Macroeconomia Aberta e DSGE: Fundamentos, Estimação e Aplicações

Fricções financeiras em um modelo RBC

João Ricardo Costa Filho

Sobre modelos

Good ideas shine far more brightly when supported by good models

Avinash Dixit ("The making of Economic Policy", 1996, p. 17)

All models are wrong.

George Box

Models are to be used, not believed. **Henri Theil** ("Principles of Econometrics", 1971, p. vi)

A volatilidade das flutuações macroeconômicas em economias emergentes

Flutuações Econômicas

Flutuações Econômicas

 O modelo de Aguiar and Gopinath (2007), analisado no capítulo 5 de Uribe and Schmitt-Grohé (2017), oferece uma forma de gerar mais volatilidade no consumo.

Flutuações Econômicas

- O modelo de Aguiar and Gopinath (2007), analisado no capítulo 5 de Uribe and Schmitt-Grohé (2017), oferece uma forma de gerar mais volatilidade no consumo.
- Mas existem formas alternativas, como a introdução de fricções financeiras como em Garcia-Cicco, Pancrazi, and Uribe (2010), também analisado no capítulo 5 de Uribe and Schmitt-Grohé (2017).

O modelo com prêmio de risco, dois tipos de choques de produtividade e fricções financeiras

Trabalharemos com três tipos de **agentes representativos**:

Famílias

- Famílias
 - Ofertam trabalho.

- Famílias
 - Ofertam trabalho.
 - Detêm o capital.

- Famílias
 - Ofertam trabalho.
 - Detêm o capital.
 - Contraem dívida externa líquida.

Trabalharemos com três tipos de agentes representativos:

Famílias

- Ofertam trabalho.
- Detêm o capital.
- Contraem dívida externa líquida.
- Compram os bens e serviços.

- Famílias
 - Ofertam trabalho.
 - Detêm o capital.
 - Contraem dívida externa líquida.
 - Compram os bens e serviços.
- Empresas

Trabalharemos com três tipos de **agentes representativos**:

Famílias

- Ofertam trabalho.
- Detêm o capital.
- Contraem dívida externa líquida.
- Compram os bens e serviços.

Empresas

Recrutam trabalhadores.

Trabalharemos com três tipos de **agentes representativos**:

Famílias

- Ofertam trabalho.
- Detêm o capital.
- Contraem dívida externa líquida.
- Compram os bens e serviços.

- Recrutam trabalhadores.
- Utilizam o estoque de capital.

Trabalharemos com três tipos de **agentes representativos**:

Famílias

- Ofertam trabalho.
- Detêm o capital.
- Contraem dívida externa líquida.
- Compram os bens e serviços.

- Recrutam trabalhadores.
- Utilizam o estoque de capital.
- Vendem os bens e serviços.

Trabalharemos com três tipos de **agentes representativos**:

Famílias

- Ofertam trabalho.
- Detêm o capital.
- Contraem dívida externa líquida.
- Compram os bens e serviços.

- Recrutam trabalhadores.
- Utilizam o estoque de capital.
- Vendem os bens e serviços.
- Intermediários financeiros

Trabalharemos com três tipos de **agentes representativos**:

Famílias

- Ofertam trabalho.
- Detêm o capital.
- Contraem dívida externa líquida.
- Compram os bens e serviços.

Empresas

- Recrutam trabalhadores.
- Utilizam o estoque de capital.
- Vendem os bens e serviços.

Intermediários financeiros

Recebem depósitos das empresas.

Trabalharemos com três tipos de **agentes representativos**:

Famílias

- Ofertam trabalho.
- Detêm o capital.
- Contraem dívida externa líquida.
- Compram os bens e serviços.

Empresas

- Recrutam trabalhadores.
- Utilizam o estoque de capital.
- Vendem os bens e serviços.

Intermediários financeiros

- Recebem depósitos das empresas.
- Captam recursos no mercado internacional.

Trabalharemos com três tipos de **agentes representativos**:

Famílias

- Ofertam trabalho.
- Detêm o capital.
- Contraem dívida externa líquida.
- Compram os bens e serviços.

Empresas

- Recrutam trabalhadores.
- Utilizam o estoque de capital.
- Vendem os bens e serviços.

Intermediários financeiros

- Recebem depósitos das empresas.
- Captam recursos no mercado internacional.
- Emprestam para as empresas e famílias nos mercados domésticos.

