Résumé 11:70POLOGIE

 $(E, \|.\|)$ est un espace vectoriel sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . On note d la distance associée. On note aussi B(x,r) et $\bar{B}(x,r)$ les boules ouvertes et fermées.

Quand nous parlerons de l'espace vectoriel normé \mathbb{R} ou \mathbb{C} , nous supposerons toujours qu'il est muni de la valeur absolue.

1 Topologie d'un espace vectoriel normé

§ 1. Equivalence de normes. – Toutes les notions topologiques que nous définirons (comme ouvert, fermé, compact, continue,...) dépendent de la norme choisie sur E (je vous encourage à revoir le résumé sur les normes à ce propos). Cependant, elles sont invariantes si on remplace la norme par une norme qui lui est équivalente. Or, lun des théorèmes centraux de ce cours est le suivant :

Théorème 1.1

Soit E un $\mathbb{K}-$ espace vectoriel de dimension finie. Toutes les normes sur Esont équivalentes.

Ainsi, dans un espace de dimension finie E, la phrase " Ω est ouvert", ou "Kest compact", a un sens sans que l'on ait besoin de préciser une norme. C'est absolument faux en dimension infinie où des parties de E peuvent être ouvertes pour une normes N_1 et ne pas l'être pour une norme N_2 .

§ 2. Ouverts et Fermés. – On généralise ici certaines propriétés des intervalles ouverts ou fermés.

Définition 1.2 (Voisinage, point intérieur, ouvert)

- Soit V une partie de E et $a \in E$. On dit que V est un voisinage de a, ou que a est un point intérieur à V, lorsque V contient une boule ouverte de centre a.
- Une partie Ω de E est dite **ouverte** lorsqu'elle est un voisinage de chacun de ses points, i.e lorsque pour tout $a \in \Omega$, il existe r > 0 tel que $B(a, r) \subset$ Ω .
- ▶ Une partie F de E est **fermée** lorsque F^c est ouvert.

- 1. Les intervalles du type $a, b \in \mathbb{R}$, sont des ouverts.
- 2. Dans \mathbb{R} , l'ensemble des points intérieurs à [a,b] est [a,b]. Dans \mathbb{R}^2 muni de la norme infinie, le segment $[0,1] \times \{0\}$ n'admet aucun point intérieur.
- 3. Les boules ouvertes sont des ouverts. La réciproque est fausse, mais tout ouvert est une union de boules.
- 4. [0, 1] n'est ni ouvert, ni fermé.
- 5. Les boules fermées, les sphères et les ensembles finis sont fermés.

Enonçons quelques propriétés des ouverts et des fermés :

- (i) E et \emptyset sont ouverts et fermés.
- (ii) La réunion d'une famille quelconque d'ouverts est un ouvert. L'intersection d'une famille FINIE d'ouverts est un ouvert.
- (iii) L'intersection d'une famille quelconque de fermés est un fermé. La réunion d'une famille FINIE de fermés est un fermé.

Théorème 1.3 (Caractérisation séquentielle des fermés)

Une partie F de E est fermée \iff toute limite de suite convergente d'éléments de F appartient à F.

§ 3. *Intérieur*, *adhérence*. – Grâce à ces propriétés, on peut définir :

Définition 1.4

Soit $\Omega \subset E$.

- ightharpoonup On appelle intérieur de Ω et on note $\mathring{\Omega}$ la réunion de tous les ouverts de *E* contenus dans Ω . $\mathring{\Omega}$ est l'ensemble de tous les points intérieurs à Ω . Ainsi, $\mathring{\Omega}$ est le plus grand ouvert de $(E.\|.\|)$ contenu dans Ω .
- ightharpoonup On appelle **adhérence** de Ω et on note $\overline{\Omega}$ l'intersection de tous les fermés de E contenant Ω . Les points de E appartenant à $\bar{\Omega}$ sont appelés **points** adhérents à Ω .
 - $\bar{\Omega}$ est donc le plus petit fermé contenant Ω .
- ▶ On appelle frontière de A l'intersection entre son adhérence et l'adhérence de son complémentaire.

- L'intérieur de $\overline{B}(x_0,r)$ est $B(x_0,r)$.
- L'adhérence de A^c est le complémentaire de \mathring{A} . L'intérieur de A^c est le complémentaire de \bar{A} .

