Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory

K množina reálných nebo komplexních čísel,

U vektorový prostor nad \mathbb{K} .

Lineární kombinace vektorů u_1, u_2, \dots, u_k je vektor tvaru

$$a_1 \boldsymbol{u}_1 + a_2 \boldsymbol{u}_2 + \dots a_k \boldsymbol{u}_k$$

kde $a_1, a_2, \dots a_k \in \mathbb{K}$.

Definice

Neprázdnou podmnožinu $V\subseteq U$ nazveme vektorovým podprostorem prostoru U, jestliže

- (1) pro všechna $\boldsymbol{u}, \boldsymbol{v} \in V$ je $\boldsymbol{u} + \boldsymbol{v} \in V$,
- (2) pro všechna $a \in \mathbb{K}$, $u \in V$ je $au \in V$.

Vlastnosti a příklady vektorových podprostorů

Vlastnosti:

- (i) $u_1, u_2, ..., u_k \in V$, pak $\sum_{i=1}^k a_i u_i \in V$.
- (ii) $o \in V$.
- (iii) Každý podprostor je vektorový prostor.

Příklady:

- (1) $\{oldsymbol{o}\}$ a *U* jsou triviální podprostory prostoru *U*.
- (2) $V = \{(s + t, s, t) \in \mathbb{R}^3; t, s \in \mathbb{R}\}$ je podprostor v \mathbb{R}^3 .
- (3) A je matice $k \times n$, $V = \{ \boldsymbol{x} \in \mathbb{R}^n ; A\boldsymbol{x} = \boldsymbol{o} \}$ je podprostor v \mathbb{R}^n .
- (4) Podprostory v \mathbb{R}^2 : $\{\boldsymbol{o}\}$, přímky procházející počátkem, \mathbb{R}^2 .
- (5) Podprostory v \mathbb{R}^3 : $\{\boldsymbol{o}\}$, přímky procházející počátkem, roviny procházející počátkem, \mathbb{R}^3 .
- (6) Průnik podprostorů je podprostor.

Lineární obal vektorů

Definice

Lineární obal množiny vektorů $\{u_1, u_2, \dots, u_k\} \subset U$ je množina

$$[\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k] = \{a_1 \mathbf{u}_1 + a_2 \mathbf{u}_2 + \dots + a_k \mathbf{u}_k \in U; \ a_1, a_2, \dots, a_k \in \mathbb{K}\}.$$

Pro prázdnou množinu $[\varnothing] = \{o\}$.

Lemma

Lineární obal konečné množiny vektorů z U je vektorový podprostor.

Důkaz:
$$\boldsymbol{u}, \boldsymbol{v} \in [\boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_k]$$
 znamená, že $\boldsymbol{u} = \sum_{i=1}^k a_i \boldsymbol{u}_i$, $\boldsymbol{v} = \sum_{i=1}^k b_i \boldsymbol{u}_i$. Potom

$$u + v = \sum_{i=1}^{k} (a_i + b_i) u_i \in [u_1, u_2, \dots, u_k],$$

 $au = \sum_{i=1}^{k} aa_i u_i \in [u_1, u_2, \dots, u_k].$

Lineární obal – úloha

Lze definovat lineární obal nekonečné množiny. Je to opět vektorový podprostor. Prakticky budeme počítat jen s lineárními obaly konečných množin.

Kdy je daný vektor \mathbf{v} prvkem $[\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k]$? Právě když rovnice

$$x_1 \boldsymbol{u}_1 + x_2 \boldsymbol{u}_2 + \cdots + x_k \boldsymbol{u}_k = \boldsymbol{v}$$

o neznámých x_1, x_2, \ldots, x_k má nějaké řešení.

Příklad

U prostor reálných matic 2×2 . Je

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \in \left[\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 1 & 1 \end{pmatrix} \right]?$$

Rovnice
$$x_1 \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} + x_2 \begin{pmatrix} 0 & 2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 vede na soustavu $x_1 = 1, \ 2x_1 + 2x_2 = 2, \ x_2 = 3, \ x_1 + x_2 = 4$, která nemá řešení.

Lineární nezávislost vektorů

Vektory $u_1, u_2, \dots, u_k \in U$ jsou lineárně závislé, existuje-li k-tice $(x_1, x_2, \dots, x_k) \neq (0, 0, \dots, 0)$ z \mathbb{K}^k taková, že

$$(\clubsuit) x_1 \mathbf{u}_1 + x_2 \mathbf{u}_2 + \cdots + x_k \mathbf{u}_k = \mathbf{o}.$$

Jinými slovy: Rovnice (\clubsuit) o neznámých x_1, x_2, \ldots, x_k má netriviální (= nenulové) řešení.

