Fundametals of Robotics Project 1.0

Generated by Doxygen 1.10.0

1	Class Index	1
	1.1 Class List	. 1
2	Prile Index	3
	2.1 File List	. 3
3	Namespace Documentation	5
	3.1 dataset2Yolo Namespace Reference	. 5
	3.1.1 Function Documentation	. 5
	3.1.1.1 create_annotations()	. 5
	3.1.1.2 create_yaml_file()	. 5
	3.1.2 Variable Documentation	. 6
	3.1.2.1 ASSIGNS	. 6
	3.1.2.2 CATEGORIES	. 6
	3.1.2.3 PROJECT_DIR	. 6
	3.2 detect_area Namespace Reference	. 6
	3.2.1 Variable Documentation	. 6
	3.2.1.1 detectArea	. 6
	3.2.1.2 img	. 6
	3.3 detect_blocks Namespace Reference	. 7
	3.4 params Namespace Reference	. 7
	3.4.1 Variable Documentation	. 7
	3.4.1.1 BASE_LINK_POSITION	. 7
	3.4.1.2 BLOCK_COORD_Z	. 8
	3.4.1.3 CATEGORIES	. 8
	3.4.1.4 IMAGE_SUB_TOPIC	. 8
	3.4.1.5 MIN_LEVEL_CONFIDENCE	. 8
	3.4.1.6 NODE_NAME	. 8
	3.4.1.7 POINTCLOUD_SUB_TOPIC	. 8
	3.4.1.8 PUB_TOPIC	. 8
	3.4.1.9 RY	. 9
	3.4.1.10 TABLE	. 9
	3.4.1.11 ZED_IMG_CROPPED_PATH	. 9
	3.4.1.12 ZED_IMG_PATH	. 9
	3.4.1.13 ZED_POSITION	
	3.5 scale_legos Namespace Reference	. 9
	3.5.1 Function Documentation	. 10
	3.5.1.1 scale_legos()	. 10
	3.5.2 Variable Documentation	
	3.5.2.1 MODELS_PATH	
	3.5.2.2 NEW_SCALE_FACTOR	
	3.5.2.3 OLD_SCALE_FACTOR	
	3.5.2.4 SPAWN_PATH	

3.6 spawnLego Namespace Reference	 . 11
3.6.1 Function Documentation	 . 11
3.6.1.1 changeModelColor()	 . 11
3.6.1.2 check_sovrapposizioni()	 . 12
3.6.1.3 del_model()	 . 12
3.6.1.4 randNum()	 . 12
3.6.1.5 random_position()	 . 13
3.6.1.6 spawn_model()	 . 13
3.6.2 Variable Documentation	 . 13
3.6.2.1 colorList	 . 13
3.6.2.2 models	 . 13
3.6.2.3 models_path	 . 14
3.6.2.4 toll	 . 14
3.7 training Namespace Reference	 . 14
3.7.1 Variable Documentation	 . 14
3.7.1.1 metrics	 . 14
3.7.1.2 model	 . 14
3.7.1.3 PROJECT_DIR	 . 14
3.7.1.4 results	 . 14
3.7.1.5 split	 . 15
3.8 vision Namespace Reference	 . 15
3.8.1 Function Documentation	 . 15
3.8.1.1 build_pose()	 . 15
3.8.1.2 find_center()	 . 16
3.8.1.3 find_orientation()	 . 16
3.8.1.4 pointCloudCallBack()	 . 16
3.8.1.5 receive_image()	 . 16
3.8.2 Variable Documentation	 . 17
3.8.2.1 image_sub	 . 17
3.8.2.2 loop_rate	 . 17
3.8.2.3 pos_pub	 . 17
3.9 yolo-k-fold-splitter Namespace Reference	 . 17
3.9.1 Variable Documentation	 . 18
3.9.1.1 classes	 . 18
3.9.1.2 cls_idx	 . 18
3.9.1.3 dataset_path	 . 18
3.9.1.4 dataset_yaml	 . 18
3.9.1.5 ds_yamls	 . 18
3.9.1.6 encoding	 . 18
3.9.1.7 exist_ok	 . 18
3.9.1.8 fold_lbl_distrb	 . 18
3.9.1.9 folds	 . 18

19
19
19
19
19
19
19
19
19
19
20
20
20
20
20
20
20
20
20
00
20
20
20
20 21
20 21 21
20 21 21 21
20 21 21 21 21
20 21 21 21 21 21
20 21 21 21 21 21 22
20 21 21 21 21 21 22 22
20 21 21 21 21 21 21 22 22
20 21 21 21 21 21 22 22 22
20 21 21 21 21 21 22 22 22 22
20 21 21 21 21 21 22 22 22 22
20 21 21 21 21 22 22 22 22 22 22 22
20 21 21 21 21 22 22 22 22 22 22
20 21 21 21 21 22 22 22 22 22 22 22 22
20 21 21 21 21 22 22 22 22 22 22 22 22 23
20 21 21 21 21 22 22 22 22 22 22 23 23
20 21 21 21 21 22 22 22 22 22 22 22 22 23

 . 23
 . 23
 . 23
 . 24
 . 25
27
 . 28
 . 28
. 28
. 28 . 29 . 29
 . 28 . 29 . 29 . 29
 . 28 . 29 . 29 . 29
 . 28 . 29 . 29 . 29 . 30
 . 28 . 29 . 29 . 29 . 30 . 30
 . 28 . 29 . 29 . 30 . 30 . 30
. 28 . 29 . 29 . 30 . 30 . 31
. 28 . 29 . 29 . 30 . 30 . 31 . 31
. 28 . 29 . 29 . 30 . 30 . 31 . 31 . 31
. 28 . 29 . 29 . 30 . 30 . 31 . 31 . 32 . 32
. 28 . 29 . 29 . 30 . 30 . 31 . 31 . 31 . 32 . 32
. 28 . 29 . 29 . 30 . 30 . 31 . 31 . 32 . 32 . 33
. 28 . 29 . 29 . 30 . 30 . 31 . 31 . 32 . 32 . 33 . 33

5.3.2.4 pd()	35
5.3.2.5 qd()	35
5.3.3 Variable Documentation	36
5.3.3.1 maxT	36
5.4 movement.h	36
5.5 planner_pkg/include/planner_pkg/planner.h File Reference	36
5.5.1 Detailed Description	38
5.5.2 Typedef Documentation	38
5.5.2.1 GripperState	38
5.5.3 Function Documentation	38
5.5.3.1 close_gripper()	38
5.5.3.2 get_gripper_states()	38
5.5.3.3 get_joint_states()	39
5.5.3.4 listen_lego_detection()	39
5.5.3.5 move_to_home()	39
5.5.3.6 open_gripper()	39
5.5.3.7 quat2eul()	40
5.5.3.8 set_joint_states()	40
5.5.3.9 waitJoints()	40
5.5.3.10 waitSec()	41
5.5.3.11 X1_Y1_Z2()	41
5.5.3.12 X1_Y2_Z1()	41
5.5.3.13 X1_Y2_Z2()	41
5.5.3.14 X1_Y2_Z2_CHAMFER()	42
5.5.3.15 X1_Y2_Z2_TWINFILLET()	42
5.5.3.16 X1_Y3_Z2()	42
5.5.3.17 X1_Y3_Z2_FILLET()	42
5.5.3.18 X1_Y4_Z1()	42
5.5.3.19 X1_Y4_Z2()	42
5.5.3.20 X2_Y2_Z2()	42
5.5.3.21 X2_Y2_Z2_FILLET()	43
5.5.4 Variable Documentation	43
5.5.4.1 actual_gripper	43
5.5.4.2 jointState_msg_robot	43
5.5.4.3 loop_frequency	43
5.5.4.4 models_map	43
5.5.4.5 pub_joint_states	43
5.5.4.6 timeStep	44
5.6 planner.h	44
5.7 planner_pkg/src/kinematics.cpp File Reference	45
5.7.1 Detailed Description	45
5.7.2 Function Documentation	46

5.7.2.1 direct_kinematics()	46
5.7.2.2 eul2rotm()	46
5.7.2.3 inverse_kinematics()	46
5.7.2.4 jacobian()	48
5.7.2.5 rotm2eul()	48
5.7.2.6 t10f()	48
5.7.2.7 t21f()	49
5.7.2.8 t32f()	49
5.7.2.9 t43f()	49
5.7.2.10 t54f()	50
5.7.2.11 t65f()	50
5.8 planner_pkg/src/movement.cpp File Reference	50
5.8.1 Detailed Description	51
5.8.2 Function Documentation	51
5.8.2.1 invDiffKinematicControlCompleteQuaternion()	51
5.8.2.2 invDiffKinematicControlSimCompleteQuaternion()	52
5.8.2.3 pd()	52
5.8.2.4 qd()	53
5.9 planner_pkg/src/planner.cpp File Reference	53
5.9.1 Detailed Description	54
5.9.2 Function Documentation	54
5.9.2.1 close_gripper()	54
5.9.2.2 get_gripper_states()	55
5.9.2.3 get_joint_states()	55
5.9.2.4 listen_lego_detection()	55
5.9.2.5 main()	56
5.9.2.6 move_to_home()	56
5.9.2.7 open_gripper()	56
5.9.2.8 quat2eul()	56
5.9.2.9 set_joint_states()	57
5.9.2.10 waitJoints()	57
5.9.2.11 waitSec()	57
5.10 spawnLego/spawnLego.py File Reference	58
5.10.1 Detailed Description	58
5.10.2 Author(s)	58
5.11 utils/dataset_creation/dataset2Yolo.py File Reference	59
5.11.1 Detailed Description	59
5.11.2 Author(s)	59
5.12 utils/dataset_creation/yolo-k-fold-splitter.py File Reference	59
5.13 utils/scale_legos.py File Reference	60
5.13.1 Detailed Description	61
5.13.2 Author(s)	61

vii	

5.14 utils/training/training.py File Reference	
5.15 vision/detect_area.py File Reference	
5.15.1 Detailed Description	61
5.15.2 Author(s)	62
5.16 vision/detect_blocks.py File Reference	62
5.16.1 Detailed Description	62
5.16.2 Author(s)	62
5.17 vision/params.py File Reference	62
5.17.1 Detailed Description	63
5.17.2 Author(s)	63
5.18 vision/vision.py File Reference	63
5.18.1 Detailed Description	64
5.18.2 Author(s)	64
dex	65

Chapter 1

Class Index

1.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Block		
	Class that rapresent a block	21
DetectAr	rea	
	Class that detect the area in wich detect blocks	22
DetectBl	ocks	
	Class that detect blocks	24
frame		
	Structure to store the position and rotation of the end effector	25

2 Class Index

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

planner_pkg/include/planner_pkg/kinematics.h	27
planner_pkg/include/planner_pkg/movement.h	32
planner_pkg/include/planner_pkg/planner.h	36
planner_pkg/src/kinematics.cpp	
Functions in this file are used to calculate transformation matrices, direct and inverse kinematics,	
jacobian matrices and trasformation between Euler angles and rotation matrices	45
planner_pkg/src/movement.cpp	
Functions in this file are used to calculate the trajectory based on quaternions and velocities of	
the joints	50
planner_pkg/src/planner.cpp	
Main function and planning of the movement based on the messages received from the vision;	
also getters and setters for joints are present	53
spawnLego/spawnLego.py	
Spawn lego in random position and orientation	58
utils/scale_legos.py	60
utils/dataset_creation/dataset2Yolo.py	
Convert the given dataset to a Yolo format dataset	59
utils/dataset_creation/yolo-k-fold-splitter.py	59
utils/training/training.py	61
vision/detect_area.py	
Detect the area and crop the ZED image from where the model will recognize blocks	61
vision/detect_blocks.py	
Detect blocks in the image using YOLOv8 model trained in a custom dataset	62
vision/params.py	
Parameters used in the vision scripts	62
vision/vision.py	
Detect blocks from a photos caming from the ZED camera and find position of them	63

File Index

Chapter 3

Namespace Documentation

3.1 dataset2Yolo Namespace Reference

Functions

create_annotations ()

This function creates annotations in .txt format for each image and saves it in /labels.

create_yaml_file ()

This function is used to create the yaml file required from YOLO format.