Résumé $\mathcal{N}^{\circ}11$: Topologie Page 1/5

- \triangleright Soient A, B deux parties de E.
 - (i) $\mathring{A} \subset A \subset \bar{A}$.
 - (ii) $\mathring{A} = A \iff A$ est un ouvert, et $\overline{A} = A \iff A$ est un fermé.
 - (iii) Si $A \subset B$, alors $\mathring{A} \subset \mathring{B}$ et $\bar{A} \subset \bar{B}$.
 - (iv) $x \in \bar{A} \iff$ Pour tout $\varepsilon > 0$, il existe un point de A à une distance $\leqslant \varepsilon$ de x. \iff Il existe une suite d'éléments de A convergeant vers x.
- ▶ Une partie de E est dite **dense dans** $(E, \|.\|)$ lorsque $\bar{A} = E$.

- \mathbb{Q}^n est dense dans \mathbb{R}^n .
- $GL_n(\mathbb{K})$ est dense dans $\mathcal{M}_n(\mathbb{K})$.

2 Limites et Continuité

On se donne ici deux espaces vectoriels normés E et F, et une partie non vide $A \operatorname{de} E$.

Soit $a \in \bar{A}$. Nous avons défini les voisinages de a dans A. On parlera aussi de voisinages de $+\infty$, de $-\infty$ lorsque $E=\mathbb{R}$.

§ 1. Limite en un point adhérent. – On étend naturellement la définition de la limite d'une fonction de la variable réelle.

Définition 2.1

Soit $f: A \to F$. Soit $a \in \bar{A}$ et $\ell \in F$. On dit que f tend vers ℓ en a lorsque pour tout $\varepsilon > 0$, il existe $\alpha > 0$ tel que pour tout $x \in A, ||x - a|| \leqslant \alpha \Longrightarrow$ $||f(x) - \ell|| \leq \varepsilon$.

C'est équivalent à dire que pour tout voisinage V_{ℓ} de ℓ , il existe un voisinage V_a de a dans E tel que $f(V_a \cap A) \subset V_\ell$.

Ce vecteur ℓ , lorsqu'il existe, est unique et est appelé limite de f en a. On note $f(x) \xrightarrow[x \to a]{} \ell$.

- ▶ La dernière formulation est celle qui permet de définir les limites infinies.
- \triangleright Si f admet une limite finie en a, alors f est bornée sur un voisinage de a.
- In a une formulation séquentielle de la limite : $f(x) \xrightarrow[x \to a]{} \ell \iff$ Pour toute suite

 (x_n) d'éléments de A convergeant vers a, la suite $(f(x_n))_{n\in\mathbb{N}}$ converge vers ℓ .

§ 2. Continuité et conservation de la topologie. – Définition 2.2

Soit $f:A\to F$ et $a\in A$. On dit que f est continue en a lorsque $f(x)\xrightarrow[x\to a]{}$ f(a).

f est dite continue sur A lorsqu'elle l'est en tout point de A. On note $\mathscr{C}^0(A,F)$ l'ensemble de ces fonctions.

- \triangleright C'est une définition locale, i.e que f est continue en $a \iff$ il existe un voisinage de a dans A tel que la restriction de f à ce voisinage est continue en a.
- On peut décliner dans ce cadre les propriétés énoncées pour les limites :
 - f est continue en $a \iff$ pour toute suite (x_n) d'éléments de A convergeant vers a, le suite $f(x_n)$ converge vers f(a).
 - $\mathscr{C}^0(A, F)$ est un sous-espace vectoriel de $\mathscr{F}(A, F)$.
 - Si f est continue sur A et si g est continue sur une partie B de F contenant f(A), alors $g \circ f$ est continue sur A.
 - $\mathscr{C}^0(A,\mathbb{R})$ est stable par produit.
 - Si $f \in \mathscr{C}^0(A, E)$ et $\lambda \in \mathscr{C}^0(A, \mathbb{C})$, alors $\lambda \cdot f \in \mathscr{C}^0(A, E)$.
 - Si $f \in \mathscr{C}^0(A, \mathbb{C})$ ne s'annule pas, alors $\frac{1}{f} \in \mathscr{C}^0(A, \mathbb{C})$.

