Gradient Descent

Nipun Batra

February 3, 2024

IIT Gandhinagar

Revision

Contour Plot And Gradients

Contour Plot And Gradients

Gradient denotes the direction of steepest ascent or the direction in which there is a maximum increase in f(x,y)

Contour Plot And Gradients

$$z = f(x, y) = x^{2} + y^{2}$$
Surface Plot
$$z = 40$$

$$z = 20$$

$$z = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 =$$

Gradient denotes the direction of steepest ascent or the direction in which there is a maximum increase in f(x,y)

$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial f(x,y)}{\partial x} \\ \frac{\partial f(x,y)}{\partial y} \end{bmatrix} = \begin{bmatrix} 2x \\ 2y \end{bmatrix}$$

 \bullet We often want to minimize/maximize a function

- We often want to minimize/maximize a function
- We wanted to minimize the cost function:

$$f(\theta) = (y - X\theta)^{T} (y - X\theta) \tag{1}$$

- We often want to minimize/maximize a function
- We wanted to minimize the cost function:

$$f(\theta) = (y - X\theta)^{T} (y - X\theta) \tag{1}$$

ullet Note, here heta is the parameter vector

• In general, we have following components:

- In general, we have following components:
- Maximize or Minimize a function subject to some constraints

- In general, we have following components:
- Maximize or Minimize a function subject to some constraints
- Today, we will focus on unconstrained optimization (no constraints)

- In general, we have following components:
- Maximize or Minimize a function subject to some constraints
- Today, we will focus on unconstrained optimization (no constraints)
- We will focus on minimization

- In general, we have following components:
- Maximize or Minimize a function subject to some constraints
- Today, we will focus on unconstrained optimization (no constraints)
- We will focus on minimization
- Goal:

$$\theta^* = \underset{\theta}{\operatorname{arg\,min}} f(\theta) \tag{2}$$

 \bullet Gradient descent is an optimization algorithm

- Gradient descent is an optimization algorithm
- It is used to find the minimum of a function in unconstrained settings

- Gradient descent is an optimization algorithm
- It is used to find the minimum of a function in unconstrained settings
- It is an iterative algorithm

- Gradient descent is an optimization algorithm
- It is used to find the minimum of a function in unconstrained settings
- It is an iterative algorithm
- It is a first order optimization algorithm

- Gradient descent is an optimization algorithm
- It is used to find the minimum of a function in unconstrained settings
- It is an iterative algorithm
- It is a first order optimization algorithm
- It is a local search algorithm/greedy

1. Initialize θ to some random value

- 1. Initialize θ to some random value
- 2. Compute the gradient of the cost function at θ , $\nabla f(\theta)$

- 1. Initialize θ to some random value
- 2. Compute the gradient of the cost function at θ , $\nabla f(\theta)$
- 3. For Iteration i (i = 1, 2, ...) or until convergence:

- 1. Initialize θ to some random value
- 2. Compute the gradient of the cost function at θ , $\nabla f(\theta)$
- 3. For Iteration i (i = 1, 2, ...) or until convergence:
 - $\theta_i \leftarrow \theta_{i-1} \alpha \nabla f(\theta_{i-1})$

• Taylor's series is a way to approximate a function f(x) around a point x_0 using a polynomial

- Taylor's series is a way to approximate a function f(x) around a point x_0 using a polynomial
- The polynomial is given by

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots$$
 (3)

- Taylor's series is a way to approximate a function f(x) around a point x_0 using a polynomial
- The polynomial is given by

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots$$
 (3)

The vector form of the above equation is given by:

$$f(\vec{x}) = f(\vec{x_0}) + \nabla f(\vec{x_0})^T (\vec{x} - \vec{x_0}) + \frac{1}{2} (\vec{x} - \vec{x_0})^T \nabla^2 f(\vec{x_0}) (\vec{x} - \vec{x_0}) + \dots$$
(4)

6

- Taylor's series is a way to approximate a function f(x) around a point x_0 using a polynomial
- The polynomial is given by

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots$$
 (3)

The vector form of the above equation is given by:

$$f(\vec{x}) = f(\vec{x_0}) + \nabla f(\vec{x_0})^T (\vec{x} - \vec{x_0}) + \frac{1}{2} (\vec{x} - \vec{x_0})^T \nabla^2 f(\vec{x_0}) (\vec{x} - \vec{x_0}) + \dots$$
(4)

• where $\nabla^2 f(\vec{x_0})$ is the Hessian matrix and $\nabla f(\vec{x_0})$ is the gradient vector

• Let us consider $f(x) = \cos(x)$ and $x_0 = 0$

- Let us consider $f(x) = \cos(x)$ and $x_0 = 0$
- Then, we have:

- Let us consider $f(x) = \cos(x)$ and $x_0 = 0$
- Then, we have:
- $f(x_0) = \cos(0) = 1$

- Let us consider $f(x) = \cos(x)$ and $x_0 = 0$
- Then, we have:
- $f(x_0) = \cos(0) = 1$
- $f'(x_0) = -\sin(0) = 0$

- Let us consider $f(x) = \cos(x)$ and $x_0 = 0$
- Then, we have:
- $f(x_0) = \cos(0) = 1$
- $f'(x_0) = -\sin(0) = 0$
- $f''(x_0) = -\cos(0) = -1$

- Let us consider $f(x) = \cos(x)$ and $x_0 = 0$
- Then, we have:
- $f(x_0) = \cos(0) = 1$
- $f'(x_0) = -\sin(0) = 0$
- $f''(x_0) = -\cos(0) = -1$
- We can write the second order Taylor's series as:

- Let us consider $f(x) = \cos(x)$ and $x_0 = 0$
- Then, we have:
- $f(x_0) = \cos(0) = 1$
- $f'(x_0) = -\sin(0) = 0$
- $f''(x_0) = -\cos(0) = -1$
- We can write the second order Taylor's series as:
- $f(x) = 1 + 0(x 0) + \frac{-1}{2!}(x 0)^2 = 1 \frac{x^2}{2}$

• Let us consider another example: $f(x) = x^2 + 2$ and $x_0 = 2$

Taylor's series

- Let us consider another example: $f(x) = x^2 + 2$ and $x_0 = 2$
- Question: How does the first order Taylor's series approximation look like?

