Листок 3. Пропозициональные формулы - 2.

Определение 1 Булева функция называется самодвойственной, если выполняется равенство $f(1-x_1,1-x_2,\ldots,1-x_n)=1-f(x_1,\ldots,x_n).$ Булева функция называется линейной, если она имеет вид $f(x)=a_0+a_1x_1+a_2x_2+\cdots+a_nx_n \bmod 2$, где $a_i \in \{0,1\}.$

Определение 2 Рассмотрим пропозициональные формулы, которые используют константу 1, контонкцию \land и сумму по модулю два \oplus (приоритет \land выше, чем \oplus). Мономом будем называть константу 1 и контонкцию нескольких переменных. Многочленом Жегалкина называется формула вида $m_1 \oplus m_2 \oplus \cdots \oplus m_k$, где m_i — различные мономы, $k \geq 0$. Пример: $x_1x_2 \oplus x_2 \oplus 1$.

DM-ML 17. (Теорема Поста) Пусть есть набор булевых функций, среди которых есть не монотонная, не сохраняющая ноль (т.е., $f(0,\ldots,0)=1$), не сохраняющая единицу (т.е., $g(1,\ldots,1)=0$), не линейная, не самодвойственная. Докажите, что с помощью композиций этих функций можно получить

- (а) отрицание, константу 1, константу 0;
- (б) любую булеву функцию.
- (в) Докажите, что если набор булевых функций не удовлетворяет условию теоремы Поста, то через композицию этих функций нельзя выразить все булевы функции.

DM-ML 18. Докажите, что у каждой невыполнимой формулы в КНФ, использующей n переменных, есть резолюционное опровержение, состоящие из не более, чем $2^{n+1}-1$ дизъюнктов.

DM-ML 19. В каждую клетку квадрата $n \times n$ поставим свою пропозициональную переменную, затем для каждой клетки, в которой стоит переменная x запишем дизъюнкт $(\neg x \lor u(x) \lor r(x))$, где u(x) — это переменная, которая находится в верхней соседней клетке для x, а r(x) — это перемененная — правый сосед x (если верхнего соседа нет, то u(x) = 0, а если правого нет, то r(x) = 0). Пусть a — переменная, которая стоит в левой нижней клетке, допишем еще дизъюнкт (a). Покажите, что конъюнкция выписанных дизъюнктов — невыполнимая формула и для нее существует резолюционное опровержение длины $O(n^2)$.

DM-ML 20. Как модифицировать рассказанный на лекции алгоритм, проверяющий выполнимость формулы в 2-КНФ, чтобы он за полиномиальное от числа переменных время также выдавал набор значений переменных, который выполняет формулу?

DM-ML 21. Формула в КНФ называется Хорновской, если каждый ее дизъюнкт содержит не более одной переменной без отрицания. Придумайте алгоритм, который за полиномиальное от длины входной формулы время проверит, выполнима ли Хорновская формула.

DM-ML 9. Приведите к КНФ и ДНФ следующие функции:

- (a) $(x \land (y \lor z)) \lor (x \land z)$
- (6) $x_1 \oplus \cdots \oplus x_n$

DM-ML 10. Булева функция $f: \{0,1\}^n \to \{0,1\}$ называется монотонной, если при $x \leq y$ выполняется $f(x) \leq f(y)$ ($x \leq y$, если для всех $1 \leq i \leq n$ выполняется $x_i \leq y_i$).

- (a) Докажите, что если пропозициональная формула использует только связки ∨ и ∧, то задаваемая ей булева функция монотонна.
- (б) Докажите, что монотонную булеву функцию можно записать в виде формулы, которая использует только связки \vee и \wedge .

DM-ML 11. Докажите, что любую булеву функцию можно выразить, используя только одну бинарную связку: стрелку Пирса \downarrow : результат $a \downarrow b$ совпадает с $\neg(a \lor b)$ или штрих Шеффера \uparrow : результат $a \uparrow b$ совпадает с $\neg(a \land b)$. Покажите, что других таких бинарных связок нет.

DM-ML 13.

- (а) Представьте в виде многочлена Жегалкина ∨, ∧ и ¬;
- (б) Докажите, что любая булева функция может быть представлена в виде многочлена Жегалкина.
- (в) Докажите, что такое представление единственное с точностью до перестановки мономов.

DM-ML 14. Пусть формула $\phi \to \psi$ является тавтологией. Докажите, что найдется такая формула τ , которая содержит только общие для ϕ и ψ переменные, что формулы $\phi \to \tau$ и $\tau \to \psi$ являются тавтологиями.

DM-ML 15. Приведите пример булевой функции от n аргументов, у которой любая дизъюнктивная и конъюнктивная нормальная форма содержит лишь члены (дизъюнкты или конъюнкты) длины n.

DM-ML 16. Две формулы, содержащие только переменные и связки \vee , \wedge и \neg эквивалентны. Докажите, что они останутся эквивалентными, если всюду \vee заменить на \wedge и наоборот.

DM-ML 5.

(б) Дано изображение плоского Эйлерова графа (степени всех вершин четны, ребра не пересекаются). Докажите, что грани этого изображения можно раскрасить в два цвета в шахматном порядке (так,

чтобы соседние по ребру грани были бы покрашены в разные цвета).

DM-ML 6. В неориентированном графе 2n вершин нет треугольников (циклов длины 3). Докажите, что число ребер в нем не превосходит n^2 , причем оценка n^2 достигается.

DM-ML 7. Дана однородна линейная система от n переменных (т.е. система, состоящая из уравнений вида $a_1x_1 + \dots a_nx_n = 0$), в которой меньше, чем n уравнений. Докажите, что система имеет ненулевое решение.

DM-ML 8. Докажите неравенство $1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} < 2$.