EXEMPLES:

- 1. Les applications Lipschitziennes sont continues.
- 2. Les applications coordonnées dans \mathbb{K}^n , ou les applications "composantes" dans n'importe quelle base d'un espace vectoriel de dimension finie.
- 3. Les fonctions polynomiales en les composantes de la variable dans une base, comme le déterminant, ou la trace.
- 4. La norme $||.|| \sin (E, ||.||)$.
- 5. Pour toute partie $A \subset E$ non vide, l'application d(.,A) car elle est 1—Lipschitzienne.
- 6. $f: x \in A \to (f_1(x), \dots, f_n(x)) \in \mathbb{R}^n$ est continue \iff tous les f_i le sont.

Théorème 2.3

Soit A une partie non vide de E et $f: A \to F$. Alors, il y a équivalence entre :

- (i) f est continue sur A.
- (ii) L'image réciproque de tout ouvert de F est un ouvert de A.
- (iii) L'image réciproque de tout fermé de F est un fermé de A.

Résumé $\mathcal{N}^{\circ}11$: Topologie Page 2/5

EXEMPLES:

- Pour toute fonction continue $f:A\to\mathbb{R}$ et tout $y\in\mathbb{R},\{x\in A|f(x)=y\}$ est un fermé de A, ainsi que $\{x \in A | f(x) \geqslant y\}$ et $\{x \in A | f(x) \leqslant y\}$. De même, $\{x \in A | f(x) > y\}$ et $\{x \in A | f(x) < y\}$ sont des ouverts de A. $\blacktriangleright GL_n(\mathbb{R})$ est ouvert. $SL_n(\mathbb{R})$ est fermé.

Théorème 2.4

Soient $f,g:A\to F$ continues sur A. S'il existe $B\subset A$, dense dans A tel que f(x) = g(x) pour tout $x \in B$, alors f(x) = g(x) pour tout $x \in A$.

§ 3. *Continuité uniforme sur A.*— A mettre en parallèle avec la continuité sur

Définition 2.5

 $f: A \rightarrow F$ est uniformément continue lorsque

pour tout $\varepsilon > 0, \exists \alpha > 0, \forall x, y \in A, ||x - y|| \le \alpha \Longrightarrow ||f(x) - f(y)|| \le \varepsilon.$

REMARQUES:

- ▶ C'est donc une propriété globale. Evidemment, toute application continue est uniformément continue, mais la réciproque est fausse.
- Pour montrer que f est ou n'est pas uniformément continue, on utilisera l'équivalence
 - (i) f est uniformément continue.
 - (ii) Pour toutes suites (x_n) et (y_n) d'éléments de A, si $x_n y_n \xrightarrow[n \to +\infty]{} 0$, alors

$$f(x_n) - f(y_n) \xrightarrow[n \to +\infty]{} 0.$$

- Les fonctions Lipschitziennes sont uniformément continues.
- § 4. Continuité d'applications linéaires. La continuité des applications linéaires relève du tout ou rien : une application linéaire est continue nulle part ou partout.

Nous noterons $\mathcal{L}_c(E,F)$ l'ensemble des applications linéaires de E dans F qui sont continues. C'est un sous-espace vectoriel de $\mathcal{L}(E,F)$.

Proposition 2.6

Soit $f \in \mathcal{L}(E, F)$, on a équivalence entre

(i) f est continue.

- (ii) f est continue en 0_E .
- (iii) If existe C > 0 telle que pour tout $x \in E$, $||f(x)|| \le C||x||$.
- (iv) f est Lipschitzienne.
- (v) f est uniformément continue.
- (vi) f est bornée sur la boule unité fermée de centre 0_E est de rayon 1.

Pour montrer que f n'est pas continue, on trouvera une suite (x_n) bornée telle que $(f(x_n))$ ne l'est pas.

