Project 2

November 6, 2017

```
In [1]: # Just to get started on the notebook, let's bring in numpy
        import numpy as np
0.0.1 Problem 1
In [2]: # We first define a python generator that returns the bounds
        # for the next quess.
        def bisection_guesses( f, a, b ):
            while True:
                midpoint = (a+b)/2
                # If the sign of the midpoint is the same as the sign
                # of f(a), then update b
                if np.sign( f(midpoint) ) != np.sign( f(a) ):
                    b = midpoint
                #Otherwise, update a
                else:
                    a = midpoint
                #yield the next guess and wait for the next call.
                yield (a,b)
In [3]: # Because we defined the bisector generator above,
        # this function just needs to do 3 things:
        # 1 - validate input
        # 2 - provide an exit condition
        # 3 - ouput results
        def bisection_method( f, a, b, tol=1.0e-5, ittr_max=100):
            if(f(a) * f(b) > 0):
                print("You useless nincompoop! That's not a valid interval!")
            bis = bisection_guesses( f, a, b)
            ittr_count = 0
            while np.abs(a - b) > tol and ittr_count < ittr_max:</pre>
               a, b = next(bis)
               ittr_count += 1
            root = (a + b) / 2
            print( "Root is {}. Took {} iterations.\n\tThe resulting error was {}"
                  .format( a, ittr_count, b-a ) )
            return (a + b) / 2
```

```
0.0.2 Problem 2
```

```
In [4]: f = lambda x: np.log(x) - 2
        bisection_method( f , 6, 8, tol=1e-7, ittr_max=200)
Root is 7.389056086540222. Took 25 iterations.
        The resulting error was 5.960464477539063e-08
Out[4]: 7.3890561163425446
0.0.3 Problem 3
In [5]: #Just like in 1, we first define a generator.
        def newtons_guesses( f, f_prime, x0 ):
            current_x = x0;
            while True:
                yield current_x
                next_x = current_x - (f(current_x) / f_prime(current_x))
                current_x = next_x
In [6]: # And then a function that consumes guesses from that
        # generator and provides a nice (although far from kind)
        # user experience.
        def newtons_method( f, f_prime, x0, tol=1.0e-5, ittr_max=100 ):
            guesses = newtons_guesses( f, f_prime, x0 )
            ittr_count = 1
            current_guess = next(guesses) # it yields x0 first
            next_guess = next(guesses)
            while (np.abs(next_guess - current_guess) > tol
                   and ittr_count < ittr_max):</pre>
                current_guess = next_guess
                next_guess = next(guesses)
                ittr_count += 1
            print( "Root is {}. Took {} iterations.\n\t The result error was{}"
                  .format( next_guess, ittr_count, next_guess - current_guess ) )
            return next_guess
0.0.4 Problem 4
In [7]: f = lambda x: np.log(x) - 2
        f_prime = lambda x: 1/x
        newtons_method( f, f_prime, 6, tol=1e-7, ittr_max=200)
Root is 7.38905609893065. Took 5 iterations.
         The result error was1.7763568394002505e-15
Out[7]: 7.3890560989306504
```

0.0.5 Problem 5

```
In [8]: #Helper methods + variables for question 5
        def tan(x):
            return np.tan(x)
        def tan_p(x):
            return 1 / ( np.cos(x) ** 2 )
        bottom = 63 * np.pi / 2
        top = 65 * np.pi / 2
Problem 5.a)
In [9]: newtons_method(tan, tan_p, 100, tol = 1e-7, ittr_max = 20)
        newtons_method(tan, tan_p, 101, tol = 1e-7, ittr_max = 20)
        newtons_method(tan, tan_p, 102, tol = 1e-7, ittr_max = 20)
Root is 100.53096491487338. Took 4 iterations.
         The result error was1.1603162874962436e-10
Root is 100.53096491487338. Took 4 iterations.
         The result error was-4.575895218295045e-12
Root is 100.53096491487338. Took 8 iterations.
```

Out[9]: 100.53096491487338

The result error was0.0

In each case it seems to find the answer after only a small number of iterations, though the number increases quite a bit as we move further from the 'true' answer.

