$C = \sqrt{A^2 + B^2 - 2ABcos(c)}$							
$\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$	$a(\vec{A} \times \vec{B}) = (a\vec{A}) \times \vec{B} = (\vec{A} \times \vec{B})a = \vec{A} \times (a\vec{B})$	$\vec{A} \times (\vec{B} + \vec{D}) = \vec{A} \times \vec{B} + \vec{A} \times \vec{D}$					

$F_{\chi} = F\cos(\alpha)$	$F_y = Fco$	s(β)	$F_z = Fcos(\gamma)$		$F^2 = F_x^2$	$+F_y^2+F_z^2$
$\frac{F_x}{\sin(\alpha)} = \frac{F_y}{\sin(\beta)} = \frac{F_y}{\sin(\gamma)} = F$ $1 = \cos^2(\alpha) + \cos^2(\beta) + \cos^2(\gamma)$						
$\vec{r}_{AB} = \vec{r}_B - \vec{r}_A = (x_B - x_A)\hat{\imath} + (y_B - y_A)\hat{\jmath} + (z_B - z_A)\hat{k}$			$r_{AB} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$			
$\widehat{U}_{AB} = \frac{(x_B - x_A)\widehat{\iota}}{r_{AB}} + \frac{(y_B - y_A)\widehat{\jmath}}{r_{AB}} + \frac{(z_B - z_A)\widehat{k}}{r_{AB}}$			$A_x B_x + A_y B_y + A_z B_z = \vec{A} \cdot \vec{B} = AB \cos(\theta)$			
F = kx			$\Sigma F_{x,y,z}=0$			
$\vec{M}_o = \vec{r} \times \vec{F} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ r_x & r_y & r_z \\ F_x & F_y & F_z \end{vmatrix} = (r_y F_z - r_z F_y) \hat{\imath} - (r_x F_z - r_z F_x) \hat{\jmath} - (r_x F_y - r_y F_x) \hat{k}$						
$\vec{M}_{a} = \begin{vmatrix} U_{ax} & U_{ay} & U_{az} \\ r_{x} & r_{y} & r_{z} \\ F_{x} & F_{y} & F_{z} \end{vmatrix} = (r_{y}F_{z} - r_{z}F_{y})U_{ax} - (r_{x}F_{z} - r_{z}F_{x})U_{ay} - (r_{x}F_{y} - r_{y}F_{x})U_{az}$						
$\Sigma F_{x,y,z}=0$		$\Sigma M_{x,y,z}=0$				
M = 2J - 3						
$\frac{dv}{dx} = w(x)$		$\frac{dm}{dx} = v(x)$				
$\Delta v_{AB} = \int_{A}^{B} w(x) dx$			$\Delta m_{AB} = \int_{A}^{B} v(x) dx$			
$\deg(m(x)) = \deg(v(x)) + 1$		$v_f = m_f = 0$				
$F_s = \mu_s N$		$F_k = \mu_k N$				
$\bar{x} = \frac{\lambda}{2}$	Σw Σw		$\bar{x} = \frac{\Sigma \tilde{x} V}{\Sigma V}$	$\bar{x} = \frac{\Sigma \tilde{x} A}{\Sigma A}$		$\bar{x} = \frac{\Sigma \tilde{x} L}{\Sigma L}$
$\bar{x} = \frac{\int}{\int}$	xdw dw		$\bar{x} = \frac{\int \tilde{x} dv}{\int dv}$	$\bar{x} = \frac{\int \tilde{x} dA}{\int dA}$		$\bar{x} = \frac{\int \tilde{x} dl}{\int dl}$
$I_x = \int_A$	y^2dA		$I_y = \int_A x^2 dA$	$J_o = \int_A r^2 dA$		$I_{xy} = \int_A xydA$
$I_{x} = \bar{I}_{x'} +$	$A(d_y)^2$	$I_{\mathcal{Y}}$	$I = \bar{I}_{y'} + A(d_x)^2$	$J_o = \bar{J}_c + A(c)$	$(d_c)^2$	$I_{xy} = \bar{I}_{x'y'} + Ad_x d_y$
$K_{x} = \sqrt{\frac{I_{x}}{A}}$		$K_y = \sqrt{\frac{I_y}{A}}$				
$I_u = \frac{I_x + I_y}{2} + \frac{I_x - I_y}{2}\cos(2\theta) - I_{xy}\sin(2\theta)$			$I_v = \frac{I_x + I_y}{2} - \frac{I_x - I_y}{2} \cos(2\theta) + I_{xy} \sin(2\theta)$			
$I_{uv} = \frac{I_x - I_y}{2}\sin(2\theta) + I_{xy}\cos(2\theta)$			$J_o = I_u + I_v = I_x + I_y$			
$I_x = \int_A y^2 dm \qquad I_y = \int_A$		x^2dm	$I_G = \int_A r^2 dm$			
$I = I_G + md^2$						