non-null int64 48873 non-null host name object bairro_group 48894 non-null obiect bairro 48894 non-null object 48894 non-null latitude float64 48894 non-null longitude float64 room_type 48894 non-null object price 48894 non-null int64 10 minimo_noites 48894 non-null int64 11 numero_de_reviews 48894 non-null int64 38842 non-null 12 ultima review object 13 reviews por mes 38842 non-null float64 14 calculado_host_listings_count 48894 non-null int64 15 disponibilidade_365 48894 non-null dtypes: float64(3), int64(7), object(6) memory usage: 6.0+ MB

```
print(f"Quantidade de linhas e colunas: {df.shape}")
Quantidade de linhas e colunas: (48894, 16)
print(df.isna().sum())
<u>→</u> id
                                           a
     nome
                                          16
     host_id
                                           0
                                          21
     host_name
     bairro_group
                                           0
     bairro
                                           0
     latitude
                                           0
     longitude
                                           0
     room_type
                                           0
     price
                                           a
     minimo_noites
                                           a
     numero_de_reviews
                                           a
                                       10052
     ultima_review
     reviews_por_mes
                                       10052
     {\tt calculado\_host\_listings\_count}
                                           0
     disponibilidade_365
                                           a
     dtype: int64
df = df.dropna()
print(f"Quantidade de linhas e colunas: {df.shape}")
→ Quantidade de linhas e colunas: (38820, 16)
```

df.describe()

₹		id	host_id	latitude	longitude	price	minimo_noites	numero_de_reviews	reviews_por_mes	calculado_t
	count	3.882000e+04	3.882000e+04	38820.000000	38820.000000	38820.000000	38820.000000	38820.000000	38820.000000	
	mean	1.810127e+07	6.424747e+07	40.728131	-73.951148	142.332354	5.869346	29.290778	1.373259	
	std	1.069347e+07	7.589779e+07	0.054990	0.046693	196.997290	17.389233	48.183410	1.680339	
	min	2.595000e+03	2.438000e+03	40.506410	-74.244420	0.000000	1.000000	1.000000	0.010000	
	25%	8.722029e+06	7.032517e+06	40.688640	-73.982462	69.000000	1.000000	3.000000	0.190000	
	50%	1.887339e+07	2.837143e+07	40.721710	-73.954805	101.000000	2.000000	9.000000	0.720000	
	75%	2.756792e+07	1.019092e+08	40.762990	-73.935020	170.000000	4.000000	33.000000	2.020000	
	max	3.645581e+07	2.738417e+08	40.913060	-73.712990	10000.000000	1250.000000	629.000000	58.500000	
	4									>

bairro_grupo_counts = df['bairro_group'].value_counts()
print(bairro_grupo_counts)

⇒ bairro_group

Manhattan 16621
Brooklyn 16438
Queens 4572
Bronx 875
Staten Island 314
Name: count, dtype: int64

Podemos analisar que esse dataset apresenta 48894 linhas com 16 colunas, sendo 3 do tipo float64, 7 do tipo int64, 6 do tipo object, onde temos valores ausentes nas colunas nome, host_name, ultima_review e reviews_por_mes.

Após realizar a exclusão dos dados com valores ausentes o mesmo dataset com 38820 linhas e 16 colunas

Apresentamos uma média de \$ 142,33 por diária, onde a média do mínimo de noites utilizadas fica entre 5 noites e o local apresenta uma média durante o ano de disponibilidade de 114 dias.

Verificando correlação entre variáveis

plt.ylabel('Preço Médio por Noite')
plt.show()

Com base na análise dos dados e na visualização apresentada, observamos que há uma variação significativa nos preços médios por noite dependendo do tipo de acomodação.

As casas/apartamentos inteiros têm um preço médio mais alto (196,32), seguidos pelos quartos privados (83,98) e quartos compartilhados (63,21). Essa diferença nos preços reflete a variedade de opções de hospedagem disponíveis e suas respectivas ofertas de privacidade e comodidade.

