

Syntactic Analysis (Top Down Parsing)

Dr. P K Singh

Top-Down Parsing

- The parse tree is created top to bottom.
- Top-down parser
 - Recursive-Descent Parsing
 - Backtracking is needed (If a choice of a production rule does not work, we backtrack to try other alternatives.)
 - It is a general parsing technique, but not widely used.
 - Not efficient
 - Predictive Parsing
 - no backtracking
 - efficient
 - needs a special form of grammars (LL(1) grammars).
 - Recursive Predictive Parsing is a special form of Recursive Descent parsing without backtracking.
 - Non-Recursive (Table Driven) Predictive Parser is also known as LL(1) parser.

Recursive-Descent Parsing (uses Backtracking)

स्तित्व उत्पादित्व स्थान क्रमेस्य कीरालम

- Backtracking is needed.
- It tries to find the left-most derivation.

$$S \rightarrow aBc$$

$$B \rightarrow bc \mid b$$

Input: abc

Predictive Parser

a grammar

eliminate

left left recursion

a grammar suitable for predictive parsing (a LL(1) factor grammar) no %100 guarantee.

 When re-writing a non-terminal in a derivation step, a predictive parser can uniquely choose a production rule by just looking the current symbol in the input string.

$$A \rightarrow \alpha_1 \mid ... \mid \alpha_n$$

Left Recursion

$$A \Rightarrow A\alpha$$
 for some string α

Top-down parsing techniques cannot handle left-recursive grammars.

- So, we have to convert our left-recursive grammar into an equivalent grammar which is not left-recursive.
- The left-recursion may appear in a single step of the derivation (immediate left-recursion), or may appear in more than one step of the derivation.

Immediate Left-Recursion

$$A \rightarrow A \alpha \mid \beta$$
 where β does not start with A

eliminate immediate left recursion

$$A \rightarrow \beta A'$$

$$A' \rightarrow \alpha A' \mid \epsilon$$

 $A' \rightarrow \alpha A' \mid \epsilon$ an equivalent grammar

In general,

$$A \rightarrow A \alpha_1 \mid ... \mid A \alpha_m \mid \beta_1 \mid ... \mid \beta_n$$
 where $\beta_1 ... \beta_n$ do not start with A

eliminate immediate left recursion

$$A \rightarrow \beta_1 A' \mid ... \mid \beta_n A'$$

$$A' \rightarrow \alpha_1 A' \mid ... \mid \alpha_m A' \mid \epsilon$$

an equivalent grammar

Immediate Left-Recursion -- Example

$$E \rightarrow E+T \mid T$$

$$T \rightarrow T^*F \mid F$$

$$F \rightarrow id \mid (E)$$

eliminate immediate left recursion

$$E \rightarrow T E'$$

$$E' \rightarrow +T E' \mid \varepsilon$$

$$T \rightarrow F T$$

$$T' \rightarrow *FT' \mid \varepsilon$$

$$F \rightarrow id \mid (E)$$

Left-Recursion -- Problem

- A grammar cannot be immediately left-recursive, but it still can be left-recursive.
- By just eliminating the immediate left-recursion, we may not get a grammar which is not left-recursive.

$$S \rightarrow Aa \mid b$$

 $A \rightarrow Sc \mid d$ This grammar is not immediately left-recursive, but it is still left-recursive.

$$\underline{S} \Rightarrow Aa \Rightarrow \underline{S}ca$$
 or $\underline{A} \Rightarrow Sc \Rightarrow \underline{A}ac$ causes to a left-recursion

So, we have to eliminate all left-recursions from our grammar

Eliminate Left-Recursion -- Algorithm

- Arrange non-terminals in some order: A₁ ... A_n
- for i from 1 to n do {
 for j from 1 to i-1 do {
 replace each production

$$\begin{array}{c} A_i \to A_j \; \gamma \\ \\ by \\ A_i \to \alpha_1 \; \gamma \; | \; ... \; | \; \alpha_k \; \gamma \\ \\ where \; A_j \to \alpha_1 \; | \; ... \; | \; \alpha_k \end{array}$$

- eliminate immediate left-recursions among A_i productions

Eliminate Left-Recursion -- Example

$$S \rightarrow Aa \mid b$$

 $A \rightarrow Ac \mid Sd \mid f$

- Order of non-terminals: S, A

for S:

- we do not enter the inner loop.
- there is no immediate left recursion in S.

for A:

- Replace A \rightarrow Sd with A \rightarrow Aad | bd So, we will have A \rightarrow Ac | Aad | bd | f
- Eliminate the immediate left-recursion in A

$$A \rightarrow bdA' \mid fA'$$

 $A' \rightarrow cA' \mid adA' \mid \epsilon$

So, the resulting equivalent grammar which is not left-recursive is:

$$S \rightarrow Aa \mid b$$

 $A \rightarrow bdA' \mid fA'$
 $A' \rightarrow cA' \mid adA' \mid \epsilon$

Eliminate Left-Recursion - Example2

$$S \rightarrow Aa \mid b$$

 $A \rightarrow Ac \mid Sd \mid f$

- Order of non-terminals: A, S

for A:

- we do not enter the inner loop.
- Eliminate the immediate left-recursion in A

$$A \rightarrow SdA' \mid fA'$$

 $A' \rightarrow cA' \mid \epsilon$

for S:

- Replace $S \rightarrow Aa$ with $S \rightarrow SdA'a \mid fA'a$ So, we will have $S \rightarrow SdA'a \mid fA'a \mid b$
- Eliminate the immediate left-recursion in S

$$S \rightarrow fA'aS' \mid bS' S' \rightarrow dA'aS' \mid \epsilon$$

So, the resulting equivalent grammar which is not left-recursive is:

$$S \rightarrow fA'aS' \mid bS'$$

 $S' \rightarrow dA'aS' \mid \epsilon$
 $A \rightarrow SdA' \mid fA'$
 $A' \rightarrow cA' \mid \epsilon$

Left-Factoring

• A predictive parser (a top-down parser without backtracking) insists that the grammar must be *left-factored*.

```
stmt \rightarrow if expr then stmt else stmt | if expr then stmt
```

• when we see if, we cannot now which production rule to choose to re-write *stmt* in the derivation.

Left Factoring

- Rewriting productions to delay decisions
- Helpful for predictive parsing
- Not guaranteed to remove ambiguity

Algorithm: Left Factoring

Algorithm 4.2. Left factoring a grammar.

Input. Grammar G.

Output. An equivalent left-factored grammar.

Method. For each nonterminal A find the longest prefix α common to two or more of its alternatives. If $\alpha \neq \epsilon$, i.e., there is a nontrivial common prefix, replace all the A productions $A \rightarrow \alpha \beta_1 \mid \alpha \beta_2 \mid \cdots \mid \alpha \beta_n \mid \gamma$ where γ represents all alternatives that do not begin with α by

Here A' is a new nonterminal. Repeatedly apply this transformation until no two alternatives for a nonterminal have a common prefix.

Left-Factoring - Example 1

$$A \rightarrow \underline{a}bB \mid \underline{a}B \mid cdg \mid cdeB \mid cdfB$$

$$A \rightarrow aA' \mid \underline{cdg} \mid \underline{cd}eB \mid \underline{cd}fB$$

$$A' \rightarrow bB \mid B$$

$$A \rightarrow aA' \mid cdA''$$

$$A' \rightarrow bB \mid B$$

$$A'' \rightarrow g \mid eB \mid fB$$

Left-Factoring - Example 2

$$A \rightarrow ad \mid a \mid ab \mid abc \mid b$$

$$A \rightarrow aA' \mid b$$

$$A' \rightarrow d \mid \epsilon \mid b \mid bc$$

$$A \rightarrow aA' \mid b$$

$$A' \rightarrow d \mid \epsilon \mid bA''$$

$$A'' \rightarrow \epsilon \mid c$$

Top Down Parsing

- Can be viewed two ways:
 - Attempt to find leftmost derivation for input string
 - Attempt to create parse tree, starting from at root, creating nodes in preorder
- General form is recursive descent parsing
 - May require backtracking
 - Backtracking parsers not used frequently because not needed

Predictive Parsing

- A special case of recursive-descent parsing that does not require backtracking
- Must always know which production to use based on current input symbol
- Can often create appropriate grammar:
 - removing left-recursion
 - left factoring the resulting grammar

Predictive Parser (example)


```
stmt → if ...... |

while ...... |

begin ..... |

for .....
```

- When we are trying to write the non-terminal *stmt*, if the current token is if we have to choose first production rule.
- When we are trying to write the non-terminal *stmt*, we can uniquely choose the production rule by just looking the current token.
- We eliminate the left recursion in the grammar, and left factor it. But it may not be suitable for predictive parsing (not LL(1) grammar).

