Digital SIGNAL PROCESSING Discrete-Time Signals in the Frequency Domain

DR. MUHAMMAD IMRAN QURESHI
ASSISTANT PROFESSOR, DEPT OF ELECTRICAL ENGINEERING
FICT, BUITEMS, QUETTA, PAKISTAN

• The frequency-domain representation of a continuous-time signal $x_a(t)$ is given by the continuous-time Fourier transform (CTFT):

•
$$X_a(j\Omega) = \int_{-\infty}^{\infty} x_a(t)e^{-j\Omega t}dt.$$
 (3.1)

- The CTFT also referred as Fourier spectrum or sometimes simply spectrum of continuous-time signal.
- The continuous time signal can be recovered from tis CTFT $X_a(j\Omega)$ via the inverse Fourier transform

•
$$x_a(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_a(j\Omega) e^{-j\Omega t} d\Omega$$
 (3.2)

• Where, Ω is real and dnotes the continuous-time angular frequency variable in radians per second.

• In Eq. (3.2), the inverse Fourier transform is a linear combination of infinitesimally small complex exponential signals of the form $\frac{1}{2\pi}e^{j\Omega t}d\Omega$, weighted by the complex constant $X_a(j\Omega)$ over the angular frequency range form $-\infty$ to ∞ .

•
$$X_a(j\Omega) = \int_{-\infty}^{\infty} x_a(t)e^{-j\Omega t}dt.$$
 (3.1)

- Eq. (3.1) can be written in polar form as
- $X_a(j\Omega) = |X_a(j\Omega)| e^{j\theta_a(\Omega)}$ where, $\theta_a(\Omega) = \arg\{X_a(j\Omega)\}$
- The quantity $|X_a(j\Omega)|$ is called the magnitude spectrum.
- The quantity $\theta_a(\Omega)$ is called phase spectrum.
- Both magnitude and phase spectrum are real function of Ω .

•
$$X_a(j\Omega) = \int_{-\infty}^{\infty} x_a(t)e^{-j\Omega t}dt.$$
 (3.1)

- The CTFT $X_a(j\Omega)$ (defined in Eq. (3.1)) exists if the continuous-time signal $x_a(t)$ satisfies the Dirchlet conditions:
 - 1. The signal has a finite number of finite discontinuities and a finite number of maxima and minima in any finite interval.
 - 2. The signal is absolutely integrable; that is,

• If the Dirichlet conditions are satisfied, the integral on the right-hand side of Eq. (3.2) converges to $x_a(t)$ at values of t where $x_a(t)$ has discontinuities.

• Example: Find CTFT of following real signal and also magnitude and

phase spectra:

$$\bullet \ x_a(t) = \begin{cases} e^{-\alpha t}, & t \ge 0, \\ 0, & t < 0. \end{cases}$$

• where $0 < \alpha < \infty$

- Solution: Let $\alpha = 0.5$
- Before proceeding to solution, we will check Dirchlet condition (the function is absolutely integrable or not?)
- $\int_{\infty}^{\infty} |x_a(t)| dt = \int_{0}^{\infty} e^{-\alpha t} dt = -\frac{e^{-\alpha t}}{\alpha}|_{0}^{\infty} = \frac{1}{\alpha} < \infty$ (Integrable, hence CTFT is possible.

•
$$X_a(j\Omega) = \int_{\infty}^{\infty} x(t)e^{-j\Omega t}dt = \int_{0}^{\infty} e^{-\alpha t}e^{-j\Omega t}dt = \int_{0}^{\infty} e^{-(\alpha+j\Omega)t}dt$$

•
$$X_a(j\Omega) = \left| -\frac{e^{-(\alpha+j\Omega)t}}{\alpha+j\Omega} \right|_0^{\infty} = \frac{1}{\alpha+j\Omega}$$

Magnitude:
$$|X_a(j\Omega)| = \frac{1}{\sqrt{\alpha^2 + \Omega^2}}$$

Phase:
$$\theta_a(\Omega) = -\tan^{-1}\left(\frac{\Omega}{\alpha}\right)$$

- Example 3.2: Continuous-Time Fourier Transform of an Impulse Function
- Solution: Using the sampling property of the delta function, the CTFT $\Delta(j\Omega)$ of an ideal impulse $\delta(t)$ is obtained as:
- $\Delta(j\Omega) = \int_{-\infty}^{\infty} \delta(t)e^{-j\Omega t}dt = 1$

- Example 3.2: Continuous-Time Fourier Transform of a Shifted Impulse Function i.e. $x_a(t) = \delta(t t_o)$
- Solution: The CTFT of a shifted impulse function is obtained as:

•
$$X_a(j\Omega) = \int_0^\infty \delta(t - t_o)e^{-j\Omega t}dt = e^{-j\Omega t_o}$$

•
$$\Delta(j\Omega) = \int_{-\infty}^{\infty} \delta(t)e^{-j\Omega t}dt = 1$$

• An absolutely integrable continuous-time signal $x_a(t)$ with bounded amplitude always has finite energy; that is,

- The CTFT may exit for a finite-energy continuous-time signal that is not absolutely integrable.
- The CTFT can also be defined using ideal impulses for some functions that do not satisfy either integrable condition (i.e. Eq.(3.3)) nor energy condition (i.e. Eq.(3.4)).

The Continuous-Time Fourier Transform (Energy Density Spectrum)

• The total energy \mathcal{E}_{x} of a finite-energy continuous-time complex signal $\chi_{a}(t)$ is given by

•
$$\mathcal{E}_{x} = \int_{-\infty}^{\infty} |x_{a}(t)|^{2} dt = \int_{-\infty}^{\infty} x_{a}(t) x_{a}^{*}(t) dt$$
 (3.7)
$$\int_{-\infty}^{\infty} |x_{a}(t)|^{2} dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |x_{a}(j\Omega)|^{2} d\Omega$$

From the definition of inverse CTFT, we know that,

•
$$x_a(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_a(j\Omega) e^{j\Omega t} d\Omega$$

$$\int_{-\infty}^{\infty} |x_a(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X_a(j\Omega)|^2 d\Omega$$

This is known as Parseval's theorem for finite-energy continuous-time signals

- Taking complex conjugate of both side will lead us to
- $x_a^*(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_a^*(j\Omega) e^{-j\Omega t} d\Omega$ put this equation in Eq. (3.7)

•
$$\mathcal{E}_{x} = \int_{-\infty}^{\infty} x_{a}(t) \left[\frac{1}{2\pi} \int_{\infty}^{\infty} X_{a}^{*}(j\Omega) e^{-j\Omega t} d\Omega \right] dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_{a}^{*}(j\Omega) \left[\int_{\infty}^{\infty} x_{a}(t) e^{-j\Omega t} dt \right] d\Omega$$

•
$$\mathcal{E}_{\chi} = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_a^*(j\Omega) X_a(j\Omega) d\Omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X_a(j\Omega)|^2 d\Omega$$
 (3.8)

•
$$\int_{-\infty}^{\infty} |x_a(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X_a(j\Omega)|^2 d\Omega$$
 (3.9)

The Continuous-Time Fourier Transform (Energy Density Spectrum)

Example 3.4: Find the total energy of given continuous-time signal

$$\bullet \ x_a(t) = \begin{cases} e^{-\alpha t}, & t \ge 0, \\ 0, & t < 0. \end{cases}$$

- where $0 < \alpha < \infty$
- Solution:
- As we have found its CTFT in Example 3.1, which is

•
$$X_a(j\Omega) = \frac{1}{\alpha + j\Omega}$$

• So, the energy is given by

•
$$\mathcal{E}_{x} = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X_{a}(j\Omega)|^{2} d\Omega$$

•
$$\mathcal{E}_{x} = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_{a}(j\Omega) X_{a}^{*}(j\Omega) d\Omega$$

•
$$\mathcal{E}_{x} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\frac{1}{\alpha + i\Omega} \right] \left[\frac{1}{\alpha - i\Omega} \right] d\Omega$$

•
$$\mathcal{E}_{\chi} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{\alpha^2 + \Omega^2} d\Omega$$

•
$$\mathcal{E}_{\chi} = \frac{1}{2\pi} \left| \frac{1}{\alpha} \tan^{-1} \left(\frac{\Omega}{\alpha} \right) \right|_{-\infty}^{\infty}$$

•
$$\mathcal{E}_{\chi} = \frac{1}{2\pi\alpha} \{ \tan^{-1}(\infty) - \tan^{-1}(-\infty) \}$$

•
$$\mathcal{E}_{\chi} = \frac{1}{2\pi\alpha} \left\{ \frac{\pi}{2} - \left(-\frac{\pi}{2} \right) \right\}$$

•
$$\mathcal{E}_{x} = \frac{1}{2\alpha}$$
 (For $\alpha = 0.5$, $\mathcal{E}_{x} = 1$)

Discrete Time Signals in the Frequency Domain The Continuous-Time Fourier Transform (Energy Density Spectrum)

• The total energy \mathcal{E}_x of a finite-energy continuous-time complex signal $x_a(t)$ is given by

•
$$\mathcal{E}_{x} = \int_{-\infty}^{\infty} |x_{a}(t)|^{2} dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X_{a}(j\Omega)|^{2} d\Omega$$
 (3.9)

- The term $|X_a(j\Omega)|^2$ in above equation is called the energy density spectrum $(S_{\chi\chi}(\Omega))$ of the continuous-time signal $\chi_a(t)$ i.e.,
- $S_{xx}(\Omega) = |X_a(j\Omega)|^2$
- The energy $\mathcal{E}_{x,r}$ over a specified range of frequencies $\Omega_a \leq \Omega \leq \Omega_b$ of the signal $x_a(t)$ is given by
- $\mathcal{E}_{x,r} = \frac{1}{2\pi} \int_{\Omega_a}^{\Omega_b} S_{xx}(\Omega) d\Omega$

energy density spectrum $(S_{xx}(\Omega))$ of the continuous-time signal $x_a(t)$ is given by $S_{xx}(\Omega) = |X_a(j\Omega)|^2$

The Continuous-Time Fourier Transform (Band-Limited Continuous-Time Signals)

- A full-band, finite-energy, continuous-time signal has a spectrum occupying the whole frequency range $-\infty < \Omega < \infty$.
- A band-limited signal, continuous-time signal has a spectrum occupying a limited portion of the frequency range $\Omega_a \leq \Omega \leq \Omega_b$.
- An ideal band-limited signal has a spectrum that is zero outside a finite frequency range $\Omega_a \leq \Omega \leq \Omega_b$: that is,

•
$$X_a(j\Omega) = \begin{cases} 0, & 0 \le |\Omega| < \Omega_a \\ 0, & \Omega_b < |\Omega| < \infty \end{cases}$$
 i.e., the signal exisits only in range $\Omega_a \le \Omega \le \Omega_b$

- An ideal band-limited signal cannot be generated in practice.
- However, for practical purposes, it is ensured that the energy of bandlimited signal outside the specified frequency range is sufficiently small.

