

Complexidade de Algoritmos

Prof. Rafael Alceste Berri rafaelberri@gmail.com

Prof. Diego Buchinger diego.buchinger@outlook.com

Prof. Cristiano Damiani Vasconcellos cristiano.vasconcellos@udesc.br

Reduções de Problemas

NP-Completo

Um problema X é *NP-Completo* se:

1. O problema deve ser NP:

- $X \in NP$
- a) Conseguir um algoritmo não determinista que resolva o problema em tempo polinomial
- b) Conseguir um algoritmo determinista que verifica em tempo polinomial se uma resposta é verdadeira ou não (**certificado**)
- 2. Fazer a redução de um problema NP-Completo (Y) conhecido para o problema X: $Y \leq_p X$ para todo $Y \in NP$

Problemas intratáveis

Tempo Assint.	n	n log n	n^2	n^3 n3	2^n
n=10	0,00033s	0,0015s	0,0013s	0,0034s	0,001s
n=100	0,003s	0,03s	0,13s	3,4s	4 x 10 ¹⁴
n=1.000	0,033s	0,45s	13s	0,94h	Séculos
n=10.000	0,33s	6,1s	22m	39 dias	
n=100.000	3,3s	1,3m	1,5 dias	108 anos	
1s -> n máximo	3×10^4	2000	280	67	20
1m -> n máx	18 x 10 ⁵	82000	2200	260	26

O problema da *Satisfatibilidade de fórmulas booleanas* consiste em determinar se existe uma atribuição de valores booleanos, para as variáveis que ocorrem na fórmula, de tal forma que o resultado seja *verdadeiro*.

Um *literal* é uma variável proposicional ou sua negação.

Exemplo:

$$x_1 \wedge (x_2 \vee \neg x_1) \wedge (\neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee x_3)$$

Problema de Decisão: existe uma combinação de valores para x_1 e x_2 que satisfazem esta equação? Complexidade algoritmo trivial: (2^n)

Classificando SAT como NP-Completo:

Passo 1: Algoritmo de certificado (determinista é polinomial)

Passo 2: MTND \leq_p SAT

$$x_1 \wedge (x_2 \vee \neg x_1) \wedge (\neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee x_3)$$


```
// Algoritmo SAT Determinista -> O(2^n)
Procedure Aval(E,n)
Begin
   For x1 < 0 to 1 do
      For x^2 < 0 to 1 do
         For xn < 0 to 1 do
             if E(x1,x2,...xn) = true then
               sucesso
end
```



```
// Algoritmo SAT Não Determinista -> O(n)
Procedure Aval(E,n)
Begin
   For i < -1 to n do
      xi <- Escolhe(true,false)
   if E(x1,x2,...xn) = true then
      sucesso
   else
      insucesso
end
```


NP-Completo

Teorema de Cook(-Levin): SAT é um problema NP-Completo SAT está em P se, e somente se, P = NP

qualquer problema em NP pode ser reduzido em tempo polinomial por uma máquina de Turing não determinista a um problema SAT.

 $MTND \leq_{p} SAT$

Não vamos fazer essa redução pois ela é mais longa

http://www.inf.ufrgs.br/~prestes/Courses/Complexity/aula27.pdf https://en.wikipedia.org/wiki/Cook%E2%80%93Levin_theorem

Classificando SAT como NP-Completo:

Passo 1: Algoritmo de certificado (passed)

Passo 2: MTND \leq_p SAT (passed)

Logo, provamos que SAT pertence ao conjunto de problemas NP-Completo!

Forma Normal Conjuntiva

Uma formula booleana está na *Forma Normal Conjuntiva* (*CNF*) se é expressa por um grupo cláusulas AND, cada uma das quais formada por OR entre literais.

Uma fórmula booleana esta na k-CNF se cada cláusula possui exatamente k literais:

Exemplo 2-CNF:

3-CNF-SAT

Problema: verificar se uma fórmula booleana na 3-CNF é satisfazível.

3-CNF-SAT é *NP-Completo*?

- **Passo 1**: 3-CNF-SAT ∈ NP.

- Passo 2: SAT \leq_p 3-CNF-SAT.

Exemplo de instância 3-CNF-SAT:

$$(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (x_1 \lor x_2 \lor \neg x_3)$$

3-CNF-SAT

Passo 1: $3\text{-CNF-SAT} \in NP$.

```
bool certificado( bool *sol ) {
   return ( sol[1] || sol[2] || sol[3] )
        && (!sol[1] || !sol[2] || !sol[3] )
        && ( sol[1] || sol[2] || !sol[3] );
}
```

$$(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (x_1 \lor x_2 \lor \neg x_3)$$

Dada uma fórmula booleana:

Instância $\phi = x_1 \land \neg (x_1 \lor \neg x_2)$

SAT

REDUÇÃO

- 1. Construir uma árvore que represente à fórmula.
- 2. Introduzir uma variável y_i para a raiz e a saída de cada no interno.

$$\phi' = y_1 \land (y_1 \leftrightarrow (x_1 \land y_2)) \land (y_2 \leftrightarrow \neg y_3) \land (y_3 \leftrightarrow (x_1 \lor \neg x_2))$$

3. Reescrevemos a fórmula original como conjunções entre a variável raiz e as cláusulas que descrevem as operações de cada nó.

