Конспект по курсу

Математическая статистика

Contributors: Андрей Степанов Алексей Журавлев Лектор: Шабанов

МФТИ

Последнее обновление: 11 марта 2015 г.

Содержание

1	Вве	дение. Сходимости векторов.	2
	1.1	Введение.	2
	1.2	Сходимости случайных векторов	3
	1.3	Предельные теоремы	4
2	Bep	оятностно-статистические модели и выборки	7
	2.1	Вероятностно-статистическая модель	7
	2.2	Моделирование выборки	9
		2.2.1 Конечная выборка	9
		2.2.2 Счетная выборка	9
	2.3	Статистики и оценки	9
3	Оце	енки и их свойства	10
	3.1	Свойства оценок	10
	3.2		11
			11
			11
4	Сра	авнение оценок	12
	$4.\overline{1}$	Равномерный подход	12
	4.2		12
	4.3		12
	4.4		12
	4.5		13
	4.6		13

1 Введение. Сходимости векторов.

1.1 Введение.

Математическая статистика — это раздел теории вероятностей, который решает обратные задачи к классическим задачам в теории вероятностей.

Типичная задача в теории вероятностей — это найти или оценить характеристики случайного эксперимента, зная его природу случайности.

Типичная задача в математической статистике – по данным результатов случайного эксперимента выяснить природу его случайности.

Пример (Классический пример). В городе есть n жителей, m из которых болеют. Считаем, что n дано заранее.

- Задача ТВ: с какой вероятностью при известном m в случайной выборке из a жителей будет b заболевших
- Задача МС: известно, что в выборке из a жителей оказалось b заболевших. Как в этом случае можно оценить m

Пример (Выборка). Предположим, что мы проводим эксперимент. Пусть дан какой-то физический прибор, и пусть ξ – случайная величина, описывающая результат измерения этим прибором, $\xi \sim P_{\xi}$ (ξ имеет распределение P_{ξ}). Например, если прибор – это счетчик Гейгера, то ξ – это уровень радиации, им зарегестрированный. Давайте также считать, что на время эксперимента распределение ξ не меняется, и результат измерения прибора не зависит от предыдущих измерений. Пусть X_1, \ldots, X_n – эти результаты измерения в какие-то моменты времени. На языке теории вероятностей это можно переформулировать так: X_1, \ldots, X_n – реализации независимых одинаково распределенных случайных величин ξ_1, \ldots, ξ_n .

Задача состоит в том, чтобы оценить $E\xi$ по этим самым X_1, \dots, X_n .

Пример (Регрессионная модель). Пусть материальная точка движется по прямой, стартовав из точки x_0 с постоянной скоростью, равной v_0 . Мы их не знаем, и будем считать, что это случайные величины. Пусть x_1, \ldots, x_n — это измеренные нами положения этой материальной точки в моменты времени t_1, \ldots, t_n соответственно. Или, по другому, x_1, \ldots, x_n — это реализации случайных величин ξ_1, \ldots, ξ_n , причем ξ_i отвечает за измеренный нами результат положения точки в момент времени t_i . Понятно, что эти случайные величины уже будут зависимы. Дополнительно положим, что погрешность измерения подчиняется нормальному распределению. То есть: $\xi_i = x_0 + v_0 \cdot t_i + \varepsilon_i$, где ε_i — нормально распределенная случайная величина, отвечающая за ошибку i-того измерения.

Задача заключается в том, чтобы оценить x_0 и v_0 по этим данным $(x_0,\ldots,x_n,t_0,\ldots,t_n)$

Пример (Проверка на однородность). Пусть X_1, \ldots, X_n – это результаты эксперимента в условиях A, а Y_1, \ldots, Y_m – результаты того-же самого

эксперимента в условиях B. Нужно выяснить, влияют ли эти условия на результат. (Если для сокращения записи отождествить результат эксперимента со случайной величиной, реализацией которой он является, а также считать, что $X_i \sim X$, $Y_i \sim Y$ то можно записать так: $X \stackrel{d}{\sim} Y$?)

Замечание. Как мы видим, задача матстатистики – представить оптимальное решение на основе статистических данных. Типичная характерная черта задач – это довольно большое количество дополнительных ограничений на природу явлений (независимость и одинаковая распределенность результата, нормальное распределение погрешностей и т.д.). Такие ограничения в реальных условиях иногда бывает трудно проверить, поэтому нужно быть крайне внимательным при применении какого-либо результата из матстатистики в реальных задачах. Однако такое требование к внимательности компенсируется тем, что результаты из матстатистики находят широкое применение в экспериментальной физике, машинном обучении, data mining и прочих облостях науки.

