# Statistiques descriptives Analyse de données Algorithmes

(7) APPRENTISSAGE

Jérôme Lacaille Expert Émérite Safran



# **APPRENTISSAGE**

- 1. ESTIMATION
- 2. BIAIS ET VARIANCE
- 3. **OPTIMISATION EMPIRIQUE**
- 4. ERREUR DE GÉNÉRALISATION
- 5. CAPACITÉ DE GÉNÉRALISATION
- → ROBUSTESSE



# LA MALÉDICTION DES GRANDES DIMENSIONS – EN DEUX REMARQUES

- 1. Plus le nombre de dimensions d'un espace est grand, plus les points sont éloignés les uns des autres.
  - Par exemple en dimension d deux points tirés aléatoirement suivant une loi gaussienne ont une distance au carré dont la loi est un  $\chi^2(d)$  de moyenne égale à d.
  - Ainsi la distance moyenne ente deux points tirés au hasard en dimension d est d'ordre  $\sqrt{d}$  qui augmente avec la dimension.
  - Il faut donc de plus en plus de points pour décrire ce qui se passe dans un tel espace.
- 2. Le volume d'une boule est de plus en plus concentré sur sa surface quand la dimension augmente.
  - En effet, soit deux boules de rayons respectifs  $r_1 < r_2$ , le volume d'une sphère en dimension d

$$\operatorname{est} V_d(r) = \frac{\pi^{\frac{d}{2}} r^d}{\Gamma(\frac{n}{2} + 1)}$$

$$\bullet \operatorname{donc} \frac{\left(V_d(r_2) - V_d(r_1)\right)}{V_d(r_2)} = 1 - \left(\frac{r_1}{r_2}\right)^d \xrightarrow{d \to \infty} 1.$$

- Ainsi tous les points sont à équidistance du centre.
- La notion de distance euclidienne perd son sens habituel.



# POURQUOI RÉDUIRE LA DIMENSION?

#### Il existe deux éléments qui sont très liées :

- le nombre de facteurs utilisés pour réaliser une prédiction
- le nombre de paramètres de la fonction de prédiction.

# Si le nombre de facteurs augmente, il est logique de s'attendre aussi à une augmentation du nombre de paramètres

- Si par exemple on observe l'architecture d'un réseau de neurone on s'aperçoit que plus le nombre de cellules intermédiaires (dites cachées) augmente, plus le nombre de paramètres va aussi augmenter.
- Pourtant certains réseaux de neurones très gros généralisent bien.



#### Derrière ce phénomène se cache une notion de « complexité » du modèle utilisé.

- La complexité d'un modèle est mesurée par sa capacité de généralisation ou dimension de Vapnik-Chervonenkis (VC-dimension)
- C'est la capacité d'un modèle à apprendre des règles plutôt que mémoriser
   « par cœur » un jeu de données spécifique.





## ESTIMATION PAR UN APPRENTISSAGE SUPERVISÉ

L'apprentissage est un algorithme qui permet de sélectionner parmi un ensemble de fonctions  $\mathcal{F}$  un élément  $F \in \mathcal{F}$  qui estime au mieux une relation  $x \mapsto y$ .

La relation n'est a priori pas connue. Il existe deux variables aléatoires X et Y liées entre elles et c'est cette liaison que l'on cherche à modéliser.

- $X: \Omega \to \mathbb{R}^d$ 
  - Les difficultés principales de l'estimation proviennent du fait que la dimension p des entrées est en général très grande.
- $Y: \Omega \to \mathbb{R}^r$  ou  $Y: \Omega \to \{a, b, ...\}$  un ensemble de catégories ordonnées ou non.
  - La classification est un cas particulier de l'estimation avec l'espace d'arrivée discret.
  - En général on prendra r=1, l'estimation multivariée se généralise facilement.

La relation entre X et Y n'est cependant connue qu'à travers un ensemble d'exemples :

$$\{(x^{(1)}, y^{(1)}), \dots, (x^{(N)}, y^{(N)})\}$$

L'ensemble de fonctions dans lesquels choisir la relation est paramétré

$$\mathcal{F} = \{ F_w \mid w \in \mathbb{R}^p \}$$

La question principale est de trouver un « bon »  $w_0$  : s'assurer que la fonction obtenue « généralise ».



