Our goal is to solve

$$\min_{x \in K} \widehat{\theta}^T x$$

where K is convex and compact.

Interior point methods 1

Path-following interior point is the following:

- While $t > \varepsilon/m$,
 - "Approximately" solve

$$\widehat{x}_t \approx \operatorname{argmin}_{x \in K} \underbrace{x^T \widehat{\theta} + t \varphi(x)}_{\Phi_t(x)}$$

where φ is self-concordant barrier function.

 $-t \leftarrow t(1-\gamma).$

Examples for φ :

• $K = \{x : Ax < b\}$. Then $\varphi_K(x) = \sum_i -\ln(b_i - A_i x)$ works.

Requirements:

- 1. $\varphi \to \infty$ as $x \to \partial K$.
- 2. $\nabla_x^3 \varphi[h, h, h] < 2(\nabla_x^2 \varphi[h, h])^{\frac{3}{2}}$
- 3. $\nabla_x \varphi[h] \leq \sqrt{\nu \nabla_x^2 \varphi[h, h]}$.

Approximate algorithm: Newton's method

$$\widehat{x}^+ \longleftrightarrow \widehat{x} - c\nabla^{-2}\varphi(\widehat{x})\nabla\Phi_t(\widehat{x}).$$

Analysis relies on

$$\lambda_t(x) = \sqrt{\nabla \Phi_t(x) \nabla^{-2} \varphi(x) \nabla \Phi_t(x)}$$

being small. I want $\nabla \Phi_t$ to be small measured in norm of Hessian.

$$t^{+} := t \left(1 - \frac{d}{\sqrt{\nu}} \right) \tag{1}$$

$$\lambda_{t+}(\widehat{x}) \le \lambda_t(\widehat{x})(1+c) + c \tag{2}$$

$$\lambda_{t+}(\widehat{x}^+) \le 2\lambda_{t+}^2(\widehat{x}). \tag{3}$$

 λ doesn't increase too much when you increase the temperature a little; then after doing a Newton step it decreases quickly.

Once $t < \varepsilon$ you have an ε -approximate solution.

We need $(1 - \frac{d}{\sqrt{\nu}})^L < \varepsilon$, so need $K = \Theta(\sqrt{\nu} \ln(\frac{1}{\varepsilon}))$ epochs. Does there exist φ for every compact convex K? Nesterov and Nemivroski showed yes, for $\nu = O(n)$. It is constructive but not efficiently computable (volume of polar cones...)

2 Simulated annealing

- While $t > \varepsilon$,
 - Collect N (approximate) samples $X_t^1, \ldots, X_t^N \sim P_{\theta/t}$ where $P_{\theta_t(x)} \propto \exp(-\frac{\theta^T x}{t})$ on K.
 - Update $t \leftrightarrow t(1 \frac{1}{\sqrt{n}})$.
 - Use samples X_t^1, \ldots, X_t^n to "warm start" on new point.

For Hit-and-Run you need warm start and the covariance matrix. Take $N \approx n$ to get good estimate on covariance matrix (isotropically chose).

Hit-and-run:

- Input: Σ, X_0 warm start, P_0 (oracle access)
- For k = 1, 2, ..., K,
 - Sample $U \sim N(0, \Sigma)$
 - Compute ray $R = \{X_{k-1} + \alpha U : \alpha \in \mathbb{R}\}.$
 - Sample $X_k \sim P_{\theta}|_R$.
- Return X_K .

Here I only need to be able to check whether points are in the set!

Lovasz, Vempala, etc.: $HAR(\Sigma, X_0, P_0)$ returns X such that X is approximately distributed according to P_{θ} , given

- 1. X_0 is sampled from "nearby" distribution
- 2. Σ is "almost" $Cov(P_{\theta})$.
- 3. $K = cn^3$.

Theorem 2.1. If $X \sim P_{\theta/t}$, then $\mathbb{E}[\hat{\theta}^T x] \leq \min_{\alpha} \hat{\theta} x + tn$.

Abernethy-Hazan 2016: There exists a strongly convex barrier function φ such that

$$\operatorname{argmin}_{x \in K} \hat{\theta}^T \varphi(x) + t \varphi(x) = \underset{x \sim P_{\theta/t}}{\mathbb{E}} [x]$$
(4)

What is φ ? For exponential families

$$A(\theta) = \ln \int_{K} \exp(-\theta^{T} x) dx \tag{5}$$

$$\varphi(\theta) = A^*(\theta) = \sup_{\theta} \theta^T x - A(\theta), \tag{6}$$

Fenchel conjugate of A,

$$P_{\theta}(x) = \exp(-\theta^T x - A(\theta)) \tag{7}$$

$$\nabla A(\theta) = \underset{X \sim P_{\theta}}{\mathbb{E}}[X]. \tag{8}$$

(Check signs.) Fact:

$$\nabla A(\theta) = \operatorname{argmax}_{x \in K} x^T \theta - A^*(x).$$

The last 2 equations explain why this works.

Q: What's the barrier parameter that this gives us? It is n all the time, but this is misleading: you can make parameter better by scaling.

HAR gives the following entropic barrier for PSD cone:

$$\varphi(X) = n \ln(\det X).$$

(We can divide this by n.)

Kalai-Vempala give time $n^{4.5}$, we show time $n^4\sqrt{\nu}$.

Cf. Narayanan—Dikin walk—single step every round, compute covariance at each step.