Institut für Informatik

Priv.-Doz. Dr. W. Kössler

Aufgaben zur

"Stochastik für Informatiker"

Aufg. 12) Sei die Anzahl X_t der in einer Zeiteinheit ausgesendeten Teilchen durch eine Poisson-Verteilung beschrieben:

$$\pi(X_t = k) = \frac{\lambda^k}{k!} \cdot e^{-\lambda}$$

Die Wahrscheinlichkeit dafür, daß ein ausgesendetes Teilchen beobachtet wird sei p. Sei A_k das Ereignis, daß genau k Teilchen ausgesendet werden und B_i das Ereignis, daß genau i Teilchen beobachtet werden.

- a) (1 P.) Geben Sie die bedingten Wahrscheinlichkeiten $P(B_i|A_k)$ an!
- **b)** (1 P.) Berechnen Sie $P(B_i \cap A_k)!$
- c) (2 P.) Berechnen Sie die Wahrscheinlichkeit $P(B_i)$, daß genau i Teilchen beobachtet werden! (**Hinweis:** Verwenden Sie Aufgabe 12b!)
- **Aufg. 13)** (3 P.) Aus einem Teig, in dem sich eine gewisse Anzahl von Rosinen, sagen wir n Stück, befindet, sollen Brötchen gebacken werden. Der Teig wird dazu mehrmals durchgeknetet und danach in N gleiche Teile, die dann zu Brötchen gebacken werden, zerlegt. Mit welcher Wahrscheinlichkeit enthält ein zufällig herausgegriffenes Brötchen mindestens eine Rosine?
- **Aufg. 14)** (3 P.) Wir betrachten vier Spieler, A, B, C, D. Jedem der Spieler wird ein geordnetes Tripel von Versuchsergebnissen beim Münzwurf (also Zahl (z) oder Wappen (w)) zugeordnet, und zwar:

$$A:zzw$$
, $B:zww$, $C:wwz$, $D:wzz$.

Ein Schiedsrichter führt eine Folge von Münzwürfen durch. Wir nehmen an, dass die Münze fair ist, d.h. $P(z) = P(w) = \frac{1}{2}$. Es treten jeweils zwei Spieler gegeneinander an, gewonnen hat derjenige dessen Tripel in der Folge der Versuchsergebnisse als erstes auftritt.

Bestimmen Sie jeweils die Wahrscheinlichkeit, dass

- a) A gegen D gewinnt
- **b)** D gegen C gewinnt
- c) C gegen B gewinnt
- d) B gegen A gewinnt