CMSC 330: Organization of Programming Languages

Finite Automata

Implementing Regular Expressions

- We can implement regular expressions by turning them into a finite automaton
 - a "machine" for recognizing a language

CMSC 330 2

Start state States Transition on 1 Final state

- · Machine starts in start or initial state as current state
- Repeat until the end of the string is reached:
 - scan the next symbol s of the string
 - take transition edge from the current state labeled with s
- The string is accepted if the automaton is in a final or accepting state when the end of the string is reached

Finite Automata: States

- Start state
 - A state that has an incoming transition from no other state
 - Can have only 1 start state

- Final state
 - State with double circle
 - Can have 0 or more final states

CMSC 330

CMSC 330

4

Example

001011

accepted

Example

001010

not accepted

CMSC 330 5 CMSC 330 6

What Language is This?

- All strings over {0, 1} that end in 1
- What is a regular expression for this language?
 (0|1)*1

Another Example

string	state at end	accepts ?
aabcc	S2	Y
acc	S2	Y
bbc	S2	Y
aabbb	S1	Y
aa	S0	Y
3	S0	Y
acba	S3	N

(a,b,c notation shorthand for three self loops)

Another Example (cont'd)

What language does this DFA accept? a*b*c*

S3 is a *dead state* – a nonfinal state with no transition to another state

CMSC 330 9

Shorthand Notation

 If a transition is omitted, assume it goes to a dead state that is not shown

Strings over {0,1,2,3} with alternating even and odd digits, beginning with odd digit

CMSC 330 10

What Language Does This DFA Accept?

a*b*c* again, so DFAs are not unique

Practice

Give the English descriptions and the DFA or regular expression of the following languages:

- ((0|1)(0|1)(0|1)(0|1)(0|1))*
 - All strings of binary digits with length a multiple of 5
- (01)*|(10)*|(01)*0|(10)*1
 - All alternating binary digit strings

All binary strings containing the substring "11"

CMSC 330 11 CMSC 330 12

Example DFA

- Language?
 - S0 = "Haven't seen anything yet" OR "Seen zero or more b's" OR "Last three symbols seen were abbb"
 - S1 = "Last symbol seen was an a"
 - S2 = "Last two symbols seen were ab"
 - S3 = "Last three symbols seen were abb"
- (a|b)*abb

CMSC 330

13

Formal Definition

- A deterministic finite automaton (DFA) is a 5tuple (Σ, Q, q₀, F, δ) where
 - Σ is an alphabet
 - the strings recognized by the DFA are over this set
 - Q is a nonempty set of states
 - $-q_0 \in Q$ is the start state
 - F ⊂ Q is the set of final states
 - · how many can there be?
 - $-\delta: Q \times \Sigma \rightarrow Q$ specifies the DFA's transitions
 - what's this definition saying that δ is?

CMSC 330 14

Our First Example, Formally

$$-\Sigma = \{0, 1\}$$

$$-Q = \{S0, S1\}$$

$$-q_0 = S0$$

$$- F = {S1}$$

_

δ	0	1
S0	S0	S1
S1	S0	S1

DFA Requirements

- Can't have more than one transition leaving a state on the same symbol
 - I.e., the transition function must be a valid function

- · Can't have transitions with empty labels
 - Each transition must be labeled by a single alphabet symbol

16

CMSC 330 15 CMSC 330

Nondeterministic Finite Automata (NFA)

- An NFA is a 5-tuple (Σ, Q, q₀, F, δ) where
 - Σ is an alphabet
 - Q is a nonempty set of states
 - $-q_0 \in Q$ is the start state
 - $F \subseteq Q$ is the set of final states
 - $-\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$ specifies the NFA's transitions
- An NFA accepts a string s if there is at least one path from its start to final state on s

CMSC 330 17

NFA for (a|b)*abb

- ba
 - Has paths to either S0 or S1
 - neither is final, so rejected
- babaabb
 - Has paths to different states
 - one leads to S3, so accepted

CMSC 330 18

Another example DFA

- Language?
- (ab|aba)*

NFA for (ab|aba)*

aba

19

- has paths to states S0, S1
- ababa
 - has paths to S0, S1
 - need to use ε-transition

CMSC 330

20

Relating R.E.'s to DFAs and NFAs

 Regular expressions, NFAs, and DFAs accept the same languages!

CMSC 330 21