The Continuous-Time Fourier Transform (Band-Limited Continuous-Time Signals)

Lowpass Continuous-time Signal:

• A low pass continuous-time signal is defined as
$$X_a(j\Omega) = \begin{cases} X_a(j\Omega), & 0 \leq |\Omega| \leq \Omega_p \\ 0, & \Omega_p < |\Omega| < \infty \end{cases} \text{ i.e., the signal exisits only in range } 0 \leq |\Omega| \leq \Omega_p$$

• Where, Ω_p is called bandwidth of the signal and is less than ∞

Highpass Continuous-time Signal:

• A highpass continuous-time signal is defined as
$$* X_a(j\Omega) = \begin{cases} 0, & 0 \leq |\Omega| < \Omega_p \\ X_a(j\Omega), & \Omega_p \leq |\Omega| < \infty \end{cases} \text{ i.e., the signal exisits only in range } \Omega_p \leq |\Omega| < \infty$$

• The bandwidth of the signal is from Ω_p to ∞

Bandpass Continuous-time Signal:

• A bandpass continuous-time signal has a spectrum occupying the frequency range $0 < \Omega_L \le$

$$|\Omega| \leq \Omega_H < \infty$$
• $X_a(j\Omega) = \begin{cases} 0, & 0 \leq |\Omega| < \Omega_a \\ 0, & \Omega_b < |\Omega| < \infty \end{cases}$ i.e., the signal exisits only in range $\Omega_a \leq \Omega \leq \Omega_b$

• The bandwidth of the signal is $\Omega_H - \Omega_L$.

The Continuous-Time Fourier Transform (Band-Limited Continuous-Time Signals)

• Example 3.1: Find total energy fo the following signal for $\alpha = 0.5$, and

determine its 80% bandwidth

$$\bullet \ x_a(t) = \begin{cases} e^{-\alpha t}, & t \ge 0, \\ 0, & t < 0. \end{cases}$$

- Solution: (Method 1)
- The energy can be computed as:

•
$$\mathcal{E}_{x} = \int_{-\infty}^{\infty} |x_{a}(t)|^{2} dt = \int_{0}^{\infty} |e^{-\alpha t}|^{2} dt = \int_{0}^{\infty} e^{-2\alpha t} dt = \left| \frac{e^{-2\alpha t}}{-2\alpha} \right|_{0}^{\infty}$$

•
$$\mathcal{E}_{\chi} = \left| \frac{e^{-2\alpha t}}{-2\alpha} \right|_{0}^{\infty} = \left(\frac{1}{-2\times0.5} \right) (0-1) = 1$$

The total energy is 1, i.e.,
$$\mathcal{E}_{\chi}=1$$

The Continuous-Time Fourier Transform (Band-Limited Continuous-Time Signals)

• Example 3.1: Find total energy fo the following signal for $\alpha = 0.5$, and

determine its 80% bandwidth

$$\bullet \ x_a(t) = \begin{cases} e^{-\alpha t}, & t \ge 0, \\ 0, & t < 0. \end{cases}$$

- Solution: (Method 2)
- The energy using Parseval's theorem can be computed as:

•
$$\mathcal{E}_{\chi} = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X_a(j\Omega)|^2 d\Omega$$
 where, $X_a(j\Omega) = \frac{1}{\alpha + j\Omega}$ (calculated on slide 6)

•
$$\mathcal{E}_{x} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left| \frac{1}{\alpha + i\Omega} \right|^{2} d\Omega = \frac{1}{2\pi} \int_{0}^{\infty} \frac{1}{\alpha^{2} + \Omega^{2}} d\Omega = 1$$

The total energy is 1, i.e.,
$$\mathcal{E}_x = 1$$

The Continuous-Time Fourier Transform (Band-Limited Continuous-Time Signals)

• Example 3.1: Find total energy fo the following signal for $\alpha = 0.5$, and determine its 80% bandwidth

•
$$x_a(t) = \begin{cases} e^{-\alpha t}, & t \ge 0, \\ 0, & t < 0. \end{cases}$$

The bandwidth is $0 \le \Omega \le 1.5388$ or $0 \le \Omega \le 0.4898\pi$

- Solution: (80% bandwidth)
- The 80% bandwidth Ω_c can be computed as:

•
$$\mathcal{E}_{x} = \frac{1}{2\pi} \int_{-\Omega_{c}}^{\Omega_{c}} \frac{1}{\alpha^{2} + \Omega^{2}} d\Omega$$

• $\mathcal{E}_{\chi} = \frac{1}{2\pi} \int_{-\Omega_c}^{\Omega_c} \frac{1}{\alpha^2 + \Omega^2} d\Omega = \frac{1}{2\pi} \left[\frac{1}{\alpha} \tan^{-1} \left(\frac{\Omega}{\alpha} \right) \right]_{-\Omega_c}^{\Omega_c} = \frac{1}{2\pi\alpha} \left[\tan^{-1} \left(\frac{\Omega_c}{\alpha} \right) - \tan^{-1} \left(-\frac{\Omega_c}{\alpha} \right) \right]_{-\Omega_c}^{\Omega_c}$

•
$$\mathcal{E}_{\chi} = \frac{1}{2\pi\alpha} \left[\tan^{-1} \left(\frac{\Omega_{c}}{\alpha} \right) + \tan^{-1} \left(\frac{\Omega_{c}}{\alpha} \right) \right] = \frac{1}{\pi\alpha} \left[\tan^{-1} \left(\frac{\Omega_{c}}{\alpha} \right) \right] \text{ since } \alpha = 0.5$$

•
$$\frac{2}{\pi} [\tan^{-1}(2\Omega_c)] = 0.8$$
 \Rightarrow $\Omega_C = \frac{1}{2} \{\tan\left(\frac{0.8\pi}{2}\right)\}$ \Rightarrow $\Omega_C = 1.5388$

80% (i.e 0.8 of 1) is here

The Continuous-Time Fourier Transform (Band-Limited Continuous-Time Signals)

• The discrete-time Fourier transform $X(e^{jw})$ of a sequence x[n] is defined by

•
$$\mathcal{F}\{x[n]\} = X(e^{jw}) = \sum_{n=-\infty}^{\infty} x[n]e^{-jwn}$$
 (3.10)

- Where, w is the real normalized frequency variable.
- Equation (3.10) is called analysis equation.
- Example 3.5: Discrete-Time Fourier Transform of the Unit Sample Sequence

•
$$\Delta(e^{jw}) = \sum_{n=-\infty}^{\infty} \delta[n]e^{-jwn} = 1$$
 (3.11)

• Example 3.5: Discrete-Time Fourier Transform of the Shifted Unit Sample Sequence

•
$$X(e^{jw}) = \sum_{n=-\infty}^{\infty} \delta[n - n_o] e^{-jwn} = e^{-jwn_o}$$
 (3.11)

• Example 3.6: Discrete-Time Fourier Transform of the Exponential

Sequence

Find the DTFT of an exponential sequence given

•
$$x[n] = \alpha^n u[n]$$
,

$$|\alpha| < 1$$
,

• Solution:

•
$$X(e^{jw}) = \sum_{n=0}^{\infty} (\alpha e^{-jw})^n = 1 + \alpha e^{-jw} + (\alpha e^{-jw})^2 + \dots = \frac{1}{1 - \alpha e^{-jw}}$$

This is geometric series

and $\left|\alpha e^{-jw}\right| < 1$, Because $\alpha = 0.5$

We will use the formula

 $\frac{a}{1-r}$ (for convergent

geometric series)

The Discrete-Time Fourier Transform (Definition)

Find the DTFT of an exponential sequence given

•
$$x[n] = \alpha^n u[n]$$
,

• Solution:

•
$$X(e^{j\omega}) = \frac{1}{1-\alpha e^{-j\omega}}$$

Magnitude:

$$|X(e^{j\omega})| = \frac{1}{\sqrt{1-2\alpha\cos\omega+\alpha^2}}$$

• Phase:

•
$$\theta(\omega) = \tan^{-1}\left(\frac{\alpha \sin \omega}{1 - \alpha \cos \omega}\right)$$

• The DTFT $X(e^{j\omega})$ of a discrete-time signal x[n] is a function of the normalized angular frequency ω .

• It should be noted that $x[n] = \alpha^n u[n]$ is aperiodic signal, whereas, its DTFF $X(e^{j\omega})$ is periodic function in ω with a period of 2π ,

23

- The DTFT $X(e^{j\omega})$ of a discrete-time signal x[n] is a function of the normalized angular frequency ω .
- It should be noted that $x[n] = \alpha^n u[n]$ is aperiodic signal, whereas, its DTFF $X(e^{j\omega})$ is periodic function in ω with a period of 2π , which is also evident from the magnitude plot.
- The periodicity property can be proved here.
- $X(e^{jw}) = \sum_{n=-\infty}^{\infty} x[n]e^{-jwn}$
- Replacing $\omega = \omega + 2\pi k$, where k is an integer, the above expression reduces to
- $X(e^{j(w+2\pi k)}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j(w+2\pi k)n}$

- $X(e^{j(w+2\pi k)}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j(w+2\pi k)n}$
- = $\sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}e^{-j2\pi kn}$
- As we know that $e^{-j2\pi kn} = 1$, for all values of k and n, so the above expression reduces to
- $X(e^{j(w+2\pi k)}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n} = X(e^{j\omega})$
- It means that For DTFT of any function x[n] repeats after 2π

Periodicity Property

$$X(e^{j(w+2\pi k)}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n} = X(e^{j\omega})$$

DTFF $X(e^{j\omega})$ is periodic function in ω with a period of 2π

• The inverse discrete-Fourier transform can be computed from $X(e^{j\omega})$ using following expression

•
$$\mathcal{F}^{-1}\left\{X\left(e^{j\omega}\right)\right\} = x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X\left(e^{j\omega}\right) e^{j\omega n} d\omega,$$
 (3.14)

- Equation (3.14) is called synthesis equation.
- Integration can be carrid out over any interval of duration 2π , however, it is common practice to choose the interval $[-\pi, \pi]$.
- A discrete-time Fourier transform pair will be denoted as

$$x[n] \stackrel{\mathcal{F}}{\leftrightarrow} X(e^{j\omega})$$

• The inverse discrete-Fourier transform can be computed from $X(e^{j\omega})$ using following expression

•
$$\mathcal{F}^{-1}\left\{X\left(e^{j\omega}\right)\right\} = x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X\left(e^{j\omega}\right) e^{j\omega n} d\omega$$
, (3.14)

- Where $X(e^{jw}) = \sum_{l=-\infty}^{\infty} x[l]e^{-jwl}$, putting this in above equation will result
- $x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \{\sum_{l=-\infty}^{\infty} x[l] e^{-jwl} \} e^{j\omega n} d\omega$,
- If $X(e^{jw})$ exists i.e. the summation converges, then the order of integration and summation can be interchanged

•
$$x[n] = \sum_{l=-\infty}^{\infty} x[l] \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\omega(n-l)} d\omega \right) = \sum_{l=-\infty}^{\infty} x[l] \left(\frac{1}{2\pi} \left| \frac{e^{jw(n-l)}}{j(n-l)} \right|_{-\pi}^{\pi} \right)$$

•
$$x[n] = \sum_{l=-\infty}^{\infty} x[l] \left\{ \frac{1}{2\pi i(n-l)} \left(e^{j\pi(n-l)} - e^{-j\pi(n-l)} \right) \right\}$$

•
$$x[n] = \sum_{l=-\infty}^{\infty} x[l] \left\{ \frac{1}{2\pi i(n-l)} \left(e^{j\pi(n-l)} - e^{-j\pi(n-l)} \right) \right\}$$

- We know $\sin \theta = \frac{e^{j\theta} e^{-j\theta}}{2j}$, putting this in above formula will result
- $x[n] = \sum_{l=-\infty}^{\infty} x[l] \left\{ \frac{\sin \pi(n-l)}{\pi(n-l)} \right\} = \sum_{l=-\infty}^{\infty} x[l] \operatorname{sinc}(n-l)$
- Since, $sinc \phi = \frac{\sin \pi \phi}{\pi \phi}$
- Case 1: For $n \neq l$, $\sin \pi (n l) = 0$, and as a result sinc (n l) = 0.
- Case 2: For n = l, $sinc(n l) = \frac{\sin \pi(n l)}{\pi(n l)} = \frac{\sin \pi(0)}{\pi(0)} = \frac{0}{0}$ (undefined)

• As, $sinc(n) = sin \frac{(\pi n)}{\pi n}$ is the sampled version of contuous-time function

$$\frac{\sin(\pi t)}{\pi t}$$
 for $t=n$; i.e. $\frac{\pi n}{\sin(\pi t)} = \frac{\sin(\pi t)}{\pi t}\Big|_{t=n}$

• We will use l'Hopital's rule, i.e.

