

Naive Bayes Classification

CSCI-P556 Applied Machine Learning Lecture 10

D.S. Williamson

Agenda and Learning Outcomes

Today's Topics

• Topics:

- Finish Probability Review
- Naive Bayes Classification

Announcements

- Create private repos. ~9 of you haven't. See Piazza
- Commit to Github early and often
- Put name of partners as a text comment. Answer to questions as text comments as well
- Each non-submitting member commit a text file (or something similar) that specifies whose implementation to grade. *Only one submission per group will be graded*.

Bayes Rule (Theorem)

$P(A_i | B) = \frac{P(A_i, B)}{P(B)} = \frac{P(A_i)P(B | A_i)}{P(B)}$

Conditional Probability can be re-written

• A₁, A₂, ... form a partition and represent distinct sets of possible outcomes

- $P(A_j) > 0$ for all j
- Let B be any event s.t. P(B) > 0

$$P(A_i|B) = \frac{P(A_i)P(B|A_i)}{\sum_{j=1}^{\infty}P(A_j)P(B|A_j)} \quad \text{for any i=1,2,...}$$

$$P(B) \rightarrow \text{Law of Total Probability}$$

Bayes Rule: Example

Suppose

- 50% of voters are Democrats
- 30% of voters are Republican
- 20% of voters are Independent

- 40% of Democrats voted for candidate X
- 80% of Republicans voted for candidate X
- 50% of Independents voted for candidate X

What fraction of candidate X's votes came from Republications?

- Solution
 - $A_1 = \{Democrats\}, A_2 = \{Republican\}, A_3 = \{Independent\}$
 - B = { voted for X}
 - $P(A_2 | B) = ?$
 - $P(A_1) = 0.5$, $P(A_2) = 0.3$, $P(A_3) = 0.2$
 - $P(B \mid A_1) = 0.4$, $P(B \mid A_2) = 0.8$, $P(B \mid A_3) = 0.5$
 - \bullet A₁, A₂, and A₃ form a partition

$$P(A_2|B) = \frac{P(A_2, B)}{P(B)}$$

$$= \frac{P(A_2)P(B|A_2)}{P(A_1)P(B|A_1) + P(A_2)P(B|A_2) + P(A_3)P(B|A_3)}$$

$$= \frac{0.3 * 0.8}{0.5 * 0.4 + 0.3 * 0.8 + 0.2 * 0.5} = \frac{4}{9}$$

Independence

Independence

X and Y are independent if and only if:

$$f(x,y) = f_X(x)f_Y(y)$$
 for CRVs

$$P(x,y) = P_X(x)P_Y(y)$$
 for DRVs

- Equivalent condition
 - if X and Y are independent for all x and y, then

$$f(y|x) = \frac{f(x,y)}{f(x)} = \frac{f(x)f(y)}{f(x)} = f(y)$$

- Similarly
 - •X and Y are independent = f(x,y) = g(x)h(y) for some functions g and h
 - In other words,
 - •if the joint distribution (PMF or PDF) can be written as a product of a function of RV X and a function of RV Y, then X and Y are independent
 - •If X and Y are independent, then the joint distribution is a product of a function of X and a function of Y

Independence: Example

- Are X and Y independent?
 - Solution
 - Can show that

X and Y are independent

$$f_{XY}(x,y) = \begin{cases} 2e^{-(x+2y)}, & \text{if } 0 \le x, 0 \le y \\ 0, & \text{otherwise} \end{cases}$$

$$2e^{-(x+2y)} = e^{-x}(2e^{-2y})$$
$$= f_X(x)f_Y(y)$$

Conditional Independence

Have random variables X, Y, Z

Consider P(x,y | z)

X and Y are conditionally independent given Z if:

$$P(x,y|z) = P(x|z)P(y|z)$$

Covariance

Definition

• The covariance between two RVs (X and Y) is a measure of their association

$$Cov(X, Y) = E[(X - \mu_x)(Y - \mu_y)]$$
 where $\mu_x = E[X]$

$$\mu_y = E[Y]$$

• So

$$Cov(X,Y) = E[(X - \mu_x)(Y - \mu_y)]$$
 where

$$= E[XY - \mu_x Y - \mu_y X + \mu_x \mu_y]$$

$$= E[XY] - \mu_x E[Y] - \mu_y E[X] + \mu_x \mu_y$$

$$= E[XY] - 2\mu_x \mu_y + \mu_x \mu_y$$

$$= E[XY] - \mu_x \mu_y = 0$$

Sign of Cov(X,Y)