3 Compacité

§ 1. Saites d'un compact. – On prend ici la propriété de Bolzano Weierstrass pour une définition :

Définition 3.1

On dit d'une partie K de E qu'elle est **compacte**, ou qu'elle vérifie la **pro**priété de Bolzano-Weierstrass, lorsque toute suite d'éléments de K admet une valeur d'adhérence, i.e si $(u_n) \in K^{\mathbb{N}}$, alors il existe $\ell \in K$ et $\varphi : \mathbb{N} \to \mathbb{N}$ strictement croissante telle que $u_{\varphi(n)} \xrightarrow[n \to +\infty]{} \ell$.

Ainsi, [a, b] est un compact, ainsi que toute partie finie de E. [a, b] et $B(0_E, 1)$ ne le sont pas.

Proposition 3.2

- (i) Si K est compacte, K est fermée et bornée.
- (ii) Si K est compacte, une partie F de K est compacte \iff F est fermée.

Nous utiliserons très souvent, notamment pour prouver que la convergence absolue d'une série entraine sa convergence :

Proposition 3.3

Soit K un compact et (u_n) une suite dont l'image est dans K. On a équivalence entre:

- (i) (u_n) converge.
- (ii) (u_n) admet exactement une valeur d'adhérence.
- (iii) (u_n) admet au plus une valeur d'adhérence.

Résumé $\mathcal{N}^{\circ}11$: Topologie

§ 2. *Continuité et compacité.*— Ce qui va nous fournir de nombreux exemples de compacts.

Proposition 3.4

Soit f une fonction continue définie sur une partie compacte A d'un espace vectoriel normé. Alors.

- (i) f est uniformément continue.
- (ii) f(K) est compact.
- (iii) f est bornée et si elle est à valeurs réelles, elle atteint ses bornes.

4 Connexité par arcs

Définition 4.1 (Chemin continu joignant deux points)

Soient deux points $a, b \in E$. On appelle chemin continu de $a \grave{a} b$ toute application continue $f:[0,1] \to E$ telle que f(0) = a et f(1) = b.

Soit Ω une partie non vide de E. On appelle composantes connexes de Ω les classes d'équivalence de cette relation d'équivalence.

 Ω est dite connexe par arcs lorsqu'elle ne contient qu'une seule composante connexe.

Le programme dit : "dans les cas simples, une figure convaincante vaut preuve de connexité par arcs".

- $\begin{tabular}{ll} \blacktriangleright Les parties connexes par arcs de \mathbb{R} sont les intervalles. \\ \blacktriangleright Les parties convexes et les parties étoilées sont connexes par arcs. \\ \blacktriangleright \mathbb{R}^* n'est pas connexe par arcs, mais \mathbb{C}^* l'est. \\ \end{tabular}$

Généralisons le théorème des valeurs intermédiaires :

Théorème 4.2

Si une partie Ω d'un espace vectoriel normé E est connexe par arcs, et si $f:\Omega\to F$ est continue, alors $f(\Omega)$ est connexe par arcs.

CAS DE LA DIMENSION FINIE

- $GL_n(\mathbb{K}) \longrightarrow GL_n(\mathbb{K})$ est continue sur l'ouvert $A \longmapsto A^{-1}$ ► L'application $GL_n(\mathbb{K})$.
- \blacktriangleright La convergence d'un suite dans \mathbb{R}^n est équivalente à celle de chacune de ses coordonnées.

▶ Un sous-espace vectoriel de dimension finie d'un espace vectoriel normé quelconque est fermé.

Théorème 5.1

Soit *E* un espace vectoriel normé de dimension finie. Alors,

- (i) Une partie K de E est compacte \iff elle est fermée et bornée.
- (ii) De toute suite bornée dans E, on peut extraire une suite convergente.
- (iii) Une suite d'éléments de E converge \iff elle est bornée et admet exactement une valeur d'adhérence.
- (iv) Soit F un \mathbb{K} espace vectoriel. Toute $f \in \mathcal{L}(E,F)$ est continue.
- ▶ Soit $E = E_1 \times \cdots \times E_p$ un produit d'espaces vectoriels de dimension finie et F un $\mathbb{K}-$ espace vectoriel . Toute application p-linéaire de E dans F est continue. Ainsi, par exemple, les produits scalaires, le produit vectoriel, la multiplication dans l'espace des matrices, la multiplication par un scalaire, les applications $A \longmapsto A^k$ pour $k \in \mathbb{N}$.