•
$$\lim_{t \to 0} \frac{\sin(\pi t)}{\pi t} = \lim_{t \to 0} \frac{\pi \cos(\pi t)}{\pi} = 1$$

• Therefore,

•
$$sinc(n-l) = \begin{cases} 1, & n=l, \\ 0, & n \neq l, \end{cases}$$
 in other words $sinc(n-l) = \delta[n-l]$

Hence,

•
$$\sum_{l=-\infty}^{\infty} x[l] \operatorname{sinc}(n-l) = \sum_{l=-\infty}^{\infty} x[l] \delta[n-l] = x[n]$$

Hence, proved that the integration $\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{j\omega})e^{j\omega n}d\omega,$ gives the original discrete-time signal x[n] back from its DTFT $X(e^{j\omega})$

- The Fourier Transform Decomposition into Real and Imaginary Parts:
 - The Fourier transform $X(e^{j\omega})$ is a complex function of the real variable ω .
 - The Fourier transform $X(e^{j\omega})$ can be decomposed into its real $X_{re}(e^{j\omega})$ and imaginary $X_{im}(e^{j\omega})$ parts
 - $X(e^{j\omega}) = X_{re}(e^{j\omega}) + jX_{im}(e^{j\omega})$ (3.17)
 - Where, both $X_{re}(e^{j\omega})$ and $X_{im}(e^{j\omega})$ are functions of real variable ω .
 - $X_{re}(e^{j\omega}) = \frac{1}{2} \{X(e^{j\omega}) + X^*(e^{j\omega})\}$ (3.18a)
 - $X_{im}(e^{j\omega}) = \frac{1}{2} \{X(e^{j\omega}) X^*(e^{j\omega})\}$ (3.18b)
 - Where, $X^*(e^{j\omega})$ is complex conjugate of $X(e^{j\omega})$.

- The Fourier Transform Polar Form Representation:
 - The Fourier transform $X(e^{j\omega})$ can be represented in the polar form as

•
$$X(e^{j\omega}) = |X(e^{j\omega})|e^{j\theta(\omega)}$$
 (3.19)

- Where $X(e^{j\omega})$ is called the Fourier spectrum
- $|X(e^{j\omega})|$ is a magnitude function, also called magnitude specturm, and is a function ω .
- $\theta(\omega)$ is a phase function, called phase specturem, and is also function of real variable ω .

- Relationship Between Rectangular and Polar Form Representation:
 - The rectangular and polar form are related as follows:

•
$$X_{re}(e^{j\omega}) = |X(e^{j\omega})| \cos \theta(\omega)$$
 (3.21a)

•
$$X_{im}(e^{j\omega}) = |X(e^{j\omega})| \sin \theta(\omega)$$
 (3.21b)

• The magnitude spectrum is given as

•
$$|X(e^{j\omega})| = \sqrt{X_{re}^2(e^{j\omega}) + X_{im}^2(e^{j\omega})}$$
 (3.21c)

• The phase sepcturm is given as

•
$$\tan \theta(\omega) = \frac{X_{im}(e^{j\omega})}{X_{re}(e^{j\omega})}$$
 (3.21*d*)

Principal Value:

- The phase function is not uniquely specified for the discrete-time Fourier transform.
- $X(e^{j\omega}) = |X(e^{j\omega})|e^{j\theta(\omega)}$
- Replacing $\theta(\omega)$ with $\theta(\omega) + 2\pi k$ (where k is an integer), the above equation reduces to
- $X(e^{j\omega}) = |X(e^{j\omega})|e^{j(\theta(\omega)+2\pi k)}$
- $X(e^{j\omega}) = |X(e^{j\omega})|e^{j\theta(\omega)}$
- The above expression indicates that changing phase does not change the Fourier transform.
- The phase function $\theta(\omega)$ is restricted to following range of values, called principal value
- $-\pi \leq \theta(\omega) < \pi$

```
e^{j(\theta(\omega)+2\pi k)} = \cos(\theta(\omega) + 2\pi k) + j\sin(\theta(\omega) + 2\pi k)
\cos(\theta(\omega) + 2\pi k) = \cos(\theta(\omega))\cos 2\pi k - \sin(\theta(\omega))\sin 2\pi k
\sin(\theta(\omega) + 2\pi k) = \cos(\theta(\omega))\sin 2\pi k + \sin(\theta(\omega))\cos 2\pi k
\cos 2\pi k = 1
\sin 2\pi k = 0
e^{j(\theta(\omega)+2\pi k)} = \cos(\theta(\omega)) + j\sin(\theta(\omega)) = e^{j\theta(\omega)}
```

$$Euler's Forumla$$

$$e^{j\theta} = \frac{\cos \theta + j \sin \theta}{2}$$

$$e^{-j\theta} = \frac{\cos \theta - j \sin \theta}{2j}$$

Symmetry relations of the discrete-time Fourier transform of the real

signals:

We know that the magnitude spectrum is obtained as $\left|X(e^{j\omega})\right|^2 = X(e^{j\omega})X^*(e^{j\omega})$ For real singlas $X^*(e^{j\omega}) = X(e^{-j\omega})$ So, the magnitude spectrum reduces to $\left|X(e^{j\omega})\right|^2 = X(e^{j\omega})X(e^{-j\omega})$

Sequence	Discrete-Time Fourier Transform
x[n]	$X(e^{j\omega}) = X_{re}(e^{j\omega}) + jX_{im}(e^{j\omega})$
$x_{ev}[n]$	$X_{re}(e^{j\omega})$
$x_{od}[n]$	$X_{od}(e^{j\omega})$
Symmetry Relations	$X(e^{j\omega}) = X^*(e^{-j\omega})$
	$X_{re}(e^{j\omega}) = X_{re}(e^{-j\omega})$
	$X_{im}(e^{j\omega}) = -X_{im}(e^{-j\omega})$
	$\left X(e^{j\omega})\right = \left X(e^{-j\omega})\right $
	$arg\{X(e^{j\omega})\} = -arg\{X(e^{-j\omega})\}$

Symmetry relations of the discrete-time Fourier transform of the

complex signals:

Here, $X_{cs}(e^{j\omega})$ and $X_{ac}(e^{j\omega})$ are conjugate-symmetric and conjugate-antisymmetric part of $X(e^{j\omega})$.

Likewise, $x_{cs}[n]$ and $x_{ca}[n]$ are conjugate-symmetric and conjugate-antisymmetric parts of x[n].

Sequence	Discrete-Time Fourier Transform
x[n]	$X(e^{j\omega}) = X_{re}(e^{j\omega}) + jX_{im}(e^{j\omega})$
x[-n]	$X(e^{-j\omega})$
$x^*[-n]$	$X^*(e^{j\omega})$
$x_{re}[n]$	$X_{cs}(e^{j\omega}) = \frac{1}{2} \{ X(e^{j\omega}) + X^*(e^{-j\omega}) \}$
$jx_{im}[n]$	$X_{ca}(e^{j\omega}) = \frac{1}{2} \{ X(e^{j\omega}) - X^*(e^{-j\omega}) \}$
$x_{cs}[n]$	$X_{re}(e^{j\omega})$
$x_{ca}[n]$	$jX_{im}(e^{j\omega})$

 Example 3.7: Find DTFT, real & imaginary, and magnitude & phase functions of following discrete-time real:

•
$$x[n] = \alpha^n u[n]$$
, $|\alpha| < 1$,

- Solution:
- Discrete-Time Fourier Transform
- We have found its DTFT (slide 20) of this function; that is,

•
$$X(e^{jw}) = \frac{1}{1-\alpha e^{-jw}}$$

Real & Imaginary Functions

•
$$X(e^{jw}) = \frac{1}{1-\alpha e^{-jw}} \times \frac{1-\alpha e^{j\omega}}{1-\alpha e^{j\omega}}$$

•
$$X(e^{jw}) = \frac{1-\alpha e^{j\omega}}{1-\alpha(e^{-j\omega}+e^{j\omega})+\alpha^2}$$

•
$$X(e^{jw}) = \frac{1-\alpha(\cos\omega+j\sin\omega)}{1-2\alpha\cos\omega+\alpha^2}$$

•
$$X(e^{jw}) = \frac{1-\alpha\cos\omega}{1-2\alpha\cos\omega+\alpha^2} - \frac{j\alpha\sin\omega}{1-2\alpha\cos\omega+\alpha^2}$$

•
$$X(e^{jw}) = X_{re}(e^{jw}) + X_{im}(e^{jw})$$

• So,
$$X_{re}(e^{jw}) = \frac{1-\alpha\cos\omega}{1-2\alpha\cos\omega+\alpha^2}$$

•
$$X_{im}(e^{jw}) = -\frac{j\alpha \sin \omega}{1-2\alpha \cos \omega + \alpha^2}$$

Real & Imaginary Functions

•
$$X_{re}(e^{jw}) = \frac{1-\alpha\cos\omega}{1-2\alpha\cos\omega+\alpha^2}$$

•
$$X_{im}(e^{jw}) = -\frac{j\alpha \sin \omega}{1-2\alpha \cos \omega + \alpha^2}$$

Since $\cos \omega$ and $\sin \omega$ are periodic function of ω with period of 2π , as a result both $X_{re}(e^{jw})$ and $X_{im}(e^{jw})$ are also periodic of function ω with period of 2π .

Since $\cos \omega$ and $\sin \omega$ are even and odd function, respectively, as a result $X_{re}(e^{jw})$ and $X_{im}(e^{jw})$ are also even and odd, respectively.

Real function is an even function and also periodic of period 2π .

Imaginary function is an odd function and also periodic of period 2π .

