

Supporting the HSC student community since 2002 https://boredofstudies.org

2020

BORED OF STUDIES TRIAL EXAMINATION

9th October

Mathematics Extension 1

General instructions

- Reading time 10 minutes
- Working time 2 hours
- Write using a black or blue pen
- Calculators approved by NESA may be used
- A reference sheet is provided
- In Questions 11–14, show relevant mathematical reasoning and/or calculations

70

Total marks: Section I – 10 marks (pages 2–4)

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II – 60 marks (pages 5–11)

- Attempt Questions 11-14
- Allow about 1 hour and 45 minutes for this section

Section I

10 marks Attempt Questions 1-10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

1 Which of the following differential equations best represents the following direction field?

- (A) $\frac{dy}{dx} = \cos x$ (B) $\frac{dy}{dx} = 1 x^2$ (C) $\frac{dy}{dx} = e^{-x^2}$ (D) $\frac{dy}{dx} = \ln(x^2 + e)$

What is the angle between the vectors $\begin{pmatrix} 9 \\ -2 \end{pmatrix}$ and $\begin{pmatrix} 7 \\ 6 \end{pmatrix}$? $\mathbf{2}$

- (A) $\sin^{-1}(0.08)$
- (B) $\cos^{-1}(0.08)$
- (C) $\sin^{-1}(0.8)$
- (D) $\cos^{-1}(0.8)$

A monic cubic polynomial P(x) has a maximum turning point located at the origin. 3 Which quadrant does the other turning point lie in?

- (A) 1st quadrant
- (B) 2nd quadrant (C) 3rd quadrant (D) 4th quadrant

4 Which of the following graphs represents a solution to the differential equation below?

$$\frac{dy}{dx} = 1 + y^2$$

Let $P(x) = x^2 + ax + b$ for some non-zero real values a and b. Suppose that 5

$$\int \frac{dx}{P(x)} = K \tan^{-1} (Ax + B) + C$$

for some real constants A, B, C and K.

Which of the following must always be true?

- (A) a > 0
- (B) a < 0
- (C) b > 0 (D) b < 0

6 An object is subject to two forces. One force acts in the direction of j with a magnitude of 1 newton. The other force acts in the direction of $\sqrt{3}i-j$ with a magnitude of 4 newtons.

What is the magnitude of the total force on the object, in newtons?

- (A) $\sqrt{3}$
- (B) $\sqrt{13}$
- (C) 3
- (D) 5

A curve in the x-y plane is represented by the graph of $y = \frac{P(x)}{Q(x)}$ where P(x) is a cubic 7 polynomial and Q(x) is a quadratic polynomial. P(x) and Q(x) have no common factors. What is the minimum number of asymptotes that this curve can have?

- (A) 0
- (B) 1
- (C) 2
- (D) 3

What is the solution set to $|x-3| \ge \frac{1}{x-1}$? 8

- (A) $\{x < -2, x = \sqrt{2} 2, x > 1\}$
 - (B) $\{x > 1, x = -2, x < -2 \sqrt{2}\}\$
- (C) $\{x < -1, x = 2 \sqrt{2}, x > 2\}$
- (D) $\{x < 1, x = 2, x \ge 2 + \sqrt{2}\}\$

9 A particle moves along a number plane at time t according to the displacement vector

$$\underline{r} = (t\sin t)\underline{i} - (t\cos t)\underline{j}.$$

The particle is initially at the origin. Let θ be the acute angle at which the path of the particle first crosses the x-axis after leaving the origin. What is the value of θ ?

- (A) $\frac{\pi}{2}$
- (B) π
- (C) $\tan^{-1} \frac{\pi}{2}$ (D) $\tan^{-1} \pi$

10 A student tosses a fair coin 100 times. Which of the following is the best estimate for the probability of getting either:

- 60 or more tosses showing heads; or
- 60 or more tosses showing tails.
- (A) 0.05
- (B) 0.32
- (C) 0.68
- (D) 0.95

Section II

60 marks

Attempt Questions 11—14

Allow about 1 hour and 45 minutes for this section

Answer each question in the appropriate writing booklet. Extra writing booklets are available.

Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use the Question 11 Writing Booklet

(a) Evaluate
$$\int \cos^2 4x \cos^2 x \, dx$$
.

(b) A particle is launched from the ground with speed V at an angle of projection of θ . Let g be the acceleration due to gravity. The equations of motion at time t are

$$x = Vt\cos\theta$$
, $y = Vt\sin\theta - \frac{gt^2}{2}$ (Do NOT prove this)

Let D be the distance between the particle and its initial launch point.

