Chris Hayduk Math B4900 Homework 3 Reflection 9/21/2020

1. Successes and Failures in Homework 3

I believe I made better use of whitespace in this assignment compared to Homework 1. I made a conscious effort to include more of my thoughts in paragraphs rather than breaking up each sentence with a new line operator.

I also removed the shorthand that I had been using in my previous homeworks. Quantifiers such as \forall , \exists , \iff were almost entirely removed. I think that this made my proofs in this homework easier to read when compared with my proofs in Homework 1 and Homework 2.

I think I need to continue focusing on simplifying and refining proofs. Once I approach a problem from a certain direction, I sometimes find it difficult to think of new, simpler approaches and to recognize information in the proof that may be redundant or unnecessary. I believe that improving this aspect of my proof-writing would help make my arguments significantly clearer, more accurate, and easier to follow.

2. Marked-up Homework

1. Group actions

(a) For some fixed $g \in G$, prove that conjugation by g (i.e. the map $G \to G$ defined by $a \mapsto gag^{-1}$) is an automorphism of G. Deduce that a and gag^{-1} have the same order (by last week's work), and for any non-empty $S \subseteq G$, the map

$$S \to gSg^{-1}$$
 defined by $s \mapsto gsg^{-1}$

is also a bijection, so that $|gSg^{-1}| = |S|$.

[Recall, even if A and/or B is infinite, we say |A| = |B| exactly when there is a bijection $A \leftrightarrow B$]

Proof. Try to revise the logic in this proof

Fix $g \in G$. Define $\varphi_g(a) = gag^{-1}$ for every $a \in G$. In order to show that φ_g is an automorphism of G, we must show that φ_G is a bijection from to G to G and that

$$\varphi_g(ab) = \varphi_g(a)\varphi_g(b)$$

for all $a, b \in G$.

First, we have that ϕ_g is well-defined. This is true because G is a group, so $gag^{-1} \in G$ for every $a \in G$.

Now fix $a, b \in G$ and suppose $\varphi_g(a) = \varphi_g(b)$. Then we have,

$$\varphi(a) = \varphi(b)$$

$$\implies gag^{-1} = gbg^{-1}$$

Multiplying by g^{-1} on the left and g on the right on both sides of the equal signs yields

$$a = b$$

Hence, φ_g is injective.

Now fix $c \in G$. Since G is a group, we have $g^{-1}cg \in G$. Hence this gives us that,

$$\varphi_g(g^{-1}cg) = g(g^{-1}cg)g^{-1}$$
$$= c$$

Since c was arbitrary, this holds for every element in G. Hence, φ is surjective as well and is thus a bijection from G to G.

Now we will check the homomorphism property. Fix $a, b \in G$. Then,

$$\varphi_g(ab) = gabg^{-1}$$

$$= ga(g^{-1}g)bg^{-1}$$

$$= (gag^{-1})(gbg^{-1})$$

$$= \varphi_g(a)\varphi_g(b)$$

Hence, φ_g is a bijective homorphism and thus an autmorphism of G. From problem 2b(iii) on Homework 2, we have that

$$|a| = |gag^{-1}|$$

as a consequence of φ_g being an automorphism.

Now for any non-empty $S \subset G$ we consider the map

$$S \to gSg^{-1}$$
 defined by $s \to gsg^{-1}$

Since every element of S is an element of G and G is a group, we have that $gsg^{-1} \in G$ for every $g \in G$ and $s \in S$. Hence, for every g, we have that

$$gSg^{-1} \subset G$$

So our map sends the subsets of G to the subsets of G. Let $S, R \in \mathcal{P}(G) \setminus \emptyset$. Suppose $gSg^{-1} = gRg^{-1}$. Then we have

$$(g^{-1}g)S(g^{-1}g) = (g^{-1}g)R(g^{-1}g)$$

 $\implies S = R$

So our map is injective. Now let $S \in \mathcal{P}(G) \backslash \emptyset$. Observe, that since G is a group, for every $s \in S$, there exists an element $g^{-1}sg \in G$. Hence, we can define the set $R \subset G \backslash \emptyset$ such that every element $r \in R$ is defined to be $g^{-1}sg$ for some $s \in S$. Ensure that each s is used to define exactly one r. Then, we have for all $r \in R$,

$$grg^{-1} = g(g^{-1}sg)g^{-1}$$
$$= s$$

Hence, we have that $gRg^{-1} = S$, and so our map is surjective and hence bijective.

