Bloque I: Cinemática

Tema 0. Magnitudes físicas. Vectores

- 0.1. Magnitudes físicas escalares y vectoriales. Sistema Internacional de Unidades
- 0.2. Análisis dimensional
- 0.3. Magnitudes escalares y vectoriales
- 0.4. Operaciones con vectores

Tema 1. Cinemática de la partícula

- 1.1. Vector de posición, velocidad y aceleración
- 1.2. Composición de movimientos
- 1.3. Componentes intrínsecas de la aceleración
- 1.4. Movimiento circular. Velocidad y aceleración angulares
- 1.5. Movimiento relativo. Velocidad y aceleración relativas

- Física Universitaria, Vol. 1; SEARS, F. F., ZEMANSKY, M. W., YOUNG, H. D y FREEDMAN, R. A. Capítulo 2.
- Física para Ciencias e Ingeniería, Vol. 1; SERWAY, R. A. y JEWET, J. W. Capítulo 2.
- Física para la Ciencia y la Tecnología, Vol.1; TIPLER, P. A. Y MOSCA, G. Capítulo 2.

TEMA 1. Cinemática de la partícula

¿se podría saber si el tren está acelerando, desacelerando o viajando a ritmo constante?

Descripción del movimiento

Posición es relativa

Velocidad es relativa

Aceleración es relativa

En general, el movimiento es relativo

Una buena descripción debe incluir respecto a qué referencia se está describiendo el movimiento

MECÁNICA

Vamos a usar como referencia un sistema ortogonal cartesiano y vamos a asumir que ese sistema está en reposo, de manera que nos sirve para describir el movimiento

Sistema de referencia

Partícula material

Movimiento real de los cuerpos puede ser complicado

Es útil en ocasiones considerar los cuerpos en movimiento como si fueran partículas puntuales, describiéndolos por un punto sin dimensiones

CINEMÁTICA

Estudio del movimiento sin ocuparse de las causas que lo provocan

→ obtener posición, velocidad y aceleración en función del tiempo

Limitaciones del modelo: No puede describir deformaciones, vibraciones internas o rotaciones (para esto último usaremos el modelo de sólido rígido)

Vector de posición, desplazamiento y velocidad

 $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$

Si la partícula se mueve, su posición cambiará con el tiempo:

$$\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j} + z(t)\hat{k}$$

Trayectoria: unión de todos los puntos a lo largo del tiempo

Vector desplazamiento: $\Delta \vec{r} = \vec{r}' - \vec{r}$

Velocidad media:

$$\vec{v}_m = \frac{\Delta \vec{r}}{\Delta t}$$

Velocidad instantánea:

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt}$$

La velocidad es siempre tangente a la trayectoria

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta s} \frac{\Delta s}{\Delta t} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} =$$

 $|\vec{v}| = v = \lim_{\Delta t \to 0} \frac{|\Delta \vec{r}|}{\Delta t} = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \frac{ds}{dt}$

El **módulo de la velocidad** es la variación

en el tiempo del espacio recorrido

vector unitario tangente a la trayectoria en P

novimiento curvilíneo

Vector aceleración Si la velocidad varía con el tiempo, tendremos aceleración

Aceleración media:
$$\vec{a}_m = \frac{\Delta \vec{v}}{\Delta t}$$
 donde $\Delta \vec{v} = \vec{v}(t + \Delta t) - \vec{v}(t)$

Aceleración instantánea:
$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt}$$

Velocidad y aceleración en componentes $\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j} + z(t)\hat{k}$

$$\vec{r}(t) = x(t)\hat{\imath} + y(t)\hat{\jmath} + z(t)\hat{k}$$

$$\vec{v}(t) = \frac{dx(t)}{dt}\hat{\imath} + \frac{dy(t)}{dt}\hat{\jmath} + \frac{dz(t)}{dt}\hat{k} = v_x(t)\hat{\imath} + v_y(t)\hat{\jmath} + v_z(t)\hat{k}$$

$$\vec{a}(t) = \frac{dv_x(t)}{dt}\hat{\imath} + \frac{dv_y(t)}{dt}\hat{\jmath} + \frac{dv_z(t)}{dt}\hat{k} = a_x(t)\hat{\imath} + a_y(t)\hat{\jmath} + a_z(t)\hat{k}$$

