Lezione 26 Analisi Reale

Federico De Sisti 2025-05-28

0.1 Ricapitolando

$$\int_{X\times Y} \chi_P(x,y) d(\mu \times \nu) = \mu \times \nu(P) = \int_X \int_Y \chi_P(x,y) d\mu d\nu = \int_X \int_Y \chi_P d\nu d\mu.$$

In particolare se $P = A \times B \Rightarrow \mu \times \nu(A \times B) = \mu(A) \cdot \nu(B)$

 $\forall E \subseteq X \times Y \ \mu \times \nu(E) = \inf\{\mu \times \nu(P), P \text{ plurirettangolo, } E \subseteq P\}$

$$E \subseteq P \Rightarrow \mu \times \nu(E) \leq \mu \times \nu(P) \Rightarrow \mu \times \nu(E) \leq \inf\{\mu \times \nu(P), P \supseteq E\}$$

$$E \subseteq P \Rightarrow \mu \times \nu(E) \leq \mu \times \nu(P) \Rightarrow \mu \times \nu(E) \leq \inf\{\mu \times \nu(P), P \supseteq E\}$$

$$E \subseteq \bigcup_{i=1}^{+\infty} A_i \times B_i = P \Rightarrow \sum_{k=1}^{+\infty} \mu(A_i)\nu(B_i) \geq \mu \times \nu(P) \geq \inf\{\mu \times \nu(P), P \supseteq E\}$$

 $\mu\times\nu(E)\inf\{\mu\times\nu(P),P\supseteq E\}$

 $\Rightarrow P$ plurirettangolo $\Rightarrow P \in M_{\mu \times \nu}$

 $\forall E \subseteq X \times Y \quad \exists P_{\infty} = \bigcap_{k=1}^{+\infty} P_k, P_k \text{ plurirettangolo.}$

tale che $P_{\infty} \supseteq E$ e $\mu \times \nu(P_{\infty}) = \mu \times \nu(E)$

Quindi integrare secondo la misura prodotto è equivalente a integrare prima su una misura e poi sull'altra.

Lemma 1

Sia $\{P_k\}$ una successione decrescente di plurirettangoli di misura $\mu \times \nu$ finita.

P₁ \supseteq P₂ $\supseteq \ldots$, $\mu \times \nu(P_k) < +\infty$ $\forall k$ e sia $P_{\infty} = \bigcap_{k=1}^{+\infty} P_k$ Allora $\forall y \in Y, \chi_{P_{\infty}}(\cdot, y)$ \grave{e} μ -misurabile, $y \to \int_X \chi_{P_{\infty}}(x, y) d\mu$ \grave{e} ν -misurabile $\forall x \in X, \chi_{P_{\infty}}(X, \cdot)$ \grave{e} ν -misurabile, $x \to \int_X \chi_{P_{\infty}}(x, y) d\nu$ \grave{e} μ -misurabile.

$$\mu \times \nu(P_{\infty}) = \int_{V} \int_{Y} \chi_{P_{\infty}}(x, y) d\mu d\nu = \int_{Y} \int_{V} \chi_{p_{\infty}} d\nu d\mu.$$

Osservazione

Quindi ciò che vale in generale per i plurirettangoli vale anche per il limite dell'intersezione.

Dimostrazione

$$\mu \times \nu(P_{\infty}) = \lim_{k \to +\infty} \mu \times \nu(P_k) = \lim_{k \to +\infty} \int_{Y} \int_{X} \chi_{P_k}(x, y) d\mu d\nu$$

Il primo passaggio è giustificato dal fatto che $\{P_k\}$ è una successione decrescente di misurabili di misura finita.

$$\chi_{P_{\infty}}(x,y) = \lim_{k \to +\infty} \chi_{p_k}(x,y) \quad \forall x \in X, \ \forall y \in Y.$$

 $\chi_{P_{\infty}}(\cdot,y) \ \dot{e} \ \mu$ -misurabile $\forall y \in Y$

 $\chi_{P_{\infty}}(x,\cdot) \ \dot{e} \ \nu$ -misurabile $\forall x \in X$

Per passare al limite all'interno dell'integrale devo dimostrare che la prima funzione (la più grande) abbia integrale finito.