1.2 Сходимости случайных векторов

Определение 1.1. Пусть $\{\xi_n:n\in\mathbb{N}\}$ – последовательность случайных векторов из \mathbb{R}^m . ξ – случайный вектор из \mathbb{R}^m . Говорят что:

• ξ_n сходится к ξ почти наверное (обозначение: $\xi_n \stackrel{\text{п.н.}}{\to} \xi$), если :

$$P(\{\omega : \lim_{n \to \infty} \xi_n(\omega) = \xi(\omega)\}) = 1$$

• ξ_n сходится к ξ по вероятности (обозначение $\xi_n \stackrel{P}{\to} \xi$), если:

$$\forall \varepsilon > 0 : \lim_{n \to \infty} P(\{\omega : ||\xi_n(\omega) - \xi(\omega)|| > \varepsilon\}) = 0$$

• ξ_n сходитіся к ξ по распределению (обозначение $\xi_n \stackrel{d}{\to} \xi$), если:

 $\forall f$ – ограниченной непрерывной функции $\mathbb{R}^m \mapsto \mathbb{R}: \lim_{n \to \infty} Ef(\xi_n) = Ef(\xi)$

Утверждение 1.1. Пусть $\xi_n = (\xi_n^1, \dots, \xi_n^m), \xi = (\xi_n^1, \dots, \xi_n^m)$. Тогда:

- $\xi_n \stackrel{n.n.}{\to} \xi \Leftrightarrow \forall j : \xi_n^j \stackrel{n.n.}{\to} \xi^j$
- $\xi_n \stackrel{P}{\to} \xi \Leftrightarrow \forall j : \xi_n^j \stackrel{P}{\to} \xi^j$

Замечание. Для сходимости по распределению это утверждение не верно

Определение 1.2. Функции распределения F_{ξ_n} называются слабо сходящимися к F_{ξ} (обозначение: $F_{\xi_n} \stackrel{w}{\to} F_{\xi}$), если:

 $\forall f$ — ограниченной непрерывной функции $\mathbb{R}\mapsto\mathbb{R}:\int_{\Omega}f(x)dF_{\xi_n}\to\int_{\Omega}f(x)dF_{\xi}$

Теорема 1.2 (Александрова). Пусть $\xi, \xi_1, \xi_2, \ldots$ – случайные величины. Тогда следующие утверждения эквивалентны:

- 1. $\xi_n \stackrel{d}{\to} \xi$
- 2. $F_{\xi_n} \stackrel{w}{\to} F_{\xi}$
- 3. $\forall x$ точка непрерывности $F_{\xi}: \lim_{n\to\infty} F_{\xi_n}(x) = F_{\xi}(x)$

Теорема 1.3 (многомерный случай, более слабая). Пусть $\xi, \xi_1, \xi_2, \ldots$ случайные векторы из \mathbb{R}^m . Пусть F_ξ непрерывна. Тогда $\xi_n \stackrel{d}{\to} \xi \Leftrightarrow \forall x \in \mathbb{R}^m : \lim_{n \to \infty} F_{\xi_n}(x) = F_\xi(x)$

1.3 Предельные теоремы

Теорема 1.4 (Закон большых чисел). Пусть ξ_1, ξ_2, \ldots – попарно-некоррелированные одинаково распределенные случайные величины, $D\xi_i$ конечна, $S_n = \xi_1 + \cdots + \xi_n$. Тогда:

$$\frac{S_n - ES_n}{n} \stackrel{P}{\to} 0$$

, причем $ES_n = n \cdot a$, $a = E\xi_i$.

Теорема 1.5 (Усиленный закон больших чисел). Пусть ξ_1, ξ_2, \ldots – независимые одинаково распределнные случайные величины (или векторы), $E\xi_i = a$ – конечно, $S_n = \xi_1 + \cdots + \xi_n$. Тогда:

$$\frac{S_n}{n} \stackrel{n.n.}{\to} a$$

Теорема 1.6 (Центральная предельная теорема). Пусть ξ_1, ξ_2, \ldots – независимые одинаково распределные случайные величины, $E\xi_i = a$ – конечно, $0 < D\xi_i = \sigma^2$ – тоже конечно, $S_n = \xi_1 + \cdots + \xi_n$. Тогда:

$$\sqrt{n}\left(\frac{S_n}{n} - a\right) \stackrel{d}{\to} \mathcal{N}(0, \sigma^2)$$

Теорема 1.7 (Многомерная центральная предельная теорема). Пусть ξ_1, ξ_2, \ldots – независимые одинаково распределные случайные векторы, $E\xi_i = a - \kappa o$ нечно, $0 < D\xi_i = \Sigma$ – матрица ковариаций, тоже конечна, $S_n = \xi_1 + \cdots + \xi_n$. Тогда:

$$\sqrt{n}\left(\frac{S_n}{n}-a\right) \stackrel{d}{\to} \mathcal{N}(0,\Sigma)$$

Утверждение 1.8. Пусть $\xi, \xi_1, \xi_2, \ldots$ – случайные векторы. Тогда:

- 1. $\xi_n \stackrel{n.n.}{\to} \xi \Rightarrow \xi_n \stackrel{P}{\to} \xi$
- 2. $\xi_n \stackrel{P}{\to} \xi \Rightarrow \xi_n \stackrel{d}{\to} \xi$

Доказательство.

1. Следует из того, что векторная сходимость эквивалентна покоординатной, а для координат верны одномерные аналоги.

2. Доказывается аналогично одномерному случаю.

