MACHINE LEARNING 71/11 학습

1.1.2 지식기반 방식에서 기계 학습으로의 대전환

- 인공지능의 주도권 전환
 - 지식기반 → 기계 학습
 - 기계 학습: 데이터 중심 접근방식

그림 1-3 기계 학습으로 만든 최첨단 인공지능 제품들

- 간단한 기계 학습 예제
 - 가로축은 시간, 세로축은 이동체의 위치
 - 관측한 4개의 점이 데이터

- 예측prediction 문제
 - 임의의 시간이 주어지면 이때 이동체의 위치는?
 - 회귀regression 문제와 분류classification 문제로 나뉨
 - 회귀는 목표치가 실수, 분류는 부류값 ([그림 1-4]는 회귀 문제)

■ 훈련집합

- 가로축은 특징, 세로축은 목표치
- 관측한 4개의 점이 훈련집합을 구성함

훈련집합:
$$\mathbb{X} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}, \quad \mathbb{Y} = \{y_1, y_2, \dots, y_n\}$$
 (1.1)

그림 1-4 간단한 기계 학습 예제

[그림 1-4] 예제의 훈련집합

$$X = \{x_1 = (2.0), x_2 = (4.0), x_3 = (6.0), x_4 = (8.0)\}$$

 $Y = \{y_1 = 3.0, y_2 = 4.0, y_3 = 5.0, y_4 = 6.0\}$

- 데이터를 어떻게 모델링할 것인가
 - 눈대중으로 보면 직선을 이루므로 직선을 선택하자 → 모델로 직선을 선택한 셈
 - 직선 모델의 수식
 - 2개의 매개변수 *w*와 *b*

$$y = \underline{w}x + \underline{b} \tag{1.2}$$

- 기계 학습은
 - 가장 정확하게 예측할 수 있는, 즉 최적의 매개변수를 찾는 작업
 - 처음에는 최적값을 모르므로 임의의 값에서 시작하고, 점점 성능을 개선하여 최적에 도달
 - [그림 1-4]의 예에서는 f_1 에서 시작하여 $f_1 \rightarrow f_2 \rightarrow f_3$
 - 최적인 f_3 은 w=0.5와 b=2.0

- 학습을 마치면,
 - 예측에 사용
 - 예) 10.0 순간의 이동체 위치를 알고자 하면, $f_3(10.0)=0.5*10.0+2.0=7.0$ 이라 예측함
- 기계 학습의 궁극적인 목표
 - 훈련집합에 없는 새로운 샘플에 대한 오류를 최소화 (새로운 샘플 집합: 테스트 집합)
 - 테스트 집합에 대한 높은 성능을 일반화generalization 능력이라 부름

1.2.1 1차원과 2차원 특징 공간

■ 1차원 특징 공간 ---

(a) 1차원 특징 공간(왼쪽: 특징과 목푯값을 축으로 표시, 오른쪽: 특징만 축으로 표시)

- 2차원 특징 공간 ———
 - 특징 벡터 표기
 - **x**= $(x_1,x_2)^T$
 - 예시
 - **x**=(몸무게,키)^T, *y*=장타율
 - **x**=(체온,두통)^T, *y*=감기 여부

(b) 2차원 특징 공간(왼쪽: 특징 벡터와 목푯값을 축으로 표시, 오른쪽: 특징 벡터만 축으로 표시)

그림 1-5 특징 공간과 데이터의 표현

1.2.2 다차원 특징 공간

■ 다차원 특징 공간 예제

Haberman survival: $\mathbf{x} = (\text{나이}, \ \text{수술년도}, \ \text{양성 림프샘 개수})^T$

 $Iris: \mathbf{x} = ($ 꽃받침 길이, 꽃받침 너비, 꽃잎 길이, 꽃잎 너비 $)^T$

Wine: $\mathbf{x} = (\text{Alcohol, Malic acid, Ash, Alcalinity of ash, Magnesium, Total phenols, Flavanoids, Nonflavanoid phenols Proanthocyanins, Color intensity, Hue, OD280 / OD315 of diluted wines, Proline)^T$

MNIST: $\mathbf{x} = ($ 화소1, 화소2,…, 화소784 $)^{\mathrm{T}}$

Farm ads: $\mathbf{x} = (단어1, 단어2, \dots, 단어54877)^T$

그림 1-6 다차원 특징 공간

1.2.2 다차원 특징 공간

- *d*-차원 데이터
 - 특징 벡터 표기: $\mathbf{x} = (x_1, x_2, \dots, x_d)^{\mathrm{T}}$
- d-차원 데이터를 위한학습 모델
 - 직선 모델을 사용하는 경우 매개변수 수=d+1

$$y = w_1 x_1 + w_2 x_2 + \dots + \underline{w_d} x_d + \underline{b}$$
 (1.3)

- 2차 곡선 모델을 사용하면 매개변수 수가 크게 증가
 - 매개변수 $+d^2+d+1$
 - 예) Iris 데이터: *d*=4이므로 21개의 매개변수
 - 예) MNIST 데이터: d=784이므로 615,441개의 매개변수

$$y = \underline{w_1}x_1^2 + \underline{w_2}x_2^2 + \dots + \underline{w_d}x_d^2 + \underline{w_{d+1}}x_1x_2 + \dots + \underline{w_d}x_{d-1}x_d + \underline{w_{d^2+1}}x_1 + \dots + \underline{w_d}x_d + \underline{b}$$
(1.5)

1.3.2 데이터베이스의 중요성

• Iris 데이터베이스는 통계학자인 피셔 교수가 1936년에 캐나다 동부 해안의 가스페 반도에 서식하는 3종의 붓꽃(setosa, versicolor, virginica)을 50송이씩 채취하여 만들었다[Fisher1936]. 150개 샘플 각각에 대해 꽃받침 길이, 꽃받침 너비, 꽃잎 길이, 꽃잎 너비를 측정하여 기록하였다. 따라서 4차원 특징 공간이 형성되며 목푯값은 3종을 숫자로 표시함으로써 1, 2, 3 값 중의 하나이다. http://archive.ics.uci.edu/ml/datasets/lris에 접속하여 내려받을 수 있다.

Sepal length \$	Sepal width \$	Petal length \$	Petal width \$	Species +
5.2	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
7.0	3.2	4.7	1.4	I. versicolor
6.4	3.2	4.5	1.5	I. versicolor
6.9	3.1	4.9	1.5	I. versicolor
5.5	2.3	4.0	1.3	I. versicolor
6.3	3.3	6.0	2.5	I. virginica
5.8	2.7	5.1	1.9	I. virginica
7.1	3.0	5.9	2.1	I. virginica
6.3	2.9	5.6	1.8	I. virginica

Setosa

Versicolor Virginica

1.3.2 데이터베이스의 중요성

• MNIST 데이터베이스는 미국표준국(NIST)에서 수집한 필기 숫자 데이터베이스로, 훈련집합 60,000자, 테스트집합 10,000자를 제공한다. http://yann.lecun.com/exdb/mnist에 접속하면 무료로 내려받을 수 있으며, 1988년부터 시작한 인식률 경쟁 기록도 볼 수 있다. 2017년 8월 기준으로는 [Ciresan2012] 논문이 0,23%의 오류율로 최고 자리를 차지하고 있다. 테스트집합에 있는 10,000개 샘플에서 단지 23개만 틀린 것이다.

1.3.4 데이터 가시화

- 4차원 이상의 초공간은 한꺼번에 가시화 불가능
- 여러 가지 가시화 기법
 - 2개씩 조합하여 여러 개의 그래프 그림

- 선형 회귀 문제
 - [그림 1-4]: 식 (1.2)의 직선 모델을 사용하므로 두 개의 매개변수 $\Theta = (w, b)^{T}$

$$y = wx + b \tag{1.2}$$

그림 1-4 간단한 기계 학습 예제

- 목적 함수objective function (또는 비용 함수cost function)
 - 식 (1.8)은 선형 회귀를 위한 목적 함수
 - $f_{\Theta}(\mathbf{x}_i)$ 는 예측함수의 출력, y_i 는 예측함수가 맞추어야 하는 목푯값이므로 $f_{\Theta}(\mathbf{x}_i)$ - y_i 는 오차
 - 식 (1.8)을 평균제곱오차MSE(mean squared error)라 부름

$$J(\Theta) = \frac{1}{n} \sum_{i=1}^{n} (f_{\Theta}(\mathbf{x}_i) - y_i)^2$$
(1.8)

- 처음에는 최적 매개변수 값을 알 수 없으므로 난수로 $\Theta_1 = (w_1, b_1)^T$ 설정 $\rightarrow \Theta_2 = (w_2, b_2)^T$ 로 개선 $\rightarrow \Theta_3 = (w_3, b_3)^T$ 로 개선 $\rightarrow \Theta_3$ 는 최적해 $\widehat{\Theta}$
 - $0 \mid \Pi \mid J(\Theta_1) > J(\Theta_2) > J(\Theta_3)$

- [예제 1-1]
 - 훈련집합

$$X = \{x_1 = (2.0), x_2 = (4.0), x_3 = (6.0), x_4 = (8.0)\},\$$

 $Y = \{y_1 = 3.0, y_2 = 4.0, y_3 = 5.0, y_4 = 6.0\}$

• 초기 직선의 매개변수 $\Theta_1 = (0.1,4.0)^{T}$ 라 가정

$$\mathbf{x}_{1}, \mathbf{y}_{1} \rightarrow (f_{\Theta_{1}}(2.0) - 3.0)^{2} = ((0.1 * 2.0 + 4.0) - 3.0)^{2} = 1.44$$

$$\mathbf{x}_{2}, \mathbf{y}_{2} \rightarrow (f_{\Theta_{1}}(4.0) - 4.0)^{2} = ((0.1 * 4.0 + 4.0) - 4.0)^{2} = 0.16$$

$$\mathbf{x}_{3}, \mathbf{y}_{3} \rightarrow (f_{\Theta_{1}}(6.0) - 5.0)^{2} = ((0.1 * 6.0 + 4.0) - 5.0)^{2} = 0.16$$

$$\mathbf{x}_{4}, \mathbf{y}_{4} \rightarrow (f_{\Theta_{1}}(8.0) - 6.0)^{2} = ((0.1 * 8.0 + 4.0) - 6.0)^{2} = 1.44$$

- [예제 1-1] 훈련집합
 - Θ_1 을 개선하여 $\Theta_2 = (0.8,0.0)^T$ 가 되었다고 가정

$$\mathbf{x}_1, \mathbf{y}_1 \rightarrow (f_{\Theta_2}(2.0) - 3.0)^2 = ((0.8 * 2.0 + 0.0) - 3.0)^2 = 1.96$$

 $\mathbf{x}_2, \mathbf{y}_2 \rightarrow (f_{\Theta_2}(4.0) - 4.0)^2 = ((0.8 * 4.0 + 0.0) - 4.0)^2 = 0.64$
 $\mathbf{x}_3, \mathbf{y}_3 \rightarrow (f_{\Theta_2}(6.0) - 5.0)^2 = ((0.8 * 6.0 + 0.0) - 5.0)^2 = 0.04$
 $\mathbf{x}_4, \mathbf{y}_4 \rightarrow (f_{\Theta_2}(8.0) - 6.0)^2 = ((0.8 * 8.0 + 0.0) - 6.0)^2 = 0.16$

$$\longrightarrow J(\Theta_2) = 0.7$$

- Θ_2 를 개선하여 $\Theta_3 = (0.5, 2.0)^T$ 가 되었다고 가정
- 이때 $J(\Theta_3) = 0.0$ 이 되어 Θ_3 은 최적값 $\widehat{\Theta}$ 이 됨