# CRÉDIT ASSIGNMENT PROBLEM

#### L'apprentissage du modèle consiste à mettre à jour des poids $(w_{i,j})$ .

 Un algorithme de supervision compare la sortie obtenue à la sortie souhaitée, en déduit une erreur. La difficulté est ensuite de répartir cette erreur sur les différents poids du réseau (c'est le Credit Assignment Problem de Minsky).







### **BIAIS ET VARIANCE (1)**

On dispose d'une base d'apprentissage D formée de n couples d'entrées et de réponses associées :

$$D = \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$$

Soit  $\hat{y} = F_w(x)$  une fonction d'estimation paramétrée par le vecteur w.

 Par exemple w peut être les paramètres d'une régression ou les poids d'un réseaux de neurones.

Notons e(X, Y), l'erreur d'estimation :

$$e(X,Y) = Y - \widehat{Y} = Y - F_w(X)$$

Le risque moyen  $R_0(w)$  est l'espérance du carré de cette erreur sur la distribution réelle des entrées (X,Y).

$$R_0(w) = E[e(X,Y)^2] = E[Y - F_w(X)]^2$$

C'est bien entendu la fonction que l'on cherche à minimiser en w.



# **BIAIS ET VARIANCE (2)**

On peut réécrire  $R_0$  en faisant intervenir la projection g(X) = E[Y|X]

$$R_0(w) = E[Y - g(X) + g(X) - F_w(X)]^2$$
  
=  $E[Y - g(X)]^2 + 2E[(Y - g(X))(g(X) - F_x(X))] + E[g(X) - F_w(X)]^2$ 

• Or  $\epsilon = Y - g(X) \perp X$ , donc  $E[\epsilon g(X)] = 0$  et  $E[\epsilon F_w(X)] = 0$ 

#### **Finalement**

$$R_0(w) = E[\epsilon^2] + E[g(X) - F_w(X)]^2$$

- Le premier terme est indépendant de w, donc la minimisation du risque moyen  $R_0$  revient à minimiser l'écart à la projection sur l'espace engendré par le vecteur X.
- Si  $w_0 = \arg\min_{w} R_0(w)$ , alors la fonction  $F_{w_0}$  approxime au mieux  $x \mapsto E[y|x]$ .
- $R_0 \ge E[\epsilon^2]$  donc on ne peut pas faire mieux que E[y|x].



# **RISQUE EMPIRIQUE (1)**

Notons  $R_D$  la moyenne des carrés des erreurs sur l'ensemble d'exemples D, c'est le risque empirique :

$$R_D(w) = E_D[e^2] = \frac{1}{n} \sum_{i=1}^n e^2(x^{(i)}, y^{(i)})$$

- L'apprentissage sur le jeu d'exemples D revient à minimiser ce risque empirique et conduit à trouver un paramètre  $w_D$  qui estime au mieux  $E_D[y|x]$ .
- Soit la fonction  $D \mapsto w_D$  qui à un ensemble d'exemples D associe le paramètre  $w_D$  minimisant le risque empirique, on peut voir la fonction d'estimation comme une fonction de l'ensemble d'exemples plutôt que du paramètre w.

$$F_D(x) = F_{w_D}(x)$$

On va étudier le comportement de cette fonction sur l'ensemble des expériences possibles  $\mathcal{D}=\left\{D|D\in\mathcal{P}\big(X(\Omega)\big)\right\}$  et on notera  $E_*$  la moyenne suivant toutes ces expériences.

• Pour x fixé :

$$E_*[g(x) - F_D(x)]^2 = E_*[g(x) - E_*F_D(x) + E_*F_D(x) - F_D(x)]^2$$

$$= E_*[g(x) - E_*F_D(x)]^2 + E_*[E_*F_D(x) - F_D(x)]^2$$

$$+ E_*(g(x) - E_*F_D(x)) + E_*F_D(x) - F_D(x)$$
Ne dépend pas de D

De moyenne nulle



# **RISQUE EMPIRIQUE (2)**

Pour toute observation x :

$$E_*[g(x) - F_D(x)]^2 = [g(x) - E_*F_D(x)]^2 + E_*[E_*F_D(x) - F_D(x)]^2$$
Biais Variance

La fonction  $D \mapsto F_D(x)$  s'interprète comme la réponse à l'entrée x d'un estimateur dont l'apprentissage a été basé sur le lot D.

