FLUIDI - FLUIDOSTATICA E FLUIDODINAMICA

FLUIDOSTATICA

(i) FLUIDO

Un fluido occupa un *certo volume*, ma, al contrario del corpo rigido, **non** ha una **forma definita**: assume quella del contenitore. Sono fluidi i gas e i liquidi. **NOTA:** Al contrario dei gas, i liquidi sono **incomprimibili**.

Se consideriamo un volumetto infinitesimale all'interno del fluido, su di esso agiscono due tipi di forze:

- Forze di volume, dovute al volume complessivo di fluido.
- Forze di **pressione**, esercitate dal *resto del fluido* sul volumetto.

FORZE DI VOLUME

Tali forze comprendono la forza peso, la forza centrifuga, la forza gravitazionale... Vediamo, per esempio, la forza peso.

Sul volumetto agisce una forza peso infinitesimale data da:

$$d\vec{F}_p = -gdm\vec{u}_z = -g
ho dV\vec{u}_z$$
 (1)

Dove ρ è la densità del fluido.

Allora la forza peso totale è data da:

$$ec{F}_p = \int_{\mathbf{V}} dec{F}_p = -g
ho \int_{\mathbf{V}} dV ec{u}_z = -g
ho V ec{u}_z$$

Dove V è la regione di spazio occupata dal fluido e V il suo volume totale.

FORZE DI PRESSIONE

Dato un certo dV, il resto del fluido esercita una certa forza ortogonale alla superficie di dV stesso.

Consideriamo la seguente figura esemplificativa, con facce ben definite:

Siccome il corpo è all'equilibrio (è fermo), le forze evidenziate in blu sono uguali ed opposte; possiamo allora soffermarci su $d\vec{F}_A, d\vec{F}_B, d\vec{F}_C$.

Ci aspettiamo che tali forze siano in qualche modo proporzionali alle superfici delle facce: più estesa è la superficie e più fluido esercita una forza su di essa. Scriviamo allora:

$$d\vec{F}_A = p_A dS_A \vec{u}_z \tag{3}$$

$$d\vec{F}_B = -p_B dS_B \vec{u}_x \tag{4}$$

$$dec{F}_C = p_C dS_C (-\cos heta ec{u}_z + \sin heta ec{u}_x)$$

Dove abbiamo introdotto i coefficienti di proporzionalità p_A, p_B, p_C .

Tali coefficienti, tuttavia, non sono indipendenti. Essendo dV in equilibrio, infatti, deve valere:

$$d\vec{F}_A + d\vec{F}_B + d\vec{F}_C = \vec{0} \tag{5}$$

Inoltre, anche dS_A, dS_B, dS_C sono legate dalla geometria del problema e si ha:

$$dS_A = \cos \theta dS_C dS_B = \sin \theta dS_C$$
 (6)

Allora l'equazione (5) diventa:

$$p_A \cos \theta dS_C \vec{u}_z - p_B \sin \theta dS_C \vec{u}_x + p_C \sin \theta dS_C \vec{u}_x - p_C \cos \theta dS_C \vec{u}_z = \vec{0}$$
 (7)

Che riscriviamo come:

$$(p_A - p_C)\cos\theta dS_C \vec{u}_z + (p_C - p_B)\sin\theta dS_C \vec{u}_x = \vec{0}$$
(8)

Ma allora deve essere:

$$p_A = p_B = p_C := p \tag{9}$$

Chiamiamo p pressione: è la forza per unità di superficie (era infatti dF = pdS).

PRESSIONE IN PRESENZA DELLA FORZA PESO

Consideriamo un volumetto dV come in figura, soggetto anche alla forza peso:

Esattamente come prima, essendo il volumetto in equilibrio e non essendoci alcuna forza esterna lungo \vec{u}_x e \vec{u}_y , le forze evidenziate in blu sono uguali ed opposte lungo le rispettive direzioni.

Concludiamo allora che la pressione non varia lungo \vec{u}_x e \vec{u}_y .

Per cui:

$$\frac{\partial}{\partial x}p(x,y,z) = 0$$

$$\frac{\partial}{\partial y}p(x,y,z) = 0$$
(10)

Lo stesso **non** si può dire lungo \vec{u}_z : lungo questa direzione agisce infatti anche la forza peso.

Per cui, lungo \vec{u}_z , deve essere:

$$dF_{pr,z}(z) + dF_{pr,z}(z+dz) + dF_p = 0 (11)$$

Da cui segue:

$$p(z)dS_z - p(z+dz)dS_z - g\rho dV = 0 (12)$$

Ma $dV = dS_z dz$.

