<u>Computer Problems 5 and 6</u> **2-D and 3-D nonlinear quasi-compressible flow**

Description: Program 5 ("P5") is 2-D. Program 6 ("P6") is fully 3-D. *Equations for program 6 (3-D) follow. For program 5, ignore/omit all v terms and y-derivatives.*

A. Equations

Program 6 has 5 unknowns: horizontal flow components (u and v, m s⁻¹), vertical flow (w, m s⁻¹), potential temperature (θ , deg. K), and perturbation pressure (p', Pa). The base-state time-invariant density (\bar{p} , g kg⁻¹) and temperature ($\bar{\theta}$) are functions of height only. The quasi-compressible set has "pseudo" sound waves traveling at speed c_s; the pressure approaches an anelastic solution (Droegemeier and Wilhelmson 1987, J. Atmos. Sci., p. 1187). The continuous form with advection, diffusion, pressure, & buoyancy:

u-momentum:	$u_t = -uu_x - vu_y - wu_z - \frac{1}{\overline{\rho}} p_x' + K \left(u_{xx} + u_{yy} + u_{zz} \right)$	
v-momentum: (program 6 only)	$v_t = -uv_x - vv_y - wv_z - \frac{1}{\rho}p'_y + K(v_{xx} + v_{yy} + v_{zz})$	
<i>w-momentum:</i> $(\theta' = \theta - \overline{\theta})$	$w_{t} = -uw_{x} - vw_{y} - ww_{z} - \frac{1}{\overline{\rho}}p_{z}' + g\frac{\theta'}{\overline{\theta}} + K(w_{xx} + w_{yy} + w_{zz})$	
Perturbation pressure:	$p'_{t} = -c_{s}^{2} \left(\overline{\rho} \frac{\partial u}{\partial x} + \overline{\rho} \frac{\partial v}{\partial y} + \frac{\partial}{\partial z} (\overline{\rho} w) \right)$	
θ (pot. temperature):	$\theta_t = -\left(u\theta\right)_x - \left(v\theta\right)_y - \left(w\theta\right)_z + \theta\left(u_x + v_y + w_z\right) + K\left(\theta_{xx} + \theta_{yy} + \theta'_{zz}\right)$	

The discrete equations use *forward* time differencing for θ , and *centered* for u, v, w, p:

$$u: \quad \delta_{2t}u = -\overline{\left(\overline{u}^x \delta_x u\right)_{(n)}^x} - \overline{\left(\overline{v}^x \delta_y u\right)_{(n)}^y} - \overline{\left(\overline{w}^x \delta_z u\right)_{(n)}^z} - \frac{1}{\overline{\rho}} \delta_x p'_{(n-1)} + K_m \left(\delta_{xx} u + \delta_{yy} u + \delta_{zz} u\right)_{(n-1)}$$

$$v: \quad \delta_{2t}v = -\overline{\left(\overline{u}^y \delta_x v\right)_{(n)}^x} - \overline{\left(\overline{v}^y \delta_y v\right)_{(n)}^y} - \overline{\left(\overline{w}^y \delta_z v\right)_{(n)}^z} - \frac{1}{\overline{\rho}} \delta_y p'_{(n-1)} + K_m \left(\delta_{xx} v + \delta_{yy} v + \delta_{zz} v\right)_{(n-1)}$$

$$w: \quad \delta_{2t}w = -\overline{\left(\overline{u}^z \delta_x w\right)_{(n)}^x} - \overline{\left(\overline{v}^z \delta_y w\right)_{(n)}^y} - \overline{\left(\overline{w}^z \delta_z w\right)_{(n)}^z} - \frac{1}{\overline{\left(\overline{\rho}\right)}^z} \delta_z p'_{(n-1)} + g \overline{\left(\frac{\theta'}{\overline{\theta}}\right)_{(n)}^z} + K_m \left(\delta_{xx} w + \delta_{yy} w + \delta_{zz} w\right)_{(n-1)}$$

$$(Note \ \theta' = \theta - \overline{\theta}) + K_m \left(\delta_{xx} w + \delta_{yy} w + \delta_{zz} w\right)_{(n-1)}$$

$$p': \quad \delta_{2t}p' = -c_s^2 \overline{\left[\overline{\rho} \delta_x u_{(n+1)} + \overline{\rho} \delta_y v_{(n+1)} + \delta_z \overline{\left(\overline{\rho}\right)}^z w_{(n+1)}\right]} \right] \quad \text{(cs is the sound speed)}$$

