Technologia Układów Cyfrowych

Praktyczna realizacja półprzewodnikowa, której działanie odpowiada teoretycznemu projektowi "na papierze" – czyli syntezie logicznej...

Stanom logicznym 0 i 1 odpowiadają dedykowane wartości napięć zależnie od technologii wykonania scalonego układu cyfrowego!

Układy Cyfrowe – rys historyczny

- 1948 tranzystor bipolarny, "Nobel" w 1956: Bardeen, Brattain, Shockley
- 1958 Jack Kilby (*Texas Instruments*), pierwszy scalony przerzutnik, elementy łączone złotymi drucikami
- 1959 Richard Noice (*Fairchild*), pierwszy planarny cyfrowy układ scalony
- 1961 układy RTL (*Texas Instruments*, *Fairchild*)
- 1962 układy DTL (*Fairchild*, *Signetics*), układy ELC (*Motorola*) tranzystor MOS i układy MOS (*RCA*)
- 1963 układy TTL (*Texas Instruments*) początki układów CMOS (*Fairchild*)
- 1968 seryjna produkcja układów SSI i MSI CMOS (*RCA*), pamięci dynamiczne LSI CMOS (*Intel*)
- 1970 kalkulatory MOS
- 1971 mikroprocesor MOS 4004 (Intel)
- 1975 mikroprocesor CMOS 1801 (RCA)

Układy Cyfrowe – *wykonanie*

UKŁAD SCALONY – Integrated Device, Integrated Circuit – jest to fizycznie wykonany układ elektroniczny, którego część lub wszystkie elementy i połączenia pomiędzy nimi są wykonane w jednym procesie technologicznym na powierzchni lub wewnątrz jednego półprzewodnikowego podłoża.

Układ scalony zamykany jest w obudowie a sygnały doprowadzane są z zewnątrz poprzez końcówki.

Układy unipolarne – tranzystory polowe

Układy bipolarne – tranzystory n-p-n (rzadko p-n-p)

Układy Cyfrowe – *kategorie*

- 1) układy standardowe produkowane masowo układy o ustalonych funkcjach logicznych,
- 2) układy programowalne produkowane masowo układy o programowanych funkcjach logicznych, ustalanych przez projektanta,
- 3) układy specjalizowane (ASIC Application-Specific Integrated Circuits) wytwarzane na ustalone zamówienie projektanta, układ zaprojektowany do konkretnego zastosowania.

Scalone Układy Cyfrowe – *klasy technologiczne*

Podłoże krzemowe (Si)

- 1) TTL (*Transistor-Transistor Logic*)
- 2) ECL (Emitter-Coupled Logic)
- 3) CMOS (Complementary Metal-Oxide-Semiconductor)
- 4) SiGe (Silicon-Germanium)

Scalone Układy Cyfrowe – właściwości

- 1) Szybkość działania
- 2) Moc strat, napięcie zasilania
- 3) Niezawodność, odporność na zakłócenia, kompatybilność łączeniowa, obciążalność
- 4) Obudowy, dopuszczalna temperatura otoczenia
- 5) Koszt

Scalone Układy Cyfrowe – szybkość działania

Czas propagacji (opóźnienia) t_p – odcinek czasu pomiędzy zboczem impulsu wejściowego i zboczem powstałej zmiany stanu na wyjściu.

Mierzy się pomiędzy poziomami napięcia progowego U_{T} .

Dla układów TTL U_T = 1,5 V.

Dla układów CMOS $U_T = U_{DD}/2$ – połowa napięcia zasilania.

