

集成四通道降压调节器和 监控电路的电源解决方案

ADP5053

产品特性

宽输入电压范围: 4.5 V至15.0 V 输出精度: ±1.5%(整个温度范围内) 可调开关频率范围: 250 kHz至1.4 MHz 可调/固定输出选项,可通过工厂熔丝选择 电源调节

通道1和通道2:带低端FET驱动器的可编程1.2 A/2.5 A/4 A

同步降压调节器 通道3和通道4: 1.2 A同步降压调节器

8A单通道输出(通道1和通道2并联工作)

精密使能, 0.8 V精确阈值

有源输出放电开关

FPWM或自动PWM/PSM选择

频率同步输入或输出

针对OVP/OCP故障提供可选的闩锁保护

所选通道的电源良好指示

UVLO、OCP和TSD保护

开漏处理器复位,带外部可调阈值监控

看门狗刷新输入

手动复位输入

应用

小型蜂窝基站 FPGA和处理器应用 安防和监控 医疗应用

概述

ADP5053集成了四个高性能降压调节器、一个监控电路、一个看门狗定时器和手动复位功能,48引脚的LFCSP封装中可满足严苛的性能和电路板空间要求。器件可直接连接高达15.0 V的输入电压,无需使用前置调节器。

通道1和通道2集成高端功率MOSFET和低端MOSFET驱动器。外部NFET可用于低端功率器件,以优化解决方案的效率并提供1.2 A、2.5 A或4 A的可编程输出电流。以并联配置方式组合通道1和通道2可提供高达8 A的单路输出电流。

通道3和通道4同时集成高端和低端MOSFET,以提供1.2 A输出电流。

典型应用电路

ADP5053的开关频率可编程或同步至外部时钟。ADP5053 的每个通道均集成一个精密使能引脚,可方便地设置上电 时序或改变可调节UVLO阈值。

ADP5053集成用于监控电压电平的监控电路。如果WDI引脚未在预设超时周期内切换,看门狗定时器将生成一个复位信号。可为手动复位功能选择处理器复位模式或者系统电源开/关模式。

表1. 该系列产品型号

TO WAR IN THE S								
型号	通道	I ² C	封装					
ADP5050	4个降压器、1个LDO	是	48引脚 LFCSP					
ADP5051	4个降压器、电源监控器	是	48引脚 LFCSP					
ADP5052	4个降压器、1个LDO	无	48引脚 LFCSP					
ADP5053	4个降压器、电源监控器	无	48引脚 LFCSP					

Rev. 0 Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2013 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com

目录

产品特性
应用
典型应用电路
概述
修订历史2
详细功能框图
技术规格4
降压调节器规格
电源监控器规格
绝对最大额定值
热阻
ESD警告
引脚配置和功能描述
典型性能参数1
工作原理10
降压调节器工作模式10
可调和固定输出电压10
内部调节器(VREG和VDD)10
独立电源应用17
低端器件选择17
自举电路17
有源输出放电开关17
精密使能17
振荡器17
同步输入/输出18
软启动18
并连操作19
带预充电输出的启动19
限流保护19
折頻20
打嗝保护20
闩锁保护20
欠压闭锁(UVLO)2
电源良好功能2

热关断21
监控电路21
应用信息23
ADIsimPower设计工具23
可调输出电压编程23
电压转换限制23
限流设置23
软启动设置24
电感选择24
输出电容选择24
输入电容选择25
低端功率器件选择25
UVLO输入编程25
补偿器件设计26
功耗26
结温27
设计示例28
设置开关频率28
设置输出电压28
设置电流限值28
选择电感28
选择输出电容29
选择低端MOSFET29
设计补偿网络29
选择软启动时间29
选择输入电容29
推荐外部器件30
电路板布局建议31
典型应用电路32
工厂编程选项35
工厂默认选项36
外形尺寸37
订购指南37

修订历史

2013年11月—修订版0: 初始版

详细功能框图

技术规格

除非另有说明,对于最小值/最大值规格, $V_{_{
m IN}}$ = 12 V, $V_{_{
m VREG}}$ = 5.1 V, $T_{_{
m J}}$ = -40°C至+125°C,对于典型值规格, $T_{_{
m A}}$ = 25°C。

表2.

参数	符号	最小值	典型值	最大值	单位	测试条件/注释
输入电源电压范围	V _{IN}	4.5		15.0	V	PVIN1、PVIN2、PVIN3、PVIN4引脚
静态电流						PVIN1、PVIN2、PVIN3、PVIN4引脚
工作静态电流	IQ		4.8	6.35	mA	无切换,所有ENx引脚均为高电平
	I _{SHDN}		25	65	μΑ	所有ENx引脚均为低电平
欠压闭锁	UVLO					PVIN1、PVIN2、PVIN3、PVIN4引脚
阈值						
上升	V _{UVLO-RISING}		4.2	4.36	V	
下降	V _{UVLO-FALLING}	3.6	3.78		V	
迟滞	V _{HYS}		0.42		V	
振荡器电路						
开关频率	f _{sw}	700	740	780	kHz	$RT = 25.5 \text{ k}\Omega$
范围		250		1400	kHz	
SYNC输入						
输入时钟范围	f _{SYNC}	250		1400	kHz	
输入时钟脉冲宽度						
最短导通时间	tsync min on	100			ns	
最短关断时间	t _{SYNC} MIN OFF	100			ns	
输入时钟高电压	V _H (SYNC)	1.3			V	
输入时钟低电压	V _{L (SYNC)}			0.4	V	
SYNC输出	_ (=,					
时钟频率	f _{CLK}		f_{SW}		kHz	
正脉冲占空比	tclk pulse duty		50		%	
上升或下降时间	tclk rise fall		10		ns	
高电平电压	V _H (SYNC_OUT)		V_{VREG}		V	
精密使能	V					EN1、EN2、EN3、EN4引脚
高电平阈值	V _{TH_H (EN)}		0.806	0.832	V	
低电平阈值	V _{TH_L (EN)}	0.688	0.725		V	
下拉电阻	Rpull-down (en)		1.0		ΜΩ	
电源良好						
内部电源良好						
上升阈值	V _{PWRGD} (RISE)	86.3	90.5	95	%	
迟滞	V _{PWRGD} (Hys)	00.0	3.3	20	%	
下降延迟	tpwrgd fall		50		μς	
PWRGD引脚的上升延迟	tPWRGD_PIN_RISE		1		ms	
PWRGD引脚的漏电流	I _{PWRGD_LEAKAGE}		0.1	1	μΑ	
PWRGD引脚的输出低电压	V _{PWRGD_LOW}		50	100	mV	I _{PWRGD} = 1 mA
内部调节器	• i wildb_tow					II WIGD TITLE
VDD						
输出电压	$V_{ m VDD}$	3.2	3.305	3.4	V	lvpp = 10 mA
限流	I _{LIM} VDD	20	51	80	mA	NOD = 10 HIN
VREG	TEIM_VDD	20	31	00	''''	
输出电压	$V_{ m VREG}$	4.9	5.1	5.3	V	
振差	V VREG VDROPOUT	7.2	225	5.5	mV	I _{VREG} = 50 mA
压左 限流	I _{LIM_VREG}	50	95	140	mA	IVREG — JO IIIA
热关断	ILIM_VKEG	30	93	טדו	111/	
減值	T _{SHDN}		150		°C	
			150		°C	
迟滞	T _{HYS}		10		ر	

降压调节器规格

除非另有说明,对于最小值/最大值规格, V_{IN} = 12 V, V_{VREG} = 5.1 V, f_{SW} = 600 kHz(所有通道), T_{J} = -40°C至+125°C,对于典型值规格, T_{A} = 25°C。

表3.

参数	符号	最小值	典型值	最大值	单位	测试条件/注释
通道1同步降压调节器						
FB1引脚						
固定输出选项	V _{OUT1}	0.85		1.60	V	熔丝调整
可调反馈电压	V_{FB1}		0.800		V	
反馈电压精度	V _{FB1} (DEFAULT)	-0.55		+0.55	%	T _J = 25°C
		-1.25		+1.0	%	0°C ≤ T _J ≤ 85°C
		-1.5		+1.5	%	–40°C ≤ T _J ≤ +125°C
反馈偏置电流 SW1引脚	I _{FB1}			0.1	μΑ	可调电压
高端功率FET导通电阻	R _{DSON (1H)}		100		mΩ	引脚对引脚测量
限流阈值	I _{TH (ILIM1)}	3.50	4.4	5.28	Α	R _{ILIM1} = 悬空
		1.91	2.63	3.08	Α	$R_{ILIM1} = 47 \text{ k}\Omega$
		4.95	6.44	7.48	Α	$R_{ILIM1} = 22 k\Omega$
最短导通时间	t _{MIN_ON1}		117	155	ns	f _{sw} = 250 kHz至1.4 MHz
最短关断时间	t _{MIN_OFF1}		$1/9 \times t_{SW}$		ns	f _{sw} = 250 kHz至1.4 MHz
低端驱动器,DL1引脚						
上升时间	t _{RISING1}		20		ns	$C_{ISS} = 1.2 \text{ nF}$
下降时间	t _{FALLING1}		3.4		ns	$C_{ISS} = 1.2 \text{ nF}$
源电流电阻	t _{SOURCING1}		10		Ω	
吸电流电阻	t _{SINKING1}		0.95		Ω	
误差放大器(EA), COMP1引脚						
EA跨导	g _{m1}	310	470	620	μS	
软启动						
软启动时间	t _{SS1}		2.0		ms	SS12连接到VREG
可编程软启动范围		2.0		8.0	ms	
打嗝时间	t _{HICCUP1}		$7 \times t_{SS1}$		ms	
C _{out} 放电开关导通电阻	R _{DIS1}		250		Ω	
通道2同步降压调节器						
FB2引脚						
固定输出选项	V_{OUT2}	3.3		5.0	V	熔丝调整
可调反馈电压	V_{FB2}		0.800		V	
反馈电压精度	V _{FB2 (DEFAULT)}	-0.55		+0.55	%	T _J = 25°C
		-1.25		+1.0	%	0°C ≤ T _J ≤ 85°C
		-1.5		+1.5	%	–40°C ≤ T _J ≤ +125°C
反馈偏置电流	I _{FB2}			0.1	μΑ	可调电压
SW2引脚						
高端功率FET导通电阻	R _{DSON (2H)}		110		mΩ	引脚对引脚测量
限流阈值	I _{TH (ILIM2)}	3.50	4.4	5.28	Α	R _{ILIM2} = 悬空
		1.91	2.63	3.08	Α	$R_{ILIM2} = 47 \text{ k}\Omega$
		4.95	6.44	7.48	Α	$R_{ILIM2} = 22 \text{ k}\Omega$
最短导通时间	t _{MIN_ON2}		117	155	ns	f _{sw} = 250 kHz至1.4 MHz
最短关断时间	t _{MIN_OFF2}		$1/9 \times t_{SW}$		ns	f _{sw} = 250 kHz至1.4 MHz
低端驱动器,DL2引脚						
上升时间	t _{RISING2}		20		ns	C _{ISS} = 1.2 nF
下降时间	t _{FALLING2}		3.4		ns	C _{ISS} = 1.2 nF
源电流电阻	t _{SOURCING2}		10		Ω	
吸电流电阻	t _{SINKING2}		0.95		Ω	

