









# **TEST REPORT**

Test report no.: 1-9417/15-01-03-C





### **Testing laboratory**

#### **CTC advanced GmbH**

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.ctcadvanced.com
mail@ctcadvanced.com

#### **Accredited Testing Laboratory:**

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-01

### **Applicant**

#### **Roche Diabetes Care**

9115 Hague Road

IN 46256 Indianapolis / UNITED STATES

Phone: -/-Fax: -/-

Contact: David Chandler

e-mail: Dave.chandler@roche.com

Phone: +1 317-521-3070

#### Manufacturer

#### **Roche Diabetes Care**

9115 Hague Road

IN 46256 Indianapolis / UNITED STATES

#### Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS - 247 Issue 1 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence-Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

**Test Item** 

Kind of test item: Blood Glucose Meter Model name: Accu-Chek Guide

FCC ID: WX3-126 IC: 3100A-126

Frequency: DTS band 2400 MHz to 2483.5 MHz

Technology tested: Bluetooth®, LE

Antenna: Integrated antenna

Power supply: 3.0 V DC by battery

Temperature range: -10°C to 60°C



This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

| Test report authorised: | Test performed:     |
|-------------------------|---------------------|
|                         |                     |
|                         |                     |
|                         |                     |
| Joerg Warken            | Mihail Dorongovskii |

**Testing Manager** 

Radio Communications & EMC

Lab Manager Radio Communications & EMC



# Table of contents

| 1   | Table        | of contents                                                                   | 2  |
|-----|--------------|-------------------------------------------------------------------------------|----|
| 2   | Genera       | al information                                                                | 3  |
|     | 2.1          | Notes and disclaimer                                                          | 3  |
|     |              | Application details                                                           |    |
| 3   | Test s       | andard/s                                                                      | 3  |
|     |              | Measurement quidance                                                          |    |
| 4   |              | nvironment                                                                    |    |
|     |              |                                                                               |    |
| 5   |              | em                                                                            |    |
|     | 5.1          | Additional information                                                        | 4  |
| 6   | Test la      | boratories sub-contracted                                                     | 4  |
| 7   | Descri       | ption of the test setup                                                       | 5  |
|     | 7.1          | Shielded semi anechoic chamber                                                | ε  |
|     |              | Shielded fully anechoic chamber                                               |    |
|     |              | Radiated measurements > 12.75 GHz                                             |    |
|     | 7.4          | Conducted measurements BT system                                              | 9  |
| 8   | Seque        | nce of testing                                                                | 10 |
|     | 8.1          | Sequence of testing radiated spurious 9 kHz to 30 MHz                         | 10 |
|     | 8.2          | Sequence of testing radiated spurious 30 MHz to 1 GHz                         | 11 |
|     | 8.3          | Sequence of testing radiated spurious 1 GHz to 18 GHz                         | 12 |
|     | 8.4          | Sequence of testing radiated spurious above 18 GHz                            | 13 |
| 9   | Measu        | rement uncertainty                                                            | 14 |
| 10  | Sum          | mary of measurement results                                                   | 15 |
| 11  | Add          | itional comments                                                              | 16 |
| 12  | Mea          | surement results                                                              | 17 |
|     | 12.1         | System gain                                                                   | 17 |
|     | 12.2         | Power spectral density                                                        | 18 |
|     | 12.3         | DTS bandwidth – 6 dB bandwidth                                                |    |
|     | 12.4         | Occupied bandwidth – 20 dB bandwidth                                          |    |
|     | 12.5<br>12.6 | Maximum output power  Detailed spurious emissions @ the band edge - conducted |    |
|     | 12.7         | Band edge compliance radiated                                                 |    |
|     | 12.7         | TX spurious emissions conducted                                               |    |
|     | 12.9         | Spurious emissions radiated below 30 MHz                                      |    |
|     | 12.10        | Spurious emissions radiated 30 MHz to 1 GHz                                   |    |
|     | 12.11        | Spurious emissions radiated above 1 GHz                                       | 45 |
| 13  | Obs          | ervations                                                                     | 55 |
| Anr | nex A        | Document history                                                              | 56 |
| Anr | nex B        | Further information                                                           | 56 |
| Δnr | nex C        | Accreditation Certificate                                                     | 57 |



### 2 General information

#### 2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-9417/15-01-03-B and dated 2017-01-17.

### 2.2 Application details

Date of receipt of order: 2015-03-26
Date of receipt of test item: 2015-04-23
Start of test: 2015-05-19
End of test: 2015-05-27

Person(s) present during the test: -/-

### 3 Test standard/s

| Test standard     | Date    | Test standard description                                                                                                           |
|-------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------|
| 47 CFR Part 15    | -/-     | Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices                                           |
| RSS - 247 Issue 1 | 2015-05 | Digital Transmission Systems (DTSs), Frequency Hopping<br>Systems (FHSs) and Licence-Exempt Local Area Network (LE-<br>LAN) Devices |

#### 3.1 Measurement guidance

DTS: KDB 558074 2014-06 Guidance for Performing Compliance Measurements on Digital

Transmission Systems (DTS) Operating Under §15.247



### 4 Test environment

T<sub>nom</sub> +22 °C during room temperature tests

 $\label{eq:Tmax} T_{\text{max}} \quad \text{No tests under extreme conditions required.}$ 

T<sub>min</sub> No tests under extreme conditions required.

Relative humidity content: 50 %

Barometric pressure: not relevant for this kind of testing

V<sub>nom</sub> 3.0 V DC by battery

Power supply: V<sub>max</sub> No tests under extreme conditions required.

V<sub>min</sub> No tests under extreme conditions required.

### 5 Test item

| Kind of test item          | : | Blood Glucose Meter                                 |
|----------------------------|---|-----------------------------------------------------|
| Type identification        | : | Accu-Chek Guide                                     |
| PMN                        | : | Accu-Chek Guide                                     |
| HMN                        | : | -/-                                                 |
| HVIN                       | : | 930                                                 |
| FVIN                       | : | 1.8.3                                               |
| S/N serial number          |   | Radiated unit: 92500052735                          |
|                            |   | Conducted unit 92500052737                          |
| HW hardware status         | : | PPB2                                                |
| SW software status         | : | V1.8.3                                              |
| Frequency band             |   | DTS band 2400 MHz to 2483.5 MHz                     |
| Trequency band             | • | (lowest channel 2402 MHz; highest channel 2480 MHz) |
| Type of radio transmission | : | DSSS                                                |
| Use of frequency spectrum  | : | D333                                                |
| Type of modulation         | : | GFSK                                                |
| Number of channels         | : | 40                                                  |
| Antenna                    | : | Integrated antenna                                  |
| Power supply               | : | 3.0 V DC by battery                                 |
| Temperature range          | : | -10°C to 60°C                                       |

