Math 8230 Homework 3

pg. 67

#12 Let $I(r) = \int_{\gamma} \frac{e^{iz}}{z} dz$ where $\gamma : [0, \pi] \to \mathbb{C}$ is defined by $\gamma(t) = re^{it}$. Show that $\lim_{r \to \infty} I(r) = 0$. We have that

$$I(r) = \int_{\gamma} \frac{e^{iz}}{z} dz$$
$$= \int_{0}^{\pi} \frac{e^{ire^{it}}}{re^{it}} ire^{it} dt$$
$$= \int_{0}^{\pi} ie^{ire^{it}} dt$$

We then have

$$|I(r)| = \left| \int_0^{\pi} ie^{ire^{it}} dt \right|$$

$$\leq \int_0^{\pi} \left| ie^{ire^{it}} \right| dt$$

$$= \int_0^{\pi} \left| e^{ire^{it}} \right| dt$$

$$= \int_0^{\pi} \left| e^{ir(\cos(t) + i\sin(t))} \right| dt$$

$$= \int_0^{\pi} \sqrt{e^{ir\cos(t) - r\sin(t)} e^{ir\cos(t) - r\sin(t)}} dt$$

$$= \int_0^{\pi} \sqrt{e^{-2r\sin(t)}} dt$$

$$= \int_0^{\pi} e^{-r\sin(t)} dt$$

Now we have that $\phi(r,t)=e^{-r\sin(t)}$ is continuous and infinitely differentiable and bounded by 1 for $t\in[0,\pi]$. Therefore we have that $\lim_{r\to\infty}\int_0^\pi e^{-r\sin(t)}=\int_0^\pi \lim_{r\to\infty}e^{-r\sin(t)}dt=\int_0^\pi 0dt=0$ by dominated convergence theorem. Hence we have that $\lim_{r\to\infty}|I(r)|\leq \lim_{r\to\infty}\int_0^\pi e^{-r\sin(t)}dt=0$. Hence we have that $\lim_{r\to\infty}I(r)=0$.

#13 Find $\int_{\gamma} z^{-\frac{1}{2}} dz$ where:

(a) γ is the upper half of the unit circle from +1 to -1: We have that $e^{-\frac{1}{2}\log z}=z^{-\frac{1}{2}}$. Then we have that $\gamma:[0,\pi]\to\mathbb{C}$ with $\gamma(t)=e^{it}$ parameterizes the upper half unit circle from +1 to -1. Also $\gamma_\epsilon:[0,\pi-\epsilon]\to\mathbb{C}$. We need to avoid the negative real numbers of the principal branch cut of log . Then we have:

$$\left| \int_{\gamma} z^{-\frac{1}{2}} dz - \int_{\gamma_{\epsilon}} z^{-\frac{1}{2}} dz \right| = \left| \int_{\{\gamma\} \setminus \{\gamma_{\epsilon}\}} z^{-\frac{1}{2}} dz \right|$$

$$\leq \int_{\{\gamma\} \setminus \{\gamma_{\epsilon}\}} |z|^{-\frac{1}{2}} |dz|$$

$$= \int_{\{\gamma\} \setminus \{\gamma_{\epsilon}\}} |dz|$$

$$= \epsilon$$

Therefore we have $\lim_{\epsilon \to 0} \int_{\gamma_{\epsilon}} z^{-\frac{1}{2}} dz = \int_{\gamma} z^{-\frac{1}{2}} dz$.