Příklad

 ${\it u}_1=(1,2,1), \, {\it u}_2=(1,-1,1), \, {\it u}_3=(3,0,3)\in \mathbb{R}^3$ jsou lineárně závislé, neboť $1\cdot {\it u}_1+2\cdot {\it u}_2+(-1)\cdot {\it u}_3={\it o}.$

Definice

Vektory $u_1, u_2, \dots, u_k \in U$ jsou lineárně nezávislé, jestliže rovnice (\clubsuit) má pouze triviální řešení $x_1 = x_2 = \dots = x_k = 0$. Jinak:

$$x_1 u_1 + x_2 u_2 + \cdots + x_k u_k = 0 \Rightarrow x_1 = x_2 = \cdots = x_k = 0.$$

Jak si představit lineární závislost

Lemma

Vektory $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k \in U$ jsou lineárně závislé, právě když lze jeden z nich vyjádřit jako lineární kombinaci ostatních

$$\mathbf{u}_{j} = a_{1}\mathbf{u}_{1} + \cdots + a_{j-1}\mathbf{u}_{j-1} + a_{j+1}\mathbf{u}_{j+1} + \ldots a_{k}\mathbf{u}_{k}.$$

Důkaz: \leftarrow Nechť $\boldsymbol{u}_1 = a_2 \boldsymbol{u}_2 + \cdots + a_k \boldsymbol{u}_k$. Potom

$$(-1)\boldsymbol{u}_1 + a_2\boldsymbol{u}_2 + \cdots + a_k\boldsymbol{u}_k = \boldsymbol{o}$$

a koeficient u u_1 je nenulový.

 \Rightarrow Nechť u_1, u_2, \dots, u_k jsou lineárně závislé. Pak

$$x_1\boldsymbol{u}_1+x_2\boldsymbol{u}_2+\cdots+x_k\boldsymbol{u}_k=\boldsymbol{o}$$

a některý koeficient je různý od 0, např. x₁. Proto

$$x_1 \mathbf{u}_1 = \sum_{i=2}^k (-x_i) \mathbf{u}_i \implies \mathbf{u}_1 = \sum_{i=2}^k (-\frac{x_i}{x_1}) \mathbf{u}_i.$$

Geometrická představa

- ▶ Jediný vektor u_1 je lineárně nezávislý, právě když $u_1 \neq o$.
- Dva vektory u₁, u₂ jsou lineárně nezavislé, právě když jeden není násobkem druhého.
- ▶ Geometrická představa v \mathbb{R}^3 : Dva lin. nezávislé vektory $\mathbf{u}_1, \mathbf{u}_2$ určují rovinu. Každý vektor \mathbf{u}_3 ležící v této rovině je s nimi lineárně závislý. Každý vektor neležící v této rovině je s nimi lin. nezávislý.

Příklad

Zjistěte, zda vektory $\boldsymbol{u}_1 = (1,2,1,0)^T$, $\boldsymbol{u}_2 = (1,1,-1,2)^T$, $\boldsymbol{u}_3 = (1,0,1,1)^T \in \mathbb{R}^4$ jsou lineárně závislé. Rovnice $x_1(1,2,1,0)^T + x_2(1,1,-1,2)^T + x_3(1,0,1,1)^T = (0,0,0,0)$ dává homogenní soustavu

Báze konečnědimenzionálního prostoru

Vektory $\boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_n$ generují prostor U, jestliže

$$[\boldsymbol{u}_1,\boldsymbol{u}_2,\ldots,\boldsymbol{u}_n]=U.$$

Jinými slovy: každý vektor $\boldsymbol{u} \in U$ lze psát jako lineární kombinaci

$$\boldsymbol{u} = a_1 \boldsymbol{u}_1 + a_2 \boldsymbol{u}_2 + \cdots + a_n \boldsymbol{u}_n.$$

Vektorový prostor se nazývá konečnědimenzionální, jestliže je generován nějakou konečnou množinou vektorů.

Definice

Báze konečnědimenzionálního prostoru U je posloupnost vektorů $(\boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_n)$ taková, že

- (1) vektory $\boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_n$ generují U,
- (2) vektory u_1, u_2, \dots, u_n jsou lineárně nezávislé.

