Your Name:	

Harvard University Computer Science 20

Midterm 2

Wednesday, March 23, 2016

PROBLEM 1

For each of the following, state whether the set is finite, countably infinite, or uncountable. No justification required.

- (A) The set of all total functions with domain $\{0,1\}$ and codomain $\{0,1\}$.
- (B) The set of all total functions with domain \mathbb{N} and codomain $\{1\}$.
- (C) The set of all total functions with domain \mathbb{N} and codomain $\{0,1\}$.
- (D) The set of all total functions with domain $\{0,1\}$ and codomain \mathbb{N} .

Solution.

- (A) Finite
- (B) Finite
- (C) Uncountable
- (D) Countably Infinite

PROBLEM 2

Draw state machines that only accept strings in the following set. Assume that the alphabet is $\Sigma = \{0, 1\}$; that is, for all possible input strings s we have $s \in \Sigma^*$.

 $\{w: w \text{ starts with } 0 \text{ and contains the substring } 101, \text{ i.e. } w = 0x101y \text{ for some } x \text{ and } y\}$

Solution.

PROBLEM 3

Let G be a directed graph with n vertices. Show that if G has a path of length greater than n, then G has a cycle (a path has length k if it contains k edges).

Solution.

Proof by contradiction: assume there is a path of length m > n. The path can be written as: $(v_0, v_1), (v_1, v_2), (v_2, v_3), \ldots, (v_{m-1}, v_m)$. There are m + 1 > n + 1 vertices on the path. By the pigeonhole principle, at least 2 of those vertices are equal as the graph only has n vertices. Let the index of the first instance of the vertex in the path be i and the index of the second instance of the vertex be j, then there is a cycle starting and ending at that vertex with the path $(v_i, v_{i+1}), (v_{i+1}, v_{i+2}), \ldots, (v_{j-1}, v_j)$.

PROBLEM 4

Let G = (V, E) be a directed acyclic graph. Define a relation R on V by (v_1, v_2) which is an element of R iff there is a path from v_1 to v_2 .

- (A) Is R reflexive? Prove your answer.
- (B) Is R symmetric? Prove your answer.
- (C) Is R transitive? Prove your answer.

Solution.

- (A) R is not reflexive. A DAG contains no cycles, and therefore there cannot be any paths from a vertex to itself.
- (B) R is not symmetric. Proof by contradiction: suppose R is symmetric, and that there is a path from $(v_1, v_2) \in R$. Then there must be a path from v_2 to v_1 , which implies that $(v_1, v_1) \in R$. We have already shown that this cannot be the case in a DAG, so R cannot be symmetric.
- (C) R is transitive. If there is a path from v_1 to v_2 and a path from v_2 to v_3 , we can concatenate the two paths to construct a path from v_1 to v_3 .

PROBLEM 5

- (A) Using set-builder notation, give a formal description of the union of two sets A and B.
- (B) Using set-builder notation, give a formal description of the complement of a set A.
- (C) Let |A| = n and |B| = m. If $A \subseteq B$, what is $|A \cap B|$?
- (D) Let |A| = n and |B| = m. If $A \subseteq B$, what is |A B|?
- (E) What is the power set of $\{h, a, i\}$?

Solution.

```
(A) \{x: x \in A \lor x \in B\}

(B) \{x: x \notin A\}

(C) n

(D) 0

(E) \{\emptyset, \{h\}, \{a\}, \{i\}, \{h, a\}, \{h, i\}, \{a, i\}, \{h, a, i\}\}
```

PROBLEM 6

Let S be the set defined as follows:

- Base Case: $(1,2) \in S$
- Constructor Rules: If $(x,y) \in S$, then C1: $(x+2,y) \in S$ and C2: $(y,x) \in S$

Use structural induction to prove that for any pair (x,y) in S, x and y can not both be odd or both be even.

Solution.

- Basis step: By the base case of the definition of S, $(1,2) \in S$. 1 is even and 0 is odd.
- Recursive step:

Assume elements (x,y) in S and P(x,y): x and y are not both be odd or both be even holds. Now consider the constructor rule in the definition of S. We want to prove P(x+2,y) and P(y,x) also holds.

```
Case 1: x is even and y is odd, x+2 would be even, y would be odd \rightarrow P(x+2,y) holds. y would be odd, x would be even \rightarrow P(y,x) holds. Case 2: x is odd and y is even, x+2 would be odd, y would be even \rightarrow P(x+2,y) holds. y would be even, x would be odd \rightarrow P(y,x) holds.
```

PROBLEM 7

Please provide a graph of binary relations over the set $\{1, 2, 3\}$ that fulfils the following properties, or explain why it would be impossible to construct one.

- (A) Symmetric transitive
- (B) Asymmetric, reflexive.
- (C) Transitive, symmetric, irreflexive.

Solution.

C) It would be impossible to provide a graph of relations that are transitive, symmetric, and irreflexive. If the relation between two nodes in the graph is symmetric and transitive, it must also be reflexive. Thus, we have a contradiction since it cannot be reflexive if it is irreflexive.