Math137 - Exam Review - Fall 2015 Question List

Assignment 1:

Appendix A

Rewrite the following expressions without the absolute value bars.

5.
$$|\sqrt{5} - 5|$$

9.
$$|x+1|$$

12.
$$|1 - x^2|$$

Solve the inequality in terms of intervals.

18.
$$1 + 5x > 5 - 3x$$

26.
$$(2x+3)(x-1) \ge 0$$
 37. $\frac{1}{x} < 4$

37.
$$\frac{1}{x} < 4$$

Solve the equation for x.

45.
$$|x+3| = |2x+1|$$

Solve the inequality.

51.
$$|x+5| \ge 2$$

55.
$$1 \le |x| \le 4$$

55.
$$1 \le |x| \le 4$$
 56. $0 < |x - 5| < \frac{1}{2}$

Appendix B

3. Find the equation of a circle that is centered at the origin and passes through (4, 7).

Identify the type of curve and give a rough sketch.

12.
$$y^2 - x^2 = 1$$

14. $x = -2y^2$
18. $y = x^2 + 1$
23. $xy = 4$

14.
$$x = -2y^2$$

$$16. \ 25x^2 + 4y^2 = 100$$

18.
$$y = x^2 + 1$$

23.
$$xy = 4$$

24.
$$y = x^2 + 2x$$

18.
$$y = x^2 + 1$$

25. $9(x-1)^2 + 4(y-2)^2 = 36$

1.1

Find the domain.

33.
$$f(t) = \sqrt[3]{2t-1}$$

37.
$$f(p) = \sqrt{2 - \sqrt{p}}$$

1.3

31. Find a)
$$f+g$$
 b) $f-g$ c) fg d) $\frac{f}{g}$ and state domains. $f(x)+x^3+2x^2$ $g(x)=3x^2-1$

Express the function in the form $f \circ g$

45.
$$\frac{\sqrt[3]{x}}{1+\sqrt[3]{x}}$$

47.
$$v(t) = \sec(t^2)\tan(t^2)$$

1

1.4

Find the domain of each function. 19. a)
$$f(x) = \frac{1 - e^{x^2}}{1 - e^{1 - x^2}}$$
 b) $f(x) = \frac{1 + x}{e^{\cos x}}$

b)
$$f(x) = \frac{1+x}{e^{\cos x}}$$

Assignment 2:

1.5

Determine if the following function is one-to-one.

10.
$$f(x) = x^4 - 16$$

14.
$$f(t)$$
 is your age in years.

13. f(t) is the height of a football after being kicked.

Find the formula for the inverse of the function.

21.
$$f(x) = 1 + \sqrt{2 + 3x}$$

23.
$$f(x) = e^{2x-1}$$

26.
$$y = \frac{1 - e^{-x}}{1 + e^{-x}}$$

Find the exact value of each expression.

35. a)
$$\log_2 32$$

b)
$$log_82$$

36. a)
$$\log_5 \frac{1}{125}$$

b)
$$\ln(\frac{1}{e^2})$$

Solve each equation for x.

51. a)
$$e^{7-4x} = 6$$

53 a)
$$2^{x-5}$$

b)
$$\ln x + \ln(x - 1) = 1$$

Solve each inequality for x.

55. b)
$$e^x > 5$$

56. b)
$$1 - 2 \ln x < 3$$

Find the exact value of each expression.

64. a)
$$\tan^{-1} \sqrt{3}$$

b)
$$\arctan(-1)$$

67. a)
$$\cot^{-1}(-\sqrt{3})$$

67. b)
$$\sec^{-1} 2$$

68. a)
$$\arcsin(\sin\frac{5\pi}{4})$$

67. a)
$$\cot^{-1}(-\sqrt{3})$$

b) $\cos(2\sin^{-1}(\frac{5}{13}))$

Simplify.

70.
$$\tan(\sin^{-1} x)$$

71.
$$\sin(\tan^{-1} x)$$

72.
$$\sin(2\arccos x)$$

3.11

Evaluate.

b)
$$\cosh 0$$

b)
$$\sinh(\ln 4)$$

Prove the identity.

$$9. \cosh x + \sinh x = e^x$$

$$13. \coth^2 x - 1 = \operatorname{csch}^2 x$$

Appendix D

Convert from degrees to radians.

$$5.900 \deg$$

Convert from radians to degrees.

$$4. 4\pi$$

8.
$$\frac{-7\pi}{2}$$

Prove the identity.

