PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-038349

(43)Date of publication of application: 10.02.1997

(51)Int.CI.

B26B 19/04

(21)Application number: 08-149823

(71)Applicant: MATSUSHITA ELECTRIC WORKS LTD

(22)Date of filing:

20.05.1996

(72)Inventor: YAMADA SHUJI

HAMADA TADASHI SAKON SHIGETOSHI

FUJIMOTO SHINJI

(30)Priority

Priority number: 07121811

Priority date: 19.05.1995

Priority country: JP

(54) BLADE COMBINATION BODY FOR ELECTRIC RAZOR

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain an inner and an outer blade which have no burrs nor breaking at their edges and then obtain a good shaving characteristic by using an iron-based alloy which is constituted of an Fe-Cr stainless steel basic material of a specified Vickers hardness and a hard laver.

SOLUTION: An electric razor comprises an outer blade 10 supported by a cutting head and a plurality of inner blades installed on a supporting body. The outer blade 10 is a sheet which has a plurality of openings 11. Around the openings 11, there are rims 12 which were formed by punching of the sheet and which bend downwards. In this case, the outer blade 10 and the inner blades 11 are formed by using iron-based allays which are constituted of Fe-Cr stainless steel basic materials 15, 25 of a Vickers hardness 400 or above and hard layers 16, 26 which are formed on the surfaces of the basic materials and which have a Vickers hardness 700 or above and are 2-15 μ m in thickness. Edge angles of cutting edges 14, 24 of the blades 10, 11 are set to 35-90 degrees.

LEGAL STATUS

[Date of request for examination]

08.04.2002

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-38349

(43)公開日 平成9年(1997)2月10日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FI.	技術表示箇所
B 2 6 B 19/04			B 2 6 B 19/04	F
				В
				L
				Τ

審査請求 未請求 請求項の数6 FD (全 14 頁)

		不即且告	不明水 明水系V数V ID (主 14 页)
(21)出願番号	特顯平8-149823	(71)出願人	000005832
			松下電工株式会社
(22)出願日	平成8年(1996)5月20日		大阪府門真市大字門真1048番地
		(72)発明者	山田 修司
(31)優先権主張番号	特願平7-121811		大阪府門真市大字門真1048番地松下電工株
(32)優先日	平7 (1995) 5月19日		式会社内
(33)優先権主張国	日本 (JP)	(72) 発明者	濱田 糾
		, , , , , , , , , , , , , , , , , , , ,	大阪府門真市大字門真1048番地松下電工株
			式会社内
		(72)発明者	佐近 茂俊
		(15/)09/14	大阪府門真市大字門真1048番地松下電工株
			式会社内
		/7.4\	
		(74)代理人	弁理士 石田 長七 (外2名)
			最終頁に続く

(54) 【発明の名称】 電気かみそり用の刃組み合わせ体

(57)【要約】

【課題】 高い表面硬度を有する材料で作成された外刃と内刃とでなる電気かみそり用の刃組み合わせ体を提供することである。

【解決手段】 外刃と複数の内刃とを含む電気かみそり 用刃組み合わせ体において,外刃と内刃の各々は,Fe-Cェ系ステンレス鋼の基材と基材の表面に設けられた 硬質相とでなる鉄基合金で作成される。基材はビッカース硬度で400あるいはそれ以上の硬度を有し、硬質層はビッカース硬度で700あるいはそれ以上の硬度を有する。硬質層の厚さは2~15 μ mである。硬質層は下 e-A1拡散層であることが好ましく,拡散層は拡散層の全体積に対して少なくとも90体積%のA1とFeとの金属間化合物を含み,拡散層の表面から少なくとも2 μ m深さ内のA1含有量が,前記少なくとも2 μ m深さ内のA1含有量が,前記少なくとも2 μ m深さまでの拡散層の領域の総重量に対して35~65重量%である点により特徴づけられる。

10	外刃	2 1	つかし
1 1	開口	2 3	研削接触面
1 2	IJΔ	2 4	切断エッジ
1 3	研削接触面	2 5	基材
1 4	切断エッジ	26	硬質層
1 5	基材	3 0	支持体
16	硬質層	4 0	砥石
α	刃先角度"	B	习先角度
2.0	内切		

【特許請求の範囲】

【請求項1】 外刃と複数の内刃とでなる電気かみそり 用の刃組み合わせ体において、外刃と内刃の各々はFe - Cr系ステンレス鋼の基材と基材の表面に設けられた 硬質相でなる鉄基合金で作成されている,前記ステンレ ス鋼はピッカース硬度で400あるいはそれ以上の硬度 を有し、前記硬質層はピッカース硬度で700あるいは それ以上の硬度を有する、前記硬質層の厚さは2~15 μmである;前記外刃は毛を導入する複数の開口を有 し、前記開口の周りに第1の研削接触面、前記硬質層で 形成される第1の切断エッジ、及び第1研削接触面に隣 接する側面が形成され、第1の研削接触面とこれに隣接 する前記側面との間で定義される第1切断エッジの刃先 角度は35~90°である;前記内刃は、第2の研削接 触面、前記硬質層で形成される第2の切断エッジ、及び 第2研削接触面に隣接する側面を有し、第2の研削接触 面とこれに隣接する前記側面との間で定義される第2切 断エッジの刃先角度は35~90°である;前記内刃は 支持体に装着されて駆動されることで第1と第2の研削 接触面同士が摺動係合して第1と第2の切断エッジとの 間で毛を切断する。

【請求項2】 前記基材が $73\sim89$. 9重量%の鉄、 $10\sim19$ 重量%のクロム、 $0.1\sim1$. 2重量%の炭素、および3重量%以下のニッケルを含むことを特徴とする請求項1に記載の刃組み合わせ体。

【請求項3】 前記基材が $69 \sim 81.5$ 重量%の鉄、 $12 \sim 18$ 重量%のクロム、 $6 \sim 8.5$ 重量%のニッケル、およびアルミニウムとチタンの少なくとも一方を $0.5 \sim 2$ 重量%含むことを特徴とする請求項1に記載の刃組み合わせ体。

