

TEKNOFEST 2020 ROKET YARIŞMASI ETÜ – VARDA SKYTEAM (ORTA IRTIFA) Atışa Hazırlık Raporu (AHR)

Takım Yapısı

Takımdaki Rol	Görevi
Atış Alanı Sorumlusu	Atış alanı içerisinde organizasyon yapan takım üyelerine görevlerini veren kişi.
Atış Sorumlusu	Roketin rampaya yerleştirilmesine kadar olan görevleri yerine getiren kişi.
Kurtarma Ekibi	Uçuş sonrasında roketin ve faydalı yükün bulunmasında görevlendirilen kişiler.
Yer İstasyonu Ekibi	Roketin uçuş sırasında ve sonrasında telemetri verilerini almak üzere görevlendirilen kişiler.

Takımdaki görevlendirilmeler detaylı olarak tabloda açıklanmıştır.

^{*}Takımdaki tüm üyeler Erzurum Teknik Üniversitesi'nde öğrenim görmektedir.

KTR'den Değişimler

Değişim Konusu	KTR'de Hangi Sayfa	KTR'de İçerik Neydi	AHR'de İçerik Ne Oldu
İnner Tube Tasarımı	44.	Motoru çevreleyerek oluşacak olan titreşimi sönümlemeye yarayacak olan elamanıdır.	Görev aynı fakat istenilen malzeme temin edilemediğinden ince yapıdaki sac kullanıldı.
Coupler	40.	İki gövdeyi birbirine bağlayan 80 mm bağlantı elemanı.	İki gövdeyi birbirine bağlayan 90 mm bağlantı elemanı.
Merkezleme Halkaları	44.	İnner tube, motor ve gövdeyi birbirine bağlayan alüminyum bağlantı elemanıdır.	İnner tube, motor ve gövdeyi birbirine bağlayan 1'i alüminyum 2'si çelik olan bağlantı elemanıdır.
Motor Bloğu	44.	Gerekli itkiyi verecek olan motorun roket gövdesine mekanik bağlantısını sağlayan 30,8 mm ABS bağlantı elemanıdır.	Gerekli itkiyi verecek olan motorun roket gövdesine mekanik bağlantısını sağlayan 20,8 mm alüminyum bağlantı elemanıdır.
Pyro Kutusu ve Paraşütler Arasında Bulunan Bulkhead	52.	Pyro kutusu ve paraşütler arasında pyro patlayınca paraşütlerin itme uygulanarak çıkmasına yardımcı olacak elman.	Paraşüt iplerine dolaşmasından dolayı kaldırılmıştır.
Aviyonik Kapak	40.	Aviyonik sisteme kolaylıkla ulaşmak için açılan 95mm X 245mm boyutlarına sahip gövde üzerinde kesilmiş kapak.	Aviyonik sisteme kolaylıkla ulaşmak için açılan 75mm X 340mm boyutlarına sahip gövde üzerinde kesilmiş kapak.
Kanatçık Montaj Stratejisi	54.	Kanatçıklar özgün üretime sahip olan alüminyum malzemeli merkezleme halkası 2 ve 3 ile M6 vida ile sabitlenecektir.	Kanatçıklar özgün üretime sahip olan ince sac yapıya sahip inner tube üzerine yerleştirilmiş kanallara vida yardımıyla sabitlenerek gövde üzerindeki kanallara geçirilmiştir.

Roket Alt Sistemleri

Sistem Parçaları	Tedarik Durumu	Üretim Durumu	Açıklama
Üst Gövde	Tamamlandı	%80	Boya işlemi yapılacaktır
Alt Gövde	Tamamlandı	%80	Boya işlemi yapılacaktır
Burun Konisi	Tamamlandı	%100	Üretim tamamlandı
Faydalı Yük Paraşütü	Tamamlandı	%80	Boya işlemi yapılacaktır
Faydalı yük	Tamamlandı	%100	Üretim tamamlandı
Sürüklenme Paraşütü	Tamamlandı	%80	Boya işlemi yapılacaktır
Ana Paraşüt	Tamamlandı	%80	Boya işlemi yapılacaktır
Alüminyum Bulkhead (Pyro+Mapa)	Tamamlandı	%100	Üretim tamamlandı
Aviyonik Sistem	Tamamlandı	%100	Üretim tamamlandı
Alüminyum Bulkhead	Tamamlandı	%100	Üretim tamamlandı
Coupler	Tamamlandı	%100	Üretim tamamlandı
Kapak	Tamamlandı	%100	Üretim tamamlandı
Motor Bloğu	Tamamlandı	%100	Üretim tamamlandı
Inner Tube	Tamamlandı	%100	Üretim tamamlandı
Kanatçıklar	Tamamlandı	%100	Üretim tamamlandı
Şok Kordonu	Tamamlandı	%100	Üretim tamamlandı