- 1. L'estimateur est sans biais si  $E_*F_D(x)=g(x)$ , c'est-à-dire si l'architecture des fonctions  $F_w$  permet de réaliser en moyenne l'espérance conditionnelle.
- 2. Plus le modèle de fonctions sera complexe, plus on aura de chance que la fonction g puisse être modélisée correctement, le biais va donc diminuer.
- 3. Cependant, plus le modèle est complexe, plus les résultats des apprentissages seront divers et donc la variance va augmenter.
- Il est donc important de réduire la complexité du modèle, par exemple en utilisant la régularité des données pour construire des estimateurs plus simples.



# **GÉNÉRALISATION (1)**

#### **Hypothèses:**

- x et y sont liés par une fonction inconnue y = g(x).
- P(x) est la probabilité que l'environnement génère l'état x.
- P(x,y) = P(y|x)P(x) est la probabilité conjointe d'observer un couple exemple (x,y) que l'on utilisera pendant l'apprentissage.
- P(y|x) est la relation que l'on cherche à estimer par une fonction  $y = F_w(x)$ .

#### **Notations:**

• 
$$R_0(w) = \int e(y, F_w(x))^2 dP(x, y)$$
 est le risque réel.

$$R_D(w) = \frac{1}{n} \sum_{i=1}^n e\left(y^{(i)}, F_w(x^{(i)})\right)^2$$
 est le risque empirique sur le jeu d'exemples  $D$ .

• 
$$w_0 = \arg\min_{w} R_0(w)$$
 est inconnu.

•  $w_D = \arg\min_{w} R_D(w)$  est le résultat de l'apprentissage.

#### Problème:

#### Sous quelles condition $F_{w_D}$ est proche de $F_{w_0}$ ?

o En fait, nous ne sommes pas intéressés par la proximité des paramètres.



### **CONVERGENCE PRESQUE SURE**

$$Z_w = e(Y, F_w(X))^2$$

Comme (X,Y) est un vecteur aléatoire de loi P(x,y) et que  $e^2$  est mesurable,  $Z_w$  est aussi une variable aléatoire et :

- $R_D(w)$  est la moyenne empirique de  $Z_w$  pour le jeu de données exemples D.
- $R_0(w)$  est l'espérance de  $Z_w$  sous la loi P.

La loi forte des grands nombres nous assure que pour un w donné :

$$R_D(w) \xrightarrow[n \to \infty]{\rho s} R_0(w)$$

Cela justifie l'utilisation du risque empirique, mais rien n'assure que le vecteur des poids  $w_D$  qui minimise  $R_D$  minimise aussi  $R_0$ 



### **CONVERGENCE UNIFORME**

#### **Proposition:**

- Si on peut assurer la convergence uniforme en probabilité par rapport à w de  $R_D$  vers  $R_0$ , alors  $R_0(w_D)$  converge vers la plus petite valeur possible pour le risque :  $R_0(w_0)$ .
- Preuve :

Exprimons la convergence uniforme de  $R_D$  vers  $R_0$ :

$$\forall \epsilon > 0, \qquad P\{sup_w | R_0(w) - R_D(w) | \ge \epsilon\} \xrightarrow[n \to +\infty]{} 0$$

**Alors** 

$$\forall \alpha > 0, \forall \epsilon > 0, \exists D \in \mathcal{D}, P\{sup_w|R_0(w) - R_D(w)| \geq \epsilon\} \leq \alpha$$

Dans ce cas, avec la probabilité  $1-\alpha$ 

$$\begin{cases} R_0(w_D) - R_D(w_D) & < \epsilon \\ R_D(w_0) - R_0(w_0) & < \epsilon \end{cases}$$

Or par définition  $R_D(w_D) \le R_D(w_0)$  donc en sommant membre à membre les deux équations précédentes on obtient :

$$R_0(w_D) - R_0(w_0) < 2\epsilon$$

Soit

$$\forall \alpha > 0, \forall \epsilon > 0, \exists D \in \mathcal{D}, P\{|R_0(w_D) - R_0(w_0)| \ge 2\epsilon\} \le \alpha$$