【請求項4】 前記硬質層はFe-A1拡散層である,前記拡散層は拡散層の全体積に対して少なくとも90体積%のA1とFeとの金属間化合物を含み,拡散層の表面から少なくとも 2μ m深さ内のA1含有量が,前記少なくとも 2μ m深さまでの拡散層の領域の総重量に対して $35\sim65$ 重量%であることを特徴とする請求項1及至3に記載の刃組み合わせ体。

【請求項5】 前記基材がFe-Cr-Ni系ステンレス鋼であり、上記硬質層がCr, Al及びTiからなる群から選択される少なくとも一つの元素の窒化物粒子を含み、この窒化物粒子は前記基材の表面に分散されていることを特徴とする請求項1に記載の刃組み合わせ体。

【請求項6】 前記基材がFe-Cェ-C系ステンレス 鋼であり、上記硬質層がCェの窒化物粒子を含み、この 窒化物粒子は前記基材の表面に分散されていることを特 徴とする請求項1に記載の刃組み合わせ体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電気かみそり用の 刃組み合わせ体,より具体的には高い表面硬度を有する 材料で作成された外刃と内刃のセットに関するものであ る。

[0002]

【従来の技術】従来において、マルテンサイトステンレス鋼や析出硬化型ステンレス鋼が歯車や軸受けなどの鋼助部材や切削工具に使用されている。これらの鋼は優れた靱性と耐衝撃性を備えているものの、寿命の長い摺動部材や切削工具を提供するにあたっては表面硬度や耐断を担けの点で必ずしも十分とは言えない。また、それら可以が発生するとめに引きないができる。図9に示すように、刃物1のに定義される刃先角のが小さくなができる。図9に示すように、刃物1のにで、びできる。図9に示すように、刃物1のになができる。図9に示すように、刃物1のになりに対して、の発生は増加する傾向がある。したがなるの発生は増加する傾向がある。したがなるで、研磨工程後にばりを除去するための工程が必要となが、この損傷がもたらされるので、シャープエッジの形成を困難にしている。

[0003] この問題点を改善するために、優れた耐摩耗性と硬度を有するアルミナやジルコニア等のセラミック材を使用することが提案されている。しかしながら、セラミック材の破壊靱性は鋼部材のそれに比べ著しく劣っていることや、摺動部材や切削工具の種々の形状にセラミック材を加工する際の困難性から鋼部材の場合とは別の問題点が生じる。

【0004】このように、従来の鋼部材やセラミック部材では表面硬度や耐摩耗性に優れ、且シャープエッジを有する電気かみそり用の外刃と内刃の組み合わせ体を提供することが困難であった。

[0005]

【発明が解決しようとする課題】従って本発明は、表面 硬度や耐摩耗性に優れ、且シャープエッジを有する電気 かみそり用の外刃と内刃の組み合わせ体を提供すること を課題とするものである。

[0006]

 研削接触面、前記硬質層で形成される第2の切断エッジ、及び第2研削接触面に隣接する側面を有し、第2の研削接触面とこれに隣接する前記側面との間で定義される第2切断エッジの刃先角度が35~90°の範囲に設定されている。内刃は支持体に装着されて駆動されることで第1と第2の研削接触面同士が摺動係合し、それにより第1と第2の切断エッジの間で毛が切断されるのである。

【0007】本発明においては、上記鉄基合金を外刃と 内刃に研磨する工程において、刃先での刃力エリ(パ リ)の発生を防ぎながら、シャープエッジを形成するこ とができる。特に、小さな刃先角(35°)のシャープ エッジを形成する場合においても、刃先にバリの発生が ほとんど観られないことは特筆に値する。結果的に、本 発明の刃組み合わせ体を使用している電気かみそりは、 良好な髭剃り特性、例えば、短縮された髭剃り時間と小 さな切削抵抗、を提供できるのである。

[0008]したがって、本発明の第1の目的は、FeーCr系ステンレス鋼の基材と基材の表面に設けられた硬質相でなる鉄基合金で作成された外刃と複数の内刃とでなる電気かみそり用刃組み合わせ体を提供することである。本発明にあたっては、基材として、 $73\sim89$. 9重量%の鉄、 $10\sim19$ 重量%のクロム、 $0.1\sim1$. 2重量%の炭素、および3重量%以下のニッケルを含むFeーCr系ステンレス鋼、あるいは69~81. 5重量%の無、 $12\sim18$ 重量%のクロム、 $6\sim8$. 5重量%のニッケル、およびアルミニウムとチタンの少なくとも一方を $0.5\sim2$ 重量%含むFeーCr系ステンレス鋼を使用することが好ましい。

【0009】また、本発明にあたっては、硬質層がFe-A1拡散層であることが特に好ましい。この拡散層は、拡散層の全体積に対して少なくとも90体積%のA1とFeとの金属間化合物を含み、拡散層の表面から少なくとも2 μ m深さまでの拡散層の領域の総重量に対して35~65重量%であることよってに特徴づけられる。この場合、拡散層は、基材の金属元素、例えば、FeおよびCr、と基材上に設けられたアルミニウム層のA1との間での相互拡散を起させるための熱処理を介して形成されるので、拡散層と基材との間に優れた密着性を提供することが可能である。

[0010]

【発明の実施の形態】以下、本発明の実施の形態を説明する。図1~3に示すように、本発明に係る電気かみそり用の刃組み合わせ体は、電気かみそりの切断ヘッド(図示せず)に支持される外刃10と、支持体30に装着される複数の内刃20とで構成されている。支持体30は切断ヘッド内で駆動され、それにより内刃が外刃との間で毛切断係合を生じるように移動する。図示の外刃は多数の開口11を有する薄板であり、開口のまわりは

薄板を打ち抜いて形成されることで下方に屈曲するリム12となっている。リム12の下端面には研削により形成される第1の切断エッジ14を有する第1研削接触面13が定義される。内刃20の各々の上端には第2研削接触面23が形成され、その両端縁に第2の切断エッジ24が設けられている。内刃20は互いに並行関係で支持体30へ装着され、第2研削接触面が外刃の第1研削接触面へ摺動係合するように駆動されて、開口11に捕捉された毛を第1切断エッジ14と第2切断エッジ24とで切断するようになっている。

