Action potentials in action: Sufficient conditions for spikes in the FitzHugh-Nagumo system REU 2022

Florian Grün EPF Lausanne

Supervisor Professor Jens Rademacher

07.02.2023

Outline

- Introduction
- The FitzHugh-Nagumo model
- Problem statement
- Definition of spikes
- Conditions for spikes
 - Dirac impulse
 - general impulse
- Periodic hybrid system
- Outlook

Introduction

- ullet Excitable media: impulse o wave o cool-down
- Examples: wildfire, chemical oscillators and cardiac or neuronal tissue
- ullet Hodkin-Huxley model: 4D non-linear dynamical system
- FitzHugh-Nagumo model: 2D non-linear dynamical system
- Reference: George Datseries and Ulrich Parlitz. *Nonlinear Dynamics*. Springer 2022

Introduction

- ullet Excitable media: impulse o wave o cool-down
- Examples: wildfire, chemical oscillators and cardiac or neuronal tissue
- Hodkin-Huxley model: 4D non-linear dynamical system
- ullet FitzHugh-Nagumo model: 2D non-linear dynamical system
- Reference: George Datseries and Ulrich Parlitz. Nonlinear Dynamics.
 Springer 2022

Introduction

- ullet Excitable media: impulse o wave o cool-down
- Examples: wildfire, chemical oscillators and cardiac or neuronal tissue
- Hodkin-Huxley model: 4D non-linear dynamical system
- ullet FitzHugh-Nagumo model: 2D non-linear dynamical system
- Reference: George Datseries and Ulrich Parlitz. Nonlinear Dynamics.
 Springer 2022

• FitzHugh-Nagumo equations:

$$\dot{u}(t) = -bu(t) (u(t) - 1) (u(t) - a) - w(t) + I(t),
\dot{w}(t) = \varepsilon(u(t) - cw(t)),$$
(0.1)

with $a, b, c, \varepsilon \in \mathbb{R}$.

- Impulse: A measurable function $I:[t_0,t_0+T]\to\mathbb{R}^+$
- Dirac Impulse: $I_0\delta_{t_0}$, $(u(t_0), w(t_0)) \mapsto (u(t_0) + I_0, w(t_0))$

• FitzHugh-Nagumo equations:

$$\dot{u}(t) = -bu(t) (u(t) - 1) (u(t) - a) - w(t) + I(t),
\dot{w}(t) = \varepsilon(u(t) - cw(t)),$$
(0.1)

with $a, b, c, \varepsilon \in \mathbb{R}$.

- Impulse: A measurable function $I:[t_0,t_0+T]\to\mathbb{R}^+$
- Dirac Impulse: $I_0\delta_{t_0}$, $(u(t_0), w(t_0)) \mapsto (u(t_0) + I_0, w(t_0))$

No impulse:

$$\dot{u} = -bu(u-1)(u-a) - w,
\dot{w} = \varepsilon(u-cw),$$
(0.2)

Nullclines determine global behaviour

$$\mathcal{N}_{\dot{u}}: \quad w = -bu(u-a)(u-1) =: f(u), \\ \mathcal{N}_{\dot{w}}: \quad w = \frac{1}{c}u$$
 (0.3)

- \bullet if $(1-a)^2<\frac{4}{bc}$ unique globally stable fixpoint at origin
- if $(1-a)^2 > \frac{4}{bc}$ bistable; if a, c > 0, b < 0 periodic cycle

No impulse:

$$\dot{u} = -bu(u-1)(u-a) - w,
\dot{w} = \varepsilon(u-cw),$$
(0.2)

Nullclines determine global behaviour

$$\mathcal{N}_{\dot{u}}: \quad w = -bu(u-a)(u-1) =: f(u), \\ \mathcal{N}_{\dot{w}}: \quad w = \frac{1}{c}u$$
 (0.3)

- \bullet if $(1-a)^2<\frac{4}{bc}$ unique globally stable fixpoint at origin
- if $(1-a)^2 > \frac{4}{bc}$ bistable; if a, c > 0, b < 0 periodic cycle

Figure: u-vs-w phase plot for $a=3/8,\ b=5,\ c=1,\ \varepsilon=0.2$

- How to define a spike rigorously?
- Calculate the exact value of a Dirac impulse leading to a spike for a fixed set of parameters
- What can be said about a general impulse?

- How to define a spike rigorously?
- Calculate the exact value of a Dirac impulse leading to a spike for a fixed set of parameters
- What can be said about a general impulse?

- How to define a spike rigorously?
- Calculate the exact value of a Dirac impulse leading to a spike for a fixed set of parameters
- What can be said about a general impulse?

- How to define a spike rigorously?
- Calculate the exact value of a Dirac impulse leading to a spike for a fixed set of parameters
- What can be said about a general impulse?

