SCV

UWB기반 실내 위치 추적과 비전기술을 활용한 로봇 운행 시스템

부산대학교

졸업과제 중간보고서

목차

1. 프로젝트 배경

2. 구성인원

3. 전체 시스템 모식도

4. 주요기능

5. 주행 영상

프로젝트 배경

'업무 환경의 열악함', '번아웃' '직무 스트레스'의 3개 항목으로 인해 사직률이 높아지고 있습니다. 2020년 부터 2022년까지 꾸준히 연차 상관없이 사직률이 증가 했으며, 코로나 19로 인한 높은 근무강도가 원인이 된 것 으로 추측됩니다.

구성인원

- 윤석원 / UWB 기반 RTLS & 로봇 RTOS 개발 담당
- 한재안 / 사용자 상호작용 및 스케줄링 개발 담당
- 구태헌 / 컴퓨터 비전 및 실시간 네트워크를 이용한 로봇 상호작용 개발 담당

시스템 전체 모식도

RTLS(Real-Time Location System) 기술 조사

기술	장점	단점	정밀도	범위	비용	응용 분야
OVVB (Oitia VVideballu)	- 높은 정밀도 (10cm 이내) - NLOS 화경에서 익정 수준이 시리성 제공	- 설치 및 유지 비용이 높음 - 복잡한 환경에서 신호 반사 및 다중 경로 문제 발생	10cm 이내	10~50m	높음	실내 자산 추적, 로봇 내비게이션, 산업 자동화
WI-FI		- 비교적 낮은 정밀도 (2~3m) - 신호 간섭에 취약	2~3m	50~100m	중간	건물 내 위치 기반 서비스, 소매점 고객 분석
(BLE)	- 배터리 효율성이 높음	- 비교적 낮은 정밀도 (1~5m) - BLE Beacon 수에 따라 성능 차이	1~5m	10~30m	낮음	실내 자산 추적, 소매점 고객 위치 분석, 건강 관리 시스템

UWB RTLS

정의:

UWB (초광대역)를 기반으로 한 실시간 위치 추적 시스템(RTLS)으로 짧은 시간 내 고정밀 위치 정보를 제공함.

기술적 특징:

- 넓은 대역폭으로 10cm 이내의 위치 정밀도 구현.
- Two-Way Ranging 방식으로 Tag와 Anchor 간의 거리 측정.

응용 분야:

복잡한 실내 환경에서의 정밀한 위치 추적 (병원, 공장 등).

한계:

NLOS(Non-Line of Sight) 환경에서 신호 반사와 회절로 인한 위치 추정 오차.

2-Point Anchor: Anchor 개수 최적화

2-Point Anchor 방식 개요

2-Point Anchor 방식은 좁은 환경(복도, 병실 등)에서 UWB RTLS의 효율성을 높이기 위한 방식. 복도나 병실처럼 UWB 유효 반경에 비해 좁은 환경에서 Anchor 설치 대수를 줄이는 데 효과적.

적용 이유

일반적으로 3개의 Anchor를 통해 위치 추정을 하지만, 좁은 공간에서는 3개의 Anchor를 사용 할 필요가 없음.

한 방향의 축(예: z축)으로 로봇의 위치를 제한하여 2개의 Anchor로도 충분한 위치 추정이 가능.

2-Point Anchor: 적용 효과

시뮬레이션 결과

병원의 복도와 같은 환경에서, 3-Point Anchor 방식 대비 2-Point Anchor 방식을 적용했을 때:

- Anchor 설치 대수 50% 절감.
- 설치 및 유지 비용 감소.

기대 효과

- Anchor 설치 비용 절감.
- 병원처럼 좁은 공간에서 신속하고 효율적인 위 치 추정.
- 로봇의 위치 추정 정확성 유지 및 실내 환경의 신호 혼잡도 감소.

RTOS (Real-Time Operating System)

정의:

RTOS는 실시간으로 작업을 처리하며, 시스템에서 발생하는 이벤트의 빠른 응답을 위한 운영체제.

멀티코어 RTOS:

• ESP32에서 듀얼코어 기반의 <u>RTOS를</u> 통해 SPI 통신과

UART 통신을 분리하여 동시 처리.

한 코어는 ISR(<u>Interrupt Service Routine</u>),
 다른 코어는 <u>Task</u>를 처리하는 Non-Blocking
 방식으로

Task 수행 빈도 향상.

경로 최적화 알고리즘

알고리즘 종류:

대각선 경로를 허용하도록 수정한 A* 알고리즘.

개선 사항:

대각선 경로 탐색을 허용하여 기존 직각 경로 대비 최대 30% 이동 경로 단축.

실험 결과:

대각선 경로를 도입하여 병원 같은 좁은 공간에서의 로봇 이동 시간을 효과적으로 단축.

UI 구현

마커 인식 및 각도 측정

Nariers detected using DICT_606.1808 dictionary
Yanr: -80.5160411094229, Pitch: 25.768549536731143, Roll: -167.9388469041797
Nariers detected using DICT_606.1808 dictionary
Yanr: -81.474223555771, Pitch: 24.67441695473845, Roll: -169.34231439341113
Pariers detected using DICT_606.1808 dictionary
Yanr: -81.76123975741756, Pitch: 22.83604215805413, Roll: -169.349510259049178
Pariers detected using DICT_606.1808 dictionary
Yanr: -81.4114496881444, Pitch: 24.535428251684277, Roll: -168.88944669179945
Pariers detected using DICT_606.1808 dictionary
Yanr: -81.77828901340789, Pitch: 23.831567681716837, Roll: -169.04995185941978
Pariers detected using DICT_606.1809 dictionary
Yanr: -81.77828901340789, Pitch: 23.831567681716837, Roll: -169.04995185941978
Pariers detected using DICT_606.1809 dictionary

Name - 9 secreted using DICL_005_1000 dictionary
Name: -0.93740322778515, Pitch: 5.04829743325699, Roll: -153.70884563114998
Narkers detected using DICL_005_1000 dictionary
Name: -0.607493502577821, Pitch: 3.970622519384385, Roll: -152.0467925276302
Narkers detected using DICL_005_1000 dictionary
Narkers detected using DICL_044_1000 dictionary
Namers detected using DICL_065_1000 dictionary
Namers detected using DICL_066_1000 dictionary
Namer: 3.926559649783043, Pitch: -0.777503557187937, Roll: -152.9019349369913
Narkers detected using DICL_065_1000 dictionary
Namers detected using DICL_065_1000 dictionary

Markers detected using DICT_6X6_1000 dictionary
Yaw: 85.50424023743872, Pitch: 1.3141210598382975, Roll: 171.65411040945304
Markers detected using DICT_6X6_1000 dictionary
Yaw: 87.20857818765421, Pitch: -12.20164048347006, Roll: 175.06970544663838

하드웨어 디자인

주행 환경 설정

주행 영상