 \vec{v} al revés? Conocida \vec{v} o \vec{a} , hallar $\vec{r}(t)$: (integrando)

$$\vec{v} \longrightarrow \vec{r}(t) - \vec{r}(t=0) = \int_{t=0}^{t} \vec{v} dt \qquad \qquad \vec{a} \longrightarrow \vec{v}(t) - \vec{v}(t=0) = \int_{t=0}^{t} \vec{a} dt$$

$$\vec{a} \longrightarrow \vec{v}(t) - \vec{v}(t=0) = \int_{t=0}^{t} \vec{a} \, dt$$

Ecuación de la trayectoria

Sabiendo
$$\vec{r}(t) \longrightarrow x(t)$$
, $y(t) \lor z(t) \longrightarrow \begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}$ Eliminando la dependencia en t , se obtiene $f(x,y,z) = 0$

$$f(x,y,z)=0$$

Movimiento Rectilíneo Uniformemente Acelerado (MRUA)

 $\begin{cases} a_n = 0 & \longrightarrow \text{ La dirección de la velocidad no cambia } & \text{Rectilíneo} \\ a_t = cte & \longrightarrow \text{ El módulo de la velocidad cambia a un ritmo constante } & \text{Acelerado} \end{cases}$ Uniformemente

La aceleración va en la misma dirección que la velocidad

Sin perder generalidad, suponemos que el movimiento se da a lo largo del eje ${
m X}$

$$\vec{r}(t) = x(t)\hat{\imath}$$

$$\vec{v}(t) = \frac{dx(t)}{dt}\hat{\imath} = v(t)\hat{\imath}$$

$$\vec{a} = \frac{dv(t)}{dt}\hat{\imath} = a\hat{\imath}$$

$$x(t)$$

$$v(t) = \frac{dx}{dt}$$

$$a = \frac{dv}{dt}$$

¿Cuánto valen la posición o la velocidad en un instante cualquiera *t*?

1) Integro la aceleración

Llamo a la velocidad inicial $v(t=0) \equiv v_0$

$$dv = adt \longrightarrow \int_{v_0}^{v(t)} dv = \int_0^t adt \longrightarrow v(t) = v_0 + at$$

2) Integro la velocidad $x(t=0) \equiv x_0$

$$dx = vdt \longrightarrow \int_{x_0}^{x(t)} dx = \int_0^t vdt = \int_0^t (v_0 + at)dt \longrightarrow x(t) = x_0 + v_0 t + \frac{1}{2}at^2$$

eliminando dependencia temporal (combinar v(t) y x(t)) $v^2 = v_0^2 + 2ax$

Movimiento Rectilíneo Uniforme (MRU)

$$\begin{cases} a_n = 0 & \longrightarrow \text{ La dirección de la velocidad no cambia } & \text{Rectilíneo} \\ a_t = 0 & \longrightarrow \text{ El módulo de la velocidad no cambia } & \text{Uniforme} \end{cases}$$

Sin perder generalidad, suponemos que el movimiento se da a lo largo del eje ${
m X}$

$$\vec{r}(t) = x(t)\hat{\imath}$$

$$\vec{v} = \frac{dx(t)}{dt}\hat{\imath} = v\,\hat{\imath}$$

$$x(t)$$

$$v = \frac{dx}{dt} = cte$$

$$x(t) = x_0 + vt$$
Es un caso particular del MRUA, con $a = 0$

$$\vec{a} = cte$$
 $\left\{ \begin{array}{l} \mathbf{MRUA}: \text{ en la dirección de } \vec{a} \\ \mathbf{MRU}: \text{ en la dirección perpendicular a } \vec{a} \end{array} \right\}$ Tiro parabólico

Componentes de vectores:

$$\vec{a} = a_y \hat{\jmath}$$

$$\vec{v}(t) = v_x(t) \hat{\imath} + v_y(t) \hat{\jmath}$$

$$\vec{r}(t) = x(t) \hat{\imath} + y(t) \hat{\jmath}$$

$$Eje X: (MRU)$$

$$v_x = cte$$

$$v_y(t) = v_{y0} + a_y t$$

$$x(t) = x_0 + v_x t$$

$$y(t) = y_0 + v_{y0} t + \frac{1}{2} a_y t^2$$

Ecuaciones del movimiento:

Composición de movimientos

Movimiento rectilíneo uniformemente acelerado (MRUA)

Movimiento rectilíneo uniforme (MRU)

a) ¿A qué velocidad inicial tendría que ser arrojado de la boca A del volcán un bloque de rocas, formando un ángulo θ con respecto a la horizontal, de manera que la roca caiga en el pie B del volcán?