Recursive Predictive Parsing

Each non-terminal corresponds to a procedure.

```
Ex: A → aBb (This is only the production rule for A)
proc A {

match the current token with a, and move to the next token;
call 'B';
match the current token with b, and move to the next token;
```

Recursive Predictive Parsing (cont.)


```
A \rightarrow aBb \mid bAB
```

```
proc A {
    case of the current token {
        'a': - match the current token with a, and move to the next token;
        - call 'B';
        - match the current token with b, and move to the next token;
        'b': - match the current token with b, and move to the next token;
        - call 'A';
        - call 'B';
}
```

Recursive Predictive Parsing (cont.)

• When to apply ε-productions.

$$A \rightarrow aA \mid bB \mid \epsilon$$

- If all other productions fail, we should apply an ϵ -production. For example, if the current token is not a or b, we may apply the ϵ -production.
- Most correct choice: We should apply an ε-production for a non-terminal A when the current token is in the follow set of A (which terminals can follow A in the sentential forms).

Transition Diagrams

- For parser:
 - One diagram for each nonterminal
 - Edge labels can be tokens or nonterminal
 - A transition on a token means we should take that transition if token is next input symbol
 - A transition on a nonterminal can be thought of as a call to a procedure for that nonterminal
- As opposed to lexical analyzers:
 - One (or more) diagrams for each token
 - Labels are symbols of input alphabet

Creating Transition Diagrams

- First eliminate left recursion from grammar
- Then left factor grammar
- For each nonterminal A:
 - Create an initial and final state
 - For every production A → X₁X₂...X_n, create a path from initial to final state with edges labeled X₁, X₂, ..., X_n.

Using Transition Diagrams

- Predictive parsers:
 - Start at start symbol of grammar
 - From state s with edge to state t labeled with token a, if next input token is a:
 - State changes to t
 - Input cursor moves one position right
 - If edge labeled by nonterminal A:
 - State changes to start state for A
 - Input cursor is not moved
 - If final state of A reached, then state changes to t
 - If edge labeled by ε, state changes to t
- Can be recursive or non-recursive using stack

Transition Diagram Example

Simplifying Transition Diagrams

Simplified Transition Diagrams

T:

E':

F:

T':

Dr. P K Singh

TCS 502 Compiler Design

Recursive Predictive Parsing (Example)


```
A \rightarrow aBe \mid cBd \mid C
B \rightarrow bB \mid \epsilon
C \rightarrow f
                                                               proc C {
                                                                            match the current token with f,
proc A {
                                                                            and move to the next token; }
    case of the current token {
        a: - match the current token with a,
              and move to the next token;
                                                               proc B {
            - call B:
                                                                   case of the current token {
            - match the current token with e.
                                                                         b:- match the current token with b.
              and move to the next token;
                                                                            and move to the next token;
          - match the current token with c,
                                                                            - call B
              and move to the next token:
                                                                       e,d: do nothing
            - call B:
            - match the current token with d,
              and move to the next token;
                                                                               follow set of B
            - call C
                    first set of C
<sup>}</sup>Dr. P K Singh
```

Nonrecursive Predictive Parsing (1)

Nonrecursive Predictive Parsing (2)

- The symbol at the top of the stack (say X) and the current symbol in the input string (say a) determine the parser action.
- There are four possible parser actions.
- 1. If X and a are \$ → parser halts (successful completion)
- 2. If X and a are the same terminal symbol (different from \$)
 - → parser pops X from the stack, and moves the next symbol in the input buffer.
- 3. If X is a non-terminal
 - → parser looks at the parsing table entry M[X,a]. If M[X,a] holds a production rule $X \rightarrow Y_1 Y_2 ... Y_k$, it pops X from the stack and pushes $Y_k, Y_{k-1}, ..., Y_1$ into the stack. The parser also outputs the production rule $X \rightarrow Y_1 Y_2 ... Y_k$ to represent a step of the derivation.
- 4. none of the above → error
 - all empty entries in the parsing table are errors.
 - If X is a terminal symbol different from a, this is also an error case.

