机器学习 Machine Learning

北京航空航天大学计算机学院智能识别与图像处理实验室 IRIP Lab, School of Computer Science and Engineering, Beihang University 黄迪 刘庆杰

> 2020年秋季学期 Fall 2020

课前回顾

• 对于样本 \mathbf{x}_n ,定义一个聚类标注 r_n ,即如果 \mathbf{x}_n 属于第k个聚类,那么 $r_{nk} = 1$,否则 $r_{nk} = 0$ 。

• 准则函数:
$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \mu_k\|^2$$

Initialize Cluster Assign Points Centers

to Clusters

Re-compute Means

Repeat (1) and (2)

- 算法步骤
- ①初始化 μ_k ,按照最优化准则产生 r_{nk}

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \parallel \mathbf{X}_n - \boldsymbol{\mu}_k \parallel^2 \rightarrow r_{nk} = \begin{cases} 0 \text{ if } k = \arg\min_j ||\mathbf{X}_n - \boldsymbol{\mu}_j||^2 \\ 1 \text{ otherwise} \end{cases}$$

②根据得到的 r_{nk} ,按照最优准则产生 μ_k

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \parallel \mathbf{X}_n - \boldsymbol{\mu}_k \parallel^2 \rightarrow \boldsymbol{\mu}_k = \frac{\sum_{n} r_{nk} \mathbf{X}_n}{\sum_{n} r_{nk}}$$

迭代 μ_k — Maximization

EM算法

● A. P. Dempster等人 (1977年提出)

Expectation Maximization (EM),期望最大化是一种迭代算法,用于含有<mark>隐变量(Hidden Variable)或潜变量(Latent Variable) 概率模型参数的极大似然估计或极大后验概率估计。</mark>

EM算法

- 期望最大化算法(以求解极大似然问题为例)
- X观测随机变量的数据,Z隐随机变量的数据
- $\{X, Z\}$ 是完全数据,X是不完全数据, θ 是需要估计的模型参数
- X概率分布为 $p(X|\theta)$, 对数似然函数为 $L(\theta) = \log p(X|\theta)$
- X和Z联合分布为 $p(X, Z|\theta)$,对数似然函数为 $L(\theta) = \log p(X, Z|\theta)$

选择参数初值 θ^{old}

E步骤: 估计潜变量后验分布 $p(Z|X,\theta^{old})$

计算期望 $Q(\theta, \theta^{old}) = \sum p(Z|X, \theta^{old}) \ln p(X, Z|\theta)$

M步骤:最大化期望,更新参数 $\theta^{new} = \operatorname{argmax}_{\theta} \mathcal{Q}(\theta, \theta^{old})$

检验停止条件,若不满足 $\theta^{old} \leftarrow \theta^{new}$,继续迭代。

混合高斯模型

● 估计模型参数

$$\frac{1}{N} = \ln p$$

$$p(z_k = 1) = \pi_k \quad 0 \leqslant \pi_k \leqslant 1 \quad \sum_{k=1}^{K} \pi_k = 1$$

$$p(\mathbf{z}) = \prod_{k=1}^{K} \pi_k^{z_k} \quad p(\mathbf{x}|\mathbf{z}) = \prod_{k=1}^{K} \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)^{z_k}$$

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x}|\mathbf{z}) = \sum_{k=1} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

$$\ln p(X|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \{ \sum_{k=1}^{K} \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k) \}$$

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{x}_n \ N_k = \sum_{n=1}^{N} \gamma(z_{nk})$$

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - \mu_k) (\mathbf{x}_n - \mu_k)^T$$

$$\pi_k = \frac{N_k}{N} \quad \gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \mu_k, \Sigma_k)}{\sum_j \pi_j \mathcal{N}(\mathbf{x}_n | \mu_j, \Sigma_j)}$$

