Potencial Gravitacional de Yukawa en Gravedad f(R)

Julián Jiménez-Cárdenas

Universidad Nacional de Colombia, Bogotá.

juojimenezca@unal.edu.co

- 1 Introducción
- 2 Acercamiento Newtoniano al problema de dos cuerpos bajo el potencial de Yukawa

3 Ecuaciones de las órbitas Aproximación a orden O(x²) Aproximación a orden O(x³)

4 Precesión en el Potencial de Yukawa

6 Referencias

Modificación de la ley de Newton

Una manera de aproximarse al problema de la materia y energía oscura es a través de una modificación de la ley de Newton. Tal modificación surge en el límite de campo débil de algunos modelos de gravedad.

Modificación de Yukawa

Generalización de la acción de Einstein-Hilbert:

$$S = \frac{1}{2\kappa} \int f(R) \sqrt{-g} d^4 x \tag{1}$$

 $g=det(g_{\mu\nu}), \kappa=8\pi Gc^{-4}.$ En el límite de campo débil, el potencial modificado de Newton toma la forma[1]

$$\Phi(r) = -\frac{GM}{(1+\delta)r}(1+\delta e^{-r/\lambda})$$
 (2)

Modificación de Yukawa

Donde δ es la corrección de Yukawa y λ es la escala a la cual la fuerza de Yukawa actúa.

$$\lambda = \lambda_c = \frac{hc}{m_a}$$
 (Longitud de onda de Compton[2])

Parámetros de Yukawa y el Lagrangiano f(R) [3]

$$\delta = \frac{df(R)}{dR}\bigg|_{R=R_0} - 1, \quad \lambda = \sqrt{-6\frac{d^2f(R)}{dR^2}\bigg|_{R=R_0} \left(\frac{df(R)}{dR}\bigg|_{R=R_0}\right)^{-1}}$$

Ecuaciones del Movimiento y Energía total

Ecuaciones del Movimiento

En coordenadas polares, (r, φ) , y con respecto al centro de masa, las ecuaciones del movimiento son

$$\ddot{r} - r\dot{\varphi}^2 = -\frac{\partial \Phi(r)}{\partial r} \tag{3}$$

$$\frac{d}{dt}(r^2\dot{\varphi}) = 0 \tag{4}$$

Energía Total

$$E_T = \frac{1}{2}\mu(\dot{r}^2 + r^2\dot{\varphi}^2) - \frac{GMm}{(1+\delta)r}(1+\delta e^{-r/\lambda})$$
 (5)

donde $\mu = \frac{Mm}{m+M}$ es la masa reducida.

Conservación del momento angular en la Energía

Se puede usar el momento angular del sistema para reescribir la energía total.

$$E_T = \frac{1}{2}\mu \dot{r}^2 + \frac{L^2}{2\mu r^2} - \frac{GMm}{(1+\delta)} \frac{(1+\delta e^{-r/\lambda})}{r}$$

Potencial efectivo

Potencial efectivo

$$V_{eff}(r) := \frac{L^2}{2\mu r^2} - \frac{GMm}{(1+\delta)r} - \frac{GMm\delta e^{-r/\lambda}}{(1+\delta)r}$$
 (6)

Algunas consideraciones sobre el potencial efectivo son las siguientes:

- $\delta \neq -1$.
- Si δ toma valores negativos, el segundo término permanece atractivo mientras $\delta<-1$, y el último término se vuelve repulsivo.
- Si δ < -1, el segundo término se vuelve repulsivo y el tercer término sigue atractivo.
- Si $\delta > 0$, el segundo y tercer término son atractivos.

Potencial modificado de Newton

Figura 1 : De derecha a izquierda: Recreación del potencial modificado de Newton en Python y figura 1 en [4].

Potencial efectivo

Figura 2 : De derecha a izquierda: Recreación del potencial efectivo en Python y figura 1 en [4].

Mínimo del potencial efectivo I

Si se deriva la expresión del potencial efectivo y se iguala a cero para hallar los puntos críticos de esta función, se obtiene la expresión

$$\frac{L^2}{\mu r_{crit}^3} = \frac{GMm(\delta e^{-r_{crit}/\lambda} + 1)}{\delta + 1} + \frac{\delta GMme^{-r_{crit}/\lambda}}{(1 + \delta)\lambda} r_{crit}.$$
 (7)

La segunda derivada da

$$\frac{d^{2}V_{eff}(r)}{dr^{2}} = \frac{3L^{2}}{\mu r^{4}} - \frac{2GMm}{(1+\delta)r^{3}}(1+\delta e^{-r/\lambda}) - \frac{2GMm\delta e^{-r/\lambda}}{\lambda(1+\delta)r^{2}} - \frac{GMm\delta e^{-r/\lambda}}{\lambda^{2}(1+\delta)r}.$$
 (8)

