Multimodal Interfaces lecture 03: Haptic Interaction

Martin Kaltenbrunner, Interface Culture Lab Kunstuniversität Linz, Austria

++ lecture overview

- + definition of haptics
- + physiological background
- + haptic dimensions & perception
- + example: the reactable objects
- + kinesthetic/tactile actuators
- + haptic interface examples

partially based on Prof. A. Okamura's lecture notes http://pegasus.me.jhu.edu/~allisono/courses/530.651/syllabus.html

++ definitions

++ haptics

+ origin

from the Greek word *haptesthai*: to touch relating to the sense of touch

+ application fields

- * human haptics
- * haptic feedback, haptic interfaces
- * machine haptics

++ types of sensing

+ kinesthesia

a sense mediated by end organs located in muscles, tendons, and joints. stimulated by bodily movements.

-> force feedback

+ tactile

related to the skin mediated by receptors in the skin

-> tactile feedback

++ physiology

++ tactile (cuteneous) sensing

+ the skin

- the largest & heaviest human organ: 2m²
- provides information about various stimuli
- protects the human body

++ tactile receptors (sensors)

+ merkel receptor

disk-shaped pressure receptors between epidermis & dermis

+ meissner corpuscle

stack of f attened cells, with a nerve f ber winding its way through, detecting taps on the skin

+ ruff ni cylinder

manybranched f bers inside a roughly cylindrical capsule: skin stretching, joint movement

+ pacinian corpuscle

layered capsule surrounding nerve f ber, sensitive to rapid vibrations

++ force (kinesthetic) sensing

+ kinesthesia perception of limb movement & position, force

- some cutaneous information is used, especially in hairy skin (moving air)
- mechanoreceptors in muscles located in muscle spindles
- golgi tendon organ, at junction

+ force

resolution: 0,06N

grasping force: 400N

++ signal transmission

- + from the skin to the brain: nerve fibers receptors -> dorsal root -> spinal cord -> thalamus
- + two pathways in spine lemniscal (proprioception & touch) spinothalamic (temperature & pain)
- + psychophysical/neural channels

++ perception

3

++ active / passive touch

- + active touch focus on the object
- + passive touch focus on the sensation

+ functionally equivalent in performance

++ hand grip types

+ crush grip

object being gripped rests firmly against the palm and all fingers

+ pinch grip

the fingers are on one side of an object, the thumb is on the other

+ support grip

typically involves holding an object such as the handle of a bucket

++ haptic exploratory procedures

Lateral Motion Texture

Pressure Hardness

Enclosure

Global shape/Volume

Static Contact Temperature

Unsupported Holding Weight

Contour Following Shape

++ haptic dimensions

- + shape perceived by contour following or hand enclosure
- + size/volume hand enclosure
- + weight perceived by unsupported holding
- + density/hardness perceived by pressure

++ haptic dimensions

- + texture lateral motion
- + temperature / thermal conductivity static contact
- + friction, inertia movement, kinesthetic resistance
- + others stickiness, humidity, ...

++ discrimination

+ shape

complex shapes require contour following -> time shape is generally recognized worse than texture

+ tactile discrimination

rough/smooth, soft/hard big/small, heavy/light

+ visual/haptic performance

haptics: detecting substance

visual: detecting shape

+ material identification

combination of texture, temperature signature and density/weight

++ haptic encoding scheme

++ current object design

+ passive objects

no electronics inside, no sensors, no actuators defined by their physical properties only no active (computer controlled) haptic feedback

+ abstract vs. symbolic

only abstract geometric objects no everyday objects (mobile phones, rubber duck, ...)

+ physical representation

each physical objects corresponds directly to a synthesizer component -> allows direct physical manipulation

+ current solution

set of plexi-glass object of various simple geometric shapes shape: defines generic object classes graphical symbol: defines specific object class

++ current object design

++ object design issues

+ current design pros easily and cheaply to manufacture aesthetically pleasing appearance

+ current design cons

hard to recognize in low light conditions similar symbols for different object types limited primary colour coding space

++ earlier object design

++ reactable object dimensions

+ shape

simple shapes are both visually and haptically accessible and provides a suitable encoding for the abstract object types simple geometric shapes can be identified with a grasp or hand enclosure, more complex shapes require a contour following and cannot be identified completely.

+ size

size has not be chosen as an encoding dimension so far, because in traditional instruments size often correlates to pitch (tuba, f ute). nevertheless we evaluated three different sizes: 4,6 and 9 cm diameter which can be held and manipulated with three, four or f ve f ngers

++ reactable object dimensions

+ space

both 2D (f at) and 3D (cubic) objects are used e.g. sample cube provides six sides for different sample sounds

+ surface texture

natural or treated object surface (rough, polished,) or laser engraving to encode abstract haptic surfaces

+ material

natural and synthetic materials with different weight, density, thermal and texture properties.

objects can be fully made of a material or a diffent material can be glued to the object surface to change its surface structure while maintaining the density and weight if the carrier

++ shape: generic object classes

- + sound generators: squares, cubes oscillators, sound fonts, samples, phys. models
- + sound effects: rounded squares filter and effects (band pass, delay, distortion ...)
- + control generators: round disks LFOs, melody generator, random
- + step sequencer: round polygons

+ global objects: star shape tempo, tonality, volume

++ secondary object class ideas

+ plain materials:

```
wood = sample player
plastic = oscillators
metal = physical bell model
```

+ engraved surface structure:

```
flat = sine oscillator
rippled = sawtooth oscillator
rough = noise generator
```

+ attached surface material:

```
sand paper = granulator effect
sponge = flanger effect
```

++ haptic actuators & displays

++ force actuators

+ electric motors

rotating *armature* with coil windings is caused to rotate relative to a permanent magnet

+ pneumatic actuators

compressed air pressure is used to transfer energy from the power source to haptic interface

++ tactile actuators

- + pneumatic stimulation air jets, air rings (cuffs), air pockets (bellows)
- + vibro-tactile display voice-coil motors, basically mini-loudspeakers
- + micro-pin actuators
 can produce highly localized forces
 may cause pain

++ tactile actuators

+ peltier pump, thermoelectric heat pump applying current to two materials in contact creates a temperature differential can be used to control surface temperature

+ electro-tactile stimulation
uses very small currents passing through electrodes
placed on the skin

++ tactile displays

++ kinesthetic displays

++ haptic interface examples

++ force feedback controller - falcon

++ Lumen

Ivan Popyrev, Sony CSL http://www.sonycsl.co.jp/person/poup/projects/lumen.html

++ Relief

Daniel Leithinger, Tangible Media Group, MIT http://tangible.media.mit.edu/project.php?recid=132

++ Touch TV

Sile O'Modhrain, Media Lab Europe
http://www.sarc.qub.ac.uk/~somodhrain/palpable/projects.html#touchtv

++ Haptic Sex Toys

Kyle Machulis, Polynomial Labs Http://slashdong.org/