(b) Θ₁을 개선하여 Θ₂가 됨

그림 1-11 기계 학습에서 목적함수의 역할

기계 학습이 할 일을 공식화하면,

$$\widehat{\Theta} = \underset{\Theta}{\operatorname{argmin}} J(\Theta) \tag{1.9}$$

- 기계 학습은 작은 개선을 반복하여 최적해를 찾아가는 수치적 방법으로 식 (1.9)를 품
- 알고리즘 형식으로 쓰면,

```
알고리즘 1-1 기계 학습 알고리즘
입력: 훈련집합 ※와 ♥
출력: 최적의 매개변수 Θ
1 난수를 생성하여 초기 해 Θ₁을 설정한다.
2 t=1
3 while (J(Θ<sub>t</sub>)가 0.0에 충분히 가깝지 않음) // 수렴 여부 검사
4 J(Θ<sub>t</sub>)가 작아지는 방향 ΔΘ<sub>t</sub>를 구한다. // ΔΘ<sub>t</sub>는 주로 미분을 사용하여 구함
5 Θ<sub>t+1</sub> = Θ<sub>t</sub> + ΔΘ<sub>t</sub>
6 t=t+1
7 Θ̂ = Θ<sub>t</sub>
```

- 좀더 현실적인 상황
 - 지금까지는 데이터가 선형을 이루는 아주 단순한 상황을 고려함
 - 실제 세계는 선형이 아니며 잡음이 섞임 > 비선형 모델이 필요

그림 1-12 선형 모델의 한계

1.5.1 과소적합과 과잉적합

- [그림 1.13]의 1차 모델은 과소적합
 - 모델의 '용량이 작아' 오차가 클 수밖에 없는 현상
- 비선형 모델을 사용하는 대안
 - [그림 1-13]의 2차, 3차, 4차, 12차는 다항식 곡선을 선택한 예
 - 1차(선형)에 비해 오차가 크게 감소함

그림 1-13 과소적합과 과잉적합 현상

1.5.1 과소적합과 과잉적합

■ 과잉적합

- 12차 다항식 곡선을 채택한다면 훈련집합에 대해 거의 완벽하게 근사화함
- 하지만 '새로운' 데이터를 예측한다면 큰 문제 발생
 - x_0 에서 빨간 막대 근방을 예측해야 하지만 빨간 점을 예측
- 이유는 '용량이 크기' 때문. 학습 과정에서 잡음까지 수용 > 과잉적합 현상
- 적절한 용량의 모델을 선택하는 모델 선택 작업이 필요함

그림 1-14 과잉적합되었을 때 부정확한 예측 현상

1.5.2 바이어스와 분산

- 1차~12차 다항식 모델의 비교 관찰
 - 1~2차는 훈련집합과 테스트집합 모두 낮은 성능
 - 12차는 훈련집합에 높은 성능을 보이나 테스트집합에서는 낮은 성능 → 낮은 일반화 능력
 - 3~4차는 훈련집합에 대해 12차보다 낮겠지만 테스트집합에는 높은 성능 → 높은 일반화 능력

1.5.2 바이어스와 분산

- 훈련집합을 여러 번 수집하여 1차~12차에 적용하는 실험
 - 2차는 매번 큰 오차 → 바이어스가 큼. 하지만 비슷한 모델을 얻음 → 낮은 분산
 - 12차는 매번 작은 오차 → 바이어스가 작음. 하지만 크게 다른 모델을 얻음 → 높은 분산
 - 일반적으로 용량이 작은 모델은 바이어스는 크고 분산은 작음. 복잡한 모델은 바이어스는 작고 분산은 큼
 - 바이어스와 분산은 트레이드오프 관계

그림 1-15 모델의 바이어스와 분산 특성

1.5.2 바이어스와 분산

- 기계 학습의 목표
 - 낮은 바이어스와 낮은 분산을 가진 예측기 제작이 목표. 즉 왼쪽 아래 상황

그림 1-16 바이어스와 분산

- 하지만 바이어스와 분산은 트레이드오프 관계
- 따라서 바이어스 희생을 최소로 유지하며 분산을 최대로 낮추는 전략 필요

1.5.3 검증집합과 교차검증을 이용한 모델 선택 알고리즘

- 검증집합을 이용한 모델 선택
 - 훈련집합과 테스트집합과 다른 별도의 검증집합을 가진 상황

알고리즘 1-2 검증집합을 이용한 모델 선택

입력: 모델집합 Ω, 훈련집합, 검증집합, 테스트집합

출력: 최적 모델과 성능

- 1 for (Ω에 있는 각각의 모델)
- 2 모델을 훈련집합으로 학습시킨다.
- 3 검증집합으로 학습된 모델의 성능을 측정한다. // 검증 성능 측정
- 4 기장 높은 성능을 보인 모델을 선택한다.
- 5 | 테스트집합으로 선택된 모델의 성능을 측정한다.

1.5.3 검증집합과 교차검증을 이용한 모델 선택 알고리즘

- 교차검증cross validation
 - 비용 문제로 별도의 검증집합이 없는 상황에 유용한 모델 선택 기법
 - 훈련집합을 등분하여, 학습과 평가 과정을 여러 번 반복한 후 평균 사용

알고리즘 1-3 교차검증에 의한 모델 선택

입력: 모델집합 Ω , 훈련집합, 테스트집합, 그룹 개수 k

출력: 최적 모델과 성능

```
│ 훈련집합을 k개의 그룹으로 등분한다.
```

2 for (Ω에 있는 각각의 모델)

for (i=1 to k)

4

5

6

*i*번째 그룹을 제외한 k-1개 그룹으로 모델을 학습시킨다.

학습된 모델의 성능을 i번째 그룹으로 측정한다.

k개 성능을 평균하여 해당 모델의 성능으로 취한다.

가장 높은 성능을 보인 모델을 선택한다.

테스트집합으로 선택된 모델의 성능을 측정한다.

1.7.1 지도 방식에 따른 유형

- 지도 학습
 - 특징 벡터 XX와 목푯값 YY가 모두 주어진 상황
 - 회귀와 분류 문제로 구분
- 비지도 학습
 - 특징 벡터 XX는 주어지는데 목푯값 Y 가 주어지지 않는 상황
 - 군집화 과업 (고객 성향에 따른 맞춤 홍보 응용 등)

1.7.1 지도 방식에 따른 유형

- 강화 학습
 - 목푯값이 주어지는데, 지도 학습과 다른 형태임
 - 예) 바둑
 - 수를 두는 행위가 샘플인데, 게임이 끝나면 목푯값 하나가 부여됨
 - 이기면 1, 패하면 -1을 부여
 - 게임을 구성한 샘플들 각각에 목푯값을 나누어 주어야 함

1. 행렬의 개념

정의 6-1 행렬(Matrix): $A = [a_{ij}]$

n, m이 양의 정수일 때 n행, m열로 나열된 실수의 2차원 배열

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix} = [a_{ij}]$$

• 가로줄을 행^{Row}, 세로줄을 열^{Column}, 행 크기와 열 크기로 행렬의 크기를 말함

$$A = [a_{ij}] = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \end{bmatrix}$$

- 행렬의 크기는 3행 4열, 3×4 (3-by-4) 행렬이라고 함
- a_{ij} 는 행렬 A의 i 행, j 열 원소를 의미 행렬 A의 i 번째 행 : $\begin{bmatrix} a_{1j} \\ a_{2j} \\ \cdots \end{bmatrix}$ 행렬 A의 j 번째 열 : $\begin{bmatrix} a_{1j} \\ a_{2j} \\ \cdots \end{bmatrix}$

1. 행렬의 개념

예제 6-1

행렬 A에 대해 다음을 답하라.

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 10 & 8 & 6 & 4 \\ 9 & 11 & 13 & 15 \\ 12 & 14 & 16 & 2 \end{bmatrix}$$

- (1) 두 번째 행
- (2) 첫 번째 열
- (3) a_{24}
- (4) a_{33}

풀이

$$(2) \begin{bmatrix} 1\\10\\9\\12 \end{bmatrix}$$

(3)
$$a_{24} = 4$$

(3)
$$a_{24} = 4$$
 (4) $a_{33} = 13$

■ 행렬에서 가능한 연산 : 덧셈, 뺄셈, 스칼라곱, 곱셈

❖ 행렬의 덧셈과 뺄셈

두 행렬의 크기가 같아야만 연산 가능(두 행렬의 행과 열의 크기가 각각 같음)

정의 6-2 행렬의 덧셈과 뺄셈

두 행렬 A, B에서 같은 자리에 있는 원소들끼리 더하거나 빼는 연산

- 덧셈 표현: A + B

■ 뺄셈 표현: A − B

$$n \times m$$
 크기의 행렬 A 와 B 가 각각 $A = \begin{bmatrix} a_{11} & a_{22} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix}, \quad B = \begin{bmatrix} b_{11} & b_{22} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \dots & \dots & \dots & \dots \\ b_{n1} & b_{n2} & \dots & b_{nm} \end{bmatrix}$ 일 때,

두 행렬의 덧셈과 뺄셈 연산은 다음과 같이 수행한다.

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \dots & \dots & \dots & \dots \\ b_{n1} & b_{n2} & \dots & b_{nm} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1m} + b_{1m} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2m} + b_{2m} \\ \dots & \dots & \dots & \dots \\ a_{n1} + b_{n1} & a_{n2} + b_{n2} & \dots & a_{nm} + b_{nm} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix} - \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \dots & \dots & \dots & \dots \\ b_{n1} & b_{n2} & \dots & b_{nm} \end{bmatrix} = \begin{bmatrix} a_{11} - b_{11} & a_{12} - b_{12} & \dots & a_{1m} - b_{1m} \\ a_{21} - b_{21} & a_{22} - b_{22} & \dots & a_{2m} - b_{2m} \\ \dots & \dots & \dots & \dots \\ a_{n1} - b_{n1} & a_{n2} - b_{n2} & \dots & a_{nm} - b_{nm} \end{bmatrix}$$

예제 6-2

다음 행렬 A, B를 이용해 주어진 문제를 연산하라.

$$A = \begin{bmatrix} 2 & 1 & 4 & 0 \\ -7 & 3 & 6 & 1 \\ 8 & -4 & -2 & 3 \\ 1 & 9 & 4 & -2 \end{bmatrix}$$

$$B = \begin{bmatrix} 7 & -1 & 2 & 4 \\ 2 & 8 & -5 & 1 \\ -3 & -4 & 2 & -2 \\ 9 & 6 & -2 & 0 \end{bmatrix}$$

$$(1) \quad A + B$$

(2)
$$A - B$$

(3)
$$B - A$$

풀이

$$(1) \ A + B = \begin{bmatrix} 2 & 1 & 4 & 0 \\ -7 & 3 & 6 & 1 \\ 8 & -4 & -2 & 3 \\ 1 & 9 & 4 & -2 \end{bmatrix} + \begin{bmatrix} 7 & -1 & 2 & 4 \\ 2 & 8 & -5 & 1 \\ -3 & -4 & 2 & -2 \\ 9 & 6 & -2 & 0 \end{bmatrix} = \begin{bmatrix} 9 & 0 & 6 & 4 \\ -5 & 11 & 1 & 2 \\ 5 & -8 & 0 & 1 \\ 10 & 15 & 2 & -2 \end{bmatrix}$$

$$(2) \ A - B = \begin{bmatrix} 2 & 1 & 4 & 0 \\ -7 & 3 & 6 & 1 \\ 8 & -4 & -2 & 3 \\ 1 & 9 & 4 & -2 \end{bmatrix} - \begin{bmatrix} 7 & -1 & 2 & 4 \\ 2 & 8 & -5 & 1 \\ -3 & -4 & 2 & -2 \\ 9 & 6 & -2 & 0 \end{bmatrix} = \begin{bmatrix} -5 & 2 & 2 & -4 \\ -9 & -5 & 11 & 0 \\ 11 & 0 & -4 & 5 \\ -8 & 3 & 6 & -2 \end{bmatrix}$$

$$(3) \ B-A = \begin{bmatrix} 7 & -1 & 2 & 4 \\ 2 & 8 & -5 & 1 \\ -3 & -4 & 2 & -2 \\ 9 & 6 & -2 & 0 \end{bmatrix} - \begin{bmatrix} 2 & 1 & 4 & 0 \\ -7 & 3 & 6 & 1 \\ 8 & -4 & -2 & 3 \\ 1 & 9 & 4 & -2 \end{bmatrix} = \begin{bmatrix} 5 & -2 & -2 & 4 \\ 9 & 5 & -11 & 0 \\ -11 & 0 & 4 & -5 \\ 8 & -3 & -6 & 2 \end{bmatrix}$$