Лемма 1.9 (о сходящейся подпоследовательности). Пусть $\xi_n \stackrel{P}{\to} \xi$. Тогда \exists подпоследовательность $\xi_{n_k}: \xi_{n_k} \stackrel{n.n.}{\to} \xi$

Теорема 1.10 (о наследовании сходимостей). Пусть $\xi, \xi_1, \xi_2, \ldots$ – случайные векторы из \mathbb{R}^m . Пусть также $h: \mathbb{R}^m \mapsto \mathbb{R}^s$ – функция, непрерывная почти всюду относительно распределения ξ (то есть $\exists B \in \mathcal{B}(\mathbb{R}^m), P_{\xi}(B) = 1: h$ непрерывна на B. Тогда:

- 1. $\xi_n \stackrel{n.n.}{\to} \xi \Rightarrow h(\xi_n) \stackrel{n.n.}{\to} h(\xi)$
- 2. $\xi_n \stackrel{P}{\to} \xi \Rightarrow h(\xi_n) \stackrel{P}{\to} h(\xi)$
- 3. Если дополнительно h непрерывна всюду, а не почти всюду, то: $\xi_n \stackrel{d}{\to} \xi \Rightarrow h(\xi_n) \stackrel{d}{\to} h(\xi)$

Доказательство.

- 1. $1 = P(\{\omega : \xi_n(\omega) \to \xi(\omega)\}) \le P(\{\omega : h(\xi_n)(\omega) \to h(\xi)(\omega)\})$, так как $\{\omega : \xi_n(\omega) \to \xi(\omega)\} \subset \{\omega : h(\xi_n)(\omega) \to h(\xi)(\omega)\}$
- 2. Пусть не выполнено, что $h(\xi_n) \stackrel{P}{\to} h(\xi)$. Тогда $\exists \varepsilon, \delta$ а так же подпоследовательность ξ_{n_k} :

$$\forall k : P(\|h(\xi_{n_k}) - h(\xi)\| \ge \varepsilon) \ge \delta$$

- . Так как $\xi_{n_k} \stackrel{P}{\to} \xi$, то существует подпоследовательность $\xi_{n_{k_l}} : \xi_{n_{k_l}} \stackrel{\text{п.н.}}{\to} \xi$. Тогда согласно первому пункту $h(\xi_{n_{k_l}}) \stackrel{\text{п.н.}}{\to} h(\xi)$. Но такого быть не может, т.к. $\forall k : P(\|h(\xi_{n_k}) h(\xi)\| \ge \varepsilon) \ge \delta$
- 3. Пусть $f:\mathbb{R}^m\mapsto\mathbb{R}$ непрерывная ограниченная функция. Тогда $g=f\circ h$ тоже непрерывная ограниченная функция. Так как $\xi_n\stackrel{d}{\to}\xi$, то $Eg(\xi_n)\to Eg(\xi)$. А значит, $Ef(h(\xi_n))\to Ef(h(\xi))$

Лемма 1.11 (Слуцкого). Пусть $\xi_n \stackrel{d}{\to} \xi$ — случайные величины, а $\eta_n \stackrel{d}{\to} C = const.$ Тогда $\xi_n + \eta_n \stackrel{d}{\to} \xi + C$ и $\xi_n \cdot \eta_n \stackrel{d}{\to} \xi \cdot C$.

Доказательство. Пусть t — точка непрерывности функции распределения $F_{\xi+C}$ случайной величины $\xi+C$. Докажем только для суммы, для произведения аналогично. Пусть $\varepsilon>0$ такое, что $t\pm\varepsilon$ — тоже точки непрерывности

 $F_{\xi+C}$. Мы хотим показать, что $F_{\xi_n+\eta_n}(t) \to F_{\xi+C}(t)$. Будем для этого пользоваться тем, что $\eta_n \stackrel{d}{\to} C \Leftrightarrow \eta_n \stackrel{P}{\to} C$.

$$P(\xi_n + \eta_n \le t) = P(\xi_n + \eta_n \le t, \eta_n \ge C - \varepsilon) + P(\xi_n + \eta_n \le t, \eta_n < C - \varepsilon) \le P(\xi_n \le t - C + \varepsilon) + P(\|\eta_n - C\| > \varepsilon) = F_{\xi_n + \varepsilon}(t + \varepsilon) + P(\|\eta_n - C\| > \varepsilon)$$

Но $\xi_n \xrightarrow{d} \xi \Rightarrow \xi_n + C \xrightarrow{d} \xi + C$. Кроме того, $t + \varepsilon$ – точка непрерывности $F_{\xi+C}$

$$\limsup_{n\to\infty} F_{\xi_n+\eta_n}(t) \le \lim_{n\to\infty} F_{\xi_n+c}(t+\varepsilon) + \lim_{n\to\infty} P(\|\eta_n - C\| > \varepsilon) = F_{\xi+C}(t+\varepsilon)$$

Аналогично,

$$1 - f_{\xi_n + \eta_n}(t) \le P(\|\eta_n - C\| > \varepsilon) + 1 - F_{\xi_n + C}(t - \varepsilon)$$

Откуда

$$\liminf_{n \to \infty} F_{\xi_n + \eta_n}(t) \ge F_{\xi + C}(t - \varepsilon)$$

