

Linear independence - Intuition

• $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ Linearly independent

Linearly relation between vectors

Linear independence - Intuition

•
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \\ 0 \end{bmatrix}$$

$$3\overrightarrow{v_1} + 4\overrightarrow{v_2} = \overrightarrow{v_3}$$

$$3\overrightarrow{v_1} + 4\overrightarrow{v_2} - \overrightarrow{v_3} = 0$$

$$\Rightarrow \overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3} \text{ are ly dependent}.$$

Geometrical Representation

Suppose we have a set of two non-zero vectors. One is a linear combination of the other whenever it is a scalar multiple of the other, i.e. whenever it is parallel to the other. Thus:

A set of two vectors is linearly dependent if one is parallel to the other,

and linearly independent if they are not parallel.

(This is true in either 2-space or 3-space.)

Geometrical Representation

If any two of the vectors are parallel, then one is a scalar multiple of the other. A scalar multiple is a linear combination, so the vectors are linearly dependent. (Notice that all three vectors also lie in a plane.)

If no two of the vectors are parallel but all three lie in a plane, then any two of those vectors span that plane. The third vector is a linear combination of the first two, since it also lies in this plane, so the vectors are linearly dependent.

Geometrical Representation

If the three vectors don't all lie in some plane through the origin, none is in the span of the other two, so none is a linear combination of the other two. The three vectors are linearly independent.

$$S = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\} \qquad Let \text{ us try } \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = c_1 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$c_1 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ c_1 \\ c_2 \end{pmatrix}$$

$$What \text{ever be the value of } c_1, c_2 \text{ we can't make } \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$Similiarly \text{ there is no } c_1, c_2 \text{ such that } \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$Similiarly \text{ there is no } c_1, c_2 \text{ such that } \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

First level definition of linear independence

A set of vectors $\{v_1, v_2, ..., v_n\}$ of same tuple size form an independent set if none of the vector in the set can be expressed as linear combination of remaining vectors in the set.

$$\cdot \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\} \longrightarrow \text{Linearly independent}$$

$$\cdot \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\} \longrightarrow \text{ Likely independent}$$

- 2 vectors are independent if they are not in the same plane.
- 3 vectors are independent if they are not in the same plane.

$$\left\{ \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \end{bmatrix} \right\} \longrightarrow \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ -2 \end{bmatrix} \quad \text{can you get- a ?}$$

$$\text{No } \Rightarrow \text{ linearly independent}$$

Example. Are the vectors [2, 3], [3, 4] and [1, 1] in 2-space linearly independent or linearly dependent?

Check if any of them is a linear combination of the others, i.e. check whether any of the following equations has a solution:

$$[2, 3] = a[3, 4] + b[1, 1]$$

$$[3, 4] = a[2, 3] + b[1, 1]$$

$$[1, 1] = a[2, 3] + b[3, 4]$$

It's easy to see that the first equation has the solution a = 1, b = -1, so

$$[2, 3] = (1)[3, 4] + (-1)[1, 1]$$
.

The three vectors are thus linearly dependent.

Example. Are the vectors [1, 2, 3], [4, 5, 6] and [1, 0, 1] in 3-space linearly independent or linearly dependent?

Check if any of them is a linear combination of the others, i.e. check if any of the following equations has a solution.

$$[1, 2, 3] = a[4, 5, 6] + b[1, 0, 1]$$

 $[4, 5, 6] = a[1, 2, 3] + b[1, 0, 1]$
 $[1, 0, 1] = a[1, 2, 3] + b[4, 5, 6].$

Each equation is equivalent to a linear system of three equations in two variables. All three systems turn out to have no solution, i.e. none of the three vector equations has a solution, so the vectors are linearly independent.

Linear independence and dependence

A set of vectors $\{u_1,u_2$, u_3 $u_m\}$ is said to be <u>linearly independent</u> if

$$c_1u_1+c_2u_2+c_3u_3\dots+c_mu_m=0$$
 has at least one solution, namely

$$c_1 = c_2 = c_3 = \dots = c_m = 0.$$

Otherwise the set $\{u_1,u_2$, u_3 $u_m\}$ are said to be <u>linearly dependent</u>.

Results

- ✓ Two vectors are independent if one is not multiple of other.
- ✓ A collection that contain repeated vector is dependent.
- ✓ The empty set is linearly independent.
- \checkmark The set 0 is linearly dependent.
- ✓ A nonzero single-ton set is linearly independent.
- The set of vectors $\{v_1, v_2, ..., v_n\}$ is dependent if any one of the v_i s is zero or any of the v_i is a linear combination of some other vectors.
- \checkmark If a set of vectors is linearly independent, then any rearrangement of the vectors is also linearly independent.

