VE527

Computer-Aided Design of Integrated Circuits

Multi-Level Logic Synthesis:

Don't Cares

Outline

- Implicit Don't Cares
 - Introduction
 - Method to Obtain them

Don't Cares

- We made progress on multi-level logic by **simplifying** the model.
 - Algebraic model: we **get rid of** a lot of "difficult" Boolean behaviors.
 - But we lost some optimality in the process.
- How do we put it back? One surprising answer: Don't cares
 - To help this, **extract** don't cares from "surrounding logic," use them **inside each node**.
- The big difference in multi-level logic
 - Don't cares happen as a natural byproduct of Boolean network model: called **Implicit Don't Cares**.
 - They are all over the place, in fact. Very useful for simplification.
 - But they are not explicit. We have to go hunt for them...

Don't Cares Review: 2-Level

- In basic digital design...
 - Don't Care (DC) = an input pattern that **can never happen** or you don't care the output if it happens.
 - Example: use binary-coded decimals (BCD) to control seven-segment digital tube.

How about input (x,y,z,w)=(1,0,1,0),(1,0,1,1)...?

Don't care!

хуzw	decimal value	segment a
0000	0	1
0001	1	0
0010	2	1
0011	3	1
0100	4	0
0101	5	1
0110	6	1
0111	7	1
1000	8	1
1001	9	1

Don't Cares Review: 2-Level

• Since patterns (x,y,z,w)=(1,0,1,0), (1,0,1,1), (1,1,0,0), (1,1,0,1), (1,1,1,0), (1,1,1,1) are don't cares, we are **free** to decide whether F=1 or 0, to better optimize F.

xyzw	decimal value	segment a
0000	0	1
0001	1	0
0010	2	1
0011	3	1
0100	4	0
0101	5	1
0110	6	1
0111	7	1
1000	8	1
1001	9	1

\ xy				
zw	00	01	11	10
00	1	0	d	1
01	0	1	d	1
11	1	1	а	р
10	1	1	J	d

Don't Cares (DCs): Multi-level

- What's different in multi-level?
 - DCs arise **implicitly**, as a result of the **Boolean logic network structure**.
 - We must go find these implicit don't cares we must search for them explicitly.

• Suppose we have a Boolean network and a node f in the network.

- Can we say anything about don't cares for node f?
 - No. We don't know any "context" for surrounding parts of network.
 - As far as we can tell, all patterns of inputs (X,b,Y) are possible.
 - ullet We cannot further simplify the expression for f.

- Now suppose we know something about input X to f:
 - Node X = ab.
 - Also assume a and b are primary inputs (PIs) and f is primary output (PO).

- Now can we say something about DCs for node f...?
 - YES!
 - Because there are some **impossible patterns** of (X, b,Y).

The possible input/output patterns for node X

а	b	X	Can it occur?
0	0	0	Yes
0	0	1	No
0	1	0	Yes
0	1	1	No
1	0	0	Yes
1	0	1	No
1	1	0	No
1	1	1	Yes

b	X	Can it occur?
0	0	Yes
0	1	No
1	0	Yes
1	1	Yes

Impossible patterns for (X, b, Y) are: (1, 0, 0) and (1, 0, 1)

- Impossible patterns for (X, b, Y) are (1, 0, 0) and (1, 0, 1).
 - With them, we can simplify f.

Kmap for <math>f = Xb + bY + XY

Y 00 01 11 10 0 1 1 1 1 1 1 1

With don't cares

• Now further suppose Y = b + c. What will happen?

b	С	Υ	Can it occur?
0	0	0	Yes
0	0	1	No
0	1	0	No
0	1	1	Yes
1	0	0	No
1	0	1	Yes
1	1	0	No
1	1	1	Yes

b	Υ	Can it occur?
0	0	Yes
0	1	Yes
1	0	No
1	1	Yes

Impossible patterns for (X, b, Y) are: (0, 1, 0) and (1, 1, 0)

- Impossible patterns for (X, b, Y) are
 - (1,0,0), (1,0,1) (From X = ab)
 - (0,1,0), (1,1,0) (From Y = b + c)

Kmap for <math>f = Xb + bY + XY

 $\begin{array}{c|c} f \text{ can be simplified} \\ as f = b \end{array}$

Xb				
Y	00	01	11	10
0			1	
1		1	1	1

With don't cares

Xb					
Y	00	01	11	10	
0		d	d	d	
1		1	1	d	

• Now suppose f is **not** a **primary output**, Z is.

- Question: when does the value of the output of node f actually affect the primary output Z?
 - ullet Or, said <u>conversely</u>: When does it **not matter** what f is?
 - Let's go look at patterns of (f, X, d) at node Z...

