ENERGY ENGINEERING ANALYSIS PROGRAM FORT DRUM, NEW YORK

EXECUTIVE SUMMARY
FINAL REPORT
INCREMENTS A, B, C, D, & G

DECEMBER, 1981

PREPARED FOR

NORFOLK DISTRICT

U.S. ARMY CORPS OF ENGINEERS

NORFOLK, VIRGINIA

CONTRACT NO. DACA65-C-0013

19971021 298

PREPARED BY

BLACK & VEATCH

CONSULTING ENGINEERS

KANSAS CITY, MISSOURI

DEPARTMENT OF THE ARMY

CONSTRUCTION ENGINEERING RESEARCH LABORATORIES, CORPS OF ENGINEERS P.O. BOX 9005 CHAMPAIGN, ILLINOIS 61826-9005

REPLYTTO ATTENTION OF:

TR-I Library

17 Sep 1997

Based on SOW, these Energy Studies are unclassified/unlimited. Distribution A. Approved for public release.

Librarian Engineering

ENERGY ENGINEERING ANALYSIS PROGRAM FORT DRUM, NEW YORK

EXECUTIVE SUMMARY FINAL REPORT INCREMENTS A, B, C, D, & G

DECEMBER, 1981

PREPARED FOR

NORFOLK DISTRICT

U.S. ARMY CORPS OF ENGINEERS

NORFOLK, VIRGINIA

CONTRACT NO. DACA65-C-0013

PREPARED BY

BLACK & VEATCH

CONSULTING ENGINEERS

KANSAS CITY, MISSOURI

TABLE OF CONTENTS

	Page
EXECUTIVE SUMMARY	
A. FINDINGS B. RECOMMENDATIONS C. SUMMARY	1 2 2
APPENDIX A	
LIST OF FIGURES	Following Page
FIGURE 1 ENERGY COSTS BY SOURCE FIGURE 2 FY78 ENERGY CONSUMPTION BY SOURCE FIGURE 3 PROJECTED ENERGY CONSUMPTION BY SOURCE	2 3 3

EXECUTIVE SUMMARY

A. FINDINGS.

- 1. Insulation and other weatherization measures represent the most significant opportunities for reduction in energy consumption.
- 2. The most cost effective energy conservation project found within the scope of this study is automatic setback of building heating systems during unoccupied periods. The most suitable means of accomplishing this is to use a central processor and FM radio signals. Such an FM control system can economically be used to control peak electrical demands by load shedding electric heat and water well pumps.
- 3. Circular fluorescent lighting systems have been found to be cost effective in selected buildings at Fort Drum.
- 4. Wind turbine-generated electrical power is expected to be cost effective for Fort Drum by 1985 if projected trends in wind turbine cost and electrical energy cost are realized.
- 5. The concept of converting solid waste to energy at Fort Drum is not cost effective due to a widely fluctuating population.
- 6. Total energy and selective energy have both been found to be less cost effective than a central wood-fired water boiler plant.
 - 7. Solar energy is not cost effective for Fort Drum.
- 8. Under Facilities Engineering Analysis Program, Vol. II B, 29 projects were identified that were less than 100,000 dollars and therefore did not meet ECIP criteria.
- 9. EMCS was evaluated in accordance with TM-5-185-2 and was rejected in favor of FM control.
- 10. Duty cycling of fans was rejected because there are very few large fans.

B. RECOMMENDATIONS.

- 1. It is recommended that weatherization ECIP projects, T-072, T-073, and T-097, be implemented. Project Development Brochures, 1391's, and backup data are included in Volume III.
- 2. It is recommended that ECIP project, T-096, FM Control System, be implemented in FY 1984. Project Development Brochures, 1391's, and backup data are included in Volume III.
- 3. It is recommended that a central wood-fired hot water boiler plant be installed in the permanently occupied area of Fort Drum.
- 4. It is recommended that wind turbine generated electrical power be reevaluated in 1985.
- 5. It is recommended that the 26 projects identified in Facilities Engineering Conservation Measures, VOL. IIB, with paybacks less than 15 years and E/C ratio greater than 1 be implemented.
- C. SUMMARY. Included in this summary are the results of the Energy Engineering Analysis Program for Fort Drum, New York. This plan included an analysis and recommendation of energy conservation projects for the reduction of the installation's present energy consumption. Black & Veatch has developed projects that meet the funding criteria of the Energy Conservation Investment Program. In addition, a number of energy conservation methods were analyzed which, due to specific factors unique to Fort Drum, do not presently meet funding criteria. Results of these analyses, projections of future energy consumption, and estimated break downs of present energy consumption are presented in this summary.