Datos: h=3,3 km; d=9,4 km; $\theta=35^{\circ}$.

Tiro parabólico: ecuaciones

Eje X: (MRU)
$$\begin{cases} x(t) = x_0 + v_x t \\ v_x = cte \end{cases}$$

Eje Y: (MRUA)
$$\begin{cases} y(t) = y_0 + v_{0y}t + \frac{1}{2}a_yt^2 \\ v_y(t) = v_{0y} + a_yt \end{cases}$$

 \dot{v}_0 para que **caiga en B**? Escojo sistema de referencia

Eje X: recorre una distancia d

$$x(t) = x_0 + v_x t \longrightarrow d = 0 + v_{0x} t_B \longrightarrow d = v_0 \cos \theta t_B$$

Eje Y: recorre una distancia -h

$$y(t) = y_0 + v_{0y}t + \frac{1}{2}a_yt^2$$

$$-h = 0 + v_{0y}t_B - \frac{1}{2}gt_B^2$$

$$-h = v_0 \sin\theta \, t_B - \frac{1}{2} g t_B^2$$

Sistema de 2 ecuaciones

 $\mathbf{Z}_{\mathsf{POLITÉCNICA}}$ incógnitas: t_B y v_0

$$\begin{cases} v_{0x} = v_0 \cos \theta \\ v_{0y} = v_0 \sin \theta \end{cases}$$

a) ¿A qué velocidad inicial tendría que ser arrojado de la boca A del volcán un bloque de rocas, formando un ángulo heta con respecto a la horizontal, de manera que la roca caiga en el pie B del volcán?

Datos: h=3.3 km: d=9.4 km: $\theta=35^{\circ}$.

Tiro parabólico: ecuaciones

Eje X: (MRU)
$$\begin{cases} x(t) = x_0 + v_x t \\ v_x = cte \end{cases}$$

Eje Y: (MRUA)
$$\begin{cases} y(t) = y_0 + v_{0y}t + \frac{1}{2}a_yt^2 \\ v_y(t) = v_{0y} + a_yt \end{cases}$$

Despejamos t_B de la ecuación del eje X:

$$d = v_0 \cos \theta \ t_B \longrightarrow t_B = \frac{d}{v_0 \cos \theta} = 44,89 \text{ s}$$

Sustituimos t_B en la ecuación del eje Y:

$$-h = v_0 \sin \theta \ t - \frac{1}{2} g t_B^2 \quad \longrightarrow \quad -h = v_0 \sin \theta \frac{d}{v_0 \cos \theta} - \frac{1}{2} g \left(\frac{d}{v_0 \cos \theta} \right)^2 \longrightarrow$$

$$-h = \tan \theta \, d - \frac{1}{2} g \frac{d^2}{v_0^2 \cos^2 \theta} \longrightarrow v_0^2 = \frac{1}{2} g \frac{d^2}{(\tan \theta \, d + h) \cos^2 \theta} \longrightarrow v_0 = 255,7 \text{ m/s}$$

b) ¿Con qué velocidad alcanza la roca el punto B?

Datos: h=3,3 km; d=9,4 km; $\theta=35$ °.

Tiro parabólico: ecuaciones

Eje X: (MRU)
$$\begin{cases} x(t) = x_0 + v_x t \\ v_x = cte \end{cases}$$
Eje Y: (MRUA)
$$\begin{cases} y(t) = y_0 + v_{0y}t + \frac{1}{2}a_y t^2 \\ v_y(t) = v_{0y} + a_y t \end{cases}$$

Las ecuaciones del movimiento nos dicen el valor de la velocidad en cada eje:

Eje X: Constante
$$v_x = cte \rightarrow v_{Bx} = v_{0x} = v_0 \cos \theta = 209,4 \text{ m/s}$$

Eje Y: Cambia con el tiempo según la aceleración $v_y(t) = v_{0y} + a_y t$ \longrightarrow

$$v_{By} = v_{0y} - gt_B$$
 \rightarrow $v_{By} = v_0 \sin \theta - gt_B = -293.7 \text{ m/s}$

Como tenemos las componentes, ya tenemos la velocidad:

$$\overrightarrow{v_B} = v_{Bx} \hat{\imath} + v_{By} \hat{\jmath} = 209,4 \hat{\imath} - 293,7 \hat{\jmath} \text{ m/s}$$

Y el módulo:
$$|\vec{v}_B| = v_B = \sqrt{v_{Bx}^2 + v_{By}^2} = 360,7 \text{ m/s}$$

c) Determinar las componentes tangencial y normal de la aceleración, junto con el radio de curvatura, en el instante en el que la roca alcanza el punto más alto de su trayectoria.

