Встроенный язык 1С

Лекция 5

Операторы

Операторы

- Оператор присваивания
- Оператор доступа
- Условные операторы
- Операторы цикла
- Оператор приведения типа

Оператор присваивания

• Форма записи:

```
<Имя_переменной> = <Выражение>
```

• Пример использования:

```
Сч = 1;
СуммаСкидки = БазоваяСумма * ПроцентСкидки / 100;
МинПериод = МИН(Дата1, Дата2);
```

Оператор доступа

• Форма записи:

<ИмяПеременной | ИмяОбщегоМодуля>.<ИмяАтрибута | ИмяМетода>

• Пример использования:

```
НазваниеПредмета = ТекПредмет.Наименование;
КурсВалюты = ВалютныеОперации.ПолучитьКурс(Валюта);
КоличествоЗаписей = Выборка.Количество();
```

Условный оператор

• Форма записи:

```
Если <Условие> Тогда 
<Операторы> 
{ИначеЕсли <Условие> Тогда} 
<Операторы> 
{Иначе } 
<Операторы> 
КонецЕсли;
```

```
<ИмяПеременной> = ?(<Условие>;
<Выражение1>; <Выражение2>)
```

• Пример использования:

Скидка = ?(Сумма > 1000; 10; 0)

Составные условия

Пример 1. Пусть у нас есть три числовые переменные *Число1,Число2* и *Число3*. Разделить *Число1* либо на *Число2*, либо на *Число3*. Делить на 0 **нельзя**, делитель будем выбирать исходя из этого условия.

```
Если Число2 <> 0 Тогда
    Частное = Число1 / Число2;
    Сообщить (Частное);
ИначеЕсли Число3 <> 0 Тогда
    Частное = Число1 / Число3;
    Сообщить (Частное);
Иначе
    Сообщить ("Делители равны 0, операция невозможна");
КонецЕсли;
```

Составные условия

```
Если Не Число2 = 0 Тогда
//...
ИначеЕсли Не Число3 = 0 Тогда
//...
Иначе
//...
КонецЕсли;
```

Условия 1С со сложными логическими выражениями

Пример 2. Разделить *Число1* на сумму переменных *Число2* и *Число3*. Чтобы не получить ошибку деления, произвести проверку на 0.

Условия 1С со сложными логическими выражениями

Пример 3. Разделить *Число1* на произведение переменных *Число2* и *Число3*. Чтобы не получить ошибку деления, произвести проверку на 0.

```
Если Число2 = 0 Или Число3 = 0 Тогда
Сообщить ("Нельзя делить на 0");
Иначе

Частное = Число1 / (Число2 * Число3);
Сообщить (Частное);

КонецЕсли;
```

Циклы в 1С

В 1с существует три вида циклов

Вид цикла	Описание
Пока	Цикл осуществляющий повторения, пока выполняется условие.
Для	Цикл осуществляющий заданное количество повторений.
Для каждого	Цикл для обхода коллекций. Обходит каждую строку заданной коллекции.

Цикл Пока

КонецЦикла;

Синтаксис цикла выглядит так:

```
Пока <Логическое выражение> Цикл
// Операторы
```

Цикл Пока

Пример 4. При помощи сообщения вывести пользователю цифры от 1 до 10.

```
Цифра = 1;
Пока Цифра <= 10 Цикл

Сообщить (Цифра);
Цифра = Цифра + 1;
КонецЦикла;
```

Цикл Пока

Пример 5. А теперь только не четные, в интервале от 1 до 100, в обратном порядке.

```
Цифра = 100;
Пока Цифра >= 1 Цикл

Если Цифра % 2 = 1 Тогда
Сообщить (Цифра);
КонецЕсли;

Цифра = Цифра - 1;
КонецЦикла;
```

Цикл Для

Синтаксис цикла выглядит так:

```
Для <Счетчик> = <Выражение1> По <Выражение2> Цикл
// Операторы
КонецЦикла;
```

Цикл Для

Пример 6. Вывести посимвольно строку «Привет мир!».

```
Текст = "Привет мир!";
ДлинаСтроки = СтрДлина (Текст);
Для НомерСимвола = 1 По ДлинаСтроки Цикл
Символ = Сред (Текст, НомерСимвола, 1);
Сообщить (Символ);
КонецЦикла;
```

Цикл Для Каждого

Синтаксис цикла выглядит так

```
Для каждого <Переменная1> Из <Переменная2> Цикл
// Операторы
КонецЦикла;
```

Специальные операторы циклов

Циклы 1с могут использовать специальные операторы *Продолжить* и *Прервать*.

