	### PT P4	
姓名:	學號:	
X11-77	- The William	

1. (30%) Let A, B, C be finite sets. Find each of the following: Mark the following statement TRUE or FALSE Note: A⊕B, is the set containing those elements in either A or B, but not in both A an B. (每小題直接圈選 T/F 即可)

(a) T F	$P(A \cap B) = P(A) \cap P(B)$	(f) T F	$\emptyset \in \{\emptyset\}$
(b) T F	A - (BUC) = (A - B) - C	(g) T F	Ø ⊆{Ø}
(c) T F	IF A - C=B-C, then A=B	(h) T F	$\{\emptyset\} \in \{\emptyset, \{\emptyset\}\}$
(d) T F	If A⊕C= B⊕C, then A=B	(i) T F	$\{\{\emptyset\}\} \subset \{\{\emptyset\},\{\emptyset\}\}$
(e) T F	$A\cap(B\oplus C)=(A\cap B)\oplus(A\cap C)$	(j) T F	If $ A =2$, then $ A^3 =8$.

2. (15%) Let f is a function from Z+ to Z+. For each of the following, determine if f is (1) 1-to-1 but not onto, (2) onto but not 1-to-1, (3) both 1-to-1 and onto, or (4) neither 1-to-1 nor onto. (if 直接圈選答案 1,2,3,或 4)

```
(a) 1 2 3 4 f(n) = 2n - 1

(b) 1 2 3 4 f(n) = \lceil n/2 \rceil

(c) 1 2 3 4 f(n) = n + 1

(d) 1 2 3 4 f(n) = 1
```

(e) 1 2 3 4 $f(n) = \varphi(n)$, where the Euler phi function $\varphi(n)$ computes the number of integers between 1 and n that are relatively prime (also known as coprime) to n.

3. (10%) Determine whether each of these sets is Countable(可數) or Uncountable(不可數). (图選 C/U 即可)

```
(a) T F R (b) T F Q
```

(c) T F all bit strings not containing the bit 1

(d) TF the set of all C programs

(e) T F all real numbers containing only 1s in their decimal representation

4. (10%)Suppose $g: A \to B$ and $f: B \to C$ where $A = \{1, 2, 3, 4\}$, $B = \{1, 2, 3\}$, $C = \{2, 3, 8\}$, and g and g

(a) Find f . g.

(b) Find f-1.

5. (10%) Suppose A = $\begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix}$. Find A-1 or prove that no such matrix exists.

6. (10%) Determine a recurrence relation and its initial condition(s) for the sequence 1,3,4,8,15,27,50,92,

7. (10%) Find the solution to the recurrence relation $a_n=3a_{n-1}+1$ with the initial condition $a_0=1$.

8. (10%) Let A=C={1,2,3} and f: A \rightarrow B and g: B \rightarrow C be functions. Provide **an example** that includes set B, and functions f and g such that $g \circ f$ is one-to-one, but g is not. (答案不是唯一)

9. (10%) Let A, B, and C be sets. Show that (A-B)-C = (A-C)-(B-C) using a membership table.

10. (10%) The Schröeder-Bernstein Theorem:If $|A| \le |B|$ and $|B| \le |A|$, then |A| = |B|. In other words, if there are injections $f: A \to B$ and $g: B \to A$, then there is a bijection $h: A \to B$.

Use the given Schröeder-Bernstein Theorem to show that (0, 1) and (0,1) have the same cardinality.

1. (30%) Let A, B, C be finite sets. Find each of the following: Mark the following statement TRUE or FALSE Note: A⊕B, is the set containing those elements in either A or B, but not in both A an B. (每小題直接圈選 T/F 即可)

(a) <mark>T</mark> F	$P(A \cap B) = P(A) \cap P(B)$	(c)	(f) T F	$\emptyset \in \{\emptyset\}$
(b) <mark>T</mark> F	$A - (B \cup C) = (A - B) - C$	A: {1,2,3}	4-C={/،٤،١٩}(g) T F	Ø ⊆{Ø}
(c) T F	IF A – C=B–C, then A=B	- 0	B-C= {1.2.3}(h) TF	$\{\emptyset\} \in \{\emptyset, \{\emptyset\}\}$
(d) T F	If $A \oplus C = B \oplus C$, then $A = B$	B={1,>,3,4.53	(i) T F	$\{\{\emptyset\}\} \subset \{\{\emptyset\}, \{\emptyset\}\}$
(e) T F	$A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C)$	C={4,53	但 f + B (j) T F	If $ A =2$, then $ A^3 =8$.