В силу произвольности $\varepsilon>0$ и того факта, что t – точка непрерывности функции распределения $F_{\xi+c}$ получаем, что

$$\lim_{n} F_{\xi_n + \eta_n} = F_{\xi + C}(t)$$

Утверждение 1.12 (применение леммы Слуцкого). Пусть $\xi_n \stackrel{d}{\to} \xi$ – случайные величины. h(x) – дифференцируема в точке $a \in \mathbb{R}$. $\{b_n > 0\}$ – числовая последовательность, $b_n \to 0$. Тогда:

$$\frac{h(a+\xi_n b_n) - h(a)}{b_n} \stackrel{d}{\to} h'(a)\xi$$

Доказательство. По лемме Слуцкого $\xi_n b_n \stackrel{d}{\to} \xi_n \cdot 0 = 0$. Рассмотрим

$$H(x) = \begin{cases} \frac{h(x+a) - h(a)}{x}, & x \neq 0 \\ h'(a), & x = 0 \end{cases}$$

H(x) непрерывна в 0 по определению, а также непрерывна на $\mathbb{R}\setminus 0$ как композиция непрерывных функций. По теореме о наследовании сходимостей $H(\xi_n b_n) \stackrel{d}{\to} H(0) = h'(a)$. По лемем слуцкого $\xi_n H(\xi_n b_n) \stackrel{d}{\to} h'(a)\xi$

Теорема 1.13 (многомерный вариант). Пусть $\xi_n \stackrel{d}{\to} \xi$ – случайные векторы. h(x) – дифференцируема в точке $a \in \mathbb{R}$ (то есть существует матрица частных производных, или матрица Якоби J(h)). $\{b_n > 0\}$ – числовая последовательность, $b_n \to 0$. Тогда:

$$\frac{h(a+\xi_n b_n) - h(a)}{b_n} \stackrel{d}{\to} J(h)(a)\xi$$

2 Вероятностно-статистические модели и выборки

2.1 Вероятностно-статистическая модель

Определение 2.1. Множество всех возможных значений наблюдения называется выборочным пространством и обозначается $\mathfrak X$

Определение 2.2. Наблюдение X – это результат случайного выбора элемента из выборочного пространства. Наша цель – по наблюдению X сделать выводы о его распределении P.

Определение 2.3. Если $X = (X_1, \dots, X_n)$ – набор независимых одинаковораспределенных случайных величин имеющих распределению P, то X называется выборкой размера n из неизвестного распределения P

Замечание. В дальнейшем будем обозначать: $X = (X_1, ..., X_n)$ – выборка на вероятностном пространстве (Ω, \mathcal{F}, P) с неизвестным распределением P на $(\mathfrak{X}, \mathcal{B}_x)$ (например, $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$).

Определение 2.4. Для каждого множества $B \in \mathcal{B}_x$) введем $P_n^*(B) = \frac{\nu_n(B)}{n}$, где $\nu_n(B)$ – это количество элементов из X_1, \dots, X_n , которые попали в B. То есть формально:

$$P_n^*(B) = \frac{1}{n} \sum_{i=1}^n I\{X_i \in B\}$$

. Такая величина называется эмпирическим распределением.

Утверждение 2.1. Пусть P – неизвестное распределение X_i . Тогда $\forall B \in \mathcal{B}_x : P_n^*(B) \stackrel{n.n.}{\longrightarrow} P(B)$.

Доказательство. Фиксируем $B \in \mathcal{B}_x$. Тогда для фиксированного B индикаторы $I\{X_i \in B\}$ будут являтся случайными величинами, причем независимыми и одинаково распределенными, поскольку исходные случайные величины были независимыми и одинаково распределенными. Введем

$$S_n = \sum_{i=1}^n I\{X_i \in B\}$$

По усиленному закону больших чисел:

$$\frac{1}{n}S_n \stackrel{\text{\tiny H.H.}}{\to} P(X_1 \in B) = P(B)$$

Определение 2.5. Пусть $X = (X_1, \dots, X_n)$ – выборка.

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I\{X_i \le x\}$$

называется эмпирической функцией распределения (она является функцией распределения для эмпирического распределения P_n^*).

Замечание.

$$\forall x \in \mathbb{R} : F_n(x) \stackrel{\text{п.н.}}{\to} F(x)$$

Теорема 2.2 (Гливенко - Кантелли). Если F(x) – функция распределения элементов выборки X_1, \ldots, X_n (то есть функция распределения для распределения P), то:

$$\sup_{x \in \mathbb{R}} |F_n(x) - F(x)| \stackrel{n.n.}{\to} 0$$

Доказательство. Зафиксируем элементарный исход $\omega \in \Omega$. Тогда случайные величины X_1,\dots,X_n превращаются в числа. Посмотрим на функцию распределения $F_n(x)$. Она является непрерывной справа, так как является конечной суммой индикаторов вида $I\{X_i \leq x\}$, а F(x) непрерывна справа как функция распределения. Модуль их разности тоже непрерывен справа. Тогда $\sup_{x\in\mathbb{R}}|F_n(x)-F(x)|=\sup_{x\in\mathbb{Q}}|F_n(x)-F(x)|$ – это супремум счетного числа случайных величин. Поэтому $|F_n(x)-F(x)|$ тоже является случайной величиной.

