DOCKET NO. 187577/US - 465122.00022

PATENT

Application Number: 10/573,002

[0040] According to one such embodiments of the present invention, it may be preferable is necessary that the microstructure includes polygonal ferrite and a hard second phase, and the hard second phase is either martensite or bainite. When the hard second phase is martensite, since martensite has greater volumetric expansion and allows the introduction of a larger number of mobile dislocations than bainite, the yield point can be further lowered and the BH amount can be increased. Therefore, the hard second phase may likely be martensite. However, residual austenite is allows up to about 3%, which is the level at which it is likely unavoidably contained.

[0041] As described above, it is preferable required that the volume fraction of the second phase is 3 to 20% and the hardness ratio is 1.5 to 6 in order to realize both processability and superior bake hardenability after aging.

On the other hand, the main phase can be made to be polygonal ferrite in order to obtain superior processability, and in addition, in order to obtain this effect, it is preferable necessary that the grain size ratio of the polygonal ferrite to the second phase is 1.5 or more. In the case in which the grain size ratio of the polygonal ferrite to the second phase is less than 1.5, ductility decreases due to the influence of the hard second phase. Furthermore, if the hard second phase is a phase in which dissolved elements can be concentrated, and hardness may have increased in the manner of martensite, the grain size of the second phase inevitably may become smaller. Since this results in greater resistance to the effects of the hard second phase. Thereby, ductility can be improved, the crystal grain size is preferably 2.5 or more.

[0072] It is preferable necessary to suitably promote ferrite transformation after completion of rolling in order to obtain the desired fractions of the microstructure and hardness

Application Number: 10/573,002

PATENT

ratio between the main phase and the second phase in this component system. Therefore, it is beneficial necessary that the finish rolling be carried out under conditions in which a sum of reduction rates of the final stage and the stage prior thereto is 25% or more. When the reduction rate of the final stage is less than 1%, the flatness of the steel sheet deteriorates, while in the case in which it exceeds 15%, ferrite transformation proceed significantly. Thus, the desired microstructure in which the grain size ratio of the polygonal ferrite to the second stage is 2.5 or more may not be obtained. Therefore, the reduction rate of the final stage should be 1 to 15%. An upper limit may not be particularly provided for the sum of reduction rates of the final stage and the stage prior thereto; however, it is preferably 50% or less in consideration of equipment restrictions due to rolling reaction force.

Table 3-1

	Production Conditions							
	Slab No.	Heating rough rolled bar	Temperature at start of finish rolling (°C)	Ar ₃ +250 (°C)	(Reduction rate of final stage)/(Sum of reduction rates of final stage and stage prior thereto) (%/%)			
Ex.1	X1	Yes	1100	1044	14/36			
Ex.2	X1	No	1100	1044	14/36			
Ex.3	X2	No	1100	1094	10/24			
Ex.4	X3	No	1100	1059	10/24			
Ex.5	X 4	No	1100	1068	10/24			
Ex.6	X5	Yes	1100	1053	10/24			
Ex.7	X6	Yes	1100	1043	14/36			
Ex.8	X7	Yes	1100	1038	14/36			
Ex.9	X1	Yes	980	1044	14/36			
Ex.10	X1	Yes	1000	1044	14/36			
Ex.11	X7	Yes	1100	1038	14/36			
Ex.12	X8	Yes	1100	1015	14/36			
Comp.Ex.1	X1	Yes	1100	1044	16/22			
Comp.Ex.2	X1	Yes	1100	1044	14/36			
Comp.Ex.3	X1	Yes	1100	1044	14/36			
Comp.Ex.4	X1	Yes	1100	1044	14/36			
Comp.Ex.5	X1	Yes	1100	1044	<u>18/36</u>			
Comp.Ex.6	Y1	No	1100	1136	14/36			
Comp.Ex.7	Y2	No	1100	1038	14/36			
Comp.Ex.8	Y3	Yes	1100	1014	10/26			

Table 3-1 (Continued)

