

Your First RecSys

Даниил Потапов

Руководитель группы персонализации и рекомендательных систем MTC BigData

Зачем это все

Основная цель - собрать необходимый минимум знаний для построения рекомендательной системы в одном месте.

Поэтому меньше теории и больше python кода.

Но теорию изучать тоже надо, буду компенсировать ссылками :)

• MTC

Общий план лекций

- Введение в рекомендательные системы
- Методы валидации, метрики и бейзлайны
- Коллаборативная фильтрация и гибридные методы
 - Разбор библиотек implicit и LightFM
- Градиентный бустинг и задача реранжирования
 - o CatBoost/XGBoost/LightGBM и learning to rank
- Как и куда "копать" дальше

Введение в рекомендательные системы

• MTC

План лекции

- Примеры рекомендательных систем
- Классика Netflix prize
- Основная идея и постановка задачи
- Данные для рекомендательных систем и методы работы с ними
- Виды рекомендательных систем
- Полезные ссылки

Примеры рекомендательных систем

Контентные системы, например Youtube

Примеры рекомендательных систем

Интернет магазины, например Amazon

Customers Who Bought This Item Also Bought

Data Science from Scratch: First Principles with Python Joel Grus

全全全公 54 #1 Best Seller (in Data Mining

Paperback

<

\$27.68 **Prime** \$33.99 \Prime

Python for Data Analysis: Data Wrangling with Pandas, NumPy, and... Wes McKinney 118 Paperback

Data Science for Business: What You Need to Know about Data Mining and... > Foster Provost 135 Paperback \$37.99 **Prime**

Reproducible Research with R and R Studio. Second Edition... Christopher Gandrud 金金金金金3 Paperback \$51.97 **Prime**

An Introduction to Statistical Learning: with Applications in R... Gareth James 105 Hardcover \$68.35 **Prime**

Data Smart: Using Data Science to Transform Information into Insight > John W. Foreman ******** 99

#1 Best Seller (in Computer Simulation

Paperback \$28.16 **Prime**

Page 1 of 15

>

The Statistical Sleuth: A Course in Methods of Data Analysis Fred Ramsey 金金金金金6

Hardcover \$284.42 Prime

Примеры рекомендательных систем

У социальных сетей возникают следующие задачи:

- Персональные ленты
- Люди, с которыми вы можете быть знакомы

Но вообще ранжировать можно что угодно:

- Поисковую выдачу
- Адреса назначения в агрегаторах такси

Netflix Prize

Соревнование проводилось почти три года, с 2 октября 2006 по 26 июня 2009 года.

Основная цель - превзойти модель Netflix на 10% по RMSE на данных о пользовательских рейтингах фильмов

Призы - 1 миллион долларов за первое место.

Netflix Prize

Leaderboard

Showing Test Score. Click here to show quiz score

Display top 20 ▼ leaders.

Rank	Team Name	Best Test Sco	re <u>%</u>	Improvement	Best Submit Time
Grand	Prize - RMSE = 0.8567 - Winning 1	Team: BellKor's P	ragm	atic Chaos	
1	BellKor's Pragmatic Chaos	0.8567	1	10.06	2009-07-26 18:18:28
2	The Ensemble	0.8567	1	10.06	2009-07-26 18:38:22
3	Grand Prize Team	0.8582	1	9.90	2009-07-10 21:24:40
4	Opera Solutions and Vandelay United	0.8588	1	9.84	2009-07-10 01:12:31
5	Vandelay Industries!	0.8591	1	9.81	2009-07-10 00:32:20
6	PragmaticTheory	0.8594	1	9.77	2009-06-24 12:06:56
7	BellKor in BigChaos	0.8601	1	9.70	2009-05-13 08:14:09
8	Dace	0.8612	1	9.59	2009-07-24 17:18:43

credit: https://www.netflixprize.com/leaderboard.html

Netflix Prize

Краткие итоги:

- "Бум" в исследовательской среде. Многие методы из этого соревнования до сих пор используются
- В "прод" ушла модель не с первого места. Классика kaggle vs prod
- Ошибка с метрикой. Модели в итоге использовались для ранжирования фильмов, а не для восстановления рейтингов как таковых.

Основная идея

Задача рекомендательной системы:

- отранжировать какой-то набор объектов согласно какому-то критерию
- предсказать оценку объекта

Самый типовой случай - персонализированное ранжирование.

2 действующих лица - пользователь и объект (статья, книга, фильм и тд), которые "взаимодействуют" друг с другом

Постановка задачи

- user пользователь
- item объект
- ullet r_{ui} оценка объекта і пользователем ${f u}$

Задача - найти для пользователя и объект і с максимальной оценкой г

Оценки объектов пользователями - "таргет" в классических задачах машинного обучения.

Может быть численный - рейтинг товара, длительность просмотра фильма Может быть фактом - купил или не купил товар, like/dislike новости

Базовый датасет - *матрица оценок* объектов пользователями.

	1	2	3	4	5	6
a	5		1	1		2
•		2		4		4
9	4	5		1	1	2
d			3	5	2	
e	2		1		4	4

Implicit и explicit feedback:

Explicit - явный таргет, которому можно относительно доверять: оценки, покупки и тд. Такого обычно мало.

Implicit - неявный таргет. Это действия, которые не говорят явно о том, как пользователь оценил объект: клики, просмотры и тд. Таких данных гораздо больше в системе.

Обычно стараются использовать как можно больше данных, взвешивая разный тип таргета.

