Approximate nearest neighbor search using the Hierarchical Navigable Small World (HNSW) algorithm

Sebastian Björkqvist

Lead AI Developer, IPRally

May 12, 2023

Outline

- 1 Theoretical foundations
 - Voronoi diagram
 - Delaunay graph
 - Greedy NN search using Delaunay graph
- 2 HNSW algorithm
 - Idea behind algorithm
 - Construction of search index
 - Nearest neighbor search using index
- 3 Performance
 - Search accuracy
 - Build time

└─Voronoi diagram

Voronoi diagram for a set of points

└Voronoi diagram

Voronoi diagram for a set of points

L Delaunay graph

Voronoi diagram to Delaunay graph

L Delaunay graph

Voronoi diagram to Delaunay graph

- L Theoretical foundations
 - L Delaunay graph

Delaunay graph

Greedy NN search using Delaunay graph

Greedy NN search start - Query and entry point

Greedy NN search using Delaunay graph

Greedy NN search using Delaunay graph

Greedy NN search done!

Greedy NN search using Delaunay graph

Drawbacks

- Delaunay graph intractable to construct for large, high-dimensional data sets
- Greedy search might be slow if graph is large

LIdea behind algorithm

Navigable small world (NSW) graph

LIdea behind algorithm

Navigable small world (NSW) graph

Small world graph

LIdea behind algorithm

Navigable small world (NSW) graph

- Small world graph
 - Distance of two random nodes is log N, where N is the number of nodes in graph

LIdea behind algorithm

Navigable small world (NSW) graph

■ Small world graph

- Distance of two random nodes is log N, where N is the number of nodes in graph
- Neighbors of a given node are likely to be neighbors of another (clustering coefficient is high)

Navigable small world (NSW) graph

- Small world graph
 - Distance of two random nodes is log N, where N is the number of nodes in graph
 - Neighbors of a given node are likely to be neighbors of another (clustering coefficient is high)
- Navigability

Navigable small world (NSW) graph

■ Small world graph

- Distance of two random nodes is log N, where N is the number of nodes in graph
- Neighbors of a given node are likely to be neighbors of another (clustering coefficient is high)

Navigability

Greedy search algorithm has logarithmic scalability

LIdea behind algorithm

Why is an NSW useful for nearest neighbor search?

LIdea behind algorithm

Why is an NSW useful for nearest neighbor search?

 Logarithmic distance allows us to get anywhere in the graph quickly

LIdea behind algorithm

Why is an NSW useful for nearest neighbor search?

- Logarithmic distance allows us to get anywhere in the graph quickly
- Navigability ensures that the greedy algorithm finds the logaritmic path

Why is an NSW useful for nearest neighbor search?

- Logarithmic distance allows us to get anywhere in the graph quickly
- Navigability ensures that the greedy algorithm finds the logaritmic path
- High clustering coefficient lets us zoom in on the actual correct node when we're in the right area

256 nodes

Length of path: 19

LIdea behind algorithm

Making Delaunay graph navigable

32 random edges added

Length of path: 5

LIdea behind algorithm

Properties of NSW graph

Properties of NSW graph

An NSW graph is not necessarily a Delaunay graph (or have one as a subgraph)

Properties of NSW graph

- An NSW graph is not necessarily a Delaunay graph (or have one as a subgraph)
- Thus the greedy algorithm doesn't always return the actual nearest neighbor

Properties of NSW graph

- An NSW graph is not necessarily a Delaunay graph (or have one as a subgraph)
- Thus the greedy algorithm doesn't always return the actual nearest neighbor
- Ok since we're doing approximate nearest neighbor search!

LIdea behind algorithm

Constructing NSW graph

LIdea behind algorithm

Constructing NSW graph

 Approximation of graph is enough (since we're doing approximate nearest neighbor search)

Constructing NSW graph

- Approximation of graph is enough (since we're doing approximate nearest neighbor search)
- Navigability: Greedy search algorithm has logarithmic scalability

How?

- We can learn a distribution for a document instead of just a single vector
- Model prior art relation as KL divergence of distributions

LIdea behind algorithm

Distance functions for metadata

Why?

- We can do soft filtering (by country, patent class etc.)
- Can be useful if match is not found by strict filters

LIdea behind algorithm

Learning multiple distance functions - naive way

Learning multiple distance functions - naive way

Learning multiple distance functions - naive way

Learning multiple distance functions - naive way

Drawback: multiple embeddings of same document must be indexed!

LIdea behind algorithm

Learning multiple distance functions - efficient way

Learning multiple distance functions - efficient way

$$d_{n}(q, x) = v_{q}^{n} \cdot v_{x}$$

$$v_{q}^{n} \qquad v_{x}$$

$$\uparrow \qquad \qquad \uparrow$$

$$q \quad d_{n} \qquad x$$

Only one meta-embedding per document is indexed!

Construction of search index

Forward thinking

Construction of search index

Forward thinking

Why?

- We can train deeper models but keep batch size the same
- Training of deep models can take less wall clock time

Construction of search index

Forward thinking - paper

Forward Thinking: Building and Training Neural Networks One Layer at a Time (Hettinger et al.) https://arxiv.org/abs/1706.02480 L Performance

Search accuracy

Performance

L Search accuracy

Porformanco

L Search accuracy

Porformanco

L Search accuracy

Porformanco

Search accuracy

Current method - using gradients

Nodes with highest gradient are considered most important

Drawbacks with using gradients

- Compute-intensive, since we need to do backwards pass
- Quality of explanations is not the best
 - Evaluating Recurrent Neural Network Explanations (Arras et al.) https://arxiv.org/abs/1904.11829

L Performance

L Search accuracy

Comparing node embeddings

1 Embed graphs using model

- 1 Embed graphs using model
- Compare each pair of node embeddings

- 1 Embed graphs using model
- Compare each pair of node embeddings
- 3 Highlight most similar nodes

Why?

- Faster than using gradients (no backprop step needed)
- Might give more relevant explanations
- Can be useful for finding missing features

References

- Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs (Malkov et al. https://arxiv.org/abs/1603.09320
- Approximate nearest neighbor algorithm based on navigable small world graphs (Malkov et al https://doi.org/10.1016/j.is.2013.10.006
- Voronoi diagrams—a survey of a fundamental geometric data structure (Aurenhammer) https://dl.acm.org/doi/10.1145/116873.116880
- Hierarchical Navigable Small Worlds (HNSW) (Pinecone blog) https://www.pinecone.io/learn/hnsw/