Computação Visual - WebGL

André Santos, 84816 – andrembs@ua.pt

Resumo – O presente relatório apresenta uma aplicação 3D desenvolvida em WebGL no âmbito da unidade curricular de Computação Visual, de forma a demonstrar algumas das funcionalidades desta tecnologia.

Para isso, a aplicação gráfica proposta e desenvolvida é um jogo inspirado no dinossauro do Google Chrome, em que o jogador tem de se desviar de um conjunto de diferentes obstáculos de modo a conseguir alcançar o maior número de pontos possível.

Abstract -This report presents a 3D application developed in WebGL for the Visual Computing course, in order to show some of the functionalities of this technology.

With that in mind, the proposed and developed application is a game inspired in the dinosaur game from Google Chrome, in which the player must dodge different kinds of obstacles in order to get as much points as possible.

I. INTRODUÇÃO

Para demonstrar algumas das funcionalidades e capacidades do WebGL, foi proposto desenvolver uma aplicação 3D e interativa. Por essa razão, a aplicação escolhida foi um jogo inspirado no dinossauro do Google Chrome[1] em que o jogador tem de se desviar de diferentes tipos de obstáculos para conseguir atingir o máximo de pontos.

Tendo isso em mente, no jogo desenvolvido, os obstáculos que o jogador tem de se desviar (catos no jogo original) foram substituídos por paredes com pequenas aberturas por onde ele deve passar, utilizando o rato para controlar o seu personagem.

Além das paredes estáticas, existem ainda alguns objetos em movimento de diferentes tipos.

Para a representação da cor dos modelos, foi utilizado o modelo de iluminação de Phong, abordado nas aulas.

O jogo "não tem fim", uma vez que apenas termina quando o jogador colidir com um dos obstáculos.

II. MODELOS 3D

Uma vez que a base de funcionamento deste jogo é a colisão entre o jogador e os diferentes obstáculos, a grande maioria dos objetos existentes são constituídos por cubos, de forma a tornar essa tarefa (cálculo de colisões) mais simples (Fig. 1).

Fig. 1 – Diferentes modelos

Além dos modelos dos obstáculos e do jogador, é também visível um contador de pontos que vai sendo atualizado no decorrer do jogo, em que a representação dos algarismos é também feita utilizando cubos.

Fig. 2 – Contador de pontos

Para tornar o jogo "infinito", foram definidos um conjunto de obstáculos que se vão repetindo ao longo do jogo.

III. MOVIMENTOS E TRANSFORMAÇÕES

Como explicado anteriormente, o jogador tem de se desviar de obstáculos para não perder e, para isso, este apenas se pode deslocar na direção do eixo XX e todos os objetos movimentam-se de forma autónoma na sua direção.

Alguns dos obstáculos estão em constante movimento para tornar o jogo um pouco mais complicado, sendo que alguns apenas se deslocam da esquerda para a direita e outros também rodam sobre si próprios.

Para tornar o jogo mais interessante, à medida que o jogador avança no jogo, todos estes movimentos se vão tornando cada vez mais rápidos, ficando cada vez mais complicado desviar dos obstáculos.

IV. ILUMINAÇÃO

Na atribuição de cor aos diferentes modelos, foi utilizado o modelo de iluminação de Phong.

V. INTERAÇÃO

Para que o jogador consiga interagir com a aplicação, este tem de usar o rato para controlar a posição do cubo.

Independentemente do movimento que o jogador faça, como explicado em cima, apenas é possível controlar a posição na direção horizontal (eixo XX).

Quando o jogo termina, o jogador pode carregar no botão que se encontra no lado direito do ecrã ou premir a tecla "r" para recomeçar o jogo.

REFERÊNCIAS

 $[1] $$ https://en.wikipedia.org/wiki/List_of_Google_Easter_eggs\#C $$ hrome$