Diskrete Strukturen (WS 2024-25) - Halbserie 4

 $4.1 ag{5}$

Bitte direkt auf Moodle als Quiz antworten.

$$4.2 ag{1}$$

Geben Sie zwei **Relationen** R_1 und R_2 jeweils auf der Menge \mathbb{N} an, sodass

- 1. R_1 reflexiv, symmetrisch, und nicht transitiv ist, z. B. $R_1 = \{(a, b) \in \mathbb{N} \times \mathbb{N} \mid |a b| \leq 1\}$
- 2. R_2 symmetrisch, nicht transitiv, und nicht reflexiv ist, z. B. $R_2 = \{(a, b) \in \mathbb{N} \times \mathbb{N} \mid |b a| = 1\}$

$$4.3 ag{4}$$

(Alternives geordnetes Paar) Seien A, B, C, D vier beliebige Objekte. Zeigen Sie dass

$$\left\{ \{\{A\},\emptyset\},\{\{B\}\}\right\} = \left\{ \{\{C\},\emptyset\},\{\{D\}\}\right\}$$

genau dann wenn A = C und B = D.

Solution. Wenn A = C und B = D dann die gleichheit $\{\{A\}, \emptyset\}, \{\{B\}\}\} = \{\{\{C\}, \emptyset\}, \{\{D\}\}\}\}$ ist klar.

Nehmen wir jetzt an, dass

$$\{\{\{A\},\emptyset\},\{\{B\}\}\} = \{\{\{C\},\emptyset\},\{\{D\}\}\}\}\tag{1}$$

Wir bemerken erst, dass

$$|\{\{B\}\}|=1=|\{\{D\}\}|$$

und

$$|\{\{A\},\emptyset\}| = 2 = |\{\{C\},\emptyset\}|,$$

da $\{A\}$ ich nicht die leere Menge.

Also in (1) die beiden Seite haben genau zwei Elemente. Diese Zwei Elemente sind jeweils zwei Mengen mit Kardinalität 1 und 2. Das heißt, dass wenn (1) gilt dann

$$\{\{B\}\}=\{\{D\}\},\$$

und insbesondere $\{B\} = \{D\}$ und daraus folgt B = D.

Ähnlich, leiten wir ab dass

$$\{\{A\},\emptyset\} = \{\{C\},\emptyset\}.$$

Da $\{A\}$ keine leere Menge ist, müssen wir haben dass $\{A\} = \{C\}$ und deswegen A = C.

- **4.4** Wir definieren für jedes $n \in \mathbb{N}$ mit n > 0 eine Relation \equiv_n auf der Menge \mathbb{Z} durch $(a,b) \in \equiv_n$ genau dann, wenn n ist ein Teiler von a-b.
 - 1. Zeigen Sie, dass \equiv_n für jedes $n \in \mathbb{N}$ eine Äquivalenzrelation ist.
 - 2. Geben Sie für n = 5 alle **Äquivalenzklassen** von \equiv_n an.

Solution.

- 1. Wir zeigen, dass die Relation \equiv_n reflexiv, symmetrisch und transitiv ist:
 - Reflexivität: Sei $a \in \mathbb{Z}$. Es gilt a a = 0. Da n ein Teiler von 0 ist, gilt also auch $(a, a) \in \Xi_n$.
 - Symmetrie: Gelte $(a, b) \in \equiv_n$. Dann ist n ein Teiler von a b. Nun gilt aber auch $b a = -1 \cdot (a b)$. Also teilt n auch b a und damit gilt $(b, a) \in \equiv_n$.
 - Transitivität: Gelte $(a, b) \in \equiv_n$ und $(b, c) \in \equiv_n$. Dann ist n ein Teiler von a b und von b c. Folglich teilt n auch die Summe (a b) + (b c), das ist a c. Also gilt $(a, c) \in \equiv_n$.
- 2. Die Äquivalenzklassen sind $K_i = \{5n + i \mid n \in \mathbb{Z}\}$ für alle $i \in \{0, 1, 2, 3, 4\}$.
- **4.5** Gegeben sei die Menge $M = \{1, 2, 3, 4\}$ und die folgende **Relation** $R \subseteq M \times M$:

$$R := \{(1,2), (2,3), (3,4), (2,1), (3,2), (4,3)\}.$$

- 1. Geben Sie die **Komposition** R;R an.
- 2. Welche der folgenden **Eigenschaften** besitzt R;R? Beweisen Sie Ihre Antwort.
 - (a) reflexiv Ja. $(1,1), (2,2), (3,3), (4,4) \in R; R$
 - (b) antisymmetrisch Nein. $(1,3), (3,1) \in R$; R und $1 \neq 3$
 - (c) vollständig Nein. $(1,2), (2,1) \notin R; R$

Solution. $R; R = \{(1,3), (1,1), (2,4), (2,2), (3,3), (3,1), (4,2), (4,4)\}.$

4.6 Gegeben sei die Menge $M = \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ und folgende **Relation** $R \subseteq M \times M$:

$$R = \left\{ \left((n_1, z_1), (n_2, z_2) \right) \in M \times M \mid n_1 \cdot z_2 = n_2 \cdot z_1 \right\}$$

Zeigen Sie, dass R eine Äquivalenzrelation ist.

Solution. Wir zeigen, dass R reflexiv, symmetrisch und transitiv ist.

- Sei $(n, z) \in M$. Klarerweise gilt $n \cdot z = n \cdot z$. Also gilt nach Definition von R auch $((n, z), (n, z)) \in R$, d. h. R ist reflexiv.
- Sei $((n_1, z_1), (n_2, z_2)) \in R$. Nach Definition von R gilt also $n_1 \cdot z_2 = n_2 \cdot z_1$. Wegen der Symmetrie von = gilt $n_2 \cdot z_1 = n_1 \cdot z_2$. Also gilt nach Definition von R auch $((n_2, z_2), (n_1, z_1)) \in R$, d. h. R ist symmetrisch.
- Seien $((n_1, z_1), (n_2, z_2)), ((n_2, z_2), (n_3, z_3)) \in R$. Es gilt also $n_1 \cdot z_2 = n_2 \cdot z_1$ und $n_2 \cdot z_3 = n_3 \cdot z_2$. Wegen der ersten Gleichung gilt $z_2 = (n_2 \cdot z_1)/n_1$. Das setzen wir in die zweite Gleichung ein und erhalten: $n_2 \cdot z_3 = (n_3 \cdot n_2 \cdot z_1)/n_1$. Zwei weitere einfache Umstellungen (Multiplikation von n_1 , Division von n_2) ergeben $n_1 \cdot z_3 = n_3 \cdot z_1$. Also gilt nach Definition $((n_1, z_1), (n_3, z_3)) \in R$, d. h. R ist transitiv.
- **4.7** Gegeben sei die Menge $M = \{\{1,2\}, (a,b), \emptyset\}$. Geben Sie alle **Zerlegungen** von M an.

Solution. Es gibt folgende Zerlegungen:

- $\{\{\{1,2\}\}, \{\emptyset\}, \{(a,b)\}\}$
- $\{\{\{1,2\}\}, \{\emptyset, (a,b)\}\}$
- $\{\{\{1,2\},\emptyset\},\{(a,b)\}\}$
- $\bullet \ \{\{\{1,2\},(a,b)\},\{\emptyset\}\}$
- {*M*}