Napredne teme & heuristike

Goran Žužić

24. siječnja 2015.

Obojite graf s $n \le 3000$ vrhova u 2 boje tako da niti vrh nema ≥ 2 susjeda iste boje kao i on. Stupanj svakog vrha je ≤ 3 .

Obojite graf s $n \le 3000$ vrhova u 2 boje tako da niti vrh nema ≥ 2 susjeda iste boje kao i on. Stupanj svakog vrha je ≤ 3 .

Obojite graf s $n \le 3000$ vrhova u 2 boje tako da niti vrh nema ≥ 2 susjeda iste boje kao i on. Stupanj svakog vrha je ≤ 3 .

Pitanja (5 minuta):

• Ispravno ili ne: "Generiraj slucajno bojanje dok ne dobijes ispravan rezultat."

- Ispravno ili ne: "Uzmi neko bojanje i (najvise jednom) promijeni boju svakom vrhu koji nije dobar. Slozenost je O(n)."
- Ispravno ili ne: "Dok nemamo dobro bojanje, mijenjaj boju nekog vrha koji nije dobar."

Obojite graf s $n \le 3000$ vrhova u 2 boje tako da niti vrh nema ≥ 2 susjeda iste boje kao i on. Stupanj svakog vrha je ≤ 3 .

- Ispravno ili ne: "Generiraj slucajno bojanje dok ne dobijes ispravan rezultat."
 - Ne! Primjerice, slucajno bojanje 600 duplikata prethodnog grafa ima vjerjoatnost $(\frac{31}{32})^{600} < 10^{-9}$ da bude ispravan.
- Ispravno ili ne: "Uzmi neko bojanje i (najvise jednom) promijeni boju svakom vrhu koji nije dobar. Slozenost je O(n)."
- Ispravno ili ne: "Dok nemamo dobro bojanje, mijenjaj boju nekog vrha koji nije dobar."

Obojite graf s $n \le 3000$ vrhova u 2 boje tako da niti vrh nema ≥ 2 susjeda iste boje kao i on. Stupanj svakog vrha je ≤ 3 .

- Ispravno ili ne: "Generiraj slucajno bojanje dok ne dobijes ispravan rezultat."
 - Ne! Primjerice, slucajno bojanje 600 duplikata prethodnog grafa ima vjerjoatnost $(\frac{31}{32})^{600} < 10^{-9}$ da bude ispravan.
- Ispravno ili ne: "Uzmi neko bojanje i (najvise jednom) promijeni boju svakom vrhu koji nije dobar. Slozenost je O(n)."
 - Ne! Poneke vrhove je potrebno bojati vise puta!
- Ispravno ili ne: "Dok nemamo dobro bojanje, mijenjaj boju nekog vrha koji nije dobar."

Obojite graf s $n \le 3000$ vrhova u 2 boje tako da niti vrh nema ≥ 2 susjeda iste boje kao i on. Stupanj svakog vrha je ≤ 3 .

- Ispravno ili ne: "Generiraj slucajno bojanje dok ne dobijes ispravan rezultat."
 - Ne! Primjerice, slucajno bojanje 600 duplikata prethodnog grafa ima vjerjoatnost $(\frac{31}{32})^{600} < 10^{-9}$ da bude ispravan.
- Ispravno ili ne: "Uzmi neko bojanje i (najvise jednom) promijeni boju svakom vrhu koji nije dobar. Slozenost je O(n)."
 - Ne! Poneke vrhove je potrebno bojati vise puta!
- Ispravno ili ne: "Dok nemamo dobro bojanje, mijenjaj boju nekog vrha koji nije dobar."
 - Da! No, preostaje pitanje hoce li se uopce zavrsiti te, ako da, zasto je dovoljno brzo?

Obojite graf s $n \le 3000$ vrhova u 2 boje tako da niti vrh nema ≥ 2 susjeda iste boje kao i on. Stupanj svakog vrha je ≤ 3 .

Zasto je algoritam "mijenjanja boju loseg dok nemamo dobro bojanje" dovoljno brz?

$$f(\text{graf }G) = \sum_{\text{brid }e} [e \text{ spaja dva vrha iste boje}]$$

Zato jer:

 $oldsymbol{0}$ svaka promjena boje loseg vrha smanje f za barem 1.

Obojite graf s $n \le 3000$ vrhova u 2 boje tako da niti vrh nema ≥ 2 susjeda iste boje kao i on. Stupanj svakog vrha je ≤ 3 .