Famílias

As famílias possuem preferências acerca do consumo (C) e das horas trabalhadas (h) de tal forma que desejam maximizar a seguinte utilidade intertemporal:

As famílias possuem preferências acerca do consumo (C) e das horas trabalhadas (h) de tal forma que desejam maximizar a seguinte utilidade intertemporal:

$$E_0 \sum_{t=0}^{\infty} \nu_t \beta^t \frac{\left[C_t - \omega^{-1} \Gamma_{t-1} h_t^{\omega}\right]^{1-\gamma} - 1}{1-\gamma},\tag{1}$$

As famílias possuem preferências acerca do consumo (C) e das horas trabalhadas (h) de tal forma que desejam maximizar a seguinte utilidade intertemporal:

$$E_0 \sum_{t=0}^{\infty} \nu_t \beta^t \frac{\left[C_t - \omega^{-1} \Gamma_{t-1} h_t^{\omega}\right]^{1-\gamma} - 1}{1-\gamma},\tag{1}$$

onde Γ_{t-1} é a tendência estocástica e ν_t um choque de preferências, cuja dinâmica é dada por:

As famílias possuem preferências acerca do consumo (C) e das horas trabalhadas (h) de tal forma que desejam maximizar a seguinte utilidade intertemporal:

$$E_0 \sum_{t=0}^{\infty} \nu_t \beta^t \frac{\left[C_t - \omega^{-1} \Gamma_{t-1} h_t^{\omega}\right]^{1-\gamma} - 1}{1-\gamma}, \tag{1}$$

onde Γ_{t-1} é a tendência estocástica e ν_t um choque de preferências, cuja dinâmica é dada por:

$$\ln \nu_{t+1} = \rho_{\nu} \ln \nu_t + \epsilon_{t+1}^{\nu}, \tag{2}$$

Restrição orçamentária

AS famílias maximizam a sua utilidade intermporal, sujeita à seguinte restrição para cada período t:

$$\frac{D_{t+1}^{h}}{1+r_{t}} = D_{t}^{h} - W_{t}h_{t} - u_{t}K_{t} + C_{t} + S_{t} + I_{t} + \frac{\phi}{2} \left(\frac{K_{t+1}}{K_{t}} - g\right)^{2} K_{t} - \Pi_{t},$$
(3)

Restrição orçamentária

AS famílias maximizam a sua utilidade intermporal, sujeita à seguinte restrição para cada período t:

$$\frac{D_{t+1}^{h}}{1+r_{t}} = D_{t}^{h} - W_{t}h_{t} - u_{t}K_{t} + C_{t} + S_{t} + I_{t} + \frac{\phi}{2} \left(\frac{K_{t+1}}{K_{t}} - g\right)^{2} K_{t} - \Pi_{t},$$
(3)

onde D_{t+1}^h é a dívida das famílias, r_t a taxa de juros, W_t o salário real, K é o estoque de capital cujo retorno é dado por u_t ; S_t e I são, respectivamente, uma mudança autônoma na absorção doméstica (e.g. gastos do governo) e o investimento agregado; Π_t são os lucros distribuídos às famílias.

Ao definirmos $\beta^t \lambda_t \Gamma_{t-1}^{-\gamma}$, temos:

Ao definirmos $\beta^t \lambda_t \Gamma_{t-1}^{-\gamma}$, temos:

$$\nu_t \left[\frac{C_t}{\Gamma_{t-1}} - \omega^{-1} h_t^{\omega} \right]^{-\gamma} = \lambda_t,$$

Ao definirmos $\beta^t \lambda_t \Gamma_{t-1}^{-\gamma}$, temos:

$$\nu_t \left[\frac{C_t}{\Gamma_{t-1}} - \omega^{-1} h_t^{\omega} \right]^{-\gamma} = \lambda_t,$$

$$\nu_t \left[\frac{C_t}{\Gamma_{t-1}} - \omega^{-1} h_t^{\omega} \right]^{-\gamma} h_t^{\omega - 1} = \frac{W_t}{\Gamma_{t-1}} \lambda_t,$$

