Séance VI: Probabilités et mesure

A) Objectifs de la séance

A la fin de cette séance,

- je maîtrise les notions d'espace de probabilités, de variable aléatoire, de loi;
- je suis capable de calculer la probabilité d'un événement, lorsque la mesure de probabilité est donnée:
- je maîtrise les notions de fonction de répartition et de densité de probabilité;
- je sais déterminer la loi d'une variable aléatoire;
- je suis capable de vérifier qu'une variable aléatoire donnée est mesurable par rapport à une sous-tribu;
- je suis capable de calculer l'espérance et la variance d'une variable aléatoire, lorsqu'elles existent;
- je maîtrise l'application du théorème de transfert (calculs, détermination de lois).

B) Pour se familiariser avec les concepts (à traiter avant les séances de TD)

Les questions VI.1 et VI.2 sont à traiter avant la séance de TD. Les corrigés sont disponibles sur internet.

Question VI.1

Soient $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité et N une variable aléatoire réelle suivant une loi de Poisson $\mathcal{P}(\lambda)$ de paramètre $\lambda > 0$:

$$\mathbb{P}(N=k) = \frac{\lambda^k}{k!}e^{-\lambda}.$$

- **Q. VI.1.1** (a) Rappeler la définition de $\mathbb{E}[N]$ (i.e. sous la forme d'une intégrale sur Ω).
- (b) En utilisant le théorème de transfert, écrire $\mathbb{E}[N]$ sous forme d'une somme.
- (c) Calculer l'espérance de N.

Question VI.2

Soient $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité et X une variable aléatoire réelle suivant une loi normale $\mathcal{N}(m, \sigma)$:

$$\mathbb{P}(X \le x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} \exp\left(-\frac{1}{2} \frac{(t-m)^2}{\sigma^2}\right) dt.$$

- **Q. VI.2.1** (a) Rappeler la définition de $\mathbb{E}[X]$ (i.e. sous la forme d'une intégrale sur Ω).
- (b) En utilisant le théorème de transfert, écrire $\mathbb{E}[X]$ sous forme d'une intégrale sur \mathbb{R} .
- (c) Calculer l'espérance de *X*.

C) Exercices

Voici deux exercices préliminaires mettant en oeuvre la définition de variable aléatoire, le théorème de transfert et les changements de variables.

Exercice VI.1 (Calculs d'espérance)

Les deux questions sont indépendantes.

E. VI.1.1 Pour tout $p \in]0,1[$, on considère une mesure de probabilité μ sur $(\mathbb{R},\mathcal{B}(\mathbb{R}))$, proportionnelle à $\sum_{n=0}^{\infty} p^n \delta_n$, où δ_n désigne la mesure de Dirac en n.

- (a) Justifier l'existence de μ .
- (b) Déterminer l'espérance d'une variable aléatoire de loi μ .

E. VI.1.2 On pose $U = \frac{X-m}{\sigma}$, où X est une variable aléatoire réelle suivant une loi normale $\mathcal{N}(m,\sigma)$. Quelle est la loi de U? Déterminer la loi de la variable aléatoire $Y = U^2$. [Indication : on considérera la quantité $\mathbb{E}[h(Y)]$ pour $h : \mathbb{R} \to \mathbb{R}$ fonction mesurable bornée.]

Exercice VI.2 (Densité de probabilité, loi log-normale)

Soit X une variable aléatoire réelle dont la loi est proportionnelle à $e^{-x^2/2}$ $\lambda(dx)$, où λ désigne la mesure de Lebesgue sur \mathbb{R} .

E. VI.2.1 Montrer que $Y = e^X$ est une variable aléatoire admettant une densité de probabilité.

Les trois exercices suivants vous familiarisent avec la définition de variable aléatoire. Ils illustrent l'importance de la mesurabilité par rapport à une certaine tribu et le lien avec des égalités presque sures. Les trois résultats qu'ils démontrent sont très importants et pourraient faire partie du cours.

