

Algoritmos e Estuturas de Dados Inverno 2006

Cátia Vaz

_

Análise de Algoritmos

- Para avaliar e comparar o desempenho de 2 algoritmos podemos executar ambos várias vezes para ver qual é o mais rápido.
- sobre o desempenho mas Este método empírico pode fornecer indicações
- consome demasiado tempo.
- continua a ser necessário uma análise mais detalhada para validar os resultados.
- caracterizar, descrever e comparar algoritmos Existem bases científicas irredutíveis para

- Que dados usar?
- dados reais: verdadeira medida do custo de execução
- dados aleatórios: assegura-nos que as experiências testam o algoritmo e não apenas os dados específicos
- Caso médio
- dados perversos: mostram que o algoritmo funciona com qualquer tipo de dados
- Pior caso
- dados benéficos:
- Melhor caso

Cátia Vaz

ω

- Melhorar algoritmos:
- analisando o seu desempenho
- algoritmo fazendo pequenas alterações para produzir um novo
- identificar as abstracções essenciais do problema
- abstracções. comparar algoritmos com base no seu uso dessas
- torma a tomarmos partido dele de forma eficiente: E fundamental para percebermos um algoritmo de
- compararmos com outros
- prevermos o desempenho
- escolher correctamente os seus parâmetros

Cátia Vaz

- i.e. identificar as operações de forma abstracta: É fundamental separar a análise da implementação,
- ex:quantas vezes id[p] é acedido
- Uma propriedade (imutável) do algoritmo
- não é tão importante saber quantos nanosegundos essa instrução demora no meu computador!
- Uma propriedade do computador
- grande, mas O número de operações abstractas pode ser
- normalmente o desempenho depende apenas de um pequeno número de parâmetros
- procurar determinar a frequência de execução de cada um desses operadores (estabelecer estimativas).

Análise de Algoritmos

- Dependência nos dados de entrada
- dados reais geralmente não disponíveis:
- assumir que são aleatórios: caso médio
- podem não ser representativos da realidade
- perversos: pior caso
- por vezes difícil de determinar
- podem nunca acontecer na realidade
- benéficos: melhor caso
- ao desempenho de um algoritmo Normalmente os dados são boas indicações quanto

- único parâmetro N O tempo de execução geralmente depende de um
- tamanho de um ficheiro a ser processado, ordenado, etc
- usualmente relacionado com o número de dados a processar
- Pode existir mais do que um parâmetro!

Cátia Vaz

7

Análise de Algoritmos

- Os algoritmos têm tempo de execução proporcional a:
- _
- muitas instruções são executadas uma só vez ou poucas vezes
- se isto for verdade para todo o programa diz-se que o seu tempo de execução é constante

log N

- tempo de execução é logarítmico
- cresce ligeiramente à medida que N cresce
- quando N duplica log N aumenta mas muito pouco; apenas duplica quando N aumenta para Nº

- tempo de execução é linear
- situação óptima quando é necessário processar Nedados de entrada (ou produzir 🖊 dados na saída)

N log N

 típico quando se reduz um problema em sub-problemas, se resolve estes separadamente e se combinam as soluções

~

- tempo de execução quadrático
- típico quando é preciso processar todos os pares de dados de entrada
- prático apenas em pequenos problemas (ex: produto matriz vector)

Cátia Vaz

9

Análise de Algoritmos

.

- tempo de execução cúbico
- ex: produto de matrizes

Ž

- tempo de execução exponencial
- provavelmente de pouca aplicação prática
- típico em soluções de força bruta
- ex: cálculo da saída de um circuito lógico de 🖊 entradas

20	17	13	10	7	ω	lg N
1000	316	100	32	10	ယ	\sqrt{N}
1000000	100000	10000	1000	100	10	N
19931569	1660964	132877	9966	664	33	$N \lg N$
397267426	27588016	1765633	99317	4414	110	$N (lg N)^2$
1000000000	31622777	1000000	31623	1000	32	$N^{3/2}$
1000000000000	10000000000	100000000	1000000	10000	100	N^2

10^{11}	10^{10}	10°	10 ⁸	10^{7}	10^{6}	10^{5}	10^{4}	10^2	segundos
пипса	3.1 séculos	3.1 décadas	3.1 anos	3.8 meses	1.6 semanas	1.1 dias	2.8 horas	1.7 minutos	0.00

