

Matrice d'une application linéaire

Corrections d'Arnaud Bodin.

Exercice 1

Soit \mathbb{R}^2 muni de la base canonique $\mathscr{B} = (\vec{i}, \vec{j})$. Soit $f : \mathbb{R}^2 \to \mathbb{R}^2$ la projection sur l'axe des abscisses $\mathbb{R}\vec{i}$ parallèlement à $\mathbb{R}(\vec{i} + \vec{j})$. Déterminer $\mathrm{Mat}_{\mathscr{B},\mathscr{B}}(f)$, la matrice de f dans la base (\vec{i}, \vec{j}) .

Même question avec $\operatorname{Mat}_{\mathscr{B}',\mathscr{B}}(f)$ où \mathscr{B}' est la base $(\vec{i}-\vec{j},-2\vec{i}+3\vec{j})$ de \mathbb{R}^2 . Même question avec $\operatorname{Mat}_{\mathscr{B}',\mathscr{B}'}(f)$.

 ${\tt Indication} \ {\tt \blacktriangledown}$

Correction ▼

Vidéo

[001087

Exercice 2

Soient trois vecteurs e_1, e_2, e_3 formant une base de \mathbb{R}^3 . On note ϕ l'application linéaire définie par $\phi(e_1) = e_3$, $\phi(e_2) = -e_1 + e_2 + e_3$ et $\phi(e_3) = e_3$.

- 1. Écrire la matrice A de ϕ dans la base (e_1, e_2, e_3) . Déterminer le noyau de cette application.
- 2. On pose $f_1 = e_1 e_3$, $f_2 = e_1 e_2$, $f_3 = -e_1 + e_2 + e_3$. Calculer e_1, e_2, e_3 en fonction de f_1, f_2, f_3 . Les vecteurs f_1, f_2, f_3 forment-ils une base de \mathbb{R}^3 ?
- 3. Calculer $\phi(f_1)$, $\phi(f_2)$, $\phi(f_3)$ en fonction de f_1 , f_2 , f_3 . Écrire la matrice B de ϕ dans la base (f_1, f_2, f_3) et trouver la nature de l'application ϕ .
- 4. On pose $P = \begin{pmatrix} 1 & 1 & -1 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \end{pmatrix}$. Vérifier que P est inversible et calculer P^{-1} . Quelle relation lie A, B, P et P^{-1} ?

Correction ▼

Vidéo

[001097]

Exercice 3

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice par rapport à la base canonique (e_1, e_2, e_3) est

$$A = \left(\begin{array}{ccc} 15 & -11 & 5 \\ 20 & -15 & 8 \\ 8 & -7 & 6 \end{array}\right).$$

Montrer que les vecteurs

$$e'_1 = 2e_1 + 3e_2 + e_3$$
, $e'_2 = 3e_1 + 4e_2 + e_3$, $e'_3 = e_1 + 2e_2 + 2e_3$

forment une base de \mathbb{R}^3 et calculer la matrice de f par rapport à cette base.

Correction ▼

Vidéo 📕

[002433]

Exercice 4

Soit
$$A = \begin{pmatrix} 0 & \dots & 0 & 1 \\ \vdots & & & 1 & 0 \\ & & \ddots & & \\ 0 & 1 & & & \vdots \\ 1 & 0 & & \dots & 0r \end{pmatrix}$$
. En utilisant l'application linéaire associée de $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$, calculer A^p pour $p \in \mathbb{Z}$.

Correction ▼ Vidéo ■ [001101]

Exercice 5

Soient A, B deux matrices semblables (i.e. il existe P inversible telle que $B = P^{-1}AP$). Montrer que si l'une est inversible, l'autre aussi ; que si l'une est nilpotente, l'autre aussi ; que si l'une est nilpotente, l'autre aussi ; que si $A = \lambda I$, alors A = B.

Indication ▼

Correction ▼

Vidéo

[002444]

Exercice 6

Soit f l'endomorphisme de \mathbb{R}^2 de matrice $A = \begin{pmatrix} 2 & \frac{2}{3} \\ -\frac{5}{2} & -\frac{2}{3} \end{pmatrix}$ dans la base canonique. Soient $e_1 = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$ et $e_2 = \begin{pmatrix} -2 \\ 5 \end{pmatrix}$.

- 1. Montrer que $\mathscr{B}' = (e_1, e_2)$ est une base de \mathbb{R}^2 et déterminer $\mathrm{Mat}_{\mathscr{B}'}(f)$.
- 2. Calculer A^n pour $n \in \mathbb{N}$.
- 3. Déterminer l'ensemble des suites réelles qui vérifient $\forall n \in \mathbb{N}$ $\begin{cases} x_{n+1} = 2x_n + \frac{2}{3}y_n \\ y_{n+1} = -\frac{5}{2}x_n \frac{2}{3}y_n \end{cases}.$

Correction ▼

Vidéo 📕

[001104]

Exercice 7

Soit a et b deux réels et A la matrice

$$A = \left(\begin{array}{cccc} a & 2 & -1 & b \\ 3 & 0 & 1 & -4 \\ 5 & 4 & -1 & 2 \end{array}\right)$$

Montrer que $rg(A) \ge 2$. Pour quelles valeurs de a et b a-t-on rg(A) = 2?