【0011】リム12の下端の第1の研削接触面13に開口11の回りに設けられた第1切断エッジは35~90°の鋭角な刃先角(α)を有する。内刃20上端のすぐ下の両側面にはつかし21が形成されている。第2の研削接触面の両側縁に沿って設けられた第2の切断エッジ24は35~90°の鋭角の刃先角(β)を有する。全ての内刃20は外刃10の輪郭に合致するように同時に研削される。図4に示すように、支持体30を回転砥石40に向けて移動させることで支持体に装着された内刃の上端を研削する。

【0012】外刃10及び内刃20は、それぞれFe- Cr系ステンレス鋼の基材15、25 とこの基材の両面の硬質層16、26 とからなる鉄基合金で形成される。硬質層は、2 から15 μ mの厚みを有し、ビッカース硬度で700あるいはそれ以上の硬度を示す。硬質層は、外刃や内刃の第1及び第2 の研削接触面の研削時や電気かみそりの長時間使用での切断エッジのだれやカエリ(バリ)を防ぎ、長期に亘って良好な切断性能を維持するのに重要である。基材は、ビッカース硬度で400あ

るのに重要である。基材は、ヒッカー人便及で400のるいはそれ以上の硬度を有する。例えば、 $73 \sim 89$. 9重量%の鉄、 $10 \sim 19$ 重量%のクロム、 $0.1 \sim 1.2$ 重量%の炭素、および3重量%以下のニッケルを含むFe-Cr系ステンレス鋼、あるいは $69 \sim 81$. 5重量%の鉄、 $12 \sim 18$ 重量%のクロム、 $6 \sim 8.5$ 重量%のニッケル、およびアルミニウムとチタンの少なくとも一方を $0.5 \sim 2$ 重量%含むFe-Cr系ステンレス鋼を基材として使用することが好ましい。

[0013]本発明の刃組み合わせ体は、いろいろなタイプの電気かみそりに適用でき、例えば、内刃が往復駆動される往復駆動式、内刃が軸のまわりに回転する回転駆動式のものに適用できる。本発明においては、硬質層がFe-Al拡散層で形成されていることが特に好層で形成されていることが特に好層のとされている。このFe-Al拡散層は、拡散層のとされて少なくとも90体積%のAlとFeとの金属間化合物を含み、拡散層の表面から少なくとも2 μ m深さ内のAl含有量が,前記少なくとも2 μ m深さ内のAl含有量が,前記少なくとも2 μ mでの拡散層の領域の総重量に対して35~65重量%である点に特徴がある。Al含有量が35重量%以下である時、拡散層の表面に高い硬度と優れた耐摩耗性を付与するのに十分でない。一方,Al含有量が65重量%以上

である時、硬度の低い純アルミニウムあるいはFe-A 1 固溶体が好ましくない量で拡散層に形成されてしま う。

【0014】図5は、およそ10 μ mの厚みを有する拡散層の外表面から深さ方向におけるAl、FeおよびCrで含有量を示している。これらのAl、FeおよびCrの含有量は、X線マイクロアナリシスによって質量分析された値である。図5中、Al含有量を示す曲線は、拡散層の表面からおよそ2 μ m深さ内のAl含有量がその2 μ m深さまでの拡散層の総重量に対して45~60重量%であることを示している。60重量%のAl含有量は約76原子%に匹敵するので、拡散層の表面にはAlaFeが形成されていると推測される。

【0015】この拡散層の外表面から深さ方向におけるピッカース硬度の変化が図6に示されている。硬度は2g重の荷重の下で測定された。図6の結果より、拡散層の外表面からおよそ6 μ mの深さの範囲にわたって約1140の高い硬度が安定に得られていることがわかる。拡散層のこの範囲は、実質的に図5に示された35 \sim 60重量%のA1含有量の範囲に対応している。硬度は、この高硬度領域からおよそ10 μ mの深さに向かって徐々に減少していき、最終的に基材硬度のおよそ500に到達している。

【0016】拡散層の構成は、X線回折により同定することが可能である。例えば、上記拡散層のX線回折プロファイルは、 $Cuk\alpha$ 線を使用し、加速電圧および電流を40kV、200mAとして、通常の2 $\theta-\theta$ ゴニオメータを有するX線回折装置を使用して得ることができる。X線は拡散層の表面に照射されるものとする。このようにして得られたX線プロファイルは、拡散層がFeとA1との複数の金属間化合物を含むことを示唆している。

【0017】本発明の拡散層は、拡散層の全体積に対して少なくとも90体積%のAl-Fe金属間化合物を含んでいる。金属間化合物の体積含有率(V:体積%)は以下の式により求めることができる:

V (体積%) = 100×S1/(S1+S2)

ここに、S1はX線回折プロファイル上に同定されるすべてのA1-Fe金属間化合物のピーク面積の合計であり、S2は同X線プロファイル上で同定される前記A1-Fe金属間化合物以外の純アルミニウムおよび/あるいはFeがA1に固溶することにより形成されるA1合金のピーク面積の合計である。この体積含有率が90体積%以下である場合、拡散層中に純アルミニウムおよび/あるいは硬度の低いA1合金が残留するため、拡散層の硬度が低下してしまう。

【0018】拡散層の表面付近のA1含有量が65重量 %以上である時、純アルミニウムの幾つかのピークが同 定されるようになるだろう。また、酸化アルミニウム (アルミナ)のピークは、本発明の拡散層のX線プロフ ァイル上には観測されない。さらに、図5に示されるように、拡散層は少量のCrを含んでいる。しかしながら、仮に少量のAlとCrとの金属間化合物が拡散層中に形成されたとしても、拡散層の硬度は低下されないので特に問題にはならない。

