DECODERS
AND
ENCODERS
(PART 02)

Implementation of MUX using Decoder

To implement Multiplexer using Decoder,

- The Inputs of decoder act like 'Select Line' of MUX
- The output of decoder will enable the Tri-State Buffer or AND gate to pass input to

the output

INPUTS		OUTPUTS						
A1	Α0	D0	D1	D2	D3			
0	0	1	0	0	0			
0	1	0	1	0	0			
1	0	0	0	1	0			
1	1	0	0	0	1			

¹3

Implementation 8:1 MUX using 3:8 Decoder

Truth table for 8:1 MUX

Enable	Se	Output		
E	S2	S 1	S0	Y
0	X	X	X	0
1	0	0	0	$\left(I_{o}\right)$
1	0	0	1	I_1
1	0	1	0	I_2
1	0	1	1	$\overline{I_3}$
1	1	0	0	I_4
1	1	0	1	I_5
1	1	1	0	I_6
1	1	1	1	I_7

Implementation of high order Decoder to Low order Decoder

High order decoder to low order decoder

If we have x: 2" decoder that has to be designed by 2" decoder, then

$$\frac{2^y}{2^x} = K1 \rightarrow n^{th} Stage \longrightarrow Jost Stage$$

$$\frac{K1}{2^X} = K2 \rightarrow \text{n-1}^{\text{th}} \text{Stage}$$

.

Till we get 1 or Fraction (MSB at first Stage)

For Fraction we use NOT gate at first stage to Enable the corresponding decoder

Implement 3:8 Decoder using 2:4 Decoder

A 7-segment display is an electronic display device used to display decimal numerals and some alphabets. It consists of seven LEDs (segments) arranged in a way to display numbers from 0 to 9 and a few characters like A, b, C, d, E, F, etc.

For each output, we have to design K-Map to get simplified expression.

$$a = \sum_{m} (0, 2, 3, 5, 6, 7, 8, 9) + d(10, 11, 12, 13, 14, 15)$$

$$d = \sum_{m} (0,2,3,5,6,8,9)$$

a		
9	Ī	Ь
<i></i>	Ì	c
d	•	

Decimal	Input lines			Output lines					Display			
Digit	."		IIIIe			Output lines					pattern	
Digit	A	В	U	D	a	b	C	d	е	f	g	pattern
0	0	0	0	0	1	1	1	1	1	1	0	8
1	0	0	0	1	0	1		0	0	0	0	8
2	0	0	1	0	1	1	0	1	1	0	1	8
3	0	0	1	1	1	1	1	1	0	0	1	8
4	0	1	0	0	0	1	1	0	0	1	1	8
5	0	1	0	1	1	0	1	1	0	1	1	8
6	0	1	1	0	1	0	1	1	1	1	1	8
7	0	1	1	1	1	1	1	0	0	0	0	8
8	1	0	0	0	1	1	1	1	1	1	1	8
9	1	0	0	1	1	1	1	1	0	1	1	8

- Circuit Diagram