$$\mu \times \nu(P_1) = \int_{Y} \int_{X} \chi_{P_1}(x, y) d\mu d\nu < +\infty.$$

$$\Rightarrow per \ quasi \ ogni \ y \qquad \int_X \chi_{P_1}(x,y) d\mu < +\infty$$

$$\lim_{k \to +\infty} \int_X \chi_{P_k}(x,y) d\mu = \int_X \chi_{P_\infty}(x,y) d\mu.$$

per ν -quasi ovunque $y \in Y$

$$\psi_k(y) = \int_X \chi_{P_k}(x, y) d\mu.$$

$$\psi_k(y) \xrightarrow{k \to +\infty} \psi(y) = \int_X \chi_{P_\infty}(x,y) d\mu \text{ per } \nu \text{ quasi ogni } y$$

$$\lim_{k \to +\infty} \int_Y \psi_k(Y) d = \int_Y \psi(y) d\nu \qquad per \text{ convergenza monotona}$$

$$\int_Y \psi(y) d\nu = \int_Y \int_X \chi_{P_\infty}(x,y) d\mu d\nu.$$

Lemma 2

Sia $N \subseteq X \times Y$ tale che $\mu \times \nu(N) = 0$

 \Rightarrow per ν -quasi ogni $y \in Y$ fissato, $\chi_N(\cdot, y)$ è μ -misurabile $y \to \int_X \chi_N(x, y) d\mu$ è ν -misurabile (definita q.o.)

per μ -quasi ogni $x \in X$ fissato, $\chi_N(x,\cdot)$ è ν -misurabile e $x \to \int_V \chi_N(x,y) d\nu$ è μ -misurabile (definita q.o.)

e inoltre $\int_{Y} \int_{X} \chi_{N(x,y)} d\mu d\nu = \int_{X} \int_{Y} \chi_{N}(x,y) d\nu d\mu = 0 = \mu \times \nu(N)$

Dimostrazione

 $\mu \times \nu(N) = 0 = \inf\{\mu \times \nu(P), P \ \textit{plurirettangolo}, \ P \supseteq N\}$ $\exists \{P_k\}$ successione di plurirettangoli con $P_k \supseteq N$ tale che $\mu \times \nu(P_k) < \frac{1}{k} \ \forall k$ $Eventualmente\ sostituendo$

$$P_k \quad con \quad P'_k = \bigcap_{j=1}^k P_j.$$

si può supporre
$$P_1 \supseteq P_2 \supseteq \dots$$

 $N \subseteq P_k \ \forall k \Rightarrow N \subseteq \bigcap_{k=1}^{+\infty} P_k = P_\infty \ con \ \mu \times \nu(P_\infty) = 0 = \int_Y \int_X \chi_{P_\infty}(x,y) d\mu d\nu =$

$$\int_{X} \int_{Y} \chi_{P_{\infty}}(x, y) d\nu d\mu$$

$$\chi_{N}(x, y) \leq \chi_{P_{\infty}}(x, y)$$

$$per \ y \in Y \ fissato$$

$$(N \subseteq P_{\infty})$$

$$\chi_N(\cdot,y) \le \chi_{P_\infty}(\cdot,y).$$

$$\int_{Y} \int_{X} \chi_{P_{\infty}}(x, y) d\mu d\nu \Rightarrow \int_{X} \chi_{P_{\infty}}(x, y) d\mu = 0.$$

 $Per \ \nu$ -quasi ogni $y \in Y$

$$\Rightarrow \chi_{P_{\infty}}(\cdot, y) = 0.$$

$$\Rightarrow \chi_{N}(\cdot, y) = 0 \quad q.o. \quad in \quad X.$$

$$per \ \nu\text{-quasi ogni} \ y \in Y$$

$$\Rightarrow per \ \nu\text{-quasi ogni} \ y \in Y, \ \chi_{N}(\cdot, y) \ \grave{e} \ u\text{-misurabile} \ (=0 \ quasi$$

 $\Rightarrow per \ \nu\text{-quasi ogni} \ y \in Y, \ \chi_N(\cdot, y) \ \grave{e} \ \mu\text{-misurabile} \ (=0 \ quasi \ ovunque)$ $e \int_X \chi_N(x, y) d\mu = 0 \ per \ \nu\text{-quasi ogni} \ y \in Y$ $\Rightarrow \int_Y (\int_X \chi_N(x, y) d\mu) d\nu = 0$

Proposizione 1

Sia $E \subseteq X \times Y$ tale che $E \ \grave{e} \ \mu \times \nu$ -misurabile $e \ \mu \times \nu(E) < +\infty$ Allora:

• per ν -q.o. $y \in Y$ fissato, $\chi_E(\cdot, y)$ è μ -misurabile e $y \to \int_X \chi_E(x, y) d\mu$ è ν -misurabile

• per μ -q.o. $x \in X$ fissato, $\chi_E(x,\cdot)$ è ν -misurabile e $x \to \int_Y \chi_E(x,y) d\nu$ è μ -misurabile