混合高斯模型

第四章:线性分类模型

Chapter 4: Linear Models for Classification

机器学习算法

机器学习主要问题

Supervised Learning Unsupervised Learning

Classification or Categorization

Regression

Dimensionality Reduction

从贝叶斯分类说起

- 样本(Sample) $\mathbf{x} \in R^d$
- 状态(State) 第一类: $w = w_1$ 第二类: $w = w_2$
- 先验概率(A Priori Probability or Prior) $P(w_1)$ $P(w_2)$
- ullet 样本分布密度(Sample Distribution Density) $p(\mathbf{x})$
- 类条件概率密度(Class-Conditional Probability Density)

$$p(\mathbf{x}|w_1) = p(\mathbf{x}|w_2)$$

从贝叶斯分类说起

● 后验概率(A Posteriori Probability or Posterior)

$$P(w_1|\mathbf{x}), P(w_2|\mathbf{x})$$

● 错误概率(Probability of Error)

$$P(e|\mathbf{x}) \begin{cases} P(w_2|\mathbf{x}) & \text{if } \mathbf{x} \text{ is assigned to } w_1 \\ P(w_1|\mathbf{x}) & \text{if } \mathbf{x} \text{ is assigned to } w_2 \end{cases}$$

● 平均错误率(Average Probability of Error)

$$P(e) = \int P(e|\mathbf{x})p(\mathbf{x})d\mathbf{x}$$

• 正确率(Probability of Correctness) P(c)

基于最小错误率的决策

$$\min P(e) = \int P(e|x)p(x)dx$$

因为
$$P(e|\mathbf{x}) \ge 0, \ p(x) \ge 0$$

$$\overrightarrow{\mathbf{m}} \qquad P(e|\mathbf{x}) \begin{cases} P(w_2|\mathbf{x}), & \text{if } P(w_1|\mathbf{x}) > P(w_2|\mathbf{x}) \\ P(w_1|\mathbf{x}), & \text{if } P(w_2|\mathbf{x}) > P(w_1|\mathbf{x}) \end{cases}$$

if
$$P(w_1|\mathbf{x}) \stackrel{>}{<} P(w_2|\mathbf{x})$$
 assign $x \in w_1$ $x \in w_2$

$$P(w|\mathbf{x}) = \max_{j=1,\dots,c} P(w_j|\mathbf{x})$$

基于最小风险的决策

条件期望损失(条件风险):对于特定的x采取决策 α_i 的期望损失:

$$R(\alpha_i|x) = E[\lambda(\alpha_i, w_j)|x] = \sum_{j=1}^{c} \lambda(\alpha_i, w_j) P(w_j|x), \ i = 1, 2, ..., k$$

期望风险:对所有可能x采取决策 $\alpha(x)$ 所造成的期望损失之和

$$R(\alpha) = \int R(\alpha(x)|x)p(x)dx$$

也称平均风险 $(R(\alpha)$ 表示R依赖于决策规则 $\alpha(\cdot)$)

对所有x,使 $R(\alpha(x)|x)$ 最小,则可以使 $R(\alpha)$ 最小

最小风险贝叶斯决策规则:

if
$$R(\alpha_t|x) = \min_{j=1...k} R(\alpha_j|x)$$
, then $\alpha = \alpha_t$

示例-基于最小错误率

• 假设在某个局部区域细胞中正常 (w_1) 和异常 (w_2) 两类的先验概率分别为:正常状态 $P(w_1)=0.9$,异常状态 $P(w_2)=0.1$ 。现有一待识别细胞,其观察值为x,从类条件概率密度曲线上查得 $p(x/w_1)=0.2$, $p(x/w_2)=0.4$ 。试对该细胞x进行分类。

解:利用贝叶斯公式计算w₁和w₂的后验概率

$$P(w_1|x) = \frac{p(x|w_1)P(w_1)}{\sum\limits_{j=1}^{2} p(x|w_j)P(w_j)} = \frac{0.2 \times 0.9}{0.2 \times 0.9 + 0.4 \times 0.1} = 0.818$$

$$P(w_2|x) = 1 - P(w_1|x) = 0.182$$

根据贝叶斯决策规则有

$$P(w_1|x) = 0.818 > P(w_2|x) = 0.182$$

把x归类于正常细胞。

示例-基于最小风险

• 决策表

损失 状态	w_1	w_2
$lpha_1$	0	6
α_2	1	0

解:
$$\lambda_{11}=0$$
, $\lambda_{12}=6$, $\lambda_{21}=1$, $\lambda_{22}=0$ $P(w_1|x)=0.818$ $P(w_2|x)=0.182$

计算条件风险
$$R(\alpha_1|x) = \sum_{j=1}^2 \lambda_{1j} P(w_j|x) = \lambda_{12} P(w_2|x) = 1.092$$
 $R(\alpha_2|x) = \lambda_{21} P(w_1|x) = 0.818$

由于
$$R(\alpha_1|x) > R(\alpha_2|x)$$

把x归类于异常细胞。

小结

● 已知类条件概率密度 $p(\mathbf{x}|w_i)$ 和先验概率 $P(w_i)$, 计算后验概率 $P(w_i|\mathbf{x})$ 进行决策

若类条件概率密度参数未知?