Datos: h=3,3 km; d=9,4 km; $\theta=35^{\circ}$.

Tiro parabólico: ecuaciones

Eje X: (MRU)
$$\begin{cases} x(t) = x_0 + v_x t \\ v_x = cte \end{cases}$$

Eje Y: (MRUA)
$$\begin{cases} y(t) = y_0 + v_{0y}t + \frac{1}{2}a_yt^2 \\ v_y(t) = v_{0y} + a_yt \end{cases}$$

En el punto más alto, C:

Velocidad es tangente a la trayectoria

$$\begin{cases} v_{Cx} = v_x = cte = 209,4 \text{ m/s} \\ v_{Cy} = 0 \end{cases}$$

La aceleración es perpendicular a la trayectoria

$$\begin{cases} a_t = 0 \\ a_n = a = g \end{cases}$$

Radio de curvatura:

$$a_n = \frac{v^2}{R} \longrightarrow R = \frac{v^2}{a_n} = \frac{v_x^2}{g} = 4470 \text{ m} = 4,47 \text{ km}$$

Composición de movimientos: lanzamiento de proyectiles

condiciones iniciales:

$$v_{0x} = v_0 \cos \alpha_0$$

$$v_{0y} = v_0 \operatorname{sen} \alpha_0$$

Ecuación de la trayectoria (eliminar t)

$$y(x) = (\tan \alpha_0) x - \frac{g}{2v_0^2 \cos^2 \alpha_0} x^2$$

Como α_0 , v_0 y g son constantes, esta ecuación corresponde a una parábola

altura máxima h y alcance R en función de las constantes v_0 y α_0 :

$$h = \frac{v_0^2 \operatorname{sen}^2 \alpha_0}{2g}$$

$$R = \frac{v_0 \sin 2\alpha_0}{g}$$

Componentes intrínsecas de la aceleración

¿Qué dirección tiene la velocidad respecto a la trayectoria? ¿Y la aceleración?

A veces puede ser muy útil expresar la aceleración en componentes tangentes $(\hat{\tau})$ o perpendiculares (\hat{n}) a la trayectoria

$$\vec{v} = v\hat{\tau}$$

$$\vec{d} = \frac{d\vec{v}}{dt} = \frac{d(v\hat{\tau})}{dt} = \frac{dv}{dt}\hat{\tau} + v\frac{d\hat{\tau}}{dt} = \frac{dv}{dt}\hat{\tau} + \frac{v^2}{R}\hat{n} = a_t\hat{\tau} + a_n\hat{n}$$

$$\frac{d\hat{\tau}}{dt} = v\hat{\eta}$$
Radio de curvatura

Cuánto vale $\frac{d\hat{\tau}}{dt}$

Si
$$\vec{\tau} = \cos\theta \vec{i} + \sin\theta \vec{j}$$
:

 $\frac{d\vec{\tau}}{dt} = (-sen\theta\vec{i} + cos\theta\vec{j})\frac{d\theta}{dt} = \frac{d\theta}{dt}\vec{n} = \frac{ds}{Rdt}\vec{n} = \frac{v}{\rho}\vec{n}$

Luego:
$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{dv}{dt} \vec{\tau} + \frac{v^2}{\rho} \vec{n}$$
 Aceleración normal \rightarrow cambio en dirección