Correction ▼

Vidéo

[002774]

Exercice 8

Soient
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 4 & 1 \\ 5 & 6 & 1 \\ 7 & 8 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 2 & -1 & 7 \\ 4 & 3 & -1 & 11 \\ 0 & -1 & 2 & -4 \\ 3 & 3 & -2 & 11 \end{pmatrix}$. Calculer $rg(A)$ et $rg(B)$. Déterminer une base du noyau

et une base de l'image pour chacune des applications linéaires associées f_A et f_B .

 $\texttt{Correction} \; \blacktriangledown$

Vidéo

[001099]

Exercice 9

Soit E un espace vectoriel et f une application linéaire de E dans lui-même telle que $f^2 = f$.

- 1. Montrer que $E = \operatorname{Ker} f \oplus \operatorname{Im} f$.
- 2. Supposons que E soit de dimension finie n. Posons $r = \dim \operatorname{Im} f$. Montrer qu'il existe une base $\mathscr{B} = (e_1, \ldots, e_n)$ de E telle que : $f(e_i) = e_i$ si $i \le r$ et $f(e_i) = 0$ si i > r. Déterminer la matrice de f dans cette base \mathscr{B} .

Correction ▼

Vidéo

[001093]

Exercice 10

Trouver toutes les matrices de $\mathcal{M}_3(\mathbb{R})$ qui vérifient

- 1. $M^2 = 0$;
- 2. $M^2 = M$:

3. $M^2 = I$.

Indication ▼ Correction ▼ Vidéo ■ [002475]

Exercice 11

Soit f l'application de $\mathbb{R}_n[X]$ dans $\mathbb{R}[X]$ définie en posant pour tout $P(X) \in \mathbb{R}_n[X]$: f(P(X)) = P(X+1) + P(X-1) - 2P(X).

- 1. Montrer que f est linéaire et que son image est incluse dans $\mathbb{R}_n[X]$.
- 2. Dans le cas où n = 3, donner la matrice de f dans la base $1, X, X^2, X^3$. Déterminer ensuite, pour une valeur de n quelconque, la matrice de f dans la base $1, X, \dots, X^n$.
- 3. Déterminer le noyau et l'image de f. Calculer leur dimension respective.
- 4. Soit Q un élément de l'image de f. Montrer qu'il existe un unique $P \in \mathbb{R}_n[X]$ tel que : f(P) = Q et P(0) = P'(0) = 0.

Correction ▼ Vidéo ■ [001094]

Exercice 12

Pour toute matrice carrée A de dimension n, on appelle trace de A, et l'on note $\mathrm{tr}A$, la somme des éléments diagonaux de A:

$$tr A = \sum_{i=1}^{n} a_{i,i}$$

- 1. Montrer que si A, B sont deux matrices carrées d'ordre n, alors tr(AB) = tr(BA).
- 2. Montrer que si f est un endomorphisme d'un espace vectoriel E de dimension n, M sa matrice par rapport à une base e, M' sa matrice par rapport à une base e', alors $\operatorname{tr} M = \operatorname{tr} M'$. On note $\operatorname{tr} f$ la valeur commune de ces quantités.
- 3. Montrer que si g est un autre endomorphisme de E, $\operatorname{tr}(f \circ g g \circ f) = 0$.

Correction ▼ Vidéo ■ [002442]

Indication pour l'exercice 1 ▲

f est l'application qui à $\begin{pmatrix} x \\ y \end{pmatrix}$ associe $\begin{pmatrix} x - y \\ 0 \end{pmatrix}$.

Indication pour l'exercice 5 ▲

A est *idempotente* s'il existe un n tel que $A^n = I$ (la matrice identité). A est *nilpotente* s'il existe un n tel que $A^n = (0)$ (la matrice nulle).

Indication pour l'exercice 10 ▲

Il faut trouver les propriétés de l'application linéaire f associée à chacune de ces matrices. Les résultats s'expriment en explicitant une (ou plusieurs) matrice M' qui est la matrice de f dans une base bien choisie et ensuite en montrant que toutes les autres matrices sont de la forme $M = P^{-1}M'P$. Plus en détails pour chacun des cas :

- Im f ⊂ Ker f et discuter suivant la dimension du noyau.
- 2. Utiliser l'exercice 9 : Ker $f \oplus \text{Im } f$ et il existe une base telle que $f(e_i) = 0$ ou $f(e_i) = e_i$.
- 3. Poser $N = \frac{I+M}{2}$ (et donc $M = \cdots$) chercher à quelle condition $M^2 = I$.

Correction de l'exercice 1 A

L'expression de f dans la base \mathscr{B} est la suivante f(x,y)=(x-y,0). Autrement dit à un vecteur $\begin{pmatrix} x \\ y \end{pmatrix}$ on associe le vecteur $\begin{pmatrix} x-y \\ 0 \end{pmatrix}$. On note que f est bien une application linéaire. Cette expression nous permet de calculer les matrices demandées.

Remarque : comme \mathscr{B} est la base canonique on note $\begin{pmatrix} x \\ y \end{pmatrix}$ pour $\begin{pmatrix} x \\ y \end{pmatrix}_{\mathscr{B}}$ qui est le vecteur $x\vec{i} + y\vec{j}$.

