PATENT ABSTRACTS OF JAPAN

(11)Publication number :

,....

2001-286152

(43)Date of publication of application: 12.10.2001

(51)Int.CI.

H02M 7/48

(21)Application number: 2000-097114

(71)Applicant:

TOSHIBA CORP

(22)Date of filing:

31.03.2000

(72)Inventor:

MIYAZAKI MASANORI

(54) GROUNDING STRUCTURE FOR INVERTER SYSTEM

(57)Abstract:

PROBLEM TO BE SOLVED: To prevent a trouble in a neighboring equipment by enabling to limit the earth current to a floor and the like even when an equipment is installed on a conductive floor or structure.

SOLUTION: A grounding structure for an inverter system has a constitution wherein, when an inverter-unit box 2 housing an inverter unit 1 and a box 4 of a motor 3 that is driven by an output of the inverter unit are installed on the conductive floor or structure 5, an insulating material 41 is laid between the inverter-unit box and the conductive floor or structure, each earth terminal 1E, 2E of the inverter-unit box and the box of the motor is connected to each other by a conductive member 43, and an inductance 42 is connected in series to the earth terminal 1E of the inverter-unit box.

LEGAL STATUS

[Date of request for examination]

05.03.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁(JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2001-286152

(P2001-286152A)(43) 公開日 平成13年10月12日(2001.10.12)

(51) Int. C I. 7

H 0 2 M

7/48

識別記号

FΙ H 0 2 M 7/48 テーマコード(参考)

M 5H007

Z

審査請求 未請求 請求項の数6

OL

(全7頁)

(21) 出願番号

特願2000-97114 (P2000-97114)

(22) 出願日

平成12年3月31日(2000.3.31)

(71)出願人 000003078

株式会社東芝

東京都港区芝浦一丁目1番1号

(72) 発明者 宮崎 雅徳

東京都府中市東芝町1番地 株式会社東芝

府中工場内

(74)代理人 100058479

弁理士 鈴江 武彦 (外6名)

F ターム(参考) 5H007 AA06 BB06 CA01 CB05 CC01

CC03 CC09 DA05 FA03 FA12

FA13 FA14 HA03 HA07

(54) 【発明の名称】インバータシステムの接地構造

(57)【要約】

導電性の床や構造物に取り付ける場合で も、これら床等へのアース電流の流れを制限でき、周辺 機器の障害を未然に防止することにある。

【解決手段】 インバータ装置 1 を内蔵するインバータ 装置筐体2とインバータ装置の出力で駆動される電動機 3の筐体4とが導電性の床或いは構造物5に設置する場 合、インバータ装置筐体と導電性の床或いは構造物との 間に絶縁材41を介在し、インバータ装置筐体および前 記電動機の筐体の各アース端子1 E. 2 E どうしを導電 部材43で接続し、またインバータ装置筐体のアース端 子 I Eにインダクタンス 4 2 を直列に接続し接地してな るインバータシステムの接地構造である。

【特許請求の範囲】

【請求項1】 スイッチング素子で構成されるインバー タ装置を内蔵するインバータ装置筐体と前記インバータ 装置の出力で駆動される電動機の筐体とが導電性の床或 いは構造物に設置されているインバータシステムにおい て、

1

前記インバータ装置筐体と前記導電性の床或いは構造物 との間に絶縁材を介在し、また前記インバータ装置筐体 のアース端子に髙周波電流制限素子を直列に接続し接地 することを特徴とするインバータシステムの接地構造。

【請求項2】 スイッチング素子で構成されるインバー タ装置を内蔵するインバータ装置筐体と前記インバータ 装置の出力で駆動される電動機の筐体とが導電性の床或 いは構造物に設置されているインバータシステムにおい

前記インバータ装置筐体と前記導電性の床或いは構造物 との間に絶縁材を介在するとともに、前記インバータ装 置筐体および前記電動機の筐体の各アース端子どうしを 導電部材で接続し、また前記インバータ装置筐体のアー ス端子に高周波電流制限素子を直列に接続し接地するこ とを特徴とするインバータシステムの接地構造。

【請求項3】 スイッチング素子で構成されるインバー タ装置を内蔵するインバータ装置筐体と前記インバータ 装置の出力で駆動される電動機の筐体とが導電性の床或 いは構造物に設置されているインバータシステムにおい て、