Predictive Parsing Table

						थोगः कर्मसु		
Nonter- minal	Input Symbol							
	id	+	*	()	\$		
E	E→TE′			E→TE′				
E'		E' →+TE'			E' → ε	E′ →ε		
Т	T→FT′			T→FT′				
T'		Τ′ →ε	T'→*FT'		Τ' →ε	T ′ →ε		
F	F→id			F→ (E)				

Using a Predictive Parsing Table

Stack	Input	Output
\$E	id+id*id\$	
\$E'T	id+id*id\$	E→TE′
\$E'T'F	id+id*id\$	T→FT'
\$E'T'id	id+id*id\$	F→id
\$E'T'	+id*id\$	
\$E′	+id*id\$	Τ ′ →ε
\$E'T+	+id*id\$	E'→+TE'
\$E'T	id*id\$	
\$E'T'F	id*id\$	T→FT'

Stack	Input	Output
\$E'T'id	id*id\$	F→id
\$E'T'	*id\$	
\$E'T'F*	*id\$	T'→*FT'
\$E'T'F	id\$	
\$E'T'id	id\$	F→id
\$E'T'	\$	
\$E'	\$	Τ' → ε
\$	\$	E' → ε

FIRST

- FIRST (α) is the set of all terminals that begin any string derived from α
- Computing FIRST:
 - If X is a terminal, FIRST $(X) = \{X\}$
 - If $X \rightarrow \varepsilon$ is a production, add ε to FIRST (X)
 - If x is a nonterminal and $x \rightarrow Y_1 Y_2 ... Y_n$ is a production:
 - For all terminals a, add a to FIRST(X) if a is a member of any FIRST(Y_i) and ε is a member of FIRST(Y₁), FIRST(Y₂), ... FIRST(Y_{i-1})
 - If ε is a member of FIRST(Y₁), FIRST(Y₂), ... FIRST(Y_n), add ε to FIRST(X)

FOLLOW

- FOLLOW(A), for any nonterminal A, is the set of terminals a that can appear immediately to the right if A in some sentential form
- More formally, a is in FOLLOW(A) if and only if there exists a derivation of the form S *=>αAaβ
- \$ is in FOLLOW(A) if and only if there exists a derivation of the form
 S *=> αA

Computing FOLLOW

- Place \$ in FOLLOW(S)
- If there is a production $A \rightarrow \alpha B\beta$, then everything in FIRST (β) (except for ϵ) is in FOLLOW (B)
- If there is a production $A \rightarrow \alpha B$, or a production $A \rightarrow \alpha B\beta$ where FIRST(β) contains ε , then everything in FOLLOW(A) is also in FOLLOW(B)

FIRST and FOLLOW Example


```
E → TE'
E' → +TE' | ε
T → FT'
T' → *FT' | ε
F → (E) | id
```

```
FIRST(E) = FIRST(T) = FIRST(F) = { (, id}

FIRST(E') = {+, ε}

FIRST(T') = {*, ε}

FOLLOW(E) = FOLLOW(E') = {), $}

FOLLOW(T) = FOLLOW(T') = {+, ), $}

FOLLOW(F) = {+, *, $}
```

Creating a Predictive Parsing Table

- For each production $A \rightarrow \alpha$:
 - For each terminal a in FIRST (α) add A $\rightarrow \alpha$ to M[A, a]
 - If ϵ is in FIRST(α) add $A \rightarrow \alpha$ to M[A, b] for every terminal b in FOLLOW(A)
 - If ϵ is in FIRST(α) and β is in FOLLOW(A) add A \rightarrow α to M[A, β]
- Mark each undefined entry of M as an error entry (use some recovery strategy)

Example

$$E \rightarrow TE'$$
 $E' \rightarrow +TE' \mid \epsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' \mid \epsilon$
 $F \rightarrow (E) \mid id$

FIRST(
$$E$$
) = FIRST(T) = FIRST(F) = {(, id}.
FIRST(E') = {+, ϵ }
FIRST(T') = {*, ϵ }
FOLLOW(E) = FOLLOW(E') = {), \$}
FOLLOW(T) = FOLLOW(T') = {+,), \$}
FOLLOW(T) = {+, *,), \$}

Nonter-	INPUT SYMBOL					
MINAL	id	+	*	()	\$
E	E→TE'			$E \rightarrow TE'$		
E'		$E' \rightarrow + TE'$			E′→€	E'→€
T	$T \rightarrow FT'$	1		T→FT'		
T'		T'→€	$T' \rightarrow *FT'$	•	Τ′ →ϵ	T' → €
. F	F→id			$F \rightarrow (E)$		

Constructing LL(1) Parsing Table -- Example

 $E \rightarrow TE'$ FIRST(TE')={(,id}

 \rightarrow E \rightarrow TE' into M[E,(] and M[E,id]

 $E' \rightarrow +TE'$ FIRST(+TE')={+}

 \rightarrow E' \rightarrow +TE' into M[E',+]

 $E' \rightarrow \varepsilon$ FIRST(ε)={ ε }

→ none

but since ϵ in FIRST(ϵ)

and FOLLOW(E')={\$,)}

→ E' → ε into M[E',\$] and M[E',)]