Что в итоге должен содержать датасет:

- идентификатор пользователя
- идентификатор объекта

Опционально:

- оценка
- время

Данные такого вида идеально ложатся в pandas. DataFrame

	user_id	item_id	rating	timestamp
0	126706	14433	NaN	2018-01-01
1	127290	140952	NaN	2018-01-01
2	66991	198453	NaN	2018-01-01
3	46791	83486	5.0	2018-01-01
4	79313	188770	5.0	2018-01-01
5	63454	78434	NaN	2018-01-01
6	127451	14876	NaN	2018-01-01
7	42797	315927	5.0	2018-01-01
8	47287	258483	NaN	2018-01-01
9	23439	9762	4.0	2018-01-01

При выгрузке таких данных в pandas может возникнуть проблемы с памятью.

Но есть трюки по оптимизации:

- Если идентификаторы пользователей или объектов это строки, то их лучше приводить к <u>CategoricalDType</u>
- Колонку с пропущенными значениями pandas сразу приводит ко float.
 Но если сами значения не float, а, например, целочисленные значения, то можно использовать <u>IntegerDType</u>

В среднем это позволяет экономить от 20 до 80 процентов потребляемой памяти.

А где, собственно, матрицы? По сути, такой лог (user, item, rating) в pandas. DataFrame и есть представление матрицы.

Но библиотеки на вход принимают именно разреженные матрицы.

Для работы с ними в python есть модуль scipy.sparse

Виды разреженных матриц:

- coo matrix A sparse matrix in COOrdinate format.
- csc matrix Compressed Sparse Column matrix
- <u>csr matrix</u> Compressed Sparse Row matrix
- <u>bsr matrix</u> Block Sparse Row matrix
- <u>dia matrix</u> Sparse matrix with DIAgonal storage
- dok matrix Dictionary Of Keys based sparse matrix.
- <u>lil matrix</u> Row-based list of lists sparse matrix

В основном используются первые три:

- соо_matrix используется для создания разреженной матрицы
- csr/csc_matrix используются для оптимизированных операций над матрицами

csr_matrix

credit: https://matteding.github.io/2019/04/25/sparse-matrices

Помимо таргета конечно могут и должны использоваться характеристики самих пользователей и объектов.

Сами идентификаторы пользователей или объектов также могут быть фичами, их называют индикаторными. Чаще всего это просто единичная матрица размером с кол-во пользователей или объектов.

credit: https://www.slideshare.net/JamesKirk58/boston-ml-architecting-recommender-systems

Виды рекомендательных систем

Какие объекты мы хотим рекомендовать? Наиболее подходящие.

Но что такое наиболее подходящий?

Варианты:

- Популярное
 - глобально
 - по каким-то категориям (например по жанрам фильмов)
 - у каких-то групп (например по возрасту)
- Похожий объект
- То, с чем взаимодействуют похожие люди

Виды рекомендательных систем

Верхнеуровнево можно выделить два подхода:

- Не персонализированные
- Персонализированные

Персонализированные подходы можно разделить на следующие:

- Content-based filtering
- Collaborative filtering
- Hybrid

Обсудим их поверхностно, конкретные реализации разберем в последующих лекциях.

Персонализированные рекомендательные системы

Основная идея - использовать или получить некое векторное представление пользователя и объекта.

Функция оценки - функция считающая оценку на основе векторных представлений пользователя и объекта. Типичные примеры:

- Скалярное произведение
- Косинусное сходство
- Евклидово расстояние

Процесс построения рекомендаций - процесс подбора объектов с наиболее высокой оценкой для данного пользователя.

Content-based filtering

Основная идея - использовать характеристики объекта для поиска похожих объектов.

Функция оценки - обычно скалярное произведение или косинусное расстояние

Процесс построения рекомендаций - ищем наиболее похожие на те объекты, с которыми пользователь уже взаимодействовал.

credit: https://heartbeat.fritz.ai/recommender-systems-with-python-part-i-content-based-filtering-5df4940bd831

Collaborative filtering

Основная идея - использовать историю взаимодействий пользователей с объектами для получения векторных представлений.

Функция оценки - обычно скалярное произведение или косинусное расстояние

Два базовых подхода:

- Neighbour-based (Memory-based)
- Model-based

Neighbour-based collaborative filtering

Основная идея - использовать строки или столбцы из матрицы оценок как векторное представление пользователя или объекта.

Два подхода:

- Item-item матрица схожести объектов
- User-user матрица схожести пользователей

Как использовать:

- Найти похожие объекты на то, с чем пользователь взаимодействовал
- Рекомендовать объекты из тех, с которыми взаимодействовали похожие пользователи

Model-based collaborative filtering

Основная идея - построить внутренние векторные представления для пользователей и объектов на основе матрицы оценок.

Основной подход - матричные разложения.

Каналы в ODS Slack:

- #recommender_systems
- #theory_and_practice

Литература

- Recommender Systems Handbook
 Francesco Ricci, Lior Rokach, Bracha Shapira, Paul B. Kantor
- Recommender Systems: The Textbook Charu C. Aggarwal
- Collaborative Recommendations: Algorithms, Practical Challenges and Applications Shlomo Berkovsky, Ivan Cantador, Domonkos Tikk

Лекции

- Лекция Евгения Фролова в МФТИ
- ФКН НИУ ВШЭ
- <u>Технострим Mail.ru Group</u>

Конференции

- ACM RecSys
- UMAP
- KDD
- ICML

Соревнования

- RecSys challenge
- Rekko challenge
- Retail Hero
- SNA Hackathon

Best Practices on Recommendation Systems

- https://github.com/microsoft/recommenders
- https://microsoft-recommenders.readthedocs.io/en/latest/index.html

Kaggle-датасет для практики https://www.kaggle.com/sharthz23/mts-library

Обзор использования Pandas и SciPy.sparse - https://www.kaggle.com/sharthz23/pandas-scipy-for-recsys

Контакты

▼Telegram чат по курсу <u>https://t.me/joinchat/E52trBnd9b65VNxYZTerhQ</u>