Fall 2019 Manifolds and Topology Preliminary Exam

University of Minnesota

Part A

1. Give a precise definition of the product $\alpha * \beta$ of two paths in a space X, including the conditions under which it is defined.

Definition. Let $\alpha, \beta : [0,1] \to X$ be continuous functions into X. If $\alpha(1) = \beta(0)$, then the product $\alpha * \beta : [0,1] \to X$ is defined to be

$$(\alpha * \beta)(t) = \begin{cases} \alpha(2t) & t \in [0, 1/2] \\ \beta(2t - 1) & t \in (1/2, 1] \end{cases}$$

.

2. Suppose that X is a path connected, semilocally 1-connected space whose fundamental group is $\mathbb{Z}/2 \times \mathbb{Z}/2$. How many isomorphism classes of connected covering spaces does X have?

Proof. The isomorphism classes of covering spaces correspond to conjugacy classes of the fundamental group. Thus, this question is equivalent to counting the conjugacy classes of $\mathbb{Z}/2 \times \mathbb{Z}/2$. Note that $\mathbb{Z}/2 \times \mathbb{Z}$ is abelian and abelian groups have exactly one conjugacy class for each group element (since $hgh^{-1} = hh^{-1}g = g$ for any g, h). Thus, there are $|\mathbb{Z}/2 \times \mathbb{Z}/2| = 4$ conjugacy classes, and hence there are 4 isomorphism classes of covering spaces of X.

3. Give an example of a space X with open subsets U, V such that $X = U \cup V$, U is simply connected, V is simply connected, but where X is not simply connected. Then explain why this does not violate the Siefert-van Kampen theorem.

Proof. Let X be the annulus of inner radius 1 and outer radius 2, shown below,:

and let U be the closed left half of the annulus (shown crosshatched) and let V be the closed right half of the annulus (shown filled with dots), where both U, V include the line segments $\ell_+ = [(0, 1), (0, 2)]$ and $\ell_- = [(0, -1), (0, -2)]$.

Then $\pi_1(U) = \pi_1(V) = 0$ since both are contractible. Additionally, $\pi_1(U \cap V) = 0$ since both the line segments ℓ_+, ℓ_- are contractible so regardless of choice of basepoint we are in a contractible connected component. U and V do not violate the hypothesis of the Siefert-van Kampen theorem,

because the intersection $U \cap V$ is not path-connected, however if it did, the theorem would tell us that $\pi_1(X) = 0/0 \cong 0$.

On the other hand, we know that $\pi_1(U \cup V) \cong \mathbb{Z}$ because the generators are the trivial loop and the loop which contains the hole in its interior.

Thus, we cannot choose U, V as in this example if we wish to use the Siefert-van Kampen theorem. \square

4. Explain why the inclusion $\mathbb{R}^2 - \{0\} \to \mathbb{R}$ is not a covering map.

Proof. Suppose $\iota : \mathbb{R}^2 - \{0\} \to \mathbb{R}$ were a covering map.

Then it is a theorem that the induced map $\iota_* : \mathbb{R}^2 - \{0\} \to \{0\}$ is an injection.

On the other hand, $\pi_1(\mathbb{R}^2 - \{0\}) \cong \mathbb{Z}$ and $\pi_1(\mathbb{R}) = 0$ and so no injection from $\mathbb{Z} \to 0$ exists, contradicting that ι were a covering map.

Part B

1. Give an example of a compact 2-dimensional manifold M for which there exists an embedding of $M \to \mathbb{R}^n$ into Euclidean space of strictly smaller dimension than that given by the Whitney embedding theorem.

Proof. The Whitney embedding theorem states that a d-dimensional manifold with or without boundary can be properly smoothly embedded in \mathbb{R}^{2d+1} . Here, we take d=2 and so the embedding certainly exists in \mathbb{R}^5 .

Consider the subset of \mathbb{R}^2 given by $I^2 := [0,1] \times [0,1]$. As a closed and bounded subset of \mathbb{R}^2 the Heine-Borel theorem tells us this is certainly compact.

Now consider the map $f: \mathbb{R}^2 \to \mathbb{R}^3$ taking $(x,y) \mapsto (x,y,0)$. This is a smooth, proper embedding of I^2 into \mathbb{R}^3 a Euclidean space of dimension strictly smaller than 5. To see that the map is smooth, note that $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 1$ and $\frac{\partial f}{\partial z} = 0$.

