Содержание

- 1 Определение несобственного интеграла: интеграл по неограниченному интервалу, интеграл от неограниченной функции. Несобственные интегралы с двумя особыми пределами интегрирования. Интегрирование степенных особенностей
- 2 Свойства операции несобственного интегрирования. Примеры интегрирования. Примеры вычисления несобственных интегралов

5

6

- 3 Критерий сходимости несобственного интеграла от неотрицательной функции. Признак совместной сходимости. Следствие. Функции сравнения, сравнения со степенными функциями. Пример
- 4 Критерий Коши сходимости несобственного интеграла. Абсолютная сходимость несобственного интеграла. Лемма о сходимости абсолютно сходящихся интегралов. Условно сходящиеся несобственные интегралы
- 5 Признаки Дирихле и Абеля. Примеры 12
- 1 Определение несобственного интеграла: интеграл по неограниченному интервалу, интеграл от неограниченной функции. Несобственные интегралы с двумя особыми пределами интегрирования. Интегрирование степенных особенностей

Интеграл Римана был нами определен для конечного промежутка интегрирования и при этом подынтегральная функция обязана была быть ограниченной. Оказывается, что таким образом определенный интеграл допускает естественное расширение на случай, когда хотя бы одно из

указанных двух условий не выполнено.

Определение

Для любой функции f(x), заданной на бесконечном промежутке $[a,+\infty)$ и интегрируемой по Риману на любом конечном отрезке вида $[a,\eta]$, предел интеграла $\Phi(\eta) = \int\limits_a^\eta f(x) dx$ при $\eta \to +\infty$, если только он существует, называется несобственным интегралом от функции f(x) по бесконечному промежутку $[a,+\infty)$. Если несобственный интеграл от функции f(x) по $[a,+\infty)$ существует, то его обозначают как $\int\limits_a^{+\infty} f(x) dx$ и называют также несобственным интегралом от a до $+\infty$.

Таким образом, по определению имеет место равенство

$$\int_{a}^{+\infty} f(x)dx = \lim_{\eta \to +\infty} \int_{a}^{\eta} f(x)dx. \tag{(1)}$$

Если предел (1) существует и конечен, то интеграл называется сходящимся, а функция f(x) интегрируемой по $[a, +\infty)$ в несобственном смысле. Если же предел (1) не существует или бесконечен, то интеграл $\int_{a}^{+\infty} f(x)dx$ называется расходящимся.

Определение несобственного интеграла от функции по промежутку $(-\infty,b]$ дается аналогично, с помощью замены x=-t в равенстве $\int\limits_{-\infty}^{b} f(x)dx = \lim\limits_{\xi \to -\infty} \int\limits_{\xi}^{b} f(x)dx = \int\limits_{-b}^{+\infty} f(-t)dt.$ Таким образом, интеграл с бесконечным нижним пределом всегда сводится к интегралу с бесконечным верхним пределом.

Пример. Исследовать на сходимость несобственный интеграл $\int\limits_{1}^{+\infty} \frac{dx}{x^{\alpha}}$ при разных значениях параметра α .

Решение. При $\alpha \neq 1$ имеем по определению $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}} = \lim_{\eta \to +\infty} \int_{1}^{\eta} \frac{dx}{x^{\alpha}} = \lim_{\eta \to +\infty} \int_{1}^{\eta} \frac{dx}{x^{\alpha}} = \lim_{\eta \to +\infty} \left(\frac{x^{1-\alpha}}{1-\alpha}\right) \Big|_{1}^{\eta} = \lim_{\eta \to +\infty} \frac{\eta^{1-\alpha}}{1-\alpha} - \frac{1}{1-\alpha}$. Последний предел в этом равенстве равен нулю при $\alpha > 1$, и следовательно, при этих α справедливо равенство $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}} = \frac{1}{\alpha-1}$ то есть интеграл сходится. Если же $\alpha < 1$, то

$$\int\limits_{1}^{+\infty}\frac{dx}{x^{\alpha}}=\lim_{\eta\to+\infty}\frac{\eta^{1-\alpha}}{1-\alpha}-\frac{1}{1-\alpha}=+\infty.\ \Pi$$
усть $\alpha=1.\ \text{Тогда}\ \int\limits_{1}^{+\infty}\frac{dx}{x}=\lim_{\eta\to+\infty}\int\limits_{1}^{\eta}\frac{dx}{x}=$

 $\lim_{\eta\to+\infty}\ln{(\eta)}=+\infty.$ Таким образом, интеграл $\int\limits_1^{+\infty}\frac{dx}{x^{\alpha}}$ сходится при $\alpha>1$ и расходится при $\alpha\leq1.$ \square

Расширим теперь определение интеграла на случай, когда подынтегральная функция не ограничена на промежутке интегрирования.

