IOI2014 中国国家集训队第一次作业第一部分

部分 ACM/ICPC World Finals 试题解析

重庆市巴蜀中学 雷凯翔

2013年10月2日

目录

1	\mathbf{AC}	M/ICPC	\mathbf{World}	Finals	2013 K	Up a Tree	2
	1.1	题意概述					2
	1.2	简要分析					2
2	\mathbf{AC}	M/ICPC	World	Finals	2008 G	Net Loss	3
	2.1	题意概述					3
	2.2	简要分析					3
3	\mathbf{AC}	M/ICPC	World	Finals	2003 H	A Spy in the Metro	4
	3.1	题意概述					4
	3.2	简要分析					5

1 ACM/ICPC World Finals 2013 K Up a Tree

1.1 题意概述

在以下三段有问题的代码中

Algorith	m 1 前序遍历	Algo	rithm 2 中序遍历	Algorithm 3 后序遍历	
1: funct	tion $PRE(x)$	1: f u	$\mathbf{Inction} \ \mathrm{In}(x)$	1: function $Post(x)$	
2: PI	RINT(x)	2:	丙 (x 的左儿子)	2:	戊 (x 的左儿子)
3:	甲 (x 的左儿子)	3:	Print(x)	3:	己 (x 的右儿子)
4:	乙 (x 的右儿子)	4:	丁 (x 的右儿子)	4:	Print(x)
5: end f	function	5: e i	nd function	5: end function	

填入恰好两个 PRE 恰好两个 IN 和恰好两个 POST,使得存在一个树,分别调用这三个函数后,得到的先序中序后序遍历为给定的串,并使得输入的树的正确前序中序后序遍历的字典序最小化。

4 < 给定串的长度 < 26。

1.2 简要分析

填写源代码的情况数只有 $\binom{6}{2,2,2} = 90$ 种,可先枚举。

这样,问题简化为,固定代码,给定一个二叉树调用 PRE, IN 和 POST 函数中某几个的输出,求字典序最小的树使其满足条件。

不妨递归处理,枚举左儿和右儿的元素数量,就可以确定根以及左右儿调用 PRE, IN 和 POST 某几个后的输出,且规模更小。继续分治处理即可。最后合并答案,选择一个字典序最小的树返回。边界条件为输出全部为空串,此时可直接返回空树。

有一些有效的剪枝。

- 1. 对于同一棵树, 若几个函数输出的长度不一, 可直接返回无解。
- 2. 对于同一棵树,若有结点在某些函数的输出中出现,而在另一些函数的输出中未出现, 可直接返回无解。
- 3. 在递归调用时,若对于一棵子树,运行相同的函数,得出的输出序列不同,可直接返回 无解。
- 4. 枚举左右儿元素数后,若输出序列确定的根不一,可直接跳过此次枚举。

- 5. 若左右儿对应的子问题有一个无解,可直接跳过此次枚举。
- 6. 记忆化搜索

2 ACM/ICPC World Finals 2008 G Net Loss

2.1 题意概述

给定多项式 p(x) 和常数 c(-1 < c < 1), 求三个实数 k_1, k_2, b 使得

$$d = \int_{-1}^{c} (k_1 (x - c) + b - p(x))^2 dx + \int_{c}^{1} (k_2 (x - c) + b - p(x))^2 dx$$
 (1)

最小化,并输出 k_1, k_2, b 的值。

 $1 \le p(x)$ 的次数 ≤ 10 。多组询问。

2.2 简要分析

考虑 d 关于 k_1, k_2, b 的梯度

$$\nabla d = \left(\frac{\partial d}{\partial k_1}, \frac{\partial d}{\partial k_2}, \frac{\partial d}{\partial b}\right) \tag{2}$$

其中

$$\frac{\partial d}{\partial k_1} = \int_{-1}^{c} 2(k_1(x-c) + b - p(x)) \cdot (x-c) \, \mathrm{d}x \tag{3}$$

$$\frac{\partial d}{\partial k_2} = \int_c^1 2(k_2(x-c) + b - p(x)) \cdot (x-c) \, \mathrm{d}x \tag{4}$$

$$\frac{\partial d}{\partial b} = \int_{-1}^{c} 2(k_1(x-c) + b - p(x)) \, dx + \int_{c}^{1} 2(k_2(x-c) + b - p(x)) \, dx \tag{5}$$

