Bouncee maths

Linear

Name	Function	Domain	Graph
ln	f(x)=x	$0 \le x \le 1$	
Spike	$f(x)=2x \ g(x)=2(1-x)$	$0 \leq x \leq 0.5 \ 0.5 < x \leq 1$	

Sinus

Name	Function	Domain	Graph
In	$f(x) = -cos(0.5x\pi) + 1$	$0 \leq x \leq 1$	
Out	$f(x) = sin(0.5x\pi)$	$0 \leq x \leq 1$	
InOut	$f(x)=-0.5cos(x\pi)+0.5$	$0 \le x \le 1$	
Spike	$f(x) = -cos(x\pi) + 1 \ g(x) = cos(x\pi) + 1$	$0 \leq x \leq 0.5 \ 0.5 < x \leq 1$	

Blinn-Wyvill Approximation to the Raised Inverted Cosine

Optimization for the sinus functions

Name	Function	Domain
ln	$f(x) = 8(0.5x)^6/9 - 34(0.5x)^4/9 + 44(0.5x)^2/9$	$0 \le x \le 1$
Out	$f(x) = 8(0.5(1-x))^6/9 - 34(0.5(1-x))^4/9 + 44(0.5(1-x))^2/9 - 1$	$0 \le x \le 1$
InOut	$f(x)=4x^6/9-17x^4/9+22x^2/9$	$0 \le x \le 1$
Spike	$f(x) = 8x^6/9 - 34x^4/9 + 44x^2/9$	$0 \le x \le 0.5$
эртс	$g(x) = 8(1-x)^6/9 - 34(1-x)^4/9 + 44(1-x)^2/9$	$0.5 < x \le 1$

Quadratic

Name	Function	Domain	Graph
In	$f(x)=x^2$	$0 \le x \le 1$	
Out	$f(x)=1-(x-1)^2$	$0 \le x \le 1$	
InOut	$f(x) = 2x^2 \ g(x) = 1 - 0.5(2x - 2)^2$	$0 \leq x \leq 0.5 \ 0.5 < x \leq 1$	

Spike
$$f(x)=4x^2 \ g(x)=(2x-2)^2$$

$$0 \le x \le 0.5$$
 $0.5 < x \le 1$

Cubic

Name	Function	Domain	Graph
In	$f(x)=x^3$	$0 \leq x \leq 1$	
Out	$f(x)=1+(x-1)^3$	$0 \leq x \leq 1$	
InOut	$f(x) = 4x^3 \ g(x) = 1 + 4(x-1)^3$	$0 \leq x \leq 0.5 \ 0.5 < x \leq 1$	
Spike	$f(x)=8x^3 \ g(x)=-(2x-2)^3$	$0 \le x \le 0.5$ 0.5 < x < 1	

Quartic

Name	Function	Domain	Graph
In	$f(x)=x^4$	$0 \le x \le 1$	
Out	$f(x)=1-(x-1)^4$	$0 \leq x \leq 1$	
InOut	$f(x) = 0.5 - 8(x - 0.5)^4 \ g(x) = 0.5 + 8(x - 0.5)^4$	$0 \leq x \leq 0.5 \ 0.5 < x \leq 1$	
Spike	$f(x) = 16x^4 \ g(x) = (2x-2)^4$	$0 \leq x \leq 0.5 \ 0.5 < x \leq 1$	

Quintic

Name	Function	Domain	Graph
In	$f(x)=x^5$	$0 \leq x \leq 1$	
Out	$f(x)=1+(x-1)^5$	$0 \leq x \leq 1$	
InOut	$f(x) = 16x^5 \ g(x) = 1 + 16(x-1)^5$	$0 \leq x \leq 0.5 \ 0.5 < x \leq 1$	
Spike	$f(x)=32x^5 \ g(x)=-(2x-2)^5$	$0 \le x \le 0.5$ 0.5 < x < 1	

Exponential

Spike
$$f(x) = 1 - \sqrt{1-2x} \ g(x) = 1 + \sqrt{2x-1}$$

$$\begin{array}{c} 0 \leq x \leq 0.5 \\ 0.5 < x \leq 1 \end{array}$$

Circular

Name	Function	Domain	Graph
In	$f(x)=1-\sqrt{1-x^2}$	$0 \leq x \leq 1$	
Out	$f(x)=\sqrt{1-(x-1)^2}$	$0 \leq x \leq 1$	
InOut	$f(x) = 0.5 - \sqrt{0.25 - x^2} \ g(x) = 0.5 + \sqrt{0.25 - (x-1)^2}$	$0 \leq x \leq 0.5 \ 0.5 < x \leq 1$	
Spike	$f(x) = 1 - \sqrt{1 - 4x^2}$ $g(x) = 1 - \sqrt{2x - 2^2}$	$0 \le x \le 0.5$	

Bounce

s = 7.5625 (scalar that narrows parabola)

d = 2.75 (offset on the x axis)