Zasto je algoritam "mijenjanja boju loseg dok nemamo dobro bojanje" dovoljno brz?

$$f(\text{graf }G) = \sum_{\text{brid }e} [e \text{ spaja dva vrha iste boje}]$$

Zato jer:

- $oldsymbol{0}$ svaka promjena boje loseg vrha smanje f za barem 1.
- $0 \le f(G) \le \text{broj bridova}|E|$

Obojite graf s $n \le 3000$ vrhova u 2 boje tako da niti vrh nema ≥ 2 susjeda iste boje kao i on. Stupanj svakog vrha je ≤ 3 .

Zasto je algoritam "mijenjanja boju loseg dok nemamo dobro bojanje" dovoljno brz?

$$f(\text{graf }G) = \sum_{\text{brid }e} [e \text{ spaja dva vrha iste boje}]$$

Zato jer:

- $oldsymbol{0}$ svaka promjena boje loseg vrha smanje f za barem 1.
- $0 \le f(G) \le \text{broj bridova}|E|$
- f ne moze beskonacno dugo padati

Obojite graf s $n \le 3000$ vrhova u 2 boje tako da niti vrh nema ≥ 2 susjeda iste boje kao i on. Stupanj svakog vrha je ≤ 3 .

Zasto je algoritam "mijenjanja boju loseg dok nemamo dobro bojanje" dovoljno brz?

$$f(\text{graf }G) = \sum_{\text{brid }e} [e \text{ spaja dva vrha iste boje}]$$

Zato jer:

- $oldsymbol{0}$ svaka promjena boje loseg vrha smanje f za barem 1.
- $0 \le f(G) \le \text{broj bridova}|E|$
- f ne moze beskonacno dugo padati
- najveci broj iteracija je upravo $|E| = \frac{3}{2}n \le 4500$

Zadana je $n \times n$ (najvise 300 × 300) sahovska ploca, na svakom polju je napisan prirodan broj. Postavi dvije kule tako da je suma napadnutih polja maksimizirana.

Zadana je $n \times n$ (najvise 300×300) sahovska ploca, na svakom polju je napisan prirodan broj. Postavi dvije kule tako da je suma napadnutih polja maksimizirana.

Pitanja (5 minuta):

• Smislite sporo ("brute force") rjesenje.

 Ispravno ili ne: "Jedna ce kula uvijek biti na polju s kojeg napada najvecu mogucu sumu."

Zadana je $n \times n$ (najvise 300 \times 300) sahovska ploca, na svakom polju je napisan prirodan broj. Postavi dvije kule tako da je suma napadnutih polja maksimizirana.

- Smislite sporo ("brute force") rjesenje.
 - Na sve nacine postavimo dvije kule $O(n^4)$, potom idemo po svim napadnutim poljima i pozbrajamo ih O(n). Ukupno $O(n^5)$.
- Ispravno ili ne: "Jedna ce kula uvijek biti na polju s kojeg napada najvecu mogucu sumu."

Zadana je $n \times n$ (najvise 300×300) sahovska ploca, na svakom polju je napisan prirodan broj. Postavi dvije kule tako da je suma napadnutih polja maksimizirana.

- Smislite sporo ("brute force") rjesenje.
 - Na sve nacine postavimo dvije kule $O(n^4)$, potom idemo po svim napadnutim poljima i pozbrajamo ih O(n). Ukupno $O(n^5)$.
- Ispravno ili ne: "Jedna ce kula uvijek biti na polju s kojeg napada najvecu mogucu sumu."
 - Ne!

Sluzbeno rjesenje

Pretpostavimo retke kula - $O(n^2)$. Potom napravimo analizu slucajeva te pohlepno odredimo stupce gdje staviti kule. Ukupna slozenost je $O(n^3)$ uz veliku konstantu (potrebna je optimizacija).

"Osreckijeva heuristika"

Za svako polje izracunamo sumu polja napadnutih s njega. Sortiramo i odaberemo 200 polja s najvecom sumom, te pokusamo postaviti jednu kulu na svako od tih polja. drugu kulu postavimo na sve moguce nacine. Slozenost $O(200n^2)\approx n^3$.

- Brute force $O(n^6) 20\%$ bodova
- Brute force $O(n^5) 30\%$ bodova
- Sluzbeno rjesenje $O(n^3) 100\%$ bodova
- Osreckijeva heuristika $O(200n^2) 100\%$ bodova
 - provjera samo najboljeg polja 60% bodova, prva 4 polja -90% bodova, prvih 5 polja - 100% bodova

Zadano je $n \leq 100$ duzina u ravnini. Definiramo

$$f(x,y) = \sum_{\text{duzina d}} \text{udaljenost}([x,y],d)$$

gdje se udaljenost tocke T i duzine definira kao minimalna udaljenost T i bilo koje tocke na duzini.