Introduz **uma** variável e **uma** cláusula para cada operador.

$$\phi' = y_1 \land (y_1 \leftrightarrow (x_1 \land y_2)) \land (y_2 \leftrightarrow \neg y_3) \land (y_3 \leftrightarrow (x_1 \lor \neg x_2))$$

4. Para cada ϕ'_i construir uma tabela verdade, usando as entradas que tornam $\neg \phi'_i$ verdade, construir uma **forma normal disjuntiva** (DNF) para cada ϕ'_i

$$\phi' = y_1 \land (y_1 \leftrightarrow (x_1 \land y_2)) \land (y_2 \leftrightarrow \neg y_3) \land (y_3 \leftrightarrow (x_1 \lor \neg x_2))$$

y_1	x_1	y_2	$y_1 \leftrightarrow (x_1 \land y_2)$
V	V	V	V
V	V	F	F
V	F	V	F
V	F	F	F
F	V	V	F
F	V	F	V
F	F	V	V
F	F	F	V

Disjuntiva

$$\neg \phi_2'' = (y_1 \land x_1 \land \neg y_2)$$

$$\lor (y_1 \land \neg x_1 \land y_2)$$

$$\lor (y_1 \land \neg x_1 \land \neg y_2)$$

$$\lor (\neg y_1 \land x_1 \land y_2)$$

Cada cláusula de ϕ' introduz no máximo 8 cláusulas em ϕ'' , pois cada cláusula de ϕ' possui no máximo 3 variáveis.

Converter a fórmula para a CNF usando as **leis de De Morgan** ("inversão da disjuntiva"):

Conjuntiva
$$\phi_2'' = (\neg y_1 \vee \neg x_1 \vee y_2) \wedge (\neg y_1 \vee x_1 \vee \neg y_2) \wedge (\neg y_1 \vee x_1 \vee y_2$$

O último passo faz com que cada cláusula tenha exatamente 3 literais, para isso usamos duas novas variáveis p e q. Para cada cláusula C_i em ϕ'' :

- 1. Se C_i tem 3 literais, simplesmente inclua C_i .
- 2. Se C_i tem 2 literais, $C_i = (l_1 \vee l_2)$, inclua:

$$(l_1 \lor l_2 \lor p) \land (l_1 \lor l_2 \lor \neg p)$$

3. Se C_i tem 1 literal, l_1 , inclua:

$$(l_1 \lor p \lor q) \land (l_1 \lor \neg p \lor \neg q) \land (l_1 \lor p \lor \neg q) \land (l_1 \lor \neg p \lor q)$$

Introduz no máximo 4 cláusulas por cláusula em ϕ'' .

$$\phi' = y_1 \land (y_1 \leftrightarrow (x_1 \land y_2)) \land (y_2 \leftrightarrow \neg y_3) \land (y_3 \leftrightarrow (x_1 \lor \neg x_2))$$

$$\phi_{\mathbf{l}}''' = (y_{\mathbf{l}} \lor p \lor q) \land (y_{\mathbf{l}} \lor \neg p \lor \neg q) \land (y_{\mathbf{l}} \lor p \lor \neg q) \land (y_{\mathbf{l}} \lor \neg p \lor q)$$

$$\phi' = y_1 \land (y_1 \leftrightarrow (x_1 \land y_2)) \land (y_2 \leftrightarrow \neg y_3) \land (y_3 \leftrightarrow (x_1 \lor \neg x_2))$$

$$(y_1 \lor p \lor q) \land (y_1 \lor \neg p \lor \neg q) \land (y_1 \lor p \lor \neg q) \land (y_1 \lor \neg p \lor q) \land$$

$$(\neg y_1 \lor \neg x_1 \lor y_2) \land (\neg y_1 \lor x_1 \lor \neg y_2) \land (\neg y_1 \lor x_1 \lor y_2) \land (y_1 \lor \neg x_1 \lor \neg y_2)$$

3-CNF-SAT

Problema: verificar se uma fórmula booleana na 3-CNF é satisfazível.

3-CNF-SAT é NP-Completo? SIM

- Passo 1 (Decisão polinomial): 3-CNF-SAT \in NP. (sim)

$$|(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (x_1 \lor x_2 \lor \neg x_3)|$$

- Passo 2 (Redução de SAT): SAT \leq_p 3-CNF-SAT. (sim)

$$\phi = x_1 \land \neg(x_1 \lor \neg x_2) \quad \text{SAT}$$

$$\begin{vmatrix} (y_1 \lor p \lor q) \land (y_1 \lor \neg p \lor \neg q) \land (y_1 \lor p \lor \neg q) \land (y_1 \lor \neg p \lor q) \land \\ (\neg y_1 \lor \neg x_1 \lor y_2) \land (\neg y_1 \lor x_1 \lor \neg y_2) \land (\neg y_1 \lor x_1 \lor y_2) \land (y_1 \lor \neg x_1 \lor \neg y_2) \land \dots \end{vmatrix}$$

Reduções

Resumindo, quais reduções de problemas foram feitas:

