

Chapter 2: Basic Switching Concepts and Configuration

Switched Networks

Cisco Networking Academy® Mind Wide Open®

Basic Switch Configuration

Switch LED Indicators

Cisco Catalyst 2960 Switch Modes

Cat	alyst 2960 Switch LEDs		
1	The system LED	5	The port speed LED
2	The RPS LED (if RPS is supported on the switch)	6	The PoE status LED (if PoE is supported on the switch)
3	The port status LED (This is the default mode.)	7	The Mode button
4	The port duplex mode LED	8	The port LEDs

Basic Switch Configuration

Preparing for Basic Switch Management

- To remotely manage a Cisco switch, it must be configured to access the network.
- An IP address and a subnet mask must be configured.
- If managing the switch from a remote network, a default gateway must also be configured.
- The IP information (address, subnet mask, gateway) must be assigned to a switch virtual interface (SVI).
- Although these IP settings allow remote management and remote access to the switch, they do not allow the switch to route Layer 3 packets.

Configuring Basic Switch Management Access

Cisco Switch IOS Commands		
Enter global configuration mode.	S1# configure terminal	
Enter interface configuration mode for the SVI.	S1(config)# interface vlan99	
Configure the management interface IP address.	S1(config-if)# ip address 172.17.99.11	
Enable the management interface.	S1(config-if)# no shutdown	
Return to the privileged EXEC mode.	S1(config-if)# end	
Save the running config to the startup config.	S1# copy running-config startup- config	

Cisco Switch IOS Commands	
Enter global configuration mode.	S1# configure terminal
Configure the default gateway for the switch.	S1(config)# ip default-gateway 172.17.99.
Return to the privileged EXEC mode.	S1(config-if)# end
Save the running config to the startup config.	S1# copy running-config startup- config

Duplex Communication

Full-Duplex Communication

Half-Duplex Communication

Configure Switch Ports at the Physical Layer

Configure Duplex and Speed

Cisco Switch IOS Commands	
Enter global configuration mode.	S1# configure terminal
Enter interface configuration mode.	S1(config)# interface fastethernet 0/1
Configure the interface duplex.	S1(config-if)# duplex full
Configure the interface speed.	S1(config-if)# speed 100
Return to the privileged EXEC mode.	S1(config-if)# end
Save the running config to the startup config.	S1# copy running-config startup- config

Auto-MDIX Feature

- Certain cable types (straight-through or crossover) were required when connecting devices.
- The automatic medium dependent interface crossover (auto-MDIX) feature eliminates this problem.
- When auto-MDIX is enabled, the interface automatically detects and configures the connection appropriately.
- When using auto-MDIX on an interface, the interface speed and duplex must be set to auto.

Auto-MDIX Feature (cont.)

Configure auto-MDIX

Cisco Switch IOS Commands	
Enter global configuration mode.	S1# configure terminal
Enter interface configuration mode.	S1(config)# interface fastethernet 0/1
Configure the interface to autonegotiate duplex with the connected device.	S1(config-if)# duplex auto
Configure the interface to autonegotiate speed with the connected device.	S1(config-if)# speed auto
Enable auto-MDIX on the interface.	S1(config-if)# mdix auto
Return to the privileged EXEC mode.	S1(config-if)# end
Save the running config to the startup config.	S1# copy running-config startup-config

Auto-MDIX Feature (cont.)

Verify auto-MDIX

S1# show controllers ethernet-controller fa 0/1 phy | include Auto-MDIX

Auto-MDIX: On [AdminState=1 Flags=0x00056248]

S1#

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Verifying Switch Port Configuration

Verification Commands

Cisco Switch IOS Command	s
Display interface status and configuration.	S1# show interfaces [interface-id]
Display current startup configuration.	S1# show startup-config
Display current operating config.	S1# show running-config
Display information about flash file system.	S1# show flash
Display system hardware and software status.	S1# show version
Display history of commands entered.	S1# show history
Display IP information about an interface.	S1# show ip [interface-id]
Display the MAC address table.	S1# show mac-address-table OR
	S1# show mac address-table

Display Interface Status and Statistics

Output of a show interfaces command

```
S1# show interfaces FastEthernet0/1
FastEthernet0/1 is up, line protocol is upHardware is Fast
Ethernet, address is 0022.91c4.0e01 (bia 0022.91c4.0e01) MTU
1500 bytes, BW 100000 Kbit, DLY 100 usec,
<output omitted>
  2295197 packets input, 305539992 bytes, 0 no buffer
 Received 1925500 broadcasts, 0 runts, 0 giants, 0
 throttles
  3 input errors, 3 CRC, 0 frame, 0 overrun, 0 ignored
  0 watchdog, 68 multicast, 0 pause input
  0 input packets with dribble condition detected
  3594664 packets output, 436549843 bytes, 0 underruns
  8 output errors, 1790 collisions, 10 interface resets
  0 unknown protocol drops
  0 babbles, 235 late collision, 0 deferred
<output omitted>
```

Secure Remote Access

SSH Operation

- Secure Shell (SSH) is a protocol that provides a secure (encrypted) command-line based connection to a remote device.
- SSH is commonly used in UNIX-based systems.
- The IOS software also supports SSH.
- A version of the IOS software, including cryptographic (encrypted) features and capabilities, is required to enable SSH on Catalyst 2960 switches.
- Because of its strong encryption features, SSH should replace Telnet for management connections.
- By default, SSH uses TCP port 22 and Telnet uses TCP port 23.

