Orthogonal Projection

Alvin Kim

July 19, 2024

- 1 Introduction
 - Definitions
 - Example
- 2 Formulas
 - Projection onto a Vector
 - Projection onto a Subspace
 - The Projection Matrix
 - The Error Matrix
- 3 Properties
 - Projection Minimizes Error
 - $\blacksquare P^T$
 - P^2
 - Sanity Check: E^2

4 Special Cases

- Sanity Check: A Has One Column
- Projection from R^3 onto y-axis
- Projection from R^3 onto xz-plane
- A is an Orthonormal Matrix
- \bullet $b \perp S$
- $\vec{b} \in S$
- 5 Conclusion
 - Formulas Recapped
 - Properties Recapped
 - Next Steps

Introduction

What is a projection?

 $\operatorname{proj}_S \vec{b}$, the projection of vector \vec{b} onto subspace S, is the vector inside of S closest to \vec{b} .

What is a projection?

 $\operatorname{proj}_S \vec{b}$, the projection of vector \vec{b} onto subspace S, is the vector inside of S closest to \vec{b} .

Note

In this presentation, projection refers to specifically orthogonal projection, \vec{p} refers to proj_S \vec{b} , and \vec{e} refers to the error vector $\vec{e} = \vec{b} - \vec{p}$. The error vector is also called the rejection.

Definitions

What is a projection?

 $\operatorname{proj}_S \vec{b}$, the projection of vector \vec{b} onto subspace S, is the vector inside of S closest to \vec{b} .

Closest means that the error is orthogonal to S.

What is a projection?

 $\operatorname{proj}_S \vec{b}$, the projection of vector \vec{b} onto subspace S, is the vector inside of S closest to \vec{b} .

Closest means that the error is orthogonal to S.

Note

The dimension of subspace S can be anything from 0 to the dimension of the space we are working inside.

 $_{\rm Example}$

Example

Example

Draw $\operatorname{proj}_a b$.

Example

Example

Note

When projecting a vector onto another vector \vec{a} , the subspace S is the span of \vec{a} .

Example

Example

Example

Example

Projection onto a Vector

Consider projecting \vec{b} onto \vec{a} .

Projection onto a Vector

Consider projecting \vec{b} onto \vec{a} . What we know:

$$\vec{e} = \vec{b} - \vec{p}$$
$$\vec{p} = c\vec{a}$$
$$\vec{e} \cdot \vec{a} = 0$$

Consider projecting \vec{b} onto \vec{a} . What we know:

$$\vec{e} = \vec{b} - \vec{p}$$

$$\vec{p} = c\vec{a}$$

$$\vec{e} \cdot \vec{a} = 0$$

$$\vec{e} = \vec{b} - c\vec{a}$$

$$(\vec{b} - c\vec{a}) \cdot \vec{a} = 0$$

$$\vec{b} \cdot \vec{a} - c\vec{a} \cdot \vec{a} = 0$$

$$\vec{b} \cdot \vec{a} = c\vec{a} \cdot \vec{a}$$

$$c = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}}$$

$$\vec{p} = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}} \vec{a}$$

Consider projecting \vec{b} onto \vec{a} . What we know:

$$\vec{e} = \vec{b} - \vec{p}$$
$$\vec{p} = c\vec{a}$$
$$\vec{e} \cdot \vec{a} = 0$$

$$\vec{e} = \vec{b} - c\vec{a}$$
$$(\vec{b} - c\vec{a}) \cdot \vec{a} = 0$$
$$\vec{b} \cdot \vec{a} - c\vec{a} \cdot \vec{a} = 0$$
$$\vec{b} \cdot \vec{a} = c\vec{a} \cdot \vec{a}$$
$$c = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}}$$

$$\vec{p} = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}} \vec{a}$$

Consider projecting \vec{b} onto \vec{a} . What we know:

$$\vec{e} = \vec{b} - \vec{p}$$
$$\vec{p} = c\vec{a}$$
$$\vec{e} \cdot \vec{a} = 0$$