❖ 행렬의 스칼라곱

정의 6-3 행렬의 스칼라곱(Scalar Multiplication): $kA = Ak = [ka_{ij}]$

행렬 A에 실수 k를 곱하는 연산

• 행렬의 각 원소마다 그 실수 값을 곱함

$$kA = k \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix} = \begin{bmatrix} ka_{11} & ka_{12} & \dots & ka_{1m} \\ ka_{21} & ka_{22} & \dots & ka_{2m} \\ \dots & \dots & \dots & \dots \\ ka_{n1} & ka_{n2} & \dots & ka_{nm} \end{bmatrix}$$

예제 6-3

다음을 연산하라.

$$-4 \begin{bmatrix} -1 & 2 & 5 \\ 3 & 2 & -7 \\ 8 & 3 & 1 \end{bmatrix}$$

풀이

$$-4 \begin{bmatrix} -1 & 2 & 5 \\ 3 & 2 & -7 \\ 8 & 3 & 1 \end{bmatrix} = \begin{bmatrix} -4 \times -1 & -4 \times 2 & -4 \times 5 \\ -4 \times 3 & -4 \times 2 & -4 \times -7 \\ -4 \times 8 & -4 \times 3 & -4 \times 1 \end{bmatrix} = \begin{bmatrix} 4 & -8 & -20 \\ -12 & -8 & 28 \\ -32 & -12 & -4 \end{bmatrix}$$

❖ 행렬의 곱셈

정의 6-4 행렬의 곱셈

 $n \times m$ 행렬 A와 $r \times s$ 행렬 B가 있고 m = r일 때, $n \times s$ 행렬 $A \cdot B = [c_{ij}]$

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix} \times \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1s} \\ b_{21} & b_{22} & \dots & b_{2s} \\ \dots & \dots & \dots & \dots \\ b_{r1} & b_{r2} & \dots & b_{rs} \end{bmatrix} = \begin{bmatrix} c_{11} & \dots & c_{1j} & \dots & c_{1s} \\ \dots & \dots & \dots & \dots & \dots \\ c_{i1} & \dots & c_{ij} & \dots & c_{is} \\ \dots & \dots & \dots & \dots & \dots \\ c_{n1} & \dots & c_{nj} & \dots & c_{ns} \end{bmatrix}$$

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{im}b_{mj} = \sum_{k=1}^{m} a_{ik}b_{kj}$$

• 곱셈 연산 수행

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix} \times \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1s} \\ b_{21} & b_{22} & \dots & b_{2s} \\ \dots & \dots & \dots & \dots \\ b_{m1} & b_{m2} & \dots & b_{ms} \end{bmatrix}$$

$$=\begin{bmatrix} a_{11}b_{11}+a_{12}b_{21}+\ldots+a_{1m}b_{m1} & a_{11}b_{12}+a_{12}b_{22}+\ldots+a_{1m}b_{m2} & \ldots & a_{11}b_{1s}+a_{12}b_{2s}+\ldots+a_{1m}b_{ms} \\ a_{21}b_{11}+a_{22}b_{21}+\ldots+a_{2m}b_{m1} & a_{21}b_{12}+a_{22}b_{22}+\ldots+a_{2m}b_{m2} & \ldots & a_{21}b_{1s}+a_{22}b_{2s}+\ldots+a_{2m}b_{ms} \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ a_{n1}b_{11}+a_{n2}b_{21}+\ldots+a_{nm}b_{m1} & a_{n1}b_{12}+a_{n2}b_{22}+\ldots+a_{nm}b_{m2} & \ldots & a_{n1}b_{1s}+a_{n2}b_{2s}+\ldots+a_{nm}b_{ms} \end{bmatrix}$$

• A의 i번째 행과 행렬 B의 j번째 열이 서로 대응하여 연산되기 때문에 행렬 A의 열 크기와 행렬 B의 행 크기가 같아야 함

ullet 행렬 A의 크기가 n imes m 이고, 행렬 B의 크기가 m imes s 일 때 곱 AB의 결과로 나오 는 행렬의 크기는 $n \times s$ 임

예제 6-4

행렬 A, B, C가 다음과 같을 때, 연산이 가능한 것을 골라 연산하라.

$$A = \begin{bmatrix} 1 & 3 \\ 4 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 & 2 \\ 9 & 3 & 8 \\ 4 & 7 & 5 \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & 6 & 1 \\ 3 & 5 & 2 \end{bmatrix}$$

- (1) AB (2) BA (3) AC (4) CA (5) BC (6) CB

풀이

- (1) AB는 연산이 가능하지 않다. 행렬 A는 2×2 행렬, 행렬 B는 3×3 행렬로 행렬 A의 열 크기(2)와 행렬 B의 행 크기(3)가 서로 다르기 때문이다.
- (2) BA는 연산이 가능하지 않다. 행렬 B는 3×3 행렬, 행렬 A는 2×2 행렬로 행렬 B의 열 $\exists J(3)$ 와 행렬 A의 행 $\exists J(2)$ 가 서로 다르기 때문이다.
- (3) AC는 연산이 가능하다. 행렬 A는 2×2 행렬, 행렬 C는 2×3 행렬로 행렬 A의 열 크기(2) 와 행렬 B의 행 크기(2)가 같기 때문이다.

2. 행렬의 연산

- (6) CB는 연산이 가능하다. 행렬 C는 2×3 행렬, 행렬 B는 3×3 행렬로 행렬 C의 열 크기(3) 와 행렬 B의 행 크기(3)가 같기 때문이다.

$$\therefore CB = \begin{bmatrix} 0 & 6 & 1 \\ 3 & 5 & 2 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 2 \\ 9 & 3 & 8 \\ 4 & 7 & 5 \end{bmatrix} \\
= \begin{bmatrix} 0 \times 1 + 6 \times 9 + 1 \times 4 & 0 \times 0 + 6 \times 3 + 1 \times 7 & 0 \times 2 + 6 \times 8 + 1 \times 5 \\ 3 \times 1 + 5 \times 9 + 2 \times 4 & 3 \times 0 + 5 \times 3 + 2 \times 7 & 3 \times 2 + 5 \times 8 + 2 \times 5 \end{bmatrix} \\
= \begin{bmatrix} 58 & 25 & 53 \\ 56 & 29 & 56 \end{bmatrix}$$

2. 행렬의 연산

정리 6-1 행렬 연산의 성질

(1)
$$A + B = B + A$$

(3)
$$A + O = O + A = A$$

(5)
$$(-1)A = -A$$

$$(7) (k+l)A = kA + lA$$

(9)
$$k(AB) = (kA)B = A(kB)$$

(2)
$$A + (B+C) = (A+B) + C$$

$$(4) \ \ A + (-A) = (-A) + A = O$$

(6)
$$k(A+B) = kA + kB$$

$$(8) (kl)A = k(lA)$$

(10)
$$IA = A = AI$$

※ O: 영행렬

I: 단위행렬

정의 6-5 영행렬(Zero Matrix: O)

 $n \times m$ 행렬 $A = [a_{ij}]$ 가 있을 때, 모든 i,j에 대하여 $a_{ij} = 0$ 인 행렬

$$O = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 \end{bmatrix}$$

정의 6-6 n차 정사각행렬(n-square Matrix)

 $n \times m$ 행렬 $A = [a_{ij}]$ 가 있을 때, m = n인 행렬

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

정의 6-7 대각행렬(Diagonal Matrix)

n차 정사각행렬에서 대각원소 $a_{11}, a_{22}, \dots, a_{nn}$ 이외의 모든 원소가 0인 행렬

$$A = \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix}$$

정의 6-8 단위행렬(항등행렬, Unit Matrix, Identity Matrix: I)

대각행렬에서 대각원소가 모두 1인 행렬

$$A = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

- 단위행렬은 행렬의 곱셈에서 AI=IA=A 이기 때문에 항등행렬 이라고도 함
- 단위행렬과의 곱셈 연산은 항상 교환법칙이 성립

예제 6-5

행렬
$$A = \begin{bmatrix} 4 & 6 & -1 \\ -8 & 3 & 2 \\ 2 & 8 & 4 \end{bmatrix}$$
와 단위행렬 I 를 다음과 같이 곱셈 연산하라.

(1) AI

(2) IA

풀이

$$(1) \ AI = \begin{bmatrix} 4 & 6 & -1 \\ -8 & 3 & 2 \\ 2 & 8 & 4 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 4 \times 1 + 6 \times 0 + (-1) \times 0 & 4 \times 0 + 6 \times 1 + (-1) \times 0 & 4 \times 0 + 6 \times 0 + (-1) \times 1 \\ (-8) \times 1 + 3 \times 0 + 2 \times 0 & (-8) \times 0 + 3 \times 1 + 2 \times 0 & (-8) \times 0 + 3 \times 0 + 2 \times 1 \\ 2 \times 1 + 8 \times 0 + 4 \times 0 & 2 \times 0 + 8 \times 1 + 4 \times 0 & 2 \times 0 + 8 \times 0 + 4 \times 1 \end{bmatrix}$$

$$= \begin{bmatrix} 4 & 6 & -1 \\ -8 & 3 & 2 \\ 2 & 8 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 4 & 6 & -1 \\ -8 & 3 & 2 \\ 2 & 8 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \times 4 + 0 \times (-8) + 0 \times 2 & 1 \times 6 + 0 \times 3 + 0 \times 8 & 1 \times (-1) + 0 \times 2 + 0 \times 4 \\ 0 \times 4 + 1 \times (-8) + 0 \times 2 & 0 \times 6 + 1 \times 3 + 0 \times 8 & 0 \times (-1) + 1 \times 2 + 0 \times 4 \\ 0 \times 4 + 0 \times (-8) + 1 \times 2 & 0 \times 6 + 0 \times 3 + 1 \times 8 & 0 \times (-1) + 0 \times 2 + 1 \times 4 \end{bmatrix}$$

$$= \begin{bmatrix} 4 & 6 & -1 \\ -8 & 3 & 2 \\ 2 & 8 & 4 \end{bmatrix}$$

정의 6-9 전치행렬(Transpose Matrix: A^T)

 $n \times m$ 행렬 $A = [a_{ij}]$ 가 있을 때, 행과 열을 바꾼 $m \times n$ 행렬

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix} \ \mbox{aligned} \ \ \mbox{with}, \ A^T = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \dots & \dots & \dots & \dots \\ a_{1m} & a_{2m} & \dots & a_{nm} \end{bmatrix}$$

정의 6-10 대칭행렬(Symmetric Matrix)

n 차 정사각행렬 $A = [a_{ij}]$ 가 있을 때, $A^T = A$ 인 행렬

예제 6-6

다음 행렬의 전치행렬을 구하고, 대칭행렬인지 구별하라.

$$(1) A = \begin{bmatrix} 1 & 0 & -2 & 6 \\ -3 & 5 & 2 & -4 \\ 0 & 4 & 4 & 8 \\ 9 & -1 & 3 & 7 \end{bmatrix}$$

$$(2) B = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 9 & 12 \\ 4 & 8 & 12 & 16 \end{bmatrix}$$

(2)
$$B = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 9 & 12 \\ 4 & 8 & 12 & 16 \end{vmatrix}$$

풀이

(1)
$$A^T = \begin{bmatrix} 1 & -3 & 0 & 9 \\ 0 & 5 & 4 & -1 \\ -2 & 2 & 4 & 3 \\ 6 & -4 & 8 & 7 \end{bmatrix}$$
 $A^T \neq A$ 이므로 대칭행렬이 아니다.