OpenRocket / Roket Tasarımı Genel Görünüm

OpenRocket / Roket Tasarımı Genel Görünüm

Parça Numarası	Parça Adı	Parça Numarası	Parça Adı
1	Burun Konisi	12	M2150 Motor
2	Faydalı Yük Paraşütü	13	Alüminyum Bulkhead
3	Faydalı Yük	14	Inner Tube
4	Sürüklenme Paraşütü	15	Çelik Bulkhead
5	Ana Paraşüt	16	Burun Konisi Sholder
6	Mapalar ve Isıtma Teli	17	Kara Barut Haznesi (PYRO)
7	Alüminyum Bulkhead	18	PYRO ve Aviyonik Kapağı
8	Aviyonik Şase	19	AltimeterTwo Yuvası
9	Alüminyum Bulkhead	20	Kanatçık
10	Coupler Tube	21	Alüminyum Bulkhead
11	Alüminyum Motor Bloğu	22	Kanatçık Montaj Elemanı

Durum	Zaman (s)	irtifa (m)	Dikey Hız (m/s)
Fırlatma	0	0	0
Rampa Tepesi	0,432	6	32,1
Burn Out	3,5	510,7	260,3
Tepe Noktası	24,5	2902	-0,83
1. Paraşüt Açılması	24,5	2902	-0,83
2.Paraşüt Açılması	143,44	500	-19,3
Yere İniş	200	0	-8,5

Roket Alt Sistemleri Mekanik Görünümleri ve Detayları

Burun ve Faydalı Yük Mekanik Görünüm

Burun Konisi 3 Boyutlu Görünümü(CAD)

Üretilmiş Burun Konisi Görüntüsü

Faydalı Yük ve Faydalı Yük Bölümü 3 Boyutlu Görünümü (CAD)

Üretilmiş Faydalı Yük ve Faydalı Yük Bölümü Görüntüsü

Faydalı yük devre

Burun – Detay

Tasarlanan Burun Konisi Analizleri

Analizler sonucunda roket için gerekli stabilite sağlanması ve dayanımı karşı deforme olmadığı için ABS filamentten 3d yazıcı ile üretimine karar verildi.

Tasarlanan Burun Konisi Üretimi

KTR de yaptığımız analizler sonucunda ABS filamentten 3d yazıcı aracılığıyla üretilen burun konisinin üretim aşaması bitmiştir.

Faydalı Yük ve Faydalı Yük Bölümü – Detay

Faydalı Yük ve İşlevi

Faydalı yük rokette burun konisinin hemen altında bulunmaktadır. Toplam ağırlığı 5 kg'dır. İçerisinde görev için gerekli olan aviyonik kısım bulunmaktadır. Faydalı yük aktivasyonu için Toggle Switch adı verilen parçaya ip bağlanıp üst gövdeden açılan hava kanalı deliğinden çıkarılacaktır. Rampaya getirilen rokette hava kanalı deliğinde bulunan ip çekilip Toggle Switch ile aktif hale getirilecektir.

Faydalı yük apogee noktasında burun konisinden dışarı çıkarak roketten ayrılması ve açtığı paraşüt ile yere iniş yapması planlanmaktadır. Faydalı yük üzerinde bulunan GPS modülü ile konum verisini yer istasyonuna gönderecektir.

Görüntü alma işlemi ise aviyonik kısımdan ayrı olan kamera ile sağlayacak ve alınan görüntü kameranın kendi hafızasına kayıt edilecektir Genel olarak istihbarat amaçlı taradığı bölgenin konum ve görüntü bilgilerini başlangıç istasyonuna gönderen model uydu tarzında bir işlevi olacaktır. Yere indikten sonra ise buzzer ile ses vererek yer tespitini kolaylaştıracaktır.

