Vorlesung Kommunikationssysteme Wintersemester 2024/25

Organisation und Internet Trends

Christoph Lindemann

Zeitplan

Nr.	Datum	Thema	
01	18.10.24	Organisation und Internet Trends	
02	25.10.24	Programmierung mobiler Anwendungen mit Android	
	01.11.24	Keine Vorlesung	
03	08.11.24	Protokolldesign und das Internet	
04	15.11.24	Anwendungen und Netzwerkprogrammierung	
05	22.11.24	LAN und Medienzugriff	
06	29.11.24	Ethernet und drahtlose Netze	
07	06.12.24	LAN Komponenten und WAN Technologien	
08	13.12.24	Internetworking und Adressierung mit IP	
09	20.12.24	IP Datagramme	
10	10.01.25	Zusätzliche Protokolle und Technologien	
11	17.01.25	User Datagram Protocol und Transmission Control Protocol	
12	24.01.25	TCP Überlastkontrolle / Internet Routing und Routingprotokolle	
13	31.01.25	Ausblick: TCP für Hochgeschwindigkeitsnetze	
14	07.02.25	Review der Vorlesung	

Information zur Vorlesung

- Zeit und Raum:
 - Freitags, 11:15-12:45 Uhr
 - Hörsaalgebäude, HS 7
- Anrechnung:
 - Die Vorlesung ist Teil des Moduls: 10-201-2004 - Kommunikationssysteme
- Vorlesungsunterlagen:
 - Douglas E. Comer:
 Computernetzwerke und Internets, 6. Auflage, Pearson,
 2014

Douglas Comer, Computer Networks and Internets, 6. Auflage, Pearson, 2014

Information zur Vorlesung

- Aktuelle Informationen zu Vorlesung und Übungen sowie Einschreibung im Almaweb
- Fragen zur Organisation?
 - mehlhose@rvs.informatik.uni-leipzig.de
- Moodle-Kurs: https://moodle2.uni-leipzig.de/course/view.php?id=51936
- □ Fragen zum Inhalt?
 - Vorlesung
 - Moodle
 - Tutorien

Einschreibung zum Modul

- Online über Tool
- Einschreibefrist: 07.10.2024, 17:00 Uhr
- □ Abmeldung möglich bis: 11.01.2025, 23:59 Uhr im AlmaWeb
- Keine erneute, spätere Einschreibung möglich (in diesem Semester)
- Einschreibung = Prüfungsanmeldung

Information zu den Übungen (1)

- Die Übungen bestehen aus 5 Übungsblättern mit Rechenaufgaben
 - Wiederholung und Vertiefung der Vorlesung
- Besprechung der Übungsblättern in Tutorien
- □ Präsenz-Tutorien finden im A-/B-Wochen Rhythmus statt (zuerst B-Woche)
- □ Wir bieten 4 Gruppen (Termine) an(2 Gruppen A-Woche und 2 Gruppen B-Woche)

Information zu den Übungen (2)

Übungsblätter

- Übungsblätter werden über Moodle bereitgestellt
- Die Übungsblätter werden spätestens eine Woche vor dem jeweiligen Übungstermin online gestellt

Hinweis

- Aktive Teilnahme (Mitarbeit) an den Tutorien zu den Präsenzterminen wird vorausgesetzt
- Fragen zu den Inhalten werden nur im Moodle und in den Tutorien beantwortet

Information zu den Übungen (3)

- Einschreibung in die Gruppen erfolgt über Tool
- Zeit und Ort der Tutorien:
 - Genaue Termine im Moodle & folgende Folien
 - Seminargebäude, SG 310 & SG 214
 - Gruppen:
 - A: A-Woche, Donnerstag, 9:15-10:45, SG 310
 - B: B-Woche, Donnerstag, 9:15-10:45, SG 310
 - C: A-Woche, Dienstags, 17:15-18:45, SG 214
 - D: B-Woche, Dienstags, 17:15-18:45, SG 214

Information zu den Übungen (4)

