Übungsaufgabe

In einem Experiment erhält man aus 2,33g Eisen und 1g Sauerstoff 3,33g Eisenoxid. Berechne Massenverhältnis, Anzahlverhältnis und die Verhältnisformel von Eisenoxid. (S. 101 Nr. 7)

Reaktions- schema	Eisen +	•	Sauerstoff	Eisenoxid
Masse der Stoffportionen in g	2,33g		1g	Massenverhältnis: $\frac{m(Fe-Portion)}{m(O-Portion)}$

Berechnung Massenverhältnis:

$$\frac{\text{m(Fe-Portion)}}{\text{m(O-Portion)}} = \frac{2,33 \text{ g}}{1 \text{ g}} \approx \frac{7}{3}$$

Eisen reagiert mit Sauerstoff im Massenverhältnis 7:3.

Masse m eines Atoms in u :	55,85 u	15,99 u	Im Periodensystem nachschauen!
Masse m eines Atoms in g :	$\frac{55,85}{6\cdot 10^{23}} g$	$\frac{15,99}{6 \cdot 10^{23}} g$	Umrechnen von Unit in Gramm
Anzahl N aller Atome in der Stoffportion	N(Fe-Atome) $= \frac{2,33 g}{55,85 u} = \frac{2,33 g}{\frac{55,85}{6 \cdot 10^{23}} g}$ $= 2,5 \cdot 10^{22}$	N(O-Atome) $= \frac{1 g}{15,99 u} = \frac{1 g}{\frac{15,99}{6 \cdot 10^{23}} g}$ $= 3,7 \cdot 10^{22}$	Anzahlverhältnis: $\frac{N(O-Atome)}{N(Fe-Atome)}$

Berechnung Anzahlverhältnis:

$$\frac{N(O-Atome)}{N(Fe-Atome)} = \frac{3.7 \cdot 10^{22}}{2.5 \cdot 10^{22}} = \frac{1.5}{1} \approx \frac{3}{2}$$

Oder:

$$\frac{N(Fe-Atome)}{N(O-Atome)} = \frac{2.5 \cdot 10^{22}}{3.7 \cdot 10^{22}} = \frac{0.7}{1} \approx \frac{2}{3}$$

Das Anzahlverhältnis von Sauerstoff- und Eisenatomen beträgt 3 : 2.

Verhältnisformel: Fe₂O₃