47.
$$\sec y - \cos y = \tan y \sin y$$

50.
$$2\csc(2t) = \sec t \csc t$$

53.
$$\sin x \sin(2x) + \cos x \cos(2x) = \cos x$$

54.
$$\sin^2 x - \sin^2 y = \sin(x+y)\sin(x-y)$$

Assignment 3:

2.2

Sketch an example of a function that satisfies all of the given conditions.

15.
$$\lim_{x \to 0^{-}} f(x) = -1$$
 $\lim_{x \to 0^{+}} f(x) = 2$ $f(0) = 1$

15.
$$\lim_{x \to 0^{-}} f(x) = -1$$
 $\lim_{x \to 0^{+}} f(x) = 2$ $f(0) = 1$
16. $\lim_{x \to 0} f(x) = 1$ $\lim_{x \to 3^{-}} f(x) = -2$ $\lim_{x \to 3^{+}} f(x) = 2$ $f(0) = -1$ $f(3) = 1$

2.3

Evaluate the limit, if it exists (USING THE DEFINITION OF A LIMIT) 11. $\lim_{x\to 5} \frac{x^2 - 6x + 5}{x - 5}$ 15. $\lim_{t\to -3} \frac{t^2 - 9}{2t^2 + 7t + 3}$ 19. $\frac{x + 2}{x^3 + 8}$ 20. $\lim_{t\to 1} \frac{t^4 - 1}{t^3 - 1}$ 27. $\lim_{x\to 16} \frac{4 - \sqrt{x}}{16x - x^2}$ 31. $\frac{(x+h)^3 - 1}{h}$

11.
$$\lim_{x \to 5} \frac{x^2 - 6x + 5}{x - 5}$$

15.
$$\lim_{t \to -3} \frac{t^2 - 9}{2t^2 + 7\underline{t} + 3}$$

19.
$$\frac{x+2}{x^3+8}$$

20.
$$\lim_{t \to 1} \frac{t^4 - 1}{t^3 - 1}$$

27.
$$\lim_{x \to 16} \frac{4 - \sqrt{x}}{16x - x^2}$$

19.
$$\frac{x+2}{x^3+8}$$
31.
$$\frac{(x+h)^3 - x^3}{h}$$

Assignment 4:

2.5

Use the definition of continuity and the properties of limits to show the function is continuous at the given number a.

11.
$$f(x) = (x + 2x^3)^4$$
, $a = -1$
13. $p(v) = 2\sqrt{3v^2 + 1}$, $a = 1$

12.
$$g(t) = \frac{t^2 + 5t}{2t + 1}$$
, $a = 2$
14. $f(x) = 3x^4 - 5x + \sqrt[3]{x^2 - 4}$, $a = 2$

Use the intermediate value theorem to show that there is a root of the given equation in the specified interval.

53.
$$x^4 + x - 3 = 0$$
 (1, 2)

54.
$$\ln x = x - \sqrt{x}$$
 (2,3)

55.
$$e^x = 3 - 2x \quad (0, 1)$$

54.
$$\ln x = x - \sqrt{x}$$
 (2,3)
56. $\sin x = x^2 - x$ (1,2)

Prove the equation has at least one real root.

57.
$$\cos x = x^3$$

69. Is there a number that is exactly one more than it's cube?

2.6

Sketch the graph of a function that satisfies the following.

7.
$$\lim_{x \to 2} f(x) = -\infty$$
 $\lim_{x \to \infty} f(x) = \infty$ $\lim_{x \to -\infty} f(x) = 0$ $\lim_{x \to 0^+} f(x) = \infty$ $\lim_{x \to 0^-} f(x) = -\infty$
8. $\lim_{x \to \infty} f(x) = 3$ $\lim_{x \to 2^-} f(x) = \infty$ $\lim_{x \to 2^+} f(x) = -\infty$ f is odd.

