Trabalho Laboratorial Conversor Termoelectrico

João Figueirinhas e Raquel Crespo

Objetivos do trabalho

Os objetivos do trabalho consistem em estudar e caracterizar o **conversor termoeléctrico (CT)** a operar como **máquina térmica e** como **bomba de calor.**

CT-Maquina térmica (baseado no <u>efeito de</u> <u>Seebeck</u>, converte calor em energia elétrica)

CT-Bomba de calor (baseado no <u>efeito de Peltier</u>, usa energia elétrica W_e para transferir calor de uma FF para uma FQ)

Objetivos do trabalho

Concretamente, para cada modo de operação do CT vamos determinar:

1) maquina térmica:

- Resistência de carga óptima, Rotima
- Taxas de energia transferida $(P_{FQ}, P_{FF}, P_{WE}, P_{cond})$,
- A resistência térmica entre a fonte quente e fonte fria,
- A potência de perdas energéticas total, P_{perdas-tot}, e por condução, P_{cond.}
- O rendimento real, η_{1} , os rendimentos corrigidos, e o rendimento da máquina de Carnot, η_{Carnot} , e a dependência dos rendimentos nas temperaturas das fontes quente e fria.

2) bomba de calor:

- Taxas de energia transferida (P_{FQ}, P_{FF}, P_{WE}) ,
- A potência de perdas energéticas total,
- Eficiência real, \mathcal{E}_{1} , de Carnot, $\mathcal{E}_{\mathsf{Carnot}}$ e eficiência corrigida

Objetivos do trabalho

Conversor termoelétrico (CT) baseado na célula de Peltier tem um conjunto de juncões pn ligadas em série.

Máquina Térmica (Efeito de Seebeck)

Descrição da montagem experimental-I

Para estudar o **CT** como **máquina térmica**, dispomos da montagem apresentada na figura 1, que inclui o seguinte equipamento:

- 1 Aparato do CT.
- 2- Fonte de alimentação E1
- 3 Voltímetro 1.
- 4 Amperímetro 1.
- 5 Caixa resistiva.
- 6 Amperimetro 2
- 7 Voltímetro 2
- 8 Sistema de aquisição de dados ligado a computador
- 9 Sistema de arrefecimento

Figura 1. Montagem experimental-CT como máquina térmica

Esquema de blocos da montagem-MT

Para realizar o estudo do **CT como máquina térmica**, usou-se a montagem cujo esquema de blocos está representado na figura 2:

Figura 2: Esquema de blocos da montagem para estudo do CT como máquina térmica

- O aparato do conversor termoelétrico
 (1) é constituído pelas seguintes componentes:
- A célula de Peltier (1a)

 Resistência, (1b), que vai funcionar como fonte quente na máquina térmica,

- Um depósito de água, (1c), que vai funcionar como **fonte fria** na máquina térmica.

A célula de Peltier (1a), é constituída por um conjunto de junções pn colocadas em serie

A **resistência** do aparato do conversor termoelétrico, **R1**, (1b)

- está ligada em série com a fonte de alimentação (4) e o amperímetro 1(3),
- e ligada em paralelo ao voltímetro 1 (2).

O deposito da água do aparato do conversor termoelétrico, (1c)

 está ligada a um sistema de arrefecimento (9), constituído por uma bomba de circulação (9a), um depósito de água (9b), uma válvula para controlar o caudal da água (9c) e uma proveta (9d) para determinar o caudal.

- O conversor termoelétrico(1a) está ligado:
- em séria a um uma caixa resistiva R2 (5) e a um amperímetro 2 (6),
- em paralelo a um voltímetro 2 (7).

O aparato do conversor termoelétrico (1) está ligado a um sistema de aquisição de dados (8) que faz a leitura simultânea de 4 resistências de platina colocadas respetivamente na fonte quente, na fonte fria, à entrada e à saída do depósito de água. Um computador ligado ao sistema de aquisição de dados com o software apropriado permite em tempo real fazer a leitura das temperaturas em função do tempo:

- fonte Quente, T_{FO},
- Fonte fria, T_{FF}
- entrada do depósito de água,
 T_{in}, e
- saída do depósito de água, T_{out}

I) Iniciação do sistema de refrigeração e determinação da resistência do amperímetro, R_{amp}

- Verificar o circuito do fluido de arrefecimento, (certificando-se que o nível do fluído (água) no depósito cobre as pás da bomba completamente) e colocar o fluido de refrigeração a circular ligando a bomba. Ajustar a válvula de controle de fluxo de modo a observar um gotejar do fluido no retorno do circuito de refrigeração
- Proceder à medição do caudal do fluido, <u>∆m/∆t</u> <u>determinando o tempo necessário</u> à passagem pelo circuito de 20ml de água. Medir o caudal de 20 em 20m para <u>verificar que se mantém constante ao longo da experiência.</u>
- Coloque um voltímetro em paralelo com o amperímetro 2, e registe os valores da corrente I_{amp} e da tensão, V_{amp} .