1. Calcul de $\mathrm{Mat}(f,\mathcal{B},\mathcal{B})$. Comme $\mathcal{B}=(\vec{i},\vec{j})$, la matrice s'obtient en calculant $f(\vec{i})$ et $f(\vec{j})$:

$$f(\vec{i}) = f\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \vec{i} \quad f(\vec{j}) = f\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \end{pmatrix} = -\vec{i}$$

donc

$$\operatorname{Mat}(f, \mathcal{B}, \mathcal{B}) = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$$

2. On garde la même application linéaire mais la base de départ change (la base d'arrivée reste \mathscr{B}). Si on note $\vec{u} = \vec{i} - \vec{j}$ et $\vec{v} = -2\vec{i} + 3\vec{j}$, on a $\mathscr{B}' = (\vec{i} - \vec{j}, -2\vec{i} + 3\vec{j}) = (\vec{u}, \vec{v})$. On exprime $f(\vec{u})$ et $f(\vec{v})$ dans la base d'arrivée \mathscr{B} .

$$f(\vec{u}) = f(\vec{i} - \vec{j}) = f\begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \quad f(\vec{v}) = f(-2\vec{i} + 3\vec{j}) = f\begin{pmatrix} -2 \\ 3 \end{pmatrix} = \begin{pmatrix} -5 \\ 0 \end{pmatrix}$$

donc

$$\operatorname{Mat}(f, \mathscr{B}', \mathscr{B}) = \begin{pmatrix} 2 & -5 \\ 0 & 0 \end{pmatrix}$$

3. Toujours avec le même f on prend \mathscr{B}' comme base de départ et d'arrivée, il s'agit donc d'exprimer $f(\vec{u})$ et $f(\vec{v})$ dans la base $\mathscr{B}' = (\vec{u}, \vec{v})$. Nous venons de calculer que

$$f(\vec{u}) = f(\vec{i} - \vec{j}) = f\begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} = 2\vec{i} \quad f(\vec{v}) = f(2\vec{i} + 3\vec{j}) = f\begin{pmatrix} -2 \\ 3 \end{pmatrix} = \begin{pmatrix} -5 \\ 0 \end{pmatrix} = -5\vec{i}$$

Mais il nous faut obtenir une expression en fonction de la base \mathscr{B}' . Remarquons que

$$\left\{ \begin{array}{lll} \vec{u} & = & \vec{i} - \vec{j} \\ \vec{v} & = & -2\vec{i} + 3\vec{j} \end{array} \right. \Longrightarrow \left\{ \begin{array}{lll} \vec{i} & = & 3\vec{u} + \vec{v} \\ \vec{j} & = & 2\vec{u} + \vec{v} \end{array} \right.$$

Donc

$$f(\vec{u}) = f(\vec{i} - \vec{j}) = 2\vec{i} = 6\vec{u} + 2\vec{v} = \begin{pmatrix} 6 \\ 2 \end{pmatrix}_{\mathscr{B}'} \qquad f(\vec{v}) = f(-2\vec{i} + 3\vec{j}) = -5\vec{i} = -15\vec{u} - 5\vec{v} = \begin{pmatrix} -15 \\ -5 \end{pmatrix}_{\mathscr{B}'}$$

Donc

$$\operatorname{Mat}(f, \mathscr{B}', \mathscr{B}') = \begin{pmatrix} 6 & -15 \\ 2 & -5 \end{pmatrix}$$

Remarque : $\begin{pmatrix} x \\ y \end{pmatrix}_{\mathscr{B}'}$ désigne le vecteur $x\vec{u} + y\vec{v}$.

Correction de l'exercice 2

1. On note la base $\mathscr{B} = (e_1, e_2, e_3)$ et $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}_{\mathscr{B}} = xe_1 + ye_2 + ze_3$. La matrice $A = \operatorname{Mat}_{\mathscr{B}}(f)$ est composée des vecteurs colonnes $\phi(e_i)$, on sait

$$\phi(e_1) = e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}_{\mathscr{B}} \quad \phi(e_2) = -e_1 + e_2 + e_3 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}_{\mathscr{B}} \quad \phi(e_3) = e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}_{\mathscr{B}}$$

donc
$$A = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

Le noyau de ϕ (ou celui de A) est l'ensemble de $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ tel que AX = 0.

$$AX = 0 \iff \begin{pmatrix} 0 & -1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff \begin{cases} -y = 0 \\ y = 0 \\ x + y + z = 0 \end{cases}$$

Donc $\operatorname{Ker} \phi = \left\{ \begin{pmatrix} x \\ 0 \\ -x \end{pmatrix}_{\mathscr{B}} \in \mathbb{R}^3 \mid x \in \mathbb{R} \right\} = \operatorname{Vect} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}_{\mathscr{B}} = \operatorname{Vect}(e_1 - e_3).$ Le noyau est donc de dimension 1.

2. On applique le pivot de Gauss comme si c'était un système linéaire :

$$\begin{cases} e_1 & - & e_3 &= f_1 & L_1 \\ e_1 & - & e_2 & &= f_2 & L_2 \\ -e_1 & + & e_2 & + & e_3 &= f_3 & L_3 \end{cases} \iff \begin{cases} e_1 & - & e_3 &= f_1 \\ & - & e_2 & + & e_3 &= f_2 - f_1 & L_2 - L_1 \\ & & e_2 & &= f_3 + f_1 & L_3 + L_1 \end{cases}$$

On en déduit

$$\begin{cases} e_1 &= f_1 + f_2 + f_3 \\ e_2 &= f_1 + f_3 \\ e_3 &= f_2 + f_3 \end{cases}$$

Donc tous les vecteurs de la base $\mathscr{B} = (e_1, e_2, e_3)$ s'expriment en fonction de (f_1, f_2, f_3) , ainsi la famille (f_1, f_2, f_3) est génératrice. Comme elle a exactement 3 éléments dans l'espace vectoriel \mathbb{R}^3 de dimension 3 alors $\mathscr{B}' = (f_1, f_2, f_3)$ est une base.