8.
$$\lim_{x \to \infty} f(x) = 3$$
 $\lim_{x \to 2^-} f(x) = \infty$ $\lim_{x \to 2^+} f(x) = -\infty$ $\lim_{x \to 2^+} f(x) = -\infty$

Find the limit or prove it doesn't exist.

20.
$$\lim_{t \to \infty} \frac{t - t\sqrt{t}}{2t^{\frac{3}{2}} + 3t - 5}$$

25.
$$\lim_{x \to \infty} \frac{\sqrt{x + 3x^2}}{4x + 1}$$
36.
$$\lim_{x \to \infty} \frac{e^x - e^{-x}}{e^{3x} + e^{-3x}}$$

26.
$$\lim_{x \to \infty} \frac{x + 3x^2}{4x - 1}$$

35.
$$\lim_{x\to\infty} \arctan e^x$$

36.
$$\lim_{x \to \infty} \frac{e^x - e^{-x}}{e^{3x} + e^{-3x}}$$

Assignment 5:

2.7

22. If the tangent line to y = f(x) at (4,3) passes through the point (0,2), find f(4) and f'(4).

Find f'.

33.
$$f(t) = \frac{2t+1}{t+3}$$

36.
$$f(x) = \frac{4}{\sqrt{1-x}}$$

Each limit represents the derivative of some function f at some number a. Find f and a.

37.
$$\lim_{h \to 0} \frac{\sqrt{9+h} - 3}{h}$$

39.
$$\lim_{x \to 2} \frac{x^6 - 64}{x - 2}$$

42.
$$\lim_{\theta \to \frac{\pi}{6}} \frac{\sin \theta - \frac{1}{2}}{\theta - \frac{\pi}{6}}$$

Find the derivative using the definition of a derivative.

21.
$$f(x) = 3x - 8$$

25.
$$f(x) = x^2 - 2x^3$$

27.
$$g(x) = \sqrt{9-x}$$

28.
$$f(x) = \frac{x^2 - 1}{2x - 3}$$

definition of a derivative.
25.
$$f(x) = x^2 - 2x^3$$
 27. $g(x) = \sqrt{9-x}$
29. $G(x) = \frac{1-2t}{3+t}$ 31. $f(x) = x^4$

31.
$$f(x) = x^4$$

59. Show that f(x) = |x-6| is not differentiable at x=6

Chapter 2 Review:

3. State the following limit laws:

- a) Sum Law
- b) Difference Law
- c) Constant Multiple Law
- d) Product Law
- e) Quotient Law
- f) Power Law
- g) Root Law

4. What does the squeeze theorem say?

9. What does the intermediate value theorem say?

15.

a) What does it mean for f to be differentiable at a?

b) What is the relation between the differentiability and continuity of a function?

c) Sketch the graph of a function that is continuous but not differentiable at x=2

Assignment 6:

3.1

Differentiate the function using differentiation rules.

11.
$$g(t) = 2t^{\frac{-3}{4}}$$

16.
$$h(t) = \sqrt[4]{t} - 4e^t$$

$$30. \ D(t) = \frac{1 + 16t^2}{(4t)^3}$$

Find the equation of the tangent line and normal line at a given point.

37.
$$y = x^4 + 2e^x$$
 (0,2)

38.
$$y^2 = x^3$$
 (1,1)

3.2

Find
$$f'$$
 and f''
27. $f(x) = (x^3 + 1)e^x$

28.
$$f(x) = \sqrt{x}e^x$$

3.3

Differentiate.

$$9. \ y = \frac{x}{2 - \tan x}$$

10.
$$y = \sin \theta \cos \theta$$

$$14. \ y = \frac{\sin t}{1 + \tan t}$$

Find the equation of the tangent line to the curve at a given point.

21.
$$y = \sin x + \cos x$$
 (0, 1)

22.
$$y = e^x \cos x$$
 (0, 1)

Find the limit.

$$39. \lim_{x \to 0} \frac{\sin 5x}{3x}$$

45.
$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta + \tan \theta}$$

$$48. \lim_{x \to 0} \frac{\sin^2 x}{x}$$

3.4

Differentiate.