$$\theta: \quad P5: \text{PL advection, plus 2-D diffusion.} \quad P6: \text{Strang splitting + 3-D diffusion:}$$

$$\left[F_x \left(\frac{\Delta t}{2}\right) \overline{\left[F_y \left(\frac{\Delta t}{2}\right)\right]} F_x \left(\frac{\Delta t}{2}\right) \overline{\left[F_x \left(\frac{\Delta t}{2}\right)\right]} + K_\theta \left(\delta_{xx}\theta + \delta_{yy}\theta + \delta_{zz}\theta'\right)_{(n)}$$

u, v, w advection follow the (unsplit) "box method," not to be confused with the implicit scheme of the same name. Pressure and diffusion terms are lagged (at time n-1). θ is advected with Lax-Wendroff or piecewise linear methods. *Note:* time levels, averaging!

B. Grid layout and boundary conditions

P5 variables (not incl. ghost zones)

- w(nx, nz+1)

Dashed yellow lines

X symmetry boundaries --

- θ , w, p' are same on opposite sides of the symmetry boundaries
- u is of **opposite** sign across these boundaries.

- Dimensions:
 - Use $\Delta x = \Delta z$; grid spacing, dimensions to be announced.
 - We will do *test cases* at coarse resolution, e.g. 200m or larger.
 - physical dimensions are **no longer** from (-.5, -.5) to (+.5, +.5)
 - x coordinates (for θ , p') = $\Delta x/2 + \Delta x(i-1)$, i=1...nx (Fortran)
 - o bottom-left corner θ , p' are at $(x=\Delta x/2, z=\Delta z/2)$
 - w (at k=1 in Fortran, k=K1 in C) is at z=0
 - u (at i=1 in Fortran, i=I1 in C) is at x=0
- Top, bottom boundaries:
 - o free slip (no drag on u); rigid lids (w=0 at k=1 and k=nz+1 in Fortran)
 - o 0-gradient for all variables; any variable $\xi(k=0) = \xi(k=1, Fortran)$, etc.
- Lateral (x) boundaries: symmetry boundaries shown with dashed yellow lines
 - \circ u(1) = -u(2) u(nx+1) = -u(nx) (Fortran indices here)
 - $\theta(0) = \theta(2)$ $\theta(nx+1) = \theta(nx-1)$ (same for w,p')
- Lateral (y) boundaries: (program 6, only)
 - o Y boundaries are *periodic*. Consider the periodic boundary to sit at the V wind locations for j=1 and j=ny+1.
 - You will only integrate V from 1:ny (Fortran indices); the value of V at (ny+1) will always be set equal to V at i=1.
 - Other variables are periodic in Y as $\xi(ny+1) = \xi(1)$, etc.

C. Initial conditions (base state)

- First you must define the *base state vertical profiles* for density $\overline{\rho}$ and base-state potential temperature $\overline{\theta}$. You only save $\overline{\rho}$ for later use; other variables (z, P, T) are used only to calculate $\overline{\rho}$. There is no need to save T(z) and P(z).
- The first vertical velocity level, w at *Fortran* k=1, is at z=0 consistent with our *C-grid* staggering.
- In the expressions below, z refers to the height at a θ and p' level. The notation given is for Fortran.

$$z(k) = \frac{\Delta z}{2} + \Delta z(k-1)$$

$$\overline{T}(z) = 300.0 - \frac{g}{c_p} z$$

$$\overline{P}(z) = P_0 \left(\frac{\overline{T}}{\overline{\theta}}\right)^{c_p/R_d}$$
 where
$$\begin{cases} z = \text{height (m) of } \theta, u, p' \text{ levels} \\ \overline{\theta}(z) = 300K = (\text{constant) potential temperature} \\ g = 9.81 \text{ ms}^{-2} = \text{gravity} \\ c_p = 1004 \text{ J kg}^{-1} \text{K}^{-1} = \text{specific heat at constant pressure} \\ R_d = 287 \text{ J kg}^{-1} \text{K}^{-1} = \text{dry air gas constant} \\ P_0 = 10^5 \text{ Pa} = \text{standard pressure at sea level} \\ \overline{\rho} = \text{density } (kg \ m^{-3}) \text{ at } \theta, u, p' \text{ levels}$$

Check your initial state with this data for $\Delta z=100$ m, at (Fortran) k=11, z=1050m:

- P=88540 Pa
- T=289.74 K
- $\rho_{u \ level} = 1.065 \text{ g kg}^{-1}, \, \rho_{w \ level} = 1.069 \text{ g kg}^{-1}.$
- Note you compute $\rho_{u\ level}$ as above, and average in height to get $\rho_{w\ level}$; this is why $\rho_{w\ level}$ is written as $\overline{(\overline{\rho})}^z$ on page 1.
- $\rho_{w \ level}$ at k=1 can have any value; it is only used where multiplied by w, and $w_{ground} = 0$.

