Py

1-507-21 US

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-263421

(43)公開日 平成9年(1997)10月7日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ			技術表示箇所
C 0 3 C	3/087			C 0 3 C	3/087		
# G09F	9/30	3 1 6		G09F	9/30	316D	

審査請求 未請求 請求項の数6 OL (全 5 頁)

			
(21)出願番号	特願平8-74008	(71)出顧人	
			旭硝子株式会社
(22)出願日	平成8年(1996)3月28日		東京都千代田区丸の内2丁目1番2号
		(72)発明者	西沢 学
			神奈川県横浜市神奈川区羽沢町1150番地
			旭硝子株式会社中央研究所内
		(72)発明者	磯部 宜子
			神奈川県横浜市神奈川区羽沢町1150番地
			旭硝子株式会社中央研究所内
		(72)発明者	中尾 泰昌
		(1-7)	神奈川県横浜市神奈川区羽沢町1150番地
			旭硝子株式会社中央研究所内
		(# () (h m)	
		(74)代理人	弁理士 泉名 謙治
		I .	

(54) [発明の名称] 無アルカリガラスおよびフラットディスプレイパネル

(57)【要約】

【課題】歪点が高く、フロート成形に適した、無アルカリガラスを得る。

【解決手段】歪点が640℃以上であって、モル%表示で実質的に、SiO2:65~74、Al2O3:7~14、B2O3:1.5~5.5、MgO:1.5~8、CaO:1.5~8、SrO:1.5~8、BaO:0~1未満、MgO+CaO+SrO+BaO:12~20、からなり、アルカリ金属酸化物およびリンを実質的に含有しない。

colinación de la constantidad de

【特許請求の範囲】

【讃求項1】歪点が640℃以上であって、モル%表示 で実質的に、

S i O₂ 65~ 74、 A 1 2 O3 7~ 14. B₂ O₃ . 1.5~ 5.5 MgO 1.5~ 8. CaO 1.5~ 8. SrO 1.5~ 8、 BaO 0~ 1未満、

MgO+CaO+SrO+BaO 12~20,

からなり、アルカリ金属酸化物およびリンを実質的に含 有しない無アルカリガラス。

【請求項2】鉛、ヒ素およびアンチモンを実質的に含有 しない請求項1記載の無アルカリガラス。

【請求項3】50~350℃での平均熱膨張係数が30 ×10-7/℃以上50×10-7/℃未満である請求項1 または2記載の無アルカリガラス。

【請求項4】モル%表示で実質的に、

66~ 74. S i O₂ A 1 2 O3 8~ 13.5 B₂ O₃ 1.5~ 5未満、 MgO 2~ 8. 2∼ CaO 8, 2~ 8. $MgO+CaO+SrO 12\sim18$.

からなり、アルカリ金属酸化物、BaOおよびリンを実 質的に含有しない、請求項1、2または3記載の無アル

カリガラス。

無アルカリガラス。

【請求項6】請求項1、2、3、4または5記載の無ア ルカリガラスを少なくとも一方の基板として使用したフ ラットディスプレイパネル。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、各種ディスプレイ やフォトマスク用基板ガラスとして好適な、アルカリ金 属酸化物を実質上含有せずフロート成形の可能な、無ア ルカリガラスに関する。

[0002]

【従来の技術】従来、各種ディスプレイ用基板ガラス、 特に表面に金属ないし酸化物薄膜等を形成させるもので は、以下の特性が要求されている。

- (1) アルカリ金属酸化物を含有していると、アルカリ 金属イオンが薄膜中に拡散して膜特性を劣化させるた め、実質的にアルカリ金属イオンを含まないこと。
- (2) 薄膜形成工程で高温にさらされるので、ガラスの 変形およびガラスの構造安定化に伴う収縮(熱収縮)を 最小限に抑えるため、高い歪点を有すること。

(3) 半導体形成に用いられる各種薬品に対して充分な 化学耐久性を有すること。特にSiOxやSiNxのエ ッチングのためのパッファードフッ酸(フッ酸+フッ化 アンモニウム; BHF)、およびITOのエッチングに 用いられる塩酸を含有する薬液、金属電極のエッチング に用いられる各種の酸(硝酸、硫酸等)、レジスト剥離 液、洗浄液のアルカリに対して耐久性があること。

