Compléments n°1 Éléments d'algèbre linéaire

Dans ce premier Compléments, on fait quelques rappels sur l'algèbre linéaire.

1 Opérateur linéaire

1.1 Opérateur adjoint et matrice transposée

Proposition 1 (Opérateur adjoint)

Soit \mathcal{X} et \mathcal{Y} deux espaces de HILBERT. Soit $A:\mathcal{X}\to\mathcal{Y}$ est un opérateur linéaire. Alors il existe un unique opérateur linéaire $A^*:\mathcal{Y}\to\mathcal{X}$, appelé opérateur adjoint à A, tel que

$$\forall (x,y) \in \mathcal{X} \to \mathcal{Y}, \qquad \langle A(x), y \rangle = \langle x, A^*(y) \rangle$$

Lorsque $E = \mathbb{R}^n$ et $F = \mathbb{R}^m$ sont des espaces euclidiens, on peut identifier l'application linéaire $L : \mathbb{R}^n \to \mathbb{R}^m$ et sa matrice associée $M_L \in \mathcal{M}_{m,n}(\mathbb{R})$ dans la base canonique, dans le sens où

$$\forall x \in \mathbb{R}^n, \qquad L(x) = M_L x$$

où le produit entre M_L et x est le produit matriciel. Montrons alors qu'il existe un lien entre opérateur adjoint et transposition :

Proposition 2

Soit $(n,m) \in (\mathbb{N}^*)^2$. Soit $L : \mathbb{R}^n \to \mathbb{R}^m$ un opérateur linéaire. Si $L(x) = M_L x$ pour tout $x \in \mathbb{R}^n$ avec $M_L \in \mathcal{M}_{m,n}(\mathbb{R})$, alors

$$\forall y \in \mathbb{R}^m, \qquad L^*(y) = M_L^\top y$$

Signalons enfin que, de même que la "bi-transposition" (c'est-à-dire la transposition de la transposée) ne définit aucun nouvel objet, il n'existe pas de notion de "bi-adjoint" :

Proposition 3

Soit $\mathcal X$ et $\mathcal Y$ deux espaces de HILBERT. Soit $A:\mathcal X\to\mathcal Y$ est un opérateur linéaire. Alors

$$(A^*)^* = A$$

1.2 Norme d'opérateur ou norme subordonnée

On rappelle la définition suivante :

Définition 1 (Norme d'opérateur)

Soit $A:\mathcal{X}\to\mathcal{Y}$ un opérateur linéaire. On dit que A est $\mathit{born\'e}$ si la quantité suivante

$$|||A||| = \sup_{x \neq 0} \frac{||A(x)||}{||x||}$$

est finie. On appelle alors norme (d'opérateur) de A la valeur |||A|||.

Remarquons que la définition précédente dépend du choix des normes sur \mathcal{X} et \mathcal{Y} . Si celui-ci n'est pas précisé, c'est qu'il découle naturellement du contexte. Ainsi, dans le cas des espaces de HILBERT, la norme par défaut est la norme euclidienne.

Par linéarité et A et par 1-homogénéité des normes, la norme d'un opérateur A vaut également

$$|||A||| = \sup_{\|x\|=1} \frac{||A(x)||}{\|x\|} = \sup_{x \in \mathcal{B}(0,1) \setminus \{0\}} \frac{||A(x)||}{\|x\|}$$

où $\mathcal{B}(0,1)$ est la boule unité (fermée). On peut interpréter le caractère borné d'un opérateur linéaire de diverses manières, parmi lesquelles :

- l'image par A de la boule unité est bornée;
- l'application A est lipschitzienne, de constante de LIPSCHITZ |||A|||.

Proposition 4

Soit $(n,m) \in (\mathbb{N}^*)^2$. Soit $L: \mathbb{R}^n \to \mathbb{R}^m$ un opérateur linéaire. Alors L est borné.

Lorsque la norme d'opérateur est définie à l'aide de la norme euclidienne, on a :

Proposition 5

Soit \mathcal{X} et \mathcal{Y} deux espaces de HILBERT. Soit $A:\mathcal{X}\to\mathcal{Y}$ un opérateur linéaire borné. Alors A^* , A^*A et AA^* sont bornés et on a

$$|||A|||^2 = |||A^*|||^2 = |||A^*A||| = |||AA^*|||$$

2 Matrices symétriques semi-définies positives

Définition 2 (Matrice symétrique)

Soit $n \in \mathbb{N}^*$ et $M \in \mathcal{M}_{n,n}(\mathbb{R})$ une matrice carrée. On dit que M est symétrique si

$$M^\top = M$$

On parle aussi parfois de matrice réelle auto-adjointe par abus de langage : c'est l'application linéaire associée à la matrice qui l'est. En effet, le caractère symétrique d'une matrice ne dépend pas des bases considérées.

