VE320 – Summer 2021

Semiconductor Physics

Instructor: Yaping Dan (但亚平) yaping.dan@sjtu.edu.cn

Chapter 10 Fundamentals of Metal-Oxide-Semiconductor Field Effect Transistors

Outline

- 10.1 The two-terminal MOS structure
- 10.2 Capacitance-voltage characteristics
- 10.3 Non-ideal effects
- 10.4 The basic MOSFET operation

Outline

10.1 The two-terminal MOS structure

10.2 Capacitance-voltage characteristics

10.3 Non-ideal effects

10.4 The basic MOSFET operation

Metal-insulator-semiconductor (MIS)

Metal-insulator-semiconductor (MIS)

Metal-insulator-semiconductor (MIS)

Charge distribution

Charge distribution

Charge distribution

Depletion layer thickness

$$x_d = \left(\frac{2\epsilon_s \phi_s}{eN_a}\right)^{1/2}$$

Depletion layer thickness

Maximum depletion layer

$$x_{dT} = \left(\frac{4\epsilon_s \phi_{fp}}{eN_a}\right)^{1/2}$$

Depletion layer thickness

Maximum depletion layer

$$x_{dT} = \left(\frac{4\epsilon_s \phi_{fp}}{eN_a}\right)^{1/2}$$

Outline

10.1 The two-terminal MOS structure

10.2 Capacitance-voltage characteristics

10.3 Non-ideal effects

10.4 The basic MOSFET operation

Net charge is zero!

$$(V_g - V_s)C_{ox} = V_s C_s$$

$$V_g C_{ox} = V_s C_{ox} + V_s C_s$$

$$V_S = \frac{V_g C_{ox}}{C_{ox} + C_S}$$

$$C_S = \frac{\varepsilon_S}{\gamma_d}$$

$$\chi_d = \sqrt{\frac{2\varepsilon_s(V_{bi} + V)}{qN_A}}$$

$$V_s = \frac{V_g C_{ox}}{C_{ox} + C_s}$$

$$C_{S} = \frac{\varepsilon_{S}}{\sqrt{\frac{2\varepsilon_{S}(V_{S})}{qN_{A}}}}$$

$$C'_{FB} = \frac{\epsilon_{\text{ox}}}{t_{\text{ox}} + \left(\frac{\epsilon_{\text{ox}}}{\epsilon_{s}}\right) \sqrt{\left(\frac{kT}{\ell}\right) \left(\frac{\epsilon_{s}}{\ell N_{a}}\right)}}$$

$$C_{min} = \frac{C_{ox}C_{s,min}}{C_{ox} + C_{s,min}}$$

$$C_{s,min} = \frac{\varepsilon_s}{\sqrt{\frac{4\varepsilon_s \phi_{fp}}{q N_a}}}$$

Net charge is zero!

$$(V_g - V_s)C_{ox} = V_s C_s$$

$$V_g C_{ox} = V_s C_{ox} + V_s C_s$$

$$V_s = \frac{V_g C_{ox}}{C_{ox} + C_s}$$

Accumulation

$$C_s \rightarrow \infty$$

$$C = \frac{C_s C_{ox}}{C_s + C_{ox}} \approx C_{ox}$$

$$C_s \rightarrow \infty$$

$$C = \frac{C_s C_{ox}}{C_s + C_{ox}} \approx C_{ox}$$

$$C_s \rightarrow \infty$$

$$C = \frac{C_s C_{ox}}{C_s + C_{ox}} \approx C_{ox}$$

n-type semiconductor

Problem Example

Consider a p-type silicon substrate at T = 300 K doped to $N_a = 10^{16}$ cm⁻³.

The oxide is silicon dioxide with a thickness of $t_{ox} = 18 \text{ nm} = 180 \text{ Å}$, and the gate is aluminum.

Calculate C_{ox} , C'_{min} , and C'_{FB} for a MOS capacitor.

Threshold voltage

Question:

Appear and disappear

Where are the electrons coming from and going to?

Frequency dependence

Frequency dependence

Outline

10.1 The two-terminal MOS structure

10.2 Capacitance-voltage characteristics

10.3 Non-ideal effects

10.4 The basic MOSFET operation

Work function difference

Metal-insulator-semiconductor (MIS)

Work function difference

Metal-insulator-semiconductor (MIS)

Work function difference

Work function difference

Work function difference

Metal oxide semiconductor

Flat band $V_{FB} = (W_m - W_s)/q$

Work function difference

$$V_T = 2\phi_{fp} + t_{ox} \sqrt{\frac{4eN_a \varepsilon_{Si} \phi_{fp}}{\varepsilon_{ox}^2}} = 2\phi_b + \frac{|Q_{SD}|}{C_{ox}}$$

$$V_{T} = 2\phi_{fp} + t_{ox} \sqrt{\frac{4eN_{a}\varepsilon_{Si}\phi_{fp}}{\varepsilon_{ox}^{2}}} + V_{FB}$$
$$= 2\phi_{fp} + \frac{|Q_{SD}|}{C_{ox}} + \phi_{ms}$$