2

- (4)内部および表面に欠点(泡、脈理、インクルージ ョン、ピット、キズ等)をもたないこと。
- 10 【0003】上記の要求に加えて、近年では、以下のよ うな状況がある。
 - (5) ディスプレイの軽量化が要求され、ガラス自身も 密度の小さいガラスが望まれてきた。
 - (6) ディスプレイの軽量化の方法として、基板ガラス の薄板化が望まれてきた。
 - (7) これまでのアモルファスシリコンタイプの液晶デ ィスプレイに加え、若干熱処理温度の高い多結晶シリコ ンタイプの液晶ディスプレイが作製されるようになって きた。

20 [0004]

【発明が解決しようとする課題】B2 O3 は耐BHF性 を向上するが、歪点を下げるおそれがあるため、多く含 有すると歪点を上げるのが困難になる。また、B2 O3 は熔解中に揮散しやすい成分であるために、製品ガラス 板の不均一(脈理)となりやすく、B2 O3 の少ない組 成は製造上メリットがある。

【0005】B2 O3 の含有量の少ない無アルカリガラ スとしては、以下のようなものがある。

【0006】特開平4-325435にはB2 O3 を0 【請求項5】歪点が650℃以上である請求項4記載の 30 ~3重量%含有しかつСаОが8重量%以上含まれる組 成が開示されている。特公平7-98672、特公平7 -98673にはいずれもB2 O3 を含有しない組成が 開示されているが、熔解に必要な温度が高すぎて熔解が 困難である。特開平5-232458にはB2 O3 を0 ~5モル%含有する組成が開示されているが、SrOを 15モル%以上含有し、熱膨張係数が大きい。特開平5 -193980にはB2 O3 を1~7モル%含有する組 成が開示されているが、BaOを4.5モル%以上含有 し、耐BHF性に劣る場合がある。

> 【0007】本発明の目的は、上記欠点を解決し、B2 O3 含有量が少ないながら耐BHF性を維持し、熔解・ 成形が容易で、フロート成形が可能な無アルカリガラス を提供することにある。

[8000]

【課題を解決するための手段】本発明は、歪点が640 ℃以上であって、モル%表示で実質的に、

S i O₂ 65~ 74. A 1 2 O3 7~ 14, B₂ O₃ 1.5~ 5.5.

50 MgO 1.5~ 3

8、 CaO 1.5~

SrO 1.5~ 8、

. 0~ 1未満、MgO+CaO+ BaO SrO+BaO 12~20、からなり、アルカリ金属 酸化物およびリンを実質的に含有しない無アルカリガラ スである。

[0009]

【発明の実施の形態】次に上記の通り各成分の組成範囲 を限定した理由について述べる。

【0010】SiO2 は65モル%(以下%と記載す る)未満では歪点が充分に上げられないとともに、化学 耐久性(特に耐酸性(例えば塩酸))が悪化し、熱膨張 係数が増大し、密度も上昇する。74%超では熔解性が 低下し、失透温度も上昇する。66~74%がより好ま LW.

【0011】A12 O3 はガラスの分相性を抑制し、熱 膨張係数を下げ、歪点を上げるが、7%未満ではこの効 果があらわれず、14%超ではガラスの熔解性が悪くな ったり、失透温度を上昇させる。8~13.5%がより 好ましい。

【0012】B2 O3 はガラスの熔解反応性を良くし、 また、失透温度を低下させるため1.5%以上添加され るが、5.5%超では歪点が低くなる。1.5%以上5 %未満がより好ましい。

【OO13】MgOはアルカリ土類金属酸化物中では熱 膨張係数を高くせず、かつ歪点を過大には低下させない という特徴を有し、熔解性も向上させるため1.5%以 上添加される。8%超ではBHFによる白濁やガラスの 分相、失透温度の上昇が生じるおそれがある。 2~8% がより好ましい。

【0014】CaOはMgOに次いでアルカリ土類金属 酸化物中では熱膨張係数を高くせず、かつ歪点を過大に は低下させないという特徴を有し、熔解性も向上させる ため1.5%以上添加される。8%超ではBHFによる 白濁やガラスの分相、失透温度の上昇が生じるおそれが あり、失透温度が、成形性の目安となる10gn=4. 0の温度より高くなるおそれがある。2~8%がより好 ましい。