Exercice VI.3

E. VI.3.1 Montrer que si *X* et *Y* sont 2 variables aléatoires réelles presque sûrement égales, alors elles ont la même loi. Montrer que la réciproque est fausse.

Exercice VI.4

E. VI.4.1 Dans l'espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$, soient \mathcal{G} et \mathcal{H} deux sous-tribus indépendantes de \mathcal{F} . Les sous-tribus \mathcal{G} et \mathcal{H} sont dites indépendantes si pour tout $A \in \mathcal{G}$ et tout $B \in \mathcal{H}$,

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \, \mathbb{P}(B).$$

Montrer que si X est une variable aléatoire réelle à la fois \mathcal{G} -mesurable et \mathcal{H} -mesurable, alors X est constante presque surement, i.e. qu'il existe $c \in \mathbb{R}$ telle que $\mathbb{P}(X = c) = 1$.

Exercice VI.5

Soient X et Y deux variables aléatoires définies sur l'espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$, et à valeurs dans \mathbb{R}^p et \mathbb{R}^q respectivement.

Le but de l'exercice est de montrer que Y est X-mesurable (c'est-à-dire $\sigma(X)$ -mesurable) si et seulement s'il existe une fonction borélienne $\Psi: \mathbb{R}^p \to \mathbb{R}^q$ telle que $Y = \Psi(X)$.

- **E. VI.5.1** On suppose que Y est étagée, i.e. $Y = \sum_{i=1}^k a_i \mathbb{1}_{A_i}$, et $\sigma(X)$ -mesurable.
 - (a) Exprimer la mesurabilité de Y en fonction des A_i .
- (b) En déduire une fonction étagée $\Psi : \mathbb{R}^p \to \mathbb{R}^q$ telle que $Y = \Psi(X)$.
- E. VI.5.2 Dans le cas général,
- (a) justifier l'existence d'une suite de v.a. étagées et $\sigma(X)$ -mesurables $(Y_n)_{n\in\mathbb{N}}$ qui converge vers Y.
- (b) En écrivant $Y_n = \Psi_n(X)$ avec Ψ_n borélienne, on considère l'ensemble de convergence $C = \{x \in \mathbb{R}^p : \lim_{n \to \infty} \Psi_n(x) \in \mathbb{R}^q \}$. Montrer que $C \in \mathcal{B}(\mathbb{R}^p)$.
- (c) Remarquer que $X(\Omega) \subset C$ et en déduire une fonction borélienne $\Psi : \mathbb{R}^p \to \mathbb{R}^q$ telle que $Y = \Psi(X)$.
- **E. VI.5.3** Réciproquement montrer que si $Y = \Psi(X)$ avec $\Psi : \mathbb{R}^p \to \mathbb{R}^q$ borélienne, alors Y est $\sigma(X)$ -mesurable.

La loi exponentielle est très utilisée dans la modélisation des défaillances de systèmes. L'exercice suivant montre ses caractéristiques vis à vis du phénomène de mémoire...

Exercice VI.6 (Loi exponentielle)

Un fabricant d'ordinateurs portables souhaite vérifier que la période de garantie qu'il doit associer au disque dur correspond à un nombre pas trop important de retours de ce composant sous garantie. Des essais en laboratoire ont montré que la durée de vie X (en années) de ce composant est distribuée selon une loi exponentielle de moyenne 4.

- **E. VI.6.1** Quelle est la probabilité qu'un disque dur fonctionne sans défaillance plus de 4 ans?
- **E. VI.6.2** Quelle est la probabilité qu'un disque dur fonctionne sans défaillance 6 ans au mois, sachant qu'il a déjà fonctionné five ans?
- **E. VI.6.3** Quelle est la probabilité que la durée de vie soit comprise entre $\mathbb{E}[X] \sigma(X)$ et $\mathbb{E}[X] + \sigma(X)$?
- **E. VI.6.4** Pendant combien de temps 50% des disques durs fonctionnent-ils sans défaillance?
- **E. VI.6.5** Donner la période de garantie optimum pour remplacer moins de 15% des disques durs sous garantie.