Fixed charges

Metal-insulator-semiconductor (MIS)

Metal oxide semiconductor

$$V_g = V_{FB} = -Q_{SS}/C$$

Fixed charges

Metal-insulator-semiconductor (MIS)

Metal oxide semiconductor

$$V_g = V_{FB} = -Q_{SS}/2C$$

Fixed charges

Metal-insulator-semiconductor (MIS)

Metal oxide semiconductor

Flat band

$$V_g = V_{FB} = -\frac{Q_{SS}}{C} \cdot \frac{x}{d}$$

Fixed charges

$$V_T = 2\phi_{fp} + t_{ox} \sqrt{\frac{4eN_a \varepsilon_{Si} \phi_{fp}}{\varepsilon_{ox}^2}} + V_{FB}$$
$$= 2\phi_{fp} + \frac{|Q_{SD}|}{C_{ox}} + \phi_{ms} - \frac{Q_{ss}}{C_{ox}}$$

Outline

- 10.1 The two-terminal MOS structure
- 10.2 Capacitance-voltage characteristics
- 10.3 Non-ideal effects
- 10.4 The basic MOSFET operation

Metal-Oxide-Semiconductor field effect transistor: MOSFET

Metal-Oxide-Semiconductor field effect transistor: MOSFET

Metal-oxide-semiconductor (MOS)

Metal-Oxide-Semiconductor field effect transistor: MOSFET

Metal-Oxide-Semiconductor field effect transistor: p-type MOSFET

P-type MOSFET

Metal-Oxide-Semiconductor field effect transistor: P MOSFET

P-type MOSFET

MOSFET structures

Source (S) Gate (G) Drain (D)

n+

n+

n channel

Body (B)

NMOS Enhancement mode

NMOS Depletion mode

MOSFET structures

PMOS Enhancement mode

PMOS Depletion mode

Metal-Oxide-Semiconductor field effect transistor: CMOS

Complementary Metal-oxide-semiconductor (CMOS) field effect transistors

NMOSFET I_D vs. V_{DS} Characteristics

Next consider I_D (flowing into $\bar{\mathbf{D}}$) versus V_{DS} , as V_{GS} is varied:

Above threshold ($V_{GS} > V_{T}$): "inversion layer" of electrons appears, so conduction between **S** and **D** is possible

Below "threshold" ($V_{GS} < V_T$): no charge \rightarrow no conduction

Current-voltage characteristics

The MOSFET as a Controlled Resistor

- The MOSFET behaves as a resistor when V_{DS} is low:
 - \square Drain current I_D increases linearly with V_{DS}
 - \square Resistance R_{DS} between SOURCE & DRAIN depends on V_{GS}

R_{DS} is lowered as V_{GS} increases above V_T

NMOSFET Example:

Inversion charge density $Q_{i}(x) = -C_{ox}[V_{GS}-V_{T}-V(x)]$ $I_{DS} = 0$ if $V_{GS} < V_{T}$ where $C_{ox} \equiv \varepsilon_{ox} / t_{ox}$

$$J_{DS} = qn\mu_n E = qn\mu_n \frac{V_{DS}}{L}$$

$$I_{DS} = J_{DS}A_c = J_{DS}\delta W$$

$$I_{DS} = J_{DS}A_c = qn\mu_n \frac{V_{DS}}{L}\delta W = \frac{qn\delta\mu_n}{L} \frac{W}{L} V_{DS}$$

$$qn\delta = -Q_i(x) = C_{ox}[V_{GS} - V_T - V(x)]$$

$$I_{DS} = C_{ox}[V_{GS} - V_T - \frac{1}{2}V_{DS}]\mu_n \frac{W}{L}V_{DS}$$

Charge in an N-Channel MOSFET

(no inversion layer at surface)

Average electron velocity v is proportional to lateral electric field E

What Happens at Larger V_{DS} ?

Inversion-layer is "pinched-off" at the drain end

As V_{DS} increases above $V_{GS} - V_T \equiv V_{DSAT}$,

the length of the "pinch-off" region ΔL increases:

- "extra" voltage $(V_{DS} V_{Dsat})$ is dropped across the distance ΔL
- the voltage dropped across the inversion-layer "resistor" remains $oldsymbol{V_{Dsat}}$

 \Rightarrow the drain current I_D saturates

Note: Electrons are swept into the drain by the E-field when they enter the pinch-off region.

What Happens at Larger V_{DS} ?

