Statistics One

Lecture 9
The Central Limit Theorem

Two segments

- · Sampling distributions
- Central limit theorem

2

Lecture 9 ~ Segment 1

Sampling distributions

3

Review of histograms

- Histograms are used to display distributions
- For example, the body temperature of a random sample of healthy people

Review of histograms

 If a distribution is perfectly normal then the properties of the distribution are known

The normal distribution

The normal distribution & probability

- This allows for predictions about the distribution
 - Predictions aren't certain
 - They are probabilistic

10

The normal distribution & probability

- If one person is randomly selected from the sample, what is the probability that his or her body temperature is less than Z = 0?
 - Easy, p = .50

11

The normal distribution & probability

- If one person is randomly selected from the sample, what is the probability that his or her body temperature is greater than Z = 2? (100 F°, 38 C°)?
 - -p = .02

The normal distribution & probability

- If this sample is healthy, then no one should have a fever
- · I detected a person with a fever
- · Therefore, this sample is not 100% healthy

13

Sampling distribution

- A distribution of sample statistics, obtained from multiple samples
 - For example,
 - · Distribution of sample means
 - · Distribution of sample correlations
 - · Distribution of sample regression coefficients

14

Sampling distribution

- · It is hypothetical
 - Assume a mean is calculated from a sample, obtained randomly from the population
 - Assume a certain sample size, N
 - Now, assume we had multiple random samples, all of size N, and therefore many sample means
 - Collectively, they form a sampling distribution 15

Sampling distribution & probability

 If one sample is obtained from a normal healthy population, what is the probability that the sample mean is less than Z = 0?
 Easy, p = .50

Sampling distribution & probability

 If one sample is obtained from a normal healthy population, what is the probability that the sample mean is greater than Z = 2 (100 F°, 38 C°)?

-p = .02

17

Sampling distribution & probability

- If this population is healthy, then no one sample should have a high mean body temperature
- · I obtained a very high sample mean
- · Therefore, the population is not healthy

18

Sampling distribution

- A distribution of sample statistics, obtained from multiple samples, each of size N
 - Distribution of sample means
 - Distribution of sample correlations
 - Distribution of sample regression coefficients

19

END SEGMENT

Lecture 9 ~ Segment 2

The Central Limit Theorem

23

Central Limit Theorem

- · Three principles
 - The mean of a sampling distribution is the same as the mean of the population
 - The standard deviation of the sampling distribution is the square root of the variance of sampling distribution $\sigma^2 = \sigma^2 / N$
 - The shape of a sampling distribution is approximately normal if either (a) N >= 30 or (b) the shape of the population distribution is normal

NHST & Central limit theorem

- · Multiple regression
 - Assume the null hypothesis is true

 - Conduct a studyCalculate B, SE, and t
 - t = B/SE

NHST & Central limit theorem

- Multiple regression
 - If the null hypothesis is true (B=0), then no one sample should have a very low or very high B

 I obtained a very high B

 - Therefore, Reject the null hypothesis

NHST & Central limit theorem

- · Multiple regression
 - Assume the null hypothesis is true
 Conduct a study
 Calculate B, SE, and t
 t = B/SE

 - p-value is a function of t and sample size

NHST & the central limit theorem

- · Multiple regression
 - If the null hypothesis is true (B=0), then no one sample should have a very low or very high B
 I obtained a very high B
 Therefore, Reject the null hypothesis

 - Very high and very low is p < .05

NHST & the central limit theorem

· Remember that sampling error, and therefore standard error, is largely determined by sample size

Sampling error and sample size

Sampling error and sample size

Central Limit Theorem

- · Three principles
 - The mean of a sampling distribution is the same as the mean

 - The mean of a sampling distribution is the same as the mean of the population
 The standard deviation of the sampling distribution is the square root of the variance of sampling distribution σ² = σ² /N
 The shape of a sampling distribution is approximately normal if either (a) N >= 30 or (b) the shape of the population distribution is normal

END SEGMENT

END LECTURE 9