II) Recolha de dados para determinação da **resistência de** carga ótima, R2_{otima}

- Selecionar E1=10V
- Selecionar para a resistência de carga $R2=5~\Omega$, e seguir no computador o comportamento das Temperaturas, verificar quando se atinge o regime estacionário.
- Registar os valores para I1,V1, I2,V2, T_{FQ} , T_{FF} , T_{in} , T_{out}
- Selecionar para a resistência de carga $R2=2 \Omega$,
- Registar I1,V1, I2,V2, T_{FQ}, T_{FF}, T_{in}, T_{out}, quando atingido o regime estacionário.

III) Recolha de dados para posterior determinação das taxas de transferência de energia,

- Selecionar E1, para diferentes valores espaçados entre 7-16V. Para cada valor da tensão em E1 siga no computador o comportamento da Temperatura e verifique quando se atinge o regime estacionário.
- Atingido o regime estacionário registar os valores para I1,V1, I2,V2, T_{FQ} , T_{FF} , T_{in} , T_{out} , para cada **E1**.

IV) recolha de dados para posterior determinação da **potência de condução e da resistência térmica.**

- Selecionar E1, de modo a que $|T_{FQ}-T_{FF}|$ seja <u>idêntica ao valor registado para $E1=16\ V$ (devendo ser inferior)</u> e registar os valores de $I1,V1,\ I2,V2,\ T_{FQ},\ T_{FF},\ T_{in},\ T_{out},\ para o valor encontrado de <math>E1$.
- Selecionar agora E1, de modo a que $|T_{FQ}-T_{FF}|$ seja <u>idêntica ao valor registado para E1=7 V e registe os valores</u> de I1,V1, $I2,V2,T_{FQ}$, T_{FF} , T_{in} , T_{out} .

Análise de dados: MT

I) Determinação da resistência do amperímetro, Ramp

$$R_{amp} = V_{amp} / I_{amp}$$

II) Determinação da resistência ótima, R2_{otima}

E1=10V
$$R2_{otima} = \frac{5*I2_5 - 2*I2_2}{I2_2 - I2_5} - 2R_{amp}$$

III) Determinação das taxas de transferência de energia, P_{FQ}, P_{FF}, P_{we}.

$$P_{FQ} = P_1 = V_1 I_1$$

$$P_{FF} = P_3 = C_{\acute{a}gua} \frac{\Delta m}{\Delta t} \Delta T$$

$$P_{WE} = P_2 = V_2 I_2 = \frac{V_2^2}{R_2}$$

Potência dissipada na resistência R1

Potência cedida pelo CT à fonte fria (deposito àgua) e retirada pelo fluido

Potência fornecida pelo CT à resistência R2

Análise de dados: MT

IV) Determinação da potência de condução e da resistência térmica.

Situação em que o circuito da resistência R2 está aberto:

- Para o caso em que |T_{FQ}-T_{FF}| é <u>idêntico ao valor registado para E1=16 V</u>

$$P_{FQ} = P_1^* = V_1^* I_1^*$$

$$P_{FF} = P_3^* = C_{\acute{a}gua} \frac{\Delta m}{\Delta t} \Delta T^* = P_{cond}$$

$$R_{t\acute{e}rmica} = \frac{T_{FQ} - T_{FF}}{P_3^*} \text{ KW}^{-1}$$

- Repetir os cálculos para o caso em que $|T_{FQ}-T_{FF}|$ é <u>idêntico ao valor registado para E1=7 V</u>
- A partir da $R_{termica}$ e por interpolação encontrar P3* para E1=10,12