### 5.1 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-9417/15-01-01\_AnnexA

1-9417/15-01-01\_AnnexB 1-9417/15-01-01\_AnnexD

#### 6 Test laboratories sub-contracted

None



# 7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signalling equipment as well as measuring receivers and analysers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

#### Agenda: Kind of Calibration

| k     | calibration / calibrated                   | EK  | limited calibration                              |
|-------|--------------------------------------------|-----|--------------------------------------------------|
| ne    | not required (k, ev, izw, zw not required) | ZW  | cyclical maintenance (external cyclical          |
|       |                                            |     | maintenance)                                     |
| ev    | periodic self verification                 | izw | internal cyclical maintenance                    |
| Ve    | long-term stability recognized             | g   | blocked for accredited testing                   |
| vlkl! | Attention: extended calibration interval   |     |                                                  |
| NK!   | Attention: not calibrated                  | *)  | next calibration ordered / currently in progress |



### 7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analysers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.



| No. | Lab /<br>Item | Equipment                                          | Туре         | Manufact.    | Serial No. | INV. No   | Kind of Calibration | Last Calibration | Next<br>Calibration |
|-----|---------------|----------------------------------------------------|--------------|--------------|------------|-----------|---------------------|------------------|---------------------|
| 1   | Α             | Switch-Unit                                        | 3488A        | HP           | 2719A14505 | 300000368 | g                   | -/-              | -/-                 |
| 2   | Α             | EMI Test Receiver                                  | ESCI 3       | R&S          | 100083     | 300003312 | k                   | 26.01.2015       | 26.01.2016          |
| 3   | Α             | Antenna Tower                                      | Model 2175   | ETS-Lindgren | 64762      | 300003745 | izw                 | -/-              | -/-                 |
| 4   | Α             | Positioning<br>Controller                          | Model 2090   | ETS-Lindgren | 64672      | 300003746 | izw                 | -/-              | -/-                 |
| 5   | Α             | Turntable Interface-<br>Box                        | Model 105637 | ETS-Lindgren | 44583      | 300003747 | izw                 | -/-              | -/-                 |
| 6   | А             | TRILOG Broadband<br>Test-Antenna 30<br>MHz - 3 GHz | VULB9163     | Schwarzbeck  | 295        | 300003787 | k                   | 22.04.2014       | 22.04.2016          |



# 7.2 Shielded fully anechoic chamber



| No. | Lab /<br>Item | Equipment                                            | Туре                                | Manufact.            | Serial No. | INV. No   | Kind of Calibration | Last Calibration | Next<br>Calibration |
|-----|---------------|------------------------------------------------------|-------------------------------------|----------------------|------------|-----------|---------------------|------------------|---------------------|
| 1   | А             | Double-Ridged<br>Waveguide Horn<br>Antenna 1-18.0GHz | 3115                                | EMCO                 | 9709-5290  | 300000212 | k                   | 23.07.2013       | 23.07.2015          |
| 2   | A, B, C       | EMI Test Receiver<br>20Hz- 26,5GHz                   | ESU26                               | R&S                  | 100037     | 300003555 | k                   | 22.01.2015       | 22.01.2016          |
| 3   | Α             | Band Reject Filter                                   | WRCG2400/2483-<br>2375/2505-50/10SS | Wainwright           | 26         | 300003792 | ne                  | -/-              | -/-                 |
| 4   | A, B          | TRILOG Broadband<br>Test-Antenna 30<br>MHz - 3 GHz   | VULB9163                            | Schwarzbeck          | 318        | 300003696 | k                   | 22.04.2014       | 22.04.2017          |
| 5   | Α             | Broadband Amplifier                                  | CBLU5135235                         | CERNEX               | 22011      | 300004492 | ev                  | -/-              | -/-                 |
| 6   | A, B, C       | 4U RF Switch<br>Platform                             | L4491A                              | Agilent Technologies | MY50000032 | 300004510 | ne                  | -/-              | -/-                 |
| 7   | A, B, C       | NEXIO EMV-<br>Software                               | BAT EMC                             | EMCO                 | MY50000032 | 300004682 | ne                  | -/-              | -/-                 |
| 8   | A, B, C       | Anechoic chamber                                     | FAC 3/5m                            | MWB / TDK            | 87400/02   | 300000996 | ev                  | -/-              | -/-                 |
| 9   | С             | Artificial Mains 9 kHz<br>to 30 MHz                  | ESH3-Z5                             | R&S                  | 828576/020 | 300001210 | Ve                  | 30.01.2014       | 30.01.2016          |
| 10  | С             | Active Loop Antenna<br>10 kHz to 30 MHz              | 6502                                | Kontron Psychotech   | 8905-2342  | 300000256 | k                   | 13.06.2013       | 13.06.2015          |
| 11  | A, B, C       | MXE EMI Receiver<br>20 Hz to 26,5 GHz                | N9038A                              | Agilent Technologies | MY51210197 | 300004405 | k                   | 06.03.2015       | 06.03.2016          |
| 12  | A, B, C       | 4U RF Switch<br>Platform                             | L4491A                              | Agilent Technologies | MY50000037 | 300004509 | ne                  | -/-              | -/-                 |



# 7.3 Radiated measurements > 12.75 GHz



| No. | Lab /<br>Item | Equipment                                     | Туре                    | Manufact.      | Serial No.          | INV. No   | Kind of<br>Calibration | Last Calibration | Next<br>Calibration |
|-----|---------------|-----------------------------------------------|-------------------------|----------------|---------------------|-----------|------------------------|------------------|---------------------|
| 1   | Α             | Std. Gain Horn<br>Antenna 12.4 to 18.0<br>GHz | 639                     | Narda          | 8402                | 300000787 | k                      | 22.07.2013       | 22.07.2015          |
| 2   | Α             | Std. Gain Horn<br>Antenna 18.0 to 26.5<br>GHz | 638                     | Narda          | 8205                | 300002442 | k                      | 19.07.2013       | 19.07.2015          |
| 3   | Α             | Signal Analyzer 40<br>GHz                     | FSV40                   | R&S            | 101042              | 300004517 | k                      | 22.01.2015       | 22.01.2016          |
| 4   | Α             | Amplifier 2-40 GHz                            | JS32-02004000-57-<br>5P | MITEQ          | 1777200             | 300004541 | ev                     | 20.05.2015       | 20.05.2017          |
| 5   | Α             | RF-Cable                                      | ST18/SMAm/SMAm/<br>60   | Huber & Suhner | Batch no.<br>606844 | 400001181 | ev                     | -/-              | -/-                 |
| 6   | Α             | RF-Cable                                      | ST18/SMAm/SMAm/<br>48   | Huber & Suhner | Batch no.<br>600918 | 400001182 | ev                     | -/-              | -/-                 |
| 7   | Α             | DC-Blocker 0.1-40<br>GHz                      | 8141A                   | Inmet          | Batch no.<br>600918 | 400001185 | ev                     | -/-              | -/-                 |



