Lecture 08 Numbers and Functions

Ryan $McWay^{\dagger}$

 † Applied Economics, University of Minnesota

Mathematics Review Course, Summer 2023 University of Minnesota August 16th, 2023

1/56

LAST LECTURE REVIEW

- ► Linear Algebra:
 - ► Gaussian Elimination
 - ▶ Linear Operators
 - ► Existence of a Solution
 - ► Cramer's Rule
 - ► Eigenvalues
 - ► Regression as a Matrix

REVIEW ASSIGNMENT

- 1. Problem Set 07 solutions are available on Github.
- 2. Any issues or problems **You** would like to discuss?

3/56

DAILY ICEBREAKER

- ► Attendance via prompt:
 - ▶ Name
 - ▶ Daily Icebreaker: You just won a quiz on a radio show for a trip to a free concert. Which band/artist are you going to see?

Topic: Numbers

- ► General background
 - ► The terminology of mathematics
 - ► Formalized by the branch of math called 'Number Theory'.
- ▶ Why do economists' care?
 - Economists express values, sets, and concepts using numerical (quantitative) values.
- ► Application in this career
 - ► Throughout your whole experience.

► General background

Numbers

- ► The terminology of mathematics
- ► Formalized by the branch of math called 'Number Theory'.
- ▶ Why do economists' care?
 - Economists express values, sets, and concepts using numerical (quantitative) values.
- ► Application in this career
 - ► Throughout your whole experience.

- ► General background
 - ► The terminology of mathematics
 - ► Formalized by the branch of math called 'Number Theory'.
- ▶ Why do economists' care?
 - Economists express values, sets, and concepts using numerical (quantitative) values.
- ► Application in this career
 - ► Throughout your whole experience.

- 1. Common Number Sets
- 2. Real Numbers
- 3. Absolute Value and Number Line
- 4. Triangle Inequality
- 5. Neighborhoods

NUMBERS OF THE FORM nJ-I ARE "IMAGINARY." BUT CAN STILL BE USED IN EQUATIONS. OKAY. AND $e^{\pi \sqrt{-1}} = -1$. NOW YOU'RE JUST FUCKING WITH ME.

1. COMMON NUMBER SETS

- ▶ Natural Numbers: $\mathbb{N} = \{1, 2, 3, \dots\}$.
- ▶ Integers: $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}.$
- ▶ Rational Numbers: $\mathbb{Q} = \{\frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0\}.$
- ▶ Real Numbers: $\mathbb{R} = \{ \text{ all decimals } \}.$
- ▶ Complex Numbers: $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}, i = \sqrt{-1}\}.$

1. COMMON NUMBER SETS

Real Numbers

Rational 0.63 0.012Integers {..., -2, -1, 0, 1, 2, ...} Whole {0, 1, 2, 3, ...} Natural {1, 2, 3, ...}

Irrational

 $\sqrt{3}$ 0.10010001...

2. REAL NUMBERS

- ► Two binary operators for the Reals
 - ightharpoonup Addition: a+b
 - ightharpoonup Multiplication: $a \cdot b$
- ▶ Properties:
 - \blacktriangleright Commutative: $\forall a, b \in \mathbb{R}, a+b=b+a$.
 - \blacktriangleright Commutative: $\forall a, b, c \in \mathbb{R}, (a+b)+c=a+(b+c).$
 - ▶ Zero Exists: $\forall a \in \mathbb{R}, a + 0 = a$.
 - Negation Exists: $\forall a \in \mathbb{R}, \exists (-a) \in \mathbb{R} : a + (-a) = 0.$
 - ▶ Distributive: $\forall a, b, c \in \mathbb{R}, a \cdot (b + c) = (a \cdot b) + (a \cdot c)$.
- ▶ Reciprocal: $\forall a \in \mathbb{R}, \frac{1}{a}$

3. Absolute Value and Number Line

- ▶ Absolute Value: $|\pm a| = a$.
- ▶ Properties:
 - $\blacktriangleright \forall a > 0 \in \mathbb{R}, |a| = a.$
 - $\forall a=0 \in \mathbb{R}, |a|=0.$
 - $ightharpoonup \forall a < 0 \in \mathbb{R}, |a| = -a.$
 - |ab| = |a||b|.
 - |ab| = |a||b| $|a|^2 = |a^2|$.
 - $If |a| < c \iff -c < a < c.$

- \blacktriangleright $\forall a, b \in \mathbb{R} \rightarrow |a+b| \le |a| + |b|$.
- ► Corollaries:
 - $|a| |b| \le |a b|.$
 - ▶ $|a b| \le |a| + |b|$.
- ► Visual aid [Click Me].