Faydalı Yük Üretimi

Faydalı yük için belirlediğimiz ağırlık değerini minimum kapasiteyle sağlamak için kurşundan imal edilmiştir. Faydalı yük aviyoniği için ise gerekli alan bırakılmıştır.

Kurtarma Sistemi Mekanik Görünüm

Ayrılma Sistemi 3 Boyutlu Görünümü (CAD)

Üretilmiş Ayrılma Sistemi Görüntüsü

Ayrılma Sistemi – Detay

1. Ayrılma Sistemi

Birinci ayrılma sistemimiz pyro (kara barut) düzeneğidir. Bu düzenek roketin apogee noktasına ulaştığı ve aviyonik sistemde gerekli olan şartları sağladıktan sonra, fünye yardımı ile tetiklenerek roket içeresinde patlama gerçekleşecektir. Oluşan patlama sonrasında meydana gelen basınç burun konisini roketten ayırarak sürüklenme ve faydalı yükü dışarı çıkarması beklenmektedir. Bu ayrılma sistemini seçme sebebimiz daha kesin ve ani sonuçlar vermesidir. Bu avantajlar ise bize daha doğru bir noktada ve hızlı bir şekilde tetikleme sağlayarak kurtarma olayını gerçekleştirmemize olanak sağlayacaktır.

Pyro miktarını belirleme konusunda Mark Canepa'nın yazmış olduğu "Modern High Power Rocketry 2" kitabı referans alınarak Matlab programı üzerinden hesap yapılıp 2.3145 gr olarak belirlenmiştir. (Yapılan test sonucunda 6 gr olarak belirlenmiştir.)

```
clear all; clc;
cap_inc=4.566; %gövdenin inç cinsinden iç çapı.
uzunluk_inc=18.503; %pyro kısmından burun konisine kadar olan inç cinsinden mesafesi.
C=0.006; %pyronun dışarı çıkartacağı toplam yükün
%inch^2 (psi) cinsinden değerine karşılık gelen C katsayısı.
barut_gr=((cap_inc)^2)*uzunluk_inc*C;
barut_gr
```

Matlab programında yapılan hesaplama

2. Ayrılma Sistemi

İkinci ayrılma sistemimiz ısıtma teli düzeneğidir. Bu düzenek rokette birinci ayrılma gerçekleştikten ve aviyonik sistemde gerekli olan şartlar sağlandıktan sonra ısıtma telinin, gelen güç ile ısınarak ana paraşüt ipini serbest bırakmasıyla gerçekleşecektir. Bu ayrılma sistemini seçme sebebimiz daha güvenilir olması ve diğer sistemlere göre daha az yer kaplamasıdır. Bu avantaj bize kolay montaj imkanı ve güvenilir ayrılma gerçekleştirme olanağı sağlayacaktır.

Isitma teli düzeneği yapılan testler sonucunda karbon fiber boru içerisine monte edilecektir. Bu düzeneğe geçme nedenimiz ısıtma teli aktif olduğu zaman diğer iplere ve şok kordonuna zarar verme ihtimalini ortadan kaldırmaktır.

Isitma teli seçimi yapılırken yüksek ısıya dayanıklılık ve yüksek sıcaklığa ulaşma parametreleri göz önüne alınmıştır. Bu parametreler ışığında sisteme uygun olan rezistans teli seçilmiştir.

Isitma teli isinma süresi ve gerekli olan isiya ulaşma durumu teorik olarak Joule Kanunu kullanılarak hesaplanmış, test videoları yapılırken uygulama olarak denenmiş ve başarılı olmuştur.

```
clear all ; clc;
U=3.7; %gerilim
I=1.85; %akım
t=15; %süre
E=(U*I*t); %ısıya dönüşen toplam elektrik enerjisi
```

^{*}Yapılan hesaplamalara göre ısıtma telinin ipe vereceği ısı değeri **102.675 kcal** olarak bulunmuştur.