【0015】Sr0はガラスの分相を抑制し、ガラスの 熔解性も向上させ、BHFによる白濁に対し比較的有用 40 な成分であるため、1.5%以上含有される。8%超で は熱膨張係数が増大する。2~8%がより好ましい。

【0016】BaOは、耐BHF性を低下させ、ガラス の熱膨張係数、密度を過大に増加させるおそれがあるの で1%未満とする。より好ましくは実質的に無添加とす る。

【0017】MgO、CaO、SrO、BaOは、ガラ スの熔解性を確保するため、合量で12%以上含有され る。20%超では熱膨張係数が大きくなりすぎるおそれ がある。好ましくは、BaOを実質的に含有せず、Mg 50 のを光学顕微鏡にて確認し、これを再び1300~14

O、CaO、SrOを合量で12~18%とする。 【0018】本発明によるガラスは上記成分以外にガラ スの熔解性、清澄性、成形性を改善するため、ZnO、

Fe₂O₃、SO₃、F、Clを総量で5%以下添加が できる。

【0019】一方、本発明によるガラスはアルカリ金属 酸化物およびリンを実質的に含有しない。ガラス基板上 に形成される膜特性や半導体特性を劣化させないためで ある。また、鉛、ヒ素、アンチモンなどは実質的に含有 10 しないことが好ましい。

【0020】本発明のガラスは、典型的には、歪点が6 40℃以上である。特に、ディスプレイ製造時の熱処理 による収縮を小さく抑えるためには、歪点が650℃以 上であることが好ましい。

【0021】さらに、本発明のガラスは、50~350 ℃での平均熱膨張係数が30×10⁻⁷/℃以上50×1 0-7/℃未満であることが好ましい。より好ましくは、 33×10⁻⁷/℃~43×10⁻⁷/℃である。

【0022】本発明のガラスは、例えば次のような方法 20 で製造できる。通常使用される各成分の原料を目標成分 になるように調合し、これを熔解炉に連続的に投入し、 1500~1600℃に加熱して熔融する。この熔融ガ ラスをフロート法により所定の板厚に成形し、徐冷後切 断する。

[0023]

【実施例】各成分の原料を目標組成になるように調合 し、白金坩堝を用いて1500~1600℃の温度で熔 解した。熔解にあたっては、白金スターラーを用い撹拌 しガラスの均質化を行った。次いで熔解ガラスを流し出 30 し、板状に成形後徐冷した。

【0024】表には、ガラス組成と併せて、熱膨張係 数、歪点、密度、高温粘性(熔解性の目安となる粘度カ が100ポイズを示す温度(10gヵ=2.0の温度) とフロート成形性の目安となる粘度のが10000ポイ ズを示す温度(10gn=4.0の温度))、失透温 度、BHFに浸漬したときの重量減、およびBHFに浸 潰したときのヘイズ値を示した。各特性は、以下のよう に測定した。

【0025】熱膨張係数(×10‐7/℃):示差熱膨張 計を用い、石英ガラスを参照試料として毎分5℃で昇温 しながら、室温~屈伏点までの熱膨張曲線を測定し、5 0~350℃の平均熱膨張係数を読み取り、記録した。 【0026】歪点(℃): JIS R3103に記載の ファイバー法による。

【0027】密度(g/cc):アルキメデス法によ る。

【0028】高温粘性(℃):回転粘度計による。

【0029】失透温度(℃):粉砕したガラスを一度1 100℃で1日間熱処理し、内部に結晶が存在している ○○℃に温度保持した電気炉中で20時間熱処理して、 内部の結晶が消滅する温度を記録した。

【0030】BHF重量減 (mg/cm²):50%フッ酸と40%フッ化アンモニウム水溶液を1:9 (体積比)で混合した液に25℃で20分浸漬したときのガラスの単位面積あたりの重量減少量である。

【0031】ヘイズ値(%):上記のBHF処理をし、 洗浄、乾燥したガラスについて、光を当てたとき、ガラ スの曇りにより散乱される光の割合である。スガ試験機 社製へイズメーターにて測定した。

