

Atmosfer Kimyası Neden Önemli?

- Atmosfere salınan antropojenik ve doğal emisyonların atmosferin fiziksel ve kimyasal yapısını nasıl değiştirdiğini anlamak için.
- Bu değişimlerin canlılar ve ekosistem üzerindeki etkilerini belirlemek için.
- ➤ Hava kirliliği modellenmesinde reaktif kirleticilerin reaksiyonlarının modellere uygun şekilde girilebilmesi için.

Atmosferik Reaksiyonların Sınıflandırılması

- ➤ Güneş ışığının etkisene göre:
 - Fotokimyasal reaksiyonlar
 - Termal reaksiyonlar
- ➤ Gerçekleştikleri fazlara göre:
 - Homojen reaksiyonlar
 - Heterojen reaksiyonlar

A schematic overview of tropospheric chemistry | STRATOSPHERIC CHEMISTRY | TROPOSPHERIC CHEMISTRY | | OXIDATION | PHOTO-OXIDATION | PRODUCTS | | OXIDATION | PRODUCTS | |

Önemli Atmosferik Olaylar

- > Asit yağmurları
- ➤ Ozon tabakasının incelmesi
- ➤ Yer seviyesi ozonu oluşumu

Yağmur suyu pH değeri

$$ho$$
 CO_{2(aq)} + H₂O $loghtharpoonup$ H₂CO_{3(aq)} $K_H = \frac{[H_2CO_{3(aq)}]}{[CO_{2(aq)}]} = 3 \times 10^{-2} M/atm$

$$ightharpoonup H_2CO_3 \leftrightharpoons H^+ + HCO_3^- \qquad K_{a1} = \frac{[H^+][HCO_3^-]}{[H_2CO_3]} = 9 \times 10^{-7} M$$

>
$$\text{HCO}_3^- \leftrightharpoons \text{H}^+ + \text{CO}_3^{2-}$$
 $K_{a2} = \frac{[H^+][co_3^{2-}]}{[HCO_3^-]} = 7 \times 10^{-10} M$

$$\triangleright [H^+] = (K_{a1}K_H P_{CO2})^{1/2}$$

$$> pH = -\log([H^+])$$

Yağmur suyu pH değeri

- ➤ CO₂'nin atmosferik koşullarda sudaki çözünürlüğü
- $F_{CO2} = 3.4 \times 10^{-2} \frac{mol}{L.Atm}$ (@ 298 K)
- ➤ Eğer atmosferik CO₂=280ppmv →
- $P_{CO2} = \frac{0.028}{100} \times 1Atm = 0.00028 Atm$
- $F[H^+] = (K_{a1}K_HP_{CO2})^{1/2} = 2.75 \times 10^{-6}$
- $pH = -\log([H^+]) = 5.56$

Yağmur suyu pH değeri

- ≥ Eğer atmosferik CO_2 = 409.95 ppmv (Ağustos 2019) (https://www.co2.earth/) →
- $P_{CO2} = \frac{0.040995}{100} \times 1Atm = 0.00040995 Atm$
- $[H^+] = (K_{a1}K_H P_{CO2})^{1/2} = 3.54 \times 10^{-6}$
- $pH = -\log([H^+]) = 5.45$
- Atmosferdeki CO₂ konsantrasyonundaki artış ile yağmursuyunun doğal pH değeri düşmektedir!

Asit Yağmuru

- Sülfürik asit ve Nitrik asit nedeniyle yağmur suyunun pH'ının 5.5'in altına düşmesi.
- $ightharpoonup H_2SO_{4(aq)} \hookrightarrow H^+ + HSO_4^- \hookrightarrow 2H^+ + SO_4^{-2}$ bisülfat sülfat
- $ightharpoonup HNO_{3(g)} \leftrightarrows HNO_{3(aq)} \leftrightarrows H^+ + NO_3^-$ nitrat
- Nitrik asit yüksek uçuculuğu sayesinde gaz fazında yüksek konsantrasyonda bulunabilirken, sülfürik asit düşük buhar basıncı nedeniyle atmosferde aerosol formda yer alır.