【0019】基材にFe-Cr-Ni系ステンレス鋼を使用する場合、Cr、Al及びTiからなる群から選択される少なくとも一つの元素の窒化物粒子を含む硬質層が形成されてもよい。この場合、これらの窒化物粒子は基材の表面に分散されている。一方、基材にFe-Cr-C系ステンレス鋼を使用する場合は、Crの窒化物粒子を含む硬質層が形成されても良い。この窒化物粒子を含む硬質層が形成されても良い。この窒化物粒子を含有する硬質層は、例えば、イオン窒化法により形成されるだろう。

[0020]

【実施例】以下、本発明を実施例によって詳述する。 (実施例1)

(外刃) Fe-Cr-C系 [Fe-14Cr-1. 1M o-0.7C(重量%)]ステンレス鋼からなる厚さ 0. 025mmのステンレス鋼シートが外刃の基材とし て使用された。このシートの両面に溶融メッキにより厚 さ0.005mmのアルミニウム層を形成して、0.0 35mmの鍍金シートを得た。この鍍金シートを従来の 方法で加工して、下方に屈曲するリム12で囲まれる開 口11のパターンを形成し、975℃で15秒間加熱 し、次いで空冷することにより5μm厚のFe-A1硬 質層を基材の両面に形成すると共に、基材に焼き入れ硬 化を施した。この結果得られたFe-A 1 硬質層 1 6 は、ビッカース硬度で1100の硬度を有している。一 方、焼き入れ硬化された基材はピッカース硬度で500 の硬度を有している。次に1200メッシュのBN含有 砥石を使用してこのように処理されたシートのリム下端 面の研削を行なった。この砥石の回転速度は、毎分50 0回転である。シートは毎秒10cmの速度で回転砥石 に向けて送られ、各リムの下端が研削されると共に、開 口周縁に刃先角度 (α) が60°の切断エッジが形成さ れた。この研削の後、外刃がシートから切り出され、所 定の形状に形作られた後、適宜のホルダーに装着され た。

(内刃) 内刃の基材としてFe-Cr-C系ステンレス 鋼 [Fe-14Cr-1:1Mo-0:7C(重量%)] からなる厚さ0.25mmのステンレス鋼シートが使用され、このシートの両面に0.015mm厚のアルミニウム箔を積層した後圧延してアルミニウム箔がシートに密着した0.2mm厚のクラッドシートを得た。内刃20はこのクラッドシートから切り出されて、所定の形状のつかし21がその両面に成形された。ついで、内刃20を1000で30秒間加熱した後、空冷することにより10 μ m厚のFe-A1 硬質層を基材の両面

に形成すると共に基材に焼き入れ硬化を施した。この結果得られたFe-Al硬質層26は、ビッカース硬度で1100の硬度を有している。一方、焼き入れ硬化された基材25はビッカース硬度で500の硬度を有している。このようにして得られた内刃は一部を支持体30に一体成形されてこれに固定支持される。次いで、内刃を立てた状態で支持体が送りテーブルに保持されて毎秒10cmの速度で毎分500回転で回転する砥石40に送られて内刃の上端を研削する。砥石としては500メッシュのBNの含有されたものが使用された。この研削により、刃先角度(β)が60°の切断エッジを有する研削接触面が内刃に形成された。図7(a)および図7

(b) には、このようにして作成された内刃の外観が示されている。図7(b) において、参照番号31と32はそれぞれ研削接触面と内刃の切断エッジを示している。参照番号33はFe-A1硬質層を示している。これらの図から明らかなように、内刃の切断エッジには実質的なカエリ(バリ)が観られない。

【0021】硬質層の外表面でのX線回折を介して得られたX線回折プロファイルを用いて、硬質層中のAlーFe金属間化合物の体積率(V:体積%)を次式により求めた:

V (体積%) = 100×S1/(S1+S2)

ここに、S1はX線回折プロファイル上に同定されるすべてのA1-Fe金属間化合物のピーク面積の合計であり、S2は同X線プロファイル上で同定される前記A1-Fe金属間化合物以外の純アルミニウムおよび/あるいはFeが主にA1に固溶することにより形成されるA1合金のピーク面積の合計である。結果を表1に示す。
【0022】さらに、硬質層の外表面からおよそ2μm

の深さ内に含まれるA1含有量がX線マイクロアナリシス法により決定された。ここに,重量%は拡散層のおよそ2 μ m深さの領域の総重量に基づくものである。結果を表1に示す。実施例1と同様の分析および測定が以下に示す実施例と比較例に対しても実施された。

【0023】(実施例2)切断エッジの刃先角度(α)が35°であることを除いては実施例1と同一の材料を使用して同一の方法によって実施例2の外刃が作成された。尚、切断エッジにはせいぜい 1μ 程度のバリしか発生しなかった。内刃は、実施例1と同一の材料で同一の方法によって作成された。

【0024】(実施例3)切断エッジの刃先角度(α)が90°であることを除いては実施例1と同一の材料を使用して同一の方法によって実施例3の外刃が作成された。尚、切断エッジには実質的なバリの発生が認められなかった。内刃は、実施例1と同一の材料で同一の方法によって作成された。

【0025】(実施例4)外刃は、実施例1と同一の材料で同一の方法によって作成された。切断エッジの刃先角度(β)が50°であることを除いては実施例1と同

一の材料を使用して同一の方法によって実施例4の内刃が作成された。尚、切断エッジには実質的なバリの発生が認められなかった。

【0026】(実施例5)外刃は、実施例1と同一の材料で同一の方法によって作成された。切断エッジの刃先角度(β)が90°であることを除いては実施例1と同一の材料を使用して同一の方法によって実施例5の内刃が作成された。尚,切断エッジには実質的なバリの発生が認められなかった。