Пусть $N \in \mathbb{N}$ — достаточно большое. Для каждого $k \in \{1, \dots, N-1\}$ введем $x_{k,N} = \inf\{x: F(x) \geq \frac{k}{N}\}$. Полагаем также $x_{0,N} = -\infty, x_{N,N} = +\infty$. Оценим $F_n(x) - F(x)$ для $x \in [x_{k,N}, x_{k+1,N})$:

$$F_n(x) - F(x) \le F_n(x_{k+1,N} - 0) - F(x_{k,N}) =$$

$$= F_n(x_{k+1,N} - 0) - F(x_{k+1,N} - 0) + F(x_{k+1,N} - 0) - F(x_{k,N}) \le$$

$$F_n(x_{k+1,N} - 0) - F(x_{k+1,N} - 0) + \frac{1}{n}$$

Совершенно аналогично показывается, что $F_n(x) - F(x) \ge F_n(x_{k,N}) - F(x_{k,N}) - \frac{1}{N}$ Откуда получаем, что:

$$\sup_{x \in \mathbb{Q}} |F_n(x) - F(x)| \leq \max_{k,l} \{ |F_n(x_{k,N} - 0) - F(x_{k,N} - 0)|, |F_n(x_{l,N}) - F(x_{l,N})| \} + \frac{1}{N}$$

Зафиксируем $\varepsilon>0$ и возьмем $N:\frac{1}{N}<\varepsilon$. По усиленному закону больших чисел $F_n(x)\stackrel{\mathrm{п.н.}}{\to} F(x), F_n(x-0)\stackrel{\mathrm{п.н.}}{\to} F(x-0)$. То есть $\forall x\in\mathbb{Q}:P(\limsup_n|F_n(x)-F(x)|>\varepsilon)=0$. А значит, $P(\sup_{x\in\mathbb{Q}}\limsup_n|F_n(x)-F(x)|>\varepsilon)=0$. Поменяв местами sup и lim sup и считая $\varepsilon=\frac{1}{m}$, получаем:

$$\forall m: P(\limsup_{n} \sup_{x \in \mathbb{Q}} |F_n(x) - F(x)| > \frac{1}{m}) = 0$$

Пользуясь теоремой о непрерывности вероятностной меры, имеем:

$$P(\limsup_{n} \sup_{x \in \mathbb{O}} |F_n(x) - F(x)| > 0) = 0$$

Замечание. Пусть на $\mathfrak X$ задана σ -алгебра $\mathcal B_x$. Как правило $(\mathfrak X, \mathcal B_x) = (\mathbb R, \mathcal B(\mathbb R))$ Наблюдение X – это, формально, тождественная случайная величина на $(\mathfrak X, \mathcal B_x, P)$. Обычно про распределение $P = P_X$ известно, что оно пренадлежит некому классу распределений $\mathcal P$, например, классу нормальных распределений

Определение 2.6. Тройка $(\mathfrak{X}, \mathcal{B}_x, \mathcal{P})$, где \mathcal{P} – это класс вероятностных мер на $(\mathfrak{X}, \mathcal{B}_x)$, называется вероятностно-статистической моделью

Замечание. $\forall P \in \mathcal{P} : (\mathfrak{X}, \mathcal{B}_x, P)$ – вероятностное пространство

Определение 2.7. Вероятностно-статистическая модель $(\mathfrak{X}, \mathcal{B}_x, \mathcal{P})$ называется параметрической, если класс \mathcal{P} параметризован, то есть $\mathcal{P} = \{P_\theta : \theta \in \Theta\}$. Также считаем, что $P_{\theta_1} \neq P_{\theta_2}$, если $\theta_1 \neq \theta_2$ asdasdasd

2.2 Моделирование выборки

2.2.1 Конечная выборка

Мы хотим смоделировать конечную выборку (X_1, \ldots, X_n) в терминах веротяностно-статистической модели. Пусть X_i принимает значения из \mathfrak{X} и имеет неизвестное распределение $P \in \mathcal{P}$. В этом случае удобно рассмотреть следующую статистическую модель: $(\mathfrak{X}^n, \mathcal{B}^n_x, \mathcal{P}^n)$, где $\mathfrak{X}^n = \mathfrak{X} \times \ldots \times \mathfrak{X}$, $\mathcal{B}^n_x = \sigma(B_1 \times \ldots \times B_n : \forall i : B_i \in \mathcal{B}_x)$, $\mathcal{P}^n = \{P^n : P \in \mathcal{P}\}$, $P^n(B_1 \times \ldots \times B_n) = P(B_1) \cdot \ldots \cdot P(B_n)$. То есть в качестве выборочного пространства мы берем декартову степень, в качестве сигма алгебры, как и в случае с $\mathcal{B}(\mathbb{R}^n)$, минимальную сигма-алгебру, порожденную декартовыми произведениями всех измеримых множеств, а в качестве класса мер – класс степеней всех мер, где степень меры означает естественное продолжение одномерной меры на многомерное пространство. Какими же выбрать (X_1, \ldots, X_n) ? Это просто: $X_i : \mathfrak{X}^n \mapsto \mathfrak{X}$ такое что $X_i((x_1, \ldots, x_n)) = x_i$.

2.2.2 Счетная выборка

TO BE CONTINUED...

