Oblig 5 inf1080

Elsie Mestl

September 23, 2015

Oppgave 8.12:

а

La $S=\mathbb{N}_0$ og $T=\mathbb{N}$ da er S og T uenderlige, tellbare mengder hvor $S\setminus T=0$ er endelig

b

La $S=\mathbb{Z}$ og $T=\mathbb{N}$ da er S og T uenderlige, tellbare mengder hvor $S\setminus T$ ikke er endelig. Men mengden av alle negative heltall og 0

 \mathbf{c}

La $S = \mathbb{N}_0$ og la $T = \mathbb{N} \setminus \{1, 2, 3, 4, 5, 6, 7\}$ da er S og T uenderlige, tellbare mengder hvor $S \setminus T = \mathbb{N}_0 \setminus (\mathbb{N} \setminus \{1, 2, 3, 4, 5, 6, 7\}) = \{0, 1, 2, 3, 4, 5, 6, 7\}$ hvor viser at $|S \setminus T| = |\{0, 1, 2, 3, 4, 5, 6, 7\}| = 8$

Oppgave 9.2:

Antar at $U = \{1, 2, 3, a, b\}$ og la relasjonen R på U være gitt ved:

$$R = \{ \langle 2, 3 \rangle, \langle 3, 2 \rangle, \langle 1, a \rangle \}$$

a

Refleksiv tilsluting av R: $R \cup \{\langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle 3, 3 \rangle, \langle a, a \rangle, \langle b, b \rangle\}$

b

Symetrisk tilslutning av R: $R \cup \{\langle a, 1 \rangle\}$

 \mathbf{c}

Transitive tils lutning av R: $R \cup \{\langle 2, 2 \rangle, \langle 3, 3 \rangle\}$

Oppgave 9.11:

 \mathbf{a}

$$\{a^n, b^n \, | \, n=0,1,2,\ldots\} = \{\Lambda, a, b, aa, bb, aaa, bbb, \ldots\}$$

Basis: $\Lambda = a^0, b^0$

Induksjonssteg: Hvis $a^{,}$ er et multipel av a, og $a^{,}$ er et element i mengden. Så er også $aa^{,}$ et element i mengden. Det samme gjelder for b. Tillukking: Vil her mengden oppgitt i oppgaven.

b

Basis: $\Lambda = a^0 b^0$, $\Lambda \in A$ Induksjonssteg: Hvis $x \in A$ så er $axb \in A$ Tillukning: $\{a^n b^n \mid n=0,1,2,\ldots\}$

 \mathbf{c}

Basis: $\Lambda=(ab)^0, \quad \Lambda\in A$ Induksjonssteg: Hvis $x\in A$ så er $abx\in A$

Tillukning: $\{(ab)^n \mid n = 0, 1, 2,\}$