• 已知类条件概率密度 $p(\mathbf{x}|w_i)$ 的参数表达式,利用样本估计 $p(\mathbf{x}|w_i)$ 的未知参数,再利用贝叶斯定理将其转化成后验概率 $P(w_i|\mathbf{x})$ 进行决策

若类条件概率密度形式难以确定?

• 非参数方法估计

需要大量样本…

● 利用样本集直接设计分类器

线性回归:
$$y(x) = w^T x + w_0$$

利用样本估计w,对于给定x,计算y。

$$y(x) = f(w^T x + w_0)$$
 $f(a) = \begin{cases} +1, & a \ge 0 \\ -1, & a < 0 \end{cases}$

$$w^T x + w_0 \ge 0 \implies C_1$$

$$w^T x + w_0 \le 0 \implies C_2$$

将分类器设计问题转化为求准则函数极值的问题 准则函数:分类器设计的某些要求的函数形式

• 两类情况下线性判别函数 $g(x) = w^T x + w_0$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix}$$
特征向量/样本向量; $w = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_d \end{bmatrix}$ 权向量; w_0 阈值权(常数)

如果
$$\begin{cases} g(x) > 0, x \in w_1 \\ g(x) < 0, x \in w_2 \\ g(x) = 0, 可将x分到任意一类或拒绝 \end{cases}$$

g(x)=0定义了一个决策面,当g(x)为线性函数时,决策面就是超平面。

如果 x_1 和 x_2 都在决策面H上,则有

即

 $w^T x_1 + w_0 = w^T x_2 + w_0$ $w^T(x_1 - x_2) = 0$

说明w和超平面H上任一向量正交,即w是H的法向量。

 $x=x_p+r\frac{w}{\|w\|}$

 x_n : x在H上的投影向量

r: x 到 H 上 的垂直距离

 $\frac{w}{\|w\|}$: 是w方向上的单位向量

$$g(x) = w^{T} \left(x_{p} + r \frac{w}{\|w\|} \right) + w_{0}$$

$$= w^{T} x_{p} + r \frac{w^{T} w}{\|w\|} + w_{0} = r \|w\|$$

$$r = \frac{g(x)}{\|w\|}$$

若x为原点,则 $g(x)=w_0$

从原点到超平面H的距离 $r_0 = \frac{w_0}{\|w\|}$

如果 $w_0 > 0$, 则原点在H的正侧

如果 $w_0 < 0$,则原点在H的负侧

如果 $w_0 = 0$,则g(x)具有齐次形式,超平面H通过原点

超平面H的方向由权向量w决定;其位置由阈值权wo确定。

判别函数g(x)正比于x 点到超平面的代数距离

当x在H的正侧时,g(x) > 0

当x在H的负侧时,g(x) < 0

广义线性判别函数

lacktriangle 两类问题,X是一维样本空间

若
$$x < a$$
 或 $x > b$, $x \in w_1$

$$x < b$$
, $x \in w_2$

如果建立
$$g(x) = (x-a)(x-b)$$

决策规则
$$\begin{cases} g(x) > 0, x \in w_1 \\ g(x) < 0, x \in w_2 \end{cases}$$

一般形式 $g(x) = c_0 + c_1 x + c_2 x^2$

可转化为
$$g(x) = a^T y = \sum_{i=1}^3 a_i y_i$$

$$y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 \\ x \\ x^2 \end{bmatrix}$$

$$y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 \\ x \\ x^2 \end{bmatrix} \qquad a = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} c_0 \\ c_1 \\ c_2 \end{bmatrix}$$

不适用于非凸和多连通区域划分

称 $g(x) = a^T y$ 广义线性判别函数

广义权向量

利用线性函数的简单性解决复杂问题 维数大大增加→"维数灾难"

线性判别函数齐次化

● 线性判别函数
$$g(x) = w^T x + w_0$$
 改写成 $g(x) = w_0 + \sum_{i=1}^d w_i x_i = \sum_{i=1}^d a_i y_i = a^T y$

