Здесь будет титульный лист.

РЕФЕРАТ

Здесь будет реферат.

СОДЕРЖАНИЕ

Вв	ведение	4
1	Теоретическая часть	5
	1.1 Описание модели	5
	1.2 Формулы	6
2	Вторая глава	9
3	Третья глава	1(
Сп	писок использованных источников	11

введение

Здесь будет введение. [1]

1 Теоретическая часть

1.1 Описание модели

Тело. Абсолютно твёдрое тело в форме круга равномерной плотности (центр масс в центре круга) обладающее массой (m), коэффициентом трения (μ) , радиусом (r), начальной скоростью $(\vec{v_0})$, положением (координаты x и y или радиус-вектор \vec{r}). На тело действует сила трения $(F_{\rm Tp.})$. ТООО

Точка. Неподвижная точка в пространстве, определена через координаты.

Линия. Неподвижная прямая линия в пространстве, может быть ограничена точкой с двух или одной сторон образуя отрезок или луч соответсвенно. Определена через общее уравнение прямой.

Сцена. Множество тел, линий, точек и постоянных (например, ускорение свободного падения).

Обновлённая сцена – сцена, в которой обновлены параметры тел, линий, точек или постоянных.

Сцена через время Δt – обновлённая сцена, в которой все тела обновлены так, что новая начальная скорость равна скорости в этот момент времени (1).

$$\vec{v_{0_{\text{new}}}} = \vec{v}(\Delta t) \tag{1}$$

где $\vec{v_{0}}_{\mathrm{new}}$ – новая начальная скорость;

 $ec{v}(\Delta t)$ – старая скорость в момент времени Δt .

Модель. Множество пар (t,S), где t — момент времени, а S — сцена. Иными словами, модель представляет собой цепочку сцен, для каждой из которой указан момент времени.

Сцена в момент времени t_1 – такая сцена S_0 через время t_1-t_0 , где пара (t_0,S_0) является членом модели, при этом соблюдается (2).

$$\forall (t, S) \in M \ (t \leqslant t_0 \lor t > t_1) \tag{2}$$

где M – модель;

 t_0 – время, выбранное для получения модели в момент времени t_1 ;

Иными словами, для того чтобы получить сцену в момент времени, надо из цепочки сцен найти такую, у которой время будет максимально, но при этом меньше требуемого момента времени и получить сцену через разность требуемого и найденого времени по формуле (1).

Столкновение. Так как тела не могут пересекаться, и при этом передвигаются, могут происходить столкновения. Так же тела не могут пересекаться с точками и линиями. Т.е. тела могут сталкиваться с телами, или линиями, или точками. Уравнение столкновения тела с телом (3)-через радиусвектор, (4)-через координаты.

$$|\vec{r_1} - \vec{r_2}| = r_1 + r_2 \tag{3}$$

где $\vec{r_1}$ – радиус-вектор положения первого тела;

 $\vec{r_2}$ – радиус-вектор положения второго тела;

 r_1 – радиус первого тела;

 r_2 – радиус второго тела.

$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} = r_1 + r_2 \tag{4}$$

где x_1 – координата положения первого тела по оси X;

 y_1 – координата положения первого тела по оси Y;

 x_2 – координата положения второго тела по оси X;

 y_2 – координата положения второго тела по оси Y .

Эти уравнения получены исходя из того что разность векторов является вектором из центра одного тела в центр другого [3, с. 39]. И тогда, если его длина равна сумме радиусов этих тел, значит тела столкнулись.

1.2 Формулы

Скорость при равноускоренном движении (5) ТООО [2, с. 96].

$$\vec{v}(t) = \vec{v_0} + \vec{a}t \tag{5}$$

где $\ \vec{v}(t)$ – вектор скорости тела в момент времени t;

 $\vec{v_0}$ – вектор начальной скорости тела;

 \vec{a} – вектор ускорения тела;

t — момент времени.

