Standard vs. Nested Form

Methods

Bisection Method

Standard Form:	$a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$
Nested Form:	$a_0 + x(a_1 + a_2x + \dots + a_nx^{n-1})$

Sig Fig Rounding

4-Digit Example	
37.21429	37.21
0.002271828	0.002272
3000527.11059	3001000

Bit Preciscion

	sign	exponent	mantissa	machine e
single	1	8	23	2^{-23}
double (default)	1	11	52	2^{-52}
long double	1	15	64	2^{-64}

sign mantissa exponent $\rightarrow 1.b_1b_2\cdots b_n \times 2^{I}$
--

Error Calculation

$$x_e = \text{Exact}, \ x_a = \text{Approximate}$$
 Abs err = $|x_e - x_a|$ Rel err = $\frac{|x_e - x_a|}{x_e}$

Worst case error = $0.5 \cdot 10^{-P+1}$

Loss of Significance

$$a - b = \frac{a^2 - b^2}{a + b}$$

Theorems

Intermediate Value Theorem

If f(x) is continuous on [a, b] and $f(a) \neq f(b)$, then for any y in $[f(a), f(b)] \exists c \in [a, b]$ such that f(c) = y

Mean Value Theorem

If
$$f'(x)$$
 is continuous on $[a, b]$,
then $\exists c \in [a, b]$ such that $f'(c) = (f(b) - f(a))/(b - a)$

Rolle's Theorem

If
$$f'(x)$$
 is continuous on $[a, b]$ and $f(a) = f(b)$,
then $\exists c \in [a, b]$ such that $f'(c) = 0$

Taylor Series

$$P_k(x) = \sum_{n=0}^k \frac{f^{(n)}(a)}{n!} (x - a)^n$$
$$E_{k+1} = \frac{f^{(k+1)}(c)}{(k+1)!} (x - x_0)^{k+1}$$

Matrix

Gaussian Elimination $O(\frac{2n^3}{3})$

Back Substitution $O(n^2)$

LU Factorization Gaussian + 2 * Back Sub

1. Choose a, b such that $f(a) \cdot f(b) < 0$

2. Compute $c = \frac{a+b}{2}$

3. If f(c) and f(a) have opposite signs, then b=c

4. If f(c) and f(b) have opposite signs, then a=c

5. If $|b-a| < \epsilon$ or f(c) = 0 then c is the solution

$$\operatorname{Error} = \frac{b-a}{2^{n+1}}$$

$$\operatorname{Steps}(\epsilon) = \left\lceil \frac{\ln(b-a) - \ln(\epsilon)}{\ln(2)} - 1 \right\rceil$$

Newton's Method

1.
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

2. If $|x_1 - x_0| < \epsilon$ or $f(x_1) = 0$ then x_1 is the solution

Multiplicity

If
$$f^{(m-1)}(r_0) = 0$$
 and $f^{(m)}(r_0) \neq 0$,

then $f^{(m)}(r_0)$ is a root of multiplicity m

$$m=1$$
 $m>1$ $m>1$ $M=\frac{1}{2}\left|\frac{f''(r_0)}{f'(r_0)}\right|$ $e_{i+1}\approx \frac{m-1}{m}e_i$ $e_{i+1}\approx Me_i^2$

Secant Method

$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

Convergence

$$e_{i+1} \approx M e_i^p$$

$$p = \frac{1+\sqrt{5}}{2} \text{ (Golden Ratio)}$$

False Position Method Same as Bisection Method, but

$$c = a - \frac{f(a)(b-a)}{f(b) - f(a)}$$

Convergence - Generally same as Bisection Fixed Point Iteration

1. Solve f(x) for x = g(x)

$$g(x) = 2.8x - x^{2} = x$$
$$1.8x - x^{2} = 0$$
$$x(1.8 - x) = 0$$
$$x = 0, 1.8$$

$$f(x) = 2x^3 - 6x - 1$$
$$g(x) = \frac{2x^3 - 1}{6}$$

2. If $|g'(r_n)| < 1$, fixed point will converge to r_n

LU Factorization on back