称为线性判别函数的齐次简化

$$y = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix} = \begin{bmatrix} 1 \\ x \end{bmatrix}$$
增广样本向量;
$$a = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_d \end{bmatrix} = \begin{bmatrix} w_0 \\ w \end{bmatrix}$$
增广权向量

 $\hat{d} = d + 1$; y比x增加一维,保持样本空间欧式距离不变,变换后的样 本仍全部位于d维子空间(原X空间)中。

方程 $a^T y = 0$ 在Y空间确定了一个通过原点的超平面 \hat{H} ,它对d维子空 间的划分与原决策面 $w^Tx + w_0 = 0$ 对原X空间的划分完全相同。Y空 间中任意一点y到Ĥ的距离: $r = \frac{g(x)}{\|a\|} = \frac{a^T y}{\|a\|}$

线性分类器设计

● 利用训练样本建立线性判别函数

$$g(x) = w^{T}x + w_{0}$$

$$g(x) = w_{0} + \sum_{i=1}^{d} w_{i}x_{i} = \sum_{i=1}^{d} a_{i}y_{i} = a^{T}y$$

最好的结果一般出现在准则函数的极值点上,所以将分类器设计问题转化为求准则函数极值 w^* , w_0^* 或 a^* 的问题。

步骤1: 具有类别标志的样本集 $X = \{x_1, x_2, \dots x_N\}$ 或其增广样本集Y。

步骤2:确定准则函数T,满足①T是样本集和w, w_0 或a的函数;②T的值反应分类器的性能,其极值对应"最好"的决策。

步骤3: 优化求解准则函数极值 w^* , w_0^* 或 a^* 。

最终得到线性判别函数: $g(x)=w^{*T}x+w_0^*$ 或 $g(x)=a^{*T}y$,对于未知类别样本 x_k ,计算 $g(x_k)$ 并通过决策规则判断其类别。

准则函数

- Fisher准则
- ●感知机准则
- ●最小平方误差准则
- ●最小错分样本数准则

• ...

● R. A. Fisher (1936年论文)

考虑把 d 维空间的样本投影到一条直线上形成一维空间。在一般情况下总可以找到某个方向,使样本在这个方向的直线上的投影分开得最好。

Fisher准则就是要解决 如何根据实际情况找到这条最好的、最易于分类的投影线的问题

● 寻找最好投影方向 w*

以二分类问题为例,d维样本 $x_1, x_2, ..., x_N$,其中 N_1 个属于 w_1 类记为子集 X_1, N_2 个属于 w_2 类记为子集 X_2 。

在d维X空间

- (1)各类样本的均值向量 m_i $m_i = \frac{1}{N_i} \sum_{x \in \chi_i} x, i = 1, 2$
- (2)样本类内离散度矩阵 S_i 和总类内离散度矩阵 S_w

$$S_{i} = \sum_{x \in \chi_{i}} (x - m_{i})(x - m_{i})^{T}, i = 1, 2$$
$$S_{w} = S_{1} + S_{2}$$

(3)样本类间离散度矩阵5,

$$S_b = (m_1 - m_2)(m_1 - m_2)^T$$

$$S_b = P(w_1)P(w_2)(m_1 - m_2)(m_1 - m_2)^T$$

 $S_w = P(w_1)S_1 + P(w_1)S_2$

ullet 寻找最好投影方向 w^*

以二分类问题为例,d维样本 $x_1, x_2, \dots x_N$,其中 N_1 个属于 w_1 类记为子集 X_1, N_2 个属于 w_2 类记为子集 X_2 。

在一维Y空间

$$y_n = w^T x_n$$

(1)各类样本均值
$$\widetilde{m}_i$$
 $\tilde{m}_i = \frac{1}{N_i} \sum_{y \in \eta_i} y, i = 1, 2$

(2)样本类内离散度 \widetilde{S}_{i} 和总类内离散度 \widetilde{S}_{w}

$$\tilde{S}_{i}^{2} = \sum_{y \in \eta_{i}} (y - \tilde{m}_{i})^{2}, i = 1, 2$$

$$\tilde{S}_{w} = \tilde{S}_{1}^{2} + \tilde{S}_{2}^{2}$$

希望投影后在一维Y空间中各类样本尽可能分开,即两类均值之差(m1 - m2)越大越好;同时希望各类样本内部尽量密集,即类内离散度越小越好。

Fisher准则函数:
$$J_F(w) = \frac{(\tilde{m_1} - \tilde{m_2})^2}{\tilde{S}_1^2 + \tilde{S}_2^2}$$