Определение

Пусть функция f(x) определена на конечном промежутке [a,b) и интегрируема по Риману на любом отрезке вида $[a,\eta] \subset [a,b)$. Если f(x) — неограниченная на [a,b] функция, то предел ее первообразной $\Phi(\eta) = \int_a^\eta f(x) dx$ при $\eta \to b-0$, если только он существует, называется несобственным интегралом от функции f(x) по промежутку [a,b].

Таким образом, по определению имеет место равенство

$$\int_{a}^{b} f(x)dx = \lim_{\eta \to b-0} \int_{a}^{\eta} f(x)dx. \tag{(2)}$$

Если предел (2) существует и конечен, то несобственный интеграл называется сходящимся, а функция f(x) интегрируемой по [a,b] в несобственном смысле. Если же предел (2) не существует или бесконечен, то интеграл $\int_{a}^{b} f(x) dx$ называется расходящимся.

Определение несобственного интеграла от функции по промежутку (a,b] для неограниченной на отрезке [a,b] функции, интегрируемой на любом отрезке вида $[\xi,b]$, где $\xi>a$, дается с помощью замены x=-t в следующем равенстве: $\int\limits_a^b f(x)dx=\lim\limits_{\xi\to a+0}\int\limits_\xi^b f(x)dx=\int\limits_{-b}^{-a}f(-t)dt$.

Иногда, чтобы подчеркнуть отличие обычного интеграла Римана от несобственных интегралов этот обычный интеграл называют собственным.

Пример. Исследовать на сходимость несобственный интеграл $\int\limits_0^1 \frac{dx}{x^{\alpha}}$ в зависимости от значений вещественного параметра α .

Решение. Если $\alpha \leq 0$, то функция $\frac{1}{x^{\alpha}} = x^{-\alpha}$ непрерывна на отрезке [0,1] и поэтому интегрируема здесь по Риману. Следовательно, при $\alpha \leq 0$ рассматриваемый интеграл является собственным. Пусть $0 < \alpha < 1$. Тогда $\int_0^1 \frac{dx}{x^{\alpha}} = \lim_{\xi \to +0} \int_{\xi}^1 \frac{dx}{x^{\alpha}} = \lim_{\xi \to +0} \frac{x^{1-\alpha}}{1-\alpha} \Big|_{\xi}^1 = \frac{1}{1-\alpha} < +\infty$, то есть при этих α несобственный интеграл сходится. Если же $\alpha > 1$, то $\int_0^1 \frac{dx}{x^{\alpha}} = \lim_{\xi \to +0} \frac{x^{1-\alpha}}{1-\alpha} \Big|_{\xi}^1 = \frac{1}{1-\alpha} - \lim_{\xi \to +0} \frac{\xi^{1-\alpha}}{1-\alpha} = +\infty$, то есть несобственный интеграл расходится. Пусть $\alpha = 1$. Тогда имеем $\int_0^1 \frac{dx}{x} = \lim_{\xi \to +0} \int_{\xi}^1 \frac{dx}{x} = -\lim_{\xi \to +0} \ln (\xi) = +\infty$. Таким образом, несобственный интеграл $\int_0^1 \frac{dx}{x^{\alpha}}$ сходится при $\alpha < 1$ и расходится при значениях $\alpha \geq 1$. \square

Определенные выше несобственные интегралы называют также интегралами с особыми пределами (верхними или нижними). Рассматриваются также интегралы, у которых и верхний, и нижний пределы интегрирования являются особыми. В этом случае предполагается, что подынтегральная функция f(x) определена на конечном или бесконечном интервале (a,b) и при этом интегрируема на любом отрезке вида $[\xi,\eta]$, вложенном в (a,b). Несобственный интеграл при этом определяется равенством $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$, где c — внутренняя точка из (a,b). В правой части последнего равенства складываются несобственные интегралы, имеющие каждый ровно по одному особому пределу. При этом интеграл $\int_a^b f(x)dx$ называется сходящимся в том и только том случае, если сходятся оба интеграла $\int_a^c f(x)dx$ и $\int_c^b f(x)dx$. Если же хотя бы один из них расходится, то и интеграл $\int_a^b f(x)dx$ называется расходящимся.

