Obliczenia naukowe Lista3

Stanisław Woźniak

1 Zadanie 1.

1.1 Metoda Bisekcji

1.2 Opis

Jedna z metod znajdowania miejsca zerowego funkcji ciągłej na podanym przedziale.

Metoda polega na połowieniu danego przedziału z każdą iteracją do momentu znalezienia szukanego x z dokładnością do δ lub do momentu gdy $|f(x)| < \epsilon$ Z każdą iteracją jest definiowany nowy przedział. Jeden koniec ma w połowie poprzedniego przedziału. Natomiast drugi jest wybierami z dwóch poprzednich z warunkiem, że znak wartości funkcji na krańcach przedziału jest przeciwny. Warunki początkowe:

- 1. Badana funkcja posiada miejsce zerowe.
- 2. Badan funkcja jest ciągła na przedziale [a,b]
- 3. Na krańcach przedziału wartość funkcji musi mieć przeciwne znaki.

1.3 Pseudokod

```
Algorithm 1: Metoda Bisekcji
```

```
1 Metoda Bisekcji (f, a, b, \delta, \epsilon);
   Input: f - funkcja, [a,b] - przedział, \delta - dokładność x_0, \epsilon - dokładność f(x_0)
    Output: k, x_0, f(x_0)
 2 x_0 \leftarrow 0; k \leftarrow 0;
 3 while |a-b| > \delta do
        k++;
        if f(a) * f(b) < 0 then
 5
            x_0 \leftarrow a + \frac{b-a}{2};
 6
 7
            return "Error: Funkcja nie zmienia znaku w przedziale";
 9
        end
        if |f(x_0)| < \epsilon then
10
           return (k, x_0, f(x_0));
11
12
        if f(x_0) * f(a) < 0 then
13
            b \leftarrow x_0;
14
        else if f(x_0) * f(b) < 0 then
15
            a \leftarrow x_0;
16
        end
17
18 end
19 return (k, x_0, f(x_0));
```

2 Zadanie 2.

2.1 Metoda Newtona (stycznych)

2.2 Opis

Jest to algorytm iteracyjny przybliżajacy pierwiastek funkcji. Metoda polega na wyprowadzaniu stycznych z wybranego punktu $f(x_0)$. Punkt przecięcia stworzonej stycznej z osią OX jest szukanym miejsciem zerowym. Jeśli się okarze, ze przybliżenie jest zbyt mało dokładne czynność jest powtarzana gdzie do x_0 przypisuje się wyznaczone poprzednio miejsce zerowy.

2.3 Pseudokod

```
Algorithm 2: Metoda Newtona
```

```
1 Metoda Bisekcji (f, f', x_0, \delta, \epsilon, maxit);
    Input: f - funkcja, f' - pochodna funkcji, x_0 - przybliżenie początkowe, \delta - dokładność x_0, \epsilon -
                dokładność f(x_0), maxit - maksymalna liczba iteracji
    Output: k, x_0, f(x_0)
 2 k \leftarrow 0; x_1 \leftarrow x_0 - 1; v \leftarrow f(x_0);
 3 while |x_1 - x_0| > \delta do
        k + +;
 4
        if k > maxit then
 5
            return "Error: Przekroczenie liczby iteracji";
 6
        end
 7
        if |f'(x_0)| < \epsilon then
 8
         return "Error: Pochodna bliska zeru";
 9
10
        x_1 \leftarrow x_0; x_0 \leftarrow x_0 - \frac{v}{f'(x_0)}; v \leftarrow f(x_0);
11
        if |v| < \epsilon then
12
13
         return (k, x_0, v);
        \quad \text{end} \quad
14
15 end
16 return (k, x_0, v);
```

3 Zadanie 3.

3.1 Metoda Siecznych

3.2 Opis

Metoda wyznaczania przybliżenia miejsca zerowego funkcji. W tym algorytmi przyjmuje się, że podana funkcja jest ciągła, oraz na dostatecznie małym odcinku w przybliżeniu zmienia się w sposób liniowy. To założenie pozwala nam zastąpić dany fragment wykresu funkcji sieczną. Punkt przecięcia siecznej z osią OX jest szukanym przybliżeniem miejsca zerowego. Jeśli przybliżenie nie jest wystarczająco dokładne, czynność zostaje powtarzana przyjmując punkt wyliczony w poprzedniej iteracji jako koniec siecznej.

