Sets

1 Some notation

- We write $x \in X$ to denote that x is an element or member of the set X, or that X contains x, with $x \notin X$ denoting that x is not an element of X
- We can describe a set by listing it's elements
 - the set of pairs of prime numbers less than 6 is $\{\{2,3\}\{2,5\},\{3,5\}\}$
- It is always possible if a set is finite
- However if a set is infinite, then it is not possible, unless we cheat by adding dots
- We often describe a set by it's defining property, e.g.:
 - The set of natural numbers $\mathbb{N} = \{x : x \text{ x is a natural number}\} = \{0,1,2,...\}$
 - The set of integers \mathbb{Z} = {*x* : *x* ∈ *N* or *x* = −*y* for *y* ∈ **N**} = {0, 1, −1, 2, −2, ...}
 - The set of rational numbers $\mathbb{Q} = \{x : x = y/z \text{ for } y, z \in \mathbb{Z} \text{ with } z \neq 0\}$
 - The set of real numbers $\mathbb{R} = \{x : x \text{ is a real number }\}$
- We regard 0 as a natural number

2 Cardinality

- If there are exactly n distinct elements in the set S, where $n \in \mathbb{N}$ then S is finite and has size or cardinality n and we write |S| = n
 - As we remarked earlier, if S is not finite then it is infinite
- ullet Of course, the empty set \varnothing has size 0
- We can also define the size of an infinite set
- One might be tempted to think that all infinite sets have the same size, however there are different sizes of infinity

3 Set Equality

- Two sets X and Y are equal when we write X = Y iff they contain exactly the same elements
- Equivalently X and Y are equal iff:
 - for every object $x, x \in X$ implies that $x \in Y$
 - for every object $x x \in Y$ implies that $x \in X$
 - For example:
 - $* \{1,2,3,4,5\} = 3,2,4,5,1$
- Singleton Set A set containing exactly one element
- Note that strictly speaking {1,3,3,5} is not a set but a multiset, but we regard it as a description of the set {1,3,5}
- Recall also that our sets are objects and so we can have sets containing sets as elements, indeed, we can have sets containing sets as elements, e.g.
 - $\{\emptyset\} \neq \emptyset$
 - $-\{\{\emptyset\}\}\neq\{\emptyset\}$

4 Venn Diagrams

- Sometimes it is useful to have a pictoral representation of a set or sets
- Any venn diagram is contained within (usually) a rectangle, depicting the set of all objects
- Sets are represented by circles and elements by points or items

$$X = \{1, 2, 3, 4, 7\}$$

$$Y = \{2, 4, 5\}$$

$$Z = \{5, 1, 3, 6, 9\}$$

5 Subsets

- A set X is a subset of set Y when we write $X \subseteq Y$ iff every element that is in X is also in Y
- So, X is not a subset of Y, when we write $X \subseteq Y$ iff there is some element that is in X that is not in Y
- A subset X of Y is a proper subset when we write $X \subset Y$, if $X \subseteq Y$ and there may be at least one element of Y that is not in X

6 Some facts about subsets

- $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$
- For any set $S S \subseteq S$
- For any set $S \varnothing \subseteq S$
- For any sets A and B
 - $-A = B \text{ iff } A \subseteq B \text{ and } B \subseteq A$
 - * Trivially if A = B then $A \subseteq B$ and $B \subseteq A$
 - * Conversely suppose that $A \subseteq B$ and $B \subseteq A$
 - If $x \in A$ then $x \in B$
 - · If $x \notin A$ then $x \notin B$

- * So A=B
- For every set A if $A \subseteq \emptyset$ then $A = \emptyset$
 - Suppose that A ⊆ \emptyset and let x ∈ A, so x ∈ \emptyset , a contradiction