Variables

• list ASSIGNS = ['assign1', 'assign2']

Name of the folder that contains the given dataset.

• CATEGORIES = json.load(file)

List of all categories in the dataset.

• PROJECT_DIR = os.getcwd()

Script working directory.

3.1.1 Function Documentation

3.1.1.1 create annotations()

```
create_annotations ( )
```

This function creates annotations in .txt format for each image and saves it in /labels.

Moreover this function copy images from the assigned dataset to /images

3.1.1.2 create_yaml_file()

```
create_yaml_file ( )
```

This function is used to create the yaml file required from YOLO format.

3.1.2 Variable Documentation

3.1.2.1 ASSIGNS

```
list ASSIGNS = ['assign1', 'assign2']
```

Name of the folder that contains the given dataset.

3.1.2.2 CATEGORIES

```
CATEGORIES = json.load(file)
```

List of all categories in the dataset.

3.1.2.3 PROJECT DIR

```
PROJECT_DIR = os.getcwd()
```

Script working directory.

3.2 detect_area Namespace Reference

Classes

• class DetectArea

Class that detect the area in wich detect blocks.

Variables

- detectArea = DetectArea(input_img = img, output_img_path='detected_area.png')
- img = cv2.imread('zed_image.png')

3.2.1 Variable Documentation

3.2.1.1 detectArea

```
detectArea = DetectArea(input_img = img, output_img_path='detected_area.png')
```

3.2.1.2 img

```
img = cv2.imread('zed_image.png')
```

3.3 detect blocks Namespace Reference

Classes

· class Block

Class that rapresent a block.

· class DetectBlocks

Class that detect blocks.

3.4 params Namespace Reference

Variables

BASE_LINK_POSITION = np.array([0.5,0.35,1.75])

Base link position regarding to the origin frame.

• float BLOCK_COORD_Z = 0.875

Height of the block regarding to the origin frame.

• int CATEGORIES = 11

Number of categories of blocks.

str IMAGE_SUB_TOPIC = '/ur5/zed_node/left/image_rect_color'

ROS topic from where the script get the ZED image.

• float MIN LEVEL CONFIDENCE = 0.3

Level of confidence of the Yolo model to keep the assigned labels.

• str NODE_NAME = 'vision'

ROS nodes name.

• str POINTCLOUD SUB TOPIC = '/ur5/zed node/point cloud/cloud registered'

ROS topic from where the script get the pointcloud.

• str PUB_TOPIC = 'lego_position'

ROS topic where to publish positions.

• RY

Rotation matrix of the ZED camera.

• list TABLE = [[825,549], [1301,552], [1570,913], [658, 921]]

Area where the vision detect blocks.

• str ZED IMG CROPPED PATH = os.getcwd() + '/cropped zed image.png'

Path where the cropped image is saved (a mask is applied to the photo to reduce confusion)

str ZED_IMG_PATH = os.getcwd() + '/zed_image.png'

Path where the original ZED image is saved.

• ZED_POSITION = np.array([-0.9, 0.24, -0.35])

Zed position regarding to the base link frame.

3.4.1 Variable Documentation

3.4.1.1 BASE_LINK_POSITION

```
BASE_LINK_POSITION = np.array([0.5, 0.35, 1.75])
```

Base link position regarding to the origin frame.

3.4.1.2 BLOCK_COORD_Z

```
float BLOCK_COORD_Z = 0.875
```

Height of the block regarding to the origin frame.

3.4.1.3 CATEGORIES

```
int CATEGORIES = 11
```

Number of categories of blocks.

3.4.1.4 IMAGE_SUB_TOPIC

```
str IMAGE_SUB_TOPIC = '/ur5/zed_node/left/image_rect_color'
```

ROS topic from where the script get the ZED image.

3.4.1.5 MIN_LEVEL_CONFIDENCE

```
float MIN_LEVEL_CONFIDENCE = 0.3
```

Level of confidence of the Yolo model to keep the assigned labels.

3.4.1.6 NODE_NAME

```
str NODE_NAME = 'vision'
```

ROS nodes name.

3.4.1.7 POINTCLOUD_SUB_TOPIC

```
str POINTCLOUD_SUB_TOPIC = '/ur5/zed_node/point_cloud/cloud_registered'
```

ROS topic from where the script get the pointcloud.

3.4.1.8 **PUB_TOPIC**

```
str PUB_TOPIC = 'lego_position'
```

ROS topic where to publish positions.

3.4.1.9 RY

RY

Initial value:

Rotation matrix of the ZED camera.

3.4.1.10 TABLE

```
list TABLE = [[825,549], [1301,552], [1570,913], [658, 921]]
```

Area where the vision detect blocks.

3.4.1.11 ZED_IMG_CROPPED_PATH

```
str ZED_IMG_CROPPED_PATH = os.getcwd() + '/cropped_zed_image.png'
```

Path where the cropped image is saved (a mask is applied to the photo to reduce confusion)

3.4.1.12 ZED_IMG_PATH

```
str ZED_IMG_PATH = os.getcwd() + '/zed_image.png'
```

Path where the original ZED image is saved.

3.4.1.13 ZED_POSITION

```
ZED_POSITION = np.array([-0.9, 0.24, -0.35])
```

Zed position regarding to the base link frame.

3.5 scale_legos Namespace Reference

Functions

• scale_legos ()

This function scale legos modifying their sdf file.

Variables

- str MODELS_PATH = os.getcwd().replace('utils', ") + 'locosim/ros_impedance_controller/worlds/models'
 Path to the world models sdf(s)
- float NEW_SCALE_FACTOR = 0.8

The new value for the scale of the legos.

• float OLD_SCALE_FACTOR = 0.9

The value that already is used to scale legos.

• str SPAWN_PATH = os.getcwd().replace('utils', ") + 'spawnLego/models'

Path to the spawn models sdf(s)

3.5.1 Function Documentation

3.5.1.1 scale_legos()

```
scale_legos ( )
```

This function scale legos modifying their sdf file.

This was done in order to increase the spacing between legos and enhance recognition performance.

3.5.2 Variable Documentation

3.5.2.1 MODELS_PATH

```
str MODELS_PATH = os.getcwd().replace('utils', '') + 'locosim/ros_impedance_controller/worlds/models'
```

Path to the world models sdf(s)

3.5.2.2 NEW_SCALE_FACTOR

```
float NEW_SCALE_FACTOR = 0.8
```

The new value for the scale of the legos.

3.5.2.3 OLD_SCALE_FACTOR

```
float OLD_SCALE_FACTOR = 0.9
```

The value that already is used to scale legos.

3.5.2.4 SPAWN_PATH

```
str SPAWN_PATH = os.getcwd().replace('utils', '') + 'spawnLego/models'
```

Path to the spawn models sdf(s)

3.6 spawnLego Namespace Reference

Functions

changeModelColor (model xml, color)

Changes the color of model.

check_sovrapposizioni (pos, lego)

This function check if there is conflict in spawn with other legos.

• del model (model)

Removes the model with 'modelName' from the Gazebo scene.

• randNum (min, max)

Generates a random number.

random_position ()

Generates a random position and rotation in the spawning zone.

• spawn_model (model, pos, name=None, ref_frame='world')

Spawns the model in the given position.

Variables

- list colorList = ['Gazebo/Indigo', 'Gazebo/Gold', 'Gazebo/Orange', 'Gazebo/Red', 'Gazebo/Purple', 'Gazebo/Grass', 'Gazebo/White', 'Gazebo/Green', 'Gazebo/Yellow', 'Gazebo/Blue', 'Gazebo/Turquoise']
 Colors of the generated legos.
- list models = ["X1-Y1-Z2", "X1-Y2-Z1", "X1-Y2-Z2-CHAMFER", "X1-Y2-Z2-TWINFILLET", "X1-Y2-Z2", "X1-Y3-Z2", "X1-Y4-Z1", "X1-Y4-Z2", "X2-Y2-Z2-FILLET", "X2-Y2-Z2", "X1-Y3-Z2-FILLET"]

Name of the models.

• str models_path = os.path.dirname(os.path.abspath(__file__)) + "/models"

Path of the models to add to the scene.
• float toll = 0.039

Spacing factor for placing pieces.

3.6.1 Function Documentation

3.6.1.1 changeModelColor()

```
changeModelColor (
          model_xml,
          color )
```

Changes the color of model.

Parameters

(xml)	xml of model
(string)	color to apply

Returns

string: color

3.6.1.2 check_sovrapposizioni()

```
check_sovrapposizioni (
    pos,
    lego )
```

This function check if there is conflict in spawn with other legos.

Parameters

pos	(array): positions of other legos
lego	(string): new lego

Returns

bool: True if there is conflict

3.6.1.3 del_model()

```
del_model (
          model )
```

Removes the model with 'modelName' from the Gazebo scene.

Parameters

model	(string): name of the model to be deleted
-------	---

Returns

bool: True if the deletion succeded

3.6.1.4 randNum()

```
randNum (
          min,
          max )
```

Generates a random number.

Parameters

min	(int): the minimum number
max	(int): the maximum number

Returns

int: the random number generated

3.6.1.5 random_position()

```
random_position ( )
```

Generates a random position and rotation in the spawning zone.