A análise dos dados sobre a quantidade de anúncios por tipo de quarto mostra uma distribuição clara no mercado de acomodações para "Entire home/apt" (Casa/Apartamento completo), "Private room" (Quarto privado) e "Shared room" (Quarto compartilhado):

- Entire home/apt (Casa/Apartamento completo): Com 20321 anúncios, é a categoria mais anunciada, indicando alta oferta e
 potencialmente maior retorno financeiro.
- Private room (Quarto privado): Com 17653 anúncios, esta categoria oferece uma opção intermediária, proporcionando privacidade a um custo potencialmente menor.
- Shared room (Quarto compartilhado): Com 846 anúncios, é a categoria menos anunciada, possivelmente refletindo menor demanda ou atratividade para os proprietários.

```
df['disponibilidade_media'] = df.groupby('room_type')['disponibilidade_365'].transform('mean')
df['taxa_ocupacao'] = 365 - df['disponibilidade_365']
disponibilidade_media = df.groupby('room_type')['disponibilidade_media'].mean()
taxa_ocupacao = df.groupby('room_type')['taxa_ocupacao'].mean()
palette = 'viridis'
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6))
ax1.set_title('Disponibilidade Média por Tipo de Quarto (dias/ano)')
ax1.set_xlabel('Tipo de Quarto')
ax1.set_ylabel('Disponibilidade Média (dias/ano)')
bars1 = sns.barplot(x=disponibilidade_media.index, y=disponibilidade_media, palette=
                   palette, ax=ax1)
ax1.tick_params(axis='y')
for p in bars1.patches:
    ax1.annotate(format(p.get_height(), '.1f'),
                 (p.get_x() + p.get_width() / 2., p.get_height()),
                 ha='center', va='center', xytext=(0, 9), textcoords='offset points')
ax2.set_title('Taxa de Ocupação por Tipo de Quarto')
ax2.set_xlabel('Tipo de Quarto')
ax2.set_ylabel('Taxa de Ocupação (dias/ano)')
bars2 = sns.barplot(x=taxa_ocupacao.index, y=taxa_ocupacao, palette=palette, ax=ax2)
ax2.tick_params(axis='y')
for p in bars2.patches:
    ax2.annotate(format(p.get_height(), '.1f'),
                 (p.get_x() + p.get_width() / 2., p.get_height()),
                 ha='center', va='center', xytext=(0, 9), textcoords='offset points')
fig.suptitle('Disponibilidade Média e Taxa de Ocupação por Tipo de Quarto')
plt.show()
```

₹

Disponibilidade Média e Taxa de Ocupação por Tipo de Quarto

A análise da disponibilidade média por tipo de quarto revela algumas percepções interessantes sobre a dinâmica do mercado de hospedagem:

- Entire home/apt (Casa/Apartamento inteiro): Disponibilidade média de 111,4 dias por ano, sugerindo uma demanda estável para acomodações completas que oferecem maior privacidade e espaço.
- Private room (Quarto privado): Disponibilidade média de 116,5 dias por ano, indicando que quartos privados são igualmente procurados, oferecendo um bom equilíbrio entre custo e privacidade.
- Shared room (Quarto compartilhado): Disponibilidade média significativamente maior, com 166 dias por ano, possivelmente devido à menor demanda por quartos compartilhados.

Já quanto a taxa de ocupação por tipo de quarto, observamos as seguintes tendências:

- Entire home/apt: 253,6 dias
- · Private room: 248,5
- · Shared room: 199 dias

Concluímos desse modo que Entire home/apt (Casa/Apartamento inteiro) e Private room (Quarto privado) têm disponibilidades médias e taxas de ocupação similares, sugerindo popularidade equivalente. Já Shared room (Quarto compartilhado) apresenta maior disponibilidade média e menor taxa de ocupação, indicando menor demanda.

