The current state of Doubly-Efficient Private Information Retrieval

Simon Pohmann

Royal Holloway, University of London

July 13, 2024

Approaches to PIR

	Communication	Computation
Send the database	O(N)	O(N)
Stateless [Ang+17; MCR21; CLS24]	$ ilde{O}(1)$	$_{\gamma}O(N)$
Stateful ← [CHK22; Zho+23]	$\tilde{O}(\sqrt{N})$	$\tilde{O}(\sqrt{N})$
Doubly efficient PIR [LMW23]	$ ilde{O}(1)$	$\tilde{O}(1)$
	[BIM00]: Optimal w	ithout preproce

Requires client-dependent preprocessing O(N)

(Symmetric) Homomorphic Encryption

► Given by (Enc, Eval, Dec)

- ► Often modelled via + and ·
- ▶ In this case, f is a polynomial

HE gives us PIR

Problem: Evaluating f_{DB} takes time O(N)

The solution

Problem: Evaluating f_{DB} takes time O(N)

 \Rightarrow Speed it up using [KU11]!

Theorem ([KU11, Thm. 2.1])

- R finite ring
- ▶ $f \in R[X_1,...,X_m]$ polynomial, degree d

We can build a datastructure of size

$$poly(m, d, \log \#R)(dm \log \log \#R)^m$$

and then use it to compute $f(x_1,...,x_m)$ in time

$$poly(d, m, log \# R)$$

Another problem

Eval(f_{DB}, \cdot).

Definition (ASHE)

An HE scheme (${\rm Enc, Eval, Dec}$) is called *algebraic (somewhat)* homomorphic encryption, if

$$\mathrm{Eval}(f,\mathrm{ct}_1,...,\mathrm{ct}_m)=f(\mathrm{ct}_1,...,\mathrm{ct}_m)$$

Requires the ciphertext space to be a ring.

 \Rightarrow Satsified for "old" FHE schemes, e.g. BV [BV11]

Caveat: BV has bad performance in practice

What about practice?

Datastructure consists of tables

$$(x_1,...,x_m,f(x_1,...,x_m))$$
 for all $x_1,...,x_m \in \mathbb{F}_p$

for small primes p

- Large storage p^m , depending on m
- Main bottleneck: Reading entries from those tables!
 - \triangleright Scales with λ and $N^{4/m}$
- ► Implementation done by [Oka+24]

"DEPIR is now practical at least implementable!"

Reading entries

SSD speed $\approx 2^{20}$ reads/sec

Datastructure size

Conclusion

- Interesting (still very theoretical) area
- ▶ Might become best choice for large databases in the future

- Improve ASHE scheme?
 - Unfortunately, NTRU-based seems not to work
- Improve datastructure?
- Expect our next paper :)

Thank you for your attention! I

- [Ang+17] Sebastian Angel et al. PIR with compressed queries and amortized query processing. 2017.
- [BIM00] Amos Beimel, Yuval Ishai, and Tal Malkin. "Reducing the servers computation in private information retrieval: PIR with preprocessing". 2000.
- [BV11] Zvika Brakerski and Vinod Vaikuntanathan. "Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages". Berlin, Heidelberg, 2011.
- [CLS24] Leo de Castro, Kevin Lewi, and Edward Suh. "WhisPIR: Stateless Private Information Retrieval with Low Communication". In: *Cryptology ePrint Archive* (2024).

Thank you for your attention! II

- [CHK22] Henry Corrigan-Gibbs, Alexandra Henzinger, and Dmitry Kogan. "Single-server private information retrieval with sublinear amortized time". 2022.
- [KU11] Kiran S Kedlaya and Christopher Umans. "Fast polynomial factorization and modular composition".
 In: SIAM Journal on Computing 40.6 (2011).
- [LMW23] Wei-Kai Lin, Ethan Mook, and Daniel Wichs. "Doubly Efficient Private Information Retrieval and Fully Homomorphic RAM Computation from Ring LWE". 2023.
- [MCR21] Muhammad Haris Mughees, Hao Chen, and Ling Ren. "OnionPIR: Response efficient single-server PIR". 2021.
- [Oka+24] Hiroki Okada et al. "Towards Practical Doubly-Efficient Private Information Retrieval". 2024.

Thank you for your attention! III

[Zho+23] Mingxun Zhou et al. Piano: Extremely Simple, Single-Server PIR with Sublinear Server Computation. 2023.