Contrôle continu numéro 2 (1h)

Les réponses aux exercices doivent être clairement rédigées. Le détail des calculs doit apparaître sur la copie. La présentation doit être la plus soignée possible.

Exercice 1. Questions de cours.

- 1. Donner la définition d'une suite convergente.
- 2. Démontrer que la limite d'une suite convergente est unique.
- 3. Donner la définition d'une suite de Cauchy. Démontrer qu'une suite de réels convergente est de Cauchy. Que dire de la réciproque (sans démonstration) ?

Exercice 2. Théorème de Césaro.

Pour tout suite $(u_n)_{n\geq 1}\in\mathbb{R}^{\mathbb{N}}$ on définit la suite $(\widetilde{u}_n)_{n\geq 1}\in\mathbb{R}^{\mathbb{N}}$ de la manière suivante : pour tout $n\geq 1$, $\widetilde{u}_n=\frac{1}{n}\sum_{k=1}^n u_k$.

- 1. Montrer que si $(u_n)_{n\geq 1}$ converge vers $\ell\in\mathbb{R}$ alors $(\widetilde{u}_n)_{n\geq 1}$ converge vers ℓ .
- 2. Donner un exemple de suite telle que $(\widetilde{u}_n)_{n\geq 1}$ converge mais pas $(u_n)_{n\geq 1}$. Justifier.

Exercice 3. Suites récurrentes.

On définit les fonctions suivantes

$$f:]-\frac{1}{2}, +\infty[\to \mathbb{R}, \ x\mapsto \ln(1+2x), \ g:]-\frac{1}{2}, +\infty[\to \mathbb{R}, \ x\mapsto f(x)-x.$$

- 1. (a) Montrer que f est croissante sur son intervalle de définition.
 - (b) Etudier la fonction g (faire un tableau de variation) et montrer que l'équation f(x) = x admet pour solutions 0 et un réel $c > \frac{1}{2}$. On rappelle que $\ln(2) \approx 0,69$.
 - (c) Etudier le signe de g(x) pour $x \in]-\frac{1}{2}, +\infty[$.
 - (d) Montrer que [0, c] est stable par f (i.e. $f([0, c]) \subset [0, c]$).
- 2. On définit la suite $(u_n)_{n>0}$ par la donnée de $u_0 \in [0,c]$ et $u_{n+1}=f(u_n)$, pour tout $n \in \mathbb{N}$.
 - (a) Sur un dessin (très propre!) tracer la courbe représentative de la fonction f. On tracera également la droite d'équation y=x ainsi que quelques itérations de la suite $(u_n)_{n>0}$.
 - (b) Montrer que cette suite est bien définie (on montrera au passage que pour tout $n \in \mathbb{N}$, $u_n \in ...$).
 - (c) Montrer que $(u_n)_{n>0}$ est croissante.
 - (d) Montrer que $(u_n)_{n>0}$ converge et donner sa limite.