Taylor's series

- Let us consider another example: $f(x) = x^2 + 2$ and $x_0 = 2$
- Question: How does the first order Taylor's series approximation look like?
- First order Taylor's series approximation is given by:

Taylor's series

- Let us consider another example: $f(x) = x^2 + 2$ and $x_0 = 2$
- Question: How does the first order Taylor's series approximation look like?
- First order Taylor's series approximation is given by:

•
$$f(x) = f(x_0) + f'(x_0)(x - x_0) = 6 + 4(x - 2) = 4x - 2$$

• We have:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots$$
 (5)

• We have:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots$$
 (5)

• Let us consider $x = x_0 + \Delta x$ where Δx is a small quantity

• We have:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots$$
 (5)

- Let us consider $x = x_0 + \Delta x$ where Δx is a small quantity
- Then, we have:

$$f(x_0 + \Delta x) = f(x_0) + \frac{f'(x_0)}{1!} \Delta x + \frac{f''(x_0)}{2!} \Delta x^2 + \dots$$
 (6)

• We have:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots$$
 (5)

- Let us consider $x = x_0 + \Delta x$ where Δx is a small quantity
- Then, we have:

$$f(x_0 + \Delta x) = f(x_0) + \frac{f'(x_0)}{1!} \Delta x + \frac{f''(x_0)}{2!} \Delta x^2 + \dots$$
 (6)

• Let us assume Δx is small enough such that Δx^2 and higher order terms can be ignored

• We have:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots$$
 (5)

- Let us consider $x = x_0 + \Delta x$ where Δx is a small quantity
- Then, we have:

$$f(x_0 + \Delta x) = f(x_0) + \frac{f'(x_0)}{1!} \Delta x + \frac{f''(x_0)}{2!} \Delta x^2 + \dots$$
 (6)

- Let us assume Δx is small enough such that Δx^2 and higher order terms can be ignored
- Then, we have: $f(x_0 + \Delta x) \approx f(x_0) + \frac{f'(x_0)}{1!} \Delta x$

• Then, we have:
$$f(x_0 + \Delta x) \approx f(x_0) + \frac{f'(x_0)}{1!} \Delta x$$

- Then, we have: $f(x_0 + \Delta x) \approx f(x_0) + \frac{f'(x_0)}{1!} \Delta x$
- Or, in vector form: $f(\vec{x_0} + \Delta \vec{x}) \approx f(\vec{x_0}) + \nabla f(\vec{x_0})^T \Delta \vec{x}$

- Then, we have: $f(x_0 + \Delta x) \approx f(x_0) + \frac{f'(x_0)}{1!} \Delta x$
- Or, in vector form: $f(\vec{x_0} + \Delta \vec{x}) \approx f(\vec{x_0}) + \nabla f(\vec{x_0})^T \Delta \vec{x}$
- Goal: Find $\Delta \vec{x}$ such that $f(\vec{x_0} + \Delta \vec{x})$ is minimized

- Then, we have: $f(x_0 + \Delta x) \approx f(x_0) + \frac{f'(x_0)}{1!} \Delta x$
- Or, in vector form: $f(\vec{x_0} + \Delta \vec{x}) \approx f(\vec{x_0}) + \nabla f(\vec{x_0})^T \Delta \vec{x}$
- Goal: Find $\Delta \vec{x}$ such that $f(\vec{x_0} + \Delta \vec{x})$ is minimized
- This is equivalent to minimizing $f(\vec{x_0}) + \nabla f(\vec{x_0})^T \Delta \vec{x}$

- Then, we have: $f(x_0 + \Delta x) \approx f(x_0) + \frac{f'(x_0)}{1!} \Delta x$
- Or, in vector form: $f(\vec{x_0} + \Delta \vec{x}) \approx f(\vec{x_0}) + \nabla f(\vec{x_0})^T \Delta \vec{x}$
- Goal: Find $\Delta \vec{x}$ such that $f(\vec{x_0} + \Delta \vec{x})$ is minimized
- This is equivalent to minimizing $f(\vec{x_0}) + \nabla f(\vec{x_0})^T \Delta \vec{x}$
- This happens when vectors $\nabla f(\vec{x_0})$ and $\Delta \vec{x}$ are at phase angle of 180°

- Then, we have: $f(x_0 + \Delta x) \approx f(x_0) + \frac{f'(x_0)}{1!} \Delta x$
- Or, in vector form: $f(\vec{x_0} + \Delta \vec{x}) \approx f(\vec{x_0}) + \nabla f(\vec{x_0})^T \Delta \vec{x}$
- Goal: Find $\Delta \vec{x}$ such that $f(\vec{x_0} + \Delta \vec{x})$ is minimized
- This is equivalent to minimizing $f(\vec{x_0}) + \nabla f(\vec{x_0})^T \Delta \vec{x}$
- This happens when vectors $\nabla f(\vec{x_0})$ and $\Delta \vec{x}$ are at phase angle of 180°
- This happens when $\Delta \vec{x} = -\alpha \nabla f(\vec{x_0})$ where α is a scalar

