Minimum Penalty Path

Consider an undirected graph containing \$N\$ nodes and \$M\$ edges. Each edge \$M_i\$ has an integer *cost*, \$C_i\$, associated with it.

The *penalty* of a path is the *bitwise OR* of every edge cost in the path between a pair of nodes, \$A\$ and \$B\$. In other words, if a path contains edges \$M_1, M_2, \ldots, M_k\$, then the penalty for this path is \$C_1\$ **OR** \$C_2\$ **OR** ... **OR** \$C_k\$.

Given a graph and two nodes, \$A\$ and \$B\$, find the path between \$A\$ and \$B\$ having the *minimal possible penalty* and print its penalty; if no such path exists, print \$-1\$ to indicate that there is no path from \$A\$ to \$B\$.

Note: Loops and multiple edges are allowed. The bitwise OR operation is known as **or** in Pascal and as | in C++ and Java.

Input Format

The first line contains two space-separated integers, \$N\$ (the number of nodes) and \$M\$ (the number of edges), respectively.

Each line \$i\$ of the \$M\$ subsequent lines contains three space-separated integers \$U_i\$, \$V_i\$, and \$C_i\$, respectively, describing edge \$M_i\$ connecting the nodes \$U_i\$ and \$V_i\$ and its associated penalty (\$C_i\$).

The last line contains two space-separated integers, \$A\$ (the starting node) and \$B\$ (the ending node), respectively.

Constraints

- \$1 \leq N \leq 10^3\$
- \$1 \leg M \leg 10^4\$
- \$1 \leq C i < 1024\$
- \$1 \leq U i, V i \leq N\$
- \$1 \leq A, B \leq N\$
- \$A \neq B\$

Output Format

Print the minimal penalty for the optimal path from node \$A\$ to node \$B\$; if no path exists from node \$A\$ to node \$B\$, print \$-1\$.

Sample Input

```
3 4
1 2 1
1 2 1000
2 3 3
1 3 100
1 3
```

Sample Output

3

Explanation

The optimal path is \$1 \rightarrow 2 \rightarrow 3\$.

$$C_{(1,2)}=1$$
 and $C_{(2,3)}=3$.

The penalty for this path is: \$1\$ **OR** \$3 = 3\$, so we print \$3\$.