Data Mining

Feature Selection

Modified based on "Feature selection and causal discovery – fundamentals and applications" by I. Guyon

Feature Selection

 Thousands to millions of low level features: select the most relevant ones to build better, faster, and easier to understand learning machines.

Leukemia Diagnosis

ALL – positive class, Acute lymphoblastic leukemia AML -- Acute myeloid leukemia

Prostate Cancer Genes

BPH: benign prostate

G3 and G4 are two grades of prostate cancer

RFE SVM, Guyon, Weston, et al. 2000. US patent 7,117,188

Application to prostate cancer. Elisseeff-Weston, 2001

RFE SVM for Cancer Diagnosis

<u>Differentiation of 14 tumors (Ramaswamy et al., PNAS 2001)</u>

RFE – recursive feature elimination

OVA - One vs. All strategy

AP- advanced P-tree with microarray data

WV – weighted voting

KNN – K nearest neighbor

SVM – support vector machine

Curse of Dimensionality?

Curse of Dimensionality

- Phenomena arises when analyzing and organizing data in high dimensional spaces that do not occur in low dimensional settings
 - When dimensionality increases, the volume of the space increases so fast that the available data becomes sparse
 - Difficult to have enough data to obtain and support results that are statistically sound and reliable
 - All objects appear to be sparse and dissimilar making it difficult to detect areas where objects form groups of similar properties
 - In machine learning, Hughes phenomenon

Drug Screening

- Binding to Thrombin
 (DuPont Pharmaceuticals)
 - 2543 compounds tested for their ability to bind to a target site on thrombin, a key receptor in blood clotting; 192 "active" (bind well); the rest "inactive". Training set (1909 compounds) more depleted in active compounds.
 - 139, 351 binary features, which describe three-dimensional properties of the molecule.

Text Filtering

- Reuters: 21578 news wires, 114 semantic categories
- 20 newsgroups: 19997 articles, 20 categories
- WebKB: 8282 web pages, 7 categories
- Bag-of-words: > 100000 features

- Top 3 words of some categories:
 - Alt.atheism: atheism, atheists, morality
 - Comp.graphics: image, jpeg, graphics
 - Sci.space: space, nasa, orbit
 - Soc.religion.christian: god, church, sin
 - Talk.politics.mideast: israel, armenian, turkish
 - Talk.religion.misc: jesus, god, jehovah

Bekkerman et al, JMLR, 2003

Face Recognition

1450 images (1000 train,

450 test), 5100 features

(images 60x85 pixels)

Relief:

Simba:

Navot-Bachrach-Tishby, ICML 2004

Feature Selection Methods

- Univariate method: considers one variable (feature) at a time.
 - Filter methods
- Multivariate method: considers subsets of variables (features) together.
 - Filter methods
 - Wrapper method
 - Embedded method

Filters, Wrappers and Embedded methods

- Filter method: ranks features or feature subsets independently of the predictor (classifier).
- Wrapper method: uses a classifier to assess features or feature subsets.
 - Validation data set is used to rank features
 - More computationally expensive
 - Embedded method: similar to wrapper method except an intrinsic model building metric is used during learning

Filters, Wrappers and Embedded methods

Univariate Filter Methods

- Variance Threshold
- Correlation
- Feature Relevance
- T-test
- Chi-squared test
- Mutual Information

Variance Threshold

- Assuming features with larger variance contain higher information
- Compute the variance of all the features, and eliminate features having variance lower than a predefined threshold value, or
- Keep only the top k features having the largest variance values

Pearson Correlation

• Standardize/normalize data $x_i = \frac{x_i - \mu}{\sigma}$

(μ and σ are the mean and standard deviation of the attribute)