7 The Power Set

- There are a number of common operations upon sets which enable us to create new sets out of old ones
- Let S be a set. The **power set** P(S) (or P(S) or 2^s) is the set of all subsets of S
- We already have seen that every non empty set S has at least 2 subsets, ∅ and S
- However, in general, there are many more subsets, e.g:
 - If $S = \{0, 1, 2, 3\}$ then P(S) is all combinations of 0,1,2,3 and the empty set
 - If $S = \mathbb{N}$ then P(S) is any set of natural numbers
 - If $S = \emptyset$ then:
 - * $P(S) = \{\emptyset\}$
 - $* P(P(S)) = \{\emptyset, \{\emptyset\}\}\$
 - $*\ P(P(P(S))) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$
- In general, if S is finite of size n, then P(S) is finite of size 2^n

8 The Cartesian Product

- Often, the order of a collection of elements matters, though the order of the elements in a set is of no importance
- An ordered n-touple $(a_1, a_2, ..., a_n)$ is an ordered collection of elements
- If n = 2(resp.n = 3) then we call the touple an ordered pair (resp touple)
- Two ordered n touples are equal iff $a_i = b_i$ for all i = 1, 2, ..., n
- Cartesian products allow us to talk about "order"
- For any two sets X and Y, the cartesian product $X \times Y$ is the set

$$\{(x, y) : x \in X \text{ and } y \in Y\}$$

- For example:
 - The Cartesian product of $\{0, 1, 2\}$ and $\{a, b\}$ is

$$\{(0,a),(1,a),(2,a),(0,b),(1,b),(2,b)\}$$

– The Cartesian product of $\{a, b\}$ and $\{0, 1, 2\}$ is:

$$\{(a,0),(a,1),(a,2),(b,0),(b,1),(b,2)\}$$

- We can also define the Cartesian product of more than two sets
- Let $A_1, A_2, ..., A_n$ be sets. The Cartesian product $A_1 \times A_2 \times ... \times A_n$ is the set:

$$\{(a_1, a_2, \dots, a_n) : a_i \in A_i, \text{ for all } i = 1, 2, \dots, n\}$$

• If $A_1, A_2, ..., A_n$ are all finite sets with $|A_i| = m_i$ for i = 1, 2, ..., n then:

$$|A_1 \times A_2 \times \ldots \times A_n| = m_1 \times m_2 \times \ldots \times m_n$$

9 Union and Intersection

- Let A and B be sets, the union of A and B, written as $A \cup B$ is the set that contains all elements that are in A, in B or both
 - That is $A \cup B = \{x : x \in A \lor x \in B\}$
- Let A and B be sets. The intersection of A and B, written $A \cap B$ is the set of elements that are in A and B
 - That is, $A \cap B = \{x : x \in A \land x \in B\}$
- Two sets are called disjoint if their intersection is the empty set
- Principle of inclusion-exclusion: if A and B are finite sets then:

$$|A \cup B| = |A| + |B| - |A \cap B|$$

9.1 Union and Intersection Venn Diagrams

10 Difference and Compliment

- Let A and B be sets. The difference of A and B, written $A B(or A \setminus B)$ is the set that contains all elements that are in A but not in B
 - That is, $A B = \{x : x \in A \land x \notin B\}$
- Let A be a set. The compliment of A, written \overline{A} is the set that contains all elements that are not in A
 - That is, $A = \{x : x \notin A\}$
- The difference A-B is sometimes called the **complement of B with respect to A**

10.1 Venn Diagram of Difference and Complement

11 A Different Semantics

- Note that we can define different semantics for propositional logic
- Consider some formula ϕ of propositional logic such as:

$$(X \land (Y \land Z)) \lor \neg(\neg X \lor (Y \land Z))$$

- Previously we interpreted ϕ using truth assignments, with a truth assignment making ϕ either true or false
- We can interpret ϕ by assigning sets to each of the propositional variables:
 - We get that ϕ denotes a set of elements via:
 - * Interpret \wedge as intersection
 - * Interpret ∨ as union
 - * Interpret ¬ as complement
- Write $\phi \equiv_s \psi$ iff ϕ and ψ always denote the same set of elements
- We get the identities from propositional logic

$$\phi \equiv_S \psi$$
 if, and only if, $\phi \equiv \psi$

• So $(X \land (Y \land Z)) \lor \neg(\neg X \lor (Y \land Z))$ denotes the set of elements shown, i.e. X