Energy is projected to cost \$2,770,000 per year by FY 1982 at Fort Drum. As shown in Figure 1, fuel oil is expected to represent 52 percent of the cost, with 32 percent being electricity, 9 percent being coal, and

ENERGY COSTS BY SOURCE (\$2,770,000/YEAR)

PROJECTED FOR FY82
BASED ON FY78 CONSUMPTION

7 percent being propane. These figures are based on FY 78 consumption and projected FY 82 costs. Energy consumption in even numbered fiscal years runs approximately one-third higher than odd numbered fiscal years due to the Empire Glacier winter training exercises conducted every other January at Fort Drum.

Energy consumption in million Btu's for FY 78 is broken down by fuel type and shown in Figure 2. Electricity represents the largest amount of the energy consumed at Fort Drum with 38 percent. Fuel oil is next with 35 percent, coal with 22 percent, and propane with 5 percent.

Energy conservation projects developed by Black & Veatch for Fort
Drum have been grouped into four projects. In addition, a wood-fired
central heating plant and distribution system is programmed for Fort
Drum. BY FY 1986, when all five of these projects have been implemented,
the fuel mix will be dramatically changed. As is shown in Figure 3,
electricity will remain essentially unchanged at 39 percent; however,
fuel oil consumption will be dramatically reduced to 5 percent, wood
will represent 18 percent of the energy consumption, coal will decrease
to 14 percent, and propane will remain unchanged at 5 percent. Energy
savings will represent 14 percent with an additional 7 percent from
Facilities Engineers conservation measures.

Existing energy consumption of the various buildings at Fort Drum has been estimated on the basis of 14 representative building types.

Table 1 in Appendix A lists these buildings and provides basic data.

Energy consumption varies considerably for the different types of buildings due to the wide variations in occupancy. Some building are occupied

FY78 ENERGY CONSUMPTION BY SOURCE (545,245 MMBTU)

FIGURE 2

PROJECTED ENERGY CONSUMPTION BY SOURCE (431,536 MMBTU)

FIGURE 3

year-round. Some are occupied three months per year in the winter.

Others are occupied every other January with some occupied primarily during the summer months. Tables 2, 3, 4, and 5 in Appendix A provide estimates of energy consumption for the different occupancy classes.

Those energy conservation measures which meet current ECIP criteria have been grouped into four projects. These are as follows:

ENERGY CONSERVATION INVESTMENT PROGRAM

Project		Energy Savings		Payback	Constr.		Index
Number	<u>Title</u>	Btu x 10 ⁶	E/C	(years)	Cost	FY	No.
T-072	Weatherization and Lighting - 300 Area	20,988	36.6	9.96	573,000	83	2808
T-073	Weatherization and Lighting - 400 Area	23,908	32.9	10.35	726,000	84	3035
T-096	FM Control System	25,573	78.2	2.00	352,000	84	3035
T-097	Weatherization and Lighting	32,258	41.5	3.10	777,000	84	3035

Electricity is supplied by Niagra-Mohawk Power Company. Fuel oil, propane, and coal are acquired through local suppliers.

B. HISTORICAL ENERGY CONSUMPTION DATA.

1. <u>Utilitiy Usage</u>. To enable the development of an energy usage model and to determine usage patterns peculiar to Fort Drum, historical energy data for fossil fuel and electricity consumption were gathered for the last three years. Fort Drum utilizes electricity, coal, fuel oil, and propane gas as energy sources. Postwide consumption data for these sources are shown on Figures 4 through 8. The graphs shown on these figures depict energy usage for calendar months; however, since utility billings do not conform to calendar months, the peaks shown on the graphs are not precise. Due to bookkeeping and inventory procedures, the graphs for fuel oil, and coal depict purchases and not consumption. The peak electrical energy consumption, 2,640,000 kWh, and the peak electrical demand, 5,190 kW, occurred in January 1978 due to the Empire Glacier winter training exercise. As shown in Figure 9, the peak fossil fuel consumption also occurred in January 1978.