D. Initial conditions (perturbation potential temperature and u, w)

Program 5: The solution evolves from an initial state with *zero* mean flow U(z) and *constant* potential temperature (θ). We begin with temperature perturbations: where θ ' is warm (cool) the air will rise (sink). The initial u, w, and p' are zero. For θ , use:

$$\theta_{i,k} = \overline{\theta} + \sum_{m=1}^{2} \left[\Delta \theta_m' \frac{\cos(r_m \pi) + 1}{2} \text{ if } r_m \le 1, \text{ else } 0 \right], \quad r_m = \sqrt{\left(\frac{x_i - x_0(m)}{xradius}\right)^2 + \left(\frac{z_k - z_0(m)}{zradius}\right)^2}$$

so $\theta(i,k)$ at time t=0 equals the base state (constant) $\overline{\theta}$ plus any perturbation $\Delta\theta'(m)$, for up to **two** initial temperature perturbations m=1,2.

Structure your IC code for setting up θ like that given below. The example code is for program 6, in 3-D; *simplify appropriately* for program 5:

distance / radius calculations for initial condition of programs 5, 6

Fortran	<pre>C requires <math.h></math.h></pre>
do $k = 1, nz$	for (i=I1; i<=I2; i++) {
do j = 1, ny	for (j=J1; j<=J2; j++) {
do i = 1, nx	for (k=K1; k<=K2; k++) {
x = dx/2 + dx * real(i-1)	x = dx/2.0 + dx*(float)(i-I1);
y = dy/2+dy*real(j-1)	y = dx/2.0 + dx*(float)(j-J1);
z = dz/2+dz*real(k-1)	z = dx/2.0 + dx*(float)(k-K1);
do $m = 1, 2$	for (m=0; m<2; m++) {
xd = (x-x0 (m))	rm = sqrt(
yd = (y-y0 (m))	pow((x-x0[m])/xradius[m],2.0)
zd = (z-z0 (m))	+pow((y-y0[m])/yradius[m],2.0)
rad = sqrt(+pow((z-z0[m])/zradius[m],2.0));
(xd/xrad(m))**2 &	if (rm <= 1.0) {
+(yd/yrad(m))**2 &	/* your $ heta$ code here */
+(zd/zrad(m))**2)	} /* rm */
if (rad.lt.1.0) then	} /* m */
!your θ code here	} /* k */
endif	} /* j */
enddo (+3 more enddo's)	} /* i */

These *two* thermal perturbations $\Delta\theta$ ' have different center (x,z) coordinates. The x-and z-"radius" *may vary* between perturbations, so you must store two sets of "radii".

<u>Program 6, only</u>: In P6, perturbations have 3-D center positions (x,y,z). You will also create perturbations to the **v** flow component, *using the same code* as for θ :

$$\theta_{i,j,k} = \overline{\theta} + \sum_{m=1}^{2} \left[\Delta \theta_m' \frac{\cos(r_m \pi) + 1}{2} \text{ if } r_m \le 1, \text{ else } 0 \right]$$

$$v_{i,j,k} = \sum_{m=1}^{2} \left[\Delta v_m \frac{\cos(r_m \pi) + 1}{2} \text{ if } r_m \le 1, \text{ else } 0 \right]$$

$$r_m = \sqrt{\left(\frac{x_i - x_0(m)}{xradius_m}\right)^2 + \left(\frac{y_j - y_0(m)}{yradius_m}\right)^2} + \left(\frac{y_j - y_0(m)}{yradius_m}\right)^2$$

Calculate r_m for each point (i,j,k), and use it in the computation of *both* perturbation θ and v-wind (*ignore* staggered grid positions in doing so; use the *same* r_m value, code).

