TP 02 - La récursivité -

Exercice 01 La fonction récursive $convertirEnBase10(int\ n,\ int\ b)$ convertit un nombre $n\geq 0$ écrit en base b en un nombre en base 10.

Exemple: convertirEnBase10(100, 2) donne 4; convertirEnBase10(137, 11) donne 161; convertirEnBase10(100, 16) donne 256.

• Écrire la fonction convertirEnBase10 et testez la dans un programme.

Exercice 02 Soit n un entier naturel non nul introduit par l'utilisateur.

- 1. Écrire une fonction récursive qui permet d'afficher tous les nombres de 1 à n par ordre décroissant;
- 2. Écrire une fonction récursive qui permet d'afficher tous les nombres de 1 à n par ordre croissant.

Exercice 03 Soit la fonction f définie sur \mathbb{R} par:

$$f(x) = x^3 + x + 1$$

• Écrire une fonction récursive qui fait l'approximation par dichotomie de la racine unique de la fonction f sur l'intervalle [-3,3] avec une précision p introduite par l'utilisateur.

Exercice 04 (Supplémentaire) Écrire une fonction récursive qui permet de convertir un entier n ($n \ge 0$) en binaire.

Exercice 05 (Supplémentaire) Soit la fonction d' $Ackermann\ A(n,m)$ qui est définie sur $\mathbb{N}x\mathbb{N}$ par:

$$A(n,m) = \begin{cases} m+1 & si \ n = 0 \\ A(n-1,1) & si \ m = 0 \\ A(n-1,A(n,m-1)) & si non \end{cases}$$

- 1. Écrire une fonction récursive qui calcule A(n, m);
- 2. Calculer A(0,0), A(0,2), A(0,4), A(1,0), A(4,0), A(5,0);
 - Qu'est-ce que vous remarquez ?
 - Comment vous l'expliquez ?