2. The cylindrical coordinate change is given by

$$(x, y) = (r\cos(\theta), r\sin(\theta)).$$

Express the vector field

$$(x^2 + y^2)^{-2/3} \left(x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \right)$$

in (r, θ) coordinates.

Proof. Now recall that the change of coordinate map F which sends (x,y) coordinates to (r,θ) coordinates are $r = \sqrt{x^2 + y^2}$ and $\theta = \arctan(\frac{y}{x})$, and so

$$\frac{\partial r}{\partial x} = \frac{1}{2\sqrt{x^2 + y^2}} \frac{\partial (x^2 + y^2)}{\partial x}$$
$$= \frac{1}{2\sqrt{x^2 + y^2}} (2x)$$
$$= \frac{x}{\sqrt{x^2 + y^2}}$$

and by symmetry $\frac{\partial r}{\partial y} = \frac{y}{\sqrt{x^2 + y^2}}$.

Now we compute $\frac{\partial \theta}{\partial x}$ and $\frac{\partial \theta}{\partial y}$. First,

$$\begin{split} \frac{\partial \theta}{\partial x} &= \frac{1}{1 + (y/x)^2} \frac{\partial (y/x)}{\partial x} \\ &= \frac{1}{1 + (y/x)^2} \cdot \frac{-y}{x^2} \\ &= \frac{-y}{x^2 + y^2}. \end{split}$$

Next,

$$\begin{split} \frac{\partial \theta}{\partial y} &= \frac{1}{1 + (y/x)^2} \frac{\partial (y/x)}{\partial y} \\ &= \frac{1}{1 + (y/x)^2} \cdot \frac{1}{x} \\ &= \frac{1}{1 + (y/x)^2} \cdot \frac{x}{x^2} \\ &= \frac{x}{x^2 + y^2} \end{split}$$

The chain rule tells us that

$$\begin{split} \frac{\partial}{\partial x} &= \frac{\partial}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial}{\partial \theta} \frac{\partial \theta}{\partial x} \\ &= \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial r} - \frac{y}{x^2 + y^2} \frac{\partial}{\partial \theta} \\ &= \cos \theta \frac{\partial}{\partial r} - \frac{\sin \theta}{r} \frac{\partial}{\partial \theta} \end{split}$$

and

$$\frac{\partial}{\partial y} = \frac{\partial}{\partial r} \frac{\partial r}{\partial y} + \frac{\partial}{\partial \theta} \frac{\partial \theta}{\partial y}$$

$$= \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial r} + \frac{x}{x^2 + y^2} \frac{\partial}{\partial \theta}$$

$$= \sin \theta \frac{\partial}{\partial r} + \frac{\cos \theta}{r} \frac{\partial}{\partial \theta}$$

Finally, we change coordinates on x, y, leaving their differentials unchanged, then we substitute using the expressions for $\partial/\partial x$ and $\partial/\partial y$ which we found above and reduce using the Pythagorean trigonometric identity to see that the vector field in terms of cylindrical coordinates is:

$$\begin{split} (x^2+y^2)^{-2/3} \left(x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \right) &= ((r\cos\theta)^2 + (r\sin\theta)^2)^{-2/3} \left((r\cos\theta) \frac{\partial}{\partial x} + (r\sin\theta) \frac{\partial}{\partial y} \right) \\ &= r^{-4/3} \left((r\cos\theta) \frac{\partial}{\partial x} + (r\sin\theta) \frac{\partial}{\partial y} \right) \\ &= r^{-4/3} \left((r\cos\theta) \left(\cos\theta \frac{\partial}{\partial r} - \frac{\sin\theta}{r} \frac{\partial}{\partial \theta} \right) + (r\sin\theta) \left(\sin\theta \frac{\partial}{\partial r} + \frac{\cos\theta}{r} \frac{\partial}{\partial \theta} \right) \right) \\ &= r^{-4/3} \left((r\cos^2\theta + r\sin^2\theta) \frac{\partial}{\partial r} + (-\sin\theta\cos\theta + \cos\theta\sin\theta) \frac{\partial}{\partial \theta} \right) \\ &= r^{-4/3} \left(r \frac{\partial}{\partial r} \right) \\ &= \frac{1}{\sqrt[3]{r}} \frac{\partial}{\partial r} \end{split}$$