Problem 5.b)

```
The resulting error was 5.4791371439932846e-09
Root is 100.53096491487338. Took 8 iterations.
         The result error was0.0
With k=2 (delta=0.01), we search from x in [98.9701685880785, 102.09176124166827].
        \Rightarrow tan(x) in [-99.99666664437837, 99.99666664429998])
Root is 100.53096491487338. Took 29 iterations.
        The resulting error was 5.814428050143761e-09
Root is 100.53096491487338. Took 11 iterations.
         The result error was1.318767317570746e-11
With k=3 (delta=0.001), we search from x in [98.9611685880785, 102.10076124166827].
        => tan(x) in [-999.9996666603981, 999.9996666525604])
Root is 100.53096491487338. Took 29 iterations.
        The resulting error was 5.847951456416922e-09
Root is 100.53096491487338. Took 15 iterations.
         The result error was0.0
With k=4 (delta=0.0001), we search from x in [98.96026858807849, 102.10166124166827].
        \Rightarrow tan(x) in [-9999.999966187557, 9999.999965403784])
Root is 100.53096491487338. Took 29 iterations.
        The resulting error was 5.851291007274995e-09
Root is 100.53096491487338. Took 18 iterations.
         The result error was0.0
With k=5 (delta=1e-05), we search from x in [98.96017858807849, 102.10175124166827].
        \Rightarrow tan(x) in [-99999.99995021097, 99999.99987183357])
Root is 100.53096491487338. Took 29 iterations.
        The resulting error was 5.8516320677881595e-09
Root is 100.53096491487338. Took 21 iterations.
         The result error was5.016431714466307e-12
With k=6 (delta=1e-06), we search from x in [98.96016958807849, 102.10176024166827].
        => tan(x) in [-1000000.0010529909, 999999.9932152512])
Root is 100.53096491487338. Took 29 iterations.
        The resulting error was 5.85166048949759e-09
Root is 100.53096491487338. Took 25 iterations.
         The result error was0.0
With k=7 (delta=1e-07), we search from x in [98.96016868807848, 102.10176114166828].
        \Rightarrow tan(x) in [-10000000.446538439, 9999999.662764478])
Root is 100.53096491487338. Took 29 iterations.
        The resulting error was 5.851674700352305e-09
Root is 100.53096491487338. Took 28 iterations.
         The result error was0.0
With k=8 (delta=1e-08), we search from x in [98.96016859807848, 102.10176123166828].
        => tan(x) in [-100000048.06592856, 99999969.68851951])
Root is 100.53096491487338. Took 29 iterations.
        The resulting error was 5.851674700352305e-09
Root is 98.96016860807848. Took 1 iterations.
         The result error was9.999993721976352e-09
With k=9 (delta=1e-09), we search from x in [98.96016858907849, 102.10176124066827].
```

=> tan(x) in [-999994893.1389295, 999987055.5408959])

Root is 100.53096491487338. Took 29 iterations.

```
The resulting error was 5.851674700352305e-09 Root is 98.9601685900785. Took 1 iterations.

The result error was1.0000036354540498e-09
```

I might be missunderstanding the question, but if all that it's asking is what the smallest natural number k is such that bottom + 10 ** (-1 * k) to top - 10 ** (-1 * k) is a valid range for the bisection method, then I think the correct answer must be k = 0 so delta = 1. As demonstrated above, this searches between a = 99.960 and b = 101.102, which implies tan(a) = -0.642 and tan(b) = 0.642, which is valid for the bisection method since tan(a) * tan(b) < 0.

I added in the newtons method results for comparison. Note that at $k \ge 8$, this method fails to converge to the true answer.

Problem 5.c)

```
In [11]: # Using k = 0 \Rightarrow delta = 1.
         for j in range(1, 6): # from 1 to 5 inclusive
             print( "j={}".format( j ) )
             # Solve the bisection problem.
             bisection_guess = bisection_method(
                 tan, bottom + 1, top - 1,
                 tol = 10 ** (-1 * j) )
             # And plug it into Newtons method.
             newtons_guess = newtons_method(
                 tan, tan_p, bisection_guess,
                 tol = 1e-8)
j=1
Root is 100.53096491487338. Took 4 iterations.
        The resulting error was 0.0713495408493543
Root is 100.53096491487338. Took 3 iterations.
         The result error was-2.842170943040401e-14
j=2
Root is 100.53096491487338. Took 7 iterations.
        The resulting error was 0.00891869260617284
Root is 100.53096491487338. Took 3 iterations.
         The result error was0.0
j=3
Root is 100.53096491487338. Took 11 iterations.
        The resulting error was 0.000557418287883138
Root is 100.53096491487338. Took 2 iterations.
         The result error was-1.4438228390645236e-11
i=4
Root is 100.53096491487338. Took 14 iterations.
        The resulting error was 6.967728597828682e-05
Root is 100.53096491487338. Took 2 iterations.
         The result error was-2.842170943040401e-14
```

In each case, Newton's method converged to the true answer.

Problem 5.d)

Even though Newton's takes longer per iteration, it's still faster than the bisection method due to its quadratic convergence. Thus, j = 1 is the fastest, at just 5.62 ms.