前記インバータ装置筐体と前記導電性の床或いは構造物 との間に絶縁材を介在するとともに、前記インバータ装 置筐体のアース端子と前記電動機の筐体のアース端子と の間に導電部材および低周波電流制限素子を直列に接続 30 し、また前記インバータ装置筐体のアース端子に高周波 素子制限素子を直列に接続し接地することを特徴とする インバータシステムの接地構造。

【請求項4】 スイッチング素子で構成されるインバー タ装置を内蔵するインバータ装置筐体と前記インバータ 装置の出力で駆動される電動機の筐体とが導電性の床或 いは構造物に設置され、前記インバータ装置に電力を供 給する電源を構成する変圧器の中性点が接地されている インバータシステムにおいて、

前記インバータ装置筐体と前記導電性の床或いは構造物 40 との間に絶縁材を介在し、また前記インバータ装置筐体 のアース端子に髙周波電流制限素子を直列に接続し接地 し、かつ、前記変圧器の2次巻線中性点を前記インバー タ装置のアース端子に接続することを特徴とするインバ ータシステムの接地構造。

【請求項5】 スイッチング素子で構成されるインバー タ装置を内蔵するインバータ装置筐体と前記インバータ 装置の出力で駆動される電動機の筐体とが導電性の床或 いは構造物に設置され、前記インバータ装置に電力を供 インバータシステムにおいて、

前記インバータ装置筐体と前記導電性の床或いは構造物 との間に絶縁材を介在し、また前記変圧器の2次側巻線 中性点を前記インバータ装置のアース端子に接続し、か つ、このインバータ装置筐体のアース端子に髙周波電流 制限素子を直列に接続し接地することを特徴とするイン バータシステムの接地構造。

【請求項6】 請求項1ないし請求項5の何れかに記載 のインバータシステムの接地構造において、

前記インバータ装置と前記電動機とを接続するケーブル に導電性シールドが施されている場合、このシールドか ら前記各筐体のアース端子に導電部材を接続することを 特徴とするインバータシステムの接地構造。

【発明の詳細な説明】

【発明の属する技術分野】本発明は、導電性の床や構造 物にインバータシステムを設置する場合に有効なインバ ータシステムの接地構造に係り、特にインバータ回路を 構成するスイッチング素子のオン・オフ動作時に床や構 造物に流れるアース電流を抑制するインバータシステム の接地構造に関する。

[0002]

【従来の技術】従来のインバータシステムの接地は、イ ンバータ回路等をもつインバータ装置の筐体とこのイン バータ装置の出力で駆動される電動機の筐体などをアー ス線を介して接地極に接続するのが一般的である。

【0003】図4は従来の一般的なインバータシステム の接地構造を説明する図である。このインバータシステ ムは、インバータ装置1を内蔵するインバータ装置筐体 2と制御対象である電動機3を収納する電動機筐体4が 床5に設置され、このインバータ装置筐体2内のインバ ータ装置1から電動機3に対して電力を供給するための ケーブル6が接続されている。インバータ装置1は、整 流器11、フィルタ回路12およびスイッチング素子で 構成されるインバータ回路13等によって構成されてい る。なお、電動機3には当該電動機の構成要素である電 動機固定子巻線31が設けられている。

【0004】さらに、インバータシステムの接地系とし ては、各筐体2, 4のある個所をアース端子1E, 2E とし、これらアース端子1E,2Eからそれぞれ個別に アース線14.32が導出され、それぞれ床5の接地極 15.33に接続されている。

【0005】ところで、IGBT、GTO等に代表され る高速スイッチング素子を用いたインバータ装置では、 インバータ回路13を構成するスイッチング素子がスイ ッチング動作を繰り返すことにより、インバータ装置出 カ側のケーブル6および電動機固定子巻線31は対地に 対する電位が変動する。その結果、電動機固定子巻線3 1と電動機筐体4との間に浮遊容量Сsが存在し、この 給する電源を構成する変圧器の中性点が接地されている 50 浮遊容量CSを充放電することにより、電動機筐体4を 通して床面にアース電流 i s が流れ込む。このアース電 流isは、インバータ回路13のスイッチングによって インバータ装置1内からエネルギーの供給を受けるの で、最終的にはインバータ回路13に戻る電流となる。