$$\int_{\gamma} z^{-\frac{1}{2}} dz = \lim_{\epsilon \to 0} \int_{\gamma_{\epsilon}} z^{-\frac{1}{2}} dz$$

$$= \lim_{\epsilon \to 0} \int_{\gamma_{\epsilon}} e^{-\frac{1}{2} \log z} dz$$

$$= \lim_{\epsilon \to 0} \int_{0}^{\pi - \epsilon} e^{-\frac{1}{2} \log e^{it}} i e^{it} dt$$

$$= \lim_{\epsilon \to 0} i \int_{0}^{\pi - \epsilon} e^{-\frac{it}{2} + it} dt$$

$$= \lim_{\epsilon \to 0} i \int_{0}^{\pi - \epsilon} e^{\frac{it}{2} + it} dt$$

$$= \lim_{\epsilon \to 0} i \int_{0}^{\pi - \epsilon} e^{\frac{it}{2}} dt$$

$$= \lim_{\epsilon \to 0} 2 \left(e^{it/2} \right]_{0}^{\pi - \epsilon} \text{ by FTC}$$

$$= \lim_{\epsilon \to 0} 2(e^{i(\pi - \epsilon)/2} - 1)$$

$$= 2(i - 1)$$

(b) γ is the lower half of the unit circle from +1 to -1.

We have that $e^{-\frac{1}{2}\log z}=z^{-\frac{1}{2}}$. Then we have that $\gamma:[0,\pi]\to\mathbb{C}$ with $\gamma(t)=e^{-it}$ parameterizes the lower half unit circle from +1 to -1. Also $\gamma_\epsilon:[0,\pi-\epsilon]\to\mathbb{C}$ again to avoid the principal branch cut. Then we have:

$$\left| \int_{\gamma} z^{-\frac{1}{2}} dz - \int_{\gamma_{\epsilon}} z^{-\frac{1}{2}} dz \right| = \left| \int_{\{\gamma\} \setminus \{\gamma_{\epsilon}\}} z^{-\frac{1}{2}} dz \right|$$

$$\leq \int_{\{\gamma\} \setminus \{\gamma_{\epsilon}\}} |z|^{-\frac{1}{2}} |dz|$$

$$= \int_{\{\gamma\} \setminus \{\gamma_{\epsilon}\}} |dz|$$

$$= \epsilon$$

Therefore we have $\lim_{\epsilon \to 0} \int_{\gamma_{\epsilon}} z^{-\frac{1}{2}} dz = \int_{\gamma} z^{-\frac{1}{2}} dz$.

$$\begin{split} \int_{\gamma} z^{-\frac{1}{2}} dz &= \lim_{\epsilon \to 0} \int_{\gamma_{\epsilon}} z^{-\frac{1}{2}} dz \\ &= \lim_{\epsilon \to 0} \int_{\gamma_{\epsilon}} e^{-\frac{1}{2} \log z} dz \\ &= \lim_{\epsilon \to 0} - \int_{0}^{\pi - \epsilon} e^{-\frac{1}{2} \log e^{-it}} i e^{-it} dt \\ &= \lim_{\epsilon \to 0} -i \int_{0}^{\pi - \epsilon} e^{\frac{it}{2} - it} dt \\ &= \lim_{\epsilon \to 0} -i \int_{0}^{\pi - \epsilon} e^{-\frac{it}{2}} dt \\ &= \lim_{\epsilon \to 0} 2 \left(e^{-it/2} \right]_{0}^{\pi - \epsilon} \text{ by FTC} \\ &= \lim_{\epsilon \to 0} 2(e^{-i(\pi - \epsilon)/2} - 1) \\ &= 2(-i - 1) \end{split}$$

pg.74

#7 Use the results of this section to evaluate the following integrals:

- (a) $\int_{\gamma} \frac{e^{iz}}{z^2} dz$, $\gamma(t) = e^{it}$, $0 \le t \le 2\pi$; We have that $f^{(1)}(0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-0)^{1+1}} dz$ by Generalized Cauchy's Integral Formula for disks. As e^{iz} is entire then we have $f(z) = e^{iz}$ Thus $f'(z) = ie^{iz}$. Thus $i = \frac{1}{2\pi i} \int_{\gamma} \frac{e^{iz}}{z^2} dz$. Therefore $\int_{\gamma} \frac{e^{iz}}{z^2} dz = -2\pi$.
- (d) $\int_{\gamma} \frac{\log z}{z^n} dz$, $\gamma(t) = 1 + \frac{1}{2}e^{it}$, $0 \le t \le 2\pi$ and $n \ge 0$. For $n \ne 1$, then $F(z) = \frac{z^{1-n}\log z}{1-n} - \frac{z^{1-n}}{n^2-2n+1}$. Then $F'(z) = \frac{(1-n)z^{-n}\log z + z^{-n}}{1-n} - \frac{(1-n)z^{-n}}{(n-1)^2} = z^{-n}\log z$. Clearly we have that z^{-n} and $\log z$ are analytic on the disk $B(1; \frac{1}{2})$ with F(z) is primitive. Thus we can use Cauchy's Theorem on a disk and $\int_{\gamma} \frac{\log z}{z^n} dz = 0$. When n = 1, then $\int_{\gamma} \frac{\log z}{z} dz$. Let $G(z) = \frac{\log^2(z)}{2}$. Then $G'(z) = \log(z)z^{-1}$. Hence G(z) is primitive and G(z) is analytic over $B(1; \frac{1}{2})$. Therefore $\int_{\gamma} \frac{\log z}{z} dz = 0$ by Cauchy's theorem.

#10 Evaluate $\int_{\gamma} \frac{z^2+1}{z(z^2+4)} dz$ where $\gamma(t) = re^{it}$, $0 \le t \le 2\pi$, for all possible values of r, 0 < r < 2 and $2 < r < \infty$.

$$\begin{split} \int_{\gamma} \frac{z^2 + 1}{z(z^2 + 4)} dz &= \int_{\gamma} \left(\frac{\frac{1}{4}}{z} + \frac{\frac{3}{8}}{z + 2i} + \frac{\frac{3}{8}}{z - 2i} \right) dz \text{ by partial fraction decomposition} \\ &= \frac{1}{4} \int_{\gamma} \frac{1}{z} dz + \frac{3}{8} \int_{\gamma} \frac{1}{z - (-2i)} dz + \frac{3}{8} \int_{\gamma} \frac{1}{z - 2i} dz \\ &= \begin{cases} \frac{1}{4} \int_{\gamma} \frac{1}{z} dz + \frac{3}{8} \int_{\gamma} \frac{1}{z - (-2i)} dz + \frac{3}{8} \int_{\gamma} \frac{1}{z - 2i} dz & \text{if } 0 < r < 2 \\ \frac{1}{4} \int_{\gamma} \frac{1}{z} dz + \frac{3}{8} \int_{\gamma} \frac{1}{z - (-2i)} dz + \frac{3}{8} \int_{\gamma} \frac{1}{z - 2i} dz & \text{if } 2 < r < \infty \end{cases} \end{split}$$

We apply the Complete Cauchy's Integral Formula on disks as constant functions are entire.

$$\int_{\gamma} \frac{z^2 + 1}{z(z^2 + 4)} dz = \begin{cases} \frac{1}{4} 2\pi i + \frac{3}{8} \int_{\gamma} \frac{1}{z - (-2i)} dz + \frac{3}{8} \int_{\gamma} \frac{1}{z - 2i} dz & \text{if } 0 < r < 2\\ \frac{1}{4} 2\pi i + \frac{3}{8} 2\pi i + \frac{3}{8} 2\pi i & \text{if } 2 < r < \infty \end{cases}$$

$$= \begin{cases} \frac{1}{2} \pi i + 0 + 0 & \text{if } 0 < r < 2\\ 2\pi i & \text{if } 2 < r < \infty \end{cases}$$

pg. 80

#1 Let f be an entire function and suppose there is a constant M, an R > 0, and an integer $n \ge 1$ such that $|f(z)| \le M |z|^n$ for |z| > R. Show that f is a polynomial of degree $\le n$.