Nitrik Asit Oluşumu

Gaz Fazı:

ightharpoonupOH + NO₂ + M ightharpoonupHNO₃ + M

Sıvı Faz:

 \triangleright NO₂ + O₃ \rightarrow NO₃ + O₂

 \triangleright NO₃ + NO₂ + M \rightarrow N₂O₅ + M

 $ightharpoonup N_2O_5 + H_2O_{(sivi)} \rightarrow 2HNO_{3(aq)}$

M: üçüncü bir molekül

Sülfürik Asit Oluşumu

Gaz Fazı:

$$ightharpoonup$$
 SO₂ + OH + M $ightharpoonup$ HSO₃ + M

$$ightharpoonup$$
 HSO₃ + O₂ $ightharpoonup$ SO₃ + HO₂ (hızlı)

$$ightharpoonup SO_3 + H_2O + M \rightarrow H_2SO_4 + M$$
 (hızlı)

Sıvı Faz:

$$ightharpoonup SO_2 + H_2O_2 \rightarrow H_2SO_4$$

Stratosferik Ozon Oluşumu

Chapman Döngüsü

- \triangleright O₂ + hv \rightarrow O + O $(\lambda < 240 \text{ nm})$ (R1)
- \triangleright O + O₂ + M \rightarrow O₃ + M* (R2)
- \triangleright O₃ + hv \rightarrow O₂ + O (R3)
- \triangleright 0₃ + 0 \rightarrow 20₂ (R4)

M: üçüncü bir molekül

Ozon Oluşumu ve Yıkımı

(R1) ve (R2) ile ozon oluşur

(R3) ve (R4) ile ozon yıkılır

$$ightharpoonup O_2 + hv \rightarrow 2O$$

(R1)
$$\triangleright$$
 O₃ + hv \rightarrow O₂ + O

$$\triangleright$$
 2x(O + O₂ + M \rightarrow O₃ + M) (R2) \triangleright O₃ + O \rightarrow 2O₂

R2)
$$\triangleright$$
 O₂ + O \rightarrow 2O₃

$$ightharpoonup 30_2 + hv \rightarrow 20_3$$

(Net)
$$\triangleright 2O_{3+}hv \rightarrow 3O_{2}$$

Null Cycle (R3) + (R2)

- $\triangleright O_3 + hv \rightarrow O_2 + O \tag{R3}$
- \triangleright O + O₂ + M \rightarrow O₃ + M* (R2)
- > NULL (Net)
- ➤ Yüksek enerjili UV radyasyonu kinetik enerjiye ve ısıya dönüşür. Bu nedenle stratosfer boyunca sıcaklık artar.

Katalitik Ozon Yıkım Döngüleri

- ➢ Hidrojen Oksit radikali (HOx) (HOx = OH + HO₂)
- \rightarrow HO₂ + O₃ \rightarrow OH + 2O₂ (R5)
- \triangleright OH + O₃ \rightarrow HO₂ + O₂ (R6)
- $ightharpoonup 2O_3
 ightharpoonup 3O_2$ (Net)
- \triangleright OH + O₃ \rightarrow HO₂ + O₂ (R6)
- \rightarrow HO₂ + O \rightarrow OH + O₂ (R7)
- \triangleright O + O₃ \rightarrow 2O₂ (Net)

Katalitik Ozon Yıkım Döngüleri

- \triangleright Azot Oksit Radikali (NOx) (NOx = NO + NO₂)
- \triangleright NO + O₃ \rightarrow NO₂ + O₂ (R8)
- \triangleright O + NO₂ \rightarrow NO + O₂ (R9)
- \triangleright O + O₃ \rightarrow 2O₂ (Net)

Aircraft Aircraft NOy NOx NO2 HNO3 Tropopause by Daniel J. Jacob http://acmg.seas.harvard.edu/people/faculty/djj/book/powerpoints/index.html

Katalitik Ozon Yıkım Döngüleri

- ➤ Klorine radikali (ClOx)
- $ightharpoonup CCl_2F_2 + hv \rightarrow CClF_2 + Cl$ (R10)
- ightharpoonup CCl₃F + hv \rightarrow CCl₂F + Cl (R11)
- ightharpoonupCI + O₃ ightharpoonupCIO + O₂ (R12)
- ightharpoonup CIO + O \rightarrow CI + O₂ (R13)
- \triangleright O₃ + O \rightarrow 2O₂ (Net)