Proposition 6

Soit $n \in \mathbb{N}^*$ et $M \in \mathcal{M}_{n,n}(\mathbb{R})$ une matrice symétrique. Alors M est diagonalisable et il existe une matrice orthogonale $P \in \mathcal{M}_{n,n}(\mathbb{R})$ telle que $P^{-1}MP$ soit diagonale.

On rappelle qu'une matrice P est orthogonale si elle est inversible, d'inverse P^{\top} .

Définition 3 (Matrice semi-définie positive)

Soit $n \in \mathbb{N}^*$ et $M \in \mathcal{M}_{n,n}(\mathbb{R})$ une matrice symétrique. On dit que M est semi-définie positive si

$$\forall x \in \mathbb{R}^n, \qquad \langle M x, x \rangle \ge 0$$

Définition 4 (Matrice définie positive)

Soit $n \in \mathbb{N}^*$ et $M \in \mathcal{M}_{n,n}(\mathbb{R})$ une matrice symétrique. On dit que M est définie positive si

$$\forall x \in \mathbb{R}^n \setminus \{0\}, \qquad \langle M \, x, x \rangle > 0$$

Proposition 7

Soit $n \in \mathbb{N}^*$ et $M \in \mathcal{M}_{n,n}(\mathbb{R})$ une matrice symétrique. La matrice M est semidéfinie positive (resp. définie positive) si et seulement si ses valeurs propres sont positives (resp. strictement positives).

DÉMONSTRATION : Notons que $(\lambda_i)_{1 \le i \le n}$ ses valeurs propres, ordonnées de la manière suivante :

$$\lambda_1 \leq \cdots \leq \lambda_n$$

Par ailleurs, on sait qu'il existe une famille de vecteurs propres $(V_i)_{1 \le i \le n}$ vérifiant

$$\forall i = 1, \ldots, n, \qquad A V_i = \lambda_i$$

et telle que $(V_i)_{1 \leq i \leq n}$ forme une base orthonormée de \mathbb{R}^n , c'est-à-dire que

$$\forall i, j = 1, \dots, n,$$
 $\langle V_i, V_j \rangle = \begin{cases} ||V_i||^2 = 1 & \text{si } i = j \\ 0 & \text{sinon} \end{cases}$

Posons $P = {}^t(V_1, \dots, V_n) \in \mathcal{M}_{n,n}(\mathbb{R})$. Alors P est une matrice orthonormée, et on a

 $P^{-1} = P^{\top}$. Par ailleurs,

$$A = P^{\top} D P \quad \text{avec} \quad D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}$$

Calculons maintenant $\langle Ah, h \rangle$ pour tout $h \in \mathbb{R}^n$. En utilisant l'écriture introduite ci-dessus, on obtient que

$$\langle A\,h,h\rangle = \langle P^\top D\,P\,h,h\rangle = \langle D\,P\,h,P\,h\rangle$$

Écrivons ce produit scalaire sous forme étendue :

$$\langle DPh, Ph \rangle = \sum_{i=1}^{n} (DPh)_{i} (Ph)_{i}$$

Or, la matrice D étant diagonale, on en déduit que, pour tout $i=1,\dots,n,$ on a $(D\,P\,h)_i=\lambda_i\,(P\,h)_i.$ Ainsi, on obtient que

$$\langle DPh, Ph \rangle = \sum_{i=1}^{n} \lambda_{i} (Ph)_{i} (Ph)_{i} = \sum_{i=1}^{n} \lambda_{i} (Ph)_{i}^{2}$$

Puisque les $(Ph)_i^2$ sont positifs, on peut minorer chacun des termes de cette somme par $\lambda_1 (Ph)_i^2$. En factorisant par λ_1 , on obtient finalement que

$$\langle A h, h \rangle \ge \lambda_1 \sum_{i=1}^{n} (P h)_i^2 = \lambda_1 \|P h\|^2 = \lambda_1 \|h\|^2$$

la dernière égalité provenant du fait que P est orthonormée. Ainsi, si $\lambda_1\geq 0,$ alors $\langle A\,h,h\rangle\geq 0.$