(2)
$$B^T = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 9 & 12 \\ 4 & 8 & 12 & 16 \end{vmatrix}$$
 $B^T = B$ 이므로 대칭행렬이다.

정의 6-11 부울행렬(Boolean Matrix)

행렬의 모든 원소가 부울값(0과 1)으로만 구성된 행렬

부울행렬 : 원소 간의 관계를 표현하거나 관계를 합성하는 데에 유용하게 사용되는 행렬, 0과 1로만 표현되기 때문에 일반 행렬과 다른 연산 방식을 사용

정리 6-2 부울행렬 연산자

행렬 $A = [a_{ij}]$ 와 $B = [b_{ij}]$ 에 대해

- (1) 합-Join: $A \vee B = [a_{ij} \vee b_{ij}]$
- (2) 교차 Meet: $A \wedge B = [a_{ij} \wedge b_{ij}]$
- (3) 부울곱Boolean Product: $A \odot B$ $n \times m$ 부울행렬 $A = [a_{ij}]$ 와 $m \times s$ 부울행렬 $B = [b_{ij}]$ 가 있을 때, $n \times s$ 부울행렬 $A \odot B = [c_{ij}]$

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix} \odot \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1s} \\ b_{21} & b_{22} & \dots & b_{2s} \\ \dots & \dots & \dots & \dots \\ b_{m1} & b_{m2} & \dots & b_{ms} \end{bmatrix} = \begin{bmatrix} c_{11} & \dots & b_{1j} & \dots & c_{1s} \\ \dots & \dots & \dots & \dots & \dots \\ c_{i1} & \dots & c_{ij} & \dots & c_{is} \\ \dots & \dots & \dots & \dots & \dots \\ c_{n1} & \dots & c_{nj} & \dots & c_{ns} \end{bmatrix}$$

$$c_{ij} = (a_{i1} \wedge b_{1j}) \vee (a_{i2} \wedge b_{2j}) \vee \dots \vee (a_{im} \wedge b_{mj})$$

- 부울행렬의 합
 - 논리합(>) 연산과 같은 방식으로 연산
 - 행렬 A의 원소인 a_{ij} 와 행렬 B의 원소인 b_{ij} 중 하나라도 1이면 합 연산의 결과는 1이 됨

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
이고 $B = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$ 이라면, 두 행렬의 합 연산은 다음과 같다.

$$A \vee B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \vee \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \vee 0 & 0 \vee 0 \\ 0 \vee 1 & 1 \vee 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

- 부울행렬의 교차
 - 논리곱(^) 연산과 방식이 같음
 - 행렬 A의 원소인 a_{ij} 와 행렬 B의 원소인 b_{ij} 모두 1인 경우에만 교차 연산의 결과 가 1이 됨

$$A=\begin{bmatrix}1&0\\0&1\end{bmatrix}$$
이고 $B=\begin{bmatrix}0&0\\1&1\end{bmatrix}$ 인 예를 이용해 두 행렬의 교차 연산을 수행하면 다음과 같다.

$$A \wedge B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \wedge \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \wedge 0 & 0 \wedge 0 \\ 0 \wedge 1 & 1 \wedge 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

- 부울행렬의 부울곱
 - 행렬의 곱셈 방식과 논리합, 논리곱의 연산을 적용하여 수행

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
이고 $B = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$ 이라면, 두 행렬의 부~~율~~곱 연산은 다음과 같다.

$$A \odot B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \odot \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} (1 \land 0) \lor (0 \land 1) & (1 \land 0) \lor (0 \land 1) \\ (0 \land 0) \lor (1 \land 1) & (0 \land 0) \lor (1 \land 1) \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$$

예제 6-7

다음을 연산하라.

$$(1) \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \vee \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \quad (2) \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \wedge \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \quad (3) \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \odot \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}$$

$$(1) \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \lor \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \lor 1 & 1 \lor 1 & 0 \lor 1 \\ 0 \lor 0 & 1 \lor 0 & 0 \lor 1 \\ 0 \lor 1 & 1 \lor 0 & 1 \lor 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$(2) \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \wedge \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 \wedge 1 & 1 \wedge 1 & 0 \wedge 1 \\ 0 \wedge 0 & 1 \wedge 0 & 1 \wedge 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$(3) \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \odot \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} (1 \wedge 0) \vee (0 \wedge 1) \vee (0 \wedge 1) & (1 \wedge 1) \vee (0 \wedge 1) \vee (0 \wedge 0) \\ (1 \wedge 0) \vee (1 \wedge 1) \vee (1 \wedge 1) & (1 \wedge 1) \vee (1 \wedge 1) \vee (1 \wedge 1) \vee (1 \wedge 0) \end{bmatrix}$$

$$= \begin{bmatrix} 0 \vee 0 \vee 0 & 1 \vee 0 \vee 0 \\ 0 \vee 1 \vee 1 & 1 \vee 1 \vee 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$

정리 6-3 부울행렬 연산의 특징

(1)
$$A \lor A = A$$

$$A \wedge A = A$$

(2)
$$A \lor B = B \lor A$$

$$A \wedge B = B \wedge A$$

$$(3) (A \lor B) \lor C = A \lor (B \lor C)$$

$$(A \wedge B) \wedge C = A \wedge (B \wedge C)$$

$$A \odot (B \odot C) = (A \odot B) \odot C$$

$$(4) A \lor (B \land C) = (A \lor B) \land (A \lor C) A \land (B \lor C) = (A \land B) \lor (A \land C)$$

$$A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$$

정의 6-12 행렬식(Determinant: |A| 또는 det(A))

n차 정사각행렬에 대응하는 함수

$$|A| = \det(A) = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

❖ 2차, 3차 정사각행렬에 대한 기본 행렬식

정의 6-13 2차, 3차 정사각행렬에 대한 행렬식

• 2차 정사각행렬
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
의 행렬식

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

• 3차 정사각행렬
$$B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$$
의 행렬식

$$\begin{split} \det(B) &= \begin{vmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{31} \\ b_{31} & b_{32} & b_{31} \\ b_{31} & b_{32} & b_{31} \\ &= (b_{11}b_{22}b_{33} + b_{12}b_{23}b_{31} + b_{13}b_{32}b_{21}) - (b_{13}b_{22}b_{31} + b_{23}b_{32}b_{11} + b_{33}b_{21}b_{12}) \end{split}$$

예제 6-8

다음 정사각행렬의 행렬식을 구하라.

$$(1) A = \begin{bmatrix} 3 & 1 \\ 2 & -1 \end{bmatrix}$$

(2)
$$B = \begin{bmatrix} 3 & -1 & -2 \\ -4 & 2 & 1 \\ 1 & 4 & -3 \end{bmatrix}$$

풀이

(1)
$$\det(A) = \begin{vmatrix} 3 & 1 \\ 2 & -1 \end{vmatrix} = 3 \times (-1) - 1 \times 2 = -3 - 2 = -5$$

(2)
$$\det(B) = \begin{vmatrix} 3 & -1 & -2 \\ -4 & 2 & 1 \\ 1 & 4 & -3 \end{vmatrix}$$

$$= [(3 \times 2 \times (-3) + (-1) \times 1 \times 1 + (-2) \times 4 \times (-4)]$$

$$- [(-2) \times 2 \times 1 + 1 \times 4 \times 3 + (-3) \times (-4) \times (-1)]$$

$$= 17$$

❖ 3차 이상의 정사각행렬에 대한 행렬식

- 소행렬과 소행렬식
 - 3차 이상의 정사각행렬의 행렬식은 행렬을 작게 분할한 소행렬을 이용함

정의 6-14 소행렬(Minor Matrix: M_{ij})

n차 정사각행렬에서 i번째 행과 j번째 열을 제거해서 얻은 $(n-1)\times(n-1)$ 행렬

예를 들어 행렬
$$A=\begin{bmatrix}1&2&3&4\\5&6&7&8\\9&10&11&12\\13&14&15&16\end{bmatrix}$$
이 있을 때, 소행렬 M_{11} 은 행렬 A 에서 1 행과 1 열을 제외

한 나머지 부분, 즉,
$$M_{11}=\begin{bmatrix} 6 & 7 & 8\\ 10 & 11 & 12\\ 14 & 15 & 16 \end{bmatrix}$$
이다. 소행렬 M_{32} 는 행렬 A 에서 3행과 2열을 제외하여

얻은 행렬
$$M_{32}=\begin{bmatrix}1&3&4\\5&7&8\\13&15&16\end{bmatrix}$$
이다. 이와 같이 어떤 행렬 A 에 대한 소행렬 M_{ij} 는 행렬 A 보다

행과 열의 크기가 하나씩 작다.

정의 6-15 소행렬식 $(\det(M_{ij}))$

n차 정사각행렬의 소행렬 M_{ij} 에 대한 소행렬식

예제 6-9

정사각행렬
$$A = \begin{bmatrix} 5 & 1 & 3 \\ 2 & 6 & 4 \\ 1 & 3 & 6 \end{bmatrix}$$
의 가능한 소행렬을 모두 구하고, 각각의 행렬식을 구하라.