- Then, we have: $f(x_0 + \Delta x) \approx f(x_0) + \frac{f'(x_0)}{1!} \Delta x$
- Or, in vector form: $f(\vec{x_0} + \Delta \vec{x}) \approx f(\vec{x_0}) + \nabla f(\vec{x_0})^T \Delta \vec{x}$
- Goal: Find $\Delta \vec{x}$ such that $f(\vec{x_0} + \Delta \vec{x})$ is minimized
- This is equivalent to minimizing $f(\vec{x_0}) + \nabla f(\vec{x_0})^T \Delta \vec{x}$
- This happens when vectors $\nabla f(\vec{x_0})$ and $\Delta \vec{x}$ are at phase angle of 180°
- This happens when $\Delta \vec{x} = -\alpha \nabla f(\vec{x_0})$ where α is a scalar
- This is the gradient descent algorithm: $\vec{x_1} = \vec{x_0} \alpha \nabla f(\vec{x_0})$

Low learning rate $\alpha = 0.01$: Converges slowly

High learning rate $\alpha = 0.8$: Converges quickly, but might overshoot

Very high learning rate $\alpha = 1.01$: Diverges

Appropriate learning rate $\alpha = 0.1$

Gradient Descent for linear regression

• Loss function is usually a function defined on a data point, prediction and label, and measures the penalty.

- Loss function is usually a function defined on a data point, prediction and label, and measures the penalty.
- square loss $I(f(x_i|\theta), y_i) = (f(x_i|\theta) y_i)^2$, used in linear regression

- Loss function is usually a function defined on a data point, prediction and label, and measures the penalty.
- square loss $I(f(x_i|\theta), y_i) = (f(x_i|\theta) y_i)^2$, used in linear regression
- Cost function is usually more general. It might be a sum of loss functions over your training set plus some model complexity penalty (regularization). For example:

- Loss function is usually a function defined on a data point, prediction and label, and measures the penalty.
- square loss $I(f(x_i|\theta), y_i) = (f(x_i|\theta) y_i)^2$, used in linear regression
- Cost function is usually more general. It might be a sum of loss functions over your training set plus some model complexity penalty (regularization). For example:
- Mean Squared Error $MSE(\theta) = \frac{1}{N} \sum_{i=1}^{N} (f(x_i|\theta) y_i)^2$

- Loss function is usually a function defined on a data point, prediction and label, and measures the penalty.
- square loss $I(f(x_i|\theta), y_i) = (f(x_i|\theta) y_i)^2$, used in linear regression
- Cost function is usually more general. It might be a sum of loss functions over your training set plus some model complexity penalty (regularization). For example:
- Mean Squared Error $MSE(\theta) = \frac{1}{N} \sum_{i=1}^{N} (f(x_i|\theta) y_i)^2$
- **Objective function** is the most general term for any function that you optimize during training.

Learn $y=\theta_0+\theta_1x$ on following dataset, using gradient descent where initially $(\theta_0,\theta_1)=(4,0)$ and step-size, $\alpha=0.1$, for 2 iterations.

x	у
1	1
2	2
3	3

Our predictor,
$$\hat{y} = \theta_0 + \theta_1 x$$

Error for
$$i^{th}$$
 datapoint, $\epsilon_i = y_i - \hat{y}_i$
 $\epsilon_1 = 1 - \theta_0 - \theta_1$
 $\epsilon_2 = 2 - \theta_0 - 2\theta_1$
 $\epsilon_3 = 3 - \theta_0 - 3\theta_1$

$$\mathsf{MSE} = \frac{\epsilon_1^2 + \epsilon_2^2 + \epsilon_3^2}{3} = \frac{14 + 3\theta_0^2 + 14\theta_1^2 - 12\theta_0 - 28\theta_1 + 12\theta_0\theta_1}{3}$$

Difference between SSE and MSE

$$\sum \epsilon_i^2$$
 increases as the number of examples increase

So, we use MSE

$$MSE = \frac{1}{n} \sum_{i} \epsilon_i^2$$

Here n denotes the number of samples

$$\frac{\partial \textit{MSE}}{\partial \theta_0} = \frac{2\sum\limits_{i} \left(y_i - \theta_0 - \theta_1 x_i\right) \left(-1\right)}{\textit{N}} = \frac{2\sum\limits_{i} \epsilon_i \left(-1\right)}{\textit{N}}$$

$$\frac{\partial \textit{MSE}}{\partial \theta_1} = \frac{2\sum\limits_{i} \left(y_i - \theta_0 - \theta_1 x_i\right) \left(-x_i\right)}{N} = \frac{2\sum\limits_{i} \epsilon_i \left(-x_i\right)}{N}$$

$$\theta_0 = \theta_0 - \alpha \frac{\partial MSE}{\partial \theta_0}$$

$$\theta_1 = \theta_1 - \alpha \frac{\partial MSE}{\partial \theta_1}$$

$$\theta_{0} = \theta_{0} - \alpha \frac{\partial MSE}{\partial \theta_{0}}$$

$$\theta_{0} = 4 - 0.2 \frac{((1 - (4 + 0))(-1) + (2 - (4 + 0))(-1) + (3 - (4 + 0))(-1))}{3}$$