参数	符号	最小值	典型值	最大值	单位	测试条件/注释
误差放大器(EA), COMP2引脚						
EA跨导	g _{m2}	310	470	620	μS	
软启动						
软启动时间	t _{SS2}		2.0		ms	SS12连接到VREG
可编程软启动范围		2.0		8.0	ms	
打嗝时间	t _{HICCUP2}		$7 \times t_{SS2}$		ms	
C _{our} 放电开关导通电阻	R _{DIS2}		250		Ω	
通道3同步降压调节器						
FB3引脚						
固定输出选项	V _{оитз}	1.20		1.80	V	熔丝调整
可调反馈电压	V _{FB3}		0.800		V	74 = 741E
反馈电压精度	V _{FB3} (DEFAULT)	-0.55	0.000	+0.55	%	T _J = 25°C
人员 ·己还情及	VIBS (DEIAGEI)	-1.25		+1.0	%	0°C ≤ T _J ≤ 85°C
		-1.5		+1.5	%	-40°C ≤ T _J ≤ +125°C
反馈偏置电流	I _{FB3}	1.5		0.1	μΑ	可调电压
SW3引脚	1583			0.1	μπ	可夠毛压
高端功率FET导通电阻	R _{DSON (3H)}		225		mΩ	引脚对引脚测量
低端功率FET导通电阻	R _{DSON (3L)}		150		mΩ	引脚对引脚测量
限流阈值	I _{TH (ILIM3)}	1.7	2.2	2.55	A	J 1/104/1/3 J 1/104/1/3 = 1
最短导通时间	t _{MIN} ON3	1.7	90	120	ns	f _{sw} = 250 kHz至1.4 MHz
最短关断时间	t _{MIN OFF3}		$1/9 \times t_{SW}$	120	ns	$f_{SW} = 250 \text{ kHz} \pm 1.4 \text{ MHz}$
	CMIN_OFF3		1/3 × tsw		113	15W — 250 KI IZ主 1.4 WII IZ
误差放大器(EA),COMP3引脚 EA跨导		310	470	620	c	
	g _{m3}	310	470	020	μS	
软启动			2.0			CC2 4 字
软启动时间	t _{SS3}	2.0	2.0	0.0	ms	SS34连接到VREG
可编程软启动范围		2.0	- .	8.0	ms	
打嗝时间	t _{HICCUP3}		$7 \times t_{SS3}$		ms	
C _{OUT} 放电开关导通电阻	R _{DIS3}		250		Ω	
通道4同步降压调节器						
FB4引脚						
固定输出选项	V_{OUT4}	2.5		5.5	V	熔丝调整
可调反馈电压	V _{FB4}		0.800		V	
反馈电压精度	V _{FB4} (DEFAULT)	-0.55		+0.55	%	T _J = 25°C
		-1.25		+1.0	%	0°C ≤ T _J ≤ 85°C
		-1.5		+1.5	%	–40°C ≤ T _J ≤ +125°C
反馈偏置电流 SW4引脚	I _{FB4}			0.1	μΑ	可调电压
高端功率FET导通电阻	R _{DSON (4H)}		225		mΩ	引脚对引脚测量
低端功率FET导通电阻	R _{DSON (4L)}		150		mΩ	引脚对引脚测量
限流阈值	I _{TH (ILIM4)}	1.7	2.2	2.55	Α	·
最短导通时间	t _{MIN ON4}		90	120	ns	f _{sw} = 250 kHz至1.4 MHz
最短关断时间	t _{MIN OFF4}		$1/9 \times t_{SW}$		ns	f _{sw} = 250 kHz至1.4 MHz
误差放大器(EA), COMP4引脚						
EA跨导	g _{m4}	310	470	620	μS	
软启动						
软启动时间	t _{SS4}		2.0		ms	SS34连接到VREG
可编程软启动范围		2.0		8.0	ms	
打嗝时间	t _{HICCUP4}		$7 \times t_{SS4}$		ms	
C _{OUT} 放电开关导通电阻	R _{DIS4}		250		Ω	

电源监控器规格

除非另有说明,对于最小值/最大值规格, $V_{_{
m IN}}$ = 12 V, $V_{_{
m VREG}}$ = 5.1 V, $T_{_{
m J}}$ = -40° C至+125°C,对于典型值规格, $T_{_{
m A}}$ = 25°C。

表4.

参数	符号	最小值	典型值	最大值	单位	测试条件/注释
阈值电压	V_{TH}	0.494	0.500	0.505	V	
复位超时周期	t _{RP}					
选项0		1.05	1.4	1.97	ms	
选项1		21	28	38	ms	
选项2		160	200	260	ms	
选项3		1.15	1.6	2.17	sec	
V _{cc} 至复位延迟	t _{RD}		80		μs	V _{TH} 以1 mV/μs速率下降
看门狗输入						
看门狗超时周期	t _{WD}					
选项0		4.8	6.3	8	ms	
选项1		79	102	135	ms	
选项2		1.14	1.6	2.15	sec	
选项3			25.6		sec	
WDI脉冲宽度		80			ns	
WDI输入阈值		0.4		1.2	V	
WDI输入电流(源)		8.5	14	18.5	μΑ	Vwoi=Vcc,平均时间
WDI输入电流(吸)		-15	-22	-30	μΑ	Vwoi=0V, 平均时间
手动复位输入						
MR 输入脉冲宽度		1			μs	
MR毛刺抑制			280		ns	
MR上拉电阻		32	55	80	kΩ	
MR至复位延迟			310		ns	

绝对最大额定值

表5

PVIN1至PGND		表5.	
PVIN2至PGND PVIN3至PGND3 PVIN4至PGND4 SW1至PGND4 SW1至PGND SW2至PGND SW3至PGND3 SW4=18 V SW3至PGND3 SW4至PGND3 SW4至PGND4 PGND至GND PGND至GND PGND3至GND PGND4至GND BST1至S W1 BST2至SW2 BST3至SW3 BST4至SW4 DL1至PGND DL2至PGND DL2至PGND PS12、SS34至GND FN1、EN2、EN3、EN4至GND VREG至GND SYNC/MODE至GND PWRGD至GND PO.3 V至+3.6 V PO.3 VE-4.5 V PO.3 VE-4.5 V PO.3 VE-4.5 V PO.3 VE-4.5 V PO.3 VE-		参数	额定值
PVIN3至PGND3 PVIN4至PGND4 SW1至PGND SW2至PGND SW2至PGND SW3至PGND3 SW4至PGND3 SW4至PGND4 PGND至GND PGND至GND PGND3至GND PGND4至GND BST1至S W1 BST2至SW2 BST3至SW3 BST4至SW4 DL1至PGND DL2至PGND DL2至PGND SS12, SS34至GND EN1, EN2, EN3, EN4至GND VREG至GND SYNC/MODE至GND WDI, RSTO, VTH至GND MR至GND PWRGD至GND PO.3 V至+6.5 V PO.3 V至+3.6 V PO.3 VE-4.5 V PO.		PVIN1至PGND	-0.3 V至+18 V
PVIN4至PGND4 SW1至PGND SW2至PGND SW2至PGND SW3至PGND3 -0.3 V至+18 V -0.3 V至+0.3 V PGND至GND -0.3 V至+0.3 V PGND4至GND BST1至S W1 BST2至SW2 BST3至SW3 BST4至SW4 DL1至PGND DL2至PGND -0.3 V至+6.5 V BS12, SS34至GND EN1, EN2, EN3, EN4至GND VREG至GND SYNC/MODE至GND WDI, RSTO, VTH至GND -0.3 V至+6.5 V WDI, RSTO, VTH至GND -0.3 V至+6.5 V PWRGD至GND -0.3 V至+6.5 V -0.3 V至+3.6 V		PVIN2至PGND	-0.3 V至+18 V
SW1至PGND SW2至PGND SW3至PGND SW3至PGND3 -0.3 V至+18 V -0.3 V至+0.3 V PGND至GND -0.3 V至+0.3 V PGND4至GND -0.3 V至+0.3 V PGND4至GND BST1至S W1 BST2至SW2 BST3至SW3 BST4至SW4 -0.3 V至+6.5 V BST3至SW3 BST4至SW4 -0.3 V至+6.5 V DL1至PGND -0.3 V至+6.5 V DL1至PGND -0.3 V至+6.5 V SS12, SS34至GND EN1, EN2, EN3, EN4至GND VREG至GND SYNC/MODE至GND WDI, RSTO, VTH至GND -0.3 V至+6.5 V WDI, RSTO, VTH至GND -0.3 V至+6.5 V PWRGD至GND -0.3 V至+6.5 V FB1, FB2, FB3, FB4至GND¹ FB2至GND² COMP1, COMP2, COMP3, COMP4至GND 存储温度范围 -0.3 V至+3.6 V -0.3 V至+3.6 V -0.3 V至+6.5 V -0.3 V至+6.5 V -0.3 V至+6.5 V -0.3 V至+3.6 V		PVIN3至PGND3	−0.3 V至+1 8 V
SW2至PGND SW3至PGND3 SW4至PGND4 PGND至GND PGND至GND PGND3至GND PGND4至GND PGND4年6.5 V PGN2至PGND PGND4年6.5 V PGN2至PGND PGND PGND PGND PGND PGND PGND PGND		PVIN4至PGND4	-0.3 V至+18 V
SW3至PGND3 SW4至PGND4 PGND至GND PGND至GND PGND3至GND PGND4至GND PGNTD4EGND PGNTD4EGND PGNTD PGNTT PWRGD至GND PO.3 V至+3.6 V PD3 V至+3.6 V PD4 P4 P4 P5 P5 P6 P6 P6 P6 P6 P6 P6 P6		SW1至PGND	-0.3 V至+18 V
SW4至PGND4		SW2至PGND	-0.3 V至+18 V
PGND至GND PGND3至GND PGND3至GND PGND4至GND BST1至S W1 BST2至SW2 BST3至SW3 BST4至SW4 DL1至PGND DL2至PGND EN1, EN2, EN3, EN4至GND SYNC/MODE至GND WDI, RSTO, VTH至GND RT至GND RT至GND RT至GND RT至GND RT至GND PWRGD至GND FB1, FB2, FB3, FB4至GND¹ FB4至GND² COMP1, COMP2, COMP3, COMP4至GND PGND		SW3至PGND3	-0.3 V至+18 V
PGND3至GND PGND4至GND PGND4至GND BST1至S W1 BST2至SW2 BST3至SW3 BST4至SW4 DL1至PGND DL2至PGND CN3 V至+6.5 V DL2至PGND CN3 V至+6.5 V CNBEG至GND WREG至GND SYNC/MODE至GND WDI, RSTO, VTH至GND RT至GND PWRGD至GND PWRGD至GND PWRGD至GND PWRGD至GND PWRGD和D PWRGD和D PWRGND PO.3 V至+3.6 V		SW4至PGND4	-0.3 V至+18 V
PGND4至GND BST1至S W1 BST2至SW2 BST3至SW3 BST4至SW4 DL1至PGND DL2至PGND SS12, SS34至GND EN1, EN2, EN3, EN4至GND VREG至GND SYNC/MODE至GND WDI, RSTO, VTH至GND MR至GND PWRGD至GND FB1, FB2, FB3, FB4至GND¹ FB2至GND² COMP1, COMP2, COMP3, COMP4至GND PGN3 V至+3.6 V P-0.3 V至+6.5 V -0.3 V至+3.6 V		PGND至GND	-0.3 V至+0.3 V
BST1至S W1 BST2至SW2 BST3至SW3 BST4至SW4 DL1至PGND DL2至PGND SS12, SS34至GND EN1, EN2, EN3, EN4至GND VREG至GND SYNC/MODE至GND WDI, RSTO, VTH至GND RT至GND RT至GND PWRGD至GND FB1, FB2, FB3, FB4至GND¹ FB2至GND² FB4至GND² COMP1, COMP2, COMP3, COMP4至GND PGST3 V至+6.5 V -0.3 V至+3.6 V		PGND3至GND	-0.3 V至+0.3 V
BST2至SW2 BST3至SW3 -0.3 V至+6.5 V D.1至PGND DL2至PGND DL2至PGND SS12, SS34至GND EN1, EN2, EN3, EN4至GND VREG至GND SYNC/MODE至GND WDI, RSTO, VTH至GND RT至GND PWRGD至GND FB1, FB2, FB3, FB4至GND¹ FB2至GND² FB4至GND² COMP1, COMP2, COMP3, COMP4至GND PG13 V至+3.6 V PO.3 V至+6.5 V -0.3 V至+3.6 V		PGND4至GND	-0.3 V至+0.3 V
BST3至SW3 BST4至SW4 DL1至PGND DL2至PGND DL2至PGND SS12, SS34至GND EN1, EN2, EN3, EN4至GND VREG至GND SYNC/MODE至GND WDI, RSTO, VTH至GND RT至GND PWRGD至GND FB1, FB2, FB3, FB4至GND¹ FB2至GND² FB4至GND² COMP1, COMP2, COMP3, COMP4至GND PGN3 V至+3.6 V PO.3 V至+6.5 V -0.3 V至+3.6 V		BST1至S W1	-0.3 V至+6.5 V
BST4至SW4 DL1至PGND DL2至PGND DL2至PGND SS12, SS34至GND EN1, EN2, EN3, EN4至GND VREG至GND SYNC/MODE至GND WDI, RSTO, VTH至GND RT至GND PWRGD至GND PWRGD至GND PWRGD至GND FB1, FB2, FB3, FB4至GND¹ FB2至GND² COMP1, COMP2, COMP3, COMP4至GND PGN3 V至+3.6 V PO.3 V至+6.5 V -0.3 V至+6.5 V -0.3 V至+6.5 V -0.3 V至+6.5 V -0.3 V至+3.6 V -0.3 V至+6.5 V -0.3 V至+3.6 V -0.3 V至+6.5 V -0.3 V至+6.5 V -0.3 V至+6.5 V -0.3 V至+3.6 V		BST2至SW2	-0.3 V至+6.5 V
DL1至PGND DL2至PGND DL2至PGND -0.3 V至+6.5 V SS12, SS34至GND EN1, EN2, EN3, EN4至GND VREG至GND SYNC/MODE至GND WDI, RSTO, VTH至GND RT至GND PWRGD至GND PWRGD至GND FB1, FB2, FB3, FB4至GND¹ FB2至GND² COMP1, COMP2, COMP3, COMP4至GND PG13 V至+3.6 V PO3 V至+6.5 V -0.3 V至+3.6 V		BST3至SW3	-0.3 V至+6.5 V
DL2至PGND SS12, SS34至GND EN1, EN2, EN3, EN4至GND VREG至GND SYNC/MODE至GND WDI, RSTO, VTH至GND RT至GND RT至GND PWRGD至GND PWRGD至GND FB1, FB2, FB3, FB4至GND¹ FB2至GND² COMP1, COMP2, COMP3, COMP4至GND Pd.3 V至+3.6 V PD至GND Pd.3 V至+3.6 V -0.3 V至+3.6 V -0.3 V至+6.5 V -0.3 V至+6.5 V -0.3 V至+6.5 V -0.3 V至+3.6 V		BST4至SW4	-0.3 V至+6.5 V
SS12, SS34至GND EN1, EN2, EN3, EN4至GND VREG至GND SYNC/MODE至GND WDI, RSTO, VTH至GND RT至GND RT至GND PWRGD至GND PWRGD至GND FB1, FB2, FB3, FB4至GND¹ FB2至GND² FB4至GND² COMP1, COMP2, COMP3, COMP4至GND Pd3 V至+3.6 V PD至GND Fd1, COMP2, COMP3, COMP4至GND PG3 V至+3.6 V PO.3 V至+3.6 V		DL1至PGND	-0.3 V至+6.5 V
EN1, EN2, EN3, EN4至GND VREG至GND SYNC/MODE至GND WDI, RSTO, VTH至GND RT至GND PWRGD至GND FB1, FB2, FB3, FB4至GND¹ FB2至GND² FB4至GND² COMP1, COMP2, COMP3, COMP4至GND PWRGD至GND 存储温度范围 -0.3 V至+3.6 V -0.3 V至+7 V -0.3 V至+3.6 V -0.3 V至+7 V		DL2至PGND	-0.3 V至+6.5 V
VREG至GND SYNC/MODE至GND -0.3 V至+6.5 V WDI, RSTO, VTH至GND -0.3 V至+6.5 V MR至GND RT至GND PWRGD至GND -0.3 V至+3.6 V FB1, FB2, FB3, FB4至GND¹ FB2至GND² FB4至GND² COMP1, COMP2, COMP3, COMP4至GND PWRGD至GND 存储温度范围 -0.3 V至+3.6 V -0.3 V至+6.5 V -0.3 V至+6.5 V -0.3 V至+6.5 V -0.3 V至+7 V -0.3 V至+7 V -0.3 V至+3.6 V		SS12, SS34至GND	-0.3 V至+6.5 V
SYNC/MODE至GND -0.3 V至+6.5 V WDI, RSTO, VTH至GND -0.3 V至+6.5 V MR至GND -0.3 V至+3.6 V RT至GND -0.3 V至+3.6 V PWRGD至GND -0.3 V至+6.5 V FB1, FB2, FB3, FB4至GND¹ -0.3 V至+3.6 V FB2至GND² -0.3 V至+6.5 V FB4至GND² -0.3 V至+7 V COMP1, COMP2, COMP3, COMP4至GND -0.3 V至+3.6 V VDD至GND -0.3 V至+3.6 V 存储温度范围 -65°C至+150°C		EN1, EN2, EN3, EN4至GND	-0.3 V至+6.5 V
WDI, RSTO, VTH至GND —0.3 V至+6.5 V —0.3 V至+3.6 V RT至GND —0.3 V至+3.6 V PWRGD至GND —0.3 V至+6.5 V FB1, FB2, FB3, FB4至GND¹ —0.3 V至+6.5 V FB2至GND² —0.3 V至+6.5 V FB4至GND² —0.3 V至+6.5 V COMP1, COMP2, COMP3, COMP4至GND P储温度范围 —0.3 V至+3.6 V —0.3 V至+3.6 V —0.3 V至+3.6 V —0.3 V至+3.6 V		VREG至GND	-0.3 V至+6.5 V
MR至GND		SYNC/MODE至GND	-0.3 V至+6.5 V
RT至GND		WDI, RSTO, VTH至GND	-0.3 V至+6.5 V
PWRGD至GND -0.3 V至+6.5 V FB1, FB2, FB3, FB4至GND¹ -0.3 V至+3.6 V FB2至GND² -0.3 V至+6.5 V FB4至GND² -0.3 V至+6.5 V -0.3 V至+6.5 V -0.3 V至+6.5 V -0.3 V至+7 V -0.3 V至+3.6 V VDD至GND -0.3 V至+3.6 V -65°C至+150°C		MR至GND	-0.3 V至+3.6 V
FB1, FB2, FB3, FB4至GND¹ FB2至GND² FB4至GND² COMP1, COMP2, COMP3, COMP4至GND VDD至GND 存储温度范围 -0.3 V至+3.6 V -0.3 V至+7 V -0.3 V至+3.6 V -0.3 V至+3.6 V -0.3 V至+3.6 V		RT至GND	-0.3 V至+3.6 V
FB2至GND ²		PWRGD至GND	-0.3 V至+6.5 V
FB4至GND² COMP1, COMP2, COMP3, COMP4至GND VDD至GND 存储温度范围 -0.3 V至+7 V -0.3 V至+3.6 V -0.3 V至+3.6 V -65°C至+150°C		FB1, FB2, FB3, FB4至GND ¹	-0.3 V至+3.6 V
COMP1, COMP2, COMP3, COMP4至GND -0.3 V至+3.6 V VDD至GND -0.3 V至+3.6 V 存储温度范围 -65°C至+150°C		FB2至GND ²	-0.3 V至+6.5 V
VDD至GND -0.3 V至+3.6 V 存储温度范围 -65°C至+150°C		FB4至GND ²	-0.3 V至+7 V
存储温度范围 -65℃至+150℃		COMP1, COMP2, COMP3, COMP4至GND	-0.3 V至+3.6 V
		VDD至GND	-0.3 V至+3.6 V
工作结温范围 -40℃至+125℃		存储温度范围	-65℃至+150℃
	_	工作结温范围	-40℃至+125℃