Conversão de Segundos

Cátia Vaz

11

problemas Resoluções de grandes

operações por	tamanho milhão	tamanho do problema 1 milhão	olema 1	tamanho bilião	tamanho do problema : bilião	ema 1
segundo	Z	NIgN N2	₂ N	Z	NIgN	Z
106	segundos	segundos	semanas	horas	horas	nunca
109	instantes	instantes	horas	segundos	segundos	décadas
1012	instantes	instantes	segundos	instantes	instantes	semanas

Análise: funções relevantes

	.=	7	τ	T	.=			+
	lg(N!)	<u>Z</u>	I Z	Z Z	lg N	×	×	função
e = 2.71828 g = 0.57721 ln 2 = 0.693147 lg e = 1/ ln2 = 1.44269		factorial function	harmonic numbers	Fibonacci numbers	binary logarithm	ceiling function	floor function	nome
69	lg(100!) 520	10! = 3628800	H ₁₀ 2.9	F ₁₀ = 55	lg 1024 = 10	3.14 = 4	<u> 3.14 </u> = 3	valor típico
	520 N lg N - 1.44N	(N/e) ^N	In N + 9		1.44 In N	×	×	aproximação

Cátia Vaz

13

Análise de Algoritmos

Números Harmónicos

 $H_N = \sum 1/i$

- In N área debaixo da curva de 1/x entre 1 e N (integração)
- $H_{N} \approx \ln N + \gamma + 1 /(12N)$
- γ= 0.57721(constante de Euler)

Números de Fibonacci

- $F_N = F_{N-1} + F_{N-2}$, para $N \ge 2$ com F0 = 0 e F1 = 1
- Fórmula de Stirling
- lg N! ≈N lg N -N lg e + lg√2πN

Progressão Aritmética

r. O número r é chamado de razão da progressão aritmética. segundo, é igual à soma do termo anterior com uma constante É uma sequência numérica em que cada termo, a partir do

$$\begin{cases} a_1 = a \\ a_i = a_{i+1} + r, & i \neq 1 \end{cases} \Rightarrow a_n = a_1 + r(n-1) \implies S_n = \sum_{i=1}^n a_i = n(a_1 + a_n)/2$$

S_n é a soma de todos os termos de uma progressão aritmética

$$S_n = \sum_{i=1}^{n} a_i = n(a_1 + a_n)/2$$

Exemplo: α=0 e r=1

$$S_n = \sum_{i=1}^n i-1 = n(n-1)/2$$
 $= \sum_{k=i-1}^{n-1} k = n(n-1)/2$

Cátia Vaz

15

Progressão Geométrica

r. Assim, a progressão fica totalmente definida pelo valor de seu termo inicial a e sua razão r. é uma sequência numérica em que cada termo, a partir do segundo, é igual ao produto do termo anterior por uma constante

$$a_1 = a$$

$$a_n = a \times r^{n-1}$$

$$a_i = a_{i-1} \times r, i \ge 1$$

é a soma de todos os termos de uma progressão geométrica.

$$S_n = \sum_{i=1}^n a_i = a \times (r^n - 1)/(r - 1)$$

custo Insertion Sort - análise do

$8 A[i+1] \leftarrow key$	7 $i \leftarrow i - 1$	6 do $A[i+1] \leftarrow A[i]$	5 while $i > 0$ and $A[i] > key$	4 $i \leftarrow j-1$	sequence	3 \triangleright Insert $A[j]$ into the sorted	2 do $key \leftarrow A[j]$	1 for $j \leftarrow 2$ to length[A]	INSERTION-SORT (A)
		$\leftarrow A[i]$	A[i] > key		sequence $A[1 j - 1]$.	to the sorted			
C ₈	C_7	c_6	C5	C4	0		C_2	c_1	cost
n-1	$\sum_{i=2}^{n} (t_i - 1)$	$\sum_{j=2}^{n} (t_j - 1)$	$\sum_{j=2}^{n} t_j$	n-1	n-1		n-1	п	times

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

Cátia Vaz

17

Insertion Sort - custo

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

Melhor caso: array ordenado

Pior caso: array inversamente ordenado

Sabendo que:

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1$$

e que:

$$\sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1 \right)$$

$$+ c_6 \left(\frac{n(n-1)}{2} \right) + c_7 \left(\frac{n(n-1)}{2} \right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2} \right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8 \right) n$$

$$- (c_2 + c_4 + c_5 + c_8) .$$

Cátia Vaz

Notação O

Definição: Seja f,g: $IN_0 \longrightarrow IR^+$. Diz-se que f = O(g) se existirem c > 0 (c $E(R^+)$) e $n_0 \in IN_0$ tais que $f(n) \le c.g(n)$, para todo o $n > n_0$.

