l'Ingénieur

QCM 02

QCM

X. Pessoles

Savoirs et compétences :

Question 1 L'exosquelette qui faisait l'objet de l'exercice du jour était :

- 1. est un système suiveur
- 2. est un système régulateur
- 3. n'est pas vraiment un système asservi
- 4. la réponse D
- 5. je suis désolé Monsieur, j'ai pas fait l'exo, j'ai fait un exo de physique.

Question 2 On s'intéresse à l'asservissement en pression dans le circuit hydraulique d'un aquarium de maison.

- 1. le système est régulateur.
- 2. le système est suiveur.
- 3. non seulement je n'ai pas fais mon exo, mais j'ai pas lu le cours.
- 4. le système est inutile.

Question 3 L'écart statique se mesure à partir d'une consigne

- 1. échelon
- 2. rampe
- 3. parabolique
- 4. sinusoïdale

Question 4 L'écart dynamique se mesure à partir d'une consigne

- 1. échelon
- 2. rampe
- 3. parabolique
- 4. sinusoïdale

Question 5 L'écart de trainage se mesure à partir d'une consigne

- 1. échelon
- 2. rampe
- 3. parabolique
- 4. sinusoïdale

Question 6 L'écart en vitesse se mesure à partir d'une consigne

- 1. échelon
- 2. rampe

- 3. parabolique
- 4. sinusoïdale

Question 7 On donne la courbe suivante.

- 1. L'écart statique est nul.
- 2. L'écart statique est de 0,2.
- 3. L'écart statique est de 0,8.
- 4. L'écart statique est de 20.
- 5. L'écart statique est infini.

Question 8 On donne la courbe suivante.

- 1. Le temps de réponse est infini.
- 2. Le temps de réponse est nul.
- 3. Le temps de réponse est inférieur à 1s.
- 4. Le temps de réponse est supérieur à 1.
- 5. En général (en SII), le temps de réponse est mesuré à 5% de la consigne.

Question 9 Dans les conditions de Heaviside, la transformée de Laplace de df(t)/dt est

- 1. pF(p)
- 2. $p^2F(p)$
- 3. Les conditions de Heavi qui?
- 4. F(p)
- 5. p

Question 10 Le théorème de la valeur initiale est donné par :

- 1. la limite de f(t) quand t tend vers 0 est égale à la limite de pF(p) quand p tend vers l'infini.
- 2. la limite de f(t) quand t tend vers 0 est égale à la limite de F(p) quand p tend vers l'infini.

- 3. la limite de f(t) quand t tend vers 0 est égale à la limite de pF(p) quand p tend vers 0.
- 4. la limite de f(t) quand t tend vers l'infini est égale à la limite de pF(p) quand p tend vers 0.
- 5. la limite de f(t) quand t tend vers 0 est égale à la limite de F(p) quand p tend vers 0.

Question 11 Le théorème du retard est donné par :

- 1. $L[f(t-t0)] = \exp(-t0^*p) * F(p)$
- 2. $L[f(t-t0)] = \exp(-t0^*p) * F(p+a)$
- 3. $L[f(t)] = \exp(-t0^*p) * F(p)$
- 4. $L[f(t0)] = \exp(-t0^*p) * F(p)$
- 5. $L[f(t0)] = \exp(-t0^*p) * F(p+a)$

Question 12 On donne $H(p) = \frac{N(p)}{D(p)} = K\frac{(p-z_1)(p-z_2)...(p-z_m)}{p^{\alpha}(p-p_1)(p-p_2)...(p-p_n)}$. Cocher les propositions

- 1. Les zi sont les zéros de la fonction de transfert (réels ou complexes).
- 2. Les pi sont les pôles de la fonction de transfert (réels ou complexes).
- 3. Le degré de D(p) est appelé ordre n du système.
- 4. L'équation D(p) = 0 est appelée équation caractéristique.
- 5. Le facteur constant K est appelé gain du système.