7

$$\lambda_t = \beta \frac{1 + r_t}{g_t^{\gamma}} E_t \lambda_{t+1},$$

$$\lambda_t = \beta \frac{1 + r_t}{g_t^{\gamma}} E_t \lambda_{t+1},$$

$$\left[1+\phi\left(\frac{\mathit{K}_{t+1}}{\mathit{K}_{t}}-\mathit{g}\right)\right]\lambda_{t} = \frac{\beta}{\mathit{g}_{t}^{7}}\mathit{E}_{t}\lambda_{t+1}\left[1-\delta+\mathit{u}_{t+1}+\phi\left(\frac{\mathit{K}_{t+2}}{\mathit{K}_{t+1}}\right)\left(\frac{\mathit{K}_{t+2}}{\mathit{K}_{t+1}}-\mathit{g}\right)-\frac{\phi}{2}\left(\frac{\mathit{K}_{t+2}}{\mathit{K}_{t+1}}-\mathit{g}\right)^{2}\right].$$

Produção

Produção

Em um ambiente de **concorrência perfeita**, as empresas possuem a seguinte tecnologia de produção:

Produção

Em um ambiente de **concorrência perfeita**, as empresas possuem a seguinte tecnologia de produção:

$$Y_t = e^{z_t} K_t^{\alpha} (\Gamma_t h_t)^{1-\alpha}, \tag{4}$$

Produção

Em um ambiente de **concorrência perfeita**, as empresas possuem a seguinte tecnologia de produção:

$$Y_t = e^{z_t} K_t^{\alpha} (\Gamma_t h_t)^{1-\alpha}, \tag{4}$$

e estão sujeitas a choques transitórios e permanentes na produtividade.

Os choques transitórios na produtividade são dados por:

$$z_t = \rho_z z_{t-1} + \epsilon_t^z \tag{5}$$

Os choques transitórios na produtividade são dados por:

$$z_t = \rho_z z_{t-1} + \epsilon_t^z \tag{5}$$

Ao definirmos o produto acumulado dos choques, Γ_t , temos que:

$$\Gamma_t = e^{g_t} \Gamma_{t_1} = \prod_{s=0}^t e^{g_s} \tag{6}$$

Os choques transitórios na produtividade são dados por:

$$z_t = \rho_z z_{t-1} + \epsilon_t^z \tag{5}$$

Ao definirmos o produto acumulado dos choques, Γ_t , temos que:

$$\Gamma_t = e^{g_t} \Gamma_{t_1} = \prod_{s=0}^t e^{g_s} \tag{6}$$

cujos choques na tendência são dados por:

$$g_t = (1 - \rho_g)\mu_g + \rho_g g_{t-1} + \epsilon_t^g, \tag{7}$$

com

$$g_t \equiv \frac{\Gamma_t}{\Gamma_{t-1}}.$$
 (8)

10

Com base nas equações anteriores, pordemos definir a Produtividade Total dos Fatores (TFP) como:

Com base nas equações anteriores, pordemos definir a Produtividade Total dos Fatores (TFP) como:

$$TFP_t \equiv \frac{Y_t}{K_t^{\alpha} h_t^{1-\alpha}},\tag{9}$$

Com base nas equações anteriores, pordemos definir a Produtividade Total dos Fatores (TFP) como:

$$TFP_t \equiv \frac{Y_t}{K_t^{\alpha} h_t^{1-\alpha}},\tag{9}$$

e, portanto,

$$TFP_t = e^{z_t} \Gamma_t^{1-\alpha} \tag{10}$$

Capital de giro

Capital de giro

As empresas devem manter uma fração dos seus gastos com os trabalhadores η como capital de giro M_t :

Capital de giro

As empresas devem manter uma fração dos seus gastos com os trabalhadores η como capital de giro M_t :

$$M_t \geq \eta W_t h_t$$
,

As empresas maximizam os lucros intertemporais,

As empresas maximizam os lucros intertemporais,

$$E_0 \sum_{t=0}^{\infty} \beta^t X_{t-1}^{-\gamma} \lambda_t \Pi_t^f.$$

As empresas maximizam os lucros intertemporais,

$$E_0 \sum_{t=0}^{\infty} \beta^t X_{t-1}^{-\gamma} \lambda_t \Pi_t^f.$$

sujeitas à seguinte restrição orçamentária:

As empresas maximizam os lucros intertemporais,

$$E_0 \sum_{t=0}^{\infty} \beta^t X_{t-1}^{-\gamma} \lambda_t \Pi_t^f.$$

sujeitas à seguinte restrição orçamentária:

$$\frac{D_{t+1}^f}{1+r_t} = D_t^f + (M_t - M_{t-1}) + \Pi_t^f + u_t K_t + W_t h_t - e^{z_t} K_t^{\alpha} (\Gamma_t h_t)^{1-\alpha}$$

Lagrangiano

Lagrangiano

O Lagrangiano do problema de maximização das empresas é dado por:

Lagrangiano

O Lagrangiano do problema de maximização das empresas é dado por:

$$\mathcal{L} = \textit{E}_0 \sum_{t=0}^{\infty} \beta^t X_{t-1}^{-\gamma} \lambda_t \left[e^{z_t} K_t^{\alpha} (\Gamma_t h_t)^{1-\alpha} - \textit{u}_t K_t - \textit{W}_t h_t - \textit{M}_t + \textit{M}_{t-1} + \frac{\textit{D}_{t+1}^f}{1+\textit{r}_t} - \textit{D}_t^f + \xi_t (\textit{M}_t - \eta \, \textit{W}_t h_t) \right],$$

onde $\xi_t \lambda_t \beta^t \Gamma_{t-1}^{-\gamma}$ representa o o multiplicador de Lagrange das firmas com a restrição de capital de giro.

$$\lambda_t = \beta g_t^{-\gamma} (1 + r_t) E_t \lambda_{t+1}$$

$$\lambda_t = \beta g_t^{-\gamma} (1 + r_t) E_t \lambda_{t+1}$$

$$\alpha e^{z_t} \left(\frac{\Gamma_t h_t}{K_t} \right)^{1-\alpha} = u_t,$$

$$\lambda_t = \beta g_t^{-\gamma} (1 + r_t) E_t \lambda_{t+1}$$

$$\alpha e^{z_t} \left(\frac{\Gamma_t h_t}{K_t} \right)^{1-\alpha} = u_t,$$

$$(1-lpha)e^{z_t}\Gamma_t\left(rac{\mathcal{K}_t}{\Gamma_t h_t}
ight)^lpha=W_t(1+\eta \xi_t),$$

$$\lambda_t = \beta g_t^{-\gamma} (1 + r_t) E_t \lambda_{t+1}$$

$$\alpha e^{z_t} \left(\frac{\Gamma_t h_t}{K_t} \right)^{1-\alpha} = u_t,$$

$$(1-lpha) \mathrm{e}^{z_t} \Gamma_t \left(rac{\mathcal{K}_t}{\Gamma_t h_t}
ight)^lpha = W_t (1+\eta \xi_t),$$

$$\lambda_t(1-\xi_t)=\beta E_t \lambda_{t+1} g_t^{-\gamma},$$

Ao combinarmos a primeira e a última c.p.o., temos:

$$\xi_t = \frac{r_t}{1 + r_t},$$

Ao combinarmos a primeira e a última c.p.o., temos:

$$\xi_t = \frac{r_t}{1 + r_t},$$

isso significa que a presença de capital de giro introduz uma elevação nos custos do trabalho (Uribe and Schmitt-Grohé 2017).

Ao combinarmos a primeira e a última c.p.o., temos:

$$\xi_t = \frac{r_t}{1 + r_t},$$

isso significa que a presença de capital de giro introduz uma elevação nos custos do trabalho (Uribe and Schmitt-Grohé 2017). Ao combinarmos essa expressão com a c.p.o. em relação às horas trabalhadas, obtemos:

Ao combinarmos a primeira e a última c.p.o., temos:

$$\xi_t = \frac{r_t}{1 + r_t},$$

isso significa que a presença de capital de giro introduz uma elevação nos custos do trabalho (Uribe and Schmitt-Grohé 2017). Ao combinarmos essa expressão com a c.p.o. em relação às horas trabalhadas, obtemos:

$$(1-\alpha)e^{z_t}\Gamma_t\left(\frac{K_t}{\Gamma_t h_t}\right)^{\alpha} = W_t\left[1 + \frac{\eta r_t}{1 + r_t}\right].$$

Ao combinarmos a primeira e a última c.p.o., temos:

$$\xi_t = \frac{r_t}{1 + r_t},$$

isso significa que a presença de capital de giro introduz uma elevação nos custos do trabalho (Uribe and Schmitt-Grohé 2017). Ao combinarmos essa expressão com a c.p.o. em relação às horas trabalhadas, obtemos:

$$(1-\alpha)e^{z_t}\Gamma_t\left(\frac{K_t}{\Gamma_t h_t}\right)^{\alpha} = W_t\left[1 + \frac{\eta r_t}{1 + r_t}\right].$$

Assim, o custo do trabalho é dado pelo salário real e pelo componente financeiro (Uribe and Schmitt-Grohé 2017).