# 7.4 Conducted measurements BT system



| No. | Lab /<br>Item | Equipment                                                 | Туре                  | Manufact.            | Serial No.          | INV. No   | Kind of Calibration | Last Calibration | Next<br>Calibration |
|-----|---------------|-----------------------------------------------------------|-----------------------|----------------------|---------------------|-----------|---------------------|------------------|---------------------|
| 1   | Α             | Switch / Control Unit                                     | 3488A                 | HP                   | -/-                 | 300001691 | ne                  | -/-              | -/-                 |
| 2   | А             | Signal Analyzer<br>20Hz-26,5GHz-150<br>to + 30 DBM        | FSIQ26                | R&S                  | 835540/018          | 300002681 | k                   | 30.01.2014       | 30.01.2016          |
| 3   | А             | Frequency Standard<br>(Rubidium<br>Frequency<br>Standard) | MFS (Rubidium)        | R&S (Datum)          | 002                 | 300002681 | Ve                  | 29.01.2015       | 29.01.2017          |
| 4   | Α             | USB/GPIB interface                                        | 82357B                | Agilent Technologies | MY52103346          | 300004390 | ne                  | -/-              | -/-                 |
| 5   | Α             | Directional Coupler                                       | 101020010             | Krytar               | 70215               | 300002840 | ev                  | -/-              | -/-                 |
| 6   | Α             | DC-Blocker                                                | 8143                  | Inmet Corp.          | none                | 300002842 | ne                  | -/-              | -/-                 |
| 7   | Α             | Powersplitter                                             | 6005-3                | Inmet Corp.          | none                | 300002841 | ev                  | -/-              | -/-                 |
| 8   | Α             | RF-Cable                                                  | ST18/SMAm/SMAm/<br>72 | Huber & Suhner       | Batch no.<br>605505 | 400001187 | ev                  | -/-              | -/-                 |
| 9   | Α             | RF-Cable                                                  | Sucoflex 104          | Huber & Suhner       | 147636/4            | 400001188 | ev                  | -/-              | -/-                 |



## 8 Sequence of testing

## 8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

#### Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

#### **Premeasurement**

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.



# 8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

#### Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

#### **Premeasurement**

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.



# 8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

#### Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

#### **Premeasurement**

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.



# 8.4 Sequence of testing radiated spurious above 18 GHz

#### Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

#### **Premeasurement**

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.



# 9 Measurement uncertainty

| Measurement uncertainty                                  |                                          |  |  |  |  |  |
|----------------------------------------------------------|------------------------------------------|--|--|--|--|--|
| Test case                                                | Uncertainty                              |  |  |  |  |  |
| Antenna gain                                             | ± 3 dB                                   |  |  |  |  |  |
| Spectrum bandwidth                                       | ± 21.5 kHz absolute; ± 15.0 kHz relative |  |  |  |  |  |
| Maximum output power                                     | ± 1 dB                                   |  |  |  |  |  |
| Detailed conducted spurious emissions @ the band edge    | ± 1 dB                                   |  |  |  |  |  |
| Band edge compliance radiated                            | ± 3 dB                                   |  |  |  |  |  |
| Spurious emissions conducted                             | ± 3 dB                                   |  |  |  |  |  |
| Spurious emissions radiated below 30 MHz                 | ± 3 dB                                   |  |  |  |  |  |
| Spurious emissions radiated 30 MHz to 1 GHz              | ± 3 dB                                   |  |  |  |  |  |
| Spurious emissions radiated 1 GHz to 12.75 GHz           | ± 3.7 dB                                 |  |  |  |  |  |
| Spurious emissions radiated above 12.75 GHz              | ± 4.5 dB                                 |  |  |  |  |  |
| Spurious emissions conducted below 30 MHz (AC conducted) | ± 2.6 dB                                 |  |  |  |  |  |



# 10 Summary of measurement results

| No deviations from the technical specifications were ascertained                                                       |
|------------------------------------------------------------------------------------------------------------------------|
| There were deviations from the technical specifications ascertained                                                    |
| This test report is only a partial test report.  The content and verdict of the performed test cases are listed below. |

| TC Identifier | Description                       | Verdict    | Date       | Remark |
|---------------|-----------------------------------|------------|------------|--------|
| RF-Testing    | CFR Part 15<br>RSS - 247, Issue 1 | See table! | 2017-02-09 | -/-    |

| Test specification clause                                | Test case                                               | Guideline                                     | Temperature conditions | Power source voltages | Mode | С           | NC | NA          | NP | Remark                     |
|----------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------|------------------------|-----------------------|------|-------------|----|-------------|----|----------------------------|
| §15.247(b)(4)<br>RSS - 247 /<br>5.4 (4)                  | System gain                                             | -/-                                           | Nominal                | Nominal               | GFSK | $\boxtimes$ |    |             |    | -/-                        |
| §15.247(e)<br>RSS - 247 /<br>5.2 (2)                     | Power spectral density                                  | KDB 558074<br>DTS clause: 10.6                | Nominal                | Nominal               | GFSK | $\boxtimes$ |    |             |    | -/-                        |
| §15.247(a)(2)<br>RSS - 247 /<br>5.2 (1)                  | DTS bandwidth –<br>6 dB bandwidth                       | KDB 558074<br>DTS clause: 8.1                 | Nominal                | Nominal               | GFSK | $\boxtimes$ |    |             |    | -/-                        |
| RSS Gen clause 4.6.1                                     | Occupied bandwidth                                      | -/-                                           | Nominal                | Nominal               | GFSK | $\boxtimes$ |    |             |    | -/-                        |
| §15.247(b)(3)<br>RSS - 247 /<br>5.4 (4)                  | Maximum output power                                    | KDB 558074<br>DTS clause: 9.1.1               | Nominal                | Nominal               | GFSK | $\boxtimes$ |    |             |    | -/-                        |
| §15.247(d)<br>RSS - 247 /<br>5.5                         | Detailed spurious emissions @ the band edge - conducted | -/-                                           | Nominal                | Nominal               | GFSK | $\boxtimes$ |    |             |    | -/-                        |
| §15.205<br>RSS - 247 /<br>5.5<br>RSS - Gen               | Band edge<br>compliance<br>radiated                     | KDB 558074<br>DTS clause:<br>13.3.2           | Nominal                | Nominal               | GFSK | $\boxtimes$ |    |             |    | -/-                        |
| §15.247(d)<br>RSS - 247 /<br>5.5                         | TX spurious<br>emissions<br>conducted                   | KDB 558074<br>DTS clause: 11.1<br>& 11.2 11.3 | Nominal                | Nominal               | GFSK | $\boxtimes$ |    |             |    | -/-                        |
| §15.209(a)<br>RSS - Gen                                  | TX spurious emissions radiated                          | -/-                                           | Nominal                | Nominal               | GFSK | $\boxtimes$ |    |             |    | -/-                        |
| 15.247(d)<br>RSS - 247 /<br>5.5<br>§15.109<br>RSS - Gen  | RX spurious<br>emissions radiated                       | -/-                                           | Nominal                | Nominal               | -/-  | $\boxtimes$ |    |             |    | -/-                        |
| §15.247(d)<br>RSS - 247 /<br>5.5<br>§15.109<br>RSS - Gen | TX spurious<br>emissions radiated<br>< 30 MHz           | -/-                                           | Nominal                | Nominal               | GFSK | $\boxtimes$ |    |             |    | -/-                        |
| §15.107(a)<br>§15.207                                    | Conducted<br>emissions<br>< 30 MHz                      | -/-                                           | Nominal                | Nominal               | GFSK |             |    | $\boxtimes$ |    | Only<br>battery<br>powered |

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed



# 11 Additional comments

The Bluetooth $^{\otimes}$  word mark and logos are owned by the Bluetooth SIG Inc. and any use of such marks by CTC advanced GmbH is under license.

| Reference documents:        | None               |                                                                                                                                                                                                |
|-----------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Special test descriptions:  | None               |                                                                                                                                                                                                |
| Configuration descriptions: | static F<br>RX/Sta | ts: were performed with LE packets (37 byte payload) and PRBS pattern. andby tests: BT enabled, TX Idle channels: lowest: 2402 MHz (Ch 0) middle: 2440 MHz (Ch 19) - highest: 2480 MHz (Ch 39) |
| Test mode:                  |                    | Bluetooth LE Test mode enabled (EUT is controlled over CBT)                                                                                                                                    |
|                             | $\boxtimes$        | Special software is used. EUT is transmitting pseudo random data by itself                                                                                                                     |



# 12 Measurement results

# 12.1 System gain

### **Measurement:**

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. For normal Bluetooth® devices, the GFSK modulation is used.

# **Measurement parameters:**

| Measurement parameters  |                                                                  |  |  |  |
|-------------------------|------------------------------------------------------------------|--|--|--|
| Detector                | Peak                                                             |  |  |  |
| Sweep time              | Auto                                                             |  |  |  |
| Resolution bandwidth    | 3 MHz                                                            |  |  |  |
| Video bandwidth         | 3 MHz                                                            |  |  |  |
| Span                    | 5 MHz                                                            |  |  |  |
| Trace mode              | Max hold                                                         |  |  |  |
| Test setup              | See sub clause 7.2 B (radiated) See sub clause 7.4 A (conducted) |  |  |  |
| Measurement uncertainty | See sub clause 9                                                 |  |  |  |

# Limits:

| FCC          | IC |  |  |  |
|--------------|----|--|--|--|
| Antenna Gain |    |  |  |  |
| 6 dBi        |    |  |  |  |

# Results:

| T <sub>nom</sub>                                    | V <sub>nom</sub> | lowest<br>channel<br>2402 MHz | middle<br>channel<br>2440 MHz | highest<br>channel<br>2480 MHz |
|-----------------------------------------------------|------------------|-------------------------------|-------------------------------|--------------------------------|
| Conducted power [dBm] Measured with GFSK modulation |                  | -3.3                          | -4.3                          | -4.4                           |
| Radiated power [dBm] Measured with GFSK modulation  |                  | -7.8                          | -6.0                          | -6.9                           |
| Gain [dBi]<br>Calculated                            |                  | -4.5                          | -1.7                          | -2.5                           |



# 12.2 Power spectral density

# **Description:**

Measurement of the power spectral density of a digital modulated system.

### **Measurement:**

| Measurement parameters  |                      |  |  |  |
|-------------------------|----------------------|--|--|--|
| Detector                | Peak                 |  |  |  |
| Sweep time              | Auto                 |  |  |  |
| Resolution bandwidth    | 3 kHz                |  |  |  |
| Video bandwidth         | 10 kHz               |  |  |  |
| Span                    | ≥ EBW                |  |  |  |
| Trace mode              | Max hold             |  |  |  |
| Test setup              | See sub clause 7.4 A |  |  |  |
| Measurement uncertainty | See sub clause 9     |  |  |  |

# Limits:

| FCC        | IC            |
|------------|---------------|
| Power Spec | ctral Density |
|            |               |

For digitally modulated systems the transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission or over 1.0 second if the transmission exceeds 1.0-second duration.

#### **Results:**

| Modulation   | Power spectral density |          |          |  |  |
|--------------|------------------------|----------|----------|--|--|
| Frequency    | 2402 MHz               | 2440 MHz | 2480 MHz |  |  |
| [dBm / 3kHz] | -4.5                   | -5.4     | -6.0     |  |  |



# Plots:

### Plot 1: lowest channel



Plot 2: mid channel





### Plot 3: highest channel





# 12.3 DTS bandwidth - 6 dB bandwidth

# **Description:**

Measurement of the 6 dB bandwidth of the modulated signal.

# **Measurement:**

| Measurement parameters       |                                     |  |  |  |
|------------------------------|-------------------------------------|--|--|--|
| According to DTS clause: 8.1 |                                     |  |  |  |
| Detector                     | Peak                                |  |  |  |
| Sweep time                   | Auto                                |  |  |  |
| Resolution bandwidth         | 100 kHz                             |  |  |  |
| Video bandwidth              | 300 kHz                             |  |  |  |
| Span                         | 5 MHz                               |  |  |  |
| Measurement procedure        | Using 3 marker (max + 2x-6dB)       |  |  |  |
| Trace mode                   | Max hold (allow trace to stabilize) |  |  |  |
| Test setup                   | See sub clause 7.4 A                |  |  |  |
| Measurement uncertainty      | See sub clause 9                    |  |  |  |

# Limits:

| FCC                                                                                                                                         | IC |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| DTS bandwidth – 6 dB bandwidth                                                                                                              |    |  |
| Systems using digital modulation techniques may operate in the 2400–2483.5 MHz band.  The minimum 6 dB bandwidth shall be at least 500 kHz. |    |  |

# Results:

| Modulation | 6 dB BANDWIDTH [kHz] |          |          |  |
|------------|----------------------|----------|----------|--|
| Frequency  | 2402 MHz             | 2440 MHz | 2480 MHz |  |
| GFSK       | 671.3                | 681.4    | 681.4    |  |



# Plots:

# Plot 1: lowest channel



Plot 2: mid channel





Plot 3: highest channel





# 12.4 Occupied bandwidth - 20 dB bandwidth

# **Description:**

Measurement of the 20 dB bandwidth of the modulated signal. EUT in single channel mode.

