Cálculo Numérico

Interpolação Polinomial

Interpolação Inversa

Alessandro Alves Santana

Universidade Federal de Uberlândia Faculdade de Matemática

A interpolação inversa tem por finalidade gerar um polinômio que interpola a inversa de uma função f(x) em um intervalo [a,b]. Mesmo que se tenha apenas conhecimento de valores pontuais de f(x) em n+1 pontos distintos, se f(x) satisfizer determinadas condições, é possível obter o polinômio de grau no máximo n que interpola $f^{-1}(x)$.

A interpolação inversa tem por finalidade gerar um polinômio que interpola a inversa de uma função f(x) em um intervalo [a,b]. Mesmo que se tenha apenas conhecimento de valores pontuais de f(x) em n+1 pontos distintos, se f(x) satisfizer determinadas condições, é possível obter o polinômio de grau no máximo n que interpola $f^{-1}(x)$.

Da teoria, sabe-se que uma função f(x) é inversível em um intervalo [a, b] se for a mesma bijetora nesse intervalo. Para obter o polinômio que interpola a inversa de uma função tabelada, basta que uma das seguintes condições sejam satisfeitas:

A interpolação inversa tem por finalidade gerar um polinômio que interpola a inversa de uma função f(x) em um intervalo [a,b]. Mesmo que se tenha apenas conhecimento de valores pontuais de f(x) em n+1 pontos distintos, se f(x) satisfizer determinadas condições, é possível obter o polinômio de grau no máximo n que interpola $f^{-1}(x)$.

Da teoria, sabe-se que uma função f(x) é inversível em um intervalo [a, b] se for a mesma bijetora nesse intervalo. Para obter o polinômio que interpola a inversa de uma função tabelada, basta que uma das seguintes condições sejam satisfeitas:

• $f(x_i) < f(x_{x_{i+1}})$ para i = 0, 1, 2, ..., n-1 (função crescente).

A interpolação inversa tem por finalidade gerar um polinômio que interpola a inversa de uma função f(x) em um intervalo [a,b]. Mesmo que se tenha apenas conhecimento de valores pontuais de f(x) em n+1 pontos distintos, se f(x) satisfizer determinadas condições, é possível obter o polinômio de grau no máximo n que interpola $f^{-1}(x)$.

Da teoria, sabe-se que uma função f(x) é inversível em um intervalo [a, b] se for a mesma bijetora nesse intervalo. Para obter o polinômio que interpola a inversa de uma função tabelada, basta que uma das seguintes condições sejam satisfeitas:

- $f(x_i) < f(x_{x_{i+1}})$ para i = 0, 1, 2, ..., n-1 (função crescente).
- $f(x_i) > f(x_{x_{i+1}})$ para i = 0, 1, 2, ..., n-1 (função decrescente).

A interpolação inversa tem por finalidade gerar um polinômio que interpola a inversa de uma função f(x) em um intervalo [a,b]. Mesmo que se tenha apenas conhecimento de valores pontuais de f(x) em n+1 pontos distintos, se f(x) satisfizer determinadas condições, é possível obter o polinômio de grau no máximo n que interpola $f^{-1}(x)$.

Da teoria, sabe-se que uma função f(x) é inversível em um intervalo [a, b] se for a mesma bijetora nesse intervalo. Para obter o polinômio que interpola a inversa de uma função tabelada, basta que uma das seguintes condições sejam satisfeitas:

- $f(x_i) < f(x_{x_{i+1}})$ para i = 0, 1, 2, ..., n-1 (função crescente).
- $f(x_i) > f(x_{x_{i+1}})$ para i = 0, 1, 2, ..., n-1 (função decrescente).

E, sob essas condições, pode se obter o polinômio que interpola a inversa de uma função tanto via Forma de Lagrange como Forma de Newton.

A interpolação inversa tem por finalidade gerar um polinômio que interpola a inversa de uma função f(x) em um intervalo [a,b]. Mesmo que se tenha apenas conhecimento de valores pontuais de f(x) em n+1 pontos distintos, se f(x) satisfizer determinadas condições, é possível obter o polinômio de grau no máximo n que interpola $f^{-1}(x)$.

