Fractals avoiding Fractal Sets

Jacob Denson

University of British Columbia

December 9, 2018

Pattern Avoidance Problems

How large can the Hausdorff dimension of a Q vector subspace of Rⁿ be not containing any points in Qⁿ.

Pattern Avoidance Problems

- ▶ How large can the Hausdorff dimension of a \mathbf{Q} vector subspace of \mathbf{R}^n be not containing any points in \mathbf{Q}^n .
- What is the largest Hausdorff dimension of a subset of R^d such that the distances between any two points is irrational?

Pattern Avoidance Problems

- ▶ How large can the Hausdorff dimension of a \mathbf{Q} vector subspace of \mathbf{R}^n be not containing any points in \mathbf{Q}^n .
- What is the largest Hausdorff dimension of a subset of R^d such that the distances between any two points is irrational?
- ▶ Given any equation f, what is the largest Hausdorff dimension of $X \subset \mathbf{R}^d$ such that for any distinct $x_1, \ldots, x_n \in X$, $f(x_1, \ldots, x_n) \neq 0$.

▶ Problems can be summarized as finding X such that X^n avoids a given set Z, except for 'repeated coordinate points'. Let

$$\Delta = \{x \in (\mathbf{R}^d)^n : x_i = x_j \text{ for distinct } i, j \in \{1, \dots, n\}\}$$

▶ Problems can be summarized as finding X such that X^n avoids a given set Z, except for 'repeated coordinate points'. Let

$$\Delta = \{x \in (\mathbf{R}^d)^n : x_i = x_j \text{ for distinct } i, j \in \{1, \dots, n\}\}$$

For any n, if $Z_n = \{x \in \mathbf{R}^{nd} : \text{there is } a_1, \dots, a_n \text{ s.t. } a_1x_1 + \dots + a_nx_n \in \mathbf{Q} \}$, then X generates a vector space avoiding the rationals if and only if $X^n \cap Z_n \subset \Delta$ for all n.

▶ Problems can be summarized as finding X such that X^n avoids a given set Z, except for 'repeated coordinate points'. Let

$$\Delta = \{x \in (\mathbf{R}^d)^n : x_i = x_j \text{ for distinct } i, j \in \{1, \dots, n\}\}$$

- ► For any n, if $Z_n = \{x \in \mathbf{R}^{nd} : \text{there is } a_1, \dots, a_n \text{ s.t. } a_1x_1 + \dots + a_nx_n \in \mathbf{Q} \}$, then X generates a vector space avoiding the rationals if and only if $X^n \cap Z_n \subset \Delta$ for all n.
- ▶ If $Z = \{(x,y) : d(x,y) \in \mathbf{Q}\} \subset \mathbf{R}^{2d}$, then points in X have irrational distances if and only if $X^2 \cap Z \subset \Delta$.

▶ Problems can be summarized as finding X such that X^n avoids a given set Z, except for 'repeated coordinate points'. Let

$$\Delta = \{x \in (\mathbf{R}^d)^n : x_i = x_j \text{ for distinct } i, j \in \{1, \dots, n\}\}$$

- For any n, if $Z_n = \{x \in \mathbf{R}^{nd} : \text{there is } a_1, \dots, a_n \text{ s.t. } a_1x_1 + \dots + a_nx_n \in \mathbf{Q} \}$, then X generates a vector space avoiding the rationals if and only if $X^n \cap Z_n \subset \Delta$ for all n.
- ▶ If $Z = \{(x,y) : d(x,y) \in \mathbf{Q}\} \subset \mathbf{R}^{2d}$, then points in X have irrational distances if and only if $X^2 \cap Z \subset \Delta$.
- ▶ If $Z = f^{-1}(0)$, X avoids zeroes of f if and only if $X^n \cap Z \subset \Delta$.

The Generic Problem

▶ Fractal Avoidance Problem: Given $Z \subset \mathbb{R}^{nd}$, find $X \subset \mathbb{R}^d$ with large Hausdorff dimension such that $X^n \cap Z \subset \Delta$.

The Generic Problem

- ▶ Fractal Avoidance Problem: Given $Z \subset \mathbb{R}^{nd}$, find $X \subset \mathbb{R}^d$ with large Hausdorff dimension such that $X^n \cap Z \subset \Delta$.
- ▶ Mathé (2012): If $Z \subset \mathbf{R}^{nd}$ is an algebraic hypersurface specified by a degree r polynomial in nd variables with rational coefficients, then we can find X solving the fractal avoidance problem for Z with dimension d/r. This is independent of n.