We have that for any r > R, $\left| f^{(m)}(0) \right| = \left| \frac{m!}{2\pi i} \int_{|w|=r} \frac{f(w)}{w^{m+1}} dw \right|$ as f is analytic on \mathbb{C} . Thus we have that

$$\left|f^{(m)}(0)\right| = \left|\frac{m!}{2\pi i} \int_{|w|=r} \frac{f(w)}{w^{m+1}} dw\right| \text{ by Generalized Cauchy's Integral Formula on disks}$$

$$\leq \frac{m!}{2\pi i} \int_{|w|=r} \frac{|f(w)|}{|w|^{m+1}} |dw|$$

$$\leq \frac{m!}{2\pi i} \int_{|w|=r} \frac{M|w|^n}{|w|^{m+1}} |dw| \text{ by apply the bound of } |f(z)|$$

$$= \frac{m!}{2\pi i} \int_{|w|=r} \frac{Mr^n}{r^{m+1}} |dw|$$

$$= \frac{m!}{2\pi i} Mr^{n-m-1} 2\pi r$$

$$= Cr^{n-m}$$

Thus we have this is true for any r > R. Hence we let $r \to \infty$. Therefore when m > n. $\left| f^{(m)}(0) \right| = 0$. However since f is entire we have a unique power series representation $f(z) = \sum_{i=0}^{\infty} a_i z^i$ where $a_i = \frac{f^{(i)}(0)}{i!}$. Therefore $f(z) = \sum_{i=0}^{n} a_i z^i$.

#3 Find all entire functions f such that $f(x) = e^x$ for $x \in \mathbb{R}$.

Suppose f(z) is an entire function such that $f(z)=e^x$. Let $g(z)=f(z)-e^z$. Then g(x)=0 for $x\in\mathbb{R}$. Furthermore since f and e are entire then g is also entire. Let $g(z)=\sum_{i=0}^\infty a_i z^i=\sum_{i=0}^\infty \frac{g^{(i)}(0)}{i!}z^i$. Taking the derivate at $x\in\mathbb{R}$, we may choose any direction. Along the real axis or h is real we have $g^{(1)}(x)=\lim_{h\to 0}\frac{g(x+h)-g(x)}{h}=\lim_{h\to 0}\frac{0}{h}=0$. Then by induction we have our induction hypothesis that $g^{(i)}(x)=0$. Therefore $g^{(i+1)}(x)=\lim_{h\to 0}\frac{g^{(i)}(x+h)-g^{(i)}(x)}{h}=\lim_{h\to 0}\frac{0}{h}=0$. Thus we have shown $g^{(i)}(x)=0$ for all i>0, $x\in\mathbb{R}$ and clearly g(x)=0. Therefore we have that $g(z)=\sum_{i=0}^\infty \frac{g^{(i)}(0)}{i!}(z-0)^i\equiv 0$. Therefore $f(z)=e^z$.

#8 Let G be a region and let f and g be analytic functions on G such that f(z)g(z) = 0 for all z in G. Show that either $f \equiv 0$ or $g \equiv 0$.

Suppose that $g \not\equiv 0$. Then there exists some $a \in G$, $g(a) \not= 0$. Then f(a)g(a) = 0 implies f(a) = 0. If f is constant with f(a) = 0 then $f \equiv 0$ and we are done. Otherwise suppose f is not constant. Then by Corollary 3.10 we have that there is an R > 0 such that $B(a;R) \subset G$ and $f(z) \not= 0$ for 0 < |z - a| < R. Therefore for $z \in B(a;R) \setminus \{a\}$ we have that f(z)g(z) = 0 with $f(z) \not= 0$ implies

g(z)=0. Therefore have g(z)=0 for $z\in B(a;R)\backslash\{a\}$ and $g(a)\neq 0$. Therefore g is not continuous on B(a;R) a contradiction that g is analytic on G. Therefore our original supposition is false and $g\equiv 0$.

