

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE160901001

FCC REPORT

(BLE)

Applicant: Awear Solutions

Address of Applicant: 12 Rekanati St., Tel-Aviv, Israel 6949412

Equipment Under Test (EUT)

Product Name: Bluetooth Module

Model No.: AW-12

Trade mark: Awear

FCC ID: 2AJOV-AW12AZ

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 31 Aug., 2016

Date of Test: 31 Aug., to 21 Sep., 2016

Date of report issued: 22 Sep., 2016

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	22 Sep., 2016	Original

Tested by:

Test Engineer

Date: 22 Sep., 2016

Test Engineer

Reviewed by: Over User Date: 22 Sep., 2016

Project Engineer

3 Contents

			Page
1	cov	/ER PAGE	1
2	VER	SION	2
3		ITENTS	
4	TES'	T SUMMARY	4
5		IERAL INFORMATION	
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	MEASUREMENT UNCERTAINTY	
	5.5	LABORATORY FACILITY	
	5.6	LABORATORY LOCATION	
	5.7	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	15
	6.5	Power Spectral Density	
	6.6	BAND EDGE	20
	6.6.1	Conducted Emission Method	20
	6.6.2	2 Radiated Emission Method	22
	6.7	Spurious Emission	27
	6.7.1	Conducted Emission Method	27
	6.7.2	2 Radiated Emission Method	30
7	TES	T SETUP PHOTO	35
8	FUT	CONSTRUCTIONAL DETAILS	37

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Awear Solutions
Address of Applicant:	12 Rekanati St., Tel-Aviv, Israel 6949412
Manufacturer	Shenzhen RF-star Technology Co., Ltd
Address of Manufacturer:	2F, Block 8, A Zone, Internet Industry Base, Baoyuan Road, Bao'an District, Shenzhen 518100, P.R.China

5.2 General Description of E.U.T.

Product Name:	Bluetooth Module
Model No.:	AW-12
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.06 dBi
Power supply:	AC 120V/60Hz

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

Report No: CCISE160901001

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode Keep the EUT in continuous transmitting with modulation				

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Rad	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-25-2016	03-25-2017		
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-25-2016	03-25-2017		
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2016	03-31-2017		
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2016	03-31-2017		
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2016	03-31-2017		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2016	03-31-2017		
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2016	03-28-2017		
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2016	03-28-2017		
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2016	03-31-2017		
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

Con	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017		
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-24-2016	03-24-2017		
3	LISN	CHASE	MN2050D	CCIS0074	03-26-2016	03-26-2017		
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2016	03-31-2017		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

5.8 Description of Support Units

Manufacturer	Description	Model	S/N	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.06 dBi.

6.2 Conducted Emission

<u> </u>	S.E. Golfadolou Elificolon							
	Test Requirement:	FCC Part 15 C Section 15.207						
	Test Method:	ANSI C63.4: 2014						
	Test Frequency Range:	150 kHz to 30 MHz						
	Class / Severity:	Class B						
	Receiver setup:	RBW=9kHz, VBW=30kHz						
	Limit:	Fragues of reads (MHz)	Limit	(dBuV)				
		Frequency range (MHz)	Quasi-peak	Average				
		0.15-0.5	66 to 56*	56 to 46*				
		0.5-5	56	46				
		5-30	60	50				
		* Decreases with the logar						
	Test procedure	line impedance state 500hm/50uH coupling 2. The peripheral device a LISN that provides termination. (Please photographs). 3. Both sides of A.C. interference. In order positions of equipments	pilization network (L.I.S g impedance for the meaners are also connected to a 500hm/50uH coupling refer to the block diagral line are checked for to find the maximum	the main power through impedance with 50ohm im of the test setup and r maximum conducted a emission, the relative cables must be changed				
	Test setup:	LISN	E.U.T EMI Receiver	ilter — AC power				
	Test Instruments:	Refer to section 5.7 for det	tails					
	Test mode:	Refer to section 5.3 for det	tails					
	Test results:	Passed						

Measurement Data:

Neutral:

Trace: 3 Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT : Bluetooth Module