- 2. Responda também às seguintes perguntas:
- a. Supondo que uma pessoa esteja pensando em investir em um apartamento para alugar na plataforma, onde seria mais indicada a compra?

```
df['taxa_ocupacao'] = 365 - df['disponibilidade_365']
bairro_preco_disponibilidade= df.groupby('bairro_group').agg({
    'price': 'mean'.
    'disponibilidade_365': 'mean',
    'taxa_ocupacao': 'mean'
}).reset_index()
fig, axes = plt.subplots(1, 3, figsize=(24, 8), sharey=False)
sns.barplot(ax=axes[\theta], \ x='bairro\_group', \ y='price', \ data=bairro\_preco\_disponibilidade, \ palette='magma', \ ci=None)
axes[0].set_title('Preço Médio por Bairro')
axes[0].set_xlabel('Grupo de Bairro')
axes[0].set_ylabel('Preço Médio')
for p in axes[0].patches:
    axes[0].annotate(format(p.get_height(), '.1f'),
                     (p.get_x() + p.get_width() / 2., p.get_height()),
                     ha='center', va='center', xytext=(0, 9), textcoords='offset points')
sns.barplot(ax=axes[1], x='bairro_group', y='disponibilidade_365', data=bairro_preco_disponibilidade, palette='magma', ci=None)
axes[1].set_title('Disponibilidade Média por Grupo de Bairro')
axes[1].set xlabel('Grupo de Bairro')
axes[1].set_ylabel('Disponibilidade Média (dias/ano)')
for p in axes[1].patches:
    axes[1].annotate(format(p.get_height(), '.1f'),
                     (p.get_x() + p.get_width() / 2., p.get_height()),
                     ha='center', va='center', xytext=(0, 9), textcoords='offset points')
sns.barplot(ax=axes[2], x='bairro_group', y='taxa_ocupacao', data= bairro_preco_disponibilidade, palette='magma', ci=None)
axes[2].set_title('Taxa de Ocupação por Grupo de Bairro')
axes[2].set_xlabel('Grupo de Bairro')
axes[2].set_ylabel('Taxa de Ocupação (dias/ano)')
for p in axes[2].patches:
    axes[2].annotate(format(p.get_height(), '.1f'),
                     (p.get_x() + p.get_width() / 2., p.get_height()),
                     ha='center', va='center', xytext=(0, 9), textcoords='offset points')
plt.tight_layout()
plt.show()
```


<> ⇔ 🖾 🤫 🗮 🖽 τT

Nesse código calculamos a taxa de ocupação subtraindo a disponibilidad Nesse código calculamos a taxa de ocupação subtraindo a (disponibilidade_365) de 365 dias, e agrupamos os dados por grupo de bairro para calcular a média do preço, disponibilidade e taxa de ocupação. Criamos três gráficos de barras para visualizar esses dados: o preço médio, a disponibilidade média e a taxa de ocupação por grupo de bairro.

Com base nessas métricas, aqui estão algumas sugestões de bairros para investir:

- **Manhattan**: Alta demanda e preços mais altos, indicando um mercado forte, mas com maior competição.
- 2. **Brooklyn**: Alta taxa de ocupação com preços médios equilibrados, ótima opção para bom retorno sobre o investimento.
- 3. **Queens**: Equilíbrio entre custo e retorno, boa taxa de ocupação menor competição em comparação com Manhattan e Brooklyn.

Análise Preco Médio por Bairro:

Manhattan: \$180.1

Brooklyn: \$121,5

Staten Island: \$90

Queens: \$95,8

Bronx: \$79,6

<br

Disponibilidade Média (dias/ano):

* Staten Island: 205,6 dias

* Brooklyn: 105,8 dias

* Bronx: 171,1 dias

* Manhattan: 109,3 dias

* Queens: 150,6 dias

Taxa de Ocupação (dias/ano):

* Brooklyn: 259,2 dias

* Staten Island: 159,4 dias

* Bronx: 193.9 dias

disponibilidade (disponibilidade_365) de 365 dias, e agrupamos os dados por grupo de bairro para calcular a média do preço, disponibilidade e taxa de ocupação. Criamos três gráficos de barras para visualizar esses dados: o preço médio, a disponibilidade média e a taxa de ocupação por grupo de

Com base nessas métricas, aqui estão algumas sugestões de bairros para investir:

- 1. Manhattan: Alta demanda e preços mais altos, indicando um mercado forte, mas com maior competição.
- 2. Brooklyn: Alta taxa de ocupação com preços médios equilibrados, ótima opção para bom retorno sobre o investimento.
- 3. Queens: Equilíbrio entre custo e retorno, boa taxa de ocupação e menor competição em comparação com Manhattan e Brooklyn.

