Определение и примеры,

- \star Рекуррентное соотношение (от одной переменной) уравнение, задающее функцию натурального аргумента n через ее значения при меньших n
 - \star функция натурального аргумента и последовательность это одно и то же
 - ullet Условно-формальная запись: $f(0) = c, \ f(n) = F(n, f(0), \dots, f(n-1))$
 - \star натуральный ряд удобно начинать с 0
 - * недостаток записи: F имеет переменное число аргументов (это не функция)
 - \star чаще всего удается представить F как функцию

Примеры рекуррентных соотношений:

- $f(0) = b, f(n) = q \cdot f(n-1)$
 - ⋆ геометрическая прогрессия со знаменателем q
- f(0) = 1, $f(n) = n \cdot f(n-1)$
- f(0) = 0, $f(n) = f(n-1) + n^2$
- f(0) = 0, f(1) = 1, f(n) = f(n-1) + f(n-2)
 - ⋆ числа Фибоначчи
- f(0) = 1, f(1) = 2, f(n) = f(n-1) + f(n-2)
 - * они же, но со сдвигом
- f(0) = 1/2, $f(n) = (1 + \sqrt{8})f(n-1)(1 f(n-1))$
 - ★ частный случай логистической функции (https://en.wikipedia.org/wiki/Logistic_map)
- f(0) = k, $f(n) = \begin{cases} 3 \cdot f(n-1) + 1, & f(n-1) \text{ нечетно} \\ f(n-1)/2, & f(n-1) \text{ четно} \end{cases}$
 - \star утверждение о том, что $orall k\in \mathbb{N}$: f(n)=1 известная открытая проблема («возможно, математика еще не готова к таким задачам» Пал Эрдёш)

Использование рекуррентных соотношений

Можно выделить два основных типа задач на рекуррентные соотношения

- $lue{f 0}$ $oxdot{f Д}$ ана (неконструктивно) функция f, требуется научиться ее вычислять
 - ullet пример: f(n) есть число отношений эквивалентности на n-элементном множестве
 - ★ сюда же относится метод динамического программирования
- ② Дана (рекуррентно) функция f, требуется найти замкнутую формулу для вычисления f(n)
 - ⋆ это называется решить рекуррентное соотношение
 - можно решить его, угадав формулу и доказав ее по индукции
 - для некоторых классов рекуррентных соотношений существуют универсальные методы решения

Ханойская башня: постановка

Постановка задачи:

- имеются три стержня и п дисков, все диски разного диаметра
- в начальной конфигурации все диски образуют пирамиду на стержне 1
- в конечной конфигурации все диски образуют пирамиду на стержне 3
- ход состоит в перемещении одного диска с одного стержня на другой
 - остальные диски во время хода сдвигать нельзя
 диск нельзя положить поверх диска меньшего размера
- найти минимальное число ходов H(n), требуемое для перехода из начальной конфигурации в конечную
- Ход можно записывать как упорядоченную пару стержней
 - например, 2 → 3
- \bullet Очевидно, H(0) = 0, H(1) = 1
- H(2) = 3:
 - ullet 1
 ightarrow 2 , 1
 ightarrow 3 , 2
 ightarrow 3 требуемая последовательность ходов
- ullet Найдем рекуррентное соотношение для $H(n)\Longrightarrow$

Ханойская башня: рекуррентное соотношение

- Пусть M(n,i,j) кратчайшая последовательность ходов, перемещающая n дисков со стержня i на стержень j
- $\Rightarrow H(n) = |M(n,1,3)|$
 - | | обозначает длину последовательности
 - |M(n,i,j)| = |M(n,1,3)| для любых i,j
- \bigstar Последовательность $M(n-1,1,2), 1 \to 3, M(n-1,2,3)$ переводит начальную конфигурацию дисков в конечную
- $\Rightarrow H(n) \leqslant 2H(n-1)+1$
 - 2H(n-1) + 1 ходов достаточно
 - M(n,1,3) включает ход, перемещающий самый большой (n-й) диск
- * *п*-й диск можно переместить только в момент, когда он единственный на своем стержне, а один из оставшихся стержней пуст
- \Rightarrow второй из оставшихся содержит пирамиду из n-1 диска
- \Rightarrow До первого перемещения n-го диска должно пройти не менее H(n-1) шагов
- ullet После последнего перемещения \emph{n} -го диска тоже не менее $\emph{H}(\emph{n}-1)$ шагов
- $\Rightarrow H(n) \geqslant 2H(n-1)+1$
- \star Мы доказали рекуррентное соотношение H(n)=2H(n-1)+1

Ханойская башня: замкнутая формула

Теорема

$$H(n)=2^n-1.$$

Доказательство:

- рекуррентное соотношение $H(n)=2H(n-1)+1,\ H(0)=0$ определяет единственную функцию
- ullet докажем по индукции, что это функция 2^n-1 :
- база: $H(0) = 0 = 2^0 1$
- $\text{шаг: } H(n) = 2H(n-1) + 1 = 2 \cdot (2^{n-1}-1) + 1 = 2^n 1$

Схема проведенного исследования функции H(n):

неконструктивное определение

- ⇒ рекуррентное соотношение
- ⇒ замкнутая формула

3 / 3

Интеграл Эйлера

Вычислим $E(n) = \int\limits_0^\infty x^n e^{-x} dx$, где $n \in \mathbb{N}$

$$E(0) = \int_{0}^{\infty} e^{-x} dx = -e^{-x}|_{0}^{\infty} = 0 - (-1) = 1$$

K E(n) применим интегрирование по частям:

$$E(n) = \int_{0}^{\infty} x^{n} e^{-x} dx = \begin{bmatrix} u = x^{n} & du = nx^{n-1} dx \\ dv = e^{-x} dx & v = -e^{-x} \end{bmatrix} =$$

$$x^{n} (-e^{-x})|_{0}^{\infty} - \int_{0}^{\infty} nx^{n-1} (-e^{-x}) dx = 0 + n \int_{0}^{\infty} x^{n-1} e^{-x} dx = nE(n-1)$$