Příklady

- \mathbb{R}^3 $\mathbf{e}_1 = (1,0,0)^T$, $\mathbf{e}_2 = (0,1,0)^T$, $\mathbf{e}_3 = (0,0,1)^T$ je báze \mathbb{R}^3 . Říkáme jí standardní. $\mathbf{u}_1 = (1,0,1)^T$, $\mathbf{u}_2 = (0,1,1)$, $\mathbf{u}_3 = (0,0,1)$ je jiná báze \mathbb{R}^3 .
- $\mathbb{R}_3[x]$ prostor reálných polynomů v proměnné x stupně ≤ 3 . Má bázi $(1, x, x^2, x^3)$.
- C[0, 1] prostor spojitých reálných funkcí na intervalu [0, 1] není konečnědimenzionální prostor.

Naší snahou bude dokázat, že každý konečnědimenzionální prostor má bázi a že každé dvě báze takového prostoru mají stejný počet prvků.

Výběr lineárně nezávislých generátorů

Věta

Nechť vektory $v_1, v_2, ..., v_k \in U$ jsou lineárně nezávislé a nechť vektory $u_1, u_2, ..., u_l \in U$ jsou libovolné. Potom lze z druhého seznamu vektorů vybrat vektory $u_i, u_i, ..., u_i$ tak, že

- (1) vektory $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k, \mathbf{u}_i, \mathbf{u}_k, \dots, \mathbf{u}_k$ jsou lineárně nezávislé,
- (2) $[\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k, \mathbf{u}_{i_1}, \mathbf{u}_{i_2}, \dots, \mathbf{u}_{i_r}] = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k, \mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_l].$

Důsledek

V konečnědimenzionálním prostoru U lze každý seznam lineárně nezávislých vektorů doplnit na bázi. Speciálně, v U existuje báze.

Důkazy

Důkaz důsledku: $v_1, v_2, ..., v_k$ lineárně nezávislé. U má konečnou dimenzi, tedy existují $u_1, u_2, ..., u_k$

$$[\boldsymbol{u}_1, \boldsymbol{u}_2, \ldots, \boldsymbol{u}_l] = U.$$

Podle předchozí věty lze vybrat indexy $i_1, i_2, ..., i_r$ tak, že vektory $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k, \mathbf{u}_{i_1}, \mathbf{u}_{i_2}, ..., \mathbf{u}_{i_r}$ jsou lineárně nezávislé a

$$[\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k, \mathbf{u}_{i_1}, \mathbf{u}_{i_2}, \dots, \mathbf{u}_{i_r}] = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k, \mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_l]$$

$$\supseteq [\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_l]] = U.$$

Tedy $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k, \mathbf{u}_{i_1}, \mathbf{u}_{i_2}, \dots, \mathbf{u}_{i_r}$ tvoří bázi prostoru U. Speciálně seznam vektorů \mathbf{v} může být prázdný a bázi lze vybrat ze seznamu generátorů.

Důkaz věty se provádí indukcí podle čísla n, tj. počtu vektorů u.

Algoritmus pro předchozí větu v \mathbb{K}^n

Mějme vektory $u_1, u_2, \dots, u_l \in \mathbb{K}^n$. Chceme z nich vybrat seznam lineárně nezávislých vektorů se stejným lineárním obalem:

$$[\mathbf{u}_{i_1}, \mathbf{u}_{i_2}, \dots, \mathbf{u}_{i_r}] = [\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_l].$$

Algoritmus: Zapíšeme vektory $\boldsymbol{u}_1, \boldsymbol{u}_2, \ldots, \boldsymbol{u}_l$ jako sloupce matice. Provedeme řádkové úpravy této matice na schodovitý tvar. V něm určíme sloupce i_1, i_2, \ldots, i_r , v nichž leží vedoucí koeficient některého řádku. Vektory $\boldsymbol{u}_{i_1}, \boldsymbol{u}_{i_2}, \ldots, \boldsymbol{u}_{i_r}$ mají výše požadovanou vlastnost.

Příklad:

$$(u_1 \quad u_2 \quad u_3 \quad u_4) \sim \begin{pmatrix} 1 & \bullet & \bullet & \bullet \\ 0 & 2 & \bullet & \bullet \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Hledané vektory jsou u_1, u_2, u_4 .