Aceleración tangencial → cambio en módulo de v

→ cambio en dirección de v

Clasificación general del movimiento En función de las componentes de la aceleración

$$a_n = 0 \\ (R = \infty) \begin{cases} a_t = 0 \\ a_t = cte \end{cases} \text{ MRU: Movimiento Rectilíneo Uniforme} \\ a_t = cte \\ \text{MRUA: Movimiento Rectilíneo Uniformemente Acelerado} \\ a_n \neq 0 \\ \text{y } R = cte \end{cases} \begin{cases} a_t = 0 \\ a_t = 0 \\ \text{MCU: Movimiento Circular Uniforme} \end{cases} \\ a_n = cte \\ a_t = cte \\ \text{MCUA: Movimiento Circular Uniformemente Acelerado} \\ a_n \neq cte \\ \vec{a} = cte \end{cases} \\ \vec{a} = cte \end{cases} \begin{cases} \text{MRUA: en la dirección de } \vec{a} \\ \text{MRU: en la dirección perpendicular a } \vec{a} \end{cases}$$
 Tiro parabólico
$$\vec{a} = f(x, y, z, t)$$
 MFD: Movimiento Francamente Difícil Campos en Física II

La aceleración de una partícula sólo será cero cuando ambas componentes, $ec{a}_t$ y $ec{a}_n$ sean cero

Movimiento circular: características y magnitudes angulares

La trayectoria es una circunferencia de radio $r = |\vec{r}|$

La velocidad \vec{v} es siempre perpendicular a \vec{r}

Cambia continuamente de dirección! ¿Y el módulo qué hace?

El arco recorrido, s, se relaciona con el ángulo barrido, θ , usando la definición de radián:

* giro antihorario $\rightarrow \theta$ positivo

$$s = r\theta$$
 Ejemplo: $Long. Circun. = r2\pi$

Por lo tanto, el módulo de la velocidad:
$$|\vec{v}| = v = \frac{ds}{dt} = r\frac{d\theta}{dt} = r\omega$$

Velocidad angular: ángulo barrido por unidad de tiempo: $\omega = \frac{d\theta}{dt}$ Unidades: rad/s

$$\omega = \frac{d\theta}{dt}$$
 Unidades: rad/s

Aceieracion angular: variación de la velocidad angular por unidad de tiempo: $\alpha = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2}$ Unidades: rad/s²

$$lpha = rac{d\omega}{dt} = rac{d^2 heta}{dt^2}$$
 ra

Estas magnitudes pueden expresarse como vectores:

$$\vec{v} = \vec{\omega} \times \vec{r}$$

Misma dirección que $\vec{\omega}$ Mismo sentido si $\alpha>0$

Movimiento circular: relación entre magnitudes lineales y angulares

La velocidad y la velocidad angular son vectores perpendiculares

Si el origen de coordenadas está en el centro de curvatura:

$$v = \frac{\mathrm{d}s}{\mathrm{d}t} = \frac{\mathrm{d}s}{\mathrm{d}\varphi} \frac{\mathrm{d}\varphi}{\mathrm{d}t} = \rho \cdot \omega \longrightarrow \vec{v} = \vec{\omega} \times \vec{r}$$

derivando:

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d\vec{\omega}}{dt} \times \vec{r} + \vec{\omega} \times \frac{d\vec{r}}{dt} = \frac{d\omega}{dt} \vec{e} \times \vec{r} + \vec{\omega} \times \frac{d\vec{r}}{dt}$$

$$\vec{a} = \vec{\alpha} \times \vec{r} + \vec{\omega} \times (\vec{\omega} \times \vec{r})$$

Movimiento Circular Uniforme (MCU)

$$v = r\omega = cte \longrightarrow \omega = cte \longrightarrow \alpha = \frac{d\omega}{dt} = 0$$

Recordemos:

$$\begin{cases} a_t = \frac{dv}{dt} = 0 & \text{M\'odulo} \text{ de la velocidad es constante} \\ a_n = \frac{v^2}{r} = cte & \text{Direcci\'on} \text{ de la velocidad var\'ia (de manera constante)} \end{cases}$$

Integrando
$$\omega = \frac{d\theta}{dt}$$
 $\qquad \longrightarrow \qquad \theta(t) = \theta_0 + \omega t$

Algunas magnitudes propias del MCU:

Periodo (T): Tiempo empleado en realizar una vuelta completa:

$$T = \frac{2\pi}{\omega}$$
 Unidades: s

Frecuencia (f): Vueltas (o ciclos) por unidad de tiempo:

$$f = \frac{1}{T} = \frac{\omega}{2\pi}$$
 Unidades: Hercios (Hz) (s⁻¹)

Movimiento Circular Uniforme (en componentes cartesianas)

