FMI, Info, Anul I

Logică matematică și computațională

Seminar 5

(S5.1) Considerăm limbajul de ordinul I $\mathcal{L}_{ar} = (\dot{<}; \dot{+}, \dot{\times}, \dot{S}; \dot{0})$ (limbajul aritmeticii) și \mathcal{L}_{ar} -structura $\mathcal{N} = (\mathbb{N}, <, +, \cdot, S, 0)$.

- (i) Fie $x, y \in V$ cu $x \neq y$, şi $t = \dot{S}x \dot{\times} \dot{S}\dot{S}y = \dot{\times}(\dot{S}x, \dot{S}\dot{S}y)$. Să se calculeze $t^{\mathcal{N}}(e)$, unde $e: V \to \mathbb{N}$ este o evaluare ce verifică e(x) = 3 şi e(y) = 7.
- (ii) Fie $\varphi = x \dot{\prec} \dot{S}y \to (x \dot{\prec} y \lor x = y) = \dot{\prec} (x, \dot{S}y) \to (\dot{\prec} (x, y) \lor x = y)$. Să se arate că $\mathcal{N} \models \varphi[e]$ pentru orice $e: V \to \mathbb{N}$.

Demonstrație:

(i) Pentru orice interpretare $e: V \to \mathbb{N}$, avem

$$t^{\mathcal{N}}(e) = \dot{x}^{\mathcal{N}}((\dot{S}x)^{\mathcal{N}}(e), (\dot{S}\dot{S}y)^{\mathcal{N}}(e)) = (\dot{S}x)^{\mathcal{N}}(e) \cdot (\dot{S}\dot{S}y)^{\mathcal{N}}(e)$$
$$= \dot{S}^{\mathcal{N}}(x^{\mathcal{N}}(e)) \cdot \dot{S}^{\mathcal{N}}((\dot{S}y)^{\mathcal{N}}(e)) = S(e(x)) \cdot S(\dot{S}^{\mathcal{N}}(y^{\mathcal{N}}(e)))$$
$$= S(e(x)) \cdot S(S(e(y))).$$

Prin urmare, dacă e(x) = 3 și e(y) = 7, atunci

$$t^{\mathcal{N}}(e) = S(3) \cdot S(S(7)) = 4 \cdot 9 = 36.$$

(ii) Pentru orice interpretare $e: V \to \mathbb{N}$, avem

$$\mathcal{N} \vDash \varphi[e] \iff \mathcal{N} \not\vDash (\dot{<}(x, \dot{S}y))[e] \text{ sau } \mathcal{N} \vDash (\dot{<}(x, y) \lor x = y)[e]$$
 $\iff \dot{<}^{\mathcal{N}}(e(x), S(e(y)) \text{ nu e satisfăcută sau}$
 $\mathcal{N} \vDash (\dot{<}(x, y))[e] \text{ sau } \mathcal{N} \vDash (x = y)[e]$
 $\iff < (e(x), S(e(y)) \text{ nu e satisfăcută sau } < (e(x), e(y))$
 $\text{ sau } e(x) = e(y)$
 $\iff e(x) \geq S(e(y)) \text{ sau } e(x) < e(y) \text{ sau } e(x) = e(y)$
 $\iff e(x) \geq e(y) + 1 \text{ sau } e(x) < e(y) \text{ sau } e(x) = e(y).$

Prin urmare, $\mathcal{N} \vDash \varphi[e]$ pentru orice $e: V \to \mathbb{N}$.

De obicei, scriem:

$$\mathcal{N} \vDash \varphi[e] \iff \mathcal{N} \not\vDash (\dot{<}(x, \dot{S}y))[e] \text{ sau } \mathcal{N} \vDash (\dot{<}(x, y) \lor x = y)[e]$$

 $\iff e(x) \ge S(e(y)) \text{ sau } e(x) < e(y) \text{ sau } e(x) = e(y)$
 $\iff e(x) \ge e(y) + 1 \text{ sau } e(x) < e(y) \text{ sau } e(x) = e(y).$

(S5.2) Considerăm limbajul de ordinul I $\mathcal{L}_{ar} = (\dot{<}; \dot{+}, \dot{\times}, \dot{S}; \dot{0})$ (limbajul aritmeticii) și \mathcal{L}_{ar} structura $\mathcal{N} = (\mathbb{N}, <, +, \cdot, S, 0)$. Fie formula $\varphi = \forall v_4(v_3 \dot{<} v_4 \lor v_3 = v_4)$. Să se caracterizeze acele $e: V \to \mathbb{N}$ ce au proprietatea că $\varphi^{\mathcal{N}}(e) = 1$.

Demonstrație: Fie $e: V \to \mathbb{N}$. Avem:

$$\varphi^{\mathcal{N}}(e) = 1 \iff (\forall v_4(v_3 \dot{<} v_4 \lor v_3 = v_4))^{\mathcal{N}}(e) = 1$$

$$\iff \text{pentru orice } a \in \mathbb{N}, \ (v_3 \dot{<} v_4 \lor v_3 = v_4)^{\mathcal{N}}(e_{v_4 \mapsto a}) = 1$$

$$\iff \text{pentru orice } a \in \mathbb{N}, \ (v_3 \dot{<} v_4)^{\mathcal{N}}(e_{v_4 \mapsto a}) \lor (v_3 = v_4)^{\mathcal{N}}(e_{v_4 \mapsto a}) = 1$$

$$\iff \text{pentru orice } a \in \mathbb{N}, \ (v_3 \dot{<} v_4)^{\mathcal{N}}(e_{v_4 \mapsto a}) = 1 \text{ sau } (v_3 = v_4)^{\mathcal{N}}(e_{v_4 \mapsto a}) = 1$$

$$\iff \text{pentru orice } a \in \mathbb{N}, \ e_{v_4 \mapsto a}(v_3) < e_{v_4 \mapsto a}(v_4) \text{ sau } e_{v_4 \mapsto a}(v_3) = e_{v_4 \mapsto a}(v_4)$$

$$\iff \text{pentru orice } a \in \mathbb{N}, \ e_{v_4 \mapsto a}(v_3) \leq e_{v_4 \mapsto a}(v_4)$$

$$\iff \text{pentru orice } a \in \mathbb{N}, \ e(v_3) \leq a$$

$$\iff e(v_3) = 0.$$

Notația 1. Fie \mathcal{L} un limbaj de ordinul I. Pentru orice variabile x, y cu $x \neq y$, orice \mathcal{L} -structură \mathcal{A} cu universul notat cu A, orice $e: V \to A$ și orice $a, b \in A$, avem că:

$$(e_{y\mapsto b})_{x\mapsto a} = (e_{x\mapsto a})_{y\mapsto b}.$$

În acest caz, notăm valoarea lor comună cu $e_{x\mapsto a,y\mapsto b}$. Aşadar,

$$e_{x\mapsto a,y\mapsto b}:V\to A,\quad e_{x\mapsto a,y\mapsto b}(v)=\begin{cases} e(v) & dac v\neq x \text{ $\it gi $v\neq y$}\\ a & dac v=x\\ b & dac v=y. \end{cases}$$

(S5.3) Fie \mathcal{L} un limbaj de ordinul I. Să se arate că pentru orice formule φ , ψ ale lui \mathcal{L} şi orice variabile x, y cu $x \neq y$ avem,

- (i) $\forall x(\varphi \wedge \psi) \vDash \forall x\varphi \wedge \forall x\psi$;
- (ii) $\exists y \forall x \varphi \vDash \forall x \exists y \varphi$;
- (iii) $\forall x\varphi \vDash \exists x\varphi$;
- (iv) $\forall x(\varphi \to \psi) \vDash \exists x\varphi \to \exists x\psi$.

Demonstrație: Fie \mathcal{A} o \mathcal{L} -structură cu universul notat cu A și $e: V \to A$.

- (i) Avem că $\mathcal{A} \models (\forall x(\varphi \land \psi))[e] \iff$ pentru orice $a \in A$, avem $\mathcal{A} \models (\varphi \land \psi)[e_{x\mapsto a}]$ \iff pentru orice $a \in A$, $(\mathcal{A} \models \varphi[e_{x\mapsto a}] \text{ şi } \mathcal{A} \models \psi[e_{x\mapsto a}])(*)$.

 Pe de altă parte, $\mathcal{A} \models (\forall x\varphi \land \forall x\psi)[e] \iff \mathcal{A} \models (\forall x\varphi)[e] \text{ şi } \mathcal{A} \models (\forall x\psi)[e] \iff (\text{pentru orice } b \in A, \text{ avem } \mathcal{A} \models \varphi[e_{x\mapsto b}])$ (**) şi (pentru orice $c \in A$, avem $\mathcal{A} \models \psi[e_{x\mapsto c}]$) (***).

 Mai întâi, presupunem (*) şi arătăm (**) şi (***). Pentru (**), fie $b \in A$, şi avem, luând în (*) a := b, că $\mathcal{A} \models \varphi[e_{x\mapsto b}]$ şi $\mathcal{A} \models \psi[e_{x\mapsto b}]$, deci $\mathcal{A} \models \varphi[e_{x\mapsto b}]$. Pentru (***), fie $c \in A$, şi avem, luând în (*) a := c, că $\mathcal{A} \models \varphi[e_{x\mapsto c}]$ şi $\mathcal{A} \models \psi[e_{x\mapsto c}]$, deci $\mathcal{A} \models \psi[e_{x\mapsto c}]$.

 Presupunem acum (**) şi (***) şi demonstrăm (*). Fie $a \in A$. Luând în (**) b := a,
 - Presupunem acum (***) şi (****) şi demonstram (*). Fie $a \in A$. Luand in (***) b := a, avem $\mathcal{A} \models \varphi[e_{x\mapsto a}]$. Luând în (***) c := a, avem $\mathcal{A} \models \psi[e_{x\mapsto a}]$. Deci, $\mathcal{A} \models \varphi[e_{x\mapsto a}]$ şi $\mathcal{A} \models \psi[e_{x\mapsto a}]$, ceea ce trebuia demonstrat.
- (ii) Avem că $\mathcal{A} \vDash (\exists y \forall x \varphi)[e] \iff$ există $b \in A$ a.î. pentru orice $a \in A$ avem $\mathcal{A} \vDash \varphi[(e_{y \mapsto b})_{x \mapsto a}]$, i.e., folosind ipoteza că $x \neq y$, $\mathcal{A} \vDash \varphi[e_{x \mapsto a, y \mapsto b}]$ (*).

Pe de altă parte, $\mathcal{A} \vDash (\forall x \exists y \varphi)[e] \iff$ pentru orice $c \in A$ există $d \in A$ a.î. $\mathcal{A} \vDash \varphi[(e_{x \mapsto c})_{y \mapsto d}]$, i.e., folosind ipoteza că $x \neq y$, $\mathcal{A} \vDash \varphi[e_{x \mapsto c, y \mapsto d}]$ (**).

Ştim (*) şi vrem să arătăm (**).

Fie $c \in A$. Vrem $d \in A$ cu $\mathcal{A} \models \varphi[e_{x \mapsto c, y \mapsto d}]$.

Arătăm că $\mathcal{A} \vDash \varphi[e_{x\mapsto c,y\mapsto b}]$, unde b-ul este cel din (*), fiindcă atunci putem lua d:=b. Luând în (*) a:=c, obţinem $\mathcal{A} \vDash \varphi[e_{x\mapsto c,y\mapsto b}]$, ceea ce ne trebuia.

- (iii) Presupunem că $\mathcal{A} \vDash (\forall x \varphi)[e]$, i.e. că, pentru orice $a \in A$, $\mathcal{A} \vDash \varphi[e_{x \to a}]$ (*). Vrem să arătăm că $\mathcal{A} \vDash (\exists x \varphi)[e]$, i.e. că există $b \in A$ cu $\mathcal{A} \vDash \varphi[e_{x \to b}]$. Cum $A \neq \emptyset$, fie $c \in A$ arbitrar. Atunci, conform (*) (pentru a := c), $\mathcal{A} \vDash \varphi[e_{x \to c}]$, deci putem lua b := c.
- (iv) Presupunem că $\mathcal{A} \vDash (\forall x(\varphi \to \psi))[e]$, echivalent cu: pentru orice $a \in A$ cu $\mathcal{A} \vDash \varphi[e_{x \mapsto a}]$ avem că $\mathcal{A} \vDash \psi[e_{x \mapsto a}]$ (*).

Vrem să arătăm că $\mathcal{A} \vDash (\exists x \varphi \to \exists x \psi)[e]$, echivalent cu: dacă există $b \in A$ cu $\mathcal{A} \vDash \varphi[e_{x \mapsto b}]$, atunci există $c \in A$ cu $\mathcal{A} \vDash \psi[e_{x \mapsto c}]$.

Presupunem, deci, că avem un $b \in A$ cu $\mathcal{A} \models \varphi[e_{x \mapsto b}]$ (**). Vrem să arătăm că există $c \in A$ cu $\mathcal{A} \models \psi[e_{x \mapsto c}]$ (***).

Conform (*) (pentru a := b) şi (**), avem $\mathcal{A} \models \psi[e_{x \mapsto b}]$. Putem lua, deci, în (***), c := b şi am terminat.

(S5.4) Fie x, y variabile cu $x \neq y$. Să se dea exemple de limbaj de ordinul I, \mathcal{L} , şi de formule φ, ψ ale lui \mathcal{L} astfel încât:

- (i) $\forall x(\varphi \lor \psi) \not\vDash \forall x\varphi \lor \forall x\psi$;
- (ii) $\forall x \exists y \varphi \not\vDash \exists y \forall x \varphi$.

Demonstrație: Considerăm $\mathcal{L}_{ar} = (\dot{<}, \dot{+}, \dot{\times}, \dot{S}, \dot{0}), \mathcal{L}_{ar}$ -structura $\mathcal{N} := (\mathbb{N}, <, +, \cdot, S, 0)$ şi $e: V \to \mathbb{N}$ o evaluare arbitrară (să zicem, punem, pentru orice $v \in V, e(v) := 7$).