Они предназначены для предварительного завершения итерации и всего цикла соответственно.

Специальные операторы циклов

Пример 7. Выведем числа от 1 до 10 циклом Пока.

```
\coprodифра = 1;
Пока Истина Цикл
   Если Цифра > 10 Тогда
   Прервать;
   КонецЕсли;
   Сообщить (Цифра);
   КонецЦикла;
```

Оператор приведения типа

• Форма записи:

<ИмяТипа>(<Выражение>)

• Пример использования:

НачДата = Дата(«05.03.2016»);

2

Универсальные коллекции значений. Простые коллекции.

Общее для коллекций

- Коллекция может создаваться в результате работы какой-либо функции (функция возвращает в качестве значения универсальную коллекцию).
- Почти любую универсальную коллекцию можно создать с помощью конструктора (исключением являются табличные части, которые выступают в качестве объектов конфигурации).
- Для универсальных коллекций существуют такие общие понятия, как *индекс* и *номер*. Каждый элемент коллекции имеет *индекс*. При этом *индекс* начинается с нуля.

Общее для коллекций

- Для всех коллекций используется обход элементов коллекции. Обход возможен двумя способами:
 - циклом Для
 - циклом **Для каждого из**.
- Для большинства универсальных коллекций применимы методы: Количество, Индекс, Добавить, Вставить, Удалить и Найти.

Массив

- Хранит последовательность элементов любого типа прикладного решения.
- Доступ к элементам по индексу и через итератор Для каждого.
- Все элементы упорядочены по индексу.

• Для добавления нового элемента в массив используется метод *Добавить* (<3 начение>).

```
НашМассив = Новый Массив(); //массив без фиксированного кол-ва значений ГСЧ = Новый ГенераторСлучайныхЧисел(); //будем заполнять случайными числами НашМассив.Добавить (ГСЧ.СлучайноеЧисло(0, 1000)); НашМассив.Добавить (ГСЧ.СлучайноеЧисло(0, 1000));
```

```
НашМассив = новый Массив();

Для Счетчик = 0 по 99 Цикл

НашМассив.Добавить (Счетчик);

Сообщить (НашМассив[Счетчик]);

КонецЦикла;
```


Пример 9. Необходимо ввести 5 чисел, определить сумму и вывести результат. (*без массива*)

```
Число1=0;

Число3=0;

Число4=0;

Число5=0;

ВвестиЧисло(Число1);

ВвестиЧисло(Число2);

ВвестиЧисло(Число3);

ВвестиЧисло(Число4);

ВвестиЧисло(Число5);

Сумма5 = Число1 + Число2 + Число3 + Число4 + Число5;

Сообщить (Сумма5);
```

Пример 9. Необходимо ввести 5 чисел, определить сумму и вывести результат. (с массивом)

```
Числа = Новый Массив(5);

Сумма5 = 0;

Для Шаг=0 По 4 Цикл

ВвестиЧисло(Числа[Шаг]);

Сумма5 = Сумма5 + Числа[Шаг];

КонецЦикла;

Сообщить (Сумма5);
```

Пример 10. Получить сумму элементов числового массива

```
НашМассив = Новый Массив;
НашМассив.Добавить (100);
HaшMaccuв.Добавить (-5);
НашМассив.Добавить (3.4);
HaшMaccuв.Добавить (0);
НашМассив.Добавить (3);
Cymma5 = 0;
Для Каждого ЭлементМассива Из НашМассив Цикл
    Сумма5 = Сумма5 + ЭлементМассива;
КонецЦикла;
Сообщить (Сумма5);
```

Пример 10. Получить сумму элементов числового массива

```
НашМассив = Новый Массив;
НашМассив.Добавить (100);
HaшMaccuв.Добавить (-5);
НашМассив.Добавить (3.4);
HaшMaccuв.Добавить (0);
НашМассив.Добавить (3);
Cymma5 = 0;
Для Каждого ЭлементМассива Из НашМассив Цикл
    Сумма5 = Сумма5 + ЭлементМассива;
КонецЦикла;
Сообщить (Сумма5);
```

• Метод, который позволяет добавлять значения в коллекцию — **метод Вставить.**

Синтаксис: Вставить (<Индекс>,<Значение>)

Для Число=0 По 10 Цикл

НашМассив.Вставить(0,Число);

КонецЦикла;

Метод, который позволяет удалять значения – метод Удалить.

