Recorridos en árboles reflejados.

Mario Román

11 de septiembre de 2014

1. Árboles reflejados.

1.1. Definiciones

Enunciado. Encontrar la relación entre los distintos recorridos en un árbol binario y su árbol reflejado.

Un árbol binario será para nosotros una raíz de etiqueta a, unida a dos subárboles ordenados, izquierdo y derecho, A_1 y A_2 . Un árbol binario es entonces de la forma $A=(A_1,a,A_2)$ o vacío A=nulo. Nótese que la división entre árboles y nodos es aquí casi inexistente, cada nodo es en sí un árbol con sus descendientes.

Vamos a definir además la función que refleja al árbol y la función que invierte un orden dado, para ello aplicamos inducción sobre la altura del árbol, que será siempre menor en una unidad en un subárbol frente al árbol inicial:

```
Definimos el reflejado de A, rfl(A) como:

rfl(A_1, a, A_2) = (rfl(A_2), a, rfl(A_1))

rfl(nulo) = nulo
```

Definimos el inverso de una ordenación de etiquetas, $inv([a_1, a_2, a_3, \dots, a_n])$ expresando el orden como secuencia de etiquetas o como unión de otros órdenes:

$$inv([a_1, a_2, \ldots]) = inv([a_2, a_3, \ldots]) \cup [a_1]$$

 $inv(J \cup K) = inv(K) \cup inv(J)$
 $inv([]) = []$

Usaremos además las funciones postorden (pos()), preorden (pre()) e inorden (ino()), ya definidas, que expresamos en esta notación como:

```
\begin{split} &pre(nulo) = [\ ] \\ &pos(nulo) = [\ ] \\ &ino(nulo) = [\ ] \\ &pre(A_1, a, A_2) = [a] \cup pre(A_1) \cup pre(A_2) \\ &pos(A_1, a, A_2) = pos(A_1) \cup pos(A_2) \cup [a] \\ &ino(A_1, a, A_2) = ino(A_1) \cup [a] \cup ino(A_2) \end{split}
```

Nótese que en todo momento estamos usando el operador \cup para unir de manera ordenada los órdenes de etiquetas resultado de los recorridos sobre el árbol, no como unión conjuntista.

1.2. Preorden y postorden

El preorden del reflejado de un árbol es el inverso de su postorden. Es decir,

```
pre(rfl(A)) = inv(pos(A))
```

Demostramos usando las definiciones por inducción sobre la altura. Para el caso del árbol vacío es trivial:

```
pre(rfl(nulo)) = pre(nulo) = []

inv(pos(nulo)) = inv([]) = []
```

Y para el caso inductivo, tomando como hipótesis de inducción que está demostrado para A_1, A_2 .

```
pre(rfl(A_1, a, A_2)) = pre(rfl(A_2), a, rfl(A_1)) = [a] \cup pre(rfl(A_2)) \cup pre(rfl(A_1))

inv(pos(A_1, a, A_2)) = inv(pos(A_1) \cup pos(A_2) \cup [a]) = [a] \cup inv(pos(A_2)) \cup inv(pos(A_1))

Que por hipótesis de inducción, son iguales.
```

El postorden del reflejado de un árbol es el inverso de su preorden. Es decir,

```
pos(rfl(A)) = inv(pre(A))
```

Esto es trivial sabiendo que rfl(rfl(A)) = A, y que inv(inv(o)) = o, y aplicando el resultado anterior al árbol reflejado.

```
\begin{aligned} &pre\left(rfl(rfl(A))\right) = inv\left(pos(rfl(A))\right) \\ &inv(pre(A)) = inv(inv(pos(rfl(A)))) \\ &inv(pre(A)) = pos(rfl(A)) \end{aligned}
```

1.3. Inorden

El inorden de un árbol es el inverso del inorden de su reflejado. Es decir,

```
ino(rfl(A)) = inv(ino(A))
```

Demostramos de nuevo por inducción sobre la altura. Para el caso trivial:

```
ino(rfl(nulo)) = ino(nulo) = [\ ]
inv(ino(nulo)) = inv([\ ]) = [\ ]
```

Y ahora, suponiendo que esté demostrado para A_1, A_2 , se tendrá:

```
ino(rfl(A_1, a, A_2)) = ino(rfl(A_2), a, rfl(A_1)) = ino(rfl(A_2)) \cup [a] \cup ino(rfl(A_1))
inv(ino(A_1, a, A_2)) = inv(ino(A_1) \cup a \cup ino(A_2)) = inv(ino(A_2)) \cup [a] \cup inv(ino(A_1))
```

Donde, por hipótesis de inducción, ambos son iguales.