MUSIC GENRE CLASSIFICATION

ARCHIT AGARWAL | DEEPAK REDDY T | PARAMESWARANATH VM

SARATHY VENKATAKRISHNAN | SHIVAM AGARWAL | VINAY P V

AGENDA

PROBLEM STATEMENT

DATA PROCESSING

DATA CLEAN UP

DATA ANALYTICS

DIMENSIONALITY REDUCTION

MODELING

RESULTS

CONCLUSION

PROBLEM STATEMENT

 Build a machine learning model capable of analysing a given audio sample and/or its metadata and classifying it into a given set of music genres (multi-label classification)

DATASET

- FMA (Free Music Archive, Small dataset): 8,000 tracks of 30 sec each, 7.2 GB
- FMA metadata contains ~520 spectral data parameters generated from music samples (via Python's **librosa** module)
- Also contains more human-understandable attributes (energy, tempo, danceability, etc.) generated from EchoNest's proprietary tools.
- Data cleanup and augmentation was required to map the numerical genre IDs (ground truth) listed for each track to the corresponding feature vector and filter out the tracks with invalid/non-existent genres.
- Resultant file contains 520 audio extracted features for 104343 datapoints

DATASET ANALYTICS

Track distribution according to genre

DATA ANALYTICS

Inter-genre correlation (pairs of genres most often linked with each other in terms of frequency of occurrence)

FEATURE EXTRACTION

Methods:

2 popular libraries to extract features from Audio are Echonest and Librosa. Librosa has more features compared from Echonest.

Echonest Features: acousticness danceability energy instrumentalness liveness speechiness tempo valence

Librosa Features :
Spectral Features:
☐ Spectral Centroid:
☐ Spectral Contrast:
☐ Spectral Bandwidth:
To nal Features:
☐ Chroma:
☐ CENS:
☐ Tonnetz:
Rhythmic Features:
☐ Tempo
☐ Beat Synchronous Chroma:
Root Mean Square (RMS) Energy
Zero Crossing Rate:

CLUSTERING ECHONEST

- Comparison of clustering efficiency using standard genres vs. those from K-Means clustering (pseudo-genres created by clubbing human-understandable EchoNest parameters)
- This indicates that traditional human genres are not very clear-cut and are more arbitrary when compared to genres divided by the actual audio characteristics.

MODELLING: FMA BASELINE CLASSIFIERS

Multi-class classification Baseline:

- Baseline results for classification models for FMA
 Dataset with features librosa and genre_top label.
- Provides a rough baseline of expected accuracy.

Features from librosa:

Classifier	Accuracy
LogisticRegression	60.71%
KNeighborsClassifier	51.77%
LinearSVC	58.73%
SVC (kernel= "rdf)	62.88%
SVC(kernel="poly")	61.95%
AdaBoost	43.06%
DecisionTreeClassifier	58.73%
RandomForestClassifier	47.30%
MLPClassifier ((100,) Hidden Layers)	57.02%
MLPClassifier ((200, 50) Hidden Layers)	57.33%
GaussianNB	9.91%

MODELLING: MULTI-LABEL CLASSIFICATION

Approach

MODELLING: MULTI-LABEL CLASSIFICATION USING RANDOM FOREST - ONE VS REST CLASSIFIER

- Dataset contains a list of genre for each track id
- We are inclined to build a multi-label classifier to predict music genre
- Using one-vs-rest meta-estimator for multiclass classification, we can train one binary classifier per class and apply bagging to obtain required result
- Augmented dataset may still contain correlated features. Applying dimension reduction will further improve the result

MODELLING: MULTI-LABEL CLASSIFICATION

USING FEATURE CORRELATION + RANDOM FOREST CLASSIER

- Augmented data feature correlation is obtained using correlation matrix
- All the features having strong correlation (>=0.7) are dropped from dataset
- Dataset features

• Before: (104343, 520)

• After: (104343, 388)

- Resultant data is trained using a Random Forest Classifier with One vs Rest metaestimator.
- Model hyper-parameters are turned to obtain best possible result

Precision: 0.7888674057426961 Recall: 0.6945196697211199 F1 Score: 0.7386931424070351 Hamming Loss: 0.14574754098360657

Hyperparameters:

MODELLING: MULTI-LABEL CLASSIFICATION

USING PCA + RANDOM FOREST CLASSIER

- Principal Component Analysis (PCA) is a known technique used for dimensionality reduction.
- By applying PCA for all the features and drawing a graph, it is observed that the resultant graph is very steep, and features are highly correlated
- PCA with 99.9% variance resulted in reduction to just 33 features.
- Resultant data is trained using a Random Forest Classifier with One vs Rest metaestimator.
- Model hyper-parameters are turned to obtain best possible result

Precision: 0.7868247015374045
Recall: 0.6581978357227337
F1 Score: 0.716786489194907
Hamming Loss: 0.15428032786885246

Hyperparameters:

MODELLING: MULTI-LABEL CLASSIFICATION USING PCA + DEEP NEURAL NETWORK

- A Deep Neural Network (DNN) is trained with the same features as obtained earlier from PCA.
- This is to experiment the outcome of multilabel genre classification using neural network.
- Result obtained are recorded and observed that there is not much significant difference w.r.t F1 score.

RESULTS & FUTURE WORK

- Observed results
 - Code is updated to github : https://github.com/vinay-pv/DA2030_Genre_Classification
 - Features_augmented is shared on google-drive
 https://drive.google.com/file/d/1tANyScpS1TKt3gyqt4e2Q4LhkwMsDmka/view

	Precision	Recall	F1 Score	Hamming Loss	Coverage
Feature Corr + Random F.	0.7888	0.6945	0.7386	0.1457	59.824
PCA + Random F.	0.7868	0.6582	0.7167	0.1542	59.805
PCA + DNN	0.8034	0.6758	0.7173	0.1579	36.753

- Future Work
 - Use the audio files to extract features and test our trained model
 - Follow SOTA solutions available for genre classification and try to improve the same.

THANK YOU

OPTIMAL GENRE SELECTION

• Using a K-Means clustering model, the number of optimal genres (which best separates this particular dataset) was obtained. (elbow method (left) and silhouette score (right))