Zdůvodnění algoritmu na příkladu

$$(u_1 \quad u_2 \quad u_3 \quad u_4) \sim \begin{pmatrix} 1 & \bullet & \bullet & \bullet \\ 0 & 2 & \bullet & \bullet \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

 u_1, u_2, u_4 jsou lin. nezávislé, neboť soustava $x_1 u_1 + x_2 u_2 + x_4 u_4 = o$ má pouze triviální řešení.

$$\begin{pmatrix} u_1 & u_2 & u_4 \end{pmatrix} \sim \begin{pmatrix} 1 & \bullet & \bullet \\ 0 & 2 & \bullet \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

 u_3 je lineární kombinací předchozích vybraných vektorů u_1 , u_2 . Soustava $x_1u_1 + x_2u_2 = u_3$ má totiž řešení

$$(\begin{array}{ccc|c} \textbf{\textit{u}}_1 & \textbf{\textit{u}}_2 & \textbf{\textit{u}}_3 \end{array}) \sim \begin{pmatrix} \begin{array}{ccc|c} 1 & \bullet & \bullet \\ 0 & 2 & \bullet \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Steinitzova věta

Následující věta nám umožní dokázat, že každé dvě báze prostoru U mají stejný počet vektorů.

Věta (Steinitzova)

Nechť $v_1, v_2, \ldots, v_k \in [u_1, u_2, \ldots, u_n] \subseteq U$. Jestliže jsou vektory v_1, v_2, \ldots, v_k lineárně nezávislé, pak $k \leq n$.

Provedeme nepřímý důkaz. Místo implikace $p\Rightarrow q$, budeme dokazovat implikaci non $q\Rightarrow$ non p.

Výrok p: "Vektory $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ jsou lineárně nezávislé."

Výrok q: " $k \le n$ "

Důkaz Steinitzovy věty - 1. část

Nechť k > n. Každý z vektorů \mathbf{v}_i je lineární kombinací vektorů $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$,

$$\mathbf{v}_i = a_{1i}\mathbf{u}_1 + a_{2i}\mathbf{u}_2 + \cdots + a_{ni}\mathbf{u}_n = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n) \begin{pmatrix} a_{1i} \\ a_{2i} \\ \dots \\ a_{ni} \end{pmatrix}.$$

Pro všechny vektory to můžeme zapsat takto:

$$(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k) = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n) \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{pmatrix}$$

Matice $A = (a_{ij})$ má n řádků a k sloupců. Uvažujme homogenní soustavu rovnic $A\mathbf{x} = \mathbf{o}$ s neznámou $\mathbf{x} \in \mathbb{K}^k$.

Důkaz Steinitzovy věty - 2. část

Matice A má více sloupců (k) než řádků (n), takže po úpravě na schodovitý tvar existuje sloupec (j-tý), v němž neleží vedoucí koeficient žádného řádku. Tedy při řešení můžeme neznámou x_j zvolit libovolně, například různou od 0. Tedy soustava má netriviální řešení $(x_1, x_2, \ldots, x_k) \in \mathbb{K}^k$. Potom

$$x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \dots + x_k \mathbf{v}_k = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k) \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_k \end{pmatrix}$$

$$= [(\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n) \cdot A] \mathbf{x} = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n) \cdot [A \cdot \mathbf{x}]$$

$$= (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n) \begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \end{pmatrix} = \mathbf{o}.$$

Tedy vektory $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ jsou lineárně závislé.

Důsledek Steinitzovy věty a definice dimenze

Důsledek

Jsou-li $(\boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_n)$ a $(\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k)$ dvě báze vektorového prostoru U, pak n = k.

Důkaz:

Vektory $(\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k)$ jsou lineárně nezávislé a leží v $U = [\boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_n]$. Podle SV je $k \leq n$. Vektory $(\boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_n)$ jsou lineárně nezávislé a leží v $U = [\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k]$. Podle SV je $n \leq k$. Tedy k = n.

Definice

Nechť U je konečnědimenzionální vektorový prostor nad \mathbb{K} . Počet prvků nějaké báze se nazývá dimenze prostoru U nad \mathbb{K} , označení

 $\dim_{\mathbb{K}} U$.

