

Course > Probab... > Subject... > Bayes' ...

Bayes' Law

We have considered two different constraints on rational belief: (1) one's unconditional credences can be represented by a probability function, and (2) one must respond to new information in accordance with one's conditional credences. Are there any constraints on how a subject's unconditional credences ought to be related to her conditional credences? Yes! It is natural to think that a rational subject should satisfy the following principle:

$$p(AB) = p(A) \cdot p(B|A)$$

Notice that whenever the subject assigns non-zero credence to *A*, Bayes' Law entails:

$$p\left(B|A
ight) =rac{p\left(AB
ight) }{p\left(A
ight) }$$

which allows one to determine the subject's conditional credences on the basis of her unconditional credences. More specifically, one can determine the subject's (conditional) credence in B given A by looking at her (unconditional) credence in A and her (unconditional) credence in A-and-B.

Problem 1

2/2 points (ungraded)

Consider a subject S whose unconditional credences regarding rain (R), and regarding a sudden drop in atmospheric pressure (*D*), are as follows:

$$p(R) = 0.2$$

 $p(D) = 0.1$
 $p(RD) = 0.09$

Use Bayes' Law to calculate p(R|D) and p(D|R).

$$p(R|D)=?$$

0.9

✓ Answer: .9

0.9

$$p(D|R)=?$$

0.45

✓ Answer: .45

0.45

Explanation

$$p\left(R|D
ight)=rac{p\left(RD
ight)}{p\left(D
ight)}=rac{0.09}{0.1}=0.9$$

$$p(D|R) = \frac{p(DR)}{p(R)} = \frac{p(RD)}{p(R)} = \frac{0.09}{0.2} = 0.45$$

Submit

1 Answers are displayed within the problem

Problem 2

1/1 point (ungraded)

Now suppose that p(RD) = 0.02. How do the conditional probabilities p(R|D) and p(D|R)compare to the unconditional probabilities p(R) and p(D)?

$$\bigcap p\left(R\right) > p\left(R|D\right)$$
 and $p\left(D\right) \geq p\left(D|R\right)$

$$\bigcap p\left(R\right) \leq p\left(R|D\right)$$
 and $p\left(D\right) \leq p\left(D|R\right)$

$$\bigcirc p(R) = p(R|D)$$
 and $p(D) = p(D|R)$

$$\bigcap p\left(R\right) > p\left(R|D\right)$$
 and $p\left(D\right) \leq p\left(D|R\right)$

Explanation

$$p\left(R|D
ight)=rac{p\left(RD
ight)}{p\left(D
ight)}=rac{0.02}{0.1}=0.2=p\left(R
ight)$$

$$p\left(D|R
ight) = rac{p\left(DR
ight)}{p\left(R
ight)} = rac{p\left(RD
ight)}{p\left(R
ight)} = rac{0.02}{0.2} = 0.1 = p\left(D
ight)$$

So p(R|D) = p(R) and p(D|R) = p(D). As we'll see, this must always be the case when $p(RD) = p(R) \cdot p(D).$

Submit

Answers are displayed within the problem

Problem 3

1/1 point (ungraded)

Suppose that S is perfectly rational. (In particular, her credences are described by a probability function, she updates by conditionalizing on her evidence, and she respects Bayes' Law.)

Suppose, moreover, that she is certain of A (i.e. p(A) = 1), and that she assigns a non-trivial probability to B (i.e. $p(B) \neq 0$).

Could learning *B* cause her to be less than certain about *A*?

Explanation

No. Learning *B* cannot cause the subject to lose her certainty in *A*.

To see this, let us assume otherwise and use this assumption to prove a contradiction. We will assume, in particular, that:

$$p^{old}\left(A
ight)=1 \qquad \quad p^{new}\left(A
ight)<1$$

where p^{old} is S's credence function before she learns b and p^{new} is S's credence function after she learns that *B*. Since *S* updates by conditionalizing, this gives us:

$$p^{old}\left(A
ight)=1 \qquad \quad p^{old}\left(A|B
ight)<1$$

We now verify the following propositions, where p is a probability function and \overline{X} is the negation of X:

1.
$$p\left(A
ight)=1$$
 entails $p\left(\overline{A}
ight)=0$

2.
$$p\left(A
ight)=1$$
 entails $p\left(\overline{A}B
ight)=0$

3.
$$p(A) = 1$$
 entails $p(AB) = p(B)$

Proposition (i) is an immediate consequence of the fact that $p(\overline{A}) = 1 - p(A)$, which we verified in earlier. To verify Proposition (ii), note that Additivity entails that p(A) = p(AB) + p(AB). But we know from Proposition (i) that p(A) is zero, so p(AB) and $p(\overline{AB})$ must both be zero as well (since probabilities are always non-negative real numbers). To verify Proposition (iii) note that Additivity entails that p(B) = p(AB) + p(AB). But we know from Proposition (ii) that p(AB) is zero, so it must be the case that p(B) = p(AB). Since we are assuming that p^{old} is a probability function, we may conclude that $p^{old}(B) = p^{old}(AB)$. But note that Bayes' Law entails that $p^{old}(AB) = p^{old}(B) \cdot p^{old}(A|B)$. Since $p^{old}(B) = p^{old}(AB)$, this means that $p^{old}(B) = p^{old}(B) \cdot p^{old}(A|B)$. So as long as $p^{old}\left(B
ight)
eq 0$, it must be the case that $p^{old}\left(A|B
ight) = 1$, which contradicts the assumption that $p^{old}(A|B) < 1.$

Submit

1 Answers are displayed within the problem

Discussion

Topic: Week 6 / Bayes' Law

Hide Discussion

Add a Post

Show all posts by recent activity by recent activity		y 🗸
Q	bullet 2 in problem 2 is not a wrong answer a mathematician would say See title	9
	Problem 3: Does A and B need to be a simple probabilities (not conditional ones)? Let's say $p(A) = 1 = P(R T)$ is the probability of raining when temperature T is in the 1 to 6 C° range. $p()$	4

© All Rights Reserved