Introducción a la Minería de Datos

Profesores: Hernán Sarmiento y Felipe Bravo

Basado en las slides de Bárbara Poblete

Libro del Curso

- Introduction to Data Mining
- Autores: Pang-Ning Tan, Michael Steinbach, Vipin Kumar

Herramientas del curso

- WEKA
- R (R Studio)
- Python

Objetivos del curso

- Curso introductorio
- Aprender a aplicar el proceso de DM a datos reales
- Conocer, seleccionar y utilizar las técnicas básicas de DM
- Aprender a interpretar los resultados de estos procesos
- Proveer la base para adquirir conocimiento más avanzado

¿Qué significa Minar?

Según la RAE:

"Hacer grandes diligencias para conseguir algo"

Orígenes de la MD

- Une ideas de ML/AI, reconocimiento de patrones, estadística y BD
- Enfoques tradicionales fallan con datos masivos (alta dim., datos heterogéneos y distribuidos)

¿Cuál es la diferencia entre Data Science, Machine Learning e Inteligencia Artificial?

- Están de moda, pero no son lo mismo, ni son intercambiables
- Data Science es el nombre reciente para algo mucho más antiguo: Data Mining (90's)
- Definición (sobre) simplista:
 - Data mining genera entendimiento.
 - Machine learning genera predicciones.
 - Artificial intelligence genera acciones.

¿Cuál es la diferencia entre Data Science, Machine Learning e Inteligencia Artificial?

- Artificial Intelligence: auto reconoce una señal de STOP y toma la acción de frenar.
- Machine Learning: auto reconoce señales de STOP usando cámaras y predice en base a un entrenamiento cuando debe parar.
- Data Mining: auto transita por las calles y nos damos cuenta que su rendimiento no es el esperado. Luego, entendemos que esto se debe a varios factores externos.

¿Cuál es la diferencia entre Data Science, Machine Learning e Inteligencia Artificial?

- Las definiciones tampoco sirven para describir el trabajo de alguien:
 - "Yo soy Data Scientist" no depende de lo que uno haga, sino que de experiencia que se tenga y enfoque principal del trabajo que se hace.
 - El hecho que alguien escriba no lo convierte en escritor.

¿Por qué es importante entender estas diferencias?

- Porque este no es un curso de Machine Learning, es un curso de Minería de Datos.
- ML: Estudio, diseño y desarrollo de algoritmos que permiten a los computadores aprender sin ser explícitamente programados (Arthur Samuel). Técnicas genéricas, aplicables a varios dominios.
- Minería de Datos: El enfoque está en extraer conocimiento, o patrones previamente desconocidos, a partir de (grandes) volúmenes de datos (en su mayoría no estructurados). Para esto se pueden utilizar técnicas de ML, entre otras. Requiere conocimiento de los datos mismos y su dominio.

Knowledge Discovery in Databases (KDD)

BIG BANG

- 2006 Hadoop
- Análisis de datos masivos al alcance de todos (cientos de start-ups)

1 They know what you're going to buy 2 They know when you're going to sneeze 3 They know when you're about to have a heart attack 3 They know the shoes you like 5 They know when you're being bad 6 They know what you want for dinner 6 Sorry, can't help you there

¿Por qué hacer minería de datos?

- Aspecto comercial
- Aspecto científico

¿Por qué hacer minería de datos?

¿Motivación Comercial?

- Recolección de MUCHOS datos comerciales:
- Datos Web, e-commerce
- Compras en tiendas
- Transacciones en Bancos/ Tarjetas de Crédito

Your Browsing History

Hello, Barbara
Your Account ~

Try Prime •

Your Lists -

Shop by Department ~

Your Amazon.com

Shopping History *

Barbara's Amazon.com Today's Deals Gift Cards Sell Help

Recommended For You

Improve Your Recommendations Your Profile Learn More

ON ORDER

0 items

AMAZON PRIME Try Prime

View benefits

Try Audible

Get 2 free audiobooks

AUDIBLE AUDIOBOOKS

CUSTOMER SINCE

2008

Recommended for you, Barbara

Literature & Fiction 100 ITEMS

Science Fiction & Fantasy Books 41 ITEMS

Prime Video - Unlimited Streaming for Prime Members

27 ITEMS

Mystery, Thriller & Suspense Books 55 ITEMS

Personal Care Products 81 ITEMS

Recommended Based On Sketching User Experiences: Getting the Design... 16 ITEMS

Office & School Supplies 20 ITEMS

Cell Phones & Accessories 10 ITEMS

1 X Disney Frozen Pencil Case

by Innovative Designs, LLC

★★★★ ▼ 4 customer reviews

Price: \$5.30

In Stock.

