Homework Template¹

$\mathbf{Q}\mathbf{1}$

The answer to problem 1 goes here.

You can have multiple paragraphs or bulleted lists:

- item 1
- item 2
- item ...

$\mathbf{Q2}$

The answer to the second question goes here.

It also can have a 2nd paragraph and a enumerated list:

- (a) first item
- (b) second item
 - i. sub item

Q2(a)

Here is another subproblem to answer.

LATEX Basics

This a brief review of some of the functionality you may use, please consult the resources provided for additional examples or help!

Line breaks in \LaTeX must be explicit like

this.

Not, like this which does not produce a line break.

Text can be

centered.

Different kinds of emphasis including *italics* or *emphasis*, **bold** or **bold**, <u>underline</u>, teletype, SMALL CAPS.

Math can be easily embedded with in text like the following equation: $f(n) = n^2 - 2$. Longer or more important formula can be set into separate equations from the text

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

The formula is displayed differently inline: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.

A command or symbol used in text mode may not work in math mode and vice versa. If you want to include text while in math mode use the \text{} command:

$$a = b \text{ or } c \neq d$$

If you are using quotation marks, make them using the following format: "smart quotes".

Symbols and Math

A command in LATEXis indicated by the backslash character - \. Other characters are protected so for them to appear you need to add the backslash before it:

¹Template inspired by: CS22 @ Brown University and https://github.com/jdavis/latex-homework-template

Some basic math commands that may be useful:

$$\frac{8}{23} + \sqrt{i+4} - \binom{12}{8}$$

If you have a complicated formula, you may want to use the left and right parentheses that expand to fit the expression

$$f(n,m) = \left(\frac{1}{n}\right) - \left(\frac{1}{1 + \frac{1}{m}}\right).$$

Superscript and subscript:

$$10^2 \quad n^{n^2} \quad x_1 \quad n_{1,1}$$

Other useful commands for this course, sets:

$$\in \not\in \emptyset \subseteq \subset \cup \cap \not\subseteq \{x \in \mathbb{N} \mid 2 \le x \le 6\}$$

Special sets:

$$\emptyset$$
 N Z Q R

Logic commands:

$$\neq$$
 \wedge \vee \oplus \rightarrow , \Rightarrow \leftrightarrow , \Leftrightarrow $\equiv \forall$ \exists

If you are working through a proof or need to display multiple equations, then there is the align math environment

$$a_n = a_{n-1} - n \tag{1}$$

$$= a_{n-2} - (n-1) - n = a_{n-1} - (n + (n-1))$$
(2)

$$= a_{n-3} - (n-2) - (n+(n-1)) = a_{n-2} - (n+(n-1)+(n-2))$$
(3)

$$=\cdots$$
 (4)

$$= 4 - (n + (n-1) + (n-2) + \dots + 1) = 4 - \frac{n(n+1)}{2}$$
(5)

If you do not want the equations numbered use the align* environment.

$$\sum_{i=4}^{n} 7 \cdot 5^{i} = \sum_{j=0}^{n-4} 7 \cdot 5^{j+4}$$
 (change of index)

$$= \sum_{j=0}^{n-4} 7 \cdot 5^{j} 5^{4}$$
 (algebra)

$$=7 \cdot 5^4 \sum_{j=0}^{n-4} 5^j$$
 (Fact 4)

$$=7 \cdot 5^4 \left(\frac{5^{n-3} - 1}{4}\right)$$
 (Table 2.1)

Tables and Figures

Tables are generally defined with the tabular environment.

$p \lor (q \to r)$				
p	q	$\mid r \mid$	$q \rightarrow r$	(d)
Т	Т	Т	Т	Т
\mathbf{T}	Γ	$\mid F \mid$	F	T
${ m T}$	F	$\mid T \mid$	T	Т
Τ	F	F	T	Γ
F	Т	Т	Т	Т
\mathbf{F}	Γ	$\mid F \mid$	F	F
F	F	$\mid T \mid$	T	T
\mathbf{F}	F	F	T	T

To automatically number a table and add a caption also use the table environment and caption command. The number can then be used to reference specific tables in the text, e.g., Table 1.

\neg	negation	the negation, or "not" operator, is
		a unary logic operation
\wedge	conjunction	the conjunction, or "and" opera-
		tor, is a binary logic operation
\vee	disjunction	the disjunction, or "or" operator,
		is a binary logic operator

Table 1: Description of Logic Operators

Images can be added using the includegraphics command

Figure 1: Nebula, credit: NASA images

Code / Pseudo-code

Code or pseudocode can be added to a .tex document using the listings.

```
fruitPrices = { 'apples':2.00, 'oranges': 1.50, 'pears': 1.75}
1
2
   def buyFruit(fruit, numPounds):
3
4
       if fruit not in fruitPrices:
           print "Sorry_we_don't_have_%s" % (fruit)
5
6
       else:
7
            cost = fruitPrices[fruit] * numPounds
           print "That'll_be_%f_please" % (cost)
8
9
10
   # Main Function
   if __name__ == '__main__':
       buyFruit ('apples', 2.4)
12
       buyFruit('coconuts',2)
13
```

Actual Code Chunk

```
An actual R code chunk to produce output is shown here.
> rm(list = ls()) # Taken from: https://stat.ethz.ch/pipermail/r-help/2007-August/137694.html
> library(ggplot2)
> library(plyr)
> library(stats)
> library(stringi)
> # Example for R Examples introD.Rmd file.
> se <- function(x) {</pre>
+ v \leftarrow var(x)
    n \leftarrow length(x)
    return(sqrt(v/n))
> se(c(45, 2, 5, 8, 65, 4))
[1] 10.93237
> for (i in 1:10) {
    print(i^2)
+ }
[1] 1
[1] 4
[1] 9
[1] 16
[1] 25
[1] 36
[1] 49
[1] 64
[1] 81
[1] 100
```