Primjer

Na sljedecem slideu...

Zadano je $n \leq 100$ duzina u ravnini. Definiramo

$$f(x,y) = \sum_{\text{duzina d}} \text{udaljenost}([x,y],d)$$

gdje se udaljenost tocke T i duzine definira kao minimalna udaljenost T i bilo koje tocke na duzini.

Pitanja (5 minuta):

• Ako je zadana samo jedna duzina, je li tada funkcija f(x,y) konveksna?

• Je li f(x, y) konveksna i u opcenitom slucaju. Napomena: suma konveksnih funkcija je i dalje konveksna.

Zadano je $n \leq 100$ duzina u ravnini. Definiramo

$$f(x,y) = \sum_{\text{duzina d}} \text{udaljenost}([x,y],d)$$

gdje se udaljenost tocke T i duzine definira kao minimalna udaljenost T i bilo koje tocke na duzini.

- Ako je zadana samo jedna duzina, je li tada funkcija f(x,y) konveksna?
 - Da! Opcenito vrijedi da je $f(v) = \inf_{k \in K} \operatorname{udaljenost}(k, v)$ konveksna funkcija ako je K konveksan skup. Vise informacija u knjizi *Boyd*, *Vandenberghe*: "Convex Optimization".
- Je li f(x, y) konveksna i u opcenitom slucaju. Napomena: suma konveksnih funkcija je i dalje konveksna.

Zadano je $n \leq 100$ duzina u ravnini. Definiramo

$$f(x,y) = \sum_{\text{duzina d}} \text{udaljenost}([x,y],d)$$

gdje se udaljenost tocke T i duzine definira kao minimalna udaljenost T i bilo koje tocke na duzini.

- Ako je zadana samo jedna duzina, je li tada funkcija f(x,y) konveksna?
 - Da! Opcenito vrijedi da je $f(v) = \inf_{k \in K} \text{udaljenost}(k, v)$ konveksna funkcija ako je K konveksan skup. Vise informacija u knjizi *Boyd*, *Vandenberghe*: "Convex Optimization".
- Je li f(x, y) konveksna i u opcenitom slucaju. Napomena: suma konveksnih funkcija je i dalje konveksna.
 - Da, izravno slijedi iz prethodnog! Hint: ako f'' > 0 i g'' > 0, tada (f + g)'' > 0.

Zadano je $n \leq 100$ duzina u ravnini. Definiramo

$$f(x,y) = \sum_{\text{duzina d}} \text{udaljenost}([x,y],d)$$

gdje se udaljenost tocke T i duzine definira kao minimalna udaljenost T i bilo koje tocke na duzini.

Rjesenja

- Ternary search! 2D ili prvo po jednoj, pa onda po drugoj dimenziji.
- Gradijentni spust, evolucijski algoritmi, Newton-Raphson, konjugirani gradijenti...

Udaljenost izmedju dvije 2D tocke $A=(A_x,A_y)$ i $B=(B_x,B_y)$ se racuna kao $d(A,B)=|A_x-B_x|+|A_y-B_y|$. Zadano je $n\leq 10^6$ 2D tocaka, odredite maksimalnu udaljenost neke dvije tocke.

llustracija udaljenosti							
							11
							H

Udaljenost izmedju dvije 2D tocke $A=(A_x,A_y)$ i $B=(B_x,B_y)$ se racuna kao $d(A,B)=|A_x-B_x|+|A_y-B_y|$. Zadano je $n\leq 10^6$ 2D tocaka, odredite maksimalnu udaljenost neke dvije tocke.

Pitanja (5 minuta):

• Rijesite zadatak u O(n) kada bi udaljenost bila zadana kao $g(A,B) = (A_x - B_x) + (A_y - B_y)$.

• Oznacimo s M(p) najudaljeniju tocku od tocke p (standardna udaljenost d). Koliko cemo tocaka posjetiti u obilasku $p \to M(p) \to M(M(p)) \to M(M(M(p))) \to ...?$

¹citati: "ne znam"

Udaljenost izmedju dvije 2D tocke $A=(A_x,A_y)$ i $B=(B_x,B_y)$ se racuna kao $d(A,B)=|A_x-B_x|+|A_y-B_y|$. Zadano je $n\leq 10^6$ 2D tocaka, odredite maksimalnu udaljenost neke dvije tocke.