 $\Pi pumep$. Исследовать на сходимость несобственный интеграл $\int\limits_0^{+\infty} \frac{dx}{x^{\alpha}}$ с двумя особыми пределами интегрирования в зависимости от значений α .

двумя особыми пределами интегрирования в зависимости от значений α . Pewenue. Имеем по определению $\int\limits_0^{+\infty} \frac{dx}{x^{\alpha}} = \int\limits_0^1 \frac{dx}{x^{\alpha}} + \int\limits_1^{+\infty} \frac{dx}{x^{\alpha}}$. Как уже установлено, при $\alpha \geq 1$ расходится первый несобственный интеграл в правой части $\int\limits_0^1 \frac{dx}{x^{\alpha}}$, если же $\alpha \neq 1$, то расходится второй интеграл $\int\limits_1^{+\infty} \frac{dx}{x^{\alpha}}$. Следовательно, исходный интеграл $\int\limits_0^{+\infty} \frac{dx}{x^{\alpha}}$ расходится при всех вещественных α . \square

2 Свойства операции несобственного интегрирования. Примеры интегрирования. Примеры вычисления несобственных интегралов

Многие из свойств определенного интеграла Римана распространяются и на несобственные интегралы. В частности, операция несобственного интегрирования линейна, аддитивна и монотонна. Для несобственных интегралов справедливы формула замены переменной интегрирования и формула интегрирования по частям.

Теорема (формула Ньютона Лейбница+)

Пусть функция f(x), $x \in [a,b)$, на любом отрезке $[a,\eta] \subset [a,b)$ интегрируема по Риману и при этом имеет здесь первообразную F(x). Тогда справедливо равенство

$$\int_{a}^{b} f(x)dx = \lim_{\eta \to b-0} F(\eta) - F(a). \tag{(NL')}$$

Формулу (NL') надо понимать следующим образом: если несобственный интеграл слева существует, то и предел справа первообразной $F(\eta)$ при $\eta \to b-0$ также существует. При этом имеет место формула (NL'). В частности, в формуле (NL') допускается равенство $b=+\infty$.

Пример. Вычислить несобственный интеграл
$$I = \int_{1}^{+1} \frac{dx}{\sqrt{1-x^2}}$$
.

Решение. Рассматриваемый несобственный интеграл I имеет два особых предела интегрирования: верхний и нижний. Для того чтобы вычислить I, сделаем замену переменной интегрирования $x=\sin{(t)}, -\frac{\pi}{2} \le t \le$

 $+\frac{\pi}{2}$. Тогда получим $\int\limits_{-1}^{+1} \frac{dx}{\sqrt{1-x^2}} = \int\limits_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \frac{\cos(t)dt}{\sqrt{1-\sin^2(t)}} = \int\limits_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} dt = \pi$. Здесь учтено, что $\cos(t)>0$ при $-\frac{\pi}{2}\leq t\leq +\frac{\pi}{2}$. \square

Пример. Вычислить несобственные интегралы $\int\limits_0^1 \ln{(x)} dx$ и $\int\limits_1^{+\infty} \ln{(x)} dx$. Решение. Применяя формулу интегрирования по частям, получаем для первого интеграла $\int\limits_0^1 \ln{(x)} dx = (x \ln{(x)}) \big|_0^1 - \int\limits_0^1 x d(\ln{(x)}) = -1$. Здесь использовано предельное равенство $\lim\limits_{x \to +0} (x \ln{(x)}) = 0$. Таким образом, интеграл $\int\limits_0^1 \ln{(x)} dx$ сходится. Для второго же интеграла из условия при $\eta > e$ имеем $\int\limits_1^\eta \ln{(x)} dx \geq \int\limits_e^\eta \ln{(x)} dx \geq \int\limits_e^\eta (\ln{(e)}) dx = \eta - e$. Переходя здесь к пределу при $\eta \to +\infty$, заключаем, что второй несобственный интеграл $\int\limits_1^{+\infty} \ln{(x)} dx$ расходится. \square

3 Критерий сходимости несобственного интеграла от неотрицательной функции. Признак совместной сходимости. Следствие. Функции сравнения, сравнения со степенными функциями. Пример

