1 Original Problem

The original problem is:

$$\min_{S,Y} \| X - ASY \|_F^2 + \alpha \| Y \|_F^2
s.t. S^T S = I, S_{ij} \in \{0, 1\}$$
(1)

where $\mathbf{X} \in \mathbf{R}^{Dim \times n}$, $\mathbf{A} \in \mathbf{R}^{Dim \times m}$, $\mathbf{Y} \in \mathbf{R}^{k \times n}$. And \mathbf{S} is a select matrix, $\mathbf{S} \in \mathbf{R}^{m \times k}$, m > k.

2 Relaxed Problem

The original problem is strongly NP-hard and also difficult to solve approximately. It is quite similar to the below one by relax it's constraint:

$$\min_{S,Y} \parallel X - ASY \parallel_F^2 + \alpha \parallel Y \parallel_F^2$$
s.t. $S^T S = I, S \ge 0$ (2)

where $\mathbf{X} \in \mathbf{R}^{Dim \times n}$, $\mathbf{A} \in \mathbf{R}^{Dim \times m}$, $\mathbf{Y} \in \mathbf{R}^{k \times n}$. And \mathbf{S} is a select matrix, $\mathbf{S} \in \mathbf{R}^{m \times k}$, $m \ge k$.

3 Transformed Problem

The original problem is strongly NP-hard and also difficult to solve approximately. A popular method for this original problem is the Augmented Lagrange Multiplier Method (ALM). The original problem is transformed below:

where $\mathbf{S}, \mathbf{Q}, \mathbf{J} \in \mathbf{R}^{m \times k}$.

4 Solution

The ALM can be decomposed into 4 subproblems. All this 4 subproblems have close-formed solutions. So we can do the optimization by 4 steps.

Steps 1: Fix S, Q, J to optimize Y and ignore the constant items, We can get:

$$\min_{V} \parallel X - ASY \parallel_{F}^{2} + \alpha \parallel Y \parallel_{F}^{2}$$
 (4)

We can get the first-order differential of this formulation, and let it to be zero:

$$S^{T}A^{T}(ASY - X) + \alpha Y = 0$$

$$(S^{T}A^{T}ASY + \alpha I) = S^{T}A^{T}X$$

$$Y = (S^{T}A^{T}ASY + \alpha I)^{-1}S^{T}A^{T}X$$

Now we can get Y.

Steps 2: Fix Y, Q, J to optimize S and ignore the constant items, We can get:

$$\min_{S} \| X - ASY \|_{F}^{2} + \langle Z_{1}, S - Q \rangle + \frac{1}{2}\mu \| S - Q \|_{F}^{2}
+ \langle Z_{2}, S - J \rangle + \frac{1}{2}\mu \| S - J \|_{F}^{2}$$
(5)

We can get the first-order differential of this formulation, and let it to be zero:

$$2A^{T}(ASY - X)Y^{T} + Z_{1} + \mu(S - Q) + Z_{2} + \mu(S - J) = 0$$
$$2A^{T}ASYY^{T} + 2\mu S = 2A^{T}XY^{T} + \mu(Q + J)$$

Use the property of KroneckerProduct.

$$Vec(C\cdot S\cdot B)=(B^T\bigotimes C)\cdot Vec(S)$$

We can get:

$$2(YY^T \otimes A^T A) \cdot Vec(S) + 2\mu Vec(S) = Vec(2A^T XY^T + \mu(Q+J))$$
$$2(YY^T \otimes A^T A + \mu I) \cdot Vec(S) = Vec(2A^T XY^T + \mu(Q+J))$$
$$Vec(S) = 2(YY^T \otimes A^T A + \mu I)^{-1} \cdot Vec(2A^T XY^T + \mu(Q+J))$$

Now We need to convert Vector(S) back to a matrix which is $m \times k$.

Steps 3: Fix S, Y, J to optimize Q and ignore the constant items, We can get:

$$\min_{Q} \langle Z_1, S - Q \rangle + \frac{1}{2}\mu \| S - Q \|_F^2$$
s.t. $Q^T Q = I$ (6)

It equals to:

$$\min_{Q} \langle Z_1, -Q \rangle + \mu \langle S, Q \rangle$$
s.t. $Q^T Q = I$ (7)

 \iff

$$\max_{Q} \langle Q, \mu S + Z_1 \rangle$$
s.t. $Q^T Q = I$ (8)

Use the proposition of matrix:

The dual norm of the operator norm $\|\cdot\|$ in $R^{m\times n}$ is the nuclear norm $\|\cdot\|_*$.

$$\parallel X \parallel_* := \max_Y \{ < X, Y > \ : \ \parallel Y \parallel \leq 1 \} \tag{9}$$

Now let $X = U\Sigma V^T$ be a **thin** singular value decomposition of the $m\times n$ matrix X,where U is an $m\times n$ matrix and $U^T\cdot U=I$, but $U\cdot U^T\neq I$. V is an $n\times n$ orthogonal matrix which $V\cdot V^T=I$. Σ is an $n\times n$ matrix.Let $Y:=U\cdot V^T, \parallel Y\parallel=1$ and $Tr(Y^T\cdot X)=Tr(VU^T\cdot U\Sigma V^T)=Tr(\Sigma)=\parallel X\parallel_*.$ And can get $Y^T\cdot Y=I$.

So from this derivation, We can also do a **thin** singular value decomposition of $\mu S + Z_1$:

$$\mu S + Z_1 = U \Sigma V^T$$
$$Q = U \cdot V^T$$

Steps 4: Fix S, Y, Q to optimize J and ignore the constant items, We can get:

$$\min_{J} \langle Z_2, S - J \rangle + \frac{1}{2}\mu \| S - J \|_F^2
s.t. \ J \ge 0$$
(10)

 \leftarrow

$$\min_{\substack{J \\ s \ t}} \frac{2}{\mu} < Z_2, S - J > + ||S - J||_F^2 + \frac{1}{\mu} ||Z_2||_F^2$$
(11)

 \iff

$$\min_{J} \left\| J - \left(S + \frac{Z_2}{\mu} \right) \right\|_F^2
s.t. \quad J \ge I$$
(12)

$$J = \frac{1}{2} \cdot \left[abs(S + \frac{Z_2}{\mu}) + (S + \frac{Z_2}{\mu}) \right]$$
 (13)

Steps 5: Do some updates:

$$Z_1 = Z_1 + \mu \cdot (S - Q)$$

$$Z_2 = Z_2 + \mu \cdot (S - J)$$

$$\mu = \rho \times \mu$$
(14)

where $\rho = 1.1$.

5 Termination Conditions

The algorithm will stop when the conditions are both satisfied:

$$\frac{1}{m \times k} \cdot \| S - J \|_{F} < \varepsilon$$

$$\frac{1}{m \times k} \cdot \| S - Q \|_{F} < \varepsilon$$
(15)

where $\varepsilon = 10^{-8}$.