Taxa de juros

Taxa de juros

Assume-se que a taxa de juros é função de um nível de equilíbrio (\bar{r}) e do endividamento:

Taxa de juros

Assume-se que a taxa de juros é função de um nível de equilíbrio (\bar{r}) e do endividamento:

$$r_t = r^* + \psi \left(e^{rac{Dt+1/\Gamma_t}{\hat{y}\hat{d}}} - 1
ight) + e^{\mu t - 1} - 1$$
,

Taxa de juros

Assume-se que a taxa de juros é função de um nível de equilíbrio (\bar{r}) e do endividamento:

$$r_t = r^* + \psi \left(e^{rac{Dt+1/\Gamma_t}{\tilde{y}\tilde{d}}} - 1
ight) + e^{\mu t - 1} - 1,$$

cujos choques seguem a seguinte lei de movimento:

Taxa de juros

Assume-se que a taxa de juros é função de um nível de equilíbrio (\bar{r}) e do endividamento:

$$r_t = r^* + \psi \left(e^{\frac{Dt+1/\Gamma_t}{\tilde{y}\tilde{d}}} - 1 \right) + e^{\mu t - 1} - 1,$$

cujos choques seguem a seguinte lei de movimento:

$$\ln \mu_{t+1} = (1 - \rho_{\mu})\bar{\mu} + \rho_{\mu} \ln \mu_t + \epsilon_{t+1}^{\mu}.$$

Equilíbrio

Em um ambiente de **concorrência perfeita**, os intermediários financieros tomam recursos emprestados no mercado internacional e emprestam para as famílias e as empresas. O balanço dos bancos gera a seguinte condição de equilíbrio:

Em um ambiente de **concorrência perfeita**, os intermediários financieros tomam recursos emprestados no mercado internacional e emprestam para as famílias e as empresas. O balanço dos bancos gera a seguinte condição de equilíbrio:

$$\underbrace{\frac{D_{t+1}^h + D_{t+1}^f}{1 + r_t}}_{Ativo} = \underbrace{\frac{D_{t+1}}{1 + r_t} + M_t}_{Passivo}.$$

Lembre-se que o preço de um título, q_t , tem uma relação inversa com a taxa de juros: $q_t=1/1+r_t$.

Os lucros dos bancos (Π_t^b) são dados por:

$$\Pi_{t}^{b} = D_{t}^{h} + D_{t}^{f} - D_{t} - M_{t-1}.$$

Os lucros dos bancos (Π_t^b) são dados por:

$$\Pi_t^b = D_t^h + D_t^f - D_t - M_{t-1}.$$

Assim, o total de lucros recebidos pelas famílias é dado por:

Os lucros dos bancos (Π_t^b) são dados por:

$$\Pi_t^b = D_t^h + D_t^f - D_t - M_{t-1}.$$

Assim, o total de lucros recebidos pelas famílias é dado por:

$$\Pi_t = \Pi_t^f + \Pi_t^b,$$

A restrição de recursos da economia

Ao combinarmos as restrições das famílias e das empresas, temos:

A restrição de recursos da economia

Ao combinarmos as restrições das famílias e das empresas, temos:

$$\frac{D_{t+1}}{1+r_t} = D_t + C_t + S_t + I_t + \frac{\phi}{2} \left(\frac{K_{t+1}}{K_t} - g \right)^2 K_t - Y_t.$$

A restrição de recursos da economia

Ao combinarmos as restrições das famílias e das empresas, temos:

$$\frac{D_{t+1}}{1+r_t} = D_t + C_t + S_t + I_t + \frac{\phi}{2} \left(\frac{K_{t+1}}{K_t} - g \right)^2 K_t - Y_t.$$