Returns

Pose: the generated position for the brick

3.6.1.6 spawn_model()

Spawns the model in the given position.

Parameters

model	(string): the name of the lego model
pos	(struct): all the parameters for position and orientation of the lego
name	(string, optional): the name of the model. Defaults to None.
ref_frame	(string, optional): the reference frame. Defaults to 'world'

Returns

string: confirmation of the action

3.6.2 Variable Documentation

3.6.2.1 colorList

```
list colorList = ['Gazebo/Indigo', 'Gazebo/Gold', 'Gazebo/Orange', 'Gazebo/Red', 'Gazebo/Purple',
'Gazebo/Grass','Gazebo/White', 'Gazebo/Green', 'Gazebo/Yellow', 'Gazebo/Blue', 'Gazebo/Turquoise']
```

Colors of the generated legos.

3.6.2.2 models

```
list models = ["X1-Y1-Z2", "X1-Y2-Z1", "X1-Y2-Z2-CHAMFER", "X1-Y2-Z2-TWINFILLET", "X1-Y2-Z2", "X1-Y3-Z2", "X1-Y4-Z1", "X1-Y4-Z2", "X2-Y2-Z2-FILLET", "X2-Y2-Z2-FILLET"]
```

Name of the models.

3.6.2.3 models_path

```
str models_path = os.path.dirname(os.path.abspath(__file__)) + "/models"
```

Path of the models to add to the scene.

3.6.2.4 toll

```
float toll = 0.039
```

Spacing factor for placing pieces.

3.7 training Namespace Reference

Variables

- list metrics = []
- model = YOLO('yolov8m.pt')
- PROJECT_DIR = os.getcwd()
- · results
- split = len([entry for entry in os.listdir(PROJECT_DIR + '/split_5_5-Fold_Cross-val') if os.path.isdir(os.path.
 join(PROJECT_DIR + '/split_5_5-Fold_Cross-val', entry))])

3.7.1 Variable Documentation

3.7.1.1 metrics

```
list metrics = []
```

3.7.1.2 model

```
model = YOLO('yolov8m.pt')
```

3.7.1.3 PROJECT_DIR

```
PROJECT_DIR = os.getcwd()
```

3.7.1.4 results

results

Initial value:

3.7.1.5 split

```
split = len([entry for entry in os.listdir(PROJECT_DIR + '/split_5_5-Fold_Cross-val') if os.
path.isdir(os.path.join(PROJECT_DIR + '/split_5_5-Fold_Cross-val', entry))])
```

3.8 vision Namespace Reference

Functions

build_pose (block)

Find three useful points for compute position and orientation of a block from all the points contained in it, moreover compute the coordinates of the center, find orientation, convert it to quaternions and in the end create the Pose object.

find_center (y_max_point, y_min_point)

Find the coordinates of the center of a block.

find_orientation (y_max_point, x_min_point)

Find the yaw of a block in Euler angles.

pointCloudCallBack ()

This function waits a message from a pointcloud and then reads the points from it and compute the position and the orientation of the blocks in the Gazebo scenario.

• receive_image (data)

Recive image from ros and save it.

Variables

- image_sub = rospy.Subscriber(IMAGE_SUB_TOPIC, Image, callback=receive_image, queue_size = 1)
- loop rate = rospy.Rate(1.)
- pos_pub = rospy.Publisher(PUB_TOPIC, legoGroup, queue_size = 11)

3.8.1 Function Documentation

3.8.1.1 build pose()

```
build_pose (
          block )
```

Find three useful points for compute position and orientation of a block from all the points contained in it, moreover compute the coordinates of the center, find orientation, convert it to quaternions and in the end create the Pose object.

Parameters

block Block The block object whose position and orientation you want to find

Returns

The pose of a block

3.8.1.2 find_center()

Find the coordinates of the center of a block.

Parameters

y_max_point	list The coordinates of the point of the block with the biggest y
y_min_point	list The coordinates of the point of the block with the smallest y

Returns

List The coordinates of the center

3.8.1.3 find_orientation()

Find the yaw of a block in Euler angles.

Parameters

y_max_point	list The coordinates of the point of the block with the biggest y
x_min_point	list The coordinates of the point of the block with the smallest x

Returns

Double The yaw angle of the block

3.8.1.4 pointCloudCallBack()

```
pointCloudCallBack ( )
```

This function waits a message from a pointcloud and then reads the points from it and compute the position and the orientation of the blocks in the Gazebo scenario.

In the end it populate the list with all messages for Ros

3.8.1.5 receive_image()

Recive image from ros and save it.

3.8.2 Variable Documentation

3.8.2.1 image sub

```
image_sub = rospy.Subscriber(IMAGE_SUB_TOPIC, Image, callback=receive_image, queue_size = 1)

3.8.2.2 loop_rate
loop_rate = rospy.Rate(1.)

3.8.2.3 pos_pub

pos_pub = rospy.Publisher(PUB_TOPIC, legoGroup, queue_size = 11)
```

3.9 yolo-k-fold-splitter Namespace Reference

Variables

```
classes = yaml.safe_load(y)['names']
cls_idx = sorted(range(0, len(classes)))
dataset_path = Path('./yolo_dataset')
• str dataset yaml = split dir / f'{split} dataset.yaml'
• list ds yamls = []
· encoding
· exist ok

    fold_lbl_distrb = pd.DataFrame(index=folds, columns=cls_idx)

• list folds = [f'split_{n}' for n in range(1, ksplit + 1)]

    folds_df = pd.DataFrame(index=indx, columns=folds)

• list images = []

    str img to path = save path / split / k split / 'images'

• list indx = [l.stem for I in labels]

    kf = KFold(n_splits=ksplit, shuffle=True, random_state=20)

• kfolds = list(kf.split(labels_df))
• int ksplit = 5
labels = sorted(dataset_path.rglob("*labels/*.txt"))

    labels_df = pd.DataFrame([], columns=cls_idx, index=indx)

lbl_counter = Counter()
str lbl_to_path = save_path / split / k_split / 'labels'
• lines = lf.readlines()
· parents

    ratio = val totals / (train totals + 1E-7)

• save_path = Path(dataset_path / f'split_{ksplit}-Fold_Cross-val')
• split_dir = save_path / split

    start

• list supported_extensions = ['.jpg', '.jpeg', '.png']
• train totals = labels df.iloc[train indices].sum()

    True

val_totals = labels_df.iloc[val_indices].sum()

    str yaml_file = './yolo_dataset/data.yaml'
```

3.9.1 Variable Documentation

```
3.9.1.1 classes
classes = yaml.safe_load(y)['names']
3.9.1.2 cls_idx
cls_idx = sorted(range(0, len(classes)))
3.9.1.3 dataset_path
dataset_path = Path('./yolo_dataset')
3.9.1.4 dataset_yaml
str dataset_yaml = split_dir / f'{split}_dataset.yaml'
3.9.1.5 ds_yamls
list ds_yamls = []
3.9.1.6 encoding
encoding
3.9.1.7 exist_ok
exist_ok
3.9.1.8 fold_lbl_distrb
fold_lbl_distrb = pd.DataFrame(index=folds, columns=cls_idx)
3.9.1.9 folds
list folds = [f'split_{n}' for n in range(1, ksplit + 1)]
3.9.1.10 folds_df
```

folds_df = pd.DataFrame(index=indx, columns=folds)

3.9.1.11 images

```
list images = []
```

3.9.1.12 img_to_path

```
str img_to_path = save_path / split / k_split / 'images'
```

3.9.1.13 indx

```
list indx = [l.stem for l in labels]
```

3.9.1.14 kf

```
kf = KFold(n_splits=ksplit, shuffle=True, random_state=20)
```

3.9.1.15 kfolds

```
kfolds = list(kf.split(labels_df))
```

3.9.1.16 ksplit

```
int ksplit = 5
```

3.9.1.17 labels

```
labels = sorted(dataset_path.rglob("*labels/*.txt"))
```

3.9.1.18 labels_df

```
labels_df = pd.DataFrame([], columns=cls_idx, index=indx)
```

3.9.1.19 lbl_counter

```
lbl_counter = Counter()
```

3.9.1.20 lbl_to_path

```
str lbl_to_path = save_path / split / k_split / 'labels'
```

```
3.9.1.21 lines
lines = lf.readlines()
3.9.1.22 parents
parents
3.9.1.23 ratio
ratio = val_totals / (train_totals + 1E-7)
3.9.1.24 save_path
save_path = Path(dataset_path / f'split_{ksplit}_Fold_Cross-val')
3.9.1.25 split_dir
split_dir = save_path / split
3.9.1.26 start
start
3.9.1.27 supported_extensions
list supported_extensions = ['.jpg', '.jpeg', '.png']
3.9.1.28 train_totals
train_totals = labels_df.iloc[train_indices].sum()
3.9.1.29 True
True
3.9.1.30 val_totals
val_totals = labels_df.iloc[val_indices].sum()
3.9.1.31 yaml_file
```

str yaml_file = './yolo_dataset/data.yaml'

Chapter 4

Class Documentation

4.1 Block Class Reference

Class that rapresent a block.

Public Member Functions

• __init__ (self, category, category_id, confidence, xyxy, zed_img_cropped)

Public Attributes

- category
- category_id
- confidence
- image
- points
- · points_count
- xyxy

4.1.1 Detailed Description

Class that rapresent a block.

4.1.2 Constructor & Destructor Documentation

4.1.2.1 __init__()

```
__init__ (

self,

category,

category_id,

confidence,

xyxy,

zed_img_cropped )
```

22 Class Documentation

4.1.3 Member Data Documentation

4.1.3.1 category

category

4.1.3.2 category_id

category_id

4.1.3.3 confidence

confidence

4.1.3.4 image

image

4.1.3.5 points

points

4.1.3.6 points_count

points_count

4.1.3.7 xyxy

хуху

The documentation for this class was generated from the following file:

vision/detect_blocks.py

4.2 DetectArea Class Reference

Class that detect the area in wich detect blocks.

Public Member Functions

- __init__ (self, input_img, output_img_path)

 Initialization of the class.
- create_mask (self)

Create a mask to keep in view only the area in wich there are the blocks to avoid error on detection.

Public Attributes

- input_img
- · output_img_path

4.2.1 Detailed Description

Class that detect the area in wich detect blocks.

4.2.2 Constructor & Destructor Documentation

```
4.2.2.1 __init__()
```

Initialization of the class.

4.2.3 Member Function Documentation

4.2.3.1 create_mask()

```
create_mask (
          self )
```

Create a mask to keep in view only the area in wich there are the blocks to avoid error on detection.