Definition of spikes

Definition

A trajectory $(u,w): t\mapsto (u(t),w(t))\ni \mathbb{R}^2$ with (u(0),w(0))=(0,0) has a spike at time t_s if $\dot{u}(t_s)>0$ and $u(t_s)=u_s$ with the spike threshold $u_s:=(\sqrt{a^2-a+1}+a+1)/3.$

Conditions for spikes

- Problem: boundary trajectory can only be found numerically
- Goal: find region A_{ε} analytically s.t. $(u,w) \in A_{\varepsilon}$ guarantees a spike

Figure: a = 0.2, b = 5, c = 1

Conditions for spikes

- Problem: boundary trajectory can only be found numerically
- Goal: find region A_{ε} analytically s.t. $(u,w) \in A_{\varepsilon}$ guarantees a spike

Figure: a = 0.2, b = 5, c = 1

Conditions for spikes

- Problem: boundary trajectory can only be found numerically
- ullet Goal: find region $A_{arepsilon}$ analytically s.t. $(u,w)\in A_{arepsilon}$ guarantees a spike

Figure: a = 0.2, b = 5, c = 1

Condition for spikes

Idea: estimate direction of flow

- if below $z_{\lambda}(u)=1/(1-c\epsilon\lambda)(f(u)-\varepsilon\lambda u)$ we have $\dot{u}\geq\lambda\dot{w}$
- if below $l_{\lambda}(u):=\frac{1}{\lambda}u+z(u_s)-\frac{1}{\lambda}u_s$, flow crosses spike threshold
- Let $A_{\varepsilon} = \bigcup_{\lambda} A_{\lambda}$

Figure: a = 0.2, b = 5, c = 1

florian.grun@epfl.ch (EPFL)

- $(u,w) \in A_{\varepsilon}$ is sufficient but not necessary condition!
- Why is A_{ε} easier to handle than the boundary trajectory?
- Q: For a fixed parameter set and fixed ε , determine $C_{\varepsilon} > a$ s.t. $I_0 \delta_0$ with $I_0 \geq C_{\varepsilon}$ causes a spike i.e. $(u(0+), w(0+)) \in A_{\varepsilon}$ \hookrightarrow find $\min_u \{A_{\varepsilon} \cap \{(u, w) : w = 0\}\}$

- $(u,w) \in A_{\varepsilon}$ is sufficient but not necessary condition!
- Why is A_{ε} easier to handle than the boundary trajectory?
- Q: For a fixed parameter set and fixed ε , determine $C_{\varepsilon} > a$ s.t. $I_0 \delta_0$ with $I_0 \geq C_{\varepsilon}$ causes a spike i.e. $(u(0+), w(0+)) \in A_{\varepsilon}$ \hookrightarrow find $\min_u \{A_{\varepsilon} \cap \{(u, w) : w = 0\}\}$

- $(u,w) \in A_{\varepsilon}$ is sufficient but not necessary condition!
- Why is A_{ε} easier to handle than the boundary trajectory?
- Q: For a fixed parameter set and fixed ε , determine $C_{\varepsilon} > a$ s.t. $I_0 \delta_0$ with $I_0 \geq C_{\varepsilon}$ causes a spike i.e. $(u(0+), w(0+)) \in A_{\varepsilon}$ \hookrightarrow find $\min_u \{A_{\varepsilon} \cap \{(u,w) : w=0\}\}$

Figure: a = 0.2, b = 5, c = 1

- find $\min_u \{A_{\varepsilon} \cap \{(u,w) : w = 0\}\}$
- solve for roots $r_z(\lambda)$ of $z_\lambda(u)$ (quadratic) and $r_l(\lambda)$ of $l_\lambda(u)$ (linear) \hookrightarrow algebraic expressions involving all parameters, ε and λ $\hookrightarrow r_z(\lambda) = A \sqrt{B C\lambda\varepsilon}, \quad r_l(\lambda) = D \frac{\lambda}{1 \lambda\varepsilon} (E F\lambda\varepsilon)$
- $C_{\varepsilon} = \min_{\lambda} \max\{r_z(\lambda), r_l(\lambda)\}, \ \lambda_* = \operatorname{argmin}_{\lambda} \max\{r_z(\lambda), r_l(\lambda)\}$ \hookrightarrow easier to solve than ODE
- either $r_l(\lambda_*) = r_z(\lambda_*)$ or $\lambda_* = \operatorname{argmin}_{\lambda} r_l(\lambda)$ \hookrightarrow quartic polynomial in λ

- find $\min_u \{ A_{\varepsilon} \cap \{ (u, w) : w = 0 \} \}$
- solve for roots $r_z(\lambda)$ of $z_\lambda(u)$ (quadratic) and $r_l(\lambda)$ of $l_\lambda(u)$ (linear) \hookrightarrow algebraic expressions involving all parameters, ε and λ $\hookrightarrow r_z(\lambda) = A \sqrt{B C\lambda\varepsilon}, \quad r_l(\lambda) = D \frac{\lambda}{1 \lambda\varepsilon} (E F\lambda\varepsilon)$
- $C_{\varepsilon} = \min_{\lambda} \max\{r_z(\lambda), r_l(\lambda)\}, \ \lambda_* = \operatorname{argmin}_{\lambda} \max\{r_z(\lambda), r_l(\lambda)\}$ \hookrightarrow easier to solve than ODE
- either $r_l(\lambda_*) = r_z(\lambda_*)$ or $\lambda_* = \operatorname{argmin}_{\lambda} r_l(\lambda)$ \hookrightarrow quartic polynomial in λ