27.
$$10^{2\sqrt{t}}$$

30.
$$\tan^2(n\theta)$$

30.
$$\tan^2(n\theta)$$
 37. $\cot^2(\sin\theta)$

39.
$$\tan(\sec(\cos\theta))$$

3.5

Differentiate
$$\left(\frac{dy}{dx}\right)$$

7. $x^4 + x^2y^2 + y^3 = 5$

15.
$$e^{x/y} = x - y$$

$$12. \cos(xy) = 1 + \sin y$$

20.
$$\tan(x-y) = \frac{y}{1+x^2}$$

3.11

Find the numerical value.

1. a)
$$\sinh 0$$

4. b) $\sinh(\ln 4)$

$$5. a)$$
 sech 0

5. b)
$$\cosh^{-1} 1$$

Find the derivative.

$$33. \ h(x) = \sinh(x^2)$$

37.
$$y = e^{\cosh 3x}$$

44. $y = \operatorname{sech}^{-1}(e^{-x})$

41.
$$y = \cosh^{-1} \sqrt{x}$$

Assignment 7:

3.6

Differentiate.

5.
$$f(x) = \ln(\frac{1}{x})$$

15. $F(s) = \ln(\ln s)$

8.
$$f(x) = \log_{10} \sqrt{x}$$

18. $y = \ln(\csc x - \cot x)$

$$10. \ g(t) = \sqrt{1 + \ln t}$$

Use logarithmic differentiation.

39.
$$(x^2+2)^2(x^4+4)^4$$

43.
$$y = x^x$$

44.
$$y = x^{\cos x}$$

$$43. \ y = x^x$$
$$47. \ y = (\cos x)^x$$

3.9

- 14. If a snowball melts so that it's surface area decreases at a rate of $1cm^3/\min$, find the rate at which the diameter decreases when the diameter is 10 cm.
- 17. Two cars start moving from the same point. One travels south at 60 mi/h, the other travels north at 25 mi/h. At what rate is the distance between the cars changing 2 hours later?
- 18. A spotlight on the ground shines on a wall 12m away. If a man 2m tall walks from the spotlight towards the wall at a speed of 1.6m/s, how fast is the length of his shadow on the building decreasing when he is 4m from the building?

3.10

Find the linearizion at a.

2.
$$f(x) = \sin x$$
 $a = \frac{\pi}{6}$

3.
$$f(x) = \sqrt{x}$$
 $a = 4$

Use linear approximation to estimate.

23.
$$(1.999)^4$$

25.
$$\sqrt[3]{1001}$$

27.
$$e^{0.1}$$

4.1

Find the absolute maximum/minimum values of f on the interval.

50.
$$f(x) = x^3 - 6x^2 + 5$$
 [-3, 5]
61. $f(x) = \ln(x^2 + x - 1)$ [-1, 1]

54.
$$f(x) = \frac{x}{x^2 - x + 1} [0, 3]$$

4.2

State the Mean Value Theorem.

Verify the function satisfies the hypothesis of the MVT on the interval. Then, find all numbers c that satisfy the conclusion the MVT.

11.
$$f(x) = 2x^2 - 3x + 1$$
 [0,2]

12.
$$f(x) = x^3 - 3x + 2$$
 [-2,2]
14. $f(x) = \frac{1}{x}[1,3]$

13.
$$f(x) = \ln x$$
 [1, 4]

14.
$$f(x) = \frac{1}{x}[1,3]$$

Assignment 8:

4.3

a) Find the intervals on which f is increasing or decreasing.

b) Find the local maximum and minimum values of f.

c) Find the intervals of concavity and inflection points.

11.
$$f(x) = x^4 - 2x^3 + 3$$

14.
$$f(x) = \cos^2 x - 2\sin x$$
 $0 \le x \le 2\pi$
15. $f(x) = e^{2x} + e^{-x}$

15.
$$f(x) = e^{2x} + e^{-x}$$

Sketch the graph.

37.
$$f(x) = x^3 - 12x + 2$$

43.
$$F(x) = x\sqrt{6-x}$$

37.
$$f(x) = x^3 - 12x + 2$$
 43. $F(x) = x\sqrt{6-x}$ 45. $C(x) = x^{1/3}(x+4)$

76. For which values of a and b is 2, 2.5) an inflection point of the curve $x^2y + ax + by = 0$? What additional inflection points does the curve have?