• 求 $J_F(w)$ 取得最大值的w $J_F(w) = \frac{(\tilde{m_1} - \tilde{m_2})^2}{\tilde{S}_1^2 + \tilde{S}_2^2}$

$$\tilde{m}_i = \frac{1}{N_i} \sum_{y \in \eta_i} y = \frac{1}{N_i} \sum_{x \in \chi_i} w^T x = w^T (\frac{1}{N_i} \sum_{x \in \chi_i} x) = w^T m_i$$
$$(\tilde{m}_1 - \tilde{m}_2)^2 = (w^T m_1 - w^T m_2)^2 = w^T (m_1 - m_2)(m_1 - m_2)^T w = w^T S_b w$$

$$\tilde{S}_i^2 = \sum_{y \in \eta_i} (y - \tilde{m}_i)^2 = \sum_{x \in \chi_i} (w^T x - w^T m_i)^2 = w^T \left[\sum_{x \in \chi_i} (x - m_i)(x - m_i)^T \right] w = w^T S_i w$$

$$\tilde{S}_1^2 + \tilde{S}_2^2 = w^T (S_1 + S_2) w = w^T S_w w \longrightarrow J_F(w) = \frac{w^T S_b w}{w^T S_w w}$$

Lagrange乘子法求解:

$$w^* = S_w^{-1}(m_1 - m_2)$$

分类时确定分界阈值 y_0 ,与 $y=w^{*T}x$ 比较进行决策。

感知机准则

● F. Rosenblatt(1950-1960年提出)

感知准则是一种自学习判别函数生成方法,由于Rosenblatt 试图将其用于脑模型感知器,因此得名。该方法对随意给定的判别函数初始值,通过样本分类训练过程逐步对其修正直至最终确定。

几个基本概念

• 线性可分性

一组容量为N的样本集 $y_1, y_2, \dots y_N$,其中 y_n 为 \hat{d} 维增广样本向量,分别来自 w_1 类和 w_2 类,如果存在权向量a,使得对于任何 $y \in w_1$,都有 $a^T y > 0$,而对于任何 $y \in w_2$,都有 $a^T y < 0$,则称这组样本为线性可分的,反之亦然成立。

● 样本的规范化

$$\begin{cases} a^T y_i > 0, y_i \in w_1 \\ a^T y_j < 0, y_j \in w_2 \end{cases}$$

$$y_n' =$$
 $\begin{cases} y_i > 0, y_i \in w_1 \\ -y_j < 0, y_j \in w_2 \end{cases}$ 规范化增广样本向量

$$a^T y_n' > 0, n = 1, 2, ..., N$$

几个基本概念

• 解向量和解区

几个基本概念

● 对解区的限制

使解向量更可靠 $a^Ty_n \ge b > 0$, 避免解收敛到解区边界的某点上

感知机准则

● 寻找解向量a*

对于一组样本y1, y2,... yN, 其中y1是规范化增广样本向量, 使得:

$$a^T y_n > 0, n = 1, 2, ..., N$$

对于线性可分问题,构造准则函数 $J_P(a) = \sum_{y \in \eta^k} (-a^T y)$

其中 η^k 是被权向量a错分的样本集合,即当y被错分时,就有 $a^Ty_n \leq 0$

因此 $J_P(a) \geq 0$,仅当a为解向量或在解区边界时 $J_P(a) = 0$

也就是说,当且仅当 η^k 为空集时 $J_P^*(a) = min J_P(a) = 0$

此时无错分样本,这时的a就是解向量 a^* 。

感知机准则

• 求使 $J_P(a)$ 达到最小值的 a^*

采用梯度下降法求解
$$J_P(a) = \sum_{y \in \eta^k} (-a^T y)$$

$$\begin{split} \nabla J_P(a) &= \frac{\partial J_P(a)}{\partial a} = \sum_{y \in \eta^k} (-y) \\ a(k+1) &= a(k) - \rho_k \nabla J \qquad$$
梯度下降法迭代公式
$$a(k+1) = a(k) + \rho_k \nabla \sum_{y \in \eta^k} y \end{split}$$

