数字电路 Digital Circuits and System

李文明 liwenming@ict.ac.cn

组合逻辑电路

组合逻辑电路重点内容

- 组合逻辑电路的的描述方法
- 构成组合逻辑电路的基本组件
- 组合逻辑电路的分析与设计方法
- 常用的组合逻辑电路模块及其应用实例
 - 编码器、译码器、数据选择器、加法器、数据比较器
- 竞争-冒险现象及其避免方法

组合逻辑电路重点内容

- 组合逻辑电路的的描述方法
- 构成组合逻辑电路的基本组件
- 组合逻辑电路的分析与设计方法
- 常用的组合逻辑电路模块及其应用实例
 - 编码器、译码器、数据选择器、加法器、数据比较器
- 竞争-冒险现象及其避免方法

加法器的概念

- 加法器是构成算数运算器的基本单元
- 分类
 - 1位加法器
 - 半加器
 - 全加器
 - 多位加法器
 - 串行进位加法器
 - 超前进位加法器

半加器

- 不考虑有来自低位的进位,仅将两个1位二进制数相加
- 设: A、B是两个加数, S是相加的和, CO是向高位的进位

输	λ	输	出
A	В	S	CO
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$S = A \oplus B$$

 $CO = AB$

全加器真值表和函数式

● 考虑进位的加法器:两个多位二进制相加时,除最低位外,每一位都应考虑来自低位的进位,即将两个加数的对应位、以及来自低位的进位三个数相加

	输	λ	输	出
Α	В	CI	S	CO
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S = (A'B'CI' + A'B \cdot CI + AB'CI + ABCI')'$$

$$CO = (A'B' + B'CI' + A'CI')'$$

加法器逻辑图

CO = (A'B' + B'CI' + A'CI')'

74LS183的1/2逻辑图

串行进位多位加法器

- 依次将低位全加器的进位输出端CO接到高位全加器的进位输入端CI
- 又称行波进位加法器
- 优点:结构简单
- 缺点:运算速度慢

$$(CI)_i = (CO)_{i-1}$$

$$S_i = A_i \oplus B_i \oplus (CI)_i$$

$$(CO)_i = A_i B_i + (A_i + B_i)(CI)_i$$

超前进位加法器概念

- 又称快速进位 (Fast Carry) 加法器
- 基本原理
 - 加到<mark>第 / 位的进位</mark>输入信号是两个加数第 / 位以前各位(*0 ~ i-1*)的函数,可在相加前由A,B两数确定
- 优点: 快,每一位的和及最后的进位基本同时产生
- 缺点:电路复杂,且位数越多,电路就越复杂

超前进位的生成(1)

- 由全加器真值表可知,向高位的进位信号 在两种情况下产生:
 - 1. 在A·B = 1
 - 2. 在A+B=1<u>目</u>CI=1
- 故向高位的进位信号为

$$(CO)_i = A_iB_i + (A_i + B_i)(CI)_i$$

	输	λ	输	出
Α	В	CI	S	CO
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1
			•	

超前进位的生成(2)

• 设 $G_i = A_i B_i$ 为进位生成函数, $P_i = A_i + B_i$ 为进位传递函数则 $(CO)_i = A_i B_i + (A_i + B_i)(CI)_i$ 可写成:

$$(CO)_{i} = G_{i} + P_{i}(CI)_{i}$$

$$= G_{i} + P_{i}(G_{i-1} + P_{i-1}(CI)_{i-1})$$

$$= G_{i} + P_{i}G_{i-1} + P_{i}P_{i-1}(G_{i-2} + P_{i-2}(CI)_{i-2})$$

$$\vdots$$

$$= G_{i} + P_{i}G_{i-1} + P_{i}P_{i-1}G_{i-2} + \dots + P_{i}P_{i-1}P_{i-2} \dots P_{1}G_{0}$$

$$+ P_{i}P_{i-1}P_{i-2} \dots P_{0}(CI)_{0}$$

$$S_i = A_i \oplus B_i \oplus (CI)_i$$

4位超前进位加法器74LS283

超前进位的生成举例

$$i = 0: i = 1:$$

$$(CI)_0 = 0 (CI)_1 = (CO)_0$$

$$S_0 = A_0 \oplus B_0 \oplus (CI)_0 S_1 = A_1 \oplus B_1 \oplus (CO)_0$$

$$(CO)_0 = A_0B_0 + (A_0 + B_0)(CI)_0 = A_1 \oplus B_1 \oplus (A_0B_0 + (A_0 + B_0)(CI)_0)$$