3.

$$\phi(f_1) = \phi(e_1 - e_3) = \phi(e_1) - \phi(e_3) = e_3 - e_3 = 0$$

$$\phi(f_2) = \phi(e_1 - e_2) = \phi(e_1) - \phi(e_2) = e_3 - (-e_1 + e_2 + e_3) = e_1 - e_2 = f_2$$

$$\phi(f_3) = \phi(-e_1 + e_2 + e_3) = -\phi(e_1) + \phi(e_2) + \phi(e_3) = -e_1 + e_2 + e_3 = f_3$$

Donc, dans la base $\mathscr{B}' = (f_1, f_2, f_3)$, nous avons

$$\phi(f_1) = 0 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}_{\mathscr{B}'} \quad \phi(f_2) = f_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}_{\mathscr{B}'} \phi(f_3) = f_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}_{\mathscr{B}'}$$

Donc la matrice de ϕ dans la base \mathscr{B}' est

$$B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 ϕ est la projection sur Vect (f_2, f_3) parallèlement à Vect (f_1) (autrement dit c'est la projection sur le plan d'équation (x'=0), parallèlement à l'axe des x', ceci dans la base \mathscr{B}').

4. P est la matrice de passage de \mathcal{B} vers \mathcal{B}' . En effet la matrice de passage contient -en colonnes- les coordonnées des vecteurs de la nouvelle base \mathcal{B}' exprimés dans l'ancienne base \mathcal{B} .

Si un vecteur a pour coordonnées X dans la base \mathscr{B} et X' dans la base \mathscr{B}' alors PX' = X (attention à l'ordre). Et si A est la matrice de ϕ dans la base \mathscr{B} et B est la matrice de ϕ dans la base \mathscr{B}' alors

$$B = P^{-1}AP$$

(Une matrice de passage entre deux bases est inversible.)

Ici on calcule l'inverse de P:

$$P^{-1} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \quad \text{donc} \quad B = P^{-1}AP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

On retrouve donc bien les mêmes résultats que précédemment.

Correction de l'exercice 3

Notons l'ancienne base $\mathcal{B}=(e_1,e_2,e_3)$ et ce qui sera la nouvelle base $\mathcal{B}'=(e_1',e_2',e_3')$. Soit P la matrice de passage qui contient -en colonnes- les coordonnées des vecteurs de la nouvelle base \mathcal{B}' exprimés dans l'ancienne base \mathcal{B}

$$P = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 4 & 2 \\ 1 & 1 & 2 \end{pmatrix}$$

On vérifie que P est inversible (on va même calculer son inverse) donc \mathscr{B}' est bien une base. De plus

$$P^{-1} = \begin{pmatrix} -6 & 5 & -2 \\ 4 & -3 & 1 \\ 1 & -1 & 1 \end{pmatrix} \text{ et on calcule } B = P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

B est la matrice de f dans la base \mathcal{B}' .

Correction de l'exercice 4 ▲

Nous associons à la matrice A son application linéaire naturelle f. Si $\mathcal{B} = (e_1, e_2, \dots, e_n)$ est la base canonique de \mathbb{R}^n alors $f(e_1)$ est donné par le premier vecteur colonne, $f(e_2)$ par le deuxième, etc. Donc ici

$$f(e_1) = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 0 \\ 1 \end{pmatrix} = e_n, \ f(e_2) = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \end{pmatrix} = e_{n-1}, \dots \quad \text{ et en général } f(e_i) = e_{n+1-i}$$

Calculons ce que vaut la composition $f \circ f$. Comme une application linéaire est déterminée par les images des éléments d'une base alors on calcule $f \circ f(e_i)$, i = 1, ..., n en appliquant deux fois la formule précédente :

$$f \circ f(e_i) = f(f(e_i)) = f(e_{n+1-i}) = e_{n+1-(n+1-i)} = e_i$$

Comme $f \circ f$ laisse invariant tous les vecteurs de la base alors $f \circ f(x) = x$ pour tout $x \in \mathbb{R}^n$. Donc $f \circ f = \mathrm{id}$. On en déduit $f^{-1} = f$ et que la composition itérée vérifie $f^p = \mathrm{id}$ si p est pair et $f^p = f$ si p est impair. Conclusion : $A^p = I$ si p est pair et $A^p = A$ si p est impair.

Correction de l'exercice 5 ▲

Soit *A*, *B* tel que $B = P^{-1}AP$.

1. Supposons *A* inversible, alors il existe *A'* tel que $A \times A' = I$ et $A' \times A = I$. Notons alors $B' = P^{-1}A'P$. On a

$$B \times B' = (P^{-1}AP) \times (P^{-1}A'P) = P^{-1}A(PP^{-1})A'P = P^{-1}AA'P = P^{-1}IP = I$$

De même $B' \times B = I$. Donc B est inversible d'inverse B'.

2. Supposons que $A^n = I$. Alors

$$B^{n} = (P^{-1}AP)^{n} = (P^{-1}AP)(P^{-1}AP) \cdots (P^{-1}AP)$$

$$= P^{-1}A(PP^{-1})A(PP^{-1}) \cdots AP$$

$$= P^{-1}A^{n}P$$

$$= P^{-1}IP = I$$

Donc *B* est idempotente.