Table 1 is a compilation of yearly source or raw energy consumed for FY's 1977, 1978, and 1979. The largest energy source used each year at Fort Drum is electricity, followed by fuel oil and coal. The reason that FY 1978 is markedly higher than either Fy 1977 or FY 1979 is that the Empire Glacier winter training exercise occurs every other year in even numbered fiscal years. For the month of January in Empire Glacier years, virtually all of Fort Drum is occupied.

PROPANE FUEL

TABLE 12

AIR-CONDITIONING

Location	Quantity	Individual Size (Tons)
T-34	1	8
P-36	1	40
T-55	1	10
	1	12
T-63	1	1
	1	5
T-85	2	1.5
1 00	1	2
T-96	1	5
1 70	ī	3
T-203	3	1
T-613	2	5
T-614	3	5
T-615	3	5
T-682	4	5
_	2	5 5 3
T-686	1	3
	1	1
T-688	1	1
T-701	1	1
T-702	2	8
T-1030	_ 4	1
T-2023	2	3
P-2059	1	10
T-2150	1	10
	1	5
T-2222	$\overline{2}$	7.5
	2	1
P-2300	2	3
	4	5
P-2312	1	12.5
T-2408	4	1
Quick Stop	1	3
STP	1	3
Sub Shop	1	3
Trailer Airpo		3 3
Trailer #7	1	
X-Ray	1	3
Total		285

TABLE 14

STREET LIGHTING

Type Light	<u>Activation</u>	<u>Voltage</u>	Wattage	Total No.
Mercury Vapor	Photo cell		175 W, 250 W, 400 W, 1,000 W	286
High & Low- Pressure Sodium	Photo cell		150 W, 250 W 250 W	142

Total 428 fixtures

Note: By order of the Post Commander, approximately one-half of the fixtures of each lighting type are energized. Only major intersections, fire phones and other critical areas remain lit.

C. UTILITY PRICES. Utility rates used for ECIP calculations are as follows:

FY 79 Electrical Rates

Energy	2.50¢/kWh
Demand	\$3.03/kW
Overall	3.25¢/kWh

Three types of buildings have been simulated using E CUBE 75 to obtain an estimate of energy savings associated with night and weekend setback of heating systems. Building T-203, an administrative building, showed a yearly energy savings of 20 percent. Building T-239, a storehouse, showed a yearly energy savings of 23 percent and Building P-1444, a motor repair shop, showed a yearly energy savings of 23 percent. A total of 95 buildings have been included in this project. (The control switch would switch from the present thermostat to a secondary setback thermostat). These are buildings with less than 24-hour occupancy which are inhabited all winter and have heating systems that are suitable for remote control.

During FY 1979, 23 percent of the total cost of electricity to Fort Drum, or \$123,500, was due to demand charges. This is not actual consumption of energy, but the rate of consumption of energy. During FY 1979, Fort Drum was charged \$3.03 per kW per month. In addition, there is a minimum demand charge for 75 percent of the highest peak reached in the preceding eleven months. This is known as a 75 percent ratchet clause. During 1979, the 75 percent ratchet came into effect for seven months, from April through October. The yearly electrical peak at Fort Drum historically occurs in January or February due to electric resistance space heating. The peak established in the winter is not only paid for in the month in which it occurs, but also in seven nonwinter months, due to the ratchet clause.

In many instances, electrical peaks can be reduced without disrupting operations or causing personnel discomfort. The method of reducing electrical demand examined here is to cycle electric heat in family housing and in the new 99-man barracks. This can be accomplished by installing 365 FM receivers in the electric heat circuits in family housing, and the three FM receivers on the electric heat coils in the makeup air units of the 99-man barracks would be controlled by an interface with the radio control switch and the contactor controlling the electric heating coil.

This system would not qualify as an ECIP project on its own because the savings is monetary, and not energy-saving. It is, however, a cost effective addition to the FM Control System and has therefore been added to the project.

A total of 1,460 kW in connected load could be controlled by the installation of 368 receivers. An E CUBE 75 simulation of one of the family housing units indicates that there would be a 47 percent diversity on the electric heating coils during the coldest hour of the winter. The demand of these electric heating units, then, at the time that Fort Drum's electrical peak is reached, would be 47 percent of 1,460 kW, or 686 kW.