Scalone Układy Cyfrowe – szybkość działania układu sekwencyjnego

$$f_{\rm max} = 1/T_{\rm min}$$

$$T_{\min} = t_{pCQ} + t_{su} + t_{pK}$$

Scalone Układy Cyfrowe – *moc strat*

Dwie składowe mocy strat:

moc statyczna ($f_{CK} = 0 \text{ Hz}$)

prąd zasilania I_{CCL} przy $U_O = U_{OL}$ oraz I_{CCH} przy $U_O = U_{OH}$

moc dynamiczna ($f_{CK} > 0$ Hz)

$$P = U_{CC} I_{CCsr}(f)$$

Scalone Układy Cyfrowe – zgodność łączeniowa

- 1) muszą być spełnione warunki dotyczące poziomów napięć dla H i L, oraz maksymalnego obciążenia wyjść
- 2) stosować konwertery napięć poziomów logicznych
- 3) stosując szybkie układy należy uwzględniać pojemności pasożytnicze linii połączeniowych i dołączonych wejść
- 4) zasilanie, wspólna masa...

...zgodność łączeniowa – poziomy logiczne i ich napięcia

Scalone Układy Cyfrowe – *obudowy*

Przeznaczenie:

- 1) ochrona struktury krzemowej przed szkodliwymi wpływami środowiska,
- 2) ochrona przed uszkodzeniami mechanicznymi,
- 3) odprowadzanie ciepła (rozpraszanie),
- 4) ułatwienie montażu poprzez zastosowanie odpowiednich końcówek

Scalone Układy Cyfrowe – *obudowy*

Oznaczenia:

- 1) DIP (*Dual-In Line Package*) dwurzędowa, przewlekana
- 2) DIL (*Dual-In Line*) dwurzędowa, przewlekana
- 3) SO, SOP (Small Outline) SMD, końcówki "L"
- 4) SSOP (Shrink SOP) jak SO ale mniejsza
- 5) QFP (Quad Flat Package) kwadratowa, końcówki "L"
- 6) SQFP (Shrink QFP) jak QFP ale mniejsza
- 7) TQFP (*Thin QFP*) cienka QFP
- 8) PLCC (Plastic Leaded Chip Carrier) kwadratowa, końcówki "J"
- 9) BGA (*Ball Grid Array*) kwadratowa, końcówki w postaci kulek

SO - Small Outline

QFP – Quad Flat Package

PLCC – Plastic Leaded Chip Carrier

BGA – *Ball Grid Array*

Fine-Pitch (FG484/FGG484) BGA Package

Scalone Układy Cyfrowe – *struktury*

Głównymi elementami aktywnymi są:

- 1) diody ze złączem *p-n*,
- 2) diody ze złączem *metal-półprzewodnik*, czyli diody Schottky'ego,
- 3) tranzystory *n-p-n*
- 4) tranzystory MOS (NMOS, PMOS)

Zawarte rysunki zostały zaczerpnięte z książki J. Kalisz "Podstawy elektroniki cyfrowej", WKŁ

Scalone Układy Cyfrowe – *struktury*

Emiter

,Baza

Przykład struktury tranzystora trójemiterowego a) przekrój, b) symbol elektryczny

Scalenie diody Schottky'ego z tranzystorem npn

a) równoważność symboli, b) struktura półprzewodnikowa

Dioda Schottky'ego Pierścień Izolacja ochronny

Podłożé

Warstwa

zagrzebana

Scalone Układy Cyfrowe – "pierwsze" bramki

Bramki diodowe

Scalone Układy Cyfrowe – "pierwsze" bramki

Struktury RTL – Resistor-Transistor Logic

Wada – duże prądy wejściowe w stanie 1.

Takie struktury logiczne były zastosowane w układach komputera pokładowego Apollo 11 w 1968 roku – lądowanie na Księżycu.

Scalone Układy Cyfrowe – *UKŁADY TTL*

TTL – Transistor-Transistor Logic

Najpopularniejsza od lat 60-tych do 80-tych u.w.

Napięcie zasilania +5 V±0,5 V.

Dziś przestarzała technologia zastąpiona przez układy CMOS.