【0006】インバータ装置1においても、同様にイン バータ装置1とインバータ装置筐体2との間にも浮遊容 量Ciが存在し、インバータ装置1の電源が非接地系の 場合、当該浮遊容量Сіを通してアース電流і sが流 れ、インバータ回路13に戻る。また、インバータ装置 1に供給される電源が接地されている場合、この接地回 10 路を通してアース電流isがインバータ回路13に戻る こともある。

[0007]

【発明が解決しようとする課題】ところで、インバータ システムは、一般にはコンクリート等の床 5 上に設置さ れるが、インバータシステムの取り付け場所等の制約か ら導電性の床5であるとか、建屋の鉄骨、船舶、車両等 の鋼板構造物であるとか、金属製筐体等のごとき構造物 に取り付けられる場合が多い。

【0008】一方、前述したようにアース電流は必ずし もアース線14,32を通って接地極15,33に流れ るとは限らず、ましてやインバータシステムが導電性の 床や構造物に設置されている場合、通常、インバータ装 置筐体2,電動機筐体4等と導電性の床5や構造物とが 接触しており、いわゆる導通状態となっていることが多 い。その結果、例えば電動機筐体4のアース端子2日を 接地極33に接続しても、必ずしもアース電流がすべて 接地極33に流れ込むわけでなく、例えば床5などの導 電物のうちインピーダンスの小さい経路を通って流れ る。インバータ装置 1 も同様であって、インバータ装置 30 筐体2のアース端子1Eを接地極15に接続しても、ア ース電流が必ずしも接地極 15に流れ込むわけではな

【0009】従って、以上のようにアース電流は、イン バータ装置 1. ケーブル 6. 電動機 3 と筐体 2. 4 等と の間の浮遊容量を通して流れることが多いので、電流経 路を人為的に制御することが難しく、アース電位が変動 すれば周辺機器に誤動作等の障害を発生させる原因とも なる。

【0010】特に、インバータ装置1による高速スイッ チングに伴うアース電流は、スイッチング素子自体が高 性能、かつ、高速スイッチング動作となればなるほど、 高周波、大電流になることは明らかであり、今後、イン バータシステムの高圧化、大容量化の方向に移行しつつ あることを考えれば、非常に重要な問題である。

【0011】また、建屋等の構造物については、本来的 に電流を流す目的で建てたものでないので、これら構造 物に大きなアース電流を流すことは人的、構造物の安全 上からも望ましい状態ではない。

のであって、導電性の床や構造物に取り付ける場合で も、これら床等へのアース電流の流れを抑制し、周辺機 器の障害を未然に防止するインバータシステムの接地構 造を提供することを目的とする。

【0013】また、本発明の他の目的は、インバータ装 置の安定な運転および人的、構造物等の安全を確保する インバータシステムの接地構造を提供することにある。

$[0\ 0\ 1\ 4\]$

【課題を解決するための手段】(1) 上記課題を解決 するために、本発明に係るインバータシステムの接地構 造は、スイッチング素子で構成されるインバータ装置を 内蔵するインバータ装置筐体と前記インバータ装置の出 力で駆動される電動機の筐体とが導電性の床或いは構造 物に設置する場合、前記インバータ装置筐体と前記導電 性の床或いは構造物との間に絶縁材を介在し、また前記 インバータ装置筐体のアース端子に髙周波電流制限素子 を直列に接続し接地する構造である。

【0015】本発明は以上のような構成とすることによ り、アース電流が絶縁材により直接床に流れることがな くなり、人的、構造物に対する安全性を確保可能とな り、しかもインバータ装置の高速スイッチングによって 高周波の電流が流れても、高周波電流制限素子で制限さ れ、インバータ装置筐体の直流電位を接地ラインと同レ ベルに設定することが可能である。

【0016】(2) 本発明に係るインバータシステム の接地構造は、インバータ装置筐体記導電性の床或いは 構造物との間に絶縁材を介在するとともに、インバータ 装置筐体および電動機の筐体の各アース端子どうしを導 電部材で接続し、またインバータ装置筐体のアース端子 に高周波電流制限素子を直列に接続し接地する構成とす ることにより、前記(1)項と同様な作用を有する他、 インバータ装置筐体および電動機の筐体の各アース端子 どうしを導電部材で接続することにより、アース電流が 導電部材を流れるので、高周波電流制限素子には電位が かからなくなり、ひいてはインバータ装置の安定運転が 可能となる。

【0017】(3) また、本発明においては、インバ ータ装置筐体のアース端子と電動機の筐体のアース端子 との間に導電部材を接続するだけでなく、この導電部材 に低周波電流制限素子を直列に接続すれば、インバータ 装置の運転周波数成分をもった誘導電流等の有害な低周 波電流を抑制ないし遮断可能となる。

【0018】(4) 本発明に係るインバータシステム の接地構造は、スイッチング素子で構成されるインバー タ装置を内蔵するインバータ装置筐体と前記インバータ 装置の出力で駆動される電動機の筐体とが導電性の床或 いは構造物に設置され、前記インバータ装置に電力を供 給する電源を構成する変圧器の中性点が接地されている 場合、前記インバータ装置筐体と前記導電性の床或いは 【0012】本発明は上記事情にかんがみてなされたも 50 構造物との間に絶縁材を介在し、また前記インバータ装 置筐体のアース端子に高周波電流制限素子を直列に接続 し接地し、かつ、前記変圧器の2次巻線中性点を前記イ ンバータ装置のアース端子に接続する構成とする。

【0019】本発明は以上のような構成とすることにより、前記(1)項と同様な作用を奏する他、中性点からの高周波のアース電流をインバータ装置のアース端子側に流すことが可能となる。

【0020】(5) また、本発明は、インバータ装置 筐体と前記導電性の床或いは構造物との間に絶縁材を介 在し、また前記変圧器の2次側巻線中性点を前記インバ 10 ータ装置のアース端子に接続し、かつ、このインバータ 装置筐体のアース端子に高周波電流制限素子を直列に接 続し接地する構造でもよい。

[0021]

【発明の実施の形態】以下、本発明の実施の形態について図面を参照して説明する。

【0022】図1は本発明に係るインバータシステムの接地構造の一実施の形態を示す構成図である。なお、同図において図4と同一部分には同一符号を付して説明する

【0023】この実施の形態は、従来例と同様に、インバータ装置1を内蔵するインバータ装置筐体2と制御対象である電動機3を収納する電動機筐体4が床5に設置され、筐体2内のインバータ装置2と筐体4内の電動機4とがケーブル6で接続されている。この床5は、コンクリートその他の従来の一般的な材料のものでもよいが、前述したような建屋の鉄骨、船舶や車両内の鋼板構造物、金属製筐体等のごとき導電性構造物からなる場合もある。前記インバータ装置1は、整流器11、フィルタ回路12およびスイッチング素子で構成されるインバの9路13等によって構成されている。なお、電動機3には当該電動機の構成要素である電動機固定子巻線31が設けられている。

【0024】また、インバータシステムの1つの接地例は、従来と同様に各筐体2,4のある個所をアース端子1E,2Eからそれぞれ個別にアース線14,32が導出され、それぞれ床5の接地極15,33に接続されている。

【0025】本発明による接地構造において従来と比較して特に異なるところは、インバータ装置筐体2と床5との間に絶縁材41を介在させ、床5からインバータ装置筐体2を絶縁することにより、床5を通してアース電流が流れないような構造である。

【0026】また、インバータ装置筐体2のアース端子1Eと接地極15とを結ぶアース線14に直列に高周波電流制限素子である例えばインダクタンス42を挿入し、インバータ回路13のスイッチング素子による高速スイッチングによって生ずる高周波のアース電流isを抑制するようにしている。

【0027】加えて、本発明システムの接地構造におい 50 じなくなり、インバータ装置筐体2の電位が安定化す

ては、インバータ装置筐体2と電動機筐体4とを低インピーダンスのアース線43によって接続し、さらにインバータ回路13と電動機固定子巻線31とを結ぶケーブル6に導電性シールド6aが施されている場合、当該導電性シールド6aを各筐体2、4のアース端子1E、2Eに接続し、インバータ装置出力と床5との間に浮遊容量が生じない構成としている。

【0028】次に、以上のようなインバータシステムの接地構造を採用した場合の動作について説明する。今、インバータ回路13のスイッチング素子をスイッチング制御すると、電動機固定子巻線31と電動機筐体4との間に浮遊容量Csが存在し、この浮遊容量が充放電することにより、従来例で説明したように床面にアース電流isが流れる。この点は、インバータ装置1においても同様であって、整流器11.フィルタ回路12およびインバータ回路13からなる回路とインバータ装置筐体2との間に浮遊容量Ciが存在し、この浮遊容量Ciを通してアース電流isが流れ、インバータ回路13に戻ることは前述した通りである。

【0029】従って、以上述べたごとく浮遊容量の存在によってアース電流isが流れる一方、アース電流の経路を人為的に決定することが難しいことも事実であるが、少なくともインバータ装置筐体2と床5との間に絶縁材41を介在させることによりインバータ装置1を床5から絶縁すれば、アース電流isが床5に流れなくすることが可能である。しかし、インバータ装置1を床面から完全に絶縁することは安全上の面から好ましくない。その理由は、操作員等が容易に触れることが可能なインバータ装置筐体2の場合、人間の安全上の面からアース線を介して接地極と直接接続することが義務付けられている為である。

【0030】そこで、本発明システムによる接地構造としては、さらにインバータ装置筐体2のアース端子1Eと接地極15とを結ぶアース線14に直列にインダクタンス42を挿入すれば、高周波のアース電流isが抑制され、かつ、インバータ装置筐体2の直流電位は接地極15と同じレベルに保つことが可能となる。

【0031】しかし、アース電流isの流れる経路はアース線14以外に存在しないので、インバータ回路13 40 のスイッチング素子をオン・オフ制御したときに発生するコモンモード電位がインダクタンス42の両端にかかることから、インバータ装置筐体2の電位が変動することがある。

【0032】よって、インバータ装置筐体2の電位変動を抑制するためには、インバータ装置筐体2と電動機筐体4とを直接低インピーダンスのアース線43で接続すれば、その電位変動を抑制できる。つまり、アース電流isは接地極15,33に流れ込まずにアース線43を流れるので、インダクタンス42の両端には電位差が生じなくなり、インバータ装置筐体2の電位が安定化す

る。

【0033】従って、以上のような実施の形態によれ ば、インバータ装置筐体2から接地極15へのアース線 14に直列にインダクタンス42を挿入することによ り、インバータ回路13の髙速スイッチングにより発生 する髙周波のアース電流isを抑制でき、インバータ装 置筐体2と接地極15との直流電位を同一レベルに保持 できる。

7

【0034】また、インバータ装置筐体2と床面との間 に絶縁材41を介在させ、かつ、インバータ装置筐体2 と電動機筐体4とを低インピーダンスのアース線43で 接続することにより、この低インピーダンスのアース線 43に髙周波のアース電流が流れるので、インバータ装 置筐体2の電位を安定化でき、ひいてはインバータ装置 1の安定運転に貢献できる。

【0035】また、インバータ回路13の出力を電動機 3に供給するケーブル6に導電性シールド6aが施され ている場合、そのシールド 6 a を各筐体 2 , 4 のアース 端子1日、2日に接続することにより、ケーブル6と床 5との間の浮遊容量がなくなり、システム全体の安定運 20 転に寄与する。

【0036】(その他の実施の形態)

(1) 図2は本発明に係るインバータシステムの接地 構造の他の実施例体を説明する構成図である。なお、同 図において図1と同一部分には同一符号を付して図1の 説明に譲り、ここでは特に異なる部分について説明す

【0037】このインバータシステムの接地構造は、図 1の構成要素に加え、新たにインバータ装置筐体2のア に低周波電流制限素子である例えばコンデンサ 4 4 を挿 入した構造である。

【0038】以上のような構造とした理由は次の通りで ある。つまり、インバータ装置筐体2と電動機筐体4と を接続していたアース線43には前述したごとく高周波 のアース電流が流れるが、インバータ装置筐体 2 に対し てアース線43と接地極15とにつながるアース線14 とがループを形成するので、周囲からの誘導を受けやす くなり、特にインバータ回路13の出力側ケーブル6か をもった誘導電流が流れることがありうる。

【0039】そこで、インバータ装置筐体2のアース端 子1Eと低インピーダンスのアース線43との間にコン デンサ44を挿入することにより、このコンデンサ44 により有害な低周波電流を抑制ないし遮断し、高周波の アース電流については制限せずにアース線43に流すよ うにする。これにより、周囲からの誘導を受けにくい構 成とすることができる。