# **GRANDES DÉVIATIONS**

#### Inégalité de Hoeffding:

- Soient  $(Z_i)_{i=1...n}$  des variables réelles i.i.d. (indépendantes et identiquement distribuées)
- Bornées :  $\forall i, Z_i \in [a, b]$
- De moyenne  $\mu = E(Z_i)$
- Alors, si  $\bar{\mu}_n = \frac{1}{n} \sum_{i=1}^n Z_i$  est la moyenne empirique,

$$\forall \epsilon > 0, \qquad P(|\bar{\mu}_n - \mu| \ge \epsilon) \le 2 \exp\left(-\frac{2n\epsilon^2}{(b-a)^2}\right)$$



# BORNE DE L'ERREUR DE GÉNÉRALISATION

#### **Hypothèses:**

- On suppose que le risque est borné,  $R_0(w) \in [0,1]$ 
  - Par exemple si  $|e(y, x)| \le 1$ .
- On considère des ensembles de fonctions finis : card  $\mathcal{F} = |\mathcal{F}| < +\infty$ 
  - Si  $\mathcal{F} = \{F_w | w \in \mathbb{R}^p\}$ , il suffit de s'assurer que le nombre de fonctions produites ainsi est fini ou par exemple de quantifier l'ensemble des w possibles.

#### Théorème:

$$P\left\{\sup_{w}|R_{0}(w)-R_{D}(w)|\leq\epsilon\right\}\geq1-\delta\quad si\quad\epsilon\geq\sqrt{\frac{\log|\mathcal{F}|+\log(2/\delta)}{2n}}$$

#### Remarques:

- Si on quantifie chaque paramètre sur q valeurs, alors  $|\mathcal{F}| \sim q^p$  (c'est l'entropie de Shannon).
  - Pour avoir une erreur de l'ordre de  $\epsilon$ , il faut que  $q \sim d/\epsilon$  (intervalles de taille  $\epsilon/m$ ) (Pythagore).
- Il faut que  $\frac{\log |\mathcal{F}|}{n} \ll \epsilon^2$  soit  $\frac{p}{n} \ll \epsilon^2$  et donc que le nombre d'exemples (n) soit très très grand devant le nombre de paramètres (p).



# DÉMONSTRATION DE LA BORNE

#### On fait une majoration très brutale

$$P\left\{\sup_{w}|R_{0}(w)-R_{D}(w)| \geq \epsilon\right\} \leq \sum_{w}P\{|R_{0}(w)-R_{D}(w)| \geq \epsilon\}$$

$$\leq \sum_{w}2\exp(-2n\epsilon^{2})$$

$$\leq 2|\mathcal{F}|e^{-2n\epsilon^{2}}$$

- La seconde inégalité est une application de Hoeffding avec a=0 et b=1.
- Le résultat est obtenu si on pose  $\delta \geq 2|\mathcal{F}|e^{-2n\epsilon^2}$  soit :

$$\epsilon^2 \ge \frac{\log(2|\mathcal{F}|/\delta)}{2n}$$



# MALÉDICTION DES GRANDES DIMENSIONS

#### **Corolaire**

S'il existe une constante C, et un nombre  $\beta$  tels que

$$R_0(w_0) \le C (\log |\mathcal{F}|)^{-\beta}$$

Alors  $\forall \epsilon > 0$ ,  $\forall n$ , on pose  $\log |\mathcal{F}| = \log(2/\delta) = n\epsilon^2$ 

$$P(R_0(w_D) \le 3\epsilon) \ge 1 - 2e^{-C^{\frac{1}{\beta}}\epsilon^{-\frac{1}{\beta}}}$$

Si

$$n \ge C^{\frac{1}{\beta}} \epsilon^{-2 - \frac{1}{\beta}}$$



(Application du théorème précédent en choisissant  $log|\mathcal{F}| = \log(2/\delta) = n\epsilon^2$ )

Plus l'erreur de généralisation décroit vite avec la complexité de l'ensemble de fonctions (plus  $\beta$  est grand) moins on a besoin d'exemples pour assurer une erreur d'approximation petite.