This item ships to Santiago, Chile. Want it Friday, March 11? Order within 9 hrs 49 mins and choose AmazonGle Priority Shipping at checkout. Learn more

Sold by JACOB'S and Fulfilled by Amazon. Gift-wrap available.

Package Quantity: 1

Style Name: Purple

1 Disney Frozen Pencil Case

15 new from \$1.50

Roll over image to zoom in

Frequently Bought Together

Total price: \$22.55 Add both to Cart Add both to List

- ☑ This item: 1 X Disney Frozen Pencil Case \$5.30
- Thermos 12 Ounce Funtainer Bottle, Frozen Purple \$17.25

Customers Who Bought This Item Also Bought

Disney Frozen Light Blue Stationery Set Pack with Case (13 Pcs) **全全全全** 39 \$7.40 Prime

Disney Frozen Rolling 16" Backpack and Lunch Bag Lunchbox 2pc 会会会会会 12

\$49.95 \Prime

Disney Frozen 1 Subject Wide Ruled Notebook -(Colors/Graphics Vary) 全全全全全 14 \$4.67

Disney Frozen Elsa and (17 Pcs) 金金金金公19

\$8.95 \Prime

American Greetings Frozen Party Accessories, Pencils, 12 Count 金金金金金 89

\$5.26 Prime

Disney Frozen Hot Pink Elsa Anna and Olaf Stationery Set Pack with Case (13 Pcs) **全全全全** 34

Page

Thermos 12 Ou Funtainer Bottle Purple **全全全全**企 \$17.25 Prime

TV Thrillers & Mysteries

Romantic Movies

Continue Watching for Barbara

Watch It Again

Top Picks for Barbara

×

Top Picks for Barbara

House, M.D.

★★★★ 2014 TV-14 9 Seasons
An awkward forensic anthropologist. An arrogant FBI agent. Together, they find justice in the dead.

TV-14 3 Seasons His deception detection is second to none. But his social skills? Well, they could use a little work.

Neither their patients' problems nor their own relationships are black-and-white. It's all shades of grey.

Elite FBI profilers play minds games to catch serial killers. Getting into murderers' heads can also get into yours.

The legendary detective needs a doctor to keep him clean -- and maybe help round up a few murderers.

OVERVIEW

EPISODES

MORE LIKE THIS

DETAILS

Because you watched Cooked

¿Por qué hacer minería de datos?

¿Motivación Científica?

- Datos (observaciones) recolectadas a gran velocidad (GB/hr, Tb/día)
- Telescopios, Satélites, Requerimientos Web, ADN, etc (<u>Google Flu</u> <u>Trends</u>)

google.org Flu Trends

Google.org home

Flu Trends

Select country 💌

Home

How does this work?

<u>FAQ</u>

Flu activity

Intense

High

Moderate

Low

Minimal

Explore flu trends around the world

We've found that certain search terms are good indicators of flu activity. Goodle Flu Trends uses aggregated Google search data to estimate flu activity. <u>Learn more »</u>

Download world flu activity data

Métodos utilizados en DM

- Métodos predictivos: Usar variables para predecir variables desconocidas o valores futuros de otras variables
- Métodos descriptivos:

 Encontrar patrones
 interpretables por
 humanos que permitan
 describir los datos

Métodos utilizados en DM

- Clasificación (Predictivo)
- Clustering (Descriptivo)
- Descubrimiento de Reglas de Asociación (Descriptivo)
- Descubrimiento de Patrones Secuenciales (Descriptivo)
- Regresión (Predictivo)
- Detección de Desviación (Predictivo)

