Алгоритмы компьютерной алгебры

Конспект лекций

2019

Содержание

1	Лекция 1.	
	1.1 Основные факты из теории многочленов	•

1. Лекция 1.

Предмет изучения компьютерной алгебры - точные вычисления. Рассматриваются именно алгоритмы точного, а не приближенного вычисления, как в вычислительной математике. Эти алгоритмы лежат в основе математических пакетов MATLAB, Mathematica. Основной объект исследованй - числовые системы с точными вычислениями.

1.1. Основные факты из теории многочленов

Определение 1. *Числовым полем* называется множество $F \subset \mathbb{C}$, если:

- 1. $0, 1 \in F$
- 2. $|F| \ge 2$
- 3. $\forall a, b \in F : a \pm b, ab \in F; b \neq 0, \frac{a}{b} \in F.$

Пример 1. Числовые поля - \mathbb{C} , \mathbb{R} , \mathbb{Q} , $\{a+b\sqrt{2}, a,b\in\mathbb{Q}\}$

Множество многочленов над полем рациональных чисел обозначается как $\mathbb{Q}[x]$, над целыми — $\mathbb{Z}[x]$, над произвольным числовым полем F - F[x].

Определение 2. Многочлен $f(x) \in F[x]$, отличный от константы, называют приводимым над полем F, если он допускает представление вида $f(x) = \varphi(x)\psi(x)$, где $\varphi(x), \psi(x) \in F[x]$ и deg φ , deg ψ < deg f, и неприводимым, если он не допускает такого разложения (то есть один из многочленов φ, ψ является константой).

- 1. degf=1. Пусть f допускает разложение: $f(x)=\varphi(x)\psi(x)$.
- 2. $|F| \ge 2$
- 3. $\forall a, b \in F : a \pm b, ab \in F; b \neq 0, \frac{a}{b} \in F.$