# **Measurement:**

| Measurement parameter   |                                     |  |  |  |
|-------------------------|-------------------------------------|--|--|--|
| Detector:               | Peak                                |  |  |  |
| Sweep time:             | Auto                                |  |  |  |
| Resolution bandwidth:   | 10 kHz                              |  |  |  |
| Video bandwidth:        | 30 kHz                              |  |  |  |
| Span:                   | 4 MHz                               |  |  |  |
| Trace mode              | Max hold (allow trace to stabilize) |  |  |  |
| Test setup              | See sub clause 7.4 A                |  |  |  |
| Measurement uncertainty | See sub clause 9                    |  |  |  |

# Limits:

| FCC                                                                                  | IC |  |
|--------------------------------------------------------------------------------------|----|--|
| Occupied bandwidth – 20 dB bandwidth                                                 |    |  |
| No restriction – only necessary for further measurements and IC emission designator. |    |  |

# Results:

| Modulation | 20       | dB BANDWIDTH [kl | łz]      |
|------------|----------|------------------|----------|
| Frequency  | 2402 MHz | 2440 MHz         | 2480 MHz |
| GFSK       | 1026     | 1026             | 1026     |



# Plots:

### Plot 1: lowest channel



Plot 2: mid channel





Plot 3: highest channel





# 12.5 Maximum output power

# **Description:**

Measurement of the maximum output power conducted and radiated. EUT in single channel mode.

# **Measurement:**

| Measurement parameters  |                      |  |
|-------------------------|----------------------|--|
| Detector                | Peak                 |  |
| Sweep time              | Auto                 |  |
| Resolution bandwidth    | 3 MHz                |  |
| Video bandwidth         | 10 MHz               |  |
| Span                    | 10 MHz               |  |
| Trace mode              | Max hold             |  |
| Test setup              | See sub clause 7.4 A |  |
| Measurement uncertainty | See sub clause 9     |  |

# Limits:

| FCC                                                                                                                                    | IC |  |
|----------------------------------------------------------------------------------------------------------------------------------------|----|--|
| Maximum output power                                                                                                                   |    |  |
| [Conducted: 0.125 W – antenna gain max. 6 dBi] Systems using more than 75 hopping channels: Conducted: 1.0 W – antenna gain max. 6 dBi |    |  |

# Results:

| Modulation | Maximum  | output power conduc | ted [dBm] |
|------------|----------|---------------------|-----------|
| Frequency  | 2402 MHz | 2440 MHz            | 2480 MHz  |
| GFSK       | -3.2     | -4.1                | -4.3      |

| Modulation | Maximum ou | tput power radiated - | EIRP [dBm] |
|------------|------------|-----------------------|------------|
| Frequency  | 2402 MHz   | 2440 MHz              | 2480 MHz   |
| GFSK       | -7.8       | -6.0                  | -6.9       |

<sup>\*) -</sup> Values calculated with antenna gain



# Plots:

### Plot 1: lowest channel



#### Plot 2: mid channel





### Plot 3: highest channel





# 12.6 Detailed spurious emissions @ the band edge - conducted

# **Description:**

Measurement of the conducted band edge compliance. EUT is measured at the lower and upper band edge in single channel.

#### **Measurement:**

| Measurement parameters  |                                                                       |  |
|-------------------------|-----------------------------------------------------------------------|--|
| Detector                | Peak                                                                  |  |
| Sweep time              | Auto                                                                  |  |
| Resolution bandwidth    | 100 kHz                                                               |  |
| Video bandwidth         | 300 kHz / 500 kHz                                                     |  |
| Span                    | Lower Band Edge: 2395 – 2405 MHz<br>higher Band Edge: 2478 – 2489 MHz |  |
| Trace mode              | Max hold                                                              |  |
| Test setup              | See sub clause 7.4 A                                                  |  |
| Measurement uncertainty | See sub clause 9                                                      |  |

### **Limits:**

| FCC | IC |
|-----|----|
|-----|----|

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

### Result:

| Scenario                      | Spurious band edge conducted [dB] |
|-------------------------------|-----------------------------------|
| Modulation                    | GFSK                              |
| Lower band edge – hopping off | > 20 dB                           |
| Upper band edge – hopping off | > 20 dB                           |



# Plots:

Plot 1: Lower band edge



Plot 2: Upper band edge





# 12.7 Band edge compliance radiated

### **Description:**

Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to single channel mode and the transmit channel is channel 00 for the lower restricted band and channel 39 for the upper restricted band. Measurement distance is 3m.

### **Measurement:**

| Measurement parameters  |                                                             |  |
|-------------------------|-------------------------------------------------------------|--|
| Detector                | Peak / RMS                                                  |  |
| Sweep time              | Auto                                                        |  |
| Resolution bandwidth    | 1 MHz                                                       |  |
| Video bandwidth         | 3 MHz                                                       |  |
| Span                    | Lower Band: 2300 – 2400 MHz<br>higher Band: 2480 – 2500 MHz |  |
| Trace mode              | Max hold                                                    |  |
| Test setup              | See sub clause 7.2 B                                        |  |
| Measurement uncertainty | See sub clause 9                                            |  |

### Limits:

| FCC                                                                                                                                                                                    | IC                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Band edge com                                                                                                                                                                          | pliance radiated                                                                                                              |
| radiator is operating, the radio frequency power that is produtat in the 100 kHz bandwidth within the band that contains to conducted or a radiated measurement. Attenuation below the | e general limits specified in Section 15.209(a) is not required. Inds, as defined in Section 15.205(a), must also comply with |
| 54 dBμV/m AVG<br>74 dBμV/m Peak                                                                                                                                                        |                                                                                                                               |

# Result:

| Scenario              | Band edge compliance radiated [dBµV/m] |
|-----------------------|----------------------------------------|
| Modulation            | GFSK                                   |
| Lower restricted band | < 54 AVG / < 74 PP                     |
| Upper restricted band | < 54 AVG / < 74 PP                     |



# Plots:

Plot 1: Lower restricted band



# Plot 2: Upper restricted band





# 12.8 TX spurious emissions conducted

### **Description:**

Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 19 and channel 39.