D) Approfondissement

Exercice VI.7 (Loi exponentielle)

Soit *T* une variable aléatoire réelle telle que

$$\forall s, t \ge 0; \quad \mathbb{P}(T > t + s) = \mathbb{P}(T > t) \, \mathbb{P}(T > s). \tag{VI.1}$$

Le but de cet exercice est de montrer que soit $\mathbb{P}(T > 0) = 0$, soit T suit une loi exponentielle.

- **E. VI.7.1** Vérifier que si $\mathbb{P}(T > 0) = 0$, alors la relation de départ est satisfaite.
- **E. VI.7.2** On suppose alors $\mathbb{P}(T > 0) > 0$.
- (a) Déterminer la limite de la suite $(\mathbb{P}(T > \frac{1}{n}))_{n \in \mathbb{N}}$.
- (b) En déduire qu'il existe $\epsilon > 0$ tel que $\mathbb{P}\{T > \epsilon\} > 0$.
- (c) Montrer que pour tout t>0, $\mathbb{P}(T>t)>0$. Pour tout t>0, on considérera $n\in\mathbb{N}^*$ tel que $t< n\epsilon$.
- **E. VI.7.3** On définit l'application $f: t \mapsto \log \mathbb{P}(T > t)$ sur \mathbb{R}_+^* .
- (a) Ecrire la relation vérifiée par f.
- (b) Montrer que pour tout $n \in \mathbb{N}$, f(n) = nf(1).
- (c) En déduire que pour tout $x \in \mathbb{Q}_+$, f(x) = xf(1) puis que cette relation est valable pour tout $x \in \mathbb{R}_+$.
- **E. VI.7.4** Déterminer $\lim_{n\to\infty} f(n)$. En déduire que f(1) < 0. Conclure.

Exercice VI.8 (Lois gamma, beta, χ^2)

Pour a > 0, on rappelle la définition de

$$\Gamma(a) = \int_0^{+\infty} e^{-x} x^{a-1} dx.$$

On appelle *loi gamma* de paramètres a>0 et $\lambda>0$, notée $G(a,\lambda)$, la mesure de probabilité sur $\mathbb R$ de densité $\gamma_{a,\lambda}$ définie par

$$x\mapsto \gamma_{a,\lambda}(x)=rac{\lambda^a}{\Gamma(a)}e^{-\lambda x}x^{a-1}\mathbb{1}_{\mathbb{R}_+}(x).$$

- **E. VI.8.1** Soit *X* une v. a. de loi $G(a, \lambda)$. Calculer $\mathbb{E}[X]$ et $\mathbb{V}ar(X)$.
- **E. VI.8.2** Soient X et Y deux v. a. indépendantes de lois $G(a, \lambda)$ et $G(b, \lambda)$.
- (a) Montrer que X+Y et $\frac{X}{X+Y}$ sont indépendantes et déterminer leur lois de probabilité. En déduire que

$$B(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}.$$

- (b) Déterminer la loi de $\frac{X}{Y}$.
- (c) Si X_1, \ldots, X_n sont des variables aléatoires i.i.d. de loi exponentielle $\mathcal{E}(\lambda)$, donner la loi de $S_n = X_1 + \cdots + X_n$.

E. VI.8.3 Soit Y une v.a. gaussienne centrée réduite. Montrer que Y^2 suit la loi gamma G(1/2,1/2). En déduire $\Gamma(1/2)$.

E. VI.8.4 Si Y_1, \ldots, Y_n sont des v. a. i.i.d. de loi $\mathcal{N}(0,1)$, donner la loi de $Z = Y_1^2 + \cdots + Y_n^2$ et calculer $\mathbb{E}[Z]$ et $\mathbb{V}(Z)$.