Now consider again sets $S, R \in \mathcal{P}(G) \setminus \emptyset$. Then we have

$$gSRg^{-1} = gS(g^{-1}g)Rg^{-1}$$

= $(gSg^{-1})(gRg^{-1})$

So the map is homomorphism and hence and isomorphishm. Thus, again from problem 2b(iii) on Homework 2, we can assert that

$$|S| = |gSg^{-1}|$$

for every $S \in \mathcal{P}(G) \backslash \emptyset$

(b) Let A be a non-empty set and let $0 < k \le |A|$. Check that the action of the symmetric group S_A on the set of size k subsets of A by

$$\sigma \cdot \{a_1, \dots, a_k\} = \{\sigma(a_1), \dots, \sigma(a_k)\}\$$

satisfies the axioms of group actions.

[Similar to the action of D_{2n} on sets from lecture.]

Proof. Check that this proof is correct

Let $\sigma_1, \sigma_2 \in S_A$ and $a = \{a_1, \dots a_k\} \subset A$. Then we have,

$$\sigma_2 \cdot (\sigma_1 \cdot a) = \sigma_2 \cdot \{\sigma_1(a_1), \dots \sigma_1(a_k)\}$$

$$= \{\sigma_2(\sigma_1(a)), \dots, \sigma_2(\sigma_1(a_k))\}$$

$$= \{\sigma_2\sigma_1(a), \dots, \sigma_2\sigma_1(a_k)\}$$

$$= \sigma_1\sigma_2 \cdot \{a_1, \dots, a_k\}$$

$$= \sigma_1\sigma_2 \cdot a$$

We also have,

$$1 \cdot a = \{1 \cdot a_1, \dots 1 \cdot a_k\}$$
$$= \{a_1, \dots, a_k\}$$
$$= a$$

Hence, this action satisfies the axioms of group actions.

(c) Let G act on a set A. Prove that the relation \sim on A defined by

$$a \sim b$$
 if and only if $a = g \cdot b$ for some $g \in G$

is an equivalence relation.

Note: the equivalence classes with respect to this relation are called **orbits**.

Proof. We need to check that this relation is reflexive, symmetric, and transitive. We will start with reflexivity. Since G is a group, then $1 \in G$ and so we have

$$a = 1 \cdot a$$

Hence, we have $a \sim a$. Now let $a, b \in A$ and suppose $a \sim b$. Then,

$$a = g \cdot b$$

for some $g \in G$. Since G is a group, we have $g^{-1} \in G$ and hence

$$g^{-1} \cdot a = g^{-1} \cdot (g \cdot b)$$

By properties of group actions, we can write

$$g^{-1} \cdot a = (g^{-1}g) \cdot b$$
$$= b$$

So we have that $b \sim a$ since $g^{-1} \in G$. Hence, the relation is symmetric.

Now let $a, b, c \in A$. Suppose $a \sim b$ and $b \sim c$. Then we have,

$$a = g_1 \cdot b$$

and

$$b = g_2 \cdot c$$

for some $g_1, g_2 \in G$. We can use our equation for b and the properties of group action to rewrite a as

$$a = (g_1 g_2) \cdot c$$

Since $g_1g_2 \in G$, we have that $a \sim c$ and so the relation is transitive. Hence, this is an equivalence relation.

(d) Describe the orbits of the action of S_4 on 2-element subsets of $\{1, 2, 3, 4\}$ (as in problem 1b). Answer. The two element subsets of $\{1, 2, 3, 4\}$ are: $\{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\}$

We have,

$$(2\ 3)\cdot\{1,2\}=\{1,3\}$$

$$(3\ 4)\cdot\{1,3\}=\{1,4\}$$

$$(1\ 2)\cdot\{1,4\}=\{2,4\}$$

$$(3\ 4)\cdot\{2,4\}=\{2,3\}$$

$$(2\ 3)\cdot\{2,4\}=\{3,4\}$$

From the above equations, we have

$$\{1,2\} \sim \{1,3\}$$

$$\sim \{1, 4\}$$

$$\sim \{2,4\}$$

$$\sim \{2,3\}, \{3,4\}$$

Hence, by transitivity, all of two element subsets of $\{1, 2, 3, 4\}$ belong to the same equivalence class under this relation. Thus, there is only one orbit for this relation.

.....

2. Cyclic groups

(a) If x is an element of a finite group G and |x| = n = |G|, prove that $G = \langle x \rangle$. Give an explicit example to show |x| = |G| does not imply $G = \langle x \rangle$ if G is an infinite group.

Proof. Suppose G is a group with finite order and $x \in G$. Also suppose that |x| = |G|.

Now suppose there exists $y \in G$ such that $y \neq x^k$ for some $k \in \mathbb{Z}$. Note that since we know |x| = n, we can list out a subset of the elements in G. Hence, we have

$$\{1, x, x^2, \cdots, x^{n-1}, y\} \subset G$$

However, note that $\{1, x, x^2, \dots, x^{n-1}, y\} = n+1 > |G|$. But since this is a subset of G, we have that,

$$|\{1, x, x^2, \cdots, x^{n-1}, y\}| \le G$$

So we have a contradiction and thus, this $y \neq x^k$ cannot exist. Hence, $G = \langle x \rangle$.