Name	Function	Domain
In	$egin{aligned} f(x) &= 1 - s x^2 \ g(x) &= 1 - s (x - 1.5/d)^2 - 0.75 \ h(x) &= 1 - s (x - 2.25/d)^2 - 0.9375 \ i(x) &= 1 - s (x - 2.625/d)^2 - 0.984375 \end{aligned}$	$egin{aligned} 0 & \leq x < 1/d \ 1/d & \leq x < 2/d \ 2/d & \leq x < 5/4d \ 5/4d & \leq x < 1 \end{aligned}$
Out	$egin{aligned} f(x) &= sx^2 \ g(x) &= s(x-1.5/d)^2 - 0.75 \ h(x) &= s(x-2.25/d)^2 - 0.9375 \ i(x) &= s(x-2.625/d)^2 - 0.984375 \end{aligned}$	$egin{aligned} 0 & \leq x < 1/d \ 1/d & \leq x < 2/d \ 2/d & \leq x < 5/4d \ 5/4d & \leq x < 1 \end{aligned}$
InOut	$f(x) = (1 - (s(1 - 2x - 2.625/d)^2 + 0.984375))/2$ $g(x) = (1 - (s(1 - 2x - 2.5/d)^2 + 0.9375))/2$ $h(x) = (1 - (s(1 - 2x - 1.5/d)^2 + 0.75))/2$ $i(x) = (1 - (s(1 - 2x)^2))/2$ $j(x) = (0.5 + (s(1 - 2x)^2))/2$ $k(x) = (0.5 + (s(1 - 2x - 1.5/d)^2 + 0.75))/2$ $l(x) = (0.5 + (s(1 - 2x - 2.5/d)^2 + 0.9375))/2$ $m(x) = (0.5 + (s(1 - 2x - 2.625/d)^2 + 0.984375))/25$	$0 \le x < 1/2d \ 1/2d \le x < 1/d \ 1/d \le x < d \ d \le x < 2/d \ 2/d \le x < 5/4d \ 5/4d \le x < 5/2d \ 5/2d \le x < 0.5 \ 0.5 \le x < 1$
Spike	$f(x) = 1 - (s(1 - 2x - 2.625/d)^2 + 0.984375)$ $g(x) = 1 - (s(1 - 2x - 2.5/d)^2 + 0.9375)$ $h(x) = 1 - (s(1 - 2x - 1.5/d)^2 + 0.75)$ $i(x) = 1 - (s(1 - 2x)^2)$ $j(x) = 1 - (s(1 - 2(1 - x) - 1.5d)^2 + 0.75))$ $k(x) = 1 - (s(1 - 2(1 - x) - 2.5/d)^2 + 0.9375))$ $l(x) = 1 - (s(1 - 2(1 - x) - 2.625/d)^2 + 0.984375)$	$0 \leq x < 1/2d \ 1/2d \leq x < 1/d \ 1/d \leq x < d \ d \leq x < 5/4d \ 5/4d \leq x < 5/2d \ 5/2d \leq x < 0.5 \ 0.5 \leq x < 1$

Elastic

a = 1f * 2f (just because)

p = 3f * 1.65f (just because)

Name	Function	Domain
ln	$f(x) = -(ax)^2 sin(2\pi p(x-0.75))$	0 < x < 1
Out	$f(x) = 1 + (a(1-x))^2 sin(2\pi p((1-x) - 0.75))$	0 < x < 1
InOut	$f(x) = 0.5 + 0.5(-(ax)^2)sin(2\pi p(x-0.75)) \ g(x) = 0.5 + 0.5(a(1-x))^2sin(2\pi p((1-x)-0.75))$	$0 < x < 0.5 \ 0.5 < x < 1$
Spike	$f(x) = 0.5 - 0.5(ax)^2 sin(2\pi p(x-0.75))2 \ g(x) = 0.5 + 0.5(a(1-x))^2 sin(2\pi p((1-x)-0.75))$	$0 < x < 0.5 \ 0.5 < x < 1$

In and Out

InOut and Spike

Back

a = 1.70158f p = 1.75f (multiplier for the ease in out) p = 2f (for the spike)

Name	Function	Domain	Graph
In	$f(x)=(a+1)x^3-ax^2$	$0 \le x \le 1$	
Out	$f(x) = 1 - (a+1)(1-x)^3 + a(1-x)^2$	$0 \le x \le 1$	
InOut	$f(x) = (a+1)(px)^3 - a(px)^2 \ g(x) = 1 - (a+1)(p(1-x))^3 - a(p(1-x))^2$	0 < x < 0.5 $0.5 < x < 1$	
Spike	$f(x)=(a+1)(px)^3-a(px)^2 \ g(x)=(a+1)(p(1-x))^3-a(p(1-x))^2$	$0 < x < 0.5 \ 0.5 < x < 1$	

