Queens' College Cambridge

Discrete Mathematics Summary

Alistair O'Brien

Department of Computer Science

February 18, 2021

Contents

1	Sets	3		4			
	1.1	Naive	Set Theory	4			
		1.1.1	Set Operations	5			
		1.1.2	Subsets	5			
		1.1.3	Pairs	6			
		1.1.4	Big Unions and Intersections	8			
		1.1.5	Disjoint Unions	8			
	1.2	Relatio	ons	8			
		1.2.1	Partitions and Equivalent Relations	9			
		1.2.2	Orders	10			
		1.2.3	Relational Images	10			
	1.3	Functi	ons	11			
		1.3.1	Partial Functions	11			
		1.3.2	Total Functions	11			
		1.3.3	Functional Images	14			
	1.4	Enume	erability, Countability and Other Theorems	14			
2	Structures 16						
	2.1	Binary	Operations	16			
		2.1.1		16			
		2.1.2	· ·	16			
		2.1.3		17			
		2.1.4	·	17			
	2.2	Struct		18			
		2.2.1	Monoids	18			
		2.2.2		18			
		2.2.3		19			
		2.2.4	Fields	20			

3	Numbers						
	3.1	Natural Numbers	21				
	3.2	Division	21				
	3.3	The Division Theorem					
	3.4	The Division Algorithm					
	3.5	Modular Arithmetic					
		3.5.1 Other Theorems	28				
	3.6	Greatest Common Divisor					
		3.6.1 Euclid's Algorithm					
		3.6.2 Extended Euclidean Algorithm					
		3.6.3 Other Theorems	36				
	3.7	Primes	37				
		3.7.1 Other Theorems	42				
4	Formal Languages 45						
	4.1	Symbols, Strings, Alphabets and (Formal) Languages	45				
	4.2	Inductively Defined Sets					
	4.3	Rule Induction	48				
5	Reo	rular Languages	49				
0	5.1	Regular Expressions and Languages	49				
	5.2	Finite Automata	50				
	0.2	5.2.1 NFAs, DFAs and NFA $^{\varepsilon}$	50				
		5.2.2 Subset Construction	53				
		5.2.3 Kleene's Theorem	55				
		0.2.0 INCOME B THEOREM	55				
		5.2.4 The Pumping Lemma	61				

1 Sets

1.1 Naive Set Theory

A set is a collection of distinct objects. This means that $\{1,2,3\}$ is set, but $\{1,1,2\}$ is not as the element 1 appears more than once. The second collection is called a *multiset*.

Sets are often constructed using a *set comprehension*, in which we define a set by means of a property.

Definition 1.1.1. (Separation Principle) For any set S and any property P, there is a set containing all elements of S that satisfy P.

Definition 1.1.2. (Membership) The set membership symbol \in is used to say that an object is a member of a set. It has a partner symbol \notin which is used to say an object is not in a set.

Given a set A and a predicate P(x) for the variable x ranging over the set A, we can use the following set-comprehension notation

$$\{x \in A : P(x)\}.$$

for defining a set consisting of all elements a of the set A such that P(a) holds.

Definition 1.1.3. (Extensionality Axiom (Equality)) We say two sets are equal if they have exactly the same members, that is

$$\forall A, B.A = B \iff (\forall x.x \in A \iff x \in B).$$

Definition 1.1.4. (The Empty Set) The empty set is the set containing no members. It is denoted as $\{\}$ or by using the symbol \emptyset . The definable property of \emptyset is $\forall x.x \notin \emptyset$.

Definition 1.1.5. (Cardinality) The cardinality of a set is its size. For a finite set, the cardinality of a set is the number of members it contains. The size of a set S is written |S|.

1.1.1 Set Operations

Definition 1.1.6. (Intersection) The intersection of two sets A and B is the collection of all objects that are in both sets. It is written $A \cap B$. We can write this using a set comprehension, such that

$$A \cap B = \{x : x \in A \land x \in B\}.$$

Definition 1.1.7. (**Disjoint sets**) If A and B are sets and $A \cap B = \emptyset$, then we say that A and B are **disjoint**.

Definition 1.1.8. (Union) The union of two sets A and B is the collection of all objects that are in either set. It is written $A \cup B$, such that

$$A \cup B = \{x : x \in A \lor x \in B\}.$$

Definition 1.1.9. (Compliment) The compliment of a set S is the collection of objects in the universal set \mathcal{U} that are not in S. The compliment is written S^c , such that

$$S^c = \{ x \in \mathcal{U} : x \notin S \}.$$

Definition 1.1.10. (**Difference**) The **difference** of two sets A and B is the collection of objects in A that are not in B. The difference is written $A \setminus B$, such that

$$A \setminus B = A \cap B^c = \left\{ x : x \in A \wedge x \not \in B \right\}.$$

Definition 1.1.11. (Cartesian product) The Cartesian product between two sets A and B is the set of all possible ordered pairs with the first element from A and second element from B. The product is written $A \times B$, such that

$$A \times B = \{(x, y) : x \in A \land y \in B\}.$$

1.1.2 Subsets

Definition 1.1.12. (Subset) For two sets A and B we say that A is a subset of B if each element of A is also an element of B.

$$A \subseteq B \iff \forall x.x \in A \implies x \in B.$$

If $A \subseteq B \land A \neq B$ then we write $A \subset B$ and we say A is a *proper subset* of B. The empty set \emptyset is a subset of every set.

Theorem 1.1.1. For all sets A, B, C, we have

- 1. Reflexivity: $A \subseteq A$
- 2. Transitivity: $A \subseteq B \land B \subseteq C \implies A \subseteq C$
- 3. Antisymmetry: $A \subseteq B \land B \subseteq A \implies A = B$

Definition 1.1.13. (Powerset Axiom) For any set S, there exists a set consisting of all it's subsets.

Definition 1.1.14. The set whose existence is postulated by the powerset axiom, denoted $\mathcal{P}(S)$, is defined as

$$\mathcal{P}(S) = \{X : X \subseteq S\}.$$

Theorem 1.1.2. For all finite sets S,

$$|\mathcal{P}(S)| = 2^{|S|}.$$

1.1.3 Pairs

Definition 1.1.15. Pairing Axiom For all a, b there is a set with a and b as it's only elements.

Definition 1.1.16. (Pair) The pair of a, b is the set whose existence is postulated by the pairing axiom, denoted $\{a, b\}$.

Note that

$$\forall x. x \in \{a, b\} \iff x = a \lor x = b.$$

Definition 1.1.17. (Singleton) For all a, the pair $\{a, a\}$, denoted $\{a\}$, is said to be a *singleton*.

Definition 1.1.18. (Ordered Pairs) For all a, b, the ordered pair (a, b) is the set $\{\{a\}, \{a, b\}\}$

Theorem 1.1.3. (Fundamental property of ordered pairs) For all a, b, x, y,

$$(a,b) = (x,y) \iff a = x \land b = y.$$

Proof. Let a, b, x, y be arbitrary.

 (\Longrightarrow) . Let us assume that (a,b)=(x,y), that is to say

$$\{\{a\},\{a,b\}\} = \{\{x\},\{x,y\}\}.$$

We have two cases:

1. Case a = b. Let us assume that a = b, so we have

$$(a,b) = \{\{a\}, \{a\}\} = \{\{a\}\}.$$

By our initial assumptions, we have

$$\{\{x\}, \{x, y\}\} = \{\{a\}\}.$$

Hence $\{x\} = \{x, y\} = \{a\}$. Hence x = a and x = y. By transitivity of =, we have x = a and b = y.

2. Case $a \neq b$. Let us assume that $a \neq b$. We wish to show that

$$a = x \wedge b = y$$
.

We have three cases:

- (a) Case $\{a\} = \{x, y\}$. Let us assume that $\{a\} = \{x, y\}$. Then a = x = y. Hence $(x, y) = \{\{a\}\}$. However, this implies that $(a, b) = \{\{a\}\}$, so a = b. A contradiction!
- (b) Case $\{a, b\} = \{x\}$. Then x = a = b. A contradiction!
- (c) Case $\{a\} = \{x\}$. Let us assume that $\{a\} = \{x\}$, so we have a = x. We wish to show that b = y. Suppose that a = y. Then $\{x,y\} = \{a\} \neq \{a,b\}$. Hence b = y. So we are done.

(\iff). Let us assume that $a = x \land b = y$. So we have

$${a} = {x} \wedge {a,b} = {x,y}.$$

So by the extensionality axiom, we have

$$\{\{a\},\{a,b\}\} = \{\{x\},\{x,y\}\}.$$

So we are done. \Box

1.1.4 Big Unions and Intersections

Definition 1.1.19. Let \mathcal{U} be some universal set. For a collection of sets $\mathcal{F} \subseteq \mathcal{P}(\mathcal{U})$, the big union is defined as

$$\bigcup \mathcal{F} = \{x \in \mathcal{U} : \exists X \in \mathcal{F}.x \in X\} \subseteq \mathcal{U}.$$

Definition 1.1.20. Let \mathcal{U} be some universal set. For a collection $\mathcal{F} \subseteq \mathcal{P}(\mathcal{U})$, the big intersection is defined as

$$\bigcap \mathcal{F} = \{ x \in \mathcal{U} : \forall X \in \mathcal{F}. x \in X \}.$$

1.1.5 Disjoint Unions

Definition 1.1.21. (Tagging) Let S be some set. The set of elements S tagged by labels ℓ is defined as

$$S_{\ell} = {\ell} \times S = {(\ell, x) : x \in S}.$$

Note that

$$\forall y \in S_{\ell}.\exists! x \in S.y = (\ell, x)$$

$$S_{\ell_1}^1 = S_{\ell_2}^2 \iff \ell_1 = \ell_2 \land S^1 = S^2$$

Definition 1.1.22. (**Disjoint Union**) The disjoint union $A \uplus B$ of the sets A, B is

$$A \uplus B = A_1 \cup B_2$$
.

Hence

$$\forall x.x \in A \uplus B \iff (\exists! a \in A.x = (1, a)) \lor (\exists! b \in B.x = (2, b)).$$

Theorem 1.1.4. For all finite sets A, B

$$|A \uplus B| = |A| + |B|.$$

1.2 Relations

Definition 1.2.1. (Relation) A relation \mathcal{R} on $A \times B$ is a tuple (A, B, \sim) , denoted

$$\sim: A \longrightarrow B$$
,

where $\sim \subseteq A \times B$. For $(a, b) \in \sim$, we denote $a \sim b$ for simplicity.

The set of relations on $A \times B$ is denoted as $\mathcal{P}[A \longleftrightarrow B]$, that is

$$\mathcal{P}[A \longleftrightarrow B] = \mathcal{P}(A \times B).$$

Theorem 1.2.1. For finite A, B, we have

$$|\mathcal{P}[A \longleftrightarrow B]| = 2^{|A| \cdot |B|}.$$

Relations of special types. For a binary relation \mathcal{R} on S, we say \sim is

- (R) Reflexive if $a \sim a$ for all $a \in S$
- (S) Symmetric if $a \sim b \implies b \sim a$ for all $a, b \in S$
- (T) Transitive if $a \sim b \wedge b \sim c \implies a \sim c$ for all $a, b, c \in S$

Axiom 1.2.1. (Relationship Extensionality) For all relations $R: A \longrightarrow B$ and $S: A \longrightarrow B$, we have

$$R = S \iff \forall a \in A. \forall b \in B. a \ R \ b \iff a \ S \ b.$$

Definition 1.2.2. (Relational Composition) The composition of two relations $R: A \longrightarrow B$ and $S: B \longrightarrow C$ is the relation

$$(S \circ R) = \{(a, c) : \exists b \in B.a \ R \ b \land b \ R \ c\} : A \longrightarrow C.$$

Theorem 1.2.2. Relational composition is associative with an identity id_S .

- (A) Associativity: For all $R:A \longrightarrow B, S:B \longrightarrow C$ and $T:C \longrightarrow D,$ $(T \circ S) \circ R = T \circ (S \circ R).$
- (I) Identity: For all $R: A \longrightarrow B$,

$$id_B \circ R = R = R \circ id_A.$$

1.2.1 Partitions and Equivalent Relations

Definition 1.2.3. (Equivalent Relations) A relation $\sim: S \longrightarrow S$ is said to be an equivalent relation if (R), (S) and (T) hold.

The set of all equivalent relations on S is denoted EqRel(S).

Definition 1.2.4. (Equivalence Class of x) Let S be some arbitrary set and \sim be an equivalence relation on S. For $x \in S$, the equivalence class of x is defined as

$$[x]_{\sim} = \{ y \in S : y \sim x \}.$$

Definition 1.2.5. (Partitions) A partition \mathcal{F} of a set S is a set of non-empty disjoint subsets of S. That is

$$S = \bigcup \mathcal{F},$$

and

$$\forall X, Y \in \mathcal{F}.X \neq Y \implies X \cap Y = \emptyset.$$

The set of all partitions of S is denoted Part(S).

Theorem 1.2.3. For every set S,

$$\operatorname{EqRel}(S) \cong \operatorname{Part}(S).$$

1.2.2 Orders

Definition 1.2.6. (**Preorder**) A preorder on S is the tuple (S, \sqsubseteq) with the relation $\sqsubseteq: S \longrightarrow S$ satisfying (R) and (T).

Definition 1.2.7. (Partial order) A partial order on S is the tuple (S, \sqsubseteq) with the relation $\sqsubseteq: S \longrightarrow S$ satisfying (R), (AS) and (T).