Nr.	Datum	1		Inhalt
01	12.11.24 17:15 - 18:45 14.11.24 09:15 - 10:45 19.11.24 17:15 - 18:45 21.11.24 09:15 - 10:45	B-Woche B-Woche A-Woche A-Woche	•	Einführung in Rechnernetze & Übertragungsmedien & Pakete, Rahmen und Fehlererkennung Protokolle und Schichten & Internetworking: Konzepte, Architekturen und Protokolle
02	26.11.24 17:15 - 18:45 28.11.24 09:15 - 10:45 10.12.24 17:15 - 18:45 12.12.24 09:15 - 10:45	B-Woche B-Woche A-Woche A-Woche	•	LAN Technologien und Netzwerktopologien Datenübertragung in Packet- Switched Networks
03	10.12.24 17:15 - 18:45 12.12.24 09:15 - 10:45 17.12.24 17:15 - 18:45 19.12.24 09:15 - 10:45	B-Woche B-Woche A-Woche A-Woche	•	LAN Erweiterungen: Fiber Modems, Repeaters, Bridges und Switches WAN Technologien und Routing & Netzbesitzer, Service Paradigmen und Leistungsaspekte

Information zu den Übungen (5)

Nr.	Datun	n		Inhalt
04	07.01.25 17:15 - 18:45 09.01.25 09:15 - 10:45 14.01.25 17:15 - 18:45 16.01.25 09:15 - 10:45	B-Woche B-Woche A-Woche A-Woche	•	Fragmentierung von Paketen IP Adressen
05	21.01.25 17:15 - 18:45 23.01.25 09:15 - 10:45 28.01.25 17:15 - 18:45 30.01.25 09:15 - 10:45	B-Woche B-Woche A-Woche A-Woche	•	Address Resolution Protocol Datentransport mit TCP und UDP Domain Name System

Information zur Prüfung

- Prüfungsleistung
 - 60 Minuten Klausur
 - Termin: Prüfungszeitraum im Februar 2025
- □ Prüfungsvoraussetzung:
 - Teilnahme an den Präsenz-Übungen
- Prüfungsinhalte
 - Vorlesung, Übungen, angegebene Literatur

Lehrangebot am Lehrstuhl RVS (1)

Sem	SS/ WS		LP(h)
		Bachelorstudium	
3.	Ws	Pflichtmodul: Kommunikationssysteme	5(150)
4.	SS	Kernmodul: Rechnernetze	5(150)
5.	WS	Seminarmodul: Rechnernetze und Internetanwendungen I	5(150)
6.	SS	Bachelorarbeit	

Lehrangebot am Lehrstuhl RVS (2)

Sem	SS/ WS	LP		
		Masterstudium		
1./3.	Ws	Kernmodul Einführung in Soziale Netzwerke	5(150) / 10(300)	
1./3.	WS	Kernmodul: Einführung in Mobile P2P-Systeme	5(150)	
2./4.	SS	Vertiefungsmodul: Ausgewählte Verfahren und Techniken für Soziale Netzwerke	10(300)	
2./4.	SS	Vertiefungsmodul: Ausgewählte Verfahren für mobile P2P- Systeme	10(300)	
2./4.	55	Seminarmodul: Rechnernetze und Internetanwendungen II 5(150)		
5./6.	WS/SS	Masterarbeit		

Karrieren der RvS Alumnis

RvS Alumnis (1)

- Dr. rer. nat. Michael Petrifke / 2022
 - In der Industrie
- Dr. rer. nat. Jan Friedrich / 2020
 - Senior Consultant bei PwC
- Dr. rer. nat. Sascha Gübner / 2015
 - Forschungsingenieur bei Robert Bosch GmbH
- Dr. rer. nat. Simon Frohn / 2012
 - Senior Softwareentwickler bei Vector Informatik GmbH
- Dr. rer. nat. Lars Littig / 2009
 - Managing Director und Partner bei The Boston Consulting Group
- Dr. rer. nat. Sherif M. ElRakabawy / 2009
 - CEO des Startups Yaoota.com
 - Assistant Professor an der American University in Cairo

RvS Alumnis (2)

- Dr. rer. nat. Alexander Klemm / 2006
 - Mitglied der Geschäftsleitung bei radprax MVZ GmbH
- Dr. rer. nat. habil. Oliver Waldhorst / 2005
 - Professor für Datenbanken und Rechnernetze an der Fachhochschule Karlsruhe
- Dr. rer. nat. Marco Lohmann / 2004
 - In der Industrie
- □ Prof. Dr. rer. nat. Axel Thümmler / 2003
 - Professor für Mathematik und Simulation an der Fachhochschule Hamm-Lippstadt
- sowie eine Vielzahl erfolgreicher (€€€) Dipl.-Inform. und M.Sc. Absolventen in der Industrie