$$(CO)_1 = A_1B_1 + (A_1 + B_1(CO)_0)$$

$$= A_1B_1 + (A_1 + B_1)(A_0B_0 + (A_0 + B_0)(CI)_0)$$

$$(CI)_2 = (CO)_1 = A_1B_1 + (A_1 + B_1)(A_0B_0 + (A_0 + B_0)(CI)_0)$$

$$(CO)_2 = A_2B_2 + (A_2 + B_2)(CO)_1)$$

$$= A_2B_2 + (A_2 + B_2)(A_1B_1 + (A_1 + B_1)(A_0B_0 + (A_0 + B_0)(CI)_0))$$

$$S_2 = A_2 \oplus B_2 \oplus (CI)_2$$

$$= A_2 \oplus B_2 \oplus (A_1B_1 + (A_1 + B_1)(A_0B_0 + (A_0 + B_0)(CI)_0))$$

16位超前进位加法器

● 如何用4个超前进位加法器设计出来?

用加法器实现组合电路

- 基本原理:
 - 若能生成函数可变换成输入变量与输入变量相加
 - 若能生成函数可变换成输入变量与常量相加
- 例,用4位超前进位加法器74LS283组成的电路 如下图所示,试分析电路所能完成的逻辑功能

用加法器实现组合电路功能分析

● 加法器输入端逻辑函数式

- 74LS283(1): $A_3 = D_7$, $A_2 = D_7 \oplus D_6$, $A_1 = D_7 \oplus D_5$, $A_0 = D_7 \oplus D_4$

- 74LS283(2): $A_3 = D_7 \oplus D_3$, $A_2 = D_7 \oplus D_2$, $A_1 = D_7 \oplus D_1$, $A_0 = D_7 \oplus D_0$

-74LS283: $B_3 = B_2 = B_1 = B_0 = 0$

● D₇=0时:

-74LS283(1): $A_3=0, A_2=D_6, A_1=D_5, A_0=D_4$

-74LS283(2): $A_3 = D_3$, $A_2 = D_2$, $A_1 = D_1$, $A_0 = D_0$, CI = 0

- 做加法后和为 Y₇~Y₀=0 D₆~D₀

● D₇=1时:

-74LS283(1): $A_3 = 1, A_2 = D'_6, A_1 = D'_5, A_0 = D'_4$

-74LS283(2): $A_3 = D'_3$, $A_2 = D'_2$, $A_1 = D'_1$, $A_0 = D'_0$, CI = 1

- 做加法后和为 $Y_7 \sim Y_0 = 1 D'_6 \sim D'_0 + 1$

此电路是一个带符号位的二进制求补码电路 Y_7 为符号位,输入二进制数码为 $D_6 \sim D_0$

用加法器实现余3码转换逻辑电路

● 例,设计一个将十进制的8421码转换为 余3码电路

如右真值表,逻辑式为:

$$Y_3Y_2Y_1Y_0 = DCBA + 0011$$

	输	λ	•		输	出	
D	C	В	Α	Y_3	Y_2	<i>Y</i> ₁	Y_0
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0

用加法器实现BCD-B码转换逻辑电路(1)

用全加器74LS283把2位8421BCD码 $D_{BCD} = (D_{18}D_{14}D_{12}D_{11}, D_{08}D_{04}D_{02}D_{01})_{BCD}$

转换成二进制码 (B码): $B=B_6B_5B_4B_3B_2B_1B_0$

分析:一个2位十进制数(最大为99),用二进制(B码)表示需7位,即:

 $B = B_6 B_5 B_4 B_3 B_2 B_1 B_0$

$$D = D_{18} \times 80 + D_{14} \times 40 + D_{12} \times 20 + D_{11} \times 10 +$$

$$D_{08} \times 8 + D_{04} \times 4 + D_{02} \times 2 + D_{00} \times 1$$

$$= D_{18} \times (64 + 16) + D_{14} \times (32 + 8) + D_{12} \times (16 + 4) + D_{11} \times (8 + 2) +$$

$$D_{08} \times 8 + D_{04} \times 4 + D_{02} \times 2 + D_{00} \times 1$$

$$= D_{18} \times 2^{6} + D_{14} \times 2^{5} + (D_{18} + D_{12}) \times 2^{4} + (D_{14} + D_{11} + D_{08}) \times 2^{3}$$

$$(D_{12} + D_{04}) \times 2^{2} + (D_{11} + D_{02}) \times 2^{1} + D_{01} \times 2^{0}$$

用加法器实现BCD-B码转换逻辑电路(2)

$$D = D_{18} \times 2^{6} + D_{14} \times 2^{5} + (D_{18} + D_{12}) \times 2^{4} + (D_{14} + D_{11} + D_{08}) \times 2^{3}$$
$$(D_{12} + D_{04}) \times 2^{2} + (D_{11} + D_{02}) \times 2^{1} + D_{01} \times 2^{0}$$

$$B = B_6 B_5 B_4 B_3 B_2 B_1 B_0$$

$$B = B_6 \times 2^6 + B_5 \times 2^5 + B_4 \times 2^4 + B_3 \times 2^3 + B_2 \times 2^2 + B_1 \times 2^1 + B_0 \times 2^0$$

力口注	:器0	加数	0	D_{11} D_{08} C_{02}	D_{04}	D_{02}	D_{01}
	0	C_{04}	Y ₀₃	Y ₀₂	Y_{01}	Y_{00}	
加法器1				D_{14}			
	Y_{13}	Y ₁₂	<i>Y</i> ₁₁	Y_{10}	↓	↓	↓
转换结果	B_6	B_5	B_4	B_3	B_2	B_1	B_0

用加法器实现BCD-B码转换逻辑电路(3)

用2个4位二进制加法器实现 1片74LS283有2个加法器

加法	:器0	加数加数	0		D_{04}	$D_{11} \\ D_{02} \\ 0$	
	0	C_{04}	Y ₀₃	Y ₀₂	Y_{01}	Y_{00}	
加法器1	D_{18}	$\overline{D_{14}}$	D_{18}	D_{14}			
	<i>Y</i> ₁₃	Y_{12}	Y_{11}	Y_{10}			1
转换结果	B_6	B_5	B_4	B_3	B_2	B_1	B_0

第1个4位加法器连接方法:

$$A_3=0, A_2=D_{08}, A_1=D_{04}, A_0=D_{02} \\ B_3=D_{12}, B_2=D_{11}, B_1=D_{12}, B_0=D_{11} \\ CI=0$$

第2个4位加法器连接方法:

$$A_3 = 0, A_2 = CO, A_1 = Y_{03}, A_0 = Y_{02}$$

 $B_3 = D_{18}, B_2 = D_{14}, B_1 = D_{18}, B_0 = D_{14}$
 $CI = 0$

用加法器实现BCD-B码转换逻辑电路(3)

第1个4位加法器连接方法:

$$A_3 = 0, A_2 = D_{08}, A_1 = D_{04}, A_0 = D_{02}$$

 $B_3 = D_{12}, B_2 = D_{11}, B_1 = D_{12}, B_0 = D_{11}$
 $CI = O$

第2个4位加法器连接方法:

$$A_3 = 0, A_2 = CO, A_1 = Y_{03}, A_0 = Y_{02}$$

 $B_3 = D_{18}, B_2 = D_{14}, B_1 = D_{18}, B_0 = D_{14}$
 $CI = O$

$$D = D_{18} \times 2^{6} + D_{14} \times 2^{5} + (D_{18} + D_{12}) \times 2^{4} + (D_{14} + D_{11} + D_{08}) \times 2^{3}$$
$$(D_{12} + D_{04}) \times 2^{2} + (D_{11} + D_{02}) \times 2^{1} + D_{01} \times 2^{0}$$

$$B = B_6 B_5 B_4 B_3 B_2 B_1 B_0$$

$$B = B_6 \times 2^6 + B_5 \times 2^5 + B_4 \times 2^4 + B_3 \times 2^3 + B_2 \times 2^2 + B_1 \times 2^1 + B_0 \times 2^0$$

