NZ d) $\frac{1}{n}\sum_{i=1}^{n}x_{i}-\mathcal{U}_{s}^{2}$ $\sqrt{D_{s}}$ $\sqrt{N(9,1)}$ $\sqrt{N(9,1)}$ $\sqrt{N(9,1)}$ $\sqrt{N(9,1)}$ 1 = xi - Ug ~ N(0, Dg) I Sixi ~ N(US, DE) f) f(ij)(u,v) -?

f) P(ij)(u, v) - ! ($\leq i < j \leq w$ cossense A

Pacauv rpusus P(ij) was $P(ij)(u, v) = \frac{P(X_{ii}) \in (u, u + du)}{Au dv}, X_{ij} \in (v, v + dv)}$ Cossense A worme neperpopulyulpolars

b are gyrougue cossense, non pre gammer premjoure ogrodnements, $v = A = A_1 \cdot ... \cdot A_5$

Kun-lo lap-cel	Rep-no oguro
n	Arklu
N-7	pos)do
Ch-i	Fi-(u)
Cn-i-1	(FU-FU))5-i-s
(1- F(0))"-j	31
	n $N-1$ C_{n-2}^{i-1} C_{n-i-1}^{n-i-1}

Pt $\rho_{(ij)}(v,v) = \frac{P(A)}{AuAv} = \frac{P(A_i) \cdot P(A_i) \cdot P(A_i) \cdot P(A_i)}{AuAv}$

= np(ublu- (n-1)p(v)dv. Cn-1. Cj-i-1. 1. F1-1(u). (F(v)-F(u))j-i-1. (1-F(v))n-j

 $= \frac{n!}{(n-j)!(i-0)!(j-i-0)!} \cdot F^{i-1}(u) \cdot (F(v)-F(u))^{j-i-1}(1-F(v))^{n-j} \cdot \rho(u)-\rho(v)$

 $F(x) = (-e^{-x} p(x) = e^{-x} (x \in (0, +\infty))$

 $\rho_{(ij)}(v,v) = \frac{n!}{(n-j)!(j-\bar{\iota}-J)!(i-J)!} \cdot (1-e^{-it})^{i-1}(e^{-u}-e^{-v})^{j-\bar{\iota}-1}(e^{-v})^{n-\bar{j}} \cdot e^{-(u+v)} (v+o) \times (0+o)$

 $\frac{\text{Dist}(u,v)}{\text{Pisi}(u,v)} = \frac{N! e^{-(u+v)}}{(n-j)!(j-i-l)!(i-l)!} e^{v(n-j)} (1-e^{-u})^{i-l} (e^{-u} - e^{-v})^{j-i-l} (v_j+\infty) \times (v_j+\infty)$