Theorem (3.2.11). Let f be the function defined by $f(x) = 3x^4 + 1$, and let g be the function defined by $g(x) = \frac{x^4}{2}$. f(x) is $\Theta(g(x))$.

Proof. If $x \ge 1$, then $x^4 \le 6x^4$. Dividing both sides by two, $\frac{x^4}{2} \le 3x^4$. Of course $\left|\frac{x^4}{2}\right| \le |3x^4+1|$, for all x > 1. Therefore f(x) is $\Omega(g(x))$ with constant witnesses C = 1, and k = 1.

If $x \ge 1$, then $6x^4 + 2 \le 8x^4$. Multiplying both sides by $\frac{1}{2}$, $3x^4 + 1 \le 8 \cdot \frac{x^4}{2}$. Of course $|3x^4 + 1| \le 8|\frac{x^4}{2}|$, for all x > 1. So f(x) is $\mathcal{O}(g(x))$ with constant witnesses C = 8, and k = 1.

Because f(x) is $\Omega(g(x))$, and f(x) is $\mathcal{O}(g(x))$, it follows that f(x) is $\Theta(g(x))$.