#### **Measurement:**

| Measurement parameters  |                      |  |  |  |
|-------------------------|----------------------|--|--|--|
| Detector                | Peak                 |  |  |  |
| Sweep time              | Auto                 |  |  |  |
| Resolution bandwidth    | 100 kHz              |  |  |  |
| Video bandwidth         | 300 kHz or 500 kHz   |  |  |  |
| Span                    | 9 kHz to 25 GHz      |  |  |  |
| Trace mode              | Max hold             |  |  |  |
| Test setup              | See sub clause 7.4 A |  |  |  |
| Measurement uncertainty | See sub clause 9     |  |  |  |

### **Limits:**

| FCC                             | IC |  |  |  |
|---------------------------------|----|--|--|--|
| TX spurious emissions conducted |    |  |  |  |

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required

#### Results:

| TX spurious emissions conducted                                                         |  |                                   |                                         |                                                            |                     |  |
|-----------------------------------------------------------------------------------------|--|-----------------------------------|-----------------------------------------|------------------------------------------------------------|---------------------|--|
|                                                                                         |  |                                   |                                         |                                                            |                     |  |
| f [MHz]                                                                                 |  | amplitude of<br>emission<br>[dBm] | limit<br>max. allowed<br>emission power | actual attenuation<br>below frequency of<br>operation [dB] | results             |  |
| 2402                                                                                    |  | -4.5                              | 30 dBm                                  |                                                            | Operating frequency |  |
| No critical peaks found! All detected emissions are more than 10 dB below the limit!    |  | -20 dBc                           |                                         | complies                                                   |                     |  |
|                                                                                         |  |                                   | -20 UDC                                 |                                                            |                     |  |
|                                                                                         |  |                                   |                                         |                                                            |                     |  |
| 2440                                                                                    |  | -5.3                              | 30 dBm                                  |                                                            | Operating frequency |  |
| No critical peaks found! All detected emissions<br>are more than 10 dB below the limit! |  |                                   |                                         | complies                                                   |                     |  |
|                                                                                         |  |                                   | -20 dBc                                 |                                                            |                     |  |
|                                                                                         |  |                                   |                                         |                                                            |                     |  |
| 2480                                                                                    |  | -6.2                              | 30 dBm                                  |                                                            | Operating frequency |  |
| No critical peaks found! All detected emissions are more than 106 dB below the limit!   |  | 00 40-                            |                                         | complies                                                   |                     |  |
|                                                                                         |  |                                   | -20 dBc                                 |                                                            |                     |  |
|                                                                                         |  |                                   |                                         |                                                            |                     |  |



# Plots:

### Plot 1: lowest channel



### Plot 2: mid channel





Plot 3: highest channel





# 12.9 Spurious emissions radiated below 30 MHz

### **Description:**

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channel is channel 19. This measurement is representative for all channels and modes. If critical peaks are found channel 00 and channel 39 will be measured too. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m with 40 dB/decade according CFR Part 2.

# **Measurement:**

| Measurement parameters  |                                            |  |  |  |  |  |  |  |  |
|-------------------------|--------------------------------------------|--|--|--|--|--|--|--|--|
| Detector                | Peak / Quasi peak                          |  |  |  |  |  |  |  |  |
| Sweep time              | Auto                                       |  |  |  |  |  |  |  |  |
| Resolution bandwidth    | F < 150 kHz: 200 Hz<br>F > 150 kHz: 9 kHz  |  |  |  |  |  |  |  |  |
| Video bandwidth         | F < 150 kHz: 1 kHz<br>F > 150 kHz: 100 kHz |  |  |  |  |  |  |  |  |
| Span                    | 9 kHz to 30 MHz                            |  |  |  |  |  |  |  |  |
| Trace mode              | Max hold                                   |  |  |  |  |  |  |  |  |
| Test setup              | See sub clause 7.2 C                       |  |  |  |  |  |  |  |  |
| Measurement uncertainty | See sub clause 9                           |  |  |  |  |  |  |  |  |

### **Limits:**

| FCC                                     |                         | IC          |              |                 |  |    |  |
|-----------------------------------------|-------------------------|-------------|--------------|-----------------|--|----|--|
| TX spurious emissions radiated < 30 MHz |                         |             |              |                 |  |    |  |
| Frequency (MHz)                         | Field strength (dBµV/m) |             | Measu        | rement distance |  |    |  |
| 0.009 – 0.490                           | 2400/                   | 2400/F(kHz) |              | 300             |  |    |  |
| 0.490 – 1.705                           | 24000/F(kHz)            |             | 24000/F(kHz) |                 |  | 30 |  |
| 1.705 – 30.0                            | 3                       | 0           |              | 30              |  |    |  |

#### Results:

| TX spurious emissions radiated < 30 MHz [dBµV/m] |                                                             |                |  |  |  |  |  |  |  |
|--------------------------------------------------|-------------------------------------------------------------|----------------|--|--|--|--|--|--|--|
| F [MHz]                                          | Detector                                                    | Level [dBµV/m] |  |  |  |  |  |  |  |
| All detect                                       | All detected emissions are more than 20 dB below the limit. |                |  |  |  |  |  |  |  |
|                                                  |                                                             |                |  |  |  |  |  |  |  |



# Plot:

Plot 1: 9 kHz to 30 MHz, lowest channel



Plot 2: 9 kHz to 30 MHz, middle channel





Plot 3: 9 kHz to 30 MHz, highest channel





# 12.10 Spurious emissions radiated 30 MHz to 1 GHz

# **Description:**

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 19 and channel 39. The measurement is performed in the mode with the highest output power.

### **Measurement:**

| Measurement parameters  |                      |  |  |  |  |  |
|-------------------------|----------------------|--|--|--|--|--|
| Detector                | Peak / Quasi Peak    |  |  |  |  |  |
| Sweep time              | Auto                 |  |  |  |  |  |
| Resolution bandwidth    | 3 x VBW              |  |  |  |  |  |
| Video bandwidth         | 120 kHz              |  |  |  |  |  |
| Span                    | 30 MHz to 1 GHz      |  |  |  |  |  |
| Trace mode              | Max hold             |  |  |  |  |  |
| Measured modulation     | GFSK                 |  |  |  |  |  |
| Test setup              | See sub clause 7.1 A |  |  |  |  |  |
| Measurement uncertainty | See sub clause 9     |  |  |  |  |  |

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

### **Limits:**

| FCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |             | IC                   |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|----------------------|--|--|--|--|--|--|--|
| TX spurious emissions radiated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |             |                      |  |  |  |  |  |  |  |
| In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). |              |             |                      |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | §15.         | .209        |                      |  |  |  |  |  |  |  |
| Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Field streng | th (dBμV/m) | Measurement distance |  |  |  |  |  |  |  |
| 30 - 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30           | 0.0         | 10                   |  |  |  |  |  |  |  |
| 88 – 216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33           | 3.5         | 10                   |  |  |  |  |  |  |  |
| 216 – 960 36.0 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |             |                      |  |  |  |  |  |  |  |
| Above 960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 54           | .0          | 3                    |  |  |  |  |  |  |  |



