Proposition: For all $n, m \in \mathbb{N}$, it follows that

$$S_n: \sum_{i=0}^n i\binom{m+i}{m} = n\binom{m+n+1}{m+1} - \binom{m+n+1}{m+2}.$$

Proof. (Induction).

Basis step. Suppose
$$n=1$$
 and $m \in \mathbb{N}$. Observe that
$$\sum_{i=0}^{1} i \binom{m+i}{m} = \binom{m+1}{m} = \frac{(m+1)!}{m!(m+1-m)!} = m+1 = m+2-1 = \frac{(m+2)!}{(m+1)!(m+2-(m+1))!} - 1 = \binom{m+1+1}{m+1} - \binom{m+1+1}{m+2}.$$
 Thus S_1 .

Inductive step. Suppose S_n for $n, m \in \mathbb{N}$.

We now show S_n implies S_{n+1} . Observe that

$$\sum_{i=0}^{n+1} i \binom{m+1}{m} = \left[\sum_{i=0}^{n} i \binom{m+1}{m} \right] + (n+1) \binom{m+n+1}{m} \tag{1}$$

$$= n \binom{m+n+1}{m+1} - \binom{m+n+1}{m+2} + (n+1) \binom{m+n+1}{m}$$
 (2)

$$= n \binom{m+n+1}{m+1} + \binom{m+n+1}{m+1} - \binom{m+n+1}{m+1} - \binom{m+n+1}{m+2} + (n+1) \binom{m+n+1}{m}$$
(3)

$$= (n+1)\binom{m+n+1}{m+1} + (n+1)\binom{m+n+1}{m} - \binom{m+n+1}{m+1} - \binom{m+n+1}{m+2}$$
(4)

$$= (n+1) \left[\binom{m+n+1}{m+1} + \binom{m+n+1}{m} \right] - \left[\binom{m+n+1}{m+1} + \binom{m+n+1}{m+2} \right]$$
 (5)

$$= (n+1) \binom{m+1}{m+1} - \binom{m+n+2}{m+1} - \binom{m+n+2}{m+2}$$
 (Def. of Pascal's triangle)

$$= (n+1) \binom{m+(n+1)+1}{m+1} - \binom{m+(n+1)+1}{m+2}.$$
 (7)

(6)

Thus S_{n+1} .

It follows by mathematical induction that S_n for all $n, m \in \mathbb{N}$.