Análise Preço Médio por Bairro:

Manhattan: \$180,1

• Brooklyn: \$121,5

· Staten Island: \$90

Queens: \$95,8

Bronx: \$79,6

Disponibilidade Média (dias/ano):

· Staten Island: 205,6 dias

· Brooklyn: 105,8 dias

• Bronx: 171,1 dias

Manhattan: 109,3 dias

Queens: 150,6 dias

Taxa de Ocupação (dias/ano):

· Brooklyn: 259,2 dias

· Staten Island: 159,4 dias

Bronx: 193,9 dias

Manhattan: 255,7 dias

Queens: 214,4 dias


```
* Manhattan: 255,7 dias
* Oueens: 214.4 dias
```

b. O número mínimo de noites e a disponibilidade ao longo do ano interferem no preço?

```
df['last_review'] = pd.to_datetime(df['ultima_review'], errors='coerce')
df['mes'] = df['last_review'].dt.month
mes_preco_disponibilidade = df.groupby('month').agg({
    'minimo_noites': 'mean',
    'disponibilidade_365': 'mean',
    'price': 'mean
}).reset_index()
fig, axes = plt.subplots(1, 3, figsize=(18, 6), sharex=True)
sns.lineplot(ax=axes[0], x='month', y='minimo_noites', data=mes_preco_disponibilidade, marker='o', color='b')
axes[0].set_title('Número Mínimo de Noites por Mês')
axes[0].set_xlabel('Mês')
axes[0].set_ylabel('Número Mínimo de Noites')
sns.lineplot(ax=axes[1], x='month', y='disponibilidade 365', data=mes preco disponibilidade, marker='o', color='g')
axes[1].set title('Disponibilidade Média por Mês')
axes[1].set_xlabel('Mês')
axes[1].set_ylabel('Disponibilidade Média (dias/ano)')
sns.lineplot(ax=axes[2], x='month', y='price', data=mes_preco_disponibilidade, marker='o', color='r')
axes[2].set_title('Preço Médio por Mês')
axes[2].set_xlabel('Mês')
axes[2].set_ylabel('Preço Médio')
plt.tight_layout()
plt.show()
```


Este código transforma a coluna ultima_review do dataFrame em um formato de data, dessa forma extrai o mês e cria uma nova coluna **mes**. Em seguida, agrupa os dados por mês, calculando a média de minimo_noites, disponibilidade_365 e price. Posteriormente, criamos três gráficos de linha onde mostram o número mínimo de noites, a disponibilidade média e o preço médio por mês, sendo que cada gráfico está organizado com títulos e rótulos apropriados, e a figura é ajustada e exibida.

A análise das tendências mensais em relação ao número mínimo de noites, disponibilidade média e preço médio:

Número Mínimo de Noites por Mês:

Variação significativa ao longo dos meses, com picos em fevereiro, março, agosto e novembro acima de 8 noites e a média dos meses ficaram entre 7 noites, percebemos uma queda notável em junho e julho.

Disponibilidade Média por Mês:

Pico em junho (acima de 140 dias).

Queda significativa em agosto, indicando aumento nas reservas.

Preço Médio por Mês:

Flutuações ao longo do ano e um pico notável em dezembro (cerca de 160 dolares), podemos supor que é devido à alf festas de fim de ano ou férias.

Concluímos dessa forma que o número mínimo de noites não interfere no preço, mas a disponibilidade média por mês é um fator de grande impacto como pode ser visto no mês de dezembro que tem pouca disponibilidade afetando dessa forma o valor da diária.

C. Existe algum padrão no texto do nome do local para lugares de mais alto valor?

```
from wordcloud import WordCloud
from collections import Counter
limite_valor_alto = df['price'].quantile(0.75)
locais_valor_alto = df[df['price'] >= limite_valor_alto]
locais_valor_alto.loc[:, 'nome'] = locais_valor_alto['nome'].fillna('')
locais_valor_alto.loc[:, 'nome'] = locais_valor_alto['nome'].str.replace('[^\w\s]', '', regex=True).str.lower()
palavras = ' '.join(locais_valor_alto['nome']).split()
palavras_frequentes = Counter(palavras)
nuvem de palavras = WordCloud(width=800, height=400, background color='white').generate from frequencies(palavras frequentes)
plt.figure(figsize=(10, 5))
plt.imshow(nuvem_de_palavras, interpolation='bilinear')
plt.axis('off')
plt.title('Palavras Comuns Utilizadas nos Locais de Alto Valor')
plt.show()
palavras_mais_usadas = palavras_frequentes.most_common(20)
print("Palavras mais comuns em locais de alto valor:")
for palavra, frequencia in palavras_mais_usadas:
    print(f"{palavra}: {frequencia}")
<del>_</del>
                               Palavras Comuns Utilizadas nos Locais de Alto Valor
```

