Explaining approximate deterministic inference methods

HIV Inference Lab Group Meeting

Adam Howes

Imperial College London

December 2022

Bayes

- As a statistical modeller, our whole job (approximately) is to construct a generative model for data y using parameters ϑ
- This is the joint distribution $p(y, \vartheta) = p(y | \vartheta)p(\vartheta)$
- What we actually want is the posterior $p(\vartheta \mid y)$ which is **just**¹

$$p(\vartheta \mid y) = \frac{p(y,\vartheta)}{p(y)} = \frac{p(y \mid \vartheta)p(\vartheta)}{p(y)}$$

• The **core problem** of Bayesian inference is that we can't compute p(y)

$$p(y) = \int p(y, \vartheta) d\vartheta$$

¹I've bolded this for sarcasm.

How might you do it?

- Usually if you wanted to integrate something, you could use numerical integration methods
- Pick nodes ϑ_i and weights ω_i then compute the sum

$$\tilde{p}(y) = \sum_{i} p(y, \vartheta_{i}) \omega_{i}$$

Monte Carlo as an example of numerical integration

- Suppose we can sample $\vartheta_i \sim p(y, \vartheta)$ for $i = 1, \dots, N$
- If we set $\omega_i = 1/N$ for all i then

$$\tilde{p}(y) = \frac{1}{N} \sum_{i} p(y, \vartheta_i)$$

Monte Carlo is fundamentally unsound

- "Monte Carlo ignores information" according to O'Hagan (1987)
- Suppose N=3 and we sample $\vartheta_1,\vartheta_2,\vartheta_3$ with $\vartheta_2=\vartheta_3$ then our MC estimate is

$$\tilde{p}(y) = \frac{1}{3} \left(p(y, \vartheta_1) + p(y, \vartheta_2) + p(y, \vartheta_3) \right)$$

• This is despite the fact that nothing new about the function has been learned by adding $\{\vartheta_3, p(y, \vartheta_3)\}$

Application to HIV survey sampling

- Suppose we're running a household survey, and sample the same individual twice
- We didn't learn anything new about HIV by surveying them again!
- This doesn't just bite for nodes or individuals which are exactly the same: an analogous argument can be made if they are close together and we expect their function evaluations to be similar

 \implies Bayesian quadrature, Bayesian survey design (end of digression)

Latent variables and hyperparameters

- Quadrature doesn't work very well when $\dim(\vartheta)$ gets even moderately sized
- ullet Previously I had all of the parameters under the symbol artheta
- What if we split them up as being $\vartheta = (x, \theta)$
- The key part about this is that dim(x) is big and $dim(\theta)$ is small

Names for x	Names for θ
Latent variables, random effects, latent field	Hyperparameters, fixed effects

Spatio-temporal statistics

- There is nothing inherently special about spatio-temporal statistics
- ullet We have observations indexed by space $s \in \mathcal{S}$ and time $t \in \mathcal{T}$
- Usually we associate parameters to spatio-temporal locations as well as observations
- This ends up with us having something like $\{x_{s,t}\}$

What's important about this?

- 1. There might be **a lot** of spatio-temporal locations, so dim(x) might be pretty big!
- ullet If you have 100 districts and 10 years, that's already 100 imes 10 = 1000 parameters
- 2. Perhaps we're willing to make assumptions about how things vary over space-time

Latent Gaussian models

References I

O'Hagan, Anthony. 1987. "Monte Carlo Is Fundamentally Unsound." *The Statistician*, 247–49.