$$\theta_{0} = 3.6$$

$$\theta_{1} = \theta_{1} - \alpha \frac{\partial MSE}{\partial \theta_{1}}$$

$$\theta_0 = \theta_0 - \alpha \frac{\partial MSE}{\partial \theta_0}$$

$$\theta_0 = 4 - 0.2 \frac{((1 - (4+0))(-1) + (2 - (4+0))(-1) + (3 - (4+0))(-1))}{3}$$

$$\theta_0 = 3.6$$

$$\theta_1 = \theta_1 - \alpha \frac{\partial MSE}{\partial \theta_1}$$

$$\theta_1 = 0 - 0.2 \frac{((1 - (4+0))(-1) + (2 - (4+0))(-2) + (3 - (4+0))(-3))}{3}$$

$$\theta_1 = -0.67$$

$$\theta_0 = \theta_0 - \alpha \frac{\partial MSE}{\partial \theta_0}$$

$$\theta_1 = \theta_1 - \alpha \frac{\partial MSE}{\partial \theta_1}$$

$$\theta_0 = \theta_0 - \alpha \frac{\partial MSE}{\partial \theta_0}$$

$$\theta_0 = 3.6 - 0.2 \frac{((1 - (3.6 - 0.67))(-1) + (2 - (3.6 - 0.67 \times 2))(-1) + (3 - (3.6 - 0.67 \times 3))(-1))}{3}$$

$$\theta_0 = 3.54$$

$$\theta_1 = \theta_1 - \alpha \frac{\partial MSE}{\partial \theta_1}$$

$$\theta_0 = \theta_0 - \alpha \frac{\partial MSE}{\partial \theta_0}$$

$$\theta_0 = 3.6 - 0.2 \frac{((1 - (3.6 - 0.67))(-1) + (2 - (3.6 - 0.67 \times 2))(-1) + (3 - (3.6 - 0.67 \times 3))(-1))}{3}$$

$$\theta_0 = 3.54$$

$$\theta_1 = \theta_1 - \alpha \frac{\partial MSE}{\partial \theta_1}$$

$$\theta_0 = 3.6 - 0.2 \frac{((1 - (3.6 - 0.67))(-1) + (2 - (3.6 - 0.67 \times 2))(-2) + (3 - (3.6 - 0.67 \times 3))(-3))}{3}$$

$$\theta_0 = -0.55$$

Gradient Descent : Example (Iteraion 0)

Gradient Descent : Example (Iteraion 2)

Gradient Descent : Example (Iteraion 4)

Gradient Descent : Example (Iteraion 6)

Gradient Descent : Example (Iteraion 8)

Gradient Descent : Example (Iteraion 10)

Gradient Descent : Example (Iteraion 12)

Gradient Descent: Example (Iteraion 14)

Gradient Descent : Example (Iteraion 16)

Gradient Descent : Example (Iteraion 18)

Gradient Descent : Example (Iteraion 20)

Gradient Descent : Example (Iteraion 22)

Gradient Descent : Example (Iteraion 24)

Gradient Descent : Example (Iteraion 26)

Gradient Descent : Example (Iteraion 28)

Gradient Descent : Example (Iteraion 30)

Gradient Descent : Example (Iteraion 32)

Gradient Descent : Example (Iteraion 34)

Gradient Descent : Example (Iteraion 36)

Gradient Descent : Example (Iteraion 38)

Gradient Descent : Example (Iteraion 40)

Iteration v/s Epcohs for gradient descent

• Iteration: Each time you update the parameters of the model

Iteration v/s Epcohs for gradient descent

- Iteration: Each time you update the parameters of the model
- Epoch: Each time you have seen all the set of examples

Gradient Descent (GD)

- Dataset: $D = \{(X, y)\}$ of size N
- Initialize θ
- For epoch *e* in [1, *E*]
 - Predict $\hat{y} = pred(X, \theta)$
 - Compute loss: $J(\theta) = loss(y, \hat{y})$
 - Compute gradient: $\nabla J(\theta) = grad(J)(\theta)$
 - Update: $\theta = \theta \alpha \nabla J(\theta)$

Stochastic Gradient Descent (SGD)

- Dataset: $D = \{(X, y)\}$ of size N
- Initialize θ
- For epoch e in [1, E]
 - Shuffle D
 - For *i* in [1, N]
 - Predict $\hat{y}_i = pred(X_i, \theta)$
 - Compute loss: $J(\theta) = loss(y_i, \hat{y}_i)$
 - Compute gradient: $\nabla J(\theta) = grad(J)(\theta)$
 - Update: $\theta = \theta \alpha \nabla J(\theta)$

Mini-Batch Gradient Descent (MBGD)

- Dataset: $D = \{(X, y)\}$ of size N
- Initialize θ
- For epoch e in [1, E]
 - Shuffle D
 - Batches = make_batches(D, B)
 - For b in Batches
 - $X_{-}b, y_{-}b = b$
 - Predict $\hat{y_b} = pred(X_b, \theta)$
 - Compute loss: $J(\theta) = loss(y_b, \hat{y_b})$
 - Compute gradient: $\nabla J(\theta) = grad(J)(\theta)$
 - Update: $\theta = \theta \alpha \nabla J(\theta)$

Vanilla Gradient Descent

• in Vanilla (Batch) gradient descent: We update params after going through all the data

Vanilla Gradient Descent

- in Vanilla (Batch) gradient descent: We update params after going through all the data
- Smooth curve for Iteration vs Cost

Vanilla Gradient Descent

- in Vanilla (Batch) gradient descent: We update params after going through all the data
- Smooth curve for Iteration vs Cost
- For a single update, it needs to compute the gradient over all the samples. Hence takes more time