Пусть подынтегральная функция f(x) определена на промежутке [a,b) (конечном или бесконечном) и интегрируема по Риману на любом отрезке $[a,\eta]\subset [a,b)$. Если f(x) к тому же неотрицательна, то интеграл с переменным верхним пределом $\Phi(\eta)=\int\limits_a^\eta f(x)dx,\,\eta\in [a,b]$ является монотонно возрастающей на промежутке [a,b) функцией и по этой причине существует предел $\Phi(\eta)$ при $\eta\to +\infty$ (конечный или бесконечный). Таким образом, несобственный интеграл от неотрицательной функции f(x) сходится тогда и только тогда когда соответствующая ей первообразная $\Phi(\eta)$ ограничена на промежутке определения f(x).

На этом несложном замечании основаны признаки сравнения для

установления сходимости несобственных интегралов от неотрицательных функций.

Теорема (признак совместной сходимости)

Пусть функции f(x) и g(x) определены и неотрицательны на промежутке [a,b) и при этом

$$f(x) = O(g(x))$$
 при $x \to b - 0.$ ((3))

Тогда, если интеграл $\int\limits_a^b g(x)dx$ сходится, то и интеграл $\int\limits_a^b f(x)dx$ также сходится. Если же интеграл $\int\limits_a^b f(x)dx$ расходится, то расходится и интеграл $\int\limits_a^b g(x)dx$.

Доказательство

Условие (3) означает, что существуют такие постоянная M>0 и точка c из [a,b), что имеет место оценка $f(x)\leq Mg(x)$ $\forall x\in (c,b)$. Поэтому и в силу неотрицательности функции f(x) для любого числа η из интервала (c,b) справедливо неравенство $0\leq\int\limits_{c}^{\eta}f(x)dx\leq M\int\limits_{c}^{\eta}g(x)dx$. Переходя здесь к пределу при $\eta\to b-0$ и учитывая, что интегралы от a до b и от c до b сходятся или расходятся одновременно, получаем оба утверждения теоремы. \square

Следствие

Если неотрицательные функции f(x) и g(x), определенные на [a,b), имеют при $x \to b-0$ одинаковый порядок, то интегралы $\int\limits_a^b f(x) dx$ и $\int\limits_a^b g(x) dx$ сходятся или расходятся одновременно. В частности, это справедливо для функций, эквивалентных при $x \to b-0$.

При исследовании сходимости несобственных интегралов от f(x) функция g(x) в последних теореме и следствии называется функцией сравнения. В качестве функций сравнения часто выбираются функции, имеющие степенной порядок роста (или убывания): $g(x) = \frac{1}{x^{\alpha}}$, при $b = +\infty$; $\alpha > 0$, $g(x) = \frac{1}{(b-x)^{\alpha}}$, при $b \neq +\infty$; $\alpha \geq 0$.

Следствие

Пусть неотрицательная функция f(x), непрерывная на $[a, +\infty)$, где a>0, имеет при $x\to +\infty$ одинаковый порядок с функцией $g(x)=\frac{1}{x^\alpha}$, то есть f(x)=O(g(x)) и g(x)=O(f(x)) при $x\to +\infty$. Тогда интеграл $\int\limits_a^+ f(x)dx$ сходится при $\alpha>1$ и расходится при $\alpha\leq 1$.

Следствие

Пусть неотрицательная функция f(x), непрерывная на [a,b), где $0 < a < b < +\infty$, имеет при $x \to b - 0$ одинаковый порядок с функцией $g(x) = \frac{1}{(b-x)^{\alpha}}$. Тогда при $\alpha < 1$ интеграл $\int\limits_a^b f(x) dx$ сходится, а при $\alpha > 1$ этот же интеграл расходится.

 $\Pi puмер.$ Исследовать на сходимость несобственный интеграл $I=\int\limits_0^{+\infty}\frac{\ln^\alpha\left(1+\sinh\left(x\right)\right)}{\sqrt{x+\sqrt{x}+\sqrt{x}}}dx.$

Pewenue. Подынтегральная функция здесь определена и неотрицательна на положительной полуоси. Оба предела интегрирования у интеграла I особые. Представим I в виде суммы двух интегралов, каждый из которых имеет ровно один особый предел интегрирования:

$$I = \int_{0}^{1} \frac{\ln^{\alpha} \left(1 + \operatorname{sh}\left(x\right)\right)}{\sqrt{x + \sqrt{x}} + \sqrt{x}} dx + \int_{1}^{+\infty} \frac{\ln^{\alpha} \left(1 + \operatorname{sh}\left(x\right)\right)}{\sqrt{x + \sqrt{x}} + \sqrt{x}} dx. \tag{(4)}$$

