

Some useful equations

3. Equation:

 $C_1 \cdot cos(\theta_i) + C_2 \cdot sin(\theta_i) + C_3 = 0$

Solution:

$$\theta_i = 2 \cdot tan^{-1} \left(\frac{C_2 \pm \sqrt{C_2^2 + C_1^2 - C_3^2}}{C_1 - C_3} \right)$$

4. Equations:

$$\begin{aligned} &C_1 \cdot cos(\theta_i) + C_2 \cdot sin(\theta_i) + C_3 = 0 \\ &C_1 \cdot sin(\theta_i) - C_2 \cdot cos(\theta_i) + C_4 = 0 \end{aligned}$$

Solution:

$$\theta_i = Atan2(-C_1C_4 - C_2C_3, C_2C_4 - C_1C_3)$$

Axis (i)	α_{i-1}	a_{i-1}	di	$\theta_{\rm i}$
1	0	0	0	θ1
2	-90	$a_1 = 70$	0	θ2-90
3	0	$a_2 = 360$	0	θ3
4	-90	0	$d_4 = 380$	θ4
5	90	0	0	θ5
6	-90	0	0	θ6

$$TB_0 := \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 352 \\ 0 & 0 & 0 & 1 \end{bmatrix} : \qquad T6_W := \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 65 \\ 0 & 0 & 0 & 1 \end{bmatrix} :$$

Finding theta2 og 3

```
T01=TDH(0,0,0,theta1);
T16target = inv(T01)*T06target
L3=sqrt(T16target(3,4)^2+(T16target(1,4)-70)^2);
L2=380;
L1=360;
```


Finding theta4-6 T12=TDH(-90*pi/180,70,0,theta2-90*pi/180); T23=TDH(0,360,0,theta3); T03=T01*T12*T23; T36target = inv(T03)*T06target; theta5 = acos(T36target(2,3)); theta4 = atan2(T36target(3,3)*sin(theta5),-T36target(1,3)*sin(theta5)); theta6 = atan2(-T36target(2,2)*sin(theta5),T36target(2,1)*sin(theta5));