Compute Pearson correlation between X and Y

$$\rho_{X,Y} = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y},$$

 low correlation to target variable Y → Less predictive features

Individual Feature Irrelevance

$$P(X_i, Y) = P(X_i) P(Y)$$

$$P(X_i|Y) = P(X_i)$$

$$P(X_i|Y=1) = P(X_i|Y=-1)$$

density

Signal to Noise Ratio (S₂N)

$$S_2 N = \frac{|\mu^+ - \mu^-|}{\sigma^+ + \sigma^-}$$

Higher $S_2N \rightarrow$ more predictive the feature is to the target variable Y

Practice Question

Obj	A_1	A_2	A_3	•••	class
1	30	28			Pos
2	24	16			Pos
3	20	15			Neg
4	28	17	•		Pos
5	10	19	•		Neg
6	20	20	•		Neg
7	16	16	•		Neg
8	34	15	•		Pos
•	•	•	•		•
•	•	•	•		•

Which attribute is better for predicting the class label? A_1 or A_2 ?

Practice Question (cont.)

Obj	A_1	A ₂	Class
1	30	28	positive
2	24	16	
4	28	17	
8	34	15	

$$\mu_{1} = 29 \quad \mu_{2} = 19$$

$$\sigma_{1} = 4.16 \quad \sigma_{2} = 6.05$$

Obj	A_1	A_2	Class
3	20	15	negative
5	10	19	
6	20	20	
7	16	16	

$$\mu_1 = 16.5 \ \mu_2 = 17.5$$

$$\sigma_1 = 4.72 \ \sigma_2 = 2.38$$

T-test (two tailed)

- Normally distributed classes, equal variance σ^2 unknown; estimated from data as σ^2_{within} .
- Null hypothesis H_0 : $\mu^+ = \mu^-$
- T statistic: If H₀ is true,

$$t = \frac{(\mu^{+} - \mu^{-})}{\sigma_{within} \sqrt{\frac{1}{m^{+}} + \frac{1}{m^{-}}}},$$

 m^+ and m^- are the numbers of rows in Y = 1 and Y = -1 classes

- Degree of freedom: m⁺ + m⁻ 2
- Confidence, e.g., 95%

T-test

Procedure

Two t-values:

- t-value calculated from the observations
- Critical t-value

If t_{obs} > t _{critical}, reject the hypothesis Otherwise, accept the hypothesis

Null hypothesis H_0 : $\mu^+ = \mu^-$

Practice Question

Obj	A_1	A_2	A_3	•••	class
1	30	28			Pos
2	24	16	•		Pos
3	20	15			Neg
4	28	17			Pos
5	10	19			Neg
6	20	20			Neg
7	16	16			Neg
8	34	15	•		Pos
•	•		•		•
•		•			•

Are attributes A_1 or A_2 having the same distribution in terms of predicting the class label?

- Assume: the samples are a good random sample of the population it represents
- Is "Gender" what you can use to predict an undergrad's preference of his/her footwear?
- Null hypothesis "Gender and Footwear Preference have no relationship"

	Sandals	Sneakers	Leather shoes	Boots	Other	Total
Male	6	17	13	9	5	50
Female	13	5	7	16	9	50
Total	19	22	20	25	14	100

Male/Sandals: $((19 \times 50)/100) = 9.5$

Male/Sneakers: $((22 \times 50)/100) = 11$

Male/Leather Shoes: ((20 X 50)/100) = 10

Male/Boots: $((25 \times 50)/100) = 12.5$

Male/Other: $((14 \times 50)/100) = 7$

Female/Sandals: $((19 \times 50)/100) = 9.5$

Female/Sneakers: $((22 \times 50)/100) = 11$

Female/Leather Shoes: $((20 \times 50)/100) = 10$

Female/Boots: $((25 \times 50)/100) = 12.5$

Female/Other: $((14 \times 50)/100) = 7$

	Sandals	Sneakers	Leather shoes	Boots	Other	Total
Male Observed	6	17	13	9	5	50
Male Expected	9.5	11	10	12.5	7	
Female Observed	13	5	7	16	9	50
Female Expected	9.5	11	10	12.5	7	
Total	19	22	20	25	14	100

$$\sum_{i=1}^{rowsize} \sum_{j=1}^{colsize} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

