Double integral with use of composite trapezoid method

Jacek Zalewski

March 16, 2023

1 Task description

2. Numerical calcualtion of:

$$\int_{a}^{b} \int_{c}^{d} f(x, y) \, dy dx$$

where $D = [a, b] \times [c, d]$. Use composite trapezoid rule with respect to each variable.

2 Formula derivation

To derive formula we are using composite trapezoid:

$$I_1 = \int_a^b f(x)dx \approx \frac{h}{2} \cdot (f(a) + f(b) + 2\sum_{i=2}^n f(x_i))$$
 (1)

We can apply composite trapezoid rule twice. Firstly for the inner integral [1]:

$$\int_{a}^{b} \int_{c}^{d} f(x,y) dy dx \approx \int_{a}^{b} \frac{h_{y}}{2} \left[f(x,c) + f(x,d) + 2 \sum_{i=2}^{n} f(x,y_{i}) \right] dx \tag{2}$$

Inner integral can be treated as a function g(x) Therefore we can apply composite trapezoid rule to the outer integral again:

$$I \approx \frac{h_x}{2} \left(\frac{h_y}{2} \left[f(a, c) + f(a, d) + 2 \sum_{i=2}^{n} f(a, y_i) \right] + \frac{h_y}{2} \left[f(b, c) + f(b, d) + 2 \sum_{i=2}^{n} f(b, y_i) \right] + 2 \sum_{j=2}^{n} \frac{h_y}{2} \left[f(x_j, c) + f(x_j, d) + 2 \sum_{i=2}^{n} f(x_j, y_i) \right] \right)$$
(3)

Finally formula is simplified to following form:

$$I \approx \frac{h_y h_x}{4} ((a, c) + f(a, d) + f(b, c) + f(b, d) + 4 \sum_{i=2}^{n} \sum_{j=2}^{n} f(x_j, y_i) + 2 \sum_{i=2}^{n} [f(a, y_i) + f(b, y_i)] + 2 \sum_{j=2}^{n} [f(x_j, c) + f(x_j, d)]$$

$$(4)$$

3 Results comparison

Finally, the table below, shows comparison of evaluation of different integrals. Function *integral* is built in matlab function which numerically integrate function fun from xmin to xmax using global adaptive quadrature. [?]. Moreover we compare both results to the Wolfram Alpha results [3]

Integral	Double trapezoid integral	MATLAB integral	Wolfram Alpha
$\int_0^1 \int_0^8 x^3 - y^2 dy dx$	173.1574	173.1488	173.1488
$ \frac{\int_0^1 \int_0^8 x^3 - y^2 dy dx}{\int_0^1 \int_0^8 x^3 - y^2 dy dx} \\ \int_{-5}^5 \int_{-3}^3 x^7 - y^2 + \cos(x - y) dy dx $	-168.6750	-168.6667	-168.(6)
$\int_{-5}^{5} \int_{-3}^{3} x^7 - y^2 + \cos(x - y) dy dx$	-180.5767	-180.54	-180.54

Furthermore below plot presents value of $\int_0^1 \int_0^8 x^3 - y^2 dy dx$ for different values of n. As n increases the results are getting more accurate:

Figure 1: Convergence of quadrature

References

- [1] http://utkstair.org/clausius/docs/che505/pdf/IE_eval_N-Dints.pdf
- [2] https://www.mathworks.com/help/matlab/ref/ode45.html
- [3] https://www.wolframalpha.com/examples/mathematics/calculus-and-analysis/integrals/