Warunek powodzenia:

$$\bigwedge_{n} (f(x_n)f(x_{n-1}) < 0)$$

3.3 Pseudokod

Algorithm 3: Metoda Siecznych

```
1 Metoda Siecznych (f, x_0, x_1, \delta, \epsilon, maxit);
    Input: f - funkcja, x_0, x_1 - przybliżenia początkowe, \delta - dokładność x_0, \epsilon - dokładność f(x_0),
                 maxit - maksymalna liczba iteracji
    Output: k, x_0, f(x_0)
 2 fa \leftarrow f(x_0); fb \leftarrow f(x_1); k \leftarrow 0;
 3 while |x_1 - x_0| > \delta do
        k + +;
        if k > maxit then
 5
             return "Error: Przekroczenie liczby iteracji";
 6
        end
 7
        if |fa| > |fb| then
         x_0 \leftrightarrow x_1; fa \leftrightarrow fb;
 9
        end
10
        s \leftarrow \frac{(x_0 - x_1)}{fb - fa};
11
        x_1 \leftarrow x_0; fb \leftarrow fa;
12
        x_0 \leftarrow x_0 - fa * s; fa \leftarrow f(x_0);
13
        if |fa| < \epsilon then
14
            return (k, x_0, fa);
15
        end
16
17 end
18 return (k, x_0, fa);
```

4 Zadanie 4.

4.1 Problem

Problem polegał na wyznaczeniu pierwiastka równania przy użyciu zaimplementowanych metod w poprzednich zadaniach.

Równanie:

$$\sin x - (\frac{1}{2}x)^2 = 0$$

Dla każdej z metod zostały użyte te same dokładności δ oraz ϵ równe $\frac{1}{2} * 10^{-5}$. Jednakże początkowe przybliżenia oraz przedziały dla każdej z nich zostały zdefiniowane inne.

- 1. Metoda bisekcji przedział początkowy [1.5, 2]
- 2. Metoda Newtona (Metoda stycznych) przybliżenie początkowe $x_0 = 1.5$
- 3. Metoda siecznych przybliżenia poczatkowe $x_0=1,\,x_1=2$

4.2 Wyniki

Na potrzeby rozwiązania równania danymi metodami lewa strona równania została uznana za funkcję f Oznaczenia:

r - znalezione miejsce zerowe z dokładnością do δ

v - wartość funkcji w punkcie r z dokładnością do ϵ

it - liczba wykonanych iteracji potrzebnych do znalezienia pierwiastka

err - powiadomienie o błędzie

Prawidłowy wynik: r = 0, v = 0.

metoda	r	v	it	err
bisekcji	1.9337539672851562	-2.7027680138402843e-7	16	Brak błędu
stycznych	1.933749984135789	4.995107540040067e-6	13	Brak błędu
siecznych	1.933753644474301	1.564525129449379e-7	4	Brak błędu

4.3 Wnioski

5 Zadanie 5.

5.1 Problem

Zadanym problemem było znaleźć punkty przecięcia się wykresów dwóch funkcji.

1.
$$f(x) = 3x$$

2.
$$q(x) = e^x$$

Dokładność obliczeniowe wynosiły: $\delta = \epsilon = 10^{-4}$

Aby znaleźć odpowiednie punkty przecięcia należało stworzyć funkcję pomocniczą h.

$$h(x) = f(x) - g(x)$$

Ten sposób zapewniał znalezienie punkty przeciecia wykresów funkcji f oraz g metodą znalezienia miejsc zerowych funkcji h.

Do znalezienia rozwiązania należało użyć metodę bisekcji.

