Homework 3

B00401062 羅文斌

٠	$1 \exists x \exists y (S(x, y) \lor S(y, x))$ premise
	$\frac{2 x_0}{3 \exists y (S(x_0, y) \lor S(y, x_0))}$ assumption
	$ \begin{array}{c c} 4 y_0 \\ 5 S(x_0, y_0) \lor S(y_0, x_0) \end{array} $ assumption
	$ \begin{array}{ll} 6 S(x_0, y_0) & \text{assumption} \\ 7 \exists y S(x_0, y) & \exists y i : 6 \\ 8 \exists x \exists y S(x, y) & \exists x i : 7 \end{array} $
	$ \begin{array}{c c} 9 S(y_0, x_0) & \text{assumption} \\ \hline 10 \exists y S(y_0, y) & \exists y i : 9 \\ 11 \exists x \exists y S(x, y) & \exists x i : 10 \end{array} $
	$ \begin{array}{ c c c c } \hline 12 \ \exists x \exists y S(x, y) & \forall e : 5, 6 - 8, 9 - 11 \\ \hline 13 \ \exists x \exists y S(x, y) & \exists y e : 3, 4 - 12 \end{array} $
	14 $\exists x \exists y S(x, y)$ $\exists xe : 1, 2 - 13$

2.
$$1 \forall x \forall y \forall z (S(x,y) \land S(y,z) \Longrightarrow S(x,z)) \quad \text{premise}$$

$$2 \forall x \neg S(x,x) \quad \text{premise}$$

$$3 x_0$$

$$4 \forall y \forall z (S(x_0,y) \land S(y,z) \Longrightarrow S(x_0,z)) \quad \forall xe: 1$$

$$5 \neg S(x_0,x_0) \quad \forall xe: 2$$

$$6 y_0$$

$$7 \forall z (S(x_0,y_0) \land S(y_0,z) \Longrightarrow S(x_0,z)) \quad \forall ye: 4$$

$$8 S(x_0,y_0) \land S(y_0,x_0) \Longrightarrow S(x_0,x_0) \quad \forall ze: 7$$

$$9 \neg (S(x_0,y_0) \land S(y_0,x_0)) \quad \text{MT}: 8, 5$$

$$10 S(x_0,y_0) \quad \text{assumption}$$

$$11 S(y_0,x_0) \quad \text{assumption}$$

$$12 S(x_0,y_0) \land S(y_0,x_0) \quad \land i: 10, 11$$

$$13 \perp \quad \perp i: 12, 9$$

$$14 \neg S(y_0,x_0) \quad \neg i: 11 - 13$$

$$15 S(x_0,y_0) \Longrightarrow \neg S(y_0,x_0) \quad \Rightarrow i: 10 - 14$$

$$16 \forall y (S(x_0,y) \Longrightarrow \neg S(y,x_0)) \quad \forall yi: 6 - 15$$

$$17 \forall x \forall y (S(x,y) \Longrightarrow \neg S(y,x)) \quad \forall xi: 3 - 16$$

 $1 \exists x \exists y (S(x, y) \lor S(y, x))$ premise $2 \neg \exists x S(x, x)$ premise $3 x_0$ $4 \; \exists y (S(x_0,y) \vee S(y,x_0))$ assumption 6 $S(x_0, y_0) \vee S(y_0, x_0)$ assumption $7 x_0 = y_0$ assumption $8 S(x_0, y_0)$ assumption 9 $S(y_0, y_0)$ = e: 7, 8 $10 \exists x S(x, x)$ ∃*x*i : 9 11 ⊥ $\perp i:10,2$ $12 S(y_0, x_0)$ assumption = e: 7, 1213 $S(y_0, y_0)$ 14 $\exists x S(x,x)$ $\exists xi: 13$ 15 ⊥ $\perp i: 14, 2$ 16 ⊥ \forall e: 6,8 – 11,12 – 15 $17 \neg (x_0 = y_0)$ ¬i:7 ∃yi: 17 $18 \exists y \neg (x_0 = y)$ $19 \; \exists x \exists y \neg (x = y)$ ∃*x*i : 18 $20 \; \exists x \exists y \neg (x = y)$ \exists ye: 4,5 – 19 $21 \; \exists x \exists y \neg (x = y)$ $\exists xe : 1, 3 - 20$

- 4. Consider $\forall x(P(x) \lor Q(x)) \vDash \forall x P(x) \lor \forall x Q(x)$. Let M be a model where $A = \{a,b\}$, $P^M = \{a\}$, and $Q^M = \{b\}$. Since $a \in P^M$ and $b \in Q^M$, $M \vDash \forall x(P(x) \lor Q(x))$. Since $b \notin P^M$ and $a \notin Q^M$, $M \nvDash \forall x(P(x) \lor Q(x))$. Hence, $\forall x(P(x) \lor Q(x)) \nvDash \forall x P(x) \lor \forall x Q(x)$. The soundness theorem says if $\forall x(P(x) \lor Q(x)) \vdash \forall x P(x) \lor \forall x Q(x)$ is valid, then $\forall x(P(x) \lor Q(x)) \vDash \forall x P(x) \lor \forall x Q(x)$ holds. Since $M \nvDash \forall x(P(x) \lor Q(x))$, $\forall x(P(x) \lor Q(x)) \nvDash \forall x P(x) \lor \forall x Q(x)$.
- 5. Let *M* be a model that *M* ⊨ ∀x¬φ. Assume *M* ⊭ ¬∃xφ. There exists an element *a* in the universe of *M* s.t. φ computes to T. But since *M* ⊨ ∀x¬φ, ¬φ computes to T, or φ computes to F, regardless of *a*. This is a contradiction. Hence, *M* ⊨ ¬∃xφ.