4.4

Find the limit. Use L'Hospitals rule where appropriate. If there is a more elementary method, consider using it.

consider using it.
14.
$$\lim_{x \to 0} \frac{\tan(3x)}{\sin(2x)}$$
24.
$$\lim_{x \to 0} \frac{8^t - t^t}{t}$$
43.
$$\lim_{x \to \infty} x \sin(\pi/x)$$
63.
$$\lim_{x \to \infty} x^{1/x}$$

24.
$$\lim_{x\to 0} \frac{8^t - t^t}{t}$$

43.
$$\lim_{x \to \infty} x \sin(\pi/x)$$

$$63. \lim_{x \to \infty} x^{1/x}$$

19.
$$\lim_{x \to \infty} \frac{\ln x}{\sqrt{x}}$$

28.
$$\lim_{x \to 0} \frac{\sinh x - x}{x^3}$$

19.
$$\lim_{x \to \infty} \frac{\ln x}{\sqrt{x}}$$
28.
$$\lim_{x \to 0} \frac{\sinh x - x}{x^3}$$
49.
$$\lim_{x \to 1^+} \ln x \tan(\pi x/2)$$

Sketch the curve.

33.
$$y = \sin^3 x$$

43.
$$y = \frac{1}{1 + e^{-x}}$$

53. $y = e^{\arctan x}$

49.
$$y = \ln(\sin x)$$

54. $y = \tan^{-1}(\frac{x-1}{x+1})$

52.
$$y = \frac{\ln x}{x^2}$$

$$53. \ y = e^{\arctan x}$$

Assignment 9:

4.7

- 28. Find the area of the largest trapezoid that can be inscribed in a circle of radius 1 whose base has a diameter of the circle.
- 35. The top and bottom margins of a poster are each 6cm and the side margins are 4cm. If the area of the printed material on the poster is fixed at 384 cm², find the dimensions of the poster with the smallest area.
- 42. A cone-shaped paper drinking cup is to be made to hold 27cm³ of water. Find the height and radius of the cone that will use the smallest amount of paper.
- 48. A boat leaves a dock at 2:00 PM and travels due south at a speed of 20km/h. Another boat has been heading due east at 15km/h and reaches the same dock at 3:00PM. At what time were the two boats closest together?
- 56. At which points on the curve $y = 1 + 40x^3 3x^5$ does the tangent line have the largest slope?
- 58. What is the smallest possible area of the triangle that is cut off by the first quadrant and who's hypotenuse is tangent the parabola $y = 4 x^2$ at some point?

4.8

- 35. a) Use Newtons Method to find the critical numbers of the function $f(x) = x^6 x^4 + 3x^3 2x$ correct to one iteration.
- 35. b) Find the absolute minimum value of f correct to two iterations.

Assignment 10:

4.9

Find the most general anti-derivative of the function.

6.
$$f(x) = (x-5)^2$$

9.
$$f(x) = \sqrt{3}$$

10.
$$f(x) = e^2$$

Find the most general anti-derivative of the function
$$f(x) = (x-5)^2$$
 $g. \ f(x) = \sqrt{3}$ $f(x) = 3\sqrt{x} - 2\sqrt[3]{x}$ $f(x) = \frac{1}{5} - \frac{2}{x}$ $f(x) = 2^x + 4\sinh x$

13.
$$f(x) = \frac{1}{5} - \frac{1}{5}$$

16.
$$R(x) = \sec x \tan x \ 2e^x$$

Find f.

39.
$$f''(x) = -2 + 12x - 12x^2$$
, $f(0) = 4$, $f'(0) = 12$

31.
$$f''(x) = \sin x + \cos x$$
, $f(0) = 3$, $f'(0) = 4$

47.
$$f''(x) = x^{-2}, \quad x > 0, \quad f(1) = 0, \quad f(2) = 0$$

48.
$$f'''(x) = \cos x$$
, $f(0) = 1$, $f'(0) = 2$, $f''(0) = 3$

Find an expression for the area under the graph of f as a limit. Do not evaluate the limit.

