Курсовая работа по дискретной математике Четвертая задача

Ахметшин Б.Р. – M8O-103Б-22 – 2 вариант Апрель, 2023

Дано:

Матрица длин дуг нагруженого орграфа:

$$G = \begin{pmatrix} \infty & 3 & 5 & 6 & \infty & \infty & \infty & \infty \\ 2 & \infty & 1 & 2 & \infty & \infty & \infty & \infty \\ \infty & 1 & \infty & \infty & 3 & \infty & \infty & \infty \\ 3 & \infty & \infty & \infty & 4 & 7 & \infty & 9 \\ 5 & \infty & \infty & 4 & \infty & \infty & 4 & \infty \\ \infty & \infty & \infty & \infty & \infty & \infty & 1 & 2 \\ 7 & \infty & \infty & \infty & \infty & 1 & \infty & 2 \\ 8 & \infty & \infty & 13 & \infty & \infty & \infty & \infty \end{pmatrix}$$

Задание

Используя алгоритм Φ орда, найти минимальные пути из первой вершины во все достижимые вершины в нагруженном графе, заданном матрицей длин дуг A.

Решение

	V1	V2	V3	V4	V5	V6	V7	V8	$\lambda_i^{(0)}$	$\lambda_i^{(1)}$	$\lambda_i^{(2)}$	$\lambda_i^{(3)}$	$\lambda_i^{(4)}$	$\lambda_i^{(5)}$	$\lambda_i^{(6)}$	$\lambda_i^{(7)}$
V1	∞	3	5	6	∞	∞	∞	∞	0 \	0	0	0	0	0	0	0
V2	2	∞	1	2	∞	∞		∞	∞	× 3 /	3	3	3	3	3	3
V3	∞	1	∞	∞	3	∞	∞	∞	∞	5	\ ^{\\ 4} \	4	4	4	4	4
V4	3	∞	∞		4	7	∞	9	∞	6	¹ 5 /	\ 5	5	5	5	5
V5	5	∞	∞	4	∞		4		∞	∞	8	\ ^{\\ \} 7 \	7	7	7	7
V6	∞	∞	∞	∞	∞	∞	1	2	∞	∞	13	12	12	12	12	12
V7	7	∞	∞	∞	∞	1	∞	2	∞	∞	∞	12	¹ √11 √	11	11	11
V8	8	∞	∞	13	∞	∞	∞	∞	∞	∞	15	14	14	[∠] 13	13	13

1. Из v_1 в v_2 - $v_1 - v_2$, длина равна 3

(a)
$$\lambda_1^{(0)} + c_{12} = 0 + 3 = \lambda_2^{(1)}$$

2. Из v_1 в v_3 - $v_1 - v_2 - v_3$, длина равна 4

(a)
$$\lambda_1^{(0)} + c_{12} = 0 + 3 = \lambda_2^{(1)}$$

(b)
$$\lambda_2^{(1)} + c_{23} = 3 + 1 = \lambda_3^{(2)}$$

3. Из v_1 в v_4 - $v_1-v_2-v_4$, длина равна 5

- (a) $\lambda_1^{(0)} + c_{12} = 0 + 3 = \lambda_2^{(1)}$
- (b) $\lambda_2^{(1)} + c_{24} = 3 + 2 = \lambda_4^{(2)}$
- 4. Из v_1 в v_5 $v_1 v_2 v_3 v_5$, длина равна 7
 - (a) $\lambda_1^{(0)} + c_{12} = 0 + 3 = \lambda_2^{(1)}$
 - (b) $\lambda_2^{(1)} + c_{23} = 3 + 1 = \lambda_3^{(2)}$
 - (c) $\lambda_3^{(2)} + c_{35} = 4 + 3 = \lambda_5^{(3)}$
- 5. Из v_1 в v_5 $v_1 v_2 v_4 v_6$, длина равна 12
 - (a) $\lambda_1^{(0)} + c_{12} = 0 + 3 = \lambda_2^{(1)}$
 - (b) $\lambda_2^{(1)} + c_{24} = 3 + 2 = \lambda_4^{(2)}$
 - (c) $\lambda_4^{(2)} + c_{46} = 5 + 7 = \lambda_6^{(3)}$
- 6. Из v_1 в v_7 $v_1 v_2 v_3 v_5 v_7$, длина равна 11
 - (a) $\lambda_1^{(0)} + c_{12} = 0 + 3 = \lambda_2^{(1)}$
 - (b) $\lambda_2^{(1)} + c_{23} = 3 + 1 = \lambda_3^{(2)}$
 - (c) $\lambda_3^{(2)} + c_{35} = 4 + 3 = \lambda_5^{(3)}$
 - (d) $\lambda_5^{(3)} + c_{57} = 7 + 4 = \lambda_7^{(4)}$
- 7. Из v_1 в v_8 $vv_1-v_2-v_3-v_5-v_7-v_8$, длина равна 13
 - (a) $\lambda_1^{(0)} + c_{12} = 0 + 3 = \lambda_2^{(1)}$
 - (b) $\lambda_2^{(1)} + c_{23} = 3 + 1 = \lambda_3^{(2)}$
 - (c) $\lambda_3^{(2)} + c_{35} = 4 + 3 = \lambda_5^{(3)}$
 - (d) $\lambda_5^{(3)} + c_{57} = 7 + 4 = \lambda_7^{(4)}$
 - (e) $\lambda_7^{(4)} + c_{78} = 11 + 2 = \lambda_8^{(5)}$