DM 34

concours CCP 1998

Il s'agit d'un sujet supplémentaire pour votre travail personnel. Il n'est pas à rendre. Un corrigé sera fourni en fin de semaine prochaine.

Notations et objectifs

Soit une application linéaire U d'un espace vectoriel euclidien E dans un espace vectoriel euclidien F. A partir d'une résolution généralisée de l'équation Ux = y où y est donné dans F, on se propose d'associer à U une application linéaire V de F dans E possédant certaines propriétés de l'inverse d'une application linéaire.

Lorsque U est injective mais non surjective, le remplacement de y par sa projection orthogonale sur l'image de U conduit à la définition de l'inverse à gauche de U; son étude est faite dans la première partie.

Lorsque U est surjective, mais non injective, on distingue dans l'infinité de solutions de Ux = y, celle de norme minimum, ce qui conduit à la définition d'une inverse à droite de U; son étude est faite dans la deuxième partie.

La troisième partie est consacrée au cas général.

par I_n la matrice unité de $\mathcal{M}_{n,n}$.

PARTIE I - CONSTRUCTION D'UNE MATRICE INVERSE A GAUCHE POUR A

Dans cette première partie, la matrice A, élément de $\mathcal{M}_{m,n}$, est supposée de rang n. On désigne par P le projecteur orthogonal dans $F = \mathbb{R}^m$ sur le sous espace $\operatorname{Im} A$. On suppose m > n sauf dans la question 3°b).

1. Propriété d'inversibilité et de transposition

- a) Montrer que si b est un vecteur de Im A, l'équation Ax = b admet une solution unique.
- b) Montrer que l'endomorphisme 'AA est symétrique et inversible. On désigne son inverse par $({}^{t}AA)^{-1}$
- c) Pour un élément quelconque M de $\mathcal{M}_{m,n}$, comparer ker M et $(\operatorname{Im} M)^{\perp}$, $(\ker M)^{\perp}$ et $\operatorname{Im} M$.

2. Détermination d'une inverse à gauche de A

- a) Soit y un élément de F. Prouver qu'il existe un vecteur unique x appartenant à E vérifiant Ax = Py et que l'application $y \mapsto x$ ainsi définie de F dans E est linéaire (cette application linéaire est notée $A^{(g)}$).
- b) Prouver que le vecteur x précédent est caractérisé par ' $AAx = {}^tAy$ et en déduire une expression de $A^{(g)}$ à l'aide de A et de 'A.
 - c) Déduire également de ce qui précède une expression du projecteur P à l'aide de A et de 'A.

3. Propriétés de $A^{(g)}$. Unicité

- a) Prouver que $A^{(g)}A = I_n$ et déterminer le rang de $A^{(g)}$.
- b) Déterminer $A^{(g)}$ lorsque m = n.
- c) Soit B un élément de $\mathcal{M}_{n,m}$, tel que $BA = I_n$ et tel que AB soit un projecteur orthogonal. Prouver que B annule tout vecteur de $(\operatorname{Im} A)^{\perp}$. En déduire que, pour tout $y \in F$, $By = A^{(g)}y$. Exprimer la propriété d'unicité ainsimise en évidence.

4. Exemples

- a) On suppose que les vecteurs colonnes a_i de A sont orthogonaux deux à deux dans F. Montrer que $A^{(g)}$ s'exprime simplement à l'aide des lignes a_i et des normes $|a_i|$. Peut-on avoir $A^{(g)} = A$?
- b) Soit un vecteur b, élément non nul de F, cet élément représente l'application linéaire qui à s élément de \mathbb{R} associe $sb \in \mathbb{R}^m$. Déterminer $b^{(g)}$ et exprimer la forme linéaire correspondante sur F au moyen du produit scalaire dans F.

5. Description d'une méthode de détermination de $A^{(g)}$.

On se propose, pour le calcul de $A^{(g)}$, de mettre en oeuvre une méthode itérative ne faisant pas appel à des inversions de matrices.

- a) Soient F_0 et F_1 deux sous espaces vectoriels de F tels que $F_1 = F_0 + \text{Vect}\{\delta\}$ où $\text{Vect}\{\delta\}$ est le sous espace vectoriel engendré par un vecteur δ donné dans F_1 et n'appartenant pas à F_0 . On pose $\delta = d + d'$ où d' est la projection orthogonale de δ sur F_0 . On désigne par P_0 et par P_1 les projecteurs orthogonaux de F respectivement sur F_0 et sur F_1 . Prouver que, pour tout vecteur g de g, on g est un scalaire que l'on déterminera à l'aide de g.
- b) On suppose toujours que A est de rang n et que m > n. On note A_k $(1 \le k \le n)$ la matrice élément de $\mathcal{M}_{m,k}$ dont les colonnes sont les k premières colonnes $a_1, a_2, ..., a_k$ de A. A l'aide de ce qui précède, déterminer un vecteur d_k de F tel que pour $k \ge 2$, on ait :

(1)
$$A_k A_k^{(g)} = A_{k-1} A_{k-1}^{(g)} + d_k d_{k-1}^{(g)}$$
.

