Análisis Gráfico: Gráficos log-log

http://www.fisicarecreativa.com/

Tenemos dos series de datos: en cada caso ¿qué relación funcional existe entre X e Y ?

Medimos X e Y y sabemos que tienen una relación funcional del tipo:

$$Y = aX^c$$

Transformamos las variables (conocemos c)

$$X* = X^c$$

$$Y* = Y$$

$$Y^* = aX^*$$

Si graficamos X* versus Y*

Se espera una relación lineal entre X* e Y*: proceso de linearización

Medimos X e Y y $\underline{\mathbf{no}}$ sabemos que relación funcional existe entre ellas. ¿Puede ser del tipo?

$$Y = aX^c$$

Si es así, no conocemos ni a ni c y queremos determinarlos

Si sacamos el logaritmo a ambos miembros

$$Y = aX^{c}$$
$$\log Y = \log a + c \log X$$

Si graficamos log Y vs log X

Relación lineal, pendiente c y ordenada al orígen log a

Papel "doble logarítmico"...

genero una escala logarítmica!

Si representamos los datos en una escala lineal, los 3 primeros datos se amontonan encima de 0 $\,$

Caudal (m3/s)	log(caudal)
0.016	-1.795
0.07	-1.155
0.28	-0.553
1.25	0.097
6.1	0.785
32	1.505
154	2.188

	. 1	•			. 1 .	. 1		• ,
0	20	40	60	80	100	120	140	160
			ca	udal (n	1³/s)			

Si representamos en una escala normal (lineal) el logaritmo de los datos los puntos están diferenciados. Pero su lectura es dificultosa: ¿Cómo sabemos que el punto 2.188 representa un caudal de 154 m3/s?

Si representamos en una escala logarítmica los datos están diferenciados y son de fácil lectura:

Gráficos log-log:

No hace falta graficar log Y vs log X

Se ubican los pares (X, Y) directamente

Y: 1,5 2 3 4 5 6 X: 4,4 8 18 32 50 72

Para sacar la pendiente:

si se ha graficado en escala log-log, hay que medir en simples unidades de distancia la longitud de los trazos Δy , Δx y dividirlas:

$$pendiente = \frac{(\Delta y)cm}{(\Delta x)cm}$$

Representación en escala logarítmica