Da teoria, sabe-se que uma função f(x) é inversível em um intervalo [a,b] se for a mesma bijetora nesse intervalo. Para obter o polinômio que interpola a inversa de uma função tabelada, basta que uma das seguintes condições sejam satisfeitas:

- $f(x_i) < f(x_{x_{i+1}})$ para i = 0, 1, 2, ..., n-1 (função crescente).
- $f(x_i) > f(x_{x_{i+1}})$ para i = 0, 1, 2, ..., n-1 (função decrescente).

E, sob essas condições, pode se obter o polinômio que interpola a inversa de uma função tanto via Forma de Lagrange como Forma de Newton.

Definição 1: Interpolação Inversa via Forma de Lagrange

A forma de Lagrange para o polinômio que interpola a inversa $f^{-1}(x)$ de uma função f(x) em n+1 pontos distintos $x_0, x_1, x_2, \ldots, x_n$ é dado por

$$p_n(y) = x_0 L_0(y) + x_1 L_1(y) + x_2 L_2(y) + \dots + x_n L_n(y)$$
(1)

sendo

$$L_k(y) = \frac{\prod_{\substack{i=0\\i\neq k}}^n (y-y_i)}{\prod_{\substack{i=0\\i\neq k}}^n (y_k-y_i)}.$$
(2)

Definição 2: Interpolação Inversa via Forma de Newton

A forma de Newton para o polinômio que interpola a inversa $f^{-1}(x)$ de uma função f(x) em n+1 pontos distintos x_i , com $i=0,1,2,\ldots,n$, sendo $x_i < x_{i+1}, i=0,1,2,\ldots,n-1$, é dado por

$$p_{n}(y) = f[y_{0}] + f[y_{0}, y_{1}](y - x_{0}) + f[y_{0}, y_{1}, y_{2}](y - y_{0})(y - y_{1}) + f[y_{0}, y_{1}, y_{2}, y_{3}](y - y_{0})(y - y_{1})(y - y_{2}) + \dots + f[y_{0}, y_{1}, y_{2}, \dots, y_{n}](y - y_{0})(y - y_{1})(y - y_{2}) \dots (y - y_{n-1})$$
(3)

sendo $f[y_0, y_1, y_2, \dots, y_k]$, a qual é definida por

$$f[y_0, y_1, y_2, \dots, y_k] = \frac{f[y_1, y_2, y_3, \dots, y_k] - f[y_0, y_1, y_2, \dots, y_{k-1}]}{y_k - y_0}$$
(4)

chamada **diferença dividida de ordem** k.

TABELA DE DIFERENÇAS DIVIDIDAS					
У	ORDEM 0	ORDEM 1	ORDEM 2	• • •	ORDEM n
y ₀	x ₀	$f[y_0,y_1]$			
<i>y</i> ₁	x_1	$f[y_1,y_2]$	$f[y_0,y_1,y_2]$		
y ₂	<i>X</i> ₂	$f[y_2,y_3]$	$f[y_1,y_2,y_3]$		
y ₃	X ₃	$f[y_3,y_4]$	$f[y_2,y_3,y_4]$		$f[y_0,y_1,\ldots,y_n]$
y ₄	<i>X</i> ₄	;	į		
:	‡	$f[y_{n-1},y_n]$	$f[y_{n-2},y_{n-1},y_n]$		
Уn	X _n				

Considere a tabela abaixo, a qual apresenta valores de uma função estritamente decrescente no intervalo [0.5, 1.5], e determine \overline{x} tal que $f(\overline{x}) = 1.1$ usando interpolação inversa mediante um polinômio de grau 2. Trabalhe com 4 casas decimais.

X	0.50	0.81	0.84	1.09	1.50
<i>f</i> (x)	1.7199	1.1126	1.0458	0.4527	-0.5764

Considere a tabela abaixo, a qual apresenta valores de uma função estritamente decrescente no intervalo [0.5, 1.5], e determine \overline{x} tal que $f(\overline{x}) = 1.1$ usando interpolação inversa mediante um polinômio de grau 2. Trabalhe com 4 casas decimais.

