

AICOSS - AI Special Program

Machine learning – the why and the what

"The world's most valuable resource is no longer oil, but data"

The Economist 2017, https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data

"christmas tree, forest, moon, squirrel, mystical fog,hr giger"

Rombach et al., High-Resolution Image Synthesis with Latent Diffusion Models, 2022

Natural Language Processing	Question answering; speech recognition; summarizing documents; classifying documents; finding entities in documents; searching documents for concepts
Computer Vision	Interpreting satellite and drone images (disaster detection); face recognition; automatic image description; recognizing traffic signs; autonomous driving
Medicine	Recognize anomalies in radiological images (CT, MRI and X-ray); tissue classification in microscopy images; feature identification in ultrasound
Biology	Protein folding; classification of proteins; applications in genomics (e.g. tumor-normal sequencing); cell classification; analysis of protein/protein interactions
Image generation	Colorizing B&W images; increasing image resolution; removing noise from images; transferring stylistics to images (e.g. Instagram filters)
Recommender Systems	Web search; Product recommendations
Games	Superhuman performance in chess, Go, many Atari games and real-time strategy games
Robotics	Dealing with objects that are difficult to locate (transparent, shiny, little texture) or that are generally difficult to grasp
Other applications	Finance and logistics forecasting; text-to-speech; many many more

Practical reasons

- Less programming; more efficient
- Scaling and customization of products
- Solving "non-programmable" tasks

→ "Philosophical" reasons

Classical computer science approach:

Classical computer science approach:

Classical computer science approach:

Machine Learning:

Formal definition: A computer program **A** is said to learn from experience **E** with respect to some class of tasks **T** and performance measure **P**, if its performance at tasks in **T**, as measured by **P**, improves with experience **E**. (*Tom M. Mitchell, 1997*)

Informal: Algorithms that *improve* in a *task* with increasing *experience*.

Samuel's Checkers Playing Program (1952)

- Program improves with the number of games (machine learning...)
- Evaluation of the board positions by a search tree
- Best move is determined using a minimax strategy

Perceptron 1957 (Frank Rosenblatt)

- Predecessor of today's neural networks:
 Multilayer Perceptron (MLP) -> Artificial Neural
 Networks -> Deep Learning
- Triggered great excitement around AI ("AI Boom")

Al winter

- Minsky & Papert (1969) "ruin" Al
- Public and private investment in AI technology and research collapses for decades

Resurrection as machine learning

Differences:

- ML: bottom-up, AI: top-down
- ML: More practical application, based on statistics and optimization, not logic

TD-Gammon (Gerald Tesauro 1992)

 Gerry Tesauro (IBM) trains a neural network that plays against itself again and again (100k+). It beats several backgammon world champions.

IBM Deep Blue (1997)

- IBM's Deep Blue chess computer wins against Garry Kasparov.
- Predominantly "brute-force" approach with calculation of 126 million positions per second.
 But the evaluation of a position is ML.

https://www.ibm.com/blogs/think/2017/05/deep-blue/

Al today: "Deep Learning Revolution"

- AlexNET wins 2012 ImageNet competition
- AlphaGo beats Lee Sedol 2016 in Go (2.1 x 10^{170} positions, cf. chess 10^{40})
- Now: LLMs, self-driving cars, robotics, etc.

https://www.theguardian.com/technology/2016/mar/15/alphago-what-does-google-advanced-software-go-next

Scope and structure of this week

ML scope

The **application** is the central element of the course!

Contents

- Python for data science recap
- Unsupervised learning
- Supervised learning
- Evaluation and hyperparameter tuning
- Ensemble learning
- (Simple) neural networks

Contents

- Python for data science recap
- Unsupervised learning
- Supervised learning
- Evaluation and hyperparameter tuning
- Ensemble learning
- (Simple) neural networks

Contents

- Python for data science recap
- Unsupervised learning
- Supervised learning
- Evaluation and hyperparameter tuning
- Ensemble learning
- (Simple) neural networks

Contents

- Python for data science recap
- Unsupervised learning
- Supervised learning
- Evaluation and hyperparameter tuning
- Ensemble learning
- (Simple) neural networks

Contents

- Python for data science recap
- Unsupervised learning
- Supervised learning
- Evaluation and hyperparameter tuning
- Ensemble learning
- (Simple) neural networks

Contents

- Python for data science recap
- Unsupervised learning
- Supervised learning
- Evaluation and hyperparameter tuning
- Ensemble learning
- (Simple) neural networks