COMP207 Database Development

2023-24

Rasmus Ibsen-Jensen

What is this course all about?

Databases...

Roughly half is also about concurrency

Questions?

- If you have a question, pick one:
 - If during a lecture, you can raise your hand and I will let you ask it when I notice you
 - You can ask after/before a lecture
 - Just outside this room however
 - Ask during the labs I attend
 - I intend to attend every second week
 - Ask on the online discussion board
 - If the question is personal and should not be shared, you can ask it by email:

R.Ibsen-Jensen@Liverpool.ac.uk

Attendance monitoring

- As you might have heard, we are required to monitor attendance in lectures
- It is done as follows:
 - You log in on timetables.liverpool.ac.uk
 - or download UoL timetables app
 - You find the session you want to register for
 - during the session
 - You click on it
 - Click on "Register your attendance"
 - You then write in a 6-digit code we give you during each session
 - Click "Register"

Databases are everywhere

Topics >

Current edition

More ∨

Regulating the internet giants

The world's most valuable resource is no longer oil, but data

The data economy demands a new approach to antitrust rules

Print edition | Leaders >

May 6th 2017

... and are valuable

Online store

Social media site

Airline/train/hotel reservation

– many more –

many at the same time

loading the homepage of a user requires accessing 100s of servers

Roughly 1.62 billion users daily

Roughly 5 million servers in 2020 (from: power usage (7.1 terawatts) and avg server (around 1megawatt) and a few more details)

Requires extremely efficient systems for querying data, and for storing and manipulating data in a safe way.

loading the homepage of a user requires accessing 100s of servers

Roughly 1.62 billion users daily

Roughly 5 milion servers in 2020 (from: power usage (7.1 terawatts) and avg server (around 1megawatt) and a few more details)

Databases Drives Businesses

- Banking: debit/credit card transactions
 - E.g., in stores/super markets, at ATMs, etc.
- Stock market
- Big companies & organisations:
 - Employees, customers, products, sales, schedules, logistics, clients, etc.
 - Purposes:
 - Some are worthwhile directly
 - Management, data analytics and decision making

Databases in Science & Public Service

- Science: for data management and data analysis in
 - Astronomy
 - Human Genome
 - Biochemists exploring properties of proteins
 - Biology and life sciences
 - Geology
- Medicine/NHS:

Not always using proper databases!

- Patient records
- Diseases and their relationships, treatments, etc.
- Decision making
- Many others

NHS example

University of Liverpool example

Student > News

Students furious as Liverpool University emails the wrong results

Early Data Management

- Early DBMS of the 1960's were based on this idea
- Disadvantages:
 - difficult to program
 - not very robust, especially when dealing with updates to data by many users in parallel

Hard to add fields or new efficient

queries

```
class Student {
    String name;
    int number;
    String programme;
    ...
}

Vector<Student>
students;
...
```

```
Anna, 20181989, G402
John, 20184378, G702
...
```

External data file

Relational Databases to the Rescue...

- Modern database management systems (DBMSs) are based on 50+ years of database research
 - Very sophisticated tools
 - Can manage very large amounts of data over a long period of time

Highly efficient, flexible, robust

Relational Model

Data organised as relations ("tables")

Items		Employees			
		birthday	first_name	family_name	
name	price	1990-11-	Anne	Smith	
2L Cola	3.00	10	,c	oe.i	
Banana	0.10	2000-02-	David	Jones	
	•••	05			

- Data is queried/modified at a high level (e.g. via SQL)
 - No need to know how data is stored and where
- Introduced in 1970, most dominant model by 1990

"Relational DBMS are one of the biggest success stories in computer science."

- a colleague, 2012

Also: one of the most complex pieces of software...

Course overview

• What are we doing in each week?