풀이

$$M_{11} = \begin{bmatrix} 6 & 4 \\ 3 & 6 \end{bmatrix}$$
: 1행과 1열을 제외한 원소들로 구성 $\det(M_{11}) = 6 \times 6 - 4 \times 3 = 24$

$$M_{12} = \begin{bmatrix} 2 & 4 \\ 1 & 6 \end{bmatrix}$$
: 1행과 2열을 제외한 원소들로 구성 $\det(M_{12}) = 2 \times 6 - 4 \times 1 = 8$

$$M_{13}=\begin{bmatrix}2&6\\1&3\end{bmatrix}$$
: 1행과 3열을 제외한 원소들로 구성
$$\det(M_{13})=2\times 3-6\times 1=0$$

$$M_{21} = \begin{bmatrix} 1 & 3 \ 3 & 6 \end{bmatrix}$$
: 2행과 1열을 제외한 원소들로 구성 $\det(M_{21}) = 1 \times 6 - 3 \times 3 = -3$ $M_{22} = \begin{bmatrix} 5 & 3 \ 1 & 6 \end{bmatrix}$: 2행과 2열을 제외한 원소들로 구성 $\det(M_{22}) = 5 \times 6 - 3 \times 1 = 27$ $M_{23} = \begin{bmatrix} 5 & 1 \ 1 & 3 \end{bmatrix}$: 2행과 3열을 제외한 원소들로 구성 $\det(M_{23}) = 5 \times 3 - 1 \times 1 = 14$ $M_{31} = \begin{bmatrix} 1 & 3 \ 6 & 4 \end{bmatrix}$: 3행과 1열을 제외한 원소들로 구성 $\det(M_{31}) = 1 \times 4 - 6 \times 3 = -14$ $M_{32} = \begin{bmatrix} 5 & 3 \ 2 & 4 \end{bmatrix}$: 3행과 2열을 제외한 원소들로 구성 $\det(M_{32}) = 5 \times 4 - 2 \times 3 = 14$ $M_{33} = \begin{bmatrix} 5 & 1 \ 2 & 6 \end{bmatrix}$: 3행과 3열을 제외한 원소들로 구성 $\det(M_{23}) = 5 \times 6 - 1 \times 2 = 28$

• 여인수와 여인수행렬

```
정의 6-16 여인수(Cofactor: A_{ij}), 여인수행렬(Cofactor Matrix: [A_{ij}]) n차 정사각행렬 A=[a_{ij}]에서 원소 a_{ij}에 관련된 계수와 그 계수들의 행렬 A_{ij}=(-1)^{i+j}\mathrm{det}(M_{ij})
```

• 여인수는 행렬식을 구하는 식에서 행렬 A의 원소 a_{ij} 의 계수가 되는 수로 소행렬식에 의해 결정되며, 여인수행렬 내에서의 위치에 따라 부호가 정해짐

$$\begin{bmatrix} + & - & + & - & \dots \\ - & + & - & + & \dots \\ + & - & + & - & \dots \\ - & + & - & + & \dots \\ \dots & \dots & \dots & \dots \end{bmatrix}$$

[그림 6-1] 여인수행렬에서 각 원소의 부호

예제 6-10

[예제 6-9]에서 사용된 행렬 $A=\begin{bmatrix} 5 & 1 & 3 \\ 2 & 6 & 4 \\ 1 & 3 & 6 \end{bmatrix}$ 의 각 원소에 대한 여인수를 구하여 여인수행렬을 구하라.

풀이

$$A_{11} = (-1)^{1+1} \det(M_{11}) = \det(M_{11}) = \begin{vmatrix} 6 & 4 \\ 3 & 6 \end{vmatrix} = 6 \times 6 - 4 \times 3 = 24$$

$$A_{12} = (-1)^{1+2} \det(M_{12}) = -\det(M_{12}) = -\begin{vmatrix} 2 & 4 \\ 1 & 6 \end{vmatrix} = -(2 \times 6 - 4 \times 1) = -8$$

$$A_{13} = (-1)^{1+3} \det(M_{13}) = \det(M_{13}) = \begin{vmatrix} 2 & 6 \\ 1 & 3 \end{vmatrix} = 2 \times 3 - 6 \times 1 = 0$$

$$A_{21} = (-1)^{2+1} \det(M_{21}) = -\det(M_{21}) = -\begin{vmatrix} 1 & 3 \\ 3 & 6 \end{vmatrix} = -(1 \times 6 - 3 \times 3) = 3$$

$$A_{22} = (-1)^{2+2} \det(M_{22}) = \det(M_{22}) = \begin{vmatrix} 5 & 3 \\ 1 & 6 \end{vmatrix} = 5 \times 6 - 3 \times 1 = 27$$

$$A_{23} = (-1)^{2+3} \det(M_{23}) = -\det(M_{23}) = -\begin{vmatrix} 5 & 1 \\ 1 & 3 \end{vmatrix} = -(5 \times 3 - 1 \times 1) = -14$$

$$A_{31} = (-1)^{3+1} \det(M_{31}) = \det(M_{31}) = \begin{vmatrix} 1 & 3 \\ 6 & 4 \end{vmatrix} = 1 \times 4 - 6 \times 3 = -14$$

$$A_{32} = (-1)^{3+2} \det(M_{32}) = -\det(M_{32}) = -\begin{vmatrix} 5 & 3 \\ 2 & 4 \end{vmatrix} = -(5 \times 4 - 2 \times 3) = -14$$

$$A_{33} = (-1)^{3+3} \det(M_{33}) = \det(M_{33}) = \begin{vmatrix} 5 & 1 \\ 2 & 6 \end{vmatrix} = 5 \times 6 - 1 \times 2 = 28$$

$$\therefore [A_{ij}] = \begin{bmatrix} 24 & -8 & 0 \\ 3 & 27 & -14 \\ -14 & -14 & 28 \end{bmatrix}$$

• 여인수를 이용한 행렬식

정의 6-17 여인수를 이용한 행렬식

n차 정사각행렬 A에 대한 행렬식은

$$\det(A) = a_{i1}A_{i1} + a_{i2}A_{i2} + \ldots + a_{in}A_{in}$$
: i 행을 선택한 경우
$$= a_{1j}A_{1j} + a_{2j}A_{2j} + \ldots + a_{nj}A_{nj}$$
: j 열을 선택한 경우

- 여인수를 이용한 행렬식의 원리
 - 행렬식을 구해야 하는 n차 정사각행렬에서 행이나 열 중에서 하나를 선택하여 해당하는 원소의 여인수와 곱한 후 그 결과를 더하여 구하는 방식

예제 6-11

[예제 6-9]에서 사용된 3차 정사각행렬
$$A = \begin{bmatrix} 5 & 1 & 3 \\ 2 & 6 & 4 \\ 1 & 3 & 6 \end{bmatrix}$$

풀이

• 1행을 선택했을 경우

$$\det(A) = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13}$$

$$= 5 \cdot (-1)^{1+1}\det(M_{11}) + 1 \cdot (-1)^{1+2}\det(M_{12}) + 3 \cdot (-1)^{1+3}\det(M_{13})$$

$$= 5 \cdot \begin{vmatrix} 6 & 4 \\ 3 & 6 \end{vmatrix} + (-1) \cdot \begin{vmatrix} 2 & 4 \\ 1 & 6 \end{vmatrix} + 3 \cdot \begin{vmatrix} 2 & 6 \\ 1 & 3 \end{vmatrix}$$
$$= 5(6 \cdot 6 - 4 \cdot 3) - (2 \cdot 6 - 4 \cdot 1) + 3(2 \cdot 3 - 6 \cdot 1) = 112$$

• 2행을 선택했을 경우

$$\begin{split} \det(A) &= a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23} \\ &= 2\cdot (-1)^{2+1} \mathrm{det}(M_{21}) + 6\cdot (-1)^{2+2} \mathrm{det}(M_{22}) + 4\cdot (-1)^{2+3} \mathrm{det}(M_{23}) \\ &= (-2)\cdot \begin{vmatrix} 1 & 3 \\ 3 & 6 \end{vmatrix} + 6\cdot \begin{vmatrix} 5 & 3 \\ 1 & 6 \end{vmatrix} + (-4)\cdot \begin{vmatrix} 5 & 1 \\ 1 & 3 \end{vmatrix} \\ &= (-2)(1\cdot 6 - 3\cdot 3) + 6(5\cdot 6 - 3\cdot 1) - 4(5\cdot 3 - 1\cdot 1) = 112 \end{split}$$

• 3행을 선택했을 경우

$$\det(A) = a_{31}A_{31} + a_{32}A_{32} + a_{33}A_{33}$$

$$= 1 \cdot (-1)^{3+1} \det(M_{31}) + 3 \cdot (-1)^{3+2} \det(M_{32}) + 6 \cdot (-1)^{3+3} \det(M_{33})$$

$$= 1 \cdot \begin{vmatrix} 1 & 3 \\ 6 & 4 \end{vmatrix} + (-3) \cdot \begin{vmatrix} 5 & 3 \\ 2 & 4 \end{vmatrix} + 6 \cdot \begin{vmatrix} 5 & 1 \\ 2 & 6 \end{vmatrix}$$

$$= (1 \cdot 4 - 3 \cdot 6) - 3(5 \cdot 4 - 3 \cdot 2) + 6(5 \cdot 6 - 1 \cdot 2) = 112$$

• 1열을 선택했을 경우

$$\begin{aligned} \det(A) &= a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31} \\ &= 5 \cdot (-1)^{1+1} \det(M_{11}) + 2 \cdot (-1)^{2+1} \det(M_{21}) + 1 \cdot (-1)^{3+1} \det(M_{31}) \\ &= 5 \cdot \begin{vmatrix} 6 & 4 \\ 3 & 6 \end{vmatrix} + (-2) \cdot \begin{vmatrix} 1 & 3 \\ 3 & 6 \end{vmatrix} + \begin{vmatrix} 1 & 3 \\ 6 & 4 \end{vmatrix} \\ &= 5(6 \cdot 6 - 4 \cdot 3) - 2(1 \cdot 6 - 3 \cdot 3) + (1 \cdot 4 - 3 \cdot 6) = 112 \end{aligned}$$

• 2열을 선택했을 경우

$$\begin{split} \det(A) &= a_{12}A_{12} + a_{22}A_{22} + a_{32}A_{32} \\ &= 1 \cdot (-1)^{1+2} \det(M_{12}) + 6 \cdot (-1)^{2+2} \det(M_{22}) + 3 \cdot (-1)^{3+2} \det(M_{32}) \\ &= (-1) \cdot \begin{vmatrix} 2 & 4 \\ 1 & 6 \end{vmatrix} + 6 \cdot \begin{vmatrix} 5 & 3 \\ 1 & 6 \end{vmatrix} + (-3) \cdot \begin{vmatrix} 5 & 3 \\ 2 & 4 \end{vmatrix} \\ &= -(2 \cdot 6 - 4 \cdot 1) + 6(5 \cdot 6 - 3 \cdot 1) - 3(5 \cdot 4 - 3 \cdot 2) = 112 \end{split}$$

• 3열을 선택했을 경우

$$\begin{aligned} \det(A) &= a_{13}A_{13} + a_{23}A_{23} + a_{33}A_{33} \\ &= 3 \cdot (-1)^{1+3} \det(M_{13}) + 4 \cdot (-1)^{2+3} \det(M_{23}) + 6 \cdot (-1)^{3+3} \det(M_{33}) \\ &= 3 \cdot \begin{vmatrix} 2 & 6 \\ 1 & 3 \end{vmatrix} + (-4) \cdot \begin{vmatrix} 5 & 1 \\ 1 & 3 \end{vmatrix} + 6 \cdot \begin{vmatrix} 5 & 1 \\ 2 & 6 \end{vmatrix} \\ &= 3(2 \cdot 3 - 6 \cdot 1) - 4(5 \cdot 3 - 1 \cdot 1) + 6(5 \cdot 6 - 1 \cdot 2) = 112 \end{aligned}$$

예제 6-12

4차 정사각행렬
$$C = \begin{bmatrix} 1 & -5 & 2 & -3 \\ 4 & 2 & -1 & 1 \\ -2 & -4 & 5 & 3 \\ 1 & 0 & -2 & -1 \end{bmatrix}$$
의 행렬식을 구하라.

풀이

1과 0이 포함되어 있는 4행을 선택한다.

$$\begin{split} \det(C) &= c_{41}A_{41} + c_{42}A_{42} + c_{43}A_{43} + c_{44}A_{44} \\ &= 1A_{41} + 0A_{42} + (-2)A_{43} + (-1)A_{44} \\ &= A_{41} - 2A_{43} - A_{44} \\ &= (-1)^{4+1} \det(M_{41}) - 2(-1)^{4+3} \det(M_{43}) - (-1)^{4+4} \det(M_{44}) \\ &= -\det(M_{41}) + 2\det(M_{43}) - \det(M_{44}) \end{split}$$

 $\det(M_{41})$, $\det(M_{43})$, $\det(M_{44})$ 을 각각 구하면 다음과 같다.