Zeitplan

Nr.	Datum	Thema	
01	18.10.24	Organisation und Internet Trends	
02	25.10.24	Programmierung mobiler Anwendungen mit Android	
	01.11.24	Keine Vorlesung	
03	08.11.24	Protokolldesign und das Internet	
04	15.11.24	Anwendungen und Netzwerkprogrammierung	
05	22.11.24	LAN und Medienzugriff	
06	29.11.24	Ethernet und drahtlose Netze	
07	06.12.24	LAN Komponenten und WAN Technologien	
08	13.12.24	Internetworking und Adressierung mit IP	
09	20.12.24	IP Datagramme	
10	10.01.25	Zusätzliche Protokolle und Technologien	
11	17.01.25	User Datagram Protocol und Transmission Control Protocol	
12	24.01.25	TCP Überlastkontrolle / Internet Routing und Routingprotokolle	\exists
13	31.01.25	Ausblick: TCP für Hochgeschwindigkeitsnetze	\neg
14	07.02.25	Review der Vorlesung	

Kapitel 1: Einführung

Ziel:

Interesse an den Themen der Vorlesung wecken

Überblick:

- □ Internet Trends
- □ Themen der Vorlesung

Internet Trends

Resource Sharing

- Die ersten Rechnernetze verbanden die Ein- und Ausgabegeräte der Nutzer mit einem zentralen Rechner
 - Sehr große Rechner (Räume füllend, laut, warm)
 - Mehrere Nutzer konnten gleichzeitig, gemeinsam, aus ihren Büros auf den Rechner zugreifen
 - "Dumme" Terminals am Arbeitsplatz

ARPANET

- □ Advanced Research Projects Agency (ARPA) des U.S. Departments of Defense war in den 1960er in Geldnot
- Nicht jeder Forscher bzw. Arbeitsplatz konnte mit schnellen Rechnern versorgt werden
- □ Idee: Resource Sharing → Verbindung aller vorhandenen Computer mit einem Netz → Zugriff auf den Computer der für eine bestimmt Aufgabe am geeignetsten ist
- □ Entwickelte Lösung: Packet Switching
 - Grundlage des modernen Internet

Wachstum des Internets

- Computer im Internet als lineare Skala und einmal als Log
 - Exponentielles Wachstum in den letzten 25 Jahren
 - Wachstumsrate abnehmend → Tablets, Smartphones ersetzen Computer

Wandel (1)

- Mit dem Wachstum wandelte sich auch das Netz (Internet)
 - Steigende Übertragungsraten
 - Völlig neue Anwendungen
 - Früher für akademische Zwecke erdacht, wird es plötzlich von der gesamten Bevölkerung genutzt
- Nebenbei wurden Computer immer günstiger
- □ Das Internet entwickelte sich vom Resource Sharing zu einer Plattform für beliebige Anwendungen

Wandel (2)

- Auch die Art der übertragenden Daten änderte sich mit der Entwicklung des Internets
 - Früher Text und E-Mail
 - Ab den 1990er gab es Farb-Bildschirme und der Austausch von Bildern wurde interessant
 - Um die Jahrtausendwende wurden Videos populär
 - Heute streamen wir 4K Filme von Netflix
- Multimedia-Daten dominieren den Internetverkehr

Wandel (3)

- □ Der Wandel setzt sich immer noch unaufhaltbar fort
 - Wechsel von Analog auf Digital in vielen Kommunikationsbereichen

Topic	Transition		
Telephone system	Move from analog to Voice over IP (VoIP)		
Cable television	Move from analog delivery to Internet Protocol (IP)		
Cellular	Move from analog to digital cellular services (4G)		
Internet access	Move from wired to wireless access (Wi-Fi)		
Data access	Move from centralized to distributed services (P2P)		

Wandel (4)

- Schlussendlich ist die Entwicklungen neuer Anwendungen im Internet von der zugrunde liegenden Technologie mittlerweile entkoppelt
 - TCP/IP, Ethernet und WLAN haben sich nicht grundlegend geändert in den letzten 10 Jahren
- Neue Anwendungen:
 - Soziale Netze für Kunden und Privatpersonen
 - Sensornetze
 - HD Videokonferenzen zur B2B Kommunikation
 - Online Banking und Bezahlsysteme

Content Caching (Akamai)

- □ Caching ist ein wichtiger Bestandteil des WWW → ISPs halten statische Webseiten im Cache → WWW-Server des Anbieters wird entlastet
- Akamai hat dies als Geschäftsmodell entdeckt
- Globales Content Delivery Network, Web Application Firewall, Web Cache
- □ Firmen kaufen Ressourcen bei Akamai → Nutzer erhalten den Web-Content von in der Nähe gelegenen Akamai-Servern

Web Load Balancers

- WWW-Anfragen werden transparent auf mehrere Server verteilt → Für Nutzer nicht sichtbar
 - Z.B. über DNS oder Proxies

Figure 33.1 Illustration of a load balancer used for large-scale web sites.