**Plots:** Transmit mode

Plot 1: 30 MHz to 1 GHz, TX mode, channel 00, vertical & horizontal polarization



| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth<br>(deg) | Corr.<br>(dB) |
|--------------------|-----------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|------------------|---------------|
| 40.179000          | 10.70                 | 30.00             | 19.30          | 1000.0                | 120.000            | 200.0          | ٧   | 95               | 14.0          |
| 50.426400          | 9.44                  | 30.00             | 20.56          | 1000.0                | 120.000            | 272.0          | ٧   | 2                | 12.6          |
| 98.290950          | 7.37                  | 33.50             | 26.13          | 1000.0                | 120.000            | 200.0          | Н   | 282              | 11.9          |
| 386.413500         | 12.86                 | 36.00             | 23.14          | 1000.0                | 120.000            | 103.0          | V   | -12              | 16.7          |
| 592.193850         | 17.54                 | 36.00             | 18.46          | 1000.0                | 120.000            | 400.0          | Н   | 320              | 20.5          |
| 788.371200         | 19.44                 | 36.00             | 16.56          | 1000.0                | 120.000            | 200.0          | Н   | 142              | 22.7          |



Plot 2: 30 MHz to 1 GHz, TX mode, channel 19, vertical & horizontal polarization



| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth<br>(deg) | Corr.<br>(dB) |
|--------------------|-----------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|------------------|---------------|
| 34.004100          | 15.00                 | 30.00             | 15.00          | 1000.0                | 120.000            | 101.0          | ٧   | 0                | 13.7          |
| 63.702450          | 5.69                  | 30.00             | 24.31          | 1000.0                | 120.000            | 170.0          | Н   | 56               | 9.7           |
| 88.340700          | 5.81                  | 33.50             | 27.69          | 1000.0                | 120.000            | 101.0          | Н   | 353              | 10.1          |
| 132.310050         | 5.24                  | 33.50             | 28.26          | 1000.0                | 120.000            | 101.0          | Н   | 268              | 9.2           |
| 353.772750         | 12.28                 | 36.00             | 23.72          | 1000.0                | 120.000            | 98.0           | ٧   | 83               | 16.1          |
| 721.124700         | 18.87                 | 36.00             | 17.13          | 1000.0                | 120.000            | 170.0          | ٧   | 353              | 22.0          |



Plot 3: 30 MHz to 1 GHz, TX mode, channel 39, vertical & horizontal polarization



| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth<br>(deg) | Corr.<br>(dB) |
|--------------------|-----------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|------------------|---------------|
| 31.045200          | 11.19                 | 30.00             | 18.81          | 1000.0                | 120.000            | 101.0          | ٧   | 240              | 13.4          |
| 126.921750         | 5.54                  | 33.50             | 27.96          | 1000.0                | 120.000            | 98.0           | Н   | 355              | 9.6           |
| 213.556350         | 7.74                  | 33.50             | 25.76          | 1000.0                | 120.000            | 170.0          | Н   | 92               | 12.2          |
| 338.079450         | 11.82                 | 36.00             | 24.18          | 1000.0                | 120.000            | 101.0          | Н   | 1                | 15.7          |
| 508.185600         | 15.08                 | 36.00             | 20.92          | 1000.0                | 120.000            | 170.0          | ٧   | 95               | 18.8          |
| 716.940150         | 18.72                 | 36.00             | 17.28          | 1000.0                | 120.000            | 98.0           | Н   | 267              | 21.9          |



**Plots:** Receiver mode

Plot 1: 30 MHz to 1 GHz, RX / idle – mode, vertical & horizontal polarization



| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth<br>(deg) | Corr.<br>(dB) |
|--------------------|-----------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|------------------|---------------|
| 34.857150          | 10.35                 | 30.00             | 19.65          | 1000.0                | 120.000            | 101.0          | Н   | 307              | 13.8          |
| 42.022350          | 9.89                  | 30.00             | 20.11          | 1000.0                | 120.000            | 101.0          | Н   | 44               | 14.0          |
| 61.602750          | 6.80                  | 30.00             | 23.20          | 1000.0                | 120.000            | 98.0           | V   | 289              | 10.2          |
| 210.717450         | 7.65                  | 33.50             | 25.85          | 1000.0                | 120.000            | 170.0          | Н   | 307              | 12.1          |
| 490.879500         | 14.80                 | 36.00             | 21.20          | 1000.0                | 120.000            | 170.0          | Н   | 122              | 18.5          |
| 825.227550         | 19.90                 | 36.00             | 16.10          | 1000.0                | 120.000            | 170.0          | ٧   | 32               | 23.1          |



# 12.11 Spurious emissions radiated above 1 GHz

# **Description:**

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 39 and channel 78. The measurement is performed in the mode with the highest output power.

### **Measurement:**

| Measurement parameters  |                                                                                       |  |  |  |  |  |
|-------------------------|---------------------------------------------------------------------------------------|--|--|--|--|--|
| Detector                | Peak / RMS                                                                            |  |  |  |  |  |
| Sweep time              | Auto                                                                                  |  |  |  |  |  |
| Resolution bandwidth    | 1 MHz                                                                                 |  |  |  |  |  |
| Video bandwidth         | 3 x RBW                                                                               |  |  |  |  |  |
| Span                    | 1 GHz to 26 GHz                                                                       |  |  |  |  |  |
| Trace mode              | Max hold                                                                              |  |  |  |  |  |
| Measured modulation     | GFSK                                                                                  |  |  |  |  |  |
| Test setup              | See sub clause 7.2 A (1 GHz - 12.75 GHz)<br>See sub clause 7.3 A (12.75 GHz - 26 GHz) |  |  |  |  |  |
| Measurement uncertainty | See sub clause 9                                                                      |  |  |  |  |  |

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

### **Limits:**

| FCC                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | IC |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|--|--|--|--|--|--|--|
|                                                                                                                               | TX spurious emissions radiated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |  |  |  |  |  |  |  |
| radiator is operating, the radio frequenc<br>that in the 100 kHz bandwidth within the<br>conducted or a radiated measurement. | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the |     |    |  |  |  |  |  |  |  |
|                                                                                                                               | §15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 209 |    |  |  |  |  |  |  |  |
| Frequency (MHz)                                                                                                               | Field strength (dBμV/m)  Measurement distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |    |  |  |  |  |  |  |  |
| Above 960                                                                                                                     | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .0  | 3  |  |  |  |  |  |  |  |



