

Instituto Federal de Educação, Ciência e Tecnologia de Brasília – Câmpus Taguatinga Ciência da Computação – Teoria da Computação – Lista de Exercícios – Máquinas de Turing Prof. Daniel Saad Nogueira Nunes

Aluno:	
Matrícula:	

Exercício 1

Defina formalmente uma Máquina de Turing $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{aceita}, q_{rejeita})$, tanto do ponto de vista sintático quanto do ponto de vista semântico.

Exercício 2

Qual a linguagem reconhecida pela máquina de Turing $M=(Q,\Sigma,\Gamma,\delta,q_0,q_3,q_4)$ com:

•
$$Q = \{q_0, q_1, q_2, q_3, q_4\}$$

 $-\delta(q_0, a) = (q_1, a, R)$
 $-\delta(q_0, b) = (q_2, b, R)$
 $-\delta(q_0, \sqcup) = (q_4, \sqcup, R)$
 $-\delta(q_1, a) = (q_4, a, R)$
 $-\delta(q_1, b) = (q_1, b, R)$
 $-\delta(q_1, \sqcup) = (q_3, \sqcup, R)$
 $-\delta(q_2, a) = (q_3, a, R)$
 $-\delta(q_2, b) = (q_2, b, R)$
 $-\delta(q_2, \sqcup) = (q_4, \sqcup, R)$

Exercício 3

Descreva o conceito de configuração de uma Máquina de Turing.

Exercício 4

Dada uma configuração C_1 , o que significa dizer que ela produz uma configuração C_2 ?

Exercício 5

Defina aceitação e rejeição em Máquinas de Turing em termos do conceito de configuração.

Exercício 6

Demonstre que as seguintes linguagens são Turing-decidíveis:

(a)
$$L = \{w|w \in \{0,1\}^* \land w \neq \epsilon\}$$

(b)
$$L = \{w \# w | w \in \{0, 1\}^*\}$$

- (c) $L = \{w \# w^R | w \in \{0, 1\}^*\}$
- (d) $L = \{w | w \in \{0, 1\}^* \land w = w^R\}$
- (e) $L = \{w | w \in \{0, 1\}^* \land w \text{ \'e impar}\}$
- (f) $L = \{w | w \in \{0, 1\}^* \land \text{ tem o mesmo número de 0s e 1s} \}$
- (g) $L = \{w|w \in \{0,1\}^* \land \text{ contém duas vezes mais 0s do que 1s}\}$
- (h) $L = \{w | w \in \{0,1\}^* \land \text{ não contém duas vezes mais 0s do que 1s} \}$
- (i) $L = \{w \# v | w \in \{0, 1\}^* \land w \text{ ocorre em } v\}$
- (j) $L = \{0^n \# 0^{2n} \# 0^{3n} | n \in \mathbb{N} \cup \{0\}\}$
- (k) $L = \{0^{2^n} | n \in \mathbb{N} \cup \{0\}\}$
- (l) $L = \{w | w \in \{0, 1\}^* \land \text{ toda posição ímpar de } w \text{ é um } 1\}.$

OBS: Considere que o bit menos significativo está na posição 0.

- (m) $L = \{w = a^i b^j c^k | w \in \{a, b, c\}^* \land k = i + j\}$
- (n) $L = \{w = a^i b^j c^k | w \in \{a, b, c\}^* \land k = i \cdot j\}$
- (o) $L = \{ \#w_1 \# w_2 \# \dots \# w_k \# | w_i \in \{0, 1\}^* \land w_i \neq w_i \text{ com } i \neq j \}$

Exercício 7

(Incremento) Construa uma máquina de Turing que, dado uma entrada $w \in \{0,1\}^+$, deixa w + 1 na fita, pára e aceita a palavra.

Exercício 8

Demonstre que se L é uma linguagem Turing Decidível, então \bar{L} também é.

Exercício 9

Demonstre que se L é uma linguagem Turing-reconhecível, mas não Turing decidível, L não pode ser Turing-decidível.

Exercício 10

Demonstre que se L_1 e L_2 são Turing-decidíveis, então $L_1 \cup L_2$ também é.

Exercício 11

Demonstre que se L_1 e L_2 são Turing-decidíveis, então $L_1 \cap L_2$ também é.

Exercício 12

Demonstre que se L_1 e L_2 são Turing-decidíveis, então $L_1L_2=\{uv\mid u\in L_1\wedge v\in L_2\}$ também é.

Exercício 13

Demonstre que se L é Turing-decidível, então $L^R = \{w^R \mid w \in L\}$ também é.