¹ 此额定值适用于ADP5053的可调输出电压型号。

注意,超出上述绝对最大额定值可能会导致器件永久性 损坏。这只是额定最值,并不能以这些条件或者在任何其 他超出本技术规范操作章节中所示规格的条件下,推断器 件能否正常工作。长期在绝对最大额定值条件下工作会影 响器件的可靠性。

热阻

 $\theta_{\text{\tiny LA}}$ 针对最差条件,即焊接在电路板上的器件为表贴封装。

表6. 热阻

封装类型	θ _{JA}	θις	单位
48引脚 LFCSP	27.87	2.99	°C/W

ESD警告

ESD(静电放电)敏感器件。

带电器件和电路板可能会在没有察觉的情况下放电。尽管本产品具有专利或专有保护电路,但在遇到高能量ESD时,器件可能会损坏。因此,应当采取适当的ESD防范措施,以避免器件性能下降或功能丧失。

² 此额定值适用于ADP5053的固定输出电压型号。

引脚配置和功能描述

图3. 引脚配置

表7. 引脚功能描述

表/・引脚り	表7. 引脚功能描述						
引脚编号	引脚名称	说明					
1	BST3	通道3的高端FET驱动器电源。					
2	PGND3	通道3的电源地。					
3	SW3	通道3的开关节点输出。					
4	PVIN3	通道3的电源输入。在此引脚和地之间连接一个旁路电容。					
5	WDI	处理器提供的看门狗刷新输入。					
6	VTH	监控电压阈值编程。					
7	MR	手动复位输入,低电平有效。					
8	RSTO	开漏复位输出,低电平有效。					
9	PVIN4	通道4的电源输入。在此引脚和地之间连接一个旁路电容。					
10	SW4	通道4的开关节点输出。					
11	PGND4	通道4的电源地。					
12	BST4	通道4的高端FET驱动器电源。					
13	GND	此引脚仅用于内部测试。连接此引脚到地。					
14	EN4	通道4的使能输入。使用外部电阻分压器来设置启动阈值。					
15	COMP4	通道4的误差放大器输出引脚。在此引脚与地之间连接一个RC网络。					
16	FB4	通道4的反馈检测输入引脚。					
17, 18, 19	GND	这些引脚仅用于内部测试。连接这些引脚到地。					
20	PWRGD	电源良好信号输出。此开漏输出是所选通道的电源良好信号。					
21	FB2	通道2的反馈检测输入引脚。					
22	COMP2	通道2的误差放大器输出引脚。在此引脚与地之间连接一个RC网络。					
23	EN2	通道2的使能输入。使用外部电阻分压器来设置启动阈值。					
24, 25	PVIN2	通道2的电源输入。在此引脚和地之间连接一个旁路电容。					
26, 27	SW2	通道2的开关节点输出。					
28	BST2	通道2的高端FET驱动器电源。					
29	DL2	通道2的低端FET栅极驱动器。在此引脚与地之间连接一个电阻可设置通道2的限流阈值。					
30	PGND	通道1和通道2的电源地。					
31	DL1	通道1的低端FET栅极驱动器。在此引脚与地之间连接一个电阻可设置通道1的限流阈值。					

引脚编号	引脚名称	说明
32	BST1	通道1的高端FET驱动器电源。
33, 34	SW1	通道1的开关节点输出。
35, 36	PVIN1	内部5.1 V VREG线性调节器和通道1降压调节器的电源输入。在此引脚和地之间连接一个旁路电容。
37	EN1	通道1的使能输入。可使用外部电阻分压器来设定启动阈值。
38	SS12	在此引脚与VREG和地之间连接一个电阻分压器,用以配置通道1和通道2的软启动时间(参见"软启动"部分)。 此引脚还用来配置通道1和通道2的并连操作(参见"并连操作"部分)。
39	COMP1	通道1的误差放大器输出引脚。在此引脚与地之间连接一个RC网络。
40	FB1	通道1的反馈检测输入引脚。
41	RT	频率设置。将一个电阻连接在RT和地之间,用以在250 kHz至1.4 MHz之间设置开关频率。
		更多信息参见"振荡器"部分。
42	VDD	内部3.3 V线性调节器的输出。在此引脚与地之间连接一个1 μF陶瓷电容。
43	SYNC/MODE	同步输入/输出(SYNC)。要将器件的开关频率与外部时钟同步,可将该引脚连接至频率为250 kHz至1.4 MHz
		的外部时钟。也可利用工厂熔丝将此引脚的SYNC功能配置为同步输出。
		强制PWM或自动PWM/PSM选择引脚(MODE)。此引脚为逻辑高电平时,器件以强制PWM (FPWM)模式工作。此
		引脚为逻辑低电平时,器件以自动PWM/PSM模式工作。
44	VREG	内部5.1 V线性调节器的输出。在此引脚与地之间连接一个1 μF陶瓷电容。
45	FB3	通道3的反馈检测输入引脚。
46	COMP3	通道3的误差放大器输出引脚。在此引脚与地之间连接一个RC网络。
47	SS34	在此引脚与VREG和地之间连接一个电阻分压器,用以配置通道3和通道4的软启动时间(参见"软启动"部分)。
48	EN3	通道3的使能输入。使用外部电阻分压器来设置启动阈值。
0	EPAD	裸露焊盘(模拟地)。裸露焊盘必须连接并焊接到外部接地层。

典型性能参数

图4. 通道1/通道2效率曲线, $V_{_{\mathrm{IN}}}$ = 12 V, $f_{_{\mathrm{SW}}}$ = 600 kHz,FPWM模式

图5. 通道1/通道2效率曲线, $V_{\rm IN}$ = 5.0 V, $f_{\rm SW}$ = 600 kHz,FPWM模式

图6. 通道1/通道2效率曲线, $V_{\rm IN}$ = 12 V, $V_{\rm OUT}$ = 1.8 V,FPWM模式

图7. 通道1/通道2效率曲线, $V_{_{\rm IN}}$ = 12 V, $f_{_{\rm SW}}$ = 600 kHz, FPWM和自动PWM/PSM模式

图8. 通道3/通道4效率曲线, $V_{\rm IN}$ = 12 V, $f_{\rm SW}$ = 600 kHz,FPWM模式

图9. 通道3/通道4效率曲线, $V_{\rm \tiny IN}$ = 5.0 V, $f_{\rm \tiny SW}$ = 600 kHz,FPWM模式

图10. 通道3/通道4效率曲线, $V_{\rm IN}$ = 12 V, $V_{\rm OUT}$ = 1.8 V,FPWM模式

图11. 通道3/通道4效率曲线, $V_{_{\rm IN}}$ = 12 V, $f_{_{\rm SW}}$ = 600 kHz, FPWM和自动PWM/PSM模式

图12. 通道1负载调整率, $V_{_{
m IN}}$ = 12 V, $V_{_{OUT}}$ = 3.3 V, $f_{_{SW}}$ = 600 kHz,FPWM模式

图13. 通道1电压调整率, V_{OUT} = 3.3 V, I_{OUT} = 4 A, f_{SW} = 600 kHz, FPWM模式

图14. 通道3负载调整率, $V_{_{\rm IN}}$ = 12 V, $V_{_{\rm OUT}}$ = 3.3 V, $f_{_{\rm SW}}$ = 600 kHz,FPWM模式

图15. 通道3电压调整率, V_{OUT} = 3.3 V, I_{OUT} = 1 A, f_{SW} = 600 kHz, FPWM模式

图16.0.8 V反馈电压精度与温度的关系(通道1,可调输出型号)

6.0 5.5 5.0 4.5 3.0 -50 -25 0 25 50 75 100 125 150 891 TEMPERATURE (°C)

