Aaron Hong (ahong02) Stephen Macris (smacris) EE 469 9 May 2023

Lab 3 Report

Procedure

In this lab, the single cycle processor was upgraded to a pipelined processor. Stalling, flushing, and forwarding logic were added to handle data and control hazards.

Results

111000000100111100000000000001111	// 0 MAIN	SUB R0 R15 R15	R0 = 0
111000101000000000010000000000001	// 4	ADD R1 R0 #1	R1 = 1
111000011000000000100000000000001	// 8	ORR R2 R0 R1	R2 = 1
111000101000000000100000000000010	// 12	ADD R2 R0 #2	R2 = 2
111000100101001000000000000000000000000	// 16	SUBS R0 R2 #0	R0 = 2
000010100000000000000000000000000000000	// 20	BEQ TAG1	
1110000000000010001000000000000000	// 24	AND R2 R2 R0	R2 = 2
111000000000001000010000000000000	// 28	AND R1 R2 R0	R1 = 2
111000001000000110010000000000000	// 32 TAG1	ADD R9 R1 R0	R9 = 4
111001011000000010010000000001001	// 36	STR R9 [R0, #9]	
11100101100100000011000000001001	// 40	LDR R3 [R0, #9]	R3 = 4
111000000000001100100000000000010	// 44	AND R2 R3 R2	R2 = 0

Figure 1: Test assembly instructions with expected register outputs

Figure 2: Simulation waveform

As shown in Figure 1 and 2, the pipelined processor is executing the instructions correctly. Stalling, flushing, and forwarding processes are also demonstrated. Figure 2 will be investigated more thoroughly in the following sections. Figures 3, 4, and 5 are magnified portions of Figure 2.

Figure 3: Forwarding signals

When PC=12, instruction 4 is in the execution stage and instruction 0 is in the memory stage. Since source register A of instruction 4 is the same as the destination register of instruction 0, there is a match between execute and memory stages and ForwardAE is set to 10. Hence, the data from the memory stage is forwarded to the execution stage: SrcAE = ALUOutM.

When PC=16, instruction 8 is in the execution stage and instruction 0 is in the writeback stage. Since source register A of instruction 8 is the same as the destination register of instruction 0, there is a match between execute and writeback stages and ForwardAE is set to 01. Hence, the data from the writeback stage is forwarded to the execution stage: SrcAE = ResultW.

Figure 4: Branch flushing

Figure 4 shows that the two cycles of instruction are being flushed when the branch instruction (instruction 20) enters the decode stage.

Figure 5: Memory stalling

Figure 5 shows that the processor stalled for the LDR instruction (instruction 40) to finish before executing instruction 44, which accessed the destination register of instruction 40.

Appendix