【0032】表から明らかなように、実施例のいずれの ガラスも、熱膨張係数は30×10⁻⁷/℃~50×10 -7/℃の低い値を示し、また、歪点は650℃以上と高* *く、高温での熱処理に充分耐えられるものであることがわかる。

6

【0033】また、熔解性の目安となる10gn=2. 0の温度は1760℃以下であり、熔解法により製造できることがわかる。さらに、成形性の目安となる10gn=4.0の温度は失透温度より高いため、成形時に失透が生成するなどのトラブルがないと考えられる。

【0034】また、BHF処理による重量減もヘイズの 発生も少なく、ディスプレイパネルの基板用として実用 10 的であると考えられる。

【0035】 【表1】

	1	2	3	4	5
モル%					
S 1 O ₂	69.0	69.0	69.0	69.0	70.0
A12 O3	11.0	11.0	11.0	11.0	11.0
B ₂ O ₃	2.0	3.0	4.0	5.0	3.0
MgO	6.0	5.7	5.3	5.0	5.3
CaO	6.0	5.7	5. 3	5. 0	5.3
SrO	6.0	5. 7	5. 3	5. 0	5.3
熟膨張係数	40	39	37	36	37
歪点 (℃)	700	695	695	690	700
密度 (g/cc)	2.57	2. 54	2. 52	2.50	2. 52
高温粘性					
T at $\log \eta = 2$	1670	1690	1700	1710	1710
T at $\log \eta = 4$	1300	1310	1340	1340	1350
失透温度	1300	1300	1300	1300	1325
BHF重量減	0.73	0.67	0.64	0.55	0. 64
ヘイズ値	1	<1	<1	<1	<1

[0036]

※ ※【表2】

8

7

	6	7	8	9	10
モル%					
SiO ₂	71.0	72.0	69.0	69. 0	69.0
A 1 2 O8	11.0	11.0	13.0	12.0	10.0
B ₂ O ₃	3. 0	3.0	3.0	3. 0	3.0
MgO	5.0	4.7	5.0	5. 3	6.0
CaO	5.0	4.7	5. 0	5. 3	6.0
SrO	5. 0	4.7	5. 0	5. 3	6.0
熟膨張係数	36	34	35	37	40
歪点 (℃)	700	705	710	700	690
密度 (g/cc)	2. 50	2.47	2. 51	2. 53	2. 56
高温粘性				,	
T at $\log \eta = 2$	1740	1760	1700	1700	1680
T at $\log \eta = 4$	1370	1390	1360	1350	1330
失透温度	1350	1375	1350	1325	1300
BHF重量減	0.66	0.61	0. 75	0.70	0.69
ヘイズ値	<1	<1	<1	<1	<1
L		L	L	l .	1

[0037]

* *【表3】

	11	12	13	14	15
モル%					
SiO ₂	69.0	69.0	69.0	69. 0	67.0
A 1 2 O3	9.0	11.0	11.0	11.0	11.0
B ₂ O ₃	3.0	3.0	3.0	3. 0	3.0
MgO	6.3	2.4	7.3	7.3	6.3
CaO	6.3	7.3	2.4	7.3	6.3
SrO	6.3	7.3	7. 3	2. 4	6.3
熱膨張係数	42	42	38	36	41
歪点 (℃)	685	690	695	690	680
密度 (g/cc)	2. 58	2. 59	2. 55	2.50	2. 59
高温粘性					
T at $\log \eta = 2$	1670	1690	1670	1700	1640
T at $\log \eta = 4$	1320	1360	1350	1310	1310
失透温度	1300	1300	1300	1300	1300
BHF重量減	0. 67	0. 67	0.65	0.68	0.62
ヘイズ値	<1	<1	<1	<1	<1

[0038]

【発明の効果】本発明によるガラスは、歪点が高く、B 2 Os 含有量が少ないながら耐BHF性を維持し、熔解が比較的容易で、フロート成形が可能であり、ディスプ※

※レイ用基板、フォトマスク基板、TFTタイプのディスプレイ基板等、かかる特性を要求する用途に好適である。

I HIS PAGE BLANK (USPTO)