Sistemas de Inteligencia Artificial

Métodos de Búsqueda

Grupo 5

Juego: Skyscrapers Puzzle (Edificios)

Objetivo:

Completar la grilla con números entre 1 y N de manera que se cumpla:

- No pueden existir duplicados en fila y columna
- Se deben respetar las restricciones de visibilidad de los bordes

Implementación

Reglas

Fill

Swap

Heurísticas - Regla Swap

Buscan favorecer los casos donde la cantidad de conflictos es menor.

- Por cada fila que no cumpla la restricción, se puede sumar hasta 2 conflictos: 1 por la izquierda y 1 por la derecha.
- Por cada columna que no cumpla la restricción, se puede sumar hasta 2 conflictos: 1 por arriba y 1 por abajo.

Máxima cantidad de conflictos en un tablero = fila * 2 + columnas * 2 = 4N

Heurísticas - Regla Swap

Para no sobreestimar el costo real y encontrar el camino mínimo, se define:

- Si intercambio **filas**: 2 por cada fila involucrada, es decir, **(4)** + **N columnas**.
- Si intercambio columnas: 2 por cada columna involucrada,
 (4) + N filas.

Máx. cantidad de conflictos que se pueden resolver con 1 swap = MCCRS = 4 + N

Heurística Admisible - Regla Swap

```
h(n) = ( #conflictos del tablero / MCCRS ) * costo del swap
= #conflictos del tablero / ( 4 + N )
```

Heurística No Admisible - Regla Swap

```
h(n) = #conflictos * costo del swap = #conflictos
```

Resultados

Resultados con regla FillRule

Fill Rule

Fill Rule

- Tablero 3x3
- Tablero 4x4
- Tablero 5x5

Resultados con regla SwapRule

Disclaimer: debido al error en la regla, los resultados no pueden ser tomados como válidos. Se muestran aquellos que funcionan únicamente

Swap Rules (heuristica admisible)

Swap Rules (heuristica admisible)

Swap Rules (heuristica no admisible)

Swap Rules (heuristica no admisible)

- Error en el set de **reglas Swap**
 - Problema conceptual
 - o Fix
 - Propuesta de nuevo set de reglas Swap

- Luego de analizar los tiempos de ejecución, se puede ver claramente que definir un buen costo de aplicar una regla es esencial, ya que permite llegar a una solución mucho más rápidamente y con menos esfuerzo.
- Utilizar un mapa de estados es clave para que los algoritmos puedan terminar correctamente y no quedarse en loops infinitos. Además, se reduce el tiempo de ejecución drásticamente.

- Mejor tiempo de ejecución en búsqueda no informada: DFS (FillRule)
- Mejor tiempo de ejecución en búsqueda informada: Greedy (SwapRule*)
- Definir bien el hash y el equals para todas las clases necesarias es imperativo para que el algoritmo de búsqueda funcione bien y pueda determinar correctamente cuáles estados son exactamente iguales y cuales no.

Mejoras posibles

¿Preguntas?

Fin