	3 - 3 - 3		0.84		
<i>f</i> (<i>x</i>)	1.7199	1.1126	1.0458	0.4527	-0.5764

Resolução: Para obter um polinômio de grau 2 que interpola a inversa de f(x), devemos considerar 3 pontos de tal forma que o comprimento do intervalo $[y_0, y_2]$ seja o menor possível e que $f(\overline{x}) = 1.1$ esteja dentro desse intervalo. Observando a tabela, pode-se notar que $1.0458 < f(\overline{x}) < 1.1126$. Logo, temos duas subtabelas para analisar:

Considere a tabela abaixo, a qual apresenta valores de uma função estritamente decrescente no intervalo [0.5, 1.5], e determine \overline{x} tal que $f(\overline{x}) = 1.1$ usando interpolação inversa mediante um polinômio de grau 2. Trabalhe com 4 casas decimais.

X	0.50	0.81	0.84	1.09	1.50
<i>f</i> (x)	1.7199	1.1126	1.0458	0.4527	-0.5764

Resolução: Para obter um polinômio de grau 2 que interpola a inversa de f(x), devemos considerar 3 pontos de tal forma que o comprimento do intervalo $[y_0, y_2]$ seja o menor possível e que $f(\overline{x}) = 1.1$ esteja dentro desse intervalo. Observando a tabela, pode-se notar que $1.0458 < f(\overline{x}) < 1.1126$. Logo, temos duas subtabelas para analisar:

X	0.50	0.81	0.84
f(x)	1.7199	1.1126	1.0458

X	0.81	0.84	1.09
f(x)	1.1126	1.0458	0.4527

Considere a tabela abaixo, a qual apresenta valores de uma função estritamente decrescente no intervalo [0.5, 1.5], e determine \overline{x} tal que $f(\overline{x}) = 1.1$ usando interpolação inversa mediante um polinômio de grau 2. Trabalhe com 4 casas decimais.

•	0.00	0.0-	0.84		
<i>f</i> (x)	1.7199	1.1126	1.0458	0.4527	-0.5764

Resolução: Para obter um polinômio de grau 2 que interpola a inversa de f(x), devemos considerar 3 pontos de tal forma que o comprimento do intervalo $[y_0, y_2]$ seja o menor possível e que $f(\overline{x}) = 1.1$ esteja dentro desse intervalo. Observando a tabela, pode-se notar que $1.0458 < f(\overline{x}) < 1.1126$. Logo, temos duas subtabelas para analisar:

X	0.50	0.81	0.84
f(x)	1.7199	1.1126	1.0458

X	0.81	0.84	1.09
f(x)	1.1126	1.0458	0.4527

Note que na primeira subtabela acima à esquerda, o comprimento do intervalo [1.0458, 1.7199] é 0.6741. Na segunda subtabela, o intervalo [0.4527, 1.1126] é 0.6599. Como 0.6599 < 0.6741, vamos trabalhar com a segunda subtabela.

Considere a tabela abaixo, a qual apresenta valores de uma função estritamente decrescente no intervalo [0.5, 1.5], e determine \overline{x} tal que $f(\overline{x}) = 1.1$ usando interpolação inversa mediante um polinômio de grau 2. Trabalhe com 4 casas decimais.

Х	0.50	0.81	0.84	1.09	1.50
<i>f</i> (<i>x</i>)	1.7199	1.1126	1.0458	0.4527	-0.5764

Resolução: Para obter um polinômio de grau 2 que interpola a inversa de f(x), devemos considerar 3 pontos de tal forma que o comprimento do intervalo $[y_0, y_2]$ seja o menor possível e que $f(\overline{x}) = 1.1$ esteja dentro desse intervalo. Observando a tabela, pode-se notar que $1.0458 < f(\overline{x}) < 1.1126$. Logo, temos duas subtabelas para analisar:

X	0.50	0.81	0.84
<i>f</i> (x)	1.7199	1.1126	1.0458

X	0.81	0.84	1.09
<i>f</i> (x)	1.1126	1.0458	0.4527

Note que na primeira subtabela acima à esquerda, o comprimento do intervalo [1.0458, 1.7199] é 0.6741. Na segunda subtabela, o intervalo [0.4527, 1.1126] é 0.6599. Como 0.6599 < 0.6741, vamos trabalhar com a segunda subtabela.