Total = 14.026

Male/Sandals: $((6 - 9.5)^2/9.5) = 1.289$

Male/Leather Shoes: $((13 - 10)^2/10) = 0.900$

Male/Other: $((5 - 7)^2/7) = 0.571$

Female/Sneakers: $((5 - 11)^2/11) = 3.273$

Female/Boots: $((16 - 12.5)^2/12.5) = 0.980$

Male/Sneakers: $((17 - 11)^2/11) = 3.273$

Male/Boots: ((9-12.5)²/12.5)=0.980

Female/Sandals: $((13-9.5)^2/9.5)=1.289$

Female/Leather Shoes:((7-10)²/10)=0.900

Female/Other: $((9 - 7)^2/7) = 0.571$

	Sandals	Sneakers	Leather shoes	Boots	Other	Total
Male Observed	6	17	13	9	5	50
Male Expected	9.5	11	10	12.5	7	
Female Observed	13	5	7	16	9	50
Female Expected	9.5	11	10	12.5	7	
Total	19	22	20	25	14	100

- What odds are we willing to accept that we are wrong in generalizing from the results in our sample to the population it represents? → confidence 5%
- Degree of Freedom of this problem
 = (# of rows 1)(# of cols 1) = (2-1)(5-1)=4
- From Chi Square table of statistics book, with p=0.05, r=4, critical value is 9.49,
 - if Chi square value is less than 9.49, accept the null hypothesis that there is no statistically significant relationship between gender and shoe preference
- In this case, Chi square value is 14.026 > 9.49, so we can reject the null hypothesis and conclude: male and female undergraduates of the Univ. differ in their footwear preferences.

Mutual Information

Consider feature X and target variable Y:

$$P(x,y) = \text{ joint probability of } (x,y), x \in \{1,...,r\} \text{ and } y \in \{1,...,s\}$$

$$P(x) = \sum_{y} P(x,y) = \text{marginal probability of } x$$

$$P(y) = \sum_{x} P(x,y) = \text{marginal probability of } y$$

(In)Dependence often measured by MI

$$0 \le MI(X,Y) = \sum_{xy} P(x,y) \log_2 \frac{P(x,y)}{P(x)P(y)}$$

- Also known as cross-entropy or information gain
- Selection of relevant variables for the task at hand

Mutual Information

 For feature X and target variable Y, information gain of feature X is

$$IG(Y;X) = I(Y;X) = Entropy(Y) - Entropy(Y \mid X)$$

$$= H(Y) - H(Y \mid X)$$

$$= \sum_{y} -P(y)\log_2 P(y) - \sum_{x} p(x)(\sum_{y} -P(y \mid x)\log_2 P(y \mid x))$$

(algebraic manipulations)

$$= \sum_{xy} P(x,y) \log_2 \frac{P(x,y)}{P(x)p(y)}$$

Mutual Information

Consider feature X and target variable Y:

$$P(x,y) = \text{ joint probability of } (x,y), \quad x \in \{1,...,r\} \text{ and } y \in \{1,...,s\}$$

$$P(x) = \int_{y} P(x,y) dy = \text{ marginal probability of } x$$

$$P(y) = \int_{x} P(x,y) dx = \text{ marginal probability of } y$$

(In)Dependence often measured by MI

$$0 \le MI(X;Y) = \iint_{x,y} P(x,y) \log \frac{P(x,y)}{P(x)P(y)} dxdy$$

Multivariate Methods

- Filters
 - Mutual Information
 - Relief
- Wrapper
- Embedded methods

Univariate may fail

Feature Selection with Mutual Information

Basic idea:

- Given an initial set F with n features, find a subset S of F with k features that maximizes the Mutual Information I(C; S), i.e., minimizes H(C|S).
- Exhaustive search for S is computationally prohibitive.
- Approximation methods are used instead

MIFS Algorithm

Basic Idea:

- Given a set of already selected features, the algorithm chooses the next feature as the one that maximizes the information about the class corrected by subtracting a quantity proportional to the average MI with the selected features.
- In order to be selected, a feature must be informative about the class without being predictable from the current (chosen) set of features.
 - if two features f and f' are highly dependent, I (f; f') will be large and, after the better one is picked, the selection of the second one is penalized.