In program 6, we also utilize random initial \mathbf{u} values, up to $\pm -(upertur/2)$. Use the default Intel Fortran/C random number generator. Here is sample code:

Fortran	<pre>C requires <math.h></math.h></pre>
real upertur, rand	float upertur;
call srand(0.0)	srand(0.0); /* seed */
do k = 1,nz	for (i=I1+1; i<=I2; i++) {
do j = 1, ny	for (j=J1; j<=J2; j++) {
do i = 1, nx+1	for (k=K1; k<=K2; k++) {
u1(i,j,k) = &	u1[i][j][k] = upertur * (
(rand(0)-0.5)*upertur	(float)rand()/(RAND_MAX + 1.0)
enddo) - upertur*0.5;
enddo	}
enddo	} }

E. Code layout

The code layout guidelines include those from past programs *plus the following*:

- Do not put your integration (advection, diffusion, pressure gradient, buoyancy, initialization...) steps in your main program; put each in a separate subroutine.
 You must also use (to build your program) and submit (for grading) a makefile.
- **Read in** from the keyboard or a file, or use via a Fortran namelist:
 - times to plot (or, a plotting interval) temperature perturbations and their center locations (x,z or x,y,z) diffusion coefficients K_m and K_{theta} .
- Use ghost zones as before, as needed for the numerical schemes being applied.
- Set up the initial conditions (1-D for density, and 2-D or 3-D fields) entirely in one subroutine. Plot the initial potential temperature perturbation $(\theta \overline{\theta})$.
- You must put common processes *for different variables* in the same subroutines: advection (u,w,θ) (with 1-D advection still handled by a separate 1D routine); diffusion (u,w,θ) , and pressure gradient force/buoyancy (u,w,p^2) .
- Your main program must ONLY read input data, print out information as desired and call subroutines. All other code must be in subroutines for full credit.
- Remember w=0 at the top and bottom levels (k=1 and k=nz+1 in Fortran). So you do z mixing for w only from k=2:nz (in Fortran).
- Don't evolve u outside of the symmetry boundaries; compute u(2...nx) and then determine u(1) and u(nx+1) using the (a)symmetric boundary conditions.
- For pressure, first compute new values for u and w at time level (n+1). Then update the pressure from (n-1) to (n+1) using $u^{(n+1)}$ and $w^{(n+1)}$ to get $p^{(n+1)}$.
- The order of computation is: advection (u, w, θ) ; diffusion, and pressure terms.
- Use a forward time step to start the integration (there is a short cut we'll discuss).
- Program 6 only: For full credit, you must make a reasonable attempt at parallelizing your code, and part of your grade also requires visualization.

F. Plotting

Program 5: plot contours as usual. We will not use surface plotting.

<u>Program 6</u>: You will not be calling plot routines directly from your program #6. Doing so is slow and wasteful considering how long your programs will (at full resolution) take to rerun. Instead, you will call C or Fortran routine putfield (provided to you) to write your output to disk in a unformatted binary file. Use program plot3d to read this file and to make any number of plots (X-Y, Y-Z, X-Z slices, or 3-D). See the class web page for details. These routines, program plot3d and demonstration programs will be available on stampede at ~tg457444/502/Pgm6. Required plots will be listed on the class web site.

G. Hints

- Do initial testing at *reduced resolution*, e.g. $\Delta x = \Delta z = 200 \text{m}$, $\Delta t = 0.5 \text{s}$.
- In testing (for Fortran), do early tests compiling with subscript checking: -g -check all -traceback.
- Beware! NX≠NZ here. Think where you have used NX=NZ in programs 2-4.
- For min/max stats and plotting, average u and w to θ/p locations; and plot $(\theta \overline{\theta})$
- We are using forward time differencing for θ advection, and centered time for everything else. So, $\delta_{2t}u$ means $u3 = u1 + 2\Delta t^*(...)$; θ advection is forward in time, so only two arrays are needed [handled as in programs 2-4].

H. Checking your code

There are various checks you could carry out to test parts of your code. Some tests you could perform include:

- 1. Linear advection: observe movement of θ ' field with constant u and/or w fields while disabling diffusion, buoyancy and pressure gradient terms.
- 2. 1-D: reduce two-dimensional initial condition to 1-D (e.g. let θ , u, or w vary as $\sin(x)$) for advection tests.
- 3. Diffusion only: disable advection, buoyancy and pressure gradient terms, and damp only θ or some pre-determined function of u or w.
- 4. Pressure gradient and buoyancy terms, only: disable advection and diffusion, and integrate using the pressure gradient terms (influences *u*, *w*), buoyancy term (influences *w*), and the pressure field update itself (from gradients in *u*, *w*). In this test, the θ field stays constant with time, and a circulation develops in the *u* and *w* fields. This is a particularly useful test. The sequence of evolution to look for is:
 - a. The temperature perturbation θ ' leads to vertical acceleration, changing w
 - b. The new, nonzero w field creates pressure gradients (from $\partial w/\partial z$)
 - c. The pressure gradients lead to horizontal acceleration, changing u
- 5. Look for symmetry in your solutions. For example, an initial temperature perturbation placed at the very center of the domain will lead to minima and maxima of opposite sign in *u*; this should remain true as your solution evolves.
 - a. But: the symmetry is in x; comparable symmetry will not occur in z due to the density variation with height.