- ▶ Let $a, \varepsilon \in \mathbb{R}, \varepsilon > 0$.
- ▶ Let the ε -neighborhood of a be the set $V_{\varepsilon}(a) := \{x \in \mathbb{R} : |x a| < \varepsilon\}.$
- ▶ I.e., x is a value within the neighborhood of a such that it is within ε distance from a.

Topic: Functions

Review

- ► General background
 - ► How we map sets onto other sets.
 - ► The most common way to represent relationships between variables.
- ▶ Why do economists' care?
 - ▶ This is the primary way that we represent preferences, utility, and production.
 - Functions are at the core of how theorems are represented.
- ► Application in this caree
 - ▶ Both throughout the development and presentation of proofs, as well as in estimating equations from data.

- General background
 - ► How we map sets onto other sets.
 - ► The most common way to represent relationships between variables.
- ▶ Why do economists' care?
 - This is the primary way that we represent preferences, utility, and production.
 - Functions are at the core of how theorems are represented.
- ► Application in this career

- ► General background
 - ► How we map sets onto other sets.
 - ► The most common way to represent relationships between variables.
- ▶ Why do economists' care?
 - ► This is the primary way that we represent preferences, utility, and production.
 - ▶ Functions are at the core of how theorems are represented.
- ► Application in this career
 - ▶ Both throughout the development and presentation of proofs, as well as in estimating equations from data.

OVERVIEW

- 1. Relations
- 2. Correspondences and Functions
- 3. Injective & Surjective Functions
- 4. Composition of Functions
- 5. Inverse Functions
- 6. Image and Pre-image
- 7. Homogeneity
- 8. Level, Superior & Inferior Sets
- 9. Euler's Theorem
- 10. Quasiconcavity & Quasiconvexity
- 11. Concavity & Convexity
- 12. Continuity
- 13. Upper- and Lower-Hemicontinuity
- 14. Brouwer's Fixed-point Theorem
- 15. Kakutani's Fixed-point Theorem

1. Relations

- ▶ A collection of ordered-pairs (s, t) has a binary relation sRt between sets S and T.
 - ▶ Reflexive: $\forall x \in S, x\mathcal{R}x$.
 - ▶ Symmetric: $\forall x, y \in S, x\mathcal{R}y \implies y\mathcal{R}x$.
 - ▶ Complete: $\forall x, y \in S \rightarrow x \mathcal{R} y \vee y \mathcal{R} x$.
 - ▶ Transitive: $\forall x, y, z \in \mathcal{R}, x\mathcal{R}y \land y\mathcal{R}z \implies x\mathcal{R}z$.
- ► Equivalent Relation (=): Is reflexive, symmetric, and transitive.
- ► Common Relations:
 - ► Equal: =
 - ► Equivalent: ≡
 - ▶ Better than: >
 - ► Less than: <

► Correspondence: A relation that associates each element of one set (the domain) to the elements of another set (the range).

- ► Function: A relation that associates each element in the domain to a single, unique element of the range.
- ▶ Onto: Every element in the range is mapped into a point in the domain.
- ▶ One-to-one: Every element in the range is assigned only a single point in the domain.

$$f: D \to R$$

APPLICATION: UTILITY FUNCTIONS (CORRESPONDENCES)

Functions

Demand Function

Demand Correspondence

3. Injective & Surjective Functions

- ▶ Function $f: A \to B$:
 - ► Injective (one-to-one): $\forall a_1, a_2 \in A, a_1 \neq a_2 \implies f(a_1) \neq f(a_2).$
 - ▶ Surjective (onto *B*): $\forall b \in B, \exists a \in A : f(a) = b$.
 - Bijective: Both injective and surjective.

4. COMPOSITION OF FUNCTIONS

- $ightharpoonup f: A \to B \text{ and } g: B \to C, \text{ then}$ $g \circ f(x) = g(f(x)) : A \to C$
- ► Follows from associative property of functions:

Functions

$$(h \circ g) \circ f = h \circ (g \circ f)$$

▶ If f and g are surjective, then $g \circ f$ is surjective.

