Sei R ein Integritätsring mit Primring $\mathbb{Z}/p\mathbb{Z},\,p>0.$ Man zeige, daß für alle $x\in R$ gilt px=0.

Lösung. Wir erinnern uns, daß der Primring gegeben ist durch $R_0 = \mathbb{Z} \cdot 1 \subset R$. Insbesondere enthält er das Element $p \cdot 1$. Nach Voraussetzung ist $R_0 \cong \mathbb{Z} / p \mathbb{Z}$, also $p \cdot 1 = 0$. Wir nutzen nun das Assoziativgesetz in R:

$$px = p(1 \cdot x) = (p \cdot 1)x = 0 \cdot x = 0.$$