Dart Aerospace Ltd. Wednesday, 3/7/2007 3:52:56 PM Date Kim Johnston Uşer: **Process Sheet** : BRACKET ASSEMBLY : CU-DAR001 Dart Helicopters Services **Drawing Name** Customer Job Number : 31070 : 10279 Estimate Number : D3121143 :NA Part Number P.O. Number S.O. No. : NA · D3121 REV D : 3/7/2007 **Drawing Number** This Issue : N/A Prsht Rev. : NC Project Number : NA : MACHINED PARTS **Drawing Revision** First Issue : NIA : 29817 Material Previous Run : 3/30/2007 Qty: 6 Um: **Due Date** Written By Checked & Approved By New issue KJ/DS Comment **Additional Product** Job Number: Description: Seq. #: 17-4 SS Bar 1.0 M174B1000X02000 Comment: Qty.: 2.3184 f(s) 0.3864 f(s)/Unit Total: Material: 17-4 SS Bar per AMS 5604/5643 (M17-4-B1.000x02.000) Identify for D3121-113 Batch: M10389 BAND SAW BAND SAW 2.0 Comment: BAND SAW Cut blanks: (1.000" x 2.000") 4.425" long HAAS CNC VERTICAL MACHINING #1 3:0 Comment: HAAS CNC VERTICAL MACHINING #1

1-Machine D3121-113 as per Folio FA330 and Dwg D3121 Identify as D3121-113

2-Deburr

3-Scribe batch number

INSPECT PARTS AS THEY COME OFF MACHINE

/MINE

07/13/11

Each

4.0 QC2

Comment: INSPECT PARTS AS THEY COME OFF MACHINE

Page 1

Dart Aerospace Ltd

W/O:		WORK ORDER CHANGES							
DATE	STEP	PROCEDURE CHANGE	Ву	By Date	Qty	Approval Chief Eng / Prod Mgr	Approval QC Inspector		
				·					
.,							g:		
					7				

Part No:	PAR #:	Fault Category:	NCR: Yes No DQA:	Date: <u>07/05/03</u>
			QA: N/C Closed:	Date:

NCR: WORK ORDER NON-CONFORMANCE (NCR)								
		Description of NC		Corrective Action Section B		Verification	Annewal	Approval
DATE	STEP	Section A	Initial Chief Eng	Action Description Chief Eng			Approval Chief Eng	QC Inspector
A05/11	30.	from Deton Didn't Eght blorn's machi. (Din. 0160"	Resion12	Acceptable per attacked E-mail.	Ep 07/03/12	10203-12	Laxoir	0703.12
					•			

NOTE: Date & initial all entries

Wednesday, 3/7/2007 3:52:56 PM Date: Kim Johnston User": **Process Sheet** Drawing Name: BRACKET ASSEMBLY Customer: CU-DAR001 Dart Helicopters Services Job Number: 31070 Part Number: D3121143 Job Number: Description: Seq. #: **Machine Or Operation:** SECOND CHECK 5.0 QC8 Comment: SECOND CHECK D312121 6.0 Comment: Qty.: 2.0000 Each(s)/Unit 12.0000 Each(s) Total: Pick: Description Batch Qty Part Number Bolt B3/758 2 D3121-21 n/ 02/04/30 Bearing Assembly 7.0 D3121241 Comment: Qty.: 2.0000 Each(s)/Unit Total: 12.0000 Each(s) Pick: Description Batch **Qty Part Number** B31700 2 D3121-241 Bearing Ass SMALL & MEDIUM FAB RESOURCE 1 SMALL FAB 1 8.0 Comment: SMALL & MEDIUM FAB RESOURCE 1 Assemble D3121-143 as per Dwg D3121. INSPECT WORK TO CURRENT STEP 9.0 QC5 Comment: INSPECT WORK TO CURRENT STEP PACKAGING RESOURCE #1 10.0 Comment: PACKAGING RESOURCE #1 Identify and Stock 57233 Location: QC21 11.0 Comment: FINAL INSPECTION/W/O RELEASE Job Completion