Séance 6 : Eléments de correction des exercices

Solution de Q. VI.1.1

- (a) Par définition $\mathbb{E}[N] = \int_{\Omega} N(\omega) d\mathbb{P}(\omega)$.
- (b) Puisque N est à valeurs dans \mathbb{N} , le théorème de transfert implique

$$\mathbb{E}[N] = \int_{\mathbb{N}} x \, d\mathbb{P}_N(x) = \sum_{x \in \mathbb{N}} x \, \mathbb{P}(N = x).$$

(c) Ainsi,

$$\mathbb{E}[N] = e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^k}{(k-1)!}$$
$$= \lambda e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} = \lambda.$$

Solution de Q. VI.2.1

- (a) Par définition $\mathbb{E}[X] = \int_{\Omega} X(\omega) d\mathbb{P}(\omega)$.
- (b) Le théorème de transfert implique

$$\mathbb{E}[X] = \int_{\mathbb{R}} x \, P_X(dx).$$

(c) Ainsi,

$$\mathbb{E}[X] = \frac{1}{\sqrt{2\pi}\sigma} \int_{\mathbb{R}} x \, \exp\left(-\frac{1}{2} \frac{(x-m)^2}{\sigma^2}\right) \, dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} (m+\sigma u) \, e^{-u^2/2} \, \lambda(du)$$

$$= m + \frac{\sigma}{\sqrt{2\pi}} \int_{\mathbb{R}} u \, e^{-u^2/2} \, du$$

$$= m.$$

Solution de E. VI.1.1

(a) Définissons la mesure discrète $\nu = \sum_{n=0}^{\infty} p^n \, \delta_n$, dont le support est \mathbb{N} (voir les exemples dans le cours). Par définition,

$$\forall B \in \mathcal{B}(\mathbb{R}), \quad \nu(B) = \sum_{n=0}^{\infty} p^n \, \delta_n(B) = \sum_{n \in B} p^n.$$

Donc

$$\nu(\mathbb{R}) = \sum_{n=0}^{\infty} p^n \, \delta_n(\mathbb{R}) = \sum_{n=0}^{\infty} p^n = \frac{1}{1-p}.$$

La mesure $\mu = (1 - p) \nu$ est alors une mesure de probabilité.

(b) Soit *Z* une variable aléatoire de loi μ . Comme $P_Z = \mu$, on a

$$\mathbb{E}[Z] = \int_{\Omega} Z(\omega) \, \mathbb{P}(d\omega) = \int_{R} z \, P_{Z}(dz)$$
$$= \sum_{n \in \mathbb{N}} n \, \mu(\{n\}) = (1 - p) \sum_{n \in \mathbb{N}} n \, p^{n}.$$

Or, si on définit
$$\varphi(p) = \sum_{n \ge 0} p^n = \frac{1}{1-p}$$
, on a $\varphi'(p) = \sum_{n \ge 1} n \ p^{n-1} = \frac{1}{(1-p)^2}$.

On en déduit que $\mathbb{E}[Z] = \frac{p}{1-p}$.

Solution de E. VI.1.2 Déterminer la loi de U revient à déterminer sa fonction de répartition. En effet, on a vu dans le cours que la détermination (difficile) d'une mesure de probabilité sur \mathbb{R} , peut être remplacée par la détermination d'une fonction $F: \mathbb{R} \to \mathbb{R}_+$ croissante, continue à droite et admettant les limites 0 et 1 en $-\infty$ et $+\infty$.

La fonction de répartition F_U de la loi de U est déterminée par

$$\forall u \in \mathbb{R}; \quad F_U(u) = P_U(] - \infty, u]) = \mathbb{P}\left(U^{-1}(] - \infty, u]\right) = \mathbb{P}(U \le u)$$
$$= \mathbb{P}(X \le m + \sigma u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^u e^{-t^2/2} dt$$

en faisant le changement de variable $u = (x - m)/\sigma$ dans l'intégrale.

On reconnait donc la fonction de répartition d'une loi normale $\mathcal{N}(0,1)$.