4.2.4 Member Data Documentation

4.2.4.1 input_img

```
input_img
```

4.2.4.2 output_img_path

```
output_img_path
```

The documentation for this class was generated from the following file:

vision/detect_area.py

24 Class Documentation

4.3 DetectBlocks Class Reference

Class that detect blocks.

Public Member Functions

• None __init__ (self, zed_img)

Initializing the model, detect the area and create a mask to improve the recognition of the blocks.

• find_blocks (self)

Detect blocks in the image using YOLOv8 model, save the result of the detection in the runs folder and print the result of the detection.

Public Attributes

- · blocks
- model
- zed_img
- zed_img_cropped

4.3.1 Detailed Description

Class that detect blocks.

4.3.2 Constructor & Destructor Documentation

4.3.2.1 __init__()

Initializing the model, detect the area and create a mask to improve the recognition of the blocks.

Parameters

The image in wich there are the block to recognize

4.3.3 Member Function Documentation

4.3.3.1 find_blocks()

```
find_blocks (
```

Detect blocks in the image using YOLOv8 model, save the result of the detection in the runs folder and print the result of the detection.

4.4 frame Struct Reference 25

4.3.4 Member Data Documentation

4.3.4.1 blocks

blocks

4.3.4.2 model

model

4.3.4.3 zed_img

zed_img

4.3.4.4 zed_img_cropped

zed_img_cropped

The documentation for this class was generated from the following file:

vision/detect_blocks.py

4.4 frame Struct Reference

Structure to store the position and rotation of the end effector.

```
#include <kinematics.h>
```

Public Attributes

- Matrix3f rot
- Vector3f xyz

4.4.1 Detailed Description

Structure to store the position and rotation of the end effector.

4.4.2 Member Data Documentation

4.4.2.1 rot

Matrix3f rot

4.4.2.2 xyz

Vector3f xyz

The documentation for this struct was generated from the following file:

• planner_pkg/include/planner_pkg/kinematics.h

26 Class Documentation

Chapter 5

File Documentation

5.1 planner_pkg/include/planner_pkg/kinematics.h File Reference

```
#include <Eigen/Dense>
#include <Eigen/Geometry>
#include <cmath>
```

Include dependency graph for kinematics.h: This graph shows which files directly or indirectly include this file:

Classes

· struct frame

Structure to store the position and rotation of the end effector.

Functions

frame direct_kinematics (VectorXf th)

Compute the direct kinematics.

• Matrix3f eul2rotm (Vector3f rpy)

From euler angles to rotation matrix.

· MatrixXf inverse_kinematics (frame &frame)

Compute the inverse kinematics.

• MatrixXf jacobian (VectorXf q)

Calculate the jacobian matrix.

Vector3f rotm2eul (Matrix3f R)

From rotation matrix to euler angles.

• Matrix4f t10f (float th1)

Functions prototypes.

Matrix4f t21f (float th2)

Create the transformation matrix for the second joint.

• Matrix4f t32f (float th3)

Create the transformation matrix for the third joint.

Matrix4f t43f (float th4)

Create the transformation matrix for the fourth joint.

Matrix4f t54f (float th5)

Create the transformation matrix for the fifth joint.

• Matrix4f t65f (float th6)

Create the transformation matrix for the sixth joint.

5.1.1 Detailed Description

Author

Soldera Marco (marco.soldera@studenti.unitn.it) - Group Soldera Marco and Morandin Marco

Version

0.1

Date

2024-02-05

Copyright

Copyright (c) 2024

5.1.2 Function Documentation

5.1.2.1 direct_kinematics()

Compute the direct kinematics.

Parameters

th Joint angles

Returns

frame

5.1.2.2 eul2rotm()

From euler angles to rotation matrix.

Parameters

rpy Euler angles

Returns

Matrix3f

5.1.2.3 inverse_kinematics()

Compute the inverse kinematics.

Parameters

frame	Current frame of the end effector	
" a "	Carrotte traine of the one officer	

Returns

MatrixXf

5.1.2.4 jacobian()

```
\label{eq:matrixXf} \texttt{MatrixXf jacobian (} \\ \texttt{VectorXf } q \texttt{)}
```

Calculate the jacobian matrix.

Parameters

```
q Joint angles
```

Returns

MatrixXf

5.1.2.5 rotm2eul()

```
Vector3f rotm2eul ( {\tt Matrix3f}\ {\it R}\ )
```

From rotation matrix to euler angles.

Parameters

R Rotation matrix

Returns

Vector3f

5.1.2.6 t10f()

```
Matrix4f t10f ( \label{eq:float th1} \mbox{float } th1 \mbox{ )}
```

Functions prototypes.

Functions prototypes.

Parameters

```
th1 Angle of the first joint
```

Returns

Matrix4f

5.1.2.7 t21f()

```
Matrix4f t21f ( {\tt float}\ th2\ {\tt )}
```

Create the transformation matrix for the second joint.

Parameters

```
th2 Angle of the second joint
```

Returns

Matrix4f

5.1.2.8 t32f()

Create the transformation matrix for the third joint.

Parameters

th3 Angle of the third joint

Returns

Matrix4f

5.1.2.9 t43f()

```
Matrix4f t43f ( {\tt float}\ th4\ {\tt )}
```

Create the transformation matrix for the fourth joint.

Parameters

```
th4 Angle of the fourth joint
```

Returns

Matrix4f

5.1.2.10 t54f()

```
Matrix4f t54f ( {\tt float}\ {\it th5}\ )
```

Create the transformation matrix for the fifth joint.

Parameters

```
th5 | Angle of the fifth joint
```

Returns

Matrix4f

5.1.2.11 t65f()

Create the transformation matrix for the sixth joint.

Parameters

th6 Angle of the sixth joint

Returns

Matrix4f

5.2 kinematics.h

Go to the documentation of this file.

```
00011 #ifndef __KINEMATICS_H__
00012 #define __KINEMATICS_H_
00013
00014
00015 #include <Eigen/Dense>
00016 #include <Eigen/Geometry>
00017 #include <cmath>
00018
00019
00020 using namespace std;
00021 using namespace Eigen;
00023
00027 struct frame {
00028 Vector3f xyz;
00029
          Matrix3f rot;
00030 };
00031
00032
00037 Matrix4f t10f(float th1);
00038 Matrix4f t21f(float th2);
00039 Matrix4f t32f(float th3);
00040 Matrix4f t43f(float th4);
00041 Matrix4f t54f(float th5);
00042 Matrix4f t65f(float th6);
00043
00044 frame direct_kinematics(VectorXf th);
00045 MatrixXf inverse_kinematics(frame &frame);
00046 MatrixXf jacobian(VectorXf q);
00048 Matrix3f eul2rotm(Vector3f rpy);
00049 Vector3f rotm2eul (Matrix3f R);
00050
00051
00052 #endif
```

5.3 planner_pkg/include/planner_pkg/movement.h File Reference

```
#include "kinematics.h"
#include "ros/ros.h"
#include <std_msgs/Float64MultiArray.h>
#include <sensor_msgs/JointState.h>
#include <Eigen/Dense>
#include <Eigen/Geometry>
#include <iostream>
```

Include dependency graph for movement.h: This graph shows which files directly or indirectly include this file:

Functions

VectorXf invDiffKinematicControlCompleteQuaternion (VectorXf q, Vector3f xe, Vector3f xd, Vector3f vd, Vector3f omegad, Quaternionf qe, Quaternionf qd, Matrix3f Kp, Matrix3f Kq, int f)

Calculates joint velocities using the jacobian matrix.

void invDiffKinematicControlSimCompleteQuaternion (Vector3f xef, Vector3f phief, double dt, VectorXf jstates, void(*send j)(VectorXf))

Calculates joint configs using quaternions.

Quaternionf operator* (float num, const Quaternionf &q)

Function prototypes.

• Vector3f pd (float t, Vector3f xef, Vector3f xe0)

Calculates trajectory for the end-effector position.

• Quaternionf qd (float tb, Quaternionf q0, Quaternionf qf)

Calculates trajectory for the end-effector orientation with quaternions.

Variables

```
    float maxT = 6
    Max time for the trajectory.
```

5.3.1 Detailed Description

```
Author
```

```
Soldera Marco ( marco.soldera@studenti.unitn.it) - Group Soldera Marco and Morandin Marco
```

Version

0.1

Date

2024-02-05

Copyright

Copyright (c) 2024

5.3.2 Function Documentation

5.3.2.1 invDiffKinematicControlCompleteQuaternion()

Calculates joint velocities using the jacobian matrix.

Parameters

q	The current joint config
xe	The current end-effector position
xd	The desired end-effector position
vd	The desired end-effector linear velocity
omegad	The desired end-effector angular velocity
qe	The current end-effector rotation in quaternion
qd	The desired end-effector rotation in quaternion
Kd	The position gain
Kq	The orientation gain
f	counter for debugging

Returns

Vector6f

5.3.2.2 invDiffKinematicControlSimCompleteQuaternion()

Calculates joint configs using quaternions.

Parameters

xef	Desired end-effector position
phief	Desired end-effector orientation
dt	Time step
jstates	Actual state of the joints
send⊷	Function to send joint states
_j	

Returns

void

5.3.2.3 operator*()

```
Quaternionf operator* ( \label{eq:const_poly} \mbox{float } num, \\ \mbox{const Quaternionf & } q \mbox{ )}
```

Function prototypes.

Redefinition of multiplication between float and Quaternionf

Parameters

num	Scalar that multiplies
q	Quaternion to be multiplied

Returns

Quaternionf

5.3.2.4 pd()

```
Vector3f pd (  \mbox{float $tb$,} \\ \mbox{Vector3f $xef$,} \\ \mbox{Vector3f $xe0$ )}
```

Calculates trajectory for the end-effector position.

Parameters

t	The current time
xef	The desired end-effector position
xe0	The start end-effector position

Returns

Vector3f

5.3.2.5 qd()

```
Quaternionf qd (  \mbox{float $tb$,} \\ \mbox{Quaternionf $q0$,} \\ \mbox{Quaternionf $qf$ )}
```

Calculates trajectory for the end-effector orientation with quaternions.

Parameters

tb	The current time
q0	The start end-effector quaternion
qf	The desired end-effector quaternion

Returns

Quaternionf

5.3.3 Variable Documentation

5.3.3.1 maxT

```
float maxT = 6
```

Max time for the trajectory.