图18. 静态电流与温度的关系(包括PVIN1、PVIN2、PVIN3和PVIN4)

图19. 关断电流与温度的关系(EN1、EN2、EN3和EN4均为低电平)

图20. 欠压闭锁(UVLO)阈值与温度的关系

图21. 通道1/通道2电流限值与输入电压的关系

图22. 最短导通时间与温度的关系

图23. 重负载下的稳态波形, $V_{\rm IN}=12~V,~V_{\rm OUT}=3.3~V,~I_{\rm OUT}=3~A,~f_{\rm SW}=600~{\rm kHz},~L=4.7~\mu{\rm H},~C_{\rm OU}T=47~\mu{\rm F}~x~2,~{\rm FPWM模式}$

图24. 轻负载下的稳态波形, $V_{\rm IN}$ = 12 V, $V_{\rm OUT}$ = 3.3 V, $I_{\rm OUT}$ = 30 mA, $f_{\rm SW}$ = 600 kHz,L = 4.7 μ H, $C_{\rm OUT}$ = 47 μ F x 2,自动PWM/PSM模式

图25. 通道1/通道2负载瞬态响应,1 A至4 A, $V_{\rm IN}$ = 12 V, $V_{\rm OUT}$ = 3.3 V, $f_{\rm SW}$ = 600 kHz,L = 2.2 μ H, $C_{\rm OUT}$ = 47 μ F x 2

图26. 负载瞬态响应,通道1/通道2并连输出,0 A至6 A, $V_{_{IN}}$ = 12 $V_{_{OUT}}$ = 3.3 $V_{_{OUT}}$ = 600 kHz,L = 4.7 μ H, $C_{_{OUT}}$ = 47 μ F x 4

图27. 通道1/通道2软启动,4 A阻性负载, $V_{\rm IN}$ = 12 V, $V_{\rm OUT}$ = 1.2 V, $f_{\rm SW}$ = 600 kHz,L = 1 μ H, $C_{\rm OUT}$ = 47 μ F x 2

图28. 带预充电输出的软启动, $V_{\scriptscriptstyle IN}$ = 12 V, $V_{\scriptscriptstyle OUT}$ = 3.3 V

图29. 通道1/通道2关断,有源输出放电, $V_{\rm IN}$ = 12 V, $V_{\rm OUT}$ = 1.2 V, $f_{\rm SW}$ = 600 kHz,L = 1 μ H, $C_{\rm OUT}$ = 47 μ F x 2

图30. 短路保护进入, $V_{\rm IN}$ = 12 V, $V_{\rm OUT}$ = 1.2 V, $f_{\rm SW}$ = 600 kHz,L = 1 μ H, $C_{\rm OUT}$ = 47 μ F x 2

图31. 短路保护恢复, $V_{\rm IN}=12~{\rm V},~V_{\rm OUT}=1.2~{\rm V},~f_{\rm SW}=600~{\rm kHz},$ $L=1~\mu{\rm H},~C_{\rm OUT}=47~\mu{\rm F}~{\rm x}~2$

工作原理

ADP5053是一款微功耗电源管理单元,集成了四个高性能降压调节器,48引脚的LFCSP封装中可满足严苛的性能和电路板空间要求。该器件可直接连接高达15.0V的输入电压,无需使用前置调节器,因此应用更简单、效率更高。

降压调节器工作模式 脉宽调制(PWM)模式

在PWM模式下,ADP5053中的降压调节器以固定频率工作,此频率由内部振荡器设置,该振荡器通过RT引脚编程。每个振荡器周期开始时,高端MOSFET开通,电感两端施加了一个正电压。电感电流增加,直至电流检测信号超过可关断高端MOSFET的峰值电感电流阈值。此阈值由误差放大器的输出设定。

在高端MOSFET关断期间,电感电流流经低端MOSFET并下降,直到下个振荡时钟脉冲开始另一个新的周期。ADP5053中的降压调节器通过调节峰值电感电流阈值来调节输出电压。

省电模式(PSM)

为了实现更高的效率,当输出负载低于PSM电流阈值时,ADP5053中的降压调节器平稳过渡到可变频率PSM工作模式。当输出电压跌至规定值以下时,降压调节器进入PWM模式,并停留数个振荡器周期,直至输出电压升至规定值。在突发脉冲之间的空闲时间内,MOSFET关断,由输出电容提供所有输出电流。

PSM比较器监测可提供峰值电感电流信息的内部补偿节点。平均PSM电流阈值取决于输入电压 (V_{IN}) 、输出电压 (V_{OUT}) 、电感和输出电容。由于输出电压会不定期地降到规定值以下然后恢复,因此在轻负载调节下,PSM模式下的输出电压纹波比强制PWM模式下的纹波要大。

强制PWM和自动PWM/PSM模式

利用SYNC/MODE引脚,可以将降压调节器配置为始终以PWM模式工作。在强制PWM (FPWM)模式下,即使输出电流小于PWM/PSM阈值,调节器仍然以固定频率工作。在轻载条件下,PWM模式下的效率低于PSM模式。当电感电流降至0A以下时,低端MOSFET仍然接通,导致ADP5053进入连续导通模式(CCM)。

利用SYNC/MODE引脚,可以将降压调节器配置为始终以PWM模式工作。在自动PWM/PSM模式下,降压调节器以PWM模式或PSM模式工作,具体取决于输出电流。当平均输出电流降至PWM/PSM阈值以下时,降压调节器进入PSM工作模式,在PSM模式下,为保持高效率,调节器以降低的开关频率工作。当输出电流达到0 A时,低端MOSFET开关断开,致使调节器以断续导通模式(DCM)工作。

SYNC/MODE引脚连接VREG时,器件以强制PWM (FPWM)模式工作。SYNC/MODE引脚接地时,器件以自动PWM/PSM模式工作。

可调和固定输出电压

ADP5053通过工厂熔丝提供可调和固定输出电压设置。对于可调输出设置,应利用外部电阻分压器,通过反馈基准电压(通道1至通道4为0.8 V)设置所需的输出电压。

对于固定输出设置,反馈电阻分压器内置于ADP5053,必须将反馈引脚(FBx)直接与输出相连。表8列出了每个降压调节器通道的可用固定输出电压范围。

表8. 固定输出电压范围

通道	固定输出电压范围
通道1	0.85 V至1.6 V,步进为25 mV
通道2	3.3 V至5.0 V,步进为300 mV或200 mV
通道3	1.2 V至1.8 V,步进为100 mV
通道4	2.5 V至5.5 V,步进为100 mV

输出范围也可通过工厂熔丝设置。如需其它输出电压范围, 请联系当地的ADI公司办事处或代理商。

内部调节器(VREG和VDD)

ADP5053的内部VREG调节器提供稳定的5.1 V电源作为MOSFET 驱动器的偏置电压。ADP5053的内部VDD调节器为内部控制电路提供稳定的3.3 V电源。VREG与地之间连接一个1.0 μF 陶瓷电容,VDD与地之间连接一个1.0 μF陶瓷电容。只要PVIN1可用,内部VREG和VDD调节器即有效。

内部VREG调节器可提供总共95 mA的负载电流,包括MOSFET 驱动电流,对于较低的系统电流需求,它可用作始终有效的5.1 V电源。VREG调节器内置限流电路,在重负载下可保护电路。

VDD调节器只能用于内部电路,建议不要用于其他目的。

独立电源应用

ADP5053的4个降压调节器可接受独立的输入电压。这意味着,4个降压调节器的输入电压可连接至不同的电源电压。

PVIN1电压为内部调节器和控制电路提供电源。因此,如果用户打算为降压调节器提供不同的电源电压,PVIN1电压必须高于UVLO阈值,然后其他通道才能开始工作。

为确保PVIN1足够高以便支持输出调节,可利用精密使能来监测PVIN1电压,延迟输出的启动。更多信息,请参见"精密使能"部分。

ADP5053的4个降压调节器支持级联电源操作。如图32所示,PVIN2、PVIN3和PVIN4由通道1输出(V_{OUTI})供电。这种配置中,通道1输出电压必须高于PVIN2、PVIN3和PVIN4的UVLO阈值。

低端器件选择

通道1和通道2中的降压调节器集成4 A高端功率MOSFET和低端MOSFET驱动器。选择用于ADP5053的N沟道MOSFET必须能配合同步降压调节器工作。一般而言,使用低RDSON N沟道MOSFET可实现更高的效率,建议使用单封装的双MOSFET(用于通道1和通道2)以节省印刷电路板(PCB)空间。更多信息,请参见"低端功率器件选择"部分。

自举电路

ADP5053的各降压调节器均集成一个自举调节器。自举调节器要求在BSTx和SWx引脚之间放置一个0.1 μF陶瓷电容(X5R或X7R),以提供高端MOSFET的栅极驱动电压。

有源输出放电开关

ADP5053的每个降压调节器均集成一个放电开关,它连接在开关节点与地之间。当其相关调节器禁用时,开关接通,有助于使输出电容快速放电。通道1至通道4的放电开关的典型值为 $250\,\Omega_{\odot}$

可通过工厂熔丝使能或禁用所有4个降压调节器的放电开 关功能。

精密使能

ADP5053的每个稳压器均具有使能控制引脚。使能控制引脚(ENx)具有一个0.8 V基准电压的精密使能电路。当ENx引脚电压大于0.8 V时,调节器使能。当ENx引脚电压小于0.725 V时,调节器禁用。内部1 MΩ下拉电阻可以防止ENx引脚悬空时发生错误。

利用精密使能阈值电压,很容易控制器件内各通道以及ADP5053与其它输入/输出电源的时序。借助电阻分压器,也可以将ENx引脚用作可编程UVLO输入(参见图33)。更多信息请参见"UVLO输入编程"部分。

图33. 一个通道的精密使能图

振荡器

将一个电阻连接在RT引脚与地之间,可将ADP5053的开关 频率(f_{sw})设置为250 kHz到1.4 MHz的值。通过下式计算RT 电阻的值:

$$R_{RT}$$
 (k Ω) = [14,822/ f_{SW} (kHz)]^{1.081}

图34所示为开关频率 (f_{sw}) 和RT电阻之间的典型关系。可调频率特性允许用户在效率与解决方案尺寸之间权衡取舍,做出适当选择。

图34. 开关频率与RT电阻的关系

通道1和通道3的频率可设置为RT引脚所设置的主开关频率的一半。可通过工厂熔丝选择设置。如果主开关频率低于250 kHz,不建议将通道1或通道3的频率设置为其一半。

相移

通道1和通道2之间以及通道3和通道4之间的相移为180°。 因此,通道3与通道1同相,通道4与通道2同相(见图35)。 此相移可最大化错相操作的优势,降低输入纹波电流和接 地噪声。

图35. 相移图(四个降压调节器)

同步输入/输出

ADP5053的开关频率可与250 kHz至1.4 MHz的外部时钟同步。ADP5053自动检测SYNC/MODE引脚上有无施加外部时钟,如有,开关频率将平稳过渡至外部时钟的频率。当外部时钟信号停止时,器件自动切换到内部时钟并继续工作。

注意,为有效同步,必须将RT引脚所设置的内部开关频率 编程为接近于外部时钟值的值。对于典型应用,频率差建 议小于±15%。

利用工厂熔丝, SYNC/MODE引脚可配置为同步时钟输出。无论使用何种同步配置方法, SYNC/MODE引脚都会产生一个50%占空比的正时钟脉冲, 其频率等于RT引脚设置的内部开关频率。从产生同步时钟到通道1开关节点有一个较短的延迟时间(约为t_{sw}的15%)。

图36显示了两个配置为频率同步模式的ADP5053: 一个ADP5053器件配置为时钟输出以同步另一个ADP5053器件。建议使用100 kΩ上拉电阻,防止SYNC/MODE引脚悬空时发生逻辑错误。

图36. 两个配置为同步模式的ADP5053器件

在图36所示配置中,第一个ADP5053器件的通道1与第二个ADP5053器件的通道1之间的相移为0°(参见图37)。

图37. 两个以同步模式工作的ADP5053器件的波形

软启动

ADP5053的降压调节器内置软启动电路,启动时输出电压以可控方式缓升,从而限制浪涌电流。当SS12和SS34引脚连接至VREG时,各降压调节器的软启动时间为典型值2 ms。

要将软启动时间设置为2 ms、4 ms或8 ms的值,应在SS12或SS34引脚与VREG引脚和地之间连接一个电阻分压器(参见图38)。为了支持特定启动序列或具有大输出电容的值,可能需要这种配置。

图38. 用于软启动的电平检测电路

SS12引脚用于设置通道1和通道2的软启动时间和并连操作。 SS34引脚用于设置通道3和通道4的软启动时间。 表9给出了设置软启动时间所需的电阻值。

表9. SS12和SS34引脚设置的软启动时间

			软启动时间					
$R_{TOP}(k\Omega)$	$R_{BOT}(k\Omega)$	通道1	通道2	通道3	通道4			
0	N/A ¹	2 ms	2 ms	2 ms	2 ms			
100	600	2 ms	并连	2 ms	4 ms			
200	500	2 ms	8 ms	2 ms	8 ms			
300	400	4 ms	2 ms	4 ms	2 ms			
400	300	4 ms	4 ms	4 ms	4 ms			
500	200	8 ms	2 ms	4 ms	8 ms			
600	100	8 ms	并连	8 ms	2 ms			
N/A ¹	0	8 ms	8 ms	8 ms	8 ms			

¹ N/A表示不适用。

并连操作

ADP5053支持通道1和通道2两相并连操作,以提供高达8 A 的单路输出电流。要将通道1和通道2配置为两相单路输出的并连操作,请执行以下步骤(参见图39):

- 按照表9的规定,使用SS12引脚选择并连操作。
- COMP2引脚保持开路。
- 使用FB1引脚设置输出电压。
- 将FB2引脚连接到地(忽略FB2)。
- 将EN2引脚连接到地(忽略EN2)。

图39. 通道1和通道2并连操作

当通道1和通道2以并连配置工作时,应按如下方式配置通道:

- 通道1和通道2的输入电压和限流设置应设置为相同的值。
- 两个通道均以强制PWM模式工作。

并连配置下的电流平衡由内部控制环路进行调节。图40显示了并连输出配置下的典型电流平衡匹配。

图40. 并连输出配置下的电流平衡, $V_{\rm IN}$ = 12 V, $V_{\rm OUT}$ = 1.2 V, $f_{\rm SW}$ = 600 kHz,FPWM模式

带预充电输出的启动

ADP5053的降压调节器具有预充电启动特性,可防止启动期间低端MOSFETS受损。如果输出电压在调节器开启前已预充电,则调节器可在内部软启动基准电压超过反馈(FBx)引脚电压之前防止反向电感电流(该电流会导致输出电容放电)。

限流保护

ADP5053的降压调节器内置峰值电流限制保护电路,可限制流过高端MOSFET的正电流。功率开关的峰值电流限值限制可从输入端流向输出端的电流量。可编程限流阈值特性允许低电流应用使用小尺寸电感。

要配置通道1的限流阈值,应将一个电阻连接在DL1引脚与地之间。要配置通道2的限流阈值,应将一个电阻连接在DL2引脚与地之间。表10列出了通道1和通道2的峰值电流限制阈值设置。

表10. 通道1和通道2的峰值电流限制阈值设置

R _{ILIM1} 或R _{ILIM2}	典型峰值电流限制阈值(A)	
悬空	4.4	
47 kΩ	2.63	
22 kΩ	6.44	

ADP5053的降压调节器内置负电流限制保护电路,可限制一定量的负电流流过低端MOSFET。

折频

ADP5053的降压调节器具有折频特性,当输出发生硬短路时,可防止输出电流失控。折频按如下范式实现:

- 如果FBx引脚电压低于目标输出电压的一半,则开关频率减半。
- 如果FBx引脚电压低于目标输出电压的四分之一,则开 关频率降至其当前值的一半,即fSW的四分之一。

降低开关频率可使电感电流有更多时间来减小,但也会提 高峰值电流调节期间的纹波电流。这导致平均电流下降, 以阻止输出电流失控。

最大占空比下的跳脉冲模式

在最大占空比条件下,折频使输出受到调节。如果达到最大占空比(例如当输入电压降低时),PWM调制器会跳开1/2的PWM脉冲,导致开关频率折返到一半。如果占空比进一步提高,PWM调制器将跳开2/3的PWM脉冲,导致开关频率折返为1/3。折频可提高有效最大占空比,从而降低输入与输出电压之间的压差。

打嗝保护

ADP5053的降压调节器利用打嗝模式实现过流保护(OCP)。 当电感峰值电流达到限流阈值时,高端MOSFET关断,低端MOSFET开通,直到进入下一个周期。

打嗝模式有效时,过流故障计数器会递增。如果过流故障 计数器 达到15并溢出(表示短路状况),高端和低端 MOSFET将同时关断。降压调节器在打嗝模式下保持七个 软启动周期,然后尝试从软启动重启。如果短路故障已清除,调节器将恢复正常工作;否则软启动后重新进入打嗝模式。

在初始软启动周期中,打嗝保护被屏蔽,以便降压调节器能在重负载下启动。为使降压调节器能在重负载下从打嗝模式恢复,需要精心设计并选择适当的器件。可通过工厂熔丝使能或禁用所有4个降压调节器的打嗝保护功能。打嗝保护禁用时,折频特性仍可用来防止过流。

闩锁保护

ADP5053的降压调节器有一个可选的闩锁模式,用以保护器件不受短路和过压等严重问题影响。可通过工厂熔丝使能闩锁模式。

短路闩锁模式

可通过工厂熔丝使能短路闩锁模式(针对所有4个降压调节器使能或禁用)。当短路闩锁模式使能且软启动后保护电路检测到过流状态,降压调节器就会进入打嗝模式并尝试重启。连续7次尝试重启后,如果调节器仍然处于故障状况,调节器就会关断。此关断(闩锁)状况只能通过重新使能通道或复位通道电源才能清除。注意,如果打嗝模式禁用,短路闩锁模式将不起作用。

图41显示了短路闩锁保护功能。

图41. 短路闩锁保护

过压闩锁模式

可通过工厂熔丝使能过压闩锁模式(针对所有4个降压调节器使能或禁用)。过压闩锁阈值为标称输出电压的124%。 当输出电压超过此阈值时,保护电路即检测到过压状态, 调节器关断。此关断(闩锁)状况只能通过重新使能通道或 复位通道电源才能清除。

图42显示了过压闩锁保护功能。

Rev. 0 | Page 20 of 40

欠压闭锁(UVLO)

欠压闭锁电路监测ADP5053中各降压调节器的输入电压。若有任何输入电压(PVINx引脚)低于3.78 V(典型值),相应的通道就会关断。输入电压升到4.2 V(典型值)以上后,启动软启动周期,并设置ENx引脚为高电平以使能相应的通道。

注意,通道1(PVIN1引脚)上的UVLO条件的优先级高于其他通道上的UVLO条件,这意味着,PVIN1电源必须在其他通道工作之前可用。

电源良好功能

ADP5053具有一个开漏电源良好输出(PWRGD引脚),当所选降压调节器正常工作时,它变为高电平有效。默认情况下,PWRGD引脚监测通道1的输出电压。订购ADP5053时,可要求配置其他通道来控制PWRGD引脚(参见表20)。

PWRGD引脚上的逻辑高电平表示降压调节器的调节输出电压高于标称输出的90.5%(典型值)。当降压调节器的调节输出电压低于标称输出的87.2%(典型值)且延迟时间大于约50 μs时, PWRGD引脚为低电平。

PWRGD引脚的输出是内部PWRGx信号的逻辑和。内部PWRGx信号必须为高电平且持续1 ms的验证时间,PWRGD引脚才能变为高电平,如果一个PWRGx信号发生故障,则PWRGD引脚毫无延迟地变为低电平。控制PWRGD引脚的通道(通道1至通道4)由工厂熔丝指定。默认情况下,PWRGD设置监测通道1的输出。

热关断

ADP5053的结温超过150℃时,热关断(TSD)电路会关闭除内部线性调节器以外的IC。极端的结温可能由工作电流高、电路板设计欠佳或环境温度高等原因引起。ADP5053设计有15℃的迟滞,因此发生热关断时,片内温度必须低于135℃,器件才会恢复工作。退出热关断时,各使能的通道开始软启动。

监控电路

ADP5053具有微处理器电源电压监控功能,可以控制微处理器的复位输入。当电源电压低于预设阈值时,置位复位信号;电源电压升至阈值以上之后,利用固定的超时复位脉冲使电源电压保持稳定,从而避免上电、关断和掉电状况下发生代码执行错误。此外,利用看门狗定时器可以监控微处理器代码执行问题。注意,仅当4个降压调节器的ENx引脚中有一个设为高电平时,监控电路才会激活。

复位输出

ADP5053具有低电平有效开漏型复位输出(RSTO)。此输出需要一个外部上拉电阻,以便将复位输出连接到不高于6 V的电压轨。该电阻提供RSTO引脚的输入电流和漏电流路径,同时必须符合微处理器的逻辑低电平和高电平要求。多数情况下,10 kΩ电阻足够。

当受监控电压轨低于阈值(V_{TH})时,以及在看门狗超时周期 (t_{WD})内未服务WDI时,复位输出就会置位。 V_{CC} 升至复位 阈值之后,或者看门狗定时器超时之后,RSTO引脚在复位有效超时期间(t_{RP})内保持置位状态。复位有效超时周期 (t_{RP})有四个选项,可通过工厂熔丝选择:1.4 ms、28 ms、200 ms(默认值)和1600 ms。图43说明了RSTO输出的行为,假设VOUT2被选为受监控电压轨,它为连接到RSTO输出的外部上拉电阻供电。

ADP5053有一个专用检测输入引脚(VTH)用来监控电源 轨。VTH输入的复位阈值典型值为0.5 V。要监控大于0.5 V 的电压,应将一个电阻分压器网络连接到器件。

不要让VTH输入悬空或接地,而应将其与大于其指定阈值 电压(V_{TH})的电源电压相连。为了提高噪声抑制性能并防止 误复位,可以在VTH引脚上增加一个小电容。

监控输入电压时,如果所选电压降至UVLO电平以下,则经过延迟时间 (t_{RD}) 后,复位输出 (\overline{RSTO}) 置位低电平。然后,复位输出保持低电平以重启处理器。

看门狗输入

ADP5053有一个看门狗定时器,用于监控微处理器活动。看门狗定输入引脚(WDI)上的每次低到高或高到低逻辑跃迁都会使定时器电路清零,它能检测最短80 ns的脉冲。如果定时器在预设的看门狗超时期间(t_{WD})计时,复位就会置位。为了避免复位,微处理器需要使WDI引脚发生跳变。因此,如果在超时期间内微处理器未能使WDI跳变,则说明发生代码执行错误,由此产生的复位脉冲将重新启动微处理器并使其进入已知状态。看门狗超时周期有四个选项,可通过工厂熔丝选择:6.3 ms、102 ms、1600 ms(默认值)和25.6 s。

除了WDI引脚上的逻辑跃迁外,V_{OUT2}欠压所导致的复位置位也会将看门狗定时器清零。复位信号置位时,看门狗定时器清零,直到复位解除置位后才重新开始计时。让WDI引脚悬空或使WDI驱动器处于三态,可以禁用看门狗定时器。图44给出了看门狗时序图。

手动复位输入

ADP5053有一个手动复位输入(MR引脚,低电平有效),它有两种工作模式:处理器手动复位模式或电源开/关模式。默认设置是处理器手动复位模式,不过可以通过工厂熔丝选择MR工作模式。

 \overline{MR} 输入内置一个55 k Ω 上拉电阻,因此该输入不连接时处于高电平状态。要产生复位信号,应在 \overline{MR} 和地之间连接一个外部按钮开关。 \overline{MR} 输入具有抗扰功能,最长100 ns(典型值)的快速趋负瞬变会被忽略。在 \overline{MR} 与地之间连接一个0.1 μ F电容可进一步抑制噪声。

处理器手动复位模式

在处理器手动复位模式下,当MR变为低电平时,复位输出置位。当MR从低电平跃迁到高电平时,在复位有效超时期间(t_{RP})内,复位保持置位状态,超时后才解除置位。图45显示了MR引脚在处理器手动复位模式下的行为。

图45. 处理器复位模式下的MR时序图

电源开/关模式

在电源开/关模式下,当MR变为低电平的时间超过4秒时,ADP5053中的所有通道都关断,内部控制寄存器复位。在这种关断待机状态下,如果MR再次变为低电平并持续500 ms,则ADP5053中的所有通道根据各ENx引脚状态重启。

图46显示了电源开/关模式下的MR时序图。

为准备自动启动,应拉低所有外部ENx引脚以清除MR关断 条件。

图46. 电源开/关模式下的MR时序图

应用信息

ADIsimPower设计工具

ADIsimPower™设计工具集支持ADP5053。ADIsimPower是一个工具集合,可以根据特定设计目标产生完整的电源设计。利用这些工具,用户只需几分钟就能生成完整原理图和物料清单并计算性能。ADIsimPower可以考虑IC和所有真实外部元件的工作条件与限制,并针对成本、面积、效率和器件数量优化设计。ADIsimPower工具可通过www.analog.com/ADIsimPower网站获得,用户可以通过该工具申请未填充的电路板。

可调输出电压编程

通过输出电压与FBx引脚之间的一个电阻分压器,可从外部设置ADP5053的输出电压。为降低反馈偏置电流对输出电压精度的影响,应确保分压器的底部电阻不能太大,建议使用50 kΩ以下的值。

输出电压设置的方程式为:

$$V_{OUT} = V_{REF} \times (1 + (R_{TOP}/R_{BOT}))$$

其中:

Vour为输出电压。

V_{RFF}为反馈基准电压(通道1至通道4为0.8 V)。

 R_{TOP} 为 V_{OUT} 到FBx之间的反馈电阻。

 R_{ROT} 为FBx到地之间的反馈电阻。

对于固定输出选项,无需电阻分压器。如需其它固定输出 电压,请联系当地的ADI公司办事处或代理商。

电压转换限制

对于给定的输入电压,由于最小导通时间和最小关断时间 的原因,输出电压有上下限。

输入电压和开关频率给定时的最小输出电压受最短导通时间的限制。通道1和通道2的最小导通时间为117 ns(典型值);通道3和通道4的最小导通时间为90 ns(典型值)。结温越高,则最小导通时间越长。

注意,在强制PWM模式下,当超过最小导通时间限值时,通道1和通道2可能会超过标称输出电压。避免此问题需要精心选择开关频率。

在连续导通模式(CCM)下,给定输入电压和开关频率,则最小输出电压的计算公式如下:

$$V_{OUT_MIN} = V_{IN} \times t_{MIN_ON} \times f_{SW} - (R_{DSON1} - R_{DSON2}) \times I_{OUT_MIN} \times t_{MIN_ON} \times f_{SW} - (R_{DSON2} + R_L) \times I_{OUT_MIN}$$
(1)

其中,

 $V_{OUT\ MIN}$ 为最小输出电压。

t_{MIN ON}为最小导通时间。

 f_{sw} 为开关频率。

RDSONI为高端MOSFET的导通电阻。

R_{DSON2}为低端MOSFET的导通电阻。

 $I_{OUT\ MIN}$ 为最小输出电流。

R,为输出电感的电阻。

输入电压和开关频率给定时的最大输出电压受最短关断时 间和最大占空比的限制。注意,折频特性可通过降低开关 频率来提高有效最大占空比,从而降低输入与输出电压之 间的压差(参见"折频"部分)。

给定输入电压和开关频率,则最大输出电压的计算公式如下:

$$V_{OUT_MAX} = V_{IN} \times (1 - t_{MIN_OFF} \times f_{SW}) - (R_{DSON1} - R_{DSON2}) \times I_{OUT_MAX} \times (1 - t_{MIN_OFF} \times f_{SW}) - (R_{DSON2} + R_L) \times I_{OUT_MAX}$$
 (2)

其中:

V_{OUT MAX}为最大输出电压。

 $t_{MIN OFF}$ 为最小关断时间。

 f_{sw} 为开关频率。

R_{DSON},为高端MOSFET的导通电阻。

R_{DSON}2为低端MOSFET的导通电阻。

 $I_{OUT\ MAX}$ 为最大输出电流。

 R_r 为输出电感的电阻。

如公式1和公式2所示,降低开关频率可减少最小导通时间 和关断时间的限制。

限流设置

ADP5053的通道1和通道2有三种可选的限流阈值。确保选定的限流值大于电感的峰值电流 I_{PEAK} 。通道1和通道2的限流配置参见表10。

软启动设置

ADP5053的降压调节器内置软启动电路,启动时输出电压以可控方式缓升,从而限制浪涌电流。要将软启动时间设置为2 ms、4 ms或8 ms的值,应在SS12或SS34引脚与VREG引脚和地之间连接一个电阻分压器(参见"软启动"部分)。

电感选择

电感值取决于输入电压、输出电压、电感纹波电流和开关频率。使用小电感值可产生较快的瞬态响应,但会因为电感纹波电流较大而降低效率。使用大电感值则会实现较小的纹波电流和较高的效率,但会导致瞬态响应变慢。因此,需要在瞬态响应和效率之间进行权衡。原则上讲,电感纹波电流ΔI_L通常设置为最大负载电流的30%到40%。利用下式计算电感值:

$$L = [(V_{IN} - V_{OUT}) \times D]/(\Delta I_L \times f_{SW})$$

其中:

V_N为输入电压。

V_{OUT}为输出电压。

D为占空比 $(D = V_{OUT}/V_{IN})$ 。

 ΔI_1 为电感纹波电流。

 f_{sw} 为开关频率。

ADP5053在电流环路中使用内部斜率补偿,以防止当占空比大于50%时产生次谐波振荡。由于需要内部电流检测信号,因此对于通道1和通道2,电感值不得大于10 μH,对于通道3和通道4,电感值不得大于22 μH。

通过以下公式计算峰值电感电流:

$$I_{PEAK} = I_{OUT} + (\Delta I_L/2)$$

电感的饱和电流必须大于峰值电感电流。对于具有快速饱和特性的铁氧体磁芯电感,应确保电感饱和电流额定值大于降压调节器的限流阈值,以防止电感饱和。

电感的RMS电流可通过以下公式计算:

$$I_{RMS} = \sqrt{I_{OUT}^2 + \frac{\Delta I_L^2}{12}}$$

建议使用屏蔽铁氧体磁芯材料,以实现低铁损、低EMI。 表11列出了推荐电感。

表11. 推荐电感

供应商	产品型号	值 (µH)	I _{SAT}	I _{RMS}	DCR (mΩ)	尺寸 (mm)
Coilcraft	XFL4020-102	1.0	5.4	11	10.8	4×4
	XFL4020-222	2.2	3.7	8.0	21.35	4×4
	XFL4020-332	3.3	2.9	5.2	34.8	4×4
	XFL4020-472	4.7	2.7	5.0	52.2	4×4
	XAL4030-682	6.8	3.6	3.9	67.4	4×4
	XAL4040-103	10	3.0	3.1	84	4×4
	XAL6030-102	1.0	23	18	5.62	6×6
	XAL6030-222	2.2	15.9	10	12.7	6×6
	XAL6030-332	3.3	12.2	8.0	19.92	6×6
	XAL6060-472	4.7	10.5	11	14.4	6×6
	XAL6060-682	6.8	9.2	9.0	18.9	6×6
ТОКО	FDV0530-1R0	1.0	11.2	9.1	9.4	6.2 × 5.8
	FDV0530-2R2	2.2	7.1	7.0	17.3	6.2×5.8
	FDV0530-3R3	3.3	5.5	5.3	29.6	6.2×5.8
	FDV0530-4R7	4.7	4.6	4.2	46.6	6.2×5.8

输出电容选择

选择的输出电容会影响输出电压纹波和稳压器的环路动态 特性。例如,在输出端出现负载阶跃瞬态期间,当负载突 然增加时,输出电容向负载供电,直到控制环路可以提高 电感电流,此电流可造成输出电压欠冲。

可通过以下公式计算达到欠冲(压降)要求所需的输出电容:

$$C_{OUT_UV} = \frac{{K_{UV} \times \Delta I_{STEP}}^2 \times L}{2 \times \left(V_{IN} - V_{OUT}\right) \times \Delta V_{OUT-UV}}$$

其中:

K,,,,为系数值(通常设置为2)。

 ΔI_{CTEP} 为负载阶跃。

 ΔV_{OUT} IIV 为容许的输出电压欠冲。

再举一例说明输出电容对调节器环路动态特性的影响:从 输出端突然移除负载时,电感中存储的能量会涌入输出电 容,导致输出电压过冲。

满足过冲要求所需的输出电容可使用以下公式计算:

$$C_{OUT_OV} = \frac{{K_{OV} \times \Delta I_{STEP}}^2 \times L}{{\left({V_{OUT} + \Delta V_{OUT_OV}} \right)^2} - {V_{OUT}}^2}$$

其中:

 K_{ov} 为系数值(通常设置为2)。

 ΔI_{STEP} 为负载阶跃。

 ΔV_{OUT} ov 为容许的输出电压过冲。

输出电压纹波由输出电容的等效串联电阻(ESR)及其电容值决定。使用以下公式选择能达到输出纹波要求的电容:

$$\begin{split} C_{OUT_RIPPLE} &= \frac{\Delta I_L}{8 \times f_{SW} \times \Delta V_{OUT_RIPPLE}} \\ R_{ESR} &= \frac{\Delta V_{OUT_RIPPLE}}{\Delta I_I} \end{split}$$

其中:

 ΔI_1 为电感纹波电流。

 f_{sw} 为开关频率。

 $\Delta V_{OUT, RIPPLE}$ 为容许的输出电压纹波。

R_{rsp}为该输出电容的等效串联电阻。

选择 C_{OUT_UV} 、 C_{OUT_OV} 和 C_{OUT_RIPPLE} 给定的最大输出电容,以同时满足负载瞬态和输出纹波要求。

所选输出电容的电压额定值必须大于输出电压。输出电容的最小RMS电流额定值可通过以下公式确定:

$$I_{C_{OUT}-rms} = \frac{\Delta I_L}{\sqrt{12}}$$

输入电容选择

输入去耦电容可衰减输入端的高频噪声,并充当储能库。使用陶瓷电容并将其靠近PVINx引脚放置。由输入电容、高端NFET和低端NFET组成的环路必须尽可能小。输入电容的电压额定值必须大于最大输入电压。确保输入电容的RMS电流额定值大于下式计算值:

$$I_{C_{DU} rms} = I_{OUT} \times \sqrt{D \times (1-D)}$$

其中, D为占空比(D= V_{OUT}/V_{IN})。

低端功率器件选择

通道1和通道2集成了低端MOSFET驱动器,用于驱动低端 N沟道MOSFET (NFET)。低端N沟道MOSFET的选择会影响 降压调节器的性能。

选择的MOSFET必须满足以下要求:

- 漏源电压(V_{DS})必须高于1.2 x V_{DS}。
- 漏极电流(I_D)必须大于1.2 x I_{LIMIT_MAX}, 其中I_{LIMIT_MAX}为选 定的最大限流阈值。
- V_{GS} = 4.5 V时,所选MOSFET可以完全导通。
- 栅极电荷总量(Qg, V_{GS} = 4.5 V)必须少于20 nC。较低的 Qg特性可提供较高的效率。

当高端MOSFET关断时,低端MOSFET提供电感电流。对于低占空比应用而言,多数时候是低端MOSFET提供该电流。要实现较高的效率,必须选择低导通电阻MOSFET。低端MOSFET的功率导通损耗可通过以下公式计算:

$$P_{FET_LOW} = I_{OUT}^2 \times R_{DSON} \times (1 - D)$$

其中:

RDSON为低端MOSFET的导通电阻。

D为占空比 $(D = V_{OUT}/V_{IN})$ 。

表12列出了各种限流设置的推荐双路MOSFET。应确保 MOSFET能够处理功率损耗造成的散热问题。

表12. 推荐的双MOSFET

供应商	产品型号	V _{DS} (V)	I _D (A)	R_{DSON} (m Ω)	Qg (nC)	尺寸 (mm)
IR	IRFHM8363	30	10	20.4	6.7	3×3
	IRLHS6276	20	3.4	45	3.1	2 × 2
Fairchild	FDMA1024	20	5.0	54	5.2	2×2
	FDMB3900	25	7.0	33	11	3 × 2
	FDMB3800	30	4.8	51	4	3 × 2
	FDC6401	20	3.0	70	3.3	3×3
Vishay	Si7228DN	30	23	25	4.1	3×3
	Si7232DN	20	25	16.4	12	3 × 3
	Si7904BDN	20	6	30	9	3 × 3
	Si5906DU	30	6	40	8	3 × 2
	Si5908DC	20	5.9	40	5	3 × 2
	SiA906EDJ	20	4.5	46	3.5	2×2
AOS	AON7804	30	22	26	7.5	3×3
	AON7826	20	22	26	6	3×3
	AO6800	30	3.4	70	4.7	3×3
	AON2800	20	4.5	47	4.1	2×2

UVLO输入编程

精密使能输入可用于设置输入电压的欠压闭锁阈值,如图 33所示。为降低内部1 MΩ下拉电阻容差对输入电压精度的 影响,应确保分压器的底部电阻不能太大,建议使用50 kΩ 以下的值。

精密导通阈值为 $0.8~\mathrm{V}_{\odot}$ 可编程 V_{IN} 启动电压的电阻分压器计算如下:

$$\begin{aligned} V_{IN_STARTUP} &= \\ (0.8 \text{ nA} + (0.8 \text{ V/R}_{BOT_EN})) \times \left(R_{TOP_EN} + \frac{R_{BOT_EN} \times 1 \text{ M}\Omega}{R_{BOT_EN} + 1 \text{ M}\Omega} \right) \end{aligned}$$

其中:

 $R_{TOP EN}$ 为 V_{IN} 与EN之间的电阻。

R_{ROT EN}为EN引脚与地之间的电阻。

补偿器件设计

对于峰值电流模式控制架构,可将功率级简化为向输出电容和负载电阻供应电流的压控电流源。该简化环路包括一个域极和输出电容ESR造成的零点。控制到输出传递函数如下列公式所示:

$$\begin{split} G_{vd}(s) &= \frac{V_{OUT}(s)}{V_{COMP}(s)} = A_{VI} \times R \times \frac{\left(1 + \frac{s}{2 \times \pi \times f_z}\right)}{\left(1 + \frac{s}{2 \times \pi \times f_p}\right)} \\ f_z &= \frac{1}{2 \times \pi \times R_{ESR} \times C_{OUT}} \\ f_p &= \frac{1}{2 \times \pi \times (R + R_{ESR}) \times C_{OUT}} \end{split}$$

其中:

A_{VI} = 10 A/V(通道1或通道2)、3.33 A/V(通道3或通道4)。 R为负载电阻。

s为频域系数。

R_{FSP}为该输出电容的等效串联电阻。

 C_{OUT} 为输出电容。

ADP5053将跨导放大器用作误差放大器来补偿该系统。图47显示了简化的峰值电流模式控制小信号电路。

图47. 简化的峰值电流模式控制小信号电路

补偿器件R_c和C_c形成零点,R_c和可选的C_c。形成可选极点。 闭环传递公式如下所示:

$$T_{V}(s) = \frac{R_{BOT}}{R_{BOT} + R_{TOP}} \times \frac{-g_{m}}{C_{C} + C_{CP}} \times \frac{1 + R_{C} \times C_{C} \times s}{s \times \left(1 + \frac{R_{C} \times C_{C} \times C_{CP}}{C_{C} + C_{CP}} \times s\right)} \times G_{vd}(s)$$

以下准则说明对于陶瓷输出电容应用如何选择补偿器件(R_c 、 C_c 和 C_c)。

- 1. 确定穿越频率 (f_c) 。通常情况下, f_c 介于 $f_{sw}/12$ 和 $f_{sw}/6$ 之间。
- 2. R_c的计算公式如下:

$$R_{C} = \frac{2 \times \pi \times V_{OUT} \times C_{OUT} \times f_{C}}{0.8 \, \text{V} \times g_{m} \times A_{VI}}$$

3. 将补偿零点放置在域极(f_p)处。C_c的计算公式如下:

$$C_C = \frac{\left(R + R_{ESR}\right) \times C_{OUT}}{R_C}$$

4. C_{CP} 是可选的。它可用于取消输出电容的ESR引起的零点。 C_{CP} 的计算公式如下:

$$C_{CP} = \frac{R_{ESR} \times C_{OUT}}{R_{co}}$$

功耗

ADP5053的总功耗可简化为:

$$P_D = P_{BUCK1} + P_{BUCK2} + P_{BUCK3} + P_{BUCK4}$$

降压稳压器功耗

各降压调节器的功耗(P_{LOSS})包括功率开关导通损耗(P_{COND})、开关损耗(P_{SW})和转换损耗(P_{TRAN})。还存在其它功耗源,但在涉及到散热限制的高输出负载电流应用中,这些损耗一般不太重要。

使用以下公式估算降压调节器的功耗:

$$P_{LOSS} = P_{COND} + P_{SW} + P_{TRAN}$$

功率开关导通损耗(Pcond)

功率开关导通损耗是由于输出电流流经具有内部导通电阻 (R_{peon})的高端和低端功率开关而造成的。

使用以下公式估算功率开关导通损耗:

$$P_{COND} = (R_{DSON \ HS} \times D + R_{DSON \ LS} \times (1 - D)) \times I_{OUT}^2$$

其中:

 $R_{ extit{DSON_HS}}$ 为高端MOSFET的导通电阻。 $R_{ extit{DSON_LS}}$ 为低端MOSFET的导通电阻。

D为占空比 $(D = V_{OUT}/V_{IN})$ 。

开关损耗(Psw)

开关损耗与驱动器消耗的电流有关,驱动器以开关频率打 开和关闭功率器件。每次功率器件栅极打开或关闭时,驱 动器就会将一定的电荷从输入电源传输到栅极,再从栅极 传输到地。使用以下公式估算开关损耗:

$$P_{SW} = (C_{GATE_HS} + C_{GATE_LS}) \times V_{IN}^2 \times f_{SW}$$

其中:

CGATE HS 为高端MOSFET的栅极电容。

 C_{GATELS} 为低端MOSFET的栅极电容。

 f_{sw} 为开关频率。

转换损耗(P_{TRAN})

转换损耗是由于高端MOSFET无法即时接通或断开造成的。 在开关节点转换期间,MOSFET提供所有电感电流。 MOSFET的源漏电压为输入电压的一半,由此便产生功率 损耗。转换损耗随负载和输入电压的提高而提高,每个开 关周期发生两次。使用以下公式估算转换损耗:

$$P_{TRAN} = 0.5 \times V_{IN} \times I_{OUT} \times (t_R + t_F) \times f_{SW}$$

其中:

t。为开关节点的上升时间。

t。为开关节点的下降时间。

热关断

通道1和通道2仅在内部高端MOSFET导通时存储电感电流值,因此,ADP5053会消耗少量功率(以及少量输入均方根电流),从而降低热限制。

不过,当通道1和通道2在最大负载、高环境温度、高占空比下工作时,输入均方根电流可能变得非常大,导致结温超出125°C的最大结温。如果结温超过150°C,调节器就会进入热关断状态,当结温低于135°C时才恢复工作。

结温

芯片的结温为环境温度与功耗引起的封装内温升之和,如下式所示:

$$T_I = T_A + T_R$$

其中:

T,为结温。

 T_{A} 是环境温度。

T。为功耗引起的封装温度升幅。

封装的温升与封装功耗成正比。其比例常数就是芯片的结 到环境温度之间的热阻,如下式所示:

$$T_R = \theta_{JA} \times P_D$$

其中:

T。是封装的温度升幅。

 θ_{14} 是从芯片结到封装环境温度的热阻(见表6)。

P_D是封装内的功耗。

一个非常重要的考虑因素是热阻值基于4层4 inch x 3 inch、2.5 oz铜PCB(符合JEDEC标准),而实际应用所用PCB的尺寸和层数可能不同。

必须尽可能多地使用铜,以利于器件散热。暴露于空气中的铜的散热效果优于内层中使用的铜。使用多个过孔将裸露焊盘连接到接地层。

设计示例

本部分通过一个例子说明通道1的设计步骤和所需的外部 器件。表13列出了该例的设计要求。

表13. 通道1的设计要求示例

参数	技术规格
输入电压	$V_{PVIN1} = 12 V \pm 5\%$
输出电压	$V_{OUT1} = 1.2 V$
输出电流	$I_{OUT1} = 4 A$
输出纹波	ΔV _{OUT1_RIPPLE} = 12 mV(CCM模式)
负载瞬变	±5%, 20%至80%负载瞬变, 1 A/μs

虽然本例显示的是通道1的逐步设计程序,但该程序适用 于所有其它降压调节器通道(通道2至通道4)。

设置开关频率

第一步是确定ADP5053设计的开关频率。一般而言,开关 频率越高,则所需的器件值越小,因而解决方案尺寸越小; 开关频率越低,则开关损耗越低,因而转换效率越高。

将一个电阻连接在RT引脚与地之间,可将ADP5053的开关 频率设置为250 kHz到1.4 MHz的值。所选电阻允许用户在效 率与解决方案尺寸之间权衡取舍,做出适当选择。(更多信 息参见"振荡器"部分。)然而,必须通过检查最小导通时间 和最小关断时间所施加的电压转换限制,来确定最高支持 的开关频率(参见"电压转换限制"部分)。

本设计示例使用600 kHz的开关频率来实现小尺寸解决方案和高转换效率的良好组合。要将开关频率设置为600 kHz,请使用以下公式来计算电阻值R_{RT}:

$$R_{RT}(k\Omega) = [14,822/f_{SW}(kHz)]^{1.081}$$

因此,选择标准电阻R_{pT} = 31.6 kΩ。

设置输出电压

选择 $10 \text{ k}\Omega$ 底部电阻 (R_{BOT}) ,然后通过以下公式计算顶部反馈电阻:

$$R_{BOT} = R_{TOP} \times (V_{REF}/(V_{OUT} - V_{REF}))$$

其中:

Vppp 为0.8 V(对于通道1)。

 V_{OUT} 为输出电压。

要将输出电压设置为1.2 V,应选择以下电阻值: R_{TOP} = 4.99 k Ω and R_{ROT} = 10 k Ω .

设置电流限值

对于4 A输出工作电流而言,峰值限流典型值为6.44 A。本例选择 $R_{\text{ILIM1}}=22$ k Ω (见表10)。更多信息参见"限流保护"部分。

选择电感

将峰峰值电感纹波电流 ΔI_L 设置为最大输出电流的35%。使用以下公式估算电感值:

$$L = [(V_{IN} - V_{OUT}) \times D]/(\Delta I_L \times f_{SW})$$

其中:

$$V_{DN} = 12 \text{ V}_{\circ}$$

$$V_{OUT} = 1.2 \text{ V}_{\circ}$$

$$D$$
为占空比 $(D = V_{OUT}/V_{IN} = 0.1)$ 。

$$\Delta I_L = 35\% \text{ x 4 A} = 1.4 \text{ A}_{\circ}$$

$$f_{sw} = 600 \, \text{kHz}_{\circ}$$

由此得到L值为 $1.28 \, \mu H$ 。最接近的标准电感值为 $1.5 \, \mu H$,因此,电感纹波电流 ΔI_i 为 $1.2 \, A_o$

电感峰值电流可通过以下公式计算:

$$I_{PEAK} = I_{OUT} + (\Delta I_L/2)$$

针对该电感计算的峰值电流为4.6 A。

电感的RMS电流可通过以下公式计算:

$$I_{RMS} = \sqrt{I_{OUT}^2 + \frac{\Delta I_L^2}{12}}$$

该电感的RMS电流约为4.02 A。

因此,需要一个最小RMS电流额定值为4.02 A、最小饱和电流额定值为4.6 A的电感。然而,为防止电感在限流条件下达到饱和点,电感饱和电流宜高于最大峰值电流限值(典型值7.48 A),以实现可靠工作。

基于这些要求和建议,本设计选择DCR为13.5 mΩ的TOKO FDV0530-1R5电感。

选择输出电容

输出电容必须满足输出电压纹波和负载瞬态响应要求。要满足输出电压纹波要求,可使用以下公式计算ESR和电容:

$$C_{OUT_RIPPLE} = \frac{\Delta I_L}{8 \times f_{SW} \times \Delta V_{OUT_RIPPLE}}$$

$$R_{\rm ESR} = \frac{\Delta V_{\rm OUT_RIPPLE}}{\Delta I_{\rm L}}$$

计算的电容 $C_{OUT\ RIPPLE}$ 为20.8 μF ,计算的 R_{ESR} 为10 $m\Omega$ 。

要满足±5%的过冲和欠冲要求,可使用以下公式计算电容:

$$C_{OUT_UV} = \frac{{K_{UV} \times \Delta I_{STEP}}^2 \times L}{2 \times \left(V_{IN} - V_{OUT}\right) \times \Delta V_{OUT_UV}}$$

$$C_{OUT_OV} = \frac{K_{OV} \times \Delta I_{STEP}^2 \times L}{\left(V_{OUT} + \Delta V_{OUT\ OV}\right)^2 - V_{OUT}^2}$$

估算时,使用 $K_{OV}=K_{UV}=2$ 。因此, $C_{OUT_OV}=117~\mu F$, $C_{OUT_UV}=13.3~\mu F$ 。

输出电容ESR应小于13.3 m Ω , 输出电容应大于117 μF。建议使用三个陶瓷电容(47 μF、X5R、6.3 V),例如ESR为2 m Ω 的Murata GRM21BR60J476ME15。

选择低端MOSFET

对于高效率解决方案,必须选择低RDSON N沟道MOSFET。 MOSFET击穿电压(V_{DS})必须大于 $1.2 \times V_{IN}$,漏极电流必须大于 $1.2 \times I_{LIMIT-MAX}$ 。

通道1和通道2建议使用 $20\,V$ 、双N沟道MOSFET,例如Vishay Si7232DN。驱动器电压为 $4.5\,V$ 时,Si7232DN的 R_{DSON} 为 $16.4\,m\Omega$,栅极电荷总量为 $12\,n$ C。

设计补偿网络

为了获得更好的负载瞬态响应和稳定性能,应将穿越频率 f_c 设置为 $f_{sw}/10$ 。本例中, f_{sw} 设置为600~kHz,因此,将 f_c 设置为60~kHz。

对于1.2 V输出轨, 47 μF陶瓷输出电容值降至40 μF。

$$R_C = \frac{2 \times \pi \times 1.2 \text{ V} \times 3 \times 40 \,\mu\text{F} \times 60 \,\text{kHz}}{0.8 \,\text{V} \times 470 \,\mu\text{S} \times 10 \,\text{A/V}} = 14.4 \,\text{k}\Omega$$

$$C_C = \frac{\left(0.3\,\Omega + 0.001\,\Omega\right) \times 3 \times 40\,\mu\text{F}}{14.4\;\text{k}\Omega} = 2.51\;\text{nF}$$

$$C_{CP} = \frac{0.001 \Omega \times 3 \times 40 \mu F}{14.4 \text{ kO}} = 8.3 \text{ pF}$$

