

Evaluating the Impact of Sleep Disordered Breathing on Adverse Cardiovascular Outcomes After Bariatric Surgery

Catherine M. Heinzinger¹, Pornprapa Chindamporn¹, James Bena², Lu Wang², Alexander Zajichek², Alex Milinovich², Roop Kaw³, Sangeeta Kashyap⁴, Derrick Cetin⁵, Ali Aminian⁵, Nancy Kempke¹, Nancy Foldvary-Schaefer¹, Loutfi S. Aboussouan^{1,6}, Reena Mehra^{1,6}

¹Sleep Disorders Center, Neurological Institute, ²Lerner Research Institute, ³Hospital Medicine and Outcomes Research, (Anesthesiology), Lerner College of Medicine ⁴Endocrinology Institute, ⁵Bariatric and Metabolic Institute, ⁶Respiratory Institute

Introduction

- Sleep disordered breathing (SDB) includes obstructive sleep apnea (OSA) and obesity-associated sleep hypoventilation (OASH).
- SDB has well-characterized adverse effects on the cardiovascular system and increases morbidity and mortality. Long-term impact on cardiovascular outcomes post-bariatric surgery, however, remains unclear.

Objective

We hypothesize that patients with SDB have increased frequency of major adverse cardiovascular events (MACE) post-bariatric surgery than those without.

Methods

- Patients undergoing polysomnography (PSG) prior to bariatric surgery at The Cleveland Clinic from 2011-2018 were retrospectively examined and followed up from date of last surgery to 2019, including the perioperative period.
- Primary predictors:
 - Moderate-severe OSA (MS-OSA), i.e. AHI <u>> 15</u>
 - OASH, i.e. BMI ≥ 30 kg/m² and either EtCO2 ≥ 45mmHg
 or serum bicarbonate ≥ 27 mEq/L
- MACE was defined as atrial fibrillation (AF), coronary artery events, cerebrovascular events, or heart failure.
- MACE-free probability was compared using hazard ratios estimated from multivariable Cox proportional models.

Table 1. Subject Characteristics	
	Total
Factor	N=1,380
Age	43.5 ± 11.5
Sex, male	244 (17.7%)
Race	
White	879 (63.7%)
Black	391 (28.3%)
Other	110 (8.0%)
BMI (before)	49.0 ± 9.1

- Risk of MACE differed across the groups (p=0.043, Figure 1), however it bordered significance in adjusted models (p=0.051).
- Compared to the reference group, the OASH and MS-OSA group had higher risk of MACE (HR 2.53, 95% CI: 1.07-6.00, p=0.035).
- Patients with MS-OSA had higher risk of MACE than those with AHI<15 (HR 1.94, 95% CI: 1.20-3.13, p=0.007).</p>
- Patients with severe OSA had higher risk of MACE than those with AHI<30 (HR 2.01, 95% CI: 1.28-3.14, p=0.002).
- For every 5-unit AHI increase, risk of MACE increased by 6% (HR 1.06, 95% CI: 1.029-1.084, p<0.001) with slight reduction in point estimates in adjusted models.

Conclusion

- Preliminary data from this largest-to-date sample of systematically phenotyped patients with SDB undergoing bariatric surgery show significant differences in risk of MACE and MACE-free survival mitigated after consideration of obesity.
- Further investigation to elucidate effect modification by obesity and metabolic factors is needed.

Acknowledgements

This study was supported by the Cleveland Clinic Transformative Resource Neuroscience Award.