MIFS Algorithm

- Step 1: Initialization: F={initial set of n features}; S={}
- Step 2: Computation of the MI with the output class for each feature f compute I(C; f).
- Step 3: Choice of the first feature find the feature f that maximizes I(C, f): $F = F \{f\}$; $S = S + \{f\}$
- Step 4: Greedy Search:

Repeat until |S|=k:

- (a) Computation of MI between featuresfor all pairs of features (f, s) where f is in F, and s is in S, compute I(f; s)
- (b) Selection of the next feature choose feature f as the one that maximizes $I(C;f) \beta \sum_{s \in S} I(f;s)$ $F = F - \{f\}; \qquad S = S + \{f\}$

Step 5: Output the set S containing the selected features

Relief - Context based feature weighting

Basic idea:

- Determine the importance of features in classification based on how feature value changes affect the change of class label
- A change in feature value accompanied by a change in class → the feature value change could be responsible for the class change → increase weights for this feature
- A change in feature value leads to no change in class label → this feature has no effect on class → decrease weights for this feature

Relief


```
Relief(S, m, \tau)
    Separate S into S^+ = \{positive instances\} and
        S<sup>-</sup>= {negative instances}
    W = (0, 0, \dots, 0)
    For i = 1 to m
        Pick at random an instance X \in S
        Pick at random one of the positive instances
            closest to X, Z^+ \in S^+
        Pick at random one of the negative instances
           closest to X, Z^- \in S^-
        if (X is a positive instance)
           then Near-hit = Z^+; Near-miss = Z^-
           else Near-hit = Z^-; Near-miss = Z^+
        update-weight(W, X, Near-hit, Near-miss)
    Relevance = (1/m)W
    For i = 1 to p
        if (relevance; \geq t)
           then f; is a relevant feature
           else f; is an irrelevant feature
update-weight(W, X, Near-hit, Near-miss)
    For i = 1 to p
        W_i = W_i - diff(x_i, near-hit_i)^2 + diff(x_i, near-miss_i)^2
```

Relief

Weight update:

Wrapper for feature selection

N features, 2^N possible feature subsets!

Search Strategies

- Exhaustive search
- Simulated annealing
- Genetic algorithms
- Beam search: keep k best path at each step
- Greedy search: forward selection or backward elimination.

Feature subset assessment

N variables/features

M samples

Split data into 3 sets:

training, validation, and test set.

- For each feature subset, train predictor on training data.
- Select the feature subset, which performs best on validation data.
 - Repeat and average if you want to reduce variance (crossvalidation).
- 3) Test on test data.

Forward Selection (Wrapper)

Also referred to as SFS: Sequential Forward Selection

Forward Selection (Embedded)

Guided search: we do not consider alternative paths.

Forward Selection w. Trees

Tree classifiers,
 like CART (Breiman, 1984) or C4.5 (Quinlan, 1993)

At each step, choose the feature that "reduces entropy" most. Work towards "node purity".

Backward Elimination (Wrapper)

Also referred to as SBS: Sequential Backward Selection

Backward Elimination (embedded)

Conclusions

- Feature selection focuses on uncovering subsets of variables X_1 , X_2 , ... predictive of the target Y.
- Multivariate feature selection is in principle more powerful than univariate feature selection, but not always in practice.
- Taking a closer look at the type of dependencies in terms of causal relationships may help refining the notion of variable relevance.