Paraşütler – Detay

Faydalı Yük Paraşütü

Renk: Turuncu **Çap:** 0.98 m **Malzeme:** Ripstop

Naylon

İniş Hızı: 9 m/s

Sürüklenme Paraşütü (1. Kademe)

Renk: Pembe Çap: 0.88 m Malzeme: Ripstop

Naylon

İniş Hızı: 20 m/s

Ana Paraşüt (2. Kademe)

Renk: Kırmızı **Çap:** 2.50 m **Malzeme:** Ripstop

Naylon

İniş Hızı: 8 m/s

Hesaplanan paraşüt çapları dikkate alınarak her bir paraşüt 8 eş parçadan oluşacak şekilde kesimi yapılmıştır. Kesimi yapılan paraşüt parçaları sağlam iplikle dikimi yapılıp testleri yapıldıktan sonra son montaj haline kavuşturulmuştur.

Not: Farklı renklerde paraşüt kumaşı temin edilemediğinden paraşütler boyama işleminden geçecektir.

https://youtu.be/Yjyn ZqOXSU

Paraşütlerin rokete montajı.

Aviyonik Sistem Mekanik Görünüm

Aviyonik Sistem 3 Boyutllu Görünümü

Üretilmiş Aviyonik Sistem Görüntüsü

https://youtu.be/jp8stY-Ujtc

Üretilmiş Aviyonik Sistem-Devre Görüntüsü

Aviyonik Sistem – Detay

Aviyonik Sistem

Aviyonik sistemimiz ana ve yedek olmak üzere iki uçuş bilgisayarından oluşmaktadır. Ana ve yedek bilgisayar arasında tasarım ve kullanılan sensörler bakımından fark bulunmamakta fakat kurtarma sistemi tetiklenmesi için kullanılan veriler farklılık göstermektedir. Yani ana ve yedek bilgisayarlarımız birbirinden farklı veriler kullanarak tetikleme gerçekleştirmektedir. Aviyonik sistemimizden beklenen görevler yer istasyonu ile kablosuz olarak haberleşmesi, bulunduğu konumu yer istasyonuna göndermesi ve basınç, yükseklik, ivme, zaman gibi veriler yardımı ile uçuş konseptine uygun bir şekilde kurtarma sistemlerini aktif hale getirerek roketin başarılı bir şekilde kurtarılmasını sağlayıp roketin yere indiğinde hasar almadan tekrar kullanıma hazır halde olabilmesine olanak sağlamasıdır.

Aviyonik sistemin alt sistemleri başlıklar halinde altta ele alınmıştır.

Telekomünikasyon

Roketin yer istasyonu ile haberleşme ve bilgi gönderimi ZigBee firması tarafından üretilen XBee modüller ile gerçekleşecektir. Seçilen XBee modüller **PRO XSC S3B** modeli olarak belirlenmiştir. Bu modelin seçilme nedeni 900 MHz bandında haberleşme sağlamasıdır. Bu ise bize uzun mesafede haberleşme sağlar. Düşük frekans kullandığından, düşük frekansların da engellerden (roket dış gövde) daha az etkilendiğini bildiğimizden bize daha güvenilir bir haberleşme imkanı sunar.

Rokette içerisinde ana, yedek ve faydalı yük bilgisayarlarında olmak üzere toplam üç tane, yer istasyonunda ise bir tane olmak üzere toplam dört tane XBee modülü kullanılacaktır. Roket içerisinde bulunan XBee'ler verici durumunda yer istasyonunda kullanılan XBee ise alıcı durumunda olacaktır. Verici durumunda olan XBee'ler anten olarak RP-SMA anten, yer istasyonunda ki XBee modülünde ise Yagi anten kullanılacaktır.

Anlatılan bu sistem test hazırlık raporunda roketten alınması gereken verileri göndererek test edilmiş herhangi bir sorun ile karşılaşılmamış olup testleri başarıyla gerçekleşmiştir.

GPS

GPS verisi roketin uçuş ve uçuş sonrasında roketin konum bilgisini bizlere sunacaktır.

GPS verisi almak için **GY-NEO6MV2** GPS modülü kullanılacaktır. Anten olarak ise seramik anten kullanılacaktır. Roket içerisinde ana ve yedek bilgisayarlar da birer tane, faydalı yükte ise bir tane olmak üzere toplam üç (3) tane modül kullanılmaktadır. GPS verisinin testi test hazırlık raporunda yapılmış başarılı bir şekilde gerçekleşmiştir.