$$\vec{e} = \vec{b} - c\vec{a}$$
$$(\vec{b} - c\vec{a}) \cdot \vec{a} = 0$$
$$\vec{b} \cdot \vec{a} - c\vec{a} \cdot \vec{a} = 0$$
$$\vec{b} \cdot \vec{a} = c\vec{a} \cdot \vec{a}$$
$$c = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}}$$

$$ec{p} = rac{ec{a} \cdot ec{b}}{ec{a} \cdot ec{a}} ec{a}$$

Projection onto a Vector

Consider projecting \vec{b} onto \vec{a} . What we know:

$$\vec{e} = \vec{b} - \vec{p}$$
$$\vec{p} = c\vec{a}$$
$$\vec{e} \cdot \vec{a} = 0$$

$$\vec{e} = \vec{b} - c\vec{a}$$
$$(\vec{b} - c\vec{a}) \cdot \vec{a} = 0$$

$$\vec{b} \cdot \vec{a} = c \vec{a} \cdot \vec{a}$$

$$c = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}}$$

$$\vec{p} = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}} \vec{a}$$

Projection onto a Vector

Consider projecting \vec{b} onto \vec{a} . What we know:

$$\vec{e} = \vec{b} - \vec{p}$$
$$\vec{p} = c\vec{a}$$
$$\vec{e} \cdot \vec{a} = 0$$

$$\vec{e} = \vec{b} - c\vec{a}$$
$$(\vec{b} - c\vec{a}) \cdot \vec{a} = 0$$
$$\vec{b} \cdot \vec{a} - c\vec{a} \cdot \vec{a} = 0$$
$$\vec{b} \cdot \vec{a} = c\vec{a} \cdot \vec{a}$$
$$c = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}}$$

$$\vec{p} = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}} \vec{a}$$

Projection onto a Vector

From that:

Consider projecting \vec{b} onto \vec{a} . What we know:

$$\vec{e} = \vec{b} - \vec{p}$$
$$\vec{p} = c\vec{a}$$
$$\vec{e} \cdot \vec{a} = 0$$

$$\vec{e} = \vec{b} - c\vec{a}$$

$$(\vec{b} - c\vec{a}) \cdot \vec{a} = 0$$

$$\vec{b} \cdot \vec{a} - c\vec{a} \cdot \vec{a} = 0$$

$$\vec{b} \cdot \vec{a} = c\vec{a} \cdot \vec{a}$$

$$c = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}}$$

$$\vec{p} = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}} \vec{a}$$

Projection onto a Subspace

Project \vec{b} onto S

Projection onto a Subspace

Project \vec{b} onto S

Suppose that $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n$ are a basis of S, let

$$A = \begin{bmatrix} | & | & | \\ \vec{a}_1 & \vec{a}_2 & \dots & \vec{a}_n \\ | & | & | \end{bmatrix}$$

and let $\vec{p} = A\vec{c}$. We also know:

$$\vec{e} = \vec{b} - \vec{p}$$

$$C(A)^{\perp} = N(A^T)$$

Project \vec{b} onto S

Suppose that $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n$ are a basis of S, let

$$A = \begin{bmatrix} | & | & | \\ \vec{a}_1 & \vec{a}_2 & \dots & \vec{a}_n \\ | & | & | \end{bmatrix}$$

and let $\vec{p} = A\vec{c}$. We also know:

$$\vec{e} = \vec{b} - \vec{p}$$
$$A^T \vec{e} = \vec{0}$$

Projection onto a Subspace

Project \vec{b} onto S

Suppose that $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n$ are a basis of S, let

$$A = \begin{bmatrix} | & | & & | \\ \vec{a}_1 & \vec{a}_2 & \dots & \vec{a}_n \\ | & | & & | \end{bmatrix}$$

and let $\vec{p} = A\vec{c}$. We also know:

$$\vec{e} = \vec{b} - \vec{p}$$
$$A^T \vec{e} = \vec{0}$$

Then.

$$\vec{e} = \vec{b} - A\vec{c}$$
$$A^{T}(\vec{b} - A\vec{c}) = \vec{0}$$

$$A^T \vec{b} - A^T A \vec{c} = \vec{0}$$

$$A^T \vec{b} = A^T A \vec{c}$$

$$(A^T A)^{-1} A^T \vec{b} = \vec{c}$$

$$\left| \vec{c} = (A^T A)^{-1} A^T \vec{b} \right|$$

$$\vec{p} = A(A^T A)^{-1} A^T \vec{b}$$

The Projection Matrix

Recall that for some matrix A, the projection $\vec{p} = A(A^T A)^{-1} A^T \vec{b}$.

