Introduction

- Optimisation technique
- Popular for tuning neural networks
- Previously used in MaxEnt, CRF, ...
- Goal:
 - Minimise an objective function $J(\theta)$
 - θ∈Rd are a model's parameters
 - Update params in opposite direction to gradient $\nabla_{\theta} J$
 - Learning rate η determines step size

Terminology

- x : examples
- y : labels
- J: loss function (how bad the mistakes are) e.g. training error; the error on the training data
- θ : parameters
- n : rate

Three variants

- Batch gradient descent
 - Vanilla, original
 - Compute loss over whole training dataset at a time
- Stochastic gradient descent
 - Loss measured per example & label
- Mini-batch gradient descent
 - "Best of both worlds"
 - Loss computed over subset of training dataset

Batch gradient descent

• Computes gradient of cost function w.r.t. to parameters θ for the entire training dataset:

$$-\theta = \theta - \eta \nabla_{\theta} J(\theta)$$

- Need to calculate the gradients for the whole dataset to perform just one update
 - Batch gradient descent can be slow and is intractable for datasets that don't fit in memory
 - Batch gradient descent also doesn't allow us to update our model online, i.e. with new examples on-the-fly.

Batch gradient descent

- Code might look like
 - for i in range(nb_epochs):
 - params_grad = evaluate_gradient(loss_function, data, params)
 - params = params learning_rate * params_grad
- Given a set number of training epochs:
 - Compute the gradient vector of the loss function for the whole dataset, w.r.t. our parameter vector params
 - Update our parameters in the opposite direction of the gradients
 - Learning rate η determines update size

Batch gradient descent

- Guaranteed to:
 - Converge to the global minimum for convex error surfaces
 - Converge to a local minimum for non-convex surfaces.

- Stochastic = Random
- SGD performs a parameter update for each training example x⁽ⁱ⁾ and label y⁽ⁱ⁾:
 - $\overline{-\theta} = \theta \eta \quad \nabla_{\theta} J(\theta; x^{(i)}; y^{(i)})$
- Batch GD does redundant work:
 - Recomputes gradients for similar examples before doing parameter update
- SGD more efficient:
 - One update at a time
 - What advantage does this give?
 - Possible to apply to online learning

- SGD performs frequent updates:
 - high variance
 - Causes objective function to fluctuate heavily

- Other advantages of SGD vs. batch?
 - enables it to jump to new and potentially better local minima
- Side-effect of SGD's approach to finding minima?
 - Complicates convergence: SGD will keep overshooting
- Solution for this?
 - Slowly decrease learning rate

Example code:

- for i in range(nb_epochs):
- np.random.shuffle(data)
- for example in data:
- params_grad = evaluate_gradient(loss_function, example, params)
- params = params learning_rate * params_grad

Similar behaviour to batch GD:

- Almost certainly converging to a local minimum for non-convex optimisation
- Almost certainly converging to a global minimum for convex optimisation

- Aims to take best of both worlds
- Performs update for every mini-batch of n examples:
 - $-\theta = \theta \eta \nabla_{\theta} J(\theta; x^{(i:i+n)}; y^{(i:i+n)})$
- Reduces variance of parameter updates
 - Leads to more stable convergence
- Can use some neat optimisations
 - E.g. GPU matrix factorisation
- Algorithm of choice for NN training

- For n=50:
 - for i in range(nb_epochs):
 - np.random.shuffle(data)
 - for batch in get_batches(data, batch_size=50):
 - params_grad = evaluate_gradient(loss_function, batch, params)
 - params = params learning_rate * params_grad

 This updates parameters based on a J measured from a random subset of 50 examples

- Does not guarantee good convergence
- Choosing a proper learning rate can be difficult
 - Too small: very slow convergence
 - Too high:
 - Damages convergence
 - Loss rate can fluctuate or even diverge
- Learning rate "schedules" reduce η at preset times, or when objective delta falls below threshold

- Not all features have the same variance
 - A universal learning rate doesn't make sense here
 - Do bigger updates for sparser features?
- Saddle points are a challenge
 - Neural nets tend to have many local minima
 - These tend to meet in saddle points
 - Equates to a plateau of the same error
 - Hard to escape using gradient-based method, as gradient → 0 in all dimensions

Gradient descent optimization

- Momentum
- Adagrad
- Adadelta
- RMSprop

- SGD has trouble navigating "ravines"
 - areas where the surface curves much more steeply in one dimension than in another
 - Ravines more common than local optima
- SGD will oscillate across slopes while making poor progress to the optimum

- Helps accelerate SGD in relevant direction
- Dampens oscillations
- Achieved by adding part y of the last update to the current update
 - $v_t = \gamma v_{t-1} + \eta \nabla_{\theta} J(\theta)$
 - $-\theta = \theta V_t$
- Parameter y is the momentum

- Using momentum is like pushing a ball down a hill.
 - The ball accelerates as it rolls downhill, becoming faster and faster..
 - ..until it reaches its terminal velocity if there is air resistance, i.e. γ<1
- The momentum term:
 - increases for dimensions whose gradients point in the same directions
 - reduces updates for dimensions whose gradients change directions.
- This gives faster convergence & reduced oscillation.

- An example of momentum optimisation
 - Slows changes in high-gradient dimensions
 - Accelerates change in shallower dimensions

 Now we adapt to error function, why not adapt to parameter importance?

- Adaptive Moment Estimation (Adam) computes adaptive learning rates for each parameter.
- It stores two factors:
 - exponentially decaying average of past squared gradients v_t
 - exponentially decaying average of past gradients m_t , similar to momentum

$$m_{t} = \beta_{1}m_{t} - 1 + (1 - \beta_{1})g_{t}$$

$$v_{t} = \beta_{2}v_{t} - 1 + (1 - \beta_{2})g_{t}^{2}$$

- m_t and v_t are estimates of the first moment (the mean) and the second moment (the uncentered variance) of the gradients
- m_t and v_t are initialized as vectors of 0's
 - they are biased towards zero,
 - especially during the initial time steps,
 - especially when the decay rates are small (i.e. β_1 and β_2 are close to 1).
- How can we avoid this?
 - Correct for bias in m and v

$$\hat{m}_t = rac{m_t}{1-eta_1^t}$$
 .

$$\hat{v}_t = rac{v_t}{1-eta_2^t}$$
 .

Big beta will magnify m and v

The adam update rule:

$$heta_{t+1} = heta_t - rac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t$$

- Typical values:
 - 0.9 for β_1 , 0.999 for β_2 , and 10⁻⁸ for ϵ

Visualisation of algorithms

- http://i.imgur.com/VkTJVVX.gif
- Adagrad, Adadelta, and RMSprop almost immediately head off in the right direction and converge similarly fast
- Momentum and NAG are led off-track, evoking the image of a ball rolling down the hill.

Visualisation at a saddle

- http://i.imgur.com/1Awcohc.gif
- SGD, Momentum, and NAG find it difficult to break symmetry, although the two latter eventually manage to escape the saddle point
- Adagrad, RMSprop, and Adadelta quickly head down the negative slope