Dimenze konkrétních prostorů

```
\dim_{\mathbb{K}} \mathbb{K}^n = n Tento prostor má bázi e_1, e_2, \ldots, e_n, přitom e_i je vektor, který má na i-tém místě 1, všude jinde nuly. \dim_{\mathbb{K}} \mathbb{K}_n[x] = n+1 \  \, \text{Báze tohoto prostoru je } (1,x,x^2,\ldots,x^n). \dim_{\mathbb{R}} \mathbb{C} = 2 \  \, \text{Báze vektorového prostoru } \mathbb{C} \  \, \text{nad } \mathbb{R} \  \, \text{je například tvořena dvěma komplexními čísly 1 a } i. \dim_{\mathbb{K}} \operatorname{Mat}_{k \times n}(\mathbb{K}) = n \cdot k \  \, \text{Najděte nějakou bázi!}
```

Čtyři užitečné věty o dimenzi – první dvě o bázi

První věta

Nechť dim $_{\mathbb{K}}$ U=n. Jsou-li vektory $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ lineárně nezávislé, pak tvoří bázi prostoru U.

Důkaz: Již víme, že každý seznam lineárně nezávislých vektorů lze doplnit na bázi. Ta bude mít n prvků. K $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ není tedy potřeba přidávat žádný další vektor.

Druhá věta

Nechť dim $_{\mathbb{K}}$ U=n. Jestliže vektory $\boldsymbol{u}_1,\boldsymbol{u}_2,\ldots,\boldsymbol{u}_n$ generují U, pak tvoří bázi prostoru U.

Důkaz: Z daných vektorů u_1, u_2, \ldots, u_n lze vybrat lineárně nezávislé se stejným lineárním obalem. Ten je roven U. Proto vybrané vektory tvoří bázi. Ta musí mít n prvků. Je tedy tvořena všemi vektory u_1, u_2, \ldots, u_n .

Další dvě o podprostorech

Třetí věta

Nechť V je podprostor v konečnědimenzionálním vektorovém prostoru U nad \mathbb{K} . Potom má V konečnou dimenzi a platí

$$\dim_{\mathbb{K}} V \leq \dim_{\mathbb{K}} U$$
.

Důkaz: Nechť $\dim_{\mathbb{K}} U = n$. Kdyby V nebyl generován konečným počtem vektorů, dostaneme postupně posloupnost $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{n+1} \in V$ lin. nezávislých vektorů ve V, tudíž i v U. To je však ve sporu se Steinitzovou větou. Tedy V je konečné dimenze a má proto bázi $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$. Tento seznam lineárně nezávislých vektorů lze doplnit na bázi prostoru U. Tedy $\dim_{\mathbb{K}} V = k \leq n = \dim_{\mathbb{K}} U$.

Čtvrtá věta

Nechť V je podprostor v konečnědimenzionálním vektorovém prostoru U nad \mathbb{K} . Jestliže $\dim_{\mathbb{K}} V = \dim_{\mathbb{K}} U$, pak V = U.

Důkaz: Nechť $\dim_{\mathbb{K}} U = n = \dim_{\mathbb{K}} V$. Nechť $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ je báze podprostoru V. Tyto vektory jsou lineárně nezávislé v U, a proto podle První věty tvoří bázi prostoru U. Tedy $V = [\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n] = U$.

Souřadnice vektoru

Věta

Nechť U je vektorový prostor konečné dimenze. Posloupnost vektorů u_1, u_2, \ldots, u_n je báze prostoru U, právě když každý vektor $u \in U$ lze psát právě jedním způsobem ve tvaru

$$(\spadesuit) \qquad \mathbf{u} = a_1 \mathbf{u}_1 + a_2 \mathbf{u}_2 + \cdots + a_n \mathbf{u}_n.$$

Důkaz provedeme na tabuli.

Definice

Nechť $\alpha=(\boldsymbol{u}_1,\boldsymbol{u}_2,\ldots,\boldsymbol{u}_n)$ je báze prostoru U. Každý vektor $\boldsymbol{u}\in U$ lze psát ve tvaru (\spadesuit) . n-tici koeficientů (a_1,a_2,\ldots,a_n) nazýváme souřadnice vektoru \boldsymbol{u} v bázi α a zapisujeme ve tvaru sloupce

$$(\boldsymbol{u})_{\alpha} = \begin{pmatrix} a_1 \\ a_2 \\ \dots \\ a_n \end{pmatrix} \in \mathbb{K}^n, \qquad \boldsymbol{u} = (\boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_n) \begin{pmatrix} a_1 \\ a_2 \\ \dots \\ a_n \end{pmatrix}.$$

Příklady

Příklad

 $\alpha=(1,x-1,(x-1)^2$ je báze prostoru polynomů $\mathbb{R}_2[x]$. Polynom x^2+x-1 má v této bázi souřadnice

$$(x^2+x-1)_{\alpha}=\begin{pmatrix}1\\3\\1\end{pmatrix},$$

neboť $x^2 + x - 1 = 1 \cdot 1 + 3 \cdot (x - 1) + 1 \cdot (x - 1)^2$.