- Rijesite zadatak u O(n) kada bi udaljenost bila zadana kao $g(A, B) = (A_x B_x) + (A_y B_y)$.
 - $g(A,B) = (A_x B_x) + (A_y B_y) = (A_x + A_y) (B_x + B_y)$. Nadjemo tocke s max. i min. vrijednostima x + y.
- Oznacimo s M(p) najudaljeniju tocku od tocke p (standardna udaljenost d). Koliko cemo tocaka posjetiti u obilasku $p \to M(p) \to M(M(p)) \to M(M(M(p))) \to ...?$

¹citati: "ne znam"

Udaljenost izmedju dvije 2D tocke $A=(A_x,A_y)$ i $B=(B_x,B_y)$ se racuna kao $d(A,B)=|A_x-B_x|+|A_y-B_y|$. Zadano je $n\leq 10^6$ 2D tocaka, odredite maksimalnu udaljenost neke dvije tocke.

- Rijesite zadatak u O(n) kada bi udaljenost bila zadana kao $g(A, B) = (A_x B_x) + (A_y B_y)$.
 - $g(A,B) = (A_x B_x) + (A_y B_y) = (A_x + A_y) (B_x + B_y)$. Nadjemo tocke s max. i min. vrijednostima x + y.
- Oznacimo s M(p) najudaljeniju tocku od tocke p (standardna udaljenost d). Koliko cemo tocaka posjetiti u obilasku $p \to M(p) \to M(M(p)) \to M(M(M(p))) \to ...?$
 - Tesko je reci¹. Intuitivno, biti ce ih malo: 2 ili 3. Motivacija: najudaljeniji cvorovi na stablu...

¹citati: "ne znam"

Udaljenost izmedju dvije 2D tocke $A=(A_x,A_y)$ i $B=(B_x,B_y)$ se racuna kao $d(A,B)=|A_x-B_x|+|A_y-B_y|$. Zadano je $n\leq 10^6$ 2D tocaka, odredite maksimalnu udaljenost neke dvije tocke.

Sluzbeno rjesenje

Za svaku tocku (x, y) dodamo fiktivne tocke (-x, y), (x, -y), (-x, -y) te rijesimo uz udaljenost $(A_x - B_x) + (A_y - B_y)$. Slozenost je O(n). Dokaz nije tezak, ali je zapetljan.

"Sluganoviceva heuristika"

Odaberemo slucajnu tocku p te isprobamo udaljenosti $p \leftrightarrow M(p) \leftrightarrow M(M(p)) \leftrightarrow M(M(M(p)))$. Postupak ponavljamo 50 puta, slozenost O(50n).

$$\bullet |x| = \max(x, -x)$$

- $\bullet |x| = \max(x, -x)$
- $\bullet \ \max(a,b) + \max(x,y) = \max(a+x,a+y,b+x,b+y)$

$$\bullet |x| = \max(x, -x)$$

$$\bullet \ \max(a,b) + \max(x,y) = \max(a+x,a+y,b+x,b+y)$$

•

$$|A_x - B_x| + |A_y - B_y|$$

$$= \max(A_x - B_x, -A_x + B_x) + \max(A_y - B_y, -A_y + B_y)$$

$$= \max(\cdot, \cdot, \cdot, \cdot)$$

$$\bullet |x| = \max(x, -x)$$

$$\bullet \ \max(a,b) + \max(x,y) = \max(a+x,a+y,b+x,b+y)$$

•

$$|A_x - B_x| + |A_y - B_y|$$

$$= max(A_x - B_x, -A_x + B_x) + max(A_y - B_y, -A_y + B_y)$$

$$= max(\cdot, \cdot, \cdot, \cdot)$$

•

$$\max(|A_x - B_x| + |A_y - B_y|, |C_x - D_x| + |C_y - D_y|, ...)$$

= $\max(\cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot, ...)$

$$\bullet |x| = \max(x, -x)$$

$$\bullet \ \max(a,b) + \max(x,y) = \max(a+x,a+y,b+x,b+y)$$

•

$$|A_x - B_x| + |A_y - B_y|$$

$$= max(A_x - B_x, -A_x + B_x) + max(A_y - B_y, -A_y + B_y)$$

$$= max(\cdot, \cdot, \cdot, \cdot)$$

•

$$\max(|A_x - B_x| + |A_y - B_y|, |C_x - D_x| + |C_y - D_y|, ...)$$

= $\max(\cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot, ...)$

• Zadnji izraz je istovjetan iskazu sluzbenog rjesenja. Analogno, zadatak u \mathcal{D} dimenzija mozemo rijesiti u slozenosti $O(N \cdot 2^{\mathcal{D}})$.