Model : AW-12 Test Mode : BLE mode Power Rating : AC120/60HZ

Environment : Temp: 23 °C Huni: 56% Atmos: 101KPa

Test Engineer: steven

Remark	:	-						
		Read	LISN	Cable	E 18.00	Limit	Over	600
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∀	<u>d</u> B	₫B	dBu₹	dBu₹	<u>dB</u>	
1	0.154	23.13	0.12	10.78	34.03	55.78	-21.75	Average
2	0.158	27.97	0.13	10.78	38.88	65.56	-26.68	QP
3	0.258	20.17	0.17	10.75	31.09	61.51	-30.42	QP
4	0.258	14.08	0.17	10.75	25.00	51.51	-26.51	Average
1 2 3 4 5 6 7 8 9	1.552	9.22	0.26	10.93	20.41	46.00	-25.59	Average
6	1.810	14.35	0.26	10.95	25.56	56.00	-30.44	QP
7	8.683	11.67	0.27	10.88	22.82	50.00	-27.18	Average
8	8.822	17.36	0.27	10.89	28.52	60.00	-31.48	QP
9	16.928	21.15	0.27	10.91	32.33	50.00	-17.67	Average
10	18.920	23.89	0.28	10.92	35.09	60.00	-24.91	QP
11	22.896	22.65	0.25	10.89	33.79	50.00	-16.21	Average
12	23.018	26.69	0.25	10.89	37.83	60.00	-22.17	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Line:

Trace: 1

Site : CCIS Shielding Room Condition : FCC PART15 B QP LISN LINE

EUT : Bluetooth Module

Model : AW-12 Test Mode : BLE mode Power Rating : AC120/60HZ

Power Rating: AC120/60HZ Environment: Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: steven

Remark

kemark -								
	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
	MHz	dBu∀	dB	dB	dBu∀	dBu∀	dВ	
1	0.154	20.46	0.14	10.78	31.38	55.78	-24.40	Average
2	0.166	28.13	0.14	10.77	39.04	65.16	-26.12	QP
3	0.258	20.23	0.16	10.75	31.14	61.51	-30.37	QP
4	0.258	14.49	0.16	10.75	25.40	51.51	-26.11	Average
1 2 3 4 5 6 7 8 9	4.269	21.00	0.34	10.88	32.22	56.00	-23.78	QP
6	4.269	15.74	0.34	10.88	26.96	46.00	-19.04	Average
7	5.683	21.28	0.35	10.83	32.46	60.00	-27.54	QP
8	5.683	17.86	0.35	10.83	29.04	50.00	-20.96	Average
9	19.428	23.34	0.33	10.92	34.59	50.00	-15.41	Average
10	19.532	25.43	0.33	10.93	36.69	60.00	-23.31	QP
11	22.535	28.00	0.35	10.89	39.24	60.00	-20.76	QP
12	22.775	24.60	0.35	10.89	35.84	50.00	-14.16	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement: Test Method:	FCC Part 15 C Section 15.247 (b)(3) ANSI C63.10:2013 and KDB558074v03r05 section 9.1.1		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Test CH	Peak Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-0.63		
Middle	-0.76	30.00	Pass
Highest	-0.93		

Test plot as follows:

Date: 18.SEP.2016 16:50:00

Lowest channel

Date: 18.SEP.2016 16:50:39

Middle channel

Date: 18.SEP.2016 16:51:17

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)					
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 8.1					
Limit:	>500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result		
Test Off	odb Emission Bandwidth (MHz)	LIIIII(KI IZ)	Result		
Lowest	0.558				
Middle	0.570	>500	Pass		
Highest	0.570				
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result		
Lowest	1.128				
Middle	1.128	N/A	N/A		
Highest	1.128				

Test plot as follows:

Date: 18.SEP.2016 16:53:23

Lowest channel

Date: 18.SEP.2016 16:54:43

Middle channel

Date: 18.SEP.2016 16:56:40

Highest channel

Date: 18.SEP.2016 17:18:57

Lowest channel

Date: 18.SEP.2016 17:19:23

Middle channel

Date: 18.SEP.2016 17:20:05

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)				
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 10.2				
Limit:	8 dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-0.68		
Middle	-0.79	8.00	Pass
Highest	-0.97		

Test plots as follow:

Date: 18.SEP.2016 16:59:10

Lowest channel

Date: 18.SEP.2016 16:58:47

Middle channel

Date: 18.SEP.2016 16:58:13

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

T 15 1	500 D 145 0 O 15 45 047 ()					
Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 13					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer					
	E.U.T					
	Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