- \star E(n) задается рекуррентным соотношением $E(n)=nE(n-1),\ E(0)=1$
- $\Rightarrow E(n) = n!$
- \bigstar Для вывода формулы Стирлинга $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ оценивают интеграл Эйлера, т.е. площадь под графиком функции $f_n(x) = x^n e^{-x}$

Интервальное расписание

Фрилансер зарабатывает деньги выполнением заказов и хочет максимизировать свой доход. Одна из возможных математических постановок —

Задача об интервальном расписании:

- даны k заказов, которые можно выполнить
- ullet і-й заказ это тройка (b_i,e_i,c_i) , где $b_i,e_i,c_i\in\mathbb{N}$, $b_i\leqslant e_i$
- ullet выполнение i-го заказа займет интервал времени $[b_i..e_i]$ и принесет доход c_i
- * какой максимальный доход можно получить, выполняя заказы, если в каждый момент времени можно выполнять не более одного заказа?
- * Метод динамического программирования позволяет найти и оптимальный список заказов, но мы ограничимся вычислением дохода
- Будем считать, что список заказов бесконечен и упорядочен по возрастанию «дедлайна» e_i
 - ullet последовательности $\{b_i\}_1^\infty, \{e_i\}_1^\infty, \{c_i\}_1^\infty$ параметры задачи
- ullet Пусть f(n) максимальный доход с первых n заказов
 - положим f(0) = 0
- ullet Через p_i обозначим наибольший номер k такой, что $e_k < b_i$
 - ullet $p_i=0$, если такого k не существует
- \star если выполнен i-й заказ, то перед ним выполнен заказ с номером $\leqslant p_i$
- $\star f(n) = \max\{f(n-1), f(p_n) + c_n\}$
 - \star можем вычислить f(n) при любых допустимых значениях параметров

Классификация рекуррентных соотношений

- ullet Рекуррентное соотношение k-го порядка: $f(n) = F(n, f(n-1), \ldots, f(n-k))$
 - \star здесь F «нормальная» (k+1)-местная функция
 - \star для задания функции таким соотношением нужно k начальных значений $f(0),\ldots,f(k-1)$

Примеры:

- числа Фибоначчи соотношение второго порядка
- факториал, логистическая функция, ханойская башня первого порядка
- ⋆ не являются соотношениями k-го порядка
- соотношение из задачи про интервальные расписания (p_n может быть любым)
- ullet соотношения вида $f(n) = f(\lfloor n/2 \rfloor) + f(\lceil n/2 \rceil) + n$
- ullet Рекуррентное соотношение $f(n) = F(n, f(n-1), \dots, f(n-k))$ называется

⋆ возникают при оценке сложности рекурсивных алгоритмов

- \star линейным, если $F = F(x_1, \dots, x_k)$ линейная функция с коэффициентами, зависящими от параметра n
 - T.E. $f(n) = a_1(n)f(n-1) + \cdots + a_k(n)f(n-k) + a(n)$
- \star линейным однородным, если a(n)=0
- * линейным с постоянными коэффициентами, если все $a_i(n)$ константы a(n) может не быть константой

Примеры:

- ullet логистическая функция $f(n) = r \cdot f(n-1)(1-f(n-1))$: нелинейное
- факториал $f(n) = n \cdot f(n-1)$.
 - линейное однородное с переменными коэффициентами
- ханойская башня $f(n) = 2 \cdot f(n-1) + 1$:
 - линейное неоднородное с постоянными коэффициентами
- \bullet числа Φ ибоначчи f(n) = f(n-1) + f(n-2):
 - линейное однородное с постоянными коэффициентами

Решение линейных рекуррентных соотношений первого порядка

Запишем соотношение первого порядка в виде $f(n+1)=a(n)f(n)+b(n),\ f(0)=a$ \star при a(n)=n+1 и b(n)=0 получается факториал

Теорема

$$f(n) = a \cdot \prod_{i=0}^{n-1} a(i) + \sum_{j=0}^{n-1} \left(b(j) \prod_{k=j+1}^{n-1} a(k) \right). \tag{1}$$

Доказательство:

Положим
$$g(n) = \frac{f(n)}{\prod_{i=1}^{n-1} a(i)}$$
, $g(0) = f(0) = a$

Запишем f(n+1) - a(n)f(n) = b(n) и поделим обе части на $\prod_{i=0}^n a(i)$:

$$\frac{f(n+1) - a(n)f(n)}{\prod_{i=0}^{n} a(i)} = \frac{b(n)}{\prod_{i=0}^{n} a(i)} \implies \frac{f(n+1)}{\prod_{i=0}^{n} a(i)} - \frac{f(n)}{\prod_{i=0}^{n-1} a(i)} = \frac{b(n)}{\prod_{i=0}^{n} a(i)}$$

$$\Rightarrow g(n+1) - g(n) = \frac{b(n)}{\prod_{i=0}^{n} a(i)}$$

Подставляя последнее равенство в $g(n)-g(0)=\sum\limits_{j=0}^{n-1}(g(j+1)-g(j))$, получим

$$g(n) = a + \sum_{j=0}^{n-1} rac{b(j)}{\prod_{k=0}^{j} a(k)}$$
, откуда следует (1)

Определение и примеры

Линейное однородное рекуррентное соотношение с постоянными коэффициентами (ЛОРСПК) имеет вид

$$f(n) = a_1 f(n-1) + \cdots + a_k f(n-k)$$

Если все коэффициенты a_1,\ldots,a_k принадлежат кольцу $\mathbb K$, то $f:\mathbb N o\mathbb K$

Примеры ЛОРСПК:

- $f(n) = q \cdot f(n-1)$
 - \star геометрическая прогрессия со знаменателем q и первым членом f(0)
- f(n) = f(n-1) + f(n-2)
- * числа Фибоначчи при f(0) = 0, f(1) = 1• f(n) = f(n-1) + f(n-2) + f(n-3)
 - \star числа Трибоначчи при f(0) = 0, f(1) = 1, f(2) = 2
- f(n) = 2f(n-1) f(n-3) + f(n-4)
 - \star при f(0)=4, f(1)=7, f(2)=13, f(3)=24 число маршрутов длины n в графе

