Learning Transferable Graph Exploration

Authors: Hanjun Dai et al.

Presented by Qinghai Zhou

Outline

- Background and Problem Formulation
- Methodology
- Evaluation

Background

State-space Coverage Problem

Goal: given an environment, efficiently reach as distinct/unique states as possible

Applications:

- model checking: design test inputs to expose as many potential errors as possible
- active map building: construct a map of unknown environment efficiently
- exploration in reinforcement learning in general

Common Approaches: Undirected Exploration

Key idea: randomly choose states to visit / actions to take

Examples:

- 1. Random walk based method on graph
 - Cover time depends on graph structure (O(nlog n), O(n³))
- 2. Epsilon-greedy selection
 - selecting random action with probability epsilon
 - preventing being locked on sub-optimal action

Directed Exploration

Key idea: optimize a certain objective that encourages exploration/coverage

Examples:

- 1. Upper Confidence Bound (UCB) for Bandit Problems:
 - in addition to maximizing the reward, encourage exploring unselected actions
- 2. Reinforcement Learning (RL)
 - pseudo-count (similar to UCB): rewards change in state density estimates
 - information gain: take actions from which you learn about the environment (reduces entropy)
 - predictive error: encourage actions that lead to unpredictable outcome (for instance, unseen states)

Graph Exploration

Goal: an efficient exploration strategy to reach as many vertices as possible

effectiveness of random walk greatly depends on the graph structure

Question to be answered:

Given the distribution of graphs in training time, can the algorithm learn an efficient covering/exploration strategy?

Formulation

Several key components in RL:

- Environment: for agent to interact with
- Action: state to cover/explore
- Reward: feedback from the environment

Formulation

Environment: Graph-structured state-space

- at time t, the agent observes a graph $G_{t-1} = \{E_{t-1}, V_{t-1}\}$, and a coverage mask ϵ_{t-1} : V_{t-1} {0, 1} indicating the nodes' exploration status so far
- the agent takes an action a_t and receives a new graph G_t
 Budget: number of steps/actions allowed to take Same dist. as training

Goal:

learn exploration strategy such that given an unseen environment, the agent can efficiently visit as many unique nodes as possible

Reward (maximize the number of visited nodes)

Cumulative rewards:

$$\max_{\{a_1,a_2...a_t\}} \sum_{v \in V_t} \frac{c_t(v)}{|\mathcal{V}|}$$
 Coverage mask

Per-step reward:

$$r_t = \sum_{v \in V_t} \frac{c_t(v)}{|\mathcal{V}|} - \sum_{v \in V_{t-1}} \frac{c_{t-1}(v)}{|\mathcal{V}|}$$

They are equivalent
$$\sum_{v \in V_0} c_0(v) = 0$$

Objective

$$\max_{\{\theta_1,\theta_2...\theta_t\}} \mathbb{E}_{\mathcal{G} \sim \mathcal{D}} \left[\sum_{t=1}^T \mathbb{E}_{a_t^{\mathcal{G}} \sim \pi(a|h_t^{\mathcal{G}},\theta_t)} \left[r_t^{\mathcal{G}} \right] \right]$$

- h_t = {(a_i, G_i, c_i)} (i=1,...,t) is the exploration history
 π(a|h_t, θ_t) is the action policy at time t
- D is the environment distribution

Representing Exploration History

Graph representation:

- use graph neural networks to learn a representation (one-bit information $c_{\scriptscriptstyle\downarrow}$)
- starting from node $\mu_{v}^{(0)}$, update representation via message passing: $\mu_{v}^{(l+1)} = f(\mu_{v}^{(l)}, \{e_{uv}; \mu_{u}^{(l)}\}, (f(\cdot): GGNN model)$
- apply attention weighted-aggregation
- learned via unsupervised link prediction

Representing Exploration History

History representation: summarize representation up to the current step

$$F(h_t) = \mathsf{LSTM}(F(h_{t-1}, g(G_t, c_t))) \stackrel{\mathsf{encoder}}{\longrightarrow} C_t$$

Evaluatio n

Two settings: (1) unknown graph; (2) known but complex (program testing)

Erdos-Renyi Random Graph:

blue node indicates starting point; darker colors represent more visit counts

Evaluatio

n

given fixed budget (T = 36), the agent is trained to traverse the 6x6 maze as much as possible test on held-out mazes from the same distribution

Evaluatio

Program testing (coverage guided fuzzing):

Propose test cases to cover as many code branches as possible

Limitation:

- requires reasonable large amount of training data
- cannot scale to large programs

Possible extension:

RL-based dynamic graph representation

Please check the paper for more details about method and experiment.

Thank you! Q & A

