I.1 - Définition d'un « champ » de grandeur physique

Définition d'un champ d'une grandeur physique

Un champ est une grandeur physique définie en tout point de l'espace. On distingue communément deux types de champs :

- Les champs scalaires : À tout point M d'une zone de l'espace est associé une grandeur scalaire f(M) (réelle ou complexe). Par exemple, un champ de température associe une température T(x, y, z) à chaque point (x, y, z) de l'espace.
- Les champs vectoriels : À tout point M d'une zone de l'espace est associé une grandeur vectorielle $\vec{f}(M)$. Par exemple, un champ de vitesse du vent associe un vecteur vitesse $\vec{V}(x,y,z)$ à chaque point (x,y,z) de l'espace.

Propriété des champs

Lorsqu'un champ ne varie pas au cours du temps, il est dit stationnaire (ou homogène).

Lorsqu'un champ est le même dans tout l'espace, il est dit uniforme.

I.2 - Force volumique

Puisqu'une force peut s'appliquer à tout un fluide, mais aussi à chacun de ses parties de taille quelconque, il devient pertinent de définir la notion de **force volumique**.

Force de pression sur une surface infinitésimale

Dans un champ de pesanteur g, la force de gravité subie par une particule fluide infinitésimale de masse dm s'écrit :

$$d\vec{F}_g = \vec{g} dm = \vec{g} \rho dV$$

On appellera force volumique, et on notera \vec{f} , le rapport entre la force $d\vec{F}$ exercée sur une particule fluide et son volume dV:

$$d\vec{F} = \vec{f} dV$$

1.3 - Élément infinitésimal de surface, et forces de pressions qui s'y appliquent

Élément infinitésimal de surface orienté: Un « élément infinitésimal de surface orienté » est une surface infinitésimale dS à laquelle on adjoint un vecteur normal \vec{n} pointant vers l'extérieur. On notera souvent $\vec{dS} = dS \vec{n}$.

Force de pression sur une surface infinitésimale

La force exercée par un fluide sur un élément infinitésimal de surface, centré sur le point M s'écrit comme :

$$d\vec{F}_{P}(M) = P(M) \ dS(M) \ \vec{n}(M)$$

avec nd le vecteur normal unitaire dirigé du fluide vers l'extérieur.

L'unité du système international de la pression est le Pascal $\bf 1$ $\bf Pa=1$ $\bf N$. $\bf m^{-2}=1$ $\bf J$. $\bf m^{-3}$, et non le bar (1 bar = 10^5 $\bf N$. $\bf m^{-2}$).

1.4 - Relation fondamentale de la statique des fluides (et applications)

Relation de la statique des fluides en présence d'un champ de pesanteur

Dans un fluide au repos, de masse volumique $\rho,$ soumis uniquement à la pesanteur \vec{g} :

$$\frac{dP(z)}{dz} = \pm \, \rho g$$

Le signe dépend de l'orientation de l'axe vertical : Θ si \vec{g} est selon $-\vec{e}_z$, et \oplus sinon.

Expression de la loi de pression dans un <u>fluide incompressible</u> ($\rho = cte$)

L'équation de la statique des fluides se résout aisément de plusieurs manières, mais il faut toujours connaître une condition aux limites : ici, on suppose qu'à l'altitude z_S , la pression est P_0 , c'està-dire $P(z_S) = P_0$.

Deux méthodes permettent d'arriver au même résultat (à choisir selon votre convenance) :

$$\frac{dP(z)}{dz} = -\rho_0 g \quad i.e. \quad dP(z) = -\rho_0 g dz$$

Et on intègre entre la surface (profondeur z_s , pression $P(z_s) = P_0$) et une profondeur quelconque (profondeur z et pression P(z)):

$$\int\limits_{P_0}^{P(z)} dP = \int\limits_{z_s}^{z} -\rho_0 \ g \ dz \qquad \text{i. e.} \quad P(z) - P_0 = -\rho_0 \ g(z-z_s)$$
 i. e.
$$\boxed{P(z) = P_0 - \rho_0 \ g \ (z-z_s)}$$

$$\frac{dP(z)}{dz} = -\rho_0 g \quad \Rightarrow \quad P(z) = -\rho_0 gz + K$$

On applique la condition aux limites :

$$\begin{split} P(z_s) &= P_0 &\quad \text{i. e.} \quad -\rho_0 g \, z_s + K = P_0 \\ &\quad \text{i. e.} \quad K = P_0 + \rho_0 g \, z_s \end{split} \label{eq:power_power}$$

Donc finalement:

$$P(z) = P_0 - \rho_0 g(z - z_s)$$

Expression de la loi de pression dans un fluide compressible (modèle de l'atmosphère isotherme)

$$PV = nRT$$
 $\stackrel{\div m}{\Longrightarrow}$ $P\frac{V}{m} = \frac{n}{m}RT$ i.e. $\frac{P}{\rho} = \frac{RT}{M}$ i.e. $\rho = \frac{PM}{RT}$

On peut maintenant récrire la relation de statique des fluides en replaçant le terme de masse volumique :

$$\frac{dP}{dz} = -\frac{PM}{RT}g \qquad i. e. \qquad \frac{dP}{dz} + \frac{Mg}{RT} P = 0$$

On obtient une simple équation différentielle du premier ordre, de distance caractéristique $\delta = RT/Mg$. Cette distance représente donc une distance typique de variation de P(z). On calcule :

$$\delta = \frac{RT}{Mg} \simeq \frac{8,31 \cdot (273 + 15)}{28 \cdot 9,81} \sim 8,4 \cdot 10^3 \text{ m}$$

On obtient la solution P(z) représentée ci-contre, avec la condition initiale $P(0)=P_0\simeq 1013~hPa$:

$$P(z) = P_0 \exp\left(-\frac{Mg}{RT} z\right)$$

Relation fondamentale de l'hydrostatique généralisée (hors-programme)

La relation liant la pression P au sein d'un fluide avec un champ de force volumique $\overrightarrow{f_v}$ (potentiellement inhomogène) s'écrit :

$$\overrightarrow{grad}(P) = \overrightarrow{f_v} \qquad \xrightarrow{cart\'{e}sien} \qquad \frac{dP}{dx} \; \overrightarrow{e}_x + \frac{dP}{dy} \; \overrightarrow{e}_y + \frac{dP}{dz} \; \overrightarrow{e}_z = \overrightarrow{f_v}$$

Cette relation locale est valable en tout point M du fluide subissant la force volumique.

1.5 - Mode opératoire pour calculer les forces de pression sur une surface

Pour calculer la résultante des forces de pression sur une surface S :

- 1. Exprimer une surface infinitésimale orientée à un point quelconque M de la surface S, c'est-à-dire dS(M) dans le système de coordonnées adéquat ;
- 2. Exprimer le pression P(M) en un point quelconque M de la surface S, dans le même système de coordonnées que celui choisi à l'étape précédente ;
- 3. Écrire la relation $d\vec{F}_P(M) = P(M) \overrightarrow{dS}(M)$;
- 4. Intégrer la quantité $d\vec{F}_P(M)$ sur la surface (en choisissant les bornes adaptées) : $\int_{M \in S} d\vec{F}_P(M) \ dM$

ATTENTION:

- On réalise une intégrale sur une surface, et non pas sur un volume. L'intégrale porte donc sur seulement <u>deux</u> coordonnées ;
- Les vecteurs de base \vec{e}_r , \vec{e}_θ , etc. peuvent dépendre des coordonnées du repère, et ne peuvent donc pas être intégrés tels quel!

Application classique - Force sur un barrage droit

On considère un mur qui retient de l'eau, sur une profondeur $h=5\,m$. Le mur est d'une largeur $L=10\,m$ (dans la direction Oy).

La pression dépend uniquement de la profondeur z: $P(z) = P_{atm} - \rho gz$

On considère un élément infinitésimal de surface dans la direction z, et de longueur L dans la direction y :

$$\overrightarrow{dS}(z) = (L \, dz) \, \vec{e}_x \qquad \Longrightarrow \qquad d\vec{F}_{P,eau}(z) = P(z) \, \overrightarrow{dS}(z) = P(z) (L \, dz) \, \vec{e}_x = (P_{atm} - \rho gz) (L \, dz) \, \vec{e}_x$$

La pression du côté air est simplement P_{atm} , donc : $d\vec{F}_{p,air} = (P_{atm})(L dz)(-\vec{e}_x)$

Donc la résulante des forces de pression sur dS est : $d\vec{F}_p = d\vec{F}_{p,eau} + d\vec{F}_{p,air} = \boxed{-\rho gz \ L \ dz \ \vec{e}_x}$

On intègre dans la direction z (sans problème, puisque le vecteur \vec{e}_x ne dépend d'aucune corrdonnée) :

$$\vec{F}_p = -L\rho g \int_{-h}^{0} z \, dz \, \vec{e}_x = -L\rho g \, \vec{e}_x \int_{-h}^{0} z \, dz = -L\rho g \, \vec{e}_x \left[\frac{z^2}{2} \right]_{-h}^{0} = \left[\frac{1}{2} L\rho g h^2 \, \vec{e}_x \right]_{-h}^{0}$$

On remarque que cela ne dépend pas de l'épaisseur de l'eau derrière le mur! À profondeur fixée, que ce soit un lac entier ou seulement quelques mètres d'eau, la force exercée sur le mur ne change pas.

Application classique - Force sur un barrage cylindrique

On considère un barrage qui retient une étendue d'eau, sur une profondeur immergée $h=100\,\text{m}$. En première approximation, on considère que le barrage est une portion de cylindre comme représenté ci-dessous, de rayon $R=150\,\text{m}$.

- 1. Déterminer l'expression du champ de pression dans le lac et dans l'air.
- 2. Déterminer le système de coordonnées permettant d'exprimer simplement un élément de surface du barrage, puis exprimer les forces qui s'y appliquent.
- 3. Exprimer l'intégrale permettant de calculer la force $\vec{F}_{eau+air}$ exercée sur le barrage.
- 4. Déterminer par symétrie (sans calcul) la direction que prendra $\vec{F}_{eau+air}$. Calculer alors l'intégrale sachant que le barrage forme un quart de cercle.

On écrit la pression P(z), et l'élément différentiel de surface :

Patm

P(z)

eau

$$P(z) = P_{atm} + \rho gz \qquad et \qquad \overrightarrow{dS} = (R \ d\theta \ dz)(-\vec{e}_r) \qquad \Longrightarrow \qquad d\vec{F}_{eau} = (P_{atm} + \rho gz)(R \ d\theta \ dz)(-\vec{e}_r)$$

La pression du côté air est simplement $P_0: d\vec{F}_{air} = (P_{atm})(R d\theta dz)(+\vec{e}_r)$

Donc la résulante est : $\ d\vec{F} = d\vec{F}_{eau} + d\vec{F}_{air} = \boxed{-\rho gzR \ d\theta \ dz \ \vec{e}_r}$

On intègre sur θ et z:

$$\vec{F}_{eau+air} = -\int_{\theta=-\alpha}^{\alpha} \int_{z=0}^{h} (\rho gz)(R d\theta dz) \vec{e}_r \qquad (attention : \vec{e}_r dépend de \theta !)$$

La résultante sera selon $\vec{e}_{x},$ et on fait la projection avant le calcul de l'intégrale :

$$\begin{split} \vec{F}_{eau+air} \cdot \vec{e}_x &= -\int\limits_{\theta=-\alpha}^{\alpha} \int\limits_{z=0}^{h} \rho gz \, R \, d\theta \, dz \, \underbrace{\vec{e}_r \cdot \vec{e}_x}_{cos(\theta)} &= -R \int\limits_{\theta=-\alpha}^{\alpha} \int\limits_{z=0}^{h} \rho gz \cos(\theta) \, d\theta \, dz \\ &= -R \left[P_{atm} z + \frac{\rho gz^2}{2} \right]_0^h \cdot \int\limits_{-\alpha}^{\alpha} \cos(\theta) \, d\theta = -Rh \left(P_{atm} + \frac{\rho gh}{2} \right) \cdot \underbrace{(2 \sin(\alpha))}_{cos(\theta)} \end{split}$$

On a donc enfin:

$$\vec{F}_{eau+air} \cdot \vec{e}_x = -\sqrt{2} Rh \left(P_{atm} + \frac{\rho gh}{2} \right)$$

I.6 - Poussée d'Archimède

Poussée d'Archimède

Un corps de volume V_i totalement immergé dans un fluide de masse volumique ρ_f , dans un champ de pesanteur \vec{g} , subit la poussée d'Archimède :

Cette force s'applique au centre de masse du volume immergé.

