## Predicting Thermal Transport in Bismuth Telluride: From Bulk to Nanostructures

**Bo Qiu and Xiulin Ruan** 

School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University











Spectral analysis for Bi<sub>2</sub>Te<sub>3</sub> bulk

Mean free path

Relaxation time



THE PROPERTY.



## **Conclusions and Future work**

- Two-body classical potentials developed for Bi<sub>2</sub>Te<sub>3</sub>, enabling
  MD simulation of thermal transport
- Bulk thermal conductivity: low value; anisotropic transport
- Spectral analysis: majority phonons with MFP 0.1-100 nm
- Nanowires with smooth and rough surfaces
  - Strong reduction in thin and rough nanowires
  - Thermal conductivity reduces with decreasing diameter
- Phonon softening and roughness scattering
- Few-quintuple thin films
  - Interplay between phonon hardening and DOS broadening
  - Porous film and nanoribbon are good candidates for thermoelectrics
- Future work
- Phonon spectral properties for Bi<sub>2</sub>Te<sub>3</sub> bulk and nanostructures
- Experimental investigation: few-quintuple porous film and nanoribbons

## **Selected Publications**

- Bo Qiu, Lin Sun and Xiulin Ruan, Phys. Rev. B 83, 035312 (2011)
- Bo Qiu and Xiulin Ruan, Appl. Phys. Lett. 97, 183107 (2010)
- Bo Qiu and Xiulin Ruan, Phys. Rev. B 80, 165203 (2009)

Nanoscale Energy Transport and Conversion Laboratory