Exprimer d_k à l'aide de $I_m - A_{k-1} A_{k-1}^{(g)}$ et de a_k .

Pour k entier donné $(1 \le k \le n)$ on écrit $A_k^{(g)}$ sous la forme $A_k^{(g)} = \begin{bmatrix} C_k \\ t_{\gamma_k} \end{bmatrix}$ où C_k est une matrice de $\mathcal{M}_{k-1,m}$ et γ_k une matrice colonne à m éléments.

- c) Ecrire à l'aide des blocs C_k , γ_k , A_{k-1} et a_k la relation $A_k^{(g)}A_k = I_k$. En utilisant le fait que γ_k est un élément de $\operatorname{Im} A_k$, déduire en particulier des relations ainsi obtenues, que $\gamma_k = \frac{d_k}{\|d_k\|^2}$.
- d) A l'aide de la relation (1), déterminer C_k à l'aide de $A_{k-1}^{(g)}$, de d_k et de a_k . Montrer enfin que $C_k = A_{k-1}^{(g)} \Big[I_m a_k d_k^{(g)} \Big]$.

PARTIE II - CONSTRUCTION D'UNE MATRICE INVERSE A DROITE POUR A

Dans cette partie, sauf dans la question 2.c), n > m et A est supposée de rang m. Parmi l'infinité de solutions de l'équation Ax = y, où y est un vecteur donné de F, on choisit la solution \overline{x} de norme minimum dans E. On définit ainsi une application $y \mapsto \overline{x}$ de F dans E.

1. Détermination d'une inverse à droite

- a) Soit y un élément fixé dans F. Montrer qu'il existe un vecteur unique noté \overline{x} dans $(\text{Ker } A)^{\perp}$ vérifiant $A\overline{x} = y$. Prouver que \overline{x} est l'élément de E qui a la norme minimum parmi toutes les solutions x de Ax = y.
- b) Prouver que l'application $y \mapsto \overline{x}$ ainsi définie est linéaire. Cette application linéaire est notée $A^{(d)}$. Prouver que $AA^{(d)} = I_m$.

2. Propriétés de $A^{(d)}$.

- a) Déterminer le rang de $A^{(d)}$.
- b) Prouver que $A^{(d)}A$ est un projecteur orthogonal dans E dont on donnera l'image.

- c) Déterminer $A^{(d)}$ lorsque m = n.
- d) Montrer que ${}^{\prime}(A^{(d)}){}^{\prime}A = I_m$ et que ${}^{\prime}A{}^{\prime}(A^{(d)})$ est un projecteur orthogonal; en déduire une expression de $A^{(d)}$ à l'aide de A et de ${}^{\prime}A$.

PARTIE III - GENERALISATION

Dans cette partie, on considère une application linéaire (ou une matrice) notée V de E dans F et dont le rang r vérifie $r \le \text{Inf}(n, m)$. On se propose de généraliser les notions de matrice inverse définies précédemment. On désigne par P le projecteur orthogonal dans F sur Im V et par Q le projecteur orthogonal dans E sur $(\text{Ker }V)^{\perp}$.

- 1. a) Montrer que la restriction de V à $(\text{Ker }V)^{\perp}$ induit un isomorphisme R sur un sous espace de F que l'on définira. On note R^{-1} l'inverse de cet isomorphisme.
 - b) En déduire l'existence d'une application linéaire W de F dans E possédant les propriétés suivantes :

$$\operatorname{Ker} W = (\operatorname{Im} V)^{\perp}$$

 $\operatorname{Im} W = (\operatorname{Ker} V)^{\perp}$
 $WV = O \text{ et } VW = P$

c) Montrer que l'application linéaire W est la seule qui possède les 3 propriétés :

$$WV = Q$$
$$VW = P$$
$$WVW = W$$

d) Prouver que si r = n alors $W = V^{(g)}$ et que si r = m alors $W = V^{(d)}$.

Dans ce qui suit, W est notée V^+ , qui est appelée pseudo inverse de V.

2. Propriétés

Etablir que
$$(V^+)^+ = V$$

Etablir que $(V^+)^+ = (V^+)$

PARTIE IV - APPLICATION ALGORITHMIQUE

Etant donné une fonction réelle f définie sur l'intervalle [0,1] de \mathbb{R} , un réel $\varepsilon > 0$, m points distincts t_i , i = 1,2,...,m, de cet intervalle, on souhaite construire une approximation polynomiale de f au sens suivant :

Trouver le plus petit entier
$$p \in \mathbb{N}$$
 et $(p+1)$ réels x_k , $k = 0,1,...,p$, tels que l'on ait :
$$\sum_{i=1}^m \left(f(t_i) - \sum_{k=0}^p x_k t_i^k \right)^2 \le \varepsilon$$
.

- 1. Etablir que le problème possède une solution, qui vérifie en outre l'inégalité $p \le m$.
- 2. A l'aide des résultats obtenus dans les questions précédentes, proposer un algorithme dont la p-ième itération conduise au résultat cherché.