Mínimo del potencial efectivo II

Evaluando esta última expresión en $r = r_{cri}$ y usando la expresión que determina r_{min} , se simplifica la forma de la segunda derivada

$$\left. \frac{d^2 V_{eff}(r)}{dr^2} \right|_{r=r_{crit}} = \frac{GMme^{-r_{crit}/\lambda}}{(\delta+1)r_{crit}^3} \left[\delta \left(1 + \frac{r_{crit}}{\lambda} - \frac{r_{crit}^2}{\lambda^2} \right) + e^{r_{crit}/\lambda} \right]$$
(9)

Para garantizar que este punto crítico es efectivamente un mínimo en el potencial, debe ocurrir que

$$g(x) \equiv \frac{\delta(1+x-x^2)+e^x}{\delta+1} > 0,$$
 (10)

con $x = r_{crit}/\lambda$.

Mínimo del potencial efectivo III

A minimum in the effective potential exists if the following condition is satisfied

$$g(x) \equiv \delta(-x^2 + x + 1) + e^x > 0,$$
 (12)

where we have defined $x\equiv r/\lambda$. Eq. (12) is satisfied in the following cases: (i) $\delta>-1$ for $x\to 0$, (ii) $\delta>-e$ for $x\to 1$, and (iii) $\forall\,\delta$ in the limit $x\to \infty$. Let us notice

Figura 3 : Definición de g(x) en [4].

El caso en el que $r << /\lambda$ es la configuración común de un sistema astrofísico cuya dinámica ocurre a escalas menores que la longitud de onda del gravitón. Es posible expandir la exponencial en series de potencias:

$$e^{\pm x} \approx 1 \pm x + \frac{x^2}{2} + O(x^3)$$
 (11)

Reemplazando esta aproximación en el potencial $\Phi(r)$, se obtiene

$$\Phi(r) = -\frac{GM}{r} + \frac{GM\delta}{\lambda(1+\delta)} + \frac{GM\delta r}{2\lambda^2(1+\delta)}.$$
 (12)

El primer término es el potencial Newtoniano, el segundo un corrimiento en la energía.

Quinta fuerza

El tercer término genera una aceleración radial constante, que se puede escribir como

$$a_{corr} = -\frac{a^* \delta}{2(1+\delta)} \frac{r^{*2}}{\lambda^2}$$

donde a^* es la aceleración Newtoniana de un objeto a una distancia r^* .

El mínimo (en caso de que g(x) > 0) para los órdenes $O(x^2)$ y $O(x^3)$ se puede calcular explícitamente, bajo la condición de que

$$\left.\frac{dV(r)}{dr}\right|_{r=r_{min}}=0.$$

$$O(x^2)$$

$$V_{eff}(r) = \frac{L^2}{2\mu r^2} - \frac{GMm}{(1+\delta)r} - \frac{GMm\delta}{(1+\delta)r} \left(1 - \frac{r}{\lambda}\right), \tag{13}$$

$$r_{min} = \frac{L^2}{\mu GMm}.$$
 (14)

El mínimo coincide con el del potencial efectivo, y su valor está corrido respecto al del potencial efectivo Newtoniano:

$$V_{eff}(r_{min}) = -\frac{GMm}{2} \left(\frac{G\mu Mm}{L^2} - \frac{2\delta}{\lambda(1+\delta)} \right). \tag{15}$$

$$O(x^3)$$

$$V_{eff}(r) = \frac{L^2}{2\mu r^2} - \frac{GMm}{r} + \frac{\delta GMm}{\lambda(1+\delta)} - \frac{\delta GMmr}{2(\delta+1)\lambda^2}.$$
 (16)

Cuando se deriva el último término, que va como δ/λ^2 , debido a que se trabaja con el régimen $\delta << 1$ (pequeñas desviaciones del caso Newtoniano), el corrimiento de r_{min} es despreciable.