Allora:

$$(p(z) - p(z + dz) - g\rho dz)dS_z = 0$$
(13)

A questo punto, ricordiamo che $p(z+dz)=p(z)+rac{\partial}{\partial z}p(x,y,z)dz$ e otteniamo:

$$p(z) - p(z) - \frac{\partial}{\partial z} p dz - g \rho dz = 0$$
 (14)

E allora:

$$\frac{\partial p}{\partial z} = -g\rho \tag{15}$$

Da cui ricaviamo:

LEGGE DI STEVINO

△ NOTA

Se il fluido è soggetto alla sola forza peso, diretta lungo \vec{u}_z , allora la pressione varia solo lungo \vec{u}_z ed è costante lungo le altre.

In generale, tuttavia, p potrebbe variare anche lungo \vec{u}_x e \vec{u}_y se vi fossero delle forze agenti lungo tali direzioni.

ESPERIMENTO DI TORRICELLI

Capovolgendo un tubo (chiuso ad un'estremità) pieno di un fluido in una vasca contenente altro fluido, si osserva che nel tubo rimane una colonna di fluido alta Δh rispetto al pelo del contenuto della vasca.

NOTA: nella parte alta del tubo rimane il vuoto, a pressione nulla.

Torricelli eseguì questo esperimento usando del mercurio come fluidi, misurando

$$\Delta h = 760mm \tag{17}$$

INTERPRETAZIONE

Scelti due punti alla stessa quota, le pressioni saranno uguali per la legge di Stevino. Scegliamo allora un punto sul pelo dell'acqua, fuori dal tubo, e uno alla stessa quota ma all'interno del tubo.

Nel primo punto la pressione è quella atmosferica, mentre nel secondo è quella data dalla colonna di mercurio, e queste sono uguali.

Per cui:

$$p_{atm} = 760 \text{mmHg} = 1atm \tag{18}$$

Conoscendo Δh , g e ρ_{Hg} troviamo:

$$p_{atm} = \rho g \Delta h \approx 1,01 \cdot 10^5 \,\mathrm{Pa} \tag{19}$$

PRINCIPIO DI ARCHIMEDE

Consideriamo un fluido e concentriamo la nostra attenzione su una regione di volume V, su cui agiscono forze di pressione dovute al resto del fluido e la forza peso. Abbiamo visto che all'equilibrio lungo \vec{u}_z vale:

$$F_{pr} = -g\bar{\rho}V\tag{20}$$

Dove $\bar{\rho}$ è la densità media del fluido nella regione considerata.

Se sostituissimo questa porzione di fluido con un ugual volume di una sostanza diversa di densità media ρ' , F_{pr} rimarrebbe invariata perchè dipende solo dal fluido circostante (che non è stato modificato in alcun modo), mentre la forza peso cambierebbe perchè dipende dalla massa della sostanza.

Allora avremmo:

$$F_{TOT} = F_{pr} + F_p = g(\bar{\rho} - \rho')V \tag{21}$$

Dove V è la porzione sommersa del volume del corpo.

Notiamo che la componente seguente

$$F_A = g\bar{\rho}V \tag{22}$$

rappresenta una spinta verso l'alto dovuta alla massa di fluido spostata ($\bar{\rho}V$) dal corpo, ed è detta **spinta di Archimede**.

All'equilibrio si ha:

$$g\bar{\rho}V_s = g\rho'V_{tot} \tag{23}$$

Dove il membro di sinistra è la spinta di Archimede data dal volume sommerso V_s e il membro di destra è la forza peso subita dal corpo.

Si trova allora:

$$\frac{V_s}{V_{tot}} = \frac{\rho'}{\bar{\rho}} \tag{24}$$

Per cui la percentuale di volume sommerso sarà tanto maggiore quanto più alta è la densità del corpo in rapporto a quella del fluido.

FLUIDODINAMICA

LAVORO DELLE FORZE DI PRESSIONE

Consideriamo un fluido che si muove in un tubo sotto l'azione di una forza di pressione, come in figura:

Calcoliamo il lavoro di tale forza di pressione.

Cominciamo con il lavoro della pressione infinitesima $d\vec{F}_{pr}$ sulla superficie dS:

$$d\mathcal{W} = dec{F}_{pr} \cdot ec{v} dt = p dS ec{u}_x \cdot rac{dx}{dt} ec{u}_x dt = p dS rac{dx}{dt} \mathscr{M} = p dS dx$$
 (25)

Dove abbiamo considerato una velocità parallela alla parete del tubo e all'asse \vec{u}_x Ma dSdx=dV, (dV è il volume che ha attraversato dS nel tempo dt) per cui:

$$W = \int_{\mathbf{V}} dW = \int_{\mathbf{V}} pdV \tag{26}$$

△ NOTA

p è in buona approssimazione costante nella regione infinitesima dV, ma **non lo** è in tutto V.

