# **Bayesian Regression and Bitcoin**

https://arxiv.org/abs/1410.1231 (https://arxiv.org/abs/1410.1231)

Seoul Al Meetup, September 2017

Cinyoung Hur, cinyoung.hur@gmail.com

# **Bayesian Regression**

#### The Problem

- predict the unknown label  $y \in \mathbb{R}$  for given  $x \in \mathbb{R}^d$
- train n labeled data points
  - $(x_i, y_i), 1 \le i \le n$
  - $x_i \in \mathbb{R}^d$
  - $y_i \in \mathbb{R}$

## The classical approach

- function approximation for  $y = f(x) + \varepsilon$ 
  - $f(x) = x^T \theta^*$
  - ullet : noise(an independent random variable)
- least-squares estimation for  $\theta^{\ast}$  or f
  - assume  $n \gg d$ , d is fixed

$$\hat{\theta}_{LS} \in \underset{\theta \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{i=1}^n (y_i - x_i^T \theta)^2$$

# $n \ll d$ and Sparsity

## The practical appoach

- regularized least-square estimation for  $\theta^*$  or f
  - In reality,
    - $\circ$   $n \approx d$
    - $\circ$   $n \ll d$
    - $\circ \ \|\theta^*\|_0 \ll d, \|\theta^*\|_0 = \left|\{i: \theta_i^* \neq 0\}\right|$
  - for appropriate choice of  $\lambda > 0$

$$\hat{\theta}_{LASSO} \in \underset{\theta \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{i=1}^n (y_i - x_i^T \theta)^2 + \lambda \|\theta\|_1$$

# Choosing a reasonable parametric function space $\theta^*$ or f is hard!

- · data is very high dimensioanl(e.g. time-series)
- parametric space is too complicated or meaningless

## Latent source model

- · capture that underlying events exhibits itself
- K distinct latent sources
  - $s_1, \ldots, s_K \in \mathbb{R}^d$
- a latent distribution over  $\{1,\ldots,K\}$  with associated probabilities
  - $\bullet$  { $\mu_1,\ldots,\mu_K$ }
- K latent distributions over  $\mathbb R$ 
  - $P_1,\ldots,P_K$

## Latent source model

- data point (x, y) is generated as follows
  - $x = s_T + \varepsilon$ •  $T \in \{1, \dots, K\}$  with  $P(T = k) = \mu_k$  for  $1 \le k \le K$
  - $y \in \mathbb{R}$  as per distribution  $P_T$

## **Regression** → **Simple Bayesian Inference**

· conditional distribution

$$P(y|x) = \sum_{k=1}^{T} P(y|x, T = k)P(T = k|x)$$

$$\propto \sum_{k=1}^{T} P(y|x, T = k)P(x|T = k)P(T = k)$$

$$= \sum_{k=1}^{T} P_k(y)P(\varepsilon = (x - s_k))\mu_k$$

$$= \sum_{k=1}^{T} P_k(y) \exp(-\frac{1}{2}||x - s_k||_2^2)\mu_k$$

## Lack of knowledge

- · 'latent' parameters of the source model
  - sources:  $(s_1, \ldots, s_K)$
  - probabilities:  $(\mu_1, \dots, \mu_K)$
  - probability distribution:  $P_1, \ldots, P_K$

# Use empirical data as proxy

· empirical conditional probability

$$P_{emp}(y|x) = \frac{\sum_{i=1}^{n} \mathbb{1}(y = y_i) \exp(-\frac{1}{4} ||x - x_i||_2^2)}{\sum_{i=1}^{n} \exp(-\frac{1}{4} ||x - x_i||_2^2)}$$

• conditional expectation of y, given x

$$\mathbb{E}_{emp}\left[y|x\right] = \frac{\sum_{i=1}^{n} y_i \exp(-\frac{1}{4} \|x - x_i\|_2^2)}{\sum_{i=1}^{n} \exp(-\frac{1}{4} \|x - x_i\|_2^2)}$$

- in binary classification, y takes values in  $\{0, 1\}$
- · classifiation rule: compute ratio

■ if ratio is > 1, 
$$y = 1$$
, else  $y = 0$   $\frac{P_{emp}(y=1|x)}{P_{emp}(y=0|x)} = \frac{\sum_{i=1}^{n} \mathbb{1}(y=1) \exp(-\frac{1}{4} ||x-x_i||_2^2)}{\sum_{i=1}^{n} \mathbb{1}(y=0) \exp(-\frac{1}{4} ||x-x_i||_2^2)}$ 

- · 'linear' estimator:
  - $X(x) \in \mathbb{R}^n$
  - $X(x)_i = \exp(-\frac{1}{4}||x x_i||_2^2)/Z(x)$
  - $Z(x) = \sum_{i=1}^{n} \exp(-\frac{1}{4} ||x x_i||_2^2)$
- $y \in \mathbb{R}^n$  with *i*th component being  $y_i$ 
  - $\hat{y} = X(x)y$