Basics of SQL and the relational model

- First two weeks (week 1-2):
 - We will show you how to make relational databases
 - How to insert/delete/query them

Student		Module			
		code	name	lecturer	
name	number	COMP207	Database	R. Ibsen-Jensen	
Anna	20181989		Development		
John	20184378	COMP219	Artificial Intelligence	F. Oliehoek	

Relational DBMS Components

(Simplified)

Beyond Plain Relational DBMS

- Distributed DBMSs (week 7)
- Beyond relational data (week 8-9)
- Data warehouses/analysis/mining (week 10)

What you should be able to do at the end

(Learning Outcomes)

- Basic/advanced SQL:
 - Application in problem solving (focused on in week 1,2 and 6)
- Transaction management:
 - Identify and apply the principles underpinning transaction management within DBMS (focused on in weeks 3,4,5 and 7)
- Web technologies:
 - Illustrate issues related to web technologies as a semistructured data representation formalism (focused on in weeks 8 and 9)
- Data warehouses and data mining:
 - Interpret the main concepts and security aspects in data warehousing
 - Interpret the main concepts of data mining
 - Focused on in week 10

Topics We Will Not Cover

- No modelling of databases
- No administration of DBMS
- No implementation of database system components

Some words on logistics...

Lectures & Labs/Tutorials

- 20 "lectures" in total (week 1-10)
- 10 weeks of labs (starts in week 2)
 - Each week, you have 1 lab hour
 - You should be assigned to one of the lab sessions
 - If not: let me know as soon as possible

Format for lectures

- Each week we have 2 "lectures"
- The lectures will focus on examples: You NEED to watch the online videos for definitions and similar before the Thursday lecture
 - Exception: The first two weeks focus on SQL and should be possible to follow without the videos
 - If you struggle (with or) without watching let me know
 - From week 3 onwards, I very much expect that you won't be able to follow the lectures if you did not watch the videos
 - If you struggle while watching, do let me know
 - If you do manage without the videos and no prior knowledge on the subject, do let me know, because I would be impressed

Resources

- Course page on Canvas:
 - Announcements, videos, slides, assessments, stream lectures, discussion board, etc.
 - Let me know if you don't have access
- Textbooks (any is fine):
 - Garcia-Molina, Ullman and Widom:
 Database Systems The Complete Book,

 Pearson Education
 - Free e-book
 - Elmasri and Navathe: Fundamentals of Database Systems, Pearson Education
 - Also free e-book, but that might be removed
 - Connolly and Begg: Database Systems, Addison Wesley
- Your own notes + the web

Exam

- The exam is 60% of your grade
- It has 30 MCQs
- Each MCQ has:
 - 5 options and you pick one
 - One is correct
 - Each correct answer gives 1 point (i.e. 2% of the final grade), and each wrong answer 0 point
- You will get more information about it in the last lecture and get some mock exams and similar towards the end

Main assessment

- There will be a 25% main, practical assessment in SQL with deadline Wednesday the 8th of November
- Will discuss this main assessment next week

Weekly assessment

- There will be a weekly assessment, one for each of the 10 weeks
 - Each will have 3 MCQs similar to the exam
 - Each will give 1.5% and you will have 30 mins to do it once started (i.e. each question gives 0.5%)
 - You will get access to it on Tuesday each week
 - You should do it before Monday at 17:00 two weeks later (to let you have the labs first)
 - Means: you got the one for the lectures this week this Monday and have to finish it not next Monday, but the one after that
 - Similar for the remaining weeks

Weekly survey

- Each week, there will be a survey, asking the following questions:
 - Can you list 1-3 things that worked particularly well this week (and come with feedback explaining why you liked that if possible)?
 - Can you list things that did not work well during this week (1-3, but if there are more, please list those as well) - preferably with some explanation if it is not self-evident.

Typical weekly lectures

- Tuesday lecture:
 - What I'll do about the weekly survey from previous week (not this week)
 - Walkthrough of just finished weekly assessment
 - (not this or next week though)
 - Examples
- Thursday lecture:
 - A brief summary of that week's videos
 - Examples

Summary

- Database systems
 - Success story...
- Understanding how they work is important
 - For practitioners and researchers alike
 - This is what this course is about
- For next lecture:
 - Familiarise yourself with the Canvas course page
 - Keep checking timetables for first few weeks