Default Title

Xuanxi Zhang

1 Unbiased Estimation

For sampling without replacement, is \bar{X}^2 an unbiased estimator for μ^2 ? If not, what is the bias?

2 8.5

Suppose that X is a discrete random variable with $P(X = 1) = \theta$ and $P(X = 2) = 1 - \theta$. We draw n independent observations and find that n_1 of them take the value 1 and n_2 take the value 2.

- 1. Find the method of moments estimator of θ .
- 2. What is the likelihood function?
- 3. What is the maximum likelihood estimator of θ ?

3 8.6

Suppose $X \sim \text{Bin}(n, p)$.

- 1. Show that the MLE of p is $\hat{p} = \frac{X}{n}$.
- 2. Show that the MLE from part (a) attains the Cramer-Rao bound.

4 True or False?

- 1. MLE estimators are always unbiased.
- 2. The square of the MLE estimator of a parameter θ converges to θ^2 in probability, for any parameter and any observations X_1, \ldots, X_n .
- 3. The MOM estimator always exists.
- 4. The likelihood function integrates to 1, i.e.,

$$\int_{-\infty}^{\infty} \mathcal{L}_n(\theta) d\theta = 1$$