I. Visualization (program 6 only)

Use program *plot3d*, provided to you, to produce the necessary contour plots. Beyond this, part of the program grade (see below) involves creating a few 3-D plots with the visualization tools *vis5d* or *Vis1t*. *plot3d* can convert your simulation output to the necessary format. See the class web site for details.

Following is a broad description of how my program is coded.

1. MAIN PROGRAM		PROCRAM	NOTES
1.	a.	read in parameters; call <i>IC</i>	NOTES
	b.	plot initial condition	Always plot $\boldsymbol{\theta}$, not total $\boldsymbol{\theta}$
	c.	call <i>MAXMIN</i>	Find min, max of all fields
	d.	call <i>BC</i>	Set ghost points for first time step
	e.	$set \ tstep = \Delta t$	Because your first step is a forward one
	f.	TIME LOOP: $n=1$, max steps	Because your first step is a <u>lot ward</u> one
	1.	• set u3=u1, w3=w1, t2=t1	Array copy helps start this time step.
		• call <i>ADVECT</i>	Advection of $\boldsymbol{\theta}$, u, and w.
		• call DIFFUSION	Mix: u, w, and θ (note: in general $K_m \neq K_{theta}$)
		• call <i>PGF</i>	Obtain u3,w3; get new $p3$
			This is the usual array switch between old, new
		 array update 	time levels. There are three time levels for
			u,w,p , and two for θ .
			But : if first step, don't update u1, w1, or p1.
			But. If first step, don't update u1, w1, of p1.
		• if $(n=1)$ set tstep = $2\Delta t$	Switch from forward to centered time for u,w,p.
		• call <i>BC</i>	C PC 1 C
		• call MAXMIN	Get BCs ready for next time step.
		• • • • • • • • • • • • • • • • • • • •	also store max/min info for later use.
	α	• if desired time: PLOT END OF TIME LOOP	Call contour routine for u, w, θ , and p
	g. h.	plot time traces	
			using min/max u/w/0 I have already stored
2.	IC RO		Compute constants and 1D arrays here.
	a.	compute 1D arrays	includes density(z) at θ and w levels
	b.	$\operatorname{set} p', u, w = 0$	Do this for (n) and (n-1) variables; this is part
		(in program 6, we set ν using	of preparing for the first, forward time step
		perturbations, and set u to	(hence tstep is first set to Δt , and later to $2\Delta t$)
		random numbers; u is nonzero in P6!)	Remember you <i>read in</i> the temperature
	0	set # besed on bandout	perturbations and their locations
3.	c. set θ based on handout. 3. BC ROUTINE		
3.	a.	0-gradient top, bottom	So $u(i,nz+1) = u(i,nz)$
	b.	w, θ , and p' are same on either side of	So $p(0,k) = p(2,k)$,
	U.	symmetry boundary	p(nx+1,k)=p(nx-1,k)
	c.	Anti-symmetry for u	So $u(1,k) = -u(2,k)$, $u(0,k) = -u(3,k)$
4.		CT ROUTINE	() / "() /) "() /
	a.	u: u3 = u3 + tstep*(box terms)	Recall u,w,p have centered time derivatives.
		1 (For program 6, do <i>v</i> advection here, too.
	b.	w: w3 = w3 + tstep* (box terms)	
	c.	θ advection as usual (old "integrate" code)	Piecewise linear advection.
5.	<u>DIFF</u> U	SION ROUTINE	
	a.	u3 = u3 + tstep*(x, z mixing terms)	For program 6, do <i>v</i> diffusion, too.
	b.	w3 = w3 + tstep*(x, z mixing terms)	W is always zero at k=1 and at k=nz+1
	c.	Mix θ	
6.	PGF S	UBROUTINE	Pressure gradient / buoyancy routine.
	a.	u3 = u3 - tstep*(pgf terms)	Adding to the u3 array.
	b.	w3 = w3 - tstep*(pgf terms)	Adding to the w3 array.
		+ tstep*(buoyancy terms)	Remember w=0 at k=1 and k=nz+1
	c.	set u, w BCs (could call BC, or set here)	Get ready for derivatives in p equation
	d.	p3 = p1 - (pgf terms)	pgf terms use new u, w at time (n+1)
<u></u>	u.	P5 P1 (P51 tolling)	Por terms use new u, w ut time (n-1)

