Examen terminal du mardi 10 mai 2022

DURÉE: 2H - DOCUMENTS ET MATÉRIEL ÉLECTRONIQUE INTERDITS. Le sujet est composé de questions de cours et de 3 exercices indépendants. qui peuvent être traités dans n'importe quel ordre.

Toute réponse doit être justifiée ou argumentée.

Barême indicatif (susceptible de modifications) : Questions de cours : 20% Ex. 1:30-35\%, Ex. 2:25-30\%, Ex. 3:20\%

Questions de cours

- 1. Écrire avec des quantificateurs la phrase mathématique suivante : « la suite $(w_n)_{n>0}$ converge vers -3 ».
- 2. Soit E et F des espaces vectoriels et $\varphi: E \to F$ une application linéaire.
 - (a) Rappeler la définition de $ker(\varphi)$.
 - (b) Montrer que $\ker(\varphi)$ est un espace vectoriel.
- 3. Soit $h: \mathbb{R}_4[X] \to \mathbb{R}^4$ une application linéaire.
 - (a) Donner (sans justification) $\dim(\mathbb{R}_4[X])$.
 - (b) Énoncer le théorème du rang appliqué à h.
 - (c) Montrer que h n'est pas injective.

Exercice 1. On considère l'endomorphisme $f: \mathbb{R}^3 \to \mathbb{R}^3$ dont la matrice dans la base canonique (que l'on

notera
$$\mathcal{C}$$
) est $A = \begin{pmatrix} -1 & -1 & 0 \\ -2 & 9 & 4 \\ 4 & -21 & -9 \end{pmatrix}$.
On note $\mathrm{id}_{\mathbb{R}^3}: \mathbb{R}^3 \to \mathbb{R}^3$ l'endomorphisme identité de \mathbb{R}^3 .

On note u_1, u_2 et u_3 les vecteurs de \mathbb{R}^3 dont les coordonnées dans la base canonique $\mathcal C$ sont respectivement

$$\begin{pmatrix} 2\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\3 \end{pmatrix} \text{ et } \begin{pmatrix} 0\\1\\-2 \end{pmatrix}.$$

- 1. Montrer que $\mathcal{B}_1 = (u_1, u_2, u_3)$ est une base de \mathbb{R}^3 .
- 2. Donner une base et la dimension de $\ker(f + \mathrm{id}_{\mathbb{R}^3})$. En déduire $f(u_1)$.
- 3. Calculer $f(u_2)$ et $f(u_3)$.
- 4. Déterminer la matrice B de f dans la base \mathcal{B}_1 .
- 5. Calculer le déterminant de la matrice $\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$. En déduire que f est bijective, et déterminer $\ker(f)$.

On pose $g = f \circ f$ et $h = g \circ g$.

- 6. Calculer B^4 . En déduire que $h = id_{\mathbb{R}^3}$.
- 7. Sans calcul, déterminer A^4 (en justifiant la réponse).

Exercice 2.

Soit $a \in]-2,0[$. On considère la suite $(u_n)_{n\geq 0}$ définie par $u_0=a$ et $u_{n+1}=\frac{u_n^2}{2}+2u_n$.

Soit p et q les fonctions définies sur \mathbb{R} par $p(x) = \frac{x^2}{2} + 2x$ et q(x) = p(x) - x.

- 1. Étudier les variations de p sur \mathbb{R} , et montrer que p(|-2,0|) = |-2,0|.
- 2. Montrer par récurrence que, pour tout $n \geq 0$, on a $u_n \in]-2,0[$.
- 3. Montrer que pour tout $x \in]-2,0[$, on a $q(x) \leq 0$. En déduire que la suite $(u_n)_{n\geq 0}$ est monotone.
- 4. Justifier que la suite $(u_n)_{n>0}$ est convergente, et déterminer sa limite ℓ .

Exercice 3. On considère la fonction $F:]-\infty, \frac{1}{2}[\to \mathbb{R}$ définie par $F(x) = 2xe^x + \ln(1-2x)$.

- 1. Déterminer le DL à l'ordre 3 en 0 de F.
- 2. On considère la suite $(v_n)_{n\geq 3}$ définie par $v_n=\frac{2}{n}\mathrm{e}^{\frac{1}{n}}+\ln(1-\frac{2}{n})$. À l'aide de la question précédente, déterminer un équivalent simple de v_n .
- 3. Montrer que la suite $(n^3v_n)_{n\geq 3}$ est convergente, et déterminer sa limite.