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Secure Remote Access

SSH Operation (cont.)

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Secure Remote Access

Configuring SSH

Configure SSH for Remote Management

```
172.17.99.11
                                      172.17.99.21
                 S1
S1# configure terminal
S1(config) # ip domain-name cisco.com
S1(config) # crypto key generate rsa
The name for the keys will be: S1.cisco.com
How many bits in the modulus [512]: 1024
S1(config) # username admin password ccna
S1(config-line) # line vty 0 15
S1(config-line) # transport input ssh
S1(config-line) # login local
S1(config-line)# exit
S1(config) # ip ssh version 2
S1(config)# exit
S1#
```


Verify SSH Status and Settings


```
S1# show ip ssh
SSH Enabled - version 2.0
Authentication timeout: 90 secs; Authentication retries: 2
Minimum expected Diffie Hellman key size : 1024 bits
IOS Keys in SECSH format(ssh-rsa, base64 encoded):
ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAAAgQCdLksVz2Q1REsoZt2f2scJHbW3aMDM8
/8jg/srGFNL
i+f+qJWwxt26BWmy694+6ZIQ/j7wUfIVNlQhI8GUOVIuKNqVMOMtLg8Ud4qAiLbGJfAa
P3fyrKmViPp0
eOZof6tnKgKKvJz18Mz22XAf2u/7Jq2JnEFXycGMO88OUJQL3Q==
S1# show ssh
Connection Version Mode Encryption Hmac
                                               State
                                                             Username
0
           2.0
                        aes256-cbc hmac-shal Session started admin
           2.0
                   OUT aes256-cbc hmac-shal Session started admin
%No SSHv1 server connections running.
S1#
```

Secure Unused Ports

Disabling unused ports is a simple, yet efficient security practice.

Disable unused ports using the shutdown command. S1# show run Building configuration ... version 15.0 hostname S1 172.17.99.11 interface FastEthernet0/4 shutdown interface FastEthernet0/5 shutdown 172.17.99.21 interface FastEthernet0/6 PC₁ description web server interface FastEthernet0/7 shutdown

DHCP Snooping

DHCP Snooping specifies which switch ports can respond to DHCP requests. Attacker Rogue

- DHCP snooping allows the configuration of ports as trusted or untrusted.
 - Trusted ports can send DHCP requests and acknowledgements.
 - Untrusted ports can forward only DHCP requests.
- DHCP Snooping enables the switch to build a DHCP binding table that maps a client MAC address, IP address, VLAN, and port ID.

DHCP

PC1

S1 (config) # ip dhcp snooping S1(config)# ip dhcp snooping vlan 10,20 S1(config) # interface fastethernet 0/1 S1(config-if) # ip dhcp snooping trust S1(config) # interface fastethernet 0/2 S1(config-if) # ip dhcp limit rate 5

Port Security: Operation

- Port security limits the number of valid MAC addresses allowed on a port.
- MAC addresses of legitimate devices are allowed access, while other MAC addresses are denied.
- Any additional attempts to connect by unknown MAC addresses generate a security violation.
- Secure MAC addresses can be configured in a number of ways:
 - Static secure MAC addresses
 - Dynamic secure MAC addresses
 - Sticky secure MAC addresses

Port Security: Violation Modes

- The IOS software considers a security violation when either of these situations occurs:
 - The maximum number of secure MAC addresses for that interface have been added to the CAM, and a station whose MAC address is not in the address table attempts to access the interface.
 - An address learned or configured on one secure interface is seen on another secure interface in the same VLAN.
- There are three possible actions to be taken when a violation is detected:
 - Protect
 - Restrict
 - Shutdown

Port Security: Configuring

Dynamic Port Security Defaults

Feature	Default Setting
Port security	Disabled on a port.
Maximum number of secure MAC addresses	1
Violation mode	Shutdown. The port shuts down when the maximum number of secure MAC addresses is exceeded, and an SNMP trap notification is sent.
Sticky address learning	Disabled.

esentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Port Security: Configuring (cont.)