- 3. Si $A^n = (0)$ alors le même calcul qu'au-dessus conduit à $B^n = (0)$.
- 4. Si $A = \lambda I$ alors $B = P^{-1}(\lambda I)P = \lambda I \times P^{-1}P = \lambda I$ (car la matrice λI commute avec toutes les matrices).

Correction de l'exercice 6 A

1. Notons P la matrice de passage de la base canonique $\mathscr{B} = ((1,0),(0,1))$ vers (ce qui va être) la base $\mathscr{B}' = (e_1,e_2)$. C'est la matrice composée des vecteurs colonnes e_1 et e_2 :

$$P = \begin{pmatrix} -2 & -2 \\ 3 & 5 \end{pmatrix}$$

 $\det P = -4 \neq 0$ donc P est inversible et ainsi \mathscr{B}' est bien une base.

Alors la matrice de f dans la base \mathcal{B}' est :

$$B = P^{-1}AP = -\frac{1}{4} \begin{pmatrix} 5 & 2 \\ -3 & -2 \end{pmatrix} \begin{pmatrix} 2 & \frac{2}{3} \\ -\frac{5}{2} & -\frac{2}{3} \end{pmatrix} \begin{pmatrix} -2 & -2 \\ 3 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{3} \end{pmatrix}$$

2. Il est très facile de calculer la puissance d'une matrice diagonale :

$$B^n = \begin{pmatrix} 1 & 0 \\ 0 & \left(\frac{1}{3}\right)^n \end{pmatrix}$$

Comme $A = PBP^{-1}$ on va en déduire A^n :

$$A^{n} = (PBP^{-1})^{n} = PB^{n}P^{-1} = \frac{1}{4} \begin{pmatrix} 10 - \frac{6}{3^{n}} & 4 - \frac{4}{3^{n}} \\ -15 + \frac{15}{3^{n}} & -6 + \frac{10}{3^{n}} \end{pmatrix}$$

3. Si l'on note $X_n = \begin{pmatrix} x_n \\ y_n \end{pmatrix}$ alors les équations que vérifient les suites s'écrivent en terme matriciel :

$$X_{n+1} = AX_n$$
.

Si l'on note les conditions initiales $X_0 = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \in \mathbb{R}^2$ alors $X_n = A^n X_0$. On en déduit

$$\begin{cases} x_n = \frac{1}{4} \left((10 - \frac{6}{3^n}) x_0 + (4 - \frac{4}{3^n}) y_0 \right) \\ y_n = \frac{1}{4} \left((-15 + \frac{15}{3^n}) x_0 + (-6 + \frac{10}{3^n}) y_0 \right) \end{cases}$$

Correction de l'exercice 7

Avant toute, un coup d'œil sur la matrice nous informe de deux choses : (a) A n'est pas la matrice nulle donc $rg(A) \ge 1$; (b) il y a 3 lignes donc $rg(A) \le 3$ (le rang est plus petit que le nombre de colonnes et que le nombre de lignes).

- 1. Montrons de différentes façons que $rg(A) \ge 2$.
 - **Première méthode : sous-déterminant non nul.** On trouve une sous-matrice 2×2 dont le déterminant est non nul. Par exemple la sous-matrice extraite du coin en bas à gauche vérifie $\begin{vmatrix} 3 & 0 \\ 5 & 4 \end{vmatrix} = 12 \neq 0$ donc $rg(A) \ge 2$.
 - **Deuxième méthode : espace vectoriel engendré par les colonnes.** On sait que l'image de l'application linéaire associée à la matrice *A* est engendrée par les vecteurs colonnes. Et le rang est la dimension de cette image. On trouve facilement deux colonnes linéairement indépendantes : la

deuxième $\begin{pmatrix} 2 \\ 0 \\ 4 \end{pmatrix}$ et la troisième $\begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}$ colonne. Donc $\operatorname{rg}(A) \geqslant 2$.

— Troisième méthode : espaces vectoriel engendré par les lignes. Il se trouve que la dimension de l'espace vectoriel engendré par les lignes égal la dimension de l'espace vectoriel engendré par les colonnes (car $rg(A) = rg(^tA)$). Comme les deuxième et troisième lignes sont linéairement indépendantes alors $rg(A) \ge 2$.

Attention : les dimensions des espaces vectoriels engendrés sont égales mais les espaces sont différents !

2. En utilisant la dernière méthode : le rang est exactement 2 si la première ligne est dans le sous-espace engendré par les deux autres. Donc

$$\begin{split} \operatorname{rg}(A) &= 2 \iff (a,2,-1,b) \in \operatorname{Vect} \big\{ (3,0,1,-4), (5,4,-1,2) \big\} \\ &\iff \exists \lambda, \mu \in \mathbb{R} \quad (a,2,-1,b) = \lambda (3,0,1,-4) + \mu (5,4,-1,2) \\ &\iff \exists \lambda, \mu \in \mathbb{R} \quad \begin{cases} 3\lambda + 5\mu &= a \\ 4\mu &= 2 \\ \lambda - \mu &= -1 \\ -4\lambda + 2\mu &= b \end{cases} \iff \begin{cases} \lambda &= -\frac{1}{2} \\ \mu &= \frac{1}{2} \\ a &= 1 \\ b &= 3 \end{split}$$

Conclusion la rang de A est 2 si (a,b) = (1,3). Sinon le rang de A est 3.

