String Constants Abstract Domain

Ben Hardekopf

1 Constants Lattice

Let Σ be an alphabet and $\Sigma *$ be the set of all strings using that alphabet. Define $S = \{\top, \bot\} \cup \Sigma *$. The constants lattice is $(S, \sqsubseteq, \sqcup, \sqcap)$ where for $s_1, s_2 \in S$ and $str_1, str_2 \in \Sigma *$ s.t. $str_1 \neq str_2$:

- \sqcup is defined as
 - $\perp \sqcup s_1 = s_1 \sqcup \perp = s_1$
 - $\top \sqcup s_1 = s_1 \sqcup \top = \top$
 - $str_1 \sqcup str_1 = str_1$
 - $str_1 \sqcup str_2 = \top$
- \sqcap is defined as
 - $\perp \sqcap s_1 = s_1 \sqcap \perp = \perp$
 - $\top \sqcap s_1 = s_1 \sqcap \top = s_1$
 - $str_1 \sqcap str_1 = str_1$
 - $str_1 \sqcap str_2 = \bot$
- \sqsubseteq is defined as $s_1 \sqsubseteq s_2$ iff $s_1 \sqcup s_2 = s_2$.

1.1 Lattice Properties

The lattice is infinitely wide because it contains all possible strings, but has a finite height (at most three elements in a chain) and thus is noetherian.

2 Abstraction and Concretization Functions

$$\alpha: \mathcal{P}(\Sigma*) \to S$$

$$\alpha(x) = \begin{cases} \bot & \text{if } x = \{\} \\ str & \text{if } x = \{str\} \\ \top & \text{otherwise} \end{cases}$$

$$\gamma: S \to \mathcal{P}(\Sigma^*)$$

$$\gamma(x) = \begin{cases} \{\} & \text{if } x = \bot\\ \{str\} & \text{if } x = str\\ \Sigma^* & \text{if } x = \top \end{cases}$$

3 Abstract + Operator

Define $\hat{+}$ as:

$$\begin{array}{c|ccccc} \widehat{+} & \bot & str_2 & \top \\ \hline \bot & \bot & \bot & \bot & \bot \\ str_1 & \bot & str_1 + str_2 & \top \\ \top & \bot & \top & \top & \top \end{array}$$

 $\widehat{+}$ is monotone if $a \sqsubseteq a'$ and $b \sqsubseteq b'$ implies $a \widehat{+} b \sqsubseteq a' \widehat{+} b'$. Consider the following cases in order (i.e., if multiple cases apply use the first case listed below):

Case 1. a' or b' is \bot . Then because $a \sqsubseteq a'$ and $b \sqsubseteq b'$, at least one of a and b are \bot . By definition of $\widehat{+}$, both $a \widehat{+} b$ and $a' \widehat{+} b'$ are \bot . QED.

Case 2. a' or b' is \top . By definition of $\widehat{+}$, $a' \widehat{+} b' = \top$. QED.

Case 3. $a' = str_1$, $b' = str_2$, $a, b \neq \bot$. Then a = a' and b = b', hence a + b = a' + b'. QED.

$4 \quad \textbf{Abstract} \leq \textbf{Operator}$

Define \leq as:

$$\begin{array}{c|ccccc} & \widehat{\leq} & \bot & str_2 & \top \\ \hline \bot & \bot & \bot & \bot \\ str_1 & \bot & str_1 \leq str_2 & \top \\ \top & \bot & \top & \top & \top \end{array}$$

 $\widehat{\le}$ is monotone if $a \sqsubseteq a'$ and $b \sqsubseteq b'$ implies $a \widehat{\le} b \sqsubseteq a' \widehat{\le} b'$. The proof is the same as for $\widehat{+}$ above, except substituting $\widehat{\le}$ for $\widehat{+}$.