2. (15%) Let f is a function from \mathbb{Z}^+ to \mathbb{Z}^+ . For each of the following, determine if f is (1) 1-to-1 but not onto, (2) onto but not 1-to-1, (3) both 1-to-1 and onto, or (4) neither 1-to-1 nor onto. (請直接圈選答案 1,2,3,或 4)

```
假設f:A→B
(a) 1 2 3 4
               f(n) = 2n - 1
                               判斷 function 是否高 One-to-one:若fox)=f(y),則 X=y
(b) 1234
               f(n) = \lceil n/2 \rceil
(c) 1 2 3 4
               f(n) = n+1
                              判斷 function 是哲高 onto: 考慮任何 element y 6 B, 找出 element X 6 A, 使 f(x)=y.
(d) 1 2 3 4
                f(n) = \varphi(n), where the Euler phi function \varphi(n) computes the number of integers between 1 and n
```

(e) 1 2 3 4
$$f(n) = \phi(n)$$
, where the Euler phi function $\phi(n)$ computes the number of integers between 1 and not that are relatively prime (also known as coprime) to n.

(e)
$$\varphi(b) = \varphi(b) = \lambda \longrightarrow \text{ not one to one}$$

suppose
$$\ell(n)=3$$
, can't find $n \longrightarrow not$ onto

3. (10%) Determine whether each of these sets is Countable(可數) or Uncountable(不可數). (圈選 C/U 即可)

all bit strings not containing the bit 1 (c) T F

(d) **T** F the set of all C programs

all real numbers containing only 1s in their decimal representation (e) T F

4. (10%)Suppose $g: A \to B$ and $f: B \to C$ where $A = \{1, 2, 3, 4\}$, $B = \{1, 2, 3\}$, $C = \{2, 3, 8\}$, and g and f are defined by g $= \{(1, 2), (2, 1), (3, 3), (4, 2)\}$ and $f = \{(1, 8), (2, 3), (3, 2)\}$.

(a) Find $f \circ g$.

(b) Find f^{-1} .

将兵狙击手带入

5. (10%) Suppose
$$A = \begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix}$$
. Find A^{-1} or prove that no such matrix exists.

6. (10%) Determine a recurrence relation and its initial condition(s) for the sequence 1,3,4,8,15,27,50,92,

7. (10%) Find the solution to the recurrence relation $a_n=3a_{n-1}+1$ with the initial condition $a_0=1$.

$$\begin{array}{lll}
\Omega_{1} = \frac{1}{2}\Omega_{0} + | = 4 \\
\Omega_{2} = \frac{1}{2}\Omega_{1} + | = 13 \\
\Omega_{3} = \frac{1}{2}\Omega_{1} + | = 40
\\
\vdots & = \frac{1}{2}\Omega_{n-2} + \frac{1}{2} + 1
\\
\vdots & = \frac{1}{2}\Omega_{n-2} + \frac{1}{2} + 1
\\
= \frac{1}{2}\Omega_{n-2} + \frac{1}{2} + \frac{1}{2}\Omega_{n-2} + \frac{$$

8. (10%) Let A=C={1,2,3} and f: A \rightarrow B and g: B \rightarrow C be functions. Provide **an example** that includes set B, and functions f and g such that $g \circ f$ is one-to-one, but g is not. (答案不是唯一)

$$\frac{g \cdot f}{f} \Rightarrow g \Rightarrow c$$

$$| f(x) = 1, f(x) = 2, f(x) = 3, g(x) = 1, g(x) = 3, g(x) =$$

9. (10%) Let A, B, and C be sets. Show that (A-B)-C = (A-C)-(B-C) using a membership table.

A	В	C	A-B	(A-B)-C	4-0	B-C	(A-C) - (B-C)
	1		0	0	0	D	0
1	(D	0	0	1	1	0
(D		[0	0	0	0
	D	D				0	
0	(1	0	0	0	0	0
0	1	D	0	0	0	1	0
0	0	(0	0	0	0	0
0	D	D	O	0	D	0	0

10. (10%) The Schröeder-Bernstein Theorem:If $|A| \le |B|$ and $|B| \le |A|$, then |A| = |B|. In other words, if there are injections $f: A \to B$ and $g: B \to A$, then there is a bijection $h: A \to B$.

Use the given Schröeder-Bernstein Theorem to show that (0, 1) and (0,1) have the same cardinality.

$$f:(0,1) \longrightarrow (0,1]$$
, $\operatorname{Ep} f(x) = \chi$, $\operatorname{E} \operatorname{one-to-one}$
 $g:(0,1] \longrightarrow (0,1)$, $\operatorname{Ep} g(x) = \frac{\chi}{2}$, $\operatorname{E} \operatorname{one-to-one}$

根據 Schröeder - Bernstern Theorem , |(0,1)|=|(0,1]|#