Discrete Time Signals in the Frequency Domain The Discrete-Time Fourier Transform (Symmetry Relations)

Magnitude Function

•
$$|X(e^{jw})| = \sqrt{X_{re}(e^{jw})^2 + X_{im}(e^{jw})^2}$$

OR

•
$$|X(e^{jw})| = \sqrt{X(e^{jw}).X^*(e^{jw})}$$

•
$$|X(e^{jw})| = \sqrt{\frac{1}{1-\alpha e^{-jw}} \times \frac{1}{1-\alpha e^{jw}}}$$

•
$$|X(e^{jw})| = \sqrt{\frac{1}{1-\alpha(e^{-j\omega}+e^{j\omega})+\alpha^2}}$$

•
$$|X(e^{jw})| = \sqrt{\frac{1}{1-2\alpha\cos\omega+\alpha^2}}$$

Phase Function

•
$$\theta(\omega) = \tan^{-1} \left(\frac{X_{im}(e^{jw})}{X_{re}(e^{jw})} \right)$$

•
$$\theta(\omega) = \tan^{-1} \left(\frac{\frac{\alpha \sin \omega}{1 - 2\alpha \cos \omega + \alpha^2}}{\frac{1 - \alpha \cos \omega}{1 - 2\alpha \cos \omega + \alpha^2}} \right)$$

•
$$\theta(\omega) = \tan^{-1} \left(\frac{-\alpha \sin \omega}{1 - \alpha \cos \omega} \right)$$

Discrete Time Signals in the Frequency Domain The Discrete-Time Fourier Transform (Symmetry Relations)

Magnitude & Phase Functions

•
$$|X(e^{jw})| = \sqrt{\frac{1}{1 - 2\alpha \cos \omega + \alpha^2}}$$

• $\theta(\omega) = \tan^{-1}\left(\frac{-\alpha \sin \omega}{1 - \alpha \cos \omega}\right)$

•
$$\theta(\omega) = \tan^{-1}\left(\frac{-\alpha \sin \omega}{1-\alpha \cos \omega}\right)$$

Magnitude function an even function.

Both $|X(e^{jw})|$ and $\theta(\omega)$ are periodic functions of ω with a period of 2π .

- The Fourier transform $X(e^{jw})$ of a discrete-time sequence x[n] exists if the following series converges.
- $X(e^{jw}) = \sum_{n=-\infty}^{\infty} x[n]e^{-jwn}$ (3.10)
- Let Eq. (3.24) denote the partial sum of the weighted complex exponentials in Eq. (3.10).
- $X_K(e^{jw}) = \sum_{n=-K}^K x[n]e^{-jwn}$ (3.24)
- The uniform convergence of $X(e^{jw})$ is given by
- $\lim_{k\to\infty} X_K(e^{jw}) = X(e^{jw})$
- Now, if x[n] is an absolutely summable sequence; that is, if
- $\sum_{n=-\infty}^{\infty} |x[n]| < \infty$ (3.25)
- Then
- $|X(e^{jw})| = |\sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}| \le \sum_{n=-\infty}^{\infty} |x[n]| |e^{-j\omega n}| \le \sum_{n=-\infty}^{\infty} |x[n]| < \infty$ $\forall \alpha \in \mathbb{N}$
- Gaurantees the existence of $X(e^{jw})$.

- Thus, the condition: $\sum_{n=-\infty}^{\infty} |x[n]| < \infty$ is sufficient for the existence of the Fourier transform $X(e^{jw})$ of the sequence x[n].
- In other words, for an absolutely summable sequence, the Fourier transform converges for all values of ω

• Example: Find out whether the sequence given below is absolutely summable or not. Its Fourier transform is possible, if yes, does that converges too?

•
$$x[n] = \alpha^n \mu[n]$$
 $\alpha < 1$

(the presence of $\mu[n]$ here indicates that limit is from 0 to ∞ *i. e.* $n = 0 \rightarrow \infty$)

Solution:

•
$$\sum_{n=-\infty}^{\infty} |x[n]| = \sum_{n=-\infty}^{\infty} |\alpha^n \mu[n]| =$$

• =
$$\sum_{n=0}^{\infty} |\alpha^n| = 1 + |\alpha| + |\alpha^2| + \cdots$$

- Since $\alpha < 1$, it means the series will converge, and we will apply the formula $S = \frac{a}{1-r}$, the above expression reduces to
- $\sum_{n=-\infty}^{\infty} |x[n]| = \frac{1}{1-|\alpha|} < \infty$ Hence the sequence is absolutely summable.

- Example: Find out whether the sequence given below is absolutely summable or not. Its Fourier transform is possible, if yes, does that converges too?
- $x[n] = \alpha^n \mu[n]$ $\alpha > 1$
- Solution:
- $\sum_{n=-\infty}^{\infty} |x[n]| = \sum_{n=-\infty}^{\infty} |\alpha^n \mu[n]| =$
- = $\sum_{n=0}^{\infty} |\alpha^n| = 1 + |\alpha| + |\alpha^2| + \cdots$
- Since $\alpha < 1$, it means the series will converge, and we will apply the formula $S = \frac{1}{1-r}$, the above expression reduces to
- $\sum_{n=-\infty}^{\infty} |x[n]| = \frac{1}{1-|\alpha|} < \infty$ Hence the sequence is absolutely summable.

- Its discrete-time Fourier transform is possible and it converges.
- $X(e^{jw}) = \frac{1}{1-\alpha e^{-jw}}$

• Example: Find out whether the sequence given below is absolutely summable or not. Its Fourier transform is possible, if yes, does that converges too?

•
$$x[n] = \alpha^n \mu[n]$$
 $\alpha < 1$

Solution:

•
$$\sum_{n=-\infty}^{\infty} |x[n]| = \sum_{n=-\infty}^{\infty} |\alpha^n \mu[n]| =$$

• =
$$\sum_{n=0}^{\infty} |\alpha^n| = 1 + |\alpha| + |\alpha^2| + \cdots$$

• Since $\alpha > 1$, it means the series will not converge and hence its DTFT does not exit.

Mean-Square Convergence

- An absolutely summable sequence always has a finite energy.
- However, a finite-energy signal is not necessarily absolutely summable.
- To represent such sequence by a discrete-time Fourier transform, it is necessary to consider a mean-square convergence of $X(e^{jw})$, in which case the total energy of the error $\mathcal{E}(\omega) = X(e^{jw}) X_K(e^{jw})$ must approach 0 at each value of ω as K goes to ∞ ; that is,

•
$$\lim_{K \to \infty} \int_{-\pi}^{\pi} |X(e^{jw}) - X_K(e^{jw})|^2 d\omega = 0$$
 (3.26)

• Example: Consider the Fourier transform of a lowpass filter, shown in figure,

•
$$X_{LP}(e^{jw}) = \begin{cases} 1, & 0 \le |\omega| \le \omega_c, \\ 0, & \omega_c < |\omega| \le \pi. \end{cases}$$
 (3.27)

- Solution:
- The inverse DTFT of $X_{LP}(e^{j\omega})$ is given by

•
$$h_{LP}[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_{LP}(e^{j\omega}) e^{j\omega n} d\omega$$

$$\bullet = \frac{1}{2\pi} \int_{\omega_c}^{\omega_c} e^{j\omega n} d\omega = \frac{1}{2\pi} \left(\frac{e^{j\omega_c n}}{jn} - \frac{e^{-j\omega_c n}}{jn} \right)$$

$$\bullet = \frac{1}{\pi n} \left(\frac{e^{j\omega_C n} - e^{-j\omega_C n}}{2j} \right)$$

• =
$$\frac{\sin \omega_c n}{\pi n}$$
, $-\infty < n < \infty n \neq 0$. (3.28)

normalized angular frequency (ω)

•
$$h_{LP}[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_{LP}(e^{j\omega}) e^{j\omega n} d\omega$$

• =
$$\frac{\sin \omega_c n}{\pi n}$$
, $-\infty < n < \infty n \neq 0$. (3.28)

• For n = 0, the inverse DTFT is given by

•
$$h_{LP}[0] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_{LP}(e^{j\omega}) e^{j\omega(0)} d\omega$$

•
$$h_{LP}[0] = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} d\omega = \frac{\omega_c}{\pi}$$
 (3.29)

• The overall function for $h_{LP}[n]$ is obtained by combining (3.28) and (3.29)

•
$$h_{LP}[n] = \begin{cases} \frac{\omega_c}{\pi}, & n = 0, \\ \frac{\sin \omega_c n}{\pi n}, & n \neq 0. \end{cases}$$

 $H_{IP}(e^{J\omega})$

(3.30)

$$\bullet \ h_{LP}[n] = \begin{cases} \frac{\omega_c}{\pi}, & n = 0, \\ \frac{\sin \omega_c n}{\pi n}, & n \neq 0. \end{cases}$$
 (3.30)

• The above function is often written as shown in Eq. (3.31) with the tacit assumption that at n=0, $h_{LP}[n]=\frac{\omega_c}{\pi}$.

•
$$h_{LP}[n] = \frac{\sin \omega_c n}{\pi n}$$
, $-\infty < n < \infty$ (3.31)

• The energy of the above sequence $h_{LP}[n]$ is $\frac{\omega_c}{\pi}$ and it converges, where the sequene $h_{LP}[n]$ is not absolutely summable. As a result its DTFT $X_{LP}(e^{j\omega})$, shown in (3.27) does not converge uniformly for all values of ω , but converges in mean-square sense.

• The mean-square convergence property of the sequence $h_{LP}[n]$ cn be further illustrated by examining the plot of the function

•
$$H_{LP,K} = \sum_{n=-K}^{K} \frac{\sin \omega_c n}{\pi n} e^{-j\omega n}$$
 (3.32)

- For various values of *K*.
- The plots for various values of *K* are shown in the figures.

- The number of ripples increases as *K* increases.
- The height of the largest ripple remains the same for all values of K.
- The oscillatory behavior in the plot of $H_{LP,K}(e^{j\omega})$ approximating a Fourier transform $H_{LP}(e^{j\omega})$ in the mean-square sense at a point of discontinuity, known as Gibbs phenomenon.

- There are sequences that are neither absolutely summable nor square-summable. For examples:
 - 1. Unit Step Sequence:
 - It is denoted by $\mu[n]$ and is defined by

•
$$\mu[n] = \begin{cases} 1, & n \ge 0, \\ 0, & n < 0. \end{cases}$$
 (2.46)

- 2. Sinusoidal Sequence:
 - A real sinusoidal sequence with constant amplitude (A) has the form

•
$$x[n] = A\cos(w_o n + \phi) - \infty \le n \le \infty$$
 (2.48)

3. Complex Exponential Sequence

•
$$x[n] = A\alpha^n - \infty \le n \le \infty$$
 (2.51)

- Where, $\alpha = e^{(\sigma_0 + jw_0)}$
- The Fourier transform for such signals (singals neither absolutely summable nor square-summable) is possible by Dirac delta functions.

- Dirac delta Function or Ideal Impulse Function $\delta(\omega)$:
- It is a function of normalized angular frequency ω , having following features:
 - 1. Infinite height
 - 2. Zero width
 - 3. Unit area
- It is defined by the equation
- $\int_{-\infty}^{\infty} \delta(\omega) d\omega = 1$, $\delta(\omega) = 0$ when $\omega = 0$. (3.33)
- In terms of limiting form of a unit area pulse function $p_{\Delta(\omega)}$, shown figure, can be defined as:
- $\delta(\omega) = \lim_{\Delta \to \infty} p_{\Delta(\omega)}$,
- Where,
- $\int_{-\infty}^{\infty} p_{\Delta(\omega)} d\omega = 1$, $p_{\Delta(\omega)} = 0$ when $\omega = 0$. (3.33)
- The sampling property of the delta function is given by

Unit Area Pulse Function

- Dirac delta Function or Ideal Impulse Function $\delta(\omega)$:
- The sampling property of the delta function is given by

•
$$\int_{-\infty}^{\infty} D(\omega)\delta(\omega - \omega_o)d\omega = D(\omega_o)$$

- Where $D(\omega_0)$ is an arbitrary function of ω that is continuous ω_0 .
- The Fourier transforms resulting from the use of Dirac delta functions are not continuous functions of ω .