□ Sample set for two-class case

■ Class 1

$$\mathbf{x}_1 = \begin{pmatrix} -2 \\ 2 \end{pmatrix}, \mathbf{x}_2 = \begin{pmatrix} -2 \\ -2 \end{pmatrix}$$
 $\mathbf{y}_1 = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}, \mathbf{y}_2 = \begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix}$

■ Class 2

$$\mathbf{x}_3 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \mathbf{x}_4 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

■ Initial weight vector

$$\mathbf{x}_{3} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \mathbf{x}_{4} = \begin{pmatrix} 2 \\ -1 \end{pmatrix} \qquad \mathbf{y}_{3} = \begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix}, \mathbf{y}_{4} = \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}$$
weight vector

$$\mathbf{a}(1) = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} \qquad \mathbf{a}(1)^t = \begin{pmatrix} 0 & 2 & 1 \end{pmatrix}$$

- ☐ Example (Cont.)
 - Iterative procedure

$$\mathbf{y}^{(1)t} = \begin{pmatrix} 1 & -2 & 2 \end{pmatrix}$$

$$\mathbf{a}(1)^t \mathbf{y}^{(1)} = \begin{pmatrix} 0 & 2 & 1 \\ -2 \\ 2 \end{pmatrix} = -2 < 0$$

$$\mathbf{a}(2)^{t} = (0 \ 2 \ 1) + (1 \ -2 \ 2) = (1 \ 0 \ 3)$$

- ☐ Example (Cont.)
 - Iterative procedure

$$\mathbf{y}^{(2)t} = (1 - 2 - 2)$$

$$\mathbf{a}(2)^t \mathbf{y}^{(2)} = \begin{pmatrix} 1 & 0 & 3 \\ -2 \\ -2 \end{pmatrix} = -5 < 0$$

$$\mathbf{a}(3)^{t} = (1 \quad 0 \quad 3) + (1 \quad -2 \quad -2) = (2 \quad -2 \quad 1)$$

- □ Example (Cont.)
 - Iterative procedure

$$\mathbf{y}^{(3)t} = \begin{pmatrix} -1 & -2 & -1 \end{pmatrix}$$

$$\mathbf{a}(3)^{t} \mathbf{y}^{(3)} = \begin{pmatrix} 2 & -2 & 1 \\ -2 \\ -1 \end{pmatrix} = 1 > 0$$

$$\mathbf{a}(4)^t = \begin{pmatrix} 2 & -2 & 1 \end{pmatrix}$$
 (no change)

- □ Example (Cont.)
 - Iterative procedure

$$\mathbf{y}^{(4)t} = \begin{pmatrix} -1 & -2 & 1 \end{pmatrix}$$

$$\mathbf{a}(4)^t \mathbf{y}^{(3)} = \begin{pmatrix} 2 & -2 & 1 \\ -2 & 1 \end{pmatrix} = 3 > 0$$

$$\mathbf{a}(5)^t = \begin{pmatrix} 2 & -2 & 1 \end{pmatrix}$$
 (no change)

- □ Example (Cont.)
 - Iterative procedure

$$\mathbf{y}^{(5)t} = \begin{pmatrix} 1 & -2 & 2 \end{pmatrix}$$

$$\mathbf{a}(5)^t \mathbf{y}^{(1)} = \begin{pmatrix} 2 & -2 & 1 \\ -2 \\ 2 \end{pmatrix} = 8 > 0$$

$$\mathbf{a}(6)^t = \begin{pmatrix} 2 & -2 & 1 \end{pmatrix}$$
 (no change)

- □ Example (Cont.)
 - Iterative procedure

$$\mathbf{y}^{(6)t} = (1 -2 -2)$$

$$\mathbf{a}(6)^{t} \mathbf{y}^{(2)} = \begin{pmatrix} 2 & -2 & 1 \\ -2 \\ -2 \end{pmatrix} = 4 > 0$$

$$\mathbf{a}(7)^t = \begin{pmatrix} 2 & -2 & 1 \end{pmatrix}$$

- □ Example (Cont.)
 - Iterative procedure

$$\mathbf{y}^{(7)t} = \begin{pmatrix} -1 & -2 & -1 \end{pmatrix}$$

$$\mathbf{a}(7)^{t} \mathbf{y}^{(7)} = \begin{pmatrix} 2 & -2 & 1 \\ -2 \\ -1 \end{pmatrix} = 1 > 0$$

$$\mathbf{a}(8)^t = \begin{pmatrix} 2 & -2 & 1 \end{pmatrix}$$
 (no change)