Vanilla Gradient Descent

- in Vanilla (Batch) gradient descent: We update params after going through all the data
- Smooth curve for Iteration vs Cost
- For a single update, it needs to compute the gradient over all the samples. Hence takes more time

Vanilla Gradient Descent

- in Vanilla (Batch) gradient descent: We update params after going through all the data
- Smooth curve for Iteration vs Cost
- For a single update, it needs to compute the gradient over all the samples. Hence takes more time

Stochastic Gradient Descent

• In SGD, we update parameters after seeing each each point

Vanilla Gradient Descent

- in Vanilla (Batch) gradient descent: We update params after going through all the data
- Smooth curve for Iteration vs Cost
- For a single update, it needs to compute the gradient over all the samples. Hence takes more time

Stochastic Gradient Descent

- In SGD, we update parameters after seeing each each point
- Noisier curve for iteration vs cost

Vanilla Gradient Descent

- in Vanilla (Batch) gradient descent: We update params after going through all the data
- Smooth curve for Iteration vs Cost
- For a single update, it needs to compute the gradient over all the samples. Hence takes more time

Stochastic Gradient Descent

- In SGD, we update parameters after seeing each each point
- Noisier curve for iteration vs cost
- For a single update, it computes the gradient over one example. Hence lesser time

Stochastic Gradient Descent: Example

Learn $y = \theta_0 + \theta_1 x$ on following dataset, using SGD where initially $(\theta_0, \theta_1) = (4, 0)$ and step-size, $\alpha = 0.1$, for 1 epoch (3 iterations).

X	у
2	2
3	3
1	1

Stochastic Gradient Descent : Example

Our predictor,
$$\hat{y} = \theta_0 + \theta_1 x$$

Error for
$$i^{th}$$
 datapoint, $e_i = y_i - \hat{y}_i$
 $\epsilon_1 = 2 - \theta_0 - 2\theta_1$
 $\epsilon_2 = 3 - \theta_0 - 3\theta_1$
 $\epsilon_3 = 1 - \theta_0 - \theta_1$

While using SGD, we compute the MSE using only 1 datapoint per iteration.

So MSE is ϵ_1^2 for iteration 1 and ϵ_2^2 for iteration 2.

Stochastic Gradient Descent : Example

Contour plot of the cost functions for the three datapoints

Stochastic Gradient Descent: Example

For Iteration i

$$\frac{\partial MSE}{\partial \theta_0} = 2(y_i - \theta_0 - \theta_1 x_i)(-1) = 2\epsilon_i(-1)$$

$$\frac{\partial MSE}{\partial \theta_1} = 2(y_i - \theta_0 - \theta_1 x_i)(-x_i) = 2\epsilon_i(-x_i)$$