Correction de l'exercice 8 A

- 1. (a) Commençons par des remarques élémentaires : la matrice est non nulle donc $rg(A) \ge 1$ et comme il y a p = 4 lignes et n = 3 colonnes alors $rg(A) \le min(n, p) = 3$.
 - (b) Ensuite on va montrer $\operatorname{rg}(A) \geqslant 2$ en effet le sous-déterminant 2×2 (extrait du coin en haut à gauche) : $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = -2 \text{ est non nul.}$
 - (c) Montrons que rg(A) = 2. Avec les déterminants il faudrait vérifier que pour toutes les sous-matrices 3×3 les déterminants sont nuls. Pour éviter de nombreux calculs on remarque ici que les colonnes sont liées par la relation $v_2 = v_1 + v_3$. Donc rg(A) = 2.
 - (d) L'application linéaire associée à la matrice A est l'application $f_A : \mathbb{R}^3 \to \mathbb{R}^4$. Et le théorème du rang dim Ker $f_A + \dim \operatorname{Im} f_A = \dim \mathbb{R}^3$ donne ici dim Ker $f_A = 3 \operatorname{rg}(A) = 1$.

Mais la relation $v_2 = v_1 + v_3$ donne immédiatement un élément du noyau : en écrivant $v_1 - v_2 + v_3 = 0$

alors
$$A \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 Donc $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \in \text{Ker } f_A$. Et comme le noyau est de dimension 1 alors

9

$$\operatorname{Ker} f_A = \operatorname{Vect} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

(e) Pour un base de l'image, qui est de dimension 2, il suffit par exemple de prendre les deux premiers vecteurs colonnes de la matrice A (ils sont clairement non colinéaires) :

$$\operatorname{Im} f_A = \operatorname{Vect} \left\{ v_1, v_2 \right\} = \operatorname{Vect} \left\{ \begin{pmatrix} 1 \\ 3 \\ 5 \\ 7 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

- 2. On fait le même travail avec B et f_B .
 - (a) Matrice non nulle avec 4 lignes et 4 colonnes donc $1 \le rg(B) \le 4$.
 - (b) Comme le sous-déterminant (du coin supérieur gauche) $\begin{vmatrix} 2 & 2 \\ 4 & 3 \end{vmatrix} = -2$ est non nul alors $rg(B) \ge 2$.
 - (c) Et pareil avec le sous-déterminant 3×3 :

$$\begin{vmatrix} 2 & 2 & -1 \\ 4 & 3 & -1 \\ 0 & -1 & 2 \end{vmatrix} = -2$$

qui est non nul donc $rg(B) \ge 3$.

- (d) Maintenant on calcule le déterminant de la matrice B et on trouve $\det B = 0$, donc $\operatorname{rg}(B) < 4$. Conclusion $\operatorname{rg}(B) = 3$. Par le théorème du rang alors $\dim \operatorname{Ker} f_B = 1$.
- (e) Cela signifie que les colonnes (et aussi les lignes) sont liées, comme il n'est pas clair de trouver la relation à la main on résout le système BX = 0 pour trouver cette relation; autrement dit :

$$\begin{pmatrix} 2 & 2 & -1 & 7 \\ 4 & 3 & -1 & 11 \\ 0 & -1 & 2 & -4 \\ 3 & 3 & -2 & 11 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \text{ ou encore } \begin{cases} 2x + 2y - z + 7t & = 0 \\ 4x + 3y - z + 11t & = 0 \\ -y + 2z - 4t & = 0 \\ 3x + 3y - 2z + 11t & = 0 \end{cases}$$

Après résolution de ce système on trouve que les solutions s'écrivent $(x, y, z, t) = (-\lambda, -2\lambda, \lambda, \lambda)$. Et ainsi

$$\operatorname{Ker} f_B = \operatorname{Vect} \begin{pmatrix} -1 \\ -2 \\ 1 \\ 1 \end{pmatrix}$$

Et pour une base de l'image il suffit, par exemple, de prendre les 3 premiers vecteurs colonnes v_1, v_2, v_3 de la matrice B, car ils sont linéairement indépendants :

Im
$$f_B = \text{Vect}\{v_1, v_2, v_3\} = \text{Vect}\left\{ \begin{pmatrix} 2\\4\\0\\3 \end{pmatrix}, \begin{pmatrix} 2\\3\\-1\\3 \end{pmatrix}, \begin{pmatrix} -1\\-1\\2\\-2 \end{pmatrix} \right\}$$

Correction de l'exercice 9 ▲

- 1. Nous devons montrer $\operatorname{Ker} f \cap \operatorname{Im} f = \{0\}$ et $\operatorname{Ker} f + \operatorname{Im} f = E$.
 - (a) Si $x \in \text{Ker } f \cap \text{Im } f$ alors d'une part f(x) = 0 et d'autre part il existe $x' \in E$ tel que x = f(x'). Donc 0 = f(x) = f(f(x')) = f(x') = x donc x = 0 (on a utilisé $f \circ f = f$). Donc $\text{Ker } f \cap \text{Im } f = \{0\}$.
 - (b) Pour $x \in E$ on le réécrit x = x f(x) + f(x). Alors $x f(x) \in \text{Ker } f (\text{car } f(x f(x))) = f(x) f \circ f(x) = 0$) et $f(x) \in \text{Im } f$. Donc $x \in \text{Ker } f + \text{Im } f$. Donc Ker f + Im f = E.
 - (c) Conclusion : $E = \operatorname{Ker} f \oplus \operatorname{Im} f$.