- find $\min_u \{A_{\varepsilon} \cap \{(u,w) : w = 0\}\}$
- solve for roots $r_z(\lambda)$ of $z_\lambda(u)$ (quadratic) and $r_l(\lambda)$ of $l_\lambda(u)$ (linear) \hookrightarrow algebraic expressions involving all parameters, ε and λ $\hookrightarrow r_z(\lambda) = A \sqrt{B C\lambda\varepsilon}, \quad r_l(\lambda) = D \frac{\lambda}{1 \lambda\varepsilon} (E F\lambda\varepsilon)$
- $C_{\varepsilon} = \min_{\lambda} \max\{r_z(\lambda), r_l(\lambda)\}, \ \lambda_* = \operatorname{argmin}_{\lambda} \max\{r_z(\lambda), r_l(\lambda)\}$ \hookrightarrow easier to solve than ODE
- either $r_l(\lambda_*) = r_z(\lambda_*)$ or $\lambda_* = \operatorname{argmin}_{\lambda} r_l(\lambda)$ \hookrightarrow quartic polynomial in λ

Figure: a = 0.2, b = 5, c = 1

- \bullet when $\epsilon \to 0$ then $C_\epsilon \to a = \frac{3}{8}$ linearly
- ullet when $\epsilon o \infty$ then $C_\epsilon o u_s = rac{3}{4}$ asymptotically

Figure: $a = \frac{3}{8}$, b = 5, c = 1

• similar constant $C_{\varepsilon,\beta}$ for Dirac impulse to $(u,w)=(0,\beta)$ \hookrightarrow boundary of A_{ε}

Figure: Boundaries of A_{ε} for different ε

significantly worse than "exact" boundary trajectory

(b) $\varepsilon = 0.1$

Figure: $a = \frac{3}{8}$, b = 5, c = 1

Conditions for spikes - general impulse

Theorem

Let I(t) be an impulse of finite length T to the steady state (0,0) and $\beta := T\varepsilon u_s$. If the following conditions

- 1. $\int_0^T I(t) \le (1 T^2 \varepsilon) u_s T f(u_s)$ (upper bound 1),
- 2. $T \varepsilon u_s \le f(u_s)$ (upper bound 2),
- 3. $\int_0^T I(t) \ge \left(1 \frac{T^2 \varepsilon}{1 T^2 \varepsilon}\right)^{-1} \left(C_{\varepsilon, \beta} + \frac{T^3 \varepsilon f(u_s)}{1 T^2 \varepsilon} T \min_{u \in [0, u_s]} f(u)\right)$ (lower bound),

are satisfied, then the trajectory has a spike for some $t_s > T$.

- upper bounds give $u(T) \leq u_s$, $w(T) \leq \beta \leq f(u_s)$, lower bound $u(T) \geq C_{\varepsilon,\beta}$
- if $T \to 0$, recover $C_{\varepsilon,0}$

Conditions for spikes - general impulse

Theorem

Let I(t) be an impulse of finite length T to the steady state (0,0) and $\beta:=T\varepsilon u_s$. If the following conditions

- 1. $\int_0^T I(t) \le (1 T^2 \varepsilon) u_s T f(u_s)$ (upper bound 1),
- 2. $T \varepsilon u_s \le f(u_s)$ (upper bound 2),
- 3. $\int_0^T I(t) \ge \left(1 \frac{T^2 \varepsilon}{1 T^2 \varepsilon}\right)^{-1} \left(C_{\varepsilon, \beta} + \frac{T^3 \varepsilon f(u_s)}{1 T^2 \varepsilon} T \min_{u \in [0, u_s]} f(u)\right)$ (lower bound),

are satisfied, then the trajectory has a spike for some $t_s > T$.

- upper bounds give $u(T) \leq u_s$, $w(T) \leq \beta \leq f(u_s)$, lower bound $u(T) \geq C_{\varepsilon,\beta}$
- if $T \to 0$, recover $C_{\varepsilon,0}$

Periodic hybrid system

- What if there is a second impulse? When?
- send second Dirac impulse when returning to height β ; $I(\beta, u)$.

Figure: periodic hybrid system

- Is there a region where it is guaranteed that NO spike occurs?
- How does the difference between the "exact" boundary and ∂A_{ε} change with ε ? Does the flow estimations become "better" or "worse"?

- Is there a region where it is guaranteed that NO spike occurs?
- How does the difference between the "exact" boundary and ∂A_{ε} change with ε ? Does the flow estimations become "better" or "worse"?

- Is there a region where it is guaranteed that NO spike occurs?
- How does the difference between the "exact" boundary and ∂A_{ε} change with ε ? Does the flow estimations become "better" or "worse"?

• for "large" ε only convex trajectories (threshold ε_0 ?) → Mathieu Desroches and Mike Jeffrey. Canards and curvature: the smallness of ε in slow-fast dynamics

Figure: $a = \frac{3}{8}$, b = 5, c = 1**REU 2022**