BCC204 - Teoria dos Grafos

Marco Antonio M. Carvalho

Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto

Conteúdo

Representação Computacional

2 Isomorfismo

Teoria dos grafos

Fonte

Este material é baseado no livro

► Goldbarg, M., & Goldbarg, E. (2012). *Grafos: conceitos, algoritmos e aplicações*. Elsevier.

Licença

Este material está licenciado sob a Creative Commons BY-NC-SA 4.0. Isto significa que o material pode ser compartilhado e adaptado, desde que seja atribuído o devido crédito, que o material não seja utilizado de forma comercial e que o material resultante seja distribuído de acordo com a mesma licença.

Grafos - Representação Computacional

Matriz de Adjacências

Matriz $A_{n \times n}$, sendo que:

$$a_{ij} = \left\{ egin{array}{ll} 1 & ext{se existe a aresta/arco}\left(v_i,v_j
ight) \\ 0 & ext{caso contrário} \end{array}
ight.$$

Propriedades:

- Simétrica para grafos não direcionados;
- Consulta existência de uma aresta/arco com um acesso à memória: O(1);
- ightharpoonup Ocupa $\Theta(n^2)$ de espaço mesmo para grafos esparsos.

Matriz de Adjacências - Grafo Não Direcionado

Matriz de Adjacências - Grafo Direcionado

Grafos - Representação Computacional

Matriz de Incidências

Matriz $A_{m \times n}$, sendo que:

$$a_{ij} = \begin{cases} +1 & \text{se a aresta } i \text{ tem origem no vértice } j \\ -1 & \text{se a aresta } i \text{ tem como destino o vértice } j \\ 0 & \text{se a aresta } i \text{ não incide no vértice } j \end{cases}$$

- \triangleright $\Theta(nm)$ de espaço;
- útil quando informações específicas sobre as arestas são necessárias.

Matriz de Incidências - Grafo Não Direcionado

	_ 1	2	3	4	5	6
u ₁	0	1	1	0	0	0
u ₁ u ₂	0	1	0	1	0	0
u ₃	1	0	0	1	0	0
u ₄	0	0	0	1	1	0
u ₅	0	0	0	0	1	1
u ₆	0	0	1	0	0	1

Matriz de Incidências - Grafo Direcionado

1	2	3	4	5	6
0	-1	1	0	0	0
0	-1	0	1	0	0
1	0	0	-1	0	0
0	0	0	-1	1	0
0	0	0	0	1	-1
0	0	-1	0	0	1
	0 0 1 0 0	0 -1 0 -1 1 0 0 0	0 -1 1 0 -1 0 1 0 0 0 0 0	0 -1 1 0 0 -1 0 1 1 0 0 -1 0 0 0 0 0	0 -1 1 0 0 0 -1 0 1 0 1 0 0 -1 0 0 0 0 -1 1 0 0 0 0 1

Grafos - Representação Computacional

Lista de Adjacências

- ▶ Usa *n* listas, uma para cada vértice;
- Lista de v_i (o i-ésimo vértice) contém todos os vértices adjacentes a ele.

Propriedades:

- Ocupa menos memória: O(m);
- No entanto, a complexidade da operação de determinar uma adjacência é limitada por O(n).

Lista de Adjacências - Grafo Não Direcionado

Grafos - Representação Computacional

Matriz de Pesos

Quando o grafo é ponderado, é possível aproveitar a estrutura em matriz de adjacência, incidência e lista de adjacência para representar os pesos na própria estrutura.

No caso da matriz de adjacência substituem-se os elementos 1s pelo peso da aresta associada.

Essa matriz é denominada matriz de pesos.

Matriz de Pesos - Grafo Não Direcionado

Definição

Dois grafos G e H são ditos isomorfos se existir uma correspondência um-para-um entre seus vértices e entre suas arestas, de maneira que as relações de incidência são preservadas.

Condições necessárias mas não suficientes para isomorfismo

- Mesmo número de vértices;
- Mesmo número de arestas;
- Mesmo número de componentes;
- Mesmo número de vértices com o mesmo grau.

Exemplo:

Observação: Não existem algoritmos comprovadamente eficientes para determinar se dois grafos são isomorfos.

Complexidade

O algoritmo intuitivo para testes de isomorfismo consiste em analisar as permutações de linhas e colunas de matrizes de equivalência, em busca de uma relação um-para-um, ou seja, O(n!).

Em outubro de 2015, Lászó Babai, da Universidade de Chicago, anunciou um algoritmo quasipolinomial^a para o teste de isomorfismo!^b

Em 4 de janeiro de 2017, foi descoberto um erro na prova, reclassificando o algoritmo como subexponencial^c.

Em 9 de janeiro de 2017, o erro na prova foi anunciado como contornado d .

^aMais lento que polinomial, mas significativamente mais rápido que exponencial.

^bhttps://jeremykun.com/2015/11/12/

 $[\]verb|a-quasipolynomial-time-algorithm-for-graph-isomorphism-the-details/|$

^cMais lento que quasipolinomial, mas mais rápido que exponencial.

dhttp://people.cs.uchicago.edu/~laci/update.html

Exemplo

Qual grafo é diferente dos demais?

Algoritmo Básico

- Verificar todas as seguintes propriedades:
 - mesmo número de vértices;
 - mesmo número de arestas;
 - mesmo número de componentes;
 - mesmo número de vértices com o mesmo grau.
- Em seguida efetuar a combinação das matrizes de adjacência dos grafos, verificando se são semelhantes.

Isomorfismo e Matrizes de Adjacência

	а	b	С	d	e
а	0	1	0	1	1
Ь	1	0	1	1	1
С	0	1	0	1	0
d	1	1	1	0	1
е	1	1	0	1	0

	1	2	3	4	5
1	0	0	1	1	1
2	0	0	1	0	1
3	1	1	0	1	1
4	1	0	1	0	1
5	1	1	1	1	0

Isomorfismo e Matrizes de Adjacência

a b c d e a 0 1 0 1 1 b 1 0 1 1 1 c 0 1 0 1 0 d 1 1 1 0 1 e 1 1 0 1 0						
b 1 0 1 1 1 c 0 1 0 1 0 d 1 1 1 0 1		а	Ь	С	d	e
c 0 1 0 1 0 d 1 1 1 0 1	а	0	1	0	1	1
d 1 1 1 0 1	b	1	0	1	1	1
	С	0	1	0	1	0
e 1 1 0 1 0	d	1	1	1	0	1
	e	1	1	0	1	0

	1	5	2	3	4
1	0	1	0	1	1
5	1	0	1	1	1
2	0	1	0	1	0
3	1	1	1	0	1
4	1	1	0	1	0

Dúvidas?