Постановка задачи

- Частным решением соотношения $f(n) = a_1 f(n-1) + \cdots + a_k f(n-k)$ называется любая функция f, удовлетворяющая этому соотношению
- Общим решением соотношения $f(n) = a_1 f(n-1) + \cdots + a_k f(n-k)$ называется множество всех его частных решений
 - * обычно под «решением» подразумеваем частное решение, т.е. функцию, а не множество
 - \star любое ЛОРСПК имеет тривиальное решение f(n)=0
 - \star каждое частное решение определяется начальными значениями f(j), $i=0,\ldots,k-1$
 - общее решение зависит от того, над каким кольцом/полем рассматривается соотношение
 - по умолчанию, мы рассматриваем соотношения над полем $\mathbb R$

 $\mathsf{3}$ адача: дано ЛОРСПК $f(n) = a_1 f(n-1) + \cdots + a_k f(n-k)$, найти его общее решение

- \star Общее решение ЛОРСПК является подмножеством линейного пространства \mathbb{R}^{∞} всех последовательностей действительных чисел
 - с операциями сложения последовательностей и умножения последовательности на число
- \star Пространство \mathbb{R}^∞ бесконечномерно: его базисы счетны
 - $\mathbb{R}^\infty = \langle \{\vec{e_i}\}_0^\infty \rangle$, где $\vec{e_i} = (0,\dots,0,1,0,\dots,0,\dots)$ последовательность, в которой на i-м месте стоит 1, а остальные элементы нули

Лемма о подпространстве решений

Общее решение рекуррентного соотношения $f(n) = a_1 f(n-1) + \cdots + a_k f(n-k)$ с коэффициентами из \mathbb{R} является k-мерным подпространством в \mathbb{R}^{∞} .

Доказательство: пусть S — общее решение S — подпространство:

- подмножество линейного пространства является подпространством тогда и только тогда, когда оно замкнуто относительно операций
- пусть $f_1(n), f_2(n)$ решения, $\alpha \in \mathbb{R}$; тогда $f_1(n) + f_2(n) = a_1(f_1(n-1) + f_2(n-1)) + \cdots + a_k(f_1(n-k) + f_2(n-k))$ $f_1(n) + f_2(n)$ решение $\alpha f_1(n) = a_1(\alpha f_1(n-1)) + \cdots + a_k(\alpha f_1(n-k))$ $\alpha f_1(n)$ решение

dim(S) = k:

- \bullet рассмотрим решения $e_i(n)$ с начальными условиями $e_i(j) = [i=j], i,j = 0, \dots, k-1$
- \star множество $\{e_i(n)\}_{n=1}^{k-1}$ линейно независимо, так как имеет ранг k:

$$e_{0} = (1, 0, \cdots, 0, e_{0}(k), e_{0}(k+1), \cdots)$$

$$e_{1} = (0, 1, \cdots, 0, e_{1}(k), e_{1}(k+1), \cdots)$$

$$\vdots \vdots \vdots \vdots \vdots \vdots$$

$$e_{k-1} = (0, 0, \cdots, 1, e_{k-1}(k), e_{k-1}(k+1), \cdots)$$

- \star $f(n) = f(0)e_0(n) + f(1)e_1(n) + \cdots + f(k-1)e_{k-1}(n)$ для любого решения
- $\Rightarrow \{e_i(n)\}_0^{k-1}$ базис $S \Rightarrow dim(S) = k$

Общее решение — первый подход

Лемма о подпространстве решений позволяет «решить» соотношение $f(n) = a_1 f(n-1) + \cdots + a_k f(n-k)$, записав общее решение в виде $f(n) = C_0 e_0(n) + \ldots + C_{k-1} e_{k-1}(n), \ C_0, \ldots, C_{k-1} \in \mathbb{R}$

- ⋆ В чем дефект такого «решения»?
- \star Оно не избавляет от рекурсии: функции $e_i(n)$ заданы тем же самым рекуррентным соотношением, что и функция f(n)
 - Чтобы избавиться от рекурсии, нужно найти другой базис общего решения, состоящий из функций, значения которых можно вычислять нерекурсивно (например, экспоненциальных и полиномиальных функций)

Характеристический многочлен и частные решения

Многочлен $\chi(x)=x^k-a_1x^{k-1}-\ldots-a_{k-1}x-a_k$ называется характеристическим многочленом рекуррентного соотношения $f(n)=a_1f(n-1)+\cdots+a_kf(n-k)$

Лемма о частных решениях

Пусть $\lambda \neq 0$. Функция $f(n) = \lambda^n$ является решением рекуррентного соотношения $f(n) = a_1 f(n-1) + \cdots + a_k f(n-k)$ тогда и только тогда, когда λ — корень $\chi(x)$.

Доказательство:

- ullet при $\lambda
 eq 0$ $\lambda^n = a_1 \lambda^{n-1} + \dots + a_k \lambda^{n-k} \Leftrightarrow \lambda^k = a_1 \lambda^{k-1} + \dots + a_k \Leftrightarrow \lambda$ корень $\chi(x)$
- \star Неважно, над каким полем рассматривать рекуррентное соотношение: если его рассматривать над \mathbb{C} , комплексные корни характеристического многочлена также дадут решения

Независимость экспоненциальных функций

Лемма о независимости

Пусть $\lambda_1,\dots,\lambda_s$ — различные корни характеристического многочлена рекуррентного соотношения $f(n)=a_1f(n-1)+\dots+a_kf(n-k)$. Тогда множество функций $\{\lambda_1^n,\dots,\lambda_s^n\}$ линейно независимо.

