MA4702. Programación Lineal Mixta 2020.

Profesor: José Soto.

Tarea 1.

Fecha entrega: Lunes 04/05 a las 12:00.

Instrucciones: Entregue los 4 problemas escaneados o en una foto de alta calidad, via ucursos. Los problemas de la tarea se deben resolver de manera individual. Para asegurar trabajo personal se exige que las respuestas sean escritas a mano.

¡No se aceptarán documentos tipeados o generados por computador!

¡No se aceptarán documentos tipeados o generados por computador!

¡No se aceptarán documentos tipeados o generados por computador!

¡No se aceptarán documentos tipeados o generados por computador!

Problema 1. Escriba restricciones lineales mixtas (puede imponer integralidad o usar variables adicionales) para modelar las siguientes condiciones lógicas o algebraicas, dando una explicación breve de su solución.

(0) (Ejemplo) $x, y \in [3], x = 3 \implies y \ge 2$ (Solución):

$$x \le 3, y \le 3, x \ge 1, y \ge 1, x, y \in \mathbb{Z}$$
$$4x - y \le 10$$

Explicación breve: Si $x \le 2$, 4x es a lo más 8, y luego la desigualdad inferior se cumple para todo y. Pero si x = 3 entonces 4x es 12, y luego para que la desigualdad inferior se cumpla, y debe ser al menos 2.

- (1) $x, y \in \{0, 1\}, x = 1 \implies y = 1.$
- (2) $x_i \in \{0,1\}, \forall i \in [m], y \in \{0,1\}$. Si más de k variables x_i son 1 entonces y=1.
- (3) $x, y, z \in \{0, 1\}$, si x = 1, entonces (y = 1 o z = 1)
- (4) $x_i \in \{0,1\}, \forall i \in [m], \prod_{i=1}^m x_i = 0.$
- (5) $x, y \in [n], x \in y$ tienen la misma paridad.
- (6) $x \in [-M, M]$ (intervalo real), y = |x|. (Indicación, cree variables binarias w_1, w_2 que representen la expresión $w_1 = 1 \iff (x \ge 0 \land y = x)$; $w_2 = 1 \iff (x \le 0 \land y = -x)$)

Problema 2. El problema de la mochila fraccional se modela con el siguiente programa lineal puro:

$$\max\{v^T x \colon x \in \mathbb{R}^n, \sum_{i=1}^n s_i x_i \le B; 0 \le x_i \le 1, \forall i \in [n]\},\$$

donde los tamaños $s_i > 0, \forall i \in [n]$ y los valores son arbitrarios $v \in \mathbb{R}^n_+$. Asuma además sin pérdida de generalidad que los objetos están ordenados de acuerdo a valor sobre tamaño, es decir

$$\frac{v_1}{s_1} \ge \frac{v_2}{s_2} \ge \dots \ge \frac{v_n}{s_n}$$

Sea h el índice más grande tal que los primeros h objetos caben en la mochila: $\sum_{i=1}^{h} s_i \leq B$. Suponiendo que h < n, demuestre usando holgura complementaria que existe una solución óptima x^* de este problema que satisface

$$x_i^* = 1$$
, para $i \in [h]$, $x_{h+1}^* = \frac{B - \sum_{i=1}^h s_i}{s_{h+1}}$, $x_i^* = 0$, para $i \ge h + 2$.

Problema 3. Teorema de descomposición de flujo. Sea G = (V, E) un grafo dirigido y s, t dos de sus vértices. Considere los siguientes poliedros.

$$P_{1} = \{x \in \mathbb{R}_{+}^{E} : x(\delta^{+}(v)) - x(\delta^{-}(v)) = 0, \forall v \in V \setminus \{s, t\}, x(\delta^{+}(s)) - x(\delta^{-}(s)) \ge 0\}.$$

$$P_{2} = \{x \in \mathbb{R}_{+}^{E} : x(\delta^{+}(v)) - x(\delta^{-}(v)) = 0, \forall v \in V \setminus \{s, t\}, x(\delta^{+}(s)) - x(\delta^{-}(s)) = 1\}.$$

$$P_{3} = \{x \in \mathbb{R}_{+}^{E} : x(\delta^{+}(v)) - x(\delta^{-}(v)) = 0, \forall v \in V \setminus \{t\}\},$$

Los elementos de P_1 se llaman s-t flujos, los elementos de P_2 se llaman s-t flujos de valor 1 y los elementos de P_3 se llaman s-t flujos de valor 0, o circulaciones.

- (a) Pruebe que P_1 y P_3 son conos, que $P_2 \subseteq P_1$ y que $rec(P_2) = P_3$.
- (b) Para todo $x \in P_1$, llame soporte de x al conjunto de arcos $S_x = \{e \in E : x_e > 0\}$. Demuestre que si x no es el vector 0 entonces S_x contiene a los arcos de algún s-t camino P o de un un ciclo C.
- (c) Llame $\mathcal{P} = \{P \subseteq E : P \text{ es un } s\text{-}t \text{ camino de } G\}$ y $\mathcal{C} = \{C \subseteq E : C \text{ es un ciclo de } G\}$. Pruebe usando la parte anterior que P_1 está cónicamente generado por $\{\chi^P : P \in \mathcal{P}\} \cup \{\chi^C : C \in \mathcal{C}\}$ donde $\chi^R \in \mathbb{R}^E$ es el vector indicatriz de R, es decir χ_e^R es 1 si $e \in R$ y 0 si $e \notin R$. Indicación: Pruebe que $x \in P_1$ tiene la combinación cónica pedida por inducción en el tamaño de S_x .
- (d) Deduzca la siguiente descomposición de Minkowski-Weyl del poliedro P_2 : $P_2 = \text{conv}(\{\chi^P : P \in \mathcal{P}\}) + \text{cono}(\{\chi^C : C \in \mathcal{C}\}).$

Problema 4. Calcule el dual de los siguientes programas lineales puros (suponga G=(V,E) es un grafo, que para todo $U\subseteq V$, E(U) es el conjunto de aristas con ambos extremos en U, $\delta(U)$ es el conjunto de aristas con un extremo dentro de U y uno fuera de U.)

$$(P1): \min \qquad \sum_{e \in E} c_e x_e$$
 s.a.
$$x(\delta(v)) \geq 1 \qquad \forall v \in V$$

$$x_e \geq 0 \qquad \forall e \in E$$

$$(P2): \max \qquad \sum_{e \in E} w_e x_e$$
 s.a.
$$x(\delta(v)) \leq 1 \qquad \forall v \in V$$

$$x(E(U))) \leq \frac{|U|-1}{2} \qquad \forall U \subseteq V, |U| \text{ impar}$$

$$x_e \geq 0 \qquad \forall e \in E$$

$$(P3): \max \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} w_{ijk} x_{ijk}$$
 s.a.
$$\sum_{j=1}^{I} \sum_{k=1}^{K} x_{ijk} = a_i \qquad \forall i \in [I].$$

$$\sum_{i=1}^{I} \sum_{k=1}^{K} x_{ijk} \leq b_j \qquad \forall j \in [J].$$

$$\sum_{i=1}^{I} \sum_{j=1}^{J} x_{ijk} \geq c_k \qquad \forall k \in [K].$$

$$x_{ijk} \geq 0 \qquad \forall (i, j, k) \in [I] \times [J] \times [K].$$

Notas: (P1) es el politopo de los edge-covers de G cuando G es bipartito, (P2) es el polítopo de los matchings de G, (P3) es la relajación de una variante de 3D-matching.