Замечание. Мы будем опускать индексы у \mathfrak{X} , \mathcal{B}_x , \mathcal{P} в целях удобства Замечание. В параметрической модели вопрос о неизвестном распределении P_{θ} сводится в вопросу о значении $\theta \in \Theta$

2.3 Статистики и оценки

Пусть X — наблюдение со значениями из $\mathfrak X$ и неизвестным распределением $P_{\theta},$ где $\theta \in \Theta$

Определение 2.8. Статистикой S(X) называется измеримая функция от результатов наблюдения, то есть: $S: \mathfrak{X} \mapsto E$, где (E, \mathcal{E}) – измеримое пространство, а S является $\mathcal{E}|\mathcal{B}_x$ измеримой.

Если $S: \mathfrak{X} \mapsto \Theta$, то S называется оценкой параметра из Θ .

Пример.

1. Если $g: \mathbb{R} \mapsto \mathbb{R}$ — борелевская функция, то $\overline{g(x)} = \frac{1}{n} \sum_{i=1}^{n} g(X_i)$ называется выборочной харакетристикой функции g(x) (среднее значение по элементам выборки)

3 Оценки и их свойства

Определение 3.1. $\overline{X^k}$ — выборочный k-тый момент.

Определение 3.2. $S^2=\overline{X^2}-\overline{X}^2$ — выборочная дисперсия. Выборочный k-тый центральный момент $\frac{1}{n}\sum_{i=1}^n(X_i-\overline{X})^k$. $X_(k)$ — выборочная k-тая порядковая статистика.

Определение 3.3. Квантиль z_p уровня $p \in (0,1)$ функции распределения $F - \min\{x : F(x) > p\}$

Определение 3.4. Выборочная квантиль \hat{z}_p — это квантиль эмпирической функции распределения.

Определение 3.5. Медиана распределения μ – это квантиль уровня 1/2

Определение 3.6. Выборочная медиана $\overline{\mu}$ – это

$$\begin{cases} X_{(n/2)}, \text{ если } n - \text{четно} \\ \frac{X_{(\lfloor n/2 \rfloor)} + X_{(\lceil n/2 \rceil)}}{2}, \text{ иначе} \end{cases}$$

3.1 Свойства оценок

Определение 3.7. Оценка $\hat{\theta}$ называется несмещенной, если $\forall \theta \in \Theta : E_{\theta} \hat{\theta} = \theta$

Определение 3.8. Оценка $\hat{\theta}_n = \theta_n(X_1, \cdots, X_n)$ называется состоятельной, если $\forall \theta \in \Theta: \hat{\theta}_n \overset{P}{\to} \theta$

Определение 3.9. Оценка $\hat{\theta}_n = \theta_n(X_1, \cdots, X_n)$ называется сильно состоятельной, если $\forall \theta \in \Theta: \hat{\theta}_n \overset{\text{п.н.}}{\longrightarrow} \theta$

Определение 3.10. Оценка $\hat{\theta}_n = \theta_n(X_1, \cdots, X_n)$ называется асимптотически нормальной оценкой параметра θ , если $\forall \theta \in \Theta : \sqrt{n}(\hat{\theta}_n - \theta) \stackrel{d}{\to} \mathcal{N}(0, \sigma^2)$

Пример.

- 1. \overline{X} несмещенная оценка параметра θ семейства распределений $\mathcal{N}(\theta, \sigma^2)$
- 2. Более того, по УЗБЧ \overline{X} сильно состоятельная оценка θ

3.2 Методя нахождения оценок

3.2.1 Метод подстановки

 $\theta = F(P_{\theta})$ Например, если $\{P_{\theta}\} = \{U[0,\theta], \theta > 0\}$, тогда $P_{\theta}([0,1]) = \frac{1}{\theta}$ и $\theta = \frac{1}{P_{\theta}([0,1])}$ Тогда используя метод подстановки (подставляя эмпирическое распределение, вместо неизвестного распределения P_{θ}) получаем оценку $\hat{\theta} = \frac{1}{P^*(\theta)}$

3.2.2 Метод моментов

Утверждение 3.1. Если m^{-1} непрерывна – то $\hat{\theta}_n$ – сильно состоятельная оценка

Доказательство. По УЗБЧ $\overline{g}_i(X) \stackrel{\text{п.н.}}{\to} m_i(\theta)$. Так как m^{-1} непрерывная, то по теореме о наследовании $\hat{\theta}_n = m^{-1}(\overline{g_1(X)}, \cdots, \overline{g_k(X)})$

Утверждение 3.2. Аналогично, $\hat{\theta}_n$ является асимптотически нормальной оценкой.

Пример. $X_1, \dots, X_n \sim \Gamma(\alpha, \lambda)$

Замечание. Метод моментов – это частный случай метода подстановки.