Stochastic Gradient Descent : Example

$$\theta_0 = \theta_0 - \alpha \frac{\partial MSE}{\partial \theta_0}$$

$$\theta_1 = \theta_1 - \alpha \frac{\partial MSE}{\partial \theta_1}$$

Stochastic Gradient Descent: Example

$$\theta_0 = \theta_0 - \alpha \frac{\partial MSE}{\partial \theta_0}$$

$$\theta_0 = 4 - 0.1 \times 2 \times (2 - (4 + 0))(-1)$$

$$\theta_0 = 3.6$$

$$\theta_1 = \theta_1 - \alpha \frac{\partial MSE}{\partial \theta_1}$$

Stochastic Gradient Descent : Example

$$\theta_0 = \theta_0 - \alpha \frac{\partial MSE}{\partial \theta_0}$$

$$\theta_0 = 4 - 0.1 \times 2 \times (2 - (4 + 0))(-1)$$

$$\theta_0 = 3.6$$

$$\theta_1 = \theta_1 - \alpha \frac{\partial MSE}{\partial \theta_1}$$

$$\theta_1 = 0 - 0.1 \times 2 \times (2 - (4 + 0))(-2)$$

$$\theta_1 = -0.8$$

Stochastic Gradient Descent: Example

$$\theta_0 = \theta_0 - \alpha \frac{\partial MSE}{\partial \theta_0}$$

$$\theta_1 = \theta_1 - \alpha \frac{\partial MSE}{\partial \theta_1}$$

Stochastic Gradient Descent: Example

$$\theta_0 = \theta_0 - \alpha \frac{\partial MSE}{\partial \theta_0}$$

$$\theta_0 = 3.6 - 0.1 \times 2 \times (3 - (3.6 - 0.8 \times 3))(-1)$$

$$\theta_0 = 3.96$$

$$\theta_1 = \theta_1 - \alpha \frac{\partial MSE}{\partial \theta_1}$$

Stochastic Gradient Descent : Example

$$\theta_0 = \theta_0 - \alpha \frac{\partial MSE}{\partial \theta_0}$$

$$\theta_0 = 3.6 - 0.1 \times 2 \times (3 - (3.6 - 0.8 \times 3))(-1)$$

$$\theta_0 = 3.96$$

$$\theta_1 = \theta_1 - \alpha \frac{\partial MSE}{\partial \theta_1}$$

$$\theta_0 = -0.8 - 0.1 \times 2 \times (3 - (3.6 - 0.8 \times 3))(-3)$$

$$\theta_1 = 0.28$$

Stochastic Gradient Descent : Example

$$\theta_0 = \theta_0 - \alpha \frac{\partial MSE}{\partial \theta_0}$$

$$\theta_1 = \theta_1 - \alpha \frac{\partial MSE}{\partial \theta_1}$$

Stochastic Gradient Descent: Example

$$\theta_0 = \theta_0 - \alpha \frac{\partial MSE}{\partial \theta_0}$$

$$\theta_0 = 3.96 - 0.1 \times 2 \times (1 - (3.96 + 0.28 \times 1))(-1)$$

$$\theta_0 = 3.312$$

$$\theta_1 = \theta_1 - \alpha \frac{\partial MSE}{\partial \theta_1}$$

Stochastic Gradient Descent: Example

$$\theta_{0} = \theta_{0} - \alpha \frac{\partial MSE}{\partial \theta_{0}}$$

$$\theta_{0} = 3.96 - 0.1 \times 2 \times (1 - (3.96 + 0.28 \times 1)) (-1)$$

$$\theta_{0} = 3.312$$

$$\theta_{1} = \theta_{1} - \alpha \frac{\partial MSE}{\partial \theta_{1}}$$

$$\theta_{0} = 0.28 - 0.1 \times 2 \times (1 - (3.96 + 0.28 \times 1)) (-1)$$

$$\theta_{1} = -0.368$$

Stochastic gradient is an unbiased estimator of the true gradient

True Gradient

Based on Estimation Theory and Machine Learning by Florian Hartmann

• Let us say we have a dataset \mathcal{D} containing input output pairs $\{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$

True Gradient

Based on Estimation Theory and Machine Learning by Florian Hartmann

- Let us say we have a dataset \mathcal{D} containing input output pairs $\{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$
- We can define overall loss as:

$$L(\theta) = \frac{1}{N} \sum_{i=1}^{N} loss(f(x_i, \theta), y_i)$$

True Gradient

Based on Estimation Theory and Machine Learning by Florian Hartmann

- Let us say we have a dataset \mathcal{D} containing input output pairs $\{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$
- We can define overall loss as:

$$L(\theta) = \frac{1}{N} \sum_{i=1}^{N} loss(f(x_i, \theta), y_i)$$

 loss can be any loss function such as squared loss, cross-entropy loss etc.

$$loss(f(x_i, \theta), y_i) = (f(x_i, \theta) - y_i)^2$$

Time Complexity: Gradient Descent v/s Normal Equation for Linear Regression

• Consider $X \in \mathcal{R}^{N \times D}$

- Consider $X \in \mathbb{R}^{N \times D}$
- N examples and D dimensions

- Consider $X \in \mathbb{R}^{N \times D}$
- N examples and D dimensions
- What is the time complexity of solving the normal equation $\hat{\theta} = (X^T X)^{-1} X^T y$?

• X has dimensions $N \times D$, X^T has dimensions $D \times N$

- X has dimensions $N \times D$, X^T has dimensions $D \times N$
- X^TX is a matrix product of matrices of size: $D \times N$ and $N \times D$, which is $\mathcal{O}(D^2N)$

- X has dimensions $N \times D$, X^T has dimensions $D \times N$
- X^TX is a matrix product of matrices of size: $D \times N$ and $N \times D$, which is $\mathcal{O}(D^2N)$
- • Inversion of X^TX is an inversion of a $D\times D$ matrix, which is $\mathcal{O}(D^3)$

- X has dimensions $N \times D$, X^T has dimensions $D \times N$
- X^TX is a matrix product of matrices of size: $D \times N$ and $N \times D$, which is $\mathcal{O}(D^2N)$
- Inversion of X^TX is an inversion of a $D \times D$ matrix, which is $\mathcal{O}(D^3)$
- $X^T y$ is a matrix vector product of size $D \times N$ and $N \times 1$, which is $\mathcal{O}(DN)$

- X has dimensions $N \times D$, X^T has dimensions $D \times N$
- X^TX is a matrix product of matrices of size: $D \times N$ and $N \times D$, which is $\mathcal{O}(D^2N)$
- Inversion of X^TX is an inversion of a $D \times D$ matrix, which is $\mathcal{O}(D^3)$
- $X^T y$ is a matrix vector product of size $D \times N$ and $N \times 1$, which is $\mathcal{O}(DN)$
- $(X^TX)^{-1}X^Ty$ is a matrix product of a $D \times D$ matrix and $D \times 1$ matrix, which is $\mathcal{O}(D^2)$

- X has dimensions $N \times D$, X^T has dimensions $D \times N$
- X^TX is a matrix product of matrices of size: $D \times N$ and $N \times D$, which is $\mathcal{O}(D^2N)$
- Inversion of X^TX is an inversion of a $D \times D$ matrix, which is $\mathcal{O}(D^3)$
- $X^T y$ is a matrix vector product of size $D \times N$ and $N \times 1$, which is $\mathcal{O}(DN)$
- $(X^TX)^{-1}X^Ty$ is a matrix product of a $D \times D$ matrix and $D \times 1$ matrix, which is $\mathcal{O}(D^2)$
- Overall complexity: $\mathcal{O}(D^2N) + \mathcal{O}(D^3) + \mathcal{O}(DN) + \mathcal{O}(D^2)$ = $\mathcal{O}(D^2N) + \mathcal{O}(D^3)$

- X has dimensions $N \times D$, X^T has dimensions $D \times N$
- X^TX is a matrix product of matrices of size: $D \times N$ and $N \times D$, which is $\mathcal{O}(D^2N)$
- Inversion of X^TX is an inversion of a $D \times D$ matrix, which is $\mathcal{O}(D^3)$
- $X^T y$ is a matrix vector product of size $D \times N$ and $N \times 1$, which is $\mathcal{O}(DN)$
- $(X^TX)^{-1}X^Ty$ is a matrix product of a $D \times D$ matrix and $D \times 1$ matrix, which is $\mathcal{O}(D^2)$
- Overall complexity: $\mathcal{O}(D^2N) + \mathcal{O}(D^3) + \mathcal{O}(DN) + \mathcal{O}(D^2)$ = $\mathcal{O}(D^2N) + \mathcal{O}(D^3)$
- Scales cubic in the number of columns/features of X