5.4 movement.h

Go to the documentation of this file.

```
00001
00011 #ifndef __MOVEMENT_H_
00012 #define __MOVEMENT_H_
00013
00014
00015 #include "kinematics.h"
00016
00017 #include "ros/ros.h"
00018 #include <std_msgs/Float64MultiArray.h>
00019 #include <sensor_msgs/JointState.h>
00020 #include <Eigen/Dense>
00021 #include <Eigen/Geometry>
00022
00023 #include <iostream>
00024
00025
00026 using namespace std;
00027 using namespace Eigen;
00028
00029
00031 inline float maxT = 6;
00032
00045 inline Quaternionf operator *(float num, const Quaternionf& q) {
00046
        return Quaternionf(q.x() * num, q.y() * num, q.z() * num, q.w() * num);
00047 }
00048
00049 Vector3f pd(float t, Vector3f xef, Vector3f xe0);
00050 Quaternionf qd(float tb, Quaternionf q0, Quaternionf qf);
00051 VectorXf invDiffKinematicControlCompleteQuaternion(VectorXf q, Vector3f xe, Vector3f xd, Vector3f vd,
Vector3f omegad, Quaternionf qe, Quaternionf qd, Matrix3f Kp, Matrix3f Kq, int f);
00052 void invDiffKinematicControlSimCompleteQuaternion(Vector3f xef, Vector3f phief, double dt, VectorXf
      jstates, void (*send_j)(VectorXf));
00053
00054
00055 #endif
```

5.5 planner_pkg/include/planner_pkg/planner.h File Reference

```
#include "movement.h"
#include <planner_pkg/legoDetection.h>
#include <planner_pkg/legoGroup.h>
#include <ros/ros.h>
#include <Eigen/Dense>
#include <Eigen/Geometry>
#include <iostream>
#include <vector>
#include <cmath>
```

Include dependency graph for planner.h: This graph shows which files directly or indirectly include this file:

Typedefs

typedef Matrix< float, 2, 1 > GripperState

Position of the components of the gripper.

Functions

void close_gripper (float amp)

Close the gripper of the robot.

GripperState get_gripper_states ()

Read from the topic the actual value of the gripper joint.

VectorXf get_joint_states ()

Read from the topic the actual value of the joint.

void listen_lego_detection (ros::Rate rate)

Functions prototype.

void move_to_home ()

Moves the robot to the home position.

void open_gripper (float amp)

Open the gripper of the robot.

Vector3f quat2eul (Quaternionf q)

Convert from Quaternion to Euler Angles.

void set_joint_states (VectorXf q)

Posts on the topic the vector joint pos, which contains the value of the angles, that all joints must reach.

void waitJoints (bool waitRot, Vector3f xef, Vector3f phief)

Wait for joints to be at the final position.

void waitSec (float t)

Wait for the specified time.

Vector3f X1_Y1_Z2 (0.92, 0.27, 0.88)

Final positions of bricks based on type.

- Vector3f X1_Y2_Z1 (0.77, 0.27, 0.88)
- Vector3f X1 Y2 Z2 (0.62, 0.27, 0.88)
- Vector3f X1_Y2_Z2_CHAMFER (0.92, 0.42, 0.88)
- Vector3f X1_Y2_Z2_TWINFILLET (0.77, 0.42, 0.88)
- Vector3f X1_Y3_Z2 (0.77, 0.56, 0.88)
- Vector3f X1 Y3 Z2 FILLET (0.62, 0.56, 0.88)
- Vector3f X1_Y4_Z1 (0.87, 0.72, 0.88)
- Vector3f X1_Y4_Z2 (0.65, 0.72, 0.88)
- Vector3f X2 Y2 Z2 (0.62, 0.42, 0.89)
- Vector3f X2_Y2_Z2_FILLET (0.92, 0.56, 0.89)

Variables

GripperState actual_gripper

Position of the gripper.

std msgs::Float64MultiArray jointState msg robot

Structure of the message to be published with joint positions.

• float loop_frequency = 1000.0

Loop rate of the node.

- map< std::string, Vector3f > models_map
- ros::Publisher pub_joint_states

Publisher for the desired joint state.

• double timeStep = 0.001

Time step.

5.5.1 Detailed Description

Author

Soldera Marco (marco.soldera@studenti.unitn.it) - Group Soldera Marco and Morandin Marco

Version

0.1

Date

2024-02-05

Copyright

Copyright (c) 2024

5.5.2 Typedef Documentation

5.5.2.1 GripperState

```
typedef Matrix<float, 2, 1> GripperState
```

Position of the components of the gripper.

5.5.3 Function Documentation

5.5.3.1 close_gripper()

Close the gripper of the robot.

We public directly on the topic the angles that we want to reach with the fingers of the gripper

Parameters

```
amp Required negative gripper length (positive value)
```

Returns

void

5.5.3.2 get_gripper_states()

```
GripperState get_gripper_states ( )
```

Read from the topic the actual value of the gripper joint.

Returns

GripperState

5.5.3.3 get_joint_states()

```
VectorXf get_joint_states ( )
```

Read from the topic the actual value of the joint.

Returns

Vector6f

5.5.3.4 listen_lego_detection()

Functions prototype.

Functions prototype.

Parameters

```
rate ros rate
```

Returns

void

5.5.3.5 move_to_home()

```
void move_to_home ( )
```

Moves the robot to the home position.

Returns

void

5.5.3.6 open_gripper()

```
void open_gripper (
     float amp )
```

Open the gripper of the robot.

We public directly on the topic the angles that we want to reach with the fingers of the gripper

Parameters

amp ricquired gripper ierigin	amp	Required gripper length
---------------------------------	-----	-------------------------

Returns

void

5.5.3.7 quat2eul()

```
\begin{tabular}{ll} Vector3f quat2eul ( \\ Quaternionf $q$ ) \end{tabular}
```

Convert from Quaternion to Euler Angles.

Parameters

```
q Quaternion to convert
```

Returns

Vector3f

5.5.3.8 set_joint_states()

Posts on the topic the vector joint_pos, which contains the value of the angles, that all joints must reach.

Parameters

joint_pos | Vector that conatins the values of each joint angle position to be published

Returns

void

5.5.3.9 waitJoints()

```
void waitJoints (
          bool waitRot,
          Vector3f xef,
          Vector3f phief )
```

Wait for joints to be at the final position.

Parameters

waitRot	wait also for z rotation to be aligned
xef	final positon
phief	final rotation

Returns

void

5.5.3.10 waitSec()

```
void waitSec ( \label{eq:float t float t float t} float \ t \ )
```

Wait for the specified time.

Parameters

t Time to wait

Returns

void

5.5.3.11 X1_Y1_Z2()

Final positions of bricks based on type.

5.5.3.12 X1_Y2_Z1()

5.5.3.13 X1_Y2_Z2()

5.5.3.14 X1_Y2_Z2_CHAMFER()

5.5.3.15 X1_Y2_Z2_TWINFILLET()

5.5.3.16 X1_Y3_Z2()

5.5.3.17 X1_Y3_Z2_FILLET()

5.5.3.18 X1_Y4_Z1()

5.5.3.19 X1_Y4_Z2()

5.5.3.20 X2_Y2_Z2()

5.5.3.21 X2_Y2_Z2_FILLET()

5.5.4 Variable Documentation

5.5.4.1 actual_gripper

```
GripperState actual_gripper
```

Position of the gripper.

5.5.4.2 jointState_msg_robot

```
std_msgs::Float64MultiArray jointState_msg_robot
```

Structure of the message to be published with joint positions.

5.5.4.3 loop_frequency

```
float loop_frequency = 1000.0
```

Loop rate of the node.

5.5.4.4 models_map

```
map<std::string, Vector3f> models_map
```

Initial value:

```
{"X1-Y1-Z2", X1_Y1_Z2},

{"X1-Y2-Z1", X1_Y2_Z1},

{"X1-Y2-Z2", X1_Y2_Z2},

{"X1-Y2-Z2-CHAMFER", X1_Y2_Z2_CHAMFER},

{"X1-Y2-Z2-TWINFILLET", X1_Y2_Z2_TWINFILLET},

{"X2-Y2-Z2", X2_Y2_Z2},

{"X2-Y2-Z2-FILLET", X2_Y2_Z2_FILLET},

{"X1-Y3-Z2", X1_Y3_Z2},

{"X1-Y3-Z2", X1_Y3_Z2},

{"X1-Y4-Z1", X1_Y4_Z1},

{"X1-Y4-Z2", X1_Y4_Z2}
```

5.5.4.5 pub_joint_states

```
ros::Publisher pub_joint_states
```

Publisher for the desired joint state.

5.5.4.6 timeStep

```
double timeStep = 0.001
```

Time step.

5.6 planner.h

Go to the documentation of this file.

```
00001
00011 #ifndef ___PLANNER_H_
00012 #define __PLANNER_H_
00014
00015 #include "movement.h"
00016 #include <planner_pkg/legoDetection.h>
00017 #include <planner_pkg/legoGroup.h>
00018
00019 #include <ros/ros.h>
00020 #include <Eigen/Dense>
00021 #include <Eigen/Geometry>
00022
00023 #include <iostream>
00024 #include <vector>
00025 #include <cmath>
00026
00027
00028 using namespace std;
00029 using namespace Eigen;
00030
00031
00035 typedef Matrix<float, 2, 1> GripperState;
00038 float loop_frequency = 1000.0;
00040 double timeStep = 0.001;
00042 GripperState actual_gripper;
00043
00046 ros::Publisher pub_joint_states;
00048 std_msgs::Float64MultiArray jointState_msg_robot;
00049
00050
00055 void listen_lego_detection(ros::Rate rate);
00056 void move_to_home();
00057 Vector3f quat2eul(Quaternionf q);
00058 VectorXf get_joint_states();
00059 void set_joint_states(VectorXf q);
00060 GripperState get_gripper_states();
00061 void open_gripper(float amp);
00062 void close_gripper(float amp);
00063 void waitSec(float t);
00064 void waitJoints(bool waitRot, Vector3f xef, Vector3f phief);
00065
00066
00071 Vector3f X1_Y1_Z2(0.92, 0.27, 0.88);
00072 Vector3f X1_Y2_Z1(0.77, 0.27, 0.88);
00073 Vector3f X1_Y2_Z2(0.62, 0.27, 0.88);
00074
00075 Vector3f X1_Y2_z2_CHAMFER(0.92, 0.42, 0.88);
00076 Vector3f X1_Y2_z2_TWINFILLET(0.77, 0.42, 0.88);
00077 Vector3f X2_Y2_z2(0.62, 0.42, 0.89);
00078
00079 Vector3f X2_Y2_Z2_FILLET(0.92, 0.56, 0.89);
00080 Vector3f X1_Y3_Z2(0.77, 0.56, 0.88);
00081 Vector3f X1_Y3_Z2_FILLET(0.62, 0.56, 0.88);
00082
00083 Vector3f X1_Y4_Z1(0.87, 0.72, 0.88);
00084 Vector3f X1_Y4_Z2(0.65, 0.72, 0.88);
00085
{"X1-Y2-Z2-CHAMFER", X1_Y2_Z2_CHAMFER},
00090
            {"X1-Y2-Z2-TWINFILLET", X1_Y2_Z2_TWINFILLET},
00091
00092
           {"X2-Y2-Z2", X2_Y2_Z2},
00093
            {"X2-Y2-Z2-FILLET", X2_Y2_Z2_FILLET},
00094
           {"X1-Y3-Z2", X1_Y3_Z2},
```

5.7 planner_pkg/src/kinematics.cpp File Reference

Functions in this file are used to calculate transformation matrices, direct and inverse kinematics, jacobian matrices and trasformation between Euler angles and rotation matrices.

```
#include "planner_pkg/kinematics.h"
Include dependency graph for kinematics.cpp:
```

Functions

· frame direct_kinematics (VectorXf th)

Compute the direct kinematics.