Příklad

Bázi $\varepsilon = (\boldsymbol{e}_1, \boldsymbol{e}_2, \dots, \boldsymbol{e}_n)$ vektorového prostoru \mathbb{K}^n nazývame standardní bazí. Pro každý vektor $\boldsymbol{x} \in \mathbb{K}^n$ platí

$$\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} = x_1 \boldsymbol{e}_1 + x_2 \boldsymbol{e}_2 + \dots + x_n \boldsymbol{e}_n, \qquad (\boldsymbol{x})_{\varepsilon} = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}.$$

Přiřazení souřadnic jako zobrazení

Každá báze α v prostoru U nad \mathbb{K} dimenze n definuje zobrazení () $_{\alpha}:U\to\mathbb{K}^{n}$, které vektoru přiřazuje jeho souřadnice v bázi α . Toto zobrazení je bijekce a navíc platí

$$(\boldsymbol{u} + \boldsymbol{v})_{\alpha} = (\boldsymbol{u})_{\alpha} + (\boldsymbol{v})_{\alpha},$$

 $(a\boldsymbol{u})_{\alpha} = a(\boldsymbol{u})_{\alpha}.$

Důkaz je jednoduchý důsledek definice souřadnic.

Průnik a součet podprostorů

Věta

Průnik libovolného počtu vektorových podprostorů prostoru U je opět podporostor v U.

Pozor! Sjednocení vektorových podprostorů není obecně vektorový podprostor. Najděte příklad!

Místo sjednocení pracujeme v lineární algebře se součtem podprostorů.

Definice

Nechť V, W a V_i jsou vektorové podprostory v U. Definujeme

$$V + W = \{ v + w \in U; v \in V, w \in W \},$$

$$V_1 + V_2 + \dots + V_k = \{ v_1 + v_2 + \dots + v_k \in U; v_i \in V_i \}.$$

Věta

Součet vektorových podprostorů je opět podprostor.

Direktní součet

Příklad

$$\begin{array}{l} U=\mathbb{R}^4,\ V=\{(x_1,x_2,x_3,x_4)\in\mathbb{R}^4;\ x_1+x_2+x_3+x_4=0\},\\ W=\{(0,y_2,0,y_4)\in\mathbb{R}^4\}.\ \text{Potom}\ V+W=\mathbb{R}^4,\ \text{neboť} \\\\ (x_1,x_2,x_3,x_4)=(x_1,x_2,x_3,-x_1-x_2-x_3)+(0,0,0,x_1+x_2+x_3+x_4)\\ \in V+W. \end{array}$$

Definice

Součet podprostorů V+W se nazývá direktní, jesliže $V\cap W=\{\boldsymbol{o}\}$. Direktní součet zapisujeme $V\oplus W$.

Součet v příkladu není direktní, neboť $(0, 1, 0, -1) \in V \cap W$.

Věta

Součet podprostorů V+W je direktní, právě když každý vektor $\pmb{u}\in V+W$ lze psát ve tvaru $\pmb{u}=\pmb{v}+\pmb{w},\ \pmb{v}\in V,\ \pmb{w}\in W,$ právě jedním způsobem.

Věta o dimenzi součtu a průniku

Předchozí tvrzení umožňuje definovat direktní součet více podprostorů takto:

Definice

Nechť $k \geq 2$. Součet podprostorů $V_1 + V_2 + \cdots + V_k$ je direktní, jestliže každý vektor $\boldsymbol{u} \in V_1 + V_2 + \cdots + V_k$ lze psát ve tvaru $\boldsymbol{u} = \boldsymbol{v}_1 + \boldsymbol{v}_2 + \cdots + \boldsymbol{v}_k$, $\boldsymbol{v}_i \in V_i$, právě jedním způsobem.

Příklad

Nechť
$$V = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k], W = [\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_l].$$
 Potom

$$V + W = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k, \mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_l].$$

Každý vektor z V + W je totiž součet $\sum_{i=1}^{k} a_i \mathbf{u}_i + \sum_{j=1}^{l} b_j \mathbf{w}_j$.

Věta

Nechť V a W jsou podprostory ve vektorovém prostoru U konečné dimenze nad \mathbb{K} . Potom

$$\dim_{\mathbb{K}} V + \dim_{\mathbb{K}} U = \dim_{\mathbb{K}} (V \cap U) + \dim_{\mathbb{K}} (V + W).$$