Definition 1.2.8. (Total order) A total order on S is the partial order (S, \sqsubseteq) with the relation $\sqsubseteq: S \longrightarrow S$ that further satisfies

$$\forall x,y \in S.x \sqsubseteq y \vee y \sqsubseteq x.$$

1.2.3 Relational Images

Definition 1.2.9. Let $R:A \to B$ be a relation. The direct image of $X \subseteq A$ under R is the set $\overrightarrow{R}(X) \subseteq B$ defined as

$$\overrightarrow{R}(X) = \{b \in B : \exists x \in X.(x,b) \in R\} : \mathcal{P}(A) \to \mathcal{P}(B).$$

The inverse image of $Y \subseteq B$ under R is the set $\overleftarrow{R}(Y) \subseteq A$, defined as

$$\overleftarrow{R}(Y) = \{a \in A : \exists b \in Y . (a, b) \in R\} : \mathcal{P}(B) \to \mathcal{P}(A).$$

1.3 Functions

1.3.1 Partial Functions

Definition 1.3.1. (Partial Function) A relation $R: A \longrightarrow B$ is said to be a partial function if and only if

$$\forall a \in A. \forall b_1, b_2 \in B.(a, b_1) \in R \land (a, b_2) \in R \implies b_1 = b_2.$$

We write $f: A \rightarrow B$ to denote that f is a partial function from A to B. The set of all partial functions from A to B is denoted as

$$\mathcal{P}[A \rightharpoonup B] \subseteq \mathcal{P}[A \longleftrightarrow B].$$

Theorem 1.3.1. For all finite sets A, B,

$$|\mathcal{P}[A \rightharpoonup B]| = (|B| + 1)^{|A|}.$$

The value of f at a, denoted f(a) is defined as

$$f(a) = \begin{cases} b & \text{if } f(a) \downarrow \\ \text{undefined} & \text{otherwise} \end{cases}.$$

where

$$f(a) \downarrow = \exists ! x \in f.x = (a, b),$$

which indicates where f is defined at a.

Axiom 1.3.1. (Partial Extensionality) For all partial functions $f: A \rightarrow B$ and $g: A \rightarrow B$, we have

$$f = g \iff \forall a \in A. (f(a) \downarrow \iff g(a) \downarrow) \land f(a) = g(a).$$

Theorem 1.3.2. Composition of partial functions yields a partial function and the identity relation is a partial function.

1.3.2 Total Functions

Definition 1.3.2. (Total Function) A total function is a relation $R: A \longrightarrow B$ that satisfies

$$\forall a \in A. \exists ! b \in B. (a, b) \in R.$$

Equivalently, a total function is a partial function $f:A \to B$ such that $\forall a \in A. f(a) \downarrow$. We write $f:A \to B$ to denote a total function f from A to B. The set of all total functions from A to B is written as

$$\mathcal{P}[A \to B] \subseteq \mathcal{P}[A \to B] \subseteq \mathcal{P}[A \longleftrightarrow B].$$

Theorem 1.3.3. For all finite sets A, B,

$$|\mathcal{P}[A \to B]| = |B|^{|A|}.$$

Theorem 1.3.4. Composition of total functions yields a total function and the identity relation is a total function.

Injections

Definition 1.3.3. A function $f:A\to B$ is said to be injective, or an injection, if and only if

$$\forall a_1, a_2 \in A. f(a_1) = f(a_2) \implies a_1 = a_2.$$

Properties

- For all injections $f: A \to B$ and $g: B \to C$, $g \circ f: A \to C$ is injective.
- For all functions $f: A \to B$ and $g: B \to C$,

$$g \circ f$$
 is injective $\implies f$ is injective,

but g is not necessarily injective.

- For all injections $f: A \to B$, there exists a left unique inverse $g: B \to A$ such that $g \circ f = id_A$.
- The set of injections from A to B is denoted Inj(A, B).

Surjections

Definition 1.3.4. A function $f:A\to B$ is said to be surjective, or an surjection, if and only if

$$\forall b \in B. \exists a \in A. f(a) = b.$$

Properties

- For all surjections $f:A\to B$ and $g:B\to C,\ g\circ f:A\to C$ is surjective.
- For all functions $f: A \to B$ and $g: B \to C$,

 $q \circ f$ is surjective $\implies q$ is surjective,

but f is not necessarily surjective.

- For all surjections $f: A \to B$, there exists a unique right inverse $g: B \to A$ such that $f \circ g = id_B$.
- The set of surjections from A to B is denoted Sur(A, B).

Bijections

Definition 1.3.5. A function $f: A \to B$ is said to be bijective, or a bijection, if f is injective and surjective.

Equivalently, a function $f:A\to B$ is a bijection if there exists a unique function $f^{-1}:B\to A$ such that

1. f^{-1} is a left inverse for f, that is

$$f^{-1} \circ f = id_A.$$

2. f^{-1} is a right inverse for f, that is

$$f \circ f = id_B$$
.

Properties

- For all bijections $f:A\to B$ and $g:B\to C,\,g\circ f:A\to C$ is bijective.
- The set of bijections from A to B is denoted Bij(A, B),

$$Bij(A, B) = Inj(A, B) \cap Sur(A, B).$$

where

$$|\operatorname{Bij}(A, B)| = \begin{cases} 0 & \text{if } |A| \neq |A| \\ n! & \text{if } |A| = |B| = n \end{cases}.$$

Definition 1.3.6. (Isomorphism) Two sets A and B are said to be isomorphic (and have the same cardinality) if there exists a bijection $\phi: A \to B$. That is to say

$$A \cong B \iff |A| = |B| \iff \exists \phi : A \to B. \phi \in \text{Bij}(A, B).$$

1.3.3 Functional Images

Definition 1.3.7. Let $f: A \to B$ be a function. The direct image of $X \subseteq A$ under f is the set $\overrightarrow{f}(X) \subseteq B$ defined as

$$\overrightarrow{f}(X) = \{f(a) \in B : a \in X\} : \mathcal{P}(A) \to \mathcal{P}(B).$$

The inverse image of $Y \subseteq B$ under f is the set $\overleftarrow{f}(Y) \subseteq A$, defined as

$$\overleftarrow{f}(Y) = \{a \in A : f(a) \in Y\} : \mathcal{P}(B) \to \mathcal{P}(A).$$

1.4 Enumerability, Countability and Other Theorems

Definition 1.4.1. (Enumerable) A set S is said to be enumerable if there exists a surjection $\mathbb{N} \to S$.

Definition 1.4.2. (Countable) A set S is said to be countable if it is either empty or enumerable.

Theorem 1.4.1. Every non-empty subset X of a enumerable set S is enumerable.

Theorem 1.4.2.

- The product and disjoint union of countable sets is countable
- Every finite set is countable
- Every subset of a countable set is countable

Definition 1.4.3. A set A is of less than or equal cardinality to a set B if there exists an injection $f: A \to B$. We write

$$A \lesssim B \iff |A| \leq |B|$$
.

Since each injection has a left inverse (which is surjective), then if there exists a surjection $f: B \to A \implies |A| \le |B|$.

Theorem 1.4.3. (Cantor-Schroeder-Bernstein theorem) For all sets A,B

$$A \lesssim B \wedge B \lesssim A \implies A \cong B.$$

2 Structures

2.1 Binary Operations

Definition 2.1.1. (Binary operation) A binary operation * on a set S is a function

$$*: S \times S \to S$$
.

Instead of writing *(a,b), we write a*b for convenience.

2.1.1 Cayley Tables

For binary operations on small finite sets, the binary operation may be recorded using a table, called the *cayley table*.

For example, let $S = \{\alpha, \beta, \gamma\}$. We may define a binary operation * as follows:

where we take the row first then the column. So, for example $\alpha * \beta = \gamma$, $\beta * \alpha = \alpha$, etc. In general, if $S = \{a_1, a_2, \dots, a_n\}$, then the entry in the row label by a_i and the column labeled by a_j is $a_i * a_j$.

2.1.2 Commutative and associative binary operations

Definition 2.1.2. (Commutative) A binary operation * on a set S is commutative if

$$a * b = b * a$$
.

for all $a, b \in S$.

Definition 2.1.3. (Associative) A binary operation * on a set S is associative if

$$a*(b*c) = (a*b)*c.$$

for all $a, b, c \in S$.

If * is associative, then we can write a * b * c, meaning (a * b) * c and a * (b * c). More generally, we may define longer expressions $a_1 * \cdots * a_n$. Hence for $n \in \mathbb{N}$ and $a \in S$, we may define

$$a^n = \underbrace{a * \cdots * a}_{n\text{-times}} \dots$$

2.1.3 Identity elements

Consider \mathbb{Z} . Note that 0 + a = a + 0 = a for all $a \in \mathbb{Z}$. Also note that $1 \times a = a \times 1 = a$ for all $a \in \mathbb{Z}$. These two binary operations are said to have an identity element.

Definition 2.1.4. (Identity element) Let * be a binary operation on a set S. We say that $e \in S$ is an identity element for S with respect to * if

$$\forall a \in S, \exists e \in S : e * a = a * e = a..$$

Theorem 2.1.1. (Uniqueness of the identity) Let * be a binary operation on a set S. Let $e, f \in S$ be identity elements for S with respect to *. Then e = f

Proof. Given e is an identity element and $f \in S$, then e * f = f. Since f is an identity element and $e \in S$, we have e * f = e. Hence e = e * f = f

2.1.4 Inverse elements

Consider addition on \mathbb{R} which has an identity element $0 \in \mathbb{R}$. Note that a + (-a) = (-a) + a = 0. This binary operation is said to have inverse elements for each $a \in \mathbb{R}$ which is denoted as $-a \in \mathbb{R}$, in this case they are known as additive inverses.

Definition 2.1.5. (Inverse elements) Let * be a binary operations on a set S. We say an inverse of $a \in S$ is an element b, such that a*b = b*a = e, where e is the identity element for S with respect to *.

2.2 Structures

2.2.1 Monoids

Definition 2.2.1. (A Monoid) A monoid is a non-empty set M with a binary operation $*: M \times M \to M$ satisfying

(i) **Associativity:** For all $a, b, c \in M$, we have

$$a * (b * c) = (a * b) * c.$$

(ii) **Identity:** There exists an element $e \in G$ with the property that

$$e * a = a * e = a$$

for all $a \in M$.

A monoid (M, *) is said to be **commutative** if * is commutative (unsurprisingly...)

2.2.2 Groups

Definition 2.2.2. (A Group) A group is a non-empty set G with a binary operation $*: G \times G \mapsto G$ satisfying.

(i) **Associativity:** For all $a, b, c \in G$, we have

$$a*(b*c) = (a*b)*c.$$

(ii) **Identity:** There exists an element $e \in G$ with the property that

$$e * a = a * e = a$$

for all $a \in G$.

(iii) **Invserses:** For every $a \in G$, there is an element $b \in G$ with the property

$$a * b = b * a = e$$
.

To be concise, we'll often write (G, *) to denote the set G forming a group under *.

Theorem 2.2.1. In (iii), the element b is the **inverse** of a. It is unique, hence we may refer to the (unique) inverse of a, and write a^{-1} .

Proof. Let G form a group under the binary operation *, so we have the group (G,*). Let $b_1, b_2 \in G$ be inverses of $a \in G$, with respect to the binary operation * on the set G, hence

$$a * b_1 = b_1 * a = e$$

 $a * b_2 = b_2 * a = e$

then,

$$b_1 * (a * b_2) = b_1 * e = b_1$$

 $b_2 * (a * b_1) = b_2 * e = b_2$

since * is associative, we can say

$$b_1 * (a * b_2) = (b_1 * a) * b_2$$

 $b_1 = b_2$

Thus completing the proof.

2.2.3 Rings

Definition 2.2.3. A structure $(R, +, \cdot)$ is a **ring** if R is a non-empty set and + and \cdot are binary operations

$$+: R \times R \to R,$$

 $\cdot: R \times R \to R,$

such that they satisfy the following axioms:

- (i) Addition: (R, +) is a commutative group, that is
 - (A1) **Associativity**: For all $a, b, c \in R$ we have a + (b + c) = (a + b) + c.
 - (A2) **Zero Element**: There exists $0 \in R$ such that for all $a \in R$ we have a + 0 = 0 + a = a
 - (A3) **Inverses**: For all $a \in R$ there exists $-a \in R$ such that a + (-a) = (-a) + a = 0.

- (A4) Commutativity: For all $a, b \in R$ we have a + b = b + a.
- (ii) Multiplication:
 - (M1) **Associativity**: For all $a, b, c \in R$ we have $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- (iii) Distributivity:
 - (D1) For all $a, b, c \in R$ we have

$$a \cdot (b+c) = a \cdot b + a \cdot c,$$

 $(a+b) \cdot c = a \cdot c + b \cdot c$

Definition 2.2.4. Assume $(R, +, \cdot)$ is a ring. We say R is a commutative ring if its multiplication \cdot is commutative, that is to say

- (M2) Commutativity: For all $a, b \in \mathbb{R}$ we have $a \cdot b = b \cdot a$.
- (M3) **Identity Element**: There exists $1 \in \mathbb{R}$ such that for all $a \in \mathbb{R}$ we have $a \cdot 1 = 1 \cdot a = a$.

2.2.4 Fields

Definition 2.2.5. A structure $(R, +, \cdot)$, where + and \cdot are binary operations on R is a field if (A1)-(A4), (M1)-(M3) and (D1) hold, $0 \neq 1$ and

(M4) **Inverses**: For all $a \in R$ where $a \neq 0$ there exists $a^{-1} \in R$ such that $a \cdot a^{-1} = a^{-1} \cdot a = 1$.

This can be expressed in a more modular way as follows, $(R, +, \cdot)$ is a field if

- (F1) (R, +) is a commutative group
- (F2) $(R \setminus \{0\}, \cdot)$ is a commutative group
- (F3) The distributive laws hold

3 Numbers

3.1 Natural Numbers

Recall that we have adopted the convention that

$$\mathbb{N}_0 = \{0, 1, 2, \ldots\}$$
.

where \mathbb{N}_0 is the set of natural numbers (including 0) and

$$\mathbb{N}_1 = \{1, 2, 3, \ldots\}$$
.

where \mathbb{N}_1 is the set of natural numbers (excluding 0). Note that $\mathbb{N}_1 = \mathbb{Z}^+$.

3.2 Division

Definition 3.2.1. Given two integers $a, b \in \mathbb{Z}$, we say a divides b, written as $a \mid b$ if $a \neq 0$ and there exists some integer k such that $b = k \cdot a$.