Dart Ae	rospace l	Ltd							
W/O:			W	ORK ORDER CHANGES					
DATE STEP		PRO	OCEDURE CHA	NGE	Ву	Date	Qty	Approval Chief Eng / Prod Mgr	Approval QC Inspector
						-			
		· · · · · · · · · · · · · · · · · · ·		·					
Part No	:	PAR #:	Fault Cate	gory:	ICR: Yes	No DQ	A:	_ Date: _	
					QA: N	C Close	d:	_ Date: _	
NCR:			NORK ORD	ER NON-CONFORMAN	CE (NCR)			
		Description of NC Corrective Action Sect		Corrective Action Section B		Verific	cation	Approval	Approval
DATE	STEP	Section A	Initial Chief Eng	Action Description Chief Eng	Sign & Date	n & Section C		Chief Eng	QC Inspector
							·		·
		:							·
		<u> </u>		:			_		
							-		

NOTE: Date & initial all entries

DART AEROSPACE LTD	Work Order:	31070
Description: Bracket	Part Number:	D3121-113
Inspection Dwg: D3121 Rev: D		Page 1 of 2

FIRST ARTICLE INSPECTION CHECKLIST

X First Article Prototype

	Drawing	Tolerance	Actual	Accept	Reject	Method of	Comments
	Dimension	Tolerance	Dimension	Accept	Noject	Inspection	
	0.080	+/-0.010	6.080	/		!	
	0.300	+/-0.010	0. 298				
	R0.375	+/-0.010	0.375	/			
	1.54	+/-0.030	1.541				
	0.350	+/-0.010	8.351				
	R0.250	+/-0.010	0.750				
7	1.800	(+/-0.030	1.800	_	(this	negspenet	is on the gleet to
•	Ø0.392	+0.002/-0.000	0.392		-	ith two	dellait tolerans
	Ø0.201	+0.005/-0.000	0.201				
	0.100	+/-0.010	0.100				
		,					
£	2.540	+/-0.010	2.547	_			
×	1.590	+/-0.010	1.590				
Y	0.160	+/-0.010	0.160	/			
y Y	0.400	+/-0.010	0.395				
c	1.220	+/-0.010	1.222	/			
	1.600	+/-0.010	1.601				
	3.80	+/-0.030	3.80				
	1.800	+/-0.010	1,800				
	R0.500	+/-0.010	0.500				
†	0.130	+/-0.010	0.131		•	-	
	3.41	+/-0.030	3.400				
	3.65	+/-0.030	3.65	_			
	2.24	+/-0.030	2.216	/			
	45°	+/-0.1°	450				
	R0.250	+/-0.010	0.250	-			
	3.97	+/-0.030	3.968				
	R0.38	+/-0.030	0.375				
	Ø0.392	+0.002/-0.000	0.392				
	Ø0.201	+0.005/-0.000	6.201				
	0.100	+/-0.010	0 05				
	0.268	+/-0.010	0869				
	R0.260	+/-0.010	D 260	7			
	0.080	+/-0.010	0.080				
	0.300	+/-0.010	6300				

DART AEROSPACE LTD	Work Order:	31070
		•
Description: Bracket	Part Number:	D3121-113
Inspection Dwg: D3121 Rev: D		Page 2 of 2

FIRST ARTICLE INSPECTION CHECKLIST

Х	First Article	Prototype
---	---------------	-----------

1	Drawing Dimension	Tolerance	Actual Dimension	Accept	Reject	Method of Inspection	Comments
+	0.381	+/-0.010	0390				
+	0.201	+/-0.010	0.205				
(0.580	+/-0.010	0589				
*	0.400	+/-0.010	0 317		-		
1.	100°	+/-0.1°	(00°				
s. <u>53</u> 2	-0.32	+/-0.010	0.032				
	. AMELE						
			,				
	A						3.16.400
		, in the second					

Measured by:	Audited by: J.F.	Prototype Approval:	N/A
Date: 07 03 10	Date: 07/03/1/	Date:	N/A

Rev	Date	Change	Revised by	Approved
Α	03.12.08	New Issue P/O D3121-143	KJ/RF	
В	04.05.05	Dimensions changed/re-arranged per Dwg revision	KJ/JLM 🔒	1
С	06.06.14	Dwg Rev. updated	KJ/JLM J	

DESI	SN #	DRAWN BY $\subset \mathcal{B}$	DART AEROSPACE LTD HAWKESBURY, ONTARIO, CANADA
CHEC	KED	APPROVED A	DRAWING NO. REV. D
	MA.K.	H H	D3121 SHEET 1 OF 10
DATE	_ 		TITLE SCALE
06.	05.17		BRACKET ASSEMBLY 1:2
Α		02.04.15	NEW ISSUE
В		03.01.16	ADD RIDGES; ADD MAT'L PROP; FIX P/N ADD -141/-143/-144/-145/-146
С		04.02.17	ADD CLEARANCE; USE -241 BEARING
D		06.05.17	D3121-25 CAP WAS 1.024, NOW 1.000