Сравним неотрицательную подынтегральную функцию f(x) со степенной. Имеем при $x \to +0$: $\ln{(1+\sin{(x)})} \sim \sin{(x)}, \ f(x) \sim \frac{(\sin{(x)})^\alpha}{x^{\frac{1}{4}}(\sqrt{1+\sqrt{x}}+x^{\frac{1}{4}})} \sim \frac{x^\alpha}{x^{\frac{1}{4}}} \sim \frac{1}{x^{\frac{1}{4}}-\alpha}$. Следовательно, при условии, что $\frac{1}{4}-\alpha < 1$ интеграл $\int\limits_0^1 f(x) dx$ сходится, а при $\frac{1}{4}-\alpha \ge 1$ расходится. Таким образом, необходимое и достаточное условие сходимости первого несобственного интеграла в правой части равенства (4) записывается как неравенство $\alpha > -\frac{3}{4}$. При $x \to +\infty$ проведем следующие сравнения: $\ln{(1+\sin{(x)})} \sim (x+\ln{(e^{-x}+\frac{1}{2}-\frac{1}{2}e^{-2x})}) \sim x, \ f(x) \sim \frac{x^\alpha}{\sqrt{x+\sqrt{x}}+\sqrt{x}}} \sim \frac{x^\alpha}{2\sqrt{x}} \sim \frac{1}{2x^{\frac{1}{2}-\alpha}}$. Следовательно, при условии, что $\frac{1}{2}-\alpha > 1$ интеграл $\int\limits_1^{+\infty} f(x) dx$ сходится, а при $\frac{1}{2}-\alpha \le 1$ он же расходится. Таким образом, оба несобственных интеграла в правой части

формулы (4) сходятся тогда и только тогда когда числовой параметр α лежит в интервале $-\frac{3}{4} < \alpha < -\frac{1}{2}$. Это и есть критерий сходимости несобственного интеграла I. \square

4 Критерий Коши сходимости несобственного интеграла. Абсолютная сходимость несобственного интеграла. Лемма о сходимости абсолютно сходящихся интегралов. Условно сходящиеся несобственные интегралы

Пусть несобственный интеграл $\int_a^b f(x)dx$ имеет особый верхний предел. Это означает, по определению, что подынтегральная функция f(x) интегрируема на любом отрезке $[a,\eta]$, где $\eta < b$, и при этом имеет место равенство $\int_a^b f(x)dx = \lim_{\eta \to b - 0} \int_a^{\eta} f(x)dx$. Согласно критерию Коши, предел в правой части этого равенства существует тогда и только тогда когда для первообразной $\Phi(\eta) = \int_a^{\eta} f(x)dx$ выполняется следующее условие Коши: $\forall \varepsilon > 0 \exists b_{\varepsilon} \in (a,b) \colon \forall \xi, \eta \in (b_{\varepsilon},b) \Rightarrow |\Phi(\eta) - \Phi(\xi)| < \varepsilon$. Это условие на первообразную подынтегральной функции необходимо и достаточно для сходимости интеграла. Его (условие) называют критерием Коши сходимости несобственного интеграла.

Определение

Пусть функция f(x) определена на конечном промежутке [a,b) и интегрируема по Риману на любом отрезке $[a,\eta]\subset [a,b)$. Если интеграл от |f(x)| сходится, то интеграл $\int\limits_a^b f(x)dx$ называется абсолютно сходящимся.

Лемма (о сходимости)

Пусть функция f(x) определена на конечном или бесконечном промежутке [a,b) и при этом интегрируема на любом отрезке $[a,\eta] \subset [a,b)$.

Если интеграл $\int_a^b f(x)dx$ сходится абсолютно, то он сходится.

