UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO TECNOLÓGICO DEPARTAMENTO DE ENGENHARIA ELÉTRICA E ELETRÔNICA CONVERSÃO ELETROMECÂNICA DE ENERGIA A

DJONATHAN LUIZ DE OLIVEIRA QUADRAS (15200695)

TRABALHO 2

FLORIANÓPOLIS 2021

Introdução

O presente trabalho as respostas das questões 1.7, 1.8, 1.9, 1.10, 1.13, 1.14, 1.15 e 1.16 presentes na versão 6t da apostila desenvolvida pelo Professor Doutor Renato Lucas Pacheco. O trabalho foi inteiramente desenvolvido em linguagem RMarkdown. Os códigos fonte para a sua elaboração contam em anexo. Importante: o padrão de numeração utilizado é do formato americano (com separação decimal utilizando ponto e não vírgula).

Enunciado

Transformador de $2 \times 10^4 \mathrm{VA}$, 2400/240, $60\mathrm{Hz}$. Se três transformadores iguais ao especificado forem ligados na configuração estrela/delta $(Y-\Delta)$ e alimentados a partir de um gerador de tensão trifásica equilibrada de sequência positiva, com valor eficaz (de linha) igual a raiz quadrada de três vezes a tensão nominal do lado primário do transformador (lado de alta tensão), qual a tensão entre os terminais abertos (em módulo e ângulo) em cada um dos casos mostrados a seguir? Explicar cuidadosamente os resultados, concluindo se a ligação delta pode ou não ser fechada e por quê!! Para esta análise, os transformadores podem ser considerados ideais!

Figura 1: Enunciado

Resolução

Enunciado

Um transformador trifásico abaixador de 6×10^4 VA, 4156.92/240 V, 60 Hz, ligado em Y/Δ foi submetido a um ensaio de curto-circuito realizado pelo lado de baixa tensão (240V) de onde se obteve a seguinte impedância equivalente, por fase: 0.0370376+0.0635895i [Ω]. Os seguintes resultados foram obtidos de um ensaio de circuito aberto, realizado pelo lado de baixa tensão, a 60 Hz: $P_{3\phi}=366$ W; $I_l=1.8$ A; $V_l=240$ V. O equipamento está alimentando uma carga trifásica equilibrada de 3.6×10^4 W, com um fator de potência 0.6 adiantado. A tensão na carga foi ajustada para 240 V.

Para a sua versão, pede-se:

- a. A tensão na fonte, a corrente e a potência aparente fornecidas pela fonte, referidas ao primário (lado 1), e o fator de potência "visto" pela fonte, usando o modelo impedância série;
- b. O rendimento e a regulação do transformador, usando o modelo impedância série. Usar a potência do ensaio a vazio, se realizado com tensão nominal;
- c. Comentar os resultados!

Resolução

Enunciado

Para a sua versão, no exemplo anterior, ajustando a tensão na entrada do transformador para o seu valor nominal, se o transformador está fornecendo corrente nominal a fator de potência 0,6 capacitivo, pede-se:

- a. A tensão sobre a carga, corrente e a potência aparente fornecidas pela fonte, referidas ao primário (lado 1), e o fator de potência "visto" pela fonte, usando o modelo impedância série;
- b. O rendimento e a regulação do transformador, usando o modelo impedância série. Usar a potência do ensaio a vazio, se realizado com tensão nominal;
- c. Comparar com os resultados do Exemplo 1.8: Transformador trifásico abaixador com tensão especificada na carga. Comentar os resultados!

Resolução

Enunciado

Os dois transformadores abaixo são ligados em paralelo para alimentar uma carga trifásica equilibrada.

TRANSFORMADOR 1: Um transformador trifásico abaixador de 6×10^4 VA, 4156.92/240 V, 60 Hz, ligado em Y/Δ foi submetido a um ensaio de curto-circuito realizado pelo lado de baixa tensão (240V) de onde se obteve a seguinte impedância equivalente, por fase: 0.0370376+0.0635895i [Ω]. Os seguintes resultados foram obtidos de um ensaio de circuito aberto, realizado pelo lado de baixa tensão, a 60 Hz: $P_{3\phi}=366$ W; $I_l=1.8$ A; $V_l=240$ V.

TRANSFORMADOR 2: Um transformador trifásico abaixador de 1.2×10^5 VA, 4156.92/240 V, 60 Hz, ligado em Y/Δ foi submetido a um ensaio de curto-circuito realizado pelo lado de baixa tensão (240V) de onde se obteve a seguinte impedância equivalente, por fase: 0.02337967+0.0432287i [Ω]. Os seguintes resultados foram obtidos de um ensaio de circuito aberto, realizado pelo lado de alta tensão, a 60 Hz: $P_{3\phi}=961.87$ W; $I_l=10.25$ A; $V_l=240$ V.

