Continuous Maths HT 2019: Problem Sheet 1

Derivatives, Taylor's theorem, 1-dimensional optimization

1.1 Using the quotient and chain rules, prove equation (1.2) in the lecture notes: if f and g are differentiable on \mathbb{R} and $k \in \mathbb{N}$ then

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{f}{g^k} \right) = \frac{g \frac{\mathrm{d}f}{\mathrm{d}x} - k f \frac{\mathrm{d}g}{\mathrm{d}x}}{g^{k+1}}.$$

Is the result still true for k = 0? What about integers k < 0, or non-integer k?

Now consider differentiable multivariate functions $f, g : \mathbb{R}^n \to \mathbb{R}$. What is $\frac{d}{dx}(\frac{f}{g^k})$? How does your proof differ from the univariate case n = 1?

1.2 Let A be a symmetric n-by-n matrix and define, for $x \neq 0$,

$$f(\boldsymbol{x}) = \frac{\boldsymbol{x}^T \! \mathbf{A} \boldsymbol{x}}{\boldsymbol{x}^T \! \boldsymbol{x}}.$$

Compute $\frac{df}{dx}$, and show that this is zero if and only if x is an eigenvector of A.

1.3 In machine learning we sometimes wish to use the function $f(\mathbf{x}) = \max x_i$ (where the components of \mathbf{x} are x_1, \ldots, x_n), but this function is not differentiable, making numerical optimization algorithms more difficult. Instead, f is sometimes replaced by the function l, where

$$l(\boldsymbol{x}) = \ln \left(\sum_{i=1}^{n} \exp(x_i) \right).$$

l is sometimes called the log-sum-exp function.

- (a) Show that $\max x_i \leq l(\boldsymbol{x}) \leq \max x_i + \ln n$. (This means that $l(\boldsymbol{x})$ is a reasonable approximation for $\max x_i$ as long as the x_i are not small in relation to $\ln n$).
- (b) Show that l is differentiable, then find $\frac{\partial l}{\partial x_j}$, $\frac{\partial^2 l}{\partial x_j^2}$, and $\frac{\partial^2 l}{\partial x_k x_j}$.
- **1.4** Let $H:[0,1] \to \mathbb{R}$ be the binary entropy function,

$$H(x) = -x \log_2 x - (1-x) \log_2 (1-x), \quad H(0) = H(1) = 0.$$

- (a) Compute the first four derivatives of H.
- (b) Write down the third-order Taylor expansion of H, with fourth-order (Lagrange) error term, about $x_0 = \frac{1}{2}$.
- (c) Why is there no Taylor expansion for H(x) at x=0?

- **1.5** Let $f: \mathbb{R} \to \mathbb{R}$ be $f(x) = e^x + e^{-x}$.
 - (a) Compute $\frac{d^k f}{dx^k}$ for each integer k.
 - (b) Write down the order-k Taylor polynomial for f(x), around the point $x_0 = 1$, and the (Lagrange) remainder term $e_{k+1}(x)$.
 - (c) If $x \in (0,1)$, show that

$$0 < e_{k+1}(x) \le \frac{(e + \frac{1}{e})}{(k+1)!}$$

for k odd, and find equivalent bounds for the case when k is even.

- (d) Write a short program to find the smallest k for which the k-order polynomial is an accurate approximation to f(x) with error no more than 10^{-15} . What will the sign of the error be?
- **1.6** Let \mathbf{A} be a fixed symmetric matrix, \mathbf{b} a fixed vector, and \mathbf{c} a constant. Define

$$f(\boldsymbol{x}) = \sin(\boldsymbol{x}^T \mathbf{A} \boldsymbol{x} + \boldsymbol{x}^T \boldsymbol{b} + c).$$

- (a) Compute $\frac{df}{dx}$ and $\mathbf{H}(f)$.
- (b) Show that the second-order Taylor approximation to f, about $x_0 = 0$, is

$$f_2(\boldsymbol{x}) = \sin c + (\cos c)\boldsymbol{x}^T\boldsymbol{b} + \boldsymbol{x}^T((\cos c)\mathbf{A} - \frac{\sin c}{2}\boldsymbol{b}\boldsymbol{b}^T)\boldsymbol{x} + e_3,$$

where e_3 is the remainder term.

1.7 Let $a, b \in \mathbb{R}$, and $f : \mathbb{R} \to \mathbb{R}$ be

$$f(x) = 3x^4 - 4(a+b)x^3 + 6abx^2.$$

Verify that f has a stationary point at x = 0, and classify it as a local maximum, local minimum, or stationary point of inflection, depending on the values of a and b.

If x = 0 is a local maximum, for what values of a and b is it the global maximum? If x = 0 is a local minimum, for what values of a and b is it the global minimum?

adk@cs.ox.ac.uk, HT 2019