3.3 The Division Theorem

Theorem 3.3.1. (Division Theorem) For all pairs of integers $m, n \in \mathbb{Z}$ where $n \neq 0$ there exists a unique pair of integers q, r such that $0 \leq r < |n|$ and $m = q \cdot n + r$. More formally

$$\forall m, n \in \mathbb{Z}, n \neq 0. \exists ! q, r \in \mathbb{Z}. m = q \cdot n + r, 0 \leq r < |n|.$$

In the above, we say that m is the dividend, n is the divisor, q is the quotient and r is the remainder.

Proof. Let m, n be some arbitrary pair of integers where $n \neq 0$.

Existence.

We have two cases, n > 0 and n < 0.

- 1. Case n < 0. Let n' = -n and q' = -q, so the equation $m = q \cdot n + r$ can be rewritten as $m = q' \cdot n' + r$ and the inequality $0 \le r < |n|$ may be rewritten as $0 \le r < |n'|$. This reduces the existence for the case n < 0 to that of the case n > 0.
- 2. Case n > 0. We have two cases, m < 0 and $m \ge 0$.
 - (a) Case m < 0. Let m' = -m, q' = -q 1 and r' = n r. Thus the proof of existence is reduced to the case $m \ge 0$ and n > 0.
 - (b) Case $m \ge 0$. Let $q_0 = 0$ and $r_1 = m$, then these are natural numbers such that $m = q_1 \cdot n + r_1$. If $r_1 < n$, then the division is complete.

So suppose that $r_1 \ge n$. Then define $q_2 = q_1 + 1$ and $r_2 = r_1 - n$, one has $m = q_2 \cdot n + r_2$ with $0 \le r_2 < r_1$.

Given there exists r_1 unique natural numbers less than r_1 , then this process needs to repeat at most r_1 times to reach the final quotient and the remainder.

That is to say, there exists a natural number $k \leq r_1$ such that $m = q_k \cdot n + r_k$ and $0 \leq r_k < |n|$.

This proves the existence.

Uniqueness

To prove uniqueness, we wish to show the following

$$\forall m, n \in \mathbb{Z}, n \neq 0. \forall q, r, q', r' \in \mathbb{Z}$$

$$.m = q \cdot n + r, 0 \leq r < |n|, m = q' \cdot n + r', 0 \leq r' < |n|$$

$$\implies q = q' \land r = r'$$

Let $m, n \in \mathbb{Z}$ be arbitrary integers where $n \neq 0$. Let q, r, q', r' be arbitrary integers. Let us assume that

$$0 \le r' < |n|$$
$$0 \le r < |n|$$
$$m = q' \cdot n + r'$$
$$m = q \cdot n + r$$

Subtracting the two equations yield

$$n \cdot (q' - q) + (r' - r) = 0.$$

So we have $q'-q \mid r-r'$. So n is a divisor of r-r'. By our initial assumptions, we have

$$0 \le |r - r'| < 0.$$

So we have r - r' = 0 and $n \cdot (q' - q) = 0$. Since $n \neq 0$, we get that r = r' and q = q'. Which proves uniqueness.

Lemma 3.3.1. Let $q, n, r \in \mathbb{Z}$ be arbitrary integers where $n \neq 0$.

$$q \cdot n + r = 0 \land 0 \le r < |n| \implies q = 0 \land r = 0.$$

Proof. Let $q, n, r \in \mathbb{Z}$ be arbitrary integers where $n \neq 0$. Let us assume that $q \cdot n + r = 0$ and $0 \leq r < |n|$ As $q \cdot n = -r$ and since $r \geq 0$, then we have $q \cdot n \leq 0$ and $q \cdot n > -n$.

We have two cases, n > 0 and n < 0.

- 1. Case n < 0. Let n' = -n and q' = -q, so the equation $q \cdot n + r = 0$ can be rewritten as $q' \cdot n' + r = 0$ and the inequality $0 \le r < |n|$ may be rewritten as $0 \le r < |n'|$. This reduces the existence for the case n < 0 to that of the case n > 0.
- 2. Case n > 0. Assume that n > 0, then from $q \cdot n \le 0$, we have $q \le 0$ and from $q \cdot n > -n$, we have q > -1. Hence q = 0, so it follows that r = 0.

3.4 The Division Algorithm

A division algorithm is an algorithm that given two integers m, n computes their **quotient** and **remainder**.

We will consider the following implementation of the division algorithm in OCaml

```
let divalg m n =
  let rec inner q r =
    if r < n then (q, r)
    else inner (q + 1) (r - n)
in inner 0 m</pre>
```

Theorem 3.4.1. (Termination and Correctness of divalg) For all natural number $m, n \in \mathbb{N}$ where $n \neq 0$, the evaluation of divalg m n terminates producing a pair of natural numbers q_k, r_k such that $0 \leq r_k < n$ and $m = q_0 \cdot n + r_0$.

Proof. Let m, n be some arbitrary natural numbers where $n \neq 0$.

Termination

The evaluation of divalg m n diverges if and only if the evaluation of inner 0 m diverges; this is true if and only if $m - i \cdot n \ge n$ for all natural numbers i. This is absurd, thus the evaluation of divalg m n terminates. With time complexity $\Omega(m)$.

Correctness

We wish to show that divalg m n produces a pair of natural numbers q_k, q_r such that $m = q_k \cdot n + r_k$ and $0 \le r_k < n$.

We proceed by showing the following invariant on the arguments of inner.

 $P(i) = i^{th}$ recursive call of inner q r satisfies $m = q_i \cdot n + r_i \wedge r_i \geq 0$.

We proceed by induction on $i \in \mathbb{N}$.

Proof.

Base Case. The $i = 0^{th}$ call to inner is inner 0 m, so we have $q_0 = 0$ and $r_0 = m$, hence

$$m = 0 \cdot n + m,$$

and $r_0 \ge n$. So P(0) holds.

Inductive Step. We wish to show that $\forall i \in \mathbb{N}.P(i) \implies P(i+1)$. Let $i \in \mathbb{N}$ be an arbitrary natural number. Let us assume that P(i) holds, so we have $m = q_i \cdot n + r_i$.

We may assume that inner doesn't terminate, so we may assert that $r_i \geq n$, hence for the $i+1^{th}$ call of inner we have the arguments $q_{i+1} = q_i + 1$ and $r_{i+1} = r_i - n$ respectively. We note that,

$$q_{i+1} \cdot n + r_{i+1} = (q_i + 1) \cdot n + (r_i - n) = q_i \cdot n + r_i,$$

hence by our initial assumptions $m = q_{i+1} \cdot n + r_{i+1}$. Similarly, since $r_i \ge n$, we have $r_{i+1} = r_i - n \ge 0$.

By the Principle of Mathematical Induction, we conclude that P(i) holds for all $i \in \mathbb{N}$

At the k^{th} recursive call, inner terminates with $m = q_k \cdot r + r_k$ and $r_k \geq 0$. Since inner terminates, we may assert that $r_k < n$. This completes the proof.

Some notation

- 1. **Remainder**: rem(m, n) is defined as the remainder r_k produced by the evaluation of divalg m n.
- 2. **Quotient**: quo(m, n) is defined as the quotient q_k produced by the evaluation of divalg m n.

3.5 Modular Arithmetic

Definition 3.5.1. For a pair of integers a, b and some positive integer m, we say that a is congruent modulo m if $m \mid a - b$. We write $a \equiv b \pmod{m}$.

Definition 3.5.2. (Congruence relation modulo m) Let $m \in \mathbb{Z}$ is an integer. We define \mathcal{R}_m as the congruence relation modulo m on the set of all $a, b \in \mathbb{Z}$:

$$\mathcal{R}_m = \{(a,b) \in \mathbb{Z}^2 : \exists k \in \mathbb{Z} : a = k \cdot m + b\}.$$

For any $m \in \mathbb{Z}$, we denote the equivalence class of an integer $a \in \mathbb{Z}$ by $[a]_m$ such that

$$[a]_m = \{x \in \mathbb{Z} : a \equiv x \pmod{m}\}.$$

Definition 3.5.3. (Integers Modulo m) Let $m \in \mathbb{Z}$ be an integer. The integers modulo m are the set of positive integers

$$\mathbb{Z}_m = \{0, 1, \dots, m-1\}.$$

which is in fact equivalent to the set of the least positive integer from the equivalence classes $[0]_m, [1]_m, \ldots, [m-1]_m$.

Definition 3.5.4. (Modulo Addition) Let $m \in \mathbb{Z}$ be an integer. Let \mathbb{Z}_m be the set of integers modulo m. The operation of addition modulo m is defined on \mathbb{Z}_m as

$$[a]_m +_m [b]_m = [a+b]_m.$$

Definition 3.5.5. (Modulo Multiplication) Let $m \in \mathbb{Z}$ be an integer. Let \mathbb{Z}_m be the set of integers modulo m. The operation of addition multiplication m is defined on \mathbb{Z}_m as

$$[a]_m \times_m [b]_m = [a \times b]_m.$$

Theorem 3.5.1. (\mathbb{Z}_n is a ring) The structure ($\mathbb{Z}_n, +_m, \cdot_m$) forms a commutative ring.

Proof. We are required to show that $(\mathbb{Z}_n, +_m, \cdot_m)$ satisfies the axioms (A1)-(A4), (M1) and (D1). Recall that $\mathbb{Z}_n = \{0, 1, \dots, m-1\}$ and

$$[a]_m +_m [b]_m = [a+b]_m$$
 and $[a]_m \cdot_m [b]_m = [a \cdot b]_m$.

- (i) Addition:
 - (A1) **Associativity**: Let a, b, c be some arbitrary integers modulo m. So we have

$$[a]_m +_m ([b]_m +_m [c]_m) = [a]_m +_m [b+c]_m$$

$$= [a+(b+c)]_m$$

$$= [(a+b)+c]_m$$

$$= [a+b]_m +_m [c]_m$$

$$= ([a]_m +_m [b]_m) +_m [c]_m$$

So we are done.

(A2) **Zero Element**: The additive identity (or zero element) is 0 since for all $a \in \mathbb{Z}_m$, we have

$$[0]_m +_m [a]_m = [0+a]_m$$

= $[a]_m$

By (A4), it follows that $[a]_m = [a]_m +_m [0]_m$. So we are done.

(A3) **Inverses**: Let a be some arbitrary integer modulo m. We define the inverse for a as -a since

$$[a]_m +_m [-a]_m = [a + (-a)]_m$$

= $[0]_m$

By (A4), we have $[-a]_m +_m [a]_m = [0]_m$. So we are done.

(A4) Commutativity: Let a, b be some arbitrary integers modulo m.

$$[a]_m +_m [b]_m = [a+b]_m$$

= $[b+a]_m$
= $[b]_m +_m [a]_m$

So we are done.

- (ii) Multiplication:
 - (M1) Associativity: Let a, b, c be integers modulo m. So we have

$$[a]_{m} \cdot_{m} ([b]_{m} \cdot_{m} [c]_{m}) = [a]_{m} \cdot_{m} [b \cdot c]_{m}$$

$$= [a \cdot (b \cdot c)]_{m}$$

$$= [(a \cdot b) \cdot c]_{m}$$

$$= [a \cdot b]_{m} \cdot_{m} [c]_{m}$$

$$= ([a]_{m} \cdot_{m} [b]_{m}) \cdot_{m} [c]_{m}$$

So we are done.

(M2) **Commutativity**: Let a, b be some arbitrary integers modulo m. So we have

$$[a]_m \cdot_m [b]_m = [a \cdot b]_m$$
$$= [b \cdot a]_m$$
$$= [b]_m \cdot_m [a]_m$$

So we are done.

(M3) **Identity Element**: The multiplicative identity (or natural element) is 1 since for all $a \in \mathbb{Z}_m$, we have

$$[1]_m \cdot_m [a]_m = [1 \cdot a]_m$$
$$= [a]_m$$

By (M2), it follows that $[a]_m = [1]_m \cdot_m [a]_m$. So we are done.

(iii) Distributivity:

(D1) Let a, b, c be some arbitrary integers modulo m. So we have

$$[a]_m \cdot_m ([b]_m +_m [c]_m) = [a]_m \cdot_m [b+c]_m$$

$$= [a \cdot (b+c)]_m$$

$$= [(a \cdot b) + (a \cdot c)]_m$$

$$= [a \cdot b]_m +_m [a \cdot c]_m$$

$$= [a]_m \cdot_m [b]_m +_m [a]_m \cdot_m [c]_m$$

From (M2), it follows that we are done.

Hence the structure $(\mathbb{Z}_m, +_m, \cdot_m)$ forms a commutative ring.

Lemma 3.5.1. (\mathbb{Z}_p is a field) Let p be prime. The structure $(\mathbb{Z}_p, +_p, \cdot_p)$ forms a field.

3.5.1 Other Theorems

Theorem 3.5.2. Let $m \in \mathbb{Z}^+$ be a positive integer. For all $k, l \in \mathbb{N}$,

$$k \equiv l \pmod{m} \iff \operatorname{rem}(k, m) = \operatorname{rem}(l, m).$$

Proof. Let $m \in \mathbb{Z}^+$ be an arbitrary positive integer. Let $k, l \in \mathbb{N}$ be arbitrary natural numbers.

 (\Longrightarrow) . Let us assume that $k \equiv l \pmod{m}$, that is to say

$$\exists \lambda \in \mathbb{Z}.k - l = \lambda \cdot m.$$

By definition, we have

$$k = quo(k, m) \cdot m + rem(k, m)$$

 $l = quo(l, m) \cdot m + rem(l, m)$

Hence

$$k - l = [\operatorname{quo}(k, m) - \operatorname{quo}(l, m)] \cdot m + [\operatorname{rem}(k, m) - \operatorname{rem}(l, m)] = \lambda_0 \cdot m.$$

Hence $m \mid \operatorname{rem}(k, m) - \operatorname{rem}(l, m)$, Since $0 \leq |\operatorname{rem}(k, m) - \operatorname{rem}(l, m)| < m$, it follows that $\operatorname{rem}(k, m) = \operatorname{rem}(l, m)$. So we are done. (\iff). Let us assume that $\operatorname{rem}(k, m) = \operatorname{rem}(l, m)$, so we have

$$k - l = [\operatorname{quo}(k, m) - \operatorname{quo}(l, m)] \cdot m.$$

Hence $m \mid k - l$, so by definition, $k \equiv l \pmod{m}$.