Se o conjunto está alimentando uma carga nominal (tensão e corrente nominais), sob fator de potência 0.6 capacitivo, pede-se:

- a. A tensão na fonte, a corrente e a potência aparente fornecidas pela fonte e por cada transformador em paralelo, referidas ao primário (lado 1), e o fator de potência "visto" pela fonte e o fator de potência de cada transformador, usando o modelo impedância série;
- b. O rendimento e a regulação de cada transformador;
- c. Comentar os resultados!

Resolução

Enunciado

Um transformador de potência de 2×10^4 VA, 2400/240 V, 60 Hz, possui os seguintes parâmetros:

$$\begin{cases} r_1 = 1.85188[\Omega]; & x_1 = 3.17947[\Omega]; & g_m = 2.11806 \times 10^{-5}[S]; & b_m = 3.7708707 \times 10^{-5}[S] \\ r_2 = 0.01852[\Omega]; & x_2 = 0.03179[\Omega] & (Referidos ao lado 2) \end{cases}$$

Usando os valores nominais do equipamento como valores de base e **usando a técnica p.u.**, para a sua versão, Pede-se:

- a. A tensão na fonte e a potência aparente fornecida pela fonte se o transformador estiver alimentando carga nominal (potência aparente e tensão nominais), fator de potência 0,6 capacitivo, usando o modelo impedância série;
- b. O rendimento e a regulação do transformador;
- c. Retornar aos valores reais e comparar as grandezas obtidas com aquelas similares para o mesmo fator de potência, obtidas no Exemplo 1.5. Comentar!

Resolução

Enunciado

Um transformador de potência de 2×10^4 VA, 2400/240 V, 60 Hz, possui os seguintes parâmetros:

$$\begin{cases} r_1 = 1.85188[\Omega]; & x_1 = 3.17947[\Omega]; & g_m = 2.11806 \times 10^{-5}[S]; & b_m = 3.7708707 \times 10^{-5}[S] \\ r_2 = 0.01852[\Omega]; & x_2 = 0.03179[\Omega] & (Referidos ao lado 2) \end{cases}$$

Três transformadores idênticos, dentro de cada da versão, são ligado formando um banco trifásico Δ/Y . Usando os valores nominais do banco trifásico como valores de base (valores trifásicos!) e **usando a técnica p.u.**, pede-se:

- a. A tensão na fonte e a potência aparente fornecida pela fonte se o transformador estiver alimentando carga nominal (potência aparente e tensão nominais), fator de potência 0,6 capacitivo, usando o modelo impedância série;
- b. O rendimento e a regulação do transformador;
- c. Retornar aos valores reais e comparar as grandezas de fase obtidas com aquelas similares para o mesmo fator de potência, obtidas no Exemplo 1.13. Comentar!

Resolução

Enunciado

Um transformador de potência monofásico, de $2.75 \times 10^4 \mathrm{VA}$, $4400/440 \mathrm{~V}$, $60 \mathrm{Hz}$, deve ser usado como autotransformador para alimentar um circuito de $4400 \mathrm{V}$ a partir de um gerador de $4840 \mathrm{V}$. Sob carga nominal e fator de potência 0.6 indutivo, o rendimento do transformador monofásico foi calculado como de 94.5%. Para o autotransformador, pede-se:

- a. O diagrama de suas ligações (incluir as marcas de polaridade!);
- b. Sua potência aparente nominal, separando em potência transformada, potência passante e potência total;
- c. Seu rendimento a plena carga, com fatores de potência 0.6 indutivo e 0.8 indutivo. CO-MENTAR!

Resolução

Enunciado

Um transformador de três enrolamentos foi ensaiado para a obtenção de suas impedâncias de curto-circuito (parâmetros longitudinais). Percebeu-se que as componentes reativas em cada impedância, em módulo, foram maiores que dez vezes as respectivas componentes resistivas. As características nominais de cada enrolamento são:

• Primário: $2.97 \times 10^4 \text{V}, \, 3 \times 10^7 \text{VA};$

• Secundário: $1.32 \times 10^5 \text{V}$, $3 \times 10^7 \text{VA}$;

• Terciário: 9600V, $1.05 \times 10^7 \text{VA}$;

Após os ensaios em laboratório, os dados foram trabalhados e transformados em valores percentuais, como segue:

• Ensaio 1: $Z_{ps} = 6.9\%$, na base $2.97 \times 10^4 \text{V e } 3 \times 10^7 \text{VA}$;

• Ensaio 2: $Z_{ps} = 5.6\%$, na base $2.97 \times 10^4 \text{V}$ e $1.05 \times 10^7 \text{VA}$;

• Ensaio 3: $Z_{ps} = 3.8\%$, na base $1.32 \times 10^5 \mathrm{V}$ e $1.05 \times 10^7 \mathrm{VA}$;

Pede-se:

- a. Desenhar o circuito elétrico equivalente completo em por unidade (pu) com os cálculos e as indicações numéricas de cada parâmetro, usando como base potência nominal do enrolamento primário e as tensões nominais;
- b. Desenhar o circuito elétrico equivalente completo em Ohms (Ω) com os cálculos e as indicações numéricas de cada parâmetro, referido ao terciário.

Resolução