The Generic Problem

- ▶ Fractal Avoidance Problem: Given $Z \subset \mathbb{R}^{nd}$, find $X \subset \mathbb{R}^d$ with large Hausdorff dimension such that $X^n \cap Z \subset \Delta$.
- ▶ Mathé (2012): If $Z \subset \mathbf{R}^{nd}$ is an algebraic hypersurface specified by a degree r polynomial in nd variables with rational coefficients, then we can find X solving the fractal avoidance problem for Z with dimension d/r. This is independent of n.
- ▶ Pramanik and Fraser (2016): If Z is a smooth hypersurface of dimension nd d, we can find X with dimension d/(n-1).

Increasing the Difficulty...

What if the Patterns are Fractally Specified...

Main Result

Theorem

If Z is the countable union of sets with lower Minkowski dimension bounded by $\alpha \geq d$, we can find X with $X^n \cap Z \subset \Delta$ and

$$\dim_{\mathbf{H}}(X) = \frac{nd - \alpha}{n - 1} = \frac{codim(Z)}{n - 1}$$

Low Rank Avoidance

Theorem

If we have countably many sets $Z_i \subset \mathbf{R}^{n_i d}$ with linear transformations $T_i : \mathbf{R}^{n_i d} \to \mathbf{R}^{k_i d}$ with rational coordinates such that $T_i(Z_i)$ has lower Minkowski dimension β_i , we can find X with $X^{n_i} \cap Z_i \subset \Delta$ for each i and

$$\dim_{\mathbf{H}}(X) = \sup_{i} \left(\frac{n_{i}k_{i} - \beta_{i}}{2k_{i} - 1} \right) = \sup_{i} \frac{codim(T_{i}(Z_{i}))}{2k_{i} - 1}$$

Low Rank Avoidance

Theorem

If we have countably many sets $Z_i \subset \mathbf{R}^{n_i d}$ with linear transformations $T_i : \mathbf{R}^{n_i d} \to \mathbf{R}^{k_i d}$ with rational coordinates such that $T_i(Z_i)$ has lower Minkowski dimension β_i , we can find X with $X^{n_i} \cap Z_i \subset \Delta$ for each i and

$$\dim_{\mathbf{H}}(X) = \sup_{i} \left(\frac{n_{i}k_{i} - \beta_{i}}{2k_{i} - 1} \right) = \sup_{i} \frac{codim(T_{i}(Z_{i}))}{2k_{i} - 1}$$

▶ The hypothesis says Z is coverable efficiently by lower dimensional thickened hyperplanes. Result should also extend when each Z_i is efficiently covered by thickened pencils of low degree algebraic surfaces, i.e. f(Z) has low dimension where f is a polynomial map.

Low Rank Avoidance

Theorem

If we have countably many sets $Z_i \subset \mathbf{R}^{n_i d}$ with linear transformations $T_i : \mathbf{R}^{n_i d} \to \mathbf{R}^{k_i d}$ with rational coordinates such that $T_i(Z_i)$ has lower Minkowski dimension β_i , we can find X with $X^{n_i} \cap Z_i \subset \Delta$ for each i and

$$\dim_{\mathbf{H}}(X) = \sup_{i} \left(\frac{n_{i}k_{i} - \beta_{i}}{2k_{i} - 1} \right) = \sup_{i} \frac{codim(T_{i}(Z_{i}))}{2k_{i} - 1}$$

- ► The hypothesis says Z is coverable efficiently by lower dimensional thickened hyperplanes. Result should also extend when each Z_i is efficiently covered by thickened pencils of low degree algebraic surfaces, i.e. f(Z) has low dimension where f is a polynomial map.
- ▶ Want to push the 2k-1 to k-1, at least for $k \ge 2$. Know this is true for certain families of examples.

▶ More robust generalization of Pramanik and Fraser, showing that we can 'thicken' or 'thin' the zero set of our function with stable effects on the Hausdorff dimension of X.

- ▶ More robust generalization of Pramanik and Fraser, showing that we can 'thicken' or 'thin' the zero set of our function with stable effects on the Hausdorff dimension of X.
- Uncountable unions of regular sets are allowed!