21.
$$f(x) = \frac{2x}{x^2+1}$$
, $1 \le x \le 3$

23.
$$f(x) = \sqrt{\sin x}, \quad 0 \le x \le \pi$$

29. Express the area under the curve $y = x^5$ from 0 to 2 as a limit, then evaluate the limit.

5.2

Express the limit as a definite integral on the given interval.

17.
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{3^{x_i}}{1 + x_i} \Delta x, \quad [0, 1]$$

19.
$$\lim_{n \to \infty} \sum_{i=1}^{n} \left[5(x_i^*)^3 - 4x_i^* \right] \Delta x, \quad [2,7]$$

Express the integral as a limit of Reimann sums. Do not evaluate the limit.

29.
$$\int_{1}^{3} \sqrt{4 + x^2} \, dx$$

Evaluate the integral.

21.
$$\int_{2}^{5} (4-2x)dx$$

25.
$$\int_0^1 (x^3 - 3x^2) dx$$

5.3

Use FTC1 to find the derivative of the function.

7.
$$g(x) = \int_0^x \sqrt{t + t^3} dt$$

11.
$$f(x) = \int_{x}^{0} \sqrt{1 + \sec t} \, dt$$

Evaluate the integral.

23.
$$\int_{1}^{9} \sqrt{x} \, dx$$

26.
$$\int_{-5}^{5} e \, dx$$

38. $\int_{0}^{4} 2^{s} \, ds$

33.
$$\int_0^1 (1+4)^3 dr$$

23.
$$\int_{1}^{9} \sqrt{x} \, dx$$

38. $\int_{0}^{1} \cosh t \, dt$

38.
$$\int_0^4 2^s ds$$

Find the derivative of the function. 61. $F(x) = \int_x^{x^3} e^{t^2} dt$

61.
$$F(x) = \int_{x}^{x^3} e^{t^2} dt$$

61.
$$Y = \int_{\cos x}^{\sin x} \ln(1+2v) \ dv$$

Assignment 11:

5.4

Find the general indefinite integral.

8.
$$\int (u^6 - 2u^5 - u^3 + \frac{2}{7}) du$$

16.
$$\int \sec t (\sec t + \tan t) dt$$

Evaluate the integral. 23.
$$\int_{-2}^{0} (\frac{1}{2}t^4 + \frac{1}{4}t^3 - t) dt$$
 30. $\int_{0}^{1} \frac{4}{1+p^2} dp$

30.
$$\int_0^1 \frac{4}{1+p^2} dp$$

5.5

Evaluate the indefinite integral.

13.
$$\int \frac{dx}{5-3x}$$

13.
$$\int \frac{dx}{5-3x}$$
34.
$$\int \frac{\cos \frac{\pi}{x}}{x^2} dx$$

Evaluate the definite integral.

54.
$$\int_0^1 (3t-1)^{50}$$

54.
$$\int_0^1 (3t-1)^{50}$$

67. $\int_1^2 x\sqrt{x-1} dx$

6.1

Find the area enclosed by the given curves.

14.
$$y = x^2$$

$$y = 4x - x^2$$

$$19. \ y = \cos(\pi x)$$

$$y = 4x - x^2$$
$$y = 4x^2 - 1$$

25.
$$y = x^4$$

$$y = 2 - |x|$$

31.
$$y = \frac{x}{1+x^2}$$

$$y = 2 - |x|$$

$$y = \frac{x^2}{1+x^3}$$

13.
$$\int (\sin x + \sinh x) dx$$

27.
$$\int_{0}^{\pi} (5e^x + 3\sin x) dx$$

36. $\int_{0}^{\frac{\pi}{4}} \sec \theta \tan \theta d\theta$

36.
$$\int_0^{\frac{\pi}{4}} \sec \theta \tan \theta \ d\theta$$

33.
$$\int (\cos(1+5t)) dt$$

45. $\int \frac{1+x}{1+x^2} dx$

45.
$$\int \frac{1+x}{1+x^2} dx$$

63.
$$\int_0^{13} \frac{dx}{\sqrt[3]{(1+2x)^2}}$$
73.
$$\int_0^1 \frac{dx}{(1+\sqrt{x})^4}$$

73.
$$\int_0^1 \frac{dx}{(1+\sqrt{x})^4}$$