

DATA MANAGEMENT & ANALYSIS (DMA)

Michael Bussmann
Spokesperson Topic "Data Management & Analysis"
Research Area "MATTER" in Helmholtz

DIGITALIZATION @ HELMHOLTZ

- Helmholtz Incubator Platforms
 - Helmholtz Analytics Framework (HAF)
 - Helmholtz Infrastrucutre for Federated ICT Services (HIFIS)
 - Helmholtz Artifical Intelligence Cooperation Unit (HAICU)
 - Helmholtz Imaging Platform (HIP)
- Helmholtz Digitalisation Strategy
- Helmholtz Innovation Pool

HELMHOLTZ

RESEARCH FOR GRAND CHALLENGES

- Germany's largest research organization
- Annual budget of ~ €4,7 billion
- ~ 40,000 employees
- World-Class science infrastructure
- 19 independent research centers

DMA @ HELMHOLTZ RESEARCH AREA MATTER

And more! Applications! Users!

COMPLEXITY (AND SYSTEMS) IS THE CHALLENGE

The Department of Energy Has Way Too Much Data for Regular Old Computers

So it needs some money to make its machines super.

 The U.S. Department of Energy is planning to ask Congress for \$3 to 4 billion to turn its existing network of supercomputers into high-performance AI machines.

Chun Hong Yoon et al., Scientific Reports volume 6, Article number: 24791 (2016)

three-dimensional single-particle reconstruction

VISION — THE SCIENTIFIC METHOD MADE DIGITAL

DMA DIVIDE & CONQUER (SUBTOPIC STRUCTURE)

ST1: The Matter Information Fabric

- IT infrastructure (Hard- & Software) for facilities
- Automization of Data Lifecycle Management (LK II)
- Solutions f
 ür Communities

ST2: The Digital Scientific Method

- Matter-specific research in Data Analysis & Simulation methods
- e.g. Machine Learning, Simulation, Visual Analytics, Scientific Workflow
- Developing methods für heterogeneous HPC, HTC, I/O for Matter applications

ST3: The Digital Experiment and Machine

- Start-to-End Simulations (Machine/Interaction/Detectors)
- Fast feedback & machine control ("Human in the Loop")
- Quantifying data quality, meta data acquisition & analysis

DMA COMPETENCES

- Large-scale Data Management
- Applications
- Scalability
- Intelligence
- Bringing Facilities + Users together

EXAMPLE: PTYCHOGRAPHY

Strong involvement of Photon & Neutron Science Communities

Particle Physics, Astroparticle Physics, Accelerator Physics, etc.

Example: Ptychography

CPUs? GPUs? FPGAs?

object

SCALABILITY

F. Stellato, et al., IUCrJ **1**, 204 (2014).

EXAMPLE: I/O AND STORAGE

"Overall, this is an outstanding proposal. [...]

The PIs should try to reduce the data requirements
and try to find a solution that is technically possible for CSCS."

INTELLIGENCE

CONTROL + DATA + META DATA + ...

EXPERIMENT

HARDWARE

Push-out: Sequence of vertical slicing through reconstructed volume

DATA

STATIC

- Scalable Meta Data Collection & Understanding
- Transient data workflows

Software

Components

COMPLEXITY NEEDS INTELLIGENCE

- Data fusion of experimental and simulation data will become the norm
- Data won't be final! Data is at best alive and changes meaning
- Data analysis will stay transient much longer in the future (HPC+HTC)

The challenge of complexity and how to attack it

Michael Bussmann, CASUS

05/11/2019 | 1st annual PANOSC meeting

www.casus.science

```
or_mod.mirror_object
  eration == "MIRROR_X";
  _rror_mod.use_x = True
rror_mod.use_y = False
_rror_mod.use_z = False
  operation∕== "MIRROR_Y"
irror_mod.use_x = False
irror_mod.use_y = True
rror_mod.use_z = False
  operation == "MIRROR Z"
```


The four horsemen of the datacalypse

How do we fill the data catalogues wisely?

We face **four challenges**

- **High data quality** prevents us from serious initial automatic reduction
- **High data rates** give us Pbytes of data in a few hours
- **Short data lifetime** gives PhD students stress
- **Poor understanding** of the system investigated requires in-depth expert intervention

Actually, using computers efficiently is still pretty hard

Unified programming interfaces to CPUs, GPUs, FPGAs

HTC / HPC interactivity @ Exascale

Scalable across full systems, full JIT capability, visual analytics,...

Transient data analysis or data storage or both or ...?

We have a troublesome throughput hierarchy

Open, self-explaining meta data formats & ecosystems

In-memory workflow coupling becomes standard

openPMD Eco-System

github.com/openPMD/openPMD-projects

openPMD standard (1.0.0, 1.0.1, 1.1.0)

the underlying file markup and definition A Huebl et al., doi: 10.5281/zenodo.33624

base standard

general description domain-specific e.g. ED-PIC, SpeciesType, BeamPhysics

native data tools

HDF5, ADIOS1/2, NetCDF, ... e.g. h5ls, h5repack, h5dump, bpdump

writers & converters

extensions

simulations, frameworks, measurements e.g. PIConGPU, Warp, SIMEX Platform

HDF Compass

HDF5 & ADIOS file explorer open and explore file trees

readers

coupled simulations, post-processing frameworks, ... e.g. SIMEX Platform, Visit, yt-project, openPMD-viewer

openPMD-updater

update to new standard edit in- or new file

openPMD-api

I/O library abstraction file format agnostic

data repositories

exchange and long-time archival e.g. Zenodo, RODARE (HZDR)

 Complexity is the central problem if facilities produce high quality data and share it

- Data reduction will become synonymous with knowledge extraction (+ meta data)
- ?aaS will require expert domain knowledge, interactivity and transient data analysis capabilities (lifetime!)