Deep Learning MSDS 631

Tips and Tricks for Deep Learning

Michael Ruddy

Some Thoughts

- Final Project Reminders
- Tips
 - Loss Function Documentation (output? average?)
 - What is true for this dataset may not be true for another
 - For experiments, make sure you are re-initializing parameters
- Only small penalty for submitted lab on time
 - Come see me today for issues!
- Please put your name on your lab
- Isn't it enough to know how to use software for DL? Why peak "under the hood"?

Questions?

- From last lecture?
- From the lab assignment?

Overview

- What is training a model?
- Optimization
- Regularization
- Embeddings

- Gradient Descent: Navigating through the space of possible models
 - Trying to find a "good" minimum for our loss function

- Gradient Descent: Navigating through the space of possible models
 - Trying to find a "good" minimum for our loss function
- Loss Landscape: The environment which informs our journey

- Gradient Descent: Navigating through the space of possible models
 - Trying to find a "good" minimum for our loss function
- Loss Landscape: The environment which informs our journey

- Gradient Descent: Navigating through the space of possible models
 - Trying to find a "good" minimum for our loss function
- Loss Landscape: The environment which informs our journey

- Gradient Descent: Navigating through the space of possible models
 - Trying to find a "good" minimum for our loss function
- Loss Landscape: The environment which informs our journey

- Gradient Descent: Navigating through the space of possible models
 - Trying to find a "good" minimum for our loss function
- Loss Landscape: The environment which informs our journey

- Gradient Descent: Navigating through the space of possible models
 - Trying to find a "good" minimum for our loss function
- Loss Landscape: The environment which informs our journey

- Gradient Descent: Navigating through the space of possible models
 - Trying to find a "good" minimum for our loss function
- Loss Landscape: The environment which informs our journey
 - Success!

- What can go wrong?
 - Too flat

- What can go wrong?
 - Too flat

- What can go wrong?
 - Too flat

- What can go wrong?
 - Too flat

- What can go wrong?
 - Too flat

- What can go wrong?
 - Too flat (or saddle point)

- What can go wrong?
 - Too flat
 - "Bad" minima

From *Visualizing the Loss Landscape of Neural Nets* by H. Li, Z. Xu, G. Taylor, C. Studer, T. Goldstein

- What can go wrong?
 - Too flat
 - "Bad" minima

- Shallow

- What can go wrong?
 - Too flat
 - "Bad" minima

- Shallow
- Unstable

Small movement may incur massive loss increase

From Visualizing the Loss Landscape of Neural Nets by H. Li, Z. Xu, G. Taylor, C. Studer, T. Goldstein

- What can go wrong?
 - Too flat
 - "Bad" minima

- Shallow
- Unstable
 - May not generalize well

Small movement may incur massive loss increase

From *Visualizing the Loss Landscape of Neural Nets* by H. Li, Z. Xu, G. Taylor, C. Studer, T. Goldstein

- What can go wrong?
 - Too flat
 - "Bad" minima

- Shallow
- Unstable
 - May not generalize well
- May not be as big as a problem as previously thought!

may incur massive loss increase

Small movement

From Visualizing the Loss Landscape of Neural Nets by H. Li, Z. Xu, G. Taylor, C. Studer, T. Goldstein

- Choosing a learning rate is an art-form

- Choosing a learning rate is an art-form
- LR Test: Train while cranking up learning rate and plot loss

- Choosing a learning rate is an art-form
- LR Test: Train while cranking up learning rate and plot loss
- Learning rate annealing: Start with High LR, then decrease over time

- Choosing a learning rate is an art-form
- LR Test: Train while cranking up learning rate and plot loss
- Learning rate annealing: Start with High LR, then decrease over time

- Choosing a learning rate is an art-form
- LR Test: Train while cranking up learning rate and plot loss
- Learning rate annealing: Start with High LR, then decrease over time

- Choosing a learning rate is an art-form
- LR Test: Train while cranking up learning rate and plot loss
- Learning rate annealing: Start with High LR, then decrease over time

- Choosing a learning rate is an art-form
- LR Test: Train while cranking up learning rate and plot loss
- Learning rate annealing: Start with High LR, then decrease over time

- Choosing a learning rate is an art-form
- LR Test: Train while cranking up learning rate and plot loss
- Learning rate annealing: Start with High LR, then decrease over time

- Choosing a learning rate is an art-form
- LR Test: Train while cranking up learning rate and plot loss
- Learning rate annealing: Start with High LR, then decrease over time