Date: 18.SEP.2016 17:02:07

Lowest channel

Date: 18.SEP.2016 17:04:04

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 2013 and KDB 558074v03r05 section 12.1							
Test Frequency Range:	2.3GHz to 2.5GHz							
Test site:	Measurement Distance: 3m							
Receiver setup:	Frequency	Detecto						
·	Above 1GHz	Peak		1MHz	3MHz		Peak Value	
		RMS		1MHz		MHz	Average Value	
Limit:	Frequer	ncy	,	BuV/m @3	Bm)	Δ.	Remark	
	Above 10	GHz –		54.00 74.00		Average Value Peak Value		
Test Procedure:	the groun to determ 2. The EUT antenna, tower. 3. The anter the groun Both horiz make the 4. For each case and meters ar to find the 5. The test-I Specified 6. If the emithe limits of the EU have 10 ce	ad at a 3 menine the positives set 3 ments was set 3 ments and to determine a suspected of them the and the rota to the maximum receiver systems. Bandwidth a specified, the T would be dB margin was set 3 ments and the rota to the maximum receiver systems.	ter cambition of the neters as mounted as varied sine the reference was reading. The term was with Major the Elen testin reported yould be	per. The tall he highest way from the don the top from one near maximum voolarizations as turned from the set to Peak simum Hold JT in peak g could be d. Otherwis re-tested of the highest to the top	ole wradiane into of a neter value s of the was a being om 0 modern stopped the one brief one br	as rotation. erference variable to four of the fi he antel arrange ghts fror degrees etect Fun de was 1 ped ance e mission y one us	25 meters above ted 360 degrees ded 360 degrees de-receiving e-height antenna defended at the peak values ons that did not sing peak, quasi-rted in a data	
Test setup:		AE EUT		3m	Antenna Antenna Co	Antenna Tox	wer	
Test Instruments:	Refer to section	on 5.7 for de	etails					
Test mode:	Refer to section	on 5.3 for de	etails					
Test results:	Passed							

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Bluetooth Module EUT

Model

: AW-12 : BLE-L Mode Test mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: steven

REMARK

	2000		Antenna Factor						
2	MHz	dBu∇	<u>dB</u> /m	<u>d</u> B	<u>ab</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2390.000 2390.000								

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Bluetooth Module

: AW-12 : BLE-L Mode Model Test mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: steven REMARK :

1 2

Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark	
MHz	dBu∜		<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>		
2390.000 2390.000									

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Bluetooth Module Condition

EUT

: AW-12 Model Test mode : BLE-H Mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: steven REMARK :

1 2

DUT!	Tr.									
		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu∜	<u>dB</u> /π	<u>ab</u>	<u>ab</u>	dBuV/m	dBuV/m	<u>dB</u>		
783	2483.500	22.58	23.70	4.81	0.00	51.09	74.00	-22.91	Peak	
)	2483,500	7, 80	23, 70	4.81	0.00	36, 31	54,00	-17.69	Average	

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Bluetooth Module

: AW-12 : BLE-H Mode Model Test mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: steven REMARK :

	2000			Cable Preamp Loss Factor					
2	MHz	dBu∜	— <u>d</u> B/π			$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
	2483.500 2483.500								

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 11						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer E.U.T Non-Conducted Table						
	Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Date: 18.SEP.2016 17:06:24

30MHz~25GHz

Date: 18.SEP.2016 17:07:31

30MHz~25GHz

Date: 18.SEP.2016 17:08:53

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205									
Test Method:	ANSI C63.10:20	013								
Test Frequency Range:	9KHz to 25GHz									
Test site:	Measurement D	istance: 3	3m							
Receiver setup:	Frequency	Detecto	r	RBW	VB	W	Remark			
·	30MHz-1GHz	Quasi-pea	ak	120KHz	300k	KHz	Quasi-peak Value			
	Above 1GHz	Peak		1MHz	3M		Peak Value			
		RMS		1MHz	3M	Hz	Average Value			
Limit:	Frequency		Limit	(dBuV/m @	:3m)		Remark			
	30MHz-88M			40.0			uasi-peak Value			
	88MHz-216N			43.5			uasi-peak Value			
	216MHz-960M	1		46.0			uasi-peak Value			
	960MHz-1G	Hz		54.0			uasi-peak Value			
	Above 1GF	lz –								
Test Procedure:	4 71 5117									
	Above 1GHz 54.0 Average Value 1. The EUT was placed on the top of a rotating table 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.									

Below 1GHz:

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL Condition

EUT : Bluetooth Module

: AW-16 Model Test mode : BLE Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: steven

