GNU T_EX_{MACS}, a free software platform for scientific editing*

BY FRANÇOIS POULAIN

LIX Laboratory, École Polytechnique, MAX Team

Email: fpoulain@lix.polytechnique.fr

^{*.} This document has been written using the GNU TEX_{MACS} text editor (see www.texmacs.org).

The T_EX_{MACS} project in summary

- Inspired from Emacs and LATEX.
- Project initiated by JORIS VAN DER HOEVEN, in 90's.
- Licenced under GNU GPL v3.
- Cross-platform (works under GNU/Linux, Windows, MacOS and some other unices).
- Mainly developed within MAX team, at LIX laboratory (in south of Paris).
- About 10 regular developers/contributors.
- 347 000 lines of code (almost Scheme and C++).
- Popcon Debian : around 1500 regular users.
- Current version : T_EX_{MACS} 1.0.7.19.
- Website: www.texmacs.org.
- Users' mailling list: texmacs-users@texmacs.org.

Example of use

Anyone caught using formulas such as $\sqrt{x+y} = \sqrt{x} + \sqrt{y}$ or $\frac{1}{x+y} = \frac{1}{x} + \frac{1}{y}$ will fail.

The binomial theorem is

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

A favorite sum of most mathematicians is

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Likewise a popular integral is

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$$

Theorem 1. The square of any real number is non-negative.

Proof. Any real number x satisfies x > 0, x = 0, or x < 0. If x = 0, then $x^2 = 0 \ge 0$. If x > 0 then as a positive time a positive is positive we have $x^2 = x$ x > 0. If x < 0 then -x > 0 and so by what we have just done $x^2 = (-x)^2 > 0$. So in all cases $x^2 \ge 0$.

See also: Noeth.tm

A structured word processor

Inspired from LATEX:

- We describe a document whereas drawing it (content/presentation separation).
- The content rendering is contextualized.
- We use stylesheets.

But:

- It's WYSIWYG! (no need to struggle with/against esoteric *TFX compiler).
- Not Ascii-only (scientific documents (even maths!!) has a right to pictures!).
- Abilities for interactive contents.
- Revised ergonomy (structured {browsing, editing, selecting}, menus and toolbars contextualized).

And also main features needed in a word processor:

- orthographic correction;
- slides mode;
- revision managment;
- etc.

Mathematic typography

Inputing formulas (e.g. fraction):

- Via the menus : e.g. Insert \rightarrow Fraction.
- Via LATEX 'compatibility mode' : e.g. \FRACReturn.
- Via T_EX_{MACS} shortcuts : *e.g.* Alt+F.

Efficient symbols inputing (in math mode \$):

- Via graphical mimetism : $e.g. = > insert \Rightarrow$; $\sim insert \simeq .$
- Via some variants : e.g. = > Tab insert ψ ; A Tab insert α .
- Via structure variants : e.g. switching between $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ and $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$.
- Comparison with L^AT_EX :

	LATEX	T _E X _{MACS}	
$\sum lpha^i$	p(x) = \sum \alpha^i	Shift+F5 Shift+S A Tab ~ I	
$a \neq 0 \Rightarrow a = 1$	a \neq 0 \Leftrightarrow a = 1	A = / 0 < = > A = 1	

Semantic editing:

$$O(O(d^{\omega} + \dots + \log_2 q))$$

$$O(d^{\omega} + \dots + \log_2 q)$$

Extensibility

Document programming:

- Variable assignation: $\langle \operatorname{assign} | \operatorname{speed} | \overrightarrow{V_{\operatorname{aero}}} \rangle$.
- Macros assignation: $\langle \operatorname{assign} | \operatorname{pderiv} | \langle \operatorname{macro} | \operatorname{what} | \operatorname{by} | \frac{\partial \operatorname{what}}{\partial \operatorname{by}} \rangle \rangle$

```
\langle \mathsf{pderiv} | \langle \mathsf{speed} \rangle | \mathsf{t} \rangle \quad \Rightarrow \quad \frac{\partial \overrightarrow{V_{\mathrm{aero}}}}{\partial t}
```

• Local assignation: $\langle with | color | red | Attention | !!! \rangle \Rightarrow Attention | !!! \rangle$

T_EX_{MACS} programming:

• TEX_{MACS} is dynamically extensible via Scheme.

```
Scheme] (kbd-map ("t h m" (make 'theorem)))))
```

• Any T_EX_{MACS} buffer is accessible and modifiable from Scheme.

```
Scheme] (tree-replace (buffer-tree) '(concat (TeXmacs) " programming:") "Foo bar")

Scheme] (tree-replace (buffer-tree) "Foo bar" '(concat (TeXmacs) " programming:"))
```

Interface for symbolic and algebraic calculus

Welcome to Mathemagix-light 0.4

This software falls under the GNU General Public License

It comes without any warranty whatsoever

www.mathemagix.org

(c) 2001-2010

Mmx] use "symbolix"

Mmx] derive $(p(x)^x, x)$

$$\left(\frac{p'(x) x}{p(x)} + \log(p(x))\right) p(x)^{x}$$

 $\begin{array}{c|c}
\mathsf{Mmx} & a & b \\
c & d
\end{array}$

ad-bc

$$\mathbf{Mmx} \left(\begin{array}{cc} a & 0 \\ b & c \end{array} \right) \left(\begin{array}{c} d \\ e \end{array} \right)$$

 $\left[\begin{array}{c} a d \\ b d + c e \end{array}\right]$

Mmx]
$$\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}$$

 $\begin{bmatrix} a & 0 \\ b & c \end{bmatrix}$

Interface for numeric calculus

```
scilab-5.3.3

Consortium Scilab (DIGITEO)
Copyright (c) 1989-2011 (INRIA)
Copyright (c) 1989-2007 (ENPC)
```

```
-->A=[0,1;0,0]
-->B=[1;1];
-->C=[1,1];
-->S1=syslin('c',A,B,C)
 S1 =
 \begin{cases} \dot{X}(t) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} X(t) + \begin{pmatrix} 1 \\ 1 \end{pmatrix} U(t) \\ Y(t) = \begin{pmatrix} 1 & 1 \end{pmatrix} X(t) \end{cases}
-->ss2tf (S1)
```

```
ans = \frac{1+2s}{s^2}
```

Advanced Interfaces for symbolic calculus

Switches:

Mathemagix derive(p(x)^x, x)
$$\Rightarrow \left(\frac{p'(x)x}{p(x)} + \log(p(x))\right)p(x)^x$$

• Substitution:

The derivative of $p(x)^x$ w.r.t x is: $derive(p(x)^x, x)$.

Ctrl+Return
$$\Rightarrow$$
 The derivative of $p(x)^x$ w.r.t x is: $\left(\frac{p'(x)\,x}{p(x)} + \log\left(p(x)\right)\right)p(x)^x$.

Label/reference evaluation:

The derivative of $p(a)^x$ w.r.t. x is: x

- \Rightarrow The derivative of $p(a)^x$ w.r.t. x is: $p(a)^x \log(p(a))$.
- Spreadsheet:

ax	=derive $(a1, x)$		ax	a
x^a	=derive $(a2, x)$	\Rightarrow	x^a	$x^{a-1}a$
u(x) v(x)	=derive $(a3, x)$		u(x) v(x)	u'(x) v(x) + v'(x) u(x)

Interoperability

Possibles imports:

- HTML / MathML.
- LATEX (demo).
- BibT_EX.

Possibles exports:

- Paper (ps, pdf).
- Web (HTML/MathML).
- LATEX.
- BibT_EX.
- XML Tree (without DTD).
- Plain text.