CheMin

Group-2

Poonam Lakhangaonkar Hiren Patel Valentin BERTHOMIER Rajnish Kumar

Introduction

❖ CheMin is a mineralogy instrument that will identify and quantify the minerals present in rocks and soil powder samples delivered by the rover's robotic arm

Description

- ❖ CheMin Instrument is located inside the main body of the rover
- CheMin Uses
 - ➤ A technique called X-ray diffraction (XRD) for mineralogy characterization
 - > X-ray fluorescence (XRF) for elemental characterization
 - ➤ A single detector for both measurements
 - > One moving part (Sample wheel)

(CheMin XRD/XRF instrument)

What CheMin does?

- ❖ CheMin analyze the sample delivered to it by SA/SPaH
- ❖ It identifies the minerals present in Mars soil & rocks
- ❖ Mineralogy helps CheMin to assess the involvement of water in their formation, position and alteration
- ❖ CheMin data is useful in the search for potential mineral energy sources for life or indicators for past habitable environments

CheMin Requirements

- Power Requirements
 - ➤ Chemin require 250W-hr power per evening for processing.
 - ➤ CheMin is limited to approximately 4 hours of analysis per evening of operation, with the remaining energy allocated for pre-analysis warm-up of the X-ray source, and post-analysis data processing and transfer.
 - The complete analysis of any one sample can take up to 10 hours, thus requiring multiple evenings to analyze a sample.

CheMin components

Funnel

- ➤ Receives drill powders or scoop samples from the SA/SPaH system
- ➤ Maximum of 65 mm³ of sample material is delivered
- ➤ It contains a 1-mm mesh screen to keep larger than expected grains from entering the CheMin sample handling system
- > Grains that pass through the screen will pass into the upper reservoir portion of the sample cell
- ➤ CheMin may reduce contamination by sample dilution

CheMin components

- **❖** Sample cell and sample wheel
 - ➤ Carries 27 reusable sample cells and 5 permanent reference standards
 - > Only 10 mm³ material is required to fill the sample cell
 - > Remaining sample goes to reservoir (which is above cell)
 - > During filling, analysis, and dumping, the sample cell is shaken by piezoelectric actuators (piezos)

(Sample Wheel And Sample cell)

CheMin components

❖ X-Ray Beam

- > X-ray beam from the X-ray tube is directed through a transmission sample cell containing sample
- > X-ray sensitive CCD imager is positioned on the opposite side of the sample from the source
- > X-ray diffraction occurs with the crystal material and form the rings i.e. a two-dimensional image that constitutes the diffraction pattern

- ***** CONFIG PHASE
 - > Position the X-ray sensitive CDD imager
 - ➤ Receive drilled powder through the drill, scoop and CHIMRA sorting assembly

❖ FILLING PHASE

- > Open chemin inlet protection cover
- ➤ 16 dual cells on the sample wheel -> 1piezzo for each dual cell
- > piezzo is active during filling analysis and dumping
- > Turn on piezzoelectric actuators number X
- > put sample in the funnel
- Close inlet protection cover

- **❖** ANALYSIS PHASE
 - ➤ Turn on X-ray beam
 - > CDD reads out and erase the X-ray flux multiple times (+1000times) for analysis
 - > Data handling
 - ➤ Identify energy of X-rays strikes by the detector and produce 2D image of diffraction pattern
 - > Sum all the X-ray detected by CDD into a histogram of number of

❖ DUMPING PHASE

- \triangleright Rotate the sample wheel 180⁰ (sample cell inversion)
- ➤ Empty the cell after use by inverting and vibrating the sample cell over the sump
- > Rotate back to the next sample slot
- ➤ Rotate the sample wheel 180°-X (X corresponds to the distance between sample cells)
- > Turn off piezzo

CheMin Commands

- * chemin on: start the chemin process
- * xray_set_ position:set the xray position towards sample
- sample_receive:this message from telecommunication module
- cell _next:from the sample
- cell_clean_current:dump the sample
- inlet_open:open the
- inlet_close:

CheMin Commands

- * xray_turn_on: turn on the x-ray beam
- analysis_start:start analysis on sample
- cdd_create_diffreaction_image:
- cdd_create_1d_2t_plot:
- send_result:send result to telecommunication server
- power_off:turn off the chemin and terminate the process.

- ❖ SimulateRoverMain
 - > Module creation
 - CheMinModuleMain
 - Power Server
 - Telecom Server
 - ➤ Module launching
 - CheMinModuleMain is launched
 - Threads for CheMin server and CheMin process are created & started
 - Server threads for Power and Telecom are created & started

- **❖** CheMin server
 - ➤ If message is 'chemin_on'
 - Set CCU to true and create CheminClient(9013->power) thread and start it
 - ➤ If message is 'power on'
 - Launch chemin process create CheminClient(9002->Telecom) thread and start it
 - ➤ If message is 'Power Off'
 - Then free Chemin threads

- CheMin Client
 - \rightarrow If port is 9013
 - PowerRequirement is sent to PowerClient
 - \rightarrow If port is 9002
 - XrdDiffraction image is sent to TelecomClient

- CheMin Process can receive the text file which contains the commands to execute
 - f_xray_set_position()
 - set and configure x-ray beam position
 - > f_sample_receive()
 - launch the powder sample receiving procedure
 - If inlet cover is opened, abort the operation

- \rightarrow f_cell_go_to(5)
 - Choose the sample cell (depending on given sample cell number and current sample cell)
- f_cell_clean_current()
 - Start the cleaning procedure
- ➤ f_inlet_open()
 - Open inlet cover if not opened already

- f_piezzo_tun_on(v_current_sample_cell/2)
 - Turn on the given piezzo if not on
- ➤ f_inlet_close()
 - Close inlet cover if not closed already
- > f_piezzo_turn_off(v_current_sample_cell/2)
 - Turn off the given piezzo if not off
- f_xray_turn_on()

- ➤ f_analysis_start()
 - Verify that every component is ready to start analysis phase
 - X-ray position
 - X-ray on
 - Inlet cover closed
 - Sample cell contamination checked
 - Sample not contaminated

- f_analysis_start()
 - Starts analysis // not clear with this
 - play music 'voice.mp3'
 - f_cdd_read_erase()

- f_cdd_create_diffraction_image()
 - Create diffraction image
- f_cdd_create_1d_2t_plot()
 - Create 1D 2theta plot image
- ➤ f_send_results()
 - End of process, send results to telecom

- Power Server
 - ➤ Waits for client message
 - > If receive message, print it
 - then create power client(9008->CheminServer) thread and start it

- **❖** Power Client
 - > Print socket port
 - ➤ If socket port is 9008
 - then send "POWER ON" to port 9008 (to Chemin Server)

- **❖** Telecom Server
 - ➤ Waits for client message
 - ➤ If receive message print it
 - then create telecom client(9008->CheminServer) thread and start it

- **❖** Telecom Client
 - > Print socket port
 - ➤ If socket port is 9008
 - then send "Chemin receives telecom acknowledge" to port 9008 (to Chemin Server)