# **Trading Bitcoin**

## **Relevance of Latent Source Model**

- · price movements follow a set of patterns
- · one can use past price movements to predict future returns to some extent
- · e.g. geometric patterns
  - heads-and-shoulders, triangle and double- top-and-bottom

#### **Data**

- · 0kcoin.com, China
- 7 months:
  - Feb 2014~ Jul 2014
- · 200 million data points
- interval:
  - raw: 2 sec
  - train: 10 sec

## **Trading Strategy**

- · position of Bitcoin
  - **+**1
  - **•** 0
  - -1
- · Average price movement over the 10 sec interval
  - $\bullet$   $\Delta p$
- · Bitcoin price threshold
  - t
- if  $\Delta p > t$  and position  $\leq 0$ , buy a bitcoin
- elif  $\Delta p < -t$  and position  $\geq 0$ , sell a bitcoin
- · else, do nothing

## **Predicting Price Change**

#### **Terms**

- subsets of time-series data of 3 different lengths:
  - $S_1$ : time-length 30 min
  - $S_2$ : time-length 60 min
  - $S_3$ : time-length 120 min
- previous time-series of different lengths at t:
  - $x^1$ : previous 30 min
  - $x^2$ : previous 60 min
  - $x^3$ : previous 120 min
- at t, predict the future change  $\Delta p$  using these time-series

## **Predicting Price Change**

## **Bayesian regression**

- $\Delta p^{j}$ : prediction of cost change using  $x^{j}$  with samples  $S^{j}$
- $r = \frac{v_{bid} v_{ask}}{v_{bid} + v_{ask}}$ 
  - v<sub>bid</sub> is total volumn of bid in top 60 orders based on the current order book
- $\mathbf{w} = (w_0, \dots, w_4)$  learnt parameters

$$\Delta p = w_0 + \sum_{j=1}^3 w_j \Delta p^j + w_4 r$$

## How to find $S_j$ , How to learn w

- · divide entire 7 months into three periods
- 1st period: find patterns  $S_i$ ,  $1 \le j \le 3$ 
  - $x_i$  = all possible time series of appropriate length (180, 360, and 720 from  $S_1, S_2, S_3$ )
  - $y_i = avg(\Delta p)$  of 10 sec interval at the end of  $x_i$

  - $|----x_i^1-----|$

  - $x_i^2 |x_i^2|$
  - -----|y<sub>i</sub>|
- pick 20 clusters out of 100 clusters (k-means algo)
  - distance:  $\exp(-\|x x_i\|_2^2/4) -> \exp(c \cdot s(x, x_i))$ 
    - $\circ$  because of computational cost of squared  $l_2-norm$
  - similarity between two vectors a, b

$$s(a,b) = \frac{\sum_{z=1}^{M} (a_z - mean(a))(b_z - mean(b))}{M \operatorname{std}(a) \operatorname{std}(b)}$$

- computing similarity
  - precomputed and normalized  $S_1, S_2, S_3$
  - 1 sec / 10 million vectors similarity
- 20 patterns



## How to find $S_j$ , How to learn w

• 2nd period: learn parameter  $\mathbf{w}$  having best linear fit over all  $S_i$ 

$$\Delta p = w_0 + \sum_{j=1}^3 w_j \Delta p^j + w_4 r$$

#### **Evaluation**

- · 3rd period: evaluate the performance of the algorithm
  - different threshold t
  - evaluation metric: Sharpe ratio (https://en.wikipedia.org/wiki/Sharpe ratio)
    - how well the strategy performs compared to the risk-free strategy
    - · how consistently it performs
    - o Good: greater than 1
    - · Very Good: higher than 2
    - · Excellent: 3 or higher
- In 50 days, 89% return, a Sharp ratio of 4.10
  - 2,872 trades
  - total profit peaked 3,362 yuan (581,525.14 KRW, 513.81 USD)
  - total average investment 3,781 yuan (653,999.57 KRW, 577.74 USD)



Fig. 1: The effect of different threshold on the number of trades, average holding time and profit

- increase threshold, number of trades decreases, avg holding time increases
- · increase threshold, profit&loss increases, total profit&loss saturates



Fig. 2: The inverse relationship between the average profit per trade and the number of trades



- · blue: bitcoin price, black: cumulative profit
- strategy performs better in the middle section when the market volatility is high.

# **Discussion**

## **Are there Interesting Patterns?**

• head-n-shoulder, triangle, and so on

### **Scaling of Strategy**

- +1/-1 Bitcoin
- flexibility in the Bitcoin position

## **Scaling of Computation**

- not'representative' prior time-series
- use all possible time-series could have improved the prediction power