Доказательство

Пусть отрезок $[a,\eta]$ вложен в промежуток $[a,b),[a,\eta]\subset [a,b).$ По условию функция f(x) интегрируема на $[a,\eta].$ Следовательно, ее модуль |f(x)| — это также интегрируемая на $[a,\eta]$ функция. При этом для любых точек ξ,η из $(a,b),\,\xi<\eta$, имеет место неравенство

$$\left| \int_{\xi}^{\eta} f(x)dx \right| \le \int_{\xi}^{\eta} |f(x)|dx. \tag{(5)}$$

Для первообразной $\Phi(\eta) = \int_a^{\eta} |f(x)| dx$ из сходимости интеграла $\int_a^b |f(x)| dx$ следует выполнение условия Коши: $\forall \varepsilon > 0 \exists b_{\varepsilon} \in (a,b) \colon \forall \xi, \eta \in (b_{\varepsilon},b) \Rightarrow |\Phi(\eta) - \Phi(\xi)| < \varepsilon$, или, что то же самое:

$$|\Phi(\eta) - \Phi(\xi)| = \int_{\xi}^{\eta} |f(x)| dx < \varepsilon.$$
 ((6))

Для этих же точек ξ и η из интервала (b_{ε},b) , применяя последовательно оценки (5) и (6), получаем $|\int\limits_{\xi}^{\eta}f(x)dx|\leq \int\limits_{\xi}^{\eta}|f(x)|dx<\varepsilon$. Следовательно, первообразная $\Psi(\eta)=\int\limits_{a}^{\eta}f(x)dx$ также удовлетворяет условию Коши. Это значит, что соответствующий $\Psi(\eta)$ несобственный интеграл $\int\limits_{a}^{b}f(x)dx$ по [a,b], в силу критерия Коши, обязан сходиться.

Утверждение, обратное лемме о сходимости, несправедливо. Вэтой связи вводится понятие условно сходящихся интегралов.

Определение

Если интеграл $\int_a^b f(x) dx$ сходится в то время как интеграл от |f(x)| по [a,b] расходится, то интеграл $\int_a^b f(x) dx$ называется условно сходящимся.

 $\Pi pumep$. Исследовать на сходимость несобственный интеграл $\int\limits_1^{+\infty} \frac{\sin{(x)}}{x^{\alpha}} dx$ в зависимости от вещественных значений α .

Решение.

- 1. Пусть $\alpha \leq 0$. Тогда для любого натурального n имеем следующее неравенство $\int\limits_{2n\pi}^{2n\pi+\pi} \frac{\sin{(x)}}{x^{\alpha}} dx \geq \int\limits_{2n\pi}^{2n\pi+\pi} \sin{(x)} dx = \int\limits_{0}^{\pi} \sin{(x)} dx = 2$. Таким образом, условие Коши для рассматриваемого несобственного интеграла не выполняется. Следовательно, интеграл расходится;
- 2. Пусть $\alpha > 1$. Тогда из оценки $\left| \frac{\sin(x)}{x^{\alpha}} \right| \leq \frac{1}{x^{\alpha}} \ \forall x \in [1, +\infty)$ следует, что $\left| \int\limits_{1}^{+\infty} \frac{\sin(x)}{x^{\alpha}} dx \right| \leq \int\limits_{1}^{+\infty} \frac{1}{x^{\alpha}} dx = \frac{x^{1-\alpha}}{1-\alpha} \left| \frac{1}{1}^{+\infty} \right| = \frac{1}{1-\alpha}$. Таким образом, при $\alpha > 1$ рассматриваемый интеграл сходится абсолютно;
- 3. Пусть $0 < \alpha \le 1$. Имеем при этом $\int_{1}^{+\infty} \frac{\sin(x)}{x^{\alpha}} dx = -\int_{1}^{+\infty} \frac{d(\cos(x))}{x^{\alpha}} = -\frac{\cos(x)}{x^{\alpha}}|_{1}^{+\infty} \alpha \int_{1}^{+\infty} \frac{\cos(x)}{x^{\alpha+1}} dx$. Учитывая, что $\alpha > 0$, получаем отсюда $\int_{1}^{+\infty} \frac{\sin(x)}{x^{\alpha}} dx = \cos(1) \alpha \int_{1}^{+\infty} \frac{\cos(x)}{x^{\alpha+1}} dx$. Интеграл в правой части этого равенства сходится абсолютно: $|\int_{1}^{+\infty} \frac{\alpha \cos(x)}{x^{\alpha+1}} dx| \le \int_{1}^{+\infty} \frac{\alpha}{x^{\alpha+1}} dx = -\frac{1}{x^{\alpha}}|_{1}^{+\infty} = 1$. Таким образом, при $0 < \alpha \le 1$ интеграл $\int_{1}^{+\infty} \frac{\sin(x)}{x^{\alpha}} dx$ сходится. Выясним, сходится ли он абсолютно. Имеем для любого натурального n и с учетом неравенства $\alpha \le 1$ следующую оценку: $\int_{n\pi}^{2n\pi} \frac{|\sin(x)|}{x^{\alpha}} dx \ge \int_{n\pi}^{2n\pi} \frac{|\sin(x)|}{x} dx \ge \frac{1}{2n\pi} \int_{n\pi}^{\infty} |\sin(x)| dx = \frac{1}{\pi}$. Таким образом, при $\alpha \le 1$ условие Коши для несобственного интеграла $\int_{1}^{+\infty} \frac{|\sin(x)|}{x^{\alpha}} dx$ не выполняется, то есть он расходится. Это означает, что при $0 < \alpha \le 1$ этот несобственный интеграл сходится условно.