Matrix3f eul2rotm (Vector3f rpy)

From euler angles to rotation matrix.

· MatrixXf inverse_kinematics (frame &frame)

Compute the inverse kinematics.

• MatrixXf jacobian (VectorXf q)

Calculate the jacobian matrix.

Vector3f rotm2eul (Matrix3f R)

From rotation matrix to euler angles.

• Matrix4f t10f (float th1)

Create the transformation matrix for the first joint.

Matrix4f t21f (float th2)

Create the transformation matrix for the second joint.

• Matrix4f t32f (float th3)

Create the transformation matrix for the third joint.

• Matrix4f t43f (float th4)

Create the transformation matrix for the fourth joint.

Matrix4f t54f (float th5)

Create the transformation matrix for the fifth joint.

Matrix4f t65f (float th6)

Create the transformation matrix for the sixth joint.

5.7.1 Detailed Description

Functions in this file are used to calculate transformation matrices, direct and inverse kinematics, jacobian matrices and trasformation between Euler angles and rotation matrices.

Author

Soldera Marco (marco.soldera@studenti.unitn.it) - Group Soldera Marco and Morandin Marco

Version

0.1

Date

2024-02-05

Copyright

Copyright (c) 2024

5.7.2 Function Documentation

5.7.2.1 direct_kinematics()

```
\begin{array}{c} \textbf{frame direct\_kinematics (} \\ & \textbf{VectorXf} \ \textit{th} \ ) \end{array}
```

Compute the direct kinematics.

Parameters

Returns

frame

5.7.2.2 eul2rotm()

From euler angles to rotation matrix.

Parameters

```
rpy Euler angles
```

Returns

Matrix3f

5.7.2.3 inverse_kinematics()

5.7 planner_pkg/src/kinematics.cpp File Reference 47 Compute the inverse kinematics.

Parameters

frame Current frame of the end effector

Returns

MatrixXf

5.7.2.4 jacobian()

```
MatrixXf jacobian ( {\tt VectorXf}\ q\ )
```

Calculate the jacobian matrix.

Parameters

q Joint angles

Returns

MatrixXf

5.7.2.5 rotm2eul()

```
Vector3f rotm2eul ( {\tt Matrix3f}\ {\it R}\ )
```

From rotation matrix to euler angles.

Parameters

R Rotation matrix

Returns

Vector3f

5.7.2.6 t10f()

```
Matrix4f t10f (
            float th1 )
```

Create the transformation matrix for the first joint.

Functions prototypes.

Parameters

```
th1 Angle of the first joint
```

Returns

Matrix4f

5.7.2.7 t21f()

```
Matrix4f t21f ( float th2)
```

Create the transformation matrix for the second joint.

Parameters

```
th2 Angle of the second joint
```

Returns

Matrix4f

5.7.2.8 t32f()

```
Matrix4f t32f ( float th3)
```

Create the transformation matrix for the third joint.

Parameters

```
th3 Angle of the third joint
```

Returns

Matrix4f

5.7.2.9 t43f()

```
Matrix4f t43f ( {\tt float}\ th4\ {\tt )}
```

Create the transformation matrix for the fourth joint.

Parameters

th4 Angle of the fourth joint

Returns

Matrix4f

5.7.2.10 t54f()

```
Matrix4f t54f ( float th5)
```

Create the transformation matrix for the fifth joint.

Parameters

```
th5 Angle of the fifth joint
```

Returns

Matrix4f

5.7.2.11 t65f()

```
Matrix4f t65f ( float th6)
```

Create the transformation matrix for the sixth joint.

Parameters

```
th6 Angle of the sixth joint
```

Returns

Matrix4f

5.8 planner_pkg/src/movement.cpp File Reference

Functions in this file are used to calculate the trajectory based on quaternions and velocities of the joints.

```
#include "planner_pkg/movement.h"
Include dependency graph for movement.cpp:
```

Functions

VectorXf invDiffKinematicControlCompleteQuaternion (VectorXf q, Vector3f xe, Vector3f xd, Vector3f vd, Vector3f omegad, Quaternionf qe, Quaternionf qd, Matrix3f Kp, Matrix3f Kq, int f)

Calculates joint velocities using the jacobian matrix.

• void invDiffKinematicControlSimCompleteQuaternion (Vector3f xef, Vector3f phief, double dt, VectorXf jstates, void(*send_j)(VectorXf))

Calculates joint configs using quaternions.

Vector3f pd (float tb, Vector3f xef, Vector3f xe0)

Calculates trajectory for the end-effector position.

Quaternionf qd (float tb, Quaternionf q0, Quaternionf qf)

Calculates trajectory for the end-effector orientation with quaternions.

5.8.1 Detailed Description

Functions in this file are used to calculate the trajectory based on quaternions and velocities of the joints.

Author

```
Soldera Marco ( marco.soldera@studenti.unitn.it) - Group Soldera Marco and Morandin Marco
```

Version

0.1

Date

2024-02-05

Copyright

Copyright (c) 2024

5.8.2 Function Documentation

5.8.2.1 invDiffKinematicControlCompleteQuaternion()

Calculates joint velocities using the jacobian matrix.

Parameters

q	The current joint config
xe	The current end-effector position
xd	The desired end-effector position
vd	The desired end-effector linear velocity
omegad	The desired end-effector angular velocity
qe	The current end-effector rotation in quaternion
qd	The desired end-effector rotation in quaternion
Kd	The position gain
Kq	The orientation gain
f	counter for debugging

Returns

Vector6f

5.8.2.2 invDiffKinematicControlSimCompleteQuaternion()

Calculates joint configs using quaternions.

Parameters

xef	Desired end-effector position
phief	Desired end-effector orientation
dt	Time step
jstates	Actual state of the joints
send⇔	Function to send joint states
j	

Returns

void

5.8.2.3 pd()

```
Vector3f pd (  float \ tb, \\ Vector3f \ xef, \\ Vector3f \ xe0 )
```

Calculates trajectory for the end-effector position.

Parameters

t	The current time
xef	The desired end-effector position
xe0	The start end-effector position

Returns

Vector3f

5.8.2.4 qd()

```
Quaternionf qd (  \mbox{float $tb$,} \\ \mbox{Quaternionf $q0$,} \\ \mbox{Quaternionf $qf$ )}
```

Calculates trajectory for the end-effector orientation with quaternions.

Parameters

tb	The current time
q0	The start end-effector quaternion
qf	The desired end-effector quaternion

Returns

Quaternionf

5.9 planner_pkg/src/planner.cpp File Reference

Main function and planning of the movement based on the messages received from the vision; also getters and setters for joints are present.

```
#include "planner_pkg/planner.h"
Include dependency graph for planner.cpp:
```

Functions

• void close_gripper (float amp)

Close the gripper of the robot.

• GripperState get_gripper_states ()

Read from the topic the actual value of the gripper joint.

VectorXf get_joint_states ()

Read from the topic the actual value of the joint.

• void listen_lego_detection (ros::Rate rate)

Listen to the /lego_position topic if messages arrives from the vision node; for each lego detected it sends the robot to the lego position knowing which type of lego it is.

- int main (int argc, char **argv)
- void move_to_home ()

Moves the robot to the home position.

void open_gripper (float amp)

Open the gripper of the robot.

Vector3f quat2eul (Quaternionf q)

Convert from Quaternion to Euler Angles.

void set_joint_states (VectorXf joint_pos)

Posts on the topic the vector joint_pos, which contains the value of the angles, that all joints must reach.

void waitJoints (bool waitRot, Vector3f xef, Vector3f phief)

Wait for joints to be at the final position.

void waitSec (float t)

Wait for the specified time.

5.9.1 Detailed Description

Main function and planning of the movement based on the messages received from the vision; also getters and setters for joints are present.

Author

Soldera Marco (marco.soldera@studenti.unitn.it) - Group Soldera Marco and Morandin Marco

Version

0.1

Date

2024-02-05

Copyright

Copyright (c) 2024

5.9.2 Function Documentation

5.9.2.1 close_gripper()

```
void close_gripper (
     float amp )
```

Close the gripper of the robot.

We public directly on the topic the angles that we want to reach with the fingers of the gripper

Parameters

amp Required negative gripper length (positive value)

Returns

void

5.9.2.2 get_gripper_states()

```
GripperState get_gripper_states ( )
```

Read from the topic the actual value of the gripper joint.

Returns

GripperState

5.9.2.3 get_joint_states()

```
VectorXf get_joint_states ( )
```

Read from the topic the actual value of the joint.

Returns

Vector6f

5.9.2.4 listen_lego_detection()

Listen to the /lego_position topic if messages arrives from the vision node; for each lego detected it sends the robot to the lego position knowing which type of lego it is.

Functions prototype.

Parameters

rate ros rate

Returns

void

5.9.2.5 main()

```
int main (  \mbox{int $argc$,} \\ \mbox{char $**$ $argv$ )}
```

5.9.2.6 move_to_home()

```
void move_to_home ( )
```

Moves the robot to the home position.

Returns

void

5.9.2.7 open_gripper()

```
void open_gripper (
     float amp )
```

Open the gripper of the robot.

We public directly on the topic the angles that we want to reach with the fingers of the gripper

Parameters

```
amp Required gripper length
```

Returns

void

5.9.2.8 quat2eul()

```
Vector3f quat2eul ( {\tt Quaternionf}\ q\ )
```

Convert from Quaternion to Euler Angles.

Parameters

q Quaternion to convert

Returns

Vector3f

5.9.2.9 set_joint_states()

Posts on the topic the vector joint_pos, which contains the value of the angles, that all joints must reach.

Parameters

joint_	oos Vecto	or that conatins the v	alues of each joint	angle position to	be published
--------	-----------	------------------------	---------------------	-------------------	--------------

Returns

void

5.9.2.10 waitJoints()

```
void waitJoints (
                bool waitRot,
                Vector3f xef,
                 Vector3f phief )
```

Wait for joints to be at the final position.

