Hospital Length of Stay Model Analysis

By: Jack Locke

Summary

Predict the length of stay for patients in the hospital

Important Features:

- Disposition
- Diagnosis
- Procedure

Outline

- Business Problem
- Data Understanding
- Limitations
- Features
- Model/Evaluation
- Conclusion
- Next Steps

Business Understanding

- Healthcare Hospital Chain; improve resource allocation and patient care
- Goal: predict patients length of stay
- Increased knowledge → better healthcare management → overall growth

Data Understanding

- New York, Brooklyn, inpatient discharge data
- "The Statewide Planning and Research Cooperative System (SPARCS) Inpatient De-identified dataset. From patient characteristics such as age group, gender, race and ethnicity to diagnoses, treatments, services and charges."
- 300,000 rows and 38 columns

Limitations

- Account for all patient data
- Account for every length of stay
- Reproducibility:
 - One county, one city, hospital sizes
- Patterns/trends
- Data Enrichment

Feature 1: Disposition vs. Length of stay

Feature 2: Diagnosis vs. Length of Stay

Feature 3: Procedure vs. Length of Stay

Model/Evaluation

Model = ~74%

• Error = 4.35 days

Reproducibility

Conclusion

- Predict length of stay for patients
- Increased knowledge → better healthcare management → company growth
- Three features:
 - o Disposition, Diagnosis, Procedure
- Model = ~74%

Next Steps

- Data Enrichment
- Gather patient data
 - Different counties
 - Different states
 - Different sized facilities
- More reliable/accurate model

Questions

Thank you!

Email: jackdlocke@gmail.com

Github: https://github.com/johnlocke333/h1n1_flu_analysis

LinkedIn: www.linkedin.com/in/john-l-276395142