- 2. Notons r le rang de $f: r = \dim \operatorname{Im} f$. Soit $\{e_1, \ldots, e_r\}$ une base de $\operatorname{Im} f$ et soit $\{e_{r+1}, \ldots, e_n\}$ une base de $\operatorname{Ker} f$. Comme $E = \operatorname{Ker} f \oplus \operatorname{Im} f$ alors (e_1, \ldots, e_n) est une base de E. Pour i > r alors $e_i \in \operatorname{Ker} f$ donc $f(e_i) = 0$.
 - Comme $f \circ f = f$ alors pour n'importe quel $x \in \text{Im } f$ on a f(x) = x: en effet comme $x \in \text{Im } f$, il existe $x' \in E$ tel que x = f(x') ainsi f(x) = f(f(x')) = f(x') = x. En particulier si $i \le r$ alors $f(e_i) = e_i$.
- 3. La matrice de f dans la base (e_1, \ldots, e_n) est donc :

$$\begin{pmatrix} I & (0) \\ (0) & (0) \end{pmatrix}$$

où I désigne la matrice identité de taille $r \times r$ et les (0) désignent des matrices nulles.

Correction de l'exercice 10 ▲

- 1. Soit M une matrice telle que $M^2 = 0$ et soit f l'application linéaire associée à M. Comme $M^2 = 0$ alors $f \circ f = 0$. Cela entraîne Im $f \subset \operatorname{Ker} f$. Discutons suivant la dimension du noyau :
 - (a) Si dim Ker f = 3 alors f = 0 donc M = 0 (la matrice nulle).
 - (b) Si dim Ker f=2 alors prenons une base de \mathbb{R}^3 formée de deux vecteurs du noyau et d'un troisième vecteur. Dans cette base la matrice de f est $M'=\begin{pmatrix} 0 & 0 & a \\ 0 & 0 & b \\ 0 & 0 & c \end{pmatrix}$ mais comme $f\circ f=0$ alors $M'^2=0$; un petit calcul implique c=0. Dong M et M' sont les matrices de la même application linéaire f

un petit calcul implique c = 0. Donc M et M' sont les matrices de la même application linéaire f mais exprimées dans des bases différentes, donc M et M' sont semblables.

- (c) Si dim Ker f=1 alors comme Im $f \subset \operatorname{Ker} f$ on a dim Im $f \leqslant 1$ mais alors cela contredit le théorème du rang : dim Ker $f + \dim \operatorname{Im} f = \dim \mathbb{R}^3$. Ce cas n'est pas possible.
- (d) Conclusion : M est une matrice qui vérifie $M^2 = 0$ si et seulement si il existe une matrice inversible P et des réels a, b tels que

$$M = P^{-1} \begin{pmatrix} 0 & 0 & a \\ 0 & 0 & b \\ 0 & 0 & 0 \end{pmatrix} P$$

2. On va s'aider de l'exercice 9. Si $M^2 = M$ et f est l'application linéaire associée alors $f \circ f = f$. On a vu dans l'exercice 9 qu'alors $\text{Ker } f \oplus \text{Im } f$ et que l'on peut choisir une base (e_1, e_2, e_3) telle que $f(e_i) = e_i$ puis $f(e_i) = 0$. Suivant la dimension du noyau cela donne que la matrice M' de f dans cette base est

$$A_0 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad A_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad A_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad A_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Maintenant M est semblable à l'une de ces matrices : il existe P inversible telle que $M = P^{-1}M'P$ où M' est l'une des quatre matrices A_i ci-dessus.

Géométriquement notre application est une projection (projection sur une droite pour la seconde matrice et sur un plan pour la troisième).

3. Posons $N = \frac{I+M}{2}$ et donc M = 2N - I. Alors $M^2 = I \iff (2N - I)^2 = I \iff 4N^2 - 4N - I = I \iff N^2 = N$. Donc par la deuxième question N est semblable à l'une des matrice $A_i : N = P^{-1}A_iP$. Donc $M = 2P^{-1}A_iP - I = P^{-1}(2A_i - I)P$. Ainsi M est semblable à l'une des matrices $2A_i - I$ suivantes :

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Ce sont des matrices de symétrie (par rapport à l'origine pour la première matrice, par rapport à une droite pour la seconde matrice et par rapport à un plan pour la troisième).

11

L'idée de poser $N=\frac{I+M}{2}$ est la suivante : si $M^2=I$ alors géométriquement l'application linéaire s associée à M est une symétrie, alors que si $N^2=N$ alors l'application linéaire p associée est une projection. Et projection et symétrie sont liées par $p(x)=\frac{x+s(x)}{2}$ (faites un dessin!) c'est-à-dire $p=\frac{\mathrm{id}+s}{2}$ ou encore $N=\frac{I+M}{2}$.

