Definition: Sequence

A **sequence** is an ordered list of elements, typically numbers, indexed by the natural numbers. Formally, a sequence is a function from the natural numbers to a set.

Formal Definition

A sequence in a set S is a function:

$$a: \mathbb{N} \to S$$

We denote: - The sequence as $(a_n)_{n=1}^\infty$ or simply (a_n) - The n-th term as $a_n=a(n)$

Notation

Common notations for sequences: - $(a_n)_{n=1}^{\infty}=(a_1,a_2,a_3,\ldots)$ - $(a_n)_{n\in\mathbb{N}}$ - $\{a_n\}_{n=1}^{\infty}$ (though this can be confused with set notation)

Types of Sequences

By Domain

- Infinite sequences: Domain is all of \mathbb{N}
- Finite sequences: Domain is $\{1, 2, ..., N\}$ for some N

By Codomain

- Real sequences: $a_n \in \mathbb{R}$
- Complex sequences: $a_n \in \mathbb{C}$
- Vector sequences: $a_n \in \mathbb{R}^d$ or other vector spaces
- Function sequences: a_n are functions

Examples

- 1. Arithmetic sequence: $a_n = a_1 + (n-1)d$
 - Example: $(2,5,8,11,\ldots)$ with $a_1=2,\,d=3$
- 2. Geometric sequence: $a_n = a_1 \cdot r^{n-1}$
 - Example: $(3,6,12,24,\ldots)$ with $a_1=3,\,r=2$
- 3. Harmonic sequence: $a_n = \frac{1}{n}$
 - $(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots)$
- 4. Fibonacci sequence: $a_1 = 1, a_2 = 1, a_n = a_{n-1} + a_{n-2}$
 - (1,1,2,3,5,8,13,...)

Properties

- Bounded: $\exists M > 0$ such that $|a_n| \leq M$ for all n
- Monotonic: Either increasing $(a_n \le a_{n+1})$ or decreasing

- Periodic: $\exists p \text{ such that } a_{n+p} = a_n \text{ for all } n$ Cauchy: $\forall \varepsilon > 0, \exists N \text{ such that } |a_m a_n| < \varepsilon \text{ for all } m, n > N$

Related Concepts

- Convergence: When sequences approach a limit
- Limit of a Sequence: The value a convergent sequence approaches
- Series: Sum of sequence terms
- Subsequences: Sequences extracted from a sequence

Dependency Graph

Local dependency graph