Digital Image Processing

Week-03

Image Enhancement

Image Enhancement

Image Enhancement

Process an image so that the result is more suitable than the original image for a specific application

- Image Enhancement Methods
 - Spatial Domain: Direct manipulation of pixels in an image
 - Frequency Domain: Process the image by modifying the Fourier transform of an image

This Chapter – Spatial Domain

Types of image enhancement operations

Point/Pixel operations

Output value at specific coordinates (x,y) is dependent only on the input value at (x,y)

Local operations

The output value at (x,y) is dependent on the input values in the neighborhood of (x,y)

Global operations

The output value at (x,y) is dependent on all the values in the input image

Basic Concepts

 Most spatial domain enhancement operations can be generalized as:

$$g(x, y) = T[f(x, y)]$$

f(x, y) = the input image g(x, y) = the processed/output image T = some operator defined over some neighbourhood of (x, y)

Point Processing

- In a digital image, point = pixel
- Point processing transforms a pixel's value as function of its value alone;
- It does not depend on the values of the pixel's neighbors.

Point Processing

- Neighborhood of size 1x1:
- g depends only on f at (x,y)
- T: Gray-level/intensity transformation/ mapping function

$$s = T(r)$$

- r = gray level of f at (x,y)
- s = gray level of g at (x,y)

Point Processing using Look-up Tables

A look-up table (LUT) implements a functional mapping.

<i>E.g.</i> :	index	value	
	•••	•••	
	101	64	
	102	68	
	103	69	
	104	70	
	105	70	
	106	71	
	•••	•••	

input output

Point Processing using Look-up Tables

POINT PROCESSING

Contrast Stretching

Thresholding

a b

FIGURE 3.2 Graylevel transformation functions for contrast enhancement.

Point Processing Example: Thresholding

$$s = \begin{cases} 1.0 & r > threshold \\ 0.0 & r <= threshold \end{cases}$$

Point Processing Example: Thresholding

Segmentation of an object of interest from a background

Point Processing Example: Intensity Scaling

$$s = T(r) = a.r$$

Original image

f(x,y)

Scaled image

 $a \cdot f(x,y)$

Point Processing Transformations

- There are many different kinds of grey level
 - transformations
- Three of the most common are shown here
 - Linear
 - Negative/Identity
 - Logarithmic
 - Log/Inverse log
 - Power law
 - nth power/nth root

Point Processing Example: Negative Images

- Reverses the gray level order
- For L gray levels, the transformation has the form: s = (L-1) r

 Negative images are useful for enhancing white or grey detail embedded in dark regions of an image

Point Processing Example: Negative Images

Input image (X-ray image) Output image (negative)

Grey Level Slicing

Grey Level Slicing

Point Processing Transformations

- There are many different kinds of grey level
 - transformations
- Three of the most common are shown here
 - Linear
 - Negative/Identity
 - Logarithmic
 - Log/Inverse log
 - Power law
 - nth power/nth root

Point Processing Example: Negative Images

- Reverses the gray level order
- For L gray levels, the transformation has the form: s = (L-1) r

 Negative images are useful for enhancing white or grey detail embedded in dark regions of an image

Point Processing Example: Negative Images

Input image (X-ray image) Output image (negative)

Test Yourself

A 5x4 image is given below. Use 8 connectivity based connected component analysis to find number of objects and size of each object

Even					
0	1	0	0		
1	1	0	0		
0	0	0	1		
0	1	1	0		
0	0	1	0		

Odd				
0	0	0	1	
1	1	0	0	
0	0	1	1	
0	1	1	0	
1	0	0	0	

Odd

The general form of the log transformation is

$$s = c \times \log(1+r)$$

- The log transformation maps a narrow range of low input grey level values into a wider range of output values
- The inverse log transformation performs the opposite transformation

Properties

- For lower amplitudes of input image the range of gray levels is expanded
- For higher amplitudes of input image the range of gray levels is compressed

Application

- This transformation is suitable for the case when the dynamic range of a processed image far exceeds the capability of the display device (e.g. display of the Fourier spectrum of an image)
- Also called "dynamic-range compression / expansion"

Fourier spectrum: image values ranging from 0 to 1.5x10⁶

The result of log transformation with c = 1

Power Law Transformations

Power law transformations have the following form

$$s = c \times r^{\gamma}$$

- Map a narrow range of dark input values into a wider range of output values or vice versa
- Varying γ gives a whole family of curves