Start with random values of θ_0 and θ_1 Till convergence

•
$$\theta_0 = \theta_0 - \alpha \frac{\partial}{\partial \theta_0} (\sum \epsilon_i^2)$$

Start with random values of θ_0 and θ_1 Till convergence

•
$$\theta_0 = \theta_0 - \alpha \frac{\partial}{\partial \theta_0} (\sum \epsilon_i^2)$$

•
$$\theta_1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} (\sum \epsilon_i^2)$$

Start with random values of θ_0 and θ_1 Till convergence

•
$$\theta_0 = \theta_0 - \alpha \frac{\partial}{\partial \theta_0} (\sum \epsilon_i^2)$$

•
$$\theta_1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} (\sum \epsilon_i^2)$$

• Question: Can you write the above for *D* dimensional data in vectorised form?

Start with random values of θ_0 and θ_1 Till convergence

•
$$\theta_0 = \theta_0 - \alpha \frac{\partial}{\partial \theta_0} (\sum \epsilon_i^2)$$

•
$$\theta_1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} (\sum \epsilon_i^2)$$

 Question: Can you write the above for D dimensional data in vectorised form?

•
$$\theta_{0} = \theta_{0} - \alpha \frac{\partial}{\partial \theta_{0}} (y - X\theta)^{\top} (y - X\theta)$$

 $\theta_{1} = \theta_{1} - \alpha \frac{\partial}{\partial \theta_{1}} (y - X\theta)^{\top} (y - X\theta)$
:
:
:
:
:
:
:
:

Start with random values of θ_0 and θ_1 Till convergence

•
$$\theta_0 = \theta_0 - \alpha \frac{\partial}{\partial \theta_0} (\sum \epsilon_i^2)$$

•
$$\theta_1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} (\sum \epsilon_i^2)$$

 Question: Can you write the above for D dimensional data in vectorised form?

•
$$\theta_{0} = \theta_{0} - \alpha \frac{\partial}{\partial \theta_{0}} (y - X\theta)^{\top} (y - X\theta)$$

 $\theta_{1} = \theta_{1} - \alpha \frac{\partial}{\partial \theta_{1}} (y - X\theta)^{\top} (y - X\theta)$
:
:
 $\theta_{D} = \theta_{D} - \alpha \frac{\partial}{\partial \theta_{D}} (y - X\theta)^{\top} (y - X\theta)$
• $\theta = \theta - \alpha \frac{\partial}{\partial \theta} (y - X\theta)^{\top} (y - X\theta)$

$$\frac{\partial}{\partial \theta} (y - X\theta)^{\top} (y - X\theta)
= \frac{\partial}{\partial \theta} (y^{\top} - \theta^{\top} X^{\top}) (y - X\theta)
= \frac{\partial}{\partial \theta} (y^{\top} y - \theta^{\top} X^{\top} y - y^{\top} x\theta + \theta^{\top} X^{\top} X\theta)
= -2X^{\top} y + 2X^{\top} x\theta
= 2X^{\top} (X\theta - y)$$

We can write the vectorised update equation as follows, for each iteration

$$\theta = \theta - \alpha X^{\top} (X\theta - y)$$

We can write the vectorised update equation as follows, for each iteration

$$\theta = \theta - \alpha X^{\top} (X\theta - y)$$

For *t* iterations, what is the computational complexity of our gradient descent solution?

We can write the vectorised update equation as follows, for each iteration

$$\theta = \theta - \alpha X^{\top} (X\theta - y)$$

For *t* iterations, what is the computational complexity of our gradient descent solution?

Hint, rewrite the above as: $\theta = \theta - \alpha X^{T} X \theta + \alpha X^{T} Y$

We can write the vectorised update equation as follows, for each iteration

$$\theta = \theta - \alpha X^{\top} (X\theta - y)$$

For *t* iterations, what is the computational complexity of our gradient descent solution?

Hint, rewrite the above as: $\theta = \theta - \alpha X^{T} X \theta + \alpha X^{T} Y$

Complexity of computing $X^{\top}y$ is $\mathcal{O}(DN)$

We can write the vectorised update equation as follows, for each iteration

$$\theta = \theta - \alpha X^{\top} (X\theta - y)$$

For *t* iterations, what is the computational complexity of our gradient descent solution?

Hint, rewrite the above as: $\theta = \theta - \alpha X^{T} X \theta + \alpha X^{T} Y$

Complexity of computing $X^{\top}y$ is $\mathcal{O}(DN)$

Complexity of computing $\alpha X^{\top} y$ once we have $X^{\top} y$ is $\mathcal{O}(D)$ since $X^{\top} y$ has D entries

We can write the vectorised update equation as follows, for each iteration

$$\theta = \theta - \alpha X^{\top} (X\theta - y)$$

For *t* iterations, what is the computational complexity of our gradient descent solution?