Доказательство:

• выпишем функции $\lambda_1^n, \ldots, \lambda_s^n$:

$$\lambda_1^n = (1, \lambda_1, \cdots \lambda_1^{s-1}, \lambda_1^s, \cdots)$$

$$\lambda_2^n = (1, \lambda_2, \cdots \lambda_2^{s-1}, \lambda_2^s, \cdots)$$

$$\lambda_s^n = (1, \lambda_s, \dots \lambda_s^{s-1}, \lambda_s^s, \dots)$$

$$\star$$
 в первых s столбцах видим матрицу Вандермонда, определитель которой равен 0 только если $\lambda_i = \lambda_i$ для некоторых $i \neq j$

 \Rightarrow в нашем случае определитель $\neq 0 \Rightarrow$ множество линейно независимо

Общее решение для случая простых корней

Теорема об общем решении (случай простых корней)

Пусть характеристический многочлен рекуррентного соотношения $f(n)=a_1f(n-1)+\cdots+a_kf(n-k)$ имеет k различных корней $\lambda_1,\ldots,\lambda_k\in\mathbb{R}$. Тогда общее решение этого соотношения имеет вид $f(n)=C_1\lambda_1^n+\ldots+C_k\lambda_k^n$, где константы C_1,\ldots,C_k пробегают множество \mathbb{R} .

Доказательство следует из лемм о подпространстве решений, о частном решении и о независимости

- \star Можно заменить в формулировке теоремы $\mathbb R$ на $\mathbb C$; получим общее решение того же самого ЛОРСПК, только рассматриваемого как соотношение над $\mathbb C$
- \bigstar Если нужно получить общее решение над $\mathbb R$, а среди k различных корней характеристического многочлена есть комплексные, нужно заметить, что
 - \star комплексные корни многочленов над $\mathbb R$ попарно сопряжены
 - \star если числа λ_1 и λ_2 сопряжены, то λ_1^n и λ_2^n сопряжены для любого n
 - \star если λ_1 и λ_2 сопряжены, то комплексные функции λ_1^n и λ_2^n порождают в \mathbb{C}^∞ то же самое подпространство, что и вещественные функции $\lambda_1^n + \lambda_2^n$ и $\imath(\lambda_1^n \lambda_2^n)$
 - \Rightarrow каждую пару комплексно сопряженных функций λ_1^n и λ_2^n заменим в базисе на $\lambda_1^n+\lambda_2^n$ и $\imath(\lambda_1^n-\lambda_2^n)$, получая базис из вещественных функций

Общее решение

Теорема об общем решении (для произвольных корней)

Пусть характеристический многочлен рекуррентного соотношения $f(n)=a_1f(n-1)+\cdots+a_kf(n-k)$ имеет s различных корней $\lambda_1,\ldots,\lambda_s\in\mathbb{C}$ с кратностями m_1,\ldots,m_s соответственно, $m_1+\cdots+m_s=k$. Тогда общее решение этого соотношения над $\mathbb C$ имеет вид

$$f(n) = (C_1 + \ldots + C_{m_1} n^{m_1 - 1}) \lambda_1^n + \ldots + (C_{m_1 + \ldots + m_{s-1} + 1} + \ldots + C_k n^{m_s - 1}) \lambda_s^n,$$

где константы C_1, \ldots, C_k пробегают множество \mathbb{C} .

Пример: если характеристический многочлен имеет корни $\lambda_1=3$ кратности 1, $\lambda_{2,3}=\pm 2\imath$ кратности 2, $\lambda_4=1$ кратности 3, то общее решение выглядит как

$$f(n) = C_1 3^n + (C_2 + C_3 n)(2i)^n + (C_4 + C_5 n)(-2i)^n + (C_6 + C_7 n + C_8 n^2)$$

- \bigstar Для перехода к общему решению над $\mathbb R$ при наличии комплексных корней надо воспользоваться их сопряженностью (см. предыдущий фрагмент)
 - вместо $(2i)^n$ и $(-2i)^n$ нужно взять вещественные функции
 - $(2i)^n + (-2i)^n = [n \text{ четное}] \cdot (-1)^{\frac{n}{2}} \cdot 2^{n+1}$
 - $i((2i)^n (-2i)^n) = [n \text{ нечетное}] \cdot (-1)^{\frac{n+1}{2}} \cdot 2^{n+1}$! не забывайте скобку Иверсона!

Больше частных решений

Вторая лемма о частных решениях

Пусть характеристический многочлен $\chi(x)$ рекуррентного соотношения $f(n) = a_1 f(n-1) + \cdots + a_k f(n-k)$ имеет корень λ кратности не менее m+1. Тогда функция $f(n) = n^m \lambda^n$ является решением данного соотношения.

Доказательство:

- При m=0 доказано ранее (лемма о частных решениях); далее m>0
 - \star λ является корнем первых m производных многочлена $\chi(x)$
 - \star умножение многочлена на x не меняет кратности его ненулевых корней
 - \star если многочлены $p_1(x)$ и $p_2(x)$ имеют общий корень λ кратности m_1 и m_2 соответственно, то у $p_1(n) \pm p_2(n)$ есть корень λ кратности $\min\{m_1, m_2\}$
- \Rightarrow λ является корнем многочленов
 - $x^n a_1 x^{n-1} \dots a_k x^{n-k}$
 - 2 $x^{n+1} a_1 x^n \ldots a_k x^{n-k+1}$
 - $(n+1)x^n a_1nx^{n-1} \ldots a_k(n-k+1)x^{n-k}$ (производная многочлена 2) $(n+1)x^n a_1(n-1)x^{n-1} \ldots a_k(n-k)x^{n-k}$ (вычли 1 из 3)
- \star λ обращает многочлен 4 в ноль $\Rightarrow n\lambda^n$ решение нашего соотношения
- \star умножим многочлен 4 на x, возьмем производную и вычтем многочлен 4: $n^2x^n - a_1(n-1)^2x^{n-1} - \ldots - a_k(n-k)^2x^{n-k}$
 - $\Rightarrow n^2 \lambda^n$ решение нашего соотношения
- ullet Повторяя m раз, получаем решения $n\lambda^n, n^2\lambda^n, \ldots, n^m\lambda^n$

