Logistic Regression: Complete Hand Calculation Example

Problem Setup

We'll work through a simple logistic regression problem by hand:

- Model: $(p(y=1|x) = \sigma(\alpha + \beta x))$ where $(\sigma(z) = 1/(1 + e^{-z}))$
- Prior: $(\alpha \sim N(0, \sigma^2_{\alpha}))$, $(\beta \sim N(0, \sigma^2_{\beta}))$

Data

We have just 3 data points to keep calculations manageable:

- Point 1: $(x_1, y_1) = (-1, 0)$ [failure at x=-1]
- Point 2: $(x_2, y_2) = (0, 0)$ [failure at x=0]
- Point 3: $(x_3, y_3) = (1, 1)$ [success at x=1]

Hyperparameters

- $\sigma^2 \alpha = 1$ (prior variance for intercept)
- $\sigma^2 \beta = 1$ (prior variance for slope)

Step 1: Understanding the Model

The logistic function:

$$\sigma(z) = 1/(1 + e^{-z})$$

For our model:

$$p(y=1|x,\alpha,\beta) = \sigma(\alpha + \beta x) = 1/(1 + e^{-(\alpha + \beta x))}$$

 $p(y=0|x,\alpha,\beta) = 1 - \sigma(\alpha + \beta x) = e^{-(\alpha + \beta x)/(1 + e^{-(\alpha + \beta x))}}$

Step 2: Calculate Likelihood for Specific Parameters

Let's calculate the likelihood for α = -0.5, β = 1.5:

Point 1: $x_1 = -1$, $y_1 = 0$

```
z_1 = \alpha + \beta x_1 = -0.5 + 1.5 \times (-1) = -0.5 - 1.5 = -2

\sigma(z_1) = 1/(1 + e^2) = 1/(1 + 7.389) = 1/8.389 = 0.119

\rho(y_1=0|x_1) = 1 - 0.119 = 0.881
```

Point 2: $x_2 = 0$, $y_2 = 0$

```
z_2 = \alpha + \beta x_2 = -0.5 + 1.5 \times 0 = -0.5

\sigma(z_2) = 1/(1 + e^0.5) = 1/(1 + 1.649) = 1/2.649 = 0.378

\rho(y_2=0|x_2) = 1 - 0.378 = 0.622
```

Point 3: $x_3 = 1$, $y_3 = 1$

```
z_3 = \alpha + \beta x_3 = -0.5 + 1.5 \times 1 = -0.5 + 1.5 = 1

\sigma(z_3) = 1/(1 + e^{-1}) = 1/(1 + 0.368) = 1/1.368 = 0.731

\rho(y_3=1|x_3) = 0.731
```

Total Likelihood

```
L(\alpha=-0.5, \beta=1.5) = p(y_1=0|x_1) \times p(y_2=0|x_2) \times p(y_3=1|x_3)
= 0.881 × 0.622 × 0.731
= 0.401
```

Step 3: Calculate Prior

```
Prior: \left(p(\alpha,\beta) = N(\alpha|0,1) \times N(\beta|0,1)\right)
```

For $\alpha = -0.5$, $\beta = 1.5$:

```
p(\alpha=-0.5) = (1/\sqrt{(2\pi)}) \times exp(-0.5\times(-0.5)^{2})
= 0.399 \times exp(-0.125)
= 0.399 \times 0.882
= 0.352
p(\beta=1.5) = (1/\sqrt{(2\pi)}) \times exp(-0.5\times(1.5)^{2})
= 0.399 \times exp(-1.125)
= 0.399 \times 0.325
= 0.130
p(\alpha,\beta) = 0.352 \times 0.130 = 0.046
```

Step 4: Grid Approximation

Since we can't solve this analytically, we'll use a small grid:

α\β	-1.0	0.0	1.0	2.0
-1.0				
-0.5				
0.0				
0.5				
←				

Let's calculate for each grid point:

$$\alpha = -1.0, \beta = -1.0$$

```
Point 1: z_1 = -1 + (-1) \times (-1) = -1 + 1 = 0

\sigma(0) = 0.5

p(y_1=0) = 0.5

Point 2: z_2 = -1 + (-1) \times 0 = -1

\sigma(-1) = 1/(1+e) = 0.269

p(y_2=0) = 0.731

Point 3: z_3 = -1 + (-1) \times 1 = -2

\sigma(-2) = 0.119

p(y_3=1) = 0.119

Likelihood = 0.5 \times 0.731 \times 0.119 = 0.043

Prior = N(-1|0,1) \times N(-1|0,1) = 0.242 \times 0.242 = 0.059

Joint = 0.043 \times 0.059 = 0.00254
```

