Induktiver Sensor (Drehzahl)

Gegeben: Verlauf U, N,n

Gesucht: Verlauf Φ, Drehzahl

Bei einem induktiven Drehzahlmesser mit speziell ausgeformten Zahnrädern ergibt sich für die induzierte Spannung U der unten dargestellte Spannungsverlauf.

Skizzieren und berechnen sie den zugehörigen Verlauf des magnetischen Flusses Φ Inkl. Angabe der Werte von Φ .

Sensor

Wicklungszahl N	100	-
Anzahl Zähne n	60	-

Zeitverlauf

t ₁	0,001	S
t ₂	0,002	S
t ₃	0,003	S
t ₄	0,004	S
t ₅	0,005	S
t ₆	0,006	S

Δ t ₁	0,001	S
Δ t ₂	0,001	S
Δ t ₃	0,001	S
Δ t ₄	0,001	S
Δ t ₅	0,001	S
Δ t ₆	0,001	S

U(Δ t ₁)	0	V
$U(\Delta t_2)$	1	V
U(Δ t ₃)	4	V
U(Δ t ₄)	-4	V
U(Δ t ₅)	-1	V
U(Δ t ₆)	0	V

Φ(Ut=0)	0	V*s	=
gegebener		Weber	
Anfangswert			

Es werden vom Sensor laufend diese Signale (0 bis t6) wiederholt. Wie groß ist die Drehzahl ? (u/min)

Hallelement

Gegeben: U(angelegt), R, Daten Hallelement, α

Gesucht: B

An einem Hallelement wird eine Spannung U angelegt.

Ein Magnetfeld fällt im Winkel 30° zur Ebene des Hallelements ein.

Gemessen wird dann die Hallspannung U_H.

Wie groß ist die magnetische Flussdichte?

	,	
Angelegte Spannung U	10	Volt
Daten des Hallelementes		
Elektrischer Widerstand R	1,00*10 ³	Ohm
Hallkonstante R _H	2,00*10 ⁻⁴	m³/As
Dicke d	5,00*10 ⁻⁶	m
U _н	2,00*10 ⁻¹	V
Einfallswinkel des Magnetfeldes		
α	30	Grad
A in Bogenmaß	0,523599	
Sin(α)	0,5	

Dimensionierung einer Stromzange

Gegeben: Alle Daten vom Hallelement, Sollwerte der Stromzange

Gesucht: minimaler Radius r

Ein Hallelement wird in einer Stromzange verwendet.

Es wird mit der Spannung U betrieben.

Bis zu einer Hallspannung von U_H(max) liefert das Element genaue Werte.

Der maximale von der Stromzange zu messende Strom sei I_{max}.

Legen sie die Geometrie der Stromzange (r) gerade so aus, dass beim erlaubten Maximalstrom noch verlässliche Werte geliefert werden.

Angelegte Spannung U	10	V

Daten des Hallelementes

Elektrischer Widerstand R	1*10 ²	Ohm
Hallkonstante R _H	4*10 ⁻⁴	m³/As
Dicke d	1*10 ⁻⁶	m
U _H (max)	0,01	V

Stromzange

Maximaler Stromwert I _{max}	100	Α
--------------------------------------	-----	---

Piezoelement

Gegeben: alle Daten bis auf A und Ri, Entladebedingungen

Gesucht: A, R_i

Ein Piezoelement soll bei einer wirkenden Kraft von 20N die Spannung 2V liefern.

Daten Piezoelement

Piezoelektrische Materialkonstante k _p	2,3*10 ⁻¹²	As/N
Dicke I	0,001	m
€r	5	-

Naturkonstante ϵ_0	8,85*10 ⁻¹²	As/Vm
Von außen wirkende Kraft F	20	N
Zugehöriger Sollwert der Spannung U	2	V

Wie groß muss die Fläche des Piezoelementes sein ? (Angabe in cm²)

Die im Piezoelement gespeicherte Ladung darf sich nach Beginn des Krafteinflusses erst nach mehr als 1s um 75% abgebaut haben.

In welchem Wertebereich darf Ri liegen ?

Erlaubte Zeit	1	S
Abgebaute Prozentzahl	75	%

Piezoelement mit Verstärker

Gegeben: U, Q, Piezo: I, A, ρ, Verstärker: V, V₀, R'_e Zeitangabe

Gesucht: $T \rightarrow$ nur in die gegebenen Formeln einsetzten

Ein Piezoelement liefert bei einer erzeugten Ladung Q die Spannung U.

Das Signal des Elementes werde mit einem Elektrometerverstärker weiter verarbeitet.

Wann ist die aufgebaute Ladung dabei um 63% des Anfangswertes abgefallen? (→Tau gesucht)

Spannung und Ladung am Piezoelement:

Q	2,00*10 ⁻¹⁰	Coulomb
U	0,5	Volt

Piezoelement:

Länge I	0,001	m
Fläche A	1	cm ²
A, andere Einheit	0,0001	m ²
A, andere Einheit	100	mm ²
Spezifischer Widerstand p	5*10 ¹³	Ohm mm²/m

Elektrometerverstärker:

V ₀	10000	-
V	1000	-
R _e ′	1*10 ⁸	Ohm

Thermoelement

Gegeben: U_(Kontakt), später U_(Thermo)

Gesucht: T, später T₀

Eine Materialkombination aus Nickel-Chrom und Nickel bildet ein Thermopaar. An der Verbindungsstelle dieses Thermopaars falle eine Kontaktspannung ab.

Wie groß ist die Temperatur an der Kontaktstelle? (Angabe in K)

Aus Tabellen:

k _{NiCr,Pt}	2,2	mV/100K
k _{Ni,Pt}	-1,9	mV/100K
	,	
k _{NiCr,Ni}	4,1	mV/100K
k (andere Einheit)	4,1*10 ⁻⁵	V/K

Kontaktspannung an einer Stelle → Temperatur

Das oben genannte Thermopaar wird in einem Standard-Thermoelement mit Kupfer-Anschlussdrähten verwendet.

Dieses liefert die Thermospannung 0,003801V.

Auf welcher Temperatur liegen die Anschlusspunkte für die Kupferleitungen?

Gelieferte Spannung U		
(des Thermoelementes)	0,003801	V

Ultraschall-Abstandsmessung mit Triangulation

Gegeben: Laufzeit (Sensor 1), d, a, C_{Luft}

Gesucht: Laufzeit (Sensor 2)

Für eine Ultraschall-Abstandsmessung werden 2 Piezoelemente verwendet.

Die Auswerteeinheit für Sensor 1 registriert folgende Laufzeit.

Der dadurch ermittelte Gesamtabstand beträgt folgenden Wert.

Welche Laufzeit wird bei Sensor 2 registriert?

Schallgeschwindigkeit in Luft C _{Luft}	343	m/s
Sensorabstand d	1,5	m
Gesamtabstand a	1	m
Laufzeit Sensor 1 t ₁	0,0065	s