#### **Cas des fonction Lipchitziennes**

- Si la fonctions F à estimer par les  $F_w$  est uniformément lpha- lipchitzienne de  $\mathbb{R}^d o \mathbb{R}$ 
  - □ ∃C > 0 et un polynôme  $Q_{\alpha}(x)$  de degré inférieur à  $\alpha$  tel que  $\forall (x, x'), |F(x) Q_{\alpha}(x')| \le C ||x x'||^{\alpha}$
- Alors si  $R_0(w_0) \le C (\log |\mathcal{F}|)^{-\beta}$

$$\beta \le \alpha/d$$



# DÉMONSTRATION PRÉCÉDENTE

#### Majoration par l'inégalité de Hoeffding avec probabilité $1-\delta$

$$R_0(w_D) - R_D(w_D) \le \epsilon$$
 et  $R_D(w_0) - R_0(w_0) \le \epsilon$ 

En sommant les deux équations :

$$R_0(w_D) \le 2\epsilon + R_0(w_0) + (R_D(w_D) - R_D(w_0)) \le 2\epsilon + R_0(w_0)$$

Car le terme de droite est négatif :  $R_D(w_D) - R_D(w_0) \le 0$ 

#### Il suffit donc d'avoir

$$R_0(w_0) \le C (\log |\mathcal{F}|)^{-\beta} \le \epsilon$$

Soit

$$(\log |\mathcal{F}|)^{-\beta} \le \frac{\epsilon}{C} \Rightarrow \log |\mathcal{F}| \ge \left(\frac{C}{\epsilon}\right)^{\frac{1}{\beta}}$$

On choisit de prendre n,  $\epsilon$  et  $\delta$  tels que  $\log |\mathcal{F}| = \log(2/\delta) = n\epsilon^2$ , ce qui vérifie la condition du théorème. Ainsi

$$\log\left(\frac{2}{\delta}\right) = \log|\mathcal{F}| \ge \left(\frac{C}{\epsilon}\right)^{\frac{1}{\beta}}$$

$$\delta \leq 2e^{-\left(\frac{C}{\epsilon}\right)^{\frac{1}{\beta}}}$$
 d'où  $1 - \delta \geq 1 - 2e^{-\left(\frac{C}{\epsilon}\right)^{\frac{1}{\beta}}}$ 



### SIMPLIFICATION: UNE CLASSIFICATION BINAIRE

Pour simplifier l'étude on considère un cadre binaire: on suppose que  $y \in \{0,1\}$ .

Soit

$$\mathcal{F} = igl\{F_w, \quad F_w: I\!\!R^p 
ightarrow \{0,\!1\}igr\}$$

une famille de classifications binaires réalisées par un réseau F.

**Posons** 

$$\mathcal{S} = \left\{x^{(1)}, \ldots x^{(N)} \mid x^{(i)} \in \mathbb{X}
ight\}$$

Alors, pour F fixé (w fixé), le réseau définitune partition binaire de  $\mathcal S$  (une dichotomie).

$$egin{array}{lcl} \mathcal{S}_0(F) &=& ig\{x \in \mathcal{S} \mid F(x) = 0ig\} \ \mathcal{S}_1(F) &=& ig\{x \in \mathcal{S} \mid F(x) = 1ig\}. \end{array}$$

Notons  $\Delta_{\mathcal{F}}(\mathcal{S})$  le nombre de dichotomies de  $\mathcal{S}$  réalisées par la famille de fonctions  $\mathcal{F}$ .

$$\Delta_{\mathcal{F}}(\mathcal{S}) = \#ig\{\{\mathcal{S}_0(F),\!\mathcal{S}_1(F)\} \mid F \in \mathcal{F}ig\}.$$

Notons aussi  $\Delta_{\mathcal{F}}(N)$  le maximum du nombre précédent pour tous les jeux d'exemples de taille N.

$$\Delta_{\mathcal{F}}(N) = \max_{\mathcal{S} | \# \mathcal{S} = N} \Delta_{\mathcal{F}}(\mathcal{S}).$$