Como os bancos são homogênos, no agregato, temos que: $ilde{D}_t \equiv D_t.$

Para induzirmos estacionariedade, vamos definir:

$$y_t = \frac{Y_t}{X_{t-1}}, \quad c_t = \frac{C_t}{X_{t-1}}, \quad s_t = \frac{S_t}{X_{t-1}}, \quad d_t = \frac{D_t}{X_{t-1}}, \quad k_t = \frac{K_t}{X_{t-1}}$$

$$\nu_t \left[c_t - \omega^{-1} h_t^{\omega} \right]^{-\gamma} = \lambda_t$$

$$\nu_t \left[c_t - \omega^{-1} h_t^{\omega} \right]^{-\gamma} = \lambda_t$$

$$h_t^{\omega-1} = (1-\alpha)a_tg_t^{1-\alpha}\left(\frac{k_t}{h_t}\right)^{\alpha}\left[1+\frac{\eta r_t}{1+r_t}\right],$$

$$\nu_t \left[c_t - \omega^{-1} h_t^{\omega} \right]^{-\gamma} = \lambda_t$$

$$h_t^{\omega-1} = (1-\alpha)a_t g_t^{1-\alpha} \left(\frac{k_t}{h_t}\right)^{\alpha} \left[1 + \frac{\eta r_t}{1+r_t}\right],$$

$$\lambda_t = \frac{\beta}{g_t^{\gamma}} (1 + r_t) E_t \lambda_{t+1},$$

$$\left[1+\phi\left(\frac{k_{t+1}}{k_t}g_t-g\right)\right]\lambda_t = \frac{\beta}{g_t^{\gamma}}E_t\lambda_{t+1}\left[1-\delta+a_{t+1}\left(\frac{g_{t+1}h_{t+1}}{k_{t+1}}\right)^{1-\alpha}+\phi\left(\frac{k_{t+2}}{k_{t+1}}g_{t+1}-g\right)-\frac{\phi}{2}\left(\frac{k_{t+2}}{k_{t+1}}g_{t+1}-g\right)^2\right],$$

$$\frac{d_{t+1}}{1+r_t}g_t = d_t - y_t + c_t + s_t + i_t + \frac{\phi}{2}\left(\frac{k_{t+1}}{k_t}g_t - g\right)^2 k_t,$$

$$\frac{d_{t+1}}{1+r_t}g_t = d_t - y_t + c_t + s_t + i_t + \frac{\phi}{2}\left(\frac{k_{t+1}}{k_t}g_t - g\right)^2 k_t,$$

$$r_t = r^* + \psi \left(e^{\left(rac{d_{t+1}}{y} - ar{d}
ight)} - 1
ight) + e^{\mu_{t-1}} - 1$$
,

$$\frac{d_{t+1}}{1+r_t}g_t = d_t - y_t + c_t + s_t + i_t + \frac{\phi}{2}\left(\frac{k_{t+1}}{k_t}g_t - g\right)^2 k_t,$$

$$r_t = r^* + \psi \left(e^{\left(\frac{d_{t+1}}{y} - \bar{d} \right)} - 1 \right) + e^{\mu_{t-1}} - 1,$$

$$k_{t+1}g_t = (1-\delta)k_t + i_t$$

$$\frac{d_{t+1}}{1+r_t}g_t = d_t - y_t + c_t + s_t + i_t + \frac{\phi}{2}\left(\frac{k_{t+1}}{k_t}g_t - g\right)^2 k_t,$$

$$r_t = r^* + \psi \left(e^{\left(\frac{d_{t+1}}{y} - \bar{d} \right)} - 1 \right) + e^{\mu_{t-1}} - 1,$$

$$k_{t+1}g_t = (1-\delta)k_t + i_t$$

$$y_t = a_t k_t^{\alpha} (g_t h_t)^{1-\alpha},$$

Referências i

- Aguiar, Mark, and Gita Gopinath. 2007. "Emerging Market Business Cycles: The Cycle Is the Trend." *Journal of Political Economy* 115 (1): 69–102. http://www.jstor.org/stable/10.1086/511283.
- Garcia-Cicco, Javier, Roberto Pancrazi, and Martin Uribe. 2010. "Real Business Cycles in Emerging Countries?" *American Economic Review* 100 (5): 2510–31.
- Uribe, Martin, and Stephanie Schmitt-Grohé. 2017. *Open Economy Macroeconomics*. Princeton University Press.