【0027】(実施例6)外刃は、実施例1と同一の材料から同一の方法によって作成された。

(内刃) Fe-Cr-C系ステンレス鋼 [Fe-14C r-1.1Mo-0.7C(重量%)]の0.20mm 厚のステンレス鋼シートが基材として使用された。この シートの両面に 0.02mm厚のアルミニウム箱を積層 した後圧延して、アルミニウム箔がシートに密着した 0. 2mm厚のクラッドシートを得た。内刃20はこの クラッドシートから切り出されて、所定の形状のつかし 21がその両面に成形された。ついで、内刃20を10 00℃で30秒間加熱した後、空冷することにより15 μm厚のFe-Al硬質層を基材の両面に形成すると共 に基材に焼き入れ硬化を施した。この結果得られたFe -A1硬質層26は、ビッカース硬度で1100の硬度 を有している。一方、焼き入れ硬化された基材はビッカ 一ス硬度で500の硬度を有している。このようにして 得られた内刃を実施例1と同一の方法で研削して60° の刃先角度(β)を有する切断エッジを形成した。この 切断エッジには実質的なカエリが認められなかった。

【0028】 (実施例7)外刃は、実施例1と同一の材料から同一の方法によって作成された。

(内刃) Fe-Cr-C系ステンレス鋼 [Fe-14C r-1.1Mo-0.7C(重量%)]の0.196m m厚のステンレス鋼シートが基材として使用された。こ のシートの両面に真空蒸着により0.002mm厚のア ルミニウム層を形成して0.2mm厚のA1蒸着シート を得た。内刃20はこのクラッドシートから切り出され て、所定の形状のつかし21がその両面に成形された。 ついで、内刃20を950℃で30秒間加熱した後、空 冷することにより2μm厚のFe-Al硬質層を基材の 両面に形成すると共に基材に焼き入れ硬化を施した。こ の結果得られたFe-A1硬質層26は、ビッカース硬 度で1100の硬度を有している。一方、焼き入れ硬化 された基材はビッカース硬度で500の硬度を有してい る。このようにして得られた内刃を実施例1と同一の方 法で研削して60°の刃先角度(β)を有する切断エッ ジを形成した。この切断エッジには実質的なカエリが認 められなかった。

【0029】(実施例8)外刃は、実施例1と同一の材料から同一の方法によって作成された。内刃は、実施例1で得られた0.2mm厚のA1クラッドシートから切

り出された。所定の形状のつかし21が内刃の両面に成形された。ついで、内刃20を900℃で60秒間加熱した後、空冷することにより10 μ m厚のFe-A1 硬質層を基材の両面に形成すると共に基材に焼き入れ硬化を施した。この結果得られたFe-A1 硬質層26 は、ピッカース硬度で1100の硬度を有している。一方、焼き入れ硬化された基材はピッカース硬度で400 の硬度を有している。このようにして得られた内刃を実施例1と同一の方法で研削して60°の刃先角度(β)を有する切断エッジを形成した。この切断エッジには実質的なカエリが認められなかった。

【0030】(実施例9)外刃は、実施例1と同一の材料から同一の方法によって作成された。内刃は、実施例1で得られた0.2mm厚のA1クラッドシートから切り出された。所定の形状のつかし21が内刃の両面に成形された。ついで、内刃20を1000℃で60秒間加熱した後、空冷することにより10 μ m厚のFe-A1硬質層を基材の両面に形成すると共に基材に焼き入れ硬化を施した。この結果得られたFe-A1硬質層26は、ビッカース硬度で700の硬度を有している。一方、焼き入れ硬化された基材はビッカース硬度で500の硬度を有している。このようにして得られた内刃を実施例1と同一の方法で研削して60°の刃先角度(β)を有する切断エッジを形成した。この切断エッジには実質的なカエリが認められなかった。

【0031】(実施例10)外刃は、実施例1と同一の 材料から同一の方法によって作成された。内刃は、Fe - Cr - C系ステンレス鋼 [Fe-18Cr-1.5M o-0.7C(重量%)]の0.2mm厚のステンレス 「鋼シートから切り出された。所定の形状のつかし21が 内刃の両面に成形された。ついで、不活性雰囲気中で1 050℃で90秒間加熱した後に空冷することにより基 材に焼き入れ硬化を施した。その後、内刃はイオン窒化 炉内に配置され、450℃で3時間かけてイオン窒化が 施され、クロムの窒化物粒子が分散された3μm厚の硬 質層を基材表面に得た。この結果得られた硬質層26 は、ビッカース硬度で800の硬度を有している。一 方、焼き入れ硬化された基材はビッカース硬度で400 の硬度を有している。このようにして得られた内刃を実 施例1と同一の方法で研削して60°の刃先角度(β) を有する切断エッジを形成した。この切断エッジには2 μ程度のカエリしか認められなかった。

【0032】(実施例11)外刃は、実施例1と同一の材料から同一の方法によって作成された。内刃は、Fe-Cr-Ni系ステンレス鋼 [Fe-17Cr-7Ni-1.2Al(重量%)]の0.2mm厚のステンレス鋼シートから切り出された。所定の形状のつかし21が内刃の両面に成形された。ついで、内刃はイオン窒化が内に配置され、570℃で3時間かけてイオン窒化が施され、窒化クロムと窒化アルミニウムの粒子が分散され

た6 μ m厚の硬質層を基材表面に得た。この結果得られた硬質層 2 6 は、ビッカース硬度で 9 0 0 の硬度を有している。一方、焼き入れ硬化された基材はビッカース硬度で 5 0 0 の硬度を有している。このようにして得られた内刃を実施例 1 と同一の方法で研削して 6 0 の刃先角度 (β) を有する切断エッジを形成した。この切断エッジには 1 μ 程度のカエリしか認められなかった。

【0033】(実施例12)外刃は、実施例1と同一の 材料から同一の方法によって作成された。内刃は、Fe - Cr-Ni系ステンレス鋼 [Fe-13Cr-6.5] Ni-0. 7Al-0. 5Ti (重量%)]の0.2m m厚のステンレス鋼シートから切り出された。所定の形 状のつかし21が内刃の両面に成形された。ついで、内 刃はイオン窒化炉内に配置され520℃で3時間かけて イオン窒化が施され、クロム、アルミニウム、およびチ タンそれぞれの窒化物粒子が分散された 5 μm厚の硬質 層を基材表面に得た。この結果得られた硬質層26は, ピッカース硬度で1000の硬度を有している。一方、 焼き入れ硬化された基材はビッカース硬度で500の硬 度を有している。このようにして得られた内刃を実施例 1と同一の方法で研削して60°の刃先角度(β)を有 する切断エッジを形成した。この切断エッジには1μ程 度のカエリしか認められなかった。

