DSC 255 - MACHINE LEARNING FUNDAMENTALS

DECISION TREE BASICS

SANJOY DASGUPTA, PROFESSOR

COMPUTER SCIENCE & ENGINEERING
HALICIOĞLU DATA SCIENCE INSTITUTE

Decision Trees

UCSD Medical Center (1970s): identify patients at risk of dying within 30 days after heart attack.

Decision Trees

UCSD Medical Center (1970s): identify patients at risk of dying within 30 days after heart attack.

Data set:

215 patients.

37 (=20%) died.

19 features.

Decision Trees

UCSD Medical Center (1970s): identify patients at risk of dying within 30 days after heart attack.

Data set:

215 patients.

37 (=20%) died.

19 features.

Building a Decision Tree

Greedy algorithm: build tree top-down.

- Start with a single node containing all data points
- Repeat:
 - > Look at all current leaves and all possible splits
 - > Choose the split that most decreases the uncertainty in prediction

We need a measure of uncertainty in prediction.

Uncertainty in Prediction

Say there are two labels:

- + label p fraction of the points
- label (1 p) fraction of the points

What uncertainty score should we give to this?

Uncertainty in Prediction

Say there are two labels:

- + label p fraction of the points
- label (1-p) fraction of the points

What uncertainty score should we give to this?

Misclassification rate

$$min\{p, 1-p\}$$

2 Gini index

$$2p(1-p)$$

3 Entropy

$$p\log\frac{1}{p} + (1-p)\log\frac{1}{1-p}$$

Uncertainty: *K* **Class**

Suppose there are k classes, with probabilities $p_1, p_2, ..., p_k$.

	k = 2	General <i>k</i>
Misclassification rate	$\min\{p, 1-p\}$	$1 - \max_{i} p_i = 1 - \ p\ _{\infty}$
Gini Index	2p(1-p)	$\sum_{i\neq j} p_i p_j = 1 - \ p\ ^2$
Entropy	$p\log\frac{1}{p} + (1-p)\log\frac{1}{1-p}$	$\sum_i p_i \log \frac{1}{p_i}$

Benefit of a Split

Let u(S) be the uncertainty score for a set of labeled points S.

Consider a particular split:

Of the points in *S*:

- p_L fraction go to S_L
- p_R fraction go to S_R

Benefit of split = reduction in uncertainty:

$$\left(u(S) - \underbrace{(p_L u(S_L) + p_R u(S_R))}_{\text{expected uncertainty after split}}\right) \times |S|$$

Benefit of a Split: Example

Initial Gini uncertainty:

$$2 \times \frac{13}{28} \times \frac{15}{28}$$

[13, 15]

Building a Decision Tree: Summary

Greedy algorithm: build tree top-down.

- Start with a single node containing all data points
- Repeat:
 - > Look at all current leaves and all possible splits
 - > Choose the split that most decreases the uncertainty in prediction