

Lesson 4: Common Derivatives

Introduction

METIS

Lecture Overview:

Goals of the lecture:

1. Understand derivatives of some common functions

Derivatives of Common Functions

METIS

Polynomials

$$f(x) = ax^n$$

$$f(x) = ax^n$$
$$f'(x) = anx^{n-1}$$

Polynomials

$$f(x) = ax^n$$

$$f(x) = ax^n$$
$$f'(x) = anx^{n-1}$$
$$f(x) = x^2$$

$$f(x) = x^2$$

Polynomials

$$f(x) = ax^{n}$$

$$f'(x) = anx^{n-1}$$

$$f(x) = x^{2}$$

$$f'(x) = 2x^{2-1} = 2x$$

Trigonometric Functions

$$f(x) = \sin(x)$$

$$f'(x) = \cos(x)$$

$$f(x) = \cos(x)$$

$$f'(x) = -\sin(x)$$

Logarithms Functions

$$f(x) = \ln(x)$$

$$f'(x) = \frac{1}{x}$$

Exponential Functions

$$f(x) = e^x$$

$$f(x) = e^x$$
$$f'(x) = e^x$$

Common Derivatives (Cheat Sheet)

Polynomials

$$\frac{d}{dx}(ax^n) = a \cdot nx^{n-1}$$

Exponentials

$$\frac{d}{dx}(e^x) = e^x$$

$$\frac{d}{dx}(a^x) = \ln(a) \cdot a^x$$

Radicals

$$\frac{d}{dx} m \sqrt{x^n} = \frac{d}{dx} \left(x^{\frac{n}{m}} \right) = \frac{n}{m} x^{\frac{n}{m}} - 1$$

Logarithms

$$\frac{d}{dx}\ln(x) = \frac{1}{x}$$

$$\frac{d}{dx}\log_b(x) = \frac{1}{\ln(b)x}$$

Common Derivatives (Cheat Sheet)

Trigonometric

$$\frac{d}{dx}\sin(x) = \cos(x)$$

$$\frac{d}{dx}\cos(x) = -\sin(x)$$

$$\frac{d}{dx}\tan(x) = \sec^2(x) = \frac{1}{\cos^2(x)}$$

$$\frac{d}{dx}\cot(x) = -\csc^2(x) = -\frac{1}{\sin^2(x)}$$

$$\frac{d}{dx}\sec(x) = \sec(x)\tan(x) = \frac{\sin(x)}{\cos^2(x)}$$

$$\frac{d}{dx}\tan(x) = \sec^2(x) = \frac{1}{\cos^2(x)} \qquad \frac{d}{dx}\csc(x) = -\csc(x)\cot(x) = -\frac{\cos(x)}{\sin^2(x)}$$

Common Derivatives (Cheat Sheet)

Inverse Trigonometric

$$\frac{d}{dx}\arcsin(x) = \frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\arccos(x) = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\arctan(x) = \frac{1}{1+x^2}$$

Problem 1:

Problem 1: Calculate f'(x)

$$f(x) = 2 \cdot x^{23}$$

Problem 1:

$$\frac{d}{dx}(ax^n) = a \cdot nx^{n-1}$$

$$f(x) = 2 \cdot x^{23}$$
 $a = 2$
 $n = 23$
 $f'(x) = 2 \cdot 23x$
 $f'(x) = 46x^{22}$

Problem 2:

Problem 2: Calculate f'(x)

$$f(x) = 7^x$$

Problem 2:

$$\frac{d}{dx}(a^x) = \ln(a) \cdot a^x$$

$$f(x) = 7^{x}$$
 $\alpha = 7$
 $f'(x) : \ln(7) \cdot 7^{x}$
 $f'(x) : 1.94 \cdot 7^{x}$

Problem 3:

Problem 3: Calculate f'(x)

$$f(x) = \sqrt[3]{x^7}$$

Exercise: Calculate the derivative

$$\frac{d}{dx} m \sqrt{x^n} = \frac{d}{dx} \left(x^{\frac{n}{m}} \right) = \frac{n}{m} x^{\frac{n}{m}} - 1$$

$$f(x) = \chi^{7/3}$$

$$f'(x) = \frac{7}{3} \times \frac{7}{3} =$$

QUESTIONS?