Clasificación

- Set de Entrenamiento (atributos incluyendo clase)
- Busca modelar en atributo clase
- Objetivo: asignar la clase más correcta a records nuevos
- Set de Evaluación

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	vres	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Set		Refund	Marital Status	Taxable Income	Cheat		
No Married 150K Yes Divorced 90K No Single 40K No Married 80K Test		No	Single	75K	?		
Yes Divorced 90K ? No Single 40K ? No Married 80K ? Test Set		Yes	Married	50K	?		
No Single 40K ? No Married 80K ? Test Set		No	Married	150K	?	\	
No Married 80K ?		Yes	Divorced	90K	?		
Set		No	Single	40K	?	7	
		No	Married	80K	?		Test
	Tra	ining		Learn		•	Mo

Clasificación: Aplicación 1

- Marketing directo
- Meta: Reducir costos de publicidad apuntando directamente a potenciales compradores.
- ¿Cómo?

Clasificación: Aplicación 2

- Detección de Fraude
- Meta: Predecir transacciones fraudulentas en el uso de tarjetas de crédito
- ¿Cómo?

Clasificación: Aplicación 3

- Fidelidad de Clientes
- Meta: Predecir si es posible perder a un cliente a la competencia
- ¿Cómo?

CLUSTERING

- Conjunto de puntos (datos), cada uno con un set de atributos y una medida de similitud
- Encontrar conjuntos tales que:
 - Puntos en un cluster sean más similares entre sí
 - Puntos en conjuntos diferentes sean menos similares entre sí

Visualización de clustering

- Clustering 3D basado basado en distancia Euclidiana
- Distancia intra-cluster es minimizada
- Distancia inter-cluster es maximizada

Clustering Aplicación 1

- Segmentación de mercado
 - Meta: Subdividir un mercado en subconjuntos de clientes en donde cualquier conjunto es un potencial objetivo de marketing (ej: Netflix, Amazon)
 - ¿Cómo?

Clustering Aplicación 2

- Clustering de documentos
 - Meta: Encontrar grupos de documentos que son similares entre sí, basándose en las palabras más importantes que contienen. (Directorios, Wikipedia)
 - ¿Cómo?

Ejemplo

- Clustering de puntos: 3204 artículos del L.A. Times
- Medida de similitud: cuántas palabras tienen en común estos documentos (después de filtrar algunas palabras).

Category	Total Articles	Correctly Placed
Financial	555	364
Foreign	341	260
National	273	36
Metro	943	746
Sports	738	573
Entertainment	354	278

Reglas de Asociación

- Dado un conjunto de records, cada uno contiene un número de elementos de una colección determinada
- Objetivo: Producir reglas de dependencia que predecirán la ocurrencia de un elemento (ítem) basándose en ocurrencias de otros ítems.

Reglas de Asociación

TID	Items
1	Pan, Coca-cola, Pañales, Leche
2	Cerveza, Pan
3	Cerveza, Coca-cola, Pañales, Leche
4	Cerveza, Pan, Pañales, Leche
5	Coca-cola, Pañales, Leche

Reglas de Asociación Aplicación 1

- Promoción de Marketing y Ventas
 - Sea la regla encontrada del tipo

```
{Queso, ...} {PapasFritas}
```

Patrones secuenciales

- Dado un set de objetos asociados a una línea de tiempo de eventos, encontrar los elementos que tengan fuertes dependencias secuenciales entre ellos
- Se forman reglas descubriendo patrones y luego se aplican restricciones de tiempo

Regresión

- Predecir el valor de una variable continua, en base a valores de otras variables, asumiendo modelo de dependencia lineal o no-lineal.
- Estadística y redes neuronales

Detección de desviación/anomalía

 Detectar desviaciones significativas de los valores normales

Desafíos de DM

- Escalabilidad
- Dimensionalidad
- Datos complejos y heterogéneos
- Calidad de los datos
- Distribución de los datos y propiedad
- Privacidad
- Streaming

Próxima Clase

- Leer reglas del curso: ver que no haya problemas con los requisitos de asistencia, se entiende que Ud. puede cumplirlos si sigue en el curso.
- Bonus track ver el video de <u>Hans Rosling</u>.