(i) Fie $\dot{2}:=\dot{S}\dot{S}\dot{0},\,\varphi:=\dot{x}\dot{<}\dot{2}$ și $\psi:=\neg(\dot{x}\dot{<}\dot{2}).$ Atunci

$$\mathcal{N} \vDash \forall x (\varphi \lor \psi)[e].$$

Pe de altă parte,

- (a) $\mathcal{N} \vDash (\forall x \varphi)[e] \iff$ pentru orice $n \in \mathbb{N}$ avem $\mathcal{N} \vDash \varphi[e_{x \mapsto n}] \iff$ pentru orice $n \in \mathbb{N}$, avem n < 2, ceea ce nu este adevărat (luând n := 3, de exemplu). Deci, $\mathcal{N} \nvDash (\forall x \varphi)[e]$.
- (b) $\mathcal{N} \vDash (\forall x \psi)[e] \iff$ pentru orice $n \in \mathbb{N}$ avem $\mathcal{N} \vDash \psi[e_{x \mapsto n}] \iff$ pentru orice $n \in \mathbb{N}$, avem $n \geq 2$, ceea ce nu este adevărat (luând n := 1, de exemplu). Deci, $\mathcal{N} \nvDash (\forall x \psi)[e]$.

Prin urmare,

$$\mathcal{N} \not\vDash (\forall x \varphi \vee \forall x \psi)[e].$$

(ii) Fie $\varphi := x \dot{<} y$. Atunci

$$\mathcal{N} \vDash (\forall x \exists y \varphi)[e] \iff \text{pentru orice } n \in \mathbb{N}, \text{ avem } \mathcal{N} \vDash (\exists y \varphi)[e_{x \mapsto n}] \\ \iff \text{pentru orice } n \in \mathbb{N} \text{ există } m \in \mathbb{N} \text{ a.î. } \mathcal{N} \vDash \varphi[e_{x \mapsto n, y \mapsto m}] \\ \iff \text{pentru orice } n \in \mathbb{N} \text{ există } m \in \mathbb{N} \text{ a.î. } n < m,$$

ceea ce este adevărat – se ia, de pildă, m := n + 1. Aşadar,

$$\mathcal{N} \vDash (\forall x \exists y \varphi)[e].$$

Pe de altă parte,

$$\mathcal{N} \vDash (\exists y \forall x \varphi)[e] \iff \text{există } m \in \mathbb{N} \text{ a.î. } \mathcal{N} \vDash (\forall x \varphi)[e_{y \mapsto m}] \\ \iff \text{există } m \in \mathbb{N} \text{ a.î. pentru orice } n \in \mathbb{N} \\ \text{avem } \mathcal{N} \vDash \varphi[e_{x \mapsto n, y \mapsto m}] \\ \iff \text{există } m \in \mathbb{N} \text{ a.î. pentru orice } n \in \mathbb{N} \text{ avem } n < m,$$

ceea ce este fals. Aşadar,

$$\mathcal{N} \not\models (\exists y \forall x \varphi)[e].$$

(S5.5) Considerăm limbajul $\mathcal{L}_{ar} = (\dot{<}, \dot{+}, \dot{\times}, \dot{S}, \dot{0})$ (limbajul aritmeticii) şi \mathcal{L}_{ar} -structura canonică peste acest limbaj $\mathcal{N} := (\mathbb{N}, <, +, \cdot, S, 0)$. Să se dea exemplu de \mathcal{L}_{ar} -formule $\varphi_1, \varphi_2, \varphi_3$ astfel încât pentru orice $e: V \to \mathbb{N}$,

- (i) $\mathcal{N} \vDash \varphi_1[e] \Leftrightarrow e(v_0)$ este par;
- (ii) $\mathcal{N} \vDash \varphi_2[e] \Leftrightarrow e(v_0)$ este prim;
- (iii) $\mathcal{N} \vDash \varphi_3[e] \Leftrightarrow e(v_0)$ este putere a lui 2 cu exponent strict pozitiv.

Demonstraţie:

(i) Luăm

$$\varphi_1 := \exists v_1 (v_1 \dot{+} v_1 = v_0).$$

(ii) Luăm

$$\varphi_2 := \dot{S}\dot{0} \dot{<} v_0 \land \forall v_1 ((v_1 \dot{<} v_0 \land \exists v_2 (v_1 \dot{\times} v_2 = v_0)) \rightarrow v_1 = \dot{S}\dot{0}).$$

(iii) Luăm

$$\varphi_3 := \dot{S}\dot{0} \dot{<} v_0 \land \forall v_1 ((\dot{S}\dot{0} \dot{<} v_1 \land \exists v_2 (v_1 \dot{\times} v_2 = v_0)) \rightarrow \exists v_2 (v_1 = v_2 \dot{+} v_2)).$$