Forecasting Electric Vehicle Market Dynamics

Motivation

- Increasing adoption of Electric Vehicles (EVs) driven by environmental concerns, fuel price volatility, and consumer preferences.
- Understanding EV adoption dynamics is critical for informed decision-making by stakeholders (Government, manufacturers, consumers).

- Leveraging statistical and machine learning models to uncover patterns and correlations influencing EV adoption.
- The project aims to bridge knowledge gaps and contribute to sustainable transportation planning.

Introduction

•The automotive industry is undergoing a significant transformation with the increasing adoption of electric vehicles (EVs).

•Our project aims to understand and predict these market dynamics through sophisticated statistical analysis.

•Through time series analysis, including ARIMA and SARIMA models, and regression techniques (Ridge, Lasso, and ElasticNet) and Bayesian probability analysis, we've uncovered significant correlations and patterns.

Data

EV Registrations

Fuel Prices

	A	В	C	D	E	A A	В	C	D	E	F	G	Н	1
1	Year_Month	Fuel_Category	County	Count		Report Date	Gasoline	E85	CNG	LNG	Propane	Diesel	B20	B99/B100
2	2020/07	Electric	ALLEGANY	29	- 7	4/10/2000	- Manager				\$1.62	\$1.29		
3	2020/07	Electric	ANNE ARUNDEL	1,587				100000			\$1.76			
4	2020/07	Electric	BALTIMORE	1,508		6/4/2001					\$1.72			
5	2020/07	Electric	BALTIMORE CITY	770		10/22/2001 5 2/11/2002		\$1.60 \$1.54			\$1.62 \$1.62		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
6	2020/07	Electric	CALVERT	140							\$1.95			
7	2020/07	Electric	CAROLINE	8		7/22/2002		\$1.81			\$1.55		1	
8	2020/07	Electric	CARROLL	292		10/28/2002	\$1.44	\$1.71	\$1.17		\$1.66	\$1.35	\$1.47	
9	2020/07	Electric	CECIL	82	1	0 2/3/2003	\$1.61	\$1.86			\$2.09	1000000		
10	2020/07	Electric	CHARLES	197	1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 2 2 2		\$2.21	\$1.34	V 20000000	
11	2020/07	Electric	DORCHESTER	24		2 3/3/2004	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1000		\$2.48	2000	100000000000000000000000000000000000000	
12	2020/07	Electric	FREDERICK	710		3 6/14/2004 4 11/15/2004		\$2.28 \$2.30			\$2.13 \$2.91			1
13		Electric	GARRETT	15		5 3/21/2005					\$2.65			
14		Electric	HARFORD	321		6 9/1/2005		\$3.21			\$3.50			\$3.30
•	2020/07	Flectric	HOWARD	1 93/		7 1/1/2006	1,770,00	1 1			\$2.71	\$2.32	1 2000000	1000

Exploratory Data Analysis

EV Registrations

Fuel Prices

Su	mmary Table:				
	Column	Data Type	Missing Values	Unique Values	Most Frequent
0	Year_Month	object	0	51	2024/09
1	Fuel_Category	object	0	3	Electric
2	County	object	16	568	ALLEGANY
3	Count	object	0	1254	1

Su	mmary Table:				
	Column	Data Type	Missing Values	Unique Values	Most Frequent
0	Report Date	object	0	88	1/1/06
1	Gasoline	object	0	74	\$2.22
2	E85	object	0	77	\$2.65
3	CNG	object	0	56	\$2.09
4	LNG	object	55	28	\$2.40
5	Propane	object	0	68	\$1.62
6	Diesel	object	0	73	\$2.71
7	B20	object	3	71	\$2.11
8	B99/B100	object	14	63	\$3.65

Exploratory Data Analysis

EV Registrations

Fuel Prices

Regression: Data Preprocessing

- Monthly Aggregation: Group the EV registration data by 'Year_Month' and sum up the
 'Count' values for each group. This aggregates the data on a monthly basis, providing a
 consolidated view of monthly EV registration.
- Standardize Date Format: Convert the 'Report Date' in the fuel prices dataset and
 'Year_Month' in the aggregated EV registration data into pandas DateTime format. This
 ensures that the dates are in a uniform format, facilitating easier manipulation and
 merging based on date fields.
- Merge Based on Dates: Merge the monthly EV registration data with the fuel prices data
 using merge, which matches each record from the EV data to the last available record
 from the fuel data before or on the matching date. This is crucial for ensuring that the fuel
 prices are appropriately aligned with the EV registration dates, considering the closest
 available report date.