Configuring Dynamic Port Security

Cisco IOS CLI Commands	
S1(config)#interface fastethernet 0/18	Specify the interface to be configured for port security.
S1(config-if)#switchport mode access	Set the interface mode to access.
S1(config-if)#switchport port- security	Enable port security on the interface.

Port Security: Configuring (cont.)

Cisco IOS CLI Commands	
S1(config)#interface fastethernet 0/18	Specify the interface to be configured for port security.
S1(config-if)#switchport mode access	Set the interface mode to access.
S1(config-if)#switchport port- security	Enable port security on the interface.
S1(config-if)#switchport port- security maximum 50	Set the maximum number of secure addresses allowed on the port.
S1(config-if)#switchport port- security mac-address sticky	Enable sticky learning.

Port Security: Verifying


```
S1# show port-security interface fastethernet 0/19
Port Security: Enabled
Port Status: Secure-up
Violation Mode: Shutdown
Aging Time: 0 mins
Aging Type: Absolute
SecureStatic Address Aging: Disabled
Maximum MAC Addresses: 50
Total MAC Addresses: 1
Configured MAC Addresses: 0
Sticky MAC Addresses: 1
Last Source Address:Vlan: 0025.83e6.4b02:1
Security Violation Count: 0
```

Port Security: Verifying (cont.)

Verifying Port Security Sticky – Running Configuration


```
S1# show run | begin FastEthernet 0/19
interface FastEthernet0/19
switchport mode access
switchport port-security maximum 50
switchport port-security
switchport port-security mac-address sticky
switchport port-security mac-address sticky
```

Port Security: Verifying (cont.)

Verifying Port Security Secure MAC Addresses

Vlan	Mac Address	Type	Ports	Remaining Age (mins)
1	0025.83e6.4b01	SecureDynamic	Fa0/18	-
1	0025.83e6.4b02	SecureSticky	Fa0/19	-

Ports in Error-Disabled State

- A port security violation can put a switch in errordisabled state.
- A port in error-disabled state is effectively shutdown.
- The switch communicates these events through console messages.

```
Sep 20 06:44:54.966: %PM-4-ERR_DISABLE: psecure-violation error detected on Fa0/18, putting Fa0/18 in err-disable state Sep 20 06:44:54.966: %PORT_SECURITY-2-PSECURE_VIOLATION: Security violation occurred, caused by MAC address 000c.292b.4c75 on port FastEthernet0/18. Sep 20 06:44:55.973: %LINEPROTO-5-PPDOWN: Line protocol on Interface FastEthernet0/18, changed state to down Sep 20 06:44:56.971: %LINK-3-UPDOWN: Interface FastEthernet0/18, changed state to down
```

Ports In Error Disabled State (cont.)

The **show interface** command also reveals a switch port on the error-disabled state.

S1# show interface fa0/18 status Port Name Status Vlan Duplex Speed Type auto auto 10/100BaseTX Fa0/18 err-disabled 1 S1# show port-security interface fastethernet 0/18 Port Security : Enabled Port Status : Secure-shutdown Violation Mode : Shutdown Aging Time : 0 mins Aging Type : Absolute SecureStatic Address Aging : Disabled Maximum MAC Addresses : 1 Total MAC Addresses : 0 Configured MAC Addresses : 0 Sticky MAC Addresses : 0 Last Source Address: Vlan : 000c.292b.4c75:1 Security Violation Count : 1

Ports In Error Disabled State (cont.)

A shutdown (or no shutdown) interface command must be issued to re-enable the port.

```
S1(config )#interface FastEthernet 0/18
S1(config-if)# shutdown
Sep 20 06:57:28.532: %LINK-5-CHANGED: Interface
FastEthernet0/18, changed state to administratively down
S1(config-if)# no shutdown
Sep 20 06:57:48.186: %LINK-3-UPDOWN: Interface
FastEthernet0/18, changed state to up
Sep 20 06:57:49.193: %LINEPROTO-5-UPDOWN: Line protocol on
Interface
FastEthernet0/18, changed state to up
```

Network Time Protocol (NTP)

- Having the correct time within networks is important.
- Correct time stamps are required to accurately track network events such as security violations.
- Clock synchronization is also critical for the interpretation of events within syslog data files as well as for digital certificates
- Network Time Protocol (NTP) is a protocol that is used to synchronize the clocks of computer systems over the network
- NTP allows network devices to synchronize their time settings with an NTP server.

Network Time Protocol (NTP) (cont.)

 Some administrator prefer to maintain their own time source for increased security. However, public time sources are available on the Internet for general use.

- A network device can be configured as either an NTP server or an NTP client.
- To allow the software clock to be synchronized by an NTP time server, use the ntp server ip-address command in global configuration mode.

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Network Time Protocol (NTP) (cont.)

 R2 is configured as a NTP client, receiving time updates from the server, R1.

R2(config)# ntp server 10.1.1.1

Cisco | Networking Academy® | Mind Wide Open™