D3121-21 BOLT (1) D3121-241 BEARING ASSEMBLY (1)

D3121-041 BRACKET ASSEMBLY

(REPLACES PREMIER P/N B30-23000-33)

D3121-21 BOLT (1) D3121-241 BEARING ASSEMBLY (1) (2 PLACES)

D3121-043 (SHOWN) / D3121-044 (OPPOSITE) BRACKET ASSEMBLY

(REPLACES PREMIER P/N B30-23000-37/-38)

D3121-21 BOLT (1) D3121-241 BEARING ASSEMBLY (1) (2 PLACES)

D3121-15/-16 BRACKET

D3121-045 (SHOWN) / D3121-046 (OPPOSITE) BRACKET_ASSEMBLY

(REPLACES PREMIER P/N B30-23000-35/-36)

SHOP COPY RETURN TO ENGINEERING UNCONTROLLED COPY SUBJECT TO AMENDMENT WITHOUT NOTICE WORK ORDER

Copyright © 2002 by DART AEROSPACE LTD

Copyright © 2002 by DART AEROSPACE LTD

DETAIL B: RIDGE DETAIL PARTIAL SECTION **SCALE 1:20**

SHOP COPY RETURN TO **ENGINEERING** UNCONTROLLED COPY SUBJECT TO AMENDMENT WITHOUT NOTICE WORK ORDER NO. 31070

RELEASED do de 02

SHOP COPY RETURN TO **ENGINEERING** UNCONTROLLED COPY SUBJECT TO AMENDMENT WITHOUT NOTICE

WORK ORDER

2) TOLERANCES ARE PER DART QSI 018 UNLESS OTHERWISE NOTED

1) MATERIAL: 17-4 SS PER AMS 5604/5643 (REF DART SPEC. M17-4-B)

MIN ULTIMATE TENSILE = 150 ksi

MIN YIELD TENSILE = 100 ksi

3) ALL DIMENSIONS ARE IN INCHES

D3121-11 BRACKET

4) BREAK ALL SHARP EDGES 0.005 TO 0.015

5) ENGRAVE DART P/N & LOGO AS SHOWN

6) HOLE IN SPIGOT TO BE CONCENTRIC WITHIN 0.005

RELEASED 06.06.02

Copyright © 2004 by DART AEROSPACE LTD

D3121-13 BRACKET (SHOWN) D3121-14 BRACKET (OPPOSITE)

SHOP COPY RETURN TO ENGINEERING

1) MATERIAL: 17-4 SS PER AMS 5604/5643 (REF DART SPEC. M17-4-B) INCONTROLLED COPY
MIN ULTIMATE TENSILE STRENGTH = 150 ksi
MIN YIELD TENSILE STRENGTH = 100 ksi
WITHOUT NOTICE

WITHOUT NOTICE

WORK ORDER

2) TOLERANCES ARE PER DART QSI 018 UNLESS OTHERWISE NOTED

3) ALL DIMENSIONS ARE IN INCHES

4) BREAK ALL SHARP EDGES 0.005 TO 0.015

5) ENGRAVE DART P/N & LOGO AS SHOWN

6) HOLE IN SPIGOT TO BE CONCENTRIC WITHIN 0.005

RELEASED OCOLOR

NO 31070

Copyright © 2002 by DART AEROSPACE LTD

D3121-15 BRACKET (SHOWN)

1) MATERIAL: 17-4 SS PER AMS 5604/5643 (REF DART SPEC. M17-4-B) UNCONTROLLED COPY MIN ULTIMATE TENSILE = 150 kg:

MIN YIELD TENSILE = 100 ksi

2) TOLERANCES ARE PER DART QSI 018 UNLESS OTHERWISE NOTED

3) ALL DIMENSIONS ARE IN INCHES

4) BREAK ALL SHARP EDGES 0.005 TO 0.015

5) ENGRAVE DART P/N AND LOGO AS SHOWN

6) HOLE IN SPIGOT TO BE CONCENTRIC WITHIN 0.005

SHOP COPY RETURN TO ENGINEERING

WITHOUT NOTICE WORK ORDER NO. 310

D3121-111 BRACKET

1) REPLACES PREMIER P/N B32-23001-11

2) MATERIAL: 17-4 SS PER AMS 5604/5643 (REF DART SPEC. M17-4-B)