5. INVERSE FUNCTIONS

▶ If $f: A \to B$ is bijective, then the inverse function is $f^{-1}: B \to A$.

$$f^{-1} \circ f(x) = x$$
$$f \circ f^{-1}(x) = x$$

 $ightharpoonup f: A \to B$ is bijective iff the inverse f^{-1} is a function $f: B \to A$.

6. IMAGE AND PRE-IMAGE

- ightharpoonup Let $f:A\to B$.
 - ▶ Image: If $X \subseteq A$ is set $f(X) = \{f(x) : x \in X\} \subseteq B$.

Functions

▶ Pre-image: If $Y \subseteq B$ is set $f^{-1}(Y) = \{x \in A : f(x) \in Y\} \subseteq A$.

7. Homogeneity

- ightharpoonup Consider $f(x_1, x_2, \dots, x_N)$ is defined for all $(x_1, x_2, \ldots, x_N) > 0.$
- \blacktriangleright Homogeneous: A function $f(x_1, x_2, \dots, x_N)$ is **homogeneous** of degree $r \in \mathbb{Z}$ if $\forall x > 0$:

$$f(t(x_1), t(x_2), \dots, t(x_N)) = t^r f(x_1, x_2, \dots, x_N)$$

 \blacktriangleright For f homogeneous of degree r, then the partial derivative $(x_1, x_2, \dots, x_N)/\partial x_n$ is homogeneous of degree r-1.

DEMONSTRATION: HOMOGENEITY

Question:

Determine degree of homogeneity of $f(x_1, x_2) = x_1^{\alpha} x_2^{\beta}$.

Functions

$$f(\gamma x_1, \gamma x_2) = (\gamma x_1)^{\alpha} (\gamma x_2)^{\beta}$$
$$= \gamma^{\alpha+\beta} x_1^{\alpha} x_2^{\beta}$$
$$= \gamma^{\alpha+\beta} f(x_1, x_2)$$

DEMONSTRATION: HOMOGENEITY

Ouestion:

Determine degree of homogeneity of $f(x_1, x_2) = x_1^{\alpha} x_2^{\beta}$.

Answer:

Consider $\gamma > 0$.

$$f(\gamma x_1, \gamma x_2) = (\gamma x_1)^{\alpha} (\gamma x_2)^{\beta}$$
$$= \gamma^{\alpha+\beta} x_1^{\alpha} x_2^{\beta}$$
$$= \gamma^{\alpha+\beta} f(x_1, x_2)$$

So, homogeneous of degree $\alpha + \beta$.

1. What degree of homogeneity is $f(x_1, x_2) = 30x_1^{1/2}x_2^{3/2} - 2x_1^3x_2^{-1}$?

PRACTICE: HOMOGENEITY

1. What degree of homogeneity is $f(x_1, x_2) = 30x_1^{1/2}x_2^{3/2} - 2x_1^3x_2^{-1}$?

Answer: Show Work

Homogeneous of degree two.

1. What degree of homogeneity is

$$f(x_1, x_2) = 30x_1^{1/2}x_2^{3/2} - 2x_1^3x_2^{-1}?$$

2. What degree of homogeneity is $f(x,y) = x^{1/2}y^{1/4} + x^2y^{-5/4}$?

PRACTICE: HOMOGENEITY

1. What degree of homogeneity is

$$f(x_1, x_2) = 30x_1^{1/2}x_2^{3/2} - 2x_1^3x_2^{-1}?$$

2. What degree of homogeneity is $f(x,y) = x^{1/2}y^{1/4} + x^2y^{-5/4}$?

Functions

Answer: Show Work

Homogeneous of degree $\frac{3}{4}$.

- 1. What degree of homogeneity is $f(x_1, x_2) = 30x_1^{1/2}x_2^{3/2} - 2x_1^3x_2^{-1}$?
- 2. What degree of homogeneity is $f(x,y) = x^{1/2}y^{1/4} + x^2y^{-5/4}$?

3. What degree of homogeneity is the cost function $c(r_1, r_2, q) = r_1^{\alpha} r_2^{\beta} q^2$ in terms of r_1, r_2 ?

Functions

- 1. What degree of homogeneity is $f(x_1, x_2) = 30x_1^{1/2}x_2^{3/2} - 2x_1^3x_2^{-1}$?
- 2. What degree of homogeneity is $f(x,y) = x^{1/2}y^{1/4} + x^2y^{-5/4}$?