【0034】(比較例1)

(外刃) Fe-Cr-C系 [Fe-14Cr-1.1M o-0.7C (重量%)] ステンレス鋼からなる厚さ 0.036 mmのステンレス鋼シートが基材として使用 された。このシートを従来の方法で加工して下方に屈曲 するリム12で囲まれる開口11のパターンを形成した。その後,1050℃で60秒間加熱し、次いで空冷することにより基材に焼き入れ硬化を施した。この結果,基材の硬度はビッカース硬度で650であることにより基材に焼き入れ硬化を施した。この結果,基材の硬度はビッカース硬度で650であることにより基材に焼き入れ硬化を施した。この場合はビッカース硬度で650であることにより基材に焼き面を形成すると共に各開口の周縁に60°の刃先角度を有する切断エッジを取りのカエリ(パリ)が認めら得た。この切断エッジには50 μ mものカエリ(パリ)が認めら得た。この力エリを取り出され,所定の形状に形作られた後、適宜のホルダーに装着された。

【0035】(内刃)Fe-Cr-C系ステンレス鋼 [Fe-14Cr-1.1Mo-0.7C(重量%)] の0.2mm厚のステンレス鋼シートが基材として使用された。内刃20はこのシートから切り出されて、所定の形状のつかし21がその両面に成形された。ついで、内刃20を1050℃で60秒間加熱した後、空冷することにより基材に焼き入れ硬化を施した。この結果、基材の硬度はピッカース硬度で600であることが確認された。このようにして得られた内刃を実施例1と同一の方法で研削して60°の刃先角度(β)を有する切断エッジを形成した。図8(a)および図8(b)に示すよ

うに、このようにして作成した内刃にはおよそ 50μ m もの刃カエリ(パリ)が認めらた。図8(b) において、参照番号35と36はそれぞれ研削接触面と内刃の切断エッジを示している。参照番号37は切断エッジに観察された刃カエリ(パリ)を示している。

【0036】(比較例2)外刃は、実施例1と同一の材料から同一の方法によって作成された。

(内刃) Fe-Cr-C系ステンレス鋼 [Fe-14C r-1.1Mo-0.7C (重量%)]の0.35mm 厚のステンレス鋼シートが基材として使用された。この シートの両面に O. 0 1 5 mm厚のアルミニウム箔を積 層した後圧延して、アルミニウム箔がシートに密着した 0. 3mm厚のクラッドシートを得た。内刃20はこの クラッドシートから切り出されて、所定の形状のつかし 21がその両面に成形された。ついで、内刃20を10 00℃で30秒間加熱した後、空冷することにより10 μm厚のFe-Al硬質層を基材の両面に形成すると共 に基材に焼き入れ硬化を施した。この結果得られたFe -A1硬質層26は、ビッカース硬度で1100の硬度 を有している。一方、焼き入れ硬化された基材はビッカ 一ス硬度で500の硬度を有している。このようにして 得られた内刃を実施例1と同一の方法で研削して30° の刃先角度(β)を有する切断エッジを形成した。この 切断エッジには実質的なカエリが認められなかった。

[0037] (比較例3) 外刃は、実施例1と同一の材料で同一の方法によって作成された。切断エッジの刃先角度 (β) が100° であることを除いては実施例1と同一の材料を使用して同一の方法によって比較例3の内刃が作成された。尚、切断エッジには実質的なパリの発生が認められなかった。

【0038】(比較例4)切断エッジの刃先角度(α)が 30° であることを除いては実施例1と同一の材料を使用して同一の方法によって比較例4の外刃が作成された。尚、切断エッジにはせいぜい1 μ 程度のバリしか発生しなかった。内刃は、実施例1と同一の材料で同一の方法によって作成された。

【0039】(比較例5)切断エッジの刃先角度(α)が100°であることを除いては実施例1と同一の材料を使用して同一の方法によって比較例5の外刃が作成された。尚、切断エッジには実質的なバリが認められなかった。内刃は、実施例1と同一の材料で同一の方法によって作成された。

【0040】(比較例6)外刃は、実施例1と同一の材料で同一の方法によって作成された。

(内刃) Fe-Cr-C系ステンレス鋼 [Fe-14Cr-1.1Mo-0.7C(重量%)] の0.197mm厚のステンレス鋼シートが基材として使用された。このシートの両面に0.0015mm厚のアルミニウム箔を積層した後圧延して、アルミニウム箔がシートに密着した0.2mm厚のクラッドシートを得た。内刃20は

このクラッドシートから切り出されて、所定の形状のつかし21がその両面に成形された。ついで、内刃20を950℃で30秒間加熱した後、空冷することにより1.5 μ m厚のFe-A1硬質層を基材の両面に形成すると共に基材に焼き入れ硬化を施した。この結果得られたFe-A1硬質層26は、ピッカース硬度で1100の硬度を有している。一方、焼き入れ硬化された基材はピッカース硬度で500の硬度を有している。このようにして得られた内刃を実施例1と同一の方法で研削して60°の刃先角度(β)を有する切断エッジを形成した。この切断エッジにはおよそ20 μ mの刃カエリ(バリ)が認められた。

【0041】(比較例7)外刃は、実施例1と同一の材料から同一の方法によって作成された。

(内刃) Fe-Cr-C系ステンレス鋼 [Fe-14C r-1.1Mo-0.7C(重量%)]の0.2mm厚 のステンレス鋼シートが基材として使用された。このシ ートの両面に0.022mm厚のアルミニウム箔を積層 した後圧延して、アルミニウム箔がシートに密着した 0. 2mm厚のクラッドシートを得た。内刃20はこの クラッドシートから切り出されて、所定の形状のつかし 21がその両面に成形された。ついで、内刃20を10 00℃で30秒間加熱した後、空冷することにより17 μm厚のFe-Al硬質層を基材の両面に形成すると共 に基材に焼き入れ硬化を施した。この結果得られたFe -A1硬質層26は、ピッカース硬度で1100の硬度 を有している。一方、焼き入れ硬化された基材はピッカ 一ス硬度で500の硬度を有している。このようにして 得られた内刃を実施例1と同一の方法で研削して60° の刃先角度 (β) を有する切断エッジを形成した。この 切断エッジには実質的なカエリが認められなかった。

