7 Superfícies tubulars

Exercici 7.1. Siguin U un obert de \mathbb{R}^2 , que suposarem acotat, i $\varphi \colon U \to \mathbb{R}^2$ una parametrització local d'una superfície regular. Es defineix *l'àrea* (si existeix) de $S = \varphi(U)$ com la integral

$$A(S) = \int_{U} \|\varphi_{u} \times \varphi_{v}\| du dv.$$

Proveu que l'àrea no depèn de la parametrització; és a dir que si $F:V\to U$ és un difeomorfisme entre oberts del pla llavors φ i $\varphi\circ F$ donen lloc a la mateixa àrea.

Exercici 7.2. Sigui $\alpha: I \to \mathbb{R}^3$ una corba regular parametritzada per l'arc i amb curvatura mai nulla. Sigui Π_u el pla normal a la corba en el punt $\alpha(u)$. Sobre Π_u considerem una circumferència C_u de centre $\alpha(u)$ i radi r(u). La reunió $S = \bigcup_{u \in I} C_u$ d'aquestes circumferències s'anomena superfície tubular o tub al voltant de la corba $\alpha(u)$ amb radi (variable) r(u).

- a) Partint del vectors normal $\vec{n}(u)$ i binormal $\vec{b}(u)$ de la corba α , trobeu una aplicació diferenciable $\varphi: I \times \mathbb{R} \to \mathbb{R}^3$ que tingui S per imatge.
- b) Proveu que si $0 < r(u) < 1/\kappa(u)$, on $\kappa(u)$ és la curvatura de α , aleshores $\varphi_u \times \varphi_v \neq 0$. Suposarem a partir d'ara que $\varphi|_U$ és injectiva per tot obert U de la forma $I \times (v_0 - \pi, v_0 + \pi)$. Deduïu que S és superfície regular.
- c) Trobeu la primera forma fonamental associada a la parametrització $\varphi|_U$.
- d) Demostreu que l'àrea de S no depèn de la torsió de α . En el cas $r(u) = r_0$, vegeu que tampoc depèn de la curvatura.
- e) Calculeu la curvatura de Gauss en el cas r(u) constant.
- f) Trobeu les línies de curvatura si r(u) és constant i la corba α és plana.
- g) Particularitzeu els resultats anteriors al cas del tor.

Figura 7.3: Superfície tubular.

Exercici 7.3. El teorema de Fenchel diu que la curvatura total $(\int_{\gamma} |\kappa|)$ d'una corba γ tancada i simple $(\gamma \text{ injectiva})$ a l'espai sempre és més gran o igual que 2π . A més, la igualtat és dona si i només si la corba és plana i convexa.

Considerem S una superfície tubular de radi constant r al voltant de γ sense autointerseccions (acceptem que això és possible prenent r prou petit) i sigui R la regió on la curvatura de Gauss és positiva.

- a) Proveu que $\int_R K = 2 \int_{\gamma} \kappa$.
- b) Proveu que per cada direcció $u \in S^2$ existeix un punt de S amb curvatura de Gauss positiva i u com a direcció normal.
- c) Deduïu que l'aplicació de Gauss cobreix com a mínim un cop l'esfera S^2 .
- d) Proveu la primera part del teorema.
- e) La segona part del teorema la podeu llegir a 'Geometría diferencial de curvas y superficies' de M. P. do Carmo. (p. 399).