LCD

1.
$$\lim_{x \to 0} \frac{x \tan 2x - 2x \tan x}{(1 - \cos 2x)^2}$$
 is (A) 2 (B) -2

$$(B) -2$$

$$(D) -1/2$$

2.
$$f(x) = \begin{cases} ax^2 + bx + c, & |x| > 1 \\ x + 1, & |x| \le 1 \end{cases}$$
. If $f(x)$ is continuous for all values of x , then;

(A)
$$b = 1$$
, $a + c = 0$

(B)
$$b = 0$$
, $a + c = 2$

$$(C)$$
 b = 1, a + c = 1

3. The equation of the tangent to the curve
$$f(x) = 1 + e^{-2x}$$
 where it cuts the line $y = 2$ is

(A)
$$x + 2y = 2$$

(B)
$$2x + y = 2$$

(C)
$$x - 2y = 1$$

$$(D) x - 2y + 2 = 0$$

4.
$$\lim_{x \to \infty} \frac{x + \sin x}{x - \sin x} = \dots$$

$$\lim_{x \to \infty} \left(\frac{x+3}{1+x} \right)^{x+3} = \dots$$

6.
$$\lim_{x \to 0} \frac{x(1 + a\cos x) - b\sin x}{x^3} = 1, \text{ then } a = \dots b = \dots$$

7.
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$
 is equal to

(A)
$$\pi$$

8
$$\lim_{x\to\infty} \frac{\sqrt{x^2-1}}{2x+1}$$
 is equal to

$$(C) -1$$

9. If
$$f(x) = (1 - x^n)^{1/n}$$
, $0 < x < 1$, n being an odd positive integer and $h(x) = f(f(x))$, then $h'\left(\frac{1}{2}\right)$ is

equal to

(A)
$$2^{n}$$

10 Among
$$\lim_{x\to 0} \sec^{-1}\left(\frac{x}{\sin x}\right)$$
 (1)

and
$$\lim_{x\to 0} \sec^{-1}\left(\frac{\sin x}{x}\right)$$

11 A function f (x) is defined as f (x) =
$$\begin{cases} x^2 - 3x + a, & x < 1 \\ -2, & x = 1 \\ bx + 3, & x > 1 \end{cases}$$

What are the values of a and b respectively such that f(x) is continuous at x = 1.

- (A) 1, -2
- (B) 0, -5
- (C) -1.0
- (D) 2, -3

Given a function f(x) continuous $\forall \ x \in R$ such that $\lim_{x \to 0} \left| f(x) + log \left(1 - \frac{1}{e^{f(x)}} \right) - log(f(x)) \right| = 0$, 12

then f(0) is

- (A) 0
- (C)2
- (D) 3

The value of $\lim_{x\to\infty} x \cos\left(\frac{\pi}{4x}\right) \sin\left(\frac{\pi}{4x}\right)$ is 13

- (C) 1
- (D) π

The value of $\lim_{x\to 0} \frac{a^x - b^x}{x}$ is

- (A) $\log_e\left(\frac{a}{b}\right)$ (B) $\log_e\left(\frac{b}{a}\right)$ (C) $\log_e\left(ab\right)$ (D) none of these

If f (x) = $\begin{cases} mx + 1, & x \le \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2} \end{cases}$ is continuous at $x = \frac{\pi}{2}$, then 15

- (A) m = 1, n = 0 (B) $m = \frac{n\pi}{2} + 1$ (C) $n = \frac{m\pi}{2}$ (D) $m = n = \frac{\pi}{2}$

The value of $\lim_{x\to\infty} \frac{\sqrt{1+x^4}-(1+x^2)}{x^2}$ is equal to 16.

(A) 0

(C)2

(B) -1 (D) 1

 $\lim_{x\to 0} \frac{e^{\tan x}-e^x}{\tan x-x} \text{ is equal to}$ 17.

(B) e

(C) -1

(D) 0

The function f (x) = $\frac{\tan(\pi - [x - \pi])}{1 + [x]^2}$, where [.] denotes greatest integer function, is 18.

- (A) discontinuous at some x
- (B) continuous at all x, but f'(x) does not exist for some x
- (C) f' (x) exists for all x
- (D) none of these

 $\text{If the function } f(x) = \begin{cases} Ax - B &, & x \leq 1 \\ 3x &, & 1 < x < 2 \end{cases} \text{ be continuous at } x = 1 \text{ and discontinuous at }$ 19

x = 2, then

- (a) A = 3 + B, $B \ne 3$ (b) A = 3 + B, B = 3 (c) A = 3 + B (d) none of these

41. If
$$(x) = \begin{cases} ax^2 + b & , x \le 1 \\ bx^2 + ax + c & , x > 1 \end{cases}$$
, $b \ne 0$. Then $f(x)$ is continuous and differentiable at $x = 1$ if

(a)
$$c = 0$$
, $a = 2b$ (b) $a = b$, $c \in R$ (c) $a = b$, $c = 0$ (d) $a = b$, $c \neq 0$.

(b)
$$a = b, c \in R$$

(c)
$$a = b, c =$$

(d)
$$a = b, c \neq 0$$

42. If
$$f(x) = x^3 \, sgn \, x$$
, then

(a) f is derivable at
$$x = 0$$

(b) f is continuous, but not derivable at x = 0

(c) LHD at
$$x = 0$$
 is 1

(d) RHD at x = 0 is 0.

43. If
$$f(x) = (x - x_0) \phi(x)$$
 and $\phi(x)$ is continuous at $x = 0$, then $f'(x_0)$ is equal to

(a)
$$\phi'(x_0)$$

(b)
$$\phi(x_0)$$

(c)
$$x_0 \phi(x_0)$$

44 If
$$f(x) = \begin{cases} \frac{\sin[x]}{[x]} & \text{for } [x] \neq 0 \\ 0 & \text{for } [x] = 0 \end{cases}$$
 where [x] denotes greatest integer function, then $\lim_{x \to 0} f(x) = \int_{0}^{\infty} \frac{\sin[x]}{[x]} f(x) dx$

$$(C) -1$$

45. If the function
$$f(x) = \begin{cases} \frac{\sin(2x)^2}{x^2} + e^{-x}, & x \neq 0 \\ k, & x = 0 \end{cases}$$
 is continuous, then k is

46. For a function
$$y = f(x)$$
, $\frac{dy}{dx} = (x-1)(x+2)$. Find the point of local maximum and minimum for the function $y = f(x)$.

47. Find the function
$$y = f(x)$$
 for the above function if it is given that $y = 2$ at $x = 0$.

48. The value of derivative of
$$f(x) = |x-1| + |x-3|$$
 at $x = 2$ is

$$(A) -2$$

49. The function
$$f(x) = |\sin x| - 1$$
 is

- (A) continuous everywhere
- (B) not differentiable at $x = \frac{\pi}{2}$

(C) differentiable at x = 0

(D) differentiable everywhere

50. Let
$$f(x) = \begin{cases} 3x - 4, & 0 \le x \le 2 \\ 2x + \lambda, & 2 < x \le 3 \end{cases}$$
, if $f(x)$ is continuous at $x = 2$, then λ is

$$(A) -1$$

$$(B) -2$$

51. The number of points at which the function
$$f(x) = \frac{x}{\log |x|}$$
 is discontinuous is

(C) 3 (D) 4
52. The number of values of $x x \in [0, 2]$ at which the real function $f(x) = |x - 1/2| + |x - 1| + \tan x$ is not differentiable is (A) 2 (B) 3 (C) 1 (D) 0

1.

LEVEL-II

1.	The function $(x^2 - 1) x^2 - 3x + 2 + \cos(x)$ is not differentiable at							
	(A) -1	(B) 0	(C) 1	(D) 2				
2.	For $x \in R$, $\lim_{x \to \infty} \left(\frac{x - x}{x + x} \right)$	3) ^x is						
۷.		(2) is (2) -1	(0) -5	(D) 5				
	(A) e	(B) e^{-1}	(C) e^{-5}	(D) e ⁵				
3.	$\lim_{x\to\frac{\pi}{2}}\left[\frac{6\cos x}{2x-\pi}\right], \text{ where [.] denotes the greatest integer function, is equal to;}$							
	(A) - 3	(B) - 4	(C) -2	(D) none of these				
	1							
4.	_	Let $f(x) = (\tan x)^{\frac{1}{x-\frac{\pi}{4}}}$ $\forall x \in (0, \pi/2) \sim \{\pi/4\}$, then the value of $f(\pi/4)$ such that $f(x)$ becomes						
	continuous at $x = \frac{\pi}{4}$	continuous at $x = \frac{\pi}{4}$ is equal to;						
	(A) e	(B) √e	(C) $\frac{1}{\sqrt{e}}$	(D) e ²				
5.	Let f(x)=[5+3 sinx] ∀	$x \in \mathbb{R}$. Then total nu	umber of points of disc	continuity of $f(x)$ in $[0, \pi]$ is				
	equal to; (A) 5	(B) 6	(C) 7	(D) 4				
	,	. ,	. ,	, ,				
6.	$f(x) = \sin^{-1}(\sin x), x \in (A) 3$	[-2π, 2π]. Total number (B) 4	r of critical points of f(x (C) 5) is ; (D) 2				
7.	If the line ax + by + c	= 0 is normal to the cu	rve x y + $5 = 0$ then	$e \times y + 5 = 0$ then				
	(A) a > 0, b > 0 (C) a < 0, b < 0		(B) b > 0, a < 0 (D) b < 0, a > 0					
	(0) a < 0 , b < 0							
8.		of $f(x) = x \ln x \ln x \in (0, 1)$						
	(A) 1/e (C) 1		(B) e (D) none of these					
•	$f(x) = 3x^3 + 4e^x - k \text{ is always increasing then value of } k = 0$							
9.	$f(x) = 3x^{\circ} + 4e^{\wedge} - K \text{ is } 3$	always increasing ther	n value of k = (B) -4/9					
	(C) 4/9		(D) all of these					
10.	$\lim_{x\to 2} \{ [2-x] + [x-2] - x \} $ is							
	(A) 0		(B) 3					
	(C) -3		(D) does not exist					
11.	Let f (x) be a twice differentiable function and f'' (0) = 2 then $\lim_{x\to 2} \frac{2f(x)-3f(2x)+f(4x)}{x^2}$ is							
	(A) 6 (C) 12		(B) 1 (D) 3					
46	,		· /					
12	Let h (x) = f (x) $-\{f(x)\}^2 + \{f(x)\}^3$ for all real values of x then (A) h is \uparrow whenever f (x) is \downarrow (B) h is \uparrow whenever f(x) is \downarrow 0							
	(A) II IS WITELIEVELL	(v) 19 A	(D) II IS WHEHEVELL	(∧) i3 ¥ U				

(C) h is \downarrow whenever f is \downarrow

- (D) nothing can be said in general
- 13. Let f'(x) > 0, g'(x) < 0 for all $x \in R$, then
 - (A) $f \{g(x)\} > f \{g(x + 1)\}$

- (B) $f \{g(x)\} > f \{g(x-1)\}$
- (C) $g \{f(x)\} > g \{f(x+1)\}$
- (D) $g \{f(x)\} > g \{f(x-1)\}$
- 14.
- [.] G. I. F

- $\lim_{n \to \infty} (3^n + 5^n + 7^n)^{\frac{1}{n}} = \dots$ 15.
- If α , β are the roots of $ax^2 + bx + c = 0$ then $\lim_{x \to \alpha} \frac{1 \cos(ax^2 + bx + c)}{(x \alpha)^2} = \dots$ 16.
- $\lim_{x\to 1} (1-x+[x-1]+[1-x]) = \dots$ 17.
- $f(x) = \sin^{-1}(\cos x)$ then points of nondifferentiability between $[0, 2\pi] = \dots$ 18.
- 19. Let $f(x + y) = f(x) \cdot f(y)$ for all x & y, if f(5) = 2 and f'(0) = 3, then $f'(5) = \dots$
- $f(x) = \begin{cases} \frac{a \mid x^2 x 2 \mid}{2 + x x^2}, & x < 2 \\ b, & x = 2 \text{ (where [.] denotes the greatest integer function). If } f(x) \\ \frac{x [x]}{x 2}, & x > 2 \end{cases}$ 20.
 - is continuous at x = 2, then
 - (A) a = 1, b = 2

(B) a = 1, b = 1

(C) a = 0, b = 1

- (D) a = 2, b = 1
- Let $f(x) = \begin{cases} -1, & x \le 0 \\ 0, & x = 0 \text{ and } g(x) \text{ sinx} + \cos x, \text{ then points of discontinuity of } f\{g(x)\} \text{ in } (0, 1, 0) \end{cases}$ 21.
 - 2π) is
 - (A) $\left\{ \frac{\pi}{2}, \frac{3\pi}{4} \right\}$

(B) $\left\{ \frac{3\pi}{4}, \frac{7\pi}{4} \right\}$

(C) $\left\{ \frac{2\pi}{3}, \frac{5\pi}{3} \right\}$

- (D) $\left\{ \frac{5\pi}{4}, \frac{7\pi}{3} \right\}$
- If α and β are the roots at ax^2 + bx + c = 0 then $\lim_{x \to \alpha} (1 + ax^2 + bx + c)^{1/(x-\alpha)}$ is 22.
 - (A) a $(\alpha \beta)$ (C) $e^{a(\alpha \beta)}$

(B) $\ln |a(\alpha - \beta)|$ (D) $e^{a|\alpha - \beta|}$

- $\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} \cos x 1}{\cot x 1} \text{ is equal to}$ 23.

34.
$$\lim_{x \to 2} \frac{\tan(e^{x-2} - 1)}{\ln(x - 1)}$$

- (B) -2
- (C) 1
- (D) -1

35. The function defined by f (x) =
$$\begin{cases} \frac{\sin x^2}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 is

- (A) continuos and derivable at x = 0
- (B) neither continuous nor derivable at x = 0
- (C) continuous but not derivable at x = 0
 - (D) none of these
- $\lim_{x\to 0} (1 + \tan^2 \sqrt{x})^{1/2x}$ is equal to 36.

- (C) $e^{1/2}$
- (D) $e^{-1/2}$
- The left hand derivative of f (x) = [x] $\sin (\pi x)$ at x = k, k is an integer is (A) $(-1)^k (k-1)\pi$ (B) $(-1)^{k-1} (k-1)\pi$ (C) $(-1)^k k\pi$ (D) $(-1)^{k-1} k\pi$ 37.

- $\lim_{x \to y} \frac{x^y y^x}{x^x y^y}$ is 38.

- (A) $\frac{\log ey}{1 \log y}$ (B) $\frac{1 \log y}{\log ey}$ (C) $\frac{1 \log y}{1 + \log y}$ (D) $(1 \log y) \log ey$
- $\lim_{x\to 0} (\sin x)^x$ is 39.
 - (A) 1
- (B) 0
- (C) ∞
- (D) does not exist
- If f(x) is a continuous function $\forall x \in R$ and the range of f(x)=(2, $\sqrt{26}$) and g(x) = $\left|\frac{f(x)}{a}\right|$ is 40 continuous $\forall x \in R$ ([.] denotes the greatest integer function), then the least positive integral value of a is
 - (A) 2
- (B)3
- (C)6
- (D) 5
- Let $f(x) = \lim_{n \to \infty} \frac{1}{\left(\frac{3}{\pi} \tan^{-1} 2x\right)^{2n} + 5}$. then the set of values of x for which f(x) = 0, is 41
 - (A) $|2x| > \sqrt{3}$

- (B) $|(2x)| < \sqrt{3}$ (C) $|2x| \ge \sqrt{3}$ (D) $|2x| \le \sqrt{3}$ If $f(x) = \frac{\sin(e^{x-2} - 1)}{\log(x - 1)}$, then $\lim_{x \to 2} f(x)$ is equal to 42

- (D) 1
- If f (x) = $\begin{cases} \frac{\log(1+ax) \log(1-bx)}{x}, & x \neq 0 \\ k, & x = 0 \end{cases}$ and f (x) is continuous at x = 0, the value of k 43
- (A) a b (B) a + b (C) log a + log b (D) none of these
- The expression of $\frac{dy}{dx}$ of the function $y = a^{x^{a^{x.....x}}}$ is

 (A) $\frac{y^2}{x(1-y\log x)}$ (B) $\frac{y^2\log y}{x(1-y\log x)}$ (C) $\frac{y^2\log y}{x(1-y\log x\log y)}$ (D) $\frac{y^2\log y}{x(1+y\log x\log y)}$

45 The value of
$$\lim_{x \to \infty} \frac{x^3 \sin(1/x) - 2x^2}{1 + 3x^2}$$
 is (A) 0 (B) - 1/3

- (C) -1
- (D) 2/3

46
$$\lim_{x\to 2} \frac{\tan(e^{x-2}-1)}{\ln(x-1)}$$

- (B) -2
- (C) 1
- (D) -1

47 Let
$$f(x) = \begin{cases} 1, & x > 0 \\ 0, & x = 0. \text{ Then } f(x). \sin x \text{ is } \\ -1, & x < 0 \end{cases}$$

(A) differentiable at x = 0

(B) continuous at x = 0

(C) not continuous at x = 0

- (D) none of these
- The function $f(x) = \frac{\cos x \sin x}{\sin 4x}$ is not defined at $x = \pi/4$. The value which should be 48 assigned to f at $x = \pi/4$, so that it is continuous there, is (A) 0(B) 1 (D) none of these
- $\lim_{x\to\infty}\frac{\ln x-[x]}{[x]},\ ([.]\ denotes\ the\ greatest\ integer\ function)$ 49
 - (A) has value -1
- (B) has value 0
- (B) has value 1
- (D) does not exist

- The function $\frac{e^{\tan x} 1}{e^{\tan x} + 1}$ is discontinuous 50.
 - (A) at $n\pi$, $n \in I$
- (B) at $(2n+1) \frac{\pi}{2}$, $n \in I(C)$ No where
- (D) Every where

If a, b, c, d are positive, then
$$\lim_{x\to\infty} \left(1 + \frac{1}{a + bx}\right)^{c+dx} =$$

(A) $e^{d/b}$

(C) $e^{(c+d)/(a+b)}$

- The length of the largest interval in which the function $3 \sin x 4 \sin^3 x$ is increasing, is 52
 - (A) $\frac{\pi}{2}$

(B) $\frac{\pi}{3}$

(C) $\frac{3\pi}{2}$

- (D) π
- The interval in which f (x) = $e^{|x^2-6x+8|}$ increases, is 53.
 - (A) $(-\infty, 2) \cup (3, 4)$

(B) R

(C) $(2, 3) \cup (4, \infty)$

- (D)(2,4)
- 54. If x + |y| = 2y, then y as a function of x is
 - (A) continuous but not differentiable at x = 0 (B) continuous and differentiable at x = 0
 - (C) differentiable for all x

- (D) none of these
- If y= a $\log |x| + bx^2 + x$ has its extremum values at x = -1 and x = 2, then 55.
 - (A) a = 2, b = -1

(B) a = 2, b = -1/2

(C) a = -1/2, b = 1/2

(D) none of these

56.	The points of extremum of the function ϕ (x) =	$\int_{0}^{x} e^{-t^{2}/2} (1-t^{2}) dt$, is/are
		1	

(A) x = 0

(B) x = 1/2

(C) x = -2

- (D) $x = \pm 1$
- Let $f(x) = x^{n+1} + a$. x^n , where 'a' is a positive real number. Then x = 0 is a point of 57. (A) local minimum for any integer n (B) local maximum for any integer n

 - (C) local minimum if n is an even integer (D) local minimum if n is an odd integer
- Least natural number 'a' for which x+ $ax^{-2} > 2 \ \forall \ x \in (0, \infty)$ is (A) 1 (B) 2 (C) 5 58. (D) none of these
- Let $f(x) = \lim_{n \to \infty} (\sin x)^{2n}$, then f is 59.
 - (a) continuous at $x = \pi/2$,

(b) discontinuous at $x = \pi/2$

- (c) discontinuous at $x = -\pi/2$
- (d) discontinuous at infinite number of points.
- $\text{Let } f(x) = \begin{cases} x^n \sin\frac{1}{x} &, \ x \neq 0 \\ 0 &, \ x = 0 \end{cases}, \text{ then } f(x) \text{ is continuous, but not differentiable at } x = 0, \text{ if } \\ (a) \ n \in (0, 1] \qquad \qquad \text{(b) } n \in [1, \infty) \qquad \qquad \text{(c) } n \in (-\infty, 0) \qquad \qquad \text{(d) } n = 0$ 60.
- If $f(x) = \, \left\| x \right| \! \left| x 1 \right|^2,$ then $\, f^{\, \prime}(x) \,$ equals 61.

- (a) 0 for all x (b) 2 |x| |x 1| (c) $\begin{cases} 0 \text{ for } x < 0 \text{ and for } x > 1 \\ 4 (2x 1) \text{ for } 0 < x < 1 \end{cases}$ (d) $\begin{cases} 0 \text{ for } x < 0 \\ 4 (2x 1) \text{ for } x > 0 \end{cases}$

62. If the function
$$f(x) = \begin{cases} (1 + |\sin x|)^{\frac{a}{|\sin x|}}, & \frac{-\pi}{6} < x < 0 \\ b, & x = 0 \end{cases}$$
 is continuous at $x = 0$, then
$$e^{\frac{\tan 2x}{\tan 3x}}, & 0 < x < \frac{\pi}{6},$$

(a) $a = \log_e^b$, $a = \frac{2}{3}$

(b) \log_e^a , $a = \frac{2}{3}$

(c) $a = \log_{e}^{b}, b = 2$

(d) none of these

63. The function
$$f(x) = \begin{cases} sin\left(\frac{\pi x}{2}\right), & x < 1 \\ |2x - 3|[x], & x \ge 1 \end{cases}$$

(a) is continuous at x = 1

- (b) is differentiable at x = 1
- (c) is continuous but not differentiable at x = 1
- (d) none of these

64. The value of p for which the function
$$f(x) = \begin{cases} \frac{\left(4^x - 1\right)^3}{\sin\left(\frac{x}{p}\right)\log\left\{1 + \frac{x^2}{3}\right\}} & \text{, } x \neq 0 \\ 12\left(\log 4\right)^3 & \text{, } x = 0 \end{cases}$$

- x = 0 is (a) 1
- (c) 3

- (b) 2
- 3
- 65. $\lim_{x \to \infty} \left(\frac{1}{1 n^2} + \frac{2}{1 n^2} + \dots + \frac{n}{1 n^2} \right)$ is equal to
 - (A) 0 (C) 1/2

- (B) -1/2
- (D) none of these
- 66 $\lim_{x\to 2} (-1)^{[x]}$, where [x] is the greatest integer function, is equal to
 - (A) 1

(B) -1

(C) ±1

(D) doesn't exist

- $\lim_{x \to \infty} \left(\frac{x}{2+x} \right)^{2x} =$
 - (A) e⁻⁷

- (B) e^{-6}
- e⁻² (D) none of these
- If $f(x) = [x \sin \pi x]$ { where [x] denotes greatest integer function}, then f(x) is
 - (A) continuous at x = 0

(B) continuous in (-1, 0)

(C) differentiable at x = 1

- (D) differentiable in (-1, 1)
- In order that function $f(x) = (x + 1)^{\cot x}$ is continuous at x = 0, f(0) must be defined as
 - (A) 0

(B) e

(C) 1/e

(D) none of these

- 70 $\lim_{x\to\infty} \left(\frac{x^n}{e^x}\right) = 0$, (n is integer), for
 - (A) no value of n

- (B) all value of n
- (C) only negative value of n
- (D) only positive value of n

- 71 $\lim_{n\to\infty} (4^n + 5^n)^{\frac{1}{n}}$ is equal to
 - (A) 4

(B) 5

(C) e

- (D) none of these
- $\lim_{x\to \frac{\pi}{2}} \left[\sin^{-1} (\sin x) \right] \text{ equals, where [.] denotes the greatest integer function}$
 - (A) $\frac{\pi}{2}$

(B) 0

(C) 1

(D) does not exist

73	The value of derivative of f (x) = $ x-1 + x-3 $ at x = 2 is					
	(A) -2 (C) 2		(B) 0 (D) not defined			
	(0) 2		(B) not defined			
74	The number of points where the function $f(x) = x^2 - 1 + \ln x $ is not differentiable is					
	(A) 1		(B) 2			
	(C) 3		(D) none of these			
75	f(x) is a continuous function and takes only rational values. If $f(0) = 3$, then $f(2)$ equals					
	(A) 5	·	(B) 0			
	(C) 1		(D) none of these			
	x+1 + x-1 -2					
76	$\lim_{x \to 0} \frac{ x+1 + x-1 - 2}{x}$ (A) 1	is equal to				
	(A) 1	(B) −1	(C) 2	(D) 0		
77.	$\lim_{x \to \infty} x \cdot 2^x - x$	to				
11.	$\lim_{x\to 0} \frac{x \cdot 2^x - x}{1 - \cos x}$ is equal					
	(A) log2	(B) $\frac{1}{2}$ log2	(C) 2 log2	(D) none of these		
		2				
78.	If $f(x) = \left(\frac{x^2 + 5x + 3}{x^2 + 5x + 3}\right)$	Then $\lim_{x \to 0} f(x)$ is				
70.	If $f(x) = \left(\frac{x^2 + 5x + 3}{x^2 + x + 3}\right)$ (A) e^4	$\underset{x\to\infty}{\text{1}}$				
	(A) e ⁴	(B) e ³	(C) e ²	(D) None of these		
79.	$\lim_{x \to 0} \frac{\sin^{-1} x - \tan^{-1} x}{x^3}$ is	s equal to				
70.	= =		(0) 1/0	(D) Name of these		
	(A) 1/2	(B) 2	(C) -1/2	(D) None of these		
80.	$\lim_{x \to a} \frac{(a+x)^2 \sin(a+x)}{a}$	- a ² sina				
00.	$x \to 0$ χ	$\frac{-a^2 \sin a}{\text{(B) } a^2 \cos a + 2a \sin a}$	(C) 2a ² cosa ± a cosa	(D) None of these		
81.	Let $f: R \to R$ is a diff	erentiable function and	If(1) = 4. Then the val	ue of $\lim_{x \to 0} \frac{f(x)}{2t} dt$ is		
				4		
	(A) 8 f'(1)	(B) 4f'(1)	(D) 2f'(1)	(D) None of these		
82	If $f(x) = \int x - 3$	x < 0	(v) + f(v) then a(v)	is continuous at		
02.	If $f(x) = \begin{cases} x-3 & x<0 \\ x^2-3x+2, & x \ge 0 \end{cases}$ and $g(x) = f(x) + f(x) $, then $g(x)$ is continuous at					
	(A) R - {0} (C) R - {1 2}		(B) R ⁺ (D) R = {0, 1, 2}			
00	The value the limit	$\lim_{x\to 0} \frac{\left(e^{a/x} - e^{-a/x}\right)}{\left(e^{a/x} + e^{-a/x}\right)}, \ a > 0$				
83.		$(a) \xrightarrow{(a)} (e^{a/x} + e^{-a/x}), a > 0$				
	(A) 0 (C) infinity		(B) 1 (D) does not exist			
	(O) Hilling		(D) GOES HOLEKISE			

84. The number of points where
$$g(f(x))$$
 is discontinuous given that $g(x) = \frac{1}{x^2 + x - 1}$ and

$$f(x) = \frac{1}{x - 3} \text{ is}$$

(A) 1

(B) 2

(C) 3

(D) 4

85. The value of
$$\lim_{x\to 0} \left(\frac{1+5x^2}{1+3x^2}\right)^{1/x^2}$$
 is

(A) e² (C) e⁵

(B) e^3

- (D) none of these
- 86. The number of points at which the function $f(x) = |x - 0.5| + |x - 1| + \tan x$ does not have a derivative in the interval (0, 2) is
 - (A) 1
- (B) 2
- (C)3
- (D) 4

87. Let
$$f(x + y) = f(x) f(y) \forall x, y \in R$$
. Suppose that $f(3) = 3$ and $f'(0) = 11$ then $f'(3)$ is given by (A) 22 (B) 44 (C) 28 (D) 33

- The function $f(x) = \begin{cases} |x-3|, & x \ge 1 \\ \frac{x^2}{4} \frac{3x}{2} + \frac{13}{4}, & x < 1 \end{cases}$ 88.
- then which of the following is not true

(A) continuous at x = 1

(B) continuous at x = 3

(C) differentiable at x = 1

- (D) differentiable at x = 3
- 89. The function $f(x) = \max\{1 - x, 1 + x, 2\}, x \in (-\infty, \infty)$ is
 - (A) differentiable at all points
 - (B) differentiable at all points except at x = 1 and x = -1
 - (C) continuous at all points except at x = 1 and x = -1, where it is discontinuous
 - (D) None of these
- Let $f(x) = [tan^2x]$ where [.] is greatest integer function then 90.
 - (A) $\lim_{x\to 0} f(x)$ does not exist

- (B) f(x) is continuous at x = 0
- (C) f(x) is not differentiable x = 0
- (D) f'(0) = 1

1.

(A) 2 (C) 3

LEVEL-III

(D) non

The number of critical points of f (x) = max (sin x , cos x) for $x \in (0, 2, \pi)$

2.	If f (x) = $\int_{0}^{x} (t+1) (e^{t}-1) (t-2) (t+4) dt$ then f (x) would assume the local					
	minima at; (A) x = - 4		(B) x = 0			
	(C) $x = -1$		(D) $x = 0$ (D) $x = 2$.			
3.		$\sin x$, $0 < x < 2\pi$ wher of points of disconti		reatest integer less than or		
4.	$\lim_{x\to -1^+} \frac{\sqrt{\pi} - \sqrt{\cos^{-1} x}}{\sqrt{x+1}} \dots$					
5.	$f(x) = \frac{1}{\log x } \text{ is disc}$	continuous at x =				
6.	The value of the limit					
	$\lim_{x\to 0} \left\{ 1^{1/\sin^2 x} + 2^{1/\sin^2 x} + \dots + n^{1/\sin^2 x} \right\}^{\sin^2 x}$					
	(A) ∞		(B) 0			
	$(C) \frac{n(n+1)}{2}$		(D) n			
7.	$\lim_{x\to 0}\frac{\cos(\sin x)-\cos x}{x^4}$	is equal to				
	(A) 1/5 (C) 1/4		(B) 1/6 (D) ½			
8.	If $tan^{-1}(x + h) = tan$	$n^{-1}(x) + (h siny)(siny)$	- $(h \sin y)^2$. $\frac{\sin 2y}{2}$ +	+ $(h \sin y)^3 \cdot \frac{\sin 3y}{3} + \dots,$		
	where $x \in (0, 1), y \in (A)$ $y = tan^{-1}x$ (C) $y = cot^{-1}x$	$(\pi/4, \pi/2)$, then	(B) $y = \sin^{-1}x$ (D) $y = \cos^{-1}x$			
9.	The value of $\lim_{ x \to\infty}\cos$	s[tan ⁻¹ (sin(tan ⁻¹ x))] is	equal to			
			(C) $-\frac{1}{\sqrt{2}}$	(D) $\frac{1}{\sqrt{2}}$		
10.	If $\lim_{x\to 0} \int_{0}^{x} \frac{t^2 dt}{(x-\sin x)\sqrt{a+1}}$	= -1, then the value	of a is			
	(A) 4	(B) 2	(C) 1	(D) none of these		

- For some g, let $f(x) = x(x+3) e^{g(x)}$ be a continuous function. If there exists only one point x = d12 such that f'(d) = 0, then
 - (A) d < -3
- (B) d > 0
- (C) $-3 \le d \le 0$
- (D) -3 < d < 0

- $\lim_{n\to\infty} \left| 1 \ln \left(1 + \frac{1}{n} \right)^{n-1} \right|$ is equal to 13

- (C) e
- (D) none of these

- The value of $\lim_{x\to\infty}\frac{x^n+nx^{n-1}+1}{e^{[x]}},\,n\in I$ is 14
 - (A) 1

- (C) n
- (D) n(n-1)
- Given a function f(x) continuous $\forall x \in R$ such that $\lim_{x \to 0} \left| f(x) + \log \left(1 \frac{1}{e^{f(x)}} \right) \log(f(x)) \right| = 0$, 15
 - then f(0) is
 - (A) 0
- (B) 1
- (C)2
- (D) 3
- Let R be the set of real numbers and f : $R \rightarrow R$ be such that for all x and y in R 16 $|f(x) - f(y)| \le |x - y|^7$. Then f(x) is.
 - (A) linear

(B) constant

(C)quadratic

(D) none of these.

- Find the value of $\lim_{x\to 0} \left(\frac{1}{x^2} \cot^2 x \right)$ 17.
 - (A) 2/5

(B) 2/3

(C) 1/4

(D) 1/5.

- $\lim_{x \to \infty} \frac{\sqrt{\frac{1}{2}(1-\cos 2x)}}{1-\cos 2x}$ is 18 (A) 1

(B) -1

(C) 0

- (D) doesn't exist
- 19 Given that f (x) is a non-zero differentiable function such that f (x + y) = f (x). f (y), \forall x, y \in R, and f'(0) = 1 then $\ln f(1)$ is equal to
 - (A) 0

(B) 1

(C) e

- (D) none of these
- The largest interval where the function $f(x) = \frac{x}{1+|x|}$ is differentiable 20
 - (A) $(-\infty, \infty)$

(B) $(0, \infty)$

(C) $(-\infty, 0) \cup (0, \infty)$

- (D) none of these
- $\lim_{x\to 0} \frac{\left(1+x\right)^{1/x}-e+\frac{ex}{2}}{x^2}$ is equal to 21

- (A) $\frac{11e}{24}$ (B) $-\frac{11e}{24}$ (C) $\frac{e}{24}$
- (D) None of these

- The value of the limit $\lim_{x\to 0} \left(\frac{1-3^x-4^x+12^x}{\sqrt{2\cos x+7}-3} \right)$ is 22
 - (A) 0

(B) $-6(\log 3) (\log 4)$

(C) 1

- (D) none of these
- Let $f\left(\frac{x+y}{2}\right) = \frac{f(x)+f(y)}{2}$, for all $x, y \in R$ and if f(x) is differentiable, and f'(0) = -1, f(0) = 123 then the function f(x) is
 - (A) -x + 1(C) $x^2 1$

(B) x + 1

- (D) x -1
- The points of discontinuity of the function fog where $g(x) = \frac{1}{x-1}$ and $f(x) = \frac{1}{x^2 + x 2}$ are 24
 - (A) $\frac{1}{2}$, 2, 1
 - (B) 2, 1
- (B) 2, $\frac{1}{2}$

(D) none of these

ANSWERS

LEVEL -I

- С 1.
- 2. В
- 3. Α

С

5. 9. 13. 17. 21. 25. 29. 33. 37. 41. 45. 48.	B -2, -1 D A B A C A C A D B A	6. 10. 14. 18. 22. 26. 30. 34. 38. 42. 46.	C C D D B B A D B -2, 1	7. 11. 15. 19. 23. 27. 31. 35. 39. 43. 47.	1 D C A D B A C A B $f(x) = x^3/3 + x$ C	8. 12. 16. 20. 24. 28. 32. 36. 40. 44. 6 ² /2 – 2x	e ² B A B C C B A D C+2 A
LEVEL -II							
1. 5. 9. 13. 17. 21. 25. 29. 33. 37. 41. 45. 49. 53. 57. 61. 65. 69. 73. 77. 81. 85.	D A D B, -1 B A C C A A B A C C C B B B C A A B	2. 6. 10. 14. 18. 22. 26. 30. 34. 38. 42. 46. 50. 54. 58. 62. 66. 70. 74. 78. 82. 86. 90.	C B C O O, π, 2π C B B C C D C B A B A D B B A A C B	3. 7. 11. 15. 19. 23. 27. 31. 35. 39. 43. 47. 55. 59. 63. 67. 71. 75. 79. 83. 87.	A A, C A 7 6 B B D A D B B A B D C A B D A D D	4. 8. 12. 16. 20. 24. 28. 32. 36. 40. 44. 48. 52. 56. 60. 64. 68. 72. 76. 80. 84. 88.	D A C $(2a\alpha + b)^2 / 2$ B B A C C C A D B D A C D B C D
LEVEL -III							
1. 5. 9. 13. 17. 21.	C 0, ±1 D A B A	2. 6. 10. 14. 18. 22.	C D A B D	3. 7. 15. 19. 23.	B D A B A	4. 8. 12. 16. 20. 24.	1 / √2π C D B A A