- Example 3.9: Find the Fourier transform representation of following complex exponential sequence
- $x[n] = e^{j\omega_0 n}$
- Where, ω_0 is real.
- Solution:
- The Fourier transform is given by
- $X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} 2\pi\delta(\omega \omega_o + 2\pi k)$ (3.34)
- Where $\delta(\omega)$ is an impulse function of ω and $-\pi \leq \omega_0 \leq \pi$.

• The term $\sum_{k=-\infty}^{\infty} 2\pi\delta(\omega - \omega_o + 2\pi k)$ is periodic function of ω with a period of 2π and is called a periodic impulse train.

Commonly Used
Discrete-Time
Fourier
transform pairs

	Sequence	Discrete-Time Fourier Transform
	$\delta[n]$	1
	$1 \ (-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi\delta(\omega+2\pi k)$
	$\mu[n]$	$\frac{1}{1-e^{\wedge}-j\omega}+\sum_{k=-\infty}^{\infty}\pi\delta(\omega+2\pi k)$
	$e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi\delta(\omega-\omega_0+2\pi k)$
	$\alpha^n \mu[n], \qquad (\alpha < 1)$	$\frac{1}{1-\alpha e^{-j\omega}}$
	$(n+1)\alpha^n\mu[n], \qquad (\alpha <1)$	$\frac{1}{(1-\alpha e^{-j\omega})^2}$
	$h_{LP}[n] = rac{\sin \omega_c n}{\pi n} (-\infty < n < \infty)$ © 2018 Dr. Muhammad Imran Qureshi	$h_{LP}[n] = \begin{cases} \frac{\omega_c}{\pi}, & n = 0, \\ \frac{\sin \omega_c n}{\pi n}, & n \neq 0. \end{cases}$

Discrete Time Signals in the Frequency Domain The Discrete-Time Fourier Transform Theorems (Linearity Theorem)

• Let g[n] and h[n] are two discrete-time sequences, and $\mathcal{F}\{g[n]\}=G(e^{j\omega})$ and $\mathcal{F}\{h[n]\}=H(e^{j\omega})$ then

•
$$\alpha g[n] + \beta h[n] \stackrel{\mathcal{F}}{\leftrightarrow} \alpha G(e^{j\omega}) + \beta H(e^{j\omega})$$
 (3.39)

• Where α and β are two constants.

The Discrete-Time Fourier Transform Theorems (Time-Reversal Theorem)

• The Fourier transform of the delayed sequence g[-n] is given by $G(e^{-j\omega})$; that is,

•
$$g[-n] \stackrel{\mathcal{F}}{\leftrightarrow} H(e^{-j\omega})$$
 (3.40)

- Proof:
- The Fourier transform of the sequence g[k] is given by
- $\mathcal{F}{g[k]} = \sum_{k=-\infty}^{\infty} x[k]e^{-jwk} = G(e^{j\omega})$
- Let k = -n, the above expression reduces to
- $\mathcal{F}{g[-n]} = \sum_{n=-\infty}^{\infty} x[-n]e^{-jwn} = G(e^{-j\omega})$

The Discrete-Time Fourier Transform Theorems (Time-Shifting Theorem)

• The Fourier transform of the time-reversed sequence $x[n] = g[n - n_o]$ is given by $e^{-j\omega n_o}G(e^{j\omega})$; that is,

•
$$g[n - n_o] \stackrel{\mathcal{F}}{\leftrightarrow} e^{-j\omega n_o} G(e^{j\omega})$$
 (3.41)

- Proof:
 - The Fourier transform of the sequence $g[n-n_o]$ is given by
 - $\mathcal{F}\lbrace g[n-n_o]\rbrace = \sum_{n=-\infty}^{\infty} x[n-n_o]e^{-jwn} = G(e^{j\omega})$
 - Let $k = n n_0$, the above expression reduces to
 - $\mathcal{F}\{g[n-n_o]\} = \sum_{k=-\infty}^{\infty} x[k]e^{-jw(k+n_o)} =$
 - $= e^{-j\omega n_0} \sum_{k=-\infty}^{\infty} x[k] e^{-jwk} = e^{-j\omega n_0} G(e^{j\omega})$
- Similarly,

•
$$g[n+n_o] \stackrel{\mathcal{F}}{\leftrightarrow} e^{j\omega n_o} G(e^{j\omega})$$

Since $|e^{-j\omega n_o}| = 1$, thereby $|G(e^{j\omega})| = |X(e^{j\omega})|$; that is , the magnitude of the spectrum is unchanged by shifting a signal in time.

The Discrete-Time Fourier Transform Theorems (Time-Shifting Theorem)

 Find the Fourier transform of a Finite-length Exponential Sequence

•
$$y[n] = \begin{cases} \alpha^n, & 0 \le n \le M - 1, \\ 0, & otherwise, \end{cases} |\alpha|$$

- Solution:
- The above sequence can be written as

•
$$y[n] = \alpha^n \mu[n] - \alpha^n \mu[n - M]$$

 $\alpha^n \mu[n] - \alpha^n \mu[n-M]$

The Discrete-Time Fourier Transform Theorems (Time-Shifting Theorem)

• Example 3.10: Find the Fourier transform of a Finite-length Exponential Sequence

•
$$y[n] = \begin{cases} \alpha^n, & 0 \le n \le M - 1, \\ 0, & otherwise, \end{cases} |\alpha| < 1$$

- Solution: (Method 1)
- $y[n] = 1 + \alpha^1 + \alpha^2 + \dots + \alpha^{M-1}$.
- The Fourier transform is obtained as

•
$$Y(e^{j\omega}) = \sum_{n=-\infty}^{\infty} y[n]e^{-jwn}$$

•
$$Y(e^{j\omega}) = \sum_{n=0}^{M-1} \alpha^n e^{-jwn}$$

•
$$Y(e^{j\omega}) = 1 + (\alpha e^{-j\omega}) + \dots + (\alpha e^{-j\omega})^{M-1}$$

• Using Geometric series formula $S_n = \frac{a_1(1-r^n)}{1-r}$ (for a finite-length convergent series of total n terms)

$$Y(e^{j\omega}) = \frac{1 - (\alpha e^{-j\omega})^{M}}{1 - \alpha e^{-j\omega}}$$

The Discrete-Time Fourier Transform Theorems (Time-Shifting Theorem)

• Example 3.10: Find the Fourier transform of a Finite-length Exponential Sequence

•
$$y[n] = \begin{cases} \alpha^n, & 0 \le n \le M - 1, \\ 0, & otherwise, \end{cases} |\alpha| < 1$$

- Solution: (Method 2)
- The above sequence can be written as
- $y[n] = \alpha^n \mu[n] \alpha^n \mu[n M]$
- The above sequence can be written as
- $y[n] = \alpha^n \mu[n] \alpha^M \alpha^{n-M} \mu[n-M]$
- The DTFT for $\alpha^n \mu[n]$ was found on slide # 34; that is,
- $\mathcal{F}\{\alpha^n\mu[n]\}=\frac{1}{1-\alpha e^{-j\omega}}$

- Using the time-shifting property the DTFT for $\alpha^{n-M}\mu[n-M]$ is obtained as
- $\mathcal{F}\{\alpha^{n-M}\mu[n-M]\}=e^{-j\omega M}\frac{1}{1-\alpha e^{-j\omega}}$
- The overall DTFT of y[n] is obtained as

•
$$Y(e^{j\omega}) = \frac{1}{1-\alpha e^{-j\omega}} + \alpha^M \frac{e^{-j\omega M}}{1-\alpha e^{-j\omega}}$$

•
$$Y(e^{j\omega}) = \frac{1 + \alpha^M e^{-j\omega M}}{1 - \alpha e^{-j\omega}}$$

The Discrete-Time Fourier Transform Theorems (Time-Shifting Theorem)

The Discrete-Time Fourier Transform Theorems (Time-Shifting Theorem)

- Example 3.11: Find the Fourier transform of a sequence defined by a difference equation
- $d_o v[n] + d_1 v[n-1] = p_o \delta[n] + p_1 \delta[n-1]$, $\left| \frac{d_1}{d_2} \right| < 1$.
- Solution:
- The DTFT of $\delta[n]$ is 1; that is,
- $V(e^{j\omega})=1$,
- The DTFT of $v[n-1] = \delta[n-1]$ is obtained by using shifting property
- $e^{-j\omega}V(e^{j\omega}) = e^{-j\omega}$

- So the overall DTFT is obtained as
- $d_o V(e^{j\omega}) + d_1 e^{-j\omega} V(e^{j\omega}) = p_o + p_1 e^{-j\omega}$
- $V(e^{j\omega}) = \frac{p_0 + p_1 e^{-j\omega}}{d_0 + d_1 e^{-j\omega}}$

The Discrete-Time Fourier Transform Theorems (Frequency-Shifting Theorem)

• The Fourier transform of the sequence $x[n] = e^{j\omega_0 n}g[n]$ is given by $X(e^{j\omega}) = G(e^{j(\omega-\omega_0)})$; that is,

•
$$e^{j\omega_o n}g[n] \stackrel{\mathcal{F}}{\leftrightarrow} G(e^{j(\omega-\omega_o)})$$
 (3.45)

- Proof:
- $\mathcal{F}\lbrace g[n]\rbrace = \sum_{n=-\infty}^{\infty} g[n]e^{-j\omega n} = G(e^{j\omega}) \dots$ (A)
- Similarly, the DTFT of $e^{j\omega_0 n}g[n]$ is obtained as
- $\mathcal{F}\{e^{j\omega_0 n}g[n]\} = \sum_{n=-\infty}^{\infty} e^{j\omega_0 n}g[n]e^{j\omega n}$
- $\mathcal{F}\left\{e^{j\omega_0 n}g[n]\right\} = \sum_{n=-\infty}^{\infty}g[n]e^{-j(\omega-\omega_0)n}\dots(B)$
- Comparing (A) and (B) will result
- $\mathcal{F}\left\{e^{j\omega_o n}g[n]\right\} = \sum_{n=-\infty}^{\infty}g[n]e^{-j(\omega-\omega_o)n} = G\left(e^{j(\omega-\omega_o)}\right)$

The Discrete-Time Fourier Transform Theorems (Frequency-Shifting Theorem)

- Example 3.12: Find the Fourier transform of a Finite-length Exponential Sequence
- $y[n] = (-1)^n \alpha^n \mu[n] \quad |\alpha| < 1$
- Solution: (Method 1)
- $y[n] = 1 \alpha^1 + \alpha^2 \cdots$.
- The Fourier transform is obtained as
- $Y(e^{j\omega}) = \sum_{n=-\infty}^{\infty} y[n]e^{-jwn}$
- $Y(e^{j\omega}) = \sum_{n=0}^{\infty} (-1)^n \alpha^n e^{-jwn}$
- $Y(e^{j\omega}) = 1 + (-\alpha e^{-j\omega}) + (-\alpha e^{-j\omega})^2 + \cdots$

• Using Geometric series formula $S_n = \frac{a_1}{1-r}$ (for a infinite-length convergent series)

•
$$Y(e^{j\omega}) = \frac{1}{1 - (-\alpha e^{-j\omega})} = \frac{1}{1 + \alpha e^{-j\omega}}$$

The Discrete-Time Fourier Transform Theorems (Frequency-Shifting Theorem)

