PB4-REPORT

December 12, 2024

Student: Brice Robert, Track: ICS

Document: REPORT.pdf, **Type:** Laboratory

 $\boldsymbol{Languages}$ $\boldsymbol{used:}$ LaTeX, Julia (in lieu of MATLAB)

Tools used: Jupyter, nbconvert (converting to PDF)

Permanent Link: https://github.com/setrar/MobCom/blob/main/Lab/REPORT.ipynb

MATLAB PROJECT for MOBCOM

EURECOM

November 21st, 2024 Class Instructor: Petros Elia elia@eurecom.fr

- Read carefully the following questions, and using MATLAB, provide the answers/plots in the form of a report.
- The report should include a title page, and should be properly labeled and named. The report should be in the form of a PDF.
- Graphs should include labels, titles, and captions.
- Each graph should be accompanied with pertinent comments.
- Use optimal (maximum likelihood) decoders, unless stated otherwise.
- To compare the empirical results with the corresponding theoretical result, you should superimpose the two corresponding graphs and provide comments and intuition on the comparison.
- For each plot, describe the theoretical background that guides the proper choice of parameters for simulations (i.e., power constraint).
- You can work in groups of two or three.
- Regarding Grading:
 - All questions are weighted equally.
 - Submit your report (labeled and named) via email, to Hui Zhao (Hui.Zhao@eurecom.fr) and to myself.
 - Submission deadline is December 12th, 2024.

Enjoy!

PROBLEM 4

Create different experiments to check the validity of the following:

- For Gaussian random variables $h_r \sim \mathcal{N}(0, \sigma)$, the far tail is approximated by an exponential, i.e., $Q(\alpha) \approx e^{-\alpha^2/2z}$. Identify what is z in this case.
- For $h \sim \mathbb{C}\mathcal{N}(0,1)$, the near-zero behavior is approximated as follows:

$$P(\|h\|^2 < \epsilon) \approx \epsilon.$$

• Same as the above, but for $h \sim CN(0,5)$. Show how the near-zero behavior is approximated.

NOTE: The important thing in the above exercise is to describe **IN DETAIL** the way you perform the different experiments, as well as the results.

NOTE: We need statistical experiments, i.e., experiments that involve the generation of random variables, and the measuring of their behavior using — if you wish — histograms.

Import Required Libraries

```
[1]: using Random
    using Distributions
    using LinearAlgebra
    using Plots, LaTeXStrings, Measures
    using FFTW
```

```
[2]: # functions and variables to increase readability include("modules/operations.jl");
```

1 Problem 4: Statistical Experiments

This problem requires validating theoretical approximations for:

- 1. Far Tail Behavior for Gaussian Variables $Q(\alpha) \approx e^{-\alpha^2/2z}$.
- 2. Near-Zero Behavior for $\mathbb{C}\mathcal{N}(0,1)$: $P(\|h\|^2 < \epsilon) \approx \epsilon$.
- 3. Near-Zero Behavior for $\mathbb{C}\mathcal{N}(0,5)$: Extend the near-zero behavior approximation.

1.0.1 Step-by-Step Implementation

- 1. Gaussian Far-Tail Approximation
 - Gaussian random variable $h_r \sim \mathcal{N}(0, \sigma)$.
 - Tail probability: $Q(\alpha) = P(h_r > \alpha) \approx e^{-\alpha^2/2z}$.
 - Experiment:
 - Generate a large number of samples from $\mathcal{N}(0,\sigma)$.

- Compute the empirical probability $P(h_r > \alpha)$ for large α .
- Fit the theoretical expression $e^{-\alpha^2/2z}$ to find z.

```
[3]: # Generate Gaussian samples and compute far tail probabilities
function gaussian_far_tail_experiment(n_samples, σ, alpha_range)
    h_r = rand(Normal(0, σ), n_samples) # Gaussian random variables
    empirical_probs = Float64[]
    for α in alpha_range
        empirical_prob = sum(h_r .> α) / n_samples
        push!(empirical_probs, empirical_prob)
    end

# Fit the theoretical model: Q(a) e^(-a² / 2z)
    z_estimates = alpha_range .^ 2 ./ (-2 * log.(empirical_probs))
    return empirical_probs, z_estimates
end;
```

