데이터와 메모리 (Data and memory)

주식회사 가치랩스 GazziLabs, Inc. http://gazzi.ai

> 안기옥 kiokahn@gazzi.ai

https://github.com/kiokahn/DataAndMemory

전체 목차

- 1. 데이터와 메모리
- 2. C++에서 변수 선언과 메모리 할당
- 3. 데이터와 메모리,파일 연습

1. 데이터와 메모리

- 개요
- 시스템과 메모리
- 메모리에 저장되는 데이터 문자
- 메모리에 저장되는 데이터 소리(음악)
- 메모리에 저장되는 데이터 영상
- 메모리에 저장된 값에 대한 연산

개요 - 컴퓨터

❖ 컴퓨터 종류

- ❖ 폰노이만 컴퓨터
 - EDVAC에 대한 보고서의 첫 번째 초안
 (First Draft of a Report on the EDVAC), 1945

※ 참고: https://ko.wikipedia.org/wiki/컴퓨터_구조

❖ 컴퓨터 계층구조

개요 - OS (Operating System), Ubuntu

ubuntu[®] releases

Ubuntu 16.04.7 LTS (Xenial Xerus)

Select an image

Ubuntu is distributed on two types of images described below.

Desktop image

The desktop image allows you to try Ubuntu without changing your computer at all, and at your option to install it permanently later. This type of image is what most people will want to use. You will need at least 384MiB of RAM to install from this image.

https://releases.ubuntu.com/16.04/

64-bit PC (AMD64) desktop image

Choose this if you have a computer based on the AMD64 or EM64T architecture (e.g., Athlon64, Opteron, EM64T Xeon, Core 2). Choose this if you are at all unsure.

32-bit PC (i386) desktop image

For almost all PCs. This includes most machines with Intel/AMD/etc type processors and almost all computers that run Microsoft Windows, as well as newer Apple Macintosh systems based on Intel processors.

개요 - OS (Operating System), MS Windows

시스템과 메모리

- ❖ 내 컴퓨터는 32bit시스템 입니다.
 - 내 컴퓨터의 운영체제(OS, Operating System)는 32bit 입니다.

32bit ?? OS가 관

OS가 관리 가능한 메모리 주소

- ❖ **Bit** (0 or 1) : 컴퓨터는 2진수(Binary)를 사용 합니다.
 - 컴퓨터는 구조상 2진 데이터만 운용 가능합니다.

시스템과 메모리 - 진수 변환

- ❖ 진수
 - 1010(2) → Binary
 - -10 \rightarrow Decimal
 - $0xA \rightarrow Hexadecimal$
- Hex
 - ${}^{8\,4\,2\,1}_{1010(2)}$ =10=0xA, 11=0xB, 12=0xC, 13=0xD, 14=0xE, 15=0xF
- ❖ Bin To Dec

$$1111(2) = 1 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$$
$$= 8 + 4 + 2 + 1$$
$$= 15$$

$$1111 \ 1111(2) = 1 \times 2^{7} + 1 \times 2^{6} + 1 \times 2^{5} + 1 \times 2^{4} + 1 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$$
$$= 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1$$
$$= 255$$

- **❖** Bin To Hex
 - 1111 1111(2) = 255 = 0xFF

8 4 2 1 8 4 2 1 1111 1100 1010 100 = 15 = 12 = 0xF = 0xC MSB : Most Significant Bit

 $\frac{1}{111} \frac{1100}{1000} \frac{1010}{1000} \frac{1000}{1000} \frac{0010}{0000} \frac{1}{1}(2) = 0 \text{xFCA} 98421$

→ 2Byte → 2By

LSB: Least Significant Bit

4개식 나누면, 쉽다

시스템과 메모리 – 메모리 크기

32bit

메모리 관리범위 = 0x00000000번지~0xFFFFFFFF 번지 (1byte 단위로 주소 관리)

최대 크기 = 0xFFFFFFFF + 1 Byte

= 4,294,967,295 + 1 byte

= 4,294,967,296 Byte

= 4,194,304 Kbyte (/1024)

= 4,096 Mbyte (/1024)