When Is Z "Sensitive" to Value of f?

f	X	d	Z	Does f affect Z?
0	0	0	0	No
1	0	0	0	INO
0	0	1	0	No
1	0	1	0	INO
0	1	0	0	No
1	1	0	0	INO
0	1	1	0	V
1	1	1	1	Yes

Can we use this information to find new patterns of (X, b, Y) to help us simplify f further?

YES!

When Is Z "Sensitive" to Value of f?

f	X	٦	Z	Does f affect Z?
<u> </u>		u		Dues i allect Z:
0	0	0	0	No
1	0	0	0	140
0	0	1	0	No
1	0	1	0	INO
0	1	0	0	No
1	1	0	0	
0	1	1	0	Vaa
1	1	1	1	Yes

What patterns at **input to** f node (i.e., (X, b, Y)) are DCs, because those patterns make Z output **insensitive** to changes in f?

$$(X, b, Y) = (0, -, -)$$

This means when X = 0, we can set f to any value – it **won't change** Z. So (X, b, Y) = (0, -, -) is DC of f!

- So, we can use this **new** DC pattern (0, -, -) to simplify f further...
 - ... with previous DC patterns (1,0,0), (1,0,1), (0,1,0), (1,1,0).

Final Result: Multi-level DC Tour

- What happened to f?
 - Due to network **context**, it **disappeared** (f = 1)!

Summary

- Don't Cares are **implicit** in the Boolean network model.
 - They arise from the **graph structure** of the multilevel Boolean network model itself.
- Implicit Don't Cares are powerful.
 - They can greatly help simplify the 2-level SOP structure of any node.
- Implicit Don't Cares require **computational work** to find.
 - For this example, we just "stared at the logic" to find the DC patterns.
 - We need some **algorithms** to do this automatically!
 - This is what we need to study next ...

Outline

- Implicit Don't Cares
 - Introduction
 - Method to Obtain them

3 Types of Implicit DCs

- Satisfiability don't cares: SDCs
 - Belong to the **wires** inside the Boolean logic network.
 - Used to compute **controllability** don't cares (below).
- Controllability don't cares: CDCs
 - Patterns that cannot happen at inputs to a network node.
- Observability don't cares: ODCs
 - Patterns that "mask" outputs.

Controllability don't cares: CDCs

• Patterns that **cannot happen at inputs** to a network node.

Example

• For node f, (X, b, Y) = (1,0,0), (1,0,1) are CDCs.

Observability don't cares: ODCs

- Input patterns to node that make primary outputs insensitive to output of the node.
 - Patterns that "mask" outputs.
- Example
 - For node f, (X, b, Y) = (0, -, -) is ODC.

Background: Representing DC Patterns

- How shall we **represent** DC patterns at a node?
 - <u>Answer</u>: As a <u>Boolean function</u> that makes a 1 when the inputs are <u>these DCs</u>.
 - This is often called a **Don't Care Cover**.

Don't care pattern of (X,b,Y)=(1,0,0), (1,0,1)

The don't care cover is $X\bar{b}\bar{Y} + X\bar{b}Y = X\bar{b}$

Background: Representing DC Patterns

- So, each SDC, CDC, ODC is just another Boolean function, in this strategy.
- Why is it like this?
 - Because we can use all the other **computational Boolean algebra** techniques we know (e.g., BDDs), to **solve** for, and to **manipulate** the DC patterns.
 - This turns out to be hugely important to make the computation practical.

SDCs: They "Belong" to the Wires

- One SDC for every **internal wire** in Boolean logic network.
 - The SDC represents **impossible** patterns of **inputs to, and output of**, each node.
 - If the node function is F, with inputs a, b, c, write its SDC as: $S_F(F, a, b, c)$.

 $S_X(X, a, b)$ for impossible patterns of X, a, b.

SDCs: How to Compute

- Compute an SDC for each output wire from each internal Boolean node.
- You want an expression that is 1 when output *X* does not equal the Boolean expression for *X*.
 - This is just: $X \oplus (\text{expression for } X)$
 - Note #1: expression for X doesn't have X in it!
 - <u>Note #2</u>: this is the **complement** of the gate consistency function from SAT.
- Example $a \qquad SDC_X = X \oplus (ab + c)$ $b \qquad X = ab + c$

SDCs: Example

•
$$SDC_X = X \oplus (ab + c) = \overline{X}ab + \overline{X}c + X\overline{a}\overline{c} + X\overline{b}\overline{c}$$

One **impossible pattern**: Xabc = 011 -

SDCs: Summary

- SDCs are associated with every **internal wire** in Boolean logic network.
 - SDCs explain **impossible patterns** of input to, and output of, each node.
 - SDCs are easy to compute.
- SDCs alone are **not** the Don't Cares used to simplify nodes.
 - We use SDCs to **build CDCs**, which give impossible patterns at input of nodes.