Correction de l'exercice 11 A

- 1. Il est facile de voir que $f(\lambda P + \mu Q) = \lambda f(P) + \mu f(Q)$ donc f est linéaire, de plus, P étant un polynôme de degré $\leq n$ alors f(P) aussi.
- 2. Pour n = 3 on calcule l'image de chacun des éléments de la base :

$$f(1) = 1 + 1 - 2 = 0, \quad f(X) = (X+1) + (X-1) - 2X = 0,$$

$$f(X^2) = (X+1)^2 + (X-1)^2 - 2X^2 = 2, \quad f(X^3) = (X+1)^3 + (X-1)^3 - 2X^3 = 6X.$$

Donc la matrice de f dans la base $(1, X, X^2, X^3)$ est

$$\begin{pmatrix}
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 6 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

Pour le cas général on calcule

$$f(X^{p}) = (X+1)^{p} + (X-1)^{p} - 2X^{p}$$

$$= \sum_{k=1}^{p} {p \choose k} X^{k} + \sum_{k=1}^{p} {p \choose k} X^{k} (-1)^{p-k} - 2X^{p}$$

$$= \sum_{p-k \text{ pair et } k < p} 2 {p \choose k} X^{k}$$

Donc la matrice est

$$\begin{pmatrix} 0 & 0 & 2\binom{2}{0} & 0 & \cdots & 2\binom{p}{0} & 0 \\ 0 & 0 & 2\binom{3}{1} & & 0 & 2\binom{p+1}{1} \\ & 0 & 0 & \cdots & 2\binom{p}{2} & 0 \\ & & 0 & & 0 & 2\binom{p+1}{3} & \vdots \\ & & \ddots & \vdots & 0 \\ & & & 0 & \vdots \\ & & & & 0 \end{pmatrix}$$

Dans cet exemple de matrice, p est pair. Chaque colonne commence en alternant une valeur nulle/une valeur non-nulle jusqu'à l'élément diagonal (qui est nul).

3. Nous savons que f(1) = 0 et f(X) = 0 donc 1 et X sont dans le noyau Ker f. Il est aussi clair que les colonnes de la matrices $f(X^2), \cdots, f(X^n)$ sont linéairement indépendantes (car la matrice est échelonnée). Donc $\operatorname{Im} f = \operatorname{Vect}\{f(X^2), f(X^3), \dots, f(X^n)\}$ et $\dim \operatorname{Im} f = n - 1$.

Par la formule du rang dim Ker $f + \dim \operatorname{Im} f = \dim \mathbb{R}_n[X]$ donc dim Ker f = 2. Comme nous avons déjà deux vecteurs du noyau alors Ker $f = \operatorname{Vect}\{1, X\}$.

4. (a) Soit $Q \in \text{Im } f$. Il existe donc $R \in \mathbb{R}_n[X]$ tel que f(R) = Q. On pose ensuite P(X) = R(X) - R(0) - R'(0)X. On a tout fait pour que P(0) = 0 et P'(0) = 0. De plus par la linéarité de f et son noyau alors

$$f(P) = f\big(R(X) - R(0) - R'(0)X\big) = f\big(R(X)\big) - R(0)f(1) - R'(0)f(X) = f(R) = Q.$$

Donc notre polynôme *P* convient.

(b) Montrons l'unicité. Soient P et \tilde{P} tels que $f(P)=f(\tilde{P})=Q$ avec $P(0)=P'(0)=0=\tilde{P}(0)=\tilde{P}'(0)$. Alors $f(P-\tilde{P})=Q-Q=0$ donc $P-\tilde{P}\in \operatorname{Ker} f=\operatorname{Vect}\{1,X\}$. Ainsi $P-\tilde{P}$ s'écrit $P-\tilde{P}=aX+b$. Mais comme $(P-\tilde{P})(0)=0$ alors b=0, et comme $(P-\tilde{P})'(0)=0$ alors a=0. Ce qui prouve $P=\tilde{P}$.

Correction de l'exercice 12 ▲

1. Notons C = AB et D = BA. Alors par la définition du produit de matrice :

$$c_{ij} = \sum_{1 \leqslant k \leqslant n} a_{ik} b_{kj}$$
 donc $c_{ii} = \sum_{1 \leqslant k \leqslant n} a_{ik} b_{ki}$

Ainsi

$$\operatorname{tr}(AB) = \operatorname{tr} C = \sum_{1 \leqslant i \leqslant n} c_{ii} = \sum_{1 \leqslant i \leqslant n} \sum_{1 \leqslant k \leqslant n} a_{ik} b_{ki}$$

De même

$$\operatorname{tr}(BA) = \operatorname{tr} D = \sum_{1 \leqslant i \leqslant n} \sum_{1 \leqslant k \leqslant n} b_{ik} a_{ki}$$

Si dans cette dernière formule on renomme l'indice i en k et l'indice k en i (ce sont des variables muettes donc on leur donne le nom qu'on veut) alors on obtient :

$$\operatorname{tr}(BA) = \sum_{1 \leq k \leq n} \sum_{1 \leq i \leq n} b_{ki} a_{ik} = \sum_{1 \leq i \leq n} \sum_{1 \leq k \leq n} a_{ik} b_{ki} = \operatorname{tr}(AB)$$

2. M et M' sont semblables donc il existe une matrice de passage P telle que $M' = P^{-1}MP$ donc

$$\operatorname{tr} M' = \operatorname{tr} (P^{-1}(MP)) = \operatorname{tr} ((MP)P^{-1}) = \operatorname{tr} (MI) = \operatorname{tr} M$$

3. La trace a aussi la propriété évidente que

$$tr(A+B) = trA + trB$$
.

Fixons une base de E. Notons A la matrice de f dans cette base et B la matrice de g dans cette même base. Alors AB est la matrice de $f \circ g$ et BA est la matrice de $g \circ f$. Ainsi la matrice de $f \circ g - g \circ f$ est AB - BA Donc

$$\operatorname{tr}(f\circ g-g\circ f)=\operatorname{tr}(AB-BA)=\operatorname{tr}(AB)-\operatorname{tr}(BA)=0.$$