Синтаксис: Удалить(<Индекс>)

Пример использования: НашМассив.Удалить(5);

Дополнительные методы для Массива

• Метод ВГраница() возвращает количество элементов минус один.

```
// Использование цикла Для
КоличествоВМассиве = НашМассив.Количество();
Для Индекс=0 По КоличествоВМассиве-1 Цикл
Сообщить(НашМассив[Индекс]);
КонецЦикла;
```

Переменную КоличествоВМассиве можно было определить:

КоличествоВМассиве = НашМассив.ВГраница();

Тогда при описании самого цикла отнимать от данной переменной единицу не следует.

Дополнительные методы для Массива

- Метод **Установить** позволяет присвоить значение элементу Массива по индексу.
 - Синтаксис: Установить(<Индекс>,<Значение>)
 - Пример: НашМассив. Установить (2,8);
 - Альтернативный вариант: НашМассив[2] = 8;
- Метод Получить позволяет прочитать значение по индексу, не обращаясь к использованию квадратных скобок.
 - Синтаксис: Получить(<Индекс>)
 - Пример: НашаПеременная = НашМассив.Получить(2);
 - Альтернативный вариант: НашаПеременная = НашМассив[2];

Основные конструкции

```
НашМассив = Новый Массив;
НашМассив2 = Новый Массив(10)
НашМассив.Добавить(34);
ПозицияЭлемента = НашМассив.Найти(34);
НашМассив.Удалить(1);
НашМассив.Вставить(1,"Еще элемент");
НашМассив.ВГраница();
Значение = НашМассив.Получить(3);
Для Сч = 1 ПО НашМассив.Количество() Цикл
   Сообщить(НашМассив[Сч]);
КонецЦикла;
Для Каждого Элемент Из НашМассив Цикл
   Сообщить(НашМассив[Сч]);
КонецЦикла;
```

Структура

- Каждый элемент состоит из пары: Ключ + Значение.
- Ключ строковый идентификатор, Значение любого типа.
- Доступ к элементам по ключу и через итератор **Для Каждого**.

Пример: НашаСтруктура.Код НашаСтруктура.Имя

Работа со структурами

Пример 11. Необходимо хранить информацию о человеке - ФИО

```
Человек = Новый Массив(3);
Человек[0] = "Иванов";
Человек[1] = "Иван";
Человек[2] = "Петрович";

Сообщить (Человек[2]);
```

Работа со структурами

Пример 11. Необходимо хранить информацию о человеке - ФИО

```
Человек = Новый Структура ("Фамилия, Имя, Отчество");
Человек. Фамилия = "Иванов";
Человек. Имя = "Иван";
Человек. Отчество = "Петрович";
Сообщить (Человек. Отчество);
```

Пример с содержанием структуры:

НашаСтруктура = Новый Структура ("Код, Имя", 133, "Вася");

Работа со структурами

Пример с методом Вставить:

НашаСтруктура.Вставить("ЧленовСемьи",3);

Пример с методом Свойство:

НашаСтруктура.Свойство ("ЧленовСемьи");

Обращение к свойствам Структуры по индексу:

Сообщить(НашаСтруктура["ЧленовСемьи"]);

Основные конструкции

```
НашаСтруктура = Новый Структура;
НашаСтруктура = Новый Структура("Валюта,Курс");
НашаСтруктура.Валюта = "Руб."; НашаСтруктура.Курс = 1;
НашаСтруктура.Вставить("Кратность",1);
Если НашаСтруктура.Свойство("Кратность") Тогда
  Сообщить(НашаСтруктура.Курс * НашаСтруктура.Кратность);
КонецЕсли;
Для Каждого Элемент Из НашаСтруктура Цикл
  Сообщить(Элемент.Ключ + « : » + Элемент.Значение);
КонецЦикла;
```

3 Еще примеры

Массив в строку функцией СтрСоединить

```
СтрСоединить(<МассивСтрок>, <Разделитель>)
Пример 12. Массив содержащий элементы:
• «Обучение 1С»;

    «Разработка 1С»;

• «Программирование 1С».
• Преобразовать в строку. В качестве разделителя использовать: «;».
МассивСтрок = Новый Массив;
МассивСтрок.Добавить ("Обучение 1С");
МассивСтрок.Добавить ("Разработка 1С");
МассивСтрок.Добавить ("Программирование 1С");
СтрокаИзМассива = СтрСоединить (МассивСтрок, ";");
```

Строка в массив подстрок

```
СтрРазделить(<Строка>, <Разделитель>, <ВключатьПустые>)
```

Строку из предыдущего примера, преобразовать в массив. В качестве разделителя использовать: «;»

```
МассивСтрок = СтрРазделить (СтрокаИзМассива, ";");
```


Надеюсь, Вы не слишком устали?

Спасибо за внимание!