Figure 10 shows the electrical demand versus the time of the day that the highest electrical peak reached at Fort Drum during the winter of 1979-80 occurred (January 24, 1980). The peak was 5,010 kW and occurred at 8:15 a.m. If half of the 686 kW could be saved by rolling heating units in and out with the FM Control System, establishing a peak of 4,667 kW, the result would be a savings for the month of January of 343 kW x \$3.03 + \$1,039 at 1979 prices. In addition, a savings of 343 kW x \$3.03 x 75 percent x 7 months + \$5,456 would result for the months of April through October. The total annual savings, escalated to 1983, would be \$11,459:

Appendix A

TABLE 1

CONSTRUCTION DATA

Domestic	Hot Water	Electric	Electric	0i1	Electric	0i1	Electric	Electric	Electric	Propane	Propace	Electric	Electric	None	None
Peak Trn.	[e]	011 119.7	0il 250.6	Coal 178.6	Oil 185.1	0il 551.9	0il 419.8	d Elec. 80.1	Oil 390.0	0il 196.0	Coal 135.4	0il 145.5	Coal 299.1	0il 71.0	Coal 129.5
Heatino	System	Furnace	Furnace	Furnace	Boiler	Boiler	Furnace	Baseboard Elec.	Boiler	Furnace	Stove	Furnace	Furnace	Furnace	Stove
W Floor		2,284	7,670	4,720	3,537	13,726	10,491	.808.6	22,545	3,813	2,360	4,166	7,219	1,144	2,588
Window		408	832	580	438	1,332	26	118	2,262	528	281	232	300	169	192
v	Wind.	74.	06.	96.	.90	.90	.47	.55	.55	.47	06.	1.10	1.32	• 90	90.
"U" Values	Floor	.25	.19	.25	.25	.24	.26	.07	•	.25	.25,	1	•	.25	ı
n.	Wall	.21	.20	.21	.21	.19	.22	.07	.18	.21	.21	. 22	.41	.21	.32
	Roof	.22	. 22	.22	.27	.24	.22	.05	60,	.22	.22	.00	30	. 22	.39
	Window	Wood w/alum. storm	Wood: double hung	Wood: double hung	Wood: double hung	Wood: double hung	Wood w/alum. storm	Thermopane	Steel casement	Wood w/ plastic	Wood: double hung	Metal: sliding	Steel: projected	Wood: double hung	Wood: `
	!												**		-
truction	Floor	Wood w/metal skirt	Wood w/metal skirt	Wood w/metal skirt	Wood w/con. crawl	Wood w/wood skirt	Wood w/con. crawl	Wood w/ basement	Slab on grade	Wood w/wood skirt	Wood w/metal skirt	Slab on grade	Slab on grade	Wood w/metal skirt	Slab on c grade
Construction	Wall Floor	Steel on Wood w/metal wood frame skirt	Steel on Wood w/metal wood frame skirt	Steel on Wood w/metal wood frame skirt				Clapboard Wood w/ on frame basement	Wood on Slab on wood frame grade	Wood on Wood w/wood wood frame skirt	w/metal	uo	uo	w/metal	e uo
Construction		Wood skirt	Steel on Wood wood frame skirt	Wood	Wood crawl	d Wood skirt	Wood crawl		Slab grade	Wood skirt	Wood w/metal skirt	Slab on grade	on Slab on frame grade	Wood w/metal skirt	Slab on e grade
Construction	Wall	Steel on Wood es wood frame skirt	Steel on Wood les wood frame skirt	Steel on Wood les wood frame skirt	Steel on Wood les wood frame crawl	Clapboard Wood	Steel on Wood es wood frame crawl	Clapboard Les on frame	Wood on Slab les wood frame grade	Wood on Wood les wood frame skirt	Steel on Wood w/metal wood frame skirt	Steel on Slab on steel frame grade	Steel on Slab on steel frame grade	Steel on Wood w/metal les wood frame skirt	Steel on Slab on coles wood frame grade

TABLE 2 ENERGY CONSUMPTION DATA FOR YEAR-ROUND OCCUPANCY

Annual Source Energy Cons. Btu x 10⁶ Btu x 10³ Elec. Bldg. Description Fuel Elec. kWh/Yr. Total T-203 Administration 724 483 1,207 42,400 528 T-2208 Bachelor Officer's Quarters 2,120 735 2,855 63,375 372 T-271 Barracks 2,084 268 2,352 23,100 498 T-202 Chapel 1,628 80 1,708 6,900 483 T-682 Community Service 4,692 134,500 1,560 6,252 456 T-78 Exchange Facilities 3,568 532 4,100 45,900 391 P-8039 Family Housing 1,534 1,534 132,300 156 T-91 Maintenance 3,780 2,573 6,353 221,800 282 T-2425 Medical 1,292 437 1,729 37,700 453 T-220 Mess Hall 1,693 483 2,176 41,700 922 P-1444 Motor Repair: Permanent 772 681 1,453 58,700 349 T-1242 Motor Repair: Temporary 2,231 263 2,494 22,700 346 T-231 Recreation 425 139 564 12,000 493 T-239 Storehouse