【0042】(比較例8)外刃は、実施例1と同一の材料から同一の方法によって作成された。内刃は、実施例1で得られた0.2mm厚のA1クラッドシートから切り出された。所定の形状のつかし21が内刃の両面に成形された。ついで、内刃20を850℃で60秒間加熱した後、空冷することにより10 μ m厚のFe-A1硬質層を基材の両面に形成すると共に基材に焼き入れ硬化を施した。この結果得られたFe-A1硬質層26は、ヒッカース硬度で1100の硬度を有している。一方,焼き入れ硬化された基材はピッカース硬度で350の硬度を有している。このようにして得られた内刃を実施例1と同一の方法で研削して60°の刃先角度(β)を有する切断エッジを形成した。この切断エッジには実質的なカエリが認められなかった。

【0043】(比較例9)外刃は、実施例1と同一の材料から同一の方法によって作成された。内刃は、実施例1で得られた0.2mm厚のA1クラッドシートから切り出された。所定の形状のつかし21が内刃の両面に成形された。ついで、内刃20を1000℃で120秒間

加熱した後、空冷することにより 10μ m厚のFe-A 1 硬質層を基材の両面に形成すると共に基材に焼き入れ 硬化を施した。この結果得られたFe-A 1 硬質層 26 は,ピッカース硬度で650 の硬度を有している。一方,焼き入れ硬化された基材はピッカース硬度で500 の硬度を有している。このようにして得られた内刃を実施例 1 と同一の方法で研削して 60° の刃先角度 (β)を有する切断エッジを形成した。この切断エッジにはおよそ 20μ mの刃力エリ(バリ)が認められた。

【0044】実施例 $1\sim12$ および比較例 $2\sim9$ において,硬質層の厚さ(μ m)および表面硬度(Hv),硬質層の外表面からおよそ 2μ mの深さ内におけるA1合有量(重量%),硬質層の全体積に対するA1-Fe金属間化合物の体積率(vol%),および基材のピッカース硬度(Hv)が表1に示されている。尚,実施例 $10\sim12$ においては,A1-Fe金属間化合物が硬質層に形成れていないので,A1含有量および体積比は決定されなかった。さらに,比較例1の外刃と内刃には硬質層が形成されていないので,基材の硬度のみが表1に示されている。さらに,比較例6においては,硬質層の厚みが非常に薄い($e1.5\mu$ m)ため内刃のA1含有量および体積比を求めることができなかった。

【0045】実施例1~12及び比較例1~9で得られた刃組み合わせ体を、カエリ(バリ)の量、切断エッジにおける欠け発生の有無、切断エッジの摩耗量、切削抵抗、及び髭剃り時間に関して評価を行なった。結果を表2に示す。ここに、切断抵抗とは外刃の開口を通るよう

【0046】表2の結果から刃組み合わせ体が良好かどうかを判定するための評価基準を以下に示す。すなわち、これらの評価において刃組み合わせ体が以下の4つの条件[1]~[4]すべてを満たす時、その刃組み合わせ体は良好な髭剃り特性を提供する上で好ましいと判断することができる。

- [1] 切削抵抗が120g以下である。
- [2] 髭剃り時間は180秒以内である。
- [3] 刃先摩耗が小さい。
- [4] 刃先での欠けの発生がない。

さらに、表2の結果より、バリの発生が髭剃り時間および切削抵抗を増加させる原因になっていることが理解できるだろう。

【0047】このように、本発明の鉄基合金で作成された刃組み合わせ体は上記4つの条件すべてを満たすので、優れた髭剃り特性を有する電気かみそりを提供するために好んで使用されるだろう。

[0048]

【表1】

		基材	硬質層			
		硬度	厚さ	硬度	体積率	A 1 含有量
		(Hv)	(µ m)	(Hv)	(体積%)	(重量%)
夹旋例 1	外刃	500	5	1100	100	5 2
	內刃	500	10	1100	100	5 4
実版例2	外刃	500	5	1100	100	5 2
	內刃	500	10	1100	100	5 4
実施例3	外刃	500	5	1100	100	5 2
	内刈	500	10	1100	100	5 4
実験例4	外刃	500	5	1100	100	5 2
実施例4	内以	500	10	1100	100	5 4
実施例 5	外刈	500	5	1100	100	5 2
	内刃	500	10	1100	100	5 4
実版例 6	外刃	500	6	1100	1 0 D	5 2
	内划	500	1 5	1100	100	5 5
火旋例 7	外划	500	5	1100	100	5 2
	内刃	500	2	1100	100	5 2
実施例 B	外刃	500	5	1100	100	5 2
	内刃	100	10	1100	100	5 5
実施例 9	外刃	500	5	1100	100	5 2
	内刃	500	10	700	9 4	3 9
実施例10	外刃	500	5	1100	100	5 2
	内刃	100	3	800		
実施例11	外別	500	5	1100	100	5 2
	内为	500	В	900	<u> </u>	
火施例12	外判	500	5	1100	100	5 2
	内刃	500	5	1000		
比較例1	外列	650	_			
	内刃	600	-			<u> </u>
比較例 2	外为	500	5	1100	100	5 2
	内刃	500	10	1100	100	5 4
比較例3	外为	500	5	1100	100	5 2
	内划	500	10	1100	100	5 4
比較例 4	外刈	500	5	1100	100	5 2
	内刃	500	1 0	1100	100	5 4
比較例5	外刃	500	5	1100	100	5 2
	四刃	500	1.0	1100	100	5 4
比較例 6	外判	500	5	1100	100	5 2
	内爿	500	1.5	1100		
比較例 7	外刈	500	5	1100	100	5 2
	内力	500	1 7	1100	100	5 5
比較例8	外儿	500	5	1100	100	5 2
	內刀	350	10	1100	100	5 6
比較例9	外刈	500	5	1100	100	5 2
ŀ	内刃	500	1 0	650	90	3 5