= 4 Gbyte

- ❖ 32bit(4byte) OS에서 관리 가능한 최대 메모리는 4G byte 입니다.
- ❖ 32bit 변수로 관리 가능한 최대 파일 크기는 4G byte 입니다.
- ❖ 64bit OS의 경우,
 - 64bit 주소는 8 Bytes
 - 최대 메모리 주소 번지 == 0xFFFFFFFF FFFFFFFF
 - 16EB(엑사바이트, M→G→T→P→E) → 현재는 지원 가능한 OS 없음 Windows 10 Enterprise : 2TB Windows 10 Home : 128GB

시스템과 메모리 – 메모리(RAM) 크기

메모리에 저장되는 데이터 - 문자

❖ 변수형 : char

```
#include <iostream>
using namespace std;
int main(void)
{
    char msg[18] = "The starry night!";
    cout << msg << endl;
    return 0;
}</pre>
```


문자의 숫자화 ? -> ASCII Code(American Standard Code for Information Interchange, 1963)

메모리에 저장되는 데이터 - 문자 ASCII Code

10진수	2진수	8진수	16진수	약자	
0	00000000	000	0x00	NUL	
1	00000001	001	0x01	SOH	
2	00000010	002	0x02	STX	
3	00000011	003	0x03	ETX	
4	00000100	004	0x04	EOT	
5	00000101	005	0x05	ENQ	
6	00000110	006	0x06	ACK	
7	00000111	007	0x07	BEL	
8	00001000	010	0x08	BS	
9	00001001	011	0x09	HT	
10	00001010	012	0x0A	LF	
11	00001011	013	0x0B	VT	
12	00001100	014	0x0C	FF	
13	00001101	015	0x0D	CR	
14	00001110	016	0x0E	SO	
15	00001111	017	0x0F	SI	
16	00010000	020	0x10	DLE	
17	00010001	021	0x11	DC1	
18	00010010	022	0x12	DC2	
19	00010011	023	0x13	DC3	
20	00010100	024	0x14	DC4	
21	00010101	025	0x15	NAK	
22	00010110	026	0x16	SYN	
23	00010111	027	0x17	ETB	
24	00011000	030	0x18	CAN	
25	00011001	031	0x19	EM	
26	00011010	032	0x1A	SUB	
27	00011011	033	0x1B	ESC	
28	00011100	034	0x1C	FS	
29	00011101	035	0x1D	GS	
30	00011110	036	0x1E	RS	
31	00011111	037	0x1F	US	

10진수	2진수	8진수	16진수	문자
32	00100000	040	0x20	
33	00100001	041	0x21	!
34	00100010	042	0x22	"
35	00100011	043	0x23	#
36	00100100	044	0x24	\$
37	00100101	045	0x25	%
38	00100110	046	0x26	&
39	00100111	047	0x27	
40	00101000	050	0x28	(
41	00101001	051	0x29)
42	00101010	052	0x2A	*
43	00101011	053	0x2B	+
44	00101100	054	0x2C	,
45	00101101	055	0x2D	-
46	00101110	056	0x2E	
47	00101111	057	0x2F	/
48	00110000	060	0x30	0
49	00110001	061	0x31	1
50	00110010	062	0x32	2
51	00110011	063	0x33	3
52	00110100	064	0x34	4
53	00110101	065	0x35	5
54	00110110	066	0x36	6
55	00110111	067	0x37	7
56	00111000	070	0x38	8
57	00111001	071	0x39	9
58	00111010	072	0x3A	:
59	00111011	073	0x3B	;
60	00111100	074	0x3C	<
61	00111101	075	0x3D	=
62	00111110	076	0x3E	>
63	00111111	077	0x3F	?
64	01000000	100	0x40	@

10진수	2진수	8진수	16진수	문자	
65	01000001	101	0x41	Α	
66	01000010	000010 102 0x42			
67	01000011	103	0x43	С	
68	01000100	104	0x44	D	
69	01000101	105	0x45	Е	
70	01000110	106	0x46	F	
71	01000111	107	0x47	G	
72	01001000	110	0x48	Н	
73	01001001	111	0x49	- 1	
74	01001010	112	0x4A	J	
75	01001011	113	0x4B	K	
76	01001100	114	0x4C	L	
77	01001101	115	0x4D	М	
78	01001110	116	0x4E	N	
79	01001111	117	0x4F	0	
80	01010000	120	0x50	Р	
81	01010001	121	0x51	Q	
82	01010010	122	0x52	R	
83	01010011	123	0x53	S	
84	01010100	124	0x54	Т	
85	01010101	125	0x55	U	
86	01010110	126	0x56	V	
87	01010111	127	0x57	W	
88	01011000	130	0x58	Χ	
89	01011001	131	0x59	Υ	
90	01011010	132	0x5A	Z	
91	01011011	133	0x5B	[
92	01011100	134	0x5C	₩	
93	01011101	135	0x5D]	
94	01011110	136	0x5E	^	
95	01011111	137	0x5F	_	
96	01100000	140	0x60	`	

