МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МГТУ им Н.Э.Баумана

Факультет ФН

Кафедра вычислительной математики и математической физики

Соколов Арсений Андреевич

Домашнее задание №6 по математической статистике

3 курс, группа ФН11-53Б Вариант 6

Пр	еподава	атель
		Т. В. Облакова
«	»	2019 г.

Задание 1

В условиях задачи №5 построить последовательный критерий Вальда для проверки гипотезы $H_0: a=a_0=7.5$ против альтернативы $H_1: a=a_1=8$ при известном $\sigma=\sigma_1=2.5$. Ошибка первого рода $\alpha=0.1$, ошибка второго рода $\beta=0.2362404$ вычислена в пункте 4 задачи №5.

Решение.

Рассмотрим выборку, предложенную нам в условии:

> df									
$[\ 1\]$	0.653	13.884	11.088	7.409	8.827	5.582	9.747	8.023	
8.396	j								
			5.251						1 (
[19]	10.718	0.840	8.737	2.278	8.447	2.267	8.656	9.460	
9.385									
[28]	7.924	9.215	10.360	7.239	8.399	7.962	6.712	5.626	
7.737									
[37]	9.671	13.497	10.708	6.189	10.516	8.845	10.926	8.755	
7.728									
			9.802						
			10.632						1 :
[64]	8.106	9.898	10.504	8.307	10.680	6.788	9.904	6.918	
4.250									
[73]	8.908	9.837	5.805	6.018	7.735	8.206	5.502	8.473	
4.870									
[82]	10.159	6.639	7.936	8.149	10.462	12.296	3.403	10.631	
7.802									
[91]	5.580	8.325	10.687	9.843	9.509	5.668	8.511	8.657	
8.835									
[100]	9.48	4							

0.759

 $0.663 \\ 5.013$

Критическое множество для среднего при известном среднеквадратическом отклонении запишется в данном случае как $\bar{x} > c_1$, где

$$c_1 = a_0 + \frac{qnrom(1 - \alpha, 0, 1)}{\sqrt{n}}\sigma_1$$

Имеем:

Получаем критическое множество:

$$S_1 = \{\bar{x} > 7.820388\}$$

Ошибка второго рода критерия S_1 имеет вид:

$$\beta(c_1) = \Phi(\frac{c_1 - a_1}{\sigma_1} \sqrt{n})$$

Имеем:

> beta <- pnorm((c1-a1)/sigma1 * sqrt(df_len)) > beta

[1] 0.2362404

Построим критерий Вальда:

$$A = \frac{1 - \beta}{\alpha}$$
$$B = \frac{\beta}{1 - \alpha}$$

$$> A <- (1-beta)/alpha > B <- beta/(1-alpha) > A [1] 7.637596 > B [1] 0.2624894$$

Lf(j) =
$$\prod_{i=1}^{j} \exp \left[\frac{z_i(a_1 - a_0)}{\sigma_1^2} + \frac{a_0^2 - a_1^2}{2\sigma_1^2} \right]$$

Вычислим математическое ожидание момента принятия решения при основной гипотезе H_0 и при альтернативе H_1 .

$$Y_k = \ln \frac{p\left(X_k, a_1\right)}{p\left(X_k, a_0\right)} = \ln \frac{\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{\left(X_k - a_1\right)^2}{2\sigma_1^2}}}{\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{\left(X_k - a_0\right)^2}{2\sigma_1^2}}} = -\frac{\left(X_k - a_1\right)^2}{2\sigma_1^2} + \frac{\left(X_k - a_0\right)^2}{2\sigma_1^2} = \frac{2X_k(a_1 - a_0) + a_0^2 - a_1^2}{2\sigma_1^2}$$

$$M_0 Y_k = \frac{2a_0 * (a_1 - a_0) + a_0^2 - a_1^2}{2\sigma_1^2} = -\frac{(a_0 - a_1)^2}{2\sigma_1^2}$$

$$> M0Yk < - (a1-a0)^2 / (2*sigma1^2) > M0Yk$$

 $[1] -0.02$

$$M_1 Y_k = \frac{2a_1 * (a_1 - a_0) + a_0^2 - a_1^2}{2\sigma_1^2} = \frac{(a_0 - a_1)^2}{2\sigma_1^2}$$

$$> M1Yk < - (a1-a0)^2 / (2*sigma1^2)$$

 $> M1Yk$
[1] 0.02

Найдём среднее число испытаний, если верна нулевая гипотеза:

$$M_0 \nu = \frac{\alpha \ln(A) + (1 - \alpha) \ln(B)}{M_0 Y_k}$$

$$> M0_nu <- (alpha*log(A) + (1-alpha)*log(B))/M0Yk > M0_nu [1] 50.0241$$

А также среднее число испытаний, если верна альтернативная гипотеза:

$$M_1 \nu = \frac{\beta \ln(B) + (1 - \beta) \ln(A)}{M_1 Y_k}$$

Получили, что при условии H_0 потребуется в среднем 50 испытаний, а при условии H_1 – 62 испытания.

По графику видим, что кривая пересекает прямую A, следовательно, принимаем гипотезу H_1 .

Задание 2

Переписать критическое множество из предыдущего пункта в виде $\left(\frac{L\left(\overrightarrow{X_n},a_1\right)}{L\left(\overline{X_n},a_1\right)}\geqslant C\right)$, отметить на графике и сравнить результаты применения критериев Вальда и Неймана-Пирсона.

Решение.

Рассмотрим критическое множество критерия Неймана-Пирсона:

$$S = \{ \prod_{i=1}^{j} \exp\left[\frac{z_i(a_1 - a_0)}{\sigma_1^2} + \frac{a_0^2 - a_1^2}{2\sigma_1^2}\right] \geqslant C \} = \{ \prod_{i=1}^{100} \frac{z_i(a_1 - a_0)}{\sigma_1^2} + 100 \frac{a_0^2 - a_1^2}{2\sigma_1^2} \geqslant C_3 \} = \{ \sum_{i=1}^{100} z_i \geqslant C_2 \} = \{ \frac{1}{100} \sum_{i=1}^{100} z_i \geqslant C_1 \},$$

где

$$C_{1} = c_{1}$$

$$C_{2} = 100 \cdot C_{1}$$

$$C_{3} = 100 \frac{a_{0}^{2} - a_{1}^{2}}{2\sigma_{1}^{2}} + C_{2} \frac{a_{1} - a_{0}}{\sigma_{1}^{2}}$$

$$C = e^{C_{3}}$$

```
 > C1 <- c1 \\ > C2 <- 100 * C1 \\ > C3 <- 100 * (a0^2-a1^2)/(2*sigma1^2) + C2 * (a1-a0)/(sigma1^2) \\ > C <- exp(C3) \\ > C1 \\ [1] 7.820388 \\ > C2 \\ [1] 782.0388 \\ > C3 \\ [1] 0.5631031 \\ > C \\ [1] 1.756114
```


По графику видим, что кривая на n=100 испытании находится над прямой C, следовательно принимаем гипотезу H_1

Так же можем заметить, что среднее число испытаний в критерии Вальда примерно в два раза меньше, чем для критерия Неймана-Пирсона.