[0049] [表2]

		力先角	パリの 寸法	欠けの	摩耗量	切削 抵抗	起刺り 時間
		(°)	η μ (μm)	発生		(g)	(秒)
英庭例 1	外刃	60	1	なし	か	8 0	130
	内刃	6.0	0	なし	小	1	1
実施例2	外刃	3 5	1.	なし	か	60	150
	州刃	6.0	0	なし	小	1	
火施例3	外刃	90	0	なし	小	100	160
	内刃	6.0	0	なし	小		
実施例1	外刃	60	1	なし	小	70	130
	内刃	5 0	0	なし	小	1	
夹施例5	外刃	80	1	なし	ル	100	150
	内刃	9 0	0	なし	小	<u> </u>	_1
火施例 6	外刈	6.0	1	なし	小	80	130
	内划	6 0	0	なし	小	<u> </u>	
尖施例 7	外刈	6.0	1	なし	小	0.8	130
	內力	6.0	1	なし	小	1	
実施例8	外刃	60	1	なし	小	90	140
	內刃	60	0	なし	小		
灾施例 9	外刃	60	1	なし	小	90	130
	内列	6.0	2	なし	小 _]	
灾旋例 1 0	外刃	6.0	1	なし	小	9 0	140
	内刃	6 0	2	なし	小]	
実施例11	外划	60	1	なし	小	80	130
	内刃	50	1	なし	小	1	
実施例 1 2	外刃	6 0	1	なし	小	8.0	130
	內刃	80	0	なし	小	1	
比較例1	外刃	6 0	5 0	なし	小	160	240
	內刃	6 0	50	なし	小]	1
比較例2	外刃	6.0	1	なし	小	50	200
	内刃	30	0	なし	小		
比較例3	外刃	6.0	1	なし	小	150	180
	內刃	100	0	なし	小		
比較例4	外刀	3 0	1	なし	小	50	200
	内刈	6.0	0	なし	小		
比較例5	外刃	100	1	なし	小	170	220
	內刃	50	0	なし	小	<u> </u>	
比較例6	外刃	6.0	1	なし	小	140	180
	内力	6.0	2.0	なし	小		
比較例 7	外儿	6.0	1	なし	小	8 0	130
	内刃	50	0	有り	小		
比較例8	外刃	60	1	なし	小	100	150
	內力	6 0	0	なし	人		
比較例 9	外刃	6 O	1	なし	小	140	180
	内刃	6.0	20	なし	小	t	1

[0050]

【発明の効果】上記のようにビッカース硬度が400あるいはそれ以上のFe-Cr系ステンレス鋼基材と、基材の表面に設けられた $2\sim15\mu$ mの厚みを有しビッカース硬度が700あるいはそれ以上の硬質層とでなる鉄基合金を使用することにより、 $35\sim90^\circ$ の刃先角度で刃先での刃カエリ(バリ)や欠けのほとんどないシャープエッジを有する電気かみそり用外刃と内刃を提供することができる。また、その結果として本発明の外刃と内刃を使用している電気かみそりは、良好な髭剃り特性、特に、短縮された髭剃り時間と小さな切削抵抗、を提供できるのである。

【0051】また、本発明にあたっては、硬質層がFe-A1拡散層であることが特に好ましい。この拡散層は、拡散層の全体積に対して少なくとも90体積%のAlとFeとの金属間化合物を含み、拡散層の表面から少なくとも2 μ m深さ内のA1含有量が、前記少なくとも2 μ m深さまでの拡散層の領域の総重量に対して35~65重量%である点に特徴づけられる。この場合、拡散層は、基材の金属元素、例えば、FeおよびCr、と基

材上に設けられたアルミニウム層のAlとの間での相互 拡散を起させるための熱処理を介して形成されるので、 拡散層と基材との間に優れた密着性を提供することが可 能である。

【図面の簡単な説明】

【図1】本発明の歯組み合わせ体の外刃と内刃の毛切断 係合を示す断面図である。

【図2】外刃の一部の斜視図である。

【図3】支持体上に積載された内刃の斜視図である。

【図4】支持体上の内刃の研磨方法を示す図である。

【図5】本発明の鉄基合金のFe-Al拡散層の外表面から深さ方向におけるAl, Cr およびFe 含有量の変化を示すグラフである。

【図6】拡散層の外表面から深さ方向におけるピッカー ス硬度の変化を示すグラフである。

【図7】 (a) は、実施例1の内刃のSEM写真であり、(b) は、図7 (a) の説明図である。

【図8】 (a) は、比較例1の内刃のSEM写真であり、(b) は、図8 (a) の説明図である。

【図9】切刃での刃カエリ (パリ) の発生を示す説明図

である。		2 0	内刃
[符号の)說明】	2 1	つかし
1 0	外刃	2 3	研削接触面
1 1	開口	2 4	切断エッジ
1 2	リム・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2 5	基材
1 3	研削接触面	2 6	硬質層
14	切断エッジ	3 0	支持体
1 5	基材	4 0	砥石
16	硬質層	β	刃先角度
α	刃先角度		

【図1】

[図2]

 10
 外刃
 2 l
 つかし

 11
 開口
 2 3
 研削接触面

 12
 リム
 2 4
 切断エッジ

 13
 研削接触面
 2 5
 飛材

 14
 切断エッジ
 2 6
 硬質腦

 15
 基材
 3 0
 支持体

 16
 硬質腦
 4 0
 砥石

 次
 刃先角度
 り
 羽先角度

 20
 内刃

0 0

[図9]

【図5】

【図6】

[図7]

図面代用写真

[図8]

図面代用写真

フロントページの続き

(72)発明者 藤本 真司 大阪府門真市大字門真1048番地松下電工株 式会社内

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.