▶ Given a subset Y of \mathbf{R}^d which is the countable union of sets with Minkowski dimension α , we can find a \mathbf{Q} vector subspace X of \mathbf{R}^d with Hausdorff dimension $d - \alpha$ disjoint from Y.

- ▶ Given a subset Y of \mathbf{R}^d which is the countable union of sets with Minkowski dimension α , we can find a \mathbf{Q} vector subspace X of \mathbf{R}^d with Hausdorff dimension $d \alpha$ disjoint from Y.
- We can find a full dimensional subset of \mathbf{R}^d avoiding the zero sets of all polynomials with rational coefficients of the form $f(y \cdot x)$ with $y \in \mathbf{Q}$. No dependence on the degree of the polynomial. Complexity is measured by rank rather than degree.

The Method

Two key ideas:

The Method

Two key ideas:

Discretization of Scales.

The Method

Two key ideas:

- Discretization of Scales.
- Random Disection.

- ▶ Construct X as a Cantor set by limits of interval sets X_N .
- ▶ **Discrete Problem**: Given disjoint unions of length L intervals I_1, \ldots, I_n , find J_i for each i containing a part of each interval in I_i such that $J_1 \times \cdots \times J_n$ is disjoint from Z.

Queueing

▶ Using a queueing procedure, and performing this single scale procedure over all arbitrarily fine covers I_1, \ldots, I_n of the set X gives a fractal avoiding set X.

Queueing

- ▶ Using a queueing procedure, and performing this single scale procedure over all arbitrarily fine covers I_1, \ldots, I_n of the set X gives a fractal avoiding set X.
- ▶ **Reason**: If we consider distinct $x_1, \ldots, x_n \in X$, there are intervals I_1, \ldots, I_n with $x_1 \in I_1, \ldots, x_n \in I_n$ considered at some scale. Then $x_1 \in J_1, \ldots, x_n \in J_n$, and so $(x_1, \ldots, x_n) \in J_1 \times \cdots \times J_n$ cannot be contained in Z.

Exploiting Randomness

▶ How do we prove the discrete scale argument?

Exploiting Randomness

- How do we prove the discrete scale argument?
- ▶ Aside from Z's dimension, we have little structural knowledge.

Exploiting Randomness

- ▶ How do we prove the discrete scale argument?
- ▶ Aside from Z's dimension, we have little structural knowledge.
- ▶ Random choices of the J_k avoid Z effectively.
- We obtain for all but o(1) of the length L intervals in I_k , J_k contains a length L^{β} section of each, where $\beta = d(nd \alpha)/(n-1)$. This ratio gives the Hausdorff dimension bound $(nd \alpha)/(n-1)$ for X.

Conclusion

So What's Next?

Extension to Hausdorff Dimension

▶ There is no obvious reason why our techniques should fail when Z has Hausdorff dimension α rather than a Minkowski dimension bound.

Extension to Hausdorff Dimension

- ▶ There is no obvious reason why our techniques should fail when Z has Hausdorff dimension α rather than a Minkowski dimension bound.
- ► We are trying to use hyperdyadic coverings rather than coverings at a single scale to achieve this.

► The Discrete Scale problem can be viewed as finding an independent set in a hypergraph containing each color.

- ► The Discrete Scale problem can be viewed as finding an independent set in a hypergraph containing each color.
- ▶ We are looking to using other methods on hypergraphs to improve the bound when Z has certain structural properties (like for the low rank result).

▶ Read Keleti (1999) for a simple use of scale discretization on a particular configuration avoidance problem.

- ▶ Read Keleti (1999) for a simple use of scale discretization on a particular configuration avoidance problem.
- ▶ Read Máthé (2012) for a construction where *f* is assumed to be a polynomial of bounded degree.

- ▶ Read Keleti (1999) for a simple use of scale discretization on a particular configuration avoidance problem.
- ▶ Read Máthé (2012) for a construction where *f* is assumed to be a polynomial of bounded degree.
- ▶ Read Pramanik and Fraser (2016) for a general construction where *f* is smooth and nonsingular. We generalize their work.

- ▶ Read Keleti (1999) for a simple use of scale discretization on a particular configuration avoidance problem.
- ▶ Read Máthé (2012) for a construction where *f* is assumed to be a polynomial of bounded degree.
- ▶ Read Pramanik and Fraser (2016) for a general construction where *f* is smooth and nonsingular. We generalize their work.
- ▶ Read Josh's, Malabika, and my paper if it's ever published...

Thanks for listening!