Nota:

- Por exemplo, $O(n^2)$ denota o conjunto de funções $\{n^2, 17n^2, n^2 + 17n^{1.5} + 3n, n^{1.5}, 100n, ...\}$ Logo, $\mathbf{f} = \mathbf{O(g)}$ significa que $\mathbf{f} \in O(g)$, i.e., \mathbf{f} pertence ao conjunto de funções limitadas por \mathbf{g} a partir de certa ordem.
- esta notação permite classificar algoritmos de acordo com **limites superiores** no seu tempo de execução.

Cátia Vaz

19

Notação C

O-notation

 $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } c \text{ and } n_0 \text{ such that } c \text{ and } n_0 \text{ such that } c \text{ and } c \text{ and$ $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

g(n) is an asymptotic upper bound for f(n).

If $f(n) \in O(g(n))$, we write f(n) = O(g(n))

Notação O - Exemplos

Considere o seguinte código:

```
for (i = 0; i < N; i++) \{ instruções; \}
```

■número de instruções: N iterações e em cada uma são executadas um conjunto de instruções em tempo constante -O(N)

Considere o seguinte código:

```
for (i = 0; i < N; i++) {
                                for (j = 0; j < N; j++) {
instruções; // executadas em O(1)
```

N vezes - O(N2) número de instruções: ciclo interno é O(N) e é executado

Cátia Vaz

21

Notação O - Exemplos

Considere o seguinte código:

```
for (i = 0; i < N; i++) {
                              for (j = i; j < N; j++) {
instruções; // executadas em O(1)
```

iterações e em cada uma são executado $N + (N-1) + (N-2) + ... + 3 + 2 + 1 = N(N+1)/2 = O(N^2)$ número de instruções: ciclo interno é executado N

Notação C

- Exemplos de manipulações com a notação O:

- f = O(f)• $c \cdot O(f) = O(c \cdot f) = O(f)$ (em que c>0) O(f) + O(g) = O(f+g) = O(max(f,g)) (f,g assintoticamente não negativas)
- O(f) . $O(g) = O(f \cdot g)$ O(f) + O(g) = O(f) se $g(N) \le f(N)$ para $\forall N > N_o$
- expressão assimptótica. Fórmula com termo contendo Q(...) diz-se

Cátia Vaz

23

Notação 2

Definição: Seja f,g: $IN_0 \longrightarrow IR^+$. Diz-se que $f = \Omega(g)$ se existirem c > 0 ($c \in IR^+$) e $n_0 \in IN_0$ tais que $0 \le c.g(n) \le f(n)$, para todo o $n > n_0$.

Nota:

- Por exemplo, $\Omega(n^2)$ denota o conjunto de funções $\{n^2, 17n^2, n^2 + 17n^{1.5} + 3n, ...\}$
- partir de certa ordem. Logo, $\mathbf{f} = \Omega(\mathbf{g})$ significa que $\mathbf{f} \in \Omega(\mathbf{g})$, i.e., \mathbf{f} pertence ao conjunto de funções limitadas por \mathbf{g} a
- esta notação permite classificar algoritmos de acordo com limites inferiores no seu tempo de execução.

Ω-notation

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } c \text{ and } n_0 \text{ such that } c \text{ and } n_0 \text{ such that } c \text{ and } c \text{ and$ $0 \le cg(n) \le f(n)$ for all $n \ge n_0$.

g(n) is an asymptotic lower bound for f(n).

Cátia Vaz

25

Definição: Seja f,g: $IN_0 \longrightarrow IR^+$. Diz-se que f = $\Theta(g)$ se existirem c1,c2 > 0 (c1,c2 $\in IR^+$) e $n_0 \in IN_0$ tais que $0 \le c1.g(n) \le f(n) \le c2.g(n)$, para todo o $n > n_0$.

Nota:

- Logo, $f = \Theta(g)$ significa que $f \in \Theta(g)$.
- Esta notação permite classificar algoritmos de acordo com limites superiores e inferiores no seu tempo de execução.

⊕-notation

 $0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}.$

g(n) is an asymptotically tight bound for f(n).

Cátia Vaz

27

Notações

Teorema: Seja f,g: $IN_0 \rightarrow IR^+$. $f = \Theta(g)$ se e só se $f = \Omega(g)$ e f = O(g).