Correction de l'examen terminal

Mathématiques S2 - 10 mai 2022 V. Souveton

Questions de cours

- 1. $\forall \varepsilon \in \mathbf{R}_{+}^{*} \quad \exists N \in \mathbf{N} \quad \forall n \in \mathbf{N} \quad (n \geq N \implies |w_{n} + 3| \leq \varepsilon)$
- 2. Ker $(\varphi) = \{x \in E : \varphi(x) = 0\}$. On utilise la caractérisation usuelle pour montrer que Ker (φ) est un sev de E, ce qui montrera que c'est un espace vectoriel : $\varphi(0_E) = 0_F$ (car φ est linéaire) et pour tous $x, y \in \text{Ker}(\varphi)$, pour tout $\lambda \in \mathbf{R}$, on a $\varphi(x + \lambda y) = \varphi(x) + \lambda \varphi(y) = 0_F$.
- 3. dim $\mathbf{R}_4[X] = 5$. Théorème du rang appliqué à h: dim $\mathbf{R}_4[X] = \dim \operatorname{Ker}(h) + \dim \operatorname{Im}(h)$. Ici, on a dim $\operatorname{Im}(h) \leq 4$ (car l'image de h est un sev de \mathbf{R}^4) donc dim $\operatorname{Ker}(h) \geq 5 4 = 1$ donc $\operatorname{Ker}(h) \neq \{0\}$ et h n'est pas injective.

Exercice 1

1. La famille est libre et contient $3 = \dim \mathbf{R}^3$ vecteurs donc c'est une base de \mathbf{R}^3 .

2.
$$(x, y, z) \in \text{Ker}(f + id) \iff (A + I_3) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0 \iff \begin{cases} y = 0 \\ x = 2z \end{cases}$$

On en déduit alors que $\operatorname{Ker}(f+id)=\{\begin{pmatrix}2z\\0\\z\end{pmatrix}\;;\;z\in\mathbf{R}\}.$ Ainsi, $\operatorname{Ker}(f+id)$ est de dimension 1 et

une base est donnée par la famille contenant le seul vecteur (2,0,1). Ainsi, le vecteur u_1 est dans $\operatorname{Ker}(f+id)$ donc $(f+id)(u_1)=f(u_1)+u_1=0 \iff f(u_1)=-u_1$.

- 3. $f(u_2) = u_3$ et $f(u_3) = -u_2$.
- 4. $B = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$
- 5. En développant par rapport à la première colonne, on trouve det $B = -1 \neq 0$. On en déduit que la famille $(f(u_1), f(u_2), f(u_3))$, qui est génératrice de $\operatorname{Im}(f)$, est également libre. Ainsi, c'est une base de $\operatorname{Im}(f)$ qui est donc un sev de \mathbf{R}^3 de dimension 3, donc $\operatorname{Im}(f) = \mathbf{R}^3$ et f est surjective. Le théorème du rang donne ensuite $\dim(\operatorname{Ker}(f)) = 0$ d'où $\operatorname{Ker}(f) = \{0\}$ et f est injective. En conclusion, f est bien bijective.
- 6. La matrice de h dans la base (u_1, u_2, u_3) est celle de $f \circ f \circ f$, i.e. B^4 . On montre par le calcul que $B^4 = I_3$, qui est la matrice de id dans la base (u_1, u_2, u_3) . D'où h = id.
- 7. A^4 est la matrice de $f\circ f\circ f\circ f$, qui est l'identité d'après la question précédente, dans la base canonique. D'où $A^4=I_3$.

Exercice 2

- 1. La courbe représentative de p est une parabole convexe s'annulant en -4 et 0. p est donc une application décroissante sur $]-\infty,-2]$ et croissante sur $]-2,+\infty[$, donc croissante sur]-2,0[. p(-2)=-2 et p(0)=0 donc p(]-2,0[)=]-2,0[.
- 2. Initialisation : $u_0 = a \in]-2,0[$, d'après l'énoncé.

Hérédité: On suppose que $u_n \in]-2,0[$. Alors, $u_{n+1}=p(u_n) \in]-2,0[$, puisque l'intervalle]-2,0[est stable par p.

Conclusion: $\forall n \in \mathbb{N}, u_n \in]-2,0[.$

- 3. La courbe représentative de q est une parabole convexe s'annulant en -2 et 0. p est donc une application négative sur]-2,0[. Ainsi, pour tout $n \in \mathbb{N}$, on a $u_{n+1}-u_n=p(u_n)-u_n=q(u_n)\leq 0$, puisque tous les termes de la suite sont compris entre -2 et 0. Donc (u_n) est décroissante.
- 4. La suite est décroissante et minorée donc converge. Puisque p est continue, la limite est solution de l'équation $\ell = p(\ell) \iff \ell = 0$ ou $\ell = -2$. Puisque $u_0 < 0$ et que la suite est décroissante, alors $\ell = -2$.

Exercice 3

1. Au voisinage de 0,

$$F(x) = 2x + 2x^{2} + \frac{2x^{3}}{2} - 2x - \frac{4x^{2}}{2} - \frac{8x^{3}}{3} + o(x^{3})$$
$$= \frac{-5}{3}x^{3} + o(x^{3}).$$

- 2. Quand $n \to \infty$, alors $1/n \to 0$. Ici, $v_n = F(1/n) \sim \frac{-5}{3} \times \frac{1}{n^3}$ en $+\infty$. 3. D'après la question précédente, on a $n^3v_n \sim n^3 \times \left(\frac{-5}{3} \times \frac{1}{n^3}\right) = \frac{-5}{3} \to \frac{-5}{3}$ quand $n \to \infty$. La limite cherchée est donc -5/3.