【0040】(2) 図3は本発明に係るインバータシ ステムの接地構造のさらに他の実施の形態を説明する構 50

成図である。この接地構造においても、図1と同一部分 には同一符号を付して図1の説明に譲り、ここでは特に 異なる部分について説明する。

【0041】この実施の形態は、前記図1,図2ではイ ンバータ装置1の電源が非接地系を対象とした場合の適 用例であるのに対し、電源接地系に対する接地の改善を 説明する例である。同図において51はインバータ装置 1に電力を供給する変圧器、52は変圧器2次回路の接 地極であって、この変圧器51と接地極52との間にア 10 ース線53が接続されている。また、変圧器51のシー ルドと別の接地極54との間にも同様にアース線55が 接続されている。

【0042】さらに、変圧器51のアース端子51Eか らインバータ装置筐体2のアース端子1日に対してアー ス線56が接続されている。

【0043】次に、以上のような接地構造を用いた場合 の動作について説明する。

【0044】一般に、電源接地系の場合、当該接地系に 大きなアース電流が流れ、周辺機器に対して障害を与え 易くなる。よって、かかる電源接地系においては、変圧 器51の2次巻線中性点を接地するのが一般的である が、その結果、アース電流はアース線53を経由して高 周波のアース電流が流れ、ひいては床5や建屋構造物に アース電流が流れる問題がある。

【0045】そこで、これら床5や建屋構造物にアース 電流を流さない手段としては、変圧器51の中性点であ るアース端子51Eとインバータ装置筐体2のアース端 子1日との間をアース線56を接続し、当該アース線5 6に高周波のアース電流を流すことにより、床5や建屋 ース端子1Fと低インピーダンスのアース線43との間 30 構造物、さらには接地極52に流れないようにすること ができる。

> 【0046】(3) また、上記実施の形態では、イン バータ装置筐体2と床5との間にのみ絶縁材41を介在 させたが、必要に応じて電動機筐体4と床5との間に絶 縁材を介在させる構造であってもよい。さらに、低イン ピーダンスのアース線43は必ずしも線材である必要が 無く、導電性の部材であればよい。

【0047】その他、本願発明は、上記実施の形態に限 定されるものでなく、その要旨を逸脱しない範囲で種々 らの影響により、インバータ回路 13の運転周波数成分 40 変形して実施できる。また、各実施の形態は可能な限り 組み合わせて実施することが可能であり、その場合には 組み合わせによる効果が得られる。さらに、上記各実施 の形態には種々の上位, 下位段階の発明が含まれてお り、開示された複数の構成要素の適宜な組み合わせによ り種々の発明が抽出され得る。例えば実施の形態に示さ れる全構成要件から幾つかの構成要件が省略されうるこ とで発明が抽出された場合には、その抽出された発明を 実施する場合には省略部分が周知慣用技術で適宜補われ るものである。

[0048]

9

【発明の効果】以上説明したように本発明によれば、導電性の床や構造物に取り付ける場合でも、これら床等へのアース電流の流れを制限でき、周辺機器の障害を未然に防止することができる。

【0049】また、本発明は、高周波のアース電流を遮断するとか、低周波電流を制限することにより、インバータ装置の安定な運転および人的、構造物等の安全を確保する事ができる。

【図面の簡単な説明】

【図1】 本発明に係るインバータシステムの接地構造 10の一実施の形態を説明する図。

【図2】 本発明に係るインバータシステムの接地構造の他の実施形態を説明する図。

【図3】 本発明に係るインバータシステムの接地構造のさらに他の実施形態を説明する図。

【図4】 従来におけるインバータシステムの接地構造を説明する図。

【符号の説明】

1…インバータ装置

1 E. 2 E…アース端子

2…インバータ装置筐体

3…電動機

4 …電動機筐体

5…床を含む構造物

6…ケーブル

11…整流器

12…フィルタ回路

13…インバータ回路

14,32,53,55…アース線

15.33.52.54…接地極

3 1…電動機固定子巻線

4 1 …絶縁材

42…インダクタンス

43…低インピーダンスのアース線

44…コンデンサ

51E…アース端子

56…アース線

【図1】

【図2】

【図3】

【図4】