感知机准则

● A.-M. Legendre(1806提出),C. Gauss(1809提出/1829证明)

最小二乘法(最小平方误差法)通过最小化误差的平方和寻找 数据的最佳函数匹配,即可以使求得的数据与实际数据之间 误差的平方和最小。

● 寻找最好投影方向 a*

$$a^Ty_n > 0$$

$$\blacksquare$$

$$a^Ty_n = b_n > 0 \quad \pmb{b_n}$$
 是任意给定的正常数

方程组形式:

$$Ya = b$$

$$Y = \begin{bmatrix} y_1^T \\ y_2^T \\ \vdots \\ y_N^T \end{bmatrix} = \begin{bmatrix} y_{11} & y_{12} & \cdots & y_{1\hat{a}} \\ y_{21} & y_{22} & \cdots & y_{2\hat{a}} \\ \cdots & \cdots & \cdots & \cdots \\ y_{N1} & y_{N2} & \cdots & y_{N\hat{a}} \end{bmatrix} \begin{array}{c} y_n 是规范化增广向量样本 \\ Y = N \times \hat{d} \text{维矩阵,通常N} > \hat{d}, \ - 般为 \\ \hline \textbf{列满秩阵} \end{array}$$

 $b = [b_1 \quad b_2 \quad \cdots \quad b_N]$

b是N维向量, $b_n>0$,n=1, 2, ..., N

方程数多于未知数的矛盾方程组通常没有精确解

定义误差向量: e = Ya - b 及平方误差准则函数

$$J_S(a) = ||e||^2 = ||Ya - b||^2 = \sum_{n=1}^{N} (a^T y_n - b_n)^2$$

• 求使 $J_S(a)$ 最小的 a^* (最小二乘近似解/伪逆解/MSE解)

采用解析法求伪逆解
$$J_S(a) = \|e\|^2 = \|Ya - b\|^2 = \sum_{n=1}^{N} (a^Ty_n - b_n)^2$$

$$\nabla J_S(a) = \sum_{n=1}^{N} 2(a^Ty_n - b_n)y_n = 2Y^T(Ya - b)$$
令 $\nabla J_S(a) = 0$
得 $Y^TYa^* = Y^Tb$ 矩阵 Y^TY 是 $\hat{a} \times \hat{a}$ 方阵一般非奇异唯一解 $a^* = (Y^TY)^{-1}Y^Tb = Y^+b$
其中 $\hat{a} \times N$ 矩阵 $Y^+ = (Y^TY)^{-1}Y^T$ 是Y的左逆矩阵

具中
$$d \times N$$
矩阵 $Y^+ = (Y^TY)^{-1}Y^T$ 是Y的左逆矩阵 如何选 b ?
$$b = \begin{bmatrix} N/N_1 \\ \cdots \\ N/N_1 \\ N/N_2 \\ \cdots \\ N/N_2 \end{bmatrix} \xrightarrow{N_2 \uparrow} a*等价于Fisher解$$
 $g_0(x) = P(w_1|x) - P(w_2|x)$ 以最小均方误差逼近贝叶斯判别

 $N \rightarrow \infty, b = [1, 1, \dots, 1]^T$

以最小均方误差逼近贝叶斯判别函数

• 求使 $J_S(a)$ 最小的 a^* (最小二乘近似解/伪逆解/MSE解)

$$a^* = Y^+ b$$
 $Y^+ = (Y^T Y)^{-1} Y^T$

问题: ①要求 YTY 非奇异; ②求 YT计算量大同时可能引入较大误差。

采用梯度下降法求解: $\nabla J_S(a) = 2Y^T(Ya - b)$

$$\begin{cases} a(1), Random \\ a(k+1) = a(k) - \rho_k Y^T (Ya - b) \end{cases}$$

可以证明,选择 $\rho_k = \frac{\rho_1}{k}$, ρ_1 是任意常数 该算法权向量收敛于使 $\nabla J_S(a) = 2Y^T(Ya-b) = 0$ 的权向量 a^*

不要求 Y^TY 奇异与否,只计算 $\hat{d} \times \hat{d}$ 方阵 Y^TY ,比 $\hat{d} \times N$ 阵 Y^* 计算量小

● 对于异常值(Outlier)非常敏感

多分类问题

• 1 vs. (N-1) or 1 vs. 1