3. What degree of homogeneity is the cost function $c(r_1, r_2, q) = r_1^{\alpha} r_2^{\beta} q^2$ in terms of r_1, r_2 ?

Functions

Answer: Show Work

Homogeneous of degree $\alpha + \beta$. For a cost function, we know it must be H.D.1, and therefore $\alpha + \beta = 1$.

8. Level, Superior, & Inferior Sets

Functions

- ► Level set: $L(y^0) \equiv \{x | x \in D, f(x) = y^0\}.$
- ► Superior set: $S(y^0) \equiv \{x | x \in D, f(x) \ge y^0\}.$
- ► Inferior set: $I(y^0) \equiv \{x | x \in D, f(x) \le y^0\}.$

9. EULER'S THEOREM

▶ Let $f(x_1, x_2, ..., x_N)$ be homogeneous of degree r, and differentiable.

$$\nabla f(\bar{x}) \cdot \bar{x} = \sum_{n=1}^{N} \frac{\partial f(\bar{x}_1, \dots, \bar{x}_N)}{\partial x_n} \bar{x}_n = rf(\bar{x}_1, \dots, \bar{x}_N)$$

▶ **Application:** In production theory, Euler's theorem states that a production function homogeneous of degree 1 (CRS) with factors paid their marginal product will have no surplus or deficit in total product.

Functions

DEMONSTRATION: EULER'S THEOREM

Question:

Verify using the Cobb-Douglas function $f(x_1, x_2) = Ax_1^{\alpha}x_2^{\beta}$ where $\alpha + \beta = 1$.

Answer.

$$f(\cdot) = A(\gamma x_1)^{\alpha} (\gamma x_2)$$

$$= A \gamma^{\alpha + \beta} x_1^{\alpha} x_2^{\beta}$$

$$\therefore \alpha + \beta = 1$$

$$= \gamma A x_1^{\alpha} x_2^{\beta}$$

$$\gamma f(\cdot) = \gamma \left(A x_1^{\alpha} x_2^{\beta} \right)$$

DEMONSTRATION: EULER'S THEOREM

Ouestion:

Verify using the Cobb-Douglas function $f(x_1, x_2) = Ax_1^{\alpha}x_2^{\beta}$ where $\alpha + \beta = 1$.

Answer:

$$f(\cdot) = A(\gamma x_1)^{\alpha} (\gamma x_2)^{\beta}$$

$$= A\gamma^{\alpha+\beta} x_1^{\alpha} x_2^{\beta}$$

$$\therefore \alpha + \beta = 1$$

$$= \gamma A x_1^{\alpha} x_2^{\beta}$$

$$\gamma f(\cdot) = \gamma \left(A x_1^{\alpha} x_2^{\beta} \right)$$

10. Ouasiconcavity & Quasiconvexity

- ▶ A concave function is the **negative** of a convex function.
- \blacktriangleright Quasiconcavity: $\forall x_1, x_2 \in D, f: D \to R$ iff $f(tx_1 + (1-t)x_2) > min[f(x_1), f(x_2)] \forall t \in [0, 1]$
- Quasiconvexity: $\forall x_1, x_2 \in D, f: D \to R$ iff $f(tx_1 + (1-t)x_2) \le \max[f(x_1), f(x_2)] \forall t \in [0, 1]$
- ► These become **strict** when the inequalities hold for all $x_1 \neq x_2$.

QUASICONCAVE **BUT NOT** QUASICONVEX

QUASICONCAVE IN TWO DIMENSIONS

QUASICONCAVE IN TWO DIMENSIONS

▶ $f: D \to R$ is quasiconcave iff S(y) is a convex set for all $y \in \mathbb{R}$.

QUASICONVEX IN TWO DIMENSIONS

QUASICONVEX IN TWO DIMENSIONS

▶ $f: D \to R$ is **quasiconvex** iff I(y) is a **convex** set for all $y \in \mathbb{R}$.

11. CONCAVITY & CONVEXITY

- ▶ f is defined on a convex subset $D \subset \mathbb{R}^n \forall x_1, x_2 \in D, \forall t \in [0, 1]$:
- ► Concave:

$$f(tx_1 + (1-t)x_2) \ge tf(x_1) + (1-t)f(x_2)$$

Convex:

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$

► Strict concavity or convexity when the inequality holds.

CONCAVITY

CONVEXITY

12. CONTINUITY

ightharpoonup Continuous: $f:\mathbb{R}^m\to\mathbb{R}^n$ at $x_0\in\mathbb{R}^m$ if whenever $\{x_n\}_{n=1}^\infty$ is a sequence in \mathbb{R}^m which converges to x_0 , then the sequence $\{f(x_n)\}_{n=1}^{\infty}$ in \mathbb{R}^n converges to $f(x_0)$.

Functions

$$\forall \varepsilon > 0, \exists \delta > 0: \forall x \in A, [||x - x_0|| < \delta] \implies [||f(x) - f(x_0)|| < \varepsilon]$$

13. Upper- and Lower-Hemicontinuity

Functions

- $ightharpoonup A \subset \mathbb{R}^n$ and a closed set $Y \subset \mathbb{R}^n$.
 - ▶ Upper Hemicontinuous: Correspondence $f: A \to Y$ if it has a closed graph and the images of compact sets are bounded.

00000000000000000000000000000**00000**00

$$\forall B \subset A, f(B) = \{y \in Y : y \in f(x) \exists x \in B\} \text{ is bounded.}$$

- ▶ Lower Hemicontinous: Correspondence $f: A \to Y$ if for every sequence $x^m \to x \in A$ with $x^m \in A \forall m$, and every $y \in f(x)$, we can find a sequence $y^m \to y$ and an integer $M: y^m \in f(x^m) \forall m > M.$
- Continuous: Both upper- and lower-hemicontinuous.

13. Upper-Hemicontinuity

Functions

13. Upper- and Lower-Hemicontinuity

Not upper hemicontinuous at x_1 Not upper hemicontinuous at x_2 Lower hemicontinuous

Not lower hemicontinuous at x_1 Not lower hemicontinuous at x_2 Upper hemicontinuous

Functions

Not upper hemicontinuous at x_1 and x_2 Not lower hemicontinuous at x_1 and x_2

14. Brouwer's Fixed-Point Theorem

ightharpoonup Suppose $D \subset \mathbb{R}^m$ is non-empty, compact, convex set, and $f: D \to D$ is a **continuous function**.

Functions

▶ Then $f(\cdot)$ has a fixed point, e.g., there is an $x \in D : x = f(x)$.

- \triangleright Suppose $D \subset \mathbb{R}^m$ is non-empty, compact, convex set, and $f: D \to D$ is a upper-hemicontinuous correspondence with the property $f(x) \subset D$ is non-empty and convex for all $x \in D$.
- ▶ Then $f(\cdot)$ has a fixed point, e.g., there is an $x \in D : x = f(x)$.

Review

REVIEW OF NUMBERS

- 1. Real Numbers
- 2. Common Number Sets
- 3. Absolute Value and Number Line
- 4. Triangle Inequality
- 5. Neighborhoods

REVIEW OF FUNCTIONS

- 1. Relations
- 2. Correspondences and Functions
- 3. Injective & Surjective Functions
- 4. Composition of Functions
- 5. Inverse Functions
- 6. Image and Pre-image
- 7. Homogeneity
- 8. Level, Superior & Inferior Sets
- 9. Euler's Theorem
- 10. Quasiconcavity & Quasiconvexity
- 11. Concavity & Convexity
- 12. Continuity
- 13. Upper- and Lower-Hemicontinuity
- 14. Brouwer's Fixed-point Theorem
- 15. Kakutani's Fixed-point Theorem

ASSIGNMENT

- ▶ Readings on Optimization before Lecture 09:
 - ► MWG Appendix M.J., M.K., & M.L.
 - ► S&B Ch.17, 18, & 19
- ► Assignment:
 - ► Problem Set 08 (PS08)
 - ► Solution set will be available following end of Lecture 09
- ► Struggling?
 - 1. Read the 'Encouraged Reading'
 - 2. Review 'Supplementary material'
 - 3. Reach out directly

HOMOGENEITY QUESTION 1 ANSWER:

◆ Question

$$f = \gamma^{1/2+3/2}(\cdot) - \gamma^2(\cdot)$$
$$= \gamma^2(\cdot)$$

HOMOGENEITY QUESTION 2 ANSWER:

◆ QUESTION

$$f = \gamma^{1/2+1/4}(\cdot) + \gamma^{2-5/4}(\cdot)$$

= \gamma^{3/4}(\cdot)

HOMOGENEITY QUESTION 3 ANSWER:

◆ QUESTION

$$c = \gamma^{\alpha + \beta}(\cdot)$$