FLUSSO E PORTATA

Consideriamo ora un fluido, e più in particolare un liquido, che si muove di un moto più generico rispetto a quello dell'esempio precedente. Scelto un volumetto dV, chiamiamo **linea di flusso** la traiettoria che esso segue.

Per il nostro studio ci limiteremo al caso in cui il fluido è in regime stazionario.

(i) REGIME STAZIONARIO

Moto di un fluido non soggetto ad attriti e le cui linee di flusso non si intersecano mai.

NOTA: Le linee di flusso si intersecano in presenza di vortici (turbolenza).

Definiamo allora la **portata**, ovvero la quantità di fluido che passa attraverso una superficie in un determinato tempo:

$$q = \int_{\mathbf{S}} v dS \tag{27}$$

Consideriamo un volume infinitesimo dV_1 attraversato dal fluido con velocità v_1 : allora abbiamo:

$$dV_1 = dS_1 dx_1 = dS_1 v_1 dt (28)$$

Immaginiamo di seguire il moto di tale volume fino ad un punto in cui la sezione considerata è dS_2 e la sua velocità è v_2 .

$$dV_2 = dS_2 v_2 dt \tag{29}$$

Essendo i liquidi incomprimibili, deve essere $dV_1=dV_2$, allora:

$$dS_1v_1$$
 at dS_2v_2 at $dS_1v_1=dS_2v_2 \implies q_1=q_2$ (30)

E concludiamo che la portata è costante lungo il flusso.

GENERALIZZAZIONE LEGGE DI STEVINO

Dal teorema dell'energia cinetica, sappiamo che vale:

$$W_{tot} = \Delta E_K \tag{31}$$

Nel caso di un fluido, abbiamo $\mathcal{W}_{tot} = \mathcal{W}_{pr} + \mathcal{W}_{vol}.$ Allora otteniamo:

$$pdV + g \underbrace{\rho dV}_{m} dz = \Delta E_{K} \tag{32}$$

Nel caso statico, $\Delta E_K=0$ e troviamo quindi:

$$p \, dV = -g\rho dz \, dV \tag{33}$$

E integrando:

$$p(z) = -g\rho z + p_0 \tag{34}$$

Che è esattamente la *legge di Stevino*.

Per cui abbiamo dimostrato che, nel caso **statico**, la legge di Stevino e il *teorema* dell'energia cinetica sono **equivalenti**.

TEOREMA DI BERNOULLI

Possiamo dedurre qualcosa anche dal caso non statico? Per verificarlo, consideriamo dV lungo il flusso:

- $dV = dx_1 dS_1$ varia in $dV = dx_2 dS_2$.
- La quota z_1 varia in z_2 .
- La velocità v_1 varia in v_2 .
- La pressione p_1 varia in p_2 .

Per il teorema dell'energia cinetica, abbiamo:

$$p_1 dV - p_2 dV + dmgz_1 - dmgz_2 = \frac{1}{2} dmv_2^2 - \frac{1}{2} dmv_1^2$$
 (35)

Che riscriviamo come:

$$p_1 dV - p_2 dV +
ho dV g z_1 -
ho dV g z_2 = rac{1}{2}
ho dV v_2^2 - rac{1}{2}
ho dV v_1^2$$
 (36)

Semplificando e riordinando, troviamo:

$$p_1 +
ho g z_1 + rac{1}{2}
ho v_1^2 = p_2 +
ho g z_2 + rac{1}{2}
ho v_2^2$$
 (37)

Ovvero:

① TEOREMA DI BERNOULLI

La quantità

$$p +
ho gz + rac{1}{2}
ho v^2$$

è costante lungo il flusso.

PRINCIPIO DI VENTURI

Dal teorema di Bernoulli, se consideriamo una quota z costante, troviamo che vale:

(i) PRINCIPIO DI VENTURI

La quantità

$$p+rac{1}{2}
ho v^2$$

è costante lungo il flusso.

Consideriamo ora il *tubo di Venturi*, ovvero un tubo con sezioni di ampiezza diversa in punti diversi:

In regime stazionario, la portata è costante e si ha quindi:

$$S_1 v_1 = S_2 v_2 \implies v_2 = \frac{S_1}{S_2} v_1$$
 (38)

Per il principio di Venturi vale anche:

$$p_1 + \frac{1}{2}\rho v_1^2 = p_2 + \frac{1}{2}\rho v_2^2 \tag{39}$$

Da cui troviamo:

$$p_1 - p_2 = rac{1}{2}
ho(v_2^2 - v_1^2) = rac{1}{2}
ho v_1^2 \left(\left(rac{S_1}{S_2}
ight)^2 - 1
ight) < 0$$
 (40)

Cioè la pressione è maggiore nel punto di sezione S_2 .

Aumentando la sezione del tubo, diminuisce la velocità del fluido e aumenta la sua pressione.