À rendre le vendredi 29 mars.

Opérateurs de translation et de différence sur les polynômes

Dans tout ce problème, n est un entier naturel non nul.

Partie A. L'opérateur de translation.

Soit l'application

$$\tau: \left\{ \begin{array}{ccc} \mathbb{R}_n[X] & \to & \mathbb{R}_n[X] \\ P & \mapsto & P(X+1) \end{array} \right..$$

1. Pour un polynôme P non nul de $\mathbb{R}_n[X]$, justifier que

$$deg(\tau(P)) = deg(P)$$
 et $cd(\tau(P)) = cd(P)$.

- 2. Justifier que τ est un automorphisme de $\mathbb{R}_n[X]$.
- 3. Pour $P \in \mathbb{R}_n[X]$, démontrer que $\forall k \in \mathbb{N} \ \tau^k(P) = P(X+k)$.

Partie B. L'opérateur de différence.

Dans la suite, on note δ l'endomorphisme $\delta = \tau - \mathrm{Id}_{\mathbb{R}_n[X]}$, c'est-à-dire

$$\delta: \left\{ \begin{array}{ccc} \mathbb{R}_n[X] & \to & \mathbb{R}_n[X] \\ P & \mapsto & P(X+1) - P(X) \end{array} \right..$$

- 1. Pour un polynôme non constant $P \in \mathbb{R}_n[X]$, exprimer $\deg(\delta(P))$ et $\operatorname{cd}(\delta(P))$ en fonction $\operatorname{deg}(P)$ et $\operatorname{cd}(P)$.
- 2. En déduire le noyau $Ker(\delta)$ et l'image $Im(\delta)$ de l'endomorphisme δ .
- 3. Plus généralement, pour $j \in [\![1,n]\!]$, montrer les égalités suivantes

$$\operatorname{Ker}(\delta^j) = \mathbb{R}_{j-1}[X]$$
 et $\operatorname{Im}(\delta^j) = \mathbb{R}_{n-j}[X]$.

- 4. (a) Pour $k \in \mathbb{N}$ exprimer δ^k en fonction des τ^j pour $j \in [0, k]$.
 - (b) Soit $P \in \mathbb{R}_{n-1}[X]$. Démontrer l'identité

$$\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} P(j) = 0.$$

- 5. (*) Dans cette question, on se propose de prouver que δ n'a pas de racine carrée c'est-à-dire qu'il n'existe pas d'endomorphisme $u \in \mathcal{L}(\mathbb{R}_n[X])$ tel que $u \circ u = \delta$. On raisonne par l'absurde et on suppose qu'il existe u un tel endomorphisme.
 - (a) Justifier que u et δ commutent.
 - (b) En déduire que $\mathbb{R}_0[X]$ est stable par u.
 - (c) Justifier que u et δ^2 commutent.
 - (d) En déduire que $\mathbb{R}_1[X]$ est stable par u.
 - (e) En considérant les polynômes u(X) et u(1) trouver l'absurdité cherchée.
- 6. (*) On va chercher ici les sous-espaces vectoriels de $\mathbb{R}_n[X]$ stables par δ .
 - (a) Pour un polynôme non nul de degré $d \le n$, montrer que la famille

$$(P, \delta(P), \delta^2(P), \dots, \delta^d(P))$$

est libre. Quel est l'espace vectoriel engendré par cette famille?

(b) En déduire que si F est un sous-espace vectoriel de $\mathbb{R}_n[X]$ stable par δ et non réduit à $\{0\}$, il existe un entier $d \in [0, n]$ tel que $F = \mathbb{R}_d[X]$.

Partie C. Polynômes de Hilbert.

On considère la famille de polynômes

$$\begin{cases} H_0 &= 1 \\ H_k &= \frac{1}{k!} \prod_{j=0}^{k-1} (X - j) \text{ pour } k \in [1, n]. \end{cases}$$

C.1. Décomposition sur la base.

- 1. Montrer que $(H_k)_{k \in [0,n]}$ est une base de $\mathbb{R}_n[X]$.
- 2. Calculer $\delta(H_0)$ puis montrer que pour $k \in [1, n]$, $\delta(H_k) = H_{k-1}$.
- 3. Montrer que pour $k, l \in [0, n]$,

$$\delta^k(H_l)(0) = \begin{cases} 1 & \text{si } k = l \\ 0 & \text{si } k \neq l \end{cases}$$

4. Montrer que pour tout $P \in \mathbb{R}_n[X]$,

$$P = \sum_{k=0}^{n} \delta^k (P)(0) H_k.$$

C.2. Application : suites récurrentes.

1. Donner les coordonnées du polynôme

$$X^3 + 2X^2 + 5X + 7$$

dans la base (H_0, H_1, H_2, H_3) de $\mathbb{R}_3[X]$.

2. En déduire un polynôme $P \in \mathbb{R}_5[X]$ tel que

$$\delta^2(P) = X^3 + 2X^2 + 5X + 7.$$

3. Déterminer les suites réelles $(u_k)_{k\in\mathbb{N}}$ telles que

$$\forall k \in \mathbb{N} \quad u_{k+2} - 2u_{k+1} + u_k = k^3 + 2k^2 + 5k + 7.$$

C.3. Application : polynômes à valeurs entières.

- 1. Soit $k \in \mathbb{Z}$. Calculer $H_n(k)$ (on pourra utiliser des coefficients binomiaux). On distinguera trois cas : $k \in [0, n-1]$, $k \ge n$ et k < 0. Pour ce dernier cas, on posera k = -p.
- 2. En déduire que $H_n(\mathbb{Z}) \subset \mathbb{Z}$, c'est-à-dire que H_n est à valeurs entières sur les entiers
- 3. Soit $P \in \mathbb{R}_n[X]$ à valeurs entières sur les entiers. Montrer que $\delta(P)$ est à valeurs entières sur les entiers.
- 4. Montrer que $P \in \mathbb{R}_n[X]$ est à valeurs entières sur les entiers si et seulement si ses coordonnées dans la base $(H_k)_{k \in [0,n]}$ sont des entiers.
- 5. Soit $P \in \mathbb{R}[X]$ de degré d. Montrer que si P est à valeurs entières sur les entiers, alors d!P est un polynôme à coefficients entiers. Étudier la réciproque.