C

B3C066

Total Pages:2

(2)

Reg. No. Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

THIRD SEMESTER B.TECH DEGREE EXAMINATION, JANUARY 2017

Course Code: IT201

Course Name: DIGITAL SYSTEM DESIGN (IT)

Max. Marks: 100 Duration: 3 Hours

PART A

Answer any 2 questions. Each question carries 15 marks.

1)

- a) Convert 203.52₁₀ to binary and hexadecimal. (5)
- b) Divide binary numbers 11011.1_2 by 101_2 (4)
- c) Subtract 46.5_{10} from 125.5_{10} using 2's complement arithmetic. (3)
- d) Compare 1's and 2's methods of representations. (3)

2)

- a) Reduce following expressions by using K-map. (9)
 - $A\overline{B}C + \overline{B} + B\overline{D} + AB\overline{D} + \overline{A}C$
- b) Implement following expression in NOR logic. (4)

$$AB + \bar{C}D(\bar{B} + \bar{D})$$

- c) Convert following expressions to minterm.
 - $ABCD + AB\bar{C} + ACD$

3)

a) Reduce following expressions by using K-map (9)

$$(B+\bar{C})(A+B+\bar{D})(\bar{A}+C+D)(B+C+D)$$

b) Without reducing, convert following expression to NAND logic. (4)

$$C\overline{D}(A+B) + D(A+BC)$$

c) Convert following expressions to maxterm. (2)

$$(A + \overline{B} + C)(B + C + \overline{D})(\overline{A} + \overline{B} + D)$$

C B3C066 **Total Pages:2**

PART B

Answer any 2 questions. Each question carries 15 mar	nswer any	nswer	er any 2	questions.	Each	question	carries	15	marks
--	-----------	-------	----------	------------	------	----------	---------	----	-------

		, ,					
4)							
	a)	Design full adder circuit and implement with both basic logic gates and with NA	ND				
		logic gates.	(10)				
	b)	Draw and explain 4 bit BCD adder circuit with correction detector circuit.	(5)				
5)							
	a)	Design full subtractor circuit and implement with both basic logic gates and with					
		NAND logic gates.	(10)				
	b)	Draw and explain 4 bit adder/subtractor circuit	(5)				
6)							
	a)	Write in detail about the following flip flop characteristics: propagation delay time	ne,				
		maximum clock frequency, power dissipation and set-up time.	(8)				
	b)	Design a monostable multivibrator by using NOR gate and inverter. Explain its					
		working with the help of waveforms.	(7)				
		PART C					
		Answer any 2 questions. Each question carries 20 marks.					
7)							
	a)	Design a 3 bit up/down synchronous counter and implement by using JK flip flop).				
		Explain the working with state diagram.	(12)				
	b)	Discuss 4 bit SERIAL-IN SERIAL-OUT RIGHT SHIFT shift register using JK	and				
		SR flip flops with the help of timing diagram.	(8)				
8)							
	a)	Design and implement a counter that goes through 1,3,4,6,10,12,14,2,1,3,4 using T					
		flip flops by eliminating lock out (in the case of invalid states, go to initial state)	(12)				

- b) Draw and explain a 4 bit ring counter with state diagram and timing diagram. Use JK flip flops. (8)
- a) Discuss Booth multiplication algorithm. Multiply 7 and -3 using this algorithm. (12)
- b) Write a short notes on mask-programmed ROM and programmable ROM (8)

9)