α = -0.5, β = 1.5 (already calculated)

```
Likelihood = 0.401

Prior = 0.046

Joint = 0.401 × 0.046 = 0.01845
```

$$\alpha = 0.0, \beta = 2.0$$

```
Point 1: z_1 = 0 + 2 \times (-1) = -2

\sigma(-2) = 0.119

p(y_1=0) = 0.881

Point 2: z_2 = 0 + 2 \times 0 = 0

\sigma(0) = 0.5

p(y_2=0) = 0.5

Point 3: z_3 = 0 + 2 \times 1 = 2

\sigma(2) = 0.881

p(y_3=1) = 0.881

Likelihood = 0.881 \times 0.5 \times 0.881 = 0.388

Prior = N(0|0,1) \times N(2|0,1) = 0.399 \times 0.054 = 0.022

Joint = 0.388 \times 0.022 = 0.00854
```

Step 5: Complete Grid Calculation

Here's a simplified 3×3 grid calculation:

α\β	0.0	1.0	2.0
-0.5	0.0021	0.0109	0.0185
0.0	0.0022	0.0071	0.0085
0.5	0.0009	0.0016	0.0011
4	'		>

Step 6: Normalize to Get Posterior

Sum of all joint values: $Z \approx 0.058$

Posterior probabilities:

α\β	0.0	1.0	2.0
-0.5	0.036	0.188	0.319
0.0	0.038	0.122	0.147
0.5	0.016	0.028	0.019
-			>

Step 7: Find MAP Estimate

The maximum posterior probability is at (α =-0.5, β =2.0) with probability 0.319.

MAP estimate: $\alpha \approx -0.5$, $\beta \approx 2.0$

Step 8: Make a Prediction

Let's predict at $x^* = 0.5$:

Using MAP estimates:

```
z^* = \alpha + \beta x^* = -0.5 + 2.0 \times 0.5 = -0.5 + 1.0 = 0.5

p(y^*=1|x^*=0.5) = \sigma(0.5) = 1/(1 + e^{-0.5}) = 1/(1 + 0.607) = 0.622
```

Step 9: Compute Marginal Effects

The marginal effect at $x^* = 0.5$:

```
\partial p/\partial x = \beta \times \sigma(z^*) \times (1 - \sigma(z^*))
= 2.0 × 0.622 × (1 - 0.622)
= 2.0 × 0.622 × 0.378
= 0.470
```

This means a unit increase in x increases the probability by 0.47.

Summary

From 3 data points:

- MAP estimate: $\alpha \approx -0.5$, $\beta \approx 2.0$
- Model: $p(y=1|x) = \sigma(-0.5 + 2.0x)$
- Prediction at x=0.5: $p \approx 0.622$

Verification

Let's check our MAP estimate fits the data:

- At x=-1: $p = \sigma(-0.5 2.0) = \sigma(-2.5) \approx 0.076$ (actual: 0)
- At x=0: $p = \sigma(-0.5) \approx 0.378$ (actual: 0)
- At x=1: $p = \sigma(-0.5 + 2.0) = \sigma(1.5) \approx 0.818$ (actual: 1)

The model correctly orders the probabilities and fits the pattern.

Comparison with Linear Regression

Unlike linear regression:

- 1. No closed-form solution
- 2. Predictions bounded in [0,1]

- 3. Non-linear relationship
- 4. Must use numerical methods (grid, MCMC, optimization)
- 5. Marginal effects depend on x

Key Formulas Used

- 1. Logistic function: $\sigma(z) = 1/(1 + e^{-z})$
- 2. Bernoulli likelihood: $\left(p(y|x) = \sigma(\alpha+\beta x)^{y} \times (1-\sigma(\alpha+\beta x))^{(1-y)}\right)$
- 3. Normal prior: $p(\theta) = (2\pi\sigma^2)^{-1/2} \times \exp(-\theta^2/(2\sigma^2))$
- 4. Posterior: $\left(p(\alpha,\beta|data) \propto p(data|\alpha,\beta) \times p(\alpha,\beta)\right)$
- 5. Marginal effect: $\left(\frac{\partial p}{\partial x} = \beta \times \sigma(z) \times (1 \sigma(z))\right)$