Corollary 3.5.2.1. For all $n \in \mathbb{Z}$,

$$n \equiv \text{rem}(n, m) \pmod{m}$$
.

Proof. Let $n \in \mathbb{Z}$ be an arbitrary integer. We have

$$n - \text{rem}(n, m) = \text{quo}(n, m) \cdot m.$$

Hence $m \mid n - \text{rem}(n, m)$, so by definition, $n \equiv \text{rem}(n, m) \pmod{m}$.

3.6 Greatest Common Divisor

Definition 3.6.1. (**Divisors**) Let n be some natural number. The set of divisors of n is defined by

$$D(n) = \{ d \in \mathbb{N} : d \mid n \}.$$

Proposition 3.6.1. For all natural numbers $k, n, D(k \cdot n) = D(k) \cup D(n)$

We note that the set of divisors is hard to compute. However, the computation of the greatest divisor of n is straightforward, since it is n.

Definition 3.6.2. (Common Divisor) Let S be a finite set of natural numbers, $S \subset \mathbb{N}$. Let $d \in \mathbb{N}_1$ such that c divides all the elements of S. That is

$$\forall x \in S.c \mid x.$$

Then c is a **common divisor** of all the elements in S.

Definition 3.6.3. (Common Divisors) Let m, n be two natural numbers. The set of common divisors of m and n is defined by

$$CD(m,n) = \left\{ c \in \mathbb{N} : c \in D(m) \land c \in D(n) \right\}.$$

Note that since CD(n, n) = D(n), then it follows that the set of common divisors is just as difficult to compute as divisors. However, we note that the *greatest common divisor* will be easier to compute and gives us an upper bound for CD(m, n).

Proposition 3.6.2. For all natural numbers k, m and n:

- $CD(k \cdot n, n) = D(n)$
- CD(m,n) = CD(n,m)

Lemma 3.6.1. (The Key Lemma) The key lemma states that For all $m, m', n \in \mathbb{N}$ where $n \neq 0$.

$$m \equiv m' \pmod{n} \implies CD(m, n) = CD(m', n).$$

Proof. Let $m, m', n \in \mathbb{N}$ be some arbitrary natural numbers where $n \neq 0$. Assume that $m \equiv m' \pmod{m}$. That is to say there exists some integer $k \in \mathbb{Z}$ such that

$$m = m' + k \cdot n. \tag{\dagger}$$

We're required to show that

$$CD(m, n) = \{d \in \mathbb{N} : d \mid m \land d \mid n\} = \{d \in \mathbb{N} : d \mid m' \land d \mid n\} = CD(m', n).$$

So we will prove that for all natural numbers $d \in \mathbb{N}$

$$d \mid m \wedge d \mid n \iff d \mid m' \wedge d \mid n. \tag{\ddagger}$$

Let $d \in \mathbb{N}$ be some arbitrary natural number.

 (\Longrightarrow) . Assume $d\mid m\wedge d\mid n$, that is to say there exists some integers $\lambda,\mu\in\mathbb{Z}$ such that

$$m = \lambda \cdot d \tag{i}$$

$$n = \mu \cdot d$$
 (ii)

From (\dagger) , we have

$$m' + k \cdot n = \lambda \cdot d$$

$$m' + k \cdot (\mu \cdot d) = \lambda \cdot d$$

$$m' = d \cdot (\lambda - k \cdot \mu)$$

So by definition of division, $d \mid m'$. By our initial assumption $d \mid n$, we have $d \mid m' \land d \mid n$.

$$(\Leftarrow)$$
. Analogous to the previous implication.

Lemma 3.6.2. For all $m, n \in \mathbb{N}$,

$$CD(m,n) = \begin{cases} D(n), & \text{if } n \mid m \\ CD(n, \text{rem}(m,n)), & \text{otherwise} \end{cases}$$

Definition 3.6.4. (Greatest Common Divisor) For a given pair of natural numbers $m, n \in \mathbb{N}$, the greatest common divisor of m and n is some natural number $d \in \mathbb{N}$ such that

- $d \mid m \wedge d \mid n$
- $\forall c \in \mathbb{N}.c \mid m \land c \mid n \implies c \mid d$
- By the transitivity of |, we note that $d = \gcd(m, n)$ is equivalent to

$$\forall c \in \mathbb{N}.c \mid m \land \mid n \iff c \mid d.$$

Proposition 3.6.3. The greatest common divisor of m and n is defined as the upper bound of CD(m, n)

3.6.1 Euclid's Algorithm

Since the natural number n is the greatest divisor in D(n), then lemma 3.6.2 and proposition 3.6.3 we have

$$\gcd(m,n) = \begin{cases} n, & \text{if } n \mid m \\ \gcd(n, \text{rem}(m,n)), & \text{otherwise} \end{cases}.$$

The above forms the basis for the implementation of the **Euclidean algorithm** for computing the greatest common divisor of two positive integers m, n. So we have following recursive implementation in OCaml

```
let rec gcd m n =
  let r = rem m n in
  if r = 0 then n
  else gcd n r
```

Theorem 3.6.1. Euclid's Algorithm gcd terminates for all pairs of positive integers m, n such that gcd m n is the greatest common divisor.

Proof. Let m, n be some arbitrary positive integers.

Termination.

We have two cases m < n and $m \ge n$.

1. Case m < n. Assume that m < n. So it follows that $n \mid m$ is false, hence

$$gcd(m, n) = gcd(n, rem(m, n)).$$

We note that rem(m, n) = m, hence gcd(m, n) = gcd(n, m). This reduces the termination for the case m < n to that of the case $m \ge n$.

2. Case $m \ge n$. Assume that $m \ge n$. We now have two cases, either $n \mid m$ or $n \nmid m$. In the case of $n \mid m$, gcd terminates, returning n.

In the case of $n \nmid m$, then we may have

$$\begin{split} m &= q_1 \cdot n + r_1 & 0 \leq r_1 < n \\ n &= q_2 \cdot r_1 + r_2 & 0 \leq r_2 < r_1 \\ r_1 &= q_3 \cdot r_2 + r_3 & 0 \leq r_3 < r_2 \\ \vdots & \\ r_{i-2} &= q_i \cdot r_{i-1} + r_i & 0 \leq r_i < r_{i-1} \\ \vdots & \\ r_{k-3} &= q_{k-1} \cdot r_{k-2} + r_{k-1} & 0 \leq r_{k-1} < r_{k-2} \\ r_{k-2} &= q_k \cdot r_{k-1} + 0 \end{split}$$

This process must terminate as $0 \le r_i < r_{i-1} < \cdots < r_2 < r_1 < n$, a strictly decreasing sequence.

Correctness

The correctness of the algorithm can be verified by

$$\gcd(m,n) = \begin{cases} n, & \text{if } n \mid m \\ \gcd(n, \text{rem}(m,n)), & \text{otherwise} \end{cases}.$$

Since for each call of gcd m n, we calculate r = rem(m, n). If r = 0 then we terminate, which is equivalent to $n \mid m$. Otherwise we recursively call gcd.

Complexity

Suppose that the Euclidean algorithm takes n steps to compute the greatest common divisor of the pair of natural numbers a > b > 0. We claim that

smallest values of a, b for which this is true are the Fibonacci numbers F_{n+2} and F_{n+1} respectively. We proceed by induction on n with the statement

$$P(n) = \forall a, b \in \mathbb{N}. |\gcd(a, b)| = n \implies a \ge F_{n+2} \land b \ge F_{n+1},$$

where $|\gcd(\cdot)|$ denotes the number of steps to compute the gcd.

Proof.

Base Case. If n = 1, then $b \mid a$. The smallest positive integers for which this is true is a = 2 and b = 1, which are F_3 and F_2 respectively. So the statement holds for n = 1.

Inductive Step. We wish to show that $P(n) \implies P(n+1)$. Let us assume that P(n) holds, that is

$$\forall a, b \in \mathbb{N}. |\gcd(a, b)| = n \implies a \ge F_{n+2} \land b \ge F_{n+1}.$$

Let $a, b \in \mathbb{N}$ be arbitrary. Let us assume that |gcd(a, b)| = n + 1, that is to say

$$gcd(a, b) = gcd(b, rem(a, b)),$$

requires n+1 steps. So it follows that gcd(b, rem(a, b)) requires n steps. By our inductive hypothesis, we have

$$b \ge F_{n+2} \wedge \operatorname{rem}(a, b) \ge F_{n+1}$$
.

By the division theorem, we note that

$$a = \operatorname{quo}(a, b) \cdot b + \operatorname{rem}(a, b).$$

We wish to show that $a \ge F_{n+3}$. Since a > b > 0, it follows that quo(a, b) > 0. Hence

$$a = \operatorname{quo}(a, b) \cdot b + \operatorname{rem}(a, b) \ge b + \operatorname{rem}(a, b) \ge F_{n+2} + F_{n+1} = F_{n+3}.$$

So we have P(n+1).

By the Principle of Mathematical Induction, we conclude that P(n) holds for all $n \in \mathbb{N}$.

3.6.2 Extended Euclidean Algorithm

Theorem 3.6.2. (Bezout Identity) For all $m, n \in \mathbb{Z}^+$, there exists integers $x, y \in \mathbb{Z}$ such that

$$x \cdot m + y \cdot n = \gcd(m, n).$$

Proof. Let $m, n \in \mathbb{Z}^+$ be arbitrary positive integers. Let us consider the Euclidean algorithm in action:

$$m = q_1 n + r_1$$

$$n = q_2 r_1 + r_2$$

$$\vdots$$

$$r_{k-2} = q_k r_{k-1} + r_k$$

$$r_{k-1} = q_{k+1} r_k + 0$$

We wish to show that for all $i \in [1, k]$

$$\exists x_i, y_i \in \mathbb{Z}.x_i m + y_i n = r_i.$$

We proceed by strong induction on i.

Proof.

Base Case. When i = 1, we introduce the witnesses $x_1 = 1$ and $y_1 = -q_1$. So we have $x_1m + y_1n = r_1$. So we have P(1).

When i=2, we introduce the witnesses $x_2=-q_2$ and $y_2=1+q_1\cdot q_2$. We note that

$$r_2 = n - q_2 r_1$$

= $n - q_2 (m - q_1 n)$
= $(-q_2)m + (1 + q_1 q_2)n$

So we have P(2).

Inductive Step. We wish to show that

$$\forall i \in [2, k-1]. (\forall \ell \in [1, i]. P(\ell)) \implies P(i+1).$$

Let $i \in [2, k-1]$ be arbitrary. Let us assume that $\forall \ell \in [1, i]. P(\ell)$ holds. We note that

$$r_{i-1} = q_{i+1}r_i + r_{i+1}.$$

So we have

$$r_{i+1} = r_{i-1} - q_{i+1}r_i$$

= $(x_{i-1}m + y_{i-1}n) - q_{i+1}(x_im + y_in)$
= $(x_{i-1} - q_{i+1}x_i) m + (y_{i-1} - q_{i+1}y_i) n$

So let us introduce the witnesses

$$x_{i+1} = x_{i-1} - q_{i+1}x_i$$
$$y_{i+1} = y_{i-1} - q_{i+1}y_i$$

From the above, it follows that we have P(i + 1).

By the Principle of Strong Induction, we conclude that P(i) holds for all $i \in [1, k]$.

The **Extended Euclidean Algorithm** calculates the integers $x, y \in \mathbb{Z}$ whose existence is postulated by the Bezout Identity and the gcd of m and n. We have the following recursive implementation in OCaml

```
let egcd m n =
  let rec inner ((x1, y1), r1) ((x1, y2), r2) =
        (*r_{i + 1} = r_{i - 1} - q_{i + 1} r_{i*})
        let (q, r) = divalg r1 r2
        in
        if r = 0 then ((x1, y2), r2)
        else inner ((x1, y2), r2) ((x1 - q * x2, y1 - q * y2), r)
    in inner ((1, 0), m) ((0, 1), n)
```

So we now have

```
let gcd = snd <.> egcd
let x = fst <.> (fst <.> egcd)
let y = snd <.> (fst <.> egcd)
```

We define

$$lc_1(m,n) = x$$
$$lc_2(m,n) = y$$

Hence

$$lc_1(m,n) \cdot m + lc_2(m,n) \cdot n = \gcd(m,n).$$

3.6.3 Other Theorems

Lemma 3.6.3. For all positive integers $l, m, n \in \mathbb{Z}^+$,

- (i) Commutativity. gcd(m, n) = gcd(n, m)
- (ii) Associativity. gcd(l, gcd(m, n)) = gcd(gcd(l, m), n)
- (iii) **Distributivity**. $gcd(l \cdot m, l \cdot n) = l \cdot gcd(m, n)$

Proof. Let $l, m, n \in \mathbb{Z}^+$ be arbitrary positive integers.

- (i) is trivial.
- (ii) Let $d = \gcd(l, \gcd(m, n))$, by definition, we note that $\forall c.c \mid l \land c \mid \gcd(m, n) \iff c \mid d$ We wish to show that $d = \gcd(\gcd(l, m), n)$, that is to say $\forall c.c \mid \gcd(l, m) \land c \mid n \iff c \mid d$. We note that

$$\forall c \in \mathbb{Z}^+.c \mid m \land c \mid n \iff c \mid \gcd(m, n).$$

Hence we have for,

$$\forall c.c \mid l \land c \mid \gcd(m, n) \iff c \mid l \land (c \mid m \land c \mid n)$$

$$\iff \forall c. (c \mid l \land c \mid m) \land c \mid n$$

$$\iff \forall c.c \mid \gcd(l, m) \land c \mid n$$

So we are done.