Pour déterminer la loi de $Y = U^2$, on utilise la caractérisation par les quantités $\mathbb{E}[h(Y)]$ pour toute fonction h mesurable bornée. On calcule

$$\mathbb{E}[h(Y)] = \mathbb{E}[h(U^2)] = \int_{\mathbb{R}} h(u^2) \frac{1}{\sqrt{2\pi}} e^{-u^2/2} du$$
$$= \int_{-\infty}^{0} h(u^2) \frac{1}{\sqrt{2\pi}} e^{-u^2/2} du + \int_{0}^{+\infty} h(u^2) \frac{1}{\sqrt{2\pi}} e^{-u^2/2} du.$$

On effectue alors les changements de variables $u=-\sqrt{v}$ dans la première intégrale et $u=\sqrt{w}$ dans la deuxième. Notons qu'il est nécessaire de couper l'intégrale $\int_{\mathbb{R}} e^{-v} e^{-v} e^{-v}$ pour pouvoir faire un changement de variable qui soit bien un C^1 -difféomorphisme.

$$\mathbb{E}[h(Y)] = \frac{1}{\sqrt{2\pi}} \int_0^{+\infty} h(v)e^{-v/2} \frac{dv}{2\sqrt{v}} + \frac{1}{\sqrt{2\pi}} \int_0^{+\infty} h(w)e^{-w/2} \frac{dw}{2\sqrt{w}}$$
$$= \frac{1}{\sqrt{2\pi}} \int_0^{+\infty} h(v) \frac{e^{-v/2}}{\sqrt{v}} dv.$$

Cette expression montre que la variable aléatoire Y admet une densité de probabilité

$$y \mapsto \frac{1}{\sqrt{2\pi}} \frac{e^{-y/2}}{\sqrt{y}} \mathbbm{1}_{\mathbb{R}_+^*}(y).$$

Solution de E. VI.2.1 On remarque que X suit une loi normale $\mathcal{N}(0,1)$. La fonction exponentielle est continue, donc par composition, la fonction

$$Y: (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$$

$$\omega \mapsto e^{X(\omega)}$$

est mesurable, donc définit une variable aléatoire réelle.

On note Φ la fonction de répartition de la loi normale $\mathcal{N}(0,1)$,

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}t^2} dt.$$

Pour tout y > 0, on a

$$\mathbb{P}(Y \le y) = \mathbb{P}(X \le \ln y) = \Phi(\ln y).$$

La v.a. Y a pour fonction de répartition $y \mapsto \Phi(\ln y)$ qui est $C^1(]0, +\infty[)$ donc elle admet la densité f_Y définie par

$$\forall y > 0, \quad f_Y(y) = \frac{1}{y} f_X(\ln y) = \frac{1}{y} \Phi'(\ln y) = \frac{1}{\sqrt{2\pi}y} e^{-\frac{1}{2}\ln^2 y}.$$

Solution de E. VI.3.1 L'égalité presque sure des v.a. $X:(\Omega,\mathcal{F})\to(E,\mathcal{E})$ et $Y:(\Omega,\mathcal{F})\to(E,\mathcal{E})$ s'écrit

$$\mathbb{P}(\{\omega: X(\omega) = Y(\omega)\}) = 1.$$

La loi de X est la mesure de probabilité \mathbb{P}_X définie sur \mathcal{E} par

$$\forall A \in \mathcal{E}; \quad \mathbb{P}_X(A) = \mathbb{P}(X \in A) = \mathbb{E}[\mathbb{1}_A(X)].$$

Comme X et Y sont égales presque surement, on a $\mathbb{E}[\mathbb{1}_A(X)] = \mathbb{E}[\mathbb{1}_A(Y)]$ pour tout $A \in \mathcal{E}$, ce qui entraîne l'égalité $\mathbb{P}_X = \mathbb{P}_Y$.