- Example 3.12: Find the Fourier transform of a Finite-length Exponential Sequence
- $y[n] = (-1)^n \alpha^n \mu[n] \quad |\alpha| < 1$
- Solution: (Method 2)
- The above sequence can be written as
- $y[n] = e^{j\pi n} \alpha^n \mu[n]$ (because $e^{j\pi n} = (-1)^n$)
- The DTFT of $\alpha^n \mu[n]$ is (as we found in previous slides)
- $\mathcal{F}\{\alpha^n\mu[n]\}=\frac{1}{1-\alpha e^{-j\omega}}$

- Applying frequency-shifting theorem, the DTFT of y[n] is obtained as:
- $\mathcal{F}\lbrace e^{j\pi n}\alpha^n\mu[n]\rbrace = \frac{1}{1-\alpha e^{-j(\omega-\pi)}}$
- Where, $e^{-j(\omega-\pi)} = -e^{-j\omega}$
- The above expression reduces to
- $\mathcal{F}\{e^{j\pi n}\alpha^n\mu[n]\}=\frac{1}{1+\alpha e^{-j\omega}}$

The Discrete-Time Fourier Transform Theorems (Frequency-Shifting Theorem)

It can be seen that the spectrum of the sequence $(-1)^n \alpha^n \mu[n]$ is same as that of $\alpha^n \mu[n]$ (shown on slide 22), except the spectrum of $e^{j\pi n} \alpha^n \mu[n]$ is shifted by π radians

The Discrete-Time Fourier Transform Theorems (Differentiation-in-Frequency-Theorem)

• The Fourier transform of the sequence x[n] = ng[n] is given by

$$X(e^{j\omega}) = \frac{jd}{d\omega}G(e^{j\omega})$$
; that is,

•
$$ng[n] \stackrel{\mathcal{F}}{\leftrightarrow} j \frac{dG(e^{j\omega})}{d\omega}$$
 (3.46)

Proof:

The DTFT of sequence g[n] is obtained as

$$G(e^{j\omega}) = \sum_{n=-\infty}^{\infty} g[n]e^{-j\omega n}$$

Differentiating both sides with respect to ω .

$$\frac{d}{d\omega}G(e^{j\omega}) = \frac{d}{d\omega} \sum_{n=-\infty}^{\infty} g[n]e^{-j\omega n}$$

$$\frac{d}{d\omega}G(e^{j\omega}) = (-j)\sum_{n=-\infty}^{\infty}ng[n]e^{-j\omega n}$$

Multiplying both sides by j

$$\frac{jd}{d\omega}G(e^{j\omega}) = \sum_{n=-\infty}^{\infty} ng[n]e^{j\omega n}$$

$$\frac{jd}{d\omega}G(e^{j\omega}) = \mathcal{F}\{ng[n]\}$$

The Discrete-Time Fourier Transform Theorems (Differentiation-in-Frequency-Theorem)

 Example 3.13: Find out the discret-time Fourier transform representation of following sequence

•
$$y[n] = (n+1)\alpha^n \mu[n], |\alpha| < 1$$

The Discrete-Time Fourier Transform Theorems (Differentiation-in-Frequency-Theorem)

- Example 3.13: Find out the discretetime Fourier transform representation of following sequence
- $y[n] = (n+1)\alpha^n \mu[n], |\alpha| < 1$
- Solution:
- $y[n] = n\alpha^n \mu[n] + \alpha^n \mu[n] \dots (A)$
- We have found discrete-time Fourier transform for $\alpha^n \mu[n]$
- $\mathcal{F}\{\alpha^n\mu[n]\}=\frac{1}{1-\alpha e^{-j\omega}}\dots\dots(B)$

- The discrete-time Fourier transform for $n\alpha^n\mu[n]$ can be found using differentiation theorem of DTFT
- $\mathcal{F}\{n\alpha^n\mu[n]\} = \frac{jd}{d\omega}\mathcal{F}\{\alpha^n\mu[n]\}$
- $\mathcal{F}\{n\alpha^n\mu[n]\} = \frac{jd}{d\omega}\left\{\frac{1}{1-\alpha e^{-j\omega}}\right\}$
- $\mathcal{F}\{n\alpha^n\mu[n]\}=j\left(\frac{-j\alpha e^{-j\omega}}{\left(1-\alpha e^{-j\omega}\right)^2}\right)$
- $\mathcal{F}\{n\alpha^n\mu[n]\} = \frac{\alpha e^{-j\omega}}{(1-\alpha e^{-j\omega})^2} \dots (C)$
- Using (B) and (C) in (A), will results
- $Y(e^{j\omega}) = \frac{1}{(1-\alpha e^{-j\omega})^2}$

The Discrete-Time Fourier Transform Theorems (Differentiation-in-Frequency-Theorem)

The Discrete-Time Fourier Transform Theorems (Convolution Theorem)

- The Fourier transform $Y(e^{j\omega})$ of the convolution sum of two sequence y[n] = g[n] * h[n], is given by the product of their Fourier transforms $G(e^{j\omega}) H(e^{j\omega})$; that is,
- $g[n] * h[n] \stackrel{\mathcal{F}}{\leftrightarrow} G(e^{j\omega}) H(e^{j\omega})$ (3.46)
- Proof:
- The convolution of y[n] = g[n] * h[n], is given by
- $y[n] = \sum_{k=-\infty}^{\infty} g[k]h[n-k]$
- Taking DTFT of above equation

•
$$Y(e^{j\omega}) = \sum_{n=-\infty}^{\infty} \{\sum_{k=-\infty}^{\infty} g[k]h[n-k]\} e^{-j\omega n}$$

•
$$Y(e^{j\omega}) = \sum_{n=-\infty}^{\infty} g[k] \{ \sum_{k=-\infty}^{\infty} h[n-k]e^{-j\omega n} \}$$

• Let
$$m = n - k \implies n = m + k$$

•
$$Y(e^{j\omega}) = \sum_{n=-\infty}^{\infty} g[k] \{ \sum_{k=-\infty}^{\infty} h[m] e^{-j\omega(m+k)} \}$$

•
$$Y(e^{j\omega}) = \sum_{n=0}^{\infty} g[k] \{\sum_{k=-\infty}^{\infty} h[m]e^{-j\omega m}\} e^{-j\omega k}$$

•
$$Y(e^{j\omega}) = \sum_{n=0}^{\infty} g[k] \{H(e^{j\omega})\} e^{-j\omega k}$$

•
$$Y(e^{j\omega}) = \sum_{n=0}^{\infty} g[k]e^{-j\omega k} H(e^{j\omega})$$

•
$$Y(e^{j\omega}) = G(e^{j\omega})H(e^{j\omega})$$

The Discrete-Time Fourier Transform Theorems (Convolution Theorem)

- Example 3.14: Find the convolution sum of following two sequences using DTFT
- $x[n] = \alpha^n \mu[n]$ $|\alpha| < 1$ and
- $h[n] = \beta^n \mu[n] \quad |\beta| < 1$
- y[n] = x[n] * h[n]
- Solution:
- The DTFT of x[n] and y[n] of the two sequences are obtained as follows:
- $X(e^{j\omega}) = \frac{1}{1-\alpha e^{-j\omega}}$
- $H(e^{j\omega}) = \frac{1}{1-\beta e^{-j\omega}}$

- The convolution is obtained as
- $Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$
- $Y(e^{j\omega}) = \frac{1}{(1-\alpha e^{-j\omega})(1-\beta e^{-j\omega})}$
- Using partial fraction by parts above expression can be written as

•
$$Y(e^{j\omega}) = \frac{\frac{\alpha}{\alpha - \beta}}{1 - \alpha e^{-j\omega}} - \frac{\frac{\beta}{\alpha - \beta}}{1 - \beta e^{-j\omega}}$$

After taking IDFT, we have

•
$$y[n] = \frac{\alpha}{\alpha - \beta} \alpha^n \mu[n] + \frac{\beta}{\alpha - \beta} \beta^n \mu[n]$$

•
$$y[n] = \left(\frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta}\right) \mu[n]$$

The Discrete-Time Fourier Transform Theorems (Modulation Theorem)

- The Fourier transform $Y(e^{j\omega})$ of the product of two sequence y[n] = g[n]h[n], is given by the convolution integral of their Fourier transforms $\frac{1}{2\pi}\int_{-\pi}^{\pi}G(e^{j\theta})H(e^{j(\omega-\theta)})d\theta$; that is,
- $g[n]h[n] \stackrel{\mathcal{F}}{\leftrightarrow} \frac{1}{2\pi} \int_{-\pi}^{\pi} G(e^{j\theta}) H(e^{j(\omega-\theta)}) d\theta$ (3.50)• $H(e^{j(\omega-\theta)}) = \sum_{n=-\infty}^{\infty} h[n]e^{-j(\omega-\theta)n}$
- Proof:
- The DTFT of y[n] = g[n]h[n], is given by
- $Y(e^{j\omega}) = \sum_{n=-\infty}^{\infty} g[n]h[n]e^{-j\omega n}$
- Taking inverse DTFT of g[n] is given below
- $g[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} G(e^{j\theta}) e^{j\theta n} d\theta$ put this in above equation will result

- $Y(e^{j\omega}) = \sum_{n=-\infty}^{\infty} \left\{ \frac{1}{2\pi} \int_{-\pi}^{\pi} G(e^{j\theta}) e^{j\theta n} d\theta \right\} h[n] e^{-j\omega n}$
- $Y(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} G(e^{j\theta}) \{\sum_{n=-\infty}^{\infty} h[n]e^{-j(\omega-\theta)n}\} d\theta$
- Where

$$H(e^{j(\omega-\theta)}) = \sum_{n=-\infty}^{\infty} h[n]e^{-j(\omega-\theta)n}$$

Putting in above equation will reduce to

•
$$Y(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} G(e^{j\theta}) H(e^{j(\omega-\theta)}) d\theta$$

Modulation theorem is also called Windowing Theorem, used in amplitude modulation and FIR filter design

The Discrete-Time Fourier Transform Theorems (Parseval's Theorem)

• The Parseval's theorem states that the sum of sample-by-sample product of two complex sequences in terms of an integral of the product of their Fourier transforms.

•
$$\sum_{n=-\infty}^{\infty} g[n]h^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} G(e^{j\omega}) H^*(e^{j\omega}) d\omega \quad (3.51)$$

• Proof:

•
$$\sum_{n=-\infty}^{\infty} g[n]h^*[n] = \sum_{n=-\infty}^{\infty} g[n] \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} H^*(e^{j\omega})e^{-j\omega n} d\omega\right)$$

$$\bullet = \frac{1}{2\pi} \int_{-\pi}^{\pi} H^*(e^{j\omega}) \left(\sum_{n=-\infty}^{\infty} g[n] e^{-j\omega n}\right) d\omega$$

•
$$\sum_{n=-\infty}^{\infty} g[n]h^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H^*(e^{j\omega})G(e^{j\omega})d\omega$$

The Parseval's theorem is used in the computation of the energy of a finite-energy sequene.