(iii) Let $d = \gcd(m, n)$, we note that

$$(d \mid m \land c \mid n) \implies [(l \cdot d) \mid (l \cdot m) \land (l \cdot d) \mid (l \cdot n)]$$

Hence $(l \cdot d) \mid \gcd(l \cdot m, l \cdot n)$, that is to say there exists an integer $x \in \mathbb{Z}$ such that $\gcd(l \cdot m, l \cdot n) = x \cdot l \cdot d$. Introducing a witness $x_0 \in \mathbb{Z}$ such that the above holds true gives us $\gcd(l \cdot m, l \cdot n) = x_0 \cdot l \cdot d$. So

$$((x_0 \cdot l \cdot d) \mid (l \cdot m) \land (x_0 \cdot l \cdot d) \mid (l \cdot n)) \implies ((x_0 \cdot d) \mid m \land (x_0 \cdot d) \mid n).$$

Hence $(x_0 \cdot d) \mid d$, yielding $x_0 = 1$. So we have $\gcd(l \cdot m, l \cdot n) = l \cdot \gcd(m, n)$.

Theorem 3.6.3. (Euclid's Theorem) For all $k, m, n \in \mathbb{Z}^+$,

$$k \mid (m \cdot n) \land \gcd(k, m) = 1 \implies k \mid n.$$

Let $k, m, n \in \mathbb{Z}^+$ be arbitrary positive integers. Let us assume that $k \mid (m \cdot n)$, that is to say

$$\exists x \in \mathbb{Z}.m \cdot n = x \cdot k.$$

Introducing a witness $x_0 \in \mathbb{Z}$ such that the above holds gives us $m \cdot n = x_0 \cdot k$. Let us also assume that gcd(k, m) = 1. By the distributivity of gcd, we have

$$n = \gcd(n \cdot k, n \cdot m)$$
$$= \gcd(n \cdot k, x_0 \cdot k)$$
$$= k \cdot \gcd(n, x_0)$$

Hence $k \mid n$.

Corollary 3.6.3.1. For all $m, n \in \mathbb{Z}^+$ and prime $p \in \mathbb{P}$,

$$p \mid (m \cdot n) \implies p \mid m \lor p \mid n.$$

Let $m, n \in \mathbb{Z}^+$ be arbitrary positive integers and prime $p \in \mathbb{P}$ be arbitrary. Let us assume that $p \mid (m \cdot n)$. We have two cases:

- Case $p \mid m$. Let us assume that $p \mid m$. So we are done.
- Case $p \nmid m$. Let us assume that $p \nmid m$, since p is prime, we have gcd(p,m) = 1. By Euclid's Theorem, we have $p \mid n$. So we are done.

3.7 Primes

Definition 3.7.1. (**Prime Number**) A prime number $p \in \mathbb{Z}^+$ is a positive integer, $p \geq 2$, such that

$$\forall x \in \mathbb{Z}^+.x \mid p \implies x = 1 \lor x = p.$$

 \bullet We denote the set of primes by $\mathbb{P}.$

Theorem 3.7.1. (Fundamental Theorem of Arithmetic) For all positive integers $n, n \geq 2$, there exists a unique finite sequence of primes and exponents $\langle (p_1, n_1), \ldots, (p_k, n_k) \rangle \subset \mathbb{P} \times \mathbb{Z}^+$ where $p_1 < \cdots < p_k$ such that

$$n = \prod_{i=1}^{k} p_i^{n_i}.$$

Proof.

Existence.

We proceed by strong induction on n with the statement

$$P(n) = \exists \langle (p_1, n_1), \dots, (p_k, n_k) \rangle \subset \mathbb{P} \times \mathbb{Z}^+ . p_1 < \dots < p_k . n = \prod_{i=1}^k p_i^{n_i},$$

from a basis of n=2.

Proof.

Base Case. For n = 2, we introduce the witness $\langle (p_1, n_1) \rangle = \langle (2, 1) \rangle$. So we have

$$2 = \prod_{i=1}^{1} p_i^{n_i} = 2^1.$$

So P(2) holds.

Inductive Step. We wish to show that

$$\forall n \geq 2 \in \mathbb{Z}^+. ((\forall k \in [2, n]. P(k)) \implies P(n+1)).$$

Let $n \geq 2 \in \mathbb{Z}^+$ be an arbitrary integer. Let us assume that $\forall k \in [2, n].P(k)$ holds, that is to say for all $k \in [2, n]$, there exists the finite sequence $\langle (p_1, n_1), \dots, (p_\ell, n_\ell) \rangle \subset \mathbb{P} \times \mathbb{Z}^+$ where $p_1 < \dots < p_\ell$ such that

$$k = \prod_{i=1}^{\ell} p_i^{n_i}.$$

Let us consider n+1, we have two cases:

• Case n+1 is prime. Let us assume that n+1 is prime. Let us introduce the witness $\langle (p_1,1) \rangle = \langle (n+1,1) \rangle$. So we have

$$n+1 = \prod_{i=1}^{1} p_i^{n_i} = (n+1)^1.$$

So we have P(n+1).

• Case n+1 is composite. Let us assume that n+1 is composite. That is to say

$$\exists a, b \in [2, n+1).n + 1 = a \cdot b.$$

Let us introduce the witness $a_0, b_0 \in [2, n+1)$ such that the above holds. By our inductive hypothesis it follows that there exists the finite sequences such that

$$a_0 = \prod_{i=1}^{\ell} p_i^{n_i}$$

$$b_0 = \prod_{i=1}^{\ell'} (p_i')^{n_i'}$$

$$p_1 < \dots < p_{\ell}$$

$$p_1' < \dots < p_{\ell'}'$$

We have

$$n+1 = \prod_{i=1}^{\ell} p_i^{n_i} \cdot \prod_{i=1}^{\ell'} (p_i')^{n_i'} = (p_1'')^{n_1''} (p_2'')^{n_2''} \cdots (p_k'')^{n_k''},$$

with the sequence $\langle (p_1'', n_1''), \dots, (p_k'', n_k'') \rangle$ with $p_1'' < \dots < p_k''$. So we have P(n+1).

By the Principle of String Induction, we conclude that P(n) holds for all $n \geq 2 \in \mathbb{Z}^+$.

Uniqueness.

We proceed by induction on k with the statement

$$P(k) = \forall \ell \in \mathbb{Z}^+ . \forall \langle (p_1, a_1), \dots, (p_k, a_k) \rangle, \langle (q_1, b_1), \dots, (q_\ell, b_\ell) \rangle \subset \mathbb{P} \times \mathbb{Z}^+$$

$$.p_1 < \dots < p_k \land q_1 < \dots < q_\ell$$

$$. \prod_{i=1}^k p_i^{a_i} = \prod_{i=1}^\ell q_i^{b_i} \implies \langle (p_1, a_1), \dots, (p_k, a_k) \rangle = \langle (q_1, b_1), \dots, (q_\ell, b_\ell) \rangle$$

from a basis of k = 1.

Proof.

Base Case. For k=1. Let $\ell \in \mathbb{Z}^+$ be an arbitrary positive integer. Let

 $\langle (p_1, a_1) \rangle$ and $\langle (q_1, b_1), \dots, (q_\ell, b_\ell) \rangle$ be our finite sequences of primes where $q_1 < \dots < q_\ell$. Let us assume that

$$\prod_{i=1}^{k} p_i^{a_i} = \prod_{i=1}^{\ell} q_i^{b_i}.$$

So we have

$$\prod_{i=1}^k p_i^{a_i} = \prod_{i=1}^\ell q_i^{b_i}$$

$$\iff p_1^{a_1} = q_1^{b_1} \cdots q_\ell^{b_\ell}$$

Since p_1 and q_i are prime and $q_1 < \cdots < q_\ell$, it follows that $k = \ell = 1$. Hence $\langle (p_1, a_1) \rangle = \langle (q_1, b_1) \rangle$.

Inductive Step. We wish to show that

$$\forall k \in \mathbb{Z}^+.P(k) \implies P(k+1).$$

Let $k \in \mathbb{Z}^+$ be an arbitrary positive integer. Let us assume that P(k) holds, that is to say

$$\forall \ell \in \mathbb{Z}^+. \forall \langle (p_1, a_1), \dots, (p_k, a_k) \rangle, \langle (q_1, b_1), \dots, (q_\ell, b_\ell) \rangle \subset \mathbb{P} \times \mathbb{Z}^+$$

$$.p_1 < \dots < p_k \land q_1 < \dots < q_\ell$$

$$.\prod_{i=1}^k p_i^{a_i} = \prod_{i=1}^\ell q_i^{b_i} \implies \langle (p_1, a_1), \dots, (p_k, a_k) \rangle = \langle (q_1, b_1), \dots, (q_\ell, b_\ell) \rangle$$

We wish to show that P(k+1) holds. Let $\ell \in \mathbb{Z}^+$ be arbitrary. Let $\langle (p_1, a_1), \ldots, (p_1, a_{k+1}) \rangle$ and $\langle (q_1, b_1), \ldots, (q_\ell, b_\ell) \rangle$ be two arbitrary sequences of primes and exponents such that $p_1 < \cdots < p_{k+1}$ and $q_1 < \cdots < q_\ell$. Let us assume that

$$\prod_{i=1}^{k+1} p_i^{a_i} = \prod_{i=1}^{\ell} q_i^{b_i}.$$

We note that $p_1^{a_1} \mid \prod_{i=1}^{k+1} p_i^{a_i}$, hence $p_1^{a_1} \mid \prod_{i=1}^{\ell} q_i^{b_i}$, hence there exists q_i such that $p_1^{a_1} \mid q_i^{b_i}$. Analogously, we have $\exists p_i.q_1^{b_1} \mid p_i^{a_i}$. Since p_i and q_i are prime, it follows that $p_1 = q_i \geq q_1$, $q_1 = p_i \geq p_1$, $a_1 = b_i$ and $b_1 = a_i$. We also note that $p_1 = q_i \geq q_1$ and $q_1 = p_i \geq p_1$. Hence $p_1 = q_1$ and $q_1 = b_1$. Hence

$$\prod_{i=2}^{k+1} p_i^{a_i} = \prod_{i=2}^{\ell} q_i^{b_i}.$$

We note that $\ell \geq 1$ since the product of 2 or more primes $p_1^{a_1}, \ldots, p_{k+1}^{a_{k+1}}$ is not prime. So $\ell - 1 \in \mathbb{Z}^+$. Since we have the sequences of primes $\underbrace{\langle (p_2, a_2), \ldots, (p_{k+1}, a_{k+1}) \rangle}_{\text{length } k}$ and $\langle (q_2, b_2), \ldots, (q_\ell, b_\ell) \rangle$ where $p_2 < \cdots < p_{k+1}$

and $q_2 < \cdots < q_\ell$ with

$$\prod_{i=2}^{k+1} p_i^{a_i} = \prod_{i=2}^{\ell} q_i^{b_i}.$$

So by our inductive hypothesis, we conclude that

$$\langle (p_2, a_2), \dots, (p_{k+1}, q_{k+1}) \rangle = \langle (q_2, b_2), \dots, (q_\ell, b_\ell) \rangle.$$

Hence

$$\langle (p_1, a_1), \dots, (p_1, a_{k+1}) \rangle = \langle (q_1, b_1), \dots, (q_{\ell}, b_{\ell}) \rangle.$$

So we have P(k+1).

By the Principle of Induction, we conclude that P(k) holds for all $k \in \mathbb{Z}^+$.

So we are done. \Box

Theorem 3.7.2. (Euclid's Infinitude of Primes) The set of primes \mathbb{P} is infinite.

Proof. We proceed by contradiction. Let us assume the set of primes $\mathbb P$ is finite, that is

$$\mathbb{P} = \{p_1, \dots, p_k\},\,$$

where $k \in \mathbb{N}$. Let us consider

$$p = 1 + \prod_{p_i \in \mathbb{P}} p_i.$$

Since $p \notin \mathbb{P}$, then it follows that by the Fundamental Theorem of Arithmetic, it may be expressed as a unique product of primes. Hence there exists $p_i \in \mathbb{P}$ such that $p_i \mid p$. We note that $p_i \mid (p_1 \cdots p_k)$, so it follows that $p_i \mid p - (p_1 \cdots p_k) = 1$. A contradiction! Hence \mathbb{P} is infinite.

3.7.1 Other Theorems

Lemma 3.7.1. For all prime $p \in \mathbb{P}$ and $m \in [0, p]$,

$$\binom{p}{m} \equiv 0 \pmod{p} \vee \binom{p}{m} \equiv 1 \pmod{p}.$$

Proof. Let $p \in \mathbb{P}$ be an arbitrary prime and $m \in [0, p]$ be an arbitrary integer. We have the following cases:

• Case m=0. Let us assume that m=0, hence

$$\binom{p}{0} = 1 \equiv 1 \pmod{p}.$$

So we are done.

• Case 0 < m < p. Let us assume that 0 < m < p. We note that

$$\binom{p}{m} = \frac{p!}{(p-m)!m!} = \frac{p(p-1)!}{(p-m)!m!},$$

is an integer, so it follows that $(p-m)!m! \mid p(p-1)!$. For simplicity, let k = (p-m)!m!. We note that $\gcd(k,p) = 1$ since p is prime. By Euclid's theorem, it follows that $k \mid (p-1)!$. Hence

$$\frac{(p-1)!}{(p-m)!m!},$$

is an integer. So we have

$$p \mid \binom{p}{m}$$
.

By definition of modulo p, we have

$$\binom{p}{m} \equiv 0 \pmod{p}.$$

• Case m = p. Let us assume that m = p, hence

$$\binom{p}{0} = 1 \equiv 1 \pmod{p}.$$

So we are done.

