UNO Card Detection and Classification Using Yolo v5

Efe Tarhan 22002840 and **Ege Yüceel** 22003324

Bilkent University, Türkiye

CS 484/555 - Introduction to Computer Vision

Problem Definition and Motivation

Our Problem of Interest

Dataset Description

- 8992 raw images
- 26.976 labeled images generated with combining raw images with various backgrounds
- 15 different card types and labels
- Labels consist of coordinates of the upper left corner, width and height of the box and type of the card

	Box 1	Box 2	
Label	14	13	
x-coord.	261	276	
y-coord.	213	227	
Width	28	17	
Height	21	16	

YOLO v5 Architecture

- CSPDarkNet53-based backbone
- Feature Pyramid Network
 (FPN) and Path Aggregation
 Network (PAN) for the neck
- Anchor-based detection head.

YOLO v5 Backbone

- ConvBNSiLU layers for feature extraction.
- **Residual connections** in C3 blocks prevent information loss across layers.
- Optimized Spatial Pyramid Pooling layer for multi-scale feature aggregation.

Figure 2: Yolo v5 Backbone

YOLO v5 Neck

- FPN generates multi-scale feature maps.
- Adds a bottom-up path to the FPN to improve feature hierarchy and representation.
- Facilitates the flow of low-level features to the top layers and high-level features to the bottom layers.

Figure 3: Yolo v5 Neck

YOLO v5 Head

- Multi-Scale Predictions:
 Predicts on three scales to capture a wide range of object sizes.
- Anchor Boxes: Uses anchor boxes to initialize shape and size for bounding box predictions.
- Non-Maximum Suppression
 (NMS): Applies NMS to refine the predictions, keeping only the most accurate bounding boxes for detected objects.

Figure 4: Yolo v5 Head

Hyperparameter Tuning

Hyperparameter Objectives

Epoch Number

Ranging between 5 and 10.

Batch Size

8, 12 or 16

Learning Rate

Between 1e-4 and 1e-1

Momentum

Between 0.85 and 0.99

Optimization Metric: mAP_0.5:0.95

Mean Average Precision

- Mean Average Precision (mAP): Averages precision scores across classes and IoU thresholds, reflecting overall model accuracy.
- Intersection over Union (IoU): Measures the overlap between predicted and actual object boundaries, influencing precision calculation.

$$Precision = \frac{TP}{TP + FN}$$

$$Recall = \frac{TP}{TP + FP}$$

mAP_0.5:0.95 averages precision across IoU thresholds from 0.5 to 0.95.

Results

Figure 5: Progress over Trials

Accuracy reaching up to 83.5%

Figure 6: Importance Heatmap

- Epoch Score
- Learning Rate Score
- Momentum Epoch

Results Cont'd

Figure 7: Score Distribution by Batch Size

Figure 8: Score Distribution by Epoch Number

Results Cont'd - Best Attempt

Figure 9: Progress of Best Train

Optimal Parameters

Epoch	Batch Size	Learning Rate	Momentum
10	16	0.0142893	0.9402136

Figure 10: Selected Examples (mAP Used)