ATMOSPHERIC CYCLING OF CIO_x AND CI_y

by Daniel J. Jacob http://acmg.seas.harvard.edu/people/faculty/djj/book/powerpoints/index.html

Kutup Bölgelerinde Ozon İncelmesi

- ightharpoonup CIO + CIO + M \rightarrow CIOOCI + M (R14)
- ightharpoonup ClOOCl + hv ightharpoonup ClOO + Cl (R15)
- ightharpoonup ClOO + M \rightarrow Cl + O₂ + M (R16)
- $ightharpoonup 2 x (Cl + O₃ <math>\rightarrow$ ClO + O₂) (R17)
- $\triangleright 2O_3 \rightarrow 3O_2$ (Net)

http://www.theozonehole.com/ozoneholehistory.htm

Troposferik Ozon

- ➤ Troposferdeki O₃ konsantrasyonu: 20-100 ppb
- ➤ Ozon öncüleri: azot oksitler (NOx = NO + NO₂) ve uçucu organik bileşiklerin (VOC) reaksiyonları sonucunda ikincil kirletici O₃ oluşmaktadır.
- ightharpoonup NO + HC + O₂ + güneş ışığı ightharpoonup NO₂ + O₃
- Veya, NOx + VOC + güneş ışığı → Fotokimyasal sis (O₃)
- > Troposferik ozonun canlılara ve çevreye olumsuz etkileri mevcut
- ➤ "Kötü ozon"

Troposferik Ozonun Etkileri

- ➤ İnsan sağlığına: gözleri, boğaz bölgesini ve solunum sistemini etkiler.
- ➤ Hayvanlara: insanlardakine benzer etkiler görülür.
- ➤ Bitkilere: tarım ürünlerini ve ormanlık alanlardaki ağaçları etkiler.
- > Fotokimyasal sis: görüş seviyesinde azalmalar.
- ➤ Sera etkisinin kuvvetlenmesi: O₃ kuvvetli bir sera gazıdır.

Troposferik Ozon Oluşumu ve Ozonun Öncü Gazları

Ozon gazının troposferde oluşması:

$$ightharpoonup NO_2 + hv (\lambda < 400 nm) \rightarrow NO + O$$
 (R1)

$$\triangleright$$
 O + O_2 + $M \rightarrow O_3$ + M (R2)

(M: üçüncü bir molekül, genelde N₂ veya O₂)

- Döngüsel olarak gerçekleşir.
- Eğer ortamda başka hiçbir madde yoksa üretilen net ozon miktarı sıfırdır.

Troposferik Ozon Oluşumu ve Ozonun Öncü Gazları

- Ozonun üretilmesi için, NO'nun NO₂'e oksidasyonunu gerçekleştiren diğer bir serbest radikal veya uçucu organik bileşik ortamda bulunmalıdır.
- \rightarrow HO₂ + NO \rightarrow NO₂ + OH (R4)
- $ightharpoonup RO_2 + NO \rightarrow NO_2 + RO$ (R5)
- > (R: Alkil grubu)
- Hidroperoksi radikalinin (HO₂) veya organik peroksi radikalinin (RO₂) azot monoksitle reaksiyonları ile ozon üretimi için gerekli olan azot dioksitin (NO₂) miktarının artması gerçekleşir.

Karbon Monoksit (CO)'in Rolü

- Ortamda yüksek oranda azot oksitlerin (NOx) bulunması durumunda ozon üretilir:
- $ightharpoonup CO_2 + O_2 + O_3$ (R6) (net yapım reaksiyonu)
- Ortamda düşük oranda azot oksitlerin bulunması durumunda da ozon yıkımı gerçekleşir:
- $ightharpoonup CO_1 + O_2$ (R7) (net yıkım reaksiyonu)

Daha Fazla Bilgi İçin...

Atmospheric Environment 34 (2000) 2063-2101

www.elsevier

Atmospheric chemistry of VOCs and NO_x Roger Atkinson*

Atmospheric Environment 35 (2001) 1155-1170

Millennial review

The atmospheric chemistry of sulphur and nitrogen in power station plumes

C.N. Hewitt*