Power Law Transformations

For γ< 1: Expands values of dark pixels, compress

values of brighter pixels

For γ > 1: Compresses values of dark pixels,
 expand values of brighter pixels

• If $\gamma=1$ & c=1: Identity transformation (s = r)

 A variety of devices (image capture, printing, display) respond according to a power law and need to be corrected

Gamma (γ) correction

The process used to correct the power-law response phenomena

Power Law Transformations: Gamma Correction

a b c d

FIGURE 3.7

(a) Linear-wedge gray-scale image.(b) Response of monitor to linear wedge.

(c) Gammacorrected wedge.

(d) Output of monitor.

The images to the right show a magnetic resonance (MR) image of a fractured human spine

$$y = 0.6$$

$$y = 0.4$$

$$y = 0.3$$

MR image of fractured human spine

Result after
Power law
transformation

$$c = 1, \gamma = 0.6$$

Result after
Power law

transformation

 $c = 1, \gamma = 0.4$

Result after
Power law
transformation

 $c = 1, \gamma = 0.3$

When the γ is reduced too much, the image begins to reduce contrast to the point where the image started to have very slight "wash-out" look.

Power Law Transformations Contrast Enhancement

Image has a washed-out appearance – needs γ > 1

Image Enhancement

Aerial Image

Result of Power law transformation $c = 1, \gamma = 3.0$ (suitable)

Result of Power law transformation $c = 1, \gamma = 4.0$ (suitable)

Result of Power law transformation $c = 1, \gamma = 5.0$ (high contrast, some regions are too dark)

- Let I be a 1-band (grayscale) image.
- I(r,c) is an 8-bit integer between 0 and 255.
- Histogram, h_l, of l:
 - a 256-element array, h_l
 - $h_I(g)$ = number of pixels in I that have value g.

for
$$g = 0, 1, 2, 3, ..., 255$$

HISTOGRAM

- A discrete function $h(r_k)=n_k$
 - $-r_k$ is the kth gray level
 - n_k is the number of pixels having gray level r_k in the image
- Ex:

0	1	2	3
1	3	3	0
0	1	3	0
3	0	3	1

UNIQUENESS

black marks pixels with intensity g

16-level (4-bit) image

Plot of histogram: number of pixels with intensity *g*

Histogram of a Color Image

- If I is a 3-band image
- then I(r,c,b) is an integer between 0 and 255.
- I has 3 histograms:
 - $h_R(g) = \#$ of pixels in I(:,:,1) with intensity value g
 - $h_G(g) = \#$ of pixels in I(:,:,2) with intensity value g
 - $h_B(g) = \#$ of pixels in I(:,:,3) with intensity value g

Histogram of a Color Image

There is one histogram per color band R, G, & B. Luminosity histogram is from 1 band = (R+G+B)/3

Dark image

Components of histogram are concentrated on the low side of the gray scale

Bright image

Components of histogram are concentrated on the high side of the gray scale

HISTOGRAM INSIGHT INTO CONTRAST

- A high contrast image makes good use of the full dynamic range available.
- Hence in some applications it may be desirable to make more optimal use of the full dynamic range.
- In some circumstances this results in a clearer image.

Low Contrast Image

How would the histograms of these images look like?

High Contrast Image

Low contrast image

Histogram is narrow and centered toward the middle of the gray scale

High contrast image

Histogram covers broad range of the gray scale and the distribution of pixels is not too far from uniform with very few vertical lines being much higher than the others

Readings from Book (4th Edn.)

- Chapter 3
 - -3.1
 - -3.2

Acknowledgements

- Statistical Pattern Recognition: A Review A.K Jain et al., PAMI (22) 2000
- Pattern Recognition and Analysis Course A.K. Jain, MSU
- Pattern Classification" by Duda et al., John Wiley & Sons.
- Digital Image Processing", Rafael C. Gonzalez & Richard E. Woods, Addison-Wesley, 2002
- Machine Vision: Automated Visual Inspection and Robot Vision", David Vernon, Prentice Hall, 1991
- www.eu.aibo.com/
- Advances in Human Computer Interaction, Shane Pinder, InTech, Austria, October 2008