### **DIMENSION DE VAPNIK**

DEFINITION 2 On dit que la famille  ${\cal S}$  est éclatée par  ${\cal F}$  si

$$\Delta_{\mathcal{F}}(\mathcal{S}) = 2^{\#\mathcal{S}}$$



En dimension 2 trois points sont « éclatables » par un modèle linéaire

DEFINITION La dimension de Vapnik h de  $\mathcal{F}$  est le cardinal maximum d'un ensemble  $\mathcal{S}$  qui peut être éclaté par  $\mathcal{F}$ :

$$egin{array}{ll} h &=& \maxig\{\#\mathcal{S}\mid \mathcal{S}\subset \mathbb{X}\; ext{\it et}\; \Delta_{\mathcal{F}}(\mathcal{S})=2^{\#\mathcal{S}}ig\} \ &=& \maxig\{N\mid \Delta_{\mathcal{F}}(N)=2^Nig\} \end{array}$$

THÉORÈME (Vapnik)  $\forall \epsilon > 0$ , on a

$$ext{P}\Big\{ \sup_{w} |\lambda_0(w) - \lambda_{\mathcal{D}}(w)| > \epsilon \Big\} < \Big( rac{2eN}{h} \Big)^h \exp(-\epsilon^2 N) \\ ext{P}\Big\{ \sup_{w} rac{|\lambda_0(w) - \lambda_{\mathcal{D}}(w)|}{\sqrt{\lambda_0(w)}} > \epsilon \Big\} < \Big( rac{2eN}{h} \Big)^h \exp\Big(-rac{\epsilon^2 N}{4} \Big).$$



# ERREUR DE GÉNÉRALISATION

$$lpha = \left(rac{2eN}{h}
ight)^h \exp(-\epsilon_0^2 N) \quad \left\{ egin{array}{c} \epsilon_0(N,h,lpha) = \sqrt{rac{h}{N}} igl[\lograc{2N}{h}+1igr] - rac{1}{N}\loglpha \ & \ \epsilon_1(N,h,lpha,\lambda_{\mathcal{D}}(w)) = 2\epsilon_0^2(N,h,lpha) \left[1+\sqrt{1+rac{\lambda_{\mathcal{D}}(w)}{\epsilon_0^2(N,h,lpha)}}
ight] \end{array}$$

Avec une probabilité  $1-\alpha$ , il existe  $\mathcal D$  assez grand tel que :







# ROBUSTESSE

- 1. BAGGING
- 2. VALIDATION CROISÉE



### **BAGGING**

Bagging = Bootstrap Averaging (Leo Breiman, 1994 - 1996).

C'est une méthode ensembliste. Elle s'applique aux arbres de décision, mais aussi à toute autre méthode de régression ou de classification.

- On tire avec remise des échantillons  $D_1, ..., D_B$  dans D.
  - Si la taille des  $D_i$  est la même que celle de D on parle de **bootstrap**.
- On crée un modèle  $Y = f_i(X)$ ,  $j = 1 \dots B$ , par apprentissage sur chaque échantillon.
- Pour l'estimation :
  - On choisit la moyenne des résultats pour une régression

$$\hat{y} = \frac{1}{B} \sum_{j} f_j(x)$$

On vote la catégorie majoritaire pour une classification

$$\hat{y} = \arg\max_{k} \sum_{j=1}^{B} \mathbb{I}_{f_{j}(x)=k}$$



# VALIDATION CROISÉE

Deux méthodes sont usuellement utilisées pour calculer l'erreur de généralisation d'une régression ou d'une classification.

- K-fold: on partitionne de manière déterministe D en K parties disjointes (folds).
  - Pour  $k=1\dots K$ , on crée le sous échantillon  $D_k$  formé de la réunion de toutes les parties sauf la  $k^{i\`{
    m e}me}$ .
    - On apprend l'estimateur sur  $S_k$ .
    - On calcule l'erreur  $e_k$  sur  $S \setminus S_k$ .
  - On estime la moyenne des erreurs dont on peut obtenir un intervalle de confiance par approximation gaussienne.

$$\circ \ \bar{e} = \frac{1}{K} \sum_{k} e_{k} .$$

Leave-one-out: c'est la même méthode que K-fold, mais avec K=N. Donc on implémente un estimateur sur toutes les observations sauf une que l'on va tester sur celle que l'on a mis de coté.

La plupart des heuristiques d'apprentissage d'arbres de décision limitent la croissance des arbres par validation croisée.



# A SUIVRE

**MACHINES DE BOLTZMANN** 

