Day 2: Data structures

Let's start by importing the data module

```
In [13]: | | from data import DNA_Sequence, human_sequence, Species_list, sequences
```

Problem 1

The *DNA_Sequence* variable imported from the data module contains DNA sequence

a) Print the **DNA_Sequence** variable

```
In [4]: print DNA_Sequence

GTAGCTGATGCTAGCTGTGATTATTCGTACGATTTGTCGTAGTGTCGTATGCGTAGCTGATGCGTAT
```

b) Print the length of the DNA_Sequence variable

```
In [5]: [Len(DNA_Sequence)
Out[5]: 67
```

c) Count (with a method) the number of "A", "C", "T", and "G" nucleotides in the **DNA_Sequence** variable and assign each one to a different variable (e.g, assign the number of "A"s to a variable named a_count, etc) and then print each variable

d) Transcribe the **DNA_Sequence** and assign it to a new variable. Print the new variable.

(Tip: replace the "T" nucleotides for "U" nucleotides)

```
In [15]: RNA_sequence = DNA_Sequence.replace("T", "U")
print RNA_sequence
```

GUAGCUGAUGCUAGCUGUGAUUAUUCGUACGAUUUGUCGUAGUGUCGUAUGCGUAGCUGAUGCGUAU

e) Split the DNA_Sequence at each "GAT" motif and store the resulting list in a new variable. Determine the

number of the resulting fragments. Print the result.

(Tip: Determine the length of the resulting list of fragments to get the number of fragments)

```
In [21]: |mylist = DNA_Sequence.split("GAT")
print len(mylist)
```

f) Merge the first and last fragments of the list resulted from e) and store it in a new variable. Print the new variable.

```
In [25]: | hew_seq = mylist[0] + mylist[-1]
    print new_seq

GTAGCTGCGTAT
```

Problem 2

The human_sequence variable imported from the data module contains a human DNA sequence

a) Print the **human_sequence** variable

b) Notice that both ends of the sequence contain gaps "-". Eliminate the gaps from boths ends of the sequence, and assign the resulting sequence to a new variable. Print the result.

```
In [28]: clean_seq = human_sequence.strip("-")
print clean_seq

CCCACGCGTCCGCGGACGCGTGGGCGTACGCGTGGGCGGACGCGTGGGAAGAAATCTTAGACAAAAAAGT
```

c) Change the capitalization of the human_sequence variable and print

Problem 3

The **Species_list** variable imported from the **data** module contains a list with species names.

a) Determine the number of species in Species_list and print it.

```
In [30]: print len(Species_list)
7
```

b) Sort the **Species_list** variable by alphabetical order and print.

```
In [41]: Species_list.sort()
    print Species_list

['B_bufo', 'B_taurus', 'C_albicans', 'C_felix', 'H_sapiens', 'M_muscul"]
```

c) Change the "C_albicans" entry by a new species: "D_melanogaster". Print Species_list.

```
In [42]: Species_list[2] = "D_melanogaster"
print Species_list

['B_bufo', 'B_taurus', 'D_melanogaster', 'C_felix', 'H_sapiens', 'M_mus
```

d) Store the first 3 species of the **Species_list** list in a new variable: "First_species" and print.

```
In [44]: First_species = Species_list[:3]
print First_species

['B_bufo', 'B_taurus', 'D_melanogaster']
```

e) Create a new empty list and add the following species as entries: "C_kahawae", "Q_suber", "L_lepida"

Problem 4

a) Create a new string variable composed of 100 "N" characters

```
In [48]: junk = "N" * 100 print junk
```

b) Create two new number variables with the numbers 23 and 323. Determine their sum, difference, division and multiplication

```
In [49]: a = 23
b = 323
print a + b
print a - b
print a / b
print a * b

346
-300
0
7429
```

c) Notice that the division of 23 by 323 results in "0". Convert both numbers into floating point variables and repeat the division

```
In [50]: a = 23.
b = float(b)
print a / b

0.0712074303406
```

Problem 5

The **sequences** variable contains a dictionary with taxon name as keys, and their DNA sequence of the Cytb gene as values.

a) Determine the number of taxa contained in the dictionary

```
In [53]: print len(sequences)
37
```

b) Print both the taxon name and sequence of the 3°, 5° and 7° dictionary item.

```
In [61]: third = sequences.keys()[2]
  fifth = sequences.keys()[4]
  seventh = sequences.keys()[6]
  print third + " " + sequences[third]
  print fifth + " " + sequences[fifth]
  print seventh + " " + sequences[seventh]
```

Mo10 GGACTGTGCCTAATTACTCAAATTGTTACAGGGTTATTTTTAGCAATACACTACAATGCAGATATTIb9 GGATTGTGCCTAATTACTCAAATTGTTACAGGATTATTTTTAGCAATACACTACAATGCAGATATTIb17 GGATTGTGCCTAATTACTCAAATTGTTACAGGATTATTTTTAGCAATACACTACAATGCAGATATT

```
In [ ]:
```