6 RETOUR SUR LES SÉRIES

§ 1. Convergence absolue. – Enfin la preuve :

Théorème 6.1 ($CVA \Longrightarrow CV$)

Soit E un $\mathbb{K}-$ espace vectoriel normé de dimension finie. Soit $(u_n)_{n\in\mathbb{N}}$ une suite d'éléments de E. Fixons-nous une norme ||.|| sur E. Alors si la série $\sum \|u_n\|$ converge, il en est de même de la série $\sum u_n$.

§ 2. Exponentielle et inverse. – Une norme $\|.\|$ sur $\mathcal{M}_n(\mathbb{K})$ est dite sousmultiplicative lorsque pour toutes matrices A, B on a $||A \times B|| \le ||A|| \times ||B||$. Il en existe, par exemple, $||A|| = n \max_{1 \le i,j \le n} |a_{i,j}|$.

Théorème 6.2

On se fixe une norme sous-multiplicative sur $\mathcal{M}_n(\mathbb{K})$. Soit aussi $A \in \mathcal{M}_n(\mathbb{K})$ telle que ||A|| < 1,

- (i) la série $\sum_{p \ge 0} A^p$ converge.
- (ii) $I_n A$ est inversible, et si on note $B = \sum_{n=0}^{+\infty} A^p$, $B = (I_n A)^{-1}$.

Résumé $\mathcal{N}^{\circ}11$: Topologie

Définition 6.3

Soit $A \in \mathcal{M}_n(\mathbb{K})$. La série $\sum A^p/p!$ converge.

On appelle exponentielle de A la matrice $\exp A = \sum_{p=0}^{+\infty} \frac{A^p}{p!}$

Propriétés 6.4

- (i) Si A et B commutent, alors $\exp(A+B) = \exp(A) \times \exp(B)$.
- (ii) Pour toute matrice A, la matrice $\exp A$ est inversible et $\exp(-A) = (\exp A)^{-1}$.

ANNEXE

A LES FIGURES IMPOSÉES

► CCP Analyse 45

- 1. Soit E un espace vectoriel normé. Soit A une partie non vide de E. On note \overline{A} l'adhérence de A.
 - (a) Donner la caractérisation séquentielle de \overline{A} .
 - (b) Prouver que, si A est convexe, alors \overline{A} est convexe.
- 2. Soit E un espace vectoriel normé. Soit A une partie non vide de E. On pose $\forall x \in E, \ d_A(x) = \inf_{a \in A} \|x a\|$.
 - (a) Soit $x \in E$. Prouver que $d_A(x) = 0 \Rightarrow x \in \overline{A}$.
 - (b) On suppose que A est fermée et que, $\forall (x,y) \in E^2$, $\forall t \in [0,1]$, $d_A(tx+(1-t)y) \leq td_A(x)+(1-t)d_A(y)$. Prouver que A est convexe.
- ▶ CCP Analyse 54 Soit E l'ensemble des suites à valeurs réelles qui convergent vers 0.
 - 1. Prouver que E est un sous-espace vectoriel de l'espace vectoriel des suites à valeurs réelles.
 - 2. On pose $\forall u = (u_n)_{n \in \mathbb{N}} \in E$, $||u|| = \sup_{n \in \mathbb{N}} |u_n|$.
 - (a) Prouver que ||.|| est une norme sur E.
 - (b) Prouver que $\forall u = (u_n)_{n \in \mathbb{N}} \in E$, $\sum \frac{u_n}{2^{n+1}}$ converge.
 - (c) On pose alors $\forall u = (u_n)_{n \in \mathbb{N}} \in E$, $f(u) = \sum_{n=0}^{+\infty} \frac{u_n}{2^{n+1}}$. Prouver que f est continue sur E.

B LES PREUVES À CONNAITRE...

- ▶ Le théorème 6.2.
- $ightharpoonup GL_n(\mathbb{R})$ est dense et ouvert dans $\mathcal{M}_n(\mathbb{R})$.
- ▶ Si $f \in \mathcal{L}(E)$, on a équivalence entre :
 - (i) f est continue.
 - (ii) il existe C > 0 telle que pour tout $x \in E, ||f(x)|| \le C||x||$.
 - (iii) f est Lipschitzienne.