MIN ULTIMATE TENSILE = 150 ksi MIN YIELD TENSILE = 100 ksi

3) TOLERANCES ARE PER DART QSI 018 UNLESS OTHEWISE NOTED

- 4) ALL DIMENSIONS ARE IN INCHES
- 5) BREAK ALL SHARP EDGES 0.005 TO 0.015
- 6) ENGRAVE DART P/N & LOGO IN AREAS SHOWN
- 7) HOLE IN SPIGOT TO BE CONCENTRIC WITHIN 0.005

WORK ORDER NO. 31010 RELEASED

06.06.02

SUBJECT TO AMENDMENT

WITHOUT NOTICE

Copyright 2002 by DART AEROSPACE LTD

Copyright © 2002 by DART AEROSPACE LTD

D3121-17 WASHER (SCALE 2:1)

- 1) REPLACES PREMIER P/N B32-23001-17
- 2) MATERIAL: AISI 303 SS ROUND BAR, ANNEALED (REF DART SPEC. M303R)
- 3) TOLERANCÈS ARE PER DART QSI 018 UNLESS OTHERWISE NOTED
- 4) ALL DIMENSIONS ARE IN INCHES
- 5) BREAK ALL SHARP EDGES 0.005 TO 0.015

D3121-19 BEARING (SCALE 1:1)

- 1) POSSIBLE SUPPLIER: KING BEARING P/N 6000-2ZJ/EM FAFNIR P/N 9100KDD
- 2) ALL DIMENSIONS ARE IN INCHES

D3121-23 BEARING (SCALE 1:1)

- 1) POSSIBLE SUPPLIER: SKF P/N 61900-2Z OR KML P/N 6900-ZZ
- 2) ALL DIMENSIONS ARE IN INCHES

D3121-21 BOLT (SCALE 1:1)

- 1) MATERIAL: AISI 303 SS HEX, ANNEALED (REF DART SPEC. M303H0.500)
- 2) FINISH: NONE
- 3) TOLERANCES ARE PER DART QSI 018 UNLESS OTHERWISE NOTED
- 4) ALL DIMENSIONS ARE IN INCHES
- 5) BREAK ALL SHARP EDGES 0.005 TO 0.015

D3121-25 CAP (SCALE 1:1)

1) MATERIAL: DELRIN ROD, Ø1.25

(REF DART SPEC. M-DELRIN-R1.250)

- 2) TOLERANCES ARE PER DART QSI 018 UNLESS OTHERWISE NOTED
- 3) ALL DIMENSIONS ARE IN INCHES

D3121-241 BEARING ASSEBLY (SCALE 1:1)

Copyright 2002 by DART AEROSPACE LTD

Copyright © 2002 by DART AEROSPACE LTD

Jason Murdoch

From: David Shepherd [dshepherd@dartaero.com]

Sent: Monday, March 12, 2007 12:55 PM

To: 'S Shahbazian'; 'Jason Murdoch'

Cc: chrisp@dartaero.com

Subject: RE: D3121-113

Acceptable deviation, as long as the relationship between all holes is per drawing.

David

From: S Shahbazian [mailto:sshahbazian@dartaero.com]

Sent: Monday, March 12, 2007 8:57 AM

To: 'Jason Murdoch'

Cc: 'David Shepherd'; chrisp@dartaero.com

Subject: RE: D3121-113

David,

I think this should be ok what do you think?

Thanks Serge

From: Jason Murdoch [mailto:jmurdoch@dartaero.com]

Sent: March 12, 2007 8:18 AM

To: 'S Shahbazian'

Cc: 'David Shepherd'; chrisp@dartaero.com

Subject: D3121-113

This was the 1st part. If you look at dwg D3121 pg 8, you'll see the dimension .160" from the bottom of the hole, to the bottom of the part. The actual dimension is .147", resulting in all the holes being moved down by .013" from nominal. Is this going to create an issue?

jmurdoch@dartaero.com Q.C. COORDINATOR

No virus found in this incoming message.

Checked by AVG Free Edition.

Version: 7.1.413 / Virus Database: 268.18.8/716 - Release Date: 3/9/2007

No virus found in this outgoing message.

Checked by AVG Free Edition.

Version: 7.1.413 / Virus Database: 268.18.9/719 - Release Date: 3/12/2007