Oznaczenia:

SN74xxx

SN – Solid Network (*Texas Instruments*)

74 – komercyjny zakres temperatur 0...+ 70 °C

54 – "wojskowy" zakres temperatur – 55...+ 125 °C

kolejne litery – oznaczają rodzinę zależnie od technologii

xxx – cyfry oznaczające typ układu, realizowane funkcje logiczne

ZESTAWIENIE ZASADNICZYCH PARAMETRÓW SERII W RODZINIE UKŁADÓW TTL

Seria	Technologia izolacji złączowej z domieszko- waniem złotem			Technologia izolacji złączo- wej z diodami Schottky'ego		Technologia izolacji tlenkowej z diodami Schottky'ego		
Parametr	Stan- dar- dowa	H szybka (przes- tarzała)	L małej mocy (przes- tarzała)	S Schott- ky'ego	LS Schott- ky'ego małej mocy	F FAST	ALS ulepszo- na LS	AS ulepszo- na S
Czas propagacji $T_{p typ}$ (ns) przy $N = 10$ Moc strat na bramkę	10	6	33	3	9	3.5	5	1.7
P _{typ} (mW) Współczynnik dobroci	10	23	1	19	2	5.5	1	8
$D_{typ} = t_{p typ} \cdot P_{typ}$ (pJ) Maksymalna częstotliwość	100	138	33	57	18	19.2	5	13.6
pracy $(f_{max})_{typ}$ (MHz) Prąd wyjściowy	25	50	3	125	33	150	50	200
I _{OH max} (mA) Prąd wyjściowy	0.4	1	0.5	1	0.4	1	0.4	2
I _{OL max} (mA) Prąd wejściowy	16	20	3.6	20	8	20	8	20
$I_{IL \max}(mA)$ Obciążalność N_{\max}	1.6 10	2 10	0.18 20	2 10	0.4 20	0.6 33	0.2 40	0.5 48

Cyfrowe Układy Scalone – *UKŁADY TTL*

Podstawowa bramka to NAND

Cyfrowe Układy Scalone – *UKŁADY TTL*

Charakterystyka przejściowa $U_O = f(U_I)$

$$U_{OLmax} = 0.4 V$$

$$U_{OHmin} = 2,4 V$$

$$U_{ILmax} = 0.8 V$$

$$U_{IHmin} = 2 V$$

$$M_{Lmin} = 0.4 V$$

$$M_{Hmin} = 0.4 V$$

Cyfrowe Układy Scalone – *UKŁADY TTL*

Charakterystyka wyjściowa $U_{OL} = f(I_{OL})$

Charakterystyka wyjściowa $U_{OH} = f(I_{OH})$

Cyfrowe Układy Scalone - UKŁADY CMOS

CMOS – Complementary MOS

Utworzone z komplementarnych tranzystorów MOS:

PMOS (z kanałem typu p) i NMOS (z kanałem typu n), normalnie wyłączonych czyli z kanałem indukowanym.

Dziś wiodąca klasa cyfrowych układów scalonych.

Zalety:

bardzo mała moc strat, możliwość pracy przy obniżonym napięciu zasilania

Zawarte rysunki zostały zaczerpnięte z książki J. Kalisz "Podstawy elektroniki cyfrowej", WKŁ, wyd. 4 i 5

UKŁADY CMOS – tranzystory PMOS i NMOS

UKŁADY CMOS – klasyczne napięcie zasilania +5 V

PORÓWNANIE PARAMETRÓW UKŁADÓW TTL I CMOS (WARTOŚCI TYPOWE PRZY $U_{CC}=5$ V, $C_L=50$ pF i $T_a=+25$ °C)

Rodzina	TTL			CMOS			
Parametr	LS	ALS	F	4000B	нс	АНС	AC FACT
Napięcie zasilające U_{cc} (V)	5±5%	5±10%	5±5%	3–18	2–6	2-5.5	2–6
Moc strat na bramkę w sta- nie statycznym P_{typ} (mW) Czas propagacji t_{ptyp} (ns)	2	1	5.5	0.001	0.0025	0.0025	0.0025
przy $C_L = 50 \text{ pF}$	9	5	3.5	125	8	5.2	5.5
Maksymalna częstotliwość pracy $f_{\text{max}}(\text{MHz})$ Prądy wyjściowe (mA):	33	50	150	4	50	115	160
$-I_{OH_{\text{max}}}$ przy $U_{OH_{\text{min}}}$	0.4	0.4	1	2.1 mA	4 mA	8 mA	24 mA
$I_{OL_{\max}}$ przy $U_{OL_{\max}}$	8	8	20	przy 2.5V 0.44 mA przy 0.4V	przy 4.5V 4 mA przy 0.4V	przy 4.5V 8 mA przy 0.4V	24 mA
Prądy wejściowe (μA):	••	•	20		١.		
I _{IH max}	20	20	20	0.1	1	1	1
I _{ILmax} Margines zakłóceń M _{min} (V)	400 0.3	200 0.4	600 0.3	0.1 0.3 <i>U_{cc}</i>	0.28 U_{CC} czyli 1.25V przy $U_{CC} = 4.5$ V		
min(*)	0.0	0	0.0	3.5 5 (6	oraz 1.4V przy $U_{cc} = 5.0$ V		

