AN OVERVIEW OF RECOGNITION SYSTEM BASED ON THE SUPPORT VECTOR MACHINES

Author: Balwant A. Sonkamble,

D. D. Doye

Professor: 陳嘉平

Repotor: 吳國豪

OUTLINE

◆Introduction

◆Speech Recognition System

◆Support Vector Machine (SVM) Classifier

INTRODUCTION

- ◆ The classification modules are playing a very important role in most of the modern speech recognition systems.
- ◆ The speech recognition uses neural networks, hidden Markov models, Bayesian networks, DTW and other tools for recognizing the particular speech.
- ◆ The SVM is designed for solving the binary classification problems

SPEECH RECOGNITION SYSTEM

FEATURE EXTRACTION

- ◆ To have a good discrimination for distinguishing between the similar speeches, this is easy to model statistically by considering fewer amounts of training data
- ◆ to have statistical properties which are invariant across speakers and over a wide range of speaking environments.

SUPPORT VECTOR MACHINE (SVM) CLASSIFIER

 The SVM is designed for solving the binary classification problems

- ◆ SVM: (1) Linear SVM
 - (2) Nonlinear SVM

Fig.1

SVM is a binary classifier that makes its decisions by constructing a hyperplane that optimally separates the two classes.

We are given some training data, a set of points of the form:

$$\{(x_i, y_i)\}, x_i \in R^d, y_i \in \{-1, 1\}, i = 1, ..., N$$

 x_i : condition attribute

 y_i : class attribute

◆The hyperplane is defined:

$$w \cdot x + b = 0$$

w: the normal to the plane

◆The optimal hyperplane is chosen according to the maximum margin criterion

$$x_i \cdot w + b \ge +1 \quad \text{for } y_i = +1 \tag{1}$$

$$x_i \cdot w + b \le -1 \quad \text{for } y_i = -1 \tag{2}$$

Fig.2

令
$$x_i \cdot w + b = +1$$
 爲 H_1 , $d_1 = \frac{1}{\|w\|}$; 令 $x_i \cdot w + b = -1$ 爲 H_2 , $d_2 = \frac{1}{\|w\|}$

H₁, H₂ is support hyperplane

◆ Margin: $d_1 + d_2 = \frac{2}{\|w\|}$ minimize: $\|w\|^2$

$$\min \phi(w) = \frac{1}{2} \|w\|^2$$

- ◆Combine(1)(2): $y_i(x_i \cdot w + b) \ge 1$, $\forall i$
- ◆ We switch to Lagrange formulation:

$$L(w,b,a) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^{N} a_i \left[y_i (w \cdot x_i + b) - 1 \right]$$

- •對 W 偏微分: $\frac{\partial}{\partial w}L=0 \Rightarrow w=\sum_{i=1}^{N}a_{i}y_{i}x_{i}$
- •對 b 偏微分: $\frac{\partial}{\partial b}L=0 \Rightarrow \sum_{i=1}^{N}a_{i}y_{i}=0$

$$L_d = \sum a_i - \frac{1}{2} \sum_{i,j} a_i a_j y_i y_j (x_i \cdot x_j)$$
 (3)

Subjectto:
$$a_i \ge 0, i = 1,..., N$$
 and $\sum_{i=1}^{N} a_i y_i = 0$

◆ 由(3)得到optimal solution:

$$f(x) = sgn(\sum_{i=1}^{N} y_i a_i(x_i x_j) + b)$$

if
$$f(x_j) > 0 \Rightarrow y_j = +1$$

if $f(x_j) < 0 \Rightarrow y_j = -1$

NONLIEAR SVM

◆ For the nonlinear case, the problem is transformed as that of linear classification in the space *H by* projecting the original data into a high dimensional space *H* using a nonlinear map:

$$\Phi(x_i) \colon \mathbf{R}^d \to \mathbf{H}$$

• Kernel function : $K(x_i, x_j) = (\Phi(x_i) \cdot \Phi(x_j))$

$$f(x) = sgn(\sum_{i=1}^{N} y_i a_i k(x_i x_j) + b)$$

NONLIEAR SVM

Fig.3 $\Phi(x_i): \mathbb{R}^d \to \mathbb{H}$

MULTI-CLASS CLASSIFICATION

◆The construction of n-class classifer is done by using the construction of two-class classification

- ◆One-against-rest(OAR)
- ◆One-against-one(OAO)
 (Directed Acyclic Graph SVM)

Fig.4 One-against-one(OAO)

POST PROCESSOR

◆ In this process, the SVM outputs are converted into the probabilities and then finding the maximum probability at each instant and choosing the best probability for recognizing the speech inputs.

APPLICATIONS OF SVM

◆SVMs are applied on number of computer vision application such Natural language processing, speech/ speaker recognition, verification and Identification, Image Recognition.