El potencial efectivo es en este punto:

$$V_{eff}(r_{min}) = -\frac{GMm}{2} \left(\frac{G\mu Mm}{L^2} - \frac{2\delta}{\lambda(1+\delta)} \right) - \frac{L^2\delta}{2(1+\delta)\lambda^2\mu}. \tag{17}$$

Aproximación a orden $O(x^2)$ I

Se usa la conservación del momento angular para escribir

$$\dot{r} = \dot{\varphi} \frac{dr}{d\omega} = \frac{L}{\mu r^2} \frac{dr}{d\omega} = -\frac{L}{\mu} \frac{d}{d\omega} \left(\frac{1}{r}\right). \tag{18}$$

Entonces, a segundo orden, la energía se puede reescribir como

Energía total a segundo orden

$$E_{T} = \frac{L^{2}}{2\mu} \left(\frac{d}{d\phi} \left(\frac{1}{r} \right) \right) + \frac{L^{2}}{2\mu r^{2}} - \frac{GMm}{r} + \frac{\delta GMm}{(1+\delta)\lambda}.$$
 (19)

De aquí se puede deducir la siguiente ecuación diferencial

$$(u')^2 + u^2 - 2\beta_0 u = \beta_1 \tag{20}$$

Donde
$$u = 1/r$$
, $u' = \frac{d(1/r)}{d\omega}$ y

$$\gamma = GMm; \ \beta_0 = \frac{\mu \gamma}{L^2}; \ \beta_1 = \frac{2\mu E_T}{L^2} - \frac{2\mu \gamma}{L^2 \lambda} \frac{\delta}{1 + \delta}.$$
 (21)

Aproximación a orden $O(x^2)$ II

Derivando nuevamente la ecuación diferencial, se obtiene

$$u'(u'' + u - \beta_0) = 0.$$
 (22)

Se buscan soluciones Keplerianas, dado que la energía es casi la misma que en el caso Kepleriano, de modo que se hace la suposición

$$u\equiv\frac{1}{r}=\frac{1}{l}(1+\epsilon\cos\varphi),$$

donde I es el parámetro de la elipse y ϵ la excentricidad. Ingresando esta suposición en las ecuaciones diferenciales, se obtiene

$$I = \frac{1}{\beta_0} \tag{23}$$

$$\varepsilon^2 = 1 + I^2 \beta_1 \tag{24}$$

Aproximación a orden $O(x^2)$ III

En términos de las constantes del movimiento, la excentricidad queda como

$$\epsilon^2 = 1 - \frac{2L^2}{\mu\gamma} \frac{\delta}{(1+\delta)\lambda} + \frac{2E_T L^2}{\mu\gamma^2}.$$
 (25)

Cuando $\delta = 0$, se recobra el valor Newtoniano

$$\epsilon^2 = 1 + \frac{2E_TL^2}{\gamma^2\mu}.$$

Aproximación a orden $O(x^2)$ IV

Figura 4 : Ilustración del efecto del potencial gravitacional modificado sobre los parámetros orbitales.

Aproximación a orden $O(x^2)$ V

Figura 5 : Ilustración del efecto del potencial gravitacional modificado sobre los parámetros orbitales[4].

Aproximación a orden $O(x^3)$ I

A tercer orden, la ecuación diferencial procedente de la energía adquiere un nuevo término

$$(u')^2 + u^2 - 2\beta_0 u - \beta_2 \frac{1}{u} = \beta_1, \tag{26}$$

donde β_0 , β_1 son las mismas constantes del caso anterior, y

$$\beta_2 = \frac{\mu \gamma \delta}{L^2 \lambda^2 (1 + \delta)}$$

Tomando la derivada de la ecuación diferencial,

$$u'(u'' + u + \frac{\beta_2}{2u^2} - \beta_0) = 0 (27)$$

se introduce nuevamente $u \equiv 1/r = (1 + \epsilon \cos \phi)/I$, pero en este caso se evalúa para $\phi = 0, \phi = \pi$, obteniendo el sistema de ecuaciones diferenciales

Aproximación a orden $O(x^3)$ II

Sistema para I y ϵ

$$\epsilon^{2}(1-I\beta_{0})+2\epsilon(1-I\beta_{0})-I\beta_{0}+\frac{I^{3}\beta_{2}}{2}+1=0$$
(28)

$$\varepsilon^{2}(1-I\beta_{0})-2\varepsilon(1-I\beta_{0})-I\beta_{0}+\frac{I^{3}\beta_{2}}{2}+1=0$$
 (29)

Restando ambas ecuaciones, se obtiene que

$$I=\frac{1}{\beta_0}$$
.

Introduciendo ahora nuestra suposición para u en la primera ecuación diferencial y evaluando nuevamente, en $\phi=0,\pi,$ se obtiene la excentricidad,

$$\varepsilon^2 = 1 + I^2 \beta_1 + I^3 \beta_2,$$

resultado distinto al calculado en el artículo.

Aproximación a orden $O(x^3)$ III

Figura 6 : Ilustración del efecto del potencial gravitacional modificado sobre los parámetros orbitales, $O(x^3)$ [4].

Aproximación a orden $O(x^3)$ IV

Figura 7 : Ilustración del efecto del potencial gravitacional modificado sobre los parámetros orbitales, $O(x^3)[4]$.