Vector posición

$$\vec{r} = x\hat{\imath} + y\hat{\jmath} \qquad \begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases} \qquad \begin{cases} x(t) = r\cos\omega t \\ y(t) = r\sin\omega t \end{cases}$$

Vector velocidad

$$\vec{V}_{x}(t) = \frac{dx}{dt} = -r\omega \sin \omega t$$

$$\vec{v}_{x}(t) = \frac{dy}{dt} = r\omega \cos \omega t$$

Vector aceleración

$$\vec{a} = a_x \hat{\imath} + a_y \hat{\jmath}$$

ctor aceleración
$$\vec{a} = a_x \hat{\imath} + a_y \hat{\jmath}$$

$$\begin{cases} a_x(t) = \frac{dv_x}{dt} = -\omega^2 r \cos \omega t = -\omega^2 x(t) \\ a_y(t) = \frac{dv_y}{dt} = -\omega^2 r \sin \omega t = -\omega^2 y(t) \end{cases}$$

$$\vec{a} = a_x \hat{\imath} + a_y \hat{\jmath} = -\omega^2 x(t) \hat{\imath} - \omega^2 y(t) \hat{\jmath} = -\omega^2 \vec{r}$$

$$|\vec{a}| = |-\omega^2 \vec{r}| = \omega^2 r$$

La aceleración va en la dirección de \vec{r} , pero dirigida hacia el centro

Es siempre perpendicular a la trayectoria

$$|\vec{a}| = a = a_n = \frac{v^2}{r} = \frac{(\omega r)^2}{r} = \omega^2 r$$

Es una aceleración normal

Movimiento Circular Uniformemente Acelerado (MCUA)

$$\alpha = \frac{d\omega}{dt} = cte$$

$$a_t = \frac{dv}{dt} = cte$$

$$a_n = \frac{v^2}{R} \neq cte$$

 $lpha = rac{d\omega}{dt} = cte$ $\begin{cases} a_t = rac{dv}{dt} = cte & ext{M\'odulo} ext{ de la velocidad var\'ia} \ (ext{de manera constante}) \end{cases}$ Recordemos: $a_n = rac{v^2}{R} \neq cte$ Dirección de la velocidad var\'ia (de forma

variable, ya que v varía y R es constante)

Integrando
$$\alpha = \frac{d\omega}{dt}$$
 \longrightarrow $\omega(t) = \omega_0 + \alpha t$

Integrando
$$\omega = \frac{d\theta}{dt}$$

Integrando
$$\omega = \frac{d\theta}{dt}$$
 \longrightarrow $\theta(t) = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$

Igual que MRUA, pero con magnitudes angulares

Y las componentes de la aceleración serán:

$$a_{t} = \frac{dv}{dt} = \frac{d}{dt}(r\omega) = r\frac{d\omega}{dt} = r\alpha$$

$$a_{n} = \frac{v^{2}}{r} = r\omega^{2}$$

Estas relaciones son válidas también para el caso general de movimiento

Movimiento relativo (de traslación)

Ejemplo

¿Qué está pasando aquí?

Movimiento relativo (de traslación)

Tomamos un sistema de referencia como fijo: (O, X, Y, Z)

Otro sistema de referencia, (O', X', Y', Z'), se mueve respecto a (O, X, Y, Z), sin girar! (ej: ejes siempre paralelos)

Podemos tomar los ejes de los dos sistemas paralelos entre sí

Vector de posición de la partícula P en el sistema (O, X, Y, Z) \vec{r}_{OP}

 \vec{r}' Vector de posición de la partícula P en el sistema (O', X', Y', Z') $\vec{r}_{O'P}$

 $ec{r}_{OO'}$ Vector de posición de O' en el sistema (O, X, Y, Z)

$$\vec{r} = \vec{r}' + \vec{r}_{OO'}$$
 Derivando $\vec{v} = \vec{v}' + \vec{v}_{OO'}$ Derivando $\vec{a} = \vec{a}' + \vec{a}_{OO'}$

Composición de movimientos

Movimiento respecto a (O, X, Y, Z) = Movimiento respecto a (O', X', Y', Z') + Movimiento de (O', X', Y', Z') respecto a (O, X, Y, Z)

Si $\vec{v}_{OO'} = cte \longrightarrow \vec{a} = \vec{a}' \longrightarrow (O', X', Y', Z')$ es un sistema de referencia inercial