REMARK

Freq							Over Limit	
MHz	dBu∀	<u>dB</u> /m		<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$		
47.994	48.85	16.10	1.27	29.84	36.38	40.00	-3.62	QP
96.099	56.99	8.93	2.00	29.55	38.37	43.50	-5.13	QP
119.856	56.23	11.80	2.17	29.39	40.81	43.50	-2.69	QP
144.335	56.70	11.27	2.45	29.25	41.17	43.50	-2.33	QP
167.824	54.94	9.82	2.64	29.07	38.33	43.50	-5.17	QP
192.419	56.75	9.84	2.82	28.88	40.53	43.50	-2.97	QP
	MHz 47.994 96.099 119.856 144.335	MHz dBuV 47.994 48.85 96.099 56.99 119.856 56.23 144.335 56.70 167.824 54.94	Freq Level Factor MHz dBuV dB/m 47.994 48.85 16.10 96.099 56.99 8.93 119.856 56.23 11.80 144.335 56.70 11.27 167.824 54.94 9.82	Freq Level Factor Loss MHz dBuV dB/m dB 47.994 48.85 16.10 1.27 96.099 56.99 8.93 2.00 119.856 56.23 11.80 2.17 144.335 56.70 11.27 2.45 167.824 54.94 9.82 2.64	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 47.994 48.85 16.10 1.27 29.84 96.099 56.99 8.93 2.00 29.55 119.856 56.23 11.80 2.17 29.39 144.335 56.70 11.27 2.45 29.25 167.824 54.94 9.82 2.64 29.07	Freq Level Factor Loss Factor Level MHz dBuV dB/m dB dB dBuV/m 47.994 48.85 16.10 1.27 29.84 36.38 96.099 56.99 8.93 2.00 29.55 38.37 119.856 56.23 11.80 2.17 29.39 40.81 144.335 56.70 11.27 2.45 29.25 41.17 167.824 54.94 9.82 2.64 29.07 38.33	MHz dBuV dB/m dB dB dBuV/m dBuV/m 47.994 48.85 16.10 1.27 29.84 36.38 40.00 96.099 56.99 8.93 2.00 29.55 38.37 43.50 119.856 56.23 11.80 2.17 29.39 40.81 43.50 144.335 56.70 11.27 2.45 29.25 41.17 43.50 167.824 54.94 9.82 2.64 29.07 38.33 43.50	Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 47.994 48.85 16.10 1.27 29.84 36.38 40.00 -3.62 96.099 56.99 8.93 2.00 29.55 38.37 43.50 -5.13 119.856 56.23 11.80 2.17 29.39 40.81 43.50 -2.69 144.335 56.70 11.27 2.45 29.25 41.17 43.50 -2.33 167.824 54.94 9.82 2.64 29.07 38.33 43.50 -5.17

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL Condition

EUT : Bluetooth Module

Model : AW-16 : BLE Mode Test mode

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: steven REMARK :

EMAKK	:				_				
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
_	MHz	dBu₹			<u>d</u> B	dBuV/m	$\overline{dBuV/m}$		
1	47.994	48.82	16.10	1.27	29.84	36.35	40.00	-3.65	QP
2 3 4	96.099	55.09	8.93	2.00	29.55	36.47	43.50	-7.03	QP
3	119.856	56.80	11.80	2.17	29.39	41.38	43.50	-2.12	QP
4	143.830	56.74	11.34	2.44	29.25	41.27	43.50	-2.23	QP
5	191.745	55.28	9.79	2.81	28.89	38.99	43.50	-4.51	QP
6	216.024	51.79	11.18	2.85	28.73	37.09	46.00	-8.91	QP

Above 1GHz

Т	est channel		Lo	west	Le	vel:		Peak	
Frequency (MHz)	Read Level (dBuV)	Level Factor Loss		Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	51.42	31.53	10.57	40.24	53.28	74.00	-20.72	Vertical	
4804.00	48.41	31.53	10.57	40.24	50.27	74.00	-23.73	Horizontal	
T	est channel		Lo	Lowest		vel:	Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	42.36	31.53	10.57	40.24	44.22	54.00	-9.78	Vertical	
4804.00	40.02	31.53	10.57	40.24	41.88	54.00	-12.12	Horizontal	

Т	est channel	:	Mi	Middle Le		vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	49.34	31.58	10.66	40.15	51.43	74.00	-22.57	Vertical	
4884.00	46.64	31.58	10.66	40.15	48.73	74.00	-25.27	Horizontal	
Т	est channel	•	Middle		Le	vel:	Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	40.36	31.58	10.66	40.15	42.45	54.00	-11.55	Vertical	
4884.00	37.25	31.58	10.66	40.15	39.34	54.00	-14.66	Horizontal	

Т	est channel	:	Hiç	ghest	Le	vel:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	48.34	31.69	10.73	40.03	50.73	74.00	-23.27	Vertical	
4960.00	46.90	31.69	10.73	40.03	49.29	74.00	-24.71	Horizontal	
Т	est channel	•	Hiç	Highest		vel:	Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	40.00	31.69	10.73	40.03	42.39	54.00	-11.61	Vertical	
4960.00	38.11	31.69	10.73	40.03	40.50	54.00	-13.50	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.