SE328:Topology

Hyosang Kang¹

 1 Division of Mathematics School of Interdisciplinary Studies DGIST

Week 04

Let X, Y be two topological spaces. A function $f: X \to Y$ is called a **continuous** function if $f^{-1}(V)$ is open for every open subset $V \subset Y$.

Proposition

For a function $f: X \to Y$ between topological spaces X, Y, the followings are equivalent:

- 1. f is continuous;
- 2. for every subset $U \subset X$, we have $f(\overline{U}) \subset \overline{f(\underline{U})}$;
- 3. for every closed subset $V \subset Y$, the set $f^{-1}(V)$ is closed;
- 4. for every point $x \in X$ and a neighborhood V of f(x), there is a neighborhood U of x such that $f(U) \subset V$.

A one-to-one correspondence $f: X \to Y$ is called a **homeomorphism** if f and its inverse f^{-1} are continuous.

Example

Let The map

$$f: [0,1) \to \mathbf{S}^1$$

 $x \mapsto (\cos 2\pi x, \sin 2\pi x)$

is bijective and continuous, but its inverse is not continuous.

Proposition

The following methods constructs a continuous functions:

- 1. A constant function is continuous.
- 2. For a subset $A \subset X$, the inclusion $\iota : A \hookrightarrow X$ is continuous.
- 3. For two continuous functions $f: X \to Y$ and $g: Y \to Z$, the composite $g \circ f: X \to Z$ is continuous.
- 4. Given a continuous function $f: X \to Y$ and a subspace $A \subset X$, the restriction $f|_A: A \to Y$ is continuous.

5. Let $f: X \to Y$ be a continuous function. For a subspace $Y_1 \subset Y$ containing f(X), the restriction of range

$$f: X \to Y_1$$

is continuous. Similarly, if Y admits a subspace topology induced from $Y_2 \supset Y$, the expansion of range $f: X \to Y_2$ is continuous.

6. Let $\{U_{\alpha}\}$ be a collection of open subsets in X such that $X = \bigcup_{\alpha} U_{\alpha}$. (Such collection is called the *open covering* of X.) A map $f: X \to Y$ is continuous if $f|_{U_{\alpha}}$ is continuous for all α .

Let $X = A \cup B$ where $A, B \subset X$ are closed. If $f : A \to Y$ and $g : B \to Y$ are continuous and f(x) = g(x) for all $x \in A \cap B$, then the function $h : X \to Y$ defined by h(x) = f(x) if $x \in A$ and h(x) = g(x) If $x \in B$ is continuous.

Theorem

Let $f_1: A \to X$, $f_2: A \to Y$ be functions which define $f: A \to X \times Y$ as $f(x) = (f_1(x), f_2(x))$. Then f is continuous if and only if f_1, f_2 are continuous.

Example

A family of subsets $\{A_{\alpha}\}$ of X is called **locally finite** if every point $x \in X$ admits a neighborhood which intersects only finitely many A_{α} . Suppose that $\{A_{\alpha}\}$ is a locally finite *closed* covering of X and $f: X \to Y$ is a function whose restrictions $f|_{A_{\alpha}}$ are continuous. Show that f is also continuous.

Example

Let $F: X \times Y \to Z$ be a continuous function. Show that for each $x_0 \in X$ and $y_0 \in Y$, the functions $f(x) = F(x, y_0)$ and $g(y) = F(x_0, y)$ are continuous. Show that the converse does not hold. (Use the function below as an counter example.)

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Let $\{A_{\alpha}\}$ be a collection of sets indexed by $\alpha \in J$. The **cartesian product** denoted by $\prod A_{\alpha}$ is the set of all J-tuples

$$\mathbf{x}: J \to \bigcup_{\alpha} A_{\alpha}; \quad (\alpha) \in A_{\alpha}$$

Definition

The topology on $\prod_{\alpha} A_{\alpha}$ generated by the basis

$$\mathcal{B} = \{ \prod_{\alpha} U_{\alpha} \mid U_{\alpha} \subset A_{\alpha} \text{ is open} \}$$

is called the **box topology**. The topology generated by the subbasis

$$\mathcal{S} = \{ \pi_{\alpha}^{-1}(U_{\alpha}) \mid U_{\alpha} \subset A_{\alpha} \text{ is open} \}$$

is called the **product topology**.