Regression: Feature Engineering

- Lagged Features: 1-Month Lag: Create a new feature EV_Count_Lag1 by shifting the 'Count' column down by one period (one month). This introduces a lagged feature representing the number of EV registrations from the previous month.
- Rolling Averages: 3-Month Rolling Average: Calculate a rolling average of the
 'Count' over a window of three months and store it in EV_Count_Rolling3. This
 helps in smoothing out short-term fluctuations and reveals underlying trends in the
 data.
- Input Features: The final set of features used for modeling includes 'Gasoline', 'Diesel', 'CNG' prices, the 1-month lagged EV registrations (EV_Count_Lag1), and the 3-month rolling average of EV registrations (EV_Count_Rolling3).
- Target Variable: The target variable is the 'Count' of EV registrations.

Regression

- Multiple Linear Regression (MLR) is a statistical technique that uses several
 explanatory variables to predict the outcome of a response variable.
- Lasso (Least Absolute Shrinkage and Selection Operator) regression is another type of linear regression that uses shrinkage. Lasso regression performs L1 regularization, which adds a penalty equal to the absolute value of the magnitude of coefficients.
- Ridge regression is a technique used to analyze data that suffer from multicollinearity.
 When independent variables are highly correlated, a small change in one variable might
 be associated with a high degree of change in another, thus resulting in calculation
 difficulties. It adds a penalty equal to the square of the magnitude of coefficients to
 the loss function (sum of squared residuals).
- **Elastic Net** is a hybrid of Ridge and Lasso regression. It integrates the penalties of both models, combining L1 and L2 regularization. It is useful when there are multiple features correlated with one another.

Results: Multiple Linear Regression

Multiple Linear Regression Results:

R-squared (Train): 0.9997 R-squared (Test): 0.9924

Test RMSE: 747.91

Results: Ridge Regression

Ridge Regression with Cross-Validation Results: Optimal alpha: 21.54434690031882

R-squared (Train): 0.9997 R-squared (Test): 0.9938

Test RMSE: 672.64

Results: Lasso Regression

Lasso Regression Results: Optimal alpha (Lasso): 1.0 R-squared (Train - Lasso): 0.9997 R-squared (Test - Lasso): 0.9930 Test RMSE (Lasso): 718.17

Results: ElasticNet Regression

ElasticNet Regression Results:
Optimal alpha (ElasticNet): 1.0
Optimal l1 ratio (ElasticNet): 0.5
R-squared (Train - ElasticNet): 0.9997
R-squared (Test - ElasticNet): 0.9940
Test RMSE (ElasticNet): 664.95

ARIMA(1, 1, 1) Model

Goal: Analyze the trend, seasonality, and forecast future electric vehicle (EV) registrations.

Why It Matters:

- EV registrations show strong growth, and accurate forecasts are critical for planning.
- Understanding trends and patterns helps businesses, policymakers, and infrastructure planners.

Preprocessing Steps:

- Aggregated total registrations by month.
- Converted the Year_Month column to a **Datetime Index**.
- Cleaned the data to ensure numerical consistency.

ARIMA (1, 1, 1) Model

Time Series Decomposition of EV Registrations: Trend, Seasonality, and Residuals

Trend: Long-term growth pattern.

Seasonality: Repeating cycles

or patterns.

Residuals: Irregular/random fluctuations after removing trend and seasonality.

ARIMA (1, 1, 1) Model

Test Used: Augmented Dickey-Fuller (ADF) test.

Forecasting Results:

Augmented Dickey-Fuller Test: ADF Statistic: 9.109480264705978 p-value: 1.0

P> 0.05: Data is **not stationary**

Parameters:

- p=1: One lag of past data (AR term).
- d=1: First differencing to make the data stationary.
- q=1: One lagged error term (MA term).

ARIMA Model Using Auto-Arima

Best ARIMA Order: (0, 2, 1)

Parameters:

- p=0: One lag of past data (AR term).
- d=2: First differencing to make the data stationary.
- q=1: One lagged error term (MA term).