Теорема 3.3 (теорема об асимптотической нормальности выборочной квантили). Пусть $X_1, \cdots, X_n \sim P$ с плотностью f(x), пусть также f(x) – непрерывно дифференцируема в некоторой окрестности z_p , где z_p – это квантиль уровня p распределения P. Пусть f(x) > 0 для всех $x \in \mathbb{R}$. Тогда $\sqrt{n}(\hat{z}_p - z_p) \stackrel{d}{\to} \mathcal{N}(0, \frac{p(1-p)}{(f(z_p))^2})$

Пример. По теореме о асимптотической нормальности выборочной медианы $\hat{\mu}$ – а.н. оценка параметра θ распределения с плотностью $f(x)=\frac{1}{\pi(1+(x-\theta)^2)}$ с выборочной диспресией $\frac{\pi^2}{4}$.

Теорема 3.4. Если τ – непрерывная функция на Θ , $\hat{\theta}_n$ – (сильно) состоятельная оценка параметра θ , то $\tau(\hat{\theta}_n)$ – сильно состоятельная оценка параметра $\tau(\theta)$

Теорема 3.5. Если $\hat{\theta}_n$ – асимптотически нормальная оценка параметра θ , τ – дифференцируема на Θ , то $\tau(\hat{\theta}_n)$ – асимптотически нормальная оценка параметра $\tau(\theta)$ с асимптотической дисперсией $\sigma^2(\theta)[\tau'(\theta)]^2$, где $\sigma^2(\theta)$ – асимптотическая дисперсия $\hat{\theta}_n$

Доказательство. Используем теорему из первой лекции $h= au, b_n=frac1\sqrt{n}, a= heta, \xi$

4 Сравнение оценок

Определение 4.1. Пусть X – наблюдение с неизвестным распределением $P \in \{P_{\theta} : \theta \in \Theta\}$. $\rho(x,y)$ – функция потерь. Тогда функцией риска оценкаи $\hat{\theta}(X)$ неизвестного параметра θ называется: $R(\hat{\theta}(X), \theta) = E_{\theta}\rho(\hat{\theta}(X), \theta)$

4.1 Равномерный подход

Определение 4.2. Оценка $\hat{\theta}(X)$ называется лучшей оценки $\theta^*(X)$ в равномерном подходе, если $\forall \theta \in \Theta : R(\hat{\theta}(X), \theta) \leq R(\theta^*(X), \theta)$ и для некоторого $\theta \in \Theta$ неравенство строгое.

Определение 4.3. Если оценка $\hat{\theta}(X)$ лучше любой другой оценки в какомлибо классе оценок, то она называется наилучшей в этом классе

Замечание. Равномерный подход с квадративной функцией потерь называется среднеквадратическим подходом. Не для любого класса можно отыскать наилучшую оценку.

Определение 4.4. K – несмещенные оценки $\tau(\theta)$. В таком классе K со среднеквадратичной функцией потерь:

$$R(\hat{\theta}(X), \theta) = E_{\theta}(\hat{\theta}(X) - \theta)^2 = E_{\theta}(\hat{\theta}(X) - \tau(Theta))^2 + (\tau(\theta) - \theta)^2 = D_{\theta}\hat{\theta}(X)$$

Определение 4.5. Оценка называется допустимой, если для неё не существует лучшей оценки в равномерном подходе.

4.2 Байесовский подход

Пусть $R(\hat{\theta},\theta)$ – функция риска для оценки $\hat{\theta}$, и задано Q – нек. распределение вероятностей на Θ . Тогда можно определить $R(\hat{\theta}) = \int_{\Theta} R(\hat{\theta},t)Q(dt)$. Если Q имеет плотность q(t), то $R(\hat{\theta}) = \int_{\Theta} R(\hat{\theta},t)q(t)dt$

Определение 4.6. Если $R(\hat{\theta}) = \min_{\theta^* \in K} R(\theta^*)$, то $\hat{\theta}$ называется наилучшей в байесовском подходе в классе K.

Байесовские оценки являются допустимыми.

4.3 Минимаксный подход

Если $\hat{R}(\hat{\theta}) = \min_{\theta^* \in K} \sup_{\theta \in \Theta} R(\theta^*, \theta)$, то $\hat{\theta}$ называется наилучшей в минимаксном подходе в классе K.

4.4 Асимптотический подход

 $X = (X_1, \cdots, X_n)$ – выборка растущего размера.

Пусть $\hat{\theta}_1$, $\hat{\theta}_2$ – две асимптотические оценки $\theta \in \Theta \subset \mathbb{R}$. Пусть $\sigma_1^2(\theta)$, $\sigma_2^2(\theta)$ – их асимптотические оценки. Мы будем говорить, что $\hat{\theta}_1$ лучше $\hat{\theta}_2$, если $\forall \theta \in \Theta : \sigma_1^2(\theta) \leq \sigma_2^2(\theta)$ и для некоторого $\theta \in \Theta$ неравенство строое.

Оценка называется наилучшей в асимптотическом подходе в каком-то классе, если она лучше любой другой оценки в каком-то классе.

Пример. $X=(X_1,\cdots,X_n)$ — выборка из номального распределения с параметрами $(\theta,1)$. Нужно сравинить в асимптотическом подходе оценки \overline{X} и $\hat{\mu}$.

 $\sqrt{n}(\overline{X} - \theta) \sim N(0, 1)$ по ЦПТ.