•
$$M_{41} = \begin{bmatrix} -5 & 2 & -3 \\ 2 & -1 & 1 \\ -4 & 5 & 3 \end{bmatrix}$$
 2행을 선택하여 $\det(M_{41})$ 을 구하면
$$\det(M_{41}) = p_{21}A_{21} + p_{22}A_{22} + p_{23}A_{23}$$

$$= 2(-1)^{2+1}\det(M_{21}) + (-1)(-1)^{2+2}\det(M_{22}) + 1(-1)^{2+3}\det(M_{23})$$

$$= (-2) \begin{vmatrix} 2 & -3 \\ 5 & 3 \end{vmatrix} - \begin{vmatrix} -5 & -3 \\ -4 & 3 \end{vmatrix} - \begin{vmatrix} -5 & 2 \\ -4 & 5 \end{vmatrix}$$

$$= (-2)(2 \cdot 3 - (-3) \cdot 5) - ((-5) \cdot 3 - (-3) \cdot (-4))$$

$$- ((-5) \cdot 5 - 2 \cdot (-4)) = 2$$

•
$$M_{43} = \begin{bmatrix} 1 & -5 & -3 \\ 4 & 2 & 1 \\ -2 & -4 & 3 \end{bmatrix}$$
 3열을 선택하여 $\det(M_{43})$ 을 구하면
$$\det(M_{43}) = q_{13}A_{13} + q_{23}A_{23} + q_{33}A_{33}$$

$$= (-3)(-1)^{1+3}\det(M_{13}) + 1(-1)^{2+3}\det(M_{23}) + 3(-1)^{3+3}\det(M_{33})$$

$$= (-3) \begin{vmatrix} 4 & 2 \\ -2 & -4 \end{vmatrix} - \begin{vmatrix} 1 & -5 \\ -2 & -4 \end{vmatrix} + 3\begin{vmatrix} 1 & -5 \\ 4 & 2 \end{vmatrix}$$

$$= (-3)(4 \cdot (-4) - 2 \cdot (-2)) - (1 \cdot (-4) - (-5) \cdot (-2))$$

$$+ 3(1 \cdot 2 - (-5) \cdot 4) = 116$$

•
$$M_{44} = \begin{bmatrix} 1 & -5 & 2 \\ 4 & 2 & -1 \\ -2 & -4 & 5 \end{bmatrix}$$
 1행을 선택하여 $\det(M_{43})$ 을 구하면
$$\det(M_{44}) = r_{11}A_{11} + r_{12}A_{12} + r_{13}A_{13}$$

$$= 1(-1)^{1+1}\det(M_{11}) + (-5)(-1)^{1+2}\det(M_{12}) + 2(-1)^{1+3}\det(M_{13})$$

$$= \begin{vmatrix} 2 & -1 \\ -4 & 5 \end{vmatrix} + 5\begin{vmatrix} 4 & -1 \\ -2 & 5 \end{vmatrix} + 2\begin{vmatrix} 4 & 2 \\ -2 & -4 \end{vmatrix}$$

$$= (2 \cdot 5 - (-1) \cdot (-4)) + 5(4 \cdot 5 - (-1) \cdot (-2))$$

$$+ 2(4 \cdot (-4) - 2 \cdot (-2)) = 72$$

정의 6-18 역행렬(Inverse Matrix: A^{-1})

정사각행렬 A에 대해 AB = BA = I를 만족하게 하는 행렬 B

$$AA^{-1} = A^{-1}A = I$$

예제 6-13

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$$
의 역행렬을 구하라.

풀이

2차 정사각행렬
$$A$$
의 역행렬 $A^{-1} = \begin{bmatrix} w & x \\ y & z \end{bmatrix}$ 라고 할 때,

$$\begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} w & x \\ y & z \end{bmatrix} = \begin{bmatrix} w + 2y & x + 2z \\ w + 3y & x + 3z \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$w+2y=1$$
, $x+2z=0$, $w+3y=0$, $x+3z=1$

$$(w+2y)-(w+3y)=1-0 \qquad \ \ \, \therefore \ y=-1 \, , \ w=3$$

$$(x+2z)-(x+3z)=0-1$$
 $\therefore z=1, x=-2$

$$\therefore A^{-1} = \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix}$$

정의 6-19 행렬식을 이용한 역행렬

$$A^{-1} = \frac{1}{\det(A)} [A_{ij}]^T$$
 (단, $\det(A) \neq 0$)

정의 6-20 수반행렬(Adjoint Matrix: $[A_{ij}]^T$)

여인수행렬 $[A_{ij}]$ 에 대한 전치행렬

예제 6-14

행렬
$$A = \begin{bmatrix} -2 & 2 & -3 \\ 1 & 0 & 1 \\ -4 & 3 & -5 \end{bmatrix}$$
의 역행렬을 구하라.

풀이

행렬 A의 행렬식을 구하기 위해 2행 선택

$$\begin{split} \det(A) &= a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23} = A_{21} + A_{23} \\ &= (-1)^{2+1} \det(M_{21}) + (-1)^{2+3} \det(M_{23}) \\ &= - \begin{vmatrix} 2 & -3 \\ 3 & -5 \end{vmatrix} - \begin{vmatrix} -2 & 2 \\ -4 & 3 \end{vmatrix} = - \left[2 \cdot (-5) - (-3) \cdot 3 \right] - \left[(-2) \cdot 3 - 2 \cdot (-4) \right] = -1 \end{split}$$

여인수행렬 $[A_{ij}]$ 를 구하기 위해

$$\begin{split} A_{11} &= (-1)^{1+1} \mathrm{det}(M_{11}) = \begin{vmatrix} 0 & 1 \\ 3 & -5 \end{vmatrix} = 0 \cdot (-5) - 1 \cdot 3 = -3 \\ A_{12} &= (-1)^{1+2} \mathrm{det}(M_{12}) = -\begin{vmatrix} 1 & 1 \\ -4 & -5 \end{vmatrix} = -[1 \cdot (-5) - 1 \cdot (-4)] = 1 \\ A_{13} &= (-1)^{1+3} \mathrm{det}(M_{13}) = \begin{vmatrix} 1 & 0 \\ -4 & 3 \end{vmatrix} = 1 \cdot 3 - 0 \cdot (-4) = 3 \\ A_{21} &= (-1)^{2+1} \mathrm{det}(M_{21}) = -\begin{vmatrix} 2 & -3 \\ -4 & 5 \end{vmatrix} = -[2 \cdot (-5) - (-3) \cdot 3] = 1 \\ A_{22} &= (-1)^{2+2} \mathrm{det}(M_{22}) = \begin{vmatrix} -2 & -3 \\ -4 & 5 \end{vmatrix} = (-2) \cdot (-5) - (-3) \cdot (-4) = -2 \\ A_{23} &= (-1)^{2+3} \mathrm{det}(M_{23}) = -\begin{vmatrix} -2 & 2 \\ -4 & 3 \end{vmatrix} = -[(-2) \cdot 3 - 2 \cdot (-4)] = -2 \\ A_{31} &= (-1)^{3+1} \mathrm{det}(M_{31}) = \begin{vmatrix} 2 & -3 \\ 0 & 1 \end{vmatrix} = 2 \cdot 1 - (-3) \cdot 0 = 2 \\ A_{32} &= (-1)^{3+2} \mathrm{det}(M_{32}) = -\begin{vmatrix} -2 & -3 \\ 1 & 1 \end{vmatrix} = -[(-2) \cdot 1 - (-3) \cdot 1] = -1 \end{split}$$

$$A_{33} = (-1)^{3+3} \det(M_{33}) = \begin{vmatrix} -2 & 2 \\ 1 & 0 \end{vmatrix} = (-2) \cdot 0 - 2 \cdot 1 = -2$$

여인수행렬
$$[A_{ij}] = \begin{bmatrix} -3 & 1 & 3 \\ 1 & -2 & -2 \\ 2 & -1 & -2 \end{bmatrix}$$
이므로, 수반행렬 $[A_{ij}]^T = \begin{bmatrix} -3 & 1 & 2 \\ 1 & -2 & -1 \\ 3 & -2 & -2 \end{bmatrix}$

$$\therefore A^{-1} = -\begin{bmatrix} -3 & 1 & 2 \\ 1 & -2 & -1 \\ 3 & -2 & -2 \end{bmatrix} = \begin{bmatrix} 3 & -1 & -2 \\ -1 & 2 & 1 \\ -3 & 2 & 2 \end{bmatrix}$$

정의 6-21 가역행렬(Invertible Matrix), 특이행렬(Singular Matrix)

- •가역행렬: $\det(A) \neq 0$ 인 행렬, 역행렬이 존재하는 행렬
- •특이행렬: $\det(A) = 0$ 인 행렬, 역행렬이 존재하지 않는 행렬

예제 6-15

다음 행렬이 가역행렬인지 특이행렬인지 구분하고, 가역행렬이라면 역행렬을 구하라.

$$(1) A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & -3 \\ 4 & 1 & 1 \end{bmatrix}$$

$$(2) B = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 4 & 0 \\ 5 & 6 & 0 \end{bmatrix}$$

풀이

$$\begin{split} (1) \ \det(A) &= a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} = A_{11} - A_{12} + 2A_{13} \\ &= (-1)^{1+1}\det(M_{11}) - (-1)^{1+2}\det(M_{12}) + 2(-1)^{1+3}\det(M_{13}) \\ &= \begin{vmatrix} 1 & -3 \\ 1 & 1 \end{vmatrix} + \begin{vmatrix} 2 & -3 \\ 4 & 1 \end{vmatrix} + 2\begin{vmatrix} 2 & 1 \\ 4 & 1 \end{vmatrix} \\ &= (1 \cdot 1 - (-3) \cdot 1) + (2 \cdot 1 - (-3) \cdot 4) + 2(2 \cdot 1 - 1 \cdot 4) = 14 \\ \text{따라서 } \det(A) &\neq 0 \text{ 이므로 역행렬을 구할 수 있다. 즉 가역행렬이다. 여인수행렬을 구하면, }, \\ A_{11} &= (-1)^{1+1}\det(M_{11}) = \begin{vmatrix} 1 & -3 \\ 1 & 1 \end{vmatrix} = 1 \cdot 1 - (-3) \cdot 1 = 4 \\ A_{12} &= (-1)^{1+2}\det(M_{12}) = -\begin{vmatrix} 2 & 3 \\ 4 & 1 \end{vmatrix} = -(2 \cdot 1 - (-3) \cdot 4) = -14 \\ A_{13} &= (-1)^{1+3}\det(M_{13}) = \begin{vmatrix} 2 & 1 \\ 4 & 1 \end{vmatrix} = 2 \cdot 1 - 1 \cdot 4 = -2 \\ A_{21} &= (-1)^{2+1}\det(M_{21}) = -\begin{vmatrix} -1 & 2 \\ 1 & 1 \end{vmatrix} = -((-1) \cdot 1 - 2 \cdot 1) = 3 \end{split}$$

$$A_{22} = (-1)^{2+2} \det(M_{22}) = \begin{vmatrix} 1 & 2 \\ 4 & 1 \end{vmatrix} = 1 \cdot 1 - 2 \cdot 4 = -7$$

$$A_{23} = (-1)^{2+3} \det(M_{23}) = -\begin{vmatrix} 1 & -1 \\ 4 & 1 \end{vmatrix} = -(1 \cdot 1 - (-1) \cdot 4) = -5$$

