第四章 组合逻辑电路

4.1 概述

综合性组合逻辑电路 分析与设计

4.2 组合逻辑电路的 分析和设计方法

编码器,译码器, 比较器,选通器, 加法器。

4.3 若干常用的组合逻辑电路

与门, 或门, 非门

4.4 组合电路中的竞争与冒险

4.3.4 译码器

- 2-4译码器
- 3-8译码器
- ■译码器实现逻辑函数
- ■译码器级联扩展
- ■显示译码器

例1设计2线-4线译码器,功能如下。

1) 真	は値え	長				
A_1	A_0		Y ₃	Y ₂	Y_1	Y_0
0	0		0	0	0	1
0	1		0	0	1	0
1	0		0	1	0	0
1	1		1	0	0	0

2) 观察真值表,直接写函数

$$\begin{cases} Y_3 = A_1 A_0 = m_3 \\ Y_2 = A_1 A_0' = m_2 \\ Y_1 = A_1' A_0 = m_1 \\ Y_0 = A_1' A_0' = m_0 \end{cases}$$

2) 根据真值表画K图及化简逻辑函数

3) 画电路图(省略)

练习1

设计2线一4线译码器,功能如下,输出低有效。

1) 真值表

A_1	A_0		<i>Y</i> ⁹	Y ₁ ,	$\overline{Y_0}$
0	0	1	1	1	0
0	1	1	1	0	1
1	0	1	0	1	1
1	1	0	1	1	1

2) 观察真值表,直接写函数

$$\begin{cases} Y_3' = \\ Y_2' = \\ Y_1' = \\ Y_0' = \end{cases}$$

2) 根据真值表画K图及化简逻辑函数

$$Y_2 =$$

$$\mathbf{Y}_1 = \mathbf{Y}_1$$

$$\mathbf{Y_0} = 0.00$$

例2 设计3-8线译码器,输出低有效. 1) 真值表

A_2	A_1	A_0	Y_{n7}	Y _{n6}	Y_{n5}	Y_{n4}	$Y_{\rm n3}$	Y_{n2}	Y_{n1}	Y_{n0}
0	0	0	1	1	1	1	1	1	1	0
0	0	1	1	1	1	1	1	1	0	1
0	1	0	1	1	1	1	1	0	1	1
0	1	1	1	1	1	1	0	1	1	1
1	0	0	1	1	1	0	1	1	1	1
1	0	1	1	1	0	1	1	1	1	1
1	1	0	1	0	1	1	1	1	1	1
1	1	1	0	1	1	1	1	1	1	1

$$Y_{n0} = (A_2'A_1'A_0')' = m_0'$$
 $Y_{n1} = (A_2'A_1'A_0)' = m_1'$
 $Y_{n2} = (A_2'A_1A_0')' = m_2'$
 $Y_{n3} = (A_2'A_1A_0')' = m_3'$
 $Y_{n4} = (A_2A_1'A_0')' = m_4'$
 $Y_{n5} = (A_2A_1'A_0)' = m_5'$
 $Y_{n6} = (A_2A_1A_0')' = m_6'$
 $Y_{n7} = (A_2A_1A_0')' = m_7'$

4) 3-8线译码器,增加控制信号

$$Y_{n0} = (A_2'A_1'A_0'S)'$$

$$Y_{n1} = (A_2'A_1'A_0S)'$$

$$Y_{n2} = (A_2'A_1A_0'S)'$$

$$Y_{n3} = (A_2'A_1 A_0 S)'$$

$$Y_{n4} = (A_2 A_1' A_0' S)'$$

$$Y_{n5} = (A_2 A_1' A_0 S)'$$

$$Y_{n6} = (A_2 A_1 A_0'S)'$$

$$Y_{n7} = (A_2 A_1 A_0 S)'$$

实用3-8译码器芯片74HC138

74HC138的功能表

输入							箱	Ì	1	出		
S_1	$S_2' + S_3'$	A_2	A_1	A_0	Y_7'	Y_6'	Y_5'	Y_4'	Y_3'	Y_2'	Y_1'	Y_0'
0	X	X	X	X	1	1	1	1	1	1	1	1
X	1	X	X	X	1	1	1	1	1	1	1	1
1	0	0	0	0	1	1	1	1	1	1	1	0
1	0	0	0	1	1	1	1	1	1	1	0	1
1	0	0	1	0	1	1	1	1	1	0	1	1
1	0	0	1	1	1	1	1	1	0	1	1	1
1	0	1	0	0	1	1	1	0	1	1	1	1
1	0	1	0	1	1	1	0	1	1	1	1	1
1	0	1	1	0	1	0	1	1	1	1	1	1
1	0	1	1	1	0	1	1	1	1	1	1	1

