Regressions

Cause and Effect

Correlation: Two variables are correlated when changes in one variable occur in a pattern corresponding to changes in the other.

Cause and Effect

Causation: One variable moves, and the second variable changes because of the movement of the first.

Questioning Causality

When we suspect a causal relationship (that x causes y), it is important to ask ourselves several questions:

- 1. Is it possible that y causes x instead?
- 2. Is it possible that z (a new factor that we haven't considered before) is causing both x and y?
- 3. Could the relationship have been observed by chance?

Establishing Causality

In order to establish causality, we need to meet several conditions:

- ullet We can explain (or at lest hypothesize) why x causes y
- We can demonstrate that nothing else is driving the changes (within reason)
- ullet We can show that there is a **correlation** between x and y

Ceteris Paribus

ceteris paribus means "all else equal"

- Allows us to act as if nothing else were changing
- Mathematically isolates the effect of each individual variable on the outcome of interest
 - Variables are the factors that we want to include in our model

Think about it like a trend line!

Whoops! What if there is another variable?

Or lots of variables??

Minimize Errors and Best Fit Lines

Minimize Errors and Best Fit Lines

Try it by hand!

Why LINEAR regression?

- Faster
- More honest

OLS in Python

```
import pandas as pd
import statsmodels.formula.api as smf

data = pd.read_csv(
    "https://github.com/dustywhite7/pythonMikkeli/raw/master/exampleData/fishWeight.csv")

reg = smf.ols("Weight ~ Length1", data=data)

reg = reg.fit()

print(reg.summary())
```

In [5]: ▶ reg.summary()

Out[5]:

OLS Regression Results

Dep. Variable:			Weight			R-squared:			0.839	
Model:			OLS				Adj. R-squared:			0.837
Method:			Least Squares				F-statistic:			815.3
	Date:			Tue, 09 Jun 2020			Prob (F-statistic):			4.75e-64
Time:			20:09:35				Log-Likelihood:			-1015.1
No. Observations:			159				AIC:			2034.
Df Residuals:			157				BIC:			2040.
Df Model:					1					
Covarian		non	robust							
	coef		std err		t		P> t	[0	0.025	0.975]
Intercept	-462.3751		32.2	243	43 -14.340		0.000	-526	3.061	-398.690
Length1	32.7922		1.1	.148 28.55		54	0.000) 30	0.524	35.061
Omnibus:			9.385 Durbi i			Watson:		0.3	69	
Prob(Omn	0.009 Jar		Jaro	que-Bera (J		(JB):	9.7	68		
Skew:		-0.489			Prob(JB):		(JB):	0.007	57	
Kurtosis:		3.721		Cond. No.		No.	79	0.2		

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Regression Equations

```
dependent ~ x1 + x2 + x3 + ...
```

We can force variables to be categorical:

```
dependent ~ x1 + x2 + C(x3) + ...
```

Here, we make x3 categorical

Regression Equations

```
dependent ~ x1 + x2 + x3 + ...
```

We can use arithmetic transformations:

```
dependent \sim x1 + I(x2**2) + x3 + ...
```

Here, we square x2

When OLS Fails

OLS is an inappropriate model whenever you have a binary or discrete dependent variable (think "yes" or "no" questions)

In this case, you should use Logistic Regression instead. More details can be found in the class notes on Mimir/Github.

Implementing Logistic Regressions

```
formula = "y ~ all_of_the_xs"

reg = smf.logit(formula, data)

reg = reg.fit()

reg.summary()
```

Lab Time!