- 4.3 NÚMERO DE CONDICIÓN DE UNA MATRIE (consticionamiento numerica)
 - . pere problemes de evelueiden de une $f: \mathbb{R} \to \mathbb{R}$ en un punto $x \in \mathbb{R}$ que se conoce con un enor hemos visto que $E_{rel}(f(\hat{x}_0)) \not\subset C(x_0)$ $E_{rel}(\hat{x}_0)$ (*)
 - ntilides! mediste de la propagación del erron sobre xo debido a f. equivalentemente: mediste de la pérdiste de precision con f δx . $\uparrow f$. $\rightarrow \uparrow f$. $\uparrow f$.
 - Si Enel $(\hat{x}_0) = 0.01$ y $\hat{x}_0 = 12.74 \Rightarrow 5 \times 20.12$ oligito no signification
 - Si $C(x_0) = 10$ y $f(\hat{x}_0) = 27.53 \Rightarrow Sf \approx 10.0.01.27.53$ 2 2.7 D

 digitos no significatives
 - problema: en general c(xo) she pende she los velores she f(xo), f(xo), xo: podria ser necesaria ma información adicional sobre xo para evaluar c(xo) ~ ver ej. 1 hoja 1
 - es posible obtener una cota análoge e (*) pero uniforme en xo y óptime en el sentido que se pueden encontrar puntos xo y perturbaciones ox para los que se tiene el error maximo

def: See $f: \mathbb{K}^n \to \mathbb{K}^n$, $x_0, \delta x_0 \in \mathbb{K}^n$ see $\hat{x}_0 = x_0 + \delta x_0$ y $\delta f = f(\hat{x}_0) - f(x_0)$ y see $\|\cdot\|$ una norma en \mathbb{K}^n

elections Erree ||.|| $(\hat{x}_0) = \frac{||\delta x_0||}{||x_0||}$, Errel ||.|| $(\hat{x}_0) = \frac{||\delta f||}{||f(x_0)||}$

observación: euroque si tooles les normes en 1km son equivalentes, Erel, en feneral no es el mismo el cambier de norma.

def: see $A \in \mathcal{H}^{m \times n}$ vinvertible, $f: \mathcal{K}^n \to \mathcal{K}^n$ dode por y see 11.11 une norme en \mathcal{K}^n $f(x) = A \times$

decimos K₁₁₋₁₁(A) = || A || | || A⁻ ||

NÚMERO DE CONDICIÓN DE A

proposition : see A = Hrm×n invertible y f (x) = A × See 11-11 une norme en Kn y see 2 = x. + 5x.

=> $F_{nel}(\hat{x}) \leq K_{n.n}(A) F_{nel}(\hat{x})$.

demostración:

$$\frac{E_{\text{rel}_{\parallel \cdot \parallel}}(\hat{f}(\hat{x}_{0}))}{E_{\text{rel}_{\parallel \cdot \parallel}}(\hat{x}_{0})} = \frac{\|\delta f\|}{\|\delta x_{0}\|} = \frac{\|\delta f\|}{\|\delta x_{0}\|} = \frac{1}{\|\delta x_{0}\|}$$

 $= \frac{\|A \delta \times 0\|}{\|A \times 0\|} \cdot \frac{\|A \times 0\|}{\|A \times 0\|} \leq \|\|A\|\| \cdot \|\|A^{-1}\|\|$

observe cion: si A & Kmxm invertible es simetwan/hermitica: A = A* max { 1/1: 2 autovalor de A} = 1/m1 => K₂ (A) = min { |\lambda|: \lambda entovalor de A} \ \lambda |\lambda_m|

zon en

a) mimero de condición en norma 11.1/2 (Enclides) i porqué? por lo visto sobre III. III, sabernos que K2 (A) = V max { \lambda: \lambda outovalor de A* A} V min { X : X entouble de A*A} pero abore A = A*: seen {V;} BON outovectures ole A con outovelores { \lifti_{i,i} $=> A^*A v_j = A^* \lambda_j v_j = \lambda_j A^* v_j = \lambda_j A v_j = \lambda_j^* v_j$ así que {vj}j= son tambien BON de autorectores de A*A, Ejercies: terninar el arguments que permite ver que $K_2(A) = \frac{|\lambda_M|}{|\lambda_M|}$ para A = A*nsando esta observe ción podemos encontrar, pera $A = A^*$, ma xo e K^n y una obrección de perturbación $\mathcal{T}_{xo} \in K^n$ teles que $Enel_2(A\hat{x}_0) = K_2(A) Erel_2(\hat{x}_0)$: seen VM, Vm ento vectores de A con entovelores AM, Am · escojemos xo=Vm, 5xo= EVm poro un E>0 . A â. - Ax. = A ox. = A EVM = E XMVM, Ax. = XmVm 11 × 0 11 2 = 1(E) M VM 11

11 A x 0 1/2 11 x 0 - x 0 1/2 11 x m Vm 11

<u>teorema</u> (constitubnamiento mumérica ste los "problemes A x = b")

I. si conocemos A exectamente y x con un error => el error relativo sobre $\hat{b} = A\hat{x}$ satisface $E_{nel_{n-n}}(\hat{b}) \leq K_{n-n}(A) E_{nel_{n-n}}(\hat{x})$

I. si conocemos A exectamente y b con un error => el error relativo sobre la solución x shel sistema Ax= b satisface Erel_{N·N} (x) & K_{N·N}(A) Erel_{N·N} (b)

II. si conocemos A con un error y b exectamente => el error relativo sobre la solución \times shel sistema $A \times = b$ satisface $Erel_{N-N}(\hat{x}) \lesssim K_{N-N}(A) Erel_{N-N}(\hat{A})$.

> > si = A + JA, por JA e K^** ole etrus Errel ... (Â) = 111 JA 111

demostración.

I. es la proposición enterior

I - la solución \times al sistema $A_{x=b}$ es $x = A^{-1}b$ \Rightarrow por la proposición enterior $\text{Erel}_{k,||}(\hat{x}) \leq K_{k,||}(A^{-1}) \text{Erel}_{||\cdot||}(b)$ pero por definición, $K_{||\cdot||}(A^{-1}) = K_{||\cdot||}(A)$

III. si conocernos A con un enor δA , so b pooleuros colcular $\hat{x} = (A+\delta A)^{-1}b = x+\delta x$, con $x = A^{-1}b$

=> b = (A + 5A)(x + 5x) = Ax + 5Ax + A5x + 5A5x | pequeño de order?" $=> A5x \sim -5Ax : 5x \sim -A^{-1}5Ax$