

# **Phishing Emails Classifiers Research**

- Group 8



# Introduction

## Phishing email attack:

a fraudulent attempt to trick an email recipient into sharing sensitive information.

The sender poses as a reputable business or known person in order to get the recipient to click on a link and open an attachment. [1]

**Our goal:** find out good classifiers to classify phishing emails



Fig 1. An phishing email example [1]

## Random Forest - Introduction

## Definition [2]

- Random forests (random decision forests)
- > For classification, regression, and other tasks
- Output:
  - Classification the classes/categories
  - Regression mean prediction
- > An ensemble learning method
  - Is made up of a set of classifiers, e.g. decision trees
  - Predictions are aggregated to identify the most popular result

## Random Forest - Individual Decision Tree

- A tree-like model that illustrates series of events leading to certain decisions
- Each node represents a test on an attribute and each branch is an outcome of that test



Fig 2. sample for Decision tree classifier [3]

## Random Forest Structure

- After a large number of trees is generated, they vote for the most popular class. We call these procedures random forests
- Address the problem of decision tree overfitting problem





Fig 3. sample for Random forest classifier [4]

# Why Choose Random Forest for Phishing Email Classification?

- High accuracy and efficiency [5, 6]
  - Capable of effective learning in large datasets, handling high-dimensional data without pruning, minimizes overfitting
- Low error rate
  - Utilize multiple decision trees
  - Majority voting reduces risk of misclassification
- Robustness to noise and outliers
  - > Naturally handles noisy and inconsistent data
  - Critical for dealing with diverse email characteristics

Cons: less interpretable, computational complexity [7]

# **Neural Network**

## Layers

- Input Layer
- Hidden Layers
- Output Layer

Weights and biases

**Activation functions** 



Fig 4. Neural Networks Architecture [8]

# Recurrent Neural Network

Recurrent Unit
Hidden States

vector h\_t
Sequential Data



Fig 5. Recurrent Neural Network [9]

## WHAT IS SVM?

#### •Definition of SVM:

- Supervised machine learning algorithm.
- Predominantly used for classification tasks.

#### •Historical Context:

- Developed in 1995 at AT&T Bell Laboratories.
- Based on the statistical learning framework or VC theory by Vapnik and Chervonenkis.

#### •Core Concept:

- Seeks a hyperplane that best separates classes.
- Support vectors are the nearest data points to the hyperplane.
- Goal is to maximize the margin between these points.

# Mathematical Foundation

- Objective of SVM:
  - Find a hyperplane that distinctly classifies the data points.
- •Mathematical Model:
  - Optimize min 1/2 \* ||w||^2
  - Subject to constraints

y\_i \* (w \* x\_i + b) >= 1 for each data
point

- •Kernel Trick:
  - Transforms input space to a higher dimensional space.
  - Common kernels: Linear, Polynomial, RBF.



# Applications of SVM

- Classification Tasks:
  - Face detection, image classification, text categorization.
- Example: Boundary creation around faces in images.
- Regression Tasks:
  - Known as SVR.
    - Used for continuous value predictions.
  - Suitable for large-scale regression problems.
- Industry Applications:
  - Bioinformatics (protein and cancer classification).
  - Financial sector (credit scoring).



Fig 7. sample for SVM [11]

SEARCHING FOR OPTIMAL

DIMENSION PLANE

FEATURE SPACE

## Why Choose SVM?

## High Accuracy:

Offers excellent accuracy with an appropriate kernel and can be highly effective in high-dimensional spaces.

## Effective in High Dimensional Spaces:

Capable of handling very large feature spaces and can perform well even when the number of dimensions exceeds the number of samples.

## Versatility in Kernel Choice:

Flexibility to choose from various kernels (linear, polynomial, RBF) or customize your own kernel for the decision function.

# Conclusion

Table 1. Comparison of accuracies of Machine Learning algorithms

| ML Algorithm                           | Old<br>Result<br>Accuracy | New Result Accuracy (improved using lexical feature analysis on each algorithm) |
|----------------------------------------|---------------------------|---------------------------------------------------------------------------------|
| Random Forest                          | 87.34%                    | 97.369%                                                                         |
| Support Vector Machine                 | 89.63%                    | 97.451%                                                                         |
| Neural Network with<br>Backpropagation | 89.84%                    | 97.259%                                                                         |

With proper feature extraction,

their accuracy could be very close.

Phishing Detection using Random Forest, SVM and Neural Network with Backpropagation

# References

[1] What is email phishing and how to prevent it. Brave River Solutions. (2018, January 19). https://braveriver.com/blog/what-is-email-phishing/

[2] What is Random Forest?. IBM. (n.d.).

https://www.ibm.com/topics/random-forest#:~:text=Random%20forest%20is%20a%20commonly,both%20classification%20and%20regression% 20problems.

[3] Lecture #15: Regression Trees & random forests. (n.d.).

https://harvard-iacs.github.io/2017-CS109A/lectures/lecture15/presentation/lecture15\_RandomForest.pdf

[4] Classification and detection of email phishing using random ... (n.d.-a). https://norma.ncirl.ie/5126/1/akshatshah.pdf

[5] Akinyelu, A. A., & Adewumi, A. O. (n.d.). Classification of phishing email using Random Forest Machine Learning Technique. Project Euclid. https://projecteuclid.org/journals/journal-of-applied-mathematics/volume-2014/issue-SI16/Classification-of-Phishing-Email-Using-Random-Fores t-Machine-Learning-Technique/10.1155/2014/425731.full

[6] lajit. (n.d.-b). http://iajit.org/PDF/September 2018, No. 5/10600.pdf

[7] AIML.com. (2023a, October 3). What are the advantages and disadvantages of Random Forest? https://aiml.com/what-are-the-advantages-and-disadvantages-of-random-forest/

[8] GfG, "Artificial Neural Networks and its applications," GeeksforGeeks, https://www.geeksforgeeks.org/artificial-neural-networks-and-its-applications/ (accessed Apr. 17, 2024).

[9] GfG. (2023b, December 4). Introduction to recurrent neural network. GeeksforGeeks. https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/

[10] Support Vector Machines. scikit. (n.d.). https://scikit-learn.org/stable/modules/svm.html

[11] Medium. (n.d.). https://medium.com/low-code-for-advanced-data-science/support-vector-machines-svm-