NIRMA UNIVERSITY SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY B. Tech. Electronics and Communication Engineering

OPEN ELECTIVE

L	T	P	C
2	, _ :	2	3

Course Code		
Course Title	MATLAB for Engineers	

Course Learning Outcomes (CLOs):

At the end of the course, the students will be able to -

- 1. Utilize a methodical approach to identify, formulate, and solve computational problems,
- 2. Apply MATLAB in solving algebra calculus problems.
- 3. Apply various techniques to solve and visualize engineering-related computational problems using MATLAB.

Sylla	bus: Teaching Hours:30	, ,
UNI	[I: Introduction	02
Impor	tance of MATLAB, MATLAB environment, various toolboxes, using MATLAB as a	
calcul		4
	Γ II: MATLAB Basics	05
Varia	ples and arrays, operations on variables and arrays, matrix operations, displaying output	
data,	ntroduction to plotting, data files, built-in MATLAB functions, user defined function	
	[III : Branching and Loops	95
Relati	onal and logic operators, branches, WHILE loops FOR loops, SWITCH, BREAK,	
	FINUE, vectorization, MATLAB profiler	
	TIV: 2D/3D Plots	03
2D pl	ots, 3D plots, data distribution plots, polar plots, contour plots, surface plots	
UNI	V: Numerical Methods	04
	algebra and vector analysis, newton and bisection methods, numerical solution to	
	ry difference equations, curve fitting, interpolation, least squares regression	, <u></u>
	VI: Cell Arrays, Structures, Importing Data	05
	arrays, structure arrays, string, sorting & searching, importing data into MATLAB, file Input	
	ut functions, working with spreadsheet and low-level data file	
	VII : Advanced Features	03
	ical User Interfaces and GUIDE, application development, Simulink, MATLAB with cross	
	age platforms	4
	VIII : Applications	03
	ization methods, Signal processing, image processing, machine learning, system level	
niodel	ling	į ·
		12

Self-Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents.

Laboratory Work:

Laboratory work will be based on above syllabus with minimum 10 experiments to be incorporated.

Suggested Readings:

- 1. MATLAB Programming with Applications for Engineers, Stephen J. Chapman, Brooks/Cole Publishing Co.
- 2. Jamal T. Manassah, Elementary Mathematical and Computational Tools for Electrical and Computer

Engineers Using MATLAB, CRC Press

- 3. Rudra Pratap, Getting Started with MATLAB, Oxford University Press
- 4. Stormy Attaway, MATLAB: A Practical Introduction to Programming and Problem Solving, Butterworth-Heinemann Publishers

L = Lecture, T = Tutorial, P = Practical, C = Credit

Hannah