10진수	2진수	8진수	16진수	문자
97	01100001	141	0x61	а
98	01100010	142	0x62	b
99	01100011	143	0x63	С
100	01100100	144	0x64	d
101	01100101	145	0x65	е
102	01100110	146	0x66	f
103	01100111	147	0x67	g
104	01101000	150	0x68	h
105	01101001	151	0x69	i
106	01101010	152	0x6A	j
107	01101011	153	0x6B	k
108	01101100	154	0x6C	-
109	01101101	155	0x6D	m
110	01101110	156	0x6E	n
111	01101111	157	0x6F	0
112	01110000	160	0x70	р
113	01110001	161	0x71	q
114	01110010	162	0x72	r
115	01110011	163	0x73	S
116	01110100	164	0x74	t
117	01110101	165	0x75	u
118	01110110	166	0x76	٧
119	01110111	167	0x77	W
120	01111000	170	0x78	Х
121	01111001	171	0x79	у
122	01111010	172	0x7A	Z
123	01111011	173	0x7B	{
124	01111100	174	0x7C	
125	01111101	175	0x7D	}
126	01111110	176	0x7E	~
127	01111111	177	0x7F	DEL

메모리에 저장되는 데이터 – 소리(음악)

메모리에 저장되는 데이터 – 음악 파일

❖ 메모리 == 파일 (0.0847s 구간, 0.001초만 WAV 파일로 저장)

Positions	Sample Value	Description	
1-4	"RIFF"	Marks the file as a riff file. Characters are each 1 byte long.	
5-8	File size (integer)	Size of the overall file - 8 bytes, in bytes (32-bit integer). Typically, you'd fill this in after creat ion.	
9-12	"WAVE"	File Type Header. For our purposes, it always equals "WAVE".	
13-16	"fmt "	Format chunk marker. Includes trailing null	
17-20	16	Length of format data as listed above	
21-22	1	Type of format (1 is PCM) - 2 byte integer	WAV File format
23-24	2	Number of Channels - 2 byte integer	WAV File format
25-28	44100	Sample Rate - 32 byte integer. Common values are 44100 (CD), 48000 (DAT). Sample Rate = Number of Samples per second, or Hertz.	
29-32	176400	(Sample Rate * BitsPerSample * Channels) / 8.	
33-34	4	(BitsPerSample * Channels) / 8.1 - 8 bit mono2 - 8 bit stereo/16 bit mono4 - 16 bit stereo	
35-36	16	Bits per sample	※ 참고 :
37-40	"data"	"data" chunk header. Marks the beginning of the data section.	https://docs.fileformat.com/audio/wav/
41-44	File size (data)	size of the data section.	ittps,//docs.meiormat.com/addio/way/

Little endian: 0x000000B0 = 176byte, 447 short(2byte) x 2ch

※참고: https://hexed.it

메모리에 저장되는 데이터 - 영상

❖ 변수형 : unsigned char

※참고: Hello-Vision (경희대 영상처리연구실)

400

영상크기: 400 * 316 = 126,400 헤더크기: 127,478-126,400 = 1,078

= 0x00000436

↑ (0.0): 컴퓨터 영상의 원점

		0	1	2	3	4	5	6	7	8	9	10		389	390	391	392	393	394	l
	0	52	30	39	35	37	39	45	48	53	105	105		69	92	106	137	137	94	I
ı	1	44	40	39	30	31	32	41	35	67	92	73		63	55	37	35	42	42	
	2	34	33	31	27	18	20	18	26	43	4	29		51	60	62	59	61	65	
	3	36	32	25	29	25	36	24	31	52	60	51		60	55	57	62	66	66	
	4	37	34	33	38	57	66	78	65	80	94	96		71	66	70	70	63	76	ľ
	5	45	39	48	39	47	62	78	35	32	39	73		41	52	82	87	81	82	ľ
- 1	6	39	35	42	33	21	29	40	28	49	44	23	•••	94	88	83	82	95	108	Ì
- 1	7	34	30	36	36	25	36	32	30	33	39	47		126	134	129	114	103	96	Ì
- 1	8	69	60	56	50	58	42	40	44	41	65	87		80	109	130	138	135	127	Ì
ı	9	77	73	68	54	63	48	44	52	53	69	85		67	62	75	107	128	135	
ı	10	54	50	44	36	28	29	24	28	38	47	8		86	73	72	67	84	104	
		1																	:	١
													**							
- 1	305	135	128	109	95	72	48	38	47	54	46	28		70	86	90	37	51	62	
- 1	306	97	65	57	68	55	61	55	52	45	37	47		43	69	74	41	64	63	
	307	52	38	35	11	25	30	46	50	39	28	35		75	80	82	77	73	37	
- [308	59	37	39	42	29	29	26	24	28	32	44		90	80	97	84	10	19	ľ
ĺ	309	56	38	50	49	45	41	37	37	32	27	45		74	61	78	75	56	32	
ı	310	75	70	51	48	50	47	52	39	24	34	43		75	79	102	81	96	88	Ì
	311	81	56	41	39	31	30	39	33	32	37	46		55	51	65	71	84	84	I
	312	60	25	39	36	38	41	31	34	35	42	46		96	97	88	76	80	70	I
	212	CE	40	60	21	22	20	25	27	27	40	12		125	111	100	06	OE	C 1	Ì

88 163 167 141 181 59 160 180 156 193 54 58 169 178 199 53 106 179 171 197 78 113 156 162 198 95 42 118 167 198 111 70 162 174 195 79 97 166 169 196 61 54 69 0 128 21 26 51 55 159 22 34 70 2 137 68 78 79 40 149

73 70 69 5 142 125 111 106 86 85 61 44 55 76 8 136 73 67 62 74 72 55 62 66 91 86 149

103 104 120 75 78 73 74 86 94 60 147

(0,0): Windows BITMAP 원점

314 71 30 44 46 38 31 32 39 23 39 36 315 99 94 72 50 46 60 84 108 118 100 96

the starry night_gray.bmp:

<MediaInfo>

General

(399,315)

Complete name : the starry night_gray.bmp

Format : Bitmap

File size : 124 KiB > 127,478bytes

0x0001F1F6

Image

Format : RGB

Width : **400** pixels Height : **316** pixels

Color space : RGB

8 bits → 1byte 변수 : char Bit depth

메모리에 저장되는 데이터 - 영상

❖ 메모리에 저장된 영상

❖ Windows BITMAP 형식의 영상

= 0x0001F1F5

메모리에 저장되는 데이터 - 영상

❖ 메모리 == 파일 (127,478bytes,)

※참고: https://docs.fileformat.com/image/bmp/

Offset hex	Offset dec	Size	Purpose
0	0	2 bytes	The header field used to identify the BMP and DIB file is 0x42 0x4D in hexadecimal, same as BM in ASCII. It can following po ssible values.* BM – Windows 3.1x, 95, NT, etc. * BA – OS/2 struct bitmap array * CI – OS/2 struct color icon * CP – OS/2 c onst color pointer * IC – OS/2 struct icon * PT – OS/2 pointer
2	2	4 bytes	The size of the BMP file in bytes
6	6	2 bytes	Reserved; actual value depends on the application that create s the image
8	8	2 bytes	Reserved; actual value depends on the application that create s the image
0A	10	4 bytes	The offset, i.e. starting address, of the byte where the bitmap image data (pixel array) can be found.

```
42 4D F6 F1 01 00 00 00 00 3 36 04 00 00 28 00
00 00 90 01 00 00 3C 01 00 00 01 00 08 00 00 00
Little endian:
02 00 03 03 03 00 04 04 04 00 05 05 05 00 66 06
                                                 0x00000436
06 00 07 07 07 00 08 08 08 00 09 09 09 00 0A 0A
                                                    =1.078
OA OO OB OB OB OO OC OC OC OO OD OD OD OO OE OE
OE 00 OF OF OF 00 10 10 10 00 11 11 11 00 12 12
                                                  (파일헤더)
12 00 13 13 13 00 14 14 14 00 15 15 15 00 16 16
16 00 17 17 17 00 18 18 18 00 19 19 19 00 1A 1A
1A 00 1B 1B 1B 00 1C 1C 1C 00 1D 1D 1D 00 1E 1E
1E 00 1F 1F 1F 00 20 20 20 00 21 21 21 00 22 22
22 00 23 23 23 00 24 24 24 00 25 25 25 00 26 26
```

