Визуальная одометрия для систем широкоугольных камер с (не-)пересекающимися областями зрения

Михаил Андреевич Терехов

16.В10-мм Лаборатория распознавания изображений СПбГУ

2020

Руководитель: к.т.н, доц. Ю.В Литвинов

Консультант: Д.А. Корчемкин

Рецензент: к.ф.-м.н.,ст.преп. С.И. Салищев

Визуальная одометрия для систем широкоугольных камер

Direct Sparse Odometry

Визуальная одометрия — основанное на видеоинформации построение локальной карты окрестностей камеры одновременно с определением её текущего положения.

Расположение камер 1

Типичная система surround view

¹ https://www.nissan-global.com/EN/TECHNOLOGY/OVERVIEW/iavm.html

Применения в случае работы с системами камер

Системы помощи водителю

Обнаружение статических препятствий 2

Планирование траектории автомобиля при парковке 3

Также может применяться для навигации при плохом сигнале GNSS:

- В подземных паркингах В тоннелях
- В условиях плотной застройки

² https://www.sentech.nl/en/sensor-technology/lidar-autonomous-driving-and-agv/

³ https://www.shutterstock.com/image-illustration/autonomous-car-parking-top-view-self-790353277

Цель и задачи

Цель

Разработка системы визуальной одометрии для калиброванных систем широкоугольных камер с потенциально непересекающимися областями зрения

Задачи

- Подготовка данных для тестирования многокамерной одометрии
- Переработка архитектуры одометии для многокамерного случая
- ▶ Переход от ceres-solver к реализации оптимизации, специфичной для одометрии
 - Символьное дифференцирование функции остатков
 - Блочное вычисление градиента и аппроксимации гессиана
- Оптимизация по времени работы

Существующие решения

Данные

- ▶ Датасет RobotCar
 - Не широкоугольные камеры
 - Не идеальный ground truth
- ▶ Датасет WoodScape
 - Так и не попал в открытый доступ
- CARLA driving simulator
 - Использует Level of Detail
- ► Датасет Multi-FoV
 - Только однокамерная версия
 - Всё для самостоятельного рендеринга

Алгоритмы на ключевых точках

- ► MultiCol SLAM⁴
- Multi-Camera PTAM⁵

Низкая плотность облака точек

Алгоритмы с прямым подходом

- Direct Sparse Odometry
 - Расширена для набора стереопар
- Semi-direct Visual Odometry
 - Расширение доступно только в бинарном виде

⁴Simultaneous Localization and Mapping

⁵Parallel Tracking and Mapping

Работа с датасетом Multi-FoV

Рис.: Пример сгенерированного мульти-кадра и точных глубин для него

Переработка архитектуры для поддержки многокамерных систем Примеры необходимых преобразований

Однокамерная архитектура

Многокамерная архитектура

Символьное дифференцирование функции остатков

Репроекция точки в многокамерной системе

$$p_{\alpha,t} = \pi_{\alpha} \left(\left(\omega_{\alpha}^{-1} \omega_{t}^{-1} \omega_{h} \omega_{\beta} \right) \cdot \left(d * \pi_{\beta}^{-1} \left(p_{\beta,h} \right) \right) \right)$$

где π — функция проецирования, ω_{α} и ω_{β} — положения камер в системе камер, ω_{h} и ω_{t} — положения системы в разные моменты времени, d — глубина точки p на кадре β

Основные отличия от традиционной однокамерной одометрии:

- lacktriangle Многокамерность добавляет преобразования ω_lpha и ω_eta
- lacktriangle Широкоугольные камеры характеризуются особыми моделями проецирования π

Кеширование производных по ω_h, ω_t позволило дифференцировать в 2.5 раза быстрее по сравнению с автоматическим методом.

Ускорение совместной оптимизации

Структура гессиана оптимизационной задачи

- Аппроксимация гессиана вычисляется с учётом его разреженной структуры
- Тестирование на Intel Core i7-8650U СРU@ 1.90GHz
- ▶ Получено общее ускорение оптимизации в 50 раз по сравнению с версией с автоматическим дифференцированием
- ▶ 10 итераций оптимизации в одном потоке в среднем за 1 с
 - Дальнейшее ускорение возможно за счёт распараллеливания

Сравнение с однокамерной одометрией

Сравнение траекторий однокамерной и многокамерной одометрии

	Положение (%)	Ориентация $(°/м)$	Масштаб (%/м)
4 камеры	0.91	0.016	0.0073
1 камера	1.21	0.005	0.02

Таблица: Значения ошибки в траектории для многокамерной и однокамерной одометрии

 $\mathsf{P}\mathsf{u}\mathsf{c}$.: Ошибка по оси Z

Итоги

- Рассмотрены различные источники тестовых данных
 - Произведён рендеринг многокамерной версии датасета Multi-FoV
- Архитектура системы переделана под многокамерный случай
- Написана совместная оптимизация, оптимизированная под цели одометрии
 - Символьное дифференцирование функции остатков с кэшированием
 - Блочное вычисление градиента и гессиана
- Многокамерная одометрия протестирована на синтетических данных

Репозиторий проекта: https://github.com/MikhailTerekhov/mdso