CS 511, Fall 2020, Handout 03 (Part B) Semantics of Propositional Logic

Assaf Kfoury

September 08, 2020

from propositional formulas to truth-tables (from last lecture)

consider propositional wff (well-formed formula): $\varphi \stackrel{\text{def}}{=} (x \to \neg y) \to (y \lor \neg x)$:

- lacktriangle start with all the propositional atoms in the wff arphi
- incrementally, consider each sub-wff of φ , from innermost to outermost

x	У	$\neg x$	$\neg y$	$x \rightarrow \neg y$	$y \lor \neg x$	$(x \to \neg y) \to (y \lor \neg x)$
Т	Т	F	F	F	Т	Т
Т	F	F	Т	Т	F	F
F	Т	Т	F	Т	Т	T
F	F	Т	Т	Т	Т	Т

- propositional wff φ is **satisfiable** if **there is** an assignment of truth-values to the propositional atoms which makes φ true.
- lacktriangledown propositional wff φ is a **tautology** if **every** assignment of truth-values to the propositional atoms makes φ true.
- $\varphi \triangleq (x \to \neg y) \to (y \lor \neg x)$ is satisfiable, but is not a tautology.

Another More Complicated Truth-Table (from last lecture)

not of a single wff, but of a sequent $(P \land \neg Q) \to R$, $\neg R$, $P \vdash Q$, which was shown **formally derivable** by the proof rules at the end of **Handout 02**.

P	Q	R	$\neg Q$	$\neg R$	$P \wedge \neg Q$	$(P \land \neg Q) \to R$
T	Т	Т	F	F	F	T
Т	Т	F	F	Т	F	T
Т	F	Т	Т	F	Т	Т
Т	F	F	Т	Т	Т	F
F	Т	Т	F	F	F	Т
F	Т	F	F	Т	F	T
F	F	Т	Т	F	F	T
F	F	F	Т	T	F	T

- when all the premises (shaded in gray) evaluate to **T**, so does the conclusion (shaded in green) this occurs in **row 2** of the truth table,
- lacktriangle in such a case we write $(P \land \neg Q) \to R, \ \neg R, \ P \models Q$.

premises

Relating Truth Tables and Proof Rules: soundness and completeness

If, for every interpretation/model/valuation (*i.e.*, assignment of truth values to the propositional atoms) for which all of the WFF's $\varphi_1, \varphi_2, \ldots, \varphi_n$ evaluate to **T**, it is also the case that ψ evaluates to **T**, then we write:

$$\varphi_1,\ \varphi_2,\ \dots,\ \varphi_n\models\psi$$
 and say that " $\varphi_1,\varphi_2,\dots,\varphi_n$ semantically entails ψ " or also "every model of $\varphi_1,\varphi_2,\dots,\varphi_n$ is a model of ψ ".

- ► Theorem (Soundness): If $\varphi_1, \varphi_2, \dots, \varphi_n \vdash \psi$ then $\varphi_1, \varphi_2, \dots, \varphi_n \models \psi$.
- Theorem (Completeness): If $\varphi_1, \varphi_2, \dots, \varphi_n \models \psi$ then $\varphi_1, \varphi_2, \dots, \varphi_n \vdash \psi$.

Relating Truth Tables and Proof Rules: soundness and completeness

- ightharpoonup simple version of **soundness**: if $\vdash \psi$ then $\models \psi$ Informally, "if you can prove it, then it is true".
- \blacktriangleright simple version of **completeness**: if $\models \psi$ then $\vdash \psi$ Informally, "if it is true, then you can prove it".
- if $\models \psi$, then we say ψ is a **tautology** or a **valid formula**.
- ightharpoonup if $ightharpoonup \varphi$, then we say φ is (formally) derivable or a (formal) theorem.

(THIS PAGE INTENTIONALLY LEFT BLANK)