Aviyonik Sistem – Detay

Basınç-Yükseklik

Basınç ve yükseklik verisi 10 DOF IMU çoklu sensör kartının içinde bulunan BMP180 sensöründen alınacaktır. Yükseklik verisi ana bilgisayarda 1. ayrılmanın aktif hale gelme durumunda kullanacaktır. Basınç ve yükseklik testleri test hazırlık raporunda yapılmış ve başarılı bir şekilde tamamlanmış olup sistemde herhangi bir değişime gidilmemesine karar verilmiştir.

ivme - Mach Koruma

İvme verisi 10 DOF IMU çoklu sensör kartının içinde bulunan MPU6050 sensöründen alınacaktır. İvme verisi ana ve yedek bilgisayarlarda roketin uçuş durumuna geçip geçmeme durumunu anlayama ve devamında mach korumanın yani roketin ses hızına yakın olduğu zaman aralığında roketin tetikleme yapmasına engel olmasını sağlayacaktır. İvme ve mach koruma testleri atış hazırlık raporunda yapılmış beklenen sonuçları vermiş ve başarıyla tamamlanmıştır. Bu nedenden dolayı sistemde herhangi bir değişim yapılmamıştır.

Tetikleme

Kurtarma sistemi tetikleme işlemleri ana ve yedek bilgisayarlarda bulunan iki adet mosfet (IRFZ44 N Kanal Power Mosfet TO-220) yardımı ile yapılacaktır. Burada kullanılan mosfetler anahtar pozisyonunda olup kurtarma tetiklemelerini yapacaktır.

Aviyonik Sistem Aktivasyon

Aviyonik sistemimiz aviyonik kapak üzerinde bulunan anahtarlar sayesinde dışarıdan aktif hale getirilecektir. Aviyonik sistemin dışarıdan aktif hale gelmesi avantaj olarak roket içerisini açmadan dışarıdan aktif hale getirme ve kolay açma- kapama işlemi yapabilmemizi sağlayacaktır.

Üretim

Aviyonik sitemimizin baskı devre kartları üretilmiş ve testleri yapılmıştır. Roket içerisine montaj için kullanacak şase üretimi yapılmış roket içerisine montaj yapılarak ürün denenmiştir.

Aviyonik sistemin üretim konusunda herhangi bir eksiği bulunmamakta ve sistemin bütünü tamamlanmıştır.

Kanatçıklar Mekanik Görünüm

Kanatçıkların 3 Boyutlu Görünümü

Üretilmiş Kanatçıkların Görüntüsü

Kanatçıklar – Detay

Üretim

Birebir open rocketten alınan ölçülere göre lazer kesim cihazı ile kesimi yapılmıştır.

https://youtu.be/aUEUVeT1fMU

Kanatçık montaj videosu.

Analizler

Malzeme Adı	Akma Mukavemeti	Çekme Mukavemeti	Kesme Dayanımı	Uzama	Elastisite
Alüminyum 2024 T3	345 MPa	483 MPa	285 MPa	%15	72400

Yaptığımız akış analizinde kanatçığı sanki bir rüzgar tüneline sokmuş gibi üzerine 270 m/s hızla hava akışkanı gönderilmiş ve elde edilen sonuç yandaki görselde paylaşılmıştır. (\$\(\frac{\section}{c}\) kil-2'de ki görselde ise kanatçığa gelen \$\(C_d\) değeri bulunmuştur ve bu değer 0,005'tir. \\$\(\section\) kil-3'te ise Roketin tamamına Fluent analizi yapılıp kritik olan burun konisi ve kanatçıklar üzerindeki basınç dağılımına bakılmış güvenli uçuşu aksatacak herhangi bir duruma rastlanmamıştır.

Not: Yapılan analizde Erzurum Teknik Üniversitesi lisanslı olan ANSYS programında 512000 mesh sınırı olduğundan kısıtlı analiz yapılmıştır.

Roket Genel Montaji

Montaj Aşamaları - 1

Adım 1:

Üzerinde pyro ısıtma teli ve mapaların bulunduğu bulkhead dışarıda montajlanıp gövde içerisine geçirilip m6 havşa başlı vidalarda sabitlenir

Adım 2:

Gövdeye sabitlenen bulkhead üzerinde bulunan mapaların ilkine şok kordonu diğerine ise stoper görevi görev ip bağlanacaktır. Bu ipin görevi roket apogee sonrası 500 metreye gelinceye kadar ana paraşütü içerde tutup 500 m inince stoper ipini yakıp ana paraşütü serbest bırakacaktır.