Análise de dados: MT

IV) Determinação dos rendimentos e potências de perdas

Para E1=7,10,12,16 (V):

$$P_{perdas-total} = P_{FQ} - P_{FF} - P_{We}$$

Potência total de perdas

$$P_{perdas-condução} = P_3^*$$

Potência de perdas por condução

$$\eta_1 = \frac{P_{We}}{P_{FQ}}$$

Rendimento real não corrigido

$$\eta_2 = \frac{P_{We}}{P_{We} + PFF}$$

Rendimento corrigido, descontando perdas na fonte quente

$$\eta_3 = \frac{P_{We}}{P_{We} + P_{FF} - P_3 *}$$

Rendimento corrigido descontando perdas na fonte quente e perdas por condução

$$\eta_C = 1 - \frac{T_{FF}}{T_{FQ}}$$

Rendimento da máquina térmica reversível

$$\eta_1 \le \eta_2 \le \eta_3 < \eta_C$$

Descrição da montagem experimental-II

Para estudar o **CT** como **bomba de calor**, dispomos da montagem apresentada na figura 3, que inclui o seguinte equipamento:

- 1 Aparato do CT.
- 2 Voltímetro 1.
- 3 Amperímetro 1.
- 4 Fonte de alimentação E1
- 5 Fonte alimentação E2
- 6- Caixa resistiva.
- 7 Amperímetro 2
- 8 Voltímetro 2
- 9 Sistema de aquisição dados ligado computador
- 10 Sistema de arrefecimento

Figura 3. Montagem experimental-II

Esquema de blocos da montagem-BC

Para realizar o estudo do **CT** como **Bomba de Calor**, usou-se o esquema dos blocos de montagem representado na figura 2:

Figura 2: Esquema de blocos da montagem para estudo do CT como Bomba de Calor

- 1) Substituir R2 por uma fonte de tensão **E2** em série com uma resistência $R2=10\Omega$, assegurando que a polaridade da fonte de tensão garante a mesma circulação de corrente no circuito 2 que no caso do estudo da MT. Registar caudal.
- 2) Selecionar **E2** (approx. 5 V) de modo a obter uma corrente **I2=0.5** A.
- 3) Verificar que a Temperatura da resistência R1, T_{R1} , começa a descer podendo atingir temperaturas negativas, passando a funcionar como fonte fria, T_{FF} . O depósito de água passa a funcionar como fonte quente.
- 4) Aplicar uma tensão **E1** de modo a que a temperatura da resistência R1 se mantenha a cerca $T_{FF} = T_{R1} = 20^{\circ}C$

- 5) Registar as grandezas envolvidas: I1,V1, I2,V2, T_{FF} , T_{FQ} , T_{in} , T_{out} , quando atingido o regime estacionário.
- 6) Selecionar **E2** de modo a obter uma corrente **I2=0.3** A e repetir 3-5.

Análise de dados: BC

I) Determinação das taxas de transferência de energia, P_{FQ}, P_{FF}, P_{we}.

$$P_{FF} = P_1 = V_1 I_1$$

<u>Potência de refrigeração ou de arrefecimento</u> - potência fornecida pela fonte de alimentação **E1** (que ao colocar a temperatura da resistência R1 perto da temperatura ambiente vai tornar negligiveis as perdas por transferência de calor da fonte fria para o exterior).

$$P_{FQ} = P_3 = C_{\acute{a}gua} \frac{\Delta m}{\Delta t} \Delta T$$

Potência cedida à fonte quente (depósito de água)

$$P_{WE} = P_2 = V_2 I_2$$

<u>Potência elétrica</u> – potência fornecida ao CT para retirar calor da fonte fria e o fornecer à fonte quente.

Análise de dados: BC

IV) Determinação das eficiências e potências de perdas

$$P_{perdas-total} = P_{refrigera\~{c}\~{a}o} + P_{We} - P_{FQ} = P_1 + P_2 - P_3$$
 Potência total de perdas

$$\mathbf{\epsilon}_1 = \frac{P_{FQ}}{P_{WE}} = \frac{P_3}{P_2}$$
 Eficiência real da BC

$$\mathbf{\epsilon}_2 = \frac{P_3 + P_{perdas-total}}{P_2} = \frac{P_1 + P_2}{P_2}$$
 Eficiência corrigida descontando perdas totais

$$\mathbf{\epsilon_c} = \frac{T_{FQ}}{T_{FQ} - T_{FF}}$$
 Eficiência da bomba térmica reversível

Sendo de esperar consistentemente: $\epsilon_1 \leq \epsilon_2 < \epsilon_C$

FIM