5 Признаки Дирихле и Абеля. Примеры

Ряд признаков сходимости несобственных интегралов основан на разложении подынтегральной функции в произведение сомножителей со специальными свойствами. Приведем без доказательства формулировку одного из этих признаков и проиллюстрируем примером его применение.

Теорема (признак Дирихле)

Пусть функция f(x) интегрируема на любом отрезке $[a,\eta]$, ее первообразная $\Phi(\eta)=\int\limits_a^\eta f(x)dx$ ограничена на промежутке $[a,+\infty)$. Пусть кроме того есть монотонная функция g(x), стремящаяся к нулю при $x\to +\infty$. Тогда интеграл $\int\limits_a^{+\infty} f(x)g(x)dx$ сходится.

Пример. Исследовать на сходимость несобственный интеграл $\int\limits_{1}^{+\infty} \frac{\sin{(x)}}{(x+\cos{(x)})^{\alpha}} dx$ в зависимости от вещественных значений α .

Решение. Интеграл имеет один особый предел интегрирования в точке $+\infty$. При $\alpha \leq 0$ этот интеграл расходится, что следует из оценки $\int_{2n\pi}^{2n\pi+\pi} \frac{\sin(x)}{(x+\cos(x))^{\alpha}} dx \geq \int_{2n\pi}^{2n\pi+\pi} \sin(x) dx = \int_{0}^{\pi} \sin(x) dx = 2$ и критерия Коши для несобственных интегралов. Пусть $\alpha > 0$. Вэтом случае применим признак Дирихле. Возьмем $f(x) = \sin(x)$ и $g(x) = (x+\cos(x))^{\alpha}$. Подынтегральная функция представляет собой произведение $f(x) \cdot g(x)$. При этом первообразная $\Phi(\eta) = -\cos(\eta)$ функции $f(x) = \sin(x)$ ограничена на полуоси $\eta > 0$. Функция $g(x) = (x+\cos(x))^{\alpha}$ стремится к нулю при $x \to +\infty$ и $g'(x) \leq 0$ при $\alpha > 0$ и x > 1. В соответствии с принципом Дирихле интеграл $\int_{1}^{+\infty} f(x)g(x)dx$ сходится. Сходится ли интеграл абсолютно? Имеем эквивалентность $\left|\frac{\sin(x)}{(x+\cos(x))^{\alpha}}\right| \sim \frac{\left|\sin(x)\right|}{x^{\alpha}}$ при $x \to +\infty$. Согласно лемме о сходимости, исходный интеграл сходится абсолютно тогда и только тогда когда $\int_{1}^{+\infty} \frac{\left|\sin(x)\right|}{x^{\alpha}} dx < +\infty$. Последний интеграл, как уже было доказано, сходится при $\alpha > 1$ и расходится при $\alpha \leq 0$. Если $0 < \alpha \leq 1$, то сходимость условная, при $\alpha > 1$ сходимость абсолютная. \square

Приведем без доказательства формулировку еще одного именного признака сходимости несобственного интеграла.

(признак Абеля)

Пусть функция g(x) монотонна и ограничена при x>a, а функция f(x) интегрируема на любом отрезке $[a,\eta]$, причем интеграл $\int\limits_a^{+\infty} f(x)dx$ сходится. Тогда интеграл $\int\limits_a^{+\infty} f(x)g(x)dx$ также сходится.

Иная формулировка признака Абеля: если интеграл от a до $+\infty$ сходится, то подынтегральную функцию можно умножить на ограниченную и монотонную функцию и интеграл от такого произведения, взятый от a до $+\infty$, также будет сходящимся.