B. Tech Mid Semester Examination 2023

1 Semester

Basic Electronics Engineering (TEC-101)

Firme: 1:30 Hours MM: 50 NOTE: Answer all questions by choosing any one of the sub questions (either part a or part b) Each question carries 10 marks (J.1.(a) COI Perform the following number system conversions: (1) (45.2) = (2) ... $(3i)(11001010) = (2)_{16}$ (illi) (789), =(?),, (iv) (331_n-(13)_m in Binary using I scomplement. (v) ((2)₁₀-(20)₁₀ in Binary using 2'scomplement. OR Q.1(b) COL What are universal logic gates and why they are called so? Realize the following: (1) I x-Ok gate using NAND gates HijABC ABC +ABC using NAND gates. (2.2 (a) COL (i) State and prove DeMorgan's laws of Boolean Algebra. (ii)Realize the following Boolean functions using basic gates: (i)A+B.C (ii)B.C+A.B (iii)(A+B).C OR. 0.2(b)COI Writeshort notes on the topics given below: (i) SOP and POS form of logic expression (ii) canonical form of logical expression (a) (a) COL Solve the following expression using K-Map and realize the togle gircuit using basic gates. $F(A,B,C,D) = \sum_{i=1}^{n} (0,2,4,6,9,12) + \sum_{i=1}^{n} (1,14)$

Q.3 (b) For the given truth table, express output Y in minimized SOP and minimized POS form CO 1

/)'	₿	C	Y
	100	1	Û
41		1	():
Accommend to the total to		F. T.	ſį
t de de la commence de commence de commence de la c	1		
	:0	U)	
	9-	1	119
	1	Ç.	()
Abritab min basan sarapadagagasan sarabbba	-	1	1

0.4

(a) CO2

What is significance of doping in semiconductors. With the help of neat diagram explain formation of a type semiconductor by doping.

calculate the drift current produced in anintrinsic Ge semiconductor having area of cross section 2cm^2 and length in the arrive accountation of free electron is 2×10^{39} m² and a battery of 2 Volts (capplied across its length, cover that mobility of free electrons and holes is $0.36 \text{m}^2/\text{V}$ -sec and $0.17 \text{m}^2/\text{V}$ -sec respectively...

OR

Q.4 (b) Briefly explain mass action law insemiconductors.

COZ

Assuming that the two diodes D1 and D2 used in the electric circuit shown in the tigere are liteal. But leaf the saling of the entrent flowing through 10 resistor.

Q.5 (a)

CO2

Define following:

- di. Mobility
- (unConductivity
- (ii) Drift velocity
- (iri) Drift and Diffusion currents

OR

V).5 (b)

CO2

- aptain how a depletion region is formed in a junction diode flow does its width change when the parent in is-
- (i) forward biased, and
- (ii) reverse emsed '
- A Si diode has reverse saturation current of 2.5μA at room temperature. Determine forward voltage to obtain a forward current of 10 mA.