774

62

836

5,400

323

TABLE 3

ENERGY CONSUMPTION DATA FOR JANUARY, FEBRUARY, AND MARCH OCCUPANCY

Annual Source Energy

	inniate boards miletaly							
Bldg.	Description	Cons. <u>Fuel</u>	Btu x l Elec.	10 ⁶ Total	Elec. kWh/Yr.	Btu x 10 ³ <u>Ft.</u> 2		
T-203	Administration	381	119	500	10,300	219		
T-2208	Bachelor Officer's Quarters	1,034	181	1,215	15,600	158		
T-271	Barracks	937	66	1,003	5,695	213		
T-202	Chapel	826	20	846	1,800	239		
T-682	Community Service	2,440	385	2,825	33,200	206		
T-78	Exchange Facilities	1,831	131	1,962	11,300	187		
P-8039	Family Housing	N/A	N/A	N/A	N/A	N/A		
T-91	Maintenance	2,244	633	2,877	54,600	128		
T-2425	Medical	664	108	772	9,300	202		
T-220	Mess Hall	685	119	804	10,300	341		
P-1444	Motor Repair: Permanent	449	168	617	14,500	148		
T-1242	Motor Repair: Temporary	1,296	65	1,361	5,600	189		
T-231	Recreation	222	34	256	3,000	224		
T-239	Storehouse	448	15	463	1,300	174		

TABLE 4
ENERGY CONSUMPTION DATA FOR JANUARY OCCUPANCY

Annual Source Energy

		Himual 5	ource E	nergy		
Bldg.	Description	Cons. Fuel	Btu x Elec.	10 ⁶ Total	Elec. kWh	Btu x 10 ³ Ft.
T-203	Administration	141.6	41.7	283.3	3,600	124
T-2208	Bachelor Officer's Quarters	382.5	62.8	445.3	5,400	58
T-271	Barracks	344.3	22.9	367.2	2,000	78
T-202	Chapel	305.8	7.0	312.8	600	88
T-682	Community Service	906.3	132.2	1,038.5	11,400	76
T-78	Exchange Facilities	171.1	58.7	229.8	5,100	22
P-8039	Family Housing	N/A	N/A	N/A	N/A	N/A
T-91	Maintenance	858.6	223.8	1,082.4	19,300	48
T-2425	Medical	141.6	41.7	183.0	3,600	80
T-220	Mess Hall	250.8	41.0	291.8	3,500	124
P-1444	Motor Repair: Permanent	171.1	58.7	229.8	5,100	55
T-1242	Motor Repair: Temporary	493.2	22.7	515.9	2,000	72
T-231	Recreation	82.5	11.8	94.3	1,000	82
T-239	Storehouse	170.6	5.3	175.9	500	68

TABLE 5
ENERGY CONSUMPTION DATA FOR ONE SUMMER MONTH OCCUPANCY

Annual Source Energy Cons. Btu x 10⁶ Btu x 10³ Elec. Bldg. Description Fuel Elec. Total kWh Ft. Administration 0 41.7 3,600 18 T-203 41.7 T-2208 Bachelor Officer's 24.2 62.8 87.0 5,400 11 Quarters T-271 Barracks 44.1 22.9 67.0 2,000 14 T-202 0 7.0 7.0 600 2 Chapel T-682 Community Service 0.5 132.2 132.7 11,400 10 58.7 58.7 6 T-78 Exchange Facilities 0 5,100 P-8039 Family Housing N/A N/A N/A N/A N/A T-91 Maintenance 0 223.8 223.8 19,300 10 T-2425 Medical 38.3 37.1 75.4 3,200 20 T-220 Mess Hall 63.6 41.0 104.6 44 3,500 P-1444 Motor Repair: 14 Permanent 0 58.7 58.7 5,000 T-1242 Motor Repair: 22.7 3 Temporary 0 22.7 2,000 T-231 0 11.8 1,000 10 Recreation 11.8 500 2 Storehouse 0 5.3 5.3 T-239