Theorem 3.7.3. (The Freshman's Dream) For all natural $m, n \in \mathbb{N}$ and prime $p \in \mathbb{P}$,

$$(m+n)^p \equiv m^p + n^p \pmod{p}.$$

Proof. Let $m, n \in \mathbb{N}$ be arbitrary natural numbers. Let prime $p \in \mathbb{P}$ be arbitrary. We wish to show that $(m+n)^p \equiv m^p + n^p \pmod{p}$, by the definition of modulo p, that is

$$p \mid (m+n)^p - (m^p + n^p).$$

Recall that the Binomial Theorem states that

$$\forall x, y \in \mathbb{Z}, n \in \mathbb{Z}^+.(x+y)^n = \sum_{r=0}^n \binom{n}{r} (x)^{n-r} (y)^r.$$

Instantiating for x = m, y = n and n = p yields

$$(m+n)^{p} = \sum_{r=0}^{p} \binom{p}{r} (m)^{p-r} (n)^{r}$$
$$= m^{p} + \sum_{r=1}^{p-1} \binom{p}{r} (m)^{p-r} (n)^{r} + n^{p}$$

Note that $p \mid \binom{p}{r}$ for $1 \le r \le p-1$, so it follows that

$$p \mid \sum_{r=1}^{p-1} \binom{p}{r} (m)^{p-r} (n)^r,$$

hence $p \mid (m+n)^p - (m^p + n^p)$. So we are done.

Theorem 3.7.4. (Fermat's Little Theorem) For all $i \in \mathbb{N}$ and prime $p \in \mathbb{P}$,

$$i^p \equiv i \pmod{p}$$
.

Proof. Let prime $p \in \mathbb{P}$ be arbitrary. We proceed by induction on i with the statement

$$P(i) = i^p \equiv i \pmod{p}.$$

Base Case. For i = 0, we have

$$0^p \equiv 0 \pmod{p}$$
.

So we have P(0).

Inductive Step. We wish to show that

$$\forall i \in \mathbb{N}. P(i) \implies P(i+1).$$

Let $i \in \mathbb{N}$ be arbitrary. Let us assume that P(i) holds, that is to say

$$i^p \equiv i \pmod{p}$$
.

Let us consider i + 1. So we have

$$(i+1)^{p} = \sum_{r=0}^{p} {p \choose r} (i)^{p-r}$$

$$= i^{p} + \sum_{r=1}^{p-1} {p \choose r} (i)^{p-r} + 1$$

$$= i^{p} + 1 \pmod{p}$$

$$= i + 1 \pmod{p}$$

So we have P(i+1).

By the Principle of Mathematical Induction, we conclude that P(i) holds for all $i \in \mathbb{N}$.

Corollary 3.7.4.1. For all $i \in \mathbb{N}$, $i \nmid p$ and prime $p \in \mathbb{P}$,

$$i^{p-1} \equiv 1 \pmod{p}$$
.

Proof. Let $i \in \mathbb{N}.i \nmid p$ and prime $p \in \mathbb{P}$ be arbitrary. Instantiating Fermat's Little Theorem yields

$$i^p \equiv i \pmod{p}$$
.

By the cancellability of congruences and since gcd(i, p) = 1, we have

$$i^{p-1} \equiv 1 \pmod{p}$$
.

So we are done.

4 Formal Languages

4.1 Symbols, Strings, Alphabets and (Formal) Languages

Definition 4.1.1. (Alphabet) An alphabet is a finite set Σ , whose elements are referred to as symbols.

Definition 4.1.2. (String) A string s of length $n \geq 0$ over the alphabet Σ is an ordered n-tuple (s_1, \ldots, s_n) where $s_k \in \Sigma$.

•

 $\Sigma^* = \text{set of all finite strings over } \Sigma.$

- We often abbreviate the string (s_1, \ldots, s_n) as $s_1 s_2 \ldots s_n$.
- The empty string (or null string) () over the alphabet Σ is denoted ε .
- The length of a string $s \in \Sigma^*$ is denoted as |s|.

Definition 4.1.3. (Concatenation) The concatenation of two strings $u = u_1 \dots u_m$ and $v = v_1 \dots v_n$ over Σ is the string $uv = u_1 \dots u_m v_1 \dots v_n$ over Σ , that satisfies the following axioms

(C1) Identity.

$$\forall u \in \Sigma^*. u\varepsilon = \varepsilon u = u.$$

(C2) Associativity.

$$\forall u, v, w \in \Sigma^*.(uv)w = u(vw) = uvw.$$

 \bullet We may inductively define Σ^* as

Axioms:
$$\frac{-}{\varepsilon}$$
 Rules:
$$\frac{a \quad b}{ab}$$

Theorem 4.1.1. The length of the string uv over Σ is

$$|uv| = |u| + |v|.$$

Proof. Induction on |u|.

• The string u^n where $n \in \mathbb{N}$ and $u \in \Sigma^*$ is inductively defined as

$$u^0 = \varepsilon$$
$$\forall n \in \mathbb{N}. u^n = uu^{n-1}$$

Definition 4.1.4. (Formal Language) We say the set L is a formal language over Σ if and only if $L \subseteq \Sigma^*$.

• The empty language consisting of no strings is \emptyset .

Theorem 4.1.2. The set of languages over the alphabet Σ is non-enumerable.

Proof. Cantor's diagonalisation argument.

• Concatenation of the language L_1 and L_2 is defined as

$$L_1L_2 = \{s_1s_2 : s_1 \in L_1 \land s_2 \in L_2\}.$$

and satisfies Identity and Associativity axioms with the identity element \emptyset .

• The $n \in \mathbb{N}$ concatenation of the language L is

$$L^n = \{s_1 \cdots s_n : s_1, \dots, s_n \in L\},\,$$

where $L^0 = \{\varepsilon\}$.

• The concatenation closure or Kleenean star of the language L is

$$L^* = \bigcup_{n \in \mathbb{N}} L^n.$$

4.2 Inductively Defined Sets

- A set S is inductively defined by a set of rules instances \mathcal{R} , consisting of instances of
 - Axioms. denoted

$$\mathcal{D} = \frac{a}{a}$$

where \mathcal{D} is said to be a derivation for the conclusion a, denoted $\mathcal{D} :: a \in S$

- Rules. denoted

$$\mathcal{D} = \frac{\mathcal{D}_1 \quad \mathcal{D}_2 \qquad \quad \mathcal{D}_n}{x_1 \quad x_2 \quad \cdots \quad x_n}$$

where $D_k :: x_k \in S$ are the derivations for the hypotheses (or premises) and $\mathcal{D} :: y \in S$.

• The set of rule instances is $\mathcal{R} \subseteq \mathcal{P}(S) \times S$ where $(X, y) \in \mathcal{R}$ and X is the set of premises and y is the conclusion. Axioms are of the form (\emptyset, y) .

Definition 4.2.1. (\mathcal{R} -Closed) A set S is closed (\mathcal{R} -closed) under the rule instances \mathcal{R} if and only if

$$\forall (X,y) \in \mathcal{R}. X \subseteq S \implies y \in Q.$$

Theorem 4.2.1. For all rule instances \mathcal{R} ,

- (i) $I_{\mathcal{R}}$ is \mathcal{R} -closed and
- (ii) for all S,

$$S \text{ is } \mathcal{R}\text{-closed} \implies I_{\mathcal{R}} \subseteq S.$$

Proof. We define $I_{\mathcal{R}}$ as

$$I_{\mathcal{R}} = \bigcap \{ S : S \text{ is } \mathcal{R}\text{-closed} \},$$

the least set closed under \mathcal{R} . We will to show that (i) holds. Let $(X,y) \in \mathcal{R}$ be arbitrary. Let us assume that $X \subseteq I_{\mathcal{R}}$. Let S be some arbitrary \mathcal{R} -closed set. Hence by the transitivity of \subseteq , we have $X \subseteq S$. Hence $y \in S$. Since S is arbitrary, by the definable property of \bigcap , we have $y \in I_{\mathcal{R}}$.

- (ii) follows trivially from the definable property of $I_{\mathcal{R}}$.
- $I_{\mathcal{R}}$ is said to be the set inductively defined by \mathcal{R} .

4.3 Rule Induction

• We wish to show $\forall x \in I_{\mathcal{R}}.P(x)$. We define

$$S = \{x \in I_{\mathcal{R}} : P(x)\}.$$

By anti-symmetry of \subseteq , $\forall x \in I_{\mathcal{R}}.P(x) \iff I_{\mathcal{R}} \subseteq S$. So it suffices to show that S is \mathcal{R} -closed. That is

$$\forall (X,y) \in \mathcal{R}. (\forall x \in X. x \in I_{\mathcal{R}} \land P(x)) \implies (y \in I_{\mathcal{R}} \land P(y))$$

$$\iff \forall (X,y) \in \mathcal{R}. (\forall x \in X. x \in I_{\mathcal{R}} \land P(x)) \implies P(y)$$

since $I_{\mathcal{R}}$ is \mathcal{R} -closed.

Definition 4.3.1. (The Principle of Rule Induction) Let $I_{\mathcal{R}}$ be inductively-defined by \mathcal{R} . The $\forall x \in I_{\mathcal{R}}.P(x)$ holds if

$$\forall (X, y) \in \mathcal{R}. (\forall x \in X. x \in I_{\mathcal{R}} \land P(x)) \implies P(y).$$

5 Regular Languages

5.1 Regular Expressions and Languages

• The set regular expressions $\mathcal{R}_{\Sigma} \subseteq (\Sigma \cup \Sigma')^*$ (or \mathcal{R}) over an alphabet Σ where $\Sigma' = \{\emptyset, \epsilon, *, |, (,)\}$ is inductively defined by

where $r, s \in (\Sigma \cup \Sigma')^*$

• The algebraic data type definition of a regular expression is

This is the "abstract syntax" (tree) representation of a regular expression as opposed to the "concrete syntax" defined in \mathcal{R}_{Σ}

• The regular language defined by the regular expression r over Σ is

$$L(r) = \{u \in \Sigma^* : u \text{ matches } r\}.$$

• Let \mathcal{L}_{Σ} (or \mathcal{L}), denotes the set of regular languages over the alphabet Σ that is

$$\mathcal{L}_{\Sigma} = \{ L(r) : r \in \mathcal{R}_{\Sigma} \} .$$

• \mathcal{L}_{Σ} satisfies

- The language $\emptyset \in \mathcal{L}$ and $\emptyset = L(\varnothing)$
- The language $\{\varepsilon\} \in \mathcal{L}_{\Sigma}$ and $\{\varepsilon\} = L(\epsilon)$
- For all $a \in \Sigma$, $\{a\} \in \mathcal{L}_{\Sigma}$ and $\{a\} = L(a)$
- $L_1, L_2 \in \mathcal{L}_{\Sigma}$ and $L_1 = L(r_1), L_2 = L(r_2)$, then
 - * $L_1 \cup L_2 \in \mathcal{L}_{\Sigma}$ and $L_1 \cup L_2 = L(r_1 | r_2)$
 - * $L_1L_2 \in \mathcal{L}_{\Sigma}$ and $L_1L_2 = L(r_1r_2)$
- $-L \in \mathcal{L}_{\Sigma}$ and L = L(r), then $L^* \in \mathcal{L}_{\Sigma}$ and $L^* = L(r^*)$
- Order of precedence: *, concatenation, |. Hence $a|b^*c = ((a) \mid ((b^*)c))$
- From properties above, for all $L \in \mathcal{L}_{\Sigma}$. $L^* \in \mathcal{L}_{\Sigma}$ and $L^n \in \mathcal{L}_{\Sigma}$
- The strings $u \in L(r)$ are said to match r, that is:
 - -u matches $a \iff u = a$
 - -u matches ϵ if u is ϵ .
 - no strings match \varnothing .
 - -u matches $r \mid s \iff u$ matches $r \lor u$ matches s
 - $-u \text{ matches } rs \iff \exists u,v \in \Sigma^*. u = vw \land v \text{ matches } r \land w \text{ matches } s.$
 - u matches r^* iff $\exists v \in \Sigma^* . u = v^n$ where $n \in \mathbb{N}$.
- The matching equivalence relation $\sim: \Sigma^* \longrightarrow \mathcal{R}_{\Sigma}$ is inductively defined as

$$\begin{array}{lll} \mathbf{Axioms}: & & \overline{(a,a)}[a \in \Sigma] & & \overline{(\varepsilon,\epsilon)} & & \overline{(\varepsilon,r^*)} \\ \mathbf{Rules}: & & \overline{(u,r)} & & \underline{(u,s)} & & \underline{(v,r)} & (w,s) \\ \hline (u,r\mid s) & & \overline{(u,r\mid s)} & & \underline{(u,r)} & (w,rs) & & \underline{(u,r)} & (v,r^*) \\ \hline \end{array}$$

5.2 Finite Automata

5.2.1 NFAs, DFAs and NFA $^{\varepsilon}$

Definition 5.2.1. (Non-deterministic finite automaton) A non-deterministic finite automaton (NFA) is A 5-tuple $M = (Q, \Sigma, q_0, \Delta, A)$ where

- (i) $Q = \{q_0, \dots, q_n\}$ a finite set of states.
- (ii) Σ is the finite alphabet of accepted input symbols.
- (iii) $\Delta: Q \times \Sigma \to \mathcal{P}(Q)$ the transition function.
- (iv) $q_0 \in Q$ is the unique start (initial) state.
- (v) $A \subseteq Q$ is the set of accepting states.

Figure 5.1: NFA over $\Sigma = \{a, b\}$

- $q \xrightarrow{a} q' \iff q' \in \Delta(q, a)$.
- $q_0 \stackrel{u}{\rightarrow}^* q'$ to denote the transition path

$$q_0 \xrightarrow{u_1} q_1 \xrightarrow{u_2} \cdots \xrightarrow{u_n} q',$$

where $u = u_1 \dots u_n$. Note that $q \stackrel{\varepsilon}{\to}^* q' \iff q = q'$.

