Tutorial 6: Refactoring R Code

Introduction

In this tutorial, you will refactor the code into separate scripts corresponding to each section. The dataset we will use comes from the palmerpenguins package, which contains measurements of penguins from three species.

The R programming language (R Core Team 2019) and the following R packages were used to perform the analysis: knitr (Xie 2014), tidyverse (Wickham 2017), and Quarto (Allaire et al. 2022). Note: this report is adapted from Timbers (2020).

Load Libraries and Data

• Table 1

Table 1: Loading penguins data.

species	island	$bill_length_mr\!hill_$	_depth_m fli pper	_length_mboo	dy_mass_	sex.	year
Adelie	Torgersen	39.1	18.7	181	3750	male	2007
Adelie	Torgersen	39.5	17.4	186	3800	female	2007
Adelie	Torgersen	40.3	18.0	195	3250	female	2007
Adelie	Torgersen	36.7	19.3	193	3450	female	2007
Adelie	Torgersen	39.3	20.6	190	3650	male	2007
Adelie	Torgersen	38.9	17.8	181	3625	female	2007

Methods

In this section, we perform exploratory data analysis (EDA) and prepare the data for modeling.

- Table 2
- Figure 1
- Table 3

Rows: 333 Columns: 8 \$ species <chr> "Adelie", "Adelie", "Adelie", "Adelie", "Adelie", "A~ <chr> "Torgersen", "Torgersen", "Torgersen", "Torgersen", ~ \$ island \$ bill_length_mm <dbl> 39.1, 39.5, 40.3, 36.7, 39.3, 38.9, 39.2, 41.1, 38.6~ <dbl> 18.7, 17.4, 18.0, 19.3, 20.6, 17.8, 19.6, 17.6, 21.2~ \$ bill_depth_mm \$ flipper_length_mm <dbl> 181, 186, 195, 193, 190, 181, 195, 182, 191, 198, 18~ \$ body_mass_g <dbl> 3750, 3800, 3250, 3450, 3650, 3625, 4675, 3200, 3800~ <chr> "male", "female", "female", "female", "male", "femal~ \$ sex <dbl> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007 \$ year

Table 2: Aggregation data

mean_bill_length	mean_bill_depth	$mean_flipper_length$	mean_body_mass
43.99279	17.16486	200.967	4207.057

Table 3: Glimpse at base data

species	$bill_length_mm$	$bill_depth_mm$	$flipper_length_mm$	body_mass_g
Adelie	39.1	18.7	181	3750
Adelie	39.5	17.4	186	3800
Adelie	40.3	18.0	195	3250
Adelie	36.7	19.3	193	3450
Adelie	39.3	20.6	190	3650
Adelie	38.9	17.8	181	3625

Model

We will fit a classification model using tidymodels to predict the species of a penguin based on its physical characteristics.

Figure 1: Boxplot visualisation of bill_length_mm against species

Table 4: Model summary statistics

	Length	Class	Mode
pre	3	stage_pre	list
fit	2	$stage_fit$	list
post	1	$stage_post$	list
trained	1	-none-	logical

Results

We evaluate the performance of the model using the test dataset.

Table 5: Model performance results

	Adelie	Chinstrap	Gentoo
Adelie	36	0	0
Chinstrap	1	17	0
Gentoo	0	0	30

Libraries Run

Test the usage of packages in the report.

Table 6: Custom package testing

Function	Output.package2025 04	24puis <u>.p</u> keekpa g0200 25042	24 0t.tup.pp<u>t.</u>poocka §e 20251 842	$4str_split_one$
package20250424::is	_lea p(21019 0)	278.15	a	-
package20250424::te	$\operatorname{mp} \underline{\mathrm{T}} \partial \partial \overline{\partial} \mathbf{V} (5,$	278.15	b	
'C', 'K')				
package20250424::st	r_s p l	278.15	c	
',')				

Conclusion

In this tutorial, we:

• Loaded and cleaned the palmerpenguins dataset.

- Performed exploratory data analysis.
- Built a k-Nearest Neighbors classification model using tidymodels.
- Evaluated the model's performance.

References

- Allaire, J. J., Charles Teague, Carlos Scheidegger, Yihui Xie, and Christophe Dervieux. 2022. *Quarto* (version 1.2). https://doi.org/10.5281/zenodo.5960048.
- R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
- Timbers, Tiffany. 2020. Historical Horse Population in Canada. https://github.com/ttimbers/equine_numbers_value_canada_parameters.
- Wickham, Hadley. 2017. Tidyverse: Easily Install and Load the 'Tidyverse'. https://CRAN. R-project.org/package=tidyverse.
- Xie, Yihui. 2014. "Knitr: A Comprehensive Tool for Reproducible Research in R." In *Implementing Reproducible Computational Research*, edited by Victoria Stodden, Friedrich Leisch, and Roger D. Peng. Chapman; Hall/CRC. http://www.crcpress.com/product/isbn/9781466561595.