组合逻辑电路重点内容

- 组合逻辑电路的的描述方法
- 构成组合逻辑电路的基本组件
- 组合逻辑电路的分析与设计方法
- 常用的组合逻辑电路模块及其应用实例
 - 编码器、译码器、数据选择器、加法器、数据比较器
- 竞争-冒险现象及其避免方法

组合逻辑电路中的竞争-冒险现象

- 竞争-冒险现象及其成因
 - 竞争
 - 门电路两个输入信号同时向相反的逻辑电平跳变的 现象 (1→0, 0→1)
 - 竞争-冒险
 - 由于竞争而在电路输出端可能产生尖峰脉冲的现象
 - 尖峰脉冲, 又称电压毛刺

2线-4线译码器中的竞争-冒险现象

- 当AB从10→01时,
- 在动态过程中可能出现00或11,
- 所以Y₃和 Y₀输出端就可能产生尖峰脉冲

 $V_{\rm IL(max)}$

检查竞争-冒险现象的方法(1)

- 若输入变量每次只有一个改变状态,则通过 逻辑函数式判断
 - 如果输出端门电路的两个输入信号A和A'是输入变量A经过两个不同的传输途径而来,则当输入变量A的状态发生突变时输出端有可能产生尖峰脉冲,故只要输出端的函数在一定条件下可以简化成Y=A+A'或Y=AA',则可判定存在竞争-冒险现象
- EDA工具分析
- 实验检查电路的输出端

同一输入变量经不同途径到达输 出门的情况(m、n 均为正整数)

检查竞争-冒险现象的方法(2)

● 判断下图两个电路中是否存在竞争-冒险现象。已知任何瞬时输入变量只可能有一个改变状态

输出的逻辑函数式可写为 Y = AB + A'C 当B=C=1时, 上式将成为 Y = A + A'

 $Y = A + A^{\prime}$ 存在竞争-冒险现象

输出的逻辑函数式可写为 $Y = (A + B) \cdot (B' + C)$ 当A = C = 0时,上式将成为 $Y = B \cdot B'$ 存在竞争-冒险现象

消除竞争-冒险现象的方法

- 接入滤波电容
 - 尖峰脉冲很窄,用很小的电容就可将尖峰削弱到 V_{TH} 以下

要适当选择时间常数(**1**= **RC**), 要求 **1** 足够大, 以便 "削平" 尖脉冲;

但又不能太大, 以免使正常的输出发生畸变

引入选通脉冲消除竞争-冒险现象

电路达到稳定之后,选通脉冲起作用,高电平期的输出信号不会 出现尖峰

修改逻辑设计消除竞争-冒险(1)

- 发现并消去互补相乘项
- 例: F = (A + B)(A' + C)
- 当B = C = 0时,F = AA',存在竞争-冒险现象
- 将该式变换为F = AA' + AC + A'B + BC = AC + A'B + BC, 消去了AA', 不会出现竞争-冒险现象

修改逻辑设计消除竞争-冒险(2)

- 增加乘积项以避免互补项相加
- 例: Y = AB + A'C
- 当 B = C = 1时, Y = A + A',存在竞争-冒险现象

增加冗余项BC, 得: Y = AB + A'C + BC

消除竞争-冒险现象小结

- 接滤波电容的方法
 - 简单易行,但输出的波形随之变坏
 - 只适用于输出波形的前、后沿无严格要求的场合
- 引入选通脉冲的方法
 - 比较简单,而且不需要增加电路元件,
 - 需要一个与输入信号同步的选通脉冲,脉冲宽度和作用时间有严格的要求
- 修改逻辑设计的方法
 - 使用得当,效果好。例如例题中门 G_5 本来就存在,只需要增加一根连线,将它的输出引到门 G_4 的一个输入端即可,既不必增加门电路,又不给电路的工作带来任何不利的影响
 - 能解决的问题有限

练习题

● 由3线 - 8线译码器74HC138所组成的电路如图所示,试分析该电路的逻辑 功能

练习题

● 试利用3线 - 8线译码器74HC138及与非门实现全减器,设A为被减数,B为减数,CI为低位的借位,D为差,CO为向高位的借位

	输	λ	输	出
Α	В	CI	D	СО
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

问题和建议?

