Generative Pre-Trained Transformers

GPT-1 (2018)

Learning goals

- use of the transformer decoder
- input modifications (and how this is useful)

GPT-1

ARCHITECTURAL DETAILS

- Transformer decoder as backbone of the architecture
 - 12-layer-decoder with masked self-attention mechanism
 - Hidden dimension H = 768, A = 12 Attention heads
 - BPE vocabulary w/ 40k merges
 - Learned positional embeddings (as opposed to fixed, sinusoidal ones in the original Transformer)
- With $U=(w_{t-k},\ldots,w_{t-1})$ $\vec{h}_0=\vec{U}\vec{W}_e+\vec{W}_p$ $\vec{h}_l=\textit{Trato}(\vec{h}_{l-1})\forall l\in[1,n]$

PRE-TRAINING GPT

Standard LM objective

$$L_1(\{w_1,\ldots,w_n\}) = \sum_i \log(P(w_t|w_{t-k},\ldots,w_{t-1};\Theta))$$

where $\{w_1, \dots, w_n\}$ is an *unlabeled* sequence of tokens

- Resource: BooksCorpus
 - > 7k unpublished books from various genres
 - contains long texts and thus allows learning long range dependencies

FINE-TUNING GPT

- Linear output layer with softmax activation on top
- Auxiliary language modeling objective during fine-tuning
 - → Improves generalization
 - → Accelerates convergence
- Task-specific input transformations
 - Entailment:
 Concatenation of premise (p) & hypothesis (h): [p; \$; h]
 - Similarity: Use both orderings and concatenate resulting representations: [s₁; \$; s₂] and [s₂; \$; s₁]
 - Q&A and Commensense Reasoning:
 Concatenate context (z), question (q) and each possible answer (a_k): [z; q; \$, a_k]
- Fine-tuning is rather quick, 3 epochs were sufficient

FINE-TUNING GPT

Additional objective:

$$L_2(\{w_1,\ldots,w_n\}) = \sum_{x,y} \log(P(y|w_1,\ldots,w_n))$$

where

- $P(y|w_1,...,w_n) = softmax(h_i^m W_v)$ and
- $\{w_1, \ldots, w_n\}$ is a *labeled* sequence of tokens
- Combining both objectives:

$$L_3(\{w_1,\ldots,w_n\}) = L_2(\{w_1,\ldots,w_n\}) + \lambda \cdot L_1(\{w_1,\ldots,w_n\})$$

SOTA RESULTS

Performance on different benchmarks:

Table 2: Experimental results on natural language inference tasks, comparing our model with current state-of-the-art methods. 5x indicates an ensemble of 5 models. All datasets use accuracy as the evaluation metric.

Method	MNLI-m	MNLI-mm	SNLI	SciTail	QNLI	RTE
ESIM + ELMo [44] (5x)	-	-	89.3	-	-	-
CAFE [58] (5x)	80.2	79.0	89.3	-	-	-
Stochastic Answer Network [35] (3x)	80.6	80.1	-	-	-	-
CAFE [58]	78.7	77.9	88.5	83.3		
GenSen [64]	71.4	71.3	-	-	82.3	59.2
Multi-task BiLSTM + Attn [64]	72.2	72.1	-	-	82.1	61.7
Finetuned Transformer LM (ours)	82.1	81.4	89.9	88.3	88.1	56.0

Table 3: Results on question answering and commonsense reasoning, comparing our model with current state-of-the-art methods.. 9x means an ensemble of 9 models.

Method	Story Cloze	RACE-m	RACE-h	RACE
val-LS-skip [55]	76.5	-	-	-
Hidden Coherence Model [7]	<u>77.6</u>	-	-	-
Dynamic Fusion Net [67] (9x)	-	55.6	49.4	51.2
BiAttention MRU [59] (9x)	-	60.2	50.3	53.3
Finetuned Transformer LM (ours)	86.5	62.9	57.4	59.0