Determine whether the following set of vectors in \mathbb{R}^3 is L.1. or L.D.

$$S = \{(1, 2, 3), (0, 1, 2), (-2, 0, 1)\}$$

$$\mathbf{v}_{1} \quad \mathbf{v}_{2} \quad \mathbf{v}_{3}$$

$$\mathbf{v}_{1} + c_{2}\mathbf{v}_{2} + c_{3}\mathbf{v}_{3} = \mathbf{0} \Rightarrow \begin{cases} c_{1} & -2c_{3} = 0 \\ 2c_{1} + c_{2} + c_{3} = 0 \end{cases}$$

$$\Rightarrow c_{1} + 2c_{2} + c_{3} = 0$$

$$\Rightarrow c_{1} = c_{2} = c_{3} = 0 \quad \text{(only the trivial solution)}$$

$$\Rightarrow S \text{ is linearly independent}$$

A set of n vectors is linearly independent if the matrix with these vectors as columns has a non-zero determinant and the set is dependent if the determinant is zero.

Are the vectors(1,2) and (-5,3) linearly independent?

The vectors (1,2) and (-5,3) are linearly independent since the matrix $\begin{vmatrix} 1 & -5 \\ 2 & 3 \end{vmatrix}$ has a non-zero determinant.

Are the vectors (2,-1,1), (3,-4,-2) and (5,-10,-8) linearly independent?

The vectors
$$u=(2,-1,1)$$
 , $v=(3,-4,-2)$, and $w=(5,-10,-8)$ are dependent since the $\begin{vmatrix} 2&3&5\\-1&-4&-10\\1&-2&-8 \end{vmatrix}$ determinant is zero.

Practice Questions

1.
$$\{\begin{bmatrix} 6 \\ 7 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}\}$$
 \implies Linearly Independent

2.
$$\left\{\begin{bmatrix} 2\\0\\0\end{bmatrix}, \begin{bmatrix} 0\\4\\0\end{bmatrix}, \begin{bmatrix} 0\\0\\9\end{bmatrix}\right\}$$
 \longrightarrow Linearly Independent

3.
$$\left\{\begin{bmatrix} 9\\7\\8 \end{bmatrix}, \begin{bmatrix} -9\\-7\\-8 \end{bmatrix}\right\}$$
 \longrightarrow Linearly Dependent

$$4. \left\{ \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}, \begin{bmatrix} 5\\6\\7\\0 \end{bmatrix}, \begin{bmatrix} 8\\9\\0\\0 \end{bmatrix}, \begin{bmatrix} 10\\0\\0\\0 \end{bmatrix} \right\} \implies \begin{cases} k_1 \widehat{v_1} + k_2 \widehat{v_2} + k_3 \overline{v_3} + k_4 \widehat{v_4} = \overline{0} \\ k_1 + 5 k_2 + 8 k_3 + 10 k_4 = \overline{0} \\ 2k_1 + 6 k_2 + 9 k_3 = \overline{0} \\ 3k_1 + 7k_2 = \overline{0} \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_1 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_1 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_1 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_1 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_1 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_1 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_1 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_2 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_1 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_2 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_2 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_2 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_2 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_2 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_1 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_2 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_2 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_2 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_2 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_2 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_2 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_2 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_2 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_2 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_2 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_2 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_2 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_2 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_2 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_2 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_2 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_2 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_2 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_2 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_2 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_2 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_2 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_2 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_2 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_2 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_2 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_2 - 0 \\ k_2 = 0 \end{cases} \xrightarrow{k_1 = 0} \begin{cases} k_1 - 0 \\ k_$$

5.
$$\{\begin{bmatrix} 1\\ 0 \end{bmatrix}, \begin{bmatrix} 1\\ 1 \end{bmatrix}, \begin{bmatrix} 4\\ 5 \end{bmatrix} \}$$
 $c_1 = \begin{bmatrix} 1\\ 0 \end{bmatrix} + \begin{bmatrix} 1\\ 2 \end{bmatrix} + \begin{bmatrix} 1\\ 3 \end{bmatrix} + \begin{bmatrix} 4\\ 5 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$
 $c_1 + c_2 + 4 + c_3 = 0 \longrightarrow 0$
 $c_2 + 5 + c_3 = 0 \implies c_3 = -\frac{c_2}{5} - \frac{2}{5}$

Sub in (1); $c_1 + c_2 - \frac{4c_2}{5} = 0$
 $c_1 + \frac{c_2}{5} = 0$
 $c_2 = -5c_1 \longrightarrow 2$

Lihearly dependent

Practice Questions

Write an example of 6 linearly independent vectors.

- Are the row vectors of any unit matrix linearly independent? Y
- Are the column vectors of any unit matrix linearly independent? Y
- Are the row vectors of a triangular square matrix of order three linearly independent?

How many independent rows does the matrix A have?

$$A = \begin{bmatrix} 2 & 3 & 1 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{7} \xrightarrow{7}$$

$$A = \begin{bmatrix} 2 & 3 & 1 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \overrightarrow{r_3}$$

$$\{\overrightarrow{r_1}, \overrightarrow{r_2}, \overrightarrow{r_3}\} \text{ are 3 independent any }$$