• We may define a transition function $\Delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$ over Σ^* as

$$\Delta^*(q,\varepsilon) = \{q\}$$
$$\Delta^*(q,ua) = \bigcup_{q' \in \Delta^*(q,u)} \Delta(q',a)$$

equivalently,

$$\Delta^*(q,u) = \left\{ q' \in Q : q \xrightarrow{u}^* q' \right\}.$$

• The language accepted by the finite automaton M is L(M),

$$L(M) = \left\{ u \in \Sigma^* : q_0 \xrightarrow{u}^* q' \in A \right\} = \left\{ u \in \Sigma^* : \Delta^*(q_0, u) \cap A \neq \emptyset \right\}.$$

Definition 5.2.2. (Deterministic finite automaton) A deterministic finite automaton (DFA) is a NFA $M = (Q, \Sigma, \Delta, q_0, A)$, with the property

$$\forall q \in Q, a \in \Sigma. \exists ! q'. q \xrightarrow{a} q'.$$

Figure 5.2: DFA over $\Sigma = \{a, b\}$

- To check whether an NFA is a DFA:
 - Ensure all transition sets $\Delta(q, a)$ consist of singletons.
- Since $\Delta Q \times \Sigma \to \mathcal{P}(Q)$ returns singletons, we redefine $\Delta : Q \times \Sigma \to Q$. For simplicity, we write this as δ (to avoid confusion). EXAMPLE
- We define the transition function $\delta^*: Q \times \Sigma^* \to Q$ over Σ^* recursively as

$$\delta^*(q, \varepsilon) = q$$

$$\delta^*(q, ua) = \delta(\delta^*(q, u), a)$$

equivalently,

$$\delta^*(q, u) = q' \iff q \stackrel{u}{\to}^* q'.$$

• The language accepted by a DFA is

$$L(M) = \left\{ u \in \Sigma^* : q_0 \xrightarrow{u^*} q' \in A \right\} = \left\{ u \in \Sigma^* : \delta^*(q_0, u) \in A \right\}.$$

Definition 5.2.3. (NFA with ε -transitions) A NFA with ε -transitions (NFA $^{\varepsilon}$) is the 6-tuple $M = (Q, \Sigma, \Delta_{\varepsilon}, q_0, A)$ where $(Q, \Sigma, \Delta_{\varepsilon}, q_0, A)$ is a NFA with a modified transition relation, such that

$$\Delta_{\varepsilon}: Q \times (\Sigma \cup \{\varepsilon\}) \to \mathcal{P}(Q).$$

- ε -transitions are denoted $q \xrightarrow{\varepsilon} q' \iff q' \in \Delta_{\varepsilon}(q, \varepsilon)$.
- $q \stackrel{\varepsilon}{\Longrightarrow} q'$ if q = q' or there is a sequence of one or more ε -transitions

$$q \xrightarrow{\varepsilon} \cdots \xrightarrow{\varepsilon} q'$$
.

The ε -closure is defined as

$$\mathcal{E}(q) = \left\{ q' \in Q : q \stackrel{\varepsilon}{\Longrightarrow} q' \right\}.$$

That is the set of states reachable by zero or more ε -transitions. Note that $q \in \mathcal{E}(q)$

• $q \stackrel{a}{\Longrightarrow} q'$ consisting of the state transition sequence

$$q \stackrel{\varepsilon}{\Longrightarrow} \cdot \stackrel{a}{\Longrightarrow} \cdot \stackrel{\varepsilon}{\Longrightarrow} q'.$$

• The language accepted by the NFA $^{\varepsilon}$ is

$$L(M) = \left\{ u \in \Sigma^* : q \stackrel{u}{\Longrightarrow} q' \in A \right\}.$$

• The transition function $\Delta_{\varepsilon}^*: Q \times \Sigma^* \to \mathcal{P}(Q)$ over Σ^* is defined as

$$\Delta_{\varepsilon}^{*}(q,\varepsilon) = \mathcal{E}(q)$$

$$\Delta_{\varepsilon}^{*}(q,ua) = \bigcup_{q' \in \Delta_{\varepsilon}^{*}(q,u)} \left\{ q'' \in Q : q' \stackrel{a}{\Longrightarrow} q'' \right\}$$

• The set $\{(q, u, q') \in Q \times \Sigma^* \times Q : q \stackrel{u}{\Longrightarrow} q' \}$ is inductively defined as

Axioms: $\frac{}{(q,\varepsilon,q)}[q\in Q]$

 $\mathbf{Rules}: \qquad \frac{(q,u,q')}{(q,u,q'')}[q' \xrightarrow{\varepsilon} q''] \qquad \qquad \frac{(q,u,q')}{(q,ua,q')}[q' \xrightarrow{a} q'']$

5.2.2 Subset Construction

• All DFAs are NFAs, All NFAs are NFA $^{\varepsilon}$. We now show that all NFA $^{\varepsilon}$ have an equivalent DFA.

Theorem 5.2.1. For all NFA^{ε} $M = (Q, \Sigma, \Delta_{\varepsilon}, q_0, A)$, there is a DFA $PM = (\mathcal{P}(Q), \Sigma, \delta, q'_0, A')$ such that L(M) = L(PM) where

(i)
$$\mathcal{P}(Q) = \{S : S \subseteq Q\}$$

(ii) The transition function $\delta: \mathcal{P}(Q) \times \Sigma \to \mathcal{P}(Q)$

$$\delta(S, a) = \bigcup_{q \in S} \left\{ q' \in Q : q \stackrel{a}{\Longrightarrow} q' \right\}.$$

(iii) The initial state is

$$q'_0 = \left\{ q \in Q : q_0 \stackrel{\varepsilon}{\Longrightarrow} q \right\}.$$

(iv) The accepting states are

$$A' = \{ S \in \mathcal{P}(Q) : S \cap A \neq \emptyset \}.$$

Proof. We wish to show that L(M) = L(PM). It is sufficient to show that $\forall u \in \Sigma^*. \Delta_{\varepsilon}^*(q_0, u) = \delta^*(q'_0, u)$. We proceed by rule induction over Σ^* , we define our statement P(u) as

$$P(u) = (\Delta_{\varepsilon}^*(q_0, u) = \delta^*(q_0', u)).$$

Base Case. For our axiom

 $\dfrac{---}{arepsilon}.$

We have

$$\Delta_{\varepsilon}^{*}(q_{0}.\varepsilon) = \mathcal{E}(q_{0})$$

$$= \left\{ q \in Q : q_{0} \stackrel{\varepsilon}{\Longrightarrow} q \right\}$$

$$= q'_{0}$$

$$= \delta^{*}(q'_{0}, \varepsilon)$$

So the statement $P(\varepsilon)$ holds.

Inductive Step. We wish to show that $\forall (X, y) \in \mathcal{R}.(\forall x \in X.P(x)) \implies P(y)$ holds. For the rule

$$\frac{u-a}{ua}[a\in\Sigma],$$

We have $X = \{u\}$ and y = ua. Let us assume that P(u) holds, that is $\Delta_{\varepsilon}^*(q_0, u) = \delta^*(q_0, u)$. We wish to show that P(ua) holds. So consider

$$\Delta_{\varepsilon}^{*}(q_{0}, ua) = \bigcup_{q \in \Delta_{\varepsilon}^{*}(q_{0}, u)} \left\{ q' \in Q : q \stackrel{a}{\Longrightarrow} q' \right\}$$

$$= \delta(\Delta_{\varepsilon}^{*}(q_{0}, u), a)$$

$$= \delta(\delta(q'_{0}, u), a)$$

$$= \delta(q'_{0}, ua)$$

So the statement holds for P(ua).

By the Principle of Rule Induction, the statement holds for all $u \in \Sigma^*$.

5.2.3 Kleene's Theorem

Theorem 5.2.2. A language L over the alphabet Σ is regular if and only if it can be accepted by a DFA $M = (Q, \Sigma, \delta, q_0, A)$.

Proof. (\Longrightarrow). By the subset construction theorem, it is sufficient to show that L can be accepted by the NFA^{ε} $M_{\varepsilon} = (Q, \Sigma, \Delta_{\varepsilon}, q_0, A)$.

We wish to show $\forall L \in \mathcal{L}_{\Sigma}.\exists \text{ NFA}^{\varepsilon} M.L = L(M)$. We proceed by rule induction over \mathcal{L}_{Σ} with the statement

$$P(L) = (\exists \text{ NFA}^{\varepsilon} M.L = L(M)).$$

Base Case. For our axioms

We have the NFA $^{\varepsilon}$ s

Figure 5.3: NFA^{ε} M such that $L(M) = \emptyset$

Figure 5.4: NFA^{ε} M such that $L(M) = {\varepsilon}$

Figure 5.5: NFA^{ε} M such that $L(M) = \{a\}$

So the statements $P(\emptyset)$, $P(\{\varepsilon\})$ and $P(\{a\})$, $a \in \Sigma$ hold. **Inductive Step.** We wish to show that $\forall (X,y) \in \mathcal{R}. (\forall x \in X.P(x)) \implies P(y)$ holds. For the rule

$$\frac{L_1 \quad L_2}{L_1 \cup L_2}.$$

We have $X = \{L_1, L_2\}$ and $y = L_1 \cup L_2$. Let us assume that $P(L_1)$ and $P(L_2)$ holds, that is to say there exists $M_1 = (Q_1, \Sigma, \Delta_{\varepsilon}^1, q_0^1, A_1)$ and $M_2 = (Q_2, \Sigma, \Delta_{\varepsilon}^2, q_0^2, A_2)$ such that $L_1 = L(M_1)$ and $L_2 = L(M_2)$. For simplicity, we assume that $Q_1 \cap Q_2 = \emptyset$.

Let us consider $M = (\{q_0\} \cup Q_1 \cup Q_2, \Sigma, \Delta_{\varepsilon}, q_0, A_1 \cup A_2)$ where

$$\Delta_{\varepsilon} = \left\{ ((q_0, \varepsilon), \left\{ q_0^1, q_0^2 \right\}) \right\} \cup \Delta_{\varepsilon}^1 \cup \Delta_{\varepsilon}^2.$$

We wish to show that $L(M) = L_1 \cup L_2$, by the extensionality axiom that is

$$\forall u \in \Sigma^*. (u \in L(M) \iff L_1 \cup L_2)$$

$$\iff \forall u \in \Sigma^*. (u \in L(M) \iff u \in L_1 \lor u \in L_2)$$

Let $u \in \Sigma^*$ be arbitrary.

 (\Longrightarrow) . Let us assume that $u \in L(M)$, that is to say there is a transition sequence $q_0 \stackrel{u}{\Longrightarrow} q'$ where $q' \in A_1 \vee q' \in A_2$. We have the following two cases:

• Case $q' \in A_1$. Let us assume that $q' \in A_1$. Since Q_1 and Q_2 are disjoint and $q' \in A_1 \subseteq Q_1$, we deduce that the transition sequence $q_0 \stackrel{u}{\Longrightarrow} q'$ has the form

$$q_0 \xrightarrow{\varepsilon} q_0^1 \xrightarrow{u_1} q_i \cdots \xrightarrow{u_n} q',$$

where $q_i \in Q_1$. Hence we have the transition sequence $q_0^1 \stackrel{u}{\Longrightarrow} q' \in A_1$, by the definable property of $L(M_1)$, we have $u \in L(M_1) = L_1$.

• Case $q' \in A_2$. Similar argument.

Hence we have $u \in L_1 \cup L_2$.

(\iff). Let us assume that $u \in L_1 \lor u \in L_2$. We have the following two cases:

• Case $u \in L_1$. Let us assume that $u \in L_1 = L(M_1)$, that is to say we have the transition sequence $q_0^1 \stackrel{u}{\Longrightarrow} q'$ where $q' \in A_1$. Hence by our definition of Δ_{ε} for M, we have

$$q_0 \xrightarrow{\varepsilon} q_0^1 \xrightarrow{u} q' \in A_1 \cup A_2.$$

This transition sequence is equivalent to $q_0 \stackrel{u}{\Longrightarrow} q' \in A_1 \cup A_2$. By the definable property of L(M), we have $u \in L(M)$.

• Case $u \in L_2$. Similar argument.

So we have $u \in L(M)$. Hence we are done.

For the rule

$$\frac{L_1 L_2}{L_1 L_2}.$$

We have $X = \{L_1, L_2\}$ and $y = L_1L_2$. Let us assume that $P(L_1)$ and $P(L_2)$ holds, that is to say there exists $M_1 = (Q_1, \Sigma, \Delta_{\varepsilon}^1, q_0^1, A_1)$ and $M_2 = (Q_2, \Sigma, \Delta_{\varepsilon}^2, q_0^2, A_2)$ such that $L_1 = L(M_1)$ and $L_2 = L(M_2)$. For simplicity, we assume that $Q_1 \cap Q_2 = \emptyset$.

Let us consider $M = (Q_1 \cup Q_2, \Sigma, \Delta_{\varepsilon}, q_0^1, A_2)$ where

$$\Delta_{\varepsilon} = \Delta_{\varepsilon}^{1} \cup \left\{ ((q, \varepsilon), \{q_{0}^{2}\}) : q \in A_{1} \right\} \cup \Delta_{\varepsilon}^{2}.$$

We wish to show that $L(M) = L_1L_2$, by the extensionality axiom that is

$$\forall u \in \Sigma^*. (u \in L(M) \iff u \in L_1 L_2)$$

$$\iff \forall u \in \Sigma^*. (u \in L(M) \iff \exists v \in L_1, w \in L_2. u = vw)$$

Let $u \in \Sigma^*$ be arbitrary.

 (\Longrightarrow) . Let us assume that $u \in L(M)$, that is to say there exists the transition sequence $q_0^1 \stackrel{u}{\Longrightarrow} q'$ where $q' \in A_2 \subseteq Q_2$. Since Q_1 and Q_2 are disjoint, we may deduce that the transition sequence has the form

$$q_0^1 \stackrel{v}{\Longrightarrow} q_i \stackrel{\varepsilon}{\to} q_0^2 \stackrel{w}{\Longrightarrow} q' \in A_2,$$

where $q_i \in A_1$ and u = vw. So we have the transition sequence $q_0^1 \stackrel{v}{\Longrightarrow} q_i \in A_1$. By the definable property of $L(M_1)$, we have $v \in L(M_1) = L_1$. Similarly, we have $w \in L(M_2) = L_2$. So we are done.