Причём вектор $\vec{v}(t)$ должен быть сонаправлен вектору $\vec{v_0}$, а вектор \vec{a} противонаправлен. Для того чтобы выяснить, при каких t сонаправленность векторов $\vec{v}(t)$ и $\vec{v_0}$ в уравнении (5) соблюдается, достаточно увидеть, что длина вектора $\vec{v_0}$ должна быть больше длине вектора $\vec{a}t$ и получить неравенство для t (6).

$$t < \frac{|\vec{v_0}|}{|\vec{a}|} \tag{6}$$

А для остальных $t, \vec{v}(t)$ следует принять нулю. Тогда получится система (7).

$$\vec{v}(t) = \begin{cases} \vec{v_0} + \vec{a}t, & 0 \leqslant t < \frac{|\vec{v_0}|}{|\vec{a}|}, \\ 0, & t \geqslant \frac{|\vec{v_0}|}{|\vec{a}|}. \end{cases}$$
 (7)

Проекции на ось абцисс (8) и ординат (9):

$$v_x(t) = \begin{cases} v_{0_x} + a_x t, & 0 \leqslant t < \frac{|\vec{v_0}|}{|\vec{a}|}, \\ 0, & t \geqslant \frac{|\vec{v_0}|}{|\vec{a}|}. \end{cases}$$
 (8)

где $v_x(t)$ – проекция вектора скорости тела $\vec{v}(t)$ в момент времени t на ось X; v_{0_x} – проекция вектора начальной скорости тела \vec{v}_0 на ось X; a_x – проекция вектора ускорения тела \vec{a} на ось X.

$$v_y(t) = \begin{cases} v_{0y} + a_y t, & 0 \leqslant t < \frac{|\vec{v_0}|}{|\vec{a}|}, \\ 0, & t \geqslant \frac{|\vec{v_0}|}{|\vec{a}|}. \end{cases}$$

$$(9)$$

где $v_y(t)$ – проекция вектора скорости тела $\vec{v}(t)$ в момент времени t на ось Y; v_{0y} – проекция вектора начальной скорости тела \vec{v}_0 на ось Y; a_y – проекция вектора ускорения тела \vec{a} на ось Y.

Теперь найдём формулу для траектории движения тела. Формуле, соответвующей (5), только для траектории, соответствует (10):

$$\vec{r}(t) = \vec{r_0} + \vec{v_0}t + \frac{\vec{a}t^2}{2} \tag{10}$$

где $\vec{r}(t)$ – радиус-вектор положения тела в момент времени t; $\vec{r_0}$ – радиус-вектор начального положения тела.

Исходя из (7), уравнение для траектории с учётом того, что вектор скорости должен быть противонаправлен вектору ускорения, будет (11):

$$\vec{r}(t) = \begin{cases} \vec{r_0} + \vec{v_0}t + \frac{\vec{a}t^2}{2}, & 0 \leqslant t < \frac{|\vec{v_0}|}{|\vec{a}|}, \\ \vec{r_0}, & t \geqslant \frac{|\vec{v_0}|}{|\vec{a}|}. \end{cases}$$
(11)

Соответствующие проекции на ось абцисс (12) и ординат (13):

$$x(t) = \begin{cases} x_0 + v_{0x}t + \frac{a_x t^2}{2}, & 0 \leqslant t < \frac{|\vec{v_0}|}{|\vec{a}|}, \\ x_0, & t \geqslant \frac{|\vec{v_0}|}{|\vec{a}|}. \end{cases}$$
(12)

где x(t) – координата положения тела $\vec{r}(t)$ в момент времени t на ось X; x_0 – координата начального положения тела $\vec{v_0}$ на ось X.

$$r_{y}(t) = \begin{cases} y_{0} + v_{0y}t + \frac{a_{y}t^{2}}{2}, & 0 \leqslant t < \frac{|\vec{v_{0}}|}{|\vec{a}|}, \\ y_{0}, & t \geqslant \frac{|\vec{v_{0}}|}{|\vec{a}|}. \end{cases}$$
(13)

где y(t) – координата положения тела $\vec{r}(t)$ в момент времени t на ось Y; y_0 – координата начального положения тела $\vec{v_0}$ на ось Y.

Формулы (12) и (13) являются ключевыми в этой работе.

2 Вторая глава

Здесь будет вторая глава

3 Третья глава

Здесь будет третья глава

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Здесь будет список использованных источников.
- 2. Роуэлл, Г. Физика : учебное издание / Г. Роуэлл, С. Герберт. Москва : Просвещение, 1994. 576 с. ISBN 5-09-002920-2.
- 3. Math for Progammers TODO https://www.manning.com/books/math-for-programmers