#9 For
$$R > 0$$
, show that $\frac{1}{2\pi R} \int_{\partial B_R(0)} \frac{|dz|}{z - z_0} = \begin{cases} 0, & z_0 \in B_R(0) \\ -\frac{1}{z_0}, & z_0 \in \mathbb{C} \backslash \overline{B_R(0)} \end{cases}$

$$\frac{1}{2\pi R} \int_{\partial B_R(0)} \frac{|dz|}{z - z_0} = \frac{1}{2\pi R} \int_0^{2\pi} \frac{|iRe^{it}| dt}{Re^{it} - z_0}$$
$$= \frac{1}{2\pi} \int_0^{2\pi} \frac{dt}{Re^{it} - z_0}$$

We have
$$\frac{d}{dt} \left(-\frac{t + i \log(Re^{it} - z_0)}{z_0} \right) = -\frac{1}{z_0} - \frac{i}{z_0} \frac{Rie^{it}}{Re^{it} - z_0} = \frac{1}{z_0} \frac{-Re^{it} + z_0 + Re^{it}}{Re^{it} - z_0} = \frac{1}{Re^{it} - z_0}.$$

 $\log(Re^{it}-z_0)$ is analytic when $z_0 \notin \overline{B_R(0)}$ as $\log(Re^{it}-z_0)$ is far enough away from the origin to take a branch cut in the $\pi + \arg(z_0)$ direction.

Therefore for $z_0 \notin \overline{B_R(0)}$

$$\frac{1}{2\pi R} \int_{\partial B_R(0)} \frac{|dz|}{z - z_0} = \frac{1}{2\pi} \left(-\frac{t + i \log(Re^{it} - z_0)}{z_0} \right]_0^{2\pi} \text{ by FTC}$$
$$= \frac{1}{2\pi} \left(-\frac{2\pi}{z_0} \right)$$
$$= -\frac{1}{z_0}$$

Suppose $z_0 \in B_R(0)$. Let $z_0 = r_0 e^{i\theta_0}$. Then let $\partial B_R(0) = Re^{it}$ for $t \in [-\pi + \theta_0, \pi + \theta_0]$.

$$\begin{split} \frac{1}{2\pi R} \int_{\partial B_R(0)} \frac{|dz|}{z - z_0} &= \frac{1}{2\pi R} \int_{-\pi + \theta_0}^{\pi + \theta_0} \frac{|iRe^{it}|}{Re^{it} - r_0e^{i\theta_0}} \\ &= \frac{1}{2\pi R} \int_{-\pi + \theta_0}^{\pi + \theta_0} \frac{e^{-it}dt}{1 - \frac{r_0}{R}e^{i\theta_0 - it}} \\ &= \frac{1}{2\pi R} \int_{-\pi}^{\pi} \frac{e^{-i(s + \theta_0)}ds}{1 - \frac{r_0}{R}e^{-is}} \text{ with } s = t - \theta_0 \\ &= \frac{1}{2\pi R} \int_{-\pi}^{\pi} \frac{e^{-i\theta_0}ds}{e^{is} - \frac{r_0}{R}} \\ &= \frac{1}{2\pi R} \int_{-\pi}^{\pi} \frac{e^{-i\theta_0}(e^{-is} - \frac{r_0}{R})ds}{e^{is} - \frac{r_0}{R}} \\ &= \frac{1}{2\pi R} \int_{-\pi}^{\pi} \frac{e^{-i\theta_0}(e^{-is} - \frac{r_0}{R})ds}{(e^{is} - \frac{r_0}{R})(e^{-is} - \frac{r_0}{R})} \\ &= \frac{e^{-i\theta_0}}{2\pi R} \int_{-\pi}^{\pi} \frac{(e^{-is} - \frac{r_0}{R})ds}{1 - 2\frac{r_0}{R}\cos(s) + (\frac{r_0}{R})^2} \\ &= \frac{e^{-i\theta_0}}{2\pi R(1 - \rho^2)} \int_{-\pi}^{\pi} \frac{(1 - \rho^2)\cos(s) - (1 - \rho^2)i\sin(s) - (1 - \rho^2)\rho ds}{1 - 2\rho\cos(s) + \rho^2} \\ &= \frac{e^{-i\theta_0}}{2\pi R(1 - \rho^2)} \int_{-\pi}^{\pi} P_{\rho}(s)\cos(s) - iP_{\rho}(s)\sin(s) - P_{\rho}(s)\rho ds \\ &= \frac{e^{-i\theta_0}}{2\pi R(1 - \rho^2)} \int_{-\pi}^{\pi} P_{\rho}(s)\cos(s) - P_{\rho}(s)\rho ds \sin(s) \text{ is even} \\ &= \frac{e^{-i\theta_0}}{2\pi R(1 - \rho^2)} \left(-2\pi \rho + 2\pi \rho\right) \text{ by Poisson Kernel Formulas for } \rho < 1 \\ &= 0 \end{split}$$

Note the Poisson Kernel Formulas give the previous result for $\rho > 1$.

#10 For R > 0, compute $\int_{\partial B_R(0)} z^{\alpha} dz$ for each $\alpha \in \mathbb{C}$. (For z^{α} , of course, use the principal branch.)

We first must look at $z^{\alpha} = e^{\alpha Log(z)}$ the principal branch that is analytic on $\mathbb{C}\setminus\{z\leq 0\}$. Let $\gamma(t) = Re^{it}$ for $t\in[-\pi,\pi]$. Then the trace $\{\gamma(t)\}=\partial B_R(0)$. We must avoid the principal branch cut therefore we must approximated the integral with another.

$$\lim_{\epsilon \to 0} \left| \int_{\gamma} z^{\alpha} dz - \int_{\gamma_{\epsilon}} z^{\alpha} \right| = \lim_{\epsilon \to 0} \left| \int_{\{\gamma\} \setminus \{\gamma_{\epsilon}\}} z^{\alpha} dz \right|$$

$$\leq \lim_{\epsilon \to 0} \int_{\{\gamma\} \setminus \{\gamma_{\epsilon}\}} |z|^{\alpha} |dz|$$

$$= \lim_{\epsilon \to 0} R^{\alpha} 2\epsilon R$$

$$= 0$$

Thus we have convergence of the integral. Then we compute for $\alpha \neq -1$.

$$\int_{\gamma} z^{\alpha} dz = \lim_{\epsilon \to 0} \int_{\gamma_{\epsilon}} z^{\alpha} dz$$

$$= \lim_{\epsilon \to 0} \int_{\gamma_{\epsilon}} e^{\alpha \log z} dz$$

$$= \lim_{\epsilon \to 0} \int_{-\pi + \epsilon}^{\pi - \epsilon} e^{\alpha \log R e^{it}} Rie^{it} dt$$

$$= \lim_{\epsilon \to 0} \int_{-\pi + \epsilon}^{\pi - \epsilon} e^{\alpha (\log R + \log e^{it})} Rie^{it} dt$$

$$= \lim_{\epsilon \to 0} i R^{\alpha + 1} \int_{-\pi + \epsilon}^{\pi - \epsilon} e^{\alpha it} e^{it} dt$$

$$= \lim_{\epsilon \to 0} i R^{\alpha + 1} \int_{-\pi + \epsilon}^{\pi - \epsilon} e^{(\alpha + 1)it} dt$$

$$= \lim_{\epsilon \to 0} i R^{\alpha + 1} \left(\frac{e^{(\alpha + 1)it}}{i(\alpha + 1)} \right)_{-\pi + \epsilon}^{\pi - \epsilon} \text{ by FTC}$$

$$= \lim_{\epsilon \to 0} i R^{\alpha + 1} \left(\frac{e^{(\alpha + 1)i(\pi - \epsilon)} - e^{(\alpha + 1)i(-\pi + \epsilon)}}{i(\alpha + 1)} \right)$$

$$= \frac{R^{\alpha + 1}}{\alpha + 1} \left(e^{(\alpha + 1)i\pi} - e^{-(\alpha + 1)i\pi} \right)$$

$$= \frac{R^{\alpha + 1}}{\alpha + 1} 2i \sin(\pi(\alpha + 1))$$

Suppose $\alpha=-1$ then $\int_{\gamma}\frac{1}{z}dz=2\pi i$ by the most important integral in complex analysis, Cauchy's integral formula.