Pour montrer que la réciproque est fausse, on exhibe un contre-exemple. Soit X une v.a. réelle de loi normale $\mathcal{N}(0,1)$ et soit Y=-X. Pour tout $A\in\mathcal{B}(\mathbb{R})$, on a

$$\mathbb{P}(Y \in A) = \mathbb{E}[\mathbb{1}_A(-X)] = \int_{\Omega} \mathbb{1}_A(-X) d\mathbb{P} = \int_{\mathbb{R}} \mathbb{1}_A(-x) \, \mathbb{P}_X(dx)$$
$$= \int_{\mathbb{R}} \mathbb{1}_A(-x) \, \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \, \lambda(dx)$$
$$= \int_{\mathbb{R}} \mathbb{1}_A(x) \, \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \, \lambda(dx) = \mathbb{P}(X \in A).$$

Ainsi, les variables aléatoires X et Y ont même loi. Or, elles ne sont pas égales presque surement car

$$\mathbb{P}(X = Y) = \mathbb{P}(X = -X) = \mathbb{P}(X = 0) = 0 \neq 1.$$

On aurait également pu considérer une variable de Bernoulli X prenant les valeurs 0 et 1 suivant $\mathbb{P}(X=0)=\mathbb{P}(X=1)=1/2$ et Y=1-X.

Solution de E. VI.4.1

• Si \mathcal{G} et \mathcal{H} ont un élément A en commun, on peut écrire

$$\mathbb{P}(A \cap A) = \mathbb{P}(A) \, \mathbb{P}(A)$$

ce qui implique $\mathbb{P}(A) = 0$ ou 1.

• On considère F la fonction de répartition de X. Comme X est \mathcal{G} -mesurable et \mathcal{H} -mesurable, $\{X \leq x\}$ est dans \mathcal{G} et \mathcal{H} pour tout $x \in \mathbb{R}$.

D'après le point précédent, on a

$$F(x) = \mathbb{P}(X \le x) = 0$$
 ou 1.

Soit $x_0 = \sup\{x : F(x) = 0\} \in \mathbb{R}$. Pour tout $a, b \in \mathbb{R}$ tels que $a < x_0 < b$, on a F(a) = 0 et F(b) = 1.

On a alors

$$\mathbb{P}(X = x_0) = F(x_0) - F(x_0 -) = 1.$$

Solution de E. VI.5.1 On suppose que $Y = \sum_{i=1}^k a_i \mathbb{1}_{A_i}$ est $\sigma(X)$ -mesurable.

- (a) Les a_i sont les valeurs prises par la fonction $\omega \mapsto Y(\omega)$ et pour tout $i=1,\ldots,k$, $Y^{-1}(\{a_i\})=A_i$. Ainsi, la $\sigma(X)$ -mesurabilité de Y entraîne $A_i \in \sigma(X)$ pour tout i.
- (b) En rappelant la définition de $\sigma(X) = \{X^{-1}(B); B \in \mathcal{B}(\mathbb{R}^p)\}$, pour tout i, il existe $B_i \in \mathcal{B}(\mathbb{R}^p)$ tel que $A_i = X^{-1}(B_i)$. On peut alors écrire $\mathbb{1}_{A_i} = \mathbb{1}_{X^{-1}(B_i)} = \mathbb{1}_{B_i}(X)$.

On définit la fonction $\Psi : \mathbb{R}^p \to \mathbb{R}^q$ par

$$\Psi = \sum_{i=1}^k a_i \mathbb{1}_{B_i}$$

qui est visiblement borélienne et vérifie $\Psi(X) = Y$.

Solution de E. VI.5.2 Dans le cas général,

(a) comme Y est $\sigma(X)$ -mesurable, il existe une suite de fonctions étagées $(Y_n)_{n\in\mathbb{N}}$ $\sigma(X)$ -mesurables et telle que $Y = \lim_{n\to\infty} Y_n$. Ce résultat est un résultat classique du cours (cours 3, Théorème 3.19), mais on peut prendre par exemple

$$Y_n = \sum_{k=-n^2+1}^{n^2} \frac{k}{n} \, \mathbb{1}_{\left\{\frac{k-1}{n} < Y \le \frac{k}{n}\right\}}$$

et majorer $|Y_n - Y|$.