Table 3-1 (Continued)										
		Production Conditions								
	FT (°C)	Ar ₃ (°C)	Ar ₃ +100 (°C)	Ar ₁ (°C)	MT# (°C)	Holding time (sec)	Cooling rate from holding temp. to 350°C (°C/sec)	CT (°C)	Comments	
Ex.1	850	794	894	712	720	4.0	120	<150		
Ex.2	850	794	894	712	720	4.0	120	<150		
Ex.3	870	844	944	722	740	5.0	110	200	*1	
Ex.4	870	809	909	714	720	5.0	110	200		
Ex.5	870	818	918	714	730	5.0	110	200		
Ex.6	870	803	903	713	730	5.0	110	200		
Ex.7	850	793	893	711	720	5.0	110	200		
Ex.8	850	788	888	710	720	5.0	110	200	*2	
Ex.9	850	794	894	702	710	4.0	120	<150		
Ex.10	850	794	894	702	710	4.0	120	<150		
Ex.11	850	788	888	710	740	1.5	100	250		
Ex.12	850	765	865	706	720	4.0	100	<150		
Comp.Ex.1	850	794	894	712	780	4.0	120	<150		
Comp.Ex.2	<u>780</u>	794	894	712	720	4.0	120	<150		
Comp.Ex.3	850	794	894	712	780	0.5	120	<150		
Comp.Ex.4	850	794	894	712	720	4.0	10	500		
Comp.Ex.5	850	794	894	702	710	4.0	120	<150		
Comp.Ex.6	890	886	986	749	750	4.0	120	<150		
Comp.Ex.7	850	788	888	710	720	4.0	120	<150		
Comp.Ex.8	875	764	864	751	760	5.0	110	<u>400</u>		

^{*1:} Descaling was carried out after rough rolling under conditions of a collision pressure of 2.7 MPa and a flow rate of 0.001 liters/cm².

^{*2:} The sheet was passed through a zinc plating step.

Table 3-2

	Table 3-2 Mechanical Bake									
	Microstructure				Properties			Hardenability		
	Microstructure	volume fraction of Second phase (%)	Hardness ratio	Crystal grain size ratio	YP (MPa)	TS (MPa)	E1 (%)	2%BH (MPa)	2%BH after artificial aging (MPa)	
Ex.1	PF+M	10	3.7	2.7	295	461	36	79	78	
Ex.2	PF+M	8	3.9	2.8	289	456	35	81	81	
Ex.3	PF+B	13	2.9	2.9	288	416	35	68	66	
Ex.4	PF+M	8	3.8	2.8	312	488	32	91	88	
Ex.5	PF+B	12	3.2	2.9	290	442	34	80	77	
Ex.6	PF+B	14	2.7	2.7	320	491	32	77	70	
Ex.7	PF+M	9	3.8	3.0	320	460	35	88	86	
Ex.8	PF+M	10	3.6	2.9	324	471	34	80	80	
Ex.9	PF+M	9	3.8	2.8	293	470	34	71	65	
Ex.10	PF+M	6	4.1	2.9	297	460	33	74	63	
Ex.11	PF+B	16	2.6	1.9	316	466	33	61	62	
Ex.12	PF+B	18	1.8	1.8	344	481	31	64	61	
Comp.Ex.1	BF	<u>100</u>	<u>1.0</u>		322	456	33	58	56	
Comp.Ex.2	Processed F+M	5	1.2	2.6	389	470	28	61	58	
Comp.Ex.3	<u>BF</u>	<u>100</u>	<u>1.0</u>		318	460	31	60	55	
Comp.Ex.4	PF+P	12	1.4	2.7	311	439	32	21	8	
Comp.Ex.5	PF+B	5	4.0	1.4	320	460	31	55	<u>45</u>	
Comp.Ex.6	PF+M	<u>2</u>	2.7	2.2	410	570	24	12	10	
Comp.Ex.7	PF+M	11	3.6	2.6	303	465	34	76	36	
Comp.Ex.8	<u>PF+B</u> +13%γR	31	2.1	1.8	566	794	33	46	43	

In the table, γR indicates residual austenite.