STUDY AND LEARNING CENTRE

www.rmit.edu.au/studyandlearningcentre

MATHS FOR PRICES & MARKETS:

DERIVATIVE FUNCTIONS

A derivative is a formula derived from the equation of a function which can be used to show whether that function is increasing, decreasing or stationary.

Some symbols that are used to indicate a derivative function are $\frac{\mathrm{d}y}{\mathrm{d}x}$ or $\frac{\partial TR}{\partial Q}$ or $\frac{\partial}{\partial Q}(\mathrm{TC})$

 $\frac{dy}{dx}$ is read as "the derivative of y" and y will be expressed in terms of x

eg. y =
$$10x^2 + 2x$$
 and by the rules below $\frac{dy}{dx} = 20x + 2$

 $\frac{\partial TR}{\partial Q}$ is read as "the derivative of total revenue" and revenue will be a function of Q

eg. TR = 200Q - 15Q² and by the rules below
$$\frac{\partial TR}{\partial Q}$$
 = 200 - 30Q

$$\frac{\partial}{\partial Q}$$
 (TC) is read as "the derivative of total cost"

Consider the graph of the function with equation $P = 3Q - Q^2$ for values of Q between 0 and 3

Between Q = 0 and Q = 1.5 the function is increasing and its derivative will be a positive value Between Q = 1.5 and Q = 3 the function is decreasing and its derivative will be a negative value At Q = 1.5 the function is neither increasing nor decreasing – it is stationary.

We can use derivatives to find where a function has its minimum or maximum values.

Maximum or minimum values of a function occur where the value of the function's derivative is zero.

The maximum value of this function occurs where Q = 1.5

Rules for finding derivative functions

1. If
$$y = x^n$$
, then $\frac{\partial y}{\partial x} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |x|^{n-1} \leftarrow [\text{power loses 1}]$

Eg
$$y = x^2 \implies \frac{\partial y}{\partial x} = 2x^{2-1} \text{ or } \frac{\partial y}{\partial x} = 2x \text{ [since } x^1 = x]$$

2. If
$$y = k$$
, then $\frac{\partial y}{\partial x} = 0$

Eg y = 30
$$\Rightarrow \frac{\partial y}{\partial x}$$
 = 0 [y never changes as the 0 value for the derivative indicates]

3. If
$$y = kx^n$$
, then $\frac{\partial y}{\partial x} = knx^{n-1}$ [NB: If $y = kx$, then $\frac{\partial y}{\partial x} = k$]

Eg y =
$$30x^2$$
 \Rightarrow $\frac{\partial y}{\partial x}$ = $30.2x^{2-1}$ or $\frac{\partial y}{\partial x}$ = $60x$

4. If functions are added/subtracted their corresponding derivatives are added/subtracted

Eg
$$y = x^2 + 10x - 20 \implies \frac{\partial y}{\partial x} = 2x^{2-1} + 10x^{1-1} - 0 \text{ or } \frac{\partial y}{\partial x} = 2x + 10$$

Examples

1. Find the derivative function for $Z = U^{5}$

$$\frac{\partial Z}{\partial U} = 5U^{5-1} = 5U^4$$

2. Find the derivative function for $P = Q^{\circ} + Q^{\circ}$

$$\frac{\partial P}{\partial Q} = 6Q^{6-1} + 2Q^{2-1} = 6Q^5 + 2Q$$

3. Find the derivative function for $W = \frac{V^8}{V}$

$$W \ = \ \frac{V^8}{V} \ = \ V^7 \qquad \hbox{[First simplify the function]}$$

$$\frac{\partial \mathbf{W}}{\partial \mathbf{V}} = 7\mathbf{V}^{7-1} = 7\mathbf{V}^6$$

4. Find the derivative function for $H = 10F^2(F - 2)$

$$H = 10F^{2}(F - 2) = 10F^{2}xF - 10F^{2}x2 = 10F^{3} - 20F^{2}$$
 [First simplify the function]

$$\frac{\partial H}{\partial F} = 10x3F^{3-1} - 20x2F^{2-1}$$
$$= 30F^2 - 40F$$

5. Find the derivative function for $TC = 0.5Q^3 - 10Q^2 + 120Q + 500$

$$\frac{\partial TC}{\partial O} = 0.5x3Q^{3-1} - 10x2Q^{2-1} + 120Q^{1-1} + 0 = 1.5Q^2 - 20Q + 120$$

