EEE5062计算方法 作业八

习题P238: 1、3、7(1)(2)

作业提交DDL: 2022/5/17 16:00前

姓名: 江宇辰 学号: 11812419 提交时间: 2022.05.16

Q1

1. 用二分法求方程 $x^2-x-1=0$ 的正根,要求误差小于 0.05.

解:设 $f(x)=x^2-x-1$,则f(1)=-1<0,f(2)=1>0且f'(x)=2x-1,对于 $x>rac{1}{2}$,f(x)单调递增,故f(x)的正根在区间[1,2]中

根据二分法误差估计式,误差小于0.05时,需 $\frac{1}{2^{(k+1)}} < 0.05$,得k > 6.322,故至少二分6次以满足误差小于0.05

计算结果见下表:

k	a_k	b_k	x_k	$f(x_k)$ 符号
0	1	2	1.5	-
1	1.5	2	1.75	+
2	1.5	1.75	1.625	+
3	1.5	1.625	1.5625	-
4	1.5625	1.625	1.59375	-
5	1.59375	1.625	1.609375	-

故正根 $x = x_5 = 1.609375$

Q3

- 3. 比较求 $e^x + 10x 2 = 0$ 的根到三位小数所需的计算量:
- (1) 在区间[0,1]内用二分法;
- (2) 用迭代法 $x_{k+1} = (2 e^{x_k})/10$,取初值 $x_0 = 0$.

解: (1) 由题意得:

k	a_k	b_k	x_k	$f(x_k)$ 符号	$\frac{1}{2^{k+1}}$
0	0	1	0.5	+	0.5
1	0	0.5	0.25	+	0.25
2	0	0.25	0.125	+	0.125
3	0	0.125	0.0625	-	0.0625
4	0.0625	0.125	0.09375	+	0.03125
5	0.0625	0.09375	0.078125	-	0.015625
6	0.078125	0.09375	0.0859375	-	0.0078125
7	0.859375	0.09375	0.08984375	-	0.00390625
8	0.08984375	0.09375	0.091796875	+	0.001953125
9	0.08984375	0.091796875	0.090820312	+	0.000976562
10	0.08984375	0.090820312	0.090332031	-	0.000488281
11	0.090332031	0.090820312	0.090576171	+	0.00024414
12	0.090332031	0.090576171	0.090454101	-	0.00012207
13	0.090454101	0.090576171	0.090515136	-	0.000061035
14	0.090515136	0.090576171	0.090545653	+	0.000030517

由 $|x_{14}-x|\leq rac{1}{2^{15}}=0.000030517<rac{1}{2}*10^{-4}$ 得:使用二分法15次的计算量可以满足三位小数的精度。

(2) 当 $x\in[0,0.5]$, $arphi(x)\in[0,0.5]$, 故 $|arphi'(x)|=rac{1}{10}|-e^x|\leq L=0.825$, 故迭代式在 [0,0.5]上整体收敛。

迭代结果如下表所示:

k	x_k
0	0
1	0.1
2	0.089482908
3	0.090639135
4	0.090512616
5	0.090526468
6	0.090524951

当k=6时, $|x_6-x|\leq rac{L}{1-L}|x_6-x_5|\leq 0.00000720<rac{1}{2}*10^{-4}$,故使用迭代法6次的计算量可精确到三位小数。

Q7 (1) (2)

- 7. 用下列方法求 $f(x) = x^3 3x 1 = 0$ 在 $x_0 = 2$ 附近的根. 根的准确值 $x^* = 1.87938524\cdots$,要求计算结果准确到四位有效数字.
 - (1) 用牛顿法;
 - (2) 用弦截法,取 $x_0=2,x_1=1.9$;

解: (1) 取
$$x_0=2$$
,使用牛顿法时,迭代公式为 $x_{k+1}=x_k-\dfrac{x_k^3-3x_k-1}{3x_k^2-3}=\dfrac{2x_k^3+1}{3x_k^2-3}$ 故 $x_1=1.8889, x_2=1.8795, x_3=1.8794, \; |x_3-x^*|=4.8367*10^{-9}<\dfrac{1}{2}*10^{-3}$ 故取 $x=x_3=1.8794$

(2) 取
$$x_0=2,x_1=1.9$$
,使用弦截法时,迭代公式为 $x_{k+1}=x_k-\dfrac{(x_k-x_{k-1})f(x_k)}{f(x_k)-f(x_{k-1})}$ 故 $x_2=1.8811,x_3=1.8794$, $|x_3-x^*|=2.5820*10^{-5}<\dfrac{1}{2}*10^{-3}$ 故取 $x=x_3=1.8794$