L9: Deep Neural Network

Shan Wang
Lingnan College, Sun Yat-sen University

2020 Data Mining and Machine Learning LN3119 https://wangshan731.github.io/DM-ML/

Last lecture

- One-layer Perceptron
 - $o(x) = f(x_1w_1 + x_2w_2 + x_3w_3 + b)$
- Multi-layer Perceptron
 - Model: input, hidden, output
 - Strategy: minimize error
 - Algorithm: BP algorithm
 - $w_{i,j}' = w_{i,j} \eta \varepsilon_i h_j$
 - $\varepsilon_i = \sum_{k=1}^K \varepsilon_k \, w_{k,i} f^{\prime i}$
- Overfitting
- Application

Forward Propagation of Info.

Backward Propagation of Error

Course Outline

- Supervised learning
 - Linear regression
 - Logistic regression
 - SVM and kernel
 - Tree models

- Unsupervised learning
 - Clustering
 - PCA
 - EM

- Deep learning
 - Neural networks
 - Convolutional NN
 - Recurrent NN

- Reinforcement learning
 - MDP
 - ADP
 - Deep Q-Network

This lecture

- Deep Learning
- Deep Auto Encoder
- Convolutional NN
- Recurrent NN

Reference: VE 445, Shuai LI (SJTU)

Deep Learning

Deep Learning

- "Deep": the structure is deep, contains many layers
- "Learning"
 - Supervised learning: input data has label
 - Multi-Layer Perceptron, CNN, RNN
 - Unsupervised learning: input data has no label
 - Deep Auto-Encoder
 - Reinforce learning: use penalty and reward
 - FNN and RNN applied in RL, Deep Q-Network

Why we need "deep"?

- With more hidden layers, NNs are expected to describe the reality better
 - Functions that can be compactly represented by a depth K architecture, might require an exponential number of neurons to be represented by a depth K-1 architecture
 - Successive layers can learn higher-level features

Deep Learning

Problems from Depth

- Lack of big data
 - Now we have a lot of big data
- Lack of computational resources
 - Now we have GPUs and HPCs
- Local optimality
 - Add momentum, pre-training techniques & various optimization algorithms
- Gradient vanishing
 - Use ReLU activation function...
- Too many parameters
 - Train the network layer by layer & dropout

Multi-Layer Perceptron

 MLP is a fully connected neural network with multiple hidden layers

Deep Auto-Encoder

Auto-Encoder

- Auto-Encoder can be used for data suppress, dimensionality reduction, pre-training NNs etc.
- An auto-encoder contains an encoder and a decoder
- The encoder plays the role of coding the original data
 - Data A ——— Codes
- The decoder plays the role of decoding the "code"
 - Codes Data B
- Good Auto-Encoder:
 - Data B is very close to Data A

Linear Auto-encoder

Deep Auto-Encoder

- Of course, the Auto-Encoder can be very deep
 - Not necessary to be symmetric

Stacked Auto-Encoder

- Stacked Auto-Encoder can be used to pre-train the deep network layer by layer
- Two steps
 - Unsupervised pre-training for feature layers
 - Start with the 1st hidden layer, use Auto-Encoder to train this layer to make its inputs and outputs consistent
 - and then use the "code" in the 1st hidden layer as the inputs of the 2nd hidden layer, and repeat...
 - Supervised fine-tuning for classification
 - Compose these pre-trained hidden layers
 - add an output layer at the last, and train the output layer or fine-tune the whole network

Deep Auto-Encoder

Trained Deep Neural Network

Hidden 1 Hidden 2

Convolutional NN

Convolutional Neural Network

- CNN is widely used for image recognition
- It is an end-to-end recognition system
 - A non-linear map that takes raw pixels directly to labels
- Contains the following layers with flexible order and repetitions
 - Convolution layer
 - Activation layer (ReLU: $max\{0, x\}$)
 - Pooling layer

What is Convolution?

东华帝君

模糊和锐化后的东华帝君

Structure

Convolution in Neural Networks

- Given an input matrix (e.g. an image)
- Use a small matrix (called filter or kernel) to screening the input at every position of the input matrix
- Put the convolution results at corresponding positions

Sometimes, we add ReLU activation layer after the outputs $output' = max\{0, output\}$

Convolutions Visualization

1 _{×1}	1,	1 _{×1}	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

Convolved Feature

Convolutions Visualization (cont.)

Kernel Numbers

Why Convolutions?