6. Find the maximum value of the function $C = 200Q - 10Q^2$

$$\frac{\partial C}{\partial O} = 200 - 10x2Q^{2-1} = 200 - 20Q$$

The maximum value will occur when $\frac{\partial C}{\partial O} = 0$

ie
$$200 - 20Q = 0$$

ie
$$200 - 200 - 20Q = 0 - 200$$

ie
$$-20Q = -200$$

$$Q = \frac{-200}{-20}$$

ie
$$Q = 10$$

To find the maximum value of C we substitute this value into $C = 200Q - 10Q^2$

When Q = 10, C =
$$200x10 - 10x10^2$$

= $2000 - 1000$
= 1000

Exercises

Exercise 1

- 1) Find the derivative of each of the following functions
 - a. $y = x^7$

- b. $Z = Q^4$
- c. $P = 20Q^6$

- d. y = 100x
- e. $M = 200 + 5Q^2$
- f. $R = 12.5Q^2 Q$
- g. $C = 0.8d^2$
- h. $I = 250J^3 80J^2 + 32J$
- i. $TR = 8Q 0.2Q^2$
- i. P = 60 0.5Q
- 2) Differentiate each of the following

a.
$$Z = \frac{X^6}{X^2}$$

b.
$$M = \frac{Q^2 + 10Q}{Q}$$

c.
$$P = \frac{10Q + 5}{10}$$

d.
$$TC = 4Q^3 - 10Q^2 + 0.5Q + 100$$

- 3) Find $\frac{\partial P}{\partial Q}$ if 20P 40Q 70 = 0 [Hint: First make 'P' the subject of the equation]
- 4) Find $\frac{\partial}{\partial Q}$ (TR) if TR = (200 5Q)Q
- 5) Find $\frac{\partial P}{\partial Q}$ and $\frac{\partial Q}{\partial P}$ if 5P + 2Q 30 = 0

Exercise 2

Find the minimum or maximum value for each of the following functions

- 1) $Z = 60X 2X^2$
- 2) $TP = 200Q 4Q^2$
- 3) $y = x^2 6x + 6$ 4) $Q = 120 P 2.5P^2$
- 5) $M = 5 0.1P^2 + P$

Answers

Exercise1

1) a.
$$\frac{\partial y}{\partial x} = 7x^6$$

b.
$$\frac{\partial Z}{\partial Q} = 4Q^2$$

1) a.
$$\frac{\partial y}{\partial x} = 7x^6$$
 b. $\frac{\partial Z}{\partial Q} = 4Q^3$ c. $\frac{\partial P}{\partial Q} = 120Q^5$ d. $\frac{\partial y}{\partial x} = 100$ e. $\frac{\partial M}{\partial Q} = 10Q$

d.
$$\frac{\partial y}{\partial x} = 100$$

e.
$$\frac{\partial M}{\partial Q} = 100$$

f.
$$\frac{\partial R}{\partial Q} = 25Q - 1$$

g.
$$\frac{\partial C}{\partial d} = 1.6$$

f.
$$\frac{\partial R}{\partial Q} = 25Q - 1$$
 g. $\frac{\partial C}{\partial d} = 1.6d$ h. $\frac{\partial I}{\partial J} = 750J^2 - 160J + 32$ i. $\frac{\partial TR}{\partial Q} = 8 - 0.4Q$ j. $\frac{\partial P}{\partial Q} = -0.5$

i.
$$\frac{\partial TR}{\partial Q} = 8 - 0.4Q$$

j.
$$\frac{\partial P}{\partial Q} = -0.5$$

2) a
$$\frac{\partial Z}{\partial X} = 4X^3$$

b.
$$\frac{\partial M}{\partial Q} = 1$$

$$C. \quad \frac{\partial P}{\partial Q} =$$

2) a
$$\frac{\partial Z}{\partial X} = 4X^3$$
 b. $\frac{\partial M}{\partial Q} = 1$ c. $\frac{\partial P}{\partial Q} = 1$ d. $\frac{\partial TC}{\partial Q} = 12Q^2 - 20Q + 0.5$

3)
$$P = 3.5 + 2Q$$
, $\frac{\partial P}{\partial Q} = 2$

4) TR =
$$200Q - 5Q^2$$
, $\frac{\partial TR}{\partial Q} = 200 - 10Q$

5)
$$P = 6 - 0.4Q$$
, $\frac{\partial P}{\partial Q} = -0.4$ and $Q = 15 - 2.5P$, $\frac{\partial Q}{\partial P} = -2.5$

Exercise 2

- 1. Max value occurs when X = 15, Z = 450
- 2. Max value occurs when Q = 25, TP = 2500
- 3. Min value occurs when x = 3, y = -3
- Max value occurs when P = 24, Q = 1440
- 5. Max value occurs when P = 5, M = 7.5