Parameters

waitRot	wait also for z rotation to be aligned	
xef	final positon	
phief	final rotation	

Returns

void

5.9.2.11 waitSec()

```
void waitSec ( \label{eq:float t float float float t float float
```

Wait for the specified time.

Parameters

t Time to wait

Returns

void

5.10 spawnLego/spawnLego.py File Reference

Spawn lego in random position and orientation.

Namespaces

· namespace spawnLego

Functions

changeModelColor (model xml, color)

Changes the color of model.

• check_sovrapposizioni (pos, lego)

This function check if there is conflict in spawn with other legos.

• del model (model)

Removes the model with 'modelName' from the Gazebo scene.

• randNum (min, max)

Generates a random number.

random_position ()

Generates a random position and rotation in the spawning zone.

• spawn_model (model, pos, name=None, ref_frame='world')

Spawns the model in the given position.

Variables

- list colorList = ['Gazebo/Indigo', 'Gazebo/Gold', 'Gazebo/Orange', 'Gazebo/Red', 'Gazebo/Purple', 'Gazebo/Grass', 'Gazebo/White', 'Gazebo/Green', 'Gazebo/Yellow', 'Gazebo/Blue', 'Gazebo/Turquoise']
 Colors of the generated legos.
- list models = ["X1-Y1-Z2", "X1-Y2-Z1", "X1-Y2-Z2-CHAMFER", "X1-Y2-Z2-TWINFILLET", "X1-Y2-Z2", "X1-Y3-Z2", "X1-Y4-Z1", "X1-Y4-Z2", "X2-Y2-Z2-FILLET", "X2-Y2-Z2", "X1-Y3-Z2-FILLET"]

Name of the models.

• str models_path = os.path.dirname(os.path.abspath(__file__)) + "/models"

Path of the models to add to the scene.

• float toll = 0.039

Spacing factor for placing pieces.

5.10.1 Detailed Description

Spawn lego in random position and orientation.

5.10.2 Author(s)

· Created by Marco Soldera

5.11 utils/dataset creation/dataset2Yolo.py File Reference

Convert the given dataset to a Yolo format dataset.

Namespaces

namespace dataset2Yolo

Functions

• create_annotations ()

This function creates annotations in .txt format for each image and saves it in /labels.

create_yaml_file ()

This function is used to create the yaml file required from YOLO format.

Variables

list ASSIGNS = ['assign1', 'assign2']

Name of the folder that contains the given dataset.

• CATEGORIES = json.load(file)

List of all categories in the dataset.

• PROJECT_DIR = os.getcwd()

Script working directory.

5.11.1 Detailed Description

Convert the given dataset to a Yolo format dataset.

5.11.2 Author(s)

· Created by Marco Morandin

5.12 utils/dataset_creation/yolo-k-fold-splitter.py File Reference

Namespaces

· namespace yolo-k-fold-splitter

Variables

```
• classes = yaml.safe_load(y)['names']

    cls idx = sorted(range(0, len(classes)))

dataset_path = Path('./yolo_dataset')
str dataset_yaml = split_dir / f'{split}_dataset.yaml'
• list ds_yamls = []
· encoding
· exist ok
• fold lbl distrb = pd.DataFrame(index=folds, columns=cls idx)
• list folds = [f'split_{n}' for n in range(1, ksplit + 1)]
• folds df = pd.DataFrame(index=indx, columns=folds)
• list images = []
str img_to_path = save_path / split / k_split / 'images'
• list indx = [l.stem for I in labels]
• kf = KFold(n_splits=ksplit, shuffle=True, random_state=20)

    kfolds = list(kf.split(labels df))

• int ksplit = 5
labels = sorted(dataset_path.rglob("*labels/*.txt"))

    labels df = pd.DataFrame([], columns=cls idx, index=indx)

• Ibl counter = Counter()
• str lbl_to_path = save_path / split / k_split / 'labels'
lines = lf.readlines()
· parents
• ratio = val totals / (train totals + 1E-7)
• save_path = Path(dataset_path / f'split_{ksplit}-Fold_Cross-val')
• split_dir = save_path / split
• list supported_extensions = ['.jpg', '.jpeg', '.png']
train_totals = labels_df.iloc[train_indices].sum()
• val_totals = labels_df.iloc[val_indices].sum()
• str yaml_file = './yolo_dataset/data.yaml'
```

5.13 utils/scale_legos.py File Reference

Namespaces

• namespace scale_legos

Functions

• scale_legos ()

This function scale legos modifying their sdf file.

Variables

str MODELS_PATH = os.getcwd().replace('utils', ") + 'locosim/ros_impedance_controller/worlds/models'
 Path to the world models sdf(s)

• float NEW SCALE FACTOR = 0.8

The new value for the scale of the legos.

• float OLD SCALE FACTOR = 0.9

The value that already is used to scale legos.

str SPAWN_PATH = os.getcwd().replace('utils', ") + 'spawnLego/models'

Path to the spawn models sdf(s)

5.13.1 Detailed Description

5.13.2 Author(s)

· Created by Marco Morandin

5.14 utils/training/training.py File Reference

Namespaces

· namespace training

Variables

- list metrics = []
- model = YOLO('yolov8m.pt')
- PROJECT_DIR = os.getcwd()
- · results
- split = len([entry for entry in os.listdir(PROJECT_DIR + '/split_5_5-Fold_Cross-val') if os.path.isdir(os.path.
 join(PROJECT_DIR + '/split_5_5-Fold_Cross-val', entry))])

5.15 vision/detect_area.py File Reference

Detect the area and crop the ZED image from where the model will recognize blocks.

Classes

· class DetectArea

Class that detect the area in wich detect blocks.

Namespaces

• namespace detect_area

Variables

- detectArea = DetectArea(input_img = img, output_img_path='detected_area.png')
- img = cv2.imread('zed_image.png')

5.15.1 Detailed Description

Detect the area and crop the ZED image from where the model will recognize blocks.

5.15.2 Author(s)

· Created by Marco Morandin

5.16 vision/detect_blocks.py File Reference

Detect blocks in the image using YOLOv8 model trained in a custom dataset.

Classes

• class Block

Class that rapresent a block.

class DetectBlocks

Class that detect blocks.

Namespaces

· namespace detect_blocks

5.16.1 Detailed Description

Detect blocks in the image using YOLOv8 model trained in a custom dataset.

There is the block class that rapresent a block with his characteristics

5.16.2 Author(s)

· Created by Marco Morandin

5.17 vision/params.py File Reference

Parameters used in the vision scripts.

Namespaces

namespace params

Variables

• BASE_LINK_POSITION = np.array([0.5,0.35,1.75])

Base link position regarding to the origin frame.

• float BLOCK_COORD_Z = 0.875

Height of the block regarding to the origin frame.

• int CATEGORIES = 11

Number of categories of blocks.

• str IMAGE_SUB_TOPIC = '/ur5/zed_node/left/image_rect_color'

ROS topic from where the script get the ZED image.

• float MIN_LEVEL_CONFIDENCE = 0.3

Level of confidence of the Yolo model to keep the assigned labels.

• str NODE_NAME = 'vision'

ROS nodes name.

• str POINTCLOUD_SUB_TOPIC = '/ur5/zed_node/point_cloud/cloud_registered'

ROS topic from where the script get the pointcloud.

str PUB_TOPIC = 'lego_position'

ROS topic where to publish positions.

RY

Rotation matrix of the ZED camera.

• list TABLE = [[825,549], [1301,552], [1570,913], [658, 921]]

Area where the vision detect blocks.

• str ZED_IMG_CROPPED_PATH = os.getcwd() + '/cropped_zed_image.png'

Path where the cropped image is saved (a mask is applied to the photo to reduce confusion)

• str ZED_IMG_PATH = os.getcwd() + '/zed_image.png'

Path where the original ZED image is saved.

ZED_POSITION = np.array([-0.9, 0.24, -0.35])

Zed position regarding to the base link frame.

5.17.1 Detailed Description

Parameters used in the vision scripts.

5.17.2 Author(s)

· Created by Marco Morandin

5.18 vision/vision.py File Reference

Detect blocks from a photos caming from the ZED camera and find position of them.

Namespaces

· namespace vision

Functions

• build_pose (block)

Find three useful points for compute position and orientation of a block from all the points contained in it, moreover compute the coordinates of the center, find orientation, convert it to quaternions and in the end create the Pose object.

find_center (y_max_point, y_min_point)

Find the coordinates of the center of a block.

• find_orientation (y_max_point, x_min_point)

Find the yaw of a block in Euler angles.

• pointCloudCallBack ()

This function waits a message from a pointcloud and then reads the points from it and compute the position and the orientation of the blocks in the Gazebo scenario.

• receive image (data)

Recive image from ros and save it.

Variables

- image_sub = rospy.Subscriber(IMAGE_SUB_TOPIC, Image, callback=receive_image, queue_size = 1)
- loop_rate = rospy.Rate(1.)
- pos_pub = rospy.Publisher(PUB_TOPIC, legoGroup, queue_size = 11)

5.18.1 Detailed Description

Detect blocks from a photos caming from the ZED camera and find position of them.