- If Cov(X,Y) > 0
 - High values of X tend to occur with high values of Y
 - Low values of X tend to occur with low values of Y
- If Cov(X,Y) < 0
 - High values of X tend to occur with low values of Y
 - Low values of X tend to occur with high values of Y
- If Cov(X,Y) = 0
 - X and Y are uncorrelated

$$Cov(X,Y) = E[XY] - \mu_x \mu_y$$

Covariance and Correlation

Correlation of X and Y

$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}} \qquad -1 \le \rho_{XY} \le 1$$

- Useful facts
 - $\rho_{XY}=1<=>$ perfect positive linear association. with probability of 1, Y = aX + b for some a>0
 - . $\rho_{XY}=-1<=>$ perfect negative linear association. with probability of 1, Y = aX + b for some a<0

Covariance and Correlation

Correlation of X and Y

$$\rho_{XY} = \frac{Cov(X, Y)}{\sqrt{Var(X)Var(Y)}}$$

- Useful facts
 - If X and Y are independent, then $Cov(X,Y) = \rho_{XY} = 0$
 - Proof:
 - Cov(X,Y) = E[XY] E[X]E[Y]
 - = E[X]E[Y] E[X]E[Y] = 0
 - The reverse of this is not true: Cov(X,Y) = 0 then X and Y are independent (wrong!)

Naive Bayes Classification

A Classification Example

Digital Communication

• A digital pulse train is transmitted over some channel

Sender Receiver

Channel + ?

Noise

- Let:
 - y(t) be the transmitted pulse (label)
 - x(t) be the received signal (feature/observation)

Suppose x(t) is observed as:

•
$$x(t) = y(t) + N(t)$$
, if '0' is sent

•
$$x(t) = N(t) - y(t)$$
, if '1' is sent

$$0 \le t \le T$$

Must decide, from the observation, whether a "0" or "1" bit is transmitted

Generative vs Discriminative Classification

Two different approaches to performing classification

- Two probabilistic approaches for classification that use the (discrete) input features, **x**, and corresponding labels (or classes), **y**, differently
- Discriminative methods model P(y|x) directly (e.g. Logistic Regression), by focusing on the task of categorizing data
 - Goal: Given the feature, what is the probability of observing this class?
 - Captures <u>differences</u> between categories. Eg, what differentiates birds and mammals?
 - Assumes value of label (or class) depends on the features
 - Typically more efficient and simpler

Generative vs Discriminative Classification

Two different approaches to performing classification

- Two probabilistic approaches for classification that use the (discrete) input features, x, and corresponding labels (or classes), y, differently
- Generative methods model P(x|y) and P(y)
 - Goal: Given the label, what is the probability of this feature? What is the probability of the label?
 - Assumes input feature can be "created" if the label is known
 - Describes probability distributions for all features
 - Stochastically create a plausible feature vector
 - Make a model that generates positives (e.g. Class A).
 Make a model that generates negatives (Class B).
 - Classify a test example based on which is more likely to generate it (e.g. Naïve Bayes)

Success Story of Naïve Bayes: Spam Filter

 The naive Bayes classifier is widely used for text data

• **Problem**:

- We want to classify email messages into spam and non-spam categories
- Our training set is a set of emails that has been classified manually into the two categories
- First questions: How do we represent an email using a feature vector x what features should we use?

A Bayes Classifier

Example: Spam Email Detection

- Our features are a binary encoding of possible words that are in the email.
 - Our vocabulary has n words. Hence, there are 2ⁿ possible values for x
 - Feature is n-dimensional, where value at i-th index of feature, x_i , is 1 if word is in the email and 0 otherwise.
- Goal: Learn a Bayes Classifier, hence we need to model:
 - P(x|y=0) (e.g. probability of feature given not a spam email)
 - P(x|y=1) (e.g. probability of feature given is a spam email)
 - P(y=0) (e.g. probability of not having spam email)
 - P(y=1) (e.g. probability of spam email)

A Bayes Classifier

Example: Spam Email Detection

- **Problem**: Modeling $P(\mathbf{x}|\mathbf{y})$ (for $\mathbf{y} = 0$ and 1) requires too many parameters (e.g. $2^*(2^n 1)$). It's a multinomial distribution.
- **Solution**: Apply the Naive Bayes assumption, which assumes that x_i 's are conditionally independent (e.g. assume words are conditionally independent)

$$P(\mathbf{x} | y) = P(x_1, x_2, \dots, x_n | y) = \prod_{i=1}^n P(x_i | y)$$

The number of parameters for $P(\mathbf{x}|\mathbf{y})$ is now 2*n. Why?