Observation

For a specific A, \vec{p} is an unchanging linear transformation of \vec{b} . So, we can represent the linear transformation with a matrix P.

The Projection Matrix

The Projection Matrix

Recall that for some matrix A, the projection $\vec{p} = A(A^T A)^{-1} A^T \vec{b}$.

The Projection Matrix

The Projection Matrix

Recall that for some matrix A, the projection $\vec{p} = A(A^T A)^{-1} A^T \vec{b}$.

Let
$$P = A(A^T A)^{-1} A^T$$
. Then, $\vec{p} = P\vec{b}$.

Note

A must have linearly independent columns.

The Error Matrix

The Error Matrix

The error vector is \vec{b} projected onto S^{\perp} .

The Error Matrix

The Error Matrix

The error vector is \vec{b} projected onto S^{\perp} . Since finding the error vector is also a projection, there should be an error matrix E for some P such that $\vec{e} = E\vec{b}$.

The Error Matrix

The Error Matrix

The error vector is \vec{b} projected onto S^{\perp} . Since finding the error vector is also a projection, there should be an error matrix E for some P such that $\vec{e} = E\vec{b}$.

$$\vec{e} = \vec{b} - \vec{p}$$

$$\vec{e} = I\vec{b} - P\vec{b}$$

$$\vec{e} = (I - P)\vec{b}$$

$$E = I - P$$

Prove that for a vector $\vec{x} \in S$ where $\vec{x} \neq \vec{p}$ and $\vec{d} = \vec{b} - \vec{x}$, that $||\vec{d}|| > ||\vec{e}||$.

Hint

$$||\vec{d}|| > ||\vec{e}|| \iff \vec{d}^2 > \vec{e}^2$$

$$\vec{d}^2 = (\vec{b} - \vec{x})^2$$

$$\vec{d}^2 = (\vec{b} + \vec{0} - \vec{x})^2$$

$$\vec{d}^2 = (\vec{b} - \vec{p} + \vec{p} - \vec{x})^2$$

$$\vec{d}^2 = (\vec{b} - \vec{p} + \vec{p} - \vec{x})^2$$

$$\vec{d}^2 = (\vec{e} + \vec{p} - \vec{x})^2$$

$$\vec{d}^2 = \vec{e}^2 + 2\vec{e} \cdot (\vec{p} - \vec{x}) + (\vec{p} - \vec{x})^2$$

$$\vec{d}^2 = \vec{e}^2 + 2\vec{e} \cdot (\vec{p} - \vec{x}) + (\vec{p} - \vec{x})^2$$

$$\vec{d}^2 = \vec{e}^2 + (\vec{p} - \vec{x})^2$$

$$\vec{d}^2 = \vec{e}^2 + (\vec{p} - \vec{x})^2$$
$$\vec{d}^2 - \vec{e}^2 = (\vec{p} - \vec{x})^2$$

$$\vec{d}^2 = \vec{e}^2 + (\vec{p} - \vec{x})^2$$

$$\vec{d}^2 - \vec{e}^2 = (\vec{p} - \vec{x})^2 > 0$$

$$\vec{d}^2 = \vec{e}^2 + (\vec{p} - \vec{x})^2$$

$$\vec{d}^2 - \vec{e}^2 = (\vec{p} - \vec{x})^2 > 0$$

$$\vec{d}^2 > \vec{e}^2$$

Next Steps

- Applications
 - Graphics
 - Least Squares Regression
- Further Learning
 - Practice
 - Introduction to Linear Algebra 6th Edition Chapter
 4.2 by Gilbert Strang

