فرض محروس رفم ٨ الدورة الثانبة الموضوع_

الثانوبة النأهبلية الأمير مولاي رشيد

|2017/2018|

د. العلالي عبد الفتاح

المادة : الرياضيات | | القسم: الثانية باكالوريا علوم تجريبية |

التمرين الأول (أسئلة مستقلة)

(
$$E$$
) أـ حدد الحل العام للمعادلة التفاضلية $\mathbf{0} = y'' - 5y' + 4y = 0$

$$g'(0) = 2$$
 و $g(0) = 1$ و $g'(0) = 0$ تحقق (E) تحقق عدد دالة g حل للمعادلة و

$$I = \int_{1}^{e^{2}} \frac{\ln^{9}(x)}{x} dx \quad , \qquad , \qquad J = \int_{0}^{1} (x-3)e^{x^{2}-6x} dx \quad , \qquad K = \int_{0}^{1} (x^{2}-4)\sqrt{x^{3}-12x+1} dx$$

$$f(x)=rac{1}{x+1}+x\ln(x+1)$$
 نعتبر الدالة العددية f المعرفة على $]0;+\infty[$ بما يلي:

$$\|\overrightarrow{i}\|=2cm$$
: منحنى الدالة f في معلم. م. م (C_f) حيث (C_f) منحنى

$$($$
ن $2)$ $\int_0^1 \frac{x^2}{x+1} \, dx = -\frac{1}{2} + \ln(2)$: ثم إستنتج أن $\forall x \in \mathbb{R} - \{-1\}$; $\frac{x^2}{x+1} = x - 1 + \frac{1}{x+1}$ أـ تحقق أن

$$\int_0^1 x \ln(x+1) \ dx$$
: ب- باستعمال المكاملة بالأجزاء أحسب التكامل dx : باستعمال المكاملة بالأجزاء أحسب

ج) إستنتج مساحة الحيز المحصور بين المنحنى (C_f) ومحور الأفاصيل والمستقيمين

$$x=1$$
 و $x=0$

التمرين الثاني

B(2;-1;1) في الفضاء المنسوب إلى معلم . م . م مباشر $(O;\overrightarrow{i};\overrightarrow{j};\overrightarrow{k})$ نعتبر النقط و C(4;3;-3) و المستوى (P) المار من C و C(4;3;-3) و المستوى

$$(P)$$
 بين ان $x-2y+2z+8=0$ بين ان $x-2y+2z+8=0$ بين ان

$$\overrightarrow{AM}\cdot\overrightarrow{BM}=24$$
: مجموعة النقط $M(x;y;z)$ من الفضاء التي تحقق $M(x;y;z)$

$$($$
ن (S) ال (S) ال (S) ال (S) بين ان معادلة (S) هي (S) ال (S)

$$($$
ان $)$. $R=5$ ب $)$ وشعاعها $\Omega(2;0;1)$ هي فلكة مركزها $\Omega(2;0;1)$ وشعاعها (S)

$$oldsymbol{0}$$
 أ $oldsymbol{0}$ بين ان المستوى (P) يقطع الفلكة (S) و فق دائرة (C) محددا شعاعها.

$$(P)$$
 حدد تمثيلا بارامتري للمستقيم (Δ) المار من Ω والعمودي على (P)

$$(C)$$
 مركز المدائرة (C) مركز المدائرة (C)

$$(\Delta)$$
 أدرس تقاطع المستوى (P) والمستقيم (Δ)

$$(S)$$
 أدر س تقاطع المستوى (P) والفلكة أدر س المستوى (P) أدر س المستوى أدر س