Show that if D increases throughout the particle's entire trajectory then $\sin^2 \theta < \frac{8}{9}$.

(c) Using the substitution $u = x\sqrt{x}$, show that

$$\int_0^\infty \sqrt{\frac{x}{e^{x^3}}} \, dx = \frac{\sqrt{2\pi}}{3}.$$

3

Question 11 continues on page 6

(d) A model which approximates the spread of a virus in a population over time can be described by the differential equation

$$\frac{dI}{dt} = \frac{\beta SI}{N} - \gamma I$$

where

- \bullet I is the number of infected people which varies over time t
- \bullet S is the number of non-infected people which varies over time t
- N is the total constant population where N = S + I
- β and γ are positive constants and $\beta \neq \gamma$.
- (i) Show that $\frac{dt}{dI} = \frac{1}{\beta \gamma} \left(\frac{1}{I} + \frac{\beta}{N(\beta \gamma) \beta I} \right).$
- (ii) Hence, use integration to show that the general solution is given by 3

$$I = \frac{N(\beta - \gamma)}{\beta + Ae^{-(\beta - \gamma)t}}.$$

where A is some constant.

- (iii) On two separate sets of axes, sketch the graphs of the number of infected people I over time for the two separate cases when $\beta > \gamma$ and $\beta < \gamma$. Indicate any intercepts and asymptotes in terms of A, N, β and γ .
- (iv) Hence, explain the physical significance of the ratio $\frac{\beta}{\gamma}$ with regards to how it affects the number of infected people in the population over time.

End of Question 11

Question 12 (15 marks) Use the Question 12 Writing Booklet

(a) Two resistors A and B in circuit are connected in parallel such that their effective resistance R_E is given by

$$\frac{1}{R_E} = \frac{1}{R_A} + \frac{1}{R_B}$$

2

 $\mathbf{2}$

where R_A and R_B are the resistances of A and B respectively.

Suppose that the resistance of A is increasing at a constant rate of 1 ohm per minute and the resistance of B is decreasing at a constant rate of 1 ohm per minute.

Show that the rate of change of the effective resistance (in ohms per minute) is given by

$$\frac{dR_E}{dt} = R_E \left(\frac{1}{R_A} - \frac{1}{R_B} \right).$$

(b) Suppose that X is a continuous random variable with a cumulative distribution function F(x). Let Y = F(X) be another random variable in terms of X.

Show that the probability density function of Y represents a uniform distribution.

(c) Recall that a polyhedron is a solid composed of polygonal faces and straight edges. A cube is an example of a polyhedron.

Let N be the largest number of edges of any given face of a given polyhedron.

By using the pigeonhole principle, or otherwise, prove that there exists at least two faces of the given polyhedron with the same number of edges.

(d) Show that $\frac{\sin 1^{\circ} + \sin 2^{\circ} + \sin 3^{\circ} + ... + \sin 44^{\circ}}{\cos 1^{\circ} + \cos 2^{\circ} + \cos 3^{\circ} + ... + \cos 44^{\circ}} = \sqrt{2} - 1.$

Question 12 continues on page 8

(e) Consider the distinct points A and B on the x-y plane with position vectors \underline{a} and \underline{b} respectively. Let P be a point that lies strictly within the interval AB such that

$$\frac{AP}{BP} = \frac{1-\mu}{\mu},$$

for some $0 < \mu < 1$.

(i) Show that the position vector of the point P is represented by

 $p = \mu \underline{a} + (1 - \mu)\underline{b}.$

1

2

(ii) Let two other distinct points C and D lie in the plane with position vectors \underline{c} and \underline{d} respectively. Suppose that no three points of A, B, C and D are collinear and the intervals AB and CD have a point of intersection.

Using the result in (i), show that there exists some non-zero real numbers $\lambda_1, \lambda_2, \lambda_3$ and λ_4 such that

$$\lambda_1 a + \lambda_2 b + \lambda_3 c + \lambda_4 d = 0,$$

where $\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 = 0$ and 0 = 0i + 0j.

(f) Suppose that the trigonometric equation $a \sin 4\theta + b \cos 4\theta = c$ has distinct solutions $\theta_1, \theta_2, \theta_3$ and θ_4 for non-zero constants a, b and c. Define

 $S = \tan \theta_1 + \tan \theta_2 + \tan \theta_3 + \tan \theta_4$

 $T = \tan \theta_2 \tan \theta_3 \tan \theta_4 + \tan \theta_1 \tan \theta_3 \tan \theta_4 + \tan \theta_1 \tan \theta_2 \tan \theta_4 + \tan \theta_1 \tan \theta_2 \tan \theta_3.$

Show that

$$S + T = 0.$$

End of Question 12

Question 13 (15 marks) Use the Question 13 Writing Booklet

- (a) Let $f(x) = \tan^{-1} x$ and $g(x) = \frac{x}{x^2 + 1}$.
 - (i) Show that f'(x) > g'(x) for the domain x > 0.