Now consider the infinite group $(\mathbb{R}, +)$. We have that $|\mathbb{R}| = \infty = |2|$. However, $\mathbb{R} \neq \langle 1 \rangle$ because $1 \in \mathbb{Z}$ and \mathbb{Z} is closed under addition, so $\mathbb{R} \setminus \mathbb{Z}$ is not generated by $\langle 1 \rangle$.

(b) Write $Z_{63} = \langle x \rangle$. For which integers a does the map ψ_a defined by

$$\psi_a: \bar{1} \to x^a$$

extend to a well defined homomorphism from $\mathbb{Z}/147\mathbb{Z}$ to Z_{63} ? Can ψ_a ever be a surjective homomorphism? [Take care to remember that the binary operation on the left is + and the binary operation on the right is \times : if the image of $\bar{1}$ is x^a , then the image of $\bar{1} + \bar{1} + \cdots + \bar{1} = \ell \bar{1}$ is $(x^a)^{\ell}$.]

Answer. Verify logic in this answer

Let a = 1. Then $\psi_a : \bar{1} \to x$. We can extend this definition to a well-defined homomorphism in the following manner,

$$\psi_1(y) = x^z$$

where $z = y \mod 63$. Then, for any $y_1, y_2 \in \mathbb{Z}/147\mathbb{Z}$, we have,

$$\psi_1(y_1 + y_2) = x^{(y_1 + y_2) \mod 63}$$

$$= x^{(y_1 \mod 63 + y_2 \mod 63) \mod 63}$$

$$= x^{y_1 \mod 63} x^{y_2 \mod 63}$$

$$= \psi_1(y_1) \psi_2(y_2)$$

(c) For $a \in \mathbb{Z}$, define

$$\sigma_a: Z_n \to Z_n$$
 by $\sigma_a(x) = x^a$ for all $x \in Z_n$.

Show that σ_a is an automorphism of Z_n if and only if (a, n) = 1.

Proof. Complete this proof

Suppose that
$$\sigma_a$$
 is an automorphism of Z_n and suppose $(a, n) = k \neq 1$.

(d) Under what circumstances does there exist a non-trivial homomorphism $\varphi: Z_n \to G$? [Note: φ need not be injective or surjective; just well-defined, and not the map $g \mapsto 1$ for all g.]

Answer. Check for other circumstances in this proof

Suppose $|G| = \langle y \rangle$ with |y| = k for some $k \in \mathbb{N}$ such that k|n. Then there exists $m \in \mathbb{N}$ such that km = n, and we have a non-trivial homomorphism $\varphi : Z_n \to G$. One such homomorphism is given by the following,

$$\varphi(1) = 1$$

$$\varphi(x) = y$$

$$\vdots$$

$$\varphi(x^{k-1}) = y^{k-1}$$

$$\varphi(x^k) = 1$$

$$\vdots$$

$$\varphi(x^{km-2}) = y^{n-2}$$

$$\varphi(x^{km-1}) = y^{n-1}$$

......

(e) For which $n \in \mathbb{Z}_{\geq 1}$ is $(\mathbb{Z}/2^n\mathbb{Z})^{\times}$ cyclic? [Hint: Try to find more than one subgroup of order 2. Why would this prove $(\mathbb{Z}/2^n\mathbb{Z})^{\times}$ is *not* cyclic? Start by doing some examples.]

Complete this proof

(f) Prove that $\mathbb{Q} \times \mathbb{Q}$ is not cyclic.

Proof. Suppose $\mathbb{Q} \times \mathbb{Q}$ is cyclic. Since $|\mathbb{Q} \times \mathbb{Q}| = \infty$, then $\mathbb{Q} \times \mathbb{Q} = \langle (ax, by) \rangle$ if and only if $a, b = \pm 1$. Without loss of generality, let us select $x, y \in \mathbb{Q}$ such that $\langle (ax, by) \rangle = |\mathbb{Q} \times \mathbb{Q}|$ with a, b = 1. Hence, every element (c, d) of the set $\mathbb{Q} \times \mathbb{Q}$ can be written in the form,

$$(c,d) = (nx, my)$$

for some $n, m \in \mathbb{Z}$. Now suppose x, y > 0 without loss of generality. Then,

$$\cdots < -2x < -1x < 0 = 0x < 1x < 2x < \cdots$$

Since the rational numbers are closed under multiplication, we can take $\frac{x}{2} < 1x$. There is no $n \in \mathbb{Z}$ such that $nx = \frac{x}{2}$, so (x,y) cannot generate $(\frac{x}{2},z)$ for any choice of $z \in \mathbb{Q}$. Hence, (x,y) cannot be the generator for $\mathbb{Q} \times \mathbb{Q}$ which is a contradiction. Thus, $\mathbb{Q} \times \mathbb{Q}$ is not cyclic.