Hint, rewrite the above as: $\theta = \theta - \alpha X^{T} X \theta + \alpha X^{T} y$

Complexity of computing $X^{\top}y$ is $\mathcal{O}(DN)$

Complexity of computing $\alpha X^{\top} y$ once we have $X^{\top} y$ is $\mathcal{O}(D)$ since $X^{\top} y$ has D entries

Complexity of computing $X^{\top}X$ is $\mathcal{O}(D^2N)$ and then multiplying with α is $\mathcal{O}(D^2)$

We can write the vectorised update equation as follows, for each iteration

$$\theta = \theta - \alpha X^{\top} (X\theta - y)$$

For *t* iterations, what is the computational complexity of our gradient descent solution?

Hint, rewrite the above as: $\theta = \theta - \alpha X^{\top} X \theta + \alpha X^{\top} y$

Complexity of computing $X^{\top}y$ is $\mathcal{O}(DN)$

Complexity of computing $\alpha X^{\top} y$ once we have $X^{\top} y$ is $\mathcal{O}(D)$ since $X^{\top} y$ has D entries

Complexity of computing $X^{\top}X$ is $\mathcal{O}(D^2N)$ and then multiplying with α is $\mathcal{O}(D^2)$

All of the above need only be calculated once!

For each of the t iterations, we now need to first multiply $\alpha X^{\top}X$ with θ which is matrix multiplication of a $D \times D$ matrix with a $D \times 1$, which is $\mathcal{O}(D^2)$

For each of the t iterations, we now need to first multiply $\alpha X^{\top}X$ with θ which is matrix multiplication of a $D \times D$ matrix with a $D \times 1$, which is $\mathcal{O}(D^2)$

The remaining subtraction/addition can be done in $\mathcal{O}(D)$ for each iteration.

For each of the t iterations, we now need to first multiply $\alpha X^{\top}X$ with θ which is matrix multiplication of a $D \times D$ matrix with a $D \times 1$, which is $\mathcal{O}(D^2)$

The remaining subtraction/addition can be done in $\mathcal{O}(D)$ for each iteration.

What is overall computational complexity?

For each of the t iterations, we now need to first multiply $\alpha X^{\top}X$ with θ which is matrix multiplication of a $D \times D$ matrix with a $D \times 1$, which is $\mathcal{O}(D^2)$

The remaining subtraction/addition can be done in $\mathcal{O}(D)$ for each iteration.

What is overall computational complexity?

$$\mathcal{O}(tD^2) + \mathcal{O}(D^2N) = \mathcal{O}((t+N)D^2)$$

If we do not rewrite the expression $\theta = \theta - \alpha X^{\top}(X\theta - y)$ For each iteration, we have:

• Computing $X\theta$ is $\mathcal{O}(ND)$

If we do not rewrite the expression $\theta = \theta - \alpha X^{\top}(X\theta - y)$

- Computing $X\theta$ is $\mathcal{O}(ND)$
- Computing $X\theta y$ is $\mathcal{O}(N)$

If we do not rewrite the expression $\theta = \theta - \alpha X^{\top}(X\theta - y)$

- Computing $X\theta$ is $\mathcal{O}(ND)$
- Computing $X\theta y$ is $\mathcal{O}(N)$
- Computing αX^{\top} is $\mathcal{O}(ND)$

If we do not rewrite the expression $\theta = \theta - \alpha X^{\top}(X\theta - y)$

- Computing $X\theta$ is $\mathcal{O}(ND)$
- Computing $X\theta y$ is $\mathcal{O}(N)$
- Computing αX^{\top} is $\mathcal{O}(ND)$
- Computing $\alpha X^{\top}(X\theta y)$ is $\mathcal{O}(ND)$

If we do not rewrite the expression $\theta = \theta - \alpha X^{\top}(X\theta - y)$

- Computing $X\theta$ is $\mathcal{O}(ND)$
- Computing $X\theta y$ is $\mathcal{O}(N)$
- Computing αX^{\top} is $\mathcal{O}(ND)$
- Computing $\alpha X^{\top}(X\theta y)$ is $\mathcal{O}(ND)$
- Computing $\theta = \theta \alpha X^{\top}(X\theta y)$ is $\mathcal{O}(N)$

If we do not rewrite the expression $\theta = \theta - \alpha X^{\top}(X\theta - y)$

- Computing $X\theta$ is $\mathcal{O}(ND)$
- Computing $X\theta y$ is $\mathcal{O}(N)$
- Computing αX^{\top} is $\mathcal{O}(ND)$
- Computing $\alpha X^{\top}(X\theta y)$ is $\mathcal{O}(ND)$
- Computing $\theta = \theta \alpha X^{\top}(X\theta y)$ is $\mathcal{O}(N)$

If we do not rewrite the expression $\theta = \theta - \alpha X^{\top}(X\theta - y)$

For each iteration, we have:

- Computing $X\theta$ is $\mathcal{O}(ND)$
- Computing $X\theta y$ is $\mathcal{O}(N)$
- Computing αX^{\top} is $\mathcal{O}(ND)$
- Computing $\alpha X^{\top}(X\theta y)$ is $\mathcal{O}(ND)$
- Computing $\theta = \theta \alpha X^{\top}(X\theta y)$ is $\mathcal{O}(N)$

What is overall computational complexity?

If we do not rewrite the expression $\theta = \theta - \alpha X^{\top}(X\theta - y)$

For each iteration, we have:

- Computing $X\theta$ is $\mathcal{O}(ND)$
- Computing $X\theta y$ is $\mathcal{O}(N)$
- Computing αX^{\top} is $\mathcal{O}(ND)$
- Computing $\alpha X^{\top}(X\theta y)$ is $\mathcal{O}(ND)$
- Computing $\theta = \theta \alpha X^{\top}(X\theta y)$ is $\mathcal{O}(N)$

What is overall computational complexity?

 $\mathcal{O}(NDt)$