 (\Leftarrow) . Let us assume that $\exists v \in L_1, v \in L_2.u = vw$ holds. Let us introduce the witnesses $v' \in L_1 = L(M_1), w' \in L_2 = L(M_2)$ such that u = v'w'. So we have the transition sequences $q_0^1 \stackrel{v'}{\Longrightarrow} q' \in A_1$ and $q_0^2 \stackrel{w'}{\Longrightarrow} q'' \in A_2$. By our definition of Δ_{ε} for M we have

$$q_0^1 \stackrel{v'}{\Longrightarrow} q' \stackrel{\varepsilon}{\to} q_0^2 \stackrel{w'}{\Longrightarrow} q'' \in A_2.$$

This transition sequence is equivalent to $q_0^1 \stackrel{u}{\Longrightarrow} q'' \in A_2$. By the definable property of L(M), we have $u \in L(M)$.

For the rule

$$\frac{L}{L^*}$$

We have $X = \{L\}$ and $y = L^*$. Let us assume that P(L) holds, that is to say there exists $M = (Q, \Sigma, \Delta_{\varepsilon}, q_0, A)$ such that L = L(M).

Let us consider $M' = (Q \cup \{q'_0\}, \Sigma, \Delta'_{\varepsilon}, q'_0, \{q'_0\})$ where

$$\Delta_{\varepsilon}' = \Delta_{\varepsilon} \cup \{((q_0', \varepsilon), \{q_0\})\} \cup \{((q, \varepsilon), \{q_0'\}) : q \in A\}$$

We wish to show that $L(M') = L^*$, by the extensionality axiom that is

$$\forall u \in \Sigma^*. (u \in L(M') \iff u \in L^*)$$

A. By our definition of Δ'_{ε} for M' we have

$$\iff \forall u \in \Sigma^*. (u \in L(M') \iff \exists n \in \mathbb{N}. \exists w_1, \dots, w_n \in L. u = w_1 \dots w_n)$$

Let $u \in \Sigma^*$ be arbitrary.

(\Longrightarrow). Let us assume that $u \in L(M')$, that is to say there exists the transition sequence $q'_0 \stackrel{u}{\Longrightarrow} q'_0$. We may deduce that the transition sequence has the form

$$q_0' \xrightarrow{\varepsilon} q_0 \xrightarrow{w_1} q_1 \xrightarrow{\varepsilon} q_0' \cdots \xrightarrow{\varepsilon} q_0' \xrightarrow{\varepsilon} q_0 \xrightarrow{w_n} q_n \xrightarrow{\varepsilon} q_0'$$

where $q_i \in A$ and $u = w_1 \dots w_n$. Decomposing the transition sequence yields the sequences $q_0 \stackrel{w_1}{\Longrightarrow} q_1 \in A, \dots, q_0 \stackrel{w_n}{\Longrightarrow} q_n \in A$. Hence by the definable property of L(M) we have $w_1, \dots, w_n \in L(M) = L$. So we are done. (\iff) . Let us assume that $\exists n \in \mathbb{N}. \exists w_1, \dots, w_n \in L. u = w_1 \dots w_n$. So it follows that we have the transition sequences $q_0 \stackrel{w_1}{\Longrightarrow} q_1 \in A, \dots, q_0 \stackrel{w_n}{\Longrightarrow} q_n \in A$

$$q_0' \xrightarrow{\varepsilon} q_0 \xrightarrow{w_1} q_1 \xrightarrow{\varepsilon} q_0' \cdots \xrightarrow{\varepsilon} q_0' \xrightarrow{\varepsilon} q_0 \xrightarrow{w_n} q_n \xrightarrow{\varepsilon} q_0'$$

This transition sequence is equivalent to $q'_0 \stackrel{u}{\Longrightarrow} q'_0$. By the definable property of L(M'), we have $u \in L(M')$.

By the Principle of Rule Induction, the statement holds for all $L \in \mathcal{L}_{\Sigma}$.

Proof. (\Leftarrow). We instantiate lemma 5.2.1 with S=Q and $q=q_0$ and $q'\in A$. So given the NFA $M=(Q,\Sigma,\Delta,q_0,A)$ we have $L(M)=L(r_{q_0,q'}^Q)=L$. By the subset construction theorem, we have the DFA $PM=(\mathcal{P}(Q),\Sigma,\delta,q'_0,A')$ such that $L(PM)=L(M)=L(r_{q_0,q'}^Q)=L$. So we are done.

Lemma 5.2.1. Given a NFA $M = (Q, \Sigma, \Delta, q_0, A)$, for all subsets $S \subseteq Q$ and for each pair of states $(q, q') \in Q \times Q$, there is a regular expression $r_{q,q'}^S$ such that

$$L(r_{q,q'}^S) = \left\{ u \in \Sigma^* : q \stackrel{u}{\rightarrow}^* q' \right\},$$

where all intermediate states in the transition sequence $q \stackrel{u}{\rightarrow}^* q'$ are members of S.

Proof. (Induction on |S|)

Base Case. We have |S| = 0, hence $S = \emptyset$. Let $(q, q') \in Q \times Q$ be arbitrary. We wish to show the existence of $r_{q,q'}^{\emptyset}$ such that

$$L(r_{q,q'}^{\emptyset}) = \left\{ u : q \xrightarrow{u}^* q' \text{ has no intermediate states} \right\}.$$

So L simply consists of symbols (strings of length 1) a (if $q \xrightarrow{a} q'$) and ε if q = q'. Hence $L(r_{q,q'}^{\emptyset}) \subseteq (\Sigma^1 \cup \{\varepsilon\})$. So we define $r_{q,q'}^{\emptyset}$ as

$$r_{q,q'}^{\emptyset} = \begin{cases} a_1 \mid \dots \mid a_k & \text{if } q \neq q' \\ a_1 \mid \dots \mid a_k \mid \epsilon & \text{if } q = q' \end{cases}.$$

So we have P(0).

Inductive Step. We wish to show that $\forall |S| \in \mathbb{N}.P(|S|) \Longrightarrow P(|S|+1)$. Let $S \subseteq Q$ be some arbitrary subset. Let us assume that P(|S|) holds, that is to say $\forall (q, q') \in Q \times Q. \exists r_{q,q'}^S \in \mathcal{R}_{\Sigma}$ such that

$$L(r_{q,q'}^S) = \left\{ u : q \xrightarrow{u}^* q' \text{ has intermediate states in } S \right\}.$$

Let $q_0 \in Q \setminus S$. Let us consider $S' = S \cup \{q_0\}$. Instantiating our inductive hypothesis, we have the regular expressions

$$r_1 = r_{q,q'}^S$$

$$r_2 = r_{q,q_0}^S$$

$$r_3 = r_{q_0,q_0}^S$$

$$r_4 = r_{q_0,q'}^S$$

We define r as

$$r = r_1 \mid r_2(r_3)^* r_4.$$

Evidently $L(r) \subseteq L(r_{q,q'}^{S'})$. We wish to show that $L(r) \supseteq L(r_{q,q'}^{S'})$, that is

$$\forall u \in \Sigma^*. u \in L(r_{q,q'}^{S'}) \implies u \in L(r).$$

Let $u \in \Sigma^*$ be arbitrary. Let us assume that $L(r_{q,q'}^{S'})$, that is to say there exists the state transition sequence $q \xrightarrow{u}^* q'$ has intermediate states in $S \cup \{q_0\}$. We have the following cases:

- Case $q \stackrel{u}{\to}^* q'$ doesn't contain q_0 . Let us assume that $q \stackrel{u}{\to}^* q'$ doesn't contain q_0 . Hence $u \in L(r_1)$.
- Case $q \stackrel{u}{\to}^* q'$ contains q_0 . Let us assume that $q \stackrel{u}{\to}^* q'$ contains q_0 . Let k be the number of times q_0 appears in the transition sequence $q \stackrel{u}{\to}^* q'$. We may deduce the transition sequence has the form

$$\underbrace{q \xrightarrow{v}^* q_0}_{\text{part }(i)} \underbrace{\overset{w_1}{\longrightarrow}^* q_0}_{\text{part }(ii)} \underbrace{\overset{w_2}{\longrightarrow}^* \cdots \overset{w_n}{\longrightarrow}^* q_0}_{\text{part }(iii)} \underbrace{\overset{x}{\longrightarrow}^* q'}_{\text{part }(iii)}.$$

So we have $u = v(w_1w_2...w_n)x$ where $v \in L(r_2), w_i \in L(r_3)$, so $w_1w_2...w_n \in L((r_3)^*)$ and $x \in L(r_4)$. Hence $u \in L(r_2(r_3)^*r_4)$.

So we have $u \in L(r_1 \mid r_2(r_3)^*r_4) = L(r)$. By the antisymmetry of \subseteq , we have $L(r_{q,q'}^{S'}) = L(r)$, hence $r = r_{q,q'}^{S'}$. So we have P(|S| + 1).

By the Principle of Mathematical Induction, we conclude the statement P(|S|) holds for all $|S| \in \mathbb{N}$.

5.2.4 The Pumping Lemma

Theorem 5.2.3. (Pumping Lemma) For all regular languages $L \in \mathcal{L}_{\Sigma}$, there exists $\ell \geq 1$ such that for all $w \in L$ where $|w| \geq \ell$ (the pumping length) can be written as w = xyz satisfying the following conditions:

- (i) $|y| \ge 1$.
- (ii) $|xy| \le \ell$.
- (iii) $\forall n \ge 0.xy^n z \in L$.

Proof. Let $L \in \mathcal{L}_{\Sigma}$ be arbitrary. By Kleene's theorem there exists a DFA $M = (Q, \Sigma, \delta, q_0, A)$ such that L = L(M). Let us introduce the witness $\ell = |Q|$. Let $w \in L$ be some arbitrary string such that $w = a_1 \dots a_n$ where $n \geq \ell$. By definition of L(M), it follows that there exists some transition sequence $q_0 \stackrel{w}{\to} q' \in A$, that is

$$\underbrace{q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \cdots \xrightarrow{a_\ell} q_\ell}_{\ell+1 \text{ states}} \cdots \xrightarrow{a_n} q_n = q' \in A.$$

Since $\ell = |Q|$ it follows that $q_0 \dots q_\ell$ can't all be distinct by the pigeonhole principle. So there exists $0 \le i < j \le \ell$ such that $q_i = q_j$. So we may write the transition sequence as

$$q_0 \xrightarrow{x}^* \underbrace{q_i \xrightarrow{y}^* q_j}_{loop} \xrightarrow{z}^* q_n \in A,$$

where $x = a_1 \dots a_i$, $y = a_{i+1} \dots a_j$ and $z = a_{j+1} \dots a_n$. So we have $|y| \ge 1$ and $|xy| \le \ell$. We now wish to show that $\forall n \ge 0, xy^nz \in L$. Let $n \ge 0$ be arbitrary. Consider xy^nz . The transition sequence $q_0 \stackrel{x^*}{\to} q_i$ leaves us in state q_i , from the above, we then repeat the loop n times, giving us the transition sequence $q_0 \stackrel{xy^n}{\to} q_j$. We also have the transition sequence $q_j \stackrel{z^*}{\to} q_j$ where $q_j \stackrel{xy^n}{\to} q_j$ are $q_j \stackrel{xy^n}{\to} q_j$. Hence $q_j \stackrel{xy^n}{\to} q_j \in A$. Composing them yields the sequence $q_0 \stackrel{xy^n}{\to} q_j \in A$. Hence $q_j \stackrel{xy^n}{\to} q_j \in A$. So we are done.

• We may use to pumping lemma to show that a language is not regular using the following argument:

 $\forall \ell \geq 1. \exists w \in L. |w| \geq \ell \land w = xyz \land |y| \geq 1 \land |xy| \leq \ell \land \exists n \geq 0. xy^nz \notin L.$

5.2.5 Other Theorems

Theorem 5.2.4. For all regular languages L over Σ , $\overline{L} = \Sigma^* \setminus L$ is regular.

Proof. Let $L \in \mathcal{L}_{\Sigma}$ be an arbitrary regular language over Σ . By Kleene's theorem, there exists a DFA $M = (Q, \Sigma, \delta, q_0, A)$ such that L = L(M). We wish to show that

$$\overline{L} = \{ u \in \Sigma^* : u \notin L \},\,$$

is regular. It suffices to show that there exists a DFA \overline{M} such that $\overline{L} = L(\overline{M})$. Let us introduce the witness $\overline{M} = (Q, \Sigma, \delta, q_0, Q \setminus A)$. We wish to show that $\overline{L} = L(\overline{M})$, by the extensionality axiom, that is

$$\forall u \in \Sigma^*. u \in \overline{L} \iff u \in L(\overline{M}).$$

So we have

$$\forall u \in \Sigma^*. u \in \overline{L} \iff u \in L(\overline{M})$$

$$\iff \forall u \in \Sigma^*. u \notin L \iff q_0 \stackrel{u}{\to} q \in Q \setminus A$$

$$\iff \forall u \in \Sigma^*. u \notin L \iff q_0 \stackrel{u}{\to} q \notin A$$

$$\iff \forall u \in \Sigma^*. u \notin L \iff u \notin L$$

So we are done.

• The equivalent regular expression for $\overline{L} = \overline{L(r)}$ is denoted \overline{r} .

Theorem 5.2.5. For all regular languages L_1 and L_2 over Σ , their intersection $L_1 \cap L_2$ is regular.

• The equivalent regular expression for $L(r_1) \cap L(r_2)$ is denoted $r_1 \& r_2$.

Definition 5.2.4. (Equivalence of Regular Expressions) The regular expressions r_1 and r_2 are said to be equivalence if $L(r_1) = L(r_2)$.