5.18.2 Author(s)

· Created by Marco Morandin

Index

init	create_annotations
Block, 21	dataset2Yolo, 5
DetectArea, 23	create_mask
DetectBlocks, 24	DetectArea, 23
	create_yaml_file
actual_gripper	dataset2Yolo, 5
planner.h, 43	,
ASSIGNS	dataset2Yolo, 5
dataset2Yolo, 6	ASSIGNS, 6
	CATEGORIES, 6
BASE_LINK_POSITION	create_annotations, 5
params, 7	create_yaml_file, 5
Block, 21	PROJECT DIR, 6
init, 21	dataset_path
category, 22	yolo-k-fold-splitter, 18
category_id, 22	dataset_yaml
confidence, 22	yolo-k-fold-splitter, 18
image, 22	del model
points, 22	spawnLego, 12
points_count, 22	detect area, 6
xyxy, <mark>22</mark>	detectArea, 6
BLOCK COORD Z	img, 6
params, 7	detect_blocks, 7
blocks	DetectArea, 22
DetectBlocks, 25	init, 23
build_pose	create_mask, 23
vision, 15	input_img, 23
,	output_img_path, 23
CATEGORIES	detectArea
dataset2Yolo, 6	detect_area, 6
params, 8	DetectBlocks, 24
category	init, 24
Block, 22	blocks, 25
category id	find_blocks, 24
Block, 22	model, 25
changeModelColor	zed_img, 25
spawnLego, 11	
check_sovrapposizioni	zed_img_cropped, 25 direct_kinematics
spawnLego, 11	
classes	kinematics.cpp, 46 kinematics.h, 28
yolo-k-fold-splitter, 18	
close_gripper	ds_yamls
planner.cpp, 54	yolo-k-fold-splitter, 18
planner.h, 38	encoding
cls_idx	yolo-k-fold-splitter, 18
yolo-k-fold-splitter, 18	eul2rotm
colorList	kinematics.cpp, 46
spawnLego, 13	kinematics.cpp, 46
confidence	exist_ok
Block, 22	yolo-k-fold-splitter, 18
· · · · · · ·	yolo-k-lolu-spiillel, lo

find_blocks	kfolds
DetectBlocks, 24	yolo-k-fold-splitter, 19
find_center	kinematics.cpp
vision, 15	direct_kinematics, 46
find_orientation	eul2rotm, 46
vision, 16	inverse_kinematics, 46
fold lbl distrb	jacobian, 48
yolo-k-fold-splitter, 18	rotm2eul, 48
folds	t10f, 48
yolo-k-fold-splitter, 18	t21f, 49
folds df	t32f, 49
yolo-k-fold-splitter, 18	t43f, 49
frame, 25	t54f, 50
rot, 25	t65f, 50
•	kinematics.h
xyz, 25	
act gripper states	direct_kinematics, 28
get_gripper_states	eul2rotm, 28
planner.cpp, 55	inverse_kinematics, 29
planner.h, 38	jacobian, <mark>29</mark>
get_joint_states	rotm2eul, 29
planner.cpp, 55	t10f, 30
planner.h, 39	t21f, 30
GripperState	t32f, 30
planner.h, 38	t43f, 31
	t54f, 31
image	t65f, <mark>3</mark> 1
Block, 22	ksplit
image_sub	yolo-k-fold-splitter, 19
vision, 17	yolo-k-lola-splitter, 15
IMAGE_SUB_TOPIC	labels
params, 8	yolo-k-fold-splitter, 19
images	labels df
yolo-k-fold-splitter, 18	-
img	yolo-k-fold-splitter, 19
detect_area, 6	lbl_counter
	yolo-k-fold-splitter, 19
img_to_path	lbl_to_path
yolo-k-fold-splitter, 19	yolo-k-fold-splitter, 19
indx	lines
yolo-k-fold-splitter, 19	yolo-k-fold-splitter, 19
input_img	listen_lego_detection
DetectArea, 23	planner.cpp, 55
invDiffKinematicControlCompleteQuaternion	planner.h, 39
movement.cpp, 51	loop_frequency
movement.h, 33	planner.h, 43
invDiffKinematicControlSimCompleteQuaternion	loop_rate
movement.cpp, 52	vision, 17
movement.h, 34	VIOIO11, 17
inverse kinematics	main
kinematics.cpp, 46	planner.cpp, 55
kinematics.h, 29	maxT
Killematics.ii, 29	==
jacobian	movement.h, 36
kinematics.cpp, 48	metrics
···	training, 14
kinematics.h, 29	MIN_LEVEL_CONFIDENCE
jointState_msg_robot	params, 8
planner.h, 43	model
1.4	DetectBlocks, 25
kf	training, 14
yolo-k-fold-splitter, 19	models

angual aga 19	planner ann
spawnLego, 13	planner.cpp
models_map	close_gripper, 54
planner.h, 43	get_gripper_states, 55
MODELS_PATH	get_joint_states, 55
scale_legos, 10	listen_lego_detection, 55
models_path	main, 55
spawnLego, 13	move_to_home, 56
move_to_home	open_gripper, 56
planner.cpp, 56	quat2eul, 56
planner.h, 39	set_joint_states, 56
movement.cpp	waitJoints, 57
invDiffKinematicControlCompleteQuaternion, 51	waitSec, 57
inv Diff Kine matic Control Sim Complete Quaternion,	planner.h
52	actual_gripper, 43
pd, 52	close_gripper, 38
qd, 53	get_gripper_states, 38
movement.h	get_joint_states, 39
invDiffKinematicControlCompleteQuaternion, 33	GripperState, 38
inv Diff Kine matic Control Sim Complete Quaternion,	jointState_msg_robot, 43
34	listen_lego_detection, 39
maxT, 36	loop_frequency, 43
operator*, 34	models_map, 43
pd, 35	move_to_home, 39
qd, 35	open_gripper, 39
,	pub_joint_states, 43
NEW_SCALE_FACTOR	quat2eul, 40
scale_legos, 10	set_joint_states, 40
NODE_NAME	timeStep, 43
params, 8	waitJoints, 40
	waitSec, 41
OLD_SCALE_FACTOR	X1_Y1_Z2, 41
scale_legos, 10	X1_Y2_Z1, 41
open_gripper	X1_Y2_Z2, 41
planner.cpp, 56	X1_Y2_Z2_CHAMFER, 41
planner.h, 39	X1_Y2_Z2_TWINFILLET, 42
operator*	X1_Y3_Z2, 42
movement.h, 34	X1 Y3 Z2 FILLET, 42
output_img_path	X1_Y4_Z1, 42
DetectArea, 23	X1_Y4_Z2, 42
	X2_Y2_Z2, 42
params, 7	X2_Y2_Z2_FILLET, 42
BASE_LINK_POSITION, 7	planner_pkg/include/planner_pkg/kinematics.h, 27, 32
BLOCK_COORD_Z, 7	planner_pkg/include/planner_pkg/movement.h, 32, 36
CATEGORIES, 8	planner_pkg/include/planner_pkg/planner.h, 36, 44
IMAGE_SUB_TOPIC, 8	planner_pkg/src/kinematics.cpp, 45
MIN_LEVEL_CONFIDENCE, 8	planner_pkg/src/movement.cpp, 50
NODE_NAME, 8	planner_pkg/src/planner.cpp, 53
POINTCLOUD_SUB_TOPIC, 8	POINTCLOUD_SUB_TOPIC
PUB_TOPIC, 8	params, 8
RY, 8	pointCloudCallBack
TABLE, 9	vision, 16
ZED_IMG_CROPPED_PATH, 9	points
ZED_IMG_PATH, 9	Block, 22
ZED_POSITION, 9	
parents	points_count
yolo-k-fold-splitter, 20	Block, 22
pd	pos_pub
movement.cpp, 52	vision, 17
movement.h, 35	PROJECT_DIR

dataset2Yolo, 6	split
training, 14	training, 14
pub_joint_states	split_dir
planner.h, 43	yolo-k-fold-splitter, 20
PUB_TOPIC	start
params, 8	yolo-k-fold-splitter, 20
	supported_extensions
qd	yolo-k-fold-splitter, 20
movement.cpp, 53	•
movement.h, 35	t10f
quat2eul	kinematics.cpp, 48
planner.cpp, 56	kinematics.h, 30
planner.h, 40	t21f
	kinematics.cpp, 49
randNum	kinematics.h, 30
spawnLego, 12	t32f
random_position	kinematics.cpp, 49
spawnLego, 12	kinematics.h, 30
ratio	t43f
yolo-k-fold-splitter, 20	kinematics.cpp, 49
receive image	kinematics.h, 31
vision, 16	t54f
results	kinematics.cpp, 50
training, 14	kinematics.h, 31
rot	t65f
frame, 25	kinematics.cpp, 50
rotm2eul	• •
kinematics.cpp, 48	kinematics.h, 31 TABLE
kinematics.h, 29	
RY	params, 9
params, 8	timeStep
params, o	planner.h, 43
save path	toll
yolo-k-fold-splitter, 20	spawnLego, 14
scale_legos, 9	train_totals
MODELS PATH, 10	yolo-k-fold-splitter, 20
NEW SCALE FACTOR, 10	training, 14
OLD_SCALE_FACTOR, 10	metrics, 14
scale legos, 10	model, 14
SPAWN PATH, 10	PROJECT_DIR, 14
set_joint_states	results, 14
planner.cpp, 56	split, 14
	True
planner.h, 40	yolo-k-fold-splitter, 20
spawn_model	
spawnLego, 13	utils/dataset_creation/dataset2Yolo.py, 59
SPAWN_PATH	utils/dataset_creation/yolo-k-fold-splitter.py, 59
scale_legos, 10	utils/scale_legos.py, 60
spawnLego, 11	utils/training/training.py, 61
changeModelColor, 11	
check_sovrapposizioni, 11	val_totals
colorList, 13	yolo-k-fold-splitter, 20
del_model, 12	vision, 15
models, 13	build_pose, 15
models_path, 13	find_center, 15
randNum, 12	find_orientation, 16
random_position, 12	image_sub, 17
spawn_model, 13	loop_rate, 17
toll, 14	pointCloudCallBack, 16
spawnLego/spawnLego.py, 58	pos_pub, 17

receive_image, 16	labels, 19
vision/detect_area.py, 61	labels_df, 19
vision/detect_blocks.py, 62	lbl_counter, 19
vision/params.py, 62	lbl_to_path, 19
vision/vision.py, 63	lines, 19
	parents, 20
waitJoints	ratio, 20
planner.cpp, 57	save_path, 20
planner.h, 40	split_dir, 20
waitSec	start, 20
planner.cpp, 57	supported_extensions, 20
planner.h, 41	train_totals, 20
V4 V4 70	True, 20
X1_Y1_Z2	val_totals, 20
planner.h, 41	yaml_file, 20
X1_Y2_Z1	
planner.h, 41	zed_img
X1_Y2_Z2	DetectBlocks, 25
planner.h, 41	zed_img_cropped
X1_Y2_Z2_CHAMFER	DetectBlocks, 25
planner.h, 41	ZED_IMG_CROPPED_PATH
X1_Y2_Z2_TWINFILLET	params, 9
planner.h, 42	ZED_IMG_PATH
X1_Y3_Z2	params, 9
planner.h, 42	ZED_POSITION
X1_Y3_Z2_FILLET	params, 9
planner.h, 42	
X1_Y4_Z1	
planner.h, 42	
X1_Y4_Z2	
planner.h, 42	
X2_Y2_Z2	
planner.h, 42	
X2_Y2_Z2_FILLET	
planner.h, 42	
XYXY	
Block, 22	
XYZ	
frame, 25	
yaml file	
yolo-k-fold-splitter, 20	
yolo-k-fold-splitter, 17	
classes, 18	
cls idx, 18	
dataset_path, 18	
dataset_yaml, 18	
ds_yamls, 18	
encoding, 18	
exist ok, 18	
fold_lbl_distrb, 18	
folds, 18	
folds_df, 18	
images, 18	
img_to_path, 19	
indx, 19	
kf, 19	
kfolds, 19	
ksplit, 19	