Adım 3:

Faydalı yük ve paraşütü burun konisinin shoulder kısmına yerleştirilir ve shoulder kısmında ki (faydalı yükün sadece shoulder da kalmasını roket içinde aşağı inmesini engellemek için) uzantı elemanı ile roket için aşağı kayması engellenir.

Adım 4:

Üst gövde de son olarak aviyonik sistem rokete yerleştirilir ve kapak vidaları ile kapatılır.

Adım 5:

Üst gövde ile alt gövdeyi birbirine bağlayan coupler üst gövdeye m6 havşa başlı vidalar ile sabitlenir

Adım 6:

Alt gövdenin üstünde bulunan alüminyumdan üretilmiş olan motor bloğu alt gövdeye m6 havşa başlı vidalarla sabitlenir.

Roket Genel Montaji

Montaj Aşamaları - 2

https://youtu.be/3HnWzeww6Qw

Roketin bütün montaj adımları video linkindedir.

Adım 7:

Değişen inner tüpüne bağlı olarak kanatçıklar inner tüp üzerinde ki saca m4 vidalar ile sabitlenir.

Adım 8:

Üzerinde kanat montajı yapılmış olan inner tüp alt gövdeye geçirilir ve 12 adet M6 havşa başlı vida ile sabitlenir.

https://youtu.be/OtxDyK8rAxY

Adım 9:

Üst gövde ile alt gövdeyi coupler yardımı ile m6 havşa başlı vidalar ile sabitlenir

Adım 10:

Tamamen montajı biten roket için alınacak olan M2150 motoru alt gövdenin altından (inner tüpün içerisinden) geçirilerek motor bloğu üzerindeki vidaya çevrilerek sabitlenir ve 3 adet tespit vidası ile motor merkezde tutulup sağa sola hareketi engellenir.

Adım 11:

Motor montajı biten roket için altimeterTwo cihazı ve pyro alınıp kapak açılıp yerleştirilir tahmini süre maksimum 5 dakikadır.

Roket Motoru Montajı

https://youtu.be/Jzz9u0si8mU

Roketin bütün montajı bittikten sonra son aşama olan motor montajının alt gövdeden inner tube içerisinden geçirilerek motor bloğuna montajı gösterilmiştir.

Atış Hazırlık Videosu

https://youtu.be/eqS_cNmBmGM

Roket üzerinde bulunan kapak sayesinde hem pyro hem de AltimeterTwo cihazının yerleştirilmesi kolayca sağlanmıştır.

	1. Test 2.		2. Test	İncelenen Olgu	Sonuçlar	Başarı Durumu
	Burun Konisi	Termal Test	Basma Testi	-Termal testi roket uçacağı süre boyunca üzerine etki edecek sürtünmeden kaynaklı oluşacak ısı etkilerini göz önüne alarak yapılacak olan test.	Testler yapılmış olup burun konimizin herhangi bir deformasyona uğramadığı gözlemlenmiştir.	Yapıldı - Başarılı
APISAL TEST	Gövde Plaka	Colema	-Üzerinde vidalar ile montajı yapılmış bulkheadların bir kesitinin çekme testi yapılarak ANSYS'ten alınan veriler ile karşılaştırılması.	Gövde plakalarına çekme testleri başarılı bir şekilde yapılmış olup istenilen değerler elde edilmiştir. Çentik darbe testi için gerekli cihaz bulunamadığından test yapılamamıştır.	Yapıldı - Başarılı	
YAF	Мара	Çekme Testi	-	Paraşüt testleri dahilinde dolaylı yoldan mapalarımızda test edilmiştir.	Mapa üzerinde ve somunda herhangi bir kalıcı deformasyon olmamıştır.	Yapıldı - Başarılı
	Motor Bloğu	Basma Testi	-	ABS filament den üretilen motor bloğunun motor itkisinden kaynaklı üzerine etki edecek kuvvetin motor bloğu için deformasyon durumu.	ABS motor bloğuna sağlıklı bir şekilde diş açılamadığı için Alüminyum motor bloğu seçilmiştir ve basma testi başarılı bir şekilde gerçekleştirilmiştir.	Yapıldı - Başarılı

