Tropical Geometry

Kyle Huang Advised by Leon Zhang

December 9, 2020

Ideals and Varieties

We work primarily in the polynomial ring $K[x_1,...,x_n]$ or the Laurent polynomial ring $K[x_1^{\pm 1},...,x_n^{\pm 1}]$.

Given an ideal $I \subset K[x_1, ..., x_n]$ (resp. $K[x_1^{\pm 1}, ..., x_n^{\pm 1}]$), we define a variety $V(I) \subset K^n$ (resp. K^{*n}) as the zeros of the polynomials in I.

If
$$I = \langle f_1, ..., f_n \rangle$$
, then $V(I) = \{ x \in K^n \mid f_i(x) = 0 \}$

Example

The Tropical Semiring

Definition

The tropical semiring $\overline{\mathbb{R}}$ has underlying set $\mathbb{R} \cup \{\infty\}$ with tropical addition \oplus and tropical multiplication \otimes

```
\mathbf{a} \oplus b := \min\{a, b\}\mathbf{a} \otimes b := a + b
```

The additive identity is ∞ and the multiplicative identity is 0

Advantages:

- Computations are easier
- 2 Tropical polynomials are piecewise linear
- Some combinatorial optimization problems can be phrased in terms of tropical arithmetic

Valuation Fields

Given a field K, a valuation on K is a function

$$\operatorname{val}:K\to\overline{\mathbb{R}}$$

such that

- \bullet val $(a) = \infty$ iff a = 0 (so can consider val: $K^* \to \mathbb{R}$)
- $2 val(ab) = val(a) \otimes val(b)$
- val $(a+b) \ge \operatorname{val}(a) \oplus \operatorname{val}(b)$

Examples

- -Trivial valuation: val(a) = 0 for all $a \in K^*$.
- -p-adic valuation: on \mathbb{Q} , take val $(\frac{a}{b})$ to be the power of p appearing in $\frac{a}{b}$
- -What valuations exist on finite fields?

Trop(f)

Given $f \in K[x_1^{\pm 1}, ..., x_n^{\pm 1}]$ we can write $f = \sum_{u \in \mathbb{Z}^n} c_u x^u$

Definition

trop(f) is attained by replacing classical operations with tropical operations

$$\operatorname{trop}(f)(w) = \min_{u \in \mathbb{Z}^n} (\operatorname{val}(c_u) \otimes \bigotimes_i w_i^{\otimes u_i})$$
$$= \min_{u \in \mathbb{Z}^n} (\operatorname{val}(c_u) + u \cdot w)$$

Example (elliptic curves)

If

$$f = Ax^{3} + Bx^{2}y + Cxy^{2} + Dy^{3} + Ex^{2} + Fxy + Gy^{2} + Hx + Iy + J$$

Then $\text{trop}(f) = \min(3x, 2x + y, x + 2y, 3y, 2x, x + y, 2y, x, y, 0)$

Tropical Hypersurfaces

Before, we could associate hypersurfaces to classical polynomials, as the 0-set of the polynomial. For trop(f), the zeros are where the minimum of trop(f) is attained twice.

Example

For trivial valuation fields, the tropical hypersurface V(trop(f)) is the dual of the Newton polytope of f.

Tropical Varieties

Given an ideal $I \subset K[x_1^{\pm 1},...,x_n^{\pm 1}]$, and X = V(I) we define

$$\operatorname{trop}(X) = \bigcap_{f \in I} V(\operatorname{trop}(f)) \subseteq \mathbb{R}^n$$

Cautionary Example

Given a generating set $I = \langle f_1, ..., f_n \rangle$ one can't take the intersection to be over $V(\operatorname{trop}(f_i))$

If $I = \langle x_1 + x_2 + 3, x_1 + 5x_2 + 7 \rangle \subset \mathbb{C}[x_1^{\pm 1}, x_2^{\pm 1}]$, then $V(\text{trop}(I)) = \{(0,0)\}$, even though tropicalizing each line yields the same tropical line

Fundamental Theorem

Fundamental Theorem

If K is a field with nontrivial valuation, I an ideal in its Laurent polynomial ring, X = V(I) its variety in the torus, then the following coincide:

- (1) The tropical variety trop(X)
- (2) $\{w \in \mathbb{R}^n \mid \text{in}_w(I) \neq \langle 1 \rangle \}$
- (3) The Euclidean closure in \mathbb{R}^n of the image of X under pointwise valuation,

$$val(X) = \{val(y_1), ..., val(y_n) \mid y \in X\}$$

Structure Theorem

Structure Theorem

Let X be an irreducible d-dimensional subvariety of the torus $(K^*)^n$. Then $\operatorname{trop}(X)$ is the support of a balanced, weighted, $\Gamma_{\operatorname{val}}$ -rational polyhedral complex pure of dimension d. Moreover, the polyhedral complex is connected through codimension 1.