- The total energy of a finite-energy sequence g[n] is given by
- $\mathcal{E}_g = \sum_{n=-\infty}^{\infty} |g[n]|^2$
- $\mathcal{E}_g = \sum_{n=-\infty}^{\infty} g[n]g^*[n]$
- From Paseval's theorem, we know that

$$\sum_{n=-\infty}^{\infty} g[n]h^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} G(e^{j\omega}) H^*(e^{j\omega}) d\omega,$$

so the above expression reduces o

•
$$\mathcal{E}_g = \frac{1}{2\pi} \int_{-\pi}^{\pi} G(e^{j\omega}) G^*(e^{j\omega}) d\omega$$

•
$$\mathcal{E}_g = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| G(e^{j\omega}) \right|^2 d\omega$$
 (3.52)

•
$$S_{aa}(e^{j\omega}) = |G(e^{j\omega})|^2$$
 (3.53)

The quantity $S_{gg}(e^{j\omega}) = |G(e^{j\omega})|^2$ Is called the **energy density spectrum** of the sequence.

The area under this curve $\left|G\left(e^{j\omega}\right)\right|^{2}$ in the range $-\pi \leq \omega < \pi$ divided by 2π is the energy of the sequence

• Example 3.15: Find the energy of a lowpass filter, shown in figure,

Solution:

•
$$\mathcal{E}_g = \sum_{n=-\infty}^{\infty} |h_{LP}[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |H_{LP}(e^{j\omega})|^2 d\omega$$

•
$$\mathcal{E}_g = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} d\omega = \frac{1}{2\pi} |\omega|_{-\omega_c}^{\omega_c} = \frac{\omega_c}{\pi}$$

• $\mathcal{E}_g = \frac{\omega_c}{\pi} < \infty$ Hence, $h_{LP}[n]$ is a finite-energy sequence

- Example 3.6: Find the energy of following causal exponential sequence
- $x[n] = \alpha^n u[n]$, $|\alpha| < 1$,
- Solution:
- The energy is given by

•
$$\mathcal{E}_g = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega$$

•
$$\mathcal{E}_g = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) X^*(e^{j\omega}) d\omega$$

• Where,

•
$$X(e^{jw}) = \frac{1}{1-\alpha e^{-jw}}, X^*(e^{jw}) = \frac{1}{1-\alpha e^{jw}}$$

So,

•
$$\mathcal{E}_g = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{1 - \alpha e^{-jw}} \frac{1}{1 - \alpha e^{jw}} d\omega$$

•
$$\mathcal{E}_g = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{1+\alpha^2-2\alpha\cos\omega} d\omega$$

- Using MATLAB command we have following integration
- >> syms a w
- >> f=1/(1+a^2-2*a*cos(w));
- >> int(f)

• For
$$\alpha = 0.5$$

•
$$\mathcal{E}_g = 0.8488 \tan^{-1} \left\{ 3 \tan \left(\frac{\pi}{2} \right) \right\}$$

•
$$\mathcal{E}_{g} = 1.3333333$$

(Band-Limited Discrete-Time Signals)

- The spectrum of a discrete-time signal is a periodic function of ω with a period of 2π (i. e $0 \le \omega < 2\pi$ or $-\pi \le \omega \le \pi$).
- A full-band, discrete-time signal has a spectrum occupying a whole frequency range $-\pi \le \omega \le \pi$.
- A band-limited, discrete-time signal has a spectrum occupying a limited portion of the above frequency range $-\pi \le \omega_a \le \omega \le \omega_b \le \pi$.
- An ideal band-limited signal has a spectrum that is zero outside a finite frequency range $0 \le \omega_a \le \omega \le \omega_b < \pi$: that is,

•
$$X(e^{j\omega}) = \begin{cases} 0, & 0 \le |\omega| < \omega_a \\ 0, & \omega_b < |\omega| < \pi \end{cases}$$
 i.e., the signal exisits only in range $\omega_a \le \omega \le \omega_b$

- An ideal band-limited signal cannot be generated in practice.
- However, for practical purposes, it is ensured that the energy of band-limited signal outside the specified frequency range is sufficiently small.

(Band-Limited Discrete-Time Signals)

Lowpass Discrete-time Signal:

- A low pass discrete-time signal exists only in the range $0 \le \omega \le \omega_p < \pi$, is defined as $X(e^{j\omega}) = \begin{cases} |X(e^{j\omega})|, & 0 \le |\omega| \le \omega_p \\ 0, & \omega_p < |\omega| < \pi \end{cases}$ i.e., the signal exisits only in range $0 \le |\omega| \le \omega_p$
- Where, ω_p is called bandwidth of the signal.

Highpass Discrete-time Signal:

- A highpass discrete-time signal exists in the range $\omega_p \leq \omega < \pi$, and is defined as $X(e^{j\omega}) = \begin{cases} 0, & 0 \leq |\omega| < \omega_p \\ |X(e^{j\omega})|, & \omega_p \leq |\omega| < \pi \end{cases}$ i.e., the signal exisits only in range $\omega_p \leq |\omega| < \pi$
- The energy of the signal is split evenly between the positive and negative frequency range, and $\pi-\omega_p$ is the bandwidth of the signal.

Bandpass Discrete-time Signal:

- A bandpass discrete-time signal has a spectrum occupying the frequency range $0 < \omega_L \le |\omega| \le \omega_H < \pi$ $X(e^{j\omega}) = \begin{cases} 0, & 0 \le |\omega| < \omega_a \\ 0, & \omega_b < |\omega| < \infty \end{cases}$ i.e., the signal exisits only in range $\omega_a \le \omega \le \omega_b$
- The bandwidth of the signal is $\omega_H \omega_L$.
- A bandwidth signal with a bandwidth much smaller than $\frac{\omega_H + \omega_L}{2}$ is referred **as narrow-band** signal.

(Band-Limited Discrete-Time Signals)

• Example: Find total energy of the following signal for $\alpha = 0.5$, and determine its 80% bandwidth

- $x[n] = \alpha^n \mu[n]$
- Solution: (Total Energy)
- The energy can be computed as:

•
$$\mathcal{E}_x = \sum_{n=-\infty}^{\infty} |x[n]|^2 = \sum_{n=0}^{\infty} \alpha^{2n}$$

•
$$\mathcal{E}_{x} = 1 + \alpha^{2} + \alpha^{4} + \cdots$$

•
$$\mathcal{E}_{\chi} = \frac{1}{1-\alpha^2} = \frac{1}{1-0.25} = 1.333$$

(Band-Limited Discrete-Time Signals)

- Example 3.1: Find total energy of the following signal for $\alpha=0.5$, and determine its 80% bandwidth
- $x[n] = \alpha^n \mu[n]$
- Solution: (80% Bandwidth)
- The energy can be computed Parseval's theorem as:

•
$$\mathcal{E}_{x} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^{2} d\omega$$

•
$$\mathcal{E}_{x} = \frac{1}{2\pi} \int_{-\omega_{c}}^{\omega_{c}} \left| \frac{1}{1 - \alpha e^{-jw}} \right|^{2} d\omega$$

•
$$0.8\left(\frac{4}{3}\right) = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} \frac{1}{1+\alpha^2-2\alpha\cos\omega} d\omega$$

• $\omega_c \leq 0.5081 imes \pi$ The bandwidth is

The bandwidth is $0 \le \omega \le 1.5962$ radiansor $0 \le \omega \le 0.5081\pi$ radians

Mangnitude Plot

(Band-Limited Discrete-Time Signals)

• Example: Find total energy of the following signal for $\alpha = 0.5$, and

determine its 80% bandwidth

•
$$y[n] = (-1)^n \alpha^n \mu[n] \quad |\alpha| < 1$$

- Solution: (Total Energy)
- The energy can be computed as:

•
$$\mathcal{E}_x = \sum_{n=-\infty}^{\infty} |x[n]|^2 = \sum_{n=0}^{\infty} \alpha^{2n}$$

•
$$\mathcal{E}_{x} = 1 + \alpha^{2} + \alpha^{4} + \cdots$$

•
$$\mathcal{E}_{\chi} = \frac{1}{1-\alpha^2} = \frac{1}{1-0.25} = \frac{4}{3} = 1.333$$

(Band-Limited Discrete-Time Signals)

- Example: Find total energy fo the following signal for $\alpha=0.5$, and determine its 80% bandwidth
- $y[n] = (-1)^n \alpha^n \mu[n] \quad |\alpha| < 1$
- Solution: (Total Energy Using Parseval's Theorem)
- The energy can be computed as:

•
$$\mathcal{E}_{y} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |Y(e^{j\omega})|^{2} d\omega$$

•
$$\mathcal{E}_y = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \frac{1}{1 + \alpha e^{-jw}} \right|^2 d\omega$$

•
$$\mathcal{E}_y = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{1+\alpha^2+2\alpha\cos\omega} d\omega$$

- >> syms a w
- >> $f = 1/(1+a^2+2*a*cos(w));$
- >> F=int(f)

•
$$\mathcal{E}_y = \frac{1}{2\pi} \left| \frac{2}{|\alpha^2 - 1|} \tan^{-1} \left\{ \frac{|\alpha - 1| \tan\left(\frac{\omega}{2}\right)}{|\alpha + 1|} \right\} \right|_{-\pi}^{\pi}$$

• Put $\alpha = 0.5$

•
$$\mathcal{E}_y = \frac{4}{3\pi} \left| \tan^{-1} \left\{ \frac{1}{3} \tan \left(\frac{\omega}{2} \right) \right\} \right|_{-\pi}^{\pi}$$

•
$$\mathcal{E}_y = \frac{4}{3\pi} \left[\tan^{-1} \left\{ \frac{1}{3} \tan \left(\frac{\pi}{2} \right) \right\} - \tan^{-1} \left\{ \frac{1}{3} \tan \left(\frac{-\pi}{2} \right) \right\} \right]$$

•
$$\mathcal{E}_{\chi} = \frac{4}{3\pi} \left[2 \tan^{-1} \left\{ \frac{1}{3} \tan \left(\frac{\pi}{2} \right) \right\} \right] = \frac{8}{3\pi} \left[1.5708 \right]$$

•
$$\mathcal{E}_{\chi} = 1.333 = \frac{4}{3}$$

The total energy is 1, i.e., $\mathcal{E}_x = 1.3333$

(Band-Limited Discrete-Time Signals)

- $y[n] = (-1)^n \alpha^n \mu[n] \quad |\alpha| < 1$
- Solution: (80% Bandwidth)
- The energy can be computed Parseval's theoremas:

•
$$\mathcal{E}_{y} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |Y(e^{j\omega})|^{2} d\omega$$

•
$$\mathcal{E}_{x} = \frac{1}{2\pi} \int_{-\omega_{c}}^{\omega_{c}} \left| \frac{1}{1 + \alpha e^{-j\omega}} \right|^{2} d\omega$$

•
$$0.8\left(\frac{4}{3}\right) = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} \frac{1}{1+\alpha^2+2\alpha\cos\omega} d\omega$$

• Example : Find total energy fo the following highpass signal for
$$\alpha = 0.5$$
, and determine its 80% bandwidth • $\frac{16}{15} = \frac{1}{2\pi} \left| \frac{2}{|\alpha^2 - 1|} \tan^{-1} \left\{ \frac{|\alpha - 1| \tan(\frac{\omega}{2})}{|\alpha + 1|} \right\} \right|_{-\omega_c}^{\omega_c}$

• Put $\alpha = 0.5$

•
$$\frac{16}{15} = \frac{4}{3\pi} \left| \tan^{-1} \left\{ \frac{1}{3} \tan \left(\frac{\omega}{2} \right) \right\} \right|_{-\omega_c}^{\omega_c}$$

•
$$\frac{4\pi}{5} = \left[2 \tan^{-1} \left\{ \frac{1}{3} \tan \left(\frac{\omega_c}{2} \right) \right\} \right] = \frac{8}{3\pi} [1.5708]$$

•
$$\mathcal{E}_{x} = 2 \times \tan^{-1} \left\{ 3 \tan \left(\frac{2\pi}{5} \right) \right\} = 2.9258 \ radians$$

80% energy at $\omega_c=2.958~or~0.9313\pi~radians$ 20% energy at $\omega_{v}=1.5452~or~0.4919\pi~radians$ 70% energy at $\omega_{p}=2.8051~or~0.8929\pi~radians$

The bandwidth of highpass signal is

$$1.5452 \le \omega \le \pi$$
 radiansor $0.4919\pi \le \omega \le \pi$ radians

Discrete Time Signals in the Frequency Domain (DTFT Computation Using MATLAB)

• The function freqz can be used to calculate the values of the Fourier transform of a sequence, described as a rational function in $e^{j\omega}$ as shown below, at a prescribed set of discrete frequency points.

$$X(e^{j\omega}) = \frac{0.008 - 0.033e^{-j\omega} + 0.05e^{-j2\omega} - 0.055e^{-j3\omega} + 0.008e^{-j4\omega}}{1 + 2.37e^{-j\omega} + 2.7e^{-j2\omega} + 1.6e^{-j3\omega} + 0.41e^{-j4\omega}}$$

(The Unwrapped Phase Function)

- In numerical computation, when the computed phase function is outised the range $[-\pi,\pi]$, the phase is computed modulo 2π to bring the computed value to this range.
- As a result, the phase functions of some sequence exhibit discontinuities of 2π radians in the plot.
- The discontinuity of 2π at around $\omega = 0.72$ can be seen in the graph.