例3 用译码器设计组合逻辑电路,试用74HC138构成一位全加器。

任意函数 => 真值表 => 标准与或式(最小项之和)

$$Y = \sum m_i = m_0 + m_1 + \dots + m_i$$
 与或式(与门-或门)
= $(m'_0 m'_1 \dots m'_i)'$ 与非-与非式(与非门)

例3: 试用74HC138构成一位全加器。

方法I: 利用最小项之和的与或式

1)真值表

AB <i>Ci</i>	S	Co
000	0	0
001	1	0
010	1	0
011	0	1
100	1	0
101	0	1
110	0	1
111	1	1

2) 写最小项之和的与或式

$$S(A,B,CI) = m_1 + m_2 + m_4 + m_7$$

$$CO(A,B,CI) = m_3 + m_5 + m_6 + m_7$$

3) 画电路图

例3: 试用74HC138构成一位全加器。

方法II:利用最小项之和的与非-与非式

MOM 3M5 M6

1)真值表

AB <i>Ci</i>	S	Co
000	0	0
001	1	0
010	1	0
011	0	1
100	1	0
101	0	1
110	0	1
111	1	1

2) 写最小项之和的与非-与非式

$$S_{(A,B,CI)} = m_1 + m_2 + m_4 + m_7 = (m_1'm_2'm_4'm_7')' = (Y_1'Y_2'Y_4'Y_7')'$$

$$Co_{(A,B,CI)} = m_3 + m_5 + m_6 + m_7 = (m_3'm_5'm_6'm_7')' = (Y_3'Y_5'Y_6'Y_7')'$$

3)画电路图

练习2 利用74HC138设计一个4输出组合逻辑电路,输出函数式如下

$$Z_{1} = AC' + A'BC + AB'C = \sum m(3, 4, 5, b)$$

$$Z_{2} = BC + A'B'C = \sum m(1, b, 7)$$

$$Z_{3} = A'B + AB'C = \sum m(2, 3, 5)$$

$$Z_{4} = A'BC' + B'C' + ABC = \sum m(0, 2, 4, 7)$$

1)真值表

AB <i>C</i>	Z ₁	Z ₂	Z ₃	Z ₄
000				
001		1		
010			-	
011	1	1		
100	1			١
101	J)	
110	1	*		
111		1		1

- 2) 写最小项之和的与非-与非式
- 3) 画电路图

练习2 利用74HC138设计一个4输出组合逻辑电路,输出函数式如下

$$Z_{1} = AC' + A'BC + AB'C = \sum m(3,4,5,6) = (m'_{3}m'_{4}m'_{5}m'_{6})'$$

$$Z_{2} = BC + A'B'C = \sum m(1,3,7) = (m'_{1}m'_{3}m'_{7})'$$

$$Z_{3} = A'B + AB'C = \sum m(2,3,5) = (m'_{2}m'_{3}m'_{5})'$$

$$Z_{4} = A'BC' + B'C' + ABC = \sum m(0,2,4,7) = (m'_{0}m'_{2}m'_{4}m'_{7})'$$

1)真值表

AB <i>C</i>	Z ₁	Z ₂	Z ₃	Z ₄
000	0	0	0	1
001	0	1	0	0
010	0	0	1	1
011	1	1	1	0
100	1	0	0	1
101	1	0	1	0
110	1	0	0	0
111	0	1	0	1

- 2) 写最小项之和的与非-与非式
- 3) 画电路图

例4: 用3线—8线译码器构成4线-16线译码器

$A_3A_2A_1A_0$	有效
0000	$F_0' = 0$
0001	$F_1' = 0$
0010	$F_{2}' = 0$
0011	$F_3' = 0$
0100	$F_4' = 0$
0 101	$F_5' = 0$
0 110	$F_6' = 0$
Ø 111	$F_7' = 0$
1000	$F_8' = 0$
1 001	$F_9' = 0$
1 010	F ₁₀ ' =0
1 011	F ₁₁ '=0
1 100	F ₁₂ '=0
1 101	$F_{13}' = 0$
1 110	F ₁₄ '=0
1 111	F ₁₅ '=0

例5 实用BCD/十进制译码器芯片74HC42 (二一十进制译码器)