Server Virtualisierung

- Klassisch: Eigene Hardware pro Server-Software (z.B. Mail-Server, Web-Server, ...)
 - Physische Isolierung
 - Schlechte Auslastung
- Virtualisierung:
 - Dynamische Zuweisung von "Servern", i.e. Virtuellen Maschinen, zu Hardware-Servern → Bessere Auslastung
 - Abfangen von Lastspitzen, in dem weitere Virtuelle Maschinen dazu geschalten werden

Peer-to-Peer Kommunikation

- Download von Dateien nicht mehr von zentralen Servern, sondern von Nutzern in der Nähe
 - Dateien werden in Chuncks, kleine Datenblocke, geteilt → jeder Block unabhängig von beliebigen Nutzern herunterladbar
 - Viele parallele Verbindungen gleichzeitig
 - Nutzer stellen ihren Download anderen Nutzern zur Verfügung
 - Je mehr Nutzer, desto schneller das Netz

Beispiele:

- o frühere: Napster, Kazaa, BitTorrent
- aktuell: Wifi direct oder Bluetooth LE auf modernen Smartphones

Social Networking

- □ Anfang 2000er → Internet content wird von Unternehmen und Medienanstalten produziert
- □ Danach baldiger Wandel zum "Mitmachnetz" → Web 2.0
 - Facebook, Youtube, Instagram, ... ermöglichen es einfach Content zu erstellen und zu publizieren

Wandel der Kommunikation von E-Mail zu sozialen Netzen

Mobiles Internet

- Smartphones und sehr schnelle 5G Datennetze ermöglichen einen allgegenwertigen Zugriff auf das Internet
- Medien werden sowohl unterwegs konsumiert als auch erzeugt
- Kommunikation weg von klassischem Mobilfunk zu VoIP und Chat-Applikationen
 - Tod der SMS?

Internet of Things (IoT)

- Kommunikation zwischen Maschinen (M2M)
- □ Embedded Systeme in alltäglichen Gegenständen (Lampe, Kühlschrank, Thermostat, Rauchmelder, Türschloss, ...) kommunizieren miteinander
 - Statusabfrage
 - Kontrolle
 - Automatisierung
- Wohnungsbesitzer kommt nach Hause → Heizung und Licht werden aktiviert, die Nachrichten werden im TV angeschaltet, das Bier noch einmal schnell gekühlt
- Protokolle: Bluetooth LE, NFC, ZigBee

Cloud Computing (1)

- □ Ironischerweise ist eine wichtige Entwicklung sogar ein Rückbesinnen auf alte Tugenden: Resource Sharing
- Applikationen, die normalerweise auf lokalen Server oder am Arbeitsplatz laufen (z.B. E-Mail, Office), werden als Service von Dienstleistern über das Internet bezogen
 - Ermöglicht durch hohe Bandbreiten und effiziente Data Center
- Dienstleister: Cloud Provider

Cloud Computing (2)

- Anwendungen laufen beim Cloud Provider
- Nur Eingabe / Ausgabe werden über das Internet übertragen
- Alle Daten liegen beim Cloud Provider
- Zugriff von überall mit einfachsten Geräten möglich (Tablet, Smartphone)

Vorteile Cloud Computing

- □ Flexibilität
 - Unabhängig vom Ort
 - Resourcen können flexibel zugekauft werden (z.B. Abfangen von Last-Spitzen) → Elastic Service
- Keine großen Investitionen beim Kunden → monatliche kalkulierbare Zahlungen
 - Kein IT Department
 - Keine Server
- Wartung von Software und Hardware übernimmt der Cloud Provider
 - Backups
- Auch kleine Betriebe können aktuelle Techniken nutzen

Nachteile Cloud Computing

- Sicherheitsbedenken
 - O Daten nicht in der eigenen Hand sondern beim Cloud Provider
- Netzverbindungen sind zwingend erforderlich
- Locked In Syndrom → Wechsel des Cloud Providers immer noch schwer möglich (Migration der Daten)

Ausblick

- Netzwerkprogrammierung mit der Socket API und mit Android
- Eigenschaften und allgemeiner Aufbau von drahtgebundenen und drahtlosen Netzen
- □ IEEE Ethernet 802.3 und IEEE WiFi 802.11 Medienzugriff
- Aufbau des globalen Internets (Internetworking)
- □ Transportprotokolle: TCP und UDP
- □ TCP für Hochgeschwindigkeitsnetze