2. Near-Zero Behavior for $\mathbb{C}\mathcal{N}(0,1)$

- Complex Gaussian $h \sim \mathbb{C}\mathcal{N}(0,1)$.
- Theoretical approximation: $P(||h||^2 < \epsilon) \approx \epsilon$.
- Experiment:
 - Generate a large number of samples from $\mathbb{C}\mathcal{N}(0,1)$.
 - Compute $||h||^2$ for all samples.
 - Estimate $P(||h||^2 < \epsilon)$ for small ϵ .
 - Compare with the theoretical value.

```
[5]: # Generate complex Gaussian samples and compute near-zero probabilities
function near_zero_behavior_experiment(n_samples, σ, epsilon_range)
    real_part = rand(Normal(0, σ), n_samples)
```

```
imag_part = rand(Normal(0, \sigma), n_samples)
    h = real_part .+ im .* imag_part
    magnitudes = abs2.(h)
    empirical_probs = Float64[]
    for \epsilon in epsilon_range
        empirical_prob = sum(magnitudes .< \epsilon) / n_samples
        push!(empirical_probs, empirical_prob)
    end
    theoretical_probs = epsilon_range
    return empirical_probs, theoretical_probs
end
# Parameters for the experiment
n_samples = 10^6
\sigma = 1.0
epsilon_range = 0.01:0.01:0.1
# Run the experiment
empirical_probs, theoretical_probs =
    near_zero_behavior_experiment(n_samples, σ, epsilon_range)
# Plot Near-Zero Behavior for CN(0, 1)
p2 = plot(epsilon_range, empirical_probs, marker=:o
    , label="Empirical " * L"P(|h|^2 < \epsilon)",</pre>
     xlabel=L"\epsilon", ylabel=L"P(|h|^2 < \epsilon)"</pre>
    , title="Near-Zero Approximation " * L"\mathcal{C}N(0, 1)"
    , grid=true)
plot!(epsilon_range, theoretical_probs, label="Theoretical " * L"\epsilon", __
 \rightarrow1w=2);
```

3. Near-Zero Behavior for $\mathbb{C}\mathcal{N}(0,5)$

- Complex Gaussian $h \sim \mathbb{C}\mathcal{N}(0,5)$.
- Theoretical approximation: $P(\|h\|^2 < \epsilon) \approx \frac{\epsilon}{\mathbb{E}[\|h\|^2]}$.

Here, $\mathbb{E}[\|h\|^2] = 5$ (variance of the distribution).

```
[6]: # Near-zero behavior for CN(0, 5)
function near_zero_behavior_cn5_experiment(n_samples, σ, epsilon_range)
    real_part = rand(Normal(0, σ), n_samples)
    imag_part = rand(Normal(0, σ), n_samples)
    h = real_part .+ im .* imag_part
    magnitudes = abs2.(h)
    empirical_probs = Float64[]
    for ε in epsilon_range
        empirical_prob = sum(magnitudes .< ε) / n_samples
        push!(empirical_probs, empirical_prob)</pre>
```

```
end
    theoretical_probs = epsilon_range / (2 * σ^2)
    return empirical_probs, theoretical_probs
end

# Parameters for the experiment
σ = sqrt(5)
empirical_probs, theoretical_probs =
    near_zero_behavior_cn5_experiment(n_samples, σ, epsilon_range)

# Plot Near-Zero Behavior for CN(0, 5)
p3 = plot(epsilon_range, empirical_probs, marker=:0
    , label="Empirical " * L" P(|h|^2 < \epsilon)"
    , xlabel=L"\epsilon", ylabel=L" P(|h|^2 < \epsilon)"
    , title="Near-Zero Approximation for " * L"\mathcal{C}N(0, 5)"
    , grid=true, margin = 10mm
)
plot!(epsilon_range, theoretical_probs
    , label="Theoretical " * L"\frac{\epsilon }{ E[|h|^2]}", lw=2);</pre>
[7]: ## Let's plot
```

plot(p1,p2,p3, layout= (3,1), size = (600,1200))

[7]:

_

Far Tail Approximation for Gaussian Variables

Near-Zero Approximation $\mathcal{C}N(0,1)$

Near-Zero Approximation for $\mathcal{C}N(0,5)$

1.0.2 Key Observations

- 1. Far Tail for Gaussian Variables:
 - $Q(\alpha)$ is well-approximated by $e^{-\alpha^2/2z}$, with $z \approx \sigma^2$.
- 2. Near-Zero Behavior for $\mathbb{C}\mathcal{N}(0,1)$:
 - Empirical results closely match $P(\|h\|^2 < \epsilon) \approx \epsilon$.
- 3. Near-Zero Behavior for $\mathbb{C}\mathcal{N}(0,5)$:
 - The empirical results match the approximation $P(\|h\|^2 < \epsilon) \approx \frac{\epsilon}{5}$, demonstrating the scaling factor introduced by the variance.

[]: