Bitcoin-Enhanced Proof-of-Stake Security: Possibilities and Impossibilities

최원재 wonjae@snu.ac.kr 2025. 01. 23

Virtual Machine & Optimization Laboratory

Dept. of Electrical and Computer Engineering

Seoul National University

Two Papers From Babylon

IEEE S&P '23

Bitcoin-Enhanced Proof-of-Stake Security: Possibilities and Impossibilities

Ertem Nusret Tas Stanford University nusret@stanford.edu

Sreeram Kannan University of Washington, Seattle ksreeram@uw.edu David Tse Stanford University dntse@stanford.edu

> Mohammad Ali Maddah-Ali University of Minnesota maddah.ali.ee@gmail.com

Fisher Yu BabylonChain fisher.yu@babylonchain.io

Fangyu Gai

BabylonChain

fangyu.gai@babylonchain.io

ACM CCS '23

Interchain Timestamping for Mesh Security

Ertem Nusret Tas Stanford University nusret@stanford.edu Runchao Han BabylonChain runchao.han@babylonchain.io David Tse
Stanford University
dntse@stanford.edu

Fisher Yu BabylonChain fisher.yu@babylonchain.io Kamilla Nazirkhanova Stanford University nazirk@stanford.edu

Bitcoin-Enhanced Proof-of-Stake Security: Possibilities and Impossibilities

Ertem Nusret Tas Stanford University nusret@stanford.edu

Sreeram Kannan
University of Washington, Seattle
ksreeram@uw.edu

David Tse
Stanford University
dntse@stanford.edu

Mohammad Ali Maddah-Ali University of Minnesota maddah.ali.ee@gmail.com

Fangyu Gai BabylonChain fangyu.gai@babylonchain.io

> Fisher Yu BabylonChain fisher.yu@babylonchain.io

$\textbf{PoW} \rightarrow \textbf{PoS}$

Less Energy

Faster Confirmation

More Accountability

Accountable Safety

Definition

> If there is a safety violation, 1/3 adversarial validators can be *provably* identified as protocol violators.

Byzantine Fault Tolerance (BFT)

- Protocol is safe unless more than 1/3 of validators are adversary.
- Therefore, Accountable Safety implies BFT. (i.e. stronger safety)

Accountable Safety – How it works?

How to get Accountability

Normal clients can compare two blocks and inspect the violators.

Accountable Safety – Why it matters?

Goal

- To impose economic punishment to the violators (Slashing)
- > To provide Economic Security

Slashable Safety

Accountable Safety is not enough for PoS

Violators can withdraw their stake before identified by the protocol.

Defintion

- If there is a safety violation, 1/3 adversarial validators can be provably identified as protocol violators before they withdraw their stake (i.e. unbond).
- Provides economic security for PoS blockchains.

Current Blockchains

- Many PoS protocols have accountable safety (e.g. Tendermint, Ethereum PoS)
- But no PoS protocol can have slashable safety without external trust.

No Slashability: Posterior Corruption Attack

Problem Scenario

- Attackers wait until they unbond their stakes.
- They publish the attack chain after they unbonded their stakes.

Issues

- Existing clients can reject the late chain.
- But, the late-coming clients cannot distinguish the attack chain.

Example: Long Range Attack

Bitcoin as a Timestamping Server

Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto satoshin@gmx.com www.bitcoin.org

"In this paper, we propose a solution to the double-spending problem using a peer-to-peer distributed <u>timestamp server</u> to generate computational proof of the chronological order of transactions."

Babylon Protocol

Babylon Protocol provides

- Slashable Safety with resilience of 1/3
 - Liveness with resilience of 1/2

Babylon Protocol is optimal for PoS chains given a data-limited timestamping server.

Babylon Protocol

Babylon Protocol provides

- Slashable Safety with resilience of 1/3
 - Liveness with resilience of 1/2

Babylon Protocol is optimal for PoS chains given a data-limited timestamping server.

Babylon Protocol vs Stand-alone PoS Chain

Babylon Protocol

- Slashable Safety with resilience of 1/3
- > Liveness with resilience of 1/2

An optimal **stand-alone** PoS chain

- Accountable Safety with resilience of 1/3
- > Liveness with resilience of 1/3

(Sheng et al. 2021)