Inoltre
$$\int_{Y} \int_{X} \chi_{E}(x, y) d\mu d\nu = \int_{X} \int_{Y} \chi_{E}(x, y) d\nu d\mu$$
$$= \mu \times \nu(E) = \int_{X \times Y} \chi_{E}(x, y) d(\mu \times \nu)$$

Dimostrazione

$$\begin{array}{l} \mu \times \nu(E) = \inf\{\mu \times \nu(P), E \subseteq P, P \ plurirettangolo\} \\ \Rightarrow \exists P_{\infty} = \bigcap_{k=1}^{+\infty} P_k, \ \{P_k\} \ pulrirettangi \ P_k \subseteq P_{k+1} \\ tale \ che \ E \subseteq P_{\infty} \ e \ \mu \times \nu(E) = \mu \times \nu(P_{\infty}) < +\infty \\ E \ \mu \times \nu \text{-misurabile} \Rightarrow \mu \times \nu(P_{\infty} \setminus E) = \mu \times \nu(P_{\infty}) - \mu \times \nu(E) = 0 \\ \Rightarrow \chi_E(x,y) = \chi_{P_{\infty}} - \chi_{P_{\infty} \setminus E}(x,y) \\ La \ prima \ verifica \ la \ tesi \ ner \ lemma \ 1 \ e \ la \ seconda \ parte \ verifica \ il \end{array}$$

La prima verifica la tesi per lemma 1 e la seconda parte verifica il la tesi per lemma 2 $\hfill\Box$

Definizione 1

Uno spazio di misura (X, μ) si dice σ -finita se $X = \bigcup_{i=1}^{+\infty} X_i$ con X_i misurabili, $X_i \cap X_j = \emptyset$ se $i \neq j$ e $\mu(X_i) < \infty \ \forall i$

Teorema 1 (Tonelli)

Siano $(X, \mu), (Y, \nu)$ spazi di misura σ -finiti, sia $f: X \times Y \to [0, +\infty)$ $\mu \times \nu$ -misurabile.

Allora:

- 1. per ν -q.o. $y \in Y$, $f(\cdot,y) \stackrel{.}{e} \mu$ -misurabile e $y \to \int_X f(x,y) d\mu \ \dot{e} \ \nu$ -misurabile
- 2. $per \mu$ - $q.o, X, f)x, \cdot) è \nu$ -misurabile e $x \to \int_V f(x,y) d\nu \ \dot{e} \ \mu$ -misurabile

In ol tre

$$\int_{X\times Y} f(x,y) d(\mu\times\nu) = \int_Y \int_X f(x,y) d\mu d\nu = \int_X \int_Y f(x,y) d\nu d\mu.$$

Dimostrazione

Primo caso: $\mu(X) < +\infty, \mu(Y) < +\infty$

 $f \geq 0$, misurabile $\Rightarrow \exists \{s_k\}$ successione di funzioni semplici $s_k(x,y) \xrightarrow{k \to +\infty}$ $f(x,y) \ \forall (x,y) \in X \times Y \ s_k \le s_{k+1} \ \forall k$

$$\int_{X\times Y} f(x,y)d(\mu\times\nu) = \lim_{k\to+\infty} \int_{X\times Y} s_k(x,y)d(\mu\times\nu).$$

verifica la tesi perché combinazione lineare finita di funzioni caratteristiche. $secondo\ caso\ X,Y\quad \sigma\text{-}finiti$

Secondo Caso
$$X, Y$$
 o-finite
$$X = \bigcup_{i=1}^{+\infty} X_i, \quad \mu(X_i) < +\infty \ \forall i \ Y = \bigcup_{j=1}^{+\infty} Y_j, \quad \mu(Y_j) < +\infty \ \forall j$$

$$f(x,y) = \sum_{i,j=1}^{+\infty} f(x,y) \chi_{X_i}(x) \chi_{Y_j}(y)$$

$$= \sum_{i,j=1}^{+\infty} f(x,y) \chi_{X_i}(x,y) \chi_{Y_j}(x,y)$$

$$=\sum_{i,j=1}^{+\infty} f(x,y)\chi_{X_i\times Y_i}(x,y)$$

Quindi è combinazione di funzioni che verificano la tesi, quindi anche f verifica la tesi

Teorema 2 (Fubini)

Siano $(X, \mu), (Y, \nu)$ spazi di misura σ -finiti

Se
$$f \in L^1(X \times Y, \mu \times \nu)$$

⇒ stessa tesi del teorema di Tonelli

Dimostrazione

$$f = f^+ - f^-$$
 si applica teorema di Tonelli a f^+ e f^-

Osservazione

Non è vero per funzioni non in L^1 oppure anche negative.