		1. Test	2. Test	3. Test	4. Test	incelenen Olgu	Sonuçlar	Başarı Durumu	
TESTLERİ	Sürüklenme Paraşütü				-	-Seçtiğimiz paraşütün hava geçirgenliği ve yoğunluğu test edilme maksadı ile arabaya bağlanan paraşütlerin açılma süresi test edilmiştir.	Sürüklenme ve faydalı yük paraşütleri için yaptığımız	Yapıldı - Başarılı	
(KURTARMA) TE	Faydalı Yük Paraşütü	Katlama	ı Araba ile Yüksekte	ma Araha ila	Yüksekten	-	-Roket içerisine yerleştirilecek olan paraşütlerin katlama şekillerine bağlı olarak düşeyde bırakıldıktan sonra açılma süreleri ve durumları incelenmiştir. Ayrıca paraşüte bağlanan iplerin bağlantı noktalarının doğrulukları gözden geçirilmiştir.	testler başarılı bir şekilde tamamlanmış olup herhangi bir sorunla karşılaşılmamıştır.	Yapıldı - Başarılı
PARAŞÜT AÇILMA (KUR	Ana Paraşüt	Biçimleri Testi	Açılma (Yatay)	Bırakma (Düşey)	Isıtma Teli Testi	-Seçtiğimiz paraşütün hava geçirgenliği ve yoğunluğu test edilme maksadı ile arabaya bağlanan paraşütlerin açılma süresi test edilmiştirRoket içerisine yerleştirilecek olan paraşütlerin katlama şekillerine bağlı olarak düşeyde bırakıldıktan sonra açılma süreleri ve durumları incelenmiştir. Ayrıca paraşüte bağlanan iplerin bağlantı noktalarının doğrulukları gözden geçirilmiştirYüksekten bırakılan ağırlığın ana paraşütü tutan ek ipinin ısıtma teli ile koparılıp ana paraşütün açıldığı gözlemlenmiştir.	Ana paraşüt için belirlenen testler başarılı ile gerçekleştirilmiş olup ısıtma telinin ipi ısıtarak koparması için gerekli süre hesaplanmıştır. Herhangi bir sorunla karşılaşılmamıştır.	Yapıldı - Başarılı	

		1. Test	2. Test	Test Yöntemleri	Test Düzeneği	Sonuç	Başarı Durumu
	İşlemci testi	Veri işleme hızının testi	Farklı sıcaklıklarda çalışma testi	İşlemcinin ulaşabileceği maksimum sıcaklığa çıkararak performansını test etmek	maksimum sıcaklığa konularak yüksek sıcaklık altında veri sı çıkararak performansını test iletimi yapılmıştır.		Yapıldı - Başarılı
DONANIM TESTLERI	Mach koruma testi	Roketin uçuş başladıktan sonra mach korumanın devreye girmesi testi	-	Uçuş bilgisayarımız eksiksiz bir şekilde çalıştırılarak ivme verisinden oluşan artış ile roketin uçuş durumunun anlaşılması ve mach korumanın devreye girip girmeyeceğinin test edilmesi	Test gerçekleştirilirken ayrı bir düzenek kullanılmamıştır. Uçuş bilgisayarı el yardımı ile ivmelendirilerek test gerçekleştirilmiştir.	Test sonucunda ivme değerinde meydana gelen değişim ile roketin uçuş durumuna geçtiğini anladığı ve 5 saniye boyunca mach korumayı aktif hale getirdiği gözlemlenmiştir.	Yapıldı - Başarılı
	10 DOFF IMU sensörü testi	Basınç değerinin kalibrasyon testi	İvme testi	Roket uçuş sırasında oluşabilecek basınç ve ivme değerlerini uçuş bilgisayarının üzerine yapacağı etki	Basınç testi için vakum torbası içine konulan aviyonik sistem elektrikli süpürge ile test edilmiştir. İvme testi için herhangi bir düzenek kullanılmamıştır.	Yapılan basınç testinde alçak ve yüksek basınçta ani değişimler karşısında düzenli veri alımı sağlanmıştır. Test başarılı bir şekilde tamamlanmıştır.	Yapıldı - Başarılı
AVİYONİK SİSTEM YAZILIM ve	GPS sensörünün testi	Konum verilerinin doğruluk testi	konum verilerin düzenli bir şekilde gelmesi	GPS verilerinin doğru ve düzgün bir şekilde gelmesi	GPS testi için düzenek kurulmamıştır.	Yapılan test sonucu konum verisinin düzgün ve doğru bir şekilde geldiği gözlemlenmiştir.	Yapıldı - Başarılı
	Ana ve yedek bilgisayar arası geçiş testi	Ana bilgisayardan yedek bilgisayara geçiş testi	-	Ana ve yedek bilgisayar kablo yardımıyla haberleşerek bilgisayarlar arası geçiş test edilmiştir.	Bu test için düzenek kullanılmamıştır. Ana ve yedek bilgisayar kullanılarak yapılmıştır.	Yapılan testte ana bilgisayarda 10 DOFF sensörünün bir anda çalışmadığı var sayılarak test yapılmış ve yedek bilgisayara geçiş olduğu gözlemlenmiştir.	Yapıldı - Başarılı