Жордановы матрицы

- ullet Жорданова клетка это матрица вида $J = egin{bmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & 1 & \dots & 0 \\ 0 & 0 & \lambda & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & \lambda \end{bmatrix}$
 - \star $J[i,i]=\lambda$ для всех i и некоторого $\lambda\in\mathbb{C};$ J[i,i+1]=1; J[i,j]=0 иначе

где все матрицы J_i — жордановы клетки (возможно, разных размеров)

- igstar Теорема Жордана: для любой матрицы $A\in\mathbb{C}^{k imes k}$ существует такая обратимая матрица T, что матрица $J=TAT^{-1}$ жорданова
- \bigstar Равенство $A=T^{-1}JT$ можно использовать для возведения A в степень: $A^n=(T^{-1}JT)^n=T^{-1}J^nT$
- \Rightarrow Достаточно уметь возводить в степень жордановы матрицы

Степени жордановых матриц

Лемма о степени жордановой клетки

Пусть J- жорданова клетка размера t с числом λ . Тогда $J^n[i,j]=\binom{n}{i-i}\lambda^{n+i-j}$ (Полагаем $\binom{n}{x} = 0$ при x < 0 и x > n.)

$$\star$$
 Лемма утверждает, что $J^n = egin{bmatrix} \lambda^n & n\lambda^{n-1} & \binom{n}{2}\lambda^{n-2} & \dots & \binom{n}{t-1}\lambda^{n-t+1} \\ 0 & \lambda^n & n\lambda^{n-1} & \dots & \binom{n}{t-2}\lambda^{n-t+2} \\ 0 & 0 & \lambda^n & \dots & \binom{n}{t-3}\lambda^{n-t+3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & \lambda^n \end{bmatrix}$

Доказательство по индукции: база (n=1) очевидна; шаг индукции:

$$J^{n+1}[i,j] = \sum_{k=1}^{t} J^{n}[i,k] \cdot J[k,j] = J^{n}[i,j-1] + J^{n}[i,j] \cdot \lambda = \begin{pmatrix} n \\ j-1-i \end{pmatrix} \lambda^{n+i-j+1} + \binom{n}{j-i} \lambda^{n+i-j+1} = \binom{n+1}{j-i} \lambda^{n+1+i-j} \quad \Box$$

Общее решение

Теорема об общем решении (для произвольных корней)

Пусть характеристический многочлен рекуррентного соотношения $f(n)=a_1f(n-1)+\cdots+a_kf(n-k)$ имеет s различных корней $\lambda_1,\ldots,\lambda_s\in\mathbb{C}$ с кратностями m_1,\ldots,m_s соответственно, $m_1+\cdots+m_s=k$. Тогда общее решение этого соотношения над $\mathbb C$ имеет вид

$$f(n) = (C_1 + \ldots + C_{m_1} n^{m_1-1}) \lambda_1^n + \ldots + (C_{m_1 + \ldots + m_{s-1} + 1} + \ldots + C_k n^{m_s-1}) \lambda_s^n,$$

где константы C_1, \ldots, C_k пробегают множество \mathbb{C} .

- ullet По второй лемме о частных решениях мы знаем k специальных решений
 - \bullet вида $n^j \lambda_i^n$, где $i = 1, \ldots, s; j = 0, \ldots, m_i 1$
- Теорема утверждает, что эти решения образуют базис пространства решений • которое имеет размерность k
- Доказать линейную независимость специальных решений, как в случае простых корней, не получится
- ★ Чтобы доказать теорему, мы покажем методами линейной алгебры, что любое решение является линейной комбинацией специальных решений

Доказательство теоремы об общем решении

Переход к системе линейных уравнений

Для компактности записи, пусть $f_n=f(n)$; запишем систему линейных уравнений

$$\begin{cases}
f_n &= a_1 f_{n-1} + \ldots + a_k f_{n-k} \\
f_{n-1} &= f_{n-1} \\
\vdots &= \vdots \\
f_{n-k+1} &= f_{n-k+1}
\end{cases}$$

в матричном виде:

$$\begin{bmatrix} f_n \\ f_{n-1} \\ f_{n-2} \\ \vdots \\ f_{n-k+1} \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & \dots & a_{k-1} & a_k \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{bmatrix} \begin{bmatrix} f_{n-1} \\ f_{n-2} \\ f_{n-3} \\ \vdots \\ f_{n-k} \end{bmatrix}$$

- ullet Пусть $ec{f_n}=(f_{n+k-1},\ldots,f_n)^\perp$, A матрица системы
- \Rightarrow $\vec{f_n} = A\vec{f_{n-1}}$ для любого $n\geqslant 1$
- \Rightarrow $\vec{f}_n = A^n \vec{f}_0 \; (\vec{f}_0$ вектор начальных значений функции f)
- - ullet степени матрицы A вычисляются через жорданову матрицу $J = TAT^{-1}$

Собственные числа матрицы A

- \star Собственные числа треугольных матриц это их диагональные элементы
- \Rightarrow собственные числа жордановой матрицы J- это числа λ ее клеток
- \star A и J- подобны, т.е. являются матрицами одного и того же линейного оператора в разных базисах, связанных матрицей перехода T
- \Rightarrow A и J имеют одно и то же мультимножество собственных чисел
- \Rightarrow нужно найти собственные числа A (корни характеристического многочлена A)

Лемма о характеристических многочленах

$$|\lambda E - A| = \chi(\lambda)$$

Доказательство: разложим определитель по первой строке (красный множитель — знак слагаемого, синий — определитель подматрицы в столбцах $1,\dots,i-1$)

$$|\lambda E - A| = \begin{vmatrix} \lambda - a_1 & -a_2 & \dots & -a_{k-1} & -a_k \\ -1 & \lambda & \dots & 0 & 0 \\ 0 & -1 & \dots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & -1 & \lambda \end{vmatrix} =$$

 $(\lambda-a_1)\lambda^{k-1}+\sum \left(-1\right)^{i+1}(-a_i)(-1)^{i-1}\lambda^{k-i}=\lambda^k-a_1\lambda^{k-1}-\cdots-a_{k-1}\lambda-a_k\quad \Box$

