



# **LOGISTIC REGRESSION PART-6**

**LECTURE 51** 

DR. GAURAV DIXIT

**DEPARTMENT OF MANAGEMENT STUDIES** 



- Equivalent of linear regression for categorical outcome variable
  - Predictors can be categorical or continuous
- Applied in following tasks
  - Classification task
    - Predicting the class of a new observation
  - Profiling
    - Understanding similarities and differences among groups



- Steps for logistic regression
  - Estimate probabilities of class memberships
  - Classify observations using probabilities values
    - Most probable class method: assign the observation to the class with highest probability value
      - Equivalently, for a two-class case, cutoff value of 0.5 can be used
    - Class of interest: user specified cutoff value
      - For a two-class case, typically a value greater than average probability value for class of interest, but less than 0.5 can be used



- Logistic Regression Model
  - Used typically in cases when structured model is preferred over datadriven models for classification tasks
  - Categorical outcome variable cannot be directly modeled as a linear function of predictors
    - Inability to apply various mathematical operators
    - Variable type mismatches
    - Range reasonability issues
      - LHS range={0, ..., m-1}
      - RHS range=(-∞, ∞)



- Logistic Regression Model
  - Instead of using outcome variable (Y) in the model, a function of Y,
    called *logit* is used
- Logit
  - Think about modeling probability value as a linear function of predictors, specifically in a two-class case

If P is the probability of class 1 membership

$$P = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

Where p is the no. of predictors



#### Logit

- LHS range improves from {0, 1} to [0, 1], however still cannot match
  RHS
- Can we bring RHS range to [0,1]?
  - Nonlinear approach
- Typically, a nonlinear function of the following form is used to perform the required transformation

$$P = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p)}}$$

This function is called *logistic response function* 



- Logit
  - Rearrange the previous equation as below:

$$\frac{P}{1-P} = e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p}$$

LHS is expression for *odds*, another measure of class membership

$$odds = \frac{P}{1 - P}$$

- Odds of belonging to a class is defined as ratio of probability of class 1 membership to probability of class 0 membership
  - This metric is popular in sports, horse racing, gambling, and many other areas

- Logit
  - Previous equation can be rewritten as

$$odds = e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p}$$

- Range is now (0, ∞)
- Take log on both sides of previous equation

$$\log(odds) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

- Standard logistic model
- Now, LHS and RHS both have same range (-∞, ∞)
- Log(odds) is called logit
  - Logit is used as the outcome variable in the model instead of categorical Y



- Odds and logit can be written as a function of probability of class 1 membership
  - Open RStudio

- In logistic regression model, we predict the logit values and therefore corresponding probability of a categorical outcome
  - Predicted probabilities values become the basis for classification
  - A prediction model for classification task



- Estimation Technique
  - Least squares method used in multiple linear regression cannot be used
    - Non-linear formulation of logistic regression
  - Maximum likelihood method is used
    - Estimates are optimized in order to maximize the likelihood of obtaining the observations used in training the model
    - Less robust than estimation techniques used in linear regression
    - Reliability of estimates
      - Outcome variable categories should have adequate proportion
      - Adequate sample size w.r.t no. of estimates

- Estimation Technique
  - Maximum likelihood method is used
    - Collinearity issues similar to linear regression
- Interpretation of Results
  - Logit model
    - Additive factor (β)
      - If  $\beta$  < 0, increase in x => decrease in logit values
      - If  $\beta > 0$ , increase in x => increase in logit values
    - For any value of x, interpretative statements of results are same

- Interpretation of Results
  - Odds model
    - Multiplicative factor (e<sup>β</sup>)
      - If  $\beta$  < 0, increase in x => decrease in odds
      - If  $\beta > 0$ , increase in x => increase in odds
    - For any value of x, interpretative statements of results are same
  - Probability model
    - For a unit increase in a particular predictor, corresponding change in the probability value is not a constant, while holding all other predictors constant
      - Depends on the specific values of the predictor
    - Interpretative statements of results depend on specific values of x



- Odds and odds ratios
  - Odds is a ratio of two probability values (prob. of class 1/prob. Of Class 0)
  - Odds ratio is ratio of two odds (odds of class m1/odds of class m2)
    - Odds ratio > 1 => odds of class m1 are higher than class m2

Open RStudio

- Linear Regression for a categorical outcome variable?
  - Can be done by treating the outcome variable as continuous and coding it numerically
  - However, anomalies will lead to spurious modeling
    - Predictions can take any value, not just dummy values {0,1}
    - Outcome variable or residuals don't follow normal distribution
      - binomial distribution
    - Variance of outcome variable is not constant across all records (violation of homoscedasticity)
      - np(1-p)



- Logistic Regression for Profiling Task
  - Apart from model performance on validation partition
  - Model's fit to data is assessed on training partition
    - However, still avoid overfitting
    - Usefulness of predictors is examined
  - Goodness of fit metrics
    - Overall fit of the model
      - Deviance (equivalent to SSE in linear regression)
      - 1 Deviance/Null Deviance (equivalent to multiple R<sup>2</sup> in linear regression)
    - Single predictors



- Outcome variable with m classes (m>2)
  - Multinomial logistic regression
    - Separate binary logistic regression model for m-1 classes (one class is treated as reference class)
  - Ordinal logistic regression
    - Large no. of ordinal classes: treat ordinal variable as continuous variable and apply multiple linear regression

- Outcome variable with m classes (m>2)
  - Ordinal logistic regression
    - Small no. of ordinal classes: Proportional odds or cumulative logit method
      - Separate binary logistic regression model for m-1 cumulative probabilities

For a three class case: C1, C2, and C3 and a single predictor x1

$$logit(C1) = \alpha_0 + \beta_1 x_1$$
  
$$logit(C1or C2) = \beta_0 + \beta_1 x_1$$

RStudio

## Key References

- Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data by EMC Education Services (2015)
- Data Mining for Business Intelligence: Concepts, Techniques, and Applications in Microsoft Office Excel with XLMiner by Shmueli, G., Patel, N. R., & Bruce, P. C. (2010)

# Thanks...