$$A_{31} = (-1)^{3+1} \det(M_{31}) = \begin{vmatrix} -1 & 2 \\ 1 & -3 \end{vmatrix} = (-1) \cdot (-3) - 2 \cdot 1 = 1$$

$$A_{32} = (-1)^{3+2} \det(M_{32}) = -\begin{vmatrix} 1 & 2 \\ 2 & -3 \end{vmatrix} = -(1 \cdot (-3) - 2 \cdot 2) = 7$$

$$A_{33} = (-1)^{3+3} \det(M_{33}) = \begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} = 1 \cdot 1 - (-1) \cdot 2 = 3$$

$$\text{ 여인수행렬 } [A_{ij}] = \begin{bmatrix} 4 & -14 & -2 \\ 3 & -7 & -5 \\ 1 & 7 & 3 \end{bmatrix}, \text{ 수반 행렬 } [A_{ij}]^T = \begin{bmatrix} 4 & 3 & 1 \\ -14 & -7 & 7 \\ -2 & -5 & 3 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{14} \begin{bmatrix} 4 & 3 & 1 \\ -14 & -7 & 7 \\ -2 & -5 & 3 \end{bmatrix}$$

$$(2) \det(B) = b_{11}A_{11} + b_{12}A_{12} + b_{13}A_{13} = A_{11} + 2A_{12}$$

$$= (-1)^{1+1} \det(M_{11}) + 2(-1)^{1+2} \det(M_{12})$$

$$= \begin{vmatrix} 4 & 0 \\ 6 & 0 \end{vmatrix} - 2\begin{vmatrix} 3 & 0 \\ 5 & 0 \end{vmatrix} = (4 \cdot 0 - 0 \cdot 6) - 2(3 \cdot 0 - 0 \cdot 5) = 0$$

 \therefore det(A) = 0이므로 역행렬을 구할 수 없다. 즉 특이행렬이다.

2.1.1 벡터와 행렬

■ 벡터

- 샘플을 특징 벡터로feature vector 표현
- 예) Iris 데이터에서 꽃받침의 길이, 꽃받침의 너비, 꽃잎의 길이, 꽃잎의 너비라는 4개의 특징이 각각 5.1, 3.5, 1.4, 0.2인 샘플

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 5.1 \\ 3.5 \\ 1.4 \\ 0.2 \end{pmatrix}$$

• 여러 개의 특징 벡터를 첨자로 구분

$$\mathbf{x}_{1} = \begin{pmatrix} 5.1 \\ 3.5 \\ 1.4 \\ 0.2 \end{pmatrix}, \ \mathbf{x}_{2} = \begin{pmatrix} 4.9 \\ 3.0 \\ 1.4 \\ 0.2 \end{pmatrix}, \ \mathbf{x}_{3} = \begin{pmatrix} 4.7 \\ 3.2 \\ 1.3 \\ 0.2 \end{pmatrix}, \ \cdots, \ \mathbf{x}_{150} = \begin{pmatrix} 5.9 \\ 3.0 \\ 5.1 \\ 1.8 \end{pmatrix}$$

2.1.1 벡터와 행렬

■ 행렬

- 여러 개의 벡터를 담음
- 훈련집합을 담은 행렬을 설계행렬이라 부름
- 예) Iris 데이터에 있는 150개의 샘플을 설계 행렬 X로 표현

$$\mathbf{X} = \begin{pmatrix} 5.1 & 3.5 & 1.4 & 0.2 \\ 4.9 & 3.0 & 1.4 & 0.2 \\ 4.7 & 3.2 & 1.3 & 0.2 \\ 4.6 & 3.1 & 1.5 & 0.2 \\ \vdots & \vdots & \vdots & \vdots \\ 6.2 & 3.4 & 5.4 & 2.3 \\ 5.9 & 3.0 & 5.1 & 1.8 \end{pmatrix} = \begin{pmatrix} x_{1,1} & x_{1,2} & x_{1,3} & x_{1,4} \\ x_{2,1} & x_{2,2} & x_{2,3} & x_{2,4} \\ x_{3,1} & x_{3,2} & x_{3,3} & x_{3,4} \\ x_{4,1} & x_{4,2} & x_{4,3} & x_{4,4} \\ \vdots & \vdots & \vdots & \vdots \\ x_{149,1} & x_{149,2} & x_{149,3} & x_{149,4} \\ x_{150,1} & x_{150,2} & x_{150,3} & x_{150,4} \end{pmatrix}$$

2.1.1 벡터와 행렬

■ 행렬 **A**의 전치행렬 **A**^T

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix}, \quad \mathbf{A}^{\mathrm{T}} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1m} & a_{2m} & \cdots & a_{nm} \end{pmatrix}$$

예를 들어,
$$\mathbf{A} = \begin{pmatrix} 3 & 4 & 1 \\ 0 & 5 & 2 \end{pmatrix}$$
라면 $\mathbf{A}^{\mathrm{T}} = \begin{pmatrix} 3 & 0 \\ 4 & 5 \\ 1 & 2 \end{pmatrix}$

■ Iris의 설계 행렬을 전치행렬 표기에 따라 표현하면,

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1^{\mathrm{T}} \\ \mathbf{x}_2^{\mathrm{T}} \\ \vdots \\ \mathbf{x}_{150}^{\mathrm{T}} \end{pmatrix}$$

2.1.1 벡터와 행렬

- 행렬을 이용하면 수학을 간결하게 표현할 수 있음
 - 예) 다항식의 행렬 표현

$$f(\mathbf{x}) = f(x_1, x_2, x_3)$$

$$= 2x_1x_1 - 4x_1x_2 + 3x_1x_3 + x_2x_1 + 2x_2x_2 + 6x_2x_3 - 2x_3x_1 + 3x_3x_2 + 2x_3x_3 + 2x_1 + 3x_2 - 4x_3 + 5$$

$$= (x_1 \quad x_2 \quad x_3) \begin{pmatrix} 2 & -4 & 3 \\ 1 & 2 & 6 \\ -2 & 3 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + (2 \quad 3 \quad -4) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + 5$$

$$= \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} + \mathbf{b}^{\mathsf{T}} \mathbf{x} + c$$

■ 특수한 행렬들

정사각행렬
$$\begin{pmatrix} 2 & 0 & 1 \\ 1 & 21 & 5 \\ 4 & 5 & 12 \end{pmatrix}$$
, 대각행렬 $\begin{pmatrix} 50 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 8 \end{pmatrix}$, 단위행렬 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, 대칭행렬 $\begin{pmatrix} 1 & 2 & 11 \\ 2 & 21 & 5 \\ 11 & 5 & 1 \end{pmatrix}$

2.1.1 벡터와 행렬

■ 행렬 연산

■ 행렬 곱셈
$$\mathbf{C} = \mathbf{AB}$$
, 이때 $c_{ij} = \sum_{k=1,s} a_{ik} b_{kj}$ (2.1)

2*3 행렬
$$\mathbf{A} = \begin{pmatrix} 3 & 4 & 1 \\ 0 & 5 & 2 \end{pmatrix}$$
와 3*3행렬 $\mathbf{B} = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 0 & 5 \\ 4 & 5 & 1 \end{pmatrix}$ 을 곱하면 2*3 행렬 $\mathbf{C} = \mathbf{A}\mathbf{B} = \begin{pmatrix} 14 & 5 & 24 \\ 13 & 10 & 27 \end{pmatrix}$

- 교환법칙 성립하지 않음: AB ≠ BA
- 분배법칙과 결합법칙 성립: A(B+C) = AB + AC이고 A(BC) = (AB)C
- 벡터의 내적

벡터의 내적
$$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^{\mathrm{T}} \mathbf{b} = \sum_{k=1,d} a_k b_k$$
 (2.2)

$$\mathbf{x}_1 = \begin{pmatrix} 5.1 \\ 3.5 \\ 1.4 \\ 0.2 \end{pmatrix}$$
와 $\mathbf{x}_2 = \begin{pmatrix} 4.9 \\ 3.0 \\ 1.4 \\ 0.2 \end{pmatrix}$ 의 내적 $\mathbf{x}_1 \cdot \mathbf{x}_2 \succeq 37.49$

2.1.1 벡터와 행렬

■ 텐서

- 3차원 이상의 구조를 가진 숫자 배열
- 예) 3차원 구조의 RGB 컬러 영상

$$\mathbf{A} = \begin{pmatrix} 74 & 1 & 0 & 3 & 2 & 2 \\ 72 & 0 & 2 & 2 & 3 & 1 & 6 \\ 3 & 0 & 1 & 2 & 6 & 7 & 6 & 3 \\ 3 & 1 & 2 & 3 & 5 & 6 & 3 & 0 \\ 1 & 2 & 2 & 2 & 2 & 2 & 3 & 0 & 3 \\ 3 & 0 & 0 & 1 & 1 & 0 & 3 & 1 \\ 5 & 4 & 1 & 3 & 3 & 3 & 3 & 1 \\ 2 & 2 & 1 & 2 & 2 & 1 & 1 \end{pmatrix}$$

2.1.2 놈과 유사도

- 벡터와 행렬의 크기를 놈으로 측정
 - 벡터의 *p*차 놈

$$p$$
차냠: $\|\mathbf{x}\|_p = \left(\sum_{i=1,d} |x_i|^p\right)^{\frac{1}{p}}$ (2.3)

최대 놈:
$$\|\mathbf{x}\|_{\infty} = \max(|x_1|, |x_2|, \dots, |x_d|)$$
 (2.4)

• 예)
$$\mathbf{x} = (3 - 4 \ 1)$$
 일 때, 2차 놈은 $\|\mathbf{x}\|_2 = (3^2 + (-4)^2 + 1^2)^{1/2} = 5.099$

■ 행렬의 프로베니우스 놈

프로베니우스놈:
$$\|\mathbf{A}\|_F = \left(\sum_{i=1,n} \sum_{j=1,m} a_{ij}^2\right)^{\frac{1}{2}}$$
 (2.6)

예를 들어,
$$\left\| \begin{pmatrix} 2 & 1 \\ 6 & 4 \end{pmatrix} \right\|_F = \sqrt{2^2 + 1^2 + 6^2 + 4^2} = 7.550$$

2.1.2 놈과 유사도

- 유사도와 거리
 - 벡터를 기하학적으로 해석

그림 2-2 벡터를 기하학적으로 해석

2.1.5 역행렬

■ 역행렬의 원리

(a) 역수의 원리

(b) 역행렬의 원리

그림 2-9 역행렬

■ 정사각행렬 **A**의 역행렬 **A**-1

$$A^{-1}A = AA^{-1} = I$$

■ 예를 들어,
$$\begin{pmatrix} 2 & 1 \\ 6 & 4 \end{pmatrix}$$
의 역행렬은 $\begin{pmatrix} 2 & -0.5 \\ -3 & 1 \end{pmatrix}$

2.1.5 역행렬

■ 정리

정리 2-1 다음 성질은 서로 필요충분조건이다.

- A는 역행렬을 가진다. 즉, 특이행렬이 아니다.
- A는 최대계수를 가진다.
- A의 모든 행이 선형독립이다.
- A의 모든 열이 선형독립이다.
- A의 행렬식은 0이 아니다.
- A^TA는 양의 정부호positive definite 대칭 행렬이다.
- A의 고윳값은 모두 0이 아니다.