UKŁADY CMOS – obniżone napięcie zasilania 3.3 V, 2.5V, 1.8 V

ZESTAWIENIE PARAMETRÓW UKŁADÓW CMOS Z RODZIN O OBNIŻONYM NAPIĘCIU ZASILANIA (WARTOŚCI TYPOWE PRZY $T_{_{\!\!H}}=+25^{\circ}{\rm C}$)

Rodzina Parametr	LV	LVC	ALVC	AVC	AUC
Napięcie zasilające U_{CC} (V)	1.0-3.6 (3.3 V)	1.2-3.6 (3.3 V)	1.2-3.6 (2.5 V)	1.2-3.3 (2.5 V)	0.8-2.5 (1.8 V)
Czas propagacji $t_{p \text{ typ}}$ (ns) przy $C_L = 50 \text{ pF}$ Maksymalna częstotliwość	9	4.6	2.1	1.3	2.0
pracy f_{max} (MHz) Prądy wyjściowe (mA):	70	250	325	350	
$I_{OL \max}/I_{OH \max}$ Technologia (μ m)	6/6 2	24/24 0.6	24/24 0.45	8/8 0.35	8/8

UKŁADY CMOS – struktury

Podstawową strukturą jest inwerter!

MODEL

UKŁADY CMOS – struktury

Podstawowe bramki to NAND i NOR!

Struktury nie buforowane

Zawsze tranzystory PMOS do U_{DD} a NMOS do masy...

BLOKI PAMIĘCIOWE

Pojemność pamięci

$$C=2^n m$$

Rysunki zostały zaczerpnięte z książki: J. Kalisz "Podstawy elektroniki cyfrowej" WKŁ

Bloki pamięciowe

RAM – Random-Access Memory – SRAM, DRAM – pamięć o swobodnym dostępie, <u>pamięć ulotna</u> powszechnie stosowana, szybki zapis i odczyt danych.

Pamieci stałe (nieulotne):

ROM – *Read-Only Memory* – pamięć tylko do odczytu (pamięć stała), zawartość ustalana w czasie produkcji.

PROM – *Programmable ROM* – jednokrotnie programowana pamięć nieulotna, produkowana jako niezaprogramowana, programowana w specjalnym programatorze dołączonym do komputera PC.

Bloki pamięciowe

EPROM – *Erasable PROM* – nieulotna pamięć wielokrotnie kasowana i programowana, kasowanie w specjalnych kasownikach a programowanie w dedykowanych programatorach.

EEPROM – *Electrically Erasable and Programmable ROM* – nieulotna pamięć, której zawartość modyfikowana jest bez użycia odrębnego kasownika i programatora.

Flash – "*błyskowa"*, "*błyskawiczna"* – pamięć nieulotna, jednoczesne kasowanie całej zawartości, tańsze od EEPROM, dziś powszechnie stosowana w sprzęcie masowego użytku.

Pamięci o swobodnym dostępie – *RAM*

SRAM – *Static RAM* – statyczna pamięć RAM, komórki utworzone przez kilkutranzystorowe zatrzaski SR.