(399,315) 파일 끝 주소 = 0x0001F1F5 Value = 0xB5 = 181

※참고: https://hexed.it

```
(0,0) = 1,078 = 0 \times 00000436
                               Value = 0x63 = 99
                            63 5E 48 32 2E 3C 54 6C 76 64
                     82 85 96 A7 80 09 6B 7E 3E 93 81 3E
                      66 6A 53 5B 64 55 4B 4B 52 5B 53 70
                        63 62 64 54 44 3D 2F 0D 4C 6E 33
          22 21 29 1C 25 23 1E 1B 1E 1A 19 11 24 21 14 26
            1F 15 29 49 3B 22 46 45 28 10 20 27 16 1B 32
          43 27 1D 28 17 19 26 31 2A 20 21 44 2D 1C 2C 16
          1B 13 5B 4B 06 24 1E 1D 15 30 27 11 22 2B 1D 1C
          41 37 36 3A 19 2C 14 24 28 29 27 26 04 76 6C 1D
          38 2B 2C 41 40 52 49 40 3A 2A 3E 45 44 50 43 48
         (0.399) : 127.478-400 = 127.078
                                  = 0x0001F066. Value = 0x34 = 52
          47 48 3E 4C 49 34 36 39 42 47 48 47 39 3A 39 31
          25 21 37 6B 48 32 17 30 37 35 19 85 82 5D 45 4A
            76 7B 72 5B 57 55 4B 58 3C 26 39 1F 64 8E 6D
          4A 4F 3C 3E 5C 72 79 74 62 5D 5A 4F 49 4B 4E 43
          5C 3E 29 5E 6C 51 56 65 66 71 62 65 6C 6C 76 73
          84 76 57 56 44 44 40 3E 3A 4B 4A 3D 4B 52 4C 3F
          35 43 40 59 7B 80 85 6F 4B 43 43 45 5C 6A 89 89
0001F1F0 5E 58 A3 A7 8D B5
```

변수 자료형에 따른 값의 범위

지크청	77/4-4-)	TIH		ul T				
자료형	크기(byte)	진법	최소값	중간값			최대값	비고
	•	DEC	-2,147,483,648	-1	0	1	2,147,483,647	
int	4	HEX	0x80000000	0xFFFFFFF	0x00000000	0x00000001	0x7FFFFFFF	
		DEC	0	2,147,483,646	2147483647	2,147,483,648	4,294,967,295	
unsigned int	4	HEX	0x00000000	0x7FFFFFFE	0x7FFFFFFF	0x80000000	0xFFFFFFF	
	1	DEC	-128	-1	0	1	127	ANSI 문자
char		HEX	0x80	0xFF	0x00	0x01	0x7F	
		DEC	0	126	127	128	255	
unsigned char	1	HEX	0x00	0x7E	0x7F	0x80	0xFF	
		DEC	-32,768	-1	0	1	32,767	
short	2	HEX	0x8000	0xFFFF	0x0000	0x0001	0x7FFF	
	2	DEC	0	32766	32767	32,768	65,535	
unsigned short	2	HEX	0x0000	0x7FFE	0x7FFF	0x8000	0xFFFF	

※ OS 등의 시스템마다 다를 수 있음

메모리에 저장된 값에 대한 연산

❖ 연산 예시

나누기와 곱하기의 연산을 수행할 때는 많은 주의가 필요

```
01 int nC;
02 double dC;
03
04 nC = 5 /2 ; // 변수 nC의 저장 값은? 2
05 dC = 5.0 / 2 ; // 변수 dC의 저장 값은? 2.5
06 nC = 100000000 * 100000000 ; // 변수 nC의 저장 값은?
07 nC = -1000000000 * 1000000000 ; // 변수 nC의 저장 값은?
```

소스를 보면 동일하게 나누기를 수행했는데도 출력 값이 다름 기본으로 피연산자 중에서 데이터 타입이 큰 쪽을 따라 결과를 출력하도록 설계

- 정수 나누기 정수의 결과는 정수다.
- 실수 나누기 정수의 결과는 실수다.

