Задание на защиту лабораторной работы №6

Выполнил Титов Дмитрий, Б22-505

1. Данные и графики

num of proc\p roc num	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	0,16 434 2	'		3		3	0	,	0		10	- 11	12	10	17	
2	0,17 727 9	1,00 049 4														
3	0,18 127 6	0,91 771 8	0,97 061 3													
4	0,18 168 6	0,88 487 4	0,93 058 4	0,96 894 1												
5	0,16 614 3	0,86 293 6	0,89 717 2	0,93 011	0,96 277 6											
6	0,20 295 4	0,90 098 1	0,93 836 2	0,97 098 7	1,00 058 6	1,03 041										
7	0,17 537 2	0,89 173 1	0,91 776 7	0,94 230 4	0,96 680 6	0,99 145 6	1,01 769 4									
8	0,17 496 5	0,89 429 1	0,91 594 3	0,93 628 5	0,95 741 8	0,97 835 5	1,00 053 3	1,02 284 9								
9	0,20 099 5	0,85 772	0,87 907 5	0,89 760 9	0,92 216 5	0,94 158 9	0,96 288 1	0,99 177 5	1,01 365 5							
10	0,20 800 4	1,05 324 7	1,07 123 7	1,08 876 9	1,10 750 5	1,13 012 9	1,14 932 5	1,16 867 2	1,19 556 1	1,22 610 4						
11	0,22 153 4	0,80 633 5	0,82 784 4	0,84 359 1	0,86 347 7	0,87 960 8	0,89 684 4	0,91 419 7	0,93 774 3	0,96 674 9	0,99 598 4					
12	0,23 9	0,83 055 2	0,85 059 2	0,86 897 3	0,88 393 7	0,90 366 9	0,92 428 9	0,94 188 6	0,96 306 1	0,98 217 3	1,00 962 4	1,04 01				
13	0,26 986 3	1,00 234 7	1,02 094 1	1,03 835 8	1,05 675 5	1,07 567 8	1,09 533	1,11 095	1,13 137 8	1,15 536 6	1,17 820 2	1,20 498 2	1,24 529 6			

14	0,28 032 3	· ·	,		1,05 677 4		994	428	230	1,14 3611		1,18 534 7	'			
15	142	· '		1,00	938	500	1,05 1168	818		501	1,12 734 2			1,21 472 7	1,24 967	
16	0,04 361 2	1,00 046 6	063		492		0,99 922 7			991	0,99 999			0,99	0,99 755 3	0,99

Таблица 1. Время задержки каждого процессора от их количества

Рис. 1. Гистограмма времени задержек процессоров от их числа

2. Анализ данных

1. Задержка начала работы для 0-го процессора на 16 процессорах

• Для 0-го процессора на 16 процессорах время начала работы значительно меньше, чем для других количеств процессоров. Это объясняется особенностями распределения данных в МРІ и синхронизации. На 16 процессорах, когда число задач значительно больше, нагрузка на каждый процессор становится более сбалансированной, и данные передаются более эффективно, что снижает время начала работы для 0-го процессора. Однако при меньшем количестве процессоров, нагрузка на процессоры может быть менее сбалансирована, и процессор 0 может ждать, пока данные будут отправлены другим процессорам.

2. Задержки для некоторых процессоров на определённом числе процессоров

• Например, для 3-го процессора на 4 процессорах время задержки больше, чем для 3-го процессора на 11 процессорах. Это может быть связано с несколькими факторами:

- **Балансировка данных**: Когда на программе запускается больше процессоров, каждый процесс получает меньше данных, что может улучшить синхронизацию и уменьшить время, которое процессор тратит на ожидание других процессов.
- **Конкуренция за ресурсы**: При меньшем числе процессоров конкуренция за ресурсы (например, за память или каналы передачи данных) может быть выше, что замедляет выполнение.
- **Коммуникационные** задержки: На меньшем числе процессоров (например, 4) коммуникативные задержки могут оказывать большее влияние, так как данные передаются между процессами чаще, и это может вызвать задержки при запуске каждого процесса. Когда процессоров больше (например, 11), данные могут быть распределены более эффективно, и каждый процесс получает свою часть быстрее.

3. Увеличение задержек при увеличении числа процессоров (от 1 до 16)

- На первых этапах (например, от 1 до 4 процессоров) время задержки растет, потому что каждый процесс должен ожидать получения данных от других процессов. На небольшом числе процессоров нагрузка не всегда сбалансирована, и время передачи данных между процессами может занимать значительное время.
- Когда процессоров становится больше (например, 16), распределение данных становится более равномерным, и для процессоров может быть быстрее начинать работать, так как каждый из них обрабатывает меньший объем данных и имеет меньше ожидания.

4. Проблемы с балансировкой на малом количестве процессоров

- На 4 процессорах процессор 3 имеет большую задержку, вероятно, из-за неэффективного распределения данных, когда количество данных, которое нужно обработать этим процессом, не оправдывает его ожидания из-за недостаточной параллельности на малом числе процессоров.
- С увеличением числа процессоров балансировка улучшается, и процессор 3 получает меньшую нагрузку, что уменьшает время задержки.

5. Влияние количества процессоров на время старта для каждого из них

• На более высоких числах процессоров (например, 11, 12 и 16) время начала работы для каждого процессора может быть более сбалансированным, так как нагрузка делится между большим числом процессоров. В таких случаях распределение данных происходит быстрее, и каждый процесс может начать выполнение раньше.

Выводы:

- На начальных этапах (при небольшом количестве процессоров) процессы могут иметь большие задержки из-за несбалансированного распределения работы или коммуникативных задержек.
- На большем числе процессоров время задержки начинает уменьшаться, так как данные эффективно распределяются, и количество операций на каждом процессе становится более равномерным.
- Задержка для процессора 0 при 16 процессорах минимальна, вероятно, потому что программа при таком числе процессоров эффективно балансирует нагрузку и минимизирует время ожидания для первого процесса.
- Поведение задержки для процессоров 3, 4 и других зависит от специфики распределения данных и нагрузочного баланса, что может изменяться в зависимости от числа процессоров