Собираем все вместе

$$\bullet \ A = \begin{bmatrix} a_1 & a_2 & \dots & a_{k-1} & a_k \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{bmatrix}, \ \vec{f_n} = A^n \vec{f_0}$$

- $*A^n = T^{-1}J^nT$, J жорданова * теорема Жордана
- \star На диагонали матрицы J стоят корни $\chi(x)$ числа $\lambda_1(m_1$ раз), . . . , $\lambda_s(m_s$ раз) \star лемма о характеристических многочленах + подобие A и J
- \star Размер жордановой клетки в J с числом λ_i не превосходит m_i $(i=1,\ldots,s)$
- \star Ненулевые элементы J^n являются произведениями полиномов на экспоненты:
 - \star по лемме о степенях жордановой матрицы, $\binom{n}{j-i}\lambda^{n+i-j}=rac{\lambda^{i-j}}{(j-i)!}n(n-1)\cdots(n+i-j+1)\lambda^n=p(n)\lambda^n$
- \star Матрицы T и T^{-1} , как и вектор $ec{f_0}$, не зависят от n
- \Rightarrow Элементы матрицы $T^{-1}J^nT=A^n$ и вектора $\vec{f_n}=A^n\vec{f_0}$ линейные комбинации произведений вида $p(n)\lambda^n$

Пример \Longrightarrow

Собираем все вместе (2)

Пример: пусть
$$J = \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \mu \end{bmatrix}$$
, $T[i,j] = t_{ij}$, $T^{-1}[i,j] = \tau_{ij}$; тогда
$$J^n = \begin{bmatrix} \lambda^n & \frac{n}{\lambda} \lambda^n & 0 \\ 0 & \lambda^n & 0 \\ 0 & 0 & \mu^n \end{bmatrix}$$
, $J^n T = \begin{bmatrix} (t_{11} + \frac{t_{21}}{\lambda} n) \lambda^n & (t_{12} + \frac{t_{22}}{\lambda} n) \lambda^n & (t_{13} + \frac{t_{23}}{\lambda} n) \lambda^n \\ t_{21} \lambda^n & t_{22} \lambda^n & t_{23} \lambda^n \\ t_{31} \mu^n & t_{32} \mu^n & t_{33} \mu^n \end{bmatrix}$,
$$T^{-1} J^n T = \begin{bmatrix} (\tau_{11} t_{11} + \tau_{12} t_{21} + \frac{\tau_{11} t_{21}}{\lambda} n) \lambda^n + \tau_{13} t_{31} \mu^n & (\dots) & (\dots) \\ (\tau_{21} t_{21} + \tau_{22} t_{21} + \frac{\tau_{21} t_{21}}{\lambda} n) \lambda^n + \tau_{23} t_{32} \mu^n & (\dots) & (\dots) \\ (\tau_{31} t_{21} + \tau_{32} t_{21} + \frac{\tau_{31} t_{21}}{\lambda} n) \lambda^n + \tau_{33} t_{33} \mu^n & (\dots) & (\dots) \end{bmatrix}$$

- \star Любая функция, удовлетворяющая соотношению $f(n) = a_1 f(n-1) + \cdots + a_k f(n-k)$, имеет вид $f(n) = p_1(n) \lambda_1^n + \cdots + p_s(n) \lambda_s^n$, где $p_i(n)$ многочлен степени не выше $m_i 1$, $i = 1, \ldots, s$
- \Rightarrow f(n) является линейной комбинацией специальных решений $\lambda_1^n,\ldots,n^{m_1-1}\lambda_1^n,\ldots,\lambda_s^n,\ldots,n^{m_s-1}\lambda_s^n,$

что и требовалось доказать

Фибоначчи

- \bigstar Решим рекуррентное соотношение f(n)=f(n-1)+f(n-2), задающее, в частности, числа Фибоначчи
 - Характеристический многочлен: $\chi(x) = x^2 x 1$
 - корни $x_{1,2} = \frac{1 \pm \sqrt{5}}{2}$
 - \star другими словами, $x_1=\phi$, $x_2=-1/\phi$, где $\phi=1.618033\ldots$ золотое сечение
 - ullet Общее решение: $f(n) = C_1 \Big(rac{1+\sqrt{5}}{2}\Big)^n + C_2 \Big(rac{1-\sqrt{5}}{2}\Big)^n$
- ★ Найдем частное решение для чисел Фибоначчи:

$$\begin{cases} C_1 + C_2 = 0 & f(0) \\ \frac{1+\sqrt{5}}{2}C_1 + \frac{1-\sqrt{5}}{2}C_2 = 1 & f(1) \end{cases}$$

- $\Rightarrow C_1 = \frac{1}{\sqrt{5}}, C_2 = -\frac{1}{\sqrt{5}}$
- $\Rightarrow f(n) = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$
- ★ Второе слагаемое в явной формуле для чисел Фибоначчи всегда меньше 1/2 и быстро стремится к 0 с ростом n; значит, на практике n-е число Фибоначчи можно получить, вычислив первое слагаемое в действительных числах за $O(\log n)$ операций и округлив до ближайшего целого