 $\mathbf{2}$

3

1

- (ii) Hence, show that $\frac{\sqrt{\tan^{-1} x}}{x} > \frac{1}{\sqrt{x(x^2+1)}}$ for the domain x > 0.
- (iii) Using calculus to investigate the behaviour of each of the curves, sketch 4

$$y = \frac{1}{\sqrt{x(x^2+1)}}$$
 and $y = \frac{\sqrt{\tan^{-1}x}}{x}$

on the same set of axes.

- (iv) The region bounded by the curves $y = \frac{1}{\sqrt{x(x^2+1)}}$ and $y = \frac{\sqrt{\tan^{-1}x}}{x}$ over the domain $[1,\sqrt{3}]$ is rotated about the x-axis to form a solid of revolution. Find the volume of this solid.
- (b) Let a, b, p and q be real constants and let x_n be a sequence defined by the following relation for integers $n \geq 2$.

$$x_n = ax_{n-1} + bx_{n-2},$$

where $x_1 = p$ and $x_0 = q$.

(i) Prove by mathematical induction for integers $n \geq 0$

$$\alpha^n(p - \beta q) = x_{n+1} - \beta x_n$$

where α and β are the real roots of the equation $x^2 = ax + b$ and $\alpha \neq \beta$.

(ii) Hence, show that

$$x_n = \frac{(\alpha^n - \beta^n)p + (\alpha^{n-1} - \beta^{n-1})bq}{\alpha - \beta}.$$

End of Question 13

Question 14 (15 marks) Use the Question 14 Writing Booklet

- (a) Suppose that X is a non-negative discrete random variable defined on some interval [a, b] with expected value E(X) and variance Var(X).
 - (i) Show that for any r > 0

3

1

$$Var(X) \ge rP(|X - E(X)| \ge \sqrt{r}).$$

(ii) In a large country, a survey was conducted on a random sample of n people. It was found that $100\hat{p}$ percent of them own a bike. Let p be the true proportion of the country's population that own a bike. For any $\varepsilon > 0$, it can be shown that

$$P(|\hat{p} - p| < \varepsilon) \ge L.$$

Use part (i) to find an appropriate value of L in terms of n, p and ε .

(iii) Deduce that

 $\mathbf{2}$

$$\lim_{n \to \infty} P(|\hat{p} - p| < \varepsilon) = 1$$

and explain the significance of this result for the survey.

- (b) Consider a polyhedron which has n faces and is assigned a distinct colour to each face. Define a "colouring" as a specific arrangement of colours on the faces of the solid. Any rotations of a solid with this specific arrangement are considered the same "colouring".
 - (i) Find the total number of colourings for a cube.

 $\mathbf{2}$

(ii) Find the total number of colourings for a regular octahedron.

2

For reference, a diagram of a regular octahedron is provided below. All 8 faces are equilateral triangles, and all 12 edges are equal in length.

Question 14 continues on page 11

- (c) Leonardo is in St. Peter's Basilica and encounters a staircase consisting of n stairs. He is able to "step" up one stair at a time, or "lunge" up two stairs at a time. Let $\psi(n)$ be the number of ways Leonardo can ascend an n-stair staircase.
 - (i) Explain why $\psi(n) = \psi(n-1) + \psi(n-2)$ for $n \ge 3$.
 - (ii) The Fibonacci sequence F_k is defined by the following relation 1

$$F_k = F_{k-1} + F_{k-2},$$

where $F_0 = 0$ and $F_1 = 1$.

Show that $\psi(n) = F_{n+1}$.

- (iii) Leonardo wishes to lunge exactly k times, where k is an integer satisfying $0 \le k \le \frac{n}{2}$ for even n, and $0 \le k \le \frac{n-1}{2}$ for odd n. Find the number of ways he can do this for a fixed value of k.
- (iv) Deduce that

$$F_{n+1} = \begin{cases} \binom{n}{0} + \binom{n-1}{1} + \binom{n-2}{2} \cdots + \binom{\frac{n}{2}}{\frac{n}{2}} & \text{if } n \text{ is even.} \\ \binom{n}{0} + \binom{n-1}{1} + \binom{n-2}{2} \cdots + \binom{\frac{n+1}{2}}{\frac{n-1}{2}} & \text{if } n \text{ is odd.} \end{cases}$$

End of paper