Los dos sistemas ven la misma aceleración ——— Las mismas fuerzas! (Tema 3)

Movimiento relativo (de traslación) – Otra forma de verlo, y otra notación

Muchas veces vemos dos objetos en movimiento desde un mismo sistema de referencia

Y nos interesa calcular cómo es el movimiento de uno respecto a otro

Entonces tomamos uno de los objetos como el nuevo sistema

Vector de posición de la partícula A en el sistema (O, X, Y, Z)

 $\vec{r}_{B/O} \equiv \vec{r}_B$ Vector de posición de la partícula B en el sistema (O, X, Y, Z)

Vector de posición de B desde el punto de vista de A

Mismas cuentas que antes!

Movimiento relativo (de traslación) – sistema de referencia inercial

Supongamos un SR que se mueve con aceleración a, si observa una partícula LIBRE, dirá que se mueve con aceleración −a → FALSO (no actúa sobre ella ninguna fuerza Tema 2 Dinámica)

SRI: aquél que se encuentra en reposo o en MRU, siendo todos equivalentes y cumpliéndose en ellos las leyes de la mecánica clásica (Principio de Relatividad de Galileo)

$$\vec{r} = \overrightarrow{r'} + \vec{V} \cdot t$$

$$t = t'$$

$$\dot{\vec{r}} = \dot{\vec{r}'} + \vec{V}$$

$$\dot{\vec{r}} = \dot{\vec{r'}} + \vec{V}$$
 $\rightarrow \vec{v} = \overrightarrow{v'} + \vec{V}$

$$\vec{a} = \overline{a}$$

Movimiento relativo (de traslación) – sistema de referencia no inercial

SRNI: aquel que acelera respecto a un SRI

$$\vec{r} = \overrightarrow{r'} + \overrightarrow{r_0} \rightarrow \dot{\vec{r}} = \dot{\vec{r'}} + \dot{\vec{r_0}}$$

$$\vec{v} = \dot{\vec{r}} = \dot{x}\vec{i} + \dot{y}\vec{j} + \dot{z}\vec{k}$$

$$\overrightarrow{v_r} = \dot{x'}\overrightarrow{i'} + \dot{y'}\overrightarrow{j'} + \dot{z'}\overrightarrow{k'}$$

velocidad absoluta

velocidad relativa

$$\frac{d\overrightarrow{r'}}{dt} = \dot{\overrightarrow{r'}} = \left[\left(\frac{dx'}{dt} \overrightarrow{i'} + \frac{dy'}{dt} \overrightarrow{j'} + \frac{dz'}{dt} \overrightarrow{k'} \right) + \left(\frac{d\overrightarrow{i'}}{dt} x' + \frac{d\overrightarrow{j'}}{dt} y' + \frac{d\overrightarrow{k'}}{dt} z' \right) \right]$$

Ya vimos que:
$$\frac{d\vec{r}}{dt} = \vec{\omega} \times \vec{r} \longrightarrow \frac{d\vec{i'}}{dt} = \vec{\omega} \times \vec{i'}$$

luego:
$$\left(\frac{d\vec{i'}}{dt}x' + \frac{d\vec{j'}}{dt}y' + \frac{d\vec{k'}}{dt}z'\right) = \vec{\omega} \times \vec{i'}x' + \vec{\omega} \times \vec{j'}y' + \vec{\omega} \times \vec{k'}z' = \vec{\omega} \times \vec{r'}$$

nos queda entonces:
$$\overrightarrow{r'} = \overrightarrow{v_r} + \overrightarrow{\omega} \times \overrightarrow{r'}$$

$$\vec{v} = \vec{v_r} + \vec{v_o} + \vec{\omega} \times \vec{r'}$$

la que tendría P en el SRO si está ligada a SRO' como un sólido rígido

Movimiento relativo (de traslación) – sistema de referencia no inercial

Aceleración de Arrastre (la que tendría P si estuviera ligada a O' como un sólido rígido)

partícula P vista desde O'

http://www.youtube.com/watch?v=dt XJp77-mk&feature=BFa&list=LPs6Nk8i0yIAs

http://www.youtube.com/watch?v=mcPs OdQOYU

EJEMPLO: Movimiento relativo

$$v_A$$
? v_B ? v_C ? v_D ? $v_{P/W}$? $v_{B/C}$?