Precesión en el potencial de Yukawa I

Para el hallar corrimiento en el periastro debido al potencial de Yukawa, se estudian pequeñas perturbaciones de la órbita circular. Considere primero la energía total

$$(u')^{2} + u^{2} + \frac{g(u)}{L^{2}} = \frac{2\mu E_{T}}{L^{2}} - \frac{2\mu \gamma}{L^{2}\lambda} \frac{\delta}{1+\delta}$$
 (30)

g(u) refiere a la interacción gravitacional. Se impone una órbita cerrada, con una distancia mínima y máxima al centro

$$r_{-}|_{\varphi=0}=a(1-\epsilon)$$
 y $r_{+}|_{\varphi=\pi}=a(1+\epsilon)$

a es el semieje mayor de la órbita. Estos valores corresponden a

$$u_0 = \frac{1}{r_-}$$
 y $u_1 = \frac{1}{r_+}$.

Precesión en el potencial de Yukawa II

Al ser máximo y mínimo, se satisface que $u'|_{u=u_0}=u'|_{u=u_1}=0$. Evaluando la energía en estos puntos,

$$u_0^2 + \frac{g(u_0)}{L^2} = \frac{2\mu E_T}{L^2} - \frac{2\mu \gamma}{L^2 \lambda} \frac{\delta}{1+\delta}$$
 (31)

$$u_1^2 + \frac{g(u_1)}{L^2} = \frac{2\mu E_T}{L^2} - \frac{2\mu \gamma}{L^2 \lambda} \frac{\delta}{1+\delta}$$
 (32)

De las cuales se obtiene que

$$L^{2} = \frac{g(u_{0}) - g(u_{1})}{u_{1}^{2} - u_{0}^{2}}$$
 (33)

Precesión en el potencial de Yukawa III

$$E_T = \frac{u_1^2 g(u_0) - u_0^2 g(u_1)}{2\mu(u_1^2 - u_0^2)} + \frac{\gamma}{\lambda} \frac{\delta}{1 + \delta}$$
(34)

Despejando u' en la ecuación de la energía, se obtiene

$$u' = \sqrt{G(u_0, u_1, u)},$$
 (35)

donde $G(u_0, u_1, u)$ es

$$G(u_0, u_1, u) = \frac{g(u_0)(u_1^2 - u^2) + g(u_1)(u^2 - u_0^2) - (u_1^2 - u_0^2)g(u)}{g(u_0) - g(u_1)}.$$
(36)

El ángulo recorrido para ir de r_- a r_+ será

$$\varphi(r_{+}) - \varphi(r_{-}) = \int_{u_{0}}^{u_{1}} G(u_{0}, u_{1}, u)^{-1/2} du$$
(37)

Precesión en el potencial de Yukawa IV

La precesión por revolución se puede ver como

$$\omega = 2|\varphi(r_{+}) - \varphi(r_{-})| - 2\pi$$
 (38)

A orden $O(x^2)$, $g(u) = -2\mu\gamma u = 2\mu\Phi_N(1/u)$, donde $\Phi_N(1/u)$ es el potencial Newtoniano. Por comparación, no hay precesión. Sin embargo, **a orden** $O(x^3)$ se tiene que

$$g(u) = 2\mu\Phi_N(1/u) - \frac{\mu\gamma\delta}{\lambda^2(1+\delta)}\frac{1}{u}$$

Para resolver la integral que da el ángulo recorrido, se hace el cambio de variables

$$u_1 = u_0 + \eta$$
, $u = u_0 + \eta v$, con $0 < v < 1$. Así,

Precesión en el potencial de Yukawa V

$$\Delta \varphi \equiv \varphi(r_{+}) - \varphi(r_{-}) = \eta \int_{0}^{1} g(u_{0}, u_{0} + \eta, \lambda, \delta, u_{0} + \eta v) dv, \quad (39)$$
donde $g(u_{0}, u_{0} + \eta, \lambda, \delta, u_{0} + \eta v) = \frac{1}{\sqrt{G(u_{0}, u_{0} + \eta, \lambda, \delta, u_{0} + \eta v)}}.$

Referencias I

- S. Capozziello, M. De Laurentis, Annalen der Physik 524, 545 (2012)
- [2] K. Lee, F. A. Jenet, R. H. Price, N. Wex, M. Kramer Astrophys.
- [3] S. Capozziello, M. De Laurentis, Phys. Rept. 509, 167 (2011).J. 722, 1589-1597 (2010)
- [4] I. Martino, R. Lazkoz. Analysis of the Yukawa gravitational potential in f (R) gravity I: semiclassical periastron advance.