kitchenrooftop mins de convenient to the conveni

Palavras mais comuns em locais de alto valor: in: 2746 apartment: 1492 bedroom: 1413 2: 1190 apt: 1183 village: 884 the: 878 studio: 794 spacious: 792 1: 791 of: 747 loft: 743 east: 738 park: 720 luxury: 690 with: 664 manhattan: 659 williamsburg: 595 brooklyn: 586

private: 570

Este código cria uma nuvem de palavras mais usadas nos locais de alto valor, filtrando os locais cujo preço é maior ou igual ao terceiro quartil de preços. Assim ele limpa e formata os nomes, conta a frequência das palavras, gerando a nuvem de palavras e exibe as palavras mais comuns.

A análise das palavras mais comuns nos nomes dos locais de alto valor revela tendências interessantes sobre o que t

Frequência das Palavras:

- Termos como "in," "apartment," "bedroom," e "apt" são comuns, descrevendo o tipo de propriedade.
- Números como "2" e "1" indicam a quantidade de quartos nos locais.

Palavras Descritivas:

- Termos como "village," "studio," "loft," e "1br" são frequentes, valorizando o estilo ou tamanho da propriedade.
- "East" e "west" indicam a localização dentro da cidade como um fator relevante.

Atributos de Luxo:

- Palavras como "luxury," "spacious," e "park" aparecem com alta frequência, indicando que características de luxo e espaço são valorizadas
- "Manhattan" e "Williamsburg" são áreas de alto valor em Nova York, destacando a importância da localização.

Insights e Aplicações:

- Proprietários e Anunciantes: Usar essas palavras-chave pode atrair potenciais clientes, melhorando a percepção de valor.
- Viajantes: Procurar essas palavras-chave pode garantir propriedades que atendam às expectativas de luxo e conveniência.
- Mercado de Aluguel: Ajustar estratégias de marketing e preços com base nas tendências observadas.

Conclusão: A escolha das palavras certas pode impactar significativamente a percepção e o valor de um local. Palavras que sugerem luxo, espaço e localização estratégica são frequentemente associadas a preços mais elevados.

3. Explique como você faria a previsão do preço a partir dos dados. Quais variáveis e/ou suas transformações você utilizou e por quê? Qual tipo de problema estamos resolvendo (regressão, classificação)? Qual modelo melhor se aproxima dos dados e quais seus prós e contras? Qual medida de performance do modelo foi escolhida e por quê?

```
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean squared error, mean absolute error, r2 score
X = df.drop(columns=['price'])
y = df['price']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
numerical_features = ['minimo_noites', 'disponibilidade_365', 'numero_de_reviews', 'reviews_por_mes', 'latitude', 'longitude']
categorical_features = ['room_type', 'bairro_group']
preprocessor = ColumnTransformer(
   transformers=[
        ('num', StandardScaler(), numerical_features),
        ('cat', OneHotEncoder(), categorical_features)])
model = Pipeline(steps=[
    ('preprocessor', preprocessor),
    ('regressor', RandomForestRegressor(random_state=42))])
model.fit(X train, y train)
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
rmse = mse ** 0.5
mae = mean_absolute_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print(f"RMSE: {rmse}")
print(f"MAE: {mae}")
print(f"R2: {r2}")
₹ RMSE: 164.2931250712738
     MAE: 55.154957496136014
     R2: 0.17773788797795853
```

Este código realiza a previsão de preços utilizando o algoritmo RandomForestRegressor. Primeiramente, importamos as bibliotecas necessárias e separa os dados em variáveis independentes (X) e dependente (y).

Posteriormente, dividimos os dados em conjuntos de treino e teste. Em seguida, identifica as características numéricas e categóricas, criando uma pipeline que inclui pré-processamento e regressão.

Treina o modelo com os dados de treino e faz previsões no conjunto de teste. Calcula e imprimindo as métricas de err (RMSE), erro absoluto médio (MAE) e coeficiente de determinação (R²) para avaliar o desempenho do modelo.

