Age structure effects and population control in urban/suburban white-tailed deer, Chicago, IL 1992-2006

Yunyi Shen, Dwayne R. Etter and Tim R. VanDeelen

UW Madison
Department of Forest and Wildlife Ecology

January 27, 2020

- Introduction
 - Overabundant Suburb Deer Problem
 - New Management Paradigm
 - Research Objective
- 2 Chicago Suburb Deer: a Case Study
 - Intensive Harvest
 - Population Reconstruction: a Bayesian Approach
 - Results
- References and others

Introduction

0000 00000 0000000000000

Overabundant Suburb Deer Problem

•0

Overabundant Deer is a Problem: Collision

2016 Likelihood of Collision with Deer

*July 1, 2015 – June 30, 2016

High Risk States Medium Risk States Low Risk States

Overabundant Suburb Deer Problem

Overabundant Deer is a Problem: CWD

Paradigms Sustainable Harvest Low Densities

Paradigms	Sustainable Harvest	Low Densities
Growth goal	~ 1	< 1 to reduce

Paradigms	Sustainable Harvest	Low Densities	
Growth goal	~ 1	< 1 to reduce	
Density	Various	Low	

New Management Paradigm

Paradigm Shift of Population Control

Paradigms	Sustainable Harvest	Low Densities
Growth goal	~ 1	< 1 to reduce
Density	Various	Low
Age structure	Stationary	Non-stationary

Paradigms	Sustainable Harvest	Low Densities	
Growth goal	~ 1	< 1 to reduce	
Density	Various	Low	
Age structure	Stationary	Non-stationary	

Requires a further evaluation!

Research Objective

 Evaluate intensive harvest as a method of population control with a goal of maintain low density:

Is intensive harvest effective?

Introduction

Research Objective

 Evaluate intensive harvest as a method of population control with a goal of maintain low density:

Is intensive harvest effective?

 Understanding the dynamics of suburb deer population under such control:

What is the best way to control it?

Research Objective

 Evaluate intensive harvest as a method of population control with a goal of maintain low density:

Is intensive harvest effective?

 Understanding the dynamics of suburb deer population under such control:

What is the best way to control it?

 Evaluate the effect of shifted age structure after intensive harvest:

Can we skip a harvest year?

Research Objective

 Evaluate intensive harvest as a method of population control with a goal of maintain low density:

Is intensive harvest effective?

 Understanding the dynamics of suburb deer population under such control:

What is the best way to control it?

 Evaluate the effect of shifted age structure after intensive harvest:

Can we skip a harvest year?

References and others

•000

Study area: Complex 1

- $30.6km^2$
- Isolated by highways

Intensive harvest

• 15 years

Intensive Harvest

Intensive harvest

- 15 years
- 3,827 records

• Did this method work in Chicago?

- Did this method work in Chicago?
- What was the effect of shifted age structure after culling here?

- Did this method work in Chicago?
- What was the effect of shifted age structure after culling here?
- Can we control by knock population down and then keep harvest a fixed quota or we have to be adaptive, i.e. try harvest a fixed proportion?

- Did this method work in Chicago?
- What was the effect of shifted age structure after culling here?
- Can we control by knock population down and then keep harvest a fixed quota or we have to be adaptive, i.e. try harvest a fixed proportion?
- Which age should we focus on?

- Did this method work in Chicago?
- What was the effect of shifted age structure after culling here?
- Can we control by knock population down and then keep harvest a fixed quota or we have to be adaptive, i.e. try harvest a fixed proportion?
- Which age should we focus on?

To Answer These Questions:

Reconstruct the Dynamics and find the posterior distribution of population growth under different schemes!

Population Reconstruction: a Bayesian Approach

Data Collected

- Age-at-harvest
- Post-harvest aerial count
- Fecundity was surveyed annually
- Prior knowledge from Etter et al. 2002 on survival rate

Population Reconstruction: a Bayesian Approach

Process Model: Leslie Matrix Projection

Reconstruction: A Bayesian (Filter) Framework

Algorithm Modified from Weldon et al. 2013 and implemented in R and C++

Model Selection Based on DIC

- There are multiple assumptions considered vital rates: e.g. whether fecundity changing through time and age?
- Model was selected based on **Deviation Information** Criterion (DIC), a Bayesian extension of AIC (Gelman et al. 2013).

