Table of Laplace transforms

Definition of the Laplace transform:

$$F(s) = L\{f(t)\}(s) = \int_{0}^{\infty} f(t)e^{-st}dt$$

$F(s) = L\{f(t)\}(s)$	$f(t) = L^{-1}{F(s)}(t)$	
F(s)	f(t)	T1
$C_1F_1(s) + C_2F_2(s)$	$C_1 f_1(t) + C_2 f_2(t)$	T2
F(s+a)	$e^{-at}f(t)$	Т3
$e^{-as}F(s)$	$\begin{cases} 0 & ,t \le a \\ f(t-a) & ,t > a \end{cases}$	T4
$\frac{1}{a}F\left(\frac{s}{a}\right)$	f(at)	T5
$-\frac{d}{ds}F(s)$	f(t)t	Т6
$\int_{s}^{\infty} F(\sigma) d\sigma$	$f(t)\frac{1}{t}$	Т7
$F_1(s)F_2(s)$	$\int\limits_0^t f_1(\tau)f_2(t-\tau)d\tau$	Т8
sF(s) - f(0)	f'(t)	Т9
$s^2F(s) - [sf(0) + f'(0)]$	f''(t)	T10
$s^{n}F(s) - [s^{n-1}f(0) + \dots + f^{(n-1)}(0)]$	$f^{(n)}(t)$	T11
$\frac{1}{s}F(s) + \frac{1}{s} \left[\int_{0}^{t} f(\tau)d\tau \right]_{t \to +0}$	$\int\limits_0^t f(\tau)d\tau$	T12

If limits for f(t) and F(s) exist, the following rules hold true:

$$\lim_{s \to 0} \{sF(s)\} = \lim_{t \to \infty} \{f(t)\} \qquad \qquad \lim_{s \to \infty} \{sF(s)\} = \lim_{t \to 0} \{f(t)\}$$

$F(s) = L\{f(t)\}(s)$	$f(t) = L^{-1}{F(s)}(t)$	
1	$\delta(t)$	M1
$\frac{1}{s}$	1	M2
$\frac{1}{s^2}$	t	M3
$\frac{1}{s^{n+1}}$	$\frac{t^n}{n!}$	M4
$\frac{1}{s+a}$	e^{-at}	M5
$\frac{1}{(s+a)^2}$	te^{-at}	M6
$\frac{1}{(s+a)^{n+1}}$	$\frac{t^n e^{-at}}{n!}$	M7
$\frac{1}{s(s+a)}$	$\frac{1}{a}(1-e^{-at})$	M8
$\frac{1}{(s+a)(s+b)}$	$\frac{1}{a-b}(e^{-bt}-e^{-at})$	M9
$\frac{1}{s(s+a)(s+b)}$	$\frac{1}{ab} + \frac{1}{ab(b-a)}(ae^{-bt} - be^{-at})$	M10
$\frac{a}{s^2 + a^2}$	$\sin(at)$	M11
$\frac{s}{s^2 + a^2}$	$\cos(at)$	M12
$\frac{a}{(s+b)^2+a^2}$	$e^{-bt}\sin(at)$	M13
$\frac{s+b}{(s+b)^2+a^2}$	$e^{-bt}\cos(at)$	M14
$\frac{s+a}{s+b}$	$\delta(t) + (a-b)e^{-bt}$	M15