Estamos resolvendo um problema de regressão, pois queremos prever um valor numérico (preço). Utilizamos nesse caso a Random Forest (Árvore de Decisão) para capturar relações não lineares e interações entre variáveis.

Como prós e contras podemos citar:

Prós: Bom desempenho com dados não lineares, menor necessidade de pré-processamento.

Contras: Pode ser propenso a overfitting se não for bem ajustado.

Com base nas métricas de performance obtidas:

RMSE (Root Mean Square Error): 164.29 - Indica que a previsão de preço tem um erro médio de aproximadamente 164.29.

MAE (Mean Absolute Error): 55.15 - Indica que a previsão de preço está off por cerca de 55.15.

R² (Coeficiente de Determinação): 0.17 - Indica que o modelo explica apenas 17% da variabilidade dos preços dos aluquéis.

Interpretando os Resultados:

- RMSE: Um valor alto sugere a necessidade de melhorar a precisão do modelo.
- MAE: Embora menor que o RMSE, reforça a necessidade de ajustes no modelo.
- R²: Um valor muito baixo indica que o modelo não está capturando bem os padrões presentes nos dados.

Sugestões de Próximos Passos para Melhorar o Modelo:

- Engenharia de Features: Criar novas features, como interações entre latitude e longitude, agrupamento de categorias, dentre outros.
- Seleção de Modelos: Testar outros modelos de regressão, como Gradient Boosting (XGBoost, LightGBM).
- Validação Cruzada: Continuar utilizando para garantir que o modelo não está overfitting.
- · Tratamento de Outliers: Verificar e tratar outliers que possam estar afetando a performance do modelo.
- 4. Supondo um apartamento com as seguintes características:

```
{'id': 2595,
  'nome': 'Skylit Midtown Castle',
  'host_id': 2845,
  'host_name': 'Jennifer',
  'bairro group': 'Manhattan',
  'bairro': 'Midtown'.
  'latitude': 40.75362,
  'longitude': -73.98377,
  'room_type': 'Entire home/apt',
  'minimo_noites': 1,
  'numero_de_reviews': 45,
  'ultima review': '2019-05-21',
  'reviews por mes': 0.38,
  'calculado host listings count': 2,
  'disponibilidade_365': 355}
Qual seria a sua sugestão de preço?
def prever_preco(novo_apartamento):
    df_novo = pd.DataFrame([novo_apartamento])
    preco_previsto = model.predict(df_novo)[0]
    return preco_previsto
novo apartamento = {
    'id': 2595,
    'nome': 'Skylit Midtown Castle',
    'host_id': 2845,
    'host_name': 'Jennifer',
    'bairro_group': 'Manhattan',
    'bairro': 'Midtown',
    'latitude': 40.75362,
    'longitude': -73.98377,
    'room_type': 'Entire home/apt',
    'minimo_noites': 1,
    'numero_de_reviews': 45,
    'ultima_review': '2019-05-21',
    'reviews_por_mes': 0.38,
    'calculado_host_listings_count': 2,
    'disponibilidade_365': 355
}
preco_sugerido = prever_preco(novo_apartamento)
print(f"Preço sugerido: ${preco_sugerido:.2f}")
→ Preço sugerido: $291.12
```


A previsão do preço utilizando um modelo de Random Forest estima \$291,12 para o apartamento "Skylit Midtown Castle," considerando a localização em Manhattan, o tipo de quarto por ser Entire home/Apt (Casa inteira/Apartamento) e a alta disponibilidade influenciam no alto valor.

Considerações Finais:

- Características de Luxo e Localização Premium: Contribuem significativamente para o preço elevado.
- Alta Disponibilidade: 355 dias no ano, afetando a demanda e o preço.
- Número de Reviews: 45 reviews, indicando boa avaliação e confiabilidade.
- ▼ 5. Salve o modelo desenvolvido no formato .pkl.

```
import joblib
# Salvar o modelo, utilizamos o compress para reduzir o tamanho do arquivo e poder fazer o upload no GitHub
joblib.dump(model, 'modelo_previsao_preco.pkl', compress=7)

______ ['modelo_previsao_preco.pkl']
```

Could not connect to the reCAPTCHA service. Please check your internet connection and reload to get a reCAPTCHA challenge.

