CS622 Regular Languages

Wednesday, February 7, 2024 UMass Boston Computer Science

Announcements

- HW 1
 - <u>Due</u>: Mon 2/12 12pm (noon)

Alphabets, Strings, Languages

An alphabet defines "all possible strings"

(strings with non-alphabet symbols are impossible)

An alphabet is a <u>non-empty finite set</u> of <u>symbols</u>

$$\Sigma_1 = \{0,1\}$$

$$\Sigma_2 = \{ a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z \}$$

• A string is a finite sequence of symbols from an alphabet

01001

abracadabra

Empty string (length 0)

(ε symbol is not in the alphabet!)

A language is a <u>set</u> of strings

$$A = \{ \mathsf{good}, \mathsf{bad} \}$$

 \emptyset { }

The Empty set is a language

Languages can be infinite

 $A = \{w | w \text{ contains at least one 1 and }$

an even number of Os, follow the last 1}

"the set of all ..."

"such that ..."

Computation and Languages

• The language of a machine = set of strings that it accepts

• E.g., A **DFA** M accepts w if $\hat{\delta}(q_0, w) \in F$

Machine and Language Terminology

The language of a machine = set of strings that it accepts

Machine and Language Terminology

The language of a machine = set of strings that it accepts

• E.g., A DFA
$$M$$
 accepts w
$$M$$
 recognizes language $L(M) \leftarrow L(M) = \{w | M \text{ accepts } w\}$

Using L as function mapping Machine \rightarrow Language is common notation

Machine and Language Terminology

The language of a machine = set of strings that it accepts

- E.g., A DFA M accepts w

 M recognizes language L(M)
- Language of $M = L(M) = \{w | M \text{ accepts } w\}$

Languages Are Computation Models

- The language of a machine = set of strings that it accepts
 - E.g., a DFA recognizes a language
- A computation model = <u>set of machines</u> it defines
 - E.g., all possible DFAs are a computation model

DEFINITION

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

= set of set of strings

Thus: a computation model equivalently = a set of languages

This class is <u>really</u> about studying **sets of languages!**

Regular Languages

• first set of languages we will study: regular languages

Regular Languages: Definition

If a **deterministic finite automata** (**DFA**) <u>recognizes</u> a language, then that language is called a **regular language**.

A Language, Regular or Not?

- If given: a DFA M
 - We know: L(M), the language recognized by M, is a regular language

If a DFA <u>recognizes</u> a <u>language</u>, then <u>that language</u> is called a <u>regular language</u>.

(modus ponens)

- If given: a Language A
 - Is A a regular language?
 - Not necessarily!

<u>Proof</u>: ??????

Prove: A language $L = \{ ... \}$ is a regular language

Proof:

Statements

- 1. DFA $M = (Q, \Sigma, \delta, q_0, F)$ (TODO: actually define *M*) (no unbound variables!)
- 2. DFA *M* recognizes *L*
- 3. If a DFA recognizes L, then L is a regular language
- 4. Language *L* is a regular language

Justifications

1. Definition of a DFA

- TODO: ???
- 3. Definition of a regular language
- 4. Stmts 2 and 3 (and modus ponen: -P

Modus Ponens

If we can prove these:

- If P then Q

Then we've proved:

A Language: strings with odd # of 1s

• In-class exercise (submit to gradescope):

String	In the language?

Come up with string examples (in a table), both

- in the language
- and not in the language

$$\Sigma_1 = \{0,1\}$$

If a DFA <u>recognizes</u> a language, then that language is called a <u>regular language</u>.

How to prove the language is regular?

Prove there's a DFA recognizing it!

Prove: A language $L = \{ ... \}$ is a regular language

Proof:

Statements

- 1. **DFA** $M = (Q, \Sigma, \delta, q_0, F)$ (TODO: actually define M) (no unbound variables!)
- 2. DFA *M* recognizes *L*
- 3. <u>If a DFA recognizes *L*, then *L* is a regular language</u>
- 4. Language *L* is a regular language

Justifications

1. Definition of a DFA

- **2.** TODO: ???
- 3. Definition of a regular language
- 4. Stmts 2 and 3 (and modus ponens)

Designing Finite Automata: Tips

- Input is read only once, one char at a time (cant go back)
- Must decide accept/reject after that
- States = the machine's "memory"!
 - # states must be decided in advance
 - Think about what information must be "remembered".
- Every state/symbol pair must have a defined transition (for DFAs)
- Come up with examples to help you!

Design a DFA: accept strs with odd # 1s

- States:
 - 2 states:
 - seen even 1s so far
 - seen odds 1s so far

Alphabet: 0 and 1

• Transitions:

Prove: A language $L = \{ ... \}$ is a regular language

Proof:

Statements

- ✓1. DFA M=See state diagram (only if problem allows!)
 - 2. DFA *M* recognizes *L*
 - 3. <u>If a DFA recognizes *L*, then *L* is a regular language</u>
 - 4. Language *L* is a regular language

Justifications

1. Definition of a DFA

- **2.** TODO: ???
- 3. Definition of a regular language
- 4. Stmts 2 and 3 (and modus ponens)

"Prove" that DFA recognizes a language

• In-class exercise (part 2):

String	In the language?
1	Yes
0	No
01	Yes
11	No
1101	Yes
3	no

Confirm the DFA:

- Accepts strings in the language
- Rejects strings not in the language

In this class, a table like this is sufficient to "prove" that a DFA recognizes a language

Prove: A language $L = \{ ... \}$ is a regular language

Proof:

Statements

1. DFA M=

See state diagram (only if problem allows!)

- 2. DFA *M* recognizes *L*
- 3. <u>If a DFA recognizes *L*, then *L* is a regular language</u>
- 4. Language *L* is a regular language

Justifications

1. Definition of a DFA

- ☑ 2. See examples table
 - 3. Definition of a regular language
 - 4. Stmts 2 and 3 (and modus ponens)

In-class exercise 2

- Prove: the following language is a regular language:
 - $A = \{ w \mid w \text{ has exactly three 1's } \}$

• Where $\Sigma = \{0, 1\}$,

Remember:

To understand the language, always come up with string examples first (in a table)! Both:

- in the language
- and not in the language

You will need this later in the proof anyways!

DEFINITION

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- **2.** Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the *set of accept states*.

Prove: A language $L = \{ ... \}$ is a regular language

Proof:

Statements

- 1. **DFA** $M=(Q,\Sigma,\delta,q_0,F)$ (TODO: actually define M) (no unbound variables!)
- 2. DFA *M* recognizes *L*
- 3. <u>If a DFA recognizes *L*, then *L* is a regular language</u>
- 4. Language *L* is a regular language

Justifications

1. Definition of a DFA

- **2.** TODO: ???
- 3. Definition of a regular language
- 4. Stmts 2 and 3 (and modus ponens)

In-class exercise Solution

- Design finite automata recognizing:
 - {w | w has exactly three 1's}
- States:
 - Need one state to represent how many 1's seen so far
 - $Q = \{q_0, q_1, q_2, q_3, q_{4+}\}$
- Alphabet: $\Sigma = \{0, 1\}$
- Transitions:

So a DFA's computation recognizes simple string patterns?

Yes!

Have you ever used a programming language feature to <u>recognize</u> <u>simple string patterns</u>?

- Start state:
 - q₀
- Accept states:
 - $\{q_3\}$

Submit 2/7 in-class work to gradescope