5.2 Wyniki

[a,b] - przedział początkowy

r - znalezione miejsce zerowe z dokładnością do δ

v - wartość funkcji w punkcie r z dokładnością do ϵ

it - liczba wykonanych iteracji potrzebnych do znalezienia pierwiastka

err - powiadomienie o błędzie

Prawidłowy wynik (przybliżony): $r_1 = 0.619061, r_2 = 1.51213.$

[a, b]	r	V	it	err
[0.5, 0.7]	0.619140625	9.066320343276146e-5	9	Brak błędu
[-1, 1]	0.619140625	9.066320343276146e-5	10	Brak błędu
[0.0, 1.5]	0.61907958984375	2.091677592419572e-5	13	Brak błędu
[1, 2]	1.5120849609375	7.618578602741621e-5	13	Brak błędu
[1.5, 1.7]	1.512109375	3.868007140983565e-5	9	Brak błędu
[-1, 2]	-	_	-	Funkcja nie zmienia znaku na przedziale [a,b]
[-10, 0]	-	-	-	Funkcja nie zmienia znaku na przedziale [a,b]
[1, 1.5]	-	_	-	Funkcja nie zmienia znaku na przedziale [a,b]
[2, 10]	-	-	-	Funkcja nie zmienia znaku na przedziale [a,b]

5.3 Wnioski

6 Zadanie 6.

6.1 Problem

Należało znaleźć miejsca zerowe trzema metodami (bisekcji, stycznych oraz siecznych) dwóch funkcji:

1.
$$f(x) = e^{1-x} - 1$$
 (prawidłowe rozwiązanie: $x = 1$)

2.
$$g(x) = xe^{-x}$$
 (prawidłowe rozwiązanie: $x = 0$)

Obliczenia należało wykonać z dokłądnością $\delta = \epsilon = 10^{-5}$

Także zadaniem było dobrać odpowiedni przedział i przybliżenia początkowe.

6.2 Wyniki

- r znalezione miejsce zerowe z dokładnością do δ
- v wartość funkcji w punkcie r z dokładnością do ϵ
- it liczba wykonanych iteracji potrzebnych do znalezienia pierwiastka
- err powiadomienie o błędzie

Metoda bisekcji						
funkcja	[a,b] r		V	it	err	
f	[0.5, 2]	0.9999923706054688	7.629423635080457e-6	16	Brak błędu	
f	[-0.1, 2]	1.0000038146972656	-3.814689989667386e-6	17	Brak błędu	
f	[0.0, 2]	1.0	0.0	1	Brak błędu	
f	[-100, 100]	0.9999990463256836	9.536747711536009e-7	23	Brak błędu	
f	[0.99999, 20]	1.0000081198215485	-8.119788582838794e-6	20	Brak błędu	
g	[-0.5, 1]	-7.62939453125e-6	-7.629452739132958e-6	16	Brak błędu	
g	[-0.5, 0.5]	0.0	0.0	1	Brak błędu	
g	[-0.1, 4]	3.8146972656107834e-6	3.8146827137233106e-6	17	Brak błędu	
g	[-100, 101]	4.410743713378906e-6	4.410724258761706e-6	23	Brak błędu	

Metoda Newtona						
funkcja	x0	r	V	it	err	
f	4	0.999999995278234	4.721765201054495e-10	21	Brak błędu	
f	2	0.9999999810061002	1.8993900008368314e-8	5	Brak błędu	
f	11	NaN	NaN	2	Wyjście poza zakres	
f	101	NaN	NaN	1	Pochodna bliska zeru	
g	-1	-3.0642493416461764e-7	-3.0642502806087233e-7	5	Brak błędu	
g	1	NaN	NaN	1	Pochodna bliska zeru	
g	2	14.398662765680003	8.036415344217211e-6	10	Brak błędu	
g	11	14.272123938290518	9.040322779745372e-6	3	Brak błędu	
g	101	NaN	NaN	1	Pochodna bliska zeru	

Metoda siecznych						
funkcja	x1	x2 r		V	it	err
f	0.5	2	1.000000014307199	-1.4307198870078253e-8	6	Brak błędu
f	-0.1	2	1.0000032272298756	-3.227224668056472e-6	6	Brak błędu
f	0	2	1.0000017597132702	-1.7597117218937086e-6	6	Brak błędu
f	-100	100	100.0	-1.0	1	Brak błędu
f	0.99999	20	1.00000000009000212	-9.000211687038018e-10	2	Brak błędu
g	-1	0.5	-1.1737426154042664e-6	-1.1737439930768023e-6	7	Brak błędu
g	-0.5	0.5	5.38073548562323e-6	5.380706533386756e-6	6	Brak błędu
g	-0.1	4	14.32970132001514	8.568936563065177e-6	14	Brak błędu
g	-100	100	100.0	3.7200759760208363e-42	1	Brak błędu

6.3 Wnioski