Population Reconstruction: a Bayesian Approach

Making Predictions on Different Schemes

- Stochastic Leslie matrix model with vital rates follow posterior distribution estimated by reconstruction: a retrospect
- i.e., estimating the conditional distribution of population given scheme and data

Population | Data, Scheme

Model Selection

Fe	cundity	Survival	Harvest	error	P_d	DIC
ag	e, time	age, sex, time	F/A, sex, time	homo	224.6	1245
F/	Y/A, time	age, sex, time	F/A, sex, time	time	205.0	1297
F/	Y/A, time	age, sex, time	F/A, sex, time	homo	206.3	1304
F/	Y/A, time	F/A, sex, time	F/A, sex, time	time	182.4	1307

Model Selection

Fecundity	Survival	Harvest	error	P_d	DIC
age, time	age, sex, time	F/A, sex, time	homo	224.6	1245
F/Y/A, time	age, sex, time	F/A, sex, time	time	205.0	1297
F/Y/A, time	age, sex, time	F/A, sex, time	homo	206.3	1304
F/Y/A, time	F/A, sex, time	F/A, sex, time	time	182.4	1307

Model 1 were chosen for predictions

Reconstructed Post-harvest Population

We successfully control the population size to ~ 300

00000000000

Can Shifted Age Structure be an Insurance?

In terms of growth rate: No

Can Shifted Age Structure be an Insurance?

00000000000

But low population size itself can be one in terms of recruitment

Results

Culling amount: Fix quota vs Fix Proportion

- Retrospect: used quota/proportion and vital rates of 1992-2016
- Non-selective: Assuming we allocate the quota by age structure

Culling amount: Fix quota

Culling amount: Fix proportion

000000000000

Selective Culling: Which age?

- Retrospect: used proportion and vital rates of 1992-2016
- Selective: added a weight to each age

Selective Culling: Doe twice likely to be harvested

Selective Culling: Only doe

Selective Culling: Only doe, fix quota

Take Home Message for Management Based on This Case

 Intensive culling is a powerful tool for controlling overabundant deer

Take Home Message for Management Based on This Case

- Intensive culling is a powerful tool for controlling overabundant deer
- Continuous effort should be put in to control the population

Take Home Message for Management Based on This Case

Intensive culling is a powerful tool for controlling overabundant deer

00000000000

- Continuous effort should be put in to control the population
- After knocking the population down, the (adaptive) fixed proportion rather than fix quota harvest can help keeping the population low (this may means similar effort each year)

Take Home Message for Management Based on This Case

- Intensive culling is a powerful tool for controlling overabundant deer
- Continuous effort should be put in to control the population
- After knocking the population down, the (adaptive) fixed proportion rather than fix quota harvest can help keeping the population low (this may means similar effort each year)
- Be selective and focus on doe

References

- Etter, D. R., Hollis, K. M., Van Deelen, T. R., Ludwig, D. R., Chelsvig, J. E., Anchor, C. L., and Warner, R. E. (2002).
 Survival and movements of white-tailed deer in suburban chicago, illinois. The Journal of Wildlife Management, pages 500–510.
- Wheldon, M. C., Raftery, A. E., Clark, S. J., and Gerland, P. (2013). Reconstructing past populations with uncertainty from fragmentary data. Journal of the American Statistical Association, 108(501):96–110.
- Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). Bayesian data analysis. Chapman and Hall/CRC.

Acknowledgments

- Thank Michigan DNR officers who collected these data when I was not born
- Thanks my lab mates for all the discussions
- Special thank to Department of Chemistry, UW-Madison for offering me TAship to fund my study in UW-Madison

Questions?

Open source statement:

All source code (in R and C++) can be find on Github repo

YunyiShen/ReCAP, source code of this report can be found in repo

YunyiShen/UW-Course-Projects under GPL 3.0

Optimal/Worst Age Structure of Annual Growth

Consider a Leslie matrix A and a population X, the growth rate can be written as:

$$\lambda = \frac{1^T AX}{1^T X}$$
$$= (1^T A) \frac{X}{1^T X}$$

This equals to the **weighted average** of $1^T A$, which is the column sum of Leslie matrix A, and we have

$$min(1^T A) \le \lambda \le max(1^T A)$$

will take equal when all individuals are at the age that maximize/minimize column sum of Leslie matrix, so: healthy fat doe/naive male fawn