- Choosing a learning rate is an art-form
- LR Test: Train while cranking up learning rate and plot loss
- Learning rate annealing: Start with High LR, then decrease over time

- Choosing a learning rate is an art-form
- LR Test: Train while cranking up learning rate and plot loss
- Learning rate annealing: Start with High LR, then decrease over time
- Warm-up: low -> high -> low
 - Intuition is that warm-up improves stability

- Choosing a learning rate is an art-form
- LR Test: Train while cranking up learning rate and plot loss
- Learning rate annealing: Start with High LR, then decrease over time
- Warm-up: low -> high -> low
 - Intuition is that warm-up improves stability
- Cyclical LRs

Cyclical Learning Rates for Training Neural Networks by Leslie Smith

- Choosing a learning rate is an art-form
- LR Test: Train while cranking up learning rate and plot loss
- Learning rate annealing: Start with High LR, then decrease over time
- Warm-up: low -> high -> low
 - Intuition is that warm-up improves stability
- Cyclical LRs
- And more!

- There many techniques we can use to help prevent overfitting

- There many techniques we can use to help prevent overfitting
- Early Stopping: Fit to training data, but not too much!

- There many techniques we can use to help prevent overfitting
- Early Stopping: Fit to training data, but not too much!
- Weight Decay: Overfit models often have high magnitude coefficients

- There many techniques we can use to help prevent overfitting
- Early Stopping: Fit to training data, but not too much!
- Weight Decay: Overfit models often have high magnitude coefficients
- Dropout: Reduces reliance on a single node/feature

- There many techniques we can use to help prevent overfitting
- Early Stopping: Fit to training data, but not too much!
- Weight Decay: Overfit models often have high magnitude coefficients
- Dropout: Reduces reliance on a single node/feature

- We usually train NN using *mini-batches*. (not a fixed loss landscape!)
 - Only compute gradient with respect to a small batch of your data
 - Data might be too big to load onto GPU
 - Form of regularization (adds noise)
 - Model updates more frequently

- We usually train NN using *mini-batches*. (not a fixed loss landscape!)
 - Only compute gradient with respect to a small batch of your data
 - Data might be too big to load onto GPU
 - Form of regularization (adds noise)
 - Model updates more frequently

Loss values for second batch

Value of Loss Function with respect to some batch

- We usually train NN using *mini-batches*. (not a fixed loss landscape!)
 - Only compute gradient with respect to a small batch of your data
 - Data might be too big to load onto GPU
 - Form of regularization (adds noise)
 - Model updates more frequently

Loss values for second batch

- We usually train NN using *mini-batches*. (not a fixed loss landscape!)
 - Only compute gradient with respect to a small batch of your data
 - Data might be too big to load onto GPU
 - Form of regularization (adds noise)
 - Model updates more frequently

Loss values for second batch

- We usually train NN using *mini-batches*. (not a fixed loss landscape!)
 - Only compute gradient with respect to a small batch of your data
 - Data might be too big to load onto GPU
 - Form of regularization (adds noise)
 - Model updates more frequently

Loss values for second batch

- We usually train NN using *mini-batches*. (not a fixed loss landscape!)
 - Only compute gradient with respect to a small batch of your data
 - Data might be too big to load onto GPU
 - Form of regularization (adds noise)
 - Model updates more frequently

Loss values for second batch

- We usually train NN using *mini-batches*. (not a fixed loss landscape!)
 - Only compute gradient with respect to a small batch of your data
 - Data might be too big to load onto GPU
 - Form of regularization (adds noise)
 - Model updates more frequently

Loss values for second batch

Value of Loss Function with respect to some batch

- We usually train NN using mini-batches. (not a fixed loss landscape!)
 - Only compute gradient with respect to a small batch of your data
 - Data might be too big to load onto GPU
 - Form of regularization (adds noise)
 - Model updates more frequently

Loss values for second batch

- We usually train NN using *mini-batches*. (not a fixed loss landscape!)
 - Only compute gradient with respect to a small batch of your data
 - Data might be too big to load onto GPU
 - Form of regularization (adds noise)
 - Model updates more frequently

Loss values for second batch

Value of Loss Function with respect to some batch

- Normalization of continuous variables can be extremely helpful for optimization, particularly for deep neural networks
 - Puts features on a similar scale
 - Potentially avoid vanishing/exploding gradients

$$ar{x} = rac{x - \mu}{\sigma}$$

- Vanishing/exploding gradients can become even worse in a deep network
 - Think chain rule

- Vanishing/exploding gradients can become even worse in a deep network
 - Think chain rule
- Batch normalization normalizes, in some sense, the output of each layer
 - "Normalizing along the way"

- Vanishing/exploding gradients can become even worse in a deep network
 - Think chain rule
- Batch normalization normalizes, in some sense, the output of each layer
 - "Normalizing along the way"

$$egin{aligned} ec{x} = egin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix} & \overline{x} = egin{bmatrix} \overline{x}_1 \ \overline{x}_2 \ dots \ \overline{x}_n \end{bmatrix} & \overline{x}_i = rac{x_i - \mu_i}{\sigma + \epsilon} \end{aligned}$$

- Vanishing/exploding gradients can become even worse in a deep network
 - Think chain rule
- Batch normalization normalizes, in some sense, the output of each layer
 - "Normalizing along the way"

- Vanishing/exploding gradients can become even worse in a deep network
 - Think chain rule
- Batch normalization normalizes, in some sense, the output of each layer
 - "Normalizing along the way"

$$egin{aligned} ec{x} = egin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix} & egin{aligned} \overline{x} = egin{bmatrix} \overline{x}_1 \ \overline{x}_2 \ dots \ \overline{x}_n \end{bmatrix} & \gamma \overline{x} + eta = egin{bmatrix} \gamma_1 \overline{x}_1 + eta_1 \ \gamma_2 \overline{x}_2 + eta_2 \ dots \ \gamma_n \overline{x}_n + eta_n \end{bmatrix} \end{aligned}$$

- Vanishing/exploding gradients can become even worse in a deep network
 - Think chain rule
- Batch normalization normalizes, in some sense, the output of each layer
 - "Normalizing along the way"

Gamma, beta initialize as all ones and zeros vectors respectively!

$$egin{aligned} \gamma \overline{x} + eta & \left[egin{aligned} \gamma_1 \overline{x}_1 + eta_1 \ \gamma_2 \overline{x}_2 + eta_2 \ dots \ \gamma_n \overline{x}_n + eta_n \end{aligned}
ight] \end{aligned}$$

Smoothing the loss landscape

- Intuition: making the loss landscape easier to traverse

Smoothing the loss landscape

- Intuition: making the loss landscape easier to traverse
- Skip Connections (more on these later)

w/o skips w/ skips

Other things to tweak

- <u>Tons</u> of different optimization algorithms
 - RMSprop
 - Adam
 - AdamW (adam with weight decay)
 - Adadelta
- Different methods for weight initialization
 - Idea: better/more stable starting points
- Change batch size
 - Spectrum from stochastic to one batch
 - Smaller batches usually results in noisier training

- For categorical variables we often use an *embedding* as a first step
- Categorical values can be one-hot encoded (meaning agnostic) then embedded into a meaningful feature space
- Similar to word embeddings
 - Go from one-hot encoded dictionary to word vectors

- For categorical variables we often use an *embedding* as a first step
- Categorical values can be one-hot encoded (meaning agnostic) then embedded into a meaningful feature space
- Doesn't have to be words
 - Go from one-hot encoded possible values to feature vectors

- Suppose you have a mix of numerical and categorical variables for your input layer: x = [1, .5, 10, round]

- Suppose you have a mix of numerical and categorical variables for your input layer: x = [1, .5, 10, round]

One hot encoding

$$round = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

- Suppose you have a mix of numerical and categorical variables for your input layer: x = [1, .5, 10, round]

One hot encoding		Embedding matrix			
round =	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	A =		a_{12}	
	$0 \rfloor$		$\lfloor a_{21} floor$	a_{22}	a_{23} $ floor$

- Suppose you have a mix of numerical and categorical variables for your input layer: x = [1, .5, 10, round]

round
$$=egin{bmatrix}1\0\0\end{bmatrix}$$
 $A=egin{bmatrix}a_{11}&a_{12}&a_{13}\a_{21}&a_{22}&a_{23}\end{bmatrix}$

Embedding of round

x = [1, .5, 10, round]

$$A = egin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

x = [1, .5, 10, oblong]

$$A = egin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

Why this or that architecture for a given problem?

- What architecture you use and other hyperparameters you choose depend heavily on
 - The task
 - Your available computing problem
 - How your model will be used
 - How interpretable you want your model to be

Why this or that architecture for a given problem?

- What architecture you use and other hyperparameters you choose depend heavily on
 - The task
 - Your available computing problem
 - How your model will be used
 - How interpretable you want your model to be
- The answer to "how many layers" or "how many nodes" is usually determined by
 - What other people have had success with
 - Your own experiments with different architectures