Introduction to Named Function Networling

Christopher Scherb

University of Basel
Department for Mathematics and Computer Science
Computer Networking Group

Internet of Things Hackathon 2017

- Information Centric Networking (ICN) connects to static data
- Content and Location are independent
- Special case of dynamic data/results
- Computation and Location independent?
- Related work: EU-Project RIFE

NFN Execution Layer

NFN Workflow Layer

ICN Layer

NFN-Workflow Layer

From Data To Computation

- ► In ICN:
 - Names in Interest Message
 - Names in the FIB
 - Forwarding: Longest Prefix Matching
- In NFN:
 - Computation in Interest Message
 - Names in the FIB
 - Forwarding: ?

- Encode computations as names: λ -calculus
- Formal language system to describe computations
- three operators:

variables: n

▶ abstraction: $(\lambda x.x)n$

▶ application: m n

- Touring complete
- Can express any functional computation

- How to translate this to NFN?
 - Store functions inside of content objects
 - Introduce "call" extension to invoke execution layer
 - build a workflow by combining call expressions
 - call /funcname /dataname + call /funcname ...
- How to route this expression?
 - use λ -abstraction
 - λ (λ x.call /func x) /dataname
 - prepend the data name:
 - /dataname (λx .call /func x)

- encode prepended name in components
- encode computation in one component
- add NFN marker
- use longest prefix matching

data|name|comps | $(\lambda x.call /func/name x) | NFN$

- Krivine abstract machine
 - Resolves λ expressions
 - Call By Need semantics
 - Request data when required
- Which name to prepend?
 - Hadoop: Move function to data
 - NFN: flexible scheme

- functions can be pinned to nodes
 - routing to data not always sufficient
 - e.g. for security reasons, private key required etc.
- call /f /d
- 1. route to data: $/d \lambda x.call /f x$
 - prepend data name
 - try all available data names
- 2. route to function : $f \lambda x.call x /d1$
 - prepend function name

NFN-Execution Layer

Christopher Scherb NFN 11 / 26

- high level functions
- manipulate data
- side effect free!
- executed on a single node
- can issue further computations
- cache and reuse results

Extensions

- Input Data are not public available
- Idea: Reduce information according to access level of requesting users
- NDNHealth Project: GPS Tracking data for a Study
 - Insurance level: can only access distance
 - Study level: access GPS track, but move it to (0,0)
 - Personal level: access all data

- Symmetrically encrypted data
- Asymmetrically encrypted Keys
- Encrypted Access Control lists
- Trusted execution nodes
- Encrypted results
- Chaining of computations
- Caching vs. Perfect Forward Secrecy

Secure Distribution - Workflow

- instructions for a running computation
- stop, pause, resume or update a computation
- timeout prevention with keep-alive
- use name of computation + R2C Marker
- enable long running computations

Request-2-Computation - Workflow

Work in Process

- In ICN push requires callback
- NFN-workflow could contain push notification
- Regirements:
 - Clients have a NFN-execution unit
 - Clients can be named in some way

Optimizing Execution Location

- Focus: Data center and HPC
- Best execution location not always where data are stored
- Move data and results of (sub)computations to a location
 - where execution cost are minimal according to a metric
 - metric:
 - network load
 - power consumption
 - execution time

Traveling function / Function Migration

- function executed on several nodes.
- function carries execution state to next node
- collecting and processing data
- how to encode this scenario in a name?
- how to update the PIT state when computation moves?
- parallel execution -> dynamic map reduce
- function move parallel to a vehicle on road-side-units?

Traveling function

- Computation on low power nodes?
- On Gateways?
- Add few computation nodes, collecting data?
- PubSub Model?

Thank your for your attention!