选择标准器件: $R_c = 15 \text{ k}\Omega$, $C_c = 2.7 \text{ nF}$ 。 C_{CP} 是可选的。

图48显示了1.2 V输出轨的波特图。穿越频率为62 kHz,相位裕量为58。图49显示负载瞬态响应波形。

图48.1.2 V输出的波特图

图49.1.2 V输出的0.8 A至3.2 A负载瞬态响应

选择软启动时间

软启动特性允许输出电压以受控方式缓慢提高,从而避免 软启动期间出现输出电压过冲现象,同时限制浪涌电流。

使用SS12引脚设置2 ms、4 ms或8 ms的软启动时间,并且配置通道1和通道2的并连操作。更多信息参见"软启动"部分和表9。

选择输入电容

输入电容应选择最小值为10 μF的陶瓷电容,并且靠近PVIN1 引脚放置。本例中,建议使用一个10 μF、X5R、25 V陶瓷 电容。

推荐外部器件

表14列出了ADP5053通道1和通道2针对4 A应用的推荐外部器件。表15列出了通道3和通道4针对1.2 A应用的推荐外部器件。

表14. 通道1和通道2针对4 A典型应用的推荐外部器件(±1%输出纹波、±7.5%容差、~60%阶跃瞬态)

f _{sw} (kHz)	I _{OUT} (A)	V _{IN} (V)	V _{OUT} (V)	L (µH)	С _{оит} (µF)	R _{TOP} (kΩ)	R _{BOT} (kΩ)	R _c (kΩ)	C _c (pF)	双FET
300	4	12(或5)	1.2	3.3	2 × 100 ¹	4.99	10	10	4700	Si7232DN
		12(或5)	1.5	3.3	2 × 100 ¹	8.87	10.2	10	4700	Si7232DN
		12(或5)	1.8	3.3	3×47^{2}	12.7	10.2	6.81	4700	Si7232DN
		12(或5)	2.5	4.7	3×47^{2}	21.5	10.2	10	4700	Si7232DN
		12(或5)	3.3	6.8	3×47^{2}	31.6	10.2	10	4700	Si7232DN
		12	5.0	6.8	47 ³	52.3	10	4.7	4700	Si7232DN
600	4	12(或5)	1.2	1.5	2×47^{2}	4.99	10	10	2700	Si7232DN
		12(或5)	1.5	1.5	2×47^{2}	8.87	10.2	10	2700	Si7232DN
		12(或5)	1.8	2.2	2×47^{2}	12.7	10.2	10	2700	Si7232DN
		12(或5)	2.5	2.2	2×47^{2}	21.5	10.2	10	2700	Si7232DN
		12(或5)	3.3	3.3	2×47^{2}	31.6	10.2	15	2700	Si7232DN
		12	5.0	3.3	47 ³	52.3	10	10	2700	Si7232DN
1000	4	5	1.2	1.0	2×47^{2}	4.99	10	15	1500	Si7232DN
		5	1.5	1.0	2×47^{2}	8.87	10.2	15	1500	Si7232DN
		12(或5)	1.8	1.0	47 ²	12.7	10.2	10	1500	Si7232DN
		12(或5)	2.5	1.5	47 ²	21.5	10.2	10	1500	Si7232DN
		12(或5)	3.3	1.5	47 ²	31.6	10.2	10	1500	Si7232DN
		12	5.0	2.2	47 ³	52.3	10	15	1500	Si7232DN

¹ 100 μF电容: Murata GRM31CR60J107ME39(6.3 V、X5R、1206)。

表15. 通道3和通道4针对1.2 A典型应用的推荐外部器件(±1%输出纹波、±7.5%容差、~60%阶跃瞬态)

							101001-011-01		
f _{sw} (kHz)	I _{OUT} (A)	V _{IN} (V)	V _{OUT} (V)	L (μH)	С _{оυт} (μ F)	R _{TOP} (kΩ)	R _{BOT} (kΩ)	R _C (kΩ)	C _c (pF)
300	1.2	12(或5)	1.2	10	2 × 22 ¹	4.99	10	6.81	4700
		12(或5)	1.5	10	2×22^{1}	8.87	10.2	6.81	4700
		12(或5)	1.8	15	2×22^{1}	12.7	10.2	6.81	4700
		12(或5)	2.5	15	2×22^{1}	21.5	10.2	6.81	4700
		12(或5)	3.3	22	2×22^{1}	31.6	10.2	6.81	4700
		12	5.0	22	22 ²	52.3	10	6.81	4700
600	1.2	12(或5)	1.2	4.7	22 ¹	4.99	10	6.81	2700
		12(或5)	1.5	6.8	22 ¹	8.87	10.2	6.81	2700
		12(或5)	1.8	6.8	22 ¹	12.7	10.2	6.81	2700
		12(或5)	2.5	10	22 ¹	21.5	10.2	6.81	2700
		12(或5)	3.3	10	22 ¹	31.6	10.2	6.81	2700
		12	5.0	10	22 ²	52.3	10	6.81	2700
1000	1.2	5	1.2	2.2	22 ¹	4.99	10	10	1800
		12(或5)	1.5	3.3	22 ¹	8.87	10.2	10	1800
		12(或5)	1.8	4.7	22 ¹	12.7	10.2	10	1800
		12(或5)	2.5	4.7	22 ¹	21.5	10.2	10	1800
		12(或5)	3.3	6.8	22 ¹	31.6	10.2	10	1800
		12	5.0	6.8	22 ²	52.3	10	15	1800

¹ 22 μF电容:Murata GRM188R60J226MEA0(6.3 V、X5R、0603)。

² 47 μF电容:Murata GRM21BR60J476ME15(6.3 V、X5R、0805)。

³ 47 μF电容:Murata GRM31CR61A476ME15(10 V、X5R、1206)。

² 22 μF电容: Murata GRM219R61A226MEA0(10 V、X5R、0805)。

电路板布局建议

要从ADP5053获得最佳性能,有效的线路板布局至关重要(见图51)。不良的布局会影响器件的调节和稳定性以及电磁干扰(EMI)和电磁兼容(EMC)性能。最有效的PCB布局应参照以下原则:

- 将输入电容、电感、MOSFET、输出电容和自举电容靠近IC放置。
- 使用短而粗的走线将输入电容连接到PVINx引脚,并使用专用电源地连接输入和输出电容地,使连接长度最小。
- 需要时,使用多个高电流过孔将PVINx、PGNDx和SWx 连接到其他电源层。
- 使用短而粗的走线将电感连接到SWx引脚和输出电容。
- 确保高电流环路的走线尽可能短而宽。图50显示高电流 路径。
- 最大限度增加裸露焊盘的接地金属量,并在器件侧使用 尽可能多的过孔以加强散热。

- 地层通过多个过孔连接到器件侧的地上,以进一步减少 敏感电路节点上的噪声干扰。
- 去耦电容应靠近VREG和VDD引脚。
- 频率设置电阻应靠近RT引脚。
- 反馈电阻分压器应靠近FBx引脚。此外,应使FBx走线 远离高电流走线和开关节点,以避免噪声影响。
- 在板面积受限的情况下,采用0402或0603尺寸的电阻和 电容可实现最小尺寸解决方案。

图50. 带高电流走线(显示为灰色)的典型电路

图51. 典型PCB布局布线

典型应用电路

图52. 典型毫微微蜂窝应用, 600 kHz开关频率, 固定输出型号

图53. 典型FPGA应用, 600 kHz开关频率, 可调输出型号

图54. 典型通道1/通道2并连输出应用, 600 kHz开关频率, 可调输出型号

工厂编程选项

表16至表30列出了从ADI公司订购ADP5053时可写入器件的选项。默认选项列表参见表31。要订购非默认选项的器件,请联系当地的ADI公司办事处或代理商。

表16. 通道1的输出电压选项(固定输出选项: 0.85 V至1.6 V, 25 mV增量)

选项	说明
选项0	0.8 V可调输出(默认值)
选项1	0.85 V固定输出
选项2	0.875 V固定输出
•••	
选项30	1.575 V固定输出
选项31	1.6 V固定输出

表17. 通道2的输出电压选项(固定输出选项: 3.3 V至5.0 V, 300 mV/200 mV增量)

	
选项	说明
选项0	0.8 V可调输出(默认值)
选项1	3.3 V固定输出
选项2	3.6 V固定输出
选项3	3.9 V固定输出
选项4	4.2 V固定输出
选项5	4.5 V固定输出
选项6	4.8 V固定输出
选项7	5.0 V固定输出

表18. 通道3的输出电压选项(固定输出选项: 1.2 V至1.8 V, 100 mV增量)

选项	说明
选项0	0.8 V可调输出(默认值)
选项1	1.2 V固定输出
选项2	1.3 V固定输出
选项3	1.4 V固定输出
选项4	1.5 V固定输出
选项5	1.6 V固定输出
选项6	1.7 V固定输出
选项7	1.8 V固定输出

表19. 通道4的输出电压选项(固定输出选项: 2.5 V至5.5 V, 100 mV增量)

选项	说明
选项0	0.8 V可调输出(默认值)
选项1	2.5 V固定输出
选项2	2.6 V固定输出
选项30	5.4 V固定输出
选项31	5.5 V固定输出

表20. PWRGD引脚(引脚20)输出选项

	Start Start Min La C. X
选项	说明
选项0	不监控任何通道
选项1	监控通道1输出(默认)
选项2	监控通道2输出
选项3	监控通道1和通道2输出
选项4	监控通道3输出
选项5	监控通道1和通道3输出
选项6	监控通道2和通道3输出
选项7	监控通道1、通道2和通道3输出
选项8	监控通道4输出
选项9	监控通道1和通道4输出
选项10	监控通道2和通道4输出
选项11	监控通道1、通道2和通道4输出
选项12	监控通道3和通道4输出
选项13	监控通道1、通道3和通道4输出
选项14	监控通道2、通道3和通道4输出
选项15	监控通道1、通道2、通道3和通道4输出

表21. 输出放电功能选项

77 107 =		
选项	说明	
选项0	禁用所有4个降压调节器的输出放电功能	
选项1	使能所有4个降压调节器的输出放电功能(默认)	

表22. 通道1的开关频率选项

选项	说明
选项0	1xRT引脚设置的开关频率(默认)
选项1	½xRT引脚设置的开关频率

表23. 通道3的开关频率选项

选项	说明
选项0	1xRT引脚设置的开关频率(默认)
选项1	½xRT引脚设置的开关频率

表24. SYNC/MODE引脚(引脚43)选项

选项	说明
选项0	强制PWM/自动PWM/PSM模式设置,并能与外部
	时钟同步(默认)
选项1	产生一个等于RT引脚设置的主频率的时钟信号

表25.4个降压调节器的打嗝保护选项

77-27-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
选项	说明
选项0	使能过流事件的打嗝保护(默认)
选项1	禁用打嗝保护,针对过流事件仅提供折频保护

表26.4个降压调节器的短路闩锁功能选项

选项	说明
选项0	禁用输出短路事件的闩锁功能(默认)
选项1	使能输出短路事件的闩锁功能

表27.4个降压调节器的过压闩锁功能选项

选项	说明
选项0	禁用输出过压事件的闩锁功能(默认)
选项1	使能输出过压事件的闩锁功能

表28. 复位超时周期选项

选项	说明
选项0	1.4 ms
选项1	28 ms
选项2	200 ms(默认)
选项3	1.6 sec

表29. 看门狗超时周期选项

选项	说明
选项0	6.3 ms
选项1	102 ms
选项2	1.6 sec(默认)
选项3	25.6 sec

表30. 手动复位输入模式选项

选项	说明
选项0	处理器手动复位模式(默认)
选项1	电源开/关模式

工厂默认选项

表31列出了订购ADP5053时写入器件的工厂默认选项(参见"订购指南")。要订购非默认选项的器件,请联系当地的ADI公司办事处或代理商。表16至表30列出了器件的所有可用选项。

表31. 工厂默认选项

祝5.1. 工厂款 队起攻			
选项	默认值		
通道1输出电压	0.8 V可调输出		
通道2输出电压	0.8 V可调输出		
通道3输出电压	0.8 V可调输出		
通道4输出电压	0.8 V可调输出		
PWRGD引脚(引脚20)输出	监控通道1输出		
输出放电功能	所有4个降压调节器均使能		
通道1的开关频率	1xRT引脚设置的开关频率		
通道3的开关频率	1xRT引脚设置的开关频率		
SYNC/MODE引脚(引脚43)	强制PWM/自动PWM/PSM模式		
功能	设置,并能与外部时钟同步		
打嗝保护	针对过流事件使能		
短路闩锁功能	针对输出短路事件禁用		
过压闩锁功能	针对输出过压事件禁用		
复位超时周期	200 ms		
看门狗超时周期	1.6 sec		
手动复位输入模式	处理器手动复位模式		

外形尺寸

图55.48引脚引线框芯片级封装[LFCSP_WQ] 7 mm x 7 mm超薄体 (CP-48-13) 尺寸单位: mm

订购指南

퓇号 ¹	温度范围	封装描述	封装选项²
ADP5053ACPZ-R7	-40°C至+125°C	48引脚引线框芯片级封装[LFCSP_WQ]	CP-48-13
ADP5053-EVALZ		评估板	

¹ Z=符合RoHS标准的器件。

²表31列出了器件的工厂默认选项。关于工厂可编程选项的列表,参见"工厂可编程选项"部分。要订购选项未列出的器件,请联系当地的ADI公司办事处或代理商。

注释

注释

ADP5053

注释