将输入BCD码的10个代码译成10个高、低电平的输出信号, BCD码以外的伪码,输出均无低电平信号产生

$$Y_i'=m_i' \quad (i=0\sim 9)$$

例5 实用BCD/十进制译码器芯片74HC42 (二一十进制译码器)

将输入BCD码的10个代码译成10个高、低电平的输出信号,BCD码以外的伪码,输出均无低电平信号产生

$$Y_i'=m_i' \quad (i=0\sim 9)$$

例6 BCD一七段显示译码器

A3A2A1A0	abcdefg	LED
0000	1111110	C
0001	0110000	1
0010	1101101	2
0011	1111001	3
0100	0110011	χ
0101	1011011	S
0110	1011111	8
0111	1110000	٦.
1000	1111111	8
1001	1111011	9
1010	1110111	8
1011	0011111	σ
1100	1001110	U
1101	0111101	8
1110	1001111	8
1111	1000111	۶

驱动共阴极LED数码管的BCD一七段显示译码器7448

 A_3 、 A_2 、 A_1 、 A_0 : BCD码输入信号。 $Y_{\mathbf{a}} \sim Y_{\mathbf{g}}$: 译码输出,高电平有效。

	输	,	λ					输		出		
数字	A_3	A_2	A_1	A_0	Y _a	$Y_{\mathbf{b}}$	Y _c	$Y_{\mathbf{d}}$	$Y_{\rm e}$	$Y_{\mathbf{f}}$	$Y_{\mathbf{g}}$	字形
0	0	0	0	0	1	1	1	1	1	1	0	0
1	0	0	0	1	0	1	1	0	0	0	0	1
2	0	0	1	0	1	1	0	1	1	0	1	2
3	0	0	1	1	1	1	1	1	0	0	1	3
4	0	1	0	0	0	1	1	0	0	1	1	Ÿ
5	0	1	0	1	1	0	1	1	0	1	1	S
6	0	1	1	0	0	0	1	1	1	1	1	6
7	0	1	1	1	1	1	1	0	0	0	0	- -
8	1	0	0	0	1	1	1	1	1	1	1	8
9	1	0	0	1	1	1	1	0	0	1	1	٩
10	1	0	1	0	0	0	0	1	1	0	1	
11	1	0	1	1	0	0	1	1	0	0	1	5
12	1	1	0	0	0	1	0	0	0	1	1	U
13	1	1	0	1	1	0	0	1	0	1	1	<u> </u>
14	1	1	1	0	0	0	0	1	1	1	1	Ē
15	1	1	1	1	0	0	0	0	0	0	0	暗

48 742

驱动共阴极LED数码管的BCD一七段显示译码器7448

 A_3 、 A_2 、 A_1 、 A_0 : BCD码输入信号。

 $Y_a \sim Y_g$: 译码输出,高电平有效。

LT': 灯测试输入。当LT'=0时,

不论 $A_3 \sim A_0$ 状态如何, $Y_a \sim Y_g$ 全置1,全点亮。

13.7

RBI': 灭零输入 当A3A2A1A0=0000时, 若RBI'=0, 则灭零

BI'/RBO': 灭灯输入/灭零输出

- 灭灯输入: 低电平时, 数码管全灭;
- 灭零输出: 当A3A2A1A0=0000 时,且RBI'=0时,则RBO'=0,将产流量流 因此RBO'=0表示译码器将本来应该显示的零熄灭了 的C析文

例7: 利用 RBI' 和 RBO' 的配合,实现多位显示系统的灭零控制

- 整数部分:最高位是0,而且灭掉以后,输出RBO' 作 为次高位的RBI'输入信号
- 小数部分:最低位是0,而且灭掉以后,输出RBO' 作为次低位的RBI'输入信号

至少显示小数点前后各一位,即使是零

例7: 利用 RBI' 和 RBO' 的配合,实现多位显示系统的灭零控制

能否简单把每个RBI'接地,依然能有前页的功能?

作业

- 4.10 已知7442译码器(4-10线)构成的组合电路, 写出输出函数的最简与或式
- 4.12 用74138译码器 (3-8线) 实现三个逻辑函数
- 4.14 用74138译码器(3-8线)设计一位全减器

全减器人成立的单新设的多行

	-	
AB <i>Ci</i>	D	Co
000	0	0
001	1	1
010	1	1
011	0	1
100	1	0
101	0	0
110	0	0
111	1	1

填写