ARIMA Model Using Auto-Arima

X-axis:

 Represents the lag values, which are the number of time steps back (e.g., 1 month ago, 2 months ago, etc.).

Y-axis:

• Represents the correlation coefficient

PACF bars are within the confidence interval (shaded region) beyond lag 0.

ARIMA Model Comparison

```
ARIMA Model Summary:
Dep. Variable:
                                        No. Observations:
                                        Log Likelihood
Model:
                       ARIMA(0, 2, 1)
                                                                       -400.171
Date:
                     Tue, 17 Dec 2024
                                                                        804.343
Time:
                                        BIC
                                                                        808.126
                             21:14:56
Sample:
                           07-01-2020
                                        HOIC
                                                                        805.778
                         - 09-01-2024
Covariance Type:
                                                 P>|z|
                                                                         0.975]
ma.L1
              -0.2369
                                     -5.229
                                                 0.000
                                                             -0.326
                                                                         -0.148
sigma2
            6.445e+05
                        9.14e+04
                                      7.054
                                                 0.000
                                                           4.65e+05
                                                                       8.24e+05
Ljung-Box (L1) (0):
                                             Jarque-Bera (JB):
Prob(0):
                                             Prob(JB):
                                                                                0.01
Heteroskedasticity (H):
                                                                               -0.07
Prob(H) (two-sided):
                                                                                5.21
```

Dep. Vari	able:	Co	ount	No.	Observations:		51	
Model:		ARIMA(1, 1	1)	Log	Likelihood		-417.324	
Date:		Sun, 15 Dec		AIC			840.647	
Time:		17:09	9:48	BIC			846.383	
Sample:		07-01-2 - 09-01-2		HQIC			842.831	
Covarianc	e Type:		opg					
	coef	std err		Z	P> z	[0.025	0.975]	
ar.L1	0.9942	0.015	66	.090	0.000	0.965	1.024	
ma.L1	-0.9545	0.061	-15	.738	0.000	-1.073	-0.836	
sigma2 	9.174e+05	8.7e-09	1.05	e+14 	0.000	9.17e+05	9.17e+05	
 Ljung-Box (L1) (Q):			 11	 .07	Jarque-Bera	(JB):		0.7
Prob(Q):			0.00		Prob(JB):			0.6
Heteroske	3	.60	Skew:			0.3		
Prob(H) (0	.01	Kurtosis:			2.9		

ARIMA(0,2,1) has significantly lower AIC (804.343) and BIC (808.126) compared to ARIMA(1,1,1).

This suggests ARIMA(0,2,1) is a better model in terms of goodness-of-fit.

SARIMA(0, 2, 1, 12)

Standardized Residuals

- The residuals hover around zero without a clear trend.
- Some spikes (outliers) are observed, especially in 2022 and 2023, indicating minor irregularities.
- There is **no strong autocorrelation**

Histogram with KDE

- The histogram is roughly **centered** around zero.
- The KDE curve aligns closely with the normal distribution, indicating that the residuals are approximately normally distributed.

SARIMA(0, 2, 1, 12)

Normal Q-Q (Quantile-Quantile) Plot

 Residual points (blue dots) lie close to the red diagonal line, which represents the ideal normal distribution.

Correlogram (ACF of Residuals)

- Most autocorrelations are within the shaded region, indicating no significant autocorrelation.
- This suggests that the residuals are random and do not contain any further information that the model missed.

SARIMA (0, 2, 1, 12) Forecast

Bayesian Analysis of EV Registration and Gasoline Prices

- What happens to electric vehicle (EV)
 registrations when gasoline prices rise?
- How can we calculate the probability of EV registrations exceeding 1,000 given that gasoline prices are above \$1.50?
- How can Bayes' Theorem help us update this probability as new information comes in?

Challenges

- Minimal dataset overlap limited model generalization and diversity
- Finding optimal p, d, and q was difficult, so auto ARIMA was used.
- Overconfidence in Conditional Probability
- Due to the limited dataset, there is a possibility of overfitting.

Conclusion

• The MLR model demonstrates strong predictive performance, with high R² and a low RMSE, making it suitable for predicting the target variable with confidence.

 The SARIMA and ARIMA models performed similarly, with minimal difference in fit and predictive accuracy.

 Bayes' Theorem helped estimate the likelihood of increased EV registrations with higher gasoline prices, showing a 66.7% chance but not a certainty.

THANKS!