(b) En utilisant la question 1), il existe des fonctions boréliennes $\Psi_n : \mathbb{R}^p \to \mathbb{R}^q$ telles que $Y_n = \Psi_n(X)$ pour tout n.

En notant $\Psi_n = (\Psi_n^{(1)}, \dots, \Psi_n^{(q)})$ où $\Psi_n^{(l)} : \mathbb{R}^p \to \mathbb{R}$ est borélienne (pour $1 \le l \le q$), l'ensemble de convergence de la suite de fonctions $(\Psi_n)_{n \in \mathbb{N}}$ peut s'écrire

$$C = \bigcap_{1 \le l \le q} \underbrace{\left\{ x \in \mathbb{R}^p : \lim_{n \to \infty} \Psi_n^{(i)}(x) \in \mathbb{R} \right\}}_{C^{(l)}}.$$

Pour montrer que $C \in \mathcal{B}(\mathbb{R}^p)$, il suffit de montrer que $C^{(l)} \in \mathcal{B}(\mathbb{R}^p)$ pour tout $1 \leq l \leq q$. En écrivant la définition de $\lim_{n \to \infty} \Psi_n^{(l)}(x)$, on peut remarquer que la limite existe si et seulement si

$$\sup_{n\in\mathbb{N}}\inf_{k\geq n}\Psi_k^{(l)}(x)=\inf_{n\in\mathbb{N}}\sup_{k>n}\Psi_k^{(l)}(x).$$

On rappelle que par définition, le membre de gauche est appelé *limite inférieure de* $\Psi_n^{(l)}(x)$ et celui de droite, *limite supérieure de* $\Psi_n^{(l)}(x)$.

On a alors

$$C^{(l)} = \{ x \in \mathbb{R}^p : -\infty < \sup_{n \in \mathbb{N}} \inf_{k \ge n} \Psi_k^{(l)}(x) = \inf_{n \in \mathbb{N}} \sup_{k \ge n} \Psi_k^{(l)}(x) < +\infty \}.$$

Nous avons vu en cours que pour tout $n \in \mathbb{N}$, $F_n = \inf_{k \ge n} \Psi_k^{(l)}$ et $G_n = \sup_{k \ge n} \Psi_k^{(l)}$ sont des fonctions boréliennes (comme inf et sup de fonctions boréliennes). De même, $\sup_{n \in \mathbb{N}} F_n$ et $\inf_{n \in \mathbb{N}} G_n$ sont boréliennes.

Or, on peut écrire

$$C^{(l)} = (\sup_{n \in \mathbb{N}} \inf_{k \ge n} \Psi_k^{(l)} - \inf_{n \in \mathbb{N}} \sup_{k > n} \Psi_k^{(l)})^{-1}(\{0\}) \cap (\inf_{n \in \mathbb{N}} \sup_{k > n} \Psi_k^{(l)})^{-1}(\mathbb{R}).$$

Comme les fonctions impliquées sont boréliennes, les deux événements sont dans $\mathcal{B}(\mathbb{R}^p)$. Ainsi, $C^{(l)} \in \mathcal{B}(\mathbb{R}^p)$.

(c) Comme pour tout $\omega \in \Omega$, $Y(\omega) = \lim_{n \to \infty} \Psi_n(X(\omega))$, on a $X(\omega) \in C$. Ainsi, $X(\Omega) \subset C$. Comme l'ensemble $X(\Omega)$ n'est pas forcément dans $\mathcal{B}(\mathbb{R}^p)$, on définit

$$\Psi: x \mapsto \left\{ \begin{array}{ll} \lim_{n \to \infty} \Psi_n(x) & \text{pour } x \in C \\ 0 & \text{sinon.} \end{array} \right.$$

De manière évidente, on a $\Psi(X) = Y$.

Pour montrer la mesurabilité de Ψ , on écrit $\Psi = \lim_{n \to \infty} (\Psi_n \mathbb{1}_C)$. Comme $C \in \mathcal{B}(\mathbb{R}^p)$, l'application $\mathbb{1}_C$ est borélienne. Ainsi Ψ est borélienne.