# **Results:** Transmitter mode

|          | TX spurious emissions radiated [dBµV/m] |                   |         |          |                   |         |          |                   |  |  |  |
|----------|-----------------------------------------|-------------------|---------|----------|-------------------|---------|----------|-------------------|--|--|--|
| 2402 MHz |                                         |                   |         | 2440 MHz |                   |         | 2480 MHz |                   |  |  |  |
| F [MHz]  | Detector                                | Level<br>[dBµV/m] | F [MHz] | Detector | Level<br>[dBµV/m] | F [MHz] | Detector | Level<br>[dBµV/m] |  |  |  |
| 4713     | Peak                                    | 53.6              | 4798    | Peak     | 55.1              | 4881    | Peak     | 54.4              |  |  |  |
| 4/13     | RMS                                     | 48.5              | 4790    | RMS      | 50.0              | 4001    | RMS      | 49.3              |  |  |  |
| 4789     | Peak                                    | 53.3              | 4842    | Peak     | 54.1              | 4933    | Peak     | 53.9              |  |  |  |
| 4709     | RMS                                     | 48.3              | 4042    | RMS      | 49.0              | 4933    | RMS      | 48.8              |  |  |  |
| 4806     | Peak                                    | 54.7              | 4877    | Peak     | 55.9              | 4958    | Peak     | 52.7              |  |  |  |
| 4606     | RMS                                     | 49.7              | 40//    | RMS      | 49.8              |         | RMS      | 47.7              |  |  |  |
| 4949     | Peak                                    | 53.4              | 4882    | Peak     | 56.6              | 4077    | Peak     | 53.7              |  |  |  |
| 4842     | RMS                                     | 48.0              | 4002    | RMS      | 51.6              | 4977    | RMS      | 48.7              |  |  |  |
| 4000     | Peak                                    | 50.4              | 4007    | Peak     | 55.3              | 5004    | Peak     | 50.4              |  |  |  |
| 4886     | RMS                                     | 45.2              | 4887    | RMS      | 50.2              | 5004    | RMS      | 45.3              |  |  |  |
|          |                                         |                   | 4921    | Peak     | 54.2              | 5070    | Peak     | 54.4              |  |  |  |
|          |                                         |                   | 4921    | RMS      | 49.0              | 5079    | RMS      | 49.4              |  |  |  |

# **Results:** Receiver mode

| RX spurious emissions radiated [dBμV/m]                     |          |                   |  |
|-------------------------------------------------------------|----------|-------------------|--|
| F [MHz]                                                     | Detector | Level<br>[dBµV/m] |  |
| All detected emissions are more than 20 dB below the limit. |          |                   |  |

**Note:** The limit was recalculated with 20 dB / decade (Part 15.31) for all radiated spurious emissions 30 MHz to 1 GHz from 3 meter limit to a 10 meter distance. (40dB/decade for emissions < 30MHz)



**Plots:** Transmitter mode

Plot 1: 1 GHz to 12.75 GHz, TX mode, channel 00, vertical & horizontal polarization



The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 2: 12.75 GHz to 18 GHz, TX mode, channel 00, vertical & horizontal polarization





Plot 3: 18 GHz to 26 GHz, TX mode, channel 00, vertical & horizontal polarization



Date: 21.MAY.2015 14:35:54



Plot 4: 1 GHz to 12.75 GHz, TX mode, channel 19, vertical & horizontal polarization



The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 5: 12.75 GHz to 18 GHz, TX mode, channel 19, vertical & horizontal polarization



Page 49 of 57



Plot 6: 18 GHz to 26 GHz, TX mode, channel 19, vertical & horizontal polarization



Date: 21.MAY.2015 14:37:28



Plot 7: 1 GHz to 12.75 GHz, TX mode, channel 39, vertical & horizontal polarization



The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 8: 12.75 GHz to 18 GHz, TX mode, channel 39, vertical & horizontal polarization



Page 51 of 57



Plot 9: 18 GHz to 26 GHz, TX mode, channel 39, vertical & horizontal polarization



Date: 21.MAY.2015 14:38:22



**Plots:** Receiver mode

Plot 1: 1 GHz to 12.75 GHz, RX / idle - mode, vertical & horizontal polarization



Plot 2: 12.75 GHz to 18 GHz, RX / idle – mode, vertical & horizontal polarization





Plot 3: 18 GHz to 26 GHz, RX / idle – mode, vertical & horizontal polarization



Date: 21.MAY.2015 14:39:18



# 13 Observations

No observations except those reported with the single test cases have been made.



# Annex A Document history

| Version | Applied changes                            | Date of release |
|---------|--------------------------------------------|-----------------|
|         | Initial release                            | 2015-06-25      |
| А       | Various editorial changes, Chapter 8 added | 2016-05-17      |
| В       | Editorial changes, Model name changed      | 2017-01-17      |
| С       | HVIN and FVIN changed                      | 2017-02-09      |

### Annex B Further information

#### **Glossary**

SW

AVG - Average

DUT - Device under test

EMC - Electromagnetic Compatibility

EN - European Standard EUT - Equipment under test

ETSI - European Telecommunications Standard Institute

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware
IC - Industry Canada
Inv. No. - Inventory number
N/A - Not applicable
PP - Positive peak
QP - Quasi peak
S/N - Serial number

PMN Product marketing name HMN Host marketing name

Software

HVIN Hardware version identification number FVIN Firmware version identification number



### Annex C Accreditation Certificate

first page



last page

#### Deutsche Akkreditierungsstelle GmbH

Standort Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main

Es darf nicht der Anschein erweckt werden, dass sich die Akkreditierung auch auf Bi die über den durch die DAkkS bestätigten Akkreditierungsbereich hinausgehen.

Die Akkreditlerung erfolgte gemäß des Gesetzes über die Akkreditlerungsstelle (AkkStelleG) von 31. Jul 2009 (BGBI. 1.5. 2625) sowie der Verordnung (EG) Nr. 765/2008 des Europlätchen Parlaments und des Rates vom S. Jul 2003 Uber die Vorschriffen für die Akkrediteurung und Marktüberwachung im Zusammenhang mit der Vermarktung von Produkten (Abl. 1,218 von 9. Juli 2008, S. 30). Die DAKSs ist Unterzeichberin der Multilateralen Abbommen zur gegenseitigen Anrekennung der European co-operation for Accreditation (Ed), des International Accreditation Forum (IAF) und der International Laboratory Accreditation (Copperation (ILAC), Die Unterzeichner dieser Abkommen erkennen ihre Akkreditlerungen gegenseitig an.

Der aktuelle Stand der Mitgliedschaft kann folgenden Webseiten entnöm EA: www.european-accreditation.org I.A.C. www.libc.org I.A.C. www.libc.org

### Note:

Frankfurt, 25.11.2016

The current certificate including annex can be received on request.