由三个方向的偏导随该维的单调性可知, d 取得最小值当且仅当

$$\nabla d = \mathbf{0} \tag{6}$$

即

$$\begin{cases} k_1 \int_{-1}^{c} (x-c)^2 dx + 0 + b \int_{-1}^{c} (x-c) dx = \int_{-1}^{c} p(x) \cdot (x-c) dx \\ 0 + k_2 \int_{c}^{1} (x-c)^2 dx + b \int_{c}^{1} (x-c) dx = \int_{c}^{1} p(x) \cdot (x-c) dx \end{cases}$$

$$\begin{cases} k_1 \int_{-1}^{c} (x-c)^2 dx + b \int_{-1}^{1} (x-c) dx = \int_{-1}^{1} p(x) dx \end{cases}$$

$$\begin{cases} k_1 \int_{-1}^{c} (x-c)^2 dx + b \int_{-1}^{1} (x-c) dx = \int_{-1}^{1} p(x) dx \end{cases}$$

$$\begin{cases} k_1 \int_{-1}^{c} (x-c)^2 dx + b \int_{-1}^{1} (x-c) dx = \int_{-1}^{1} p(x) dx \end{cases}$$

写成矩阵的形式

$$A\mathbf{x} = \mathbf{b} \tag{8}$$

其中

$$A = \begin{bmatrix} \int_{-1}^{c} (x-c)^{2} dx & 0 & \int_{-1}^{c} (x-c) dx \\ 0 & \int_{c}^{1} (x-c)^{2} dx & \int_{c}^{1} (x-c) dx \\ \int_{-1}^{c} (x-c) dx & \int_{c}^{1} (x-c) dx & 2 \end{bmatrix}$$
(9)

$$\mathbf{x} = (k_1, k_2, b)^{\mathrm{T}} \tag{10}$$

$$\mathbf{b} = \left(\int_{-1}^{c} p(x) \cdot (x - c) \, dx, \int_{c}^{1} p(x) \cdot (x - c) \, dx, \int_{-1}^{1} p(x) \, dx \right)^{\mathrm{T}}$$
(11)

定积分可以使用牛顿一莱布尼兹定理求得。剩下的只需使用高斯消元,人工解方程,或者通过伴随矩阵求逆矩阵等方法求出解向量 \mathbf{x} 。

计算可得,系数矩阵 A 的行列式 $|A|=\frac{1}{18}(1+c)^3(1-c)^3$,故 |A|>0 恒成立,方程组恒有且仅有一组解。

3 ACM/ICPC World Finals 2003 H A Spy in the Metro

3.1 题意概述

在一个有N个站的线形地铁里,某人在第一个站台。T 秒后,他必须到达最后一个站台。列车双向都有发车,但发车时间不一定对称。已知列车时刻表,且双向相邻两站的运行时间恒定,停车时间忽略。求一个乘坐方案,使得T 秒后,他在准时出现在最后一个站台,

且在站台上的等待时间最少。

所有时刻都是整秒。 $N \le 50, T \le 200,$ 双向列车班数分别 ≤ 50 。 同向列车发车时间两两不同。

3.2 简要分析

令 L[i][j] 和 R[i][j] 分别表示在时刻 i 秒,站台 j 上是否有列车向左和向右开。根据发车时间表和相邻两站的运行时间,可以轻易处理出 L[i][j], R[i][j]。

最后令 F[i][j] 表示该人在时刻 i 秒出现在站台 j 最多需要在站台上等的秒数。状态转移方程

$$F[i][j] = \min \begin{cases} F[i - d(j-1)][j-1], & i \ge d(j-1), j > 1, R[i - d(j-1)][j-1] \\ F[i - d(j)][j+1], & i \ge d(j), j < N, L[i - d(j)][j+1] \\ F[i-1][j] + 1, & i \ge 1 \end{cases}$$
(12)

其中 d(i) 表示站台 i 到站台 (i+1) 的运行时间。边界

$$F[0][j] = \begin{cases} 0, & j = 1 \\ +\infty, & j > 1 \end{cases}$$
 (13)

最终答案为 F[T][N]。