메모리에 저장된 값에 대한 연산

- ❖ 나누기와 곱하기 연산을 수행할 때 명심할 사항
 - 정수와 정수의 연산결과는 항상 정수다.
 - 정수와 실수의 연산결과는 항상 실수다.
 - 산술연산을 할 때는 연산결과, 버림 현상이 발생하지 않는지 확인한다.
 - float 데이터 타입을 사용해 나눗셈을 수행할 때 소수점 이하의 오차율이 커지는 문제가 발생하지 않는지 확인한다.
 - 곱하기 연산을 할 때 오버플로나 언더플로가 발생하지 않는지 확인한다.

2. C++에서 변수 선언과 메모리 할당

(32bit 시스템 가정)

- 변수, 배열과 메모리
- 포인터 변수와 메모리
- 배열, 포인터와 메모리
- 배열과 포인터
- 동적 메모리 할당
- 포인터 연산
- 2차원 동적 할당

변수, 배열과 메모리

포인터 변수와 메모리

배열, 포인터와 메모리

배열과 포인터


```
int arynNum[10];

Int* pNum = arynNum;

*pNum = 1;

arynNum[1] = 2;

*(pNum+9) = 9;
```


동적 메모리 할당


```
int* pNum = new int[10];

*pNum = 1;

pNum[1] = 2;

*(pNum+9) = 9;

delete[] pNum;
```


포인터 연산

2차원 동적 할당

3. 데이터와 메모리,파일 연습

• 사인파 오디오 파일

메모리에 저장되는 데이터 – 사인파 오디오 파일

Sine WAV Audio File

Positions	Sample Value	Description
1-4	"RIFF"	Marks the file as a riff file. Characters are each 1 byte long.
5-8	File size (integer)	Size of the overall file - 8 bytes, in bytes (32-bit integer). Typically, you'd fill this in after creation.
9-12	"WAVE"	File Type Header. For our purposes, it always equals "WAVE".
13-16	"fmt "	Format chunk marker. Includes trailing null
17-20	16	Length of format data as listed above
21-22	1	Type of format (1 is PCM) - 2 byte integer
23-24	2	Number of Channels - 2 byte integer
25-28	44100	Sample Rate - 32 byte integer. Common values are 44100 (CD), 48000 (DAT). Sample Rate = Number of Samples per second, or Hertz.
29-32	176400	(Sample Rate * BitsPerSample * Channels) / 8.
33-34	4	(BitsPerSample * Channels) / 8. 1 - 8 bit mono2 - 8 bit stereo/16 bit mono4 - 16 bit stereo
35-36	16	Bits per sample
37-40	"data"	"data" chunk header. Marks the beginning of the data section.
41-44	File size (data)	Size of the data section.

Sine.wav : < MediaInfo>

Audio
Format : PCM
Format settings : Little / Signed

Codec ID : 1

Duration : 10 s 0 ms

Bit rate mode : Constant

Bit rate : 705.6 kb/s

Channel(s) : 1 channel

Sampling rate : 44.1 kHz

Bit depth : 16 bits

Stream size : 861 KiB (50%)

Data Size = 44100/1s * 10s * 2byte(short) = 882,000 = 0x000D7550

```
52 49 46 46 7C 75 0D 00 57 41 56 45 66 6D 74 20 RIFF u. WAVEfmt
00000000
          10 00 00 00 01 00 01 00 44 AC 00 00 88 8 01 00
00000010
          02 00 10 00 64 91 74 61 50 75 0D 00 00 AB 01
00000020
00000030 56 03 01 05 c 06 57 08 01 0A AB 0B 54 0D FC 0E V...¼.W...½.T.º.
           <del>A3 10 4</del>A 12 F0 13 94 15 38 17 DA 18 7B 1A 1B 1C ú.J.≡.ö.8.<sub>Г</sub>.{...
 ຫວ⊙ວວວວ B9 1D 56 1F F1 20 8A 22 22 24 B7 25 4B 27 DD 28 ᠊╣ V.± è""$<sub>ກ</sub>%K'∥ (
00000060
          6C 2A FA 2B 85 2D 0D 2F 93 30 17 32 98 33 17 35 1**+à-./ô0.2ÿ3.5
     File Size = Data Size + 44bytes(Header) = 882,044 = 0x000D757C
000D7540
                          BZ EZ D3 6F D5 FF D6 90 D8 24 DA I
000D7550 B9 DB 50 DD EA DE 84 E0 21 E2 BF E3 5F E5 FF E6 - ΒΡ Ω Ιαζίτη π σ μ
000D 560 A2 E8 45 EA EA EB 8F ED 36 EF DD F0 86 F2 2E F4 ÓΦΕΩΩδΑ̈́φ6∩ ≡å≥.
000D7570 D8 F5 82 F7 2D F9 D7 FA 83 FC 2E FE -
                                                            ∔lé≈-·∔·â⊓.•
```