Remark

The basis of product topology consists of the set $\prod U_{\alpha}$ where

 U_{α} is open subset of A_{α} such that $U_{\alpha} = A_{\alpha}$ for all but finitely many α . Therefore, the box topology is finer than the product topology. For the finite product space, these topologies are the same.

Theorem

In either topologies on $\prod_{\alpha} A_{\alpha}$,

- $ightharpoonup \prod_{\alpha} A_{\alpha}$ is Hausdorff if each A_{α} is Hausdorff;

Let $f: A \to \prod_{\alpha \in J} X_{\alpha}$ be defined by $f(a) = (f_{\alpha}(a))_{\alpha \in J}$. Let $\prod_{\alpha} X_{\alpha}$ has the product topology. Then f is continuous if and only if all $f_{\alpha}: A \to X_{\alpha}$ is continuous.

Example

Let us consider the box topology on \mathbb{R}^{ω} . Then $f(t) = (t, t, \cdots)$ is not continuous.

A **metric** on a set X is a function

$$d: X \times X \to \mathbf{R}$$

such that

- 1. $d(x,y) \ge 0$ for all $x \in X$ where the equality holds when x = y;
- 2. d(x,y) = d(y,x);
- 3. $d(x,y) + d(y,z) \ge d(x,z)$ for all $x, y, z \in X$.

The **ball** of radius ε (or simply ε -**ball**) centered at $x \in X$ is the subset of X defined by

$$B_{\varepsilon}^{d}(x) = \{ y \in X \mid d(x, y) < \varepsilon \}$$

If there is no ambiguity on which metric we refer to, we simply write $B_{\varepsilon}(x)$. The topology on X generated by the basis consists of all ε -balls, $\varepsilon \in \mathbf{R}_+$, is called the **metric topology** on X with respect to the metric d.

Proposition

Given a metric space (X,d), the bounded metric $\overline{d}(x,y) = \min\{d(x,y),1\}$ defines the same topology.

Definition

On \mathbb{R}^n , there are two metrics.

For $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$, define

$$||x|| = (x_1^2 + \dots + x_n^2)^{1/2}$$

The **euclidean metric** is the metric defined by

$$d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$$

► The square metric is defined by

$$\rho(\mathbf{x}, \mathbf{y}) = \max\{|x_1 - y_1|, \cdots, |x_n - y_n|\}$$

On \mathbb{R}^n , the metric topologies induced by d and ρ are the same.

Definition

The metric $\overline{\rho}$ on \mathbb{R}^J defined by

$$\overline{\rho}(\mathbf{x}, \mathbf{y}) = \sup{\overline{d}(x_{\alpha}, y_{\alpha}) \mid \alpha \in J}$$

is called the **uniform metric**. The topology generated by $\overline{\rho}$ is called the **uniform topology** on \mathbb{R}^J .

Theorem

The uniform topology on \mathbb{R}^J is finer than the product topology and coarser than the box topology. If J is infinite, all three topologies are different.

The metric

$$\overline{D}(\mathbf{x}, \mathbf{y}) = \sup \left\{ \frac{\overline{(x_i, y_i)}}{i} \right\}$$

is a metric that induces the product topology on \mathbb{R}^{ω} .

Example

Let $X \subset \mathbb{R}^{\omega}$ be a subset consists of $\mathbf{x} = (x_1, \cdots)$ where $\sum_{i=1}^{\infty} x_i^2$ converges. Define

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^{\infty} (x_i - y_i)^2\right)^2$$

The topology generated by this metric is called the l^2 -topology.

- 1. Show that l^2 -topology is finer than the uniform topology and coarser than the box topology on X.
- 2. Let $\mathbf{R}^{\infty} \subset X$ be a subset of X consist of all points $\mathbf{x} = (x_1, \cdots)$ such that $\lim x_i = 0$. Show that uniform, l^2 , box, product topologies are all distinct on \mathbb{R}^{∞} .
- 3. Compare four topologies on $H = \prod_{n \in \mathbb{Z}_+} [0, 1/n]$.