DRAM – *Dynamic RAM* – dynamiczna pamięć RAM, wykonywana w technologii MOS, komórki pamięci mogą zawierać jeden tranzystor, przechowywanie jednego bitu danych polega na przechowywaniu ładunku w kondensatorze scalonym zawartym w komórce pamięci. Ulotność ładunku wymusza periodyczne odświeżanie zawartości, co jest kompensowane małymi rozmiarami komórki zmniejszając koszt tych pamięci w porównaniu z SRAM.

Pamięci o swobodnym dostępie – RAM

Pamięci o swobodnym dostępie – *RAM*

Wszystkie komórki bloku pamięciowego tworzą matrycę pamięciową, czyli strukturę prostokątną.

Poziome grupy komórek tworzą wiersze, a pionowe kolumny.

Dostęp do wierszy realizuje się za pomocą linii słowa, a dostęp do kolumn za pomocą linii bitu.

Każde przecięcie wiersza z kolumną wyznacza jedną komórkę pamięci.

W najprostszym przypadku słowem danych może być cały wiersz.

Pamięci statyczne – SRAM

Pojedyncza komórka pamięci statycznej CMOS

Pamięci dynamiczne – DRAM

Bardzo mała komórka pamięci: 1 tranzystor i 1 kondensator (30 fF). stan 0 – rozładowany kondensator, stan 1 – naładowany kondensator. Ładunek w komórce wymaga odświeżania co kilkanaście milisekund.

IBM: 1967 – opracowanie, 1968 – patent

Pamięci dynamiczne – *DRAM*

I1, I2 – wzmacniacze odczytu

Struktura komórki FAMOS – *Floating-gate Avalanche-injection MOS*Struktura z bramką swobodną. Stan logiczny określany przez ładunek swobodnej bramki. Od 100 do 1000 cykli programowania.

Charakterystyki elektryczne:
efekt przesunięcia napięcia włączenia tranzystora !!!

Elektryczne programowanie.

Kasowanie przez naświetlanie UV poprzez okienko krzemowe. Pochłanianie energii fotonów przez elektrony powoduje ich wyjście do podłoża i bramki sterującej.

Brak okienka – Pamięć OTP – *One Time Programmable*

Pamięci stałe – EEPROM – Pamięci kasowane elektrycznie!

Struktura FLOTOX – *Floating Gate Tunneling Oxide*Cienka warstwa tlenkowa (< 10 nm) umożliwia dwukierunkowy przepływ elektronów.

Ładowanie bramki swobodnej: $U_G > 0$, $U_D = 0 \rightarrow U_T = 10 \text{ V}$

Rozładowanie bramki swobodnej: U_G 0 0, $U_D > 0 \rightarrow U_T < 0$

Intel 1980

Pamięci stałe – Flash

Specyficzna odmiana pamięci EEPROM.

Kasowane w całości lub w dużych blokach w czasie od 1 ms do 1 s w zależności od architektury.

Zamiast dwóch tranzystorów jak w EEPROM to jeden o grubości warstwy tlenku 10 nm na całej długości kanału (ETOX).

Programowanie jak FAMOS

Kasowanie jak FLOTOX

Toshiba 1984

Pamięci stałe – Flash

Architektura NOR

W czasie kasowania wszystkie źródła tranzystorów na wspólnym potencjale U_{PP} , co umożliwia kasowanie wszystkich komórek jednocześnie!

Kasowanie trwa do 1 s.

Programowanie – źródła tranzystorów dołączone do masy.

5-krotnie szybszy odczyt niż architektura NAND, zastosowania np. BIOS

Pamięci stałe – Flash

Architektura NAND

Kasowanie – linia bitu (BL) +20 V, linie słowa (WL) 0 V, SL1 przewodzi, SL2 nie przewodzi.

Kasowanie wybranych bloków komórek (rozładowywanie kolejnych bramek od góry łańcucha tranzystorów).

Kasowanie trwa około 1..2 ms.

Programowanie – linia bitu 0 V, wybrana linia słowa +20 V, SL1 przewodzi, SL2 nie przewodzi.

Odczyt – SL1 i SL2 przewodzą.

Zastosowania: "flaszki", MP3-ki, kamery i aparaty cyfrowe, dyski *Flash*