Hence avoids estimating joint probabilities across features (eg., $x_1 \wedge x_2$)

Naïve Bayes

- A *generative model* an email is generated as follows:
 - Determine if it is a spam email or not according to P(y) (Bernoulli)
 - Determine if each word x_i in the vocabulary is contained in the message independently according to $P(x_i | y)$ (Bernoulli)
- For this model, we need to learn:
 - For y: P(y = 1) (and P(y = 0)). These are our **prior** probabilities
 - For x_i : $P(x_i = 1 | y = 1)$ and $P(x_i = 1 | y = 0)$. These are are class conditional probabilities for i = 1, ..., n.
 - Can then compute $P(x_i = 0 | y = 1)$ and $P(x_i = 0 | y = 0)$. How?

Maximum Likelihood Estimate (MLE) for Naïve Bayes

 Suppose our training set contained N emails, the <u>maximum likelihood</u> <u>estimate</u> of the parameters are:

$$P(y=1) = \frac{N_1}{N}$$
, where N_1 is the number of spam emails

$$P(x_i = 1 | y = 1) = \frac{N_{i|1}}{N_1},$$

i.e., the fraction of spam emails where x_i appeared

$$P(x_i = 1 | y = 0) = \frac{N_{i|0}}{N_0}$$

i.e., the fraction of the nonspam emails where x_i appeared

What if x_i is Multinomial?

- If x_i is discrete with more than two possible values $\{v_1, \dots, v_m\}, P(x_i | y)$ can be described by a conditional probability table
- Really only needs m-1 rows since rows sum to 1
- More columns can be added for the multi-class case
- $P(x_i=v_j\,|\,y=k)=\frac{N_{ij|k}}{N_k}$, i.e., the fraction of class k examples where x_i took value v_j

	y = 0	y = 1
$x_i = v_1$	$P(x_i = v_1 \mid y = 0)$	$P(x_i = v_1 \mid y = 1)$
$x_i = v_2$	$P(x_i = v_2 y = 0)$	$P(x_i = v_2 y = 1)$
$x_i = v_3$	$P(x_i = v_m \mid y = 0)$	$P(x_i = v_m \mid y = 1)$

Learning and Classification

- Learning: Need to estimate the following probability distributions (via counting from data)
 - Prior distribution of y: P(y)
 - Class conditional distribution of x_i : $P(x_i | y)$
- Classification/Predicting:
 - Given $x = (x_1, x_2, \dots, x_d)$, compute P(y | x) for y = 0 and y = 1.
 - Apply decision theory to make final prediction of y

$$P(y \mid \mathbf{x}) = \frac{P(y)P(\mathbf{x} \mid y)}{P(\mathbf{x})} \propto P(y) \prod_{i} P(x_i \mid y)$$

Naive Bayes Classification

Choose the class that is optimal

 Once the likelihood and prior probabilities are determined, Naive Bayes performs classification by choosing the class with the larger weighted (by the prior) likelihood

$$P(y = 0)P(\mathbf{x} | y = 0) \le_0^1 P(y = 1)P(\mathbf{x} | y = 1)$$

This can be reformulated as below, where this is known as the <u>likelihood ratio test</u>
 (LRT)

$$\frac{P(\mathbf{x} | y = 0)}{P(\mathbf{x} | y = 1)} \le_0^1 \frac{P(y = 1)}{P(y = 0)}$$

• If the prior probabilities are equal, then this becomes: $P(\mathbf{x} | y = 0) \leq_0^1 P(\mathbf{x} | y = 1)$, which is known as the *Maximum Likelihood Decision Rule*

Naive Bayes Classification

Practical Considerations

• Recall that the likelihood of \mathbf{x} given y (e.g. $P(\mathbf{x} \mid y)$) for our email example assumes independence for the words

$$P(\mathbf{x} | y = 0) = \prod_{i} P(x_i | y = 0) = P(x_1 | y = 0) \times P(x_2 | y = 0) \times \dots \times P(x_n | y = 0)$$

