Prevención De Roya en Plantas de Café Usando Árboles de Decisión

Juan Sebastian Diaz Osorio Liz Oriana Rodrigues Cruz Medellín, 29 de Octubre

Estructura de Datos Diseñada

Gráfico 1: LinkedList con elementos de clases de datos que se refieren a cada dato en el conjunto de datos.

Operaciones de la Estructura de Datos

Método	Complejidad
setLabel	O(log n)
addData	O(1)
createTree	O(n³)
compare	O(1)

Tabla 1: Complejidad de las operaciones de la estructura de datos

Operaciones de la Estructura de Datos

Gráfico 2: Operación de inserción de una estructura de datos.

Operaciones de la Estructura de Datos

Gráfico 1: Operación de comparación implementada por el algoritmo C4.5.

Criterios de Diseño de la Estructura de Datos

1

Los arboles AVL son ideales para ordenar, buscar y almacenar una gran cantidad de datos con menor complejidad de Big-O.

2

El algoritmo C4.5 es esencial para usar mas información, es una versión mejorada de ID3 y tiene mas campo que otros algoritmos.

Consumo de Tiempo Ejecución

Consumo de Memoria

