LU factorization - What is it? How do you find it?
LU factorization theorem.
Some matrices A can be written
May 17 Can be written
$A = L \cdot U$
lower triangular RFF with 1s on the
diagonal
$M \times N \qquad M \times M$
ex. A = [1 -1 2 0] Basic Row ops.
-5 7-8 3 1. Swap two rows
row to a lower row,
3. Multiply a row by a scalar.
Want to row-reduce A using only operations of
type 2.
F
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
If we used a row operation
$aR \cdot + P \cdot (3 \cdot 2 i)$
then Li = -a. [100]
then $L_{ij} = -a$. $L = \begin{bmatrix} 1 & 0 & 0 \\ -5 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix}$

$$A = \begin{bmatrix} 1 & -1 & 2 & 0 \\ -5 & 7 & -8 & 3 \\ 0 & 4 & 4 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -5 & 1 & 0 \\ 0 & 2 & 2 & 3 \end{bmatrix}$$

$$Q: For which A can we do this?$$

$$Q: Why does this procedure let us find L?$$

$$\begin{bmatrix} 1 & -1 & 2 & 0 \\ -5 & 7 & -8 & 3 \\ 0 & 4 & 4 & 2 \end{bmatrix} \xrightarrow{\begin{array}{c} 0 & 2 & 2 & 3 \\ 0 & 2 & 2 & 3 \\ 0 & 4 & 4 & 2 \end{array}} \xrightarrow{\begin{array}{c} 0 & 2 & 2 & 3 \\ 0 & 4 & 4 & 2 \\ 0 & 0 & 0 & -4 \end{bmatrix}}$$

$$-5R_1 + R_2$$

$$Left-multiplying any matrix by the matrix
$$L = \begin{bmatrix} 1 & 0 & 0 \\ -5 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$

$$\begin{array}{c} does the row operations \\ 2R_2 + R_3 & then \\ -5 & R_1 + R_2 & then \\ -5 & R_1 + R_2 & then \\ \end{array}$$$$