16-782 Planning & Decision-making in Robotics

Planning Representations: Probabilistic Roadmaps for Continuous Spaces

Maxim Likhachev

Robotics Institute

Carnegie Mellon University

• Planning for manipulation

• Planning for manipulation

- Planning for manipulation
 - robot state is defined by joint angles $Q = \{q_1, ..., q_6\}$
 - need to find a (least-cost) motion that connects Q_{start} to Q_{goal}

- Planning for manipulation
 - robot state is defined by joint angles $Q = \{q_1, ..., q_6\}$
 - need to find a (least-cost) motion that connects Q_{start} to Q_{goal}
 - Constraints:
 - All joint angles should be within corresponding joint limits
 - No collisions with obstacles and no self-collisions

Can we use a grid-based representation for planning?

- Planning for manipulation
 - robot state is defined by joint angles $Q = \{q_1, ..., q_6\}$
 - need to find a (least-cost) motion that connects Q_{start} to Q_{goal}
 - Constraints:
 - All joint angles should be within corresponding joint limits
 - No collisions with obstacles and no self-collisions

• Resolution complete planning (e.g. Grid-based):

- generate a systematic (uniform) representation (graph) of a free C-space (C_{free})
- search the generated representation for a solution guaranteeing to find it if one exists (completeness)
- can interleave the construction of the representation with the search (i.e., construct only what is necessary)

the example above is borrowed from "AI: A Modern Approach" by S. Russell & P. Norvig

- Resolution complete planning (e.g. Grid-based):
 - complete and provide sub-optimality bounds on the solution

Great. Any issues?

the example above is borrowed from "AI: A Modern Approach" by S. Russell & P. Norvig

- Resolution complete planning (e.g. Grid-based):
 - complete and provide sub-optimality bounds on the solution
 - can get computationally very expensive, especially in high-D

the example above is borrowed from "AI: A Modern Approach" by S. Russell & P. Norvig

Sampling-based planning:

Main observation:
The space is continuous and rather benign!

the example above is borrowed from "AI: A Modern Approach" by S. Russell & P. Norvig

Sampling-based planning:

- generate a sparse (sample-based) representation (graph) of a free C-space (C_{free})
- search the generated representation for a solution

the example above is borrowed from "AI: A Modern Approach" by S. Russell & P. Norvig

- Sampling-based planning:
 - provide **probabilistic** completeness guarantees
 - guaranteed to find a solution, if one exists, but only in the limit of the number of samples (that is, only as the number of samples approaches infinity)
 - well-suited for high-dimensional planning

the example above is borrowed from "AI: A Modern Approach" by S. Russell & P. Norvig

Main Questions in Sampling-based Planning

How to select samples to construct a "good" graph

How to search the graph

Can we interleave these steps

Step 1. Preprocessing Phase: Build a roadmap (graph) \mathcal{G} which, hopefully, should be accessible from any point in C_{free}

Step 2. Query Phase: Given a start configuration q_I and goal configuration q_G , connect them to the roadmap \mathcal{G} using a local planner, and then search the augmented roadmap for a shortest path from q_I to q_G

Step 1. Preprocessing Phase: Build a roadmap (graph) \mathcal{G} which, hopefully, should be accessible from any point in C_{free}

Step 2. Query Phase: Given a start configuration q_I and goal configuration q_G , connect them to the roadmap $\boldsymbol{\mathcal{G}}$ using a local planner, and then search the augmented roadmap for a shortest path from q_I to

 q_G

Step 1. Preprocessing Phase: Build a roadmap (graph) \mathcal{G} which, hopefully, should be accessible from any point in C_{free}

Step 2. Query Phase: Given a start configuration q_I and goal configuration q_G , connect them to the roadmap \mathcal{G} using a local planner, and then search the augmented roadmap for a shortest path from q_I to

 q_G

Can be as simple as a straight line (interpolation) connecting start (or goal) configuration to the nearest vertex in the roadmap

Any ideas for the local planner?

Step 1: Preprocessing Phase.

```
BUILD_ROADMAP

1  \mathcal{G}.init(); i \leftarrow 0;

2  while i < N

3   if \alpha(i) \in \mathcal{C}_{free} then

4   \mathcal{G}.add\_vertex(\alpha(i)); i \leftarrow i+1;

5   for each q \in NEIGHBORHOOD(\alpha(i),\mathcal{G})

6   if ((\mathbf{not} \ \mathcal{G}.same\_component(\alpha(i),q)) and CONNECT(\alpha(i),q)) then

7   \mathcal{G}.add\_edge(\alpha(i),q);
```


borrowed from "Planning Algorithms" by S. LaValle

Step 1: Preprocessing Phase.

```
BUILD_ROADMAP

1 \mathcal{G}.init(); i \leftarrow 0;

2 while i < N

3 if \alpha(i) \in \mathcal{C}_{free} then

4 \mathcal{G}.add\_vertex(\alpha(i))

5 for each q \in NEIC

6 if ((not \mathcal{G}.same\_con.)

7 \mathcal{G}.add\_edge(\alpha(i), q);
```


borrowed from "Planning Algorithms" by S. LaValle

Step 1: Preprocessing Phase.

Step 1: Preprocessing Phase.

```
BUILD ROADMAP
       \mathcal{G}.\operatorname{init}(); i \leftarrow 0;
       while i < N
                                                                                                    can be replaced with:
 3
            if \alpha(i) \in \mathcal{C}_{free} then
                                                                                             "number of successors of q < K"
                  \mathcal{G}.add\_vertex(\alpha(i)); i \leftarrow i + 1;
  5
                  for each q \in \text{NEIGHBORHOOD}(\alpha(i), \mathcal{G})
                        if ((\text{not } \mathcal{G}.\text{same\_component}(\alpha(i),q)) and \text{connect}(\alpha(i),q)) then
 6
                              \mathcal{G}.add_edge(\alpha(i), q);
                                                    \mathcal{C}_{obs}
```

borrowed from "Planning Algorithms" by S. LaValle

Step 1: Preprocessing Phase.

Efficient implementation of $q \in NEIGHBORHOOD(\alpha(i), \mathbf{G})$

- select K vertices closest to $\alpha(i)$
- select K (often just 1) closest points from each of the components in *G*
- select all vertices within radius r from $\alpha(i)$

borrowed from "Planning Algorithms" by S. LaValle

Step 1: Preprocessing Phase

Sampling strategies

Why do we need anything better than uniform sampling?

- sample uniformly from C_{free}

borrowed from "Planning Algorithms" by S. LaValle

Step 1: Preprocessing Phase.

Sampling strategies

- sample uniformly from C_{free}
- select at random an existing vertex with a probability distribution inversely proportional to how well-connected a vertex is, and then generate a random motion from it to get a sample $\alpha(i)$
- bias sampling towards obstacle boundaries

borrowed from "Planning Algorithms" by S. LaValle

Step 1: Preprocessing Phase.

Sampling strategies

- sample q_1 and q_2 from Gaussian around q_1 and if either is in C_{obs} , then the other one is set as $\alpha(i)$
- sample q_1, q_2, q_3 from Gaussian around q_2 and set q_2 as $\alpha(i)$ if q_2 is in C_{free} , and q_1 and q_3 are in C_{obs}
- bias sampling away from obstacles

borrowed from "Planning Algorithms" by S. LaValle

What You Should Know...

- Pros and Cons of Resolution-complete approaches (like Grid-based or Lattice-based graphs) vs.
 Sampling-based approaches
- What domains are more suitable for each
- How PRM works