File Address = $0x000000000 \sim 0x000D757B$

0. 1. 2. 3. 4. 5. 6. 7. 8. 9. A. B. C

WavHeader.h


```
#define WAVE FORMAT UNKNOWN
                                    0x0000 /* Microsoft Corporation */
#define WAVE FORMAT PCM
                                 0x0001 /* Microsoft Corporation */
                                   0x0002 /* Microsoft Corporation */
#define WAVE FORMAT IEEE FLOAT 0x0003 /* Microsoft Corporation */
                                 0x0006 /* Microsoft Corporation */
#define
#define WAVE FORMAT MULAW
                                   0x0007 /* Microsoft Corporation */
#define
        WAVE FORMAT DTS
                                0x0008 /* Microsoft Corporation */
                                  0x000a /* WMA 9 Speech */
#define
        WAVE FORMAT IMA ADPCM 0x0011 /* Intel Corporation */
        WAVE FORMAT YAMAHA ADPCM 0x0020 /* Yamaha */
#define
        WAVE FORMAT TRUESPEECH 0x0022 /* TrueSpeech */
                                   0x0031 /* Microsoft Corporation */
#define WAVE FORMAT MSNAUDIO
                                    0x0032 /* Microsoft Corporation */
        WAVE FORMAT AMR NB 2
                                    0x0038 /* AMR NB rogue */
#define WAVE FORMAT MSG723
                                   0x0042 /* Microsoft G.723 [G723.1] */
#define WAVE_FORMAT_SHARP_G726 0x0045 /* ITU-T standard */
                                 0x0050 /* Microsoft Corporation */
```

```
unsigned int FileSize ;
          FileType [4];
          ChunkMarker [4];
 unsigned int FormatLength ;// Length of format data as listed above
 unsigned short PCMFormat ;
 unsigned short Channels ;
 unsigned int SampleRate ;
 unsigned int AvgByteRate ;// SampleRate * Channels * BitsPerSample/8
 unsigned short BlockAlign ;
 unsigned short BitPerSample ;
          ChunkDATA [4];
 unsigned int DataSize ;// Size of the data section.
WAV HEADER;
```

Wav_Sine.cpp


```
#include <iostream>
#include "WavHeader.h"
#define DURATION 10 //(second)
#define SINE_FREQUENCY 100 //(Hz)
#define AMPLITUDE 30000 //range of short, -32,768~32,767
#define CHANNEL 1
#define PI
int main(void)
 FILE * f_sine;
 f_sine = fopen("./sine.wav", "wb");
  int datasize = DURATION * SAMPLE RATE * CHANNEL * BIT RATE / 8;
  WAV HEADER header:
  memcpy(header.Riff, "RIFF", sizeof(header.Riff));
  header.FileSize = datasize + sizeof(WAV_HEADER);
  memcpy(header.FileType, "WAVE", sizeof(header.FileType));
  memcpy(header.ChunkMarker, "fmt ", sizeof(header.ChunkMarker));
  header.FormatLength = 0x10;
```

```
header.PCMFormat = WAVE_FORMAT_PCM;
header.Channels = CHANNEL;
header.SampleRate = SAMPLE RATE;
header.AvgByteRate = SAMPLE_RATE * CHANNEL * BIT_RATE / 8;
header.BlockAlign = CHANNEL * BIT RATE / 8;
header.BitPerSample = BIT RATE;
memcpy(header.ChunkDATA, "data", sizeof(header.ChunkDATA));
header.DataSize = datasize;
fwrite(&header, sizeof(WAV_HEADER), 1, f_sine);
short* wav_sine = new short[datasize];
memset(wav_sine,0,sizeof(short)*datasize);
short* itor = wav sine;
for( int i = 0; i < datasize; i++ )
  *itor++ = (short)AMPLITUDE*sin(2 * PI * i * SINE FREQUENCY
       / SAMPLE RATE);
fwrite(wav_sine, 1, datasize, f_sine);
fclose(f_sine);
delete[] wav_sine;
```