How to Compute CDCs?

- Computational recipe:
 - 1. Get all the **SDCs** on the wires **input to** this node in Boolean logic network.
 - 2. OR together all these SDCs.
 - 3. Universally Quantify away all variables that are NOT used inside this node.

$$X_1 = \dots$$

$$X_2 = \dots$$

$$F = f(X_1, X_2, \dots, X_n)$$

$$X_n = \dots$$

$$CDC_F(X_1, ..., X_n) = (\forall \text{ vars not used in } F) \left| \sum_{\text{input } X_i \text{ to } F} SDC_{X_i} \right|$$

How to Compute CDCs?

$$CDC_F(X_1, ..., X_n) = (\forall \text{ vars not used in } F) \left[\sum_{\text{input } X_i \text{ to } F} SDC_{X_i} \right]$$

• Result: Inputs that let $CDC_F = 1$ are impossible patterns at input to node!

CDCs: Why Does This Work?

$$CDC_F(X_1, ..., X_n) = (\forall \text{ vars not used in } F) \left| \sum_{\text{input } X_i \text{ to } F} SDC_{X_i} \right|$$

- Roughly speaking...
 - SDC_{X_i} 's explain all the impossible patterns involving X_i wire input to the F node.
 - **OR** operation is just the "union" of all these impossible patterns involving X_i 's.
 - Universal Quantification removes variables not used by F, and does so in the right way: we want patterns that are impossible FOR ALL values of these removed variables.

Obtain CDCs for the node f

$$CDC_f(X_1, ..., X_n) = (\forall \text{ vars not used in } f) \left[\sum_{\text{input } X_i \text{ to } f} SDC_{X_i} \right]$$
This is b

Input variables to f are a, c, d, X, Y

- What about SDCs on **primary inputs**?
 - They are just 0.
 - Why? $SDC_a = a \oplus (expression \text{ for } a) = a \oplus a = 0.$
- <u>Thus</u>: SDCs on primary inputs have no impact on OR. We can <u>ignore primary inputs</u>.

• Since we ignore primary inputs, we have ...

$$CDC_f(X_1, ..., X_n) = (\forall \text{ vars not used in } f) \left[\sum_{\text{input } X_i \text{ to } f} SDC_{X_i} \right]$$
This is b

Only X, Y

• Thus, we have:

$$CDC_f = (\forall b)[SDC_X + SDC_Y] = (\forall b)[[X \oplus (a+b)] + [Y \oplus ab]]$$

$$= [[X \oplus (a+b)] + [Y \oplus ab]]_{b=1} \cdot [[X \oplus (a+b)] + [Y \oplus ab]]_{b=0}$$

$$= [\bar{X} + (Y \oplus a)] \cdot [(X \oplus a) + Y] = \bar{X}a + Y\bar{a}$$

- $CDC_f = \overline{X}a + Y\overline{a}$
- Does it **make sense**?
 - From CDC_f , impossible patterns are

•
$$(X, a) = (0,1)$$
 $a = 1 \Rightarrow X = 1$

•
$$(Y, a) = (1,0)$$
 $a = 0 \Rightarrow Y = 0$

How to Handle External CDCs?

- What if there are **external DCs** for primary inputs a, b, c, d for which we just **don't care** what f does?
 - **Answer**: Just **OR** these DCs in $(\sum SDC_i)$ part of CDC expression.
 - Represent these DCs as a **Boolean function** that makes a 1 when the inputs are **these DCs**.

Handling External CDCs: Example

- Suppose (b, c, d) = (1,1,1) cannot happen.
 - How to compute CDC_f now?

$$CDC_f = (\forall b)[[X \oplus (a+b)] + [Y \oplus ab] + bcd]$$

External DCs as a **Boolean function** that makes a 1 when the pattern is **impossible**.

Handling External CDCs: Example

$$CDC_f = (\forall b) [[X \oplus (a+b)] + [Y \oplus ab] + bcd]$$
$$= \overline{X}a + Y\overline{a} + \overline{a}cdX + cdY$$

New impossible patterns are

Make sense?

•
$$(a, c, d, X) = (0,1,1,1)$$
 $a = 0 && X = 1 \Rightarrow b = 1$
Thus, $b = c = d = 1$

•
$$(c, d, Y) = (1,1,1)$$
 $Y = 1 \Rightarrow b = 1$
Thus, $b = c = d = 1$

CDCs: Summary

- CDCs give **impossible patterns** at input to node F use as DCs.
 - Impossible because of the network structure of the nodes $\mathbf{feeding}$ node F.
 - CDCs can be computed mechanically from \overline{SDCs} on wires input to F.
 - Internal local CDCs: computed just from SDCs on wires into F.
 - External global CDCs: include DC patterns in the SDC sum.

