- 3.18
 1) L'identité remarquable $(A B)(A + B) = A^2 B^2$ avec $A = \sqrt{n+1}$ et $B = \sqrt{n}$ donne $(\sqrt{n+1} \sqrt{n})(\sqrt{n+1} + \sqrt{n}) = n+1-n=1$.

 De là suit l'égalité $\sqrt{n+1} \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}}$.
 - 2) (a) n < n+1 implique $\sqrt{n} < \sqrt{n+1}$ c'est-à-dire $0 < \sqrt{n+1} \sqrt{n}$. (b) $\sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}} < \frac{1}{\sqrt{n} + \sqrt{n}} = \frac{1}{2\sqrt{n}}$ On a ainsi prouvé que $0 < \sqrt{n+1} - \sqrt{n} < \frac{1}{2\sqrt{n}}$.
 - 3) L'exercice 3.4 a établi que $\lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0$. Il en résulte que $\lim_{n \to +\infty} \frac{1}{2\sqrt{n}} = \lim_{n \to +\infty} \frac{1}{2} \cdot \frac{1}{\sqrt{n}} = \frac{1}{2} \cdot \lim_{n \to +\infty} \frac{1}{\sqrt{n}} = \frac{1}{2} \cdot 0 = 0$. Grâce au théorème des gendarmes, on conclut que $\lim_{n \to +\infty} \sqrt{n+1} \sqrt{n} = 0$.