Discrete Time Signals in the Frequency Domain (The Unwrapped Phase Function)

- In numerical computation, when the computed phase function is outised the range $[-\pi,\pi]$, the phase is computed modulo 2π to bring the computed value to this range.
- As a result, the phase functions of some sequence exhibit discontinuities of 2π radians in the plot.
- The discontinuity of 2π at around $\omega = 0.72$ can be seen in the graph.
- Unwrapping the Phase: In such cases, an alternate type of phase function that is a continuous function of ω derived from the original phase function by removing the discontinuity of 2π .
- The new phase function $(\theta_c(\omega))$ is formed, and it is continuous function of ω .

(The Unwrapped Phase Function)

- Most signals, such asspeech, music, and images, in real world are continuous in time.
- For processing by digital systems, such signals are needed to be converted to digital form (in binary form) using analog-to-digital converter.
- After processing the discrete-time signals are converted back to continuous-time signals using digital-to-analog converter.

- A/D converter and D/A converter are enough to convert analog to digital and digital to analog, respectively.
- In addition to A/D converter and D/A converter, we need several additional circuits.

Figure 5.1: Block diagram representation of the discrete-time digital processing of a continuous-time signal,

Figure 5.2: A simplified representation of Figure 5.1.

- A/D converter and D/A converter are enough to convert analog to digital and digital to analog, respectively.
- In addition to A/D converter and D/A converter, we need several additional circuits.
 - Anti-aliasing Filter
 - Sample-and-hold (S/H) circuit:
 - Reconstruction (Smoothing) Filter

Figure 5.1: Block diagram representation of the discrete-time digital processing of a continuous-time signal.

- Sample-and-hold (S/H) circuit:
 - It has dual purposes:
 - 1. It samples the input continuous-time signal at periodic intervals.
 - 2. Since the A/D conversion usually takes a finite amount of time, therefore the analog signal at the input of the A/D converter remains constant in amplitude until the conversion is complete to minimize the error in its representation. This is achieved by S/H circuit.
- Reconstruction (Smoothing) Filter:
 - The output of a D/A converter is a staircase-like waveform. In order to smooth that waveform an analog reconstruction(smoothing) filter is used.
- Anti-aliasing Filter
 - To prevent aliasing, an anti-aliasing filter is used before S/H circuit.

- In general, there exists an infinite number of continuous-time signals that, when sampled at the same sampling rate lead to the same discrete-time signal.
- However, under certain conditions,
 - it is possible to relate a unique continuous-time signal to a given discrete-time sequence.
 - It is possible to recover the original continuous-time signal from its sampled value.
- In following slides, we will study those conditions.

Digital Processing of Continuous-Time Signals: Effect of Time-Domain Sampling in Frequency Domain

- Let $g_a(t)$ be a continuous-time signal.
- A discrete-time sequence g[n] is obtained by sampling $g_a(t)$ uniformly at t = nT, where T is the sampling period, i.e.,
- $g[n] = g_a(nT)$, $-\infty < n < \infty$ (3.61)
- The reciprocal of sampling period (T) is called the sampling frequency (F_T) ; that is, $F_T = \frac{1}{T}$.
- The frequency-domain representation of $g_a(t)$ and g[n] are given by continuous-time Fourier transform (CTFT) and discrete-time Fourier transform (DTFT), respectively:

•
$$G_a(j\Omega) = \int_{-\infty}^{\infty} g_a(t)e^{-j\Omega t}dt,$$
 (3.62)

•
$$G(e^{j\omega}) = \sum_{n=0}^{\infty} g[n]e^{-j\omega n}$$
. (3.63)

Digital Processing of Continuous-Time Signals: Effect of Time-Domain Sampling in Frequency Domain

• To establish the relation between $G_a(j\Omega)$ and $G(e^{j\omega})$, let's treat the sampling operation mathematically as a multiplication of the continuous-time signal $g_a(t)$ by a periodic image train p(t):

•
$$g_p(t) = g_a(t)p(t) = \sum_{n=-\infty}^{\infty} g_a(nT)\delta(t-nT).$$
 (3.65)

- Where,
 - p(t) is an impulse train with a period of T, such that
 - $p(t) = \sum_{n=-\infty}^{\infty} \delta(t nT)$
- It should be noted that the signal $g_p(t)$ consists of a train of uniformly spaced impulses with the impulse at t = nT weighted by the sampled value $g_a(nT)$ of $g_a(t)$.

Digital Processing of Continuous-Time Signals:

Effect of Time-Domain Sampling in Frequency Domain

• To establish the relation between $G_a(j\Omega)$ and $G(e^{j\omega})$, let's treat the sampling operation mathematically as a multiplication of the continuous-time signal $g_a(t)$ by a periodic image train p(t):

•
$$g_p(t) = g_a(t)p(t)$$

•
$$g_p(t) = \sum_{n=-\infty}^{\infty} g_a(nT)\delta(t-nT)$$
. (3.65)

- Where,
 - p(t) is an impulse train with a period of T, such that
 - $p(t) = \sum_{n=-\infty}^{\infty} \delta(t nT)$
- It should be noted that the signal $g_p(t)$ consists of a train of uniformly spaced impulses with the impulse at t = nT weighted by the sampled value $g_a(nT)$ of $g_a(t)$.

 $g_{\alpha}(t)$

(d)

Digital Processing of Continuous-Time Signals: Effect of Time-Domain Sampling in Frequency Domain

There are two different forms of the continuous-time Fourier transform $G_p(j\Omega)$ of $g_p(t)$

- One form is obtained by taking CTFT of Eq. (3.65)
- $\mathcal{F}\{g_p(t)\}=\int_{-\infty}^{\infty}\sum_{n=-\infty}^{\infty}g_a(nT)\delta(n-nT)e^{-j\Omega t}dt$
- $G_p(j\Omega) = \sum_{n=-\infty}^{\infty} g_a(nT) \int_{-\infty}^{\infty} \delta(n-nT)e^{-j\Omega t} dt$
- $G_p(j\Omega) = \sum_{n=-\infty}^{\infty} g_a(nT) e^{-j\Omega nT}$

- The second form, given below, is derived using Poisson's formula
- $G_p(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} G_a(j(\Omega + k\Omega_T)) \dots (3.70)$

Digital Processing of Continuous-Time Signals: Effect of Time-Domain Sampling in Frequency Domain

• The second form, given below, is derived using Poisson's formula

•
$$G_p(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} G_a(j(\Omega + k\Omega_T))$$
 (3.70)

- $G_p(j\Omega)$ is a periodic function of frequency Ω .
- $G_p(j\Omega)$ consists of a sum of shifted (shifted by integer multiples of Ω_T) and scaled (scaled by 1/T) replica of $G_p(j\Omega)$
- Putting k=0, in Eq. (3.70) will give the baseband portion of $G_p(j\Omega)$. The remaining terms are the frequency-translated portions of $G_p(j\Omega)$.
- The frequency range $-\frac{\Omega_T}{2} \le \Omega \le \frac{\Omega_T}{2}$ is called the baseband or Nyquist band.

Digital Processing of Continuous-Time Signals: Effect of Time-Domain Sampling in Frequency Domain

- $G_p(j\Omega)$, shown in Figure (a), is the frequency spectrum of a band-limited signal.
- Consider the spectrum $P(j\Omega)$ of the periodic impulse train p(t) with a sampling period $T=\frac{2\pi}{\Omega_T}$, shown in Figure (b).

• The impulses are chosen in such a way that $\Omega_T \ge 2\Omega_m$

Digital Processing of Continuous-Time Signals: Effect of Time-Domain Sampling in Frequency Domain

- $G_p(j\Omega)$, shown in Figure (a), is the frequency spectrum of a band-limited signal.
- Consider the spectrum $P(j\Omega)$ of the periodic impulse train p(t) with a sampling period $T=\frac{2\pi}{\Omega_T}$, shown in Figure (b).

The impulses are chosen in such a way that

 $\Omega_T < 2\Omega_m$

It can be seen that chosing $\Omega_T < \Omega_m$, resulted in an overlap between shifted replica of $G_p(j\Omega)$ and $G_a(j\Omega)$

For $\Omega_T < 2\Omega_m$ the original analog signal cannot be recovered

Digital Processing of Continuous-Time Signals: Effect of Time-Domain Sampling in Frequency Domain

• If $\Omega_T \geq 2\Omega_m$, $g_a(t)$ can be recovered exactly from $g_p(t)$ by passing it through an ideal lowpass filter $H_r(j\Omega)$ with a gain T and a cutoff frequency Ω_c greater than Ω_m and less than $\Omega_T - \Omega_m$ as illustrated in the figure.

Discrete Time Signals in the Frequency Domain Digital Processing of Continuous-Time Signals: Recovery of the Analog Signal

• If the discrete-time sequence g[n] has obtained by uniformly sampling a band-limited continuous-time signal $g_a(t)$ with the highest frequency Ω_m at a rate $\Omega_T = \frac{2\pi}{T}$ satisfying the condition $\Omega_T \geq 2\Omega_m$

Then the original continuous-time signal $g_a(t)$ can be fully recovered by passing the equivalent impulse train $g_p(t)$ through an ideal lowpass filter $H_r(j\Omega)$ with a cutoff frequency at Ω_c satisfying the condition

$$\Omega_m < \Omega_c < (\Omega_T - \Omega_m)$$

With a gain of T.

Digital Processing of Continuous-Time Signals: Recovery of the Analog Signal

• The frequency response $H_r(j\Omega)$ is given by

• The impulse response $h_r(t)$ of the above ideal lowpass filter is obtained simply by taking the inverse continuous-time Fourier transform of (3.78).

•
$$h_r(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} H_r(j\Omega) e^{j\Omega t} d\Omega = \frac{T}{2\pi} \int_{-\Omega_c}^{\Omega_c} e^{j\Omega t} d\Omega$$