- A local in a picture is more important
 - Sparse connections
 - Less computing burden

Why Convolutions?

- A local in a picture is more important
 - Sparse connections
 - Less computing burden
- Position invariance
 - A dog is a dog no matter where he is in the picture
 - Share convolution kernel
 - Share weights

Why Convolutions?

Important Parameters

- Kernel size
 - The dimension of kernel matrix
- Stride
 - The distance that the filter is moved in each step

1 _{×1}	1,0	1,	0	0
O _{×0}	1 _{×1}	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

Kernel Size:

Stride:

Important Parameters

- Kernel size
 - The dimension of kernel matrix
- Stride
 - The distance that the filter is moved in each step
- Pad
 - Add numbers (usually 0) around the input data

Padding

Without padding

With padding

Parameters about Convolution Layer

- Kernel size: k
 - The dimension of kernel matrix is $k \times k$
- Stride: s
 - The distance s that the filter is moved in each step
- Pad: *p*
 - Add p round of numbers (usually 0) around input data

- Output size calculator:
 - Input size: $w \times h$
 - Output size:

$$w' = {w + 2p - k}/_{S}$$
 $h' = {h + 2p - k}/_{S}$

Pooling Layer

- Make the representations denser and more manageable
- Operate over each activation map independently

Pooling

Convolved feature

Pooled feature

Max Pool

Max pool with 2X2 kernel with stride 2

6	8
3	4

Average Pool

Average pool with 2X2 kernel with stride 2

3.25	5.25
2	2

Recurrent NN

Motivation of RNN

- In traditional NN
 - Assume all inputs and outputs are independent of each other
 - Input and output length are fixed
- But this might be bad for some tasks
 - Predict next word in a sentence
 - "Context": You better know which words came before it
- Recurrent
 - Perform the same task for every element of a sequence, with the output being dependent on the previous computations
- They have a "memory" which captures information about what has been calculated so far

RNN

x: input vector

o: output vector

s: hidden state vector

U: layer 1 param. matrix

V: layer 2 param. Matrix

f: tanh or ReLU

$$s = f(Ux), o = f(Vs)$$

x

Add time-dependency of the hidden state s

W: State transition param. matrix

RNN

- x_t is the input at time t
- s_t is the hidden state at time t
 - It is the "memory" of the network
 - Is calculated based on previous hidden state and the input at the current step

$$s_t = f(Ux_t + Ws_{t-1})$$

• o_t is the output at time t

E.g. If we want to predict the next word in a sentence, o_t is a vector of probabilities over certain vocabulary

RNN Features

- s_t is the "memory" of the network
- o_t is based on the memory at t
- RNN share weights U and W
 - Reduce computation complexity
- The output at each time step might be unnecessary
 - E.g. When predicting the sentiment of a sentence we may only care about the final output, not the sentiment after each word
- The input at each time step might be unnecessary
- Most important feature:

The hidden state captures some information about a sequence

Strategy and Algorithm

- Strategy: minimize the cross entropy
 - E.g., $\hat{y}_t = softmax(o_t)$, the prediction
 - y_t is the correct word at time t
 - Loss: $-\sum_t y_t \log \hat{y}_t$
- Algorithm: Backpropagation Through Time (BPTT)
 - E.g., in order to calculate the gradient at t=4, we would need to backpropagate 3 steps and sum up the gradients

Different RNN

Different architecture for various tasks

- Strongly recommend Andrej Karpathy's blog
 - http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Summary

- Universal Approximation: two-layer neural networks can approximate any functions
- Backpropagation is the most important training scheme for multi-layer neural networks so far
- Deep learning, i.e. deep architecture of NN trained with big data, works incredibly well
- Neural networks built with other machine learning models achieve further success

Lecture 9 Wrap-up

- ✓ Deep Learning
- ✓ Deep Auto Encoder
- ✓ Convolutional NN
- ✓ Recurrent NN

Next Lecture

- Supervised learning
 - Linear regression
 - Logistic regression
 - SVM and kernel
 - Tree models
- Deep learning
 - Neural networks
 - Convolutional NN
 - Recurrent NN

- Unsupervised learning
 - Clustering
 - PCA
 - EM

- Reinforcement learning
 - MDP
 - ADP
 - Deep Q-Network

2020 Data Mining and Machine Learning LN3119 https://wangshan731.github.io/DM-ML/

Questions?

Shan Wang (王杉)

https://wangshan731.github.io/