		1. Test	2. Test	Test Yöntemleri	Test Düzeneği	Sonuç	Başarı Durumu
IKASYON TESTI	XBee modülü	Aviyonik sistemden gelen tüm verilerin iletim testi	-	Aviyonik sistem çalıştırılarak gönderilen verilerin yer istasyonuna iletimi test edilmiştir.	Bu test için düzenek kullanılmamıştır.	Yapılan test sonucu tüm verilerin hızlı ve eksiksiz bir şekilde iletildiği görülmüştür.	Yapıldı - Başarılı
TELEKOMÜNİKASYON	Mesafe testleri	Yakın ve uzak mesafeden haberleşme testi	-	Aviyonik sistem yakın ve uzak mesafelerde yer istasyonu ile haberleşmesi test edilmiştir.	Bu test için düzenek kullanılmamıştır.	Yakın ve uzak mesafede haberleşmenin sorunsuz bir şekilde gerçekleşmiştir.	Yapıldı - Başarılı

https://youtu.be/wXOssylns4U

THR aşamasında yapılamayan aviyonik testlerin videoları.

Yarışma Alanı Planlaması

MONTAJ GÜNÜ	Aviyonik Montaj	Kanatçık Montaj	Üst Gövde Montaj	Alt Gövde Montaj	Paraşütler ve Şok Kordonu	Isıtma Teli	Kara Barutun Konulması	Motor Montaj
M. Furkan KOÇYİĞİT		✓	✓	✓			✓	✓
Celal ÇİLOĞLU		✓		✓	✓			✓
Sedat KAYA	✓		✓		✓	✓		
Muhammet Demir	✓					✓		
M. Eyyüp TEKİN				✓	✓			

ATIŞ GÜNÜ	Yer istasyonu kurulumu	AltimeterTwo cihaz yerleştirme	Roket rampaya götürülmesi	Aviyonik Sistem Aktivasyon	Kurtarma Ekibi	Yer istasyonu anten sorumlusu
M. Furkan KOÇYİĞİT		✓	✓		✓	
Celal ÇİLOĞLU		✓	✓		✓	
Sedat KAYA	✓		✓	✓	✓	
Muhammet Demir	✓					
M. Eyyüp TEKİN		✓				✓

^{*}Alt gövde ve üst gövde montajı gövdeler içerisindeki alt sistemi de kapsamaktadır. (Bulkhead, Motor Bloğu, Kapak, Burun Konisi vs.)

Yarışma Alanı Planlaması

Olası Riskler	A Planı	B Planı
Ekip üyelerinden herhangi birinin yarışma alanına gelememe durumu.	Takımdaki herkesin montaj yapabilecek deneyime sahip olması.	Bütün montaj stratejilerinin adım adım tekrar yapılması.
Roket montaj sırasında kritik parçaların kullanılamaz hale gelmesi.	Yedek parça bulundurma.	-
Yarışma alanında getirmeyi unuttuğumuz bir parça olursa.	Aksaray içerisindeki ulaşım ve tedarik edileceği yer bilgisine önceden sahip olunması.	-

Olası risklere karşı alınacak önlemler yukarıda belirtilmiştir.