Solution de E. VI.5.3 Réciproquement, si $Y = \Psi(X)$ alors pour tout $B \in \mathcal{B}(\mathbb{R}^q)$, on a

$$\{Y \in B\} = \{X \in \Psi^{-1}(B)\} \in \sigma(X),$$

ce qui montre que Y est $\sigma(X)$ -mesurable.

Solution de E. VI.7.1 Si $\mathbb{P}(T > 0) = 0$, alors pour tout $t \ge 0$,

$$0 \le \mathbb{P}(T > t) \le \mathbb{P}(T > 0) = 0.$$

D'où $\mathbb{P}(T > t) = 0$. La relation de départ est alors trivialement satisfaite (les deux membres de l'égalité sont nuls).

Solution de E. VI.7.2 On suppose alors $\mathbb{P}(T > 0) > 0$.

(a) La suite d'événements $\{T > \frac{1}{n}\}_{n \in \mathbb{N}^*}$ est croissante de limite $\{T > 0\}$ donc

$$\lim_{n\to\infty} \mathbb{P}(T > \frac{1}{n}) = \mathbb{P}(T > 0) > 0.$$

- (b) En écrivant la définition de la limite, on déduit qu'il existe $n_0 \in \mathbb{N}^*$ tel que $\mathbb{P}(T > 1/n_0) > 0$. On pose alors $\epsilon = 1/n_0 > 0$.
- (c) Pour tout t > 0, il existe $n \in \mathbb{N}^*$ tel que $t < n\epsilon$. On a alors

$$\mathbb{P}(T > t) \ge \mathbb{P}(T > n\epsilon) = \left[\mathbb{P}(T > \epsilon)\right]^n > 0.$$

Solution de E. VI.7.3 Sous l'hypothèse $\mathbb{P}(T > 0) > 0$, on peut donc définir l'application $f : t \mapsto \log \mathbb{P}(T > t)$ sur \mathbb{R}_+^* .

(a) En prenant le logarithme de la relation de départ, on obtient

$$\forall s, t \geq 0$$
; $f(s+t) = f(s) + f(t)$.

(b) On en déduit par récurrence que pour tout $n \in \mathbb{N}^*$,

$$f(n) = f(n.1) = f(\underbrace{1 + 1 + \dots + 1}_{n \text{ fois}}) = n.f(1).$$

De même, on montre que f(n.t) = n.f(t) pour tout $t \ge 0$.

(c) Pour tous $\frac{p}{q} \in \mathbb{Q}_+$, on a

$$f(p) = p.f(1) = f(q.\frac{p}{q}) = q.f(\frac{p}{q}).$$

On en déduit

$$f(\frac{p}{q}) = \frac{p}{q}.f(1).$$

Pour tout $x \in \mathbb{R}_+$, on peut construire deux suites dans \mathbb{Q}_+ $(r_n)_{n \in \mathbb{N}}$ et $(r'_n)_{n \in \mathbb{N}}$ respectivement croissante et décroissante, telles que

$$\forall n \in \mathbb{N}; \quad r_n \leq x \leq r'_n$$

et convergeant vers x. On a alors

$$r'_n f(1) = f(r'_n) \le f(x) \le f(r_n) = r_n f(1).$$

On en déduit f(x) = x.f(1).

Solution de E. VI.7.4 La suite d'événements $\{T > n\}_{n \in \mathbb{N}}$ est décroissante et d'intersection vide. Il s'ensuit

$$\lim_{n\to\infty} \mathbb{P}(T>n)=0$$

et donc $\lim_{n\to\infty}f(n)=-\infty$. On en déduit que f(1)<0. On pose alors $\alpha=-f(1)$. On a

$$\forall t > 0; \quad \mathbb{P}(T > t) = e^{-\alpha t}$$

ce qui montre que la variable aléatoire T suit la loi exponentielle $\mathcal{E}(\alpha)$.