Еще два примера

Решим еще два рекуррентных соотношения:

$$\star f(n) = 4f(n-1) - 4f(n-2), f(0) = f(1) = 1$$

- ullet Характеристический многочлен: $\chi(x)=x^2-4x+4$, корни $x_{1,2}=2$
- Общее решение: $f(n) = (C_1 + C_2 n)2^n$
- Подставим начальные значения:

$$\begin{cases} C_1 = 1 & f(0) \\ 2C_1 + 2C_2 = 1 & f(1) \end{cases} \Rightarrow C_1 = 1, C_2 = -1/2 \Rightarrow f(n) = \left(1 - \frac{n}{2}\right) 2^n$$

$$\star f(n) = 4f(n-1) - 6f(n-2) + 4f(n-3), f(0) = 0, f(1) = 1, f(2) = 3$$

- Характеристический многочлен: $\chi(x) = x^3 4x^2 + 6x 4$
 - $\chi(x) = (x-2)(x^2-2x+2) = (x-2)((x-1)^2+1)$; $x_1 = 2$, $x_2 = 1+i$, $x_3 = 1-i$
- ullet Общее решение: $f(n) = C_1 2^n + C_2 (1+i)^n + C_3 (1-i)^n$
 - $\star (1 \pm \imath)^n = \left(\sqrt{2}\right)^n \left(\cos \frac{\pi n}{4} \pm \imath \cdot \sin \frac{\pi n}{4}\right)$
- Подставим начальные значения:

$$\begin{cases} C_1 + C_2 + C_3 = 0 & f(0) \\ 2C_1 + (1+i)C_2 + (1-i)C_3 = 1 & f(1) \Rightarrow C_1 = \frac{1}{2}, C_2 = \frac{-1-i}{4}, C_3 = \frac{-1+i}{4} \\ 4C_1 + 2iC_2 - 2iC_3 = 3 & f(2) \end{cases}$$

 $\Rightarrow f(n) = \frac{1}{2}2^n + \left(\frac{-1-\imath}{4}\right)(1+\imath)^n + \left(\frac{-1+\imath}{4}\right)(1-\imath)^n = !$ выведите сами ! $= 2^{n-1} + \left(\sqrt{2}\right)^{n-2} \left(\sin\frac{\pi n}{4} - \cos\frac{\pi n}{4}\right)$

Неоднородные ЛРС с постоянными коэффицентами

Что делать, если дано линейное неоднородное рекуррентное соотношение с постоянными коэффициентами?

$$f(n) = a_1 f(n-1) + \cdots a_k f(n-k) + h(n)$$
 для некоторой функции $h(n)$

Возможная стратегия — перейти к однородному соотношению более высокой степени

Примеры:

- ullet Пусть $f(n)=a_1f(n-1)+\cdots a_kf(n-k)+c$, где c константа
 - $f(n) f(n-1) = a_1(f(n-1) f(n-2)) + \cdots + a_k(f(n-k) f(n-k-1))$
 - $\Rightarrow f(n) = (a_1 + 1)f(n-1) + (a_2 a_1)f(n-2) + \dots + (a_k a_{k-1})f(n-k) a_k f(n-k-1)$
 - \star задали линейным однородным соотношением порядка k+1
- \star Если p(n) многочлен степени m, то (p(n)-p(n-1)) имеет степень m-1
- ullet Пусть $f(n)=a_1f(n-1)+\cdots a_kf(n-k)+p(n)$, где степень p(n) равна m
 - записав f(n) f(n-1), можно выразить f(n) соотношением порядка k+1, в котором неоднородность является многочленом p(n) p(n-1) степени m-1
 - \Rightarrow повторив процедуру еще m раз, получим однородное соотношение порядка m+k+1
- ullet Пусть $f(n) = a_1 f(n-1) + \cdots a_k f(n-k) + c \cdot d^n$, где c,d константы
 - ullet записав $f(n)-d\cdot f(n-1)$, можно выразить f(n) однородным соотношением порядка k+1
- ! Перейдите к однородному соотношению от соотношения $f(n)=a_1f(n-1)+\cdots a_kf(n-k)+\sin\pi n$

Совместная рекурсия

- ★ Существуют случаи совместной рекурсии, когда две функции (или больше) задаются при помощи рекуррентных соотношений, использующих предыдущие значения обеих функций
- ★ Подобную «систему» рекуррентных соотношений иногда можно решить, преобразовав в обычные рекуррентные соотношения

Пример:
$$\begin{cases} f(n) = 2g(n-1) + f(n-2), & f(0) = 1, f(1) = 0 \\ g(n) = f(n-1) + g(n-2), & g(0) = 0, g(1) = 1 \end{cases}$$

$$f(n) = 2g(n-1) + f(n-2) = 3f(n-2) + 2g(n-3) = 4f(n-2) - f(n-4)$$

$$g(n) = f(n-1) + g(n-2) = 3g(n-2) + f(n-3) = 4g(n-2) - g(n-4)$$

- ullet характеристический многочлен: $x^4 4x^2 + 1$; корни: $\pm \sqrt{2 \pm \sqrt{3}}$
- можно честно решать систему четырех уравнений, но мы упростим:
- ullet f(n)=0 при нечетных n (по индукции) \Rightarrow найдем $ar{f}(n)=f(2n)$
- ullet имеем $ar{f}(n)=4ar{f}(n-1)-ar{f}(n-2), \ ar{f}(0)=1, \ ar{f}(1)=3$, корни $2\pm\sqrt{3}$

$$\Rightarrow \begin{cases} C_1 + C_2 = 1 & \bar{f}(0) = 1\\ (2 + \sqrt{3})C_1 + (2 - \sqrt{3})C_2 = 3 & \bar{f}(1) = 3 \end{cases}$$

$$\Rightarrow C_1 = \frac{3+\sqrt{3}}{6}, C_2 = \frac{3-\sqrt{3}}{6}$$

$$\Rightarrow f(n) = egin{cases} 0, & n$$
 нечетно $\left(rac{3+\sqrt{3}}{6}
ight) (2+\sqrt{3})^{n/2} + \left(rac{3-\sqrt{3}}{6}
ight) (2-\sqrt{3})^{n/2} & n$ четно

! Найдите g(n)

Совместная рекурсия (2)

Давайте решим комбинаторную задачу:

Задача: сколькими способами можно замостить прямоугольник размера $3 \times n$ костяшками домино размера 2 imes 1? Костяшки разрешено поворачивать

- \bullet Пусть число способов равно f(n)
- \bullet f(n) = 0 при нечетных n, для четных составим рекуррентное соотношение
- ★ Все варианты замощения можно разбить на три группы по наличию или отсутствию костяшки, полностью лежащей в последнем столбце:

- $\Rightarrow f(n) = f(n-2) + 2g(n-1)$
 - где g(n) число способов замостить прямоугольник $3 \times n$, оставив непокрытой одну угловую клетку справа
 - ! Убедитесь, что g(n) = f(n-1) + g(n-2)
- \star Функции f(n) и g(n) заданы системой рекуррентных соотношений

$$\begin{cases} f(n) = 2g(n-1) + f(n-2), & f(0) = 1, f(1) = 0 \\ g(n) = f(n-1) + g(n-2), & g(0) = 0, g(1) = 1 \end{cases}$$

которую мы решили на предыдущем слайде

Дискретная математика

Нелинейные соотношения

При анализе алгоритмов часто возникают нелинейные рекуррентные соотношения

- ullet Если мы ищем, есть ли число x в отсортированном массиве, мы применяем бинарный поиск
 - сравнили с элементом в середине массива и, в зависимости от результата, продолжили с нужной половиной
- ullet Сложность бинарного поиска описывается соотношением $f(n)\leqslant 1+f(\lceil n/2
 ceil)$
 - ullet \leq потому что мы можем найти x при очередном сравнении
- $\Rightarrow f(n) \leqslant 1 + \lceil \log n \rceil$
 - Рассмотрим более содержательный пример \Longrightarrow

Сложность сортировки слиянием

Paccмотрим рекурсивный алгоритм сортировки слиянием (Mergesort):

Слияние отсортированных массивов:

```
Merge(array B[1..k], C[1..n])
   def array D[1..n+k]; b, c, d \leftarrow 1
   while b \le k and c \le n
      if B[b] < C[c]
         D[d] \leftarrow B[b]; b \leftarrow b + 1
      else
         D[d] \leftarrow C[c]; c \leftarrow c + 1
      d \leftarrow d + 1
   if b > k
      D[c+k..n+k] \leftarrow C[c..n]
   else
      D[n+b..n+k] \leftarrow B[b..k]
   return D
```

- * Mergesort относится к алгоритмам сортировки сравнением
 - \star вычислительной сложностью такой сортировки считают количество сравнений символов, выполняемое при сортировке массива в худшем случае ! докажите, что сложность функции Merge равна n+k-1
- ★ массивы целых чисел можно сортировать, не сравнивая символы
 - * например, используя сортировку подсчетом (BucketSort)

Сложность сортировки слиянием (2)

Пусть M(n) — сложность сортировки \emph{n} -элементного массива слиянием

- $\bigstar M(n) \leq M(\lceil n/2 \rceil) + M(\lfloor n/2 \rfloor) + n 1$
 - следует из определения MergeSort и замечания о сложности Merge
 - ullet Для оценки M(n) решим соотношение $ar{M}(n) = ar{M}(\lceil n/2
 ceil) + ar{M}(\lfloor n/2
 floor) + n-1$
 - Представим рекурсивные вызовы Mergesort в виде дерева:
 - на рисунке «идеальный» случай n = 2^k
 - справа подсчитано число сравнений на каждом уровне дерева

- Число уровней равно $\log n$ (двоичный логарифм)
- $\Rightarrow \bar{M}(n) = n \log n (n-1)$
- \star В общем случае имеем $\lceil \log n \rceil$ уровней, с таким же подсчетом операций
- \Rightarrow $M(n) \leqslant n\lceil \log n \rceil n + 1 \leqslant n\lfloor \log n \rfloor$ (детали восстановите самостоятельно)
- \star Наиболее аккуратный подсчет дает $M(n) \leqslant n(\log n \log e + \log \log e) + 1$

Нижняя оценка на сложность сортировок сравнением

- ★ Существует алгоритм (MergeSort), сортирующий любой массив длины n не более чем за $n(\log n \log e + \log\log e) + 1$ сравнений символов ? какова нижняя оценка числа сравнений для любого алгоритма?
- Теорема

Любой алгоритм сортировки сравнением символов делает при сортировке массива длины n не менее $n \log n - n \log e + \frac{1}{2} \log n + O(1)$ сравнений в худшем случае

Доказательство:

- алгоритм выполняет сравнения во входном массиве А последовательно
- результат сравнения однозначно определяет следующее сравнение
- ullet выполнив все сравнения, алгоритм знает сортирующую перестановку массива A
- ⇒ работу алгоритма можно представить деревом решения Пример: дерево для алгоритма сортировки трехэлементного массива [a, b, c]

- дерево решения для сортировки бинарное и имеет $\geqslant n!$ листьев
- ⇒ на самом длинном пути от корня до листа не менее log n! сравнений
 - по формуле Стирлинга $\log n! = \log \left(\sqrt{2\pi n} \left(\frac{n}{e} \right)^n \right) + o(1) = n \log n n \log e + \frac{1}{2} \log n + O(1)$
- igstar MergeSort делает не более $n\cdot\log\log e\sim n/2$ «лишних» сравнений

Рекуррентные соотношения от нескольких переменных

Мы встречали такие соотношения несколько раз:

- ullet Биномиальные коэффициенты $inom{n}{k}=inom{n-1}{k-1}+inom{n}{k-1}$
- ullet Числа Стирлинга 1 рода ${n+1\brack k}=n\cdot {n\brack k}+{n\brack k-1}$
- Числа Стирлинга 2 рода $\binom{n+1}{k} = k \cdot \binom{n}{k} + \binom{n}{k-1}$
- ullet Разбиения числа n на k слагаемых $P_k(n) = P_{k-1}(n-1) + P_k(n-k)$
- \star Примеры, когда соотношение можно решить крайне редки
 - биномиальные коэффициенты
- Обычно можно рассчитывать только на получение асимптотических приближений, верных для некоторых соотношений между переменными
 - ullet ${n+1\brack k+1}\sim rac{n!}{k!}(\gamma+\ln n)^k$ при $k=o(\log n)$, где $\gammapprox 0.577$ константа Эйлера
 - $\binom{n}{k} \sim \frac{k^n}{k!}$ при фиксированном k
 - ullet существует асимптотическая формула для $P_k(n)$ при $k=o(\sqrt{n})$
 - •