 $T \rightarrow FT'$ FIRST(FT')={(,id}

 \rightarrow T \rightarrow FT' into M[T,(] and M[T,id]

 $T' \rightarrow *FT'$ FIRST(*FT')={*}

 \rightarrow T' \rightarrow *FT' into M[T',*]

 $T' \rightarrow \varepsilon$ FIRST(ε)={ ε }

→ none

but since ε in FIRST(ε)

and $FOLLOW(T) = \{\$, \}$

 \rightarrow T' $\rightarrow \epsilon$ into M[T',\$], M[T',)] and M[T',+]

 $F \rightarrow (E)$ FIRST((E))={(}

 \rightarrow F \rightarrow (E) into M[F,(]

 $F \rightarrow id$ FIRST(id)={id}

 \rightarrow F \rightarrow id into M[F,id]

LL(1) Grammars

 A grammar whose parsing table has no multiply-defined entries is said to be LL(1) grammar.

one input symbol used as a look-head symbol do determine parser action

input scanned from left to right

 The parsing table of a grammar may contain more than one production rule. In this case, we say that it is not a LL(1) grammar.

A Grammar which is not LL(1)

$$S \rightarrow iCtSE$$
 | a

$$FOLLOW(S) = \{ \$,e \}$$

$$E \rightarrow e S \mid \epsilon$$

$$FOLLOW(E) = \{ \$,e \}$$

$$C \rightarrow b$$

$$FOLLOW(C) = \{t\}$$

$$FIRST(a) = \{a\}$$

$$FIRST(eS) = \{e\}$$

$$FIRST(\varepsilon) = \{\varepsilon\}$$

$$FIRST(b) = \{b\}$$

	a	b	e	i	t	\$
S	$S \rightarrow a$			$S \rightarrow iCtSE$		
E			$E \to e S$ $E \to \varepsilon$			$E \rightarrow$
			$E \rightarrow \varepsilon$			3
C		$C \rightarrow b$				

two production rules for M[E,e]

A Grammar which is not LL(1) (cont.)

- What do we have to do it if the resulting parsing table contains multiply defined entries?
 - If we didn't eliminate left recursion, eliminate the left recursion in the grammar.
 - If the grammar is not left factored, we have to left factor the grammar.
 - If its (new grammar's) parsing table still contains multiply defined entries, that grammar is ambiguous or it is inherently not a LL(1) grammar.
- A left recursive grammar cannot be a LL(1) grammar.
 - $A \rightarrow A\alpha \mid \beta$
 - \Rightarrow any terminal that appears in FIRST(β) also appears FIRST($A\alpha$) because $A\alpha \Rightarrow \beta\alpha$.
 - → If β is ε, any terminal that appears in FIRST(α) also appears in FIRST(Aα) and FOLLOW(A).
- A grammar is not left factored, it cannot be a LL(1) grammar
 - $A \rightarrow \alpha \beta_1 \mid \alpha \beta_2$
 - \rightarrow any terminal that appears in FIRST($\alpha\beta_1$) also appears in FIRST($\alpha\beta_2$).
- An ambiguous grammar cannot be a LL(1) grammar.

Properties of LL(1) Grammars

- A grammar G is LL(1) if and only if the following conditions hold for two distinctive production rules A → α and A → β
 - 1. Both α and β cannot derive strings starting with same terminals.
 - 2. At most one of α and β can derive to ϵ .
 - 3. If β can derive to ϵ , then α cannot derive to any string starting with a terminal in FOLLOW(A).
- A Grammar to be LL(1), following conditions must satisfied:

```
For every pair of productions A \rightarrow \alpha I \beta { 
 FIRST(\alpha) \cap FIRST(\beta) = \Phi and if FIRST(\beta) contains \epsilon then 
 FIRST(\alpha) \cap FOLLOW(A) = \Phi }
```

Example

Test the Following Grammar is LL(1) or not ?

```
S \rightarrow 1AB \mid \epsilon
   A \rightarrow 1AC \mid 0C
   B \rightarrow 0S
   C \rightarrow 1
For Production S \rightarrow 1AB | \epsilon
     FIRST(1AB) \cap FIRST(\varepsilon) = {1} \cap {\varepsilon} = \Phi and
      FIRST(1AB) \cap FOLLOW(S) = {1} \cap {$} = \Phi
Similarly A \rightarrow 1AC \mid 0C
      FIRST(1AC) \cap FIRST(0C) = {1} \cap {0} = \Phi
Hence The Grammar is LL(1)
```