• In practice, taking the product of probabilities can lead to <u>underflow</u>, where the number is too small to be represented in the computer. To avoid this, we often operate in the log-domain so that the log-probabilities are added instead

$$\log (P(\mathbf{x} | y = 0)) = \log (P(x_1 | y = 0)) + \log (P(x_2 | y = 0)) + \dots + \log (P(x_n | y = 0))$$

• The ratio test then becomes: $\frac{\log (P(x_1 | y = 0)) + \dots + \log (P(x_n | y = 0))}{\log (P(x_1 | y = 1)) + \dots + \log (P(x_n | y = 0))} \leq \frac{1}{P(y = 1)}$

Problem with (MLE) Naive Bayes Classification

• Many words are rare, resulting in poor probability estimates for certain words

- Consider the spam example:
 - Suppose in our training set "Mahalanobis" appears in a non-spam e-mail and never appears in a spam e-mail
 - Suppose also that "XXX" appears in a spam message but not a non-spam messages
 - Now suppose we get a new message x that contains both words
- We will have that $P(\mathbf{x} \mid y) = \prod_{i} P(x_i \mid y) = 0$ for both y = 0 and y = 1
 - Because P("Mahalanobis" $| y = 1 \rangle = 0$ and P("XXX" $| y = 0 \rangle = 0$
- Given this limited training data, Naive Bayes (via MLE) can result in probabilities of 0 or 1. Such extreme probabilities are "too strong" and cause problems.
 - Use Smoothing techniques to help correct this (e.g. Laplace Smoothing)
 - More on this during next homework.

Example: Digital Communication

A digital pulse train is transmitted over some channel

- Under:
 - y=0, x ~ N(-1,1) (e.g. f(x | y=0) follows a
 Gaussian distribution with mean -1 and
 variance of 1.
 - $y=1, x \sim N(1,1)$ (e.g. $f(x \mid y=1)$)
- Let P(y=0) = P(y=1) = 0.5

Find the classifier?

Example: Digital Communication

A digital pulse train is transmitted over some channel

- Decide `0' or `1' based on the observation x.
- For:
 - y=0, $x \sim N(-1,1)$. Hence, f(x | y=0) follows a Gaussian distribution with mean -1 and variance of 1.
 - $y=1, x \sim N(1,1)$ (e.g. $f(x \mid y=1)$
- Let P(y=0) = P(y=1) = 0.5

Find the classifier?

$$\frac{f(x \mid y = 0)}{f(x \mid y = 1)} \le_0^1 \frac{P(y = 1)}{P(y = 0)} \implies \frac{f(x \mid y = 0)}{f(x \mid y = 1)} \le_0^1 1$$

$$\frac{f(x \mid y = 0)}{f(x \mid y = 1)} = \frac{\frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}} (x+1)^2}{\frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}} (x-1)^2} = e^{-2x}$$

$$=> e^{-2x} \le 1$$

$$=> \log (e^{-2x}) \leq_{0}^{1} \log (1)$$
$$-2x \leq_{0}^{1} 0 \implies 0 \leq_{0}^{1} x$$

Example: Digital Communication

A digital pulse train is transmitted over some channel

- Decide '0' or '1' based on the observation x.
- For:
 - y=0, $x \sim N(-1,1)$. Hence, f(x | y=0) follows a Gaussian distribution with mean -1 and variance of 1.
 - y=1, $x \sim N(1,1)$ (e.g. $f(x \mid y=1)$
- Let P(y=0) = P(y=1) = 0.5

Find the classifier?

$$0 \leq_0^1 x$$

What about the multi-class case?

Instead of having two classes (0 and 1), now have multiple class options (0 to K)

- How is Naive Bayes multi-class classification performed?
- After simplifying the problem, the classifier becomes

$$\hat{y} = \arg\max_{k} f(x|y=k)P(y=k)$$

In other words, you choose the class with the maximum posterior (or likelihood)

Summary - Naive Bayes Classification

- Generative classifier
 - Learn P(x|y) and P(y).
 - Use Bayes rule to compute P(y|x) for classification
- Assumes conditional independence between features given labels
 - Greatly reduces the number of parameters
 - Referred to as the <u>Naive assumption</u>
- Batch learning, but can be turned into online learning
 - Incrementally update the various probability estimates
- Often a good "first thing" to try. It often works surprisingly well.

Next Class: Linear Regression