У	ORDEM 0	ORDEM 1	ORDEM 2
0.4527	1.09	-0.4215	-0.0418
1.0458	0.84	-0.4491	
1.1126	0.81		

Considere a tabela abaixo, a qual apresenta valores de uma função estritamente decrescente no intervalo [0.5, 1.5], e determine \overline{x} tal que $f(\overline{x}) = 1.1$ usando interpolação inversa mediante um polinômio de grau 2. Trabalhe com 4 casas decimais.

X	0.50	0.81	0.84	1.09	1.50
<i>f</i> (x)	1.7199	1.1126	1.0458	0.4527	-0.5764

Resolução: Para obter um polinômio de grau 2 que interpola a inversa de f(x), devemos considerar 3 pontos de tal forma que o comprimento do intervalo $[y_0, y_2]$ seja o menor possível e que $f(\overline{x}) = 1.1$ esteja dentro desse intervalo. Observando a tabela, pode-se notar que $1.0458 < f(\overline{x}) < 1.1126$. Logo, temos duas subtabelas para analisar:

X	0.50	0.81	0.84
<i>f</i> (x)	1.7199	1.1126	1.0458

Note que na primeira subtabela acima à esquerda, o comprimento do intervalo [1.0458, 1.7199] é 0.6741. Na segunda subtabela, o intervalo [0.4527, 1.1126] é 0.6599. Como 0.6599 < 0.6741, vamos trabalhar com a segunda subtabela.

y	ORDEM 0	ORDEM 1	ORDEM 2
0.4527	1.09	-0.4215	-0.0418
1.0458	0.84	-0.4491	
1.1126	0.81		

Basta agora fazer o cálculo do valor de \overline{x} usando o polinômio que interpola a inversa.

$$\overline{x} \approx p_2(y) = 1.09 - 0.4215(y - 0.4527) - 0.0418(y - 0.4527)(y - 1.0458)$$

 $\overline{x} \approx p_2(1.1) = 1.09 - 0.4215(1.1 - 0.4527) - 0.0418(1.1 - 0.4527)(1.1 - 1.0458)$
 $\overline{x} \approx 0.8157$.

Considere a tabela abaixo, a qual apresenta valores de uma função estritamente decrescente no intervalo [0.5, 1.5], e determine \overline{x} tal que $f(\overline{x}) = 1.1$ usando interpolação inversa mediante um polinômio de grau 2. Trabalhe com 4 casas decimais.

X	0.50	0.81	0.84	1.09	1.50
<i>f</i> (x)	1.7199	1.1126	1.0458	0.4527	-0.5764

Resolução: Para obter um polinômio de grau 2 que interpola a inversa de f(x), devemos considerar 3 pontos de tal forma que o comprimento do intervalo $[y_0, y_2]$ seja o menor possível e que $f(\overline{x}) = 1.1$ esteja dentro desse intervalo. Observando a tabela, pode-se notar que $1.0458 < f(\overline{x}) < 1.1126$. Logo, temos duas subtabelas para analisar:

X	0.50	0.81	0.84
f(x)	1.7199	1.1126	1.0458

Note que na primeira subtabela acima à esquerda, o comprimento do intervalo [1.0458, 1.7199] é 0.6741. Na segunda subtabela, o intervalo [0.4527, 1.1126] é 0.6599. Como 0.6599 < 0.6741, vamos trabalhar com a segunda subtabela.

y	ORDEM 0	ORDEM 1	ORDEM 2
0.4527	1.09	-0.4215	-0.0418
1.0458	0.84	-0.4491	
1.1126	0.81		

Basta agora fazer o cálculo do valor de \overline{x} usando o polinômio que interpola a inversa.

$$\overline{x} \approx p_2(y) = 1.09 - 0.4215(y - 0.4527) - 0.0418(y - 0.4527)(y - 1.0458)$$
 $\overline{x} \approx p_2(1.1) = 1.09 - 0.4215(1.1 - 0.4527) - 0.0418(1.1 - 0.4527)(1.1 - 1.0458)$
 $\overline{x} \approx 0.8157$.

Portanto, $\overline{x} \approx 0.8157$.