$$v_A = v_W$$
 Poleas: $v_1 = 0$ $v_2 = v_W$ $v_3 = 0$

Polea 1:
$$v_{A/1} = -v_{B/1}$$

$$\begin{cases} v_{A/1} = v_A - v_1 = v_W - 0 = v_W \\ v_{B/1} = v_B - v_1 = v_B \end{cases} \quad v_B = -v_W$$

$$\int v_{B/1} = v_B - v_1 = v_B \qquad \qquad \int v_B - v_W$$

Polea 2:
$$v_{B/2} = -v_{C/2}$$

$$\begin{cases} v_{B/2} = v_B - v_2 = -v_W - v_W = -2v_W \\ v_{C/2} = v_C - v_2 = v_C - v_W \end{cases} v_C - v_W = 2v_W \\ v_C = 3v_W$$

Polea 3:
$$v_{C/3} = -v_{D/3}$$

$$\begin{cases} v_{C/3} = v_C - v_3 = 3v_W - 0 = 3v_W \\ v_{D/3} = v_D - v_3 = v_D \end{cases} v_D = -3v_W$$

$$v_{P/W} = v_P - v_W = v_D - v_W = -3v_W - v_W = -4v_W$$

$$v_{B/C} = v_B - v_C = -v_W - 3v_W = -4v_W$$

EJEMPLO: Movimiento relativo

Datos:

$$\begin{cases} t = 0 \longrightarrow v_{W}(0) = 0 = v_{P}(0) = v_{P/W}(0) \\ a_{W} = cte & a_{P} = cte \\ t = 5 \longrightarrow v_{P/W}(5) \text{ (dato)} \end{cases} \qquad a_{W}(5)? \qquad a_{P}(5)?$$

$$v_{P/W}(t) = v_{P/W}(0) + a_{P/W}t \longrightarrow$$

$$a_{P/W} = \left(\frac{v_{P/W}(t) - v_{P/W}(0)}{t}\right) = \left(\frac{v_{P/W}(5) - 0}{5}\right)$$

$$a_{P/W} = a_{P} - a_{W} = \left(\frac{v_{P}(5) - 0}{5}\right) - \left(\frac{v_{W}(5) - 0}{5}\right)$$

$$v_{P} = -3v_{W}$$

$$= \frac{-3v_{W}(5)}{5} - \frac{v_{W}(5)}{5} = -\frac{4}{5}v_{W}(5)$$

$$v_W(5) = -\frac{5}{4}a_{P/W} = -\frac{5}{4}\frac{v_{P/W}(5)}{5} = -\frac{1}{4}v_{P/W}(5)$$
 $v_W(4)$? $v_W(4)$?

$$a_W = \frac{v_W(5)}{5} = -\frac{1}{20}v_{P/W}(5)$$

$$a_P = \frac{v_P(5)}{5} = \frac{-3v_W(5)}{5} = \frac{3}{20}v_{P/W}(5)$$

 $v_W(4)? v_W(4)? v_W(4)?$ $v_W(4) = v_W(0) + a_W 4 = -\frac{1}{5} v_{P/W}(5)$ $y_W(4) = y_W(0) + v_W(0)4 + \frac{1}{2} a_W 16$ $= -\frac{2}{5} v_{P/W}$

EJEMPLO: Movimiento relativo

 $v_P = -3v_W -$

Datos:

$$\begin{cases} t = 0 \longrightarrow v_W(0) = 0 = v_P(0) = v_{P/W}(0) \\ \text{Fuerzas constantes: MRUA:} \quad a_W = cte \quad a_P = cte \\ t = 5 \longrightarrow v_{P/W}(5) \quad \text{(dato)} \end{cases} \quad a_W(5)? \quad a_P(5)?$$

MRUA:
$$v(t) = v(0) + at \rightarrow v(t) = at$$

3 ecuaciones y 3 incógnitas:

derivando
$$contes y 3 incognitas.$$

$$contes y$$

$$v_W(4)? \qquad v_W(4) = v_W(0) + a_W 4 = -\frac{1}{5} v_{P/W}(5)$$

$$y_W(4)? \qquad y_W(4) = y_W(0) + v_W(0)4 + \frac{1}{2} a_W 16 = -\frac{2}{5} v_{P/W}(5)$$

