$$\begin{split} \frac{\partial}{\partial t} \int \rho^{(d)} \bigg\{ \left[m^{(d)} + m_{t=t^n}^{(H_2O)} \right] (K + \Phi_s) + c_p^{(d)} T + m^{(H_2O)} c_p^{(d)} T + F_{net}^{(wv)} L_{s,00} + F_{net}^{(liq)} L_{f,00} \bigg\} dz \\ - \Delta \mathcal{I}_{m^{(H_2O)}} = F_{net}^{(wv)} L_{s,00} + F_{net}^{(liq)} L_{f,00} + F^{(turb,rad)}. \end{split} \tag{111}$$