По теореме об асимптотической нормальности выборочного квантиля: $(\pi(\hat{x}, 0), N(0), 1, N(0), \pi)$

 $\sqrt{n}(\hat{\mu} - \theta) \sim N(0, \frac{1}{1/4 \cdot p(\theta)^2}) = N(0, \frac{\pi}{2}).$

Получили, что \overline{X} лучше $\hat{\mu}$

4.5 Понятие плотности дискретного распределения

Функция $p(x) \geq 0$ называется плотностью вероятностной меры P на $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, если $\forall B \in \mathcal{B}(\mathbb{R}) : P(B) = \in_B p(x) dx$. В этом случае P называется абсолютно непрерывной вероятностной мерой, p(x) — плотность по мере Лебега.

Определение 4.7. Функция $\mu: \mathcal{B}(\mathbb{R}) \mapsto \mathbb{Z} \cup \{\infty\}$ определенная по правилу:

$$\mu(B) = \sum_{k \in \mathbb{Z}} I\{k \in B\}$$

называется считающей мерой на \mathbb{Z} .

Определение 4.8. Интегралом от функции f(x) по считающей мере μ называется $\int_{\mathbb{R}} f(x) \mu(dx) := \sum_{k \in \mathbb{Z}} f(k)$

Для такого интеграла выполнены все основные свойства: линейность, сохранение отношения порядка, теоремы о сходимости и так далее. Аналогично можно определить считающую меру в \mathbb{Z}^n и интеграл по ней.

Определение 4.9. Пусть ξ – случайная величина со значениями в \mathbb{Z} . Тогда её плотность по считающей мере μ называется $p(x) = P(\xi = x)$

Следствие. Для любой функции g(x) выполнено $Eg(\xi)=\int_{\mathbb{R}}g(x)p(x)\mu(dx)$

Определение 4.10. Пусть X – некоторое наблюдение с неизвестным распределением $P \in \{P_{\theta} : \theta \in \Theta\}$. Если $\forall \theta \in \Theta : P_{\theta}$ имеет плотность p_{θ} по одной и той же мере (либо мере Лебега, либо по считающей мере), то в этом случае $\{P_{\theta} : \theta \in \Theta\}$ называется доминируемым семейством.

4.6 Неравенство Рао-Крамера и эффективные оценки

Пусть X — наблюдение с неизвестным распределением $P \in \{P_{\theta} : \theta \in \Theta\}$ — доминируемое семейство с плотностью p_{θ} . Предположим, что выполнены следующие условия регулярности:

- 1. $A = \{x : p_{\theta}(x) > 0\}$ не зависит от параметра θ
- 2. Θ открытый интервал на $\mathbb R$ (может быть бесконечный)
- 3. $\forall S(x): E_{\theta}(S(X))^2 < \infty$ выполнено $\frac{\partial}{\partial \theta} E_{\theta} S(X) = E_{\theta}(S(X) \frac{\partial}{\partial \theta} \ln p_{\theta}(X))^2$
- 4. Интеграл $I_X(\theta) = E_{\theta}(\frac{\partial}{\partial \theta} \ln p_{\theta}(x))^2$ положителен и конечен $\forall \theta \in \Theta$

Определение 4.11. Случайная величина $U_{\theta}(X) = \frac{\partial}{\partial \theta} \ln p_{\theta}(X)$ называется вкладом в наблюдение X. $I_X(\theta) = E_{\theta}(U_{\theta}(X))^2$ называется количеством информации (по Фишеру), содержащейся в наюлюдении X

Теорема 4.1 (Неравенство Рао-Крамера). В условиях регулярности, если $\hat{\theta}(X)$ – несмещенная оценка $\tau(\theta)$, причем $E_{\theta}(\hat{\theta}(X))^2$ конечен $\forall \theta$. Тогда выполнено следующее неравенство: $D_{\theta}\hat{\theta}(X) \geq \frac{(\tau'(\theta))^2}{I_X(\theta)}$

Доказательство. Положим $S(x) \equiv 1$. В условии 3 получим $0 = E_{\theta}U_{\theta}(X)$. Возьмем теперь $S(x) = \hat{\theta}(X)$ в условии 3: $\frac{\partial}{\partial \theta}\hat{\theta}(X) = \tau(\theta) = E_{\theta}\hat{\theta}(X)U_{\theta}(X)$. То есть имеем: $\tau'(\theta) = E_{\theta}\hat{\theta}(X)U_{\theta}(X)$. Умножим первое равенство на $\tau(\theta)$ и вычтем из второго. Получим:

$$\tau'(\theta) - 0 = E_{\theta}(\hat{\theta} - \tau(\theta))U_{\theta}(X)$$
 Применяем КБШ. Получаем, что $\tau'(\theta)^2 \le D_{\theta}\hat{\theta} \cdot I_X(\theta)$

Следствие. $Ecnu \ \tau(\theta) = \theta, \ mo \ D_{\hat{\theta}} \geq \frac{1}{I_X(\theta)}$

Если $X=(X_1,\cdots,X_n)$ – выборка, то $I_X(\theta)=n\cdot i(\theta)$, где $i(\theta)$ – информация одного наблюдения. В этом случае $D_{\theta}\hat{\theta}=\Omega(\frac{1}{n})$

Определение 4.12. Оценки, в которых в неравенстве Рао-Крамера достигается равенство, называются эффективными.