2.1.5 역행렬

■ 행렬 **A**의 행렬식 *det*(**A**)

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$$

$$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = aei + bfg + cdh - ceg - bdi - afh$$
예를 들어 $\begin{pmatrix} 2 & 1 \\ 6 & 4 \end{pmatrix}$ 의 행렬식은 $2*4-1*6=2$

- 기하학적 의미
 - 2차원에서는 2개의 행 벡터가 이루는 평행사변형의 넓이
 - 3차원에서는 3개의 행 벡터가 이루는 평행사각기둥의 부피

그림 2-10 행렬식의 기하학적 해석

- 확률변수random variable
 - 예) 윷

그림 2-13 윷을 던졌을 때 나올 수 있는 다섯 가지 경우(왼쪽부터 도, 개, 걸, 윷, 모)

- 다섯 가지 경우 중 한 값을 갖는 확률변수 *x*
- *x*의 정의역은 {도, 개, 걸, 윷, 모}
- ○를 배, ●를 등이라 할 때, 네 쪽의 윷짝을 던졌을 때 나타날 수 있는 총 경우의 수는 다음과 같다. 🕂

6) 🔾 🗨 🔾 🗶

- 1) ○ ○ 2) ○ ● 3) ○ ○ 4) ○ ● 5) ● ○
- 7) ● ○ 8) ● ● 9) ○ ○ 10) ○ ● 11) ○ ○ 12) ○ ●
- 13) ●●○○ 14) ●●○● 15) ●●●○ 16) ●●●●

■ 확률분포

$$P(x = \Xi) = \frac{4}{16}, P(x = 71) = \frac{6}{16}, P(x = 2) = \frac{4}{16}, P(x = 2) = \frac{1}{16}, P(x = 1) = \frac{1}{16}$$

그림 2-14 확률분포

- 확률벡터random vector
 - 예) Iris에서 확률벡터 \mathbf{x} 는 4차원 $\mathbf{x} = (x_1, x_2, x_3, x_4)^T = (꽃받침 길이,꽃받침 너비_1,꽃잎$

- 간단한 확률실험 장치
 - 주머니에서 번호를 뽑은 다음, 번호에 따라 해당 병에서 공을 뽑고 색을 관찰함
 - 번호를 y, 공의 색을 x라는 확률변수로 표현하면 정의역은 $y \in \{1, 2, 3\}$, $x \in \{m\}$ 하양

그림 2-15 확률 실험

- 곱 규칙과 합 규칙
 - ①번 카드를 뽑을 확률은 P(y=①)=P(①)=1/8
 - 카드는 ①번, 공은 하양일 확률은 P(y=1,x=하양)= $P(1,\phi)$ ← 결합확률

■ 곱 규칙

곱규칙:
$$P(y,x) = P(x|y)P(y)$$
 (2.23)

■ 하얀 공이 뽑힐 확률

$$P(\text{하양}) = P(\text{하양}1)P(1) + P(\text{하양}2)P(2) + P(\text{하양}3)P(3)$$
$$= \frac{9}{128} + \frac{5}{158} + \frac{3}{68} = \frac{43}{96}$$

■ 합 규칙

합규칙:
$$P(x) = \sum_{y} P(y, x) = \sum_{y} P(x|y)P(y)$$
 (2.24)

2.2.2 베이즈 정리와 기계 학습

- 베이즈 정리 : 사전지식에서 사후 확률을 구할 수 있는 기법
- P(y,x) = P(x|y)P(y) = P(x,y) = P(y|x)P(x)

$$P(y|x) = \frac{P(x|y)P(y)}{P(x)} (2.26)$$

■ "하얀 공이 나왔다는 사실만 알고 어느 병에서 나왔는지 모르는데, 어느 병인지 추정하라."

$$\hat{y} = \underset{y}{\operatorname{argmax}} P(y|x) \tag{2.27}$$

2.2.2 베이즈 정리와 기계 학습

- 베이즈 정리 (식 (2.26))
 - 베이즈 정리를 적용하면, $\hat{y} = \operatorname*{argmax}_{y} P(y|x = \Rightarrow \forall \hat{y}) = \operatorname*{argmax}_{y} \frac{P(x = \Rightarrow \forall y)P(y)}{P(x = \Rightarrow \forall \hat{y})}$
 - 세 가지 경우에 대해 확률을 계산하면,

$$P(1|\vec{5}|\vec{5}) = \frac{P(\vec{5}|\vec{5}|1)P(1)}{P(\vec{5}|\vec{5}|)} = \frac{\frac{9}{12}\frac{1}{8}}{\frac{43}{96}} = \frac{9}{43}$$

$$P(2|$$
하양) = $\frac{P($ 하양 (2)) $P(2)$ = $\frac{\frac{5}{15}\frac{4}{8}}{\frac{43}{96}} = \frac{16}{43}$ \longrightarrow 3번 병일 확률이 가장 높음

$$P(3|\vec{\delta}|\vec{\delta}|) = \frac{P(\vec{\delta}|\vec{\delta}|3)P(3)}{P(\vec{\delta}|\vec{\delta}|\vec{\delta})} = \frac{\frac{3}{6}\frac{3}{8}}{\frac{43}{96}} = \frac{18}{43}$$

2.2.2 베이즈 정리와 기계 학습

- 기계 학습에 적용
 - 예) Iris 데이터 분류 문제
 - 특징 벡터 x, 부류 y∈{setosa, versicolor, virginica}
 - 분류 문제를 argmax로 표현하면 식 (2.29)

$$\hat{y} = \underset{y}{\operatorname{argmax}} P(y|\mathbf{x})$$
 (2.29)
$$\stackrel{\text{특징추출}}{\longrightarrow} \mathbf{x} = (7.0,3.2,4.7,1.4)^{\mathrm{T}} \xrightarrow{\overset{\text{N\text{P}$^{\frac{3}{9}}}}{\stackrel{\text{?}}{\nearrow}}} P(\operatorname{setosa}|\mathbf{x}) = 0.18$$
 $P(\operatorname{versicolor}|\mathbf{x}) = 0.72 \xrightarrow{\operatorname{argmax}} P(\operatorname{versicolor}|\mathbf{x}) = 0.10$

그림 2-16 붓꽃의 부류 예측 과정

- 사후확률 $P(y|\mathbf{x})$ 를 직접 추정하는 일은 아주 단순한 경우를 빼고 불가능
- 따라서 베이즈 정리를 이용하여 추정함
 - 사전확률은 식 (2.30)으로 추정

사전확률:
$$P(y = c_i) = \frac{n_i}{n}$$
 (2.30)

2.2.4 평균과 분산

■ 데이터의 요약 정보로서 평균과 분산

평균
$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

분산 $\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$
(2.36)

■ 평균 벡터와 공분산 행렬

$$\boldsymbol{\mu} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$$

$$\boldsymbol{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_{i} - \boldsymbol{\mu}) (\mathbf{x}_{i} - \boldsymbol{\mu})^{\mathrm{T}}$$

$$\boldsymbol{\Sigma} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1d} \\ \sigma_{21} & \sigma_{22} & \dots & \sigma_{2d} \\ \vdots & \ddots & \vdots \end{pmatrix} = \begin{pmatrix} \sigma_{11}^{2} & \sigma_{12} & \dots & \sigma_{1d} \\ \sigma_{21} & \sigma_{22}^{2} & \dots & \sigma_{2d} \\ \vdots & \ddots & \vdots \end{pmatrix}$$

$$\boldsymbol{\Sigma} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1d} \\ \sigma_{21} & \sigma_{22}^{2} & \dots & \sigma_{2d} \\ \vdots & \ddots & \vdots \end{pmatrix} = \begin{pmatrix} \sigma_{11}^{2} & \sigma_{12} & \dots & \sigma_{1d} \\ \sigma_{21} & \sigma_{22}^{2} & \dots & \sigma_{2d} \\ \vdots & \ddots & \vdots \end{pmatrix}$$

2.2.4 평균과 분산

■ 평균 벡터와 공분산 행렬 예제

예제 2-7

lris 데이터베이스의 샘플 중 8개만 가지고 공분산 행렬을 계산하자.

$$\mathbb{X} = \{\mathbf{x}_1 = \begin{pmatrix} 5.1 \\ 3.5 \\ 1.4 \\ 0.2 \end{pmatrix}, \mathbf{x}_2 = \begin{pmatrix} 4.9 \\ 3.0 \\ 1.4 \\ 0.2 \end{pmatrix}, \mathbf{x}_3 = \begin{pmatrix} 4.7 \\ 3.2 \\ 1.3 \\ 0.2 \end{pmatrix}, \mathbf{x}_4 = \begin{pmatrix} 4.6 \\ 3.1 \\ 1.5 \\ 0.2 \end{pmatrix}, \mathbf{x}_5 = \begin{pmatrix} 5.0 \\ 3.6 \\ 1.4 \\ 0.2 \end{pmatrix}, \mathbf{x}_6 = \begin{pmatrix} 5.4 \\ 3.9 \\ 1.7 \\ 0.4 \end{pmatrix}, \mathbf{x}_7 = \begin{pmatrix} 4.6 \\ 3.4 \\ 1.4 \\ 0.3 \end{pmatrix}, \mathbf{x}_8 = \begin{pmatrix} 5.0 \\ 3.4 \\ 1.5 \\ 0.2 \end{pmatrix} \}$$

먼저 평균벡터를 구하면 μ = $(4.9125, 3.3875, 1.45, 0.2375)^T$ 이다. 첫 번째 샘플 \mathbf{x} ,을 식 (2.39)에 적용하면 다음과 같다.

$$\begin{aligned} (\mathbf{x}_1 - \boldsymbol{\mu})(\mathbf{x}_1 - \boldsymbol{\mu})^T &= \begin{pmatrix} 0.1875 \\ 0.1125 \\ -0.05 \\ -0.0375 \end{pmatrix} (0.1875 \quad 0.1125 \quad -0.05 \quad -0.0375) \\ &= \begin{pmatrix} 0.0325 & 0.0211 & -0.0094 & -0.0070 \\ 0.0211 & 0.0127 & -0.0056 & -0.0042 \\ -0.0094 & -0.0056 & 0.0025 & 0.0019 \\ -0.0070 & -0.0042 & 0.0019 & 0.0014 \end{pmatrix}$$

나머지 7개 샘플도 같은 계산을 한 다음, 결과를 모두 더하고 8로 나누면 다음과 같은 공분산 행렬을 얻는다.

$$\boldsymbol{\Sigma} = \begin{pmatrix} 0.0661 & 0.0527 & 0.0181 & 0.0083 \\ 0.0527 & 0.0736 & 0.0181 & 0.0130 \\ 0.0181 & 0.0181 & 0.0125 & 0.0056 \\ 0.0083 & 0.0130 & 0.0056 & 0.0048 \end{pmatrix}$$

2.3.1 매개변수 공간의 탐색

- [알고리즘 2-3]은 기계 학습이 사용하는 전형적인 알고리즘
 - 라인 3에서는 목적함수가 작아지는 방향을 주로 미분으로 찾아냄

알고리즘 2-3 기계 학습이 사용하는 전형적인 탐색 알고리즘(1장의 [알고리즘 1-1]과 같음)

입력: 훈련집합 ※와 ※

출력 : 최적해 Θ

- 1 난수를 생성하여 초기해 ⊖을 설정한다.
- 2 repeat
- $J(\mathbf{\Theta})$ 가 작아지는 방향 $d\mathbf{\Theta}$ 를 구한다.
- $4 \qquad \mathbf{0} = \mathbf{0} + d\mathbf{0}$
- 5 until(멈춤 조건)
- $\widehat{\mathbf{\Theta}} = \mathbf{\Theta}$