Stroke Classification

Introduction

A stroke occurs when the blood supply to part of the brain is interrupted or reduced, preventing brain tissue from getting oxygen and nutrients. Brain cells begin to die in minutes.

A stroke is a medical emergency, and prompt treatment is crucial. Early action can reduce brain damage and other complications.

Objective

build a classification model to detect stroke and evaluate the model using some performance metrics

Methodology

Data descrebtion

database is provided by <u>Kaggle</u>. It provided in .CSV format and contains 5110 rows and 12 columns. Only 10 column are used.

Label:

1- Gender 6- Residence type

2- Age of the patient 7- avg glucose level

3- Hypertension 8- work type

4- Heart disease 9-body mass

5- Ever married 10- smoking status

Target:

stroke

Feature Engineering

Depending on **age** column we add new column **age group** contain 3 category:

Old Adult Child

Which age group got stroke most?

Which gender is got stroke most?

56.6%

43.4%

56.6%
Female stroke

Depending on the data the female is get stroke more than male.

Handling Imbalance data

0 0.0 0.2 0.4 0.6 0.8 1.0

Balanced target

Model Evaluation	Accurcy	F-1	precision	Recall
Logistic regression	0.7485	0.2801	0.1694	0.8064
Knn	0.8072	0.2676	0.1736	0.5806
Decision tree	0.9021	0.1666	0.1724	0.1612
Random forest	0.9344	0.0821	0.2727	0.0483
XGboost	0.9354	0.1538	0.375	0.0967

^{*} All models after tuned

Voting & Stacking

ROC CURVE

Logistic Regression

Is the beast model.

Best Model & Result

Logistic Regression

Accuracy: 74%

Recall: 91%

Precision: 12%

AUC: 85%

Conclusion:

- At the end from Roc curve, we can assume that the best model is Logistic Regression.
- In the feature work we want to improve accuracy for the best model.

Thanks

Do you have any questions?

Presented by Modhi and Razan