CHEM / BCMB 4190/6190/8189

Introductory NMR

Lecture 8

Relaxation:

Applying and rf pulse:

- alters the population ratios
- produces transverse magnetic field components $(M_x$ and $M_v)$

The system returns to equilibrium via two relaxation processes:

T₁ Relaxation: in the static field direction, spin-lattice or longitudinal.

T₂ Relaxation: perpendicular to the static field, spin-spin or transverse.

Spin-Lattice Relaxation:

Energy absorbed from the rf pulse is transferred to the surroundings, lattice and neighboring molecules.

¹H: order of seconds.

¹³C: vary from milliseconds(large molecules) to hundreds of seconds.

Factors contributing to T_1 relaxation:

- dipole-dipole relaxation (ie NOE).
- spin-rotation relaxation
- chemical shift anisotropy.
- scalar coupling.
- electric quadrupolar relaxation
- unpaired electrons in paramagnetic compounds.

$$\tau_c$$
= Correlation time $\propto 1/T_1$

- interval between two successive rotations.
- the faster a molecule moves the greater the T_1

Relaxation:

T₁: spin-lattice relaxation time (longitudinal)

T₂: spin-spin relation time (transverse)

After we remove the pulse, the magnetization vector returns to equilibrium.

Bloch assumed that the processes were first-order and defined them by T_1 and T_2 .

$$dM_z/dt = -M_z - M_o/T_1$$
so
$$M_z = M_0(1-e^{-t/T_1})$$

$$dM_{x'}/dt = -M_{x'}/T_2$$

$$dM_{y'}/dt = -M_{y'}/T_2$$

On-resonance

Experimental Determination of T₁: **(3** ¹H 180% $\tau = 0.70_{s}$ $\tau = 0.23$ s

3.8

3.6

3.4

3.2

2.8

2.6

How do we determine the T_1 value?

$$\mathbf{M_0 - M_z} = \mathbf{A} \mathbf{e}^{-\tau/\mathrm{T}1}$$

After a 180° pulse during the inversion recovery experiment $M_0 = -\dot{M_z}$ so $A = 2M_0$:

$$M_0 - M_z = 2M_0 e^{-\tau/T_1}$$

$$\ln (M_0 - M_z) = \ln 2M_0 - \tau / T_1$$

Substituting I for M where I is intensity of signal:

$$\ln (I_0 - I_z) = \ln 2I_0 - \tau / T_1$$

$$\mathbf{T}_{\mathrm{zero}} = \mathbf{T}_1 \ln 2$$

 T_1 values can vary greatly from one nuclei to the next in the same molecule.

Need to wait $5T_1$ periods for system to return to equilibrium so:

$$(5 T_1 - 180^{\circ}_{x'} - \tau - 90^{\circ}_{x'} - FID)_n$$

Why measure T_1 ?

- $-\pi/2$ pulse elicits maximal NMR signal at thermal equilibrium.
- for repetitive signal averaging this is not always the best pulse angle.
- need to wait about 5T₁ for z-magnetization to return to equilibrium.
- more efficient to repeat sooner.

Ernst Angle:

$$\cos \alpha_{\rm E} = e^{-Tr/T1}$$

 T_r = the delay between pulses.

- best value of α actually depends on offsets of signals in spectrum but this is an average value.

If stick with $\pi/2$ pulses then:

the optimum repetition rate is $T_r = 1.27 T_1$

- in this case you are about 80% efficient.

<u>Influence of protons on ¹³C T₁ values:</u>

- main contribution is via dipole-dipole interactions, so directly bonded protons can have large effects.
- increasing the number of protons shortens the T1 although the correlation is not always direct.

Influence of molecular size on T₁:

- T1 values decrease as the size of the molecules

Suppression of Water Signal:

$$(180^{\circ}_{x'} - \tau - 90^{\circ}_{x'} - FID)_{n}$$

 T_1 for H_2O is ~ 3sec and thus is greater than T_1 of most organic molecules so one can chose τ to minimize solvent signal.

Spin-Spin Relaxation: (T2)

After $90^\circ_{x'}$ pulse $M_z=0$ and net magnetization is along the y-axis. The population of N_α and N_β are equal .

Phase Coherence: a small proportion of nuclear dipoles are bunched along the y-axis.

 T_2 - determines how fast $M_{x'}$ and $M_{y'}$ return to zero.

Figure 1-12.
Pictorial representation of phase coherence: after a 90°, pulse a fraction of the nuclear spins (not all!) are bunched together in phase as they precess about the field direction 2.

Decay of the transverse magnetization M_y (in the rotating coordinate system x', y', z) after a 90_x^o pulse, as the precessing bunched spins fan out as a result of magnetic field inhomogeneities.

How do we view this?:

Nuclei change from one energy state to the other and we lose the phase coherence.

- this is not the main contribution.

Magnetic Field inhomogeneities: there is a small ΔB_0 throughout the sample which leads to fanning out of signals.

- -fanning out process causes signals that are chemically equivalent to precess with slightly different Larmor frequencies.
- the net result is an increase in the line width of the various signals.

By definition though $T_1 \ge T_2$

Experimental Determination of T₂:

Want to measure a true value which is independent of the $\,\Delta B_0$ fanning out process.

Spin-echo experiment:

After initial $90^{\circ}_{x'}$ pulse you apply a $180^{\circ}_{x'}$ pulse at set interval τ .

At 2τ - resultant transverse magnetization is -y' direction.

 4τ - magnetization is y' direction.

6τ - magnetization is -y' direction.

Etc.....we get an echo with alternating phase at intervals of 2τ .

However, the net magnetization is decreasing with each echo due to true spin-spin relaxation.

 $90_{x'}^{\circ} - \tau - 180_{x'}^{\circ} - \tau (1st echo) - \tau - 180_{x'}^{\circ} - \tau (2nd echo) \dots$ $90_{x'}^{\circ} \cdot 180_{x'}^{\circ} \cdot 180_{x'}^{\circ$

- the $180^\circ_{x'}$ pulse turns the $A_{y'}$ component into the (-y') direction but has not effect on the $A_{x'}$. The angle between vector A and the y'-axis is unchanged if we disregard sign
- the effect of a $180^{\circ}_{\,x'}$ pulse is that vectors A and B undergo reflections in the x', z' plane.

Quantitatively:

$$\mathbf{M}_{\mathbf{v}'} = \mathbf{A} \mathbf{e}^{-t/T2}$$

At t=0, $A=M_0$

$$\ln M_v = \ln M_0 - t/T_2$$

since I α M_{y} .

$$\ln I(t) = \ln I_0 - t/T_2$$

plot I(t) vs t where I(t) is intensities at each echo. Slope of line is -1/ T_2 .

For the most part we do not concern ourselves with T₂ measurement.

Of more consequence is T_2^* which takes into account the inhomogeneity of the magnetic field.

Line Widths of NMR Signals

$$\Delta v_{V2} = \frac{1}{\pi T_2^*}$$

$$\frac{1}{T_2^*} = \frac{\gamma \, \Delta B_0}{2} + \frac{1}{T_2}$$