MEMS inertial sensors for load monitoring of wind turbine blades

Aubryn Cooperman and Marcias Martinez

Motivation

Why is load monitoring needed on wind turbines?

- Key trends:
 - Larger turbines
 - Offshore wind farms
- Higher operations & maintenance costs
 - Harsh environment
 - Limited access to wind farms
- Monitoring of turbines enables condition-based maintenance

Sensors

Micro-Electro-Mechanical Systems

- Dimensions: 35 mm × 35 mm × 15 mm
- Sensors: triaxial accelerometers, gyroscopes and magnetometers

Sensor	Range	Resolution
Accelerometer	±2 g	190 μg ± 5%
Gyroscope	± 2000°/s	0.07°/s
Magnetometer	± 100 µT	0.1 μΤ

Objective

Use MEMS sensors to:

- Detect sensor orientations
- Calculate displacement
- Determine stress and strain distribution throughout a structure

Test setup

- Aluminum cantilever beam with dimensions
 80 cm × 6.0 cm × 0.52 cm
- 5 MEMS sensors placed at 18 cm intervals along beam axis
- Reference MEMS sensor at clamp
- Strain gauges located between MEMS
- Stepwise tip displacement: 1.0 cm to 5.8 cm

Factored Quaternion Algorithm¹

- Elevation and roll angles determined from acceleration measurements
- Gravitational acceleration provides vertical reference
- Magnetic field data used only to determine heading
- Local geomagnetic field strength and orientation obtained from USGS

¹ Yun, X., Bachmann, E. R., and McGhee, R. B., "A Simplified Quaternion-Based Algorithm for Orientation Estimation from Earth Gravity and Magnetic Field Measurements," *IEEE Trans Instrum Meas* 57(3), 638–650 (2008).

Angle of elevation

Heading

Extended Kalman Filter

- Utilizes calculated quaternion from FQA
- Incorporates angular rate information from gyroscopes
- State vector:

$$x = \begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \\ q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix}$$

Measurement vector:

$$z = \begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \\ q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix}$$

Update equations:

$$\begin{bmatrix} \dot{\omega}_1 \\ \dot{\omega}_2 \\ \dot{\omega}_3 \end{bmatrix} = \frac{1}{\tau} \left(- \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{bmatrix} \right) \quad \text{and} \quad \begin{bmatrix} q_0 \\ \dot{q}_1 \\ \dot{q}_2 \\ \dot{q}_3 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ \omega_1 \\ \omega_2 \\ \omega_3 \end{bmatrix}$$

² Yun, X., and Bachmann, E. R., "Design, Implementation, and Experimental Results of a Quaternion-Based Kalman Filter for Human Body Motion Tracking," *IEEE Trans Robotics* 22(6), 1216–1227 (2006).

Application of EKF

Beam shape

Strain

Conclusions and Future Work

- MEMS can be used to detect changes in orientation
- Kalman filtering improves orientation values derived from accelerometer, magnetometer and gyroscope data
- Curve fit to sensor orientations provides displacement for a finite element model of a structure

Future work

- Reduce sensitivity to magnetic interference
- Adapt filtering algorithm for rotating environment

