DMD-based Compressive Imaging & Spectroscopy

A 1-Pixel Camera & Beyond

Ting Sun, Dharmpal Takhar, Marco Duarte, Jason Laska, Richard Baraniuk, & Kevin Kelly

Electrical and Computer Engineering Department, Rice University

New Acquisition Hardware

- CS changes the rules of the data acquisition game
 - exploits a priori signal/image sparsity information
- Same random projections / hardware can be used for any compressible signal class (generic)
- Simplifies hardware and algorithm design
- Random projections automatically "encrypted"
- Very simple encoding
- Robust to measurement loss and quantization
- Asymmetrical processing (most at decoder)

Conventional Sensing

- The typical sensing/compression setup
 - compress = transform, sort coefficients, encode
 - most computation at sensor (asymmetrical)

Compressive Sensing

 Measure linear projections onto random basis where data is not sparse/compressible

Reconstruct via nonlinear processing (optimization)

Rice 1-Pixel Camera

TI Digital Micromirror Device (DMD)

DLP 1080p --> 1920 x 1080 resolution

(Pseudo) Random Optical Projections

- Binary patterns are loaded into mirror array:
 - light reflected towards the lens/photodiode (1)
 - light reflected elsewhere (0)
 - pixel-wise products summed by lens

 Pseudorandom number generator outputs measurement basis vectors

Rice CI Camera

Image Acquisition

Original

16384 Pixels 1600 Measurements 3300 Measurements (10%)

16384 Pixels (20%)

65536 Pixels 1300 Measurements (2%)

65536 Pixels 3300 Measurements (5%)

CS Low-Light Imaging with PMT

CS Imaging in the Infrared

5%

Dual Visible/Infrared Imaging

Detector: commercial dual-band sandwich photodetector with a Si substrate mounted above an InGaAs substrate

5% Visible

5%
Infrared

Hyperspectral Mandrill 32x32x64

independent reconstruction of each band

joint reconstruction with a spatial wavelet/spectral Fourier tensor product sparsity basis

joint reconstruction with a spatial wavelet/spectral Fourier tensor product sparsity basis

CS Confocal Microscopy

An imaging technique used to increase contrast and/or to reconstruct 3-D images by using a pinhole to eliminate out-of-focus light

Compressive Sensing vs. Traditional Raster Scan

- 50% of the illumination used in the CS measurement compared to less than 1% used in a raster measurement
- Additionally, CS will make far fewer measurements but will still obtain the same size final image

DMD-based CS Microscope Layout

CS Fluorescence Microscopy

16 x 16 raster (Gain: 2e6)

32 x 32 raster

128 x 128 CS 1600 measurements (Gain: 6e5)

- Using the raster scan, the signal quickly drops below our detection limit.
- Compressive sensing we can obtain a high resolution even with decreased detector gain and without the threat of photobleaching.

Confocal Measurement of Stress in Silicon

Confocal Raman image of a Vickers indent into silicon (10 x 10 μ m). The image was calculated by determining the peak position of the Si-Raman line of each measured spectrum. Inset is the corresponding AFM image. (Data courtesy of Witec Instruments Gmbh.)

U. Schmidt et al., Vibrational Spectroscopy 42, 93 (2006).

Three cross-sections are marked in the stress image on the left and displayed below.

Optical Beam Induced Current Imaging

1. OBIC Theory

- failure analysis to locate electrically active defects such as diffusion, stacking faults, latch-up and leakage in integrated circuits (IC)
- monitor the nonrandom recombination current of the electron-hole pairs generated by a laser as it is scanned across the chip surface.
- variations in currents are converted into variations in contrast to form the OBIC image

Optical Beam Induced Current Imaging

Target: NTE68 (PNP) is a complementary silicon power transistor designed for high power audio, disk head positioners

CS THz Camera

32 x 32 PCB masks

(a) 1.5cm

(b)

THz Amplitude

Object mask

CS recon
300 measurements

CS recon 600 measurements

THz Phase

Mittleman Group, Rice University

APPLIED PHYSICS LETTERS 93, 121105 (2008)

THz Camera 2: Sampling in Fourier

Mittleman Group, Rice University

Conclusions

- Compressive imaging
 - a new imaging framework based on compressive sensing
 - exploit a priori image sparsity information
 - based on new uncertainty principles
- Proof of concept: CS camera
 - single sensor element
 - universal, simple, robust image coding
 - imaging beyond the visible
 - hyperspectral
 - confocal microscopy

dsp.rice.edu/cs/camera