Использование случайных блужданий по графу для повышения качества рекомендаций

Павел Коваленко

ВМК МГУ, 617 группа

Конференция «Ломоносов-2019»

Задача top-N рекомендаций

Имеется множество пользователей U и множество объектов I. Для каждого пользователя u известен список объектов I(u), которые он оценил.

Требуется для пользователя составить список из N объектов, которые он вероятно оценит в будущем.

Латентные представления

Каждому пользователю сопоставим вектор $p_u \in \mathbb{R}^d$, каждому объекту — вектор $q_i \in \mathbb{R}^d$.

Будем считать, что все объекты, которые пользователь не оценил, ему не релевантны.

Найдем такие вектора, чтобы для пользователя объекты были правильно упорядочены: если $i\in I(u),\ j\notin I(u)$, то $\langle p_u,q_i\rangle>\langle p_u,q_j\rangle.$

Теперь для пользователя u надо найти такие N объектов i, что $\langle p_u, q_{i_k} \rangle$ максимально.

Случайные блуждания

Случайное блуждание — это путь в графе, который задается следующим образом. Начальная вершина v_0 выбирается случайно среди всех вершин графа. На последующих шагах новая вершина v_k выбирается случайно среди соседей вершины v_{k-1} . Также необходим критерий остановки, например, ограничение на длину пути.

Случайные блуждания в задаче рекомендаций

Можно представить входные данные в виде двудольного графа. Вершины — пользователи и объекты, между пользователем и объектом есть ребро, если пользователь оценил объект.

Для составления рекомендаций для пользователя несколько раз начинаем случайные блуждания от этого пользователя и выбираем N вершин, которые в результате были посещены чаще других.

Исходная идея

Обычно каждый пользователь оценил далеко не все объекты, поэтому матрица оценок оказывается разреженной и латентные представления плохо обучаются.

Авторы статьи HOP-Rec: High-Order Proximity for Implicit Recommendation предлагают использовать гибридную схему. Они обучают латентные представления стохастически, шаг обучения следующий:

- Случайно выбрать пользователя.
- Выбрать отрицательный пример случайно из всех объектов.
- Запустить случайное блуждание нечетной длины из пользователя и использовать вершину (объект), в которой оно остановится, в качестве положительного примера.

Таким образом искусственно создаются положительные примеры.

Параметры случайных блужданий

Описанный алгоритм оставляет много простора для выбора параметров случайных блужданий:

- Стартовая вершина блуждания можно начинать с пользователя или с объекта
- Количество семплированных случайных блужданий
- Вероятность перехода в вершину. Обычно зависит от количества исходящих из вершины ребер: $p(v) \sim \deg(v)^K$
- Критерий остановки
 - Блуждания фиксированной длины. Параметр длина пути
 - Блуждания с фиксированной вероятностью остановки после каждого перехода. Параметр вероятность остановки

Эксперименты

Предложенный метод был испытан на датасетах MovieLens-[100K, 1M, 100M], Million Playlist и Amazon Review.

 $\mathsf{Испытанные}\ \mathsf{anfoputmin}\ \mathsf{--}\ \mathsf{Alternating}\ \mathsf{Least}\ \mathsf{Squares},\ \mathsf{Bayesian}\ \mathsf{Personalized}\ \mathsf{Ranking}\ \mathsf{u}\ \mathsf{SVD}++.$

Метрики качества — Precision at 10, Normalized Discounted Cumulative Gain.

Результаты экспериментов

Датасет	Р@10 исходный	Р@10 модиф.	NDCG исходный	NDCG модиф.
MovieLens 100K	0.1098	0.1195	0.1173	0.1208
MovieLens 1M	0.1345	0.1942	0.1348	0.1913
MovieLens 10M	0.1496	0.1788	0.1488	0.1721
MovieLens 20M	0.1514	0.1875	0.1461	0.1704
Amazon Review	0.0125	0.0145	0.0119	0.0132
Million Playlist	0.1842	0.2196	0.1821	0.2121

Лучшая точность на рассмотренных датасетах для алгоритма Bayesian Personalized Ranking

Результаты экспериментов

Для большей части датасетов и алгоритмов удалось получить прирост точности рекомендаций за счет использования предложенного метода.

Разница наиболее заметна для Bayesian Personalized Ranking.

Лучшие параметры:

- Блуждания небольшой длины
- Вероятность перехода не зависит от степени конечной вершины
- Чем больше семплированных путей, тем выше точность