 $V_{\rm GS} > V_{\rm T}$:

$$V_{DS} = V_{GS} - V_T$$
 s D N+

Inversion-layer is "pinched-off" at the drain end

As V_{DS} increases above $V_{GS} - V_T \equiv V_{DSAT}$,

$$I_D = \mu_n C_{ox} \frac{W}{L} \left(V_{GS} - V_T - \frac{1}{2} V_{DS} \right) V_{DS}$$

 I_D will not increase after $V_{DS} \ge V_{GS}$ - V_T

$$I_D = \mu_n C_{ox} \frac{W}{L} \left(V_{GS} - V_T - \frac{1}{2} V_{DS} \right) V_{DS} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_T) (V_{GS} - V_T)$$

EE40 Summer 2006: Lecture 12

Instructor: Octavian Florescu

Summary of I_D vs. V_{DS}

- As V_{DS} increases, the inversion-layer charge density at the drain end of the channel is reduced; therefore, I_D does not increase linearly with V_{DS} .
- When V_{DS} reaches $V_{GS} V_T$, the channel is "pinched off" at the drain end, and I_D saturates (i.e. it does not increase with further increases in V_{DS}).

$$I_{DSAT} = \mu_n C_{ox} \frac{W}{2L} (V_{GS} - V_T)^2$$

I_D vs. V_{DS} Characteristics

The MOSFET I_D - V_{DS} curve consists of two regions:

1) Resistive or "Triode" Region: $0 < V_{DS} < V_{GS} - V_{T}$

$$I_D=k_n'\frac{W}{L}\bigg[V_{GS}-V_T-\frac{V_{DS}}{2}\bigg]V_{DS}\bigg] V_{DS}$$
 where $k_n'=\mu_nC_{ox}$

process transconductance parameter

2) Saturation Region:

$$V_{DS} > V_{GS} - V_{T}$$

$$I_{DSAT} = \frac{k_n'}{2} \frac{W}{L} (V_{GS} - V_T)^2$$

where
$$k'_n = \mu_n C_{ox}$$

$$I_{D} = \frac{W\mu_{n} C_{\text{ox}}}{L} (V_{GS} - V_{T}) V_{DS}$$

$$\sqrt{I_{D}(\text{sat})} = \sqrt{\frac{W\mu_{n} C_{\text{ox}}}{2L}} (V_{GS} - V_{T})$$

$$Very \text{ small } V_{DS}$$

$$\int_{I_{D}} B A$$

$$Slope = \int_{\frac{\mu C_{\text{ox}} WV_{DS}}{2L}} V_{TB}$$

$$V_{T} V_{GS} \longrightarrow V_{TB}$$

$$V_{TB} V_{TA} V_{GS} \longrightarrow V_{TB}$$

$$(a) (b)$$

Transconductance:
$$g_m = \frac{\partial I_D}{\partial V_{GS}}$$

 $g_{ms} = \frac{\partial I_D(\text{sat})}{\partial V_{GS}} = \frac{W \mu_n C_{\text{ox}}}{L} (V_{GS} - V_T)$

$$I_D = k_n' \frac{W}{L} \left[V_{GS} - V_T - \frac{V_{DS}}{2} \right] V_{DS} \qquad g_{mL} = \frac{\partial I_D}{\partial V_{GS}} = \frac{W \mu_n C_{\text{ox}}}{L} \cdot V_{DS}$$

$$I_{DSAT} = \frac{k_n'}{2} \frac{W}{L} (V_{GS} - V_T)^2$$

$$I_{DSAT} = \frac{K_n}{2} \frac{W}{L} (V_{GS} - V_T)^2$$

$$V_{DS} > V_{GS} - V_{T}$$

Substrate bias effect

Substrate bias effect

VE320 Yaping Dan

Substrate bias effect

When $V_{SB} = 0$, we had

$$Q'_{SD}$$
 (max) = $-eN_a x_{dT} = -\sqrt{2e\epsilon_s N_a(2\phi_{fp})}$

When $V_{SB} > 0$, the space charge width increases and we now have

$$Q'_{SD} = -eN_a x_d = -\sqrt{2e\epsilon_s N_a(2\phi_{fp} + V_{SB})}$$

The change in the space charge density is then

$$\Delta Q_{SD}' = -\sqrt{2e\epsilon_s N_a} \left[\sqrt{2\phi_{fp} + V_{SB}} - \sqrt{2\phi_{fp}} \right]$$

Substrate bias effect

$$\Delta V_T = -\frac{\Delta Q_{SD}'}{C_{\text{ox}}} = \frac{\sqrt{2e\epsilon_s N_a}}{C_{\text{ox}}} \left[\sqrt{2\phi_{fp} + V_{SB}} - \sqrt{2\phi_{fp}} \right]$$

$$\gamma = \frac{\sqrt{2e\epsilon_s N_a}}{C_{ar}}$$

$$\Delta V_T = \gamma \left[\sqrt{2\phi_{fp} + V_{SB}} - \sqrt{2\phi_{fp}} \right]$$