CDCs: Summary (cont.)

- But CDCs are still **not all** the Don't Cares available to simplify nodes.
 - CDC_F derived from the structure of nodes "before" node F.
 - We need to look at DCs that derive form nodes "after" node F.
 - These are nodes between the **output** of F and **primary outputs** of the network.
 - These are ODCs.

Observability Don't Cares (ODCs)

- ODCs: patterns that mask a node's output at primary output (PO) of the network.
 - So, these are not impossible patterns these patterns can
 occur at node input.
 - These patterns make this node's output **not observable at primary output**.
 - "Not observable" for an input pattern means: Boolean value of node output does not affect <u>ANY</u> primary output.

Primary Output Insensitive to F

- When is primary output Z insensitive to internal variable F?
 - Means Z independent of value of F, given other inputs to Z.

Z insensitive to F if another input = 0

Z insensitive to F if another input = 1

How about the general case?

Recall: Boolean Difference

• What does **Boolean difference**

$$\partial F(a, b, ..., w, x)/\partial x = F_x \oplus F_{\overline{x}} = 1 \text{ mean?}$$

- If you apply an input pattern (a, b, ..., w) that makes $\partial F/\partial x = 1$, then any change in x will force a change in output F.
- What makes output F sensitive to input x?
 - Answer: Any pattern that makes $\frac{\partial F}{\partial x} = F_x \oplus F_{\overline{x}} = 1$.

Z Insensitive to F

- When is primary output Z insensitive to internal variable F?
 - Answer: when inputs (other than F) to Z make cofactors $Z_F = Z_{\bar{F}}$.
 - Make sense: if cofactors with respect to F are same, Z does not depend on F!
- How to find when cofactors are the same?
 - Answer: Solve for $Z_F \ \overline{\bigoplus} \ Z_{\bar{F}} = 1$
 - Note: $Z_F \oplus Z_{\bar{F}} = 1 \implies \overline{Z_F \oplus Z_{\bar{F}}} = 1 \implies \overline{\frac{\partial Z}{\partial F}} = 1$

How to Compute ODCs?

- A nice computational recipe:
 - 1. Compute $\partial Z/\partial F$. Any patterns that make $\partial Z/\partial F = 1$ mask output F for Z.
 - 2. Universally Quantify away all variables that are NOT inputs to the F node.

$$ODC_F(X_1, ..., X_n) = (\forall \text{ vars not used in } F) \left[\overline{\partial Z/\partial F} \right]$$

Result: Inputs that let $ODC_F = 1$ mask output F for Z, i.e., make Z insensitive to F.

Compute ODCs: Example

• Obtain the ODCs for node *F*.

Check: Does this ODC Make Sense?

- $ODC_F = ab$
 - ODC pattern is (a, b) = (1,1)
- Make sense! Because when (a, b) = (1,1), Z = 1 independent of F.

ODCs: More General Case

- **Question**: what if *F* feeds to **many** primary outputs?
 - <u>Answer</u>: Only patterns that are <u>unobservable</u> at <u>ALL</u> outputs can be ODCs.

• Computational recipe:

$$ODC_F = (\forall \text{ vars not used in } F) \left[\prod_{\text{Output } Z_i} \overline{\partial Z_i / \partial F} \right]$$

AND all n differences for each output Z_i .

ODCs: Summary

- ODCs give input patterns of node F that $\max F$ at primary outputs.
 - **Not** impossible patterns they **can occur**.
 - Don't cares because primary output "doesn't care" what *F* is, for these patterns.
 - ODCs can be computed mechanically from $\partial Z_i/\partial F$ on all outputs connected to F.
- CDCs + ODCs give the "full" don't care set used to simplify
 F.
 - ullet With these patterns, you can call something like ESPRESSO to simplify F.

Multi-Level Don't Cares: Are We Done?

- Yes, if your networks look just like above.
 - More precisely, if you only want to get CDCs from nodes immediately "before" you.
 - And if you only want to get ODCs for **one layer of nodes** between you and output.

Don't Cares, In General

- However, real multi-level logic looks like this!
 - CDCs are function of **all nodes** "before" *X*.
 - ODCs are function of **all nodes** between *X* and any output.
 - In general, we can **never get all** the DCs for node *X* in a big network.
 - Representing all this stuff can be **explosively** large, even with BDDs

Summary: Getting Network DCs

- How we really do it? generally do not get all the DCs.
 - Lots of tricks that trade off effort (time, memory) with quality (how many DCs).
 - Example: Can just extract "local CDCs", which requires looking at outputs of **immediate precedent** vertices and computing from the SDC patterns, which is easy.
 - There are also algorithms that walk the network to compute more of the CDC and ODC set for X, but these are more complex.
- For us, knowing these "limited" DC recipes is **sufficient**.