

Deep Learning Tutorial

Ibrahim Radwan

What you will learn

- What are the Convolutional Neural Networks?
- Convolution operation.
- Rectifier Linear Units (ReLUs)
- Pooling
- Flattening
- Full connection
- Summary
- Softmax and Cross-entropy

Convolutional Neural Networks

How does the brain work and classify an image?

The answer is the features and the structure of the image.

Duck or Rabbit?

Convolutional Neural Networks

Convolutional Neural Networks

What does the computer see?

Convolution

$$(f * g)(t) \int_{-\infty}^{\infty} f(\tau)g(t - \tau)dt$$

Convolution

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	~	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	0	1
1	0	0
0	1	1

Feature detector

0	1	0	0	0
0	1	1	1	0
1	0	1	2	1
1	4	2	1	0
0	0	1	2	1

Feature map

Input image

Stride = 1 Kernel size = 3x3

Convolution

- Size of the image is reduced.
- Are we losing information? Yes, but we concentrate more on the important parts.
- With many kernels/filters, we could encode many features from the images.
- The weights of the kernels are initialized randomly.

Recap

 Convolutional layers are extracting the features of the objects in the image while it keeps the spatial relationships between the pixels

Rectifier Linear Units (ReLUs)

This is to motivate the model to encode the non-linearity structure of the inputs

Different poses
Different rotation
Different lighting conditions
etc.

CNN should be spatial invariant

- Max-pooling
- Average-pooling
- Sum-pooling

 If there is a rotation, for example, where 4 in the box to left, it still get the important feature (4)

More over, we reduce the size of feature map

We reduce the parameter size to, for example, 75% removed. This reduce over-fitting

Mean Pooling/ Average Pooling

Sub-sampling is just taking the average

Additional reading

 Evaluation of Pooling Operations in Convolution Architectures for Object for Object Recognition.

By Dominik Scherer et al (2010)

Recap

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	~	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	1	0	0	0
0	1	1	1	0
1	0	1	2	1
1	4	2	1	0
0	0	1	2	1
	0 1 1	0 1 1 0 1 4	0 1 1 1 0 1 1 4 2	0 1 1 1 1 0 1 2 1 4 2 1

	1	1	0
Pooling	4	2	1
	0	2	1

Input image

Feature detector

Feature map

Pooled feature map

Example

www.scs.ryerson.ca/~aharley/vis/conv/flat.html

Flattening

1	1	0
4	2	1
0	2	1

Flattening

Pooled feature map

4

Input to ANNs

Recap

Recap

Input to ANNs

.

Full Connection

Training

Forward propagation

Training

- Two type of parameters are adjusted:
 - Fully connected layers' weights.
 - Values of the kernels/Filters.
- Please Note that in CNNs, the cost function is called "Loss-function".

Summary

Additional reading

- Great blog by Adit Dishpande(2016)
 - "The 9 deep learning papers you need to know, (understanding CNNs, part3)".

Drop-out

- The main idea is to allow the network to ignore some units and their weights in either the visible or hidden layers for seek of generality.
- Drop-out reduces overfitting the model on the training data.
- 20% drop-out means 1 node from 5 will not be updated during the training.

Momentum

 Momentum is a technique that accelerates the gradient descent direction toward the minimum.

Let us Practice!