Zadana su dva stringa A, B duljine do 10^5 , sastavljeni od malih slova engleske abecede. Odredi je li B podstring od A.

Primjer

A = AGGCAGTCGAAG

 $B = \mathsf{CAGTC}$

Rjesenje: DA

A = AGGCAGTCGAAG

B = GGG

Rjesenje: NE

Zadana su dva stringa A, B duljine do 10^6 , sastavljeni od malih slova engleske abecede. Odredi je li B podstring od A.

Pitanja (5 minuta):

• Smislite primjer koji ce natjerati standardno brute force rjesenje u $O(|A| \times |B|)$ da napravi $\approx |A| \times |B| = 10^{12}$ koraka.

 Navedite nekoliko rjesenja (samo nazive i slozenosti) s kojima znate brze rijesiti zadatak. Hint: proslotjedno predavanje.

Zadana su dva stringa A, B duljine do 10^6 , sastavljeni od malih slova engleske abecede. Odredi je li B podstring od A.

- Smislite primjer koji ce natjerati standardno brute force rjesenje u $O(|A| \times |B|)$ da napravi $\approx |A| \times |B| = 10^{12}$ koraka.
 - $A = a^{n-1} \cdot b \cdot a^{n-1} \cdot b$, $B = a^n$ ce natjerati brute force da odradi $\approx n^2$ koraka.
- Navedite nekoliko rjesenja (samo nazive i slozenosti) s kojima znate brze rijesiti zadatak. Hint: proslotjedno predavanje.

Zadana su dva stringa A, B duljine do 10^6 , sastavljeni od malih slova engleske abecede. Odredi je li B podstring od A.

- Smislite primjer koji ce natjerati standardno brute force rjesenje u $O(|A| \times |B|)$ da napravi $\approx |A| \times |B| = 10^{12}$ koraka.
 - $A = a^{n-1} \cdot b \cdot a^{n-1} \cdot b$, $B = a^n$ ce natjerati brute force da odradi $\approx n^2$ koraka.
- Navedite nekoliko rjesenja (samo nazive i slozenosti) s kojima znate brze rijesiti zadatak. Hint: proslotjedno predavanje.
 - Hashiranje (Rabin-Karp) u ocekivanih O(|A| + |B|), Knuth-Morris-Pratt O(|A| + |B|), Aho-Corasick O(|A| + |B|).

Zadana su dva stringa A, B duljine do 10^6 , sastavljeni od malih slova engleske abecede. Odredi je li B podstring od A.

Primjeri koji ruse brute force moraju biti posebno konstruirani, stoga ucinite nesto sto sastavljaci zadataka ne ocekuju!

"Bosanski algoritam" 🙂

Okrenite (engl. reverse) stringove $A \to A^r, B \to B^r$ i potom brute force metodom potrazite B^r u A^r .

Zadatak "Information" (CEO| 2008, Contest Day |)

Zadan je usmjeren graf sa $n \leq 2000$ vrhova i $e \leq 10^5$ bridova. Istaknut je vrh A. Nadite bojanje bridova u crvenu i plavu boju tako da postoji i "crveni put" i "plavi put" od A do svakog drugog vrha v.

Zadatak "Information" (CEO! 2008, Contest Day 1)

Zadan je usmjeren graf sa $n \leq 2000$ vrhova i $e \leq 10^5$ bridova. Istaknut je vrh A. Nadite bojanje bridova u crvenu i plavu boju tako da postoji i "crveni put" i "plavi put" od A do svakog drugog vrha v.

Pitanja (5 minuta):

• Smislite heuristiku za ovaj zadatak.

Zadatak "Information" (CEOI 2008, Contest Day I)

Zadan je usmjeren graf sa $n \leq 2000$ vrhova i $e \leq 10^5$ bridova. Istaknut je vrh A. Nadite bojanje bridova u crvenu i plavu boju tako da postoji i "crveni put" i "plavi put" od A do svakog drugog vrha v.

- Smislite heuristiku za ovaj zadatak.
 - Napravite obilazak grafa (npr. u dubinu) tako da slucajno birate sljedeci brid. Potom provjerite jel u neodabranim vrhovima jos uvijek postoji put do svih. Ponovite postupak 100 puta.